Behavioral compression of polyolfin-aramid fiber and glass fiber on flexural strength of leca concrete

Abstract

Concrete is a very strong and versatile mouldable construction material. It consists of cement, sand and aggregate (e.g., gravel or crushed rock) mixed with water. Normal concrete has some defects like high cement consumption and heavy ingredients which cause to increase the concrete price. The aim of light weight concrete (LWC) is removing the common defects of normal concrete and remaining its advantages. The fiber concrete is one of the materials to enhance the strength and quality of LWC. It can use to strengthen the brittle concrete. In this study, the effect of Polyolefin-Aramid and glass fiber has been considered on flexural strength of LECA concrete. In this manner, the specimens were Issed with (15*15*15) cm for compressive strength and prismatic strength with (50*10*10) cm for flexural strength. In this test, the percent changes of Polyolefin-Aramid and glass fiber have been considered. The amount of Polyolefin-Aramid is 5, 5.2 and 5.7 in each cubic meter and 3, 5.4 and 6 for glass have been assigned.

Keywords: leca concrete, light weight concrete (Lwc), polyolefin-aramid, behavioral compression, glass fiber, flexural strength

Introduction

LIGHTWEIGHT CONCRETE May consist of lightweight aggregates are used in ordinary concrete of coarse aggregate and sand, clay, foamed slag, clinker, crushed stone, aggregates of organic and inorganic. It used in different common shapes such as light weight aggregate concrete, concrete without fine 2 or concrete with bubble 3. It is replaced by normal concrete in several applications because of its advantages like low specific weight and heat insulation. 4 Fiber is a small piece of reinforcing material possessing certain characteristics properties which cause to improve the properties of concrete. Fiber have bonding in multi directions which avoid propagating a crack and increase the efficiency of concrete.5,7

Purpose of the study

The main objective of this research is the effect of Polyolefin Aramid fiber and glass fiber in LECA (Light Expanded Clay Aggregate) concrete flexural strength.

Materials and methods

Definition

In this study, the effects of various percentage weights (in cubic meter) of Polyolefin-Aramid and Glass fiber have been investigated in LECA concrete. Then, three different percentages have been used with same concrete mix design. The tests duration is classified into 7-days and 28-days. The cubic and prismatic samples used for compressive and flexural strength respectively.9,10

Ingredient

Water: According to the Iranian Standard Concrete Code (ABA), clean water without any additive should be used in the concrete. Generally drinking water is suitable in concrete.11 In this test, the Sari city drinking water is used in concrete.

Cement: Here, Portland cement type II with 315 Kg/m3 specific weight has been selected. The modified Portland cement has an application in concrete which requires the hydration heating and mild sulfate attack.11,12

Micro silica: The multipurpose gel is advanced and multipurpose material to have a strong, sealed, impermeable, durable concrete with high flexural and tensile strength. The properties of this material is its high efficiency supplementary reaction in sake of absorbing the free lime and change water to Calcium Silicate which cause to reduce the Alkaline properties of concrete and avoid reacting silica-alkaline between aggregates 13. The additive gel effect will be analyzed after using concrete based on ASTM 1202-05 standard. The amount of Micro Silica gel is 5% of cement.14

Stone powder: Table 1 shows chemical analysis of stone powder.

Table 1 shows chemical analysis of stone powder

Chemical compounds	Chlorine	Iron oxide	Aluminum oxide	Calcium oxide	Magnesium oxide	Sodium oxide	Potassium oxide	Phosphorus oxide	Sulfur oxide	Other drop blush
Constitutive %	0.02	-	0.5	55.4	-	-	-	-	-	43.13

Natural aggregate: The sand is particles which have passed through a sieve No. 4. So, the size of sand is 0.5 mm in concrete with softness modulus of 3.04. The softness modulus evaluate the softness and coarseness of natural fine aggregate which should not be lower than 2.3 and greater than 3.1.15,16

©2018 Amani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially.
LECA: The LECA has been used with 4-10 mm from Save LECA factory.

Polyolefin aramid fiber: The Polyolefin Aramid fiber is used as a reinforced material for concrete or mortar or asphalt in order to reduce the condensation and control the fraction and increase the long term durability. This kind of fiber has ineffective chemical material and it remains in alkaline environment without any problem. The physical properties of Polyolefin-aramid fiber include: Preliminary material: Polyolefin/aramid; Physical shape: reticular string and single string fiber; Specific weight: 0.91–1.44 gr/cm³; Tensile strength: 2800 Mpa; Length: 19 mm and 50 mm; Color: yellow, black, yellowish brown and gray; Resistant on acidic and alkaline environment; Melting point: 100-427 °C. In this research, 19 mm polyolefin Aramid fiber, 50 mm filamentous polyolefin fiber and 0.91-1.44 gr/cm³ specific mass have been used.

Glass fiber: It is a kind of hybrid fiber which is designed to reinforce

How to make a LECA concrete

In concrete, polyolefin aramid fiber or infusion glass fiber add in concrete after the indicated materials and Micro Silica gel. Although, the mixing time would be minimized to avoid the fiber damage due to stones abrasion after adding fiber. This concrete is poured in clean and lubricated 15x15x15 cm cubes in two layers and prismatic frames in three layers then they are compensated with density hammer by hand. After compaction, the samples keep in frame for 24 hours with wetted Tarpaulin. Then, they bring out precisely without any damage and impact to the frame and they keep between 20±2c until testing. Compressive strength test for hardened concrete

Generally, two types of compressive tests have been considered such as cube and cylinder test. The cube type is used in UK, German and most of the Europe counties. The cylinder type has been proposed by US, France and Australia. In this research, cubic specimens have been utilized for compressive strength. The specimens are placed in steel or cast-iron frame. The cubic frame shape, length of side and polishing the surface should be compatible with advised properties. How to make a LECA concrete

Before testing, the samples are cured in standard environment (20±2c, 65% RH) for 28 days. Then, the samples are tested under compressive test machine.

Mixes No.	Cement (kg)	Sand (kg)	Water (kg)	Micro silica jell (kg)	Stone powder (kg)	Leca(kg)	Specific weight of fresh concrete (kg/m³)	Compressive strength of cubic sample 7 days (mpa)
1	400	715	180	20	120	320	1750	18-Jun
2	400	780	180	20	120	300	1800	19-Jun
3	400	850	180	20	120	270	1840	21-Aug
4	400	825	180	20	120	280	45/0	

The procedure of preparing the light concrete without fiber

The preparation steps for making concrete include of weighing and mixing of ingredients. In order to reduce the negative effect of water absorption in mixture of concrete by light weight aggregate (LWA), pre-wetting of LWA has been done before mixing the materials. Therefore, the certain amount of water equal to 10% weight of the LECA LWA. This amount of water is considered in calculation of effective water cement ratio and reduce it from water in mixture. The Laboratory boutonniere is used to mix the material. The concrete is mixed for one minute before casting to make it uniform. To mix three materials, initially LWA and natural aggregate is added in mixture then cement is added into them, then it is blended in 30 minutes. Two third of water for concrete is added to the mixture while the mixture was rotating. The rest is blended with Micro Silica gel completely then add mixture. The total concrete mix design takes around 10 minutes from casting until its discharge.

Slump test result	Slump (cm)	Design
6-May	L1	
8-Mar	L2	
12	L3	
10	Lf	
recorded and the compressive strength will be achieved by division of this force to the cube surface.

Flexural strength test

To calculate the flexural strength, the prismatic samples have been used with 10x10x5 cm according to ASTM C293 standard.

For the processing, after placing the prismatic samples under the flexural strength machine, the load will be increased by hydraulic jack continuously until sample cracked and broken. Then last load have been read from machine screen and have been recorded.

The corresponding device is the electrical flexural jack machine with 60 ton capacity. This machine is used to find the flexural strength of concrete in the simple concrete beam with center point load.

The modulus of rupture has been computed as follows:

\[R = \frac{3PL}{bd^2} \]

Which is:
- \(P \): maximum applied load from machine (Lbf (N));
- \(L \): length of span (mm);
- \(b \): the width average of sample in (mm);
- \(d \): the depth average of sample in (mm);
- \(R \): modulus of rupture psi (Mpa).

Results and findings

The compressive strength

It has been performed base on BS-1881 standard in cubic samples with 150 mm. in this method, axial load test has applied in samples with certain value and it keeps until their failure. The compressive strength have been achieved by division of maximum applied load to the cross section. This test is done on hardened concrete in 7 and 28 days. Thus, 4 samples from each mix design have utilized for compressive test which the result show in Table 5. As it was expected, the compressive strength is enhanced with increasing the light weight concrete density. L3 sample has the high compressive strength with high specific mass concrete. The LECA concrete compressive strength results are mentioned in Table 5 for 7 and 28 days specimens.

Table 5 The sample with LECA compressive strength results

Sample	Test No.	Average resistance 7 days (MPa)	Average resistance 28 days (MPa)
L1	1	18.4	21.7
L1	2	18.8	21.9
Average		18.6	21.8
L2	1	19.9	23.7
L2	2	19.3	23.5
Average		19.6	23.6
L3	1	21.5	25.6
L3	2	21.1	25.2
Average		21.8	25.9
L4	1	20.7	25.1
L4	2	20.3	24.7
Average		20.5	24.9

Flexural strength

It is used base on ASTM C293 standard in prismatic samples with 100x100x100 mm for 7 and 28 days specimens. In this method, prismatic samples have placed horizontally under jack between two support and the load has applied in one point in the middle of span until its failure. The flexural strength have been used for 7-days and 28-days hardened concrete. Three number of each fiber and 5 test for each one are considered.

Poly Polyolefin-Aramid fiber test results

For the test with polyolefin string fiber and polyolefin aramid fiber, two specimens for each of three fibers and 2 control samples for their 7 days and 3 samples for each of three fibers and three control samples for theirs 28 days have been tested for flexural strength. The results of 7 days flexural strength are indicated in Table 6 and the results if 28 days flexural strength are shown in Table 7. Furthermore, the flexural strength result of LECA concrete and polyolefin aramid fiber is illustrated in Figure 1 until 3 for 7days and 28 days specimens. According to the results, it displays that polyolefin fiber results in enhancing the flexural strength. As it is shown in Figure 1, there is 45% enhancement for 6kg/m3 polyolefin string fiber and 1.5kg/m3 polyolefin Aramid fiber (Figures 1-3). According to the results, it displays that polyolefin fiber results in enhancing the flexural strength. As it is shown in Figure 6, there is 45% enhancement for 6 kg/m3 polyolefin string fiber and 1.5 kg/m3 polyolefin Aramid fiber.

Table 6 Flexural strength test result for 7-days LECA concrete and polyolefin aramid

Average (MPa)	Modulus of rupture (MPa)	Sample high (mm)	Sample length (mm)	Sample width (mm)	Sample 19 mm polyolefin aramid fiber (kg/m2)	Filamentous polyolefin fiber with 50 mm (kg/m2)	Design	
3-Sep	Mar-8	100	300	100	1	0/5	2	PA1
	3/94	100	300	100	2			
4-Jan	Feb-4	100	300	100	1	1	4	PA2
	4	100	300	100	2			

Citation: Amani N, Sabamehr A, Tayebi H. Behavioral compression of polyolefin-aramid fiber and glass fiber on flexural strength of leca concrete. _MOJ Civil Eng._ 2018;4(1):48-55. DOI: 10.15406/mojce.2018.04.00096
Table 7: Flexural strength test result for 28-days LECA concrete and Polyolefin aramid

Average (MPa)	Modulus of rupture (MPa)	Sample high (mm)	Sample length (mm)	Sample width (mm)	Sample	19 mm Polyolefin Aramid fiber (kg/m³)	Filamentous Polyolefin fiber with 50 mm (kg/m³)	Design
4/45	4/53	100	300	100	1	1/5	6	PA3
	4/37	100	300	100	2			
Feb-3	3/26	100	300	100	1		0	
	3/14	100	300	100	2	Control sample		

Figure 1: Comparison graph of the flexural strength in 7-days and 28-days of LECA concrete and polyolefin aramid.

Figure 2: The enhancement process of 7-days flexural strength of LECA concrete and polyolefin aramid in comparison with control sample.

Figure 3: The enhancement process of 28 days flexural strength of LECA concrete and polyolefin Aramid in comparison with control sample.

The results with glass fiber

For this test, there are two specimens for each three fiber and two control samples for 7 days and three specimens for each three fibers and three control samples for 28 days which are considered for flexural strength test. The results of 7-days flexural strength are shown in Table 8 and theirs 28-days in Table 9. Meanwhile, the result of LECA concrete and glass fiber are illustrated in Figure 4 until 6 for 7-days and 28-days samples. According to the results, it shows that fiber glass cause to increase the flexural strength of the samples. According to the results, it shows that fiber glass cause to increase the flexural strength of the samples. As it indicated in Figure 2, there is 18% enhancement for 6 kg/m³ glass fiber (Figures 4-6).
Table 8 Flexural strength test result for 7 days LW concrete with glass fiber

Average (MPa)	Modulus of rupture (MPa)	Sample high (mm)	Sample length (mm)	Sample width (mm)	Sample 19 mm glass fiber (kg/m³)	Design
36/3	BASE-3	100	300	100	1	G1
59/3	3/42	100	300	100	2	G2
71/3	3/68	100	300	100	1	G3
2/3	3/14	100	300	100	0	Control sample

Table 9 Flexural strength test result for 28 days LW concrete with glass fiber

Average (MPa)	Modulus of rupture (MPa)	Sample high (mm)	Sample length (mm)	Sample width (mm)	Sample 19 mm glass fiber (kg/m³)	Design
1/4	BASE-3	100	300	100	1	G1
4/17	26/4	100	300	100	2	G2
4/33	47/4	100	300	100	2	G3
3/9	77/3	100	300	100	2	Control sample

Citation: Amani N, Sabamehr A, Tayebi H. Behavioral compression of polyolfin-aramid fiber and glass fiber on flexural strength of leca concrete. *MOJ Civil Eng.*, 2018;4(1):48-55. DOI: 10.15406/mojce.2018.04.00096
Behavioral compression of polyolfin-aramid fiber and glass fiber on flexural strength of leca concrete

The Comparison of flexural strength results

In Figures 7&8, the LECA concrete with glass and polyolefin fibers are compared in terms of their flexural strength.

Conclusions

This study investigated the effect of Polyolefin Aramid and glass fiber based on flexural strength of LECA concrete. The amounts of used Polyolefin Aramid are 5, 5.2 and 5.7 in each cubic meter and 3, 5.4 and 6 for glass.

According to the indicated researches and tests, following results are obtained:

a) Polyolefin Aramid and glass fiber cause to increase the flexural strength in LECA concrete.

b) Increase strength of LECA concrete directly depends on the length and thickness of used fiber.

c) Using Polyolefin affect on increasing the flexural strength of LECA concrete which enhance around 45%. In addition, the flexural strength will be enhanced by adding the number of fiber.

d) Glass fiber results in increasing the flexural strength of LECA concrete which raise around 18%. Furthermore, the flexural strength will be increased by adding the number of fiber.

e) The flexural strength of samples increase with polyolefin fiber rather than glass fiber because of long length of polyolefin fiber and its material and thickness.

f) Due to 3-D reinforcing the concrete with fiber and distribute the fiber randomly, as long as the number of tests increase, the results will be more accurate.
Acknowledgments

None.

Conflicts of interest
The authors declare there is no conflict of interest.

Funding

None.

References
1. ACI 213R-87. Guide for Structural Lightweight Aggregate Concrete, American Concrete Institute, USA; 1999.
2. Tittarelli F, Carsana M, Ruello ML. Effect of hydrophobic admixture and recycled aggregate on physical-mechanical properties and durability aspects of no-fines concrete. Construction and Building Materials. 2014;66:30‒37.
3. Song G, Wang L, Deng L, et al. Mechanical characterization and inclusion based boundary element modeling of lightweight concrete containing foam particles. Mechanics of Materials. 2015;91(1):208‒225.
4. ASTM C330. Specification for Lightweight Aggregates for Structural Concrete. American Society of Testing Material, USA; 2004.
5. Alberti MG, Enfedaque A, Galvez JC. Comparison between polyolefin fibre reinforced vibrated conventional concrete and self-compacting concrete. Construction and Building Materials. 2015;85:182‒194.
6. ACI 544 3 R-84. Report, ACI Proc. 1984;81:140‒48.
7. Shah SP. Fiber Reinforced Concrete, in Handbook of Structural Concrete, New York, USA: McGraw-Hill Book Company; 1984.
8. Lipatov YV, Gutnikov SI, Manylov MS, et al. High alkali-resistant basalt fiber for reinforcing concrete. Materials and Design. 2015;73:60-66.
9. BS 1881. Testing Concrete, British Standard, USA; 1983.
10. ASTM C293. Standard Test Method for Flexural Strength of Concrete, USA: American Society of Testing Material; 2012.
11. Kumar PM, Paulo JM. Concrete (Microstructure, Properties, and Materials), New York, USA: McGraw-Hill; 2014.
12. ASTM, C150. Standard Specification for Portland Cement, USA: American Society of Testing Material; 2012.
13. Sanjuan MA, Argiz C, Galvez JC, et al. Effect of silica fume fineness on the improvement of Portland cement strength performance. Construction and Building Materials. 2015;96:55‒64.
14. ASTM C1202. Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, USA: American Society of Testing Material; 2012.
15. ASTM C33m. Standard Specification for Concrete Aggregates, USA: American Society of Testing Material; 2013.
16. Alberti MG, Enfedaque A, Gálvez JC, et al. Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions. Materials and Design. 2015;60:57‒65.
17. Yoo DY, Zi G, Kang ST, et al. Biaxial flexural behavior of ultra-high-performance fiber-reinforced concrete with different fiber lengths and placement methods. Cement and Concrete Composites. 2015;63:51‒66.
18. Wang L, Zhang J, Yang X, et al. Flexural properties of epoxy syntactic Foams reinforced by fiberglass mesh and/or short glass fiber. Materials and Design. 2014;55:929‒936.
19. Majumdar AJ. Glass Fiber Reinforced Cement and Gypsum Products, Proc R Soc London A. 1970;319:69‒78.
20. Hamad AJ. Size and shape effect of specimen on the compressive strength of HPLWFC reinforced With glass fibres. Journal of King Saud University - Engineering Sciences in press. 2015;29(4):373–380.

Figure 8 The enhancement process of 28 days flexural strength with polyolefin aramid and glass fiber.
21. ACI. Standard Practice for Selecting Proportions for Normal, Heavy-Weight and Mass Concrete, Manual of concrete Practice, USA; 1991.
22. Neville AM. Properties of Concrete, Pitman publishing inc, Marshfield Mass, USA, 1981.
23. Ardakani A, Yazdani M. The Relation between particle density and static elastic module of lightweight expanded clay aggregates. Applied Clay Science. 2014;93-94:28‒34.
24. Cement Concrete & Aggregates Australia. CONCRETE BASICS A Guide to Concrete Practice, Australia, 2004.
25. ASTM, C192. Making and Curing Concrete Test Specimens in the Laboratory, Annual Book of ASTM, USA; 2002.
26. Khaled M, Özugur E, Tahir Ç. Relationship between flexural toughness energy and impact energy of high strength fiber reinforced concrete (HSFRC). Materiales de Construcción. 2001;51(262):5‒13.