Physiological Response of Three Wheat Cultivars to High Shoot and Root Temperatures during Early Growth Stages

Izzat Sidahmed Ali Tahir 1, 2, 3, Noboru Nakata 1, Takeshi Yamaguchi 1, Junichi Nakano 1 and Abdelbagi Mukhtar Ali 2

1 Faculty of Agriculture, Tottori University, Koyama 4-101, Tottori, 680-8553, Japan; 2 Agricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan; 3 Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-8551, Japan

Abstract: Understanding wheat (Triticum aestivum L.) response to high shoot/root temperature during the early growth stages is important for successful production in tropical and subtropical environments. This study examined the physiological response of wheat cultivars to high shoot and/or root temperatures during early growth stages. Three cultivars; Imam, Fang and Siete Cerros were grown in soil and hydroponically at three shoot/root temperatures (23/23, 25/35 and 35/35°C for the soil experiment; and 22/22, 22/38 and 38/38°C for the hydroponic experiment). Leaf dry weight and leaf area plant 1 were significantly decreased by high shoot/root temperature (HS/HR, 35/35 and 38/38°C) but was not affected by a normal shoot/high root temperature (NS/HR, 25/35 and 22/38°C). The NS/HR (22/38°C) and HS/HR (38/38°C) treatments in the hydroponic experiment significantly decreased photosystem II quantum yield (ΦPSII), photosynthetic rate (Pn), and specific leaf area (SLA) compared with the normal shoot/normal root (NS/NR, 22/22°C) temperature treatment. Chlorophyll accumulation was significantly decreased by NS/HR, but increased significantly by HS/HR in most of the measuring dates. The heat-tolerant cultivar, Fang, always had the highest chlorophyll content, ΦPSII, and Pn, under all temperature treatments, while the heat-sensitive cultivar, Siete Cerros, always had the greatest reduction in these traits especially towards the end of the experiment. Imam and Fang responded to HS/HR in the hydroponic experiment by immediate and greater reductions in leaf dry weight, total leaf area and SLA during the first wk of the treatments compared with Siete Cerros. The response changed with the treatments duration such that Imam showed the least reduction and Siete Cerros was the most affected cultivar towards the end of the experiment. Thus, wheat cultivars differentially responded to high shoot/root temperature by reducing the leaf weight and area and hence accumulating more chlorophyll in the diminished leaves. The failure to undergo such changes led to significantly lower chlorophyll accumulation, ΦPSII and Pn, under high root temperature.

Key words: High shoot and root temperature, Net photosynthetic CO₂ assimilation rate, Photosystem II effective quantum yield, Specific leaf area, Wheat.

The development and release of high yielding wheat (Triticum aestivum L.) cultivars with better adaptation to various environmental conditions triggered the so-called “Green Revolution” in the 1960s. Thousands of modern cultivars have been released for use in both favorable and marginal environments (Reynolds and Borlaug, 2006). As a result, wheat production extended to marginal areas like those experience high temperatures during various stages of crop growth. Heat stress is considered one of the major factors limiting wheat production in the tropical and subtropical environments. In these areas, high temperatures are known to affect the crop development at all stages and impose morphological and physiological changes that result in considerable grain yield reduction (Al-Khatib and Paulsen, 1990; Tahir et al., 2005a, 2006; Twolde et al., 2006). High temperatures adversely affect wheat seed germination, seedling establishment and survival (Ali et al., 1994; Ishag et al., 1998).

The upper soil temperature can be as high as air temperature during the early seedling stage before the crop develops good ground cover. As the shoot apex is initially at seed depth, soil temperature considerably influences leaf production during early growth (Hay and Wilson, 1982; Vincent and Gregory, 1989). High root temperature is reported to decrease photosynthetic activity, chlorophyll accumulation and consequently decreases both shoot and root growth (Tahir et al., 1973; Kuroyanagi and Paulsen, 1988; Udomprasert et al., 1995; Xu and Huang, 2000). Exposing plants to elevated non-lethal temperature results in the acquirement of thermotolerance, which can transiently raise their injury threshold and protect them from subsequent, otherwise lethal, temperatures (O’Mahony and Burke, 2000; Burke, 2001). High temperature is known to impair many processes involved in photosynthesis. Chlorophyll accumulation, fluorescence and photosynthesis have been used to assess thermotolerance in wheat and other crops (Moffatt et al., 1990; O’Mahony and
Cerros, heat sensitive and Imam, a recently released cultivar for the hot dry environment of Sudan (Tahir et al., 2005b). Imam demonstrated high yielding potential at the three-leaf stage (Tahir, I.S.A., unpublished data). Two experiments were conducted at the Faculty of Agriculture, Tottori University, Japan. The first experiment (Feb-Mar, 2003) was carried out using a nutrient solution (hereafter referred to as hydroponic Expt). The second experiment (Jan-Feb, 2004) was conducted using soil (hereafter referred to as soil Expt).

In soil Expt, seeds of the three cultivars were sown in 1/5000a Wagner’s pots filled with a mixture of sand: organic matter at a ratio of 2:1.1. A fertilizer containing 1:1.1 of N: P₂O₅: K₂O was incorporated to the soil at a rate of 0.4 g pot⁻¹ for each element. Three seedlings were grown in each pot and kept in a vinyl house under natural light and maximum temperature around 20°C until the temperature treatments were initiated.

For the hydroponic Expt, seeds of the three cultivars were germinated in moist Metro-Mix® 350 growing medium containing horticultural vermiculate, Canadian sphagnum peat moss and processed bark ash. Seven-day-old seedlings were transplanted to opaque plastic plates. Five seedlings were grown through holes in each plate, which were placed over 1/5000a Wagner’s pots. Pots were filled with half-strength nutrient solution (Hoagland and Arnon, 1950), which was continuously aerated, adjusted to pH 5.0 semweekly and replaced weekly. Plants were placed for one week in a naturally illuminated phytotron set to a day/night temperature of 22/18°C.

Here, we studied the effects of high shoot/root temperature during grain filling stages. Moreover, the majority of studies thus far carried out to investigate the effect of high root temperature during early growth stages used constant temperatures throughout the experiment. This might exert drastic effects on the physiological processes and could not allow PSII to recover from the effects of high temperature during the night. Better adaptation of wheat genotypes to high temperatures was found when gradual increments in high temperature treatments were applied coupled with relatively cool night temperatures (Haynes and Cooper-Anderson, 1999; Tahir and Nakata, 2005; Tahir et al., 2005b). Wheat genotypes also differentially responded to high shoot/root temperature during early growth stages. The three-leaf stage in both experiments, plants were subjected to three shoot/root temperatures during the daytime. These temperatures were (i) normal shoot/normal root temperature (NS/NR, 23/23°C and 22/22°C, in soil and hydroponic Expts, respectively), (ii) normal shoot/high root temperature (NS/HR, 23/35°C and 22/38°C in soil and hydroponic Expts, respectively) and (iii) high shoot/high root temperature (HS/HR, 35/35°C and 38/38°C in soil and hydroponic Expts, respectively).

The temperatures were chosen considering the prevailing temperatures under field conditions in the tropics and subtropics where wheat experiences high temperature during the day and a reduced temperature at night especially during the early growth stages.

A growth chamber (K30-2190, Koito Industries, Ltd. Yokohama, Japan) consisting of three-connected cabinets with identical settings and capable of maintaining different shoot/root temperature was used for both experiments. In the soil Expt, a night temperature of 19°C was maintained for 11 hr, but in the hydroponic Expt the night temperature was 18°C and maintained for 9 hr. The maximum temperatures of 35 and 38°C were kept for 5 hr in both experiments. Heating and cooling of the temperature was done gradually at a rate of 4°C/hr. The air, soil and solution temperatures were monitored by Thermo Recorders (Thermo Recorder for Windows, TR-72S, T & D, Nagano, Japan) connected to sensors and records were taken every hour. Irradiance was 900-1000 µmol m⁻² s⁻¹ photosynthetically active radiation at the canopy level as measured by LI-190 quantum sensor (LI-COR Inc., Lincoln, NE, USA) and day-length was 14 hr. The relative humidity was set at 30/40% during the day/night time. The pots in the soil Expt were irrigated daily or as needed to avoid any water-deficit effect under high temperature treatments. Plants were kept free from pests and diseases by frequent spraying with appropriate chemicals and the temperature treatments
were continued for 20 days in the soil Expt and 30 days in the hydroponic Expt.

2. Measurements

(1) Leaf weight and area

Plants were sampled at 20 days after the start of treatments (DAT) in the soil Expt and at 0, 7, 15 and 30 DAT in the hydroponic Expt and separated into different parts. Three plants per pot were sampled at 0 and 20 DAT in the soil Expt and at 30 DAT of the hydroponic Expt while one plant per pot was sampled at 7 and 15 DAT in the hydroponic Expt. Leaf area was measured from a sub-sample of leaves using a leaf area meter (AAC-410, Hayashi Denko Co. Ltd. Japan). Leaves were oven-dried at 80°C for at least 48 hr, weighed and leaf area per plant and specific leaf area (SLA) were calculated.

(2) Chlorophyll content, fluorescence and photosynthetic rate

Chlorophyll content, fluorescence and photosynthetic rate were measured only in the hydroponic Expt. Chlorophyll content was indirectly measured using a chlorophyll meter (Minolta SPAD-502 meter: Minolta Camera Co., Japan), recording in SPAD value. The SPAD meter measures leaf chlorophyll content by measuring the reflection from leaves in light using wavelengths of 650nm and 940nm (Pinter et al., 1994). Measurements were made weekly after treatments were initiated. Six measurements were taken from the most recently fully expanded leaves in each pot and then averaged. The chlorophyll fluorescence was measured in terms of photosystem II (PSII) effective quantum yield or actual PSII efficiency (\(\Phi_{PSII}\)) using a leaf chamber fluorometer (LI-6400-40 LCF, LI-COR Inc., Lincoln, NE, USA) at 15, 21 and 28 DAT. The \(\Phi_{PSII}\) was measured on the most recently fully expanded light-adapted leaves and expressed as \((F_m’-F_s)/F_m’\); where \(F_m’\)=maximum fluorescence yield; \(F_s\)= steady state fluorescence yield. At least six measurements were taken from each cultivar in each temperature treatment. All measurements were taken between 1000 and 1500 hr when the temperature was constant and at its maximum values. Simultaneously, the net photosynthetic CO₂ assimilation rate (\(P_n, \mu mol \text{ CO}_2 \text{m}^{-2} \text{s}^{-1}\)) was recorded for the same leaf sample used for fluorescence measurement.

3. Statistical analysis

In both experiments, a randomized complete block design with three replications was used and the pots were rearranged regularly within the cabinets to avoid any positional effects. Two-way analysis of variance was carried out for the data taken during and at the end of temperature treatments while the data taken at 0 DAT were analyzed using one-way analysis of variance. Standard errors (SE) of means for temperature treatments, cultivars and their interaction are presented in the tables. Where appropriate, means were compared using least significant difference test (LSD) at 0.05 probability level in the figures.

Results

1. Analysis of variance

Tables 1 and 2 show the effects of cultivars (C),

Table 1. Leaf dry weight, total and specific leaf areas of three wheat cultivars (C) grown in soil under three shoot/root temperature treatments (T). Measurements were taken at 20 days after treatments (DAT) initiation.

Cultivar	Leaf dry weight (g/plant)	Total leaf area (cm²/plant)	Specific leaf area (cm²/g)									
	23/23	23/35	35/35	Mean	23/23	23/35	35/35	Mean	23/23	23/35	35/35	Mean
Fang	1.023	1.085	0.922	1.010	185.5	177.8	150.4	171.3	200.7	163.7	162.8	175.7
Imam	1.075	1.158	0.977	1.070	210.0	201.5	155.6	189.0	195.0	174.0	159.5	176.2
Siete Cerros	0.951	1.068	0.919	0.959	189.3	167.6	152.0	169.6	193.3	166.0	164.5	176.9
Mean	1.016	1.083	0.939		194.9	182.3	152.7		198.3	167.9	162.6	

ANOVA mean square for:

- Cultivar: 0.0291* 904.0 ns 3.1 ns
- Temperature: 0.0480** 4484.8*** 3343.2***
- C × T: 0.0032** ns 288.3 ns 69.0 ns

SE (DF = 16) for:

- C and T: 0.0251 7.7 11.4 7.2
- C × T: 0.0435 13.3 7.2

CV %: 7.7 11.4 7.2

SE, Standard error of the mean; DF, Degree of freedom for the error mean square; C × T, Cultivar × temperature treatment interaction.

*, ** and ***, Significant at 5, 1 and 0.1% levels, respectively. ns, Not significant.
temperature treatments (T) and their interaction (C×T) on different traits measured in both soil and hydroponic experiments. In the soil Expt, significant differences among temperature treatments were found in all traits measured while cultivar difference was significant only in leaf dry weight and no significant C×T interactions were found (Table 1). In the hydroponic Expt, significant differences between temperature treatments were observed in all traits at all measuring dates (Table 2). Significant differences among cultivars were also found in all traits except specific leaf area at 7 DAT, and chlorophyll content at 7 and 14 DAT. The C×T interaction was significant in leaf dry weight at 30 DAT, total leaf area at 30 DAT, chlorophyll content at 14 and 28 DAT, chlorophyll fluorescence at 15 DAT, and photosynthetic rate at 21 DAT (Table 2).

2. Leaf weight and area

High shoot/root temperatures (35/35 and 38/38°C) in both experiments significantly reduced leaf dry weight plant⁻¹ compared with the control (Tables 1, 2 and 3). During the first wk of 38/38°C treatment in the hydroponic Expt, Fang showed the highest decline in the leaf weight (41%) followed by Imam (33%) while that of Siete Cerros was the least affected (24%) compared with the control. At 30 DAT, Fang and Siete Cerros showed more than 50% reduction in their leaf weight while Imam showed 33% reduction. NS/HR (23/35 or 22/38°C) in both experiments showed no effect on the leaf dry weight in the three cultivars throughout the experimental period apart from the reduction in leaf dry weight in Siete Cerros at 30 DAT in the hydroponic Expt.

The total leaf area plant⁻¹ was not affected significantly by NS/HR treatment in the soil Expt (Table 1), and in the hydroponic Expt until 15 DAT in all

Table 2. Mean square for wheat cultivars (C), temperature treatments (T), and their interaction (C×T) derived from the analysis of variance for traits measured at different days after the start of treatment (DAT) initiation in the hydroponic experiment.

Trait	Mean square for:			
	Cultivar	Temperature	C×T	CV %
1- Leaf dry weight at:				
7 DAT	0.0065 ***	0.0265 ***	0.0010 **	9.8
15 DAT	0.0659 *	0.418 ***	0.0075 **	14.2
30 DAT	1.234 **	12.472 ***	0.570 *	10.5
2- Total leaf area at:				
7 DAT	134.0 *	278.9 **	14.2 **	15.2
15 DAT	1745.3 *	21073.1 ***	260.7 *	16.8
30 DAT	34117.0 *	503068.0 ***	22779.6 *	14.8
3- Specific leaf area at:				
7 DAT	149.9 "	1063.7 **	139.5 **	7.6
15 DAT	884.4 *	5235.1 ***	173.2 *	9.1
30 DAT	1308.5 ***	3536.8 ***	174.4 *	7.5
4- Chlorophyll content at:				
7 DAT	2.8 **	183.9 ***	11.9 **	5.1
14 DAT	14.2 "	86.8 ***	17.8 *	4.9
21 DAT	24.1 *	21.3 *	11.8 **	5.0
28 DAT	26.5 ***	10.1 **	7.5 **	2.2
5- Chlorophyll fluorescence at:				
15 DAT	0.00305 ***	0.00172 ***	0.00045 *	2.9
21 DAT	0.00361 ***	0.00204 ***	0.00036 *	4.3
28 DAT	0.000167 *	0.00020 **	0.00040 "	4.9
6- Photosynthetic rate at:				
15 DAT	39.3 ***	73.1 ***	4.75 **	6.4
21 DAT	85.6 ***	51.0 ***	11.63 **	7.0
28 DAT	30.2 ***	22.8 ***	0.95 **	5.5

*, ** and ***. Significant at 5, 1 and 0.1% levels, respectively. ns, Not significant.
three cultivars (Tables 2, 3), despite the trend of reduction observed. However, after 30 days in 22/38°C treatment in the hydroponic Expt, the leaf area plant\(^2\) significantly (P<0.05) decreased compared with the control especially in Fang and Siete Cerros, although it remained unaffected in Imam. The total leaf area plant\(^2\) was significantly affected by 35/35°C treatment in the soil Expt (Table 1) and by 38/38°C treatment in the hydroponic Expt from as early as 7 DAT (Tables 2, 3). After 7 days under HS/HR treatment in the hydroponic Expt, the percent reduction in leaf area plant\(^2\) of the three cultivars ranged between 24 and 43%. The three cultivars showed more than 50% reduction in their leaf area at 15 DAT (Table 3). At 30 DAT, both Fang and Siete Cerros showed above 60% reduction in their leaf area while Imam showed 45% reduction under 38/38°C treatment in the hydroponic Expt.

In the soil Expt, SLA significantly decreased at both 23/35 and 35/35°C compared with 22/22°C, and the three cultivars reacted similarly (Table 1). In the hydroponic Expt, significant differences (P<0.01) in SLA were observed among temperature treatments at all sampling dates; however, the difference among cultivars started to be significant at 15 DAT and became more apparent towards the end of the experiment (Tables 2, 3). Across cultivars, the mean reductions were 15.3 and 14.4% in SLA under 22/38 and 38/38°C treatments at 7 DAT, respectively. The mean reductions in SLA became 12.4 and 26.7% at 15 DAT, 18.3 and 21.8% at 30 DAT under 22/38 and 38/38°C treatments, respectively (Table 3).

At 7 DAT, Imam was the most affected cultivar under both high temperature treatments, while Siete Cerros was the least affected in terms of SLA. The situation was reversed after 15 DAT especially under 22/38°C treatment when Siete Cerros showed a reduction of 21.4% in its SLA compared to 8.9% for Imam and 6.7% for Fang. At 30 DAT, the percent reduction in SLA of Fang and Siete Cerros was almost twice that in Imam under 22/38°C treatment. Under 38/38°C treatment, Siete Cerros showed the highest reduction (28.2%) in SLA while Fang and Imam showed reduction of about 18%.

Chlorophyll accumulation

Averaged across cultivars, chlorophyll content increased during the first wk of the hydroponic Expt by 26, 21 and 46% under 22/22, 22/38 and 22/38°C treatments, respectively (Fig. 1). Differences among temperature treatments were highly significant (P<0.01) at 7 DAT and continued to exist during the experiment (Table 2). Chlorophyll content under

Table 3. Leaf dry weight, total and specific leaf areas of three wheat cultivars (C) grown hydroponically at three shoot/root temperature treatments (T). Measurements were taken at 7, 15 and 30 DAT.

DAT/cultivar	Temperature treatment, shoot/root (ºC)	Leaf dry weight (g/plant)	Total leaf area (cm\(^2\)/plant)	Specific leaf area (cm\(^2\)/g)
7 DAT	22/22	0.277	42.78	156.8
	22/38	0.301	44.92	157.6
	38/38	0.255	30.32	149.2
Fang	Mean	0.289	38.11	133.3
	SE (DF = 16)			
	C and T = 0.0074, C×T = 0.0127			
15 DAT	22/22	0.924	171.0	185.6
	22/38	1.010	168.0	169.0
	38/38	0.772	144.0	186.4
Imam	Mean	0.909	161.0	180.3
	SE (DF = 16)			
	C and T = 0.0569, C×T = 0.0638			
30 DAT	22/22	4.93	918.5	185.5
	22/38	4.45	169.0	152.6
	38/38	4.53	892.9	177.0
Siete Cerros	Mean	4.64	390.2	171.7
	SE (DF = 16)			
	C and T = 0.133, C×T = 0.231			

SE, Standard error of the mean; DF, Degree of freedom for the error mean square; C×T, Cultivar × temperature treatment interaction.
22/38°C treatment was significantly lower than that under the other two treatments throughout the experiment.

The difference in the chlorophyll content of the three cultivars was not significant at 0 DAT. Similarly, no significant differences were observed between cultivars at 7 DAT within each treatment except that Imam accumulated more chlorophyll than Siete Cerros under 22/22°C treatment. At 14 DAT, the response of cultivars to high temperature treatments started to vary especially under 22/38°C treatment (Fig. 1). Fang showed about 13% higher chlorophyll content over both Imam and Siete Cerros at 14 DAT under 22/38°C treatment. Moreover, the prolonged exposure to 22/38°C and 38/38°C resulted in significant differences among cultivars at 21 and 28 DAT (Table 2) especially between Siete Cerros and the other two cultivars (Fig. 1). For instance, under 22/38°C treatment, Siete Cerros showed 16 and 11% less chlorophyll content than Fang at 21 and 28 DAT, respectively. The chlorophyll content of Fang at 21 DAT increased by about 7% under 22/22°C and 22/38°C treatment, but no big changes were occurred under 38/38°C treatment.

The chlorophyll content of Imam at 14 DAT showed a reduction of 8% under 38/38°C treatment but remained unchanged under the other two treatments before it started to show gradual increase thereafter. On the other hand, Siete Cerros at 14 DAT accumulated 15% more chlorophyll under 22/22°C
415

Tahir et al. —— Physiological Response of Wheat to Shoot/Root Temperature

It was only during the last wk of temperature treatment when the chlorophyll content of Siete Cerros started to increase under the 22/38°C and 38/38°C treatments.

The cultivar (C) by temperature treatment (T) interactions were significant at 14 DAT (P < 0.05) and 28 DAT (P < 0.01), but not at 7 and 21 DAT (Table 2). The significant C × T interactions at 14 and 28 DAT were due to that the chlorophyll content of Siete Cerros was higher under 22/22°C, but lower under 22/38°C treatment compared to that of Imam.

4. Chlorophyll fluorescence

Significant differences in leaf chlorophyll fluorescence in terms of effective quantum yield of PSII (ΦPSII) were found among temperature treatments (T) and cultivars (C) on all measurement occasions in the hydroponic Expt (Table 2, Fig. 2).

Across cultivars, the ΦPSII of the light-adapted leaves decreased significantly under both high temperature treatments. The effect of 22/38°C treatments on ΦPSII was greater than that of 38/38°C treatment at 14 DAT. The mean declines in ΦPSII in the three cultivars were 6.9 and 2% under 22/38°C and 38/38°C treatments,
respectively. The mean decline at 21 DAT became 6.3% under both 22/38ºC and 38/38ºC treatments. At 28 DAT, the reductions were 6.9 and 7.8% under 22/38ºC and 38/38ºC treatments, respectively (Fig. 2).

During the experimental period, Fang showed the least and non-significant decline in \(\Phi_{\text{PSII}} \) under both high temperature treatments (Fig. 2). Siete Cerros, on the other hand, was the most affected cultivar under 22/38ºC treatment and towards the end of the experiment under 38/38ºC treatment. Imam was intermediate in its reaction to 22/38ºC treatment, but did not show a definite trend under 38/38ºC treatment.

5. Photosynthetic rate

Highly significant differences were found between temperature treatments and cultivars at all measuring dates (Table 2). The C×T interaction was significant only at 21 DAT because the photosynthetic rate (\(P_n \)) of Siete Cerros was higher than that of Imam under 22/22ºC and 38/38ºC treatments, but not under 22/38ºC treatment. Similar to \(\Phi_{\text{PSII}} \), Fang showed the highest \(P_n \) under all temperature treatments while Imam showed the lowest rate in most of the occasions (Fig. 3).

Averaged across the three cultivars, \(P_n \) at 15 DAT reduced more under the 22/38ºC treatment even when compared with the 38/38ºC treatment. Under 22/38ºC treatment, reductions of 15.8, 25.9 and 28% in \(P_n \), respectively, were observed compared with the control. The corresponding reductions under 38/38ºC treatment were 5.1, 25.2 and 16.9% in Fang, Imam and Siete Cerros, respectively. Both Fang and Imam started to adapt to the 22/38ºC treatment after 21 days of treatment and showed reductions of 4.6 and 16.2% in \(P_n \), respectively, compared with the control. On the other hand, the \(P_n \) of Siete Cerros declined by 31.8% under 22/38ºC treatment compared with the control. It is also Siete Cerros that showed more reduction in \(P_n \) under both 22/38ºC (15.8%) and 38/38ºC (14.4%) treatments at 28 DAT compared with the other two cultivars, which showed less than 10% reduction under both temperature treatments (Fig. 3).

Discussion

The physiological response of three wheat cultivars to normal shoot/high root (NS/HR) and high shoot/low root (HS/HR) temperatures during early growth stages was studied in terms of chlorophyll accumulation, PSII quantum yield (\(\Phi_{\text{PSII}} \)), photosynthetic rate (\(P_n \)), leaf dry weight, leaf area and specific leaf area (SLA).

Averaged across cultivars, chlorophyll accumulation significantly declined under NS/HR treatment and increased under HS/HR treatment. High shoot and root temperatures are reported to suppress photosynthesis mainly by decreasing the proportion of soluble protein to total leaf nutrient status especially nitrogen, hence adversely affecting Rubisco protein and activity (He et al., 2001; Xu and Zhou, 2006). In addition, the available amount of cytokinin and other growth regulators, necessary for various activities including chlorophyll accumulation, and the uptake of water and nutrients by roots and their supply to shoot are expected to greatly decreased and altered (Kuroyanagi and Paulsen, 1988; Udomprasert et al., 1995).

Since high root temperature in both NS/HR and HS/HR treatments is expected to impose the above-mentioned effects, the exact reason for reduction in chlorophyll accumulation under NS/HR treatment, and not under HS/HR treatment, is not clear. However, the shoot/root ratio could have been a critical factor especially during the first two wks of treatment (Tahir et al., 2008) beside the induction of some antioxidant enzymes (Badawi et al., 2007). Under NS/HR treatment, the root system diminished while the NS treatment was favorable for the growth of the aboveground parts (Tahir et al., 2008). Under such condition, the shoot demand for more nutrients might be beyond the capacity of the reduced root system. This was evidenced when chlorophyll content of a specific cultivar was compared with its shoot/root ratio in a specific sampling date. For example, the low chlorophyll content of Imam under NS/HR treatment coincided with the high shoot/root ratio at 7 DAT (Tahir et al., 2008). Similarly, Siete Cerros showed low chlorophyll and higher \(\Phi_{\text{PSII}} \) when its shoot/root ratio decreased sharply at 15 DAT. Moreover, our previous results showed that the xylem sap flow rate was significantly reduced under NS/HR treatment (23/35ºC) in the soil experiment, especially that of Siete Cerros (Tahir et al., 2008). On the other hand, reduced shoot as well as root growth by HS/HR treatment might decrease the competition for nutrients and assimilates. This could lead to the accumulation of more chlorophyll in the small confined leaves. This is supported by the data of leaf dry weight and leaf area/plant, which were greatly declined under HS/HR treatment while remained unchanged or slightly increased under NS/HR treatment.

Significant and similar decreases in \(\Phi_{\text{PSII}} \) and \(P_n \) under both NS/HR and HS/HR treatments were found. The similar effects of these high temperature treatments on the \(\Phi_{\text{PSII}} \) and \(P_n \) in most cases agreed with earlier reports that the shoot activities and growth are mediated by root (Kuroyanagi and Paulsen, 1988; Udomprasert et al., 1995; Xu and Huang, 2000). Maintaining normal root temperature while applying high shoot temperature restored the gas exchange rate to nearly the control level (Udomprasert et al., 1995).

Averaged across all measuring dates and temperature treatments, \(\Phi_{\text{PSII}} \) significantly correlated with the simultaneously measured \(P_n \) (\(r=0.82, P<0.001, n=27 \)). The reduction in \(\Phi_{\text{PSII}} \) significantly correlated with the reduction in \(P_n \) under NS/HR (0.89, P<0.001, 27...
This close association between Φ_{PSII} and P_n agrees with other reports and supports the use of chlorophyll fluorescence as an easy to measure, selection criterion under heat stress conditions (Al-Khatib and Paulsen, 1990; Moffatt et al., 1990; Dash and Mohanty, 2001).

The leaf dry weight and leaf area plant$^{-1}$ significantly reduced under HS/HR treatment in both experiments. The reductions in the leaf weight and area under HS/HR treatment during the first wk were most probably due to reduction in the tillers number/plant (Tahir et al., 2008). The production of less (but productive) tillers seems to be one of the mechanisms for efficient assimilates allocation and hence better adaptation to such stress (Midmore et al., 1984). The NS/HR treatment did not affect the leaf dry weight and leaf area of the three cultivars during the first two wk. Only after prolonged exposure to NS/HR treatment, the leaf weight and area of Fang and Siete Cerros were decreased.

An immediate reduction in the SLA was observed from as early as 7 DAT under both NS/HR and HS/HR treatments in the hydroponic Expt. Biotic and abiotic stresses force plants to undergo anatomical and
chemical composition changes in SLA as a protection defense. High temperature is one of the abiotic stresses that cause reduction in SLA of wheat and other crops (McDonald and Paulsen, 1997; Hotsomyame and Hunt, 1998). However, greater leaf area under high temperature conditions could be an important trait for better light interception by wheat seedling and shading the soil surface to reduce the soil temperature and water evaporation.

Our results showed considerable variability among the three cultivars in their response to high temperature in terms of different traits measured in this study. The responses of the three cultivars were also reported to vary under high temperature treatments during early growth stages in terms of shoot and root growths (Tahir et al., 2008) and antioxidant enzyme activities (Badawi et al., 2007). Moreover, differential response of the three cultivars was reported when exposed to HS/HR during grain filling (Tahir et al., 2005b).

The responses to high temperatures with respect to chlorophyll accumulation varied with the cultivar considerably especially under NS/HR treatment. The heat-tolerant cultivar, Fang, always maintained an increasing trend in its leaf chlorophyll content throughout the experiment under NS/HR treatment. Imam under NS/HR treatment showed a significantly lower chlorophyll content compared to Fang for the first two wk but not during the last two wk. On the other hand, the heat-sensitive cultivar, Siete Cerros, was the most affected cultivar especially from 14 DAT onward and failed to increase the chlorophyll content similar to that in Fang.

The response of the three cultivars to NS/HR and HS/HR treatments during early growth stages was differential as judged from the analysis of \(\Phi_{PSII} \) and \(P_\varepsilon \) at all sampling dates. For example, at 28 DAT, compared with 4.6 and 2.1% decrease in \(\Phi_{PSII} \) under NS/HR and HS/HR treatments, respectively, in Fang, the decline was 6.7 and 9.2% in Imam, and 9.7 and 12.5% in Siete Cerros, respectively. Variations among wheat genotypes in their leaf chlorophyll fluorescence and \(P_\varepsilon \) at high temperatures support the reports by other investigators (Moffatt et al., 1990; Dash and Mohanty, 2001).

The capability of accumulating high chlorophyll and maintaining high \(\Phi_{PSII} \) and \(P_\varepsilon \) per unit leaf area during the first wk of the treatments was associated with high reduction in the leaf dry weight and leaf area plant\(^{-1}\) under HS/HR treatment. The two cultivars (Fang and Imam), which accumulated high chlorophyll under HS/HR treatment compared to the control (NS/NR), showed higher reduction in the leaf weight and leaf area. These results suggested that reduction in leaf area and SLA was an immediate mechanism for the response to the high temperature especially under the HS/HR treatment. Fang showed, in most cases, the highest chlorophyll content, PSII quantum yield, \(P_\varepsilon \), and the largest SLA under all conditions. Similarly, Fang always showed higher antioxidant enzymes activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX) compared to Imam and Siete Cerros under important traits for better light interception by wheat seedling and shading the soil surface to reduce the soil temperature and water evaporation.
Acknowledgements

We would like to thank the Japanese Ministry of Education, Culture, Sports, Science and Technology for the financial support. We are also grateful to the Arid Land Research Center, Tottori University for allowing us to use their facilities.

References

Ali, Z.I., Mahalakshmi, V., Singh, M., Ortiz-Ferrara G. and Peacock, J.M. 1991. Variation in cardinal temperatures for germination among wheat (Triticum aestivum) genotypes. Ann. Appl. Biol. 125 : 367-375.

Al-Khatib, K. and Paulsen, G.M. 1999. Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Sci. 39 : 1127-1132.

Badawi, G.H., Tahir, I.S.A., Nakata N. and Tanaka, K. 2007. Induction of some antioxidant enzymes in selected wheat genotypes. African Crop Science Conference Proceedings. 8 : 841-848.

Burke, J.J. 2001. Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol. Plant. 112 : 167-170.

Dash, S. and Mohanty, N. 2001. Evaluation of assays for the analysis of thermo-tolerance and recovery potentials of seedlings of wheat (Triticum aestivum L.) cultivars. J. Plant Physiol. 158 : 1153-1165.

Havaux, M. 1993. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ. 16 : 461-467.

Hay, R.K.M. and Wilson, G.T. 1982. Leaf appearance and extension in field-grown winter wheat plants: the importance of soil temperature during vegetative growth. J. Agric. Sci., Cambridge 99 : 403-410.

He, J., Lee, S.K. and Dodd, I.C. 2001. Limitations to photosynthesis of lettuce grown under tropical conditions: alleviation by root-zone cooling. J. Exp. Bot. 52 : 1325-1330.

Hoagland, D.R. and Arnon, D.I. 1950. The water culture method for growing plants without soil. California Agricultural Experiment Station Circular 347, Berkeley, California, USA.

Hotsonyme, G.K. and Hunt, L.A. 1998. Seeding date, photoperiod and nitrogen effects on specific leaf area of field-grown wheat. Can. J. Plant Sci. 78 : 51-61.

Ishag, H.M., Mohamed, B.A. and Ishag, K.H.M. 1998. Leaf development of spring wheat cultivars in an irrigated heat-stressed environment. Field Crops Res. 58 : 167-175.

Itai, C., Ben-Zioni, A. and Ofidin, L. 1973. Correlative changes in endogenous hormone levels and shoot growth induced by short heat treatments to the root. Physiol. Plant. 29 : 355-360.

Kuroyanagi, T. and Paulsen, G.M. 1988. Mediation of high-temperature injury by roots and shoots during reproductive growth of wheat. Plant Cell Environ. 11 : 517-523.

Law, R.D. and Crafts-Brandner, S.J. 1999. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Plant Physiol. 120 : 173-181.

McDonald, G.K. and Paulsen, G.M. 1997. High temperature effects on photosynthesis and water relations of grain legumes. Plant Soil 196 : 47-58.

Midmore, D.J., Cartwright, P.M. and Fischer, R.A. 1984. Wheat in tropical environments. II. Crop growth and grain yield. Field Crops Res. 8 : 207-227.

Moffitt, J.M., Sears, R. G. and Paulsen, G.M. 1990. Wheat high temperature tolerance during reproductive growth. I. Evaluation by chlorophyll fluorescence. Crop Sci. 30 : 881-885.

O’Maloney, F. and Burke, J. 2000. A dirichloane of ‘Chinese Spring’ wheat with augmented acquired thermotolerance. Plant Sci. 158 : 147-157.

Pinter, Jr., P.J., Idso, S.B., Hendrix, D.L., Rokey, R.R., Rauschkolb, R.S., Mauney, J.K., Kimball, B.A., Hendrey, G.R., Lewin, K.F. and Nagy, J. 1994. Effect of free-air CO2 enrichment on the chlorophyll content of cotton leaves. Agric. Forest Meteorol. 70 : 163-169.

Reynolds, M.P. and Borlaug, N.E. 2006. Impacts of breeding on international collaborative wheat improvement. J. Agric. Sci., Cambridge 144 : 3-17.

Tahir, I.S.A., Elahmadi, A.B. Abdalla, O.S. Ibrahim, A.S. Mohammed, O.E. and N. Nakata 2005a. Potential selection criteria for yield of bread wheat under early and late heat stresses in a dry irrigated environment. Wheat Inf. Service 99 : 35-40.

Tahir, I.S.A., N. Nakata and T. Yamaguchi 2003b. Response of three wheat genotypes to high soil temperature during grain filling. Plant Prod. Sci. 8 : 192-198.

Tahir, I.S.A. and N. Nakata 2005. Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. J. Agron. Crop Sci. 191 : 105-116.

Tahir, I.S.A., N. Nakata, Ali, A. M., Mustafa, H.M., Saad, A.S.I., Takata, K., Ishikawa, N. and Abdalla, O.S. 2006. Genotypic and temperature effects on wheat grain yield and quality in a hot-irrigated environment. Plant Breed. 125 : 325-330.

Tahir, I.S.A., N. Nakata, T. Yamaguchi, Nakano, J. and Ali, A. M. 2008. Influence of high shoot and root-zone temperatures on growth of three wheat genotypes during early vegetative stages. J. Agron. Crop Sci. 194 : 141-151.

Tewolde, H., Fernandez, C.J. and Erickson, C.A. 2006. Wheat cultivars adapted to post-heading high temperature stress. J. Agron. Crop Sci. 192 : 111-120.

Udomprasert, N., Li, P. H., Davis, D.W. and Markhart III, A. H. 1994. Effects of root temperatures on leaf gas exchange and growth at high air temperature in Phaseolus acutifolius and Phaseolus vulgaris. Crop Sci. 35 : 490-495.

Vincent, C.D. and Gregory, P.J. 1989. Effects of temperature on development and growth of winter roots. I. Controlled glasshouse studies of temperature, nitrogen and irradiance. Plant Soil 119 : 87-97.

Xu, Q. and Huang, B. 2000. Growth and physiological responses of creeping bentgrass to changes in air and soil temperatures. Crop Sci. 40 : 1363-1368.

Xu, Z.Z. and Zhou, G.S. 2005. Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant Soil 269 : 131-139.

Xu, Z.Z. and Zhou, G.S. 2006. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224 : 1080-1090.