Supplementary Table 1. PCR primers.

Assay	Component	Sequence
mtDNA	mtDNA Forward Primer (mtF805)	5′ CCACGGGAAACAGCAGTGATT 3′
mtDNA	mtDNA Reverse Primer (mtR927)	5′ CTATTTGACTTGGGTAAATCGTGTGA 3′
mtDNA	mtDNA TaqMan Probe (LifeTechnologies)	6FAM- 5′ TGCCAGCCACCGCG 3′-MGB
Telomere Length	Telc	5′-TGT TAG GTA TCC CTA TCC CTA TCC CTA TCC CTA CTA ACA-3′
Telomere Length	Telg	5′-ACA CTA AGG TTT GGG TTT GGG TTT GGG TTT GGG TTA GTG T-3′
Telomere Length	Albd	5′-GCC CGG CCC GCC GCC CCC GTG GCC CGG AAAG AAAG CAC GTG TT-3′
Telomere Length	Albu	5′-CGG CGG CGG CGG CGG GCT GG GCG AAA TGC TGC ACA GAA TCC TTG-3′

Supplementary Table 2. Cross-sectional analysis of mitochondrial DNA copy number (mtDNAcn) and aging biomarkers.

mtDNAcn *	DNAm-Age	DNAm-PhenoAge	DNAm-GrimAge	Telomere Length				
	β (95% CI)	P-value	β (95% CI)	P-value	β (95% CI)	P-value	β (95% CI)	P-value
Q1	Reference	0.52	Reference	0.02	Reference	0.91	Reference	0.06
	(-0.85, 0.43)	0.52	(-1.49, -0.12)	0.02	(-0.31, 0.28)	0.91	(-0.02, 0.13)	0.13
Q2	-0.21	0.52	-0.80	0.02	-0.02	0.91	-0.02	0.03
	(-1.29, 0.12)	0.10	(-1.75, -0.26)	0.01	(-0.35, 0.3)	0.90	(-0.05, 0.1)	0.49
Q3	-1.11	0.10	-0.83	0.04	0	1.00	0	0.04
	(-1.88, -0.35)	0.01	(-1.65, -0.02)	0.04	(-0.36, 0.36)	1.00	(-0.08, 0.06)	0.80
Q4	-1.47	0.03	-0.16	0.82	0.12	0.70	0.12	0.88
	(-2.79, -0.16)	0.03	(-1.48, 1.16)	0.82	(-0.47, 0.7)	0.70	(-0.11, 0.1)	0.88
p-trend**	-0.22	0.03	-0.22	0.10	-0.22	0.05	-0.22	0.05

*All models adjusted for chronological age, smoking, alcohol use, BMI, cell composition, follow up time, hypertension status, CHD status, and diabetes status.

Supplementary Table 3. Prospective analyses of baseline mitochondrial copy number (mtDNAcn) with aging biomarkers during follow up.

mtDNAcn	DNAm-Age	DNAm-PhenoAge	DNAm-GrimAge	Telomere Length				
	β (95% CI)	P-value	β (95% CI)	P-value	β (95% CI)	P-value	β (95% CI)	P-value
Q1	Reference	0.45	Reference	0.04	Reference	0.94	Reference	0.06
	(-1.35, 0.6)	0.45	(0.05, 2.04)	0.04	(-0.48, 0.45)	0.94	(-0.15, 0.02)	0.16
Q2	-0.38	0.45	1.05	0.04	-0.02	0.94	-0.06	0.09
	(-1.35, 0.6)	0.45	(0.05, 2.04)	0.04	(-0.48, 0.45)	0.94	(-0.15, 0.02)	0.16
Q3	-0.22	0.67	0.77	0.13	0.15	0.52	-0.18	0.03
	(-1.2, 0.77)	0.67	(-0.23, 1.76)	0.13	(-0.31, 0.61)	0.52	(-0.18, -0.01)	0.03
Q4	-0.23	0.64	1.38	0.01	-0.02	0.93	-0.17	0.06
	(-1.2, 0.74)	0.64	(0.38, 2.38)	0.01	(-0.48, 0.44)	0.93	(-0.17, 0)	0.06
p-trend**	-0.86	0.33	1.51	0.10	-0.22	0.75	-0.22	0.05
	(-2.6, 0.87)	0.33	(-0.29, 3.31)	0.10	(-1.64, 1.18)	0.75	(-0.31, 0)	0.05

*All models adjusted for chronological age and outcome measure at baseline, follow up time, smoking, alcohol use, BMI, cell composition, hypertension status, CHD status, and diabetes status. **Using mtDNAcn as continuous models.