Research Article

Panoramic Display and Planning Simulation of Civil Engineering Project Based on Virtual Reality Technology

Zheng Wang,1 Chang Liu,1 and Bin Song2

1Academy of Fine Arts, Anyang Normal University, Anyang, Henan 455000, China
2E-Publishing Division, Tsinghua University Press, Anyang, Henan 455000, China

Correspondence should be addressed to Zheng Wang; 01278@aynu.edu.cn

Received 15 May 2020; Revised 27 September 2020; Accepted 5 October 2020; Published 17 October 2020

1. Introduction

Virtual reality (VR) technology is an immersive interactive environment based on computable information, and it specifically uses modern high-tech with computer technology as the core to generate realistic visual, audio, and tactile integration in a specific range of virtual environments, through which the user interacts with the objects in the virtual environment in a natural way with the necessary equipment, so as to produce the feeling and experience of being in the real environment and realize the exchange of information between virtual and reality [1]. The VR is a more ideal form of human-computer interface between users and computers than traditional computer technology and users roam in a virtual environment and allow objects to be manipulated [2]. Applying the VR technology to the design, engineering control, and structural analysis of very large and complex structures will enhance the front-to-rear processing capabilities of computing software. Compared with traditional computer technology, the VR technology has three important characteristics of immersion, interactivity, and imagination, and it has an extremely wide range of uses [3]. Because the VR technology can simulate various environments and activities beforehand, realize the function of analyzing the rationality of various schemes, and modify parameters of different schemes, it is possible to optimize planning, design, and construction [4, 5].

In the past, in the civil engineering industry, researchers could only express very rich content with very abstract theoretical concepts, such as graphic design drawings, section design drawings, elevation design drawings, and other flat design drawings to form some specific symbols, showing the three-dimensional building of three-dimensional images, and using abstract graphics and refined language as an auxiliary to describe the building to be built to convey information [6]. However, this method of...
transmission will be restricted for the recipient of the information, because each recipient’s work, level of knowledge, and ability to understand are different, so it will be difficult to communicate, and it will not be able to communicate what was originally intended [7]. The VR mobile terminals are applied to collect field data to achieve collaborative management of civil construction safety and quality and transfer potential safety hazards and quality defects on the site to the VR application in the form of data. The rise and development of VR technology has become a good assistant to overcome this difficulty, providing an extremely effective means [8]. This technology is a new high-end human-machine interface for the participants, and it is a three-dimensional environment generated by electronic computers, which not only enables users to feel the realistic existence of objects in the virtual world environment. As a structural entity, civil engineering is closely connected with the natural world and human environment, so the VR technology can be used to simulate the virtual environment [9].

Based on the summary and analysis of previous literature works, this paper expounded the research status and significance of VR technology, elaborated the development background, current situation, and future challenges of the panoramic display and planning simulation of civil engineering project, introduced the methods and principles of VR platform system and structure dynamic analysis, conducted virtual scene design and three-dimensional modeling of civil engineering project, analyzed the synthetic debugging and simulation roaming of the virtual environment, proposed the engineering model of virtual construction process and planning structure calculation, discussed the realization method of virtual project management and visualization, and finally performed the simulation and its result analysis of panoramic display and planning of civil engineering project based on VR technology. The detailed chapters are arranged as follows: Section 2 introduces the methods and principles of the VR platform system and structure dynamic analysis; Section 3 analyzes the panoramic display of civil engineering projects based on VR technology including the synthesis debugging and simulation roaming of virtual environment; Section 4 carries out the planning and simulation of civil engineering projects based on VR technology; Section 5 carries out civil engineering simulation and its result analysis; and Section 6 is the conclusion.

2. Methods and Principles

2.1. VR Platform System. The VR technology is based on the physiological and psychological characteristics of human vision and hearing and the computer generates realistic three-dimensional stereoscopic images. Users can put themselves in a virtual environment and become a member in the virtual environment by wearing interactive devices such as helmet displays and data gloves. The interaction between the user and various objects in the virtual environment is just like in the real world with all realistic feelings and there is a feeling of being on the scene. The human-computer interaction in the VR system is a kind of nearly natural interaction. The user can not only use the computer keyboard and mouse to interact but also interact with sensor equipment such as special helmets and data gloves [10]. Users can investigate or operate objects in the virtual environment through their own natural skills such as language, body movement, or movement. Because the VR system is equipped with sensing and reaction devices for sight, hearing, and touch, users can obtain a variety of perceptions such as sight, hearing, and touch in the virtual environment, thereby achieving personal presence of feeling the environment. Due to the abovementioned advantages, the VR technology has been widely used in civil engineering and has broad application prospects.

The function realization of the simulation system is mainly at the model layer, the presentation layer realizes the interaction with the user, and the data layer realizes the recording and management of the simulation experiment data. According to the simulation teaching design, the main functions of user interaction are reflected in the movement of model components, rotation, and change of viewpoint and experiments of related animation display functions. Virtual reality modeling language is an object-oriented modeling language used to describe the data format of interactive objects and is also the standard of the VR technology. The modeling language can support network communication through the programming of its scripts, so that modeling language nodes can receive data through the network and can render scenes in real time. The language defines users’ own objects by using prototypes, has object-oriented class characteristics, encapsulates corresponding data structures and methods, and is instantiated in applications, which has a certain degree of expansion. Through programming in routing and scripting languages, a visual scene can be constructed with a user interface, which not only facilitates user operations but also improves work efficiency. In the virtual simulation system, various common prototypes can be defined to realize the main simulation interactive functions, such as click, pan, rotate, select, and other functional modules.

Traditional geographic information systems have closed the characteristics from architecture to data format and different geographic information systems have different data storage formats. There are difficulties in data exchange between systems developed on different software, and data conversion standards can only partially solve the problem. Different application departments have different understandings of geographic phenomena and different data definitions of geographic information, which hinders the sharing of data between application systems. The digital city data have an infinitely seamless distributed data layer structure, including multisource, multiscale, multi-resolution, historical and current, vector format, and raster format data. In order to use these data for spatial analysis and decision-making, a spatial data warehouse must be established. The information sharing, data acquisition, and updating mechanisms and technologies have not been resolved, many necessary data standards and norms have not been established, and low-level repeated development has
occurred from time to time, resulting in a huge waste of human and material resources. Therefore, in order to achieve spatial information sharing, it depends on a special kind of metadata and data describing some attributes such as the format and precision of spatial data. The construction of the meta-database is very necessary; it is about the data of the database, through which you can understand the name, location, attributes and other information of the data, thereby greatly reducing the time for users to find data (Figure 1).

2.2. Structural Dynamic Analysis Method. The simulation model is composed of model components and the relationships between the components. The components are represented by multimedia objects, and the objects correspond to the entities in the real world; the interaction relationship between the components is realized by message events and the hierarchical relationship between them is described by combined multimedia simulation objects. The object is not only the basic conceptual unit of system analysis, but also the basic model unit of system design or basic programming unit of simulation programs. The object encapsulates all attribute definitions and operations about the object, and the state change of the object is triggered by internal or external events. Multimedia characteristics of sound that characterize the appearance of an entity, like quantitative parameters and state data that characterize the characteristics of an entity, are an integral part of real-world entity attributes. In real life, the external multimedia features of entities are an effective way for people to understand and understand nature; when people use models to describe the properties and state behavior of actual systems, they should not make the rich, colorful multimedia features of real objects. It is the most direct and simple way to lose sight of and disappear from the objective, so as to lose and understand the objective objects. The advanced modeling ideas and modeling methods of multimedia simulation are to ensure that this idea becomes a reality.

In the structural dynamic analysis method, the interface is firstly built and the first person and third person then are browsed through to allow users to get an immersive experience, getting a realistic effect brought by the VR technology and also getting a better understanding of every detail of the architectural plan. The flight mode is a bird-eye view of the underground buildings in the sky, which solves the problem that the overall style of the building cannot be observed in the building group and can judge whether it meets the aesthetic requirements and whether it can integrate with the surrounding buildings. Camera animation roaming is a roaming method that does not require manual operation and realizes browsing of multiple routes. This solves the problem of being unfamiliar with the overall architectural plan and easily disoriented and at the same time allows the user to relax. Finally, in the sound processing, the sound can deepen the sense of immersion and substitution, so that the entire operation process becomes more vivid, so that users get more operating experience. According to the above-mentioned functions to be realized, make buttons corresponding to the functions, respectively. For the sound switch button, it is necessary to make an open button and a close button at the same position, monitor and replace each other, and execute the corresponding event [11].

The civil engineering works basically have the characteristics of large engineering volume and complex content, which is particularly noticeable in their construction plans. The framework and structure of virtual reality platform system is shown in Figure 2. The construction plan of the civil engineering project should take into account equipment management, material scheduling, capital operation, work type coordination, project schedule, quality control, cost control, information management, contract management, etc. Under such circumstances, the organization and management of construction plans are very difficult. Not only must they are able to collect, integrate, and use a large amount of engineering data, but also to balance contradictions and conflicts in various aspects. Therefore, the traditional organization and management of construction plans cost a lot of time and is difficult to ensure the quality and implement ability of the program. In civil engineering, a considerable part has the characteristics of a vast construction site and almost all civil engineering has three-dimensional features. In the traditional construction site organization and management, the floor plan is used to characterize and manage the construction site. Not only is it not intuitive but it also has to prepare a large number of plane drawings to fully display the three-dimensional characteristics of the site. The energy efficiency of organization and management is quite limited, and the organization and management of the construction site is a long-term and dynamic process, because during the construction process, the situation of the construction site will inevitably change with the progress of the project. The traditional site management uses paper drawings, which are difficult to modify and cannot reflect the dynamic changes of the site layout, and it is difficult to achieve the dynamic management requirements of the site.

3. Panoramic Display of Civil Engineering Projects Based on VR Technology

3.1. Virtual Scene Design and Three-Dimensional Modeling. Panoramic technology is to stitch one or more groups of photos taken by the camera ring 360° into a panoramic image through seamless connection. The user applies special playback software to display it on the computer screen and can control the user’s perspective through the mouse to achieve vertical or 360° horizontal scene viewing and supports arbitrary zoom-in and zoom-out, so that users can look around, look down, and look up as if they were in the field. After the design plan is determined, they perform virtual operations on the computer, and at this time, it can achieve the same situation as the actual construction and operation. After finding the problem, it can be quickly fed back to the planning and design to avoid the actual construction and operation process. If deficiencies and deficiencies are found, remedial measures will be taken, and some errors will cause great economic losses and the price of restricted use of
functions. In the process of urban civil engineering design and implementation, the selection and optimization of construction schemes have a great impact on the construction quality and construction efficiency in the later stage. The effective application of the VR technology and the effective establishment of three-dimensional simulation models can to a certain extent effectively clarify the construction flow, construction procedures, etc., further optimize the selection of construction methods and construction machinery, and rationally arrange construction procedures.

In the construction process of civil engineering, the VR technology is mainly used for on-site construction management, to directly feedback the quality and safety issues on-site to construction management personnel, so as to be dealt with in time, improve construction quality, and to reduce the incidence of safety accidents (Figure 3). In practical applications, first log in to the VR application interface, then transfer the relevant photos of the construction site to the VR application, and in the corresponding options, including the project name, axis, and other specific parameters [12]. The VR mobile terminals are applied to collect field data to achieve collaborative management of civil construction safety and quality, transfer potential safety hazards and quality defects on the site to the VR application in the form of data, and then correlate these data to the VR model and the function of VR visualization to study on-site problems. In the construction of civil engineering construction, the use of VR technology can greatly improve the scientific and standardization of on-site construction and simplify the construction tasks. In addition, the use of BIM technology has also realized the supervision of the construction process, enhanced the use of information technology, and reduced the interference of objective factors, which is conducive to comprehensive control of the project.

In the figure, different colored shapes represent different civil engineering construction entities; three red lines represent different perspective direction lines; different letters and numbers represent different virtual reality calibration points.

Traditional system simulation techniques rarely study the simulation of human perception models, and therefore cannot simulate human perception of the external environment. The introduction of the VR technology into the various stages of system simulation and simulation can make users immersed in it and have a clear understanding of the problems to be solved, instead of being limited to observing the simulation results from the screen, so that the establishment of the model and verification is more convenient. The VR technology is mainly reflected in the computer based on the established domain knowledge base and database and the use of artificial intelligence, pattern recognition, and other technologies, the main control agency for modeling, learning, planning, and calculation. Visual simulation in this field is carried out through three-dimensional animation production and display helmets, tactile simulation in this field is carried out through sensing mechanisms and gloves, sound simulation is carried out through sound production and sound effect cards, and dynamic simulation is carried out through mechanical control and transmission devices. Then, the human’s response to these sensory stimuli is fed back to the main control mechanism, so as to generate a simulation of the new sensory model in real time. The civil engineering is closely related to people’s lives, establishing a
Figure 2: Framework and structure of virtual reality platform system.

Figure 3: Planning display of civil engineering project based on virtual reality technology.
multidimensional information perception model and applying it to simulation systems is of great significance to the development of this industry [13].

3.2. Synthetic Debugging and Roaming of Virtual Environment. In the application process of the actual virtual simulation system, the display function can realize two-dimensional navigation, zoom-in, zoom-out, rotation, roaming, and corresponding animation functions; its query function can realize related query operations of attribute data, such as building name, area, weight Subordinate units, and completion time and can obtain corresponding target information from the database information. The simulation system actually records the city’s topography, three-dimensional contours of buildings in key areas, and urban space, which can effectively help the relevant departments of urban planning, feel the construction status of the city more intuitively, and effectively evaluate it for comparison and optimization urban planning program. On the basis of effectively completing the modeling of virtual scenes, further synthesize and debug the virtual environment roaming system and this process requires the use of software to achieve the corresponding debugging effect (Figure 4). The debugging process is as follows: the hardware system and display device are firstly configured, and then project the screen, helmet, stereo glasses, etc. are installed, and set different operation modes, roaming paths, roaming viewing angles, running backgrounds, etc., to detect and debug collision effects and stereo effects. By clicking the mouse, users can effectively observe different angles in the virtual scene and adjust to watch the best effect.

Planning design is a very important link in the construction of civil engineering, and it is also an important foundation for civil engineering construction, which plays a decisive role in the successful completion of construction in the later stage of civil engineering and even affects the quality of the overall civil engineering. For civil engineering construction, the structure is very complex, and the construction environment has the characteristics of variability [14]. Designers usually spend a lot of energy and time to collect civil engineering construction data, and only after a comprehensive analysis of these data, we will able to draw a complete civil engineering graphic design. The introduction of the VR technology can solve this problem well and designers can complete the mechanical performance model test through the computer, which avoids the influence of factors such as airflow and friction in the previous mechanical performance model test, which greatly improves the mechanical performance. The accuracy of the test and the test data can be comprehensively analyzed through the computer, and at the same time, it can help the designer to select the best civil engineering design plan. The VR system will also integrate the various links of civil engineering construction and clarify the relationship between the various construction links, so as to ensure that the civil engineering works are carried out step by step, and the construction is stopped because of the wrong connection of the construction links.

The application of the VR technology can also change the angle arbitrarily and observe from any point when performing visual calculation. At the same time, it can also use the human-computer interaction function provided by this technology to modify various calculation data in real time, so that make a detailed comparison of various schemes and results. Applying visual computing technology based on VR technology to the design, engineering control, and structural analysis of ultralarge and complex structures in civil engineering can effectively enhance the processing power of related visual computing software [15]. As far as the construction of civil engineering is concerned, the selection and optimization of engineering construction plans is an important task of engineering construction, and it is also an important guarantee to ensure the quality of engineering construction. In order to arrange the construction order, the application of this technology in the selection and optimization of construction plans can be used for the virtual construction and demonstration of the construction plans of various projects, and the construction plans can be compared through the virtual demonstration results, so as to effectively realize the selection and optimization of construction plans. When using the finite element method for structural analysis of the visual calculation of civil engineering, the application of the VR technology can mark the force of each point in the three-dimensional object with different shades of color, and use different colors to indicate isotropic surface.

4. Planning Simulation of Civil Engineering

Project Planning Based on VR Technology

4.1. Implementation of Virtual Construction Process and Structural Calculation. The civil engineering planning needs to consider many factors, such as land use, economy, transportation, landscape, laws and regulations and other social and economic factors, meteorology, geology, terrain, hydrology, and other natural factors as well as water quality, noise, environmental pollution, greening and beautification, factors of living environment, etc. Planning information storage and query system, such as soil database system, regional information system, geographic information system, urban policy information system, and this type of system mostly uses the form of a database system. The shortcomings of the current database is the high degree of digitization and the low degree of visualization and these kinds of data are abstract and not easy to accept (Figure 5). For example, the geographic information system’s representation of terrain and landforms is poorly readable if it is only represented by numbers. If it is represented in the form of a topographic map, it is relatively easy to accept, and the VR technology is used to input terrain; geomorphic data can be observed from different angles. Not only can the necessary data be obtained but also an intuitive experience can be obtained. Planning auxiliary performance integrated systems such as landscape performance system, and transportation planning system. At present, the representation method of landscape representation system is mainly two-dimensional pictures. If users
can feel a sense of immersion, landscape planning will be more scientific, reasonable, and comprehensive [16].

Construction plan design based on VR refers to the use of VR technology to establish a three-dimensional model of construction scenes, structural members, and mechanical equipment in a virtual environment to form a computer-based simulation system with certain functions and make the model in the system have dynamic performance and perform virtual construction on the model in the system. According to the result of virtual construction, it is verified whether it is correct. The construction plan is designed and modified in the visual environment of human-computer interaction to identify potential safety hazards and formulate safety precautions to get an optimized design plan. The identified hazards should be evaluated one by one by the construction company and the project manager. The major hazards identified can be combined with virtual environment research, detailed preventive measures, and feedback to the hazard identification database. In the course of the project, the project manager department should adjust the identification of hazard sources, evaluate them, and formulate corresponding preventive measures at any time according to the safety conditions on-site, such as the implementation of safety plans, the accident conditions, and the generation of new hazard sources. The system then feeds back to the hazard source identification result database. After the hazard source identification results of the project are aggregated into the hazard source identification result database, the construction company can be used to continuously supplement and improve the standardized safety management system.

Improving the engineering measurement level cannot only ensure the smooth progress of engineering construction and avoid construction changes during the construction process but also ensure that the quality of civil engineering construction meets the design requirements. In the

Figure 4: Planning display of civil engineering project from the perspective of O-I.

Figure 5: Planning display of civil engineering project from the perspective of O-II.
construction process of civil engineering, it usually involves three types of measurement work: angle measurement, distance measurement, and elevation measurement [17]. It is relatively tedious, and the measurement quality is easily affected by various factors and measurement errors. The application of VR technology in engineering survey work can build a virtual model by collecting environmental information, use computer technology to automatically measure based on the model, accurately analyze the measurement data, and issue a measurement report. As a result, multiple tasks such as measurement, data recording, data analysis, and drawing are combined in the same system to avoid investing too much manpower and material resources in the measurement work, while improving measurement accuracy and measurement efficiency. For example, in a high-rise residential building construction project, the surveyor needs to perform distance measurement, just input the engineering geographic environment data and residential building design data into the system, and build a three-dimensional model, and the system can accurately perform data measurement and analysis and intuitively present the measurement results on the three-dimensional model to facilitate the next work of the surveyor [18].

4.2. Implementation of Virtual Project Management and Visualization. As an emerging branch of civil engineering, engineering project management runs through the entire life cycle of construction projects. From project conception, planning, and design to project establishment, construction and other VR technologies provide more effective, more intuitive, and interactive engineering project management methods and approaches for engineering project management. The VR technology is a comprehensive high-tech information technology with a wide range of applications, which introduces its application in project feasibility studies and investment economic evaluation, real estate, bidding, construction management, property management, etc. and points out that this technology is used in civil construction with broad application prospects in project management (Figure 6). In actual engineering construction, the design of complex structure construction schemes and the calculation of construction structure are more difficult problems. The key to the former lies in the expression of the spatial relationship between the structural members and mechanical equipment on the construction site and the latter lies in the construction structure under construction. The deformation under state and load is greater than that after it is in place or after the structure is shaped. Especially modern large-scale engineering projects, long construction period, large quality, and even a series of enterprises produced by a project involve the coordination of various types of work, a lot of capital and material scheduling, construction machinery, and equipment management.

Visual processing or three-dimensional graphic display of the data obtained by scientific computing can be used to interactively change the parameters to observe the full picture of the calculation results and their changes and to achieve parameterized and visual calculations. When using the finite element method for structural analysis, it can be used to give the force of each point in the three-dimensional object through the depth of the color; use different colors to represent different force surfaces. The users can also change the angle to observe by clicking on the interface and can also use the interactive performance of VR to modify various data in real time in order to compare various programs and results, which makes the engineer’s thinking more visual and the concepts easier to understand [19]. Applying visual computing technology to the design, engineering control, and structural analysis of very large and complex structures will enhance the front-to-rear processing capabilities of computing software. More importantly, it can use graphics or images to re-analyze and dynamically control the structure in real time and obtain construction control data and at the same time can dynamically demonstrate and control the design and construction process in real time. The VR technology is constantly evolving and high-performance chips dedicated to computer graphics and multimedia information processing can increase the processing power by a hundredfold. Three-dimensional graphic algorithms and parametric modeling algorithms can make VR technology more mature.

Virtue reality has been tried to be applied in civil engineering construction and management. The use of its technology can simulate the construction site and construction activities, manage human and material resources in the construction organization, and identify hidden safety hazards. The traditional construction process management, organization, and safety plan are usually based on the provided design drawings. Since the drawings are two-dimensional ones provided by the designer, the understanding of these drawings requires a long translation process. Therefore, when planning, arranging, and managing construction, it is difficult to quickly form a global impression in the minds of engineering technicians and construction personnel. It is worth noting that the safety factors in construction often exist in the construction process, and it is impossible to find out from the drawings [20]. The use of VR technology can realize what users see is what you get and users can set the construction process parameters through interactive operation, analysis, and evaluation construction plan. In civil engineering, visual computing is an important trend in its future development and effectively integrating the VR technology can speed up the development of civil engineering visual computing technology to a large extent. The analysis of VR technology in urban planning and civil engineering should be analyzed, which is conducive to improving the overall transformation speed and construction quality of cities.

5. Simulation Experiment and Result Analysis

5.1. Project Overview and Simulation Environment Design. The V-Realm Builder visual editor provided by MATLAB greatly simplifies the modeling process, which is simple and easy to master, and the virtue reality modeling language is used to realize the dynamic visualization and interactive body of the virtual world. This modeling language is a scene
modeling language used to build real-world scene models or people’s fictional three-dimensional worlds and is also platform-independent. It provides several degrees of freedom, can move in three directions, can rotate in three directions, and can also create hyperlinks in other spaces. The virtual world of the model created by the modeling language has all the static nodes of the three-dimensional world, including geometric relationships, backgrounds, textures, light, and viewpoints.

Two modeling methods are adopted for different objects: nonparametric modeling and parametric modeling. The nonparametric modeling method is only suitable for situations where there are a large number of identical shapes, and the size does not need to be changed. For relatively complex shapes and many dimensions, in order to install accurately, no deformation is allowed, and the size does not need to be changed, and then a nonparametric model is used. Parametric modeling is suitable for situations where the structure is more complex and there are more variant modeling constraints. The floor, staircase, tower crane, and other models are entered into the Envision module to form multiple institutions based on functional characteristics. In the Envision module, the mechanism is the smallest unit that can move independently. By positioning the organization, the entire organization model is assembled.

5.2 Results Analysis. The VR system can help planners organize and synthesize massive data in three-dimensional scenes. Based on the three-dimensional scene, the element information can be separately imported into the VR scene to form a database of all element space combinations, and planners can intuitively elaborate all element information. The VR technology is formed on the basis of true three-dimensional technology and can display all kinds of reality element information in VR scenes without additional text, symbols, and tables for annotation. After the application of VR technology to achieve results, the group evaluation and modification phase is very convenient. When problems are found, all the modification work can be completed in real time in the VR environment. With the application of VR technology, during the review stage, the three-dimensional planning results can be displayed on the spot, so that the reviewers can feel the effects of the planning, experience the planning intention, and achieve the purpose of fully displaying the planning results (Figure 7). The results of VR can record the implementation of urban planning measures in real time. By modifying and recording the objects in the planned three-dimensional scene at any time, the current status documents of different periods are generated, and all the documents are stored as a database of the urban development process [21].

The reasonable choice of construction plan is the core of project organization design, which includes determining the construction flow direction and application procedures, selecting construction methods and construction machinery, and arranging construction sequence. For some projects with complex structure and large amount of engineering, it is difficult to choose the construction plan. However, through the VR system, the construction plan of each branch project can be virtually applied and demonstrated, which brings great convenience to the choices of construction plan [22]. As an emerging branch of civil engineering, engineering management runs through the entire lifecycle of construction projects from project conception, planning, and design for project initiation and construction. In the entire project construction process, people have to use abstract concepts to express very rich content, such as plane drawings, section drawings, elevation drawings, and other plane graphics plus some prescribed symbols to represent three-dimensional buildings, using more abstract graphics and concise language to describe complex scenes to convey a lot of information. However, this kind of information processing and transmission method is affected by the occupation, knowledge structure, and understanding ability of the information receiver, so it is very inconvenient to
The development of the VR technology provides an extremely effective means to overcome this difficulty. The computer simulation technology in the simulation technology realizes the constitutive relationship and mathematical modeling of civil engineering. For example, the constitutive relationship and failure criterion of concrete have many statements, and each failure criterion is only applicable under certain conditions within a certain range. In addition, the constitutive relation is based on the data obtained by the test, not derived from theory, and it is difficult to analyze its strength and tolerance in actual operation. The finite element method of computer simulation technology can be used to analyze and study concrete strength and other indicators. The simulation technology can also realize the full simulation of the design results, for example, building a simulation model of a bridge or other building through computer technology, then applying pressure or changing its structure through other means, and carrying out simulation force analysis under such changes [23]. Accurate results can be obtained, so that the mechanical characteristics of the building can be analyzed and studied. Through the application of computer technology, establish an information exchange platform within the civil engineering enterprise and improve the enterprise information sharing mechanism through the platform construction. Full communication and communication between the enterprise and employees can solve various problems in the construction of the project in a timely manner, promote the successful completion of civil engineering construction, and at the same time protect the two-way interests of the enterprise and employees.

6. Conclusions

This paper introduced the methods and principles of VR platform system and structure dynamic analysis, conducted virtual scene design and three-dimensional modeling of civil engineering project, analyzed the synthetic debugging and simulation roaming of the virtual environment, proposed the engineering model of virtual construction process and planning structure calculation, discussed the realization method of virtual project management and visualization, and finally performed the simulation and its result analysis of panoramic display and planning of civil engineering project based on VR technology. The application of the VR technology can simulate the construction site and construction activities, manage the human and material resources in the construction organization, and identify the construction safety hazards, which can also change the angle arbitrarily and observe from any point when performing visual calculation. From project conception, planning, and design to project establishment, construction and other VR technologies provide more effective, more intuitive and interactive engineering project management methods and approaches for engineering project management. Civil engineering project planning information storage and query system, such as soil database system, regional information system, geographic information system, geographic information system, and urban policy information system mostly use the form of the database system. The results show that the VR technology can simulate various environments and activities of civil engineering projects in advance, analyze the rationality of various schemes, and modify their different functional parameters, so it can achieve the simulation optimization of project planning, design, and construction. The VR technology can also use the three-dimensional

Figure 7: Panoramic display of civil engineering project based on virtual reality technology.
environment generated by electronic computers to make users feel the realistic existence of objects in virtual environment and also enable users to make accurate responses to movements and operations in the virtual world in a timely manner. The results of this study provides references for further researches on the panoramic display and planning simulation of civil engineering project based on VR technology.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest regarding this study.

References

[1] W. Zhu and G. Fan, "Application of computer virtual reality technology in virtual tour," International Journal of Advanced Media and Communication, vol. 6, no. 2–4, pp. 273–282, 2016.
[2] R. S. Overbeck, D. Erickson, D. Evangelakos, M. Pharr, and P. Debevec, "A system for acquiring, processing, and rendering panoramic light field stills for virtual reality," ACM Transactions on Graphics, vol. 37, no. 6, pp. 1–15, 2018.
[3] X. Lu and S. Davis, "Priming effects on safety decisions in a virtual construction simulator," Engineering, Construction and Architectural Management, vol. 25, no. 2, pp. 273–294, 2018.
[4] A. Z. Sampaio, "Building maintenance supported on virtual reality environments: roofs and walls," Journal of Civil Engineering and Architecture, vol. 10, no. 1, pp. 1–12, 2016.
[5] R. Napolitano, A. Blyth, and B. Glisic, "Virtual environments for visualizing structural health monitoring sensor networks, data, and metadata," Sensors, vol. 18, no. 1, p. 243, 2018.
[6] Y.-C. Lin, Y.-P. Chen, H.-W. Yien, C.-Y. Huang, and Y.-C. Su, "Integrated BIM, game engine and VR technologies for healthcare design: a case study in cancer hospital," Advanced Engineering Informatics, vol. 36, pp. 130–145, 2018.
[7] D. Hill, "Virtual reality headsets make their way into construction and design," Civil Engineering Magazine Archive, vol. 86, no. 1, p. 37, 2016.
[8] L. A. Shuster, "At CES, drones and virtual reality devices target the construction industry," Civil Engineering, vol. 86, no. 2, pp. 42–43, 2016.
[9] C. A. Cardno, "Virtual and augmented reality resolve remote collaboration issues," Civil Engineering, vol. 86, no. 9, pp. 40–43, 2016.
[10] V. N. Glukhikh and N. V. Norina, "Experience of technical disciplines remote training at the st. Petersburg state university of architecture and civil engineering," Education and Information Technologies, vol. 21, no. 5, pp. 1401–1412, 2016.
[11] Z. Zou, L. Arruda, and S. Ergan, "Characteristics of models that impact transformation of BIMs to virtual environments to support facility management operations," Journal of Civil Engineering and Management, vol. 24, no. 6, pp. 481–498, 2018.
[12] D. Zhao, A. McCoy, B. Kleiner, and Y. Feng, "Integrating safety culture into OSH risk mitigation: a pilot study on the electrical safety," Journal of Civil Engineering and Management, vol. 22, no. 6, pp. 800–807, 2016.