Study on Flotation Separation of Cobalt(II) by NaCl-NH₄SCN-DDBAC System

Xinrong Wen¹,a, Changqing Tu¹,b*, Yujun Zhong²,c
¹College of Chemistry and Environment, Jiaying University, Meizhou 514015, China
²College of Medicine, Jiaying University, Meizhou 514015, China
Corresponding author’s e-mail: tcq@jyu.edu.cn

Abstract. The flotation separation behaviors of Co²⁺ using NaCl-NH₄SCN-dodecyl dimethyl benzyl ammonium chloride(DDBAC) system and the conditions for the separation of Co²⁺ were studied. The results showed that in the presence of 1.5 g NaCl, when the dosage of 0.10 mol/L NH₄SCN solution was 0.30 mL and 0.0010 mol/L DDBAC solution was 1.00 mL respectively, the ternary association complex settlement of (DDBAC)₂[Co(SCN₄)] which formed by DDBAC⁺,SCN⁻ and Co²⁺ floated above water phase and liquid-solid phases was formed with clear interface. While Ni²⁺,Fe³⁺,Al³⁺ and Mn²⁺ could not be floated. Therefore, the quantitative separation of Co²⁺ from Ni²⁺,Fe³⁺,Al³⁺ and Mn²⁺ could be achieved. The quantitative flotation separation of Co²⁺ in the sample of synthetic water was performed, and the recoveries were 92.3%–98.6%.

1. Introduction
Cobalt is one of the essential microelements for humans, animals and plants. The deficiency of cobalt in human and animals results in retarding growth rate, anaemia and so on, while ingesting excessive cobalt leads to toxic effects, such as vasodilatation, flushing and cardiomyopathy. So, it is very important and necessary to develop new method for the separation/enrichment and determination of trace cobalt. Some different methods have been reported for the separation/enrichment of Co(II), including solvent extraction[1-2], liquid-liquid extraction[3], solid phase extraction[4-5], cloud point extraction[6-7], flotation separation[8], HPLC[9].

This study showed that in the presence of 1.5 g NaCl, ternary association complex settlement of NH₄SCN-DDBAC-Co was formed by Co²⁺, SCN⁻ and DDBAC cation (DDBAC⁺), which floated above the water phase and liquid-solid phases was formed. So, Co²⁺ was floated quantitatively, while Ni²⁺,Fe³⁺,Al³⁺ and Mn²⁺ stayed in water phase. The quantitative separation of Co²⁺ from Ni²⁺,Fe³⁺,Al³⁺ and Mn²⁺ could be achieved. This proposed was applied to the separation of Co²⁺ in the sample of synthetic water with satisfactory results.

2. Experimental
2.1 Equipment and reagents
722S spectrophotometer (Shanghai No.3 Analysis Equipment Plant) was used for photometric measurements.
DDBAC solution: 0.001 mol·L⁻¹, NH₄SCN solution: 0.1 mol·L⁻¹. Borax solution: 0.1 mol·L⁻¹. 4-(2-pyridyldiazol) resorcinol (PAR) ethanol solution: 1.0×10⁻³ mol·L⁻¹. A stock of standard solution of
Co^{2+}: 1.000 g·L^{-1}, a working standard solution was prepared by appropriately diluting the stock standard solution.

2.2 Method
Condition experimental: 50µg of Co^{2+}, a given amounts of 0.1 mol·L^{-1} NH₄SCN solution and 0.001 mol·L^{-1} DDBAC solution were added into a comparison tube (25mL). Then the mixture was diluted to 10 mL. 1.5 g NaCl was added to the solution and shaken for 1 min before allowing it to stand for 2 min. 1.00 mL of aqueous solution in the lower layer was transferred into another comparison tube (25mL), and 1.5 mL PAR ethanol solution and 3.0 mL borax solution was added. The solution was diluted to the mark. The content of Co^{2+} was determined at 510 nm with reagent as blank. The flotation yield of Co^{2+}(E/%) was calculated.

Separation experimental: The settlement was dissolved in ethanol, and the content of Co^{2+} was determined in the same method. The flotation yield of Co^{2+}(E/%) was calculated.

Photometric analysis of other metal ions was referring the reference 10.

3. Results and discussion

3.1. Effect of NH₄SCN dosage
Co^{2+}(50µg) and 0.001 mol·L^{-1} DDBAC solution (1.00 mL) are applied to the proposed method, the effect of NH₄SCN dosage on the E/(%Co^{2+}) was studied (Figure 1). Figure 1 show that the the E/(%Co^{2+}) increased with the increase of NH₄SCN dosage. When the NH₄SCN dosage was zero, the flotation yield of Co^{2+} was zero. When the NH₄SCN solution was 0.20 mL or more, the E/(%Co^{2+}) was 100%. Hence, 0.30 mL NH₄SCN solution was chosen.

3.2. Effect of DDBAC dosage
Co^{2+}(50µg) and 0.1 mol·L^{-1} NH₄SCN solution (0.30 mL) are applied to the proposed method, the effect of DDBAC dosage on the E/(%Co^{2+}) was studied (shown in Figure 2). The E/(%Co^{2+}) was zero without DDBAC. With the increase of DDBAC dosage, the E/(%Co^{2+}) increased. When the dosage of DDBAC was reached 0.75 mL, the E/(%Co^{2+}) was 100%. Furthermore, the E/(%Co^{2+}) does not change with a further increase of DDBAC dosage. Hence, 1.00 mL DDBAC solution was selected.

3.3. Flotation separation mechanism of Co^{2+}
Based on the results above, the flotation separation mechanism of Co^{2+} was presumed:

\[
\text{Co}^{2+} + 4\text{SCN}^- \rightarrow \text{Co(SCN)}_4^{2-} \quad (1) \\
\text{(Water phase)} \quad \text{(Water phase)}
\]

\[
\text{Co(SCN)}_4^{2-} + 2\text{DDBAC}^+ \rightarrow (\text{DDBAC})_2[(\text{Co(SCN)})_4] \quad (2) \\
\text{(Water phase)} \quad \text{(Flotation phase)}
\]
3.4. Effect of different salts

Under selected conditions, the effects of different salts (NaCl, NaNO₃, (NH₄)₂SO₄ and KBr) on liquid-solid divarication and the E/%(Co²⁺) were investigated. The results showed that liquid-solid divarication could be realized when the presence of each of NaCl, NaNO₃, (NH₄)₂SO₄ and KBr. However, the presence of (NH₄)₂SO₄, NaNO₃ and KBr decreased the E/%(Co²⁺) in a certain extent. The existence of NaCl speeded up liquid-solid divarication and made the interface clearer, and consequently Co²⁺ was floated faster. When NaCl dosage was 0.50, 1.00, 1.50 g, the flotation yield of Co²⁺ was 88.8%, 91.0% and 100%. Therefore, 1.50 g NaCl was chosen.

3.5. The flotation yield of different metal ions

Co²⁺ (50 µg), 0.1 mol·L⁻¹ NH₄SCN (0.30 mL) and 0.001 mol·L⁻¹ DDBAC (1.00 mL) are applied to the proposed method, the E/%(Co²⁺) was 100%. Under the same conditions, the flotation yield of Ni²⁺, Fe³⁺, Mn²⁺ and Al³⁺ were all less. Therefore, Co²⁺ can be separated from Ni²⁺, Fe³⁺, Mn²⁺ and Al³⁺ in the solution.

3.6. Separation experiments

The flotation separations of Co²⁺ from Ni²⁺, Fe³⁺, Mn²⁺ and Al³⁺ in synthesized samples of binary and polybasic system were researched. The results were shown in Table 1 and Table 2.

Mixed ions	Dosage of metal ions(µg)	Content of metal ions in water phase (µg)	Flotation yield(E/%)			
	Co	Me	Co	Me	Co	Me
Co²⁺-Ni²⁺	50	100	0.1	97.3	99.8	2.7
Co²⁺-Ni²⁺	50	200	0.2	187.4	99.6	6.3
Table 2. Flotation separation results of Co$^{2+}$ from polybasic-mixed ions

Number of the synthesized samples	1	2	3	4	5
Dosage of Co$^{2+}$ (µg)	100.0	200	300	40.0	50.0
Dosage of Ni$^{2+}$, Fe$^{3+}$, Mn$^{2+}$ and Al$^{3+}$ (µg)	100.0	100	15.0	200.0	20.0
Co$^{2+}$ found in solid phase (µg)	93.0	188.3	295.9	369.0	467.8
Flotation yield of Co$^{2+}$ (E/%)	93.0	94.2	98.6	92.3	93.6

Me indicates Ni$^{2+}$, Fe$^{3+}$, Mn$^{2+}$ and Al$^{3+}$.

4. Conclusion

In this paper, the flotation separation of Co$^{2+}$ from Ni$^{2+}$, Fe$^{3+}$, Mn$^{2+}$ and Al$^{3+}$ was reported. In NaCl-NH$_4$SCN-DDBAC-H$_2$O system, Co$^{2+}$ could be quantitatively floated. In the same conditions, Ni$^{2+}$, Fe$^{3+}$, Mn$^{2+}$ and Al$^{3+}$ could not be floated or minor floatation. So, the flotation separation of Co$^{2+}$ from Ni$^{2+}$, Fe$^{3+}$, Mn$^{2+}$ and Al$^{3+}$ could be achieved. The proposed method has been successfully used for the separation of Co$^{2+}$ in the sample of synthetic water with satisfactory results.

Acknowledgement

This work was financially supported by Guangdong Nature Science Foundation(2016A030307014) and scientific research project of Jiaying University (2016KJY08).

References

[1] Zuaa S, Rusheed A. (1989) Solvent extraction of thiocyanate complexes of cobalt(II) by 2-benzylpyridine/benzene from aqueous acid solution. *J.Radioanal.Nucl.Chem*, 133(2): 241-247.

[2] Izquierdo A, Compano R, Bars E. (1984) Solvent Extraction of cobalt and nickel with 5,7-Dichloro-2-methyl,8-hydroxyquinoline into Chloroform. *Mikrochim Acta*, II: 343-357.
[3] Mitra B K, Pal B K, Chowdhury R P. (1982) Liquid-Liquid extraction of cobalt(II) thiocyanate with hexamethyl phosphoramid: direct spectrophotometric determination in the organic phase. *Mikrochim Acta*, II: 257-262.

[4] Muharrem I, Gokce K, Mehmet Y. (2010) Solid phase extraction and preconcentration of cobalt in mineral waters with PAR-loaded Amberlite XAD-7 and flame atomic absorption spectrometry. *Environ. Chem. Lett.*, 8:283–288.

[5] Yang G Y, Dong X C, Hu Q F, et al. (2002) Solid phase extraction and spectrophotometric determination of cobalt with 2-(2-quinolinylazo)-5-dimethylaminobenzoic acid as chromogenic reagent. *Anal.Lett.*, 35(10), 1735-1745.

[6] Safavi A, Abdollahi H, Nezhad M R H, et al. (2004) Cloud point extraction, preconcentration and simultaneous spectrophotometric determination of nickel and cobalt in water samples. *Spectrochim.Acta.Part A*, 60(12): 2897-2901.

[7] Farzaneh S, Nader S. (2006) Laser induced thermal lens spectrometry for cobalt determination after cloud point extraction. *Anal.Chim.Acta*, 577(2): 238-243.

[8] Čundeva K, Stafilov T, Pavlovska G. (2000) Flotation separation of cobalt and copper from fresh waters and their determination by electrothermal atomic absorption spectrometry. *Microchem. J.*, 65(2): 165-175.

[9] Khuhawar M Y, Lanjwani S N. (1995) High-performance liquid chromatographic separation and determination of cobalt(II), cobalt(III) and iron(II) using bis(salicylaldehyde)tetramethylethylenedimine. *J.Chromatogr., A*, 695(1): 132-135.

[10] Pan J M, Chen Y S, Yan H T. (1981) Chromogenic agent and its application in metallurgical analysis; Shanghai scientific and technical publisher: Shanghai,116. (in Chinese)