THE ROHLIN INVARIANT AND \(\mathbb{Z}/2 \)-VALUED INVARIANTS OF HOMOLOGY SPHERES

RICARD RIBA

ABSTRACT. In this paper we prove that the Rohlin invariant is the unique invariant inducing a homomorphism on the Torelli group. Using this result we generalize the construction of invariants of homology 3-spheres from families of trivial 2-cocycles on the Torelli group given by Pitsch to include invariants with values on an abelian group with 2-torsion.

1. Introduction

Let \(\Sigma_g \) be an oriented surface of genus \(g \) standardly embedded in the oriented 3-sphere \(S^3 \). Denote by \(\Sigma_{g,1} \) the complement of the interior of a small disk embedded in \(\Sigma_g \). The surface \(\Sigma_g \) separates \(S^3 \) into two genus \(g \) handlebodies \(S^3 = \mathcal{H}_g \cup -\mathcal{H}_g \) with opposite induced orientation. Denote by \(\mathcal{M}_{g,1} \) the mapping class group of \(\Sigma_{g,1} \), i.e. the group of isotopy classes of orientation-preserving diffeomorphisms of \(\Sigma_g \) which are the identity on the disk modulo isotopies which again fix that small disk point-wise. The embedding of \(\Sigma_g \) in \(S^3 \) determines three natural subgroups of \(\mathcal{M}_{g,1} \): the subgroup \(\mathcal{B}_{g,1} \) of mapping classes that extends to the inner handlebody \(\mathcal{H}_g \), the subgroup \(\mathcal{A}_{g,1} \) of mapping classes that extends to the outer handlebody \(-\mathcal{H}_g \), and their intersection \(\mathcal{A}\mathcal{B}_{g,1} \).

By the theory of Heegaard splittings we know that any element in \(S^3 \), the set of diffeomorphism classes of compact, closed and oriented smooth homology 3-spheres, can be obtained by cutting \(S^3 \) along \(\Sigma_g \) for some \(g \) and glueing back the two handlebodies by some element of the Torelli group \(\mathcal{T}_{g,1} \), which is the group formed by the elements of the mapping class group \(\mathcal{M}_{g,1} \) that act trivially on the first homology group of the surface \(\Sigma_g \).

In [10], Pitsch proved that the lack of injectivity of this construction is controlled by the subgroups \(\mathcal{T}\mathcal{B}_{g,1} = \mathcal{T}_{g,1} \cap \mathcal{B}_{g,1} \), \(\mathcal{T}\mathcal{A}_{g,1} = \mathcal{T}_{g,1} \cap \mathcal{A}_{g,1} \), and the conjugation by elements of the group \(\mathcal{A}\mathcal{B}_{g,1} \). More precisely the injection \(\Sigma_{g,1} \hookrightarrow \Sigma_{g+1,1} \) induces a natural injective stabilization map \(\mathcal{T}_{g,1} \hookrightarrow \mathcal{T}_{g+1,1} \), which is compatible with the definitions of the above subgroups and one gets a well-defined bijective map:

\[
\lim_{g \to \infty} (\mathcal{T}\mathcal{A}_{g,1}/\mathcal{T}\mathcal{B}_{g,1})_{\mathcal{A}\mathcal{B}_{g,1}} \sim S^3. \tag{1.1}
\]

Date: July 12, 2022.
2010 Mathematics Subject Classification. 57M27, 20J05.
Key words and phrases. Torelli group, Luft group, Rohlin invariant, homology spheres, Heegaard splittings. This work was partially supported by MEC grant MTM2016-80439-P.
As a consequence of this bijection, every invariant \(F \) of homology 3-spheres with values in an arbitrary abelian group \(A \) can be viewed as a family of functions \(\{F_g\}_g \) from the Torelli groups \(T_{g,1} \) to the abelian group \(A \) satisfying the following properties:

i) \(F_{g+1}(x) = F_g(x) \) for every \(x \in T_{g,1} \),

ii) \(F_g(\xi_a x \xi_b) = F_g(x) \) for every \(x \in T_{g,1}, \xi_a \in TA_{g,1}, \xi_b \in TB_{g,1} \),

iii) \(F_g(\phi x \phi^{-1}) = F_g(x) \) for every \(x \in T_{g,1}, \phi \in AB_{g,1} \).

Using this reformulation of invariants of homology 3-spheres in terms of family of functions on the Torelli group, in the aforementioned paper Pitsch gave a tool to construct invariants of integral homology 3-spheres, with values in any abelian group without 2-torsion from a family of trivial 2-cocycles on the Torelli group \(T_{g,1} \) with an \(AB_{g,1} \)-invariant trivialization and satisfying the following conditions:

(1) The 2-cocycles \(\{C_g\}_g \) are compatible with the stabilization map,

(2) The 2-cocycles \(\{C_g\}_g \) are invariant under conjugation by elements in \(AB_{g,1} \),

(3) If \(\phi \in TA_{g,1} \) or \(\psi \in TB_{g,1} \) then \(C_g(\phi, \psi) = 0 \).

In this paper we generalize this construction of invariants of homology 3-spheres from trivial 2-cocycles to include values in an abelian group with 2-torsion.

The main difficulty to generalize this construction is the existence of non-zero homomorphisms on the Torelli group that satisfy the aforementioned properties i)-iii) and therefore reassemble to invariants of homology 3-spheres. Nevertheless we show that the homomorphisms induced by the Rohlin invariant are the unique ones with such properties.

Theorem 1.1. Let \(A \) be an abelian group and \(A_2 \) the subgroup of 2-torsion elements. Provided \(g \geq 4 \), the BCJ-homomorphism \(\sigma : T_{g,1} \to B_3 \) composed with the projection \(\pi_g : B_3 \to B_0 \cong \mathbb{Z}/2 \) and the injection \(\varepsilon^x : B_0 \to A_2 \) defined by sending 1 to \(x \), induces an isomorphism

\[
\Lambda : A_2 \longrightarrow Hom(T_{g,1}, A)_{AB_{g,1}},
\]

\[
x \mapsto \mu_g^x = \varepsilon^x \circ \pi_g \circ \sigma.
\]

Moreover the family of homomorphisms \(\{\mu_g^x\}_g \) reassemble into the Rohlin invariant.

This result allows us to generalize the construction of invariants of homology 3-spheres given by Pitsch in [10] to include values on an abelian group with 2-torsion.

Theorem 1.2. Let \(A \) be an abelian group and \(A_2 \) the subgroup of 2-torsion elements. For each \(x \in A_2 \) and \(g \geq 4 \), a family of cocycles \(\{C_g\}_{g \geq 3} \) on the Torelli group \(T_{g,1} \) satisfying conditions (1)-(3) provides a compatible family of trivializations \(F_g + \mu_g^x : T_{g,1} \to A \) that reassemble into an invariant of integral homology 3-spheres

\[
\lim_{g \to \infty} F_g + \mu_g^x : S^3 \to A
\]

if and only if the following two conditions hold:

(i) The associated cohomology classes \([C_g] \in H^2(T_{g,1}; A) \) are trivial,

(ii) The associated torsors \(\rho(C_g) \in H^1(AB_{g,1}, Hom(T_{g,1}, A)) \) are trivial.
Outlines of this work

In Section 2 we review some definitions about the mapping class group, the symplectic representation, the Boolean algebra, the Birman-Craggs-Johnson-homomorphism and handlebodies. We also compute the $GL_g(\mathbb{Z})$-coinvariants of the Boolean algebras of degree 2, 3 and give a basic 3-dimensional topology lemma about handlebodies. In Section 3 we recall the definitions of contractible bounding pair twists and the Luft group. Moreover, we exhibit some results about the handlebody subgroup $B_{g,1}$ and the Luft-Torelli group $LT B_{g,1}$. In Section 4 we prove that $H_1(T_{g,1}; \mathbb{Z})_{AB_{g,1}}$ is isomorphic to $\mathbb{Z}/2$, and we also show that $H_1(T B_{g,1}; \mathbb{Z})_{AB_{g,1}}$ and $H_1(T A_{g,1}; \mathbb{Z})_{AB_{g,1}}$ are zero. At the end of this section, using the aforementioned computations, we prove Theorem 1.1. Finally, in Section 5 we give the proof of Theorem 1.2.

2. Preliminaries

2.1. The Symplectic representation. For a given integer $g \geq 1$ consider the basis \{a_1, \ldots, a_g, b_1, \ldots, b_g\} of $H_1(\Sigma_{g,1}; \mathbb{Z})$ given by the homology class of the respective curves \{a_1, \ldots, a_g, \beta_1, \ldots, \beta_g\} depicted in Fig. 1. Transverse intersection of oriented paths on $\Sigma_{g,1}$ induces a symplectic form ω on $H_1(\Sigma_{g,1}; \mathbb{Z})$, with $\omega(b_i, a_i) = -\omega(a_i, b_i) = 1$ and zero otherwise. Moreover, both sets of displayed homology classes \{a_i \mid 1 \leq i \leq g\} and \{b_i \mid 1 \leq i \leq g\} form a symplectic basis, and in particular generate supplementary transverse Lagrangians A and B. As a symplectic space we write $H_1(\Sigma_{g,1}; \mathbb{Z}) = A \oplus B$.

The symplectic form ω is preserved by the natural action of the mapping class group on the first homology of $\Sigma_{g,1}$ and gives rise to the symplectic representation

$$
\Psi : \mathcal{M}_{g,1} \longrightarrow Sp_{2g} (\mathbb{Z}),
$$

which is known to be a surjective map (cf. [1]). In particular, by [10] Lemma 3, the action of $AB_{g,1}$ on $H_1(\Sigma_{g,1}; \mathbb{Z})$ factors through $GL_g(\mathbb{Z})$, where an element $G \in GL_g (\mathbb{Z})$ acts on $H_1(\Sigma_{g,1}; \mathbb{Z})$ via the action of the matrix \begin{pmatrix} G & 0 \\ 0 & G^{-1} \end{pmatrix} \in Sp_{2g} (\mathbb{Z}).

To understand better Ψ we show what it does to Dehn twists: given $k \in \mathbb{Z}$ and two oriented simple closed curves x and y in $\Sigma_{g,1}$ with respective homology classes $[x]$ and $[y]$, the action of the Dehn twist T^k_x on $H_1(\Sigma_{g,1}; \mathbb{Z})$ is given by:

$$
\Psi(T_x^k)([y]) = [y] + k \omega([y], [x])[x].
$$
To avoid too heavy notation in all subsequent sections we will sometimes abbreviate $H := H_1(\Sigma_{g,1}; \mathbb{Z})$ and $H_2 := H_1(\Sigma_{g,1}; \mathbb{Z}/2)$.

2.2. The Boolean algebra and the BCJ-homomorphism. The Boolean polynomial algebra $\mathcal{B} = \mathcal{B}_g$ is a $\mathbb{Z}/2$-algebra (with unit 1) with a generator x for each $x \in H_1(\Sigma_{g,1}; \mathbb{Z}/2)$ and subject to the relations:

(a) $x + y = x + y + \omega(x, y) \mod 2$,
(b) $x^2 = x$.

The relation (b) implies that $p^2 = p$ for any $p \in \mathcal{B}$ and also that if $\{e_i \mid i \in \{1, \ldots, 2g\}\}$ is a basis for $H_1(\Sigma_{g,1}; \mathbb{Z}/2)$ then the set of all monomials $e_{i_1}e_{i_2} \ldots e_{i_r}$ with $0 \leq r \leq 2g$ and $1 \leq i_1 < i_2 < \ldots < i_r \leq 2g$ is a $\mathbb{Z}/2$-basis for \mathcal{B}. Denote by $\mathcal{B}_k = \mathcal{B}_g^k$ the subspace generated by all monomials of “degree” $\leq k$.

In [4], Johnson constructed a surjective homomorphism $\sigma : T_{g,1} \to \mathcal{B}_3$, called the Birman-Craggs-Johnson homomorphism (abbreviated BCJ-homomorphism), which may be described as follows. Consider the $\mathbb{Z}/2$-basis of \mathcal{B}_3 given by $\{1, a_i, b_i, a_i a_j, b_i b_j, a_i b_j, a_i b_i, a_i a_j a_k, b_i b_j b_k, a_i a_j b_k, a_i b_j b_k, a_i b_i b_j, a_i a_j a_k\}$, where $i,j,k \in \{1, \ldots, g\}$ are pairwise distinct. Consider the curves depicted in the following figure:

![Figure 2. A bounding simple closed curve and a bounding pair in $\Sigma_{g,1}$.](image)

The BCJ-homomorphism is given on a BP-map $T_\beta T_{\beta'}^{-1}$ by (cf. [4, Lemma 12b])

$$\sigma(T_\beta T_{\beta'}^{-1}) = \sum_{i=1}^{k} \tau_i \bar{d}_i (\tau + \bar{1}),$$

where e is the homology class of β, and $\{c_i, d_i\}$ is a symplectic basis of a subsurface $\Sigma_{k,1}$ of $\Sigma_{g,1}$ with boundary component γ, such that $\gamma \cup \beta \cup \beta'$ is the boundary of a subsurface with genus zero in $\Sigma_{g,1}$. And on a Dehn twist about a bounding simple closed curve γ of genus k, by (cf. [4, Lemma 12a])

$$\sigma(T_\gamma) = \sum_{i=1}^{k} \tau_i \bar{d}_i,$$

where $\{c_i, d_i\}$ is the symplectic basis of the subsurface of genus k bounded by γ.

By [4, Lemma 13], the BCJ-homomorphism σ is $\mathcal{M}_{g,1}$-equivariant. The action of $\mathcal{M}_{g,1}$ on \mathcal{B}_3 factors through $Sp_{2g}(\mathbb{Z})$ via the symplectic representation $\Psi : \mathcal{M}_{g,1} \to Sp_{2g}(\mathbb{Z})$.
where $Sp_{2g}(\mathbb{Z})$ acts on \mathcal{B}_3 via its action on $H_1(\Sigma_{g,1}, \mathbb{Z})$ modulo 2. In other words, for a given $f \in \mathcal{M}_{g,1}$ and three elements z_i, z_j, z_k of $H_1(\Sigma_{g,1}, \mathbb{Z}/2)$, the action is given by:

$$f \cdot (z_i z_j z_k) = \Psi(f) \cdot z_i \Psi(f) \cdot z_j \Psi(f) \cdot z_k.$$

Lemma 2.1. Provided $g \geq 3$, the isomorphisms $(\mathcal{B}_2)_{GL_g(\mathbb{Z})} \cong (\mathcal{T}, \mathcal{M}_1) \cong (\mathbb{Z}/2)^2$ hold, and provided $g \geq 4$ the isomorphism $(\mathcal{B}_3)_{GL_g(\mathbb{Z})} \cong (\mathcal{T}) = \mathbb{Z}/2$ also holds.

Proof. Since the action of $GL_g(\mathbb{Z}) \subset Sp_{2g}(\mathbb{Z})$ on the Boolean algebra \mathcal{B}_3 does not increase the degree, we will compute coinvariants bottom up. Denote by E_{ij} the matrix of size $g \times g$ with 1 at position (i, j) and zero elsewhere. Keep in mind that the symmetric group $S_g \subset GL_g(\mathbb{Z})$ acts on H by permuting the indices of the generating set $\{a_i, b_i\}_{1 \leq i \leq g}$.

In degree 0 we only have one element \mathcal{T}, and it is clearly invariant.

In degree 1 the coinvariant module is generated by the elements $\mathcal{M}_1, \mathcal{B}_1$.

Apply the element $G = Id_g + E_{21}$, to get:

$$G \cdot \mathcal{M}_1 = \mathcal{M}_1 + \mathcal{B}_1.$$

So in the coinvariants quotient $\mathcal{M}_2 = 0$, but this is the class of \mathcal{M}_1.

The same computation shows that in the quotient $\mathcal{B}_1 = 0$.

In degree 2 the coinvariants module is generated by the products $\mathcal{M}_2, \mathcal{B}_2, \mathcal{M}_1 \mathcal{B}_1, \mathcal{B}_1 \mathcal{B}_2$.

We proceed now as before.

- Acting by $G = Id_g + E_{32}$ on \mathcal{M}_2 gives:

$$G \cdot \mathcal{M}_2 = \mathcal{M}_2 + \mathcal{B}_2 + \mathcal{M}_1 \mathcal{B}_1.$$

So in the coinvariants quotient $\mathcal{M}_3 = 0$, but this is the class of \mathcal{M}_2.

The same holds true for $\mathcal{B}_1 \mathcal{B}_2$.

- Acting by $G = Id_g + E_{21}$ on \mathcal{B}_2 gives:

$$G \cdot \mathcal{B}_2 = (\mathcal{M}_2 + \mathcal{B}_2) \mathcal{B}_1 = -\mathcal{M}_2 \mathcal{B}_1 - \mathcal{B}_2 \mathcal{B}_1.$$

Since in the coinvariants quotient $\mathcal{B}_1 \mathcal{B}_1 = 0$, we get that $\mathcal{B}_2 \mathcal{B}_1 = 0$ in the coinvariants quotient. But this is the class of $\mathcal{B}_2 \mathcal{B}_1$.

Thus we are left with $\mathcal{M}_1 \mathcal{B}_1$. We show that this element is not zero in the coinvariants module: Consider the $GL_g(\mathbb{Z})$-invariant homomorphism $p : \mathcal{B}_2 \to \mathcal{B}_2 / \mathcal{B}_1 \xrightarrow{\cong} \mathbb{Z}/2$, where \mathcal{B} sends an element \mathcal{M} of $\mathcal{B}_2 / \mathcal{B}_1$ to $\omega(x, y)$ mod 2. Applying this homomorphism to $\mathcal{M}_1 \mathcal{B}_1$ we get that $p(\mathcal{M}_1 \mathcal{B}_1) = 1 \neq 0$ and therefore $\mathcal{M}_1 \mathcal{B}_1 \neq 0$.

All this shows that $(\mathcal{B}_2)_{GL_g(\mathbb{Z})} \cong (\mathcal{T}, \mathcal{M}_1) \cong (\mathbb{Z}/2)^2$.

In degree 3 the coinvariants module is generated by the products $\mathcal{M}_3, \mathcal{B}_3, \mathcal{M}_1 \mathcal{M}_2, \mathcal{M}_1 \mathcal{B}_2, \mathcal{M}_2 \mathcal{B}_1, \mathcal{M}_2 \mathcal{B}_3, \mathcal{B}_1 \mathcal{B}_2, \mathcal{B}_1 \mathcal{B}_3, \mathcal{B}_2 \mathcal{B}_3$.

Here is where we need $g \geq 4$.

• Acting by $G = \text{Id}_g + E_{41}$ on $\theta_1 \bar{\theta}_2 \bar{\theta}_3$ gives

$$G \cdot \theta_1 \bar{\theta}_2 \bar{\theta}_3 = (a_1 + a_3) \bar{a}_2 \bar{a}_3 = \theta_1 \bar{a}_2 \bar{a}_3 + a_3 \bar{a}_2 \bar{a}_3.$$

So in the coinvariants quotient $\theta_4 \bar{\theta}_2 \bar{\theta}_3 = 0 = \theta_1 \bar{a}_2 \bar{a}_3$. The action by the same element shows in the same way that in the coinvariants quotient $\theta_1 \bar{\theta}_2 \bar{b}_3 = 0$, $\bar{\theta}_1 \bar{\theta}_2 \bar{b}_3 = 0$, and similarly $\theta_1 \bar{b}_1 \bar{b}_2 = 0 = \theta_1 \bar{b}_2 \bar{b}_3 = \bar{b}_1 \bar{b}_2 \bar{b}_3$.

• Acting by $G = \text{Id}_g + E_{21}$ on $\theta_1 \theta_2 \bar{\theta}_2$, whose transpose-inverse is $\text{Id}_g - E_{12}$, we have:

$$G \cdot \theta_1 \theta_2 \bar{\theta}_2 = (a_1 + a_2) \theta_2 (\bar{b}_2 - b_1) = \theta_1 \theta_2 \bar{\theta}_2 + \theta_1 \bar{\theta}_2 \theta_1 + \theta_2 \bar{\theta}_2 - \theta_2 \bar{\theta}_2.$$

So in the coinvariants quotient $-\theta_1 \theta_2 \bar{\theta}_1 + \theta_2 \bar{\theta}_2 - \theta_2 \bar{\theta}_2 = 0$, but we already know that in the quotient $\theta_1 \theta_2 \bar{\theta}_1 = 0 = \theta_2 \bar{\theta}_2$, so finally $\theta_2 \bar{\theta}_2 = 0 = \theta_1 \bar{\theta}_1$.

All this shows that $(\mathcal{B}_3)_{GL_2(\mathbb{Z})}$ is $\mathbb{Z}/2$, generated by \bar{T}.

\[\square\]

2.3. Handlebodies. Let B_1, \ldots, B_n be a collection of closed 3-balls and D_1, \ldots, D_m, D'_1, \ldots, D'_m be a collection of pairwise disjoint disks in $\bigcup \partial B_i$. For each $1 \leq i \leq m$, consider a homeomorphism $\phi_i : D_i \to D'_i$. Denote H the result of gluing along ϕ_1, then gluing along ϕ_2, and so on. We say that H is a handlebody if after the final gluing if H is connected. Equivalently, we say that a 3-manifold with boundary H is a handlebody if there exists a collection $\{D_1, \ldots, D_m\}$ of properly embedded essential disks (i.e. properly embedded disk whose boundary does not bound a disk in the boundary of H) such that the complement of a regular neighbourhood of $\bigcup D_i$ is a collection of balls. Such family of disks is called a system of disks of H and we say that this system of disks is minimal if its complement is connected. The existence of such family of disks is ensured by [6, Lemma 2.2].

We now state a basic 3-dimensional topology lemma that is a consequence of the loop theorem (cf. [3, Theorem 3.1]) and of which we will omit the proof.

Lemma 2.2. Let D_β, $D_{\beta'}$ be two essential proper embedded disks in \mathcal{H}_g with respective boundaries β, β' such that the union of β and β' bounds a subsurface of $\Sigma_{g,1}$ with two boundary components. There exist $g - 1$ essential proper embedded disks $D_{\beta_1}, \ldots, D_{\beta_{g-1}}$ in \mathcal{H}_g, with boundaries $\beta_1, \ldots, \beta_{g-1}$ respectively, such that

$$\text{Int}(\mathcal{H}_g) - N \left(D_\beta \cup D_{\beta'} \cup D_{\beta_1} \cup \ldots \cup D_{\beta_{g-1}} \right)$$

is the disjoint union of two open 3-balls.

3. The Luft Group and CBP-twists

Denote by $\mathcal{L}_{g,1}$ the kernel of the map $B_{g,1} \to \text{Aut}(\pi_1(\mathcal{H}_g))$, the Luft group, which was identified by Luft in [17] as the “twist group” of the handlebody \mathcal{H}_g, and by $\mathcal{LTB}_{g,1}$ the intersection $\mathcal{L}_{g,1} \cap TB_{g,1}$, the Luft-Torelli group. In [10], Pitsch characterized $\mathcal{LTB}_{g,1}$ as the group generated by contractible bounding pair twists (abbreviated CBP-twists). A CBP-twist is a map of the form $T_\beta T_{\beta'}^{-1}$, where β and β' are two homologous non-isotopic and disjoint simple closed curves on $\Sigma_{g,1}$ such that each one is not null-homologous in $H_1(\Sigma_{g,1}; \mathbb{Z})$ and bounds a properly embedded disk in \mathcal{H}_g. In all what follows we refer as
CBP-twists of genus k to those CBP-twists $T_{\beta}T_{\beta'}^{-1}$ such that the union of β and β' bounds a subsurface of $\Sigma_{g,1}$ of genus k with two boundary components.

Consider the short exact sequence given in [10, Lemma 1],

$$1 \longrightarrow TB_{g,1} \longrightarrow B_{g,1} \xrightarrow{\Psi} GL_g(\mathbb{Z}) \ltimes S_g(\mathbb{Z}) \longrightarrow 1.$$

Restricting this short exact sequence to the Luft group $\mathcal{L}_{g,1}$, we get that

Proposition 3.1. There is a short exact sequence

$$1 \longrightarrow LTB_{g,1} \longrightarrow \mathcal{L}_{g,1} \xrightarrow{\Psi} S_g(\mathbb{Z}) \longrightarrow 1. \quad (3.1)$$

Proof. Notice that $\mathcal{L}_{g,1}$ is contained in the kernel of $B_{g,1} \rightarrow \text{Aut}(H_1(\mathcal{H}_g)) = GL_g(\mathbb{Z})$. Then $\Psi(\mathcal{L}_{g,1}) \subset S_g(\mathbb{Z})$. Now we prove that $\Psi : \mathcal{L}_{g,1} \rightarrow S_g(\mathbb{Z})$ is surjective. Recall that $S_g(\mathbb{Z})$ is generated by the family of matrices $\{E_{ii} \mid 1 \leq i \leq g\} \cup \{SE_{ij} \mid 1 \leq i < j \leq g\}$, where E_{ij} denotes the matrix with 1 at the position (i, j) and 0’s elsewhere, and $SE_{ij} = E_{ij} + E_{ji}$ for $i \neq j$. Thus it is enough to find a preimage for each E_{ii} and SE_{ij}. Consider β_i, β_j and γ_{ij} the curves given in the following figure:

![Figure 3. Curves involved in the lift of SE_{ij} to $\mathcal{L}_{g,1}$.](image)

Notice that the curves β_k, γ_{ij} are contractible in \mathcal{H}_g. Then $T_{\beta_k}, T_{\beta_i}, T_{\gamma_{ij}}, T_{\beta_j}^{-1}$ are elements of the Luft group $\mathcal{L}_{g,1}$ with the following images through the symplectic representation:

$$\Psi(T_{\beta_k}^{-1}) = \begin{pmatrix} Id & 0 \\ E_{kk} & Id \end{pmatrix}, \quad \Psi(T_{\beta_i}^{-1}T_{\gamma_{ij}}T_{\beta_j}^{-1}) = \begin{pmatrix} Id & 0 \\ SE_{ij} & Id \end{pmatrix}. \quad \Box$$

Proposition 3.2. For every $h \in B_{g,1}$, there exist elements $l \in \mathcal{L}_{g,1}$, $f \in \mathcal{A}B_{g,1}$ and $\xi_b \in TB_{g,1}$ such that $h = \xi_bfl$, i.e.

$$B_{g,1} = TB_{g,1} \cdot \mathcal{A}B_{g,1} \cdot \mathcal{L}_{g,1}. \quad (3.2)$$

Proof. Consider the short exact sequence

$$1 \longrightarrow TB_{g,1} \longrightarrow B_{g,1} \xrightarrow{\Psi} GL_g(\mathbb{Z}) \ltimes S_g(\mathbb{Z}) \longrightarrow 1. \quad (3.2)$$

By [10, Lemma 3] and Proposition 3.1 we know that $\Psi(\mathcal{A}B_{g,1}) \cong GL_g(\mathbb{Z})$ and $\Psi(\mathcal{L}_{g,1}) \cong S_g(\mathbb{Z})$. Then, given $h \in B_{g,1}$ there exist $f \in \mathcal{A}B_{g,1}$, $l \in \mathcal{L}_{g,1}$ such that $\Psi(h) = \Psi(fl)$, and by the short exact sequence (3.2), there exists an element $\xi_b \in TB_{g,1}$ such that $h = \xi_bfl$.

Proposition 3.3. The group $B_{g,1}$ acts transitively on CBP-twists of a given genus.

Proof. Let $T_{\beta}T_{\beta'}^{-1}$ be CBP-twists of genus k on $\Sigma_{g,1}$. We prove that there exists $\psi \in B_{g,1}$ such that $\psi(\beta) = \zeta$, $\psi(\beta') = \zeta'$ getting that

$$\psi(T_{\beta}T_{\beta'}^{-1})\psi^{-1} = T_{\psi(\beta)}T_{\psi(\beta')}^{-1} = T_{\zeta}T_{\zeta'}^{-1}.$$

Since $T_{\beta}T_{\beta'}^{-1}$, $T_{\zeta}T_{\zeta'}^{-1}$ are CBP-twists of genus k, there exist properly embedded disks $D_\beta, D_{\beta'}, D_\zeta, D_{\zeta'}$ in \mathcal{H}_g with respective boundaries $\beta, \beta', \zeta, \zeta'$. Then, by Lemma 2.2 there exist $g - 1$ essential proper embedded disks $D_{\beta_1}, \ldots, D_{\beta_{g-1}}$ (resp. $D_{\zeta_1}, \ldots, D_{\zeta_{g-1}}$) in \mathcal{H}_g, with boundaries $\beta_1, \ldots, \beta_{g-1}$ (resp. $\zeta_1, \ldots, \zeta_{g-1}$), such that

$$\text{Int}(\mathcal{H}_g) - N (D_\beta \cup D_{\beta'} \cup D_{\beta_1} \cup \ldots \cup D_{\beta_{g-1}})$$

(resp. $\text{Int}(\mathcal{H}_g) - N (D_\zeta \cup D_{\zeta'} \cup D_{\zeta_1} \cup \ldots \cup D_{\zeta_{g-1}})$)

is the disjoint union of two open 3-balls.

Since $T_{\beta}T_{\beta'}^{-1}$, $T_{\zeta}T_{\zeta'}^{-1}$ are BP-maps of the same genus, by the change of coordinates principle (cf. 2.1 Section 1.3), there is a homeomorphism ϕ from $\Sigma_{g,1}$ to $\Sigma_{g,1}$ sending $\{\beta, \beta', \beta_1, \ldots, \beta_{g-1}\}$ to $\{\zeta, \zeta', \zeta_1, \ldots, \zeta_{g-1}\}$ respectively. By 6.1 Lemma 2.9, ϕ extends to a homeomorphism ψ on \mathcal{H}_g and therefore $\phi \in B_{g,1}$. □

Proposition 3.4. Every CBP-twist of genus k is a product of k CBP-twists of genus 1.

Proof. Let $T_{\beta}T_{\beta'}^{-1}$ be a CBP-twist of genus k. Consider the following simple closed curves in the standarly embedded surface $\Sigma_{g,1}$:

![Figure 4](image-url)

Observe that $T_{\zeta}T_{\zeta'}^{-1}$ is a CBP-twist of genus k and that for $i = 0, \ldots, k - 1$, the maps $T_{\zeta_i}T_{\zeta_{i+1}}^{-1}$ are CBP-twists of genus 1, where $\zeta_0 = \zeta$, $\zeta_k = \zeta'$. By Proposition 3.3 there exists an element $h \in B_{g,1}$ such that $T_{\beta}T_{\beta'}^{-1} = hT_{\zeta}T_{\zeta'}^{-1}h^{-1}$. Therefore,

$$T_{\beta}T_{\beta'}^{-1} = hT_{\zeta}T_{\zeta'}^{-1}h^{-1} = (hT_{\zeta_0}T_{\zeta_1}^{-1}h^{-1})(hT_{\zeta_1}T_{\zeta_2}^{-1}h^{-1}) \cdots (hT_{\zeta_{k-1}}T_{\zeta_k}^{-1}h^{-1}) = (T_{h(\zeta_0)}T_{h(\zeta_1)}^{-1})(T_{h(\zeta_1)}T_{h(\zeta_2)}^{-1}) \cdots (T_{h(\zeta_{k-1})}T_{h(\zeta_k)}^{-1}).$$
Since $T_{G_i}T_{G_i+1}^{-1}$ is a CBP-twists of genus 1 for $i = 0, \ldots, k - 1$, and $h \in B_{g,1}$, the element $T_{h(G_i)}T_{h(G_i+1)}^{-1}$ is also a CBP-twists of genus 1 for $i = 0, \ldots, k - 1$. □

Remark 3.1. A posteriori we found that Proposition 3.4 was obtained independently by Omori in [9].

4. INVARIANTS OF INTEGRAL HOMOLOGY 3-Spheres

Throughout this section we set A an abelian group and A_2 the subgroup of 2-torsion elements of A. Consider an A-valued invariant of homology 3-spheres $F : S^3 \to A$. By [10] Theorem 1] there is a bijection

$$\lim_{g \to \infty} (T\mathcal{A}_{g,1} \setminus T\mathcal{B}_{g,1})_{AB_{g,1}} \sim S^3. \quad (4.1)$$

Precomposing an invariant F with the canonical maps $T_{g,1} \to \lim_{g \to \infty} T_{g,1} \sim S^3$ we get a family of maps $\{F_g\}_g$ with $F_g : T_{g,1} \to A$ satisfying the following properties:

i) $F_{g+1}(x) = F_g(x)$ for every $x \in T_{g,1}$,
ii) $F_g(\xi_a x \xi_b) = F_g(x)$ for every $x \in T_{g,1}$, $\xi_a \in T\mathcal{A}_{g,1}$, $\xi_b \in T\mathcal{B}_{g,1}$,
iii) $F_g(\phi x \phi^{-1}) = F_g(x)$ for every $x \in T_{g,1}$, $\phi \in AB_{g,1}$.

Because of property i), without loss of generality we can assume $g \geq 4$, this avoids having to deal with some peculiarities in the homology of low genus mapping class groups.

Using this framework we prove that modulo a multiplicative constant $x \in A_2$ there is only one family of homomorphisms $\{F_g\}_g$ satisfying the aforementioned properties and that this family reassembles to the Rohlin invariant. For such purpose we have to understand the following three groups:

$$H_1(T_{g,1}; Z)_{AB_{g,1}}, \quad H_1(T\mathcal{A}_{g,1}; Z)_{AB_{g,1}}, \quad H_1(T\mathcal{B}_{g,1}; Z)_{AB_{g,1}}.$$

Proposition 4.1. For a given integer $g \geq 4$, the Birman Craggs Johnson homomorphism $\sigma : T_{g,1} \to \mathcal{B}_3$ composed with the projection $\mathcal{B}_3 \to \mathcal{B}_0$ induces an isomorphism

$$H_1(T_{g,1}; Z)_{AB_{g,1}} \cong \mathbb{Z}/2.$$

Proof. By the fundamental result of Johnson [5], we have an extension:

$$0 \longrightarrow \mathcal{B}_2 \longrightarrow H_1(T_{g,1}; Z) \longrightarrow \Lambda^3 H \longrightarrow 0.$$

All the maps appeared in the short exact sequence above are $\mathcal{M}_{g,1}$-equivariant, where the action of $\mathcal{M}_{g,1}$ on the above three groups is through the symplectic action on H. In particular, taking $AB_{g,1}$-coinvariants we get an exact sequence:

$$(\mathcal{B}_2)_{GL_g(Z)} \longrightarrow H_1(T_{g,1}; Z)_{GL_g(Z)} \longrightarrow (\Lambda^3 H)_{GL_g(Z)} \longrightarrow 0. \quad (4.2)$$

First, observe that $-Id \in GL_g(Z)$ acts by multiplication by -1 on H and hence on $\Lambda^3 H$. Therefore, for any $w \in (\Lambda^3 H)_{GL_g(Z)}$, $-w = w$ and hence there are isomorphisms

$$(\Lambda^3 H)_{GL_g(Z)} \cong (\Lambda^3 H)_{GL_g(Z)} \cong (\mathcal{B}_3/\mathcal{B}_2)_{GL_g(Z)}.$$
By Lemma 2.1 this last group is zero, and by the exact sequence (4.2) the $\mathbb{Z}/2$-vector space $(\mathfrak{B}_2)_{GL_g}(\mathbb{Z})$ surjects onto $H_1(\mathcal{T}_g,\mathbb{Z})_{GL_g}(\mathbb{Z})$ getting that all elements of this last group have 2-torsion. Therefore by [3, Theorem 1] the BCJ homomorphism $\sigma : \mathcal{T}_g,\mathbb{Z}$ induces an isomorphism $H_1(\mathcal{T}_g,\mathbb{Z})_{GL_g}(\mathbb{Z}) \cong (\mathfrak{B}_3)_{GL_g}(\mathbb{Z})$ and we conclude by Lemma 2.1.

Lemma 4.1. Provided $g \geq 4$, the groups $H_1(\mathcal{T}B_g,\mathbb{Z})_{AB_g}$ and $H_1(\mathcal{T}A_g,\mathbb{Z})_{AB_g}$ are zero.

Proof. We only give the proof for $\mathcal{T}B_g$, the other case is similar.

Denote by IA the kernel of the natural map $Aut(\pi_1(\mathcal{H}_g)) \to GL_g(\mathbb{Z})$. Consider the following short exact sequence:

$$1 \longrightarrow \mathcal{LT}B_g \longrightarrow \mathcal{T}B_g \longrightarrow IA \longrightarrow 1. \quad (4.3)$$

Taking AB_g-coinvariants on the associated 5-term exact sequence, we get another exact sequence

$$H_1(\mathcal{LT}B_g,\mathbb{Z})_{AB_g} \longrightarrow H_1(\mathcal{T}B_g,\mathbb{Z})_{AB_g} \longrightarrow H_1(IA,\mathbb{Z})_{AB_g} \longrightarrow 0,$$

and we conclude by Lemma 4.2 and Lemma 4.3.

Lemma 4.2. For a given integer $g \geq 3$, the group $(H_1(IA,\mathbb{Z}))_{AB_g}$ is zero.

Proof. By [7, Corollary 2.1] the action of B_g on the fundamental group of the inner handlebody \mathcal{H}_g induces a surjective map $B_g \to Aut(\pi_1(\mathcal{H}_g))$. Indeed, the restriction of this map to AB_g also gives a surjective map $AB_g \to Aut(\pi_1(\mathcal{H}_g))$ (cf. the paragraph after Lemma 2 in [10]). Therefore we have an isomorphism

$$(H_1(IA,\mathbb{Z}))_{AB_g} \cong (H_1(IA,\mathbb{Z}))_{Aut(\pi_1(\mathcal{H}_g))}.$$

According to Magnus [8], for the given generators $\alpha_1, \cdots, \alpha_g$ of $\pi_1(\mathcal{H}_g)$, the group IA is normally generated as a subgroup of $Aut(\pi_1(\mathcal{H}_g))$ by the automorphism K_{12} given by $K_{12}(\alpha_1) = \alpha_2 \alpha_1 \alpha_2^{-1}$ and $K_{12}(\alpha_i) = \alpha_i$ for $i \geq 2$. Then it is enough to show that K_{12} is equivalent to zero.

Consider $f \in Aut(\pi_1(\mathcal{H}_g))$ given by $f(\alpha_3) = \alpha_3 \alpha_2$ and $f(\alpha_i) = \alpha_i$ for $i \neq 3$, with inverse $f^{-1} \in Aut(\pi_1(\mathcal{H}_g))$ given by $f^{-1}(\alpha_3) = \alpha_3 \alpha_2^{-1}$ and $f^{-1}(\alpha_i) = \alpha_i$ for $i \neq 3$, and take the element $K_{13} \in IA$ given by $K_{13}(\alpha_1) = \alpha_3 \alpha_1 \alpha_3^{-1}$ and $K_{13}(\alpha_i) = \alpha_i$ for $i \geq 2$. Observe that

$$fK_{13}f^{-1}(\alpha_1) = \alpha_3 \alpha_2 \alpha_1 \alpha_2^{-1} \alpha_3^{-1} \quad \text{and} \quad fK_{13}f^{-1}(\alpha_i) = \alpha_i \quad \text{for } i \geq 2.$$

Consequently, $fK_{13}f^{-1} = K_{12}K_{13}$ and the following equation holds

$$K_{13} = fK_{13}f^{-1} = K_{12}K_{13} = K_{12} + K_{13}.$$

Therefore K_{12} is equivalent to zero.

Lemma 4.3. For a given integer $g \geq 4$, the group $(H_1(\mathcal{LT}B_g,\mathbb{Z}))_{\mathcal{LT}B_g,\mathbb{Z}}$ is zero.

Proof. By Proposition 3.3 the group $\mathcal{LT}B_g$ is generated by CBP-twists of genus 1. Then it is enough to show that all CBP-twists of genus 1 are equivalent to zero. Next we
divide the proof in two steps. In the first step we show that all CBP-twists of genus 1 are equivalent, and in the second step we show that all CBP-twists of genus 1 are equivalent to zero.

Step 1. We show that all CBP-twists of genus 1 are equivalent. Consider the CBP-twist $T_\beta T_{\beta'}^{-1} \in LT B_{g,1}$ of genus 1 depicted in the following figure:

![Figure 5](image1.png)

Figure 5. A contractible bounding pair of genus 1 in $\Sigma_{g,1}$.

By Proposition 3.3, for every CBP-twist of genus 1, $T_\nu T_{\nu'}^{-1}$, on $\Sigma_{g,1}$ there exists an element $h \in B_{g,1}$ such that $T_\nu T_{\nu'}^{-1} = h T_\beta T_{\beta'}^{-1} h^{-1}$, and by Proposition 3.2, there exist elements $l \in L_{g,1}$, $f \in AB_{g,1}$ and $\xi_b \in T B_{g,1}$ such that $h = \xi_b f l$.

Therefore in the coinvariant module we get that

$$T_\nu T_{\nu'}^{-1} = h T_\beta T_{\beta'}^{-1} h^{-1} = \xi_b f l T_\beta T_{\beta'}^{-1} l^{-1} f^{-1} \xi_b^{-1} = l T_\beta T_{\beta'}^{-1} l^{-1}. \quad (4.4)$$

Take the set-theoretic cross-section $s : S_g(\mathbb{Z}) \to L_{g,1}$ of $\Psi : L_{g,1} \to S_g(\mathbb{Z})$, i.e. a function $s : S_g(\mathbb{Z}) \to L_{g,1}$ such that $\Psi \circ s = id$ not necessarily being an isomorphism, given by

$$s(E_{ij}) = T_{\beta_i}^{-1}, \quad s(SE_{ij}) = \begin{cases} T_{\gamma_i}^{-1} T_{\gamma_i'}^{-1} & \text{for } i = 1 \\ T_{\beta_i}^{-1} T_{\gamma_i}^{-1} T_{\beta_j}^{-1} & \text{for } i \geq 2, \end{cases}$$

where the curves β_i, γ_{ij}, γ_{ij}' are given in the following picture:

![Figure 6](image2.png)

Figure 6. Curves involved in the set-theoretic cross-section s.

By the short exact sequence (3.1), given an element $l \in L_{g,1}$, there exists an element $\xi_b \in LT B_{g,1}$ such that $l = \xi_b s(\Psi(l))$. Then, by Eq. (4.4), in the coinvariant module, we
have that
\[T_\nu T_{\nu'}^{-1} = lT_\beta T_{\beta'}^{-1}l^{-1} = \xi_b s(\Psi(l))T_\beta T_{\beta'}^{-1} s(\Psi(l))^{-1} \xi_b^{-1} \]
\[= s(\Psi(l))T_\beta T_{\beta'}^{-1} s(\Psi(l))^{-1}. \quad (4.5) \]
Now observe that \(s(\Psi(l)) \) is a product of the following elements:
\[\{ T_\nu \mid i \geq 2 \}, \quad \{ T_{\nu'} \mid 2 \leq i < j \}, \quad \{ T_{\beta} \mid 1 \leq i \leq g \}. \]
Since the curves \(\gamma_{12}, \\{ \gamma'_{ij} \mid 2 \leq i < j \}, \\{ \beta_i \mid 1 \leq i \leq g \} \)
are disjoint with the curves \(\beta, \beta', \{ \gamma_{1j} \mid j \geq 3 \} \), the geometric intersection number between a curve of the family (4.6) and a curve of the family (4.7) is zero. Therefore, the elements of the family of Dehn twists \(T_\gamma \), \(T_{\gamma'} \), \(\{ T_{\beta} \mid 1 \leq i \leq g \} \)
commutes with the elements of the family of Dehn twists \(T_\beta, T_{\beta'}, \{ T_{\gamma_{1j}} \mid j \geq 3 \} \).
Furthermore, the elements of the family \(\{ T_{\gamma_{1j}} \mid j \geq 3 \} \) commute between them because the curves of the family \(\{ \gamma_{1j} \mid j \geq 3 \} \) are pairwise disjoint. Therefore,
\[s(\Psi(l))T_\beta T_{\beta'}^{-1} s(\Psi(l))^{-1} = (T_{\gamma_{13}} \cdots T_{\gamma_{1g}})T_\beta T_{\beta'}^{-1} (T_{\gamma_{13}} \cdots T_{\gamma_{1g}})^{-1}, \quad (4.10) \]
for some \(x_3, \ldots, x_g \in \mathbb{Z} \). And as a consequence of the Eqs. (4.5) and (4.10) we get the following equation:
\[T_\nu T_{\nu'}^{-1} = (T_{\gamma_{13}} \cdots T_{\gamma_{1g}})T_\beta T_{\beta'}^{-1} (T_{\gamma_{13}} \cdots T_{\gamma_{1g}})^{-1} = T_\beta T_{\beta'}^{-1} (T_{\gamma_{13}} \cdots T_{\gamma_{1g}})(\beta'). \quad (4.11) \]
Next, we prove that in the coinvariant module,
\[T_{\beta} T_{\beta'}^{-1} = T_\beta T_{\beta'}^{-1} + \sum_{i=3}^{g} x_i (T_\beta T_{\beta'}^{-1} - T_\beta T_{\beta'}^{-1}(\beta')). \]
Consider the curves \(\{ \gamma_{1j}, \gamma'_{1j} \mid 3 \leq j \geq g \} \) given in the following picture:

Figure 7. Curves involved in the definition of elements of \(AB_{g,1} \).
Fix an integer j with $3 \leq j \leq g$. Consider $\beta''_j = (T^{x(j+1)}_{\gamma_{13}} \cdots T^{x_g}_{\gamma_{13}}) (\beta')$ for $3 \leq j \leq g - 1$ and $\beta''_g = \beta'$. For $k \geq 1$ we have that

$$T_{\beta'} T^{-1}_{\gamma_{13}} (\beta''_j) = T_{\beta'} T^{-1}_{\gamma_{13}} + T_{\beta'} T^{-1}_{\gamma_{13}} (\beta') + T_{\beta'} T^{-1}_{\gamma_{13}} (\beta''_j).$$

Since $T_{\gamma_{13}} T^{-1}_{\gamma_{13}} \in \mathcal{A} \mathcal{B}_{g,1}$ for $3 \leq j \leq g$, conjugating by $T_{\gamma_{13}} T^{-1}_{\gamma_{13}}$ the last two terms of the above equation, in the coinvariant module, we get that

$$T_{\beta'} T^{-1}_{\gamma_{13}} (\beta''_j) = T_{\beta'} T^{-1}_{\gamma_{13}} + T_{\beta'} T^{-1}_{\gamma_{13}} (\beta') + T_{\beta'} T^{-1}_{\gamma_{13}} (\beta''_j).$$

Applying Eq. (4.12) from $k = x_j$ to $k = 1$, we obtain that

$$T_{\beta'} T^{-1}_{\gamma_{13}} (\beta''_j) = x_j T_{\beta'} T^{-1}_{\gamma_{13}} (\beta') + T_{\beta'} T^{-1}_{\gamma_{13}} (\beta''_j) = x_j (T_{\beta'} T^{-1}_{\gamma_{13}} (\beta') + T_{\beta'} T^{-1}_{\gamma_{13}} (\beta'').$$

Applying recursively Eq. (4.13) from $j = 3$ to $j = g$, we get the following formula:

$$T_{\beta'} T^{-1}_{\gamma_{13}} (\beta''_j) = T_{\beta'} T^{-1}_{\gamma_{13}} + \sum_{i=3}^{g} x_i (T_{\beta'} T^{-1}_{\gamma_{13}} (\beta') + T_{\beta'} T^{-1}_{\gamma_{13}} (\beta'')).$$

In sequel we prove that for $3 \leq k \leq g$, in the coinvariant module,

$$T_{\beta'} T^{-1}_{\gamma_{13}} = T_{\beta'} T^{-1}_{\gamma_{13}} (\beta').$$

Consider the element $f_k \in \mathcal{A} \mathcal{B}_{g,1}$ given by the half twist of the shaded ball depicted in the following figure, that exchanges the holes 3 and k.

![Figure 8. Half twist f_k exchanging holes 3 and k.](image)

Since f_k leaves β, β' invariant and sends γ_{1k} to γ_{13}, for $3 \leq k \leq g$, in the coinvariant module, we have that

$$T_{\beta'} T^{-1}_{\gamma_{1k}} (\beta') = T_{\gamma_{1k}} T_{\beta'} T^{-1}_{\gamma_{1k}} = f_k T_{\gamma_{1k}} f^{-1}_k T_{\beta'} T^{-1}_{\gamma_{1k}} f^{-1}_k = T_{\gamma_{13}} T_{\beta'} T^{-1}_{\gamma_{13}} = T_{\beta'} T^{-1}_{\gamma_{13}} (\beta').$$

Therefore it is enough to show that in the coinvariant module,

$$T_{\beta'} T^{-1}_{\gamma_{13}} = T_{\beta'} T^{-1}_{\gamma_{13}} (\beta').$$
Since β_1, β_3 are disjoint with $\beta, \beta', \gamma_{13}$, we have that
\[T_{\beta}T_{\gamma_{13}'}^{-1}(\beta) = T_{\gamma_{13}}T_{\beta}T_{\beta'}^{-1}T_{\gamma_{13}}^{-1} = (T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3})T_{\beta}T_{\beta'}^{-1}(T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3})^{-1}. \]

Now take $f \in AB_{g,1}$ given by $f = T_{\alpha_3}T_{\eta_{34}}T_{\beta_4}$, where $\alpha_3, \eta_{34}, \beta_4$ are the curves on $\Sigma_{g,1}$ given in the following picture:

![Diagram of curves](image)

Figure 9. Curves involved in the definition of $f \in AB_{g,1}$.

Since $\alpha_3, \eta_{34}, \beta_4$ do not intersect either of β, β', the element f commutes with $T_{\beta}T_{\beta'}^{-1}$ and in the coinvariant module we have that
\[T_{\beta}T_{\gamma_{13}'}^{-1}(\beta) = (f(T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3})f^{-1})T_{\beta}T_{\beta'}^{-1}(f(T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3})f^{-1})^{-1}. \]
(4.16)

Observe that
\[
\Psi(f(T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3})f^{-1}) = \Psi(f)\Psi(T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3})\Psi(f^{-1}),
\]
\[
\Psi(T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3}) = \Psi(T_{\alpha_3}^{-1}T_{\eta_{34}}T_{\beta_4}).
\]
\[
\Psi(T_{\gamma_{13}}T_{\beta_3}) = \Psi(T_{\gamma_{13}}T_{\beta_3})^{-1} = \left(0 \text{Id} \right).
\]
\[
\Psi(f) = \Psi(T_{\alpha_3}^{-1}T_{\eta_{34}}T_{\beta_4}) = \left(Id - E_{34} \quad 0 \right),
\]
\[
\Psi(f^{-1}) = \Psi(f)^{-1} = \left(Id + E_{34} \quad 0 \right).
\]

A direct computation shows that
\[
\Psi(f(T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3})f^{-1}) = \Psi((T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3})(T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3})^{-1}).
\]

Then, by the short exact sequence (3.11), there is an element $\xi_b \in LTB_{g,1}$ such that
\[f(T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3})f^{-1} = \xi_b(T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3})(T_{\beta_1}^{-1}T_{\gamma_{13}}T_{\beta_3})^{-1}. \]
(4.17)

Since $T_{\beta_1}, T_{\beta_3}, T_{\beta_4}$ commute with $T_{\gamma_{13}}, T_{\gamma_{14}}, T_{\beta}, T_{\beta'}$, and f commutes with $T_{\beta}, T_{\beta'}$, by the Eqs. (4.16) and (4.17), in the coinvariant module, we get that
\[T_{\beta}T_{\gamma_{13}'}^{-1}(\beta) = (T_{\gamma_{13}}^{-1}T_{\gamma_{14}}T_{\beta}T_{\beta'}^{-1}(T_{\gamma_{13}}T_{\gamma_{14}})^{-1} = T_{\beta}T_{\gamma_{13}}T_{\gamma_{14}}(\beta'). \]
(4.18)
Notice that we have the following equation:

\[T_\beta T_{\gamma_{13}}^{-1} T_{\gamma_{14}} (\beta') = T_\beta T_{\beta'}^{-1} + T_{\beta'} T_{\gamma_{13}}^{-1} (\beta) + T_{\gamma_{13}}^{-1} (\beta) T_{\gamma_{13}}^{-1} T_{\gamma_{14}} (\beta'). \]

Conjugating the last two terms by \(T_{\gamma_{13}}^{-1} T_{\gamma_{14}} (\beta') \in AB_{g,1} \), in the coinvariant module,

\[T_\beta T_{\gamma_{13}}^{-1} T_{\gamma_{14}} (\beta') = T_\beta T_{\beta'}^{-1} + T_{\gamma_{13}}^{-1} (\beta') T_\beta^{-1} + T_\beta T_{\gamma_{14}}^{-1} (\beta'), \]

and conjugating the last term by \(f_4 \in AB_{g,1} \), in the coinvariant module,

\[T_\beta T_{\gamma_{13}}^{-1} T_{\gamma_{14}} (\beta') = T_\beta T_{\beta'}^{-1} - T_\beta T_{\gamma_{14}}^{-1} (\beta') + T_\beta T_{\gamma_{13}}^{-1} (\beta'). \quad (4.19) \]

Hence, by the Eqs. (4.18) and (4.19),

\[T_\beta T_{\gamma_{13}}^{-1} T_{\gamma_{14}} (\beta') = T_\beta T_{\beta'}^{-1} - T_\beta T_{\gamma_{14}}^{-1} (\beta') + T_\beta T_{\gamma_{13}}^{-1} (\beta'). \]

Then in the coinvariant module \(T_\beta T_{\beta'}^{-1} = T_\beta T_{\gamma_{14}}^{-1} (\beta') \) and by the Eqs. (4.13), (4.14) and (4.11), \(T_\beta T_{\gamma_{14}}^{-1} (\beta') \) is equivalent to \(T_\beta T_{\beta'}^{-1} \), and hence all CBP-twists of genus one are equivalent.

Step 2. We show that all CBP-twists of genus 1 are equivalent to zero using Step 1 and the lantern relation.

First of all notice that all CBP-twists of genus one have 2-torsion since by Step 1, \(T_\nu T_{\nu'}^{-1} = T_{\nu'} T_{\nu'}^{-1} \). Then, any CBP-twists of genus two is equivalent to zero since by Proposition 3.4, any CBP-twists of genus two is a product of two CBP-twists of genus one.

Consider the following curves in the standardly embedded surface \(\Sigma_{g,1} \):

![Figure 10. Two lantern configurations embedded in \(\Sigma_{g,1} \).](image-url)

Observe that for \(i = 1, 2, 3 \), \(T_\zeta T_{\zeta_i}^{-1} \) are CBP-twists of genus 1, \(T_\xi T_{\xi_i}^{-1} \) are CBP-twists of genus 2. Consider the following lantern relations:
(T_{\xi_2^{-1}} T_{\xi_1^{-1}})(T_{\xi_3^{-1}} T_{\xi_2^{-1}}) = T_\gamma, \quad (T_{\xi_1^{-1}} T_{\xi_2^{-1}})(T_{\xi_3^{-1}} T_{\xi_2^{-1}}) = T_\gamma.

Figure 11. Lantern configurations with the induced lantern relations.

Putting these relations together we get that

\[(T_{\xi_1^{-1}} T_{\xi_2^{-1}}) = (T_{\xi_2^{-1}} T_{\xi_1^{-1}})(T_{\xi_3^{-1}} T_{\xi_2^{-1}}) = (T_{\xi_2^{-1}} T_{\xi_1^{-1}})(T_{\xi_3^{-1}} T_{\xi_2^{-1}})(T_{\xi_1^{-1}} T_{\xi_2^{-1}}).
\]

Since all CBP-twists of genus one are equivalent and all CBP-twists of genus two are equivalent to zero, \(T_{\xi_1^{-1}} T_{\xi_2^{-1}}\) is equivalent to zero, and we conclude by Step 1. \(\square\)

Proof of Theorem 1.1. Let \(A\) be an abelian group, recall that we denote by \(A_2\) the subgroup of 2-torsion elements of \(A\). For a given integer \(g \geq 4\), consider the BCJ-homomorphism \(\sigma : T_{g,1} \to \mathcal{B}_3\), the projection \(\pi_g : \mathcal{B}_3 \to \mathcal{B}_0 \cong \mathbb{Z}/2\) and the injection \(\varepsilon^x : \mathcal{B}_0 \to A_2\) defined by sending \(\overline{1}\) to \(x \in A_2\). By Proposition 4.1, composing the pull-back of the aforementioned homomorphisms we get the following sequence of isomorphisms:

\[
A_2 \xrightarrow{(\varepsilon^x)^*} \text{Hom}(\mathbb{Z}/2, A) \xrightarrow{\sigma^* \circ \pi^*} \text{Hom}(H_1(T_{g,1}; \mathbb{Z}), \mathcal{A}_{\mathcal{B}_g,1}, A) = \text{Hom}(T_{g,1}, A)^{\mathcal{A}_{\mathcal{B}_g,1}}.
\]

Therefore we get an isomorphism

\[
\lambda : A_2 \xrightarrow{\sim} \text{Hom}(T_{g,1}, A)^{\mathcal{A}_{\mathcal{B}_g,1}}
\]

\[
x \mapsto \mu^x_g = \varepsilon^x \circ \pi_g \circ \sigma.
\]

We show that the family of homomorphisms \(\{\mu^x_g\}_g\) reassemble into the Rohklin invariant. By the constructions of \(\sigma, \pi_g\) and \(\varepsilon^x\), these maps are compatible with the stabilization map and then the compositions of these maps \(\{\mu^x_g\}_g\) are also compatible with the stabilization map. By Lemma 1.1, the \(\mathcal{A}_{\mathcal{B}_g,1}\)-invariant homomorphisms \(\{\mu^x_g\}_g\) are zero on \(T \mathcal{A}_{g,1}, T \mathcal{B}_{g,1}\). Then, by the bijection 4.1, the family of homomorphism \(\{\mu^x_g\}_g\) reassemble into an invariant of integral homology 3-spheres. Besides, precomposing the Rohlin invariant \(R : S^3 \to \mathbb{Z}/2\) with the bijection 4.1 we get a family of homomorphisms \(\{R_g\}_g\) with \(R_g \in \text{Hom}(T_{g,1}; \mathbb{Z}/2)^{\mathcal{A}_{\mathcal{B}_g,1}}\). Since there is only one non-zero element in \(\text{Hom}(T_{g,1}; \mathbb{Z}/2)^{\mathcal{A}_{\mathcal{B}_g,1}}\), by Proposition 4.1, \(\pi_g \circ \sigma\) and \(R_g\) must coincide. Therefore, \(\mu^x_g\) and \(\varepsilon^x \circ R_g\) must coincide too.
5. Application

As we learnt from [10], for a given invariant of integral homology 3-spheres \(F : S^3 \rightarrow A \) there is an associated family of trivial 2-cocycles \(\{ C_g \} \) on the Torelli group which measure the failure of the maps \(\{ F_g \} \) to be homomorphisms of groups,

\[
C_g : T_{g,1} \times T_{g,1} \rightarrow A \\
(\phi, \psi) \mapsto F_g(\phi) + F_g(\psi) - F_g(\phi \psi).
\]

Since \(F \) is an invariant, this family of 2-cocycles inherits the following properties:

1. The 2-cocycles \(\{ C_g \} \) are compatible with the stabilization map,
2. The 2-cocycles \(\{ C_g \} \) are invariant under conjugation by elements in \(AB_{g,1} \),
3. If \(\phi \in TA_{g,1} \) or \(\psi \in TB_{g,1} \) then \(C_g(\phi, \psi) = 0 \).

In the sequel, we show that for a given family of trivial 2-cocycles satisfying the conditions (1)-(3) and with a \(AB_{g,1} \)-invariant trivialization, this family induces \(A_2 \)-valued invariants of integral homology 3-spheres.

First we show two other ways of expressing the condition about the existence of a \(AB_{g,1} \)-invariant trivialization. Consider \(Q_{C_g} \) the set of all trivializations of the 2-cocycle \(C_g \):

\[
Q_{C_g} = \{ q : T_{g,1} \rightarrow A \mid q(\phi) + q(\psi) - q(\phi \psi) = C_g(\phi, \psi) \}.
\]

Recall that any two trivializations of a given 2-cocycle differ by an element of \(Hom(T_{g,1}, A) \). As the cocycle \(C_g \) is invariant under conjugations by \(AB_{g,1} \), this group acts on \(Q_{C_g} \) via its conjugation action on the Torelli group and it confers the set \(Q_{C_g} \) the structure of an affine set over the abelian group \(Hom(T_{g,1}, A) \). Then the existence of an \(AB_{g,1} \)-invariant trivialization is equivalent to the existence of a fixed point for the action of \(AB_{g,1} \in Q_{C_g} \).

This condition can be also seen as a cohomological condition: choose an arbitrary element \(q \in Q_{C_g} \) and define a map as follows

\[
\rho_q : AB_{g,1} \rightarrow Hom(T_{g,1}, A) \\
\phi \mapsto \phi \cdot q - q.
\]

A direct computation shows that \(\rho_q \) is a derivation and the difference \(\rho_q - \rho_{q'} \) for two elements in \(Q_{C_g} \) is a principal derivation. Therefore there is a well-defined cohomology class

\[
\rho(C_g) \in H^1(AB_{g,1}; Hom(T_{g,1}, A))
\]

called the torsor of the cocycle \(C_g \).

Proposition 5.1. The natural action of \(AB_{g,1} \) on \(Q_{C_g} \) admits a fixed point if and only if the associated torsor \(\rho(C_g) \) is trivial.

Finally, we finish this section with the proof of the main theorem of this paper.
Proof of Theorem 1.2. Suppose that for every $g \geq 4$ there is a fixed point q_g of QC_g for the action of $AB_{g,1}$ on QC_g. Since every pair of $AB_{g,1}$-invariant trivializations differ by an $AB_{g,1}$-invariant homomorphism, by Theorem 1.1 the fixed points are $q_g + \mu^x_g$ with $x \in A_2$.

By construction, the family $\{\mu^x_g\}_g$ is compatible with the stabilization map. Then, given two different fixed points q_g, q'_g of QC_g for the action of $AB_{g,1}$, we have that the following equation holds:

$$q_g|_{T_{g-1,1}} - q'_g|_{T_{g-1,1}} = (q_g - q'_g)|_{T_{g-1,1}} = \mu^x_g|_{T_{g-1,1}} = \mu^x_{g-1}.$$

Therefore the restriction of the trivializations of QC_g to $T_{g-1,1}$ give us a bijection between the fixed points of QC_g for the action of $AB_{g,1}$ and the fixed points of QC_{g-1} for the action of $AB_{g-1,1}$. Consequently, for a given $AB_{g,1}$-invariant trivialization q_g and each $x \in A_2$, we get a well-defined map

$$q + \mu^x = \lim_{g \to \infty} q_g + \mu^x_g : \lim_{g \to \infty} T_{g,1} \to A.$$

These are the only candidates to be A-valued invariants of integral homology 3-spheres with associated family of 2-cocycles $\{C_g\}_g$. For these maps to be invariants, since they are already $AB_{g,1}$-invariant, we only have to prove that they are well-defined on the double cosets $T_{g,1}/T_{g-1,1}$.

From property (3) of our cocycle we have that $\forall \phi \in T_{g,1}$, $\forall \psi_a \in TA_{g,1}$ and $\forall \psi_b \in TB_{g,1}$,

$$(q_g + \mu^x_g)(\phi) - (q_g + \mu^x_g)(\phi\psi_b) = -(q_g + \mu^x_g)(\psi_b),$$

$$(q_g + \mu^x_g)(\phi) - (q_g + \mu^x_g)(\psi_a\phi) = -(q_g + \mu^x_g)(\psi_a).$$

(5.1)

(5.2)

In particular, taking $\phi \in TB_{g,1}$ in (5.1) and $\phi \in TA_{g,1}$ in (5.2), we get that $q_g + \mu^x_g$ are $AB_{g,1}$-invariant homomorphisms on $TA_{g,1}$ and $TB_{g,1}$ and by Lemma 4.1 the maps $q_g + \mu^x_g$ are zero on these last two groups. Therefore the maps $q_g + \mu^x_g$ are well-defined on the double coset $TA_{g,1}/T_{g-1,1}/TB_{g,1}$.

Acknowledgments

The author would like to express his gratitude to Prof. Wolfgang Pitsch from Universitat Autònoma de Barcelona for his encouragement and helpful advices throughout all this work. This work was partially supported by MEC grant MTM2016-80439-P.
References

[1] H. Burkhardt. Grundzüge einer allgemeinen Systematik der hyperelliptischen Functionen I. Ordnung. *Math. Ann.*, 35 (1-2): 198–296, 1889.

[2] B. Farb and D. Margalit. *A primer on mapping class groups*, volume 49 of *Princeton Mathematical Series*. Princeton University Press, Princeton, NJ, 2012.

[3] A. Hatcher. Notes on basic 3-manifold topology.

[4] D. Johnson. Quadratic forms and the Birman-Craggs homomorphisms. *Trans. Amer. Math. Soc.*, 261 (1): 235–254, 1980.

[5] D. Johnson. The structure of the Torelli group. III. The abelianization of *I*. *Topology*, 24 (2): 127–144, 1985.

[6] J. Johnson. Notes on heegaard splittings. *Preprint*, 2006.

[7] E. Luft. Actions of the homeotopy group of an orientable 3-dimensional handlebody. *Math. Ann.*, 234 (3): 279–292, 1978.

[8] W. Magnus. Über n-dimensionale Gittertransformationen. *Acta Math.*, 64 (1): 353–367, 1935.

[9] G. Omori. A small normal generating set for the handlebody subgroup of the Torelli group. *Geom. Dedicata*, 201: 353–367, 2019.

[10] W. Pitsch. Trivial cocycles and invariants of homology 3-spheres. *Adv. Math.*, 220 (1): 278–302, 2009.

Universitat Autònoma de Barcelona, Departament de Matemàtiques, Bellaterra, Spain

Email address: riba@mat.uab.cat