Nonlinear optical beams carrying phase dislocations

Anton Desyatnikov † §, Cornelia Denz †, and Yuri Kivshar ‡
† Nonlinear Photonics Group, Institute of Applied Physics, Westfälische
Wilhelms-Universität Münster, D-48149 Münster, Germany
‡ Nonlinear Physics Group, Research School of Physical Sciences and Engineering,
Australian National University, Canberra ACT 0200, Australia

Abstract. We describe different types of self-trapped optical beams carrying phase
dislocations, including vortex solitons and ring-like soliton clusters. We demonstrate
numerically how to create such nonlinear singular beams by the interaction of several
fundamental optical solitons. Mutual trapping of several solitons can be regarded as
a synthesis of ‘soliton molecules’; and it corresponds to a transfer of an initial orbital
angular momentum of a system of solitons to a spin momentum of an optical vortex.

PACS numbers: 42.65.Tg

Submitted to: J. Opt. A: Pure Appl. Opt. : Singular Optics Special Issue

1. Introduction

Phase dislocations carried by the wavefront of a light beam are associated with the
zero-intensity points where the light intensity vanishes. The phase of the wave is twisted
around such points creating a structure associated with an optical vortex. Optical beams
with phase dislocations play an important role in linear singular optics [1].

In self-focusing nonlinear media, an intense finite-extent laser beam becomes
localized due to the self-trapping mechanism which can compensate for the beam
diffraction. The nonlinear self-action of light may result in the formation of stationary
structures with both intensity and phase remaining unchanged along the propagation
direction. Such self-trapped stationary structures of light beams are termed spatial
optical solitons [2]. When such solitons have phase singularities, they determine the
internal structure of the beam; they can be stabilized by the light self-action generating
nonlinear self-trapped optical beams carrying phase dislocations. Examples of such
beams include vortex solitons [3] [4] [5] with point screw dislocations, multipole vector
solitons [6] with π-edge dislocations, and more complicated ‘necklace’-type beams [4] [8] [9]
and soliton clusters [10] with a combination of a screw dislocation at the beam center
and, generally, ℰ-edge dislocations, where ℰ is the phase jump between neighboring
peaks in the intensity distribution [10].

‡ desya@uni-muenster.de
The fundamental optical solitons show a fascinating combination of the properties of classical wave-packets together with a number of particle-like properties demonstrated in their elastic and inelastic interactions and mutual scattering, when each of the solitons preserves its identity. Moreover, the coherent interaction between the solitons depends strongly on a relative phase what provides an additional degree of freedom to control the interaction. We may draw an analogy between spatial soliton and the ‘atom of light’, and then the soliton collision and interaction can be treated in terms of the effective forces acting between these effective ‘atoms’. Following this concept, the higher-order multi-hump optical beams can be regarded as bound states of ‘atoms’ trapped by a common potential induced in a nonlinear medium. A balance of the interaction forces acting between the solitons is the necessary condition for the formation of the soliton ‘clusters’ or ‘molecules of light’.

In this paper we investigate the excitation of higher-order beams, including optical vortices and soliton clusters, through the inelastic soliton scattering and mutual trapping of initially well-separated fundamental solitons, the effect resembling a synthesis of ‘soliton molecules’. In addition, we propose the application of this effect in the context of ‘soliton algebra’ [11] regarding the fundamental spatial solitons as the information carriers, and the transformation of an optical pattern induced by the soliton interaction as all-optical soliton switching.

2. Optical vortex solitons and soliton clusters

Optical vortices were introduced as the first example of a stationary light beam with the phase twisted around its core; the twist is proportional to 2π with integer m, the so-called topological charge of the phase dislocation [3]. The physical model analyzing the evolution of the slowly varying field envelope E is described by the nonlinear Schrödinger equation,

$$i\frac{\partial E}{\partial z} + \Delta E + f(I)E = 0,$$

(1)

where Δ is the transverse Laplacian, and z is the propagation distance measured in the units of the diffraction length. Function $f(I)$ describes the nonlinear properties of an optical medium, and it is assumed to depend on the total beam intensity, $I = |E|^2$.

The simplest spatially localized solution of equation (1) carrying a phase dislocation, i.e. the vortex soliton, can be written in the form: $E(r, \theta, z) = A(r)e^{im\theta+i\beta z}$, where $A(r)$ and β are the beam amplitude and propagation constant, respectively, while r and θ are the polar coordinates in the transverse plane.

In self-focusing nonlinear media, such vortex beams are the subject of the azimuthal modulational instability which result in splitting of the doughnut ring-like structure into a certain number of the fundamental solitons. The number of splitters and their dynamics are determined by the topological charge of the phase dislocation corresponding to the beam angular momentum (see, e.g., [4] and references therein).
Nonlinear optical beams carrying phase dislocations

Figure 1. Intensity and phase distributions for optical vortex soliton and soliton cluster composed of four fundamental beams. Note that in terms of the azimuthal coordinate $\theta = \tan^{-1}(y/x)$, the vortex phase is given as a linear function $m\theta$ with integer m, while the staircase-like phase of the cluster is a nonlinear phase dislocation.

The simplest higher-order scalar stationary solutions found for the model are a family of the radially symmetric solitons which includes radial modes with nodes in form of concentric rings. The important characteristic of these states is the soliton spin determined as a ratio of two conserved quantities, the beam angular momentum and the beam power. For the vortex soliton, the spin coincides with the topological charge m of the phase dislocation carried by the vortex. Because of the condition of the field univocally, the topological charge m is quantized and has integer value. The fundamental spatial solitons and their higher-order radial states have zero spin.

Novel types of the higher-order self-trapped optical beams can be introduced as azimuthally modulated self-trapped structures in the form of the so-called ‘necklace’ beams. However, it was found that a combination of the edge-phase dislocation with π-out-of-phase neighbor peaks cannot produce a stationary state, and the structure becomes slowly expanding. Such a stabilization is indeed possible for a more complicated system including the attraction between several incoherent beams. Another approach to this problem is to combine the screw dislocation in the origin of a ring-shaped beam with the edge dislocation within the necklace. The screw dislocation introduces a centrifugal force to the ring, being also responsible for spiralling and mutual repulsion of the solitons in the case of vortex break-up, and the edge dislocations prevents noise-induced instability break-up of the ring. Because of a nonzero
Nonlinear optical beams carrying phase dislocations

angular momentum, the whole structure rotates with its propagation. As a result, the stabilization of the ring-shaped multihump beams requires complex phase distribution characterized by fractional value of the soliton spin \[8, 9\].

A phase distribution required for the formation of quasi-stationary higher-order self-trapped optical beams was found in references [10] where the concept of soliton cluster was introduced. In this approach, the azimuthally modulated beam is regarded as a bound state of the interacting fundamental solitons. Because of phase-sensitive interaction, the requirement of the balance of the interaction forces between the solitons determines the beam phase in the form of a staircase-like screw dislocation. Figure 1 compares the vortex phase dislocation (left column) with the phase of a four-soliton cluster, having well defined $\pi/2$ steps between the soliton positions (right column). It was found [10] that a radially stable dynamical bound state is formed if these phase-jumps satisfy the condition $\vartheta = 2\pi m/N$, with $N \geq 4m$ being the number of solitons in the ring.

Stability of the soliton clusters has been tested numerically for different nonlinear media, including cubic saturating, competing cubic self-focusing and quintic self-defocusing, and competing quadratic and cubic self-defocusing nonlinearities [10]. The idea has been also extended to higher dimensions, covering the case of the spatio-temporal vortex solitons and light bullets. The common outcome of these studies is the confirmed robustness of the soliton clusters to random noise and strong radial perturbations. In the latter case, the pulsating states viewed as the radial excitations of ‘soliton molecule’ have been observed. Nevertheless, soliton clusters are the subject of modulational instability, and they are unstable with respect to azimuthal perturbations. The remarkable feature of this instability is that the number of the fundamental solitons flying off the main ring after the splitting is determined mainly by the topological charge m instead of the initial number N of solitons, similar to the vortex solitons. For what follows, we stress the fact that the conservation of the angular momentum of an optical beam in an isotropic medium determines the dynamics of splitters after break-up, so that the initial ‘spin’ angular momentum of vortex or cluster can be viewed as being transformed into the orbital momentum of the spiralling splitters [4].

3. Soliton molecules

Recent progress in both theoretical and experimental studies of the higher-order optical spatial solitons brought the soliton community to the gates of the direct search for all-optical soliton-based switching schemes, when the initial data carried by the light distribution on the front-face of the nonlinear medium can be processed, in a predictable and controllable way, by employing the light self-action effects. One of the examples of such an approach is the recently proposed concept of the ‘soliton algebra’ [11], based on the instability-induced break-up of optical vortices to the controllable number of the fundamental solitons. This idea also represents the example of a nontrivial approach to the soliton instability, when the symmetry-breaking instability, usually regarded as a
serious disadvantage in using spatial solitons, is employed as a key physical mechanism for all-optical soliton switching from a given initial state (optical vortex) to the known final state defined by a certain number of fundamental solitons. This approach can be generalized to a broad variety of scalar and vector higher-order metastable solitons.

The symmetry-breaking soliton instability may serve as a physical mechanism for all-optical switching with only one disadvantage – it is a one-way process describing the transition from an initial higher-order state (a soliton molecule or cluster) to a number of simple stable states (dipole-mode and fundamental solitons). Below, we propose the opposite process, viewed as the excitation or ‘synthesis’ of higher-order states from predefined number of initially separated solitons, or ‘atoms of light’, in a nonlinear bulk medium. Indeed, introducing molecules of light would not be self-consistent without the possibility of mutual trapping of the free atoms or molecule synthesis.

To demonstrate this phenomenon, we propagate numerically the ring-shaped arrays of initially well separated coherently interacting fundamental solitons in a saturable
Nonlinear optical beams carrying phase dislocations

Figure 2 shows a characteristic example of a set of six solitons which have their relative phases growing in steps of $\vartheta = \pi/3$ along the ring, being initially directed to collide with each other. This initial condition corresponds to the inversion of the instability-induced ring break-up, so that the solitons move towards the ring instead of flying away. We observe highly inelastic collision of the solitons when they strongly interact overlapping and loosing their identity. Nevertheless, the initial phases of the solitons are tilted in such a way that the total phase of the beams forms a screw dislocation in the ring origin which prevents a simple fusion of all solitons. Instead, the ring-shaped structure is formed. Similar situation is observed in figure 3 with an array of eight solitons and the formation of a metastable vortex ring. Due to large amplitude modulations, these intermediate (or metastable) structures never form ideal stationary states, and they quickly split off to a set of new isolated solitons, with the total number of splitters predefined by the initial conditions. In this way, we were able to produce, as a final state, the patterns with different number of solitons by changing initial parameters, including the number and phase tilt of solitons. Generally, the final number of solitons is determined by the ring instability mode with a largest growth rate, and in a saturable medium it is usually twice the topological charge $|\mathcal{Q}|$. At the same time, we were able to force single-charged ‘meta-vortex’ in figures 2 and 3 to split to three and four fundamental solitons, respectively. The intermediate meta-state shows complex dynamics of the instability development which may continue for several tenths of diffraction lengths. Thus, the whole picture of the soliton collision, ring formation, and the ring splitting is somewhat similar to the ‘delayed-action interaction’ recently reported for interacting composite solitons carrying nonzero angular momentum [12]. We note also that, in addition to the known transformation of ‘spin-to-orbital’ angular momentum \mathcal{Q}, in figures 2 and 3 we observe a kind of ‘orbital-spin-orbital’ transformation. The change of the field momentum shown in figure 2 is about 10% of the initial value, and it occurs only at the break-up stage.

Highly unstable ring-shaped beams are formed as a result of mutual trapping and inelastic interaction of coherent solitons, as shown in figures 2 and 3. They represent the intermediate steps in the process of the nonlinear switching between the states with a different number of solitons. In the context of the soliton algebra and all-optical switching, it might be of interest to study in more details and to determine the quantitative parameters necessary to obtain the final state with a given number of solitons. At the same time, the mutual trapping of coherent solitons is found to be too sensitive to the initial perturbations in order to produce the metastable clusters.

Nevertheless, it is indeed possible to generate higher-order optical beams, i.e. to synthesize the soliton molecules, from interacting fundamental coherent and incoherent solitons. In figure 4 we show the excitation of a long-lived four-lobe vector cluster. We note that the four solitons in the figure 4(b) at $z = 0$ are directed exactly to the center so that there is no azimuthal tilt of their phase. As within the cluster in figure 4 each soliton has a phase growing by a jump $\vartheta = \pi/2$ along the ring, and this initial phase distribution guarantees the appearance of the screw phase dislocation, even the
corresponding value of the total angular momentum is very small (a solid line in figure 4). Because only the total angular momentum is conserved, but not the partial momenta of the components, there is a freedom for components to symmetrically exchange the angular momentum during the beam propagation. After mutual trapping of all solitons at $z \approx 25$ the new-born vector cluster experiences strong radial oscillations between the states with maximal (e.g. at $z = 30$ and $z = 60$) and minimal partial angular momenta in the components, see the diagram in figure 4. At the same time, the $\pi/2$-phase jumps introduced initially between the solitons (edge dislocations) survive these strong oscillations, and the whole cluster preserves its structure for a distance exceeding 100 diffraction lengths. Therefore, we observe the formation of a composite state, the soliton molecule, by colliding simple solitons with a nontrivial phase pattern.

4. Conclusions

We have studied the scattering and mutual trapping of several fundamental solitons and the generation of soliton clusters and vortex solitons – the complex self-trapped states of light carrying phase dislocations in the wave front. Inelastic collision of solitons has been shown to result in the formation of ring-shaped beams or metastable vortices which
Nonlinear optical beams carrying phase dislocations subsequently break-up creating different number of fundamental solitons defined by the initial conditions. This kind of the soliton delayed-action interaction and the nonlinear transformation of the number of fundamental solitons has been analyzed in the context of the soliton algebra and all-optical soliton switching. We have also shown that the vectorial interaction between the field components provides an additional mechanism of the soliton cluster stabilization. In particular, we have demonstrated the formation of vector soliton clusters from colliding solitons, the process which can be regarded as a synthesis of ‘soliton molecules’.

Acknowledgments

A support from the Alexander-von-Humboldt Foundation and the Australian Research Council is acknowledged.

References

[1] See, e.g., a comprehensive review paper, Soskin M S and Vasnetsov M V 2001 Progress in Optics vol 42 ed E Wolf (Amsterdam: Elsevier)
[2] Kivshar Yu S and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press)
[3] Kruglov V I and Vlasov R A 1985 Phys. Lett. A 111 401
[4] Firth W J and Skryabin D V 1997 Phys. Rev. Lett. 79 2450
Skryabin D V and Firth W J 1998 Phys. Rev. E 58 3916
[5] Kivshar Yu S and Ostrovskaya E A 2001 Opt. Photon. News 12(4) 27, and references therein
[6] Desyatnikov A S, Neshev D, Ostrovskaya E A, Kivshar Yu S, Krolikowski W, Luther-Davies B, García-Ripoll J J and Pérez-García V M 2001 Opt. Lett. 26 435
Desyatnikov A S, Neshev D, Ostrovskaya E A, Kivshar Yu S, McCarthy G, Krolikowski W and Luther-Davies B 2002 J. Opt. Soc. Am. B 19 586
[7] Soljačić M, Sears S and Segev M 1998 Phys. Rev. Lett. 81 4851
Soljačić M and Segev M 2000 Phys. Rev. E 62 2810
see also the earlier experimental observation, Barthelemy A, Froehly C and Shalaby M 1994 Proc. SPIE Int. Soc. Opt. Eng. 2041 104
[8] Soljačić M and Segev M 2001 Phys. Rev. Lett. 86 420
[9] Desyatnikov A S and Kivshar Yu S 2001 Phys. Rev. Lett. 87 033901
[10] Desyatnikov A S and Kivshar Yu S 2002 Phys. Rev. Lett. 88 053901
Kartashov Ya V, Molina-Terriza G and Torner L 2002 J. Opt. Soc. Am. B 19 2682
Desyatnikov A S and Kivshar Yu S 2002 J. Opt. B: Quantum Semiclass. Opt. 4 S58
Kartashov Ya V, Crasovan L C, Mihalache D and Torner L 2002 Phys. Rev. Lett. 89 273902
Crasovan L C, Kartashov Ya V, Mihalache D, Torner L, Kivshar Yu S and Pérez-García V M 2003 Phys. Rev. E 67 046610
[11] Torner L and Sukhorukov A P 2002 Opt. Phot. News 13 42
Minardi S, Molina-Terriza G, Di Trapani P, Torres J P and Torner L 2001 Opt. Lett. 26 1004
Molina-Terriza G, Recolons J and Torner L 2000 Opt. Lett. 25 1135
Petrov D V, Torner L, Martorell J, Vilaseca R, Torres J P and Cojocaru C 1998 Opt. Lett. 23 1444
[12] Pigier C, Uzdin R, Carmon T, Segev M, Nepomnyaschchy A and Musslimani Z H 2001 Opt. Lett. 26 1577
Musslimani Z H, Soljačić M, Segev M and Christodoulides D N 2001 Phys. Rev. E 63 066608
Musslimani Z H, Soljačić M, Segev M and Christodoulides D N 2001 Phys. Rev. Lett. 86 799