NONCOMMUTATIVE BORSUK-ULAM-TYPE CONJECTURES

PAUL F. BAUM, LUDWIK DĄBROWSKI, AND PIOTR M. HAJAC

ABSTRACT. Within the framework of free actions of compact quantum groups on unital C*-algebras, we propose two conjectures. The first one states that, if H is the C*-algebra of a compact quantum group coacting freely on a unital C*-algebra A, then there is no equivariant $*$-homomorphism from A to the join C*-algebra $A \ast H$. For A being the C*-algebra of continuous functions on a sphere with the antipodal coaction of the C*-algebra of functions on $\mathbb{Z}/2\mathbb{Z}$, we recover the celebrated Borsuk-Ulam theorem. The second conjecture states that there is no equivariant $*$-homomorphism from H to the join C*-algebra $A \ast H$. We show how to prove the conjecture in the special case $A = C(SU_q(2)) = H$, which is tantamount to showing the non-trivializability of Pflaum’s quantum instanton fibration built from $SU_q(2)$.

1. Introduction

The Borsuk-Ulam theorem is a fundamental theorem of topology with an enormous amount of corollaries and generalizations [15]. Having a noncommutative generalization would provide further evidence for its fundamental nature.

Theorem 1.1 ([3]). Let n be a positive natural number. If $f : S^n \to \mathbb{R}^n$ is continuous, then there exists a pair $(p, -p)$ of antipodal points on S^n such that $f(p) = f(-p)$.

Assuming that both temperature and pressure are continuous functions, we can conclude that there are always two antipodal points on Earth with exactly the same pressure and temperature.

The logical negation of the theorem yields: There exists a continuous map $f : S^n \to \mathbb{R}^n$ such that for all pairs $(p, -p)$ of antipodal points on S^n we have $f(p) \neq f(-p)$. For the antipodal action of $\mathbb{Z}/2\mathbb{Z}$ on S^n and \mathbb{R}^n, the latter statement is equivalent to: There exists a $\mathbb{Z}/2\mathbb{Z}$-equivariant continuous map $\tilde{f} : S^n \to S^{n-1}$.

Indeed, if $f : S^n \to \mathbb{R}^n$ is a continuous map with $f(p) \neq f(-p)$, then the formula

$$\tilde{f}(p) := \frac{f(p) - f(-p)}{\|f(p) - f(-p)\|}$$

defines a continuous $\mathbb{Z}/2\mathbb{Z}$-equivariant map from S^n to S^{n-1}. Also, composing any such a map with the inclusion map $S^{n-1} \subset \mathbb{R}^n$ gives a nowhere vanishing continuous map $\tilde{f} : S^n \to \mathbb{R}^n$ with $f(-p) = -f(p) \neq f(p)$. Consequently, the Borsuk-Ulam Theorem is equivalent to:

Theorem 1.2 (equivariant formulation). Let n be a positive natural number. There does not exist a $\mathbb{Z}/2\mathbb{Z}$-equivariant continuous map $\tilde{f} : S^n \to S^{n-1}$.
1.1. **Classical equivariant join construction.** Let \(I = [0, 1] \) be the closed unit interval and let \(X \) be a topological space. The *unreduced suspension* \(\Sigma X \) of \(X \) is the quotient of \(I \times X \) by the equivalence relation \(R_S \) generated by
\[
(0, x) \sim (0, x'), \quad (1, x) \sim (1, x').
\]
(1.2)

Now take another topological space \(Y \) and, on the space \(I \times X \times Y \), consider the equivalence relation \(R_J \) given by
\[
(0, x, y) \sim (0, x', y), \quad (1, x, y) \sim (1, x, y').
\]
(1.3)

The quotient space \(X \ast Y := (I \times X \times Y)/R_J \) is called the *join* of \(X \) and \(Y \). It resembles the unreduced suspension of \(X \times Y \), but with only \(X \) collapsed at 0, and only \(Y \) collapsed at 1.

In particular, if \(Y \) is a one-point space, the join \(X \ast Y \) is the *cone* \(CX \) of \(X \). If \(Y \) is a two-point space with discrete topology, then the join \(X \ast Y \) is the unreduced suspension \(\Sigma X \) of \(X \).

If \(G \) is a topological group acting continuously on \(X \) and \(Y \) from the right, then the diagonal right \(G \)-action on \(X \times Y \) induces a continuous action on the join \(X \ast Y \). Indeed, the diagonal action of \(G \) on \(I \times X \times Y \) factorizes to the quotient, so that the formula
\[
([(t, x, y)], g) \mapsto [(t, xg, yg)]
\]
(1.4)

makes \(X \ast Y \) a right \(G \)-space. It is immediate that this continuous action is free if the \(G \)-actions on \(X \) and \(Y \) are free.

If \(Y = G \) with the right action assumed to be the group multiplication, we can construct the join \(G \)-space \(X \ast Y \) in a different manner: at 0 we collapse \(X \times G \) to \(G \) as before, and at 1 we collapse \(X \times G \) to \((X \times G)/R_D \) instead of \(X \). Here \(R_D \) is the equivalence relation generated by \((x, h) \sim (x', h') \), where \(xh = x' h' \). More precisely, let \(R'_J \) be the equivalence relation on \(I \times X \times G \) generated by
\[
(0, x, h) \sim (0, x', h) \quad \text{and} \quad (1, x, h) \sim (1, x', h'), \quad \text{where} \ xh = x' h'.
\]
(1.5)

The formula \([(t, x, h)]k := [(t, xh)] \) defines a continuous right \(G \)-action on \((I \times X \times G)/R'_J \). One can also easily check that the formula
\[
X \ast G \ni [(t, x, h)] \mapsto [(t, xh^{-1}, h)] \in (I \times X \times G)/R'_J
\]
(1.6)

yields a \(G \)-equivariant homeomorphism.

If we further specify also \(X = G \) with the right action assumed to be the group multiplication, then the \(G \)-action on \(X \ast Y = G \ast G \) is automatically free. Furthermore, since the action of \(G \)
on $X \ast G$ is free whenever it is free on X, we conclude that the natural action on the iterated join of G with itself is also free. For instance, for $G = \mathbb{Z}/2\mathbb{Z}$ we obtain a $\mathbb{Z}/2\mathbb{Z}$-equivariant identification $(\mathbb{Z}/2\mathbb{Z})^{(n+1)} \cong S^n$, where S^n is the n-dimensional sphere with the antipodal action of $\mathbb{Z}/2\mathbb{Z}$.

1.2. Join of unital C*-algebras with free compact quantum group actions.

Definition 1.3 ([5]). Let A_1 and A_2 be unital C*-algebras. We call the unital C*-algebra
\begin{equation}
A_1 \ast A_2 := \left\{ x \in C([0,1]) \otimes_{\min} A_1 \otimes_{\min} A_2 \left| (\text{ev}_0 \otimes \text{id})(x) \in A_2, \ (\text{ev}_1 \otimes \text{id})(x) \in A_1 \right. \right\}
\end{equation}
the join C*-algebra of A_1 and A_2. Here \otimes_{\min} stands for the spatial (minimal) tensor product, and $\text{ev}_r : C([0,1]) \ni f \mapsto f(r) \in C$ is the evaluation map at r on the C*-algebra of continuous functions on the unit interval.

Note that, due to the fact that minimal tensor products preserve injections (e.g., see [19, Proposition 4.22] or [22, Section 1.3]), for any unital C*-algebras A_1 and A_2 the natural maps
\begin{equation}
A_1 \ni a \mapsto a \otimes 1 \in A_1 \otimes_{\min} A_2 \quad \text{and} \quad A_2 \ni a \mapsto 1 \otimes a \in A_1 \otimes_{\min} A_2
\end{equation}
are injective. Observe also that, if $A_1 := C(X)$ and $A_2 := C(Y)$ are the C*-algebras of continuous functions on compact Hausdorff spaces X and Y respectively, then
\begin{equation}
A_1 \ast A_2 = C(X \ast Y).
\end{equation}

Next, let A be a unital C*-algebra and $\delta : A \to A \otimes_{\min} H$ an injective unital *-homomorphism. We call δ a coaction of H on A (or an action of the compact quantum group (H, Δ) on A) iff
\begin{enumerate}
\item $(\delta \otimes \text{id}) \circ \delta = (\text{id} \otimes \Delta) \circ \delta$ (coassociativity),
\item $\left\{ \delta(a)(1 \otimes h) \mid a \in A, h \in H \right\}_{\text{cls}} = A \otimes_{\min} H$ (counitality).
\end{enumerate}

Here “cls” stands for “closed linear span”. A coaction δ is called free [8] iff
\begin{equation}
\left\{ (x \otimes 1)\delta(y) \mid x, y \in A \right\}_{\text{cls}} = A \otimes_{\min} H.
\end{equation}

Since a diagonal coaction is not in general an algebra homomorphism, to obtain an equivariant version of our noncommutative join construction, we need to modify Definition 1.4 in the spirit of [1.5–1.6].

Definition 1.4 (cf. [5]). Let (H, Δ) be a compact quantum group acting on a unital C*-algebra A via $\delta : A \to A \otimes_{\min} H$. We call the unital C*-algebra
\begin{equation}
A \ast_{\delta} H := \left\{ f \in C([0,1], A \otimes_{\min} H) \left| f(0) \in \mathbb{C} \otimes H, \ f(1) \in \delta(A) \right. \right\}
\end{equation}
the equivariant noncommutative join of A and H.

Theorem 1.5. ([1] Lemma 5.5 and Corollary 5.6) Let (H, Δ) be a compact quantum group, and A be a unital C^*-algebra equipped with a free coaction $\delta: A \to A \otimes_{\min} H$. The $*$-homomorphism

$$\text{id} \otimes \Delta : C([0,1], A) \otimes_{\min} H \to C([0,1], A) \otimes_{\min} H \otimes_{\min} H$$

restricts to

$$\delta_{\Delta} : A^{* \delta} H \to (A^{* \delta} H) \otimes_{\min} H.$$

Moreover, the thus defined action of the compact quantum group (H, Δ) on the join C^*-algebra $A^{* \delta} H$ is free.

Given a compact quantum group (H, Δ), we denote by $\mathcal{O}(H)$ its dense Hopf $*$-subalgebra spanned by the matrix coefficients of irreducible unitary corepresentations (see Woronowicz’s Peter-Weyl theory of compact quantum groups [23]). Moreover, denoting by \otimes the purely algebraic tensor product over the field \mathbb{C} of complex numbers, we define the Peter-Weyl subalgebra of A [1] as

$$\mathcal{P}_H(A) := \{ a \in A \mid \delta(a) \in A \otimes \mathcal{O}(H) \}.$$

Using the coassociativity of δ, one can check that $\mathcal{P}_H(A)$ is a right $\mathcal{O}(H)$-comodule algebra. In particular, $\mathcal{P}_H(H) = \mathcal{O}(H)$. The assignment $A \mapsto \mathcal{P}_H(A)$ is functorial with respect to equivariant unital $*$-homomorphisms and comodule algebra maps. We call it the Peter-Weyl functor.

1.3. Pullback structure of equivariant joins. Let (H, Δ) be a compact quantum group, $\mathcal{O}(H)$ be its dense Hopf $*$-subalgebra spanned by the matrix coefficients of irreducible unitary corepresentations. Set

$$\mathcal{P}_1 := \{ f \in C([0, \frac{1}{2}], H) \otimes \mathcal{O}(H) \mid f(0) \in \mathbb{C} \otimes \mathcal{O}(H) \} ,$$

$$\mathcal{P}_2 := \{ f \in C([\frac{1}{2}, 1], H) \otimes \mathcal{O}(H) \mid f(1) \in \Delta(\mathcal{O}(H)) \} ,$$

$$\mathcal{P}_{12} := H \otimes \mathcal{O}(H).$$

Here we identify elements of $C(I, H) \otimes \mathcal{O}(H)$ with functions $I \to H \otimes \mathcal{O}(H)$. The just defined spaces are $\mathcal{O}(H)$-comodule algebras with respect to the coaction $\text{id} \otimes \Delta$. The coaction-invariant subalgebras $\mathcal{P}^{co \mathcal{O}(H)}_i$, $i = 1, 2$, can be identified respectively with the “left” and “right” cone of H:

$$C_1 H := \{ f \in C([0, \frac{1}{2}], H) \mid f(0) \in \mathbb{C} \} ,$$

$$C_2 H := \{ f \in C([\frac{1}{2}, 1], H) \mid f(1) \in \mathbb{C} \} .$$

We also see that $\mathcal{P}_{12}^{co \mathcal{O}(H)} = H$ and $\mathcal{P}_1 \cong C_1 H \otimes \mathcal{O}(H)$, $\mathcal{P}_2 \cong C_2 H \# \mathcal{O}(H)$. Here $\mathcal{O}(H)$ acts on $C_2 H$ via the adjoint action

$$a \triangleright f(t) = a_{(1)}f(t)S(a_{(2)}), \quad a \in H, \quad f \in C_1 H, \quad t \in [0, 1].$$
Now let $\pi_i^P: P_i \to P_{12}$, $i = 1, 2$, be the evaluation maps at $1/2$. Then

$$\mathcal{P}_1 \times \mathcal{P}_2 := \{(p_1, p_2) \in \mathcal{P}_1 \times \mathcal{P}_2 \mid \pi_1^P(p_1) = \pi_2^P(p_2)\}$$

is the pullback comodule algebra for the diagram

Since the aforementioned evaluation maps are surjective, we conclude from [9] that all four comodule algebras in this diagram are principal. Furthermore, one can check [4] that the Peter-Weyl comodule algebra of the join C*-algebra $H \ast \Delta H$ coincides with the above pullback comodule algebra:

$$\mathcal{P}_H(H \ast \Delta H) \cong \mathcal{P}_1 \times \mathcal{P}_2.$$

Herein, the coaction-invariant subalgebras are C*-algebras. They assemble into the pullback diagram along the evaluation maps at $1/2$:

where ΣH is the unreduced suspension C*-algebra of H.

We end this section by unravelling the Milnor construction [16] for the specific case of the above pullback of unital C*-algebras. Given a finite-dimensional complex vector space V and an isomorphism of left H-modules $\chi : H \otimes V \to H \otimes V$, we construct the finitely generated projective left ΣH-module $M(C_1 H \otimes V, C_2 H \otimes V, \chi)$ (see [6]) as the pullback of the free left $C_1 H$-module $C_1 H \otimes V$ and the free left $C_2 H$-module $C_2 H \otimes V$:

$$M(C_1 H \otimes V, C_2 H \otimes V, \chi)$$

$$\mathcal{H}$$

$$\mathcal{C}_1$$

$$\mathcal{C}_2$$

where ΣH is the unreduced suspension C*-algebra of H.

We end this section by unravelling the Milnor construction [16] for the specific case of the above pullback of unital C*-algebras. Given a finite-dimensional complex vector space V and an isomorphism of left H-modules $\chi : H \otimes V \to H \otimes V$, we construct the finitely generated projective left ΣH-module $M(C_1 H \otimes V, C_2 H \otimes V, \chi)$ (see [6]) as the pullback of the free left $C_1 H$-module $C_1 H \otimes V$ and the free left $C_2 H$-module $C_2 H \otimes V$:
2. Noncommutative Borsuk-Ulam framework

2.1. Borsuk-Ulam theorem for quantum spheres. Applying the Gelfand transform, Theorem 1.2 translates to:

\[\nexists \quad Z/2Z\text{-equivariant } \ast\text{-homomorphism } \mathcal{C}(S^n) \longrightarrow \mathcal{C}(S^{n+1}). \]

Replacing the commutative C*-algebras of functions on spheres by noncommutative C*-algebras of q-deformed spheres, we obtain a noncommutative version of the Borsuk-Ulam Theorem. In particular, we can consider it for the case of the equatorial Podleś quantum two-sphere [18]. We tensor the C*-algebra \(\mathcal{C}(S^2_{q,\infty}) \) of the equatorial Podleś quantum sphere with the algebra of continuous functions on the unit circle, act on the tensor product with the diagonal antipodal \(\mathbb{Z}/2\mathbb{Z} \)-action, and consider the invariant subalgebra. This gives a \(U(1) \)-C*-algebra \(A \) with the quantum real projective space C*-algebra \(\mathcal{C}(RP_q(2)) \) (see [10]) as its \(U(1) \)-invariant part. Using the identity representation of \(U(1) \), we associate with it a finitely generated projective module over \(\mathcal{C}(RP_q(2)) \). One can prove that this module is not stably free [2]. This implies that \(A \) cannot be a crossed product of \(\mathcal{C}(RP_q(2)) \) and the integers. This proves the quantum Borsuk-Ulam Theorem for \(n = 1 \). For \(n = 1 \) and \(q = 1 \), this is a proof of the weather-on-Earth case of the Borsuk-Ulam Theorem (see the introduction).

For the arbitrary-dimension quantum spheres introduced in [21, 14], the quantum Borsuk-Ulam Theorem

\[\nexists \quad C(\mathbb{Z}/2\mathbb{Z})\text{-equivariant } \ast\text{-homomorphism } \mathcal{C}(S^n_q) \longrightarrow \mathcal{C}(S^{n+1}_q) \]

is proven in [24, Theorem 3]. Let us emphasize that our noncommutative generalization of (2.22) is different from the one proved in [24].

2.2. Noncommutative Borsuk-Ulam-type conjectures. The Borsuk-Ulam Theorem is equivalent to:

Theorem 2.1 (join formulation). Let \(n \) be a positive natural number. There does not exist a \(\mathbb{Z}/2\mathbb{Z}\)-equivariant continuous map \(\tilde{f} : S^{n-1} \ast \mathbb{Z}/2\mathbb{Z} \to S^{n-1} \).

This naturally leads to a classical Borsuk-Ulam-type conjecture:

Conjecture 2.2. Let \(X \) be a compact Hausdorff space equipped with a continuous free action of a non-trivial compact Hausdorff group \(G \). Then, for the diagonal action of \(G \) on \(X \ast G \), there does not exist a \(G \)-equivariant continuous map \(f : X \ast G \to X \).

Particular cases of the above statement going beyond the Borsuk-Ulam Theorem have already been studied in [7, 11, 12] (cf. [20] for weaker results for non-free \(\mathbb{Z}/p\mathbb{Z} \)-actions and maps from \(X \) to \(S^1 \)).

Thus we have arrived at the main point of this paper:
Conjecture 2.3. Let A be a unital C^*-algebra with a free action of a non-trivial compact quantum group (H, Δ). Also, let $A \ast H$ be the equivariant noncommutative join C^*-algebra of A and H with the induced free action of (H, Δ) given by δ_Δ. Then

TYPE 1	$\nexists \ H$-equivariant \ast-homomorphism $A \rightarrow A \delta_\Delta H$
TYPE 2	$\nexists \ H$-equivariant \ast-homomorphism $H \rightarrow A \delta_\Delta H$

Here the H-equivariance is defined with respect to coactions δ and δ_Δ (type 1), and with respect to Δ and δ_Δ (type 2).

3. Noncontractibility of compact quantum groups

In this section, we consider the special case $(A, \delta) = (H, \Delta)$ when the two types of Conjecture 2.3 coincide. In the classical setting, the thus restricted Conjecture 2.3 boils down to the non-contractibility of non-trivial compact Hausdorff groups, which is well known [13].

3.1. General setting. If X is a compact Hausdorff principal G-bundle, $A = C(X)$ and $H = C(G)$, then Conjecture 2.3 type 2 states that the principal G-bundle $X \ast G$ is not trivializable unless G is trivial. This is clearly true because otherwise $G \ast G$ would be trivializable, which is tantamount to G being contractible, and the only compact Hausdorff contractible group is trivial. On the other hand, we do not know whether Conjecture 2.3 type 1 holds in general in the commutative case (see Conjecture 2.2).

Definition 3.1. Let A be a unital C^*-algebra equipped with a free action of a compact quantum group (H, Δ) implemented by $\delta : A \rightarrow A \otimes_{\text{min}} H$, and let B denote the fixed-point subalgebra for this action. We call such a triple (P, B, H) a compact quantum principal bundle. We say that a compact quantum principal bundle (P, B, H) is trivializable iff there exists an H-equivariant \ast-homomorphism $j : H \rightarrow P$, i.e. a \ast-homomorphism j such that $(j \otimes \text{id}) \circ \Delta = \delta \circ j$.

Proposition 3.2. Let (H, Δ) be a compact quantum group, $\mathcal{O}(H)$ be its dense Hopf \ast-subalgebra spanned by the matrix coefficients of irreducible unitary corepresentations. If (P, B, H) is a trivializable compact quantum principal bundle then, for any finite-dimensional corepresentation $\varrho : V \rightarrow \mathcal{O}(H) \otimes V$, the associated left B-module $\mathcal{P}_H(P) \square_{\mathcal{O}(H)} V$ is free.

Proof. Due to the H-colinearity of j, for any $h \in H$, we obtain $j(h_{(1)}) \otimes h_{(2)} = \delta(j(h))$. This shows that $j(\mathcal{O}(H)) \subseteq \mathcal{P}_H(P)$. Therefore, $\mathcal{P}_H(P)$ is a smash-product comodule algebra. Hence the associated left B-module $\mathcal{P}_H(P) \square_{\mathcal{O}(H)} V$ is free. \qed

Theorem 3.3. Let (H, Δ) be a compact quantum group, $\mathcal{O}(H)$ be its dense Hopf \ast-subalgebra spanned by the matrix coefficients of irreducible unitary corepresentations, and $V \xrightarrow{\varrho} \mathcal{O}(H) \otimes V$ be a finite-dimensional corepresentation of $\mathcal{O}(H)$. Next, let $\mathcal{P}_H(H \ast_\Delta H)$ be the Peter-Weyl comodule algebra of the equivariant noncommutative join $H \ast_\Delta H$, let ΣH be the unreduced
suspension \(C^*-\text{algebra} \) of \(H \) (the coaction-invariant subalgebra \(\mathcal{P}_H(H \ast \Delta H)^{co \mathcal{O}(H)} \)), and let \(C_1H \) and \(C_2H \) be respectively the left and right cones of \(H \). Then

\[
\mathcal{P}_H(H \ast \Delta H)^{co \mathcal{O}(H)} \cong M\left(C_1H \otimes V, C_2H \otimes V, (m \otimes \text{id}) \circ (\text{id} \otimes (S \otimes \text{id}) \circ \varrho) \right)
\]

as left modules over \(\Sigma \mathcal{H} \). Here \(m \) and \(S \) are respectively the multiplication and the antipode of the Hopf algebra \(\mathcal{O}(H) \), and the right-hand-side module is defined as the pullback module of \([1.21] \).

Proof. Consider \(C_iH \)-module isomorphisms \(\Lambda_i, i = 1, 2 \), given by

\[
\Lambda_i: C_iH \otimes V \xrightarrow{\text{id} \otimes \varrho} C_iH \otimes \mathcal{O}(H) \cong V \xrightarrow{J \otimes \text{id}} \mathcal{P}_i(H \ast \Delta H) \otimes \mathcal{O}(H),
\]

where

\[
\begin{align*}
J_1 & : C_iH \otimes \mathcal{O}(H) \ni c_i \otimes h \mapsto c_i j_i(h) \in \mathcal{P}_i(H \ast \Delta H), \\
j_1 & : \mathcal{O}(H) \ni h \mapsto 1 \otimes h \in \mathcal{P}_i(H \ast \Delta H), \\
j_2 & : \mathcal{O}(H) \ni h \mapsto (t \mapsto h_{(1)}) \otimes h_{(2)} \in \mathcal{P}_2(H \ast \Delta H).
\end{align*}
\]

Since the modules of \([3.24] \) have the same pullback structure (see Section 1.3), they are isomorphic if the following equivalence holds:

\[
(m \otimes \text{id}) \circ (\text{id} \otimes (S \otimes \text{id}) \circ \varrho) \circ (\text{ev}_{\frac{1}{2}} \otimes \text{id}) \quad (b_1) = \quad (\text{ev}_{\frac{1}{2}} \otimes \text{id}) \quad (b_2)
\]

\[
\downarrow
\]

\[
(m \otimes \text{id}) \circ (\text{id} \otimes (S \otimes \text{id}) \circ \varrho) \circ (\text{ev}_{\frac{1}{2}} \otimes \text{id}) \quad (b_1) = \quad (\text{ev}_{\frac{1}{2}} \otimes \text{id}) \quad (b_2).
\]

On simple tensors \(b_i = c_i \otimes v_i \), the formula \([3.26] \) boils down to

\[
c_1(\frac{1}{2})S(v_{1(-1)}) \otimes v_{1(0)} = c_2(\frac{1}{2}) \otimes v_2,
\]

and the formula \([3.27] \) becomes

\[
c_1(\frac{1}{2})v_{1(-1)} \otimes v_{1(0)} = c_2(\frac{1}{2})v_{2(-1)}v_{2(0)} \otimes v_{1(0)}.
\]

Applying twice the isomorphism \((m \otimes \text{id}) \circ (\text{id} \otimes (S \otimes \text{id}) \circ \varrho) \) (its inverse is \((m \otimes \text{id}) \circ (\text{id} \otimes (S \otimes \text{id}) \circ \varrho) \) to both sides of \([3.28] \) yields \([3.29] \). \(\square \)

3.2. Quantum instanton bundle.

Assume now that \(H \) is the \(C^* \)-algebra \(C(SU_q(2)) \) of the quantum group \(SU_q(2) \). Then the equivariant noncommutative join \(C(SU_q(2)) \ast \Delta C(SU_q(2)) \) is Pflaum’s quantum instanton fibration \([17, 9]\). Let \(\alpha \) and \(\beta \) be the usual generators of \(C(SU_q(2)) \). Also, let

\[
U := \begin{bmatrix}
\alpha & -q^{\beta^*} \\
\beta & \alpha^*
\end{bmatrix} \in U_2(C(SU_q(2))) \subset M_2(C(SU_q(2))),
\]

and let \(V = \mathbb{C}^2 \) be a left \(\mathcal{O}(H) \)-comodule via

\[
\varrho_U: \mathbb{C}^2 \longrightarrow \mathcal{O}(H) \otimes \mathbb{C}^2, \quad \varrho_U(e_i) := \sum_{j=1}^2 U_{ij} \otimes e_j,
\]
where \(\{e_i\}_i \) is the standard basis of \(\mathbb{C}^2 \). (This corepresentation of \(C(SU_q(2)) \) is usually called the fundamental representation of \(SU_q(2) \).) It follows from (3.24) that the left \(\Sigma C(SU_q(2)) \)-module
\[
E := \mathcal{P}_{C(SU_q(2))} \left(C(SU_q(2)) \ast_{\Delta} C(SU_q(2)) \right) \bigotimes_{\mathcal{O}(C(SU_q(2)))} \mathbb{C}^2
\]
is isomorphic to the pullback module (1.21) for \(\chi = (m \otimes \text{id}) \circ (\text{id} \otimes (S \otimes \text{id}) \circ g_U) \). Hence, by [6, Theorem 2.1], an idempotent \(p \) representing the \(K_0 \)-class of \(E \) can be computed via [6, (2.7)] using the unitary matrix \(a = U^* \). Moreover, as explained in [6, p. 77], there exists an even Fredholm module whose index pairing with \(E \) is equal to the index pairing of \(U^* \) with an appropriate odd Fredholm module. As the latter equals \(-1 \neq 0\), we infer that the module \(E \) is not free. Therefore, Proposition [3.2] implies that Pflaum’s quantum instanton fibration is not trivializable, i.e. Conjecture [2.3] holds. As explained at the beginning of Section 3.1, this means that \(SU_q(2) \) is not contractible.

ACKNOWLEDGEMENTS

This work was partially supported by NCN grant 2011/01/B/ST1/06474. The authors are very grateful to the Hausdorff Research Institute for Mathematics in Bonn, where key progress on the paper was made, for its fabulous hospitality and support. It is a pleasure to thank Kenny De Commer and Makoto Yamashita for their help and lengthy discussions. Paul F. Baum and Ludwik Dąbrowski were also partially supported by NSF grant DMS 0701184 and PRIN 2010-11 grant “Operator Algebras, Noncommutative Geometry and Applications”, respectively.

REFERENCES

[1] P.F. Baum, K. De Commer, P.M. Hajac: Free actions of compact quantum group on unital \(C^* \)-algebras, arXiv:1304.2812
[2] P.F. Baum, P.M. Hajac, J. Rudnik: The \(K \)-theory of quantum real projective planes, in preparation.
[3] K. Borsuk: Drei Sätze über die \(n \)-dimensionale euklidische Sphäre, Fund. Math. 35 (1933) 177–190.
[4] L. Dąbrowski, K. De Commer, P.M. Hajac, E. Wagner: Principal coactions on unreduced nuclear couple suspensions of unital \(C^* \)-algebras, in preparation.
[5] L. Dąbrowski, T. Hadfield, P.M. Hajac: Noncommutative join constructions, arXiv:1407.6020.
[6] L. Dąbrowski, T. Hadfield, P.M. Hajac, R. Matthes, E. Wagner: Index pairings for pullbacks of \(C^* \)-algebras, in Operator algebras and quantum groups, 67–84, Banach Center Publ., 98, Polish Acad. Sci. Inst. Math., Warsaw, 2012.
[7] S. Eilenberg: On a theorem of P. A. Smith concerning fixed points for periodic transformations. Duke Math. J. 6 (1940) 428–437.
[8] D.A. Ellwood: A new characterisation of principal actions, J. Funct. Anal. 173 no. 1 (2000) 49–60.
[9] P.M. Hajac, U. Krähmer, R. Matthes, B. Zieliński: Piecewise principal comodule algebras, J. Noncommut. Geom. 5 (2011) 591–614.
[10] P.M. Hajac, R. Matthes, W. Szymański: Quantum real projective space, disc and spheres, Algebras and Representation Theory 6 (2003) 169–192.
[11] G. Hirsch: Une generalisation d’un théorème de M. Borsuk concernant certaines transformations de l’analysis situs, Acad. Roy. Belgique Bull. Cl. Sci. 23 (1937) 219–225.
[12] G. Hirsch: Sur des propriétés de représentations permutables et des généralisations d’un théorème de Borsuk, Ann. Sci. Ecole Norm. Sup. 60, 3 (1943) 113–142.
[13] B. Hoffmann: A compact contractible topological group is trivial, Archiv Math. 32, no. 1 (1979) 585–587.
[14] J.H. Hong, W. Szymański: Quantum lens spaces and graph algebras, Pacific Journal of Mathematics, 211, no. 2 (2003).
[15] J. Matoušek: Using the Borsuk-Ulam Theorem, Springer-Verlag Berlin Heidelberg 2003.
[16] J. Milnor: Introduction to Algebraic K-Theory, Annals of Mathematics Studies 72, Princeton University Press, Princeton, New Jersey, 1971.
[17] M. Pflaum: Quantum groups on fibre bundles, Comm. Math. Phys. 166 (1994) 279–315.
[18] P. Podleś: Quantum spheres, Lett. Math. Phys. 14 (1987) 521–531.
[19] M. Takesaki: Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979.
[20] A. Taghavi: A Banach algebraic Approach to the Borsuk-Ulam Theorem, Abstract and applied analysis (2012), Article ID 729745.
[21] L.L. Vaksman, Ya.S. Soibelman: Algebra of functions on the quantum group $SU(n + 1)$, and odd-dimensional quantum spheres, Algebra i Analiz 2 no. 5 (1990) 101–120. Translation in Leningrad Math. J. 2 no. 5 (1991) 1023–1042.
[22] S. Wassermann: Exact C^*-algebras and related topics, Lecture Notes Series, 19. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994.
[23] S.L. Woronowicz: Compact quantum groups, in Symétries quantiques (Les Houches, 1995), 845–884, North-Holland, Amsterdam, 1998.
[24] M. Yamashita: Equivariant comparison of quantum homogeneous spaces, Comm. Math. Phys. 317 (2013) 593–614.

Mathematics Department, McAllister Building, The Pennsylvania State University, University Park, PA 16802, USA, Instytut Matematyczny, Polska Akademia Nauk, ul. Śniadeckich 8, Warszawa, 00-656 Poland

E-mail address: baum@math.psu.edu

SISSA (Scuola Internazionale Superiore di Studi Avanzati), Via Bonomea 265, 34136 Trieste, Italy

E-mail address: dabrow@sissa.it

Instytut Matematyczny, Polska Akademia Nauk, ul. Śniadeckich 8, 00-656 Warszawa, Poland,
E-mail address: pmh@impan.pl