1. Introduction

Plenty of organic pollutants were generated with the growing rate of urbanization, such as phenolic compounds, antibiotics, dyes, pesticides, etc \([1,2]\). Some of these pollutants are biodegraded into harmful compounds, while others are inherently difficult to degrade, leading to environmental accumulation \([3–5]\). There is an urgent need to find effective ways to eliminate toxic pollutants that strike a balance between economic feasibility and environmental friendliness to eliminate the threats to humans, animals, and plants \([6]\).

In recent years, many researchers have reported that manganese oxides and their composites are effective adsorbents and catalysts for removing organic pollutants from wastewater compared with other metal oxides \([7–12]\). Manganese is a transition metal that occurs widely in nature (the tenth most abundant element in the earth’s crust) \([13,14]\). Manganese exists in nature mainly in the form of manganese oxide and other compounds. The nano-sized manganese metal oxides have many advantages, such as large specific surface area, porous structure, many active sites, good thermal stability, easy recovery, high environmental compatibility, and low toxicity \([2,15–17]\). The crystalline phase MnO\(_2\) material consists of \(\text{MnO}_6\) octahedral units in various tunnel-like and laminar structures, which are one-dimensional tunnel structure, two-dimensional lamellar structure, and three-dimensional mesh structure, respectively. Due to its special structure, single MnO\(_2\) species can be modified by element doping, morphology control, facet engineering, structure construction. In addition, MnO\(_2\)-based composites can be prepared using homojunction and heterojunction structures \([2]\). Due to their unique physicochemical properties and synergistic effects with other metals or metal oxides, they have received extensive attention as excellent adsorbents and catalysts for organic pollutants \([18–20]\).

In this paper, different phase and morphological structures of MnO\(_2\) are reported (Figure 1). The application, degradation mechanism, and development status of MnO\(_2\)-based materials on organic pollutants are described. The organic pollutants were divided into phenolic compounds, antibiotics, dyes, and pesticides. The review provides an overview of the research related to manganese oxides and their application, including future areas of research and limitations in the current body of research.

2. Physical structure

2.1 Phase structure

There are many kinds of MnO\(_2\) in the environment, including \(\alpha\)-MnO\(_2\), \(\beta\)-MnO\(_2\), \(\gamma\)-MnO\(_2\), \(\delta\)-MnO\(_2\), \(\varepsilon\)-MnO\(_2\), and \(\lambda\)-MnO\(_2\) \([14,21]\). The six main types of crystalline...
MnO$_2$ can be classified into three categories, namely, 1D tunnel structures, 2D layer structures, and 3D mesh structures, respectively [2,22].

α-MnO$_2$ belongs to the tetragonal crystal system, which is widely found in nature. It has (2 × 2) tunnels of large square vacancies, which can be partially occupied by K$^+$, Na$^+$, Ba$^+$, Mg$^{2+}$ or Ca$^{2+}$ ions and water molecules [23]. This structure would increase the adsorption ability of α-MnO$_2$. β-MnO$_2$ belongs to the tetragonal system and its structure is relatively stable. The narrow tunnel of β-MnO$_2$ (1 × 1) can only accommodate small ions such as H$^+$ or Li$^+$, which is not conducive to ion diffusion [24]. γ-MnO$_2$ has a hexagonal dense row structure with alternating growth of (1 × 1) and (1 × 2) tunnels. The disorderly and irregular alternating growth of γ-MnO$_2$ tunnels leads to low crystallinity and the generation of defects and vacancies. This structural feature enhances its electron exchange capacity and thus improves the catalytic performance [25]. The two-dimensional layered δ-MnO$_2$ belongs to a typical monoclinic system with a large interlayer distance, which can accommodate many water molecules, metal cations, and other substances [26,27]. λ-MnO$_2$ is a typical spinel structure. Its 3D (1 × 1) tunnel structure is conducive to electron transfer [2]. ε-MnO$_2$ has a polycrystalline structure with hexagonal symmetry and many cationic vacancies [28]. Therefore, the difference in the phase structure of MnO$_2$ also determines the difference in its properties.

2.2 Morphological structure

In addition to the phase structure, the morphology structure also has a great influence on the properties of MnO$_2$. The morphological structures of MnO$_2$ include nanorods, nanotubes, nanowires, nanofibers, nanoribbons, nanosheets, and nanoflowers. As shown in Figure 1.

Figure 1. A brief description of manganese dioxide and organic pollutants.
MnO$_2$ nanosheets have a large specific surface area and are highly porous, which provides more active sites for methylene blue molecules [32]. Nanoflower ε-MnO$_2$ exhibited the best removal efficiency of trielson because of its high oxygen vacancy and Mn$^{3+}$ content, easily released lattice oxygen, and unique tunnel structure [33,34]. The crystal defects in the amorphous structure in MnO$_2$ nanoflowers facilitated the absorption and oxidative degradation of Rhodamine [35]. The catalytic properties of MnO$_2$ nanotubes are like nanorods but have a larger surface area than nanorods for degradation of phenol with higher charge transfer rate [36]. Nanofibers had the higher activity and stable properties, which have good adsorption performance in addition to excellent catalytic oxidation performance for propane [37,38]. MnO$_2$ nanowires can effectively degrade methylene blue at low temperatures, with only a slight decrease in the generation of free radicals and degradation efficiency after recycling [39].

The morphological structure control can determine the specific surface area, low-temperature reducibility, oxygen vacancies, surface defects, mass transportation, and charge motion electron-hole pairs, which have a great influence on the adsorption and catalytic oxidation properties of MnO$_2$-based materials.

3. Doping and composite of MnO$_2$-based materials

With the application of MnO$_2$ in environmental protection, the demand for catalytic properties of MnO$_2$ is gradually increasing too. However, the specific surface area, crystal structure, oxygen-manganese bond strength, and other aspects of MnO$_2$ are not ideal for some substances that are difficult to degrade. To cope with different organic pollutants, MnO$_2$ has been doped and compounded to improve its catalytic capacity.

3.1 Doping of MnO$_2$-based materials

Elemental ion doping can adjust or change the intrinsic properties of MnO$_2$, including morphology, specific surface area, oxygen vacancy formation energy, and oxygen mobility [40]. Hence, many researchers have endeavored to dope alkali and alkaline earth metal ions, other metal ions, and nonmetal anions into MnO$_2$, as shown in Figure 2.

Alkali metals and alkaline earth metal ions can change the morphology and lattice structure of MnO$_2$, which in turn affect their adsorption and catalytic properties. It has been reported that K$^+$ and Tb$^{3+}$ doped MnO$_2$ materials have higher specific surface area, Mn$^{3+}$ content, surface oxygen vacancy, and lattice oxygen activity for methyl blue [41]. The addition of K$^+$, Mg$^{2+}$, Ca$^{2+}$, and Na$^+$ can affect the specific surface area, the binding energy of lattice oxygen, the oxygen vacancy, and the interlayer space of MnO$_2$ materials [42–44].

Besides, other metal ions were doped with MnO$_2$, such as Ag$^{+}$ [45], Cu$^{2+}$, Co$^{2+}$, Ni$^{2+}$ [46], Fe$^{3+}$ [47], Sn$^{2+}$ [48], Cr$^{3+}$ [49], W$^{6+}$ [50], V$^{3+}$ [51], Ce$^{4+}$ [52], and Eu$^+$ [53]. The doping of metal ions can improve the performance of MnO$_2$: 1) the concentration of holes and oxygen vacancies; 2) the electrical conductivity; 3) the lattice surface activity; 4) the crystal defects; 5) the specific surface area; 6) the charge transfer and electron-hole dissociation; 7) the oxygen-manganese bond length.

In addition to metal anion doping, nonmetal anion (N [54], B [55]) doping has also been investigated. Non-metal anion doping can reduce the energy of oxygen vacancy formation and bandgap, promote the formation of oxygen vacancy, and electron transport thus improving the optical and electrical catalytic activity of the catalyst.

3.2 Fabrication of MnO$_2$-based composites

Combining with other substances is a good way to improve the catalytic performance of MnO$_2$. So far, MnO$_2$ composite catalysts can be divided into four types: MnO$_2$/MnO$_2$, metal/MnO$_2$, metal oxide/MnO$_2$, and carbon materials/MnO$_2$. MnO$_2$-based composites have a larger surface area, faster electron-hole dissociation efficiency, stronger light absorption, and charge separation efficiency compared to MnO$_2$ catalysts alone.

MnO$_2$/MnO$_2$ materials with different crystalline phases or morphologies form synergistic interactions, which increase the surface active oxygen and specific surface area of MnO$_2$. Various similar materials have been reported, such as Mn$_2$O$_3$/Mn$_3$O$_4$/MnO$_2$ [56], α-MnO$_2$/β-MnO$_2$ [57], δ-MnO$_2$/δ-MnO$_2$ [58], Mn$_3$O$_4$/MnO$_2$ [59], MnO$_2$ nanotube/MnO$_2$ nanosheet [60], and core-shell δ-α-MnO$_2$ [61].

The combination of metal monomer (Ag [62], Pd [63], Au [64], Fe [65], Mg [66], Ni [67]) and MnO$_2$ is common to improve the catalytic efficiency by increasing the surface oxygen defects, specific surface area, reactive oxygen concentration, lattice defects, and active sites of MnO$_2$.

A variety of composites can be synthesized by combining metal oxides and MnO$_2$. The addition of metal oxides and the generation of special structures can increase the concentration of oxygen vacancies on the surface of manganese oxide, which forms a low resistance electron-defective surface and promotes the rapid transfer of carriers, giving the catalyst a high oxidation potential and a high photocurrent reaction. Metal oxides/MnO$_2$ catalyst also has special structures, such as hollow sphere structures, intercalation structures, hollow tube structure, etc. Many metal oxides have been reported, such as Bi$_2$WO$_6$ [68], ZnO [69], Co$_3$O$_4$ [70], Fe$_3$O$_4$ [71], SiO$_2$ [72], CuO [73], SnO$_2$ [74], Cu$_2$B$_2$O$_4$ [75], Al$_2$O$_3$ [76], TiO$_2$ [77] etc.
Carbon materials are widely applied to enhance the catalytic performance of MnO2 due to their lightweight, high strength, high electrical conductivity, and chemically stable. In recent years, nanotube, nanosphere, nanofiber, and graphene have been used for enhancing the activity of MnO2. The combination of carbon material increased the surface area, the active site of manganese dioxide, more surface oxygen-containing functional groups, and the carrier mobility of MnO2 [78–81].

The Layered Double Hydroxides (LDH) is so known as a hydrotalcite-like material. Recently, MnO2-based LDH materials have been widely used for the catalytic degradation of pollutants. Due to its unique structure, MnO2-based LDH materials have a large specific surface area and more exposed active groups. The characteristics of its adsorption and catalytic degradation of pollutants are improved. Chen et al. prepared FeMn-LDH by co-precipitation method and used it to activate the peroxymonosulfate (PMS) for octadecylamine degradation [82]. Kabel et al. synthesized a novel manganese oxide FeMnO3 as a heterogeneous catalyst for Methylen Blue (MB) degradation [83]. FeMn-LDH synthesized by Hou et al. could effectively activate PMS and remove 97.56% of the organic pollutant Acid Orange 7 [84].

4. Organic pollutant degradation

Organic pollutants widely exist in water and soil environment. Some of them are highly toxic, easily accumulative, and difficult to degrade. Organic pollutants can be divided into phenolic compounds, antibiotics, dyes, pesticides, etc.

4.1 Phenolic compounds

Phenolic compounds are aromatic organic compounds. And most of them have acute toxicity, genotoxicity, and endocrine-disrupting effects. Many common phenol derivatives, such as biphenol A, chlorophenols, nitrophenols, and aminophenols, can be detected in the environment [85–87]. In recent years, advanced oxidation methods have been proposed to remove toxic phenolic compounds from wastewater. Advanced oxidation methods belong to redox reactions that can generate hydroxyl radicals (•OH), sulfate radicals (SO42−), and other radicals (e.g. O2−) in situ. MnO2-based materials act as important catalysts in advanced oxidation [88].

4.1.1 Hydroxyl radical oxidation methods

•OH are the most common advanced oxidative radicals. Generally, the degradation of phenolic compounds by •OH is a continuous process. With the attack of •OH, aromatic rings undergo a ring dissociation reaction and various functional groups of phenolic compounds undergo substitution and addition reactions. In this process, intermediate products such as aminophenols, phenols, hydroquinones, benzoquinones, and carboxylic acids will be formed. With the involvement of other conditions, the degradation reaction may eventually produce carbon dioxide and water [89–91].

Lv et al. found that •OH were the main active agents in the degradation of phenol by carbon aerogel doped with MnO2 [6]. Ponnusamy et al. synthesized 6-MnO2 on carbon fiber, which could effectively degrade 90% of ibuprofen with the •OH radicals [92]. Guo et al. reported that the degradation rate of benzophenone-3 was 92.0% with •OH radicals from MnO2-Co3O4 nanoparticles [93]. Zhang et al. found that the •OH concentration was increased by a factor of two when using the prepared MnO2 with mesoporous structure and high specific surface area to degrade phenolic acid [94]. MnO2 can also generate •OH to participate in the degradation of phenolic compounds when used as electrode materials, such as MnO2 electrodes, polypyrrole/β-MnO2 modified graphite electrodes [95], and MnO2/Nano-G|Foam-Ni/Pd composite cathodes [67].

4.1.2 Sulfate radical oxidation methods

More recently, SO42− have been proposed as an alternative to •OH for organic oxidation. The SO42−
can be obtained by heating, light radiation, and metal activation from sulfate oxidizers such as persulfate and PMS [96]. The degradation of phenols by SO₄²⁻ presumably undergoes substitution, addition, hydroxylation, ring-opening, C-C bond breaking, and decarboxylation. The intermediates of the degradation reaction are complex. Generally, there are phenol, hydroquinone, quinones, and other substances [97,98].

It was found that SO₄²⁻ generated from a three-dimensional γ-MnO₂@ZnFe₂O₄/rGO nanohybrid catalyst could completely degrade 50 mL/20 ppm phenol solution within 30 min [99]. Saputra et al. found that the nanowire α-MnO₂ in the crystalline state had the highest activity in generating SO₄²⁻ [16]. Liang et al. synthesized mesoporous α-MnO₂ nanoparticles loaded with Co₃O₄, which could degrade 100% of phenol within 20 min [21]. In addition, metal oxides/MnO₂ composites have higher efficiency in degrading quinones, nitrophenols, and bisphenols under acidic conditions through SO₄²⁻ [100,101].

4.1.3 Other radical and nonradical oxidation methods
In addition to -OH and SO₄²⁻, superoxide radical (O₂⁻•⁻) is also produced in some cases. Wang et al. found that δ-MnO₂ crystals with high exposure surfaces promoted the formation of O₂⁻•⁻ and accelerated the degradation of phenol [102]. Another process is the mechanical ball milling of oxygen vacancy enriched manganese dioxide. It was found that the obtained BM20-MnO₂ produced O₂⁻•⁻ and the degradation rate of tetrabromobisphenol was increased by 22 times [4]. Bisphenol A was oxidized by a non-radical mechanism using the formation of reactive complexes between amorphous MnO₂ and PMS. The amorphous MnO₂ could activate PMS, and the generated active MnO₂/PMS system degraded about 94% of bisphenol A within 60 min [103].

4.1.4 Reaction mechanism
Manganese oxides based catalysts activate different oxidizing substances (PMS, peroxydisulfate (PDS), H₂O₂, O₂, etc.) to produce -OH, SO₄²⁻, and O₂⁻•⁻. Free radicals directly participate in the degradation of organic pollutants. After a few steps of reaction, CO₂, H₂O, inorganic ions (SO₄²⁻), and low molecular organics are eventually generated (Figure 3) [21,83,89,92].

4.2 Antibiotics
Antibiotics are widely used around the world to treat infectious diseases, and they enter soils and water systems through leachates of sewage, manure, and leachate from pharmaceutical waste. They are persistent in the environment and remain toxic to the hematopoietic system, posing a serious threat to the environment and humans. Therefore, it is urgent to develop effective and economical methods to eliminate antibiotics, considering their chemical and biological stability [75,104]. Antibiotics mainly include ciprofloxacin, tetracycline, sulfa antibiotics, and other antibiotics. Most of the degradation of antibiotics is accomplished by oxidative free radicals. -OH, SO₄²⁻, and O₂⁻•⁻ are the main active species.

4.2.1 Ciprofloxacin
Ciprofloxacin is a quinolone antibacterial drug with strong penetrating properties. Many researchers have explored the degradation of ciprofloxacin. 98.3% of ciprofloxacin was degraded within 30 min in a visible light/PMS system mediated by magnetic γ-Fe₂O₃-MnO₂ with many oxygen vacancies [105]. Wang et al. synthesized copper-based bimetallic oxides to decompose ciprofloxacin in wastewater by activating H₂O₂ to produce -OH. The degradation efficiency was up to 100% [106]. The degradation efficiency of ciprofloxacin by α-MnO₂ combined with dielectric barrier discharge could reach 93.1% after 50 min [107]. In summary, MnO₂ has an important effect in the degradation of ciprofloxacin.

4.2.2 Tetracycline
Tetracycline is a very common antibiotic in polluted environment. And its contamination area is very large. Tetracyclines also induce resistance in microorganisms and their metabolic intermediates are more toxic [108]. The α-MnO₂/ZnO-C z-type photocatalyst degraded 96.69% of tetracycline within 60 min with O₂⁻•⁻ and -OH [109]. The adsorption capacity of Erdite/MnO₂ nanorods on tetracycline was 2613.3 mg/g, which was due to the coordination reaction between the -NH₂ group of tetracycline and the hydroxyl group [110]. Minale et al. degraded 91.46% of oxytetracycline at pH 5 by using a sodium polyacrylate hydrogel loaded with MnO₂ [111].

4.2.3 Sulfa antibiotics
Sulfa antibiotics are typical toxic antibiotics. Khan et al. found that the ε-MnO₂/PMS system could effectively activate sodium persulfate and degrade 99% of sulfamethoxazole. Besides, the degradation rates of sulfachlorpyridazine, sulfamethazine, ciprofloxacin, and azithromycin were 100%, 88%, 100%, and 25%, respectively [112]. Wang et al. immobilized Co₃O₄ on different MnO₂ crystals for the degradation of sulfisoxazole. The γ-MnO₂@Co₃O₄ system showed the highest removal rate of more than 97% [113]. Jiang et al. found that Co₃O₄-MnO₂/biochar catalyst with PMS could completely degrade sulfadiazine, and the O₂⁻•⁻ and SO₄²⁻ were the main active substances [114].

4.2.4 Other antibiotics
Many other types of antibiotics can also be harmful to the environment and humans, such as ceftiofur (CEF),
norfloxacin (NOF), metoprolol (MET), and ibuprofen (IBU), etc. Zhang et al. prepared CuBi\textsubscript{2}O\textsubscript{4}/MnO\textsubscript{2} composite by two-step hydrothermal method. 93.6% of CEF was decomposed over 40 min with 0.4 g·L−1 PMS and 0.3 g·L−1 CuBi\textsubscript{2}O\textsubscript{4}/MnO\textsubscript{2} at pH 11 [75]. Xu et al. found that NOF was completely degraded when α-MnO\textsubscript{2}/MnFe\textsubscript{2}O\textsubscript{4} catalyst was dosed at 0.2 g/L, PMS of 1 mmol/L, pH of 7, room temperature, and NOF of 20 mg/L [115]. He et al. investigated the oxidative reactivity of α-MnO\textsubscript{2}, β-MnO\textsubscript{2}, and γ-MnO\textsubscript{2} concerning MET and IBU. It was found that α-MnO\textsubscript{2} had the highest degradation efficiency of 99% for IBU and MET [116].

4.3 Dyes

Water pollution resulted from organic dyes and their residues with the rapid growth of textile and dye industries has become a major environmental problem [72,117,118]. In addition to traditional adsorption methods, advanced oxidation technologies (i.e. photocatalytic oxidation, Fenton, and Fenton-like reactions) have been widely applied to eliminate dyes from wastewater [119].

4.3.1 Adsorption and oxidation method

The conventional adsorption-oxidation method is a more economical, mature, and environment friendly technology compared to other technologies. It can be used for degrading most dyes, such as RhB, Reactive Blue 19 (RB19), and so on. Core-shell MnO\textsubscript{2}-SiO\textsubscript{2} nanorods were synthesized by Gong et al. It was found that the final decolorization rate of RhB was 98.7% under the action of the absorption and oxidation [120]. Fathy et al. synthesized a novel and efficient nanocomposite catalyst γ-MnO\textsubscript{2}/MWCNT by in situ co-precipitation method. The results showed that the degradation rate of RB19 dye was 100% under the combined effect of adsorption and catalytic oxidation [121]. Adsorption oxidation is widely used in the field of organic dye degradation and has a large potential for development.

4.3.2 Photocatalytic reaction

In recent years, more and more studies have been applied to the photocatalysis technology for the degradation of dyes. Chiam et al. synthesized MnO\textsubscript{2} nanoflowers as photocatalysts to degrade RhB, the degradation rate was 99.0% under acidic conditions because of the formation of •OH catalyzed by Mn2+ [35]. 98.35% of Coomassie Brilliant Blue R-250 was degraded in 30 min by α-MnO\textsubscript{2}/TiO\textsubscript{2} heterostructured photocatalysts with narrow band gap [72]. Ma et al. found that the degradation rate of MB solution by flower-shaped Fe\textsubscript{3}O\textsubscript{4}/SiO\textsubscript{2}/MnO\textsubscript{2}/BiOBr-Bi photocatalyst was 95.23% within 150 min [122].

4.3.3 Fenton reaction

The Fenton reaction is often used for treating organic matter by generating •OH through H\textsubscript{2}O\textsubscript{2}. The laminated hollow Fe\textsubscript{3}O\textsubscript{4}/Fe\textsubscript{1−x}S\textsubscript{x}/MnO\textsubscript{2} composite was able to degrade 20 mg/L of RhB solution within 4 min, where •OH was the main active substance. And the maximum adsorption capacity of tetracycline reached 748.9 mg/L [123]. Sabbaghan et al. found that the degradation rate of MB reached 90% in 60 min with H\textsubscript{2}O\textsubscript{2} and needle ferrite/MnO\textsubscript{2} catalyst [124]. Li et al. removed 99.13% of acidic red 73 in 40 min by synthesizing coal fly ash supported MnO\textsubscript{2}. •OH and SO\textsubscript{4}2− were considered as the main reactive radicals in the degradation process [125].

4.3.4 Fenton-like reaction

With the development of the Fenton reaction, Fenton-like reaction has been gradually applied to the prevention and control of dye pollution. MnO\textsubscript{2}@ZIF-8 core-shell nanoparticles were synthesized by Cao et al. The nanoparticles were used as photocatalysts to degrade RhB in a Fenton-like process and the final degradation rate was greater than 96.0% [126]. Yu et al. prepared a series of β-MnO\textsubscript{2} macro catalysts for the degradation of some dyes (MB, methyl orange (MO), RhB, and acid orange II (AOII)) under hydrothermal conditions. After
40 min of reaction, the degradation rates of MB, MO, RhB, and AOII were 95%, 45%, 52%, and 63%, respectively [127].

4.4 Pesticides

As food production increases, the use of pesticides is also growing rapidly. Of the total pesticide use, about 0.1% meets the target, and the rest remains in the environment. This led to the deterioration of soil quality and following crop yield reduction with poor quality, and water pollution. Ultimately, it poses a threat to animals and humans [128–130]. Pesticides can generally be classified as phenols, organophosphates, and other types.

4.4.1 Organophosphorus pesticides

Among the common pesticide contaminants, organophosphorus pesticides are the most commonly used agricultural pesticides, most of which are highly or moderately toxic [131]. Manganese (IV) oxide prepared by homogeneous hydrolysis of KMnO₄ and 2-chloroacetamide degraded 90% of methyl parathion (MP) within 2 h [132]. Li et al. found that the removal of glyphosate by ferricydrite/δ-MnO₂ composites was dominated by degradation when the ratio of Mn/Fe was greater than 0.0167, and mainly by adsorption when the ratio was less than 0.0167 [133]. Wang et al. studied the degradation efficiency of MP in the MnO₂-HSO₄⁻-reaction system. The results showed that the maximum degradation rate of MP reached 97% [134]. MnO₂ plays an important role in the degradation of organophosphorus pesticides.

4.4.2 Other pesticides

In addition to organophosphorus compounds, some other pesticides are found in sewage and soil, such as toxaphene, DIN (difenoconazole), and DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) and so on. 96.5% of toxaphene was removed by the MnO₂/cellulose fiber nanocomposite [135]. Zhao et al. found that α-MnO₂ could degrade 88% of DIN within 22 h, and SO₄²⁻ and OH⁻ were the main active substances [8]. Liu et al. found that the degradation efficiency of the MnO₂/PMS system for DDT was in the following order: α-MnO₂ > γ-MnO₂ > β-MnO₂. The maximum degradation rate of DDT was 97.0%, and SO₄²⁻ was the main reactant [136]. New pesticide contaminants are being discovered one after another. This is an issue that needs to be addressed urgently.

4.5 Other organic pollutants

In addition to the above pollutants, perfluorooctanesulfonic acid (PFOS), cationic blue (X-GRL), carbamazepine (CBZ), methyl benzoate, methylparaben, paracetamol, and dimethylhydrazine were also found in wastewater and contaminated soil, which can be degraded by manganese oxides. The degradation mechanisms are mostly related to free radicals. The degradation rate can reach 80–100% in a few hours (Table 1). Although manganese oxide has a good effect on the degradation of most organic pollutants, new pollutants are being discovered one after another. Therefore, we still need to continuously develop organic degradation technologies.

5. Summary and outlook

Environmental pollution caused by rapid industrialization is one of the major challenges faced by human society. Manganese oxides are one of the most promising catalytic materials at this stage due to their unique properties. In the past few years, this material has made encouraging breakthroughs in catalytic degradation of organic pollution. This paper reviews the various phase and morphological structures of MnO₂, three modification methods (self-mixing, doping, and composite) of MnO₂. In addition, the catalytic degradation effect and mechanism of phenolic compounds, antibiotics, dyes, pesticides, and other organic pollutants are also reviewed.

MnO₂ materials have been developed for the degradation of organic pollutants and their catalytic performance has been improved. However, it must be acknowledged that the application of MnO₂ materials in this field of catalytic organic degradation still faces various unresolved problems. The current problems we

Materials	Synthetic methods	Target	Degradation mechanism	Activity	Reference
γ-MnO₂/H₂O₂	Hydrothermal method	perfluorooctanesulfonic acid	-OH, O₂⁻⁻	100%, 15 min	[13]
δ-MnO₂/β-MnO₂	The oxidation of permanganate	Cationic blue	Adsorption, -OH and O₂⁻⁻	100%, 30 h	[58]
δ-MnO₂	The oxidation of permanganate	Carbamazepine	Protonation of intermediate products	92.8%, 30 min	[137]
Fe₂O₃/MnO₂	Hydrothermal process	Carbamazepine	-OH, O₂⁻⁻, SO₄²⁻	87.6%, 1 h	[138]
Hydrogel	Irradiation polymerization and chemical precipitation method	Methylparaben	-OH, O₂⁻⁻, SO₄²⁻	99%, 90 min	[139]
Cationic micelles/MnO₂	The oxidation of permanganate	Paracetamol	Micellar osmotic oxidation	100%, 45 min	[140]
α-MnO₂, δ-MnO₂	Hydrothermal method	Dimethylhydrazine	-OH, O₂⁻⁻	>92%, 3.5 h	[141]
need to solve or the direction we need to study in the future are: 1) To enhance the mechanical and thermo-
dynamic stability of MnO$_2$ materials to maintain their
structures; 2) To ensure the activity of advanced oxidation
free-radicals catalyzed by the catalyst; 3) To explore the
synthesis of heterotatom-doped MnO$_2$ and construction
its composites with specific function in a controllable
method; 4) To clarify the intermediates and reaction path
in the catalytic process of MnO$_2$ catalyst; 5) To explore the recovery and regeneration of MnO$_2$ catalysts.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was supported by the Jiangsu Agricultural
Science and Technology Innovation Fund (Grant No. CX(20)
3076); Exploring and Overturning Innovation Program of
Jiangsu Academy of Agricultural Sciences (Grant No. ZX(21)
1221); Key Research & Development Program of Jiangsu
Province (Grant No. BE2020335).

References

[1] Deng Y, Gao P, Wang L, et al. Activation of peroxymono-
sulfate by MnO$_2$ with oxygen vacancies: degradation
of organic compounds by electron transfer nonradical mechanism. J Environ Chem Eng. 2022;10 (3):107481.

[2] Yang RJ, Fan YY, Ye RQ, et al. MnO$_2$-Based Materials for
Environmental Applications. Adv Mater. 2021;33 (9):2004862.

[3] Khan A, Liao Z, Liu Y, et al. Synergistic degradation of
phenols using peroxymonosulfate activated by CuO-
Co$_3$O$_4$@MnO$_2$ nanocatalyst. J Hazard Mater.
2017;329:262–271.

[4] Ndayiragije S, Zhang Y, Zhou Y, et al. Mechanochemically tailoring oxygen vacancies of
MnO$_2$ for efficient degradation of tetrabromobisphenol
A with peroxymonosulfate. Appl Catal B-environ.
2022;307:121168.

[5] Ke L, Liu J, Sun L, et al. A non-specific surface area
dominated catalytic ozonation with CuO modified β-
MnO$_2$ in efficient oxalic acid degradation. J Water
Process Eng. 2022;46:102535.

[6] Lv GF, Chen YH, Yang T, et al. Electrocatalytic oxidation
removal of phenol from aqueous solution with metal
oxides doped carbon aerogel. J Braz Chem Soc.
2018;29(4):689–694.

[7] Zhou T, Du J, Wang Z, et al. Degradation of sulfamethoxazole by MnO$_2$/heat-activated persulfate: kinetics, synergistic effect and reaction mechanism. Chem Eng J Adv. 2022;9:100200.

[8] Zhao M, Xu R, Chen Z, et al. Kinetics and mechanisms of diconazolone degradation by α-MnO$_2$ activated per-
oxymonosulfate. Sep Purif Technol. 2022;281:119850.

[9] Zhang X, Zhang C, Lin Q, et al. Preparation of lignocellulose-based activated carbon paper as a manganese dioxide carrier for adsorption and in-situ catalytic degradation of formaldehyde. Front Chem. 2019;7. DOI:10.3389/fchem.2019.00808.

[10] Barreca D, Gri F, Gasparotto A, et al. Insights into the plasma-assisted fabrication and nanoscopic investiga-
tion of tailored MnO$_2$ nanomaterials. Inorg Chem.
2018;57(23):14564–14573.

[11] Zhu Y, Shen M, Xia Y, et al. Au/MnO$_2$ nanostructured
catalysts and their catalytic performance for the oxida-
tion of 5-(hydroxymethyl)furfural. Catal Commun.
2015;64:37–43.

[12] Wang S, Guan A, Wang J, et al. Highly efficient degra-
dation of rhodamine B by α-MnO$_2$ nanorods. Bull
Mater Sci. 2022;45(1). DOI:10.1007/s12034-021-
02620-1.

[13] Chang Y, Cho Y-C, Lin Y-P. Degradation of PFOS by
a MnO$_2$/H$_2$O$_2$ process. Environ Sci Water Res Technol.
2020;6(12):3476–3487.

[14] Lu AH, Li Y, Liu FF, et al. The photogeochemical cycle
of Mn oxides on the Earth’s surface. Mineral Mag.
2021;85(1):22–38.

[15] Zhong M, Li M, Fan Z, et al. Tuning the crystallinity of
MnO$_2$ oxidant to achieve highly efficient pollutant
degradation. Chin Chem Lett. 2022.

[16] Saputra E, Muhammad S, Sun H, et al. α-MnO$_2$ activa-
tion of peroxymonosulfate for catalytic phenol degra-
dation in aqueous solutions. Catal Commun.
2012;26:144–148.

[17] Sookhakian M, Ullah H, Mat Teridi MA, et al. Boron-
doped graphene-supported manganese oxide nano-
tubes as an efficient non-metal catalyst for the oxygen
reduction reaction. Sustainable Energy Fuels. 2020;4
(2):737–749.

[18] Thenmozhi E, Harshavardhan M, Kamala-Kannan S,
et al. Synthesis and characterization of mesoporous
silica-MnO$_2$ nanocomposite – an efficient nanocatalyst
for Methylene blue degradation. Mater Lett.
2022;309:131367.

[19] Tong W, Wang J, Du X, et al. Tributyl phosphate degra-
dation and phosphorus immobilization by MnO$_2$; reac-
tion condition optimization and mechanism exploration. J Hazard Mater. 2022;432:128725.

[20] Shi X, Zheng H, Kannan AM, et al. Effect of thermally
induced oxygen vacancy of alpha-MnO$_2$ nanorods
toward oxygen reduction reaction. Inorg Chem.
2019;58(8):5335–5344.

[21] Liang HW, Sun HQ, Patel A, et al. Excellent perform-
ance of mesoporous CO$_2$/MnO$_2$ nanoparticles in
hetereogeneous activation of peroxymonosulfate for
phenol degradation in aqueous solutions. Appl Catal
B-environ. 2012;127:330–335.

[22] Chen Y, He JH, Tian H, et al. Enhanced formaldehyde
oxidation on Pt/MnO$_2$ catalysts modified with alkali
metal salts. J Colloid Interface Sci. 2014;428:1–7.

[23] Hatakeyama T, Okamoto NL, Ichitsubo T. Thermal sta-
bility of MnO$_2$ polymorphs. J Solid State Chem.
2022;305:122683.

[24] Huang JZ, Zhong SF, Dai YF, et al. Effect of MnO$_2$ phase
structure on the oxidative reactivity toward bisphenol
a degradation. Environ Sci Technol. 2018;52
(19):11309–11318.

[25] Yang HY, Tang XB, Luo XS, et al. Oxidants-assisted sand
filter to enhance the simultaneous removals of man-
ganese, iron and ammonia from groundwater: forma-
tion of active MnO$_2$ and involved mechanisms.
J Hazard Mater. 2021;415:125707.

[26] Cheng G, Yu L, Lin T, et al. A facile one-pot hydrother-
mal synthesis of beta-MnO$_2$ nanopinners and their
catalytic degradation of methylene blue. J Solid State
Chem. 2014;217:57–63.
[27] Li K, Chen C, Zhang HB, et al. Effects of phase structure of MnO2 and morphology of delta-MnO2 on toluene catalytic oxidation. Appl Surf Sci. 2019;496:143662.

[28] Kim C-H, Akase Z, Zhang L, et al. The structure and ordering of ε-MnO2. J Solid State Chem. 2006;179(3):753–774.

[29] Wang F, Dai HX, Deng JG, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol. 2012;46(7):4034–4041.

[30] Wang HJ, Liu FT, Yang WT, et al. Toluene conversion by using different morphology Mno2. catalyst. Aerosol Air Qual Res. 2022;22(2):210365.

[31] Dinh MTN, Nguyen CC, TIt V, et al. Tailoring porous structure, reducibility and Mn4+ fraction of epsilon-MnO2 microcubes for the complete oxidation of toluene. Appl Catal A Gen. 2020;595:117473.

[32] He Y, Jiang DB, Chen J, et al. Synthesis of MnO2 nanosheets on montmorillonite for oxidative degradation and adsorption of methylene blue. J Colloid Interface Sci. 2018;510:207–220.

[33] Lu JX, Guo ZZ, Wang S, et al. Remove of triclosan from aqueous solutions by nanoflower MnO2: insight into the mechanism of oxidation and adsorption. Chem Eng J. 2021;426:131319.

[34] Rabani I, Bathula C, Zafar R, et al. Visible light-driven photocatalytic rapid degradation of organic contaminants engaging manganese dioxide-incorporated iron oxide three dimensional nanoflowers. J Colloid Interface Sci. 2022;608:2347–2357.

[35] Chiam SL, Pung SY, Yech FY, et al. Highly efficient oxidative degradation of organic dyes by manganese dioxide nanoflowers. Mater Chem Phys. 2020;280:125848.

[36] Zhao H, Dong YM, Jiang PP, et al. An alpha-MnO2 nanotube used as a novel catalyst in ozonation: performance and the mechanism. New J Chem. 2014;38(4):1743–1750.

[37] Luo JM, Hu CZ, Meng XY, et al. Antimomy removal from aqueous solution using novel alpha-MnO2 nanofibers: equilibrium, kinetic, and density functional theory studies. ACS Sustain Chem Eng. 2017;5(3):2255–2264.

[38] Chen L, Ding JC, Jia JB, et al. Cobalt-Doped MnO2 nanofibers for enhanced propane oxidation. ACS Appl Nano Mater. 2019;2(7):4417–4426.

[39] Fu JL, Wang CC, Feng ZY, et al. Ultralong alpha-MnO2 nanowires capable of catalytically degrading methylene blue at low temperature. Catal Lett. 2018;148(9):2822–2829.

[40] McFarland EW, Metiu H. Catalysis by doped oxides. Chem Rev. 2013;113(6):4391–4427.

[41] Wang H, Liang Z, Liu C, et al. Construction of K and Tb Co-doped MnO2 nanoparticles for enhanced oxidation and detoxification of organic dye waste. Chemosphere. 2022;297:134104.

[42] Wang JL, Li DD, Yang YJ. Layered manganese oxides for formaldehyde-oxidation at room temperature: the effect of interlayer protons. Am Chem Soc. 2015;250.

[43] Yan YL, Jiang N, Liu X, et al. Enhanced spontaneous antibacterial activity of delta-MnO2 by alkali metals doping. Front Bioeng Biotechnol. 2022;9. DOI:10.3389/fbioe.2021.788574.

[44] Liu X, Sui B, Camargo PHC, et al. Tuning band gap of MnO2 nanoflowers by Alkali metal doping for enhanced Ferroptosis/phototherapy synergism in Cancer. Appl Mater Today. 2021;23:101027.

[45] Wu ZX, Li GX, Liao Q, et al. Enhancing oxygen reduction reaction activity of α-MnO2 nanowires through Ag doping. NANO. 2020;15(9):2050115.

[46] Yang Y, Huang XB, Yang YQ, et al. Improving the rate performance of manganese dioxide by doping with Cu2+, Co2+ and Ni2+ ions. Int J Electrochem Sci. 2019;14(4):3673–3683.

[47] Song LL, Duan YP, Cui YL, et al. Fe-doped MnO2 nanosstructures for attenuation-impedance balance-boosted microwave absorption. ACS Appl Nano Mater. 2022;5(2):2738–2747.

[48] Lan BB, Huang SG, Ye CJ, et al. Enhanced electrochemical performance of Sn-doped MnO2 and study on morphology evolution. J Alloys Compd. 2019;788:302–310.

[49] Zhao SQ, Liu TM, Zhang Y, et al. Cr-doped MnO2 nanostructure: morphology evolution and electrochemical properties. J Mater Sci-mater El. 2016;27(4):3265–3270.

[50] Liu F, Cao RR, Rong SP, et al. Tungsten doped manganese dioxide for efficient removal of gaseous formaldehyde at ambient temperatures. Mater Design. 2018;149:165–172.

[51] Chen SF, Zhang S, Wang TY, et al. Structure and properties of vanadium-doped alpha-MnO2 and enhanced Pb2+ adsorption phenollphotocatalytic degradation. Mater Chem Phys. 2018;208:258–267.

[52] Shen HD, Bu J, Wang WB, et al. Insight into Ce doping induced oxygen vacancies over Ce-doped MnO2 catalysts for imine synthesis. Chin J Chem. 2020;38(11):1353–1359.

[53] Panimalar S, Chandrasekar M, Logambal S, et al. Europium-doped MnO2 nanostructures for controlling optical properties and visible light photocatalytic activity. Mater Today: Proc. 2022;56:3394–3401.

[54] He TH, Zeng XS, Rong SP. The controllable synthesis of substitutional and interstitial nitrogen-doped manganese dioxide: the effects of doping sites on enhancing the catalytic activity. J Mater Chem A. 2020;8(17):8383–8396.

[55] Chu K, Liu YP, Cheng YH, et al. Synergistic boron-dopants and boron-induced oxygen vacancies in MnO2 nanosheets to promote electrocatalytic nitrogen reduction. J Mater Chem A. 2020;8(10):5200–5208.

[56] Zhao J, Zhao Z, Li N, et al. Visible-light-driven photocatalytic degradation of ciprofloxacin by a ternary Mn2O3/MnO2/MnO2 valence state heterojunction. Chem Eng J. 2018;353:805–813.

[57] Liu L, Liu J, Guo M. One-pot synthesis of dual-phase manganese dioxide for toluene removal: effect of crystal phase blending level on oxygen species and activity. J Enviro Chem Eng. 2022;10(3):107448.

[58] Liu RP, Wang HJ, Zhao X, et al. Microwave electrodeless lamp assisted catalytic degradation of X-GRL with manganese dioxides: adsorption and manganese(VI) reductive dissolution effects. Catal Today. 2008;139(1–2):119–124.

[59] Zhao JH, Nan J, Zhao ZW, et al. Energy-efficient fabrication of a novel multivalence MnO2-MnO2 heterojunction for dye degradation under visible light irradiation. Appl Catal B-environ. 2017;202:509–517.

[60] Zhou J, Qin LF, Xiao W, et al. Oriented growth of layered-MnO2 nanosheets over alpha-MnO2 nanotubes for enhanced room-temperature HCHO oxidation. Appl Catal B-environ. 2017;207:233–243.
[61] Su TT, Zhao B, Fan BB, et al. Enhanced microwave absorption properties of novel hierarchical core-shell delta/alpha MnO2 composites. J Solid State Chem. 2019;273:192–198.

[62] Bai BY, Qiao Q, Arandjian H, et al. Three-Dimensional ordered mesoporous MnO2-supported ag nanoparticles for catalytic removal of formaldehyde. Environ Sci Technol. 2016;50(5):2635–2640.

[63] Caliskan M, Baran T. Palladium nanoparticles embedded over chitosan/gamma MnO2 composite hybrid microspheres as heterogeneous nanocatalyst for effective reduction of nitroaromatics and organic dyes in water. J Organomet Chem. 2022;963:122284.

[64] Bao XQ, Qin Z, Zhou TS, et al. In-situ generation of gold nanoparticles on MnO2 nanosheets for the enhanced oxidative degradation of basic dye (Methylene Blue). J Environ Sci. 2018;65:236–245.

[65] Chen X, Deng F, Liu X, et al. Hydrothermal synthesis of MnO2/Fe3O4 composites from Li-ion battery cathodes for destructing sulfadiazine by photo-Fenton process. Sci Total Environ. 2021;774:145776.

[66] Zhang Y, Zheng TX, Hu YB, et al. Delta manganese dioxide nanosheets decorated magnesium wire for the degradation of methyl Orange. J Colloidal Interface Sci. 2017;490:226–232.

[67] Huang C, Chen CY, Whang TJ. An efficient foam Ni/MnO2/Pd composite cathode for the electrocatalytic degradation of phenol. Mater Chem Phys. 2021;263:124401.

[68] Salari H, Yaghmaei H. Z-scheme 3D Bi2WO6/MnO2 heterojunction for increased photoinduced charge separations and enhanced photocatalytic activity. Appl Surf Sci. 2020;532:147413.

[69] Abdullah M, John P, Ahmad Z, et al. Visible-light-driven ZnO/ZnS/MnO2 ternary nanocomposite catalyst: synthesis, characterization and photocatalytic degradation of methylene blue. Appl Nanosci. 2021;11(8):2361–2370.

[70] Zhao FY, Song Y, Liu XH, et al. Unraveling electron-deficient setaria-viridis-like CoO3@MnO2 heterostructure with superior photoelectrocatalytic efficiency for water remediation. Appl Surf Sci. 2022;573:151473.

[71] Zhang SW, Fan QH, Gao HH, et al. Formation of Fe3O4 @MnO2 ball-in-ball hollow spheres as a high performance catalyst with enhanced catalytic performances. J Mater Chem A. 2016;4(4):1414–1422.

[72] Ullah A, Rahman L, Hussain SZ, et al. Mechanistic insight of dye degradation using TiO2 anchored alpha-MnO2 nanorods as promising sunlight driven photocatalyst. Mater Sci Eng B-Adv. 2021;271:115257.

[73] Li LM, Luo JJ, Liu YF, et al. Self-propagated flaming synthesis of highly active layered CuO-delta-MnO2 hybrid composites for catalytic total oxidation of toluene pollutant. ACS Appl Mater Interfaces. 2017;9(26):21798–21808.

[74] Ait Himi M, El Ghachtioul S, Amarray A, et al. Nanostructured manganese oxide as an efficient eco-friendly catalyst for removing azo dye Calcon from water. Mater Today: Proc. 2021;37:3905–3912.

[75] Zhang HK, Nengzi LC, Li XL, et al. Construction of CuBi2O4/MnO2 composite as Z-scheme photocatalyst of peroxymonosulfate for degradation of antibiotics. Chem Eng J. 2020;386:124011.

[76] Aslam Z, Qaiser M, Ali R, et al. Al2O3/MnO2/CNTs nano-composite: synthesis, characterization and phenol adsorption. Fuller Nanotub Car N. 2019;27(7):591–600.

[77] Jiang C, Ge Y, Chen W, et al. Hierarchically-Structured TiO2/MnO2 hollow spheres exhibiting the complete mineralization of phenol. Catalysts. 2019;9(4):390.

[78] Wang F, Lai Y, Zhang Y, et al. Preparation of novel hollow δ-MnO2 composite sphere for supercapacitors and degradation of bisphenol A. Mater Res Bull. 2019;115:257–261.

[79] Hong XD, Li Y, Wang X, et al. Carbon nanosheet/MnO2 /BiOCl ternary composite for degradation of organic pollutants. J Alloys Compd. 2022;891:162090.

[80] Wu XK, Chen L, Zheng C, et al. Bubble-propelled micro-motors based on hierarchical MnO2 wrapped carbon nanotube aggregates for dynamic removal of pollutants. RSC Adv. 2020;10(25):14846–14855.

[81] Wu HY, Li Y, He JY, et al. Nano-hybrids of needle-like MnO2 on graphene oxide coupled with peroxymonosulfate for enhanced degradation of norflaxacin: a comparative study and probable degradation pathway. J Colloid Interface Sci. 2020;562:1–11.

[82] Chen G, Nengzi LC, Li B, et al. Octadecylamine degradation through catalytic activation of peroxymonosulfate by FeMn layered double hydroxide. Sci Total Environ. 2019;695:133963.

[83] Kabel KI, Mady AH, Rabie AM. Novel preparation of ferromanganese oxide based on hyperbranched polymer for peroxymonosulfate activation as a robust catalyst for the degradation of organic pollutants. Environ Technol Innovation. 2021;2:101435.

[84] Hou L, Li X, Yang Q, et al. Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: performance and mechanism for organic pollutant degradation. Sci Total Environ. 2019;663:454–464.

[85] Chae Y, Kim L, Kim D, et al. Deriving hazardous concentrations of phenol in soil ecosystems using a species sensitivity distribution approach. J Hazard Mater. 2020;399:123036.

[86] Crane JL. Distribution and toxic potential of alkyphenols, nonylphenol ethoxylates, and pyrethroids in Minnesota, USA lake sediments. Sci Total Environ. 2021;776:145974.

[87] Abu-Nada A, Abdala A, McKay G. Removal of phenols and dyes from aqueous solutions using graphene and graphene composite adsorption: a review. J Environ Chem Eng. 2021;9(5):105858.

[88] Motamedi M, Yerushalmi L, Haghifat F, et al. Recent developments in photocatalysis of industrial effluents: A review and example of phenolic compounds degradation. Chemosphere. 2022;296:133688.

[89] Liu X, Zhou J, Liu D, et al. Construction of Z-scheme CuFe2O4/MnO2 photocatalyst and activating peroxymonosulfate for phenol degradation: synergistic effect, degradation pathways, and mechanism. Environ Res. 2021;200:111736.

[90] Gan L, Fang X, Xu L, et al. Boosted activity of δ-MnO2 by Kenaf derived carbon fiber for high-efficient oxidative degradation of bisphenol A in water. Mater Design. 2021;203:109596.

[91] Zhao S, Liu Z, Zhang R, et al. Interfacial reaction between organic acids and iron-containing clay minerals: hydroxyl radical generation and phenolic compounds degradation. Sci Total Environ. 2021;783:147025.

[92] Ponnusamy G, Farzaneh H, Tong YF, et al. Enhanced catalytic ozonation of ibuprofen using a 3D structured catalyst with MnO2 nanosheets on carbon microfibers. Scientific Reports. 2021;11(1):6342.
Wang acids. by B-environ. Zhao Chem electro-Fenton Liu in J degradation oxides-catalyzed through ZnO-C J photodegradation Cu-based Wang oxygen in J Mater. degrada- tion of MnO2 nanoparticles with alpha-MnO2 for the efficient degradation of tetracycline under visible light. New J Chem. 2022;46(16):7346–7354.

[110] Zhu SY, Liu YW, Huo Y, et al. Addition of MnO2 in synthesis of nano-rod erdite promoted tetracycline adsorption. Sci Rep-Uk. 2019;9(1):16906.

[111] Minale M, Guadie A, Li Y, et al. Enhanced removal of oxytetracycline antibiotics from water using manganese dioxide impregnated hydrogel composite: adsorption behavior and oxidative degradation pathways. Chemosphere. 2021;280:130926.

[112] Khan A, Zhang KK, Taraqqi-A-Kamal A, et al. Degradation of antibiotics in aqueous media using manganese nanocatalyst-activated peroxymonosulfate. J Colloid Interface Sci. 2021;599:805–818.

[113] Wang ZM, Wang ZH, Li W, et al. Performance comparison and mechanism investigation of CoO2-modified different crystallographic MnO2 (alpha, beta, gamma, and delta) as an activator of peroxymonosulfate (PMS) for sulfosoxazole degradation. Chem Eng J. 2022;427:130888.

[114] Jiang ZR, Li YX, Zhou YX, et al. CoO2-MnO2 nanoparticles moored on biochar as a catalyst for activation of peroxymonosulfate to efficiently degrade sulfonamide antibiotics. Sep Purif Technol. 2022;281:119935.

[115] Xu LS, Sun XB, Hong JM, et al. Peroxymonosulfate activation by alpha-MnO2/MnFe2O4 for norfloxacin degradation: efficiency and mechanism. J Phys Chem Solids. 2021;153:110029.

[116] He Y, Wang LJ, Chen Z, et al. Catalytic ozonation for metoprolol and ibuprofen removal over different MnO2 nanocrystals: efficiency, transformation and mechanism. Sci Total Environ. 2021;785:147328.

[117] Cao MW, Shen Y, Yan ZS, et al. Extraction-like removal of organic dyes from polluted water by the graphene oxide/PNiPAM composite system. Chem Eng J. 2021;405:126647.

[118] Liu HY, Zhang J, Lu M, et al. Biosynthesis based membrane filtration coupled with iron nanoparticles reduction process in removal of dyes. Chem Eng J. 2020;387:124202.

[119] Aveiro LR, Da Silva AGM, Candido EG, et al. Application and stability of cathodes with manganese dioxide nanoflowers supported on Vulcan by Fenton systems for the degradation of RBS azo dye. Chemosphere. 2018;208:131–138.

[120] Gong W, Meng XL, Tang XH, et al. Core-Shell MnO2–SiO2 nanorods for catalyzing the removal of dyes from water. Catalysts. 2017;7(1):19.

[121] Fathy NA, El-Shafey SE, El-Shafey OI, et al. Oxidative degradation of RB19 dye by a novel γ-MnO2/MWCNT nanocomposite catalyst with H2O2. J Environ Chem Eng. 2013;1(4):858–864.

[122] Ma ML, Yang YY, Chen Y, et al. Photocatalytic degrada- tion of MB dye by the magnetically separable 3D flower-like Fe3O4/SiO2/MnO2/β-FeOOH photo-catalyst. J Alloys Compd. 2021;861:158256.

[123] Li JP, Zhang X, Wang T, et al. Construction of layered hollow Fe3O4/Fe1−xS @MoS2 composite with enhanced photo-Fenton and adsorption performance. J Environ Chem Eng. 2020;8(3):103762.

[124] Sabbaghian M, Adhami F, Aminnezhad M. Mesoporous Jarosite/MnO2 and Goethite/MnO2 nanocomposites synthesis and application for oxidation of methylene blue. J Struct Chem. 2018;59(2):463–473.
Red 73 in the presence of peroxymonosulfate. Environ Technol. 2021;42(1):81–92.
[126] Cao MW, Zhuang ZW, Liu Y, et al. Peptide-mediated green synthesis of the MnO$_2@$ZIF-8 core-shell nanoparticles for efficient removal of pollutant dyes from wastewater via a synergistic process. J Colloid Interface Sci. 2022;608:2779–2790.
[127] Yu CL, Li G, Wei LF, et al. Fabrication, characterization of beta-MnO$_2$ microrod catalysts and their performance in rapid degradation of dyes of high concentration. Catal Today. 2014;224:154–162.
[128] Kaur R, Goyal D. Toxicity and degradation of the insecticide monocrotophos. Environ Chem Lett. 2019;17 (3):1299–1324.
[129] Rana AK, Mishra YK, Gupta VK, et al. Sustainable materials in the removal of pesticides from contaminated water: perspective on macro to nanoscale cellulose. Sci Total Environ. 2021;797:149129.
[130] Li HC, Li Y, Wang WF, et al. Uptake, translocation, and subcellular distribution of three triazole pesticides in rice. Environ Sci Pollut Res Int. 2022;29 (17):25581–25590.
[131] Liao XP, Zhang CX, Nan C, et al. Phenol driven changes onto MnO$_2$ surface for efficient removal of methyl parathion: the role of adsorption. Chemosphere. 2021;269:128695.
[132] St'astny M, Stengl V, Henych J, et al. Mesoporous manganese oxide for the degradation of organophosphorus pesticides. J Mater Sci. 2016;51 (5):2634–2642.
[133] Li H, Jaisi DP. Competition of sorption and degradation reactions during glyphosate degradation by ferrihydrite/delta-manganese oxide composites. ACS Earth Space Chem. 2019;3(7):1362–1370.
[134] Wang JW, Teng YG, Zhang CX, et al. Activation of manganese dioxide with bisulfite for enhanced abiotic degradation of typical organophosphorus pesticides: kinetics and transformation pathway. Chemosphere. 2019;226:858–864.
[135] Gupta VK, Fakhri A, Agarwal S, et al. Synthesis of MnO$_2$ /cellulose fiber nanocomposites for rapid adsorption of insecticide compound and optimization by response surface methodology. Int J Biol Macromol. 2017;102:840–846.
[136] Liu JL, An FX, Zhu CY, et al. Efficient transformation of DDT with peroxymonosulfate activation by different crystallographic MnO$_2$. Sci Total Environ. 2021;759:142864.
[137] Zhai J, Wang QF, Li Q, et al. Degradation mechanisms of carbamazepine by delta-MnO$_2$: role of protonation of degradation intermediates. Sci Total Environ. 2018;640:981–988.
[138] Guo RN, Wang YY, Li JJ, et al. Sulfamethoxazole degradation by visible light assisted peroxymonosulfate process based on nano-hybrid manganese dioxide incorporating ferric oxide. Appl Catal B-environ. 2020;278:119297.
[139] Hu YY, Li ZK, Yang JH, et al. Degradation of methylparaben using BiOI-hydrogel composites activated peroxymonosulfate under visible light irradiation. Chem Eng J. 2019;360:200–211.
[140] Singh AK, Sen N, Chatterjee SK, et al. Micelle catalyzed oxidative degradation of paracetamol by water soluble colloidal MnO$_2$ in acidic medium. Tenside Surfact Deterg. 2016;53(4):347–356.
[141] Huang Y, Jia Y, Shen K, et al. Degradation of gaseous unsymmetrical dimethylhydrazine by vacuum ultraviolet coupled with MnO$_2$. New J Chem. 2021;45 (3):1194–1202.