Research article

Comparison of AlphaLISA and RIA assays for measurement of wool cortisol concentrations

T. Peric a,b, A. Comin a, M. Corazzin a,*, M. Montillo a, A. Prandi a

a Dipartimento di Scienze Agroalimentari, Ambientali e Animali, DI4A, Università degli Studi di Udine, Via delle Scienze 206, 33100 Udine, Italy
b Laboratori za vede o okolju in življenju, Univerza v Novi Gorici, Vipavska 13, 5000 Nova Gorica, Slovenia

A R T I C L E I N F O

Keywords:
- AlphaLISA
- Glucocorticoids
- Lamb
- Sheep
- Animal science
- Biological sciences
- Endocrinology
- Animal physiology
- Veterinary medicine

A B S T R A C T

Radioimmunoassay (RIA) methods have always represented a technique of choice for the determination of steroids in biological samples. The Amplified Luminescent Proximity Homogenous Assay-Linked Immunosorbent Assay (AlphaLISA) is now emerging as the new-generation immunoassay technology that does not require washing/separation steps. The aim of this study was to adapt the Perkin-Elmer’s AlphaLISA kit for wool cortisol and compare it with a RIA wool cortisol assay. Wool from lambs, 35 at birth (A0) and 54 at two months old (A2), was collected and each extract was evaluated for wool cortisol concentrations (HCC) both by RIA and AlphaLISA immunoassay. The two methods showed good precision, sensitivity and specificity for determining HCC. Both methods were able to detect significant differences between the high and the low HCC assessed in lambs at A0 and A2 (P < 0.01). The HCC assessed with RIA were significantly higher than those assessed with AlphaLISA (P < 0.01). Moreover, the correlation between HCC measured using the AlphaLISA and RIA methods was strong (r = 0.878). The regression analyses show a constant and not proportional error. This could be due to the diversity in the dosage steps and to the diversity of the molecules used in the two methods. Results support the validity of using AlphaLISA as an alternative method to RIA for the quantification of cortisol in sheep wool and considering the performances showed it has a great potential to be further applied as an excellent tool to evaluate HCC in samples derived from animal species.

1. Introduction

Cortisol has been suggested as a marker of the hypothalamic–pituitary–adrenal (HPA) axis activity (Stephens and Wand, 2012) and among the biological matrices in which cortisol can be analysed there is worldwide a high interest toward the utilization of hair as sample. Hair analyses has been successfully used in forensic, toxicological and doping research (Villain et al., 2004) on human samples and on a wide range of animal species to evaluate the allostatic load (Dettmer et al., 2012; Caslini et al., 2016; Biancucci et al., 2016; Crill et al., 2019), environmental conditions (Peric et al., 2017a) and the adaptation to environmental or physiological changes (Peric et al., 2017b) while wool produced by sheep has received relatively little attention (Salaberger et al., 2002). Indeed, the RIA assay is the traditional gold standard method for immunoassays (Reimers et al., 1981) as it is sensitive, specific, and reproducible. For some disadvantages of RIA assay related to the use of radioactivity alternative methods have been developed in recent years such as High Performance Liquid Chromatography (HPLC), Fluorometric, Chemiluminescent, Enzyme and Amplified Luminescent Proximity Homogenous Assay-Linked Immunosorbent Assay (AlphaLISA) immunoassay. The AlphaLISA is now emerging as the new-generation immunoassay technology. Homogeneous cortisol AlphaLISA assay reduces hands-on and total assay times and eliminates the need for multiple washes to separate bound from unbound assay components (Beaudet et al., 2008).

The RIA method based on binding of [3H]-steroid by competitive adsorption is diffusely used for hair cortisol quantification (González-de-la-Vara et al., 2011; Bacci et al., 2014; Galuppi et al., 2013; Siniscalchi et al., 2013) as well the Enzyme Immune Assay (EIA)/Enzyme
2.3. Wool cortisol analyses by AlphaLISA method

The wool cortisol from lambs evaluated by the AlphaLISA immunoassay method was measured using a commercial kit from Perkin-Elmer Life Science (Product number: AL314 HV/C/F, Boston, MA, USA) that in regard to the manufacturer's instructions for wool was slightly modified. The concentrations of the following reagents provided by the kit have been modified as follows: 5X Anti-Cortisol Antibody, 0.025 nM final; 5X Acceptor beads, 10 μg/mL final; 5X MIX, SA-Donor Beads (10 μg/mL final) + Biotinylated Cortisol-Tracer (8.332 nM final). Briefly, standards (5-720 pg per well), controls and samples (20 μL/well) and 0 μL of 5X Anti-Cortisol Antibody were pipetted into wells of a half-area 96-well microplate (Perkin-Elmer Life Science, Boston, MA, USA) in duplicate. After an incubation of 60 min at 23 °C, 10 μl of 5X Acceptor beads were added. Following a subsequent incubation step of 120 min at 23 °C, 10 μL of 5X MIX, SA-Donor Beads + Biotinylated Cortisol-Tracer were added. The microplate was read using Ensight Multimode plate reader (Perkin-Elmer Life Science, Boston, MA, USA) after a four-hour incubation in the dark. In total we run 3 microplates.

2.4. RIA and AlphaLISA validation tests

All the validation tests used different pool of samples constituted by five wool extracts and they were analysed by quintuple.

The parallelism test that consisted of determining the deviation from the standard curve of a series of wool extracts containing known amounts of cortisol, were prepared by serial dilution of wool extracts from animals that showed high concentrations of cortisol. Linear regression was used to determine if wool extracts and the standard cortisol curve deviated from parallelism.

The recovery test was conducted to evaluate the system response to an increasing amount of cortisol standard added to a wool extract with low cortisol. The percentage of recovery was determined as follows: [(measured cortisol in spiked sample)/(measured cortisol in non-spiked sample + cortisol added)] x 100.

The sensitivity of the curve was calculated as the hormone concentration resulting in a displacement of the labelled hormone at least 2 standard deviations from maximal binding.
Precision was estimated by repeatedly assaying samples in the inter- and intra-assay and was expressed as the coefficients of variation (CV%).

2.5. Statistical methods

Statistical analyses were performed using R software, vers. 3.4.0 (R Core team, 2017), and the packages: DescTools (Signorell et al., 2017), mcr (Manuilova et al., 2014), BlandAltmanLeh (Lehnert, 2015) and lmtest (Zeileis and Horthorn, 2002) were considered. The normality of data distribution was tested using Lilliefors corrected Kolmogorov-Smirnov test. Since the differences between pairs (individual sample assessed with both RIA and AlphaLISA) were normally distributed, a paired t-test was used to assess the differences of wool cortisol concentration obtained by RIA and AlphaLISA between the overall means, and between the means within age of animals. The variables, RIA and AlphaLISA, do not meet the assumptions of independent samples t-test, hence, the effect of animals age (A0 vs. A2) on wool cortisol concentration was assessed using Mann–Whitney U test. The agreement of the wool cortisol concentration measured by RIA and AlphaLISA was assessed using Kendall’s concordance coefficient W, from which the average Spearman correlation coefficient was obtained as reported in Howell (2002). Moreover, in order to assess this agreement, Bland-Altman plot (Giavarina, 2015) and the Passing-Bablok regression analyses were performed. The linearity of residuals was tested by Harvey-Collier test.

3. Results

3.1. RIA and AlphaLISA validation

The parallelisms between the wool dilution curves and the standard curves indicated that wool cortisol and standard cortisol reacted identically with the antibodies because high correlations ($r = 0.99$) were observed between the concentrations obtained and those expected both by RIA (Figure 1) and AlphaLISA (Figure 2). The relationships between wool cortisol concentrations and the standard cortisol curves were given by the equation $y = 1.014x-3.133$ for RIA assay and by the equation $y = 1.009x-0.064$ for AlphaLISA assay.

The recovery tests used to evaluate the response of the systems to an increasing mass weight of cortisol standards revealed for RIA and AlphaLISA recovery rates of 95.9 ± 8.8% (mean ± SD) and 94.6 ± 7.2% (mean ± SD), respectively.

AlphaLISA assay sensitivities were 24.6 and 17.0 pg/ml for RIA and AlphaLISA, respectively. A wool extract, in repeated determinations, showed intra- and inter-assay coefficients of variation of 4.6% and 8.7% and 3.2 and 11.3% for RIA and AlphaLISA assays, respectively.

3.2. RIA vs. AlphaLISA wool cortisol concentrations

The wool cortisol concentrations assessed with RIA were significantly higher than those assessed with AlphaLISA ($P < 0.01$; Table 1). The same result was obtained comparing the two methods within animals age, A0 (mean ± SE) (12.52 ± 1.92 vs. 9.40 ± 1.87 pg/mg for RIA and AlphaLISA respectively; $P < 0.01$) and A2 (6.36 ± 0.36 vs. 3.67 ± 0.30 pg/mg for RIA and AlphaLISA respectively; $P < 0.01$; data not reported in Tables). However, both methods were able to detect significant differences between wool cortisol concentrations in A0 and in A2 ($P < 0.01$; Table 2).

Considering agreement and association between RIA and AlphaLISA, Kendall’s $W = 0.879$ ($P < 0.01$) and $r = 0.878$ (average Spearman correlation coefficient), suggesting that the two variables are strongly correlated (Schober et al., 2018). Using Passing Bablock regression analyses, the intercept was -2.04 (confidence interval 95%, CI, from -2.88 to -1.47) and the slope was 0.93 (CI, from 0.82 to 1.02; data not reported in Tables). Since the intercept was different from 0 and the slope was not different from 1, a constant, but not a proportional error was shown (Billè-Zulle, 2011). In order to describe the agreement between RIA and AlphaLISA in more detail, Bland-Altman plot was considered. In this plot the previously highlighted constant error is evident (Figure 3). The mean difference between wool cortisol concentrations assessed with RIA and AlphaLISA was 2.86 pg/mg (CI, from 2.48 to 3.23 pg/mg). Moreover, Bland-Altman plot showed a CI from -0.65 to 6.36 pg/mg that included all (89/89) the differences between RIA and AlphaLISA (Figure 3).

4. Discussion

In this study, we adapt and compare the Perkin-Elmer’s cortisol AlphaLISA kit with a competitive solid-phase cortisol RIA assay already validated by our team in other species for measurement of lamb’s wool cortisol concentration. Both the RIA and the AlphaLISA assays showed good precision, sensitivity and specificity for determining cortisol concentrations.
The modified cortisol AlphaLISA kit showed, as the RIA method, a high sensitivity that is necessary to measure hair or wool cortisol concentrations. Its high sensitivity is mostly due to the nature of the AlphaLISA detection platform: the flow of singlet oxygen produced upon donor beads irradiation induces remarkable signal amplification in nearby acceptor beads. Moreover, the high antibody density on beads creates an avidity phenomenon, increasing sensitivity (Beaudet et al., 2008). Along with the miniaturization of the assay, as it requires small sample volumes, AlphaLISA method decreases also the total assay time if compared with other analytical immunoassays. This advantage could be exploited in fast screenings of the farms.

Comparing the AlphaLISA with the RIA assay we found a strong correlation ($r = 0.878$) between cortisol concentrations measured using the two analytical methods, and the regression shows a constant and not proportional error was present.

The wool cortisol concentrations obtained by RIA were greater than the AlphaLISA's. This could be due to the diversity in the dosage steps but also to the diversity of the various molecules used in the two analytical methods: among these the use of different antibodies with different specificity and therefore different cross-reactivity towards unknown immunoreactive compounds (Beaumier et al., 1986). The mean difference between wool cortisol concentration assessed with RIA and AlphaLISA was 2.86 pg/mg but it is generally known that the absolute hair or wool cortisol values amongst studies of the same species that use different immunoassays should be always referred to the method and the antibody used. Certainly, both RIA and AlphaLISA were able to detect significant differences between the high and the low wool cortisol concentrations assessed in lambs at birth and at two months of age. However, since this is a study concerning the development of an analytical method, we think that a specific study is needed to investigate wool cortisol concentrations in lambs.

The purpose of the description and validation of both the techniques was to make them both available considering the different lab equipment and funds available in the worldwide scientific community.

5. Conclusions

The above-presented data support the validity of using AlphaLISA as an alternative method to RIA for the quantification of cortisol in sheep wool, a sample that requests high sensitivity of the analytical method and the capability to measure low hormone concentrations. AlphaLISA showed to be a technique that allows the detection of the molecule of interest in a highly sensitive, quantitative, reproducible and user-friendly mode with the possibility to be automised too. It does not request washing steps allowing thus to obtain robust performances. Considering the growing interest of a non-invasively collected and retrospective sample in domestic and wild animals as well primates, the AlphaLISA technology has a great potential to be further applied as an excellent tool to evaluate HCC in samples derived from animal species.

Declarations

Author contribution statement

T. Peric, A. Comin: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Wrote the paper.

M. Corazzin: Analyzed and interpreted the data; Wrote the paper.
M. Montillo: Performed the experiments.
A. Prandi: Conceived and designed the experiments; Contributed reagents, materials, analysis tools or data.

Funding statement
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement
The authors declare no conflict of interest.

Additional information
No additional information is available for this paper.

Acknowledgements
The authors would like to thank Mara Colanzi (Perkin-Elmer Italia SpA, Milano, Italy) for providing scientific and technical inputs.

References
Bacci, M.L., Nannoni, E., Govoni, N., Scorzano, F., Zannoni, A., Forni, M., Martelli, G., Sardi, L., 2014. Hair cortisol determination in sows in two consecutive reproductive cycles. Reprod. Biol. 14, 218–223.
Battani, M., Peric, T., Ajuda, I., Vieira, A., Grosso, L., Barbieri, S., Silvestrini, G., Prandi, A., Comin, A., Taburao, F., Mattielli, S., 2015. Hair coat condition: a valid and reliable indicator for on-farm well-being assessment in adult dairy goats. Small Rumin. Res. 123, 197–203.
Beaumont, P.L., Neuzil, D., Yang, H.M., Noll, E.A., Kishore, R., Eary, J.F., Krohn, K.A., Battini, M., Peric, T., Ajuda, I., Vieira, A., Grosso, L., Barbieri, S., Stilwell, G., Prandi, A., Mattiello, S., 2018. Relocation and hair cortisol concentrations in New Zealand white rabbits. J. Appl. Anim. Welfare Sci. 20, 1–8.
Beutler, L., Rodriguez-Suarez, R., Venne, M.H., Caron, M., Beaudet, L., 2011. Comparisons of methods: passing and Bland-Altman regression. Biochem. Med. 21, 49–52.
Boguszewska, K., Szewczuk, M., Urbaniaik, S., Karwowski, B.T., 2019. Review: immunoassays in DNA damage and instability detection. Cell. Mol. Life Sci.: CMLS 76 (23), 4695–4704.
Castlin, C., Comin, A., Peric, T., Pedrotti, L., Mattielli, S., 2016. Use of hair cortisol analysis for comparing population status in wild red deer (Cervus elaphus) living in areas with different characteristics. Eur. J. Wildl. Res. 62, 713–78.
Crill, C., Jantz, D.M., Kuch, J.M., Santymire, R.M., Heyer, G.P., Munk, T., Lane, J.E., 2019. Investigation of the utility of feces and hair as non-invasive measures of glucocorticoids in wild black-tailed prairie dogs (Cynomys ludovicianus). Gen. Comp. Endocrinol. 275, 15–24.
Dettmer, A.M., Novak, M.A., Saum, S.J., Meyer, J.S., 2012. Physiological and behavioral adaptation to relocation stress in differentially reared rhesus monkeys: hair cortisol as a biomarker for anxiety-related responses. Psychoneuroendocrinology 37, 191–199.
Fairbanks, P.A., Jorgensen, M.J., Bailey, J.N., Breidenthal, S.E., Grzywa, R., Laudenslager, M.L., 2011. Heritability and genetic correlation of hair cortisol in vervet monkeys in low and higher stress environments. Psychoneuroendocrinology 36, 1201–1208.
Ferraro, S., Ciardi, L., Bagnati, M., Basile, M., Portaluppi, R., Massari, L., Bellomo, G., 2002. Dosaggio del corretto urinary standardizzazione della metodica in chiamalumioscena. J. Clin. Ligand Assay 25, 322–331.
Fürbauer, I., Solman, C., Fry, A., 2019. Sheep wool cortisol as a retrospective measure of long-term hair cortisol analysis and its links to body mass. Domest. Anim. Endocrinol. 68, 39–46.
Galuppi, R., Leverque, J.F., Beghelli, V., Bonoli, C., Mattioli, M., Ostanello, F., Tampieri, M.P., Accorsi, P.A., 2013. Cortisol levels in cat's hair in presence or absence of microsporum canis infection. Res. Vet. Sci. 95, 1076–1080.
Gerber, M., Brand, S., Lindwall, M., Elliot, C., Kalak, N., Herrmann, C., Pühse, U., Jonsdottir, I.H., 2012. Concerns regarding hair cortisol as a biomarker of chronic stress in exercise and sport science. J. Sports Sci. Med. 11, 571–581.
Giovanni, D., 2015. Understanding Bland-Altman analysis. Biochem. Med. 25, 141–151.
González-de-la-Vara, M., Valdez, R.A., Lemus-Ramirez, V., Vázquez-Chagoyan, J.C., Villa-Godoy, A., Romano, M.C., 2011. Effects of adrenocorticotropic hormone challenge and age on hair cortisol concentrations in dairy cattle. Canadian journal of veterinary research – Revue canadienne de recherche vétérinaire 75, 216–221.
Howell, D.C., 2002. Statistical methods for psychology. Pacific grove CA: duxbury.
Lehner, B., 2015. BlandAltmanLeh: Plots (Slightly Extended) Bland-Altman Plots. R Package Version 0.3.1. https://CRAN.R-project.org/package=BlandAltmanLeh. (Accessed 21 December 2019).
Macbeth, B.J., Cattet, M.R.L., Stenhousse, G.B., Gibeau, M.L., Janz, D.M., 2010. Hair cortisol concentration as a noninvasive measure of long-term stress in free-ranging grizzly bear (Ursus arctos): considerations with implications for other wildlife. Can. J. Zool. 88, 935–949.
Manulova, E., Schuetzemeister, A., Model, F., 2014. Mcr: Method Comparison Regression. R Package Version 1.2.1. https://CRAN.R-project.org/package=mcr. (Accessed 12 January 2020).
Massey, A.J., Campbell, B.K., Raine-Fenning, N., Pincott-Allen, C., Perry, J., Vedhara, K., 2016. Relationship between hair and salivary cortisol and pregnancy in women undergoing IVF. Psychoneuroendocrinology 74, 397–405.
Montillo, M., Comin, A., Corazzin, M., Prandi, A., Comin, A., Mattielli, S., 2014. The effect of temperature, rainfall, and light conditions on hair cortisol concentrations in newborn foals. J. Equine Vet. Sci. 34, 774–778.
Peric, T., Comin, A., Corazzin, M., Montillo, M., Canavese, F., Stebel, M., Prandi, A., 2017a. Hair cortisol levels in holstein friesian and crossbred F1 heifers. J. Dairy Sci. 100, 3026–3027.
Peric, T., Corazzin, M., Romanzin, A., Bovolenta, S., Prandi, A., Montillo, M., Comin, A., 2017b. Cortisol and DHEA concentrations in the hair of dairy cows managed indoor or on pasture. Livest. Sci. 202, 39–43.
Prandi, A., Peric, T., Corazzin, M., Comin, A., Colitti, M., 2018. A first survey on hair cortisol of an Alpine ibex (Capra ibex ibex) population. Sci. Anim. Pap. Rep. 36, 57–74.
Qin, D., Rizak, J., Feng, X., Yang, S., Yang, L., Fan, X., Liu, L., Chen, L., Hu, X., 2015. Cortisol responses to chronic stress in adult macaques: moderation by a polymorphism in the serotonin transporter gene. Behav. Brain Res. 278, 280–285.
R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Austria. Vienna. https://www.R-project.org. (Accessed 24 November 2019).
Reimers, T.J., Cowan, R.G., Davidson, H.P., Colby, E.D., 1981. Validation of radioimmunoassay for triiodothyronine, thyroxine, and hydrocortisone (cortisol) in canine, feline, and equine sera. Am. J. Vet. Res. 42, 2016–2021.
Sakamoto, S., Putalan, W., Vimolmangkang, S., Phoolcharoen, W., Shoyama, Y., Tanaka, H., Morimoto, S., 2018. Enzyme-linked immunosorbent assay for the qualitative/quantitative analysis of plant secondary metabolites. J. Nat. Med. 72 (1), 71–82.
Salabarger, T., Millard, M., Makarem, S.E., Mosd, E., Grünberger, V., Krammer-Frotscher, R., Wittek, T., Palme, R., 2016. Influence of external factors on hair cortisol concentrations. Gen. Comp. Endocrinol. 233, 73–78.
Sawyer, G., Webster, D., Narayan, E., 2019. Measuring wool cortisol and progesterone concentrations. Gen. Comp. Endocrinol. 233, 73–78.
Siniscalchi, M., McFarlane, J.R., Kauter, K.G., Quaranta, A., Rogers, L.J., 2013. Cortisol levels in hair reflect behavioural reactivity of dogs to acoustic stimuli. Res. Vet. Sci. 94, 49–54.
Stephens, M.A.C., Wand, G., 2012. Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol Res. 34 (4), 468–483.
Terwissena, C.V., Mastronomaco, G.F., Murray, D.L., 2013. Influence of adrenocorticotropic hormone challenge and external factors (age, sex, and body region) on hair cortisol concentration in Canada lynx (Lynx canadensis). Gen. Comp. Endocrinol. 194C, 162–176.
Veronesi, M.C., Comin, A., Meloni, T., Faustini, M., Rota, A., Prandi, A., 2015. Coat and technical inputs. J. Appl. Anim. Welfare Sci. 20, 1–8.
Villain, M., Graupez-Chagoyan, L., Galuppi, R., Leverque, J.F., Beghelli, V., Bonoli, C., Mattioli, M., Ostanello, F., Tampieri, M.P., Accorsi, P.A., 2013. Cortisol levels in cat's hair in presence or absence of microsporum canis infection. Res. Vet. Sci. 95, 1076–1080.