Temperature Effects on Luminescent Properties of Sr$_2$CeO$_4$:Eu$^{3+}$ Nanophosphor: a Machine Learning Approach

DRAGUTIN ŠEVIĆ, University of Belgrade,
Institute of Physics Belgrade, Belgrade
ANA VLAŠIĆ, University of Belgrade,
Institute of Physics Belgrade, Belgrade
MAJA S. RABASOVIĆ, University of Belgrade,
Institute of Physics Belgrade, Belgrade
SVETLANA SAVIĆ-ŠEVIĆ, University of Belgrade,
Institute of Physics Belgrade, Belgrade
MIHAILO D. RABASOVIĆ, University of Belgrade,
Institute of Physics Belgrade, Belgrade
MARKO G. NIKOLIĆ, University of Belgrade,
Institute of Physics Belgrade, Belgrade
BRANKA D. MURIĆ, University of Belgrade,
Institute of Physics Belgrade, Belgrade
BRATISLAV P. MARINKOVIĆ, University of Belgrade,
Institute of Physics Belgrade, Belgrade
JANEZ KRIŽAN, AMI, d. o. o, Ptuj, R. Slovenia

In this paper we analyze possibilities of application of Sr$_2$CeO$_4$:Eu$^{3+}$ nanopowder for temperature sensing using machine learning. The material was prepared by simple solution combustion synthesis. Photoluminescence technique has been used to measure the optical emission temperature dependence of the prepared material. Principal Component Analysis, the basic machine learning algorithm, provided insight into temperature dependent spectral data from another point of view than usual approach.

Key words: Photoluminescence, New materials, Thermographic phosphors

1. INTRODUCTION

Nowadays, nano materials have more and more advantages over bulk materials. Nano science inevitably entered our world [1]. Thermographic nano phosphors are widely used in many applications [2-7]. They typically consist of a ceramic host and rare-earth dopant. The temperature dependency of their luminescence is used for remote temperature sensing. For obvious reasons, non contact measurements have many advantages. Thermographic remote monitoring of laser cleansing is described in [8].

Strontium cerium oxide (Sr$_2$CeO$_4$) nano phosphors doped with europium ions (Eu$^{3+}$), Sr$_2$CeO$_4$:Eu$^{3+}$ are described in many scientific papers. As shown in [9], emission color change in a wide range of temperatures proves a great potential of Sr$_2$CeO$_4$:Eu$^{3+}$ nanocrystals for industrial applications, particularly in nanothermometric technology. Moreover, additional application possibilities for this material are provided by the fact that the samples with different grain sizes are characterized by various luminescence colors [9]. The possibility of application of this nanophosphor in single-color and two-color fluorescence thermometry techniques in temperature range of 303–523 K has been proposed in [10]. In [11] it was shown that the Eu$^{3+}$ doped Sr$_2$CeO$_4$ phosphors emitting white light (by combining blue, green and red emissions) has potential
applications not only in the fields of lamps and display devices under 280 nm excitation, but also in the field of LEDs under near UV (350 nm) excitation. Sr₂CeO₄:Eu³⁺ considered as a source of anti-stokes white light generated under near infrared excitation was analyzed in [12]. Various methods of synthesis and studies of structural and luminescent characteristics of nanophosphors based on Sr₂CeO₄:Eu³⁺ or non-doped Sr₂CeO₄ are reported in [9-13], and references therein.

In this study, we analyze Sr₂CeO₄:Eu³⁺ nanopowders, efficiently prepared using a solution combustion synthesis (SCS) method [14,15]. The main characteristics of this process are simplicity and low cost. The structure of prepared materials has been confirmed and characterized using X-ray powder diffraction (XRD), scanning electron microscope (SEM) and photoluminescence (PL) techniques [15]. The most of europium luminescence comes from transitions from the ⁴D₀ and ⁴F₇/₂ state; and they are usually used for fluorescence intensity ratio technique for remote temperature sensing.

In our recent publication [16] we have shown that Sr₂CeO₄:Eu³⁺ made by solution combustion synthesis could be used as a red phosphor. In [15] we have studied the possibility of using the synthesized Sr₂CeO₄:Eu³⁺ for temperature measurements, using usual approach of calculating the calibration curves.

However, availability of more and more fast computers, capable of machine learning, gave us an idea of different approach. Here, we analyze the possibilities of training the computer to recognize optical emission spectra of Sr₂CeO₄:Eu³⁺ at different temperatures. So, this paper describes extension of our work presented in [15].

2. EXPERIMENTAL PROCEDURE

The preparation of samples

Europium doped Sr₂CeO₄ nanopowders were prepared by solution combustion method, similarly as described in [14,15]. Stoichiometric amounts of starting chemicals Sr(NO₃)₂, CH₃N₂O, Ce(NO₃)₃×6H₂O, and Eu(NO₃)₃×6H₂O with the purity of 99.99% were chosen to obtain the Eu⁺⁺ concentration in Sr₂CeO₄ of 2.5 at. % (Sr₂₋₀.₀₂Eu₀.₀₂CeO₄). The used chemicals were purchased from ABCR, and urea, (NH₂)₂CO, from Sigma-Aldrich.

The dry mixture of 10.32 g (48.75 mmol) of Sr(NO₃)₂, 15.015 g (250 mmol) of CH₃N₂O, 10.86 g (25 mmol) of Ce(NO₃)₃×6H₂O and 0.558 g (1.25 mmol) of Eu(NO₃)₃×6H₂O was combined with the mixture of 4.8 g (60 mmol) of ammonium nitrate and 3.003 g (50 mmol) of urea which were used as organic fuels.

The prepared starting reagents were combusted with the flame burner at approximately 500 °C, yielding a voluminous foamy pink powder in an intensive exothermic reaction. After the solution combustion synthesis, the nanopowder was annealed for 2 hours, in air atmosphere, at 900 °C. The annealing of the material is needed to achieve optimal optical characteristics of synthesized material.

Experimental details

As an excitation source for photoluminescence measurements we used the output of the optical parametric oscillator (Vibrant OPO), continuously tunable over a spectral range from 320 nm to 475 nm. Laser pulse duration is about 5 ns, at a repetition rate of 10 Hz. Time-resolved streak images of the luminescence response of Sr₂CeO₄:Eu³⁺ nanopowder excited by the OPO system were acquired by Hamamatsu streak camera equipped with a spectrograph.

Emission spectra of Sr₂CeO₄:Eu³⁺ were also acquired using Ocean Optics USB2000 and AVANTES AvaSpec 2048TEC USB2 spectrometers and continuous laser diode excitation at 405 nm. The experimental setup for luminescence measurement as a function of temperature is described in [17].

For machine learning simulation experiments we have used Solo software package (Version 8.8, Eigenvector Research Inc, USA).

3. RESULTS AND DISCUSSION

The structure of material was confirmed by XRD patterns and SEM images, see [15].

The streak image of the time resolved photoluminescence spectrum of the Sr₂CeO₄:Eu³⁺ using the 330 nm excitation is presented in Figure 1. Horizontal scale of streak image corresponds to wavelength, vertical scale shows development of spectra in time. Images are presented in pseudocolor, where different colors mean different optical intensities.

The ⁴D₁⁻⁻⁷F₃ transition (583 nm), located closely between the ⁴D₀⁻⁻⁷F₀ (582 nm) and the ⁴D₀⁻⁻⁷F₁ (587 nm) transitions is easy to identify on the time resolved image. Its time integrated peak has a comparable intensity to the intensities of peaks originating from nearby ⁴D₀ states (see the line profile denoted by a red curve in Fig. 4).

The luminescence spectra presented in publications usually do not have the time resolution, so it is hard to guess which transitions are short lived. Streak image presented in Figure 1 shows clearly that the ⁴D₁⁻⁻⁷F₃ transition (583 nm) has a much higher intensity and a much shorter lifetime than nearby transitions from ⁴D₀ state.
The temperature dependency of intensity ratio of spectral lines

The luminescence of samples was measured both using pulsed (OPO) and continuous excitation. The measured luminescence spectra of Eu^{3+} doped Sr_2CeO_4 at various temperatures are presented in Figure 2. The spectra were obtained by using continuous laser diode excitation at 405 nm.

Principal Component Analysis of temperature dependent $\text{Sr}_2\text{CeO}_4:\text{Eu}^{3+}$ spectra

Principal component analysis (PCA) finds combinations of variables, or factors, that describe major trends in the data [18].

If X is a data matrix with m rows and n columns, each variable being a column and each sample a row, PCA decomposes X as the sum of r_t and p_t, where r is the rank of the matrix X:

$$X = t_1 p_1^T + t_2 p_2^T + \ldots + t_r p_r^T$$

where $r \leq \min\{m, n\}$

The t_i, p_i pairs are ordered by the amount of variance captured. The t_i vectors are known as scores and contain information on how the samples relate to each other. The p_i vectors are known as loadings and contain information on how the variables relate to each other.

For analysis presented here, we use luminescence spectra of Eu^{3+} doped Sr_2CeO_4 at temperatures between 300 and 400 K, measured with the step of 5 K. About a half of the spectral data (measured at 300, 310, 320 ... K) are used to train the PCA algorithm. Another half of the spectral data (measured at 305, 315, 325 K) are used to test the obtained PCA model.

Scores on first two principal components of measurement data of temperature dependence of luminescence of $\text{Sr}_2\text{CeO}_4:\text{Eu}^{3+}$ nanoporphor are shown in Figure 3. It could be seen that scores on PC 1 gradually move along the x axis, while scores on PC 2 oscillate along the y axis.
4. CONCLUSION

In this paper we have applied the Principal Component Analysis, the basic machine learning algorithm, on temperature dependent Sr₂CeO₄:Eu³⁺ spectral data. We have shown that the machine could be trained to differentiate spectral data obtained on different temperatures. However, the resolution of this remote temperature sensing technique depends on the size of spectral data training set. For relatively small training set, the predicted data are well within the confidence level of 95%.

5. ACKNOWLEDGEMENT

This work was financially supported by funding provided by the Institute of Physics Belgrade, through the grant by the Ministry of Education, Science, and Technological Development of the Republic of Serbia.

REFERENCES

[1] Uskokovic V. Nanoscience: Whence it entered our World, Tehnika, Vol. 22, pp 795-803, 2013.
[2] Jaque D., Vetrone F. Luminescence nanothermometry, Nanoscale, Vol. 4, pp 4301-4326, 2012.
[3] Brites C. D. S., Lima P. P., Silva N. J. O., Millan A., Amareal V. S., Palacio F., Carlos L. D., Thermometry at the nanoscale, Nanoscale, Vol. 4, pp. 4799-4829, 2012.
[4] Aldén M., Omrane A., Richter M., Särner G., Thermographic phosphors for thermometry: A survey of combustion applications, Progress in Energy and Combustion Science, Vol. 37, pp. 422-461, 2011.
[5] Allison S. W., Gillies G. T., Remote thermometry with thermographic phosphors: Instrumentation and applications, Rev. Sci. Instrum., Vol. 68, pp 2615-2650, 1997.
[6] Goss L. P., Smith A. A., Post M. E., Surface thermometry by laser-induced fluorescence, Rev Sci. Instrum., Vol. 60, pp 3702-3706, 1989.
[7] Heyes A. L., On the design of phosphors for high-temperature thermometry, Journal of Luminescence, Vol. 129, pp 2004-2009, 2009.
[8] Ristic S., Polic S., Knjezевич D., Radojkovic B., Linic S., Jegdic B., Ternografija u kontroli efikasnosti i bezbednosti laserskog čišćenja, Tehnika, Vol. 28, pp 623-629, 2019.
[9] Stefanski M., Marciniak L., Hreniak D., Strek W., Size and temperature dependence of optical properties of Eu³⁺:Sr₂CeO₄ nanocrystals for their application in luminescence thermometry, Mat. Res. Bull., Vol. 76, pp 133–139, 2016.
[10] Shi L., Zhang H., Li C., Su Q., Eu³⁺ doped Sr₂CeO₄ phosphors for thermometry: single-color or two-color fluorescence based temperature characterization, RSC Advances, Vol. 1, pp. 298–304, 2011.
[11] Suresh K., Poornachandra Rao N. V., Murthy K. V. R., Photoluminescent properties of Sr₂CeO₄:Eu³⁺ and Sr₂CeO₄: Eu³⁺ phosphors suitable for near ultraviolet excitation, Bull. Mater. Sci., Vol. 37, pp 1191–1195, 2014.
[12] Stefanski M., Lukaszewicz M., Hreniak D., Strek W., Laser induced white emission generated by infrared excitation from Eu³⁺: Sr₂CeO₄ nanocrystals, Jour. Chem. Phys., Vol. 146, pp 104705-1-7, 2017.
[13] Stefanski M., Marciniak L., Hreniak D., Strek W., Influence of grain size on optical properties of Sr₂CeO₄ nanocrystals, Jour. Chem. Phys., Vol. 142, pp 184701-1-7, 2015.
[14] Rabasovic M. S., Sevic D., Krizan J., Terzic M., Mozina J., Marinkovic B. P., Savic Sevic S., Mitric M., Rabasovic M. D., Romcovic N., Characterization and luminescent properties of Eu³⁺ doped Gd₂Zr₂O₇ nanopowders, J. Alloys and Compounds Vol. 622, pp 292–295, 2015.
[15] Vlasic A., Sevic D., Rabasovic M. S., Krizan J., Savic-Sevic S., Rabasovic M. D., Mitric M., Marinkovic B. P., Nikolic M. G., Effects of temperature and pressure on luminescent properties of Sr₂CeO₄: Eu³⁺ nanophosphor, Journal of Luminescence, Vol. 199 pp 285–292, 2018.
[16] Rabasovic M. S., Krizan J., Gregorcic P., Rabasovic M. D., Romcovic N., Sevic D., Time-resolved luminescence spectra of Eu³⁺ doped YVO₄, SrCeO₄ and Gd₂Zr₂O₇ nanopowders, Optical and Quantum Electronics, Vol. 48, pp163-1-4, 2016.
[17] Rabasovic M. D., Muric B. D., Celebonovic V., Mitric M., Jelenkovic B. M., Nikolic M. G., Luminescence thermometry via the two-dopant intensity ratio of Y₂O₃:Er³⁺, Eu³⁺, J. Phys. D: Appl. Phys., Vol. 49, pp 485104-1-6, 2016.
[18] Hotelling H., Analysis of a Complex of Statistical Variables into Principal Components, Journal of Educational Psychology, Vol. 24, 417–441, 1933.
REZIME

TEMPERATURNĄ ZAVISNOST LUMINESCENTNIH OSOBINA Sr₂CeO₄:Eu³⁺
NANOFOSFORA: PRISTUP MAŠINSKIM UČENJEM

U ovom radu analizirali smo mogućnosti primene Sr₂CeO₄:Eu³⁺nanopraha za merenje temperaturute primenom mašinskog učenja. Materijal je pripremljen jednostavnom metodom sinteze sagorevanja rastvora. Fotoluminescentna tehnika je korišćena za merenje temperaturne zavisnosti optičke emisije pripremljenog materijala. Analiza ključnih faktora omogućila nam je uvid u temperaturnu zavisnost spektralnih podataka sa drugačije tačke gledišta nego što je uobičajeni pristup.

Ključne reči: fotoluminescencija, novi materijali, termografski fosfori