Autonomous Driving

Technical, Legal and Social Aspects
Society and Mobility

As by clear evidence: We are on the brink of the next mobile revolution. Autonomous vehicles will become an element of road traffic. The data needed is provided by cameras and sensors, and processed in real time by a computer in fractions of a second. These vehicles permanently exchange information with one another and with the transport infrastructure. Driving robots are to successively relieve the driver of individual tasks.

Nonetheless, the technological perspective of autonomous driving is only one aspect of many. Autonomous vehicles will also have a direct impact on our society that today we can barely imagine. Numerous critical questions arise: What are the prospects concerning data security? How shall we deal with wide-ranging interventions in our own mobile autonomy? What problems result when an autonomous vehicle crosses national borders? In what form will insurance companies assume liability for autonomous vehicles involved in accidents in the future? Or, vice versa: Can we continue to leave humans at the wheel at all, and may driving robots prove to increase road safety?

The Daimler and Benz Foundation considers the social dimension of these changes to be of at least as great significance as the technological one. Innovative technologies are by themselves insufficient to shape these developments and to realize automated driving in our society. We are therefore well advised to already start asking ourselves such questions today and not simply accept this profound change in our mobility as given, allowing it to “overrun” us. To shed light on the ethical, social, legal, psychological, or transport-related aspects of this process, the Daimler and Benz Foundation invited researchers from various specialist fields to address this topic.

The project’s core team—Markus Maurer, Barbara Lenz, Hermann Winner, and J. Christian Gerdes—identified the most pertinent questions from their point of view. At the same time, the four researchers established an international network of renowned specialists, who agreed to share their views and experience. The result before us now, a
“white paper”, analyzes the developments that can already be seen from an interdisciplinary perspective. It is the preliminary result of a large-scale funded project: Under the name “Autonomous Driving—Villa Ladenburg”, it was given a time frame of around two years and a budget of 1.5 million euros by the Daimler and Benz Foundation. Our declared aim with the present findings is to make available an objective and independent source of information.

To our minds, exploring the topic from an interdisciplinary perspective is indispensable. In the present volume, the authors therefore attempt an initial comprehensive account of what we may judge as scientifically assertable at this moment in time. At the same time, we must enable potential users of, and others affected by, the still difficult-to-grasp new technologies to experience them firsthand. In this way, many people can begin to have an idea of what they can expect and what the technology can actually do—and also what it will not be able to do.

It is already becoming clear that three aspects come to the fore. Firstly, ethical questions will override all others. Only when autonomously acting vehicles have successfully been provided with a kind of ethics in decision making will driving robotics be able to assert itself in practice. This is especially true of so-called dilemma situations, in which it has to be weighed up, in the case of an unavoidable collision, what behavior will cause the least amount of harm to the persons involved both inside and outside the vehicle. A further key question to clear up is what legislative consequences could result here (e.g., traffic regulations).

A further matter concerns the performance of machine perception. This comes up against various limits: Sensors, cameras, or assembled components degenerate and suffer in their reliability over time. Although it is possible to estimate state uncertainties, and from this to check machine-perception performance, will failures really be predictable? And how could an autonomous machine’s safe state be at all defined under all conceivable circumstances? This issue can be summed up even more clearly in one keyword: robotification. Ultimately, the specific questions addressed here without exception penetrate in deeper forms into all areas of everyday life where autonomous machine systems are used. Conditions here also need analyzing, and consequences must be anticipated.

Not least, automated driving can open up completely new opportunities, but also bring with it negative aftereffects. A reduction or shifting of parking-space requirements in inner cities and an efficient use of road space in flowing traffic would be set against fresh suburbanization stemming from alleviated conditions on the urban fringe.

As befits our Foundation’s purpose, this publication is designed to contribute to the anticipation and excitement of future discourse, and in this way is aimed at benefiting society as a whole. The book will place a scientific basis in the hands of representatives
from politics, science, the media, academia, and the interested public. This provides the necessary foundation for an independent and capable examination of the diverse questions and conditions of autonomous driving.

Prof. Dr. Eckard Minx
President of the Executive Board

Prof. Dr. Rainer Dietrich
Member of the Executive Board
Contents

1 **Introduction** ... 1
Markus Maurer

2 **Use Cases for Autonomous Driving** 9
Walther Wachenfeld, Hermann Winner, J. Chris Gerdes,
Barbara Lenz, Markus Maurer, Sven Beiker, Eva Fraedrich
and Thomas Winkle

Part I Man and Machine

3 **Automated Driving in Its Social, Historical and Cultural Contexts** ... 41
Fabian Kröger

4 **Why Ethics Matters for Autonomous Cars** 69
Patrick Lin

5 **Implementable Ethics for Autonomous Vehicles** 87
J. Christian Gerdes and Sarah M. Thornton

6 **The Interaction Between Humans and Autonomous Agents** 103
Ingo Wolf

7 **Communication and Communication Problems Between**
Autonomous Vehicles and Human Drivers 125
Berthold Färber

Part II Mobility

8 **Autonomous Driving—Political, Legal, Social,**
and Sustainability Dimensions 149
Miranda A. Schreurs and Sibyl D. Steuwer

9 **New Mobility Concepts and Autonomous Driving:**
The Potential for Change ... 173
Barbara Lenz and Eva Fraedrich
Chapter Number	Title	Page
10	Deployment Scenarios for Vehicles with Higher-Order Automation	193
	Sven Beiker	
11	Autonomous Driving and Urban Land Use	213
	Dirk Heinrichs	
12	Automated Vehicles and Automated Driving from a Demand Modeling Perspective	233
	Rita Cyganski	
13	Effects of Autonomous Driving on the Vehicle Concept	255
	Hermann Winner and Walther Wachenfeld	
14	Implementation of an Automated Mobility-on-Demand System	277
	Sven Beiker	

Part III Traffic

Chapter Number	Title	Page
15	Traffic Control and Traffic Management in a Transportation System with Autonomous Vehicles	301
	Peter Wagner	
16	The Effect of Autonomous Vehicles on Traffic	317
	Bernhard Friedrich	
17	Safety Benefits of Automated Vehicles: Extended Findings from Accident Research for Development, Validation and Testing	335
	Thomas Winkle	
18	Autonomous Vehicles and Autonomous Driving in Freight Transport	365
	Heike Flämig	
19	Autonomous Mobility-on-Demand Systems for Future Urban Mobility	387
	Marco Pavone	

Part IV Safety and Security

Chapter Number	Title	Page
20	Predicting of Machine Perception for Automated Driving	407
	Klaus Dietmayer	
21	The Release of Autonomous Vehicles	425
	Walther Wachenfeld and Hermann Winner	
22	Do Autonomous Vehicles Learn?	451
	Walther Wachenfeld and Hermann Winner	
23	Safety Concept for Autonomous Vehicles	473
	Andreas Reschka	
24 Opportunities and Risks Associated with Collecting and Making Usable Additional Data ... 497
Kai Rannenberg

Part V Law and Liability
25 Fundamental and Special Legal Questions for Autonomous Vehicles ... 523
Tom Michael Gasser
26 Product Liability Issues in the U.S. and Associated Risk Management ... 553
Stephen S. Wu
27 Regulation and the Risk of Inaction .. 571
Bryant Walker Smith
28 Development and Approval of Automated Vehicles: Considerations of Technical, Legal, and Economic Risks 589
Thomas Winkle

Part VI Acceptance
29 Societal and Individual Acceptance of Autonomous Driving 621
Eva Fraedrich and Barbara Lenz
30 Societal Risk Constellations for Autonomous Driving. Analysis, Historical Context and Assessment 641
Armin Grunwald
31 Taking a Drive, Hitching a Ride: Autonomous Driving and Car Usage ... 665
Eva Fraedrich and Barbara Lenz
32 Consumer Perceptions of Automated Driving Technologies: An Examination of Use Cases and Branding Strategies 687
David M. Woisetschläger
Editors and Contributors

About the Editors

Markus Maurer studied electrical engineering at Technische Universität München, and obtained a doctorate at Bundeswehr Universität München. He started his career in industry as a project manager and head of department in the development of driver-assistance systems at Audi AG. He is a professor of electronic vehicle systems at Technische Universität in Braunschweig.

J. Christian Gerdes is a Professor of Mechanical Engineering at Stanford University, Director of the Center for Automotive Research at Stanford (CARS) and Director of the Revs Program at Stanford University, Stanford, USA.

Barbara Lenz studied geography and German studies to postdoctoral level at Universität Stuttgart, where she was also research assistant and project manager in the area of economic geography at the Institute of Geography. She is Head of the Institute of Transport Research at the German Aerospace Centre (DLR) and a Professor of transport geography at Humboldt-Universität, both in Berlin.

Hermann Winner studied physics to doctoral level at Universität Münster before he started his career in industry in advanced engineering and later in series development at Robert Bosch GmbH where he was responsible for driver assistance systems. He is a professor for automotive engineering at Technische Universität in Darmstadt.

Contributors

Sven Beiker Formerly Center for Automotive Research at Stanford, Stanford University, Stanford, Palo Alto, CA, USA
Rita Cyganski Institute of Transport Research, German Aerospace Centre (DLR), Berlin, Germany

Klaus Dietmayer Institute of Measurement, Control and Microtechnology, Universität Ulm, Ulm, Germany

Berthold Färber Bundeswehr Universität München, Neubiberg, Germany

Heike Fläming Institute for Transport Planning and Logistics, Technische Universität Hamburg-Harburg—TUHH, Hamburg, Germany

Eva Fraedrich Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany

Bernhard Friedrich Institute of Transportation and Urban Engineering, Technische Universität Braunschweig, Braunschweig, Germany

Tom Michael Gasser Federal Highway Research Institute (BASt), Bergisch Gladbach, Germany

J. Christian Gerdes Department of Mechanical Engineering, Center for Automotive Research at Stanford, Stanford University, Stanford, CA, USA

Armin Grunwald Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology—KIT, Eggenstein-Leopoldshafen, Germany

Dirk Heinrichs Institute of Transport Research, German Aerospace Centre (DLR), Berlin, Germany

Fabian Kröger Institut d’histoire moderne et contemporaine (IHMC), Equipe d’histoire des techniques, CNRS, ENS, Université Paris I Panthéon-Sorbonne, Paris, France

Barbara Lenz Institute of Transport Research, German Aerospace Centre (DLR), Berlin, Germany; Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany

Patrick Lin Philosophy Department, California Polytechnic State University, San Luis Obispo, CA, USA

Markus Maurer Institute of Control Engineering, Technische Universität Braunschweig, Braunschweig, Germany

Marco Pavone Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA

Kai Rannenberg Deutsche Telekom Chair of Mobile Business and Multilateral Security, Goethe Universität Frankfurt, Frankfurt Am Main, Germany

Andreas Reschka Institute of Control Engineering, Technische Universität Braunschweig, Braunschweig, Germany
Miranda A. Schreurs Environmental Policy Research Centre (FFU), Freie Universität Berlin, Berlin, Germany

Bryant Walker Smith School of Law, University of South Carolina, Columbia, SC, USA

Sibyl D. Steuwer Environmental Policy Research Centre (FFU), Freie Universität Berlin, Berlin, Germany

Sarah M. Thornton Department of Mechanical Engineering, Center for Automotive Research at Stanford, Stanford University, Stanford, CA, USA

Walther Wachenfeld Institute of Automotive Engineering—FZD, Technische Universität Darmstadt, Darmstadt, Germany

Peter Wagner Institute of Transportation Systems, German Aerospace Centre (DLR), Berlin, Germany

Thomas Winkle Department of Mechanical Engineering, Institute of Ergonomics, Technische Universität München – TUM, Garching, Germany

Hermann Winner Institute of Automotive Engineering—FZD, Technische Universität Darmstadt, Darmstadt, Germany

David M. Woisetschläger Institute of Automotive Management and Industrial Production, Technische Universität Braunschweig, Braunschweig, Germany

Ingo Wolf Institut Futur, Freie Universität Berlin, Berlin, Germany

Stephen S. Wu Business and Technology Law and Litigation, Los Altos, CA, Germany