Distinct macular thickness changes after femtosecond laser–assisted cataract surgery of age-related cataract and myopia with cataract

Yong Wang, Jun Du, Mei Yang, Yi Xu, Huaijin Guan & Jian Wu

Cataract surgery can cause macular thickness change. We used optical coherence tomography (OCT) to assess the macular thickness of different regions after femtosecond laser–assisted cataract surgery of age-related cataracts (ARC) and myopia cases with cataract (myopia group). Fifty eyes of 50 patients in ARC group and fifty eyes of 50 patients in myopia with cataract group were included. All study underwent femtosecond laser–assisted cataract surgery and macular thickness of was measured at pre-operation and 1 week, 1 month after surgery. There are significant differences of foveal thickness ($P = 0.02$), foveal volume ($P = 0.02$) and average retinal thickness ($P = 0.02$) between two groups before operation. In the myopia group, statistically significant differences were not found in postoperative macular thickness as compared with ARC group. There are differences in macular thickness between pre-operation and 1 month after operation when compared with nasal outer macular ring thickness ($P = 0.022$), foveal volume ($P = 0.005$) and average retinal thickness ($P = 0.012$) in ARC group. The study suggest that femtosecond laser–assisted cataract extraction is safe in myopia group that did not cause significant increase of macular thickness. However, an increased post-operative local macular thickness was recoded while comparing macular thickness with the baseline in ARC group.

The subclinical macular edema after common and complex cataract surgery has brought substantial attention to surgeons due to the potential hazard of this complication to vision consequence1,2. Until now, the etiology and pathogenesis for the complication have not been completely clarified. Studies have showed that the anterior segment inflammation may play a vital role in the pathology after cataract surgery3,4. Other researches also showed that the retina pulled by posterior vitreous might contribute to the etiologic mechanism. It has been suggested that the phenomena can be caused by the shock wave of the phacoemulsification during cataract surgery. In myopia, complete or incomplete posterior vitreous detachment (PVD) is common phenomena due to fluidity of vitreous, which also presents after cataract surgery. During the process, macular pulled by vitreous may play a vital role for formation of subclinical macular edema. These findings support the notion that myopic eyes are more prone to macular edema formation after cataract surgery. But it is warranted for further study whether it is the case in femtosecond laser-assisted cataract surgery.

Femtosecond laser technology has become widely applied in various ophthalmic surgery especially for cataract5. On one hand, it brings precise surgical incision. On the other hand, it reduces the phacoemulsification power and improves the outcomes of cataract surgery. However, some surgeons have concerns on the suction ring used during the femtosecond laser procedure to avoid eye movements due to vacuum aspiration. A report showed that the suction ring causes temporally increase of intraocular pressure (IOP) during the vacuum aspiration (up to 40 mmHg in the LenSx laser system, Alcon Lasers, Inc.)6, which can induce various changes from anterior segment to posterior segment of ocular structure7. There is an increase of the vitreous distance using microkeratome suction ring for LASIK8. These alterations can cause a series of changes including bilateral vitreous detachment9, retinal hemorrhage10 and the change of ocular blood-flow11.

Optical coherence tomography (OCT) has been widely used in ophthalmic applications which is a noninvasive and high-resolution imaging modality for ocular internal structures12. Several studies used OCT to detect an
We excluded the patients with previous ocular surgery, trauma and known macular alteration (diabetic retinopathy or age-related macular degeneration). All patients were given a complete ophthalmologic evaluation before surgery including refraction, a slit lamp examination, B-scan ultrasonography and a dilated fundus evaluation. We described them as superior outer macular ring thickness (SOMRT), bitamporal outer macular ring thickness (BOMRT), inferior outer macular ring thickness (IOMRT), nasal outer macular ring thickness (NOMRT), superior inner macular ring thickness (SIMRT), bitamporal inter macular ring thickness (BIMRT), inferior inner macular ring thickness (IIMRT), nasal inner macular ring thickness (NIMRT), foveal thickness (FT), foveal volume (FV) and average retinal thickness (ART).

Statistical Analysis. A SPSS 18.0 software (SPSS Inc, Chicago, Illinois) was performed for statistical analyses. Data are expressed as the mean and standard deviation. For comparisons of different macular region thickness between pre-operation and post-operation of femtosecond laser–assisted cataract surgery, the student’s t test was used. Pearson’s correlation analysis was used to assess the correlation between the nuclear hardness, phaco time, cumulative dissipated energy (CDE) and different macular region thickness. A P value less than 0.05 was considered statistically significant.

Results

Patient Characteristics. The ARC group comprised of 50 eyes of 50 patients with the mean age of 61.33 ± 5.72 years (range 49 to 76 years). The myopia group comprised of 50 eyes of 50 patients with the mean age of 56.66 ± 5.68 years (range 46 to 63 years) (Table 1).

Demographic	Myopia Group	ARC Group	P Value
Age (y)	56.66 ± 5.68	61.33 ± 7.52	0.14
phaco time (s)	13.82 ± 11.64	30.87 ± 22.72	0.52
CDE	8.76 ± 7.93	12.37 ± 8.7	0.34
nuclear hardness	2.11 ± 0.33	2.42 ± 0.51	0.15

Table 1. Comparison of ARC Group and Myopia Group. CDE = cumulative dissipated energy.

increase of the parafoveal retinal thickness, foveal volume, and volume of the entire macula in glaucomatous eyes, manual small incision cataract surgery and phacoemulsification cataract surgery13–15. Studies also used OCT to assess the macular morphology after laser–assisted cataract surgery. However, no study focuses on and compares the change of macular region thickness between ARC (age-related cataract) and myopic with cataract after femtosecond laser–assisted cataract surgery. The information of retinal thickness changes after the cataract operation especially for myopic eyes can provide insight to pathophysiology of subclinical macular edema occurring.

Patients and Methods

Patients. The study included 50 eyes from 50 patients with ARC and 50 eyes from 50 myopic with cataract (myopia group). The axial length is 23.03 ± 0.67 mm in the ARC group and 29.15 ± 4.17 mm in the myopia group. We excluded the patients with previous ocular surgery, trauma and known macular alteration (diabetic retinopathy or age-related macular degeneration). All patients were given a complete ophthalmologic evaluation before surgery including refraction, a slit lamp examination, B-scan ultrasonography and a dilated fundus evaluation.

The study received approval of the ethics committee at Affiliated Hospital of Nantong University and was conducted in compliance with the Declaration of Helsinki. All patients were willing to volunteer for the research and signed a written informed consent.

Surgery. All surgeries were performed by the same surgeon (H.J.G.) using the CENTURION® VISION SYSTEM (Alcon Laboratories Inc, Ft Worth, Texas). After pupilary dilatation and topical anesthetics, a curved contact lens was used to applanate the cornea by the LenSx laser system. OCT was used to detect the location of the crystalline lens surface. After scanning a cylindrical pattern, a 5.5-mm diameter capsulotomy procedure was performed starting at 100 µm below the anterior capsule and ending at 100 µm above the capsule. The lens was fragmented into eight quadrants by a cross pattern. A self-sealing bilaoplar corneal incision (2.4 mm) and a side-port incision (1.0 mm) were created by femtosecond laser. In the study, proprietary energy and spot separation parameters used were 10µJ spot and layer separation 8µm for lens fragmentation, 6µJ for capsulotomy, and 6-µJ spot separation 6µm and layer separation 3µm for primary and secondary corneal incision.

After treatment by femtolaser, the self-sealing corneal incisions was made by a blunt spatula and viscoelastic material was injected to the anterior chamber. A 5.5-mm diameter capsulotomy outside anterior chamber was identified and removed by rhexis forceps, followed by hydrodissection. The lens was removed using a stop-and-chop or a divide-and-conquer technique. The cortex was completely removed and then a one-piece, hydrophobic, acrylic, posterior chamber lens (SN60WF; Alcon Laboratories, Inc.; Fort Worth, TX) was injected to the anterior chamber. After pupillary dilatation and topical anesthetics, a curved contact lens was used to applanate the cornea by the LenSx laser system. OCT was used to detect the location of the crystalline lens surface. After scanning a cylindrical pattern, a 5.5-mm diameter capsulotomy procedure was performed starting at 100 µm below the anterior capsule and ending at 100 µm above the capsule. The lens was fragmented into eight quadrants by a cross pattern. A self-sealing bilaoplar corneal incision (2.4 mm) and a side-port incision (1.0 mm) were created by femtosecond laser. In the study, proprietary energy and spot separation parameters used were 10µJ spot and layer separation 8µm for lens fragmentation, 6µJ for capsulotomy, and 6-µJ spot separation 6µm and layer separation 3µm for primary and secondary corneal incision.

OCT Measurements. OCT measurements (Cirrus HD-OCT 4000; Carl Zeiss Meditec, Dublin, CA) were performed starting at 100 µm below the anterior capsule and ending at 100 µm above the capsule. The lens was fragmented into eight quadrants by a cross pattern. A self-sealing bilaoplar corneal incision (2.4 mm) and a side-port incision (1.0 mm) were created by femtosecond laser. The cortex was completely removed and then a one-piece, hydrophobic, acrylic, posterior chamber lens (SN60WF; Alcon Laboratories, Inc.; Fort Worth, TX) was implanted. At last, the viscoelastic material was removed by irrigation-aspiration. No any intra- or postoperative complications occurred during the surgery in the study.
Oct Parameters. Table 2 shows the pre- and postoperative macular thickness values in the ARC and myopia groups. The macular thicknesses measured in FT, FV and ART in myopia group are significantly higher than the ARC group in the baseline measurement (pre-operative). There are not statistically significant after surgery between the two groups. But in ARC group, we found there are different between pre-operation and post-operation in NOMRT, FV and ART (Tables 2 and 3). However, we did not detect any correlations between the nuclear hardness, phaco time, cumulative dissipated energy (CDE) and the macula thickness (Table 4).

Discussion
As a new technology, femtosecond laser applications in cataract surgery has several advantages including the incision stability, the accurate IOL centration and the efficient lens fragmentation. However, the suction ring used during the positioning of the femtosecond laser may have some harmful effect on macular region especially for the complex cataract cases.
The correlation between nuclear hardness, phaco time, CDE and macular thickness after femtosecond laser applications to extract cataract is equally safe in the myopia group. Femtosecond laser–assisted cataract extraction did not result in macular thickness change at myopia group compared to the ARC group, although it needs to confirm at larger cohorts and longer follow up.

Table 3. The Time Points for Comparison of Retinal Thickness Values. SOMRT = superior outer macular ring thickness; BOMRT = bitemporal outer macular ring thickness; IOMRT = inferior outer macular ring thickness; NOMRT = nasal outer macular ring thickness; SIMRT = superior inter macular ring thickness; BIMRT = bitemporal inter macular ring thickness; IMRT = inferior inter macular ring thickness; NIMRT = nasal inter macular ring thickness; FT = foveal thickness; FV = foveal volume; ART = average retinal thickness; CDE = cumulative dissipated energy.

Visit	Myopia Group (Mean ± SD)	ARC Group (Mean ± SD)						
	Preoperative	Postoperative 1 week	Postoperative 1 month	Preoperative	Postoperative 1 week	Postoperative 1 month	p	
SOMRT	255.44 ± 40.05	254.56 ± 58.52	264.67 ± 46.63	0.89	266.5 ± 36.72	284.25 ± 14.76	289.67 ± 29.26	0.129
IOMRT	237 ± 45.77	248.89 ± 38.19	245.44 ± 38.99	0.821	271.08 ± 22.29	266.88 ± 9.7	266.83 ± 22.55	0.789
LOMRT	243.11 ± 50.29	243.44 ± 37.45	247 ± 43.5	0.979	262.58 ± 13.71	267.67 ± 15.79	273.92 ± 17.98	0.233
NOMRT	280.22 ± 27.23	285.22 ± 35.01	290 ± 32.7	0.81	274.75 ± 30.08	293.92 ± 16.37	306.5 ± 31.28	0.022
SIMRT	301.67 ± 59.57	299.44 ± 40.20	311.11 ± 41.73	0.861	299.08 ± 37.82	316.58 ± 21.59	330.92 ± 37.01	0.075
BIMRT	259.89 ± 74.15	285 ± 37.08	294.78 ± 43.22	0.383	308.42 ± 17.35	305.75 ± 16.35	316.42 ± 33.31	0.523
IIMRT	279.78 ± 68.48	302.44 ± 43.5	310.78 ± 35.95	0.394	305.83 ± 31.07	312.83 ± 17.08	327.83 ± 39.74	0.216
NIMRT	285.44 ± 61.58	301.66 ± 42.93	307.78 ± 46.1	0.635	310.97 ± 21.62	318.16 ± 16.22	330.25 ± 38.66	0.229
FT	206.89 ± 48.05	224.11 ± 32.98	234.44 ± 37.59	0.353	251.17 ± 28.4	246.75 ± 22.58	257.58 ± 40.91	0.702
FV	8.32 ± 1.48	8.94 ± 1.67	9.18 ± 1.81	0.537	9.56 ± 0.66	9.99 ± 0.41	10.34 ± 0.52	0.005

Table 4. The Correlation between Nuclear Hardness, Phaco Time, CDE and Macular thickness after Operation (ARC Group). SOMRT = superior outer macular ring thickness; BOMRT = bitemporal outer macular ring thickness; IOMRT = inferior outer macular ring thickness; NOMRT = nasal outer macular ring thickness; SIMRT = superior inter macular ring thickness; BIMRT = bitemporal inter macular ring thickness; IMRT = inferior inter macular ring thickness; NIMRT = nasal inter macular ring thickness; FT = foveal thickness; FV = foveal volume; ART = average retinal thickness; CDE = cumulative dissipated energy.

postoperative (1 week)	postoperative (1 month)																					
SOMRT	BOMRT	IOMRT	NOMRT	SIMRT	BIMRT	IIMRT	NIMRT	FT	FV	ART												
nuclear hardness	-0.44	-0.16	-0.1	-0.56	-0.25	-0.09	0.03	-0.12	-0.1	-0.1	-0.34	-0.57	-0.33	-0.53	-0.54	-0.51	-0.39	-0.5	-0.43	-0.35	-0.5	-0.5
phaco time	0.05	-0.11	0.2	0.27	0.04	-0.2	-0.25	-0.1	0.02	0.28	0.29	0.03	0.17	-0.03	0.16	0.07	-0.11	-0	-0.01	-0.06	0.36	0.22
CDE	-0.48	-0.58	-0.14	-0.32	-0.36	-0.42	0.3	-0.37	-0.3	-0.4	0.37	-0.51	-0.33	-0.56	-0.47	-0.46	-0.47	-0.4	-0.43	-0.49	-0.5	-0.5

In current clinical study, we analyzed the preoperative and postoperative macular thickness values in the myopia and ARC group by OCT. Postoperative cystoid macular edema (CME) is often asymptomatic and can be detected with only fluorescein angiography or OCT. Our results show that there are significant differences between the two groups when compared with FT, FV and ART before operation (Table 2). The results are consistent with previous research that the thicknesses significantly lower in the high myopic eyes than in the nonmyopic eyes. The elongated axial length may be the reason for thinner macular thickness in myopic eyes. The elongated axial length may be the reason for thinner macular thickness in myopic eyes.

CME can be detected at the first week up to 6 months and peaks 4 to 6 weeks after surgery. In this study, we did not find any difference between the two groups when compared the macular thickness of different region at 1 week or 1 month after surgery between the two groups. But in ARC group, we found there are different between pre-operation and post-operation in NOMRT, FT, and ART (Table 3). However, we did not detect any correlations the nuclear hardness, phaco time, CDE and the macula thickness (Table 4). We speculate that the nuclear hardness and phaco time maybe are a crucial factor for the change. The means of nuclear hardness and phaco time is higher in ARC group when compare with myopia group. Though there are not any statistically significant between the two groups for nuclear hardness and phaco time. We also did not detect any statistically significant thickness change at myopia group after surgery. We speculate the reason is that used femtosecond laser technology reduced the phacoemulsification power and phaco time during surgery. The factors may be the cause for the CME formation.

In this study, the limitation includes a relatively small number patients and short follow-up period. Our original design is follow up at 1 week, 1 month, 3 months and 6 months after surgery. But due to the loss of follow up, we only collected the valid data of 50 patients for each group at 1 week and 1 month in current settings. There are not any different for macular thickness change between the two groups (ARC group: n = 22; Myopia group: n = 23) at 3 months (data not shown). The mean macular thickness of myopia group increased after surgery when compare with pre-operation, but this difference is not statistically significant. Our results suggest that used femtosecond laser applications to extract cataract is equally safe in the myopia group. Femtosecond laser–assisted cataract extraction did not result in macular thickness change at myopia group compared to the ARC group, although it needs to confirm at larger cohorts and longer follow up.
In conclusion, the femtosecond laser might provide us a efficacious surgical technology to treatment the myopic eyes with cataract. It is necessary to conduct the further randomized controlled studies with larger cohorts or other patients particularly with high risk for postoperative CME.

References
1. Conrad-Hengerer, I., Hengerer, F. H., Al Juburi, M., Schultz, T. & Dick, H. B. Femtosecond laser-induced macular changes and anterior segment inflammation in cataract surgery. *Journal of refractive surgery* **30**, 222–226, https://doi.org/10.3928/1081597X-20140321-01 (2014).
2. Stifter, E., Menapace, R., Neumayer, T. & Luksch, A. Macular morphology after cataract surgery with primary posterior capsulorhexis and posterior optic buttonholing. *American journal of ophthalmology* **146**, 15–22, https://doi.org/10.1016/j.ajo.2008.02.022 (2008).
3. Wielanders, L. H. et al. Treatment of cystoid macular edema after cataract surgery. *Journal of cataract and refractive surgery* **43**, 276–284, https://doi.org/10.1016/j.jcrs.2016.06.041 (2017).
4. Duan, P., Liu, Y. & Li, J. The comparative efficacy and safety of topical non-steroidal anti-inflammatory drugs for the treatment of anterior chamber inflammation after cataract surgery: a systematic review and network meta-analysis. *Graefe's archive for clinical and experimental ophthalmology* = *Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie* **255**, 639–649, https://doi.org/10.1007/s00417-017-3599-8 (2017).
5. Alio, J. L., Abdou, A. A., Puente, A. A., Zato, M. A. & Nagy, Z. Femtosecond laser cataract surgery: updates on technologies and outcomes. *Journal of refractive surgery* **30**, 420–427, https://doi.org/10.3928/1081597X-20140516-01 (2014).
6. Vetter, J. M. et al. Intracocular pressure during corneal flap preparation: comparison among four femtosecond lasers in porcine eyes. *Journal of refractive surgery* **27**, 427–433, https://doi.org/10.3928/1081597X-20101210-01 (2011).
7. Davis, R. M. & Evangelista, J. A. Ocular structure changes during vacuum by the Hansatome microkeratome suction ring. *Journal of refractive surgery* **23**, 563–566 (2007).
8. Mirshahi, A. & Kohnen, T. Effect of microkeratome suction during LASIK on ocular structures. *Ophthalmology* **112**, 645–649, https://doi.org/10.1016/j.ophtha.2004.11.046 (2005).
9. Smith, R. J. et al. Complete bilateral vitreous detachment after LASIK retreatment. *Journal of cataract and refractive surgery* **30**, 1382–1384, https://doi.org/10.1016/j.jcrs.2003.10.021 (2004).
10. Huang, D. et al. Intraocular pressure during corneal flap preparation: comparison among four femtosecond laser-assisted small incision cataract surgery. *Acta ophthalmologica* **88**, e102–106, https://doi.org/10.1111/j.1755-3768.2010.01896.x (2010).
11. Conway, M. L., Wevill, M., Benavente-Perez, A. & Hosking, S. L. Ocular blood-flow hemodynamics before and after application of a silicone ophthalmic lens. *American journal of ophthalmology* **158**, 1202–1207 (2014).
12. Lederer, D. E. Prospective randomized comparative study of macular thickness following phacoemulsification and manual small incision cataract surgery. *Acta ophthalmologica* **88**, e102–106, https://doi.org/10.1111/j.1755-3768.2010.01896.x (2010).
13. Biro, Z., Balla, Z. & Kovacs, B. Change of foveal and perifoveal thickness measured by OCT after phacoemulsification and IOL implantation. *Eye* **22**, 8–12, https://doi.org/10.1038/eye.6702460 (2008).
14. Ghosh, B. et al. Comparative study of macular thickness following phacoemulsification and manual small incision cataract surgery. *American journal of ophthalmology* **158**, 1202–1207 (2014).
15. Nagy, Z. Z. et al. Macular morphology assessed by optical coherence tomography image segmentation after femtosecond laser-assisted small incision cataract surgery. *Journal of ophthalmology* **2012**, 941–946, https://doi.org/10.1155/2012/678579 (2012).
16. Masket, S., Sarayba, M., Ignacio, T. & Fram, N. Femtosecond laser-assisted cataract incisions: architectural stability and reproducibility. *Journal of cataract and refractive surgery* **36**, 1048–1049, https://doi.org/10.1016/j.jcrs.2010.03.027 (2010).
17. Nagy, Z. Z. et al. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. *Journal of refractive surgery* **27**, 564–569, https://doi.org/10.3928/1081597X-20110607-01 (2011).
18. Friedman, N. J. et al. Femtosecond laser capsulotomy. *Journal of cataract and refractive surgery* **37**, 1189–1198, https://doi.org/10.1016/j.jcrs.2011.04.022 (2011).
19. Dick, H. B., Canto, A. P., Culbertson, W. W. & Schultz, T. Femtosecond laser-assisted technique for performing bag-in-the-lens intraocular lens implantation. *Journal of cataract and refractive surgery* **39**, 1286–1290, https://doi.org/10.1016/j.jcrs.2013.07.014 (2013).
20. Conrad-Hengerer, I., Hengerer, F. H., Schultz, T. & Dick, H. B. Effect of femtosecond laser fragmenting the nucleus with different softening grid sizes on effective phaco time in cataract surgery. *Journal of cataract and refractive surgery* **38**, 1888–1894, https://doi.org/10.1016/j.jcrs.2012.07.023 (2012).
21. Filkorn, T. et al. Comparison of IOL power calculation and refractive outcome after laser refractive cataract surgery with a femtosecond laser versus conventional phacoemulsification. *Journal of refractive surgery* **28**, 540–544, https://doi.org/10.3928/1081597X-20120703-04 (2012).
22. Lamy, D. S. et al. Regional variations in the relationship between macular thickness measurements and myopia. *Investigative ophthalmology & visual science* **48**, 376–382, https://doi.org/10.1167/iovs.06-0426 (2007).
23. Hwang, Y. H. & Kim, Y. Y. Macular thickness and volume of myopic eyes measured using spectral-domain optical coherence tomography. *Clinical & experimental optometry* **95**, 492–498, https://doi.org/10.1111/j.1444-0938.2012.00749.x (2012).
24. Ecsedy, M. et al. Femtosecond laser cataract surgery on the macula. *Journal of refractive surgery* **27**, 717–722, https://doi.org/10.3928/1081597X-20110825-01 (2011).

Acknowledgements
This study was supported by the Technology and Science Foundation of Jiangsu province (NO:BE2016699) and Frontiers and Key Technological Innovations-Social and People's Livelihood Innovation Program Research- New Clinical Technology(MS22015072).

Author Contributions
Y.W. and J.D. performed the experiments. M.Y. and Y.X. participated in data analysis. Y.W. and J.W. wrote the manuscript. H.J.G. conceived the research, and critically reviewed the manuscript and interpreted the data. All authors read and approved the final manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
