Measurement of the time structure of FLASH beams using prompt gamma rays and secondary neutrons as surrogates

Serdar Charyyev1,2,∗, Ruirui Liu2, Xiaofeng Yang2, Jun Zhou1, Anees Dhabaan1,2, William S Dynan2,3, Cristina Oancea4,5 and Liyong Lin2

1 Department of Radiation Oncology, Stanford University, Palo Alto, CA 94305, United States of America
2 Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
3 Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, United States of America
4 ADVACAM, Prague, Czech Republic
5 University of Bucharest, Bucharest, Romania

∗ Author to whom any correspondence should be addressed.
E-mail: charyyev@stanford.edu

Keywords: FLASH, prompt gamma, secondary neutrons, semiconductor detector, dose rate, proton therapy

Abstract

Objective. The aim of this study was to investigate the feasibility of online monitoring of irradiation time (IRT) and scan time for FLASH proton radiotherapy using a pixelated semiconductor detector.

Approach. Measurements of the time structure of FLASH irradiations were performed using fast, pixelated spectral detectors based on the Timepix3 (TPX3) chips with two architectures: Advapix-TPX3 and Minipix-TPX3. The latter has a fraction of its sensor coated with a material to increase sensitivity to neutrons. With little or no dead time and an ability to resolve events that are closely spaced in time (tens of nanoseconds), both detectors can accurately determine IRTs as long as pulse pile-up is avoided. To avoid pulse pile-up, the detectors were placed well beyond the Bragg peak or at a large scattering angle. Prompt gamma rays and secondary neutrons were registered in the detectors’ sensors and IRTs were calculated based on timestamps of the first charge carriers (beam-on) and the last charge carriers (beam-off). In addition, scan times in x, y, and diagonal directions were measured. The experiment was carried out for various setups: (i) a single spot, (ii) a small animal field, (iii) a patient field, and (iv) an experiment using an anthropomorphic phantom to demonstrate in vivo online monitoring of IRT. All measurements were compared to vendor log files.

Main results. Differences between measurements and log files for a single spot, a small animal field, and a patient field were within 1%, 0.3% and 1%, respectively. In vivo monitoring of IRTs (95–270 ms) was accurate within 0.1% for Advapix-TPX3 and within 6.1% for Minipix-TPX3. The scan times in x, y, and diagonal directions were 4.0, 3.4, and 4.0 ms, respectively.

Significance. Overall, the Advapix-TPX3 can measure FLASH IRTs within 1% accuracy, indicating that prompt gamma rays are a good surrogate for primary protons. The Minipix-TPX3 showed a somewhat higher discrepancy, likely due to the late arrival of thermal neutrons to the detector sensor and lower readout speed. The scan times (3.4 ± 0.05 ms) in the 60 mm distance of y-direction were slightly less than (4.0 ± 0.06 ms) in the 24 mm distance of x-direction, confirming the much faster scanning speed of the Y magnets than that of X. Diagonal scan speed was limited by the slower X magnets.

1. Introduction

A series of studies (Favaudon et al 2014, Loo et al 2017, Montay-Gruel et al 2017, Vozenin et al 2019a) have demonstrated that irradiation delivered with ultra-high dose rate (>40 Gy s−1), also known as FLASH, has a sparing effect on normal tissue due to ‘FLASH effect’. In their groundbreaking work, Favaudon et al (2014) have demonstrated the effect in nude mice in which they used low-energy electrons to irradiate their target. The same
FLASH irradiator was used to treat the first patient with FLASH radiotherapy, a cutaneous lymphoma patient (Bourhis et al 2019). Utility of electrons is limited to the superficial targets as they are not penetrative enough for deeper tumors. There are efforts that have shown FLASH effect is possible with x-rays, both in kV (Montay-Gruel et al 2018, Smyth et al 2018, Montay-Gruel et al 2019) and MV (Kutsaev et al 2021) range. Both kV and MV x-rays are suitable for irradiation of small volumes and for in vitro studies, however, isoecentric treatments which achieve FLASH dose rates are difficult to realize.

An attractive and readily available option to deliver a FLASH beam is with cyclotron-based protons, specifically pencil beam scanning (PBS), since PBS can be better controlled in terms of position and intensity (Paganetti 2012). Moreover, protons are more penetrative, offer finite range, and are radiobiologically more effective (Paganetti et al 2019).

With FLASH gaining a lot of momentum, determination of dose rate is a key factor in such a delivery. Average dose rate for FLASH studies is defined as the ratio of delivered dose to the irradiation time (IRT) and requires accurate measurement of both the dose and the IRT. IRT, in this definition, includes the sum of individual spot durations plus the time it takes for the beam to move between spots (scan time). Cyclotron-based proton systems have pulse repetition and duration rates in the order of nanoseconds and can be considered as continuous wave sources (Ashraf et al 2020) for the context of this study. IRT (in the order of ms, if not μs) is usually obtained from log files (Diffenderfer et al 2021) and needs to be verified with measurements.

Commercially available detectors and quality assurance devices do not offer a temporal resolution in such granularity. Hence, the dosimetry for FLASH must rely on detectors with poor or no time resolution. Clearly, there is a need to know and monitor the IRT for FLASH. One way to measure IRT is to use prompt gamma rays (PG) or secondary neutrons (SN) which are emitted within nanoseconds after proton interactions, which can be considered ‘real-time’ (Golnik et al 2014, Diffenderfer et al 2020, Haertter et al 2021). Consequently, they are good surrogates for primary proton IRT. Haertter et al investigated the feasibility of real-time dose rate monitoring via PG timing using NaI(Tl) crystal coupled to a photomultiplier tube. They placed the NaI(Tl) detector along the beamline at a distance of 73 cm from the first scatterer (the source of PGs) where the gamma count rate was ∼7 × 10⁵ counts s⁻¹ at the detector saturation. They have concluded that due to scintillation afterglow, real-time dose monitoring is possible for irradiations less than 36 Gy s⁻¹. For real-time monitoring with higher dose rates, NaI is susceptible to PG count saturation (Haertter et al 2021). More recently, strip ionization chambers are becoming popular for real-time monitoring (Zhou et al 2022, Yang et al 2022). Yang et al successfully demonstrated the feasibility of FLASH beam monitoring up to a 20 kHz sampling rate using a 2D strip ionization chamber.

As an alternative and potentially 100–1000 times faster, a semiconductor detector based on the Timepix3 (TPX3) chips developed at CERN (Poikela et al 2014) can be used for the better IRT monitoring purposes, especially in a radiofrequency modulated beams with ∼10 ns pulses. The TPX3 instrumentation and methodology were used in conventional and FLASH proton beams due to their high spatial resolution (sub-pixel level) for linear energy transfer (LET) measurements (Charyyev et al 2021, Granja et al 2021, Harrison et al 2022), for dose measurements inside water (Oancea et al 2023), for monitoring and identifying the secondary particles created in proton and carbon ion therapy (Jakubek et al 2011, Martisikova et al 2011), for range monitoring (Martisikova et al 2012), for ion detection and charged particle tracking (Granja et al 2013, Bergmann et al 2017), and for proton radiography (Biegun et al 2016, Wurl et al 2020, Charyyev et al 2021).

In this work, we aim to investigate the feasibility of online monitoring of IRT and scan time for FLASH proton radiotherapy using a pixelated semiconductor detector. Because of the complexity and speed of FLASH delivery, and because clinical interpretation of outcomes relies on spot-by-spot dose rates, it is important to know the IRT instantaneously. It is anticipated that methods like we developed in this work are implemented for a real-time patient in vivo FLASH monitoring.

2. Materials and methods

2.1. Detectors and experimental setup
PG and SNs were tracked using fast, hybrid semiconductor pixelated spectral detectors (ADVACAM s.r.o., Czech Republic), AdvPiX-TPX3 and Minipix-TPX3 with different readout speeds: 4 × 10⁶ hits s⁻¹ and 2.35 × 10⁶ hits s⁻¹, respectively. A detailed description of each detector and their capabilities is explained elsewhere (Granja et al 2018, Charyyev et al 2021, Granja et al 2021). Briefly, each comes with an advanced semiconductor pixel ASIC readout chip, TPX3, bonded to either 500 μm (for AdvPiX-TPX3) or 650 μm (for Minipix-TPX3) thick silicon sensor (Oancea et al 2022). The TPX3, developed within the Medipix collaboration at CERN, is position, energy and time sensitive. For each ionizing particle, it digitally registers its position, energy loss, time of arrival and track shape. These data about each detected particle are either read-out immediately (in
pixel mode) at a maximal rate of 2.35×10^6 hits s$^{-1}$ for Minipix-TPX3 and 4×10^7 hits s$^{-1}$ for AdvaPIX-TPX3 or accumulated in images (frame mode) and read out later at a maximal speed of 16 frames s$^{-1}$. Total sensitive area of the detector is $14.08 \text{ mm} \times 14.08 \text{ mm}$ divided into a matrix of 256×256 energy sensitive pixels with a pixel pitch of $55 \mu\text{m}$. Each ionizing particle generates a signal that involves multiple pixels forming a cluster of pixels which will have unique characteristic patterns, i.e. morphology, in the pixelated semiconductor sensor. These clusters are a result of the convolution of the deposited charge along the particle’s path, which spreads the deposited charge into adjacent pixels. The extent of this spread depends on the applied bias and the distance to the pixelated electrode. The detectors were operated at the lowest bias recommended during calibration (80 V for the 500 μm thick Si sensor). The detectors are controlled via USB2.0 interface with standard μUSB connector and via the satellite port. Data acquisition is done via a complex software PIXET PRO (ADVACAM s.r.o 2022).

The AdvaPIX-TPX3 is a high-performance, fast readout, rigid detector (Poikela et al 2014). The Minipix-TPX3, is a miniaturized version of the AdvaPIX-TPX3 and it has a fraction of its sensor coated with a material (made out of ^6LiF) to increase sensitivity to thermal neutrons. Thermal neutrons interact with ^6Li creating triton and alpha particle ions, which generate easily recognizable, thick, circular clusters in the detector sensor. Thermal neutron detection efficiency for Minipix-TPX3 with the converter is 1$\%$–2$\%$ (Solc et al 2022).

To avoid pulse pile-up, we placed the AdvaPIX-TPX3 well beyond Bragg peak, where gamma fluence is low, figure 1(A). We placed Minipix-TPX3 at a large scattering angle to minimize the flux even further, as Minipix-TPX3’s readout speed is much lower than that of AdvaPIX-TPX3’s. In figure 1(B), one can see the simulated particle hits mm$^{-2}$ that can be detected for each detector at their corresponding locations, as shown in figure 1(A), when 5×10^6 primary protons are simulated. Neutron, proton, and gamma hits mm$^{-2}$ are indicated with green, blue, and red colors, respectively. The predicted particle hits mm$^{-2}$ at detector’s sensor was obtained using a well-established Monte Carlo code, Tool for Particle Simulation (TOPAS) (Perl et al 2012), version 3.1. p2. Modeling of PBS characteristics in TOPAS is done based on methods described elsewhere (Charyyev et al 2020). The choice of 5×10^6 is not random but corresponds to approximately 1 monitor unit (MU) of 250 MeV protons, roughly the minimal number of protons that can be delivered. The number of particles that interact with the detector and deposit energy above the threshold is 13 ± 4 particles. At 150 nA nozzle current, the
detected fluence rate at the detector surface at a depth of 56 cm is 3×10^5 hits s$^{-1}$ for AdvaPIX-TPX3 and 2×10^5 hits s$^{-1}$ for Minipix-TPX3. These are well within readout speed (4×10^7 hits s$^{-1}$) of AdvaPIX-TPX3 and Minipix-TPX3 (2.35×10^6 hits s$^{-1}$). Figure 1(C) shows the setup of anthropomorphic phantom to demonstrate the feasibility of in vivo online monitoring.

2.2. Principle of IRT determination

Each incident particle generates a charge signal that is detected in the sensor and identified as a cluster (or a particle) track with a timestamp. IRT can be calculated based on timestamps of the first detected cluster (beam-on) and the last cluster (beam-off) arriving on the sensor. IRT includes the sum of individual spot durations plus the time it takes for the beam to move between spots (scan time). In other words, $IRT = \{t(\text{spot1}) + t(\text{spot1} \rightarrow \text{spot2}) + t(\text{spot2}) + t(\text{spot2} \rightarrow \text{spot3}) + t(\text{spot3}) + \ldots\}$. In continuous line scanning delivery method (our PBS system’s delivery), beam remains on between spots, i.e. there is no scan time when distances between spots are below the customizable threshold (10 mm for our PBS system) (Li et al. 2022). To introduce the scan time, distance between two spots was set as 24 mm in the x-direction and 60 mm in the y-direction. Figure 2 and table 1 show the principle of IRT determination on a sample measured FLASH field, with an average dose rate (Folkerts et al. 2020) of \sim50 Gy s$^{-1}$ delivered over 270 ms. Panel (A) illustrates particle detection behind the Bragg curve and track visualization for a photon, an electron, a proton and a heavy charged particle with each of them having a distinct morphology. As seen in figure 2(A), several morphologies are possible: (i) due to photons, small blobs occupying 1–2 pixels, (ii) due to electrons, long, narrow and usually not straight tracks occupying multiple pixels, (iii) due to protons, straighter and wider clusters (with length to width ratio of above 1.3) occupying more than 5 pixels, (iv) due to heavy charged particles, large and circular blobs that occupy more than 5 pixels. Table 1 lists the first 20 of 150 000 total clusters (particles) registered by the detector for this sample measurement. Panel (B) of figure 2 shows a plot of the time structure of this sample FLASH field. The beam is on during the steep portion of the curve. Panel (C) shows time structure on an expanded scale, corresponding to 1.5 μs of the 270 ms irradiation. With little or no dead time and an ability to resolve events that are closely spaced in time (tens of nanoseconds), both detectors can accurately determine IRTs as long as pulse pile-up is avoided (Usman and Patil 2018).

2.3. Proton beam accelerator and workflow

The experiments were carried out using a Varian ProBeam PBS system capable of delivering 250 MeV (the highest energy) at various beam currents in its special ‘Racehorse’ mode. We followed the steps as outlined in figure 3 to demonstrate accurate IRT and scan time measurements and the feasibility of online time monitoring. Firstly, a single spot IRT at clinical beam current, \sim5 nA was experimentally investigated. Afterwards, beam current was gradually increased to test if and when the IRT measurement becomes inaccurate, thereby exposing the detector sensor to a gradual step up of the flux and testing its limits at FLASH dose rates. This step was followed by a measurement of IRT of a small animal field, a 30×30 mm2 field at isocenter created using scanned spots with 5 mm spot spacing (i.e. 7 spots in both x- and y-direction, with a total of 49 spots). This is a typical irradiation map used for irradiating mice as part of an ongoing small animal studies in this center. Measurement for the small animal field was repeated five times to check reproducibility and to quantify the uncertainty. Furthermore, scan times and speeds in x, y, and diagonal directions were measured. To achieve this, two spots separated by 24 mm in the x-direction or 60 mm in the y-direction were delivered. For the diagonal scan, two spots separated by 24 mm in both x- and y-directions were delivered. Moreover, the capability of the detector to measure the beam-off by triggering a beam fault when trying to scan in x-direction with a very large interspot
distance of 60 mm was demonstrated. Afterwards, the IRT of a patient field with spots of irregular spacings to mimic realistic fields that could be delivered in clinical scenarios was measured. Lastly, we delivered a ridge filter optimized field and measured IRT for it, first with AdvapIX-TPX3 followed by a measurement with Minipix-TPX3. We performed these measurements using anthropomorphic phantom to demonstrate the feasibility of \textit{in vivo} online monitoring. The ridge filter optimized field has irregular spot spacings and irregular monitor units.

Table 1. Particles as registered by the detector from the sample (from figure 2). FLASH field measurement (only the first 30 registrations are shown) and individual cluster parameters determined for each particle (coincidence ID, timestamp, size, deposited energy, position in x and y direction, maximum deposited energy in a pixel, etc) are listed.

Coincidence ID	Time (ns)	Size (px)	Energy (keV)	Center X (px)	Center Y (px)	Height (keV)	Max time (ns)
1	189 900 388.00	2	236.671	191.862	129	204.096	1.90E+08
2	189 900 455.00	2	19.7586	192.399	204	27.4716	4.57E+08
3	316 722 486.00	7	367.474	69.9589	241.325	109.549	3.17E+08
4	456 853 917.00	1	27.4716	233	204	27.4716	4.57E+08
5	1426 229 392.00	4	203.204	241.141	206.526	93.2913	1.43E+09
6	1426 231 015.00	6	239.202	245.317	241.882	74.2992	1.43E+09
7	1426 234 897.00	7	178.814	202.797	139.146	42.5198	1.43E+09
8	1426 236 291.00	5	220.058	47.06	152.764	103.888	1.43E+09
9	1426 236 443.00	14	1582.15	169.61	26.0931	433.818	1.43E+09
10	1426 236 890.00	106	1290	225.948	162.974	715.864	1.43E+09
11	1426 237 343.00	24	445.866	149.867	235.583	84.1307	1.43E+09
12	1426 238 729.00	1	20.8524	117	14	20.8524	1.43E+09
13	1426 244 675.00	3	150.541	218.948	106.846	119.468	1.43E+09
14	1426 245 573.00	15	1859.98	1.35216	89.8298	502.356	1.43E+09
15	1426 250 231.00	28	3057.79	4.67326	236.416	366.721	1.43E+09
16	1426 250 522.00	5	633.519	28.9697	170.996	459.519	1.43E+09
17	1426 250 589.00	1	7.14286	28	170	7.14286	1.43E+09
18	1426 251 098.00	25	2469.93	115.03	244.717	296.79	1.43E+09
19	1426 251 608.00	7	250.511	191.879	33.4576	110.966	1.43E+09
20	1426 251 811.00	13	1455.24	245.207	129.946	340.315	1.43E+09
21	1426 255 674.00	13	1757.79	67.1128	51.3912	648.022	1.43E+09
22	1426 255 725.00	1	5.92878	69	51	5.92878	1.43E+09
23	1426 256 289.00	22	3058.32	178.17	14.8776	633.026	1.43E+09
24	1426 256 403.00	19	2546.21	67.3151	172.607	715.864	1.43E+09
25	1426 264 798.00	42	5984.93	185.708	91.4449	715.864	1.43E+09
26	1426 264 868.00	1	6.29798	188	94	6.29798	1.43E+09
27	1426 266 481.00	48	1214.48	11.6258	117.371	154.977	1.43E+09
28	1426 267 565.00	1	8.71817	126	221	8.71817	1.43E+09
29	1426 272 079.00	31	3142.86	132.702	27.0052	303.924	1.43E+09
30	1426 272 348.00	1	9.33486	131	104	9.33486	1.43E+09
for each spot and was designed based on a real patient’s tumor target and anatomy information. It is optimized to cover 3 cm diameter tumor volume using 250 MeV proton beam (Liu et al 2021, Liu et al 2023).

3. Results

Figure 4(A) illustrates the measured single spot IRTs as a function of beam current. IRT decreases as the beam current is increased for the first three increments and then stabilizes at 20 nA beam current. We measured IRT around constant 48 ms for the beam currents 20–150 nA. Our detector accurately measured IRT for beam current of 150 nA, highest our machine can achieve, without further modifications. Figure 4(B) illustrates the IRT reproducibility for a small animal field, a 30 × 30 mm² at isocenter created using scanned spots with 5 mm spot spacing. The timing resolution of the detector is in the ns level and measured standard deviations for 4A and 4B are 0.6 ms and 0.7 ms, respectively. For both of these, error bars are shorter than the marker itself.

Table 2. Comparison of measurements performed with the pixel detectors with log files obtained from the vendor for different FLASH irradiations scenarios investigated in this work. Reported values are average values of repeated measurements.

Description	Measurement time (ms)	Log file time (ms)	% (min, max) difference
Single spot	47.788	47.786	(–0.970, 0.820)
Small animal field (3 × 3 cm²)	288.16	288.28	(–0.34, 0.19)
Patient field	1920.7	1902.5	(0.4, 0.9)
In vivo, AdvaPIX-TPX3, PGs as surrogate	764.74	764.75	(<–0.01, 0.04)
In vivo, Minipix-TPX3, SNs as surrogate	808.5	764.7	(5.6, 6.1)

Table 2 shows for each spot and was designed based on a real patient’s tumor target and anatomy information. It is optimized to cover 3 cm diameter tumor volume using 250 MeV proton beam (Liu et al 2021, Liu et al 2023).

Figure 5 shows scan times in x, y, and diagonal directions, as reflected by the plateau region of the time structure for each irradiation. These scan times are measured by AdvaPIX-TPX3. Each plot encompasses the irradiation of two spots, separated by 24 mm in the x-direction (figure 5(A)), 60 mm in the y-direction (figure 5(B)), or 24 mm in both the x- and y-directions (figure 5(C), diagonal scan). The scan time in the x-direction, 4 ± 0.06 ms, resulted in scan speed of 6 mm ms⁻¹ and the scan time in the y-direction, 3.37 ± 0.05 ms, resulted in scan speed of 17.8 mm ms⁻¹, confirming the faster scanning speed of the Y magnets. Diagonal scan speed was limited by the slower X magnets. Figure 5(D) shows the time structure of the beam fault that was triggered when two spots were separated by 60 mm and scanned in x-direction.

for each spot and was designed based on a real patient’s tumor target and anatomy information. It is optimized to cover 3 cm diameter tumor volume using 250 MeV proton beam (Liu et al 2021, Liu et al 2023).

3. Results

Figure 4(A) illustrates the measured single spot IRTs as a function of beam current. IRT decreases as the beam current is increased for the first three increments and then stabilizes at 20 nA beam current. We measured IRT around constant 48 ms for the beam currents 20–150 nA. Our detector accurately measured IRT for beam current of 150 nA, highest our machine can achieve, without further modifications. Figure 4(B) illustrates the IRT reproducibility for a small animal field, a 30 × 30 mm² at isocenter created using scanned spots with 5 mm spot spacing. The timing resolution of the detector is in the ns level and measured standard deviations for 4A and 4B are 0.6 ms and 0.7 ms, respectively. For both of these, error bars are shorter than the marker itself.

Table 2. Comparison of measurements performed with the pixel detectors with log files obtained from the vendor for different FLASH irradiations scenarios investigated in this work. Reported values are average values of repeated measurements.

Description	Measurement time (ms)	Log file time (ms)	% (min, max) difference
Single spot	47.788	47.786	(–0.970, 0.820)
Small animal field (3 × 3 cm²)	288.16	288.28	(–0.34, 0.19)
Patient field	1920.7	1902.5	(0.4, 0.9)
In vivo, AdvaPIX-TPX3, PGs as surrogate	764.74	764.75	(<–0.01, 0.04)
In vivo, Minipix-TPX3, SNs as surrogate	808.5	764.7	(5.6, 6.1)

Table 2 shows for each spot and was designed based on a real patient’s tumor target and anatomy information. It is optimized to cover 3 cm diameter tumor volume using 250 MeV proton beam (Liu et al 2021, Liu et al 2023).

Figure 5 shows scan times in x, y, and diagonal directions, as reflected by the plateau region of the time structure for each irradiation. These scan times are measured by AdvaPIX-TPX3. Each plot encompasses the irradiation of two spots, separated by 24 mm in the x-direction (figure 5(A)), 60 mm in the y-direction (figure 5(B)), or 24 mm in both the x- and y-directions (figure 5(C), diagonal scan). The scan time in the x-direction, 4 ± 0.06 ms, resulted in scan speed of 6 mm ms⁻¹ and the scan time in the y-direction, 3.37 ± 0.05 ms, resulted in scan speed of 17.8 mm ms⁻¹, confirming the faster scanning speed of the Y magnets. Diagonal scan speed was limited by the slower X magnets. Figure 5(D) shows the time structure of the beam fault that was triggered when two spots were separated by 60 mm and scanned in x-direction.
4. Discussion

Among the results presented in section 3, several observations are noted and discussed in this section. First, one would expect IRT to get shorter and be linear, in theory, as beam current is increased. Looking at figure 4(A), we can see that it is getting shorter (though not perfectly linear) up to 15 nA beam current and then stays constant up to 150 nA beam current. We have observed that beyond 15 nA, monitoring ionization chamber saturates (probably due to ion recombination issues) and does not shut off beam on time. We have shown that independent raw charge measurements increase as a function of increasing beam current beyond 15 nA (Charyyev et al 2023).

There are other definitions of dose rate beyond average dose rate that are relevant for FLASH effect (Wilson et al 2019, Vozenin et al 2019b, Petersson et al 2020), for proton PBS, dose rate can be defined, at each point in the field, as the sum of contributions from multiple spots (Folkerts et al 2020, Zou et al 2021). In that sense, considering the subset of voxels in a field, the dose rate can be higher than the dose rate reported in the section 3 of this work. It is relevant to study dose rate in the context of sub-voxels, because the processes that are believed to be responsible for the FLASH effect happen at the cellular level.

In addition to being a much faster way of online monitoring of IRT, the proposed method offers the advantage of measuring LET over other existing methods (Charyyev et al 2021). Delivering the same LET radiation at FLASH dose rates will reduce oxygen enhancement ratio and increase relative biological effectiveness (RBE) (Jones 2022). With this dependence of RBE/LET on LET, integrated biological optimizations frameworks are proposed (Liu et al 2023) where dose, dose rate and LET are optimized simultaneously to deliver a more effective FLASH irradiation. It is conceivable that there will be a need for a methodology to measure dose, dose rate, and LET simultaneously. The extreme timing resolution (ns scale) would potentially be useful to characterize the timing structures of pulsed proton cyclotron and electron linear accelerators in the future, besides the fine spatial resolution for LET measurements.
We can see that repeated measurements reveal delivery is reproducible within 1%. Because of instabilities of monitoring ionization chamber to control the beam, secondary and possibly tertiary confirmation measurements of dose rate have to be performed. Also, this uncertainty needs to be taken into account when interpreting outcomes of studies with the current clinical system.

IRT was overestimated in measurements using SNs as a surrogate (with Minipix-TPX3). \(^{6} \text{LiF} \) will increase the detection efficiency for thermal neutrons, which arrive to the detector much later (few hundred \(\mu \)s to few ms) than fast neutrons (few ns). A potentially more accurate way to measure SNs would be to enhance the Minipix-TPX3 with a hydrogen rich plastic scintillator placed above the sensor. The signal from the plastic scintillator (together with photomultipliers) would be used as a trigger to open the TPX3 shutter to record coincident signals. This way, protons from the plastic scintillator recoiled by fast neutrons can be detected in TPX3 sensor. Detection of fast neutrons with TPX3 is an ongoing investigation by Granja et al. (2023).

Future work involves developing a dual detector method, a primary detector to measure the absolute dose at a high dose rate but periodically and a secondary detector to collect the whole acquisition time, as illustrated in this work. Such dual detector method can potentially explore the time resolution in nanosecond scale and other operation modes of the detectors, which would allow a larger particle flux rate and pile-up in the sensor area. These are typical conditions under which pulsed accelerators are operated for FLASH applications. We will propose a framework which enables IRT monitoring even when there is pulse pile-up by essentially saving the time-of-arrival until the end of the acquisition and not overriding it.

5. Conclusions

In this study, we have shown that IRT ranging from a few ms to hundreds of ms can be measured accurately with the proposed detection system and method. A very good agreement was found when using the pixeled detector AdvaPIX-TPX3 (within 0.1%). The IRT measurements with Minipix-TPX3 showed a discrepancy (within 6.1%) —likely due to late arrival of thermal neutrons to the detector sensor and lower readout speed— between the log files and results measured by the AdvaPIX-TPX3. Moreover, we were able to show scan time and differences between x-scan and y-scan speed in order of ms.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary information files). Data will be available from 27 March 2023.

ORCID iDs

Serdar Charyyev https://orcid.org/0000-0003-2486-4818
Xiaofeng Yang https://orcid.org/0000-0001-9023-5855

References

ADVACAM s.r.o Company MiniPIX TPX3 Datasheet 2022 (https://advacam.com/camera/minipix-tpx3)
Ashraf M R, Rahman M, Zhang R, Williams B B, Gladstone D J, Pogue B W and Bruza P 2020 Dosimetry for FLASH radiotherapy: a review of tools and the role of radioluminescence and Cherenkov emission Front. Phys. 8 328
Bergmann B et al 2017 3D track reconstruction capability of a silicon hybrid active pixel detector Eur. Phys. J. C 77 421
Bergmann B and Jelinek J 2022 Measurement of the \(^{212} \text{Po} \), \(^{214} \text{Po} \) and \(^{212} \text{Pb} \) half-life time with Timepix3 Eur. Phys. J. A 58 106
Biegun et al 2016 Proton radiography with timepix based time projection chambers IEEE Trans. Med. Imaging 35 1099–105
Bourhis J et al 2019 Treatment of a first patient with FLASH-radiotherapy Radiother. Oncol. : J. Eur. Soc. Ther. Radiol. Oncol. 139 18–22
Charyyev S, Artz M, Szalkowski G, Chang C W, Stanforth A, Lin L, Zhang R and Wang C C 2020 Optimization of hexagonal-pattern minibeams for spatially fractionated radiotherapy using proton beam scanning Med. Phys. 47 3485–95
Charyyev S, Chang C W, Harms J, Oancea C, Yoon S T, Yang X, Zhang T, Zhou J and Lin L 2021 A novel proton counting detector and method for the validation of tissue and implant material maps for Monte Carlo dose calculation Phys. Med. Biol. 66 045003
Charyyev S, Chang C-W, Zhu M, Lin L, Langen K and Dhabaan A 2023 Characterization of 250 MeV protons from Varian ProBeam pencil beam scanning system for FLASH radiation therapy Int. J. Part Ther. 9 279–89
Diffenderfer E et al 2020 Design, implementation, and \(\textit{in vivo} \) validation of a novel proton FLASH radiation therapy system Int. J. Radiat. Oncol. Biol. Phys. 106 440–8
Diffenderfer E S, Sorensen B S, Mazal A and Carlson D J 2021 The current status of preclinical proton FLASH radiation and future directions Med. Phys.
Favaudon V et al 2014 Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice Sci. Trans. Med. 6 245ra93
Folkerts M M, Abel E, Busold S, Perez J R, Krishnamurthi V and Ling C C 2020 A framework for defining FLASH dose rate for pencil beam scanning Med. Phys. 47 6396–404
Golnik C et al 2014 Range assessment in particle therapy based on prompt \(\gamma \)-ray timing measurements Phys. Med. Biol. 59 5399–422
Granja et al 2023 Detection of fast neutrons with the pixel detector Timepix3 J. Instrum. 18 P01003

Grana C et al 2013 Energy loss and online directional track visualization of fast electrons with the pixel detector Timepix' Rad. Meas. 59 245–61

Grana C, Kudela K, Jakubek J, Krist P, Chvatil D, Stursa J and Polansky S 2018 Directional detection of charged particles and cosmic rays with the miniaturized radiation camera MiniPIX Timepix Nucl. Instrum. Methods Phys. Res. A 911 142–52

Grana C et al 2021 Wide-range tracking and LET-spectra of energetic light and heavy charged particles Nucl. Instrum. Methods Phys. Res. A 988 164931

Haertter A, Kim M M, Zou J, Shoniyozov K, Avery S, Teo B, Metz J, Cengel K, Dong L and Diffenderfer E S 2021 Prompt gamma timing as a real-time relative dose rate monitor of FLASH proton delivery Med. Phys. 48 e297–9

Harrison N, Charyyev S, Oancea C, Stanforth A, Zhou S, Dyanan W, Zhang T, Biegalski S and Lin L 2022 Validation of the quantum physics processes underlying the integrated optimization of proton FLASH radiotherapy arXiv:2212.09936

Jakubek J et al 2011 Selective detection of secondary particles and neutrons produced in ion beam therapy with 3D sensitive voxel detector J. Instrum. 6 C12010

Jones B 2022 The influence of hypoxia on LET and RBE relationships with implications for ultra-high dose rates and FLASH modelling Phys. Med. Biol. 67 125011

Kutsaev S V et al 2021 Linear accelerator for security, industrial and medical applications with rapid beam parameter variation Radiat. Phys. Chem. 183 109398

Li H et al 2022 AAPM Task Group Report 290: respiratory motion management for particle therapy Med. Phys. 49 e50–81

Liu R et al 2023 An integrated biological optimization framework for proton SBRT FLASH treatment planning allows dose, dose rate, and LET optimization using patient-specific ridge filters Int J Radiat Oncol Biol Phys. (https://doi.org/10.1016/j.ijrobp.2023.01.048)

Liu R, Charyyev S, Zhou J, Yang X, Liu T, MacDonald M, Higgins K, Bradley J and Lin L 2021 Feasibility of 3D printed ridge filter to enable SBRT FLASH therapy using scanning proton beam Med. Phys. 48 e297

Loo B W, Schuler E, Lartey F M, Rafat M, King G J, Trovati S, Koong A C and Maxim P G 2017 Measurements of wide-range tracking and LET-spectra of energetic light and heavy charged particles Rad. Meas. 91 111–17

Martíšková M, Jakubek J, Granja C, Gwosch K, Hartmann B, Pospisil S and Jäkel O 2012 Investigation of the Timepix detector for beam convergence in ion beam therapy Radiother. Oncol. 102 S128–9

Montay-Gruel P et al 2019 Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species PNAS 116 10943–51

Montay-Gruel P et al 2018 X-rays can trigger the FLASH effect: ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice Radiother. Oncol. : J. Eur. Soc. Ther. Radiol. Oncol. 129 362–8

Montay-Gruel P et al 2017 Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy s−1 Radiother. Oncol. 124 365–9

Oancea C et al 2023 Out-of-field measurements and simulation of proton pencil beam in a wide range of dose rates using a Timepix3 detector: dose rate, flux and LET Phys. Med. 106 102529

Oancea C, Bălan C, Pivec J, Granja C, Jakubek J, Chvatil D, Olansky V and Chiş V 2022 Stray radiation produced in FLASH electron beams characterized by the MiniPIX Timepix3 5 detector J. Instrum. 17 C10013

Paganetti H 2012 Proton Therapy Physics (boca Raton: CRC Press)

Paganetti H et al 2019 Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy Med. Phys. 46 e53–78

Perl J, Shin J, Schumann J, Faddogon B and Paganetti H 2012 TOPAS: an innovative proton Monte Carlo platform for research and clinical applications Med. Phys. 39 6818–37

Petersson K, Adrian G, Butterworth K and McMahon S J 2020 A quantitative analysis of the role of oxygen tension in FLASH radiation therapy Int. J. Radiat. Oncol. Biol. Phys. 107 539–47

Poikela T et al 2014 Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout J. Instrum. 9 C03013–C

Smyth L M, Donoghue J F, Ventura J A, Livingstone J, Bailey T, Day L R J, Crosbie J C and Rogers P A W 2018 Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model Sci. Rep. 8 12044

Soč J et al 2022 Monte Carlo modelling of pixel clusters in Timepix detectors using the MCNP code Phys. Med. 79 79–86

Usman S and Patil A 2018 Radiation detector deadtime and pile up: a review of the status of science Nucl. Eng. Technol. 50 1006–16

Vözenin M et al 2019a The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients Clin. Cancer Res. : Official J. Am. Assoc. Cancer Res. 25 35–42

Vözenin M, Hendry J H and Limoli C L 2019b Biological benefits of ultra-high dose rate FLASH radiotherapy: sleeping beauty awoken Clin. Oncol. (R. Coll. Radiol.) 31 407–15

Wilson J D, Hammond E M, Higgins G S and Petersson K 2019 Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold? Front. Oncol. 9 1563

Würl Y et al 2020 Proton radiography for a small-animal irradiation platform based on a miniaturized timepix detector 2020 IEEE Nuclear Science Symp. and Medical Imaging Conf. (NSS/MIC) pp 1–6

Yang Y et al 2022 2D strip ionization chamber array with high spatiotemporal resolution for proton pencil beam scanning FLASH radiotherapy Med. Phys. 49 5464–75

Zhou S et al 2022 A multi-layer strip ionization chamber (MLSIC) device for proton pencil beam scan quality assurance Phys. Med. Biol. 67 175006

Zou W et al 2021 Current delivery limitations of proton PBS for FLASH Radiother. Oncol. : J. Eur. Soc. Ther. Radiol. Oncol. 155 212–8