The pomegranate (*Punica granatum* L.) draft genome dissects genetic divergence between soft- and hard-seeded cultivars

Xiang Luo1, Haoxian Li1, Zhikun Wu2, Wen Yao3, Peng Zhao4, Da Cao4, Haiyan Yu5, Kaidi Li6, Krishna Poudel1, Diguang Zhao1, Fuhong Zhang1, Xiaocong Xia1, Lina Chen1, Qi Wang1, Dan Jing1 and Shangyin Cao1,4

1Chinese Academy of Agricultural Sciences, Zhengzhou Fruit Tree Research Institute, Zhengzhou, China
2State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
3National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
4Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
5School of Biological Sciences, University of Queensland, Brisbane, Qld, Australia
6Biomarker Technologies Corporation, Beijing, China

Received 7 March 2019; revised 3 September 2019; accepted 9 September 2019.

*Correspondence (Tel +86-0371-65330990; fax +86-0371-65330990; email s.y.cao@163.com)

Keywords: genome, single-molecule technologies, divergence, seed, *Punica granatum* L.

Summary

Complete and highly accurate reference genomes and gene annotations are indispensable for basic biological research and trait improvement of woody tree species. In this study, we integrated single-molecule sequencing and high-throughput chromosome conformation capture techniques to produce a high-quality and long-range contiguity chromosome-scale genome assembly of the soft-seeded pomegranate cultivar ‘Tunisia’. The genome covers 320.31 Mb (scaffold N50 = 39.96 Mb; contig N50 = 4.49 Mb) and includes 33 594 protein-coding genes. We also resequenced 26 pomegranate varieties that varied regarding seed hardness. Comparative genomic analyses revealed many genetic differences between soft- and hard-seeded pomegranate varieties. A set of selective loci containing SUC8-like, SUC6, FoxO and MAPK were identified by the selective sweep analysis between hard- and soft-seeded populations. An exceptionally large selective region (26.2 Mb) was identified on chromosome 1. Our assembled pomegranate genome is more complete than other currently available genome assemblies. Our results indicate that genomic variations and selective genes may have contributed to the genetic divergence between soft- and hard-seeded pomegranate varieties.

Introduction

Pomegranate (*Punica granatum* L.) is an important edible fruit tree species native to central Asia. The fruit has gained widespread popularity because of its functional and nutraceutical properties (Johanningsmeier and Harris, 2011). The properties of pomegranate juices, seeds and extracts are potentially beneficial for treating cardiovascular disease, diabetes and prostate cancer (Patel et al., 2008). Traditional hard-seeded pomegranate varieties are well adapted to the cold environment, whereas the soft-seeded varieties have become popular with consumers as their fruits are easily swallowed. Elucidating the phenotypic variations between soft- and hard-seeded pomegranate varieties is crucial for the molecular marker-assisted selection breeding of new soft-seeded cultivars in breeding programmes.

Complex geographical interactions, natural selection, hybridization and domestication pressures have likely contributed to the phenotypic divergence between soft- and hard-seeded pomegranate varieties (Cappellini et al., 2018; Martin-Robles et al., 2017; Sylvain and Thomas, 2010), which can likely be decoded by comparing genomes and analysing population genetic divergence. ‘TaishanHong’ and ‘DaBenzi’ are two representative hard-seeded pomegranate cultivars in China. The current ‘DaBenzi’ pomegranate genome assembly, which is based on short-read sequencing, was first published by Qin et al. (2017). This assembly indicates that a Myrtales lineage-specific whole-genome duplication event occurred in the common ancestor before the divergence of pomegranate and eucalyptus. Yuan et al. (2017) subsequently released the ‘Taishanhong’ pomegranate genome, which resolved the previously debated taxonomic status of the genus *Punica*, and reclassified it in the family Lythraceae. These two genomes enabled certain advances in comparative and evolutionary genomics studies (Jia et al., 2018; Qin et al., 2017; Yuan et al., 2017; Zhao et al., 2018). However, these resources are fragmented, and almost of all of the scaffolds or contigs are arbitrarily ordered and oriented. This greatly impedes map-based cloning studies and hampers the identification of crucial intergenic regions related to valuable traits, including the divergence between soft- and hard-seeded pomegranate varieties.

Previous studies on the divergence between soft- and hard-seeded pomegranate varieties have focused on seed hardness. For example, gene expression analyses revealed that lignin and cellulose biosynthetic genes, including CCR, CAD, CelSy, SuSy, CCoA-OMT, MYB, WRKY and MYC, are differentially expressed between soft- and hard-seeded pomegranate varieties at different growth stages (e.g. fruit setting to ripening stages) (Xue et al., 2017; Zarei et al., 2016). Quantitative proteomics and microRNA sequencing results have suggested that genes altering the cell wall structure contribute to the differences in seed hardness between soft- and hard-seeded pomegranates (Luo et al., 2018; Niu et al., 2018). Four seed hardness-related quantitative trait loci, potentially explaining 15% to 30% of the observed phenotypic variation, were identified by Harel-Beja...
et al. (2015). However, considerable work is still required before robust molecular markers related to the divergence between soft- and hard-seeded pomegranate varieties can be identified.

Here, we assembled a high-quality draft genome sequence of the soft-seeded ’Tunisia’ pomegranate cultivar using single-molecule real-time (SMRT) sequencing and high-throughput chromosome conformation capture (Hi-C) techniques. We also resequenced 26 genetically diverse pomegranate varieties that varied regarding seed hardness and geographical distribution. Our comprehensive comparative genomic and population genetic analyses provided insights into the genetic diversity and population structure of pomegranates and are helpful to clarify the genetic divergence between soft- and hard-seeded varieties. This genome sequence represents an unmatched resource for elucidating the genetic system and facilitating the molecular improvement of pomegranate.

Results

Genome sequencing and assembly

The Pacific Biosciences (PacBio) Sequel platform was used for the SMRT sequencing of the soft-seeded ‘Tunisia’ genome. A total of 20.94 Gb PacBio long reads were used for assembly, resulting in a 320.31 Mb assembly (Table 1), which is close to the estimated size based on flow cytometry (Figure 51). The quality of the assembled genome was evaluated using three strategies. First, 168 396 276 Illumina paired-end reads for the same pomegranate species were aligned to the genome assembly using the Burrows-Wheeler Aligner (BWA) (Heng and Richard, 2010). A total of 96.76% of the reads were successfully aligned to the genome (Table S1). Second, according to BUSCO (version 2) (Simao et al., 2015), 93.33% (1344 of 1440) of the core eukaryotic genes, including 1292 single-copy orthologs and 52 duplicated orthologs, were detected in our assembly (Table S2). Lastly, we used CEGMA (version 2.5) (Parra and Korf, 2007) to assess the completeness of our genome assembly. A set of 454 of 458 highly conserved core genes were detected in our assembly (Table S3). These results indicated that our pomegranate genome sequence was almost complete.

Our genome assembly comprised 661 contigs and 473 scaffolds, with the longest contig and scaffold being 14.77 and 55.56 Mb, respectively. The contig and scaffold N50 values were 4.49 and 39.96 Mb, respectively (Table 1). Regarding the assembly with Illumina reads, Qin et al. (2017) reported a contig N50 of 66.97 kb for ‘Dabenzi’, whereas Yuan et al. (2017) reported a contig N50 of 97 kb for ‘Taishanhong’. Notably, the length of contig N50 for the new ‘Tunisia’ reference genome was 67- and 46-fold greater than that for the recently published ‘Dabenzi’ and ‘Taishanhong’ genomes, respectively.

To build pseudo-chromosomes, Hi-C libraries were constructed and 17.62 Gb of clean data corresponding to approximately 55× coverage of our pomegranate genome were obtained (Tables S4). Consequently, more than 95% of the reads were unambiguously located on the assembly. The unique mapped read pairs that aligned with the genome accounted for 63.55% of the total identified pairs (Table S4). Consequently, 97.76% (313.13 Mb) of the assembly was anchored on eight chromosomes (Table S5 and Figure S2), consistent with the number of pomegranate chromosomes detected by Masoud et al. (2005).

To further verify the Hi-C assembly, we constructed a genetic map by sequencing 163 F1 individuals from a cross between ‘Tunisia’ and ‘Sanbai’ based on specific length amplified fragment (SLAF) sequencing. The final integrated map between the two parental genomes spanned 1200.01 cM with 1725 markers in eight linkage groups (LGs), consistent with the number of chromosomes in ‘Tunisia’ (Table S6 and Figure S2). Of the eight LGs, LG1 was the largest, with 271 markers covering a genetic distance of 197.32 cM, and LG5 was the smallest, with 101 markers spanning 123.81 cM. The average marker interval for the LGs ranged from 0.31 to 2.15 cM, with an overall average distance of 0.70 cM (Table S6). Regarding the gaps between markers, 95.59% were <5 cM. The max gap ranged from 11.70 cM (LG6) to 42.60 cM (LG3). All the SLAFs from the certain LG could be aligned to the single chromosome (Figure S3). Based on the contig orientation information of the draft genome of ‘Tunisia’, we compared the orders and directions of contigs anchored by the genetic map. The genetic map shared 103 anchored contigs with the anchored genome (Table S6). Of those contigs, 63 (61.17%) were in accordance with the placement orders, indicating a collinear relationship between these two anchorings (Figure S4). Our chromosome-scale assembly was nearly 83 Mb larger than the existing ‘Dabenzi’ assembly (230.88 Mb chromosome-scale reads), indicating that our genome sequence was substantially more complete.

Genome annotation

Predicted protein-coding genes were annotated according to a combination of ab initio, homology-based, and transcript evidence gathered from mixed-tissue RNA sequences. A total of 33 594 high-confidence protein-coding gene models were predicted in the ‘Tunisia’ genome, with an average coding sequence length of 2229 bp and an average exon length of 263 bp (Table 1 and Figure 1a). Approximately 69.53% (23 357) of the genes were supported by transcriptome profiling using Illumina- and SMRT-based RNA-seq data with coverage > 0.7 and identity > 0.5 (Table S7). A total of 44 169 alternative splicing (AS) events were found to occur in eight chromosomes of ‘Tunisia’ based on the full-length cDNA data (Figure S5).

Table 1 ‘Tunisia’ draft genome statistics

Assembly feature	Statistic
Estimate of genome size by flow cytometry	313.18 Mb
Total PacBio reads	20.94 Gb
Assembly length	320.31 Mb
Chromosome number (2n)	2 × 8
Assembly % of chromosome	97.76%
Number of contigs	661
Contig N50	4.49 Mb
Longest contig	14.77 Mb
Number of scaffolds	473
Scaffold N50	39.96 Mb
Longest scaffold	55.56 Mb
Repeat region % of assembly	50.93%
Predicted gene models	33 594
Assembly genes of chromosome	32 538
Average gene length	2229 bp
Average exon length	263 bp
Average CDS length	1048 bp
GC content %	40.38%
A total of 28,080 (83.59%) protein-coding genes were annotated based on the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG), TREMBL, nr and nt databases (Table S8). Additionally, 32,538 (96.85%) of the predicted ‘Tunisia’ genes were allocated to eight chromosomes (Table 1). Compared with previously published draft genomes, the ‘Tunisia’ genome has more genes. In addition to protein-coding genes, 52 miRNA, 1468 rRNA, 440 tRNA and 1388 pseudogenes were identified in the ‘Tunisia’ pomegranate genome (Table S9).

Repetitive elements, which are major components of complex genomes, are widely dispersed throughout the genome and have multiple roles in genome evolution (Chalopin et al., 2015). Approximately 50.93% (163.12 Mb) of the ‘Tunisia’ assembly sequences were identified as repetitive elements (Figure 1a), including retrotransposons (Class I elements, 47.23%), DNA transposons (Class II elements, 4.57%), potential host genes (1.65%), simple sequence repeats (0.37%) and unclassified elements (8.42%) (Table S10). The proportion of Gypsy retrotranspon (17.33%) appears to have expanded considerably in the ‘Tunisia’ genome compared with that of the Theobroma cacao (9.00%). The proportion of full-length long terminal repeats (LTR)/Copia repeats (7.20%) in the ‘Tunisia’ genome was similar to that of the ‘Tunisia’ pomegranate genome (Table S9).

Global genome comparison analysis

Genome-wide structural differences are important genetic factors underlying the observed phenotypic variations (Bianco et al., 2018; Ecker et al., 2009). When the chromosomes of ‘Tunisia’ were aligned to the ‘Taishanhong’ scaffolds, approximately 83.74% (268.26 Mb) of the ‘Tunisia’ genome sequence matched to 97.90% (268.30 Mb) of the ‘Taishanhong’ genome sequence in one-to-one syntenic blocks (Table S11). Similarly, we determined that 274.27 Mb (85.63%) of the ‘Tunisia’ genome sequence matched to 83.58% (274.49 Mb) of the ‘Dabenzi’ genome sequence in syntenic blocks (Table S11). Additionally, 59.72 and 58.64 Mb of the genome sequences were identified as duplicated insertions in the Tunisia_Dabenzi and Tunisia_Taishanhong comparisons, respectively. We detected 7242 and 1858 rearrangements (relocations, translocations and inversions), occupying 5.26 and 2.02 Mb of the genomes in the Tunisia_Dabenzi and Tunisia_Taishanhong comparisons, respectively (Table S11 and Figure 1b). We randomly selected 108 structural variants (84 inserted duplications and 24 rearrangements) to carry out breakpoint analysis using clean subreads of PacBio (Table S12) and found that 80.56% of the breakpoints could be covered perfectly by PacBio reads. Nine and ten breakpoints were left and right unresolved, respectively. We subsequently identified 19202 segments spanning 46.01 Mb of the ‘Tunisia’ genome that were absent in the ‘Taishanhong’ genome. We also identified 25264 segments covering 41.13 Mb of the ‘Tunisia’ genome that were missing from the ‘Dabenzi’ genome (Table S11 and Figure 1a). As Illumina short sequencing reads are available for ‘Dabenzi’ (Qin et al., 2017), we aligned these reads to the 41.13 Mb genome regions and found that only 2765 segments (5.24 Mb) were supported by a clear reduction in read depth (Table S13 and Figure S6). These results further supported the more complete assembly of the ‘Tunisia’ genome constructed using the PacBio long reads.

Next, we examined the genomic genetic diversity between soft- and hard-seeded cultivars. This genomewide comparison consisted of a systematic characterization of insertions/deletions (InDels) and single nucleotide polymorphisms (SNPs) among the ‘Tainshanghong’, ‘Dabenzi’ and ‘Tunisia’ genomes (Figure 1c,d). In the Tunisia_Dabenzi comparison, we identified 496 045 SNPs and 263 228 small InDels, with an average of 1.5 and 0.8 per kb, respectively. In the Tunisia_Taishanhong comparison, we detected 326 147 SNPs and 218 687 small InDels, with an average of 1.0 and 0.7 per kb, respectively. Moreover, 147 532 SNPs and 102 273 InDels were common between the Tunisia_Dabenzi and Tunisia_Taishanhong comparisons. To further validate the InDels and SNPs, we completed the short-read sequencing of the typical hard-seeded cultivar ‘Sanbai’, which yielded 50 626 524 clean reads, with an average depth of 36× (Table S14 and Figure S7). These clean reads were then mapped to the ‘Tunisia’ genome. Accordingly, we identified 250 144 SNPs and 90 406 InDels, with an average of 0.8 and 0.3 per kb, respectively (Figure 1c,d). Of note, 80 225 SNPs and 6843 InDels were similar to those identified in the Tunisia_Dabenzi and Tunisia_Taishanhong comparisons (Figure 1c,d).

Genes associated with SNPs and InDels

Genetic variations, including SNPs and InDels, are likely to lead to economically important traits (Saltz et al., 2017). A previous study demonstrated that an insertion in PgLDOX is responsible for the anthocyanin-less phenotype of pomegranate fruit (Ben-Simhon et al., 2015). According to the gene annotation results, the SNPs and InDels common among the Tunisia_Sanbai, Tunisia_Dabenzi and Tunisia_Taishanhong comparisons likely affect the functions of 13 034 genes in ‘Tunisia’. Transcriptomics of the seed revealed that of these genes, 3492 were highly differentially expressed between ‘Sanbai’ and ‘Tunisia’ during various seed developmental stages (Luo et al., 2018; Xue et al., 2017) (Table S15 and Figure 2a). These genes participate in several biological pathways, including cell division, cell wall biogenesis, signal transduction, transcriptional regulation, product transport and metabolism (Figure S8). The pathways related to cell division and the cell wall structure were proved to control pomegranate seed hardness (Luo et al., 2018; Niu et al., 2018). We also identified many transcription factor families, such as MYB (16 genes), WRKY (five genes), AP2-like (16 genes), MYC (two genes) and NAC (nine genes), that contained different proportions of SNPs and InDels (Figure 2b). Most of these transcription factors have been reported to play roles in regulating the seed hardness of pomegranates (Luo et al., 2018; Xue et al., 2017) and hawthorns (Dai et al., 2013). In the comparison between ‘Tunisia’ and ‘Sanbai’, we detected a SNP (T-C) at the 166-bp position of the PgL0137670 transcription factor coding sequence. This SNP resulted in a nonsynonymous substitution, with lysine replaced by glutamic acid. A recent genetic analysis confirmed that the PgL0137670 allelic variant (T) is associated with the soft-seeded phenotype of pomegranate (Xia et al., 2019). Thus, the detected SNPs and InDels represent a valuable resource for studying pomegranate biology and molecular breeding.
Figure 1 Characteristics of the ‘Tunisia’ genome and a global comparison of genomes. a, Rings represent: Chr, chromosome (i), gap (ii), repetitive elements (iii), gene density (iv), presence/absence variation (PAV) between ‘Tunisia’ and ‘Dabenzi’ (v), PAV between ‘Tunisia’ and ‘Taishanhong’ (vi), GC content (vii), insertion/deletion (InDel) and single nucleotide polymorphism (SNP) variations between ‘Tunisia’ and ‘Dabenzi’ (viii) and InDel and SNP variations between ‘Tunisia’ and ‘Taishanhong’ (ix). b, Rearrangements and inserted duplications in the Tunisia_Dabenzi (left) and Tunisia_Taishanhong (right) comparisons. Black, relocation; purple, inversion; orange, translocation; red, duplicated insertion; blue, other duplicated insertions. c, Venn diagram presenting the shared SNPs in the ‘Tunisia’, ‘Dabenzi’ and ‘Taishanhong’ genomes. d, Venn diagram presenting the shared InDels in the ‘Tunisia’, ‘Dabenzi’ and ‘Taishanhong’ genomes.
Figure 2
(a) Distribution of the common SNPs and InDels detected in the Tunisia_Sanbai, Tunisia_Dabenzi and Tunisia_Taishanhong comparisons. Heatmap shows the differentially expressed genes based on the SNPs or InDels.

(b) Transcription factor families associated with different proportions of SNPs and InDels. Numbers represent the number of InDels or SNPs.
Genetic diversity and linkage disequilibrium decay

Genetic diversity and linkage disequilibrium decay (LD) were evaluated in natural populations to obtain a comprehensive overview of the polymorphisms correlated with phenotypic variations (Flint-Garcia et al., 2003). In the current study, 26 pomegranate varieties, with various geographical origins and seed hardness, were collected. Resequencing the 26 genomes generated 191.24 Gb clean reads, with a median depth of 17× and 97.91% coverage of the assembled genome. All clean reads were aligned to the ‘Tunisia’ genome, and a total of 4,882,740 SNPs were identified, with an average of 187,797 SNPs per genome (Table S16). The genomic positions of 77,876 of these SNPs were consistent with those of common SNPs among the three analysed cultivars (Table S17). We explored the phylogenetic relationships among the 26 pomegranate varieties based on 457,525 SNPs with a minor allele frequency >0.05 and loci integrity ≥0.5. In the phylogenetic tree, the hard-seeded varieties formed a subclade, and the soft- and semi soft-seeded varieties were clustered within other subclades (Figure 3a). A population structure analysis indicated that the 26 varieties belonged to three subgroups (Q1, Q2 and Q3) (Table S16; Figure 3b,c). Eight hard-seeded cultivars belonged to the Q2 subgroup, whereas the soft- and semi soft-seeded cultivars were assigned to the Q1 and Q3 subgroups. A principal component analysis (PCA) revealed a similar population genetic structure, with hard-seeded cultivars forming a tight cluster clearly separated from the others (Figure 3d). The top three PCs clearly separated these subpopulations and explained 28.09%, 12.92%, and 10.15% of the genetic variation in the pomegranate panel, respectively.

We analysed the LD to clarify the differences in the LD patterns in soft- and hard-seeded populations. In general, the rate of LD decay varied among the chromosomes in both the hard- and soft-seeded groups (Figure 3e). Additionally, the LD of the hard-seeded group decayed significantly faster than the LD of the soft-seeded group (P < 0.01). This phenomenon may be due to consistent environmental conditions during cultivation (i.e. all of the soft-seeded pomegranate varieties were adapted to the tropical Asian climate), which resulted in a narrow, or restricted, genetic background. Given the high LD in the soft-seeded pomegranate varieties, only a small subset of SNPs would be required for marker-assisted breeding. Collectively, the results of neighbour-joining tree, population structure, PCA and LD analyses supported the clustering of the pomegranate clade based on seed hardness and may be useful for characterizing the divergence between soft- and hard-seeded pomegranates.

Selective sweep analysis

To compare the allelic diversity between soft- and hard-seeded pomegranate groups, we completed a genomewide screening of nucleotide variations among the eight resequenced hard-seeded genome sequences (H) from Q1 and the 12 soft-seeded genome sequences (S) from Q2 or Q3 (Table S18). Calculating the divergence index (FST) between soft- and hard-seeded pomegranate varieties allowed us to identify genomic regions with high FST values, which indicated extensive diversification between the soft- and hard-seeded pomegranate varieties. The average FST value was 0.26, and 131 nonoverlapping subregions were identified with FST values >0.55. These regions were distributed on all chromosomes and accounted for 4.4% of the ‘Tunisia’ genome. The average nucleotide diversity (π) of the H and S groups was 0.00047/kb and 0.00038/kb, with Tajima’s D values of 1.12 and 1.00, respectively. These results revealed that the allelic diversity in the hard-seeded population was generally higher than that in the soft-seeded population across the entire genome.

The selective sweep regions usually contain, or are associated with, loci related to domestication, which may also contribute to the divergence between soft- and hard-seeded pomegranate varieties. To detect the selective sweep signatures for domestication, we calculated the ratio of genetic diversity between the soft- and hard-seeded pomegranate varieties across the whole genome and determined the cut-off based on permutation tests (Figure 5). We then performed a whole-genome screening of the overlapping selective sweep regions by combining the diversity ratios with the FST. Finally, 14 and 10 selective sweep regions were identified in the soft- and hard-seeded groups, respectively (Figure S9 and Table S19). According to the gene annotation result, the 14 and 10 selective sweep regions contained 282 and 249 loci in the soft- and hard-seeded populations, respectively (Table S19).

Selective genes mediating sucrose transport

Sucrose allocation and transport in plants have been intensively studied for many years (Li et al., 2010, 2015). The seed yields of maize (Bezrutczky et al., 2018) and rapeseed (Luo et al., 2015) depend on the efficient allocation of sucrose from the leaves to the seeds. Sucrose also functions as a signal in the regulation of strawberry fruit development and ripening (Jia et al., 2013). Sugar transport during seed development is also required for fibre elongation in cotton (Sun et al., 2018). On the basis of annotations in the ‘Tunisia’ genome, the Pgl0145770 and Pgl0145810 genes on chromosome 3 in the soft-seeded population were determined to encode the sucrose transport proteins SUC8-like and SUC6, respectively (Figure 4a). Seed transcriptome sequencing revealed that SUC8-like and SUC6 are more highly expressed at 60 days after flowering than at 120 days after flowering in both ‘Sanbai’ and ‘Tunisia’ (Luo et al., 2018), implying that these two genes are important for controlling seed development. Additionally, SUC8-like significantly down-regulated in ‘Tunisia’ compared to ‘Sanbai’ (P < 0.05, Figure 4b), which may be related to differences in seed hardness between these two varieties. To the best of our knowledge, soft-seeded pomegranate varieties normally have flourishing leaves, thick fruit peels and flesh, and only partially filled seeds. Down-regulation of SUC8-like expression in soft-seeded pomegranate implies that photosynthetic products are not efficiently transported to seeds, ultimately resulting in soft seeds. This result greatly expands our understanding of the genetic mechanism underlying the development of soft pomegranate seeds.

Selective genes mediating environmental adaptation

From an evolutionary perspective, environmental changes can result in selective pressure that favours the development of new traits (Scott, 2012). Mapping the selective genes that have become common in response to an environmental adaptation may help to characterize phenotypic divergence. A KEGG enrichment analysis indicated that in the hard-seeded population, six selective genes (Pgl0314630, Pgl0218430, Pgl0044640, Pgl0044700, Pgl0044670 and Pgl0314990) were enriched in the transporter or signalling pathways (Figure 4c). Specifically, Pgl0044640 and Pgl0314990 are involved in the forkhead box O (FoxO) signalling pathway, and Pgl0044700 is related to the mitogen-activated protein kinase (MAPK) signalling pathway.
Both FoxO and MAPK signalling pathways are involved in *Drosophila melanogaster* (Polesello and Bourg, 2017) and tomato fruit (Zhao et al., 2013) responses to cold conditions. These results may explain why hard-seeded pomegranates are more tolerant to cold stress than soft-seeded pomegranates.

A large selective sweep region on chromosome 1

In the hard-seeded population, we detected a 26.2 Mb (16.33–42.53 Mb) selective sweep region on chromosome 1 (Figure 5a). Within this region, we identified many loci with strong selection signals ($\pi_H/\pi_S > 8$, mean Tajima’s $D = 2.08$) (Figure 5b). Additionally, the F_{ST} value for this region between the soft- and hard-seeded populations was <0.30. Further analysis revealed that 23 397 SNPs with highly differentiated alleles were enriched in the 26.2 Mb region, accounting for 34.71% of all of the SNPs on chromosome 1. These SNPs were associated with a fast LD decay in the hard-seeded group (Figure 5c). Furthermore, the 26.2 Mb region exhibited unusually low heterozygosity (average heterozygosity $= 0.15$) in the hard-seeded group (Figure 5d). This extremely low recombination rate may have been due to...
large-scale structural changes, including inversions, relocations and translocations, as described for the comparative genomic analysis (Figure 1b). Additionally, this 26.2 Mb region is near to the centromere, a structure that usually has a low recombination rate in diverse organisms, including humans (Choo, 1998) and pigs (Ai et al., 2015).

Our analyses suggested that the large selective sweep region may be the result of natural selection. First, the hard-seeded populations were from China, whereas the soft-seeded populations originated from the United States of America, Italy, Tunisia and other countries (Table S16). Geographical barriers limit hybridization. Additionally, to the best of our knowledge, pomegranate has an extremely short history of extensive breeding and artificial selection, and there is no sexual barrier between soft- and hard-seeded pomegranate varieties.

Discussion

The lack of a high-quality draft genome has been the main limiting factor for accelerating forest tree improvement. In the present study, a high-quality chromosome-scale genome assembly was produced for the soft-seeded pomegranate ‘Tunisia’ based on SMRT sequencing and Hi-C technologies. The finished genome assembly represents a noticeable improvement over previously published draft genomes regarding completeness and accuracy (Qin et al., 2017; Yuan et al., 2017). Therefore, the ‘Tunisia’ reference genome sequence described herein should be an useful resource for evolutionary and functional studies as well as for the genetic improvement of pomegranate varieties.

The divergence between hard- and soft-seeded pomegranates is affected by two key factors: genomic variations and selective genes. Genomewide comparative analyses revealed many differences between hard- and soft-seeded pomegranate varieties. These variations have critical effects on the phenotypic divergence of pomegranate. Additionally, high-coverage short-read sequencing was used to conduct population genomic analyses of 26 pomegranate varieties. We identified a genomewide set of selective genes, which will be valuable for evolutionary and selective analyses, particularly for identifying functionally important variations related to the genetic divergence of soft- and hard-seeded pomegranates. The considerable variation and abundance of selective genes will also be useful for future genomewide association studies and for accelerating the gene clone of pomegranate. Some of the selective genes determined seed
hardness differ from those related to cold tolerance, implying that it is possible to breed new pomegranate cultivars that are both freezing tolerance and soft-seeded by artificial hybridizations or genetic manipulations. A large selective sweep signal on chromosome 1 detected in this study provides another attractive candidate region for further investigation for the genetic factors contributing to the divergence between hard- and soft-seeded pomegranate varieties. Collectively, these sequenced cultivars are valuable resources for population genomics, and studies on the genetic variations among them are helpful for accelerating genetic gains in pomegranate breeding in future.

Experimental procedures

Plant materials

Pomegranate varieties were cultivated in a nursery at the Zhengzhou Fruit Tree Research Institute, Chinese Academy of Agricultural Sciences, Henan province, China. An 11-year-old *P. granatum* ‘Tunisia’ tree was used for sequencing to assemble the draft genome with SMRT sequencing technology. Additionally, all cultivars underwent short-read sequencing with the Illumina HiSeq 2500 platform. Young leaves were collected from each cultivar and immediately frozen in liquid nitrogen before extracting nucleic acids.

Genome size estimation by flow cytometry

The DNA extracted from ‘Tunisia’ leaves was quantified by flow cytometry with a MoFlo XDP Cell Sorter (Beckman Coulter, Miami, FL). Specifically, the DNA quantity was calculated as the ratio of the pomegranate P1 peak fluorescence to maize (internal reference) P2 peak fluorescence.

Library construction and sequencing

Genomic DNA was extracted using an established CTAB protocol (Murray and Thompson, 1980). Sequencing libraries were constructed according to the manufacturer’s protocol (Illumina, San Diego, CA). Reads were trimmed to remove adaptors and filtered to eliminate low-quality reads. More than 5 µg sheared and concentrated ‘Tunisia’ DNA was used to construct a SMRTbell library with the PacBio DNA Binding Kit 2.0 following the manufacturer’s protocol. The library was sequenced with P2 DNA polymerase and the PacBio Sequel system. A total of four SMRT cells were sequenced for ‘Tunisia’, producing more than 20 Gb raw data.
Genome assembly and contig anchoring

Raw PacBio reads were filtered by removing low-quality reads, adaptor sequences and possible contaminated reads (i.e. of bacterial and viral origin). *De novo* assembly of the high-quality PacBio reads was completed with the default parameters of the Canu pipeline (Koren et al., 2017). The resulting assembly was polished with Illumina PCR-free 2 × 270 bp reads mapped with the Bowtie (version 1.07.10–789) (Langmead and Salzberg, 2012) and the Pilon (version 1.2.2) program (parameters: --mindepth 10 --changes 10 --fix-matches-to-ref 1 --threads 4) (Walker et al., 2014), which enabled the correction of 2754 SNPs, 741 insertions and 1531 deletions in the 'Tunisia' genome.

The Hi-C libraries were prepared for ‘Tunisia’ roots, stems, leaves, flowers, fruit peels and seeds by the BioMarker Technologies Company (Beijing, China), as previously described (Xie et al., 2015). Briefly, nuclear DNA was cross-linked and then cut with a restriction enzyme, leaving pairs of distally located but physically interacting DNA molecules attached to one another. The sticky ends of these digested fragments were biotinylated and then ligated to each other to form chimeric molecules. Biotinylated circuits (i.e. chimeras of the physically associated DNA molecules from the original cross-linking) were enriched, sheared and sequenced. After filtering reads, we obtained 31.74 M valid interacting pairs for the chromosome-level assembly of the ‘Tunisia’ genome. The contigs within the assemblies were separately broken into 50-kb fragments and were then clustered with the LACHESIS program based on the valid interacting read pairs.

Total RNA was extracted from the ‘Tunisia’ roots, stems, leaves, flowers, fruit peels and seeds with TRizol reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. The RNA integrity was checked by electrophoresis on a 0.8% denaturing formaldehyde gel. High-quality RNA (15 µg) was reverse-transcribed into cDNA with the SMARTer PCR-cDNA Synthesis Kit optimized for preparing full-length cDNA. The BluePippin™ Size Selection System (Sage Science, Beverly, MA) was used for size fractionation and selection (1–2 kb, 2–3 kb, and >3 kb). The SMRTbell libraries were constructed with the PacBio DNA Binding Kit 2.0, after which they were sequenced with P2 DNA polymerase and the PacBio Sequel system. Two SMRT cells were sequenced, and high-quality sequences were acquired via a previously described three-stage analysis of the full-length transcrprome (Jiang et al., 2018).

SLAF library preparation, sequencing, genotyping and genetic map construction

A total of 163 F1 individuals were derived from a cross between ‘Tunisia’ (soft-seeded female parent) and ‘Sanbai’ (hard-seeded male parent). Genomic DNA was extracted from the parents and progeny. We used SLAF sequencing to construct the genetic map. The library was constructed as previously described (Sun et al., 2013). Genomic DNA was digested with two enzymes (Haell and Hpy166II). After ligating the duplex tag-labelled adaptor (PAGE-purified; Life Technologies, Carlsbad, CA) and amplifying by PCR, the amplicons were purified and loaded onto agarose gels. Fragments ranging in size from 364 to 414 base pairs (with indexes and adaptors) were excised, purified and sequenced with the Illumina HiSeq 2500 platform (Illumina) according to the manufacturer’s recommendations.

The SLAF marker identification and genotyping were performed as described by Sun et al. (2013). Briefly, low-quality reads (quality score < 20e) were filtered out and the remaining raw reads were sorted for each progeny according to duplex barcode sequences. After the barcodes and the terminal 5-bp positions were trimmed from the high-quality reads, the clean reads were clustered based on sequence similarities exceeding 90%. Clustered sequences were defined as one SLAF locus (Zhang et al., 2015). The SNPs in each SLAF locus between parents were then detected, and SLAFs with more than three SNPs were eliminated. The alleles of each SLAF locus were then defined according to parental reads with a sequence depth > 10-fold, whereas for each offspring, the reads with a sequence depth > 2-fold were used to define alleles. Because pomegranate is a diploid species, SLAF loci with more than four alleles were defined as repetitive SLAFs and discarded. Only SLAFs with two to four alleles were identified as polymorphic and considered potential markers. All polymorphic SLAF loci were genotyped according to the consistency of the parental and offspring SNP loci. The marker code of the polymorphic SLAFs was analysed based on the F1 population type.

Markers exhibiting distorted segregation (P < 0.05) as well as markers with >30% missing genotype data or an average sequencing depth < 2-fold in each progeny and < 10-fold in the parents were filtered. The aa × bb segregation pattern markers were then selected to construct a genetic linkage map. Specific-locus amplified fragments were partitioned primarily into different LGs based on a pairwise modified logarithm of odds score > 11. The HiMap strategy (Liu et al., 2014) was used to order the SLAF markers and correct genotyping errors within LGs. The SMOOTH algorithm was then adopted to correct any remaining genotyping errors according to the parental contributions to the genotypes (Os et al., 2005). Additionally, the k-nearest neighbour algorithm was applied to impute missing genotypes (Huang et al., 2012). Skewed markers were then added to this map by applying a multipoint maximum-likelihood method. Map distances were estimated with the Kosambi mapping function (Kosambi, 2016). The contigs anchored by the genetic map were located to the assembled ‘Tunisia’ genome by using ALLMAPS software (Tang et al., 2015).

Prediction of repetitive elements

The pomegranate repeat sequences were identified using a combination of *de novo* and homology-based searches with Repbase (Jurka et al., 2005). Several *de novo* prediction programs, including MITE-Hunter (Han and Wessler, 2010), LTR-FINDER (Zhao and Hao, 2007), RepeatScout (Price et al., 2005) and the PILER-DF repetitive domain prediction program (Edgar and Myers, 2005), were used to construct a *de novo* repeat library. The PASTEClassifier (version 1.0) program (Claire et al., 2014) was used to classify the repeats and then combine with those in the Repbase (version 19.06) database (Jurka et al., 2005). Moreover, RepeatMasker (version 4.0.6) (Tamura, 1992) was used to identify and classify the repeat elements in the ‘Tunisia’ genome.

Gene predictions and functional annotations

Protein-coding genes were predicted with homology-based, *de novo* and transcript-based approaches. Open reading frames within the transcripts were predicted with the TransDecoder program (version 2.0). *Arabidopsis thaliana*, *Sorghum bicolor*, *Malus x domestica*, *Vitis vinifera* and *Eucalyptus grandis* were used for the homology-based predictions with GeneMoMa (Keilwagen et al., 2016). Potential candidate gene sets generated by PASA (version 2.0.2) (Haas et al., 2003) based on cDNA
sequences as well as homology-based gene models were used for analyses with \textit{de novo} prediction software packages (i.e., AUGUSTUS, SNAPP, Glimmer, Genescan and Genelid). These programs were used to generate \textit{de novo} gene models from masked and unmasked genome sequences. The outputs from three approaches were integrated with EVM (version 1.1.1) (Chen, 2004) to generate consensus gene models, which were then filtered to remove transposons and low-confidence predictions. Additional alternative transcript isoforms were obtained from the Iso-Seq data. Gene functions were assigned based on the best BLASTN (\textit{e}-value $= 1 \times 5$) matches for the alignments to the sequences in the National Center for Biotechnology Information nonredundant protein database (Aron et al., 2011) and the best matches for the BLASTP (\textit{e}-value $= 1 \times 5$) (Lobo, 2012) search of the TrEMBL database (Bairoch and Apweiler, 1997). Gene models were modelled with InterProScan (Zdobnov and Apweiler, 2001) to compile a list of INTERPRO domains and GO terms (Dimmer et al., 2012) for each predicted gene. Additionally, the genes were aligned (\textit{e}-value $= 1 \times 5$) to the sequences in the KEGG (Kanehisa and Goto, 2000) and the KOG (Tatusov et al., 2003) databases for an additional functional prediction and classification.

The miRBase, Rfam and tRNAscan-SE (version 1.3.1) databases were used to predict noncoding RNAs (microRNAs, tRNAs and tRNAs) (Griffiths-Jones et al., 2005; Nawrocki and Eddy, 2013). GenBlastA (version 1.0.4) (She et al., 2009) was used to identify homologous genome sequences, with the integrated gene set used as the query. Candidate genes with premature stop codons and frameshift mutations were selected as the final predicted pseudogenes with GeneWise (version 2.4.1) (Birney et al., 2004).

Comparative genome analysis

The MUMmer (version 3.23) program (Delcher et al., 2002) was used to compare genomes (parameters: –maxmatch c 90 –l 40). Syntenic blocks were filtered using the delta –filter –I parameter and the one-to-one alignment block option. The putative PAVs were identified by extracting unaligned regions among ‘Tunisia’, ‘Taishanhong’ and ‘Dabenzi’ from the ‘show-diff’ command in MUMmer. To identify putatively unique presence regions, the MUMmer (version 3.23) program (Delcher et al., 2002) was used for constructing an unrooted neighbour-joining tree based on the Kimura two-parameter model, with 1000 bootstrap replications. The Structure 2.3.4 software package (Pritchard et al., 2000) was used to determine the population structure based on SNPs and excluding the missing data or heterozygous genotypes. Ten independent runs were performed with K-values (i.e. putative number of genetic groups) from 1 to 10. The length of the burn-in period and the number of Markov chain Monte Carlo replications were set at 100 000. The most likely K-value was determined according to the cross-validation errors based on successive K-values. Varieties with a probability of membership > 0.7 were assigned to the corresponding clusters, and those with a probability of membership < 0.7 were assigned to a mixed group. A PCA was completed with the SmartPCA program of the EIGENSOFT 6.0 software package (Price et al., 2006). The PCA was based on the whole-genome SNPs, and the first three eigenvectors were plotted in three dimensions. The LD was calculated using the PLINK2 (version 1.90) software (Purcell et al., 2007). The overall genome LD was determined as follows: the correlation coefficient (r^2) of alleles was calculated for individual chromosomes using SNPs from the corresponding chromosome (parameter: –ld-window-r2 0–ld-window 999999–ld-window-kb 1000), after which pairwise r^2 values were averaged across the whole genome. The LD decay was visualized for both hard- and soft-seeded populations with ggplot2 (Wickham, 2016).

Genetic index analysis

PopGenome (Pfeifer and Wittelsbuerger, 2012) was used to estimate the F_{ST}, nucleotide diversity and Tajima’s D for the whole genome of both hard- and soft-seeded populations. Sliding windows of 100 kb with 10-kb steps were used to calculate the F_{ST}, nucleotide diversity, and Tajima’s D across the whole genome. The top 5\% of marks, defined by a sliding window, were selected as candidate selective sweep regions. We further integrated the adjacent selective sweep regions and annotated the corresponding genes across the ‘Tunisia’ genome.
KEGG enrichment analysis

The differentially expressed genes were subjected to a KEGG pathway enrichment analysis using the tools available on the KOBAS2.0 website (http://kobas.cbi.pku.edu.cn/). We identified significantly enriched metabolic pathways using the hypergeometric test (http://en.wikipedia.org/wiki/Hypergeometric_distribution) and a corrected P value < 0.05.

Accession codes

The ‘Tunisia’ pomegranate whole-genome sequence and raw sequence data for the transcriptomes have been deposited in GenBank under a BioProject with accession number PRJNA565884 and PRJNA565888, respectively.

Acknowledgements

This project was funded by the Key Project of the National Science and Technology Basic Work of China (2012FY110100) and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2015-ZFR). We thank Zhangjun Fei, from Boyce Thompson Institute for Plant Research, Cornell University, USA, for revising the manuscript, Gaihua Qin, from Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China, for providing the short-read sequencing data of ‘Dabenzhi’.

Authors’ contributions

X.L. and S.C. designed the experiment. X.L. conceived the study and led the research together with H.X.L., Z.K.W., W.Y., P.Z., D.C., H.Y.Y., K.D.L., D.G.Z., F.H.Z., L.N.C., Q.W., D.J. and X.C.X. and led the research together with H.X.L., Z.K.W., W.Y., P.Z., D.C., H.Y.Y., K.D.L., D.G.Z., F.H.Z., L.N.C., Q.W., D.J. and X.C.X. coordinated the sampling, bioinformatics and experimental work. X.L. conceived the study and led the research together with H.X.L., Z.K.W., W.Y., P.Z., D.C., H.Y.Y., K.D.L., D.G.Z., F.H.Z., L.N.C., Q.W., D.J. and X.C.X.

Conflict of interest

The authors declare no conflicts of interest.

References

Ai, H.S., Fang, X.D., Yang, B., Huang, Z.Y., Chen, H., Mao, L.K., Zhang, F. et al. (2015) Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat. Genet. 47, 217–225.
Arnon, M.B., Shannon, L., Anderson, J.B., Farideh, C., Derbyshire, M.K., Carol, Ai, H.S., Fang, X.D., Yang, B., Huang, Z.Y., Chen, H., Mao, L.K., Zhang, F. et al. (2015) Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat. Genet. 47, 217–225.
Bezručová, M., Hartwig, T., Horshman, M., Char, S.N., Yang, J., Yang, B., Frommer, W.B. et al. (2018) Impaired phloem loading in zmsweet13a, b, c sucrose transporter triple knock-out mutants in Zea mays. New Phytol. 218, 594–603.
Blanco, S., Lupiñáez, D.G., Chiarlello, A.M., Annunziatella, C., Kraft, K., Schopfíñ, R., Wittler, L. et al. (2018) Polymer physics predicts the effects of structural variants on chromatin architecture. Nat. Genet. 50, 662–667.
Birney, E., Clamp, M. and Durbin, R. (2004) GeneWise and genowise. Genome Res. 14, 988–995.
Cappellini, E., Prohaska, A., Racimu, F., Welker, F., Pedersen, M.W., Allentoft, M.E., Damgaard, P.D.B. et al. (2018) Ancient biomolecules and evolutionary inference. Annu. Rev. Biochem. 87, 1029–1060.
Chalopin, D., Naville, M., Plard, F., Galiana, D. and Volfí, J.N. (2015) Comparative analyses of transposable elements highlights mobile element diversity and evolution in vertebrates. Genome Biol. Evol. 7, 567–580.
Chen, N. (2004) Using RepeatMasker to identify repetitive elements in genomic sequences. In Current Protocols Bioinformatics. Chapter 4, Unit 4. New York, NY: Cold Spring Harbor Laboratory.
Choo, K. (1998) Why is the centromere so cold? Genome Res. 8, 81–82.
Cingolani, P., Platts, A., le Wang, L., Coon, M., Nguyen, T., Wang, L., Land, S.J. et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, Snpeff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92.
Claire, H., Sandie, A., Mark, M., Timothé, C., Olivier, I., Véronique, J. and Hadi, Q. (2014) PASTEC: an automatic transposable element classification tool. PLoS ONE 9, e91929.
Das, H.Y., Han, G.F., Yan, Y.J., Zhang, F., Liu, Z.C., Li, X.M., Li, W.R. et al. (2013) Transcript assembly and quantification by RNA-Seq revealing differentially expressed genes between soft-endosperm and hard-endosperm hawthorns. PLoS ONE 8, e72910.
Delcher, A.L., Adams, P.J., Lane, C. and Salzberg, S.L. (2002) Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483.
Dimmer, E.C., Huntley, R.P., Yasmin, A.F., Tony, S., Claire, O.D., Martin, M.J., Benoit, B. et al. (2012) The UniProt-GO annotation database in 2011. Nucleic Acids Res. 40, 565–570.
Ecker, J.R., Springer, N.M., Ying, K., Fu, Y., Ji, T., Yeh, C.-T., Jia, Y. et al. (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet. 5, e1000734.
Edgar, R.C. and Myers, E.W. (2005) PILER: identification and classification of genomic repeats. Bioinformatics, 21(Suppl 1), i152.
Flint-Garcia, S.A., Thornsberry, J.M. and Buckler, E.S.T. (2003) Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54, 357–374.
Griffiths-Jones, S., Simon, M., Mhari, M., Ajay, K., Eddy, S.R. and Alex, B. (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, 121–124.
Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith, R.K., Hannick, L., Rama, M. et al. (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666.
Han, Y. and Wessler, S.R. (2010) MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 38, e199.
Harel-Beja, R., Sherman, A., Rubinstein, M., Eshed, R., Bar-Yaakov, I., Trainin, T., Ophir, R. et al. (2015) A novel genetic map of pomegranate based on transcript markers enriched with QTLs for fruit quality traits. Tree Genet. Genomes, 11, 109–127.
Heng, L. and Richard, D. (2010) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.
Huang, X.H., Yan, Z., Xinghua, W., Cingolani, P., Platts, A., le Wang, L., Coon, M., Nguyen, T., Wang, L., Land, S.J. et al. (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet. 44, 32.
Jia, H.F., Wang, Y.H., Sun, M.Z., Li, B.B., Han, Y., Zhao, Y.X., Li, X.L. et al. (2013) Sucrose functions as a signal involved in the regulation of strawberry fruit quality traits. New Phytol. 198, 453–465.
Jia, H.M., Jia, H.J., Cai, Q.L., Wang, Y., Zhao, H.B., Yang, W.F., Wang, G.Y. et al. (2018) Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower. BMC Genom., 19, 548.
Jiang, C., Tang, X., Ren, C., Wei, B., Wu, Y., Wu, Q. and Jin, P. (2018) Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower. BMC Genom., 19, 548.
Johanningsmeier, S.D. and Harris, G.K. (2011) Pomegranate as a functional food and nutraceutical source. Ann. Rev. Food Sci. Technol. 2, 181–201.
Jurka, J., Kapitonov, V.V., Pavlicek, A., Klohnowski, P., Kohn, O. and Waichichewicz, J. (2005) Repebase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467.
Kanehsia, M. and Goto, S. (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–3024.

Keijer, J., Wensing, T., Nakamura, S., Schartl, M., Gruz, J. and Hartung, F. (2016) Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, e98–e89.

Koren, S., Waleんz, B.P., Berlin, K., Miller, J.R., Bergman, N.H. and Philippy, A.M. (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722.

Kosambi, B.D. (2016) The estimation of map distances from recombination values. Ann. Hum. Genet. 12, 172–175.

Li, Y.C., Li, H.H., Syhie, L., Hitomi, T., Hartung, M.L., Xiao-Qing, Q., Wei-Juan, C. et al. (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468, 527–532.

Li, X.M., Chao, D.Y., Wu, Y., Huang, X., Chen, K., Cui, L.G., Su, L. et al. (2015) Natural alleles of a proteasome a2 subunit gene contribute to thermostolerance and adaptation of African rice. Nat. Genet. 47, 827–833.

Liu, D.Y., Ma, C.X., Hong, W.G., Huang, L., Liu, M., Liu, Z., Zeng, H. et al. (2014) Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE, 9, e98855.

Lobo, I. (2012) Basic local alignment search tool (BLAST). J. Mol. Biol. 215, 403–410.

Luo, X., Ma, C., Yue, Y., Hu, K., Li, Y., Duan, Z., Wu, M. et al. (2015) Unravelling the core trait of harvest index in ripened (Brassica napus L.) with association mapping. BMC Genom. 16, 379–389.

Luo, X., Cao, D., Zhang, J., Chen, L., Xia, X., Li, H., Zhao, D. et al. (2018) Integrated microRNA and mRNA expression profiling reveals a complex network regulating pomegranate (Punica granatum L.) seed hardiness. Sci. Rep. 8, 1–14.

Martin-Robles, N., Lehmann, A., Seco, E., Arroca, R., Rilling, M.C. and Milla, R. (2017) Impacts of domestication on the Arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol. 218, 322–334.

Masoud, S., Khandan, M. and Nasre-Esfahani, S. (2005) Cytogenetical study of Mart.

Pritchard, J.K., Stephens, M. and Donnelly, P. (2000) Inference of population structure. Mol. Biol. Evol. 17, 698–704.

Patel, C., Dadhaniya, P., Hingorani, L. and Soni, M.G. (2008) Safety assessment of Drosophila melanogaster with association mapping. Integrated microRNA and mRNA expression profiling reveals a complex network regulating pomegranate (Punica granatum L.) seed hardiness. Sci. Rep. 8, 1–14.

Pfeifer, B. and Wittelsbuerger, U. (2012) PopGenome: An efficient Swiss army knife for population genetic & genomic analysis in R. Mol. Biol. Evol. 31, 1929–1936.

Polesello, C. and Bourg, E.L. (2017) A mild cold stress that increases resistance to heat lowers FOXO transcription in Drosophila melanogaster. Biogerontology, 18, 1–11.

Price, A.L., Jones, N.C. and Pezner, P.A. (2005) De novo identification of repeat families in large genomes. Bioinformatics, 21(Suppl 1), i351–i351.

Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A. and Donnelly, P. (2006) Principal components analysis corrects for stratification in genome-wide association studies.

Pritchard, J.K., Stephens, M. and Donnelly, P. (2000) Inference of population structure. Mol. Biol. Evol. 17, 698–704.

Qin, G., Xu, C., Ming, R., Tang, H., Guoyt, Y., Kramer, E.M., Hu, Y. et al. (2017) The pomegranate (Punica granatum L.) genome and the genomics of punicalinag biosynthesis. Plant J. 91, 1108–1128.

Saltz, J.B., Hessel, F.C. and Kelly, M.W. (2017) Trait Correlations in the Genomics Era. Trends Ecol. Evol. 22, 279–290.

Scott, E.C. (2012) This I believe: we need to understand evolution, adaptation, and phenotype. Front. Genet. 3, 303.

She, R., Chu, J.K., Pei, J. and Chen, N. (2009) GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res., 19, 143–149.

Siimao, F.A., Waterhouse, R.M., Panagiotou, I., Kriventsova, E.V. and Zdobnov, E.M. (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31, 3210–3212.

Sun, X.W., Liu, D.Y., Zhang, X.F., Li, W.B., Liu, H., Hong, W.G., Jiang, C.B. et al. (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE, 8, e58700.

Sun, W., Gao, Z., Wang, J., Huang, Y., Chen, Y., Li, J., Lv, M. et al. (2018) Cotton fiber elongation requires the transcription factor GMYB212 to regulate sucrose transportation into expanding fibers. New Phytol. 222, 864–881.

Sylvain, G. and Thomas, B. (2010) A comparative view of the evolution of grasses under domestication. New Phytol. 187, 273–290.

Tamura, K. (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 9, 678–687.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

Tang, H., Zhang, X., Mao, C., Zhang, J., Ming, R., Schnable, J.C., Schnable, P.S. et al. (2015) ALLMAPS: robust scaffold ordering based on multiple maps. Genome Bio. 16, 33.

Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kyrutin, B., Koonin, E.V., Krylov, D.M. et al. (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 4, 41–55.

Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelheil, A., Sakhkõumār, S., Cuomo, C.A. et al. (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE, 9, e112963.

Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag.

Xia, X.C., Li, H.X., Cao, D., Luo, X., Yang, X.W., Chen, L.N., Liu, B. et al. (2019) Characterization of a NAC transcription factor involved in the regulation of pomegranate seed hardiness (Punica granatum L.). Plant Physiol. Biochem., 139, 379–388.

Xie, T., Zheng, J.F., Liu, S., Peng, C., Zhou, Y.M., Yang, Q.Y. and Zhang, H.Y. (2015) De novo plant genome assembly based on chromatim interactions: a case study of Arabidopsis thaliana. Mol. Plant, 8, 489–492.

Xue, H., Cao, S., Li, H., Zhang, J., Niu, J., Chen, L., Zhang, F. et al. (2017) De novo transcriptome assembly and quantification reveal differently expressed genes between soft-seed and hard-seed pomegranate (Punica granatum L.). PLoS ONE, 12, e0178809.

Yu, Y., Ouyang, Y. and Yao, W. (2017) shinyCircos: an R/Shiny application for interactive creation of Circos plot. Bioinformatics, 33, 1229–1231.

Yuan, Z., Fang, Y., Zhang, T., Fei, Z., Han, F., Liu, C., Liu, M. et al. (2017) The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule development biology. Plant Biotechnol. J. 16, 1363–1374.

Zare, A., Zamani, Z., Fatahi, R., Mousavi, A., Salami, S.A., Avila, C. and Cánovas, F.M. (2016) Differential expression of cell wall related genes in the seeds of soft- and hard-seeded pomegranate (Punica granatum L.). PLoS ONE, 12, e0178809.

Zuo, Z., Wang, Q., Cheng, T., Yang, W., Pan, H., Zhong, J., Huang, L. et al. (2015) High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Punus mume Sieb. et Zucc.) DNA Res. 22, 183.

Zhou, X. and Hao, W. (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, 265–268.
Zhao, R., Xie, H., Lv, S., Zheng, Y., Yu, M., Shen, L. and Sheng, J. (2013) LeMAPK4 participated in cold-induced ethylene production in tomato fruit. J. Sci. Food Agric. 93, 1003–1009.
Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q. et al. (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278–284.

Supporting information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1 Pomegranate genome size estimated by flow cytometry. P1 and P2 refer to the pomegranate and maize fluorescence peaks, respectively. The estimated ‘Tunisia’ genome size was calculated as follows: 8606/60 455 × 2200 Mb = 313.18 Mb.

Figure S2 Chromosome-scale scaffold of the de novo ‘Tunisia’ genome assembly based on chromatin interactions.

Figure S3 Anchoring of genetic markers to the eight chromosomes. The X-axis represents the physical distance (top) and genetic length (down). Red bar, linkage map; blue bar, physical map.

Figure S4 Collinear patterns between anchored contigs with genetic map (LG) and the anchored genome (Chr).

Figure S5 Distribution of the number of alternative splicing events along each chromosome.

Figure S6 Example of using short-read alignment to verify a missing region mapped in ‘Dabenzi’. Blue triangle represents short read.

Figure S7 Genome-wide SNP distribution in ‘Sanbai’ pomegranate (a). ‘Sanbai’ pomegranate InDel length distribution in the genome (right) and gene CDS (left) (b).

Figure S8 Distribution of differentially expressed genes associated with SNP and InDels among different biological pathways.

Figure S9 Genome-wide distribution of the divergence index (F_{ST}) value, nucleotide diversity (π), Tajima’s D value, and the selective genes in soft- and hard-seeded populations. From top to bottom: purple line, distribution of Tajima’s D value in the soft-seeded population; orange line, distribution of Tajima’s D value in the hard-seeded population; green line, distribution of nucleotide diversity in the soft-seeded population, blue line, distribution of nucleotide diversity in the hard-seeded population; red line, distribution of the F_{ST} value for the soft- and hard-seeded populations; black rectangles, selective genes in soft- (top) and hard-seeded (bottom) populations.

Table S1 ‘Tunisia’ genome sequencing data derived from short-read sequencing.
Table S2 Analysis of the ‘Tunisia’ genome with Benchmarking Universal Single-Copy Orthologs.
Table S3 Analysis of the ‘Tunisia’ genome with CEGMA v2.5.
Table S4 Hi-C library details.
Table S5 Hi-C genome assembly details.
Table S6 Genetic linkage following cross between ‘Tunisia’ and ‘Sanbai’.
Table S7 List of genes supported by transcriptome profiling.
Table S8 Gene annotation details.
Table S9 RNA details.
Table S10 Repeat sequence details.
Table S11 Global comparison of ‘Taishanhong’, ‘Dabenzi’, and ‘Tunisia’ genomes.
Table S12 Breakpoint analysis of structural variants using clean subreads of PacBio.
Table S13 PAV regions supported by the short inserted reads.
Table S14 ‘Sanbai’ genome sequencing data derived from short-read sequencing.
Table S15 Differentially expressed genes associated with SNPs and InDels.
Table S16 Analysis of SNP variations and population structures in 26 pomegranate varieties.
Table S17 Analysis of the SNPs in the population with genomic positions that are consistent with those of common SNPs among the three analysed cultivars.
Table S18 Analysis of genome-wide nucleotide variations between soft- and hard-seeded pomegranate groups.
Table S19 Genes in the selective sweep regions of the soft- and hard-seeded pomegranate groups.