EFFECTS OF ARAK BALI ADMINISTRATION ON SPERMATOZOA DNA FRAGMENTATION AND TESTOSTERONE LEVEL OF RATS (Rattus norvegicus)

Alfiah Hayati, Dwi Winarni, Ni Wayan Sukma Antari, Inne Ninda Resita, Erlyn Nurul Fauziah
Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya

ABSTRACT

This study aimed to determine the effects of arak bali on the fragmentation of spermatozoa and testosterone in rats (Rattus norvegicus). This study used 24 rats (170-200 g), divided into four groups: one control and three treatments (receiving arak bali containing 40% alcohol as much as 0.1 and 0.5 mL and synthetic alcohol (40%) as much as 0.1 mL, for 45 days). The observation of DNA fragmentation was done using acridine orange staining and the measurement of testosterone level used ELISA method. The results showed that the provision of arak bali in experimental animals increased the occurrence of spermatozoa DNA fragmentation. The higher the volume of arak bali given, the higher the fragmentation of spermatozoa DNA. The administration of arak bali also decreased testosterone level. The higher the volume of arak bali given, the lower the rats' testosterone level. (FMI 2018;54:41-45)

Keywords: Arak bali; spermatozoa DNA fragmentation; testosterone; rats (Rattus norvegicus)

Correspondence: Alfiah Hayati, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia. Email: alfiahayati64@yahoo.com

INTRODUCTION

Bali is an island with a variety of customs that are still sustainable to date. One of the customs that are preserved to date is presenting traditional drinks in every religious ceremony. Like traditional liquor, this drink is used as a complement to religious ceremonies. In addition to the ceremony, liquor is also consumed by the people of Bali. Arak, or traditional liquor, is usually made from fermented coconut water, nira (aren) fruit and rice water. This liquor has quite high alcohol content, so the liquor is divided into several grade levels. For grade I, it has alcohol content above 35%, class II has alcohol content 35% × x = 25%, while for class III, it has alcohol content of less than 25% (Lempang 2006).

Alcohol that enters the body will undergo a series of biochemical processes. Out of all alcohol consumed, 90% will be metabolized by the body, especially in the liver, by alcohol-dehydrogenase (ADH) enzyme and nicotinamide-adenine-dinucleotide (NAD) coenzyme to acetaldehyde, and then by aldehyde dehydrogenase (ALDH) enzyme, it is converted to acetic acid. Alcohol metabolism in