Role of Cholesterol-Associated Steatohepatitis in the Development of NASH

Christian L. Horn,1 Amilcar L. Morales,1 Christopher Savard,2-4 Geoffrey C. Farrell,5 and George N. Ioannou2-4

The rising prevalence of nonalcoholic fatty liver disease (NAFLD) and NAFLD-related cirrhosis in the United States and globally highlights the need to better understand the mechanisms causing progression of hepatic steatosis to fibrosing steatohepatitis and cirrhosis in a small proportion of patients with NAFLD. Accumulating evidence suggests that lipotoxicity mediated by hepatic free cholesterol (FC) overload is a mechanistic driver for necroinflammation and fibrosis, characteristic of nonalcoholic steatohepatitis (NASH), in many animal models and also in some patients with NASH. Diet, lifestyle, obesity, key genetic polymorphisms, and hyperinsulinemia secondary to insulin resistance are pivotal drivers leading to aberrant cholesterol signaling, which leads to accumulation of FC within hepatocytes. FC overload in hepatocytes can lead to ER stress, mitochondrial dysfunction, development of toxic oxysterols, and cholesterol crystallization in lipid droplets, which in turn lead to hepatocyte apoptosis, necrosis, or pyroptosis. Activation of Kupffer cells and hepatic stellate cells by hepatocyte signaling and cholesterol loading contributes to this inflammation and leads to hepatic fibrosis. Cholesterol accumulation in hepatocytes can be readily prevented or reversed by statins. Observational studies suggest that use of statins in NASH not only decreases the substantially increased cardiovascular risk, but may ameliorate liver pathology. Conclusion: Hepatic FC loading may result in cholesterol-associated steatohepatitis and play an important role in the development and progression of NASH. Statins appear to provide significant benefit in preventing progression to NASH and NASH-cirrhosis. Randomized controlled trials are needed to demonstrate whether statins or statin/ezetimibe combination can effectively reverse steatohepatitis and liver fibrosis in patients with NASH. (Hepatology Communications 2022;6:12-35).

Nonalcoholic fatty liver disease (NAFLD) encompasses a wide histological spectrum of disease ranging from simple steatosis and nonalcoholic steatohepatitis (NASH) to cirrhosis and hepatocellular carcinoma. It is the most common cause of chronic liver disease worldwide, with a prevalence estimated to be 24%-26%. The prevalence of NASH in North America is estimated to be about 24.1%, with the highest prevalence reported in the Middle East (31.7%) and South America (30.4%). About 41% of patients with NASH experience progression of fibrosis with an incidence of stage 3 or 4 fibrosis of 68 per 1,000 person-years. NAFLD/NASH is currently the second leading indication for liver transplantation and is expected to become the number-one indication in the next few years, with excellent long-term posttransplant survival.

Abbreviations: 2-Oxo, 2-oxoglutarate; ABC, ATP-binding cassette transporter; ACAT2, acyl-CoA:cholesterol acyltransferase enzyme; ApoB, apolipoprotein B; BSEP, bile salt export pump; CASH, cholesterol-associated steatohepatitis; CE, cholesterol ester; CVD, cardiovascular disease; ER, endoplasmic reticulum; FC, free cholesterol; FDF1T1, farnesyl diphosphate farnesyl transferase 1; FXR, farnesoid X receptor; HDL, high-density lipoprotein; HMGCoAR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; HSC, hepatic stellate cell; Ihh, Indian hedgehog; IL, interleukin; KC, Kupffer cell; LD, lipid droplet; LDLR, low-density lipoprotein receptor; LXR, liver X receptor; MBOAT7, membrane-bound-O-acyltransferase domain-containing protein 7; MetS, metabolic syndrome; mRNA, messenger RNA; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; nCEH, neutral cholesterol ester hydrolase; NF-κB, nuclear factor kappa B; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; NPC1L1, Niemann-Pick type C1 like 1 protein; oxLDL, oxidized low-density lipoprotein; PNPLA3, patatin-like phospholipase domain-containing protein 3; ROS, reactive oxygen species; Scap, SREBP cleavage activating protein; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SR-B1, scavenger receptor class B type 1; SREBP, sterol regulatory element binding protein; T2DM, type 2 diabetes mellitus; TGF-β, transforming growth factor β; TNF-α, tumor necrosis factor α; UPR, unfolded protein response; VLDL, very low density lipoprotein.

Received February 21, 2021; accepted July 14, 2021.
Supported by the U.S. Department of Veterans Affairs (BX002910).
Many risk factors for developing hepatic steato-

 Many risk factors for developing hepatic steatosis have been identified including the metabolic syndrome (MetS), obesity, insulin resistance with hyperinsulinemia, personal or family history of type 2 diabetes mellitus (T2DM), and dyslipidemia.(1,3) Of these risk factors, T2DM and insulin resistance are very common in NAFLD and may play a pivotal role in NAFLD/NASH development.(3,7-10) Despite these known risk factors, we do not yet know the causative factor(s) without which development and progression of NASH cannot possibly occur in certain patients. In this review, we examine the data supporting the hypothesis that hepatic cholesterol is a key pathogenetic factor driving the development of NASH at least in a subset of patients, and propose the term cholesterol-associated steatohepatitis (CASH) to describe this mechanistic pathway by which hepatic cholesterol may result in the development of steatohepatitis. These considerations are critical, because unless a causative agent is uncovered, it is unlikely that a highly effective treatment of NASH will ever be identified. Although there is mounting evidence that cholesterol may also lead to hepatic carcinogenesis, we will not focus on the association between cholesterol and hepatocellular carcinoma in this review.

Pathogenesis of NASH: Conceptual Models and the Role of Cholesterol

Historically, the two-hit hypothesis proposed a stepwise progression from normal liver to hepatic steatosis and then to NASH.(11,12) This theory postulates that insulin resistance is the “first hit,” which promotes accumulation of fatty acids in the liver, leading to steatosis.(13) Hyperinsulinemia results in increased lipolysis from peripheral adipose tissue and altered hepatic gene transcription, which promotes free fatty acid uptake and de novo lipogenesis.(13-15) Oxidative stress is the “second hit,” resulting from increased oxidation of fatty acids, and causing reactive oxygen species (ROS) formation, lipid peroxidation, DNA damage, mitochondrial dysfunction, and release of proinflammatory cytokines.(16,17) These cellular mechanisms result in hepatocyte damage, inflammation, and fibrosis, characteristic of steatohepatitis.(16,17) More recently, a “multiple parallel hits” hypothesis has been proposed, in which multiple cellular mechanisms, working simultaneously to cause a “perfect storm,” result in hepatic inflammation and...
progression to NASH. Cellular mechanisms that could be altered and lead to inflammation include abnormal lipid metabolism, mitochondrial oxidative injury, endoplasmic reticulum (ER) stress, genetic polymorphisms, altered immune responses, and gut microbiome dysbiosis. It is postulated that the accumulation of lipotoxic lipids within the liver, which interact with pro-inflammatory signals, causes these cellular abnormalities, which leads to inflammation and fibrosis. Although triglycerides are the most common lipids in the liver by far, it is likely that they represent a “safe” storage molecule for fatty acids. Instead, it is the accumulation of other lipotoxic lipids, such as cholesterol (and potentially free fatty acids, diacylglycerol, ceramides, and others), which are postulated to result in cellular dysfunction. Cholesterol has a relatively “safe” storage option (i.e., its esterification to cholesterol esters [CEs]); however, hepatic free (i.e., unesterified) cholesterol is highly toxic to multiple cellular processes and organelles even if only slightly increased. Thus, we propose that in a subset of patients with NASH, hepatic cholesterol accumulation results in the development of cholesterol-associated steatohepatitis (CASH) and is the main driver of the necroinflammation and fibrosis causing NASH, while dietary, genetic, and lifestyle co-factors either lead to the accumulation of hepatic cholesterol or interact which hepatic cholesterol to promote NASH, as shown in Fig. 1.

Hepatic Cholesterol Metabolism

The liver is the most important organ that controls body cholesterol homeostasis. In the nonpathologic state, the mouse liver has a relatively low cholesterol concentration (132 mg/kg), but it has a high flow of sterols through the liver every day, consistent with its role in lipoprotein and bile acid synthesis and homeostasis (143 mg/kg/day). When the sum total of the pathways involved in synthesis and uptake of cholesterol (FIG. 2A) exceeds the pathways that lead to removal of cholesterol (FIG. 2B), cholesterol accumulates in hepatocytes.

A critical component of the CASH hypothesis is that the liver (not adipose tissue) is the body’s storage site for excess cholesterol. Excess cholesterol is stored in the liver within hepatocyte lipid droplets (LDs) as CE\(_s\). Once previously believed to be inert storage vessels, LDs have now been recognized as metabolically active organelles within cells that serve a wide variety of functions. LDs are derived from the ER and consist of a core of neutral lipids (CEs and triglyceride) that are surrounded by a phospholipid monolayer, studded with a diverse array of proteins. The phospholipid monolayer contains FC, which affects LD membrane properties, including surface and line tension, size, and interaction with other LD\(_s\) (FIG. 2C).

REGULATION OF CHOLESTEROL HOMEOSTASIS

Cholesterol homeostasis is tightly regulated by a number of nuclear transcription factors, three of which have also been linked to NAFLD pathogenesis: sterol regulatory element binding protein-2 (SREBP-2), farnesoid X receptor (FXR), and liver X receptor (LXR) (FIG. 3). SREBPs are a family of membrane-bound transcription factors that sense membrane cholesterol and fatty acids, and promote cholesterol synthesis. FXR and LXR are nuclear receptors that are activated by lipids and regulate expression of genes involved in cholesterol metabolism and lipid clearance. These factors help maintain cholesterol homeostasis by promoting cholesterol uptake, inhibiting cholesterol synthesis, and facilitating cholesterol clearance from the body.
FIG. 2. Cholesterol trafficking through the hepatocyte. (A) Cholesterol uptake and synthesis. Dietary cholesterol is absorbed in the jejunal mucosa through NPC1L1, incorporated into chylomicrons (CMs), and reaches the liver in CM remnants. CM remnants are taken up by the liver through interaction of the apoE protein on the CM remnant and LDLR on hepatocytes, which also binds to circulating LDL particles through interaction with apoB-100 on the LDL surface. After binding to the LDLR, the complex undergoes receptor-mediated endocytosis, processing through the late endosome/lysosome compartment, and transport into the metabolically active pool of cholesterol in the cytosol through NPC1. CE taken from HDL particles are selectively transported into the cytosol through SR-B1, followed by hydrolysis through nCEH to join the metabolically active pool of cholesterol in the cytosol. Cholesterol can also be taken up from bile through NPC1L1 on the canalicular membrane of hepatocytes, when cells are deprived of cholesterol. Finally, cholesterol can also be synthesized de novo through the HMGCoAR, which is tightly regulated by SREBP-2, the principal transcriptional activator of HMGCoAR. (B) Cholesterol secretion and excretion. Transport of cholesterol out of the cell is performed primarily through members of a superfamily of ABC transporters that use ATP to transport lipids across membranes. ABCA1 is a transmembrane protein present on the basolateral plasma membrane of hepatocytes that removes lipids from the cell membrane to an extracellular acceptor apolipoprotein ApoA-I. ABCA1 interacts with lipid-free apoA-1 to generate nascent HDL particles, promoting cholesterol efflux from the cell. On the canalicular membrane of hepatocytes, ABCG5 and ABCG8 form a heterodimer that functions to excrete sterols into the bile. Cholesterol may also be secreted into the circulation in the form of VLDL particles. Finally, cholesterol may be converted to bile acids and excreted into bile through BSEP, an ABC transporter (ABCB11) located on the canalicular membrane of hepatocytes. In the classical pathway, the rate-limiting step for cholesterol conversion into bile acid is the microsomal cytochrome P450 CYP7A1, which results in 7-hydroxycholesterol; however, alternative pathways include the mitochondrial CYP27A enzyme and 25-hydroxylase enzyme, forming 27-hydroxycholesterol or 25-hydroxycholesterol, respectively. (C) Hepatocyte LD. The LD membrane consists of a monolayer of phospholipids, and FC is esterified to CE and stored in hepatocyte LDs. (55) One of the enzymes responsible for cholesterol esterification in hepatocytes is acyl-CoA:cholesterol acyltransferase enzyme 2 (ACAT2). (56) ACAT2 is a nuclear cholesterol sensor that is activated by high intracellular oxysterols. (44,45) Following activation by oxysterols, LRXα forms a heterodimer with retinoid X receptor. (44) LRXα results in reverse cholesterol transport and hepatic cholesterol metabolism by increasing the expression of macrophage ABCA1/G1, resulting in increased HDL levels, and increasing hepatic, macrophage, and intestinal ABCG5/G8, causing net cholesterol excretion from the body, but also increases LDLR degradation on hepatocytes. (46-50) In rodent models, LRX also induces expression of CYP7A1, resulting in cholesterol conversion to bile acids; however, this phenomenon is not seen in humans. (51) Additionally, duodenal Niemann-Pick type C1 like 1 protein (NPC1L1) expression has been shown to be negatively correlated with LXR expression, inhibiting intestinal cholesterol absorption, resulting in fecal excretion of cholesterol. (52) LRX agonists in mice demonstrated reduced hepatic inflammation and fibrosis by decreasing cholesterol-mediated activation of hepatic Kupffer cells (KC) and HSCs. (53,54)

CHOLESTEROL ESTERIFICATION

To prevent the toxic effects of FC within hepatocytes, FC is esterified to CE and stored in hepatocyte LDs. (55) One of the enzymes responsible for cholesterol esterification in hepatocytes is acyl-CoA:cholesterol acyltransferase enzyme 2 (ACAT2). (56) ACAT2 is a nuclear cholesterol sensor that is activated by high intracellular oxysterols. (44,45) Following activation by oxysterols, LRXα forms a heterodimer with retinoid X receptor. (44) LRXα results in reverse cholesterol transport and hepatic cholesterol metabolism by increasing the expression of macrophage ABCA1/G1, resulting in increased HDL levels, and increasing hepatic, macrophage, and intestinal ABCG5/G8, causing net cholesterol excretion from the body, but also increases LDLR degradation on hepatocytes. (46-50) In rodent models, LRX also induces expression of CYP7A1, resulting in cholesterol conversion to bile acids; however, this phenomenon is not seen in humans. (51) Additionally, duodenal Niemann-Pick type C1 like 1 protein (NPC1L1) expression has been shown to be negatively correlated with LXR expression, inhibiting intestinal cholesterol absorption, resulting in fecal excretion of cholesterol. (52) LRX agonists in mice demonstrated reduced hepatic inflammation and fibrosis by decreasing cholesterol-mediated activation of hepatic Kupffer cells (KC) and HSCs. (53,54)

16
transmembrane protein found in the ER in the liver but not in adipose tissue; it integrates newly formed CEs into the ER membrane, which can either be incorporated into apolipoprotein B (ApoB) or bud off to form LDs.\(^{(29,30,57,58)}\) When FC is needed by the hepatocyte, ACAT2 is down-regulated and neutral cholesterol ester hydrolase (nCEH) hydrolyzes CE to FC.\(^{(55,59)}\)

Hepatic Cholesterol Accumulation in NASH

In the setting of NAFLD, numerous derangements to hepatic cholesterol homeostasis have been identified, which lead to the accumulation of hepatic cholesterol.\(^{(60)}\) In mice, both hyperinsulinemia and inflammation lead to loss of the inhibitory effect of elevated plasma cholesterol on Scap/SREBP-2, resulting in hepatic cholesterol accumulation.\(^{(61-63)}\) Increased levels of nuclear SREBP-2, HMGCoAR messenger RNA (mRNA), HMGCoAR protein, and HMGCoAR dephosphorylation, resulting in the active form of the enzyme, have been demonstrated in patients with NAFLD/NASH.\(^{(60,64)}\) Despite elevated nuclear SREBP-2 levels, LDLR levels are actually down-regulated in patients with NAFLD/NASH, but an alternative hepatic scavenger receptor for oxidized low density lipoprotein (oxLDL) particles, CD36, is increased relative to the severity of steatosis.\(^{(15,60,63,64)}\) Export of cholesterol out of the cell is also decreased,
with decreased mRNA levels of ABCA1, ABCG1, and ABCG5. (60,63)

Typical esterification/de-esterification activity in healthy individuals is determined by the relative concentration of ACAT2, while the concentration of nCEH remains relatively constant. (55) However, in patients with NAFLD, there is a 6-fold higher concentration of nCEH compared with healthy controls. (60,63,65,66) Increased expression of nCEH in animal models was also associated with reduced expression of CYP7A1 and CYP27A. (59) These cellular abnormalities, coupled with the decreased expression of ABC cholesterol exporters noted previously, result in the accumulation of toxic FC within hepatocytes.

Dietary Cholesterol and NASH

Human studies consistently support the association between cholesterol intake and the development of NASH or cirrhosis (Table 1). A nested case-control analysis of the multiethnic cohort, a large prospective study with over 215,000 older-adult participants in Hawaii and California, showed a positive association between dietary cholesterol intake and development of NAFLD with cirrhosis. (67) Another study, representative of the U.S. population, reported that dietary cholesterol consumption (but not total fat consumption) was significantly associated with the development of cirrhosis from all etiologies of liver disease combined. (68)

Experimental animal models (e.g., mice, rats, rabbits, gerbils, pigs) also consistently demonstrate that the addition of dietary cholesterol leads to progression of liver disease to fibrosing steatohepatitis and cirrhosis (Table 2). These studies generally show that while dietary fat intake alone causes the development of only simple steatosis without substantial necro-inflammation or fibrosis, the addition of dietary cholesterol causes the progression from steatosis to NASH. Studies in some animal models, such as Ossabaw swine, showed that marked steatosis is not always necessary for the development of dietary cholesterol-induced ballooning degeneration, KC activation, and fibrosis. (69,70)

Genetic Polymorphisms Associated With NASH Are Related to Hepatic Cholesterol Metabolism

Many human genetic polymorphisms that have been strongly linked to NAFLD, NASH, and NASH-related cirrhosis appear to be related to hepatic cholesterol metabolism, although some clearly affect other lipids too. The most common and well-described is the patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M variant, which causes impairment of very low density lipoprotein (VLDL) secretion, LD remodeling, and hydrolase activity for triglycerides and retinyl esters. (71,72) Homozygous carriers of the PNPLA3 I148M variant have a greater risk of progressive steatohepatitis and fibrosis. (73) Carriers of the TM6SF2 (transmembrane 6 superfamily member 2) E167K variant have impaired hepatic VLDL secretion, and are at higher risk for liver disease; however, they are at lower risk of cardiovascular events. (74) ApoB mutations, characteristic of familial hypobetalipoproteinemia, impair hepatic secretion of VLDL particles, which results in worsening steatosis, steatohepatitis, and cirrhosis. (75) Polymorphisms in farnesyl diphosphate farnesyl transferase 1 (FDFT1), encoding squalene synthase, the first enzyme in the sterol biosynthesis pathway, have been associated with NAFLD activity scores and fibrosis. (76) Patients with mutations in the LIPA (lysosomal acid lipase) gene, encoding lysosomal acid lipase, accumulate CEs and triglycerides in the liver, with progression to hepatic steatosis, fibrosis, and cirrhosis. (77) Nongenetic reductions in lysosomal acid lipase activity have been identified in patients with NAFLD, with higher reductions in lysosomal acid lipase activity, resulting in worsening disease. (78) Finally, a newly investigated protein, HSD17B13 (17β hydroxysteroid dehydrogenase 13), a LD enzyme with retinal dehydrogenase activity that also plays a key role in cholesterol and fatty acid metabolism, was found to have 5.9-fold higher hepatic expression in patients with NASH compared with controls. (79) Although it is intriguing that these polymorphisms appear to affect hepatic cholesterol homeostasis directly or indirectly, it is important to
Study	Population	Measurements	Results
Musso et al. 2003(149)	50 patients 25 NASH; 25 controls	7-day alimentary record	Dietary intake richer in cholesterol in patients with NASH
	Mean age: 37		NASH: 506 ± 108 mg/dL
			Control: 405 ± 111 mg/dL
			\(P = 0.002 \)
Allard et al. 2008(150)	73 patients referred for elevated liver enzymes and suspected NAFLD at a single center from Oct 2003 to Oct 2006	Self-reported dietary intake assessment	Increased dietary intake correlated with histologic disease severity
	Mean age:		Cholesterol consumption (mg/day):
	Minimal findings: 46.8 ± 2.7		Minimal findings: 269.5 ± 27.5
	Simple steatosis: 44.7 ± 2.7		Simple steatosis: 290.8 ± 28.1
	NASH: 47.7 ± 2.2		NASH: 357.9 ± 37.5
Ioannou et al. 2009(68)	9,221 patients without evidence of cirrhosis followed for 13.3 years as part of the National Health and Nutrition Examination Survey	24-hour dietary recall	Cholesterol consumption positively associated with cirrhosis and liver cancer
	Age: 25-74		Cholesterol consumption (mg/day):
			0-156: 1
			157-294: 1.52
			295-510: 1.66
			>511: 2.45
			\(P = 0.007 \)
Yu et al. 2013(151)	608 patients with hepatitis C enrolled in the Hepatitis C Antiviral Long-term Treatment Against Cirrhosis trial followed for 1.8 years	Responses to food frequency questionnaires at baseline and 1.8 years later	Each higher quartile of cholesterol intake was associated with a 46% increase in the risk of clinic or histologic liver disease progression
	Mean age: 51.0 ± 7.0		Cholesterol consumption (mg/day):
			32-152: 1
			152-222: 1.51
			224-310: 2.83
			>310: 2.74
			\(P = 0.004 \)
Table 1. Continued

Study	Population	Measurements	Results
Mokhtari et al. 2017⁽¹⁵²⁾	169 patients with NAFLD referred to two Hepatology clinics in Tehran, Iran in 2015 and 782 controls	Responses to a validated food frequency questionnaire	Dietary cholesterol intake was higher in cases compared with controls; greater egg consumption was associated with higher dietary cholesterol intake; greater egg consumption was associated with higher OR for NAFLD
	Mean age:		
	Cases (NAFLD): 42.65 ± 12.21		
	Controls: 43.71 ± 14.52		
	Cholesterol consumption (mg/day):		
	Cases: 263.41 ± 5.35		
	Controls: 315.31 ± 11.50	P < 0.001	
	Cholesterol consumption (mg/day) per egg consumption:		
	<2/week: 226.40 ± 5.75		
	2-3/week: 291.95 ± 11.60		
	>4/week: 383.90 ± 9.53	P < 0.001	
Noureddin et al. 2019⁽⁶⁷⁾	>215,000 men and women living in Hawaii or California between 1993 and 1996	Responses to a validated quantitative food frequency questionnaire	Cholesterol intake positively associated with NAFLD with cirrhosis
	Age: 45-75 years		
	NAFLD: 1.16 (P = 0.005)		
	NAFLD with cirrhosis: 1.52 (P = 0.002)		
Yasutake et al. 2009⁽¹⁵³⁾	56 patients with NAFLD diagnosed by ultrasound, CT, or liver biopsy at Kyushu Medical Center between Oct 2006 and Oct 2007	Self-reported dietary intake	Cholesterol intake was significantly higher in nonobese patients with NAFLD compared to obese patients with NAFLD and healthy controls P = 0.0378
	Mean age:		
	Obese: 53.5 ± 12.3		
	Nonobese: 47.2 ± 14.8		

Abbreviations: CT, computerized tomography; OR, odds ratio.
Table 2. Summary of Studies Investigating the Effects of Dietary Cholesterol in Inducing NAFLD/NASH in Different Animal Models

Study	Animal Model	Diet	Age at Onset of Diet	Duration of Diet	Liver Histology Induced by Dietary Cholesterol	Mechanism
Co et al. 2013	Dawley female rats	40% fat and 1.25% cholesterol	8 weeks	7 weeks	Hepatic steatosis	Hepatic accumulation triglycerides and cholesterol
Ichimura et al. 2015	Sprague-Dawley male rats	High-fat alone or in combination with 1.25% or 2.5% cholesterol	9 weeks	9 weeks	Fibrosing NASH and progression to cirrhosis	Diminished CPT activity and ABCG5
Ichimura et al. 2017	Sprague-Dawley male rats	High-fat alone or in combination with 1.25% or 2.5% cholesterol	9 weeks	18 weeks	Fibrosing NASH and progression to cirrhosis	Diminished CPT activity, ABCG5, and BSEP
Moriya et al. 2012	SHRP5/Dmcr male rats	High-fat and high-cholesterol diet (25% palm oil, 5% cholesterol, 2% cholic acid)	10 weeks	2, 8, and 16 weeks	Fibrosing NASH	Altered TNF-α proinflammatory cytokine and NF-kB pathway
Yetti et al. 2013	SHRP5/Dmcr male rats	High-fat and high-cholesterol diet (25% palm oil, 5% cholesterol, 2% cholic acid)	10 weeks	2, 8, and 16 weeks	Fibrosing NASH	Downregulation of caspase activity
Horai et al. 2016	SHRP5/Dmcr male rats	High-fat and high-cholesterol diet (25% palm oil, 5% cholesterol, 2% cholic acid)	6 weeks	2, 4, 6, 8, and 16 weeks	Fibrosing NASH	Eosinophilic inclusion bodies and mega-mitochondria
Osorka et al. 2017	Wistar males rats	2% cholesterol, 0.25% cholate	6 weeks	12 weeks	Hepatic steatosis	Increased SCD1 and decreased FADS1 and FADS2
Matsuzawa et al. 2007	C57BL/6J male mice	1.25% cholesterol and two different amounts fat (7.5% and 60%)	6 weeks	6, 12, or 24 weeks	Fibrosing NASH	Down-regulation of antioxidant enzymes
Savard et al. 2013	C57BL/6J male mice	15% fat and/or 1% cholesterol	6 months	30 weeks	Fibrosing NASH	N/A
Vergnes et al. 2003	C57BL/6J and C57BL/6ByJ male mice	7.5% fat, 0.5% cholate, and/or 1.25% cholesterol	3 months	3 weeks	Fibrosing NASH	Activation of HSCs, SAA family genes, histocompatibility antigens, II2rγ, Scyb9, and Samhd1
Desai et al. 2008	C57BL/6J males mice	1.25% cholesterol, 0.5% cholic acid, and 16% fat	8-10 weeks	3 weeks	NASH	Mononuclear leukocyte infiltration in liver
Sumiyoshi et al. 2010	C57BL/6J males mice	15% milk fat, 1.5% cholesterol, and 0.1% cholic acid	4 weeks	25 or 55 weeks	Hepatic steatosis Fibrosis	Elevated levels of MCP1, RANTES, and MP2
Ganz et al. 2015	C57BL/6J male mice	High fat, 10% cholesterol, and high sugar supplement	8-10 weeks	8, 27, or 49 weeks	Fibrosing NASH	Elevated levels of MCP1, TNF-α, and IL-1β
Tu et al. 2017	C57BL/6J male and female mice	15.8% fat, 1.25% cholesterol, and 0.5% cholate diet	8 weeks	3 weeks	Fibrosing NASH	Elevated FC, CEs, and cholic acid Changes to metabolism of sphingomyelins and phosphatidylcholines
Study	Animal Model	Diet	Age at Onset of Diet	Duration of Diet	Liver Histology Induced by Dietary Cholesterol	Mechanism
------------------------------	-------------------------------	--	----------------------	------------------	--	---
Henkel et al. 2017(167)	C57BL/6J male mice	Soya bean oil, 6-PUFA, and 0.75% cholesterol	8 weeks	20 weeks	Fibrosing NASH	Activation of KCs and enhanced expression of Ccl2, Cxcl2, Tnf, and Osm
McGettigan et al. 2019(168)	C57BL/6J male mice	One of six diets with variable amounts of fat (10% or 45% of total kilocalories) and cholesterol (0.05%, 0.2%, and 2.0% of weight)	6-8 weeks	12, 20, or 24 weeks	Fibrosing NASH	Induction of tissue repair and regeneration phenotype in KCs and recruited infiltrating macrophages
Andres-Blosco et al. 2015(169)	HL-/- male mice	10.8% fat and 0.75% cholesterol	2 months	16 weeks	NASH	Dyslipidemia
						Increased NEFA
						Enhanced macrophages
						Circulating levels of MCP1 and Th17 T-cell subset
Chiu et al. 2010(170)	HL-/- female mice	21% fat and 0.15% cholesterol	21-23 weeks	12 weeks	Decreased hepatic steatosis	No dyslipidemia and IR
Wouters et al. 2008(171)	LDLR-deficient and ApoE2 knock-in male and/or female mice	21% fat and 0.2% cholesterol	13 weeks	2, 4, 7, and 21 days or 7 days according to experiments	NASH	Macrophage accumulation in the liver, increase in lipid and inflammatory genes
Subramanian et al. 2011(172)	LDLR-deficient male mice	36.6% fat, 35.5% carbohydrate, and 0.15% cholesterol	10 week	24 weeks with diet	NASH	Macroversicular steatosis, inflammatory cell foci, and fibrosis
Van Rooyen et al. 2011(63)	Alms1 mutant (faz/ faz) and wild-type diabetes NOD B10 female mice	23% fat and 0.2% cholesterol	8 weeks	12 or 24 weeks	NASH	Increased macrophage, liver apoptosis, and fibrosis
Schierwagen et al. 2015(173)	apoE-/- mice	Western-type diet containing 1.25% of cholesterol	12 weeks	7 weeks	NASH	Hepatic fibrosis
Rodriguez-Sanabria et al. 2011(174)	apoE-/- vs. LDLR-/- male mice	20% fat and 0.25% cholesterol	10 weeks	6 weeks	NASH	Increased hepatic collagen
Kampschulte et al. 2014(175)	ApoE-/- LDLR-/- male mice	Western diet containing 5% cholesterol and 21% fat	4 weeks	35 weeks	Fibrosing NASH	Activation of HSCs
Kainuma et al. 2006(176)	Rabbits male	Standard diet containing 1% cholesterol	10 weeks	8-12 weeks	Fibrosing NASH	Increased macrophages and inflammatory nodules (apoE, apoE-/-) vs. hepatic steatosis (LDLR-/-)
Ogawa et al. 2010(177)	Pathogen-free Japanese White male rabbits	Standard diet supplemented with 0.75% cholesterol and 12% corn oil	1 year	2 months	Fibrosing NASH (almost cirrhosis)	Induction of PPAR-γ and p21, increased mRNA of TNF-β1 and collagen 1A1
emphasize that some also affect other lipids and that the specific mechanisms by which each polymorphism causes NASH are complex and not fully elucidated.

Mechanisms of CASH Development

Cholesterol accumulation results in dysfunction of many organelles within hepatocytes and activation of other liver cells critical to fibrosing steatohepatitis, such as KCs and HSCs. The fluidity of a cell’s membranes, both the outer plasma membrane as well as membranes of internal organelles, is dependent on a precise ratio of FC to phospholipids, as well as the saturation status of the phospholipids. FC accumulation within a cell membrane causes liquid-ordered rafts to become too rigid, which affects transmembrane proteins that require a degree of fluidity in order to function properly. Figure 4 summarizes the processes by which hepatic FC accumulation leads to hepatocyte dysfunction (FIG. 4A).

CHOLESTEROL AND ER STRESS

The ER is responsible for a number of critical cellular functions, including folding and posttranslational modification of proteins, calcium storage, lipid-membrane biosynthesis, drug metabolism, regulating surviving and cell death signals, and signaling the production of cholesterol through Scap/SREBP-2. Multiple cellular aberrations can lead to ER stress and impair the proper folding of proteins, including oxidative stress, calcium dysregulation, hyperglycemia, inflammation, and hypercholesterolemia. Elevated FC/phospholipid ratio in the ER membrane impairs the action of sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) in mice, a pump that maintains high Ca\(^{2+}\) concentration in the ER lumen to facilitate protein folding (FIG. 4B). Impaired functionality of SERCA results in decreased luminal calcium concentration, higher levels of unfolded proteins, and ER stress. Activation of the unfolded protein response (UPR) leads to upregulation of key enzymes that alleviate ER stress by decreasing ER secretory load and enhancing protein folding. Conversely, in cases of chronic ER stress in mouse and human models, the UPR can actually
promote worsening steatosis, apoptosis, autophagy, or activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome causing interleukin (IL) 1β production, pyroptosis, and hepatic inflammation. In this way, ER stress leads to a positive feedback loop of worsening steatosis, ER stress, cell death, and inflammation characteristic of NASH.
FIG. 4. Mechanisms of organelle dysfunction in cholesterol overload. (A) Overview of organelle cholesterol loading. Cholesterol entering the hepatocyte through LDL particles binds to the LDLR receptors and undergoes receptor-mediated endocytosis. That cholesterol is then trafficked through the late endosome and lysosome, and ultimately is transferred to different cellular organelles. NPC1 mediates transfer of cholesterol to lipid droplets, where it is stored; however, FC can form cholesterol crystals within the LDs. StAR/MLN64 transfers cholesterol from the lysosome to the mitochondria (or StAR can transfer cholesterol from the LD to the mitochondria), where it is typically used for synthesis of steroidogenic signaling molecules; however, it can also be deposited into the mitochondrial membrane and interfere with the function of 2-Oxo. NPC1/2 mediates transfer of cholesterol from the lysosome to the ER, where high cholesterol membrane content causes disruption of the calcium pump SERCA, decreasing the concentration of calcium in the endoplasmic reticulum lumen. FC in the cell can react with ROS through CYP450 enzymes and form oxysterols, which increases nuclear NF-κB signaling. (B) ER stress. Excess cholesterol in the ER leads to dysfunction of SERCA, lowers the luminal calcium concentration (stimulating the UPR), activation of NLRP3 inflammasome, and pyroptosis. (C) Mitochondrial dysfunction. Cholesterol loading in the mitochondrial interferes with 2-Oxo function, which depletes the mitochondrial glutathione pool, resulting in ROS generation, lipid peroxidation, release of cytochrome C, and trigger of apoptosis. Excessive ROS generation for cholesterol overload leads to the generation of toxic oxysterols, which triggers inflammatory signaling through NF-κB. (D) LD cholesterol crystallization and activation of inflammatory cells. Excessive FC in hepatocyte LDs leads to the formation of cholesterol crystal in the periphery of the LDs. LD cholesterol deposition results in activation of the NLRP3 inflammasome, which results in release of IL-1β, causing pyroptosis or necrosis. Processing of these cholesterol crystals by activated KC in crown-like structures causes release of proinflammatory signaling molecules, specifically IL-1β, IL-18, TGF-β, and MCP1, which recruits immune cells to the liver and transforms HSCs into myofibroblasts. Myofibroblasts elaborate collagen, which deposits in the liver and leads to fibrosis and cirrhosis. (E) The TAZ Pathway. FC accumulated on the plasma membrane gets internalized by ASTER B/C, which activates sAC. Elevations in cAMP levels results in phosphorylation of IP3R through PKA and causes release of Ca from the ER lumen. Elevated cytosolic Ca levels activate RhoA, which inhibits LATS1/2 through phosphorylation. LATS1/2 is unable to phosphorylate TAZ, and the dephosphorylated TAZ (active form) translocates to the nucleus to induce transcription of Ihh. Ihh is secreted out of the hepatocyte and is then able to induce profibrotic mRNA in HSCs, resulting in hepatic fibrosis. Abbreviations: AMP, adenosine monophosphate; ATP, adenosine triphosphate; Ca, calcium; cAMP, cyclic adenosine monophosphate; Cyt C, cytochrome C; IP3R, inositol 1,4,5-trisphosphate receptor; GSH, glutathione; LATS 1/2, large tumor suppressor 1/2; MCP1, monocyte chemoattractant protein-1; MLN64, metastatic lymph node 64 protein; NPC1, Niemann-Pick type C1; PKA, protein kinase A; PO₄²⁻, phosphate; RhoA, ras homolog family member A; sAC, soluble adenylyl cyclase; and StAR, steroidogenic acute regulatory protein.

CHOLESTEROL IN MITOCHONDRIAL STRESS

The mitochondria membrane contains little cholesterol compared with other cellular membranes and is more susceptible to slight alterations in cholesterol membrane content. Steriogenic acute regulatory proteins transfer cholesterol from late endosome/lysosome (LE/LY) to the mitochondria for steroid synthesis in steroidogenic cells, and demonstrate a 7-15-fold increase in expression in patients with steatosis and NASH. Increased delivery of cholesterol to the mitochondrial membrane results in dysfunction of membrane proteins such as 2-oxoglutarate (2-Oxo) (FIG. 4C). When mitochondrial cholesterol content increases in mice and human HepG2 cells, the fluidity of the mitochondrial membrane is reduced, impairing the function of 2-Oxo and depleting the mitochondrial glutathione pool. This sensitizes the hepatocyte to tumor necrosis factor α (TNF-α), promoting oxidative stress, lipid peroxidation, increased mitochondrial membrane permeability with cytochrome c release, and signaling for necrosis. Indeed, studies evaluating elevated cholesterol content in mice and human HepG2 cells in mitochondria demonstrate experimental NASH.

FORMATION OF TOXIC OXysterols

Formation of oxysterols within the cell occurs either through auto-oxidation of cholesterol in the setting of oxidative stress, or through hydroxylation by a number of cytochrome P450 monoxygenases, typically as an intermediary in the formation of CEs, bile acids, or steroid hormones. Oxysterols are known to be potent signaling molecules, binding to LXRα in human hepatocytes and promoting reverse cholesterol transport, or binding to SREBP-2 and inhibiting de novo cholesterol synthesis. Studies looking at both animal models and humans with biopsy-proven NASH show increased levels of oxysterols within the liver and subsequent liver damage, inflammation, and fibrosis. One species of oxysterol, 25-hydroxycholesterol, has been demonstrated to enhance inflammatory signaling in rat hepatocytes through nuclear factor kappa B (NF-κB) activation, a key proinflammatory regulator; however, its sulfate derivative, 25-hydroxycholesterol-3-sulfate, actually...
has anti-inflammatory properties. In the rat mitochondria, oxysterols can promote signaling for cellular apoptosis. These findings suggest a complex role of oxysterols in the pathogenesis of NASH with room for further experimentation.

CHOLESTEROL ACTIVATES KCs AND HSCs

In atherosclerotic plaques, cholesterol accumulation within macrophages results in the formation of foamy cells, and has been implicated as a prominent component of the inflammatory response found in these plaques. In much the same way, mouse models demonstrate cholesterol accumulation within KCs, the resident macrophages in the liver, and appear to contribute to the inflammation that is characteristic of NASH. As KCs in both mice and humans are not able to synthesize cholesterol de novo, they acquire cholesterol through uptake from the circulation, through LDLR-mediated endocytosis or scavenger receptors that bind oxLDL particles, or from processing remnant LDs of dead steatotic hepatocytes. Unlike the LDLR pathway for cholesterol accumulation, the scavenger receptor pathway does not possess a negative feedback loop, leading to rapid accumulation of oxLDL in KC lysosomes and triggering hepatic inflammation. Experiments in mouse models with scavenger receptor knockout/inhibition, or alleviation of lysosomal cholesterol accumulation, have shown improvement in the hepatic inflammation characteristic of NASH. HSCs, a type of nonparenchymal hepatic cell located in the space of Disse, are activated by fibrogenic cytokines elaborated by KCs, specifically transforming growth factor β (TGF-β) and TNF-α, resulting in transformation into myofibroblasts, which cause hepatic fibrosis. Similar to KCs, experiments in mice show FC accumulates in HSCs by uptake from scavenger receptors, specifically lectin-like oxidized LDL receptor-1 (LOX-1), which directly activates HSCs via signaling through toll-like receptor 4 (TLR-4). The LOX-1 IVS4-14 AG polymorphism, encoding a nontruncated splice isoform that was previously shown to confer higher cardiovascular disease (CVD) risk in homozygotes, was associated with increased severity of NASH in a study of 40 patients with biopsy-proven NASH and 40 matched controls. Increased accumulation of FC leads to decreased lysosomal degradation of TLR-4, and sensitizes the cell to TGF-β signaling.

CHOLESTEROL CRYSTALLIZATION

The hepatocyte LD represents one of the body’s main storage sites for excess cholesterol, which is transferred to the LD membrane most likely through direct membrane contact sites with other organelles, including the ER, mitochondria, peroxisomes, and LE/LY. FC transferred to the LD membrane can be esterified to CE for “safe” storage. However, a high FC concentration can be reached in the LD membrane during this process. As the cholesterol concentration in the membrane increases, it eventually exceeds the ability of phospholipid head groups to cover all the cholesterol molecules, and excess molecules precipitate adjacent to the membrane, forming cholesterol monohydrate crystals (FIG. 4D). LD cholesterol crystals have been observed in steatotic hepatocytes in both patients with NASH and animal models of NASH. In patients with biopsy-proven NAFLD, hepatocyte LD cholesterol crystals were observed almost exclusively in patients with NASH and not in patients with simple steatosis, suggesting that these cholesterol crystals are important in pathogenesis rather than innocent bystanders. Cholesterol crystals in subintimal atherosclerotic plaque macrophages are known to activate the NLRP3 inflammasome in humans and mice, mediating IL-1β and IL-18 release through the caspase 1 pathway. It is plausible that cholesterol crystallization within hepatocyte LD also activates the NLRP3 inflammasome. In mouse hepatocytes, NLRP3 activation causes pyroptosis, a form of programmed cell death marked by NLRP3 activation of caspase 1, DNA damage, and cell membrane pore formation, causing cell swelling and death. KCs that process dead hepatocytes with cholesterol crystals become exposed to these crystals and their proinflammatory effects. Following pyroptosis or necrosis of steatotic hepatocytes, their remnant LDs are encircled by KCs and form characteristic “crown-like structures” (CLSs), which secrete lysosomal
enzymes involved in the extracellular processing of LDs.

Processing of the LDs by lysosomal acid lipase results in the hydrolysis of CE to FC and further production of cholesterol crystals. KCs that are exposed to cholesterol crystals are transformed into activated lipid-laden foam cells through pathways that likely include activation of the NLRP3 inflammasome. Given the central role of the NLRP3 inflammasome, it is no surprise that inhibition of this inflammasome in genetic and diet-induced mouse models of NASH resulted in decreased levels of inflammation and fibrosis.

TAZ PATHWAY

A pathway has been identified recently that directly connects hepatocyte FC loading with hepatic fibrosis through HSC activation. In 2016, Wang et al. showed that the transcription regulator TAZ was higher in both mouse models and patients with NASH; silencing of TAZ prevented or reversed features of steatohepatitis, but not steatosis; and expression of TAZ in models of steatosis induced steatohepatitis. In most hepatocytes, TAZ is phosphorylated and in the inactive cytoplasmic state. However, models of NASH show increased dephosphorylation of TAZ to the active form, translocation to the nucleus, and transcription of target genes. One of the target gene induced by TAZ is Indian hedgehog (Ihh), which can be secreted from hepatocytes and induces profibrotic genes in HSCs. Wang et al. showed that silencing of TAZ in NASH models decreased gene expression of hepatocyte Ihh and subsequent profibrotic HSC mRNA. A follow-up study published in 2020 showed that the process of TAZ activation is initiated by hepatocyte FC, which blocks proteosomal TAZ degradation through induction of soluble adenylyl cyclase and resulting Ca release from the ER. This pathway (FIG. 4E) provides a direct link between increased hepatocyte FC levels and features of NASH.

Ezetimibe and Statins in NASH

Cholesterol-lowering medications (such as statins and ezetimibe) are very common in patients with NAFLD/NASH due to the high prevalence of hypercholesterolemia, diabetes, and CVD. In addition to their proven cardiovascular benefits, statins and ezetimibe also appear to have beneficial effects on NAFLD/NASH.

Table 3 summarizes studies that evaluated the effects of cholesterol-lowering medications on NAFLD/NASH, identified through a comprehensive review of the literature. Multiple small prospective studies in patients with either NAFLD or NASH assessed the effect of ezetimibe on steatosis, inflammation, and fibrosis. Although these studies have shown benefit in biochemical, metabolic, and histologic outcomes from ezetimibe therapy, the small size and relatively short follow-up of these studies limit their interpretation.

Despite concerns about statin-induced hepatotoxicity, studies reported very rare incidence of statin-related adverse events in patients with liver disease. Post hoc analysis of three large randomized, controlled, trials designed to evaluate the effect of statins on CVD, consisting of 11,587 patients, including 1,844 with elevated aminotransferases, demonstrated that statins resulted in improvement in serum aminotransferase levels and ultrasonographic steatosis.

In 2015, a multicenter cohort study consisting of 1,201 European patients who underwent liver biopsy for suspected NASH showed that the 107 patients who were taking statins had a protective effect from steatosis, inflammation, and NASH in a dose-dependent manner. A multicenter, Italian cross-sectional study of 346 patients with diabetes with biopsy-proven NAFLD, confirmed that statins were independently associated with reduced odds of NASH and significant fibrosis.

Multiple small prospective trials using atorvastatin and rosuvastatin demonstrated improvement in biochemical, radiological, and histological features of NAFLD and NASH.

A systemic review of 121,058 patients with chronic liver disease showed that statins reduced the risk of portal hypertension, progression to cirrhosis or decompensated cirrhosis, and mortality.
Study	Study type	Medication	Study Population	Duration of Treatment	Results
Chan et al. 2010⁽¹³²⁾	Randomized, single-blind placebo controlled trial	Ezetimibe vs. placebo	25 obese patients (ezetimibe, n = 15; hypocaloric diet alone, n = 10)	16 weeks	Improved hepatic steatosis, inflammation, and LDL-apoB-100 metabolism
Park et al. 2011⁽¹³⁵⁾	Prospective long-term study	Ezetimibe	45 patients with newly diagnosed biopsy-proven NAFLD	24 months	Improved biochemical parameters (AST, ALT, hsCRP, LDL, ox-LDL, and TG), visceral fat, and histologic features (steatosis, necroinflammation, ballooning, and NAS)
Takeshita et al. 2014⁽¹³³⁾	Open-label randomized controlled clinical trial	Ezetimibe vs. placebo	32 patients with NAFLD (ezetimibe, n = 17; placebo, n = 15)	6 months	Improved hepatic fibrosis, increased long-chain fatty acids, and Hgb A1c
Loomba et al. 2015⁽¹³⁶⁾	Randomized, double-blind, placebo-controlled trial	Ezetimibe vs. placebo	50 patients with biopsy-proven NASH (ezetimibe: n = 25; placebo: n = 25)	24 weeks	No significant difference in liver fat as measured by MRI-PDFF; no significant difference in biochemical parameters or histologic response
Nakade et al. 2017⁽¹³⁷⁾	Meta-analysis	Ezetimibe	Six studies (two randomized-controlled; four single-arm trials) including 273 patients with NAFLD or NASH	24 weeks, four studies	Improved serum liver enzymes (AST, ALT, and GGT), hepatic steatosis, and ballooning
Athyros et al. 2006⁽¹³⁰⁾	Prospective, open-label randomized study	Atorvastatin vs. fenofibrate vs. combination	186 non-diabetic patients with MetS and biochemical and ultrasonographic evidence of NAFLD	54 weeks	Significantly higher percentage of patients who no longer had evidence of NAFLD in the atorvastatin and combination groups, including reduction in hs-CRP, TG, LDL-C, TC, and glucose
Nelson et al. 2009⁽¹⁷⁹⁾	Double-blind, randomized, placebo-controlled trial	Simvastatin vs. placebo	16 patients with biopsy-proven NASH, 14 completed the study, 10 underwent repeat biopsy at 1 year	12 months	No statistically significant improvement in serum aminotransferases, hepatic steatosis, necroinflammatory activity, or stage of fibrosis
Athyros et al. 2011⁽¹⁴¹⁾	Post hoc analysis of prospective, randomized intention-to-treat study (GREACE)	Atorvastatin vs. placebo	1,600 GREACE patients with coronary heart disease, 437 patients with moderately elevated liver enzymes possibly associated with NAFLD (227 treated with statin)	3 years	Statin-treated patients had significant improvement in liver enzymes and reduction in cardiovascular events
Athyros et al. 2011⁽¹⁴¹⁾	Post hoc analysis of prospective randomized controlled trial comparing two LDL-C targets, <100 mg/dL (A2) or <130 mg/dL (B2)	Atorvastatin	1,123 ATTEMPT patients with MetS without diabetes or CVD, 326 with modestly elevated liver enzymes and ultrasonographic evidence of NAFLD	42 months	86% in the A2 group and 74% in the B2 group had resolution of NAFLD (P < 0.001), mean LDL-C and TG targets were higher in the B2 group compared with the A2 group
Study	Study type	Medication	Study Population	Duration of Treatment	Results
-----------------------------	--	-----------------------------------	--------------------------------	----------------------	---
Foster et al. 2011⁽¹⁴⁴⁾	Prospective, randomized, placebo-controlled trial as part of the St. Francis Heart Study	Atorvastatin vs. placebo	1,005 patients, 80 with NAFLD at baseline	3.6 years	Treatment with atorvastatin plus vitamins C and E, significantly reduced the odds of NAFLD at the end of follow-up (70% vs. 34%, OR 0.29, P < 0.001)
Tikkan et al. 2013⁽¹⁴⁰⁾	Post hoc analysis of a prospective randomized controlled trial (IDEAL)	Atorvastatin 80 mg/day vs. simvastatin 20-40 mg/day	8,863 IDEAL patients, 1,081 with ALT ≥ ULN	4.8 years	Major CVD event rates were 11.5% for simvastatin and 6.5% for atorvastatin; in patients with baseline elevated ALT, greater improvement in ALT was noted in atorvastatin group (−13.4 ± 27.5 vs. −8.8 ± 28.8, P = 0.0073)
Dongiovanni et al. 2015⁽¹⁴²⁾	Multicenter cohort study	Statins (simvastatin 49%; rosuvastatin 17%; atorvastatin 17%; pravastatin 4%; fluvastatin 2%) vs. no statins	1,201 European patients who underwent liver biopsy for suspected NASH, 107 on statin therapy for at least 6 months	6 months	Statin use was associated with lower risk of steatosis (OR 0.99, P = 0.004), steatohepatitis (OR 0.25, P < 0.001), and fibrosis stage F2-F4 (OR 0.42, P = 0.017)
Kargiotsis et al. 2015⁽¹⁴⁵⁾	Prospective study	Rosuvastatin	20 patients with biopsy proven NASH, MetS, and dyslipidemia	12 months	Postintervention liver biopsy showed complete resolution of NASH in 19 of 20 patients, normalization of ALT and GGT by the third treatment month, and normalization of ALP by the sixth treatment month
Nascimbeni et al. 2016⁽¹⁴³⁾	Cross-sectional study	Statins (45%) (simvastatin 15%; pravastatin 6%; fluvastatin 2%; atorvastatin 53%; rosuvastatin 15%) vs. no statins	346 patients with diabetes with biopsy-proven NAFLD	N/A	Statin use was associated with a lower risk of NASH (OR 0.57, P = 0.055) and F2-F4 fibrosis (OR 0.47, P = 0.011)
Kim et al. 2017⁽¹³¹⁾	Systemic review and meta-analysis	Statins vs. no statins	13 studies (10 cohort studies, 3 clinical trials) in 121,058 patients with chronic liver disease, 46% exposed to statins	N/A	In patients with cirrhosis, statin use was associated with a 46% lower risk of decompensation (RR 0.54) and 46% lower mortality (RR 0.54). In patients with chronic liver disease without cirrhosis, statin use was associated with a 58% lower risk of development of cirrhosis or fibrosis progression (RR 0.42). Statin use was also associated with a 27% lower risk of variceal bleeding or progression to portal hypertension (HR 0.73)

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; apoB-100, apolipoprotein B-100; AST, aspartate aminotransferase; GGT, gamma-glutamyltransferase; GREACE, Greek Atorvastatin and Coronary Heart Disease Evaluation; Hgb A1c, hemoglobin A1c; HR, hazard ratio; hsCRP, high sensitivity C-reactive protein; MRI-PDFF, magnetic resonance imaging proton density fat fraction; NAS, NAFLD activity score; OR, odds ratio; ox-LDL, oxidized LDL; RR, risk ratio; TC, total cholesterol; TG, triglyceride.
demonstrated that statins resulted in a slightly increased risk of development of diabetes, but the risk was low both in absolute terms and when compared with the reduction in coronary events. Specifically, treatment of 255 patients with statins for 4 years resulted in one extra case of diabetes (or approximately one case of diabetes per 1,000 patient-years). In observational studies, statin-treated patients had increased hepatic de novo lipogenesis through activation of SREBP-1c and up-regulation of genes involved in fatty acid and triglyceride metabolism, suggesting that activation of these genes contributes to insulin resistance and diabetes. (148) Because insulin resistance and diabetes are important risk factors for NASH, these findings raise some concern about the role of statins as potential NASH pharmacotherapies.

In summary, this evidence suggests beneficial effect of statins on steatosis, inflammation, fibrosis, portal hypertension and cirrhosis, and confirms the safety of statins for the treatment of dyslipidemia in patients with NAFLD and NASH as recommended by the American Association for the Study of Liver Diseases. (1) However, large, randomized, placebo-controlled trials of statins in NASH adequately powered for histological outcomes are lacking. Such studies are desperately needed but very difficult to design, as it may be considered unethical to randomize patients with NASH to placebo, given that most would fulfill criteria for being on a statin for cardiovascular reasons.

Conclusions

NASH is rapidly rising in prevalence worldwide and currently has no approved pharmacological treatments. In the near future, the number of liver transplantations for NASH will surpass all other indications for liver transplantation. The evidence presented in this review strongly supports the role of cholesterol in causing “cholesterol-associated steatohepatitis” (CASH) and should serve to focus efforts on targeting cholesterol lowering as a therapeutic option. This strategy has multiple advantages. First, statins are widely available, inexpensive medications with a proven track record of safety. Second, statins are proven to reduce cardiovascular mortality, which is the number-one cause of death in patients with NASH, and may have even greater cardiovascular benefits in patients with NASH. (129) Therefore, treatment of patients with NASH with statins would potentially simultaneously ameliorate both cardiovascular mortality as well as liver-related complications (e.g., cirrhosis and portal hypertension) and mortality. Randomized controlled trials of statins in patients with NASH or cirrhosis that are under way are eagerly awaited, while clearly more such studies are urgently needed.

REFERENCES

1) Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018;67:328-357.
2) Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018;15:11-20.
3) Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymyer M. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016;64:73-84.
4) Beste LA, Leipertz SL, Green PK, Dominitz JA, Ross D, Ioannou GN. Excellent posttransplant survival for patients with nonalcoholic steatohepatitis in the United States. Gastroenterology 2015;148:547-555.
5) Afzali A, Berry K, Ioannou GN. Excellent posttransplant survival for patients with nonalcoholic steatohepatitis in the United States. Liver Transpl 2012;18:29-37.
6) Subichin M, Clanton J, Makuszewski M, Bohon A, Zografakis JG, Dan A. Liver disease in the morbidly obese: a review of 1000 consecutive patients undergoing weight loss surgery. Surg Obes Relat Dis 2015;11:137-141.
7) Freem AM, Pennings N. Insulin Resistance. Treasure Island, FL: StatPearls; 2019.
8) Alhaisi S, Sanyal A. Recent advances in understanding and managing non-alcoholic fatty liver disease. F1000Res 2018;7:F1000.
9) Fruci B, Giuliano S, Mazza A, Malaguarnera R, Belfiore A. Liver disease in the morbidly obese: a possible new target for type 2 diabetes prevention and treatment. Int J Mol Sci 2013;14:22933-22966.
10) Gentile CL, Pagliassotti MJ. The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. J Nutr Biochem 2008;19:567-576.
11) Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology 1998;114:842-845.
12) Hwang J-H, Stein DT, Barzilai N, Cui M-H, Tonelli J, Kishore P, et al. Increased intrahepatic triglyceride is associated with peripheral insulin resistance: in vivo MR imaging and spectroscopy studies. Am J Physiol Endocrinol Metab 2007;293:E1663-E1669.
13) Greco D, Kotronen A, Westerbacka J, Puig O, Arkkila P, Kiviluoto T, et al. Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol 2008;294:G1281-G1287.
14) Miquelena-Colina ME, Lima-Cabello E, Sanchez- Campos S, Garcia-Mediavilla MV, Fernandez-Bermejo M,
Lozano-Rodriguez, T., et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 2011;60:1394-1402.

Browning, J.D., Horton, J.D. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004;114:147-152.

Seki, S., Kitada, T., Sakaguchi, H. Clinicopathological significance of oxidative cellular damage in non-alcoholic fatty liver diseases. Hepatol Res 2005;33:132-134.

Tilg, H., Moschen, A.R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010;52:1836-1846.

Peveril, W., Powell-Lew, Skoien, R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 2014;15:8591-8633.

Taaki, A., Kawai, D., Yamamoto, K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int J Mol Sci 2013;14:20704-20728.

Neuschwander-Tetri, B.A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriacylglyceride fatty acid metabolites. Hepatology 2010;52:774-788.

Videla, L.A., Rodrigo, R., Orelana, M., Fernandez, V., Tapia, G., Quiñones, L., et al. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin Sci (Lond) 2004;106:261-268.

Yamaguchi, K., Yang, L., McCaill, S., Huang, J., Yu, X.X., Pandey, S.K., et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 2007;45:1366-1374.

Wouters, K., van Bilzen, M., van Gorp, P.J., Bieghs, V., Löthjohann, D., Kerkisiek, A., et al. Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice. FEBS Lett 2010;584:1001-1005.

Gan, LT, Van Rooyen, DM, Koina, ME, McCuskey, RS, Teoh, NC, Farrell GC. Hepatocyte free cholesterol lipotoxicity results from JNK1-mediated mitochondrial injury and is HMGB1 and TLR4-dependent. J Hepatol 2014;61:1376-1384.

Dietschy, JM, Turley, SD, Spady, DK. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 1993;34:1637-1639.

Ioannou, GN. The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol Metab 2016;27:84-95.

Ioannou, GN, Landis, CS, Jin, G-Y, Haigh, WG, Farrell, GC, Kuver, R, et al. Cholesterol crystals in hepatocyte lipid droplets are strongly associated with human nonalcoholic steatohepatitis. Hepatol Commun 2019;3:776-791.

Tauchi-Sato, K., Ozeki, S., Houjou, T., Taguchi, R., Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 2002;277:44507-44512.

Thiam, AR, Farese, RV Jr, Walther, TC. The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 2013;14:775-786.

Wang, X., Sato, R., Brown, MS, Hua, X., Goldstein JL. SREBP-1, a membrane-bound transcription factor, is released from JNK1-mediated mitochondrial injury and is HMGB1 and TLR4-dependent. J Hepatol 2014;61:1376-1384.

Costet, P, Luo, Yi, Wang, N, Tall, AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor. J Biol Chem 2000;275:28240-28245.

Yu, L., Hammer, RE, Li-Hawkins, J., von Bergmann, K., Lutjohann, D., Cohen, JC, et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A 2002;99:16237-16242.

Sabol, SL, Brewer, HB Jr, Santamarina-Fojo, S. The human ABCG1 gene: identification of LXRx response elements that modulate expression in macrophages and liver. J Lipid Res 2005;46:2151-2161.

Chiang, JY, Kimmel, R., Stroup, D. Regulation of cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha). Gene 2001;262:257-265.

Ahn, SB, Jun, DW, Jang, K., Lee, BH, Shin, KJ. Duodenal Niemann-Pick C1-like 1 expression was negatively correlated with liver X receptor expression in nonalcoholic fatty liver disease. Korean J Intern Med 2019;34:777-784.
53) Beaven SW, Wroblewski K, Wang J, Hong C, Bensinger S, Tsukamoto H, et al. Liver X receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. Gastroenterology 2011;140:1052-1062.

54) Wang YY, Dahle MK, Ågren J, Myhre AE, Reinbold FP, Foster SJ, et al. Activation of the liver X receptor protects against hepatic injury in endotoxemia by suppressing Kupffer cell activation. Shock 2006;25:141-146.

55) Stone BG, Evans CD, Fadden RJ, Schreiber D. Regulation of hepatic cholesterol ester hydrolase and acyl-coenzyme A:cholesterol acyltransferase in the rat. J Lipid Res 1989;30:1681-1690.

56) Oelkers P, Behari A, Cremers D, Billheimer JT, Sturley SL. Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. J Biol Chem 1998;273:26765-26771.

57) Lin S, Cheng D, Liu M-S, Chen J, Chang T-Y. Human acyl-CoA:cholesterol acyltransferase-1 in the endoplasmic reticulum contains seven transmembrane domains. J Biol Chem 1999;274:23276-23285.

58) Joyce CW, Shelness GS, Davis MA, Lee RG, Skinner K, Anderson RA, et al. ACAT1 and ACAT2 membrane topol-grammar segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane. Mol Biol Cell 2000;11:3675-3687.

59) Langston TB, Hylemon PB, Grogan WM. Over-expression of hepatic neutral cytosolic cholesteryl ester hydrolase in mice increases free cholesterol and reduces expression of HMG-CoAR, CYP27, and CYP7A1. Lipids 2005;40:31-38.

60) Min H-K, Kapoor A, Fuchs M, Mirshahi F, Zhou H, Maher J, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab 2012;15:665-674.

61) Zhao L, Chen Y, Tang R, Chen Y, Li Q, Gong J, et al. Inflammatory stress exacerbates hepatic cholesterol accumulation via increasing cholesterol uptake and de novo synthesis. J Gastroenterol Hepatol 2011;26:875-883.

62) Xie X, Liao H, Pang W, Guan Y, Wang X, et al. Down-regulation of hepatic HNF4alpha gene expression during hyper-insulinemia via SREBP. Mol Endocrinol 2009;23:434-443.

63) Van Rooyen DM, Larot CZ, Haigh WG, Yeh MM, Ioannou G, Kuver R, et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 2011;141:1393-1403.e1-e5.

64) Simonen P, Kotronen A, Hallikainen M, Sebastianova K, Makonnen J, Halkkainen A, et al. Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity. J Hepatol 2011;54:153-159.

65) Savard C, Tartaglione EV, Kuver R, Haigh WG, Farrell GC, Subramanian S, et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology 2013;57:81-92.

66) Caballero F, Fernández A, De Lacy AM, Fernández-Checa JC, Caballería J, García-Ruiz C. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol 2009;50:789-796.

67) Noureddin M, Zelber-Sagi S, Willkens LR, Porcell J, Boushey CJ, Le Marchand L, et al. Diet associations with nonalcoholic fatty liver disease in an ethnically diverse population: the multiracial cohort. Hepatology 2020;71:1940-1952.

68) Ioannou CN, Morrow OB, Connelly ML, Lee SP. Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the United States population. Hepatology 2009;50:175-184.

69) Liang T, Alloosh M, Bell LN, Fullenkamp A, Saxena R, Van Altstine W, et al. Liver injury and fibrosis induced by dietary challenge in the Ossabaw miniature swine. PLoS One 2015;10:e0124173.

70) Lee L, Alloosh M, Saxena R, Van Alstine W, Watkins BA, Klaunig JE, et al. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology 2009;50:56-67.

71) Rotman Y, Koh C, Zmuda JM, Kleiner DE, Liang TJ. The association of genetic variability in patatin-like phospholipase domain-containing 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology 2010;52:894-903.

72) Pirazzi C, Adiels M, Burza MA, Mancina RM, Levin M, Stahlman M, et al. Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. J Hepatol 2012;57:1276-1282.

73) Grimaudo S, Pipitone RM, Pennisi G, Celsa C, Cammà C, Di Marco V, et al. Association between PNPLA3 rs738409 C>G variant and liver-related outcomes in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2020;18:935-944.e3.

74) Dongiovanni P, Petta S, Maglio C, Fracanzani AL, Pipitone R, MozzI E, et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 2015;61:506-514.

75) Cefalu AB, Pirruccello JP, Noto D, Gabriel S, Valenti V, Gupta N, et al. A novel APOB mutation identified by exome sequencing cosegregates with steatosis, liver cancer, and hypercholesterolemia. Arterioscler Thromb Vasc Biol 2013;33:2021-2025.

76) Chalasani N, Guo X, Loomba R, Goodarzi MO, Haririan N, et al. Genome-wide association study identifies variants associated with histologic features of nonalcoholic fatty liver disease. Gastroenterology 2010;139:1567-1576.e1-e6.

77) Burton BK, Balwani M, Feillet F, Barit I, Burrow TA, Camarena Grande C, et al. A phase 3 trial of seseplase alfa in lysosomal acid lipase deficiency, N Engl J Med 2015;373:1010-1020.

78) Francesco B, Daniele P, Domenico F, Giovanna C, Giulia T, et al. Reduced lysosomal acid lipase activity: a new marker of liver disease severity across the clinical continuum of non-alcoholic fatty liver disease? World J Gastroenterol 2019;25:4172-4180.

79) Ma Y, Belyaeva OV, Brown PM, Fujita K, Valles K, Karki S, et al. 17-beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease. Hepatology 2019;69:1504-1519.

80) Yeagle PL. Modulation of membrane function by cholesterol. Biochimie 1991;73:1303-1310.

81) Sozen E, Ozer NK. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: an updated mini-review. Redox Biol 2017;12:456-461.

82) Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Özdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004;306:457-461.

83) Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018;69:927-947.

84) Gentile CL, Faye M, Pagliassotti MJ. Endoplasmic reticulum stress and the unfolded protein response in nonalcoholic fatty liver disease. Antioxid Redox Signal 2011;15:503-521.

85) Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 2011;473:528-531.

86) Park SW, Zhou Y, Lee J, Lee J, Ozcan U. Sarco(endo)plasmic reticulum Ca2+-ATPase 2b is a major regulator of endoplasmic reticulum stress in the Ossabaw miniature swine. PLoS One 2015;10:e0124173.
reticulum stress and glucose homeostasis in obesity. Proc Natl Acad Sci U S A 2010;107:19320-19325.
87) Dixon LJ, Berk M, Thapaliya S, Papouchado BG, Feldstein AE. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab Invest 2012;92:713-723.
88) Zhang J, Zhang K, Li Z, Guo B. ER stress-induced inflammasome activation contributes to hepatic inflammation and steatosis. J Clin Cell Immunol 2016;7:457.
89) van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 2008;9:112-124.
90) Coll O, Colell A, Garcia-Ruiz C, Kaplowitz N, Fernandez-Checa JC. Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Hepatology 2003;38:692-702.
91) Hall EA, Ren S, Hylemon PB, Rodriguez-Agudo D, Redford KF, Marques D, et al. Detection of the sterol regulatory element-binding protein, SrAR, in human liver cells. Biochim Biophys Acta 2005;1733:111-119.
92) Mari M, Caballerio F, Colell A, Morales A, Caballeria J, Fernandez A, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 2006;4:185-198.
93) Serviddio G, Blonda M, Bellanti F, Villani R, Iuliano L, Vendemiaile G. Oxysterols and redox signaling in the pathogenesis of non-alcoholic fatty liver disease. Free Radic Res 2013;47:881-893.
94) Olkkonen VM, Beaslas O, Nissilä E. Oxysterols and their cellular effectors. Biomolecules 2012;2:76-103.
95) Peet DJ, Turley SD, Ma W, Janowoski BA, Lobaccaro JM, Hammer RE, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell 1998;93:693-704.
96) Chen W, Chen G, Head DL, Mangelsdorf DJ, Russell DW. Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab 2007;5:73-79.
97) Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, et al. Structural requirements of ligands for the oxysterol liver X receptors LXRα and LXRβ. Proc Natl Acad Sci U S A 1999;96:266-271.
98) Sakai J, Duncan EA, Rawson RB, Hua X, Brown MS, Goldstein JL. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages. One within a transmembrane segment. Cell 1996;85:1037-1046.
99) Raselli T, Hearn T, Wyss A, Attott K, Peter A, Frey-Wagner I, et al. Elevated oxysterol levels in human and mouse livers reflect nonalcoholic steatohepatitis. J Lipid Res 2019;60:1270-1283.
100) Ikegami T, Hyogo H, Honda A, Miyazaki T, Tokushige K, et al. Oxysterol storage in Kupffer cells. PLoS One 2012;7:e34378.
101) Hall EA, Ren S, Hylemon PB, Rodriguez-Agudo D, Redford KF, Marques D, et al. Detection of the sterol regulatory element-binding protein, SrAR, in human liver cells. Biochim Biophys Acta 2005;1733:111-119.
102) Xu L, Bai Q, Rodriguez-Agudo D, Hylemon PB, Heuman DM, Pandak WM, et al. Regulation of hepatocyte lipid metabolism and inflammatory response by 25-hydroxycholesterol and 25-hydroxycholesterol-3-sulfate. Lipids 2010;45:821-832.
103) Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol 2015;15:104-118.
104) Vinue A, Herrero-Cervera A, Gonzalez-Navarro H. Understanding the impact of dietary cholesterol on chronic metabolic diseases through studies in rodent models. Nutrients 2018;10:939.
121) Sato S, Fukasawa M, Yamakawa Y, Natsume T, Suzuki T, Shoji I, et al. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem 2006;139:921-930.

122) Wree A, Eguchi A, McGeough MD, Pena CA, Johnson CD, Canbay A, et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 2014;59:898-910.

123) Ioannou GN, Van Rooyen DM, Savard C, Haigh WG, Yeh MM, Teoh NC, et al. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH. J Lipid Res 2015;56:277-285.

124) Ioannou GN, Haigh WG, Thornling D, Savard C. Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis. J Lipid Res 2013;54:1326-1334.

125) Haka AS, Groshove I, Chiang E, Buxbaum AR, Baird BA, Pierini LM, et al. Macrophages create an acidic extracellular hydrolytic compartment to digest aggregated lipoproteins. Mol Biol Cell 2009;20:4932-4940.

126) Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 2017;66:1037-1046.

127) Wang X, Zheng ZE, Caviglia JM, Corey KE, Herfel TM, Cai B, et al. Hepatocytic TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab 2016;24:848-862.

128) Wang X, Cai B, Yang X, Sonubi OO, Zheng ZE, Ramakrishnan R, et al. Cholesterol stabilizes TAZ in hepatocytes to promote experimental non-alcoholic steatohepatitis. Cell Metab 2020;32:969-986.e7.

129) Athyros VG, Tziomalos K, Giouleme O, Ganotakis ES, Elisaf M, Tziomalos K, Vassiliadis T, et al. Safety and efficacy of long-term ezetimibe therapy in patients with metabolic syndrome and abnormal liver function tests: a post hoc analysis of the randomised ATTEMPT study. Arch Med Sci 2011;7:796-805.

130) Athyros VG, Giouleme O, Ganotakis ES, Elisaf M, Tziomalos K, Vassiliadis T, et al. Safety and impact on cardiovascular events of long-term multifactorial treatment in patients with metabolic syndrome and abnormal liver function tests: a post hoc analysis of the randomised ATTEMPT study. Arch Med Sci 2011;7:796-805.

131) Kim RG, Loomba R, Prokop LJ, Singh S. Statin use and risk of cirrhosis and related complications in patients with chronic liver disease: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2017;15:1521-1530.e8.

132) Chan DC, Watts GF, Gan SK, Ooi EMM, Barrett PHR. Effect of ezetimibe on hepatic fat, inflammatory markers, and apolipoprotein B-100 kinetics in insulin-resistant obese subjects on a weight loss diet. Diabetes Care 2010;33:1134-1139.

133) Takeda Y, Takamura T, Honda M, Kita Y, Zen Y, Kato K-I, et al. The effects of ezetimibe on non-alcoholic fatty liver disease in metabolic syndrome: a randomised study. Curr Med Res Opin 2006;22:873-883.

134) Margerie D, Lefebvre P, Raverdy V, Schwahn U, Ruetten H, Arnaud S, et al. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease: the St Francis Heart Study randomized clinical trial. Am J Gastroenterol 2011;106:71-77.

135) Borghesi LM, Di Van A, Sanna M, Di Leo S, et al. Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol. Scand J Gastroenterol 2009;44:471-477.

136) Nakade Y, Murotani K, Inoue T, Kobayashi Y, Yamamoto T, Ishii N, et al. Ezetimibe for the treatment of non-alcoholic fatty liver disease: a meta-analysis. Hepatol Res 2017;47:1417-1428.

137) Nascimbени F, Aron-Wisnesky J, Paix R, Tordjman J, Poitou C, Charlotte F, et al. Statins, anti-diabetic medications and liver histology in patients with diabetes and non-alcoholic fatty liver disease. BMJ Open Gastroenterol 2016;3:e000075.

138) Foster T, Budoff MJ, Saab S, Ahmadi N, Gordon C, Guerci AD. Atorvastatin and antioxidants for the treatment of non-alcoholic fatty liver disease: the St Francis Heart Study randomized clinical trial. Ann J Gastroenterol 2011;106:71-77.

139) J Hepatol 2017;66:1037-1046.

140) Foster T, Budoff MJ, Saab S, Ahmadi N, Gordon C, Guerci AD. Atorvastatin and antioxidants for the treatment of non-alcoholic fatty liver disease: the St Francis Heart Study randomized clinical trial. Ann J Gastroenterol 2011;106:71-77.

141) Athyros VG, Giouleme O, Ganotakis ES, Elisaf M, Tziomalos K, Vassiliadis T, et al. Effect of multifactorial treatment on non-alcoholic fatty liver disease in metabolic syndrome and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE) Study: a post-hoc analysis. Lancet 2010;376:1916-1922.

142) Athyros VG, Mikhailidis DP, Didangelos TP, Giouleme OI, Liberopoulos EN, Karagiannis A, et al. Effect of multifactorial treatment on non-alcoholic fatty liver disease in metabolic syndrome: a randomised study. Curr Med Res Opin 2006;22:873-883.

143) Allard JP, Aghdassi E, Mohammed S, Raman M, Avand G, Arendt BM, et al. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease: the St Francis Heart Study randomized clinical trial. Am J Gastroenterol 2011;106:71-77.

144) Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 2003;37:909-916.

145) Margerie D, Lefebvre P, Ravendy V, Schwahn U, Ruettten H, Larsen P, et al. Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients. BMC Med Genomics 2019;12:89.

146) Yu L, Morishima C, Ioannou GN. Dietary cholesterol intake is associated with progression of liver disease in patients with chronic hepatitis C: analysis of the hepatitis C antiviral long-term treatment against cirrhosis trial. Clin Gastroenterol Hepatol 2013;11:1661-1666.e3.

147) Yokoyama Y, Inoue T, Kobayashi Y, Yamamoto T, Ishii N, et al. Ezetimibe for the treatment of non-alcoholic fatty liver disease: a meta-analysis. Hepatol Res 2017;47:1417-1428.

148) Mokhtari Z, Poustchi H, Eslamparast T, Hekmatdoost A. Egg consumption and risk of non-alcoholic fatty liver disease. World J Gastroenterol 2017;23:953-962.

149) Margerie D, Lefebvre P, Ravendy V, Schwahn U, Ruettten H, Larsen P, et al. Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients. BMC Med Genomics 2019;12:89.

150) Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 2003;37:909-916.

151) Allard JP, Aghdassi E, Mohammed S, Raman M, Avand G, Arendt BM, et al. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): a cross-sectional study. J Hepatol 2008;48:300-307.

152) Margerie D, Lefebvre P, Ravendy V, Schwahn U, Ruettten H, Larsen P, et al. Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients. BMC Med Genomics 2019;12:89.
Côté I, Ngo Sock ET, Lévy É, Lavoie J-M. An atherogenic diet decreases liver FXR gene expression and causes severe hepatic steatosis and hepatic cholesterol accumulation: effect of endurance training. Eur J Nutr 2013;52:1523-1532.

Ichimura M, Kawase M, Masuzumi M, Sakaki M, Nagata Y, Tanaka K, et al. High-fat and high-cholesterol diet rapidly induces non-alcoholic steatohepatitis with advanced fibrosis in Sprague-Dawley rats. Hepatol Res 2015;45:458-469.

Ichimura M, Masuzumi M, Kawase M, Sakaki M, Tamaru S, Nagata Y, et al. A diet-induced Sprague-Dawley rat model of nonalcoholic steatohepatitis-related cirrhosis. J Nutr Biochem 2017;40:62-69.

Moriya T, Kitamori K, Naito H, Yanagiba Y, Ito Y, Yamagishi N, et al. Simultaneous changes in high-fat and high-cholesterol diet-induced steatohepatitis and severe fibrosis and those underlying molecular mechanisms in novel SHRS/P/Dmcr rat. Environ Health Prev Med 2012;17:444-456.

Yeti H, Naito H, Jia X, Shindo M, Taki H, Tamada H, et al. High-fat-cholesterol diet mainly induced necrosis in fibrotic steatohepatitis rat by suppressing caspase activity. Life Sci 2013;93:673-680.

Horai Y, Utsumi H, Ono Y, Kishimoto T, Ono Y, Fukunari A. Pathological characterization and morphometric analysis of hepatic lesions in SHRS/P/Dmcr, an experimental non-alcoholic steatohepatitis model, induced by high-fat and high-cholesterol diet. Int J Exp Pathol 2016;97:75-85.

Csonka C, Baranyai T, Tiszlavicz L, Fébel H, Szűcs G, Varga ZV, et al. Isolated hypercholesterolemia leads to steatosis in the liver without affecting the pancreas. Lipids Health Dis 2017;16:144.

Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 2007;46:1392-1403.

Vergnes L, Phan J, Strauss M, Tafuri S, Reue K. Cholesterol and cholate components of an atherogenic diet induce distinct stages of hepatic inflammatory gene expression. J Biol Chem 2003;278:42774-42784.

Desai MS, Mariscalco MM, Tawil A, Vallejo JG, Smith CW. Atherogenic diet-induced hepatitis is partially dependent on mureine TLR4. J Leukoc Biol 2008;83:1336-1344.

Sumiyoshi M, Sakamaki M, Kimura Y. Chronic intake of a high-cholesterol diet resulted in hepatic steatosis, focal nodular hyperplasia and fibrosis in non-obese mice. Br J Nutr 2010;103:378-385.

Ganz M, Bukong TN, Csak T, Saha B, Park J-K, Anbude A, et al. Progression of non-alcoholic steatohepatitis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat-cholesterol-sugar diet model in mice. J Transl Med 2015;13:193.

Tu LN, Showalter MR, Cačka T, Fan S, Pillai VV, Fiehn O, et al. Metabolomic characteristics of cholesterole-induced non-obese nonalcoholic fatty liver disease in mice. Sci Rep 2017;7:6120.