Towards a new approach for fast diagnosis of tuberculosis using gas chromatography-mass spectrometry
Dang, T.N.A.

Citation for published version (APA):
Dang, N. A. T. (2014). Towards a new approach for fast diagnosis of tuberculosis using gas chromatography-mass spectrometry

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Towards a new approach for fast diagnosis of tuberculosis using gas chromatography-mass spectrometry

Ngoc A Dang
Towards a new approach for fast diagnosis of tuberculosis using gas chromatography-mass spectrometry
Towards a new approach for fast diagnosis of tuberculosis using gas chromatography-mass spectrometry

PhD thesis, University of Amsterdam, The Netherlands

This work was financially supported by the UBS Optimus Foundation and NanoNext NL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners.

Author: Ngoc A Thi Dang
ISBN: 978-94-6203-668-0
Towards a new approach for fast diagnosis of tuberculosis using gas chromatography-mass spectrometry

ACADEMISH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof.dr. D.C. van den Boom
ten overstaan van een door het college voor promoties
ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op woensdag 22 Oktober 2014, te 14:00 uur

door

Ngoc A Thi Dang

geboren te PhuYen, Vietnam
Promotiecommissie

Promotor: Prof.dr.ir. J.G.M. Janssen
Promotor: Prof.dr.ir. P.J. Schoenmakers
Copromotor: Dr. A.H.J. Kolk

Overige leden: Prof.dr. F.G.J. Cobelens
Dr. G. Vivó-Truyols
Prof.dr. T. Hankemeier
Prof.dr. H.M. Jansen
Prof.dr. A. Verbon

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Dedicated to my mom
Contents

Abbreviations

1 General Introduction
 1.1 Analytical chemistry and its role in society .. 3
 1.2 The role of chemometrics in processing complex chromatographic data 5
 1.3 Recent developments in the diagnosis of tuberculosis 6
 1.4 Scope of this thesis .. 8

2 Rapid diagnosis of tuberculosis using gas chromatography-mass spectrometry and chemometrics
 2.1 Introduction ... 17
 2.2 Methods in current use for the diagnosis of TB .. 18
 2.3 GC and LC for the identification of cultured mycobacteria 20
 2.4 GC for the diagnosis of tuberculosis based on known biomarkers 22
 2.4.1 Tuberculostearic acid as a biomarker .. 22
 2.4.2 Mycocerosic acids as biomarkers ... 26
 2.4.3 Hexacosanoic acid as a biomarker ... 27
 2.5 Novel biomarkers for the diagnosis of tuberculosis 28
 2.5.1 Analysis of VOCs .. 29
 2.5.2 Metabolomics and the search for new biomarkers for TB 35
 2.5.3 The use of chemometrics as an aid in the search for biomarkers 36
 2.5.4 Potential future approaches to the diagnosis of TB in the clinical situation 41
 2.6 Future perspectives .. 43
 2.7 Conclusions ... 44

3 The identification of biomarkers differentiating *Mycobacterium tuberculosis* and non-tuberculous mycobacteria via THM-GC-MS and chemometrics 55
3.1 Introduction .. 57
3.2 Materials and Methods 59
 3.2.1 Culture of mycobacteria 59
 3.2.2 Standards and reagents 60
 3.2.3 Instrumentation 60
 3.2.4 Automated THM-GC-MS procedure 61
 3.2.5 Software .. 62
3.3 Results .. 63
 3.3.1 Visual inspection of chromatograms obtained 63
 3.3.2 PLSDA modeling and model performance estimation ... 63
 3.3.3 Permutation tests 66
 3.3.4 Feature selection 66
 3.3.5 Transitioning from feature model to compound model ... 68
 3.3.6 Validation of the compound model 71
3.4 Discussion .. 71
3.5 Conclusions ... 74

4 Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using THM-GC-MS and chemometrics 81
 4.1 Introduction ... 83
 4.2 Materials and Methods 84
 4.2.1 Culture of mycobacteria 84
 4.2.2 Sample preparation for thermochemolysis GC-MS ... 85
 4.2.3 Reagents ... 86
 4.2.4 Instrumentation 86
 4.2.5 Automated THM-GC-MS procedure 86
 4.2.6 Chemometric method 87
 4.2.7 Ethical approval 88
 4.3 Results and Discussion 88
 4.4 Conclusions ... 99

5 Direct detection of Mycobacterium tuberculosis in sputum using combined solid phase extraction-gas chromatography-mass spectrometry 103
 5.1 Introduction .. 105
 5.2 Materials and Methods 107
 5.2.1 Culture of mycobacteria 107
 5.2.2 Sputum samples 107
 5.2.3 Standards and reagents 108
 5.2.4 Sample preparation for sputum specimens 108
 5.2.4.1 Decontamination of sputum specimens 108
 5.2.4.2 Hexane extraction of decontaminated sputum specimens .. 109
6 Towards a miniaturized GC-based device for detection of *Mycobacterium tuberculosis*

6.1 Introduction .. 135
6.2 Material and Methods .. 137
 6.2.1 Standards and reagents 137
 6.2.2 Experimental section 138
 6.2.2.1 Design of a miniaturized GC cartridge 138
 6.2.2.2 Design of a miniaturized PTV injector 139
 6.2.2.3 Coupling of inlet and transfer line to GC cartridge .. 140
 6.2.4 Experimental evaluation of a prototype 141
6.3 Results and Discussion .. 142
 6.3.1 GC Inlet design ... 142
 6.3.1.1 Heating Ramp Rate Effect 142
 6.3.1.2 Inlet Temperature Profile 142
 6.3.2 Separation performance of the miniaturized GC device .. 145
6.4 Risk analysis and technology assessment 148
6.5 Future strategies ... 151

7 A new approach for the rapid detection of *Mycobacterium avium subspecies paratuberculosis* in fecal samples from cows using gas chromatography-mass spectrometry analysis of specific biomarkers

7.1 Introduction .. 157
7.2 Materials and Methods .. 158
 7.2.1 Culture of mycobacteria 158
 7.2.2 Bovine fecal samples 161
 7.2.3 Reagents and Standards 161
 7.2.4 Sample preparation for thermochemolysis GC-MS 162
 7.2.4.1 Sample preparation for bacterial cultures ... 162
 7.2.4.2 Hexane/methanol/water extraction of freeze-dried MAP 162
 7.2.4.3 Preparation of bovine fecal samples 163
 7.2.4.4 Normal phase solid phase extraction 163
Complete name	Abbreviation
Tuberculosis	TB
Mycobacterial Tuberculosis	MTB
Non-tuberculous mycobacteria	NTM
Multidrug-resistant tuberculosis	MDR-TB
Human Immunodeficiency Virus	HIV
Mycobacteria Growth Indicator Tube	MGIT
Point of care	POC
Mycobacterium avium subspecies paratuberculosis	MAP
Polymerase Chain Reaction	PCR
Nucleic-acid amplification test	NAAT
Colony-Forming Unit	CFU
Oleic Acid Albumin Dextrose and Catalase	OADC
Zielh-Neelsen	ZN
Gas chromatography-Mass spectrometry	GC-MS
Liquid Chromatography	LC
Flame Ionization Detector	FID
Nuclear Magnetic Resonance	NMR
Selected Ion Monitoring	SIM
Electron Impact Ionization	EI
Chemical Ionization	CI
Total Ion Chromatogram	TIC
Thermally-assisted Hydrolysis and Methylation Gas Chromatography-Mass spectrometry	THM-GC-MS
Large Volume Injection	LVI
Standard Deviation	SD
Programmed Temperature Vaporizing	PTV
Frequency Pulsed Electron Capture-Gas	FPEC-GC
Chromatography	
Negative-Ion Chemical Ionization	NICI
Liquid-Liquid Extraction	LLE
Solid-Phase Extraction	SPE
Method	Abbreviation
---	--------------
Solid-Phase-Micro-Extraction	SPME
Stir-Bar-Sorptive-Extraction	SBSE
Comprehensive two dimensional GC	GC×GC
Multidimensional heart-cut Gas	MD-GC/GC-MS
Chromatography-Mass Spectrometry	MALDI ToF/MS
Time-of-Flight Mass Spectrometry	SIFT-MS
Selected Ion Flow Tube Mass Spectrometry	TD-GC-MS
Proton Transfer Reaction-Mass Spectrometry	PTR-MS
Tuberculostearic acid	TBSA
Hexacosanoic acid	C26
Fatty Acid Methyl Esters	FAMEs
Chloroform/Methanol/Water	CMH
Tetramethyl Ammonium Hydroxide	TMAH
Phosphate buffered saline	PBS
N,N-Dimethyldodecanamide	NNDMD
Partial Least Squares Discriminant Analysis	PLSDA
Standards for Reporting of Diagnostic Accuracy	STARD
Fluorescent microscopy	FM
Cerebrospinal Fluid	CSF
Trehalose-6-Monomycolates	TMM
Trehalose-6,6'-Dimycocycles	TDM
Polyacyltrehalose	PAT
2,3-Di-O-acyltrehalose	DAT
Phthiocerol Dimycocosates	PDIM
2,3,6,60-tetraacyl α-α'-trehalose-20-sulfate Sulfatide	SL-I
Volatile Organic Compounds	VOCs
Receiver Operating Characteristic	ROC
Area Under the ROC curve	AUROC
Hierarchical Cluster Analysis	HCA
Principal Component Analysis	PCA
Method	Abbreviation
---	--------------
Orthogonal Projections to Latent Structures	O-PLS
Neural Networks	NN
Support Vector Machines	SVM
Classification of Regression Trees	CLART