Damaskinsky E.V.a, Sokolov M.A.b

On differential operators for bivariate Chebyshev polynomials

a Math. Dept. Military Engineering Institute, VI(IT). Saint Petersburg and Petersburg Department of the Steklov Mathematical Institute, evd@pdmi.ras.ru.

b Peter the Great St. Petersburg Polytechnic University and Military Telecommunications Academy (MTA), masokolov@gmail.com.

Abstract We construct the differential operators for which bivariate Chebyshev polynomials of the first kind, associated with simple Lie algebras C_2 and G_2, are eigenfunctions.

1. In these notes, we obtain differential operators for which bivariate Chebyshev polynomials of the first kind, associated with the root systems of the simple Lie algebras C_2 and G_2, are eigenfunctions. For the case of bivariate Chebyshev polynomials, associated with the Lie algebra A_2, such operators were obtained in the well known Koornwinder’s work \cite{1}.

Chebyshev polynomials in several variables are natural generalizations of the classical Chebyshev polynomials in one variable (see, for example \cite{2}). The polynomials of the first kind can be defined in the following manner.

Denote by R a reducible system of roots for a simple Lie algebra L. A system of roots is a set of vectors in d-dimensional Euclidean space E^d with a scalar product (\ldots,\ldots). This system is completely determined by a basis of simple roots α_i, $i = 1, \ldots, d$ and by a group of reflections of R called a Weyl group $W(R)$. Generating elements of the Weyl group w_i, $i = 1, \ldots, d$ acts on any vector $x \in E^d$ according to the formula

$$w_i x = x - \frac{2(x, \alpha_i)}{\langle \alpha_i, \alpha_i \rangle} \alpha_i.$$ \hspace{1cm} (1)

In particular, if $x = \alpha_i$ we obtain from (1) $w_i \alpha_i = -\alpha_i$. A system of roots R is closed under the action of related Weyl group $W(R)$.

To any root α from the system R corresponds the coroot

$$\alpha^\vee = \frac{2\alpha}{\langle \alpha, \alpha \rangle}.$$ \hspace{1cm} (2)

For the basis of the simple coroots α_i^\vee, $i = 1, \ldots, d$ one can define the dual basis of fundamental weights λ_i, $i = 1, \ldots, d$

$$\langle \lambda_i, \alpha_j^\vee \rangle = \delta_{ij}$$

1The work is supported by RFBR under the grant 15-01-03148
(we identify the dual space E^d^\ast with E^d). The bases of roots and weights are related by the linear transformation
\[\alpha_i = \sum_j C_{ij} \lambda_j, \quad C_{ij} = \frac{2(\alpha_i, \alpha_j)}{(\alpha_j, \alpha_j)}, \] (2)
where C is the Cartan matrix of the Lie algebra L.

For any Lie algebra L with related sistem of roots R and Weyl group $W(R)$, an orbit function $\Phi_n(\phi)$ is defined as
\[T_L^L(\phi) = \frac{1}{|W(R)|} \sum_{w \in W(R)} e^{i(wn,\phi)}. \] (3)

In the formula (3) $|W(R)|$ is a number of elements in a group $W(R)$, n is expressed in the basis of fundamental weights $\{\lambda_i\}$ and ϕ is expressed in the dual basis of coroots $\{\alpha_i^\vee\}$
\[n = \sum_{i=1}^d n_i \lambda_i \quad n_i \in Z, \quad \phi = \sum_{i=1}^d \phi_i \alpha_i^\vee \quad \phi_i \in [0, 2\pi). \]

Obviously $T^L_n(\phi)$ is a $W(R)$-invariant function because of
\[T^L_{\tilde{w}n}(\phi) = T^L_n(\phi), \quad \forall \tilde{w} \in W(R). \]

Then we define the new variables x_i (generalized cosines) by the relations
\[x_i = T_{e_i}(\phi), \quad e_i = (0,\ldots,0,1,0,\ldots,0). \] (4)

It is shown in the works [1, 3, 4, 5, 6, 7] that the function $T_n(\phi)$ defined by the formula (3) with non-negative integer n_i from $n = (n_1,\ldots,n_d)$ can be expressed in the terms of x_i. This function gives us up to a normalization the multivariate Chebyshev polynomials T_{n_1,\ldots,n_d} of the first kind.

2. The simplest example of the above construction is the classical Chebyshev polynomials associated with the Lie algebra A_1. The related Weyl group consists from the identical element w_0 and the reflection of the single positive root $w_1 \lambda = -\lambda$. In this case the definition (3) gives
\[T_n(\phi) = \frac{1}{2}(e^{in\phi} + e^{-in\phi}) = \cos n\phi, \quad x = T_1(\phi) = \cos \phi. \] (5)

To derive the differential operator(s) for which the classical polynomials of the first kind $T_n(x)$ are eigenfunction we firstly write out the differential equation for $\cos n\phi$
\[\frac{d^2 \cos n\phi}{d\phi^2} + n^2 \cos n\phi = 0. \] (6)

It follows from (3) that desired operator in terms of the angle variable ϕ has the form
\[L^{(A_1)}(\phi) = \frac{d^2}{d\phi^2}. \] (7)
Changing the variable \(\cos \phi \to x \) in (7) we obtain the well known operator in terms of \(x \)

\[
L^{(A_1)}(x) = (1 - x^2) \frac{d^2}{dx^2} - x \frac{d}{dx}.
\]

(8)

3. Now we turn to the generalized cosine associated with the Lie algebra \(A_2 \). At the first step we find the orbit function related to the algebra \(A_2 \). The root system of this algebra has two fundamental roots \(\alpha_1, \alpha_2 \) and includes the positive root \(\alpha_1 + \alpha_2 \) together with their reflections. The action of generating elements \(w_1, w_2 \) of the Weyl group \(W(A_2) \) on the fundamental roots are given by the formulas

\[
w_1 \alpha_1 = -\alpha_1, \quad w_1 \alpha_2 = \alpha_1 + \alpha_2, \quad w_2 \alpha_1 = \alpha_1 + \alpha_2, \quad w_2 \alpha_2 = -\alpha_2.
\]

Taking into account (2) and explicit form of the Cartan matrix \(C(A_2) \) (see, for example [8]) we obtain the action of \(w_1, w_2 \) on the fundamental weights

\[
w_1 \lambda_1 = \lambda_2 - \lambda_1, \quad w_1 \lambda_2 = \lambda_2, \quad w_2 \lambda_1 = \lambda_1, \quad w_2 \lambda_2 = \lambda_1 - \lambda_2.
\]

(9)

The action of the other group elements on the fundamental weights is determined by their representation in terms of the generating elements

\[
w_3 = w_1 w_2, \quad w_4 = w_2 w_1, \quad w_5 = w_1 w_2 w_1, \quad w_0 = e.
\]

(10)

Using these formulas, the definition (3) and the notation

\[
n = m \lambda_1 + n \lambda_2, \quad \phi = \phi \alpha_1^\vee + \psi \alpha_2^\vee
\]

we find the \(W(A_2) \)-invariant function of two variables

\[
T_{m,n}(\phi, \psi) = e^{im\phi} e^{in\psi} + e^{im(\psi-\phi)} e^{in(\phi-\psi)} + e^{im(\psi+\phi)} e^{-in\phi} + e^{-im\psi} e^{in(\phi-\psi)} + e^{-im\psi} e^{-in\phi}.
\]

(11)

The normalization factor was omitted in (11) because it is not essential for our purpose.

At the second step we find differential operators for which the orbit functions \(T_{m,n}(\phi, \psi) \) for any \(m, n \) are the eigenfunctions

\[
L_N(T_{m,n}) = E_{m,n} T_{m,n}.
\]

The form of the orbit function implies that the action of the operator \(L_N \) on each exponent from (11) must gives us the same eigenvalues \(E_{m,n} \) for any \(m, n \). For this reason we search the operators of the form

\[
L_N^{(A_2)}(\phi, \psi) = \sum_{k=0}^{N} a_k \frac{\partial^N}{\partial \phi^{(N-k)} \partial \psi^k},
\]

(12)

with real constant coefficients \(a_k, k = 0, \ldots, N \).

Let us act by the operator \(L_N^{(A_2)}(\phi, \psi) \) on \(T_{m,n} \) and write out the chain of equalities of coefficients at the each exponent of (11)

\[
\sum_{k=0}^{N} a_k m^{N-k} n^k = \sum_{k=0}^{N} a_k (-m)^{N-k} (m + n)^k = \sum_{k=0}^{N} a_k (m + n)^{N-k} (-n)^k =
\]
\[
\sum_{k=0}^{N} a_k (-m - n)^{N-k} (m)^k = \sum_{k=0}^{N} a_k n^{N-k} (-m - n)^k = \sum_{k=0}^{N} a_k (-n)^{N-k} (-m)^k.
\]

Some conclusions about the properties of the coefficients \(a_k\) can be made directly from the form of the sums. For example, changing the summation index in the last sum of the chain \(k \rightarrow N - k\) and compare this sum with the first one we conclude that \(a_k = a_{N-k}\) for the even \(N\), and \(a_k = -a_{N-k}\) for the odd \(N\).

To calculate the coefficients \(a_k\) in the explicit form it is necessary to solve some equation systems which arise from equalization of coefficients at the same monomials \(m^p n^q\) in the above chain. It is convenient to reformulate this problem as a problem of calculation of the vector

\[
V_{N+1} = (a_0, a_1, ..., a_N)
\]

which is a common eigenvector with the eigenvalue 1 of the matrices related to the equation systems under consideration.

Consider for example the first equality from the chain. We can write the following equation

\[
M_1 V_{N+1} = E_{N+1} V_{N+1} = V_{N+1},
\]

where \(E_{N+1}\) is the unit \((N+1) \times (N+1)\) matrix, \(M_1\) is the lower triangular matrix of the same degree with the nonzero matrix elements

\[
(M_1)_{ij} = (-1)^{j+1} \binom{N+1 - j}{N+1 - i}, \quad i, j = 1, ..N + 1,
\]

where \(\binom{j}{i}\) is the binomial coefficient. The equality of the first and third sums gives us the equation

\[
M_2 V_{N+1} = V_{N+1},
\]

where \(M_2\) is the upper triangular matrix with the nonzero matrix elements

\[
(M_2)_{ij} = (-1)^{j+1} \binom{j-1}{i-1}, \quad i, j = 1, ..N + 1.
\]

By the same manner we obtain the matrices \(M_i, i = 3, 4, 5\), from the above equalities. It can be easily checked that these matrices are connected \(M_1, M_2\) by the following formulas

\[
M_3 = M_1 M_2, \quad M_4 = M_2 M_1, \quad M_5 = M_1 M_2 M_1, \quad M_0 = E_{N+1}.
\]

Moreover, under the correspondence \(w_i \sim M_i\) we reproduce the multiplication table of the Weyl group \(W(A_2)\) including the equalities

\[
M_1^2 = M_2^2 = M_5^2 = M_3^2 = M_1 = E_{N+1}, \quad M_3^2 = M_4, \quad M_4^2 = M_3.
\]

It follows from the above that the homomorphism \(w_i \rightarrow M_i, i = 0, .., 5, M_0 = E_{N+1} = w_0\) realizes faithful \((N + 1)\)-dimensional representation of the Weyl group \(W(A_2)\). Since the matrices \(M_1\) and \(M_2\) are the images of the generators for the Weyl group \(W(A_2)\), we can calculate the joint eigenvectors only for these two matrices.
Joint solution of (13) and (15) in the cases $N = 2, 3$ gives us the following result

$$N = 2, \quad V_{3}^{A_{2}} = (1, 1, 1), \quad N = 3, \quad V_{4}^{A_{2}} = (2, 3, -3, -2).$$

(16)

The related independent operators in the angle variables with their spectrums have the forms

$$L_{A_{2}}^{3} = \partial_{\phi}^{2} + \partial_{\psi}^{2} + \partial_{\psi_{2}}^{2}, \quad E_{3}^{A_{2}}(m, n) = m^2 + mn + n^2,$$

(17)

$$L_{A_{2}}^{4} = 2\partial_{\phi}^{2} + 3\partial_{\phi_{2}}^{2} - 3\partial_{\phi_{2}^2}^{2} - 2\partial_{\psi}^{2}, \quad E_{4}^{A_{2}}(m, n) = 2m^3 + 3m^2n - 3mn^2 - 2n^2.$$

(18)

High degree operators can be constructed as

$$L = P(L_{A_{2}}^{3}, L_{A_{2}}^{4})$$

where P is any polynomial in two variables.

4. At the last step it is necessary to replace the angle variables (ϕ, ψ) by (x, y) which are defined according to the relation (11) as

$$x = \frac{1}{2} T_{1,0} = e^{i\phi} + e^{i(\psi - \phi)} + e^{-i\psi},$$

(19)

$$y = \frac{1}{2} T_{0,1} = e^{i\psi} + e^{i(\phi - \psi)} + e^{-i\phi}.$$

(20)

This routine procedure in the case $N = 2$ gives us the operator

$$L_{A_{2}}^{3} = (x^2 - 3y) \frac{\partial^2}{\partial x^2} + (xy - 9) \frac{\partial^2}{\partial x \partial y} + (y^2 - 3x) \frac{\partial^2}{\partial y^2} + x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}.$$

(21)

The bivariate Chebyshev polynomials of the first kind associated with the Lie algebra A_{2} are eigenvectors of $L_{A_{2}}^{3}$ with eigenvalues defined by (17). The operator (21) was obtained for the first time by T. Koornwinder in the well known work [1]. Our calculation method, presented above, is different from the method used in [1].

5. Here we use the same calculation scheme as above for the case of the polynomials, associated with the Lie algebra C_{2}. The root system of the algebra C_{2} has two fundamental roots α_{1}, α_{2} and includes the positive root $\alpha_{1} + \alpha_{2}, 2\alpha_{1} + \alpha_{2}$ and their reflections. The action of generating elements w_{1}, w_{2} of the Weyl group $W(A_{2})$ on the fundamental roots are given by the formulas

$$w_{1}\alpha_{1} = -\alpha_{1}, \quad w_{1}\alpha_{2} = 2\alpha_{1} + \alpha_{2}, \quad w_{2}\alpha_{1} = \alpha_{1} + \alpha_{2}, \quad w_{2}\alpha_{2} = -\alpha_{2},$$

$$w_{1}\lambda_{1} = \lambda_{2} - \lambda_{1}, \quad w_{1}\lambda_{2} = \lambda_{2}, \quad w_{2}\lambda_{1} = \lambda_{1}, \quad w_{2}\lambda_{2} = 2\lambda_{1} - \lambda_{2}.$$

The action of the other group elements on the fundamental weights is determined by their representation in terms of the generating elements

$$w_{3} = w_{1}w_{2}, \quad w_{4} = w_{2}w_{1}, \quad w_{5} = w_{1}w_{2}w_{1}, \quad w_{6} = w_{2}w_{1}w_{2}, \quad w_{7} = (w_{1}w_{2})^{2}, \quad e = w_{0}.$$

(22)
Using the above formulas we obtain the following $W(C_2)$-invariant orbit function
\[
T^{C_2}_{m,n}(\phi, \psi) = e^{2\pi i (m\phi + n\psi)} + e^{2\pi i (m(\phi - \psi) + n(\phi + \psi))} + e^{2\pi i (m(\psi - \phi) + n(-2\phi + \psi))} + e^{2\pi i (m\phi + n(2\phi - \psi))} + e^{2\pi i (2\phi - \psi)} + e^{2\pi i (m(\phi - \psi) + n(-2\phi + \psi))} + e^{2\pi i (m(\phi - \psi) - n\psi)} + e^{2\pi i (-m\phi - n\psi)}.
\]
(23)

The action of the operator (12) on $T^{C_2}_{m,n}(\phi, \psi)$ produces coefficients at each exponent of (23). The condition of equality of these coefficients gives us the following independent relations
\[
\sum_{k=0}^{N} a_k m^{N-k} n^k = \sum_{k=0}^{N} a_k (m)^{N-k} (-m - n)^k = \sum_{k=0}^{N} a_k (m + 2n)^{N-k} (-n)^k = \sum_{k=0}^{N} a_k (m + 2n)^{N-k} (-n)^k = \sum_{k=0}^{N} a_k (-m)^{N-k} (-n)^k.
\]

It follows from the equality of the first and last sums that the coefficients a_k are nonzero only for the even N. In this case the matrix elements of the matrices $M_i, \ i = 1, 2$ have the form
\[
(M_1)_{ij} = (-1)^{j+1} \binom{N + 1 - j}{N + 1 - i}, \quad (M_2)_{ij} = (-1)^{j+1} 2^{j-i} \binom{j - 1}{i - 1}, \quad i, j = 1, \ldots N + 1.
\]

These matrices are commutative
\[
[M_1, M_2] = 0, \quad M_1^2 = M_2^2 = E_{N+1}.
\]

Besides $M_i, \ i = 1, 2$ there is only one independent matrix M_3
\[
M_3 = M_1 M_2.
\]

Coordinates a_k of any joint eigenvectors with unit eigenvalues of the matrices $M_i, \ i = 1, 2$ give us the coefficients of the operator $L^{C_2}_N$ from (12). For the cases $N = 2, 4$ we obtain the following result
\[
N = 2, \quad V^{C_2}_3 = (1, 2, 2), \quad N = 4, \quad V^{C_2}_5 = (1, 4, 1, 0, 0), \quad V^{C_2}_6 = (0, 0, 1, 2, 1).
\]
(24)

The related independent operators in the angle variables with their spectrums have the forms
\[
L^{C_2}_3 = \partial^2_{\phi^2} + 2\partial^2_{\phi\psi} + 2\partial^2_{\psi^2}, \quad E^{C_2}_3(m, n) = m^2 + 2mn + 2n^2,
\]
(25)
\[
L^{C_2}_{5a} = \partial^4_{\phi^4} + 4\partial^4_{\phi^3\psi} + \partial^4_{\phi^2\psi^2}, \quad E^{C_2}_{5a}(m, n) = m^2(m^2 + 4mn + n^2),
\]
(26)
\[
L^{C_2}_{5b} = \partial^4_{\phi^2\psi^2} + 2\partial^4_{\phi\psi^3} + \partial^4_{\psi^4}, \quad E^{C_2}_{5b}(m, n) = n^2(m + n)^2.
\]
(27)

6. Transition from the angle coordinates to Descartes ones are given by the relations (see, for example, [9])
\[
x = \frac{1}{2} T^{C_2}_{1,0} = e^{2\pi i \phi} + e^{-2\pi i \phi} + e^{2\pi i (\phi - \psi)} + e^{-2\pi i (\phi - \psi)},
\]
(28)
\[
y = \frac{1}{2} T^{C_2}_{0,1} = e^{2\pi i \psi} + e^{-2\pi i \psi} + e^{2\pi i (2\phi - \psi)} + e^{-2\pi i (2\phi - \psi)}.
\]
(29)
For the case (24) we obtain
\[L^{C_2}(x, y) = (x^2 - 2y - 8) \frac{\partial^2}{\partial x^2} + 2x(y - 4) \frac{\partial^2}{\partial x \partial y} + 2(y^2 + 4y - 2x^2) \frac{\partial^2}{\partial y^2} + x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}. \quad (30) \]

7. To finish these brief notes we consider the case of the polynomials, associated with the Lie algebra \(G_2\). The root system of the algebra \(G_2\) has two fundamental roots \(\alpha_1, \alpha_2\) and includes the positive roots \(\alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2\) and their reflections. The action of generating elements \(w_1, w_2\) of the Weyl group \(W(A_2)\) on the fundamental roots are given by the formulas
\[w_1\alpha_1 = -\alpha_1, \quad w_1\alpha_2 = 3\alpha_1 + \alpha_2, \quad w_2\alpha_1 = \alpha_1 + \alpha_2, \quad w_2\alpha_2 = -\alpha_2, \]
\[w_1\lambda_1 = \lambda_2 - \lambda_1, \quad w_1\lambda_2 = \lambda_2, \quad w_2\lambda_1 = \lambda_1, \quad w_2\lambda_2 = 2\lambda_1 - \lambda_2. \]
The action of the other group elements on the fundamental weights is determined by their representation in terms of the generating elements
\[w_3 = w_1w_2, \quad w_4 = w_2w_1, \quad w_5 = w_2w_1w_2, \quad w_6 = w_1w_2w_1, \quad w_7 = (w_1w_2)^2, \]
\[w_8 = (w_2w_1)^2, \quad w_9 = w_2(w_1w_2)^2, \quad w_{10} = w_1(w_2w_1)^2, \quad w_{11} = (w_1w_2)^3, \quad w_0 = e. \]
Using these formulas and definition (31) we obtain the following \(W(G_2)\)-invariant orbit function
\[T_{m,n}^{G_2} = e^{2\pi i(m\phi+n\psi)} + e^{2\pi i(m(-\phi+\psi)+n(-3\phi+2\psi))} + e^{2\pi i(m(2\phi-\psi)+n(3\phi-\psi))} + \]
\[e^{2\pi i(-m\phi+n\psi)} + e^{2\pi i(-m(-\phi+\psi)+n(-3\phi+2\psi))} + e^{2\pi i(-m(2\phi-\psi)+n(3\phi-2\psi))} + \]
\[e^{2\pi i(m\phi+n(3\phi-\psi))} + e^{2\pi i(m(-\phi+\psi)+n\psi)} + e^{2\pi i(m(2\phi-\psi)+n(3\phi-2\psi))} + \]
\[e^{2\pi i(-m\phi+n(3\phi-\psi))} + e^{2\pi i(-m(-\phi+\psi)+n\psi)} + e^{2\pi i(-m(2\phi-\psi)+n(3\phi-2\psi))}. \quad (31) \]
The action of the operator (12) on \(T_{m,n}^{G_2}(\phi, \psi)\) produces coefficients at each exponent of (31).

The condition of equality of these coefficients gives us the following independent relations
\[\sum_{k=0}^{N} a_k m^{-k} n^k = \sum_{k=0}^{N} a_k (m)^{N-k} (-m-n)^k = \sum_{k=0}^{N} a_k (m+3n)^{N-k} (-n)^k = \]
\[\sum_{k=0}^{N} a_k (2m+3n)^{N-k} (-m-n)^k = \sum_{k=0}^{N} a_k (m+3n)^{N-k} (-m-2n)^k = \sum_{k=0}^{N} a_k (2m+3n)^{N-k} (-m-2n)^k. \]

Equality of the first and the second sums gives us the matrix \(M_1\) which is the same as in the \(A_2\) and \(C_2\) cases (14). Equality of the first and the second sums gives us the matrix \(M_2\)
\[(M_1)_{ij} = (-1)^{j+1} \binom{N+1-j}{N+1-i}, \quad (M_2)_{ij} = (-1)^{j+1} \frac{3^{j-i}}{i-1}, \quad i, j = 1, \ldots N + 1. \]
The remaining matrices are
\[M_3 = M_1 M_2, \quad M_4 = M_2 M_1, \quad M_5 = M_1 M_2 M_1 = M_2 M_1 M_2. \]
Coordinates a_k of any joint eigenvectors with unit eigenvalues of the matrices M_i, $i = 1, 2$ give us the coefficients of the operator $L_N^{(G_2)}$ from (12). For the cases $N = 2$ we obtain the following result (there are no solutions for the odd cases)

$$N = 2, \quad V_2^{G_2} = (1, 3, 3).$$

(32)

The related independent operator in the angle variables with its spectrum has the form

$$L_3^{G_2} = \partial_{\phi^2} + 3\partial_{\psi^2}, \quad E_3^{G_2}(m, n) = m^2 + 3mn + 3n^2,$$

(33)

Calculations in the cases $N = 4, 6$ give us only $L_5^{G_2} = (L_3^{G_2})^2$, $L_7^{G_2} = (L_3^{G_2})^3$.

8. Transition from the angle coordinates to Descartes ones is given by the relations

$$x = \frac{1}{2} T_{G_2}^{G_2} = e^{2\pi i(\phi)} + e^{2\pi i(-\phi + \psi)} + e^{2\pi i(2\phi - \psi)} + e^{2\pi i(-\phi)} + e^{2\pi i(\phi + \psi)},$$

(34)

$$y = \frac{1}{2} T_{G_2}^{G_2} + e^{2\pi i(-3\phi + 2\psi)} + e^{2\pi i(3\phi - \psi)} + e^{2\pi i(-\psi)} + e^{2\pi i(\phi - 2\psi)} + e^{2\pi i(-3\phi + \psi)}.$$

(35)

For the case (33) we obtain

$$L^{G_2}(x, y) = (x^2 - 3x - y - 12) \frac{\partial^2}{\partial x^2} + (3xy - 6x^2 + 12y + 36) \frac{\partial^2}{\partial x \partial y} + (3y^2 + 9y - 3x^3 + 9xy + 27x) \frac{\partial^2}{\partial y^2} + x \frac{\partial}{\partial x} + 3y \frac{\partial}{\partial y}.$$

Список литературы

[1] T. H. Koornwinder, *Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators*, I - IV, Indag. math. 36(1), 48-66; 36(4), 357-381 (1974).

[2] T. Rivlin, *The Chebyshev Polynomials*, Wiley-Interscience publication, New York, 1974.

[3] T. H. Koornwinder, *Two-variable analogues of the classical orthogonal polynomials*, pp. 435-495 in: *Theory and application of special functions*, R.A. Askey (ed.), Academic Press, 1975.

[4] G. J. Heckman, *Root systems and hypergeometric functions*: II, Comp. Math. 64, pp. 353-373, 1987.

[5] M. E. Hoffman and W. D. Withers, *Generalized Chebyshev polynomials associated with affine Weyl groups*, Trans. Am. Math. Soc. 308, pp. 91-104, 1988.

[6] R. J. Beerends, *Chebyshev polynomials in several variables and the radial part Laplace - Beltrami operator*, Trans. Am. Math. Soc. 328, pp. 770-814, 1991.

[7] A. Klimyk, J.Patera, *Orbit functions*. SIGMA. 2 006, (2006).
[8] J. E. Humphreys, *Introduction to Lie Algebras and Representation Theory*, Springer Graduate Texts in Mathematics, 1972.

[9] E.V. Damaskinsky, P.P. Kulish, and M.A. Sokolov, *On calculation of generating functions of Chebyshev polynomials in several variables*, J.Math.Phys., 56, 063507 (2015).