INTRODUCTION

Adeno-associated virus (AAV) has proven to be successful for gene therapy in a number of animal models of disease and is currently being used in human clinical trials for various conditions such as Leber congenital amaurosis, hemophilia, muscular dystrophy, Parkinson’s disease and Alzheimer’s disease. Recombinant Adeno-associated virus (rAAV2) has been used in all the human gene therapy trials for neurological disorders, yet its distribution in the brain is discrete. The development of methods to increase vector titer and the characterization of novel serotypes has helped to significantly increase transduction efficiency of rAAV in various tissues. A number of agents have been used to increase the transduction efficiency of several serotypes, including heparin and mannitol, or combinations of systemic mannitol and convection-enhanced delivery. Magnetic resonance imaging (MRI) contrast agents such as gadoteridol (Gd) have been used to track the distribution of therapeutic drugs in real time, allowing visualization of the volume of spread across various structures. Studies have shown that agents like Gd may be used to monitor the distribution of rAAV2 in primate models of gene therapy. However, other studies have shown that Gd-monitored delivery of rAAV1 more accurately predicts distribution of this viral vector than monitored co-injection with rAAV2. These disparities may arise because distinct AAV serotypes interact differently with contrast agents (Osting et al., submitted).

We have previously shown that Gd significantly increases the transduction efficiency of rAAV5-GFP for green fluorescent protein (rAAV5-GFP) in the rat striatum (Osting et al., submitted). Here we wanted to determine whether rAAV1-GFP and rAAV5-GFP transduction efficiency in the hippocampus could also be enhanced by co-infusion with Gd. Studies have shown that infusion with Gd can have particularly adverse effects in patients with pre-existing kidney disease. On the other hand, Gd has been used in animal models and human studies without signs of toxicity. To discount any toxic effects of gadolinium infusion in the hippocampus, we looked at any putative cytotoxic effects of Gd/AAV co-infusion on performance on the Morris water maze (MWM) and object location memory (OLM) tasks. Here we show that rAAV1 but not rAAV5 transduction efficiency is significantly increased by co-infusion with Gd and that Gd has no deleterious effects on behavior.

RESULTS

Gd enhances rAAV1-GFP but not rAAV5-GFP distribution in the rat hippocampus

Rats were injected unilaterally with either rAAV1-GFP or rAAV5-GFP that was co-infused with Gd or Lactated Ringer’s solution as a control. Quantification of GFP-positive immunostaining was analyzed using densitometry analysis of each hippocampal hemisphere. Co-infusion of rAAV1-GFP with Gd (Gd/AAV1) significantly increased the distribution of GFP in the hippocampus relative to hemispheres co-injected with Lactated Ringer’s solution (Ringers/AAV1; Figures 1a and b). High-magnification images show a more intense GFP immunoreactivity in the cell bodies in the pyramidal layer than in the axonal and dendritic projections, whereas Gd/AAV1 displays a more diffuse staining in the parenchyma (Figure 1a, top panel insets). Mean optical density (OD) was 1.5-fold higher in Gd/rAAV1 hemispheres compared with animals that had been injected with Ringers/ rAAV1 (Figure 1b; $P = 0.0017$). Similarly, mean area above threshold (AAT) was 2.2-fold higher in the hippocampal...
hemispheres of Gd/rAAV1 relative to Ringers/rAAV1 ($P = 0.002$). Finally, the volume of distribution (Vd) was also significantly higher in the Gd/rAAV1 hemispheres (1.8-fold higher than Ringers/rAAV1; $P < 0.0001$). We also found an increase in the distribution of GFP in the contralateral uninjected hemisphere of Gd/rAAV1 when compared with Ringers/rAAV1 (Figure 1a). We have previously found that both rAAV1 and rAAV5 transduce the contralateral hemisphere due to: (1) anterograde transport of the GFP protein to the uninjected side, (2) retrograde transport of the viral particles to the cell bodies of the contralateral hemisphere. It seems that Gd enhances these two types of transport from the injected hemisphere (Figures 1a and c). Animals injected with Gd/rAAV1 showed a statistically significant increase in OD in the uninjected hemisphere compared with those injected with Ringers/rAAV1 (twofold, $P = 0.045$). A trend towards an increase in the AAT and Vd was also found in Gd/rAAV1 relative to Ringers/rAAV1 non-injected hemispheres (Figure 1c; AAT, $P = 0.08$, Vd, $P = 0.086$). Finally, Gd also resulted in an increase in transduction in the injected cortical hemisphere, likely due to backflow from the infusion site (Figure 1a).

In contrast to the results found with Gd/rAAV1, Gd had no effect on any of the measures of distribution of rAAV5 in the injected hemisphere. (Figures 1a and b; Gd/rAAV5 vs Ringers/rAAV5: OD, $P = 0.42$; AAT, $P = 0.272$ Vd, $P = 0.63$). Even though increased distribution of the transgene was not observed in the presence of Gd, Gd/rAAV5 hippocampi display more diffuse staining of GFP in cell bodies, axons and dendrites when compared with Ringer/rAAV5 (Figure 1a, top and bottom panel insets). No differences were found in the distribution properties of uninjected hemispheres when rAAV5 was co-infused with either Gd or Lactated Ringer’s solution (Figures 1a and b OD, $P = 0.659$; AAT, $P = 0.3270$; Vd, $P = 0.4988$).

Figure 1. Gd increases the transduction efficiency of AAV1 but not AAV5. (a) Representative sections illustrate the rostro-caudal extent of GFP expression in animals injected with rAAV1 (top panels) or AAV5 (bottom panels) co-infused with Lactated Ringer’s solution (+ ringsers) or gadoteridol (+ Gd). Insets show magnification of dorsal area CA1. (b) Densitometry analysis of the injected hippocampal hemispheres. (c) Densitometry analysis of the contralateral uninjected hemisphere. Data represent the mean ± s.e.m. (Gd/rAAV1, $n = 3$; ringsers/rAAV1, $n = 3$; Gd/rAAV5, $n = 4$; ringsers/rAAV5, $n = 4$). ***$P < 0.005$, **$P < 0.005$, *$P < 0.05$. Significant indicators above histogram bars indicate comparison to Lactated Ringer’s control. Scale bars = 1 mm.
In conclusion, Gd co-infusion with rAAV1-GFP results in an increase in the distribution of the transgene in the injected hippocampus as well as in the contralateral hemisphere. On the other hand, this contrast agent did not affect the distribution of rAAV5-GFP.

Characterization of cell tropism and tissue health following Gd co-infusion

To determine whether the increased distribution of rAAV1 following Gd co-infusion was due to a change in cell tropism, we performed immunohistochemistry on the tissue from the two experimental groups using antibodies against the neuronal marker NeuN or the astrocytic marker GFAP. Both rAAV1 and rAAV5 have been shown to transduce mainly neurons in the rodent hippocampus. We found that the increased distribution of rAAV1-GFP Gd co-infusion was not due to a change in cell tropism, as most of the cells expressing GFP were also NeuN-immunopositive, whereas no GFP-positive cells were glial fibrillary acidic protein (GFAP)-positive (Figure 2a). Similar results were found with co-infusion of rAAV5 and Gd (data not shown). These results demonstrate no change in tropism in the presence of Gd.

In order to analyze any inflammatory process resulting from Gd and rAAV1 or rAAV5 co-infusion, we looked at markers of cell damage and inflammation. No obvious morphological changes or tissue damage on the injected hippocampi were observed with Nissl staining. Only the area near the injection track showed signs of inflammation.}

Figure 2. Gd co-infusion with rAAV1 does not result in changes in tropism or adverse effects on tissue health. (a) Labeling with NeuN and GFAP reveals that Gd co-infusion does not alter rAAV1 neuronal tropism. Scale bar = 25 μm. Nissl staining indicates there is no obvious cell damage when Gd is co-infused with either rAAV1 (b) or rAAV5 (c) (top panels). GFAP immunostaining shows no inflammation outside the needle track (middle panel). Only co-infusion of Gd with rAAV5 resulted in an increase Iba1 immunoreactivity, indicating microglial activation in the injected hippocampi (c, bottom panel). Scale bars = 1 mm. (insets show magnification of the area around the needle track).
of tissue damage, which was independent of treatment, was observed (Figure 2b, top panel). Astrocytosis was examined by immunohistochemistry of GFAP. We found no widespread inflammation in Gd/rAAV1- or Gd/rAAV5-injected hemispheres relative to Ringers/rAAV1- or Ringers/rAAV5-injected hemispheres (Figure 2b, middle panel). Again, some minor astrocytosis was present in the area around the needle track (which is common with intraparenchymal injections). Reactive microgliosis, determined by Ibal immunoreactivity, was present only in the hippocampal hemisphere of animals injected with Gd/rAAV5 (Figure 2b, bottom panel). This apparent increase in Iba1 staining in Gd/rAAV5 hippocampi is not significantly different than Ringer/ rAAV5 hippocampi in any of the measures of distribution of Iba1 in the injected hemisphere. (Gd/rAAV5 vs Ringers/rAAV5: OD, \(P = 0.322\); AAT, \(P = 0.691\); Vd, \(P = 0.7157\)).

Co-infusion of rAAV1-GFP and Gd does not affect behavior

In order to show that Gd can be used as a tool to safely enhance rAAV1 transduction efficiency in functional studies, we examined whether Gd/rAAV1 had any effects on hippocampal memory. We have previously shown that rAAV-GFP hippocampal transduction does not adversely have an impact on spatial memory in rodents. Animals were injected bilaterally with either rAAV1-GFP co-infused with Gd or Lactated Ringer’s as a control. Performance on the MWM was unaffected by co-infusion with Gd. Both experimental groups learned to find the location of the hidden platform at the same rate; the average distance traveled in hidden platform trials was not significantly different between groups (Figure 3a); \(P = 0.96\). In addition, there was no difference in the percent distance spent in the target quadrant between groups during the probe trial (Figure 3b); \(P = 0.91\). Performance in the OLM task was also unchanged between groups, Ringers/rAAV1-injected animals spending 43% and Gd/rAAV1 groups spending 46% of investigation time on the object in the novel location (Figure 3c), \(P = 0.75\). In conclusion, no statistically significant differences were found between groups injected with Gd/rAAV1-GFP or Ringers/rAAV1-GFP in two independent tests of spatial memory. These results indicate that this contrast agent can be used to increase distribution of the viral vector in the rat hippocampus with no deleterious effects on hippocampal function.

DISCUSSION

Results from our studies indicate that Gd co-infusion significantly enhances the distribution of rAAV1 within the rat hippocampus. Furthermore, Gd enhanced the transduction of the viral vector to the contralateral, uninjected hemisphere, resulting in a more diffuse pattern of expression than in animals injected with rAAV1-GFP and Ringer’s solution. On the other hand, the area and volume of distribution of rAAV5 was not affected by Gd. This is in contrast with previous studies from our laboratory demonstrating a significant enhancement of transduction of rAAV5-GFP within the rat striatum following Gd co-infusion (Oisting et al., submitted). One possible explanation could be that anatomical differences between the hippocampus and the striatum could have an impact on the distribution of the viral vector in the presence of the contrast agent. Together, these discrepancies suggest that conditions for co-infusing contrast agents and distinct AAV serotypes need to be determined empirically for different brain regions.

In order to use this co-infusion method as a tool to enhance viral vector distribution and transgene expression, one needs to demonstrate that Gd does not have any deleterious effects on the functional outcome to be examined. Therefore, we also examined any putative effects of the contrast agent in two tests of hippocampal behavior. Results from MWM and OLM tests indicate that co-infusion of rAAV1 with Gd did not cause spatial memory impairments. Therefore, co-infusion of this particular rAAV serotype with Gd presents a safe way to increase transduction efficiency of rAAV1 within the rat hippocampus to be used in functional studies. One pitfall of this approach is that the viral vector also distributes outside the hippocampus proper resulting in transgene expression outside of the region of interest. Regardless, this tool can be used when larger areas of transgene expression are necessary. In many cases, intracerebral delivery of viral vectors requires injection in multiple sites. To circumvent this need, our group and others have developed methods to optimize rAAV distribution in the central nervous system. Namely, co-infusion of heparin with rAAV2, co-infusion of rAAV with...
maninotil via intraperitoneal or systemic route,\(^8,9,19\) the use of convection-enhanced delivery,\(^20,21\) or a combination of maninotil and convection-enhanced delivery.\(^10\) Here we propose co-infusion of rAAV1 with Gd as a safe alternative method to enable targeting of larger brain regions with fewer injection sites and thus reduce surgery time, an important variable to consider especially when working with aged or fragile animal models of neurological disorders.\(^22–24\)

MATERIALS AND METHODS

Animals

Sprague–Dawley rats (3–5 months) were housed in groups of 2–3 under 12:12 light/dark cycle and given access to food and water *ad libitum*. The protocols were approved by the University of Wisconsin-Madison Animal care and use advisory committee in accordance with guidelines established by the US Public Health Policy on Human care and use of laboratory animals.

Viral vector production

AAV-expressing GFP construct has been described.\(^5\) AAV1 and AAV5 viral vectors were produced and purified as previously described.\(^6\) Viral tilters were determined by real-time qPCR (AAV1-GFP = 5.9 × 10\(^7\) vector genomes per ml (vg ml\(^{-1}\)); AAV5-GFP = 4.8 × 10\(^7\) vg ml\(^{-1}\)). Gd (Probrance: Brain Diagnostics, Princeton, NJ, USA) was diluted to the working concentration in Lactated Ringer’s solution: (mg/l ± 1) sodium 130, potassium 4, calcium 2.7, chloride 109, lactate 28 and osmolarity 273 mOsmol l\(^{-1}\). pH 6.5 (Baxter Healthcare Corporation, Deerfield, IL, USA).

Intracerebral injections

All surgical procedures were performed as previously described.\(^22\) Unilateral or bilateral injections were made into the dorsal hippocampus using a stereotaxic frame (Kopf Instruments Tujunga, CA, USA). For unilateral injections, the right hemisphere received a mixture of 1 μl Gd and 1 μl viral vector to a final 1 μm concentration of Gd. Control animals received 1 μl viral vector and 1 μl Lactated Ringer’s solution. Animals were infused a total of 2 μl at a rate of 0.5 μl min\(^{-1}\) with an infusion pump controlling the plunger on the Hamilton syringe, precisely regulating the rate of injection. The needle was left in place for 1 min, then lifted 2 mm and left for another 4 min before withdrawal from the brain. Coordinates for hippocampus were AP = −3.5, Lat = ±2.5, DV = −2.6 from dura.

Immunohistochemistry

Three weeks after unilateral vector injection, or right after finishing behavioral experiments in bilaterally injected animals, subjects were anesthetized with Butabarbitala (D 150 mg kg\(^{-1}\) intraperitoneally, with supplements if necessary) and perfused through the aorta with 4% formaldehyde (Sigma, St Louis, MO, USA) in 0.1 M phosphate buffer. Cryoprotection took place in phosphate buffer with 2% dimethylsulfoxide and a graded series of glycerol concentrations. The hemispheres were frozen with dry ice and sectioned in the coronal plane at 45 μm thickness and sections were transferred to an ethylene glycol-based storage solution and placed in the −20°C freezer until ready to use. All processing was at room temperature unless otherwise noted.

GFP and Iba1 immunohistochemistry. All solutions were prepared with a buffer consisting of phosphate-buffered saline (PBS) with 2% bovine serum albumin (Calbiochem, La Jolla, CA, USA) and 0.1% saponin for GFP or 0.3% Triton for Iba1. All sections were washed, blocked in buffer with 20% normal serum for 45 min, incubated overnight in primary antisera (GFP from Vector Laboratories, Burlingame, CA, USA) for 3 h, followed by 1 h in avidin–biotin complex (Standard Elite kit; Vector Laboratories). Final visualization was with 0.04% 3,3′-diaminobenzidine (in the form of tablets; Sigma, St Louis, MO, USA) and 0.01% H\(_2\)O\(_2\) in phosphate buffer, pH 7.4. Sections were mounted on subbed slides, dehydrated through graded concentrations of ethanol, cleared with Histo-Clear, rehydrated, soaked in cresyl violet stain, dehydrated once again through graded concentrations of ethanol, cleared with Histo-Clear and coverslipped with Eukitt.

GFAP immunocytochemistry: all solutions were prepared with a buffer consisting of PBS with 2% normal serum, 2% lysine and 0.2% Triton (blocking solution). Sections were washed, incubated overnight in blocking solution at 4°C. Next day, sections were incubated overnight at 4°C in primary antisera (GFAP from DakoCytomation, Glostrup, Denmark, 1:5000). Following washes, the sections were incubated in 1:200 biotinylated secondary IgG for 2 h, followed by 1 h in avidin–bion complex (Standard Elite kit; Vector Laboratories).

Nissl Staining: sections were mounted on subbed slides, dehydrated through graded concentrations of ethanol, cleared with Histo-Clear, rehydrated, soaked in cresyl violet stain, dehydrated once again through graded concentrations of ethanol, cleared with Histo-Clear and coverslipped with Eukitt.

Quantification of striatal GFP immunoreactivity

Densitometry analysis was carried out using NIH ImageJ software.\(^26\) Images from 10–12 (30 μm) coronal sections per rat 0.56 mm apart were captured using a Nikon Nikon E600W microscope equipped with a digital camera (Q Imaging Retiga 2000R; Nikon Instruments, Melville, NY, USA). The threshold for each image was determined using the MaxEntrop function and the number of particles with an area between 5 and 75 square pixels were recorded. For OD, ImageJ was calibrated using a step tablet, gray-scale values were converted to OD units using the Rodbard function and the area in pixels above a threshold was recorded. Statistical analysis was performed using the GraphPad Prism5 software (GraphPad Software, Inc.; La Jolla, CA, USA) and is shown as the mean ± s.e.m.

Fluorescent immunohistochimistry

All solutions for GFAP fluorescent immunocytochemistry were prepared with a buffer consisting of PBS with 2% normal serum, 0.2% Triton X-100 and 2% lysine. Sections were washed, incubated overnight in buffer at 4°C, incubated overnight in GFAP (DakoCytomation, 1:10000) primary antisera in buffer, washed, incubated in 1:1000 fluorescent secondary (Alexa Fluor 568 goat anti-rabbit IgG; Molecular Probes, Life Sciences, Grand Island, NY, USA) for 3.5 h and rinsed in PBS. Sections were mounted on subbed slides and coverslipped with ProLong Gold antifade reagent (Molecular Probes). All solutions for NeuN fluorescent immunocytochemistry were prepared with a buffer consisting of PBS with 0.1% saponin and 2% bovine serum albumin, blocked in the same buffer with 20% normal goat serum for 45 min, incubated overnight in primary antisera to NeuN (EMD Millipore, Billerica, MA, USA), 1:1000 with 0.1% normal goat serum, washed in buffer, incubated for 2 h in 1:500 Alexa Fluor 594 goat anti-mouse IgG (Molecular Probes) in PBS with 0.1% saponin and 2% bovine serum albumin, rinsed with PBS and mounted with ProLong Gold antifade reagent.

Fluorescent microscopic imaging was performed with a digital camera (Q Imaging Retiga 2000R; Nikon Instruments) on a Nikon Nikon E600W microscope equipped with a xenon short arc lamp. A standard fluorescein isothiocyanate filter cube (fluorescein isothiocyanate; EX 465–495 nm; DM 505 nm; BA 515–555 nm) and tetramethylrhodamine isothiocyanate filter cube (tetramethylrhodamine isothiocyanate; EX 528–553 nm; DM 565 nm; BA 660–700 nm) fluorescent images were acquired at an initial 36-bit tone scale and saved as 8-bit files. Images were prepared for reproduction in Adobe Photoshop CS 5 (Mountain View, CA, USA). Adjustments in the tone scale, contrast, and hue and subsequent sharpening with the unsharp mask algorithm were applied to the entire image.

Behavior

Three weeks post injection, rats were subjected to the OLM task. The protocol has previously been described in detail.\(^27\) Briefly, rats were trained on the locations of two identical objects for 6 min. Testing of OLM occurred 24 h after training. For testing, one of the objects was moved to a different location and spatial memory was tested by comparing the time spent investigating the object in the novel location compared with the object in the familiar location. All trials on both the training and testing days were videotaped using Videotrack software by ViewPoint Life Sciences (Montreal, Canada). Total amount of time spent exploring the novel and familiar objects was recorded for each animal. The relative exploration time (T, in seconds) was recorded for each object and expressed as a novelty score: \(T_{\text{novel}} \times (T_{\text{novel}} + T_{\text{initial}}) \times 100\). All handling and scoring of rats was done by an experimenter blind to the animal’s treatment.

The MWM task was performed two days after the OLM task. The protocol has been described in detail\(^27\) with modifications. Animals were trained for one day in the visible version of the MWM to habituate the animals to the
task and to test for swimming ability and visual acuity. This training consisted of four trials of 90 s each. On day two, the visible platform was replaced by a submerged, hidden one. Animals were trained for 5 days to find the hidden platform using spatial cues around the room. Each day consisted of four trials. The distance to find the platform was recorded as a measure of learning ability. At the end of last trial of day 5 (trial 20), the platform was removed and a probe trial was conducted to determine the total time and distance the animals spent in the quadrant that previously contained the platform as a test for memory.

All statistical analyses were performed using Prism 5 (Graphpad Software). Two-tailed, unpaired t-tests were performed to determine statistical significance in the OLM task. MWM acquisition data was analyzed using repeated measures analysis of variance. For analysis of the probe trial percent distance in the platform quadrant, one way analysis of variance was used. Figures show means ± s.e.m.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We would like to thank Jordan Wackett for technical assistance. This research was supported by funds from Kinetics Foundation and the Department of Neurology, University of Wisconsin-Madison to CB. RH was supported by the University of Wisconsin Neuroscience Training Program Grant NIH/NIGMS T32GM007507 and an NSF Graduate Research Fellowship. LPS was supported by Universidad Nacional Autónoma de Mexico (UNAM), Doctorado en Ciencias Biomedicas and program UNAM CONACYT, Becas Mixtas No. 208245 scholarship program. We would also like to acknowledge the rat subjects who participated in this study.

REFERENCES
1 Bartel MA, Weinstein JR, Schaffer DV. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Therapy 2012; 19: 694–700.
2 Mandel R, Burger C. Clinical trials in neurological disorders using AAV vectors: promises and challenges. Curr Op Mol Therapeutics 2004; 6: 482–490.
3 McCown TJ, Xiao X, Li J, Breeze GR, Samulski RJ. Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 1996; 713: 99–107.
4 Sanioglu S, Monick MM, Luleci G, Hunninghake GW, Engellhardt JF. Rate limiting steps of AAV transduction and implications for human gene therapy. Curr Gene Ther 2001; 1: 137–147.
5 Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Faites Jr. TJ et al. Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 2002; 28: 158–167.
6 Gao G, Vandenberghhe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther 2005; 5: 285–297.
7 Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intra-vascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2008; 27: 59–65.
8 Ghodsi A, Stein C, Derksen T, Martins L, Anderson RD, Davidson BL. Systemic hyperosmolality improves beta-glucuronidase distribution and pathology in murine MPS VII brain following intraventricular gene transfer. Exp Neurol 1999; 160: 109–116.
9 Burger C, Nguyen FN, Deng J, Mandel RJ. Systemic mannitol-induced hyperosmolality amplifies rAAV2-mediated striatal transduction to a greater extent than local co-infusion. Mol Ther 2005; 11: 327–331.
10 Carty N, Lee D, Dickey C, Ceballos-Diaz C, Jansen-West K, Golde TE et al. Convection-enhanced delivery and systemic mannitol increase gene product distribution of AAV vectors 5, 8, and 9 and increase gene product in the adult mouse brain. J Neurosci Methods 2010; 194: 144–153.
11 Su X, Kells AP, Salegio EA, Richardson RM, Hadaczek P, Beyer J et al. Real-time MR imaging with gadotodotrelix predicts distribution of transgenes after convection-enhanced delivery of AAV2 vectors. Mol Ther 2010; 18: 1490–1495.
12 Fiandaca MS, Varenika V, Eberling J, McKough T, Bringas J, Pivrotto P et al. Real-time MR imaging of adeno-associated viral vector delivery to the primate brain. Neuroimage 2009; 47(Suppl 2): T27–T35.
13 Abujudeh HH, Kaeuwli R, Kagan A, Chibnik LB, Nazarian RM, High WA et al. Nephrogenic systemic fibrosis after gadopentetate dimeglumine exposure: case series of 36 patients. Radiology 2009; 253: 81–89.
14 Ding D, Kanaly CW, Cumnings TJ, Herndon 2nd JE, Rashovan R, Sampson JH. Long-term safety of combined intracerebral delivery of free gadolinium and targeted chemotherapeutic agent PRX321. Neurol Res 2010; 32: 810–815.
15 Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 2004; 10: 302–317.
16 Gerstein H, O’Riordan K, Oting S, Schwartz M, Burger C. Rescue of synaptic plasticity and spatial learning deficits in the hippocampus of Homer1 knockout mice by recombiant Adeno-associated viral gene delivery of Homer1c. Neurobiol Learn Mem 2012; 97: 17–29.
17 Astary GW, Kantorovich S, Carney PR, Mareci TH, Sattinorinanont M. Regional convection-enhanced delivery of gadolinium-labeled albumin in the rat hippocampus in vivo. J Neurosci Methods 2010; 187: 129–137.
18 Nguyen JB, Sanchez-Pernaute R, Cunningham J, Bankiewicz KS. Convection-enhanced delivery of AAV2-2 combined with heparin increases TK gene transfer in the rat brain. Neuroreport 2001; 12: 1961–1964.
19 Mastakov MY, Baer K, Xu R, Fitzsimons H, During MJ. Combined injection of rAAV with mannitol enhances gene expression in the rat brain. Mol Ther 2001; 3: 225–232.
20 Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivrotto P, Bringas J et al. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 2000; 164: 2–14.
21 Hadaczek P, Kohutnicka M, Krauze MT, Bringas J, Pivrotto P, Cunningham J et al. Convection-enhanced delivery of adeno-associated virus type 2 (AAV2) into the striatum and transport of AAV2 within monkey brain. Hum Gene Ther 2006; 17: 291–302.
22 Gerstein H, Lindstrom MJ, Burger C. Gene delivery of Homer1c rescues spatial learning in a rodent model of cognitive aging. Neurobiol Aging 2013; 34: 1963–1970.
23 Brown RH. A transgenic-mouse model of amyotrophic lateral sclerosis. N Engl J Med 1994; 331: 1091–1092.
24 Matalon R, Rady PL, Platt KA, Skinner HB, Quast MJ, Campbell GA et al. Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system. J Gene Med 2000; 2: 165–175.
25 Gerstein H, Hullinger R, Lindstrom MJ, Burger C. A behavioral paradigm to evaluate hippocampal performance in aged rodents for pharmacological and genetic target validation. PLoS One 2013; 8: e62360.
26 Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 2012; 9: 671–675.
27 Burger C, Cecilia Lopez M, Ferrer JA, Baker HV, Muzychka N, Mandel RJ. Changes in transcription within the CA1 field of the hippocampus are associated with age-related spatial learning impairments. Neurobiol Learn Mem 2007; 87: 21–41.