ABSTRACT

Purpose. To evaluate the effect of povidone iodine and hydrogen peroxide on fracture healing in a rat model.

Methods. The middle section of the right femur of 36 male Sprague Dawley rats was osteotomised with a saw. In the control group (n=9), the wound was irrigated with 100 ml 0.9% saline. In the 10% povidone iodine (n=9), 1% povidone iodine (n=9), and 3% hydrogen peroxide (n=9) groups, the wound was completely soaked with the respective solution for 2 minutes, and then irrigated with 100 ml saline. The osteotomy was fixed with an intramedullary Kirschner wire. Rats were euthanised at week 1, 2, and 5. In each femur, the percentage area of osseous, cartilaginous, and fibrous tissue in the callus was evaluated in 3 slides (one median and 2 paramedian).

Results. The control group differed significantly to the other 3 groups (p=0.023 to p<0.001) in weeks 1, 2, and 5, except for the 1% povidone iodine group in terms of percentage of osseous (p=0.349) and fibrous (p=0.999) tissue. The healing process was similar in the 1% povidone iodine group and the control group, whereas healing was impaired in the 10% povidone iodine group and 3% hydrogen peroxide group, as indicated by the lower percentage of osseous tissue, higher percentage of fibrous tissue, and increased percentage of cartilaginous tissue between weeks 2 and 5 (delayed bone healing).

Conclusion. The 1% povidone iodine solution is recommended as the irrigation adjuvant in fracture surgery.

Key words: anti-infective agents, local; fracture healing; hydrogen peroxide; povidone-iodine

INTRODUCTION

Adequate irrigation and debridement to remove foreign bodies, non-vital tissues, and contaminating microorganisms is the most important means to prevent infection in open fractures. Antiseptics (povidone iodine and hydrogen peroxide) and antibiotics are used as an adjuvant to destroy...
microorganisms and prevent infection, despite being toxic to the host cells.2,4 Although povidone iodine destroys microorganisms in contaminated bone in \textit{vitro}, its effects on cells, tissues, and fracture healing were not studied.3,4 A high concentration (stock solution) of povidone iodine, sodium hypochlorite, and hydrogen peroxide can destroy 100\% cultured fibroblast cells \textit{in vitro}.7 A diluted 1\% povidone iodine solution is safe to use on wounds to reduce infection in children with appendicitis.8 Toxicity \textit{in vitro} is not always the same as \textit{in vivo}; although povidone iodine has a potent cytotoxic effect \textit{in vitro}, its \textit{in vivo} effect is weak.9

Hydrogen peroxide has effervescent and oxygen-releasing effects.10,11 The effervescent effect lifts debris from the wound bed to the surface; released oxygen may also kill anaerobic bacteria.11 It is toxic to giant cell tumour metabolism and osteoblasts \textit{in vitro}.12 A 3\% hydrogen peroxide solution is used as a local adjuvant to intraslesional curettage of giant cell tumour of the bone.12,13 This study evaluated the effect of povidone iodine and hydrogen peroxide on fracture healing in a rat model.

METHODS

This study was approved by the ethics committee of the Faculty of Medicine Universitas Indonesia. 36 male Sprague Dawley white rats were used. The rats were anaesthetised by intraperitoneal injection of ketamine 80 mg/kg and xylazine 10 mg/kg. Through the anterolateral approach, the space between the vastus lateral and biceps femoris of the right femur was dissected bluntly, with the periosteum undisturbed. The middle section of the femur was osteotomised with a saw.

In the control group (n=9), the wound was irrigated with 100 ml 0.9\% saline. In the 10\% povidone iodine (n=9), 1\% povidone iodine (n=9), and 3\% hydrogen peroxide (n=9) groups, the wound was completely soaked with the respective solution for 2 minutes and then irrigated with 100 ml saline.

The osteotomy was fixed with a retrograde intramedullary 1.4-mm Kirschner wire through the intercondylar femur. The fascia and skin were sutured, and the wound was bandaged. Prophylactic antibiotic (ampicillin 50 mg/kg/day) and analgesic (paracetamol 50 mg/kg/day) was given for 3 days.

Rats were euthanised with phenobarbital injection 75 mg/kg intraperitoneally on week 1, 2, and 5. The right femur was harvested with the Kirschner wire \textit{in situ} and fixed in 10\% neutral buffered formalin for 48 hours. The samples were decalcified in Plank Rychlo solution (Wako Pure Chemical Industries, Osaka, Japan) and then embedded in paraffin and sliced longitudinally with a 5-\micro meter microtome, and stained with haematoxylin eosin. In each femur, 3 slides (one median and 2 paramedian ±250 \micro meter from the median slice) were evaluated histomorphometrically with a digital microscope to determine the percentage area of osseous, cartilaginous, and fibrous tissue in the callus using the ImageJ program (National Institutes of Health, USA); osseous tissue of the original bone

![Figure 1](image1.png)
Figure 1 Histomorphometric measurement using the ImageJ: (a) borders of fibrous, cartilaginous, and osseous tissue of the callus are outlined (H&E, 40x); (b) tissue areas are measured after the original image is subtracted.
was not included (Fig. 1). The percentage area of osseous, cartilaginous, and fibrous tissue in the 4 groups were compared separately using the one-way ANOVA with repeated measurement test. The control group was compared with the other 3 groups using the Dunnett post hoc test. A p value of <0.05 was considered statistically significant.

RESULTS

Using the one-way ANOVA with repeated measurement test, not all the 4 groups were equal in terms of percentage of osseous tissue \[F (3, 16)=15.407, p<0.001 \], cartilaginous tissue \[F (3, 16)=7.901, p<0.001 \], and fibrous tissue \[F (3, 16)=7.769, p<0.001 \] (Table). Using the Dunnett post hoc test, the control group differed significantly to the other 3 groups (p=0.023 to p<0.001) in weeks 1, 2, and 5, except for the 1% povidone iodine group in terms of percentage of osseous (p=0.349) and fibrous (p=0.999) tissue.

The healing process was similar in the control and 1% povidone iodine groups, whereas healing was impaired in the 10% povidone iodine and 3% hydrogen peroxide groups, as indicated by a lower percentage of osseous tissue, higher percentage of fibrous tissue, and increased percentage of cartilaginous tissue between weeks 2 and 5 (delayed bone healing) [Fig. 2].

DISCUSSION

The iodine element in povidone iodine is carried in aggregates (or micelles) and is released gradually into the solution to achieve its antiseptic effect. Povidone iodine exposure causes cell death by damaging the cell wall, cell membrane, and cytoplasm. 10% povidone iodine solution is widely used and does not cause resistance by
microorganisms. The effect of povidone iodine is maximum at a dilution of 1:100 (0.1%) and remains effective at a dilution of 1:10 000 (0.001%). The increasing bactericidal activity in diluted solution is due to an increased level of free iodine (up to 26 ppm in 1% to 0.1% povidone iodine solution). Povidone iodine may be deactivated by organic substances and protein, but 0.2% and 0.5% povidone iodine solution have been reported to eradicate microorganisms totally in a medium-containing serum at concentrations of 5% and 10%.

Hydrogen peroxide facilitates wound healing. It is produced in acute wound to attract neutrophils. Both hydrogen peroxide and superoxide anions have been shown to be present in a wound model in rats. Application of a low concentration of hydrogen peroxide improves wound healing. It has been used as an adjuvant in irrigation and debridement of wounds and/or open fracture, in curettage of bone neoplasm, and as a haemostatic agent to improve contact between trabecular bone and bone cement. Its effervescence effect lifts debris and neoplastic cells from the wound bed to the surface. A 3% hydrogen peroxide solution is toxic to cultured human fibroblasts, but does not interfere with wound epithelialisation. A 1.5 to 3.5% hydrogen peroxide solution has been shown to increases healing of ischaemic ulcers in guinea pigs through increased angiogenesis. Hydrogen peroxide stimulates macrophages to release vascular endothelial growth factor, resulting in an increase in angiogenesis.

Quantitative analysis of bone histology (histomorphometry) is a good method to evaluate bone healing, as is the cartilage resorption time index. Histomorphometry measurement on a longitudinal section of fracture callus enables description of the composition of callus tissue with fewer slices. Heterogeneity of tissue proximal and distal to the fracture site can be seen more clearly. Transverse sections can describe the tissue composition better, but multiple (6–10) slices within a certain distance of the fracture site are needed. The original cortical bone and intramedullary haematopoietic tissue should not be included; only the fracture callus characterises the fracture healing process. In rats, the peak of cell proliferation, the beginning of the chondrogenesis period and endochondral ossification occur at the end of week 1. Soft callus formation, cartilage resorption, woven bone formation, and neoangiogenesis occur at the end of week 2, during which the osteogenesis process is most active. Solid union with woven bone occurs at the end of week 5, followed by remodelling and lamellar bone formation. From week 1 to week 5, the percentage of fibrous tissue is decreasing and the percentage of osseous tissue is increasing, indicating fracture healing. In our study, at week 5 the percentage of fibrous tissue was highest (most impaired fracture healing) in the 10% povidone iodine group, followed by 3% hydrogen peroxide group, control group, and 1% povidone iodine group.

Cartilage resorption is calculated by the difference in the percentage of cartilaginous tissue in the callus between week 2 (the peak of chondrocyte proliferation) and week 5 (the checkpoint in the remodelling phase in which the cartilaginous tissue had been replaced by woven bone). In our study, cartilage resorption (the difference in the percentage of cartilaginous tissue) was highest in the control and 1% povidone iodine groups (both 9.9%), followed by the 10% povidone iodine and 3% hydrogen peroxide groups (-2.7% and 1%, respectively). A greater difference in decreased percentage of cartilaginous tissue from week 2 to week 5 indicates a more favourable remodelling process. Calcified cartilage is resorbed by osteoclasts and bone is formed by osteoblasts.

Povidone iodine has a toxic effect on fibroblasts and osteoblasts in vitro, but it has no negative effect on surgical wound healing in vivo. Irrigation with low concentration (0.35%) povidone iodine in spinal surgery does not affect the wound healing, fusion rate, or clinical outcome. Low concentration povidone iodine also increases angiogenesis. A 1% povidone iodine solution increases mineral deposition in vitro, especially when combined with BMP-2.

CONCLUSION

The 1% povidone iodine solution is recommended as the irrigation adjuvant in fracture surgery.

DISCLOSURE

No conflicts of interest were declared by the authors.

REFERENCES

1. Anglen JO. Comparison of soap and antibiotic solutions for irrigation of lower-limb open fracture wounds. A prospective,
4. Anglen JO. Wound irrigation in musculoskeletal injury. J Am Acad Orthop Surg 2001;9:219–26.
5. Bauer J, Liu RW, Kean TJ, Dennis JE, Petersilge W, Gilmore A. A comparison of five treatment protocols for contaminated bone grafts in reference to sterility and cell viability. J Bone Joint Surg Am 2011;93:439–44.
6. Hooe W, Steinberg B. Management of contaminated bone grafts: an experimental in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82:34–7.
7. Lineaweaver W, McMorris S, Soucy D, Howard R. Cellular and bacterial toxicities of topical antimicrobials. Plast Reconstr Surg 1985;75:394–6.
8. Viljanto J. Disinfection of surgical wounds without inhibition of normal wound healing. Arch Surg 1980;115:253–6.
9. Docherty JG, McGregor JR, Purdie CA, Galloway DJ, O’Dwyer PJ. Efficacy of tumoricidal agents in vitro and in vivo. Br J Surg 1995;82:1050–2.
10. Lineaweaver W, Howard R, Soucy D, McMorris S, Freeman J, Crain C, et al. Topical antimicrobial toxicity. Arch Surg 1985;120:267–70.
11. Leyden JJ, Bartelt NM. Comparison of topical antibiotic ointments, a wound protectant, and antiseptics for the treatment of human blister wounds contaminated with Staphylococcus aureus. J Fam Pract 1987;24:601–4.
12. Nicholson NC, Ramp WK, Kneisl JS, Kaysinger KK. Hydrogen peroxide inhibits giant cell tumor and osteoblast metabolism in vitro. Clin Orthop Relat Res 1998;347:250–60.
13. Gortzak Y, Kandel R, Deheshi B, Werier J, Turcotte RE, Ferguson PC, et al. The efficacy of chemical adjuvants on giant-cell tumour of bone. An in vitro study. J Bone Joint Surg Br 2010;92:1475–9.
14. Gerstenfeld LC, Wronski TJ, Hollinger JO, Einhorn TA. Application of histomorphometric methods to the study of bone repair. J Bone Miner Res 2005;20:1715–22.
15. Chang FY, Chang MC, Wang ST, Yu WK, Liu CL, Chen TH. Can povidone-iodine solution be used safely in spinal surgery. Eur Spine J 2006;15:1005–14.
16. Cooper RA. Iodine revisited. Int Wound J 2007;4:124–37.
17. Schreier H, Erdos G, Reimer K, Konig B, Konig W, Fleicher W. Molecular effects of povidone-iodine on relevant microorganisms: an electron-microscopic and biochemical study. Dermatology 1997;195(Suppl 2):111–6.
18. Kunisada T, Yamada K, Oda S, Har A. Investigation into the efficacy of povidone-iodine against antiseptic-resistant species. Dermatology 1997;195(Suppl 2):14–8.
19. Berkelman RL, Holland BW, Anderson RL. Increased bactericidal activity of dilute preparations of povidone-iodine solution. J Clin Microbiol 1982;15:635–9.
20. Chundamala J, Wright JG. The efficacy and risks of using povidone-iodine irrigation to prevent surgical site infection: an evidence-based review. Can J Surg 2007;50:473–81.
21. Niethammer P, Grabher C, Look AT, Mitchison TJ. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 2009;459:996–9.
22. Roy S, Khanna S, Nallu K, Hunt TK, Sen CK. Dermal wound healing is subject to redox control. Mol Ther 2006;13:211–20.
23. Schreml S, Landthaler M, Schaeferling M, Babillas P. A new star on the H2O2 rizon of wound healing? Exp Dermatol 2011;20:229–31.
24. Tur E, Bolton L, Constantine BE. Topical hydrogen peroxide treatment of ischemic ulcers in the guinea pig: blood recruitment in multiple skin sites. J Am Acad Dermatol 1995;33:217–21.
25. Rodeheaver GT. Wound cleansing, wound irrigation, wound disinfection. In: Krasner D, Kane D, editors. Chronic wound care: a clinical source book for healthcare professionals. 2nd edition. Wayne, PA: Health Management Publications; 1997:97–108.
26. Bannister GC, Young SK, Baker AS, Mackinnon JG, Magnusson PA. Control of bleeding in cemented arthroplasty. J Bone Joint Surg Br 1990;72:444–6.
27. Toth T, Brostrom H, Baverud V, Emanuelsson U, Bagge E, Karlsson T, et al. Evaluation of LHP (1% hydrogen peroxide) cream versus petrolatum and untreated controls in open wounds in healthy horses: a randomized, blinded control study. Acta Vet Scand 2011;53:45.
28. Loo AE, Wong YT, Ho R, Wasser M, Du T, Ng WT, et al. Effects of hydrogen peroxide on wound healing in mice in relation to oxidative damage. PLoS One 2012;7:e49215.
29. Cho M, Hunt TK, Hassain MZ. Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am J Physiol Heart Circ Physiol 2001;280:H2357–63.
30. Mattoo MA, Araujo FP, Paixao FB. Histomorphometric evaluation of bone healing in rabbit fibular osteotomy model without fixation. J Orthop Surg Res 2008;3:4.
31. Dimitriou R, McMorris S, Paixao FB, Araujo FP, Paixao FB. Histomorphometric evaluation of bone healing in rabbit fibular osteotomy model without fixation. J Orthop Surg Res 2008;3:4.
32. Phillips AM. Overview of the fracture healing cascade. Injury 2005;36(Suppl 3):S5–7.
33. Morsell R, Einhorn TA. The biology of fracture healing. Injury 2011;42:551–5.
34. Schmidlin PR, Imfeld T, Sahrmann P, Tchouboukov A, Weber FE. Effect of short-time povidone-iodine application on osteoblast proliferation and differentiation. Open Dent J 2009;3:208–12.
35. Kaysinger KK, Nicholson NC, Ramp WK, Kellam JM. Toxic effect of wound irrigation solutions on cultured fibroblasts and osteoblasts. J Orthop Trauma 1995;9:303–11.
36. Fumal I, Braham C, Paquet P, Piéard-Franchimont C, Piéard GE. The beneficial toxicity paradox of antimicrobials in leg ulcer healing impaired by a polymicrobial flora: a proof-of-concept study. Dermatology 2002;204(Suppl 1):70–4.