A Model Applied to Surface Tension of Liquids

D.V. Singh¹, A. Kumar², R. Kumari³ and N. Dass³*

¹Physics Department, College of Engineering Roorkee, Roorkee, India
²Physics Department, Gurukula Kangri Vishwavidyalaya, Haridwar, India
³Physics Department, M S Post Graduate College, Saharanpur, India

*Corresponding Author: ndass2@rediffmail.com

Available online at: www.isroset.org

Abstract- In the present paper, a model is suggested to study the temperature dependence of surface tension in liquids and is applied in more than sixty liquids including liquid metals, rare gas liquids, inorganic and organic liquids. A very good agreement is found between the experimental values and the computed results in case of each liquid.

Keywords- Surface tension, temperature, liquid metals and liquefied gases, organic and inorganic liquids

I. INTRODUCTION

Surface tension of liquid is an important property and has wide applications in understanding the phenomenon of (i) wettability (ii) migration (iii) atomic bonding and (iv) two-phase heat transfer along with the correlation with other thermodynamic properties. Further, the surface tension is found to have the practical applications in material science, chemical engineering and environmental science besides physics, chemistry and petroleum engineering. However, the surface tension of liquid is found to decrease with rise in temperature and vanishes at critical temperature. Under these circumstances, a study of temperature dependence of surface tension of liquids become quite important and particularly in the development of a model for the liquid state with the help of physical thermodynamic properties.

In literature, many empirical and semi-empirical relations [1-14] are available to represent the temperature dependence of surface tension of liquids. All these relations make use of reduced parameters which include the critical temperature or some other property of the concerned liquid and hence adjustable parameters required for the study of temperature dependence of surface tension in the liquids become quite large. Further, these relations have limited success in the sense that these relations could not be applied in case of those liquids whose critical temperature is not known. Hence, there is a need of a model/relation between surface tension and temperature .The model/relation can be further used to obtain thermo-physical properties like para-chore, surface entropy and surface enthalpy.

II. THEORY

To study the temperature dependence of surface tension in liquids, it is suggested that the ratio of second to first temperature derivative of surface tension is a constant and is expressed as

\[
\frac{d^2\sigma}{dT^2} \bigg/ \frac{d\sigma}{dT} = -Z
\]

(1)

Successive integration of eq.(1) with respect to temperature in limits \(T = T \) and \(T = T_0 \) gives the following relations:

\[
\frac{d\sigma}{dT} = \sigma'(T_0) \exp[-Z(T - T_0)]
\]

(2)

and

\[
\sigma(T) = \sigma(T_0) + \frac{\sigma'(T_0)}{Z} [1 - \exp(-Z(T - T_0))]
\]

(3)

In eqs.(1)-(3), \(\sigma(T_0) \) and \(\sigma'(T_0) \) represent surface tension and its first temperature derivative at \(T = T_0 \) where
T_0 is the reference temperature. Z is a temperature independent constant.

III. RESULTS AND DISCUSSIONS

The relation given by eq.(3) is applied in liquid metals, rare gas liquids, inorganic and organic liquids including ionic liquids. In total, we have applied eq.(3) in more than sixty liquids. The results are reported in table 1. Table 1 includes the temperature range studied, the values of constants $\sigma'(T_0)$ and Z along with root mean square deviation (RMSD) in case of each liquid studied here. RMSD is a parameter which represents the goodness of fit. The values of the constants are determined by least square fit.

The surface thermodynamic properties like surface entropy and surface enthalpy can be estimated once the temperature dependence of surface tension is known. The surface entropy, S_σ, and surface enthalpy, H_σ, can be computed from the relations:

$$S_\sigma = -(\frac{d\sigma}{dT})$$

(4)

$$H_\sigma = \sigma - T(\frac{d\sigma}{dT})$$

(5)

It is evident that $\sigma'(T_0)$ expresses the value of surface entropy at temperature T_0. With the help of eq.(2), one can easily calculate the values of surface entropy and surface enthalpy as a function of temperature.

IV. CONCLUSION

Following important points emerges out from the present study:

(a) It is evident from table 1 that the present relation is quite successful and valid in representing the temperature dependence of surface tension in all the liquids studied here.

(b) From the present relation, one can easily obtain surface thermodynamic properties like surface entropy and surface enthalpy. To save space, these properties are not reported in the present paper.

(c) The present relation is free from critical temperature and other physical properties of the liquid concerned.

(d) The present model has only two adjustable parameters and one of the parameter represents the surface entropy.

(e) The relation is useful in the interpolation as well as in the extrapolation of surface tension data at any given temperature.

REFERENCES

[1] N. Auerbach, Experientia, vol.4, pp.473, 1948.
[2] K. Alterburg, Z. Phys. Chem., pp.145-147, 1950.
[3] J. R. Brock and R. B. Bird, AIChE journal, vol.1, pp.174-177, 1955.
[4] D. D. Patterson and A. K. Rastogi, J. Phys. Chem., vol.74, pp.1067-1071, 1970.
[5] D. I. Hakim, D. Steinberg and L. I. Stiel, Ind. Eng. Chem. Funda., vol.10, pp.174, 1971.
[6] J. A. Hugill and A. J. Van Welsehnes, Fluid Phase Equil., vol.29, pp.383, 1986.
[7] R. P. Chhabra, High Temp-High Press., vol.21, pp.171-174, 1990.
[8] H. M. Lu and Q. Jiang, J. Phys. Chem. B, vol.109, pp.15463-15468, 2005.
[9] K. S. Pitzer Thermodynamics, 3rd ed. Mcgraw-Hill, Nework, 1995.
[10] Y. X. Zuo and E. H. Stanley, Can. J. Chem. Eng., vol.75, pp.1130-1132, 1997.
[11] C. Mrueque et al., Fluid Phase Equil., vol.172, pp.169-171, 2000.
[12] S. T. Bowden, J. Chem. Phys., vol.23, pp.2454, 1955.
[13] N. K. Sanyal and S. S. Mitra, J. Chem. Phys., vol.24, pp.473-474, 1956.
[14] N. Dass and O. Singh, J. Phy. Soc Japan, vol 28, pp.806-807, 1970.
[15] V. V. Lazarev, Teoreticheskaya i Eksperimental'naya Khimiya, vol.3, pp.504-507, 1967.
[16] F. Aqra and A. Ayyad, Phys and Chem Liquids, vol.50, pp.336-345, 2012.
[17] M. H. Ghatee and A. Boushehri, High Temp- High Pressures, vol.26, pp.507-514, 1994.
[18] S. Kim and S. Chang, Daehan Hwahak Hwoejee, vol.9, pp.110-114, 1965.
[19] J. Amoros, J. R. Solana and E. Villar, Materials Science, vol.7, pp.127-136, 1982.
[20] L. Lomba et al. J. Chem. Thermodynamics, vol.65, pp.34-41, 2013.
[21] M. H. Ghatee et al., J. Chem. Engg. Data, vol.57, pp.2095-2101, 2012.
[22] P. Jianxin and L. Yigang, Phys. and Chem Liquids, vol.47, pp.267-273, 2009.
[23] W. Gao, X. Zhao and Z. Liu, J. Chem. Engg. Data, vol.54, pp.1761-1763, 2009.
[24] J. Klomfar, M. Soucckova and J. Patak, J. Chem. Engg. Data, vol.59, pp.2263-2274, 2014.
[25] T. M. Koller et al.; J. Chem. Engg. Data, vol.60, pp.2665-2673, 2015.
[26] G. Vazquez, E. Alvarez and M. Navaza, J. Chem. Engg. Data, vol.40, pp.611-614, 1995.
[27] L. G. Sanchez et al., J. Chem. Engg. Data, vol.54, pp.2803-2812, 2009.
[28] H. F. D. Almeida et al. J. Chem. Thermodynamics, vol.57, pp.372-379, 2013.
[29] E. M. Fenidu and F. Oprea, J. Chem. Engg. Data, vol.58, pp.2898-2903, 2013.
[30] J. Vijande et al. J. Chem. Engg. Data, vol.51, pp.1778-1782, 2006.
[31] P. K. Chhotaray and R. L. Gardas, J. Chem. Engg. Data, vol.60, pp.1868-1877, 2015.
Table 1 - Input parameters and RMSD in case of different liquids

S. No.	Liquid	Temp Range (K)	$\sigma'(T_0)$ (mN m$^{-1}$ K$^{-1}$)	Z(K$^+$)	RMSD (mN m$^{-1}$)	Ref.	
1	Sn	250-1700	0.0738	0.0001	2.07	15	
2	In	200-1700	0.1194	0.0003	3.68	15	
3	Pb	330-1400	0.1246	0.0001	2.91	15	
4	Tl	310-1100	0.0834	0.0001	1.35	15	
5	Bi	300-1300	0.0814	0.0001	1.58	15	
6	Cd	325-600	0.2085	-0.0001	0.93	15	
7	Ge	950-1700	0.0976	0.0001	2.38	15	
8	Si	1687-1825	0.2968	-0.0003	0.11	16	
9	K	336.4-1032.2	0.0066	-0.0001	0.003	17	
10	Li	453.7-1645	0.0141	0.0001	0.012	17	
11	Na	371.0-1151.2	0.0010	0.0001	0.002	17	
12	Rb	312.7-959.2	0.0058	0.0002	0.003	17	
13	Cs	301.6-943.0	0.0048	-0.0001	0.003	17	
14	I	398.15-428.5	0.1110	0.0105	0.033	18	
15	Ar	83.81-140.0	0.2642	-0.0072	0.039	19	
16	Xe	170.0-280.0	0.1970	-0.0046	0.084	19	
17	Ne	24.55-30.0	0.3574	-0.0031	0.013	19	
18	Kr	115.79-119.04	0.2091	0.0543	0.026	19	
19	Methyl Levulinate	278.15-338.15	0.1111	-0.0001	0.034	20	
20	2-HEAF	298.15-353.15	0.0731	0.0003	0.027	21	
21	CO$_2$	220.1-298.20	0.3122	-0.0115	0.142	22	
22	2,2Dimethylbutane	233.08-378.23	0.1083	0.0011	0.067	23	
23	[THTDP][NTf$_2$]	273.49-364.76	0.0541	-0.0021	0.068	24	
24	[THTDP][DCA]	283.61-365.21	0.0725	-0.0027	0.080	24	
25	[EMIM][C(CN)$_3$]	283.18-353.36	0.0714	-0.0061	0.144	25	
26	[BMIM][C(CN)$_3$]	283.39-353.37	0.1517	0.0136	0.143	25	
27	[HMIM][C(CN)$_3$]	283.23-353.53	0.0756	0.0001	0.075	25	
28	[OMIM][C(CN)$_3$]	283.28-353.03	0.0906	0.0054	0.088	25	
29	[EMIM][B(CN)$_4$]	283.10-353.45	0.1137	0.0070	0.081	25	
30	[BMIM][B(CN)$_4$]	283.23-353.30	0.0825	-0.0022	0.111	25	
31	[HMIM][B(CN)$_4$]	283.27-353.27	0.0811	-0.0020	0.101	25	
32	[OMIM][B(CN)$_4$]	283.23-353.28	0.0824	-0.0022	0.112	25	
33	[DMIM][B(CN)$_4$]	283.19-353.24	0.0866	0.0027	0.091	25	
34	1-Propanol	293.15-323.15	0.0794	-0.0001	0.009	26	
35	2-Propanol	293.15-323.15	0.1012	-0.0001	0.008	26	
36	Methanol	293.15-323.15	0.0949	0.0022	0.025	26	
37	Ethanol	293.15-323.15	0.0909	0.0065	0.022	26	
38	[BMIM] MeSO$_4$	294.55-353.15	0.0235	-0.0371	0.601	27	
39	[p$_{66}(14)$][NTf$_2$]	298.20-343.20	0.0744	0.0074	0.050	28	
40	[p$_{66}(14)$][Deca]	298.00-343.00	0.0541	-0.0057	0.034	28	
41	[p$_{66}(14)$][phosh]	297.90-342.90	0.0592	-0.0073	0.035	28	
42	[p$_{66}(14)$][N(CN)$_2$]	298.40-343.40	0.0755	0.0078	0.025	28	
43	[p$_{66}(14)$][Br]	289.20-343.40	0.0712	0.0022	0.060	28	
44	[p$_{66}(14)$][Cl]	298.60-343.30	0.0620	-0.0055	0.050	28	
45	[p$_{66}(14)$][CH$_2$SO$_3$]	298.30-343.50	0.0736	0.0030	0.028	28	
No.	Compound	Temperature Range °C	Critical Temperature °C	Viscosity at 298.15 K	Viscosity at 293.15 K	Viscosity at 273.15 K	Viscosity at 278.15 K
-----	---------------------	-----------------------	-------------------------	-----------------------	-----------------------	-----------------------	-----------------------
46	Tetrapropylene Glycol	298.15-468.15	0.0823	-0.0001	0.035	29	
47	1-Butanol	288.15-308.15	0.0848	0.0098	0.022	30	
48	1-Octanol	288.15-308.15	0.0848	0.0098	0.022	30	
49	1-Rexanol	288.15-308.15	0.0848	0.0098	0.022	30	
50	PAAC	293.15-333.15	0.0858	-0.0019	0.022	31	
51	3 HPAF	293.15-333.15	0.1017	-0.0200	0.020	31	
52	3 HPATFac	293.15-333.15	0.0831	-0.0001	0.026	31	
53	5-Methylfurfural	278.15-338.15	0.1210	0.0007	0.030	32	
54	Tetrahydrofurfuryl Alcohol	288.15-338.15	0.1013	0.0001	0.003	32	
55	Methyl Acrylate	278.15-338.15	0.1350	0.0017	0.035	33	
56	Ethyl Acrylate	278.15-338.15	0.11920	0.0001	0.028	33	
57	Butyl Acrylate	278.15-338.15	0.1085	-0.0005	0.080	33	
58	Mercury	273.15-523.15	0.1548	-0.0027	0.070	34	
59	Water	273.15-423.15	0.1460	-0.0029	0.040	35	
60	Heptane	273.15-523.15	0.1056	0.0017	0.113	36	
61	Benzene	278.65-473.15	0.1364	0.0013	0.049	36	

Author Profile

Mr. N. Dass obtained B.Sc and M.Sc from Birla Science College, Pilani (India) in year 1960 and 1962. He obtained his Ph.D from University of Roorkee (now IIT) in year 1969. He has published more than seventy research papers in International and National Journals. Thirty papers have been accepted for presentation in various International Conferences. He has been the reviewer to some International Journals. After retiring from University of Roorkee, he is presently working in College of Engineering Roorkee, Roorkee (India).