Further results on A-numerical radius inequalities

Nirmal Chandra Routa, Debasisha Mishraa,*

aDepartment of Mathematics, National Institute of Technology Raipur, Raipur-492010, India

Abstract

Let \mathcal{H} be a complex Hilbert space, and A be a positive bounded linear operator on \mathcal{H}. Let $\mathcal{B}_A(\mathcal{H})$ denotes the set of all bounded linear operators on \mathcal{H} whose A-adjoint exists. Let A denotes a diagonal operator matrix with diagonal entries are A. In this paper, we prove a few new A-numerical radius inequalities for 2×2 and $n \times n$ operator matrices. We also provide some new proofs of the existing results by relaxing different sufficient conditions like “A is strictly positive” and “$\mathcal{N}(A)^\perp$ is invariant subspace for different operators”. Our proofs show the importance of the theory of the Moore-Penrose inverse of bounded operators in this field of study.

Keywords: A-numerical radius; Positive operator; Semi-inner product; Inequality; Operator matrix

1. Introduction

Let \mathcal{H} be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and $\mathcal{B}(\mathcal{H})$ be the C^*-algebra of all bounded linear operators on \mathcal{H}. Let $\| \cdot \|$ be the norm induced from $\langle \cdot, \cdot \rangle$. An operator $A \in \mathcal{B}(\mathcal{H})$ is called selfadjoint if $A = A^*$, where A^* denotes the adjoint of A. A selfadjoint operator $A \in \mathcal{B}(\mathcal{H})$ is called positive if $\langle Ax, x \rangle \geq 0$ for all $x \in \mathcal{H}$, and is called strictly positive if $\langle Ax, x \rangle > 0$ for all non-zero $x \in \mathcal{H}$. We denote a positive (strictly positive) operator A by $A \geq 0$ ($A > 0$). We denote $\mathcal{R}(A)$ as the range space of A and $\overline{\mathcal{R}(A)}$ as the norm closure of $\mathcal{R}(A)$ in \mathcal{H}. Let A be a $n \times n$ diagonal operator matrix whose diagonal entries are positive operator A for $n = 1, 2, \ldots$. Then $A \in \mathcal{B}(\bigoplus_{i=1}^{n} \mathcal{H})$ and $A \geq 0$. If $A \geq 0$, then it induces a positive semidefinite sesquilinear form, $\langle \cdot, \cdot \rangle_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ defined by $\langle x, y \rangle_A = \langle Ax, y \rangle$, $x, y \in \mathcal{H}$. Let $\| \cdot \|_A$ denote the seminorm on \mathcal{H} induced by $\langle \cdot, \cdot \rangle_A$, i.e., $\| x \|_A = \sqrt{\langle x, x \rangle_A}$ for all $x \in \mathcal{H}$. Then $\| x \|_A$ is a norm if and only if $A > 0$. Also, $(\mathcal{H}, \| \cdot \|_A)$ is complete if and only if $\mathcal{R}(A)$ is closed.
in \(\mathcal{H} \). Here onward, we fix \(A \) and \(\Phi \) for positive operators on \(\mathcal{H} \) and \(\Phi_{\text{in}} \), respectively. We also reserve the notation \(I \) and \(O \) for the identity operator and the null operator on \(\mathcal{H} \) in this paper. \(\| T \|_A \) denotes the \(A \)-operator seminorm of \(T \in \mathcal{B}(\mathcal{H}) \). This is defined as follows:

\[
\| T \|_A = \sup_{x \in \mathcal{R}(A), \ x \neq 0} \frac{\| Tx \|_A}{\| x \|_A} = \inf \left\{ c > 0 : \| Tx \|_A \leq c \| x \|_A, 0 \neq x \in \mathcal{R}(A) \right\} < \infty.
\]

Let

\[
\mathcal{B}^A(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) : \| T \|_A < \infty \}.
\]

Then \(\mathcal{B}^A(\mathcal{H}) \) is not a subalgebra of \(\mathcal{B}(\mathcal{H}) \), and \(\| T \|_A = 0 \) if and only if \(ATA = O \). For \(T \in \mathcal{B}^A(\mathcal{H}) \), we have

\[
\| T \|_A = \sup \{ (Tx, y)_A : x, y \in \mathcal{R}(A), \| x \|_A = \| y \|_A = 1 \}.
\]

If \(AT \geq 0 \), then the operator \(T \) is called \(A \)-positive. Note that if \(T \) is \(A \)-positive, then

\[
\| T \|_A = \sup \{ (Tx, x)_A : x \in \mathcal{H}, \| x \|_A = 1 \}.
\]

An operator \(X \in \mathcal{B}(\mathcal{H}) \) is called an \(A \)-adjoint operator of \(T \in \mathcal{B}(\mathcal{H}) \) if \((Tx, y)_A = (x, Xy)_A \) for every \(x, y \in \mathcal{H} \), i.e., \(AX = T^*A \). By Douglas Theorem [6], the existence of an \(A \)-adjoint operator is not guaranteed. An operator \(T \in \mathcal{B}(\mathcal{H}) \) may admit none, one or many \(A \)-adjoints. \(A \)-adjoint of an operator \(T \in \mathcal{B}(\mathcal{H}) \) exists if and only if \(\mathcal{R}(T^*A) \subseteq \mathcal{R}(A) \). Let us now denote

\[
\mathcal{B}_A(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) : \mathcal{R}(T^*A) \subseteq \mathcal{R}(A) \}.
\]

Note that \(\mathcal{B}_A(\mathcal{H}) \) is a subalgebra of \(\mathcal{B}(\mathcal{H}) \) which is neither closed nor dense in \(\mathcal{B}(\mathcal{H}) \). Moreover, the following inclusions

\[
\mathcal{B}_A(\mathcal{H}) \subseteq \mathcal{B}^A(\mathcal{H}) \subseteq \mathcal{B}(\mathcal{H})
\]

hold with equality if \(A \) is injective and has a closed range.

In 2012, Saddi [19] introduced \(A \)-numerical radius of \(T \) for \(T \in \mathcal{B}(\mathcal{H}) \), which is denoted as \(w_A(T) \), and is defined as follows:

\[
w_A(T) = \sup \{ |(Tx, x)_A| : x \in \mathcal{H}, \| x \|_A = 1 \}.
\] (1.1)

In 2019, Zamani [20] established the following \(A \)-numerical radius inequality for \(T \in \mathcal{B}_A(\mathcal{H}) \):

\[
\frac{1}{2} \| T \|_A \leq w_A(T) \leq \| T \|_A.
\] (1.2)

The \(A \)-Crawford number of \(T \in \mathcal{B}_A(\mathcal{H}) \) is is defined as

\[
m_A(T) = \inf \{ |(Tx, x)_A| : x \in \mathcal{H}, \| x \|_A = 1 \}.
\]
Furthermore, if T is A-selfadjoint, then $w_A(T) = \|T\|_A$. In 2019, Moslehian et al. \cite{moslehian2019} again continued the study of A-numerical radius and established some inequalities for A-numerical radius. In 2020, Bhunia et al. \cite{bhunia2020} and \cite{bhunia2020b} obtained several A-numerical radius inequalities for strictly positive operator A. Feki \cite{feki2019} and Feki et al. \cite{feki2019b} obtained several A-numerical radius inequalities under the assumption $N(A) \perp$ is invariant subspace for different operators. Further generalizations and refinements of A-numerical radius are discussed in \cite{feki2019c, feki2019d}.

The objective of this paper is to present a few new A-numerical radius inequalities for $n \times n$ and 2×2 operator matrices. Besides this, we also aim to establish some existing A-numerical radius inequalities without using the condition $A > 0$ and $N(A)^\perp$ is invariant subspace for different operators. To this end, the paper is sectioned as follows. In Section 2, we define additional mathematical constructs including the definition of the Moore-Penrose inverse of an operator, A-adjoint, A-selfadjoint and A-unitary operator, that are required to state and prove the results in the subsequent sections. Section 3 contains several new A-numerical radius inequalities. More interestingly, it also provides new proof to the very recent existing results in the literature on A-numerical radius inequalities by dropping a few sufficient conditions.

2. Preliminaries

This section gathers a few more definitions and results that are useful in proving our main results. It starts with the definition of the Moore-Penrose inverse of a bounded operator A in H. The Moore-Penrose inverse of $A \in \mathcal{B}(\mathcal{H}) \cite{moore1920}$ is the operator $X : R(A) \oplus R(A)^\perp \rightarrow \mathcal{H}$ which satisfies the following four equations:

1. $AXA = A$,
2. $XAX = X$,
3. $XA = P_{N(A)^\perp}$,
4. $AX = P_{R(A)\cap R(A)^\perp}$.

Here $N(A)$ and P_L denote the null space of A and the orthogonal projection onto L respectively. The Moore-Penrose inverse is unique, and is denoted by A^\dagger. In general, $A^\dagger \notin \mathcal{B}(\mathcal{H})$.

It is bounded if and only if $R(A)$ is closed. If $A \in \mathcal{B}(\mathcal{H})$ is invertible, then $A^\dagger = A^{-1}$. If $T \in \mathcal{B}_A(\mathcal{H})$, the reduced solution of the equation $AX = T^*A$ is a distinguished A-adjoint operator of T, which is denoted by $T^{\#A}$ (see \cite{moore1920, feki2019}). Note that $T^{\#A} = A^\dagger T^*A$. If $T \in \mathcal{B}_A(\mathcal{H})$, then $AT^{\#A} = T^*A$, $\mathcal{R}(T^{\#A}) \subseteq \mathcal{R}(A)$ and $\mathcal{N}(T^{\#A}) = \mathcal{N}(T^*A)$ (see \cite{feki2019}). We can observe that

\begin{equation}
I^{\#A} = A^\dagger I^*A = A^\dagger A = P_{R(A)} \quad (\because N(A)^\perp = R(A^*)) \label{eq:2.1},
\end{equation}

\begin{equation}
T^{\#A}P_{R(A)} = A^\dagger T^*AA^\dagger A = A^\dagger T^*A = T^{\#A}, \label{eq:2.2}
\end{equation}

and

\begin{equation}
P_{R(A)}T^{\#A} = A^\dagger AA^\dagger T^*A = A^\dagger T^*A = T^{\#A}. \label{eq:2.3}
\end{equation}
An operator \(T \in \mathcal{B}(\mathcal{H}) \) is said to be \(A\)-\emph{selfadjoint} if \(AT \) is selfadjoint, i.e., \(AT = T^*A \). Observe that if \(T \) is \(A\)-selfadjoint, then \(T \in \mathcal{B}_A(\mathcal{H}) \). However, in general, \(T \neq T^\#_A \). But, \(T = T^\#_A \) if and only if \(T \) is \(A\)-selfadjoint and \(\mathcal{R}(T) \subseteq \mathcal{R}(A) \). If \(T \in \mathcal{B}_A(\mathcal{H}) \), then \(T^\#_A \in \mathcal{B}_A(\mathcal{H}) \), \((T^\#_A)^\#_A = P_{\mathcal{R}(A)}TP_{\mathcal{R}(A)} \), and \(((T^\#_A)^\#_A)^\#_A = T^\#_A \). Also, \(T^\#_A T \) and \(TT^\#_A \) are \(A\)-positive operators, and
\[
\|T^\#_A T\|_A = \|TT^\#_A\|_A = \|T\|^2_A = \|T^\#_A\|^2_A.
\]

(2.4)

For any \(T_1, T_2 \in \mathcal{B}_A(\mathcal{H}) \), we have
\[
\|T_1^\#_A T_2\|_A = \sup\{\langle(T_1^\#_A T_2 x, y)\rangle : x, y \in \mathcal{H}, \|x\|_A = \|y\|_A = 1\}
= \sup\{\langle(T_2 x, T_1 y)\rangle : x, y \in \mathcal{H}, \|x\|_A = \|y\|_A = 1\}
= \sup\{\langle(x, T_2^\#_A T_1 y)\rangle : x, y \in \mathcal{H}, \|x\|_A = \|y\|_A = 1\}
= \sup\{\langle(T_2^\#_A T_1 x, y)\rangle : x, y \in \mathcal{H}, \|x\|_A = \|y\|_A = 1\}
= \|T_2^\#_A T_1\|_A.
\]

(2.5)

This fact is same as Lemma 2.8 of [9]. However, the above proof is a very simple one and directly follows using the definition of \(A\)-norm. An operator \(U \in \mathcal{B}_A(\mathcal{H}) \) is said to be \(A\)-\emph{unitary} if \(\|U x\|_A = \|U^\#_A x\|_A = \|x\|_A \) for all \(x \in \mathcal{H} \). If \(T \in \mathcal{B}_A(\mathcal{H}) \) and \(U \) is \(A\)-unitary, then \(w_A(U^\#_A T U) = w_A(T) \). For \(T, S \in \mathcal{B}_A(\mathcal{H}) \), we have \((TS)^\#_A = S^\#_A T^\#_A \), \((T + S)^\#_A = T^\#_A + S^\#_A \), \(\|T S\|_A \leq \|T\|_A \|S\|_A \) and \(\|T x\|_A \leq \|T\|_A \|x\|_A \) for all \(x \in \mathcal{H} \). The real and imaginary part of an operator \(T \in \mathcal{B}_A(\mathcal{H}) \) as \(Re_A(T) = \frac{T + T^*}{2} \) and \(Im_A(T) = \frac{T - T^*}{2i} \). An interested reader may refer [1, 2] for further properties of operators on Semi-Hilbertian space. From (1.11), it follows that
\[
w_A(T) = w_A(T^\#_A)
\]
for any \(T \in \mathcal{B}_A(\mathcal{H}) \).

(2.6)

Some interesting results are collected hereunder for further use.

Lemma 2.1. (Lemma 3.1, [3])
Let \(T_{ij} \in \mathcal{B}_A(\mathcal{H}) \) for \(1 \leq i, j \leq n \). Then
\[
T = \begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1n} \\
T_{21} & T_{22} & \cdots & T_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
T_{n1} & T_{n2} & \cdots & T_{nn}
\end{bmatrix} \in \mathcal{B}_A(\mathcal{H}) \text{ and } T^\#_A = \begin{bmatrix}
T_{11}^\#_A & T_{12}^\#_A & \cdots & T_{1n}^\#_A \\
T_{21}^\#_A & T_{22}^\#_A & \cdots & T_{2n}^\#_A \\
\vdots & \vdots & \ddots & \vdots \\
T_{n1}^\#_A & T_{n2}^\#_A & \cdots & T_{nn}^\#_A
\end{bmatrix}.
\]

The next result is a combination of Lemma 2.4 (i) [4] and Lemma 2.2 [16].

Lemma 2.2. Let \(T_1, T_2, T_3, T_4 \in \mathcal{B}_A(\mathcal{H}) \). Then
(i) \(\max \{ w_A(T_1), w_A(T_4) \} = w_A \begin{bmatrix} T_1 & O \\ O & T_4 \end{bmatrix} \leq w_A \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix} \).

(ii) \(w_A \begin{bmatrix} O & T_2 \\ T_3 & O \end{bmatrix} \leq w_A \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix} \).

The other parts of Lemma 2.4 [4] assumes the condition \(A \) is strictly positive. Rout et al. [16] proved the same result for positive \(A \), and the same is stated below.

Lemma 2.3. [Lemma 2.4, [16]]

Let \(T_1, T_2 \in B_A(\mathcal{H}) \). Then

(i) \(w_A \begin{bmatrix} O & T_1 \\ T_2 & O \end{bmatrix} = w_A \begin{bmatrix} O & T_2 \\ T_1 & O \end{bmatrix} \).

(ii) \(w_A \begin{bmatrix} O & e^{i\theta}T_2 \\ e^{-i\theta}T_2 & O \end{bmatrix} \) for any \(\theta \in \mathbb{R} \).

(iii) \(w_A \begin{bmatrix} T_1 & T_2 \\ T_2 & T_1 \end{bmatrix} = \max \{ w_A(T_1+T_2), w_A(T_1-T_2) \} \). In particular, \(w_A \begin{bmatrix} O & T_2 \\ T_2 & O \end{bmatrix} = w_A(T_2) \).

The next result establishes upper and lower bounds for the \(A \)-numerical radius of a particular type of \(2 \times 2 \) operator matrix that is a generalization of [1.2].

Lemma 2.4. [Theorem 2.6, [16]]

Let \(T_1, T_2 \in B_A(\mathcal{H}) \). Then

\[
\max \{ w_A(T_1), w_A(T_2) \} \leq w_A \begin{bmatrix} T_1 & T_2 \\ -T_2 & -T_1 \end{bmatrix} \leq w_A(T_1) + w_A(T_2). \tag{2.7}
\]

Lemma 2.5. [Lemma 2.8, [16]]

Let \(T_1, T_2 \in B_A(\mathcal{H}) \). Then

\[
w_A \begin{bmatrix} T_2 & -T_1 \\ T_1 & T_2 \end{bmatrix} = \max \{ w_A(T_1 + iT_2), w_A(T_1 - iT_2) \}.
\]

Theorem 2.4 [8] for operators \(T_1, T_2 \in B_A(\mathcal{H}) \) is stated as follows.

Lemma 2.6. Let \(T_1, T_2 \in B_A(\mathcal{H}) \). Then

\[w_A(T_1T_2) \leq 4w_A(T_1)w_A(T_2). \]

If \(T_1T_2 = T_2T_1 \), then

\[w_A(T_1T_2) \leq 2w_A(T_1)w_A(T_2). \]

Lemma 2.7. [Theorem 2.6, [8]]

Let \(T, S \in B_A(\mathcal{H}) \). Then

\[w_A(TS + ST^\#A) \leq 2\|T\|_A w_A(S). \]
3. Main Results

It is well known that $P_{R(A)}^T \neq TP_{R(A)}$ for any $T \in B_A(H)$ (even if A and T are finite matrices). And the equality holds if $N(A)$ is invariant for T. The first result shows that the A-numerical radius of $P_{R(A)}^T$ and $TP_{R(A)}$ are same for any $T \in B_A(H)$.

Theorem 3.1. $w_A(P_{R(A)}^T) = w_A(T P_{R(A)}) = w_A(T)$ for any $T \in B_A(H)$.

Proof.

$$w_A(P_{R(A)}^T) = w_A((P_{R(A)}^T)^\#_A) \quad (: w_A(T) = w_A(T^\#_A))$$
$$= w_A(T^\#_A P_{R(A)}) \quad (: (TS)^\#_A = S^\#_A T^\#_A & (P_{R(A)})^\#_A = P_{R(A)})$$
$$= w_A(T^\#_A) \quad \text{by (2.2)}$$
$$= w_A(T). \quad (3.1)$$

Again,

$$w_A(T P_{R(A)}) = w_A((TP_{R(A)})^\#_A) \quad (: w_A(T) = w_A(T^\#_A))$$
$$= w_A(P_{R(A)}^T) \quad (: (TS)^\#_A = S^\#_A T^\#_A & (P_{R(A)})^\#_A = P_{R(A)})$$
$$= w_A(T^\#_A) \quad \text{by (2.3)}$$
$$= w_A(T). \quad (3.2)$$

We therefore have

$$w_A(P_{R(A)}^T) = w_A(T P_{R(A)}) = w_A(T).$$

\[\square\]

We demonstrate an interesting property of A-numerical radius of an $n \times n$ operator matrix which is a generalization of Lemma 2.1 [18].

Theorem 3.2. Let $T = \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1n} \\ T_{21} & T_{22} & \cdots & T_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ T_{n1} & T_{n2} & \cdots & T_{nn} \end{bmatrix}$, where $T_{ij} \in B_A(H)$ for $1 \leq i, j \leq n$. Then

$$w_A\left(\begin{bmatrix} T_{11} & O & \cdots & O \\ O & T_{22} & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & T_{nn} \end{bmatrix}\right) \leq w_A(T).$$
Proof. Let $z = e^{2\pi i/n}$ and $U = \begin{bmatrix} I & O & \cdots & O \\ O & zI & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & z^{n-1}I \end{bmatrix}$. It is easy to see that $\overline{z} = z^{-1} = z^{n-1}$ and $|z| = 1$. To show that U is A-unitary, we need to prove that $\|x\|_A = \|Ux\|_A = \|U^\#A x\|_A$, for $x = (x_1, x_2, \ldots, x_n) \in \bigoplus_{i=1}^n \mathcal{H}$. Here,

$$U^\#A = \begin{bmatrix} I & O & \cdots & O \\ O & zI & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & z^{n-1}I \end{bmatrix}$$

$$= \begin{bmatrix} I^\#A & O & \cdots & O \\ O & zI^\#A & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & z^{n-1}I^\#A \end{bmatrix}$$

by Lemma 2.1

$$= \begin{bmatrix} P_{\mathcal{R}(A)} & O & \cdots & O \\ O & zP_{\mathcal{R}(A)} & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & z^{n-1}P_{\mathcal{R}(A)} \end{bmatrix}.$$

This in turn implies $UU^\#A = \begin{bmatrix} P_{\mathcal{R}(A)} & O & \cdots & O \\ O & P_{\mathcal{R}(A)} & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & P_{\mathcal{R}(A)} \end{bmatrix} = U^\#A U$.

Now, for $x = (x_1, x_2, \ldots, x_n) \in \bigoplus_{i=1}^n \mathcal{H}$, we have

$$\|Ux\|_A^2 = \langle Ux, Ux \rangle_A = \langle U^\#A Ux, x \rangle_A = \|x\|_A^2.$$

So, $\|Ux\|_A = \|x\|_A$. Similarly, $\|U^\#A x\|_A = \|x\|_A$. Thus, U is an A-unitary operator. Further, a simple calculation shows that

$$\begin{bmatrix} T_{11}^\#A & O & \cdots & O \\ O & T_{22}^\#A & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & T_{nn}^\#A \end{bmatrix} = \frac{1}{n} \sum_{k=0}^{n-1} U^\#A U^k.$$
Lemma 3.3. Let \(T \in \mathcal{B}_A(\mathcal{H}) \) and \(T = \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1n} \\ T_{21} & T_{22} & \cdots & T_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ T_{m1} & T_{m2} & \cdots & T_{mn} \end{bmatrix} \). Then
\[
w_A(T) \leq \frac{1}{n} \sum_{k=0}^{n-1} w_A(U^{\#A} T^k U^{\#A}) = \frac{1}{n} \sum_{k=0}^{n-1} w_A(T^k).
\]

This implies that
\[
w_A \left(\begin{bmatrix} T_{11} & 0 & \cdots & 0 \\ 0 & T_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & T_{nn} \end{bmatrix} \right)^{\#A} = w_A \left(\begin{bmatrix} T_{11} & 0 & \cdots & 0 \\ 0 & T_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & T_{nn} \end{bmatrix} \right) \leq w_A(T).
\]

\(\square \)

The following lemma provides an upper bound for \(T \in \mathcal{B}_A(\mathcal{H}) \) to prove Theorem 3.4

Lemma 3.3 (Theorem 7, [1]). Let \(T \in \mathcal{B}_A(\mathcal{H}) \). Then
\[
w_A(T) \leq \frac{1}{2}(\|T\| + \|T^2\|^{1/2}).
\]

Theorem 3.4. Let \(T_1, T_2, T_3, T_4 \in \mathcal{B}_A(\mathcal{H}) \) and \(T = \begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix} \). Then
\[
\max\{w_A^{1/2}(T_2 T_3), w_A^{1/2}(T_3 T_2)\} \leq \sqrt{2} w_A \left(\begin{bmatrix} O & T_2 \\ T_3 & O \end{bmatrix} \right) \leq \frac{1}{\sqrt{2}} (\|T\|_A + \|T^2\|^{1/2}).
\]

Proof. Let \(U = \begin{bmatrix} I & O \\ O & -I \end{bmatrix} \). It is easy to see that \(U \) is \(A \)-unitary and \(TU - UT = 2 \begin{bmatrix} O & -T_2 \\ T_3 & O \end{bmatrix} \).

Here,
\[
w_A(TU + UT) = w_A(U^{\#A} T^{\#A} + T^{\#A} U^{\#A}) = w_A(U^{\#A} T^{\#A} + T^{\#A} (U^{\#A})^{\#A}) \leq 2 w_A(T^{\#A}) \|U^{\#A}\|_A \text{ by Lemma 2.7} \leq 2 w_A(T) \leq \|T\|_A + \|T^2\|^{1/2} \text{ by Lemma 3.3} \tag{3.3}
\]
By (3.3), we thus have
\[\max\{w_A(T_1), w_A(T_4)\} = \frac{1}{2} w_A(TU + UT) \leq w_A(T). \]

Again,
\[
\max\{w_A(T_2T_3), w_A(T_3T_2)\} = w_A\left(\begin{bmatrix} T_2T_3 & O \\ O & T_3T_2 \end{bmatrix} \right)
\]
\[
= w_A\left(\begin{bmatrix} O & T_2 \\ T_3 & O \end{bmatrix} \right)
\]
\[
= w_A\left(\begin{bmatrix} O & T_2 \\ T_3 & O \end{bmatrix} \right)^2
\]
\[
\leq 2w_A^2\left(\begin{bmatrix} O & T_2 \\ T_3 & O \end{bmatrix} \right) \text{ by Lemma 2.6.}
\]

Replacing \(T_2 \) by \(-T_2 \), we get
\[
\max\{w_A(T_2T_3), w_A(T_3T_2)\} \leq 2w_A^2\left(\begin{bmatrix} O & -T_2 \\ T_3 & O \end{bmatrix} \right) .
\]

This implies
\[
\frac{1}{\sqrt{2}} \max\{w_A^{1/2}(T_2T_3), w_A^{1/2}(T_3T_2)\} \leq w_A\left(\begin{bmatrix} O & T_2 \\ T_3 & O \end{bmatrix} \right)
\]
\[
= w_A\left(\begin{bmatrix} O & -T_2 \\ T_3 & O \end{bmatrix} \right)
\]
\[
= \frac{1}{2} w_A(TU - UT)
\]
\[
\leq \frac{1}{2} (\|T\|_A + \|T^2\|^{1/2}) \text{ by (3.3).}
\]

Thus, we obtain
\[
\max\{w_A^{1/2}(T_2T_3), w_A^{1/2}(T_3T_2)\} \leq \sqrt{2} w_A\left(\begin{bmatrix} O & T_2 \\ T_3 & O \end{bmatrix} \right) \leq \frac{1}{\sqrt{2}} (\|T\|_A + \|T^2\|^{1/2}).
\]

The next result provides an estimate for \(A \)-operator norms of certain \(2 \times 2 \) operator matrices. 3.7.9.
Theorem 3.5. Let $T \in \mathcal{B}_A(\mathcal{H})$ and $a, b \in \mathbb{C}$. Then

$$\left\| \begin{bmatrix} aI & T \\ O & bI \end{bmatrix} \right\|_A = \frac{1}{\sqrt{2}} \sqrt{|a|^2 + |b|^2 + \|T\|_A^2 + \sqrt{(|a|^2 + |b|^2 + \|T\|_A^2)^2 - 4|a|^2|b|^2}}.$$

Proof. Let $\alpha, \beta \in \mathbb{R}$ such that $\alpha^2 + \beta^2 = 1$ and

$$\left\| \begin{bmatrix} |a| & \|T\|_A \\ O & |b| \end{bmatrix} \right\|_A = \left\| \begin{bmatrix} |a| & \|T\|_A \\ O & |b| \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \right\|_A$$

$$= \left\| \begin{bmatrix} |a| + \|T\|_A \alpha \\ |b| \beta \end{bmatrix} \right\|_A$$

$$= \sqrt{|b|^2 \beta^2 + (|a| + \|T\|_A \beta)^2}.$$ (3.4)

Let $x_n, y_n \in \mathcal{H}$ be two unit vectors in \mathcal{H} such that $\lim_{n \to \infty} |\langle T y_n, x_n \rangle| = \|T\|_A$ for $n \in \mathbb{N}$. Let $\beta_n \in \mathbb{R}$ be such that $\overline{a(T y_n, x_n)} = e^{i\beta_n} |a| \langle T y_n, x_n \rangle_A$. Suppose that $[\begin{bmatrix} \alpha e^{i\beta_n} x_n \\ \beta y_n \end{bmatrix}]$ be a sequence in $\mathcal{H} \oplus \mathcal{H}$. We can see that $\left\| \begin{bmatrix} \alpha e^{i\beta_n} x_n \\ \beta y_n \end{bmatrix} \right\|_A = 1$. Now,

$$\left\| \begin{bmatrix} aI & T \\ O & bI \end{bmatrix} \right\|_A \geq \left\| \begin{bmatrix} aI & T \\ O & bI \end{bmatrix} \begin{bmatrix} \alpha e^{i\beta_n} x_n \\ \beta y_n \end{bmatrix} \right\|_A$$

$$= \left\| \begin{bmatrix} \alpha a e^{i\beta_n} x_n + \beta T y_n \\ \beta b y_n \end{bmatrix} \right\|_A$$

$$= \sqrt{|\alpha a e^{i\beta_n} x_n + \beta T y_n|^2_A + \|\beta b y_n\|^2_A}$$

$$= \sqrt{\alpha^2 |a|^2 + \beta^2 \|T y_n\|^2_A + 2\alpha \beta Re(\overline{a(T y_n, x_n)} A) + \beta^2 |b|^2}$$

$$= \sqrt{\alpha^2 |a|^2 + \beta^2 \|T\|_A^2 + 2\alpha \beta Re(\overline{a(T y_n, x_n)} A) + \beta^2 |b|^2}$$

$$= \left\| \begin{bmatrix} |a| & \|T\|_A \\ O & |b| \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \right\|_A \text{ by (3.4)}$$

$$= \left\| \begin{bmatrix} |a| & \|T\|_A \\ O & |b| \end{bmatrix} \right\|_A.$$ (3.5)

Again, by Lemma 2.1 [11]

$$\left\| \begin{bmatrix} aI & T \\ O & bI \end{bmatrix} \right\|_A \leq \left\| \begin{bmatrix} |a| & \|T\|_A \\ O & |b| \end{bmatrix} \right\|_A$$ (3.6)
From (3.5) and (3.6), we so have
\[\left\| \begin{bmatrix} aI & T \\ O & bI \end{bmatrix} \right\|_H = \left\| \begin{bmatrix} a & \|T\|_A \\ O & b \end{bmatrix} \right\|. \]

But
\[\left\| \begin{bmatrix} a & \|T\|_A \\ O & b \end{bmatrix} \right\| = r^{1/2} \left(\begin{bmatrix} a & O \\ \|T\|_A & b \end{bmatrix} \begin{bmatrix} a & \|T\|_A \\ O & b \end{bmatrix} \right) \]
\[= r^{1/2} \left(\begin{bmatrix} |a|^2 \\ |a|\|T\|_A \\ |b|^2 + \|T\|^2_A \end{bmatrix} \right) \]
\[= \frac{1}{\sqrt{2}} \sqrt{|a|^2 + |b|^2 + \|T\|^2_A + \sqrt{(|a|^2 + |b|^2 + \|T\|^2_A)^2 - 4|a|^2|b|^2}}. \]

Thence,
\[\left\| \begin{bmatrix} aI & T \\ O & bI \end{bmatrix} \right\|_H = \frac{1}{\sqrt{2}} \sqrt{|a|^2 + |b|^2 + \|T\|^2_A + \sqrt{(|a|^2 + |b|^2 + \|T\|^2_A)^2 - 4|a|^2|b|^2}}. \]

We recall below a result of \[8\] to obtain Corollary 3.7.

Lemma 3.6. [Corollary 2.1, \[8\]]

Let \(T \in B_A(\mathcal{H})\). Then
\[\frac{1}{2} \sqrt{\|TT^\# + T^\#T\|_A + 2m_A(T^2)} \leq w_A(T) \leq \frac{1}{2} \sqrt{\|TT^\# + T^\#T\|_A + 2w_A(T^2)}. \]

Feki \[8\] proved the following result with the additional assumption “\(N(A)\) is invariant for \(T \in B_A(\mathcal{H})\).” Next, we prove the same result without this assumption.

Corollary 3.7. \(2w_A \left(\begin{bmatrix} I & T \\ O & -I \end{bmatrix} \right) = \left\| \begin{bmatrix} I & T \\ O & -I \end{bmatrix} \right\|_H + \left\| \begin{bmatrix} I & T \\ O & -I \end{bmatrix} \right\|^{-1}_H \) for any \(T \in B_A(\mathcal{H})\).

Proof. Let \(T = \begin{bmatrix} I & T \\ O & -I \end{bmatrix}\). Then \(T^2 = \begin{bmatrix} I & O \\ O & I \end{bmatrix}\). Using Lemma 3.6, we get
\[w'_A(T) = \frac{1}{2} \sqrt{\|TT^\# + T^\#T\|_A + 2}. \]

(3.7)
From (3.7), we now have

\[
\begin{align*}
w_A(T) & = \frac{1}{2} \sqrt{ \left\| \begin{bmatrix} I & T \\ O & -I \end{bmatrix} \begin{bmatrix} I & T \\ O & -I \end{bmatrix}^\#_A + \begin{bmatrix} I & T \\ O & -I \end{bmatrix}^\#_A \begin{bmatrix} I & T \\ O & -I \end{bmatrix} \right\|_A + 2 } \\
& = \frac{1}{2} \sqrt{ \left\| \begin{bmatrix} I & T \\ O & -I \end{bmatrix} \begin{bmatrix} P_{\mathcal{R}(A)} & O \\ T^\#_A & -P_{\mathcal{R}(A)} \end{bmatrix} + \begin{bmatrix} P_{\mathcal{R}(A)} & O \\ T^\#_A & -P_{\mathcal{R}(A)} \end{bmatrix} \begin{bmatrix} I & T \\ O & -I \end{bmatrix} \right\|_A + 2 } \\
& = \frac{1}{2} \sqrt{ \left\| \begin{bmatrix} P_{\mathcal{R}(A)} + TT^\#_A & -TP_{\mathcal{R}(A)} \\ -T^\#_A & P_{\mathcal{R}(A)} \end{bmatrix} + \begin{bmatrix} P_{\mathcal{R}(A)} & P_{\mathcal{R}(A)} T \\ T^\#_A T & P_{\mathcal{R}(A)} \end{bmatrix} \right\|_A + 2 } \\
& = \frac{1}{2} \sqrt{ \left\| \begin{bmatrix} 2P_{\mathcal{R}(A)} + TT^\#_A & -TP_{\mathcal{R}(A)} \\ -T^\#_A + T^\#_A & 2P_{\mathcal{R}(A)} + T^\#_A T \end{bmatrix} \right\|_A + 2 } \\
& = \frac{1}{2} \sqrt{ \left\| \begin{bmatrix} 2P_{\mathcal{R}(A)} + TT^\#_A & -TP_{\mathcal{R}(A)} \\ O & 2P_{\mathcal{R}(A)} + T^\#_A T \end{bmatrix} \right\|_A + 2 } \\
& = \frac{1}{2} \sqrt{ \left\| \begin{bmatrix} 2P_{\mathcal{R}(A)} + TT^\#_A & (T^\#_A)^\#_A T^\#_A \\ -T^\#_A + T^\#_A & 2P_{\mathcal{R}(A)} + T^\#_A (T^\#_A)^\#_A \end{bmatrix} \right\|_A + 2 } \\
& = \frac{1}{2} \sqrt{ \left\| \begin{bmatrix} (T^\#_A)^\#_A T^\#_A & O \\ -T^\#_A + T^\#_A & 2P_{\mathcal{R}(A)} + T^\#_A (T^\#_A)^\#_A \end{bmatrix} \right\|_A + 2 } \\
& = \frac{1}{2} \sqrt{ \left\| \begin{bmatrix} 2I^\#_A + (T^\#_A)^\#_A T^\#_A & O \\ O & 2I^\#_A + T^\#_A (T^\#_A)^\#_A \end{bmatrix} \right\|_A + 2 } \\
& = \frac{1}{2} \sqrt{ \left\| \begin{bmatrix} 2I + TT^\#_A & O \\ O & 2I + T^\#_A T \end{bmatrix} \right\|_A + 2 } \\
& = \frac{1}{2} \max\{\|2I + TT^\#_A\|_A + 2\}^{1/2}, (\|2I + T^\#_A T\|_A + 2)^{1/2}\} \\
& = \frac{1}{2} (\|2I + TT^\#_A\|_A + 2)^{1/2} \\
& = \frac{1}{2} \sqrt{\|T\|_A^2 + 4}.
\end{align*}
\]
So, we get
\[w_A \left(\begin{bmatrix} I & T \\ O & -I \end{bmatrix} \right) = \frac{1}{2} \sqrt{\|T\|_A^2 + 4}. \] (3.8)

Using Theorem 3.5, we also obtain
\[\left\| \begin{bmatrix} I & T \\ O & -I \end{bmatrix} \right\|_A^2 = \frac{1}{2} \left(2 + \|T\|_A^2 + \sqrt{\|T\|_A^2 + 4 \|T\|_A^2} \right) = \frac{1}{2} \|T\|_A + \frac{1}{2} \sqrt{\|T\|_A^2 + 4}. \] (3.9)

Hence, we arrive at our claim by (3.8) and (3.9).

\[\square \]

Remark 3.8. Using Theorem 3.5, one can establish Corollary 2.2 [8] without the assumption "\(\mathcal{N}(A)^\perp \) is invariant for \(T \)."

Following theorem provides a relation between \(A \)-numerical radius of two diagonal operator matrices, where \(\text{diag}(T_1, \ldots, T_n) \) means an \(n \times n \) diagonal operator matrix with entries \(T_1, \ldots, T_n \).

Theorem 3.9. Let \(T_i \in \mathcal{B}_A(\mathcal{H}) \) for \(1 \leq i \leq n \). Then
\[w_A(\text{diag}(\sum_{i=1}^n T_i)) \leq nw_A(\text{diag}(T_1, \ldots, T_n)). \]

Proof. Here,
\[
w_A(\text{diag}(\sum_{i=1}^n T_i)) = w_A(\sum_{i=1}^n T_i) \quad \text{by Lemma 2.2} \\
\leq \sum_{i=1}^n w_A(T_i) \\
\leq n \max\{w_A(T_i) : 1 \leq i \leq n\} \\
= nw_A(\text{diag}(T_1, \ldots, T_n)).
\]

\[\square \]

We generalize some of the results of [12] now. Using Lemma 2.4 [16], one can now prove Corollary 3.3 [4] without assuming the condition \(A > 0 \), and is stated next.

Lemma 3.10. Let \(T, S, X, Y \in \mathcal{B}_A(\mathcal{H}) \). Then
\[
w_A(TXS^#A \pm SYT^#A) \leq 2\|T\|_A\|S\|_A w_A \begin{bmatrix} O & X \\ Y & O \end{bmatrix}.
\]

In particular, putting \(Y = X \)
\[
w_A(TXS^#A \pm SXT^#A) \leq 2\|T\|_A\|S\|_A w_A(X).
\]
Considering $X = Y = Q$ and $T = I$ in the previous theorem, we get Lemma 2.7, which is stated below.

Corollary 3.11. Let $Q, S \in B_A(H)$. Then

$$w_A(QS^\# \pm SQ) \leq 2\|S\|_A w_A(Q).$$

Fekri and Sahoo [9] established many results on A-numerical radius inequalities of 2×2 operator matrices, very recently. In many cases, they assumed the condition “$\mathcal{N}(A)^{\perp}$ is invariant subspace for T_1, T_2, T_3, T_4” to show their claim. They assumed these conditions in order to get the equality $P_{R(A)}^T = TP_{R(A)}$ which is not true, in general. One of the objective of this paper is to achieve the same claim without assuming the additional condition “$\mathcal{N}(A)^{\perp}$ is invariant subspace for T_1, T_2, T_3, T_4”. The next result is in this direction, and is more general than Theorem 2.7 [9]. Our proof is also completely different than the corresponding proof in [9]. And, therefore our results are superior to those results in [9] and [8] that assumes the invariant condition.

Theorem 3.12. Let $T_1, T_2, T_3, T_4 \in B_A(H)$. Then $w_A \left(\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix} \right) \geq \frac{1}{2} \max\{\alpha, \beta\}$, where $\alpha = \max\{w_A(T_1 + T_2 + T_3 + T_4), w_A(T_1 + T_4 - T_2 - T_3)\}$ and $\beta = \max\{w_A(T_1 + T_4 + i(T_2 - T_3)), w_A(T_1 + T_4 - i(T_2 - T_3))\}$.

Proof. Let $T = \begin{bmatrix} T_1^\# & T_3^\# \\ T_2^\# & T_4^\# \end{bmatrix}$ and $Q = \begin{bmatrix} O & I \\ I & O \end{bmatrix}$. To show that Q is A-unitary, we need to prove that $\|x\|_A = \|Qx\|_A = \|Q^\#x\|_A$. So,

$$Q^\# = \begin{bmatrix} O & I^\# \\ I & O \end{bmatrix} \text{ by Lemma 2.1}$$

$$= \begin{bmatrix} O & P_{R(A)} \\ P_{R(A)} & O \end{bmatrix} \quad \therefore \quad \mathcal{N}(A)^{\perp} = \mathcal{R}(A^*) \& \mathcal{R}(A^*) = \mathcal{R}(A).$$

This in turn implies $QQ^\# = \begin{bmatrix} P_{R(A)} & O \\ O & P_{R(A)} \end{bmatrix} = Q^\#Q$. Now, for $x = (x_1, x_2) \in H \oplus H$, we have

$$\|Qx\|_A^2 = \left\langle Qx, Qx \right\rangle_A = \left\langle Q^\#Qx, x \right\rangle_A = \begin{bmatrix} P_{R(A)} & O \\ O & P_{R(A)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} AR & O \\ O & AR \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

14
 Hence, we have

\[T = \begin{bmatrix} AA^\dagger A & O \\ O & AA^\dagger A \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]

\[= \begin{bmatrix} A & O \\ O & A \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]

\[= \|x\|^2_A. \]

So, \(\|Qx\|_A = \|x\|_A \). Similarly, it can be proved that \(\|Q^\#A x\|_A = \|x\|_A \). Thus, \(Q \) is an \(A \)-unitary operator. By Lemma 2.7, we obtain

\[w_A(TQ + QT^\#A) \leq 2w_A(T). \] (3.10)

So,

\[2w_A(T) \geq w_A\left(\begin{bmatrix} T_1 & T_3 \\ T_2 & T_4 \end{bmatrix} \begin{bmatrix} O & P_{\mathcal{R}(A)} \\ P_{\mathcal{R}(A)} & O \end{bmatrix} + \begin{bmatrix} O & I \\ I & O \end{bmatrix} \begin{bmatrix} T_1^\#A & T_3^\#A \\ T_2^\#A & T_4^\#A \end{bmatrix} \right) \]

\[= w_A\left(\begin{bmatrix} T_1^\#A & T_3^\#A \\ T_2^\#A & T_4^\#A \end{bmatrix} \mathcal{R}(A) \end{bmatrix} + \begin{bmatrix} T_1^\#A & T_3^\#A \\ T_2^\#A & T_4^\#A \end{bmatrix} \right) \]

\[= w_A\left(\begin{bmatrix} T_1^\#A & T_3^\#A \\ T_2^\#A & T_4^\#A \end{bmatrix} \right) \]

\[= w_A\left(\begin{bmatrix} T_2 + T_3 & T_4 + T_1 \\ T_1 + T_4 & T_2 + T_3 \end{bmatrix} \right) = w_A\left(\begin{bmatrix} T_2 + T_3 & T_4 + T_1 \\ T_1 + T_4 & T_2 + T_3 \end{bmatrix} \right). \]

Hence, we have

\[2w_A\left(\begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \end{bmatrix} \right) \geq w_A\left(\begin{bmatrix} T_1^\#A & T_3^\#A \\ T_2^\#A & T_4^\#A \end{bmatrix} \right) \]

\[\geq w_A\left(\begin{bmatrix} T_2 + T_3 & T_4 + T_1 \\ T_1 + T_4 & T_2 + T_3 \end{bmatrix} \right). \] (3.11)

By (3.11) and Lemma 2.3, we obtain

\[w_A\left(\begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \end{bmatrix} \right) \geq \frac{1}{2} \max\{w_A(T_1 + T_2 + T_3 + T_4), w_A(T_2 + T_3 - T_4 - T_1)\}. \] (3.12)

Again, applying Lemma 2.7 and taking \(T = \begin{bmatrix} T_1^\#A & T_3^\#A \\ T_2^\#A & T_4^\#A \end{bmatrix} \) and \(Q = \begin{bmatrix} O & I \\ -I & O \end{bmatrix} \). It is easy to verify that \(Q \) is \(A \)-unitary. We now have

\[w_A\left(TQ^\#A + QT \right) \leq 2w_A(T). \] (3.13)
So,

\[
2w_A(T) \geq w_A \left(\begin{bmatrix} T_{1#} & T_{2#} & T_{3#} & T_{4#} \\ T_{1#} & T_{2#} & T_{3#} & T_{4#} \\ P_{R(A)} & P_{R(A)} & P_{R(A)} & P_{R(A)} \\ \end{bmatrix} \begin{bmatrix} O & -P_{R(A)} \\ O & -I \\ \end{bmatrix} \right) - \begin{bmatrix} O & I \\ \end{bmatrix} \right) = w_A \left(\begin{bmatrix} -T_{1#} + T_{2#} & -T_{3#} - T_{1#} & -T_{4#} + T_{3#} & T_{4#} \\ -T_{1#} + T_{2#} & -T_{3#} - T_{1#} & -T_{4#} + T_{3#} & T_{4#} \\ \end{bmatrix} \right) \]

By Lemma 2.5, we therefore achieve the following:

\[
w_A \left(\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \\ \end{bmatrix} \right) \geq \frac{1}{2} \max\{w_A(T_4 + T_1 - i(T_2 - T_3)), w_A(T_4 + T_1 + i(T_2 - T_3))\}\] (3.14)

From (3.12) and (3.14), we get the desired result.

We provide below the same estimate as in Theorem 2.8 for \(A\)-numerical radius of an operator matrix that improves but by dropping the assumption \(\mathcal{N}(A)\) is an invariant subspace for \(T_1, T_2 \in B_A(\mathcal{H})\).

Theorem 3.13. Let \(T_1, T_2 \in B_A(\mathcal{H})\). Then

\[
w_A \left(\begin{bmatrix} T_1 & T_2 \\ O & O \\ \end{bmatrix} \right) \geq \frac{1}{2} \max\{w_A(T_1 + iT_2), w_A(T_1 - iT_2)\}.
\]

Proof. Suppose that \(T = \begin{bmatrix} T_{1#} & O \\ T_{2#} & O \\ \end{bmatrix}\) and \(Q = \begin{bmatrix} O & -I \\ I & O \\ \end{bmatrix}\). It then follows that \(Q\) is \(A\)-unitary.

So, \(|Q|_A = 1\). Using Lemma 2.7, we get

\[
2w_A(T) \geq w_A(TQ_{A} - QT).
\]

Now,

\[
w_A(T) \geq \frac{1}{2} w_A(TQ_{A} - QT) = \frac{1}{2} w_A \left(\begin{bmatrix} T_{1#} & O \\ T_{2#} & O \\ \end{bmatrix} \begin{bmatrix} O & P_{R(A)} \\ -P_{R(A)} & O \\ \end{bmatrix} \right) - \begin{bmatrix} O & -I \\ \end{bmatrix} \right) = \frac{1}{2} w_A \left(\begin{bmatrix} -T_{1#} + T_{2#} & -T_{3#} - T_{1#} & -T_{4#} + T_{3#} & T_{4#} \\ -T_{1#} + T_{2#} & -T_{3#} - T_{1#} & -T_{4#} + T_{3#} & T_{4#} \\ \end{bmatrix} \right).
\]
By Lemma 2.5, we thus have

\[
= \frac{1}{2} w_A \left[\begin{array}{cc} O & T_1^\# A P_{\mathcal{F}(A)} \\ T_2^\# A P_{\mathcal{F}(A)} & O \end{array} \right] - \left[\begin{array}{cc} -T_2^\# A & O \\ T_2^\# A & O \end{array} \right]
\]

\[
= \frac{1}{2} w_A \left[\begin{array}{cc} T_2^\# A & T_1^\# A \\ -T_1^\# A & T_2^\# A \end{array} \right]
\]

\[
= \frac{1}{2} w_A \left[\begin{array}{cc} T_2 & -T_1 \\ T_1 & T_2 \end{array} \right],
\]

by (2.2)

By Lemma 2.5, we thus have

\[
w_A \left(\begin{array}{cc} T_1 & T_2 \\ O & O \end{array} \right) = w_A \left(\begin{array}{cc} T_1^\# A & O \\ T_2^\# A & O \end{array} \right) \geq \frac{1}{2} \max \{w_A(T_1 + iT_2), w_A(T_1 - iT_2)\}.
\]

\[
\square
\]

Corollary 3.14. Let \(T = P + iQ \) be the cartesian decomposition in \(B_A(\mathcal{H}) \). Then

\[
\frac{1}{2} w_A(T) \leq \min \left\{ w_A \left(\begin{array}{cc} P & Q \\ O & O \end{array} \right), w_A \left(\begin{array}{cc} O & P \\ Q & O \end{array} \right) \right\}.
\]

Proof.

\[
w_A \left(\begin{array}{cc} P & Q \\ O & O \end{array} \right) \geq \frac{1}{2} \max \{w_A(P + iQ), w_A(P - iQ)\}
\]

\[
= \frac{1}{2} \max \{w_A(T), w_A(T^\# A)\}
\]

\[
= \frac{1}{2} w_A(T).
\]

Again, replacing \(T_2 \) and \(T_3 \) by \(P \) and \(iQ \), respectively in Lemma 2.12 and using Lemma 2.3 of [16], we have

\[
w_A \left(\begin{array}{cc} O & P \\ Q & O \end{array} \right) = w_A \left(\begin{array}{cc} O & P \\ iQ & O \end{array} \right) \geq \frac{1}{2} w_A(P \pm iQ) = \frac{1}{2} w_A(T).
\]

From (3.15) and (3.16), we have

\[
\frac{1}{2} w_A(T) \leq \min \left\{ w_A \left(\begin{array}{cc} P & Q \\ O & O \end{array} \right), w_A \left(\begin{array}{cc} O & P \\ Q & O \end{array} \right) \right\}.
\]

\[
\square
\]
We remark that the condition “\(\mathcal{N}(A)\) is invariant for operators” in Theorem 2.9 can also be dropped, similarly. Next, we recall a lemma that is used to prove Theorem 3.16.

Lemma 3.15. [Lemma 2.6, [10]]

Let \(X, Y \in \mathcal{B}_A(\mathcal{H})\). Then

\[
\|X + Y\|_A = 1 = \|X - Y\|_A.
\]

Theorem 3.16. Let \(T_1, T_2 \in \mathcal{B}_A(\mathcal{H})\). Then

\[
\|w^A_\mathcal{H}(\begin{bmatrix} O & T_1 \\ T_2 & O \end{bmatrix})\| \leq \frac{1}{16} \|P\|^2 + \frac{1}{4} \|w_\mathcal{H}^A(T_2 T_1)\| + \frac{1}{8} \|w_\mathcal{H}^A(PT_2 T_1 + T_2 T_1 P)\|
\]

where \(P = T_1^\#T_1 + T_2^\#T_2\).

Proof. Let \(T = \begin{bmatrix} O & T_1 \\ T_2 & O \end{bmatrix}\) and \(P = T_1^\#T_1 + T_2^\#T_2\). Now,

\[
\frac{1}{2} \|e^{i\theta} T_1 + e^{-i\theta} T_2^\#\|_A
\]

\[
= \frac{1}{2} \| (e^{i\theta} T_1 + e^{-i\theta} T_2^\#)^\#(e^{i\theta} T_1 + e^{-i\theta} T_2^\#) \|_A
\]

\[
= \frac{1}{2} \| (e^{-i\theta} T_1^\# + e^{i\theta} (T_2^\#)^\#)(e^{i\theta} T_1 + e^{-i\theta} T_2^\#) \|_A
\]

\[
= \frac{1}{2} \| T_1^\#T_1 + e^{-2i\theta} T_1^\#T_2^\# + e^{2i\theta} (T_2^\#)^\#T_1 + (T_2^\#)^\#T_2^\# \|_A
\]

\[
= \frac{1}{2} \| T_1^\#T_1 + e^{-2i\theta} T_1^\#T_2^\# + e^{2i\theta} (T_2^\#)^\#T_1 + (T_2^\#)^\#T_2^\# \|_A
\]

\[
= \frac{1}{2} \| T_1^\#T_1 + e^{-2i\theta} T_1^\#T_2^\# + e^{2i\theta} T_2^\#T_1 + T_1 T_2^\# \|_A
\]

\[
= \frac{1}{2} \| T_1^\#T_1 + T_2^\#T_2 + 2Re(e^{2i\theta} T_2 T_1) \|_A
\]

\[
= \frac{1}{2} \| T_1^\#T_1 + T_2^\#T_2 + 2Re(e^{2i\theta} T_2 T_1) \|_A
\]

\[
= \frac{1}{2} \| (T_1^\#T_1 + T_2^\#T_2)^2 + 4(Re(e^{2i\theta} T_2 T_1)) \|_A
\]

\[
= \frac{1}{2} \| (T_1^\#T_1 + T_2^\#T_2)^2 + 4(Re(e^{2i\theta} T_2 T_1)) \|_A
\]

So,

\[
\left(\frac{1}{2} \| e^{i\theta} T_1 + e^{-i\theta} T_2^\# \|_A \right)^4 = \frac{1}{16} \| (T_1^\#T_1 + T_2^\#T_2)^2 + 4(Re(e^{2i\theta} T_2 T_1)) \|_A.
\]
This implies
\[
\left(\frac{1}{2}\|e^{i\theta}T_1 + e^{-i\theta}T_2^{\#A}\|_A\right)^4 \leq \frac{1}{16}\|T_1^{\#A}T_1 + T_2T_2^{\#A}\|_A^2 + \frac{1}{4}\|Re_A(e^{2i\theta}(PT_2T_1 + T_2T_1P))\|_A^2.
\]
Now, taking supremum over \(\theta \in \mathbb{R}\) and using Lemma 3.15, we thus obtain
\[
w^4_A\left(\begin{bmatrix} O & T_1 \\ T_2 & O \end{bmatrix}\right) \leq \frac{1}{16}\|P\|^2 + \frac{1}{4}w^2_A(T_2T_1) + \frac{1}{8}w_A(PT_2T_1 + T_2T_1P).
\]

Note that the authors of [5] proved the above theorem with the assumption \(A > 0\). Using Theorem 3.16 and Lemma 2.3, we now establish the following inequality.

Corollary 3.17. Let \(T_1, T_2 \in B_A(\mathcal{H})\). Then
\[
w_A(T_1T_2) \leq \frac{1}{3}\sqrt{\|P\|^2 + 4w^2_A(T_2T_1) + 2w_A(T_2T_1P + PT_2T_1)}
\]

where \(P = T_1^{\#A}T_1 + T_2T_2^{\#A}\).

Proof. Here
\[
w_A(T_1T_2) \leq \max\{w_A(T_1T_2), w_A(T_2T_1)\}
\]= \frac{1}{3}\sqrt{\|P\|^2 + 4w^2_A(T_2T_1) + 2w_A(T_2T_1P + PT_2T_1)}
\]
The last inequality follows by Theorem 3.16.

Adopting a parallel technique as in the proof of the Theorem 3.16 one can prove the following result.

Theorem 3.18. Let \(T_1, T_2 \in B_A(\mathcal{H})\),
\[
w^4_A\left(\begin{bmatrix} O & T_1 \\ T_2 & O \end{bmatrix}\right) \geq \frac{1}{16}\|P\|^2 + \frac{1}{8}m(PT_2T_1 + T_2T_1P) + \frac{1}{4}c^2_A(T_2T_1),
\]
where \(P = T_1^{\#A}T_1 + T_2T_2^{\#A}\) and \(c_A(T_2T_1) = \inf_{\theta \in \mathbb{R}} \inf_{x \in \mathcal{H}} \|Re(e^{i\theta}T_2T_1)x\|_A\).

19
The next result provides upper and lower bounds for A-numerical radius of 2×2 operator matrix which follows directly using Theorem 3.1.6, Theorem 3.1.8 and Lemma 2.2.

Theorem 3.19. Let $T_1, T_2, T_3, T_4 \in B_A(\mathcal{H})$. Then

$$w_A\left(\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}\right) \leq \max\{w_A(T_1, w_A(T_4))\} + \left[\frac{1}{16} \|P\|^2 + \frac{1}{8} w_A(P T_3 T_2 + T_3 T_2 P) + \frac{1}{4} w_A^2(T_3 T_2)\right]^{1/4},$$

and

$$w_A\left(\begin{bmatrix} T_1 & T_2 \\ T_3 & T_4 \end{bmatrix}\right) \geq \max\{w_A(T_1, w_A(T_4))\} \cdot \left[\frac{1}{16} \|P\|^2 + \frac{1}{8} m_A(P T_3 T_2 + T_3 T_2 P) + \frac{1}{4} c^2(T_3 T_2)\right]^{1/4},$$

where $P = T_1^{\#} T_1 + T_2 T_2^{\#}$ and $c_A(T_2 T_1) = \inf_{\theta \in \mathbb{R}} \inf_{x \in \mathcal{H}} \|\text{Re}(e^{i\theta} T_2 T_1) x\|_A$.

Acknowledgments.

We thank the Government of India for introducing the work from home initiative during the COVID-19 pandemic.

References

[1] Arias, M. L.; Corach, G.; Gonzalez, M. C., Metric properties of projections in semi-Hilbertian spaces, Integral Equations Operator Theory 62 (2008), 11–28.

[2] Arias, M. L.; Corach, G.; Gonzalez, M. C., Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (2008), 1460–1475.

[3] Bhunia, P.; Feki, K.; Paul, K., A-numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications, Bull. Iran. Math. Soc. (2020), DOI: 10.1007/s41980-020-00392-8.

[4] Bhunia, P.; Paul, K.; Nayak, R. K., On inequalities for A-numerical radius of operators, Electron. J. Linear Algebra 36 (2020), 143–157.

[5] Bhunia, P.; Paul, K., Some improvements of numerical radius inequalities of operators and operator matrices, Linear Multilinear Algebra (2020), DOI: 10.1080/03081087.2020.1781037.

[6] Douglas, R. G., On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415.

[7] Feki, K., Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal. (2020) [https://doi.org/10.1007/s43034-020-00064-y].

[8] Feki, K., Some numerical radius inequalities for semi-Hilbertian space operators, arXiv:2001.00398v2 [math.FA].

[9] Feki, K.; Sahoo, S., Further inequalities for the A-numerical radius of certain 2×2 operator matrices, Pre-print.

[10] Feki, K., Some A-numerical radius inequalities for $d \times d$ operator matrices, arXiv:2003.14378 [math.FA] (2020).
[11] Feki, K., Some A-spectral radius inequalities for A-bounded Hilbert space operators, arXiv:2002.02905 [math.FA] (2020).

[12] Hirzallah, O; Kittaneh, F.; Shebrawi, K., Numerical Radius Inequalities for commutators of Hilbert space operators, Numerical Functional Analysis and optimization 32 (2011), 739–749.

[13] Moslehian, M. S.; Kian, M.; Xu, Q., Positivity of 2×2 block matrices of operators, Banach J. Math. Anal. 13 (2019), 726–743.

[14] Moslehian, M. S.; Xu, Q.; Zamani, A., Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces, Linear Algebra Appl. 591 (2020), 299–321.

[15] Nashed, M. Z., Generalized Inverses and Applications, Academic Press, New York, 1976.

[16] Rout, N. C.; Sahoo, S.; Mishra, D., On κ-numerical radius inequalities for 2×2 operator matrices, preprint.

[17] Rout, N. C.; Sahoo, S.; Mishra, D., Some A-numerical radius inequalities for semi-Hilbertian space operators, Linear Multilinear Algebra (2020) DOI: 10.1080/03081087.2020.1774487

[18] Omidvar, M. E.; Moslehian, M. S.; Niknam, A., Some numerical radius inequalities for Hilbert space operators, Involve 2:4 (2009).

[19] Saddi, A., A-normal operators in semi Hilbertian spaces, The Australian Journal of Mathematical Analysis and Applications 9 (2012), 1–12.

[20] Zamani, A., A-Numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl. 578 (2019), 159–183.