CENOECOLOGICAL CHARACTERISTICS OF GREEK MAPLE (ACER HELDREICHII ORPH.) IN SERBIA

PEROVIĆ, M.* – CVJETIČANIN, R. – NOVAKOVIĆ-VUKOVIĆ, M.

Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, Belgrade, Serbia

*Corresponding author
e-mail: marko.perovic@sfb.bg.ac.rs; phone: +381-11-305-3801

(Received 27th Jan 2022; accepted 20th Jun 2022)

Abstract. This paper deals with the cenoecological characteristics of Greek maple (Acer heldreichii Orph.) in Serbia, a subendemic species of the Balkan Peninsula which is a strictly protected species in Serbia. The research included the six most representative Greek maple localities in Serbia. Plant communities were defined according to standard Braun-Blanquet method. Ecological spectra (life forms, plant relation to moisture, soil reaction, nitrogen content in soil, light and warmth), as well as chorological spectra were produced. CA vegetation analysis was done using software CANOCO 4.5. It is concluded that Greek maple in Serbia occurs in two plant communities: as a dominant species in beech-Greek maple community (Aceri heldreichii-Fagetum B. Jov. 1957) and as a differential species in beech-fir-spruce community (Piceo-Abietetum Čolić 1965 subass. aceretosum heldreichii). CA analysis distinguishes phytocoenological relevés in three groups. According to life forms spectrum, plant communities have hemicryptophyte-geophyte-phanerophyte character. According to moisture requirement they are mesophilous, according to soil reaction they are mostly neutrophilous, to soil nitrogen content communities are mostly mesotrophic. According to light requirements they range from shade tolerant to semitolerant, and according to the temperature they are mesothermic. Results of chorological analysis show that the Central European floral group is the most frequent, which indicates the mesophilous character of the communities.

Keywords: endemic, ecology, Balkans, primeval forests, plant community

Introduction

Greek maple (Acer heldreichii Orph.) is a native woody plant species in the flora of Serbia, which represents subendemic species of the Balkan Peninsula and a tertiary relic (Zoranović et al., 2021). This species is strictly protected in Serbia (Službeni glasnik Republike Srbije, 2011). Greek maple is montane species and occurs only at altitudes of 900–2100 m, while individually stretches above the timberline (Alexandrov and Pandeva, 2003). Its ability to grow in conditions suitable only to small number of tree species, stresses its ecological importance on natural sites, where this species protects the soil from erosion, improves ecological conditions for other plant species and provides food and shelter for various animal species. In Serbia, this species was recorded on the following mountains: Rudnik, Goć, Željin, Jastrebac, Tara, Javor, Golić, Kopaonik, Javorje, Stara Planina, Prokletije, Žljeb and Šarplanina (Cvjetićanin and Perović, 2016). According to the data of Serbian National Forest Inventory (Banković et al., 2009), there are totally 816528 individual trees of this species, with a volume of 95318 m³, and a volume increment of 3179 m³.

Taxon Acer heldreichii subs. heldreichii is endemic in the Balkan Peninsula and grows in Serbia, Bosnia and Herzegovina, Montenegro, Northern Macedonia, Bulgaria, Greece and Albania (Perović et al., 2021), while on Caucasus Mt. occurs Acer heldreichii subsp. trautvetteri (Medvedev) Murray. Greek maple taxonomically belongs
to section Acer L., series Acer, so its closest relatives are *Acer pseudoplatanus* L., *A. velutinum* Boiss. and *A. caesium* Wallich ex Grandis (van Gelderen et al., 2010).

This paper investigates cenoecology of Greek maple in Serbia. This species has limited distribution and commercial importance and it was not extensively researched in the past. Since genetic variation is considered an important factor in determining the survival of species in a changing environment and is a fundamental component of biodiversity (Yeon et al., 2021), results of this research, which contribute to the better knowledge of ecological characteristics of Greek maple, will enable more efficient protection and *in situ* conservation of gene pool of this strictly protected species.

Materials and methods

The research was conducted in year 2014. on six localities in Serbia, on the following mountains: Rudnik, Goč, Jastrebac, Stara Planina, Golija and Javorje (Fig. 1). The following localities contain the most abundant Greek maple populations in Serbia, with the exception of locality Rudnik, where this species is sparse, but it presents the northernmost border of its global distribution. Coordinates of researched populations are presented in *Table 1*.

Locality	Coordinates	Elevation (m a.s.l.)
Rudnik	44° 08’ N; 20° 32’ E	1000-1100
Golija	43°21’ N; 20°16’ E	1400-1700
Goč	43°32’ N; 20°47’ E	1400-1550
Jastrebac	43°24’ N; 21°26’ E	1350-1450
Javorje	43°33’ N; 19°19’ E	1300-1400
Stara planina	43°20’ N; 22°47’ E	1500-1600

Phytocoenological research was conducted by standard method of Braun-Blanquet (Braun-Blanquet, 1964), based on 45 collected phytocoenological relevés, 10 relevés per localities Jastrebac, Goč and Golija, and 5 relevés per localities Rudnik, Javorje and Stara Planina (Perović, 2014). Determination of species was done by „Flora of Serbia” I-X (Josifović et al., 1972-1977; Sarić et al., 1986, 1992; Stevanović et al., 2012). Phytocoenological tables were made on the basis of collected phytocoecological relevés, and plant associations and subassociations were set apart. Names of plant associations were given according to „Codex of Phytocoenological Nomenclature” (Weber et al., 2006) and „Forest phytocenoses of Serbia” (Tomić and Rakonjac, 2013). On the basis of the produced phytocoenological tables, ecological and chorological spectra were made using indicator values made by Kojić et al. (1997) and Ellenberg and Leuschner (2010). Ecological spectra include spectrum of life forms and spectra of ecological characteristics (plant relation to moisture, soil reaction, soil nitrogen content, light and warmth). Also, the chorological spectrum was made according to Gajić (1980, 1984). CA vegetation analysis was made using software CANOCO 4.5 (Lepš, Šmilauer, 2002). Transformation of frequency and coverage values for every species was conducted according to method of Van Der Maarel (1979).
Figure 1. Map of Serbia with position of researched Greek maple populations. Legend: 1. Rudnik; 2. Goč; 3. Jastrebac; 4. Golija; 5. Javorje; 6. Stara Planina

Orographic characteristics were determined in the field on all researched sites, and include: elevation, aspect and inclination.

Results and discussion

Coenological characteristics

It is determined that Greek maple (Acer heldreichii Orph.) in researched localities grows only in montane vegetation zone, mainly at elevations 1300-1700 m a.s.l., and only in Rudnik it descends to 1000-1100 m a.s.l. This maple grows in various aspects, but mostly in the cold and moist (northern, northwestern), and it was not recorded in the southern aspect. It usually grows on areas without pronounced inclinations, from flat (inclination 0°), to moderately steep terrains (inclination 15-25°), rarely on steeper slopes.

The presented phytocoenological tables contain 97 vascular plant species. In the researched localities, Greek maple occurs in two plant communities. It mostly occurs as a codominant species in plant communities with beech, and builds mixed forest of beech and Greek maple (Aceri heldreichii-Fagetum B. Jov. 1957) (localities Rudnik, Goč, Jastrebac and Javorje; Fig. 2), where this species reaches its coenological optimum (Milošević and Novaković-Vuković, 2019). In this association, 71 vascular plant species were recorded in 30 phytocoenological relevés. Within this association, two
subassociations were set apart - subass. typicum and subass. carpinetosum betuli. Subass. typicum is placed within subalpine vegetation zone where populations from localities Goč, Jastrebac and Javorje belong, while subass. carpinetosum betuli, recorded on Rudnik, develops in montane vegetation zone, on the lowest recorded elevations for Greek maple in Serbia. Within subass. typicum beech and Greek maple completely dominate in tree and shrub layer, with very low number of individuals of other tree species. The most frequent species in the ground layer are Rubus hirtus Waldst&Kit., Dryopteris filix mas (L.) Schott, Glechoma hirsuta Waldst&Kit. and Acer heldreichii Orph. regeneration. In subass. carpinetosum betuli Greek maple grows in warmer conditions compared to typical Aceri heldreichii-Fagetum subas. typicum community, which influences floristic composition of carpinetosum betuli subassociation, characterized by higher number of plant species not recorded in typical beech and Greek maple community. It mostly refers to the presence of typical mesophyte, common hornbeam (Carpinus betulus L.), which is a differential species of Aceri heldreichii-Fagetum subass. carpinetosum betuli community. Tree layer is much more diverse than in subassociation typicum, so apart from beech, Greek maple and hornbeam, Acer platanoides L., Acer pseudoplatanus L. and Tilia cordata Mill have significant participation. Warmer climate in which this community develops favours development of phanerophytes. Shrub layer is completely dominated by regeneration of beech, and to a lesser degree of Greek maple. The most frequent species in the ground layer are Rubus hirtus Waldst&Kit., Dryopteris filix mas (L.) Schott, Glechoma hirsuta Waldst&Kit., Lamium galeobdolon (L.)Ehrend., Athyrium filix femina (L.) Roth and Polystichum aculeatum (L.) Roth (Perović and Cvjetićanin, 2009).

Apart from mixed forests with beech, Greek maple occurs as a differential species in beech-fir-spruce mixed forests with Greek maple (ass. Piceo-Abietetum Čolić 1965 subass. aceretosum heldreichii, syn. Piceo-Fago-Abietetum Čolić 1965, subass. heldreichietosum) (on Golija and Stara planina; Fig. 3). In 16 researched phytocoenological relevés of this association, 51 vascular plant species were recorded. Dominant species in the tree layer are Picea abies (L.) Karst., Fagus sylvatica L. subsp. moesiaca (Maly)Szafer and Acer heldreichii Orph. were recorded in almost all relevés, while Abies alba Mill. and Sorbus aucuparia L also showed significant presence.
Relatively low participation of fir (presence level II) is probably the consequence of anthropogenic influence in the past, to which fir poorly adapted, being ecologically stenovalent species, compared to, in present site conditions, biologically stronger species of beech and spruce. Also, anthropogenic factor caused secondary increase of Greek maple abundance in this sites, because this species, being protected by law, stands outside of forest management regime and thus competes easier with dominant tree species in this community. In the shrub layer the most frequent species are *Fagus sylvatica* L. *subsp. moesiaca* (Maly)Szafer, *Acer heldreichii* Orph. and *Sorbus aucuparia* L. In the ground layer, the most frequent species are *Rubus hirtus* Waldst&Kit., *Dryopteris filix mas* (L.)Schott, *Lamium galeobdolon* (L.) Ehrend, *Veratrum album* L., *Adenostyles alliariae* (Gouan) A. Kern., *Gentiana asclepiadea* L., *Prenanthes purpurea* L., *Polygonatum verticillatum* (L.) Al, *Poa nemoralis* L., *Rubus idaeus* L., and *Acer heldreichii* Orph regeneration.

Figure 3. Forest of beech, spruce and fir with Greek maple, Golija Mt.

Forests with Greek maple on Golija were described in the past also as mixed beech and spruce forests, where Greek maple presents differential species, specified as association *Piceeto-Fagetum silicicolum*, subass. *heldreichietosum* Gajić 1989 (Gajić, 1989). Considering that this mixed beech-spruce community was described in zone where climax beech-fir-spruce forests develop in Serbia (Tomić, 2004), and that individual fir specimens also occur in that community, it is very likely that in this case occurs degraded beech-fir-spruce community *Piceo-Abietetum* Čolić 65 (syn. *Piceo-Fago-Abietetum* Col. 1965), where the fir was almost completely eradicated due to negative anthropogenic influence. Thus recent phytocoenological nomenclature (Tomić, 2006; Tomić and Rakonjac, 2013) does not accept existence of mixed beech and spruce forests without fir, although they are recorded in several localities in Serbia.

Greek maple mostly builds mixed forests with subalpine beech, and very rarely with spruce, due to its lower frost tolerance compared with spruce, and its similarity to beech in this regard. So, Kojić et al. (1997) put Greek maple and beech in the group of mesothermic species, while spruce is treated as microthermic mesothermic species. That is the reason that Greek maple in Serbia mostly occurs in conditions with increased maritime climate which is closer to climate conditions of the western part of the Balkan Peninsula. However, Greek maple is more microthermic species than beech and better
tolerates late spring frosts, which enables it to occur at higher elevations than beech that forms on some mountains narrow vegetation belt above subalpine beech belt, or to occur in pure stands within subalpine beech belt (Lakušić, 1989).

Results of CA analysis showed that phytocoenological releves form three groups (Fig. 4), where the left side of the graph contains relevés of mostly beech forests species, while the right side contains relevés of conifer forests species as well. High floristical similarity was observed among relevés from localities Javorje, Goč, Rudnik and Jastrebac (where Greek maple builds mixed forests with beech). On these localities, apart from domination of beech (*Fagus sylvatica* L. subsp. *moesiaca* (Maly)Szafer) and Greek maple (*Acer heldreichii* Orph.), typical species of beech forests occur (Fig. 5): *Lunaria rediviva* L., *Daphne mezereum* L, *Geranium macrorrhizum* L., *Salvia glutinosa* L. etc. The other group involves releves from Stara planina. In this group, the occurrence of conifer forest species can be observed, with segregated fir (*Abies alba* Mill). Apart from fir, typical species of beech-fir or spruce forests are: *Vaccinium myrtillus* L., *Prenanthes purpurea* L., *Rubus idaeus* L., *Sorbus aucuparia* L. etc. The third group contains relevés from Golija. It contains even more pronounced participation of conifer forest elements, with increasing disappearance of elements of broadleaf forest. Dominant elements are these of subalpine conifer forests: *Picea abies* Karst, *Abies alba* Mill., *Sorbus aucuparia* L, *Gentiana asclepiadea* L. etc.

![Figure 4. CA ordination bi-plot for relevés, (○ - relevé representation), relevés from: 1-10 Jastrebac; 11-20 Goč; 21-25 Javorje; 26-30 Rudnik; 31-40 Golija; 41-45 Stara planina](image-url)

Greek maple in Serbia mostly occurs in vegetation zone of subalpine beech forests, where apart from being a mixed species, it can be a dominant species of beech-Greek maple forests (*Aceri heldreichii-Fagetum* Jov. 1957) (Mišić, 1997). Much more rarely, it grows in spruce forest zones.
On Ozren mountain in southwestern Serbia, plant community *Pancicio-Aceri heldreichii-Piceetum abietis* Matović 1993 was described, where dominant species are Greek maple and endemic herbacious species of *Pancitia serbica* Vis. This community is of secondary character and represents progradation phase of vegetation development on devastated site of beech-fir-spruce forest. Greek maple, which were mixed species in the previously mentioned primary community, increased its frequency and took position of dominant species, while *Pancitia serbica* Vis., together with other mesophilous species, penetrated from surrounding meadows in thinned forest and became dominant in ground layer (Rakonjac, 2002).

Ecological spectra

Table 2 shows that hemicryptophytes absolutely dominate in both communities, with 54%, i.e. 59% of all plant species. Dominance of hemicryptophytes is expected since this life form is most abundant in the Serbian flora and also represents dominant life
form in the temperate climate (Diklić, 1984). Both communities show hemicryptophytic-geophytic-phanerophytic character. Community *Piceo-Abietetum* contains somewhat lower share of geophytes and therophytes compared to community *Aceri heldreichii-Fagetum*. Higher share of geophytes was observed (16% in *Piceo-Abietetum* and 21% in *Aceri heldreichii-Fagetum* community) compared to normal life form spectrum in Serbia, where this life form participates with 9% (Jovanović, 2007). This was due to low winter temperatures on researched localities, which resulted in short vegetation period, so the accumulation of nutrients in underground parts enabled flowering of plants at the beginning of the vegetation period (Stevanović and Janković, 2014), when temperature conditions are still unfavorable for photosynthesis. Community of beech and Greek maple contains slightly higher number of geophytes than beech-fir-spruce community. Diklić (1984) states that the highest participation of geophytes occurs in beech forests. This phenomenon is caused by pronounced seasonal light differences in beech forests, which have a very shade tolerant character after leaf development, so they contain significant number of efemorophytes, which finish their life cycle within a very short period (Allaby et al., 2015).

Table 2. Spectrum of life forms (vascular plant species number and their percentage share)

Plant community	Life forms				
	Phanerophytes	Chamaephytes	Hemicryptophytes	Geophytes	Therophytes
Aceri heldreichii-Fagetum	12 (17%)	1 (1%)	38 (54%)	15 (21%)	5 (7%)
Piceo-Abietetum subass. aceretosum heldreichii	10 (20%)	2 (4%)	30 (59%)	8 (16%)	1 (2%)

Table 3 shows that mesophytes absolutely dominate in both communities (98% of mesophytes and submesophytes in community *Piceo-Abietetum*, and 93% in community *Aceri heldreichii-Fagetum*), so both communities are strongly mesophilous.

Table 3. Relation of plant species toward soil moisture (vascular plant species number and their percentage share)

Plant community	Ecological groups of plants			
	Xerophytes	Subxerophytes	Submesophytes	Mesophytes
Aceri heldreichii-Fagetum	1 (1%)	4 (6%)	53 (75%)	13 (18%)
Piceo-Abietetum subass. aceretosum heldreichii	-	1 (2%)	44 (86%)	6 (12%)

Table 4 shows that both plant communities have neutrophilous character (48% neutrophilous species in *Aceri heldreichii-Fagetum*, and 45% in *Piceo-Abietetum* community). It can be noted that community *Piceo-Abietetum* contains lower share of alkaliphilous species in comparison with *Aceri heldreichii-Fagetum* (14% to 25%), which is caused by high soil acidification in this community.

Table 5 shows that both communities have mesophilic character, with participation of mesophitic species of 56%, i.e. 52%. That confirms the observation that Greek maple occurs on relatively favorable sites, with developed soil profiles, well provided with nutrients (Lakušuć, 1989). Its main associate, beech is also a typical mesotrophic species (Houston Durrant et al., 2016). There is a slight increase of eutrophic and significant decrease of oligotrophic species in community *Aceri heldreichii-Fagetum* compared to community *Piceo-Abietetum* (7% of oligotrophic species compared to 20%
in *Piceo-Abietetum*), which implies that forest of beech and Greek maple is more favorable for plant species development regarding nutrient supply.

Table 4. Relation of plant species toward soil reaction (vascular plant species number and their percentage share)

Plant community	Ecological groups of plants				
	Acidophiles	Acidophiles-neutrophiles	Neutrophiles	Neutrophiles-alkaliphiles	Indifferent species
Aceri heldreichii–Fagetum	1 (1%)	2 (3%)	34 (48%)	18 (25%)	16 (23%)
Piceo-Abietetum subass. aceretosum heldreichii*	1 (2%)	4 (8%)	23 (45%)	7 (14%)	16 (31%)

Table 5. Relation of plant species toward nitrogen content in soil (vascular plant species number and their percentage share)

Plant community	Ecological groups of plants			
	Oligotrophes-mesotrophes	Mesotrophes	Mesotrophes-eutrophes	Eutrophes
Aceri heldreichii-Fagetum	5 (7%)	40 (56%)	23 (32%)	3 (4%)
Piceo-Abietetum subass. aceretosum heldreichii*	10 (20%)	27 (53%)	14 (27%)	

Table 6. Relation of plant species toward light (vascular plant species number and their percentage share)

Plant community	Ecological groups of plants			
	Tolerant	Tolerant-semitolerant	Semitolerant	Semitolerant-intolerant
Aceri heldreichii-Fagetum	2 (3%)	33 (46%)	28 (39%)	8 (11%)
Piceo-Abietetum subass. aceretosum heldreichii*	3 (6%)	23 (45%)	19 (37%)	6 (12%)

Table 7 shows that both communities have mesothermic character (63%, i.e. 69% of mesothermic species). It is noted that community *Piceo-Abietetum* contains significantly lower number of mostly thermophilous species (8% compared to 21%), as well as increased participation of mostly microthermic species (24% compared to 15%) in relation to community *Aceri heldreichii-Fagetum*, which confirms that this community grows in colder climate conditions than the forest of beech and Greek maple.

Analysis of chorological spectra (*Tables 8* and 9) shows that both communities have mesophilous character, since central European chorological group is the most frequent (44% in *Aceri heldreichii-Fagetum* and 41% in *Piceo-Abietetum*). Members of this group optimally develop from submontane to subalpine areas and indicate dominantly mesophilous character (Gajić, 1984). Species of wide ecological amplitude (Eurasian, circumpolar and cosmopolitan floral groups) have significant presence in both
communities (40% in Piceo-Abietetum, and 34% in Aceri heldreichii-Fagetum). Community Piceo-Abietetum contains higher number of microthermic boreal species compared to Aceri heldreichii-Fagetum (12% to 4%), and smaller number of mostly thermophilous species of Submediterranean group (6% to 11%), which implies that this community occurs in colder climate conditions.

Table 7. Relation of plant species toward warmth (vascular plant species number and their percentage share)

Plant community	Ecological groups of plants			
	Microthermic-mesothermic	Mesothermic	Mesotermic-thermophilous	Thermophilous
Acerii heldreichii-Fagetum	11 (15%)	45 (63%)	13 (18%)	2 (3%)
Piceo-Abietetum subass. aceretosum heldreichii	12 (24%)	35 (69%)	3 (6%)	1 (2%)

Table 8. Spectrum of floral elements in community Aceri heldreichii-Fagetum

Group of floral elements	Vascular plant species number and their percentage share
Central European	31 (44%)
Eurasian	15 (21%)
Circumpolar and cosmopolitan	9 (13%)
Submediterranean	8 (11%)
Pontic-Central Asian	5 (7%)
Boreal	3 (4%)

Table 9. Spectrum of floral elements in community Piceo-Abietetum subass. aceretosum heldreichii

Group of floral elements	Vascular plant species number and their percentage share
Central European	21 (41%)
Eurasian	10 (20%)
Circumpolar and cosmopolitan	10 (20%)
Boreal	6 (12%)
Submediterranean	3 (6%)
Pontic-Central Asian	1 (2%)

Conclusions

Based on the analysis of 45 phytocoenological relevés from the six most important Greek maple (*Acer heldreichii* Orph.) localities in Serbia, it is determined that this species occurs in two plant communities: as a dominant species in beech-Greek maple community (*Aceri heldreichii-Fagetum* B. Jov. 1957) (on Rudnik, Goč, Jastrebac and Javorje) and as a differential species in beech-fir-spruce community (*Piceo-Abietetum* Čolić 1965 subass. *aceretosum heldreichii* (syn. *Piceo-Fago-Abietetum* Čolić 1965), subass. *heldreichiotosum*) (on Golija and Stara Planina). Within association *Aceri heldreichii-Fagetum* B. Jov. 1957 two subassociations were set apart: subass. *typicum* and subass. *carpinetosum betuli*, which was recorded only on Rudnik. Subassociation *carpinetosum betuli* occurs at lower elevations and warmer climate conditions.
compared to subass. typicum and it is characterized by the presence of common hornbeam (*Carpinus betulus* L.), as a differential species.

CA analysis distinguishes three groups of phytocoenological relevés. There is high floristical similarity among relevés from localities Javorje, Goč, Rudnik and Jastrebac (where Greek maple builds mixed forests with beech). The other group are relevés from Stara Planina, where the occurrence of conifer forest species can be observed, and the third group are relevés from Golija, with more pronounced participation of conifer forest elements, and increasing disappearance of elements of broadleaf forest.

On the basis of ecological characteristics analysis, it is noted that both communities possess hemicryptophyte-geophyte-phanerophyte character according to life forms spectrum. According to moisture requirement they are strongly mesophilous. According to soil reaction both communities are mostly neutrophilous. Community *Piceo-Abietetum* contains less species with alkaline character compared to *Aceri heldreichii-Fagetum*, which is conditioned by higher soil acidification in this community. According to soil nitrogen content, both communities are mostly mesotrophic. Community *Aceri heldreichii-Fagetum* contains less oligotrophic species, so it is more favorable for plant species development regarding nutrient supply. According to light requirements both communities are shade tolerant to semitolerant, and according to the temperature they are mesothermic, noted that community *Piceo abietetum* subass. *aceretosum heldreichii* is more microthermic compared to community *Aceri heldreichii-Fagetum*. According to floral elements analysis, the Centraleuropean floral group is the most frequent in both investigated communities, which indicates their mesophilous character. Community *Piceo-Abietetum* is more microthermic compared to community *Aceri heldreichii-Fagetum*, because it contains double share of species which belong to boreal and arctic-alpine floral groups.

Since this research comprised all significant sites of Greek maple throughout Serbia, its results will contribute to better understanding of the Greek maple ecological characteristics, which is a protected species in several countries, and will enable its more efficient protection and *in situ* conservation of gene pool.

Acknowledgements. Ministry of Education, Science and Technological Development of Republic of Serbia finances research work of the University of Belgrade-Faculty of Forestry in the year 2022 according to the Contract about realization (record number 451-03-9/2022-14/200169).

REFERENCES

[1] Alexandrov, A., Pandeva, D. (2003): *Acer heldreichii* Orph. Ex Boiss. 1856. – In: Enzyklopađie der Holzgewächse, 34. Ergänzungslieferung, 12/03. Wiley-VCH Verlag GmbH, Weihheim, pp. 1-6.

[2] Allaby, M. (ed.) (2015): A Dictionary of Ecology. – Oxford University Press, Oxford.

[3] Banković, S., Medarević, M., Pantić, D., Petrović, N. (2009): Nacionalna inventura šuma Republike Srbije (National Forest Inventory of Republic of Serbia). – Ministarstvo poljoprivrede, šumarstva i vodoprivrede Srbije, Uprava za šume, Beograd.

[4] Braun-Blanquet, J. (1964): Pflanzensoziologie. Grundzüge der Vegetationskunde. – Springer, Wien.

[5] Cvjetićanin, R., Perović, M. (2016): Praktikum iz dendrologije (Guidebook of Dendrology). – Univerzitet u Beogradu-Šumarski fakultet.

[6] Diklić, N. (1984): Životne forme biljnih vrsta i biološki spektar flore SR Srbije (Plant Life Forms and Biological Spectum of Flora of Serbia). – In: Janković, M., Pantić, N.,
Mišić, V., Diklić, N., Gajić, M. (eds.) Vegetacija SR Srbije I Srpksa akademija nauka i umetnosti. Odjeljenje prirodno-matematičkih nauka, Beograd, pp. 291-316.

[7] Ellenberg, H., Leuschner, C. (2010): Vegetation Mitteleuropas mit den Alpen. – Utb Stuttgart.

[8] Gajić, M. (1980): Pregled vrsta flore SR Srbije sa biljnogeografskim oznakama (Conспектus of Species of Flora of Serbia with biogeographical indicators). – Glasnik Šumarskog fakulteta. Serija A-Šumarstvo 54, Beograd, pp. 111-141.

[9] Gajić, M. (1984): Florni elementi SR Srbije (Floral elements of Serbia). – In: Janković, M., Pantić, N., Mišić, V., Diklić, N., Gajić, M. (eds.) Vegetacija SR Srbije I. Srpksa akademija nauka i umetnosti. Odjeljenje prirodno-matematičkih nauka, Beograd, pp. 317-397.

[10] Gajić, M. (1989): Flora i vegetacija Golije i Javora (Flora and Vegetation of Golja and Javor). – Šumarski fakultet, Beograd i OOUR „Šumarsko Golija”, Ivanjica.

[11] Houston Durrant, H., de Riga, D., Caudullo, G. (2016): Fagus sylvatica. – In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (eds.) European Atlas of Forest tree Species. Publication Office of the European Union. Luxembourg, pp. 94-95.

[12] Josifović, M. (ed.) (1972-1977): Flora Srbije III-IX (Flora of Serbia III-IX). Srpksa akademija nauka i umetnosti. – Odjeljenje prirodno-matematičkih nauka, Beograd.

[13] Jovanović, B. (2007): Dendrologija (Dendrology). – Šumarski fakultet Univerziteta u Beogradu.

[14] Kojić, M., Popović, R., Karadžić, B. (1997): Vaskularne biljke Srbije kao indikatori staništa (Vascular plants of Serbia as site indicators). – Institut za istraživanja u poljoprivredi „Srbija” i Institut za biološka istraživanja „Šiniša Stanković”, Beograd.

[15] Lukušić, R. (1989): Ekologija biljaka I dio-idioekologija (Plant Ecology-I part-Idioecology). – Svjetlost. Sarajevo.

[16] Lepš, J., Šmilauer, P. (2002): Multivariate Analysis of Ecological Data. – Faculty of biological sciences, University of South Bohemia, České Budějovice.

[17] Milošević, R., Novaković-Vuković, M. (2019): Floristic characteristics of Greek maple forest (Aceri heldreichii Orph.) in the area of the Great Jastrebac (Serbia). – Fresenius Environmental Bulletin 28(8): 5719-5726.

[18] Mišić, V. (1997): Red šuma bukve-Fagetalia sylvaticae Pawl. 1928.-Podred šuma mezijske bukve-Fagenalia moesiacae B. Jov.1986 (Order of beech forests-Fagetalia sylvaticae Pawl. 1928.- Suborder of moesian Beech Forests- Fagenalia moesiacae B. Jov.1986). – In: Škorić, D. (ed.) Vegetacija Srbije II, Srpska akademija nauka i umetnosti, Beograd, pp. 159-270.

[19] Perović, M. (2014): Taksonomija i uticaj staništa na karakteristike planinskog javora (Acer heldreichii Orph.) u Srbiji (Taxonomy and site influence on characteristics of Greek maple (Acer heldreichii Orph.) in Serbia. – Doktorska disertacija u rukopisu, Univerzitet u Beogradu-Šumarski fakultet.

[20] Perović, M., Cvjetičanin, R. (2009): Ecological and floristic characteristics of the new subassociation Aceri heldreichii-Fagetum subass. carpinetosum betuli on mt. Rudnik. – Glasnik Šumarskog fakulteta 100, Beograd, pp. 179-190.

[21] Perović, M., Košanin, O., Cvjetičanin, R. (2021): Pedological characteristics of Greek maple (Acer heldreichii Orph.) sites in Serbia. – Proceedings of the 3rd international congress “Soils for future under global challenges”. Serbian Society of Soil Science, University of Belgrade-Faculty of Agriculture. Sokobanja September 21-24, 2021, pp. 99-113.

[22] Rakonjac, Lj. (2002): Šumska vegetacija i njena staništa na Pešterskoj visoravni kao osnova za uspešno pošumljavanje (Forest vegetation and its sites on Pešter Tableland as a basis for successful reforestation). – Doktorska disertacija u rukopisu. Univerzitet u Beogradu, Šumarski fakultet.
[23] Sarić, M. (ed.) (1992): Flora Srbije I (Flora of Serbia I). – Srpska akademija nauka i umetnosti, odeljenje prirodno-matematičkih nauka, Beograd.
[24] Sarić, M., Diklić, N. (eds.) (1986): Flora Srbije X (Flora of Serbia X). – Srpska akademija nauka i umetnosti, odeljenje prirodno-matematičkih nauka, Beograd.
[25] Službeni Glasnik Republike Srbije (2011): Pravilnik o proglašenju i zaštiti strogo zaštićenih i zaštićenih divljih vrsta biljaka, životinja i gljiva (Rulebook about declaring of strictly protected and protected wild species of plants, animals and fungi). – Službeni glasnik republike Srbije 47/2011.
[26] Stevanović, V. (ed.) (2012): Flora Srbije 2 (Flora of Serbia 2). – Srpska akademija nauka i umetnosti, Odeljenje hemijskih i bioloških nauka, Odbor za floru i vegetaciju Srbije, Beograd.
[27] Stevanović, B., Janković, M. (2014): Ekologija biljaka sa osnovama fiziološke ekologije biljaka (Plant ecology with fundamentals of physiological plant ecology). – NNK internacional, Beograd.
[28] Tomić, Z. (2004): Šumarska fito`gija (Forest Phytocoenology). – Šumarski fakultet Univerziteta u Beogradu.
[29] Tomić, Z. (2006): Pregled sintaksona šumske vegetacije Srbije (Conspectus of Sintaxa of Forest Vegetation of Serbia). – In: Škorić, D. (ed.), Vegetacija Srbije II2. Srpska akademija nauka i umetnosti, Odeljenje hemijskih i bioloških nauka, Beograd, pp. 287-304.
[30] Tomić, Z., Rakonjac, Lj. (2013): Forest phytocenoses of Serbia. A manual for foresters, ecologists and biologists. – University Singidunum, Faculty of Applied Ecology Futura, Institute of Forestry, Belgrade.
[31] van der Maarel, E. (1979): Transformation of cover-abundance values in phytosociology and its effects on community similarity. – Vegetatio 39(2): 97-114.
[32] van Gelderen, D., de Jong, P., Oterdoom, H. (2010): Maples of the world. – Timber Press, Portland-London.
[33] Weber, H., Moravec, J., Theurillat, J. (2006): Međunarodni kodeks fitocenološke nomenklature (International Codex of Phytocoenological Nomenclature). – Posebno izdanje. Institut za šumarstvo, Beograd.
[34] Yeon, M., Lee, S., Lee, Y., Kim, S. (2021): Genetic variation of Arctic Starflower (Trientalis europaea subsp. arctica (Fisch. ex Hook.) Hulten) (Primulaceae), an endangered herb species of South Korea: implications for conservation strategies. – Applied Ecology and Environmental Research 19(6): 4231-4249.
[35] Zoranović, N., Perović, M., Cvjetićanin, R. (2021): Taxonomical properties of Greek maple (Acer heldreichii Orph.) on Jahorina mountain in Bosnia and Herzegovina. – Proceedings of the XII international agricultural symposium “Agrosym 2021” Jahorina, October 7-10, 2021, pp. 1387-1392.
APPENDIX

Appendix 1. Phytocoenological table Aceri heldreichii-Fagetum community

Association	Aceri heldreichii – Fagetum B. Jov.	Carpinetosum betuli	
Subassociation	Jastrebac-V	Typicum	Rudnik-Srednji Šturac, Mali Šturac
Localities	Ėlika Dulica	Goč-Crni vrh	Ėlika Dulica
Releve number	1	1400	1400
Elevation (m)	1450	1450	1450
Aspect	W	SW	SW
Inclination (°)	20	15	10
Canopy	0.7	0.8	0.8
Average height (m)	16	17	18
Average diameter (cm)	40	40	40
Average distance (m)	5	5	6
Acer heldreichii Orph.	2.1	5.5	5.5
Fagus sylvatica L. subsp. moesica	2.2	+	+
Acer pseudoplatanus L.	+	+	+
Carpinus betulus L.	2.2	2.1	2.1
Acer platanoides L.	+	+	+
Tilia cordata Mill.	+	+	+

TREE LAYER

Presence level
Acer heldreichii Orph.
Fagus sylvatica L. subsp. moesica
Acer pseudoplatanus L.
Carpinus betulus L.
Acer platanoides L.
Tilia cordata Mill.

SHRUB LAYER

Presence level
Acer heldreichii Orph.
Sambucus nigra L.
Ground Layer

Species	Coverage	I	II	III
Rubus idaeus L.	1.2			
Acer platanoides L.	+			I
Acer pseudoplatanus L.	+			I
Carpinus betulus L.				I
Fraxinus excelsior L.	+			I
Prunus avium L.	+			I
Corylus avellana L.	+			I

Species	Coverage	I	II	III
Dryopteris filix mas (L.) Schott	+			V
Rubus hirtus Waldst & Kit.	5.5 5.5 5.5 5.5 2.2 3.3 1.2 +2 +2 1.2 2.2 3.3 5.5 5.5 5.5 5.5 4.4 3.3 3.4 3.3 5.5 5.5 3.3 3.3	II		
Acer heldreichii Orph.	+			
Glechoma hirsuta Waldst & Kit.	+2 +			V
Veratum album L.	+			
Daphne mezereum L.	+ +2 + +			II
Athyrium filix femina (L.) Rot	+			
Paris quadrifolia L.	+			
Senecio nemorensis L.	+ + +			II
Galium odoratum (L.) Scop. 1.2	5.5 +			
Fagus sylvatica L. subsp. moesiaca	1.2 +2 2.3 2.3 3.3 +2 + + 1.1 2 +	II		
Prenanthes purpurea L.	+ + + +			
Polygonatum verticatum (L.) A.	+ + + +			
Adenostyles alliariae (Gou) Kern.	+2 +			I
Rubus idaeus L.	+			
Festuca drymeia Mert.	+ + +2 +			
Geranium robertianum L.	+ + +			I
Chaerophyllum aureum L.	+ + +			I
Tanacetum macrophyllum Sch.	+ +			I

Note: The table represents the coverage of different species in the ground layer of a forest ecosystem. The coverage values range from 0.1 to 5.5, with higher values indicating higher abundance. The table includes species such as Rubus idaeus, Acer platanoides, and Dryopteris filix mas, among others.
Species	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Aegopodium podagraria L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Epilobium montanum L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Stellaria nemorum L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Circaea lutetiana L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Sambucus nigra L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Rumex sanguineus L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Salvia glutinosa L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Scrophularia nodosa L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Senecio fuchsii Gmelin.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Cardamine bulbifera (L.) Crant.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Urtica dioica L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Carduus personata (L.) Jacq.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Heracleum sphondylium L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Sisymbrium strictissimum L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Galeopsis speciosa Mill.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Oxalis acetosella L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Polystichum aculeatum (L.) Roth.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Acer pseudoplatanus L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Euphorbia carniolica Jacq.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Arum maculatum L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Galanthus nivalis L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Stachys silvatica L.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2
Lamium galeobdolon (L.) Cr.	+	+	+	1.1	+	+	+	1.2	+	+	+	+	1.2

Species occurring only in one releve in herbaceous layer (with releve number): Cardamine enneaphyllos Crant.(6), Galeopsis tetrachit L.(10), Cicерbita alpina (L.)Walir.(6), Aconitum vulgaria Rchb.(3), Campanula glomerata L. (3), Prunus avium L.(3), Campanula patula L.(2), Gailium aparine L.(2), Solidago virgaurea L.(2), Acer platanoides L.(1), Asperula taurina L.(1), Lunaria rediviva L.(8), Geranium pheim L.(8), Impatiens noli-tangere L.(8), Aconitum anthora L.(8), Lilium martagos L.(8), Gentiana lutea L.(16), Pteridium aquilinum (L.) Kuhn(17), Aruncus vulgaris (Maxim) Raf.(23), Aconitum lamarckii (Ten)Nyman(23), Isopyrum thalictroides L.(24), Viola silvestris Lam.(26), Helleborus odorus Waldst.&Kit.(26), Campanula latifolia L.(27)
Appendix 2. Phytocoenological table Piceo-Abietetum community

Association	Piceo-Abietetum Čolić 1965 (Piceo-Fago-Abietetum Čolić 1965)														
Subassociation	Heldreichietosum Gajić														
Localities	Goli-Golijska reka	Stara planina-Toplodolska reka-Belege													
Relevé number	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5
Compartment	49	49	49	49	49	50	50	50	50	50	59	60	60	61	61
Elevation (m)	1700	1650	1650	1650	1450	1400	1400	1450	1450	1600	1500	1500	1600	1600	
Aspect	N	N	E	NE	NE	N	NW	N	NE	NE	NW	NW			
Nagib (°)	20	20	25	20	25	30	30	30	30	40	40	35	30	25	

TREE LAYER

Tree	Canopy	Average height (m)	Average diameter (cm)	Average distance (m)											
Acer heldreichi Orph.	1.1	1.1	2.2	2.2	2.2	2.2	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	
Fagus sylvatica L. subsp. moesiaca	+	1.1	1.1	1.1	1.1	2.2	3.3	3.3	3.3	3.3	2.2	2.2	4.4	1.1	1.1
Picea abies (L.) Karst.	4.3	4.4	3.4	3.2	1.2	1.1	+	2.2	2.2	2.2	1.1	1.1	1.1	+	2.2
Abies alba Mill.	+	1.2	2.2	1.1	1.1	2.2									
Sorbus aucuparia L.	+	+	1.1	+											
Betula pendula Roth.	+														

SHRUB LAYER

Shrub	Canopy	Average height (m)	Average distance (m)										
Fagus sylvatica L. subsp. moesiaca	+	+	+	+	+	+	4.4	2.2	1.1	2.2	3.3	2.2	III
Acer heldreichi Orph.	+2	+	1.2	1.2	1.2	2.2	1.1	1.1	III				
Sorbus aucuparia L.	+	+	+	+	+	+	+	+	III				
Picea abies (L.) Karst.	+	+	1.3	1.2	1.1	+							
Sambucus racemosa L.	+	+	+	+	+	+							
Abies alba Mill.	+	+	1.1										
Ribes alpinum L.	+	+	1.1										

GROUND LAYER

Ground	Coverage	Rubus hirtus Waldst.&Kit.													
	0.4	0.8	0.7	0.9	0.8	0.8	0.7	0.8	0.6	0.7	0.9	0.9	0.9	0.8	0.8
+2	+2	+2	+2	3.4	2.3	2.2	1.2	2.3	+	1.1	IV				
Dryopteris filix-mas (L.) Schott
1.3 | 3.3 | 1.2 | 2.2 | 2.2 | 3.3 | 2.2 | 3.2 | + | 2.2 | 2.2 | 1.1 | IV

Lamium galeobdolon (L.) Ehend.
2.3 | 1.2 | 1.3 | +2 | +2 | 1.2 | + | III

Veratrum album L.
+ | + | +3 | + | +2 | 2.2 | 1.2 | III

Acer heldreichii Orph.
+2 | +2 | 1.2 | 3.3 | 4.4 | 1.1 | 1.1 | + | III

Adenostyles alliariae (Gouan) A. Kern.
+2 | + | +2 | 3.4 | 2.2 | 1.2 | + | III

Gentiana asclepiadea L.
+ | +2 | +2 | +2 | 1.1 | + | 1.1 | III

Prenanthes purpurea L.
+ | + | + | 2.2 | 1.2 | + | + | 1.1 | III

Polygonatum verticillatum (L.) Al.
1.1 | +2 | 1.3 | +2 | + | 1.1 | + | + | + | III

Posa nemoralis L.
+2 | 3.3 | 1.2 | 1.1 | + | 1.1 | + | III

Rubus idaeus L.
+ | + | 1.2 | 1.2 | 1.1 | + | 2.2 | III

Paris quadrifolia L.
+2 | + | 1.2 | +2 | +2 | + | II

Anemone nemorosa L.
+2 | +2 | 2.3 | 1.2 | 1.1 | II

Stellaria nemorum L.
+ | +2 | 2.3 | 2.3 | II

Galium odoratum (L.) Scop.
+2 | 1.1 | 1.2 | + | II

Glechoma hirsuta Waldst & Küt.
2.3 | 1.1 | + | 1.1 | II

Picea abies (L.) Karst.
+ | +2 | + | + | II

Cardamine bulbifera (L.) Crantz.
+ | 1.1 | 2.2 | + | II

Luzula sylvatica (Huds.) Gaud.
+2 | +2 | 1.1 | 1.1 | 3.3 | II

Senecio nemorensis L.
1.1 | 1.1 | + | + | II

Festuca drymeia Mert.
4.4 | 4.4 | 4.4 | 1.1 | 1.1 | II

Doronicum austriacum Jacq.
+ | +2 | I

Lilium martagon L.
+ | + | I

Fagus sylvatica L. subsp. moesiaca
+ | + | 1.1 | I

Impatiens noli-tangere L.
+ | 1.1 | I

Geranium robertianum L.
+ | + | I

Ajuga reptans L.
+ | 1.1 | I

Parietaria officinalis L.
1.1 | 1.1 | I

Dryopteris carthusianorum Poir.
2.2 | 1.2 | I

Sambucus nigra L.
+ | I

Lactuca muralis (L.) Gaertn.
+ | I

Sorbus aucuparia L.
+ | + | I

Geum urbanum L.
+ | I

Myosotis silvatica Ehrh.
1.1 | I
Species	Frequency	Cover	Abundance	Coefficient of Dominance
Fragaria vesca L.	+		1	
Luzula luzuloides (Lam.)Wilmott			2.2	
Polygonatum multiflorum (L.) All.	+.2	+.1	+	
Abies alba Mill.	+	+	+	
Athyrium filix-femina (L.) Roth.			1.2	+
Epilobium angustifolium L.			1.2	+
Senecio fuchsii Gmelin.	+		1.1	
Hypericum montanum L.			1.1	+
Polystichum aculeatum (L.)Roth	+		2.2	
Vaccinium myrtillus L.	+		1.1	
Prunella vulgaris L.			1.2	1.1
Ranunculus platanifolius L.			1.1	
Rumex acetosa L.	+		+	
Arum maculatum L.		+	+	