Effect of Golf Swing Exercise on the Vascular Compliance and Metabolic Syndrome Risk Factors in Elderly Women

Kim Do-Jin¹ and Kim Sang-Yeob²*

¹Department of Community Sports and Recreation, Daelim University College, Korea; taehab@hanmail.net
²Division of Physical Education, College of Education, Sungkyul University, Korea; 100sprinter@hanmail.net

Abstract

This study applied golf swing program to investigate the effect on the blood vessel elasticity and metabolic syndrome risk factors of old aged women. Hence Control Group (CG) and Golf Group (GG) were set to compare the treatment effects. The golf swing program was conducted 5 times a week for 8 weeks. Through the process of this study, elasticity of blood vessel was improved in each part of body after the golf swing program whereas metabolic syndrome risk factors such as blood pressure, TG, HDL, and fasting glucose were positively improved.

Keywords: Blood Vessel Elasticity, Elderly Women, Golf Swing Program, Metabolic Syndrome Risk Factors

1. Introduction

Elderly health is an important factor to influence the quality of life, in relation to physical activity performance in daily life. For improving life quality of the elderly, there is a need to enhance physical strength and the important thing here is that physical strength improvement should be focused on safe and effective activities in daily life.

Though it is impossible to avoid aging artificially, many studies say aging can be delayed through regular exercise. According to the report by¹, physical changes in old age are important factors, which affect behaviors and adaptation abilities of the elderly.

A proper level of regular exercise positively influences life behaviors of the aged in many respects and even the aged with the lowest level of physical strength can enjoy their daily life by performing regular exercise and adapt to the changing society through physical activities². Moreover, regular physical activities reduce body fat rate, blood pressure, blood lipids, early mortality and morbidity of cardiovascular disorders, increase insulin sensitivity and improve psychological stability and life quality³.

Blood lipids are helpful indicators to identify the effects of Total Cholesterol (TC), Triglyceride (TG), High-density Lipoprotein Cholesterol (HDL) and Low-Density Lipoprotein cholesterol (LDL) on health of blood vessels and obesity improvement and recently, cytokine is used in identifying obesity improvement and exercise effects.

Aged people are reported to have higher risk of cardiovascular disorders⁴, and the causes of such disorders are changes of vessel wall thickness, decline of vessel elasticity, and malfunctioning of endotheliocyte which result in the increase of arterial stiffness. Such phenomenon is led to left ventricular hypertrophy and reduction of coronary arterial flow, and eventually results in higher risk of cardiovascular disorders⁵.

In particular, elderly women can suffer from various serious health problems due to a reduction in female hormones in menopause after pregnancy and delivery⁶.

Instead of looking golf as simple leisure sports, this study intends to approach golf as a means of improving physiological health function in the perspective of improvement of cardiovascular function of aged people.

This study aims to apply golf swing program to aged women in order to identify the blood vessel elasticity and metabolic syndrome risk factors.
2. Study Method

2.1 Subject of Study
The 20 research subjects were selected from women in 70s living in Gangwon-do Korea who did not participate in regular physical activity for last three months. The 20 subjects were assigned to Golf Group (GG) and Control Group (CG) for comparison of the treatment effects. During the process of the program, 2 subjects were excluded for absence and inactive participation. Therefore 18 subjects participated in this study Table 1.

Table 1. Physical characteristic of subjects (M ± SD)

Group	N	Age (yr)	Height (cm)	Weight (kg)	Fat (%)
GG	9	68.25 ± 3.13	152.58 ± 2.82	65.26 ± 3.11	29.54 ± 1.05
CG	9	67.83 ± 3.55	153.50 ± 3.16	65.03 ± 2.88	29.77 ± 1.11

GG: Golf Group CG: Control Group

2.1.1 Experiment Program
This study examined the changes in blood vessel elasticity and metabolic syndrome risk factors of study subjects through 8 weeks of golf swing program. The GG had 5 times of 60-minute sessions every week (Mon, Tue, Wed, Thu, Fri) for 8 weeks which included warm-up and cooling down. During the golf swing program, foods with calories were not allowed and subjects could only drink water. During the participation on the program, these subjects were educated to maintain their regular diet. Also, participating in excessive physical activities and other kind of exercise program were prohibited during this program. The control group did not have special restrictions during the 8 weeks Table 2.

Table 2. Golf swing Program

Category	Methods	Intensity/time
Warming up	Upper stretching	Vo2max< 30%,
	lower stretching	5-10min
Golf swing	Golf swing (1/30sec)	RPE<17,40
		50min
Cooling down	Upper stretching,	Vo2max< 30%,
	lower stretching	5-10min

2.1.2 Measurement Factor
During the 8 weeks of program, the blood vessel elasticity and blood test related factors were measured from GG and CG before and after treatment to examine the effect of golf swing program. The collected bloods were requested to specialized nuclear medicine institution.

2.1.3 Data Treatment
The PASW 18.0 statistical program was used on pretest and post test data to investigate the effect of golf swing program. Descriptive statistics were suggested for each measurement period and 2-way RGRM ANOVA was applied to investigate the interactions of treatment effects. The significance level was set to be .05.

3. Results

3.1 Chang in Blood Vessel Elasticity
Among the blood vessel elasticity factors, right upper limbs showed significant interaction effect between GG and CG with F (1,16) = 11.231, p<.01 whereas the left upper limbs showed significant interaction effect with F (1,16) = 6.322, p<.05 Table 3, Table 4. The right lower limb showed significant interaction effect between GG and CG with F (1,16) = 4.635, p<.05 whereas the left lower limb showed significant interaction effect with F (1,16) = 11.438, p<.01 Table 5, Table 6.
3.2 Chang in Metabolic Syndrome Risk Factors

Among the metabolic syndrome risk factors, systolic blood pressure showed significant interaction effect between GG and CG with $F(1,16) = 17.356, p<.01$ whereas diastolic blood pressure showed significant interaction effect with $F(1,6) = 5.298, p<.05$. Triglycerides (TG) showed significant interaction effect between GG and CG with $F(1,16) = 4.822, p<.05$, High Density Lipoprotein (HDL) showed significant interaction effect between GG and CG with $F(1,16) = 9.429, p<.01$. Table 7, Table 8, Table 9, Table 10. The fasting glucose showed significant interaction effect between GG and CG with $F(1,16) = 5.55, p<.05$ Table 11.

Table 6. Left lower limbs ANOVA

Source	SS	df	MS	F	p
group	136.196	1	136.196	.474	.501
error	4596.466	16	287.279		
factor	108.374	1	108.374	6.079	.025
group* factor	203.927	1	203.927	11.438	.004
error	285.265	16	17.829		

Table 7. Sbp ANOVA

Source	SS	df	MS	F	p
group	0223.781	1	223.781	.0151	.237
error	2371.555	16	148.222		
factor	0242.092	1	242.092	12.812	.003
group* factor	0327.947	1	327.947	17.356	.001
error	0302.328	16	18.895		

Table 8. Dbp ANOVA

Source	SS	df	MS	F	p
group	076.799	1	76.799	1.873	.190
error	656.169	16	41.011		
factor	048.909	1	48.909	4.127	.059
group* factor	062.782	1	62.782	5.298	.035
error	189.597	16	11.850		

Table 9. Tg ANOVA

Source	SS	df	MS	F	p
group	00544.813	1	544.813	0.089	.769
error	98002.164	16	6125.135		
factor	00573.183	1	573.183	9.190	.008
group* factor	00300.719	1	300.719	4.822	.043
error	00997.887	16	606.268		

Table 10. Hdl ANOVA

Source	SS	df	MS	F	p
group	008261	1	8261	0.266	.613
error	496862	16	31.054		
factor	020198	1	20198	5.145	.038
group* factor	037017	1	37017	9.429	.007
error	062814	16	03.926		

Table 11. Fasting glucose ANOVA

Source	SS	df	MS	F	p
group	0186784	1	186784	0.407	.533
error	7345914	16	459120		
factor	0277785	1	277785	5.399	.034
group* factor	0285843	1	285843	5.555	.031
error	0823254	16	051453		

4. Discussion

It is reported that arteriosclerotic cardiovascular diseases caused by fat accumulated in coronary arteries and the aorta and fibrous spots are the most frequent lesion factors related to obesity\(^7,8\) and these increase the possibility of the rapid outbreak of diseases in addition to aging.

The body and the changes of body composition should be managed properly depending on the stages of childhood, adolescence, middle age and late middle age. Reference\(^9\) said that the failure in dietary control, or too much salt accumulated in the body, or irregular life habits increase blood pressure.

Once liquid components of plasma move to the cellular matrix after exercise, plasma volume and stroke volume are reduced and this is one of the mechanisms for lowering blood pressure. The reduced stroke volume brings reduction in cardiac output and blood pressure by decreasing the full load and increasing the after load of the heart\(^10\).

Reference\(^11\) reported that vascular compliance of the upper and lower limbs improved in all the groups in their thirties, forties, fifties and sixties after they performed treadmill exercise for 30 minutes, in his study on the changes of vascular compliance depending on age and exercise.

Reference\(^12\) reported than the participation in dance sports significantly improved vascular compliance in middle-aged women.
This shares the same context with this study applying a golf swing program and especially, it is thought that the vascular compliance of aged women improved by the golf swing program is significant.

Reference19 reported that both aerobic exercise and combined exercise improved cardiovascular risk factors and announced that an aerobic exercise program using dumbbells positively influenced the improvement of cholesterol in middle-aged women.

On the other hand15, reported that LDL declined, while TC and HDL showed no significant changes when a 24-week walking program was carried out for 60 minutes three times a week.

Reference16 indicated that combined exercise brought positive changes in HDL and TG of aged women.

Reference17 conducted a logistic regression analysis to see a correlation between fasting blood glucose and TG and concluded that impaired fasting blood glucose has a high possibility of causing hypertriglyceridemia. From this perspective, it is considered that the significant differences in fasting blood glucose changes by the golf swing program are meaningful.

Reference18 insisted that in terms of energy consumption, the golf swing program’s exercise effect is as big as other aerobic exercise programs and predicted that the golf swing program can bring changes in physiological variables.

According to19 the golf swing program significantly changed cardiovascular risk factors, but the study is limited to males in their twenties. This study proved that the golf swing program applied to aged women positively changed vascular compliance and cardiovascular risk factors and it is thought this result is significant.

5. Conclusion

This study applied short term, 8 week, golf swing program and observed changes in the blood vessel elasticity and metabolic syndrome risk factors of aged women. This study is meaningful in applying golf swing program to aged women. Also, this study has significance in treating golf as not just a leisure sport but an exercise that may be helpful for health promotion and obesity resolution.

6. References

1. Rchaie KW. Age changes in pupil size. J Gerontol. 2000; S(1):110.
2. Taaffe DR. Sarcopenia: Exercise as a treatment strategy. Aust Fam Physician. 2006; 35(3):130–3.
3. Boraita Perez A. Exercise as the cornerstone of cardiovascular prevention. Review Espanola de Cardiologia. 2008; 61(5):514–28.
4. Pearson TA, Blair SN, Daniel SR, Eckel RH, Fair JM, Fortmann SP, Franklin BA, Goldstein LB, Greenland P, Grundy SM, Hong Y, Miller NH, Lauer RM, Ockene IS, Sacco RL, Sallis JF Jr, Smith SC Jr, Stone NJ, Taubert KA. aha guidelines for primary prevention of cardiovascular disease and stroke: 2002 Update: Consensus Panel Guide to Comprehensive Risk Reduction for Adult Patients Without Coronary or Other Atherosclerotic Vascular Diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation. 2002; 106(3):388–91.
5. Kingwell BA, Medley TL, Waddell TK, Cole TJ, Dart AM, Jennings GL. Large artery stiffness: Structural and genetic aspects. Clinical and Experimental Pharmacology and Physiology. 2001; 28:1040–3.
6. Englund U, Littbrand H, Sondell A, Pettersson U, Bucht G. A 1-year combined weight-bearing training program is beneficial for bone mineral density and neuromuscular function in older women. Osteoporosis International. 2005; 16(9):1117–23.
7. Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. The New England Journal of Medicine. 1998; 338(23):1650–6.
8. McGill HC, McMahan CA, Herderick EE, Malcom GT. Origin of atherosclerosis in childhood and adolescence. American Journal of Clinical Nutrition. 2000; 72(5):1307–15.
9. Sung Y-H, Kang HS, Park MS, Kim H, Kim YH, Kim SB, Yoon J-H. Effects of 12-week aerobic exercise on total cholesterol, blood pressure, and cerebral blood flow in obese middle-aged woman. The Korean Journal of Growth and Development. 2012; 20(1):27–34.
10. Barnardand Wen SJ. Exercise and diet in the prevention and control of the metabolic syndrome. Sports Med. 1994; 18:218–28.
11. Kim IK. Response of aerobic exercise on vascular compliance in normal group. Exercise Science. 2002; 11(2):383–92.
12. Oh SJ. The effect of dance sports on cardiac function and vascular compliance. Graduate School Mokwon University. 2009.
13. Park TG, Choi WS. Effects of aerobic combined with resistance training on body composition and blood lipids in obese middle-aged women. The Korean Journal of Physical Education. 2005; 44(6):1141–9.
14. Ma JH. A study on the effects of combined exercise on obese middle-aged women’s lipids and adiponectin level. Graduate school Kangwon National University. 2007.
15. Jung HS. Effect of 24 weeks walking exercise on obesity indices and cardiovascular risk factors in middle-aged women. Graduate School Sungkyunkwan University. 2008.
16. Kim CS. The effect of combined exercise on body composition, blood lipid, atherogenic index and health fitness in elderly aged women. Graduate School Chonnam National University. 2011.
17. Lee SJ. The effects of obesity which the relationship between FBS and hypertriglyceridemia. Graduate School Ajou University. 2013.

18. Jeoung CS. The study on energy cost and exercise intensity during golf swing. Graduate School of Sport Science Yong In University. 2004.

19. Cho SB, Kim DJ. The effect of the golf swing program on the obesity blood lipid and cytokiness. The Journal of Society of Sports Science. 2015; 24(1):1227–36.