Disclosures. Ana V. Halperin, MD, Biomérieux (Grant/Research Support), José Luis Cortés Cuevas, MD, biomérieux (Research Grant or Support)/biomérieux (Research Grant or Support) Juan Antonio Del Castillo Polo, MD, Biomérieux (Research Grant or Support) Sergio Talens, n/a, Biomérieux (Research Grant or Support) Robert Birch, n/a, bioMérieux Inc. (Employee) Rafael Cantón, PharmD PhD, Biomérieux (Grant/Research Support)

12. Evaluation of Rapid Phenotypic Testing for KPC Carbapenemase Producing klebsiella Pneumoniae Directly from Positive Blood Cultures by Use of “Hot Chocolate” Plates

Alexander Lavandi, M.D.1; Gleice C. Leite, Ph.D2; Brigitte Lefebvre, Ph.D2; Jean Longtin, MD, D3; Todd C. Lee, MD, MPH1; Division of Infectious Diseases, McGill University Health Centre, McGill University, Montreal, Canada; Quebec, Canada; McGill University Health Centre, Montreal, Quebec, Canada; 1Institut National de Sante Publique du Quebec, Montreal, Quebec, Canada; 2University Laval, Montreal, Quebec, Canada; 3McGill University, Montreal, Quebec, Canada

Session: O-3. Advances in Time to Test Results in the Bacteriology Lab

Background. Invasive infections with Carbapenemase Producing Enterobacterales are associated with considerable morbidity and mortality, in part due to the risk of inappropriate empiric therapy. Consequently, the rapid identification of carbapenem resistance is crucial to the management of these infections. We sought to evaluate possible reductions in turnaround time to identification of this resistance in blood cultures growing these organisms by applying rapid phenotypic test kits to growth from “hot chocolate” plates.

Methods. 30 blood cultures, spiked with carbapenem resistant Klebsiella pneumoniae isolates or susceptible controls, were inoculated onto chocolate agar that had pre-warmed at 37°C. These plates were incubated at 37°C for 3.5 hours. The resulting minimal growth was then identified using MALDI-TOF and underwent rapid phenotypic testing using three commercially available products (β-lacta and β-carba, from Bio-Rad, Marnes-la-Coquette, France, and Carba-NP, from bioMérieux, Durham, NC). The time to identification of carbapenem resistance using this method was then compared to that of the conventional laboratory workup.

Results. The identification was 100% accurate to the species level using MALDI-TOF up to the 3.5 hour growth on the “hot chocolate” plates. The β-lacta kit identified resistance to 3rd generation cephalosporins for all ESBL and carbapenemase producing Klebsiella pneumoniae isolates, while the β-carba and Carba-NP kits identified carbapenem resistance only in the carbapenemase producers. The sensitivity of all assays was 100% (95% CI 0.87–1.0) and the specificity of carbapenemase detection was 100% (95% CI 1.00–1.0) respectively. The turnaround time for the rapid kits was 4.37 to 5.15 hours as compared to 16 hours for the conventional workup.

Conclusion. Rapid phenotypic tests performed after inoculation of “hot chocolate” plates are highly sensitive for the presence of carbapenemase production and can be incorporated into the laboratory workflow for Klebsiella pneumoniae with important reductions in turnaround time.

Disclosures. Joseph L. Kuti, PharmD, Allergan (Speaker’s Bureau)/BioMérieux (Research Grant or Support), Other Financial or Material Support, Speaker Honorarium) Melinta (Research Grant or Support)/Merck & Co., Inc. (Research Grant or Support)/Paratek (Speaker’s Bureau)/Summit (Other Financial or Material Support, Research funding (clinical trials)) David P. Nicolau, PharmD Cepheid (Other Financial or Material Support, Consultant, speaker bureau member or has received research support)/Merck & Co., Inc. (Consultant, Grant/Research Support, Speaker’s Bureau)/Wockhardt (Grant/Research Support)

14. Outcomes from the AHRQ Safety Program for Improving Antibiotic Use Across 439 Long-Term Care Facilities

O-4. Anti-microbial Stewardship in Special Populations/Non-Acute Care

Background. Implementing effective antibiotic stewardship programs (ASPs) in long-term care (LTC) settings is challenging. We present the results of an intervention intended to change the culture of antibiotic prescribing in 439 United States LTC facilities (LTCFs).

Methods. The LTC Safety Program assisted LTCFs with establishing and implementing ASPs from 12/2018 to 11/2019. Through webinars held 1–2 times per month and other educational content, the Safety Program emphasized 1) the science of safety and improvement, and 2) clinical best practices in making antibiotic treatment decisions. Content was organized using the Four Moments of Antibiotic Decision Making Framework (Figure 1). All staff (e.g., physicians, nurses, nurse assistants) were encouraged to participate. LTCFs submitted monthly antibiotic days of therapy (DOT), numbers of new antibiotic starts, urines (cultures UCX) ordered, Chlorostridiosis difficile LabID events and certain data. Generalized linear mixed effects models were used to calculate pre-post intervention changes at bi-monthly intervals for antibiotic DOT, antibiotic starts and UCX, each per 1,000 resident-days (RD), and C. difficile LabID events per 10,000 RD, comparing the beginning (1/2019 and 2/2019) and end (11/2019 and 12/2019) of the Safety Program.

O-3. Advances in Time to Test Results in the Bacteriology Lab

Background. CF acute pulmonary exacerbations are often caused by PSA, including multi-drug resistant strains. Optimal antibiotic therapy is required to return lung function and should be guided by in vitro susceptibility results. There are sparse data on the performance of Etest relative to reference broth microdilution (BMD) for many newer drugs against CF PSA. Herein, we describe Etest performance with 10 anti-PSA antibiotics against CF isolates.

Methods. Contemporary, clinical PSA (n=105) isolated during pulmonary exacerbations from patients with CF were acquired from 3 US Hospitals. MICs were assessed by BMD (reference) and Etest for aztreonam (ATM), ceftazidime (FEP), ceftazi dime (CAZ), ceftazidime/avibactam (CAZA), ceftolozane/tazobactam (C/T), ciprofloxacin (CIP), levofloxacin (LVX), meropenem (MEM), piperacillin/tazobactam (TZP), and polymyxin (Tob). Each respective MIC (TOB) of each antibiotic (except CAZ and MEM that may occur with certain antibiotics. Furthermore, our observations suggest laboratories confirm CZA results for isolates with MICs near the breakpoint.

Disclosures. Joseph L. Kuti, PharmD, Allergan (Speaker’s Bureau)/BioMérieux (Research Grant or Support), Other Financial or Material Support, Speaker Honorarium) Melinta (Research Grant or Support)/Merck & Co., Inc. (Research Grant or Support)/Paratek (Speaker’s Bureau)/Summit (Other Financial or Material Support, Research funding (clinical trials)) David P. Nicolau, PharmD Cepheid (Other Financial or Material Support, Consultant, speaker bureau member or has received research support)/Merck & Co., Inc. (Consultant, Grant/Research Support, Speaker’s Bureau)/Wockhardt (Grant/Research Support)

**O-5. The 105 PSA, 46% had a mucoid phenotype. Results are summarized in the Table. Median modal Etest MICs read 0–1 dilution higher (IQR: 0–1) than BMD. CA and EA ranged from 64–93% and 63–86%, respectively. Single VMEs occurred for ATM (2.9%) and CAZ (4.2%). For CZA, 2 VMEs were observed and both were within EA. Minor errors were ≤3% except for ATM (3.3%), MEM (3.3%), CZA (5.3% with adjusted ME 2.1%), and FEP (13%). Minor error rates were ≤10% except for TZZ CIP, LEV, TOB, and FEP (13–29%), for which majority of mis were within EA (3/14, 11/16, 10/18, 13/19, 20/31, respectively). Performance was similar for non-mucoid and mucoid populations.

Etest Performance

Conclusion. Etest methods performed well for most antibiotics against this challenging collection of PSA from CF patients. Laboratories should be cautious of mis and ME that may occur with certain antibiotics. Furthermore, our observations suggest laboratories confirm CZA results for isolates with MICs near the breakpoint.