On the boundary Hölder regularity for the infinity Laplace equation ✩

Leyun Wu, Yuanyuan Lian, Kai Zhang

Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi, 710129, PR China

Abstract
In this note, we prove the boundary Hölder regularity for the infinity Laplace equation under a proper geometric condition. This geometric condition is quite general, and the exterior cone condition, the Reifenberg flat domains, and the corkscrew domains (including the non-tangentially accessible domains) are special cases. The key idea, following [3], is that the strong maximum principle and the scaling invariance imply the boundary Hölder regularity.

Keywords: Boundary Hölder regularity, Geometric condition, Infinity Laplace equation, Strong maximum principle

2010 MSC: 35B65, 35J25, 35B50, 35J67

In this note, we prove the boundary Hölder regularity for the infinity Laplace equation:

\[
\begin{aligned}
\Delta_\infty u &= u_iu_ju_{ij} = 0 \quad \text{in } \Omega; \\
u &= g \quad \text{on } \partial\Omega,
\end{aligned}
\]

✩This research is supported by the National Natural Science Foundation of China (Grant No. 11701454), the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ1039) and the Fundamental Research Funds for the Central Universities (Grant No. 31020170QD032).

Corresponding author.

ORCID: 0000-0002-1896-3206; MR Author ID: 1098004.

Email addresses: leyunwu@mail.nwpu.edu.cn (Leyun Wu), lianyuanyuan@nwpu.edu.cn; lianyuanyuan.hthk@gmail.com (Yuanyuan Lian), zhang_kai@nwpu.edu.cn; zhangkaizfz@gmail.com (Kai Zhang)

Preprint submitted to Elsevier January 21, 2019
where $\Omega \subset \mathbb{R}^n$ is a bounded domain, $u_i = \partial u / \partial x_i$, $u_{ij} = \partial^2 u / \partial x_i \partial x_j$ and the Einstein summation convention is used.

The following boundary regularity are well known. If $g \in C^{0,1}(\partial \Omega)$ (i.e., g is Lipschitz continuous on $\partial \Omega$), $u \in C^{0,1}(\bar{\Omega})$ (i.e., u is Lipschitz continuous on $\bar{\Omega}$). In addition, if $g \in C^0(\partial \Omega)$, $u \in C^0(\bar{\Omega})$. It should be noted that both results hold without any geometric condition on $\partial \Omega$.

It is natural to study the boundary Hölder regularity, i.e., whether $g \in C^\alpha(\partial \Omega)$ implies $u \in C^\alpha(\bar{\Omega})$. This is the aim of this note. To the authors’ knowledge, our result is the first one contributing to the boundary Hölder regularity.

In this note, we obtain the boundary Hölder regularity for the solutions of (0.1) under a proper geometric condition on $\partial \Omega$. The idea and the method originate from [3]. As pointed out in [3], this geometric condition is quite general and the exterior cone condition, the Reifenberg flat domains, and the corkscrew domains (including the non-tangentially accessible domains) are special cases. The main idea is that the strong maximum principle implies a decay for the solution, then a scaling argument leads to the Hölder regularity.

The following is the geometric condition under which we prove the boundary Hölder regularity.

Definition 0.1. (Uniform condition) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and $x_0 \in \partial \Omega$. We say that Ω satisfies the uniform condition at x_0 if the following holds: there exist constants $0 < \tau_1 < \tau_2 < 1$, $0 < \nu < 1$ and a positive sequence $\{r_k\}_{k=0}^\infty$ such that

$$\tau_1 r_{k-1} \leq r_k \leq \tau_2 r_{k-1}, \quad \forall \, k \geq 1, \quad (0.2)$$

and for any $k \geq 0$, there exists $y_k \in \partial B(x_0, r_k)$ such that

$$\partial B(x_0, r_k) \cap B(y_k, \nu r_k) \subset \Omega^c. \quad (0.3)$$

We say that g is C^α at $x_0 \in \bar{\Omega}$ or $g \in C^\alpha(x_0)$ if there exists a constant K such that

$$|g(x) - g(x_0)| \leq K|x - x_0|^\alpha, \quad \forall \, x \in \bar{\Omega}.$$

Then denote $[g]_{C^\alpha(x_0)} = \inf K$.

Our main result is the following.
Theorem 0.2. Suppose that \(\Omega \) satisfies the uniform condition at \(0 \in \partial \Omega \) with \(r_0 = 1 \). Let \(u \) be a viscosity solution of

\[
\begin{align*}
\Delta_\infty u &= 0 \quad \text{in } \Omega \cap B_1; \\
u &= g \quad \text{on } \partial \Omega \cap B_1,
\end{align*}
\]

where \(g \in C^\alpha(0) \).

Then \(u \) is \(C^\beta \) at \(0 \) and

\[
|u(x) - u(0)| \leq 8|x|^\beta \left(\|u\|_{L^\infty(\Omega \cap B_1)} + [g]_{C^\alpha(0)} \right), \quad \forall x \in \Omega \cap B_1, \tag{0.4}
\]

where \(0 < \beta \leq \alpha \) depends only on \(n, \tau_1, \tau_2 \) and \(\nu \).

The proof of Theorem 0.2 depends on the solvability and the strong maximum principle for the infinity Laplace equation, which are already known. The following lemma shows the solvability (see Theorem 5.21 in [2]).

Lemma 0.3. For any \(g \in C^{0,1}(\partial \Omega) \), there exists a unique viscosity solution \(u \in C^{0,1}(\bar{\Omega}) \) to

\[
\begin{align*}
\Delta_\infty u &= 0 \quad \text{in } \Omega; \\
u &= g \quad \text{on } \partial \Omega.
\end{align*}
\]

The strong maximum principle can be derived easily from the following Harnack inequality (see Theorem 2.21 in [2] or Proposition 6.3 in [1]).

Lemma 0.4. Let \(u \geq 0 \) be a viscosity solution of

\[
\Delta_\infty u = 0 \quad \text{in } B_1.
\]

Then

\[
\sup_{B_1/2} u \leq 3 \inf_{B_1/2} u.
\]

Remark 0.5. Obviously, the Harnack inequality implies the strong maximum principle. Hence, for the solution \(u \) of (0.1), we have

\[
\sup_{\Omega'} u \leq (1 - \mu) \sup_\Omega u,
\]

where \(\Omega' \subset \subset \Omega \) and \(\mu \) depends only on \(\Omega, \Omega' \) and \(g \).
Let $0 < \nu < 1$ be as in the uniform condition. Then we choose and fix a function $g_\nu \in C^\infty(\partial B_1)$ with $0 \leq g_\nu \leq 1$ and
\[
g_\nu(x) \equiv \begin{cases}
0 & \text{on } \partial B_1 \cap B(e_1, \nu/2); \\
1 & \text{on } \partial B_1 \setminus B(e_1, \nu),
\end{cases}
\] (0.5)
where $e_1 = (1, 0, 0, ..., 0)$. Next, introduce functions g_k ($k \geq 0$) with
\[
g_k(x) \equiv \begin{cases}
0 & \text{on } \partial B_{r_k} \cap B(y_k, \nu r_k/2); \\
1 & \text{on } \partial B_{r_k} \setminus B(y_k, \nu r_k)
\end{cases}
\] (0.6)
and
\[g_k(r_k \cdot T_k x) \equiv g_\nu(x) \text{ on } \partial B_1\] (0.7)
for some orthogonal matrix T_k. Here $\{r_k\}$ and $\{y_k\}$ are as in the uniform condition. From the strong maximum principle, we have the following simple result.

Lemma 0.6. Let v be a viscosity solution of
\[
\begin{align*}
\Delta_\infty v &= 0 \quad \text{in } B_{r_k}; \\
v &= ag_k + b \quad \text{on } \partial B_{r_k},
\end{align*}
\] where $a, b > 0$.

Then
\[
\sup_{B_{r_k+1}} v \leq (1 - \mu)a + b,
\]
where $0 < \mu < 1$ depends only on n, τ_2 and ν.

Proof. Let $y = T_k^T x/r_k$ such that $g_\nu(y) = g_k(x)$. Let
\[
w(y) = \frac{v(x) - b}{a}.
\]
Then w satisfies
\[
\begin{align*}
\Delta_\infty w &= 0 \quad \text{in } B_1; \\
w &= g_\nu \quad \text{on } \partial B_1.
\end{align*}
\]
Then by the strong maximum principle (see Lemma 0.4)
\[
\sup_{B_{r_2}} w \leq (1 - \mu),
\]

where $0 < \mu < 1$ depends only on n, τ_2 and g_{ν}. Note that g_{ν} depends only on ν. Hence, μ depends only on n, τ_2 and ν. By rescaling,

$$\sup_{B_{r_{k+1}}} v \leq \sup_{B_{r_{2r_k}}} v \leq (1 - \mu)a + b.$$

\[\square \]

Now we give the Proof of Theorem 0.2. We assume that $g(0) = 0$. Otherwise, we may consider $v = u - g(0)$. Let $M = \|u\|_{L^\infty(\Omega \cap B_1)} + [g]_{C^\alpha(0)}$ and $\Omega_r = \Omega \cap B_r$. To prove (0.4), we only need to prove the following:

There exists a constant $0 < \beta \leq \alpha$ depending only on n, τ_1, τ_2 and ν such that

$$\tau_1^\beta \geq \frac{1}{2}$$ \hspace{1cm} (0.8)

and for all $k \geq 0$,

$$\|u\|_{L^\infty(\Omega_{r_k})} \leq 4Mr_k^\beta.$$ \hspace{1cm} (0.9)

Indeed, suppose that (0.8) and (0.9) hold. Then for any $x \in \Omega \cap B_1$, there exists k such that $r_{k+1} \leq |x| \leq r_k$. Hence,

$$|u(x)| \leq 4Mr_k^\beta \leq \frac{4Mr_{k+1}^\beta}{\tau_1^\beta} \leq 8M|x|^\beta.$$

We prove (0.9) by induction. For $k = 0$, it holds clearly. Suppose that it holds for k, then we need to prove that it holds for $k + 1$.

By Lemma 0.3, there exists a unique viscosity solution v of

$$\begin{cases}
\Delta_\infty v = 0 & \text{in } B_{r_k}; \\
v = \tilde{g} & \text{on } \partial B_{r_k},
\end{cases}$$

where $\tilde{g} = (4Mr_k^\beta - Mr_k^\alpha)g_k + Mr_k^\alpha$. Then it is easy to check that

$$-v \leq u \leq v \text{ on } \partial \Omega_{r_k}.$$

Then by the comparison principle (see [2, Theorem 5.22]),

$$-v \leq u \leq v \text{ in } \Omega_{r_k}. \hspace{1cm} (0.10)$$

5
From Lemma 0.6, we have

$$\sup_{B_{r_{k+1}}^r} v \leq (1 - \mu) \left(4Mr_{k}^\beta - Mr_{k}^\alpha \right) + Mr_{k}^\alpha$$

$$= (1 - \mu)4M r_{k}^\beta + \mu M r_{k}^\beta$$

$$\leq 4M r_{k+1}^\beta \left(\frac{1 - \mu}{r_{1}^\beta} + \frac{\mu}{4r_{1}^\beta} \right),$$

where $0 < \mu < 1$ depends only on n, τ_2 and ν.

Take β small enough such that (0.8) holds and

$$\frac{1 - \mu}{r_{1}^\beta} < 1 - \frac{\mu}{2}.$$

Hence,

$$\sup_{B_{r_{k+1}}^r} v \leq 4Mr_{k+1}^\beta.$$

Then, combining with (0.10), we have

$$\|u\|_{L^\infty(\Omega_{r_{k+1}})} \leq 4Mr_{k+1}^\beta.$$

By induction, the proof is completed.

References

References

[1] P. Lindqvist, Notes on the infinity Laplace equation, BCAM Springer-Briefs in Mathematics, Springer, 2016.

[2] C. Y. Wang, An Introduction of Infinity Harmonic Functions, http://www.ms.uky.edu/~cywang/IHF.pdf

[3] K. Zhang, D. Li, G. Hong, Boundary Hölder Regularity for Elliptic Equations, arXiv:1804.01299 [math.AP].