Spironolactone Prevents Aldosterone Induced Increased Duration of Atrial Fibrillation in Rat

Carina Lammers¹, Theresa Dartsch¹, Mathias C. Brandt¹, Dennis Rottländer¹, Marcel Halbach¹, Gabriel Peinkofer¹, Simon Ockenpoehler¹, Marco Weiergraeber⁴, Toni Schneider²,³, Hannes Reuter¹, Jochen Müller-Ehmsen¹, Jürgen Hescheler², Uta C. Hoppe¹,³ and Carsten Zobel¹

¹Department of Internal Medicine III, University of Cologne, Cologne, ²Institute for Neurophysiology, ³Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, ⁴Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM), Bonn

Key Words
Electrical remodeling • Structural remodelling • Myocardial hypertrophy

Abstract
Background: Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. The Renin-Angiotensin-Aldosterone-System plays a major role for the atrial structural and electrical remodelling. Recently elevated aldosterone levels have been suggested to increase the risk for the development of AF. Methods: Rats were treated with aldosterone by means of an osmotic minipump (0.5µg/h) over a period of 4 weeks. AF was induced by transesophageal burst pacing. Action potentials (AP) were recorded from left atrial preparations with microelectrodes. Atrial collagen was quantified by histological studies. Results: Aldosterone treatment resulted in hypertrophy as indicated by an increased ratio of heart weight/tibia length and doubled the time until the AF converted spontaneously into sinus rhythm (85.8±13.4 s vs.38.3±6.9 s, p<0.01). This was associated with a significant shortening of the AP (APD90 26.2±1.1 vs. 31.2±1.9, p<0.05) and an increased protein expression of Kir2.1 and Kv1.5. Atrial collagen deposition was significantly greater in aldosterone-treated rats. The alterations could be prevented by additional application spironolactone. Conclusions: The results of the present study suggest that in addition to the structural remodelling aldosterone also promotes AF by altering repolarising potassium currents leading to action potential shortening.

Introduction

Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice, affecting 0.4-2% of the population. The disease increases the risk for the occurrence of thrombembolic complications and results in a reduction of cardiac performance by 10-20% [1]. The renin-angiotensin-aldosterone system (RAAS) plays a major role for the atrial structural and electrical remodelling and its inhibition by angiotensin-converting enzyme inhibitors or angiotensin type 1 (AT₁) receptor antagonists has been suggested to be beneficial [2]. However, the results from the recently published ANTIPAF trial...
[3] contradict the earlier reports by showing no effect of the AT\(_1\) receptor antagonist olmesartan on the recurrence of paroxysmal atrial fibrillation. The well-known phenomenon described as “aldosterone escape” [4] leads to increased aldosterone levels despite the blockade of the RAAS by ACE inhibitors and/or AT\(_1\) receptor antagonists. Aldosterone excess leads to an aldosterone-receptor mediated atrial fibrosis independent of increased wall stress due to hypertension [5]. The role of aldosterone for the development and maintenance of AF is further underlined by the observation that patients with primary hyperaldosteronism show a 12-fold greater AF risk compared with hypertensive controls [6]. Moreover, serum aldosterone levels are elevated in patients with persistent AF and decline after sinus rhythm is restored [7], and increase after the onset of AF, indicating a possible vicious cycle between AF and aldosterone [8]. Furthermore, in human atrial tissue from patients with AF and in a cellular AF model increased expression levels of the mineralocorticoid receptor have been observed [9]. Recently Reil et al. [10] were able to show that longterm aldosterone treatment in rats resulted in promotion of atrial fibrillation, which was related to atrial fibrosis, myocyte hypertrophy and conduction disturbances.

Results from animal models [11] subsequently confirmed in human studies [12] indicate a central role of I\(_{\text{Ca,L}}\) changes in AF related remodelling of repolarisation. However, more recent work also points to an important contribution of alterations in K\(^+\)-currents [13]. Specifically changes in I\(_{\text{K1}}\) [14, 15] and I\(_{\text{kur}}\) [15, 16] have been implicated to alter repolarisation in atrial fibrillation.

Therefore, we hypothesized that aldosterone might be involved in electrical remodelling resulting in the maintenance of AF. To address this hypothesis we investigated the duration of atrial fibrillation induced by transesophageal burst pacing as well as the electrical remodelling in a rat model of long term aldosterone treatment.

Materials and Methods

Animal Model and Implantation of Osmotic Minipumps

Male Wistar rats (23 rats, mean body weight 223g) (Charles River) were treated with aldosterone (Sigma-Aldrich) or solvent (polyethylene glycol 400, PEG 400, Sigma-Aldrich) over a period of 4 weeks via implanted osmotic minipumps (ALZET, Pump Model 2004). Aldosterone was dissolved in PEG 400 (aldosterone release 0.5 μg/h). Pumps were implanted subcutaneously under anaesthesia using 50 mg/kg ketamine (Ketavet®, Sanofi) and 7 mg/kg xylazine (Rompun®, Bayer). The animals were either fed with the aldosterone antagonist spironolactone (100 mg/kg\(^{-1}\) body weight/d\(^{-1}\)) (Roche) with the chow (Altromin) or with a control diet (Altromin). Rats were separated into 4 groups: Solvent control (CON) – 5 animals, aldosterone (ALD) – 8 animals, spironolactone (SPI) – 5 animals and aldosterone+spironolactone (ALD+SPI) – 5 animals. The rats had free access to food and water and were maintained in a constant environment with a conventional 12 h/ 12 h light-dark cycle starting at 6 am. All experiments were carried out in accordance with the Directive of the European Commission 86/609/EEC and were approved by the local authorities on animal care (8.87-50.10.35.08.111).

Blood Pressure Measurement

Systolic blood pressure (SBP) was determined after 4 weeks of drug treatment with the non-invasive tail cuff method (Harvard Apparatus). Measurements were repeated three times calculating the mean values.

Induction of AF by burst pacing

AF was induced by burst pacing after 4 weeks of drug or vehicle treatment, as described earlier [17]. Rats were anaesthetized by intra-peritoneal injection of pentobarbital sodium (50 mg/kg). The animals were monitored for adequacy of anesthetic depth, which was based on the absence of movement and the reaction to paw-pinch. Ventilation was initiated after intubation by an 18–G vein catheter for artificial respiration, tidal volume was set at 2.5 ml/kg and respiratory rate at 100 strokes/min. The ECG was continuously monitored. A clinically available 6-French quad-polar electrodes catheter (Finder) was inserted into the esophagus under the monitoring of an esophageal electrogram and positioned at a site where the lowest level of voltage could just capture the atrium. The pacing pulse used for the induction of AF was rectangular in shape of 60 V (about 1.5 times of the diastolic threshold voltage) and 6 ms width. The atrium was paced at a cycle length of 12 ms (83 Hz) for 30 s (≈burst pacing) via the distal electrodes pair of the catheter using an electrical stimulator. After inducing AF by burst pacing, its duration was measured until the ECG showed sinus rhythm again. Burst pacing and measurement of AF was repeated three times, with a five minute break in between. Burst pacing was without effect on the ECG parameters and the animals showed no other signs of cardiac damage like ectopic electrical activity or changes in heart rate. At the end of the procedure the animals were euthanized by intraperitoneal injection of 100 mg/kg pentobarbital and excision of the hearts which were snap frozen in liquid nitrogen for later use.

Atrial action potential recordings

At day 28 after induction of atrial fibrillation by burst pacing, left atria were excised for action potential recordings as well as the electrical remodelling in a rat model of long term aldosterone treatment.
(BDM) and 0.9 mmol/l CaCl₂, pH 7.4). Left atria were cut off and stored in Tyrode solution for 30 min to recover from preparation. Afterwards, atria were transferred into the recording solution (DMEM without serum, bubbled with 5% CO₂ and 95% O₂ at 37°C; concentrations of inorganic salts in mmol/l: CaCl₂ 1.8, MgSO₄ 0.8, KCl 5.3, NaHCO₃ 44, NaCl 110, NaH₂PO₄ 0.9; Gibco/Invitrogen, San Diego, USA). Before measurements were carried out, atria were superfused by the recording solution for at least 30 min to ensure steady-state conditions. Intracellular action potential (AP) recordings were performed at 37 °C with sharp glass electrodes (15-40 MΩ when filled with 3 mol/l KCl) made of borosilicate glass capillaries (World Precision Instrument, Sarasota, USA) as described before [18]. 4 to 10 APs were recorded from each preparation. A stimulation frequency of 2 Hz was applied with a SD9 square pulse stimulator (Grass Technologies, West Warwick, USA), using a unipolar custom made stimulation electrode. Signals were amplified with a SEC-10LX amplifier (npi electronic, Tamm, Germany) and acquired with the Pulse software (HEKA, Lambrecht/Pfalz, Germany). Data were analyzed offline with the Mini Analysis program (Synaptosoft, Fort Lee, USA).

Western Blot

Total proteins were isolated from left atria of each animal of the four studied groups (see above) and Western blot analysis was performed as prescribed previously [19]. The samples were subjected to 10% SDS-polyacrylamide gel electrophoresis (PAGE) (Hoefer Scientific Instruments), transferred to nitrocellulose membrane (Bio-Rad Laboratories), and blocked in 5% milk. Primary antibodies were incubated overnight at 4°C in buffer according to the manufacturer’s instructions followed by an anti-rabbit α-peroxidase secondary antibody (Sigma Aldrich) to allow visualization by chemiluminescence (Lumi-Light Western blotting Substrate, Roche Diagnostics) on a X-ray film (Curix, AGFA Healthcare), Antibodies: Anti-Kir2.1, Anti-Kir2.3 and Anti-Kv1.5 (Alomone) at dilutions of 1:200. GAPDH (1:6000) (Abcam) was used as control for protein loading.

Histology

Left atrial tissue was fixed in a solution of 4 % buffered formalin for 24 hours, embedded in paraffin and sectioned at a thickness of 5 µm. Sections were deparaffinised in xylol and a descending alcohol sequence and brought into distilled water. Subsequently, the slices were exposed to a Picro-sirius red solution for one hour. Tissue sections were then washed in acetic acid for 10 min. Slices were dehydrogenated in an ascending alcohol sequence and xylol. In the end the slices were embedded in a mounting medium (Entellan). Three images were analyzed per animal with Adobe Photoshop 7.0. The reader was blinded to group assignment.

Statistics

Data are presented as means ± SEM. One-way ANOVA and Newman-Keuls Post-hoc test were applied to identify significant effects. P < 0.05 was considered significant.

Results

Blood pressure and cardiac hypertrophy

Systolic blood pressure was measured on day 28 in all groups to evaluate the role of pressure overload for the expected alterations. Aldosterone treatment did not induce a significant increase in the systolic blood pressure (CON 129±5 mmHg, ALD 134±10 mmHg, ALD+SPI 132±2 mmHg, SPI 139±7 mmHg, p>0.05). Despite the lack of blood pressure increase by aldosterone, there was significant myocardial hypertrophy in the aldosterone group (heart weight/tibia length: CON 0.34±0.01 g/cm vs. ALD 0.38±0.004 g/cm, p<0.05). Spironolactone prevented aldosterone-induced hypertrophy (ALD+SPI 0.32±0.006 g/cm, p<0.05 vs ALD). Spironolactone alone was without influence on the ratio...
of heart weight to tibia length (SPI 0.33±0.008 g/cm, p>0.05 vs CON)

Atrial fibrillation

AF was repeatedly (three times) induced in all animals of each group as described in the method section. Figure 1 shows typical transesophageal and surface electrogram recordings during sinus rhythm and after induction of AF. In rats treated with aldosterone the time until spontaneous conversion into sinus rhythm was more than doubled (85.8±13.4s vs. 38.3±6.9s, p<0.01, Fig. 2) compared to control animals. Rats additionally treated with spironolactone showed AF duration not different from the control group (43.4±4.8s, p>0.05 vs. ALD). Spironolactone itself had no significant effect on the AF time.

Action potential recordings

Measurements of left atrial action potentials (AP) revealed stable and similar resting membrane potentials and amplitudes in all groups (Table 1 and Fig. 3). The repolarisation was dominated by the characteristic fast phase 1 with an APD$_{50}$ of 13.8±2.5 ms and an APD$_{90}$ of 31.2±1.9 ms in control rats. Animals treated with aldosterone showed a significant reduction in APD$_{50}$ (26.2±1.1 ms, p<0.05 vs. CON), while the APD$_{50}$ was not significantly altered. The combined exposure of aldosterone and the aldosterone antagonist spironolactone prevented the reduction in APD$_{90}$ (32.0±1.5 ms, p>0.05 vs. CON). Spironolactone itself did not influence any parameter of the recorded APs in a significant manner.

Altered ion channel expression

To address the changes on a cellular level which might be responsible for the extended AF time and the shortening of the APs we focused on the expression of potassium channels that are involved in the repolarisation phase of the AP. The protein expression of Kir2.1, a subunit of the inward rectifier potassium channel I_{K1}, was significantly increased in animals which received aldosterone compared to control animals (Fig. 4). The aldosterone antagonist spironolactone was able to prevent the increase in the expression of Kir2.1. Moreover, Kir2.3 which also contributes to I_{K1} in atrial tissue tended to be increased in the presence of aldosterone in a spironolactone sensitive manner. However, these differences did not reach statistical significance (Fig. 5). I_{Kur}, the ultra-rapid activating delayed rectifier potassium current is carried by Kv1.5 channel subunits, which were significantly up-regulated in aldosterone treated animals.

Table 1

	APD$_{50}$ (ms)	APD$_{90}$ (ms)
CON	13.76±0.57	31.22±1.91
ALD	12.32±1.03	26.24±1.15*
ALD + SPI	11.66±0.73	32.03±1.45
SPI	12.11±1.08	29.87±2.60

* p<0.05 vs CON.

Fig. 3. Overlay of normalized typical intracellular left atrial action potential recordings. Aldosterone treatment reduced action potential duration, while spironolactone prevented this effect.

Fig. 4. Protein expression of Kir2.1 was significantly increased in the presence of aldosterone. Additional treatment with spironolactone prevented the increase in protein expression. Quantified band densities are depicted in the upper panel after normalization to the internal standard GAPDH and to CON. The lower panel depicts compiled representative Western blots of Kir2.1 and the loading control GAPDH. * p<0.05 vs CON. * p<0.05 vs ALD.
Rats treated with aldosterone and spironolactone had Kv1.5 protein expression levels similar to control rats.

Structural remodeling

We next evaluated tissue fibrosis. The Figure 7 shows representative photomicrographs of Picrosirius red–stained left atrial sections from the studied groups. A significant increase in interstitial collagen deposition could be observed in rats treated with aldosterone. Additional application of spironolactone prevented the increase in collagen content significantly.

Discussion

The major findings of the present study are as follows: (1) Longterm aldosterone treatment leads to an increased duration of AF induced by transesophageal burst pacing in rats which is sensitive to spironolactone. (2) Shortening of the AP due to the increased expression of repolarising potassium currents and fibrosis of the atrial tissue likely contribute to the stabilization of AF in the presence of aldosterone.

In the multiple re-entry theory, the stability of AF is determined by the number of wavelets in the atria [20]. The wavelength depends on the refractory period and the conduction velocity [21]. Therefore, the shorter the wavelength, the more wavelets in the atria, and thus AF will be more stable [20]. Consequently, the abbreviation
of the action potential and the shortening of the atrial refractory period observed in AF increase the stability of AF itself. Therefore the observation that the action potentials are abbreviated after treatment with aldosterone suffices to explain the increased duration of AF induced by burst pacing.

Potassium channel mutations underlying familial AF are predominantly characterized by gain of function changes and are usually predicted to promote repolarisation, shorten the atrial action potential, and facilitate re-entry [22]. Gain of function mutations of Kir2.1, encoding for the inward rectifier potassium current I_{K1}, have been shown to be associated with AF in simulation studies, [23] in a mouse model [24] and in humans [25]. I_{K1} dominates the late repolarisation of the action potential and has been shown to be increased in patients with AF and in animal models [14, 15, 26] due to an upregulation of Kir2.1 on mRNA [26] and protein level [26]. Therefore a contribution of aldosterone-mediated increase in protein expression of Kir2.1 to the observed action potential shortening in the studied rat model seems at least likely.

$Kv1.5$ is encoding for I_{Kur}, the ultrarapid potassium outward current. The data regarding I_{Kur} in human AF subjects are inconsistent with no change [14] or decreases in current, [15] $Kv1.5$ subunit mRNA [27] or protein expression reported [15, 16]. The influence of I_{Kur} on the duration of the action potential is difficult to predict, since it depends on the level of electrical remodelling [28]. In a right atrial tissue from patients with sinus rhythm inhibition of I_{Kur} results in a shortening of the AP, while in atrial tissue from patients with AF the action potential is prolonged [28]. Transgenic mouse ventricular myocytes with overexpression of a truncated K⁺-channel ($Kv1DN$) show a prolonged action potential which could be abbreviated by injection of adenoviral vectors expressing wild type $Kv1.5$ into the myocardium [29]. Similar observations have been made in cultured rat neonatal ventricular myocytes where overexpression of $Kv1.5$ also resulted in action potential abbreviation [30]. In contrast to our model APD_{50} and APD_{90} were reduced. The discrepancy might be explained by differences in the magnitude of $Kv1.5$ overexpression or differences in the composition of ion currents underlying the action potential in cultured neonatal ventricular myocytes and adult atrial tissue. In a rat model of rapid pacing an enhanced atrial mRNA expression of $Kv1.5$ correlated with a shortening of APD_{90} [31]. Thus, most lines of evidence suggest that upregulation of $Kv1.5$ protein contributed to the action potential shortening in our rats treated with aldosterone.

Recent evidence indicates that aldosterone has both rapid non-genomic and slow genomic effects [32]. Multiple signalling pathways have been shown to be activated by aldosterone including the mitogen-activated protein kinases [33], diacylglycerol and inositol-1,4,5-triphosphate [34], different subtypes of protein kinase C [34], calcineurin [35], serum- and glucocorticoid-induced kinase 1 (SGK1) [36] and cAMP [37]. The detailed mechanisms by which aldosterone influences ion channel expression have not been elucidated yet. Expression levels could either be influenced by genomic actions mediated by the intracellular mineralocorticoid receptor or by the intracellular signalling pathways listed above.

The 5'-non-coding region of the $Kv1.5$ gene contains a cAMP response element and a cAMP dependent upregulation of the $Kv1.5$ transcript could be demonstrated in cardiac cells [38] suggesting a possible mechanism for the upregulation of $Kv1.5$ by aldosterone. Alternatively SGK1 might be involved in the increased abundance of $Kv1.5$ protein since inhibition of the Nedd4-4 ubiquitination pathway by SGK1 leads to stabilization of $Kv1.5$ in the plasma membrane [39]. Ras and the mitogen-activated protein kinase (MAPK) pathways have been described to be involved in the regulation of Kir2.1 expression by affecting the subcellular localization of the channel [40].

Conclusions

Aldosterone has been shown to exert deleterious cardiac effects in various experimental and clinical settings [6, 41]. Particularly, the structural remodelling of the atria during AF fibrillation has convincingly been shown to be sensitive to the mineralocorticoid receptor antagonist spironolactone [42]. The results of the present study now extend these previous observations supporting the notion that in addition to the structural remodelling aldosterone promotes AF by electrical remodelling, i.e. by altering repolarising potassium currents leading to action potential shortening.

Acknowledgements

This work was supported by the Hans und Gertie Fischer Stiftung and by „Köln Fortune“.
Aldosterone and Atrial Fibrillation

References

1. Shin H, Hashizume K, Iino Y, Koizumi K, Matyoshi T, Yozu R: Effects of atrial fibrillation on coronary artery bypass graft flow. Eur J Cardiothorac Surg 2003;23:175-178.

2. Schneider MP, Hua TA, Böhm M, Wachtell K, Kjeldsen SE, Schneider RE: Prevention of atrial fibrillation by Renin-Angiotensin system inhibition a meta-analysis. J Am Coll Cardiol 2010;55:2290-2307.

3. Goette A: ANTIPAF: Angiotensin II-antagonist in paroxysmal atrial fibrillation trial. Eur Heart J 2010;31 (S 1).

4. Struthers AD: Aldosterone escape during ACE inhibitor therapy in chronic heart failure. Eur Heart J 1995;16 Suppl N:103-106.

5. Sun Y, Ramires FJ, Weber KT: Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovasc Res 1997;35:138-147.

6. Milizie P, Girend R, Plouin PF, Blacher J, Safar ME, Mourad JJ: Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 2005;45:1243-1248.

7. Goette A, Hoffmannans P, Enayati W, Mellendorf U, Geller JC, Klein HU: Effect of successful electrical cardioversion on serum aldosterone in patients with persistent atrial fibrillation. Am J Cardiol 2001;88:906-9, A8.

8. Dixen U, Ravn L, Soeby-Rasmussen C, Paulsen AW, Parner J, Frandsen E, Jensen GB: Raised plasma aldosterone and natriuretic peptides in atrial fibrillation. Cardiology 2007;108:35-39.

9. Tsai CT, Chiang FT, Tseng CD, Hwang JJ, Kuo KT, Wu CK, Yu CC, Wang YC, Lai LP, Lin JL: Increased expression of mineralocorticoid receptor in human atrial fibrillation and a cellular model of atrial fibrillation. J Am Coll Cardiol 2010;55:758-770.

10. Reil JC, Hohl M, Selejan S, Lipp P, Drautz F, Kazakow A, Munz BM, Muller P, Steeneldik P, Reil GH, Allessie MA, Bohm M, Neuberger HR: Aldosterone promotes atrial fibrillation. Eur J Heart J 2011; in press.

11. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S: Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 1997;81:512-525.

12. Van Wagoner DR: Molecular basis of atrial fibrillation: a dream or a reality? J Cardiovasc Electrophysiol 2003;14:667-669.

13. Zhang H, Garratt CJ, Zhu J, Holden AV: Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans. Cardiovasc Res 2005;66:493-502.

14. Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kuhlkamp V: Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 1999;44:121-131.

15. Van Wagoner DR, Pond AL, McCarthy PM, Trimner JS, Nordenbe JM: Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res 1997;80:772-781.

16. Brundel BJ, Van Gelder JC, Henning RH, Tieleman RG, Tuinenburg AE, Wietzes M, Grandjean JC, van Gilst WH, Crijs HJ: Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation 2001;103:684-690.

17. Sugiyama A, Takahara A, Honsho S, Nakamura Y, Hashimoto K: A simple in vivo atrial fibrillation model of rat induced by transesophageal atrial burst pacing. J Pharmacol Sci 2005;98:315-318.

18. Halbach V, Pilkkefam F, Brockmeier K, Heschler J, Muller-Ehnsen J, Reppel M: Ventricular slices of adult mouse hearts—a new multicellular in vitro model for electrophysiological studies. Cell Physiology Biochem 2006;18:1-8.

19. Diedrichs H, Mei C, Frank KR, Boelck B, Schwinger RH: Calcineurin independent development of myocardial hypertrophy in transgenic rats overexpressing the mouse renin gene, TGR(mREN2)27. J Mol Med 2004;82:688-695.

20. Moe GK, Rheinboldt WC, Abildskov JA: A computer model of atrial fibrillation. Am Heart J 1964;67:200-220.

21. Rensma PL, Allessie MA, Lammers WJ, Lubbers RT, Bonke FI, Schalij MJ: Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ Res 1988;62:395-410.

22. Lubitz SA, Ozcan C, Magnani JW, Kaab S, Benjamin EJ, Ellinor PT: Genetics of atrial fibrillation: implications for future research directions and personalized medicine. Circ Arrhythm Electrophysiol 2010;3:291-299.

23. Karche S, Garratt CJ, Boyett MR, Inada S, Holden AV, Hanoce JC, Zhang H: Atrial proarrrhythmia due to increased inward rectifier current (I(K1)) arising from KCNJ2 mutation—a simulation study. Prog Biophys Mol Biol 2008;98:186-197.

24. Li J, McLeirie M, Lopatin AN: Transgenic upregulation of IK1 in the mouse heart leads to multiple abnormalities of cardiac excitability. Am J Physiol Heart Circ Physiol 2004;287:H2790-H2802.

25. Xia M, Jin Q, Bendahhou S, He Y, Laroque MM, Chen Y, Zhou Q, Yang Y, Liu Y, Liu B, Zhu Q, Zhou Y, Lin J, Liang B, Li L, Dong X, Pan Z, Wang R, Wan H, Qiu W, Xu W, Eurlings P, Barhanin J, Chen Y: A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun 2005;332:1012-1019.

26. Gaborit N, Steenman M, Lamirault G, Le Meur N, Le Bouter S, Lande G, Leger J, Charpentier F, Christ T, Dobrev D, Escande D, Nattel S, Demolombe S: Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation 2005;112:471-481.

27. Lai LP, Su MJ, Lin JL, Lin FY, Tsai CH, Chen YS, Huang SK, Tseng YZ, Lien WP: Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca2+-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, calsequestrin and phospholamban: an insight into the mechanism of atrial electrical remodeling. J Am Coll Cardiol 1999;33:1231-1237.

28. Wettwer E, Hala O, Christ T, Heubach JF, Dobrev D, Knaut M, Varro A, Ravens U: Role of IKur in controlling action potential shape and contractility in the human atrium: influence of chronic atrial fibrillation. Circulation 2004;110:2299-2306.

29. Brunner M, Kodirov SA, Mitchell GF, Buckett PD, Shibata K, Folco EJ, Baker L, Salama G, Chan DP, Zhou J, Koren G: In vivo gene transfer of Kv1.5 normalizes action potential duration and shortens QT interval in mice with long QT phenotype. Am J Physiol Heart Circ Physiol 2003;285:H194-H203.

30. Tanabe Y, Hatake K, Naito N, Aizawa Y, Ichinushi M, Nawa H, Aizawa Y: Overexpression of Kv1.5 in rat cardiomyocytes extremely shortens the duration of the action potential and causes rapid excitation. Biochem Biophys Res Commun 2006;345:1116-1121.

31. Yamashita T, Murakawa Y, Hayami N, Fukui E, Kasaoka Y, Inoue M, Omata M: Short-term effects of rapid pacing on mRNA level of voltage-dependent K+ channels in rat atrium: electrical remodeling in paroxysmal atrial tachycardia. Circulation 2000;101:2007-2014.

32. Funder JW, Pearce PT, Smith R, Smith P: Renin, aldosterone and atrial fibrillation. Cell Physiol Biochem 2012;29:833-840

839
Goette A, Staack T, Rocken C, Arndt M, Geller JC, Huth C, Ansorge S, Klein HU, Lendeckel U: Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol 2000;35:1669-1677.

Christ M, Meyer C, Sippel K, Wehling M: Rapid aldosterone signaling in vascular smooth muscle cells: involvement of phospholipase C, diacylglycerol and protein kinase C alpha. Biochem Biophys Res Commun 1995;213:123-129.

Mano A, Tatsumi T, Shiraishi J, Keira N, Nomura T, Takeda M, Nishikawa S, Yamanaka S, Matoba S, Kobara M, Tanaka H, Shirayama T, Takamatsu T, Nozawa Y, Matsubara H: Aldosterone directly induces myocyte apoptosis through calcineurin-dependent pathways. Circulation 2004;110:317-323.

Lister K, Autelitano DJ, Jenkins A, Hannan RD, Sheppard KE: Cross talk between corticosteroids and alpha-adrenergic signalling augments cardiomyocyte hypertrophy: a possible role for SGK1. Cardiovasc Res 2006;70:555-565.

Christ M, Gunther A, Heck M, Schmidt BM, Falkenstein E, Wehling M: Aldosterone, not estradiol, is the physiological agonist for rapid increases in cAMP in vascular smooth muscle cells. Circulation 1999;99:1485-1491.

Mori Y, Matsubara H, Folco E, Siegel A, Koren G: The transcription of a mammalian voltage-gated potassium channel is regulated by cAMP in a cell-specific manner. J Biol Chem 1993;268:26482-26493.

Boehmer C, Lauder J, Jeyaraj S, Klaus F, Lindner R, Lang F, Palmada M: Modulation of the voltage-gated potassium channel Kv1.5 by the SGK1 protein kinase involves inhibition of channel ubiquitination. Cell Physiol Biochem 2008;22:591-600.

Giovannardi S, Forlani G, Balestrini M, Bossi E, Tonini R, Sturani E, Peres A, Zippel R: Modulation of the inward rectifier potassium channel IRK1 by the Ras signaling pathway. J Biol Chem 2002;277:12158-12163.

Milliez P, Deangelis N, Rucker-Martin C, Leenhardt A, Vicaut E, Robidel E, Beaufils P, Delcayre C, Hatem SN: Spironolactone reduces fibrosis of dilated atria during heart failure in rats with myocardial infarction. Eur Heart J 2005;26:2193-2199.

Zhao J, Li J, Li W, Li Y, Shan H, Gong Y, Yang B: Effects of spironolactone on atrial structural remodelling in a canine model of atrial fibrillation produced by prolonged atrial pacing. Br J Pharmacol 2010;159:1584-1594.