Molecular markers reveal diversity in composition of *Megastigmus* (Hymenoptera: Megastigmidae) from eucalypt galls

Ngoc Hoan Le1 | Helen F. Nahrung1 | Jess A. T. Morgan2 | Steven Ogbourne3 | Simon A. Lawson1

1Forest Industries Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia  
2Department of Agriculture and Fisheries, EcoSciences Precinct, Brisbane, QLD, Australia  
3GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia

**Abstract**

Since outbreaks of the invasive blue gum chalcids *Leptocybe* spp. began, the genus *Megastigmus* (Hymenoptera: Megastigmidae) has been increasingly studied as containing potential biocontrol agents against these pests. *Megastigmus* species have been collected and described from Australia, the presumed origin of *Leptocybe* spp., with *M. zvimendeli* and *M. lawsoni* reported as *Leptocybe* spp. parasitoids established outside of Australia. Parasitic *Megastigmus* have been reported to occur locally in the Neotropics, Afrotropic, Palearctic, and Indomalaya biogeographic realms, and in many cases described as new to science. However, molecular tools have not been used in studying parasitic *Megastigmus*, and difficulties in morphological taxonomy have compromised further understanding of eucalypt-associated *Megastigmus* as well as the *Megastigmus-Leptocybe* association. In this study, we used molecular markers to study the species composition and phylogeny of *Megastigmus* collected from eucalypt galls in Australia and from *Leptocybe* spp. galls from South Africa, Kenya, Israel, China, and Vietnam. We record thirteen discrete species and a species complex associated with eucalypt galls. A summary of morphological characters is provided to assist morphological delimitation of the studied group. A phylogeny based on 28S rDNA identified species groups of importance to *Leptocybe* spp. biocontrol agents from four clades with nine species. Relationships between *Megastigmus* from eucalypt galls and their phytophagous congeners were unresolved. Further molecular work is needed to clarify the identity of many species.

**Key words**

gall associates, *Leptocybe*, *Megastigmus lawsoni*, *Megastigmus zebrinus*, parasitoids
1 | INTRODUCTION

Megastigmus, comprising 145 described species (Noyes, 2020), is the largest genus in the newly recognized family Megastigmidae (Janšta et al., 2018). Members of the genus are most abundant in the Palearctic and Australia (Grissell, 1999), with the latter the most likely origin of the family (Janšta et al., 2018). Megastigmus encompasses diverse feeding habits, from strict phytophagy to strict entomophagy, with facultative entomophagy, also referred to as partial phytophagy or inquiline, an “intermediate form” between the two (Grissell, 1999). Before 2000, literature of non-Austral-ian Megastigmus predominantly described phytophagous species, while records from Australia largely comprised of entomophagous Megastigmus (Auger-Rozenberg et al., 2006; Grissell, 1999; Roques & Skrzypczyńska, 2003). However, entomophagy was mostly inferred from observations of emergence from galls, without clear data discriminating parasitic, inquiline, and hyper-parasitic behavior (Bouček, 1988; Grissell, 1999).

Leptocybe (Hymenoptera: Eulophidae) is a genus of galling in-sects of Australian origin, with two invasive species causing damages to the eucalypt forestry worldwide under the cryptic name L. invasa (Dittrich-Schröder et al., 2018; Kim, 2008; Nugnes et al., 2015). Megastigmus spp. associated with eucalypt galls have gained increasing interest since L. invasa was first described (Le, Nahrung, Griffiths, & Lawson, 2018; Mendel, Protasov, Fisher, & La Salle, 2004; Viggiani, Laudonia, & Bernardo, 2001). Six new Megastigmus species were described from Australia (Doğanlar, 2015; Doğanlar & Hassan, 2010), of which M. zvimendeli and M. lawsoni were released and established as biocontrol agents of L. invasa in Israel (Mendel et al., 2017). Megastigmus zebrinus was described from specimens from South Africa and Australia (Grissell, 2006) and was later reported to occur in Thailand and Argentina (Doğanlar, 2015). Several species of Megastigmus have been recorded as associated with Leptocybe spp. in the Indomalaya, Palearctic, Afrotopical, and Neotropic biogeographic realms, and in many cases described as new species to science (Le et al., 2018).

Discrimination of Megastigmus associated with Leptocybe spp. has so far relied largely on morphology (Doğanlar, 2015; Doğanlar & Hassan, 2010). This has caused uncertainty and impeded further understanding of phylogenetic relatedness, since variation in color and sizes of specimens has long been known to challenge taxonomists, particularly those working with Australian species (Bouček, 1988; Milliron, 1949). While molecular markers have been used in systematic studies and species delimitation of the Palearctic and Afrotopical fauna (Auger-Rozenberg et al., 2006; Roques, Copeland, Soldati, Denux, & Auger-Rozenberg, 2016), continued use of these markers is expected to assist species delimitation and give further insight into the phylogeny of this genus. Incorporation of generated DNA sequences with published molecular data is expected to provide knowledge of the relationships between phytophagous and entomophagous species, and between Australian and non-Australian Megastigmus (Le et al., 2018; Roques et al., 2016).

Here we present a study of eucalypt-associated Megastigmus, with a focus on species of potential biocontrol use against invasive Leptocybe spp. Research materials included Megastigmus specimens from eucalypt galls collected in Queensland (QLD), New South Wales (NSW), Australian Capital Territory (ACT), Victoria (VIC), and, where possible, specimens associated with Leptocybe spp. galls in their exotic ranges provided by international colleagues. Species delimitation and phylogenetic reconstruction were completed using a combination of the Clyde-Bonnie fragment of mitochondrial DNA coding cytochrome c oxidase subunit 1 (COI mtDNA) and the partial nuclear DNA fragment coding 28S ribosomal RNA (28S rDNA). This study is the first to report a molecular sequence comparison of gall-associated Megastigmus in the eucalypt gall system.

2 | MATERIALS AND METHODS

2.1 | Insect collection

Galled eucalypt material was collected in road-side surveys in QLD, NSW, ACT, and VIC between March 2014 and June 2019. Parts of eucalypt plants bearing galls on young shoots or leaves were collected and transferred to the laboratory within seven days of collection. Galls were placed in zip-lock bags and stored in a cooled insulated box or fridge (4°C) during transportation and then transferred to separate plastic vials (φ30 mm × H100 mm) containing moistened tissue paper. These vials were kept in a controlled temperature cabinet, at 25 ± 2°C, 50% to 70% RH, and emerged insects were collected every 2–3 days over ~30 days. Emerged Megastigmus were transferred to glass vials (φ11.6 mm × H32 mm) containing 100% ethanol (volume of insect: ethanol <1:10) and stored at −20°C. Gall types bearing Megastigmus emergence were recorded and preliminarily sorted by gall morphology (see Appendix S1). Individual wasps were examined, photographed, and DNA was extracted when (a) specimens emerged from material from a new collection site; (b) specimens emerged from the same collection site but from different gall types or different eucalypt species; or (c) specimens appeared superficially different from those collected in (a) and (b). Species of Bootanomyia spp., characterized by the knobbed stigmal vein and exerted ovipositor like Megastigmus spp. but with a metallic body color (Bouček, 1988; Doğanlar, 2011), were also collected and included in DNA analyses but were not examined further morphologically.

2.2 | DNA extraction, PCR, and sequencing

DNA was extracted from entire insect bodies (for small specimens) or from the abdomen (for large specimens) using an ISOLATE II Genomic DNA Kit (Bioline, Eveleigh NSW, AUS), or a prepGEM® Insect kit (ZyGEM, Hamilton, Aotearoa, NZ). DNA was eluted into either 20 or 40 μl extraction volume, depending on the size of speci-men. Undiluted genomic DNA was used in PCR amplification re-action using MyTaq™ HS Red DNA Polymerase (Bioline, Eveleigh...
on-site sequenced products were forwarded to the Australian Genome Research Facility (QLD, Australia) for electrophoresis capillary separation.

### 2.3 Sequence alignment and species delimitation

Sequence alignment was performed using the built-in Geneious Alignment program in Geneious Prime (Biomatters, Auckland, NZ). The paired forward and reverse reads were aligned and edited to unambiguous sequences unless otherwise specified. Primer sequences were removed from reads, and multiple sequences were aligned using Geneious alignment algorithm (Global alignment with free end gaps, Cost Matrix 70% similarity, Gap open Penalty 12, Gap extension Penalty 6), validated by eye, and trimmed to equal lengths for subsequent analysis. Mitochondrial DNA was verified by checking for stop codons, which suggest the presence of pseudogenes.

Stop codons were detected by applying the invertebrate mitochondrial genetic code and translating DNA sequences into amino acids. Sequences from two specimens identified to *M. manonae* contained single base positions with double peaks nested within regions of clear, unambiguous signal, which likely represent within-individual mitochondrial copy differences and were therefore labeled with degenerative bases following the IUPAC ambiguity code.

Genetic species delimitation was determined using the mtDNA COI sequences using the web version of the Automatic Barcode Gap Discovery (ABGD) tool (Puillandre, Lambert, Brouillet, & Achaz, 2012) and the General Mixed Yule Coalescent (GMYC) method (Pons et al., 2006). ABGD examines the frequency distribution of pairwise differences to find the gap separating intragroup and intergroup differences and partitions the dataset by recursive application of a range of user-given thresholds P (the maximum divergence of intraspecific sequences). The model of evolution was KP80, which is a common parameter in mtDNA-based species delimitation (Boykin, Armstrong, Kubatko, & De Barro, 2012; Evans & Paulay, 2012).

### Table 1

| Primer name                   | Sequence                        | Reference                  |
|-------------------------------|---------------------------------|----------------------------|
| 1775-COI-F (Forward) (Clyde)  | CGAATAAAATAATAAGATTGG          | Scheffer and Grissell (2003)|
| LCO1490 (Forward)             | GGTCAACAAAATCTAAAGATTGG        | Folmer et al. (1994)       |
| 2222-COI-F (Forward)          | ATATTTTTAATTTACCAAGATTTGG      | Scheffer and Grissell (2003)|
| 2399-COI-R (Reverse)          | TGTAGCTGAAGTAAAAAAGGC          | Authors                    |
| 2413-COI-R (Reverse)          | TCATCTAAAACACTTAACTCTCTCT      | Scheffer and Grissell (2003)|
| 2773-COI-R (Reverse) (Bonnie) | GGATAATCTCTATATGGG             | Scheffer and Grissell (2003)|
| 285-D1F (Forward)             | ACCCGCTGAATTTAAGCATATATAT      | Auger-Rozenberg et al. (2006)|
| 285-D3R (Reverse)             | TAGTTCACCACATTTGGGTC          | Auger-Rozenberg et al. (2006)|
| 285-1059R (Reverse)           | TTTCGGGTCCTCAAACGTG           | Authors                    |
GMYC is a likelihood method that analyses the branching time against the difference in branching rates at the level of species and population. An ultrametric tree was generated using the Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software package family (Bouckaert et al., 2019) version 2.6.3. Alignment of COI sequences obtained in the study was imported using the componential program BEAUTi, the selected substitution model was HKY + G+I (the first model determined using jModeltest for the analyzed dataset that is available for analysis in the software package), selected tree prior was Speciation: Yule Process (Gernhard, 2008), the maximum clade credibility (MCC) tree was generated using the program TreeAnnotator. GMYC analysis was performed using the function gmyc in the package splits (Ezard, Fujisawa, & Barraclough, 2017).

The identification of Leptocybe specimens to lineage B was based on the barcoding region and compared with published data (Ditrich-Schröder et al., 2018). Specimens of Leptocybe lineage B obtained in this study grouped with Leptocybe sp. lineage B with >99.3% identity. Other specimens referred to as “local” Leptocybe sp. were identified by morphology (Kim, 2008; Mendel et al., 2004), including one specimen extracted for DNA, compared with available Leptocybe barcoding sequences and confirmed to be an unpublished Leptocybe species.

2.4 Phylogenetic inference

Placement of the sequences obtained in this study into a larger phylogeny was completed by incorporating sequences from Auger-Rozenberg et al. (2006) and Roques et al. (2016). Sequences were selected to represent Megastigmus groups associated with different plant families (phytophagous species on Pinaceae, Cupressaceae, Rosaceae, Malvaceae, Rhamnaceae, Anacardiaceae). The outgroup was selected from the Palearctic Bootanomyia, which formed the closest sister group to the studied Australian Megastigmus and Bootanomyia (Janště et al., 2018). A genome search using the MegaBLAST algorithm (Margulis et al., 2008) returned sequences from the genome assembly accession GCA_900490025, species B. dorsalis (Bunnefeld, Hearn, Stone, & Lohse, 2018) with matching fragments to use as outgroup (see details in Appendix S2). The average pairwise distance between this outgroup with the eucalypt-associated Bootanomyia, eucalypt-associated Megastigmus, and phytophagous Megastigmus taxa were, respectively, 0.095, 0.098, and 0.112 for COI and 0.049, 0.044, and 0.049 for 28S DNA. Duplicate sequences were removed, including an entry of Megastigmus zebrinus (KU984706, Roques et al., 2016), which was identical to sequences of M. zebrinus obtained in this study. One taxon was randomly selected if more than one sequence existed for a species-level taxon, similar to Roques et al. (2016). Alignments were trimmed to the same length for analysis.

Phylogenetic trees were inferred using the maximum likelihood method (ML) (Guindon et al., 2010) and Bayesian analysis (BA) (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003). Data were partitioned into three blocks for COI and four blocks for the concatenated alignment (three codon positions and one for 28S DNA). ML analysis was performed on the Geneious Prime platform using the plugin PHYML 2.2.4 for 28S and RAxML 8.2.11 (Stamatakis, 2014) for partitioned datasets. ML branch support was calculated by bootstrap resampling 1,000 times. BA analysis was based on the program MrBayes 3.2.7 (Ronquist & Huelsenbeck, 2003). Analyses were terminated when the average standard deviation of split frequencies dropped below 0.01. The best fit model of evolution for each dataset was determined separately using the program Jmodeltest2 (Darriba, Taboada, Doallo, & Posada, 2012) for 28S and PartitionFinder 2.1.1 (Lanfear, Frandsen, Wright, Senfeld, & Calcott, 2016) for partitioned datasets.

The transition/transversion ratios were calculated and plotted using functions in the R-based package SPIDER (Brown et al., 2012).

2.5 Morphological identification

Species identified using molecular evidence were labeled with numbers, including the four collected Bootanomyia spp. A minimal character set is provided for the collected Megastigmus species to assist future diagnostic works. Terminology follows Graham (1969), Bouček (1988), Gibson, Read, and Fairchild (1998), Roques and Skrzypczyńska (2003), and Doğanlar and Hassan (2010). Abbreviations of body characters follow Le, Nahrung, Lawson, and Morgan (2020). Microscopic observations and photographs were taken under a binocular microscope (NIKON SMZ800N) with attached digital camera (TUCSEN H500), resolution 2,584 x 1,936 pixels. Where relevant, sizes were measured in pixels by the software ImageJ 1.52a (National Institute of Health, USA) and calibrated using a stage micrometer (Carl Zeiss 5 + 100/100 mm). If curved, antennal flagellum and the exerted part of ovipositor sheath were measured along the curve, similar to Ōtake (1987).

Ethanol-preserved insect specimens and DNA vouchers were deposited at the Insect collection, Queensland Department of Agriculture and Fisheries, Dutton Park, QLD, Australia.

3 RESULTS

3.1 DNA sequences

A total of ninety-six specimens were extracted for DNA. Regarding COI, 81 specimens successfully provided COI sequences of the same length, 849 bp in the final alignment. The alignment included 38 unique COI sequences and was without alignment gaps. Adenine and thymine accounted for 74.2% of the total bases on average and 94.9% of third codon positions, in line with previous observations of the AT-rich content of hymenopteran mtDNA (Clary & Wolstenholme, 1985; Crozier & Crozier, 1993). The number of variable sites was 234/849 (191 sites at the third codon position). The observed pairwise transition/transversion ratio (R) was 0.50, and the maximum pairwise distance was 11.78%. The best fit evolution
model was TIM2 + G + I (Transition Model 2 with gamma-distributed among-site rate variation and a proportion of invariable sites (Posada, 2003), BIC score 10.196, estimated Gamma shape parameter 0.165, proportion of invariable sites 0.468).

For the nuclear 28S rDNA, 93 specimens were successfully sequenced, providing 21 unique sequences of 856–857 bp in length, with the final alignment of 858 bp including gaps. The uncorrected pairwise distance ranged from 0.0012 to 0.0461, the observed transition/transversion ratio (R) was 1.65, and the average G + C content was 57.3%. The number of variable sites was 95/858. The best fit model of DNA evolution was TPM1 + G+I (3-parameter model, with gamma-distributed among-site rate variation and a proportion of invariable sites (Kimura, 1981), BIC score 4,571, estimated gamma shape parameter 0.697, proportion of invariant sites 0.704).

Uncorrected pairwise COI distances of eucalypt-associated Megastigmus species (as presumptive entomophagous Megastigmus) and phytophagous Megastigmus are compared in Figure 1.

### 3.2 | COI DNA based species delimitation

The ABGD analysis of the COI mtDNA alignment identified a clear barcoding gap between KP80 distance 0.02 and 0.05, that is, two sequences with KP80 distances of greater than 0.05 can be confidently assigned to different groups. The stable number of retrieved groups was 20, obtained when data were partitioned using P values from 0.0049 to 0.0414 (Figure 2). GMYC analysis suggested similar results with 20 Ml entities and the assignment of sequences to species identical to those suggested by ABGD (Figure 2). Based on the ABGD and GMYC analyses, the DNA sequences were assigned to 20 different operational taxonomic units comprising four Bootanomyia and sixteen Megastigmus species.

Aligning COI species delimitation with the morphological and distributional data, common Megastigmus species associated with Leptocybe spp. were identified. Megastigmus pretorianensis and M. zebrinus collected by colleagues in South Africa were identified based on collection locality and morphology (Doğanlar, 2015; Grissell, 2006). The M. pretorianensis specimens from Australia were identical to the South African specimens in 28S rDNA sequences and morphology. Its COI sequence (M. pretorianensis haplotype 2) was firmly assigned to the ABGD group for M. pretorianensis. Megastigmus zvimendeli and M. manonae were frequently collected from Leptocybe spp. galls in Queensland and northern NSW and were identified based on differential morphological diagnoses (Le et al., 2020). Specimens with females bearing one pair of scutellar setae could be assigned to the species complex M. lawsoni (Doğanlar & Hassan, 2010). Specimens with females bearing one pair of scutellar setae could be assigned to the species complex M. lawsoni (Doğanlar & Hassan, 2010). Specimens with females bearing one pair of scutellar setae could be assigned to the species complex M. lawsoni (Doğanlar & Hassan, 2010). Specimens with females bearing one pair of scutellar setae could be assigned to the species complex M. lawsoni (Doğanlar & Hassan, 2010). Specimens with females bearing one pair of scutellar setae could be assigned to the species complex M. lawsoni (Doğanlar & Hassan, 2010). Specimens with females bearing one pair of scutellar setae could be assigned to the species complex M. lawsoni (Doğanlar & Hassan, 2010). Specimens with females bearing one pair of scutellar setae could be assigned to the species complex M. lawsoni (Doğanlar & Hassan, 2010). Specimens with females bearing one pair of scutellar setae could be assigned to the species complex M. lawsoni (Doğanlar & Hassan, 2010). Specimens with females bearing one pair of scutellar setae could be assigned to the species complex M. lawsoni (Doğanlar & Hassan, 2010). Specimens with females bearing one pair of scutellar setae could be assigned to the species complex M. lawsoni (Doğanlar & Hassan, 2010).
3.3 | Morphological species delimitation

A set of morphological characters was proposed (Table 2) to assist in distinguishing female specimens for species identified by ABGD. Megastigmus sp. 5 and Megastigmus sp. 11 differed from other species by the distinct length of the ovipositor. Many species associated with Leptocybe spp. have the clava enlarged and width of the funicle segments strongly increasing from f1 to f7. These species can be further separated by the number of scutellar setae, as proposed by Doğanlar and Hassan (2010). Others have more filiform flagellum with a minor increase of funicle breadth apically, which is a characteristic closer to many phytophagous Megastigmus (Roques & Skrzypczyńska, 2003). These species can be further divided by the number of sensilla rows on funicle segments (Appendix S4).

Extreme care should be taken for morphological identification of species that were observed to coemerge from the same galling material: M. lawsoni with M. zvimendeli; Megastigmus sp. 1 with M. zvimendeli; M. manonae with M. zvimendeli (in galls of Leptocybe sp. lineage B); Megastigmus sp. 6 with M. pretorianensis (in galls of a local, unreported Leptocybe sp.); Megastigmus sp. 1 with M. manonae (in multiple blister leaf galls). Megastigmus sp. 1 was found with two forms differing strongly in color and body sizes, in which the smaller form frequently associated with Leptocybe sp. lineage B. The association of conspecific males and females in this study was based on sequencing both males and females emerging from the same material, and in many cases, on sequencing the laboratory-generated male offspring and linked with its female parent (Appendix S2). However, data on morphology of males were not presented for species delimitation as variation in size and form of males has not been fully investigated. The morphological characters presented in Table 2...
| Species          | Body color\(^1\) | Antennal form | Scutellar setae\(^2\) | Body size\(^3\) | Antennal sensilla row | Ovipositor length\(^4\) | Leptocybe spp. associate | Distinctive character                                                                 |
|------------------|------------------|---------------|------------------------|-----------------|------------------------|--------------------------|--------------------------|--------------------------------------------------------------------------------------|
| *M. lawsonii\(^5\)* (complex) | 1                | Clavate       | 1                      | Small           | 1                      | Intermediate            | Yes                      | 1 pair scutellar setae, male with distinct black patch on mesonotum                  |
| *M. manonae\(^5\)*          | 2                | Clavate       | 2                      | Small           | 1                      | Intermediate            | Yes                      | 2 pair scutellar setae, body darkly pigmented, \(fu_3 \geq fu_2\), eye larger than *M. pretorianensis* (eye.\(h/hea.hl\) 0.72–0.85) |
| *M. pretorianensis\(^5\)*     | 2                | Clavate       | 2                      | Small           | 1                      | Intermediate            | Yes                      | 2 pairs scutellar setae, body darkly pigmented, \(fu_3 \leq fu_2\), eye smaller than *M. manonae* (eye.\(h/hea.hl\) 0.68–0.78) |
| *M. zvimendeli\(^5\)*         | 1                | Clavate       | 2                      | Small           | 1                      | Intermediate            | Yes                      | 2 pair scutellar setae, body yellow/orange, \(eye.h/hea.hl\) (0.61–0.76) < *M. manonae* |
| *M. zebrinus\(^6\)*           | 1                | Clavate       | 3a                     | Small–intermediate | 1                      | Intermediate            | Yes                      | 3 pairs setae, pol.\(l/ool.\) > 3.5, interocular bristles exist (Grissell, 2006)       |
| *M. sp. 1\(^5\)*              | 1, 3             | Clavate       | 3a                     | Small–intermediate | 1                      | Short                   | Yes                      | Ovipositor short \(< 1.3 \times gst.ll\)                                             |
| *M. sp. 2*                    | 3                | Filiform      | 3a                     | Large           | 2                      | Long                    | No                       | Ovipositor long, 2 rows sensilla                                                     |
| *M. sp. 4*                    | 3                | Intermediate  | 3a                     | Intermediate    | 2                      | Intermediate            | No                       | 2 rows of sensilla                                                               |
| *M. sp. 5*                    | 4                | Filiform      | 3a                     | Large           | 2                      | Long                    | No                       | Body black, long ovipositor                                                   |
| *M. sp. 6*                    | 1                | Clavate       | 3b                     | Small–intermediate | 1                      | Intermediate            | Yes                      | pol.\(l/ool.l\) > 2, scutellar setae positioning 3b                             |
| *M. sp. 8*                    | 3                | Intermediate  | 3b                     | Intermediate    | 1                      | Intermediate            | No                       | Scutellar setae positioning 3b                                                  |
| *M. sp. 9*                    | 3–4              | Filiform      | 3a                     | Intermediate    | 1                      | Intermediate            | No                       | Antenna filiform, intermediate body size, scutellum and mesoscutum conspicuous black |
| *M. sp. 10*                   | 1                | Filiform      | 3a                     | Intermediate    | -                      | Intermediate            | No                       | Stigma knob pointed                                                             |
| *M. sp. 11*                   | 3                | Filiform      | 3a                     | Intermediate–large | 2                      | Average                 | No                       | 2 rows sensilla, antenna long \(1 \times \text{mss.ll}\)                          |

Note: 
1. Body color code 1: dominantly yellow, entirely yellow if examined with bare eyes; 2: Yellow with dark pigments scattered throughout body, most conspicuous when examining thorax area; 3: Yellow with conspicuous black areas, at least at propodeum and transscutal area. Antenna dark and hence antennal sensilla conspicuous; 4: Almost entirely black, nonglossy, most conspicuous at thorax.
2. Number and positioning of scutellar setae: 1, 2, 3: 3a = distance between middle pair and anterior pair \((d1)\) approximate that to the posterior pair \((d2)\), \(3b = d1 - 2 \times d2\).
3. Classified using the combined gaster length + mesosoma length. Small: \(gst.ll + mss.ll \leq 1.2\) mm; intermediate: \(gst.ll + mss.ll 1.2 - 2\) mm; large: \(gst.ll + mss.ll \geq 2\) mm
4. Classified using the ratio ovipositor length: gaster length. Short: \(ovi.l/gst.ll \leq 1.3\); long: \(ovi.l/gst.ll \geq 2\)
5. Discussed in detail in Le et al. (2020)
6. Examination of *M. zebrinus* was based on ANIC and QM paratypes and South African alcohol preserved specimens.
were presented for females only, except for the distinct black patch in males of *M. lawsoni* (Le et al., 2020).

### 3.4 Phylogeny of eucalypt gall-associated *Megastigmus*

PHYML inference based on the 28S rDNA, applying the Jmodeltest2-suggested model (TPM1 + I + G) constructed a phylogenetic tree with 30 taxa including the outgroup with log-likelihood −2861 (Figure 3a). The species with metallic color from Australia, identified as *Bootanomyia* (Doğanlar, 2011), formed a highly supported group (98% bootstrap) and nested inside other *Megastigmus* taxa. The *Megastigmus* species were considerably divergent with some taxa forming well-supported groups, although most associations had bootstrap support values below 50% (hereby referred as unsupported) or from 50% to less than 70% (weakly supported). Two clades of well-supported *Leptocybe* associates were the *M. lawsoni* complex (91%) and the trio group of *M. zvimendeli*, *M. pretorianensis*, and *M. manonae* (100%). *Megastigmus zebrinus* presence in Australia has not been confirmed with molecular evidence in our data. The 28S rDNA sequences of *M. zebrinus* from South Africa and Vietnam were identical and were placed closest to the *M. lawsoni* complex (unsupported). *Megastigmus* sp. 1, associated with *Leptocybe* sp. lineage B and *Ophelimus* galls in various location, was placed close to a large, black species with a long ovipositor (*Megastigmus* sp. 5, 68% support value). The ability of reproducing upon exposure to *Leptocybe* sp. lineage B galls in the laboratory was not restricted to any clade (Figure 3). Such capacity was even recorded for the species *Bootanomyia* sp. 2, which fell well within the *Bootanomyia* group. Regarding the phytophagous taxa, all species were placed in an unsupported group separated from the eucalypt *Megastigmus*. The speciation nodes were separated by various branch lengths. However, inference of speciation time and factors influencing evolution rates was not possible with the limited taxon sampling and markers.

**FIGURE 3** Phylogeny of *Megastigmus* and *Bootanomyia* species associated with eucalypt galls in reference to noneucalypt phytophagous *Megastigmus*. (a) 28S, 865 bp including alignment gaps, model of evolution TPM1 + G+I, using PHYML; (b) concatenated 28S and COI, 1,620 bp including gaps, model of evolution GTR + I + G, using RAxML, data partitioned into four blocks (28S + 3 codon positions). Analyses were performed in the Geneious Primer platform, and branch support was determined using 1,000 bootstraps. Taxa associated with *Leptocybe* spp. in Australia or *Leptocybe* spp. in their invasive range are marked with black dots. Taxa in blue were eucalypt gall associates. Nodes marked with stars were additionally supported by ≥0.95 posterior probability in Bayesian analysis. Bootstrap supports <70% in ML analysis were excluded unless nodes were supported by Bayesian analysis. Nodes marked with black triangles were taxa that successfully reproduced upon exposure to *Leptocybe* sp. lineage B gall under laboratory conditions (except *Megastigmus* sp. 5 tested and failed to reproduce). Outgroup was from genome of *B. dorsalis* (Bunnefeld et al., 2018). Reference sequences were obtained from Auger-Rozenberg et al. (2006) (suffix A. M.) and Roques et al., 2016 (suffix R. A.)
The main clades supported by 28S DNA persisted in the tree reconstructed from the concatenated dataset (Figure 3b). Bootstrap support for the Australian Bootanomyia species, the M. lawsoni species complex, and the trio (M. zvimendeli, M. pretorianensis, M. manonae) were 98%, 100%, and 100%, respectively. In contrast, the phytophagous taxa M. pistaciae, M. grewiana, and M. helinae were nested inside three different clades (unsupported). ML and BA results were generally in congruence, except a clade containing M. manonae and M. pretorianensis received 96% support in the concatenated dataset in ML but was neither supported by BA of the same dataset (Figure 3b) nor any of the 28S trees (Figure 3a).

In the COI phylogeny (Appendix S5), most of the interspecies clades received very low support, except for the lawsoni group (79% bootstrap, posterior probability 1), the pair M. pretorianensis/M. manonae (83%, 1), and the Megastigmus sp. 9/Megastigmus sp. 6 (87%, 1). The four eucalypt-associated Bootanomyia species were placed in two different clades in the ML tree but grouped into one clade in BA tree, and M. zvimendeli was placed closer to the bulk of the Bootanomyia species. The topology of the COI tree differed greatly between ML and BA, mainly because unsupported ML clades obtained <50% posterior probability support in BA (Appendix S5).

Appendix S6 provides a phylogeny based on a 631 bp 28S alignment of a larger number of taxa with additional Megastigmidae sequences from previous authors (Auger-Rozenberg et al., 2006; Janšta et al., 2018; Roques et al., 2016). Like Janšta et al. (2018), the Palearctic Bootanomyia species were placed in a sister group to the Australian megastigmids. However, sequences from the genera Paramegastigmus, Malostigmus, Bortesia, and Neomegastigmus and Australian taxa of Bootanomyia were nested inside the taxa from Megastigmus.

4 | DISCUSSION

4.1 | Molecular markers delimited Megastigmus and confirmed species associated with eucalypt galls

Except M. zvimendeli (discussed in Le et al., 2020) and M. zebrinus (discussed herein), the COI sequences obtained from eucalypt galls did not match any published sequence of phytophagous Megastigmus. The number of species and assignment of sequences to species was consistent for the two species delimitation methods GMYC and ABGD. Eucalypt-associated species are separated from each other by a clear barcoding gap between the maximum intraspecies distance of 1.8% and the minimum interspecies distance of 5.6% (KP80 distance, Appendix S3). However, that barcode gap was not applicable for the phytophagous group. Several pairs of phytophagous species (Boivin et al., 2014) were recorded with distances of 2.6%, 2.5%, and even as low as 1.7%. This can partly be explained by the higher divergence in mtDNA of parasitic wasps than in nonparasitic wasps (Castro, Austin, & Dowton, 2002; Dowton & Austin, 1995). Figure 1 further illustrates the distribution pattern of pairwise distances between species associated with eucalypt galls (as presumptive parasitic/entomophagous Megastigmus) and between phytophagous Megastigmus species.

Among the species groups suggested by the phylogenetic analysis, a trio including M. zvimendeli, M. pretorianensis, and M. manonae is of interest. The first species (M. zvimendeli) commonly associates with Leptocybe sp. lineage B in Queensland and northern New South Wales, Australia. This species has been released as a biocontrol agent against Leptocybe spp. in Israel (Mendel et al., 2017), and our recent study revealed the establishment of this species in Israel, Kenya, China, and India (Le et al., 2020). Megastigmus pretorianensis was first described from South Africa as a Leptocybe spp. gall associate. In Australia, the species was recorded in association with a local Leptocybe sp. in a single location in Jindabyne, NSW. Megastigmus manonae specimens were found from galls of Leptocybe sp. lineage B and small blister galls on eucalypt leaves. These three species are small (ca. 1-1.2 mm excluding head and ovipositor) and have clavate antenna and two pairs of scutellar setae with the second pair near the rear end of the scutellum. Further research into host specificity and life history traits of these species is expected to contribute to their use as Leptocybe spp. natural enemies.

Megastigmus lawsoni, established in Israel as a Leptocybe spp. biocontrol agent (Mendel et al., 2017), represents at least three and likely four cryptic species differing in both COI mtDNA and 28S rDNA sequences. Female specimens of this group bear a single pair of setae on the scutellum, and male specimens have a distinct black patch around the median part of the transscutal articulation. We were unable to find reliable morphological characters assisting delimitation of species in this group and therefore treat M. lawsoni as a species complex. In our collection, the most common species (tentatively referred to as M. lawsoni 4) was characterized by a COI pseudogene differing from the functional genes by one deletion mutation. COI marker can be used to identify the exact species established in Israel and consequently correctly link biocontrol profile with identity of this species.

Our phylogeny placed M. zebrinus within the bulk of other eucalypt-associated species, but the position of this species was unsupported and phylogeny was unresolved. In Roques et al. (2016), the position of M. zebrinus relative to phytophagous Megastigmus was also unsatisfactorily established. Like M. zebrinus, positions of the phytophagous taxa have not been resolved. The 28S-based phylogeny lacks resolution at deeper nodes (Figure 3a), and none of these nodes were further clarified by concatenation of COI and 28S dataset (Figure 3b).

In the study, the COI-based species delimitation results were confirmed by a unique 28S sequence for each species and were therefore unlikely to be misinterpreted. However, the phylogeny inferred from COI data was unstable and highly unresolved, which can be explained by the saturation of COI sequences and possible violation of orthology rule. Saturation, indicated by the very low transition/transversion ratio ($T/T_V = 0.50$, plotted in Appendix S7), occurred when the sequences undergo excessive mutations so that the estimation of mutational changes is no longer accurate and the sequences lost their phylogenetic values (Duchene,
inside the studied B. dorsalis separates itself from the outgroup taxon (cies of Bootanomyia, in line with Janšta et al. (2018). The Australian specimens of Bootanomyia fell in a distinct clade with 98% support that separates itself from the outgroup taxon (B. dorsalis) and is nested inside the studied Megastigmus taxa. In contrast, the monophyly of Megastigmus was unsupported in the concatenated dataset and rejected in the 28S tree by the Australian Bootanomyia nesting inside Megastigmus taxa. As the family Megastigmidae has an Australian common ancestor (Janšta et al., 2018) and Megastigmus is the largest genus in the family, the possibility of a paraphyletic Megastigmus cannot be ruled out. In Janšta et al. (2018), Megastigmus was supported in ML and Bayesian analysis but not supported in Maximum parsimony analysis. The relationships among Megastigmus, Malostigmus, and Neomegastigmus were differently inferred in three analyses (Janšta et al., 2018). Askew et al. (2013) believed the use of the genus name Bootanomyia lead to paraphyletic status of Megastigmus. With genome sequencing technology, complete mitochondrial genome (Lee, Choi, Kim, Jeon, & Kim, 2018) and Ultra-Conserved Elements (Cruaud et al., 2019) have become accessible for phylogenetic study. An investigation using these tools at family level is expected to fully investigate the evolution history of COI and phylogeny of Megastigmus/Megastigmidae.

4.2 Megastigmus zebrinus identity, a case study

Megastigmus zebrinus was described as a gall-former from South Africa and Australia associated with fruits of Syzygium cordatum and E. camaldulensis, respectively (Grissell, 2006). It was later recorded to associate with Leptocybe galls from Thailand (Doğanlar & Hassan, 2010), Argentina (Hernández, Aquino, Cuello, Andorno, & Botto, 2015), and South Africa, where its status was reclassified from primary galler to probable parasitoid (Klein, Hoffmann, Neser, & Dittrich-Schröder, 2015). Our molecular data confirm the occurrence of M. zebrinus in South Africa (M. zebrinus haplotype 1 and 2) and recorded its presence in Vietnam (M. zebrinus haplotype 3) and Israel. However, we were unable to obtain M. zebrinus specimens from Thailand and Argentina and failed to find the species in Australia. With a record of association with a noneucalypt host plant and a multicontinental distribution, M. zebrinus could be the model insect for an origin tracing study using mitochondrial marker, like Scheffer and Grisell (2003), and for understanding the host-shifting process in Megastigmus.

Specimens of M. zebrinus from Israel were strongly discolored, and their DNA was damaged during preservation. Amplification of the desired long segment of COI mtDNA and 28S rDNA failed for these specimens, but a short fragment (190 bp excluding primer binding sites) was amplified using the internal primer pair 2222-COI-F/2413-COI-R. These DNA fragments were aligned and were identical to the matching region of M. zebrinus haplotype 1. We herein argue for the occurrence of M. zebrinus in Israel based on this evidence:

- The PHYML-based tree built from the obtained 190 bp COI fragment separated this species well from others (Appendix S8). In identification of parasitic Hymenoptera, diagnoses have been possible with COI fragments of as short as <150 bp (Andersen & Mills, 2012).
- For DNA barcoding, misidentification risk may result from the presence of a pseudogene that preferentially amplify over the target barcode gene (Bensasson et al., 2001; Song, Buhay, Whiting, & Crandall, 2008). It is unlikely that a pseudogene was the case here as the sequence chromatograms were free of double peaks, indicating the presence of a single PCR product. No disruption to the amino acid sequence was observed, suggesting that the gene is coding for protein and functional.
- Regarding morphology, specimens from Israel displayed the important characters found in South African M. zebrinus: two interocellar setae close to the midocellus (Grissell, 2006), scutellum bearing three pairs of black, conspicuous scutellar setae approximately at equidistance. Compared to dry paratypes of M. zebrinus (ANIC111470, ANIC111471), the alcohol preserved specimens have a lower pol.coop/l ratio (2.8–3.1 vs. 3.3–3.4), but this may have resulted from preservation condition rather than true morphological differences.

Another species, M. leptocybus, was described from the same locality that the Israeli M. zebrinus was collected (Doğanlar & Hassan, 2010). In the original description, M. leptocybus was distinguished from other species by having the pedicel plus flagellum shorter (0.8x) than the width of the head (Doğanlar & Hassan, 2010). The specimens identified herein as M. zebrinus have pdl.flg/ head.b = 1.2 – 1.3 (measured on seven alcohol preserved individuals) and hence could not be keyed out to M. leptocybus. However, when a further attempt was made to examine the available paratypes of M. leptocybus in the Australian National Insect Collection (ANIC) (ANIC 111467, 2 females on a card) and M. zebrinus (ANIC 111470, ANIC 111471, and multiple paratypes deposited at Queensland Museum (QM)), we failed to find clear morphological characters to distinguish these species and did not observe a low pdl.flg/head.b ratio in M. leptocybus. We therefore suspect M. zebrinus and M. leptocybus are synonyms but this requires molecular confirmation.
Photographic illustration of *M. zebrinus* from South Africa and Israel, and the ANIC paratypes of the Israeli *M. leptocybus* are provided (Appendix S9).

4.3 Molecular work is required to overcome the uncertainty of *Megastigmus* taxonomy

Morphological data assisted in matching the species recognized in this study with those described in multiple works of Girault (Girault, 1915, 1925, 1929) and redescribed by Doğanlar and Hassan (2010). For example, the original description of *M. eucalypti* (Girault, 1915) described a species with “flagellum black, funicle 1 a little shorter than the pedicel, 1 somewhat longer than wide. Distal funicle joint a little wider than long. Sometimes, the propodeum is wholly black. Head lemon-yellow” and females with “length, 2.25 mm., exclusive of ovipositor which is extruded for a length somewhat over half that of the body.” These were important characters observed in the large form of *Megastigmus* sp. 1. The smaller form of *Megastigmus* sp. 1 is similar to the QM specimens identified as *M. fieldingi* by Grissell (2006) in shape, size, and body color. The scutellar setae form “3b” in *Megastigmus* sp. 6 and *Megastigmus* sp. 8 (Table 2) was an important character, “second setae of the scutellum twice closer to 3 than to 1,” in the original description of *M. amamori* (Girault, 1925) and *M. pallidioideus* (Girault, 1929) (QM holotypes T5011 and T5021). However, for females of most species, the color and shape of collar and propodeum and visibility of mesoscutal pattern appeared to change when body size and color varied. Identification to established names was therefore confounded by the high variation in size and color of species in our study, and the poor condition of Girault’s type specimens.

Bouček (1988) suggested that a revisional study would lead to the description of many new species and synonyms of current described cases in Australia. Protasov, Doğanlar, La Salle, and Mendel (2008) also highlighted the need of a detailed revision of the European fauna in identifying an Israeli local species (likely *M. leptocybus*, although not explicitly stated in the literature, see reasoning in Le et al., 2018). Several morphological characters, such as the number and arrangement of scutellar setae (Doğanlar & Hassan, 2010), were found to assist species delimitation. Despite that, we believe that future revision needs to involve molecular work on type specimens or specimens collected from the type localities and historical hosts, and association of obtained sequences with designated type specimens. Noninvasive DNA extraction techniques have been proved to successfully extract DNA fragments for species identification of parasitic Hymenoptera after up to 100 years preservation (Andersen & Mills, 2012). The pending case of *M. leptocybus*, as discussed in the previous section, could only be resolved with certainty using supplementary molecular data and a worldwide collaboration of *Megastigmus* researchers. Molecular work can also be applied for many species recently reported to associate with invasive *Leptocybe* spp. in different parts of the world (e.g., *M. thailandiensis* and *M. thitiporna* in Thailand, *M. dharwadicus* in India, *M. brasiliensis* in Brazil, and *M. zebrinus* in Argentina), all of which we were unable to source for our study despite extensive collections in Thailand (see Le et al., 2018). Our recent attempt confirming the synonymies of *M. zvimendeli*, *M. sichuanensis*, and *M. icipeensis* (Le et al., 2020) could set an example of this approach.

Despite the discussed limitations, our study has successfully contributed to the understanding of species composition and species delimitation for eucalypt-associated *Megastigmus*. The constructed phylogeny identified several species groups of importance to *Leptocybe* spp. biocontrol. Data of COI mtDNA sequences clearly delimited species and can be further applied in designing diagnostic primer for use in monitoring of *Leptocybe* spp. biocontrol programs, while the presented morphological characters form a new baseline in understanding the morphological variation within species and between eucalypt gall-associated *Megastigmus*.

ACKNOWLEDGMENTS

Sincere thanks are expressed to colleagues who supplied specimens: Dr. Professor Zvi Mendel, The Volcani Center, Israel; Dr. Beryn A. Otieno, Kenya Forestry Research Institute, Kenya; Dr Gudrun Dittrich-Schröder, University of Pretoria, South Africa; Dr. Zheng Xialin, Guangxi University, China; Dr. Pham Quang Thu, Vietnamese Academy of Forest Sciences, Vietnam. Thanks are expressed to two anonymous reviewers and Dr. Petr Janšta, Charles University - Czech Republic, for the helpful comments in improving the manuscript. Susan Wright, QM, and Juanita Rodriguez Arrieta, ANIC are deeply thanked for supporting examination of museum specimens and loan specimens. Administrative support was provided by the Department of Agriculture and Fisheries, Queensland, and the University of the Sunshine Coast.

CONFLICT OF INTEREST

The authors declared that there is no financial, general, and institutional competing interests regarding the publication of this article.

AUTHOR CONTRIBUTION

Ngoc Hoan Le: Conceptualization (equal); Data curation (lead); Formal analysis (equal); Investigation (equal); Methodology (equal); Project administration (equal); Writing-original draft (equal); Writing-review & editing (equal). Helen F Nahrung: Conceptualization (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Supervision (equal); Validation (equal); Writing-original draft (equal); Writing-review & editing (equal). Jess Morgan: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Supervision (equal); Validation (equal); Writing-original draft (equal); Writing-review & editing (equal). Steven Ogbourne: Conceptualization (equal); Methodology (equal); Software (equal); Writing-review & editing (equal). Simon Lawson: Conceptualization (equal); Formal analysis (equal); Funding acquisition (lead); Methodology (equal); Project administration (equal); Resources (lead); Supervision (lead); Writing-original draft (equal); Writing-review & editing (equal).
DATA AVAILABILITY STATEMENT
DNA sequences generated in this study have been submitted to the GenBank databases under accession number MT375387 - 395, MT380065 - 101, MT383677 - 740 and MN165877 - 951 (detailed in Appendix S2). Data for the reproduction of the results in this paper have been uploaded to The Open Science Framework and are accessible via this link: https://osf.io/nqbmw/?view_only=0b8c72f1ff324e47b8a01e7df1b1b633e. File 1. Sequence alignment, fasta, COI sequence alignment for GMYC analysis. File 2. Sequence alignment, fasta, 865 bp 28S sequence alignment for phylogenetic reconstruction. File 3. Sequence alignment, fasta, COI sequence alignment for phylogenetic reconstruction. File 4. Sequence alignment, fasta, concatenated sequence alignment for phylogenetic reconstruction. File 5. Sequence alignment, fasta, 631 bp 28S sequence alignment for phylogenetic reconstruction. File 6. Log files, compressed (zip), tree reconstruction using BEAST 2.6.3 as input for GMYC. File 7. Log files, compressed (zip), analysis of 28S alignment with MrBayes 3.2.7. File 8. Log files, compressed (zip), analysis of concatenated alignment with MrBayes 3.2.7. File 9. Log files, compressed (zip), analysis of COI alignment with MrBayes 3.2.7

ORCID
Ngoc Hoan Le https://orcid.org/0000-0002-1125-9304
Helen F. Nahrung https://orcid.org/0000-0002-3351-306X
Jess A. T. Morgan https://orcid.org/0000-0002-3590-4806
Steven Ogbourne https://orcid.org/0000-0001-9812-4367
Simon A. Lawson https://orcid.org/0000-0002-1692-8044

REFERENCES
Andersen, J. C., & Mills, N. J. (2012). DNA extraction from museum specimens of parasitic Hymenoptera. PLoS One, 7(10), 1–10 (article e55549). https://doi.org/10.1371/journal.pone.0055459
Asker, R. M., Melika, G., Pujade-Villar, J., Schoenrogge, K., Stone, G. N., & Nieves-Albrey, J. L. (2013). Catalogue of parasitoids and inquilines in cynipid oak galls in the West Palaearctic. Zootaxa, 3643(1), 1-133. https://doi.org/10.11646/zootaxa.3643.1.1
Auger-Rozenberg, M. A., Kerdelhué, C., Magnoux, E., Turgeon, J., Rasplus, J. Y., & Roques, A. (2006). Molecular phylogeny and evolution of host-plant use in conifer seed chalcids in the genus Megastigmus (Hymenoptera: Torymidae). Systematic Entomology, 31(1), 47–64. https://doi.org/10.1111/j.1365-3113.2005.00310.x
Ballard, J. W. O., & Whittlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13(4), 729–744. https://doi.org/10.1046/j.1365-294X.2003.02063.x
Bensasson, D., Zhang, D.-X., Hartl, D. L., & Hewitt, G. M. (2001). Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends in Ecology & Evolution, 16(6), 314–321. https://doi.org/10.1016/S0169-5347(01)02151-6
Boivin, T., Henri, H., Vare, F., Gidoin, C., Veber, P., Candau, J. N., ... Auger-Rozenberg, M. A. (2014). Epidemiology of asexuality induced by the endosymbiotic Wolbachia across phytophagous wasp species: Host plant specialization matters. Molecular Ecology, 23(9), 2362–2375.
Bouček, Z. (1988). Australasian Chalcidoidea (Hymenoptera). A biosystematic revision of genera of fourteen families, with a reclassification of species. Wallingford, UK: CAB International.
Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchene, S., Fourment, M., Gavryushkina, A., ... Drummond, A. J. (2019). Apr. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650
Boykin, L. M., Armstrong, K. F., Kubatko, L., & De Barro, P. (2012). Species delimitation and global biosecurity. Evolutionary Bioinformatics Online, 8, 1-37. https://doi.org/10.4137/EBO.S58532
Brown, S. D., Collins, R. A., Boyer, S., Lefort, M. C., Malumbres-Olarte, J., Vink, C. J., & Cruickshank, R. H. (2012). Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources, 12(3), 562–565. https://doi.org/10.1111/j.1755-0998.2011.03108.x
Bunnefeld, L., Hearn, J., Stone, G. N., & Lohe, K. (2018). Whole-genome data reveal the complex history of a diverse ecological community. Proceedings of the National Academy of Sciences of the USA, 115(28), E6507–E6515. https://doi.org/10.1073/pnas.1800334115
Castro, L., Austin, A., & Dowton, M. (2002). Contrasting rates of mitochondrial molecular evolution in parasitic Diptera and Hymenoptera. Molecular Biology and Evolution, 19(7), 1100–1113. https://doi.org/10.1093/oxfordjournals.molbev.a004168
Clary, D. O., & Wolstenholme, D. R. (1985). The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution, 22(3), 252–271. https://doi.org/10.1007/BF02099755
Crozier, R., & Crozier, Y. (1993). The mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization. Genetics, 133(1), 97–117.
Craura, A., Nidelet, S., Arnal, P., Weber, A., Fusu, L., Gumovsky, A., ... Rasplus, J. Y. (2019). Optimized DNA extraction and library preparation for minute arthropods: Application to target enrichment in chalcid wasps used for biocontrol. Molecular Ecology Resources, 19(3), 702–710. https://doi.org/10.1111/1755-0998.13006
Darrida, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). JModelT est 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772. https://doi.org/10.1038/nmeth.2109
Dittrich-Schröder, G., Hoareau, T. B., Hurley, B. P., Wingfield, M. J., Lawson, S., Nahrung, H. F., & Slippers, B. (2018). Population genetic analyses of complex global insect invasions in managed landscapes: A Leptocybe invasa (Hymenoptera) case study. Biological Invasions, 20(9), 2395–2420. https://doi.org/10.1007/s10530-018-1709-0
Doğanlar, M. (2011). Review of Palearctic and Australian species of Botanomyia Girault 1915 (Hymenoptera: Megastigmidae), with descriptions of new species. Turkish Journal of Zoology, 35(2), 123–157.
Doğanlar, M. (2015). Diagnosis of Megastigmus spp. (Hymenoptera: Torymidae) reared from galls of Leptocybe invasa Fisher & La Salle, 2004, (Hymenoptera: Eulophidae) on Eucalyptus spp. (Myrtaceae), with description of a new species from South Africa. Entomofauna, 36(43), 561–580.
Doğanlar, M., & Hassan, E. (2010). Review of Australian species of Megastigmus (Hymenoptera: Torymidae) associated with Eucalyptus, with descriptions of new species. Australian Journal of Basic and Applied Sciences, 4(10), 5059–5150.
Dowton, M., & Austin, A. D. (1995). Increased genetic diversity in mitochondrial genes is correlated with the evolution of parasitism in the Hymenoptera. Journal of Molecular Evolution, 41(6), 958–965. https://doi.org/10.1007/BF00173176
Duchene, S., Ho, S. Y., & Holmes, E. C. (2015). Declining transition/transversion ratios through time reveal limitations to the accuracy of nucleotide substitution models. BMC Evolutionary Biology, 15, 36. https://doi.org/10.1186/s12862-015-0312-6
Evans, N., & Paulay, G. (2012). DNA barcoding methods for invertebrates. In J. M. Walker (Ed.), DNA Barcodes: Methods and protocols (pp. 47–77). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-61779-591-6
Ezard, T., Fujisawa, T. & Barracough, T. (2017). Splits: Species’ Limits by Threshold Statistics. Accessed on 25 May 2018; 2014 R Package
Version 1.0-19. In (Version 1.0.19) Retrieved from https://rdrr.io/rforge/splits/

Folmer, M., Black, W., Hoeh, W., Lutz, R., Vrijenhoek R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299.

Gernhard, T. (2008). The conditioned reconstructed process. Journal of Theoretical Biology, 253(4), 769–778. https://doi.org/10.1016/j.jtbi.2008.04.005

Gibson, G. A. P., Read, J. D., & Fairchild, R. (1998). Chalcid wasps (Chalcidoidea): illustrated glossary of positional and morphological terms. Retrieved 20/03/2020 from http://www.canacoll.org/Hym/Staff/Gibson/apss/chglntr.htm

Girault, A. A. (1915). Australian Hymenoptera Chalcidoidea. XII. The family Callimomidae with descriptions of new genera and species. Memoirs of the Queensland Museum, 4, 35.

Girault, A. A. (1925). New Queensland Insecta captured without any reference to use. Private publication, 2. (Private publication).

Girault, A. A. (1929). Notes on, and descriptions of, chalcid wasps in the South Australian Museum. Concluding paper. Transactions of the Royal Society of South Australia, 53, 309–346.

Graham, M. W. R. D. V. (1969). An annotated catalog of world Megastigmus (Hymenoptera: Chalcidoidea) Vol. 16. British Museum (Natural History).

Grissell, E. E. (1999). An annotated catalog of world Megastigminae (Hymenoptera: Chalcidoidea: Torymidae) (Vol. 31). American Entomological Institute.

Grissell, E. E. (2006). A new species of Megastigmus Dalman (Hymenoptera: Torymidae), galling seed capsules of Eucalyptus camaldulensis Dehnhardt (Myrtaceae) in South Africa and Australia. African Entomology, 14(1), 87–94.

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/sys010

Hernández, C. M., Aquino, D. A., Cuello, E. M., Andorno, A. V., & Botto, E. N. (2015). Primera cita de Megastigmus zebrinus Grissell de Argentina (Hymenoptera: Torymidae) asociado a agallas de Leptocybe invasa (Hymenoptera: Eulophidae). Revista De La Sociedad Entomológica Argentina, 74(1–2), 75–77.

Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755. https://doi.org/10.1093/bioinformatics/17.8.754

Janša, P., Cruaud, A., Delvare, G., Genson, G., Heraty, J., Křížková, B., & Rasplus, J.-Y. (2018). Torymidae (Hymenoptera, Chalcidoidea) revised: Molecular phylogeny, circumscription and reclassification of the family with discussion of its biogeography and evolution of life-history traits. Cladistics, 34(6), 627–651. https://doi.org/10.1111/clad.12228

Kim, I. K. (2008). Evolution of gall inducing Eulophidae (Hymenoptera: Chalcidoidea) on Myrtaceae in Australia. Doctoral thesis. Australia National University.

Kimura, M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, 78(1), 454–458. https://doi.org/10.1073/pnas.78.1.454

Klein, H., Hoffmann, J. H., Nesen, S., & Dittrich-Schröder, G. (2015). Evidence that Quadrastichodella nova (Hymenoptera: Eulophidae) is the only gall inducer among four Hymenopteran species associated with seed capsules of Eucalyptus camaldulensis (Myrtaceae) in South Africa. African Entomology, 23(1), 207–223. https://doi.org/10.4001/003.023.0117

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2016). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773. https://doi.org/10.1093/molbev/msw260

Le, H. N., Nahrung, H., Lawson, S., & Morgan, J. A. T. (2020). Multivariate ratio analysis and DNA markers reveal a new Australian species and three synonyms in eucalypt-gall-associated Megastigmus (Hymenoptera: Megastigmidae). Bulletin of Entomological Research, 1–16. https://doi.org/10.1017/S000748532000022X

Lee, S.-G., Choi, K. S., Kim, C.-J., Jeon, H.-B., & Kim, I.-K. (2018). Complete mitochondrial genome of Leptaulax koreanus (Coleoptera: Passalidae), a Korean endemic bess beetle. Mitochondrial DNA Part B, 4(1), 105–106. https://doi.org/10.1007/23802359.2018.1536492

Mendel, Z., Protasov, A., Fisher, N., & La Salle, J. (2004). Taxonomy and biology of Leptocybe invasa gen. & sp. n. (Hymenoptera: Eulophidae), an invasive gall inducer on Eucalyptus. Australian Journal of Entomology, 43(2), 101–113.

Mendel, Z., Protasov, A., La Salle, J., Blumberg, D., Brand, D., & Branco, M. (2017). Classical biological control of two Eucalyptus gall wasps; main outcome and conclusions. Biological Control, 105, 66–78. https://doi.org/10.1016/j.biocontrol.2016.11.010

Milliron, H. E. (1949). Taxonomic and biological investigations in the genus Megastigmus with particular reference to the taxonomy of the Nearctic species (Hymenoptera: Chalcidoidea; Callimomidae). American Midland Naturalist, 41(2), 257–420. https://doi.org/10.2307/2421720

Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T. L., Agarwala, R., & Schaffer, A. A. (2008). Database indexing for production MegaBLAST searches. Bioinformatics, 24(16), 1757–1764. https://doi.org/10.1093/bioinformatics/btn322

Noyes, J. S. (2020). Universal Chalcidoidea Database http://www.nhm.ac.uk/chalcidoinds

Nugnes, F., Gebioli, M., Monti, M. M., Qautieri, L., Giorgini, M., Wang, J., & Bernardo, U. (2015). Genetic diversity of the invasive gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia endosymbiont, and associated sex-ratio differences. PloS One, 10(5), 1–19 (article e0124660). https://doi.org/10.1371/journal.pone.0124660

Ötake, A. (1987). Comparison of some morphological characters among two strains of Tryonius beneficus Yasumatsu et Kamijo and T. sinensis Kamijo (Hymenoptera: Torymidae). Applied Entomology and Zoology, 22(4), 600–609.

Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., … Hedin, M. (2006). Sequence-Based Species Delimitation for the DNA Taxonomy of Undescribed Insects. Systematic Biology, 55(4), 595–609. https://doi.org/10.1080/10635150600825011

Posada, D. (2003). Using MODELTEST and PAUP* to select a model of nucleotide substitution. In Current protocols in bioinformatics, 1, 6.5.1–6.5.14). John Wiley & Sons, Inc. https://doi.org/10.1002/0471205953.bi0605s00

Protasov, A., Doğanlar, M., La Salle, J., & Mendel, Z. (2008). Occurrence of two local Megastigmus species parasitic on the Eucalyptus gall wasp Leptocybe invasa in Israel and Turkey. Phytoparasitica, 36(5), 449–459. https://doi.org/10.1007/BF03020291

Puillandre, N., Lambert, A., Brouillet, S., & Achatz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21(8), 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x

Purvis, A., & Lindell, B. (1997). Estimating the transition/transversion ratio from independent pairwise comparisons with an assumed phylogeny. Journal of Molecular Evolution, 44, 112–119. https://doi.org/10.1007/PL00006117
Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics*, 19(12), 1572-1574. https://doi.org/10.1093/bioinformatics/btg180

Roques, A., Copeland, R. S., Soldati, L., Denux, O., & Auger-Rozenberg, M.-A. (2016). *Megastigmus* seed chalcids (Hymenoptera, Torymidae) radiated much more on Angiosperms than previously considered. I-Description of 8 new species from Kenya, with a key to the females of Eastern and Southern Africa. *ZooKeys*, 585, 51-124. https://doi.org/10.3897/zookeys.585.7503

Roques, A., & Skrzypczyńska, M. (2003). Seed-infesting chalcids of the genus *Megastigmus* Dalman, 1820 (Hymenoptera: Torymidae) native and introduced to the West Palearctic region: Taxonomy, host specificity and distribution. *Journal of Natural History*, 37(2), 127-238. https://doi.org/10.1080/713834669

Scheffer, S. J., & Grissell, E. (2003). Tracing the geographical origin of *Megastigmus transvaalensis* (Hymenoptera: Torymidae): An African wasp feeding on a South American plant in North America. *Molecular Ecology*, 12(2), 415–421. https://doi.org/10.1046/j.1365-294X.2003.01725.x

Som, A. (2014). Causes, consequences and solutions of phylogenetic incongruence. *Briefings in Bioinformatics*, 16(3), 536-548. https://doi.org/10.1093/bib/bbu015

Song, H., Buhay, J. E., Whiting, M. F., & Crandall, K. A. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. *Proceedings of the National Academy of Sciences*, 105(36), 13486-13491. https://doi.org/10.1073/pnas.0803076105

Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*, 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033

Viggiani, G., Laudonia, S., & Bernardo, U. (2001). Aumentano gli insetti dannosi agli eucalipti. *Informatore Agrario*, 58(12), 86–87.

Yang, Z., & Yoder, A. D. (1999). Estimation of the transition/transversion rate bias and species sampling. *Journal of Molecular Evolution*, 48(3), 274–283. https://doi.org/10.1007/pl00006470

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

*How to cite this article:* Le NH, Nahrung HF, Morgan JAT, Ogbourne S, Lawson SA. Molecular markers reveal diversity in composition of *Megastigmus* (Hymenoptera: Megastigmidae) from eucalypt galls. *Ecol. Evol*. 2020;10:11565-11578. https://doi.org/10.1002/ece3.6791