In-Depth Review

Endothelin and the podocyte

Matthias Barton¹ and Pierre-Louis Tharaux²

¹Molecular Internal Medicine, University of Zürich, Zürich, Switzerland and ²INSERM and Université Paris Descartes, Sorbonne Paris Cité, Paris Cardiovascular Centre, Paris, France

Correspondence and offprint requests to: Matthias Barton; E-mail: barton@access.uzh.ch

Abstract

In the past decade, research has advanced our understanding how endothelin contributes to proteinuria and glomerulosclerosis. Data from pre-clinical and clinical studies now provide evidence that proteinuric diseases such as focal segmental glomerulosclerosis and diabetic nephropathy as well as hypertension nephropathy are sensitive to treatment with endothelin receptor antagonists (ERAs). Like blockade of the renin–angiotensin system, ERA treatment—under certain conditions—may even cause disease regression, effects that could be achieved on top of renin–angiotensin–aldosterone system blockade, suggesting independent therapeutic mechanisms by which ERAs convey nephroprotection. Beneficial effects of ERAs on podocyte function, which is essential to maintain the glomerular filtration barrier, have been identified as one of the key mechanisms by which inhibition of the endothelin ETₐ receptor ameliorates renal structure and function. In this article, we will review pre-clinical studies demonstrating a causal role for endothelin in proteinuric chronic kidney disease (with a particular focus on functional and structural integrity of podocytes in vitro and in vivo). We will also review the evidence suggesting a therapeutic benefit of ERA treatment on the functional integrity of podocytes in humans.

Keywords: diabetes; epithelial cell; focal segmental glomerulosclerosis; glomerular; hypertension

Introduction

The prevalence and incidence of chronic kidney disease (CKD), one of the most serious clinical consequences of patients with diabetes or hypertension, have been steadily rising over the past decades [1]. CKD is characterized by progressive loss of functional glomerular tissue, defects in the glomerular filter function, and subsequent proteinuria [2]. CKD also aggravates pre-existing cardiovascular risk factors such as hypertension and dyslipidaemia, and as a result, accelerates atherosclerosis progression; in fact most CKD patients die from cardiovascular complications [3]. In view of an ageing population and the predicted increase of the world’s population from currently 7 to 9 billion people by the year 2050 [4], health care providers...
Podocyte dysfunction as a determinant of CKD

Podocyte injury and chronic proteinuric nephropathies

Podocyte loss and podocyturia have been proposed as potential diagnostic markers of glomerular disease severity [15, 16]. Indeed, as disease progresses, viable—in addition to senescent—podocytes are shed in the urine [17] and thus provide a sensitive indicator of the degree of glomerular injury [16]. CKD is characterized by mesangial cell injury as well as by defects of the glomerular filtration barrier [15]. This includes injury of the glomerular endothelial cells, the glomerular basement membrane (GBM), glomerular epithelial cells, and the slt diaphragm (Figure 1) [11, 15].

Glomerular epithelial cells can be divided into parietal and visceral (glomerular) epithelial cells [15]. Visceral epithelial cells have been termed ‘podocytes’ due the appearance of ‘interdigitizing’ foot processes adhering to the glomerular capillary [13]. Podocyte injury is a hallmark of proteinuric renal disease such as diabetic nephropathy and focal segmental glomerulosclerosis (FSGS) [18, 19]. Although the term ‘podocytopathy’ has recently been used to describe proteinuria in association with podocyte injury [20], proteinuria in some cases may also occur in the absence of podocyte effacement [13, 21]. Since podocyte injury precedes the development of glomerulosclerosis, it not only represents a therapeutic target but can also be used for diagnostic purposes [22–26].

Previous dogma stated that because podocytes—once injured—cannot be replaced, glomerulosclerosis is progressive and irreversible [27, 28]. However, podocyte proliferation and migration have been observed under certain conditions, including inflammatory activation during renal injury [29, 30]; in the past decade numerous studies have clearly shown that glomerulosclerosis is a reversible disease condition [10, 31–40]. Podocytes have a defined lifetime since they are terminally differentiated, however, they may be continuously replaced by parietal epithelial cells (PECs) residing in the inner portion of Bowman’s capsule, which can migrate onto the glomerulus [41, 42]. Thus far, whether migration of PECs is beneficial or detrimental for glomerular structure and function remains a matter of debate. These novel and unexpected findings have provided one explanation for many studies reporting reversal/regression of established glomerular disease using different pharmacological approaches [10, 31–40].

Podocyte function and the actin cytoskeleton

The podocyte actin cytoskeleton is being increasingly recognized as a key modulator of the functional integrity of the glomerulus [43]. Disruption of the actin cytoskeleton is a feature of podocyte injury in proteinuric nephropathies. The actin cytoskeleton of podocytes not only provides structural support for the cells but also contributes to podocyte signalling [43, 44]. Reorganization of the podocyte actin cytoskeleton appears to be a response to cell stress [45], and loss of podocytes results in uncoupling of podocyte-specific proteins in the remaining cells from the actin cytoskeleton [46, 47].

Podocytes are linked to the GBM through their foot processes and form the structural basis of the glomerular filtration barrier responsible for filtering proteins (Figure 1). Podocyte injury results in a reduction in podocyte number, which is characteristic of many forms of proteinuric renal disease [21, 48, 49] and subsequent increased accumulation of GBM matrix, which is derived from podocytes [30]. Accordingly, in cases of regression of proteinuria induced by pharmacological intervention, a reduction in the degree of...
Endothelin and the podocyte

Podocyte injury and of GBM thickening has been observed [39].

In addition to podocyte injury, proliferation of glomerular mesangial cells and hypertrophy of the GBMs contribute to the progression of proteinuric nephropathies [10]. Accordingly, mutations of the actinin-4 (actn4) gene, which encodes the podocyte-localized actin-binding protein α-actinin, have been linked to autosomal-dominant proteinuria associated with familial FSGS [50, 51]. Similarly, variants of the apolipoprotein L-1 (apol1) gene have been identified as a risk factor for FSGS and hypertension nephropathy in blacks; it is present in African chromosomes and absent in European chromosomes [52]. Black subjects are at higher risk to develop hypertension, diabetes and renal and vascular disease and hypertensive blacks show higher circulating endothelin-1 (ET-1) levels than Caucasians [53].

Integrin-mediated adhesion of podocytes to the basement membrane of the glomerular capillary has recently been reported to require the tretraspanin cd151, which protects from podocyte effacement and renal disease development in a podocyte-dependent fashion [27, 54]. It is well possible, if not likely, that anti-proteinuric effects of drugs such as ARBs, ACEIs, or ERAs involving drug-induced glomerular stabilization of preventing podocyte loss in end-stage kidney disease [55] involve mechanisms requiring integrins and/or cd151 [56]. Research is ongoing to identify the mechanisms involved in podocyte injury, many of which converge at the level of the actin cytoskeleton [43]. One mechanism that was recently identified is podocyte-induced secondary injury of ‘remnant’ intact podocytes [57], which leads to podocyte depletion in CKD.

Role for endothelin in the development of CKD

Endothelin-1: vasoconstrictor and promoter of inflammation and growth

Endothelins are ubiquitously expressed stress-responsive regulators acting in both a paracrine and autocrine fashion [58]. Within a year after Furchgott and Zawadzki’s had discovered an endothelium-derived vasoconstricting factor (later identified as nitric oxide) [59–61], endothelium-derived vasoconstrictor activity was reported by de Mey and Vanhoutte [59, 60]. A potent peptideergic vasoconstrictor activity isolated from endothelial cell supernatants was reported in 1985 [62], and the gene and peptide sequence of this vasoconstrictor, named endothelin-1, were published by Yanagisawa et al. in 1988 [63]. Endothelin-1 is the biologically most relevant isof orm of three endothelin isopeptides, which bind to endothelin receptors (designated ET_A and ET_B) [59], that were cloned in the early 1990s [58]. ET_A receptors have primarily vasoconstrictor and growth-promoting functions, whereas ET_B receptors mainly mediate vasodilation and inhibition of growth and inflammation, via release of nitric oxide and prostacyclin [58]. Identification of these receptors allowed the development of orally active ERAs, which are now firmly established in pulmonary medicine [9] and currently in clinical trials for CKD [9, 12].

Numerous endothelin-dependent mechanisms contribute to proteinuria and CKD [9, 64]. Endothelin promotes collagen production and stimulates glomerular fibronectin synthesis. Endothelin becomes activated under conditions associated with renal disease progression, such as diabetes, insulin resistance, obesity, dyslipidaemia, reactive oxygen species formation and inflammation [10]. In fact, inflammation may be a unifying detrimental mechanism by which endothelin causes kidney injury. Indeed, inflammation is crucial for glomerulosclerosis progression and can be attenuated by ET_A receptor antagonist treatment, which reduces circulating cytokines in a model of acute allograft rejection after solid organ transplantation, even in the absence of immunosuppression [65]; ERA treatment also limits inflammation in experimental proliferative nephritis [66]. Consistent with these effects, chronic infusion of endothelin at non-pressor doses increases pro-inflammatory mediators such as intercellular adhesion molecule-1 (ICAM-1) and monocyte chemotactic protein-1 (MCP-1) and the number of macrophages in the renal cortex, effects that are largely abrogated by pre-treatment with an ET_A receptor antagonist [67], and similar effects were obtained in a model of diabetes-associated renal inflammation [68, 69]. Interestingly, only selective ET_A but not non-selective ET, receptor antagonists inhibited the renal inflammatory response [70].

Endothelin also increases formation of other vasoactive and growth factors such as angiotensin II by increasing the activity of ACE [71]. On the other hand, angiotensin II activates renal endothelin formation [72], compatible with a vicious cycle between the renin-angiotensin-aldosterone and the endothelin systems [73]. Mesangial cell proliferation and GMB hypertrophy (Figure 1) are indirectly mediated via podocyte injury [44] and represent an important indicator of glomerular stability [18]. Wiggins et al. recently reported that combined ARB/ACEI treatment reduces podocyte loss and thereby contributes to glomerular stabilization in experimental end-stage renal disease [55].

Endothelins and endothelin receptors in the kidney

In the normal kidney, endothelin regulates blood pressure, vascular tone and natriuresis, the latter of which is mediated via the ET_B receptor [74], and is influenced by sex [75]. In the systemic and renal vasculature, endothelin exerts basal (‘tonic’) ET_A receptor-mediated vasoconstriction [74]. Under physiological conditions, endogenous renal endothelin controls water and sodium excretion and acid–base balance and maintains normal renal cell proliferation and tonic vasoconstriction [74]. Endothelin also stimulates proliferation of vascular smooth muscle cells, a cellular function facilitating the development of hypertension and renal disease [58]. Endothelial cell-derived endothelin controls blood pressure: mice with endothelial cell-specific deficiency of endothelin-1 are hypotensive [76], while those with endothelial cell-specific overexpression are hypertensive [77, 78].

With ageing, renal expression of endothelins increases at the messenger RNA (mRNA) and peptide level [79]. Radio-labelled ET-1 binds within 10 min after injection onto glomerular podocytes [80], cells that also produce and secrete endothelin [81, 82]. Endothelin binding to podocytes results in changes in intracellular calcium [83], and ET_B-specific binding on podocyte foot processes [84] and expression of mRNA for ET_A and ET_B receptors, preproendothelin-1, and endothelin-converting enzymes in podocytes have been reported [10]. The exact role of the podocyte endothelin system in podocytes warrants further investigation.

Endothelin contributes to glomerulosclerosis progression

For almost 20 years, different experimental models of renal disease (renal mass reduction, hypertension, salt-sensitive hypertension, RAAS-dependent hypertension, nitric oxide (NO)-deficient hypertension, ageing, FSGS)
have been studied to test whether endothelin inhibition can interfere with renal disease progression [85]. In 1993, Benigni et al. [86] published the first pre-clinical study to suggest a causal role for endothelin in chronic proteinuric renal disease. In a prevention-type study, remarkable reductions in proteinuria and glomerulosclerosis were observed after selective blockade of ETA receptors in a rat renal mass reduction model of hypertensive glomerular disease [96]. Hocher et al. [87] subsequently demonstrated glomerulosclerosis in normotensive mice systemically overexpressing the human preproendothelin gene. Data from pre-clinical studies indicate that endothelin—via activation of the ETA receptor—importantly contributes to renal disease progression under hypertensive [24, 34, 88, 89] as well as under normotensive conditions [39, 90].

Involvement of endothelin in podocyte dysfunction and injury

Podocyte growth factor receptors and glomerular disease

Injury to podocytes results in glomerular filtration barrier dysfunction and subsequent proteinuria, a hallmark of all glomerular diseases [15]. Podocytes express receptors for vasconstrictors and growth factors such as angiotensin II, thromboxane A2, endothelin-1 and prostaglandins [13]. Angiotensin II increases renal endothelin synthesis [10] and glomerular permeability for albumin, and causes podocyte actin cytoskeleton disruption and podocyte apoptosis [10]. A role for growth factor receptors is also suggested by the observation that either ETA receptor [39] or angiotensin AT1 receptor antagonists [49] prevent podocyte injury. The activity of endothelin or angiotensin may also be inhibited indirectly. Nephroprotective peptides such as bone morphogenetic protein-7 (BMP-7) [91, 92] reduce expression of the growth-promoting ET receptor, both at the RNA and the protein level, alleviate hyperglycaemia-mediated podocyte injury and improve podocyte survival [reviewed in [10]]. BMP-7 also stimulates glomerular capillary formation that has been implicated in ARB- or ACEI-induced regression of glomerulosclerosis [37, 93]. Similar to BMP-7, nephroprotective effects inhibition of epidermal growth factor (EGF) receptor transactivation in podocytes [94] (EGF stimulates endothelin-mediated cell growth and constriction [95, 96]) might also reduce renal injury—at least in part—via interfering with the endothelin-1-ETA receptor axis.

Podocyte injury involves endothelin signalling

We have previously proposed that the neighbouring cells in close proximity of podocytes—which also produce endothelin in vitro [81, 82]—affect podocyte function and structure through endothelin-mediated interactions [10, 13] (Figure 1). Disruption of the podocyte actin cytoskeleton has been observed following *in vivo* exposure to endothelin [39, 97, 98]. Interestingly, exposure of podocytes to protein in vitro induces synthesis of endothelin that results in increases in glomerular permselectivity, an effect antagonized by ETA receptor blockade [97, 98]. These findings are reinforced by recent work from Pollock *et al.* demonstrating that exogenous endothelin—both acutely as well as chronically—increases glomerular permeability via ETA receptor-mediated mechanisms [67]. This effect appears to be independent of whether the ETA receptor is blocked or not [70]. Thus, ETA receptor-dependent effects mediate proteinuria.

Similarly, ETA receptor antagonists prevent disruption of the podocyte actin cytoskeleton following exposure to puromycin aminonucleoside [39] (Figures 2 and 3), an effect that can also be obtained with angiotensin AT1 receptor antagonists [46, 99, 100]. Puromycin aminonucleoside (which causes FSGS *in vivo*) [101, 102] results in podocyte apoptosis and up-regulation of MMP-9; peptide (BQ) or non-peptide (LU, darusentan) ETA receptor antagonists prevented this effect, as did ETA receptor gene silencing (siRNA) (d). Gene silencing of ETA receptors increased podocyte growth as determined by *de novo* DNA synthesis. (f) Actin cytoskeleton disruption was largely prevented by ETA antagonists; representative examples of these experiments are shown in Figure 3. ncRNA, non-coding RNA control; O, old; AU, arbitrary units; OLU, old, darusentan. *P < 0.05 versus control (CTL); †P < 0.05 versus PAN alone/old. Figure reproduced from reference [39] with permission of the publisher.

Fig. 2. Effect of ETA receptor inhibition in laser-dissected glomeruli of rats with FSGS *in vivo* (a) and in podocytes *in vitro* (b–f). (a) Darusentan reduced MMP-9 gene expression (a marker of podocyte injury [103]) compared with placebo-treated rats. (b) *In vitro* treatment with puromycin aminonucleoside (PAN) caused podocyte apoptosis and up-regulation of MMP-9; (c) peptide (BQ) or non-peptide (LU, darusentan) ETA receptor antagonists prevented this effect, as did ETA receptor gene silencing (siRNA) (d). (e) Gene silencing of ETA receptors increased podocyte growth as determined by *de novo* DNA synthesis. (f) Actin cytoskeleton disruption was largely prevented by ETA antagonists; representative examples of these experiments are shown in Figure 3. ncRNA, non-coding RNA control; O, old; AU, arbitrary units; OLU, old, darusentan. *P < 0.05 versus control (CTL); †P < 0.05 versus PAN alone/old. Figure reproduced from reference [39] with permission of the publisher.
CKDs involving podocyte injury and endothelin

Assessing podocyte injury in patients is difficult and so far can be done only indirectly through measurements of proteinuria or albuminuria. Since most of the recent renal trials with ERAs have been extensively discussed in our previous articles, we will only briefly address clinical outcomes.

Hypertension nephropathy

Hypertensive renal disease was one of the first targets in pre-clinical studies to explore the therapeutic potential of ERAs. Renal proET-1 mRNA expression and urinary ET-1 excretion increase in hypertension due to renal mass reduction, a condition associated with proteinuria and impairment of renal function (reviewed in [13]). Using the same experimental model, Benigni et al. [86] demonstrated that selective ETA receptors antagonists reduce the degree of glomerulosclerosis and proteinuria, albeit with treatment also having anti-hypertensive effects. Clozel et al. [104], using combined blockade of ETA and ETB receptors, found only protective effects on renal function, but no effect on proteinuria, suggesting possible therapeutic advantages of selective ETA selective antagonists. Other prevention-type studies found nephroprotective effects in a variety of forms of hypertension (angiotensin-II-dependent, renin-dependent, salt-loaded renin-dependent, aldosterone-induced, genetically salt-sensitive and deoxycorticosterone–salt-induced) as well as chronic NO deficiency, with effects usually being associated with a partial reduction in blood pressure [105].

The first study to demonstrate reversal of indices of hypertensive nephropathy using ERAs was performed by Boffa et al. [34] in a rat model of NO-deficient hypertension. The same group also demonstrated that established glomerulosclerosis caused by chronic hypertension due to NO deficiency was also reversed by non-selective ERA in a manner that was independent of blood pressure [60]. In this model, increased ET-1 synthesis in the kidney was found primarily in pre-glomerular arterioles and a downstream sclerotic action on glomerular cells was unraveled with non-selective ERAs [106]. Vaneckova et al. have provided evidence that selective ETA receptor blockade maintains its profound anti-proteinuric effects even when initiated in the presence of established malignant hypertension and that an attenuation of podocyte injury (which precedes proteinuria) can be observed even in the absence of glomerulosclerosis, i.e. at early stages of renal disease [24, 89]. In contrast, non-selective ERA treatment did not prevent podocyte injury nor did it reduce proteinuria.
Importantly, the protective effects were observed in the presence of sustained hypertension [24, 89]. Podocyte injury before the development of glomerulosclerosis has also been observed in aldosterone-infused rats [26] and in hypertensive Dahl salt-sensitive hypertensive rats [23, 107]. Podocyte protection in Dahl rats was achieved by either inhibition of the mineralocorticoid receptor [23] or the endothelin ETA receptor [107]. In contrast, simple anti-hypertensive treatment of these animals with hydralazine had no effect on podocyte injury [23], indicating that the nephroprotective effects of aldosterone blockade and endothelin blockade are specific for these vasoactive and growth-promoting factors and in part blood pressure independent. The concept of a blood pressure-independent mode of action of ERAs is further supported by the glomerulosclerosis despite normotension in endothelin-overexpressing mice [87] and blood pressure-independent nephroprotective effects of ERAs in diabetes [58]. A reduction in proteinuria has also been observed in patients with resistant hypertension on triple anti-hypertensive therapy additionally treated with the ETA antagonist darusentan [108].

Focal segmental glomerulosclerosis

FSGS is a widely varying, clinicopathological entity characterized by injury of the glomerular filtration barrier [19]. Urinary excretion of ET-1 increases in primary FSGS patients and glomerular ET-1 expression is enhanced in experimental FSGS (reviewed in [13]). Podocyte-specific mechanisms have been proposed as mechanisms underlying FSGS development [22, 109].

Ageing in rodents and humans is associated with spontaneous development of FSGS [22], which is characterized by podocyte injury and hypertrophy, glomerular enlargement and glomerulosclerosis [110, 111]. Pharmacologically induced FSGS results in podocyte injury leading to cytoplasmic accumulation of functional synaptic-like vesicles, which occurs even before detachment of the cells from the GBM [112]. These vesicles or vacuoles are also present in spontaneous age-dependent FSGS [39] (Figure 4, untreated animals, left panels). Interestingly, susceptibility to develop age-dependent FSGS has recently been linked to autophagy-related mechanisms controlling podocyte vacuolation [113].

Pre-clinical studies in aged rats suggest that treatment with ETA receptor antagonists can in part restore podocyte morphology (Figure 4, treated animals, right panels), reverse FSGS and proteinuria independently of renal or systemic haemodynamics or renal function [39]. Disease regression was associated with reduced glomerular expression of MMP-9, a podocyte injury marker [39] and of cortical p21^MAPKp^ [39], a cdk-inhibitor and promoter of glomerulosclerosis [114]. Most notably, the regression of FSGS achieved by ERA treatment was associated with normalization of the thickness of the hyper trophy GBM and almost complete disappearance of podocyte vacuolation [39] (Figure 4).

We have recently proposed mechanisms that could contribute to the partial restoration of podocyte and glomerular structure and protein loss after ERA treatment [8, 10]. Though terminally differentiated, podocytes may be replaced from PECs [41, 115, 116]. This concept, initially put forward by Fogo et al. using podocyte-specific Lac-Z expression and demonstrating that PECs replace glomerular epithelial cells [42], was independently confirmed by Appel et al. [41]. However, they are still lacking evidence that former PECs migrating to the glomerular capillaries can become functional podocytes. In fact, studies from Bart Smeets and Marcus Moeller suggest that PECs’ invasion into the glomerular capillary tuft promotes scarring and FSGS. After these recent studies, we can wonder whether manipulation of the endothelin system would affect migration of PECs and their subsequent fate towards a desirable podocyte phenotype or a scarring phenotype. In addition, improved glomerular capillary architecture may result from ERA therapy and thereby accelerate disease regression [65]. Clinical data regarding effects of ERAs in FSGS patients are scarce. In patients with non-diabetic renal disease on standard anti-proteinuric RAAS inhibitor therapy, ETA antagonism reduces proteinuria [117] independent of changes in glomerular filtration rate (GFR). The same authors reported that the effect depends on the degree of RAAS inhibition in this particular patient population with renal disease of different aetiologies [118], which complicates reaching a conclusion regarding the mechanisms involved.

Diabetic Nephropathy

Diabetes remains the main cause of CKD and is likely to increase even further in prevalence due to the ongoing obesity pandemic [119]. Hyperglycaemia—like endothelin [58]—results in disassembly of the podocyte actin cytoskeleton [120] as well as podocyte depletion and apoptosis involving reactive oxygen species (ROS)-dependent mechanisms [121]. In animals with diabetic nephropathy, even viable podocytes are shed in the urine [17, 122]. Nephrin, a podocyte-specific protein contributing to functional stability of the slit diaphragm (Figure 1), is involved in podocyte shedding as recombinant endothelin triggers nephrin loss from human podocytes, which is prevented by ETA receptor antagonists [123]. A large number of experimental prevention studies demonstrated beneficial effects of ERA therapy on diabetic nephropathy and proteinuria [90, 124]. Whether these effects are pressure dependent is not clear: in some studies, partial or even complete normalization of blood pressure was observed [125, 126], while in other studies, little or no effect on blood pressure or GFR was observed, suggesting possible non-haemodynamic but rather structural effects. Indeed, Gross et al. [126] reported that darusentan was as effective as ACE inhibition in reducing glomerulosclerosis in insulin-treated streptozotocin-diabetic rats, but that ACE inhibition produced greater reductions in blood pressure, proteinuria, and glomerular volume. However, only ETA receptor blockade completely restored the number of glomeruli per kidney to the normal expected number and increased the number of podocytes per glomerulus, suggesting that endothelin blockade has specific glomeruloprotective effects at the level of the pocye [126]. Indeed, Gagliardini et al. [69] found that ERA treatment in part prevents glomerular podocyte loss in experimental diabetes and reduced podocyte injury despite having only negligible effects on arterial blood pressure [127]. Thus, anti-proteinuric effects are likely to be due to structural or anti-inflammatory [124] properties of ERAs. A pressure-independent mode of action would also be compatible with findings from recent clinical trials in patients with diabetic nephropathy in which impressive reversal of proteinuria was observed [74, 119, 128].

Obesity nephropathy

Obesity has become a major health issue in all parts of the world and is increasingly affecting children and juveniles [129, 130]. Other diseases such as arterial hypertension...
and diabetes, which are independent risk factors for CKD [131, 132] are aggravated by obesity. Secondary FSGS has been linked to obesity nephropathy [133, 134]. Accordingly, podocyte loss has been described in patients with obesity nephropathy [135] as well as in obese rodents [121]. In patients with obesity nephropathy, albuminuria is inversely correlated with plasma levels of the adipocytokine adiponectin [136]. On the other hand, albuminuria in adiponectin-deficient mice can be normalized by administering recombinant adiponectin [137]. Endothelin, which promotes proteinuria [67] and increases locally in the kidney [73, 138], inhibits adiponectin production [139], suggesting a possible mechanistic link. Obesity-associated diabetes often is associated with high circulating levels of insulin, a potent stimulus of endothelin production [58]. Furthermore, endothelin-1 has insulin-antagonizing properties [140]; thus, high local tissue or circulating levels of endothelin-1 could promote the development of insulin resistance thus promoting hyperglycaemia and subsequent podocyte injury. Another common concern of obesity-associated FSGS as well as with diabetic nephropathy is the initial chronic hyperfiltration leading to increased glomerular capillary pressure and likely podocyte stretch. ERA therapy may alleviate such local change in the glomerular haemodynamics. Finally, renal ACE becomes activated in obesity, an effect that can be completely prevented by ETA receptor antagonists [73]. This suggests that ERAs function as ACEIs under certain pathological conditions and reinforcing the use of ACEI in patients with obesity nephropathy. Importantly, in most of the clinical ERA studies in patients with diabetic nephropathy showing beneficial effects on proteinuria, patients were either overweight or obese [74, 119, 128]. Thus, future studies in renal patients should also assess and compare effects of ERA therapy in individuals with normal and pathological body-mass indices. It should also be noted that in experimental studies, calorie restriction can limit or even largely prevent FSGS-associated podocyte injury [110, 111] suggesting that calorie restriction and/or weight loss are likely to be of great importance for the primary and possibly secondary prevention of CKD in obese patients.

Immune-mediated and minimal-change nephropathies

The mitogenic and co-mitogenic effects of ET-1 on mesangial cells were reported early [10]. In the model of glomerulonephritis with mesangial proliferation induced by the injection of anti-thymocyte antibodies, an increase is observed in the glomerular expression of ET-1 and ETB receptors [141]. ETA receptor antagonists also prevent proteinuria and histological lesions due to mesangial proliferation following the repeated systemic injection of ovalbumin in rats [66]. Work by Benigni’s group suggests that albumin causes podocyte cytoskeleton disruption and up-regulation of podocyte ET-1 expression [97]. Glomerulonephritis due to streptococcal infection is characterized by intense endocapillary mesangial proliferation [13]. In children with streptococcal infection, investigators found positive correlations between plasma ET-1 concentration and arterial blood pressure, consistent with a role for endothelial activation and endothelin participating in the disease process of acute post-streptococcal glomerulonephritis [142]. It is likely that plasma concentrations only in part reflect local tissue concentrations also in this disease, given the paracrine actions of this peptide [76]. Increased mesangial expression of ET-1 in humans with lupus-associated nephropathy with moderate mesangial proliferation and after kidney transplantation with cyclosporine treatment has been reported (reviewed in [13]). Remarkably, even in the absence of immunosuppression, ETa receptor blockade can alleviate much of the transplant-associated mesangial proliferation and glomerulosclerosis [143].

Minimal-change disease represents a podocyte disease without an inflammatory infiltrate [13, 19]. Semi-quantitative morphological and immunohistochemical studies assessed renal ET-1 expression patients with minimal-change disease in the absence or presence of acute renal failure [144]. Renal failure patients showed higher ET-1 levels in glomerular and tubular endothelial cells. Thus, local increase in renal ET-1 production, which has been found in experimental studies of acute renal failure [145], appears to be involved in acute renal failure also in this setting.

Sickle cell nephropathy

FSGS is becoming epidemic in subjects affected by sickle cell disease (SCD) as life expectancy increases. In a case-control study comparing patients with chronic renal insufficiency and healthy subjects, urinary ET-1 excretion levels were significantly higher in the patients than the controls [146]. High urinary endothelin concentrations have also been reported in subjects with SCD and microalbuminuria with glomerular hyperfiltration. In these subjects, the elevated urinary ET-1 excretion, which was four times higher than that in carefully matched healthy controls, was correlated with microalbuminuria, suggesting a pathological link between the loss of glomerular permeability/selectivity and the renal synthesis of ET-1 in this context preceding progression to FSGS [147]. No studies have yet addressed possible interactions between the ET system and polymorphisms of the Apol1 gene, which is associated with an increased risk of FSGS in carriers of African chromosomes [52]. Notably, SCD condition with initial hyperfiltration and glomerulomegaly may be related in part to the pathophysiology of incipient diabetic nephropathy and obesity-related FSGS as discussed above. ETA or combined ETa/ETb blockade displayed contrasted effectiveness in blunting albuminuria and injury in experimental diabetic models with initial hyperfiltration [124, 148]. The increase in renal (mostly endothelial) ET-1 synthesis has been demonstrated in a mouse model of SCD [149] characterized by glomerulomegaly and glomerular hyperfiltration complicated by FSGS may be due to mechanically transduced stimulation. To date, clinical studies testing the potential anti-proteinuric and nephroprotective efficacy of ERAs in SCD patients have not been performed.

Conclusion and perspective

Endothelin is essential in the physiological regulation of renal blood flow and cell growth. There is solid pre-clinical and beginning clinical evidence that ERAs bear the potential as anti-proteinuric drugs and which also have beneficial effects at the level of the podocyte and the glomerular capillary in diseases such as diabetic nephropathy, hypertension nephropathy, FSGS and sickle cell nephropathy [150]. One of the current unsolved limitations of ERA therapy in patients is oedema formation. This appears to involve ETA and ETb receptor-dependent mechanisms [150, 151], which, however, can be circumvented by carefully adjusting diuretic therapy [12, 119]. Provided that clinical
drug development continues at a careful level, the addition of ERAs to the therapeutic armamentarium of nephrologists might ultimately allow the reversal—at least in part—proteinuria and possible glomerulosclerosis.

Acknowledgements. This work is support by Swiss National Science Foundation grants 108 258 and 122 504 to M.B., and by a grant from INSERM and grant ANR-06-PHYSIO, l’Agence Nationale de la Recherche, France, both to P.-L.T.

Conflicts of interest statement. None declared.

References

1. Bakris GL, Ritz E. The message for World Kidney Day 2009: hypertension and kidney disease—a marriage that should be prevented. J Hum Hypertens 2009; 23: 222–225
2. Reiser J, Gupta V, Kistler AD. Toward the development of podocyte-specific drugs. Kidney Int 2010; 77: 662–668
3. Weiner DE, Tighiouart H, Amin MG et al. Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol 2004; 15: 1307–1315
4. Barton M. Ageing as a determinant of renal and vascular disease: role of endothelial factors. Nephrol Dial Transplant 2005; 20: 485–490
5. Reiser J, Mundel P. Dual effects of RAS blockade on blood pressure and podocyte function. Curr Hypertens Rep 2007; 9: 403–408
6. Turner JM, Bauer C, Abramowitz MK et al. Treatment of chronic kidney disease. Kidney Int 2011, doi: 10.1038/ki.2011
7. Kohan DE, Pritchett Y, Molitch M et al. Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J Am Soc Nephrol 2011; 22: 763–772
8. Barton M. Endothelin antagonism and reversal of proteinuric renal disease in humans. Contrib Nephrol 2011; 172: 210–222
9. Barton M. Endothelin receptor antagonists in cardiovascular medicine: challenges and opportunities. In: Abraham D, Handler C, Dashwood MR et al. (ed). Translational Vascular Medicine. London: Springer, 2012, pp.231–259
10. Barton M. Reversal of proteinuric renal disease and the emerging role of endothelin. Nature Clin Pract Nephrol 2008; 4: 490–501
11. Barton M. Therapeutic potential of endothelin receptor antagonists for chronic proteinuric renal disease in humans. Biochim Biophys Acta 2010; 1802: 1203–1213
12. Barton M, Kohan DE. Endothelin antagonists in clinical trials: lessons learned. Contrib Nephrol 2011; 172: 255–260
13. Fligny C, Barton M, Tharaux PL. Endothelin and podocyte injury in chronic kidney disease. Contrib Nephrol 2011; 172: 120–138
14. Tharaux PL. Endothelin in renal injury due to sickle cell disease. Contrib Nephrol 2011; 172: 185–199
15. Kriz W. Podocyte is the major culprit accounting for the progression of chronic renal disease. Microsc Res Tech 2002; 57: 189–195
16. Petermann A, Floege J. Podocyte damage resulting in podocyte: a potential diagnostic marker to assess glomerular disease activity. Nephron Clin Pract 2007; 106: c61–c66
17. Mundel P. Urinary podocytes: lost and found alive. Kidney Int 2003; 64: 1529–1530
18. Asanuma K, Mundel P. The role of podocytes in glomerular pathobiology. Clin Exp Nephrol 2003; 7: 255–259
19. Meyrier A. Mechanisms of disease: focal segmental glomerulosclerosis. Nat Clin Pract Nephrol 2005; 1: 44–54
20. Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 2008; 4: 39–45
21. Kalluri R. Proteinuria with and without renal glomerular podocyte effacement. J Am Soc Nephrol 2006; 17: 2383–2389
22. Floege J, Hackmann B, Kliem V et al. Age-related glomerulosclerosis and interstitial fibrosis in Milan normotensive rats: a podocyte disease. Kidney Int 1997; 51: 230–243
23. Nagase M, Shibata S, Yoshida S et al. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 2006; 47: 1084–1093
24. Opocensky M, Kramer HJ, Bucker A et al. Late-onset endothelin-A receptor blockade reduces podocyte injury in homozygous Ren-2 rats despite severe hypertension. Hypertension 2006; 48: 965–971
25. Shibata S, Nagase M, Fujita T. Fluvasatin ameliorates podocyte injury in proteinuric rats via modulation of excessive Rho signaling. J Am Soc Nephrol 2006; 17: 754–764
26. Shibata S, Nagase M, Yoshida S et al. Podocyte as the target for aldosterone: roles of oxidative stress and SigK. Hypertension 2007; 49: 355–364
27. Pozzi A, Zent R. Hold tight or you’ll fall off: CD151 helps podocytes stick in high-pressure situations. J Clin Invest 2012; 122: 13–16
28. Riede UN, Wehner H. Allgemeine und spezielle Pathologie (Textbook). Stuttgart: Thieme, 1986
29. Reiser J, Oh J, Shirato I et al. Podocyte migration during nephrotic syndrome requires a coordinated interplay between cathepsin L and alpha3 integrin. J Biol Chem 2004; 279: 34827–34832
30. Shankland SJ. The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int 2006; 69: 2131–2147
31. Adamczak M, Gross ML, Amann K et al. Reversal of glomerular lesions involves coordinated restructuring of glomerular microvasculature. J Am Soc Nephrol 2004; 15: 3063–3072
32. Adamczak M, Gross ML, Krtlj J et al. Reversal of glomerulosclerosis after high-dose enalapril treatment in subtotaly nephrectomized rats. J Am Soc Nephrol 2003; 14: 2833–2842
33. Boffa JJ, Lu Y, Placier S et al. Regression of renal vascular and glomerular fibrosis: role of angiotensin II receptor antagonism and matrix metalloproteinases. J Am Soc Nephrol 2003; 14: 1132–1144
34. Boffa JJ, Tharaux PL, Dussaule JC et al. Regression of renal vascular fibrosis by endothelin receptor antagonism. Hypertension 2001; 37: 490–496
35. Cruzo JD, Lloberas N, Torras J et al. Regression of advanced diabetic nephropathy by hepatocyte growth factor gene therapy in rats. Diabetes 2004; 53: 1119–1127
36. Francois H, Placier S, Flamant M et al. Prevention of renal vascular and glomerular fibrosis by epidermal growth factor receptor inhibition. Faseb J 2004; 18: 926–928
37. Ma LJ, Nakamura S, Alldiger JC et al. Regression of glomerulosclerosis with high-dose angiotensin inhibition is linked to decreased plasminogen activator inhibitor-1. J Am Soc Nephrol 2005; 16: 966–976
38. Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 2006; 116: 288–296
39. Ortmann J, Amann K, Brandes RP et al. Role of podocytes for reversal of glomerulosclerosis and proteinuria in the aging kidney after endothelin inhibition. Hypertension 2004; 44: 974–981
40. Placier S, Boffa JJ, Dussaule JC et al. Reversal of renal lesions following interruption of nitric oxide synthesis inhibition in transgenic mice. Nephrol Dial Transplant 2006; 21: 881–888
41. Appel D, Kershaw DB, Smeets B et al. Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 2009; 20: 333–343
Endothelin and the podocyte

42. Asano T, Niimura F, Pasan I et al. Permanent genetic tagging of podocytes: fate of injured podocytes in a mouse model of glomerular sclerosis. J Am Soc Nephrol 2005; 16: 2257–2262

43. Welsh GI, Saleem MA. The podocyte cytoskeleton-key to a functioning glomerulus in health and disease. Nat Rev Nephrol 2012; 8: 14–21

44. Shankland SJ, Pippin JW, Reiser J et al. Podocytes in culture: past, present, and future. Kidney Int 2007; 72: 26–36

45. Endlich N, Kress KR, Reiser J et al. Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 2001; 12: 413–422

46. Benigni A, Gagliardini E, Remuzzi G. Changes in glomerular perm-selectivity induced by angiotensin II imply podocyte dysfunction and slit diaphragm protein rearrangement. Semin Nephrol 2004; 24: 131–140

47. Takeda T, McQuistan T, Orlando RA et al. Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. J Clin Invest 2001; 108: 289–301

48. Kim YH, Goyal M, Kurnit D et al. Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. Kidney Int 2001; 60: 957–968

49. Macconi D, Abbate M, Morigi M et al. Association of tryptophan 100 in the 3’UTR with a polymorphism in the endoglin gene: a new susceptibility factor for idiopathic pulmonary arterial hypertension. J Am Soc Nephrol 2001; 12: 348–358

50. Gubler MC. Podocyte differentiation and hereditary proteinuric/nephrotic syndromes. J Am Soc Nephrol 2003; 14 (Suppl 1): S22–S26

51. Meyrier A. An update on the treatment options for focal segmental glomerulosclerosis. Expert Opin Pharmacother 2009; 10: 615–628

52. Genovese G, Friedman DJ, Ross MD et al. Association of trypanolytic Apol1 variants with kidney disease in African Americans. Science 2010; 329: 841–845

53. Ergul S, Parish DC, Puett D et al. Racial differences in plasma endothelin-1 concentrations in individuals with essential hypertension. Hypertension 1996; 28: 652–655

54. Sachs N, Kreft M, van den Bergh Weerman MA et al. Kidney failure in mice lacking the tetraspanin CD151. J Cell Biol 2006; 175: 33–39

55. Fukuda A, Wickman LT, Venkatareddy MP et al. Angiotensin II-dependent persistent podocyte loss from destabilized glomeruli causes progression of end stage kidney disease. Kidney Int 2011; 81: 40–55

56. Sachs N, Claessen N, Aten J et al. Blood pressure influences end-stage renal disease of Cd151 knockout mice. J Clin Invest 2012; 122: 348–358

57. Matsusaka T, Sandgren E, Shintani A et al. Podocyte injury damages other podocytes. J Am Soc Nephrol 2011; 22: 1275–1285

58. Barton M, Yanagisawa M. Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol 2008; 86: 485–498

59. Barton M. The discovery of endothelin-dependent contraction: the legacy of Paul M. Vanhoutte Pharmacol Res 2011; 63: 455–462

60. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. Faseb J 1989; 3: 2007–2018

61. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 289: 373–376

62. Hickey KA, Rubanyi GM, Paul RJ et al. Characterization of a coronary vasconstrictor produced by cultured endothelial cells. Am J Physiol 1985; 248: C550–C562

63. Yanagisawa M, Kurihara H, Kimura S et al. A novel potent vasconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411–415

64. Benigni A, Remuzzi G. How renal cytokines and growth factors contribute to renal disease progression. Am J Kidney Dis 2001; 37: S21–S24

65. Lattman T, Hein M, Horber S et al. Activation of pro-inflammatory and anti-inflammatory cytokines in host organs during chronic all-organ rejection: role of endothelin receptor signaling. Am J Transplant 2005; 5: 1042–1049

66. Gomez-Garre D, Largo R, Liu XH et al. An orally active ETA/ETB receptor antagonist ameliorates proteinuria and glomerular lesions in rats with proliferative nephritis. Kidney Int 1996; 50: 962–972

67. Saleh MA, Boesen EI, Pollock JS et al. Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension 2010; 56: 942–949

68. Saleh MA, Boesen EI, Pollock JS et al. Endothelin receptor A-specific stimulation of glomerular inflammation and injury in a streptozotocin-induced rat model of diabetes. Diabetologia 2011; 54: 979–988

69. Gagliardini E, Corna D, Zaja C et al. Unlike each drug alone, lisinopril in combination with a losartan promotes regression of renal lesions in experimental diabetes. Am J Physiol Renal Physiol 2009; 297: F1448–F1456

70. Saleh MA, Pollock JS, Pollock DM. Distinct actions of endothelin A-selective versus combined endothelin A/B receptor antagonists in early diabetic kidney disease. J Pharmacol Exp Ther 2011; 338: 263–270

71. Kawaguchi H, Sawa H, Yasuda H. Endothelin stimulates angiotensin I to angiotensin II conversion in cultured pulmonary artery endothelial cells. J Mol Cell Cardio 1999; 22: 839–842

72. Barton M, Shaw S, d’Uscio LV et al. Angiotensin II increases vascular and renal endothelin-1 and functional endothelin converting enzyme activity in vivo: role of ETA receptors for endothelin regulation. Biochem Biophys Res Commun 1997; 238: 861–865

73. Barton M, Carmona R, Morawietz H et al. Obesity is associated with tissue-specific activation of renal angiotensin-converting enzyme in vivo: evidence for a regulatory role of endothelin. Hypertension 2000; 35: 329–336

74. Kohan DE, Rossi NF, Inscho EW et al. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91: 1–77

75. Nakano D, Pollock DM. Contribution of endothelin A receptors in endothelin 1-dependent natriuresis in female rats. Hypertension 2009; 53: 324–330

76. Kisanuki YY, Emoto N, Ohuchi T et al. Loss of glomerular inflammation independent of endothelin receptors on human glomerular podocytes and mesangial cells. J Clin Invest 2009; 123: 652–655

77. Leung JW, Wong WT, Koon HW et al. Transgenic mice over-expressing ET-1 in the endothelial cells develop systemic hypertension with altered vascular reactivity. PLoS One 2011; 6: e26994

78. Lattman T, Shaw S, Munter K et al. An orally active ETA/ETB receptor antagonist ameliorates proteinuria and glomerular lesions in rats with proliferative nephritis. Kidney Int 1996; 50: 962–972

79. Saleh MA, Boesen EI, Pollock JS et al. Endothelin receptor A-specific stimulation of glomerular inflammation and injury in a streptozotocin-induced rat model of diabetes. Diabetologia 2011; 54: 979–988

80. Gagliardini E, Corna D, Zaja C et al. Unlike each drug alone, lisinopril in combination with a losartan promotes regression of renal lesions in experimental diabetes. Am J Physiol Renal Physiol 2009; 297: F1448–F1456

81. Lattmann T, Hein M, Horber S et al. Activation of pro-inflammatory and anti-inflammatory cytokines in host organs during chronic all-organ rejection: role of endothelin receptor signaling. Am J Transplant 2005; 5: 1042–1049

82. Gomez-Garre D, Largo R, Liu XH et al. An orally active ETA/ETB receptor antagonist ameliorates proteinuria and glomerular lesions in rats with proliferative nephritis. Kidney Int 1996; 50: 962–972

83. Rebibou JM, He CJ, Delarue F et al. Functional endothelin 1 receptors on human glomerular podocytes and mesangial cells. Nephrol Dial Transplant 1992; 7: 288–292
26 M. Barton and P.-L. Tharaux

84. Yamamoto T, Hirohama T, Uemura H. Endothelin B receptor-like immunoreactivity in podocytes of the rat kidney. Arch Histol Cytol 2002; 65: 245–250

85. Schneider MP, Boesen EI, Pollock DM. Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Am J Physiol Renal Physiol 2007; 47: 731–759

86. Benigni A, Zojca C, Corno D et al. A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney Int 1993; 44: 440–444

87. Hocher B, Thone-Reinecke C, Rohmeiss P et al. Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts but not hypertension. J Clin Invest 1997; 99: 1380–1389

88. Barton M, Vos I, Shaw S et al. Dysfunctional renal nitric oxide synthase as a determinant of salt-sensitive hypertension: mechanisms of renal artery endothelial dysfunction and role of endothelin for vascular hypertrophy and glomerulosclerosis. J Am Soc Nephrol 2000; 11: 835–845

89. Vernetova Z, Kramer HJ, Backer A et al. Late-onset endothelin receptor blockade in hypertensive heterozygous REN-2 transgenic rats. Vasc Pharmacol 2008; 48: 165–173

90. Benigni A, Colosio V, Brena C et al. Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes. Diabetes 1998; 47: 450–456

91. Wang S, Chen Q, Simon TC et al. Bone morphogenetic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int 2003; 63: 2037–2049

92. Zeisberg M, Hanai J, Sugimoto H et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003; 9: 964–968

93. Fogo AB. New capillary growth: a contributor to regression of sclerosis? Curr Opin Nephrol Hypertens 2005; 14: 201–203

94. Bollee G, Flamant M, Schordan S et al. Epididymal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat Med 2011; 17: 1242–1250

95. Chansel D, Ciroldi M, Vandermeersch S et al. Heparin binding EGF is necessary for vasoplastic response to endothelin. Fa-seb J 2006; 20: 1936–1938

96. Portik-Dobos V, Harris AK, Song W et al. Endothelin antagonists prevent early EGFR transactivation but not increased matrix metalloproteinase activity in diabetes. Am J Physiol Regul Integr Comp Physiol 2006; 290: R435–R441

97. Morigi M, Buelli S, Angioletti S et al. In response to protein load podocytes reorganize cytoskeleton and modulate endothelin-1 gene: implication for permissive dysfunction of chronic nephropathies. Am J Pathol 2005; 166: 1309–1320

98. Morigi M, Buelli S, Zanchi C et al. Shigatoxin-induced endothelin-1 expression in cultured podocytes autocrinically mediates actin remodeling. Am J Pathol 2006; 169: 1965–1975

99. Benigni A, Perico N, Remuzzi G. The potential of endothelin antagonism as a therapeutic approach. Expert Opin Investig Drugs 2004; 13: 1419–1435

100. Liang XB, Ma LJ, Naito T et al. Angiotensin type 1 receptor blocker restores podocyte potential to promote glomerular endothelial cell growth. J Am Soc Nephrol 2006; 17: 1886–1895

101. Diamond JR, Karnovsky MJ. Focal and segmental glomerulosclerosis following a single intravenous dose of puromycin aminonucleoside. Am J Pathol 1986; 122: 481–487

102. Fogo AB. Animal models of FSGS: lessons for pathogenesis and treatment. Semin Nephrol 2003; 23: 161–171

103. van Luttichau I, Djafarzadeh R, Henger A et al. Identification of a signal transduction pathway that regulates MMP-9 mRNA expression in glomerular injury. Biol Chem 2002; 383: 1271–1275

104. Clozel M, Qi C, Osterwalder R et al. Effects of nonpeptide endothelin receptor antagonists in rats with reduced renal mass. J Cardiovasc Pharmacol 1999; 33: 611–618

105. Schiffrin EL. State-of-the-Art lecture. Role of endothelin-1 in hypertension. Hypertension 1999; 34: 876–881

106. Tharaux PL, Chatziantoniou C, Casellas D et al. Vascular endothelin-1 gene expression and synthesis and effect on renal type 1 collagen synthesis and nephroangiosclerosis during nitric oxide synthase inhibition in rats. Circulation 1999; 99: 2185–2191

107. Barton M, d’Uscio L, Shaw S et al. ETA receptor blockade prevents increased tissue endothelin-1, vascular hypertrophy and endothelial dysfunction in salt-sensitive hypertension. Hypertension 1998; 31: 499–504

108. Weber MA, Black H, Bakris G et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet 2009; 374: 1423–1431

109. Zhu L, Jiang R, Aoudjit L et al. Activation of RhoA in podocytes induces focal segmental glomerulosclerosis. J Am Soc Nephrol 2011; 22: 1621–1630

110. Wiggins J. Podocytes and glomerular function with aging. Semin Nephrol 2009; 29: 587–593

111. Wiggins JE, Goyal M, Sanden SK et al. Podocyte hypertrophy, “adaptation,” and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J Am Soc Nephrol 2005; 16: 2953–2966

112. Mahan JD, Sisson-Ross S, Vernier RL. Glomerular basement membrane anionic charge site changes early in aminonucleoside nephrosis. Am J Pathol 1986; 125: 393–401

113. Hartleben B, Godel M, Meyer-Schwesinger C et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 2011; 120: 1084–1096

114. Megyesi J, Price PM, Tamayo E et al. The lack of a functional p21(WAF1/CIP1) gene ameliorates progression to chronic renal failure. Proc Natl Acad Sci USA 1999; 96: 10830–10835

115. Dijkman H, Smeets B, van der Look J et al. The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis. Kidney Int 2005; 68: 1562–1572

116. Smeets B, Angelotti ML, Rizzo P et al. Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis. J Am Soc Nephrol 2009; 20: 2593–2603

117. Dhaun N, Macintyre IM, Melville V et al. Blood pressure-independent reduction in proteinuria and arterial stiffness after acute endothelin-a receptor antagonism in chronic kidney disease. Hypertension 2009; 54: 113–119

118. Dhaun N, Macintyre IM, Melville V et al. Effects of endothelin receptor antagonism relate to the degree of renin-angiotensin system blockade in chronic proteinuric kidney disease. Hypertension 2009; 54: e19–e20

119. Rabelink TJ, Kohan DE. Endothelin receptor blockade in patients with diabetic nephropathy. Contrib Nephrol 2011; 172: 235–242

120. Zhou X, Hurst RD, Templeton D et al. High glucose alters actin assembly in glomerular mesangial and epithelial cells. Lab Invest 1995; 73: 372–383

121. Susztak K, Raff AC, Schiffer M et al. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006; 55: 225–233

122. Petermann AT, Krofft R, Blonski M et al. High glucose alters actin assembly in glomerular mesangial and epithelial cells. Lab Invest 1995; 73: 372–383

123. Collino F, Bussolati B, Gerbaudo E et al. Pre-eclamptic sera induce nephrin shedding from podocytes through endothelin-1 release by endothelial glomerular cells. Am J Physiol Renal Physiol 2008

124. Sasser JM, Sullivan JC, Hobbs JL et al. Endothelin A receptor blockade reduces diabetic renal injury via an anti-inflammatory mechanism. J Am Soc Nephrol 2007; 18: 143–154
Endothelin and the podocyte

125. Ding SS, Qiu C, Hess P et al. Chronic endothelin receptor blockade prevents both early hyperfiltration and late overt diabetic nephropathy in the rat. *J Cardiovasc Pharmacol* 2003; 42: 48–54

126. Gross ML, El-Shakmak A, Szabo A et al. ACE-inhibitors but not endothelin receptor blockers prevent podocyte loss in early diabetic nephropathy. *Diabetologia* 2003; 46: 856–868

127. Gross ML, Ritz E, Schoof A et al. Renal damage in the SHR/N-cp type 2 diabetes model: comparison of an angiotensin-converting enzyme inhibitor and endothelin receptor blocker. *Lab Invest* 2003; 83: 1267–1277

128. Mann JF, Green D, Jamerson K et al. Gross ML, El-Shakmak A, Szabo A et al. ACE-inhibitors but not endothelin receptor blockers prevent podocyte loss in early diabetic nephropathy. *Diabetologia* 2003; 46: 856–868

129. Barton M. Childhood obesity—a life-long health risk. *Contrib Nephrol* 2011; 172: 1–266, Karger, Basel

130. Barton M. Obesity and aging: determinants of endothelial cell dysfunction and atherosclerosis. *Pflugers Arch* 2010; 460: 825–837

131. Griffin KA, Kramer H, Bidani AK. Adverse renal consequences of obesity. *Am J Physiol Renal Physiol* 2008; 294: F685–F696

132. Wolf G. Obesity and the kidney. *Contrib Nephrol* 2006; 151: 1–260, Karger, Basel

133. Kramer H. Obesity and chronic kidney disease. *Contrib Nephrol* 2006; 151: 1–18

134. Praga M, Hernandez E, Morales E et al. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. *Nephrol Dial Transplant* 2001; 16: 1790–1798

135. Chen HM, Liu ZH, Zeng CH et al. Podocyte lesions in patients with obesity-related glomerulopathy. *Am J Kidney Dis* 2006; 48: 772–779

136. Sarafianos M, Forsblom C, LT et al. Serum adiponectin and progression of diabetic nephropathy in patients with type 1 diabetes. *Diabetes Care* 2008; 31: 1165–1169

137. Sharma K, Ramachandran Rao S, Qiu G et al. Adiponectin regulates albuminuria and podocyte function in mice. *J Clin Invest* 2008; 188: 1645–1656

138. Barton M, Carmona R, Ortmann J et al. Obesity-associated activation of angiotensin and endothelin in the cardiovascular system. *Int J Biochem Cell Biol* 2003; 35: 826–837

139. Bedi D, Clarke KJ, Dennis JC et al. Endothelin-1 inhibits adiponectin secretion through a phosphatidylinositol 4,5-bisphosphate/actin-dependent mechanism. *Biochem Biophys Res Commun* 2006; 345: 332–339

140. Idris I, Patiag D, Gray S et al. Tissue- and time-dependent effects of endothelin-1 on insulin-stimulated glucose uptake. *Biochem Pharmacol* 2001; 62: 1705–1708

141. Yoshimura A, Iwasaki S, Inui K et al. Endothelin-1 and endothelin B type receptor are induced in mesangial proliferative nephritis in the rat. *Kidney Int* 1995; 48: 1290–1297

142. Nickolaidou P, Georgoulis H, Matsinos Y et al. Endothelin-1 in children with acute poststreptococcal glomerulonephritis and hypertension. *Pediatr Int* 2003; 45: 35–38

143. Orth SR, Odoni G, Amann K et al. The ET(A) receptor blocker LU 135252 prevents chronic transplant nephropathy in the “Fisher to Lewis” model. *J Am Soc Nephrol* 1999; 10: 387–391

144. Chen CL, Fang HC, Chou KJ et al. Increased endothelin 1 expression in adult-onset minimal change nephropathy with acute renal failure. *Am J Kidney Dis* 2005; 45: 818–825

145. Ruschitzka F, Shaw S, Gygi D et al. Endothelial dysfunction in acute renal failure: role of circulating and tissue endothelin-1. *J Am Soc Nephrol* 1999; 10: 953–962

146. Ohta K, Hirata Y, Shichiri M et al. Urinary excretion of endothelin-1 in normal subjects and patients with renal disease. *Kidney Int* 1991; 39: 307–311

147. Tharaux PL, Hagege I, Placier S et al. Urinary endothelin-1 as a marker of renal damage in sickle cell disease. *Nephrol Dial Transplant* 2005; 20: 2408–2413

148. Hocher B, Lun A, Priem F et al. Renal endothelin system in diabetes: comparison of angiotensin-converting enzyme inhibition and endothelin-A antagonism. *J Cardiovasc Pharmacol* 1998; 31 (Suppl 1): S492–S495

149. Sabaa N, de Franceschi L, Bonnin P et al. Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease. *J Clin Invest* 2008; 118: 1924–1933

150. Barton M, Kohan DE. Endothelin in renal physiology and disease. *Contrib Nephrol* 2011; 172: 1–266, Karger, Basel

151. Kohan DE, Strait K, Stricklett P et al. Identification of the site of endothelin A receptor antagonist-induced fluid retention. *Proceedings of the British Pharmacological Society* 2011; http://www.pA2online.org/abstracts/Vol9Issue1abst015P.pdf

Received for publication: 31.12.11; Accepted in revised form: 2.1.12