Applicability of Transcutaneous Oxygen Tension Measurement in the Assessment of Chronic Limb-Threatening Ischemia

Bernard Leenstra, MD1, Joep Wijnand, MD1, Bart Verhoeven, MD, PhD2, Olivier Koning, MD, PhD2, Martin Teraa, MD, PhD1,2,3, Marianne C. Verhaar, MD, PhD3, and Gert J. de Borst, MD, PhD1

Abstract
Transcutaneous oxygen tension measurement (TcPO2) is widely applied for the evaluation of chronic limb-threatening ischemia (CLTI). Nevertheless, studies that focused on the clinical value of TcPO2 have shown varying results. We identified factors that potentially play a role in TcPO2 measurement variation such as probe placement, probe temperature, and the use of a reference probe. In this review of the current literature, we assessed the application of these factors. A systematic search was conducted. Parameters that were assessed were probe placement, probe temperature, and mentioning and/or use of a reference probe. In total, 36 articles were eligible for analysis. In 24 (67%) studies, probes were placed on specific anatomical locations. Seven (19%) studies placed probes, regardless of the location of the ulcer, adjacent to an ischemic lesion or ulcer (perilesion). Selected temperature setting of the probe differed; in 18 (50%), a default probe temperature of 44°C was selected, and in 13 (36%), a different temperature was selected. In 31 (84%) studies, the use of a reference probe was not reported. Transcutaneous oxygen tension measurement is applied diversely in patients with CLTI. Homogeneity in TcPO2 protocols is warranted for reliable clinical application and to compare future TcPO2 research.

Keywords
TcPO2, critical limb ischemia, chronic limb-threatening ischemia, diabetes, diabetic foot ischemia, transcutaneous oximetry, peripheral arterial disease

Introduction
Chronic limb-threatening ischemia (CLTI) is an increasing major health-care problem worldwide with a large impact on quality of life, morbidity and mortality, and health-care expenses.1-3 The main treatment goals of CLTI management are wound healing, prevention of amputation, and preservation of ambulation.1 Transcutaneous oxygen tension measurement (TcPO2) has been proposed as a promising noninvasive tool for the diagnosis and evaluation of CLTI, especially in diabetes.4,5

The measurement of local oxygen pressure is believed to reflect the status of underlying vascularization of the skin. With the use of the so-called “Clark electrode,” PO2 is measured by a platinum cathode and a silver anode covered with a thin membrane which is permeable for oxygen.6 The electronic reduction of oxygen allows a current to flow which is proportional to the partial pressure of oxygen.6 To ensure dermal permeability for oxygen, the electrode is heated creating local hyperthermia liquefying the crystalline structure of the stratum corneum. Furthermore, hyperthermia creates underlying capillary vasodilatation allowing more oxygen diffusion.7,8

Despite the use of TcPO2 in clinical practice, its added value for the diagnosis and evaluation of therapy in patients with CLTI is strongly debated as studies have shown poor to moderate reliability and reproducibility.9-13 A recent review on TcPO2 reported a sensitivity ranging from 0.61 to 0.82 for the prognosis of diabetic foot ulcer (DFU) healing.12 Moreover, reported TcPO2 threshold values for the detection of ischemia or potential non-healing DFUs differ significantly.10,14-24
Recently, the Society of Vascular Surgery proposed the “Wound, Ischemia, and foot Infection, (WIfI)” classification system to assess the risk of limb amputation and chance of successful revascularization in patients with CLTI. Moreover, the European Society for Vascular Surgery has adopted and implemented the WIfI in their most recent guideline on the management of peripheral artery disease (PAD). Based on the aggregate of grades determined by wound presence, level of ischemia, and severity of infection, a treatment strategy can be proposed as well as an estimation of the prognosis can be made. The WIfI recommends that if arterial calcification precludes reliable ankle–brachial index or toe pressure measurement, ischemic grade should be classified with TcPO₂.

Since WIfI scores should ideally translate into treatment decisions, it is essential that TcPO₂ results are reliable and reproducible. This underlines that TcPO₂ measurement should be conducted homogenously and factors that may interfere with the test should be kept to a minimum. We assume that the discrepancies between reported threshold values in studies on TcPO₂ are, at least partially, due to differences in protocols for measurement. Our objective is to review methods of TcPO₂ measurement and explore potential factors that influence these values in patients with CLTI.

Methods
For this review, we conducted a systematic search on PubMed, EMBASE, and the Cochrane Library for peer-reviewed publications on TcPO₂ in patients with CLTI using synonyms for “transcutaneous –oximetry, -oxygen or TcPO₂” and “critical limb or peripheral arterial disease and ischemia” and reviewed references of reviews. All observational studies and clinical trials on CLTI and TcPO₂ were included. Exclusion criteria were lack of TcPO₂ measurement, absence of CLTI, for example, DFUs without ischemia, nonhuman studies, language other than English, or if no full text was available. All eligible articles were analyzed for the protocol used to measure TcPO₂ and—if available—the relation of TcPO₂ values and outcomes. The following potential parameters were assessed: probe placement, probe temperature, and mentioning and/or use of a reference probe. All studies were reviewed by two researchers (B.L. and J.W.) independently.

Results
A flowchart of the systematic search is shown in Figure 1. A total of 437 publications were screened. After exclusion, 36 articles remained eligible for analysis. An overview of the study characteristics and results is demonstrated in Table 1. A total of 13 studies involved an experimental intervention, 8 studies on success of percutaneous transluminal angioplasty (PTA), 7 observational studies, 6 studies on experimental diagnostics, and 2 studies on wound healing after amputation.

Figure 1. Overview of study selection.

Probe Placement
In 24 (67%) studies, probes were placed on specific anatomical locations. These locations were on the dorsum of the foot (n = 20, 54%), ankle (n = 3, 8%) and calf (n = 1, 3%; Table 1). A total of 7 (19%) studies placed probes adjacent to an ischemic lesion or ulcer (perilesion) irrespective of the location of the lesion. In 5 (14%) studies, the specific location was not reported (Table 1).

Probe Temperature
Among the selected temperature settings of the probe, the following was noted: in 18 (50%) studies, a default probe temperature of 44°C was selected, in 8 (22%) studies 45°C, in 2 (5%) studies 43.5°C, in 2 (5%) studies 44.5°C, and in 1 (3%) study 42°C. In 5 (14%) studies, probe temperature was not reported.

Reference Probe
In 31 (84%) studies, the use of a reference probe was not reported. In 4 (11%) studies, the reference probe was applied at the chest (eg, subclavicular) region, in 1 (3%) study on the arm, and in 1 (3%) on the contralateral limb. Only one study used reference probe values for the interpretation of systemic oxygenation.

Relation of TcPO₂ and Outcome
As apparent from the studies shown in Table 1, ulcer healing and limb prognosis were in general poor if TcPO₂ is <20 mm
Study	Participants	Reference Probe	Probe Placement	Probe Temperature (°C)	Study Aim	Study Type	Conclusion	
Wagner et al27	34	Yes, subclavicular	Dorsum	45	Effect of PTA on TcPO$_2$ level	Prospective controlled trial	No deterioration with TcPO$_2$ >45 mm Hg (± 20)	
Benhamou et al28	48	NR	1st MT (metatarsal)	44	Predictive value of TcPO$_2$ on vascular outcome in hemodialysis population	Prospective observational	A TcPO$_2$ less than 40 mm Hg at the onset of hemodialysis could identify patients at high risk of death and patients requiring vascular treatment	
Kalani et al14	50	Yes, subclavicular	1st MT	44	Predictive value of TcPO$_2$ for ulcer healing in patients with diabetes and chronic foot ulcers	Prospective observational	Probability of ulcer healing is low when TcPO$_2$ is <25 mm Hg	
Petrakis and Sciacca24	60	NR	Foot dorsum	44	TcPO$_2$ as prognostic parameter in selecting diabetic patients for permanent spinal cord device implantation	Prospective observational	Limb salvage in trophic lesions <3 cm2 24.2 (± 6.2) mm Hg, trophic lesions >3 cm2 20.7 (± 5.3) mm Hg	
Khodabandehlou and Le Devehat15	33	NR	1st MT	44	Predict value of red blood cell aggregation on wound healing	Prospective observational	94% of patients with TcPO$_2$ <10 mm Hg deteriorated, while only 53% of those with 10 < TcPO$_2$ < 30 mm Hg, improved	
Caselli et al17	43	NR	2nd MT	44	Effect of PTA on TcPO$_2$ level in diabetic patients with ischemic foot ulcers	Retrospective analysis	TeCPO$_2$ <20 mm Hg no limb salvage, TcPO$_2$ >35 mm Hg limb salvage	
Jacqueminet et al29	32	NR	1st MT	44	Effect of PTA in severe diabetic foot ischemia	Retrospective analysis	Partial or total healing with TcPO$_2$ > 27 ± 9 mm Hg, clinical deterioration with TcPO$_2$ < 20 ± 9 mm Hg	
De Graaff et al30	96	NR	1st MT	44	Diagnostic value of TcPO$_2$ in CLTI population	Randomized controlled trial	Use of TcPO$_2$ and toe pressure measurements in management of suspected CLI does not have advantage over the clinical judgment of an experienced vascular surgeon	
Faglia et al31	564	NR	Perilesional (dorsum)	NR	Effectiveness of PTA in preventing major amputation in patients with CLTI	Prospective observational	In patients in whom PTA is effective in only the iliac–femoral–popliteal, or only in the peroneal axis, the change in TcPO$_2$ can help to determine the probability of avoiding major amputation	
Gersbach et al32	87	NR	1st MT	45	Discriminative microcirculatory screening of patients with CLTI for dorsal column stimulation	Prospective observational	TcPO$_2$ determinations were insufficiently reliable: 10 of 12 limbs (83%) with TcPO$_2$ >15 mm Hg were salvaged, yet also in 5 of 12 limbs with TcPO$_2$ < 15 mmHg were salvaged	
Nouwong et al16	54	NR	Ankle	44	Hyperspectral imaging technology to predict healing potential of diabetic foot ulcers	Prospective observational	Nonhealing ulcer (46 ± 16 mm Hg) and healed ulcer (48 ± 15 mm Hg)	
Ferraresi et al33	101	NR	Perilesional (dorsum)	NR	Long-term results of successful PTA for limb salvage in patients with CLTI	Retrospective analysis	NA	

(continued)
Study	Participants	Reference Probe	Probe Placement	Probe Temperature (°C)	Study Aim	Study Type	Conclusion
De Marchi et al³⁴	48	NR	NR	44	Effect of propionyl-L-carnitine on microcirculation, endothelial function, and pain relief in patients affected by CLTI	Randomized controlled trial	NA
Ladurner et al²²	141	NR	Foot dorsum	NR	Predict the risk of nonhealing and amputation in diabetic foot ulcer patients	Prospective observational	The overall amputation rate increased with decreasing TcPO2 readings (group <20 mm Hg: 26%, group 20-40 mm Hg: 10% group >40 mm Hg: 5%, P = .014)
Uccioli et al¹⁰	510	NR	2nd MT	44	Long-term outcomes of diabetic patients with CLTI	Retrospective analysis	Healing 46.8 ± 1.4 mmHg, nonhealing 41.8 ± 3.2 mm Hg
Prochazka et al¹⁹	96	NR	Perilesional	NR	Effect of autologous bone marrow stem cells for the prevention of major amputation in patients with CLTI	Randomized controlled trial	NA
Ruangsetakit et al²⁰	50	Yes, subclavicular	Dorsum	45	Determination threshold of transcutaneous oxygen tension (TcPO2) values in predicting ulcer healing in patients with CLTI	Prospective observational	None of patients with a TcPO2 of <20 mm Hg (group 1) showed signs of ulcer healing, whereas all of the patients with a TcPO2 of >40 mm Hg (group 3) showed a progression toward healing during the study period
Löndahl et al²¹	75	NR	3rd MT	42	To evaluate circulatory variables in predicting outcome of hyperbaric oxygen therapy	Randomized, double-blind, placebo controlled trial	No ulcer healed when basal TcPO2 was <25 mm and all ulcers healed when TcPO2 was >75 mm Hg. In patients with TcPO2 26-50 mm Hg and 51-75 mm Hg, healing rates were 50% and 73%, respectively
Kim et al³⁵	23	NR	Perilesional (plantar)	44	The effect of PTA on tissue oxygenation in ischemic diabetic feet	Prospective observational	In the 28 limbs with ulcers, 25 limbs revealed marked improvements in TcPO2 values (>30 mm Hg)
Redlich et al²³	28	NR	1st MT	NR	Predict value of TcPO2 in outcome after infrageniculate PTA in diabetic patients with CLTI	Prospective observational	In the nonamputation group, at 3 months after PTA, TcPO2 values 41.0 ± 4.5 mm Hg, from 22.8 ± 4.3 mm Hg at baseline. Amputation group was 18.9 ± 6.1 mm Hg at day 9 post PTA
Andrews et al³⁶	307	NR	Dorsum	45	Determination of TcPO2 cutoff points to predict wound healing or healing of partial foot amputation	Retrospective analysis	10 (29%) of 34 patients with supine TcPO2 values lower than 20 mm Hg and uncontrolled diabetes mellitus healed within 3 months. The optimal cut point (healing or failure of healing) in the data of this study was 38 mm Hg
Humeau-Heurtier et al³⁷	84	Yes, chest	Ankle and toe	44.5	Feasibility of laser speckle contrast imaging in patients with CLTI	Prospective observational	NA
Study	Participants	Reference Probe	Probe Placement	Probe Temperature (°C)	Study Aim	Study Type	Conclusion
-----------------------	--------------	----------------	----------------	------------------------	---	---------------------------	---
Katsui et al³⁸	16	NR	Ankle and 1st MT	44	Laser speckle contrast imaging of the fluctuation in blood perfusion after local heating after PTA	Prospective observational	NA
Pardo et al³⁹	40	NR	Dorsum	44	Comparison of ankle–brachial index with TcPO2 in patients with CLTI prior and after PTA	Prospective observational	NA
Kavros et al⁴⁰	48	NR	Perilesional	45	Effect of intermittent pneumatic compression in patients with CLTI	Retrospective analysis	NA
Klingel et al⁴¹	12	NR	Dorsum	44	Effect of Rheopheresis in patients with CLTI	Prospective pilot trial	NA
Kram et al⁴²	40	Yes, arm	Calf	44	Prediction of wound healing in below-knee amputation	Prospective observational	In patients with calf TcPO2 values greater than 20 mm Hg, 96% (27/28) had successful healing after below-knee amputation
Kumagai et al⁴³	10	NR	NR	43.5	Effect of sustained release of basic fibroblast growth factor using gelatin hydrogel in patients with CLTI	Prospective interventional	NA
Lenk et al⁴⁴	7	NR	NR	43.5	Safety of intra-arterial application of autologous circulating blood-derived progenitor cells in patients with CLTI	Prospective intervention	NA
Madaric et al⁴⁵	62	NR	Forefoot	44	Effect of autologous bone marrow cell therapy in patients with CLTI	Prospective interventional	Surviving patients with limb salvage at the 12-month follow-up (39/62 patients) were characterized by higher TcPO2 levels (16 ± 10 vs 10 ± 9 mm Hg, P = .01)
Malyar et al⁴⁶	16	NR	Perilesional	44.5	Effect of autologous bone marrow cell therapy in patients with CLTI	Prospective interventional	NA
Melillo et al⁴⁷	26	Yes, contralateral limb	NR	45	Effect of iloprost treatment in patients with CLTI	Prospective interventional	Iloprost treatment success was almost certain when TcPO2 was >23 mm Hg
Nilsson et al⁴⁸	10	NR	NR	45	Effects of atrinositol in patients with CLTI	Prospective interventional	NA
Paraskevas et al⁴⁹	74	NR	Perilesional	45	Effect of leg elevation on TcPO2 measurement in patients with CLTI	Prospective observational	NA
Scheffler et al⁵⁰	64	NR	Forefoot	44	Effects of oxygen inhalation and leg elevation in patients with CLTI	Prospective observational	In conclusion, TcPO2 limits of 10 and 45 mm Hg for room air breathing readings in supine and sitting position, respectively, should be applied as discriminatory values. Measurements localized outside this 2-dimensional range most probably are not associated with critical limb ischemia
Ubbink et al⁵¹	49	NR	Dorsum	44	Establishment of optimal TcPO2 cutoff values in patients with CLTI	Prospective observational	The optimal TcPO2 cutoff value for presence of CLTI is 35 mm Hg

Abbreviations: CLTI, chronic limb-threatening ischemia; MT, metatarsal; NA, not available; NR, not reported; PTA, percutaneous transluminal angioplasty; TcPO2, transcutaneous oxygen tension measurement.
Hg and were in general good if >40 mm Hg; however, even these values varied between studies.

Discussion

We found substantial differences in probe placement, probe temperature, and reference probe application in studies on TcPO2 use in CLTI. Moreover, cutoff values for wound healing and limb prognosis varied between studies.

It is known that the abovementioned variations in TcPO2 protocols affect the obtained values. For example, in general, the lower extremity has different oxygen tension levels influenced by local factors, such as skin thickness.52 Hence, the selected probe site affects TcPO2 value. Although ischemic lesions may occur on different anatomical locations on the lower extremity,53 standardization of TcPO2 probe location is crucial to reduce the intra- and interpatient variability.

Furthermore, TcPO2 measurement using the Clark electrode is influenced by the selected probe temperature.54-57 Cutaneous warming of, for example, the diabetic foot has shown a profound effect on TcPO2 values showing a 40.8 ± 23.8 mm Hg difference between a probe temperature of 37°C and 44°C.54 The TcPO2 manuals suggest a probe temperature between 43°C and 45°C,58 44°C and 45°C,59 or 45°C;60 hence, the majority of studies used 44°C as default temperature. However, a consensus statement of an expert panel proposed a default temperature of 45°C.61 Since studies on the effect of TcPO2 probe temperature on TcPO2 values in CLTI and its relation with prognosis are lacking, the optimal probe temperature in CLTI remains unknown.

Finally, it is suggested that TcPO2 values are influenced by the systemic oxygen level. Therefore, the placement of a reference probe on the thorax is recommended to correct for systemic hypoxia. We found that 6 studies mentioned the use of a reference probe. However, in 2 of these studies, values or interpretation of the reference probe remained unclear. An indicator which takes into account the systemic oxygen influence is the regional perfusion index (RPI),62,63 which is calculated by dividing the TcPO2 values of the limb by TcPO2 thorax values. The RPI has been successfully applied to evaluate vascularization of the extremities,64-66 which is also recommended by TcPO2 measurement device manufacturers. However, thorax TcPO2 values are subject to the same variability as for the limb; hence, the ratio of the two could mathematically result in a greater variability than that of each factor separately. Therefore, more comparative research is required to validate and determine accurate thresholds for RPI and their added value in comparison to absolute cutoff TcPO2 values in CLTI for usage in clinical practice. Another proposed strategy is to add pulse oximetry (SO2) to rule out arterial hypoxemia.58-60 However, studies on SO2 and its correlation with TcPO2 values of the lower limb are lacking.

A major limitation in this review is the impossibility to address the specific impact of probe location, probe temperature, and use of reference probe on the measured TcPO2 values due to the fundamental differences in study aim and therefore patient population in the individual studies. Moreover, the study design of the included studies was very heterogeneous: 13 studies involved an experimental intervention, 8 studies on success of PTA, 7 observational studies, 6 studies on experimental diagnostics, and 2 studies on wound healing after amputation. Still, we demonstrate that the method of TcPO2 use differs undoubtedly and point out the sensitivity of TcPO2 measurement in general. Hence, it might be suggested that heterogeneity in method of use alters TcPO2 values.

With the recently introduced WIfI classification system in the current ESC guidelines,26 TcPO2 plays a role in grading ischemia and the determination of the treatment strategy in patients with CLTI. For example, if a patient has a shallow ulcer on the foot without gangrene and no signs of infection and TcPO2 measurement is 40 mm Hg, the patient is categorized as having a very low risk of limb amputation and low requirement for revascularization. However, if the same patient has a TcPO2 of 29 mm Hg, there is a moderate risk of limb amputation and a high requirement for revascularization.26 This indicates a prominent role for TcPO2 to determine treatment strategy. Moreover, the usefulness of the ankle systolic pressure, imbedded in the WIfI classification, to predict the risk of major amputation in CLTI is currently under debate.67 Especially in patients with CLTI with concomitant diabetes mellitus or chronic renal failure, TcPO2 seems more reliable in comparison to current macrovascular diagnostics.68 Furthermore, other factors in method of TcPO2 use should be addressed to provide an adequate risk stratification scheme for TcPO2, such as positioning of the patient (supine vs sitting) and additional oxygen inhalation, both methods have proven to increase the predictive value of wound healing prognosis.69,70 All these factors underline the importance of a standardized method of TcPO2 measurement and careful interpretation of these values. The effect of altering specific variables during TcPO2 assessment remains unclear. Therefore, we are currently conducting an observational study to investigate the influence of probe location and the added value of the RPI on wound healing prognosis. Also, in our vascular laboratory, we are conducting experimental TcPO2 studies to investigate a new photo-optical form of TcPO2. It has been suggested that photo-optical TcPO2 is not affected by probe temperature compared with the standard electrochemical TcPO2.

Conclusions

Transcutaneous oxygen tension measurement for the evaluation of limb perfusion in patients with CLTI is applied in standard clinical practice and is included in WIfI and international guidelines on PAD management, therefore affecting treatment decisions. However, there is a strong heterogeneity in methods used to assess TcPO2. A substantial diversity in probe temperature, probe location, and the use of a reference probe was found among studies regarding TcPO2 in CLTI. The varying values and different conclusions of the reviewed studies underline the importance of a homogeneous protocol in order to interpret and possibly compare measurement values and use these values to
guide treatment decisions. Prior to the implementation of TcPO2 as part of treatment guidelines, it is mandatory that (international) TcPO2 measurement protocols become available and are validated to guarantee reliable and reproducible TcPO2 results.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Bernard Leenstra https://orcid.org/0000-0002-2625-6472

References
1. Hiramoto JS, Teraa M, de Borst GJ, Conte MS. Interventions for lower extremity peripheral artery disease. Nat Rev Cardiol. 2018;15(6):332-50.
2. Teraa M, Conte MS, Moll FL, Verhaar MC. Critical limb ischemia: current trends and future directions. J Am Heart Assoc. 2016;5(2):e002938.
3. Fowkes FG, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9901):1329-40.
4. Rosfors S, Kanni L, Nystrom T. The impact of transcutaneous oxygen pressure measurement in patients with suspected critical lower limb ischemia. Int Angiol. 2016;35(5):492-7.
5. Arsenault KA, McDonald J, Devereaux PJ, Thorlund K, Tittley G, Whitlock RP. The use of transcutaneous oximetry to predict complications of chronic wound healing: a systematic review and meta-analysis. Wound Repair Regen. 2011;19(6):657-63.
6. Clark LC Jr. Continuous measurement of circulating glucose using the transcutaneous PO2 electrode. Birth Defects Orig Artic Ser. 1979;15(4):39-42.
7. Huch R, Huch A, Lubbers DW. Transcutaneous measurement of blood PO2 (tcPO2)—method and application in perinatal medicine. J Perinat Med. 1973;1(3):183-91.
8. Huch R, Lubbers DW, Huch A. Routine monitoring of the arterial PO2 of newborn infants by continuous registration of transcutaneous PO2 and simultaneous control of relative local perfusion. Adv Exp Med Biol. 1973;37:1121-7.
9. Teraa M, Sprengers RW, Schutgens RE, et al. Effect of repetitive intraarterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation. 2015;131(10):851-60.
10. Uccioli L, Gandini R, Giurato L, et al. Long-term outcomes of diabetic patients with critical limb ischemia followed in a tertiary referral diabetic foot clinic. Diabetes Care. 2010;33(5):977-82.
11. Dunkel N, Belaieff W, Assal M, et al. Wound dehiscence and stump infection after lower limb amputation: risk factors and association with antibiotic use. J Orthop Sci. 2012;17(5):588-94.
12. Wang Z, Hasan R, Firwana B, et al. A systematic review and meta-analysis of tests to predict wound healing in diabetic foot. J Vasc Surg. 2016;63(suppl 2):S9-S36S. e1-2.
13. Falstie-Jensen N, Christensen KS, Brochner-Mortensen J. Selection of lower limb amputation level not aided by transcutaneous PO2 measurements. Acta Orthop Scand. 1989;60(4):483-5.
14. Kalani M, Brismar K, Fagrell B, Ostergren J, Jorneskog G. Transcutaneous oxygen tension and toe blood pressure as predictors for outcome of diabetic foot ulcers. Diabetes Care. 1999;22(1):147-51.
15. Khodabandehlou T, Le Devehat C. Hemorheological disturbances as a marker of diabetic foot syndrome deterioration. Clin Hemorheol Microcirc. 2004;30(3-4):219-23.
16. Nouvong A, Hoogwerf B, Mohler E, Davis B, Tajaddini A, Medenilla E. Evaluation of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhemoglobin. Diabetes Care. 2009;32(11):2056-61.
17. Caselli A, Latini V, Lapenna A, et al. Transcutaneous oxygen tension monitoring after successful revascularization in diabetic patients with ischaemic foot ulcers. Diabet Med. 2005;22(4):460-5.
18. Zgonis T, Garbalosa JC, Burns P, Vidt L, Lowery C. A retrospective study of patients with diabetes mellitus after partial foot amputation and hyperbaric oxygen treatment. J Foot Ankle Surg. 2005;44(4):276-80.
19. Prochazka V, Gumulec J, Jaluvka F, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19(11):1413-24.
20. Ruangsetakit C, Chinsakchai K, Mahawongkajit P, Wongwanit C, Multirangura P. Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia. J Wound Care. 2010;19(5):202-6.
21. Londahl M, Katzman P, Hammarlund C, Nilsson A, Landin-Olsson M. Relationship between ulcer healing after hyperbaric oxygen therapy and transcutaneous oximetry, toe blood pressure and ankle-brachial index in patients with diabetes and chronic foot ulcers. Diabetologia. 2011;54(1):65-8.
22. Ladurner R, Kuper M, Konigsrainer I, et al. Predictive value of routine transcutaneous tissue oxygen tension (tcpO2) measurement for the risk of non-healing and amputation in diabetic foot ulcer patients with non-palpable pedal pulses. Med Sci Monit. 2010;16(6):CR273-7.
23. Redlich U, Xiong YY, Pech M, et al. Superiority of transcutaneous oxygen tension measurements in predicting limb salvage after below-the-knee angioplasty: a prospective trial in diabetic patients with critical limb ischemia. Cardiovasc Intervent Radiol. 2011;34(2):271-9.
24. Petrakis IE, Sciaccia V. Spinal cord stimulation in diabetic lower limb critical ischaemia: transcutaneous oxygen measurement as predictor for treatment success. Eur J Vasc Endovasc Surg. 2000;19(6):587-92.
25. Mills JL Sr, Conte MS, Armstrong DG, et al. The Society for Vascular Surgery Lower Extremity Threatened Limb
Classification System: risk stratification based on wound, ischemia, and foot infection (WHI). *J Vasc Surg.* 2014;59(1):220-34. e1-2.

26. Aboyans V, Rico JB, Bartelink MEL, et al. 2017 ESC Guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). *Eur Heart J.* 2018;39(9):763-816.

27. Wagner HJ, Schmitz R, Allke H, Klose KJ. Influence of percutaneous transluminal angioplasty on transcutaneous oxygen pressure in patients with peripheral arterial occlusive disease. *Radiology.* 2003;226(3):791-7.

28. Benhamou Y, Edet S, Begarin L, et al. Transcutaneous oxymetry as predictive test of peripheral vascular revascularization in haemodialysis population. *Nephrol Dial Transplant.* 2012;27(5):2066-9.

29. Jacqueminet S, Hartemann-Heurtier A, Izzillo R, et al. Percutaneous transluminal angioplasty in severe diabetic foot ischemia: outcomes and prognostic factors. *Diabetes Metab.* 2005;31(4 Pt 1):370-5.

30. de Graaff JC, Ubink DT, Legemate DA, Tijsen JG, Jacobs MJ. Evaluation of toe pressure and transcutaneous oxygen measurements in management of chronic critical leg ischemia: a diagnostic randomized clinical trial. *J Vasc Surg.* 2003;38(3):528-34.

31. Faglia E, Clerici G, Caminiti M, Quarantiello A, Curci V, Morabito A. Predictive values of transcutaneous oxygen tension for above-the-ankle amputation in diabetic patients with critical limb ischemia. *Eur J Vasc Endovasc Surg.* 2007;33(6):731-6.

32. Gersbach PA, Argitis V, Gardaz JP, von Segesser LK, Haesler E. Late outcome of spinal cord stimulation for unreconstructable and limb-threatening lower limb ischemia. *Eur J Vasc Endovasc Surg.* 2007;33(6):717-24.

33. Ferraresi R, Centola M, Ferlini M, et al. Long-term outcomes after angioplasty of isolated, below-the-knee arteries in diabetic patients with critical limb ischaemia. *Eur J Vasc Endovasc Surg.* 2009;37(3):336-42.

34. De Marchi S, Zecchetto S, Rigoni A, et al. Propionyl-L-carnitine improves endothelial function, microcirculation and pain management in critical limb ischaemia. *Cardiovasc Drugs Ther.* 2012;26:401-8.

35. Kim HR, Han SK, Rha SW, Kim HS, Kim WK. Effect of percutaneous transluminal angioplasty on tissue oxygenation in ischemic diabetic feet. *Wound Repair Regen.* 2011;19(1):19-24.

36. Andrews KL, Dib MY, Shives TC, Hoskin TL, Liedl DA, Boon AJ. Noninvasive arterial studies including transcutaneous oxygen pressure measurements with the limbs elevated or dependent to predict healing after partial foot amputation. *Am J Phys Med Rehabil.* 2013;92(5):385-92.

37. Humeau-Heurtier A, Abraham P, Henni S. Bi-dimensional variational mode decomposition of laser speckle contrast imaging data: a clinical approach to critical limb ischemia? *Comput Biol Med.* 2017;86:107-12.

38. Katsui S, Inoue Y, Yamamoto Y, Igari K, Kudo T, Uetake H. In patients with severe peripheral arterial disease, revascularization-induced improvement in lower extremity ischemia can be detected by laser speckle contrast imaging of the fluctuation in blood perfusion after local heating. *Ann Vasc Surg.* 2018;48:67-74.

39. Pardo M, Alcaraz M, Bernal FL, Felices JM, Achel GD, Canteras M. Transcutaneous oxygen tension measurements following peripheral transluminal angioplasty procedure has more specificity and sensitivity than ankle brachial index. *Br J Radiol.* 2015;88(1046):20140571.

40. Kavros SJ, Delis KT, Turner NS, et al. Improving limb salvage in critical ischemia with intermittent pneumatic compression: a controlled study with 18-month follow-up. *J Vasc Surg.* 2008;47(3):543-9.

41. Klingel R, Erdracht B, Gauss V, Piazolo A, Mausfeld-Lafdiya P, Diehm C. Rho-phot ERA thesis in patients with critical limb ischemia—results of an open label prospective pilot trial. *Ther Apher Dial.* 2005;9(6):473-81.

42. Kram HB, Appel PL, Shoemaker WC. Multisensor transcutaneous oximetric mapping to predict below-knee amputation wound healing: use of a critical Po2. *J Vasc Surg.* 1989;9(6):796-800.

43. Kumagai M, Marui A, Tabata Y, et al. Safety and efficacy of sustained release of basic fibroblast growth factor using gelatin hydrogel in patients with critical limb ischemia. *Heart Vessels.* 2016;31(5):713-21.

44. Lenk K, Adams V, Lurz P, et al. Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. *Eur Heart J.* 2005;26(18):1903-9.

45. Madaric J, Klepanec A, Valachovicova M, et al. Characteristics of responders to autologous bone marrow cell therapy for no-option critical limb ischemia. *Stem Cell Res Ther.* 2016;7(1):116.

46. Malayar NM, Radtke S, Malayar K, et al. Autologous bone marrow mononuclear cell therapy improves symptoms in patients with end-stage peripheral arterial disease and reduces inflammation-associated parameters. *Cytotherapy.* 2014;16(9):1270-9.

47. Melillo E, Micheletti L, Nuti M, et al. Long-term clinical outcomes in critical limb ischaemia—a retrospective study of 181 patients. *Eur Rev Med Pharmacol Sci.* 2016;20(3):502-8.

48. Nilsson L, Apelqvist J, Edvinsson L. Effects of alpha-trinositol on peripheral circulation in diabetic patients with critical limb ischaemia. A pilot study using laser Doppler fluxmetry, transcutaneous oxygen tension measurements and dynamic capillaroscopy. *Eur J Vasc Endovasc Surg.* 1998;15(4):331-6.

49. Paraskevas N, Ayari R, Malikov S, et al. ‘Pole test’ measurements in critical leg ischaemia. *Eur J Vasc Endovasc Surg.* 2006;31(3):253-7.

50. Scheffler A, Rieger H. A comparative analysis of transcutaneous oximetry (tcPO2) during oxygen inhalation and leg dependency in severe peripheral arterial occlusive disease. *J Vasc Surg.* 1992;16(2):218-24.

51. Ubink DT, Spincemaille GH, Prins MH, Reneman RS, Jacobs MJ. Microcirculatory investigations to determine the effect of spinal cord stimulation for critical leg ischemia: the Dutch multicenter randomized controlled trial. *J Vasc Surg.* 1999;30(2):236-44.

52. Falstie-Jensen S, Spaun E, Brochner-Mortensen J, Falstie-Jensen S. The influence of epidermal thickness on transcutaneous oxygen...
pressure measurements in normal persons. Scand J Clin Lab Invest. 1988;48(6):519-23.
53. Kobayashi N, Hirano K, Nakano M, et al. Wound healing and wound location in critical limb ischemia following endovascular treatment. Circ J. 2014;78(7):1746-53.
54. Boyko EJ, Ahroni JH, Stensel VL. Tissue oxygenation and skin blood flow in the diabetic foot: responses to cutaneous warming. Foot Ankle Int. 2001;22(9):711-4.
55. Boyko EJ, Ahroni JH, Stensel VL, Smith DG, Davignon DR, Pecoraro RE. Predictors of transcutaneous oxygen tension in the lower limbs of diabetic subjects. Diabet Med. 1996;13(6):549-54.
56. Smith DG, Boyko EJ, Ahroni JH, Stensel VL, Davignon DR, Pecoraro RE. Paradoxical transcutaneous oxygen response to cutaneous warming on the plantar foot surface: a caution for interpretation of plantar foot TcPO2 measurements. Foot Ankle Int. 1995;16(12):787-91.
57. Wimberley PD, Gronlund Pedersen K, Olsson J, Siggaard-Andersen O. Transcutaneous carbon dioxide and oxygen tension measured at different temperatures in healthy adults. Clin Chem. 1985;31(10):1611-5.
58. Franz von Wirth AT, Jesper Bryder J. The tcpO2 Handbook (Radiometer). 2008. https://pdfs.semanticscholar.org/53dd/909a31359508e726e1bd6c6d5c77277c1aca.pdf. Accessed April 21, 2018.
59. Novametrix Medical Systems Inc. TCO2M® Transcutaneous CO2/O2 monitor. User’s Manual, model 860. Novametrix Medical Systems Inc; 1996:18-9.
60. Perimed. Periflux 6000 TcpO2 Workflow Manual. https://www.slideshare.net/JennyDunker/tcpo2-calibration-44-0025801. Published July 30, 2015. Accessed April 21, 2018.
61. Fife CE, Smart DR, Sheffield PJ, Hopf HW, Hawkins G, Clarke D. Transcutaneous oximetry in clinical practice: consensus statements from an expert panel based on evidence. Undersea Hyperb Med. 2009;36(1):43-53.
62. Hauser CJ. Tissue salvage by mapping of skin surface transcutaneous oxygen tension index. Arch Surg. 1987;122(10):1128-30.
63. Hauser CJ, Shoemaker WC. Use of a transcutaneous PO2 regional perfusion index to quantify tissue perfusion in peripheral vascular disease. Ann Surg. 1983;197(3):337-43.
64. Arnold T, Karabinis V, Sano C, et al. Revascularized diabetic limbs: positional changes in regional perfusion index. Am Surg. 1993;59(11):746-9.
65. Gannon MX, Goldman M, Simms MH, Hardman J. Transcutaneous oxygen tension monitoring during vascular reconstruction. J Cardiovasc Surg (Torino). 1986;27(4):450-3.
66. Gelis A, Fattal C, Dupeyron A, Perez-Martin A, Colin D, Pelissier J. Reproducibility of transcutaneous oxygen pressure measurements in persons with spinal cord injury. Arch Phys Med Rehabil. 2009;90(3):507-11.
67. Salaun P, Desormais I, Lapebie FX, et al. Comparison of ankle pressure, systolic toe pressure, and transcutaneous oxygen pressure to predict major amputation after 1 year in the COPART cohort. Angiology. 2018. doi:10.1177/03319718793566.
68. Padberg FT, Back TL, Thompson PN, Hobson RW II. Transcutaneous oxygen (TcPO2) estimates probability of healing in the ischemic extremity. J Surg Res. 1996;60(2):365-9.
69. Bongard O, Krahenbuhl B. Predicting amputation in severe ischemia. The value of transcutaneous PO2 measurement. J Bone Joint Surg Br. 1988;70(3):465-7.
70. Fabiani I, Calogero E, Pugliese NR, et al. Critical limb ischemia: a practical up-to-date review. Angiology. 2018;69(6):465-74.