The D-wave heavy-light mesons from QCD sum rules

Dan Zhou1, Er-Liang Cui1, Hua-Xing Chen1,2, Li-Sheng Geng1, Li-Xiang Liu2,3,4, and Shi-Lin Zhu4,5,6,7

1School of Physics and Nuclear Energy Technology and International Research Center for Nuclear and Particles in the Cosmos, Beihang University, Beijing 100191, China
2School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
3Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China
4School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
5Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
6Center of High Energy Physics, Peking University, Beijing 100871, China

We study the D-wave $\bar{c}s$ heavy meson doublets ($1^−, 2^−$) and ($2^−, 3^−$) using the method of QCD sum rule in the framework of heavy quark effective theory. Choosing the same threshold values ω_{hk} around 2.7 GeV, we calculate the masses of the $1^−$ and $3^−$ states. They are $m_{D_{10}} = 2.81 \pm 0.10$ GeV and $m_{D_{30}} = 2.85 \pm 0.08$ GeV, consistent with the newly observed $D_{10}^*(2860)$ and $D_{30}^*(2860)$ states by LHCb. The masses of their $2^−$ partners are calculated to be 2.82 ± 0.10 and 2.81 ± 0.08 GeV, with large uncertainties. However, the mass splittings within the same doublet are calculated to be $m_{D_{10}} - m_{D_{1}} = 0.016 \pm 0.007$ GeV and $m_{D_{30}} - m_{D_{3}} = 0.039 \pm 0.014$ GeV, with much smaller uncertainties.

PACS numbers: 14.40.Lb, 12.38.Lg, 12.39.Hg

I. INTRODUCTION

Since the observation of $D_{2S}^*(2317)$ in 2013 [1], more and more charmed-strange mesons have been reported experimentally, which include $D_{1S}(2460)$ [2], $D_{1J}(2710)$ [3, 4], $D_{2S}(2860)$ [4, 5], and $D_{3S}(3040)$ [4] (see Ref. [6] for a concise review). Very recently, the LHCb Collaboration announced the observation of two charmed-strange mesons $D_{1S}(2860)$ and $D_{3S}(2860)$ with the resonance parameters [7, 8]:

$$m_{D_{1S}}(2860) = (2859 \pm 12 \pm 6 \pm 23) \text{ MeV},$$

$$m_{D_{3S}}(2860) = (2860.5 \pm 2.6 \pm 2.5 \pm 6.0) \text{ MeV},$$

$$\Gamma_{D_{1S}}(2860) = (159 \pm 23 \pm 27 \pm 72) \text{ MeV},$$

$$\Gamma_{D_{3S}}(2860) = (53 \pm 7 \pm 4 \pm 6) \text{ MeV}.$$

In addition, LHCb specified that it is the first time to identify a spin-3 resonance $D_{3S}^*(2860)$ [7, 8]. At present, the charmed-strange meson family is becoming more and more abundant with the experimental progress.

Until now, there are good candidates of the $1S$ and $1P$ states in the charmed-strange meson family [9]. These newly observed charmed-strange mesons provide a good platform to study the properties of the higher radial and orbital excitations of the charmed-strange meson. For example, in Ref. [10] Sun and Liu suggested that $D_{2S}(3040)$ can be a good candidate of the $2P$ state in the charmed-strange meson family, which is the radial excitation of $D_{1S}(2460)$. The recently reported $D_{1S}(2860)$ and $D_{3S}(2860)$ states stimulated extensive discussions of whether they can be categorized into the $1D$ charmed-strange mesons [11–13]. In Ref. [11], the two-body strong decays of $D_{1S}(2860)$ and $D_{3S}(2860)$ as the 1^D_1 and 1^3D_3 states in charmed-strange meson family were studied by the quark pair creation model, which shows that $D_{1S}(2860)$ and $D_{3S}(2860)$ are the 1^D_1 and 1^3D_3 states, respectively. Later, Wang studied $D_{1S}(2860)$ and $D_{3S}(2860)$ using the effective Lagrangian approach [12]. Recently, Godfrey and Moats [13] indicated that $D_{1S}(2860)$ and $D_{3S}(2860)$ are the 1^D_1 and 1^3D_3 charmed-strange mesons, respectively. Thus, the results in Refs. [12, 13] supports the assignment of $D_{1S}(2860)$ and $D_{3S}(2860)$ proposed in Ref. [11].

In this paper we shall use the method of QCD sum rule to study the D-wave heavy meson doublets ($1^−, 2^−$) and ($2^−, 3^−$) containing one heavy anti-quark and one strange quark [14, 15]. We shall work in the framework of the heavy quark effective theory (HQET) [16–18], which has been successful to study heavy hadrons containing a single heavy quark. The mass of the ground state heavy mesons was studied in Refs. [19–24]. The masses of the lowest excited non-strange heavy meson doublets ($0^+, 1^+$) and ($1^+, 2^+$) were studied in Refs. [26–28]. The masses of the lowest excited $\bar{c}s$ heavy mesons in the ($0^+, 1^+$) and ($1^+, 2^+$) doublets were studied in Ref. [29]. There were also some early studies using the method of QCD sum rules but in full QCD [30, 31]. In this paper we shall follow the procedures used in Refs. [25–27, 29], and study the D-wave $\bar{c}s$ heavy meson in the ($1^−, 2^−$) and ($2^−, 3^−$) doublets. We shall also follow Refs. [25–27, 29] and consider the $O(1/m_Q)$ corrections, where m_Q is the heavy quark mass.

This paper is organized as follows. In Sec. II, we introduce the interpolating currents for the D-wave $\bar{c}s$ heavy meson doublets ($1^−, 2^−$) and ($2^−, 3^−$), and use them to perform QCD sum rule analyses at the leading order. Then in Sec. III we calculate the $O(1/m_Q)$ corrections. The results are summarized and discussed in Sec. IV.
II. THE SUM RULES AT THE LEADING ORDER (IN THE $m_0 \to \infty$ LIMIT)

The interpolating currents for the heavy mesons with arbitrary spin and parity have been studied and given in Refs. [25–27]. Accordingly, we shall use the following interpolating currents to study the D-wave (1, 2) spin doublet:

$$ J_{1-3/2}^{\alpha} = \frac{\sqrt{3}}{4} \bar{h}_t \langle \gamma^0 \rangle \frac{(-i)}{2} \gamma^0 \gamma^0 \gamma^0 \gamma^1 | D_1^a, D_2^b, D_3^c \rangle q, $$

$$ J_{2-5/2}^{\alpha} = \frac{\sqrt{3}}{4} \bar{h}_t \langle \gamma^0 \rangle \frac{(-i)}{2} \gamma^0 \gamma^0 \gamma^0 \gamma^1 | D_1^a, D_2^b, D_3^c \rangle q, \tag{1} $$

and the following interpolating currents to study the D-wave (2, 3) spin doublet:

$$ J_{2-3/2}^{\alpha_2 \alpha_3} = \frac{\sqrt{3}}{4} \bar{h}_t \gamma^0 \frac{(-i)}{2} \gamma^0 \gamma^0 \gamma^0 \gamma^1 | D_1^a, D_2^b, D_3^c \rangle q, $$

$$ J_{3-5/2}^{\alpha_2 \alpha_3} = \frac{\sqrt{3}}{4} \bar{h}_t \gamma^0 \frac{(-i)}{2} \gamma^0 \gamma^0 \gamma^0 \gamma^1 | D_1^a, D_2^b, D_3^c \rangle q, \tag{2} $$

where $\gamma^0 = \gamma^0 - i\gamma^5$ is the gauge-covariant derivative, h_t is the heavy quark field in HQET, v is the velocity of the heavy quark, and $\eta_{\alpha_2 \alpha_3}$ is the transverse metric tensor.

The two currents $J_{1-3/2}$ and $J_{2-3/2}$ give identical sum rules at the leading order, and the sum rules at the $O(1/m_0)$ order can be obtained using either of them [25–27, 29] (ideally the results should be identical, while actually they have small differences but negligible).

In the $m_0 \to \infty$ limit we can assume $| j, P, j \rangle$ to be the heavy meson state with the quantum numbers j, P, and j_1, and the relation between this state and the relevant interpolating field is

$$ \langle 0 | J_{1-3/2}^{\alpha} | j, P, j \rangle = f_{P,j} \delta_{j,j_1} \delta_{P,P} \delta_{j_1,j'_1} \eta_{\alpha}, $$

where $f_{P,j}$ is the decay constant. It has the same value for the two states in the same doublet in the $m_0 \to \infty$ limit. η_{α} is the transverse, symmetric, and traceless polarization tensor.

In this paper we need to use η_{α} and $\eta_{\alpha_2 \alpha_3}$ which have the following property at the leading order

$$ \eta_{\alpha}^{\alpha} = \delta_{\alpha \alpha}, $$

$$ \eta_{\alpha_2 \alpha_3}^{\alpha} = S_2 \epsilon_{\alpha_2 \alpha_3} g_{\beta_2 \beta_3}^{\alpha} = S_2 \epsilon_{\alpha_2 \alpha_3} g_{\beta_2 \beta_3}^{\alpha}, \tag{6} $$

where $\gamma^\mu = g^{\mu \nu} - q^\mu q^\nu / m^2$ and S_2 denotes symmetrization and subtracting the trace terms in the sets ($\alpha_1 \alpha_2 \alpha_3$) and ($\beta_1 \beta_2 \beta_3$).

Using the two interpolating currents $J_{1-3/2}$ and $J_{2-5/2}$, we can construct the two-point correlation function

$$ \Pi_{J_{1-3/2} J_{2-5/2}}(\omega) = i \int d^4x e^{ikx} \langle 0 | T [J_{1-3/2}^{\alpha} (x) J_{2-5/2}^{\beta} (0)] 0 \rangle $$

$$ = (-1) S_3 \langle g_{\alpha_1 \beta_1} \cdots g_{\alpha_3 \beta_3} \rangle \Pi_{J_{1-3/2} J_{2-5/2}}(\omega), \tag{8} $$

where $\omega = 2v \cdot k$ is twice the external off-shell energy, and S_3 denotes symmetrization and subtracting the trace terms in the sets ($\alpha_1 \cdots \alpha_3$) and ($\beta_1 \cdots \beta_3$). At the hadron level, it can be written as

$$ \Pi_{J_{1-3/2} J_{2-5/2}}(\omega) = \frac{f_{P,j}^2}{2 \Lambda_{J_{1-3/2}} - \omega} + \text{higher states}, \tag{9} $$

where $\Lambda_{J_{1-3/2}} = \lim_{m_0 \to \infty} (m_{J_{1-3/2}} - m_Q)$, and $m_{J_{1-3/2}}$ is the mass of the lowest-lying heavy meson state which $J_{1-3/2}(x)$ couples to. At the quark and gluon level, we can calculate the two-point correlation function (8) using the method of QCD sum rule. To do this we follow the approaches used in Refs. [25–27, 29]. After inserting Eq. (1) and (4) into Eq. (8), and performing the Borel transformation, we obtain

$$ \Pi_{J_{1-3/2} J_{2-5/2}}(\omega, T) = \int_{-2\Lambda_{J_{1-3/2}}/T}^{\infty} \frac{d\omega}{2\Lambda_{J_{1-3/2}} - \omega} $$

$$ = \frac{7}{2560\pi^2} \int_{-2m_t}^{\infty} [\omega^6 + 2m_t^2 \alpha^5 - 10m_t^2 \omega^4] e^{-\omega^4/T} d\omega $$

$$ - \frac{1}{8\pi} \langle \sigma, GG \rangle T^3, \tag{10} $$

$$ \Pi_{J_{2-5/2} J_{3-7/2}}(\omega, T) = \int_{-2\Lambda_{J_{2-5/2}}/T}^{\infty} \frac{d\omega}{2\Lambda_{J_{2-5/2}} - \omega} $$

$$ = \frac{1}{640\pi} \int_{-2m_t}^{\infty} [\omega^6 + 2m_t^2 \alpha^5 - 10m_t^2 \omega^4] e^{-\omega^4/T} d\omega $$

$$ - \frac{3}{32\pi} \langle \sigma, GG \rangle T^3. \tag{11} $$

We note that there are $2 \times 2 = 4$ derivatives, and so the calculations are not easy. To deal with them, we have used a software called Mathematica with a package called FeynCalc [32].

Particularly, the quark condensate $\langle \bar{q}q \rangle$ and the mixed condensate $\langle \bar{q}q \sigma Gq \rangle$ both vanish in this case. This is much different from those sum rules for $(0^+, 1^+)$ and $(1^+, 2^+)$ doubllets [25–27, 29], and it makes the convergence of Eq. (10) and (11) very good. To clearly see this, we show the convergence of Eq. (11) in Fig. 1, where ω_π is taken to be 2.7 GeV, and the following values for the condensates and other parameters are used [25–27, 29, 33]:

$$ \langle \bar{q}q \rangle = -0.24 \text{ GeV}^3, $$

$$ \langle \sigma, GG \rangle = 0.005 \pm 0.004 \text{ GeV}^4, $$

$$ m_\pi = 0.15 \text{ GeV}, $$

$$ \langle \bar{q}q \sigma Gq \rangle = M_0^2 \times \langle \bar{q}q \rangle, \tag{12} $$

$$ M_0^2 = 0.8 \text{ GeV}^2. $$
Finally, we differentiate Eqs. (10) and (11) with respect to $-2/T$, divide the results by themselves, and obtain

$$\Lambda_{j,P/j}(\omega_c, T) = \frac{\partial}{\partial \omega - 2/T} \Pi_{j,P/j}(\omega_c, T).$$

(13)

The results can be furtherly used to evaluate $f_{P,j}$:

$$f_{P,j}(\omega_c, T) = \sqrt{\Pi_{j,P/j}(\omega_c, T) \times e^{2\Lambda_{j,P/j}(\omega_c, T)/T}}.$$

(14)

Here we note again that the sum rule obtained by using the high-order power corrections be less than 30% of the pole contribution for $J_{3/2}$ and continuum contributions for $J_{5/2}$. We obtain the maximum value ω_c in the region $0.25\, \text{GeV} < T < 0.55\, \text{GeV}$, but we find that their dependence on the Borel mass T becomes weaker in our working region $0.35\, \text{GeV} < T < 0.48\, \text{GeV}$. We obtain the following numerical results:

$$\Lambda_{-3/2} = 1.10 \pm 0.06\, \text{GeV},$$

(16)

$$f_{-3/2} = 0.19 \pm 0.05\, \text{GeV}^{7/2},$$

(17)

where the central value corresponds to $T = 0.42\, \text{GeV}$ and $\omega_c = 2.7\, \text{GeV}\). We obtain the following numerical results:

$$\Lambda_{-5/2} = 1.14 \pm 0.05\, \text{GeV},$$

(18)

$$f_{-5/2} = 0.15 \pm 0.04\, \text{GeV}^{7/2},$$

(19)

where the central value corresponds to $T = 0.43\, \text{GeV}$ and $\omega_c = 2.7\, \text{GeV}\). We obtain the following numerical results:

These figures are shown in the region $0.25\, \text{GeV} < T < 0.55\, \text{GeV}$, but we find that their dependence on the Borel mass T becomes weaker in our working region $0.35\, \text{GeV} < T < 0.48\, \text{GeV}$. We obtain the following numerical results:

$$\Lambda_{-3/2} = 1.10 \pm 0.06\, \text{GeV},$$

(16)

$$f_{-3/2} = 0.19 \pm 0.05\, \text{GeV}^{7/2},$$

(17)

where the central value corresponds to $T = 0.42\, \text{GeV}$ and $\omega_c = 2.7\, \text{GeV}\). We obtain the following numerical results:

$$\Lambda_{-5/2} = 1.14 \pm 0.05\, \text{GeV},$$

(18)

$$f_{-5/2} = 0.15 \pm 0.04\, \text{GeV}^{7/2},$$

(19)

where the central value corresponds to $T = 0.43\, \text{GeV}$ and $\omega_c = 2.7\, \text{GeV}\). We obtain the following numerical results:

Finally, we solve Eq. (13) and Eq. (14), and evaluate $\Lambda_{-j_{hi}}$ and $f_{-j_{hi}}$. We show the variations of $\Lambda_{-3/2}$ and $f_{-3/2}$ with respect to the Borel mass T and the threshold value ω_c in Fig. 3.

Finally, we solve Eq. (13) and Eq. (14), and evaluate $\Lambda_{-j_{hi}}$ and $f_{-j_{hi}}$. We show the variations of $\Lambda_{-3/2}$ and $f_{-3/2}$ with respect to the Borel mass T and the threshold value ω_c in Fig. 3.

III. THE SUM RULES AT THE $O(1/m_Q)$ ORDER

The Lagrangian of HQET, up to the $O(1/m_Q)$ order, can be written as [27, 29]

$$\mathcal{L}_{\text{eff}} = \bar{h}_c i\gamma_5 Dm_c h_c + \frac{1}{2m_Q} K + \frac{1}{2m_Q} S,$$

(20)

where K is the operator of the nonrelativistic kinetic energy with a negative sign:

$$K = \bar{h}_c (iD_+)^2 h_c,$$

(21)

and S is the Pauli term to describe the chromomagnetic interaction:

$$S = \frac{g}{2} C_{\text{mag}}(m_Q/\mu) \bar{h}_c \sigma_{\mu\nu} G^{\mu\nu} h_c,$$

(22)
where \(C_{mag}(m_\Omega/\mu) = [\alpha_s(m_\Omega)/\alpha_s(\mu)]^{3/5} \) and \(\beta_0 = 11 - 2n_f/3 \).

We use \(\delta m \) and \(\delta f \) to denote the corrections to the mass \(m_{j,P_{ji}} \) and the coupling constant \(f_{P_{ji}} \) at the \(O(1/m_\Omega) \) order. The pole term on the hadron side, Eq. (9), can be written as:

\[
\Pi(\omega)_{\text{pole}} = \frac{(f + \delta f)^2}{2(\Lambda + \delta m) - \omega} = \frac{f^2}{2\Lambda - \omega} - \frac{2\delta mf^2}{(2\Lambda - \omega)^2} + \frac{2f\delta f}{2\Lambda - \omega}.
\]

In this paper we shall only evaluate \(\delta m \). To do this, we use the Lagrangian (20) defined at the \(O(1/m_\Omega) \) order, and consider the following three-point correlation functions

\[
\delta \Pi_{j,P_{ji}}^{\alpha_i\beta_i\gamma}(\omega,\omega') = \int d^4x d^4y e^{ik\cdot x - ik'\cdot y} \langle 0|T[J_{j,P_{ji}}^{\alpha_i\beta_i\gamma}(x)O(0)J_{j,P_{ji}}^{\alpha_i\beta_i\gamma}(y)]|0\rangle
\]

\[
= (-1)^j S_2[g_2^{\alpha_i\beta_i} \cdots g_2^{\alpha_i\beta_i}] \delta \Pi_{j,P_{ji}}(\omega),
\]

where \(O = K \) or \(S \). At the hadron level, we can pick their pole parts

\[
\delta \Pi(\omega,\omega')_{j,P_{ji}} = \frac{f^2 K_{P_{ji}}}{(2\Lambda - \omega)(2\Lambda - \omega')} + \frac{f^2 G_K(\omega')}{2\Lambda - \omega} + \frac{f^2 G_K(\omega)}{2\Lambda - \omega'},
\]

\[
\delta S(\omega,\omega')_{j,P_{ji}} = \frac{d_M f^2 S_{P_{ji}}}{(2\Lambda - \omega)(2\Lambda - \omega')} + \frac{d_M f^2 G_S(\omega')}{2\Lambda - \omega} + \frac{d_M f^2 G_S(\omega)}{2\Lambda - \omega'},
\]

where

\[
K_{P_{ji}} = \langle j, P, j| h_\pi(iD_\perp)^2 h_\pi| j, P, j \rangle,
\]

\[
2d_M S_{P_{ji}} = \langle j, P, j| g_{\pi\rho}^a \sigma_{\mu
u} G_{\rho\nu}^a h_\pi| j, P, j \rangle,
\]

\[
d_M = d_{j,i},
\]

\[
d_{j-1/2,i} = 2j_i + 2,
\]

\[
d_{j+1/2,i} = -2j_i.
\]

From these equations we know that the term \(S \) causes a mass splitting within the same doublet, while the term \(K \) does not. Moreover, the term \(S \) can also cause a mixing of states with the same \(j, P \) but different \(j_i \), such as a mass splitting between \(|2, -3/2 \rangle \) and \(|2, -5/2 \rangle \). This effect has been studied.
in Ref. [34], where its corrections are found to be negligible. Hence, we do not consider this effect in this paper.

Fixing $\omega = \omega'$ and comparing Eq. (23), Eq. (25) and Eq. (26), we obtain

$$\delta m_{P,j} = -\frac{1}{4m_Q} (K_{P,j} + d_M C_{\text{max}} \Sigma_{P,j}).$$ (28)

At the quark and gluon level, we can calculate Eqs. (24) using the method of QCD sum rule, and evaluate $K_{P,j}$ and $\Sigma_{P,j}$. To do this, again we follow the approaches used in Refs. [27, 29]: after inserting Eq. (1) and (4) into Eq. (24), we make a double Borel transformation for both ω and ω', and obtain two Borel parameters T_1 and T_2. Then we take these two Borel parameters to be equal, and obtain the following two sum rules for $K_{-3/2}$ and $\Sigma_{-3/2}$:

$$f_{-3/2}^2 K_{-3/2} e^{-2\Lambda_{-3/2}/T} = \frac{11}{7168\pi} \int^{\omega_c} \omega^8 e^{-\omega/T} d\omega + \frac{91}{64\pi} (\alpha_s G G)' T^5,$$ (29)

$$f_{-3/2}^2 \Sigma_{-3/2} e^{-2\Lambda_{-3/2}/T} = \frac{7}{240\pi} (\alpha_s G G)' T^5,$$ (30)

and the following two sum rules for $K_{-5/2}$ and $\Sigma_{-5/2}$:

$$f_{-5/2}^2 K_{-5/2} e^{-2\Lambda_{-5/2}/T} = -\frac{1}{1280\pi} \int^{\omega_c} \omega^8 e^{-\omega/T} d\omega + \frac{71}{96\pi} (\alpha_s G G)' T^5,$$ (31)

$$f_{-5/2}^2 \Sigma_{-5/2} e^{-2\Lambda_{-5/2}/T} = \frac{1}{40\pi} (\alpha_s G G)' T^5.$$ (32)

We note that in these sum rules the m_s corrections are neglected.

Finally, we obtain $K_{-3/2}$ and $\Sigma_{-3/2}$ by simply dividing Eq. (29) and (30) by the sum rule (10), and $K_{-5/2}$ and $\Sigma_{-5/2}$ by simply dividing Eq. (31) and (32) by the sum rule (11). We show the variations of $K_{-3/2}$ and $\Sigma_{-3/2}$ with respect to the Borel mass T and the threshold value ω_c in Fig. 5 in the region $0.25 \text{ GeV} < T < 0.55 \text{ GeV}$, and their dependence on the Borel mass T becomes weaker in our working region $0.35 \text{ GeV} < T < 0.48 \text{ GeV}$. We obtain the following numerical results:

$$K_{-3/2} = -2.25 \pm 0.36 \text{ GeV}^2,$$ (33)

$$\Sigma_{-3/2} = 0.010 \pm 0.004 \text{ GeV}^2,$$ (34)

where the central value corresponds to $T = 0.42 \text{ GeV}$ and $\omega_c = 2.7 \text{ GeV}$.

Similarly we show the variations of $K_{-5/2}$ and $\Sigma_{-5/2}$ in Fig. 6 in the region $0.30 \text{ GeV} < T < 0.60 \text{ GeV}$, and their dependence on the Borel mass T becomes weaker in our working region $0.39 \text{ GeV} < T < 0.47 \text{ GeV}$. We obtain the following numerical results:

$$K_{-5/2} = -2.16 \pm 0.28 \text{ GeV}^2,$$ (35)

$$\Sigma_{-5/2} = 0.017 \pm 0.006 \text{ GeV}^2,$$ (36)

where the central value corresponds to $T = 0.43 \text{ GeV}$ and $\omega_c = 2.7 \text{ GeV}$.

![Fig. 5: The variation of $K_{-3/2}$ and $\Sigma_{-3/2}$ with respect to the Borel mass T and the threshold value ω_c. The short-dashed, solid and long-dashed curves are obtained by fixing $\omega_c = 2.5$, 2.7 and 2.9 GeV, respectively. Our working region is $0.35 \text{ GeV} < T < 0.48 \text{ GeV}$.](image)

IV. NUMERICAL RESULTS AND DISCUSSIONS

Combining the results obtained in Sec. II and Sec. III, we arrive at the following weighted average mass for the D-wave heavy meson doublet ($1^-, 2^-$):

$$m_c (3m_{D_{st}}, 5m_{D_{sl}}) = m_c + (1.10 \pm 0.06) \text{ GeV}$$

$$+ \frac{1}{m_c} [(0.56 \pm 0.09) \text{ GeV}^2],$$ (37)

where D_{sl} is used to denote the 2^- partner of D_{st}^*. Their mass splitting is:

$$m_{D_{st}} - m_{D_{sl}} = \frac{1}{m_c} [(0.021 \pm 0.008) \text{ GeV}^2].$$ (38)

From these values, we find that the $O(1/m_Q)$ corrections are important and can not be neglected. Moreover, they have large uncertainties. So do the results at the leading order, $\Lambda_{-3/2}$. This makes our results also have large uncertainties, except their mass splitting:

$$m_{D_{st}} = 2.81 \pm 0.10 \text{ GeV},$$

$$m_{D_{sl}} = 2.82 \pm 0.10 \text{ GeV},$$ (39)

$$m_{D_{sl}} - m_{D_{st}} = 0.016 \pm 0.007 \text{ GeV},$$

$$m_{D_{st}} - m_{D_{sl}} = 0.008 \pm 0.007 \text{ GeV}.$$
where we have used the PDG value \(m_c = 1.275 \pm 0.025 \text{ GeV} \) [35]. The mass of \(1^- \) state is \(2.81 \pm 0.10 \text{ GeV} \), consistent with the \(D_{s1}^* (2860) \) newly observed by LHCb, \(m_{Ds1}^{\exp} = 2859 \pm 12 \pm 6 \pm 23 \text{ MeV} \) [7].

Similarly, we obtain the following weighted average mass for the \(D^- \)-wave \((2^- , 3^-) \) heavy meson doublet:

$$
\frac{1}{12} \left(5m_{D_{s2}} + 7m_{D_{s3}} \right) = m_c + (1.14 \pm 0.05) \text{ GeV} + \frac{1}{m_c} \left[(0.54 \pm 0.07) \text{ GeV}^2 \right],
$$

(40)

where \(D_{s2}^- \) is used to denote the \(2^- \) partner of \(D_{s3}^- \). Their mass splitting is:

$$
m_{D_{s3}^-} - m_{D_{s2}^-} = \frac{1}{m_c} \left[(0.050 \pm 0.018) \text{ GeV}^2 \right].
$$

(41)

Again we find that the \(O(1/m_c) \) corrections are important and have large uncertainties. Our results are:

$$
m_{D_{s2}^-} = 2.81 \pm 0.08 \text{ GeV},
\quad
m_{D_{s3}^-} = 2.85 \pm 0.08 \text{ GeV},
\quad
m_{D_{s3}^-} - m_{D_{s2}^-} = 0.039 \pm 0.014 \text{ GeV}.
$$

The mass of the \(3^- \) state is \(2.85 \pm 0.08 \text{ GeV} \), also consistent with the \(D_{s3}^*(2860) \) newly observed by LHCb, \(m_{Ds3}^{\exp} = 2860.5 \pm 2.6 \pm 2.5 \pm 6.0 \text{ MeV} \) [7].

The \(\bar{b}s \) system can be similarly studied by replacing \(m_b \) by \(m_b \) and multiplying \(\Sigma_{-i} \) by \(C_{mag} \approx 0.8 \) [27, 29]. Here we only give their mass differences within the same doublet because their mass depends much on the bottom quark mass \(m_b \), whose value has large uncertainties. Using the same threshold values \(\omega_k \) around 3.3 GeV and assuming \(4 \text{ GeV} < m_b < 5 \text{ GeV} \), we obtain the mass differences within the same doublet:

$$
m_{B_{s1}^-} - m_{B_{s2}^-} = 0.004 \pm 0.002 \text{ GeV},
\quad
m_{B_{s3}^-} - m_{B_{s2}^-} = 0.009 \pm 0.004 \text{ GeV}.
$$

(43)

We can similarly replace the strange quark by up and down quarks and extract the masses of the non-strange \(D^- \)-wave heavy mesons. To do this we use slightly smaller threshold values \(\omega_k \sim 2.5 \text{ GeV} \), and obtain the working region \(0.39 \text{ GeV} < T < 0.43 \text{ GeV} \) for \((1^- , 2^-) \) doublet. However, there is no stability window for \((2^- , 3^-) \) doublet, unless we require the pole contribution to be greater than 20% only, and now the working region is \(0.46 \text{ GeV} < T < 0.49 \text{ GeV} \). The numerical results are:

$$
m_{D_{s2}^{'}} = 2.75 \pm 0.09 \text{ GeV},
\quad
m_{D_{s3}^{'}} = 2.78 \pm 0.09 \text{ GeV},
\quad
m_{D_{s2}^{'}} - m_{D_{s3}^{'}} = 0.02 \pm 0.01 \text{ GeV},
\quad
m_{D_{s2}^{'}} - m_{D_{s3}^{'}} = 0.02 \pm 0.01 \text{ GeV},
\quad
m_{D_{s3}^{'}} - m_{D_{s2}^{'}} = 0.06 \pm 0.03 \text{ GeV}.
$$

(44)

Again we note that the masses have large uncertainties, but their differences within the same doublet are produced quite well.

In summary, we have studied the \(D^- \)-wave \((1^- , 2^-) \) and \((2^- , 3^-) \) heavy meson doublets and calculated their masses up to the \(O(1/m_Q) \) order using the method of QCD sum rule in the framework of HQET. The masses of \(1^- \) and \(2^- \) states are calculated to be \(m_{D_{s2}} = 2.81 \pm 0.10 \text{ GeV} \) and \(m_{D_{s3}} = 2.85 \pm 0.08 \text{ GeV} \), consistent with the newly observed \(D_{s1}^*(2860) \) and \(D_{s3}^*(2860) \) states by LHCb [7]. In our calculations we have chosen the same threshold value \(\omega \approx 2.7 \text{ GeV} \) for both of them, and obtained a mass difference between \(D_{s1}^* \) and \(D_{s3}^* \) to be 0.04 GeV. Considering the mass uncertainties are about 0.1 GeV, our results are consistent with the experimental data [7]. The masses of their \(2^- \) partners are calculated to be \(2.82 \pm 0.10 \text{ GeV} \) and \(2.81 \pm 0.08 \text{ GeV} \), with large uncertainties. However, the mass splittings within the same doublet are reproduced quite well, i.e., \(m_{D_{s2}} - m_{D_{s3}} = 0.016 \pm 0.007 \text{ GeV} \) and \(m_{D_{s3}} - m_{D_{s2}} = 0.039 \pm 0.014 \text{ GeV} \). We have also estimated their decay constants at the leading order (in the \(m_Q \rightarrow \infty \) limit), that is \(f_{-3/2} = 0.19 \pm 0.05 \text{ GeV}^{-1/2} \) and \(f_{-5/2} = 0.15 \pm 0.04 \text{ GeV}^{-1/2} \).

At present, the two \(2^- \) charmed-strange mesons are still missing. The predicted masses of these two \(2^- \) charmed-strange mesons in this work can be further tested by future experiments. We also expect more experimental progresses on higher radial and orbital excitations in the charmed-strange meson family. We also obtained the two decay constants \(f_{-3/2} \) and \(f_{-5/2} \), both of which are important input parameters.
when performing the dynamical study relevant to the D-wave charmed-strange mesons.

With the running of the LHCb experiment, it is an exciting time to explore the higher charmed-strange mesons. The experimental and theoretical efforts will establish the charmed-strange meson family step by step, which is a research area full of challenges and opportunities.

Acknowledgments

This project is supported by the National Natural Science Foundation of China under Grants No. 11205011, No. 11475015, No. 11375024, No. 11222547, No. 11175073, No. 11035006, and NO. 11261130311, the Ministry of Education of China (SRFDP under Grant No. 2012021110002 and the Fundamental Research Funds for the Central Universities), and the Fok Ying-Tong Education Foundation (No. 131006).

[1] B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 90, 242001 (2003).
[2] D. Besson et al. [CLEO Collaboration], Phys. Rev. D 68, 032002 (2003) [Erratum-ibid. D 75, 119908 (2007)].
[3] J. Brodzicka et al. [Belle Collaboration], Phys. Rev. Lett. 100, 092001 (2008).
[4] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 80 (2009) 092003.
[5] B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 97, 222001 (2006).
[6] X. Liu, Int. J. Mod. Phys. Conf. Ser. 2, 147 (2011).
[7] R. Aaij et al. [LHCb Collaboration], arXiv:1407.7574 [hep-ex].
[8] R. Aaij et al. [LHCb Collaboration], arXiv:1407.7712 [hep-ex].
[9] K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).
[10] Z. F. Sun and X. Liu, Phys. Rev. D 80, 074037 (2009).
[11] Q. T. Song, D. Y. Chen, X. Liu and T. Matsuki, arXiv:1408.0471 [hep-ph].
[12] Z. G. Wang, arXiv:1408.6465 [hep-ph].
[13] S. Godfrey and K. Moats, arXiv:1409.0874 [hep-ph].
[14] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979).
[15] L. J. Reinders, H. Rubinstein and S. Yazaki, Phys. Rept. 127, 1 (1985).
[16] B. Grinstein, Nucl. Phys. B 339, 253 (1990).
[17] E. Eichten and B. R. Hill, Phys. Lett. B 234, 511 (1990).
[18] A. F. Falk, H. Georgi, B. Grinstein and M. B. Wise, Nucl. Phys. B 343, 1 (1990).
[19] E. Bagia, P. Ball, V. M. Braun and H. G. Dosch, Phys. Lett. B 278, 457 (1992).
[20] M. Neubert, Phys. Rev. D 45, 2451 (1992).
[21] M. Neubert, Phys. Rept. 245, 259 (1994).
[22] D. J. Broadhurst and A. G. Grozin, Phys. Lett. B 274, 421 (1992).
[23] P. Ball and V. M. Braun, Phys. Rev. D 49, 2472 (1994).
[24] T. Huang and C. W. Luo, Phys. Rev. D 50, 5775 (1994).
[25] Y. B. Dai, C. S. Huang, M. Q. Huang and C. Liu, Phys. Lett. B 390, 350 (1997).
[26] Y. B. Dai, C. S. Huang and H. Y. Jin, Z. Phys. C 60, 527 (1993).
[27] Y. B. Dai, C. S. Huang and M. Q. Huang, Phys. Rev. D 55, 5719 (1997).
[28] P. Colangelo, F. De Fazio and N. Paver, Phys. Rev. D 58, 116005 (1998).
[29] Y. B. Dai, C. S. Huang, C. Liu and S. L. Zhu, Phys. Rev. D 68, 114011 (2003).
[30] P. Colangelo, G. Nardulli, A. A. Ovchinnikov and N. Paver, Phys. Lett. B 293, 207 (1992).
[31] P. Colangelo, G. Nardulli and N. Paver, Phys. Lett. B 269, 201 (1991).
[32] http://www.feyncalc.org/.
[33] B. L. Ioffe, Prog. Part. Nucl. Phys. 56, 232 (2006).
[34] Y. B. Dai and S. L. Zhu, Phys. Rev. D 58, 074009 (1998).
[35] K. A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C 38, 090001 (2014).