HOMOGENEOUS UNIVERSAL H-FIELDS

LOU VAN DEN DRIES AND PHILIP EHRLICH

Abstract. We consider derivations \(\partial \) on Conway’s field \(\mathbb{No} \) of surreal numbers such that the ordered differential field \((\mathbb{No}, \partial)\) has constant field \(\mathbb{R} \) and is a model of the model companion of the theory of \(H \)-fields with small derivation. We show that this determines \((\mathbb{No}, \partial)\) uniquely up to isomorphism, and that this structure is absolutely homogeneous universal for models of this theory with constant field \(\mathbb{R} \).

Aschenbrenner and van den Dries [1] introduced \(H \)-fields in order to formalize some basic first-order properties of Hardy fields in their role of ordered and valued differential fields. Hardy fields containing \(\mathbb{R} \) are \(H \)-fields, and so is the system \(T \) of transseries. In [2], Aschenbrenner, van den Dries, and van der Hoeven (ADH) proved that the theory of \(H \)-fields has a model companion whose models are the \(H \)-fields that are Liouville closed, \(\omega \)-free, and newtonian. Adding to these axioms for the model companion the axiom that the derivation is small yields a complete theory \(T \) in the language \(\mathcal{L} = \{ 0, 1, +, \cdot, \leq, \preceq, \partial \} \) of ordered valued differential fields. Thus \(T \) is complete as well as model complete. Another key result from [2] is that \(T \) is a model of \(T \). See [2, Introduction] for the relevant definitions.

Using an idea from Schmeling’s thesis [11] due to van der Hoeven, Berarducci and Mantova [5] constructed so-called surreal derivations on Conway’s ordered field \(\mathbb{No} \) of surreal numbers [7]; even a “simplest” one, \(\partial_{BM} \), that makes \((\mathbb{No}, \partial_{BM})\) an \(H \)-field with small derivation and constant field \(\mathbb{R} \). They proved also that this \(H \)-field is Liouville closed. ADH [3] subsequently showed that \((\mathbb{No}, \partial_{BM})\) is a model of \(T \) that is universal with respect to \(H \)-fields with small derivation and constant field \(\mathbb{R} \): every such \(H \)-field, including each Hardy field containing \(\mathbb{R} \), can be embedded as an ordered differential field into \((\mathbb{No}, \partial_{BM})\). The purpose of this note is to point out that in the course of establishing the just-said result, [3] proves almost enough to obtain the following:

Theorem. Let \(\partial \) be any derivation on \(\mathbb{No} \) with constant field \(\mathbb{R} \) such that \((\mathbb{No}, \partial)\) is a model of \(T \). Then \((\mathbb{No}, \partial)\) is up to isomorphism the unique model of \(T \) with constant field \(\mathbb{R} \) that is absolutely homogeneous universal with respect to models of \(T \) with constant field \(\mathbb{R} \).

The uniqueness gives \((\mathbb{No}, \partial) \cong (\mathbb{No}, \partial_{BM})\). Part of the interest of the theorem lies in the circumstance that \(\partial_{BM} \) seems to take the “wrong” values on some infinite iterates of the exponential function applied to \(\omega \); for more on this, see [4, 6]. We do expect there is an optimal surreal derivation—better than \(\partial_{BM} \)—that also satisfies the hypothesis of the theorem, and thus its conclusion.

Let \(\partial \) be as in the theorem. That \((\mathbb{No}, \partial)\) is absolutely universal with respect to models of \(T \) with constant field \(\mathbb{R} \) means that every model of \(T \) with constant field

1991 Mathematics Subject Classification. Primary 03C64; Secondary 12H05, 13N15, 26A12.

Key words and phrases. surreal numbers, ordered differential fields, \(H \)-fields, transseries.
\mathbb{R} (whose universe is a set or a proper class) can be embedded in $(\mathbb{No}, \mathcal{B})$. That it is absolutely homogeneous with respect to models of T with constant field \mathbb{R} means that every isomorphism between substructures of $(\mathbb{No}, \mathcal{B})$ that are set-models of T with constant field \mathbb{R} extends to an automorphism of $(\mathbb{No}, \mathcal{B})$.

Our set theory here is von Neumann-Bernays-Gödel set theory with Global Choice (NBG), a conservative extension of ZFC in which all proper classes are in bijective correspondence with the class On of all ordinals. By “set-model” (“class-model”) we mean a model whose universe is a set (a proper class). By “cardinal” we mean below “set-cardinal” and we let κ range over cardinals.

To establish the theorem we follow the proof of [3, Theorem 3], which deals with the case $\mathcal{B} = \mathcal{B}_{\text{BM}}$. To handle arbitrary \mathcal{B} we use some extra lemmas. The first one slightly extends [3, Lemma 5.3], which considers only regular κ. The proof of that lemma goes through if we replace κ at various places by its cofinality $\text{cf}(\kappa)$.

Lemma 1. Let κ be uncountable. Then the underlying ordered sets of $\mathbb{No}(\kappa)$ and $v(\mathbb{No}(\kappa))$ are $\text{cf}(\kappa)$-saturated.

Lemma 2. Let L be a countable (one-sorted) language and \mathbb{No}_L an L-structure with universe \mathbb{No}. Then there are cardinals κ of arbitrarily large cofinality such that $\mathbb{No}(\kappa)$ is the underlying set of an elementary substructure of \mathbb{No}_L.

Proof. By Skolemizing we arrange that $\text{Th}(\mathbb{No}_L)$ has built-in Skolem functions, so any substructure of \mathbb{No}_L is an elementary substructure. Let κ be an infinite regular cardinal. We build in the usual way simultaneously by transfinite recursion a strictly increasing sequence $(\kappa_\alpha)_{\alpha < \kappa}$ of infinite cardinals and an elementary chain $(K_\alpha)_{\alpha < \kappa}$ of elementary substructures of \mathbb{No}_L such that for all $\alpha < \kappa$,

1. $\mathbb{No}(\kappa_\alpha) \subseteq K_\alpha \subseteq \mathbb{No}(\kappa_{\alpha+1})$, where K_α denotes also its underlying set.
2. if α is an infinite limit ordinal, then $\kappa_\alpha = \sup_{\beta < \alpha} \kappa_\beta$ and $K_\alpha = \bigcup_{\beta < \alpha} K_\beta$.

Then $\mathbb{No}(\kappa_\infty)$ with $\kappa_\infty := \sup_{\alpha < \kappa} \kappa_\alpha$ is the underlying set of the elementary substructure $\bigcup_{\alpha < \kappa} K_\alpha$ of \mathbb{No}_L, and κ_∞ has cofinality κ. \hfill \Box

In the next two lemmas “H-field” should be read as “H-field whose universe is a set”. We note that any embedding between H-fields with common constant field \mathbb{R} is automatically the identity on \mathbb{R}. In the rest of the paper we fix a class-model $(\mathbb{No}, \mathcal{B})$ of T with constant field \mathbb{R}. Here is the relevant analogue of the Claim in the proof of [3, Theorem 3]:

Lemma 3. Let $E \subseteq K$ be an extension of ω-free H-fields with \mathbb{R} as their common constant field, and let $i : E \rightarrow (\mathbb{No}, \mathcal{B})$ be an embedding. Then i extends to an embedding $K \rightarrow (\mathbb{No}, \mathcal{B})$.

Proof. First extend K to make it a model of T; by [2, 16.4.1 and 14.5.10] this can be done without changing its constant field. By Lemma 2 we can take an uncountable cardinal κ such that $\text{cf}(\kappa) > \text{card}(K)$. $\mathbb{No}(\kappa)$ underlies an elementary substructure L of $(\mathbb{No}, \mathcal{B})$ and $i(E) \subseteq \mathbb{No}(\kappa)$. Using Lemma 1 and [2, 16.2.3] we then extend i to an embedding $K \rightarrow L$. \hfill \Box

Lemma 4. There is an ω-free H-field with constant field \mathbb{R} that embeds into every model of T with constant field \mathbb{R}.

Proof. Let F be the Hardy field $\mathbb{R}(x)$ (so $x > \mathbb{R}$, $x' = 1$). Then F is a grounded H-field with constant field \mathbb{R} that embeds into every model of T with constant field \mathbb{R}.
Proof of the Theorem. Recall that \((\mathbb{N}, \mathcal{O})\) is a model of \(T\) with constant field \(\mathbb{R}\).

As to universality for set-models, let \(K\) be a set-model of \(T\) with constant field \(\mathbb{R}\). Use Lemma 4 to make \(K\) an extension of an \(\omega\)-free \(H\)-field \(E\) with an embedding \(E \to (\mathbb{N}, \mathcal{O})\), and then use Lemma 3 to extend this embedding to an embedding \(K \to (\mathbb{N}, \mathcal{O})\). As to universality for class-models, let \(K\) be a class-model of \(T\) with constant field \(\mathbb{R}\). Then \(K\) is the union of a chain \((K_{\beta})_{\beta \in \text{On}}\) of set-models of \(T\) with constant field \(\mathbb{R}\). First embed \(K_0\) into \((\mathbb{N}, \mathcal{O})\), and then use transfinite recursion, Lemma 3, and Global Choice to construct a family \((i_{\beta})_{\beta \in \text{On}}\) of embeddings \(i_{\beta} : K_\beta \to (\mathbb{N}, \mathcal{O})\), with \(i_{\beta}\) extending \(i_{\alpha}\) whenever \(\alpha < \beta\). Then the common extension of these \(i_{\beta}\) is an embedding \(K \to (\mathbb{N}, \mathcal{O})\).

For homogeneity for set-models, let \(i : E \to F\) be an isomorphism between set-models \(E, F \preceq (\mathbb{N}, \mathcal{O})\). Given any \(a \in \mathbb{N} \setminus E\) we use Lemma 3 to extend \(i\) to an isomorphism \(K \to L\) between set-models \(K, L \preceq (\mathbb{N}, \mathcal{O})\) with \(a \in K\). Likewise for \(b \in \mathbb{N} \setminus F\) we can extend \(i\) to an isomorphism \(K \to L\) between set-models \(K, L \preceq (\mathbb{N}, \mathcal{O})\) with \(b \in L\). The usual back-and-forth argument then gives an automorphism of \((\mathbb{N}, \mathcal{O})\) extending \(i\). We have now shown that \((\mathbb{N}, \mathcal{O})\) is absolutely homogeneous universal with respect to models of \(T\) with constant field \(\mathbb{R}\).

As to uniqueness, let \(M\) be any class-model of \(T\) with constant field \(\mathbb{R}\) that is absolutely homogeneous universal with respect to models of \(T\) with constant field \(\mathbb{R}\); we need to show that \(M \cong (\mathbb{N}, \mathcal{O})\). First, let a set-model \(E \preceq M\) and an isomorphism \(i : E \to F \preceq (\mathbb{N}, \mathcal{O})\) be given. To go forth, Lemma 3 allows us to extend \(i\) for any \(a \in M \setminus E\) to an isomorphism \(K \to L\) between set-models \(K \preceq M\) and \(L \preceq (\mathbb{N}, \mathcal{O})\) with \(a \in K\). To go back, let \(b \in \mathbb{N} \setminus F\), take a set-model \(L \preceq (\mathbb{N}, \mathcal{O})\) with \(F \subseteq L\) and \(b \in L\), and take an embedding \(j : L \to M\). Then \(j \circ i\) maps \(E\) isomorphically onto \(j(i(E)) \preceq M\), and so extends to an automorphism \(\sigma\) of \(M\). Then \(\sigma^{-1} \circ j\) extends \(i^{-1}\) and maps \(L\) isomorphically onto some \(K \preceq M\) with \(K \supseteq E\). Thus back-and-forth yields an isomorphism \(M \to (\mathbb{N}, \mathcal{O})\).

Alternatively (but there is really little difference with the approach above) we could have adapted familiar arguments of Jónsson [9, 10] for the existence and uniqueness (up to isomorphism) of an \(L\)-structure of inaccessible power \(\kappa\) that is \(\kappa\)-homogeneous and \(\kappa\)-universal with respect to a class of \(L\)-structures that has amalgamation and satisfies a few other simple conditions; see also Ehrlich [8]. We would in any case still need Lemmas 3 and 4 to verify those conditions.

REFERENCES

[1] M. Aschenbrenner and L. van den Dries, H-fields and their Liouville extensions, Math. Zeit. 242 (2002), pp. 543-548.
[2] M. Aschenbrenner, L. van den Dries and J. van der Hoeven, Asymptotic Differential Algebra and Model Theory of Transseries, Annals of Mathematics Studies, 195, Princeton University Press, Princeton, NJ (2017).
[3] , Surreal numbers as a universal H-field, J. Eur. Math. Soc. (forthcoming).
[4] , On Numbers, Germs, and Transseries, to appear in the Proceedings of ICM 2018.
[5] A. Berarducci and V. Mantova, Surreal numbers, derivations and transseries, J. Eur. Math. Soc. 20 (2018), pp. 339-390.
[6] , Transseries as germs of surreal functions, Trans. Amer. Math. Soc., to appear, arXiv:1703.01995.
[7] J. H. Conway, On Numbers and Games, Academic Press, London (1976); Second Edition, A K Peters, Ltd., Natick, Massachusetts (2001).

[8] P. Ehrlich, Absolutely Saturated Models, Fund. Math. 133 (1989), pp. 39-46.

[9] B. Jónsson, Universal relational systems, Math. Scand. 4 (1956), pp. 193-208.

[10] , Homogeneous universal relational systems, Math. Scand. 8 (1960), pp. 137-142.

[11] M. C. Schmeling, Corps de transséries, Université Paris-VII, 2001.

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
E-mail address: vddries@illinois.edu

Department of Philosophy, Ohio University, Athens, OH 45701, USA
E-mail address: ehrlich@ohio.edu