Paenibacillus arenilitoris sp. nov., isolated from seashore sand and genome mining revealed the biosynthesis potential as antibiotic producer

Na Deng · Huiqin Huang · Yonghua Hu · Xu Wang · Kunlian Mo

Received: 25 March 2022 / Accepted: 11 August 2022 / Published online: 26 August 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract Strain IB182493\(^{T}\), a marine, aerobic, Gram-stain-negative and motile bacterium, was isolated from seashore sand of South China Sea. Cells grew optimally at 25–30 °C, pH 7.0–8.0 and with 2–4% NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that the strain formed a distinct lineage within the genus *Paenibacillus*, and was most closely related to *Paenibacillus harenae* DSM 16969\(^{T}\) (similarity 96.6%) and *Paenibacillus alkaliterrae* DSM 17040\(^{T}\) (similarity 96.1%). The chemotaxonomic characteristics of strain IB182493\(^{T}\) included MK-7 as the predominant isoprenoid quinone, anteiso-C\(_{15:0}\) and iso-C\(_{16:0}\) as the major cellular fatty acids and *meso*-diaminopimelic acid as the diagnostic diaminoacid in cell wall peptidoglycan. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. The DNA G+C content of strain IB182493\(^{T}\) was 56.2 %. The values of whole genome average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the isolate and the closely related type strains were less than 84.7% and 23.6%, respectively. On the basis of phenotypic and chemotaxonomic properties, phylogenetic distinctiveness and genomic data, we named the strain as *Paenibacillus arenilitoris* sp. nov. and proposed that strain IB182493\(^{T}\) (=MCCC 1K04626\(^{T}\) = JCM 34215\(^{T}\)) in the genus *Paenibacillus* represents a novel species.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10482-022-01773-1.

H. Huang · Y. Hu · K. Mo
Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, People’s Republic of China

Y. Hu
Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People’s Republic of China

© Springer
Keywords *Paenibacillus arenilitoris* sp. nov. · 16S rRNA gene · Polyphasic taxonomy

Abbreviations

Abbreviation	Description
MA	Marine agar 2216
MB	Marine broth
NJ	Neighbor-joining
MP	Maximum-parsimony ML maximum-likelihood
ANI	Average nucleotide identity
ANIb	ANI calculated based on blast
ANIm	ANI calculated based on MUMmer
orthoANIm	ANI calculated based on usearch algorithm
dDDH	Digital DNA–DNA hybridization
NA	Nutrient agar
PDA	Potato dextrose agar
MK-7	Menaquione 7

Introduction

The genus *Paenibacillus*, a member of the family *Paenibacillaceae* (De Vos et al. 2009), was created for rRNA group 3 bacilli on the basis of 16S rRNA gene sequence analysis (Ash et al. 1993). Most members of the genus of *Paenibacillus* are non-pigmented, motile by means of peritrichous flagella, contain meso-diaminopimelic acid as the major diamino acid in the cell wall peptidoglycan and menaquinone 7 (MK-7) as the major menaquinone (Priest 2009). At the time of writing this manuscript, there were more than 270 species of this genus with validly published (https://lpsn.dsmz.de/ genus/ paenibacillus). Species of the genus *Paenibacillus* are widely distributed in various ecological niches, with many of the species being relevant to humans, animals, plants, and the environment (Grady et al. 2016). Recently, many new species of this genus have been isolated from various ecological habitats, including soil (Kim et al. 2021; Kämper et al. 2021; Klm et al. 2021; Yang et al. 2021a), *Arabidopsis thaliana* (Qi et al. 2021), nodules of soybean (Wang et al. 2021), seawater (Chen et al. 2021), corridor air (Liu et al. 2021) and salt lake (Yang et al. 2021, b). The *Paenibacillus* species have played an important role in industrial, agriculture and medical applications, such as degrading starch granules (Vander Maarel et al. 2000), enhancing plant growth through phosphate solubilization and nitrogen fixation (Lee et al. 2011; Jin et al. 2011) and producing antibiotics (Chung et al. 2000; Romanenko et al. 2013).

Natural products and their derivatives have occupied 50% of approved drugs in the world (Newman and Cragg 2020). For the discovery of pharmaceutical leads, tremendous studies have been found about the secondary metabolites from terrestrial plants and microorganisms. Therefore, the discovering number for novel natural products has reached a steady state, and the rate of finding compounds with unique novel skeletal structures has become extremely difficult over recent decades (Pye et al. 2017). Marine environments cover more than 70% of the surface of the earth, and are habitat of diverse microorganisms. Marine microorganisms are rich sources for a lot of bioactive natural products. Marine natural products are relatively efficient in the discovery of drug leads (Pereira 2019; Khalifa 2019), including the anti-cancer drugs trabectedin (discovered from a marine tunicate *Ecteinascidia turbinata*), eribulin mesylate (synthetic mimic to halichondrin B, which was isolated from a marine sponge *Halichondria okadai*) (Pereira 2019). It has become clear that the identification of new antimicrobial compounds is vigorously related with the discovery of novel species (Thumar et al. 2010). Thus, mining of microorganisms from various habitats is considered an advantageous approach to discover novel antibiotics (Baumann et al. 2014).

In this paper, we describe the strain IB182493T which has the potential to produce various biological activities such as receptor antagonist, enzyme inhibitor, anti-tumor metastases and antibacterial agents (Wilson et al. 2003; Knappe et al. 2010; Iwatsuki et al. 2006). The purpose of the present study was to establish the taxonomic position of a novel *Paenibacillus* like strain IB182493T based on polyphasic taxonomy.

Materials and methods

Collection and microbial isolation

A seashore sand sample was collected from Zhaoshu Island (16°58′53.3″ N, 112°16′33.6″ E), Hainan province, China, in March 2018. Sterilized PBS was used for suspending the sand sample and for serial dilutions. 100 μL suspension was spread plated on marine
agar 2216 (MA, Hopebio). After 5 days of culturing at 28 °C, colonies with different morphologies were picked up and purified. Among the bacteria, strain IB182493T was isolated and identified. The strains used in this study were sub-cultured on MA at 30 °C and stored at −80 °C in marine broth 2216 (MB, Hopebio) containing 20% glycerol (v/v).

Genome features and phylogenomic analysis

The draft genome sequencing of strain IB182493T and P. alkaliterrae DSM 17040 T were conducted using an Illumina HiSeq 2500 platform by Biomarker Technologies Co., Ltd. (Beijing, China). The de novo genome assembly was performed using SPAdes 3.5.0 (Bankevich et al. 2012). The G+C content was analyzed with the RAST server using the draft genome sequence (Brettin et al. 2015). The genome of P. harenae DSM 16969 T (NCBI accession number AULV01000000) was retrieved from the NCBI database.

The average nucleotide identity (ANI) values were calculated based on blast (ANIb), MUMmer (ANIm) and usearch algorithm (orthoANIu) as described previously (Chen et al. 2021). Digital DNA-DNA hybridization (dDDH) values were calculated using the genome-to-genome distance calculator with a website service (http://ggdc.dsmz.de/ggdc.php) (Meier-Kolthoff et al. 2013).

The phylogenomics tree of strain IB182493T and related species based on whole genome was constructed using a bioinformatics platform: Type (Strain) Genome Server (http://tygs.dsmz.de/) (Meier-Kolthoff et al. 2019). The obtained draft genome of IB182493T was annotated using the KEGG and COG analysis for gene function prediction (Kanehisa et al. 2016; Tatusov et al 2003). Both genomes of the strains IB182493T and P. alkaliterrae DSM 17040 T were deposited at GenBank /EMBL/ DDBJ with the accession numbers JACXIY0000000000 and JAKGAP000000000, respectively.

16S rRNA phylogeny

The genomic DNA extraction and PCR amplification of the 16S rRNA gene sequence were performed as described previously (Chen et al. 2021). The determined 16S rRNA gene sequence was compared with those of other type strains using the EzBioCloud database (https://www.ezbiocloud.net/identify). For comparison, phylogenetic reconstructions based on 16S rRNA genes were performed by using MEGA 11 (Tamura et al. 2021). Neighbour-joining (NJ) (Saitou et al. 1987), maximum-parsimony (MP) (Fitch et al. 1971) and maximum-likelihood (ML) (Felsenstein et al. 1981) methods with 1000 bootstrap replicates were used to reconstruct phylogenetic trees. Distances were obtained using options according to the Kimura’s two-parameter model (Kimura et al. 1980). Bacillus subtilis NCIB 3610T was added to the phylogenetic trees to serve as an outgroup.

Phenotypic characterization

Gram-staining of strain IB182493T was performed using a Gram-staining kit (Solarbio), and the endospores were stained according to the Schaeffer-Fulton method (Smibert and Krieg 1994). The cell morphology was observed by light microscope (Leica DM6000B, ×1000 magnification). The images of cells grown on MA from the exponential phase were obtained by means of transmission electron microscope (HT7700, Hitachi, Japan) at an accelerating voltage of 100 kV. The motility of the strain was determined by observing the growth spread of cells in MB as described previously (Chen et al. 2021). Growth under anaerobic conditions was determined on MA for 7 days at 28 °C using the anaerobic jars containing AnaeroPack-CO2 bags (Mitsubishi). Cultural Characteristics of strain IB182493T were investigated on MA, yeast-malt extract agar (ISP2), oatmeal agar (ISP3), Reasoner’s 2A agar (R2A), nutrient agar (NA), tryptic soy agar (TSA), Gause’s agar and potato dextrose agar (PDA), all of the media were adjusted with NaCl to 2% (w/v).

The temperature range for growth was assessed at 4, 10, 15, 20, 25, 30, 35, 40, 45, 50 and 55 °C with MB for 7 days. Different initial pH values (4.0–10.0 at intervals of 0.5 pH units) of MB were adjusted by using the buffer systems according to Bhatt (2017). Growth at different salinities was tested in the presence of 0–20% (w/v) NaCl with modified nutrition broth (peptone 5 g L⁻¹, beef extract 3 g L⁻¹) at 28 °C for 7 days.

Catalase activity was evaluated with a 3% (v/v) hydrogen peroxide solution. The acid production from carbon sources, the enzyme activity and sole carbon source substrate utilization were determined...
using the API 50CH, API 20NE and API ZYM test strips (Bio–Mérieux, France) according to the manufacturer’s recommendations except that the AUX medium was adjusted to 2% (w/v) NaCl. All the strips were incubated at 30 °C and recorded after 24 and 48 h.

The antibiotics (HANGWEI) tested were performed with penicillin (10 U), oxacillin (1 μg), ampicillin (10 μg), carbenicillin (100 μg), piperacillin (100 μg), cephalxin (30 μg), cefazolin (30 μg), cefradine (30 μg), cefuroxime (30 μg), ceftazidime (30 μg), ceftriaxone (30 μg), cefoperazone (75 μg), amikacin (30 μg), gentamicin (10 μg), kanamycin (30 μg), neomycin (30 μg), tetracycline (30 μg), doxycycline (30 μg), minocycline (30 μg), erythromycin (15 μg), midecamycin (30 μg), norfloxacin (10 μg), ofloxacin (5 μg), ciprofloxacin (5 μg), vancomycin (30 μg), polymyxin B (300 IU), compound trimethoprim (23.75/1.25 μg), furazolidone (300 μg), flumycin (30 μg) and clindamycin (2 μg). Discs with no antibiotics were used as controls and the assays were replicated three times. The hydrolysis of starch (1.0%, w/v), CM-cellulose (0.5%, w/v) and Tweens 20, 40, 60 and 80 (1%, w/v) were tested using MA as the basal medium. The phenotypic characterization for the description of new aerobic, endospore-forming bacterial taxa is in agreement with the minimal standards proposed by Logan (2009).

Chemotaxonomy

For fatty acid analysis, cell mass of strain IB182493^T, <i>P. harenae</i> DSM 16969^T and <i>P. alkaliterre</i>ae DSM 17040^T were harvested from TSA (Hopebio, China) plates after incubation for 48 h at 28 °C. The whole-cell fatty acids were then extracted, methylated and analyzed using the standard protocol of the Microbial Identification System (Sherlock software version 6.3; MIDI library: RTSBA6) as described by Sasser et al. (2001). The respiratory quinones were extracted and analyzed using reversed-phase HPLC as described by Komagata and Suzuki (1988). Polar lipids were extracted and analyzed by two-dimensional TLC method according to the protocols of Minnikin et al. (1984). The amino acid composition in the peptidoglycan was determined by using the method described by Schumann (2011).

Analysis of bioactive compound biosynthetic gene clusters

Secondary metabolite biosynthetic gene clusters in the genome sequences of complete genome strain IB182493^T (JACXIY000000000), <i>P. harenae</i> DSM 16969^T (AULV000000000) and <i>P. alkaliterre</i>ae DSM 17040^T (JAKGAP000000000) were identified with the bacterial version of antiSMASH 6.1.0 (https://antismash.secondarymetabolites.org/).

Results and discussion

The draft genome of strain IB182493^T contained 86 contigs and with a size of 7.06 Mbp. 10 rRNAs (2, 5, 3 for 5S, 16S, 23S rRNA, respectively) and 70 tRNAs were detected. The general features of the genome of strain IB182493^T were listed in table S1. The genomic DNA G+C content of the isolate was 56.2% and within the range of 40–59% reported for the genus <i>Paenibacillus</i> (Priest 2015) but higher than those of <i>P. harenae</i> DSM 16969^T (49.9%) and <i>P. alkaliterre</i>ae DSM 17040^T (49.4%). The distribution of the genes into clusters of orthologous groups (COGs) functional categories is presented in Fig. S1. In the phylogenomics tree (Fig. S2), strain IB182493^T clustered with <i>P. harenae</i> DSM 16969^T. The ANIb, ANIm and rthoANIu values of strain IB182493^T and the closely related type strains ranged from 69.1–78.6%, 82.9–84.7% and 71.8–80.1%, respectively, while dDDH values ranged from 23.6–18.5% (Table S2). All of these values meet the criteria for bacterial species demarcation (Richter and Rosselló-Móra 2009; Chun et al. 2018) and support the hypothesis that IB182493^T represents a novel species within the genus <i>Paenibacillus</i>. The obtained 16S rRNA gene sequence of strain IB182493^T was 1470 bp long and the GenBank / EMBL / DDBJ accession number was MK249696. According to the EzBioCloud database, strain IB182493^T represented a member of the genus <i>Paenibacillus</i> and showed the highest 16S rRNA gene sequence similarity to <i>P. harenae</i> DSM 16969^T (96.6%), <i>P. alkaliterre</i>ae DSM 17040^T (96.1%), <i>P. agaracedens</i> DSM 1327^T (96.1%) and <i>P. agaridevorans</i> DSM 1355^T (96.1%). Phylogenetic analyses showed that the isolate formed a discrete cluster with <i>P. harenae</i> DSM16969^T and <i>P. alkaliterre</i>ae DSM.
17040T (Fig. 1). The ME and ML trees also showed the similar results (Figs. S3 and S4, available in the online version of this article). Based on 16S rRNA gene sequence similarities and phylogenetic analyses, the most closely related species, *P. harenae* DSM 16969T and *P. alkaliterrae* DSM 17040T were used as reference strains and examined for their genomic and phenotypic characteristics in comparison with those of the new isolate. Both of the two reference strains were obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ).

Strain IB182493T was strictly aerobic and motile by means of peritrichous flagella. Rod-shaped cells are Gram-stain-negative and subterminal ellipsoidal endospores were observed (Fig. S6). Under the electron microscope, cells were approximately 0.5–0.9 μm in diameter and 2.8–3.3 μm in length (Fig. 2). Cells grow well on R2A agar, LB, TSA, MA and NA, while poor on ISP 3, but could not grow on ISP 2 and PDA. Growth occurred at temperatures ranging from 20–40 °C (optimum 25–30 °C), pH 5.0–10.0 (optimum pH 7.0–8.0) and 0–9% (w/v) NaCl (optimum 2–4%). The strain was positive for catalase. Starch, CM-cellulose, Tweens 20, 40, 60 and 80 were not hydrolysed. In antibiotic tests, strain IB182493T was found to be sensitive to cefamezin, cefradine, cefuroxime, ceftazidime, ceftriaxone, cefoperazone, norfloxacain and polymyxin B; but resistant to all of the other antibiotics tested. In the API 20NE kit tests, strain IB182493T was found to be unable to reduce nitrate to nitrite, showed positivity for β-glucosidase and β-galactosidase; assimilated glucose, mannitol and maltose. With API ZYM kit, strain IB182493T was found to be positive for the activities of esterase (C4), acid phosphatase, naphthol-AS-BI-phosphohydrolase, β-galactosidase and β-glucosidase. In the API 50CH B kit, cells produce acid from arbutin, salicin, D-cellulbiose, maltose, D-lactose, D-melibiose, D-saccharose sucrose, D-trehalose, inulin, D-melezitose, D-raffinose, starch amylase, D-gentiobiose, D-turanose; weakly produce acid from methyl-β-D-xylopyranoside, D-galactose methyl, D-glucose, D-fructose, D-mannose, L-rhamnose, D-mannitol, esculin ferric citrate, glycogen and potassium 5-ketogluconate. The phenotypic characteristics of strain IB182493T which were used for comparison

![Fig. 1 Reconstruction of the phylogenetic position of strain IB182493T based on almost full length 16S rRNA gene sequences. Shown is a neighbour-joining tree. Bootstrap values greater than 70% are shown at branch points. The scale bar represents 0.01 nucleotide substitutions per position. *Bacillus subtilis* NCIB 3610T was used as an outgroup](image-url)
with the reference species were summarized in Table 1.

The predominant respiratory quinone of strain IB182493^T^ was MK-7, which is also the major menaquinone in other species of the genus *Paenibacillus* (Priest 2009). The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The polar lipids included phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG) and two unidentified phospholipids (PL1–PL2) (Fig. S5). The major cellular fatty acids (> 5%) were anteiso-C\textsubscript{15:0} (47.1%), iso-C\textsubscript{16:0} (23.4%), C\textsubscript{16:0} (8.9%) and iso-C\textsubscript{15:0} (6.1%).

The novel isolate had similar proportions of the fatty acids to the reference strains (Table S3).

Based on the result of the gene cluster prediction, strain IB182493^T^ contained 9 secondary metabolite gene clusters in the genome (Table S4), while 8 clusters in *P. harenae* DSM16969^T^ and *P. alkaliterra* DSM 17040^T^. The genome mining revealed that the novel strain has the potential to produce many secondary metabolites including lasso peptide paeninodin, ectoine, basiliskamide A/B and staphylobactin, etc (Table S4). The lasso peptide belongs to a new class of natural product with highly compact and stable structure, which has various biological activities such as anti-tumor metastases, receptor antagonist, enzyme

![Fig. 2](https://example.com/fig2.png) Transmission electron micrograph of cells of strain IB182493^T^. Cells were from a 36-h-old culture grown on marine agar 2216. Bar, 2.0 μm
Table 1 Characteristics that distinguish strain IB182493T from the type strains of the most closely related *Paenibacillus* species

Characteristic	1	2	3
Isolation source	Seashore sand	Desert sand	Alkaline soil
Temperature range (°C)	20–40	15–45	15–35
Optimum	25–30	20–35	25–30
pH Range	5.0–10.0	6.0–10.0	6.0–9.5
Optimum	7.0–8.0	7.0–7.5	7.5–8.0
NaCl range (%), w/v	0–9	0–3	0–2
Optimum	2–4	0–2	0–1
Assimilation of (API 20NE)			
D–Glucose	+	−	+
L–Arabinose	−	+	−
Mannitol	+	−	+
N–Acetyl-glucosamine	−	−	+
Gluconate	W	−	+
Malic acid	−	W	+
Citric acid	−	W	+
Enzyme activity (API ZYM)			
Alkaline phosphatase	−	+	+
Esterase lipase	−	+	W
Esterase	W	+	W
Leucine arylamidase	−	+	W
α-Galactosidase	−	+	W
β-Glucosidase	W	−	+
Acid production from			
Glycerol	−	−	+
Arabinose	−	−	+
D–Ribose	−	−	+
D–Xylose	−	−	+
L–Xylose	−	−	+
D–Galactose	W	−	+
D–Mannose	W	−	+
L–Rhamnose	W	+	−
Inositol	−	+	W
Methyl α-d-glucopyranoside	−	−	+
N-Acetyl-glucosamine	−	−	+
Amygdalin	−	−	+
D–Cellobiose	+	−	+
Maltose	+	−	+
D–Lactose	+	−	+
D–Sucrose saccharose	+	−	+
Trehalose	+	−	+
Inulin	+	−	−
D–Melezitose	+	−	+
Glycogen	W	−	+
D–Gentiobiose	+	−	+
D–Turanose	+	−	+
L–arabitol	−	+	−
inhibitor and antibacterial agents (Wilson et al. 2003; Knappe et al. 2010; Iwatsuki et al. 2006). As known that lasso peptides are non-pathogenic, and have great resistibility to high temperature, acidic condition and most proteases, therefore lasso peptides may be used as multifunctional backbones for further medical use (Knappe et al. 2011; Hegemann et al. 2014; Meyer et al. 2006). In the genome of strain IB182493T, lasso peptide paeninodin biosynthetic gene clusters with 100% similarity to that of strain P. dendritiformis C454 (Sirota-Madi et al. 2012) were found. The lasso peptide paeninodin cluster has a gene encoding a kinase, which was represented as member of a new class of lasso peptide tailoring kinases. By employing a wide variety of peptide substrates, it was shown that the novel type of kinase specifically phosphorylates the C-terminal serine residue while ignoring those located elsewhere (Zhu et al. 2016). In genomic data analysis, 75% similarity of ectoine gene cluster was found in the genome of strain IB182493T compared to Streptomyces anulatus (Beijerinck 1912). The isolate and the closely related species (P. harenae DSM16969T and P. alkaliterrae DSM 17040T) contain ectoine gene cluster and were isolated from the similar extreme habitat such as sand and soil which were dry, salinity or alkaline-like extreme. This evidence suggests that the ectoine is primarily associated with extreme environments, as has been reported by Brown (1976) that ectoine is essential for extremophiles to survive in extreme environments. In addition, basiliskamide A/B biosynthetic gene cluster with 9% similarity to that of strain Brevibacillus laterosporus PE36 (Theodore et al. 2014) were found in the genome of strain IB182493T. Despite the relatively closeness, no basiliskamide A/B biosynthetic gene clusters were detected in the genome sequence of strain P. harenae DSM16969T and P. alkaliterrae DSM 17040T. In conclusion, the complete genome of strain IB182493T will help further studies regarding the biosynthesis of diverse secondary metabolites and their regulatory mechanisms.

Based on phenotypic, phylogenetic and genomic analyses, strain IB182493T is considered as a type strain of a novel species with the proposed name, Paenibacillus arenilitoris.

Description of Paenibacillus arenilitoris sp. nov.

Paenibacillus arenilitoris sp. nov. (a.re.ni.li.to’ris. L. n. arena sand; L. n. litus-oris the seashore, coast; N.L. gen. n. arenilitoris of sand of the seashore, from which the type strain was isolated).

Cells are Gram-stain-negative, strictly aerobic and motile with peritrichous flagella. Cells are rod-shaped with 0.5–0.9 × 2.8–3.3 μm in size. Subterminal ellipsoidal endospores are observed in swollen sporangia. Colonies are non-pigmented, white-cream, punctiform circular and smooth, with 0.5–1.5 mm in diameter on MA after 48 h. Growth occurs at 20–40 °C (optimum 25–30 °C), pH 5.0–10.0 (optimum pH 7.0–8.0) and 0–9% (w/v) NaCl (optimum 2–4%). Cells are catalase-positive, but nitrate, urease and oxidase were negative. Starch, CM-cellulose, Tweens 20, 40, 60 and 80 are not hydrolysed.

The predominant isoprenoid quinone is MK-7 and the cell-wall peptidoglycan contains meso-diaminopimelic acid. The major cellular fatty acids are anteiso-C15:0 and iso-C16:0. The polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. The G+C content of the DNA is 56.2%. The genome analyses predicted 9 secondary metabolite gene clusters and revealed that this strain

Characteristic	1 θ	2	3
DNA G+C content (mol %)	56.2	49.9^a	49.4^b

| Strains: 1, IB182493T; 2, P. harenae DSM16969T; 3, P. alkaliterrae DSM 17040T. Symbols: +, positive; −, negative; w, weakly positive. Data were obtained in this study unless indicated (All of strains were positive for esculin, β-galactosidase, maltose; negative for tryptophane indole, glucose, arginine dihydrolase, urease, gelatin, mannoside, glyoxylic acid, adipic acid, phenyl acetic acid; Acids were not produced from Erythritol, L-xyllose, D-adonitol, L-sorbose, Dulcitol, Sorbitol, D-lyxose, D-tagatose, D-fucose, L-arabitol, kalium Gluconate and potassium 2-ketogluconate.)^a| Data form Jeon et al. 2009; ^bData form Yoon et al. 2005 |

^aData form Jeon et al. 2009; ^bData form Yoon et al. 2005
has the potential to produce many multifunctional active ingredients including lasso peptide paeninodin, ectoine, basiliskamide A/B and staphylobactin, etc.

The type strain IB182493T (=MCCC 1K04626T =JCM 34215 T), was isolated from seashore sand of South China Sea. The GenBank/ ENBL/DDBJ accession numbers of 16S rRNA gene and the draft genome sequences are MK249696 and JACXIY000000000, respectively.

Authors’ contributions YH and XW conceived and designed research. ND conducted experiments. HI analyzed data. KM wrote the manuscript and edited the manuscript. All authors read and approved the manuscript.

Funding This research was supported by grants from Financial Fund of the Ministry of Agriculture and Rural Affairs of China (NHYYSWZZZYZKZX2020, NFZX2021) and Central Public–interest Scientific Institution Basal Research Fund of CATAS from Chinese Government (1630052016011).

Declarations Conflict of interest The authors declare that there are no conflicts of interest.

References

Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260. https://doi.org/10.1007/BF00873085
Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477
Baumann S, Herrmann J, Raju R, Steinmetz H, Mohr KI, Klm KH, Seo YL, Baek JH, Jin HM, Jeon CO (2021) Paenibacillus silicatus sp. nov., isolated from desert sand. The GenBank/ENBL/DDBJ accession numbers of 16S rRNA gene and the draft genome sequences are MK249696 and JACXIY000000000, respectively.

Khalifa SAM et al (2019) Marine natural products: a source of novel anticancer drugs. Mar Drugs 17:491
Kim J, Jung HS, Baek JH et al (2021) Paenibacillus silvestris sp. nov., isolated from forest soil. Curr Microbiol 78:822–829. https://doi.org/10.1007/s00284-020-02333-4
Kim KH, Seo YL, Baek JH, Jin HM, Jeon CO (2021) Paenibacillus agri sp. nov., isolated from soil. Int J Syst Evol Microbiol 71:4981. https://doi.org/10.1099/ijsem.0.004981

Chun J, Oren A, Ventosa A et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516
Chung YR, Kim CH, Hwang I, Chun J (2000) Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500
De Vos P, Ludwig W, Schleifer KH, Whitman WB (2009) Family IV. Paenibacillaceae fam. nov. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology. Springer, New York

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359
Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. https://doi.org/10.1007/sysbio/20.4.406
Grady EN, MacDonald J, Liu L et al (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15:203
Hegemann JD, De Simone M, Zimmermann M et al (2014) Rational improvement of the affinity and selectivity of integrin binding of grafted lasso peptides. J Med Chem 57(13):5829–5838
Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Ōmura S (2006) Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01–B0171, have a lasso structure. J Am Chem Soc 128(23):7486–749
Jeon CO, Lim JM, Lee SS et al (2009) Paenibacillus harenae sp. nov., isolated from desert sand in China. Int J Syst Evol Microbiol 59:13–17. https://doi.org/10.1099/ijs.0.65664-0
Jin H-J, Lv J, Chen S-F (2011) Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica. Int J Syst Evol Microbiol 61:767–771
Yoon J-H, Kang S-J, Yeo S-H, Tae-Kwang O (2005) Paenibacillus allorhizosphaerae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 55(6):2339–2344. https://doi.org/10.1099/ijs.0.63771-0
Kämpfer P, Busse HJ, McInroy JA et al (2021) Paenibacillus allorhizosphaerae sp. nov., from soil of the rhizosphere of Zea mays. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005051
Kanehisa M, Sato Y, Kawashima M et al (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:457–462. https://doi.org/10.1093/nar/gkv1070
Khalifa SAM et al (2019) Marine natural products: a source of novel anticancer drugs. Mar Drugs 17:491
Kim J, Jung HS, Baek JH et al (2021) Paenibacillus silvestris sp. nov., isolated from forest soil. Curr Microbiol 78:822–829. https://doi.org/10.1007/s00284-020-02333-4
Kim KH, Seo YL, Baek JH, Jin HM, Jeon CO (2021) Paenibacillus agri sp. nov., isolated from soil. Int J Syst Evol Microbiol 71:4981. https://doi.org/10.1099/ijsem.0.004981

S (2006) Lariatins, antimycobacterial peptides produced by}
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

Knappe TA, Linne U, Xie X, Marahiel MA (2010) The glucagon receptor antagonist BI-32169 constitutes a new class of lasso peptides. FEBS Lett 584(4):785–789

Knappe TA, Manzenrieder F, Mas-Moruno C, Linne U, Sasse F, Kessler H, Xie X, Marahiel MA (2011) Introducing lasso peptides as molecular scaffolds for drug design: engineering of an integrin antagonist. Angew Chem Int Ed 50(37):8714–8717

Komagata K, Suzuki KL (1988) 4 Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207. https://doi.org/10.1016/S0079-9517(08)70410-0

Lee JC, Kim CJ, Yoon KH (2011) Paenibacillus telluris sp. nov., a novel phosphate-solubilizing bacterium isolated from soil. J Microbiol 49:617–621

Liu H, Lu L, Wang S et al (2021) Paenibacillus tianjinensis sp. nov., isolated from corridor air. Int J Syst Evol Microbiol 71:5158. https://doi.org/10.1099/ijsem.0.005158

Logan NA, Berge O, Bishop AH et al (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121. https://doi.org/10.1099/ijsem.0.013649-0

Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182–2191. https://doi.org/10.1038/s41467-019-10210-3

Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence–based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 14:60. https://doi.org/10.1186/1471-2105-14-60

Meyer A, Auernheimer J, Modlinger A, Kessler H (2006) Targeting RGD recognizing integrins: drug development, biomaterial research, tumor imaging and targeting. Curr Pharm Des 12(22):2723–2747

Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. Methods Microbiol 2:233–241. https://doi.org/10.1016/0167-7012(84)90018-6

Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803

Pereira F (2019) Have marine natural product drug discovery efforts been productive and how can we improve their efficiency? Expert Opin Drug Discov 14:717–722

Priest FG (2009) Paenibacillus. By DeVos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB. Bergey’s Man Syst Bacteriol 114:5601–5606

Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linnington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Nat Acad Sci 114:5601–5606

Qi SS, Cnockaert M, Carlier A, Vandamme PA (2021) Paenibacillus foliorum sp. nov., Paenibacillus phytohabitans sp. nov., Paenibacillus plantarum sp. nov., Paenibacillus planticolens sp. nov., Paenibacillus phytorum sp. nov. and Paenibacillus germinis sp. nov., isolated from the Arabidopsis thaliana phyllosphere. Int J Syst Evol Microbiol 71:4781. https://doi.org/10.1099/ijsem.0.004781

Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

Romanenko LA, Tanaka N, Svetashev VL, Kalinovskaya NI (2013) Paenibacillus profundus sp. nov., a deep sediment bacterium that produces isocoumarin and peptide antibiotics. Arch Microbiol 195:247–254

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

Sasser M (2001) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101

Schumann P (2011) Peptidoglycan structure. Methods Microbiol 38:101–129

Schleifer KH, Whitman WB. Bergey’s Man Syst Bacteriol Manual of systematics of archaea and bacteria. Wiley, Hoboken

Schumann P (2011) Peptidoglycan structure. Methods Microbiol 38:101–129

Smibert RM, Kreg NR (1994) Phenotypic Characterization. In: Gerhard P, Murray RG, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society of Microbiology, Washington DC, pp 611–654

Sirota-Madi A, Olsener T, Helman Y et al (2012) Genome sequence of the pattern-forming social bacterium Paenibacillus dendritiformis C454 chiral morphotype. J Bacteriol 194(8):2127–2128. https://doi.org/10.1128/JB.00158-12

Tatusov RL, Fedorova ND, Jackson JD et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41. https://doi.org/10.1186/1471-2105-4-41

Theodore CM, Stamps BW, King JB et al (2014) Genomic and metabolomic insights into the natural product biosynthetic diversity of a feral-hog-associated Brevisbacterium laterosporus strain. PLoS One. 9(3):e90124

Thumar JC, Coates JD (2010) Phylum XVII. Acidobacteria phyl. nov. In: Krieg NR et al (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 725–735

Vander Maarel MJEC, Veen A, Wijbenga DJ (2000) Paenibacillus phytorum sp. nov., an endophytic bacterium isolated from the rhizosphere soil of Puerh tea plants (Camellia sinensis var. assamica). Arch Microbiol 203:1375–1382. https://doi.org/10.1007/s00284-021-02403-1

Wilson K-A, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA (2003) Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc 125(41):12475–12483

Yang RJ, Zhou D, Wang QM et al (2021a) Paenibacillus phytorum sp. nov., isolated from the rhizosphere soil of Puerh tea plants (Camellia sinensis var. assamica). Arch Microbiol 203:1375–1382. https://doi.org/10.1007/s00203-020-02135-z

Go to Springer
Yang L, Huang HW, Wang Y et al (2021b) Paenibacillus turpanensis sp. nov., isolated from a salt lake of Turpan city in Xinjiang province, north-west China. Arch Microbiol 203:77–83. https://doi.org/10.1007/s00203-020-02003-w
Zhu S, Hegemann JD, Fage C et al (2016) Insights into the unique phosphorylation of the lasso peptide paeninodin. J Biol Chem 291(26):13662–78

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.