FINDING ALL MONOMIALS IN A POLYNOMIAL IDEAL

EZRA MILLER

Abstract. Given a $d \times n$ integer matrix A, the main result is an elementary, simple-to-state algorithm that finds the largest A-graded ideal contained in any ideal I in a polynomial ring $k[x]$ in n variables. The special case where A is an identity matrix yields that $(t.I) \cap k[x]$ is the largest monomial ideal in I, where the generators of $t.I$ are those of I but with each variable x_i replaced by $t_i x_i$ for an invertible variable t_i.

It is easy to tell whether an ideal I in a polynomial ring $k[x] = k[x_1, \ldots, x_n]$ contains at least one monomial: it does so if and only if the saturation $(I : (x_1 \cdots x_n)^\infty)$ is the unit ideal. Being more precise about the monomials in I makes the problem a little harder. Here are three equivalent ways to formulate it.

Question 1. Fix an ideal $I \subseteq k[x]$.

1. What is the set of monomials in I?
2. What is the largest \mathbb{N}^n-graded ideal contained in I?
3. What is the smallest $(k^*)^n$-scheme containing the zero scheme of I?

Answer 2. Let $t = t_1, \ldots, t_n$ be a new set of variables. Inside of the Laurent polynomial ring $k[x][t^{\pm 1}]$, let $t.I$ denote the ideal whose generators are those of I where each variable x_i is replaced by $t_i x_i$. The biggest monomial ideal contained in I is $(t.I) \cap k[x]$.

This answer appears, with non-invertible t-variables, as Algorithm 4.4.2 in [SST00]. An elementary proof is given there. It is obvious, for instance, that every monomial in I lies in $(t.I) \cap k[x]$, since the t variables are units; and intuitively, there is no way to clear all of the t variables simultaneously from all of the monomials in a given polynomial with more than one term. That said, viewing Question 1 as a special case of a more general problem from multigraded algebra lends insight. For notation, if $A \in \mathbb{Z}^{d \times n}$ is a $d \times n$ matrix of integers, to say that the polynomial ring $k[x]$ is A-graded means that each monomial $x^b \in k[x]$ is assigned the A-degree $\deg(x^b) = Ab$, the linear combination of the n columns of the matrix A with coefficients $b = b_1, \ldots, b_n$. An ideal I is A-graded if it is generated by polynomials whose terms all have the same A-degree.

Theorem 3. Fix an ideal $I \subseteq k[x]$ and a $d \times n$ matrix A with column vectors a_1, \ldots, a_n. Let $t = t_1, \ldots, t_n$ be a new set of variables. Denote by $t.I \subseteq k[x][t^{\pm 1}]$ the ideal whose generators are those of I with each variable x_i replaced by $t^a_i x_i$. The largest A-graded ideal contained in I equals the intersection $(t.I) \cap k[x]$.

Date: 31 May 2016.
After the first version of this note was posted, the authors of [KR05] pointed out that the statement of Theorem 3 is essentially Tutorial 50(a) in their book, an exercise with a suggested proof that is different from the one here.

Remark 4. Details on A-graded algebra in general can be found in [MS05, Chapter 8]. The A-grading on $k[x]$ corresponds uniquely to the action of a torus $T \cong (k^*)^d$ on k^n. (References for this are hard to locate. An exposition appears in Appendix A.1 of the first arXiv version of [KM05], at http://arxiv.org/abs/math/0110058v1.) Under this correspondence, A-graded ideals correspond to subschemes of k^n that carry T-actions. Therefore the zero scheme of the ideal $(t.I) \cap k[x]$ in Theorem 3 is the smallest T-scheme containing the zero scheme $Z(I)$.

Proof of Theorem 3. Let $X = T \times k^n$. Create a subbundle $Y \subseteq X$ over T whose fiber over $\tau \in T$ is the translate $\tau^{-1}.Z(I)$ of the zero-scheme $Z(I)$ by τ^{-1}. The image of the projection of Y to k^n is the minimal T-stable scheme containing $Z(I)$ by construction: it is the union of all T-translates of $Z(I)$. Therefore the vanishing ideal of the image of the projection is the maximal A-graded subideal of I. The scheme Y is expressed, in coordinates, as the zero scheme of $t.I$, and the image of its projection to k^n is the zero scheme of $(t.I) \cap k[x]$. □

Remark 5. In contrast to the monomial situation, the binomial analogue of Question 1.1, which begins with, “Is there a binomial in I?”, appears to be much harder than the monomial question, as observed by Jensen, Kahle, and Katthän [JKK16]. They note, for example, that for each d there is an ideal in $k[x, y]$ that contains no binomials of degree less than d but nonetheless has a quadratic Gröbner basis and contains a binomial of degree d.

References

[JKK16] Anders Jensen, Thomas Kahle, and Lukas Katthän, Finding binomials in polynomial ideals, preprint, 2016.

[KM05] Allen Knutson and Ezra Miller, Gröbner geometry of Schubert polynomials, Annals of Mathematics 161 (2005), 1245–1318. arXiv:math.AG/0110058

[KR05] Martin Kreuzer and Lorenzo Robbiano, Computational commutative algebra 2, Springer-Verlag, Berlin, 2005.

[MS05] Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005.

[SST00] Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms and Computation in Mathematics, vol. 6, Springer-Verlag, Berlin, 2000.

Mathematics Department, Duke University, Durham, NC 27708
URL: http://math.duke.edu/people/ezra-miller