Internal Resonance of Hyperelastic Thin-Walled Cylindrical Shells under Harmonic Axial Excitation and Time-Varying Temperature Field

Jie Xu
Dalian University of Technology

Yuan Xuegang (yxg1971@163.com)
Dalian Minzu University: Dalian Nationalities University

Hongwu Zhang
Dalian University of Technology

Minfu Ma
Dalian Minzu University: Dalian Nationalities University

Wei Zhao
Dalian Minzu University: Dalian Nationalities University

Research Article

Keywords: Hyperelastic cylindrical shell, axisymmetric nonlinear vibration, harmonic balance method, internal resonance, isolated bubble

DOI: https://doi.org/10.21203/rs.3.rs-761448/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Internal resonance of hyperelastic thin-walled cylindrical shells under harmonic axial excitation and time-varying temperature field

Jie Xu\(^2\) · Xuegang Yuan\(^1,2\) * · Hongwu Zhang\(^2\) · Minfu Ma\(^1,3\) · Wei Zhao\(^1,4\)

1. X. Yuan · M. Ma · W. Zhao

School of Science, Dalian Minzu University, Dalian 116600, P. R. China

2. J. Xu · H. Zhang

State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, P. R. China

3. M. Ma

College of Mathematics and Information, North Minzu University, Yinchuan 750021, P. R. China

4. W. Zhao

Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures, College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, P. R. China

Corresponding author: Xuegang Yuan, e-mail: yxg1971@163.com

Abstract In this paper, the internal resonance characteristics of hyperelastic cylindrical shells under the time-varying temperature field are investigated for the first time, and the evolution of the isolated bubble is carried out. Through the analysis of the influences of temperature on material parameters, the hyperelastic strain energy density function in the unsteady temperature field is presented. The governing equations describing the axisymmetric nonlinear vibration are derived from the nonlinear thin shell theory and the variational principle. With the harmonic balance method and the arc length method, the steady state solutions of shells are obtained, and their stabilities are determined. The influences of the discrete mode number, structural and temperature parameters on the nonlinear behaviors are examined. The role of the parameter variation in evolution behaviors of isolated bubble responses is revealed under the condition of 3:1 internal resonance. The results manifest that both structural and temperature parameters can affect the resonance range of the response curve, and the perturbed temperature has a more significant effect on the stable region of the solution.

Keywords Hyperelastic cylindrical shell · axisymmetric nonlinear vibration · harmonic balance method · internal resonance · isolated bubble
1 Introduction

Due to the light weight, high strength and stiffness ratio, cylindrical shells are widely applied in many important engineering fields, such as the energy transportation, shipbuilding and aerospace. The pipeline conveying fluid and the spacecraft or missile, both can be modeled as the cylindrical shell for simplifying analysis [1-3]. In addition, the mechanical behavior of biological tissues such as bones and blood vessels can also be simulated with the cylindrical shell. However, it should be noted that for those structures, hyperelastic material models should be adopted to describe the nonlinear mechanical behaviors [4, 5]. Generally, cylindrical shells are usually subjected to different loads (such as the axial force and temperature), which are prone to induce the large amplitude vibration, and then destroy the structural safety. Therefore, it is essential and necessary to investigate the nonlinear vibration characteristics of hyperelastic thin-walled cylindrical shells subjected to external loads for the optimization of design and improvement of safety.

The thin-walled shell is usually the best and only choice for those aerospace and navigation structures, as well as engineering structures such as vehicle and architecture building. Due to the complexity of the vibration behavior of the continuum structure, the discretization method is widely applied to simplify the continuum into a system with finite degree of freedom. This method is also very common in the vibration analysis of beams, and there is a solid theoretical foundation for the related analysis methods. However, shells especially exhibit certain effects that are not presented in beams or even plates, and cannot be interpreted by engineers who are only familiar with the beam-type vibration theory[6]. Thus, it is helpful to improve the understanding of basic phenomena in vibrations of plates and shells, and it will be useful in explaining experimental measurements or the results of the finite element programs. Radwanska et al. [7] presented a comprehensive introduction to the elastic plate and shell theory, formulations and solutions of fundamental mechanical problems (statics, stability and free vibrations) using the exact approaches and approximate computational methods, and also emphasized the modern capabilities of the finite element technology. With the load increases, the shell behavior will show some essential geometric nonlinearity who plays a key role in the structural safety. Therefore, the
influence of nonlinearity has also been paid more and more attention in the dynamic analysis of thin-walled shells. Meanwhile, with the development of material science, the combination between shells and new materials is getting more and more inseparably associated, especially, for plates and shells composed of composite materials. The monograph contributed by Reddy [8] systematically introduced various aspects related to laminated composite structures, including the virtual work principle, variational method, anisotropic elasticity, plate and shell theory (including classical theory, first-order and third-order shear deformation theory), geometric nonlinearity and finite element analysis. Shen [9, 10] dedicated to the investigation of the geometrically nonlinear problems of inhomogeneous isotropic and functionally graded plates and shells, which includes the large deflection, post-buckling and nonlinear vibration. Amabili [11] studied the plates and shells composed of composite materials, soft materials and biological materials, and researched the hyperelastic, viscoelasticity and nonlinear damping, which are pioneering works considered both material and geometric nonlinearities.

The researches on nonlinear dynamic behaviors of cylindrical shells have attracted much attention from a large number of scholars. Ye and Wang [12] analyzed the nonlinear forced vibration of the functionally graded graphene platelet-reinforced metal foam thin-walled cylindrical shell, and found that the inclusion of graphene platelets in the shells weakens the nonlinear coupling effect. Based on the von Kármán geometric nonlinear strain-displacement relationship and the first-order shear deformation theory, Zhang et al. [13] studied the nonlinear radial breathing vibration of a carbon fiber reinforced polymer laminated cylindrical shell with different temperatures under both axial pressure and radial line load. Yang et al. [14] studied the nonlinear vibration of a carbon fiber reinforced polymer laminated cylindrical shell with 1:2 internal resonance, primary parametric resonance and 1/2 subharmonic resonance. Based on Reddy’s third order shear deformation theory and the Galerkin method, Vuong and Duc [15] examined the nonlinear vibration of the functionally graded moderately thick toroidal shell segments resting on the Pasternak type elastic foundation. Liu et al. [2] investigated the nonlinear breathing vibration of an eccentric rotating composite laminated cylindrical shell subjected to the lateral and temperature...
excitations. Parvez et al. [16] presented the nonlinear dynamic response of
laminated composite cylindrical shells under periodic external forces, and
explored the parameters influencing the transition between the softening and
hardening nonlinear behaviors of cylindrical shells. Shen et al. [17] investigated the
nonlinear flexural vibrations of carbon nanotube-reinforced composite laminated
cylindrical shells with negative Poisson’s ratios in thermal environments. Wang et
al. [18] investigated the strongly nonlinear traveling waves in a thermo-hyperelastic
cylindrical shell.

Compared with those structures composed of composite materials or other new
materials, there are relatively few researches on the dynamics of hyperelastic
structures, and most of them are also focused on relatively simple structures, such
as the membrane [19-21] or the beam [22-24] contributed by Soares, Gonçalves, Zhao,
Chen and Wang. Dong et al. [25] proposed a novel approach to tune the resonance
frequency of circular hyperelastic membrane-based energy harvesters via different
stretch ratios applied to membranes, which provided an alternative tuning strategy
to enable energy harvesting from different ambient vibration sources in various
environments. Wang and Zhu [26] investigated the nonlinear vibrations of a
hyperelastic beam under time-varying axial loading are derived via the extended
Hamilton’s principle. Iglesias et al. [27] studied the large-amplitude axisymmetric
free vibration of an incompressible hyperelastic orthotropic cylinder, and analyzed
the influence of initial conditions, structural and material parameters on the
dynamic behavior. With the Gent-Gent hyperelastic model, Alibakhshi and
Heidari [28] researched the nonlinear vibration of a dielectric elastomer balloon
considering the strain hardening and the second invariant of the Cauchy-Green
deformation tensor, and found that the second invariant parameter could suppress
the chaotic motion of the system. Due to the existence of geometric and material
nonlinearities, it is difficult to investigate the vibrations of hyperelastic plate and
shell structures, however, there are still a few related works. Breslavsky et al. [29]
presented the static and dynamic responses of circular cylindrical shells composed
of hyperelastic arterial materials based on the nonlinear high-order shear
deformation theory, and pointed out that the resonant regime with both driven and
companion modes active should possess more complicated nonlinear dynamics.
Amabili et al. [30] conducted the numerical analysis and experimental research on
the hyperelastic behavior of a thin square silicone rubber plate, obtained a good agreement between the first four natural modes and frequencies numerically and experimentally.

It is not difficult to find that there are numerous researches on the nonlinear dynamics of cylindrical shells, however, few researchers pay attention to the dynamic behaviors of hyperelastic cylindrical shells considering the material nonlinearity, and fewer works considering the temperature effect. Therefore, this paper studies the nonlinear dynamic behaviors of the hyperelastic thin-walled cylindrical shells under harmonic axial excitation and time-varying temperature field. The remainder of this paper is organized as follows: Section 2 introduces the thermo-hyperelastic constitutive relationship; Section 3 gives the strain-displacement relationship of the thin-walled cylindrical shell, and derives the nonlinear governing differential equations; Section 4 analyzes the natural frequency characteristics of the shells and calculates the corresponding internal resonance parameters; Section 5 presents the solution of nonlinear equations and the stability of periodic solutions; Section 6 discusses the influences of the discrete mode number, structural and temperature parameters via the numerical simulation; Section 7 draws the conclusions.

2. Thermo-hyperelasticity and strain-displacement relationship

Consider a thin-walled cylindrical shell composed of a class of incompressible thermo-hyperelastic materials in a time-varying temperature field, which is subjected to the axial load at both ends. As shown in Fig. 1, the length, diameter of the middle surface and thickness of the cylindrical shell are represented by H, D and h, respectively. The cylindrical coordinate system (x, θ, z) is established on the mid-surface of the shell, where x, θ, z are the axial, circumferential and radial directions. Let u, v and w be the displacements of a point at the mid-surface, and u_1, u_2 and u_3 be the displacements of an arbitrary point of the shell accordingly.
The Lagrange strain tensor and the right Cauchy-Green deformation tensor which characterize the deformation of the thin-walled cylindrical shell are expressed as follows

\[
\mathbf{E} = \begin{bmatrix}
\varepsilon_{11} & \varepsilon_{12} & 0 \\
\varepsilon_{12} & \varepsilon_{22} & 0 \\
0 & 0 & \varepsilon_{33}
\end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix}
2\varepsilon_{11} + 1 & \varepsilon_{12} & 0 \\
\varepsilon_{12} & 2\varepsilon_{22} + 1 & 0 \\
0 & 0 & 2\varepsilon_{33} + 1
\end{bmatrix}
\]

(1)

where \(\varepsilon_{ij} \) (i, j = 1 ~ 3) is the Green strain. The principal invariants of the right Cauchy-Green deformation tensor are

\[
I_1 = \text{tr}(\mathbf{C}) = 2(\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}) + 3,
\]

\[
I_2 = \frac{1}{2} \left[(\text{tr}\mathbf{C})^2 - \text{tr}(\mathbf{C}^2) \right] = 4(\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} + \varepsilon_{11}\varepsilon_{22} + \varepsilon_{11}\varepsilon_{33} + \varepsilon_{22}\varepsilon_{33}) - \varepsilon_{12}^2 + 3, \quad (2)
\]

\[
I_3 = J^2 = \det(\mathbf{C}) = (2\varepsilon_{33} + 1) \left[(2\varepsilon_{11} + 1)(2\varepsilon_{22} + 1) - \varepsilon_{12}^2 \right]
\]

Using with the incompressible constraint \(J = 1 \) yields

\[
\varepsilon_{33} = \frac{1}{2} \left[\left(2\varepsilon_{11} + 1 \right) \left(2\varepsilon_{22} + 1 \right) - \varepsilon_{12}^2 \right]^{-1} - 1 \quad \text{(3)}
\]

For the case of small strains, expanding Eq. (3) about all the strains in it up to the fourth order gives

\[
\varepsilon_{33} = -\left(\varepsilon_{11} + \varepsilon_{22} \right) + 2\left(\varepsilon_{11}^2 + \varepsilon_{22}^2 + \varepsilon_{11}\varepsilon_{22} + \varepsilon_{12}^2 \right)
- 4\left(\varepsilon_{11} + \varepsilon_{22} \right) \left(\varepsilon_{11}^2 + \varepsilon_{22}^2 + \frac{1}{2}\varepsilon_{12}^2 \right)
+ 8\left(\varepsilon_{11}^4 + \varepsilon_{22}^4 + \frac{1}{16}\varepsilon_{12}^4 \right)
+ 8\varepsilon_{11}\varepsilon_{33} \left(\varepsilon_{11}^2 + \varepsilon_{22}^2 + \varepsilon_{11}\varepsilon_{22} + \varepsilon_{12}^2 \right)
+ 6\varepsilon_{12}^2 \left(\varepsilon_{11}^2 + \varepsilon_{22}^2 \right) + \ldots
\]

(4)

Based on the Kirchhoff-love hypothesis (that is, the stress components perpendicular to the mid-surface are negligible, which is a very good approximation for thin-walled shells) and the assumption of axisymmetric vibrations (the circumferential displacement is zero), the displacements of a generic point on the cylindrical shell are given as follows
Additionally, the geometrical nonlinearity of the shell yields the following strain-displacement relationships:

\[
\varepsilon_{11} = \frac{\partial u}{\partial x} + \frac{1}{2} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial w}{\partial x} \right)^2 \right] - \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial u}{\partial x} \frac{\partial^2 w}{\partial x^2} \right) z + \frac{1}{2} \left(\frac{\partial^2 w}{\partial x^2} \right)^2 z^2,
\]

\[
\varepsilon_{22} = \frac{w}{R} + \frac{1}{2} \left(\frac{w}{R} \right)^2 \tag{6}
\]

For incompressible thermo-hyperelastic materials, the thermal effect is mainly reflected in their strain energy functions. In this paper, the 8-chain non-Gaussian network model, i.e. the Arruda-Boyce model \([31]\) is adopted, as follows,

\[
\Phi_{r_i} = \mu_{r_i} N_{r_i} \left(\frac{\vartheta}{\lambda_m} \sqrt{\frac{I_1}{3}} + \ln \frac{\vartheta}{\sinh \vartheta} \right) \tag{7}
\]

\[
\mu_{r_i} = nkT_i = \frac{T_i}{T_0 (1+\alpha_r\Delta T_i)}\mu_0, \quad n_{r_i} = \frac{n_0}{(1+\alpha_r\Delta T_i)^{\frac{1}{3}}},
\]

where \(\alpha_T\) is the linear thermal expansion coefficient, \(T_i\) is the environmental temperature, \(\mu_{r_i}\) is the shear modulus at the temperature of \(T_i\), and \(\Delta T = T_i - T_0\) is the temperature difference (\(T_0\) is room temperature, \((\cdot)_0\) is the value of a parameter at the temperature of \(T_0\), \((\cdot)_i\) is the value of a parameter at the temperature of \(T_i\)), \(\lambda_m = \sqrt{N_{r_i}}\) is the limited stretch ratio of chains, \(N_{r_i}\) is the average number of segments in a chain, \(\vartheta = L^{-1} \left(\sqrt{I_1 / (3N_{r_i})} \right)\) is the inverse Langevin function. For the periodic uniform environmental temperature, the temperature \(T_m\) of the thin-walled shell is assumed to be periodic, then \(T_m\) is given by

\[
T_m = T_A + \Delta T_p \cos (\omega_r t) \tag{9}
\]

where \(T_A\) is the average temperature part of the environmental temperature and \(\Delta T_p\) is the amplitude of the perturbed temperature part (\(\alpha_T\) is a very small parameter, and \(\alpha_T \Delta T_p\) is also a small quantity). In this case,
\[\mu_M = \frac{T_A + \Delta \mu}{T_A \left(1 + \alpha T \Delta \mu \cos(\alpha T t)\right)} \mu_{T_a}, N_M = \left[1 + \alpha T \Delta \mu \cos(\alpha T t)\right]^3 N_{T_a} \]

(10)

\[\mu_M \approx \left[1 + P_\mu \cos(\alpha T t)\right] \mu_{T_a}, N_M \approx \left[1 + P_\mu \cos(\alpha T t)\right] N_{T_a} \]

(11)

\[\frac{\mu_M}{N_M^n} = \frac{\mu_{T_a} + P_\mu \cos(\alpha T t)}{N_{T_a}^{n+1}} \approx \mu_{T_a} \left[1 + \left(P_\mu - nP_0\right) \cos(\alpha T t)\right] \]

(12)

\[P_\mu = \left(\frac{1}{T_A} - 3\alpha_T\right) \Delta T_p, P_\mu = 3\alpha_T \Delta T_p \]

(13)

Moreover, the series expansion form for Eq. (7) (keeping the first five terms) is often adopted as follows,

\[\Phi_M = \mu_M \sum_{i=1}^{5} \frac{C_i}{N_i^{i-1}} \left(I_i - 3\right) \]

(14)

\[\Phi_M = \sum_{i=1}^{5} \frac{\mu_{T_a}}{N_{T_a}^{i-1}} \left[1 + \left(P_\mu - (i-1)P_0\right) \cos(\alpha T t)\right] C_i \left(I_i - 3\right) \]

(15)

\[= \mu_{T_a} \sum_{i=1}^{5} \frac{C_i}{N_{T_a}^{i-1}} \left(I_i - 3\right) + \cos(\alpha T t) \mu_{T_a} \sum_{i=1}^{5} \frac{C_i}{N_{T_a}^{i-1}} \left(P_\mu - (i-1)P_0\right) \left(I_i - 3\right) \]

The material parameters required for the calculation are listed in Table 1.

Material parameters	Valves
\(\mu_0 \) (MPa)	0.2853
\(N_0 \)	26.54
\(\alpha_T \) (K\(^{-1}\))	3.6×10\(^{-4}\)
\(T_0 \) (K)	297
\(C_1 \)	1/2
\(C_2 \)	1/20
\(C_3 \)	11/1050
\(C_4 \)	19/7000
\(C_5 \)	519/673750

Combined with Eqs.(2), (4) and (14), the specific expression of the strain energy function is obtained.
3. System of governing equation

The expressions of the kinetic energy and potential energy can be expressed as
follows

\[
D_p = \frac{1}{2} \rho \int_0^H \int_0^{2\pi} \left(\ddot{u}_1^2 + \ddot{u}_2^2 + \ddot{u}_3^2 \right) \text{d}\theta \text{d}z,
\]

\[
E_p = \int_0^H \int_0^{2\pi} \Phi \text{d}\theta \text{d}z,
\]

(16)

where \(\rho \) is the mass density, \(t \) is the time, \(\Phi \) is the strain energy function, and the dot denotes the derivative with respect to \(t \).

The Ritz method is employed to approximate the axial displacement \(u \) and the deflection \(w \). The boundary conditions should be satisfied at the shell ends with the assumed modes which are axisymmetric. Then, the displacements are expanded by using the eigenmodes as follows

\[
\begin{align*}
\begin{cases}
u(x,t) = \sum_{m=1}^{M} u_{m0}(t) \cos \frac{m\pi x}{H}, \\
w(x,t) = \sum_{m=1}^{M} w_{m0}(t) \sin \frac{m\pi x}{H}
\end{cases}
\end{align*}
\]

(17)

where \(m \) is the longitudinal half wave number, and \(M \) is the truncation order. It should be noted that under the assumption of axisymmetric motion, the circumferential wave numbers is 0, \(u_{m0}(t) \) and \(w_{m0}(t) \) are generalized coordinates related to time \(t \).

In presence of axial harmonic loads acting on the shell, the virtual work of the external force is done by a time-varying axial load \(p_s(t) \) which is applied at both ends of the shell. It is positive in the \(x \) direction, that is, \(-p_s(t) \) is applied at \(x = 0 \) and \(p_s(t) \) is applied at \(x = H \). Thus, the uniform axial load \(q_s(t) \) is expressed as follows

\[
q_s(x,\theta,z,t) = p_s(t) \left[-\delta(x) + \delta(x - H) \right], \quad F_s(t) = 2\pi R \rho \delta_p (t)
\]

(18)

where \(\delta \) is the Dirac delta function, and \(F_s(t) \) is the net force at the end. Therefore, the virtual work done by the external force can be expressed as

\[
W_{ex} = \int_0^H \int_0^{2\pi} \left(q_s u + q_v v + q_w w \right) \text{d}x \text{d}\theta \text{d}z = -F_s(t) \sum_{m=1}^{M} u_{m0}(t) \left[-1 + (-1)^m \right]
\]

(19)
The other part of the virtual work is done by the non-conservative damping force. Assuming that the non-conservative damping force is viscous type, Rayleigh’s dissipation function is adopted to obtain the virtual work

\[
W_d = \frac{1}{2} \int_0^H \int_0^{2\pi} (c_1 \dot{u}^2 + c_2 \dot{v}^2 + c_3 \dot{w}^2) Rd\theta dx dz
\]

(20)

\[
= \pi hR \int_0^H \left(c_1 \dot{u}^2 + c_2 \dot{v}^2 + c_3 \dot{w}^2 \right) dx
\]

where \(c_\gamma \) is damping parameter related to the natural frequency of the shell and can be evaluated from experiments. The Lagrange equation describing the axisymmetric motion for a hyperelastic thin-walled cylindrical shell is given by

\[
\frac{d}{dt} \frac{\partial (D_p - E_p)}{\partial \dot{q}_i} - \frac{\partial (D_p - E_p)}{\partial q_i} = -\frac{\partial W_d}{\partial \dot{q}_i} + \frac{\partial W_e}{\partial q_i}
\]

(21)

where \(q_i \) is the generalized displacement and \(i \) is the mode number. The form of external load is expressed as follows

\[
F = -F_0 \cos (\Omega t + \theta_0)
\]

(22)

where \(F_0 \), \(\Omega \) and \(\theta_0 \) are the excitation amplitude, excitation frequency and phase difference between the axial excitation and the temperature. With the aid of related equations, a system of nonlinear differential equations describing the axisymmetric motion of thin-walled cylindrical shells can be written in the following matrix form

\[
M\ddot{q} + C\dot{q} + \left[E + \delta_1 \cos(\omega_1 t) \right] K_1 q + \left[E + \delta_2 \cos(\omega_2 t) \right] K_2 (q) q + \left[E + \delta_3 \cos(\omega_3 t) \right] K_3 (q, q) q = F \cos (\Omega t + \theta_0)
\]

(23)

where \(E \), \(M \), \(C \), \(K_1 \), \(K_2 \), \(K_3 \), \(q \) and \(P \) are the identity matrix, mass matrix, damping matrix, linear stiffness matrix, generalized displacement column vector and load amplitude column vector, respectively. \(K_2 \) and \(K_3 \) are quadratic nonlinear stiffness matrix and cubic nonlinear stiffness matrix, which give the quadratic and cubic non-linear stiffness terms associated with displacements. \(\delta_1 \), \(\delta_2 \) and \(\delta_3 \) are disturbance parts of stiffness matrix caused by temperature variation. The related matrix dimension is \(2M \times 2M \), where \(M \) is the truncation order.

Furthermore, it is convenient to introduce the following dimensionless notations,
\[
\tau = \omega_0 \tau, \eta = \frac{\Omega}{\omega_0}, \eta_T = \frac{\omega_T}{\omega_0}, \bar{q} = \frac{1}{h} q, \bar{F} = \frac{1}{\omega_0 h} M^{-1} F,
\]

where \(\omega_0 \) is the fundamental frequency. Hence, the system (23) is rewritten as

\[
\ddot{q} + \bar{C} \dot{q} + \bar{K}_1 \bar{q} + \bar{K}_2 (\bar{q}) \ddot{q} + \bar{K}_3 (\bar{q}, \dot{q}) \ddot{q} = \bar{F} \cos(\eta \tau)
\]

\[
- \left[\delta_1 \bar{K}_1, \bar{q} + \delta_2 \bar{K}_2 (\bar{q}) \ddot{q} + \delta_3 \bar{K}_3 (\bar{q}, \dot{q}) \ddot{q} \right] \cos(\eta \tau - \theta_0)
\]

In summary, the axisymmetric nonlinear differential equations describing the motion of the thin-walled cylindrical shell in the time-varying temperature field subjected to the axial excitation have been derived. It is not difficult to find that the system of nonlinear equations present the influences of the parametric excitation and external excitation.

4. Natural frequency analysis

In this paper, the nonlinear vibration of thin-walled shell is considered. The thickness-diameter ratio, the radius and the material density are taken as \(h/R = 0.02 \), \(R = 100 \text{mm} \) and \(\rho = 1100 \text{kg} \cdot \text{m}^{-3} \).

4.1 Influence of structural parameters on frequency

For thin-walled cylindrical shells, the most important structural parameter is the length-diameter ratio. The influence of this parameter on the natural frequency is analyzed in the following, and the temperature is taken as the room temperature (i.e., 297K).
Fig. 2 Relation between the natural frequency and length-diameter ratio (solid line: modes with $m=1$~5; dash-dotted line: the same order mode with $m=1$~5)

Refer to the existing Ref. [33], with the assumption of axisymmetric motion, for the given longitudinal half wave number m, there are two modes which can be obtained from the system (23), and denoted the one with lower frequency as the m-th order mode, while the other higher as the same order mode of the m-th order mode. The solid line in Fig. 2 shows the 1~5th modes from bottom to top. It is not difficult to find that the corresponding low-order mode frequency for $m=1$ possesses the fundamental frequency ω_0 of the shell (the red solid line). The dash-dotted lines with the same color as the solid lines are the same order modes with the higher natural frequency and the same longitudinal half wave number. For the convenience of later description, the m-order mode is denoted as $(m, 1)$, the corresponding same mode is denoted as $(m, 2)$, the corresponding natural frequencies are denoted as ω_{m1} and ω_{m2}. For the fundamental frequency, denote that $\omega_0 = \omega_{11}$. Moreover, the 3:1 internal resonance is mainly considered in this paper, then the structural parameters satisfying the internal resonance conditions are determined. The intersections of black dashed line and other lines in Fig. 2 are those structural parameters with 3:1 internal resonance, which can be calculated by the dichotomy. As shown in Fig. 2, the natural frequency of the shell is quite sensitive to the variation of structural parameters when the length-diameter ratio is small. That is, in this situation, a small change in the structural parameters will lead to a significant change in the natural frequency, which should result to extremely complex and unexplained internal resonance behavior [33]. In order to avoid this problem, this paper will only discuss the larger length-diameter ratio which satisfies the internal resonance condition. There are four structural parameters satisfying the condition and those parameters are greater than 3, which are listed in Table 2.

The internal resonance behavior is very common in various structures, such as typical suspended cables, arches, beams, plates and shells [12, 14, 34-36]. Meanwhile, the internal resonance leads to mode interactions, an energy exchange or a coupling among the modes [37], thus numerous researchers applied it to the energy harvest, and revealed that the working frequency range can be effectively broadened [38-42].
Table 2. Critical structural parameters for 3:1 internal resonance

Frequency ratios between modes	Values of α_i
$\omega_{51} / \omega_{11} = 3$	4.952848653250840
$\omega_{41} / \omega_{11} = 3$	5.32195514024012
$\omega_{22} / \omega_{11} = 3$	3.902195478263820
$\omega_{22} / \omega_{11} = 3$	3.30342113840159

4.2 Effect of temperature on frequency ratio

For the internal resonance behavior of structures, the frequency ratio between the natural frequencies plays a key role. In this paper, the influence of average environmental temperature on the frequency ratio of the shell is examined. The structural parameters are taken as $\alpha = H / D = 3.9022$, $\varepsilon = h / R = 0.02$.

Fig. 3. Relation between natural frequency and variation of average environmental temperature

Fig. 4. Relation between natural frequency ratio and variation of average environmental temperature
As shown in Fig. 3, the natural frequency increases with the increasing average temperature. The reason is that the constitutive model adopted in this paper gradually hardens as the temperature rises. Moreover, it can be inferred from Eq. (8) that the shear modulus of the material is proportional to the temperature, that is, the higher the environmental temperature, the greater the stiffness, which leads to a greater natural frequency. Meanwhile, it is identified that the variation of average environmental temperature has no effect on the natural frequency ratio, as shown in Fig. 4. Additionally, the internal resonance behavior is very strongly dependent on the natural frequency ratio. Therefore, a preliminarily conclusion can be drawn that the average environmental temperature may not have a significant effect on the axisymmetric nonlinear vibration of the cylindrical shell.

5. Solution

From the foregoing analysis, when the length-diameter ratio equals to the parameters given in Table 2, the mode frequencies of the shell are commensurable or nearly commensurable, which may lead to the internal resonance. Therefore, this article will consider the nonlinear vibration behavior in a periodic uniform temperature field when the parameter is approximately or exactly taken as the values in Table 2.

There are three characteristic frequency parameters in Eq. (25), i.e., the fundamental frequency $\omega_0 = \omega_1$, the external excitation frequency Ω, and the periodic uniform temperature frequency ω_T. Equation (24) gives the frequency ratios $\eta = \Omega / \omega_0$ and $\eta_T = \omega_T / \omega_0$. For the length-diameter ratio parameters listed in Table 2, it is patently obvious that $3\omega_0 = \omega_1$, where ω_1 is the natural frequency of other discrete mode. Since this paper only focuses on the low-frequency resonance, the frequency should satisfy the requirement that $\Omega \approx \omega_0$, i.e., $\eta \approx 1$.

It is not difficult to find that Eq. (25) is a system of nonlinear differential equations with quadratic and cubic nonlinear terms. For this kind of equations, the analytical method usually fails, and the common strategy is to adopt the numerical
integration method or the approximate analytical method. Moreover, in order to reveal the influence of structural parameters, the variation should result to some stiff equations which leads to extremely high computational effort or low accuracy. Fortunately, the approximate analytical methods overcome these shortcomings. For the case that only the steady-state periodic solution is required, the harmonic balance method is an extremely excellent choice. In the field of the research on the nonlinear dynamic system, Nayfeh and Mook [43] are the pioneers who adopt the harmonic balance method, and a more systematic introduction to this method can be found in the works of Krack and Gross [44].

Employing the harmonic balance method to solve Eq. (25), it is necessary to assume that the solutions of the Eq. (25) can be approximated by the following Fourier series

\[
U_{k0} = A_{k0} + \sum_{j=1}^{N} \left[B_{j1}^{(k)}(t) \cos(j\eta \tau) + C_{j1}^{(k)}(t) \sin(j\eta \tau) \right], \\
W_{k0} = A_{k0} + \sum_{j=1}^{N} \left[B_{j2}^{(k)}(t) \cos(j\eta \tau) + C_{j2}^{(k)}(t) \sin(j\eta \tau) \right]
\]

\[
A_{k0}^{(k)} = A_{0}^{(k)} = \sqrt{B_{j1}^{(k)} + C_{j1}^{(k)}}, \quad i = 1,2; \quad j = 1,2,\ldots,N
\]

where \(k \) is the longitudinal half wave number, \(j \) is the order of harmonic. \(i = 1 \) represents the axial direction, while \(i = 2 \) represents the radial direction.

For the investigation of the resonance, the frequencies of external excitation and temperature are both close to the fundamental frequency, i.e., \(\omega_i \approx \Omega = \omega_T \), and \(\eta = \eta_T \approx 1 \). Moreover, it can be inferred from Eqs. (8)~(15) that when the perturbed temperature \(\Delta T_p \) equals to zero, the parametric excitation part of Eq. (25) will also be zero, and the parametrically excited vibration degenerates into nonlinear forced vibration, namely

\[
\dot{\mathbf{q}}^* + \mathbf{Cq}^* + \mathbf{K}_1 \mathbf{q} + \mathbf{K}_2 (\mathbf{q}) \mathbf{q} + \mathbf{K}_3 (\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} + \mathbf{F}(\eta \tau) = \mathbf{0}
\]

Substituting Eq. (26) into the corresponding nonlinear differential equations, sorting out the coefficient matrix of different harmonics, and then solving it by the arc length method [33], the periodic solution of the equation can be obtained.
6. Analysis and discussion

The discrete mode method is used to approximate the nonlinear vibration of the shell, in general, it is necessary to discuss the influence of the discrete mode number on the convergence of the solution.

6.1 Influence of discrete mode number

Before analyzing the influence of the discrete mode number, this subsection first analyzes the different influence between odd and even order modes.
As shown in Fig. 5, when the axial excitation acting on both ends of the cylindrical shell is symmetrical, the axisymmetric vibration modes with even number would not be excited. It can be clearly seen that when the longitudinal half wave number m is even, the amplitude values given by the frequency amplitude response curve are all zero (as shown in Figs. 5(b) and 5(d)). Thus, the parameters α_2 and α_4 given in Table 2 which are the frequency ratio of even order mode to fundamental mode, will not be discussed and analyzed further.

Since the internal resonance condition is satisfied or nearly satisfied, it can be observed that there are many nonlinear peaks in the response curve, which reveals the complex energy transfer behavior, and more details in the parameter analysis will be discussed later. In addition, it is not difficult to find that the amplitude magnitude of the high-order mode is far less than that of low-order mode, which indicates that most energy of the shell vibration converges in the lower frequency region. Therefore, for the analysis of shells, it is essential to focus on the low order modes which possess smaller longitudinal half wave number. The case that the parameter equals to α_3 would not be analyzed further, which means this paper mainly focuses on the case that the structural parameter is somewhere around α_3. In this situation, the frequency ratio of the fundamental mode to its same order mode satisfies the 3:1 internal resonance condition.
As shown in Fig. 5, it can be found that when the axial excitation frequency is close to the fundamental frequency, the low-frequency mode is directly excited, while the high-frequency mode is hardly to be excited. Figure 5(a) clearly shows that the low-order mode which has the largest axial displacement is dominant, while the high-order modes present a very significant difference in the amplitude magnitude. Interestingly, when the external excitation frequency is close to the high-frequency mode, as shown in Fig. 6(a), it can be found that the response of the low-order mode is no longer dominated by the axial displacement, and the multiple peak phenomenon no longer appears. There is only a left-bent peak which shows the strong softening behavior. The reason is that when the length-diameter ratio is large, the radial displacement of the high-order mode is dominant, which means the most energy is distributed in the radial direction, and the energy of the high-order mode is easily transferred to the low-order mode. Figure 6(a) clearly shows that the radial displacement of low-order mode is largest, which is different from Fig. 5(a).

The previous analysis manifests that, for the same computational complexity, to keep only odd order modes in discrete modes is more efficient. Additionally, the influence of the discrete mode number on the structural response is analyzed in the following part.

Fig. 6 Frequency amplitude relationship of 1-order harmonics of different modes with

\[\alpha = 3.9022 \quad \text{and} \quad \Omega = \omega_{12} = 3\omega_0 \]
Fig. 7 Influence of discrete mode number on frequency amplitude relationship of different harmonics with $\alpha = 3.9022$ and $m = 1$

It is not difficult to find that the dynamic response of the shell can be accurately described by using two odd order discrete modes, while only one odd order discrete mode should make the response curve tend to be the hardening behavior. Figure 7 also shows that when the condition of 3:1 internal resonance is satisfied approximately, the axial and radial motions of the shell are both dominated by the first and third harmonics which possess similar curve shapes in two directions and the different amplitude magnitude. Additionally, another distinction is that the
second harmonics possess different curve shapes in two directions, and the softening behavior is more obvious for the radial direction. Moreover, the energy distribution between two directions is different, i.e., the most energy of axial direction converges in the first harmonic which is the low frequency region, while the more energy of radial direction converges in the third harmonic which is the high frequency region.

6.2 Influence of structural parameters

In this subsection, the value of the length-diameter ratio which satisfy the 3:1 internal resonance is taken as the critical parameter, i.e., $\alpha = \alpha_1$, and the influence of the ratio on the response curve is discussed from the two cases that the ratio gradually decreases or increases. Meanwhile, the stability of the solution is determined, which is based on the eigenvalues of the Jacobian matrix, that is, if the real parts of all eigenvalues are negative, the solution is stable. If there is an eigenvalue with the positive real part, then the solution is unstable \[33\]. As shown in Figs. 8 and 9, the length-diameter ratio is slightly smaller or greater than the critical parameter α_1, where the dash-dotted lines represent the unstable periodic solution, while the solid line represent the stable periodic solution. Moreover, it is similar to the previous discussion in Fig. 7, i.e., the shell displacement is dominated by the first and third harmonics, while the second harmonics are minor.
Figure 8 mainly shows the case that the structural parameters are slightly less than the critical parameter α_3. In this situation, the shell response has three peaks named as the left peak, the middle peak and the right peak respectively, which is more clearly distinguished from Figs. 8(e) and 8(f) (i.e., the third harmonic). Obviously, the left is a typical softening peak with both stable and unstable parts, and there will be a jumping near the frequency where the stability changes. Based on this feature, it is not difficult to infer that for the first and second harmonics, the positions of the left and the middle are exchanged. The middle is a completely unstable peak, which is similar to the case of 2:1 internal resonance [45], while the right is a completely stable peak. With the decreasing ratio, the stable region on the right side of the left peak will gradually decrease until it disappears, and the middle peak will gradually shift to the left until merge with the left peak, which will generate a new left peak, however, it is completely unstable. As the parameter decreases further, the new left peak will shrink between the tip and the valley, and generate an isolated bubble response which is completely unstable. As the ratio decreases further, the isolated bubble will gradually shrink until it disappears.
completely, and so does the left peak. For this situation, there will be only a completely stable right peak.

Additionally, when the length-diameter ratio is in a certain frequency range, there is no stable solution (such as $\alpha = 3.900740$, the corresponding frequency range is about $[0.9995, 0.9998]$), which indicates that the chaotic response may occur in this range. As the ratio decreases, the parameter condition of internal resonance is no longer satisfied gradually, then the frequency domain of response will decrease gradually. It is necessary to state that, during the process of the parameter evolution, the stability of the right peak remains, but the amplitude changes.

(a) (b)

(c) (d)
Fig. 9 Influence of increasing structural parameters on frequency amplitude relationship

Figure 9 mainly shows the case that the structural parameters are slightly larger than the critical parameter α_3. In this situation, the stable region of the left peak will gradually increase with the increasing ratio, and the unstable middle peak will gradually shift to the right and merge with the right peak. As the ratio increases, the middle peak and the right peak will generate an isolated triangular bubble response, where the bottom of the triangle is composed of the unstable middle peak, and most of the others are composed of the stable right peak. Obviously, the evolution process of the 3-order harmonic demonstrates this statement. Meanwhile, since there are stable periodic solutions in the isolated response, there is a phenomenon of coexistence of stable solutions in the corresponding frequency range, that is, one excitation frequency should correspond to two stable periodic solutions, and there are also some jumping phenomena. It is also worth pointed out that for the 1-order and 2-order harmonics, the isolated triangular bubble response may not be obvious due to the existence of the intersection points, however, those triangle bubbles cannot be traced by the arc length method directly, which indicates those bubbles are isolated with the main curves. In order to obtain the isolated bubbles, it is necessary to adopt the strategy mixing the perturbation method and arc length method. As the ratio increases further, the isolated triangular bubble will shrink until it disappears completely. Finally, only the left peak which characterizes the softening remains.

In summary, with the increasing ratio, the parameter condition of internal resonance is no longer satisfied gradually, however, it is different from the case of Fig. 8, due to the dominant left peak remains, the frequency domain of response would not decrease significantly.

6.3 Influence of temperature parameters

According to Eq. (3), there are three parameters related to temperature, namely the average temperature T_A, the perturbed temperature ΔT_p and the phase difference θ_0 between temperature and excitation. The influence of these parameters will be discussed in this subsection. The discussion above mentioned
manifests that the responses are dominated by the first and third order harmonics for the 3:1 internal resonance, and the shapes of the axial and radial response curves are similar, while the amplitude magnitudes are different. Therefore, this subsection only presents the first and third order harmonics of the radial displacement, and the length-diameter ratio is taken as $\alpha = 3.902195$.

![Figure 10](attachment:fig10.png)
Fig. 10 Influence of average temperature on frequency amplitude relationship for $\Delta T_p = 0$K and $\theta_0 = 0$

As shown in Fig. 10, the influence of average temperature on frequency amplitude relationship is presented. Obviously, the higher the average temperature, the smaller the response amplitude. The reason is that the shear modulus is directly proportional to temperature which is shown in Eq. (8). Thus, the higher the temperature, the greater the shear modulus, which means the greater the stiffness of the shell, and the stronger the resistible capacity to the deformation, i.e., the smaller the response amplitude.

![Figure 11](attachment:fig11.png)
Fig. 11 Influence of perturbed temperature on frequency amplitude relationship for $T_A = 297$K, $\theta_0 = 0$
Figure 11 shows the influence of the perturbed temperature on the vibration response. With the increasing perturbed temperature, the middle peak will gradually distorted and merges with the left peak, which is kind of similar to the situation with gradually decreasing length-diameter ratio (as shown in Fig. 8). However, there is no bubble response during the evolution process, and the right peak will change more significantly. Meanwhile, the softening characteristics of the cylindrical shell will be suppressed gradually with the increasing perturbed temperature, while the hardening characteristics will be enhanced significantly, which is more obvious for the first harmonic. When the perturbed temperature is large enough (for example, $\Delta T_p = 25K$, the black line in Fig. 11), the hyperelastic thin-walled cylindrical shell will present a typical hardening peak.

![Figure 11](image1)

![Figure 11](image2)

Fig. 12 Influence of phase difference on frequency amplitude relationship for $\Delta T_p = 0K$,

$T_e = 297K$

Figure 12 mainly shows the influence of the phase difference between the perturbed temperature and the external excitation on the shell response. Obviously, when the phase difference is π, the response presents the largest amplitude (the magenta lines), and the amplitude of the three peaks are enhanced significantly. That is, the shell response can be adjusted by controlling the phase difference between the excitation and the temperature.

In this subsection, it can be found that the influence of temperature parameters on the response is similar to that of the length-diameter ratio. However, the hardening characteristic caused by the increasing temperature makes some difference. The frequency amplitude response curve evolves more smoothly with the structural parameter compared with the temperature parameter. Thus, the
isolated bubbles only occur during the evolution process of the structural parameter. Comparing Fig. 8(a) and Fig. 11(a), the evolution behavior of frequency amplitude curve manifests that the temperature (especially the perturbed temperature) will distort the response curve and lead to a more irregular result. Meanwhile, the distortion will enhance the hardening significantly.

Briefly, the variation of the structural parameter and the temperature both play an important role in the shell response, they bear relations as well as distinctions. Therefore, it is necessary and essential to conduct the comprehensive analysis, which leads to a better understanding and prediction for the nonlinear dynamic behavior of the hyperelastic thin-walled cylindrical shell.

7. Conclusions

In this paper, the axisymmetric nonlinear vibration of the hyperelastic thin-walled shell is investigated by the harmonic balance method and the arc length method, and the 3:1 internal resonance of the shell is analyzed. Firstly, the system of nonlinear governing differential equations with time-varying parameters are derived based on the variational method. Then the periodic solution is calculated via using the harmonic balance method and the arc length method, and the stability is determined. Finally, the influences of structure and temperature parameters on the evolution of nonlinear vibration are discussed. The mainly conclusions are drawn as follows:

(1) For axisymmetric nonlinear vibrations of hyperelastic thin-walled cylindrical shells, it is inaccurate to carry out the analysis with a single mode. Meanwhile, since the even order modes will not be excited, it is more effective to discretize the model with only the odd order mode.

(2) For hyperelastic thin-walled cylindrical shells with 3:1 internal resonance, the length-diameter ratio has an extremely important impact on the shell resonance. The reason is that this parameter plays a critical role in the frequency ratio which is the necessary condition for internal resonance. Near the internal resonance parameters, there are abundant nonlinear dynamic behaviors, including the
jumping, softening and hardening, and isolated bubble response. Specially, the left peak will gradually shrink, and the isolated bubble occurs when the decreasing length-diameter ratio is smaller than the critical parameter; while the right peak will gradually shrink, and the isolated bubble occurs when the increasing length-diameter ratio is larger than the critical parameter.

(3) The influence of temperature parameters on the nonlinear dynamic behavior of the shell is similar to that of the length-diameter ratio. However, the bubble will not occurs during the temperature parameter varies. In addition, the perturbed temperature has a more obvious effect on the stability of the solution.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11672069, 11672062, 11872145, 11902068), the Natural Science Foundation of Liaoning Province (grant numbers 2020-BS-077), and the Programme of Introducing Talents of Discipline to Universities Project (No. B08014).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Data availability statement

All data included in this study are available upon request by contact with the corresponding author.

References

[1] Zhang, W., Zheng, Y., Liu, T., Guo, X.Y.: Multi-pulse jumping double-parameter chaotic dynamics of eccentric rotating ring truss antenna under combined parametric and external excitations. Nonlinear Dynamics 98, 761-800 (2019). 10.1007/s11071-019-05227-8
[2] Liu, T., Zhang, W., Mao, J.J., Zheng, Y.: Nonlinear breathing vibrations of eccentric rotating composite laminated circular cylindrical shell subjected to temperature, rotating speed and external excitations. Mechanical Systems and Signal Processing 127, 463-498 (2019). 10.1016/j.ymssp.2019.02.061
[3] Shariyat, M., Asgari, D.: Nonlinear thermal buckling and postbuckling analyses of imperfect variable thickness temperature-dependent bidirectional functionally graded cylindrical shells. International Journal of Pressure Vessels and Piping 111-112, 310-320 (2013). 10.1016/j.ijpvp.2013.09.005
Jakus, A.E., Rutz, A.L., Jordan, S.W., Kannan, A., Mitchell, S.M., Yun, C., Koube, K.D., Yoo, S.C., Whiteley, H.E., Richter, C.-P., Galiano, R.D., Hsu, W.K., Stock, S.R., Hsu, E.L., Shah, R.N.: Hyperelastic “bone”: A highly versatile, growth factor–free, osteoregenerative, scalable, and surgically friendly biomaterial. Science Translational Medicine 8, 358ra127 (2016).

Amabili, M., Balasubramanian, P., Bozzo, I., Breslavsky, I.D., Ferrari, G.: Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas. Journal of the Mechanical Behavior of Biomedical Materials 99, 27–46 (2019). 10.1016/j.jmbbm.2019.07.008

Soedel, W.: Vibrations of Shells and Plates. CRC Press (2004)

Radwanska, M., Stankiewicz, A., Wosatko, A., Pamin, J.: Plate and Shell Structures : Selected Analytical and Finite Element Solutions. John Wiley and Sons (2017)

Shen, H.S.: Functionally graded materials - nonlinear analysis of plates and shells. CRC Press (2009)

Shen, H.S.: A two-step perturbation method in nonlinear analysis of beams, plates and shells. John Wiley and Sons (2013)

Amabili, M.: Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials. Cambridge University Press (2018)

Ye, C., Wang, Y.Q.: Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances. Nonlinear Dynamics 1-19 (2021). 10.1007/s11071-021-06401-7

Zhang, W., Yang, S.W., Mao, J.J.: Nonlinear radial breathing vibrations of CFRP laminated cylindrical shell with non-normal boundary conditions subjected to axial pressure and radial line load at two ends. Composite Structures 190, 52-78 (2018). 10.1016/j.compstruct.2018.01.091

Yang, S.W., Zhang, W., Mao, J.J.: Nonlinear vibrations of carbon fiber reinforced polymer laminated cylindrical shell under non-normal boundary conditions with 1:2 internal resonance. European Journal of Mechanics - A/Solids 74, 317-336 (2019). 10.1016/j.euromechsol.2018.11.014

Vuong, P.M., Duc, N.D.: Nonlinear vibration of FGM moderately thick toroidal shell segment within the framework of Reddy’s third order-shear deformation shell theory. International Journal of Mechanics and Materials in Design 16, 245-264 (2019). 10.1007/s10999-019-09473-x

Parvez, M.T., Khan, A.H., Yasin, M.Y.: On the softening and hardening nonlinear behavior of laminated cylindrical shells. Engineering Structures 226, 111339 (2021). 10.1016/j.engstruct.2020.111339

Shen, H.S., Li, C., Reddy, J.N.: Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson’s ratio. Computer Methods in Applied Mechanics and Engineering 360, 112727 (2020). 10.1016/j.cma.2019.112727

Wang, R., Ding, H., Yuan, X., Lv, N., Chen, L.: Nonlinear singular traveling waves in a slightly compressible thermo-hyperelastic cylindrical shell. Nonlinear Dynamics (2021). 10.1007/s11071-021-06394-3

Soares, R.M., Gonçalves, P.B.: Nonlinear vibrations and instabilities of a stretched hyperelastic annular membrane. International Journal of Solids and Structures 49, 514-526 (2012). 10.1016/j.ijsolstr.2011.10.019

Soares, R.M., Gonçalves, P.B.: Nonlinear vibrations of a rectangular hyperelastic membrane resting on a nonlinear elastic foundation. Meccanica 53, 937-955 (2017). 10.1007/s11012-017-0755-5

Zhao, Z., Zhang, W., Zhang, H., Yuan, X.: Some interesting nonlinear dynamic behaviors of hyperelastic spherical membranes subjected to dynamic loads. Acta Mechanica 230, 3003-3018 (2019). 10.1007/s00707-019-02467-y

Chen, W., Wang, L., Dai, H.L.: Nonlinear Free Vibration of Hyperelastic Beams Based on Neo-Hookean Model. International Journal of Structural Stability and Dynamics 20, 2050015 (2019). 10.1142/s0219456720500157

Wang, Y.B., Ding, H., Chen, L.Q.: Nonlinear vibration of axially accelerating hyperelastic beams. International Journal of Non-Linear Mechanics 99, 302-310 (2018). 10.1016/j.ijnonlinmec.2017.12.013

Wang, Y.B., Ding, H., Chen, L.Q.: Vibration of axially moving hyperelastic beam with finite deformation. Applied Mathematical Modelling 71, 269-285 (2019). 10.1016/j.apm.2019.02.011
[25] Dong, L., Grissom, M.D., Prasad, M.G., Fisher, F.T.: Application of mechanical stretch to tune the resonance frequency of hyperelastic membrane-based energy harvesters. Sensors and Actuators A - Physical 252, 165-173 (2016). 10.1016/j.sna.2016.10.034

[26] Wang, Y.B., Zhu, W.D.: Nonlinear transverse vibration of a hyperelastic beam under harmonic axial loading in the subcritical buckling regime. Applied Mathematical Modelling 94, 597-618 (2021). 10.1016/j.apm.2021.10.030

[27] Aranda-Iglesias, D., Martínez, J.A.R., Rubin, M.B.: Nonlinear axisymmetric vibrations of a hyperelastic orthotropic cylinder. International Journal of Non-Linear Mechanics 99, 131-143 (2018). 10.1016/j.jnnm.2017.11.007

[28] Alibakhshi, A., Heidari, H.: Nonlinear dynamics of dielectric elastomer balloons based on the Gent-Gent hyperelastic model. European Journal of Mechanics - A/Solids 82, 103986 (2020). 10.1016/j.euromechsol.2020.103986

[29] Breslavsky, I.D., Amabili, M., Legrand, M.: Static and Dynamic Behavior of Circular Cylindrical Shell Made of Hyperelastic Arterial Material. Journal of Applied Mechanics - Transactions of the ASME 83, 051002 (2016). 10.1115/1.4032549

[30] Amabili, M., Balasubramanian, P., Breslavsky, I.D., Ferrari, G., Garziera, R., Riabova, K.: Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate. Journal of Sound and Vibration 385, 81-92 (2016). 10.1016/j.jsv.2016.09.015

[31] Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids 41, 389-412 (1993). https://doi.org/10.1016/0022-5096(93)90013-6.

[32] Xia, Y.M., Li, Z.R., Dong, Y., Li, X.: Experimental Study on the Temperature Dependence of Hyperelastic Behavior of Tire Rubbers under Moderate Finite Deformation. Rubber Chemistry and Technology 84, 215-228 (2011). 10.5254/1.3577534

[33] Xu, J., Yuan, X.G., Jiao, J., Zhang, H.W.: Computation of axisymmetric nonlinear low-frequency resonances of hyperelastic thin-walled cylindrical shells. Applied Mathematical Modelling 94, 332-349 (2021). 10.1016/j.apm.2021.01.027

[34] Christopher L. Lee , N.C.P.: Nonlinear oscillations of suspended cables containing a two-to-one internal resonance. Nonlinear Dynamics 3, 465–490 (1992).

[35] Hajjaj, A.Z., Alfosail, F.K., Younis, M.I.: Two-to-one internal resonance of MEMS arch resonators. International Journal of Non-Linear Mechanics 107, 64-72 (2018). 10.1016/j.jnnm.2018.09.014

[36] Jiang, W.A., Chen, L.Q., Ding, H.: Internal resonance in axially loaded beam energy harvesters with an oscillator to enhance the bandwidth. Nonlinear Dynamics 85, 2507-2520 (2016). 10.1007/s11071-016-2841-y

[37] Manevich, A.I., Manevitch, L.I.: The mechanics of nonlinear systems with internal resonances. Imperial College Press (2005)

[38] Chen, L.Q., Jiang, W.A.: Internal Resonance Energy Harvesting. Journal of Applied Mechanics - Transactions of the ASME 82, 031004 (2015). 10.1115/1.4029606

[39] Yang, W., Towfighian, S.: Internal resonance and low frequency vibration energy harvesting. Smart Materials and Structures 26, 095008 (2017). 10.1088/1361-665X/aa791d

[40] Xiong, L.Y., Tang, L.H., Mace, B.R.: A comprehensive study of 2:1 internal-resonance-based piezoelectric vibration energy harvesting. Nonlinear Dynamics 91, 1817-1834 (2018). 10.1007/s11071-017-3982-3

[41] Jiang, W.N., Han, X.J., Chen, L.Q., Bi, Q.S.: Improving energy harvesting by internal resonance in a spring-pendulum system. Acta Mechanica Sinica 36, 618-623 (2020). 10.1007/s10409-020-00945-4

[42] Jiang, W.A., Ma, X.D., Han, X.J., Chen, L.Q., Bi, Q.S.: Broadband energy harvesting based on one-to-one internal resonance. Chinese Physics B 29, (2020). 10.1088/1674-1056/aba5td

[43] Nayfeh, A.H., Mook, D.T.: Nonlinear oscillations. Wiley (1995)

[44] Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems. Springer International Publishing (2019)

[45] Chen, L.Q., Zhang, G.C., Ding, H.: Internal resonance in forced vibration of coupled cantilevers subjected to magnetic interaction. Journal of Sound and Vibration 354, 196-218 (2015). 10.1016/j.jsv.2015.06.010