Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes

Shichao Chen1*, Dong-Kap Kim2*, Mark W. Chase3, Joo-Hwan Kim4*

1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi-do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea

Abstract

Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. The network method should play a greater role in phylogenetic analyses than it has in the past. To advance the understanding of evolutionary history of the largest order of monocots Asparagales, absolute diversification times were estimated for family-level clades using relaxed molecular clock analyses.

Citation: Chen S, Kim D-K, Chase MW, Kim J-H (2013) Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes. PLoS ONE 8(3): e59472. doi:10.1371/journal.pone.0059472

Editor: Axel Janke, BIK-F Biodiversity and Climate Research Center, Germany

Received July 25, 2012; Accepted February 18, 2013; Published March 18, 2013

Copyright: © 2013 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2010-0029131, 2008-0060631). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kimjh2009@gachon.ac.kr

† These authors contributed equally to this work.

Introduction

The only figure in On the Origin of Species [1] is an evolutionary tree that reflects Darwin’s vision of descent with modification from a common ancestor. Today, phylogenetic methods, or “tree-thinking” [2], form the foundation of inferences in evolutionary biology [3–5]. Bifurcating phylogenetic trees underlie our understanding of organismal evolution and are also proving instrumental in the development of a more robust classification system based on natural (evolutionary) relationships. Nevertheless, searches to determine “the tree” remain problematic, as they can often overlook conflicts in the dataset. Competing signals may arise from stochastic substitution processes, poorly fitting evolutionary models or the heuristic nature of many tree search algorithms. They may also be the result of hybridisation (including introgression), recombination, horizontal/lateral gene transfer, genome fusion, ancestral polymorphism/deep coalescence/incomplete lineage sorting and gene duplication-loss [6]. The detection of data conflicts, and the extent to which they affect analysis, becomes an important first step in phylogenetic analysis. Data-display networks may reveal reticulation patterns that are unsuspected in the data and that may have an important bearing on subsequent analyses and their interpretation. Unfortunately, this field is rather poorly developed at present [6,7], and no tools are available that biologists can easily and consistently use on real data [8].

A neighbour net [9] is a split network that visualises certain collections of splits that have been derived from a distance matrix. These splits are constructed in an iterative fashion using a criterion similar to that used in the neighbour-joining (NJ) algorithm for tree construction [6,10]. Morrison [6] reanalysed a dozen published datasets using split networks, highlighting aspects of the resulting network that could be important for interpretation of the phylogenetic tree and pointed out that the network method should play a greater role in phylogenetic analyses than it has in the past.

Asparagales is the largest order of monocots [11–16] with ca. 25,000–42,000 species (ca. 50% of monocots, or 10–15% of flowering plants), including important crop plants such as Allium, Asparagus and Vanilla, and a host of ornamentals such as irises, hyacinths and orchids [17]. The circumscription of Asparagales and the included families have undergone a series of changes in recent years. When the Angiosperm Phylogeny Group (APG) [18] was being formulated, numerous narrow circumscriptions for the
families of Asparagales largely followed those of Dahlgren et al. [19], but it was noted (APG II, 2003) that broader circumscriptions were also possible, leading to a set of sensu lato (s.l.) families being proposed with the earlier set of sensu stricto families listed in brackets. In APG III [20], the number of families in Asparagales recognised fell from 26 [19] to 14 due to the elimination of these bracketed families. Furthermore, a set of subfamilies for the expanded asparagalean families was also published to be more manageable for teaching purposes and to facilitate communication among specialists [21]. A number of studies have sampled all/most families of Asparagales sensu APG [11,14,17,18,22–28], which have generally clarified the relationships among the families within Asparagales. However, uncertainties remain in two parts of the Asparagales phylogenetic tree. First, the exact relationships of some small families (e.g. Boryaceae, Doryanthaceae, Ixioiliaceae) in lower Asparagales and Aphyllanhoideae, in higher Asparagales, remain unresolved [17,22,23]. Previous studies [17,22] found weak support for a sister relationship between Ixioiliaceae and Tecophilaeaceae, which in turn formed a polytomy or weakly supported sister group to Doryanthaceae. An analysis of morphological data, however, placed Doryanthes as sister to Iridaceae [24]. The position of Boryaceae also remains unclear relative to the rest of the families (except for the orchids) and the hypoxid clade [15,23]. The positions of all of these families require additional evidence to establish their interrelationships [15]. Fay et al. [22] demonstrated that Aphyllanhoideae (monotypic, Aphyllanhoideae) has a destabilising position within Asparagaceae s.l. Other studies found that incompatible patterns were produced when analyzing different genes [14,17]. The second problem, related to the extreme species richness, diverse morphology and complex taxonomic history of Asparagales, is that the sampling of taxa in previous studies has been limited, and many genera have not been included. Although it is clear that adding multigene sequences and sampling will produce a better hypothesis of evolutionary history, more incompatibilities could arise. Previous studies have demonstrated that bifurcating phylogenetic trees can be valuable tools for investigating the evolutionary history of Asparagales, but it is not possible to simultaneously display contradictory evolutionary signals on any such tree. Phylogenetic networks can provide a useful alternative means of analysis because they allow visualisation of competing evolutionary scenarios within a single figure [6,29]. Here, we used a phylogenetic network method, neighbour net, to reanalyze the evolutionary history of Asparagales using a new comprehensive sampling of taxa and genes. In addition, using our estimates of the time of origin, we discuss their possible evolutionary history to improve our understanding of the processes that have generated such high diversity on this branch of the tree of life.

Results

Neighbour-net Pattern of the Data

To gain a better understanding how conflicting signals were contained in the datasets, we constructed a neighbour net for the combined matrix of the four plastid genes (Figure 1), in which indeles were not considered as informative characters. The outgroup Pandanales consisting of two species (Pandanales), together with Commelinales and Liliales species, were included as they are closely related to Asparagales [26]. The centre of the neighbour net was slightly netted, implying that the data support many conflicting deep splits. Nonetheless, the clades identified appeared to be quite robust as 21 clades were generally recovered, as indicated by the colours and arc labelling in Figure 1. The neighbour net showed strong support for monophyletic Asparagales. Commelinales, Liliales and Pandanales formed a close clade as the outgroup of Asparagales. The network largely confirmed the current recognised phylogenetic relationships [14,22,28]. In addition, there were strongly supported splits (and clusters), corresponding largely to the well-supported clades in the topology of the combined tree obtained with our parsimony and Bayesian analyses (Figure 2), except Milla biflora, which netted with Orchidaceae. Furthermore, most of the difficult taxa, with conflict position or extremely low resolution from regular phylogenetic analyses, appeared in critical state on the network graph. For example, Orchidaceae competed with Boryaceae and Blandfordiaceae etc. to root of Asparagales in previously researches [12,28,30–32].

Phylogenetic Relationships

The total aligned matrix had 6,862 characters with 3,122 potentially phylogenetically informative sites for the four plastid genes: 1,472 base pairs (bp) for atpB, 1,820 bp for matK, 2,234 bp for ndhF and 1,336 bp for rbcL. In total, 163 base pairs were excluded from the combined matrix (1–17, 1449–1472, 3292–3316, 5480–5560, 6847–6862 bp), either at the beginning or end of sequences or where alignment of the ndhF sequences was ambiguous. Of the included characters, the numbers of potentially parsimony informative characters were 499 (33.9%) for atpB, 1,123 (61.7%) for matK, 1,160 (34.7%) for ndhF and 437 (32.7%) for rbcL. The matK gene was the most variable among the four genes, but gave slightly fewer parsimony informative sites than ndhF due to the longer length of the latter. The rbcL gene was length-conserved with no gaps, and atpB had only few insertions/deletions (indels), whereas matK and ndhF included a number of indels.

Parsimony analyses of the individual plastid genes gave similar topologies as expected because these genes are inherited on the same linkage group. Aphyllanthes L., has previously been discussed as a problem taxon because of its labile phylogenetic position according to the analyses by different genes [17,22]. As in previous analyses, we also performed analyses that excluded and included Aphyllanthes, which only affected position and support values in Asparagaceae s.l. Here we present the results found when Aphyllanthes was included.

The combined data Fitch analysis with equal weights (EW) produced 14,523 equally most-parsimonious trees of 24,168 steps, with a consistency index (CI), including autopomorphies) of 0.27 and a retention index (RI) of 0.73. With successive weights (SW), the number of equally most parsimonious trees was reduced to one (CI = 0.70, RI = 0.85). The SW tree is one of the trees found with Fitch weights. The Bayesian tree shows the PPs summarised from the set of recovered post-burn-in trees. The parameters of the GTR+I+G model used in this analysis are listed in Table 2. There was only one minor area of discordance between the maximum parsimony (MP) and Bayesian trees: the interrelationships among three families: Aphyllanthesae, Themidaceae and Doryanthaceae.

Due to the similarity in topology of the strict consensus parsimonious tree and the Bayesian tree, the latter having higher resolution, only the Bayesian tree found in the combined analysis is shown in Figure 2. We report three kinds of support value: parsimony bootstrap percentages with EW, SW and PP for Bayesian analysis. Pandanales was the nominated outgroup in accordance with the results of previous studies [17,22]. Within Asparagales, SW analysis had more nodes with strong support than EW, and the PP offered strong support for most nodes on the phylogenetic tree (Figure 2).
Asparagales sensu APG (1998) was monophyletic with strong support (92/100/1.0) as sister to the commelinids clade (66/93/0.9). A multiordinal clade, the commelinids monocots as a whole (Arecales, Commelinales-Zingiberales, Poales), was also strongly supported (94/100/1.0). A clade comprising Asparagales and Commelinids was grouped into a sister relationship with the Liliales clade (100/100/1.0). As in previous analyses, the order Asparagales can be divided into higher and lower asparagoid clades (sensu Chase et al. 1995a). However, this concept was recently replaced by that of core and non-core asparagoids [26,33]. The core asparagoids formed a strongly supported monophyletic group containing two well-resolved clades, Asparagaceae s.l. (72/86/1.0) and Amaryllidaceae s.l. (92/97/1.0), which was recognised in APG III (2009). The Asparagaceae s.l. included a number of subfamilies represented by two clades, which was recognised in APG III (2009). The first clade (83/97/1.0) had Lomandroideae as sister to a monophyletic group (70/53/0.99) that consisted of Asparagoideae and Nolinoideae. The second clade (63/91/1.0) consisted of four subfamilies: Agavoideae, Scilloideae, Brodiaeoideae and Aphyllanthoideae. The result also suggested that the family Amaryllidaceae s.l. had two clades: (Amaryllidoideae+Allioideae) and Agapanthoideae. The core asparagoid clade was sister (88/97/1.0) to a strongly supported (97/100/1.0) family Xanthorrhoeaceae s.l. [sensu APG III], which included three subfamily clades: Asphodeloideae, Xanthorrhoeoideae and Hemerocallidoideae. The core asparagoid and Xanthorrhoeaceae s.l. were sister (88/97/1.0) to Xeromnataceae alone. Collectively, this large clade was sister (87/97/1.0) to Iridaceae. The sister relationship between Ixioiriaceae and Tecophilaeaceae had strong support (86/96/1.0), but its position relative to Doryanthaceae remains unclear. However, a clade including Doryanthaceae, Ixioiriaceae, Tecophilaeaceae and the above-mentioned families was strongly supported (88/97/1.0). In turn, this clade was sister (60/<50/1.0) to the asteloid clade that included Boryaceae, Blandfordiaceae, Asteliaceae, Lanariaceae and Hypoxidaceae. The monophyletic Orchidaceae was the first to diverge and was sister to all other asparaguids with high support (92/100/1.0).

Divergence Time Estimation

The mean path lengths (MPL) clock tests [34] revealed significant deviations from clock-like behaviour at most nodes of the tree for Asparagales (clock tests: 265; accepted: 14; rejected: 251). Hence, we used BEAST [35], which implements a “relaxed clock” methodology that does not assume any correlation between rates (thus accounting for lineage-specific rate heterogeneity), to estimate ages and the phylogenetic tree simultaneously. At the same time, we also used PATHd8, with the mean path length method; this programme is faster for a large dataset and permits rate changes across the tree [34]. We obtained slightly younger ages in the results using PATHd8 than using BEAST.

The BEAST analysis that treated fossil priors as lognormal distributions provided an older estimated age (102–143 Ma, data not presented) for crown group of Asparagales than that using an exponential distribution (93–101 Ma), as well as larger variances around age estimates, especially at the base of the tree (also see [36]). The topology showed good agreement with previous...
analyses of these data using Bayesian methods, with a few exceptions (Agavoideae, Scilloideae, Brodiaeoideae and Aphyllanthoideae present in some one clade but in different relatively position). The age estimates for crown and stem nodes are shown in Figure 3, with a chronogram calibrated against the geological timescale. Additional sampling and age estimates for families and subfamilies of Asparagales are summarised in Table 3.

Discussion

The Network Reveals a Useful Pattern in Asparagales

The detection of data conflicts and the extent to which data conflicts will affect the data analysis becomes an important first step in a phylogenetic analysis [6]. Phylogenetic networks, such as the split graphs produced by the neighbour-net algorithm, give a broad overview of competing evolutionary scenarios within a dataset [37]. These methods have been successfully used to analyse multigene plastid datasets (e.g. ferns, [38]; Ranunculaceae, [39]), nuclear ribosomal DNA; Acer, [40]), and microbial and fungal evolution [9,41,42]. They have also been used in the context of genome sequencing surveys [43,44]. However, the use of networks as a tool for large-scale phylogenetic research has rarely been reported in the scientific literature [6].

In this study, we used the phylogenetic network method neighbour net to analyse a larger-scale sampling datasets of Asparagales. The network tree summarised the majority data pattern in plastid sequences, which with long terminal edges clusters indicated strong support for the family system of Asparagales sensu APG III that was modified to include three expanded asparagalean families proposed by Chase et al. (2009) and APG III (2009). The tree is subdivided as follows: part A, Asparagaceae and subfamilies; part B, Amaryllidaceae and Xanthorrhoeaceae and their subfamilies plus Xeronemataceae; part C, the basal nodes of Asparagales and outgroups (non-Asparagales taxa).

doi:10.1371/journal.pone.0059472.g002

Figure 2. Consensus tree from Bayesian analysis of the four combined cpDNA datasets. The 50% majority rule consensus phylogram from partitioned Bayesian analysis of a combined matrix of 284 accessions and 6699 bp from four plastid genes: atpB, matK, ndhF and rbcL. The 400,000 generations before the point when the SDF permanently fell below 0.01 (0.0016 at termination) were discarded as burn-in. Three types of support (bootstrap percentages for parsimony analyses with equal weights [EW]/successive approximations weighting [SW]/posterior probabilities for Bayesian analysis [PP]) are indicated on each branch. Major clades are named following the subfamily classification of three expanded asparagalean families proposed by Chase et al. (2009) and APG III (2009). The tree is subdivided as follows: part A, Asparagaceae and subfamilies; part B, Amaryllidaceae and Xanthorrhoeaceae and their subfamilies plus Xeronemataceae; part C, the basal nodes of Asparagales and outgroups (non-Asparagales taxa).
Figure 3. Divergence time estimates for Asparagales, based on four cpDNA genes (atpB, matK, ndhF and rbcL). The maximum clade credibility tree from the divergence times estimated with BEAST. The 95% highest posterior density (HPD) estimates for each well-supported clade are represented by bars. Numbers at nodes are fossil calibration points: ① 93 Ma, age for the most recent common ancestor (MRCA) of extant
are unstable in some previous studies. For example, Boryaceae has sometimes been placed as sister to Orchidaceae (e.g. [11]), although with weak support, and there are other topologies, including one embedding Orchidaceae in a paraphyletic Boryaceae-Hypoxidaceae clade [32]. Unexpectedly, *M. biflora* complexly netted to Orchidaceae on network analyses (Figure 1), however this taxon has been grouped within Brodiaeae (Themidaceae sensu APG II) at present parsimony and Bayesian inference (Figure 2, part A) in line with previous reports [17,22]. In case of sequencing or sampling errors, the split network is possibly more sensitive to exhibit artificial than regular phylogenetic analyses. The biased pattern of *M. biflora* suggests that resampling is necessary in order to find real situation.

The conflicting signals may be caused by homoplasy or stochastic noise rather than recombination that were not detected across the plastid genome in the core Asparagales [45]. DNA sequences from organellar genomes (e.g. mitochondria, plastids) are largely considered to be inherited uniparentally and non-recombining, with a single shared evolutionary history for the entire organellar genome [46–49]. Systematic mutational biases may also introduce conflicting phylogenetic signals within organelle sequences, especially between long-diverged taxa [50]. Although there may be reasons weak signals are introduced giving conflicting relationships, additional sequence data should allow identification of the bifurcating phylogenetic history of the organelle genome. Not unexpectedly, the continued examination of additional characters per taxon, 7 [17] and 17 plastid genes [23], and whole plastome sequences [45] gave higher resolution and bootstrap support to many clades in Asparagales.

Undoubtedly, it would be very wise to survey phylogenetic data using network methods before attempting to infer phylogenetic trees. Some attempts have begun [45], nevertheless the network methods should play a greater role in phylogenetic analyses than it has done to date. Compared with our inferred phylogenetic tree, it is worth noting that the network patterns reflect the tree bootstrap support to an extent, despite contrary opinions expressed previously [6,51].

Phylogeny of Asparagales

This study, with relatively dense taxon sampling and more diverse species representing more genera compared to previous phylogenetic studies, documented the stability of relationships within Asparagales. The family-level phylogenetic relationships found here were particularly congruent with other broad studies [14,22,23,26–28,45], indicating that the tree topologies in previous studies are robust with respect to the different samples used to represent genera and taxa sampled.

Relatively dense taxon sampling is generally a beneficial strategy for reducing long-branch attraction and obtaining more accurate inferences of phylogenetic relationships among and within large groups of organisms [52–55]. Long-branch attraction has been invoked for the placement of several problematic Asparagales taxa, such as Aphyllanthoideae and Ixioliriaceae, which are relatively isolated taxa with a long terminal branch. The position of *Aphyllanthes* in previous studies was labile and weakly supported [17,22,23]. In the neighbour-net tree in this study, *Aphyllanthes* had long edges that join to the base of Asparagaceae s.l., close to Lomandroideae, as has been found in other studies [17]. However, its position changed from sister to Agavoideae (Agavaceae sensu APG II) to sister to Brodiaeae (Themidaceae sensu APG II) in our MP and BI trees, respectively, but always formed a moderately to strongly supported group with Agavoideae, Scilloideae and Brodiaeae (63/91/1.0), which is also consistent with previous studies [22,23,26,28]. Based on genome data (79-plastid gene matrix), Steele et al. [45] found that *Aphyllanthes* was sister to Agavoideae with moderate support and confirmed that it links the same subfamilies mentioned above using neighbour-net analyses. Obviously, *Aphyllanthes* may be suffering from not only long branch attraction (LBA), but also too few characters to define individual nearby branches as a result of rapid radiation [45].

Ixioliriaceae was inferred as a strongly supported sister group to Tecophilaeaceae in this study, a result that had variable support in previous analyses [17,22,26,28]. Analyses of morphological data and base chromosome number support the sister relationship of these two families [56]. Doryanthaceae remain unresolved, forming either a polytomy or a weakly supported sister to the clade of Ixioliriaceae/Tecophilaeaceae and the remainder of Asparagales (except Astelioid and Orchidaceae), consistent with previous analyses [13,26,28].

Monophyly of the astelioid clade was well supported (83/91/1.0), including five small families (Boryaceae, Hypoxidaceae, Lamiastraceae, Asteliaceae and Blandfordiaceae; Figure 2, part C), consistent with most previous studies [22,23,26,29,57,58]. This clade has been demonstrated to have some shared morphological characters for all but Blandfordiaceae [57]. Little is gained by recognising the astelioid clade as a single family (Hypoxidaceae s.l.) to further reduce the number of families in Asparagales.

Our results highlight the largely robust framework for Asparagales, which is largely or completely congruent with the comparable taxonomic sampling in previous studies [14,15,17,22,23,26–28,45].

Divergence Time Estimates

The age estimates obtained across the major clades of Asparagales from the PATHd8 and BEAST analyses compared here overlap considerably (see Table 3). Overall PATHd8 produced slightly younger ages than BEAST. The BEAST analyses that used multiple (three) constraints with exponential distribution may be a good alternative to a lognormal distribution in the face of inadequate palaeontological information [59], which yielded a narrower 95% higher posterior density (HPD) and generally younger node ages than the latter, as noted by Bell et al. [36].

We estimated that the stem group of Asparagales dates to ca. 99–113 Ma and that the crown group dates to ca. 93–101 Ma, which agrees reasonably with Bell et al. [36], who reported a crown age range of 83–103 Ma (see Appendix S15 in their paper). However, Janssen and Bremer [31] suggested somewhat older dates of ca. 122 Ma and ca. 119 Ma, respectively. The topology within Asparagales, especially near the base, in the latter differed substantially from our results; e.g. they did not place Orchidaceae as sister to the rest of the order. Comparable results in Magallon and Castillo [60] were ca. 133.1 (stem), 125 (crown), 118.6 (stem) and 112.6 (crown) Ma for relaxed and constrained penalised likelihood dating, respectively. These molecular-based estimates suggest a Cretaceous origin of Asparagales. In this study, the estimates are obviously close to the oldest known fossil record of Asparagales (93–105 Myr old, see [61] Supplementary Methods for details).
Table 1. Vouchers with GenBank accession number for taxa included in this study.

Family/Tribe Taxa	Vouchers	source type	Source (Institution)	Country	matK	rbcL	atpB	ndhF
Asparagales								
Elaealoeae								
Danae racemosa	Chase 121	DNA	KEW DNABank	UK	KimJH,2010	JX903679	JX903260	
Ruscus aculeatus	J.H. Kim s.n. 2008 Fresh		RBG Kew Garden	UK	KimJH,2010	JX903680	JX903261	
Ruscus streptophyllus	Chase 21990 DNA	KEW DNABank	UK	KimJH,2010	JX903681	JX903262		
Semele androgyna	Chase 997 DNA	KEW DNABank	UK	KimJH,2010	JX903682	JX903263		
Aspidistra elatior	Z. Jang 4805 Specimen	KEW DNABank	UK	KimJH,2010	JX903683	JX903264		
Aspidistra								
Nolinoideae								
Asparagaceae								
Convallariaceae								
Convallaria majalis	D.K. Kim 04-082 Fresh	Field work	Korea	KimJH,2010	JX903687	JX903268		
Reineckea camea	Wu 454 DNA	KEW DNABank	UK	KimJH,2010	JX903688	JX903269		
Speirantha gardenii	Chase 495 DNA	KEW DNABank	UK	KimJH,2010	JX903689	JX903270		
Theropogon pallidus	Chase 2933 DNA	KEW DNABank	UK	KimJH,2010	JX903690	JX903271		
Comospermum yedoense	Chase 833 DNA	KEW DNABank	UK	KimJH,2010	JX903691	JX903272		
Lilioidea								
Liriope platyphylla	D.K. Kim 07-001 Fresh	Field work	Korea	KimJH,2010	JX903692	JX903273		
Liriope spicata	D.K. Kim 07-002 Fresh	Field work	Korea	KimJH,2010	JX903693	JX903274		
Ophiopogon jaburan	D.K. Kim 07-004 Fresh	Field work	Korea	KimJH,2010	JX903694	JX903275		
Ophiopogon japonicus	D.K. Kim 07-003 Fresh	Field work	Korea	KimJH,2010	JX903695	JX903276		
Ophiopogon sp.	D.K. Kim 08-207 Fresh	Field work	Korea	KimJH,2010	JX903696	JX903277		
Peliasanthes sp.	Chase 847 DNA	KEW DNABank	UK	JX903535	JX903126	JX903697	JX903278	
Reineckea								
Polyglossum chinense	D.K. Kim 04-182 Fresh	Field work	Korea	KimDK,2012	JX903700	JX903279		
Polyglossum dilatatum	D.K. Kim 04-165 Fresh	Field work	Korea	KimDK,2012	JX903701	JX903280		
Polyglossum stellatum	D.K. Kim 08-229 Fresh	Field work	Korea	KimDK,2012	JX903702	JX903281		
Polygonatum desolavii	D.K. Kim 09-225 Fresh	Field work	Korea	JX903537	JX903127	JX903703	JX903282	
Polygonatum falcatum	D.K. Kim 09-191 Fresh	Field work	Korea	JX903538	JX903129	JX903704	JX903283	
Polygonatum humile	D.K. Kim 04-029 Fresh	Field work	Korea	JX903539	JX903130	JX903705	JX903284	
Polygonatum inflatum	D.K. Kim 04-043 Fresh	Field work	Korea	JX903540	JX903131	JX903706	JX903285	
Polygonatum involucratum	D.K. Kim 04-059 Fresh	Field work	Korea	JX903541	JX903132	JX903707	JX903286	
Polygonatum lissianthum var. coreanum	D.K. Kim 04-046 Fresh	Field work	Korea	JX903542	JX903133	JX903708	JX903287	
Polygonatum odoratum var. pluriflorum	D.K. Kim 04-067 Fresh	Field work	Korea	JX903543	JX903134	JX903709	JX903288	
Polygonatum stenophyllum	D.K. Kim 08-156 Fresh	Field work	Korea	JX903544	JX903135	JX903710	JX903289	
Maianthemum bicolour	D.K. Kim 04-077 Fresh	Field work	Korea	JX903545	JX903136	JX903711	JX903290	
Maianthemum dilatatum	D.K. Kim 04-165 Fresh	Field work	Korea	JX903546	JX903137	JX903712	JX903291	
Maianthemum stellatum	D.K. Kim 08-229 Fresh	Field work	Korea	JX903547	JX903138	JX903713	JX903292	
Dracaena aubryana	Chase 1102 DNA	KEW DNABank	UK	KimJH,2010	JX903714	JX903293		
Dracaena deremensis	J.H. Kim 2009 s.n. Fresh	Australia Royal Botanic Garden	UK	JX903539	*AB029848	JX903715	JX903294	
Dracaena hookeriana	D.K. Kim 09-027 Fresh	Australia Royal Botanic Garden	UK	JX903540	*AM235113	JX903716	JX903295	
Dracaena schizantha	Chase 21514 DNA	KEW DNABank	UK	KimJH,2010	JX903717	JX903296		
Family/Tribe Taxa	Vouchers	Source type	Source (Institution)	Country	matK	rbcL	atpB	ndhF
-----------------------------------	----------------	-------------	----------------------	---------	----------	----------	----------	----------
Pleomele javanica	Chase 1240	DNA	KEW DNABank	UK	JX903541	JX903130	JX903718	JX903299
Sansevieria trifasciata	D.K. Kim 07-005	Fresh	Field work	Korea	KimJH,2010	KimJH,2010	JX903719	JX903300
Beaucarnea recurvata	D.K. Kim 09-002	Fresh	Field work	Korea	KimJH,2010	KimJH,2010	JX903723	JX903304
Calibanus hookeri	Chase 1006	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903724	JX903305
Daylirion wheeleri	Chase 3469	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903725	JX903306
Nolina bigelovii	D.K. Kim 08-231	Fresh	Kew Garden	Korea	KimJH,2010	KimJH,2010	JX903726	JX903307
Nolina recurvata	Chase 3466	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903727	JX903308
Eriospermum abyssinicum	Chase 1006	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903720	JX903301
Eriospermum cooperi var. natalensis	Chase 2052	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903721	JX903302
Eriospermum parvifolium	Chase 2053	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903722	JX903303
Asparagoideae								
Asparagus cochinensis	D.K. Kim 04-122	Fresh	Field work	Korea	KimJH,2010	KimJH,2010	JX903789	JX903371
Asparagus densiflorus	D.K. Kim 08-198	Fresh	Kunming Botanic Garden	China	KimJH,2010	KimJH,2010	JX903790	JX903372
Asparagus oligoclonos	D.K. Kim 08-007	Fresh	Field work	Korea	KimDK,2012	KimDK,2012	JX903791	JX903373
Asparagus schoberioides	D.K. Kim 05-165	Fresh	Field work	Korea	KimJH,2010	KimJH,2010	JX903792	JX903374
Hemiphylacus latifolius	Chase 668	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903793	JX903375
Lomandroideae								
Acanthocarpus preissii	Chase 2228	DNA	KEW DNABank	UK	JX903591	JX903182	JX903820	JX903403
Arthropodium cirratum	Chase 651	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903821	JX903404
Chamaelexus serra	Brummitt 31374	DNA	KEW DNABank	UK	JX903593	JX903184	JX903823	JX903406
Cordyline cannifolia	Chase 17936	DNA	KEW DNABank	UK	JX903594	JX903185	JX903824	JX903407
Cordyline pumilio	Chase 14228	DNA	KEW DNABank	UK	JX903595	JX903186	JX903825	JX903408
Laxmannia squarrosa	Chase 2214	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903826	JX903409
Lomandra hastilis	Brummitt	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903827	JX903410
Lomandra longifolia	D.K. Kim 09-038	Fresh	Field work	Korea	*DQ401356	JX903187	JX903828	JX903411
Lomandra ordii	Brummitt 21345	DNA	KEW DNABank	UK	JX903596	JX903188	JX903829	JX903412
Sowerbaea juncea	Chase 454	DNA	KEW DNABank	UK	JX903597	JX903189	JX903830	JX903413
Thysonotus sp.	Chase 2218	DNA	KEW DNABank	UK	JX903598	JX903190	JX903831	JX903414
Trichopetalum plumosum	Cult ADU ex	DNA	KEW DNABank	UK	JX903599	JX903191	JX903832	JX903415
Agavoideae								
Agave americana	D.K. Kim 08-193	Fresh	Field work	Korea	JX903544	JX903133	JX903729	JX903310
Agave ghesbrechti	Chase 3467	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903730	JX903311
Anemarrhena asphodeloides	Kew 1156	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903778	JX903360
Anthericum lilago	Chase 515	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903779	JX903361
Anthericum ramosum	J.J. Kim	Fresh	Ivana Franka Boranic Garden	Ukraine	JX903578	JX903168	JX903780	JX903362
Behnia reticulata	Goldblatt 9273	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903794	JX903376
Camassia cusickii	Cronquist 6549	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903801	JX903383
Chlorogalum pomeridianum	Chase 838	DNA	KEW DNABank	UK	JX903545	JX903134	JX903731	JX903312
Chlorophytum orchidistrium	Chase 2155	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903781	JX903363
Chlorophytum suffruticosum	Chase 1043	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903782	JX903364
Chlorophytum tetraphyllum	Chase 1044	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903783	JX903365
Echeandia sp.	Chase 602	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903785	JX903367
Hagenbachia panamensis	Correa et al.	DNA	KEW DNABank	UK	JX903579	JX903170	JX903786	JX903368
Herrera salisaparilha	Chase 2154	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903795	JX903377
Family/Tribe Taxa	Vouchers	source type	Source (Institution)	Country	matK	rbcL	atpB	ndhF
------------------	----------	-------------	---------------------	---------	------	------	------	------
Herreriopsis elegans	Maurin & Rakotonasolo 90	DNA	KEW DNABank	UK	JX903581	JX903172	JX903796	JX903378
Hesperocallis undulata	Cranfill & Schmid s.n.	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903797	JX903379
Hastingsia serpentinicola	Hufford 817	DNA	KEW DNABank	UK	JX903586	JX903177	JX903807	JX903389
Hosta capitata	D.K. Kim 09-008	Fresh	Field work	Korea	KimDK,2012	KimDK,2012	JX903732	JX903313
Hosta minor	D.K. Kim 08-086	Fresh	Field work	Korea	KimDK,2012	KimDK,2012	JX903733	JX903314
Hosta plantaginea	Jin Xiow Feng s.n.	Fresh	Kunming Botanic Garden	China	KimH,2010	KimH,2010	JX903734	JX903315
Hosta yingeri	D.K. Kim 08-011	Fresh	Field work	Korea	KimDK,2012	KimDK,2012	JX903735	JX903316
Leucocrinum montanum	Chase 795	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903787	JX903369
Paradisea liliastrum	Chase 826	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903736	JX903317
Paradisea minor	D.B. Yang s.n.	Specimen	KUN	China	KimH,2010	KimH,2010	JX903737	JX903318
Yucca filamentosa	D.K. Kim 06-077	Fresh	Field work	Korea	KimH,2010	KimH,2010	JX903738	JX903319
Yucca queretaroensis	D.K. Kim 08-230	Fresh	Field work	Korea	JX903546	JX903135	JX903739	JX903320
Scilloideae								
Bellevalia pycnantha	Chase 21821	DNA	KEW DNABank	UK	JX903582	JX903173	JX903798	JX903380
Bellevalia romana	D.K. Kim 08-224	Fresh	Field work	Korea	JX903583	JX903174	JX903799	JX903381
Bowiera volubilis	Chase 176	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903800	JX903382
Dipcadi filifolium	Chase 1783	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903802	JX903384
Drimia alissima	Chase 1870	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903803	JX903385
Drimopsis maxima	Chase 17509	DNA	KEW DNABank	UK	JX903584	JX903175	JX903804	JX903386
Eucomis humilis	Chase 1847	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903805	JX903387
Eucomis punctata	J.H. Kim 2009 s.n.	Fresh	Ivana Franka Boranic Garden	Ukraine	JX903585	JX903176	JX903806	JX903388
Hyacinthella nervosa	Chase 21826	DNA	KEW DNABank	UK	JX903587	JX903178	JX903808	JX903390
Hyacinthoides hispanica	Chase 16564	DNA	KEW DNABank	UK	JX903588	JX903179	JX903809	JX903391
Lachenalia carnosa	Chase 2261	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903810	JX903392
Ledebouria cooperi	Chase 1786	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903811	JX903393
Massonia angustifolia	Chase 5666	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903812	JX903394
Menwilla aurea	LHMS 2387	DNA	KEW DNABank	UK	JX903589	JX903180	JX903813	JX903395
Muscari aucheri	Chase 21845	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903814	JX903396
Ornithogalum armeniacum	Chase 1682	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903815	JX903397
Ornithogalum caudatum	D.K. Kim 09-028	Fresh	Field work	Korea	JX903590	JX903181	JX903816	JX903398
Ornithogalum shawii	Chase 1012	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903817	JX903399
Rhadamanthus convallarioides	Goldblatt, 10852	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903818	JX903400
Scilla scilloides	D.K. Kim 05-039	Fresh	Field work	Korea	KimH,2010	KimH,2010	JX903819	JX903401
Urginea epigea	Chase 2055	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903819	JX903402
Brodiaeae								
Bessera elegans	Chase 626	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903833	JX903416
Bloomeria crocea var. aura	Chase 1010	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903834	JX903417
Dandya thadhowii	Chase S.N.	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903835	JX903418
Dicholostemma multiflorum	Chase 1830	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903836	JX903419
Milla biflora	Chase 1907	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903837	JX903420
Musa maritima	Chase 779	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903838	JX903421
Triteleia peduncularis	Chase 1860	DNA	KEW DNABank	UK	KimH,2010	KimH,2010	JX903839	JX903422
Afflanthoideae								
Aphyllanthes monspeliensis	Chase 614	DNA	KEW DNABank	UK	KimH,2010	KimDK,2012	JX903788	JX903370
Amaryllidaceae								
Amaryllidoideae								
Family/Tribe Taxa	Vouchers	source type	Source (Institution) Country	matK	rbcL	atpB	ndhF	
------------------	----------	-------------	----------------------------	-------	------	------	------	
Amaryllis belladona	KEW 612 DNA KEW DNABank UK	JX903555 JX903144 JX903750 JX903333						
Apodolirion cedarbergense	Graham Duncan DNA KEW DNABank UK	JX903556 JX903145 JX903751 JX903334						
Calostemma lutea	Chase 1505 DNA KEW DNABank UK	JX903557 JX903146 JX903752 JX903335						
Clivia nobilis	Chase 3080 DNA KEW DNABank UK	KimJH,2010 JX903147 JX903753 JX903336						
Crinum asiaticum var. japonicum	K.H. Tae 2004 s.n. DNA KNRRC Korea	KimJH,2010 JX903754 JX903337						
Cybistetes longifolia	KEW 3643 DNA KEW DNABank UK	JX903558 JX903148 JX903755 JX903338						
Cyrtanthus purpureus	Chase 1572 DNA KEW DNABank UK	JX903559 JX903149 JX903756 JX903339						
Eustephia darwinii	Chase 559 DNA KEW DNABank UK	JX903560 JX903150 JX903757 JX903340						
Gethyllis brittoniana	Van Jaarsveld 5618 DNA KEW DNABank UK	JX903561 JX903151 JX903758 JX903341						
Habranthus martinezii	Chase 1023 DNA KEW DNABank UK	JX903562 JX903152 JX903759 JX903342						
Haemanthus albiflos	Chase 1505 DNA KEW DNABank UK	JX903563 JX903153 JX903760 JX903343						
Hieronymiella var. latifolia	Chase 1901 DNA KEW DNABank UK	JX903564 JX903154 JX903761 JX903344						
Hippeastrum psittacinum	Chase 14823 DNA KEW DNABank UK	JX903565 JX903155 JX903762 JX903345						
Hymenocallis littoralis	Chase 2027 DNA KEW DNABank UK	JX903566 JX903156 JX903763 JX903346						
Ismene longifolia	Chase 3583 DNA KEW DNABank UK	JX903567 JX903157 JX903764 JX903347						
Leucojum roseum	Chase 1524 DNA KEW DNABank UK	JX903568 JX903158 JX903765 JX903348						
Lycoris sanguinea var. koreana	D.K. Kim 06-167 Fresh Field work Korea	KimDK,2012 KimDK,2012 JX903766 JX903349						
Lycoris sanguinea	D.K. Kim 06-100 Fresh Field work Korea	KimDK,2012 KimDK,2012 JX903767 JX903350						
Narcissus tazetta var. chinensis	D.K. Kim 06-167 Fresh Field work Korea	KimDK,2012 KimDK,2012 JX903768 JX903351						
Nerine alta	Chase 18199 DNA KEW DNABank UK	JX903569 JX903159 JX903769 JX903352						
Pancratium canariense	Chase 17733 DNA KEW DNABank UK	JX903570 JX903160 JX903770 JX903353						
Paramongaia weberbaueri	Chase 1594 DNA KEW DNABank UK	JX903571 JX903161 JX903771 JX903354						
Scadoxus cinnabarinus	Chase 549 DNA KEW DNABank UK	JX903572 JX903162 JX903772 JX903355						
Scadoxus puniceus	D.K. Kim 09-011 Fresh Field work Korea	JX903573 JX903163 JX903773 JX903356						
Stenomesson minutum	Chase 16481 DNA KEW DNABank UK	JX903574 JX903164 JX903774 JX903357						
Ungeria flava	Chase 3640 DNA KEW DNABank UK	JX903575 JX903165 JX903775 JX903358						
Vagaria parviflora	Chase 1066 DNA KEW DNABank UK	JX903576 JX903166 JX903776 JX903359						
Zephyranthes simpsonii	Chase 1839 DNA KEW DNABank UK	JX903577 JX903167 JX903777 JX903360						
Allioidae	D.K. Kim 08-002 Fresh Field work Korea	KimDK,2012 KimDK,2012 JX903740 JX903361						
Allium microdictyon	D.K. Kim 04-142 Fresh Field work Korea	KimDK,2012 KimDK,2012 JX903741 JX903362						
Allium ochotense	D.K. Kim 08-095 Fresh Field work Korea	KimDK,2012 KimDK,2012 JX903742 JX903363						
Allium thunbergii	D.K. Kim 08-220 Fresh Field work Korea	JX903547 JX903136 *AY147628 JX903364						
Ipheion uniflorum(uniflora)	Chase 449 DNA KEW DNABank UK	JX903574 JX903164 JX903774 JX903365						
Leucocoryne pauciflora	Chase 16462 DNA KEW DNABank UK	JX903548 JX903137 JX903743 JX903366						
Nothoscordum bivalve	Chase 17513 DNA KEW DNABank UK	JX903549 JX903138 JX903744 JX903367						
Nothoscordum texanum	Chase 1593 DNA KEW DNABank UK	JX903550 JX903139 JX903745 JX903368						
Tristagma nivale	Chase 2757 DNA KEW DNABank UK	JX903551 JX903140 JX903746 JX903369						
Tristagma uniflorum	H. Murakami 631 Specimen KYO Japan	JX903552 JX903141 JX903747 JX903370						
Tulbaghia simieli	Chase 17513 DNA KEW DNABank UK	JX903554 JX903143 JX903749 JX903371						
Agapanthoideae	Chase 627 DNA KEW DNABank UK	KimJH,2010 KimJH,2010 JX903728 JX903372						
Lower asparagoids	D.K. Kim 08-002 Fresh Field work Korea	JX903740 JX903373						
Hesperocallidioideae	D.K. Kim 04-142 Fresh Field work Korea	JX903741 JX903374						
Coesia contorta	Goldblatt 9406 DNA KEW DNABank UK	JX903610 JX903201 JX903858 JX903375						
Corynotheca micrantha	Chase 2210 DNA KEW DNABank UK	JX903611 JX903202 JX903859 JX903376						
Chamaescia sp.	Chase 2208 DNA KEW DNABank UK	JX903592 JX903183 JX903822 JX903405						
Family/Tribe Taxa	Vouchers	source type	Source (Institution)	Country	matK	rbcL	atpB	ndhF
-----------------------------	---------------------------	-------------	----------------------	--------------------------	-------------	------------	------------	-------------
Dianella ensifolia	Akio Naiki 5510 Specimen	Specimen	KUN China	KimJH,2010	KimJH,2010	JX903860	JX903444	
Hemerocallis dumortieri	D.K. Kim 08-145 Fresh	Field work	Korea	KimDK,2012	JX903861	JX903445		
Hemerocallis fulva	D.K. Kim 08-152 Fresh	Field work	Korea	KimDK,2012	JX903862	JX903446		
Hemerocallis hungdoidensis	D.K. Kim 09-013 Fresh	Field work	Korea	JX903612	*AY149364	JX903447		
Hemerocallis minor	D.K. Kim 05-091 Fresh	Field work	Korea	KimJH,2010	JX903864	JX903448		
Johnsonia pubescens	Chase 2213 DNA	KEW DNABank	UK	JX903613	JX903203	JX903865	JX903449	
Pasithea coerulea	Chase 512 DNA	KEW DNABank	UK	JX903614	JX903204	JX903866	JX903450	
Phormium tenax	Chase 177 DNA	KEW DNABank	UK	JX903615	JX903205	JX903867	JX903451	
Stawelia dimorphantha	P.J. Rudall, s.n. DNA	KEW DNABank	UK	JX903616	*Z77306	JX903868	*FJ707520	
Stypandra glauca	Brummitt, George & Oliver 2123 DNA	KEW DNABank	UK	JX903617	JX903206	JX903869	JX903452	
Tricyanea elatior	Chase 2219 DNA	KEW DNABank	UK	JX903618	JX903207	JX903870	JX903453	
Xanthorrhoea resinosa	Chase 192 DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903923	JX903504	
Xanthorrhoea media	D.K. Kim 09-032 Fresh	Field work	Korea	JX903650	JX903234	JX903922	JX903503	
Aloe vera					*AJ511390	*AJ512309	*AF168886	*AY225054
Asphodeline lutea	UCI Arb. 3440 DNA	KEW DNABank	UK	JX903600	JX903192	JX903840	JX903423	
Asphodelus aestivus	Chase 482 DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903841	JX903424	
Astraloba fahioa	Chase 684 DNA	KEW DNABank	UK	JX903601	JX903193	JX903842	JX903425	
Bulbine semibracteata	K. Dixon s.n. DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903843	JX903426	
Bulbina cauda-feliis	UCI Arb. 359 DNA	KEW DNABank	UK	JX903602	JX903194	JX903844	JX903427	
Eremurus chiniensis	Qing 00317 DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903845	JX903428	
Gasteria rawlinsoi	Chase 18179 DNA	KEW DNABank	UK	JX903603	JX903195	JX903846	JX903429	
Haworthia coarctata	Chase 3859 DNA	KEW DNABank	UK	JX903604	JX903196	JX903847	JX903430	
Kniphofia sp.	D.K. Kim 08-187 Fresh	Field work	Korea	JX903605	*Z73689	*AJ417572	JX903431	
Poellnitzia rubiflora	KEW 6534 DNA	KEW DNABank	UK	JX903606	JX903197	JX903848	JX903432	
Trachyandra esterhusysaeae	Fay s.n. DNA	KEW DNABank	UK	JX903607	JX903198	JX903849	JX903433	
Xeronema callistemon	Chase 653 DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903924	JX903505	
Arista monticola	Compton 11967 DNA	KEW DNABank	UK	JX903622	JX903212	JX903878	JX903461	
Belamcanda chiniensis	D.K. Kim 08-186 Fresh	Field work	Korea	KimDK,2012	KimDK,2012	JX903879	JX903462	
Crocus banaticus	D.K. Kim 09-004 Fresh	Field work	Korea	JX903623	JX903213	JX903880	JX903463	
Crocus cartwright	Chase 11726 DNA	KEW DNABank	UK	JX903624	JX903214	JX903881	JX903464	
Dietes grandiflora	D.K. Kim 09-021 Fresh	Field work	Korea	JX903625	JX903215	JX903882	JX903465	
Geissorhiza heterostyla	Goldblatt & Manning 9668 DNA	KEW DNABank	UK	JX903626	JX903216	JX903883	JX903466	
Gladiolus illyricus	Chase 9907 DNA	KEW DNABank	UK	JX903627	KimJH,2010	JX903884	JX903467	
Hermodactylus tuberosus	Chase I-76 DNA	KEW DNABank	UK	JX903628	JX903217	JX903885	JX903468	
Iris confusa	D.K. Kim 08-195 Fresh	Field work	Korea	JX903629	JX903218	JX903886	JX903469	
Iris minutaurea	D.K. Kim 08-124 Fresh	Field work	Korea	KimDK,2012	KimDK,2012	JX903878	JX903470	
Iris odaesanensis	S.H. Park 2008 s.n. DNA	KEW DNABank	UK	JX903881	KimDK,2012	JX903888	JX903471	
Iris pseudoacorus	D.K. Kim 09-055 Fresh	Field work	Korea	KimDK,2012	KimDK,2012	JX903889	JX903472	
Iris rossii	D.K. Kim 05-048 Fresh	Field work	Korea	KimJH,2010	KimJH,2010	JX903890	JX903473	
Iris sanguinea	D.K. Kim 08-056 Fresh	Field work	Korea	KimDK,2012	KimDK,2012	JX903891	JX903474	
Isophysis tasmanica	J. Bruhl, TAS DNA	KEW DNABank	UK	JX903630	JX903219	JX903892	JX903475	
Family/Tribe Taxa	Vouchers	source type	Source (Institution)	Country	matK	rbcL	atpB	ndhF
-------------------	----------	-------------	----------------------	---------	------	------	------	------
Moraea riparia	Goldblatt & Porter 12130	DNA	KEW DNABank UK	JX903631	JX903220	JX903893	JX903476	
Neomarica northiana	Solomon 6950	DNA	KEW DNABank UK	JX903632	JX903221	JX903894	JX903477	
Nivenia stokoei	KEW 1223	DNA	KEW DNABank UK	JX903633	JX903222	JX903895	JX903478	
Pilimania templemanii	Bean s.n.	DNA	KEW DNABank UK	JX903634	JX903223	JX903896	JX903479	
Romulea bulbocodium	Chase 21504	DNA	KEW DNABank UK	JX903635	JX903224	JX903897	JX9034780	
Sisyrinchium palmifolium	Chase 16458	DNA	KEW DNABank UK	JX903636	JX903225	JX903898	JX9034781	
Solenomelus segthii	Chase 19213	DNA	KEW DNABank UK	JX903637	JX903226	JX903899	JX9034782	
Thereanthus racemosus	KEW 1-224	DNA	KEW DNABank UK	JX903638	*AJ309663	JX903900	JX9034783	
Tigridera immaculata	Rodriguez et al, 2832	DNA	KEW DNABank UK	JX903639	JX903227	JX903901	JX9034784	
Trimedia martincensis	Chase 15941	DNA	KEW DNABank UK	JX903640	JX903228	JX903902	JX9034785	
Watsonia angusta	Goldblatt 6904	DNA	KEW DNABank UK	JX903641	JX903229	JX903903	JX9034786	
Tecophilaeaceae	Conanthera bifolia	Chase 13821	DNA	KEW DNABank UK	JX903646	JX903230	JX903916	JX903479
Cyanella orchidiformis	Chase 5896	DNA	KEW DNABank UK	JX903647	JX903231	JX903918	JX903499	
Odontostomum hartwegii	Chase 491	DNA	KEW DNABank UK	JX903648	JX903232	JX903919	JX903500	
Tecophilaeaceae	walleria gracilis	Forest & Manning 542	DNA	KEW DNABank UK	JX903649	JX903233	JX903920	JX903501
Zephyra elegans	Chase 1575	DNA	KEW DNABank UK	JX903650	JX903234	JX903921	JX903502	
Ixoliaceae	Ixolirion tataricum	Chase 489	DNA	KEW DNABank UK	JX903651	JX903235	JX903922	JX903503
Doryanthaceae	Doryanthus excelsa	Chase 188	DNA	KEW DNABank UK	JX903652	JX903236	JX903923	JX903504
Doryanthus palmeri	Chase 19153	DNA	KEW DNABank UK	JX903653	JX903237	JX903924	JX903505	
Astelioid	Hypoxideaceae	Curculigo capitulata	S.W. Lee 05-001 Fresh	Kunming Botanic Garden	China	Kim,H,2010	Kim,H,2010	JX903545
Curculigo capitulata	Chase 3848	DNA	KEW DNABank UK	JX903654	JX903238	JX903925	JX903506	
Hypoxis hemerocallidea	Chase 3848	DNA	KEW DNABank UK	JX903655	JX903239	JX903926	JX903507	
Hypoxis villosa	D.K. Kim 09-025 Fresh	Field work	Korea	JX903656	JX903240	JX903927	JX903508	
Molineria capitulata	Chase 1292	DNA	KEW DNABank UK	JX903657	JX903241	JX903928	JX903509	
Pauridia longituba	D. Snijman 1440 WBG	DNA	KEW DNABank UK	JX903658	JX903242	JX903929	JX903510	
Rhodohypoxis baurii	Chase 16460	DNA	KEW DNABank UK	JX903659	JX903243	JX903930	JX903511	
Rhodohypoxis milloides	Chase 479	DNA	KEW DNABank UK	JX903660	JX903244	JX903931	JX903512	
Spiloxene serrata	Manning and Reeves JM&GR 2846	DNA	KEW DNABank UK	JX903661	JX903245	JX903932	JX903513	
Lanariaceae	Lanaria lanata	Goldblatt & Manning 9410	DNA	KEW DNABank UK	JX903662	JX903246	JX903933	JX903514
Asteliaceae	Astelia alpina	Chase 1103	DNA	KEW DNABank UK	JX903663	JX903247	JX903934	JX903515
Milligania stylosa	Chase 511	DNA	KEW DNABank UK	JX903664	JX903248	JX903935	JX903516	
Blandfordiaceae	Blandfordia cunninghamii	R. Johnstone 2345 & A.E. Orme	DNA	KEW DNABank UK	JX903665	JX903249	JX903936	JX903517
Blandfordia grandiflora	A.E. Orme 583 & S. Turpin	DNA	KEW DNABank UK	JX903666	JX903250	JX903937	JX903518	
Family/Taxa	Vouchers	source type	Source (Institution)	Country	matK	rbcL	atpB	ndhF
---------------------------	----------------	-------------	----------------------	---------	----------	----------	---------	---------
Blandfordia punicea	Chase 519	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903854	JX903438
Boryaceae								
Borya septentrionalis	Chase 2205	DNA	KEW DNABank	UK	KimJH,2010	KimJH,2010	JX903855	JX903439
Orchidaceae								
Apostasia wallichii	Chase 15744	DNA	KEW DNABank	UK	KimJH,2010	JX903642	JX903906	JX903489
Calanthe discolor	D.K. Kim 05-035	Fresh	Field work	Korea	KimJH,2010	JX903907	JX903490	JX903490
Cephalanthera erecta	D.K. Kim 08-048	Fresh	Field work	Korea	KimDK,2012	JX903908	JX903491	JX903491
Cephalanthera falcata	D.K. Kim 08-110	Fresh	Field work	Korea	KimDK,2012	JX903909	JX903492	JX903492
Cephalanthera longibracteata	D.K. Kim 05-016	Fresh	Field work	Korea	KimJH,2010	JX903910	JX903493	JX903493
Coelogynhe sp.	T.B. Tran T-37	Fresh	IEBR	Vietnam	KimDK,2012	JX903643	*AF074133	*AY147777
Cymbidium goeringii	D.K. Kim 08-028	Fresh	Field work	Korea	KimDK,2012	JX903912	JX903494	JX903494
Cypridium calceolus	Chase 9484	DNA	KEW DNABank	UK	KimJH,2010	JX903913	JX903495	JX903495
Dendrobium acinaciforme	T.B. Tran TN-32	Fresh	IEBR	Vietnam	JX903644	*FJ216578	JX903914	*U20534
Epipactis thunbergii	D.K. Kim 08-030	Fresh	Field work	Korea	JX903645	JX903915	JX903496	JX903496
Orchis rotundifolia								
Commelinidae								
Commelininaceae								
Commelina communis	D.K. Kim 07-006	Fresh	Field work	Korea	JX903665	JX903248	JX903938	JX903519
Arecales								
Areaceae								
Areca triandra	AHBLoo 301	DNA	KEW DNABank	UK	*AM114664	JX903249	JX903939	*AY044535
Arenga hastata	Chase 18928	DNA	KEW DNABank	UK	JX903666	JX903250	JX903940	JX903520
Astrocaryum mexicanum	Chase 21299	DNA	KEW DNABank	UK	JX903667	JX903251	JX903941	JX903521
Butia capitata	Chase 21298	DNA	KEW DNABank	UK	JX903668	JX903252	JX903942	JX903522
Calamus castaneus	Baker 507	DNA	KEW DNABank	UK	JX903669	*M81810	JX903943	JX903523
Nypa fruticans	Chase 12603	DNA	KEW DNABank	UK	JX903670	JX903253	JX903944	JX903524
Phoenix dactylifera	Barrow 77	DNA	KEW DNABank	UK	JX903671	JX903254	JX903945	JX903525
Ravenea sambiranensis	Chase 18152	DNA	KEW DNABank	UK	JX903672	JX903255	JX903946	*EF128297
Trachycarpus martianus	Chase 30849	DNA	KEW DNABank	UK	JX903673	JX903256	JX903947	JX903526
Zingiberales								
Cannaceae								
Canna indica	D.K. Kim 08-190	Fresh	Field work	Korea	JX903674	JX903257	JX903948	JX903527
Costaceae								
Costus woodsonii	Chase 3911	DNA	KEW DNABank	UK	JX903675	*AF243510	JX903949	JX903528
Zingiberaceae								
Roscoea cauticoides	Chase 19223	DNA	KEW DNABank	UK	JX903676	JX903258	JX903950	JX903529
Zingiber mioga	D.K. Kim 08-069	Fresh	Field work	Korea	*GU180405	*AF243850	JX903951	JX903530
Poales								
Juncaceae								
Juncus effusus	D.K. Kim 09-078	Fresh	Field work	Korea	JX903677	*L12681	*AJ235509	*AF547015
Poaceae								
Phragmites australis								
Typhaceae								
Typha orientalis	D.K. Kim 09-011	Fresh	Field work	Korea	JX903678	JX903259	JX903952	JX903531
Liliaceae								
Colchicaceae								
Disporum sessile	D.K. Kim 04-076	Fresh	Field work	Korea	JX903651	JX903235	JX903925	JX903506
Disporum smithianum	D.K. Kim 04-054	Fresh	Field work	Korea	JX903652	JX903236	JX903926	JX903507
Our estimated divergence time for the families in Asparagales is much younger than previously suggested by Janssen and Bremer [31], in which most families were indicated to be older than ca. 90 Ma. Orchidaceae is the largest and one of the ecologically and morphologically most diverse families of flowering plants [62]. Our results indicated that the most recent common ancestor of extant orchids lived in the Late Cretaceous (54–82 Ma), slightly overlapping the estimated age (76–84 Ma) based on the discovery of the first unambiguous fossil of Orchidaceae and a pollinator in amber [61]. Moreover, adding two newly described orchid fossils [63], Gustafsson et al. [64] reassessed the data and reported that all extant orchids shared a most recent common ancestor in the Late Cretaceous (ca. 77 Ma), suggesting that the diversification of orchids occurred in a period of global cooling after the early Eocene climatic optimum.

Iridaceae, with over 2,030 species in 65–75 genera, is the second largest family of Asparagales [65]. Based on plastid sequences and molecular clock techniques, Goldblatt et al. [65] inferred that Iridaceae diverged from the most closely related family, Doranthaceae, ca. 82 Ma and that the crown group of the family diverged in the late Cretaceous ca. 66 Ma. The divergence of the stem group was dated to ca. 75 Ma and crown group to ca. 58 Ma. Goldblatt et al. [65] used a secondary date for the calibration point of the root node of Iridaceae, and this was suggested not to be ideal.

The split between core Asparagales and the remaining families is estimated after the K/T boundary. Furthermore, our molecular phylogenetic analyses suggest multiple rapid radiations have inferred throughout the diversification of major groups of Asparagales. For example, the largest orchid subfamilies diversification occur in a period of global cooling [64] and the possible radiation of lineages of Nolinoideae revealed from this study.

The fossil record of Asparagales is comparatively poor, with few fossils attributable to families reaching back beyond the Late Cretaceous, perhaps because of the herbaceous habit and widespread zoophilous pollination [66]. The use of more fossils with more sophisticated prior distribution affords exciting opportunities for

Table 1. Cont.

Family/Tribe Taxa	Vouchers	source type	Source (Institution)	Country	matK	rbcL	atpB	ndhF	
Disporum uniflorum	D.K. Kim 04-089	Fresh	Field work	Korea	JX903653	JX903237	JX903927	JX903508	
Lilium distichum	D.K. Kim 05-046	Fresh	Field work	Korea	JX903654	JX903238	JX903928	JX903509	
Lilium hansonii	D.K. Kim 05-026	Fresh	Field work	Korea	JX903655	JX903239	JX903929	JX903510	
Lilium tsingtauense	D.K. Kim 05-176	Fresh	Field work	Korea	JX903656	JX903240	JX903930	JX903511	
Luzuriagaceae	Drymophila moorei	R. Coveny et al., 6377	Fresh	Field work	Korea	JX903657	JX903241	JX903931	JX903512
Melanthiaceae	Chionographis japonica	D.K. Kim 04-115	Fresh	Field work	Korea	JX903658	JX903242	JX903932	JX903513
Heloniopsis orientalis	D.K. Kim 06-058	Fresh	Field work	Korea	JX903659	JX903243	JX903933	JX903514	
Veratrum maackii var. japonicum	D.K. Kim 06-129	Fresh	Field work	Korea	JX903660	JX903244	JX903934	JX903515	
Smilacaceae	Smilax china	D.K. Kim 04-096	Fresh	Field work	Korea	JX903661	JX903245	JX903935	JX903516
Smilax riparia var. ussurensis	D.K. Kim 04-187	Fresh	Field work	Korea	JX903662	JX903246	JX903936	JX903517	

Orders and families circumscriptions are as in APG III (2009) and Chase et al. (2009). The vouchers of all species studied were housed in source of institution.

KimJH, 2010: KIM, J. H., D. K. KIM, F. FOREST, M. F. FAY, AND M. W. CHASE. 2010. Molecular phylogenetics of Ruscaceae sensu lato and related families (Asparagales) based on plastid and nuclear DNA sequences. Annals of Botany 106: 775-790.

KimDK, 2012: KIM, D.K., J.S.Kim, J.H.Kim. 2012. The Phylogenetic Relationships of Asparagales in Korea Based on Five Plastid DNA Regions. Journal of Plant Biology 55: 325-341.

doi:10.1371/journal.pone.0059472.t001

Table 2. Statistics for the four genes analysed in this study.

Characters	atpB	matK	ndhF	rbcL	Combined
Aligned (bp)	1472	1820	2234	1336	6862
Included (bp)	1431	1819	2163	1286	6699
Parsimony uninformative	144	216	298	144	767
Parsimony informative	499	1123	1160	437	3122
Constant	829	481	776	755	2810
Transition/Transversion	2.58	1.72	2.57	3.16	2.18
G+C (%)	42.5	31.8	37.2	35.4	38.2
Tree length	26510	8275	7192	3269	24168
CI	0.248	0.295	0.275	0.258	0.272
RI	0.713	0.766	0.755	0.735	0.747
Variant rate (%)	33.9	61.7	34.7	32.7	45.5

doi:10.1371/journal.pone.0059472.t002
The taxa used for this study included 253 species of 201 genera representing all families in Asparagales [20]. In addition, 29 species representatives of Arecales, Zingiberales, Commelinales, Poales, Liliales and Pandanales were included, with two species of Pandanales as the nominated outgroup. The plant material used was either fresh or dried, collected from the field and dried, taken from specimens in herbaria, from the DNA Bank of the Royal Botanic Gardens, Kew (http://data.kew.org/dnabank/DnaBankForm.html) or the Medicinal Plant Resources Bank of the Korea National Research Resource Centre (KNRRC) at Gachon University (for details, see Table 1). All necessary permissions and approvals for the described plant and specimen sampling were obtained from the respective curators, i.e. RBG Kew Gardens (Dr. M. W. Chase), Kunming Botanic Garden (MOU), Ivana Franka Botanic Garden (MOU), Australia Royal Botanic Garden (MOU), KEW DNA Bank. Voucher specimens of the taxa were prepared; source, voucher information and database accession numbers are listed in Table 1.

DNA Extraction and Polymerase Chain Reaction Sequencing

Total genomic DNA was extracted from 0.5–1.0 g fresh or silica gel-dried leaves using the 2× CTAB buffer method [67]. Lipids were removed with SEVAG solution (24:1 chloroform:isoamyl alcohol), and DNA was precipitated with isopropanol at −20°C.
Total extracted DNA was dissolved in 1× TE buffer and stored at −70°C. The ATPB gene was amplified using the primers and protocols of White et al. [60], Nickrent and Soltis [69] and Soltis and Soltis [70]. The matK gene was amplified with the primers and protocols of Johnson and Soltis [71] and Hiu et al. [25]; ndhF was amplified with the primers reported by Terry et al. [72] and Olmstead et al. [73]; and rbcL was amplified with the primers and protocols of Olmstead et al. [74], Shinwari et al. [75] and Fay and Chase [76]. Amplifications were carried out in 50-μl reactions containing 2 units Taq DNA polymerase, 5 μL 10× reaction buffer (100 mM Tris-HCl, 500 mM KCl, 15 mM MgCl2), 2.5 mM dNTPs, and 5 pmol μL−1 forward and reverse primers using a Perkin-Elmer 9700 (Applied Biosystems, ABI, Beverly, MA, USA). Dimethyl sulphoxide (DMSO; 2%) was added to reduce the secondary structure in the polymerase chain reaction (PCR). PCR conditions consisted of an initial denaturation at 94°C for 2 min, followed by 30–35 cycles at 94°C for 1 min, 50°C–55°C for 1 min and 72°C for 3 min, followed by a final 7-min extension at 72°C. All PCR products were purified using ExoSAP-IT (USB Corporation, Cleveland, OH, USA), according to the manufacturer’s protocols. Dideoxy cycle sequencing was performed using the chain-termination method and an ABI Prism BigDye Reaction Kit (ver. 3.1) in accordance with the manufacturer’s protocols. Products were run on an ABI 3700 Genetic Analyser according to the manufacturer’s protocols. Sequence editing and assembly of contigs were carried out using the Sequence Navigator and AutoAssembler software (ABI).

Sequence Alignment

All sequences were aligned initially in MUSCLE [77] and MacClade (ver. 4.0) [78] and then adjusted manually following the guidelines of Kelchner [79]. Manual alignment of rbcL and ATPB was accomplished easily because no insertions/deletions occurred for rbcL and they were rare for ATPB. In contrast, matK and ndhF were subject to length variation. These two genes were aligned and further edited manually by deleting small sections in which the homology of characters across taxa could not be determined with confidence. In total, the combined alignment was 6,699 characters in length (Table 2). The aligned matrix has been submitted as Appendix S1.

Neighbour Net

Neighbour nets have the attractive property of always being represented in the plane through a circular ordering of the taxa. Although closely related to split decomposition [80], for larger datasets, the neighbour-net method often provides better resolution than split decomposition due to the criterion used to calculate support for relationships among taxa [9]. To construct neighbour nets, the default settings in SplitsTree4 [81] were used, applying uncorrected P distances with gaps and ambiguous sites coded as missing data. Bootstrap support for internal splits, which define clusters, was calculated with 1,000 replicates.

Parsimony Analysis

PAUP* ver. 4.10b for Macintosh [82] was used for parsimony analysis. Tree searches were conducted using the Fitch (equal weight, EW) [83] criterion with 1,000 random sequence additions and tree bisection/reconnection (TBR) branch swapping, but permitting only five trees to be held at each step to reduce the time spent searching suboptimal “islands” of trees. All shortest trees collected in the 1,000 replicates were swapped on to completion without a tree limit. DELTRAN character optimisation was used to illustrate branch length throughout. To evaluate internal support, 1,000 bootstrap replicates were conducted with equal weights (EW) and successive approximation weights (SW; [84]), and TBR branch swapping with five trees held at each step and simple taxon addition [85]. The following descriptions for categories of bootstrap percentages were used: weak, ≤ 74; moderate, 75–88; well supported, 85–100 [14].

Bayesian Analysis

Further phylogenetic analyses were performed using BI as implemented in MrBayes ver. 3.12 [86]. PAUP* ver. 4.10b and MrModeltest ver. 2.2 [87] were used to determine the best model of DNA substitution for each partition by evaluating all models against defaults of the programme. The GTR+G model (a general time-reversible model with a proportion of invariable sites and a gamma-shaped distribution of rates across sites) was chosen as the best-fit substitution model in all four partitions. Consequently, the combined data matrix was assigned a model of six substitution types (α = 6) with a proportion of invariable sites. Four simultaneous Markov chain Monte Carlo (MCMC) chains were run for 1 × 10⁷ generations and sampled every 1,000 generations, and the first 25% sampled trees were excluded as burn-in. Post-burn-in samples of trees were used to construct a 50% majority rule consensus cladogram in PAUP* ver. 4.10b. The proportions of bifurcations found in this consensus tree are given as posterior clade probabilities (PPs). Bayesian analysis was performed twice to ensure convergence of the results.

Molecular Dating and Fossil Calibration

We used the combined dataset to estimate the age of origin of Asparagales using the programmes PATHd8 [34] and BEAST v1.7.4 [35,88]. The phylogenetic trees were constructed using MP with PAUP*4.0. The branch lengths on this tree were estimated using DELTRAN optimisation. We used the mean path length method of the PATHd8 programme. The MLE clock tests were used to test the molecular clock. The PATHd8 programme requires at least one reference point to be fixed. We used the oldest monocot fossil estimate of 120 Ma [89] as the fixed crown age of the root to calibrate the clock. BEAST v1.7.4 was also used to estimate the divergence times using multiple calibration points and a relaxed molecular clock approach. The BEAUti interface was used to create input files for BEAST with the tree priors set as follows: 1) age for the most recent common ancestor (MRCA) of extant Asparagales: exponential distribution with a mean of 2.0 and an offset 93 Ma that equalled the minimum age of the fossil (see discussion in [61], labelled # in Figure 3); 2) age for the MRCA of Zingiberales: exponential distribution with a mean of 2.0 and an offset 83.5 Ma which equalled the minimum age of the fossil (see [36,90], labelled # in Figure 3); 3) age for the root of the tree (The upper age constraint of 120 Ma for the calibrations above corresponds to the oldest known monocot fossil [89]; normal prior distribution with mean 106.5 Ma and standard deviation of 5.5 (giving a 95% CI ranging from 93–120 Ma, labelled # in Figure 3).

The general time-reversible (GTR+G) nucleotide-substitution model was used for the molecular clock model and Yule Process was chosen as speciation process for data set. Several short BEAST runs were first performed to examine the performance of the MCMC. After optimal operator adjustment, as suggested by the output diagnostics, three final BEAST runs each containing 10,000,000 generations were performed, and a tree was saved every 1,000 generations. All resulting trees were then combined with LogCombiner v1.7.4 [35], with a burn-in of ca. 45%. Log files were analysed with Tracer v1.5 [91], to assess convergence and confirm that the combined effective sample sizes for all parameters were enough. A maximum credibility tree was then
produced using TrecAnnotator v1.7.4 [35,88]. These were visualised using FigTree v.1.3.1 with means and 95% HPDs of age estimates. An XML file for analyses has been submitted as Appendix S2.

Supporting Information

Appendix S1 The aligned data matrix in this study (Nexus).

Appendix S2 The XML file used for divergence time estimates in BEAST analysis.

References

1. Darwin C (1859) On the origin of species. London, UK: Murray.
2. O’Hara RJ (1997) Population thinking and tree thinking in systematics. Oxford, UK: Oxford University Press.
3. Harvey PH, Pagel M (1991) The comparative method in evolutionary biology. Oxford, UK: Oxford University Press.
4. Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: Testing hypotheses in an evolutionary context. Science 276: 227–229.
5. Felsenstein J (2004) Inferring phylogenies. Sunderland, Massachusetts: Sinauer Associates.
6. Morrison DA (2010) Using Data-Display Networks for Exploratory Data Analysis in Phylogenetic Studies. Molecular Biology and Evolution 27: 1044–1057.
7. Nakhlé H (2010) Evolutionary phylogenetic networks: models and issues. Problem Solving Handbook in Computational Biology and Bioinformatics.; Heath L, Balakrishnan N, editors. New York, USA: Springer, New York Inc. 125–130 p.
8. Huson DH, Rupp R, Berry V, Gambette P, Paul C (2009) Computing galled networks from real data. Bioinformatics 25: i85–i93.
9. Bryant D, Moulton V (2004) Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution 21: 255–263.
10. Saitou N, Nei M (1987) The neighbor-joining method: a new method for non-hierarchical clustering. Journal of Molecular Biology 165: 107–119.
11. Chase MW, Davulli MR, Hills HZ, Cowan JC, Cox AV, et al. (1995) Molecular phylogenetic of Lilianae. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ, editors. Monocotyledons: systematics and evolution. Richmond: Royal Botanic Gardens. Kew: 109–137.
12. Chase MW, Stevenson DW, Wilkin P, Rudall PJ (1995) Monocots systematics: a combined analysis. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ, editors. Monocotyledons: systematics and evolution. Richmond: Royal Botanic Gardens. Kew: 685–729.
13. Chase MW, Solis DE, Solis PS, Rudall PJ, Fay MF, et al. (2000) Higher-level systematics of the monocots: an assessment of current knowledge and a new classification. In: Wilson KL, Morrison DA, editors. Monocots: Systematics and evolution. Melbourne, Australia: CSIRO. 5–16.
14. Chase MW, De Brujin AV, Cox AV, Reeves C, Rudall PJ, et al. (2000) Phylogenetics of Asphodelaceae (Asparagales): An analysis of plastid rbcL and trnL-F DNA sequences. Annals of Botany 86: 935–951.
15. Chase MW, Fay MF, Devey DS, Maurin O, Rosnedt M, et al. (2006) Multigene analyses of monocot relationships: A summary. Aliso 22: 63–75.
16. Chase MW, Reveal JL (2009) A phylogenetic classification of the land plants to accompany APG III. Botanical Journal of the Linnean Society 161: 122–127.
17. Pires JC, Maureira IJ, Givnish TJ, Sytsma KJ (2006) Phylogeny, genome size, and chromosome evolution of Asparagales. In: Columbus JT, Friar EA, Hamilton CW, Porter JM, Prince LM, Simpson MG eds. Monocots: Botanic Garden. Richmond. 685–730.
18. Pires JC, Maureira IJ, Givnish TJ, Sytsma KJ (2006) Robust inference of monocot deep phylogeny using an expanded reagents/materials/analysis tools: JHK DKK MWC. Wrote the paper: SC Conceived and designed the experiments: JWK MWC. Performed the experiments: DKK JWK. Analyzed the data: SC DKK. Contributed

Acknowledgments

We thank three anonymous reviewers for valuable comments. Some results described in this paper were obtained from the ScGrid Supercomputing Centre, Computer Network Information Centre of the Chinese Academy of Sciences.

Author Contributions

Conceived and designed the experiments: JWK MWC.Performed the experiments: DKK JWK. Analyzed the data: SC DKK. Contributed reagents/materials/analysis tools: JHK DKK MWC. Wrote the paper: SC JHK DKK MWC.
