Proteomics-based identification of orchid-associated bacteria colonizing the Epipactis albensis, E. helleborine and E. purpureata (Orchidaceae, Neottieae)

Anna Jakubska-Busse a,⇑, Anna Kędziora a, Gabriela Cieniuch b, Agnieszka Korzeniowska-Kowal c, Gabriela Bugla-Płoskońska b

a University of Wroclaw, Faculty of Biological Sciences, Department of Botany, 50-328 Wroclaw, Poland
b University of Wroclaw, Faculty of Biological Sciences, Department of Microbiology, 51-148 Wroclaw, Poland
c Polish Collection of Microorganisms (PCM), Department of Immunology of Infectious Diseases, Hirsfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland

ABSTRACT

Using proteomics-based identification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), we conducted the first analysis of the composition of endophytic bacteria isolated from different parts of selected Epipactis species, i.e. the buds, the inflorescences and the central part of the shoots, as well as the rhizomes. We identified aerobic and anaerobic bacteria, including such taxa as Bacillus spp., Clostridium spp., Pseudomonas spp. and Stenotrophomonas spp., which may be considered as promoting plant growth. Because most of the indicated bacteria genera belong to spore-producing taxa (spores allow bacterial symbionts to survive adverse conditions), we suggest that these bacteria species contribute to the adaptation of orchids to the environment. We found clear differences in the microbiome between investigated closely related taxa, i.e., Epipactis albensis, E. helleborine, E. purpurata and E. purpurata f. chlorophylla. Some of the analysed orchid species, i.e. E. albensis and E. purpurata co-occur in habitats, and their bacterial microbiomes differ from each other.

1. Introduction

The complex co-associations of plants with endophytic organisms, including bacteria, fungi, protists, nematodes and viruses have important roles in health of the plant, confer advantages including growth promotion, nutrient uptake, stress tolerance and resistance to pathogens (Trivedi et al., 2020). The concept that plants and the associated microbiota form a 'holobiont' has become popular and discussed (Vandenkoonhuyse et al., 2015). It should be mentioned that, the associations of microbiota with their host plants are varied and complex (Tadych et al., 2009). General structure of the bacterial and fungal communities depends on the plant compartment, environment, geographic location and host. The plant-associated microbiome is dynamic during lifecycle of the plant (Trivedi et al., 2020). Bacteria probably have a potential use/role as plant growth promoters, especially in acclimatizing seedlings obtained by micropropagation as well as nutrient uptake and pathogen resistance (Azizoglu, 2019; Dias et al., 2009; Trivedi et al., 2020). Beneficial microbiome protects the plant against pathogens by the production of antibiotics, lytic enzymes, volatiles and siderophores and can produce a range of enzymes that can detoxify reactive oxygen species (Vandenkoonhuyse et al., 2015). Moreover, plant-associated bacteria usually remain resistant to bacteriocines, so they might be a stable component of bacteria-plant symbiosis (Lee et al. 2016; Flores-Treviño, 2004; Liu et al., 2020). Edaphotic bacteria and fungi, mainly yeast form a powerful consortium based on strong networks of coexistence and dependence (Villarreal-Soto et al., 2018).

The composition and role of orchid-associated bacteria (OAB) colonizing the underground tissues of terrestrial European orchids is relatively poorly understood. Tropical orchids have been scientif-
2. Material and methods

2.1. Plant materials

Plants belonging to three ecologically diverging species of the mixotrophic *Epipactis* genus, i.e., *Epipactis hellemboine* (L.) Crantz, *E. albensis* Nováková et Rydlo, *E. purpurata* Sm. and rare innerspecific taxon *E. purpurata* Sm. f. chlorophylla (Seeland) P. Delforge were analyzed (Fig. 1). All the taxa

were identified using their morphological character on the basis of the literature data, e.g. Baumann et al., 2006; Delforge 2006; Jakubska-Busse et al., 2017; Žołubak et al., 2017. Plant samples were collected from three plant parts, i.e. closed flower buds, stem, rhizome fragments and adventitious roots. Plant material was collected in the summer of 2020, from natural populations of *Epipactis* purpurata, *E. purpurata* f. chlorophylla and *E. albensis* growing in modified Central European oak-hornbeam forest, Gallo-Carpinetum in the Nieszczycy (SW Poland), as well as *Epipactis hellemboine* (L.) Crantz from Trestno (SW Poland, Wroclaw County) growing in the regenerative forest and bush communities referring to the riparian habitat or riparian woodland classified into the Sal-icetea purpureae class. GPS (Global Positioning System) coordinates are available from the authors upon request. All species of the genus *Epipactis* are legally protected in Poland, and only a small number of genets - genetic individuals (9) have been authorized to conduct research in this project. In the studied population, we examined 30 ramets classified to different *Epipactis* species. Material sampling was done with permission no. WPN.6400.24.2020. MH from the Regional Directors for Environmental Protection.

2.2. Isolation of endophytic bacteria

The bacterial microflora was isolated in aerobic conditions using the following media: Nutrient Broth (BioMaxima, Lublin, Poland) and Enriched LAB-AGAR (BioMaxima, Lublin, Poland) and in anaerobic conditions using the following media: Schaedler Broth (BioMaxima, Lublin, Poland) and Schaedler Anaerobe LAB-AGAR™ + 5% SB (Biomerieux, France). Incubation in aerobic conditions of the material was carried out at 30°C for 24 h, while incubation in anaerobic conditions was carried out at 30°C for 72 h. The flowers, leaves, stems, rhizomes and shoots were cleaned by rinsing in 70% ethanol and then rinsing twice with milliQ water. The plant material after crushing was introduced into 5 ml of Nutrient Broth medium and 10 ml of Schaedler Broth medium and left for incubation. Swabs collected from inside of the orchids flower orchids were introduced into liquid media and incubated. The soil was suspended in 20 ml of sterile milliQ water and vortexed until a homogeneous solution was obtained. Then 1 ml of the soil solution was introduced into the liquid medium of Nutrient Broth and Schaedler broth and incubated. After incubation, the material was plated on solid Enriched LAB-AGAR (30°C/24 h) and Schaedler Anaerobe LAB-AGAR™ + 5% SB (30°C/72 h) (Faria et al., 2019).

2.3. Identification of bacterial isolates

All obtained bacterial isolates were analyzed using MALDI (Matrix-Assisted Laser Desorption Ionization Time-of-Flight) Biotype method as described before (Książczyk, et al., 2016). Briefly, ribosomal proteins were extracted using 70% formic acid and acetone titrate method. Next, each sample was spotted on a 384 ground steel MALDI target plate. After drying, the applied sample, an equal volume of matrix (9-cyan-4-hydroxy-cinnamic acid (HCCA)) was spotted onto the spot. Then, the plate was left at room temperature for about 15 min to dry. Mass spectra of the extracted proteins was measured using the mass spectrometer MALDI-TOF ultrafleXtreme (Bruker Daltonics GmbH, Bremen, Germany). To identify bacterial mass spectra, Biotype 3.1 software and database containing 6904 entries were used (Bruker Daltonics GmbH, Bremen, Germany). Based on ‘Bruker Daltonik MALDI Biotype Classification Results’ protocol the following score criteria were applied to identification of bacteria: 2.300–3.000 - highly species identification, 2.000–2.299 - probable species identification, 1.700–1.999 - probable genus identification, 0.000–1.699 - not reliable identification.

3. Results

3.1. Orchid associated bacteria

The used methods of orchid-associated bacteria (OAB) under aerobic and anaerobic conditions allowed us to obtain a total of 192 isolates. The MALDI Biotype method assigned 103 isolates to species level. Analysis of the orchid associated microorganisms showed the presence of 20 different bacterial species within *Epipactis albensis*, *Epipactis hellemboine*, *Epipactis purpurata* and *Epipactis purpurata* f. chlorophylla. The list of general identified...
bacteria from *Epipactis* species is presented in Table 1. Because the endophytic bacteria were isolated from different parts of the orchid (ground and underground), a summary of the obtained data is presented in detail in Table 2. Percentage representations of each bacterial species contributing to the total isolates from every of *Epipactis* are summarized in Fig. 2. Moreover roots in some single genets were found - *Epipactis helleborine* ramet 3 and *Epipactis purpurata* f. *chlorophylla* and bacteria strains were isolated with differences between both individuals. In case of *Epipactis helleborine* ramet 3 the following bacteria strains were indicated: *Buttiauxella agrestis*, *Pseudomonas putida* and *Raoultella ornithinolytica*, while *Bacillus mycoides* and *Bacillus cereus* were selected from *Epipactis purpurata* f. *chlorophylla*.

Among the identified bacterial taxa in every tested orchid species, the following taxa were identified: *Bacillus mycoides*, *B. weihenstephanensis* and *Lysinibacillus fusiformis*. We found that the studied specimens of two related taxa, i.e. *Epipactis purpurata* and intraspecific taxon *E. purpurata* f. *chlorophylla*, despite their very close taxonomic relationship, differ in the composition of endophytic bacteria. In the case of the tested *Epipactis* spp., dominating groups of endophytic bacteria usually belong to spore forming genus such as *Bacillus* and *Clostridium*, and non-spore forming

Table 1

Isolated bacteria species	*Epipactis albensis*	*Epipactis helleborine*	*Epipactis purpurata*	*Epipactis purpurata* f. *chlorophylla*
Bacillus sp.	+	+	+	+
Bacillus cereus	+	+	+	+
Bacillus mycoides	+	+	+	+
Bacillus thuringiensis	+	+	+	+
Bacillus weihenstephanensis	+	+	+	+
Buttiauxella agrestis	–	+	–	–
Clostridium baratii	+	+	+	+
Clostridium bifermantans	–	+	–	–
Terrisporobacter sp.	+	+	–	–
Clostridium sp.	+	+	+	+
Clostridium perfringens	–	+	+	+
Clostridium sardiniense	–	+	–	–
Clostridium sordelli	–	+	–	–
Erwinia billingiae	–	–	–	+
Ewingella americana	–	–	–	*
Lysinibacillus sp.	+	+	+	+
Lysinibacillus fusiformis	+	+	+	+
Lysinibacillus sphæricus	–	+	–	–
Paenibacillus sp.	–	+	–	–
Paenibacillus amylolyticus	+	+	+	+
Pantoea sp.	–	–	–	+
Pantoea agglomerans	+	–	–	–
Pseudomonas sp.	–	+	–	–
Pseudomonas chlororaphis*	–	+	–	–
Pseudomonas extremorientalis*	–	+	–	–
Pseudomonas fluorescens group*	–	+	–	–
Pseudomonas grimonii*	–	–	–	+
Raoultella ornithinolytica	–	+	–	–
Rhodococcus sp.	+	–	–	–
Rhodococcus erythropolis*	+	–	–	–
Serratia liquefaciens	+	–	–	–
Solbacillus sp.	–	–	–	+
Stenotrofonomas sp.	+	–	–	–
Viridibacillus sp.	–	+	–	–
Table 2
Diversity of orchid-associated bacteria (OAB) isolated from *Epipactis albensis*, *Epipactis helleborine* and *Epipactis purpurata* (n/a – not applicable, lacs of the source, X – no isolates founded).

Source	Epipactis albensis	Epipactis helleborine	Epipactis purpurata	Epipactis purpurata f. chlorophylla	
Flower buds	Rhodococcus sp.	Bacillus mycoides	X	X	Bacillus sp.
Closed flowers	Bacillus mycoides	Bacillus mycoides	Bacillus sp.	Bacillus cereus	Bacillus sp.
Inflorescence	Bacillus sp.	Bacillus weihenstephanensis	Bacillus sp.	Bacillus cereus	Bacillus weihenstephanensis
Middle part of the shoot (at the height of the leaves)	Bacillus weihenstephanensis	Bacillus mycoides	Bacillus sp.	Bacillus cereus	Bacillus cereus
Leaves	Bacillus mycoides	Bacillus weihenstephanensis	Bacillus sp.	Bacillus mycoides	Bacillus cereus
Rhizome	Bacillus cereus	Bacillus weihenstephanensis	Bacillus sp.	Bacillus cereus	Bacillus cereus

A. Jakubska-Busse, A. Ke˛dziora, G. Cieniuch et al. Saudi Journal of Biological Sciences 28 (2021) 4029–4038
Pseudomonas (Table 3). All of the mentioned genera have good adaptability to the different, variable and extreme environmental conditions. This correlates with the high tolerance of environmental conditions among the tested orchids and may explain the varieties of strains within the *Epipactis* species. It seems there is no bacterial species specificity within the *Epipactis* species. We found some differences in the microbiome between closely related taxa, i.e. *E. purpurata* and *E. purpurata* f. *chlorophylla*. Unfortunately, due to the small number of studied individuals, we treat these results as preliminary. To attempt to explain the significance of bacteria in the biology of the studied *Epipactis* taxa based on the literature data, we analysed the selected biological function of identified bacteria species (Table 3).

We analyzed not only parts of the plant, but also the soil from the close site of the orchid (Table 4). The soil’s microflora of the all studied *Epipactis* spp. contain bacteria belonging to the following genera: Achromobacter, Acinetobacter, Bacillus, Clostridium, Citrobacter, Escherichia, Hafnia, Kluyvera, Lactococcus, Lysinibacillus, Pseudomonas, Raoultella, Serratia and Stenotrophomonas (identified bacteria species divided into each *Epipactis* species was summarized in Table 4. In total, the different bacteria species were endophytes belonging to the following genera: Achromobacter, Acinetobacter, Citrobacter, Escherichia, Hafnia and Raoultella.

A very interesting and unexpected result of our research was the finding that the soil microbiome differs from that of a specific ramets growing in the studied substrate. The co-occurrence of two plant species, i.e. *Epipactis purpurata* and *E. albensis* in close proximity does not confirm their common requirements for the presence of specific bacteria in the soil.

4. Discussion

The orchids classified to *Epipactis* genus are rather difficult to cultivate in vitro (Kunakhonnuruk et al., 2018), probably for this reason, no data is available on the bacterial microbiome and its potential contribution in the biology of these orchids.
Table 3

Selected biological function of orchid-associated bacteria (OAB).

Orchid endophytes taxa	Selected biological function	References
Bacillus sp. (B. cereus, B. licheniformis, B. mycoides, B. pseudomycoides, B. weihenstephanensis)	in general: aerobic Gram-positive bacteria, spore-forming, widely spread, causing: majority of them recognized as plant growth promoting by biofilm formation and antifungal and antipathogenic protection (biocontrol), mammal or other animal pathogen, isolated from soil and growing plants, psychrotolerant, nitrogen fixation activity, biostimulation and biofertilizer features, successful endophyte in many plants, plant growth promoting by suppressing diseases, antagonistic effects on phytopathogen, rhizoid colony morphology	Hollenstein et al., 2017; Nel et al., 2019, Arnesen et al., 2008, Yi et al., 2018, Azzogli et al., 2019
Butiauxella agrestis	Gram-negative, isolated from environment and animal: surface water, soil	Jothikumar et al., 2014
Clostridium sp. (Clostridium baratii, Clostridium bifermentans, Clostridium perfringens, Clostridium sordellii)	in general: anaerobic, Gram-positive, spore forming bacteria, some plant associated, widely spread in the environment, plant associated microbes with different tissue, metabolic activity associated with fermentation, yeast and bacteria interactions favoured the survival of C. bifermentans and E. cloacae at the acidic pH typical of fermented cucumbers	Flythea et al., 2004; Neuhaus et al., 2015, Franco and Pérez-Díaz, 2012; Sarria-Guzmán et al., 2016, Kazanavičiūtė et al., 2018
Terrisporobacter sp.	relatively little-known pathogenic potential, often in conjunction with other pathogens	Cheng et al., 2016
Clostridium sporogenes	gut symbiont, generates aromatic amino acid metabolites such as tryptophan, phenylalanine and tyrosine, ferments amino acids and produces large amounts of acetate and butyrate with smaller amounts of isobutyrate, isovalerate, propionate, valerate, isocaproate, lactate and succinate, some strains produce butanol and ethanol if glucose is provided as an energy source	Flythea et al., 2004
Erwinia billingiae	Gram-negative, usually pathogenic to plants, human infections by Erwinia-like microorganisms are rarely described	Prod’homme et al., 2017
Ewingella americana	Gram-negative, cosmopolitan bacterial pathogen that has been isolated from many hosts, i.e. mushrooms, plant growth promoting, the strains encoded a set of common genes for type secretion, virulence effectors, CAZymes, and toxins required for pathogenicity in all hosts, antibiotic resistance, pigments to suppress or evade host defense responses, ability for adaptation to different environmental conditions, including temperature, oxidation, and nutrients (host adaptation strategies of Ewingella), and they also contribute to the development of effective control strategies	Liu et al., 2020
Lysinibacillus fusiformis	Gram-positive, isolated from factory wastewater and farming soil, can generate endospores, causes bacteremia, tropical ulcers	Sulaiman et al., 2018
Lysinibacillus sphaericus	Gram-positive, insect pathogen, especially for mosquitoes, lethal effects on eggs of the nematode Trichosomoides colubriformis and effects on the grass shrimp Palaemonetes pulgus, produce bacteriocins and toxins against some cockroach and mosquitocidal	Berry, 2012
Paenibacillus amylyticus	Gram-positive, spore forming, aerobic or facultatively anaerobic bacteria, isolated from: soil, fresh and salt water, sewage, sediments, caves, humus, compost, rhizosphere, food, plants, insect larvae and clinical sample, rhizosphere soil of peanut, produce of siderophore, promote the iron absorption of plant in calcareous soil, thus promoting plant growth	Liu et al., 2017; Sáez-Nieto et al., 2017
Pantoea agglomerans	Gram-negative, plant-associated bacteria, occur commonly, usually as symbionts, in insects and other arthropods, occur in plants as an epi- or endophytic symbiont, often as mutualist, cause of diseases in a range of cultivable plants, such as cotton, sweet onion, rice, maize, sorghum, bamboo, walnut, an ornamental plant called Chinese taro (Alcosia cucullata), and a grass called onion couch (Arrhenatherum elatius) and a grass called onion couch (Arrenatherum elatius)	Dutkiewicz et al., 2016
Pseudomonas fluorescens group	Gram-negative, isolated from agricultural soil, well adapted to grow in the rhizosphere, rhizobacterium, biocontrol agent and promote plant growth ability, produce a wide spectrum of bioactive metabolites, i.e. antibiotics, siderophores, volatiles, and growth-promoting substances, responsible for the natural suppressiveness of some soilborne pathogen	David et al., 2018
Pseudomonas sp. (Pseudomonas chlororaphis, Pseudomonas koreensis, Pseudomonas putida)	widely spread, plant growth promoting (responsible for biofertilization, phytostimulation, and biocontrol), associated with soil and plant roots, biological control against phytopathogenic fungi, plant-colonizing and antagonistic activities against soil-borne plant pathogen, presence of different antimicrobial and insecticidal compounds, cyclic peptides, siderophores, bacteriocins, molecules involved in beneficial plant-bacteria interactions, not capable of forming spores, antagonistic to plant pathogenic fungi of the genera Fusarium, Bipolaris and Alternaria, an abundant microbe in the soil close to the roots (rhizosphere) of plants, plant growth promotion in nitrogen uptake, phosphorous solubilization, production of phytohormones, volatile compounds, able to colonize and persist in root environments of different plants, biocontrol agent, induces plant systemic response, protecting the plant host against pathogen infection and proliferation, used in several rhizomedia projects for the elimination of contaminants in soil	Arrebola et al., 2019, Ivanova et al., 2002, Sawada et al., 2019, Gomesa et al., 2017, Sawada et al., 2019, Molina et al., 2020
et al. (2020) reviewed that most of the endophytic bacteria belong to the studied plants, i.e. in shoots, leaves and flower buds. Interestingly, we found these bacteria in various parts of the biology of the genus *Tsavkelova et al., 2001*. These West Australian orchids and the underground roots of *Calanthe vestita* and *Dactylorhiza fuchsii* are often colonized by endophytic bacteria. However, these bacteria do not cause any plant diseases or significant morphological changes (Miliute et al., 2015). This group also has been targeted as a valuable source of bioactive compounds and secondary metabolites important in the plant life cycle. Unfortunately, the biological role are very poorly understood.

Endophytes are defined as an important group of endosymbiotic microorganisms widespread among plants that colonize the intercellular and intracellular spaces of all known plant organs but do not cause any plant diseases or significant morphological changes (Miliute et al., 2015). This group also has been targeted as a valuable source of bioactive compounds and secondary metabolites important in the plant life cycle. Unfortunately, the species composition of endophytes inhabiting orchids and their biological role are very poorly understood.

Some of the bacterial strains, the genera *Bacillus* and *Pseudomonas* we isolated from *Epipactis* orchids, were previously found in the underground roots of *Calanthe vestita* var. *rubro-aculata* (Tsavelkova et al., 2001). These West Australian orchids and the genus *Epipactis* are classified in the same subfamily Epidendroideae. It is difficult to validate what role these bacteria can play in the biology of the *Epipactis* orchids without thorough research, but it is possible that they also support plant growth and/or plant development. Interestingly, we found these bacteria in various parts of the studied plants, i.e. in shoots, leaves and flower buds. Trivedi et al. (2020) reviewed that most of the endophytic bacteria belong to Proteobacteria but in case of our study significant number of isolates belong to Firmicutes (such as *Bacillus* and *Clostridium* genus).

According to the literature, some soil bacteria identified in orchids, such as *Pseudomonas*, may promote the development of vesicular–arbuscular mycorrhizas (Azcon-Aguilar and Barea, 1985; Tsavelkova et al., 2001). It is well known that inoculation of the orchid seeds with an *Azotobacter* and the root-nodule bacterium *Bacillus radicicola* promote their germination (Knudson, 1922; P. *koreensis* (Gomesa et al., 2017; Sawada et al., 2019). This fact supports the hypothesis that they might be an important factor in *Epipactis* species growth promotion.

According to the literature, some soil bacteria identified in orchids, such as *Pseudomonas*, may promote the development of vesicular–arbuscular mycorrhizas (Azcon-Aguilar and Barea, 1985; Tsavelkova et al., 2001). It is well known that inoculation of the orchid seeds with an *Azotobacter* and the root-nodule bacterium *Bacillus radicicola* promote their germination (Knudson, 1922; Tsavelkova et al., 2001). The germination of orchid seeds is also enhanced by their bacterial infection by the genera *Pseudomonas*, *Bacillus*, *Arthrobacter* and *Xanthomonas* (Wilkinson et al., 1989; Wilkinson et al., 1994; Tsavelkova et al., 2001).

Moreover, the plant-associated bacteria species including *Bacillus* species (like *Lysinibacillus fusiformis*, *Bacillus mycoides* and *B. thuringiensis*) or *Pseudomonas* species infect orchids with an increased growth and yield potential. This is especially true for the genus *Bacillus* which are a group of gamma-proteobacteria that can colonize a wide range of plants and are known for their ability to produce various bioactive compounds, including antibiotics, carboxenol, and plant growth-promoting substances.

Table 3 (continued)

Orchid endophytes taxa	Selected biological function	References
Rhodococcus erythropolis	Gram-positive, isolated from seawater, alpine soil or coastal sediments from the Arctic to the Antarctic, biocontrol agent isolated from potato; inhibit bacterial pathogen such as *A. tumefaciens*, *Ralstonia solanacearum*, *Pseudomonas syringae* and *Erwinia amylovora*, causes bloodstream infection in humans	Baba et al., 2009; Latour et al., 2013
Serratia liquefaciens	Gram-negative, inhibition of the growth of pathogenic bacteria by the production of heliotropin, antifungal properties thanks chitinases enzyme production, plant growth promoting bacteria	Kalbe et al., 1996; Cieniuch et al., 2019
Solbacillus sp.	Gram-positive, round endospore-forming bacterium, isolated from a forest soil near Braunschweig, Lower Saxony, Germany, a spore surface showed a cauliflower-like fine structure, contains lysine in its cell wall, plant protective bacteria	Rheims et al., 1999; Lee et al., 2020
Stenotrofomonas sp.	Gram-negative, responsible for nosocomial infections in immunocompromised patients, high drug resistance bacteria, virulence factors of *S. maltophilia* include extracellular enzymes, lipopolysaccharides, fimbriae, adhesins, flagella, and biofilm	Flores-Treviño et al., 2004; Sesatty and Garza-González, 2019

Table 4

Orchid-associated microbiome isolated from soil, presented in selected examples.

Epipactis albensis	Epipactis helleborine	Epipactis purpurata	Epipactis purpurata f. chlorophylla				
Ramet 1	Ramet 2	Ramet 3	Ramet 1	Ramet 2	Ramet 3	Ramet 4	Bacillus sp.
Bacillus mycoides	Acinetobacter sp.	*Bacillus mycoides*	Raoultella planticola	*Pseudomonas koreensis*	Buttiauxella sp.	*Lysinibacillus fusiformis*	*Lysinibacillus* sp.
Lactococcus sp.	*Bacillus sp.*	*Achromobacter xylosoxidans*	*Bacillus cereus*	*Clostridium sardiniense*	*Acinetobacter sp.*	*Chromobacter piechaudii*	*Bacillus* sp.
Lysinibacillus sp.	*Hafnia alvei*	*Lactococcus lactis*	*Lactobacillus garvieae*	*Escherichia coli*	*Chromobacter sporogenes*	*Escherichia coli*	Citrobacter sp.
Serratia liquefaciens	*Lactococcus lactis*	*Serratia liquefaciens*	*Lactococcus garvieae*	*Escherichia coli*	*Kluyvera cryocrescens*	*Lactococcus lactis*	*Serratia liquefaciens*
Stenotrofomonas maltophilia	*Serrata liquefaciens*	*Pseudomonas sp.*					Serratia liquefaciens

The results of our research, which we treat as preliminary to a further scientific project, turned out to be very interesting for a number of reasons. Firstly, we found that related orchid taxa, often co-occurring in habitats, i.e. *Epipactis albensis*, *E. helleborine*, *E. purpurata* and *E. purpurata* f. *chlorophylla*, differ in their microbiomes. These findings are surprisingly different from the results of our previous work on mycological evaluation of *Epipactis helleborine* and *E. purpurata* (Ogórek et al., 2020), where we showed that these two analyzed ecologically diverging *Epipactis* species, although growing in diverse habitats, did not differ significantly in terms of the composition of natural mycobiota (Ogórek et al., 2020).

Endophytes are defined as an important group of endosymbiotic microorganisms widespread among plants that colonize the intercellular and intracellular spaces of all known plant organs but do not cause any plant diseases or significant morphological changes (Miliute et al., 2015). This group also has been targeted as a valuable source of bioactive compounds and secondary metabolites important in the plant life cycle. Unfortunately, the species composition of endophytes inhabiting orchids and their biological role are very poorly understood.
The presence of 35 different bacterial species within the orchid taxa of the studied orchids (Baba et al., 2009; Liu et al., 2010; Latour et al., 2013; David et al., 2018; Yi et al., 2018; Arrebola et al., 2019; Gautham et al., 2019; Liu et al., 2019; Molina et al., 2020). Moreover, Liu et al. (2019) observed that Bacillus amylovorans could inhibit mycelial growth, the germination of the cysts and the swimming of the motile zoospores of Phytophthora sojae.

Epipactis helleborine

The other strains isolated by us belonging to the genus Pseudomonas (such as Pseudomonas orientalis, P. koreensis, P. chlororaphis) have been known for their antagonistic activity, especially in the rhizosphere, but also in the apple flower against sol borne plant pathogens (both fungi and bacteria) (Gomesa et al., 2017; Arrebola et al., 2019; Sawada et al., 2019).

It is possible that the ability to form biofilm within isolated bacterial genus (e.g. Bacillus, Pseudomonas) plays an important role in orchid growth promotion because of the protection of the vegetative cells against some the pathogenic strains (Yi et al., 2018). Furthermore, it is interesting that some plant pathogens, considered previously as symbiotic bacteria, were recognized. We identified bacteria genera (including Erwinia, Pseudomonas, Bacillus and Clostridium) that may cause soft rots in living plant tissue as a consequence of the presence of a strong viral factor (Prod’homme et al., 2017; Liu et al., 2020), but the analyzed orchid did not show any disease symptoms.

Similarly, in our previous research on fungal communities of Epipactis helleborine and E. purpurata, we found that the plants were infected by three species of the genus Fusarium (F. oxysporum, F. sporotrichioides and F. tricinctum) (Ogórek et al., 2020). These fungi are recognized as pathogenic, but they may also have other functions in ecosystems. Interestingly, we also found that the presence of Helleborines of some others species of fungi, especially Alternaria tenuissima, Epicoccum nigrum, Penicillium biourgeianum and Trichoderma viride, which could be effective against both fungal and bacterial pathogens (Ogórek et al., 2020). Similarly, we did not observe any disease symptoms typical of infections with pathogenic fungi in the analyzed plants.

There are a lot of arguments proving that we should not marginalize the importance of the coexistence of bacteria and fungi in Helleborines, because these microorganisms most likely play an important role in the process of adaptation of orchids to a changing environment.

In the next planned research project, we would like to experimentally test the influence of the identified bacteria and seed germination of the tested orchid taxa of the Epipactis genus.

5. Conclusions

Analysis of the orchid-associated bacteria (OAB) showed the presence of 35 different bacterial species within Epipactis albensis, Epipactis helleborine, Epipactis purpurata and Epipactis purpurata f. chlorophylla. Most of the isolated OAB belong to spor-forming, Gram-positive bacteria (Bacillus and Clostridium). Moreover, a numerous group was represented by Pseudomonas species. Isolated bacterial endophytes are considered as growth-promoting factor and may be significant in plant growth and development. We indicated diversity of the bacterial microbiome between plants, that grew in different types of habitats. Analysis of the OAB isolated from the soil in which these ramets grew also confirmed the differences.

In our opinion, the presence of endophytic bacteria, especially classified to the group of prototrophic organisms, can stimulate the growth and development of Epipactis orchids, especially those plants that grow on nutrient-poor soils. This is of particular importance in the adaptation of plants to the new environmental conditions and in the process of colonizing new habitats and territories.

Funding

Publication of this article in open access was financially supported by the Excellence Initiative - Research University (IDUB) programme for the University of Wroclaw.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors would like to thank Elżbieta Żołubak, MSc and Zbigniew Łobas, MSc (University of Wroclaw) for help in gathering plant material and assistant in the field research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.sjbs.2021.04.002.

References

Arnesen, L.P.S., Fagerlund, A., Granum, P.E., 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32, 579–600. https://doi.org/10.1111/j.1574-6976.2008.00112.x.

Arrebola, E., Tienda, S., Vida, G., De Vicente, A., Cazorla, F.M., 2019. Fitness Features Involved in the Biocontrol Interaction of Pseudomonas chlororaphis With Host Plants: The Case Study of PcpCL1606. Front. Microbiol. 10, 1–8. https://doi.org/10.3389/fmicb.2019.00719.

Azcon-Aguilar, C., Barra, J. 1985. Effect of Soil Microorganisms on Formation of Vesicular-Arbuscular Mycorrhizas. T. Brit. Mycol. Soc. 84, 536–537. https://doi.org/10.1007/s12879-015-0733-4.

Azzozi, U., 2019. Bacillus thuringiensis as a Biodisperser and Biotransmitter: a Mini-Review of the Little-Known Plant Growth-Promoting Properties of Bt. Curr. Microbiol. 76, 1379–1385. https://doi.org/10.1007/s00284-019-01705-9.

Baba, H., Nada, T., Okhusu, K., Ezaki, T., Hasegawa, Y., Paterson, D.L., 2009. First Case of Bloodstream Infection Caused by Rhodococcus erythropolis. J. Clin. Microbiol. 47, 2667–2669. https://doi.org/10.1128/JCM.00294-09.

Baumann, H., Künkele, S., Lorenz, R., 2006. Orchideen Europas (Naturführer). Eugen Ulmer, Stuttgart, p. 333.

Berry, C., 2012. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invertebr. Pathol. 109, 1–10. https://doi.org/10.1016/j.jip.2011.11.008.

Faria D.C., Dias A.C.F., Silva M.E., 2012. A case report of a deep surgical site infection with Terrisporobacter glycoticus/T. mayonii and review of the literature. BMC Infect. Dis. 12, 529. https://doi.org/10.1186/1471-2334-12-529.

Chubina, R., Deli, B., Vessabut, S., Russaban, R., Lumyong, S., 2011. Endophytic fungi from Pecteilis susamae (L.) Rafin (Orchidaceae), a threatened terrestrial orchid in Thailand. Mycorrhiza 21, 221–229. https://doi.org/10.1007/s00216-010-0327-1.

Cieniuch, G., Konzeniowska-Kowal, A., Bugla-Płońska, G., 2019. Zwierzyńska bowa jako rezerwuar zdolności notowanych bakterii opportunistycznych. Postepy Hig Med Dosw. 73, 887–897.

David, B.V., Chandrasehar, G., Selvam, P.N., 2018. Chapter 10 - Pseudomonas fluorescens: A Plant-Growth-Promoting Rhizobacterium (PGPR) With Potential Role in Biocontrol of Pests of Crops. In: Prasad, R., Gill, S.S., Tuteja, N. (Eds.), New and Future Developments in Microbial Biotechnology and Bioengineering. 2nd ed. Elsevier, India, pp. 221–243.
A. Jakubska-Busse, A. Kędziora, G. Cieniuch et al. Saudi Journal of Biological Sciences 28 (2021) 4029–4038

A. Jakubska-Busse, A. Kędziora, G. Cieniuch et al. Saudi Journal of Biological Sciences 28 (2021) 4029–4038

Delforge, P., 2006. Orchests of Europe. Timber Press, North America and the Middle East, p. 592.

Faria, D.C., Dias, A.C.F., Melo, I.S., et al., 2013. Endophytic bacteria isolated from orchids of Europe. Timber Press, North Africa and the Middle East, p. 592.

Lee, S.-M., Kong, L.G., Song, G.C., Ryu, C.-M., 2020. Disruption of Firmicutes and its effect on plant stress tolerance. Biochem. Biophys. Res. Commun. 529, 217–221. https://doi.org/10.1016/j.bbrc.2020.02.166.

Kalbe, C., Marten, P., Berg, G., 1996. Strains of the genus Bacillus subtilis sp. nov. isolated from a drinking water biogas plant wastes. Folia Microbiol (Praha). 60, 15–19. https://doi.org/10.1007/s11274-009-0038-y.

Miliute, I., Buzaite, O., Baniulis, D., Stanys, V., 2015. Bacterial endophytes in orchids. FEMS Microbiology Ecology. 91 (3), M684–M691. https://doi.org/10.1093/femsec/fiv028.

Bacillus subtilis sp. nov. isolated from the roots of ornamental plants. J. Zemdirbyste-Botan. 102 (4), 467–475. https://doi.org/10.13080/z-a.2015.102.060.

Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., Dufresne, A., 2015. The versatility of Miliute, I., Buzaite, O., Baniulis, D., Stanys, V., 2015. Bacterial endophytes in orchids. FEMS Microbiology Ecology. 91 (3), M684–M691. https://doi.org/10.1093/femsec/fiv028.

Bacillus subtilis sp. nov. isolated from ornamental plants. J. Zemdirbyste-Botan. 102 (4), 467–475. https://doi.org/10.13080/z-a.2015.102.060.

Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., Dufresne, A., 2015. The versatility of Miliute, I., Buzaite, O., Baniulis, D., Stanys, V., 2015. Bacterial endophytes in orchids. FEMS Microbiology Ecology. 91 (3), M684–M691. https://doi.org/10.1093/femsec/fiv028.

Bacillus subtilis sp. nov. isolated from ornamental plants. J. Zemdirbyste-Botan. 102 (4), 467–475. https://doi.org/10.13080/z-a.2015.102.060.

Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., Dufresne, A., 2015. The versatility of Miliute, I., Buzaite, O., Baniulis, D., Stanys, V., 2015. Bacterial endophytes in orchids. FEMS Microbiology Ecology. 91 (3), M684–M691. https://doi.org/10.1093/femsec/fiv028.

Bacillus subtilis sp. nov. isolated from ornamental plants. J. Zemdirbyste-Botan. 102 (4), 467–475. https://doi.org/10.13080/z-a.2015.102.060.

Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., Dufresne, A., 2015. The versatility of Miliute, I., Buzaite, O., Baniulis, D., Stanys, V., 2015. Bacterial endophytes in orchids. FEMS Microbiology Ecology. 91 (3), M684–M691. https://doi.org/10.1093/femsec/fiv028.

Bacillus subtilis sp. nov. isolated from ornamental plants. J. Zemdirbyste-Botan. 102 (4), 467–475. https://doi.org/10.13080/z-a.2015.102.060.
Orchis militaris L. J. Microbiol. Biotechnol. 2, 630–636. https://doi.org/10.4014/jmb.0909.09023.

Villarreal-Soto, S.A., Beaufort, S., Bouajila, J., Souchard, J.P., Taillandier, P., 2018. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 83 (3), 580–588. https://doi.org/10.1111/1750-3841.14068.

Wilkinson, K.G., Dixon, K.W., Sivasithamparam, K., 1989. Interaction of Soil Bacteria, Mycorrhizal Fungi, and Orchid Seeds in Relation to Germination of Australian Orchids. New Phytol. 112, 429–435. https://doi.org/10.1111/j.1469-8137.1989.tb00334.x.

Wilkinson, K.G., Dixon, K.W., Sivasithamparam, K., Ghisalberti, E.L., 1994. Effect of IAA on Symbiotic Germination of an Australian Orchid and Its Production by Orchid-associated Bacteria. Plant Soil 159, 291–295.

Yi, Y., Li, Z., Song, C., Kuipers, O.P., 2018. Exploring plant-microbe interactions of the rhizobacteria *Bacillus subtilis* and *Bacillus mycoides* by use of the CRISPR-Cas9 system. Environ. Microbiol. 20, 4245–4260. https://doi.org/10.1111/1462-2920.14305.

Zhang, P., Song, X., 2012. Advances in diversity and promotion mechanism of endophytic bacteria associated with orchids. J Trop Subtrop Bot 20, 92–98.

Zołubak, E., Łobas, Z., Faltyn, A., Jakubska-Busse, A., 2017. Neotypification of *Epipactis violacea f. chlorophylla* Seeland (Orchidaceae). Ann. Bot. Fenn. 54, 401–403. https://doi.org/10.5735/085.054.0621.