Research Article

Location Allocation Collaborative Optimization of Emergency Temporary Distribution Center under Uncertainties

Xiangyang Ren and Juan Tan

School of Management Engineering and Business, Hebei University of Engineering, Handan 056038, China

Correspondence should be addressed to Xiangyang Ren; boyrenxy@126.com

Received 1 January 2022; Revised 6 February 2022; Accepted 18 February 2022; Published 19 March 2022

Academic Editor: Huajun Tang

Copyright © 2022 Xiangyang Ren and Juan Tan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Emergencies cause uncertainty in supply chain environment and risks of disruption. Mitigating such risks in emergency supply chain relies on efficient relief material distribution, and in the distribution logistics system, emergency facility location interacts with material allocation clearly. This paper aims to provide a collaborative optimization for the location allocation of temporary emergency distribution centers, with objectives of minimizing rescue time and maximizing demand satisfaction rate. A location allocation model of emergency logistics is formulated by considering uncertain demand and supply information at the response stage of disaster relief. The model is solved by a plant growth simulation algorithm. At last, the feasibility and effectiveness of the model and algorithm in practical application are verified by evaluating a case of COVID-19 prevention and control in Handan city. This paper provides references for decision makers to accomplish the location allocation of emergency facilities and material distribution when dealing with actual situations.

1. Introduction

Situations like emergency events such as a natural calamity or epidemic strike with no warning lead to a large degree of uncertainty in the supply chain environment such as a dramatic rise in the demand of emergency supplies. Such cases are often followed by supply shortage and risk of supply chain disruption. Therefore, implementing an efficient distribution plan of limited supplies to the affected areas by the local authority is critical in reducing morbidity and mortality [1]. The key decisions in setting up such a distribution plan include the number and locations of the distribution centers to be opened and the supplies and demand points assigned to each location [2].

While planning for an emergency scenario, facility location combining material allocation simultaneously optimizes supply chain and guarantees timely material delivery [3]. There exists an amount of literature on facility location allocation problems dealing with a response to an emergency. Sherali et al. proposed a nonlinear mixed-integer programming model; the model selected a set of candidate shelters from given admissible alternatives with available resources and presented an evacuation plan with an objective of minimizing the total congestion-related evacuation time; a heuristic and an exact implicit enumeration algorithm were developed to solve the model [4]. Wei et al. designed an assignment system to support vehicles from candidate locations to deliver relief supplies to disaster-affected areas; the aim of this system was to find transfer depots to open, number of vehicles to use, and relief materials to supply; a hybrid ant colony optimization algorithm was used to identify the approximate Pareto frontier [5]. Panchalee et al. considered a shelter location-allocation problem responding to humanitarian relief logistics; objectives were set to minimize total costs, minimize total rescue time, and minimize the number of shelters required, in order to solve the problem. The epsilon constraint (EC) method and goal programming (GP) were employed [6]. Wang and Ma presented a dual objective mixed integer nonlinear programming (MINLP) model to analyze logistics center location and material allocation in urban emergency
logistics systems, and a genetic algorithm was applied to
obtain Pareto optimal solution [7].

The above literature studies have made beneficial ex-
plorations in the characteristics, system, model design, and
solution algorithm of emergency logistics location, respec-
tively. But these studies locate the emergency problem as a
deterministic problem and do not take into account the
various uncertainties contained in the emergency problem.
Disasters no matter natural or artificial are characterized by
uncertainty and unpredictability [8]; therefore, it is more
practical to consider uncertainties in the optimization of
emergency location allocation problems. Methods often
applied to address uncertainties in emergency response
problems are stochastic programming, fuzzy theory, and
robust optimization. Stochastic programming takes uncer-
tain parameters as known probability distribution functions
based on statistical results [9]. Sanci and Daskin proposed a
two-stage stochastic programming model, which not only
considered the facility location but also the location of
restoration equipment; relief item distribution was carried out
jointly, uncertainty was captured by incorporating repair times
needed to restore the damaged roads, and a sample average
approximation method was developed to solve this integrated
model [10]. Based on managerial experience and judgment, the
fuzzy theory uses a fuzzy set to incorporate imprecise infor-
mand in a nonprobabilistic sense [11]. By assuming fuzzy
demands of emergency supplies, Wang et al. established a fuzzy
multiobjective optimization model to solve the vehicle-heli-
copter joint routing problem [12]. Robust optimization comes
from robust control theory and can be regarded as a supple-
ment of stochastic optimization and sensitivity analysis, which
is not necessary to know the probability distribution of un-
certain parameters [13]. Sun et al. proposed a biobjective robust
optimization model to decide the facility location, emergency
resource allocation, and casualty transportation plans in a
three-level chain. The model considered various uncertainties
in demand and was solved with the epsilon-constraint method [14].

While there exist lots of literature studies in the area of
location allocation of emergency logistics, there have not
been many papers considering the uncertainty of both
supply and demand simultaneously. What is more, most
models do not strictly distinguish emergency facilities as
prepositioned or temporary. In this paper, we extend the
model in work [7] to a model associated with fuzzy demand
and stochastic scarce supply.

The structural arrangement of this paper is as follows:
Section 2 introduces the location allocation model of
emergency temporary distribution center, Section 3 dis-
cusses the solution approach, Section 4 presents a case study
and the result of model solution, and Section 5 gives the
research conclusions of this paper.

2. Location Allocation Model of Emergency
Temporary Distribution
Center under Uncertainties

2.1. Problem Description. This paper focuses on the emer-
gency response phase. In this phase, the local authority
deploys emergency services to protect people and reduce
damages within disaster areas. Because the needed
relief products are not available locally, those materials
have to be dispatched from the production place to the
demand points. As there are various relief products from
different factories, distribution centers are re-
quired to serve as transit points. Although emergency
demand is usually supplied through the allocation of
resources at prepositioned facilities, prepositioned
facilities with limited coverage may not be able to meet
the requirements of affected areas by costing longer
travel time and additional funds. In such a case,
temporary distribution centers located close to de-
mand points can transship relief resources and de-
crease response time [15]. Constraints in this kind of
emergency setting are insufficient and face uncertain
supply and difficulty in estimating the emergency
demand.

Based on this particular context, significant related de-
cisions are to be made as follows:

1. the number and the position of temporary distribu-
tion centers
2. demand points assigned to each temporary distribu-
tion center and supply quality delivered to each
demand point

In order to solve the above problems, this paper extends
the mixed integer nonlinear programming (MINLP) model
in this work [7]. Two objectives of the MINLP model are
minimum total rescue time and maximum satisfaction rate
of relief demand.

The following assumptions are put forward before
constructing the model:

1. Different transportation modes are not considered;
single accessible road transportation is used in this
paper.
2. The centroid of each demand region, representing
the demand points, that is demand zones are ag-
eggregated into demand points; various needed rescue
resources are grouped into generic humanitarian
functions.
3. Working time limit and turnover time in distribu-
tion centers are not considered, and there is no
vehicle capacity constraint.

Based on the above problem description, parameter
setting and model formulation are presented in the following
study with improvements of stochastic supply and fuzzy
demand based on work [7].

2.2. Parameter Setting. Parameter settings are shown in
Table 1.

2.3. Multiobjective Model. Based on the above parameters,
the location allocation model of temporary emergency
distribution centers is established as follows:
Maximum distribution radius of the emergency distribution centers

\[r = \max_{i, j} \left(d_{ij} \right) \]

Parameter settings.

Parameter	Definition
\(w_j \)	Weight of material demand point \(j \)
\(A_u \)	Supply capacity of the emergency material supply point \(u \), which is a random variable
\((x_u, y_u)\)	Position coordinate of the emergency material supply point \(u \)
\((x_i, y_i)\)	Position coordinate of the emergency distribution center \(i \)
\((x_j, y_j)\)	Position coordinate of the emergency material demand point \(j \)
\(s_u \)	Distance between material supply point \(u \) and distribution center \(i \)
\(s_{ij} \)	Distance between distribution center \(i \) and material demand point \(j \)
\(v_u \)	Transportation speed between material supply point \(u \) and distribution center \(i \)
\(v_{ij} \)	Transportation speed between distribution center \(i \) and material demand point \(j \)
\(t_u \)	Transportation time between material supply point \(u \) and distribution center \(i \)
\(t_{ij} \)	Transportation time between distribution center \(i \) and material demand point \(j \)
\(c_i \)	Relative size of the emergency distribution center \(i \)
\(E D_j \)	Material demand of emergency material demand point \(j \) which is a triangular fuzzy number
\(h_j \)	Material demand satisfaction rate of material demand point \(j \)
\(Z_i \)	Material reserve capacity of distribution center \(i \)
\(m_{ui} \)	Quantity of emergency materials transported from material supply point \(u \) to distribution center \(i \)
\(m_{ij} \)	Quantity of emergency materials transported from distribution center \(i \) to demand point \(j \)
\(\theta_j \)	Material demand per person of material demand point \(j \)

Decision variable

\[X_i \in \{0, 1\} \quad X_i = 1 \text{ means distribution center set at point } i, \text{ and } X_i = 0 \text{ means distribution center not set at point } i \]

\[W_{ui} \in \{0, 1\} \quad W_{ui} = 1 \text{ means materials shipping from supply point } u \text{ to distribution center } i \]

\[W_{ij} \in \{0, 1\} \quad W_{ij} = 1 \text{ means materials shipping from distribution center } i \text{ to material demand point } j, \text{ and } W_{ij} = 0 \text{ means materials not shipping from distribution center } i \text{ to material demand point } j \]

\[
\min Z_1 = \sum_{i=1}^{l} \sum_{j=1}^{l} t_{ui} W_{ui} + t_{ij} W_{ij}, \quad (1) \\
\sum_{i=1}^{l} W_{ij} = 1, \quad \forall j \in J, \quad (9)
\]

\[
\max Z_2 = \sum_{j=1}^{l} w_j h_j, \quad (2) \\
\sum_{i=1}^{l} W_{ij} m_{ij} \leq E D_j, \quad \forall j \in J, \quad (10)
\]

\[
s_{ui} = \sqrt{(x_i - x_u)^2 + (y_i - y_u)^2}, \quad (3) \\
\sum_{u=1}^{U} X_u m_{ui} = \sum_{j=1}^{l} W_{ij}, \quad \forall i \in I, \quad (11)
\]

\[
s_{ij} = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}, \quad (4) \\
\sum_{j=1}^{l} \sum_{i=1}^{l} W_{ij} m_{ij} = \min \left\{ \sum_{u=1}^{U} \sum_{j=1}^{l} d_j \right\}, \quad W_{ij} \leq X_i, \forall i \in I, j \in J, \quad (12)
\]

\[
t_{ui} = \frac{s_{ui}}{v_{ui}}, \quad (6) \\
W_{ij} \leq X_i, \forall i \in I, j \in J, \quad (13)
\]

\[
t_{ij} = \frac{s_{ij}}{v_{ij}}, \quad (7) \\
\sum_{i=1}^{l} X_i \leq I, \quad (14)
\]

\[
c_i = \frac{\sum_{j=1}^{l} m_{ij}}{\sum_{j=1}^{l} \sum_{j=1}^{l} m_{ij}}, \quad \forall i \in I, \quad (8) \\
P \left(\frac{\sum_{i=1}^{l} m_{ui} - E(A)}{\sqrt{\text{var}(A)}} \leq \frac{A_u - E(A)}{\sqrt{\text{var}(A)}} \right) \geq \alpha, \forall u \in U, \quad (15)
\]
\[s_{ij} \leq r, \forall i \in I, j \in J, \quad (16) \]
\[\sum_{j=1}^{J} X_{i,j} m_{ii} \leq Z_{ij}, \quad \forall i \in I, \quad (17) \]
\[X_{i,j}, W_{ii}, W_{ij} \in \{0, 1\}, \quad \forall i \in I, j \in J, \quad (18) \]
\[m_{ii}, m_{ij} \in R^+, \forall u \in U, \quad \forall i \in I, j \in J. \quad (19) \]

Objective function (1) is to minimize the emergency rescue time, and objective function (2) is to maximize the satisfaction rate of material demand. Constraint (3) calculates the demand satisfaction rate. Constraint (4) is the satisfaction rate of material demand. Constraint (5) is the Euclidean distance from the material supply point \(u \) to the emergency distribution center \(i \), and constraint (6) is the Euclidean distance from emergency distribution center \(i \) to material demand point \(j \). Constraints (7) and (8) calculate the storage capacity limits of the emergency distribution center and the emergency rescue time. Constraint (9) replies that emergency supplies for each demand point are provided by one emergency distribution center only. Constraint (10) indicates that the quantity of emergency supplies provided to each material demand point does not exceed the demand at that demand point. Constraint (11) indicates that the emergency materials received by each emergency distribution center are equal to the number shipped by the emergency distribution center. Constraint (12) shows that if the supply capacity of the material supply point is less than the demand of the material demand point, all the emergency materials shall be transported to the material demand point; otherwise, the emergency rescue materials shall be distributed according to the demand of the emergency demand point. Constraint (13) says that only established emergency distribution centers can deliver emergency supplies to material demand points. Constraint (14) indicates that the number of emergency distribution centers cannot exceed the original upper limit. Constraint (15) indicates that the quantity of emergency supplies provided at each supply point does not exceed its supply capacity; \(P \) represents the probability, and \(\alpha \) is the confidence level of supply. Constraint (16) indicates that the distances between the material demand point and the emergency distribution center do not exceed its maximum distribution radius. Constraint (17) indicates the storage capacity limits of the emergency distribution center. Constraints (18) and (19) represent the types of decision variables and several state variables.

2.4. Model Transformation. Firstly, as \(A_u - E(A)/\sqrt{\text{Var}(A)} \) complies standard normal distribution, the above expression can be further converted as follows:
\[\sum_{i=1}^{I} m_{ii} \leq E(A) + (1 - \alpha)\sqrt{\text{Var}(A)}, \quad \forall u \in U. \quad (20) \]

Secondly, a triangular fuzzy number method [16, 17] is adopted in this paper to estimate the emergency material demand \(\overline{ED}_j \) and it is converted to the determined value by the weighting method, which is
\[\overline{ED}_j = \omega_1 [ED_j]^u + \omega_2 [ED_j]^l + \omega_3 [ED_j]^p. \quad (21) \]

Then, the opposite number of objective function \(Z_2 \) is added to objective function \(Z_1 \), making sure both objectives are the minimum value.
\[\min Z_1 = \sum_{j=1}^{J} t_{ij} W_{ii} + t_{ij} W_{ij} - \sum_{j=1}^{J} w_j h_j. \quad (22) \]

At last, the driving speed of the transport vehicle is assumed to be constant and unchanged; therefore, time can be presented by distance, and expression (22) is updated as follows:
\[\min Z_1 = \sum_{j=1}^{J} s_{ii} W_{ii} + s_{ij} W_{ij} - \sum_{j=1}^{J} w_j h_j. \quad (23) \]

3. Plant Growth Simulation Algorithm (PGSA)

3.1. Principle of PGSA. Literature [18] analyzed the growth mechanism of plants from the perspective of mathematics and established a probabilistic growth model to simulate plant tropism. The main idea can be summarized as follows: after completing the first growth of the initial growth point \(x_0 \), plants are assumed to generate \(k \) growth points with a set of \(SM = \{SM_1, SM_2, \ldots, SM_K\} \); the morphactin concentration at each node \(PM = \{PM_1, PM_2, \ldots, PM_K\} \) is calculated by following formulas:
\[
\begin{align*}
P_{Mi} &= \frac{f(x_0) - f(S_{Mi})}{\sum_{i=1}^{q} f((x_0) - f(S_{Mi})) + \sum_{j=1}^{I} f((x_0) - f(S_{mj}))}, \\
P_{mj} &= \frac{f(x_0) - f(S_{Mi})}{\sum_{i=1}^{q} f((x_0) - f(S_{Mi})) + \sum_{j=1}^{I} f((x_0) - f(S_{mj}))},
\end{align*}
\]
\[\sum_{i=1}^{I} \sum_{j=1}^{J} (P_{Mi} + P_{mj}) = 1. \quad (25) \]

Once the morphactin concentration \(PM = \{PM_1, PM_2, \ldots, PM_K\} \) is determined, the growth point for the next growth can be selected by certain principles. Depending on the tropism, the closer the growth point is to the light source, the greater the probability selected. The morphactin concentration of the \((k + 1)\) growth points constitutes the growth space; the random numbers within \([0,1]\) are systematically generated, and then the growth point corresponding to the random values is chosen as the next growth point. The higher the concentration of morphactin, the greater the probability of being selected. The previously selected growth points will be eliminated from the growth
point set SM. Then, the plant continues to grow new branches, which become new growth points and are added to set PM. Repeating this process, the plant growth model can cover the entire growth space and obtain the optimal solution.

3.2. Algorithm Steps. The specific algorithm steps of the location allocation problem of emergency distribution center are as follows:

Step 1. Determine an initial solution \(x_0 \), \(X_{\text{min}} = x_0 \). To improve the quality of the initial solution, ensure its generality and make it close to the optimal solution as much as possible; it can be generated randomly by the greedy method. Set step size \(\lambda \), calculate the optimal value function \(F_{\text{min}} = f(x_0) \), and set the maximum number of iterations and the frequency of solution repetitions.

Step 2. Take \(x_0 \) as the initial state, grow new growth points in \(2n \) directions, respectively, according to the step size set in step 1 and calculate the function value of each growth point.

Step 3. Select the growth points which are better than the initial value, calculate their morphogen concentration, and retain the best growth point.

Step 4. Establish the probability space between \([0,1]\) and use the random number generated by computer to select the growth point of the next growth.

Step 5. If no new branches are generated when the optimal value appears repeatedly to the set frequency or the number of loop iterations reaches the set maximum number of iterations, the growth process ends; otherwise, return to step 3.

The flowchart of the above steps is shown in Figure 1.

4. Case Study

4.1. Case Description. This paper takes the COVID-19 prevention and control of Handan city which was affected by the epidemic in Shijiazhuang in early 2021 as an example to verify the effectiveness of the model and solution algorithm. Eighteen districts and counties in Handan are taken as 18 material demand points \(j \) \((j = 1, 2, 3, \ldots, 18)\). By hypothetical conditions, material demand is aggregated in the seats of each district or county government. The weight of each material demand point is determined by the population proportion, and material demand is vaguely uncertain which is estimated by triangular fuzzy number by the population distribution and degree of disaster. According to the most likely value method proposed by Pishvae et al. [19], \(\omega_1 = \omega_3 = 1/6, \omega_2 = 4/6 \) are taken, the estimated demand is calculated by equation (21). The parameters of each demand point are shown in Table 2. The geographical coordinates of the two supply points \(u(i = 1, 2) \) are \((113.42, 36.32)\) and \((115.76, 36.65)\), respectively, and the available supply capacity at the first assignment of emergency response corresponds to normal distribution \(N(3900, 502) \) and \(N(4050, 702) \), respectively, and \(\alpha \) is set as 0.01. According to the existing logistics service system in Handan city, decision makers need to select the appropriate number of sites from 6 candidate commercial logistics distribution centers \(i(i = 1, 2, 3, 4, 5, 6) \) as temporary emergency distribution centers or temporary transit points. The parameters of 6 candidate sites are shown in Table 3.

Population data come from the Seventh National Census Bulletin of Hebei Province (No.2).
4.2. Test Results. Since the decision variables are 0-1 variable, step size is set as $\lambda = 1$, maximum number of iterations as 50, and the frequency of solution repetitions as 3. As there are 6 candidate locations and 18 demand points in this study case, the decision variables are designed as Boolean vectors in the iterative process of PGSA. $X = (x_1, x_2, \ldots, x_6)$ indicates whether to open a candidate distribution center; element value of 1 is open while 0 is not. Similarly, W_{ij} decides which demand point the selected distribution center is to serve. $W_{ij} = 1$ indicates that distribution center i serves demand point j, while $W_{ij} = 0$ means not. Table 4 presents the iterative process of the optimal solution of opening 3 distribution centers calculated by MATLAB software.

In order to illustrate the solution quality produced by PGSA, a comparison between PGSA and genetic algorithm (GA) is presented in Table 5.

According to the iterative process of PGSA described above, the optimal solutions of other distribution centers can be obtained in the same way. A comparison of test results with different number of opening distribution centers is presented in Table 6 and Figure 2.

As shown in Table 6 and Figure 2, when opening 3 temporary distribution centers, the objective function reaches the optimal value of 6.0748. The total shortest rescue distance (10.2311) is obtained when 2 distribution centers are selected. The highest demand satisfaction rate is achieved
at both 3 and 4 locations. Therefore, opening 3 distribution centers is a fair solution. It is obvious that the difference of satisfaction rate among different distribution centers is quite small, which suggests that objective (2) is a weak determining factor when planning material allocation. Therefore, the key to solving unmet demand lies in sufficient supply while weighted allocation may not be very efficient. In addition, when opening 4 distribution centers, the solution has a highest demand satisfaction rate with a relatively short delivery distance. Consequently, the model proposed in this paper has flexibility responding to risk in emergency logistics. The appropriate decision of how many distribution centers to be open can be made when confronting changeable conditions.

Table 5: Computing result comparison between PGSA and GA.

Algorithm	X	W1j	W2j	W3j	W4j	Function value
PGSA	(0 1 1 0 0 1)	W1j = (0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)	W2j = (1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)	W3j = (0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1)		6.0748
GA	(0 1 1 1 0 0)	W1j = (0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)	W2j = (1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0)	W3j = (0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1)		6.2175

Table 6: Comparison of test results of distribution centers in number from 2 to 6.

No. of distribution centers	2 3 4 5 6
Distance from supply point to distribution center	4.7544 7.1449 9.4836 11.8785 14.3502
Distance from distribution center to demand point	5.4276 10.2136 7.2114 7.6793 7.0549
Total distance	10.2311 17.3585 16.6950 19.5577 21.4051
Optimal value of objective function	6.1449 6.0748 6.2897 7.0549
Distribution center	4, 2 3, 2, 6 3, 2, 5, 6 5, 2, 4, 3, 6
Demand satisfaction rate	93.28% 93.39% 93.39% 92.92% 92.15%

Figure 2: Comparison of test results of distribution centers in number from 2 to 6.

Table 7: Location result of 3 emergency distribution centers.

No.	Geography coordinate	Distribution center	Relative size	No. of material demand point
1	(114.366065, 36.646)	Fuxing	0.4729	1 2 3 6 7 8 12
2	(114.017121, 36.544)	Fengfeng	0.0935	5 1 2 3 4 6
3	(114.105367, 36.469)	Guangping	0.4336	5 9 10 13 14 15 16 17 18

at both 3 and 4 locations. Therefore, opening 3 distribution centers is a fair solution. It is obvious that the difference of satisfaction rate among different distribution centers is quite small, which suggests that objective (2) is a weak determining factor when planning material allocation. Therefore, the key to solving unmet demand lies in sufficient supply while weighted allocation may not be very efficient. In addition, when opening 4 distribution centers, the solution has a highest demand satisfaction rate with a relatively short delivery distance. Consequently, the model proposed in this paper has flexibility responding to risk in emergency logistics. The appropriate decision of how many distribution centers to be open can be made when confronting changeable conditions.

Table 7 and Figure 3 present the specific location result of the solution with 3 distribution centers. Figure 4 shows the location layout of other solutions.

According to Table 7, Fuxing distribution center undertakes the emergency material supply of Congtai, Hanshan, Fuxing, Yongnian, Wu’an, Linzhang, and Cixian,
Figure 3: Locations of 3 emergency distribution centers.

Figure 4: Locations of emergency distribution centers with Nos. 2, 4, 5, and 6.
while Fengfeng distribution center distributes materials to Fengfeng and Shexian, and the Guangping distribution center is responsible for the material distribution of Feixiang, Cheng’ an, Daming, Qiuxian, Jizé, Guangping, Guantao, Weixian, and Quzhou. Distribution centers located in Fuxing and Guangping undertake the larger material turnover in the emergency logistics network, with 47.29% and 43.36%, respectively, while distribution center located in Fengfeng undertakes smaller material turnover of 9%.

5. Conclusion

In this paper, we consider the problem of locating temporary distribution centers for relief products in response to disaster and risk emergency scenarios. The main contribution of this study is in designing a response strategy to address the location allocation problem with uncertain demand and supply. In addition, the model proposed in this work offers some managerial insights associated with the number of temporary distribution centers. Their locations and distribution strategy with limited supply in designing and deploying aid distribution networks. Specifically, a bio-objective MINLP model with minimum emergency rescue time and maximum demand satisfaction rate is formulated. Then, a plant growth simulation algorithm is employed to solve the model. At last, the feasibility and effectiveness of the model and algorithm are verified in a COVID-19 prevention and control case in Handan city. In general, the model is suitable to the complex problem of multiobjective, multivariable, and nonlinear objective functions with great flexibility and adaptability. The inadequacy of this paper is that it only considers static demand of emergency supplies while the demand in emergency response is periodically changed which calls for the dynamic research of emergency logistics in the future.

Data Availability

The research data used to support the findings of this study are included within the article. The data used are shown in Tables 2 and 3.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This paper was supported by the Social Science Grand Research of Hebei Education Department (ZD202105).

References

[1] W. L. Waugh and K. J. Tierney, Emergency management: Principles and practice for local government, ICMA Publishing, Washington, DC, USA, 2007.
[2] T. Renata, S. Kenneth, and C. Daniel Palhazi, “A heuristic for the stochastic facility location problem,” Journal of Heuristics, vol. 2021, no. 27, pp. 649–694, 2021.
[3] Y. Liu, Y. Yuan, J. Shen, and W. Gao, “Emergency response facility location in transportation networks: A literature review,” Journal of Traffic and Transportation Engineering, vol. 8, no. 2, pp. 153–169, 2021.
[4] H. D. Sherali, T. B. Carter, and A. G. Hobeika, “A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions,” Transportation Research Part B: Methodological, vol. 25, no. 6, pp. 439–452, 1991.
[5] X. Wei, H. Qia, and D. Wang, “An integrated location-routing problem with post-disaster relief distribution,” Computers & Industrial Engineering, vol. 147, no. 1, Article ID 106632, 2020.
[6] P. Panchalee, H. Van Nam, and K. Sarunya, “A multi-objective optimization model for shelter location-allocation in response to humanitarian relief logistics,” The Asian Journal of Shipping and Logistics, vol. 42, no. 2, pp. 149–156, 2021.
[7] H. Wang and X. Ma, “Research on multi-objective location of urban emergency logistics under major emergencies,” Mathematical Problems in Engineering, vol. 2021, Article ID 5577979, 11 pages, 2021.
[8] S. J. Rennemo, K. F. Ro, L. M. Hvattum, and G. Tirado, “A three-stage stochastic facility routing model for disaster response planning,” Transportation Research Part E: Logistics and Transportation Review, vol. 62, no. 2, pp. 116–135, 2014.
[9] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer, New York, NY, USA, 1997.
[10] E. Sanci and M. S. Daskin, “Integrating location and network restoration decisions in relief networks under uncertainty,” European Journal of Operational Research, vol. 279, no. 2, pp. 335–350, 2019.
[11] A. Trivedi and A. Singh, “A hybrid multi-objective decision model for emergency shelter location-relocation projects using fuzzy analytic hierarchy process and goal programming approach,” International Journal of Project Management, vol. 35, no. 5, pp. 827–840, 2017.
[12] X. Wang, T. Han, and L. Zhang, “Fuzzy multi-objective optimization of joint transportation for emergency supplies,” ICIC Express Letters, Part B: Applications, vol. 9, no. 9, pp. 925–930, 2018.
[13] I. Correia, F. S Gama, G. Laporte, S. Nickel, and F. Saldanha da Gama, “‘Facility location under uncertainty,” in Location Science, Springer, Berlin, Germany, 2015.
[14] H. Sun, Y. Wang, and Y. Xue, “A bi-objective robust optimization model for disaster response planning under uncertainties,” Computers & Industrial Engineering, vol. 155, 2021.
[15] D. Khayal, R. Pradhananga, S. Pokharel, and F. Mutlu, “A model for planning locations of temporary distribution facilities for emergency response,” Socio-Economic Planning Sciences, vol. 52, pp. 22–30, 2015.
[16] A. El-Saeed and E. Abdusalam, “A mathematical model for solving fuzzy integer linear programming problems with fully rough intervals,” Granular Computing, vol. 6, no. 3, pp. 1–12, 2020.
[17] F. Taghipourian, I. Mahdavi, N. Mahdavi-Amiri, and A. Makui, “A fuzzy programming approach for dynamic virtual hub location problem,” Applied Mathematical Modelling, vol. 36, no. 7, pp. 3257–3270, 2012.
[18] Li. Tong, W. Chunfeng, W. Wenbo, and W. L. Sus, “A bionic-like global optimization algorithm for integer programming, simulated plant growth algorithm,” System Engineering Theory and Practice, vol. 04, no. 1, pp. 76–83, 2005.
[19] M. S. Fischvaee, S. A. Torabi, and J. Razmi, “Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty,” Computers & Industrial Engineering, vol. 62, no. 2, pp. 624–632, 2012.