Distribution of the combinatorial multisets component vectors

Eugenijus Manstavičius, Robertas Petuchovas

Faculty of Mathematics and Informatics, Vilnius University
Naugarduko 24, LT-03225 Vilnius
E-mail: eugenijus.manstavicius@mif.vu.lt, robertas.petuchovas@mif.stud.vu.lt

Abstract. We explore a class of random combinatorial structures called weighted multisets. Their components are taken from an initial set satisfying general boundedness conditions posed on the number of elements with a given weight. The component vector of a multiset of weight \(n \) taken with equal probability has dependent coordinates, nevertheless, up to \(r = o(n) \) of them as \(n \to \infty \), we approximate by an appropriate vector comprised from independent negative binomial random variables. The main result is an estimate of the total variation distance. For illustration, we present a central limit theorem for a sequence of additive functions.

Keywords: Random combinatorial multiset, negative binomial distribution, additive function, central limit theorem.

Introduction

We examine weighted combinatorial multisets. They are comprised from components belonging to an initial class \(\mathcal{P} \) of elements having weights in \(\mathbb{N} \). The repetitions are allowed while the order is irrelevant. The weight of a multiset is the sum of weights of its components. The empty multiset has the zero weight.

Let us denote by \(\mathcal{P}_j \subset \mathcal{P} \) the subset of elements of weight \(j \in \mathbb{N} \) and let \(\pi(j) = |\mathcal{P}_j| < \infty \) be its cardinality. For an \(n \in \mathbb{N} \), set \(s := (s_1, \ldots, s_n) \in \mathbb{Z}_+^n \) and \(\ell(s) := s_1 + \cdots + s_n \). Let \(\mathcal{M}_n \) be the class of multisets \(\sigma \) of weight \(n \) and denote by \(k_j(\sigma) \geq 0 \) the number of components of weight \(j \), \(1 \leq j \leq n \), in \(\sigma \in \mathcal{M}_n \). The vector \(k(\sigma) := (k_1(\sigma), \ldots, k_n(\sigma)) \) is called the component vector of \(\sigma \). Note that \(\ell(k(\sigma)) = n \) if \(\sigma \in \mathcal{M}_n \). All quantitative information about the introduced class of multisets lays in the following formal relation satisfied by the generating function:

\[
1 + \sum_{n=1}^{\infty} |\mathcal{M}_n| x^n = \prod_{j=1}^{\infty} \left(1 - x^j \right)^{-\pi(j)}.
\]

If the uniform probability measure \(\nu_n \) is introduced in the set \(\mathcal{M}_n \), then the distribution of component vector satisfies the conditioning relation \(\nu_n(k(\sigma) = s) = P(\gamma = s|\ell(\gamma) = n) \), where \(\gamma = (\gamma_1, \ldots, \gamma_n) \), and \(\gamma_j = NB(\pi(j), x^j) \), \(1 \leq j \leq n \), are mutually independent negative binomial random variables (i.r.vs) defined on some probability space \((\Omega, \mathcal{F}, P) \) with parameters \((\pi(j), x) \), where \(0 < x < 1 \) is arbitrary. An extensive list of instances and the historical survey on investigations of random multisets can be found in [2] and [1]. In the present note, we discuss only the results
Distribution of the combinatorial multisets component vectors

concerning the total variation approximations of the truncated component vectors
\(k_r(\sigma) = (k_1(\sigma), \ldots, k_r(\sigma)) \) by appropriate vectors with independent coordinates if
\(r = r(n) \) and \(r = o(n) \) as \(n \to \infty \).

Let \(\rho_{TV} \) denote the total variation distance and \(\mathcal{L}(\cdot) \) be the distribution under the
relevant probability measure. For brevity, we will use \(\ll \) as an analog of \(O(\cdot) \). As it
has been proved by D. Stark [7] (see also [1]), the regularity condition \(\pi(j) \sim \theta q^j j^{-1}, \)
\(j \to \infty \), where \(\theta > 0 \) and \(q > 1 \) are constants, and some other extra technical
requirements imply

\[
\rho_{TV}(\mathcal{L}(k_r(\sigma)), \mathcal{L}(\gamma_r)) \ll (r/n)^\nu. \tag{1}
\]

Here and afterwards \(\gamma_r = (\gamma_1, \ldots, \gamma_r) \) and \(\gamma_j = NB(\pi(j), q^{-j}), 1 \leq j \leq r \leq n \), are
mutually independent negative binomial r.v.s. The positive quantity \(\nu \) depends on the
constants in the conditions. A similar problem for the so-called additive arithmetical
semigroups has been dealt with by J. Knopfmacher and W.-B. Zhang [3]. Putting
regularity conditions on the number of semigroup elements of a given degree, they
actually exploited some regularity of the number of prime elements. We generalize
the estimates obtained in [1] and the most interesting part of that from [3].

In the sequel, the hidden constants, if not indicated otherwise, will depend only
on \(c_0, c_1 \) and \(q \).

Theorem 1. Let the class of multisets be generated by a set \(\mathcal{P} \) such that

\[
c_0 \leq j q^{-j} \pi(j) \leq c_1 \tag{2}
\]

for all \(j \geq 1 \), where \(0 < c_0 \leq c_1 < \infty \) and \(q > 1 \) are constants. Then there is a
positive constant \(\nu = \nu(c_0, c_1) \) such that (1) holds for \(1 \leq r \leq n \).

Theorem 1 will be proved using the analytical method proposed in 2002 by E. Mans-
tavičius [5] and applied by him for other combinatorial structures called assemblies
(see [4]). In Section 1, we present the main steps of the proof, the detailed exposition
can be found in our master thesis [6]. In the last section, we prove a central limit theorem for a sequence of additive functions defined on the discussed class of multisets.

1 Sketch of the proof

For \(\bar{s} = (s_1, \ldots, s_n) \in \mathbb{Z}_+^n \), set \(\ell_{ij}(\bar{s}) := (i + 1)s_{i+1} + \cdots + js_j \) if \(0 \leq i < j \leq n \).
Moreover, let \(\ell_r(\bar{s}) := \ell_{0r}(\bar{s}), \gamma_r = (\gamma_1, \ldots, \gamma_r) \), where \(1 \leq r \leq n \) and, as previously,
\(\gamma_j = NB(\pi(j), q^{-j}), 1 \leq j \leq r \), are independent. We will use the following formula
(see [1]) for the total variation:

\[
\rho_{TV}(\mathcal{L}(\gamma_r|\ell(\bar{s}) = n), \mathcal{L}(\gamma_r)) = \sum_{m \in \mathbb{Z}_+} P(\ell_r(\bar{s}) = m) \left(1 - \frac{P(\ell_r(\bar{s}) = n - m)}{P(\ell_r(\bar{s}) = n)} \right). \tag{3}
\]

Here \(x_+ = \max\{0, x\} \) if \(x \in \mathbb{R} \).

Denote

\[
F(w) = \prod_{j=r+1}^{n} (1 - q^{-j}w^j)^{-\pi(j)} =: \sum_{s=0}^{\infty} q^{-s} F_s w^s,
\]

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 66–71.
where \(w \in \mathbb{C}, \ |w| = 1 \). Then

\[
\sum_{m=0}^{\infty} P(\ell_{rn}(\gamma) = m)w^m = \frac{F(w)}{F(1)}
\]

and, by Cauchy’s formula,

\[
P(\ell_{rn}(\gamma) = m) = \frac{1}{2\pi imF(1)} \int_{|w|=1} \frac{F'(w)}{w^m} dw.
\]

Further, let \(F(w) = M(w)H(w) \), where

\[
M(w) := \exp \left\{ \sum_{j=r+1}^{n} \pi(j)q^{-j}w^j \right\}, \quad H(w) := \exp \left\{ \sum_{j=r+1}^{\infty} \sum_{k=2}^{\infty} \pi(j)q^{-jk}w^{jk} \right\}.
\]

Moreover, set

\[
D(w) := \prod_{j=1}^{n} (1 - q^{-j}w^j)^{-\pi(j)} =: \sum_{s=0}^{\infty} q^{-s}D_s w^s,
\]

\[
e_r := \frac{F(1)}{D(1)} = \exp \left\{ - \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \pi(j)q^{-jk/k} \right\}.
\]

Let \(0 < \alpha < 1, 0 < \delta < 1/2, \) and \(K > r \) be arbitrary parameters to be chosen later and such that \(1 \leq \delta n < K \leq n \). We set

\[
G_1(w) = \exp \left\{ \alpha \sum_{j=r+1}^{K} \pi(j)q^{j}w^j \right\}, \quad G_2(w) = \exp \left\{ - \alpha \sum_{j=R+1}^{n} \frac{\pi(j)}{q^{j}}w^j \right\},
\]

and \(G_3(w) = M^\alpha(w) - G_1(w) \).

Using introduced functions, we split integral in (4) to obtain

\[
q^{-m}F_m = \frac{1}{2\pi im} \left(\int_{\Delta_0} + \int_{\Delta} \right) \frac{F'(w)(1 - G_2(w))}{w^m} dw + \frac{1}{2\pi im} \int_{|w|=1} \frac{F'(w)G_2(w)}{w^m} dw
\]

\[=: J_0 + J_1 + J_2.\]

Here \(\Delta_0 = \{ w = e^{it}: |t| \leq T \}, \ \Delta = \{ w = e^{it}: T < |t| \leq \pi \} \), and \(T = (\delta n)^{-1} \).

The further steps are based upon a few estimates obtained under condition (2). We use some estimates taken from articles [5] and [4].

Lemma 1. We have \(D(1)n^{-1} \ll q^{-n}D_n \ll D(1)n^{-1} \) for all \(n \geq 1 \). Moreover,

\[
\max_{w \in \Delta} |F(w)| \ll \max_{w \in \Delta} |M(w)| \ll e_r D(1)\delta^n,
\]

if \(\delta n \geq 1 \) and \(0 \leq \alpha \leq \delta n \).

Proof. Since \(1 \ll H(w) \ll 1 \), we can apply Lemmas 2 and 3 in [4].
Lemma 2. Let $0 < \alpha < 1$ be arbitrary and $\bar{\delta}n \geq 1$. Then $J_1 \ll e_r n q^{\bar{\delta}} D_\eta K^{-1} \delta^\alpha (1-\alpha)$ uniformly in $n/2 \leq m \leq n$ and $0 \leq r \leq \bar{\delta}n < K < n$. Here the constant in \ll depends also on α.

Proof. Repeat the argument used in [4, Lemma 5].

Lemma 3. If $0 < \alpha < 1$ and $1 \leq \bar{\delta}n < K < n$, then

$$J_2 = \frac{1}{2\pi i m} \int_{|w|=1} \frac{F'(w) G_1(w)}{w^m} dw \ll e_r q^{-n} D_\eta \left(\frac{K}{n} \right)^{\alpha c_0}$$

uniformly in $n/2 \leq m \leq n$.

Proof. Combine $1 \ll H(w) \ll 1$ and Lemma 4 in [4].

Lemma 4. If $T = (\bar{\delta}n)^{-1} \leq 1$, then there exists a constant $c = c(c_0)$ such that

$$q^{-m} F_m = J_0 + O(e_r q^{-n} D_\eta \delta^\epsilon)$$

(5)

uniformly in $0 \leq r \leq \bar{\delta}n$ and $n/2 \leq m \leq n$. Moreover,

$$q^{-n} D_n = \frac{1}{2\pi i m} \int_{\Delta_0} D'(w) (1-G_2(w)) \frac{dw}{w^m} + O(q^{-n} D_\eta \delta^\epsilon).$$

(6)

Proof. To prove (5), use Lemmas 2 and 3. Formula (6) follows from (5) if $r = 0$.

The next claim is crucial in the applied approach. Instead of integrating the remaining integral J_0, we change its integrand and return to D_n.

Lemma 5. If $0 \leq \eta \leq 1/2$ and $1/n \leq \delta \leq 1/2$ are arbitrary, then

$$J_0 q^{m}(e_r D_n)^{-1} - 1 \ll \eta \delta^{-1} + \delta^\epsilon + (r/n) \{ r \geq 1 \} \delta^{-1-c_3}, \quad c_3 := cc_1/c_0,$$

uniformly in $n(1-\eta) \leq m \leq n$ and $0 \leq r \leq \bar{\delta}n$. Here $c = c(c_0)$ comes from Lemma 4.

Proof. As in the proof of Lemma 7 in [4] approximate the integrand of J_0 by $D'(w)(1-G_2(w)) w^{-n}$ and apply (6).

Lemma 6. Assume that parameters $0 \leq r \leq n$, $0 \leq \eta \leq 1/2$ and $1/n \leq \delta \leq 1/2$ are arbitrary. Then there exists positive constants $c = c(c_0)$ and $c_3 = c_3(c_0, c_1)$ such that

$$q^{m-m} F_m (e_r D_n)^{-1} - 1 \ll \eta \delta^{-1} + \delta^\epsilon + r/n \{ r \geq 1 \} \delta^{-1-c_3}$$

uniformly when $0 \leq r \leq \bar{\delta}n$, $n(1-\eta) \leq m \leq n$.

Proof. Applying Lemma 5 for relation (5), we attain lemma’s proof.

Proof of Theorem 1. We have

$$P(\ell_n(\bar{\gamma}) = n - m) = q^{-m} F_{n-m}/(e_r D(1)), \quad P(\ell(\bar{\gamma}) = n) = q^{-n} D_n/D(1).$$

Thus,

$$P(\ell_n(\bar{\gamma}) = n - m) / P(\ell(\bar{\gamma}) = n) = q^m F_{n-m}/(e_r D_n).$$

We apply Lemma 6 with $n - m$ instead of m choosing $\eta = (r/n)^{1/2}$ and $\delta = (r/n)^\varphi$, where $0 < \varphi < \min \{1/2, 1/(1 + c_3) \}$ is a fixed number. So we obtain
Theorem 2. Let the class of multisets \(\mathcal{M}_n \) satisfy condition (2). Assume that \(h_{nj}(k) = \text{o}(1) \) for every fixed \(j, k \in \mathbb{N} \). If conditions (7) and (8) are satisfied for \(a_{nj} := h_{nj}(1) \), then

\[
\nu_n(x) := \nu_n(h_n(\sigma) - b_n < x) = \Phi(x) + \text{o}(1)
\]

uniformly in \(x \in \mathbb{R} \). Conversely, if

\[
P(\ell_{rn}(\bar{\gamma}) = n - m) - 1 \ll (r/n)^{1/2-\nu} + (r/n)^{c_0} + (r/n)^{1-(1+c_3)} \ll (r/n)^{\nu},
\]

where \(\nu = \nu(c_0, c_1) > 0 \), uniformly in \(0 \leq m \leq \sqrt{r/m} \) and \(1 \leq r \leq 2^{-1/\nu} : = c_2n \). The summands in (3), if \(m > \sqrt{r/m} \), contribute not more than

\[
(rn)^{-1/2} \mathbb{E} \ell_r(\bar{\gamma}) = (rn)^{-1/2} \sum_{j \leq r} j \mathbb{E} \gamma_j \leq c_1 (1-q^{-1})^{-1} (r/n)^{1/2}.
\]

Consequently, \(\rho_{TV}(\mathcal{L}(h_{\bar{\gamma}}), \mathcal{L}(\bar{\gamma})) \ll (r/n)^{\nu} \) for \(1 \leq r \leq c_2n \). Seeing that the theorem claim is trivial in the case \(c_2n < r \leq n \), we finish the proof.

2 Central limit theorem

As an application of Theorem 1, we now present an analog of the well-known Feller–Lindeberg theorem. As previously, let condition (2) be satisfied and \(\gamma_j = NB(\pi(j), q^{-j}) \), where \(q > 1 \) and \(1 \leq j \leq n \), are i.r.vs. Let \(a_{nj} \in \mathbb{R} \), \(X_n = a_{nj} \gamma_j \) if \(1 \leq j \leq n \), and \(X_n = X_{n1} + \cdots + X_{nn} \). Set \(\Phi(x) \) for the standard normal distribution function, \(u^* := \min \{|u|, 1\} \sgn u \), and

\[
\alpha(y) := \sum_{j \leq y} a_{nj}^2 j, \quad 0 \leq y \leq n.
\]

Assume that \(n \to \infty \) in the limit relations.

Lemma 7. In the notation above, let \(a_{nj} = o(1) \) for each fixed \(j \in \mathbb{N} \). The relation

\[
P(X_n - b_n < x) = \Phi(x) + o(1)
\]

with some \(b_n \in \mathbb{R} \) uniformly in \(x \in \mathbb{R} \) holds if and only if, for every \(\varepsilon > 0 \),

\[
\sum_{j \leq n} \frac{1}{j} \{ |a_{nj}| \geq \varepsilon \} = o(1), \quad \sum_{j \leq n} \frac{a_{nj}^2}{j} \{ |a_{nj}| < 1 \} = 1 + o(1),
\]

and

\[
b_n = \alpha(n) + o(1).
\]

Proof. The i.r.vs \(X_{nj} \), \(1 \leq j \leq n \), are infinitesimal. Hence the claim is just a special case of the mentioned Feller–Lindeberg theorem.

Let \(h_{nj}(k) \) be a three-dimensional real sequence such that \(h_{nj}(0) \equiv 0 \) for \(j \leq n \). Define the sequence of additive functions \(h_n : \mathbb{M}_n \to \mathbb{R} \) by setting \(h_n(\sigma) = \sum_{j \leq n} h_{nj}(k_{j}(\sigma)) \).

Theorem 2. Let the class of multisets \(\mathcal{M}_n \) satisfy condition (2). Assume that \(h_{nj}(k) = o(1) \) for every fixed \(j, k \in \mathbb{N} \). If conditions (7) and (8) are satisfied for \(a_{nj} := h_{nj}(1) \), then

\[
\nu_n(x) := \nu_n(h_n(\sigma) - b_n < x) = \Phi(x) + o(1)
\]

uniformly in \(x \in \mathbb{R} \). Conversely, if
Distribution of the combinatorial multisets component vectors

\[\sum_{\delta n < j \leq n} \frac{a_{n,j}^2}{j} = o(1) \] \hspace{1cm} (10)

for every \(0 < \delta < 1 \), then convergence (9) with some \(b_n \) implies relations (7) and (8).

Proof. We indicate the main steps only. First, we verify that convergence (9) can hold only simultaneously with that for the sequence of functions \(h_n(\sigma) \) defined via \(h_{nj}(k) = kh_{nj}(1) =: ka_{nj} \) for \(1 \leq j \leq n \). Next, we split the latter into two parts: \(h_{nj}(\sigma) = (\sum_{j \leq r \leq n} a_{nj} h_{nj}(r)) =: h_{nj}^{(r)}(\sigma) + f_n(\sigma) \)

As in [4], one can check that condition (7) yields a sequence \(r = r(n) \to \infty \) such that \(r = o(n) \) and

\[\nu_n(\lfloor f_n(\sigma) - (\alpha(n) - \alpha(r)) \rfloor \geq \varepsilon) = o(1) \] \hspace{1cm} (11)

for every \(\varepsilon > 0 \). Moreover, by Theorem 1 and Lemma 7,

\[\nu_n(h_n^{(r)}(\sigma) - \alpha(r) < x) = P\left(\sum_{j \leq r} X_{nj} - \alpha(r) < x \right) + o(1) = \Phi(x) + o(1) \]

uniformly in \(x \in \mathbb{R} \). The last two relations furnish the proof of the sufficiency part.

In the necessity part, we can again use Theorem 1 and Lemma 7 because of condition (10) also implies (11). So we arrive at the last relation. Consequently, the necessity in Theorem 2 is assured by that in Lemma 7. The theorem is proved.

References

[1] R. Arratia, A.D. Barbour and S. Tavaré. *Logarithmic Combinatorial Structures: a Probabilistic Approach*. EMS Monographs in Mathematics, 2003. ISBN 3-03719-000-0.

[2] R. Arratia and S. Tavaré. Independent process approximations for random combinatorial structures. *Adv. Math.*, 104(1):90–154, 1994.

[3] J. Knopfmacher and W.-B. Zhang. *Number Theory Arising from Finite Fields*. Marcel Dekker, 2001. ISBN 0-8247-0577-7.

[4] E. Manstavičius. Total variation approximation for random assemblies and a functional limit theorem. *Monatsh. Math.*, 161:313–334, 2009.

[5] E. Manstavičius. Mappings on decomposable combinatorial structures: analytic approach. *Comb. Probab. Comput.*, 11:61–78, 2002.

[6] R. Petuchovas. Distribution of combinatorial component vectors. Vilnius University database of final theses, 2012.

[7] D. Stark. Total variation asymptotics for independent process approximations of logarithmic multisets and selections. *Rand. Struct. Alg.*, 11:51–80, 1997.

REZIUMĖ

Kombinatorinių multiabilių komponenčių vektorių skirstiniai

E. Manstavičius, R. Petuchovas

Naigrinėjamos atsitiktinės kombinatorinės struktūros, vadinamos svorinėmis multiabiliomis. Jos sudarytos iš komponenčių, priklausančių aiške \(\mathcal{P} \), kurioje yra \(\pi(j) \) elementų, o pastaroji seka tenkina aprėkutumo sąlygą. Tegu \(\sigma \) yra \(n \) svorio multiiba, paimta su vienoda tikimybė, ir \(k_j(\sigma) - \) svorio \(j \) komponenčių skaičius joje, \(1 \leq j \leq n \). Apibrėžkite atsitiktinį vektorių \(\mathbf{k}(\sigma) = (k_1(\sigma), \ldots, k_r(\sigma)), 1 \leq r \leq n \), išstiriate jo skirstinio pilnosios variacijos atstumą nuo atitinkamo nepriklausomo koordinacinių vektoriaus. Rezultatas panaudojus adityvųjų funkcijų centrinės ribinės teoremos įrodymo.

Raktiniai žodžiai: atsitiktinės kombinatorinės struktūros, svorinės multiabilės, neigiamasis binominis skirstinys.

Liet. matem. rink. *Proc. LMS, Ser. A*, 53, 2012, 66–71.