Systematic Review Article

Interpreting Kaplan Meier’s survival curve in COVID-19 patients: a systematic review

Lata Ajay Tapnikar*, Sneha Patil, Jaydeep Nyse

Department of Community Medicine, N.K.P. Salve Institute of Medical sciences and Research Centre, Nagpur, Maharashtra, India

Received: 29 October 2020
Revised: 13 December 2020
Accepted: 14 December 2020

*Correspondence:
Dr. Lata Ajay Tapnikar,
E-mail: lataajay@rediffmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Covid 19 is the causative agent of coronavirus disease in 2019-2020; was declared a pandemic by the World Health Organization on 11th March 2020. The article aims to interpret the functionality of Kaplan Meier’s survival curve used in various study designs. The search strategy and selection of published works in the MEDLINE database from the National Library of Medicine (NLM) was used to identify original journal articles published in English from March 1, 2020 to September 11, 2020. The search strings in title/abstract were ‘COVID-19’ or ‘coronavirus’ or and ‘Kaplan Meier curve’ that yielded 225 articles. Finally only 28 articles were reviewed. These were clinical trials (N=1), and retrospective (N=10) and prospective (N=1) observational studies (N=2), case control study (N=1) retrospective cohort study (N=6), medical record based study (N=3), observational studies (N=2), not specified (N=1), diagnostic test (N=1). 88% of articles were from China. Kaplan Meier’s curve was depicted in all the studies and 17 were found to be highly significant for KM curve, 2 were found significant as 6 were found to be non significant and in 3 no mention of significance of p value was given. It was concluded that it is the first systematic review to date related to interpreting Kaplan Meier’s survival curve in patients with COVID-19. The graph has been used singularly, in multiples and cumulatively, thus giving visual assessment which enhances the interpretation of results for survival analysis, failure to time and time to event plots. It is not only used in RCT study designs but a range of observational and retrospective studies.

Keywords: COVID-19, Interpretation, Kaplan Meier’s survival curve, Significance, Study design

INTRODUCTION

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which was declared a global pandemic by the World Health Organization (WHO) on 11th March 2020. SARS-CoV-2 was discovered in December 2019 in Wuhan City, Hubei Province, China. One of the characteristics of COVID-19 is that it is highly contagious; China and 214 other countries have been affected in less than 7 months. As of October 2020, the total worldwide confirmed cases was 43,341,451 with 1,15,7509 deaths and with 218 countries areas and territories affected (WHO). We examine the fundamental concepts behind using a Kaplan Meier curve in various studies. And its applicability to arrive at comprehensible conclusions for Health care practictoners. Finally, we discuss the utility of the curves and thoughts regarding lessons for future analysis. When Kaplan Meier needs to be understood in the contexts of the types of analysis it allows, the outcomes in our medical literature in patient populations is important. It’s the differences in outcomes like mortality rates in various subjects. Many health care workers may not be interested only in the Outcomes but time to the event. Time to the event analysis in oncology literature is the time taken for the patient after treatment
A versus treatment B. In orthopedics it can be time duration taken to replace or repair prosthesis A versus prosthesis B do we evaluate time to event. In most parts medical literature uses Kaplan Meier’s curve. The components of the Kaplan Meier’s survival curve, y-axis, which indicated the survival and the x-axis, which indicates the time trend. The KM is constructed y-axis against x-axis. An event is when the curve stops at an interval and the proportion of patient number is calculated. The KM also gives us the concept of cumulative probability which indicates probability of patients survived in the previous interval and made it to the current interval and then the numbers that made it to the next interval. KM also tells us about censoring which means that something has happened to the patients aside from suffering an event. Censoring has influence on estimating effects. The use of data as long as the patient is available after which this estimate becomes less precise. At risk group will be reduced from survival data. Including all the censored participants will be overestimating the patient survival and the more patient data one loses less accurate becomes the estimate. At the end of collection of patient data all patients are censored, whether they die on the next day or live for 10 years after the completion of the study. So when we look at the cumulative probability of survival it is the part of patient time, KMC gives estimate of two groups in which many things can be compared. We can calculate median survival or 50th percentile. We can compare treatment versus control and the 5 year survival or 3 year survival when plotted x-axis to y-axis.

It should also be noted that steeper the curve of the Kaplan Meier analysis worse is the prognosis in regards to the event of interest comparing KMC with survival data between two groups one has to look at the series of time points, analysis technique must consider the entire curve and the difference between the curves must be quantified with two measure like the log rank test which tell us the difference between groups that’s statistically significant and the Hazard ratio which provides relative event ratio between two groups, HR<1 means treatment reduces the risk of event occurring, HR>1 treatment increases the risk of event occurring and HR=1 treatment has no impact on the risk of event. The curves when used need to be understood with a few key points. Censored data can substantially affect the KM curve, but have to be included when fitting the model. One has to be cautious when interpreting the end of the KM if there are big drops present, especially near the end of the study. This usually means that there are not a lot of people at risk (and the 95% CI intervals are broader). The height of the drop can inform you about the number of patients at risk, even when it’s not reported or when there are no confidence intervals shown. The interpretation of the survival curve is quite simple, the y-axis represents the probability that the subject still has not experienced the event of interest after surviving up to time t, represented on the x-axis. Each drop in the survival function (approximated by the Kaplan-Meier estimator) is caused by the event of interest happening for at least one observation.

This is the first systematic review to date related to interpreting Kaplan Meier’s survival curve in patients with COVID-19. Only 28 studies were eligible for inclusion for the time period March 1, 2020 to September 11, 2020., most of which were conducted in China. Most of the KM curves were significant for the study of concern.

It is essential to do the overview because in our search for understanding application of various graphs and curves used. It was necessary to review a few studies which used Kaplan Meier’s curves to make us understand the importance of survival index due to an intervention. Most times it is understood that KM curves are utilized only in RCT study designs but on reviewing many studies this presumption has been brought to a major paradigm shift to the concept. Aim and objective was to interpret and understand the functionality of Kaplan Meier’s survival curve used in various study designs.

METHODS

The Study search strategy and selection of published works in The MEDLINE database from the National Library of Medicine (NLM), Pubmed PMC was used to identify Original Journal articles published in English from March 1, 2020 to September 11, 2020. The search strings in title/abstract were ‘COVID-19’ or ‘coronavirus’ or ‘Kaplan Meier curve’ that yielded 255 articles. The search terms included combinations of: COVID 19 and Kaplan Meier’s survival analysis curve. There were no restrictions on the types of study design or inclusion.

Search methods for identification of reviews All searches and screening were done independently by two authors (LT, SP) using the preferred reporting items for systematic reviews and meta-analyses statement (PRISMA) recommendations. The titles and abstracts were screened, based on the purpose of our review, and resulted in the exclusion of article. A total of 28 articles met the criteria for our systematic review and were included as shown in Figure 1.

Literature search the following databases were reviewed for published studies prior to September 20, 2020: PubMed, Google Scholar. Only printed articles were searched and no effort was put into searching for preprint as the search in print gave us ample case studies using Kaplan Meier’s survival curve. Boolean logic was used for conducting database search and Boolean search operators “AND” and “OR” were used to link search terms. The following search strategy was adopted: COVID-19 AND ‘Kaplan Meier curve’. Titles, abstracts, and full text were screened to ensure they met eligibility criteria. Two authors (LT and SP) screened scrutinized, retrieved, and excluded reports. Additional investigator (AS) was consulted in clearing doubts that arose during
the review process. (IN) helped with statistical procedures.

Selection of reviews was done by the inclusion criteria of the systemic-analysis were as follows: (1) patients diagnosed with COVID-19 were included into the study, (2) involving the death group or non-survivor group and the survivor group, (3) Kaplan Meier survival graph should be depicted in study. Studies that were excluded were (a) repetitive publications, (b) editorials, case reports, letters, reviews and ecological studies, and (c) studies with fewer than five cases.

RESULTS

In Figure 2 the 28 articles, in the study, China, which had the maximum representation (13) 45 percent, France (2) seven percent, Japan (1) four percent, Italy (3) ten percent, Korea (2) seven percent, Spain (3) ten percent, USA (3) ten percent, Turkey (1) 4 percent. Of the 28 studies included in this review the types of studies were clinical trials (N=1), and retrospective (N=10) and prospective (N=1) observational studies (N=2), case control study (N=1) retrospective cohort study (N=6), MEDICAL record based study (N=3), observational studies (N=2), not specified (N=1), diagnostic test (N=1).

Figure 1: Prisma flow diagram.

Search strategy and selection criteria was done through Literature search in the PubMed, and NLM Library from March 1, 2020 to September 11, 2020. Using a combination of the following keywords: “COVID19” and Kaplan Meier’s survival curve. Restrict publication language to English. In addition, to ensure the comprehensiveness and accuracy of the research, we also consulted the references of the included literature. This work was independently completed by two authors (LT and SP). Disagreements were resolved by the third investigator (AS). All the search results were evaluated according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement.

Inclusion criteria

In the Eligibility criteria we included studies that were mainly in English and which reported on covid 19. Data was manually extracted and immediately tabulated from eligible studies by the investigators. The following variables were included: first author, type of design, site of study, year of publication, published journal or pre-print server, sample size, Kaplan Meier’s curve. This did not include conference and pre-print publications.

Exclusion criteria

We excluded all review articles, hypotheses papers, editorials, case reports and case series.

In Table 1 the average age of the populations studied was 59.07 years. Sample size calculated in this study was 34445. (Thirty four thousand, four hundred and forty five) the maximum sample size was taken by Zhang et al with 13982 and the least number of Sample size was in a study by Zhang et al with 28 study subjects. 32,33

Not mentioned denoted that no calculation of p value was made in three studies out of twenty eight. Out of the 28 studies survival analysis (20), 71.4 percent, failure time analysis (1), 3.7 percent, time to event (7), 25 percent. The articles published were between the time period of March 2020 to September 2020.
Table 1: Age and sample size distribution.

Author	Country	Sample size	Median age	Age significance
Baycan et al⁷	Turkey	100	Non sev. 53.7±15.1, 58% sev. 59.1±12.9	p<0.001
Bernabeu-Wittet et al¹⁸	Spain	272	87 (81-91) female	Not mentioned
Cao et al¹¹	China	244	Mod 59.79±13.49 critical 68.98±11.26	p <0.001
Cheng et al¹⁴	China	305	Survivors 63.0 (49.0-69.0) non surv 71.0 (63.0-78.0) Total 65	p<0.0001
Choi et al⁴⁰	Korea	293	Progression 49.5 (34-57) improv 27 (23-46) Total 29	p <0.001
Campioli et al²⁴	USA	251	Ambulatory 47 (27) hospitalized 60 (16.8) Total 53 (27)	p <0.001
Davido et al¹⁶	France	132	First period 62.17±15.24, second pd. 57.59±16.64	p<0.13
De Rossi et al²⁴	Italy	158	Controls 71 (14.6) tocilizumab 62.9 (12.5) -3.706	p<0.001
Francone et al²⁸	Italy	130	63.2±15.8, range 27-90 years >75 years death significant	p=0.0083
Gao et al¹⁷	China	54	NT-proBNP≤88.64 pg/ml 51.±±13.9 NT-proBNP>88.64 pg/ml 67.4±14.4 Total 60.±±16.1	p<0.001
Green et al¹⁴	USA	3432	Repeat tested 59.9, single tested 53.4	p<0.001
Hou et al⁴⁵	Korea	52	Not mentioned	Not mentioned
Jang et al¹⁸	Korea	110	critical 66.1±10.0 non critical 55.4±17.4, total 56.9±17.0	p=0.002
Adrien Joseph et al⁵³	France	100	non AKI 54 (45-61) AKI 60 (54-68) total 59 (53-67)	p=0.05
Hiroshi Kamijo et al⁵⁴	Japan	3195	Nafamostat 70 (62, 78) conventional 70 (60, 79) 0.066, overall 70 (61, 78)	p=0.066
Lagier et al²⁷	France	3737	Mean age of 45.3±16.8 years	Not mentioned
Jeong-Hoon Lim et al⁵⁵	Korea	164	Non Aki 67.0 (24.0-92.0) all AKI 75.0 (60.0-98.0) sig stg 3AKI	p=0.003
Liu et al⁹⁹	China	1190	Survivor 56 (46, 65) non surv 69 (62, 77) all 57 (47, 67)	p<0.0001
Lovinsky-Desir et al²³	USA	1298	no asthma 52 (21) asthma 51 (27)	p=0.26
Meng et al⁴⁰	China	3232	cancer 61.7 (16.1) years, non cancer 57.9 (15.9) years	p=0.015
Shang et al³³	China	384	59 years (interquartile range 25-75) older diabetic more affected	p<0.001
Uribarri et al²⁴	Spain	758	EGFR>60 ml 61±17 EGFR 30-60 ml 78±11 EGFR<30 ml 79±13 mean 66.1	p<0.001
Wan et al²⁶	China	123	Mild 43, severe 65	p<0.0001
Wang et al³³	China	228	control 45.5 (36-60.8) all patients 45.5 (36-60.8)	p=1.000
Wu et al³⁶	China	201	51 years (interquartile range, 43-60 years) ARDS patient were older	p<0.001
Yang et al²⁴	China	93	Non severe 42.1±18.6, severe 57.9±11.8, total 46.4±17.6	p=0.034
Zhang et al²⁴	China	28	Median 65.0 (56.0-70.0)	p=0.509
Zhang et al²⁵	China	13981	Statin 66.0 (59.0-72.0) nonstatin 57.0 (45.0-67.0)	p<0.001

Table 2: Study types of Kaplan Meier’s parameters.

Author	Type of study	Sample size	Type of KMC	KM significance	KM analysis	Journal	Year of publication
Baycan et al⁷	case control study	100	The parameters affecting mortality were evaluated by including LV-GLS and RV-LS in the two models separately	none	Survival analysis	The International Journal of Cardiovascular Imaging	20-Jun-20
Bernabeu-Wittet et al¹⁸	comparative cohort study	272	Cumulative survival during follow-up according to risk groups of PROFUN and CURB-65 indices	p=0.01	Survival analysis	Archives of Gerontology and Geriatrics	25-Aug-20
Cao et al¹¹	retrospective observational study	244	Plot for survival past hospital admission stratified by hs-cTNI levels.	nm	Survival analysis	Theranostics 2020	29-Jul-20
Cheng et al¹⁴	retrospective single-centre study	305	Survival estimates according to blood urea nitrogen (BUN) and D-dimer levels.	nm	Survival analysis	International Journal of Antimicrobial Agents	19-Jul-20
Choi et al²⁰	retrospective cohort study	293	Survival Analysis of progression-free survival : according to lopinavir/ritonavir treatment for patients with COVID-19	p not significant	Time to event	Journal of Clinical Medicine	23-Jun-20
Campioli et al²⁴	retrospective cohort study	251	The median time from symptom onset to the first positive PCR test	p not significant	Time to event	Journal of Clinical Virology	03-Aug-20
Davido et al²⁶	retrospective single-centre study	132	Unfavorable outcome according to biological parameters (Kaplan-Meier)	p=0.009	Failure time	International Journal of Antimicrobial Agents	01-Sep-20

Continued.
Author	Type of study	Sample size	Type of KMC	KM significance	KM analysis	Journal	Year of publication
De Rossi et al^14	retrospective cohort study	158	Survival curve for tocilizumab and control group showed a significantly greater survival rate of tocilizumab patients as compared to controls.				
were less likely to have an unfavorable outcome compared with patients with no treatment	p<0.001	Survival analysis	EClinicalMedicine	17-Jul-20			
Franco et al^15	retrospective analysis single centre	130	The relationship between CT score and all-cause mortality, which were compared with the log-rank test	p<0.0001	Survival analysis	European Radiology	12-Jun-20
Gao et al^17	retrospective, observational clinical trial	54	Cumulative survival curves of in-hospital death were estimated	p<0.001	Survival analysis	Respiratory research	12-Jul-05
Green et al^44	medical record based	3432	Estimate the conversion rate by the day of testing with the following assumptions	nm	Time to event	Journal of Clinical Microbiology	23-Jul-20
Hou et al^19	diagnostic test	52	Kaplan-Meier curve of CRISPR-COVID positive rate by CRISPR and PCR	p<0.05	Time to event	Plos pathogens	27-Aug-20
Jang et al^24	retrospective study	110	cumulative risk of 28-day mortality according to the NEWS stratification	p<0.001	Survival analysis	J Korean Med Sci	16-Jun-20
Adrien Joseph et al^33	retrospective monocenter study	100	Were used to express the probability of death from inclusion to day 28	p=0.013	Survival analysis	Annals of intensive care	12-Jul-20
Hiroshi Kamijo et al^41	retrospective cohort study	3195	Survival curves of the two groups were plotted with interval-censored data, and survival times were compared between the two groups using log-rank tests.				
Estimates show that the proportion of patients with positive PCR 10 days after inclusion was significantly lower among patients treated with HCQ-AZ	p=0.011	Survival analysis	Journal of Clinical Medicine	13-Aug-20			
Lagier et al^47	retrospective study	3737	Cumulative survival curves were plotted with interval-censored data, and survival times were compared between the two groups using log-rank tests.				
Estimates show that the proportion of patients with positive PCR 10 days after inclusion was significantly lower among patients treated with HCQ-AZ	p=0.05	Time to event	Travel Medicine and Infectious Disease	14-Jun-20			
Jeong-Hoon Lim et al^38	retrospective study	164	30-day mortality was significantly higher in the stage 3	p<0.001	Survival analysis	Journal of Clinical Medicine	03-Jun-20
Liu et al^19	single-center retrospective, observational study	1190	To explore whether a specific antiviral agent was independently associated with prolonged survival	p<0.001	Survival analysis	Annals of intensive care	12-Aug-20
Lovinsky-Desir et al^21	medical record based	1298	Curve demonstrating no significant difference in hospital length of stay between patients with (N 5 163) and without (N 5 1135) asthma.				
Estimates show that the proportion of patients with positive PCR 10 days after inclusion was significantly lower among patients treated with HCQ-AZ	p=0.01	Survival analysis	J ALLERGY CLIN IMMUNOL	Jun-20			
Meng et al^58	retrospective study	3232	Displays the Kaplan-Meier curve for the length of hospital stay for discharged patients.				
Estimates show that the proportion of patients with positive PCR 10 days after inclusion was significantly lower among patients treated with HCQ-AZ	p not significant	Survival analysis	Journal of haematology and oncology	Apr-20			
Shang et al^23	retrospective cohort study	584	Kaplan-Meier survival curve showed that COVID-19 patients with diabetes had a shorter overall survival time.				
Estimates show that the proportion of patients with positive PCR 10 days after inclusion was significantly lower among patients treated with HCQ-AZ	p<0.01	Survival analysis	The american journal of medicine	May-20			
Uribarri et al^1^	medical record based	758	Kaplan-Meier survival landmark analysis according to the glomerular filtration rate.				
Estimates show that the proportion of patients with positive PCR 10 days after inclusion was significantly lower among patients treated with HCQ-AZ	p<0.001	Survival analysis	Journal of Nephrology	22-Jun-20			
Wan et al^26	Not Specified	123	Significant difference in survival rate between the mild and severe groups.				
Estimates show that the proportion of patients with positive PCR 10 days after inclusion was significantly lower among patients treated with HCQ-AZ	p not significant	Survival analysis	British Journal of Haematology	22-Mar-20			
Wang et al^28	retrospective study	228	COVID-19. Patients with low HDL-C showed a higher risk of developing severe events compared with those with high HDL.				
Estimates show that the proportion of patients with positive PCR 10 days after inclusion was significantly lower among patients treated with HCQ-AZ	p=0.009	Survival analysis	Lipids in health and disease	May-20			
Wu et al^29	retrospective cohort study	201	Among the patients with ARDS, of those who received methylprednisolone treatment, 23 of 50 (46.0%) patients died, while of those who did not receive.				
Estimates show that the proportion of patients with positive PCR 10 days after inclusion was significantly lower among patients treated with HCQ-AZ | p=0.003 | Survival analysis | JAMA Internal Medicine | 11-May-20 |

Continued.
Studies did not identify the factors that affect COVID-19 progression. Eight potential factors were included in the analysis by using the Kaplan–Meier curve and the univariate Cox regression model. Seventeen studies were found to be highly significant with p values less than 0.001, seven of which were conducted in retrospective studies. The adjusted survival curve of severe events showed that cancer patients who underwent antitumour treatment in the past 14 days or had patchy consolidation in CT on admission had significantly higher severe events. The association between statin usage and 28-day all cause death was calculated with an adjusted HR of 0.58 (95% CI, 0.43-0.80) compared to non-statin group.

Table 3: Showing distribution of significance of age and KM curve.

Variable	KM Significance	Total
Age	0.0	1
Significance	1.0	8
Total	9	19

Fisher's Exact Test p=0.195 was not significant

DISCUSSION

This is the first systematic review to date related to interpreting Kaplan Meier’s survival curve in patients with COVID-19. Only 28 studies were eligible for inclusion for the time period March 1, 2020 to September 11, 2020, most of which were conducted in China. Nineteen of the studies Kaplan Meier’s curves were significant for the study of concern in which thirteen showed highly significant p values <0.001, seven studies showed significant values and four were nonsignificant. Four studies did not mention p values. The survival analysis, which looked into the mortality profile of the patients, the failure time analysis showed the effects of failure of survival and the time to event showed the effects of drugs on morbidity and mortality. Age significance in the study need not necessarily imply that Kaplan Meier’s curve would be rendered significant as it seems to be independent of the age variable.

Survival analysis of the patients in Baycan et al case control study, 22 died in the hospital. The parameters affecting mortality were evaluated by including LV-GLS and RV-LS in the two models separately using logistic regression.
regression analysis with univariate and multivariate analysis. KM curve was single and p value, not significant in this study, contrarily significant association between worse LV function and GLS values and mortality was observed in a similar study. Wittel et al studied the cumulative survival with multiple KM curves during follow-up according to risk groups of PROFUND and CURB-65 indices, in which significant differences (p=0.01) in outcome trajectories according to risk strata, were obtained. A significant proportion of admitted COVID-19 patients progress to respiratory failure within 24 hours of admission. These events are accurately predicted using bedside respiratory examination findings within a simple scoring system. Cao et al’s Kaplan-Meier plot with double curve for survival past hospital admission stratified by hs-cTnT levels. Patients were considered to be right-censored if they were discharged alive from hospital or were still in hospital at the time of data freeze, these findings suggest that high levels of hs-cTnT may serve as an early marker of subclinical alterations in diastolic function that may lead to a predisposition to heart failure. Cheng et al, Multiple KM survival estimates according to blood urea nitrogen (BUN) and D-dimer levels can be used to estimate the severity of COVID-19. Francone et al’s Kaplan-Meier analysis, the risk of death significantly increased with the increase of CT score value using an estimated cut-off of ≥18. Gao et al showed Kaplan-Meier plots on the cumulative survival rate of COVID-19 patients who were stratified into two groups according to plasma NT-proBNP cut off point at baseline. Kaplan Meier curve was highly significant (p<0.001), NT-proBNP level appears to be a good predictor of ICU admission and 30-day mortality among inpatients with CAP, with a predictive value for mortality comparable to that of the PSI and better than that of the CURB-65 score. Jang et al cumulative risk of 28-day mortality according to the NEWS stratification showed survival time. Liu et al to explore whether a specific antiviralagent was independently associated with prolonged survival. Desir et al demonstrating no significant difference in hospital length of stay between patients with (N 5 163) and without (N 5 1135) asthma, despite a substantial prevalence of asthma in our COVID-19 cohort, asthma was not associated with an increased risk of hospitalization. Similarly, the use of inhaled corticosteroids with or without systemic corticosteroids was not associated with COVID-19 related hospitalization.

Shang et al’s Kaplan-Meier survival curve showed that the insulin-required diabetic patients had shorter overall survival time (p<0.01). The mortality rate in patients with severe covid-19 with diabetes is considerable. Diabetes may lead to an increase in the risk of death. Uribarri et al Kaplan-Meier survival landmark analysis according to the glomerular filtration rate was found to be highly significant p<0.001. Close to 30% of them had evidence of kidney disease on admission, with elevated serum creatinine, and this was associated with greater in-hospital mortality. Wan et al found significant difference in survival rate between the mild and severe groups. Lymphocyte subsets play an important role in cellular immune regulation with each cell restricting and regulating one another. CD4+ T and CD8+ T in the severe group had greater reductions than those in the mild group. This suggested that T lymphocytes provide an important defence against COVID-19. Wang et al analysed the correlation between high-density lipoprotein cholesterol (HDLC) and the severity of COVID-19. Patients with low HDL-C showed a higher risk of developing severe events compared with those with high HDL-C. Development of hypolipidemia begins in patients with mild symptoms. It progressively becomes worse in an association with the disease severity. Wu et al’s studied survival curves developed using the Kaplan-Meier method with log-rank test. Time to events (ARDS or death) was defined as the time from hospital admission to events. The administration of methylprednisolone appears to have reduced the risk of death in patients with ARDS (HR, 0.38; 95% CI, 0.20-0.72; p=0.003). Acute lung injury and acute respiratory distress syndrome are partly caused by host immune responses. Corticosteroids suppress lung inflammation but also inhibit immune responses and pathogen clearance. In SARS-CoV infection, as with influenza, systemic inflammation is associated with adverse outcomes. Zheng et al studied the adjusted survival curve of severe events showed that cancer patients who underwent anti-tumour treatment in the past 14 days or had pathy consolidation in CT on admission had significantly higher severe events. Patients with cancer might have a higher risk of COVID-19 than individuals without cancer. Zhang et al showed association between statin usage and 28-day all cause death was calculated with an adjusted HR of 0.58 (95%CI, 0.43-0.80; p=0.001) compared to non-statin group. Rossi et al studied survival curve, for tocilizumab and control group, showed a significantly greater survival rate of tocilizumab patients as compared to controls.

Failure time analysis of patients in a study by Davido et al found unfavorable outcome according to biological parameters (Kaplan-Meier curves p=0.009). Patients who benefited from AZI ±HCQ with CRP ≥100 mg/l were less likely to have an unfavourable outcome compared with patients with no treatment. Hydroxychloroquine administrations was not associated with either a greatly lowered or an increased risk of the composite end point of intubation or death.

Time to event analysis was done in seven studies, Choi et al, Kaplan-Meier survival double curve analysis of progression-free survival: according to lopinavir/ritonavir treatment for patients with COVID-19 before and after propensity-score matching. A study by Cao et al found that lopinavir-ritonavir treatment did not significantly accelerate clinical improvement, reduce mortality, or diminish throat viral RNA detectability in patients with serious Covid-19. hazard ratio for clinical improvement, 1.31; 95% confidence interval (CI) 0.95 to 1.80;
Campiola et al KM curves were two type single curve for Patients had a median time from positive to negative PCR of 17 days and multiple curves representing symptoms. Zhou reported on the persistence of viral RNA for a median of 20 days after symptom onset. The median time from symptom onset to CVS was 23 (IQR 12) days, and this did not differ significantly when stratified by symptom. Green et al’s approach was used to estimate the conversion rate by day of testing with the following assumptions with Kaplan-Meier estimate of conversion rate from initially negative SARS-CoV-2 status on day 1 to a subsequent positive result. Conversion from first-day negative to positive results increased linearly with each day of testing, reaching 25% probability in 20 days. The results demonstrated that the median duration between the onset of symptoms to nucleic acid conversion was 24 days (IQR, 18-31) and that the longest duration was 42 days after the onset of symptoms. Hou et al compared the Kaplan-Meier curve of CRISPR-COVID positive rate by CRISPR and PCR. The CRISPR assay functionality is being applied for detection of DNA or RNA using nucleic acid pre-amplification combined with CRISPR-Cas enzymology for specific recognition of sequences. Lagier et al estimates show that the proportion of patients with positive PCR 10 days after inclusion was significantly lower among patients treated with HCQ-AZ. From the efficacy perspective, HCQ (plus azithromycin) may decrease the viral shedding and contagiousness of COVID-19, reduce admission.

REFERENCES

1. Tobaiqy M, Qashqary M, Al-Dahery S, Mujallad A, Hershan AA, Kamal MA, et al. Therapeutic management of patients with COVID-19: a systematic review. Infect Prev Pract. 2020;2(3):100061.
2. Advice for the public on COVID-19. World Health Organization. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public. Accessed on 28 October 2020.
3. McCoy E. Kaplan Meier curve and hazard ratio tutorial (Kaplan Meier curve and hazard ratio made simple!). 2018 Available from: https://www.youtube.com/watch?v=pxRCpcRupgU. Accessed on 12 October 2020.
4. Paemel RV. Kaplan Meier curves. Medium. 2019. Available from: https://towardsdatascience.com/kaplan-meier-curves-c5768e349479. Accessed on 24 September 2020.
5. Levinson E. Introduction to survival analysis: the Kaplan-Meier estimator. Medium. 2020. Available from: https://towardsdatascience.com/introduction-to-survival-analysis-the-kaplan-meier-estimator-94ec5812a97a. Accessed on 12 October 2020.
6. Use and Interpret Cochran-Mantel-Haenszel in SPSS. Available from: https://www.scaledlive.com/cochrans-mantel-haenszel.html. Accessed on 28 October 2020.
7. Baycan OF, Barman HA, Atici A, Tatliasu A, Bolen F, Ergen P, et al. Evaluation of biventricular function in patients with COVID-19 using speckle tracking echocardiography. Int J Cardiovasc Imag. 2020,1-10.
8. Sanfilippo F, Corredor C, Fletcher N, Tritapepe L, Lorini FL, Arcadipane A, et al. Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: a systematic review and meta-analysis. Crit Care. 2018;22(1):183.
9. Haimovich AD, Ravindra NG, Stoytchev S, Young HP, Wilson FP, van Dijk D, et al. Development and validation of the quick COVID-19 severity index: a prognostic tool for early clinical decompensation. Ann Emerg Med. 2020;76(4):442-53.
10. Bernabeu-Wittel M, Ternero-Vega JE, Díaz-Jiménez P, Conde-Guzmán C, Nieto-Martín MD, Moreno-Gaviao L, et al. Death risk stratification in elderly patients with covid-19. A comparative cohort study in nursing homes outbreaks. Arch Gerontol Geriatr. 2020;91:104240.
11. Cao J, Zheng Y, Luo Z, Mei Z, Yao Y, Liu Z, et al. Myocardial injury and COVID-19: Serum hs-cTnI level in risk stratification and the prediction of 30-day mortality in COVID-19 patients with no prior cardiovascular disease. Theranostics. 2020;10(21):9663-73.
12. Myhre PL, Claggett B, Ballantyne CM, Selvin E, Røsjø H, Omland T, et al. Association between circulating troponin concentrations, left ventricular systolic and diastolic functions, and incident heart failure in older adults. JAMA Cardiol. 2019;4(10):997-1006.

13. Gao Y, Li T, Han M, Li X, Wu D, Xu Y, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020.

14. Cheng A, Hu L, Wang Y, Huang L, Zhao L, Zhang C, et al. Diagnostic performance of initial blood urea nitrogen combined with D-dimer levels for predicting in-hospital mortality in COVID-19 patients. Int J Antimicrob Agents. 2020;56(3):106110.

15. Francone M, Iafrate F, Masci GM, Coco S, Cilia F, Manganaro L, et al. Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. Eur Radiol. 2020;1-10.

16. Akpinar EE, Hosgün D, Akpinar S, Ateş C, Baha A, Gülensoy ES, et al. Do N-terminal pro-brain natriuretic peptide levels determine the prognosis of community acquired pneumonia? J Bras Pneumol. 2019;45(4).

17. Gao L, Jiang D, Wen X, Cheng X, Sun M, He B, et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir Res. 2020;21.

18. Jang JG, Hur J, Hong KS, Lee W, Ahn JH. Prognostic Accuracy of the SIRS, qSOFA, and NEWS for early detection of clinical deterioration in SARS-CoV-2 infected patients. J Korean Med Sci. 2020;35(25).

19. Liu J, Zhang S, Wu Z, Shang Y, Dong X, Li G, et al. Clinical outcomes of COVID-19 in Wuhan, China: a large cohort study. Ann Intens Care. 2020;10.

20. Chhiba KD, Patel GB, Vu THT, Chen MM, Guo A, Kudlaty E, et al. Prevalence and characterization of asthma in hospitalized and nonhospitalized patients with COVID-19. J Allerg Clin Immunol. 2020;146(2):307-314.e4.

21. Lovinsky-Desir S, Deshpande DR, De A, Murray L, Stingone JA, Chan A, et al. Asthma among hospitalized patients with COVID-19 and related outcomes. J Allerg Clin Immunol. 2020;146(5):1027-34.

22. Yan Y, Yang Y, Wang F, Ren H, Zhang S, Shi X, et al. Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. BMJ Open Diabetes Res Care. 2020;8(1).

23. Shang J, Wang Q, Zhang H, Wang X, Wan J, Yan Y, et al. The relationship between diabetes mellitus and COVID-19 prognosis: a retrospective cohort study in Wuhan, China. Am J Med. 2020;

24. Uribarri A, Núñez-Gil IJ, Aparisi A, Becerra-Muñoz VM, Feltes G, Trabattoni D, et al. Impact of renal function on admission in COVID-19 patients: an analysis of the international HOPE COVID-19 (Health Outcome Predictive Evaluation for COVID 19) Registry. J Nephrol. 2020;1-9.

25. Chen H, Hou J, Jiang X, Ma S, Meng M, Wang B, Zhang M, Zhang M, Tang X, Zhang F, Wan T. Response of memory CD8+ T cells to severe acute respiratory syndrome (SARS) coronavirus in recovered SARS patients and healthy individuals. J Immunol. 2005;175(1):591-8.

26. Wan S, Yi Q, Fan S, Lv J, Zhang X, Guo L, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Haematol. 2020;189(3):428-37.

27. Wei X, Zeng W, Su J, Wan H, Yu X, Cao X, et al. Hypolipidemia is associated with the severity of COVID-19. J Clin Lipidol. 2020;14(3):297-304.

28. Wang G, Zhang Q, Zhao X, Dong H, Wu C, Wu F, et al. Low high-density lipoprotein level is correlated with the severity of COVID-19 patients: an observational study. Lipids Health Dis. 2020;19.

29. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet Lond Engl. 2020;395(10223):473-5.

30. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):1-11.

31. Liang W, Guan W, Chen R, Wang W, Li J, Xu K, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335-7.

32. Zhang L, Zhu F, Xie L, Wang C, Wang J, Chen R, et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol. 2020;31(7):894-901.

33. Zhang XJ, Qin JJ, Cheng X, Shen L, Zhao YC, Yuan Y, et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metab. 2020;32(2):176-87.e4.

34. De Rossi N, Scarpazza C, Filippini C, Cordioli C, Rasia S, Mancinelli CR, et al. Early use of low dose tocilizumab in patients with COVID-19: a prospective cohort study with a complete follow-up. E Clin Med. 2020;25:100459.

35. Canziani LM, Trovati S, Brunetta E, Testa A, De Santis M, Bombardieri E, et al. Interleukin-6 receptor blocking with intravenous tocilizumab in COVID-19 severe acute respiratory distress syndrome: A retrospective case-control survival analysis of 128 patients. J Autoimmun. 2020.

36. Davido B, Boussaid G, Vaugier I, Lansaman T, Bouchand F, Lawrence C, et al. Impact of medical care, including use of anti-infective agents, on prognosis of COVID-19 hospitalized patients over time. Int J Antimicrob Agents. 2020.

37. Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, et al. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020;382(25):2411-8.
38. Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. JAMA. 2020.

39. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787-99.

40. Choi MH, Ahn H, Ryu HS, Kim BJ, Jang J, Jung M, et al. Clinical characteristics and disease progression in early-stage COVID-19 patients in South Korea. J Clin Med. 2020;9(6).

41. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Lond Engl. 2020;395(10229):1054-62.

42. Campioli CC, Cano Cevallos E, Assi M, Patel R, Binnicker MJ, O’Horo JC. Clinical predictors and timing of cessation of viral RNA shedding in patients with COVID-19. J Clin Virol. 2020;130:104577.

43. Xiao AT, Tong YX, Zhang S. Profile of RT-PCR for SARS-CoV-2: a preliminary study from 56 COVID-19 patients. Clin Infect Dis. 2020.

44. Green DA, Zucker J, Westblade LF, Whittier S, Rennert H, Velu P, et al. Clinical performance of SARS-CoV-2 molecular tests. J Clin Microbiol. 2020;58(8).

45. Hou T, Zeng W, Yang M, Chen W, Ren L, Ai J, et al. Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19. PLoS Pathog. 2020;16(8).

46. Tsilios K, Skondros P. Hydroxychloroquine against COVID-19: a critical appraisal of the existing evidence. Eur J Rheumatol. 2020;7(2):S110-6.

47. Lagier JC, Million M, Gautret P, Colson P, Cortaredona S, Giraud-Gatineau A, et al. Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Marseille, France: a retrospective analysis. Travel Med Infect Dis. 2020;36:101791.

48. Rees EM, Nightingale ES, Safari Y, Waterlow NR, Clifford S, B. Pearson CA, et al. COVID-19 length of hospital stay: a systematic review and data synthesis. BMC Med. 2020;18(1):270.

49. Wang Z, Ji JS, Liu Y, Liu R, Zha Y, Chang X, et al. Survival analysis of hospital length of stay of novel coronavirus (COVID-19) pneumonia patients in Sichuan, China. MedRxiv. 2020;20057299.

50. Meng Y, Lu W, Guo E, Liu J, Yang B, Wu P, et al. Cancer history is an independent risk factor for mortality in hospitalized COVID-19 patients: a propensity score-matched analysis. J Hematol Oncol J Hematol Oncol. 2020:13.

51. Hou W, Zhang W, Jin R, Liang L, Xu B, Hu Z. Risk factors for disease progression in hospitalized patients with COVID-19: a retrospective cohort study. Infect Dis Lond Engl. 2020;1-8.

52. Yang AP, Liu J, Tao W, Li H. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020;84:106504.

53. Kamijo H, Mochizuki K, Nakamura Y, Mori K, Ichikawa M, Nitta K, et al. Nafamostat Mesylate Improved Survival Outcomes of Sepsis Patients Who Underwent Blood Purification: A Nationwide Registry Study in Japan. J Clin Med [Internet]. 2020 Aug 13 [cited 2020 Sep 10];9(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464767.

54. Lim J-H, Park S-H, Jeon Y, Cho J-H, Jung H-Y, Choi J-Y, et al. Fatal Outcomes of COVID-19 in Patients with Severe Acute Kidney Injury. J Clin Med [Internet]. 2020 Jun 3 [cited 2020 Sep 10];9(6). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355571.

55. Joseph A, Zafrani L, Mabrouki A, Azoulay E, Darmon M. Acute kidney injury in patients with SARS-CoV-2 infection. Ann Intensive Care [Internet]. 2020 Sep 3 [cited 2020 Sep 10];10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471244.

Cite this article as: Tapnikar LA, Patil S, Nyse J. Interpreting Kaplan Meier’s survival curve in COVID-19 patients: a systematic review. Int J Community Med Public Health 2021;8:424-33.