SPIN NETWORKS AND SL(2, C)-CHARACTER VARIETIES

SEAN LAWTON AND ELISHA PETERSON

Abstract. Denote the free group on 2 letters by \(F_2 \) and the SL(2, C)-representation variety of \(F_2 \) by \(\mathcal{R} = \text{Hom}(F_2, \text{SL}(2, \mathbb{C})) \). The group SL(2, C) acts on \(\mathcal{R} \) by conjugation. We construct an isomorphism between the coordinate ring \(\mathbb{C}[\text{SL}(2, \mathbb{C})] \) and the ring of matrix coefficients, providing an additive basis of \(\mathbb{C}[\mathcal{R}]^{\text{SL}(2, \mathbb{C})} \) in terms of spin networks. Using a graphical calculus, we determine the symmetries and multiplicative structure of this basis. This gives a canonical description of the regular functions on the SL(2, C)-character variety of \(F_2 \) and a new proof of a classical result of Fricke, Klein, and Vogt.

1. Introduction

The purpose of this work is to present a graphical calculus for the algebraic study of SL(2, C)-representations of free groups.

Let \(F_2 \) be a rank 2 free group. The set of representations \(\mathcal{R} = \text{Hom}(F_2, \text{SL}(2, \mathbb{C})) \) inherits the structure of an algebraic set from SL(2, C). The subset of representations that are completely reducible, denoted by \(\mathcal{R}^{ss} \), have closed orbits under conjugation. Consequently, the orbit space \(\mathcal{R}^{ss}/\text{SL}(2, \mathbb{C}) = \mathcal{R}/\text{SL}(2, \mathbb{C}) \) is an algebraic set referred to as the character variety.

Graphs known as spin networks permit a concise description of a natural additive basis for the coordinate ring

\[
\mathbb{C}[\mathcal{R}/\text{SL}(2, \mathbb{C})] = \mathbb{C}[\mathcal{R}]^{\text{SL}(2, \mathbb{C})}.
\]

The elements of this basis are in a one-to-one correspondence with Clebsch-Gordan injections

\[
V_c \hookrightarrow V_a \otimes V_b,
\]

where \(V_c = \text{Sym}^c(\mathbb{C}^2) \) denotes an irreducible representation of SL(2, C). The spin network calculus offers a graphical means of computing the product of two basis functions, and also reveals strong symmetries within the basis.

Date: September 9, 2008.
Similar bases have appeared in the literature under different circumstances. Baez \[\text{Bae}\] describes such a basis as quantum mechanical “state vectors.” He shows that the space of square integrable functions on a related space of connections modulo gauge transformations is spanned by graphs similar to ours. In fact, spin networks were first introduced by Penrose \[\text{Pen}\] to graphically describe quantum angular momentum. In another work, Florentino \[\text{FMN}\] uses a like basis to produce distributions related to geometric quantization of moduli spaces of flat connections on a surface.

We are motivated in part by the interesting algebraic question of determining a complete description of the invariant ring, and the subsequent knowledge of the character variety, which encodes many geometric objects of interest \[\text{Gol2}\]. We are also driven by the potential for applications to gauge theoretic questions. However, we are most engaged by the promise of a methodology and point of view that will allow for generalizations to other Lie groups and free groups of rank greater than two.

\textit{The remainder of this paper is organized as follows.} In Section 2 we review background from both invariant theory and representation theory. In Section 3 we introduce spin networks, which are special types of graphs that may be identified with functions between tensor powers of \(\mathbb{C}^2\). We give a full treatment of the \textit{spin network calculus}, a powerful means for working with regular functions on \(\mathcal{R}/\text{SL}(2,\mathbb{C})\).

In Section 4 an additive basis for \(\mathbb{C}[\mathcal{R}/\text{SL}(2,\mathbb{C})]\) is constructed. This basis, denoted by \(\{\chi_{a,b,c}\}\), is indexed by triples of nonnegative integers \((a,b,c)\) satisfying the \textit{admissibility condition}:

\[
\frac{1}{2}(-a + b + c), \frac{1}{2}(a - b + c), \frac{1}{2}(a + b - c) \in \mathbb{N}.
\]

The functions \(\chi_{a,b,c} \in \mathbb{C}[\mathcal{R}/\text{SL}(2,\mathbb{C})]\) are central in

\[
\text{End}(V_c) \hookrightarrow \text{End}(V_a) \otimes \text{End}(V_b),
\]

and are referred to as \textit{central functions}.

Section 5 begins with the computation of a few elementary central functions. Our main results follow. Theorem 5.1 describes the surprising symmetries of central functions, while Theorem 5.10 provides an explicit formula for multiplication. The following special case of this formula is given in Corollary 5.6

\[
\chi_{a,b,c} = x \cdot \chi_{a-1,b,c-1} - \frac{(a+b-c)^2}{4a(a-1)} \chi_{a-2,b,c} - \frac{(-a+b+c)^2}{4c(c-1)} \chi_{a,b,c-2} - \frac{(a+b+c)^2(a-b+c-2)^2}{16a(a-1)c(c-1)} \chi_{a-2,b,c-2}.
\]
Finally, using this relation and the symmetry given by Theorem 5.1, we give a constructive proof of the following classical theorem due to Fricke, Klein, and Vogt [FK, Vog]:

Theorem 5.11 (Fricke-Klein-Vogt Theorem). Let $G = \text{SL}(2, \mathbb{C})$ act on $G \times G$ by simultaneous conjugation. Then

$$\mathbb{C}[G \times G]^G \cong \mathbb{C}[t_x, t_y, t_z],$$

the complex polynomial ring in three indeterminates. In particular, every regular function $f : \text{SL}(2, \mathbb{C}) \times \text{SL}(2, \mathbb{C}) \to \mathbb{C}$ satisfying

$$f(x_1, x_2) = f(gx_1g^{-1}, gx_2g^{-1}) \quad \text{for all } g \in \text{SL}(2, \mathbb{C}),$$

can be written uniquely as a polynomial in the three trace variables $x = \text{tr}(x_1), y = \text{tr}(x_2), \text{and } z = \text{tr}(x_1x_2^{-1})$.

Acknowledgements

We would like to thank Bill Goldman for introducing this problem to us and for many helpful suggestions, including generously sharing his Mathematica notebooks with us. His correspondence with Nicolai Reshetikhin and Charles Frohman provided the foundation for the application of spin networks to this problem. Reshetikhin sketched proofs of both Theorems 5.1 and 5.10. We would also like to thank Adam Sikora for comments on an early draft. Additionally, Carlos Florentino provided helpful corrections, and pointed out the significance of the symmetry in Theorem 5.1. He also suggested the correspondence given in Proposition 5.7. Additionally, this work has benefitted from helpful conversations with Ben Howard, Tom Haines, and regular participation in the University of Maryland’s Research Interaction Teams.

The first author has received research support from John Millson, Richard Schwartz, and the University of Maryland’s VIGRE grant. The second author has been supported by an NSF Graduate Fellowship.

2. Preliminaries

2.1. **Algebraic Structure of $\mathcal{R}/\text{SL}(2, \mathbb{C})$.** The group $G = \text{SL}(2, \mathbb{C})$ has the structure of an irreducible algebraic set. For a rank 2 free group F_2, the representation variety $\mathcal{R} = \text{Hom}(F_2, G) \cong G \times G$ is an irreducible algebraic set as well. There is a polynomial action of G on \mathcal{R} given by simultaneous conjugation, that is for $(x_1, x_2) \in G \times G$

$$g \cdot (x_1, x_2) = (gx_1g^{-1}, gx_2g^{-1}).$$
The ring of invariants \(\mathbb{C}[\mathcal{R}]^G \) is finitely generated since \(G \) is linearly reductive \([\text{Dol}]\). Consequently,

\[
\mathcal{X} = \text{Spec}_{\text{max}}(\mathbb{C}[\mathcal{R}]^G) = \mathcal{R} // G
\]

is an irreducible algebraic set, referred to as the \(G \)-character variety of \(F_2 \). The character variety \(\mathcal{X} \) is identified with conjugacy classes of completely reducible representations in \(\mathcal{R} \). Procesi has shown that \(\mathbb{C}[\mathcal{R}]^G \) is generated by traces of products of matrix variables of word length less than or equal to three \([\text{Pro}]\). Hence \(\mathbb{C}[\mathcal{X}] \) is generated, although not minimally, by

\[
\{ \text{tr}(x_1), \text{tr}(x_2), \text{tr}(x_1x_2), \text{tr}(x_1^2), \text{tr}(x_2^2) \}.
\]

2.2. Representation Theory of \(\text{SL}(2, \mathbb{C}) \). The coordinate ring \(\mathbb{C}[G] \) decomposes into a direct sum of tensor products of the finite-dimensional irreducible representations of \(G \). We will use this decomposition, given explicitly by Theorem \([\text{L}I]\) to understand \(\mathbb{C}[\mathcal{X}] \). To this end, we review the representation theory of \(G \) (see \([\text{BtD}, \text{Dol}, \text{PH}]\)).

The symmetric powers of the standard representation of \(G \) are all irreducible representations and moreover they comprise a complete list. Let \(V_0 = \mathbb{C} = V_0^* \) be the trivial representation of \(G \). Denote the standard basis for \(\mathbb{C}^2 \) by \(e_1 = \frac{1}{\sqrt{2}} \) and \(e_2 = \frac{1}{\sqrt{2}} \), and the dual basis by \(e_1^* = e_1^T \) and \(e_2^* = e_2^T \). Then the standard representation and its dual are

\[
V = V_1 = \mathbb{C}e_1 \oplus \mathbb{C}e_2 \quad \text{and} \quad V^* = V_1^* = \mathbb{C}e_1^* \oplus \mathbb{C}e_2^*,
\]

respectively. Denote the symmetric powers of these representations by

\[
V_n = \text{Sym}^n(V) \quad \text{and} \quad V_n^* = \text{Sym}^n(V^*).
\]

Since \(V_n \) admits an invariant non-degenerate bilinear form, \(V_n \cong (V_n)^* \).

Moreover, \(V_n^* \) is naturally isomorphic to \((V_n)^* \), so elements in \(V_n \) pair with elements in \(V_n^* \). Denote the projection of \(v_1 \otimes v_2 \otimes \cdots \otimes v_n \in V^\otimes n \) to \(V_n \) by \(v_1 \circ v_2 \circ \cdots \circ v_n \). There exist bases for \(V_n \) and \(V_n^* \), given by the elements

\[
n_{n-k} = e_1^{n-k} e_2^k = e_1 \circ e_1 \circ \cdots \circ e_1 \circ e_2 \circ e_2 \circ \cdots \circ e_2 \quad \text{and}
\]

\[
n_{n-k}^* = (e_1^*)^{n-k} (e_2^*)^k = e_1^* \circ e_1^* \circ \cdots \circ e_1^* \circ e_2^* \circ e_2^* \circ \cdots \circ e_2^*,
\]

respectively, where \(0 \leq k \leq n \). In these terms, this pairing is given by

\[
n_{n-k}^* (v_1 \circ v_2 \circ \cdots \circ v_n) = \frac{1}{n!} \sum_{\sigma \in \Sigma_n} \sigma \in (n_{n-k})^* (v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}),
\]
where Σ_n is the symmetric group on n elements. In particular,
\[n_{n-k}(n_{n-l}) = \frac{(n-k)!k!}{n!} \delta_{kl} = \delta_{kl}/\binom{n}{k}. \]

Let $g = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \in G$. Then the G-action on V_n is given by
\[g \cdot n_{n-k} = (g_{11}e_1 + g_{21}e_2)^{n-k}(g_{12}e_1 + g_{22}e_2)^k \]
\[= \sum_{0 \leq j \leq n-k} \binom{n-k}{j} \binom{k}{j} (g_{11}^{n-k-j}g_{21}^{k-i}g_{22}^{i}) n_{n-(i+j)}. \]

For the dual, G acts on V^*_n in the usual way:
\[(g \cdot n^*_n)(v) = n^*_n(g^{-1} \cdot v) \text{ for } v \in V_n. \]

The tensor product $V_a \otimes V_b$, where $a, b \in \mathbb{N}$, is also a representation of G and decomposes into irreducible representations as follows:

Proposition 2.1 (Clebsch-Gordan formula).
\[V_a \otimes V_b \cong \bigoplus_{j=0}^{\min(a,b)} V_{a+b-2j}. \]

Finally, we give several versions of Schur’s Lemma, which will be used frequently.

Proposition 2.2 (Schur’s Lemma). Let G be a group, V and W representations of G, and $f \in \text{Hom}_G(V, W)$ with $f \neq 0$.

1. If V is irreducible, then f is injective.
2. If W is irreducible, then f is surjective.
3. If $V = W$ is irreducible, then f is a homothety.
4. Suppose V, W are irreducible:
 - if $V \cong W$, then $\dim_C \text{Hom}_G(V, W) = 1$;
 - if $V \not\cong W$, then $\dim_C \text{Hom}_G(V, W) = 0$.

See [BtD] or [CSM] for proof of Propositions 2.1 and 2.2.

3. The Spin Network Calculus

This section provides a self-contained introduction to spin networks and the spin network calculus. Our treatment employs a nonstandard definition of spin networks which is more natural when working with traces. This definition leads to different versions of the usual spin network relations in the literature [CFS] [Cvi] [Kau] [Pen] [Ste].
3.1. **Spin Networks and Representation Theory.** At its heart, a spin network is a graph that is identified with a specific function between tensor powers of $V = \mathbb{C}^2$, the standard $\text{SL}(2, \mathbb{C})$ representation.

In order for this function to be well-defined, the edges incident to each vertex of the spin network must have a cyclic ordering. This ordering is often called a *ciliation*, since it is represented on paper by a small mark drawn between two of the edges. The edges adjacent to a ciliated vertex are ordered by proceeding in a clockwise fashion from this mark. For example, in the degree 2 case, there are two possible ciliations: $\frac{1}{2}$ and $\frac{2}{1}$.

Definition 3.1. A spin network \mathcal{S} is a graph with vertex set $\mathcal{S}_i \sqcup \mathcal{S}_o \sqcup \mathcal{S}_v$ consisting of degree 1 ‘inputs’ \mathcal{S}_i, degree 1 ‘outputs’ \mathcal{S}_o and degree 2 ‘ciliated vertices’ \mathcal{S}_v. If there are $k_i = |\mathcal{S}_i|$ inputs and $k_o = |\mathcal{S}_o|$ outputs, then \mathcal{S} is identified with a function $f_{\mathcal{S}} : V^\otimes k_i \to V^\otimes k_o$. If the spin network is closed, meaning $k_i = 0 = k_o$, it is identified with a complex scalar $f_{\mathcal{S}} \in \mathbb{C}$.

Spin networks are drawn in *general position* inside an oriented square with inputs at the bottom and outputs at the top. This convention allows us to equate the composition of functions $f_{\mathcal{S}'} \circ f_{\mathcal{S}}$ with the concatenation of diagrams $\mathcal{S}' \circ \mathcal{S}$ formed by placing \mathcal{S}' on top of \mathcal{S}.

For example, the following spin network has two ciliated vertices and represents a function from $V^\otimes 5 \to V^\otimes 3$:

![Spin Network Diagram](image)

Note that the marks on the local extrema do not indicate vertices of the graph, but are indicators of how to decompose the graph.

Since spin networks are just graphs with ciliations, it does not matter how the graph is represented inside the square. Strands may be moved about freely and ciliations may “slide” along the strands. As long as the endpoints remain fixed, the underlying spin network does not change.

Let $v, w \in V$ and let $\{e_1, e_2\}$ be the standard basis for \mathbb{C}^2. The function $f_{\mathcal{S}}$ of a spin network \mathcal{S} is computed by decomposing \mathcal{S} into the four spin network component maps:

- the identity $\Id : V \to V, \quad v \mapsto v$;
- the cap $\cap : V \otimes V \to \mathbb{C}, \quad v \otimes w \mapsto v^T w$ (inner product);
- the cup $\cup : \mathbb{C} \to V \otimes V, \quad 1 \mapsto e_1 \otimes e_1 + e_2 \otimes e_2$;
- the cap vertex $\land : V \otimes V \to \mathbb{C}, \quad v \otimes w \mapsto \det[vw]$.

For example, since \cap and \cup are the same ciliated graph,

$\land(v \otimes w) = \cup(v \otimes w) = \cap \circ \cup(v \otimes w) = \land(w \otimes v) = \det[w v]$.
This definition differs from the literature \([\text{CFS, Kau, Pen}].\) In particular, we omit the \(i = \sqrt{-1}\) factor in the definition of \(\land\) to gain an advantage in trace calculations. Also, the maps \(\land\) and \(\lor\) are included in order to simplify the proof that \(f_S\) is well-defined.

Theorem 3.2. The spin network function \(f_S\) is well-defined.

Proof. We need to show that every decomposition of \(S\) into the component maps gives the same function.

If \(S\) has \(n\) ciliated vertices, then any decomposition of \(S\) into component maps has \(n\) occurrences of \(\land\). The remainder of the diagram consists of loops or arcs without any vertices. Two corresponding arcs in different decompositions will differ only by the insertion or deletion of a number of ‘kinks’ of the form \(\land\). Finally, since \(\land(v) = | \land \circ \lor | (v) = | (v)\) for all \(v \in V\), these kinks do not change the resulting function. For alternate proofs, see \([\text{CFS, Kau}]\). \(\square\)

This theorem allows us to freely interpret a spin network \(S\) as a function. The computation of \(f_S\) will be easier once the functions for a few simple spin networks are known.

Proposition 3.3. As spin network functions,

1. the swap \(\land\) : \(V \otimes V \rightarrow V \otimes V\) takes \(v \otimes w \mapsto w \otimes v\);
2. the vertex on a straight line \(\lor\) : \(V \rightarrow V\) takes \(v \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} v\);
3. the vertex on a cup \(\lor\) : \(C \rightarrow V \otimes V\) takes \(1 \mapsto e_1 \otimes e_2 - e_2 \otimes e_1\);
4. with opposite ciliations, \(\land = -\land\), \(\lor = -\lor\), \(\lor = -\lor\).

Proof. First (1) is the statement that crossings change only the order of the outputs. Statement (2) follows from, for \(v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}\):

\[
\lor(v) = (\land) \circ (\lor)(v) = (\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix})(v \otimes e_1 \otimes e_1 + v \otimes e_2 \otimes e_2) = \det[v e_1]e_1 + \det[v e_2]e_2 = -v^2e_1 + v^1e_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}v.
\]

Statement (3) is computed similarly, using the decomposition

\[
\lor = (| \land |) \circ (\lor \lor).
\]

Finally, (4) follows from the observation \(\land = \lor = -\land\), which has already been demonstrated. \(\square\)

Given these facts, the function of the earlier example can be computed using the decomposition

\[
\begin{bmatrix} \land \lor \end{bmatrix} = (| \land \lor |) \circ (| \land \lor |) \circ (| | |).
\]
The maps \cup and \cap are unnecessary for trace computations, and so we make the following assumption:

Convention 3.4. For the remainder of this paper, the set of ciliated vertices will *coincide exactly with the set of local extrema*. The ciliations are usually omitted, with the understanding that

$$\cup = \cup : 1 \mapsto e_1 \otimes e_2 - e_2 \otimes e_1$$

and

$$\cap = \cap : v \otimes w \mapsto \det[v \ w].$$

Under this assumption, each straightened kink $\cap \leftrightarrow |$ introduces a sign, and more generally

$$\int_1^n | \cap^n = (-1)^n | \cap^n.$$

Thus, any diagram manipulation in which kinks are straightened must be done carefully.

Spin networks exhibit considerable symmetry, which can be exploited for calculations. For example:

Proposition 3.5. Let S be a spin network with function $f_S : V^{\otimes k_i} \to V^{\otimes k_o}$. Denote its images under reflection through vertical and horizontal lines by \overrightarrow{S} and \overleftarrow{S}, respectively. Then

$$f_{\overrightarrow{S}} = (-1)^{|S_v|} f_S : V^{\otimes k_i} \to V^{\otimes k_o},$$

where $|S_v|$ is the number of local extrema in the diagram and \overrightarrow{f} indicates that the ordering of inputs and outputs is reversed. Also, $f_{\overleftarrow{S}} = (f_S)^*$ where

$$(f_S)^*(v_1 \otimes \cdots \otimes v_{k_i}) = \sum_{e_b \in B(V^{\otimes k_i})} (f_S(e_b) \cdot (v_1 \otimes \cdots \otimes v_{k_o})) e_b,$$

where \cdot indicates the dot product with respect to the standard basis for $V^{\otimes k_o}$ and $B(V^{\otimes k_i})$ is the basis for $V^{\otimes k_i}$. That is, $(f_S)^*$ and f_S are dual with respect to the standard inner product on V.

Proof. The first statement is an extension of the fact that reflecting \cap through a vertical line gives $\cap = - \cap$.

For the second statement, consider $S = \cup$. If $v_i = [v_i^1, v_i^2]$, then

$$(f_S)^*(v_1 \otimes v_2) = \cup (1) \cdot (v_1 \otimes v_2) = (e_1 \otimes e_2 - e_2 \otimes e_1) \cdot (v_1 \otimes v_2)$$

$$= v_1^1 v_2^2 - v_1^2 v_2^1 = \det[v_1 v_2] = \cap (v_1 \otimes v_2).$$

This computation, together with the corresponding one for $S = \cap$, are sufficient to prove the second claim (see [Pet] for details).
The next theorem, which follows from Proposition 3.5, describes how to apply these symmetries to relations among spin networks:

Theorem 3.6 (Spin Network Reflection Theorem). A relation

$$\sum m \alpha_m S^m = 0$$

among some collection of spin networks \(\{S^m\}\) is equivalent to the same relation for the vertically reflected spin networks \(\{S^\downarrow m\}\) and (up to sign) for the horizontally reflected spin networks \(\{S^\leftrightarrow m\}\), that is

$$\sum m \alpha_m S^\downarrow m = 0 \quad \text{and} \quad \sum m \alpha_m (-1)^{|S^\downarrow m|} S^\leftrightarrow m = 0.$$

3.2. Basic Diagram Manipulations. In this section, we describe the spin network calculus, which governs diagram manipulations.

Proposition 3.7. Any spin network can be expressed as a sum of diagrams with no crossings or loops. In particular,

$$\bigotimes = | - \bigcup; \quad \bigcirc S = \text{tr}(I)S = 2S.$$

The proof is given in [Pet]. The first of these relations is called the Fundamental Binor Identity, and represents a fundamental type of structure in mathematics; it is the core concept in defining both the Kauffman Bracket Skein Module in knot theory [BFK] and the Poisson bracket on the set of loops on a surface, which Goldman describes in [Gol1]. It can also be identified with the characteristic polynomial for 2 \times 2 matrices [Pet, Sik].

Since 2 \times 2 matrices act on \(V\), the definition of spin networks may be extended to allow matrices to act on diagrams. We represent the action \(v \mapsto x \cdot v\) by inserting a polygon on a strand, and thus identify \(\bigotimes \leftrightarrow x\).

The corresponding action on the tensor product \(V^\otimes n\) is represented by

$$\bigotimes_{i=1}^n (v_1 \otimes \cdots \otimes v_n) = xv_1 \otimes \cdots \otimes xv_n.$$

The matrices \(x \in \text{SL}(2, \mathbb{C})\) of interest in this paper satisfy the following special property:

Proposition 3.8. The spin network component maps \(\bigotimes, \bigcup = \bigcup, \text{ and } \bigotimes = \bigotimes\), and therefore all spin networks, are equivariant under the natural action of \(\text{SL}(2, \mathbb{C})\) on \(V\) described above.

Proof. The case for the identity \(\bigotimes\) is clear, while

$$\bigotimes (v \otimes w) = \det[xv \cdot xw] = \det(x \cdot [v \cdot w])$$

$$= \det(x) \cdot \det[v \cdot w] = 1 \cdot \det[v \cdot w] = \bigotimes (v \otimes w).$$
shows that $\bigcirc \circ x = \bigotimes = x \circ \bigotimes$.

The proof for \bigcup follows by reflecting this relation. \qed

This means that matrices in such a diagram can "slide across" a vertex (local extremum) by simply inverting the matrix, so that

if $\downarrow = x^{-1} \in \text{SL}(2, \mathbb{C})$, then $\bigcup = \bigcup$.

For a general matrix $x \in \mathbb{M}_{2 \times 2}$, the determinant is introduced in such relations since $\bigotimes \bigcup = \text{det}(\bigotimes) \bigcup$. If x is invertible, this implies

$\bigcup = \text{det}(\bigotimes) \bigcup$.

A closed spin network with one or more matrices is called a trace diagram, and may be identified with a map $G \times \cdots \times G \to \mathbb{C}$. One of the primary motivations for this paper is the study of invariance properties of such maps. The simplest cases are given by:

Proposition 3.9. For $x \in \mathbb{M}_{2 \times 2}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,

(2) $\circ = 2 = \text{tr}(I)$; $\bigotimes = \text{tr}(x)$; $\bigotimes \bigcup = \text{det}(x) \cdot \text{tr}(I)$.

3.3. Symmetrizers and Irreducible Representations.

Another important SL(2, \mathbb{C})-equivariant map is the symmetrizer, defined by:

Definition 3.10. The symmetrizer $\bigotimes^n : V \otimes V \to V \otimes V$ is the map taking

(3) $v_1 \otimes v_2 \otimes \cdots \otimes v_n \mapsto \frac{1}{n!} \sum_{\sigma \in \Sigma_n} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)}$,

where $v_i \in V$ and Σ_n is the group of permutations on n elements.

For example,

\[
\bigotimes^2 = \frac{1}{2} (\mathbb{I} \otimes \mathbb{X}) = \mathbb{I} \otimes \frac{1}{2} (\mathbb{X})
\]

\[
\bigotimes^3 = \frac{1}{6} (\mathbb{I} \mathbb{I} \otimes \mathbb{X} + \mathbb{X} \mathbb{X})
= \mathbb{I} \mathbb{I} - \frac{1}{3} (\mathbb{X} + \mathbb{X} + \mathbb{X}) + \frac{1}{3} (\mathbb{X} + \mathbb{X})
\]

Note that the crossings are removed by applying the Fundamental Bivector Identity.

The defining equation (3) of \bigotimes^n should look familiar: its image is a subspace of $V \otimes V$ isomorphic to the nth symmetric power $\text{Sym}^n V$, and thus it can be thought of as either the projection $\pi : V \otimes V \to \text{Sym}^n V$ or as the inclusion $\iota : \text{Sym}^n V \to V \otimes V$ (see [FH], page 473).

What does this mean for us? If a diagram from $V \otimes k$ to $V \otimes \mathbb{R}$ has symmetrizers at its top and bottom, it can be thought of as a map
between V_{k_i} and V_{k_o}. We freely interpret such spin networks as maps between tensor powers of these irreducible $\text{SL}(2, \mathbb{C})$-representations.

Proposition 3.11 (Basic Symmetrizer Properties).

\begin{align}
(4) & \quad \text{Invariance:} \quad \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array}_{n} = \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array}_{n} ; \\
(5) & \quad \text{stacking relation:} \quad \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}_{k}
\end{array}_{n} = \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}_{n} ; \\
(6) & \quad \text{capping/cupping:} \quad \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}_{n}
\end{array} = 0 = \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}_{n} ; \\
(7) & \quad \text{symmetrizer sliding:} \quad \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array} ;
\end{align}

Proof. The first relation (4) is evident if one expands the symmetrizer in terms of permutations, since permutations are $\text{SL}(2, \mathbb{C})$-equivariant.

The *stacking relation* is the statement that symmetrizing the last k elements of a symmetric tensor has no effect, since they are already symmetric.

For the *capping* and *cupping relations*, notice that

\[
\bigcap \circ \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array} (v \otimes w) = \bigcap (\frac{1}{2}(v \otimes w + w \otimes v)) = \frac{1}{2}(\det[vw] + \det[wv]) = 0.
\]

This implies the general case because, by the stacking relation, one may insert $\begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array}$ between \bigcap and $\begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array}$. The other case is similar.

There are a number of ways to demonstrate (7). It follows by reflection (Proposition 3.5) or as a special case of $\text{SL}(2, \mathbb{C})$-equivariance, since $\bigcup = \bigcup = \bigcup$ for $\phi = g = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \in \text{SL}(2, \mathbb{C})$. More directly, expand the symmetrizer into a sum of permutations. Since each permutation is a product of transpositions, then (7) follows from the simple relation $\bigcup \bigcup = \bigcup \bigcup$. See [Pet] for more details. \hfill \Box

We now move on to some more involved relations among symmetrizers. Although it is easy to write down an arbitrary $\begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array}^n$ in terms of permutations, it is usually rather difficult to write it down in terms of diagrams without crossings (the Temperley-Lieb algebra). The next two propositions give recurrence relations which simplify this process.

Proposition 3.12. The symmetrizer $\begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array}^n$ satisfies:

\begin{align}
(8) & \quad \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array}^n = \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array}^{n-1} - \left(\frac{n-1}{n}\right) \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array}^{n-1} + \left(\frac{n-2}{n}\right) \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array}^{n-1} + \cdots \\
+ (-1)^i \left(\frac{n-i}{n}\right) \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array}^{n-1} + \cdots + (-1)^{n-1} \left(\frac{1}{n}\right) \begin{array}{c}
\begin{array}{c}
\vdots \equiv \vdots
\end{array}
\end{array}^{n-1}.
\end{align}
Proof. If Σ_n is the group of permutations on the set $N_n = \{1, 2, \ldots, n\}$, then
$$|\Sigma_n| = |N_n| |\Sigma_{n-1}|.$$ Interpret $|\Sigma_n|$ as the number of ways to arrange n people in a line. To do this, one may first select someone to be at the front of the line ($|N_n|$ choices), and then rearrange the remaining $n - 1$ people ($|\Sigma_{n-1}|$ choices).

In diagram form, the selection of someone to head the line corresponds to one of the diagrams
$$\begin{array}{c}
 /BI \\
 /BJ \\
 /BK \\
 /BL \\
 /BM \\
\end{array}$$
Thus, the diagrammatic form of the above interpretation is:
$$\begin{array}{c}
 /BA_n = n \times /BB_{n-1} \circ (/BI + /BJ + /BK + \cdots + /BL + \cdots + /BM) .
\end{array}$$
Now, use the binor identity to remove crossings. Most of the resulting terms disappear, since any term whose cups are not in the ‘first position’ on top will vanish due to the capping relation. In particular:
$$\begin{array}{c}
 /BB_i \circ /BB_i = /BB_i - /BC_i + /BD_i + \cdots + (-1)^i /BE_i,
\end{array}$$
where i is the number of ‘kinks’ in $/BB_i$ or 1 plus the number of kinks in $/BB_i$. Finally, group the number of terms on the righthand side with the same number of kinks together: there will be $n - i - 1$ terms with i kinks.

Proposition 3.13. $\begin{array}{c}
 /A7_n
\end{array}$ also satisfies the recurrence relations:

(9) $$\begin{array}{c}
 /A7_n = i /A7_{n-i} - (-1)^i \left(\frac{n - i}{n} \right) /A7_{n-i} ;
\end{array}$$
(10) $$\begin{array}{c}
 /A7_n = (n - 1) /A7_{n-1} - \left(\frac{n - 1}{n} \right) /A7_{n-1} .
\end{array}$$

Proof. Compose relation (8) with $i /A7_i \otimes /A7^{n-i}$. This has no effect on the lefthand side, by the stacking relation. On the righthand side, all but one of the terms with a cap on the bottom vanish, due to the capping relation, since they will cap off either the $i /A7_i$ or the $i /A7^{n-i}$. The one term which remains ‘caps between’ these two symmetrizers. The coefficient is $(-1)^i \left(\frac{n - i}{n} \right)$ since in recurrence (8), i is equal to one more than the number of kinks in $/A7_i$.

Relation (10) is a special case of (9) for $i = 1$.

The next relations follow directly from these recurrences:
Proposition 3.14 (Looping Relations).

(11) \[
\begin{array}{c}
\overbrace{\cdots n} = \left(\frac{n+1}{n} \right) \overbrace{\cdots n-1}.
\end{array}
\]

When \(k \) strands of \(\overbrace{\cdots n} \) are closed off:

(12) \[
\begin{array}{c}
k\overbrace{\cdots 0} = \left(\frac{n+1}{n-k+1} \right) \overbrace{\cdots n-k}.
\end{array}
\]

(13) \[
\begin{array}{c}
\bar{\overbrace{\cdots n}} = n+1.
\end{array}
\]

Proof. Close off the left strand in (10) above. Then, \(\overbrace{\cdots n} \), \(\overbrace{\cdots n-1} \), and \(\overbrace{\cdots n-1} \) become \(\overbrace{\cdots n} \), \(\overbrace{\cdots n-1} = 2 \overbrace{\cdots n-1} \), and \(\overbrace{\cdots n-1} \), respectively. Now collect terms to get (11), and proceed to (12) by applying the first relation \(k \) times. Finally, (13) is a special case of (12) with \(k = n \). \(\square \)

3.4. Symmetrizers and Trivalent Spin Networks. Recall the Clebsch-Gordan decomposition (Proposition 2.1):

\[
V_a \otimes V_b \cong \bigoplus_{c \in [a, b]} V_c, \quad [a, b] = \{a + b, a + b - 2, \ldots, |a - b|\}.
\]

The requirement \(c \in [a, b] \) is equivalent to the following symmetric condition:

Definition 3.15. A triple \((a, b, c)\) of nonnegative integers is admissible, and we write \(c \in [a, b] \), if

(14) \[
\begin{array}{c}
\frac{1}{2}(-a + b + c), \quad \frac{1}{2}(a - b + c), \quad \frac{1}{2}(a + b - c) \in \mathbb{N}.
\end{array}
\]

Two maps arise from the Clebsch-Gordon decomposition: an injection \(i_c^{a,b} : V_c \to V_a \otimes V_b \) and a projection \(P_{a,b}^c : V_a \otimes V_b \to V_c \). Both have simple diagrammatic depictions \([CFS]\):

\[
\begin{array}{c}
i_c^{a,b} = \quad : V_c \to V_a \otimes V_b; \quad P_{a,b}^c = \quad : V_a \otimes V_b \to V_c.
\end{array}
\]

The admissibility condition (14) is the requirement that there is a nonnegative number of strands connecting each pair of symmetrizers. These “strand numbers” appear frequently in diagram manipulations, and will be referenced by the Greek letters \(\alpha, \beta, \gamma \):

Convention 3.16. Given an admissible triple \((a, b, c)\), denote by \(\alpha, \beta, \gamma \), and \(\gamma \) the total number of strands connecting \(V_b \) to \(V_c \), \(V_a \) to \(V_c \), and \(V_a \) to \(V_b \), respectively. Also, denote by \(\delta \) the total number of strands in the diagram. Then:

\[
\begin{array}{c}
\alpha = \frac{1}{2}(-a + b + c), \quad \beta = \frac{1}{2}(a - b + c), \quad \gamma = \frac{1}{2}(a + b - c); \quad \delta = \frac{1}{2}(a + b + c).
\end{array}
\]
Note that \((a, b, c)\) is admissible if and only if \(\alpha, \beta, \gamma \in \mathbb{N}\).

Convention 3.17. Because the maps \(i^a_{a,b} \) and \(P^c_{a,b} \) will be so important for the remainder of this paper, we introduce a notation which simplifies their depiction. Let \(n\) lines with a symmetrizer be represented by one thick line labelled \(n\), so that \(\mathbf{i}^n \equiv \mathbf{\kappa}^n\).

Definition 3.18. A *trivalent spin network* \(\mathcal{S}\) is a graph drawn on the plane with vertices of degree \(\leq 3\) and edges labelled by positive integers such that:

- 2-vertices are ciliated and coincide with local extrema;
- 3-vertices are drawn ‘up’ \(\mathbf{\gamma}\) or ‘down’ \(\mathbf{\gamma}\);
- any two edges meeting at a 2-vertex have the same label;
- the three labels adjacent to any vertex form an admissible triple.

If there are \(m\) input edges with labels \(l_i\) for \(i = 1, \ldots, m\) and \(n\) output edges with labels \(l'_i\) for \(i = 1, \ldots, n\), the network is identified with a map between tensor products of irreducible \(\text{SL}(2, \mathbb{C})\) representations,

\[
f_{\mathcal{S}} : V_{l_1} \otimes \cdots \otimes V_{l_m} \to V_{l'_1} \otimes \cdots \otimes V_{l'_n}.
\]

This map is computed by identifying \(\mathcal{S}\) with a regular spin network using the following identifications:

\[
\mathbf{i}^n \equiv \mathbf{\kappa}^n, \quad \mathbf{n} \equiv \mathbf{m} \cdots, \quad \mathbf{\cup}^n = \mathbf{\cup}^n \equiv \mathbf{\cup}.
\]

Note that ciliations are normally chosen to be on the local extrema, and degree-3 vertices, when expanded, also have a number of ciliated vertices. The need to keep track of these ciliations makes diagram manipulation a more delicate operation.

3.5. Trivalent Diagram Manipulations.

For the remainder of this paper, we assume that all sets of labels incident to a common vertex in a diagram are admissible. Moreover, whenever we sum over a label in a diagram, the sum is taken over all possible values of that label which make the requisite triples in the diagram admissible.

The identity \(\mathbf{\kappa} = -\mathbf{\kappa}\) gives rise to the following compendium of sign changes through diagram manipulations:
Proposition 3.19.

\[(15) \quad \bigcup_{n} = (-1)^{n} \bigcap_{n}; \]
\[(16) \quad \bigcap_{a}^{c} b = (-1)^{1/2(a+b-c)} \bigcup_{a}^{c} b; \]
\[(17) \quad \bigcup_{a}^{c} b = (-1)^{1/2(-a+b+c)} \bigcap_{a}^{c} b; \]
\[(18) \quad \bigcap_{a}^{c} b = (-1)^{1/2(a+b+c+d-2c)} \bigcup_{a}^{c} b; \]
\[(19) \quad (-1)^{1/2(a+c)} \bigcup_{a}^{c} b = (-1)^{1/2(b+d)} \bigcap_{a}^{c} b; \]
\[(20) \quad \bigcup_{a}^{c} b = (-1)^{b+d-2} \bigcap_{a}^{c} b. \]

Proof. First, \[(15)\] is just a restatement of \(\bigcap_{n}^{n} = (-1)^{n} \bigcup_{n};\) and \[(16)\] follows directly from the Proposition 3.5, since \(\bigcap_{a}^{c} b\) contains \(\gamma = \frac{1}{2}(a+b-c)\) local extrema and \(\bigcup_{a}^{c} b = \bigcup_{b}^{a} c.\)

For \[(17)\], notice that in the simplest case

\[\bigcup_{a}^{c} b = - \bigcap_{b}^{a} c,\]

the negative sign comes from the strand on top of the diagram. Similarly, the general case for transforming \(\bigcup_{a}^{c} b\) into \(\bigcap_{a}^{c} b\) has a sign for each strand between \(b\) and \(c\), giving \((-1)^{\alpha} = (-1)^{\frac{1}{2}(-a+b+c)}\). This identity is used twice to give \[(18)\].

Finally, \[(19)\] follows from:

\[\bigcup_{a}^{c} b = (-1)^{e} \bigcap_{d}^{c} e = (-1)^{e} \bigcap_{d}^{c} e = (-1)^{e+\frac{1}{2}(d+e-a+b+c)} \bigcup_{d}^{c} e; \]

and \[(20)\] is given by combining \[(18)\] and \[(19)\]. \(\square\)

The above relations permit the definition of a “\(\frac{1}{4}\) reflection” on certain types of diagrams, which will be important later:

Proposition 3.20. If a relation consists entirely of terms of the form \(\bigcup_{a}^{c} b\) and \(\bigcap_{a}^{c} b\), then one may “reflect about the line through \(a\) and \(c\)” in the following sense:

\[\sum_{e} \alpha_{e} \bigcup_{a}^{e} b = \sum_{f} \beta_{f} \bigcap_{a}^{f} b \iff \sum_{e} \alpha_{e} \bigcap_{a}^{e} c = \sum_{f} \beta_{f} \bigcup_{a}^{f} c.\]
Proof. By horizontally reflecting the first relation, using Theorem 3.6

\[\alpha_c = \beta_a \]

\[\Rightarrow \sum_e \alpha_e(-1)^{\frac{1}{2}(a+b+c+d-2e)} b_c = \sum_f \beta_f(-1)^{\frac{1}{2}(a+b+c+d-2f)} a_d \]

\[\Rightarrow \sum_e \alpha_e b_c = \sum_f \beta_f b_d, \]

where the signs cancel due to the admissibility conditions.

Now, add strands to both sides, so that the right side \(b_c \) becomes

\[(-1)^{b+d-f} a_d f_c. \]

Likewise, on the left side, \(b_c \) becomes \((-1)^{b+d-e} a_d e_c\). Once again, admissibility implies that \(e \) and \(f \) must have the same parity, so these signs cancel. □

Two alternate versions of this proposition follow (see [Pet]).

Corollary 3.21.

\[\sum_e \alpha_e \begin{array}{c} a \\ b \\ c \end{array} = \sum_f \beta_f \begin{array}{c} a \\ b \\ c \end{array} \iff \sum_e \alpha_e \begin{array}{c} a \\ b \\ c \end{array} = \sum_f \beta_f \begin{array}{c} a \\ b \\ c \end{array} \]

\[\sum_e \alpha_e \begin{array}{c} a \\ b \\ c \end{array} = \sum_f \beta_f \begin{array}{c} a \\ b \\ c \end{array} \iff \sum_e \alpha_e(-1)^{\frac{1}{2}(e-b)} b_d = \sum_f \beta_f(-1)^{\frac{1}{2}(d-f)} b_d. \]

Any closed trivalent spin network may be interpreted as a constant. The simplest such diagrams are given by

Proposition 3.22. Let \(\Theta(a, b, c) = \begin{array}{c} a \\ b \\ c \end{array} \) and \(\Delta(c) = \begin{array}{c} c \end{array} \) (symmetrizer shown for clarity). Then \(\Theta(a, b, c) \) is symmetric in \(\{a, b, c\} \) and explicitly (recall the \(\alpha, \beta, \gamma, \delta \) given in Convention 3.16):

\[\Delta(c) = c + 1 = \dim(V_c); \]

\[\Theta(a, b, c) = \frac{(a+b+c)(a-b+c)(a+b-c)(a+b+c+2)!}{abbc!}; \]

\[\Theta(1, a, a + 1) = \Delta(a + 1) = a + 2. \]
Proof. The first equation is a consequence of the Looping Relation. That \(\Theta(1, a, a + 1) = \Delta(a + 1) \) is a consequence of the stacking relation, and demonstrates \((23) \). We refer the reader to [CFS] for the \(\Theta(a, b, c) \) formula.

Ratios of \(\Delta \) and \(\Theta \) show up in the next two propositions, which tell us how to “pop bubbles” and how to “fuse together” two thick edges. The first demonstrates the usefulness of Schur’s Lemma (Proposition 2.2) in diagrammatic techniques.

Proposition 3.23 (Bubble Identity).

\[
\begin{aligned}
\frac{\Theta(a, b, c)}{\Delta(c)} &= \delta_{cd}.
\end{aligned}
\]

Proof. Schur’s Lemma requires \(\Theta(a, b, c) \frac{\Delta(c)}{\Delta(a, b, c)} \), where \(\delta_{cd} \) is the Kronecker delta.

Proposition 3.24 (Fusion Identities).

\[
\begin{aligned}
\frac{\Theta(a, b, c)}{\Delta(c)} &= \delta_{cd},
\end{aligned}
\]

Proof. Maps of the form \(\Theta(a, b, c) \) for \(c \in [a, b] \) form a basis for the space of \(\text{SL}(2, \mathbb{C}) \)-equivariant maps \(V_a \otimes V_b \rightarrow V_a \otimes V_b \) [CFS]. Thus, we may express the first diagram as a linear combination:

\[
\begin{aligned}
\sum_{c \in [a, b]} C(c) \frac{\Delta(c)}{\Delta(a, b, c)} a \bigcirc b &= \sum_{c \in [a, b]} \left(-1 \right)^{\frac{1}{2}(a+b+c)} \frac{\Delta(c)}{\Theta(a, b, c)} \frac{\Delta(c)}{\Delta(a, b, c)} a \bigcirc b.
\end{aligned}
\]

For a fixed \(d \in [a, b] \), the constant \(C(d) \) is computed by composing this expression with \(\bigcirc_d \), giving:

\[
\begin{aligned}
C(d) &= \sum_{c \in [a, b]} C(c) \frac{\Delta(c)}{\Delta(a, b, c)} a \bigcirc b \frac{\Delta(c)}{\Delta(d)} \frac{1}{\Theta(a, b, d)} \bigcirc_d \delta_{cd}
\end{aligned}
\]

\[
\begin{aligned}
C(d) &= \frac{\Delta(d)}{\Theta(a, b, d)} a \bigcirc b.
\end{aligned}
\]
For the second equation:

\[
\begin{align*}
\sum_{c \in [a, b]} (-1)^{\frac{1}{2}(-a+b+c)} \left(\frac{\Delta(c)}{\Theta(a, b, c)} \right) = & \sum_{c \in [a, b]} (-1)^{\frac{1}{2}(a-b+c)} \left(\frac{\Delta(c)}{\Theta(a, b, c)} \right) \\
\end{align*}
\]

4. Decomposition of \(\mathbb{C}[G] \)

The following theorem is a consequence of the “unitary trick” [Dol], the Peter-Weyl Theorem, and the fact that the set of matrix coefficients of \(G \) is exactly its coordinate ring [CSM]. We offer a self-contained constructive proof in Section 4.2.4 since it gives an explicit correspondence between regular functions and spin networks.

Theorem 4.1. There is a \(G \)-module isomorphism

\[
\mathbb{C}[G] \cong \bigoplus_{n \geq 0} V_n^* \otimes V_n.
\]

4.1. Central Functions. Theorem 4.1 allows \(\mathbb{C}[G \times G]^G \) to be described in terms of an additive basis of class functions that have an elegant realization as spin networks. Indeed, together with the Clebsch-Gordan decomposition, it implies

\[
\begin{align*}
\mathbb{C}[G \times G] & \cong \mathbb{C}[G] \otimes \mathbb{C}[G] \\
& \cong \left(\bigoplus_{a \geq 0} V_a^* \otimes V_a \right) \otimes \left(\bigoplus_{b \geq 0} V_b^* \otimes V_b \right) \\
& \cong \bigoplus_{0 \leq a, b < \infty} (V_a^* \otimes V_b^*) \otimes (V_a \otimes V_b) \\
& \cong \bigoplus_{0 \leq a, b < \infty} \left(\sum_{i=0}^{\min(a,b)} V_{a+b-2i}^* \otimes V_{a+b-2j} \right) \otimes \left(\sum_{j=0}^{\min(a,b)} V_{a+b-2j} \right) \\
& \cong \bigoplus_{0 \leq a, b < \infty} \bigoplus_{0 \leq i, j \leq \min(a,b)} V_{a+b-2i}^* \otimes V_{a+b-2j}.
\end{align*}
\]

Since the above maps are \(G \)-equivariant,

\[
\mathbb{C}[G \times G]^G \cong \bigoplus_{0 \leq a, b < \infty} \bigoplus_{0 \leq i, j \leq \min(a,b)} (V_{a+b-2i}^* \otimes V_{a+b-2j})^G.
\]
By Schur’s Lemma (Proposition 2.2),
\[\dim \mathbb{C} \left(V^*_{a+b-2i} \otimes V_{a+b-2j} \right)^G = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}, \]
so
\[\mathbb{C}[G \times G]^G \cong \sum_{0 \leq a, b < \infty} \sum_{0 \leq j \leq \min(a, b)} \text{End}(V_{a+b-2j})^G. \]

Definition 4.2. Given the above isomorphism, for each \(c \in \lceil a, b \rceil \) (see Definition 3.15), there exists a class function \(\chi_{a,b,c} \in \mathbb{C}[G \times G]^G \) which corresponds to a generating homothety (unique up to scalar) in \(\text{End}(V_c)^G \). We refer to the functions \(\chi_{a,b,c} \) as central functions.

Denote by \(\mathbb{C} \chi_{a,b,c} \subset \mathbb{C}[G \times G]^G \) the linear span over \(\mathbb{C} \) of \(\chi_{a,b,c} \). Then (24) may be rewritten as
\[\mathbb{C}[G \times G]^G \cong \sum_{0 \leq a, b < \infty} \sum_{c \in \lceil a, b \rceil} \mathbb{C} \chi_{a,b,c}. \]

Thus, the central functions \(\chi_{a,b,c} \) form an additive basis for the ring of regular functions on \(X \). In Section 5, we describe the multiplicative structure of \(\mathbb{C}[G \times G]^G \) in terms of this basis.

With respect to the Clebsch-Gordan injection \(\iota : V_c \hookrightarrow V_a \otimes V_b \), the central functions are
\[\chi_{a,b,c}(x_1, x_2) = \text{tr} \left(\iota(c_i^*) \left((x_1 \cdot x_2) \cdot \iota(c_j) \right) \right), \]
where \(\{c_j\} \) is a basis for \(V_c \).

The functions \(\chi_{a,b,c} \) take a natural diagrammatic form. If the matrix \(x_1 \) is represented diagrammatically by \(\phi : V \to V \), then its action on \(V_a \) can be represented by \(\phi^a \equiv \begin{array}{c} \vdots \\ \vdots \\ \phi \end{array} \). A closed spin network with \(r \) different matrices is an invariant regular function \(G^{\times r} \to \mathbb{C} \). In particular, if \(x_1 \) and \(x_2 \) are depicted by \(\phi \) and \(\phi \), respectively, then
\[\chi_{a,b,c}(x_1, x_2) = \begin{array}{c} \vdots \\ \vdots \\ c \end{array} = \begin{array}{c} \vdots \\ \vdots \\ a \end{array} \otimes \begin{array}{c} \vdots \\ \vdots \\ b \end{array}. \]

As a special case, setting \(x_1 = x_2 = I \), where \(I \) is the identity matrix in \(G \), gives \(\chi_{a,b,c}(I, I) = \Theta(a, b, c) \).

4.2. **Proof of \(\mathbb{C}[G] \) Decomposition Theorem.** Define
\[\Upsilon : \sum_{n \geq 0} V_n^* \otimes V_n \to \mathbb{C}[G] \]
by linear extension of the mapping

$$n_{n-k}^* \otimes n_{n-l} \mapsto n_{n-k}^*(x \cdot n_{n-l})$$

where $x = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$ is a matrix variable. The theorem is proved by demonstrating that the following diagram of isomorphisms commutes:

$$\begin{array}{ccc}
\sum_{n \geq 0} V_n^* \otimes V_n & \xrightarrow{\tau} & \mathbb{C}[G] \\
\Phi & \downarrow & \\
\sum_{n \geq 0} \text{Hom}_G(V_n, \mathbb{C}[G]_{\text{right}}) \otimes V_n & \xrightarrow{\Phi} & \\
\end{array}$$

We first establish that Υ is a well-defined G-equivariant morphism. Its image consists of regular functions since

$$n_{n-k}^*(x \cdot n_{n-l}) = n_{n-k}^*((x_{11}e_1 + x_{21}e_2)^{n-l}(x_{12}e_1 + x_{22}e_2)^l)$$

$$= \sum_{i+j=k} \binom{n-1}{i} \binom{n-l}{j} x_{11}^{n-l-i} x_{12}^{l-j} x_{21}^i x_{22}^j.$$

Equivariance is verified by the calculation:

$$\Upsilon(g \cdot (n_{n-k}^* \otimes n_{n-l})) = \Upsilon((g \cdot n_{n-k}^*) \otimes (g \cdot n_{n-l}))$$

$$= (g \cdot n_{n-k}^*)(x \cdot (g \cdot n_{n-l})) = n_{n-k}^*((g^{-1}xg) \cdot n_{n-l})$$

$$= g \cdot n_{n-k}^*(x \cdot n_{n-l}) = g \cdot \Upsilon(n_{n-k}^* \otimes n_{n-l}).$$

There is a right action of G on $\mathbb{C}[G]$ given by $f \cdot g(x) = f(xg)$. Denote by $\mathbb{C}[G]_{\text{right}}$ the ring $\mathbb{C}[G]$ with this right action, to distinguish it from the conjugation action already imposed on $\mathbb{C}[G]$. Additionally, G acts on the left of $\text{Hom}_G(V_n, \mathbb{C}[G]_{\text{right}})$ by

$$(g \cdot \gamma)(v)(x) = \gamma_v(g^{-1}x),$$

where $\gamma_v = \gamma(v)$. This action is well-defined since

$$(g \cdot \gamma)(g' \cdot v)(x) = \gamma_{g' \cdot v}(g^{-1}x) = \gamma_v(g^{-1}xg') = (g \cdot \gamma(v)) \cdot g'(x).$$

Lemma 4.3. The map

$$\Phi : \sum_{n \geq 0} \text{Hom}_G(V_n, \mathbb{C}[G]_{\text{right}}) \otimes V_n \rightarrow \mathbb{C}[G]$$

defined by linearly extending the mappings $\gamma \otimes v \mapsto \gamma(v)$ is an isomorphism of G-modules.

The proof of Lemma 4.3 requires some preliminary technical results.
Lemma 4.4. Every regular function is contained in a finite-dimensional sub-representation of $\mathbb{C}[G]$.

Proof of Lemma 4.4. The following $G \times G$-action encompasses both the right and diagonal G-actions defined above. Let

$$\alpha : G \times G \times G \longrightarrow G$$

be defined by $(g_1, g_2, x) \mapsto g_1 x g_2^{-1}$, and further let

$$\alpha^* : \mathbb{C}[G] \longrightarrow \mathbb{C}[G \times G \times G] \cong \mathbb{C}[G] \otimes \mathbb{C}[G] \otimes \mathbb{C}[G]$$

be defined by $f \mapsto f \circ \alpha$, the pull-back of regular functions on G to regular functions on $G \times G \times G$. For $f \in \mathbb{C}[G]$, (25) implies that there exist $n_f \in \mathbb{N}$ and regular functions f_i, f'_i, f''_i for $1 \leq i \leq n_f$ such that

$$\alpha^*(f) = \sum_{i=1}^{n_f} f_i \otimes f'_i \otimes f''_i.$$

Therefore

$$\alpha^*(f)(g_1^{-1}, g_2^{-1}, x) = \sum_{i=1}^{n_f} f_i(g_1^{-1}) f'_i(g_2^{-1}) f''_i(x).$$

On the other hand,

$$\alpha^*(f)(g_1^{-1}, g_2^{-1}, x) = f(\alpha(g_1^{-1}, g_2^{-1}, x)) = f(g_1^{-1} x g_2) = ((g_1, g_2) \cdot f)(x),$$

which implies

$$(g_1, g_2) \cdot f = \sum_{i=1}^{n_f} f_i(g_1^{-1}) f'_i(g_2^{-1}) f''_i.$$

Let $(G \times G)f = \{(g_1, g_2) : f \in G\}$ be the $G \times G$-orbit of f, and let W_f be the linear subspace spanned over \mathbb{C} by $(G \times G)f$ in $\mathbb{C}[G]$. By (25), \(\{f''_i\} \) is a spanning set for W_f, and so W_f is finite-dimensional. Clearly W_f is $G \times G$-invariant, and so invariant with respect to the diagonal and right G-actions. Thus, it is a finite-dimensional sub-representation containing f. □

Lemma 4.5. $\mathbb{C}[G]$ is completely $G \times G$-reducible.

Proof of Lemma 4.5. Let \mathcal{I} be the set of direct sums of irreducible finite-dimensional sub-representations of $\mathbb{C}[G]$. \mathcal{I} is partially ordered by set inclusion and is nonempty. Thus, by Zorn’s lemma there exists a maximal element $M \in \mathcal{I}$. If $M \neq \mathbb{C}[G]$, then consider any $f \notin M$. By Lemma 4.3 there exists a finite-dimensional sub-representation W_f that contains f. Let $K = \text{SU}(2)$ be the maximal compact subgroup of G. Restrict the action of $G \times G$ to $K \times K$ to find an invariant orthogonal complement to W_f in $M \cup W_f$. Denote this complement by M^\perp. Then
where \(c_j \) is the (possibly infinite) multiplicity of \(V_j \) in \(\mathbb{C}[G] \). This decomposition also holds for \(\mathbb{C}[G] \) and is not maximal, which is a contradiction. Therefore \(\mathbb{C}[G] \) is completely reducible with respect to the \(G \times G \)-action, and so

\[
\mathbb{C}[G] \cong \sum_{j \geq 0} c_j V_j,
\]

is an isomorphism if and only if

\[
\sum_{n \geq 0} \left(\sum_{j \geq 0} \text{Hom}_G(V_n, c_j V_j) \otimes V_n \right) \rightarrow \sum_{j \geq 0} c_j V_j
\]

is an isomorphism. By Schur’s Lemma, this reduces to

\[
\sum_{n \geq 0} (c_n \mathbb{C} \otimes V_n) \cong \sum_{n \geq 0} (\text{Hom}_G(V_n, c_n V_n) \otimes V_n) \rightarrow \sum_{n \geq 0} c_n V_n.
\]

However, this is the map sending \(\sum \lambda \otimes v \mapsto \sum \lambda v \) for \(\lambda \in \mathbb{C} \) and \(v \in V_n \), which is canonically an isomorphism. \(\square \)

Proof of Lemma 4.3 By Lemma 4.3,

\[
\Phi : \sum_{n \geq 0} (\text{Hom}_G(V_n, \mathbb{C}[G]_{\text{right}}) \otimes V_n) \rightarrow \mathbb{C}[G]
\]

\(\Phi \) is well-defined since \(\Phi(w^*(v)) = F_{w^*}(v) = g^*(x \cdot v) \).

We now finish the proof of the theorem. Define

\[
\Psi_n : V_n^* \rightarrow \text{Hom}_G(V_n, \mathbb{C}[G]_{\text{right}})
\]

by \(w^* \mapsto F_{w^*} \), where \(F_{w^*}(v)(x) = w^*(x \cdot v) \). \(\Psi_n \) is well-defined since

\[
F_{w^*}(g \cdot v)(x) = w^*(x \cdot (g \cdot v)) = w^*((xg) \cdot v) = F_{w^*}(v)(xg) = (F_{w^*}(v)) \cdot g(x),
\]

and is \(G \)-equivariant because

\[
\Psi_n(g \cdot w^*)(v)(x) = F_{g \cdot w^*}(v)(x) = (g \cdot w^*)(x \cdot v) = w^*((g^{-1}x) \cdot v)
\]

\[= F_{w^*}(v)(g^{-1}x) = (g \cdot F_{w^*})(v)(x) = g \cdot \Psi_n(w^*)(v)(x).\]

Since \(V_n^* \) is irreducible, Schur’s Lemma implies \(\Psi_n \) is injective. We now show surjectivity. Consider \(\gamma \in \text{Hom}_G(V_n, \mathbb{C}[G]_{\text{right}}) \). For \(\mathbb{I} \in G \), \(\gamma(\mathbb{I}) \) is a linear functional on \(V_n \). Hence there exists \(w^* \in V_n^* \) such that \(w^*(v) = \gamma(v)(\mathbb{I}) \) for all \(v \in V_n \). The following computation establishes that \(\Psi_n(w^*) = \gamma \):

\[
F_{w^*}(v)(x) = w^*(x \cdot v) = \gamma(x \cdot v)(\mathbb{I}) = \gamma(v)(\mathbb{I}x) = \gamma(v)(x).
\]
Therefore Ψ_n is an isomorphism and
\[\sum_{n \geq 0} V_n^* \otimes V_n \cong \sum_{n \geq 0} (\text{Hom}_G(V_n, \mathbb{C}[G]_{\text{right}}) \otimes V_n), \]
given by the map $\Psi = \sum (\Psi_n \otimes \text{id})$.

It remains to verify that $\Upsilon = \Phi \circ \Psi$:
\[\Phi \circ \Psi(w^* \otimes v) = \Phi(Fw^* \otimes v) = Fw^*(x \cdot v) = \Upsilon(w^* \otimes v). \square \]

4.3. Ring Structure of $\mathbb{C}[G]^G$. We have established
\[\mathbb{C}[G] \cong \sum_{n \geq 0} V_n^* \otimes V_n. \]

By Schur’s Lemma and the fact that $V_n^* \otimes V_n \cong \text{End}(V_n)$,
\[\mathbb{C}[G]^G \cong \sum_{n \geq 0} (V_n^* \otimes V_n)^G \cong \sum_{n \geq 0} \mathbb{C} \chi^n, \]
where $\chi^n \in \text{End}(V_n)^G$ is a multiple of the identity.

The isomorphism $\text{End}(V_n) \to V_n^* \otimes V_n$ is given by
\[n_{n-l}(n_{n-k})^T \mapsto \binom{n}{k} n_{n-k}^* \otimes n_{n-l}. \]

Therefore, the central function χ^n corresponds to an invariant function in $\mathbb{C}[G]^G$ by
\[\chi^n = \sum_{i=0}^{n} n_i(n_i)^T \mapsto \sum_{i=0}^{n} \binom{n}{i} n_i^* \otimes n_i \mapsto \sum_{i=0}^{n} \binom{n}{i} n_i^*(x \cdot n_i). \]

We will freely identify χ^n with its image in $\mathbb{C}[G]^G$.

For example, the trivial representation V_0 gives $\chi^0 = 1$. The standard representation V_1 has diagonal matrix coefficients x_{11} and x_{22}, hence
\[\chi^1 = x_{11} + x_{22} = \text{tr}(x). \]

The remaining functions may be computed directly, or by using the following product formula:

Theorem 4.6 (Product Formula).
\[\chi^a \chi^b = \sum_{c \subseteq \{a, b\}} \chi^c \]

Proof. From the Clebsch-Gordan decomposition,
\[(V_a \otimes V_b)^* \otimes (V_a \otimes V_b) \cong \sum_{c, d \subseteq \{a, b\}} V_c^* \otimes V_d. \]

Hence
\[\text{End}(V_a \otimes V_b)^G \cong \sum_{c \subseteq \{a, b\}} \text{End}(V_c)^G. \]
and the characters satisfy
\[\chi^a \chi^b = \chi_{(V_a \otimes V_b)} = \chi_{\bar{a} \bar{b} V_c} = \sum_{c \in [a, b]} \chi^c. \]

There is an alternate diagrammatic proof of this statement, which uses the fusion and bubble identities in Propositions 3.23 and 3.24. If the matrix \(x \) is represented by \(\bigcirc \), then:
\[
\chi^a \chi^b = \chi_{\bigcirc} = \sum_{c \in [a, b]} \left(\frac{\Delta(c)}{\Theta(a, b, c)} \right) \chi_{\bigcirc^c} = \sum_{c \in [a, b]} \left(\frac{\Delta(c)}{\Theta(a, b, c)} \right) \chi_{\bigcirc^c} = \sum_{c \in [a, b]} \chi^c. \]

The product formula (27) and the initial calculations of \(\chi^0 \) and \(\chi^1 \) may be used to show:

Theorem 4.7. \(\mathbb{C}[G]^G \cong \mathbb{C}[t] \).

Proof. Consider the ring homomorphism \(\Phi : \mathbb{C}[t] \rightarrow \mathbb{C}[G]^G \) defined by \(f \mapsto f \circ \text{tr} \). Suppose \(f(\text{tr}(g)) = 0 \) for all \(g \in G \). If \(f \neq 0 \), then since \(f \) has a finite number of zeros, \(\text{tr}(g) \) must have a finite number of values. Therefore,
\[
\begin{bmatrix}
t & 1 \\
-1 & 0
\end{bmatrix} \in G
\]

for all values of \(t \). Hence, \(f = 0 \) and \(\Phi \) is injective. It remains to establish surjectivity. We have already shown \(t \mapsto \chi^1 \) and \(1 \mapsto \chi^0 \). Suppose \(a \geq 2 \) and \(\chi^b \) is in the image of \(\Phi \) for all \(b < a \). Equation (27) implies \(\chi^1 \chi^{a-1} = \chi^a + \chi^{a-2} \). Thus, by induction,
\[
t \Phi^{-1}(\chi^{a-1}) - \Phi^{-1}(\chi^{a-2}) \mapsto \chi^a. \]

The following closed formula for \(\chi^n \) is given in [Pet]:
\[
\chi^n(t) = \sum_{r=0}^{\lfloor n/2 \rfloor} (-1)^r \binom{n-r}{r} t^{n-2r}.
\]

The characters \(\chi^n \) may also be expressed as functions of eigenvalues, since \(\chi^n \) is determined by its values on normal forms
\[
\begin{bmatrix}
\lambda & * \\
0 & \lambda^{-1}
\end{bmatrix} \in G.
\]
Explicitly, \[\begin{pmatrix} \lambda & * & \cdots & * \\ 0 & \lambda^{n-2} & \cdots & * \\ \vdots & \vdots & \ddots & * \\ 0 & 0 & \cdots & \lambda^{2-n} \\ 0 & 0 & \cdots & \lambda^{-n} \end{pmatrix} \] acts on \(V_n \) by the matrix

\[
\begin{bmatrix}
\lambda^n & * & * & \cdots & * \\
0 & \lambda^{n-2} & * & \cdots & * \\
\vdots & 0 & \ddots & * & * \\
0 & 0 & \cdots & \lambda^{2-n} & * \\
0 & 0 & \cdots & 0 & \lambda^{-n} \\
\end{bmatrix}.
\]

Hence,

\[
\chi_n = \lambda^n + \lambda^{n-2} + \cdots + \lambda^{2-n} + \lambda^{-n} = \frac{\lambda^{n+1} - \lambda^{-n-1}}{\lambda - \lambda^{-1}} = [n + 1],
\]

where \([n + 1] \) is the quantized integer for \(q = \lambda \).

5. Structure of \(\mathbb{C}[G \times G]^G \)

Recall the decomposition

\[
\mathbb{C}[G \times G]^G \cong \sum_{a,b \in \mathbb{N}} \mathbb{C} \chi^{a,b},
\]

where \(\chi^{a,b} \) corresponds by \(\Upsilon \) to the image of

\[
\sum_{k=0}^{c} c_k (c_k)^T \mapsto \sum_{k=0}^{c} \binom{c}{k} c_k^* \otimes c_k
\]

under the injection \(V_c^* \otimes V_c \hookrightarrow V_a^* \otimes V_b^* \otimes V_a \otimes V_b \). This inclusion is determined by the Clebsch-Gordan injection \(\iota : V_c \hookrightarrow V_a \otimes V_b \). Hence, an explicit formula for \(\iota \) provides a means to compute \(\chi^{a,b} \) directly. We freely use \(\chi^{a,b,c} \) to denote its image in \(\mathbb{C}[G \times G]^G \).

A few simple examples will motivate the construction of \(\iota \). For \(k = 1, 2 \), let \(x_k = [x_{ij}^k] \) be 2 \(\times \) 2 matrix variables, and let

\[
x = \text{tr}(x_1) = x_{11}^1 + x_{22}^1,
\]

\[
y = \text{tr}(x_2) = x_{11}^2 + x_{22}^2,
\]

\[
z = \text{tr}(x_1 x_2^{-1}) = (x_{11}^1 x_{22}^2 + x_{22}^1 x_{11}^2) - (x_{12}^1 x_{21}^1 + x_{21}^1 x_{12}^2).
\]

Recall that the map \(\bigcirc : V_0 \hookrightarrow V_1 \otimes V_1 \) given by

\[
c_0 \mapsto a_0 \otimes b_1 - a_1 \otimes b_0
\]

is invariant. More generally, the injection \(V_0 \hookrightarrow V_a \otimes V_a \) is given by

\[
(28) \quad \bigcirc^a : c_0 \mapsto \sum_{m=0}^{a} (-1)^m \binom{a}{m} a_{a-m} \otimes b_m.
\]
Hence, $\chi^{0,0,0} = 1$ and $\chi^{1,1,0}$ may be computed by:

\[
\chi^{1,1,0} \mapsto c_0 \otimes c_0
\]

\[
\mapsto (a_0^* \otimes b_1^* - a_1^* \otimes b_0^*) \otimes (a_0 \otimes b_1 - a_1 \otimes b_0)
\]

\[
\mapsto (a_0^* \otimes a_0) \otimes (b_1^* \otimes b_1) - (a_1^* \otimes a_0) \otimes (b_0^* \otimes b_1)
\]

\[
- (a_0^* \otimes a_1) \otimes (b_1^* \otimes b_0) + (a_1^* \otimes a_0) \otimes (b_0^* \otimes b_0)
\]

\[
\mapsto x_{11}^1 \otimes x_{22}^2 - x_{12}^1 \otimes x_{21}^2 - x_{21}^1 \otimes x_{12}^2 + x_{22}^1 \otimes x_{11}^2
\]

\[
\mapsto (x_{11}^1 x_{22}^2 + x_{22}^1 x_{11}^2) - (x_{12}^1 x_{21}^2 + x_{21}^1 x_{12}^2) = z.
\]

The representation V_c may be identified with a subset of $V^\otimes c$ via the equivariant maps $\text{Proj} \circ \text{Sym} = \text{id}$. Thus, when $c = a + b$, ι is given by the commutative diagram

\[
\begin{array}{c}
V_c \xrightarrow{\iota} V_a \otimes V_b
\end{array}
\]

In particular,

\[
(29) \quad \begin{pmatrix} c_k \end{pmatrix} \mapsto \sum_{\substack{0 \leq i \leq a \leq k \atop 0 \leq j \leq b \leq k}} \binom{a}{i} \binom{b}{j} a_i \otimes b_j.
\]

For example, consider $\chi^{1,0,1}$. In this case, $c_0 \mapsto a_0 \otimes b_0$ and $c_1 \mapsto a_1 \otimes b_0$. Hence,

\[
\chi^{1,0,1} \mapsto c_0^* \otimes c_0 + c_1^* \otimes c_1 \mapsto (a_0^* \otimes a_0) \otimes (b_0^* \otimes b_0) + (a_1^* \otimes a_1) \otimes (b_0^* \otimes b_0)
\]

\[
\mapsto x_{11}^1 \otimes 1 + x_{22}^1 \otimes 1 \mapsto x_{11}^1 + x_{22}^1 = x.
\]

A similar computation shows that $\chi^{0,1,1} \mapsto y$.

The general form of ι is determined by combining (28) and (29) in the following diagram:

\[
\begin{array}{c}
V_c \xrightarrow{\iota} V_\alpha \otimes V_\beta
\end{array}
\]

\[
\begin{array}{c}
id \otimes \cup \otimes \text{id}
\end{array}
\]

\[
\begin{array}{c}
V_\alpha \otimes V_\beta \xleftarrow{\iota} V_\gamma \otimes V_\gamma \otimes V_\alpha
\end{array}
\]
It follows that the mapping \(\iota : V_c \to V_a \otimes V_b \) is explicitly given by:

\[
\left(\begin{array}{c} c_k \\ \end{array} \right) \mapsto \sum_{0 \leq i \leq \beta \atop 0 \leq j \leq \alpha \atop 0 \leq m \leq \gamma \atop i+j = k} \beta_i^u \gamma_j^u \left[(-1)^m \binom{\gamma}{m} a_{\gamma-m} \otimes b_m \right] \otimes \binom{\alpha}{j} b_j
\]

\[
\mapsto \sum_{0 \leq i \leq \beta \atop 0 \leq j \leq \alpha \atop 0 \leq m \leq \gamma \atop i+j = k} (-1)^m \beta_i^u \gamma_j^u \left[a_{i+\gamma-m} \otimes b_{j+m} \right].
\]

5.1. Symmetry of Central Functions. Our next result is not at all obvious via the algebraic definition of central functions, but essentially trivial in diagram form. In the theorem, we will use \(\sigma(\Diamond_1, \Diamond_2, \Diamond_3) \) to denote the ordered triple \((\Diamond_{\sigma(1)}, \Diamond_{\sigma(2)}, \Diamond_{\sigma(3)}) \) obtained by applying a given permutation \(\sigma \in \Sigma_3 \) to the triple \((\Diamond_1, \Diamond_2, \Diamond_3) \). This result was first outlined in [Res].

Theorem 5.1 (Symmetry of Central Functions). Suppose a central function is expressed as a polynomial \(p \) in the variables \(x = \text{tr}(x_1) \), \(y = \text{tr}(x_2) \), and \(z = \text{tr}(x_1 x_2^{-1}) \), so that \(p_{a,b,c}(y, x, z) = \chi_{a,b,c}(x_1, x_2) \) for some admissible triple \((a, b, c)\). These polynomials are symmetric with respect to \((y, x, z)\) in the following sense:

\[
p_{\sigma(a,b,c)}(y, x, z) = p_{a,b,c}(\sigma^{-1}(y, x, z)).
\]

Proof. Define the following function \(G \times G \times G \to \mathbb{C} \):

\[
\chi_{a,b,c}(\phi, \phi, \phi) = \begin{array}{ccc}
\alpha & \beta & \gamma \\
\gamma & \alpha & \beta \\
\beta & \gamma & \alpha
\end{array},
\]

where the symmetrizer on the right is assumed to ‘wrap around’ to the one on the left (imagine this diagram being drawn on a cylinder). By construction this function is symmetric, in the sense that:

\[
\chi_{\sigma(a,b,c)}(\sigma(\phi, \phi, \phi)) = \chi_{a,b,c}(\phi, \phi, \phi).
\]

For \(x_1 = \phi \), \(x_1^{-1} = \phi \), \(x_2 = \phi \), \(x_2^{-1} = \phi \), a central function \(\chi_{a,b,c}(x_1, x_2) \) may be drawn as:

\[
\begin{array}{c}
a \\
\alpha \beta c
\end{array} = \begin{array}{c}
a-b+c \quad a+b-c-a+b+c \\
\vdots \quad \vdots \\
\end{array} = \begin{array}{c}
\beta \\
\alpha \gamma \\
\beta \gamma \alpha
\end{array}.
\]
with the symmetrizers in the last two diagrams assumed to wrap around as before. Thus, $p_{a,b,c}(y, x, z) = \chi_{a,\beta,\gamma}(x_2, x_1^{-1}, x_1 x_2^{-1})$ and so:

$$p_{\sigma(a,b,c)}(y, x, z) = \chi_{a,\beta,\gamma}((x_2, x_1^{-1}, x_1 x_2^{-1})) = \chi_{a,\beta,\gamma}(\sigma^{-1}(x_2, x_1^{-1}, x_1 x_2^{-1})) = p_{a,b,c}(\sigma^{-1}(y, x, z)).$$

The following table of central functions demonstrates the symmetry of Theorem 3.13.

$\chi_{1,2,3}$	$xy^2 - \frac{2}{3}(yz + x)$	$\chi_{3,2,1}$	$xz^2 - \frac{2}{3}(yz + x)$
$\chi_{2,3,1}$	$yz^2 - \frac{2}{3}(xz + y)$	$\chi_{1,3,2}$	$y^2z - \frac{2}{3}(xy + z)$
$\chi_{3,1,2}$	$x^2z - \frac{2}{3}(xy + z)$	$\chi_{2,1,3}$	$x^2y - \frac{2}{3}(xz + y)$

Table 1. Central Function Symmetry.

5.2. A Recurrence Relation for Central Functions. Define the rank of a central function to be:

$$\delta = \text{rank}(\chi_{a,b,c}) = \frac{1}{2}(a + b + c).$$

We will obtain a recurrence relation for an arbitrary central function $\chi_{a,b,c}$ by manipulating diagrams to express the product

$$tr(x_1) \cdot \chi_{a,b,c}(x_1, x_2)$$

as a sum of central functions. This formula can be rearranged to write $\chi_{a,b,c}$ as a linear combination of central functions with lower rank. There are three main ingredients to the diagram manipulations: the bubble identity and the fusion identity from Section 3.3 and two recoupling formulae which we prove in the following lemma.

Lemma 5.2. For $i = \frac{1}{2}(a+1-b+c)$ and appropriate triples admissible,

(30) $\chi_{c-1,b}^a = \chi_{c+1,b}^a - (-1)^i \left(\frac{a+b+c+1}{2(a+1)}\right) \chi_{c,b}^{a+1}$

(31) $\chi_{c+1,b}^a = (-1)^i \left(\frac{a+b+c+1}{2(c+1)}\right) \chi_{c,b}^{a+1} + \left(\frac{(a+b+c+3)(a-b+c+1)}{4(a+1)(c+1)}\right) \chi_{c,b}^{a-1}.$

Proof. Note that i is just the number of strands connecting $\begin{array}{c} a+1 \\ b \end{array}$ to $\begin{array}{c} c \\ b \end{array}$ in $\chi_{c+1,b}^a$. For (30), use $n = a + 1$ and i in recurrence relation (23) to get:

$$\chi_{c+1,b}^a = \chi_{a+1-i,b}^a + (-1)^i \left(\frac{a+1-i}{a+1}\right) \chi_{i,b}^{a+1-i}.$$
Compose this equation with \[
\begin{array}{c}
\includegraphics[width=1in]{equation1.png}
\end{array}
\]
to get, via the stacking relation:
\[
\begin{array}{c}
\includegraphics[width=1in]{equation2.png}
\end{array}
\]
which is the desired result.

To prove (31), notice that if we switch \(a\) and \(c\) in the previous relation, and apply a \(\pi\)-reflection to the relation about the \(1 \leftrightarrow b\) axis as in Proposition 3.20, then \(i\) is unchanged and the equation becomes:
\[
\begin{array}{c}
\includegraphics[width=1in]{equation3.png}
\end{array}
\]
Rearrange this equation, and use (30) in its exact form to get:
\[
\begin{array}{c}
\includegraphics[width=1in]{equation4.png}
\end{array}
\]
To show the last computation, note that \(a + 1 - i = \frac{1}{2}(a + b - c + 1)\) and \(c + 1 - i = \frac{1}{2}(-a + b + c + 1)\), so the numerator of the last term is:
\[
4((a+1)(c+1) - (a+1-i)(c+1-i)) = 4(a+1)(c+1) - ((b+1)+c-a)((b+1)-(c-a))
\]
\[
= 4(a+1)(c+1) - (b+1)^2 + (c-a)^2
\]
\[
= ((a+1) - (c+1)^2 + 4(a+1)(c+1) - (b+1)^2
\]
\[
= (a+1 + c+1 + b+1)(a+1 + c+1 - b-1)
\]
\[
= -b+1 + c+3)(a - b + c + 1).
\]
\[\square\]

The coefficients we have computed are examples of \(\bar{6j}\text{-symbols}\), most easily defined to be the coefficients \([a \ b \ f] / [d \ c \ e] \)’ in the following change of basis equation:
\[
\begin{array}{c}
\includegraphics[width=1in]{equation5.png}
\end{array}
\]
We use a prime because we will need an alternate version later:

Definition 5.3. The \(\bar{6j}\text{-symbols}\) \([a \ b \ f] / [d \ c \ e] \) are the coefficients given by
\[
\begin{array}{c}
\includegraphics[width=1in]{equation6.png}
\end{array}
\]
Both versions given here differ from those in the literature [CFS, Kau]. It is not hard to show, using Corollary 3.21, that
\[
\begin{bmatrix}
a & b & f \\
d & c & e
\end{bmatrix}' = (-1)^{\frac{1}{2}}(b+e-d-f) \begin{bmatrix}
a & b & f \\
d & c & e
\end{bmatrix}.
\]
Thus, as a corollary to the above lemma we have the following 6j-symbols, given by replacing c with $c+1$ or $c-1$, which we will need in our next theorem.

Corollary 5.4.

\[
\begin{bmatrix}
1 & a & a+1 \\
 a+1 & b & c
\end{bmatrix} = 1;
\]
\[
\begin{bmatrix}
1 & a & a-1 \\
 a-1 & b & c
\end{bmatrix} = (-1)^{\frac{1}{2}}(a-b-c+2)(a+b-c) \frac{2}{2(a+1)};
\]
\[
\begin{bmatrix}
1 & a & a-1 \\
 a-1 & b & c
\end{bmatrix} = (a+b+c+2)(a-b+c) \frac{a-1}{2(a+1)c}.
\]

We can now prove the “multiplication by x” formula.

Theorem 5.5. The product $x \cdot \chi^{a,b,c}(x, y, z)$ can be expressed by:

\[
(32)
\begin{aligned}
x \cdot \chi^{a,b,c} &= \chi^{a+1,b,c+1} + \frac{(a+b-c)^2}{4(a+1)} \chi^{a-1,b,c+1} \\
&+ \frac{(-a+b+c)^2}{4(c+1)} \chi^{a+1,b,c-1} + \frac{(a+b+c+2)(a-b-c)^2}{16a(a+1)c(c+1)} \chi^{a-1,b,c-1}.
\end{aligned}
\]

This equation still holds for $a = 0$ or $c = 0$, provided we exclude the terms with a or c in the denominator.

Proof. Diagrammatically, $x \cdot \chi^{a,b,c}(x, y, z)$ is represented by

\[
\begin{array}{cc}
\begin{array}{c}
a \\
\Rightarrow \\

\end{array}
&
\begin{array}{c}
b \\
\Rightarrow \\

\end{array}
\end{array},
\]

since $x = \text{tr}(x_1) = \emptyset$ and multiplication is automatic on disjoint diagrams. Now manipulate the diagram to obtain a sum over χ’s with the following three steps.

First, apply the fusion identity to connect the lone \emptyset strand to the $\chi^{a,b,c}$:

\[
(33)
\begin{aligned}
&\begin{array}{cc}
\begin{array}{c}
a \\
\Rightarrow \\

\end{array}
&
\begin{array}{c}
c \\
\Rightarrow \\

\end{array}
\end{array} = \begin{array}{cc}
\begin{array}{c}
a \\
\Rightarrow \\

\end{array}
&
\begin{array}{c}
c+1 \\
\Rightarrow \\

\end{array}
\end{array} + \frac{c}{c+1} \begin{array}{cc}
\begin{array}{c}
a \\
\Rightarrow \\

\end{array}
&
\begin{array}{c}
c-1 \\
\Rightarrow \\

\end{array}
\end{array},
\end{aligned}
\]

where the coefficients are evaluated from

\[
\frac{\Delta(c \pm 1)}{\Theta(1, c, c \pm 1)} = \frac{c \pm 1 + 1}{c + \frac{3}{2} \pm \frac{1}{2}}.
\]
Second, use the $6j$-symbols computed in Corollary 5.4 above to move the a strand from one side of the diagram to the other:

\[
\begin{align*}
(34) & \quad \begin{array}{c} \includegraphics[width=2cm]{fig34a.png} \end{array} \\
& = \begin{array}{c} \includegraphics[width=2cm]{fig34b.png} \end{array} + \frac{(a+b-c)^2}{4(a+1)^2} \begin{array}{c} \includegraphics[width=2cm]{fig34c.png} \end{array} \\
(35) & \quad \begin{array}{c} \includegraphics[width=2cm]{fig35a.png} \end{array} = \frac{(-a+b+c)^2}{4c^2} \begin{array}{c} \includegraphics[width=2cm]{fig35b.png} \end{array} + \frac{(a+b+c+2)^2(a-b+c)^2}{16(a+1)^2c^2} \begin{array}{c} \includegraphics[width=2cm]{fig35c.png} \end{array}.
\end{align*}
\]

In each case, we are recoupling twice: once for the top piece and once for the corresponding bottom piece. In doing this, we would actually get four terms, but since the $a \pm 1$ labels must be the same on both the top and the bottom (a consequence of Schur’s Lemma or the bubble identity), two of the terms vanish.

In the final step, use the bubble identity to collapse the final pieces:

\[
\begin{align*}
& \quad \begin{array}{c} \includegraphics[width=2cm]{fig36a.png} \end{array} = \left(\frac{\Theta(1,a,a+1)}{\Delta(a+1)} \right)^{a+1} \begin{array}{c} \includegraphics[width=2cm]{fig36b.png} \end{array} = \chi^{a+1,b,c\pm 1}, \\
& \quad \begin{array}{c} \includegraphics[width=2cm]{fig36c.png} \end{array} = \left(\frac{\Theta(1,a,a-1)}{\Delta(a-1)} \right)^{a-1} \begin{array}{c} \includegraphics[width=2cm]{fig36d.png} \end{array} = \left(\frac{a+1}{a} \right) \chi^{a-1,b,c\pm 1}.
\end{align*}
\]

At this point, obtaining (32) is simply a matter of multiplying the coefficients obtained in the previous formulae.

Now consider the special cases. For $a = 0$, since $b = c$ and consequently $\frac{c}{c+1} = \frac{(-a+b+c)^2}{4c^2}$, the desired formula is exactly (33). Similarly, for $c = 0$, the desired formula is (34).

We find it interesting that, for all our discussion of signs introduced by non-topological invariance, all signs introduced are eventually squared and thus do not show up in this result.

We can rearrange the terms in (32) and re-index to get:

Corollary 5.6 (Central Function Recurrence). Provided $a > 1$ and $c > 1$, we can write

\[
\chi^{a,b,c} = x \cdot \chi^{a-1,b,c-1} - \left(\frac{a+b-c}{4c(a-1)} \right) \chi^{a-2,b,c} - \left(\frac{a-b+c}{4a(c-1)} \right) \chi^{a,b,c-2} - \left(\frac{(a+b+c)^2(a-b+c)^2}{16a(a-1)c(c-1)} \right) \chi^{a-2,b,c-2}.
\]

The relation still holds for $a = 1$ or $c = 1$, provided we exclude the terms with $a - 1$ or $c - 1$ in the denominator.
The condition \(a > 1, c > 1 \) arises because decrementing \(a \) and \(c \) in (32) means \((a - 1, b, c - 1)\) must now be admissible. Also, note that formulae for multiplication by \(y \) and \(z \) may be obtained by applying the symmetry relation of Theorem 5.1. This fact is indispensable in our proof of Theorem 5.11.

5.3. Graded Structure of the Central Function Basis. The majority of the content in this section was suggested to us by Carlos Florentino [Flo] after he read an early draft of this paper.

Recall the \(\alpha, \beta, \gamma \) notation used earlier, and the notation

\[
\chi_{\alpha, \beta, \gamma}(x_2, x_1^{-1}, x_1 x_2^{-1}) = \chi_{a,b,c}(x_1, x_2)
\]

introduced in the proof of Theorem 5.1. The recurrence in Corollary 5.6 may be rewritten as

\[
\chi_{\alpha, \beta, \gamma} = \chi_{0,0,0} + \frac{\gamma^2}{a(a - 1)} \chi_{\alpha + 1, \beta - 1, \gamma - 1} - \frac{\alpha^2}{c(c - 1)} \chi_{\alpha - 1, \beta - 1, \gamma + 1} - \frac{\delta^2(\beta - 2)^2}{a(a - 1)c(c - 1)} \chi_{\alpha, \beta, \gamma - 1}.
\]

The interchangeability of \((a, \alpha)\) and \((c, \gamma)\) is guaranteed by the symmetry theorem.

Proposition 5.7. The polynomial \(\chi_{a,b,c} = \chi_{a,\beta,\gamma} \) is monic, with highest degree monomial \(x^\beta y^\alpha z^\gamma \).

Proof. Induct on the rank \(\delta = \alpha + \beta + \gamma \) of central functions. The statement is clearly true for the base cases, since \(\chi_{0,0,0} = 1, \chi_{0,1,0} = x, \chi_{1,0,0} = y, \) and \(\chi_{0,0,1} = z \). The recurrence relation implies that the highest order term of \(\chi_{a,\beta,\gamma} \) is \(x \) times the highest order term of \(\chi_{a,\beta-1,\gamma} \), hence \(x(x^{\beta-1} y^{\alpha} z^{\gamma}) = x^{\beta} y^{\alpha} z^{\gamma} \). This fact, together with the appropriate symmetric facts for \(y \) and \(z \), completes the induction. □

The basis also preserves a certain grading on \(\mathbb{C}[x, y, z] \). To define this grading, partition the standard basis \(B = \{x^a y^b z^c\} \) of this space as follows. Let \(\text{gr} : B \to \mathbb{Z}_2 \times \mathbb{Z}_2 \) be defined by:

\[
\text{gr}(x^a y^b z^c) = (a + c, b + c) \mod 2.
\]

If \(B \) is considered as a semigroup under multiplication, then \(\text{gr} \) is a homomorphism since

\[
\text{gr}(x^a y^b z^c) + \text{gr}(x^{a'} y^{b'} z^{c'}) = (a + c, b + c) + (a' + c', b' + c') \mod 2 = (a + a' + c + c', b + b' + c + c') \mod 2 = \text{gr}(x^{a+a'} y^{b+b'} z^{c+c'}) \mod 2.
\]

Therefore, \(\text{gr} \) defines a grading on this basis.
Proposition 5.8. The basis \(\{ \chi_{a,b,c} \} \) respects the \(\mathbb{Z}_2 \times \mathbb{Z}_2 \)-grading on \(\mathbb{C}[x,y,z] \) defined by \(\text{gr} \), in the sense that

\[\chi_{a,b,c} \in \mathbb{C}(\text{gr}^{-1}(a,b)) . \]

Proof. This is another proof by induction on the rank \(\delta \). Clearly, \(\chi^{0,0,0} = 1 \in \text{gr}^{-1}(0,0) \), and likewise \(\chi^{1,0,1} = x \in \text{gr}^{-1}(1,0) \), \(\chi^{0,1,1} = y \in \text{gr}^{-1}(0,1) \), and \(\chi^{1,1,0} = z \in \text{gr}^{-1}(1,1) \). In the induction step, note that

\[(a, b) = (1, 0) + (a - 1, b) = (a - 2, b) \mod 2, \]

so all terms on the right-hand side of the recurrence relation in Corollary 5.6 have the same grading. Thus \(\chi_{a,b,c} \in \text{gr}^{-1}(a,b) \).

5.4. Multiplication of Central Functions. It is not difficult to write down the formula for the product of two central functions, although the formula is by no means simple. The proof that follows was motivated by [Res]. We begin with a lemma which encapsulates the most tedious diagram manipulations:

Lemma 5.9.

\[
\begin{align*}
\begin{tikzpicture}
\end{tikzpicture}
\quad = \sum_{i,j,k,l,m} C_{abca'b'c'}^{j_1k_1l_1j_2k_2l_2m} \begin{tikzpicture}
\end{tikzpicture},
\end{align*}
\]

where the coefficients are given by the formula

\[
C_{abca'b'c'}^{j_1k_1l_1j_2k_2l_2m} = \frac{\Theta(c,c',m)}{\Delta(m)} \prod_{i=1,2} \frac{\Delta(j_i)}{\Theta(a',b,j_i)} \cdot \begin{bmatrix} a & a' & k_i \\ c & j_i & b \end{bmatrix} \begin{bmatrix} b' & b & l_i \\ c' & j_i & a' \end{bmatrix} \begin{bmatrix} k_i & l_i & m \\ c & c' & j_i \end{bmatrix},
\]

and the following 15 triples are assumed to be admissible:

\[(a,a',k_i), (b,b',l_i), (c,c',m), (a',b,j_i), (c,j_i,k_i), (c',j_i,l_i), (b,j_i,l_i), (k_i,l_i,m). \]

Proof. We will just demonstrate the diagram manipulation for the top half of the diagram, which by symmetry must be the same as for the bottom half. Combining these two manipulations and applying a bubble identity will give the desired result. We will save enumeration of admissible triples until after the manipulation, but keep a close eye on signs in the meantime.
The (-1) terms all cancel in the end, a consequence of the fact that the following triples must be admissible:

$$(a, a', k), (b, b', l), (c, c', m), (a', b, j), (c, j, k), (c', j, l), (b, j, l), (k, l, m).$$

One computes the 13-parameter coefficients $C_{\alpha_{k1}a1'j1',j2'k2'j2'm}$ above by reflecting this result vertically, taking two sets of indices for the variables j, k, l, m on the two halves, and noting that the resulting bubble in the middle collapses with a factor of $\Theta_{(c,c',m)}^{\Delta(m)}$ for $m = m_1 = m_2$.

With that out of the way, we can describe the central function multiplication table explicitly. Note the symmetry with respect to k, l, m, which is guaranteed by Theorem 5.11.

Theorem 5.10 (Multiplication of Central Functions). The product of two central functions $\chi^{a,b,c}$ and $\chi^{a',b',c'}$ is given by:

$$\chi^{a,b,c}\chi^{a',b',c'} = \sum_{j1,j2,k,l,m} C_{j1k1m} C_{j2k2m} \frac{\Theta(a,a',k)\Theta(b,b',l)\Theta(c,c',m)}{\Delta(k)\Delta(l)\Delta(m)} \chi^{k,l,m},$$

where the sum is taken over admissible triples

$$(a, a', k), (b, b', l), (c, c', m), (a', b, j), (c, j, k), (c', j, l), (b, j, l), (k, l, m).$$
and the coefficients are given by:

\[C_{jiklm} = \frac{\Delta(j_i)}{\Theta(a',j_i)} \left[\begin{array}{cccc} a & a' & k & l \\ b & c' & j_i & j_i' \\ c & c' & j_i & j_i' \end{array} \right]. \]

Proof. By the previous lemma and the bubble identity, we have:

\[
\begin{align*}
\sum_{j_1,k_1,l_1,j_2,k_2,l_2} C_{j_1k_1l_1,j_2k_2l_2} & \quad = \quad \sum_{j_1,j_2,k,l,m} C_{j_1k_1l_1,j_2k_2l_2m} \\
& \quad = \quad \sum_{j_1,j_2,k,l,m} C_{j_1k_1l_1,j_2k_2l_2m} \left(\frac{\Theta(a,a',k)\Theta(b,b',l)}{\Delta(k)\Delta(l)} \right) \\
& \quad = \quad \sum_{i,j,k,l} C_{ijklm} C_{ijklm} \frac{\Theta(a,a',k)\Theta(b,b',l)\Theta(c,c',m)}{\Delta(k)\Delta(l)\Delta(m)}. \quad \square
\end{align*}
\]

5.5. **Applications.** Spin networks offer a novel approach to a classical theorem of Fricke, Klein, and Vogt [FK, Vog]. We give both a nonconstructive proof and a new constructive proof which depends on the symmetry, recurrence, and multiplication formulae for central functions.

Theorem 5.11 (Fricke-Klein-Vogt Theorem). Let \(G = SL(2, \mathbb{C}) \) act on \(G \times G \) by simultaneous conjugation. Then

\[\mathbb{C}[G \times G]^G \cong \mathbb{C}[t_x, t_y, t_z], \]
the complex polynomial ring in three indeterminates. In particular, every regular function \(f : SL(2, \mathbb{C}) \times SL(2, \mathbb{C}) \to \mathbb{C} \) satisfying

\[f(x_1, x_2) = f(gx_1g^{-1}, gx_2g^{-1}) \quad \text{for all} \ g \in SL(2, \mathbb{C}), \]
can be written uniquely as a polynomial in the three trace variables \(x = \text{tr}(x_1), y = \text{tr}(x_2), \text{and} \ z = \text{tr}(x_1x_2^{-1}) \).

Proof. Define the ring homomorphism

\[\Gamma : \mathbb{C}[t_x, t_y, t_z] \to \mathbb{C}[G \times G]^G \]

by \(f(t_x, t_y, t_z) \mapsto f(\text{tr}(x_1), \text{tr}(x_2), \text{tr}(x_1x_2^{-1})) \).

We first show that \(\Gamma \) is injective. Suppose \(f(\text{tr}(x_1), \text{tr}(x_2), \text{tr}(x_1x_2^{-1})) = 0 \) for all pairs \((x_1, x_2) \in G \times G \). Let \((\tau_x, \tau_y, \tau_z) \in \mathbb{C}^3 \), \(\epsilon_x = \begin{bmatrix} \tau_x & 1 \\ -1 & 0 \end{bmatrix} \), and \(\eta_{y,z} = \begin{bmatrix} \tau_y & 1 \\ -\zeta & 0 \end{bmatrix} \), where \(\zeta + \zeta^{-1} = \tau_z \). Then

\[(\tau_x, \tau_y, \tau_z) = (\text{tr}(\epsilon_x), \text{tr}(\eta_{y,z}), \text{tr}(\epsilon_x\eta_{y,z}^{-1})). \]

Hence \(f = 0 \) on \(\mathbb{C}^3 \), Ker(\(\Gamma \)) = \{0\}, and \(\Gamma \) is injective. This is the “Fricke slice” given by Goldman in [Go3].
It remains to show that \mathcal{C} is surjective. Theorem 4.1 implies that the central functions form a basis for $\mathbb{C}[[G \times G]^G]$. Since $t_x \mapsto x$, $t_y \mapsto y$, and $t_z \mapsto z$, it suffices to show that every $\chi^{a,b,c}$ may be written as a polynomial in $x, y, \text{ and } z$.

Nonconstructive diagrammatic proof of surjectivity. Expanding the symmetrizers in $\chi^{a,b,c}$ gives a collection of circles with matrix elements, each of which correspond to a product of traces of words in x_1, x_2, so it suffices to express the trace of any word in x_1, x_2 as a polynomial in $x, y, \text{ and } z$.

This reduction depends entirely on the binor identity, which when composed with $x_1 \otimes x_2 = \mathcal{C}$ gives:

\begin{equation}
\chi^{a,b,c} = \mathcal{C} - \mathcal{C}.
\end{equation}

As special cases, with $\mathcal{C} = x_1^{-1}$:

\begin{align*}
\chi^{1,0,0} &= \mathcal{C} - \mathcal{C}, \\
\chi^{0,1,0} &= \mathcal{C} - \mathcal{C}.
\end{align*}

The first relation allows us to assume no loop has both x_1 and x_1^{-1}, while the second allows us to assume no word has more than one of any matrix. This leaves us with just the traces $\text{tr}(x_1), \text{tr}(x_2), \text{tr}(x_1 x_2)$, and $\text{tr}(x_1 x_2^{-1})$, using SL(2, \mathbb{C}) trace identities. Finally, closing off (36) gives:

$$\text{tr}(x_1 x_2) = \text{tr}(x_1) \text{tr}(x_2) - \text{tr}(x_1 x_2^{-1}),$$

which allows us to remove $\text{tr}(x_1 x_2)$.

Constructive diagrammatic proof of surjectivity. We proceed by induction on the rank $\delta = \frac{1}{2}(a + b + c)$ of a central function $\chi^{a,b,c}$. For the base cases $\delta = 0, 1$ recall our earlier computations demonstrating

$$\chi^{0,0,0} = 1, \quad \chi^{1,0,1} = x, \quad \chi^{0,1,1} = y, \quad \chi^{1,1,0} = z.$$

For $\delta > 0$, we may inductively assume that all central functions with rank less than δ are in $\mathbb{C}[x, y, z]$. The admissibility conditions imply that at least two out of the triple (a, b, c) are positive. Without loss of generality, using Theorem 5.1 we may assume that a and c are positive. In this case, the recurrence given by Corollary 5.6 allows us to write $\chi^{a,b,c}$ in terms of central functions of lower rank, which by induction must be in $\mathbb{C}[x, y, z]$. Thus, $\chi^{a,b,c} \in \mathbb{C}[x, y, z]$, and we have established surjectivity. \square
Using the recursion relations gives an algorithm for writing any \(\chi_{a,b,c} \) as a polynomial in \(\{x, y, z\} \). Conversely, in \[Pet\] the following formula is established, which may be used to express any polynomial in \(\mathbb{C}[x, y, z] \) in terms of central functions:

\[
x^a y^b z^c = \sum_{r,s,t=0}^{\lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor, \lfloor \frac{c}{2} \rfloor \atop k,l,m} \left(\frac{\Delta(l)\Delta(m)\Theta(a-2r,c-2t,k)\Delta(k)\Theta(a-2r,b-2s,m)\Theta(b-2s,c-2t,l)}{\Delta(k)\Theta(a-2r,b-2s,m)\Theta(b-2s,c-2t,l)} \right) \chi_{k,l,m}.
\]

The following table lists several central functions that were computed with Mathematica using Corollary 5.6. Only one function per triple of indices is listed; the others follow directly from Theorem 5.1.

\(\delta \)	\(\chi_{a,b,c} \)	\(\chi_{a,b,c}(y, x, z) \)
0	\(\chi_{0,0,0} \)	1
1	\(\chi_{1,0,1} \)	\(x \)
2	\(\chi_{2,0,2}, \chi_{1,1,2} \)	\(x^2 - 1 \), \(xy - \frac{1}{2}z \)
3	\(\chi_{3,0,3}, \chi_{2,1,3}, \chi_{2,2,2} \)	\(x^3 - 2x \), \(x^2y - \frac{2}{7}(xz + y) \), \(xyz - \frac{1}{7}(x^2 + y^2 + z^2) + 1 \)
4	\(\chi_{4,0,4}, \chi_{3,1,4}, \chi_{2,2,4}, \chi_{2,3,3} \)	\(x^4 - 3x^2 + 1 \), \(x^3y - \frac{3}{4}x^2z - \frac{1}{2}(3xy - z) \), \(x^2y^2 - xzy + \frac{1}{6}z^2 - \frac{1}{2}(x^2 + y^2) + \frac{1}{3} \), \(x^2yz - \frac{2}{3}(xz^2 + xy^2) - \frac{1}{2}x^3 - \frac{1}{3}(2yz - 13x) \)

Table 2. \(\text{SL}(2, \mathbb{C}) \)-Central Functions.

References

[Bae] J. Baez, Spin networks in gauge theory, *Adv. Math.* 117 (1996) 253-272.

[BtD] T. Bröker and T. tom Dieck, “Representations of Compact Lie Groups,” Graduate Texts in Mathematics No. 98, Springer-Verlag, New York, 1985.
[BFK] D. Bullock, C. Frohman, and J. Kania-Bartoszynska, Understanding the Kauffman Bracket Skein Module, *J. Knot Theory Ramifications* **8** (1999), 265-277.

[CFS] J. Carter, D. Flath, and M. Saito, “The Classical and Quantum $6j$-Symbols,” Mathematical Notes No. 43, Princeton University Press, New Jersey, 1995.

[CSM] R. Carter, G. Segal, and I. MacDonald, “Lectures on Lie Groups and Lie Algebras,” London Mathematical Society Student Texts No. 32, Cambridge University Press, Cambridge, 1995.

[Cvi] P. Cvitanovic, “Group Theory: Birdtracks, Lie’s, and Exceptional Groups,” available at http://www.cns.gatech.edu/GroupTheory/.

[Dol] I. Dolgachev, “Lectures on Invariant Theory,” London Mathematical Lecture Notes Series 296, Cambridge University Press, 2003.

[Flo] C. Florentino, personal correspondence.

[FMN] C. Florentino, J. Mourão, J.P. Nunes, Theta functions, geometric quantization and unitary Schottky bundles, to appear in *Contemp. Math.* http://www.math.ist.utl.pt/~cfloren/tfgquSb.pdf.

[FK] R. Fricke and F. Klein, Über die theorie der automorphen modulgruppen, *Kgl. Ges. d. W. Nachrichten*, Math-Phys. Klasse, (1896), 91-93.

[FH] W. Fulton and J. Harris, “Representation Theory: A First Course,” Graduate Texts in Mathematics No. 129, Springer-Verlag, New York, 1991.

[Gol1] W. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations. *Invent. Math.* **85** (1986), 263-302.

[Gol2] W. Goldman, Introduction to character varieties, unpublished notes (2003).

[Gol3] W. Goldman, An exposition of results of Fricke, preprint, arXiv:0402103 (2004).

[Kau] L. Kauffman, “Knots and Physics,” World Scientific, Singapore, 1991.

[Pen] R. Penrose, Applications of negative dimensional tensors, “Combinatorial Mathematics and its Applications,” Academic Press, 1971.

[Pet] E. Peterson, “Trace Diagrams, Representation Theory, and Low-Dimensional Topology,” PhD Thesis, University of Maryland (2006).

[Pro] C. Procesi, Invariant theory of $n \times n$ matrices, *Adv. in Math.* **19** (1976), 306-381.

[Res] N. Reshetikhin, personal correspondence.

[Sik] A. Sikora, $SL(n)$-character varieties as spaces of graphs, *Trans. Amer. Math. Soc.* **353** (2001), 2773-2804.

[Ste] G. E. Stedman, “Diagram Techniques in Group Theory,” Cambridge University Press, 1990.

[Vog] M. Vogt, Sur les invariants fondamentaux des equations differentielles lineaires du second ordre, *Ann. Sci. Écol. Norm. Supér. Troi.* **6** (1889).

Mathematics Department University of Maryland, College Park, MD 20742

E-mail addresses: slawton@math.umd.edu, peterson@math.umd.edu