Incorporating Dynamic Semantics into Pre-Trained Language Model for Aspect-based Sentiment Analysis

Kai Zhang¹, Kun Zhang², Mengdi Zhang³, Hongke Zhao⁴, Qi Liu⁴,* Wei Wu³, Enhong Chen¹

¹ Anhui Province Key Lab of Big Data Analysis and Application, School of Data Science, USTC
² School of Computer Science and Information Engineering, Hefei University of Technology
³ Meituan; ⁴ College of Management and Economics, Tianjin University
Aspect-based Sentiment Analysis?

• E-commerce platforms (e.g., Amazon, Alibaba) allow users to post their reviews towards products. The reviews may contain the finer-level opinions of users.

• Value of the ABSA:
 • User-generated content analysis
 • Help for making a purchase decision
 • Assess the impact of marketing campaigns, success of product launches

The color of the PC looks good, but the battery life is too short.
Outline

1. Background
 a. Formal definition & previous methods
 b. Some existing problems
2. Our method: Dynamic Re-weighting BERT
3. Experiments
4. Conclusion
Outline

1. Background
 a. Formal definition & previous methods
 b. Some existing problems
2. Our method: Sentiment-aware Interactive Fusion Network
3. Experiments
4. Conclusion
Background – **formal definition**

To begin with, we first define the Aspect-based Sentiment Analysis. It predicts the sentiment tendency that a user expressed at the whole reviews based on the given aspect term.

predicts the sentiment label $y_{<a,i>}$ of given aspect a in the review sentence i.

General schema: $y_{<a,i>} = f(\text{aspect}, \text{reviews})$

- CNN / RNN / LSTM
- Attention methods
- Graph network
- Pre-trained models

Aspect & Context relations
- Aspect-based syntax info
- ...

5
Background – previous methods

CNN, RNN, Attention based methods

- **TD-LSTM** [Tang D et al. COLING’2016]
 - Contains LSTM\(_L\) and LSTM\(_R\)
 - Utilizing Bi-LSTM to extract aspect-aware features along with the context words

- **Attention model: ATAE-LSTM** [Wang Y et al. EMNLP’2016]
 - Concatenate with each word as input
 - Concatenate with each hidden state
 - Attention mechanism to learn important part of a sentence
Background – previous methods

Pre-trained Models with Graph for ABSA

✓ R-GAT [Wang et al. ACL’2020]
 • Not all words contribute the same point
 • The purpose is to better model neighbor words

✓ T-GCN [Tian et al. NAACL’21]
 • Type-aware graph convolutional networks to comprehensively learn from dependency parsing relations

✓ BERT-PT [Xu et al. NAACL’19], BERT-SPC [Song et al. 2019], AEEN-BERT [Song et al. 2019]
Background – shortcomings

Although these works achieved significant performance improvement, they still suffer from **two intrinsic issues:**

1. largely ignoring the **dynamic semantic understanding** during sentiment mining
2. neglect to interpret the sentiment mining process intuitively

✓ directly mining the semantic information may lead to **sub-optimal sentiment prediction** because, according to neuroscience studies, the essential words during semantic comprehension are dynamically changing with the reading process and should be repeatedly considered!
Outline

1. Background
 a. Formal definition & previous methods
 b. Some existing problems
2. Our method: Dynamic Re-weighting BERT
3. Experiments
4. Conclusion
Our solution – **Dynamic Re-weighting BERT**

Motivation: exploring the dynamic semantic in **PLMs**:

1. The pre-trained models do not effectively boost the performance in ABSA as we expected (i.e., they prefer to mine the sentiment of the *whole sentence*)
2. It is vital to model dynamic semantics such as Human Semantic Comprehension process
Our solution – **Dynamic Re-weighting BERT**

Overall architecture of **DR-BERT**:

1. A BERT Encoder (BERT embedding Layers)
2. Dynamic Re-weighting Adapter (Re-weighting Attention + GRU)
3. Sentiment Prediction (MLP + Softmax)
Our solution – Dynamic Re-weighting BERT

Overall architecture of DR-BERT:

1. A BERT Encoder:
 - $m = \{m_i \mid i = 1,2,\ldots,l_s\}$
 - $f = \{f_i \mid i = 1,2,\ldots,l_s\}$
 - $m = \text{MultiHead}(sW_Q^m, sW^K_m, sW^V_m)$
 - $f = \max(0, mW_1 + b_1)W_2 + b_2$

2. Dynamic Re-weighting Adapter:
 - $s = [s_1, s_2,\ldots, s_l_s]$
 - $M = W_s s + (W_a h_{t-1} + W_o a) \otimes w$
 - $m = \omega^T \tanh(M)$
 - $z_t = \sigma(W_z \cdot [h_{t-1}, a_t])$
 - $r_t = \sigma(W_r \cdot [h_{t-1}, a_t])$
 - $\tilde{h}_t = \tanh(W \cdot [r_t \ast h_{t-1}, a_t])$
 - $h_t = (1 - z_t) \ast h_{t-1} + z_t \ast \tilde{h}_t$

3. Sentiment Prediction:
 - $R_t = \text{Relu}(W_t R_{t-1} + b_t)$
 - $\hat{y} = \text{softmax}(W_o R_h + b_o)$
Outline

1. Background
 a. Formal definition & previous methods
 b. Some existing problems
2. Our method: Dynamic Re-weighting BERT
3. Experiments
4. Conclusion
Experiments

Dataset

✓ Benchmark Amazon & Twitter dataset:

 • Laptop
 • Restaurant
 • Twitter

Baseline methods

① Attention-based methods: ATAE-LSTM, IAN, AOA, TNet ...

② Pre-trained methods: BERT, BERT-PT, BERT-SPC, RGAT-BERT, T-GCN ...

Accuracy and F1-score as the evaluation metric!
Experiments

Overall performance

1. **BERT-based** methods beat most of the **attention-based** methods (e.g., IAN, TNet)
2. The **task-specific BERT models** perform better than the **non-specific models** (T-GCN & RGAT-BERT) > AEN-BERT > BERT-PT > BERT

Category	Methods	Datasets	Laptop (Accuracy, F1-score)	Restaurant (Accuracy, F1-score)	Twitter (Accuracy, F1-score)
Attention	ATAE-LSTM (Wang et al., 2016)		68.57, 64.52	76.58, 67.39	67.27, 66.43
	IAN (Ma et al., 2017)		70.84, 65.73	76.88, 68.36	68.74, 67.61
	MemNet (Tang et al., 2016)		72.32, 67.03	78.12, 68.99	70.19, 68.22
	AOA (Huang et al., 2018)		74.56, 68.77	79.42, 70.43	71.68, 69.25
	MGNNet (Fan et al., 2018)		75.37, 71.26	81.28, 72.07	72.54, 70.78
	TNet (Li et al., 2018)		76.54, 71.75	80.69, 71.27	74.93, 73.60
Pre-trained	BERT (Devlin et al., 2019)		77.29, 73.36	82.40, 73.17	73.42, 72.17
	BERT-PT (Xu et al., 2019a)		78.07, 75.08	84.95, 76.96	-
	BERT-SPC (Song et al., 2019)		78.99, 75.03	84.46, 76.98	74.13, 72.73
	AEN-BERT (Song et al., 2019)		79.93, 76.31	83.12, 73.76	74.71, 73.13
	RGAT-BERT (Wang et al., 2020)		78.21, 74.07	86.60, 81.35	76.15, 74.88
	T-GCN (Tian et al., 2021)		80.88, 77.03	86.16, 79.95	76.45, 75.25
Ours.	DR-BERT		**81.45, 78.16**	**87.72, 82.31**	**77.24, 76.10**

DR-BERT outperforms the most advanced baseline (i.e., T-GCN or RGAT-BERT) no matter in terms of Accuracy or F1-score.
Experiments

Model Variants	Laptop	
	Accuracy	F1-score
BERT-Base	77.29	73.36
(1): + MLP	77.94	74.42
(2): + DRA	80.66	77.13
(3): + DRA on top 3 layers	78.64	75.16
(4): + DRA on top 6 layers	79.17	75.93
(5): + DRA on top 9 layers	80.22	76.49
(6): DR-BERT	**81.45**	**78.16**

Ablations on the Proposed Components

- without utilizing adapters and MLPs, DR-BERT degenerates into the BERT model, which gains the worst performance
- we can easily conclude that DRA plays a more crucial role in the final sentiment prediction than MLPs
- the DRA is efficient in encoding the aspect-aware semantics over the whole sentence

Ablations on the Scale of Adapter

- the performance of DR-BERT first becomes better with the increasing of re-weighting length and achieving the best result at 7
- after that, as the length continues to increase, the performance continues to decline
- Our proposed model can achieve better performance with only 4 or 5 times of re-weighting at most test sets
Experiments

Sentence	Prediction
It could be a perfect laptop if it would have faster system memory and its radeon would have DDR5 instead of DDR3.	Negative

Case study

1. The chosen sentence has three different aspects with their sentiment polarity, i.e., “System memory”-negative, “DDR5”-positive and “DDR3”-negative
2. The model tends to associate “DDR5” with the context words {“would”, “have”, “instead”} to predict the correct sentiment “positive”
Experiments

Case Examples

The label in brackets represents ground truth.

Aspects: “system memory” (Neg.), “DDR5” (Pos.), “DDR3” (Neg.)	Sentence: It could be a perfect laptop if it would have faster system memory and its radeon would have DDR5 instead of DDR3.	BERT-base	RGAT-BERT	DR-BERT
Pos/Neg/Neg	Neg/Pos/Pos	Neg/Pos/Neg		
X	✓	✓	✓	

Aspects: “Supplied software” (Neu.), “software” (Pos.), “Windows” (Neg.)	Sentence: Supplied software: The software that comes with this machine is greatly welcomed compared to what Windows comes with.	BERT-base	RGAT-BERT	DR-BERT
Pos/Pos/Pos	Pos/Pos/Neg	Pos/Pos/Neg		
X	✓	✓	✓	

Aspects: “waiter” (Neg.), “served” (Neg.), “specials” (Pos.)	Sentence: First, the waiter who served us neglected to fill us in on the specials, which I would have chosen had I known about them.	BERT-base	RGAT-BERT	DR-BERT
Neg/Neg/Neg	Neg/Neg/Neg	Neg/Neg/Pos		
✓	✓	✓		

Error Analysis

1. The vanilla BERT often makes the wrong classification since it tends to learn the overall sentiment polarity of the sentences instead of the aspect-aware semantic.

2. RGAT-BERT can alleviate the problem to a certain extent via few dependency relations.

3. Our DR-BERT model, succeeding in predicting most sentiment labels by considering the dynamic changing of the aspect-aware semantic.
Outline

1. Background
 a. Formal definition & previous methods
 b. Some existing problems
2. Our method: Dynamic Re-weighting BERT
3. Experiments
4. Conclusion
Conclusion

1. We highlight the aspect-aware semantic learning in the ABSA task, and inspired by human cognitive processes, we focus on modeling the dynamic semantics.

2. We propose a novel Dynamic Re-weighting BERT (DR-BERT) model with a new Dynamic Re-weighting Adapter (DRA) to enhance aspect-aware semantic features.

3. We conduct extensive experiments on three datasets and the results demonstrate the effectiveness and interpretability of our proposed method.
References

[1] Xiangsheng Li, Jiaxin Mao, Chao Wang, Yiqun Liu, Min Zhang, and Shaoping Ma. 2019. Teach machine how to read: reading behavior inspired relevance estimation. In Proceedings of SIGIR’2019, pages 795–804.

[2] Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng Wang. 2017. Interactive attention networks for aspect-level sentiment classification. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’2017), pages 4068–4074.

[3] Xin Li, Lidong Bing, Wai Lam, and Bei Shi. 2018. Transformation networks for target-oriented sentiment classification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL’2018), pages 946–956.

[4] Yuanhe Tian, Guimin Chen, and Yan Song. 2021. Aspect-based sentiment analysis with type-aware graph convolutional networks and layer ensemble. In Proceedings of NAACL’2021, pages 2910–2922.

[5] Hu Xu, Bing Liu, Lei Shu, and S Yu Philip. 2019a. Bert post-training for review reading comprehension and aspect-based sentiment analysis. In Proceedings of NAACL’2019, pages 2324–2335.

[6] Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. 2016. Attention-based lstm for aspect-level sentiment classification. In Proceedings of EMNLP’2016, pages 606–615.

[7] Kai Wang, Weizhou Shen, Yunyi Yang and Xiaojun Quan. 2020. Relational graph attention network for aspect-based sentiment analysis. In Proceedings of ACL’2020, pages 3229–3238.
Thanks!