Pulmonary fissure segmentation in CT images based on ODoS filter and shape features

Yuanyuan Peng1,2 · Pengpeng Luan1 · Hongbin Tu1 · Xiong Li3 · Ping Zhou4

Received: 7 March 2022 / Revised: 22 July 2022 / Accepted: 22 February 2023/
Published online: 14 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Pulmonary fissure segmentation in computed tomography (CT) images can be treated as important ancillary information in the diagnosis and treatment of pulmonary diseases, yet it poses a nontrivial uncertainty for the segmentation task due to complex structures such as indistinguishable pulmonary vessels, blurring pulmonary fissures and unpredictable pathological deformation. To address these challenges, a useful approach based on an oriented derivative of stick (ODoS) filter and shape features is presented for pulmonary fissure segmentation. Here, we adopt an ODoS filter by fusing its orientation and magnitude information to highlight structural features for fissure enhancement, which can effectively distinguish between pulmonary fissures and undesirable clutter. Motivated by the fact that pulmonary fissures appear as linear structures in 2D space and planar structures in 3D space in the orientation field, an orientation curvature criterion and an orientation partition scheme are fused to separate fissure patches and other structures in different orientation partitions, which is expected to achieve more complete fissure detection and suppress other structures. Considering the shape difference between pulmonary fissures and tubular structures in the magnitude field, a shape measurement approach and a 3D skeletonization model are combined to remove clutter for pulmonary fissure segmentation. When applying our scheme to 55 chest CT scans acquired from publicly available LOLA11 datasets, the median F1-score, false discovery rate (FDR), and false negative rate (FNR) were 0.90, 0.11, and 0.10, respectively, which indicates that our scheme has satisfactory pulmonary fissure segmentation performance.

Keywords CT images · Shape features · 3D skeletonization model · Pulmonary fissure segmentation

Yuanyuan Peng
3066@ecjtu.edu.cn

1 School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, 330000, People’s Republic of China
2 School of Computer Science, Northwestern Polytechnical University, Xi’an, 710000, People’s Republic of China
3 School of Software, East China Jiaotong University, NanChang, 330000, People’s Republic of China
4 College of Biology, Hunan University, Changsha, 410000, People’s Republic of China
1 Introduction

The human lungs are naturally separated into five independent functional compartments called lobes. The physical boundaries between the lung lobes are known as lobar fissures [32]. On the basis of anatomy, the left lung is separated into two lobes by an oblique fissure, whereas the right lung is separated into three lobes by a horizontal fissure and an oblique fissure [42]. For clinical diagnosis, pulmonary fissure completeness is useful in lung disease assessment and treatment [9, 13, 22, 31]. However, pulmonary fissure segmentation is a formidable mission due to various factors, such as indistinguishable pulmonary vessels, blurring pulmonary fissures and unpredictable pathological deformation [10, 33].

Numerous studies have been presented for pulmonary fissure segmentation, which can be described by three different categories. The first category mainly employed methods implementing the shape and structure information from the fissure itself, such as the line-enhancing operator [20], multiple section model [46], DoS filter [45], ODoS filter [30], Hessian-based filter [44], and directional derivative of a plate filter [52]. These fissure-based methods have great difficulties handling deformed and disrupted fissures, which are caused by complex lung diseases, noise and pathological deformation. The second strategy generally exploited lung anatomical knowledge to identify pulmonary fissures under different frameworks [25], such as alpha expansion [14], the watershed transform [4, 23], atlas-based approaches [39], multilevel B-splines [11] and active contour models [2]. Unfortunately, these lung anatomy-based methods require considerable time for pulmonary trachea and vessel segmentation. Although the third category typically used deep learning models to highlight pulmonary fissure representation, all of these computational methods have the drawback of being time-consuming in the training stage. However, there are no universal methods to remove other structures for pulmonary fissure segmentation [10, 18, 51].

Based on the observation that pulmonary fissures appear as curved-line structures in 2D CT slices and sheet-like structures in 3D CT images, Xiao et al. presented a DoS filter to suppress undesirable interferences and designed a unique postprocessing pipeline to isolate fissure patches [45]. Although plausible results were acquired, many adhering clutters still cannot be removed. To overcome this shortcoming, Peng et al. proposed an ODoS filter by taking advantage of orientation and magnitude information to distinguish between pulmonary fissures and adhering clutters [30]. Similarly, Zhao et al. used a directional derivative of a plate filter to probe fissure objects [52]. However, these fissure-based methods have great difficulties handling deformed and disrupted fissures. Motivated by the fact that lung anatomy is a complementary whole, Bragman et al. used a Gaussian mixture model to highlight fissure representation, and then the pulmonary vessel density and airway tree distance transform were employed to remove irrelevant pulmonary structures [4]. Similarly, Giuliani et al. proposed a sheet-like filter to enhance pulmonary fissures and suppress tubular structures; then, a lung vessel distance map was constructed to acquire purified fissures [14]. Using a different strategy, Peng et al. [32] presented a unique framework by combining the location distribution of different pulmonary anatomical structures and an alpha model to accurately isolate fissure regions and remove adhering sheet-like clutter. Although these lung anatomy-based methods were effective in pulmonary fissure segmentation, they took a great deal of time for pulmonary trachea and vessel segmentation. In addition, a number of studies exploited deep learning models to detect pulmonary fissures. Based on this strategy, Gerard et al. presented a cascade FissureNet approach to segment pulmonary fissures [12], but the computational method has the drawback of being time-consuming in the training stage. To overcome this problem, Roy et al. designed a multiview
deep learning network [28] to highlight fissure representations and save time [34]. However, these deep learning models inherited the shortcomings of machine-learning methods, and a great deal of time was wasted in the training stage. A summarized review of pulmonary fissure segmentation techniques is presented in Table 1.

In this paper, a reliable and valuable scheme is presented for pulmonary fissure segmentation. Inspired by previous works [30, 45], the ODoS filter is used to distinguish between pulmonary fissures and undesirable clutters for pulmonary fissure enhancement in CT images. Subsequently, the shape difference between pulmonary fissures and tubular structures in magnitude and orientation field is exploited to isolate sheet-like structures for pulmonary fissure segmentation. The main contributions of this paper are as follows:

- An ODoS filter is applied to extract orientation and magnitude information for pulmonary fissure enhancement.
- A preprocessing pipeline based on the orientation curvature criterion in 2D space and an orientation partition scheme in 3D space is presented to achieve more complete fissure detection and suppress other structures by using the shape difference in the orientation field.
- A postprocessing pipeline based on the shape measure approach and 3D skeletonization model is introduced to separate pulmonary fissures from clutter by exploiting the shape difference in the magnitude field.
- The merits of 2D line detection and 3D surface models in orientation and magnitude fields are tightly integrated to generate an efficient pulmonary fissure detection scheme.

This paper is organized as follows. The datasets, the manual references and the algorithms are described in detail in Section 2. Section 3 presents the visual inspections and quantitative evaluations of experimental results with different methods. In Section 4, the

Authors	Datasets	Models
Peng et al. [32]	15 CT images	Alpha Model
		Medial Model
Xiao et al. [46]	55 CT images	ODoS filter
		Multiple section model
Xiao et al. [45]	78 CT images	DoS filter
		Branch-point removal algorithm
Peng el al. [30]	55 CT images	ODoS filter
		Orientation partition scheme
Zhao et al. [52]	105 CT images	Directional derivative of a plate filter
Giuliani et al. [14]	80 CT images	Sheet-like filter
		Geodesic distance map
Bragman et al. [4]	165 CT images	Multiscale fissure enhancement filter
		Gaussian mixture model
Gerard et al. [12]	3736 CT images	FissureNet
Roy et al. [34]	55 CT images	Multiview deep learning-driven iterative watershed algorithm
advantages and disadvantages of our scheme are introduced. And in Section 5, a conclusion is drawn by analysing the simulation results.

2 Materials and methods

Pulmonary fissure segmentation in CT images is useful in the diagnosis and treatment of pulmonary diseases. To achieve this purpose, a useful approach based on the ODoS filter and shape features is presented for pulmonary fissure segmentation. First, an ODoS filter is exploited to enhance pulmonary fissures and suppress adjacent interference tissues. Then, a preprocessing pipeline is presented to preserve the completeness of pulmonary fissures and remove parts of clutters. Finally, a postprocessing pipeline is introduced to remove adhering clutter and achieve efficient pulmonary fissure segmentation. Compared with many state-of-the-art methods, the experimental results showed that the proposed scheme has the best performance in pulmonary fissure segmentation.

2.1 Data and reference

In this study, 55 CT scans were selected from the Lobe and Lung Analysis 2011 (LOLA11) dataset [24, 26, 40, 50], which were acquired from different scanners and protocols. To evaluate the performance of our scheme, we regarded the fissure references that were verified by two medical experts [30, 45] as the ground truth to evaluate the proposed scheme.

2.2 Overview of the proposed scheme

In this paper, we present a reliable and valuable method for fissure segmentation. To reduce the impact of nonlung tissues, lung masks [7, 38] are used to extract lung regions in advance. The flow chart of our scheme is shown in Fig. 1.

2.3 ODoS filter

Due to the poor detection of weak and abnormal fissures, Peng et al. [30] presented an ODoS filter to highlight fissure representation. The main idea is to take advantage of the intensity and orientation difference between fissures and their surrounding tissues. As shown in

![Fig. 1 The framework of the computational scheme](image-url)
Fig. 2, the ODoS filtering kernel [30, 45] is composed of the left (Ls), middle (Ms) and right (Rs) sticks with different colors, where θ and S represent the filtering orientation and the interstick spacing, respectively. To better express the ODoS filter, the mean intensities along the left, middle and right sticks are denoted as u_L, u_M and u_R, respectively. The nonlinear differentials perpendicular to the filtering kernel were defined as [45]

$$
\lambda_{S,\theta}^{\perp,\max}(x) = \max(u_M - u_L, u_M - u_R) \\
\lambda_{S,\theta}^{\perp,\min}(x) = \min(u_M - u_L, u_M - u_R)
$$

(1)

(2)

where x denotes the spatial location in CT images.

To suppress tubular structures, a tubular structure suppression operator was defined [45]

$$
\lambda_{S,\theta}^{\parallel}(x) = \sqrt{E(I_j^2) - (E(I_j))^2}
$$

(3)

Therefore, the fissure line strength measures can be described as

$$
l_{S,\theta}^{\max}(x) = \lambda_{S,\theta}^{\perp,\max}(x) - \kappa \cdot \lambda_{S,\theta}^{\parallel}(x)
$$

(4)

$$
l_{S,\theta}^{\min}(x) = \lambda_{S,\theta}^{\perp,\min}(x) - \kappa \cdot \lambda_{S,\theta}^{\parallel}(x)
$$

(5)

Here, κ is equal to 0.7 [45].

Considering that the intensity of fissures is greater than that of surrounding tissues, the 2D line strength measure functions were defined by Xiao et al. [45]

$$
F_{\max}(x) = \max\left(\max_{1 \leq i \leq 2(L-1)} (l_{S,\theta}^{\max}), 0\right)
$$

(6)

$$
F_{\min}(x) = \max\left(\max_{1 \leq i \leq 2(L-1)} (l_{S,\theta}^{\min}), 0\right)
$$

(7)

Fig. 2 ODoS filtering kernel. (a) The ODoS filtering kernel in the right lung. (b) The ODoS filtering kernel in the left lung.
where \(L = 11 \) and \(\theta \) represent the stick length and orientation, respectively. Subsequently, a cascaded scheme was established to enhance pulmonary fissures and suppress pathological abnormalities. Mathematically

\[
F_o(x) = F_{\text{max}}(x) \circ F_{\text{min}}(x)
\]

(8)

Here, \(\circ \) indicates the cascading operator [45]. The response \(F_o \) from the sagittal, axial and coronal cross-sections is denoted as \(F_S \), \(F_A \) and \(F_C \), respectively.

Motivated by the reality that \(F_{\text{max}} \) plays the major role in \(F_o \) for pulmonary fissure enhancement, the orientation response was described as follows [30]:

\[
\theta_{\text{max}} = \arg \max_{1 \leq i \leq 2(L-1)} (L - 1) (l_{S,i}^{\theta_{\text{max}}})
\]

(9)

A vector representation

\[
\vec{V}_{\text{max}}(\theta_{\text{max}}) = (\cos \theta_{\text{max}}, \sin \theta_{\text{max}})
\]

(10)

Therefore, the vectors \(\vec{V}_{\text{max}} \) from sagittal, axial and coronal cross-sections are denoted as \(\vec{V}_S^{\text{max}}, \vec{V}_A^{\text{max}} \) and \(\vec{V}_C^{\text{max}} \), respectively.

Inspired by the geometric representation of the vesselness filter [16, 35, 37, 48], a shape-tuned response was defined as

\[
F^{3D} = (F_A^o + F_S^o + F_C^o) \ast \frac{\text{median}(F_A^o, F_S^o, F_C^o)}{\text{max}(F_A^o, F_S^o, F_C^o)}
\]

(11)

As a result, the intensity and orientation response of the ODoS filter can be fused into a vector form

\[
\vec{F}(\theta_{\text{max}}) = F^{3D} \ast \vec{V}_{\text{max}}(\theta_{\text{max}})
\]

(12)

To illustrate the validation of the ODoS filter, a sagittal slice and its corresponding vector field are given in Fig. 3(a) and (b). Figure 3(c) denotes the magnified rectangular region of Fig. 3(b). As observed, the vector field was regularized by the ODoS filter. Subsequently,
Fig. 4 Orientation curvature criterion. (a) Subregion R_i. (b) The filtering results after using the orientation curvature criterion

a minimal threshold $T = 1$ [30] was selected to avoid some fissures being eliminated as clutter. Mathematically

$$\vec{F}_v(\theta_{\text{max}}) = \begin{cases} \frac{\vec{F}(\theta_{\text{max}})}{F^{3D}}, & F^{3D} > T \\ 0, & \text{others} \end{cases}$$ (13)

Different from traditional methods, we adopt an ODoS filter by merging the magnitude and orientation information to highlight pulmonary fissure representation, which can effectively distinguish between pulmonary fissures and clutters.

2.4 Preprocessing pipeline

Although the above operations have a perfect performance in pulmonary fissure enhancement, some undesired structures, such as vessels and airways, still cannot be eliminated. To eliminate undesired structures, an orientation curvature criterion and an orientation partition scheme are fused to separate candidate fissure profiles from clutters in the orientation field.

To suppress clutters, the normalized vector $\vec{F}_v(\theta_{\text{max}})$ is divided into $n = 8$ [30] overlapped subregions and denoted as $R_1, R_2, ..., R_{n-1}$ and R_n. Mathematically,

$$\vec{F}_{vi} = \begin{cases} \vec{F}_v(\theta_{\text{max}}), & \theta_{\text{max}} \in R_i \text{ and } |\vec{F}_v(\theta_{\text{max}})| > 0 \\ 0, & \text{others} \end{cases}$$ (14)

In each subregion R_i, pulmonary fissures appear as linear structures in 2D space. Therefore, pulmonary fissures have similar orientations in 2D space. As shown in Fig. 4(a), all objects in the subregion are denoted as $S_1, S_2, S_3,..., S_{m-1}$ and S_m, and the corresponding orientations are labeled with $\theta_1, \theta_2, \theta_3,..., \theta_{m-1}$ and θ_m. We consider the object S_i with the orientation θ_i belonging to $[\theta_x, \theta_y]$ as fissures and others as clutters in 2D space. Here,
\[\theta_i(S) \subset [\theta_x, \theta_y] \] (15)

After using the orientation curvature criterion, clutters were removed. As shown in Fig. 4(b), the approach has good performance in clutter suppression.

In the same way, in each subregion \(R_i \), pulmonary fissures appear as planar structures in 3D space, and an orientation partition scheme is adopted to remove clutters. As shown in Fig. 5, in each subregion, pulmonary fissures appear as planar structures, and clutters appear as small structures due to their shape features. Based on this theory, a connected component analysis \([15, 41]\) is used to select candidate fissures and eliminate small structures. Finally, all of the candidate fissures are integrated to form a complete fissure patch.

Unfortunately, Peng et al. [30] used only sagittal information alone to detect pulmonary fissures, and the approach may cause parts of fissures to be undetected. To address this problem, we integrate the sagittal, axial and coronal information to compensate for the drawback.

The fissure patches detected using the sagittal, axial and coronal information to enhance pulmonary fissures are shown in Fig. 6(a), (b) and (c), respectively. Figure 6(d) shows the corresponding integrated results. It can be seen that the simple strategy can effectively detect complete fissures. Using only sagittal information may cause parts of fissures (marked with red arrows) to be undetected.

2.5 Postprocessing pipeline

After using the preprocessing pipeline, some undesired structures, such as vessels and airways, still cannot be eliminated. To solve this problem, a shape measurement approach and
a 3D skeletonization model are combined to segment pulmonary fissures for clutter removal in the magnitude field.

Pulmonary fissures appear as curvilinear profiles in sagittal slices, and clutters such as airways and vessels appear as tubular structures in 2D space. A MATLAB function 'region-props' was used to acquire the selected object property for tuber structure removal. In this section, $K_1, K_2, K_3, \ldots, K_{n-1}$ and K_n were used to represent the selected object, H was the major axis length of K_i, and W was the minor axis length of K_i. To remove tuber structures, a shape measure approach [1, 36, 46] was used:

$$W(K_i)/H(K_i) \geq T_s$$

where T_s is a threshold value. The purpose is to remove tubular structures.

As shown in Fig. 7, parts of clutters are labeled with red circles in Fig. 7(b). After using the shape measure approach, the clutter is removed from the filtering image, and the final results are labeled with Q.

Fig. 6 Integrating the sagittal, axial and coronal information. (a) Sagittal information. (b) Axial information. (c) Coronal information. (d) Integration
As shown in Fig. 8, the threshold T_s is too large, which may result in much clutter being unremoved. In contrast, if the threshold T_s is too low, it may cause parts of fissures to appear as clutter and be removed. To address this problem, a clutter removal method based on a 3D skeletonization model [19, 29, 49] is presented to achieve complete fissure segmentation. The main idea is to select fissure profiles from clutters by breaking their connectivity with the 3D skeletonization model. As shown in Fig. 9, the detailed algorithms mainly consist of five steps: 3D skeletonization, branch-point removal, connected component analysis, hole-filling and fissure repair.

Step 1. The 3D skeletonization model is adopted to thin the filtering image Q by computing the complex medial axis of the objects. The purpose is to ensure the invariance of the
 objects’ topological structures and geometric features. Therefore, the 3D Euler criterion $X(Q)$ is employed by the global formula

$$X(Q) = O(Q) - H(Q) + C(Q)$$

where Q is the filtering image and $O(Q)$, $H(Q)$ and $C(Q)$ are the numbers of connected objects, holes and cavities of Q, respectively. The filtering image Q can be treated as a finite collection of points. Therefore, a local formula $G(Q)$ can be exploited to reduce
the computational complexity of the global formula \(X(Q) \). The local formula \(G(Q) \) from algebraic topology can be translated as

\[
G(Q) = v - e + f - t
\]

(18)

where \(v, e, f \) and \(t \) represent the number of vertices, edges, faces and octants in \(Q \), respectively.

To ensure the invariance of the objects’ topological structures and geometric features for thinning operations, the change of the Euler characteristic \(\delta \) is useful in the sense of the Euler criterion in a 3*3*3 cube

\[
\delta G(Q) = \frac{1}{8} - \frac{\delta e}{4} + \frac{\delta f}{2} - \delta t = 0
\]

(19)

where \(\delta t, \delta f \) and \(\delta e \) represent the changes in the number of octants, faces and edges in the 3*3*3 cube, respectively. In this section, an Euler table for six connected objects is adopted to extract the medial axes of the filtered CT images \(Q \), and the skeletonized image is denoted as \(Q_k \). As shown in Fig. 9, airways and vessels are thinned into single-pixel structures. Generally, the branching regions among fissures, airways and vessels are thinned into branch points. In other words, the branch points are removed from the filtered binarized image, and pulmonary fissures, airways and vessels are naturally separated from each other.

Step 2. A practical and useful approach is used for branch-point removal in the skeletonized image \(Q_k \). In 3D CT images, pulmonary fissures resemble planar structures, whereas airways and vessels appear similar to tubular structures. Based on this reality, a simple but effective approach is defined

\[
|((N_{26}(p)) \cup Q_k)| \geq 4
\]

(20)

where \(p \) and \(N_{26} \) denote the pixel in the skeletonized objects \(Q_k \) and its 26 neighborhood regions, respectively. As shown in Fig. 10, Figure 10(a) and (c) represent the tubular structures, Figure 10(b) and (d) represent the bifurcated structures, and the green dots and yellow dots denote \(p \) and its 26 neighborhood regions, respectively. If there are four or more points within a 3*3*3 cube (\(p \) and its neighborhood of 26), we regard the pixel \(p \) as the branch point. After removing all branch points, the complex branching structures, such as airways and vessels, are naturally divided into a series of small fragments.

Step 3. The connected component analysis is used to select the candidate fissures. After removing the branch points, the pulmonary fissures still retained good connectivity, whereas the airways and vessels were divided into small fragments. Based on this strategy, connected component analysis is adopted to remove clutter. Generally, the branching regions among fissures, airways and vessels are thinned into branch points. In other words, the branch points are removed from the filtered image, and pulmonary fissures, airways and vessels are naturally separated from each other.

Step 4. A hole-filling algorithm is used to achieve complete segmentation. There is a large number of holes in the candidate fissure surfaces. To circumvent the problem, we put the previously eliminated branch points back to fill the holes. Finally, a volume sorting scheme [30, 45] is employed to isolate fissure profiles for pulmonary fissure segmentation. The segmented fissure is denoted as \(Q_S \).

\[
Q_L = Q - Q_S
\]

(21)
As a result, clutters are treated as larger objects in the remaining objects Q_L, the larger objects $B_1 = \max(Q_L)$, $B_2 = \max(Q_L - B_1)$, ..., B_n. Therefore, small objects in the remaining image Q_L are preserved

$$Q'_L = Q_L - \sum_{i=1}^{n} B_i$$ \hspace{1cm} \text{(22)}

Subsequently, the small objects Q'_L and the segmented fissure Q_S are mathematically integrated into many objects:

$$Q''_L = Q'_L + Q_S$$ \hspace{1cm} \text{(23)}
Finally, a connected component analysis approach is used to select larger objects from Q''_L as the final segmented pulmonary fissures. As shown in Fig. 9, the missed fissure (labeled with red arrows) can be repaired.

3 Experimental results

In this section, our scheme is validated on the LOLA11 dataset. The corresponding code is implemented with a hybrid program by combining MATLAB and C++, and pleasant 3D visualization results are achieved by MeVisLab software [5, 6]. All experiments are carried out on a Windows 10 system running on a computer with 20 GB of RAM and a 3.00 GHz CPU. As a comparison, seven typical methods designed by Klinder et al. [20], Xiao et al. [46], Xiao et al. [45], Peng et al. [30], Wiemker et al. [44], Doel et al. [11], and Roy et al. [34] were implemented and applied to the same dataset. The runtimes with seven different state-of-the-art methods for a typical 400*512*512 size image are listed in Table 2. As depicted in Table 2, these Hessian-based methods [11, 20, 44] require less time for pulmonary fissure segmentation. While these deep learning methods [12] have the drawback of being time-consuming in the training stage. Although the proposed method takes more time than the methods of Klinder et al. [20], Peng et al. [30], Wiemker et al. [44], and Doel et al. [11], it has the best performance in pulmonary fissure segmentation in CT images.

3.1 Evaluation criteria

In this study, a 3 mm width around the segmented fissure is labeled as S_1, whereas a 3 mm width around the corresponding ground truth is denoted as R_1. The overlapped areas between the segmented fissure and R_1 are treated as TP_1, and the rest are FP. In a similar way, the overlapped areas between the ground truth and S_1 are treated as TP_2, and the rest are FN. Accordingly, the false discovery rate (FDR), false negative rate (FNR) and F1-score (F_1) are defined as

$$FDR = FP / (TP_1 + FP)$$

$$FNR = FN / (TP_2 + FN)$$

$$F_1 = \frac{2(1 - FDR)(1 - FNR)}{2 - FDR - FNR}$$

Methods	Runtime(400*512*512 size image)
The proposed method	1460s
Klinder et al. [20]	320s
Xiao et al. [46]	1410s
Xiao et al. [45]	1470s
Peng et al. [30]	1390s
Wiemker et al. [44]	130s
Doel et al. [11]	600s
Roy et al. [34]	3600s
3.2 Visual inspection

To select an optimal threshold T_s in the shape measure approach, one representative segmentation is chosen with a different threshold. As shown in Fig. 11, the threshold is too low, which may cause parts of fissures (marked with red ellipses) to be undetected. In contrast, if the threshold is too large, it may cause parts of clutter (marked with red arrows) to be unremoved.

To demonstrate the segmentation performance, we compared the computerized scheme against three typical methods [11, 30, 45]. Figure 12(a), (b), (c) and (d) show the computerized scheme, ODoS [30], DoS [45] and fissureness filter [11] filtering segmentation, respectively. The segmentation results, the ground truth and their overlapped areas are rendered in green, yellow and purple. The benefits of the computerized scheme can be discovered in the areas marked with red ellipses. Weak and abnormal fissures can be found by
Fig. 12 Pulmonary fissure segmentation with different methods. (a) The proposed method. (b) ODoS filter [30]. (c) DoS filter [45]. (d) Fissureness filter [11]

our scheme and lead to a lower FNR value. Experimental results show that the computerized scheme performs well in weak and abnormal fissure segmentation.

3.3 Quantitative evaluation

The box plots of indices corresponding to the computational scheme with different thresholds $T_s = 0.4$, $T_s = 0.5$, $T_s = 0.6$ and $T_s = 0.7$ are shown in Fig. 13. The corresponding median values are reported in Table 3. Both visual inspection and quantitative evaluation illustrated that $T_s = 0.5$ is the most appropriate choice in our computational scheme.

In Fig. 14, the box plots of indices corresponding to the computational scheme (s), ODoS (o), DoS (d), and Fissureness (f) filtering scheme are drawn next to each other. The median values are reported in Table 4. Both visual inspection and quantitative evaluation illustrated that the computational method can outperform the compared methods [11, 30, 45].
Fig. 13 Quantitative evaluation of the computational scheme with different thresholds T_s

Table 3 The indices of different thresholds in the public LOLA11 dataset

Threshold T_s	F_1	FDR	FNR
0.4	0.89	0.10	0.11
0.5	0.90	0.11	0.10
0.6	0.90	0.11	0.09
0.7	0.89	0.12	0.09

Fig. 14 Segmentation validation on the LOLA11 dataset with different methods

Table 4 The indices of four different methods in publicly LOLA11 dataset

Methods	F_1	FDR	FNR
The computational scheme	0.90	0.11	0.10
ODoS	0.88	0.07	0.15
DoS	0.83	0.10	0.24
Fissureness	0.82	0.10	0.26
In Table 5, compared with many different methods, the proposed method has the largest median F1 values, which indicates that the presented method can efficiently segment fissures in 3D CT images. The proposed method has the lowest median FNR value, which means that the presented method has good performance in the detection of weak and abnormal fissures.

4 Discussion

In this study, a computerized scheme based on an ODoS filter and shape features is introduced for pulmonary fissure segmentation in CT images. In terms of methodology, our scheme has many unique merits and characteristics. First, an ODoS filter based on a vector field instead of the intensity field is developed to enhance pulmonary fissures, which can accurately discriminate between fissure profiles and other tissues. Second, an orientation curvature criterion and an orientation partition scheme are combined to highlight fissure representation and suppress clutter. The original orientation partition scheme may cause parts of weak and abnormal fissures to be undetected. Third, the postprocessing pipeline is performed on pulmonary fissure segmentation under a 3D branch-point removal framework. Unlike traditional methods [20, 45] that work in 2D space, this operation reasonably expels clutter. In addition, with the help of the improved ODoS filter, orientation curvature criterion, orientation partition scheme and 3D skeletonization model, our scheme is expected to preserve the integrity of weak and abnormal fissure segmentation.

The computerized scheme outperformed these typical state-of-the-art methods [11, 12, 20, 30, 44–46]. The experimental results show that our scheme performs well in weak and abnormal fissure segmentation. Compared with the ground truth, the proposed method obtained a higher F1-score of 0.90 than the compared methods. The reason is that the computerized scheme used sagittal, diagonal and coronal information to detect weak and abnormal fissures, and then a 3D branch-point removal framework was designed to segment fissures. Peng et al. [30] employed only sagittal information, which may cause some fissures to be undetected. In contrast, Xiao et al. applied only the intensity information to segment fissures, and parts of fissures were regarded as clutters and removed [45]. Using a different method, Doel et al. utilized a 3D vessel distance transform to suppress clutter [11]. Unfortunately, parts of vessels cross fissures, which may cause some fissures to be simultaneously suppressed.

Methods	F_1	FDR	FNR
The proposed method	0.90	0.11	0.10
Klinder et al. [20]	0.58	0.09	0.57
Xiao et al. [46]	0.89	0.09	0.12
Xiao et al. [45]	0.83	0.10	0.24
Peng et al. [30]	0.88	0.07	0.15
Wiemker et al. [44]	0.69	0.09	0.45
Doel et al. [11]	0.82	0.10	0.26
Roy et al. [34]	0.89	No	No
However, the computerized scheme has many shortcomings and disadvantages. The fatal limitation of our scheme is the longer computation time. Although the proposed method takes more time than the approaches of Klinder et al. [20], Peng et al. [30], Wiemker et al. [44], and Doel et al. [11], it has the best performance in pulmonary fissure segmentation in CT images. In addition, parts of pathological clutters appear as planar structures, which cannot be eliminated by the computerized scheme. As shown in Fig. 15, the adhering planar clutters are marked with red arrows and cannot be removed by the proposed method. Although our scheme has many drawbacks, the integrity of the fissure segmentation has been greatly improved under the fissure segmentation framework.

5 Conclusion

In this paper, a reliable and valuable computerized scheme is presented for fissure segmentation. Considering the reality that pulmonary fissures resemble line-curved structures in 2D space and planar structures in 3D space, an ODoS filter and an orientation partition scheme are developed to highlight pulmonary fissures and suppress clutters, which are expected to achieve more complete fissure detection. Another contribution of our scheme focuses on the processing pipeline. Using an ingeniously designed shape difference strategy between pulmonary fissures and tubular structures in the magnitude and orientation fields to isolate weak and abnormal fissure patches in CT images finally leads to more complete and purified fissure segmentation. Compared with seven typical state-of-the-art methods, our scheme has a satisfactory pulmonary fissure segmentation performance. In the future, many methods, such as deep learning frameworks [3, 21], prior knowledge-based segmentation [17, 43] and feature extraction [8, 27, 47], may be adopted to improve the presented framework. In particular, pathological clutter removal will be the focus of our attention.

Acknowledgements This research was supported by the Jiangxi Provincial Natural Science Foundation (nos. 20212BAB202007, 20202BAB212004, 20212BAB211009, 20204BCJL23035, 20192ACB21004, 20181BAB202017), the Hunan Provincial Natural Science Foundation (no. 2021JJ30165), the Hunan Special Funds for the Construction of Innovative Province(Huxiang High-level Talent Gathering Project-Innovative talents) (no. 2019RS1072), the Educational Science Research Project of China Institute of communications Education (no. JTYB20-33), the Scientific and Technological Research Project of Education Department in
Jiangxi Province (nos. GJJ190356, GJJ210645) and the Science and Technology project of Changsha City (no. kq2001014).

Author Contributions Conceptualization, Yuanyuan Peng and Hongbin Tu; methodology, Yuanyuan Peng and Pengpeng Luan; validation, Yuanyuan Peng and Xiong Li; formal analysis, Xiong Li; data curation, Yuanyuan Peng and Xiong Li; writing original draft preparation, Yuanyuan Peng; funding acquisition, Yuanyuan Peng, Hongbin Tu and Xiong Li; paper modification, Yuanyuan Peng and Ping Zhou. All authors have read and agreed to the published version of the manuscript.

Data Availability The LOLA11 dataset can be downloaded in the website https://lola11.grand-challenge.org/.

Declarations

Ethics approval and consent to participate Not applicable

Consent for Publication Not applicable

Conflict of Interests The authors declare no conflicts of interest.

References

1. Ananthanarasimhan J, Leelesh P, Anand MS, Lakshminarayana AR (2020) Validation of projected length of the rotating gliding arc plasma using ‘regionprops’ function. Plasma Res Express 2(3):035008
2. Anitha S, Ganesh Babu TR (2019) An efficient method for the detection of oblique fissures from computed tomography images of lungs. J Med Syst 43:1–13
3. Bhargava A, Bansal A (2021) Novel coronavirus (COVID-19) diagnosis using computer vision and artificial intelligence techniques: a review[J]. Multimed Tools Appl 80(13):19931–19946
4. Bragman FJS, McClelland JR, Jacob J, Hurst JR, Hawkes DJ (2017) Pulmonary lobe segmentation with probabilistic segmentation of the fissures and a groupwise fissure prior. IEEE Trans Med Imag 36:1650–1663
5. Buck SD, Bruaene AVD, Budts W, Suetens P (2022) Mevislab-openVR prototyping platform for virtual reality medical applications. Int J CARS 2022:1–5
6. Chen M, Wang H, Tsauo C, Huang D, Zhou X, He J, Gao Y (2022) Micro-computed tomography analysis of root canal morphology and thickness of crown and root of mandibular incisors in Chinese population. Clin Oral Investig 26:901–910
7. Das A (2022) Adaptive unet-based lung segmentation and ensemble learning with cnn-based deep features for automated covid-19 diagnosis. Multimed Tools Appl 81:5407–5441
8. Ding S, Wang L, Cong L (2020) Super-pixel image segmentation algorithm based on adaptive equalisation feature parameters. IET Image Process 14(17):4461–4467
9. Diniz JOB, Quintanilha DBP, Santos Neto AC et al (2021) Segmentation and quantification of COVID-19 infections in CT using pulmonary vessels extraction and deep learning. Multimed Tools Appl 80:29367–29399
10. Doel T, Gavaghan DJ, Grau V (2015) Review of automatic pulmonary lobe segmentation methods from CT. Comput Med Imag Graph 40:13–29
11. Doel T, Matin TN, Gleeson FV, Gavaghan DJ, Grau V (2012) Pulmonary lobe segmentation from CT images using fissureness, airways, vessels and multilevel B-splines. In: 2012 9th IEEE International symposium on biomedical imaging, pp 1491–1494
12. Gerard SE, Patton TJ, Christensen GE, Bayouth JE, Reinhardt JM (2018) Fissurenet: a deep learning approach for pulmonary fissure detection in CT images. IEEE Trans Med Imag 38:156–166
13. Gerard SE, Reinhardt JM (2019) Pulmonary lobe segmentation using a sequence of convolutional neural networks for marginal learning. In: 2019 IEEE 16th international symposium on biomedical imaging, vol 2019, pp 1207–1211
14. Giuliani N, Payer C, Pienn M, Olschewski H, Urschler M (2018) Pulmonary lobe segmentation in CT images using Alpha-Expansion. VISIGRAPP:387–394
15. Goyal A (2019) Image-based clustering and connected component labeling for rapid automated left and right ventricular endocardial volume extraction and segmentation in full cardiac cycle multi-frame MRI images of cardiac patients. Med Biol Eng Comput 57(6):1213–1228
16. Gu X, Wang J, Zhao J, Li Q (2019) Segmentation and suppression of pulmonary vessels in low-dose chest CT scans. Med Phys 46:3603–3614
17. He W, Li B, Liao R, Mo H, Tian L (2022) An ISHAP-based interpretation-model-guided classification method for malignant pulmonary nodule. Knowl-Based Syst 237:107778
18. Jia J, Zhai Z, Bakker ME, Hernandez-Giron I, Staring M, Stoel BC (2021) Multi-task semi-supervised learning for pulmonary lobe segmentation. In: IEEE 18th international symposium on biomedical imaging, pp 1329–1332
19. Jiang D, Li G, Sun Y, Kong J, Tao B (2019) Gesture recognition based on skeletonization algorithm and CNN with ASL database. Multimed Tools Appl 78(21):29953–29970
20. Klinder T, Wendland H, Wiemker R (2013) Lobar fissure detection using line enhancing filters. Int Soc Opt Photo:919–926
21. Kuchana M, Srivastava A, Das R, Mathew J, Mishra A, Khatter K (2021) AI Aiding in diagnosing, tracking recovery of COVID-19 using deep learning on Chest CT scans. Multimed Tools Appl 80(6):9161–9175
22. Lee S, Lee JG (2019) The significance of pulmonary fissure completeness in video-assisted thoracoscopic surgery. J Thor Dis 11:420
23. Li Q, Kang Y (2020) A watershed-based intelligent scissors approach for interactive semi-automated pulmonary lobes segmentation. In: International conference on machine learning and cybernetics, pp 224–228
24. Liu J, Wang C, Guo J, Shao J, Xu X, Liu X, Li H, Li W, Yi Z (2021) RPLS-Net: pulmonary lobe segmentation based on 3D fully convolutional networks and multi-task learning. Int J CARS 16:895–904
25. Manjunath M, Sharma MV, Janso K, John PK, Anupama N, Harsha DS (2021) Study on anatomical variations in fissures of lung by CT scan. Ind J Radiol Imaging 31:797–804
26. Pang H, Wu Y, Qi S, Li C, Shen J, Yue Y, Qian W, Wu J (2022) A fully automatic segmentation pipeline of pulmonary lobes before and after lobectomy from computed tomography images. Comput Biol Med 147:105792
27. Panigrahi L, Verma K, Singh BK (2019) Ultrasound image segmentation using a novel multi-scale Gaussian kernel fuzzy clustering and multi-scale vector field convolution. Expert Syst Appl 115:486–498
28. Passah A, Amitab K, Kandar D (2021) SAR Image despeckling using deep CNN. IET Image Process 15:1285–1297
29. Peng Y, Ma Z, Peng L, Li X (2020) Pulmonary fissure segmentation in CT scans based on vector partition and 3D skeletonization model. J Comput-Aided Des Comput Graph 32(7):1154–1161
30. Peng Y, Xiao C (2018) An oriented derivative of stick filter and post-processing segmentation algorithms for pulmonary fissure detection in CT images. Biomed Sign Process Control 43:278–288
31. Peng Y, Zhang Z, Tu H, Li X (2022) Automatic segmentation of novel coronavirus pneumonia lesions in CT images utilizing deep-supervised ensemble learning network. Front Med 8:755309
32. Peng Y, Zhong H, Xu Z, Tu H, Li X, Peng L (2021) Pulmonary lobe segmentation in CT images based on lung anatomy knowledge. Math Probl Eng 2021:5588629
33. Ross JC, Nardelli P, Onieva J, Gerard SE, Harmouche R, Okajima Y, Diaz AA, Washko G, Estepar J (2020) An open-source framework for pulmonary fissure completeness assessment. Comput Med Imag Grap 83:101712
34. Roy R, Mazumdar S, Chowdhury AS (2020) MDL-IWS: multi-view deep learning with iterative watershed for pulmonary fissure segmentation. In: 2020 42nd annual international conference of the ieee engineering in medicine and biology society, pp 1282–1285
35. Shukla AK, Pandey RK, Pachori RB (2020) A fractional filter based efficient algorithm for retinal blood vessel segmentation. Biomed Sign Process Control 59:101883
36. Sinaga NS (2022) Implementasi metode regionprops untuk mendeteksi objek image fraktur tulang. J Inform Manag Inf Technol 2(2):60–64
37. Srinidhi CL, Aparna P, Rajan J (2018) A visual attention guided unsupervised feature learning for robust vessel delineation in retinal images. Biomed Sign Process Control 44:110–126
38. Tan W, Huang P, Li X, Ren G, Chen Y, Yang J (2022) Improving classification model performance on chest x-rays through lung segmentation. arXiv:2202.10971
39. Van Rikxoort EM, Hoop BD, Viergever MA, Pluim J, van Ginneken B (2010) Pulmonary lobe segmentation from CT images using fissureness, airways, vessels and multilevel B-splines. IEEE Trans Med Imag 29:1286–1296
40. Van Rikxoort EM, Van Ginneken B (2011) Automatic segmentation of the lungs and lobes from thoracic CT scans. In: Proceeding of the 4th international workshop pulmonary image analysis, pp 261–168
41. Wang H, Hu W, Zhang G, Tang Y, Jing S, Chen Z (2020) Small-signal modelling of AC/MTDC hybrid power systems using multi-Layer component connection method. Energy Rep 6:1033–1040
42. Wang S, Lin M, Ghosal T, Ding Y, Peng Y (2022) Knowledge graph applications in medical imaging analysis: a scoping review. 2022:9841548
43. Wang X, Yu Z, Wang L, Zheng P (2022) An enhanced priori knowledge GAN for CT Images generation of early lung nodules with small-size labelled samples. Oxidative Med Cell Longev 2022:2022
44. Wiemker R, Bülow T, Blaffert T (2005) Unsupervised extraction of the pulmonary interlobar fissures from high resolution thoracic CT data. Int Congr Ser:1121–1126
45. Xiao C, Stoel BC, Bakker ME, Peng Y, Stolk J, Staring M (2016) Pulmonary fissure detection in CT images using a derivative of stick filter. IEEE Trans Med Imag 35:1488–1500
46. Xiao R, Zhou J (2019) Pulmonary fissure detection in 3D CT images using a multiple section model. Algorithms 12:75
47. Xie Z, Niu J, Yi L, Lu G (2022) Regularization and attention feature distillation base on light CNN for Hyperspectral face recognition. Multimed Tools Appl 81(14):19151–19167
48. Yue K, Zou B, Chen Z, Liu Q (2018) Improved multi-scale line detection method for retinal blood vessel segmentation. IET Image Process 12:1450–1457
49. Zhang F, Chen X, Zhang X (2020) Parallel thinning and skeletonization algorithm based on cellular automaton. Multimed Tools Appl 79(43):33215–33232
50. Zhang S, Nie W, Pan L, Zheng B, Shen Z, Huang L, Pei C, She Y, Chen L (2021) A dual-attention V-network pulmonary lobe segmentation in CT scans. IET Image Process 15:1644–1654
51. Zhang J, Wang Y, Liu J, Tang Z, Wang Z (2022) Multiple organ-specific cancers classification from PET/CT images using deep learning. Multimed Tools Appl 81:16133–16154
52. Zhao H, Stoel BC, Staring M, Bakker M, Stolk J, Zhou P, Xiao C (2020) A framework for pulmonary fissure segmentation in 3D CT images using a directional derivative of plate filter. Sign Process 173:107602

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.