Heuristic methods for job shop scheduling: Active schedule generation algorithm, non-delay schedule generation algorithm and heuristic schedule generation algorithm

M. Arul Zaini, Dwi Agustina Kurniawati*
Industrial Engineering Department, Faculty of Science and Engineering
Islamic State University Sunan Kalijaga
Marsda Adisucipto Yogyakarta, 55281, Indonesia
*Email: dwi.kurniawati@uin-suka.ac.id

Abstract. PT. Multi Citra Busana is one of the knitting material convection companies that has a good local scale marketing area where production scheduling is usually done based on the order of arrival of orders or first come first serve (FCFS). As a result, there are still some schedules that are not precise, causing a large make-span. In observations made on 5 products, the company requires a total production time (make-span) of 11 hours 54 minutes in completing production activities. In this research, scheduling evaluation is conducted to minimize make-span using the Active Schedule Generation algorithm, Non-delay Schedule Generation and Heuristic Schedule Generation algorithm. The approach used is to use a quantitative-comparative approach, namely research that compiles the calculation process to make comparisons between the results of the actual process with these methods. Through the Active Schedule Generation algorithm method, the value of make-span is 6 hours 26 minutes. Through the Non-delay Schedule Generation algorithm method, the value of make-span is 7 hours 1 minute. The Heuristic Schedule Generation algorithm method produces the smallest make-span value with a value of 6 hours 1 minute. Based on the comparison of the make-span values of the three methods used, it was concluded that the Heuristic Schedule Generation algorithm produced the smallest make-span valued at 20184.27 seconds or 6 hours 3 minutes shorter than the method applied by the company. Therefore, the Heuristic Schedule Generation algorithm method was chosen as the best method and can be applied in the company to minimize the make-span.

Keywords: job shop scheduling, non-delay schedule generation, heuristic schedule generation, active schedule generation, make-span.

1. Introduction
The effectiveness and efficiency of energy is important in the production mechanism [1]. Scheduling can be defined as an effort to organize activities or work with the aim of achieving efficient use of facilities, time, and costs [2,3]. In the production process at PT. Multi Citra Clothing only serves orders (make by order) and involves many machines in the process. In fulfilling the customer’s order, there are still machines that are unemployed while working on another job. The idle time of the machine that could have been used to do the jobs simultaneously was in vain so that there was often a delay in the completion of the job (make-span) time or exceeded the
maximum limit [4]. Make-span, which is the time required to complete all jobs in the shop, which consists of setup time between jobs and processing time per job [5]. Delay in fulfilling demand like this results in higher production costs because it takes longer to produce the product, the production schedule that should be able to run according to the plan finally changes and the loss is that consumer confidence in the company will decrease because it cannot fulfil orders in accordance with the time that has been set. Therefore, it is necessary to schedule each machine to minimize the amount and time of the delay. The reason why these methods were chosen is because this algorithm produces a fairly good scheduling sequence and is close to the optimal solution [6,7].

2. Method
Before the data is processed, the data that has been obtained is tested for the adequacy of the data first. To calculate the data adequacy test, use the equation 1 [8].

\[N' = \frac{\text{Range}}{x} \]

The value of \(N' \) is the amount of data that must be available and can be seen in the data sufficiency table and the condition used to determine the adequacy of the data is if \(N' < N \), then the data obtained is sufficient. But if \(N' > N \) data is not enough it is lacking and needs to be added to the data [8]. The data adequacy test formula is presented in equation 2 [8].

\[N' = \left(\frac{k}{s} \right) \sqrt{\frac{N \sum x^2 - (\sum x)^2}{\sum x}} \]

Where:
- \(k \) = Confidence level (99% = 3.95% = 2)
- \(s \) = Degree of accuracy
- \(N \) = Number of observational data
- \(N' \) = Amount of theoretical data
- \(\bar{x} \) = observational data

Meanwhile, if the data obtained is not sufficient, data retrieval will be carried out. Activities like this continue to be carried out until the data are sufficient and appropriate for further processing. After the data obtained is considered sufficient then a uniformity of data is tested to separate data that have different characteristics due to various influences and to ascertain whether the data collected is from the same system. The formulas used in testing data uniformity are following equation 3 to 5 [8].

\[UCL = \bar{x} + k\sigma \]
\[LCL = \bar{x} - k\sigma \]
\[\sigma = \sqrt{\frac{\sum(x - \bar{x})^2}{N - 1}} \]

Where:
- \(UCL \) = upper control limit
- \(LCL \) = lower control limit
- \(\bar{x} \) = average data value
- \(\sigma \) = standard deviation
- \(k \) = level of confidence
The data that has been tested is then calculated standard time or standard time. That is the actual time used by the operator to produce one unit of product type data (equation 6 and 7) [8]. Standard time can be obtained by applying the formula:

\[
\text{Standard Time} = \text{Normal Time} + (\text{Normal time} \times \% \text{ Allowence})
\]

\[
\text{Standard Time} = \text{Normal time} \times \frac{100}{100 - 100 \% \text{ Allowence}}
\]

After the data to be processed passes the adequacy and uniformity test of the data and the default time has been obtained, the next step that must be taken is to process the data using the methods used. In measuring the average cycle time, there are measurement steps that must be taken [6]. The stages of the research carried out in accordance with Figure 1.

3. Results and Discussion
After conducting research using the above research instruments, the following data collection was obtained. The data are shown in Table 1 and 2. For all methods, the calculation of each iteration of data processing is referring to the calculation in [9] and are shown in Table 3 to Table 5.

Table 1. Product data and production quantities
Name of Product

Sweater
T-Shirt
Jacket
Scarf
Tank Top

Table 2. Name, number and machine code data
Name of Machine

Cutting Machine
Sewing Machine
Embroidery Machine
Overlock Machine
Knitting Machine
Figure 1. Flow chart of research methodology

Start

Identification of Problem

Formulation of Problem

Literature Review

Data Collection
 - Product Data (Job)
 - Processing time data
 - Routing machine data
 - Production amount data
 - Machine data

Data Processing

Data adequacy Test
 - is the Data Enough?

Data Uniformity Test
 - is the Data uniform?

Standard Time
 - Turn Around time
 - Scheduling of actual conditions
 - Active Scheduling
 - Non-Delay Scheduling

Result and discussion

Conclusions

Finish
Based on calculations using the method of active schedule generation algorithm (Table 3), the value of make-span for the entire production process is 22527.79 seconds or 375.46 minutes. After calculating using the schedule generation non-delay algorithm method, there are 23 iterations (Table 4). Then the value of make-span for the entire production process is 24885.91 seconds or 414.77 minutes.

Table 3. Iteration of the active schedule generation algorithm method

Stage	Machine (Second)	St	Cj	tj	Rj	r*	m*	PSt
0	0	111	0.00	817.91	817.91	817.91	1	111
	211	0.00	2910.40	2910.40				
	311	0.00	4920.92	4920.92				
	415	0.00	3226.93	3226.93				
	511	0.00	825.89	825.89				
1	817.91	122	817.91	1754.71	2572.62	511		
	211	817.91	2910.40	3728.31				
	311	817.91	4920.92	5738.84				
	415	0.00	3226.93	3226.93				
	511	817.91	825.89	1643.80	511			
2	1643.80	122	1643.80	1754.71	3398.51	522		
	211	1643.80	2910.40	4554.20				
	311	1643.80	4920.92	6564.72				
	415	0.00	3226.93	3226.93				
	522	1643.80	1201.12	2844.92	2844.92	522		
3	1643.80	122	1643.80	1754.71	3398.51	415		
	211	1643.80	2910.40	4554.20				
	311	1643.80	4920.92	6564.72				
	415	0.00	3226.93	3226.93	3226.93	5		
	533	2844.92	1052.50	3897.42				
4	1643.80	122	1643.80	1754.71	3398.51	398.51	2	122
	211	1643.80	2910.40	4554.20				
	311	1643.80	4920.92	6564.72				
	421	3226.93	214.54	3441.47				
	533	2844.92	1052.50	3897.42				
Stage	Machine (Second)	St	Cj	tij	Rj	r*	m*	PST
-------	------------------	----	------	------	-----	-----	-----	------
0	0.00 0 0 0 0 0	111	0	817.91	817.91	817.91	1	111
		211	0	2910.40	2910.40			
		311	0	4920.92	4920.92			
		415	0	3226.93	3226.93			
		511	0	825.89	825.89			
1	817.91 0 0 0 0	122	817.91	1754.71	2572.62	415		
		211	817.91	2910.40	3728.31			
		311	817.91	4920.92	5738.84			
		415	0	3226.93	3226.93	0	5	
		511	817.91	825.89	1643.80			
2	817.91 0 0 0 3226.93	122	817.91	1754.71	2572.62	511		
		211	817.91	2910.40	3728.31			
		311	817.91	4920.92	5738.84			
		421	3226.93	214.54	3441.47			
		511	817.91	825.89	1643.80	817.91	1	
3	1643.80 0 0 0 3226.93	122	817.91	1754.71	2572.62	817.91	2	122
		211	1643.80	2910.40	4554.20			
		311	1643.80	4920.92	6564.72			
		421	3226.93	214.54	3441.47			
		522	1643.80	1201.12	2844.92			
Table 5. Iteration of schedule generation non-delay algorithm methods

stage	Machine (Second)	St	Cj	MWKR Priority	MWKR	PSt
0	0	0	0	0	0	0
	211	0	0	0	0	0
	311	0	0	19086.32	19086.32	311
	415	0	0	4140.14		
	511	0	0	5951.02		
1	4920.921	0	0	0	0	0
	211	0	0	0	0	0
	322	0	0	0	0	0
	415	0	0	0	0	0
	511	0	0	0	0	0
2	7831.318	0	0	0	0	0
	222	0	0	0	0	0
	322	0	0	0	0	0
	415	0	0	0	0	0
	511	0	0	0	0	0
3	8649.232	0	0	0	0	0
	222	0	0	0	0	0
	322	0	0	0	0	0
	415	0	0	0	0	0
	511	0	0	0	0	0
4	9475.12	0	0	0	0	0
	222	0	0	0	0	0
	322	0	0	0	0	0
	415	0	0	0	0	0

After calculating using the Heuristic Schedule Generation algorithm method, there are 23 iterations. The obtained value of *make-span* for the entire production process is 20184.27 seconds or 336.41 minutes.

Table 6. Sorting of actual job conditions

Machine	111	211	311	421	511
M1	111	211	311	421	511
M2	122	152	222	322	342
M3	143	243	353	432	522
M4	254	334	364	542	
M5	135	211	311	421	511
From the Table 6 it can be seen the sequence of work performed by each machine as follows:

- **M1:** J1 Op1 (1,1,1), continued J2 Op1 (2,1,1), continued J3 Op1 (3,1,1), continued J4 Op2 (4,2,1) and continued by J5 Op3 (5,1,1).
- **M2:** J1 Op2 (1,2,2), continued J1 Op5 (1,5,2), continued J2 Op2 (2,2,2), continued J3 Op2 (3,2,2), continued J3 Op4 (3,4,2), continued J4 Op3 (4,3,2), continued J5 Op2 (5,2,2), and ended with J5 Op4 (5,4,2).

The results of job sorting all methods of algorithm is following Table 7. We can see the sequence of work performed by each machine as follows:

- **M1:** J1 Op1 (1,1,1), continued J5 Op1 (5,1,1), continued J2 Op1 (2,1,1), continued J4 Op2 (4,2,1), continued J3 Op1 (3,1,1)
- **M2:** J5 Op2 (5,2,2), continued J1 Op2 (1,2,2), continued J4 Op3 (4,3,2), continued J5 Op4 (5,4,2), continued J1 Op5 (1,5,2), continued J2 Op2 (2,2,2), continued J3 Op2 (3,2,2), and ended with J3 Op4 (3,4,2)

Table 7. Job sorting method active schedule generation
Machine

M1
M2
M3
M4
M5

Table 8. Job Ordering Non-delay Schedule Generation Method
Machine

M1
M2
M3
M4
M5

From Table 8 it can be seen that the sequence of work performed by each machine is as follows:

- **M1:** J1 Op1 (1,1,1), continued J5 Op1 (5,1,1), continued J2 Op1 (2,1,1), continued J4 Op2 (4,2,1), continued J3 Op1 (3,1,1) and continued with J2 Op3 (2,3,1)
- **M2:** J1 Op2 (1,2,2), followed by J5 Op2 (5,2,2), followed by J5 Op4 (5,4,2), followed by J2 Op2 (2,2,2), followed by J4 Op3 (4,3,2), followed by J1 Op5 (1,5,2), followed by J3 Op2 (3,2,2), and ended with J3 Op4 (3,4,2).

Meanwhile, Table 9 shows the sequence of work performed by each machine as follows:

- **M1:** J3 Op1 (3,1,1), followed by J2 Op1 (2,1,1), followed by J1 Op1 (1,1,1), followed by J5 Op1 (5,1,1), followed by J4 Op2 (4,2,1) and continued with J2 Op3 (2,3,1).
- **M2:** J3 Op2 (3,2,2), followed by J1 Op2 (1,2,2), followed by J5 Op2 (5,2,2), followed by J2 Op2 (2,2,2), followed by J4 Op3 (4,3,2), followed by J3 Op4 (3,4,2), followed by J5 Op4 (5,4,2), and ending with J1 Op5 (1,5,2).
Summary of the three methods compare with the actual condition is presented in Table 10.

Table 9. Job ordering heuristic schedule generation method

Machine	Job Sequencing
M1	311 211 111 511 421 231
M2	322 122 522 222 432 542 152
M3	533 243 143 353 363
M4	334 554 254
M5	415 135

Table 10. Job sequence and make-span value of each method

No.	Scheduling	Make-span		
		Second	Minute	Hours
1	Actual Conditions	41536.49	692.27	11 h 54 m
2	Active Schedule Generation Algorithm	22527.79	375.46	6 h 26 m
3	Non-delay Schedule Generation Algorithm	24885.91	414.77	7 h 31 m
4	Heuristic Schedule Generation Algorithm	20184.27	336.41	6 h 1 m

4. Conclusions
Based on the analysis and discussion carried out before, the following conclusions can be drawn. Based on the comparison of the make-span values of the three methods used, it was concluded that the heuristic schedule generation algorithm method produced the smallest makespan worth 20184.27 seconds or 6 hours 1 minute seconds shorter than the method applied by the company. Thus, the heuristic schedule generation algorithm method was chosen as the best method and can be applied in the company to minimize the make-span.

5. References
[1] Purnomo H, 2003 *Pengantar Teknik Industri. First Edition* (Graha Ilmu Yogyakarta)
[2] Magalhaes J, 2011 *Active, Parameterized Active and On Delay Schedules for Project Scheduling With Multi-Model* bachelor final work of School of Engineering-Polytechnic of Porto, Porto, Portugal.
[3] Ginting R, 2009 *Penjadwalan Mesin* (Graha Ilmu: Yogyakarta)
[4] Mazda C N, 2017 *Penjadwalan Produksi Flow Shop Menggunakan Metode Dannenbring, Branch And Bound dan Nawaz, Enscore And HAM (NEH) Pada Pembuatan Kulit di PT. Joint Leathercraft*, bachelor final work of Sunan Kalijaga State Islamic University, Yogyakarta, Indonesia.
[5] Kurniawati D A, Nugroho Y I, 2017 *Computational Study of N-job M-machine Flow Shop Scheduling Problems: SPT, EDD, NEH, NEH-EDD, and Modified-NEH Algorithms*, 16 378-379
[6] Suseno and Kusuma I, 2013 *Job Scheduling Menggunakan Metode Algoritma Active, non-delay dan heuristic Schedule Generation (studi kasus: Borobudur Knitting)* bachelor final work of Yogyakarta University of Technology, Yoyakarta, Indonesia
[7] Widharma I G S and Sajayasa I M, 2014 *Penjadwalan Waktu Beban Kerja Dengan Metode Algoritma Active Schedule Dan Heuristic Schedule Untuk Efisiensi Daya Listrik*, 4 22-23

[8] Wignjosoebroto S. 2008 *Ergonomi, Studi Gerak dan Waktu* (Surabaya: Guna Widya)

[9] Rahmat N H. "*Vidio Penyelesaian Soal Penjadwalan Mesin Jadwal Aktif*" YouTube, Jan. 19, 2016 [Video file]. Available: https://youtu.be/OM6bvq2ZQQ4. [Accessed: March. 28, 2018].