Planar hole-doping concentration and effective three-dimensional hole-doping concentration for single-layer high-T_c superconductors

Tatsuya Honmaa,b and Pei Herng Hora

aTexas Center for Superconductivity and Dept. of Physics, University of Houston, Houston, TX. 77204-5002, USA.

bDept. of Physics, Asahikawa Medical College, Asahikawa, Hokkaido 078-8510, Japan.

Abstract

We propose that physical properties for the high temperature superconductors can be addressed by either a two-dimensional planar hole-doping concentration (P_{pl}) or an effective three-dimensional hole-doping concentration (P_{3D}). We find that superconducting transition temperature (T_c) exhibits a universal dome-shaped behavior in the T_c vs. P_{3D} plot with a universal optimal doping concentration at $P_{3D} \sim 1.6 \times 10^{21}$ cm$^{-3}$ for the single-layer high temperature superconductors.

Key-words; Room-temperature thermoelectric power ; hole-doping concentration ; Hall number ; superconducting transition temperature

1. Introduction

In high temperature superconductors (HTS) hole content per CuO$_2$ plane (P_{pl}) can be directly determined from the content of the cation dopant in the pure cation doped La$_{2-x}$Sr$_x$CuO$_4$ (SrD-La$_{214}$) and Y$_{1-z}$Ca$_z$Ba$_2$Cu$_3$O$_6$ (CaD-Y1236). Most recently, based on the thermoelectric power at room temperature (S_{290}) of the SrD-La$_{214}$ and CaD-Y1236, a universal $S_{290}(P_{pl})$-scale (hereafter P_{pr}-scale) [1] is constructed as new scale in contrast to $T_c(P_{pr})$-scale (hereafter P_{Tc}-scale) which was defined by a relation of $T_c/T_c^{\text{max}} = 1 - 82.6(P_{pr} - 0.16)^2$. While the P_{pr} is intrinsically equal to P_{pl} in SrD-La$_{214}$ [2], it is different in other systems. Using the P_{pr}-scale, the maximum in T_c (T_c^{max}) was no longer universally pinned at $P_{pl} = 0.16$, it depended on the specific material system of HTS. However, many experimental data were interpreted using the P_{pr}-scale by taking $P_{Tc} = P_{pl}$ [3].

In-plane Hall number ($n_H = 1/eR_H$), where R_H is in-plane Hall coefficient and $|e|$ is electron charge, has physical meaning of the mobile carrier concentration per volume and is a three-dimensional (3D) quantity. But, the P_{pl} is intrinsically a two-dimensional (2D) quantity. Since both concentrations monitor doped carriers, the proper extension of P_{pl} is expected to be comparable to n_H. When the planar carriers exist in the block layer with one CuO$_2$ plane, we can define an effective 3D hole-doping concentration (P_{3D}) in terms of P_{pl} by a relation of $P_{3D} = P_{pl} \times (N_l/V_{u.c.})$. Here, $V_{u.c.}$ and N_l are the unit cell volume and the number of CuO$_2$ plane per unit cell, respectively. Since P_{3D} is defined on the universal 2D P_{pr}-scale, this definition has qualitatively taken into account the charge deconfinement effect of the holes in cuprates. Therefore P_{3D} can be viewed as the “effective” 3D hole-doping concentration even when holes are completely confined in CuO$_2$ planes.

In this paper we make a clear distinction between P_{pl} and P_{3D}. We show that the present P_{3D} is comparable with n_H and that the T_c/T_c^{max} vs. P_{3D} exhibits a universal dome-shaped curve with the universal optimal hole-doping concentration $P_{3D}^{\text{opt}} = 1.6 \times 10^{21}$ cm$^{-3}$ for single-layer HTS. We find that the P_{Tc}-scale is identical to the P_{3D}-scale. The detail is reported in Ref. 1 and 5.

2. Experimental

The analyzed data are collected from the literatures [4,6-15] whenever the P_{pl} can be reliably determined by P_{pr}-scale. For the calculation of P_{3D}, we used the typical value of the unit cell volume [5].
3. Results and discussion

Figure 1 shows the n_H as a function of P_{3D} for the single-layer SrD-La214, OD-Hg1201, OD-TI2201 and CD-Bi2201. The plotted n_H come from the polycrystalline samples for SrD-La214 [12,13] and OD-TI2201 [4,14,16] and the single crystals for SrD-La214 [10-12] and CD-Bi2201 [7-8]. In the SrD-La214 and OD-TI2201, the R_{HI} of the polycrystalline samples is experimentally confirmed to be almost equal to the in-plane R_{HI} of the single crystals [12,17]. There are three linear $n_H(P_{3D})$ regimes (regime-I, II and III). In regime-I for $P_{3D} \leq 5.5 \times 10^{20}$ cm$^{-3}$, n_H is identical to P_{3D}. At $P_{3D} = 5.5 \times 10^{20}$ cm$^{-3}$, the slope of linear $n_H(P_{3D})$ suddenly changes from 1 to ~3.2. In the regime-III for $P_{3D} \geq 1.6 \times 10^{21}$ cm$^{-3}$, the linear $n_H(P_{3D})$ changes slope to 25. The observed rapid increase in R_{HI} may relate to the change in sign of R_{HI} observed in the overdoped SrD-La214 [12]. We need to emphasize that this systematic behaviour for the single-layer HTS is not governed by the P_{pl} but by the P_{3D}. In the inset of fig.1, we plot the same data set of n_H as a function of P_{pl}. The n_H for CD-Bi2201 and OD-TI2201 do not follow that of SrD-La214, and the three physically distinct regimes cannot be resolved.

Figure 2 shows T_c as a function of P_{3D} for SrD-La214 [6,15], OD-Hg1201 [9] and CD-Bi2201 [7,8]. The superconductivity appears at $\sim 5.5 \times 10^{20}$ cm$^{-3}$ where T_c is corresponding to the boundary between the regime-I and II. The $T_{c,max}$ universally appears at $\sim 1.6 \times 10^{21}$ cm$^{-3}$ where T_c is corresponding to the boundary between regime-II and III. The inset shows the $T_c/T_{c,max}$ vs. P_{3D} of the same data set. The $T_c/T_{c,max}$ for SrD-La214, OD-Hg1201 and CD-Bi2201 follow the same dome-shaped curve. Now we can pin down the absolute 3D optimal hole-doping concentration in a relation of $T_c/T_{c,max} = 1 - 83.64(P_{3D} \times 10^{22} - 0.159)^2$. It is clear that the P_{Tc}-scale is not planar hole-doping concentration but physically identical to our defined P_{3D}. Therefore, we can understand why the P_{Tc}-scale worked in the earlier doping-dependence of T_c studies [3]. However, we need to emphasize that the P_{Tc}-scale should be interpreted in the contexts of P_{3D} as the proper carrier scale for 3D “bulk” cuprate properties.

In summary, we have shown that for HTS there are two types of hole-doping concentration depending on the dimensionality, that is, P_{3D} and P_{pl}. Combining these two, we have a complete working scale to address various physical properties for all HTS. Indeed, we see that n_H and the magnitude of T_c are governed by P_{3D}, while pseudogap physics were described by P_{pl} [1].

Acknowledgments

One of us (T.H.) would like to thank Dr. M. Tanimoto of Asahikawa Medical College for providing the administrative convincence for this study. This work was supported by the State of Texas through the Texas Center for Superconductivity at the University of Houston.

References

[1] T. Homma et al., Phys. Rev. B 70 (2004) 214517.
[2] M.R. Presland et al., Physica C 176 (1991) 95.
[3] For example, J.L. Tallon, J.W. Loram, Physica C 349 (2001) 53.
[4] S.D. Obertelli, J.R. Cooper, J.L. Tallon, Phys. Rev. B 46 (1992) 14928.
[5] T. Homma, P. Hor, Supercond. Sci. Tech. 19 (2006) 907.
[6] P.G. Radaelli et al., Phys. Rev. B 49 (1994) 4163.
[7] Y. Ando et al., Phys. Rev. B, 61 (2000) R14956.
[8] Y. Ando, T. Murayama, S. Ono, Physica C 341-348 (2000) 1913.
[9] A. Yamamoto, W. Hu, S. Tajima, Phys. Rev. B 63 (2000) 024504.
[10] Y. Ando et al., Phys. Rev. Lett. 87 (2001) 017001 ; Phys. Rev. Lett. 92 (2004) 197001.
[11] K. Tamasaku et al., Phys. Rev. Lett. 72 (1994) 3088.
[12] H.Y. Hwang et al., Phys. Rev. Lett. 72 (1994) 2636.
[13] T. Nishikawa, J. Takada, M. Sato, J. Phys. Soc. Jpn. 63 (1995) 1441.
[14] M.A. Tanner et al., Physica C 185-189 (1991) 1247.
[15] S. Komiyama et al., Phys. Rev. Lett. 94 (2005) 207004.
[16] Y. Kubo et al., Phys. Rev. B 43 (1991) 7875.
[17] T. Manako, Y. Kubo, Y. Shimakawa, Phys. Rev. B 46 (1992) 11019.