MILD VELOCITY DISPERSION EVOLUTION OF SPHEROID-LIKE MASSIVE GALAXIES SINCE $z \sim 2$

A. Javier Cenarro and Ignacio Trujillo
Instituto de Astrofísica de Canarias, Vía Láctea s/n, 38200 La Laguna, Tenerife, Spain; cenarro@iac.es, trujillo@iac.es

Received 2009 January 21; accepted 2009 March 24; published 2009 April 9

ABSTRACT

Making use of public spectra from Cimatti et al., we measure for the first time the velocity dispersion of spheroid-like massive ($M_\star \sim 10^{11} M_\odot$) galaxies at $z \sim 1.6$. By comparing with galaxies of similar stellar mass at lower redshifts, we find evidence for a mild evolution in velocity dispersion, decreasing from ~ 240 km s$^{-1}$ at $z \sim 1.6$ down to ~ 180 km s$^{-1}$ at $z \sim 0$. Such mild evolution contrasts with the strong change in size (a factor of ~ 4) found for these type of objects in the same cosmic time, and it is consistent with a progressive larger role, at lower redshift, of the dark matter halo in setting the velocity dispersion of these galaxies. We discuss the implications of our results within the context of different scenarios proposed for the evolution of these massive objects.

Key words: galaxies: evolution – galaxies: formation – galaxies: kinematics and dynamics – galaxies: structure

1. INTRODUCTION

Recent observations show that the most massive ($M_\star \sim 10^{11} M_\odot$) spheroid-like galaxies at $z > 1.5$, irrespective of their star formation activity (Pérez-González et al. 2008), were much smaller (a factor of ~ 4) than their local counterparts (Daddi et al. 2005; Trujillo et al. 2006, 2007; Longhetti et al. 2007; Zirm et al. 2007; Toft et al. 2007; Giavalisco et al. 2007; Ravindranath et al. 2008; Cimatti et al. 2008, hereafter C08; van Dokkum et al. 2008; Buitrago et al. 2008, hereafter B08; Saracco et al. 2009; Damjanov et al. 2009; Ferreras et al. 2009). The near absence of such systems ($r_e < 1.5$ kpc; $M_\star > 10^{11} M_\odot$) in the nearby universe (less than 0.03%; Trujillo et al. 2009) implies a strong evolution in the structural properties of these massive galaxies as cosmic time evolves.

Different scenarios have been proposed to explain the dramatic size evolution of these galaxies since $z \sim 3$ (Khochfar & Silk 2006; Naab et al. 2007; Fan et al. 2008; Hopkins et al. 2009). The main difference among them is the role of mergers to increase the size of galaxies. Fan et al. (2008) support an evolutionary scheme where galaxies grow by the effect of quasar feedback, which removes huge amounts of cold gas from the central regions hence quenching the star formation. The removal of gas makes galaxies puff up in a scenario similar to the one proposed to explain the growth of globular clusters (Hills 1980). In the merging scenario, however, merger remnants become larger in size than those of their progenitors by transforming the kinetic energy of the colliding systems into potential energy. Whereas both scenarios predict a strong size evolution for the most massive galaxies, they disagree on the expected evolution of the velocity dispersion of the massive galaxies at a given stellar mass. The merging scenario basically predicts no evolution (at most 30% since $z \sim 3$; Hopkins et al. 2009), whereas the puffing-up scenario predicts central velocity dispersions to be ~ 2 times larger than in present-day massive galaxies.

Constraining the evolution of the velocity dispersion of spheroid-like massive galaxies over the last 10 Gyr turns therefore crucial to test the above models of galaxy evolution, as well as to determine the importance of dark matter halos in setting the velocity dispersion of galaxies as cosmic time evolves. For these reasons, in this Letter we measure for the first time the velocity dispersion of such massive galaxies at $z \sim 1.6$, and compare it with a compilation of velocity dispersions for similar galaxies at $z \lesssim 1.2$. In what follows, we adopt a cosmology of $\Omega_m = 0.3$, $\Omega_\Lambda = 0.7$, and $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$.

2. THE DATA

2.1. Velocity Dispersions at $z \sim 1.6$

To determine the typical velocity dispersion of spheroid-like massive ($M_\star \sim 10^{11} M_\odot$) galaxies at $z \sim 1.6$, we have used the publicly available stacked spectrum of galaxies at $1.4 < z < 2.0$ ($\langle z \rangle = 1.63 \pm 0.18$ rms standard deviation) presented in C08 as part of the Galaxy Mass Assembly ultra-deep Spectroscopic Survey (GMASS) project. The spectrum consists of an averaged spectrum of 13 massive galaxies with a total integration time of 480 hr. Only two of them are classified as disks, whereas the remaining 11 galaxies have either a pure elliptical morphology or show a very concentrated and regular shape (see C08). The stacked spectrum is consequently representative of massive spheroid-like objects at that redshift. Individual galaxy spectra were taken at VLT with FORS2, using the grism G300I and a 1′′ width slit, providing a spectral resolution of FWHM ~ 13 Å in the range $\lambda \lambda 6000$–10000 ($\lambda / \Delta \lambda \sim 600$). Before stacking, each individual galaxy spectrum was previously de-redshifted and assigned to have the same weight in the resulting rest-frame range. The resulting rest-frame stacked spectrum was set to 1 Å pixel$^{-1}$ over the range $\lambda \lambda 2300$–3886.

Aimed at computing the velocity dispersion of the above stacked spectrum, it is required the use of reference template spectra of well-known spectral resolution. Section 3.2 provides a full description of these data sets, as they are basic input ingredients of the analysis carried out in this work.

2.2. Velocity Dispersions up to $z \sim 1.2$

We have compiled from previous work velocity dispersion estimates of spheroid-like massive galaxies at $z < 1.2$. This includes data from van der Wel et al. (2005)—updated, when possible, with van der Wel et al. (2008)—for galaxies in the ranges $0.6 < z < 0.8$ and $0.9 < z < 1.2$, and from di Serego Alighieri et al. (2005) for galaxies at $0.9 < z < 1.3$. These authors also provide stellar masses and effective radii

http://www.arcetri.astro.it/~cimatti/gmass/gmass.html
for their galaxies. In both samples the galaxies were classified visually. The vast majority of these objects present a prominent spheroidal component and are identified as either E or S0. When necessary, stellar masses have been transformed assuming a Chabrier (2003) initial mass function (IMF). To allow this, we use the

\[\text{Velocity Dispersion Estimates for Spheroid-like Massive Galaxies at } z \sim 1.6 \]

Template Spectra	Spectral Range (Å)	\(\lambda_c \) (Å)	\(\sigma_{\text{temp}} \) (km s\(^{-1}\)) \(\sigma_{0,\text{C08}} \) (km s\(^{-1}\))	\(\Delta \sigma \) (km s\(^{-1}\))	\(\sigma_{+} \) (km s\(^{-1}\))	
CoolICAT stars	2510–3050	2780	57 ± 3	230	267 ± 20	258 ± 21
BC03+NGSSL SSP models	2510–3050	2780	178 ± 8	230	178 ± 23	236 ± 18
Keck/LRIS stars	3250–3880	3565	171 ± 5	179	177 ± 20	236 ± 15

Notes.
- a Rest-frame spectral range employed for deriving the MOVEL kinematics (\(\Delta \sigma \)).
- b Central wavelength of the rest-frame spectral range.
- c Instrumental resolution of the template spectra computed at \(\lambda_c \) (see the text in Section 3.2).
- d Instrumental resolution of the C08 stacked spectrum computed at \(\lambda_c \), using FWHM = 13 Å and \(z = 1.6 \).
- e Relative velocity dispersion with respect to that of the optimal template spectra.
- f Velocity dispersion of the C08 stacked spectrum of spheroid-like massive galaxies at \(z \sim 1.6 \), as derived from Equation (1).

Then, the algorithm finds the linear combination of the template spectra that best matches the observed galaxy spectrum. This constitutes a first composite template which is fed into the MOVEL algorithm. The output kinematic parameters are then used to create an improved composite template and the process is iterated until it converges. This iterative approach then provides an optimal template while simultaneously computing the radial velocity and velocity dispersion of the galaxy spectrum.

Ideally, the reference template spectra are chosen to be representative stellar spectra observed with an identical technical setup to that of the galaxy spectra. This way, the instrumental broadening is the same in both data sets, and the broadening difference between galaxy and template spectra, \(\Delta \sigma \), is a direct measurement of the galaxy starlight velocity dispersion, \(\sigma_\star \). Since this is not the case for the C08 stacked spectrum, the different instrumental resolutions of the distinct data sets employed in this work must be taken into account. This is explained in detail in Sections 3.2 and 3.3.

3.1. The MOVEL Program

To estimate the velocity dispersion of the C08 stacked spectrum, we use the MOVEL code, available at the REDUCEME\(^2\) distribution (Cardiel 1999). MOVEL is designed to characterize the line-of-sight velocity distribution of a galaxy spectrum by determining its first two moments: the mean radial velocity and the velocity dispersion. Based on Fourier analysis, the code relies on the MOVEL and OPTEMA algorithms of González (1993). A full explanation of the Fourier techniques and their particular implementation in both routines is provided in the above work.

The MOVEL algorithm, an improvement of the classic Fourier quotient method by Sargent et al. (1977), is an iterative procedure in which a galaxy model is processed in parallel to the galaxy spectrum. In this way, a comparison between the input and recovered broadening functions for the model allows us to correct the galaxy power spectrum from any imperfections of the data handling in Fourier space. The OPTEMA algorithm is designed to overcome the typical template mismatch problem by computing an optimal template for the galaxy spectrum. It is fed with a set of representative template spectra which are scaled, shifted, and broadened according to initial values for the mean line strength, the radial velocity, and the velocity dispersion.
private communication). They are based on the Bruzual & Charlot (2003) code and the Next Generation Spectral Library (NGSL; Gregg et al. 2004; Heap & Lindler 2007), with an average resolution of $R \sim 1000$. The employed SSP models span ages from 0.3 to 3 Gyr with metallicities $[Z/H] = -0.4$, 0.0, and +0.4, hence enclosing the 1 Gyr and solar metallicity estimate of C08 for their stacked spectrum. Again, using MOVEL and the above high-resolution CoolCAT spectra, we have accurately derived the spectral resolution of Bruzual’s models in the range $\lambda \lambda 2510-3050$, which is $\sigma_{\text{BC03+NGSL}} \sim 178 \pm 8$ km s$^{-1}$, or equivalently $R \sim 710$.

(3) Finally, for the red side of the C08 stacked spectrum, we employ a set of 18 stellar spectra (dwarfs and giants ranging from G0 to K7 spectral types) observed with the Low Resolution Imaging Spectrometer (LRIS) at Keck as radial velocity templates for a different program (Beasley et al. 2009). Having used the grism 600/4000 and the 1” long slit, the stellar spectra have an FWHM of 4.77 ± 0.14 Å ($\sigma_{\text{LRIS}} \sim 171 \pm 5$ km s$^{-1}$ at 3565 Å; $R \sim 750$) as determined from the width of the wavelength calibration arc lines. The spectra span the range $\lambda \lambda 3150-5600$, although only the blue side is employed here.

3.3. Results and Robustness of the Method

We have analyzed the stacked spectrum of C08 with MOVEL using the three sets of template spectra described in Section 3.2. In each case, to constrain the reliability of the final results, the procedure has been repeated several times using different initial MOVEL parameters, such as different starting velocity dispersions (from 50 up to 300 km s$^{-1}$, in steps of 50 km s$^{-1}$).

For each single MOVEL solution, the stellar velocity dispersion of the C08 stacked spectrum, σ_{C08}, is derived as

$$\sigma_{\text{C08}} = \sqrt{\Delta \sigma^2 + \sigma_{0,\text{templ}}^2 - \left(\frac{\sigma_{0,\text{C08}}}{1+z} \right)^2}, \quad (1)$$

where $\Delta \sigma$ is the broadening difference between the optimal template spectra and the C08 spectrum (as derived from MOVEL), $\sigma_{0,\text{templ}}$ and $\sigma_{0,\text{C08}}$ are their intrinsic instrumental resolutions, and z is the redshift (~ 1.6). Note that, since the individual galaxy spectra of C08 were previously blueshifted before stacking, the effective instrumental resolution at rest frame decreases by $(1+z)$.

For each set of template spectra, Table 1 presents $\sigma_{0,\text{templ}}$, $\sigma_{0,\text{C08}}$, and the mean values of $\Delta \sigma$ and σ_{C08}, with their errors accounting for the rms standard deviation of the solutions obtained from the different MOVEL trials. An error-weighted mean of the three independent σ_{C08} solutions, which are indeed consistent within the uncertainties, gives $\langle \sigma_{\text{C08}} \rangle = 241 \pm 10$ km s$^{-1}$.

It is worth noting that the above value could be slightly overestimated, as redshift uncertainties for the 13 stacked galaxy spectra may have enlarged artificially the width of the lines. We have also checked that the strong $\lambda 2800$ Mg II doublet in the stacked spectrum (~ 45 Å, Table 2 of C08) is not significantly broadened by potential nonstellar Mg II absorptions in surrounding galactic gas clouds. Such absorptions are typically much narrower (~ 1 km s$^{-1}$, as they follow much colder kinematics) and ~ 5 times weaker (~ 1.6 Å, for typically ~ 14 clouds; see, e.g., Steidel et al. 1994; Churchill et al. 2000). Therefore, even if they were present in all galaxies, $\langle \sigma_{\text{C08}} \rangle$ could be overestimated by only ~ 1 km s$^{-1}$ (up to ~ 14 km s$^{-1}$ if all galaxies were Damped-Lyα systems, which is very unlikely as no Lyman absorptions are detected). On the other hand, if the two disk galaxies in the stacked spectrum had lower typical velocity dispersions of, e.g., 150 km s$^{-1}$, the derived $\langle \sigma_{\text{C08}} \rangle$ would underestimate the true velocity dispersion of early-type galaxies by ~ 13 km s$^{-1}$. Overall, since the above systematics may cancel each other, 241 ± 10 km s$^{-1}$ is probably a reasonable estimation of the velocity dispersion of $M_* \sim 10^{11} M_\odot$ spheroid-like galaxies at $z \sim 1.6$.

Figure 1. Representative examples of the MOVEL fitting results derived for the C08 stacked spectrum and the three sets of template spectra: (a) CoolCAT stars, (b) BC03+NGSL SSP models, and (c) Keck/LRIS stars. In each case, bottom panels illustrate the C08 stacked spectrum of galaxies at $z \sim 1.6$ (red) and the optimal template spectrum (blue, thick line) broadened at the mean $\Delta \sigma$ values in Table 1. Top panels show the residuals of the fits. In panel c, the region around the O ii emission line doublet at $\lambda 3727$ (dotted lines) was masked and rejected from the C08 stacked spectrum (green) for the fitting computation.
The IMF is the same at all redshifts. In fact, an appropriate change of the IMF with redshift would mitigate the problem of the strong size evolution. However, the derived velocity dispersion at $z \sim 1.6$ is similar to that of present-day galaxies with $M_*/10^{11}M_\odot$, consequently constraining any potential change of the IMF with redshift. 2. It alleviates the problem of understanding how massive— and compact—galaxies at high-z can evolve through merging since that epoch. An extraordinarily high velocity dispersion at high-z (e.g., ~ 400 km s$^{-1}$) would have implied that the gravitational potential depth of the system would be so intense that it would not easily evolve in size.

To put in context the above result, Figure 2 shows the sizes (top panel) and velocity dispersions (bottom panel) for the C08 galaxies and the compilation of spheroid-like galaxies of similar mass described in Section 2. These galaxies follow nicely the observed strong size evolution found in other independent larger samples where completeness effects are accounted (Trujillo et al. 2007; B08; dashed line), hence probing that the sizes of the objects explored in this Letter are typical of average spheroidal—like massive galaxies at those redshifts. It is also clear that, although massive spheroid-like galaxies have experienced a strong size evolution (a factor of ~ 4 since $z \sim 1.5$; Trujillo et al. 2007), the velocity dispersion has evolved mildly by a factor of ~ 1.3 in the same redshift interval (see Bernardi 2009 for a similar trend at $z < 0.3$). This result is crucial to constrain the different scenarios proposed so far to explain the dramatic size evolution since $z \sim 2$, as they disagree in the amount of evolution expected in their velocity dispersions.

In the puffing-up scenario of Fan et al. (2008), velocity dispersions change as $\sigma \propto r_e^{-1.27}$. Using the observed size evolution of B08, $r_e(z) \propto (1 + z)^{-1.48}$, the solid line in Figure 2 illustrates the expected σ_e evolution under this scenario. It increases with redshift in a way that galaxies are expected to double their σ_e at $z \sim 1.5$. The observed velocity dispersions are compatible—within the error bars—with this scenario up to $z \sim 0.7$. However, at $z > 1$ the discrepancy between theory and data is apparent.

In the merging scenario of Hopkins et al. (2009), at a fixed stellar mass, σ_e evolves with redshift as

$$\frac{\sigma_e(z)}{\sigma_e(0)} \propto \frac{1}{\sqrt{1 + \gamma}} \sqrt{\frac{r_e(0)}{r_e(z)}},$$

where $\gamma \equiv (M_{\text{halo}}/R_{\text{halo}})/(M_*/r_e)$ is the dark matter contribution to the central potential relative to that of the baryonic matter at $z \sim 0$, and R_{halo} is the effective radius of the halo. Again, we have used the B08 size evolution as an input into the merging model prediction. The gray area in Figure 2 encloses the expected σ_e evolution when γ varies between 1 and 2. The agreement between the merging scheme and the observed evolution looks reasonably good at all redshifts.

Following Hopkins et al. (2009), to explain why σ_e has only changed weakly since $z \sim 2$ it is necessary to consider that the observed velocity dispersion is driven by two components: the baryonic matter and the dark matter halo. Both components contribute linearly to the central gravitational potential of the galaxy, hence $\sigma_e \propto (M_*/r_e + M_{\text{halo}}/R_{\text{halo}})$. Assuming that R_{halo} evolves weakly with time (most simulations show that halos build inside-out, so the central potential is set first and just the outer halo grows with time), the dark matter effect on the central potential of the galaxy (i.e., on σ_e) basically remains unchanged.

4. DISCUSSION

The fact that the velocity dispersion of $M_*/10^{11}M_\odot$ spheroid-like galaxies at $z \sim 1.6$ is ~ 240 km s$^{-1}$ has important consequences to understand their evolution.

1. It confirms that high-z spheroid-like massive galaxies are truly massive objects. The unexpected strong size evolution of these objects has cast some doubts about the reliability of their stellar mass estimates, which relies on the assumption
at a fixed M_\star. However, the influence of the baryonic matter on the gravitational potential has changed strikingly since $z \sim 1.5$, at present-day being ~ 4 times smaller due to the expansion of the object. The relative influence of the dark matter on setting the inner potential increases with the decreasing effect of the baryonic matter. In fact, the data look in agreement with an almost symmetric influence of dark and baryonic matter (i.e., $\gamma \sim 1$) in setting the central gravitational potential of present-day objects.

We acknowledge the referee for constructive comments. This work has been possible thanks to the helpful contribution of several people. G. Bruzual provided us with his SSP model predictions based on the NGSL. Fruitful discussions with P. Sánchez-Blázquez, A. Vazdekis, and C. Conselice helped us to find the right strategy to achieve our goals. N. Cardiel gave us very valuable inputs on the moveL capabilities. Finally, we benefited from discussion with R. Guzmán, M. Balcells, M. López-Corredoira, and A. van der Wel. A.J.C. and I.T.C. are Juan de la Cierva and Ramón y Cajal Fellows of the Spanish Ministry of Science and Innovation. This work has been funded by the Spanish Ministry of Science and Innovation through grant AYA2007-67752-C03-01.

REFERENCES

Ayres, T. R. 2005, in Proc. 13th Cambridge Workshop on Cool Stars 560, Stellar Systems and the Sun, ed. F. Favata, G. A. J. Hussain, & B. Battrick, 419
Beasley, M. A., Cenarro, A. J., Strader, J., & Brodie, J. P. 2009, AJ, in press, arXiv:0903.4364
Bernardi, M. 2009, arXiv:0901.1318
Blanton, M. R., & Roweis, S. 2007, AJ, 133, 734
Blanton, M. R., et al. 2005, AJ, 129, 2562
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Buitrago, F., Trujillo, I., Conselice, C. J., Bouwens, R. J., Dickinson, M., & Yan, H. 2008, ApJ, 687, L61 (B08)
Cardiel, N. 1999, PhD thesis, Univ. Complutense de Madrid
Chabrier, G. 2003, PASP, 115, 763
Churchill, C. W., Mellon, R. R., Charlton, J. C., Jannuzi, B. T., Kirhakos, S., Steidel, C. C., & Schneider, D. P. 2000, ApJ, 543, 577
Cimatti, et al. 2008, A&A, 482, 21 (C08)
Daddi, E., et al. 2005, ApJ, 626, 680
Damjanov, I., et al. 2009, ApJ, 695, 101
di Serego Alfighieri, S., et al. 2005, A&A, 442, 125
Fan, L., Lapi, A., De Zotti, G., & Danese, L. 2008, ApJ, 689, L101
Ferreras, I., Lisker, T., Pasquali, A., Khochfar, S., & Kaviraj, S. 2009, arXiv:0901.4555
Giavalisco, M., Ravindranath, S., & Daddi, E. 2007, Nuovo Cimento B, 122, 1209
González, J. J. 1993, PhD thesis, Univ. of California
Gregg, M. D., et al. 2004, BAAS, 36, 1496
Heap, S. R., & Lindler, D. J. 2007, in ASP Conf. Ser. 374, From Stars to Galaxies: Building the Pieces to Build Up the Universe, ed. A. Vallenari, R. Tantalo, L. Portinari, & A. Moretti (San Francisco, CA: ASP), 409
Hills, J. G. 1980, ApJ, 235, 986
Hopkins, P. F., Hernquist, L., Cox, T. J., Keres, D., & Wyuts, S. 2009, ApJ, 691, 1424
Khochfar, S., & Silk, J. 2006, ApJ, 648, L21
Longhetti, M., et al. 2007, MNRAS, 374, 614
Naab, T., Johansson, P. H., Ostriker, J. P., & Efstathiou, G. 2007, ApJ, 658, 710
Pérez-González, P. G., Trujillo, I., Barro, G., Gallego, J., Zamorano, J., & Conselice, C. J. 2008, ApJ, 687, 50
Ravindranath, S., Daddi, E., Giavalisco, M., Ferguson, H. C., & Dickinson, M. E. 2008, Proc. IAU Symp. 245, Formation and Evolution of Galaxy Bulges (Dordrecht: Kluwer), 407
Ravindranath, S., et al. 2004, ApJ, 604, L9
Saracco, P., Longhetti, M., & Andreon, S. 2009, MNRAS, 392, 718
Sargent, W. L. W., Schechter, P. L., Boksenberg, A., & Shorridge, K. 1977, ApJ, 212, 326
Sérsic, J. L. 1968, Cordoba, Argentina: Observatorio Astronomico
Steidel, C. C., Dickinson, M., & Persson, S. E. 1994, ApJ, 437, L75
Toft, S., et al. 2007, ApJ, 671, 285
Trujillo, I., Conselice, C. J., Bundy, K., Cooper, M. C., Eisenhardt, P., & Ellis, R. S. 2007, MNRAS, 382, 109
Trujillo, I., Cenarro, A. J., de Lorenzo-Caceres, A., Vazdekis, A., de la Rosa, I. G., & Cava, A. 2009, ApJ, 692, L118
Trujillo, I., et al. 2006, MNRAS, 373, L36
van der Wel, A., Franx, M., van Dokkum, P. G., Rix, H.-W., Illingworth, G. D., & Rosati, P. 2005, ApJ, 631, 145
van der Wel, A., Holden, B. P., Zirm, A. W., Franx, M., Rettura, A., Illingworth, G. D., & Ford, H. C. 2008, ApJ, 688, 48
van Dokkum, P. G., et al. 2008, ApJ, 677, L5
Zirm, A. W., et al. 2007, ApJ, 656, 66