The Contribution of SPECT/CT Bone Scintigraphy in the Localization of an Infective (Purulent) Sacroiliitis – A Case Report

Nevena Manevska1,2, Neron Popovski2, Tanja Makazlieva1, Hristina Popovska3, Aleksandra Pesevska-Todorcevska1, Sinisa Stojanoski1,4

1 Institute of Pathophysiology and Nuclear medicine, Acad. Isak S. Tadzer, Medical faculty, University of Ss Cyril and Methodius, Skopje, Republic of Macedonia; 2 University Clinic of Ortopedics, Medical faculty, University of Ss Cyril and Methodius, Skopje, Republic of Macedonia; 3 University Clinic of Neurology, Medical faculty, University of Ss Cyril and Methodius, Skopje, Republic of Macedonia; 4 Lazarski University, Medical faculty, Warsaw, Poland

Abstract

BACKGROUND: Infectious sacroiliitis (ISI) is an inflammation of one or both of the sacroiliac (SI) joints, relatively rare disorder, affecting between 1% and 2% of all patients with septic arthritis. The variety of symptom presentation makes the diagnosis quite challenging. Combination of laboratory hematological tests, together with diagnostic imaging tools, such as magnetic resonance imaging (MRI), computed tomography (CT), and bone scan (BS), as well as microbiological tests contribute the final diagnosis, which may take up to several months.

CASE REPORT: We present a case of a 33-year-old male patient with a history of lower back pain with propagation of the pain in the right leg, accompanied by febrility and hematuria. Laboratory tests showed high values of C-reactive protein, high degradation products and hyperkalemia, leading to a diagnose of acute renal failure stage 3. MRI of the lower spine and pelvis revealed hetero-signal change more to the right where the spinal canal was expanded, accumulating contrast and involved the caudate and the right radix. The displayed sequences were accompanied by an altered morphology of the spinal musculature, with intense accumulation of contrast in parts of the muscle. Paravertebral abscess was detected in the intercaudal and iliac muscles, along with inflammatory edema of the right hip and even death [3].

Introduction

Infectious sacroiliitis (ISI) is an inflammation of one or both of the sacroiliac (SI) joint, a relatively rare disorder, affecting between 1% and 2% of all patients with septic arthritis [1]. It can be caused by traumatic injury, arthritis, infection, pregnancy, or immunosupression. The poor vascularization of the joint results in a low risk of infection through the hematogenous route. The variety of symptom presentation (lower back pain, lumboguteal, abdominal, hip and/or posterior thigh pain, along with moving difficulty on the affected side), furthermore with the lack of symptom specificity and lack of knowledge of the diagnostic procedure, make the diagnosis quite challenging [1],[2].

Combination of laboratory hematological tests, together with diagnostic imaging tools such as magnetic resonance imaging (MRI), computed tomography (CT), and bone scan (BS), as well as microbiological tests contribute the final diagnosis, which may take up to several months. This disease is often accompanied by severe complications arising from the late diagnosis such as abscess or sequestrum formation, prolonged period of sepsis, long-term joint deformity or disability, and even death [3].

Case Report

We present a 33-year-old male patient with a history of lower back pain, with propagation of the pain in the right leg, accompanied by febrility and hematuria. The urologist thought of a bacterial uroinfection and prescribed non-steroid anti-inflammatory medication and antibiotic. Three weeks after, due to worsening of the symptoms (melena, fatigue and nausea) the patient was admitted to the hospital. Laboratory test showed high values of C-reactive protein (CRP),
Table 1: Laboratory findings during hospitalization

Year	2018	2019	2020	2021	2022
WBC	29.05	30.06	32.09	34.06	35.06
Lymphocytes	7.5	5.5	8.3	5.6	5.4
RBC	8.0	17.5	10.7	1.1	23.3
Hemoglobin	86	89	90	91	95
Hematocrit	0.237	0.286	0.263	0.266	0.284
AP	367.22	191.44	262.08	187.9	169.06
AST	83.92	37.78	35.38	32.98	20.85
ALT	128.64	86.32	81.87	64.07	46.29
Urea	13.31	3.06	3.53	1.84	3.5
Creatinine	169.77	98.49	91.71	60.19	59.27
Uric acid	466.1	230.37	211.65	222.7	277.65
CRP	125.03	67.66	165.59	52.91	38.1
ESR	78	78	80	80	80
Albumin	37.25	33.62	30.76	30.88	33.59
Globulin	72.44	62.28	57.45	56.81	59.36
WBC	10.03	9.06	8.8	3.2	2.0
RBC	10.03	9.06	8.8	3.2	2.0
Hemoglobin	10.03	9.06	8.8	3.2	2.0
Hematocrit	10.03	9.06	8.8	3.2	2.0

Table 2: Sacroiliac index (average and total counts)

ROI counts	ROI left SIJ	ROI left SIJ	ROI left aurum
Average counts	26,301	19,355	13,516
Total counts	71,376,576	32,137,933	22,881,484

Figure 1: Magnetic resonance imaging of the lumbar spine and pelvic region

The patient underwent surgical intervention for drainage of the paravertebral abscess. The drainage was performed with left paravertebral skin incision and deep tissue dissection reaching the left SI joint. There were no skin fistulas present. The abscess pocket was recognized and drainage was made. Generous tissue irrigation was performed with saline solution and 10% iodine solution. Deep tissue drain was placed with active suction. The wound was closed by layers. The drain was not removed until full stop of the drainage. Staphylococcus aureus biopsy was taken from the paravertebral region and it showed regular skeletal muscle fragments, hyalinized connective tissue fragments as well as a skeletal cylinder where endomysium bundles showed proliferative connective tissue with chronic inflammatory infiltration, organized dominantly perivascular, CD3+ and CD4+.

Figure 2: Magnetic resonance imaging of the lumbar spine and pelvic region

Table 2: Sacroiliac index (average and total counts)

ROI counts	ROI left SIJ	ROI left SIJ	ROI left aurum
Average counts	26,301	19,355	13,516
Total counts	71,376,576	32,137,933	22,881,484

The patient underwent surgical intervention for drainage of the paravertebral abscess. The drainage was performed with left paravertebral skin incision and deep tissue dissection reaching the left SI joint. There were no skin fistulas present. The abscess pocket was recognized and drainage was made. Generous tissue irrigation was performed with saline solution and 10% iodine solution. Deep tissue drain was placed with active suction. The wound was closed by layers. The drain was not removed until full stop of the drainage. Staphylococcus aureus
Figure 2: Bone scan (vascular and pool phase), right SI joint (yellow arrow)
Figure 3: Bone scan (late static images), right SI joint (yellow arrow)
C - Case Reports Case Report in Internal Medicine

was isolated. He had i.v antibiotics for 10 days in the post-operative period during hospitalization. He was discharged from the hospital with less pain and advised to continue the antibiotic treatment in the next 6 weeks per os. He was still unable to bear weight, so he was advised to use crutches for the next month. Gradually, clinically and laboratory his condition was getting better, with lowering of the CRP. On the follow-up, three months after, he was pain free and walking without crutches.

Discussion

ISI is considered to be an uncommon condition. It can be seen in patients of any age mainly in elderly, with higher incidence in female than male patients [2]. Infectious arthritis of any joint has a prevalence of 2–10 per 100,000 people. In 50% of cases, the knee is the joint most commonly affected, followed by the hip, shoulder, and elbow [4].

A good anamnesis and some clinical factors may guide the bacteriological investigation. Polynuclear neutrophil leukocytosis in addition to increased levels of CRP and ESR are standard features of ISI, while being inconsistent and non-specific. The definitive microbiological diagnosis may be based on blood cultures, joint fluid by CT-guided percutaneous puncture or surgical investigations.

The underlying pathophysiology of ISI is thought to involve hematogenous spread of bacteria or local extension of adjacent soft tissue or bone infection. The most common isolated culprit is S. aureus; however, other bacteria can be identified as well such as Salmonella, Streptococcus, Brucella, Mycobacterium tuberculosis and Pseudomonas [5].

Our case showed young patient in the acute stage of the disease, immunocompromised patient, with acute renal insufficiency that showed isolated S. aureus from the surgical procedure.

In the study of Wu et al. in a 10-year period (1996–2005), 33 patients were diagnosed with pyogenic sacroiliitis. They had S. aureus, accounting for 80% of blood culture isolates in pediatric patients and 50% in adults. Group B Streptococcus and Salmonella species were cultured as well [2].

The retrospective study of Hermet included 39 ISI cases, diagnosed in French rheumatology departments. Sacroiliitis was confirmed bacteriologically or, in the absence of pathogenic agents, if clinical, biological, and radiological data were compatible with this diagnosis, having favorable evolution under antibiotic therapy [1].

For differentiating the nature of the sacroiliitis – infective from non-infective (inflammatory), three features may be present. Intense bone marrow edema may appear as a first sign in ISI with more intra-articular fluid. Afterward, involvement of the periarticular soft tissues with inflammation, particularly the iliac and gluteal muscles and periarticular fluid collection or abscess is the pathognomonic sign of an infective sacroiliitis [6].

Prominent SI joint uptake and the increased SI ratio in BS generally portray an advanced stage of sacroiliitis. However, the SI ratio measured in bone scintigraphy uses a rectangular region of interest that does not represent the accurate uptake of the SI joint and sacrum. Bone scintigraphy as a screening tool in diagnosis of sacroiliitis was performed in the ’90s, but the literature showed very low sensitivity of 52% in patients without radiographic changes and 66% in patients with ankylosing spondylitis and Grade 2 or 3 sacroiliitis [7].
Technetium (Tc-99m) BS is more sensitive for the diagnosis of ISI than plain radiography and may be positive as early as three days after the onset of symptoms. Gallium-67 citrate scanning was shown to demonstrate uptake positivity earlier than Tc-99m BC in a group of drug users with septic arthritis [8]. However, taking into consideration the low rates of sensitivity of the planar bone scintigraphy clinicians have limited the use of scintigraphy as a diagnostic differential tool in sacroiliitis patients. Since it is of great importance to differentiate the two entities of ISI and spondyloarthritis, while the therapeutic approach is different, MRI was accepted as a gold standard method for detection of ISI as well as follow-up of the patients (of their clinical results and/or additional result of the morphologic imaging method). When MRI gives low signal intensity on T1-weighted images and high signal intensity on T2-weighted images, then ISI is suspected. In our patient, MRI showed mild expansion of the infected SI joint space along with effusion and bone marrow edema on the joint surfaces, indicating active inflammation. Some features characterizing the sacroiliitis were described by Sturzenbecher and coauthors, such as subperiosteal infiltration, transcapsular infiltrations of juxtaarticular muscle layers on MRI [9].

In the chronic phase, MRI can show periarticular bone marrow reconversion, replacement of articular cartilage by pannus, bone erosion, subchondral sclerosis, joint space widening or narrowing, and ankylosis [10]. Our patient displayed altered morphology of the spinal musculature on the MRI with intense accumulation of contrast in parts of the muscle. CT however, can be helpful in visualizing associated abscesses and guiding arthrocentesis. The most frequent findings of sacroiliitis on CT are: joint space narrowing, subchondral sclerosis, bone erosions, and ankylosis.
In the case of our patient, MRI study showing big abscess and inflammatory edema of the SI joint, was in favor of sacroiliitis, but additionally bone SPECT/CT images were made, that confirmed the acute phase of the disease and also localized the infection of the SI joint on the right side, excluding other pathological accumulation (other sites of infection). Higher sensitivity of 85%, but lower specificity of 47% and positive predictive value of 60% of MRI for sacroiliitis was presented by Oostveen et al. [11]. One retrospective analysis of 9 patients, average age 27.3 years, diagnosed with acute pyogenic infection of the SI joint, showed positive MRI in all cases, while BS was positive in 6 cases [12]. Klein et al. stated that in six septic SI joints studied, all had positive MRI, five had positive gallium scans, three had positive CT scans, and one had a positive Tc-99m BS [13].

During the years, the new techniques of SPECT and furthermore the hybrid imaging of SPECT/CT increased the sensitivity of bone scintigraphy and the role of this imaging modality in sacroiliitis patients.

Cusi et al. used the hybrid imaging with SPECT/CT, investigated patients with peripartum pain lasting more than 2 years, and found metabolic alterations around the SI joint in patients with SI joint dysfunction and revealed 95% sensitivity and 99% specificity [14].

The role of imaging studies in the evaluation of patients with sacroiliitis is controversial. Sensitivity values were 25%, 47%, 69% and 97% and specificity values were 80%, 90%, 95% and 90% in quantitative bone scanning, 99mTc-BS, planar and SPECT bone imaging, respectively, when the clinical findings were considered as the “gold standard” [15].

Low specificity of bone scintigraphy in diagnosis of sacroiliitis, despite performing SPECT imaging was presented in the study of Koc. However, calculation of index values increased the specificity of scintigraphy, 73% versus 97% [16]. Our study also confirmed pathologic value of the SI index, on the side of the sacroiliitis.

In the study of Song et al., SPECT/CT compared with conventional BS was found to be more useful method to detect SI changes in early phase to differentiate the subtle changes of sacroiliitis by plain radiography in contrast to BS [7].

Additional benefit of the BS was presented in the study of Gheita, where BS was able to explain unrecognized articular and entheseal involvement in patients with septic arthritis [17].

The main disadvantages in performing a BS are: The inability to differentiate infectious from non-ISI, the inability to differentiate sacroiliitis from psoas or gluteal abscess, and the inability to identify spread of the infection from the joint into the surrounding tissues. Though, with the BS we performed in our patient we showed ISI that is localized in one location - the sacroiliac joint.

Recently, positron emission tomography/CT with fluorine-18 fluorodeoxyglucose appeared to be an interesting technique for the very early diagnosis of ISI, even before MRI reveals any abnormalities [1].

On the other hand, Battafarano et al. found higher sensitivity and specificity (100%) for detecting sacroiliitis with MRI Type I alterations, and, respectively 69% and 46%, in the evaluation of Type II alterations [18]. The main disadvantages of MRI are: high cost, low availability, and long duration of examination (30 min), although the latter is well tolerated by the majority of patients, in pediatric examinations included in the study.

Scott presented similar case of a young 21-year-old boy who was admitted at the emergency department due to left hip pain and inability to walk. MRI in T2 presented enhancing fluid in the left SI joint communicating with enhancing fluid anterior to the SI joint. Irregularity of the edges of SI joint was also noted [19].

So far, no consensus exists for duration of antibiotic treatment for ISI. The recommended duration of treatment is at least a 2-week course of IV antibiotics followed by a 6-week course of oral antibiotics [1].

Conclusion

The condition of ISI may be sometimes very difficult to be recognized in many patients. Considering the diversity of the clinical manifestations, it is of great importance to select the right imaging modality. The MRI plays an essential role in better demonstrating early alterations and inflammatory activity of the process. On the other hand, CT is superior in quantifying chronic alterations. The nuclear medicine technique three phase bone SPECT/CT has been suggested to improve the sensitivity and specificity of the BS, providing better characterization of equivocal lesions, especially in the acute form for disease localization.

References

1. Hermet M, Minichiello E, Dubost JJ, Allanore Y, Ziza JM, et al. Infectious sacroiliitis: A retrospective, multicentre study of 39 adults. BMC Infect Dis. 2012;12:305. https://doi.org/10.1186/1471-2334-12-305
PMid:23153120

2. Wu MS, Chang SS, Lee SH, Lee CC. Pyogenic sacroiliitis-a comparison between pediatric and adult patients. Rheumatology. 2017;46(11):1684-7. https://doi.org/10.1093/rheumatology/kem201
PMid:17901064

3. Cinar M, Sanal HT, Yilmaz S, Simsek I, Erdem H, Pay S, et al.
Radiological follow up of the evolution of inflammatory process in sacroiliac joint with magnetic resonance imaging: A case with pyogenic sacroiliitis. Case Rep Rheumatol. 2012;2012:509136. https://doi.org/10.1155/2012/509136
PMid:23050188

4. Abelson A. Septic Arthritis. Cleveland Clinic; 2010. Available from: http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/rheumatology/septic-arthritis. [Last accessed on 2016 Oct 28].

5. Malhotra A, Kalil R, Jones R, Schwartz D, Qadeer AH, Huang M, et al. Infectious sacroiliitis: A radiographic no touch lesion. J Gen Pract (Los Angel). 2017;5:336. https://doi.org/10.4172/2329-9126.1000336

6. Tsoi C, Griffith JF, Lee RK, Wong PC, Tam LS. Imaging of sacroiliitis: Current status, limitations and pitfalls. Quant Imaging Med Surg. 2019;9(2):318-335https://doi.org/10.21037/qims.2018.11.10
PMid:30976556

7. Song IH, Carrasco-Fernandez J, Rudwaleit M, Sieper J. The diagnostic value of scintigraphy in assessing sacroiliitis in ankylosing spondylitis: A systematic literature research. Ann Rheum Dis. 2008;67(11):1535-40. https://doi.org/10.1136/ard.2007.083089
PMid:18230629

8. Morsi A, Sallam A, Saoud A. Infectious sacroiliitis (ISI). World Spinal Column J. 2015;6(1): 27-35

9. Stürzenbecher A, Braun J, Paris S, Biedermann T, Hamm B, Bollow M. MR imaging of septic sacroiliitis. Skeletal Radiol. 2000;29(8):439-46. https://doi.org/10.1007/s002560000242
PMid:11026711

10. Ahmed H, Siam AE, Gouda-Mohamed GM, Boehm H. Surgical treatment of sacroiliac joint infection. J Orthopaed Traumatol 2013;14(2):121-9. https://doi.org/10.1007/s10195-013-0233-3
PMid:23558792

11. Oostveen J, Prevo R, den Boer J, van de Laar M. Early detection of sacroiliitis on magnetic resonance imaging and subsequent development of sacroiliitis on plain radiography. J Rheumatol. 1999;26(9):1953-8.

12. Doita M, Yoshiya S, Nabeshima Y, Tanase Y, Nishida K, Miyamoto H, et al. Acute pyogenic sacroiliitis without predisposing conditions. Spine (Phila Pa 1976). 2003;28(18):E384-9. https://doi.org/10.1097/01.brs.0000092481.42790.6f
PMid:14501940

13. Klein MA, Winalski CS, Wax MR, Piwnica-Worms DR. MR imaging of septic sacroiliitis. J Comput Assist Tomogr. 1991;15(1):126-32. https://doi.org/10.1097/00006749-199101000-00020
PMid:1987181

14. Cusi M, Saunders J, Van der Wall H, Fogelman I. Metabolic disturbances identified by SPECT-CT in patients with a clinical diagnosis of sacroiliac joint incompetence. Eur Spine J 2015;24(10):738-42. https://doi.org/10.1007/s00586-015-4286-8
PMid:26450548

15. Scott KR, Rising KL, Conlon LW. Infectious sacroiliitis. J Emerg Med. 2014;47(3):83-4.