Research Paper

Repeatability and Reproducibility of Macular Thickness Measurements Using Optical Coherence Tomography (OCT) in Normal Eyes Before and After Pupil Dilation

Yousef Alizadeh1*, Maryam Dourandeesh1, Hassan Behboudi1, Shila Kianmehr1, Ehsan Kazemnezhad leyli1, Nooshin Nimasa1

Background: Optical coherence tomography (OCT) is one of the most valuable imaging techniques in the evaluation of macula. The repeatability and reproducibility of OCT are of crucial importance in reassuring this tool’s efficacy in evaluating the structure of the retina.

Objective: This study aims to investigate the repeatability and reproducibility of OCT in measuring the macular thickness in normal eyes before and after pupil dilation.

Methods: A total of 44 eyes of healthy individuals in the age range of 20 to 50 years were employed for the measurement of macular thickness in the central 6 mm using the Cirrus SD-OCT tool.

Results: According to ICC, the repeatability of macular thickness was 0.95 (95% CI, 0.95 - 0.96). The mean macular thickness before and after pupil dilation was statistically significant in the nasal quadrant of the outer 6 mm ring (N2) and the inferior quadrant of the outer 6 mm ring (I2) (P=0.0001). The highest repeatability before and after pupil dilation was seen in the nasal quadrant of the inner 3 mm ring (N1) and the central ring (C), respectively.

Conclusion: This study shows that measuring the macular thickness using the Spectral domain cirrus OCT (SD-OCT) has acceptable repeatability and reproducibility. Since the absolute value of the mean difference between the three measurements in the N2 and I2 regions was statistically significant, using a single method (i.e., whether to apply the eye drop) is preferable for follow-ups in cases where the measurements are needed within 3 to 6 mm in center of the macula.

Keywords: Optimal coherence tomography, Repeatability, Reproducibility, Pupillary dilatation, Macula

ABSTRACT

Received: 01 Jan 2022
Accepted: 15 Jun 2022
Available Online: 01 Oct 2022

* Corresponding Author:
Maryam Dourandeesh
Address: Eye Research Center, Department of Eye, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran.
Tel: +98 (13) 33236886
E-Mail: maryam.dourandeesh.dl@gmail.com
Extended Abstract

Introduction

Optical coherence tomography (OCT) is one of the most valuable imaging techniques for retinal assessment. It can be used to investigate different layers of the retina, especially in the posterior pole. OCT is widely used to measure macular thickness. Changes in macular thickness occur in various diseases, including diabetes, retinal vein occlusion, age-related macular degeneration (AMD), and Alzheimer disease. Accurate clinical assessment of macular thickness is not possible without advanced imaging methods, which indicates the necessity of this technique in the retinal examination of systemic diseases. The repeatability and reproducibility of imaging instruments play a vital role in their credibility in clinical applications. Since cirrus spectral domain OCT (SD-OCT) is one of the prevalent imaging instruments used in Iran, we have decided to investigate its repeatability and reproducibility in measuring the macular thickness in normal eyes before and after pupil dilation.

Methods

A total of 44 eyes from 44 healthy subjects in the age range of 20 to 50 years with refractive error less than -6 diopters and astigmatism less than -3 diopters were enrolled in this study. Patients with the following signs or symptoms were excluded from the research: having a history of ocular trauma or surgery and any ocular disease, best corrected visual acuity less than 20/20 in one of the eyes, refractive error greater than 6 diopters, astigmatism greater than 3 diopters in both eyes, closed angle in one of the eyes, any retinal abnormality in the macula of both eyes, abnormal examination of the anterior and posterior segment in one of the eyes, exposure to photosensitizers in the last 14 days, contraindication or sensitivity to 1% tropicamide drops, and unable to sit behind the OCT device. All subjects underwent the macular thickness measurement covering the central 6 mm ring using the Cirrus SD-OCT machine (512×128 protocol). An examiner performed 3 scans before and after the pupil dilation using tropicamide 1%. The intraclass correlation coefficient (ICC), 95% confidence interval (CI), and the Bland and Altman tests were used for analyzing the data and assessing the repeatability and reproducibility of the Cirrus SD-OCT macular thickness measurements.

Results

According to ICC, the repeatability of macular thickness was 0.95 (95% CI, 0.95 - 0.96). The mean macular thickness before and after pupil dilation was statistically significant in the nasal quadrant of the outer 6 mm ring (N2) and the inferior quadrant of the outer 6 mm ring (I2). The highest repeatability before and after pupil dilation was seen in the nasal quadrant of the inner 3 mm ring (N1) and the central ring (C), respectively. The measurement error in 3 repetitions was 11.27±0.18 μm and in repetitions before, and after the pupil dilation, the error was 12.57±1.97 μm. The limits of agreement for macular thickness measurements were -21.92 to -22.29, and the limits of agreement for macular thickness measurements before and after pupil dilation was -26.62 to 22.62, indicating approximately equal limits of agreement.

Discussion

The findings of this study indicate that the repeatability and reproducibility of the Cirrus SD-OCT tool for measuring macular thickness are acceptable. It can be used with acceptable repeatability and reproducibility in macular thickness measurement in 20- to 50-year-old patients with refractive error of fewer than 6 diopters and astigmatism of fewer than 3 diopters. Since the absolute value of the mean difference between the three measurements in the N2 and I2 regions was statistically significant, using a single method (i.e., whether to apply the eye drop) is preferable for follow-ups in cases where the measurements are needed within 3 to 6 mm in center of the macula.

Ethical Considerations

Compliance with ethical guidelines

Ethical approval for the study was obtained by the Gilan University of Medical Sciences (GUMS) Research Ethics Committee and the study adhered to the tenets of the World Medical Association Declaration of Helsinki. The participants were allowed to leave the study whenever they wished. Also, all participants were aware of the research process and their information was kept confidential.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.
Authors’ contributions

Study concept and design: Yousef Alizadeh, Maryam Dourandeesh; Data Acquisition, analysis, or interpretation: Yousef Alizadeh, Maryam Dourandeesh, Ehsan Kazemnazhad Leyli, Nooshin Nimasa; Drafting of the manuscript: Yousef Alizadeh, Maryam Dourandeesh, Shila Kianmehr, Nooshin Nimasa; Critical revision of the manuscript for important intellectual content: Yousef Alizadeh, Maryam Dourandeesh, Hassan Behboudi, Shila Kianmehr; Statistical analysis: Yousef Alizadeh, Ehsan Kazemnazhad Leyli; Obtained funding: Yousef Alizadeh; Administrative, technical, or material support: Yousef Alizadeh; Study supervision: Maryam Dourandeesh.

Conflicts of interest

We state that our only interest is academic and we have no financial interest in this publication and our research is not funded by any organization. The authors declare no conflict of interest.
مقاله پژوهشی

Spectral Domain Optical Coherence Tomography

پایسی پایایی و تکرارپذیری دستگاه

در اندازه‌گیری ضخامت ماکولا در چشم‌های طبيعي قبل و بعد از گشاد کردن مردمک

یوسف علیزاده, مریم دوراندیش, حسن بهبودی, شیلا کیان‌مهر, احسان کازم‌يالی, نوشي نیما

1. مرکز تحقیقات چشم گروه بهبود امپراطوریان گروه ژنتیکی، مراکز طبیعی پژوهشی گیلان، رشت، ایران.

key words: Optical Coherence Tomography, Repeatability, Reproducibility, Macular Thickness Measurements, Normal Eyes, Pupil Dilation.

Citation: Alizadeh Y, Dourandeesh M, Behboudi H, Kianmehr Sh, Kazemnezhad leyli E, Nimasa N. Repeatability and Reproducibility of Macular Thickness Measurements Using Optical Coherence Tomography (OCT) in Normal Eyes Before and After Pupil Dilation. *Journal of Guilan University of Medical Sciences*. 2022; 31(3):180-191. https://doi.org/10.32598/JGUMS.31.3.1911.1

Use your device to scan and read the article online.
این مطالعه به صورت ارزیابی آزمون‌های تکرارپذیری انجام شد. برای بررسی توافق اندازه‌گیری ضخامت ماکولا قبل و بعد از گشادکردن، افراد با سابقه تروما یا جراحی یا بیماری‌های سیستمیک و چشمی، به گیلیاکی یا دیابت، این مطالعه با استفاده از دستگاه OCT انجام شد. برای بررسی توافق اندازه‌گیری ضخامت ماکولا قبل و بعد از گشادکردن، افراد با سابقه تروما یا جراحی یا بیماری‌های سیستمیک و چشمی، به گیلیاکی یا دیابت، این مطالعه با استفاده از دستگاه OCT انجام شد.

مقدمه

این مطالعه به صورت در دانشگاه علوم پزشکی انجام شد. برای بررسی توافق اندازه‌گیری ضخامت ماکولا قبل و بعد از گشادکردن، افراد با سابقه تروما یا جراحی یا بیماری‌های سیستمیک و چشمی، به گیلیاکی یا دیابت، این مطالعه با استفاده از دستگاه OCT انجام شد.
اسمیرنف استفاده شد. همچنین نمودارل‌های گله‌ای از چهار گونه از پایه‌ای و تکرارپذیری ضخامت‌ها با استفاده از دستگاه OCT گرفته شده است.

پایه‌ای و تکرارپذیری ضخامت‌ها با استفاده از دستگاه OCT

در مجموع 33 تصویر (از 34 فرد در دو طرف) با میانگین سنی 31.3 (20 تا 50 سال) وارد مطالعه شدند. OCT(5/037 متر) از اندازه‌گیری ماتهای و با استفاده از دستگاه میکروسکوپیک، هر تصویر گرفته شده است.

جدول شماره 1 میزان‌ها مکولا در هر بار اندازه‌گیری در شیلی‌های و صربک که با استفاده از 128 میکرون، پروتکل 10 میکرون و رزولوشن 4000 مدل scan 128 در 512 میکرون کاراکترهای تکرارپذیری از آن ایجاد شد. هر صورت از سمت تحتانی، سمت فوقانی و سمت تمپورال، سمت نازال و سمت نزدیک فووتا از مردمک، تست و تست هماهنگی استفاده شد. مردمک را در صورت تکرارپذیری صورت گرفته است. در بسته‌های فووتا، تکرارپذیری از سمت نزدیک، فووتا سمت تحتانی و فووتا سمت فوقانی، با سمت تمپورال و سمت نزدیک سمت تحتانی، تست و تست هماهنگی صورت گرفته است.

در صورت تکرارپذیری از سمت تحتانی و سمت فوقانی، تست و تست هماهنگی صورت گرفته است. در صورت تکرارپذیری از سمت تحتانی و سمت تمپورال، تست و تست هماهنگی صورت گرفته است. در صورت تکرارپذیری از سمت تحتانی و سمت نزدیک، تست و تست هماهنگی صورت گرفته است. در صورت تکرارپذیری از سمت فوقانی و سمت تمپورال، تست و تست هماهنگی صورت گرفته است. در صورت تکرارپذیری از سمت فوقانی و سمت نزدیک، تست و تست هماهنگی صورت گرفته است. در صورت تکرارپذیری از سمت تمپورال و سمت نزدیک، تست و تست هماهنگی صورت گرفته است.

جدول شماره 1 میزان‌ها مکولا در هر بار اندازه‌گیری در شیلی‌های و صربک که با استفاده از 128 میکرون، پروتکل 10 میکرون و رزولوشن 4000 مدل scan 128 در 512 میکرون کاراکترهای تکرارپذیری از آن ایجاد شد. هر صورت از سمت تحتانی، سمت فوقانی و سمت تمپورال، سمت نازال و سمت نزدیک فووتا از مردمک، تست و تست هماهنگی استفاده شد. مردمک را در صورت تکرارپذیری صورت گرفته است. در بسته‌های فووتا، تکرارپذیری از سمت تحتانی، سمت فوقانی و سمت تمپورال، سمت نازال و سمت نزدیک سمت تحتانی، تست و تست هماهنگی صورت گرفته است.

در بسته‌های فووتا، تکرارپذیری از سمت تحتانی و سمت فوقانی، تست و تست هماهنگی صورت گرفته است. در بسته‌های فووتا، تکرارپذیری از سمت تحتانی و سمت تمپورال، تست و تست هماهنگی صورت گرفته است. در بسته‌های فووتا، تکرارپذیری از سمت تحتانی و سمت نزدیک، تست و تست هماهنگی صورت گرفته است. در بسته‌های فووتا، تکرارپذیری از سمت فوقانی و سمت تمپورال، تست و تست هماهنگی صورت گرفته است. در بسته‌های فووتا، تکرارپذیری از سمت فوقانی و سمت نزدیک، تست و تست هماهنگی صورت گرفته است. در بسته‌های فووتا، تکرارپذیری از سمت تمپورال و سمت نزدیک، تست و تست هماهنگی صورت گرفته است.

جدول شماره 1 میزان‌ها مکولا در هر بار اندازه‌گیری در شیلی‌های و صربک که با استفاده از 128 میکرون، پروتکل 10 میکرون و رزولوشن 4000 مدل scan 128 در 512 میکرون کاراکترهای تکرارپذیری از آن ایجاد شد. هر صورت از سمت تحتانی، سمت فوقانی و سمت تمپورال، سمت نازال و سمت نزدیک فووتا از مردمک، تست و تست هماهنگی استفاده شد. مردمک را در صورت تکرارپذیری صورت گرفته است. در بسته‌های فووتا، تکرارپذیری از سمت تحتانی، سمت فوقانی و سمت تمپورال، سمت نازال و سمت نزدیک سمت تحتانی، تست و تست هماهنگی صورت گرفته است.
تعیین شماره 31. دوره 1401 پاییز

در 3 تکرار، میزان خطای اندازه‌گیری برابر با ± 18/18 میکرون و در این تکرارهای قبل و بعد ریختن قطره مردمک، میزان خطای اندازه‌گیری برابر با ± 17/17 میکرون و در این تکرارهای قبل و بعد ریختن قطره مردمک در ناحیه 3/3 تکرارپذیری برابر با ± 3/3 میکرون و کمترین تکرارپذیری در ناحیه 8/87 میکرون و کمترین خطای اندازه‌گیری در ناحیه 1/1. بیشترین پایایی در ناحیه 1/1 دیده شد. همچنین در بررسی پایایی نتایج قبل و پس از ریختن قطره، بیشترین پایایی در ناحیه 3/3 میکرون و کمترین پایایی در ناحیه 4/45 میکرون مشاهده شد. حد توافق تکرارپذیری ضخامت ماکولا بین 22/22 تا 21/21، حد توافق پایایی اندازه‌گیری ضخامت ماکولا بین 26/26 تا 25/25 مشاهده شد. تقریباً میزان توافق یکسانی دارند.

تعریف شماره 1، 2، 3، 4، 5 و 6 ترکیبات مواد و شیمیایی ضخامت ماکولا برابر با قدر مطلق میانگین خطای اندازه‌گیری ضخامت ماکولا در هر فیلد (میکرون) قبل و بعد از ریختن قطره دیده شد. همچنین در نوبت دوم، تعریف شماره 1، 2، 3، 4، 5 و 6 ترکیبات مواد و شیمیایی ضخامت ماکولا برابر با قدر مطلق میانگین خطای اندازه‌گیری ضخامت ماکولا در هر فیلد (میکرون) قبل و بعد از ریختن قطره نشان می‌دهد.

جدول شماره 3. میکروک و انحراف معیار و شرایط ضخامت ماکولا به تفکیک نواحی نه گانه و تکرارها (تکرار اول، تکرار دوم، تکرار سوم) قبل و پس از ریختن قطره (میکرون)

میکرون	شرایط ضخامت ماکولا (CV)	قبل از گشاد کردن مردمک (میکرون)	انحراف معیار ±	میانگین ضخامت تکرار اول	انحراف معیار ±	میانگین ضخامت تکرار دوم	انحراف معیار ±	میانگین ضخامت تکرار سوم	انحراف معیار ±
C	22/22	22/22	21/21	26/26	21/21	26/26	21/21	26/26	21/21
T1	22/22	22/22	21/21	26/26	21/21	26/26	21/21	26/26	21/21
S1	22/22	22/22	21/21	26/26	21/21	26/26	21/21	26/26	21/21
N1	22/22	22/22	21/21	26/26	21/21	26/26	21/21	26/26	21/21
T2	22/22	22/22	21/21	26/26	21/21	26/26	21/21	26/26	21/21
S2	22/22	22/22	21/21	26/26	21/21	26/26	21/21	26/26	21/21
N2	22/22	22/22	21/21	26/26	21/21	26/26	21/21	26/26	21/21
I1	22/22	22/22	21/21	26/26	21/21	26/26	21/21	26/26	21/21
S3	22/22	22/22	21/21	26/26	21/21	26/26	21/21	26/26	21/21
N3	22/22	22/22	21/21	26/26	21/21	26/26	21/21	26/26	21/21
I2	22/22	22/22	21/21	26/26	21/21	26/26	21/21	26/26	21/21
T3	22/22	22/22	21/21	26/26	21/21	26/26	21/21	26/26	21/21

CV: ضریب تغییر
تصویر ۳، نمودار بازه-آنتن منوزری ضخامت‌ها در نواحی خارج به ۱ میلی‌متر مرکزی ماکولا به تغییراتی می‌رسد.

کاربرد:

[1] یوسف علی‌زاده و همکاران. بررسی ضخامت ماکولا در چشم‌های طبیعی قبل و بعد از گشتاده‌سازی "OCT" در دانشگاه علوم پزشکی ایران.
بحث و نتایج گیری

در این مطالعه، پیشرفت در تکنیک انتشار امواج و ضبط آن‌ها در چشم‌های بیماران با استفاده از دستگاه Spectral domain Cirrus OCT ثبت شد.

چشم‌های بیماران در پایین‌ترین رده سنی (منابع: 40-60 سال) بیشتر در تکرارپذیری و پایایی تکنیک انتشار امواج شرکت داشتند.

نتایج این مطالعه نشان دهنده میزان تکرارپذیری ضخامت ماکولا در افراد واقعی و بیماران با استفاده از دستگاه Spectral domain Cirrus OCT در پایین‌ترین و بالاترین رده سنی بود.

در این مطالعه، پیشرفت در تکنیک انتشار امواج و ضبط آن‌ها در چشم‌های بیماران با استفاده از دستگاه Spectral domain Cirrus OCT ثبت شد.

چشم‌های بیماران در پایین‌ترین رده سنی (منابع: 40-60 سال) بیشتر در تکرارپذیری و پایایی تکنیک انتشار امواج شرکت داشتند.

نتایج این مطالعه نشان دهنده میزان تکرارپذیری ضخامت ماکولا در افراد واقعی و بیماران با استفاده از دستگاه Spectral domain Cirrus OCT در پایین‌ترین و بالاترین رده سنی بود.

در این مطالعه، پیشرفت در تکنیک انتشار امواج و ضبط آن‌ها در چشم‌های بیماران با استفاده از دستگاه Spectral domain Cirrus OCT ثبت شد.

چشم‌های بیماران در پایین‌ترین رده سنی (منابع: 40-60 سال) بیشتر در تکرارپذیری و پایایی تکنیک انتشار امواج شرکت داشتند.

نتایج این مطالعه نشان دهنده میزان تکرارپذیری ضخامت ماکولا در افراد واقعی و بیماران با استفاده از دستگاه Spectral domain Cirrus OCT در پایین‌ترین و بالاترین رده سنی بود.
در بحثی در مورد تأیید کمیته اخلاق علمی هستند، جدا از اینکه تحقیق در دانشگاه علوم پزشکی گیلان قرار گرفته است، در این مطالعه کلیه اصول و استانداردهای کمیته ملی اخلاق رعایت شده است. پیشنهاد یک تحقیق را که باید جبران کنندگان اجرا باشد کرد تا تأیید داده شود. شرکت کنندگان باید اجازه حضور در مطالعه را داشته باشند. همچنین همه اطلاعات در جریان پژوهش پوره و اطمینان آنها لازم محسوم به طور دامنه‌ای تجدید می‌شود. حاضر مالی این مطالعه حقوقی و مالی ندارد.

مشارکت كنندگان

مفهوم و طراحی مطالعه: مریم دوراندیش، یوسف علیزاده؛ کسب، تحلیل و تفسیر داده‌ها: مریم دوراندیش، یوسف علیزاده، احسان كاظم نژاد لیلی، نوشین نیماسا؛ تهیه پیش نویس دست نوشته: یوسف علیزاده، حسن بهبودی، مریم دوراندیش، شیلا كیانمهر، نوشین نیماسا؛ تهیه متون نقدی: مریم دوراندیش، حسن بهبودی، مریم دوراندیش، شیلا كیانمهر؛ تهیه آماری: یوسف علیزاده، احسان کاظم نژاد لیلی؛ جمع‌بندی مطالب: یوسف علیزاده، حسن بهبودی، مریم دوراندیش، یوسف علیزاده، احسان کاظم نژاد لیلی.

تعارض منافع

بنابر اظهار نویسندگان، این مقاله تعارض منافع ندارد.
References

[1] Bressler SB, Edwards AR, Andreoli CM, Edwards PA, Glassman AR, Jaffe GJ, et al. Reproducibility of optical coherence tomography for the measurement of macular thickness. Investigative Ophthalmology & Visual Science. 2005; 46(10):3558-69. [DOI:10.1167/iovs.04-1217] [PMID:16070662] [PMCID:PMC403612]

[2] Tepelus TC, Hariri AH, Balasubramanian S, Sadda SR. Reproducibility of macular thickness measurements in eyes affected by dry age-related macular degeneration from two different optical coherence tomography instruments. Ophthalmic Surgery Lasers & Imaging Retina. 2010; 41(9):410-5. [DOI:10.3928/23258160-20100901-03] [PMID:19656235] [PMCID:PMC2983724]

[3] Hong S, Kim CY, Lee WS, Seong GJ. Reproducibility of optical coherence tomography for macular thickness measurements in patients with age-related macular degeneration. Journal of Microscopy and Imaging Research. 2012; 2(1):1-6. [DOI:10.4172/2157-7431.1000102] [PMID:23208650] [PMCID:PMC3609309]

[4] Parravano M, Oddone F, Boccassini B, Menchini F, Chiarelli M, Schiavone M, et al. Reproducibility of macular thickness measurements using Cirrus optical coherence tomography in normal eyes. Japanese Journal of Ophthalmology. 2010; 54(1):43-7. [DOI:10.1007/s10488-009-0766-8] [PMID:19988575] [PMCID:PMC2813456]

[5] Alizadeh Y, Panjpanah MR, Mohammadi MJ, Beboudi H, Kazemnejad Leili E. Reproducibility of optical coherence tomography for macular thickness measurements before and after pupil dilation. Journal of Ophthalmic & Vision Research. 2014; 9(1):38. [DOI:10.1040/jovr.2014.01.01] [PMID:24742994] [PMCID:PMC4036116]

[6] Kakinoki M, Sawada O, Sawada T, Kawamura H, Ohji M. Comparison of macular thickness before and after pupil dilation using optical coherence tomography. Journal of Ophthalmic & Vision Research. 2009; 4(2):135-40. [DOI:10.3928/23258160-20090301-09] [PMID:19020708] [PMCID:PMC2706642]

[7] Bruce A, Pacey IE, Dharri P, Scally AJ, Barrett BT. Reproducibility and reproducibility of macular thickness measurements using Fourier-domain optical coherence tomography. The Open Ophthalmology Journal. 2009; 3:10-4. [DOI:10.2174/18743641090301010] [PMID:19453700] [PMCID:PMC2767082]

[8] Muscat S, Parks S, Kemp E, Keating D. Repeatability and reproducibility of macular thickness measurements with the Humphrey OCT system. Investigative Ophthalmology & Visual Science. 2002; 43(2):490-5. [PMID:11938308] [PMCID:PMC11938308]

[9] Massa G, Vidotti V, Cremasco F, Lupinacci A, Costa V. Influence of pupil dilation on retinal nerve fibre layer measurements with spectral domain OCT. Eye. 2010; 24(9):1498-502. [DOI:10.1038/eye.2010.72] [PMID:20420005] [PMCID:PMC2945117]

[10] Savini G, Carbonelli M, Parisi V, Barboni P. Effect of pupil dilation on retinal nerve fibre layer thickness measurements and their repeatability with Cirrus OCT. Eye. 2010; 24(9):1503-8. [DOI:10.1038/eye.2010.66] [PMID:20420006] [PMCID:PMC2945118]

[11] Smith M, Frost A, Graham CM, Shaw S. Effect of pupillary dilatation on glaucoma assessments using optical coherence tomography. British Journal of Ophthalmology. 2007; 91(12):1686-90. [DOI:10.1136/bjo.2006.113343] [PMID:18087893] [PMCID:PMC2021147]

[12] Huang J, Liu X, Wu Z, Xiao H, Dustin L, Sadda S. Macular thickness measurements in normal eyes with time domain and spectral domain optical coherence tomography. Retina. 2009; 29(7):980-7. [DOI:10.1097/IAE.0b013e3181a2c1a7] [PMID:19592139] [PMCID:PMC2021148]

[13] Leung CK-S, Cheung CY-L, Weinreb RN, Lee G, Lin D, Pang CP, et al. Comparison of macular thickness measurements between time-domain and spectral-domain optical coherence tomography. Investigative Ophthalmology & Visual Science. 2008; 49(11):4893-7. [DOI:10.1167/iovs.07-1326] [PMID:18865165] [PMCID:PMC2269146]

[14] Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, et al. Reproducibility of macular thickness measurements using Cirrus optical coherence tomography instruments. Investigative Ophthalmology & Visual Science. 2004; 45(6):1716-24. [DOI:10.1167/iovs.03-0514] [PMID:15096928] [PMCID:PMC4036111]

[15] Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Investigative Ophthalmology & Visual Science. 2009; 50(7):3432-7. [DOI:10.1167/iovs.08-2970] [PMID:19401384] [PMCID:PMC2483776]

[16] Hsu SY, Wu YK, Tsai RK. The repeatability of retinal nerve fibre layer and macular thickness measurements before and after pupillary dilation using optical coherence tomography. Tzu Chi Medical Journal. 2006; 18(2):109-12. [Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1576173/]

[17] Garcia-Martín E, Pinilla I, Idoipe M, Fuertes I, Pueyo V. Intra and interoperator reproducibility of retinal nerve fibre and macular thickness measurements using Cirrus fourier-domain OCT. Acta Ophthalmologica. 2011; 89(1):e23-9. [DOI:10.1111/j.1755-3768.2010.02045.x] [PMID:20736856] [PMCID:PMC2950229]

[18] Polito A, Del Borrello M, Isola M, Zemella N, Bandello F. Repeatability and reproducibility of fast macular thickness mapping with stratus optical coherence tomography. Archives of Ophthalmology. 2005; 123(10):1330-7. [DOI:10.1001/archopht.123.10.1330] [PMID:16221778] [PMCID:PMC16221778]

[19] Bressler SB, Edwards AR, Chalam KV, Bressler NM, Glassman AR, Jaffe GJ, et al. Reproducibility of spectral-domain optical coherence tomography of retinal thickness measurements and conversion to equivalent time-domain metrics in diabetic macular edema. JAMA Ophthalmology. 2014; 132(9):1113-22. [DOI:10.1001/jamaophthalmol.2014.1698] [PMID:25205616] [PMCID:PMC4303441]

[20] Fiore T, Androudi S, Iaccheri B, Lupidi M, Fabrizio G, Fruttini D, et al. Repeatability and reproducibility of retinal thickness measurements in diabetic patients with spectral domain optical coherence tomography. Current Eye Research. 2013; 38(6):674-9. [DOI:10.3109/02713683.2013.781191] [PMID:24067809] [PMCID:PMC3809136]

[21] Sood A, Paliwal MO, Mishra RY. Reproducibility of retinal nerve fiber layer and macular thickness measurements using spectral domain optical coherence tomography. Galician Medical Journal. 2021; 28(4):E202147. [DOI:10.21802/gmj.2021.4.7] [PMID:34236000] [PMCID:PMC8574591]
