Large Direct CP Violation in $B^0 \to \pi^+\pi^-$ and an Enhanced Branching Ratio for $B^0 \to \pi^0\pi^0$

S. Barshay1, L. M. Sehgal2 and J. van Leusen2

1III. Physikalisches Institut, RWTH Aachen
2Institut für Theoretische Physik, RWTH Aachen
D-52056 Aachen, Germany

Abstract

Recent measurements of $B^0 \to \pi\pi$ decays reveal two features that are in conflict with conventional calculations: the channel $B^0(B^0) \to \pi^+\pi^-$ shows a large direct CP-violating asymmetry, and the channel $B^0(B^0) \to \pi^0\pi^0$ has an unexpectedly high branching ratio. We show that both features can be understood in terms of strong-interaction mixing of $\pi\pi$ and $D\bar{D}$ channels in the isospin-zero state, an effect that is important because of the large experimentally observed ratio $\Gamma(B^0/B^0 \to D^+D^-)/\Gamma(B^0/B^0 \to \pi^+\pi^-) \approx 50$. Our dynamical model correlates the branching ratios and the CP-violating parameters C and S, for the decays $B^0(B^0) \to \pi^+\pi^-$, $B^0(B^0) \to \pi^0\pi^0$, $B^0(B^0) \to D^+D^-$ and $B^0(B^0) \to D^0\bar{D}^0$.

The Belle collaboration has presented new data [1] which support their original evidence [2] for large direct CP violation in the decays $B^0(B^0) \to \pi^+\pi^-$, the asymmetry parameter C (= $-A$) being measured to be $C = -0.58 \pm 0.15 \pm 0.07$. In a related development, both the Babar [3] and Belle [4] collaborations have reported a sizable branching ratio for the decay $B^0(B^0) \to \pi^0\pi^0$, with an average value $\text{Br}(B^0/B^0 \to \pi^0\pi^0) = (1.9 \pm 0.6) \times 10^{-6}$. Both of these observations are unexpectedly large from the standpoint of conventional calculations [5, 6, 7] based on a short-distance, effective weak Hamiltonian and the assumption of factorization of products of currents in matrix elements for physical hadron states. In this paper, we carry out a calculation based upon the idea [8] of final-state interactions involving the mixing of $\pi\pi$ and $D\bar{D}$ channels. This dynamics provides a natural, correlated explanation of the new experimental facts, and leads to several further predictions.

To fix notation, we write the three $B \to \pi\pi$ amplitudes as

\[
\begin{align*}
A(B^0 \to \pi^+\pi^-) &= N(\lambda_u a_1 + \lambda_c a_p) \\
A(B^0 \to \pi^0\pi^0) &= N(\lambda_u a_2 - \lambda_c a_p)/\sqrt{2} \\
A(B^- \to \pi^-\pi^0) &= N\lambda_u (a_1 + a_2)/\sqrt{2}
\end{align*}
\] (1)

Here a_1, a_2, a_p are, in general, complex numbers and N is a positive normalization factor. The parameters λ_u and λ_c are CKM factors, defined as $\lambda_u = V_{ub}V_{ud}^*$, $\lambda_c = V_{cb}V_{cd}^*$, with magnitudes

\[E-mail address: sehgal@physik.rwth-aachen.de\] (L. M. Sehgal)
\[|\lambda_u| \approx 3.6 \times 10^{-3}, \ |\lambda_c| \approx 8.8 \times 10^{-3} \] and phases given by \[\lambda_u = |\lambda_u| e^{-i\gamma}, \ \lambda_c = -|\lambda_c|, \] with \(\gamma \approx 60^\circ \) [3]. The amplitudes in Eq. (i) are defined so that their absolute square gives the branching ratio, and they satisfy the isospin relation [10]

\[
\frac{1}{\sqrt{2}} A(B^0 \to \pi^+ \pi^0) + A(B^0 \to \pi^0 \pi^0) = A(B^0 \to \pi^- \pi^0)
\] (2)

From the results of the models discussed in [5, 6, 7], the parameters appearing in Eq. (i) have the following rough representation. The constants \(a_1, a_2, a_p \) are approximately real (to within a few degrees), with magnitudes \(a_1 \approx 1.0, a_2 \approx 0.2, a_p \approx -0.1 \). The normalization factor is \(N \approx 0.75 \); it is here fixed by the empirical branching ratio for \(B^- \to \pi^- \pi^0 \). The fact that the parameters \(a_1, a_2, a_p \) are nearly real implies immediately that there is very little direct \(CP \)-violating asymmetry between \(B^0 \to \pi^+ \pi^- \) and \(B^0 \to \pi^- \pi^+ \), as well as in the channels \(\pi^0 \pi^0 \) and \(\pi^+ \pi^- \). Furthermore, the absolute branching ratios following from the above parametrization are as follows (with experimental values given in parentheses):

\[
\begin{align*}
\text{Br}(B^0 \to \pi^+ \pi^-) &= 5.3 \times 10^{-6} \quad \text{[exp. (5.3 \pm 0.8) \times 10^{-6}]} \\
\text{Br}(B^0/B^0 \to \pi^+ \pi^-) &= 9.2 \times 10^{-6} \quad \text{[exp. (4.6 \pm 0.4) \times 10^{-6}]} \\
\text{Br}(B^0/B^0 \to \pi^0 \pi^0) &= 0.2 \times 10^{-6} \quad \text{[exp. (1.9 \pm 0.6) \times 10^{-6}]}
\end{align*}
\] (3)

The most striking feature is the strong enhancement of the \(\pi^0 \pi^0 \) rate compared to this model expectation.

It was pointed out in Ref. [8] that the \(CP \)-violating asymmetries and branching ratios in the \(B \to \pi \pi \) system would be strongly affected by final-state interactions involving the mixing of the \(\pi \pi \) and \(D\bar{D} \) channels in the isospin \(I = 0 \) state, as a consequence of the large ratio of partial decay widths \(\Gamma(B^0 \to D^+ D^-)/\Gamma(B^0 \to \pi^+ \pi^-) \approx 3/14 |V_{cb}|^2/|V_{ub}|^2 \approx 26 \) expected in the Bauer-Stech-Wirbel model [5]. A large ratio has now been confirmed by the Belle measurement [11] of the branching ratio \(\text{Br}(B^0/B^0 \to D^+ D^-) = 2.5 \times 10^{-4} \), which is about 50 times larger than \(\text{Br}(B^0/B^0 \to \pi^+ \pi^-) \). This fact gives new urgency to an investigation of \(\pi \pi \leftrightarrow D\bar{D} \) mixing as a way of resolving the puzzling observations in \(B \to \pi \pi \) decays.

The \(\pi \pi \) system exists in the states \(I = 0 \) or \(I = 2 \), while the \(D\bar{D} \) system has \(I = 0 \) or \(I = 1 \). Mixing can occur between the isospin-zero states

\[
\begin{align*}
|\pi \pi\rangle_0 &= \sqrt{\frac{2}{3}}|\pi^+ \pi^-\rangle - \sqrt{\frac{1}{3}}|\pi^0 \pi^0\rangle \\
|D\bar{D}\rangle_0 &= \sqrt{\frac{1}{2}} \left[|D^+ D^-\rangle + |D^0 \bar{D}^0\rangle \right]
\end{align*}
\] (4)

By contrast, the \(I = 2 \) \(\pi \pi \) state and the \(I = 1 \) \(D\bar{D} \) state, given by

\[
\begin{align*}
|\pi \pi\rangle_2 &= \sqrt{\frac{1}{3}}|\pi^+ \pi^-\rangle + \sqrt{\frac{2}{3}}|\pi^0 \pi^0\rangle \\
|D\bar{D}\rangle_1 &= \sqrt{\frac{1}{2}} \left[|D^+ D^-\rangle - |D^0 \bar{D}^0\rangle \right]
\end{align*}
\] (5)

2
are unaffected by mixing. The physical decay amplitudes of $\overline{B^0}$ to the above four states are

\[
A^{(0)}_{\pi\pi} = \sqrt{\frac{2}{3}} A_{\pi^+\pi^-} - \sqrt{\frac{1}{3}} A_{\pi^0\pi^0}
\]
\[
A^{(2)}_{\pi\pi} = \sqrt{\frac{1}{3}} A_{\pi^+\pi^-} + \sqrt{\frac{2}{3}} A_{\pi^0\pi^0}
\]
\[
A^{(0)}_{D\overline{D}} = \sqrt{\frac{1}{2}} \left[A_{D^+\overline{D}^-} + A_{D^0\overline{D}^0} \right]
\]
\[
A^{(1)}_{D\overline{D}} = \sqrt{\frac{1}{2}} \left[A_{D^+\overline{D}^-} - A_{D^0\overline{D}^0} \right]
\]

These physical decay amplitudes are related to the “bare” amplitudes calculated in the absence of final-state interactions, i.e. with no mixing, which we denote by \tilde{A}:

\[
\begin{pmatrix}
 A^{(0)}_{\pi\pi} \\
 A^{(0)}_{D\overline{D}}
\end{pmatrix} = S^1 \begin{pmatrix}
 \tilde{A}^{(0)}_{\pi\pi} \\
 \tilde{A}^{(0)}_{D\overline{D}}
\end{pmatrix}
\]

\[
A^{(2)}_{\pi\pi} = \tilde{A}^{(2)}_{\pi\pi}
\]
\[
A^{(1)}_{D\overline{D}} = \tilde{A}^{(1)}_{D\overline{D}}
\]

Here S denotes the strong-interaction S matrix connecting the isospin-zero states $|\pi\pi\rangle_0$ and $|D\overline{D}\rangle_0$ which can be written generally as

\[
S = \begin{pmatrix}
 \cos 2\theta e^{i2\delta_1} & i \sin 2\theta e^{i(\delta_1+\delta_2)} \\
 i \sin 2\theta e^{i(\delta_1+\delta_2)} & \cos 2\theta e^{i2\delta_2}
\end{pmatrix}
\]

where θ is a mixing angle, and δ_1 and δ_2 are the strong-interaction phase shifts for the elastic scattering of $\pi\pi$ and $D\overline{D}$ systems in the $I = 0$ state, at $\sqrt{s} = M_B$. For any choice of these three parameters, the matrix S^\dagger can be calculated numerically, and the set of four equations (7) solved to obtain the physical amplitudes $A_{\pi^+\pi^-}$, $A_{\pi^0\pi^0}$, $A_{D^+D^-}$ and $A_{D^0\overline{D}^0}$ in terms of the bare amplitudes. The bare amplitudes are identified with those calculated in the factorization model [5, 6, 7], which we list below

\[
\begin{aligned}
\tilde{A}_{\pi^+\pi^-} &= N(\lambda_u a_1 + \lambda_c a_p) \\
\tilde{A}_{\pi^0\pi^0} &= N(\lambda_u a_2 - \lambda_c a_p)/\sqrt{2} \\
\tilde{A}_{D^+D^-} &= N'\lambda_c a_1 \\
\tilde{A}_{D^0\overline{D}^0} &= 0
\end{aligned}
\]

where the first two equations are as in Eq. (11), and the factor N' is determined from the empirical branching ratio $\text{Br}(B^0/\overline{B^0} \to D^+D^-) = N'^2|\lambda_c|^2a_1^2 = 2.5 \times 10^{-4}$ to be $N' = 1.79$.

In order to show, in a transparent way, how the mixing mechanism gives rise to large direct CP violation in $B^0 \to \pi^+\pi^-$, as well as an enhanced branching ratio for $B^0 \to \pi^0\pi^0$, we

1 The two-channel S-matrix has been discussed, in particular in [12, 13]. The S^\dagger prescription is given in [6, 12]. An alternative prescription, using $\frac{1}{2}[1+S]$ in place of S^\dagger, has been discussed by Kamal [14], and was used in Ref. [8].
consider, for illustration, the case where the elastic phases δ_1 and δ_2 in the S matrix (Eq. (8)) are neglected, so that S^{12} may be written as

$$S^{12} = \begin{pmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{pmatrix}$$ (10)

The amplitudes $A_{\pi^+\pi^-}$ and $A_{\pi^0\pi^0}$ for B^0 decay are then given by

$$A_{\pi^+\pi^-} = \frac{1}{3} \left(1 + 2 \cos \theta \tilde{A}_{\pi^+\pi^-} + \sqrt{2} \frac{1 - \cos \theta}{3} \tilde{A}_{\pi^0\pi^0} \right) + i \sin \frac{\theta}{\sqrt{3}} \left(\tilde{A}_{D^+D^-} + \tilde{A}_{D^0\bar{D}^0} \right)$$ (11)

$$A_{\pi^0\pi^0} = \sqrt{2} \frac{1 - \cos \theta}{3} \tilde{A}_{\pi^+\pi^-} + \frac{2 + \cos \theta}{3} \tilde{A}_{\pi^0\pi^0} - i \sin \frac{\theta}{\sqrt{6}} \left(\tilde{A}_{D^+D^-} + \tilde{A}_{D^0\bar{D}^0} \right)$$

Clearly for $\theta = 0$, the physical amplitudes reduce to the bare amplitudes. Inserting the bare amplitudes from Eq. (9), we can rewrite $A_{\pi^+\pi^-}$ and $A_{\pi^0\pi^0}$ as linear combinations of λ_u and λ_c:

$$A_{\pi^+\pi^-} = N \left[\lambda_u \left\{ \frac{1 + 2 \cos \theta}{3} a_1 + \frac{1 - \cos \theta}{3} a_2 \right\} + \lambda_c (a_p \cos \theta + a_m) \right]$$ (12)

$$A_{\pi^0\pi^0} = \frac{N}{\sqrt{2}} \left[\lambda_u \left\{ \frac{2(1 - \cos \theta)}{3} a_1 + \frac{2 + \cos \theta}{3} a_2 \right\} - \lambda_c (a_p \cos \theta + a_m) \right]$$

where

$$a_m = i \frac{1}{\sqrt{3}} \sin \theta \frac{N'}{N} a_1$$ (13)

Note that the isospin relation in Eq. (2) continues to be fulfilled. The important new feature of the amplitudes in Eq. (12) is the appearance of the imaginary term a_m in the coefficient of λ_c, in striking contrast to the real term a_p. The imaginary nature of this dynamical term is an inescapable consequence of S-matrix unitarity, which enforces the factor i in the off-diagonal matrix element in Eq. (10). The term a_m, given in Eq. (13), has a magnitude $|a_m| \approx 1.39 \sin \theta$, and dominates the term $a_p \cos \theta$ even for a modest mixing angle ~ 0.1. We will now show that the mixing term a_m has profound consequences for direct CP violation in the decays $B^0 \to \pi^+\pi^-$, and for the branching ratio of the channel $B^0 \to \pi^0\pi^0$.

1 \hspace{1cm} **C and S Parameters for $B^0 \to \pi^+\pi^-$ and $B^0 \to \pi^0\pi^0$**

The C and S parameters derived from the time-dependent asymmetry between \overline{B}^0 and B^0 decays into $\pi^+\pi^-$ are defined as

$$C_{+-} = \frac{1 - |\lambda_{+-}|^2}{1 + |\lambda_{+-}|^2}$$ (14)

$$S_{+-} = \frac{2 \text{Im}\lambda_{+-}}{1 + |\lambda_{+-}|^2}$$
Using the amplitude $A_{\pi \pi^-}$ of the $\pi \pi^-$ functions of θ close to its bare value, and can be lowered slightly with the introduction of phases q. The parametrization in Eq. (1), based on the models [5, 6, 7], gives $B_{\text{2 Branching Ratio for } B^0 \to \pi^+\pi^-}$, where B_{2} for $B^0 \to \pi^+\pi^-$, the role of ΠC Table 1, where we also list B_{2} for $B^0 \to \pi^+\pi^-$, the numerical results for $\text{Br}(\pi \to \pi^-)$ and $\text{Br}(\pi^+\pi^-)$ derived from the matrix $S_{\text{2}} \text{CP}$ violation. CP indicate in Figs. 1 and 2 two examples, obtained with the values data [1]. In our approach, the role of ΠC of these models, and is responsible for the prediction B_{2} and B_{2} in our approach, the role of ΠC Table 1, where we also list B_{2} for $B^0 \to \pi^+\pi^-$, the numerical results for $\text{Br}(\pi \to \pi^-)$ and $\text{Br}(\pi^+\pi^-)$ derived from the matrix $S_{\text{2}} \text{CP}$ violation. CP indicate in Figs. 1 and 2 two examples, obtained with the values $\delta_1 = \pm 10^\circ$, $\delta_1 + \delta_2 = -30^\circ$. Table 1 gives numerical values for a few choices of parameters. In all cases, there is a large direct CP violation.

Discussions of the direct CP-violating parameter B_{2} are often based on an amplitude for $B^0 \to \pi^+\pi^-$ written in the form

$$A_{\pi^+\pi^-} \sim \left[e^{-i\gamma} + \frac{P_{\pi\pi}}{T_{\pi\pi}} \right]$$

The parametrization in Eq. (1), based on the models [5] [6] [7], gives $|P_{\pi\pi}/T_{\pi\pi}| = 0.24$, and $\text{arg}(P_{\pi\pi}/T_{\pi\pi}) = 0$. The small phase of the “penguin-to-tree” ratio $P_{\pi\pi}/T_{\pi\pi}$ is a generic feature of these models, and is responsible for the prediction $B_{\text{2}} \approx 0$, which is now contradicted by data [1]. In our approach, the role of $P_{\pi\pi}/T_{\pi\pi}$ is played by the ratio

$$|P/T| = \frac{|\lambda_c| (a^0 \cos \theta + a_m)}{|\lambda_u| (1 + \frac{1+2 \cos \theta}{3} a_1 + \frac{1+2 \cos \theta}{3} a_2)}$$

For a typical value $\theta = 0.2$, this ratio has the modulus $|P/T| \approx 0.77$, and a phase $\text{arg}(P/T) \approx -70^\circ$. The difference is a consequence of the term a_m in Eq. (1), which reflects the physical final-state interaction of the $\pi\pi$ system, as implemented in our model through $\pi\pi \leftrightarrow D\bar{D}$ mixing.

2 Branching Ratio for $B^0 \to \pi^0\pi^0$ and $B^0 \to \pi^+\pi^-$

The branching ratios (averaged over B^0 and \bar{B}^0) may be calculated in our model by taking the absolute square of the B^0 decay amplitudes in Eq. (12), and the corresponding amplitudes for B^0 decay. The results are shown in Fig. 2. It is remarkable that the empirical branching ratio for $B^0 \to \pi^0\pi^0$ is accurately reproduced, using the same value $\theta \approx 0.2$ which accounts for the asymmetry parameter B_{2}. We also note that the branching ratio $B^0 \to \pi^+\pi^-$ remains close to its bare value, and can be lowered slightly with the introduction of phases δ_1 and δ_2. Numerical results for $\text{Br}(B^0 \to \pi^0\pi^0)$ and $\text{Br}(B^0 \to \pi^+\pi^-)$ are listed in Table 1.
3 Branching Ratio for $B^0 \to D^0 \overline{D^0}$

Since our model treats the $\pi \pi$ and $D\overline{D}$ states with $I = 0$ as a coupled system, it also produces predictions for branching ratios and asymmetry parameters in $B^0 \to D^+ D^-$ and $B^0 \to D^0 \overline{D^0}$. The amplitudes after mixing are

$$A_{D^+ D^-} = \frac{1}{2} \left[i \sin \theta \sqrt{\frac{2}{3}} \left(\sqrt{2} \tilde{A}_{\pi+\pi^-} - \tilde{A}_{\pi^0\pi^0} \right)
+ (\cos \theta + 1) \tilde{A}_{D^+ D^-} + (\cos \theta - 1) \tilde{A}_{D^0 \overline{D^0}} \right]$$

$$A_{D^0 \overline{D^0}} = \frac{1}{2} \left[i \sin \theta \sqrt{\frac{2}{3}} \left(\sqrt{2} \tilde{A}_{\pi+\pi^-} - \tilde{A}_{\pi^0\pi^0} \right)
+ (\cos \theta - 1) \tilde{A}_{D^+ D^-} + (\cos \theta + 1) \tilde{A}_{D^0 \overline{D^0}} \right]$$

(20)

Of particular interest is the branching ratio for $B^0 / B^0 \to D^0 \overline{D^0}$, since it vanishes at the level of the bare amplitude ($\tilde{A}_{D^0 \overline{D^0}} = 0$), and is induced by mixing with the $\pi \pi$ system. For $\theta = 0.2$, ignoring the phases δ_1, δ_2, our model predicts

$$\text{Br}(B^0 / B^0 \to D^0 \overline{D^0}) = 1.45 \times 10^{-7}$$

(21)

(At this low level, one must assume that other sources of final-state interaction or a non-zero bare amplitude could raise this branching ratio further.) Direct CP violation follows from $A_{D^0 \overline{D^0}}$ in Eq. (20): $C_{D^0 \overline{D^0}} = -0.50$ for $\theta = 0.2$. Direct CP violation in $D^+ D^-$ (and in $\pi^0 \pi^0$) is small, because these decays are dominated by a single amplitude. There is little mixing in $A_{D^+ D^-}$ in Eq. (20) (and none in the $I = 2$ amplitude for $\pi^- \pi^0$).

To conclude, we have demonstrated a mechanism of final-state interactions among physical hadrons in $B^0 \to \pi \pi$ decays which predicts a large direct CP-violating parameter C_{+-}. The same mechanism enhances the theoretical prediction for the branching ratio of $B^0 / B^0 \to \pi^0 \pi^0$ to the experimentally observed level. Predictions are made for the C and S parameters of $B^0 / B^0 \to \pi^0 \pi^0$ decays, and for the branching ratio of $B^0 / B^0 \to D^0 \overline{D^0}$. The model makes essential use of the large empirical ratio $\Gamma(B^0 / B^0 \to D^+ D^-) / \Gamma(B^0 / B^0 \to \pi^+ \pi^-) \approx 50$. Its success in the present context leads to the expectation that sizable direct CP violation could be observed in other charmless B decays, in which an amplitude of order λ_u receives a dynamical contribution proportional to λ_c, through mixing with a channel possessing a large branching ratio. The resulting amplitude contains two pieces which are comparable in magnitude and have different weak-interaction and strong-interaction phases. We have treated earlier [15] the charged-particle decays $B^\pm \to \eta \pi^\pm$ (and $B^\pm \to \eta'/\pi^\pm$), which are influenced by mixing with the channel $B^\pm \to \eta_c \pi^\pm$, and have predicted significant direct CP violation. Evidence for a sizable violation in $B^\pm \to \eta \pi^\pm$ has indeed been reported in one experiment [16], the first ever seen in a charged-particle decay.

References

[1] Belle Collaboration, K. Abe et al., [hep-ex/0401029].
[2] Belle Collaboration, K. Abe et al., Phys. Rev. D 68, 012001 (2003).

[3] Babar Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 241801 (2003).

[4] Belle Collaboration, S. H. Lee et al., Phys. Rev. Lett. 91, 261801 (2003).

[5] M. Bauer, B. Stech and M. Wirbel, Z. Phys. C 34, 103 (1987).

[6] M. Neubert and B. Stech, in “Heavy Flavours”, 2nd Edition, edited by A. J. Buras and M. Lindner (World Scientific, Singapore); hep-ph/9705292.

[7] M. Beneke and M. Neubert, hep-ph/0308039, and references therein.

[8] M. Wanninger and L. M. Sehgal, Z. Phys. C 50, 47 (1991); see also A. N. Kamal, Int. J. Mod. Phys. A 7, 3515 (1992).

[9] Particle Data Group Collaboration, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).

[10] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).

[11] T. Browder (Belle Collaboration), talk at Lepton-Photon Symposium, Fermilab, August 2003.

[12] J. F. Donoghue et al., Phys. Rev. Lett. 77, 2178 (1996).

[13] M. Suzuki and L. Wolfenstein, Phys. Rev. D 60, 074019 (1999).

[14] A. N. Kamal and C. W. Luo, hep-ph/9702289.

[15] S. Barshay, D. Rein, L. M. Sehgal, Phys. Lett. B 259, 475 (1991).

[16] Babar Collaboration, B. Aubert et al., hep-ex/0311016.

[17] Babar Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 281802 (2002).

[18] Belle Collaboration, Y. Chao et al., hep-ex/0311061.

[19] CLEO Collaboration, A. Bornheim et al., Phys. Rev. D 68, 052002 (2003).
Observable	No mixing	With mixing	Data		
		$\theta = 0.2$	$\theta = 0.17$	$\theta = 0.2$	
		$\delta_1 = 0^\circ$	$\delta_1 = -10^\circ$	$\delta_1 = 10^\circ$	
$\delta_2 = 0^\circ$		$\delta_2 = -20^\circ$	$\delta_2 = -40^\circ$		
C_{+-}	± 0.00	-0.65	-0.66	-0.81	-0.58 \pm 0.15 \pm 0.07 (Belle [1])
S_{+-}	-0.60	-0.63	-0.55	-0.40	-1.00 \pm 0.21 \pm 0.07 (Belle [1])
$\text{Br}(B^0/\bar{B}^0 \rightarrow \pi^0 \pi^0)$	0.2	1.8	1.7	1.6	1.7 \pm 0.6 \pm 0.2 (Belle [1])
$\text{Br}(B^0/\bar{B}^0 \rightarrow \pi^+ \pi^-)$	9.3	12.2	10.5	9.9	4.4 \pm 0.6 \pm 0.3 (Belle [18])
C_{00}	± 0.00	+0.48	+0.51	+0.56	
S_{00}	+0.73	-0.65	-0.78	-0.49	

Table 1: Observables for different mixing angles θ and strong-interaction phases δ_1 and δ_2. All branching ratios are given in units of 10^{-6}.
Figure 1: C and S parameters for the decay $B^0(B^0) \rightarrow \pi^+\pi^-$. Full line is for $\delta_1 = \delta_2 = 0^\circ$, dotted line for $\delta_1 = -10^\circ, \delta_2 = -20^\circ$, dashed line for $\delta_1 = 10^\circ, \delta_2 = -40^\circ$.
Figure 2: Average branching ratios for $B^0/B^0 \rightarrow \pi^0\pi^0$ and $B^0/B^0 \rightarrow \pi^+\pi^-$. Full line is for $\delta_1 = \delta_2 = 0^\circ$, dotted line for $\delta_1 = -10^\circ$, $\delta_2 = -20^\circ$, dashed line for $\delta_1 = 10^\circ$, $\delta_2 = -40^\circ$.