A Good Representation Detects Noisy Labels

Zhaowei Zhu, Zihao Dong, Hao Cheng, and Yang Liu*
Computer Science and Engineering, University of California, Santa Cruz

Abstract

Label noise is pervasive in real-world datasets, which encodes wrong correlation patterns and impairs the generalization of deep neural networks (DNNs). It is critical to find efficient ways to detect the corrupted patterns. Current methods primarily focus on designing robust training techniques to prevent DNNs from memorizing corrupted patterns. This approach has two outstanding caveats: 1) applying this approach to each individual dataset would often require customized training processes; 2) as long as the model is trained with noisy supervisions, overfitting to corrupted patterns is often hard to avoid, leading to performance drop in detection. In this paper, given good representations, we propose a universally applicable and training-free solution to detect noisy labels. Intuitively, good representations help define “neighbors” of each training instance, and closer instances are more likely to share the same clean label. Based on the neighborhood information, we propose two methods: the first one uses “local voting” via checking the noisy label consensuses of nearby representations. The second one is a ranking-based approach that scores each instance and filters out a guaranteed number of instances that are likely to be corrupted, again using only representations. Given good (but possibly imperfect) representations that are commonly available in practice, we theoretically analyze how they affect the local voting and provide guidelines for tuning neighborhood size. We also prove the worst-case error bound for the ranking-based method. Experiments with both synthetic and real-world label noise demonstrate our training-free solutions are consistently and significantly improving over most of the training-based baselines. Code is available at github.com/UCSC-REAL/SimiRep.

1 Introduction

The generalization of deep neural networks (DNNs) depends on the quality and the quantity of the data. Nonetheless, in practice real-world datasets often contain label noise that challenges the above assumption [Agarwal et al., 2016, Krizhevsky et al., 2012, Zhang et al., 2017]. Employing human workers to cleaning annotations is one reliable way to improve the label quality, but it is too expensive and time-consuming for a large-scale dataset. One promising way to automatically cleaning up label errors is to first algorithmically detect possible label errors from a large-scale dataset [Bahri et al., 2020, Cheng et al., 2021, Northcutt et al., 2021a, Pruthi et al., 2020], and then correct them using either algorithm or crowdsourcing [Northcutt et al., 2021b].

Almost all the algorithmic detection approaches focus on designing customized training processes to learn with noisy labels, where the idea is to train DNNs with noisy supervisions and then make decisions based on the output [Northcutt et al., 2021a] or gradients [Pruthi et al., 2020] of the last logit layer of the trained model. The high-level intuition of these methods is the memorization effects [Han et al., 2020], i.e., instances with label errors, a.k.a., corrupted instances, tend to be harder to
be learned by DNNs than clean instances [Liu et al., 2020, Xia et al., 2021]. By setting appropriate hyperparameters to utilize the memorization effect, corrupted instances could be identified.

The above methods suffer from two major limitations: 1) the customized training processes are task-specific and may require fine-tuning hyperparameters for different datasets/noise; 2) as long as the model is trained with noisy supervisions, the memorization of corrupted instances exists. The model will “subjectively” and wrongly treat the memorized/overfitted corrupted instances as clean. For example, some low-frequency/rare clean instances may be harder to memorize than high-frequency/common corrupted instances. Memorizing these corrupted instances lead to unexpected and disparate impacts [Liu, 2021]. One way to avoid memorizing/overfitting is to drop the dependency on training using the noisy supervisions, which motivates us to design a training-free method to find label errors. Intuitively, we can carefully use the information from nearby representations to infer whether one instance is corrupted or not. This observation inspired our solution of using a good representation to first identify “neighbor” instances for each training example, whose noisy labels jointly would help us perform the detection. Note the representation extractor could be fully independent of noisy supervisions by referring to unsupervised learning or self-supervised learning, or even adapting from other tasks.

Our training-free method enables more possibilities beyond a better detection result. For example, the concerns of the required assumptions and hyperparameter tuning in those training-based methods will now be released due to our training-free property. The complexity of such a solution will also be much lower, again due to the removal of the possibly involved training processes. This light detection solution also has the potential to serve as a pre-processing module to prepare data for other sophisticated tasks (e.g., semi-supervised learning [Berthelot et al., 2019, Xie et al., 2019]).

Our main contributions are: 1) New perspective: Different from current methods that train customized models on noisy datasets, we proposed a training-free solution to efficiently detect noisy labels given good representations. We believe this is the first attempt of the same kind to the best of our knowledge. 2) Efficient algorithms: Based on the neighborhood information, we propose two methods: a voting-based local detection method that only requires checking the noisy label consensuses of nearby representations, and a ranking-based global detection method that scores each instance by its likelihood of being clean and filters out a guaranteed percentage of instances with low scores as corrupted ones. 3) Theoretical analyses: We theoretically analyze how a good representation (but possibly imperfect in practice) affects the local voting and provide guidelines for tuning neighborhood size. We also prove the worst-case error bound for the ranking-based method. 4) Numerical findings: Our numerical experiments show three important messages: in label noise detection, i) training with noisy supervisions may not be necessary; ii) representation layers tend to be more useful than the logit layers; iii) representations from other tasks or domains are helpful.

1.1 Related Works

Learning with noisy labels There are many other works that can detect corrupted instances (a.k.a. sample selection) in the literature, e.g., [Han et al., 2018, Jiang et al., 2018, 2020, Wei et al., 2020, Yao et al., 2020, Yu et al., 2019, Zhang et al., 2021], and its combination with semi-supervised learning [Cheng et al., 2021, Li et al., 2020a, Nguyen et al., 2019]. Another line of works focus on designing robust loss functions to mitigate the effect of label noise, such as numerical methods [Amid et al., 2019, Ghosh et al., 2017, Gong et al., 2018, Shu et al., 2020, Wang et al., 2019, Zhang...
We define clusterability can often be satisfied for a reasonable representation when label clusterability [Zhu et al., 2021b]. It has been shown in [Zhu et al., 2021b] that instances Traditional classification problems with perfect supervisions build on a clean dataset. Most of these works can access multiple reports (labels) for the same input label aggregation (to clean the labels)[Karger et al., 2011, 2013, Liu et al., 2012, Liu and Liu, 2015, et al., 2021] also exhibit great power when fine-tuning DNN on down-stream tasks. Recently, unsupervised learning [Ji et al. 2013, Sahucu, 2018] and self-supervised learning [Chen et al., 2020, He et al., 2020, Jaiswal et al., 2021, Liu et al. 2021, Liu et al. 2021, Zhu et al. 2021a] also exhibit great power when fine-tuning DNN on down-stream tasks.

Pre-training or Self-supervised Learning Training DNNs from scratch may be time-consuming [Goyal et al., 2017]. A common strategy to alleviate this issue is initializing DNN with a pre-trained model when training on new tasks [Krizhevsky et al., 2012, Sermanet et al., 2013, Zeiler et al., 2014]. The pre-trained model can be used for down-stream tasks due to the great transfer-ability of DNNs [Tan et al., 2018]. Popular pre-trained models include BERT [Devlin et al., 2018] for language tasks or CLIP [Radford et al., 2021] for vision-language tasks. Recently, unsupervised learning [Ji et al. 2019] and self-supervised learning [Chen et al. 2020, He et al. 2020, Jaiswal et al. 2021, Liu et al. 2021, Liu et al. 2021, Zhu et al. 2021a] also exhibit great power when fine-tuning DNN on down-stream tasks.

Label aggregation Our work is also relevant to the literature of crowdsourcing that focuses on label aggregation (to clean the labels)[Karger et al. 2011, 2013, Liu et al. 2012, Liu and Liu, 2015, Zhang et al., 2014]. Most of these works can access multiple reports (labels) for the same input feature, while our real-world datasets usually have only one noisy label for each feature.

2 Preliminaries

Instances Traditional classification problems with perfect supervisions build on a clean dataset $D := \{(x_n, y_n)\}_{n \in [N]}$, where $[N] := \{1, 2, \cdots , N\}$. Each clean instance (x_n, y_n) includes feature x_n and clean label y_n, which is drawn according to random variables $(X,Y) \sim D$. In a more practical case, the clean labels are likely to be unavailable and the learner could only observe a noisy dataset denoted by $\tilde{D} := \{(x_n, \tilde{y}_n)\}_{n \in [N]}$, where (x_n, \tilde{y}_n) is a noisy instance and the noisy label \tilde{y}_n may or may not be identical to y_n. We call \tilde{y}_n is corrupted if $\tilde{y}_n \neq y_n$ and clean otherwise. The instance (x_n, \tilde{y}_n) is a corrupted instance if \tilde{y}_n is corrupted. The noisy data distribution corresponds to \tilde{D} is $(X,\tilde{Y}) \sim \tilde{D}$. We focus on the closed-set label noise that Y and \tilde{Y} are assumed to be in the same label space, e.g., $Y,\tilde{Y} \in [K]$ for a K-class classification task. Explorations on open-set data [Luo et al. 2021, Xia et al. 2020a] are deferred to future works.

Representations The representation of feature x_n is denoted by $\bar{x}_n := g(x_n)$, where $g(\cdot)$ denotes a representation extractor. Feature x_n could be in any shape and representation \bar{x}_n is generally a high-dimensional vector. In this paper, we focus on a setting where the distances between two representations should be comparable or clusterable [Zhu et al. 2021b], i.e., nearby representations should belong to the same true class with a high probability [Gao et al. 2016], which could be defined as (k, δ_k) label clusterability in Definition 1.

Definition 1 (k, δ_k) label clusterability). Given a representation extractor $g(\cdot)$, a dataset D satisfies (k, δ_k) label clusterability if: $\forall n \in [N]$, the representation $\bar{x}_n := g(x_n)$ and its k-Nearest-Neighbors (k-NN) $\bar{x}_{n_1}, \cdots , \bar{x}_{n_k}$ belong to the same true class with probability at least $1 - \delta_k$.

Note δ_k captures two types of randomnesses: one comes from a probabilistic $Y|X$, i.e., $\exists i \in [K], P(Y = i|X) \notin (0,1)$; the other depends on the quality of representation and the value of k, which will be further illustrated in Figure 2. The $(k,0)$ label clusterability is also known as k-NN label clusterability [Zhu et al. 2021b]. It has been shown in [Zhu et al. 2021b] that k-NN label clusterability can often be satisfied for a reasonable representation when k is moderate to small. We define k perfect extractors/representations in Definition 2.

Definition 2 $(k$ perfect extractor/representation). A representation extractor $g(\cdot)$ is called k perfect extractor if it induces k-NN label clusterability. Its outputs are called k perfect representations.
Label noise detection Our paper aims to improve the performance of the label noise detection (a.k.a, detecting noisy/corrupted labels, finding label errors) which is measured by the F_1-score of the detected corrupted instances, which is the harmonic mean of the precision and recall, i.e. $F_1 = 2/(\text{Precision}^{-1} + \text{Recall}^{-1})$. Let $\mathbb{1}(\cdot)$ be the indicator function that takes value 1 when the specified condition is satisfied and 0 otherwise. Let $v_n = 1$ indicate that \tilde{y}_n is detected as a corrupted label, and $v_n = 0$ if \tilde{y}_n is detected to be clean. Then the precision and recall can be calculated as $\text{Precision} = \frac{\sum_{n \in [N]} \mathbb{1}(v_n=1, \tilde{y}_n \neq y_n)}{\sum_{n \in [N]} \mathbb{1}(v_n=1)}$, $\text{Recall} = \frac{\sum_{n \in [N]} \mathbb{1}(v_n=1, \tilde{y}_n \neq y_n)}{\sum_{n \in [N]} \mathbb{1}(y_n \neq y_n)}$.

3 Label Noise Detection Using Similar Representations

Different from most methods that detect noisy labels based on the logit layer or model predictions [Cheng et al. 2021, Northcutt et al. 2021a, Pruthi et al. 2020], we focus on representations of features. Particularly we are interested in the possibility of detecting noisy labels in a training-free way, once given good representations. In this section, we will first introduce intuitions, and then provide two efficient algorithms to detect label noise with similar representations.

3.1 Intuitions

The training-based detection methods often make decisions by comparing model predictions with noisy labels [Cheng et al. 2021, Northcutt et al. 2021a]. However, the representation $g(x_n)$ cannot be directly compared with the noisy label \tilde{y}_n since $g(x_n)$ is not directly categorical, i.e., the output of a single $g(x_n)$ rarely corresponds to any label class. Thus the first step of our training-free solution should be establishing an auxiliary categorical information using only representations.

As illustrated in Figure 1, the high-level intuition is to check label consensuses of nearby representations. With k perfect representations as defined in Definition 2 we know the true labels of \bar{x}_n and its k-NN $\bar{x}_{n_1}, \ldots, \bar{x}_{n_k}$ should be the same. If the label noise across these instances are group-dependent [Wang et al. 2021], we can treat their noisy labels as $k+1$ independent observations of $P(\tilde{Y}|X = x_n, Y = y_n)$, then estimate the probability by counting the frequency or weighted frequency of each class in the k-NN label estimator, and get k-NN labels \hat{y}_n. The i-th element $\hat{y}_{n}[i]$ can be interpreted as the estimated probability of predicting class-i.

Representations could be better than model predictions During supervised training, memorizing noisy labels makes the model generalizes poorly [Han et al. 2020, Li et al. 2020b], while using only representations may effectively avoid this issue. This is because representations often come from techniques beyond memorization such as unsupervised learning or self-supervised learning where the noisy labels are referred in representation learning. On the other hand, the extractor

\[\text{Recall} = \frac{\sum_{n \in [N]} \mathbb{1}(v_n=1, \tilde{y}_n \neq y_n)}{\sum_{n \in [N]} \mathbb{1}(y_n \neq y_n)} \]
g(·) has great potential in domain adaption or transfer, which makes representations more flexible than the specific model predictions. We will demonstrate this point in Section 5.

3.2 Voting-Based Local Detection

Inspired by the idea implemented in model decisions, i.e., selecting the most likely class as the true class, we can simply “predict” the index that corresponds to the largest element in \(\hat{y}_n \) with random tie-breaking, i.e., \(y_n^{\text{vote}} = \arg \max_{i \in [K]} \hat{y}_n[i] \). To further detect whether \(\hat{y}_n \) is corrupted or not, we only need to check \(v_n := I(y_n^{\text{vote}} \neq \hat{y}_n) \). Recall \(v_n = 1 \) indicates a corrupted label. This voting method relies only on the local information within each k-NN label \(\hat{y}_n \), which may not be robust with imperfect representations. Intuitively, when the gap between the true class probability and the wrong class probability is small, the majority vote will be likely to make mistakes due to sampling errors in \(\hat{y}_n \). Thus only using local information within each \(\hat{y}_n \) may not be sufficient. It is important to leverage more information such as some global statistics, which will be discussed later.

3.3 Ranking-Based Global Detection

From a global perspective, if the likelihood for each instance being clean could be evaluated by some scoring functions, we can sort the scores in an increasing order and filter out the low-score instances as corrupted ones. Based on this intuition, there are two critical components: the scoring function and the threshold to differentiate the low-score part (corrupted) and the high-score part (clean).

Scoring function A good scoring function should be able to give clean instances higher scores than corrupted instances. We adopt cosine similarity defined as: \(\text{Score}(\hat{y}_n,j) = \frac{\hat{y}_n \cdot e_j}{\|\hat{y}_n\|\|e_j\|} \), where \(e_j \) is the one-hot encoding of label \(j \). To evaluate whether the soft label \(\hat{y}_n \) informs us a clean instance or not, we compare \(\text{Score}(\hat{y}_n,\hat{y}_n) \) with other instances that have the same noisy label. This scoring function captures more information than majority votes, which is summarized as follows.

Property 1 (Relative score). With in the same instance, the score of the majority class is higher than the others, i.e. \(\text{Score}(\hat{y}_n,y_n^{\text{vote}}) > \text{Score}(\hat{y}_n,j), \forall j \neq y_n^{\text{vote}}, j \in [K], \forall n \in [N] \).

Property 2 (Absolute score). \(\text{Score}(\hat{y}_n,j) \) is jointly determined by both \(\hat{y}_n[j] \) and \(\hat{y}_n[j'], \forall j' \neq j \).

The first property guarantees that the corrupted labels would have lower scores than clean labels for the same instance when the vote is correct. However, although solely relying on Property 1 may work well in the voting-based method which makes decisions individually for each instance, it is not sufficient to be trustworthy in the ranking-based global detection. The main reason is that, across different instances, the non-majority classes of some instances may have higher absolute scores than the majority classes of the other instances, which is especially true for general instance-dependent label noise with heterogeneous noise rates [Cheng et al., 2021]. Property 2 helps make it less likely to happen. Consider an example as follows.

Example Suppose \(\hat{y}_{n_1} = \hat{y}_{n_2} = [0.6, 0.4, 0.0]^\top, \hat{y}_{n_3} = [0.34, 0.033, 0.33]^\top, y_{n_1} = y_{n_2} = y_{n_3} = 1, \hat{y}_{n_1} = \hat{y}_{n_2} = 1, \hat{y}_{n_3} = 2 \). We can use the majority vote to get perfect detection in this case, i.e., \(y_{n_1}^{\text{vote}} = y_{n_2}^{\text{vote}} = y_{n_3}^{\text{vote}} = 1 = y_{n_1} \), since the first class of each instance has the largest value. However, if we directly use a single value in soft label \(y_n \) to score them, e.g., \(\text{Score}(\hat{y}_n,j) = \hat{y}_{n}[j] \), we will have \(\hat{y}_{n_1}[n_1] = 0.6 > \hat{y}_{n_2}[n_2] = 0.4 > \hat{y}_{n_3}[n_3] = 0.33 \), where the ranking is \(n_3 \prec n_2 \prec n_1 \). Ideally, we know instance \(n_2 \) is corrupted and the true ranking should be \(n_2 \prec n_3 \prec n_1 \) or \(n_2 \prec n_1 \prec n_3 \). To mitigate this problem, we choose the cosine similarity as our scoring function. The three instances
could be scored as 0.83, 0.55, 0.59, corresponding to an ideal ranking $n_2 < n_3 < n_1$. We formally introduce the detailed ranking approach as follows.

Ranking Suppose we have a group of instances with the same noisy class j, i.e. $\{x_n, \tilde{y}_n\}_{n \in N_j}$, where $N_j := \{n|\tilde{y}_n = j\}$ are the set of indices that correspond to noisy class j. Let N_j be the number of indices in N_j (counted from noisy labels). Intuitively, we can first sort all instances in N_j in an increasing order by argsort and obtain the original indices for the sorted scores as: $I = \text{argsort}\{\text{Score}(\tilde{y}_n, j)\}_{n \in N_j}$, where the low-score head is supposed to consist of corrupted instances [Northcutt et al., 2021a]. Then we can simply select the first \tilde{N}_j instances with low scores as corrupted instances: $v_n = I(\text{Loc}(n, I) \leq \tilde{N}_j)$, where $\text{Loc}(n, I)$ returns the index of n in I. Instead of manually tuning \tilde{N}_j, we discuss how to determine it algorithmically.

Threshold The number of corrupted instances in N_j is approximately $\mathbb{P}(Y \neq j|\tilde{Y} = j) \cdot N_j$ when N_j is sufficiently large. Therefore if all the corrupted instances have lower scores than any clean instance, we can set $\tilde{N}_j = \mathbb{P}(Y \neq j|\tilde{Y} = j) \cdot N_j$ to obtain the ideal division. Note N_j can be obtained by directly counting the number of instances with noisy label j. To calculate the probability $\mathbb{P}(Y \neq j|\tilde{Y} = j) = 1 - \mathbb{P}(Y = j|\tilde{Y} = j)$, we borrow the results from the HOC estimator [Zhu et al., 2021b], where the noise transition probability $\mathbb{P}(\tilde{Y} = j|Y = j)$ and the marginal distribution of clean label $\mathbb{P}(Y = j)$ can be estimated with only representations and the corresponding noisy labels. Then we can calculated our needed probability by Bayes’ rule $\mathbb{P}(Y = j|\tilde{Y} = j) = \mathbb{P}(\tilde{Y} = j|Y = j) \cdot \mathbb{P}(Y = j)/\mathbb{P}(\tilde{Y} = j)$, where $\mathbb{P}(\tilde{Y} = j)$ can be estimated by counting the frequency of noisy label j in \tilde{D}. Technically other methods exist in the literature to estimate $\mathbb{P}(Y|Y)$ [Li et al., 2021; Liu and Tao, 2015; Northcutt et al., 2021a; Patrini et al., 2017]. But they often require training a model to fit the data distribution, which conflict with our goal of a training-free solution; instead, HOC fits us perfectly.

3.4 Algorithm: Detection with Similar Representations (SimiRep)

Algorithm 1 summarizes our solution. The main computation complexity is obtaining representations with extractor $g(\cdot)$, which is less than the cost of evaluating the model compared with the training-based methods. Thus SimiRep can filter out corrupted instances efficiently. In Algorithm 1 we run either voting-based local detection as Lines 7-8 or ranking-based global detection as Lines 13-15. The detection is run multiple times with random standard data augmentations to reduce the variance of estimation. The majority of results from different epochs is adopted as the final detection output as Line 20 i.e., flag as corrupted if $v_n = 1$ in more than half of the epochs.

4 How Do Representations Affect Our Solution?

In this section, we will first show how a good but imperfect representation affects the selection of the hyperparameter k. We then offer an analysis of the error upper bound for the ranking-based method given a representation extractor $g(\cdot)$.

4.1 How Do Representations Affect the Choice of k?

Recall k is used as illustrated in Figure 1. On one hand, the k-NN label estimator will be more accurate if there is stronger clusterability that more neighbor representations belong to the same

\[\text{Note the voting-based method achieves an F}_1\text{-score of 1 given } k \text{ perfect representations, } k \rightarrow +\infty. \]
true class Liu and Liu 2015, Zhu et al. 2021b, which helps improve the performance of later algorithms. On the other hand, with good but imperfect representations, stronger clusterability with a larger k is less likely to satisfy, thus the violation probability δ_k increases with k for a given extractor $g(\cdot)$. We take the voting-based method as an example and analyze this tradeoff. For a clean presentation, we focus on a binary classification with instance-dependent label noise where $\widetilde{D} = \{(x_n, \tilde{y}_n)\}_{n \in [N]}$. Representation extractor: $g(\cdot)$. Method: Vote or Rank. Epoch counter $m = 0$.

Algorithm 1 Detection with Similar Representations (The SimiRep Detector)

1: \textbf{Input:} Number of epochs: M. k-NN parameter: k. Noisy dataset: $\widetilde{D} = \{(x_n, \tilde{y}_n)\}_{n \in [N]}$. Representation extractor: $g(\cdot)$. Method: Vote or Rank. Epoch counter $m = 0$.

2: \textbf{repeat}
3: \hspace{1em} $x'_n \leftarrow \text{RandPreProcess}(x_n), \forall n$; \hspace{1em} \# Initialize & Standard data augmentations
4: \hspace{1em} $\tilde{x}_n \leftarrow g(x'_n), \forall n$; \hspace{1em} \# Extract representations with $g(\cdot)$
5: \hspace{1em} $\tilde{y}_n \leftarrow \text{kNNLabel}(\{\tilde{x}_n\}_{n \in [N]}, k)$ \hspace{1em} \# Get soft labels based on the clusterability of representations
6: \hspace{1em} \textbf{if} Vote \hspace{1em} \textbf{then}
7: \hspace{2em} $y^\text{vote}_n \leftarrow \arg\max_{i \in [K]} \tilde{y}_n[i]$; \hspace{1em} \# Apply local majority vote
8: \hspace{2em} $v_n \leftarrow 1(y^\text{vote}_n \neq \tilde{y}_n), \forall n \in [N]$; \hspace{1em} \# Treat as corrupted if majority votes agree with noisy labels
9: \hspace{1em} \textbf{else}
10: \hspace{2em} $P(Y), P(\widetilde{Y} | Y) \leftarrow \text{HOC}(\{\tilde{x}_n, \tilde{y}_n\}_{n \in [N]});$ \hspace{1em} \# Estimate clean priors $P(Y)$ and noise transitions $P(\widetilde{Y} | Y)$ by the HOC estimator
11: \hspace{2em} $P(\widetilde{Y} | Y) = P(\widetilde{Y} | Y) / P(\widetilde{Y})$; \hspace{1em} \# Estimate thresholds by Bayes’ rule
12: \hspace{2em} \textbf{for} j in $[K]$ \hspace{1em} \textbf{do}
13: \hspace{3em} $N_j \leftarrow \{n | \tilde{y}_n = j\}$; \hspace{1em} \# Detect corrupted labels in each set N_j
14: \hspace{3em} $I \leftarrow \text{argsort}(\text{Score}(\tilde{y}_n, j)_{n \in N_j})$; \hspace{1em} \# I records the raw index of each sorted value
15: \hspace{3em} $v_n \leftarrow 1(\text{Loc}(n, I) \leq [(1 - P(Y = j | \widetilde{Y} = j)) \cdot N_j])$; \hspace{1em} \# Select low-score (head) instances as corrupted ones
16: \hspace{2em} \textbf{end for}
17: \hspace{1em} \textbf{end if}
18: \hspace{1em} $V_m = \{v_n\}_{n \in [N]}$; \hspace{1em} \# Record detection results in the m-th epoch
19: \hspace{1em} \textbf{until} M times
20: \hspace{1em} $V = \text{Vote}(V_m, \forall m \in [M])$; \hspace{1em} \# Do majority vote based on results from M epochs
21: \hspace{1em} \textbf{Output:} $[N] \setminus V$.

Proposition 1. The lower bound for the probability of getting true detection with majority vote is

\[P(\text{Vote is correct}|k) \geq (1 - \delta_k) \cdot I_{1-e_1}(k + 1 - k', k' + 1), \]

where $k' = [(k+1)/2] - 1$, $I_{1-e_1}(k+1-k', k'+1)$ is the regularized incomplete beta function defined as $I_{1-e}(k + 1 - k', k' + 1) = (k + 1 - k')^{-1} \int_0^1 (1 - t)^k' (1 - t)^{k'} dt$.

Proposition 1 shows the tradeoff between a reliable k-NN label and an accurate vote. When k is increasing, Term-1 $(1 - \delta_k)$ (quality of representations) decreases but Term-2 $I_{1-e_1}(k + 1 - k', k' + 1)$ (result of pure majority vote) increases. With Proposition 1, we are ready to answer the question: when do we need more labels? See Remark 1.

Remark 1. Consider the lower bounds with k_1 and k_2 ($k_1 < k_2$). Supposing the first lower bound is lower than the second lower bound, based on Proposition 1, we roughly study the trend with an
Figure 2: The trends of \(\delta_k \) and probability lower bounds on CIFAR-10 [Krizhevsky et al., 2009] with different \(g(\cdot) \). The outputs of the last convolution layer are adopted. R18/34/50: ResNet18/34/50. Img: Pre-trained on ImageNet [Deng et al., 2009]. C10/100-Clean: Pre-trained on clean CIFAR-10/100. C10/100-SSL: Pre-trained on CIFAR-10/100 without labels by SimCLR [Chen et al., 2020]. ViT-B/32-CLIP: CLIP Pre-trained vision transformer [Radford et al., 2021].

increasing \(k \) by comparing two bounds and get

\[
\frac{1 - \delta_{k_1}}{1 - \delta_{k_2}} < \frac{I_{1-e}(k_2 + 1 - k'_2, k'_2 + 1)}{I_{1-e}(k_1 + 1 - k'_1, k'_1 + 1)}.
\]

For example, when \(k_1 = 5, k_2 = 20, e = 0.4 \), we can calculate the incomplete beta function and \(\frac{1 - \delta_{20}}{1 - \delta_{5}} < 1.52 \). Supposing \(\delta_5 = 0.2 \), we have \(\delta_{20} < 0.47 \). This indicates increasing \(k \) from 5 to 20 would not improve the lower bound with imperfect representations with \(\delta_{20} > 0.47 \). This observation helps us set \(k \) with a practical and imperfect \(g(\cdot) \). We set \(k = 10 \) in all of our experiments.

Remark 1 indicates that: with imperfect representations, a small \(k \) may achieve the best (highest) probability lower bound. To further consolidate this claim, we numerically calculate \(\delta_k \) with different \(g(\cdot) \) and the corresponding probability lower bound in Figure 2. We find most of the probability lower bounds first increase then decrease except for the perfect \(g(\cdot) \) which is trained using ground-truth labels. Note the perfect \(g(\cdot) \) has memorized all clean instances so that \(\delta_k \to 0 \) since \(k \ll 5000 \) (the number of instances in the same label class).

4.2 How Do Representations Affect \(F_1 \)-Score?

We next prove the probability bound for the performance of the ranking-based method. Consider a \(K \)-class classification problem with informative instance-dependent label noise [Cheng et al., 2021]. Denote random variable \(S \) by the score of each instance being clean. A higher score \(S \) should be greater than \(S_j^\text{false} \). Assume there exists a feasible \(v \) such that both \(S_j^\text{true} \) and \(S_j^\text{false} \) follow sub-Gaussian distributions with variance proxy \(\frac{v^2}{2} \) [Buldygin and Kozachenko, 1980; Zhu et al., 2021c] such that: \(\mathbb{P}(\mu_j^\text{true} - S_j^\text{true} \geq t) \leq e^{-v(t/\Delta)^2} \), and \(\mathbb{P}(S_j^\text{false} - \mu_j^\text{false} \geq t) \leq e^{-v(t/\Delta)^2} \), where \(1/\Delta \) is the “height” of both distributions, i.e., \(\mathbb{P}(S_j^\text{true} = \mu_j^\text{true}) = \mathbb{P}(S_j^\text{false} = \mu_j^\text{false}) = 1/\Delta \), \(v \) is the decay rate of tails. Let \(N_j^- (N_j^+) \) be the number of indices in \(S_j^\text{false} (S_j^\text{true}) \). Theorem 1 summarizes the performance bound of the ranking-based method. See Appendix for the proof.

Theorem 1. With probability at least \(p \), the \(F_1 \)-score of detecting corrupted instances in \(N_j \) with
the rank-based method by threshold \(N_j \mathbb{P}(Y = j | \tilde{Y} = j) \) is at least 1 \(- \frac{\epsilon - \max(N^{-}, N^{+}) + \alpha}{N}\), where
\[
p = \int_{-1}^{\mu_{\text{true}} - \mu_{\text{false}} - \Delta} f(t) dt, \quad f(t) \text{ is the probability density function of the difference of two independent beta-distributed random variables } \beta_1 - \beta_2, \text{ where } \beta_1 \sim \text{Beta}(N^{-}, 1), \beta_2 \sim \text{Beta}(\alpha + 1, N^{+} - \alpha).
\]

Theorem 1 shows the performance of detection depends on 1) the concentration of \(S_{ij}^{\text{true}} \) and \(S_{ij}^{\text{false}} \) (denoted by variance proxy \(\frac{\Delta^2}{2v} \)); 2) the distance between \(S_{ij}^{\text{true}} \) and \(S_{ij}^{\text{false}} \) (denoted by \(\mu_{\text{true}} - \mu_{\text{false}} \)). Intuitively, with proper scoring function and good representations, we have small variance proxy (small \(\Delta \) and large \(v \)) and \(F_1 \)-score approximates to 1.

5 Empirical Results

We present experimental evidence in this section. The performance is measured by the \(F_1 \)-score of the detected corrupted labels as defined in Section 2. Note there is no any training procedure in our method. The only hyperparameters in our methods are the number of epochs \(M \) and the \(k \)-NN parameter \(k \). Intuitively, a larger \(M \) returns a collective result from more times of detection, which should be more accurate. The hyperparameter \(k \) cannot be set too large as demonstrated in Figure 2. In our experiments, rather than fine-tune \(M \) and \(k \) for different settings, we fix \(M = 21 \) and \(k = 10 \).

Synthetic label noise We experiment with three popular synthetic label noise models: the symmetric label noise, the asymmetric label noise, and the instance-dependent label noise. Denote the ratio of instances with corrupted labels in the whole dataset by \(\eta \). Both the symmetric and the asymmetric noise models follow the class-dependent assumption [Liu and Tao, 2015], i.e., the label noise only depends only on the clean class: \(\mathbb{P}(\tilde{Y} | X, Y) = \mathbb{P}(\tilde{Y} | Y) \). Specially, the symmetric noise is generated by uniform flipping, i.e., randomly flipping a true label to the other possible classes w.p. \(\eta \) [Cheng et al., 2021]. The asymmetric noise is generated by pair-wise flipping, i.e., randomly flipping true label \(i \) to the next class \((i \mod K) + 1 \). Denote by \(d \) the dimension of features. The instance-dependent label noise is synthesized by randomly generating a \(d \times K \) projection matrix \(w_i \) for each class \(i \) and project each incoming feature with true class \(y_n \) onto each column of \(w_{yn} \) [Xia et al., 2020b]. Instance \(n \) is more likely to be flipped to class \(j \) if the projection value of \(x_{jn} \) on the \(j \)-th column of \(w_{yn} \) is high. See Appendix B in [Xia et al., 2020b] and Appendix D.1 in [Zhu et al., 2021b] for more details. We use symmetric noise with \(\eta = 0.6 \) (Symm. 0.6), asymmetric noise with \(\eta = 0.3 \) (Asym. 0.3), and instance-dependent noise with \(\eta = 0.4 \) (Inst. 0.4) in experiments.

Real-world label noise The real-world label noise comes from human annotations. We use the 50,000 noisy training labels (\(\eta \approx 0.16 \)) for CIFAR-10 collected by [Zhu et al., 2021b], and our self-collected 50,000 noisy training labels (\(\eta \approx 0.40 \)) for CIFAR-100 (data will be released in the non-anonymous version). Both sets of noisy labels are crowd-sourced from Amazon Mechanical Turk. Our solution can be easily applied on large-scale datasets such as Clothing1M [Xiao et al., 2015] by using common pre-trained models. But it is hard to verify the performance since the ground-truth labels are not available.

5.1 Supervision May Not Be Necessary

Our first experiment aims to show that training with noisy supervisions may not be necessary in detecting corrupted labels. To this end, we compare our methods, i.e., voting-based local detection (SimiRep-V) and ranking-based global detection (SimiRep-R), with three recent noise detection works: CORES [Cheng et al., 2021], confident learning (CL) [Northcutt et al., 2021a], and TracIn [Pruthi et al., 2020]. We use ResNet34 as the backbone network in this experiment.
Table 1: Comparisons of F_1-scores (%). CORES, CL, TracIn: Train with noisy supervisions. SimiRep-V and SimiRep-R: Get $g(\cdot)$ without any supervision. Top 2 are bold.

Method	CIFAR10				CIFAR100			
	Human	Symm. 0.6	Asym. 0.3	Inst. 0.4	Human	Symm. 0.6	Asym. 0.3	Inst. 0.4
CORES	65.00	92.94	7.68	87.43	3.52	92.34	0.02	9.67
CL	55.85	80.59	76.47	62.89	64.58	78.98	52.96	50.08
TracIn	55.02	76.94	73.47	58.85	61.75	76.74	48.42	49.89
SimiRep-V	82.30	93.21	82.52	81.09	73.19	84.48	65.42	74.26
SimiRep-R	83.28	95.56	83.58	82.26	74.67	88.68	62.89	73.53

Baseline settings All these three baselines require training a model with the noisy supervision. Specifically, CORES [Cheng et al., 2021] trains ResNet34 on the noisy dataset and uses its proposed sample sieve to filter out the corrupted instances. We adopt its default setting during training and calculate the F_1-score of the sieved out corrupted instances. Confident learning (CL) [Northcutt et al., 2021a] detects corrupted labels by firstly estimating probabilistic thresholds to characterize label noise, ranking instances based on model predictions, then filtering out corrupted instances based on ranking and thresholds. We adopt its default hyper-parameter setting to train ResNet34. TracIn [Pruthi et al., 2020] detects corrupted labels by evaluating the self-influence of each instance, where the corrupted instances tend to have a high influence score. The influence scores are calculated based on gradients of the last layer of ResNet34 at epoch 40, 50, 60, 100, where the model is trained with a batch size of 128. The initial learning rate is 0.1 and decays to 0.01 at epoch 50. Note TracIn only provides ranking for instances. To exactly detect corrupted instances, thresholds are required. For a fair comparison, we refer to the thresholds learned by confident learning [Northcutt et al., 2021a]. Thus the corrupted instances selected by TracIn are based on the ranking from its self-influence and thresholds from CL. To highlight that our solutions work well without any supervision, our representation extractor $g(\cdot)$ comes from the ResNet34 pre-trained by SimCLR [Chen et al., 2020] where contrastive learning is applied and no supervision is required. Extractor $g(\cdot)$ is obtained with only in-distribution features, e.g., for experiments with CIFAR-10, $g(\cdot)$ is pre-trained with features only from CIFAR-10.

Performance Table 1 compares the results obtained with or without supervisions. We can see both the voting-based and the ranking-based method achieve overall higher F_1-scores compared with the other three results that require learning with noisy supervisions. Moreover, in detecting the real-world human-level noisy labels, our solution outperforms baselines around 20% on CIFAR-10 and 10% on CIFAR-100, which indicates the training-free solution are more robust to complicated noise patterns. One might also note that CORES achieves exceptionally low F_1-scores on CIFAR-10/100 with asymmetric noise and CIFAR-100 with human noise. This observation also informs us that customized training processes might not always be universally applicable.

5.2 Representation Layers May Perform Better Than Logit Layers

Table 2 shows the detection using either representation layers or logit layers of DNNs. In addition to the baselines compared in Section 5.1, we also compare to CE Sieve [Cheng et al., 2021] which follows the same sieving process as CORES but uses CE loss without regularizer. All methods adopt ViT-B/32 pre-trained by CLIP [Radford et al., 2021]. Specifically, the training-based methods further fine-tune a linear logit layer on noisy supervisions, while our solution directly sets this pre-trained model as $g(\cdot)$. Other settings are the same as those in Section 5.1. By counting the frequency of reaching top-2 F_1-scores, we find SimiRep-R wins 1st place, SimiRep-V and CORES are tied for 2nd
place. However, similar to Table 2, we find the training process of CORES to be unstable. For instance, it almost fails for CIFAR-100 with asymmetric noise. It is therefore reasonable to believe both methods with only representations achieve an overall higher F_1-score than other methods with logit layers. In other words, compared with our methods, the extra fine-tuning of logit layers with noisy supervisions cannot always help improve the performance of detecting corrupted labels.

5.3 What Are Good Representations

Previous experiments demonstrate our methods overall outperform baselines given representations from contrastive pre-training. It is interesting to see how other representations perform. We summarize results of SimiRep-R in Table 3. There are several interesting findings: 1) The ImageNet pre-trained models perform well, indicating the traditional supervised training on out-of-distribution data helps; 2) For CIFAR-100, extractor $g(\cdot)$ obtained with only features from CIFAR-10 (R34-C10-SSL) performs better than the extractor with clean CIFAR-10 (R34-C10-Clean), indicating that contrastive pre-training has better generalization ability to out-of-distribution data than supervised learning; 3) The F_1-scores achieved by $g(\cdot)$ trained with the corresponding clean dataset are close to 1, indicating our solution can give perfect detection with ideal representations.

6 Conclusions

This paper proposed a new and universally applicable training-free solution to detect noisy labels by using the neighborhood information defined by a good set of representations. We have also demonstrated that good representations are reasonable assumptions with pre-training or self-supervised learning. Future works will explore other tasks that could benefit from label cleaning.
Acknowledgments
This work is partially supported by the National Science Foundation (NSF) under grant IIS-2007951.

References

V. Agarwal, T. Podchiyska, J. M. Banda, V. Goel, T. I. Leung, E. P. Minty, T. E. Sweeney, E. Gyang, and N. H. Shah. Learning statistical models of phenotypes using noisy labeled training data. *Journal of the American Medical Informatics Association*, 23(6):1166–1173, 2016.

E. Amid, M. K. Warmuth, R. Anil, and T. Koren. Robust bi-tempered logistic loss based on bregman divergences. In *Advances in Neural Information Processing Systems*, pages 14987–14996, 2019.

D. Bahri, H. Jiang, and M. Gupta. Deep k-nn for noisy labels. In *International Conference on Machine Learning*, pages 540–550. PMLR, 2020.

D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. Raffel. Mixmatch: A holistic approach to semi-supervised learning. *arXiv preprint arXiv:1905.02249*, 2019.

V. V. Buldygin and Y. V. Kozachenko. Sub-gaussian random variables. *Ukrainian Mathematical Journal*, 32(6):483–489, 1980.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pages 1597–1607. PMLR, 2020.

H. Cheng, Z. Zhu, X. Li, Y. Gong, X. Sun, and Y. Liu. Learning with instance-dependent label noise: A sample sieve approach. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=2VXyy9mIyU3.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In *CVPR09*, 2009.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

W. Gao, B.-B. Yang, and Z.-H. Zhou. On the resistance of nearest neighbor to random noisy labels. *arXiv preprint arXiv:1607.07526*, 2016.

A. Ghosh, H. Kumar, and P. Sastry. Robust loss functions under label noise for deep neural networks. In *Thirty-First AAAI Conference on Artificial Intelligence*, 2017.

M. Gong, H. Li, D. Meng, Q. Miao, and J. Liu. Decomposition-based evolutionary multiobjective optimization to self-paced learning. *IEEE Transactions on Evolutionary Computation*, 23(2):288–302, 2018.

P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch sgd: Training imagenet in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In *Advances in neural information processing systems*, pages 8527–8537, 2018.
B. Han, Q. Yao, T. Liu, G. Niu, I. W. Tsang, J. T. Kwok, and M. Sugiyama. A survey of label-noise representation learning: Past, present and future. *arXiv preprint arXiv:2011.04406*, 2020.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual representation learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9729–9738, 2020.

A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon. A survey on contrastive self-supervised learning. *Technologies*, 9(1):2, 2021.

X. Ji, J. F. Henriques, and A. Vedaldi. Invariant information clustering for unsupervised image classification and segmentation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 9865–9874, 2019.

L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei. Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels. In *International Conference on Machine Learning*, pages 2304–2313. PMLR, 2018.

L. Jiang, D. Huang, M. Liu, and W. Yang. Beyond synthetic noise: Deep learning on controlled noisy labels. In *International Conference on Machine Learning*, pages 4804–4815. PMLR, 2020.

D. Karger, S. Oh, and D. Shah. Iterative learning for reliable crowdsourcing systems. In *Neural Information Processing Systems*, NIPS ’11, 2011.

D. R. Karger, S. Oh, and D. Shah. Efficient crowdsourcing for multi-class labeling. In *Proceedings of the ACM SIGMETRICS international conference on Measurement and modeling of computer systems*, pages 81–92, 2013.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. Technical report, Citeseer, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. *Advances in neural information processing systems*, 25:1097–1105, 2012.

J. Li, R. Socher, and S. C. Hoi. Dividemix: Learning with noisy labels as semi-supervised learning. In *International Conference on Learning Representations*, 2020a. URL https://openreview.net/forum?id=HJgExaVtwr.

J. Li, M. Zhang, K. Xu, J. P. Dickerson, and J. Ba. Noisy labels can induce good representations. *arXiv preprint arXiv:2012.12896*, 2020b.

X. Li, T. Liu, B. Han, G. Niu, and M. Sugiyama. Provably end-to-end label-noise learning without anchor points. *arXiv preprint arXiv:2102.02400*, 2021.

A. T. Liu, S.-W. Li, and H.-y. Lee. Tera: Self-supervised learning of transformer encoder representation for speech. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 29: 2351–2366, 2021.

Q. Liu, J. Peng, and A. Ihler. Variational inference for crowdsourcing. In *Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 1*, pages 692–700, 2012.

S. Liu, J. Niles-Weed, N. Razavian, and C. Fernandez-Granda. Early-learning regularization prevents memorization of noisy labels. *arXiv preprint arXiv:2007.00151*, 2020.
T. Liu and D. Tao. Classification with noisy labels by importance reweighting. *IEEE Transactions on pattern analysis and machine intelligence*, 38(3):447–461, 2015.

Y. Liu. Understanding instance-level label noise: Disparate impacts and treatments. In *International Conference on Machine Learning*, pages 6725–6735. PMLR, 2021.

Y. Liu and H. Guo. Peer loss functions: Learning from noisy labels without knowing noise rates. In *Proceedings of the 37th International Conference on Machine Learning*, ICML ’20, 2020.

Y. Liu and M. Liu. An online learning approach to improving the quality of crowd-sourcing. *ACM SIGMETRICS Performance Evaluation Review*, 43(1):217–230, 2015.

H. Luo, H. Cheng, Y. Gao, K. Li, M. Zhang, F. Meng, X. Guo, F. Huang, and X. Sun. On the consistency training for open-set semi-supervised learning, 2021.

N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari. Learning with noisy labels. In *Advances in neural information processing systems*, pages 1196–1204, 2013.

D. T. Nguyen, C. K. Mummadi, T. P. N. Ngo, T. H. P. Nguyen, L. Beggel, and T. Brox. Self: Learning to filter noisy labels with self-ensembling. *arXiv preprint arXiv:1910.01842*, 2019.

C. Northcutt, L. Jiang, and I. Chuang. Confident learning: Estimating uncertainty in dataset labels. *Journal of Artificial Intelligence Research*, 70:1373–1411, 2021a.

C. G. Northcutt, A. Athalye, and J. Mueller. Pervasive label errors in test sets destabilize machine learning benchmarks. *arXiv preprint arXiv:2103.14749*, 2021b.

G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu. Making deep neural networks robust to label noise: A loss correction approach. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 1944–1952, 2017.

G. Pruthi, F. Liu, S. Kale, and M. Sundararajan. Estimating training data influence by tracing gradient descent. In *Advances in Neural Information Processing Systems*, volume 33, pages 19920–19930, 2020.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision. *arXiv preprint arXiv:2103.00020*, 2021.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. *arXiv preprint arXiv:1312.6229*, 2013.

J. Shu, Q. Zhao, K. Chen, Z. Xu, and D. Meng. Learning adaptive loss for robust learning with noisy labels. *arXiv preprint arXiv:2002.06482*, 2020.

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A survey on deep transfer learning. In *International conference on artificial neural networks*, pages 270–279. Springer, 2018.

J. Wang, Y. Liu, and C. Levy. Fair classification with group-dependent label noise. *FAccT*, page 526–536, New York, NY, USA, 2021.
Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, and J. Bailey. Symmetric cross entropy for robust learning with noisy labels. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 322–330, 2019.

H. Wei, L. Feng, X. Chen, and B. An. Combating noisy labels by agreement: A joint training method with co-regularization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13726–13735, 2020.

J. Wei and Y. Liu. When optimizing f-divergence is robust with label noise. In *International Conference on Learning Representations*, 2021.

X. Xia, T. Liu, N. Wang, B. Han, C. Gong, G. Niu, and M. Sugiyama. Are anchor points really indispensable in label-noise learning? In *Advances in Neural Information Processing Systems*, pages 6838–6849, 2019.

X. Xia, T. Liu, B. Han, N. Wang, J. Deng, J. Li, and Y. Mao. Extended T: Learning with mixed closed-set and open-set noisy labels. *arXiv preprint arXiv:2012.00932*, 2020a.

X. Xia, T. Liu, B. Han, N. Wang, M. Gong, H. Liu, G. Niu, D. Tao, and M. Sugiyama. Part-dependent label noise: Towards instance-dependent label noise. In *Advances in Neural Information Processing Systems*, volume 33, pages 7597–7610, 2020b.

X. Xia, T. Liu, B. Han, C. Gong, N. Wang, Z. Ge, and Y. Chang. Robust early-learning: Hindering the memorization of noisy labels. In *International Conference on Learning Representations*, 2021.

T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang. Learning from massive noisy labeled data for image classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 2691–2699, 2015.

Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le. Unsupervised data augmentation. *arXiv preprint arXiv:1904.12848*, 2019.

Q. Yao, H. Yang, B. Han, G. Niu, and J. T. Kwok. Searching to exploit memorization effect in learning with noisy labels. In *Proceedings of the 37th International Conference on Machine Learning*, ICML ’20, 2020.

X. Yu, B. Han, J. Yao, G. Niu, I. Tsang, and M. Sugiyama. How does disagreement help generalization against label corruption? In *Proceedings of the 36th International Conference on Machine Learning*, volume 97, pages 7164–7173. PMLR, 09–15 Jun 2019.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In *European conference on computer vision*, pages 818–833. Springer, 2014.

J. Zhang, V. S. Sheng, T. Li, and X. Wu. Improving crowdsourced label quality using noise correction. *IEEE transactions on neural networks and learning systems*, 29(5):1675–1688, 2017.

Y. Zhang, X. Chen, D. Zhou, and M. I. Jordan. Spectral methods meet em: A provably optimal algorithm for crowdsourcing. *Advances in neural information processing systems*, 27:1260–1268, 2014.

Y. Zhang, S. Zheng, P. Wu, M. Goswami, and C. Chen. Learning with feature-dependent label noise: A progressive approach. *arXiv preprint arXiv:2103.07756*, 2021.
Z. Zhang and M. Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy labels. In *Advances in neural information processing systems*, pages 8778–8788, 2018.

Z. Zhu, T. Liu, and Y. Liu. A second-order approach to learning with instance-dependent label noise. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2021a.

Z. Zhu, Y. Song, and Y. Liu. Clusterability as an alternative to anchor points when learning with noisy labels. In *Proceedings of the 38th International Conference on Machine Learning*, ICML ’21, 2021b.

Z. Zhu, J. Zhu, J. Liu, and Y. Liu. Federated bandit: A gossiping approach. In *Abstract Proceedings of the 2021 ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems*, pages 3–4, 2021c.
The decay rate of tails. Let

where I is the smallest order statistic and we omit the subscript e et al., 2021c] such that:

Theorem 1 connects the upper bound for the number of wrongly detected corrupted instances with order statistics. There are two cases that can cause detection errors:

A Theoretical Analyses

A.1 Proof for Proposition 1

Now we derive a lower bound for the probability of getting true detection with majority vote:

$$
\mathbb{P}(\text{Vote is correct}|k) \geq (1 - \delta_k) \cdot \left[p \sum_{l=0}^{\left\lceil (k+1)/2 \right\rceil - 1} \binom{k+1}{l} \varepsilon_1^l (1 - \varepsilon_1)^{k+1-l} + (1 - p) \sum_{l=0}^{\left\lceil (k+1)/2 \right\rceil - 1} \binom{k+1}{l} \varepsilon_2^l (1 - \varepsilon_2)^{k+1-l} \right] = (1 - \delta_k) \cdot [p \cdot I_{1-e_1}(k+1-k', k'+1) + (1 - p) \cdot I_{1-e_2}(k+1-k', k'+1)]
$$

where $I_{1-e_1}(k+1-k', k'+1)$ is the regularized incomplete beta function defined as

$$
I_{1-e_1}(k+1-k', k'+1) = (k+1-k')(k+1) \int_0^{1-e} t^{k-k'}(1-t)^{k'} dt,
$$

and $k' = \left\lceil (k+1)/2 \right\rceil - 1$.

B Proof for Theorem 1

\textit{Proof.} Now we derive the worst-case error bound. We first repeat the notations defined in Section 4.2 as follows.

Denote random variable S_j by the score of each instance being clean. A higher score S_j indicates the instance is more likely to be clean. Then for instances in N_j, we have two set of random variables $S_j^{\text{true}} := \{S_j^{\text{true}}|n \in N_j, \tilde{y}_n = y_n\}$ and $S_j^{\text{false}} := \{S_j^{\text{false}}|n \in N_j, \tilde{y}_n \neq y_n\}$. Intuitively, the score S_j^{true} should be greater than S_j^{false}. Suppose their means, which depend on noise rates, are bounded, i.e., $\mathbb{E}[S_j^{\text{true}}] \geq \mu_j^{\text{true}}$, $\mathbb{E}[S_j^{\text{false}}] \leq \mu_j^{\text{false}}$. Assume there exists a feasible μ_j such that both S_j^{true} and S_j^{false} follow sub-Gaussian distributions with variance proxy $\frac{\Delta^2}{2\nu}$ [Buldygin and Kozachenko, 1980; Zhu et al., 2021c] such that: $\mathbb{P}(\mu_j^{\text{true}} - S_j^{\text{true}} \geq t) \leq e^{-v(t/\Delta)^2}$, and $\mathbb{P}(S_j^{\text{false}} - \mu_j^{\text{false}} \geq t) \leq e^{-v(t/\Delta)^2}$, where $1/\Delta$ is the “height” of both distributions, i.e., $\mathbb{P}(S_j^{\text{true}} = \mu_j^{\text{true}}) = \mathbb{P}(S_j^{\text{false}} = \mu_j^{\text{false}}) = 1/\Delta$, v is the decay rate of tails. Let N_j^- (N_j^+) be the number of indices in S_j^{false} (S_j^{true}). For ease of notations, we omit the subscript j in this proof since the detection is performed on each j individually.

Denote the order statistics of random variables in S_j^{false} by $S_j^{\text{false}}(1), \cdots, S_j^{\text{false}}(N_j^-)$, where $S_j^{\text{false}}(1)$ is the smallest order statistic and $S_j^{\text{false}}(N_j^-)$ is the largest order statistic. The following lemma motivates the performance of the rank-based method.

\textbf{Lemma 1.} The F_1-score of detecting corrupted labels in N_j by the rank-based method will be no less than $1 - \alpha/N^-$ when the true probability $\mathbb{P}(Y = j|\tilde{Y} = j)$ is known and $S_j^{\text{false}}(1) < S_j^{\text{true}}(\alpha+1)$.

Lemma 1 connects the upper bound for the number of wrongly detected corrupted instances with order statistics. There are two cases that can cause detection errors:
Case-1:

$$0 \leq \mu_{\text{true}} - S_{\text{true}} < \Delta$$ and $$0 \leq S_{\text{false}} - \mu_{\text{false}} < \Delta$$: at most $$\alpha$$ errors when $$S_{(N-)} < S_{(\alpha+1)}$$.

and Case-2:

$$\mu_{\text{true}} - S_{\text{true}} \geq \Delta$$ or $$S_{\text{false}} - \mu_{\text{false}} \geq \Delta$$: at most $$\max(N_-, N_+$$) errors.

We analyze each case as follows.

Case-1: When Case-1 holds, we have

$$P(\mu_{\text{true}} - S_{\text{true}} = x) \leq 1/\Delta, x \in [0, \Delta]$$

and

$$P(S_{\text{false}} - \mu_{\text{true}} = x) \leq 1/\Delta, x \in [0, \Delta].$$

The above two inequalities show that the left tail of $$S_{\text{true}}$$ and the right tail of $$S_{\text{false}}$$ can be upper bounded by uniform distributions. Denote the corresponding uniform distribution by $$U_{\text{true}} \sim \text{Unif}(\mu_{\text{true}} - \Delta, \mu_{\text{true}})$$ and $$U_{\text{false}} \sim \text{Unif}(\mu_{\text{false}}, \mu_{\text{false}} + \Delta).$$

With true $$P(Y = j|\bar{Y} = j)$$, the detection errors only exist in the cases when the left tail of $$S_{\text{true}}$$ and the right tail of $$S_{\text{false}}$$ are overlapped. When the tails are upper bounded by uniform distributions, we have

$$P(S_{(N-)} < S_{(\alpha+1)}) \geq P(U_{(\alpha+1)} < U_{(N-)}$$

$$P([U_{\text{false}} - \mu_{\text{false}}]_{(N-)} + \mu_{\text{false}} < [U_{\text{true}} - (\mu_{\text{true}} - \Delta)]_{(\alpha+1)} + (\mu_{\text{true}} - \Delta))$$

$$= P([U_{\text{false}} - \mu_{\text{false}}]_{(N-)} - [U_{\text{true}} - (\mu_{\text{true}} - \Delta)]_{(\alpha+1)} < \mu_{\text{true}} - \mu_{\text{false}} - \Delta).$$

Note

$$[U_{\text{false}} - \mu_{\text{false}}]_{(N-)} \sim \text{Beta}(N^{-1}, 1),$$

and

$$[U_{\text{true}} - (\mu_{\text{true}} - \Delta)]_{(\alpha+1)} \sim \text{Beta}(\alpha + 1, N^+ - \alpha),$$

where $$\text{Beta}$$ denotes the Beta distribution. Both variables are independent. Thus the PDF of the difference is

$$f(p) = \begin{cases}
2(N^{-1} - \alpha)\mu^{N^+ - \alpha}(1 - p)^{\alpha + 1}F(1, \alpha + 2, 1 - p^2)/A, & 0 < p \leq 1 \\
2(N^{-1} - \alpha)(-p)^{N^+ - \alpha}(1 + p)^{N^+ + N^{-1} - \alpha}F(N^+ - \alpha, -\alpha, N^+ + N^- + \alpha - 1 - p^2, 1 + p)/A, & -1 \leq p < 0 \\
2(N^{-1} - \alpha)/A, & p = 0.
\end{cases}$$

where $$A = B(N^{-1}, 1)B(\alpha + 1, N^+ - \alpha)$$, $$B(a, b) = \int_0^1 t^{a-1}(1 - t)^{b-1}dt$$

$$F(a, b_1, b_2; c; x, y) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(c - a)} \int_0^1 t^{a-1}(1 - t)^{c-a-1}(1 - xt)^{-b_1}(1 - yt)^{-b_2} dt.$$}

Therefore, we have

$$P(S_{(N-)} < S_{(\alpha+1)}) \geq \int_{-1}^{\mu_{\text{true}} - \mu_{\text{false}} - \Delta} f(p)dp.$$

Case-2 The other part, we have no more than $$e^{-\nu} \cdot \max(N_-, N_+)$$ corrupted instances that may have higher scores than one clean instance.
Wrap-up From the above analyses, we know, w.p. at least $\int_{-1}^{\mu_{\text{true}}-\mu_{\text{false}}-\Delta} f(p) dp$, there are at most $e^{-v} \max(N^-, N^+) + \alpha$ errors in detection corrupted instances. Note Precision = Recall if we detect with the best threshold $N_j \mathbb{P}(Y = j | \tilde{Y} = j)$. Therefore, the corresponding F_1-score would be at least $1 - e^{-v} \max(N^-, N^+) + \alpha$.

\□