The Overfitted Brain: Dreams evolved to assist generalization

Erik Hoel∗

∗Allen Discovery Center, Tufts University, Medford, MA, USA

July 21, 2020

Abstract

Understanding of the evolved biological function of NREM and slow wave sleep has advanced considerably in the past decade. However, no equivalent understanding of REM sleep and dreams has emerged. Contemporary neuroscientific theories generally view dreams as epiphenomena, and the few proposals for their biological function are contradicted by the phenomenology of dreams themselves. Now, the recent advent of deep neural networks (DNNs) has finally provided the novel conceptual framework within which to understand the evolved function of dreams. Notably, all DNNs face the issue of overfitting as they learn, which is when performance on one data set increases but the network's performance fails to generalize (often measured by the divergence of performance on training vs testing data sets). This ubiquitous problem in DNNs is often solved by experimenters via “noise injections” in the form of noisy or corrupted inputs. The goal of this paper is to argue that the brain faces a similar challenge of overfitting, and that nightly dreams evolved to combat the brain’s overfitting during its daily learning. That is, dreams are a biological mechanism for increasing generalizability. Sleep loss, specifically dream loss, leads to an overfitted brain that can still memorize and learn but fails to generalize appropriately. Herein this "overfitted brain hypothesis" is explicitly developed and then compared and contrasted with existing contemporary neuroscientific theories of dreams. Existing evidence for the hypothesis is surveyed within both neuroscience and deep learning, and a set of testable predictions are put forward that can be pursued both in vivo and in silico.

1 Introduction

During the Covid-19 pandemic of 2020, many of those in isolation reported an increase in the vividness and frequency of their dreams (Weaver, 2020), even leading #pandemicdreams to trend on Twitter. Yet dreaming is so little understood there can be only speculative answers to the why behind this widespread change in dream behavior. This is despite the fact that humans spend hours every night dreaming and that dream deprivation is highly damaging to animals (Albert et al., 1970); indeed, dreaming is homeostatically regulated in that there even appears to be a "dream drive" (Dement, 1960). Additionally, dreaming is conserved across many species (Siegel, 1999), indicating an essential evolved purpose (Cirelli and Tononi, 2008). Yet finding a biological function for dreams themselves has evaded resolution. The "null theory" that dreams and even sleep itself are adaptive only in that they prevent organisms from moving during periods which they are not adapted to, such as ensuring that diurnal animals are inactive during night, is still taken seriously (Siegel, 2011). This is despite the fact that around 50-70% of the time subjects report having a dream upon a sudden waking during sleep, with more dreams being reported later on in the night (Foulkes, 1962; Stickgold et al., 2001b). Reports from those who keep regular dream journals, or who spend time each morning recollecting dreams, indicates that preserving a memory of dreams increases significantly with practice (Robb, 2018). All this hints that individuals may regularly underestimate how much time they actually spending dreaming during sleep.

What is the purpose of strange state? The fact that sleep overall has some relationship to learning was known even by the roman orator Quintilian (Duff, 2014). Yet, as will be discussed in detail in section 2, contemporary neuroscientific theories which relate dreaming to memory storage, memory replay, or emotional processing, still view dreams themselves as epiphenomena. And no contemporary theory appropriately accounts for the phenomenology of dreams and their sparse, hallucinatory, and narrative contents.

This lack of viable theories about why animals dream stands in contrast with how much is known about sleep physiology and its stages (Lee and Dan, 2012). As origi-
nally discovered by lesion studies and later supported by genetic knockout studies, the sleep state is brought about by a far-reaching set of subcortical neuromodulatory systems, with no one system being necessary, indicating redundancy in how the waking state is sustained (Jones, 2005). In general this multifaceted arousal system is excitatory during wake in that it has the greatest firing, and becomes more quiescent to bring about sleep, although this is not true for all such systems, especially those that establish REM.

A classic signature of sleep are slow waves, which are waves of activity that traverse the cortex, which can be identified when the dominate frequency of EEG is less than 1 Hz. In this state, the cortex becomes bistable, oscillating between periods of intense firing and periods often referred to as "down states" wherein neurons are silent. In general it should be noted that there is a spectrum wherein sometimes a brain region is experiencing slow wave sleep and this is not synchronized with other regions (Nir et al., 2011). This is despite the fact that sleep itself is traditionally broken down into NREM sleep and REM sleep, with REM sleep being more associated with dreaming than NREM sleep. Yet there is evidence that dreaming occurs regularly throughout the night, across different sleep stages (Oudiette et al., 2012), although it is rarest in the "deepest" stage of NREM, stage 3, wherein surface EEG reflects low-frequency cortical slow-waves. Recent neuroimaging and sudden-waking experiments have demonstrated that all sleep stages can have dreams, which are the result of localized wake-like firing (Siclari et al., 2017). On average high-frequency EEG signals in posterior areas of the brain were most correlated with reports on waking. Despite the ubiquity of dreams, it is still the case that REM is most strongly associated with dreaming, over 80-90% of the time in some awakening studies, although it should be noted again that sleep involves a spectrum wherein it is difficult to find any stage at any time of the night that does not contain any dreams at all (Cipolli et al., 2017). While early on in the night dreams can present themselves as more "thought-like" and simple, later on in the night, particularly during REM, dreams can become incredibly complex with a fully-developed narrative structure (Siclari and Tononi, 2016).

As far as is currently known, dreaming of this latter sort is a brain-wide state where the brain is experiencing a single narrative or event, which is supported by the activation of the default-mode network during dreaming (Domhoff, 2011). Consider, for instance, the evidence from sudden-waking experiments that higher frequency activity in the frontal lobe predicted emotional affect within the subject’s dream (Sikka et al., 2019). Or consider the evidence that during lucid dreaming activity is similar to waking movements in the sensorimotor cortex (Dresler et al., 2011).

Despite the nuances and redundancies of the cortical systems in play, it still makes sense to view the change from dreamless sleep to dreaming as occurring via a brain-wide neuromodulatory system that regulates level of consciousness, such as by the firing increase of acetylcholine-containing neurons during REM. Neuromodulatory systems also create the conditions of muscle atonia during dreaming, without which dreams can be acted out by the body during sleep, a dangerous parasomnia called REM sleep behavior disorder (Schenck and Mahowald, 2002).

What is the overall evolved purpose or function of sleep? The evidence of distinct physiological states brought about by neuromodulation suggests answering this requires identifying multiple functions, particularly for dreamless sleep vs. dreaming. Therefore, we should expect dreams to play an important part in the evolved role of sleep. Across the tree of life sleep as a whole is highly conserved; most mammals spend somewhere between 4-20 hours sleeping (Joiner, 2016). There is even evidence that C. elegans sleeps (Trojanowski and Raizen, 2016). In the past two decades there has been significant progress when it comes to understanding the evolved function of sleep as a whole, although this has not been true for dreams themselves.

First, a novel discovery has led to a clear purpose for at least one aspect of sleep. This was the discovery of the brain’s gympathic system, showing that sleep involves the brain-wide flushing of metabolites with cerebrospinal fluid (Xie et al., 2013). This led to the theory that sleep, especially during slow wave activity, had the goal of waste clearance and this is at least partly behind sleep’s restorative aspect. Glymphatic activity in the form of this flushing is low in waking but high during both sleep and anesthesia. In sleep and also in anesthesia the greatest amount of flushing occurs during slow wave sleep when low-frequency delta power dominates the EEG (Hablitz et al., 2019), indicating that it may be anti-correlated with dreaming, although this has not been explicitly established.

Another important theory of the purpose of sleep is the Synaptic Homeostasis Hypothesis (SHY) (Tononi and Cirelli, 2003). According to SHY, daily learning leads to net synaptic potentiation across the brain, which, if left unchecked, would lead to a saturation of synaptic weight and a cessation of learning (Tononi and Cirelli, 2006). SHY hypothesizes that slow waves trigger a brain-wide down-scaling of synaptic weights, thus ensuring that the relative weights of synapses are kept proportional while removing the risk of saturation. SHY has served as a model neuroscientific theory in that it has generated a number of new empirical findings (Bushey et al., 2011). At the same time, it has also triggered fecund debate and investigation (Frank, 2012). Again, SHY is more associated with slow wave sleep than with the high-frequencies...
that indicating dreaming.

The purpose of dreaming phase or aspect of sleep lacks hypotheses as explicit and clear as those for slow wave sleep. In order to offer forward a distinct theory of the purpose of dreams, this paper outlines the idea that the brains of animals are constantly in danger of overfitting, which is the lack of generalizability that occurs in a deep neural network when its learning is based too much on one particular data set, and that dreams help mitigate this ubiquitous issue. This is the Overfitted Brian Hypothesis (OBH). The goal of this paper is to formally fill-out the OBH by investigating the evidence that the brain fits to a data set composed of the statistically self-similar daily experiences of the organism, while nightly dreams improve the generality of an animal’s representations, cognition, and perceptual systems, by generating data far outside the organism’s daily “training set” in a warped or corrupted way (Hoel, 2019). As will be discussed, the OBH fits with known biological understanding and data, matches better with dream phenomenology than other theories, and additionally has roots in common practices in deep learning. It makes unique predictions that can be tested both via computational modeling and also in vivo.

2 Contemporary theories of dreams

A hypothesis for the evolved purpose of sleep must outline a clear and distinct function from other aspects of sleep. It must also explain how dreams present themselves, that is, the phenomenology of dream experience. Specifically, it must explain why dream phenomenology is different than wake phenomenology. Consider three phenomenological properties unique to dreams. First, the sparseness of dreams in that they are generally less vivid than waking life and contain less sensory and conceptual information, i.e., less detail. Second, the hallucinatory quality of dreams in that they are generally unusual in some way, i.e., not the simple repetition of daily events or specific memories. This includes the fact that in dreams events and concepts often exist outside of normally strict categories (a person becomes another person, a house a spaceship, etc.). Third, the narrative property of dreams, in that dreams in adult humans are generally sequences of events ordered such that they form a narrative, albeit a fabulist one. As we will see it is not in spite of these properties that dreams serve their evolved purpose, but because of them.

This section explores existent theories of dreams, the supporting evidence (or lack thereof) and how they fail to integrate well with, or explain, dream phenomenology.

2.1 Dreams are for emotional regulation

The idea that dreams are important for emotional health is a descendant of Freudian theories of psycholanalysis (Freud and Cronin, 2013). While Freud’s theories of dreams as expressions of taboo frustration are discredited, there is still a historical association between dreams as expressions of, or important for, emotional processing.

The specific proposals for how dreams impact emotional regulation involve hypotheses like that dreams are somehow for fear extinction (Levin and Nielsen, 2009). Such hypotheses reason that dreams might act somewhat like cognitive behavioral therapy treatment for phobias, wherein they provide a safe space for "rehearsals" toward fearful things in order to make them less frightful (Scarpelli et al., 2019). Yet there is no evidence that the fears of nightmares are the kind of irrational fears faced by those with phobias, nor that fears toward nightmarish events in general should be attenuated, as fear is evolutionarily quite useful.

Another kind of theory is that dreams act as a kind of "emotional thermostat" in order to regulate emotions (Cartwright, 2005). From dream journals there is some evidence that more emotional dreams predict better recovery from disorders like depression (Cartwright et al., 2006), although sample size for this sort of research is prohibitively small throughout oneirology. From neuroimaging there is evidence that emotional processing centers like the amygdala show greater activity during REM even than during wake (Hobson et al., 1998), although the role of the amygdala ranges widely from emotions to rewards to motivations (Janak and Tye, 2015). There is some evidence that changes in REM sleep indicate mood disorders (Kupfer, 1976). However, this isn’t unique to only REM sleep, as NREM sleep is also changed or reduced in mood disorders (Gillin et al., 1979), and many cognitive disorders show sleep problems in general (Peterson and Benca, 2006). Sleep deprivation does appear to lead to emotional issues such as a lack of emotional inhibition and also irritability (Gruber and Cassoff, 2014). But such failures of appropriate function holds true across many cognitive processes following sleep deprivation, including executive function, which would affect emotional regulation (Killgore, 2010).

Overall, the hypothesis that dreams are for resolving emotional conflicts specifically does not have overwhelming empirical evidence. It is also not supported by the phenomenology of dreams, which, at least in general, are not intensely emotional. Indeed, neutral dreams are common. Overall there appears to be a bias to dreams in that they are more likely to have negative affect (Merritt et al., 1994), although this may simply be that dreams which have high emotional valence are memorable (and it is worth noting that in studying dream reports joy/elation
was the next most common to anxiety/fear). Given the evidence it seems likely that whatever the evolved purpose of dreams is, its function can affect emotions, but there is no evidence that dreaming has evolved specifically for emotional regulation.

2.2 Dreams are for memory consolidation

Perhaps the leading contemporary theory is that dreams somehow involve memory consolidation and storage, often via a proposed form of memory replay (Wamsley, 2014). The dominant metaphor for this theory of consolidation is that of the computer: memories need to be "stored" somewhere in the brain, like storing a computer file on a hard drive, and therefore there must be a storage process. This viewpoint is held by much of traditional cognitive neuroscience, wherein the goal of the brain is to "store" memories as veridically as possible (Marcus, 2009). The theory of memory consolidation is that this storage process occurs during dreams, or alternatively that dreams, by accessing previously stored memories, strengthen them, or that somehow dreams are a byproduct of integrating new memories with older ones.

There is a significant line of research that draws from this theory, including many neuroimaging studies, and a full review of the literature would be beyond the scope of this paper (Vorster and Born, 2015). However, there is also debate. Specifically the consolidation hypothesis is both very broad and rarely meant to specify just dreams rather than sleep in general (Siegel, 2001). For example, there is evidence that learning a new task leads to a greater activation during both REM (Maquet et al., 2005) and slow wave sleep (Peigneux et al., 2004) in the task-relevant cortical areas. This is true even when comparing a wake/sleep condition versus a control condition without sleep but over the same time, which has found that BOLD activity increased in associated brain regions with the task (Debas et al., 2010). But these sorts of neuroimaging studies are not very specific, since increased activation in relevant areas does not actually mean storage, nor replay, nor integration with existing memories. Indeed, they could be interpreted just as easily for evidence of the OBH (see Section 3.1). A significant line of direct evidence for the consolidation theory comes in the form of "replay" of memories during sleep, a specific hypothesis with a clear thesis and standards of evidence. Replay was originally discovered in the hippocampus of rats (Wilson and McNaughton, 1994; Skaggs and McNaughton, 1996), although the original analysis was again for slow wave sleep, not dreaming specifically. Indeed, the same statistically-increase in correlated neurons that counts as "replay" occurs during quiet wakefulness, indicating it has nothing specific to do with dreams (Kudrimoti et al., 1999). In general, if two neurons potentiate at the same time and from the same cause, they are more likely to be correlated in the sense of increased firing in the future, regardless of whether they are replaying anything specific, a view supported by the finding that "replay" events are much faster in terms of their firing (Euston et al., 2007).

There are a number of significant issues with the specific hypotheses that dreams are replaying memories (Wamsley, 2014). First, there is a lacking strong theoretical argument as to why offline replay of episodic memories would assist memorization, rather than introducing errors, since ground truth is absent offline. Indeed, neuroscience has shown that re-accessing memories generally changes them, rather than enforces them (Duvanci and Nader, 2004).

Additionally, replay is unlikely to be the purpose of dreams, since, as previously discussed, based on the most detailed studies on dream reports after awakenings, dreams are normally unconnected with the day’s events (Nielsen and Stenstrom, 2005). Except in cases of PTSD, dreams don’t repeat specific memories, and those that do are considered pathological, for instance, closely after Hurricane Andrew, the only hurricane-related dreams, even from a sample of the population from the hardest hit area, were from those already diagnosed with PTSD (David and Mellman, 1997). Overall, it appears that less than 1-2% of dreams reports have anything to do with episodic memories (Stickgold et al., 2001a). And this is only when similarity is taken loosely (e.g., involving the same people despite having totally different events occur, or a task but much more hallucinatory or unrealistic). Indeed, there is significant evidence that episodic memory and dreams are dissociated (Fosse et al., 2003). While there is behavioral evidence that repetitive daily tasks, like having subjects play Tetris for significant periods of time, can lead to Tetris-inspired dreams, such inculcated images or sequences do not represent replay in that they are not veridical repeats of previous games, being more hallucinatory and sparse. Moreover, dreams triggered by such repetitive games appear even in patients completely lacking all memory, those with clinically diagnosed amnesia (Stickgold et al., 2000). It can take several days for repetitive tasks to show up in dreams, a form of "dream lag," and almost always these tasks appear in partial forms that are, again, only loosely similar (Blagrove et al., 2011). Overall, the behavioral evidence suggests that dreams are not replays of memories or waking events.

Additionally, well-controlled neuroimaging experiments show little evidence for exact sequence replication and strong evidence for mostly never-before-seen firing patterns (Gupta et al., 2010). Therefore, there is a line of evidence from Tetris-studies to sudden wake-ups to dream-lag effects showing that partial or loosely-similar dreams can be triggered most reliably by recently-learned...
tasks, and yet such inculcated dreams generally take the form of never-before-seen experiences or sequences with the traditional dream-like properties of sparseness and hallucination, matching no specific memory but rather a seeming exploration of the state-space of the task itself.

It is worth noting that in most cases the sparse, hallucinatory, and narrative properties of dreams are accounted for by the consolidation hypothesis. Most dreams do not involve specific memories at all, making the integration of new memories a questionable purpose for dreaming. Indeed, it is openly admitted that the consolidation hypothesis still views dreams themselves as epiphenomena (Wamsley, 2014). As we will see, much of the supporting results for the integration, replay, or storage of memories actually fits better with the OBH (Section 3.1).

2.3 Dreams are for selective forgetting

Notably, Francis Crick and his co-author proposed an alternative purpose for dreams in 1983, which they called "reverse learning" (Crick and Mitchison, 1983, 1995). In this hypothesis the point of dreaming is somehow to remove "undesirable" connections and help the brain "unlearn." Yet this hypothesis has been largely ignored in contemporary dreaming research. Instead, the alternative hypothesis, that dreams involve replay or consolidation of memory, became favored by the community (Vertes, 2004) due to the excitement around early replay results (Wilson and McNaughton, 1994). Contemporary neuroscientific research often views there as being both a consolidation phase as well as a forgetting phase for memories, although this is again predominately associated with slow wave sleep, rather than dreaming specifically (Feld and Born, 2017).

Recently there has been computational work in spiking neural networks showing that in a specific model "reverse learning" can indeed prove helpful. Specifically, authors showed that an anti-learning rule during a "sleep phase" of the network, in the form of anti-Hebbian learning, could break up attractor states that were detrimental to learning (Thiele et al., 2017). Therefore the idea of "reverse learning" is different from the OBH. It differs significantly by focusing on how specific memories are destroyed (via anti-learning mechanisms like a hypothetical "reverse STDP") rather than how corrupted inputs or top-down noise can improve generalization like in the OBH.

2.4 Dreams are preparations for real-world problems

The close correlation between creativity and dreams, as well as the similarity of dreams to simulations or virtual realities, has lead to hypotheses that dreaming can be used to solve relevant real-world problems for the animal. Perhaps the most direct statement of this is the idea that dreams act as rehearsals for stereotypical behaviors for animals in a form of "genetic programming" (Jouvet, 1998). In more contemporary studies this has been referred to as the hypothesis that dreams act as proto-conscious states to prepare for activities during waking behavior (Hobson, 2009).

Similar examples of this hypothesis include an interpretation based off of robots that used simulations to figure out self-models (Bongard et al., 2006) that an animal might "dream up strategies for success" at night, like for how to best climb obstacles, like rocks, that it faced during the day (Adami, 2006). Evidence for this sort of hypothesis is that there is a form of neural "pre-play" wherein the sequences of activity predict future behavior of the animal (Dragoi and Tonegawa, 2011). However, in a similar manner to the replay results, it is likely that most of the time it is not the actual specific future sequences of activity, and that most sequences are never instantiated during wake.

Perhaps the most general of these hypotheses of dreams as simulations for solving real-world problems is the idea that dreams are actually for refining the ability to create simulations. This "InSim" hypothesis, which specifically is a hypothesis about the dreams of young children, posits that dreams are chances to create simulations and then test their predictions against the real world upon waking (Svensson and Thill, 2012). However, this only applies to young children (with the assumption that the few studies are correct that children’s dreams are more "boring" than adults), since, as the authors themselves point out, adult dreams would be consistently invalidated by daily events. Indeed, the phenomenology of dreams as sparse and hallucinatory and fabulist make it unlikely that strategies or abilities or preparations that originate in dreams work at all in the real world.

However, these types of theories are likely right to view dreams as simulations. Yet according to the OBH the purpose of these simulations is not to refine a particular ability or strategy or plan of ac, or to which is what simulations normally are for. Instead the purpose is to provide "out-of-distribution" simulations specifically to prevent overfitting and improve generalization, wherein overfitting is essentially an unavoidable issue brought about by daily learning and therefore a constant threat to the brain’s ability.

3 The overfitted brain hypothesis

As technology advances science often appropriates new technologies for metaphors that help understand complex systems (Lunteren, 2016). This has been particularly true
of neuroscience (Daugman, 2001). In the past decade it has become apparent that there are many lessons for neuroscience to be taken from brain-inspired deep neural nets (DNNs), which offer a different framework for thinking about learning than standard computer architectures. DNNs are far and away the only successful analog to human intelligence on complex tasks, and they tend to develop brain-like connectivity and representational properties, like grid-cells, shape-tuning, and visual illusions (Richards et al., 2019). One of the most significant differences between DNNs and the brain is that updating of synaptic weights in accordance with the backpropagation of errors has traditionally been looked on as biologically unrealistic. Yet new research reveals that the brain may implement core features of backpropagation, with several viable candidates such as node perturbations or neural gradient representation by activity differences (Lillicrap et al., 2020).

Therefore there is good reason for neuroscience to look to deep learning for inspiration, since both are systems that perform complex tasks via the updating of weights within an astronomically large parameter space. It is clear that the challenges the brain and DNNs face during learning and performance on complex tasks overlap significantly. Notably, one of the most ubiquitous challenges DNNs face is a trade-off between generalization and memorization, wherein as they learn to fit one particular data set, they can become less generalizable to others. This overfitting is identifiable when performance on the training set begins to differentiate from performance on the testing set. An omnipresent problem within the deep learning community, solutions to overfitting in DNNs most often comes in the form of a noise injection, such as making input data sets corrupted and therefore less self-similar (Maaten et al., 2013). Perhaps the most common explicit technique to prevent overfitting is dropout, which is also fundamentally the injection of noise and the corruption of input during learning (Srivastava et al., 2014). Notably the more self-similar or biased your sampling of training data is, the more overfitting will be an issue.

The brain faces these challenges as it learns, since what an organism experiences every day can be highly self-similar and biased in its sampling of the environment. The OBH states that dreams offer a biologically-realistic "noise injection." Specifically, there is good evidence that dreams are based on the stochastic percolation of signals through the cortex, activating the default-mode network (Domhoff and Fox, 2015). Note that there is growing evidence that most of these signals originate in a top-down manner (Nir and Tononi, 2010), meaning that the "corrupted inputs" will bear statistical similarities to the models and representations of the brain. In other words, they are derived from a stochastic exploration of the generative model of the brain. This leads to the kind structured hallucinations that are common during dreams. The hallucinogenic, category-breaking, and fabulist quality of dreams means they are extremely different from the "training set" of the animal, i.e., their daily experiences. The diurnal cycle of fitting to tasks during the day, and avoiding overfitting at night via a semi-random walk of experiences, may be viewed as a kind of "simulated annealing" (Kirkpatrick et al., 1983) in the brain. That is, it is the very strangeness of dreams in their divergence from waking experience that gives them their biological function.

To sum up: the OBH conceptualizes dreams as a form of purposefully corrupted input, likely derived from noise injected into the generative model of the brain, the overall purpose of which is to prevent overfitting. This overfitting takes the form of both specific tasks that an organism might have learned but also generalization to out-of-distribution (unseen) novel stimuli. As will be discussed, the OBH fits well with the disparate known data about dreams, such as their physiological origin in the form of noise that creates "corrupted features" via neuromodulatory influences, their role in learning, and their importance for problem solving and creativity. However, most importantly, it does not consider dreams as epiphenomena generated by some background process, and it also accounts for the actual phenomenology of dreams themselves. Their sparseness comes from the "dropout" of bottom-up inputs and use of sparser or more local activity, their hallucinatory nature comes from the stochastic nature of their purposeful corrupted or warped nature away from the daily "training set" the organism normally experiences, and their narrative nature from the top-down genesis of dreams since the brain understands reality in the form of stories. That is, the distinct phenomenology of dreams is to maximize their effectiveness at improving generalization. The evidence for the OBH, as well as more details about its distinguishing claims, are overviewed in the following section.

3.1 Evidence from neuroscience

What is the evidence for the OBH from traditional methods of neuroscience? It is worth focusing not on all the studies available, but those that distinguish the OBH from the theory that dreams are correlated (in some unspecified way) with learning.

In human behavioral experiments there is good supporting evidence for the OBH specifically. First, the most effective means of triggering dreams that contain partial similarities to real-life events is through repetitive overtraining on a task. Examples of this include extensive playing of games like Tetris (Stickgold et al., 2000) or ski-simulators (Wamsley and Stickgold, 2010), which led to dreams involving the learned task, although not specific
repetitions or replays of memories. Put another way: the surest way to trigger dreams about a real-world event is to perform a task repetitively during the day, preferably one that is novel. This creates the condition of the brain being overfitted to the task, which then triggers nightly dreams attempting to generalize performance on the task. Evidence of dreaming about tasks specifically improving those tasks is true of things like mirror tracing (Schredl and Erlacher, 2010) and reading with inverted goggles on (De Koninck et al., 1996). Even driving cars seems correlated to dreams about driving (Schredl and Hofmann, 2003). It is likely therefore there is a homeostatic component to the OBH wherein different modules, processes, or systems within the brain become overfitted from usage, which are then most likely to trigger dreams involving those modules. If so, neurons involved in recent learning would be most affected by overfitting. In this way the OBH can account for many of the statistical "replay" results since those neurons that saw synaptic changes in response learning are most affected by the regularization of dreaming. But the OBH further explains why exact sequence replication is rare and most "replay" is actually never-before-seen firing patterns (Gupta et al., 2010).

Another line of evidence for the OBH is that in humans there is evidence of task-dependency when it comes to whether sleep improves learning. For adult humans perceptual tasks showed little to no learning increase from sleep wherein cognitive tasks showed significant gains from learning (Doyon et al., 2009). Since it is likely that adult humans already have well-fitted perceptual models, we should expect complex cognitive tasks to trigger more gain from an increase in generalizability. While dream reports are actually less common in young children, particularly below the age of 7, from what can be gleaned children’s dreams are much more static and perceptual, focusing on individual scenes rather than full narratives (Foulkes, 2009). Meanwhile newborns exhibit “active sleep,” their version of REM, for 50% of their 16-18 hours of daily sleep, perhaps indicating that early perceptual models are in constant danger of overfitting.

The OBH is also supported by evidence that sleep does not simply improve memory directly, but affects some aspects of memory more than others. For instance, in a word association test, direct associations, the equivalent of pure memorization, did not benefit that much from a night’s sleep. However, word associations were better able to resist interfering associations (Ellenbogen et al., 2006) indicating again that memorization is least affected by sleep, but generalized performance is most affected. This holds true even in babies, wherein sleep is correlated with increased generalization and abstraction abilities (Friedrich et al., 2015; Gómez et al., 2006).

Additionally, there is evidence from behavioral studies that over-training on a texture-discrimination task leads to decreased performance on it, and that sleep specifically, above and beyond the passage of time, rescues this performance (Mednick et al., 2002). This fits with anecdotal reports of plateauing in terms of performance on a task, like a video game, only to sleep and have an increased performance the next day.

There is also the long-standing traditional association between dreams and creativity, a rich literature. What are often anecdotal reports are supported by careful studies of how sleep improves abstraction and reasoning on tasks (Wagner et al., 2004; Cai et al., 2009). This fits directly with the OBH, since an increase in generalization would directly lead to more insights in complex problems, or better performance on cognitive tasks that require creativity. Indeed, it explains the link between creativity and dreaming better than the hypotheses that dreaming is for the integration of new with old memories, the replay of memories, or their storage.

Finally, it might be argued that it is a problem for the OBH that dreams are generally amnesiac, with explicit memory a rarity during dreams. Would it not be strange then that the content of dreams have any effect on the abilities of a neural network? Here, an important distinction should be made between accessing explicit declarative memories and the general fact that learning involves changes to synapses. For instance, the amnesiac effect during sleep may due to prefrontal inhibition. Just as prefrontal cortex inhibition means that dreams are not recognizable as dreams when they are occurring, it may be that the same inhibition makes it difficult to recall in the sense of cognitive access (Siclari and Tononi, 2016). Anecdotal evidence from those with dream journals suggests that paying attention to dreams makes them easier to remember, lending credence to this hypothesis (Robb, 2018). Additionally, sudden-waking experiments show that dream content is common and recallable. Likely the effects of not being able to either form or access episodic memories of all dreams at the end of the night are due to the neuromodulatory milieu during sleep.

Supporting the OBH is evidence indicating that dreams lead to synaptic changes in the connectivity of the brain, albeit likely this is not as strongly as waking experience, with episodic memory storage significantly reduced. What is the evidence that synapses change during sleep? Proponents of SHY have argued that there is evidence that synapses change during sleep in the form of synaptic homeostasis, regularization which occurs every night in the form of universal down-scaling of synaptic strength (Bushey et al., 2011). However, this has been challenged by the observation of potentiation during sleep (Durkin and Aton, 2016). In general it appears that whether there is net potentiation or depression during waking depends on the task (Fisher et al., 2016), indicating that learning involves synaptic plasticity in both directions in both wake
and sleep (Raven et al., 2018). If during dreams synapses are indeed still plastic, then dreams can leave a synaptic trace that can affect performance.

3.2 Evidence from deep learning

One of the most significant, and ubiquitous, challenges any deep neural network faces is the ability to generalize beyond the data set it has been trained on. There has been significant effort in the past decade by the deep learning community to develop methods and techniques to avoid overfitting on particular data sets and, at the broadest level, to allow for extrapolation to never-before-seen data sets. This section overviews three commonly used techniques within deep learning (and research into artificial neural networks generally). Notably, each embodies some phenomenological property of dreams.

First, there is the method of dropout, perhaps the most widely-used technique for preventing overfitting in deep learning (Achille and Soatto, 2018). Dropout occurs during the training of a network, when inputs are made sparse by randomly "dropping out" some of them, a form of regularization during learning which is mathematically similar to a noise injection (Srivastava et al., 2014). It is important to note that dreams resemble dropout in their sparseness, as they do not contain as much perceptual information, or details in general, as waking experiences. This likely increases the salience of relevant features while minimizing irrelevant features, assisting in generalization by making representations more robust and invariant. Dreams are a lesser or weakened state of conscious experience because of this dropping out of bottom-up stimuli, lacking much of the detail of waking conscious experiences, which, according to the OBH actually assists, rather than hinders, their function.

Second, there is the method of domain randomization used in training deep neural networks. In domain randomization, the inputs during learning are "randomized" in the sense of being warped or corrupted in particular ways. This can drastically assist with learning and generalization. Paradoxically, simulating hallucinatory inputs rather than learning off of real inputs helps deep neural networks learn real-world tasks (Tobin et al., 2017). Domain randomization has been used in cutting-edge techniques in deep learning, such as being necessary for having a DNN solve a Rubik’s Cube using a robot hand (Akkaya et al., 2019). Domain randomization resembles the hallucinatory quality of dreams in that dreams depart significantly from normal experiences, as if they have been randomly drawn from a varied set of different domains.

Of course, the implementation of these techniques must be different for the brain. This is because the brain faces many challenges that artificial neural networks do not. Any organism that implemented dropout or domain randomization during its daily learning would face serious survival issues. Therefore, in order to increase generality and avoid overfitting a dedicated offline period is needed. Sleep, possibly having originally evolved for other housekeeping reasons, is the perfect time.

The third common practice in deep learning that has ties to dreaming is the use of fully simulated data via some generative model. A generative model is when a neural network is trained on data from a domain to output generated data that looks as if it came from the domain but that the network itself generates. Generative models lie behind the success of generative adversarial networks (GANs) and other techniques that allow for cutting-edge performance on complex tasks using sets of feedforward networks that anticipate the other's output (Goodfellow et al., 2014). It is worth noting that GANs and others often produce notoriously dream-like fabulist outputs (Hertzmann, 2019). Indeed, recently an external generative model that created "dream-like" input helped train a DNN to produce the code behind a given mathematical mapping (Ellis et al., 2020). It should be noted that in all these cases the generative model exists outside the network itself, which is not biologically realistic in the case of the brain.

But what about cases where the network itself acts the generative model? In networks that are not purely feedforward or have external models that can be manipulated by experimenters, the stimulation of higher layers (generally through the injection of noise) can lead to patterns of activity in the lower layers that recapitulate the statistical properties of inputs, as if the network were being stimulated from the bottom-up from imaginary sources. This is likely the case in the brain, wherein stochastic activity high in the hierarchy of brain regions creates hallucinatory patterns of inputs. It is worth noting that the proposal of a "wake/sleep" specific algorithm for unsupervised learning of generative models based on feedback from stochastic stimulation goes back 25 years (Hinton et al., 1995). While there have even been suggestions that the purpose of sleep involves the “wake/sleep” algorithm itself (Sejnowski, 1995), this algorithm is only for a form of unsupervised learning that creates a generative model and requires several assumptions that are not biologically realistic, like only training one set of connections at a time. It is also clear the brain does much more than just learn a lone generative model.

However, it is likely the case that dreams are indeed a result of the brain’s internal generative model in the form of its feedback connectivity, which fits with the evidence that dreams are “top-down” (Foulkes and Domhoff, 2014). If dreams are from a similar top-down generative model composed of feedback connectivity, this fits with evidence that dreaming drawn from the brain’s generative model becomes more narrative and complex over time, particu-
larly during adolescence (Strauch, 2005). By adulthood, dreams take on the narrative structure of human cognition wherein stories and metaphors make up the core function of thought (Lakoff and Johnson, 2008). Since narratives are the way by which human brains understand the world (Lakoff, 2008), the generative model of the brain produces narratives, which act as hallucinatory and sparse "fake" input for learning, thus combating overfitting and improving generalization. In this way they are a direct expansion of the normal "training set" of an animal, since narratives are how conscious perception itself proceeds (James, 2007). Overall, while there is no one exact method in deep learning that matches precisely with the OBH, overlapping aspects of common methods in the field for mitigating overfitting and assisting generalization lend credence to the idea that the evolved function of dreaming is for precisely these purposes.

4 Predictions

The OBH puts together several lines of investigation under one roof by being explicit about asking how generalization during learning can benefit from dreams. This involves understanding how dreams can help overcome an organism’s reliance on just the day’s events, which are often highly statistically biased. The theory makes a number of specific predictions which can be pursued both experimentally as well as theoretically.

4.1 Experimental validation

Experimental investigation of the OBH within neuroscience can consist of several components. Under the OBH, much of the benefit of dreaming is in the realm of generalizability not memorization per se, and this can be differentiated with well-designed behavioral tests. For example, it may be that direct measurement of overfitting is possible in humans. This may include the training of subjects on overly repetitious tasks in order to ensure the condition of overfitting. It may also include using similar techniques as those within deep learning to test for generalization of performance. Beyond behavioral predictions and subsequent studies, there is also the possibility of attempting to track synaptic plasticity in response to dreams. This may include things like tracking changes in dendritic spine morphology during REM.

Notably, the sort of cognitive flexibility and generalization the OBH claims is the purpose of dreams is highly important for workers and those in the armed forces who sometimes operate under sleep deprivation during critical periods, which can lead to increased accident rates (Powell and Copping, 2010), and has a significant monetary annual impact (Leger, 1994). If it is true that sleep-deprived brains are overfitted, they will be prone to make errors in stereotypical ways. Thus it may be easier to know what types of mistakes will be made by individuals operating in sleep-deprived states and in response build more robust fail-safes. Furthermore, there is the possibility of dream substitutions: dream-like stimuli that are artificially generated to have the properties of dreams, and therefore have a similar ameliorative effect on overfitting. Such dream substitutions, delivered via VR or even video, might provide a simple yet effective mean for delaying some of sleep deprivation’s cognitive defects. The impact of substitutions can be examined both behaviorally but also at the neurophysiological level of REM rebound (Ocampo-Garcés et al., 2000).

4.2 Theoretical validation

The OBH has consequences not just for neuroscience, but also for the field of deep learning. This is particularly true of biologically-realistic models, like large-scale thalamocortical spiking-neuron models, which have previously been used to investigate the development of cortical connectivity and its effect on slow waves (Hoel et al., 2016). It is likely that biologically-realistic spiking neurons which are still trainable in the manner of DNNs (Hazan et al., 2018) can be used to explore the benefits of dreams directly. In such a cortical model, neuromodulation can be used to be intersperse training with periods that mimic sleep stages, cycling first through the real input of its training set, and then hallucinatory corrupted input generated from its top-down connections. This should prevent or delay overfitting.

What sort of stochastic biases allow for dreams to warp input data in a way that is most efficient for avoiding overfitting? If the OBH is correct, then the sparse and hallucinatory nature of dreams suggest that we should expect warping of input distributions that successfully combats overfitting has these qualities. Such distributions should be sparse in that they have less entries than normal inputs, and hallucinatory in that they should be clustered in a different way compared to the standard "daily" input.

It may be that investigating these questions could lead to methods useful for the field of deep learning itself, particularly those that are more biologically-realistic in their operations. For instance, as discussed in the previous section, it may be hypothesized that phases of dream-like confabulation in DNNs to increase generalization and prevent overfitting will work most effectively with a using lower learning rate than normal training, since this mimics the semi-amnesiac effect of dreams.
5 Discussion

The Overfitted Brain Hypothesis (OBH) posits the evolved purpose of dreams is to assist generalization, mainly by combating the highly biased nature of inputs during an animal’s daily learning that can lead to overfitting. It is supported by both empirical evidence (Section 3.1) and theoretical evidence (Section 3.2). In many cases it can explain observed results better than other hypotheses (comparative hypotheses are discussed in Section 2). For example, it seems the most effective way to trigger dreams about something is to have subjects perform on a novel task like Tetris repetitiously (Stickgold et al., 2001a; Wamsley and Stickgold, 2010), likely because the visual system has become overfitted to the task. Additionally, the OBH explains why “replay” results more often contain never-before-see patterns of activity than actual replays of waking sequences (Gupta et al., 2010). In another example, it explains the fact that synaptic potentiation occurs during sleep (Durkin and Aton, 2016), indicating that learning during dreams themselves leaves behind a synaptic trace.

The OBH does not necessarily contradict other hypotheses about sleep, for instance, the idea that during certain periods of sleep there is ongoing metabolic waste clearance (Xie et al., 2013). In this sense then the OBH speculates that dreaming evolved as an adaptation, wherein sleep evolved for molecular housekeeping purposes and only when brains had to significantly learn during the organism’s lifetime did the goal of avoiding overfitting and increasing generalization become adaptive. Additionally, it does not compete with other functional hypotheses about dreams, which may be accomplished at the same time. For instance, it may be that dreams are also a test-bed for strengthening the brain’s generative model and therefore ability to generate mental imagery during wake, explaining the complexification of dreams from childhood to adulthood (Foulkes, 2009). So there may be multiple functions to dreams at different timescales. It is also worth noting that dream’s role in improving generalization might also be combating related things like “catastrophic forgetting,” which is a problem faced by DNNs that try to train on multiple tasks, and which can also be prevented or alleviated by methods like dropout or more complicated techniques like elastic weight consolidation (Kirkpatrick et al., 2017). Recent research shows that stimuli created from a network’s generative model (which are, according to the OBH, similar to dreams), can indeed help avoid catastrophic forgetting (Raghavan et al., 2019). So while issues like catastrophic forgetting (the complete unlearning of a task while learning another) is not well documented in humans, it may be that the brain faces some lesser form of it, and dreams can be conceptualized as a form of regularization that may ameliorate several aspects of common learning failures simultaneously.

Perhaps the most distinguishing aspect of the OBH is that it takes the phenomenology of dreams seriously, in that they are sparse, hallucinogenic, and narrative in the sense of containing fabulist and unusual events. The OBH emphasizes that it is precisely because of the departure from waking life that dreams evolved. According to this hypothesis dreams are not epiphenomena, either in the sense of neutral evolution but also in the sense of not being an expression of some other background process, such as patterns of activity and associated experiences merely brought about by some other processing integrating new memories (Wamsley, 2014). Rather, the point of dreams is the dreams themselves, since they provide departures away from the statistically-biased input of an animal’s daily life, which can assist with generalization and therefore performance. It may seem paradoxical, but a dream of flying may actually help you keep your balance running. The evidence for this possibility comes from common methods in deep learning which improve generalization, such as dropout (Srivastava et al., 2014), domain randomization (Tobin et al., 2017), and the use of input data created by stochastic stimulation of generative models (Ellis et al., 2020), which together bear striking similarities to the properties of dreams.

The OBH makes several predictions that are useful for both the field of neuroscience and the field of deep learning. These include predictions on the neurophysiological level, as well as behavioral, and even within the field of deep learning. For instance, the prediction that inputs with dream-like properties, i.e., adhering to dream phenomenology, will assist with overfitting in DNNs. Behaviorally, overfitting might be induced in subjects via through repetitive training on an under-sampled task, and the benefit of dreaming might be directly measured. There is also the possibility of dream substitutions, wherein artificial dream-like stimuli might help improve generalization and therefore performance in sleep-deprived individuals.

Finally, it is worth taking the idea of dream substitutions seriously enough to consider whether fictions, like novels or films, act as artificial dreams, accomplishing at least some of the same function. Within evolutionary psychology, the attempt to ground aspects of human behavior in evolutionary theory, there has been long-standing confusion with regard to human interest in fictions, since on their surface fictions have no utility. They are, after all, explicitly false information. Therefore it has been thought that fictions are either demonstrations of cognitive fitness in order to influence mate choice (Hogh-Olesen, 2018), or can simply be reduced to the equivalent of "cheesecake" — gratifying to consume but without benefit. Proponents of this view have even gone so far as to describe the arts
as a "pleasure technology" (Pinker, 1997). However, the OBH suggests fictions, and perhaps the arts in general, may actually have an underlying cognitive utility in the form of improving generalization and preventing overfitting, since they act as artificial dreams.

6 Acknowledgments

Thanks to Baran Çimen, Santosh Manicka, and Hananel Hazan for their comments and feedback.

References

Alessandro Achille and Stefano Soatto. Information dropout: Learning optimal representations through noisy computation. *IEEE transactions on pattern analysis and machine intelligence*, 40(12):2897–2905, 2018.

Christoph Adami. What do robots dream of? *Science*, 314(5802):1093–1094, 2006.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, RaphaelRibas, et al. Solving rubik’s cube with a robot hand. *arXiv preprint arXiv:1910.07113*, 2019.

Ira Albert, George A Cicala, and Jerome Siegel. The behavioral effects of rem sleep deprivation in rats. *Psychophysiology*, 6(5):550–560, 1970.

Mark Blagrove, Nathalie C Fouquet, Josephine A Henley-Einion, Edward F Pace-Schott, Anna C Davies, Jennifer L Neuschaffer, and Oliver H Turnbull. Assessing the dream-lag effect for rem and nrem stage 2 dreams. *PLoS One*, 6(10):e26708, 2011.

Josh Bongard, Victor Zykov, and Hod Lipson. Resilient machines through continuous self-modeling. *Science*, 314(5802):1118–1121, 2006.

Daniel Bushey, Giulio Tononi, and Chiara Cirelli. Sleep and synaptic homeostasis: structural evidence in drosophila. *Science*, 332(6037):1576–1581, 2011.

Denise J Cai, Sarnoff A Mednick, Elizabeth M Harrison, Jennifer C Kanady, and Sara C Mednick. Rem, not incubation, improves creativity by priming associative networks. *Proceedings of the National Academy of Sciences*, 106(25):10130–10134, 2009.

Rosalind Cartwright. Dreaming as a mood regulation system. In *Principles and practice of sleep medicine*, pages 565–572. Elsevier, 2005.

Rosalind Cartwright, Mehmet Y Agargun, Jennifer Kirkby, and Julie Kabat Friedman. Relation of dreams to waking concerns. *Psychiatry research*, 141(3):261–270, 2006.

Carlo Cipolli, Michele Ferrara, Luigi De Gennaro, and Giuseppe Plazzi. Beyond the neuropsychology of dreaming: insights into the neural basis of dreaming with new techniques of sleep recording and analysis. *Sleep medicine reviews*, 35:8–20, 2017.

Chiara Cirelli and Giulio Tononi. Is sleep essential? *PLoS biology*, 6(8), 2008.

Francis Crick and Graeme Mitchison. The function of dream sleep. *Nature*, 304(5922):111–114, 1983.

Francis Crick and Graeme Mitchison. Rem sleep and neural nets. *Behavioural brain research*, 69(1-2):147–155, 1995.

John G Daugman. Brain metaphor and brain theory. 2001.

Daniella David and Thomas A Mellman. Dreams following hurricane andrew. *Dreaming*, 7(3):209, 1997.

Joseph De Koninck, Francois Prevost, and MONIQUE LORTIE-LUSSIER. Vertical inversion of the visual field and rem sleep mentation. *Journal of sleep research*, 5(1):16–20, 1996.

Karen Debas, Julie Carrier, Pierre Orban, Marc Barakat, Ovidiu Lungu, Gilles Vandewalle, Abdallah Hadj Tahar, Pierre Bellec, Avi Karni, Leslie G Ungerleider, et al. Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. *Proceedings of the National Academy of Sciences*, 107(41):17839–17844, 2010.

William Dement. The effect of dream deprivation. *Science*, 131(3415):1705–1707, 1960.

G William Domhoff. The neural substrate for dreaming: Is it a subsystem of the default network? *Consciousness and cognition*, 20(4):1163–1174, 2011.

G William Domhoff and Kieran CR Fox. Dreaming and the default network: A review, synthesis, and counterintuitive research proposal. *Consciousness and cognition*, 33:342–353, 2015.

Julien Doyon, Maria Korman, Amélie Morin, Valérie Dostie, Abdallah Hadj Tahar, Habib Benali, Avi Karni, Leslie G Ungerleider, and Julie Carrier. Contribution of night and day sleep vs. simple passage of time to the consolidation of motor sequence and visuomotor adaptation learning. *Experimental brain research*, 195(1):15–26, 2009.
George Dragoi and Susumu Tonegawa. Preplay of future place cell sequences by hippocampal cellular assemblies. *Nature*, 469(7330):397–401, 2011.

Martin Dresler, Stefan P Koch, Renate Wehrle, Victor I Spoormaker, Florian Holsboer, Axel Steiger, Philipp G Sämann, Hellmuth Obrig, and Michael Czisch. Dreamed movement elicits activation in the sensorimotor cortex. *Current Biology*, 21(21):1833–1837, 2011.

Kat Duff. *The secret life of sleep*. Simon and Schuster, 2014.

Jaclyn Durkin and Sara J Aton. Sleep-dependent potentiation in the visual system is at odds with the synaptic homeostasis hypothesis. *Sleep*, 39(1):155–159, 2016.

Sevil Duvarci and Karim Nader. Characterization of fear memory reconsolidation. *Journal of Neuroscience*, 24(42):9269–9275, 2004.

Jeffrey M Ellenbogen, Justin C Hulbert, Robert Stickgold, David F Dinges, and Sharon L Thompson-Schill. Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference. *Current Biology*, 16(13):1290–1294, 2006.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales, Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Growing generalizable, interpretable knowledge with wake-sleep bayesian program learning. *arXiv preprint arXiv:2006.08381*, 2020.

David R Euston, Masami Tatsuno, and Bruce L McNaughton. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. *Science*, 318(5853):1147–1150, 2007.

Gordon B Feld and Jan Born. Sculpting memory during sleep: concurrent consolidation and forgetting. *Current Opinion in Neurobiology*, 44:20–27, 2017.

Simon P Fisher, Nanyi Cui, Laura E McKillip, Jessica Gemignani, David M Bannerman, Peter L Oliver, Stuart N Peirson, and Vladyslav V Vyazovskiy. Stereotypic wheel running decreases cortical activity in mice. *Nature communications*, 7(1):1–12, 2016.

Magdalena J Fosse, Roar Fosse, J Allan Hobson, and Robert J Stickgold. Dreaming and episodic memory: a functional dissociation? *Journal of cognitive neuroscience*, 15(1):1–9, 2003.

David Foulkes. *Children’s dreaming and the development of consciousness*. Harvard University Press, 2009.

David Foulkes and G William Domhoff. Bottom-up or top-down in dream neuroscience? a top-down critique of two bottom-up studies. *Consciousness and cognition*, 27:168–171, 2014.

William David Foulkes. Dream reports from different stages of sleep. *The Journal of Abnormal and Social Psychology*, 65(1):14, 1962.

Marcos Gabriel Frank. Erasing synapses in sleep: is it time to be shy? *Neural plasticity*, 2012, 2012.

Sigmund Freud and AJ Cronin. *The interpretation of dreams*. Read Books Ltd, 2013.

Manuela Friedrich, Ines Wilhelm, Jan Born, and Angela D Friederici. Generalization of word meanings during infant sleep. *Nature communications*, 6(1):1–9, 2015.

J Christian Gillin, Wallace Duncan, Karen D Pettigrew, Bernard L Frankel, and Frederick Snyder. Successful separation of depressed, normal, and insomniac subjects by eeg sleep data. *Archives of general psychiatry*, 36(1):85–90, 1979.

Rebecca L Gómez, Richard R Bootzin, and Lynn Nadel. Naps promote abstraction in language-learning infants. *Psychological science*, 17(8):670–674, 2006.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in neural information processing systems*, pages 2672–2680, 2014.

Reut Gruber and Jamie Cassoff. The interplay between sleep and emotion regulation: conceptual framework empirical evidence and future directions. *Current psychiatry reports*, 16(11):500, 2014.

Anoopum S Gupta, Matthijs AA van der Meer, David S Touretzky, and A David Redish. Hippocampal replay is not a simple function of experience. *Neuron*, 65(5):695–705, 2010.

Lauren M Hablitz, Hanna S Vinitsky, Qian Sun, Frederik Filip Steger, Björn Sigurdsson, Kristian N Mortensen, Tuomas O Liljus, and Maiken Nedergaard. Increased glymphatic influx is correlated with high eeg delta power and low heart rate in mice under anesthesia. *Science advances*, 5(2):eaav5447, 2019.

Hananel Hazan, Daniel J Saunders, Hassaan Khan, Devdhar Patel, Darpan T Sanghavi, Hava T Siegeleman, and Robert Kozma. Bindsnet: a machine learning-oriented spiking neural networks library in python. *Frontiers in neuroinformatics*, 12:89, 2018.

Aaron Hertzmann. Aesthetics of neural network art. *arXiv preprint arXiv:1903.05696*, 2019.
Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. “The wake-sleep” algorithm for unsupervised neural networks. *Science*, 268(5214):1158–1161, 1995.

J Allan Hobson. Rem sleep and dreaming: towards a theory of protoconsciousness. *Nature Reviews Neuroscience*, 10(11):803–813, 2009.

J Allan Hobson, Edward F Pace-Schott, Robert Stickgold, and David Kahn. To dream or not to dream? relevant data from new neuroimaging and electrophysiological studies. *Current opinion in neurobiology*, 8(2):239–244, 1998.

Erik Hoel. Enter the supersensorium: the neuroscientific case for art in the age of netflix? *The Baffler*, May 2019. URL https://thebaffler.com/salvos/enter-the-supersensorium-hoel.html.

Erik P Hoel, Larissa Albantakis, Chiara Cirelli, and Giulio Tononi. Synaptic refinement during development and its effect on slow-wave activity: a computational study. *Journal of neurophysiology*, 115(4):2199–2213, 2016.

Henrik Hogh-Olesen. *The Aesthetic Animal*. Oxford University Press, 2018.

William James. *The principles of psychology*, volume 1. Cosimo, Inc., 2007.

Patricia H Janak and Kay M Tye. From circuits to behaviour in the amygdala. *Nature*, 517(7534):284–292, 2015.

William J Joiner. Unraveling the evolutionary determinants of sleep. *Current biology*, 26(20):R1073–R1087, 2016.

Barbara E Jones. From waking to sleeping: neuronal and chemical substrates. *Trends in pharmacological sciences*, 26(11):578–586, 2005.

Michel Jouvet. Paradoxical sleep as a programming system. *Journal of Sleep Research*, 7(1):1–5, 1998.

William DS Killgore. Effects of sleep deprivation on cognition. In *Progress in brain research*, volume 185, pages 105–129. Elsevier, 2010.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114(13):3521–3526, 2017.

Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated annealing. *Science*, 220(4598):671–680, 1983.

Hemant S Kudrimoti, Carol A Barnes, and Bruce L McNaughton. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and eeg dynamics. *Journal of Neuroscience*, 19(10):4090–4101, 1999.

DJ Kupfer. Rem latency: a psychobiologic marker for primary depressive disease. *Biological psychiatry*, 11(2):159, 1976.

George Lakoff. *Women, fire, and dangerous things: What categories reveal about the mind*. University of Chicago press, 2008.

George Lakoff and Mark Johnson. *Metaphors we live by*. University of Chicago press, 2008.

Seung-Hee Lee and Yang Dan. Neuromodulation of brain states. *Neuron*, 76(1):209–222, 2012.

Damien Leger. The cost of sleep-related accidents: a report for the national commission on sleep disorders research. *Sleep*, 17(1):84–93, 1994.

Ross Levin and Tore Nielsen. Nightmares, bad dreams, and emotion dysregulation: A review and new neurocognitive model of dreaming. *Current Directions in psychological science*, 18(2):84–88, 2009.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backpropagation and the brain. *Nature Reviews Neuroscience*, pages 1–12, 2020.

Frans van Lunteren. Clocks to computers: a machine-based “big picture” of the history of modern science. *Isis*, 107(4):762–776, 2016.

Laurens Maaten, Minmin Chen, Stephen Tyree, and Kilian Weinberger. Learning with marginalized corrupted features. In *International Conference on Machine Learning*, pages 410–418, 2013.

Pierre Maquet, Perrine Ruby, Audrey Maudoux, Genevieve Albouy, Virginie Sterpenich, Thanh Dang-Vu, Martin Desseilles, Melanie Boly, Fabien Perrin, Philippe Peigneux, et al. Human cognition during REM sleep and the activity profile within frontal and parietal cortices: a reappraisal of functional neuroimaging data. *Progress in brain research*, 150:219–595, 2005.

Gary Marcus. *Kluge: The haphazard evolution of the human mind*. Houghton Mifflin Harcourt, 2009.
Sara C Mednick, Ken Nakayama, Jose L Cantero, Mercedes Atienza, Alicia A Levin, Neha Pathak, and Robert Stickgold. The restorative effect of naps on perceptual deterioration. *Nature neuroscience*, 5(7):677–681, 2002.

Jane M Merritt, Robert Stickgold, Edward Pace-Schott, Julie Williams, and J Allan Hobson. Emotion profiles in the dreams of men and women. *Consciousness and Cognition*, 3(1):46–60, 1994.

Tore A Nielsen and Philippe Stenstrom. What are the memory sources of dreaming? *Nature*, 437(7063):1286–1289, 2005.

Yuval Nir and Giulio Tononi. Dreaming and the brain: from phenomenology to neurophysiology. *Trends in cognitive sciences*, 14(2):88–100, 2010.

Yuval Nir, Richard J Staba, Thomas Andrillon, Vladyslav V Vyazovskiy, Chiara Ciarelli, Itzhak Fried, and Giulio Tononi. Regional slow waves and spindles in human sleep. *Neuron*, 70(1):153–169, 2011.

Adrián Ocampo-Garcés, Enrique Molina, Alberto Rodríguez, and Ennio A Vivaldi. Homeostasis of REM sleep after total and selective sleep deprivation in the rat. *Journal of Neurophysiology*, 84(5):2699–2702, 2000.

Delphine Oudiette, Marie-José Dealberto, Ginevra Ugucioni, Jean-Louis Golmard, Milagros Merino-Andreu, Mehdi Tafti, Lucile Garma, Sophie Schwartz, and Isabelle Arnulf. Dreaming without REM sleep. *Consciousness and cognition*, 21(3):1129–1140, 2012.

Philippe Peigneux, Steven Laureys, Sonia Fuchs, Fabienne Collette, Fabien Perrin, Jean Reggers, Christophe Phillips, Christian Degueldre, Guy Del Fiore, Joël Aerts, et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? *Neuron*, 44(3):535–545, 2004.

Michael J Peterson and Ruth M Benca. Sleep in mood disorders. *Psychiatric Clinics*, 29(4):1009–1032, 2006.

Steven Pinker. How the mind works. 1997. *NY: Norton*, 1997.

Ronald Powell and Alex Copping. Sleep deprivation and its consequences in construction workers. *Journal of construction engineering and management*, 136(10):1086–1092, 2010.

Aswin Raghavan, Jesse Hostetler, and Sek Chai. Generative memory for lifelong reinforcement learning. *arXiv preprint arXiv:1902.08349*, 2019.

Frank Raven, Eddy A Van der Zee, Peter Meerlo, and Robbert Havekes. The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function. *Sleep Medicine Reviews*, 39:3–11, 2018.

Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz, Amelia Chris-tensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli, et al. A deep learning framework for neuroscience. *Nature neuroscience*, 22(11):1761–1770, 2019.

Alice Robb. *Why we dream: The transformative power of our nightly journey*. Houghton Mifflin Harcourt, 2018.

Serena Scarpelli, Chiara Bartolacci, Aurora D’Atri, Maurizio Gorgoni, and Luigi De Gennaro. The functional role of dreaming in emotional processes. *Frontiers in psychology*, 10:459, 2019.

Carlos H Schenck and Mark W Mahowald. Rem sleep behavior disorder: clinical, developmental, and neuroscience perspectives 16 years after its formal identification in sleep. *Sleep: Journal of Sleep and Sleep Disorders Research*, 2002.

Michael Schredl and Daniel Erlacher. *Is sleep-dependent memory consolidation of a visuo-motor task related to dream content?* Universitätsbibliothek der Universität Heidelberg, 2010.

Michael Schredl and Friedrich Hofmann. Continuity between waking activities and dream activities. *Consciousness and cognition*, 12(2):298–308, 2003.

Terrence J Sejnowski. Neural networks: Sleep and memory. *Current Biology*, 5(8):832–834, 1995.

Francesca Siclari and Giulio Tononi. Sleep and dreaming. In *The neurology of consciousness*, pages 107–128. Elsevier, 2016.

Francesca Siclari, Benjamin Baird, Lampros Perogamvros, Giulio Bernardi, Joshua J LaRocque, Brady Riedner, Melanie Boly, Bradley R Postle, and Giulio Tononi. The neural correlates of dreaming. *Nature neuroscience*, 20(6):872, 2017.

Jerome M Siegel. *The evolution of REM sleep*. Boca Ra-ton, FL: CRC Press, 1999.

Jerome M Siegel. The rem sleep-memory consolidation hypothesis. *Science*, 294(5544):1058–1063, 2001.

Jerome M Siegel. Sleep in animals: a state of adaptive inactivity. *Principles and Practice of Sleep Medicine*, 5:126–138, 2011.
Pilleriin Sikka, Antti Revonsuo, Valdas Noreika, and Katja Valli. Eeg frontal alpha asymmetry and dream affect: Alpha oscillations over the right frontal cortex during REM sleep and presleep wakefulness predict anger in REM sleep dreams. *Journal of Neuroscience*, 39(24):4775–4784, 2019.

William E Skaggs and Bruce L McNaughton. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. *Science*, 271(5257):1870–1873, 1996.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine learning research*, 15(1):1929–1958, 2014.

Robert Stickgold, April Malia, Denise Maguire, David Roddenberry, and Margaret O’Connor. Replaying the game: hypnagogic images in normals and amnesics. *Science*, 290(5490):350–353, 2000.

Robert Stickgold, J Allen Hobson, Roar Fosse, and Madalena Fosse. Sleep, learning, and dreams: off-line memory reprocessing. *Science*, 294(5544):1052–1057, 2001a.

Robert Stickgold, April Malia, Roar Fosse, Ruth Propper, and J Allan Hobson. Brain-mind states: I. longitudinal field study of sleep/wake factors influencing mentation report length. *Sleep*, 24(2):171–179, 2001b.

Inge Strauch. Rem dreaming in the transition from late childhood to adolescence: A longitudinal study. *Dreaming*, 15(3):155, 2005.

Henrik Svensson and Serge Thill. Should robots dream of electric sheep? In *Workshop on Artificial Mental Imagery in Cognitive Systems and Robotics*, page 11. Citeseer, 2012.

Johannes Thiele, Peter Diehl, and Matthew Cook. A wake-sleep algorithm for recurrent, spiking neural networks. *arXiv preprint arXiv:1703.06290*, 2017.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain randomization for transferring deep neural networks from simulation to the real world. In *2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pages 23–30. IEEE, 2017.

Giulio Tononi and Chiara Cirelli. Sleep and synaptic homeostasis: a hypothesis. *Brain research bulletin*, 62(2):143–150, 2003.

Giulio Tononi and Chiara Cirelli. Sleep function and synaptic homeostasis. *Sleep medicine reviews*, 10(1):49–62, 2006.

Nicholas F Trojanowski and David M Raizen. Call it worm sleep. *Trends in neurosciences*, 39(2):54–62, 2016.

Robert P Vertes. Memory consolidation in sleep: dream or reality. *Neuron*, 44(1):135–148, 2004.

Albrecht P Vorster and Jan Born. Sleep and memory in mammals, birds and invertebrates. *Neuroscience & Biobehavioral Reviews*, 50:103–119, 2015.

Ullrich Wagner, Steffen Gais, Hilde Haider, Rolf Verleger, and Jan Born. Sleep inspires insight. *Nature*, 427(6972):352–355, 2004.

Erin J Wamsley. Dreaming and offline memory consolidation. *Current Neurology and Neuroscience Reports*, 14(3):433, 2014.

Erin J Wamsley and Robert Stickgold. Dreaming and offline memory processing. *Current Biology*, 20(23):R1010–R1013, 2010.

Caity Weaver. Why am i having weird dreams lately? *New York Times*, Apr 2020. URL https://www.nytimes.com/2020/04/13/style/why-weird-dreams-coronavirus.html.

Matthew A Wilson and Bruce L McNaughton. Reactivation of hippocampal ensemble memories during sleep. *Science*, 265(5172):676–679, 1994.

Lulu Xie, Hongyi Kang, Qiwu Xu, Michael J Chen, Yonghong Liao, Meenakshisundaram Thiyagarajan, John O’Donnell, Daniel J Christensen, Charles Nicholson, Jeffrey J Iliff, et al. Sleep drives metabolite clearance from the adult brain. *science*, 342(6156):373–377, 2013.