Supporting Information available for:

The behavior of the Aluminum Trimer when Combining with Different Superatom Clusters

Hui Yanga,b, Di Wua, Hui-Min Hea, Dan Yua, Ying Li*a, Zhi-Ru Lia

a Institute of Theoretical Chemistry, Jilin University, Changchun 130023, (P. R. China) E-mail: liyingedu@jlu.edu.cn

b School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, (P. R. China)
1. Figures and Tables

Figure S1. The valence molecular orbitals of IIIs, which originates from (a) Al₃⁻ and (b) FLi₂⁺ subunits, respectively.
Figure S2. Optimized structures of the Al$_3$-BF$_4$ (4ps) and Al$_3$-NLi$_4$ (IV-24) compounds at the MP2/6-311+G(3df) level in solvent and gas phase, respectively. Bond lengths (Å) and Laplacian of the electron density at a bond critical point $\nabla^2 \rho(r)$ (in au., bold font) that connects Al$_3$ and BF$_4$/NLi$_4$ subunits.
Figure S3. The characteristic vibration mode of the (a) Al$_3$-BF$_4$ (4ps) and (b) Al$_3$-NLi$_4$ (IV-24) compounds in solvents and gas phase, respectively.
Figure S4. Valence molecular orbitals of Al$_3^{+}$ and Al$_3^{-}$ ions.
Table S1. The hardness (η, in eV) of the most stable Al$_3$-X and Al$_3$-M compounds.

species	η	
Al$_3$-F	1pp	2.532
Al$_3$-LiF$_2$	2ps-1	2.472
Al$_3$-BeF$_3$	3ps-1	2.561
Al$_3$-BF$_4$	4ps	2.569
Al$_3$-Li	1fp	2.513
Al$_3$-LiF$_2$	IIfs	2.436
Al$_3$-OLi$_3$	III24-1	2.004
Al$_3$-NLi$_4$	IV24	1.959
Table S2. Relative energies E_{rel} (kcal/mol), the lowest vibrational frequency ν_1 (cm$^{-1}$), the characteristic vibrational frequency ν (cm$^{-1}$) and corresponding IR intensity (km/mol), NBO charge on the Al$_3$ subunit (Q^{Al3}, |e|), HOMO-LUMO gaps (eV), binding energy per atom E_a (kcal/mol), bond energies E_b (kcal/mol), and the maximum negative NICS values (NICS$_{\text{max}}$, ppm) of the 4ps and IV-24 compounds.

Species	solvent	orientation	ν_1	ν	intensity	Q^{Al3}	gap	E_a	E_b	NICS$_{\text{max}}$
Al$_3$-BF$_4$ 4ps	ethanol	point-to-side	20	1092.7	924.4	0.768	6.02	86.5	168.1	-30.0
	cyclohexane	point-to-side	27	1108.6	805.0	0.762	5.79	86.7	167.0	-30.4
	gap-phase	point-to-side	38	1121.4	711.2	0.757	5.68	86.9	166.4	-40.3
Al$_3$-NLi$_4$ IV-24	ethanol	side-to-face	101	636.5	1717.2	-0.559	4.65	60.9	176.0	-24.0
	cyclohexane	side-to-face	78	592.5	825.0	-0.737	4.35	55.0	116.0	-24.9
	gap-phase	side-to-face	24	646.9	208.0	-0.361	4.11	54.1	94.7	-28.5
species	Location									
---------------	---									
Al\textsubscript{3}-F	1pp, geometric center of the Al\textsubscript{3} ring									
	1sp, geometric center of the Al\textsubscript{3} ring									
Al\textsubscript{3}-LiF\textsubscript{2}	2ps-1, geometric center of the Al\textsubscript{3} ring									
	2ss, geometric center of the Al\textsubscript{3} ring									
Al\textsubscript{3}-BeF\textsubscript{3}	3ps-1, geometric center of the Al\textsubscript{3} ring									
	3ps-2, geometric center of the Al\textsubscript{3} ring									
	3ss, geometric center of the Al\textsubscript{3} ring									
	3ff, 0.6 Å below (toward BeF\textsubscript{3} subunit) the geometric center of the Al\textsubscript{3} ring									
Al\textsubscript{3}-BF\textsubscript{4}	4ps, geometric center of the Al\textsubscript{3} ring									
	4ff, 0.3 Å below (toward BF\textsubscript{4} subunit) the geometric center of the Al\textsubscript{3} ring									
species	Location									
------------	--									
Al$_3$-Li	Ifp: geometrical center of the Al$_3$ ring									
	Ipp: geometrical center of the Al$_3$ ring									
Al$_3$-FLi$_2$	IIfs: 0.3 Å up (away from FLi$_2$ subunit) the geometrical center of the Al$_3$ ring									
	IIss: geometrical center of the Al$_3$ Li$_2$ cage									
Al$_3$-OLi$_3$	III24-1: geometrical center of the Al$_3$ ring									
	III24-2: geometrical center of the Al$_3$ Li$_2$ cage									
	IIIfs: 0.3 Å up (away from OLi$_3$ subunit) the geometrical center of the Al$_3$ ring									
Al$_3$-NLi$_4$	IV24: geometrical center of the Al$_3$ ring									
	IVfs: geometrical center of the Al$_3$ ring									
2. Cartesian coordinates and electronic states for the Al$_3$-X and Al$_3$-M compounds at the MP2/6-311+G(3df) level

(1) Al$_3$-X compounds

Al$_3$-F $1pp$ with C_{2v} symmetry, 1-A1

	x	y	z
Al	0.0000000	0.0000000	0.0000000
Al	0.0000000	0.0000000	2.5582160
Al	2.1250040	0.0000000	1.4243700
F	-0.7844840	0.0000000	-1.4702440

Al$_3$-F $1sp$ with C_{2v} symmetry, 1-A1

	x	y	z
Al	0.0000000	1.3741690	-0.3461510
Al	0.0000000	-1.3741690	-0.3461510
Al	0.0000000	0.0000000	1.8291630
F	0.0000000	0.0000000	-1.6421340

Al$_3$-LiF$_2$ $2ps$-1 with C_{2v} symmetry, 1-A1

	x	y	z
Al	0.0000000	0.0000000	0.0000000
Al	0.0000000	0.0000000	2.3929200
Al	2.3088880	0.0000000	1.1964600
Li	4.9379680	0.0000000	1.1964600
F	3.6380440	0.0000000	-0.0222420
F	3.6380440	0.0000000	2.4151620

Al$_3$-LiF$_2$ $2ss$ with C_{2v} symmetry, 1-A’

	x	y	z
Al	0.0000000	0.0000000	0.0000000
Al	0.0000000	0.0000000	2.5191230
Al	2.1897600	0.0000000	1.2737760
F	0.5481100	0.0000000	-1.7077000
F	3.4032120	0.0000000	-0.0469120
Li	2.3786360	0.0000000	-1.5700880
Al₃-LiF₂ 2ps-2 with Cᵥ symmetry, 1-A'

Al	0.00000000	0.00000000	0.00000000
Al	0.00000000	0.00000000	3.19113300
Al	2.12356700	0.00000000	1.80171000
Li	-2.13782600	0.00000000	4.68895500
F	-1.06499400	-1.23265400	3.94468400
F	-1.06499400	1.23265400	3.94468400

Al₃-BeF₃ 3ps-1 with Cᵥ symmetry, 1-A1

Al	0.00000000	0.00000000	0.00000000
Al	0.00000000	0.00000000	2.56747500
Al	2.12578200	0.00000000	1.12769100
F	-1.84718500	0.00000000	6.04955800
Be	-1.19474100	0.00000000	4.81965100
F	-1.70956200	0.00000000	3.35620800
F	0.30564100	0.00000000	4.42523900

Al₃-BeF₃ 3ps-2 with Cᵥ symmetry, 1-A1

Al	0.00000000	0.00000000	0.19960600
Al	0.00000000	1.20007000	2.45598600
Al	0.00000000	-1.2000700	2.45598600
F	0.00000000	0.00000000	-3.74389600
F	-1.13689300	0.00000000	-1.29700600
Be	0.00000000	0.00000000	-2.35233600
F	1.13689300	0.00000000	-1.29700600

Al₃-BeF₃ 3ss with Cᵥ symmetry, 1-A1

Al	0.00000000	0.00000000	0.00000000
Al	0.00000000	0.00000000	2.59820300
Element	X	Y	Z
---------	--------	--------	--------
Al	2.2179	0.0000	1.3533
F	3.1445	0.0000	3.0165
F	0.9370	0.0000	4.2554
Be	2.4714	0.0000	4.4032
F	3.1538	0.0000	5.6190

Al₃-BeF₃ with C_{3v} symmetry, 1-A1

Element	X	Y	Z
Al	0.0000	0.0000	0.0000
Al	0.0000	0.0000	2.7704
Al	2.3993	0.0000	1.3852
F	2.3346	1.9715	1.3852
F	0.0323	1.9715	2.7144
F	0.0323	1.9715	0.0559
Be	0.7998	1.8692	1.3852

Al₃-BF₄ with C_{2v} symmetry, 1-A1

Element	X	Y	Z
Al	0.0000	0.0000	0.0000
Al	0.0000	0.0000	2.5589
Al	2.1255	0.0000	1.1340
F	-1.5319	1.1483	5.4302
B	-1.2184	0.0000	4.8426
F	-1.5319	-1.1483	5.4302
F	0.2397	0.0000	4.4465
F	-1.7013	0.0000	3.4109

Al₃-BF₄ with C_{3v} symmetry, 1-A1

Element	X	Y	Z
Al	0.0000	0.0000	0.0000
Al	0.0000	0.0000	2.7249
Al	2.3598	0.0000	1.3625
F	0.1233	2.1096	2.5113
(2) Al$_3$-M compounds

Al$_3$-Li Ifp with C_3v symmetry, 1-A1

Atom	X	Y	Z
Al	0.0000000	1.4505380	-0.1755850
Al	1.2562020	-0.7252690	-0.1755850
Al	-1.2562020	-0.7252690	-0.1755850
Li	0.0000000	0.0000000	2.2826080
Element	X (Angstroms)	Y (Angstroms)	Z (Angstroms)
---------	---------------	---------------	---------------
Li	-2.78773800	1.57294200	0.00000000
F	-1.44578800	2.61662000	0.00000000

Al	extsubscript{3}FLi	extsubscript{2}I	extsubscript{I}ss with C	extsubscript{s} symmetry, 1-A'

Element	X (Angstroms)	Y (Angstroms)	Z (Angstroms)
Al	0.72620800	-1.62626800	0.00000000
Al	2.71799700	0.11200100	0.00000000
Al	-1.79995000	-1.04826500	0.00000000
Li	0.00000000	1.68150100	0.00000000
Li	-2.78773800	1.57294200	0.00000000
F	-1.44578800	2.61662000	0.00000000

Al	extsubscript{3}OLi	extsubscript{3}III	extsubscript{2}4-1 with C	extsubscript{1} symmetry, 1-A

Element	X (Angstroms)	Y (Angstroms)	Z (Angstroms)
Al	-0.48540100	-0.55831800	-0.63292500
Al	1.13278300	1.36171400	-0.08674900
Al	1.83172900	-1.02077800	0.19311500
Li	-0.73431700	0.18079300	1.77249500
Li	-1.72533200	1.85807200	-0.23136900
Li	-3.07418300	-1.28452300	0.07959800
O	-1.95336800	0.07036700	0.24788700

Al	extsubscript{3}OLi	extsubscript{3}III	extsubscript{2}4-2 with C	extsubscript{s} symmetry, 1-A'

Element	X (Angstroms)	Y (Angstroms)	Z (Angstroms)
Al	1.49055400	-0.91016900	0.00000000
Al	0.63650500	1.45484900	0.00000000
Al	-0.49670400	-2.34871300	0.00000000
Li	-1.17898900	0.13187000	1.26390400
Li	-1.17898900	0.13187000	-1.26390400
Li	-1.56292300	3.28946700	0.00000000
O	-1.17898900	1.59910000	0.00000000

Al	extsubscript{3}OLi	extsubscript{3}III	extsubscript{fs} with C	extsubscript{s} symmetry, 1-A'

Element	X (Angstroms)	Y (Angstroms)	Z (Angstroms)
Al	-2.78773800	1.57294200	0.00000000
F	-1.44578800	2.61662000	0.00000000
Element	X	Y	Z
---------	---	---	---
Al	0.0000000	0.0000000	0.0000000
Al	0.0000000	0.0000000	2.4282060
Al	2.2480860	0.0000000	1.2141030
Li	0.9122600	2.7183610	1.2141030
Li	3.4989040	2.5804290	1.2141030
O	2.2833240	3.8149030	1.2141030
Li	2.2964560	5.4855960	1.2141030

Al₃-NLi₄ IV²⁴ with C₃ symmetry, 1-A'

Element	X	Y	Z
Al	0.0000000	0.0000000	0.0000000
Al	0.0000000	0.0000000	2.6158690
Al	2.2225200	0.0000000	1.3491620
Li	4.4130800	0.0000000	3.0943590
N	2.5614960	0.0000000	3.2545520
Li	1.7070680	0.0000000	4.9790670
Li	1.8839690	-1.9160900	3.0169820
Li	1.8839690	1.9160900	3.0169820

Al₃-NLi₄ IV⁰ with C₃ symmetry, 1-A'

Element	X	Y	Z
N	-0.1717350	2.8284930	0.0000000
Li	-0.9426080	1.1380640	0.0000000
Li	-0.5918320	3.7024040	1.5140040
Li	1.5551730	2.1971350	0.0000000
Li	-0.5918320	3.7024040	-1.5140040
Al	-0.5918320	-1.6799740	-1.2151310
Al	-0.5918320	-1.6799740	1.2151310
Al	1.4079280	-0.6415500	0.0000000

(3) Al₃-BF₄ (⁴ps) and Al₃-NLi₄ (IV²⁴) compounds in solvents

Al₃-BF₄ ⁴ps with C₂ᵥ symmetry in ethanol solvent, 1-A1
Atoms	X	Y	Z
Al	0.00000000	1.21188100	2.77884600
Al	0.00000000	0.00000000	0.52215500
Al	0.00000000	-1.21188100	2.77884600
F	-1.14520700	0.00000000	-2.75877500
B	0.00000000	0.00000000	-2.07192100
F	1.14520700	0.00000000	-2.75877500
F	0.00000000	-1.09783600	-1.05669200
F	0.00000000	1.09783600	-1.05669200

Al\textsubscript{3}-BF\textsubscript{4} 4ps with C\textsubscript{2v} symmetry in cyclohexane solvent, 1-A1

Atoms	X	Y	Z
Al	0.00000000	1.20776800	2.77085300
Al	0.00000000	0.00000000	0.51420700
Al	0.00000000	-1.20776800	2.77085300
F	-1.14674100	0.00000000	-2.75048100
B	0.00000000	0.00000000	-2.07561000
F	1.14674100	0.00000000	-2.75048100
F	0.00000000	-1.09908500	-1.04667600
F	0.00000000	1.09908500	-1.04667600

Al\textsubscript{3}-NLi\textsubscript{4} IV24 with C\textsubscript{s} symmetry in ethanol solvent, 1-A’

Atoms	X	Y	Z
Al	-0.16960200	2.38817100	0.00000000
Al	0.03636800	0.15948800	1.25057800
Al	0.03636800	0.15948800	-1.25057800
Li	0.03636800	-2.79792700	-1.40915300
N	0.09216700	-1.35276200	0.00000000
Li	0.03636800	-2.79792700	1.40915300
Li	-2.04909900	-1.47314700	0.00000000
Li	2.18105700	-1.50552200	0.00000000

Al\textsubscript{3}-NLi\textsubscript{4} IV24 with C\textsubscript{s} symmetry in cyclohexane solvent, 1-A’
Element	X	Y	Z
Al	-0.2150	2.3403	0.0000
Al	0.0537	0.0862	1.2596
Al	0.0537	0.0862	-1.2596
Li	0.0537	-2.6453	-1.5891
N	0.1096	-1.5651	0.0000
Li	0.0537	-2.6453	1.5891
Li	-2.0373	-0.9357	0.0000
Li	2.1403	-1.0104	0.0000