Time trends analysis of statin prescription prevalence, therapy initiation, dose intensity, and utilization

CURRENT STATUS: POSTED

Yujuan Liu lyju15@163.com
Fudan University
Corresponding Author
ORCiD: 0000-0002-1172-4886

Xiaoqun Lv
Fudan University

Ning Xie
Shihua comunity

Zhonghong Fang
Fudan University

Weifang Ren
Fudan University

Yuan Gong
Fudan University

Yan Jin
Fudan University

Jun Zhang
Fudan University

DOI:
10.21203/rs.2.15715/v1

SUBJECT AREAS
Cardiothoracic Surgery

KEYWORDS
Statins, prevalence, cardiovascular disease, initiation, preventative intervention
Abstract

Background Statin remains a mainstay in the prevention and treatment of cardiovascular disease. Statin utilization has evolved over time in many counties, but data on this topic from China are quite limited. This study aimed to investigate the changing trends of statins prescription, as well as detail the statin utilization through a successive longitudinal study.

Methods Prescription database was established based on electronic health records retrieved from the hospital information system of Jinshan Hospital, Fudan University from January 2012 to December 2018 in Shanghai, China. The prescription rates and proportions of different statin types and doses among all patients were examined. Sub-analyses were performed by stratified by age, gender, dose intensity, and preventative intervention.

Results During the study period, a total of 51,083 patients exposed to statins were included in this study (mean [SD] age, 59.78 [±13.16] years; 53.60% male, n =27,378). The overall statins prescription rate in patients increased from 2012 (1.24%, 95% CI: 1.21%-1.27) to 2018 (3.16%, 95% CI: 3.11%-3.20%), P <0.001. Over 90% of patients were given a moderate dose of statins. Our study has witnessed a significant rise in statin therapy in primary and secondary prevention. Patients with a history of coronary or cerebrovascular events were more likely to be prescribed with statins for preventative intervention.

Conclusions In conclusion, statins were frequently prescribed and steadily increased over time. However, in clinical practice, statins prescription rate in patients may be sub-optimal in local residents. A coordinated effort among the patient, clinical pharmacist, stakeholders and health system is still needed to improve statin utilization accordingly.

Keywords: statins, prevalence, cardiovascular disease, initiation, preventative
intervention.

Background

Statins, the professional name of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, have been proven to lower the morbidity and mortality of cardiovascular events and widely used in prevention in patients with cardiovascular disease (CVD) [1]. It is recommended as the most effective lipid-lowering drug at present, which can not only effectively reduce total cholesterol (TC) but also low-density lipoprotein (LDL) [2–4]. Cholesterol plays a crucial role in the pathogenesis of coronary heart disease (CHD) and ASCVD, and it has been a global consensus to prevent and control cardiovascular risk of ASCVD by reducing blood LDL cholesterol (LDL-C) level [5]. The American College of Cardiology (ACC)/American Heart Association (AHA) 2013 guidelines (2013 ACC/AHA) cholesterol guidelines recommend that all patients with ASCVD should receive high-dose or moderate-dose statins therapy while ignoring lipid targets, and have recommended statin therapy to a specific group for primary and secondary prevention [6]. The 2016 European Society of Cardiology (ESC)/the European Atherosclerosis Society (EAS) (2016 ESC/EAC), the most widely used lipid management guideline, still target lipid levels at different stages of disease activity before recommending statins [7]. Based on the 2007 Chinese Guidelines for the Management of Dyslipidemia in Adults, the 2016 Chinese guideline for the management of dyslipidemia in adults (referred to as “the new Guideline” hereafter) was released by Chinese Journal of Cardiology in 2016 formulated by a joint committee of multidisciplinary experts. It is not only in line with other important international guidelines but also has its own recommendations. It emphasizes the critical role of cholesterol on ASCVD. The new guidelines highlight the overall cardiovascular risk assessment, the use of LDL-C as the preferred intervention target (Class I recommendation, Level A evidence) and some other aspects (for more details, please
refer to [8]). The introduction and popularization of the new guidelines will greatly increase the confidence of clinicians in statins utilization and contribute to more standardized use of statins in China.

Statins rank the most commonly prescribed medications in many countries, and general increase trends have been witnessed worldwide. In the United States (US), statin users in adults who reported using any statin observed a 79.8% increase from 2002–2003 (17.9%) to 2012–2013 (27.8%) [9]. They also reported a steady increase among patients without ASCVD, those with diabetes and those with hyperlipidemia and not diabetes over the 12-year period. From another study in the UK, prescription prevalence increased sharply from 1995 to 2013. Meanwhile, statin therapy initiation rates rose sharply from 1995 to 2006 [10]. In addition, the proportion of high-intensity statin increased from 16.5% in (2002–2003) to 20.4% (2012–2013) in the general adult population [9]. Similarly, prescription of high-intensity statins significantly increased, particularly, among patients with cerebrovascular accident (CVA) [11] and coronary artery disease [1]. By contrast, high-intensity statins use remained low in Taiwan [12] and Hong Kong [13]. Although 2013 ACC/AHA guideline recommend the initiation of high-intensity statin therapy in patients with ASCVD regardless of baseline low-density lipoprotein (LDL) cholesterol levels. Over the past two decades, accumulating evidence has shown the real benefits of different statins in reducing the risk of cardiovascular events (including myocardial infarction, coronary heart death, and ischemic stroke). In addition to that, a number of large-scale clinical trials have consistently proven that statins could play a significant role in both primary and secondary prevention. These studies also expanded the scope of statin application from patients with ASCVD to primary prevention group and even more extensive populations. However, the clinical effect in the population at low risk of cardiovascular disease still need further study.
Also, statins have been the most commonly prescribed drugs in China in recent decades. Currently, plenty of medicaments of statins have entered the market. Frequently used statins in China include lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, rosvastatin, and pitvastatin. A previous study has shown that the overall statins prescription rate in patients with a discharge diagnosis with ASCVD was 58.8% in West China Hospital from 2008 to 2014. It has an average 10%-20% lower rate when compared with that in western or developed countries [14]. Except for a few studies, little is known about the detailed utilization of statins. Thus, in this study, we will not only investigate the change trends of statins but also demonstrate statin prescription prevalence, therapy initiation, dose intensity, and its utilization in preventative interventions in a tertiary hospital of China for a successive eight years. The result of this comprehensive study will contribute to form the general clinical practice in statin use and provide evidence-based guidelines in China.

Methods

Data source and sample selection

This was a successive longitudinal study focusing on patients receiving statin treatment from January 1, 2012, to December 31, 2018. Data were retrieved from the hospital information system (HIS) of Jinshan hospital affiliated to Fudan University, which is the only third-tier hospital in the catchment area. It has 1 000 regular hospital beds. In the year of 2016, the hospital has handled 1.47 million outpatient and emergency visits. The related information was withdrawn from patients receiving their first statin therapy during the study period. The prescription contains medical card number, patient name, gender, age, diagnosis, generic name of statin and dosage. Different types of statins including atorvastatin, simvastatin, rosvastatin, pravastatin, fluvastatin prescription were analyzed. We obtained the registered population, gender and age composition of Jinshan
district from 2012 to 2018 through the statistical yearbook of Jinshan district, Shanghai.

Inclusion/exclusion criteria

Patients were deemed to be prescribed statins once when they received any types and dosages of statins. The exposure of statin-treated patients was manually examined by two reviewers. Only individuals aged 18 years or above were included in our study. Patients with a missing medical card number, or an unknown date of birth or gender were excluded. We also excluded patients who changed their prescribed statins in a calendar year.

Statin prescription rate

Statin prescription data were retrieved from all prescriptions containing any dispensation of atorvastatin, fluvastatin, pravastatin, rosuvastatin or simvastatin. A statin user was defined as had at least one statin prescription dispensing date occurring during a given calendar year. The dose, intensity, and frequency of each drug were retrieved and analyzed.

Statin prescription rate included two measurements: total and new prescription rate. The total prescription rate of a specific statin agent was calculated by the number of patients prescribed with a specific statin agent divided by the total number of statin users in the year. The new prescription rate was calculated by the number of new patients prescribed with a specific statin agent divided by the total number of new statin users in the year.

Statin therapy initiation rate and prescription prevalence

Initiation of statin therapy was defined as a statin prescription in a patient who was not on a statin during a 365-day washout period (new statin users) before admission. The statin therapy initiation rate was calculated with the numerator being the total number of new statin users in each year and the denominator representing the appropriate annual
population at risk. Statin initiation rate was further stratified by gender, age group, statin intensity, and preventative intervention.

The statin prescription prevalence was estimated by taking the total number of patients with any statin prescription during each calendar year, divided by the annual total population in the hospital catchment area. Prevalence was also stratified by gender, age group and statin dose intensity. All statin prescriptions in this study were from 2012 to 2018. We took 2012 as the baseline to study the prescription prevalence rate of new statin users from 2013 to 2018.

Statin dose intensity

Statin dose intensity was defined as per the guidelines for the prevention and treatment of dyslipidemia in Chinese adults (2016) [15] and ACC/AHA guideline on the treatment of blood cholesterol [6]. (1) high-intensity statins: atorvastatin ≥ 40 mg/day, rosvastatin ≥ 20 mg/day and simvastatin ≥ 80 mg/day; (2) moderate-intensity statins: 10 mg/day \leq atorvastatin <40 mg/day, 5 mg/day \leq rosuvastatin <20 mg/day, 20 mg/day \leq simvastatin <80 mg/day, pravastatin ≥ 40 mg/day, and fluvastatin ≥ 80 mg/day; (3) low-intensity statins: atorvastatin <10 mg/day, rosuvastatin <5 mg/day, simvastatin <20 mg/day, pravastatin <40 mg/day and fluvastatin <80 mg/day.

Primary and secondary prevention of cardiovascular disease

Primary and secondary prevention have a major role in the fight against cardiovascular diseases. In our study, we determined the purpose of statin users for primary or secondary prevention according to patients’ health conditions. We defined primary and secondary prevention based on criteria of the China Cholesterol Education Program (CCEP) in 2014 and the Chinese guidelines for the prevention and treatment of dyslipidemia in adults in 2007 [16]. We also referred ICD-10 (International Classification of Diseases) diagnosis
codes [17].

Statistical analysis

Statistical analysis was performed by the application of SAS (version 9.2). Baseline characteristics of patients were summarized using frequencies and proportions for categorical data. Continuous variables were expressed as mean ± standard deviation. Cochran-Armitage Test for Trend and Pearson’s chi-squared test was applied to analyze overall estimates of statin prescription prevalence and other categorical variables, as appropriate. 95% confidence intervals for the observed prevalence and initiation rates were calculated. A p-value < 0.05 was considered statistically significant for all analyses.

Results

Patient demographics and statin prescription

Overall, the total number of patients exposing to statin between January 1, 2012 to December 31, 2018 was 51,083 with an average age of 59.78 years. The proportion of males reached up to 53.60% (n = 27,378) of the overall population. The age band with a maximum number of patients was 35–59 years old, with a total of 23,006 patients accounting for 45.04%. They were followed by age group 65–79 (n = 14,842), accounting for 29.05%. Patient demographics and statin therapies are described in Table 1. There were 279,223 statin prescriptions during the study period. Rosuvastatin (n = 188,823, 67.62%) was the highest-ranked statin in investigated patients, followed by atorvastatin (n = 45,974, 16.47%) and simvastatin (n = 30,718, 11.00%).

Here insert Table 1.

Choice of statin and prescription rate

The total prescription rate trend in the statin use between 2012 and 2018 was shown in Fig 1. Rosuvastatin had an increase in its share of statin users from 2012 and 2016, from
58.23% in 2012 (95% CI: 57.02%-59.44%) to 78.22% in 2016 (95%CI: 77.48%-78.96%), p<0.001. The prescription rate declined slightly from 2017 to 2018 (70.86%, 95%CI: 70.17%-71.55%). The prescribing rate of simvastatin decreased more than 14 times from 28.60% (95%CI: 27.49%-29.71%) in 2012 to 2.74% (95%CI: 2.49%-2.99%) in 2018, p<0.001. However, the prescription rate of atorvastatin in 2012–2018 showed an overall upward trend, from 7.75% (95% CI: 7.09%-8.41%) in 2012 to 20.00% (95%CI: 19.39%-20.61%) in 2018, p<0.001. The prescribing rate of fluvastatin was relatively small and showed a downward trend. The prescribing rate of pravastatin in 2018 was 1.02% (95% CI: 0.87%-1.07%). During the study period, the rate of pravastatin increased slightly, from 0.88% (95%CI: 0.65%-1.10%) in 2012 to 5.37% (95% CI: 5.03%-5.71%) in 2018, p<0.001.

We identified 47,924 new statin users between 2013 and 2018. The highest prescription rate of the annual use of statins in new users was rosuvastatin, with an increasing trend from 2013 to 2016 (69.87%, 95% CI: 68.68%-71.06% in 2013; 80.54%, 95%CI: 79.68%-81.40% in 2016), and slightly decreased in 2017 and 2018, p<0.001 (Fig.1). There was a significant downward trend in new statin users of simvastatin, and the prescription rate decreased from 11.07% (95% CI: 10.26% to 11.89%) in 2013 to 1.84% (95% CI: 1.59%-2.09%) in 2018, roughly 6 times (p<0.001). The prescription rate of atorvastatin showed an upward trend, from 14.56% (95% CI: 13.65%-15.48%) in 2013 to 22.95% (95% CI: 22.17%-23.73%) in 2018. The prescription rate of fluvastatin was relatively low and showed a downward trend in new statin users.

Statin prescription prevalence

There was a consistently increasing trend in statin prescription prevalence (test for trend in proportions, p<0.001), and the prevalence rate of statin prescriptions increased nearly threefold from 2012 (1.24%, 95% CI: 1.21%-1.27) to 2018 (3.16%, 95% CI: 3.11%-3.20%) as shown in Fig 2.
When statin prescription prevalence stratified by gender, and age (Fig. 2B), males tended to have a higher prevalence of statin than women in each year. For the 65–79 age group (Fig. 2C), they had the highest statin prescription prevalence in every year of the study, and increased from 2012 (2.88%, 95%CI: 2.75%–3.01%) to 2018 (6.59%, 95% CI: 6.42%–6.76%). A general increase in the prescription rate was observed for other age groups between 2012 and 2018 except the 18–34 age group.

Statin initiation rates

Based on 47,924 new statin users, statin initiation rate consistently increased from 1.10% (95% CI: 1.07%–1.13%) in 2013 to 2.15% (95% CI: 2.11%–2.19%) in 2018 (Fig. 3A). The average age at therapy initiation increased from 59.12 (±13.31) to 60.63 (±12.87) years between 2013–2017 and changed steadily in 2018 (60.53±12.89). Women were on average 3.78 years older than men at treatment initiation (Table 2). The average age of new users is lower than that of the general population, and there was a significant statistical difference, p<0.001. Among statin initiators, males have a higher initiation rate than females (Fig. 3B). When stratified according to age (Fig. 3C), there was a consistent initiation rate for new users in all age groups. There were evident rapid increases in initiation rates for 65–79 age group, which increased from 2.23% (95% CI: 2.12%–2.34%) to 4.15% (95% CI: 4.02%–4.29%). The second higher initiation rates were among aged 60–64 and aged above 80.

Here insert

Table 2. The average of new statin users between 2013–2018

Statin dose intensity analysis

Most of the prescriptions had a moderate dose of statins. Thus, the prescription rate of moderate-intensity statins gradually increased from 90.64% (95% CI: 89.93%–91.35%) in 2012 to 99.59% (95% CI: 99.50%–99.69%) in 2018. The prescription rate of low-intensity
statins decreased from 11.13% (95% CI: 10.35%-11.90%) in 2012 to 0.04% in 2018 (95% CI: 0.01%-0.07%). The prescription rate of high-intensity in 2016 rose by up to 1.95% (95% CI: 1.70%-2.20%), while decreased gradually and reached to 0.37% in 2018 (95% CI: 0.28%-0.46%) (Fig. 4A). The new statin users were mainly prescribed with moderate-intensity therapy. The prescription rate increased gradually from 2012 to 2018. The low-intensity statin prescription rates continued to drop. The prescription rate of high-intensity statins first increased and then decreased (Fig. 4B).

Primary and secondary prevention of cardiovascular disease

A total of 32147 (62.93%) were taking statins for primary prevention, approximately 1.7 times of the number for secondary prevention. There was a higher percentage use of statins among patients with hypertension, hyperlipidemia, and cerebrovascular disease (Table 3). Primary prevention occurred mainly in the age group below 60 when stratified by age. Both of the prescription rates of primary and secondary prevention increased among the 60–64 age group, but the rate of secondary prevention increased more rapidly. In 2018, the prescription rate of primary prevention is basically on par with secondary prevention, which was 2.37% (95% CI: 2.24%-2.50%) and 2.58% (95% CI: 2.45%-2.71%) respectively. The prescription rate of secondary prevention increased from 1.01% (95% CI: 0.94%-1.09%) in 2012 to 3.59% (95% CI: 3.46%–3.71%) in 2018 in the 65–79 age group (Fig. 5A). The prescription rate of primary prevention was similar with that in secondary prevention in the age group above 80 in 2012, however, the prescription rate of secondary prevention increased rapidly in 2018 (3.60%, 95% CI: 3.37%-3.83%). The prescription rate for new statin user prevention had a parallel trend with the total patient (Fig. 5B).

Here insert

Table 3. *The prevention status characteristics of statin users and prescription*
The three most prescribed statin drugs were simvastatin, atorvastatin and rosuvastatin (Fig. 6). The initiation rate of simvastatin for primary prevention was higher than that for secondary prevention between 2013 and 2018. The initiation rate of atorvastatin for secondary prevention was slightly higher than that for primary prevention between 2013 and 2017. However, the initiation rate of atorvastatin for secondary prevention (0.31%, 95% CI: 0.29%-0.32%) was nearly two folds than that for primary prevention (0.19%, 95% CI: 0.17%-0.20%). The initiation rate of rosuvastatin for primary prevention was higher than that for secondary prevention between 2013 and 2016, but vice versa since 2017.

Discussion

This work is the most recent and comprehensive study on detailed statin utilization among patients using a large amount of important historical data of our hospital records. By means of this, the results enable us to have detained understanding of statin prescription prevalence, therapy initiation, dose intensity, and utilization in the preventative intervention. We found that the statin prescription prevalence and initiation rate generally increased, with most patients receiving moderate-intensity statins. Statins for primary prevention were more than for secondary prevention. Patients with a history of coronary or cerebrovascular events were more likely to be prescribed with statins for preventative intervention.

Statin use increased substantially in the last decade. Our finding is in line with previous studies in the United Kingdom (UK) [10], Hong Kong [13], Belgium [18] and Taiwan [12]. Statin prescription prevalence consistently increased during the study period. We speculate that the main reason may be as follow. Firstly, in recent years, the incidence of CVD continues to rise and is the leading cause of mortality (above 40%) in China [19, 20]. Meanwhile, accumulating evidence has emerged to show the benefits of statins in the prevention of CVD, which facilitate the widespread use of statins. Secondly, the role of
Statins for secondary CVD prevention has been well established in several large randomized clinical trials. There has been a trend in guidelines to offer benefits to a broad range of patients for primary prevention of CVD during the past decade [21]. However, the overall prevalence of statin use is lower from 2012 (1.24%, 95% CI: 1.21%–1.27%) to 2018 (3.16%, 95% CI: 3.11%–3.20%) in our study when compared with other studies. Joseph et al. reported the statin prevalence increased from 2004 (1.82%, 95% CI: 1.78%–1.86%) to 2015 (8.68%, 95% CI: 8.60%–8.75%) in Hong Kong, which is still lower than prescription prevalence in the UK in 2007 (calculated as 96.53 per 1,000 person years) [10], and even more lower than the 2003–2004 (11%, 95% CI: 9.6%–12%) and 2011–2012 (17%, 95% CI: 15%–19%) prevalence estimate from the US reported by Kantor et al [22]. The overall statins prescription rate continues to be below that in developed countries and regions. Meanwhile, our study showed that the statin prescription initiation rate increased steadily and doubled in 2018. Similar patterns were observed in other studies. For instance, in Hong Kong, statin initiation rates consistently rose from 0.44% in 2004 to 1.23% in 2013 [23]. Statin therapy initiation rates in the UK increased sharply from 1995 to 2006 [10]. Another study, which was conducted in Taiwan, the initiation rate has grown from 0.6% in 2002 to 1.8% in 2011 [12]. Nevertheless, declined trends in initiation rates were observed both in Hong Kong in 2014 and 2015 and in the UK in 2006. However, we did not notice such peak in statin therapy initiation in our study, likely because of the gap in the use of statins, lack of awareness, concerns about statin adverse effects, the burden of medical cost and physician-related factors. For example, in a study investigated the change trends of statins prescription at discharge among patients with ASCVD in recent years, the authors found that more than forty percent of patients with ASCVD was not prescribed statins at discharge in one of the top-ranked China hospitals [24]. Although, the past several years have witnessed increasing trends of statins prescription rates. Given both
the low statin prescription prevalence and initiation rate, these shreds of evidence reflect the overall statin utilization rates are sub-optimal in real-world practice in China.

In the present study, we also observed a shift in statin drug choices. The most commonly used statin was rosuvastatin in our study period (2012–2018). This finding contrasts with other study results, for example, simvastatin was consistently the most prescribed statin in Hong Kong between 2004 and 2015 [13]. Atorvastatin had the highest prescription rates among new statin users throughout the study period (2002–2011) in Taiwan [12]. Interestingly, atorvastatin, simvastatin, and rosuvastatin were the most commonly prescribed statins in Asian countries and in Norway [25]. Rosuvastatin had rapid annual growth in the proportion of statin users since it entered the global market in the 2000s. Prescription rates of pravastatin and fluvastatin remained relatively low. However, in recent years, we found policymakers have played a critical role in statin choice. Some European countries planned to promote prescribing of generically available statins to contain expenditure on health care. For instance, the Netherlands chose simvastatin as the reference drug to reduce costs [5]. An endorsed recommendation has also promoted a switch from atorvastatin 10 or 20 mg/day to simvastatin 40 mg/day or pravastatin 40 mg/day in the UK [26]. Furthermore, Reimbursement policies have compelled physicians to alter their statin prescription in Finland [27], Italy [28], Norway [29], Germany [30] and Austria [31]. In clinical practice, Heintjes et al. suggested the choice of statin should be based on baseline cholesterol levels to meet the reduction in it and to adapt if failed, especially in high-risk patients [23]. Therefore, as to how to choose, except for objective factors, many other factors should be taken into account, including patients’ disease conditions, cost, adverse effects, the efficacy and dose intensity of statin [2, 32–36].

Although the 2013 ACC/AHA recommend high-intensity statins for adults with ASCVD [37] and prescribing rate and initiation of high-intensity statin increased in the US after release
use of high-intensity statins remained low (under 2.1%) in Taiwan [12]. Also, there was only a little increase in the prescription prevalence of high-intensity statins from 2004 (0.05%, 95% CI: 0.05%–0.06%) to 2015 (0.42%, 95% CI: 0.40%–0.44%) [13] in Hong Kong. In our study, the peak prescription rate of high-intensity was 1.95% (95% CI: 1.70%–2.20%) in 2015 and decreased gradually since then. In contrast, there was a consistent annual increase in the prescription rate of moderate-intensity statins. In addition, Zhang et al indicated that moderate-intensity statins could result in meaningful reductions in cardiovascular events [40]. More importantly, The 2016 Chinese guideline emphasized that most patients in China do not need and cannot tolerate the high-intensity high-dose statin treatment recommended by ACC/AHA, and it is clearly proposed that the low to moderate-intensity statin is more suitable for Chinese. Therefore, although some pharmacokinetic studies have demonstrated that rosuvastatin of multiple doses (5, 10, and 20 mg) was generally well tolerated in healthy Chinese volunteers [41]. However, in clinical practice, high-intensity statins are prescribed to a few patients.

There is increasing evidence supporting statin use for primary and secondary prevention of CVD [6, 10, 23]. In the recent past, our study has a witnessed significant rise in statin therapy in primary and secondary prevention. Three-fifths (62.93%) of the patients received statin therapy in primary prevention during the study period. However, the clinical benefits of statin use for primary and secondary prevention remain controversial, particularly in the elder population. A pharmacoepidemiological study in Italy revealed that although most of the patients received statin therapy in primary prevention, whereas the benefits of statins are documented mostly for patients in secondary prevention [23]. Saudi Arabia has witnessed a significant rise in CVD-related deaths in spite of the widespread use of statins in primary prevention. They also pointed out that the 2013 ACC/AHA guidelines may have overemphasized the use of statin while ignoring lipid
targets, and would lead to the inclusion of a large population for primary prevention with statins. Furthermore, this would cause overtreatment and potentially increase the incidences of statin intolerance and side-effects [7]. In addition, the observed statin prescribing for primary prevention in the elderly in a cohort study reflects the fact that this group may be less likely to benefit from statin treatment for primary prevention of CVD [13]. Hence, the 2016 Chinese guideline still targets lipid levels at different stages of disease activity before recommending statins to draw guidance on primary prevention of CVD. These findings strengthen the need to direct physicians and patients to the rational drug use of statins in the preventative intervention.

This work is the most recent and comprehensive study on statin utilization among patients using a large database of third-tier hospital. However, there are several limitations to this study. Our sample does not include data from the community hospitals and private healthcare system although the number of patients is estimated to be relatively small. Further, we would miss some samples in our estimates who may buy statins over the counter after their first visit in the hospital. A clear strength of this study is a continuous observational study with large sample size and which reflects the local population and allows us to make an informed and comprehensive assessment of prescription prevalence, therapy initiation, dose intensity, and utilization in the preventative intervention.

Conclusions

In conclusion, prescription prevalence and initiation generally increased from 2012 to 2018, with most patients receiving moderate-intensity statins. In recent years, males appear to have been prescribed statins at higher rates than females. However, statins prescription rate in patients was not optimal in China when compared with other study results. The uptake of statins for both the primary and secondary prevention of CVD has increased greatly over time, in particular, in the elder group. The choice of statin should
be based on patients’ actual conditions, the efficacy of statin, adverse effects and give consideration to the cost performance. A coordinated effort among the patient, clinical pharmacist, stakeholders, and health system is still needed to improve statin utilization.

Declarations

Ethics approval and consent to participate

All procedures performed in the present study were in line with Ethics Committee of Jinshan Hospital. We declared that the study protocols were approved by the Ethics Committee of Jinshan Hospital (No. 2013–007–01).

The present study retrospectively analyzed data abstracted from hospital information system of Jinshan Hospital without interventions or disruptions to patients’ lives, and no direct human participants were involved, thus informed consent was not required and waived by the Ethics Committee.

Consent to publish

Not applicable

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

The work was granted by grant from “Qi Hang” Project of Jinshan Hospital, Fudan University (2018-JSYYQH-05). The funding sources had no involvement in study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

Authors’ Contributions

17
YJ.L and J.Z conceived and designed the study. YJ.L and Y.J analyzed the data and drafted the manuscript. YJ.L XQ.L, N.X, ZH.F, WF.R, Y.G and Y.J collected and organized the patient data from the patient files. J.Z critically revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank Dr. Xinyu Feng from China CDC for the management of data and analysis.

Abbreviations

CVD: Cardiovascular disease

TC: Total cholesterol

CHD: Coronary heart disease

ACC/AHA: American College of Cardiology /American Heart Association

ESC/EAS: European Society of Cardiology /the European Atherosclerosis Society

CVA: Cerebrovascular accident

LDL: Low-density lipoprotein

HIS: Hospital information system

CCEP: China Cholesterol Education Program

ICD: International Classification of Diseases

References

1Anderson JL, Knowlton KU, May HT, Bair TL, Armstrong SO, Lappe DL, Muhlestein JB (2018) Temporal changes in statin prescription and intensity at discharge and impact on outcomes in patients with newly diagnosed atherosclerotic cardiovascular disease-Real-world experience within a large integrated health care system: The IMPRES study. J Clin Lipidol 12 (4): 1008–1018.e1001 DOI 10.1016/j.jacl.2018.03.084

2Hirsh BJ, Smilowitz NR, Rosenson RS, Fuster V, Sperling LS (2015) Utilization of and Adherence to Guideline-Recommended Lipid-Lowering Therapy After Acute Coronary
Syndrome: Opportunities for Improvement. J Am Coll Cardiol 66 (2): 184-192

3Tungsubutra W, Phongtuntakul B (2015) Achievement of LDL-cholesterol goal with statins after an st segment elevation myocardial infarction. J Med Assoc Thai 98 (2): 129-136

4Zhao SP (2016) Amendment of the low-density lipoprotein cholesterol target in the ‘Chinese Guidelines for the Prevention and Treatment of Adult Dyslipidemia’: Opinion. Chron Dis & Transl Med 2 (1): 7–9

5Heintjes EM, Penning-van Beest FJ, Plat AW, Meerdink WJ, Webb K, Sturkenboom MC, Herings RM (2012) Cholesterol level goal attainment with statins: clinical management guideline recommendations versus management in actual clinical practice. Pharmacotherapy 32 (7): 631-641 DOI 10.1002/j.1875-9114.2011.01086.x

6Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC, Jr., Watson K, Wilson PW, Eddleman KM, Jarrett NM, LaBresh K, Nevo L, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK, Smith SC, Jr., Tomaselli GF (2014) 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129 (25 Suppl 2): S1–45 DOI 10.1161/01.cir.0000437738.63853.7a

7Mahmood D, Jahan K, Habibullah K (2015) Primary prevention with statins in cardiovascular diseases: A Saudi Arabian perspective. J Saudi Heart Assoc 27 (3): 179-191 DOI 10.1016/j.jsha.2014.09.004

8Zhu JR, Gao RL, Zhao SP, Guoping LU, Zhao D, Jianjun Li, Zhu JR, Gao RL, Zhao SP, Guoping LU (2018) 2016 Chinese guidelines for the management of dyslipidemia in adults. Journal of Geriatric Cardiology Jgc 15 (1): 1–29
9. Salami JA, Warraich H, Valero-Elizondo J, Spatz ES, Desai NR, Rana JS, Virani SS, Blankstein R, Khera A, Blaha MJ, Blumenthal RS, Lloyd-Jones D, Nasir K (2017) National Trends in Statin Use and Expenditures in the US Adult Population From 2002 to 2013: Insights From the Medical Expenditure Panel Survey. JAMA Cardiol 2 (1): 56–65 DOI 10.1001/jamacardio.2016.4700

10. O’Keeffe AG, Nazareth I, Petersen I (2016) Time trends in the prescription of statins for the primary prevention of cardiovascular disease in the United Kingdom: a cohort study using The Health Improvement Network primary care data. Clin Epidemiol 8: 123–132 DOI 10.2147/clep.s104258

11. Valentino M, Al Danaf J, Panakos A, Ragupathi L, Duffy D, Whellan D (2016) Impact of the 2013 American College of Cardiology/American Heart Association cholesterol guidelines on the prescription of high-intensity statins in patients hospitalized for acute coronary syndrome or stroke. Am Heart J 181: 130–136 DOI 10.1016/j.ahj.2016.07.024

12. Hsieh HC, Hsu JC, Lu CY (2017) 10-year trends in statin utilization in Taiwan: a retrospective study using Taiwan’s National Health Insurance Research Database. BMJ Open 7 (5): e014150 DOI 10.1136/bmjopen–2016–014150

13. Blais JE, Chan EW, Law SWY, Mok MT, Huang D, Wong ICK, Siu CW (2019) Trends in statin prescription prevalence, initiation, and dosing: Hong Kong, 2004–2015. Atherosclerosis 280: 174–182 DOI 10.1016/j.atherosclerosis.2018.11.015

14. Harrison TN, Scott RD, Cheetham TC, Chang SC, Hsu JY, Wei R, Ling Grant DS, Boklage SH, Romo-LeTourneau V, Reynolds K (2018) Trends in Statin Use 2009–2015 in a Large Integrated Health System: Pre- and Post–2013 ACC/AHA Guideline on Treatment of Blood Cholesterol. Cardiovasc Drugs Ther 32 (4): 397–404 DOI 10.1007/s10557–018–6810–1

15. Joint Committee for Developing Chinese guidelines on Prevention and Treatment of Dyslipidemia in Adults (2016) [Chinese guidelines on prevention and treatment of
dyslipidemia in adults (2016 Revised version)]. Chin J Circ. 16: 15–35.

16Li X, Xu Y, Li J, Hu D (2009) The gender differences in baseline characteristics and statin intervention among outpatients with coronary heart disease in China: the China Cholesterol Education Program. Clinical Cardiology: An International Indexed and Peer-Reviewed Journal for Advances in the Treatment of Cardiovascular Disease 32 (6): 308–314

17Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi J-C, Saunders LD, Beck CA, Feasby TE, Ghali WA (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care: 1130–1139

18Laleman N, Henrard S, van den Akker M, Goderis G, Buntinx F, Van Pottelbergh G, Vaes B (2018) Time trends in statin use and incidence of recurrent cardiovascular events in secondary prevention between 1999 and 2013: a registry-based study. BMC Cardiovasc Disord 18 (1): 209 DOI 10.1186/s12872-018-0941-y

19Sun W, Zhou Y, Zhang Z, Cao L, Chen W (2017) The Trends in Cardiovascular Diseases and Respiratory Diseases Mortality in Urban and Rural China, 1990–2015. Int J Environ Res Public Health 14 (11) DOI 10.3390/ijerph14111391

20Chen Weiwei, Gao Runlin, Liu Lisheng, Manlu Zhu, Wen Wang, Yongjun Wang (2018) China cardiovascular disease report 2017: a summary. Chin J Circ 1: 1–8.

21Brown F, Singer A, Katz A, Konrad G (2017) Statin-prescribing trends for primary and secondary prevention of cardiovascular disease. Can Fam Physician 63 (11): e495-e503

22Kantor ED, Rehm CD, Haas JS, Chan AT, Giovannucci EL (2015) Trends in Prescription Drug Use Among Adults in the United States From 1999-2012. J Am Med Assoc 314 (17): 1818

23Tomé-Carneiro J, González M, Larrosa M, Yáñez-Gascón MJ, García-Almagro FJ, Ruiz-Ros JA, Tomás-Barberán FA, García-Conesa MT, Espín JC (2013) Resveratrol in primary and
secondary prevention of cardiovascular disease: a dietary and clinical perspective. Ann N Y Acad Sci 1290 (1): 37-51

24 Huang BT, Peng Y, Huang FY, Xia TL, Gui YY, Liao YB, Pu XB, Chen SJ, Yang Y, Chen M (2017) Trends in prescribing rate of statins at discharge and modifiable factors in patients with atherosclerotic cardiovascular disease. Intern Emerg Med 12 (8): 1121-1129 DOI 10.1007/s11739-017-1694-9

25 Hartz I, Sakshaug S, Furu K, Engeland A, Eggen AE, Njolstad I, Skurtveit S (2007) Aspects of statin prescribing in Norwegian counties with high, average and low statin consumption - an individual-level prescription database study. BMC Clin Pharmacol 7: 14 DOI 10.1186/1472-6904-7-14

26 Moon JC, Bogle RG (2006) Switching statins. BMJ 332 (7554): 1344-1345 DOI 10.1136/bmj.332.7554.1344

27 Martikainen JE, Saastamoinen LK, Korhonen MJ, Enlund H, Helin-Salmivaara A (2010) Impact of Restricted Reimbursement on the Use of Statins in Finland: A Register-Based Study. Med Care 48 (9): 761-766

28 Damiani G, Federico B, Anselmi A, Silvestrini G, Iodice L, Navarra P, Cas RD, Raschetti R, Ricciardi W (2014) The impact of Regional co-payment and National reimbursement criteria on statins use in Italy: an interrupted time-series analysis. BMC Health Services Research, 14 (1): 6-6

29 Sakshaug S, Furu K, O, Ronning M, Skurtveit S (2010) Switching statins in Norway after new reimbursement policy: a nationwide prescription study. Br J Clin Pharmacol 64 (4): 476-481

30 Gitt AK, Juenger C, Smolka W, Wood D, Kastelein J (2013) Impact of a budget-restrictive (Germany) versus an incentive-driven (UK) reimbursement system on LDL-goal-achievement in statin-treated patients for secondary prevention: results of DYSIS. Eur
Godman B, Burkhardt T, Bucsics A, Wettermark B, Wieninger P (2009) Impact of recent reforms in Austria on utilization and expenditure of PPIs and lipid-lowering drugs: implications for the future. Expert Rev Pharmacoecon Outcomes Res 9 (5): 475

Virani SS, Steinberg L, Murray T, Negi S, Nambi V, Woodard LD, Bozkurt B, Petersen LA, Ballantyne CM (2011) Barriers to non-HDL cholesterol goal attainment by providers. Am J Med 124 (9): 876–880 e872 DOI 10.1016/j.amjmed.2011.02.012

Vijayakrishnan R, Kalyatanda G, Srinivasan I, Abraham GM (2013) Compliance with the Adult Treatment Panel III guidelines for hyperlipidemia in a resident-run ambulatory clinic: a retrospective data analysis. J Clin Lipidol 7 (1): 43–47 DOI 10.1016/j.jacl.2012.06.004

Rosenson RS, Kent ST, Brown TM, Farkouh ME, Levitan EB, Yun H, Sharma P, Safford MM, Kilgore M, Muntner P (2015) Underutilization of High-Intensity Statin Therapy After Hospitalization for CoronaryHeart Disease. J Am Coll Cardiol 65 (3): 270–277

Jamé S, Wittenberg E, Potter MB, Fleischmann KE (2015) The new lipid guidelines: what do primary care clinicians think? Am J Med 128 (8): 914.e915–914.e910

Elisabeth AB, Denig P, Vliet TV, Dekker JH (2009) Reasons of general practitioners for not prescribing lipid-lowering medication to patients with diabetes: a qualitative study. BMC Fam Pract 10 (1): 24–24

Huang Q, Grabner M, Sanchez RJ, Willey VJ, Cziraky MJ, Palli SR, Power TP (2016) Clinical Characteristics and Unmet Need Among Patients with Atherosclerotic Cardiovascular Disease Stratified by Statin Use. Am Health Drug Benefits 9 (8): 434–444

Olufade T, Zhou S, Anzalone D, Kern DM, Tunceli O, Cziraky MJ, Willey VJ (2017) Initiation Patterns of Statins in the 2 Years After Release of the 2013 American College of Cardiology/American Heart Association (ACC/AHA) Cholesterol Management Guideline in a Large US Health Plan. J Am Heart Assoc 6 (5) DOI 10.1161/jaha.116.005205
39 Zupec JF, Marrs JC, Saseen JJ (2016) Evaluation of Statin Prescribing for Secondary Prevention in Primary Care Following New Guideline Recommendations. Ann Pharmacother 50 (1): 17–21 DOI 10.1177/1060028015608199

40 Zhang H, Plutzky J, Shubina M, Turchin A (2016) Risk factors for lack of statin therapy in patients with diabetes and coronary artery disease. J Clin Lipidol 10 (6): 1406–1413 DOI 10.1016/j.jacl.2016.09.010

41 Li XN, Xu HR, Chen WL, Chu NN, Zhu JR (2010) Pharmacokinetics of rosvastatin in healthy Chinese volunteers living in China: A randomized, open-label, ascending single- and multiple-dose study. Clin Ther 32 (3): 575–587

Tables

Table 1. Patient demographics of statin users and statin prescriptions

Characteristics	Value (%)
Gender	
Male	27378(53.60)
Age	
18-34 years	1679(3.29)
35-59 years	23006(45.04)
60-64 years	7971(15.60)
65-79 years	14842(29.05)
+80 years	3585(7.02)
Average age	59.78
Total prescriptions	
simvastatin	279223
rosuvastatin	30718(11.00)
pravastatin	188823(67.62)
atorvastatin	9624(3.45)
fluvastatin	45974(16.47)
	4084(1.46)

Table 2. The average of new statin users between 2013-2018

Year	Number of new users%	Average age (mean ±SD)	Male average age (mean ±SD)	Female average age (mean ±SD)
2013	5699(72.67%)	59.12±13.31	57.23±13.55	61.43±12.64
2014	6567(71.24%)	59.10±13.60	57.15±14.11	61.43±12.57
2015	7179(68.70%)	59.58±13.39	57.49±13.84	62.16±12.35
2016	8084(68.14%)	59.95±12.95	58.38±13.41	61.69±12.18
2017	9176(67.01%)	60.63±12.87	59.18±13.60	62.19±11.85
2018	11216(68.05%)	60.53±12.89	58.96±13.49	62.22±11.99

Table 3. The prevention status characteristics of statin users and prescription
Cardiovascular prevention status	Value(%)
Primary prevention	32147(62.93)
Secondary prevention	18936(37.07)

Medical history

Disease	Value(%)
Cerebrovascular disease	10095(21.68)
Coronary artery disease	5461(10.69)
Peripheral artery disease	2622(5.13)
Percutaneous coronary intervention	471(0.92)
Hypertension	14796(28.96)
Diabetes	5709(11.18)
Hyperlipidemia	12394(24.26)
Renal disease	2042(4.00)

Figures
Figure 1

Prescription rate of statins among total statin users (A) and new users (B) between 2012-2018. The error bars represent the upper and lower bounds of the 95% confidence intervals.
Figure 2

The statin prescription prevalence rates from 2012-2018. The error bars represent the upper and lower bounds of the 95% confidence intervals. (A) Overall prevalence rate for the total patients; (B) prevalence rate stratified according to gender; (C) prevalence rate stratified according to age.
Figure 3

The new statin users initiation rates from 2013-2018. The error bars represent the upper and lower bounds of the 95% confidence intervals. (A) Overall initiation rate for the new users; (B) initiation rate stratified according to gender; (C) initiation rate stratified according to age.

Figure 4

Prescription rate of statins by intensity between 2012-2018. The error bars represent the upper and lower bounds of the 95% confidence intervals.
Figure 5

The estimated age-specific prevalence rate (A) for total statin users and imitation rate (B) for new statin users from 2013 to 2018, stratified by cardiovascular prevention status and age group. The error bars represent the upper and lower bounds of the 95% confidence intervals.
Figure 6

The initiation rates of new statin users stratified by simvastatin, atorvastatin and rosuvastatin from 2013-2018. The error bars represent the upper and lower bounds of the 95% confidence intervals.