Charged-particle decays of highly excited states in 19F.

P. Adsley1, F. Hammache1, N. de Sévéille, M. Assie1, D. Beaumel1, M. Chabot1, M. Degerlier1, C. Delafosse1, F. Flavigny1, A. Georgiadou1, J. Guillot1, V. Guimarães1, A. Gottardo1, I. Matea1, L. Olivier1, L. Perrot1, I. Stefan1, A. Laird2, S. P. Fox2, R. Garg2, S. Gillespie2, J. Riley2, J. Kiener3, A. Lefebvre-Schuhl3, V. Tatischeff3, and I. Sivacek4

1 Institut Physique Nucléaire d’Orsay, UMR8608, CNRS-IN2P3, Université Paris Sud 11, 91406 Orsay, France
2 Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom
3 Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Univ. Paris-Sud, Université ParisSaclay, Bâtiment 104, F91405 Orsay Campus, France
4 ASCR-Rez, CZ-250 68, Rez, Czech Republic

Abstract. Neutron-capture reactions on 18F in the helium-burning shell play an important role in the production of 15N during core-collapse supernovae. The competition between the 18F($n,p/\alpha$)18O/15N reactions controls the amount of 15N produced. The strengths of these reactions depend on the decay branching ratios of states in 19F above the neutron threshold. We report on an experiment investigating the decay branching ratios of these states in order to better constrain the strengths of the reactions.

Keywords: nuclear astrophysics, core-collapse supernovae, explosive nucleosynthesis, magnetic spectrometers, silicon detectors

1 Astrophysical Background

Spatially correlated hot-spots of 15N and 18O have been observed in grains which originate from core-collapse supernovae [1]. In the helium-burning shell, 14N produced during the CNO cycles is converted into 18F and 18O by 14N(α,γ)18F(β^+)18O. During the supernovae the 18O(α,n)21Ne reaction activates releasing neutrons and causing 18F($n,p/\alpha$)18O/15N reactions. The amounts of 15N and 18O produced depend sensitively on the relative strength of the 18F($n,p/\alpha$)18O/15N reactions [2] determined by 19F states above the neutron threshold. At present, the astrophysical reaction rates used for astrophysical models are based on statistical-model calculations [2]: as 19F is known to exhibit strong clustering behaviour [3] statistical-model calculations may be inappropriate.

Direct measurement of the pertinent cross sections is extremely challenging as neither neutrons nor 18F may be easily fashioned into targets. Instead, the
rates may be calculated from detailed knowledge of the properties (energies, total and partial widths, and spins and parities) of the nuclear states above the neutron threshold in 19F.

We report a study of excited states by 19F(p,p') to constrain the 18F$(n,p)^{18}$O and 18F$(n,\alpha)^{15}$N reaction rates.

2 Experimental Setup

A 15-MeV proton beam from the Orsay tandem was incident upon a 90-µg/cm2 LiF foil on a carbon backing located at the target position of the ‘Split-Pole’ Enge magnetic spectrometer. Scattered particles were momentum analysed in the spectrometer and detected at the focal plane in a position-sensitive gas detector, a gas proportional detector and a plastic scintillator.

Charged particles decaying from the populated states in 19F were detected in an array of six W1 double-sided silicon strip detectors (DSSSDs). As the beamstop was located within the scattering chamber of the spectrometer, a steel shield was placed in the chamber to reduce the background seen by the silicon detectors.

3 Data Analysis and Preliminary Results

Figure 1 shows the coincidence spectrum where there is a hit in the focal plane and a hit in a silicon detector after imposing certain conditions on the data to check for good hits in the silicon detectors.

The focal-plane spectra gated on a particular decay channel could then be constructed by selecting those events where the ‘missing’ energy corresponded to the separation energy for the channel of interest. Excitation-energy spectra for the singles events, the α_0-decay-gated events and the p_0-decay-gated events are shown in Figure 2.

Once the various spectra have been generated they are fitted to extract information on the state parameters e.g. the excitation energies, total widths and decay branches. We started by fitting the spectra using known state information taken from the ENSDF database \cite{4}. However, we found that a number of states which have been observed in resonance reaction measurements particularly of 18O$(p,\alpha)^{15}$N \cite{5,6,7} have been omitted by the compilers of the nuclear data-sheets \cite{8} complicating the analysis as well-defined physical parameters for these states are not available and the present experiment is unable to resolve them.

The first important observation from the present experiment is the weakness of the proton decays for many of the excited states. We can compare the ratios of the observed branching ratios to the reaction rates from statistical-model calculations \cite{9}. The calculations predict that the 18F$(n,\alpha)^{15}$N reaction rate should be around three times stronger than the 18F$(n,p)^{18}$O reaction. From the results of the present experiment, we find that the 18F$(n,p)^{18}$O reaction rate is much weaker relative to the 18F$(n,\alpha)^{15}$N reaction rate than that predicted using TALYS with a corresponding increase in the production of 15N in supernovae.
Charged-particle decays of highly excited states in ^{19}F.

Fig. 1. Magnetic rigidity against the energy detected in the silicon detectors for detector number 5. The α_0 and p_0 loci are marked. The other loci are due to exited states in ^{12}C from the target backing breaking up and competing coincidence channels such as $^{19}\text{F}(p, \alpha)^{16}\text{O}(p)$ reactions.

Fig. 2. (Top) Singles excitation-energy spectrum. (Bottom) Excitation-energy spectra gated on α_0 (blue) and p_0 (red) decays.
4 Outlook

More 19F(p,p') data have been collected using the Q3D magnetic spectrometer at MLL, Garching in July 2018. The excitation-energy resolution achievable in this case is around 5 keV [10] which is around a factor of three better than the current experiment. This should allow for the states in the region of interest to be better resolved and used to guide the future progress of the coincidence analysis.

References

1. Evan Groopman, Thomas Bernatowicz, and Ernst Zinner: C, N, and O isotopic heterogeneities in low-density supernova graphite grains from Orgueil. The Astrophysical Journal Letters, Volume 754, Number 1 L8 (2012).
2. Michael J. Bojazi and Bradley S. Meyer: Explosive nucleosynthesis of 15N in a massive-star model. Physical Review C 89 025807 (2014).
3. B. Buck and A.A. Pilt: Alpha-particle and triton cluster states in 19F. Nuclear Physics A 280 133-160 (1977)
 Z. Q. Mao, H. T. Fortune, and A. G. Lacaze: Alpha-particle spectroscopic strengths in 19F and 20Ne. Physical Review C 53, 1197 (1996).
4. Evaluated Nuclear Structure Data File. http://www.nndc.bnl.gov/ensdf/.
5. Carlson, R. R. and Kim, C. C. and Jacobs, J. A. and Barnard, A. C. L.: Elastic Scattering and Reactions of Protons on O18. Physical Review, 122 607 (1961).
6. S. Gorodetzky and M. Port and J. Graff and J.M. Thirion: Niveaux excités du F19 par l’étude de la réaction 18O$(p,\alpha_0)^{15}$N entre 2.2 et 6 MeV (Excited levels of 19F by the study of the reaction 18O$(p,\alpha_0)^{15}$N between 2.2 and 6 MeV). Nuclear Physics, 42 462-468 (1963).
7. S. Gorodetzky, M. Port, J. Graff et J.M. Thirion: Niveaux excités du 19F par l’étude de la réaction 18O$(p,\alpha_0)^{15}$N (Excited levels of 19F by the study of the reaction 18O$(p,\alpha_0)^{15}$N). J. Phys. France 24, 978-983 (1963).
8. F.Ajzenberg-Selove: Energy levels of light nuclei A = 1820. Nuclear Physics A, 392 1-184 (1983).
9. A.J. Koning, S. Hilaire and M.C. Duijvestijn, “TALYS-1.0”, Proceedings of the International Conference on Nuclear Data for Science and Technology - ND2007, April 22-27, 2007, Nice, France, eds. O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin and S. Leray, EDP Sciences, 2008, p. 211-214.
10. P Adsley, JW Brmmer, T Faestermann, SP Fox, F Hammache, R Hertenberger, A Meyer, R Neveling, D Seiler, N de Séréville, H-F Wirth: High-resolution study of levels in the astrophysically important nucleus 26Mg and resulting updated level assignments. Physical Review C, 97 045807 (2018).