PointINS: Point-based Instance Segmentation

Lu Qi†, Yi Wang‡, Yukang Chen‡, Yingcong Chen, Xiangyu Zhang*, Jian Sun, Jiaya Jia

Abstract—In this paper, we explore the mask representation in instance segmentation with Point-of-Interest (PoI) features. Differentiating multiple potential instances within a single PoI feature is challenging, because learning a high-dimensional mask feature for each instance using vanilla convolution demands a heavy computing burden. To address this challenge, we propose an instance-aware convolution. It decomposes this mask representation learning task into two tractable modules as instance-aware weights and instance-agnostic features. The former is to parametrize convolution for producing mask features corresponding to different instances, improving mask learning efficiency by avoiding employing several independent convolutions. Meanwhile, the latter serves as mask templates in a single point. Together, instance-aware mask features are computed by convolving the template with dynamic weights, used for the mask prediction. Along with instance-aware convolution, we propose PointINS, a simple and practical instance segmentation approach, building upon dense one-stage detectors. Through extensive experiments, we evaluated the effectiveness of our framework built upon RetinaNet and FCOS. PointINS in ResNet101 backbone achieves a 38.3 mask mean average precision (mAP) on COCO dataset, outperforming existing point-based methods by a large margin. It gives a comparable performance to the region-based Mask R-CNN [15] with faster inference.

Index Terms—Instance Segmentation, Single-Point Feature.

1 INTRODUCTION

Instance segmentation aims to detect all objects from images at the pixel-level, and involves both object detection [13, 14, 40, 27, 11] and semantic segmentation [33, 31, 6]. Instance segmentation is a critical task in computer vision research community, and plays an indispensable role in a variety of real-world applications, such as autonomous vehicles [36], robotics [34], video surveillance [41], etc. Considering its both academic and industrial values, increasing vehicles [36], robotics [34], video surveillance [41], etc. Considering its both academic and industrial values, increasing effectiveness of our framework built upon RetinaNet and FCOS. PointINS in ResNet101 backbone achieves a 38.3 mask mean average precision (mAP) on COCO dataset, outperforming existing point-based methods by a large margin. It gives a comparable performance to the region-based Mask R-CNN [15] with faster inference.

In formulation, instance segmentation requires the semantics, identities, and pixel-level locations of objects. Existing studies [15, 31, 19, 43] demonstrate that learning a proper mask representation for characterizing objects’ identities and locations remains a vital and open problem. Most state-of-the-art (SOTA) instance segmentation methods [15, 31, 5, 19, 23, 35] construct mask representations using Region-of-Interests (RoIs) features. The most representative method is Mask R-CNN [15], a region-based convolutional neural network that considers instance masks as refined forms from the corresponding bounding boxes. Specifically, it extracts RoIs features from regions containing potential instances [13, 40, 27] and then maps these features to detect objects’ bounding boxes and to segment instances’ masks. Although RoI features are sufficiently expressive to represent regions for final mask prediction, to obtain RoI features is a complicated process.

To achieve a simple and effective mask representation, several recent approaches, such as TensorMask [7], PolarMask [45] and MInst [50], directly use single-point features, also known as points-of-interests (Pols), to learn objects’ masks. Based on the assumption that each single-point feature corresponds to only one or two potential instances, these approaches give a mask representation from each Pol by the vanilla convolution (top row of Fig. 1), building upon dense one-stage detectors, such as e.g. RetinaNet [28] or FCOS [42].
Despite their competitive efficiency in instance segmentation, their performance and scalability are restricted by the adopted assumption and design. In contrast to their original assumption, one Pol may correspond to multiple instances (i.e., n instances where n = 9 in RetinaNet [28] and YOLO [49]). it is a more intuitive hypothesis due to the common aggregations and occlusions in the real-world. If we switch to this more general assumption, these methods would meet the computational bottleneck. Because the assumption requires them to have around n times larger mask feature representations by employing a n times larger standard convolutions for predicting masks, which is empirically infeasible. A smaller n or a relatively low-dimensional mask presentation could avoid this issue, but their performance is compromised as mentioned.

To address the computational feasibility in the assumption that each Pol feature may cover multiple instances, we study to generate high-dimensional instance-aware mask representations from Pol features by our proposed instance-aware convolution. It decomposes the mask learning into two tractable modules: instance-aware weights and instance-agnostic features generation (as illustrated in the bottom of Fig. 1). Specifically, the former module dynamically generates n convolution weights, predicting n possible mask features. These dynamic weights are named as instance-aware weights as they correlate with the predicted instances. Also, the latter module learns a high-dimensional instance-agnostic feature, serving as a template for potential mask representations from a Pol feature. By convolving the instance-agnostic feature with the instance-aware weights as convolution parameters, we will get the instance-aware feature, aligning the template feature to the specific instance. In this way, it is easy to focus on predicting masks for those positive instance candidates of Pols while maintaining a large mask feature size. Thus, our proposed instance-aware convolution can solve the computational burden existing in the standard convolution for Pol-based methods.

Along with the instance-aware convolution, we propose PointINS, a simple and practical approach to evolve one-stage detectors for instance segmentation. It provides compelling Pol features for final mask prediction both efficiently and effectively.

The contributions of this study are three-fold:

- We propose PointINS, a new pointed-based framework for instance segmentation equipped with the given instance-aware convolution. This module addresses the learning problem about computing proper mask representations for several instances with Pol features, concerning both effectiveness and efficiency.
- Our proposed method gives the state-of-the-art instance segmentation performance among existing Pol-based methods. This performance is also competitive compared with the region-based Mask R-CNN. Under the single-scale 1x training schedule, we obtained 34.5 mask mAP with ResNet101-FPN. Using data augmentation or with longer training time improved performance consistently to 38.3, which is comparable to Mask R-CNN (38.3) yet with faster inference speed (14.9 fps vs. 13.5 fps (frame per second)).
- Our given PointINS is compatible with the most dense one-stage detectors (RetinaNet [28] and FCOS [42]), as its core module instance-aware convolution is decoupled from box heads. It serves as a general framework for point-based instance segmentation.

2 RELATED WORK

In this section, we first revisit representative studies on object detection, as its close relationship to instance segmentation. Then, we describe methods related to instance segmentation and the core technique of dynamic weights employed in this study. Wrapped with dynamic weights, the proposed instance-aware convolution could evolve the dense one-stage detectors for instance segmentation with minimal modifications.

2.1 Object Detection

Current convolutional neural network (CNN)-based object detectors can be categorized into two-stage detectors or one-stage detectors based on whether they exploit region proposals. Two-stage detectors, such as a series of R-CNN [13], [14], [40] first select RoIs and then extract the region features to localize and classify objects. The following algorithms are proposed to improve the performance of two-stage detectors, including new architecture designs, context and attention mechanism, multi-scale exploration, training strategy, and loss design, feature fusion and enhancement, better proposal, and balance. We note that all these methods use the region feature extraction to detect objects. Due to the accurate alignment between region locations and features, RoI Align [15] has become the primary region feature extraction method in two-stage detectors.

Instead of using cropped region features, one-stage methods [32], [38], [28], [42] detect boxes only from point features. Owing to the focal loss [28], one-stage methods can effectively balance the training loss between positive and negative samples, thereby leading to satisfactory detection performance. With faster inference speed, one-stage detectors have become increasingly popular in the computer vision area. Among numerous one-stage detectors, some detectors [32], [38], [28], [42] generate bounding boxes from the single center point, as shown in Fig. 2. For simplicity, we refer to these center-point based one-stage detectors as dense one-stage detectors.

Like the box generation of dense one-stage detectors, our proposed PointINS framework generates instance masks from a single-point feature. Because both boxes and masks are different representations of instances, our method can be built upon these detectors regardless of whether they are anchor-based or anchor-free. This means that dense one-stage detectors can be quickly converted into instance segmentation frameworks by our method with minor modification.

2.2 Instance Segmentation

Current instance segmentation methods can be roughly classified into two categories: segmentation-based [30], [2].
and detection-based \cite{otb, sipnet, instancenet, instancecnn, instancefcn, fcos} methods. Segmentation-based methods usually first predict a semantic map and then cluster points with similar semantic feature embedding into instance masks. Despite the presented new problem formulation of instance segmentation, their expensive clustering produces prevent their real-world applications. Other types of methods encode the instance information into each channel of the generated semantic map. InstanceFCN \cite{instancefcn} and FCIS \cite{fcis} propose predicting position-sensitive score maps with vanilla fully convolutional networks (FCNs). SOLO \cite{solomask} directly decodes each channel of the semantic map into instance masks without indicating whether the used regions are valid. The efficiency of these methods is a concern, as they segment numerous background areas containing no instances but usually covering a large portion of the images.

Popular instance segmentation frameworks are mainly detection-based \cite{retinanet, yolo, yolact, instancenet, instancecnn, instancefcn}. They generally predict a series of bounding boxes by two-stage detectors and then segment masks. Mask R-CNN is an representation for two-stage instance segmentation framework. Several methods, including PANet \cite{panet}, HTC \cite{htc}, and Mask Scoring R-CNN \cite{maskscoringrnn}, refine structure details from different aspects, and all methods use the RoI-Align \cite{roialign} to produce region features. Even RetinaMask \cite{retinanet}, Centermask \cite{centernet}, and Embedmask \cite{embedmask}, which are built upon one-stage detectors, such as RetinaNet \cite{retinanet} or FCOS \cite{fcos}, use RoI features to segment instances.

Instead of using RoI features, Tensormask \cite{tensormask}, Polar-mask \cite{polarmask}, and MEInst \cite{meinst} force a single-point feature to segment only one or two potential regions for exploring a more straightforward representation of instance masks. YOLACT \cite{yolact} assembles the point responses to several predefined anchors with various sizes and aspect ratios. Thus, RetinaNet regresses from the anchor box with four offsets. (a) The single point in RetinaNet responds to several predefined anchors with various sizes and aspect ratios. Thus, RetinaNet regresses from the anchor box with four offsets. (b) FCOS has no anchors, and regresses from a center point with four distances. For simplicity, we refer to this center point as an anchor point.

Fig. 2. Illustration of differences between RetinaNet \cite{retinanet} and FCOS \cite{fcos}. Blue points and boxes represent the center and bound of an object, respectively, while red points and boxes represent the center and bound of anchor, respectively. (a) The single point in RetinaNet responds to several predefined anchors with various sizes and aspect ratios. Thus, RetinaNet regresses from the anchor box with four offsets. (b) FCOS has no anchors, and regresses from a center point with four distances. For simplicity, we refer to this center point as an anchor point.

2.3 Dynamic Weight

As a specific strategy of meta-learning \cite{metalearning, metalearning2, metalearning3}, weight prediction \cite{weightprediction1, weightprediction2} aims to generate dynamic parameters according to different inputs. In other words, the network parameters are input-dependent. It can significantly improve the flexibility of the used net structure at the cost of additional computation.

Cai et al. \cite{metalearning} used the predicted parameters of a classifier to discriminate new categories. These parameters were generated by the memory of the support set. In object detection, MetaAnchor \cite{metaanchor} is a flexible anchor generator to produce higher quality boxes. The weight of the last regression layer is predicted with properties of customized prior anchors. To balance the instance annotation cost between box and mask, Hu et al. \cite{hu} proposed a semi-supervised method to segment zero-shot instances by re-weighting box features. Besides, MetaSR \cite{metasr} uses a dynamic up-sampling module to super-resolve a single image with arbitrary scale factors.

In our proposed method, we use dynamic convolution weights to learn different instance representations from a single point feature, achieving alignment between an instance-agnostic feature and positive instances. With instance properties, we generate several unique instance-aware features for mask prediction while maintaining the high mask representation capacity. In this way, our method is effective and robust to one-stage dense detectors even with numerous anchors tiled in a single point.

3 Our Method

Instance segmentation aims to detect all instances from images at the pixel level, predicting the location of an object and the category that it belongs to. In this study, the proposed framework follows the design philosophy of Mask R-CNN, which splits the process of determining the class and location of objects into two independent sub-tasks: instance location regression and class prediction. In Mask R-CNN, both sub-tasks are predicted with RoI features extracted by RoI Align. In contrast, this paper studies how to exploit RoI features to learn mask representation for instances. Meanwhile, the classification component follows previous point-based detectors, such as RetinaNet \cite{retinanet} or FCOS \cite{fcos}.

Generally, our proposed PointINS framework has two components in its structure: a one-stage detector and
instance-aware mask prediction. We use the dense one-stage detector here, as it naturally offers pixel-level semantics via classification and our desired PoI features for mask estimation. More importantly, it generally runs faster than a two-stage detector. The employed dense one-stage detector has a classical structure, including a backbone (e.g., ResNet [16]), a feature pyramid structure (e.g. FPN [27]), and a box generation head. Our proposed instance-aware mask prediction module provides simple and effective mask estimation and is compatible with most dense one-stage detectors whatever they are anchor-based or anchor-free. It is plugged into the box generation head of the used detectors, transforming PoI features into instance masks with minor modifications.

In the remainder of this section, we first briefly revisit the applied one-stage detectors [28], [42]. Then, we describe our proposed instance-aware mask prediction module and demonstrate its flexibility for both RetinaNet [28] and FCOS [42] with two variants. Thereafter, we analyze the advantage of our proposed module in terms of computation cost, and introduce the final loss function for joint training with the utilized one-stage detectors. Finally, we discuss the relationship between our modules and some existing works, e.g., Tensormask [7].

3.1 Dense One-stage Detectors

The employed detector performs the pixel-level class prediction task and provides PoI features for mask prediction. Structurally, as illustrated in Fig. 3 (not including the mask component), it contains an FPN backbone and a detection head, utilizing anchors (predefined sliding windows) for distinguishing possible multiple instances of varied forms.

The FPN backbone adopts a feature pyramid scheme to detect objects with different sizes. Specifically, the FPN backbone extracts feature maps \(F_s \in \mathcal{R}^{H_s \times W_s \times 256} \) of different resolutions from the input image \(I \in \mathcal{R}^{H \times W \times 3} \). Here, \(H_s, W_s, s \) denote the height and width of an image and generated pyramid feature maps, respectively, where \(s \in \{8, 16, 32, 64, 128\} \) is the stride of the pyramid feature maps compared to the input image size.

The detection head has two branches: the classification branch and regression branch. Each branch has four convolutional blocks, including the convolutional layer and rectified linear unit (ReLU) operation. These blocks are shared among all feature-level maps. The classification branch provides the classification prediction for every pixel of the feature map with a multi-class binary vector [28] form as \(P_{s,i,a} \in \{0, 1\}^C \) where \(P_s \in \mathcal{R}^{H_s \times W_s \times A \times C} \). Here, \(A \) and \(C \) denote the anchor and object category number, respectively; \(i \) denotes the pixel location and \(a \) denotes the anchor index, respectively. Also, the regression branch predicts the offset \(H_s \in \mathcal{R}^{H_s \times W_s \times A \times 4} \) between the anchors and ground truth.

We note that this offset regression is different when using different dense one-stage detectors. As illustrated in Fig. 3, RetinaNet [28] tiles multiple preset anchors for each point of the feature map. Thus, a single-point feature is used to regress the distances between anchors and nearest objects. FCOS [42] does not use anchors and uses a single-point feature to learn the distances between the coordinate of points and the nearest object. A point in FCOS is similar to an anchor without restrictions on the area size and aspect ratios. From this perspective, we can regard FCOS as an anchor-based detector with only one anchor. Unlike RetinaNet, FCOS has an additional centerness branch in box

![Fig. 3. overall architecture of proposed PointINS framework. C3, C4 and C5 are the feature maps of the backbone network (e.g., ResNet50). P3 to P7 are the feature pyramid network (FPN) feature maps, as in [27], [28], [42]. For better illustration, each feature map is represented by three dimensions, including height H, width W and channel without considering the image batch. A is the number of anchors covered by a single point, with 9 and 1 in RetinaNet and FCOS respectively. C is the number of classes, such as 80 in COCO [29] dataset.](image-url)
generation head to predict whether the anchor point is in the center of the ground truth bounding boxes.

In our method, we regard both the bounding boxes and pixel-level masks as representations of the instances’ location. Thus, our proposed module utilizes the last feature map F^l_i in the regression branch for further instance segmentation.

3.2 Instance-aware mask prediction

For our proposed instance-aware mask prediction, each PoI feature $F^l_{s,i} \in \mathcal{R}^{1 \times 1 \times 256}$ is extracted from the regression branch of the one-stage detector. It produces a $K \times K$ class-agnostic binary mask for every anchor as $M_{s,i,a} \in \mathcal{R}^{K \times K}$, where $M_s \in \mathcal{R}^{H_s \times W_s \times A \times K \times K}$ is the regression result from the mask feature $F^m_s \in \mathcal{R}^{H_s \times W_s \times A \times K \times K \times B}$. $K \times K$ and B denote the mask resolution and mask feature dimension, respectively.

A main advantage of the proposed instance-aware mask prediction is that it supports a high-dimensional mask feature with sufficient characteristics from PoI features, thereby exhibiting the comparable instance segmentation performance for those methods using RoI features. For example, the mask feature size $K^2 B$ in Mask R-CNN is $50176 = 256 \times 14^2$. Our support for high-dimensional mask representation in PoI form results from our decoupled design of the mask feature computation. For each point, we decouple this computation into instance-agnostic features and instance-aware weights, in which we project the shared template to the unique mask feature. Specifically, with the feature maps from the regression branch of the dense detectors, we disentangle the mask feature computation into two parts: instance-agnostic features $F^n_s \in \mathcal{R}^{H_s \times W_s \times K^2 E}$ and instance-aware weights $F^w_s \in \mathcal{R}^{H_s \times W_s \times A \times (D \times E) \times B}$. D is the weight kernel size, which is described in Section 3.2.3.

As the name suggests, every instance-agnostic feature point $F^n_{s,i} \in \mathcal{R}^{K \times K \times E}$ indicates a primitive template feature containing robust information on its receptive field. Thus, this feature can be responsible for all tiled anchors. Besides, every instance-aware weight point $F^w_{s,i} \in \mathcal{R}^{A \times B \times D}$ represents a mask feature embedding whose embedding dimension is $B \times D$, derived from the anchors’ property (such as anchor width/height or aspect ratio) and the regression offset between anchors and target boxes. Using dynamic convolution as the feature alignment, we transform the shared template feature to the unique feature of the potential instance.

\[
F^n_{s,i} = \bigotimes(F^n_{s,i}, F^w_{s,i}), \tag{1}
\]

Where \bigotimes is the dynamic convolution, in which $F^n_{s,i}$ is input and $F^w_{s,i}$ is the dynamic convolution weight.

In structure, the instance-agnostic features and instance-aware weights are extracted from two different branches; however, both stem from the regression branch of the one-stage detector. They are illustrated in Fig. 4 and their specific designs are discussed below.

3.2.1 Instance-agnostic Feature Generation

This module aims to provide robust and informative template features for the numerous anchors. In our framework, a single-point feature $F^n_{s,i}$ is capable of producing several masks. Thus, the single-point feature should have a sufficiently large receptive field to cover all possible masks, and contain sufficient semantic information for subsequent mask prediction. This conjecture was verified in our ablation study, as illustrated in Table 1.

Let $F^n_{s,i}$ denote the transformed features from the last feature map in the regression branch of one-stage detectors. It is computed by an additional channel up-scaling convolution and a reshape operation to further aggregate location information. As such, our point feature is robust enough to capture the entire instances, even if this point is in the instance boundary.

Specifically, the aforementioned channel up-scaling operation is a convolution layer with input and output channel numbers as K^2 and $K^2 E$, respectively. The convolution kernel size is $\sqrt{E} \times \sqrt{E}$. Since $K^2 E = \sqrt{E} \times \sqrt{E} \times K^2$, the output channel increases E times with its $\sqrt{E} \times \sqrt{E}$ convolution kernel size. This operation is essential in practice, as the increased channels allow our tensor to encode more context information for mask prediction. We note that this operation can become relatively computationally cheap, as discussed in Section 3.3. On the other hand, the reshape operation is used to balance the template spatial resolution (spatial dimension) and feature representation (channel dimension). We transform a single-point feature into a three-dimensional tensor with size $(K \times K \times E)$. In this way, we can force each channel of our point feature to have explicit relative-location information. For example, the first nine dimensions of features before the reshape operation correspond to the information of the upper-left-most location in the template feature.

Because the number of channels of the last feature map in the regression branch we used is 256, we set $K \times K = 16 = \sqrt{256}$. The E is 9 by default due to the prevalence of the 3×3 convolution layer in neural network design.

3.2.2 Instance-aware Weight Generation

This module targets to generate n dynamic convolution weights from a PoI feature, used for differentiating n possible instances. Its dynamics prevents from employing n different conventional convolutions. From this perspective, it notably reduces the used parameters and their corresponding footprints in the computation when n is relatively large, e.g., $n = 9$.

For its design, let $I^n_{s,i,a}$ denote the PoI feature with instance information, we predict their corresponding convolution weight $F^w_{s,i,a}$ by an FC layer, followed by a ReLU operation as:

\[
F^w_{s,i,a} = \text{ReLU}(\text{FC}(I^n_{s,i,a})), \tag{2}
\]

where the FC layer with input channel as U (10 for RetinaNet and 7 for FCOS) and output channel as $B \times D$. $I^n_{s,i,a} = \{I^n_{s,i,a}, I^n_{s,i,a}, \ldots, I^n_{s,i,a}^q\}$ can be divided into an anchor indicator $I^n_{s,i,a}$ and an instance indicator $I^n_{s,i,a}$. $I^n_{s,i,a}$ contains information about which specific anchor at a specific feature level corresponds to the potential mask. $I^n_{s,i,a}$ expresses the detail offsets between an anchor and its regressed instance. These two indicators are detailed below.

1. It is similar to R-FCN [11] and FCIS [25], whose channels explicitly encode relative location scores of instances.
Instance-aware Mask Prediction

For $I_{s,i,a}^o$, it has four components as follows:

$$I_{s,i,a}^o = \frac{1}{s} \left\{ h_{s,i,a}, \frac{h_{s,i,a}}{s}, \frac{w_{s,i,a}}{s} \right\}, \quad (3)$$

where s is the stride of the global feature level, and $h_{s,i,a}$ and $w_{s,i,a}$ are the height and width of the anchors, respectively. Therefore, the last three components represent the aspect ratio and scale of the anchor.

Moreover, $I_{s,i,a}^q$ represents the instance offset from the original anchors as

$$I_{s,i,a}^q = \{ r_{s,i,a}, y_{s,i,a}, p_{s,i,a}^r, p_{s,i,a}^b \}, \quad (4)$$

where $r_{s,i,a}$ and $y_{s,i,a}$ represent the distances between the centers of the anchor and target box, respectively, and the other elements represent the distances between the box location and the center of the corresponding anchor in four directions. Each component in $I_{s,i,a}^q$ is calculated as

$$\begin{align*}
r_{x,i,a} &= \frac{x_{s,i,a} - x_{s,i,a}^q}{s}, \quad r_{y,i,a} = \frac{y_{s,i,a} - y_{s,i,a}^q}{s} \\
p_{x,i,a}^r &= \frac{0.5 * w_{s,i,a}^q}{s} - r_{s,i,a}^r, \quad p_{x,i,a}^b = \frac{0.5 * w_{s,i,a}^q}{s} + r_{s,i,a}^b \\
p_{y,i,a}^r &= \frac{0.5 * h_{s,i,a}^q}{s} - r_{s,i,a}^r, \quad p_{y,i,a}^b = \frac{0.5 * h_{s,i,a}^q}{s} + r_{s,i,a}^b
\end{align*} \quad (5)$$

where $x_{s,i,a}$ and $y_{s,i,a}^q$ are the x-axis center location of target box and anchors, respectively, and are the same as $y_{s,i,a}$ and $y_{s,i,a}^q$. $h_{s,i,a}$ and $w_{s,i,a}$ are the height and width, respectively, of the target box. The rightmost part of Fig. 4 presents the geometric illustration of our transformation module.

Note that $I_{s,i,a}^o$ only contains $I_{s,i,a}^q$ and $\frac{1}{s}$ for the anchor-free detectors. Using FCOS [42] as an example, we regard the points of each feature level as our anchors, in which $x_{s,i,a}^o$ and $y_{s,i,a}^o$ are the sampled-point locations of the images.

Efﬁcacy of instance-aware Weights

Fig. 5 presents a visualization of an instance-aware feature by using different instance-aware weights for the same instance-agnostic feature. The dynamic weights can produce various instance-correlated features from the shared instance-agnostic feature.

3.2.3 Instance-aware convolution

The instance-agnostic feature and instance-aware weights are fused by pixel-wise convolution, leading to the mask features. We reshape the instance-aware weight $F_{s,i,a}^w$ in order to produce instance-aware feature $F_{s,i,a}^m$ for final mask prediction. The rightmost part is a geometric illustration of our transformation module.

$$F_{s,i,a}^m = \mathcal{H}(F_{s,i,a}^n) \quad (7)$$

where the input of this convolution is the instance agnostic template $F_{s,i,a}^n$, and it is parametrized by the instance-aware weights $F_{s,i,a}^w$.

In this way, our instance-agnostic feature can be aligned to the corresponding mask feature with $K \times K \times B$ dimension. Then via the standard mask head of Mask R-CNN including four convolution blocks and a deconvolution block, it is prepared for final class-agnostic mask prediction. Defining the mask head operation as \mathcal{H}, we get the final mask prediction as:

$$\hat{y}_{s,i,a} = \mathcal{H}(F_{s,i,a}^m) \quad (7)$$

3.3 Computational Efficiency Optimization

In our proposed method, instance masks are only generated from a PoI feature. This generation method allows our approach to be easily improved for high efficiency. We can realize this by only sampling positive points and generating their corresponding instance-agnostic feature and instance-aware weight in parallel.

At first, a point is deﬁned as positive if the Intersection of Union (IoU) between the ground truth and one of the anchors and target boxes is larger than 0.5. In the COCO dataset, there are 6.43 positive points for each ground truth instance following this sample principle with only considering the anchor condition. We randomly sample the maximum 128 points in training out of more than 22,000+
points on all feature levels. For inference, only 100 detected points are used for final mask prediction. Note that the same point is likely to be sampled multiple times due to several of its covered anchors and target boxes satisfying our sample principle.

Thus, the subsequent processing is applied only on these points, which enables remarkable acceleration. Due to the channel up-scaling convolution with kernel size 3 in the instance-agnostic feature generation module, it is only necessary to sample 3×3 receptive fields from the feature map to produce our instance-agnostic features. For the instance-aware weights, it is only necessary to sample the corresponding four-dimensional regression feature for each point. Also, because these points are independent, they can be processed in parallel for further notable acceleration and memory usage reduction. Our inference achieves 15.8 FPS with ResNet50 backbone shown in Table 10.

3.4 Loss function

The overall optimization goal considers both instance mask segmentation and the employed detection as

$$L = \lambda_{det} \cdot L_{det} + \lambda_{mask} \cdot L_{mask}, \quad (8)$$

where L_{det} and L_{mask} denote the detection loss and mask loss, respectively. The balance weights in λ_{det} and λ_{mask} are set to 1 and 2.

For L_{det}, it relies on the one-stage detector used. For example, RetinaNet consists of L_{cls} for classification and L_{reg} for bounding box regression. FCOS also has an extra loss L_{cen} for center-ness. We adopt the default setting for these detection losses. L_{cls} and L_{reg} are the focal loss and binary cross-entropy loss, respectively. L_{reg} the smooth-L1 loss in RetinaNet or the generalized IoU loss in FCOS.

For L_{mask}, it is defined as

$$L_{mask} = \sum_{s} \sum_{i} \sum_{a} I_{obj} d_{mask}(\hat{y}_s, i, a; y_s, i, a) \quad (9)$$

where I is the indicator function for positive samples. \hat{y} and y denote the prediction and ground-truth vectors, respectively. The d_{mask} is the weighted binary cross-entropy loss. The edge of the mask is emphasized by assigning the larger weight as 4.

Finally, our proposed module is jointly trained with the detectors it is built upon.

3.5 Relation to Existing Methods

As the Pol-based methods, e.g., Tensormask [7], we adopt Pol features to predict instance masks. However, we provide a new mask representation computation design with dynamic weights, and our mask representation is more effective and efficient than the existing works [7, 45, 50] due to its high capacity, as validated in the performance comparison presented in Table 11.

We obtain our instance-aware features by instance-aware convolution. The core of this step is the instance-aware weights derived from the anchor property and box regression feature. These weights dynamically interpolate the instance-agnostic feature to the instance-aware mask feature. Unlike bilinear interpolation used in Tensormask, dynamic convolution can flexibly align the instance-agnostic feature to a specific region by learnable weights. Thus, our module can be easily generalized to dense detectors with multiple anchors. With the sampling strategy, our module only focuses on Pols while maintaining a high mask representation.

In a comparison regarding mask representation, our mask feature size is $65536 = 256 \times 16^2$ from Pol features with $K = 16$ and $B = 256$, outperforming the mask feature size (only 256) of Polarmask [45] and MEInst [50]. The low-dimensional mask feature of PolarMask and MEInst results in reduced performance regardless of how the final mask representation is modeled. The outlier is Tensormask [7] with a dynamic mask feature size from 15×15 to 480×480 by bilinear interpolation. This usage of bilinear interpolation depends on the aligned representation and tensor pyramid structure they proposed; however, this leads to a computationally intensive feature process.

Moreover, due to the proposed instance-aware convolution, our framework is robust to the anchor number each Pol feature corresponds to, making it applicable to the most types of dense one-stage detectors (both anchor-based and anchor-free), while existing methods only work in one specific type.
4 Experiments

4.1 Experiments on COCO Dataset [29]

We compare our method with other state-of-the-art approaches on the challenging COCO dataset [29]. Following common practice [15, 27, 31, 19], we train our models with 115,000 train images and reported results on the 5000 validation images for the ablation study. We also report results on 20,000 test-dev images for comparison.

Comprehensive ablation studies are conducted on this dataset with RetinaNet-ResNet50-based PointINS. We follow standard evaluation metrics, namely, average precision for IoU from 0.5 to 0.95 with a step size of 0.05 (AP), AP50, AP75, APs, APe, and APc. The last three measure performance with respect to objects in different scales.

Training Details We train our network using batch size 16 for 12 epochs. The shorter and longer edges sizes of the images are 800 and 1333. Adam gradient descent with learning rate as 0.00005, beta as (0.9, 0.999), and eps as $1e^{-08}$ is used as the optimizer. We decay the learning rate with 0.1 at 8 and 11 epochs respectively. Using stochastic gradient descent leads to a performance reduction of approximately 0.3. We initialize our backbone networks with the pre-trained models on ImageNet. Moreover, we sum all the losses directly, i.e., $\lambda_{det} = 1$, $\lambda_{mask} = 2$ in Eq. 6.

Inference Details The inference is kept the same as dense detectors, as we only append one additional mask prediction to the predicted boxes. Two strategies are used to obtain the final result on the condition of whether or not the samples have valid boxes. The former generates all the masks and then samples a maximum of 100 instances by box non-maximum suppression (NMS) following Tensor-mask [7]. The latter uses box NMS to sample a maximum of 100 boxes and then predict their masks, like MEInst [50]. Compared to the former strategy, the latter does not lead to performance reduction but avoids the unnecessary computational overhead for masks.

4.1.1 Ablation Study

All ablation studies are conducted by RetinaNet-based PointINS with ResNet50. Note that this baseline yields 32.5 AP for the validation split.

Instance-agnostic Feature Generation The representation of the template tensor is first studied. As illustrated in Table 1, we explore the influence of different shapes on the performance of the instance-agnostic feature. For a fair comparison, we fix the kernel size E of the channel-up scaling convolution layer to 3. That means, we only change the output channel of this convolution layer to match the size of (E, K, K) of Table 1. The default tensor shape is $(9, 16, 16)$, where 9 is the feature representation and 16 is the spatial resolution. The performance decreased when we reduced the number of feature representations. This indicates that the feature representation dimension is vital for encoding information.

Intriguingly, as illustrated in the last two rows, further increasing the number of feature representation does not improve the results. This is resulted from our used template tensor. Regardless of how we transform the information, the template is reshaped from a single-point feature. In this ablation study, this single-point feature is generated by a 3×3 convolution with an input channel number of 256 by default. Therefore, the information capacity is $3 \times 3 \times 256$. The larger output channels of convolution do not further increase the capacity of valid messages.

This analysis also explains the performance reduction using different reshape styles. A 3×3 kernel encodes the 9 spatial locations in sequence. Therefore, reshaping to a $(9, 16, 16)$ tensor is more intuitive than the manner in which each channel represents the relative location response. We note that this is also the core principle of R-FCN [11] and FCIS [25]. We regard a tensor with size $(1, 16, 16)$ as the nature representation [7] proposed by the TensorMask study. It causes a reduction of approximately 3 mean average precision (mAP).

Table 2 outlines an ablation study using different kernel size E of channel up-scaling convolution with an output channel number of $256 \times E^2$. We note that this ablation study is different from that in Table 1 with various kernel size e.g., 1, 3, 5 or 7. Therefore, there is no capacity change via this convolution because its input channel number is always 256. We find it that using a large kernel size would not lead to a noticeable performance increase. We conjecture that a 3×3 kernel size is sufficient to help the convolution layer capture the target instance regions, because its input has a large enough receptive field, which has been already used for bounding box prediction.

Instance-aware Weight Generation Table 3 summarizes an ablation study on the input used for generating instance-aware weight. We first explore the two extreme cases, presented in the first and last rows of Table 3. Our framework
Ablation study for the input to generate instance-aware weights. The inputs was split into three parts and explored. Each variable formulation is simplified by deleting its subscript. For example, \(I^o \) denotes \(I_{o,o,o} \), ○ represents “not used” for this part, whereas ✓ represents used.

\(I^o \)	\(\{r^x, r^y\} \)	\(\{p_1^x, p_1^y, p_2^x, p_2^y\} \)	AP	AP_{50}	AP_{75}
✓	✓	✓	27.9	46.5	28.5
✓	○	✓	25.5	44.9	26.1
○	✓	○	26.3	45.0	26.6
✓	○	○	28.9	47.1	29.3
✓	✓	○	30.4	49.1	31.2
✓	○	✓	31.7	50.6	32.8
✓	✓	✓	31.3	50.5	32.6
✓	✓	✓	32.5	51.9	33.8

Table 4

Performance comparison with other heuristic designs for \(I^2 \). Each variable formulation is simplified as in Table 3. The first column describes the design method.

the heuristic \(I^2 \) design	AP	AP_{50}	AP_{75}
Generating \(I^2 \) from the feature map	27.9	46.5	28.5
\(I^o \) has FPN’s box regression style	31.8	50.3	32.7
Log(\(I^o \))	32.2	51.6	33.6
Sigmoid(\(I^o \))	32.3	51.6	33.6
Tanh(\(I^o \))	32.3	51.6	33.4
default Design	32.5	51.9	33.8

Achieves the best performance when involving all three parts. In the first row, we directly use the features from the detection branch instead of our explicit box information. The performance reduction indicates that the explicit information of bounding boxes is more helpful in generating instance-aware weights than directly using the features. We suppose that the features directly generated by the network are insensitive to the stride of feature maps.

As alternatives to using this piece of information, only using the \(I^o \) or \(\{r^x, r^y\} \) leads to lower AP than directly using the features of the detection head. This means that the offset between anchors and boxes is vitally important in our module. Our design makes it possible to determine the exact shift to guide fine-tuning the instance-agnostic template. This assumption is verified in Fig. 5 in our module, \(\{p_1^x, p_1^y, p_2^x, p_2^y\} \) play vital roles, and \(I^o \) (and \(\{r^x, r^y\} \)) is peripheral.

Table 4 presents the performance with other heuristic designs for \(I^2 \). The results indicate that the unique region indicators are critical to our performance. The design of the last row is our default setting. For other designs, regardless of how the hand-crafted features are designed, the final performance is relatively robust. We suppose this robustness is produced by our proposed weight prediction structure (FC Layer). This structure could handle the variations in our designed features and then produce instance-aware weights. The performance change among various element-wise operations, such as Log, Sigmoid, or Tanh, is marginal for \(I^o \) or \(I^q \). Using the FPN’s box regression style in \(I^q \) produces an AP lower by approximately 0.7 than using FCOS’s style. The main difference between these two regression styles has been illustrated in Fig. 2. The performance comparison (Table 4) shows that the boundary distance between anchor and target box (Fig. 2(b)) is more helpful to generate offset weight than width or height variance (Fig. 2(a)).

Table 5 reveals the influence of using different weight prediction structures. This table indicates that there are no large differences when a single FC layer is used and not used. The performance of two layers is only 0.1 higher than a single layer. The reason is that our input only contains 10 elements. Using more layers does not greatly enhance information in this setting. Moreover, the ReLU operation guarantees non-linearity in our module.

Instance-aware Convolution Table 6 summarizes an ablation study on different fusion methods of the instance-agnostic template and instance-aware weight. It can be seen that directly adding or concatenating them leads to performance reduction. The reason is that these two features come from different sources and thus have a distinct meaning. Specifically, the instance-agnostic template has robust semantic information, whereas the instance-aware weight indicates shifting information between the template and proposals. As a result, using dynamic convolution is more appropriate for fusing them by interpolating semantic information with geometric offsets. With this consideration, our design is effective in aligning instance-agnostic mask features given different box information. Increasing the convolution kernel size of \(1 \times 1 \) to \(3 \times 3 \) does not further increase performance, so we choose \(1 \times 1 \) kernel, further reducing the computation cost of our instance-aware convolution.
Sampling Strategy We explore the effectiveness of the sampling strategy. As illustrated in Section 3.3 (Computation Optimization), we randomly sample 128 positive points by default. The influence about the number of positive points on the performance is initially ablated, as presented in Table 7. The mask improves as the number of positive points increases from 32 to 128. Further increasing the number of positive points do not improve performance because of the limited number of positive points in the COCO image.

Table 8 outlines an ablation study on the IoU threshold for positive points. The second row displays our default setting with which the IoU between the ground truth and both its anchors and regressed boxes are greater than 0.5. The performance dramatically decreases when we reduce the anchor’s IoU threshold to 0.4. The reason for this is the sampling strategy adopted in the detection branch. Only anchors whose IoU are larger than 0.5 are used for box training. This means that the other anchors could not be trained; thus, the quality of their generated boxes is not guaranteed. However, increasing the IoU threshold to 0.6 or 0.7 reduces the mask performance due to the network underfitting with fewer positive points.

Due to the heuristic design for our dynamic weight prediction input I^z, we can sample three types of target boxes for each point, including the anchor, ground truth, and regressed box. We ablate the influence of the sampling ratio of these three types, as illustrated in Table 9. The performance of only using regressed boxes is inferior to our default setting. The reason for this is that there are no predicted boxes with high quality at the earlier iteration in training.

Inference Time Table 10 summarizes an ablation study on inference time with different scales in Nvidia V100 GPU. Clearly, in the scale of 800 and 12 training epochs, PointINS gives faster inference speed among all compared methods. In performance, it exhibits a notable gain compared to other Pol-based PolarMask (32.5 vs. 29.1) and MEInst (32.5 vs. 30.3), only inferior to inferior to ROI-based Mask R-CNN (32.5 vs. 34.4). However, when using data augmentation and longer training time (72 epochs), our method holds its inference speed advantage and gives competitive performance compared with Mask R-CNN (36.7 vs. 36.8), as shown in Table 11. Additionally, when the input scale decreases (e.g., 400), our model still achieves the practical performance (25.8) at real-time speed (27.3 fps). It indicates that PointINS can not only achieve high performance in mask AP, but also can be applied to real-time applications.

4.1.2 Comparison with State-of-the-Art Methods
Comparison among point-based methods We have implemented our method based on RetinaNet [28] and FCOS [42], and compare them with three state-of-the-art point-based instance segmentation frameworks: TensorMask [7], PolarMask [45], and MEInst [50], as described in Table 11. It is clear that our PointINS framework performs the best among all frameworks. In the following, we present a comparison with these approaches.

PolarMask [45] uses polar representation as an approximation to the instance mask. With 12 epochs of training, PolarMask achieves 29.1 mAP with R-50-FPN backbone, and 30.4 mAP with R-101-FPN. With RetinaNet, our PointINS achieves 32.2 mAP, with an improvement of 3.1 points. The
Comparison with current point-based instance segmentation frameworks on test-dev split of COCO dataset. ‘Aug’ refers to data augmentation, including multi-scale and random crop. ✓ (or ◦) signifies that the network is trained with (or without) data augmentation. ‘Epoch’ indicates the training time. 12 epochs is a baseline widely used in most previous work [15, 31, 28, 42].

method	backbone	aug	epochs	AP	AP50	AP75	APs	APm	APl
MNC [10]	R-101-C4	◦	12	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [26]	R-101-C5-dilated	◦	12	29.2	49.5	-	7.1	31.3	50.0

Two-stage (Segmentation-based)

method	backbone	aug	epochs	AP	AP50	AP75	APs	APm	APl
Mask R-CNN [15]	R-50-FPN	✓	72	36.8	59.2	39.3	17.1	38.7	52.1
	R-101-FPN	✓	72	38.3	61.2	40.8	18.2	40.6	54.1
	X-101-FPN	◦	12	37.1	60.0	39.4	16.9	39.9	53.5

One-stage (Segmentation-based)

method	backbone	aug	epochs	AP	AP50	AP75	APs	APm	APl
YolACT [3]	R-50-FPN	✓	45	28.2	46.6	29.2	9.2	29.3	44.8
	R-101-FPN	✓	45	31.2	50.6	-	12.1	33.3	47.1

One-stage (Point-based)

method	backbone	aug	epochs	AP	AP50	AP75	APs	APm	APl
ExtremeNet [52]	Hourglass-101	✓	100	18.9	44.5	13.7	10.4	20.4	28.3
TensorMask [7]	R-50-FPN	✓	72	35.4	57.2	37.3	16.3	36.8	49.3
PolarMask [45]	R-50-FPN	◦	12	29.1	49.5	29.7	12.6	31.8	42.3
	R-101-FPN	◦	12	30.4	51.1	31.2	13.5	33.5	43.9
	R-101-FPN	✓	24	32.1	53.7	33.1	14.7	33.8	45.3
	X-101-FPN-DCN	✓	24	36.2	59.4	37.7	17.8	37.7	51.5
MEInst [50]	R-101-FPN	◦	12	33.0	56.4	34.0	15.2	35.3	46.3
	R-101-FPN	✓	36	33.9	56.2	35.4	19.8	36.1	42.3
	X-101-FPN-DCN	✓	36	38.2	61.7	40.4	22.6	40.0	49.3
RetinaNet + ours	R-50-FPN	◦	12	32.2	51.6	33.4	13.4	34.4	48.4
	R-101-FPN	◦	12	33.5	53.6	34.1	14.2	35.3	49.0
	R-50-FPN	✓	72	36.2	58.1	37.8	16.5	37.7	50.5
	R-101-FPN	✓	72	37.9	60.1	39.7	17.8	40.1	52.1
FCOS + ours	R-50-FPN	◦	12	33.4	53.7	35.2	14.8	36.3	48.8
	R-101-FPN	◦	12	34.5	54.5	36.6	15.4	37.0	49.4
	R-50-FPN	✓	72	36.7	58.2	38.1	16.8	38.0	50.9
	R-101-FPN	✓	72	38.3	60.3	40.0	18.1	40.3	52.4
	X-101-FPN-DCN	✓	72	42.0	63.7	44.3	21.0	43.5	55.9

Note that by applying data augmentation and training for a longer time, our performance further improves significantly. By training for as long as 72 epochs and using data augmentation, our model with RetinaNet achieves...
37.9 mAP with R-101-FPN backbone, while with FCOS it achieves 38.3 mAP. For a fair comparison with the previous winner, TensorMask [7], we use the same hyperparameter setting.

Comparison with State-of-the-Arts Methods Table 11 also demonstrates that PointINS can obtain the comparable performance to Mask R-CNN [15] and SOLO [43] by only using a single-point feature. This demonstrates that PointINS is a promising method that does not involve RoI feature extraction, and the point feature can be further improved with more elaborate designs.

4.1.3 Correlation to Object detection.

Table 12 presents the associated detection performance of Tensormask and our PointINS framework on COCO test-dev set. Initially, the mask performance (36.2) of our RetinaNet-based PointINS is higher than that (35.4) of Tensormask with approximately the same box quality (41.6 vs 41.8). This shows that the mask improvement of the pointINS results from our designed modules, including instance-agnostic feature generation and instance-aware convolution. Both help our model capture more robust and aligned features for each specific box. Furthermore, the mask quality obtains consistent improvement with an effective one-stage detector such as FCOS.

4.1.4 Visualization

Figure 6 shows a visualization of our predicted instances. Notably, our approach can easily detect small objects, as our employed dense one-stage detector excels at this. This is also verified in Table 11 with better AP_s than SOLO [43]. For large objects, the boundary is slightly worse than that of small ones. This signifies that a single-point feature in our PointINS compressed detailed information for large regions due to the pyramid features used in object detection and instance segmentation frameworks. Like RetinaNet and FCOS, large objects are detected with P6 or P7 features, which are highly abstract to estimate the location of large objects. However, they are not suitable for pixel-level instance segmentation because they lose details by downsampling. Longer training time and data augmentation can relieve this problem, as illustrated in Table 11.

4.2 Experiments on Cityscapes

Dataset and Metrics The Cityscapes [8] dataset contains street scenes captured by car-mounted cameras. There are 2,975 training, 500 validation, and 1,525 testing images with fine annotations. Here, we report our results on both validation and test subset. Eight semantic classes are annotated with instance masks, and each image had a size of 1024 × 2048. We evaluate results based on AP and AP50.

Hyper-parameters We use images with shorter edges randomly sampled from {800, 1024} for training, and images with a shorter edge length of 1024 for inference. We train our model with a learning rate of 0.0005 for 18k iterations and with a rate of 0.00005 for other 6k iterations. Eight images (1 image per GPU) are in one image batch.

Results Table 13 presents the results of our PointINS framework with the FCOS-Res50 backbone. PointINS outperforms RoI and segmentation-based methods with a simple yet efficient structure.

5 Conclusion

In this study, we introduce PointINS to convert current dense one-stage detectors for instance segmentation by a single-point feature. The core module is instance-aware convolution, ensuring that single-point features are sufficiently expressive for instance masks. This module decomposes a single point feature into two tractable modules: an instance-agnostic feature and instance-aware weight generation modules. This design ensures that high-dimensional instance-aware mask features of several positive points are aligned (by convolving the template with dynamic weights) and are then used for mask prediction. The experiments show that the proposed framework achieves competitive accuracy and speed among point-based frameworks. Furthermore, the proposed framework is comparable to the popular Mask R-CNN framework.

In the future, we will explore new dynamic weight generation methods to make a single-point feature robust. In addition, we will study how to apply this concept to other instance-based downstream tasks like panoptic segmentation [21, 45, 25] or visual relationships prediction [22] or dense captioning [20].

References

[1] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaaf, B. Shillingford, and N. De Freitas. Learning to learn by gradient descent by gradient descent. In NeurIPS, 2016.
[2] M. Bai and R. Urtasun. Deep watershed transform for instance segmentation. In CVPR, 2017.
[3] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee. Yolact: Real-time instance segmentation. In ICCV, 2019.
[4] Q. Cai, Y. Pan, T. Yao, C. Yan, and T. Mei. Memory matching networks for one-shot image recognition. In CVPR, 2018.
[5] K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Shi, W. Ouyang, et al. Hybrid task cascade for instance segmentation. In CVPR, 2019.
[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. In PAMI, 2016.
[7] X. Chen, R. Girshick, K. He, and P. Dollár. Tensormask: A foundation for dense object segmentation. In ICCV, 2019.
[8] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016.
[9] J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive fully convolutional networks. In ECCV, 2016.
[10] J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task network cascades. In CVPR, 2016.
Fig. 6. Visualization of RetinaNet-based PointINS with ResNet101 on COCO dataset under $1 \times (12 \text{ epochs})$ training. For all images, we set the mask confidence threshold to 0.5.

TABLE 13

Results on cityscapes dataset. All experiments are conducted with ResNet50. “Mcycle” is short for motorcycle.

Method	AP$_{val}$	AP	AP$_{50}$	person	rider	car	truck	bus	train	mcycle	bicycle
SGN [30]	29.2	25.0	44.9	21.8	20.1	39.4	**24.8**	**33.2**	**30.8**	17.1	12.4
Mask R-CNN [15]	31.5	26.2	49.9	30.5	23.7	46.9	22.8	32.2	18.6	19.1	16.0
Ours	32.4	27.3	50.5	**34.1**	**26.1**	**51.9**	20.9	30.9	15.9	20.5	**19.2**

[11] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object detection via region-based fully convolutional networks. In NeurIPS, 2016.

[12] C.-Y. Fu, M. Shvets, and A. C. Berg. Retinamask: Learning to predict masks improves state-of-the-art single-shot detection for free. *arXiv preprint arXiv:1901.03353*, 2019.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.

[14] R. B. Girshick. Fast R-CNN. In ICCV, 2015.

[15] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. In ICCV, 2017.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.

[17] R. Hu, P. Dollár, K. He, T. Darrell, and R. Girshick. Learning to segment every thing. In CVPR, 2018.

[18] X. Hu, H. Mu, X. Zhang, Z. Wang, T. Tan, and J. Sun. Meta-sm: A magnification-arbitrary network for super-resolution. In CVPR, 2019.

[19] Z. Huang, L. Huang, Y. Gong, C. Huang, and X. Wang. Mask scoring r-cnn. In CVPR, 2019.

[20] J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully convolutional localization networks for dense captioning. In CVPR, 2016.

[21] A. Kirillov, R. Girshick, K. He, and P. Dollár. Panoptic feature pyramid networks. In CVPR, 2019.

[22] A. Kuznetsova, H. Ron, N. Aldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Mallio, T. Duerig, et al. The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale. *IJCV*, 2020.

[23] Y. Lee and J. Park. Centermask: Real-time anchor-free instance segmentation. In CVPR, 2020.

[24] C. Lemke, M. Budka, and B. Gabrys. Metalearning: a survey of trends and technologies. In *Artificial intelligence review*, 2015.

[25] Y. Li, X. Chen, Z. Zhu, L. Xie, G. Huang, D. Du, and X. Wang. Attention-guided unified network for panoptic segmentation. In CVPR, 2019.

[26] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully convolutional instance-aware semantic segmentation. In CVPR, 2017.

[27] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie. Feature pyramid networks for object detection. In CVPR, 2017.

[28] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In ICCV, 2017.

[29] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

[30] S. Liu, J. Jia, S. Fidler, and R. Urtasun. Sgn: Sequential grouping networks for instance segmentation. In ICCV, 2017.

[31] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation network for instance segmentation. In CVPR, 2018.

[32] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

[33] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.

[34] D. Morrison, A. W. Tow, M. McTaggart, R. Smith, N. Kelly-Boxall, S. Wade-McCue, J. Erskine, R. Grinover, A. Gurman, T. Hunn, et al. Cartman: The low-cost cartesian manipulator that won the amazon robotics challenge. In ICRA, 2018.

[35] S. Peng, W. Jiang, H. Pi, H. Bao, and X. Zhou. Deep snake for real-time instance segmentation. In CVPR, 2020.

[36] L. Qi, L. Jiang, S. Liu, X. Shen, and J. Jia. Amodal instance segmentation with kins dataset. In CVPR, 2019.

[37] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2016.

[38] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In CVPR, 2016.

[39] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. In *arXiv*, 2018.

[40] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object detection with region proposal networks. In NeurIPS, 2015.
[41] G. Shu. Human detection, tracking and segmentation in surveillance video. 2014.
[42] Z. Tian, C. Shen, H. Chen, and T. He. Fcos: Fully convolutional one-stage object detection. In ICCV, 2019.
[43] X. Wang, T. Kong, C. Shen, Y. Jiang, and L. Li. Solo: Segmenting objects by locations. In arXiv, 2019.
[44] Y.-X. Wang and M. Hebert. Learning to learn: Model regression networks for easy small sample learning. In ECCV, 2016.
[45] E. Xue, P. Sun, X. Song, W. Wang, X. Liu, D. Liang, C. Shen, and P. Luo. Polarmask: Single shot instance segmentation with polar representation. In CVPR, 2020.
[46] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, and R. Urta-sun. Upnet: A unified panoptic segmentation network. In CVPR, 2019.
[47] B. Yang, G. Bender, Q. V. Le, and J. Ngiam. Condconv: Conditionally parameterized convolutions for efficient inference. In NeurIPS, 2019.
[48] T. Yang, X. Zhang, Z. Li, W. Zhang, and J. Sun. Metaanchor: Learning to detect objects with customized anchors. In NeurIPS, 2018.
[49] H. Ying, Z. Huang, S. Liu, T. Shao, and K. Zhou. Embedmask: Embedding coupling for one-stage instance segmentation. In arXiv, 2019.
[50] R. Zhang, Z. Tian, C. Shen, M. You, and Y. Yan. Mask encoding for single shot instance segmentation. In CVPR, 2020.
[51] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In CVPR, 2017.
[52] X. Zhou, J. Zhuo, and P. Krahenbuhl. Bottom-up object detection by grouping extreme and center points. In CVPR, 2019.