New Diterpenes from Cultures of the Fungus Engleromyces goetzii and Their CETP Inhibitory Activity

Yang Wang · Ling Zhang · Fang Wang · Zheng-Hui Li · Ze-Jun Dong · Ji-Kai Liu

Received: 6 January 2015 / Accepted: 31 January 2015 / Published online: 8 April 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract One new cleistanthane-type diterpene named engleromycenolic acid A (1), one new rosane-type diterpene named engleromycenolic acid B (2) and one new natural rosane-type diterpene, engleromycenol (3), along with three known rosane-type diterpenes, rosololactone (4), rosenonolactone (5) and 7-deoxyrosenonolactone (6) were isolated from cultures of the fungus Engleromyces goetzii, where it naturally grows on Alpine bamboo culms. The new compounds were elucidated based on their spectroscopic data. In addition, compounds 1–6 were evaluated for their cholesterol ester transfer protein (CETP) inhibition activity. This paper reports the isolation, structural elucidation, and CETP inhibition activity of these compounds.

1 Introduction

The fungus Engleromyces goetzii is widely distributed in Tibet, Sichuan and Yunnan province. It grows on Alpine bamboo culms, and ripens during rainy season from July to August. Local residents usually boil the fruiting bodies in water to treat infection, inflammation and cancer [1–3]. Previous investigation on the fruiting bodies of E. goetzii has led to the isolation of neoengleromycin, cytochalasin D and 19,20-epoxycytochalasin D [4–6]. There are no reports about the chemical constituents of the cultures of this fungus.

In order to search for more novel and potentially bioactive secondary metabolites, the chemical constituents of E. goetzii cultures were investigated by altering the culture conditions of the fungus and enlarging the fermentation scale. This investigation led to the isolation and identification of one new cleistanthane-type diterpene named engleromycenolic acid A (1), one new rosane-type diterpene named engleromycenolic acid B (2) and one new natural rosane-type diterpene named engleromycenol (3), along with three known rosane-type diterpenes: rosololactone (4), rosenonolactone (5) and 7-deoxyrosenonolactone (6) [7]. Their structures (Fig. 1) were elucidated based on the spectroscopic data analyses. The cholesterol ester transfer protein (CETP) inhibition activities of compounds 1–6 were examined and engleromycenolic acid A (1) showed CETP inhibition activity with IC50 value at 7.55 μM.

There are two kinds of lipoproteins in plasma: one is low-density lipoprotein (LDL) and another is high-density lipoprotein (HDL) [8, 9]. They are in charge of carrying cholesteryl esters in plasma. LDL mediates the transport of cholesteryl esters from the liver to periphery plasma [8, 10, 11]. CETP promotes the transfer of cholesteryl esters from...
HDL to LDL. Inhibiting the activity of CETP can promotes the metabolism of cholesteryl esters in the liver and avoids accumulation of cholesterol esters in plasma that may cause atherosclerosis [9, 11–14].

2 Results and Discussion

Compound 1 was obtained as colorless oil, displayed an [M+Na]+ ion at m/z 341.2096 on the positive HRESIMS analysis, corresponding to the molecular formula C20H30O3 with six degrees of unsaturation. The 1H NMR spectrum of 1 (Table 1) exhibited two methyls at δH 1.28 (3H, s) and 0.80 (3H, s), five olefinic protons at δH 5.69 (1H, ddd, J = 17.1, 10.0, 10.0 Hz), 5.16 (1H, dd, J = 10.0, 2.2 Hz), 5.00 (1H, dd, J = 17.1, 2.2 Hz), 4.67 (1H, br.s) and 4.57 (1H, br.s). The 13C NMR spectrum showed 20 carbon resonances, including one carboxyl, four sp2 olefinic carbons, one oxygen-bearing methine, two tertiary methyls, six methylenes, four methines as well as two quaternary carbons. These data suggested compound 1 might be a tricyclic diterpene. The 1H and 13C NMR spectral data of 1 were similar to those of auricularic acid [15], which indicated that 1 was a cleistanthane-type diterpene. However, there are certain differences as follows: the resonance of H-2/CH3-20, CH3-20/H-8, H-8/H-15 and H-15/H-7β suggested that H-2, H-8, H-15 H-7β, H-6β and CH3-20 were in the same side, whereas the cross peaks of H-6α/CH3-19, H-9/H-14, H-7α/H-14 and H-7α/H-5 indicated that H-6α, CH3-19, H-9, H-14, H-7α, H-14 and H-5 lied on the opposite side (Fig. 2). Therefore, 1 was determined as engleromycenolic acid A.

Compound 2 was isolated as white powder. The molecular formula C20H30O3 was determined by the HRESIMS analysis (m/z 341.2091 [M+Na]+), which indicated six degrees of unsaturation. The 1H NMR spectrum (Table 2) of 2 exhibited three olefinic protons at δH 5.87 (1H, dd, J = 17.5, 10.7 Hz), 4.97 (1H, dd, J = 17.5, 1.0 Hz) and 4.88 (1H, dd, J = 10.7, 1.0 Hz), one oxygen-bearing methine at δH 3.95 (1H, m) and three methyls at δH 0.98 (3H, s), 1.08 (3H, s) and 1.31 (3H, s). The 13C NMR spectrum showed 20 carbon resonances including one carboxyl, four olefinic carbons, one oxygen-bearing methine, three methyls, seven methylenes, one methine and three quaternary carbons. Comparison of NMR data of 2 with those of 7-deoxyrosenolactone (6) [16], revealed the presence of the characteristic signals of a rosane-type diterpene. The resonances at δC 129.5 and 138.8 in the 13C NMR spectrum of 2 suggested there was an additional double bond in 2. The HMBC correlations from δH 2.42 and 1.86 to δC 129.5, δH 1.31 to δC 129.5; δH 2.22 and 1.97 to δC 138.8 as well as δH 0.98 to δC 138.8, indicated that the new double bond located between C-5 and C-10. Based on the analysis, the oxygen linkage between C-10 and C-18 in 6 was broken and formed a carboxyl at C-18 in 2, which was confirmed by the HMBC correlations from δH 2.21, 1.41 and 1.31 to δC 180.9. In addition, the resonance of δC 21.7 (t) in 6 is down shifted to δC 66.2 (d) in 2, indicated the methylene is oxidized by a hydroxyl. The HMBC correlations from δH 2.42, 2.21, 1.86 and 1.41 to carbon at δC 66.2, as well as the 1H–1H COSY correlations from δH 3.95 to δH 2.42, 2.21, 1.86 and 1.41,
suggesting the hydroxyl was attached to C-2. The ROSEY spectrum showed cross peaks between CH$_3$-20/H-2, H-1/β/CH$_3$-20, H-1/α/H-8, H-8/H-6α, CH$_3$-19/H-6α and CH$_3$-17/H-8 suggested CH$_3$-20, H-2, H-1/β in the same side, and H-1/α, H-8, H-6α, CH$_3$-19 and CH$_3$-17 in the opposite side (Fig. 3). The detailed analysis of chemical shift and coupling constant led to the determination that compound 2 was elucidated as engleromycenolic acid B.

Compound 3 possessed a molecular formula C$_{20}$H$_{32}$Oa as determined by the HRESIMS (m/z 311.2354, [M+Na]$^+$), which implied five degrees of unsaturation. The 1D NMR spectroscopic data (Table 2) suggested that the backbone of 3 was the same as that of 2. Differences between them were identified to be the loss of a carbonyl and an oxygen-bearing methine, as well as the appearance of a hydroxymethyl and a methylene. The HMBC correlations of δ_{H} 3.58 and 3.32 with δ_{C} 23.6, 34.9 and 128.7 suggested the carbonyl at C-18 in 2 is replaced by the hydroxymethyl (δ_{C} 69.9, δ_{H} 3.58 and 3.32) in 3. In addition, the HMBC correlation from δ_{H} 1.68 and 1.58 to δ_{C} 142.5 and 39.3, and the 1H–1H COSY correlation from δ_{H} 1.98 to δ_{H} 1.68 and 1.58, δ_{H} 1.68 and 1.58 to δ_{H} 1.78 and 1.27, indicated that the oxygen-bearing methine at C-2 in 2 was replaced by a methylene in 3. The configuration of C-8, C-9 and C-13 were established by comparing the NMR data of 3 with 2. The H-3 signal at δ_{H} 1.78 (1H, ddd, $J=13.5, 5.0, 3.5$ Hz) suggested it to be equatorial β-oriented. In the ROSEY spectrum, the observed cross peak of δ_{H} 1.78 and 3.32 indicated the hydroxymethyl group in C-4 was located in axial β-oriented. In addition, there are no cross peak between H-18 (3.58, 3.32) and H-3α (1.27) in ROSEY spectrum, which further approved the conclusion above (Fig. 4). According to this analysis, compound 3 was confirmed as engleromycenol.

Based on the spectroscopic analyses and the comparison with the literature, the known compounds were identified as rosololactone (4) [17, 18], rosenonolactone (5) [18] and 7-deoxyrosenonolactone (6) [16]. Compound 3 has been reported in the conversion of 7-deoxyrosenonolactone to 3 by Connolly [19]. However, there are no reports about the NMR data of 3.

All the isolates were assayed for their CETP inhibition activity with the CETP Inhibitor Drug Screening Kit. The result showed that compounds 2–6 exhibited weak

Table 1 1H and 13C NMR spectroscopic data for compound 1

Pos.	δ_{C} Type	δ_{H} (J in Hz)
1	49.3, t	2.13 (ddd 12.3, 4.3, 1.9, H-β) 0.93, overlapped
2	65.3, d	4.14 (tt, 11.5,4.3, H-\$\beta\$)
3	47.7, t	2.41 (ddd 12.3, 4.3, 1.9, H-β) 1.00, overlapped
4	46.0, s	
5	56.6, d	1.15, overlapped
6	24.3, t	1.92, overlapped
7	35.3, t	2.02 (dq-like, 13.3, 3.6, H-β) 0.89 (qd-like, 13.3, 3.6, H-α)
8	42.8, d	1.17, overlapped
9	55.8, d	1.03, overlapped
10	40.0, s	
11	28.1, t	1.93, overlapped, H-α 1.12, overlapped, H-β
12	37.0, t	2.45 (ddd, 13.1, 3.2, 3.2, H-β) 2.06, overlapped
13	152.4, s	
14	56.0, d	2.28 (dd, 10.0, 10.0)
15	141.2, d	5.69 (ddd, 17.1, 10.0, 10.0)
16	116.9, t	5.16 (dd,10.0, 2.2)
17	106.8, t	4.67 br.s
18	181.2, s	4.57 br.s
19	29.5, q	1.28, s
20	14.4, q	0.80, s

Spectra were measured in CD$_3$OD at 600 MHz

Fig. 2 Selected 2D NMR correlations of 1
inhibition activity of CETP, however, engleromycenolic acid A (1) significantly inhibited the activity of CETP with the IC50 value at 7.55 μM. Results of the study suggested that engleromycenolic acid A (1) might be a good candidate to develop effective therapeutic agent for the treatment of atherosclerotic cardiovascular diseases.

3 Experimental Section

3.1 General Experimental Procedures

The optical rotations were measured on a JASCO model 1020 polarimeter (JASCO International Co., Ltd., Tokyo, Japan). The IR spectra were obtained on a Bruker TENSOR 27FT-IR spectrometer (Bruker, Ettlingen, Germany) using KBr pellets. The 1D and 2D NMR data were acquired on Bruker Avance III 600 and AM-400 instruments (Bruker, Rheinstetten, Germany) at room temperature. The chemical shifts (δ) were expressed in ppm with reference to the solvent signals. The mass spectra (MS) were acquired on an API QSTAR time-of-flight mass spectrometer (MDS Sciex, Ontario, Canada) or a VG Autospec-3000 spectrometer (VG, Manchester, England). Silica gel (200–300 mesh, Qingdao Marine Chemical Inc., Qingdao, China), Sephadex LH-20 (Amersham Biosciences, Sweden), and RP-18 gel (40–75 μm, Fuji Silysia Chemical Ltd., Japan) were used for column chromatography. Preparative HPLC (Prep-HPLC) was performed on an Agilent 1100 liquid chromatography system equipped with a ZORBAX SB-C18 column (9.4 mm × 150 mm). Precoated silica

| Table 2 1H and 13C NMR spectroscopic data for compounds 2 and 3 |
|---|---|---|---|
| Pos. | 2^a | 3^b | 3^b |
| | δ_c Type | δ_H (J in Hz) | δ_c Type | δ_H (J in Hz) |
| 1 | 35.4, t | 2.42 (dd, 15.9, 3.8, H-β) | 25.0, t | 1.98, overlapped |
| | 1.86, m, H-α | | | |
| 2 | 66.2, d | 3.95, m | 19.7, t | 1.68, overlapped |
| | 1.97 (dd,16.9, 5.4, H-β) | | 1.58, overlapped | |
| 3 | 45.8, t | 2.21, overlapped | 34.9, t | 1.78 (ddd, 13.5, 5.0, 3.5, H-β) |
| | 1.41, overlapped | | 1.27, overlapped | |
| 4 | 49.8, s | | 39.3, s | |
| | 129.5, s | | 128.7, s | |
| 5 | 28.1, t | 2.22, overlapped, H-α | 25.2, t | 2.10, overlapped |
| | 1.97 (dd,16.9, 5.4, H-β) | | 1.96, overlapped | |
| 6 | 26.5, t | 1.51, overlapped | 25.8, t | 1.39, overlapped |
| | 1.34, overlapped | | 1.32, overlapped | |
| 7 | 38.9, d | 1.65, overlapped | 37.5, d | 1.59, overlapped |
| | 38.6, s | | 37.8, s | |
| 8 | 138.8, s | | 142.5, s | |
| 9 | 32.6, t | 1.68, overlapped | 31.7, t | 1.61, overlapped |
| | 1.39, overlapped | | 1.33, overlapped | |
| 10 | 33.5, t | 1.64, overlapped | 32.7, t | 1.54, overlapped |
| | 1.33, overlapped | | 1.27, overlapped | |
| 11 | 37.3, s | | 36.4, s | |
| 12 | 40.6, t | 1.48, overlapped, H-β | 39.8, t | 1.38, overlapped |
| | 1.13 (br.d, 13.1, H-α) | | 1.07, overlapped | |
| 13 | 152.2, d | 5.87 (dd,17.5, 10.7) | 151.4, d | 5.82 (dd, 17.4, 10.7) |
| 14 | 109.2, t | 4.97 (dd, 17.5, 1.0) | 108.8, t | 4.92 (dd, 17.4, 1.2) |
| | 4.88 (dd, 10.7, 1.0) | | 4.85 (dd, 10.7, 1.2) | |
| 15 | 23.5, q | 1.08, s | 23.1, q | 1.03, s |
| 16 | 180.9, s | | 69.9, t | 3.58(d, 10.8) |
| | 25.3, q | 1.31, s | | 3.32(d, 10.8) |
| 17 | 16.7, q | 0.98, s | 23.6, q | 0.95, s |
| 18 | | | 17.9, q | 0.88, s |

^a Spectra were measured in CD₃OD at 600 MHz

^b Spectra were measured in CDCl₃ at 400 MHz
gel GF254 plates (Qingdao Marine Chemical Inc., Qingdao, China) were used for TLC analysis. The fractions were monitored by TLC analysis, and spots were visualized under UV light (254 or 365 nm) or by heating silica gel plates sprayed with 10 % H₂SO₄ in ethanol.

3.2 Fungal Material and Cultivation Conditions

Fruiting bodies of *E. goetzii* were collected from Shangri-La county in Yunnan Province, China. A voucher specimen has been deposited in the Herbarium of the Kunming Institute of Botany of the Chinese Academy of Sciences. The mycelia cultures were derived from the tissue plugs. The culture PDA medium consisted of glucose (5 %), peptone from porcine meat (0.15 %), yeast powder (0.5 %), KH₂PO₄ (0.05 %) and MgSO₄ (0.05 %). The inoculums of *E. goetzii* were prepared in a 15 L-fermentation tank for 6 days under the following conditions: culture temperature, 24 °C; initial pH, 6.0; agitation speed, 250 r/min; inoculation volume, 10 % (by volume); and aeration rate, 1.0 volume/culture volume/min. Subsequently, the liquid seed was transferred into a 100 L-fermentation tank for cultivation under the same conditions for 20 days to afford an 80 L culture broth.

3.3 Extraction and Isolation

The fermentation broth (80 L) was filtered, and the filtrate was concentrated to 10 L under reduced pressure and then extracted with ethyl acetate (3 × 10 L). The organic layer was evaporated to give a crude extract (350 g). Subsequently, the extract was subjected to silica gel column chromatography, using a petroleum ether/acetone gradient (100:0 → 0:100 V/V) to afford fractions F₁–F₇ based on TLC analysis. F₃ was purified using Sephadex LH-20 column chromatography (chloroform/methanol = 1:1 V/V) and then subjected to silica gel column chromatography (petroleum ether/acetone = 100:1 V/V) to afford compound 6 (50.0 mg). F₄ was fractioned by Sephadex LH-20 (chloroform/methanol = 1:1 V/V) and then subjected to silica gel column chromatography (petroleum ether/acetone = 100:1 V/V) to afford compound 5 (15.1 mg). F₅ was separated by silica gel column chromatography (chloroform/methanol = 100:1 V/V) to yield
F₅₋₁ and F₅₋₂. F₅₋₁ was further purified by Sephadex LH-20 column chromatography (chloroform/methanol = 1:1 V/V) to afford compound 4 (13.3 mg). F₅₋₂ was separated with silica gel column chromatography (chloroform/methanol = 150:1 V/V) and Sephadex LH-20 column chromatography (chloroform/methanol = 1:1 V/V) to give F₅₋₂₋₁ and F₅₋₂₋₂. F₅₋₂₋₁ was separated by preparative HPLC (acetonitrile/water = 3:7 → 6:4 V/V) to provide compound 1 (18.0 mg) and 2 (10.6 mg). F₇ was purified by Sephadex LH-

3.5 Engleromycenolic Acid B (2)

White powder; [α]D²¹+30.5 (c 0.23, MeOH); IR (KBr) νmax 3446, 3080, 2943, 2863, 1693, 1642, 1467, 1447, 1200 cm⁻¹; ¹H and ¹³C NMR data see Table 1; ESIMS (negative) m/z 317 (100) [M–H]⁻; HRESIMS (positive) m/z 341.2096 [M+Na]⁺ (calcd for C₂₀H₃₀O₃Na, 341.2093).

3.6 Engleromycenol (3)

White powder; [α]D²⁴.6⁻166.3 (c 0.32, MeOH); IR (KBr) νmax 3440, 3082, 2928, 2871, 1700, 1635, 1465, 1233 cm⁻¹; ¹H and ¹³C NMR data see Table 2; ESIMS (negative) m/z 317 (100) [M–H]⁻; HRESIMS (positive) m/z 341.2091 [M+Na]⁺ (calcd for C₂₀H₃₂O₃Na, 341.2093).

3.7 CETP Inhibition Activity Assay

Cholesterol ester transfer protein inhibition activity assay were carried out using a CETP Inhibitor Screening Kit (BioVision Incorporated, Milpitas, USA). CETP is a member of the lipid transfer/lipopolysaccharide binding protein gene family. CETP transfers neutral lipids from HDL to LDL and is present in normal human plasma and serum. The CETP Drug Screening Kit uses a donor molecule containing a fluorescent self-quenched neutral lipid that is transferred to an acceptor molecule in the presence of CETP (rabbit serum). CETP-mediated transfer of the fluorescent neutral lipid to the acceptor molecule results in an increase in fluorescence (ExEm = 465/535 nm). Inhibitor of CETP will inhibit the lipid transfer and subsequently decrease fluorescence intensity. The assay was carried out in a microtiter plate. Reagents were kept on ice prior to setting up the assay. The reaction mixture, containing test sample in 160 μL dH₂O or control vehicle (160 μL dH₂O); 20 μL CETP assay buffer; 10 μL of donor molecule and 10 μL of acceptor molecule was mixed well. The reaction was initiated by the addition of 3 μL of rabbit serum. After 60 min of incubation at 37 °C, transfer was measured by the fluorescence intensity with BioTek Instrument (Gene Company Limited., USA). Background values were obtained from a blank with 160 μL dH₂O. Percent inhibition of CETP activity was calculated by subtracting the background values from both control and test sample values. The IC₅₀ value was calculated by Reed and Muench’s method.

% Inhibition = 100 × [1 – Sample (fluorescence intensity) – Background (fluorescence intensity)] / Control (fluorescence intensity) – Background (fluorescence intensity)

Acknowledgments This work was financially supported by the National Science & Technology Pillar Program of China (2012BAD23B0305 and 2013BAI11B02), the National Natural Sciences Foundation of China (U1132607, 21302194).

Conflict of interest The authors declare no competing financial interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. J. Michiko, N. Norio, K. Nobuko, K. Katsuko, M.H. Qui, S. Kumiko, S. Kunitada, H. Masao, J. Nat. Med. 60, 217–224 (2006)
New Diterpenes from Cultures of Engleromyces goetzii

2. Z.J. Zhan, H.D. Sun, H.M. Wu, J.M. Yue, Acta Bot. Sin. 45, 248–252 (2003)
3. J.K. Liu, J.W. Tan, Z.J. Dong, Z.H. Ding, X.H. Wang, P.G. Liu, Helv. Chim. Acta 85, 1439–1442 (2002)
4. J.K. Liu, Drug Discov. Ther. 1, 94–103 (2007)
5. J. Wang, S.L. Wang, X.X. Liu, X.Y. Wan, Y.T. Chen, Acta Microbiol. Sin. 18, 248–252 (1978)
6. E.J. Pedersen, P. Larsen, P.M. Boll, Tetrahedron Lett. 21, 5079–5082 (1980)
7. Y.K. Kim, K.H. Son, J.Y. Nam, S.U. Kim, T.S. Jeong, W.S. Lee, S.H. Bok, B.M. Kwon, Y.J. Park, J.M. Shin, J. Antibiot. 49, 815–816 (1996)
8. M.C. Fernandez, A. Escribano, A.I. Mateo, S. Parthasarathy, E.M.M.D.L. Nava, X.D. Wang, S.L. Cockerham, T.P. Beyer, R.J. Schmidt, G.Q. Cao, Y.Y. Zhang, T.M. Jones, A. Borel, S.A. Sweetana, E.A. Cannady, G. Stephenson, S. Frank, N.B. Mantlo, Bioorg. Med. Chem. Lett. 22, 3056–3062 (2012)
9. P. Barter, K.A. Rye, Trends Pharmacol. Sci. 32, 694–699 (2011)
10. T.A. Rano, G.H. Kuo, Org. Lett. 11, 2812–2815 (2009)
11. G.J.D. Grooth, A.H.E.M. Klerkx, E.S.G. Stroes, A.F.H. Stalenhoef, J.J.P. Kastelein, J.A. Kuivenhoven, J. Lipid Res. 45, 1967–1974 (2004)
12. J.A. Sikorski, J. Med. Chem. 49, 1–22 (2006)
13. O. Weber, H. Bischoff, C. Schmeck, M.F. Böttcher, Cell. Mol. Life Sci. 67, 3139–3149 (2010)
14. P.J. Barter, H.B. Brewer, M.J. Chapman, C.H. Hennekens, D.J. Rader, A.R. Tall, Arterioscler. Thromb. Vasc. Biol. 23, 160–167 (2003)
15. O. Prakash, R. Roy, S. Agarwal, F.A. Hussaini, A. Shoeb, Tetrahedron Lett. 28, 685–686 (1987)
16. B.M. Kwon, J.Y. Nam, S.H. Lee, T.S. Jeong, S.U. Kim, K.H. Son, Y.K. Kim, K.H. Han, S.K. Kim, S.H. Bok, Tetrahedron Lett. 36, 6487–6490 (1995)
17. B. Dockerill, J.R. Hanson, M. Siverns, Phytochemistry 17, 572–573 (1978)
18. A. Loukaci, O. Kayser, K.U. Bindseil, K. Siems, J. Frevert, P.M. Ahren, J. Nat. Prod. 63, 52–56 (2000)
19. J.D. Connolly, R. Criddle, R.D.H. Murray, A.J. Renfrew, K.H. Overton, A. Melera, J. Chem. Soc. Org. 3, 268–273 (1966)