CDKN1C gene

cyclin dependent kinase inhibitor 1C

Normal Function

The CDKN1C gene provides instructions for making a protein that helps regulate growth. This protein acts as a tumor suppressor, which means that it keeps cells from growing and dividing too fast or in an uncontrolled way. It also is involved in controlling growth before birth, preventing the developing fetus from becoming too large.

People inherit one copy of most genes from their mother and one copy from their father. Both copies are typically active, or "turned on," in cells. However, the activity of the CDKN1C gene depends on which parent it was inherited from. In most tissues, the copy of the gene inherited from a person's mother (the maternally inherited copy) has much higher activity than the copy inherited from the father (the paternally inherited copy). This sort of parent-specific difference in gene activation is caused by a phenomenon called genomic imprinting.

CDKN1C is part of a cluster of genes on the short (p) arm of chromosome 11 that undergo genomic imprinting. A nearby region of DNA known as imprinting center 2 (IC2) or KvDMR controls the parent-specific genomic imprinting of CDKN1C and several other genes thought to help regulate growth. The IC2 region undergoes a process called methylation, which is a chemical reaction that attaches small molecules called methyl groups to certain segments of DNA. Methylation, which occurs during the formation of an egg or sperm cell, is a way of marking or "stamping" the parent of origin. The IC2 region is normally methylated only on the maternally inherited copy of chromosome 11.

Health Conditions Related to Genetic Changes

Beckwith-Wiedemann syndrome

Beckwith-Wiedemann syndrome is a condition that causes overgrowth and has other signs and symptoms that affect many parts of the body. At least half of all cases of Beckwith-Wiedemann syndrome result from changes in methylation of the IC2 region. Specifically, the maternally inherited copy of the IC2 region has too few methyl groups attached (hypomethylation). This abnormality disrupts the regulation of several genes that are normally controlled by IC2, including CDKN1C. Because this gene normally restrains cell growth and division, a reduction in its activity leads to overgrowth and the other features of Beckwith-Wiedemann syndrome.

In a few cases, Beckwith-Wiedemann syndrome has been caused by deletions of a small amount of DNA from the maternally inherited copy of the IC2 region. Like
abnormal methylation, these deletions disrupt the activity of several genes, including \textit{CDKN1C}.

Beckwith-Wiedemann syndrome can also result from mutations within the maternally inherited copy of the \textit{CDKN1C} gene. More than two dozen such mutations have been identified. Some of these genetic changes lead to an abnormally short, nonfunctional version of the CDKN1C protein, while others alter single protein building blocks (amino acids) or delete a small number of amino acids from the protein. All of these mutations are described as "loss-of-function" because they alter the structure of the CDKN1C protein such that it can no longer control growth effectively. The resulting problems with growth regulation lead to overgrowth and the other features of Beckwith-Wiedemann syndrome.

\textbf{Intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies}

Intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies, commonly known by the acronym IMAGe, is a rare syndrome that affects the growth of many parts of the body. The condition is characterized by slow growth before and after birth, skeletal abnormalities, hormonal changes, and genital abnormalities in males. At least six mutations in the \textit{CDKN1C} gene have been found to cause this condition. Because this gene is paternally imprinted, IMAGe syndrome results only when the mutation is present on the maternally inherited copy of the gene.

The \textit{CDKN1C} gene mutations that cause IMAGe syndrome replace single amino acids in a region known as the proliferating cell nuclear antigen (PCNA)-binding domain near the end of the gene. These mutations appear to increase the stability of the CDKN1C protein, preventing it from being broken down normally. These changes increase the amount of the protein that is available to restrain cell growth and division. Because these mutations enhance the protein's usual function, they are described as "gain-of-function." The excess CDKN1C protein leads to IMAGe syndrome by impairing normal growth and development starting before birth.
Chromosomal Location

Cytogenetic Location: 11p15.4, which is the short (p) arm of chromosome 11 at position 15.4

Molecular Location: base pairs 2,883,218 to 2,885,775 on chromosome 11 (Homo sapiens Updated Annotation Release 109.20200522, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

• BWCR
• CDN1C_HUMAN
• cyclin-dependent kinase inhibitor 1C
• cyclin-dependent kinase inhibitor 1C (p57, Kip2)
• cyclin-dependent kinase inhibitor p57
• KIP2
• p57
• p57KIP2

Additional Information & Resources

Educational Resources
• The Cell: A Molecular Approach (second edition, 2000): DNA Methylation
 https://www.ncbi.nlm.nih.gov/books/NBK9904/#A1014

Clinical Information from GeneReviews
• Beckwith-Wiedemann Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1394
• IMAGe Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK190103
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28CDKN1C%5BTIAB%5D%29+OR+%28cyclin-dependent+kinase+inhibitor+1C%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1080+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- CYCLIN-DEPENDENT KINASE INHIBITOR 1C
 http://omim.org/entry/600856

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_CDKN1C.html
- Cancer Genetics Web
 http://www.cancerindex.org/geneweb/CDKN1C.htm
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=CDKN1C%5Bgene%5D
- HGNC Gene Symbol Report
 https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:1786
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:1028
- NCBI Gene
 https://www.ncbi.nlm.nih.gov/gene/1028
- UniProt
 https://www.uniprot.org/uniprot/P49918

Sources for This Summary

- Arboleda VA, Lee H, Parmaik R, Fleming A, Banerjee A, Ferraz-de-Souza B, Délot EC, Rodriguez-Fernandez IA, Braslavsky D, Bergadá I, Dell'Angelica EC, Nelson SF, Martinez-Agosto JA, Achermann JC, Vilain E. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat Genet. 2012 May 27;44(7):788-92. doi: 10.1038/ng.2275.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22634751
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386373/

- Borges KS, Arboleda VA, Vilain E. Mutations in the PCNA-binding site of CDKN1C inhibit cell proliferation by impairing the entry into S phase. Cell Div. 2015 Mar 28;10:2. doi: 10.1186/s13008-015-0008-8. eCollection 2015.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25861374
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389716/
• Eggermann T, Binder G, Brioude F, Maher ER, Lapunzina P, Cubellis MV, Bergadá I, Prawitt D, Begemann M. CDKN1C mutations: two sides of the same coin. Trends Mol Med. 2014 Nov;20(11): 614-22. doi: 10.1016/j.molmed.2014.09.001. Epub 2014 Sep 25. Review. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25262539

• Gurrieri F, Zollino M, Oliva A, Pascali V, Orteschi D, Pietrobono R, Camporeale A, Coll Vidal M, Parolini S, Brugada R, Bellocci F, Neri G. Mild Beckwith-Wiedemann and severe long-QT syndrome due to deletion of the imprinting center 2 on chromosome 11p. Eur J Hum Genet. 2013 Sep;21(9): 965-9. doi: 10.1038/ejhg.2012.280. Epub 2013 Mar 20. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23511928 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746256/

• Hamajima N, Johmura Y, Suzuki S, Nakanishi M, Saitoh S. Increased protein stability of CDKN1C causes a gain-of-function phenotype in patients with IMAGE syndrome. PLoS One. 2013 Sep 30; 8(9):e75137. doi: 10.1371/journal.pone.0075137. eCollection 2013. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24098681 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787065/

• Milani D, Pezzani L, Tabano S, Miozzo M. Beckwith-Wiedemann and IMAGE syndromes: two very different diseases caused by mutations on the same gene. Appl Clin Genet. 2014 Sep 16;7:169-75. doi: 10.2147/TACG.S35474. eCollection 2014. Review. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25258553 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173641/

• Riccio A, Cubellis MV. Gain of function in CDKN1C. Nat Genet. 2012 Jun 27;44(7):737-8. doi: 10.1038/ng.2336. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22735584

• Romanelli V, Belinchón A, Benito-Sanz S, Martínez-Glez V, Gracia-Bouthelier R, Heath KE, Campos-Barros A, García-Miñaur S, Fernandez L, Meneses H, López-Siguero JP, Guillén-Navarro E, Gómez-Puertas P, Wesselink JJ, Mercado G, Esteban-Marfil V, Palomo R, Mena R, Sánchez A, Del Campo M, Lapunzina P. CDKN1C (p57(Kip2)) analysis in Beckwith-Wiedemann syndrome (BWS) patients: Genotype-phenotype correlations, novel mutations, and polymorphisms. Am J Med Genet A. 2010 Jun;152A(6):1390-7. doi: 10.1002/ajmg.a.33453. Review. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20503313

Reprinted from Genetics Home Reference:
https://ghr.nlm.nih.gov/gene/CDKN1C

Reviewed: June 2015
Published: August 17, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services