Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Knowledge of inter-facility transport among emergency nurses in Hong Kong: A questionnaire survey

K.L. Yeung RN, RM, BSN (Nursing Officer) a,*, Gladys W.Y. Yeung RN, BSN (Registered Nurse) a, Miranda W.S. Chan RN, BSN (Registered Nurse) a, Sara B.C. Lee RN, BSN (Registered Nurse) a, Kenny T.Y. Choi RN, BSN (Registered Nurse) a, Larry L.Y. Lee MRCSEd FHKAM (Associate Consultant) a, Simon Y.H. Tang FRCS FHKAM (Consultant) b, Colin A. Graham FCEM FHKAM (Professor) c, Jimmy T.S. Chan FFAEM FHKAM (Chief of Service) a

a Accident and Emergency Department, Alice Ho Miu Ling Nethersole Hospital, Tai Po, New Territories, Hong Kong
b Accident and Emergency Department, Pok Oi Hospital, Yuen Long, New Territories, Hong Kong
c Accident and Emergency Medicine Academic Unit, Chinese University of HK, Shatin, New Territories, Hong Kong

Received 11 February 2008; received in revised form 7 May 2008; accepted 7 May 2008

Abstract

Introduction: Inter-facility transport (IFT) is a dynamic process and its quality largely depends on pre-transport preparation, emergency equipment support and recognition of possible en route adverse events. This study aims to evaluate knowledge of IFT among emergency nurses of three Accident and Emergency Departments in Hong Kong.

Methods: Questionnaires were distributed to registered nurses of the three departments. Data was sought on participants’ characteristics, knowledge on equipment preparation and management of en route adverse events. Four clinical IFT scenarios were set for participants and answers were scored. Measured outcomes were defined as (1) relationships between clinical experience and relevant training in
IFT with questionnaire results, (2) staff knowledge of the equipment carried routinely in ambulances and (3) the en route adverse events encountered according to the participants’ past experience.

Results: Participants’ test scores ranged from 24 to 37 (out of 40) with a mean of 30.6 (95% confidence interval 29.7–31.5). Participants with more clinical experience demonstrated significantly better test scores ($p < 0.05$). Most participants were familiar with the monitoring devices carried in ambulances but were less familiar with the pharmacologic agents and airway devices available routinely in Hong Kong ambulances. Thirty participants (59%) had encountered en route adverse events in the past.

Conclusion: Nurses in emergency departments in Hong Kong have good knowledge of IFT. Extensive clinical experience is related to better IFT knowledge. IFT training for nurses should emphasize available ambulance service resources and capabilities.

© 2008 Elsevier Ltd. All rights reserved.

Introduction

The role of inter-facility patient transport (IFT) is constantly being extended and expanded especially in smaller scale local hospitals in Hong Kong. This trend can be explained by three reasons. Firstly, there is ongoing centralization of specialist services to tertiary centers and this reorganization of services increases demand for IFT. Secondly, the difficult first hand experience of the severe acute respiratory syndrome (SARS) crisis sensitized all healthcare staff to the importance of maintaining strict infection control measures. Strict infection control policies have led to declines in both patient turnover and the capacities of the wards. This clinical framework further aggravated existing bed constraints and a high quality IFT service became a must. In addition, IFT also plays a role in supplementing the primary trauma diversion program as trauma patients who have airway or breathing compromise that cannot be overcome at the scene or in transit require stabilization in the nearest hospital (Cheung et al., 2006).

IFT is a dynamic process which should occur when the benefits to the patient exceed the risks of transport. The decision for transport is inherently risky and it means that accompanying personnel have a responsibility to handle any complications in transit on their own (Lee et al., 1996; Warren et al., 2004). In Hong Kong, ambulances are the main choice of transport medium, with only exceptional cases being transported by helicopter or police launch when handling cases from outlying islands or rural hiking spots during adverse weather when air transport not possible (College Organizing Committee of Intensive Care, 2004).

It is unknown what the general level of IFT knowledge among registered nurses in Hong Kong is at present. Nurses from the accident and emergency department (AED) are usually assigned the task of escorting seriously ill patients to other hospitals when the need arises, either in conjunction with a paramedic or with a doctor.

The aim of this study is to evaluate knowledge levels of inter-facility transport among registered nurses of the AEDs in the eastern New Territories of Hong Kong, with special emphasis on equipment preparation and management of en route adverse events.

Methods

This descriptive questionnaire study took place in three hospitals located in the eastern New Territories of Hong Kong, namely Alice Ho Miu Ling Nethersole Hospital (AHNH), North District Hospital (NDH) and Prince of Wales Hospital (PWH).

The questionnaire was designed in four parts with questions relating to (1) participant characteristics, (2) general information about IFT, (3) equipment preparation and (4) management of adverse events en route. Draft questionnaires were distributed to three local experts for content validity. A pilot study was performed in the AED of another local hospital, the Pamela Youde Nethersole Eastern Hospital (PYNEH), to elicit feedback on the clarity and readability of the questionnaire. Amendments were made accordingly following the feedback received.

Ethic approval was granted by the Joint Chinese University of Hong Kong – New Territories East Cluster Clinical Research Ethics Committee (CRE-2006.247) prior to the commencement of this study. Participation was voluntary and the questionnaires were distributed to all registered nursing staff working in the AED of the three participating hospitals. Participants were expected to complete and return the questionnaires on their own during the calendar month of September 2006. All data
was anonymized for further analysis. Participant characteristics as well as general information about IFT were illustrated with descriptive statistics. Participants’ performance on the questions about equipment support and management of adverse events were scored (out of a maximum possible score of 40).

The Mann–Whitney test was used to compare participants’ test scores with their clinical experience and details of any relevant courses taken. All data was entered on to an Excel spreadsheet and transferred to SPSS for further statistical analysis.

Results

A total of 123 questionnaires were distributed and 56 responses were received, giving a response rate of 46%. Five responses had to be excluded due to lack of data leaving 51 questionnaires eligible for analysis.

Nine participants were senior nursing staff (nursing officer or above). Twenty-six participants (more than half) had more than 10 years clinical experience and the majority of them (45) had received relevant training in IFT. Thirty-three participants had experience of using their escort kits in the past but 19 participants indicated that the escort kit had too much equipment.

Thirty nurses had encountered en route adverse events during IFT and the most common physiologic deterioration was systolic hypotension ($n=14$), followed by oxygen desaturation ($n=10$) and neurological deterioration ($n=9$). Thirty-one participants had encountered equipment mishaps during transport (Fig. 1).

Most participants were familiar with the monitoring devices available in ambulances but they were less familiar with the availability of the various airway devices. There was poor knowledge of the availability of resuscitation agents in the ambulance, specifically the drug adrenaline. A summary of participants’ knowledge of items available on ambulances is shown in Tables 1 and 2.

Overall, participants’ total scores ranged from 24 to 37 (out of 40) with a mean of 30.6 (95% confidence interval 29.7–31.5). Neither higher job ranking nor relevant training were associated with better participant scores. The only factor that gave rise to a statistically significant difference (median difference = 1.98; 95% confidence interval 0.33–3.62) in scores was clinical experience of more than ten years ($p<0.05$, Mann–Whitney test, Fig. 2).

Discussion

High quality IFT is largely dependent on several factors: (1) Pre-transport preparation, (2) equipment support, (3) appropriateness of the transport configuration and (4) anticipation and management of en route adverse events.

Figure 1 Types of en route adverse events encountered by participants in percentages.
Pre-transport preparation comprises patient stabilization (wherever possible), communication and documentation. This study showed that 65% (n = 33) of the participants had experienced physiological deteriorations during transport and referring facility therefore should attempt to stabilize the patient prior to dispatch as the presence of physiological instability is associated with greater risks of en route deterioration (Tan, 1997; Oakley, 1999; Uusaro et al., 2002). However, the benefits of transport may outweigh the risks in some circumstances (for example, transfer to a vascular unit for surgery for ruptured aortic aneurysm) and this principle was essentially revealed by the guidelines written by American College of Critical Care Medicine Task Force (1993). A reliable communication system including physician-to-physician and/or nurse-to-nurse communication regarding patient’s condition is also a fundamental principle of IFT (Tan, 1997; Warren et al., 2004). Documentation is vital in IFT not only for the quality of the transport, but also to minimize potential medico-legal issues including informed consent, a written plan from attending doctors and an en route observation record (Maxwell and Miller, 1988).

In order to supplement the role of nurses during preparatory phase of IFT, pre-transport preparation should consist also of pre-transport assessment and preparation of necessary pharmacological agents for management of en route physiological deterioration (Maxwell and Miller, 1988; Tan, 1997). Pre-transport assessment implies ensuring all equipments, intravenous lines, tubes and drains are secured and function properly as well as recording vital signs before dispatch. A multitude of equipment mishaps such as dislodged cannulae or loss of tubes can occur during IFT that is also demonstrated in this survey.

Equipment support is a major component regarding preparatory work accountable by emergency nurses (Maxwell and Miller, 1988; Tan, 1997; Oakley, 1999; Barbara, 2003). It can be classified into two parts – escort kits and on board equipments. Escort kits are usually pre-packed with minimum recommended devices (airway, monitoring and intravenous) and pharmacological

Table 1	Items routinely available in ambulances with individual accuracies in percentages	
Airway management devices	Drugs or fluids	
Bag valve mask resuscitator	100%	Normal saline
Oxygen mask	100%	Dextrose 10%
Oropharyngeal airway	96.0%	Nitroglycerin
Suction device	94.1%	Salbutamol
Combitube	78.4%	Thiamine
Laryngeal mask airway	76.5%	Naloxone hydrochloride

Monitoring devices and others

Defibrillator	96.0%
Pulse oximetry	96.0%
Intravenous catheter	94.1%
NIBP	88.2%

Table 2	Items not routinely available in ambulances with individual accuracies in percentages	
Airway management devices	Drugs or fluids	
Mechanical ventilator	88.2%	Vasopressin
Nasopharyngeal airway	54.9%	Amiodarone
Endotracheal tube	68.6%	Midazolam*
Monitoring devices and others	Ipratropium bromide*	
Capnometer	88.2%	Atropine
Syringe pump	88.2%	Haemaccel

Monitoring devices and others

Defibrillator	96.0%
Pulse oximetry	96.0%
Intravenous catheter	94.1%
NIBP	88.2%

Midazolam and Ipratropium bromide have been available in ambulances since October 2006.
agents (intravenous fluid and medication) (Warren et al., 2004). As in this survey, the majority of participants felt that escort kits were over-equipped. The content of escort kits commonly overlap with ambulance equipment and a crowded kit may hinder personnel from accessing necessary equipment in a timely manner.

The performance of the survey participants was suboptimal with respect to knowledge of drug availability on ambulances — only 33% of participants could state that adrenaline was routinely stocked in ambulances. A standardized "vehicle equipment checklist" and "trauma kit equipment checklist" prepared by Ambulance Command, Hong Kong Fire Service Department (1998) documents the equipment and drugs stored in each ambulance. Future training efforts for IFT in Hong Kong could include distributing these checklists to AED staff to improve awareness.

Britto et al. (1995), Etxebarria et al. (1998) and Blackwell (2002) identified equipment that is often brought on board after including devices for monitoring cardiac rhythm, blood pressure and oxygen saturation; ventilatory support (ventilator and capnometry); and cardiac support (defibrillator, pacing). They should be compact, robust, vibration-resistant, clearly visible and illuminated and have adequate battery power (Oakley, 1999). Nearly two-thirds of participants reported equipment mishaps in this survey. Over a third of nurses experienced monitoring device failures and a fifth experienced venous access and endotracheal tube dislodgements during transport. Equipment checks and trouble-shooting should form part of the IFT curriculum for nurses in Hong Kong.

Paramedics remain the commonest provider for IFT and are responsible for around 95% of all transports according to data from quarterly audits on IFT of AHNH 2007. It remains unclear as to whether a physician or nurse should be present during IFT. Configurations can be nurse—paramedic or physician—nurse combination (Oakley, 1999; Blackwell, 2002; Barbara, 2003). Alternative personnel or specialized transport teams may be necessary depending on specific patient conditions (McGinn et al., 1996; Vos et al., 2004). There is still no worldwide accepted standard for assigning accompanying personnel for IFT (Markakis et al., 2006). In Hong Kong, training for IFT is not mandatory. This study did not show the significant relationship with training which is different from other studies (Tan, 1997; Blackwell, 2002; Uusaro et al., 2002). Nevertheless, training is still to be recommended for frontline staff in order to enhance and enforce their skills in an unfamiliar prehospital environment — the noisy, vibrating and bumpy ambulance (American College of Emergency Physicians, 1990; Australasian College for Emergency Medicine, 2003).

Adverse events can occur anytime during transport and may affect a variety of organ systems (Etxebarria et al., 1998; Uusaro et al., 2002; Markakis et al., 2006). We found that thirty nurses had encountered en route adverse events during IFT. The management of these adverse events can influence the quality and thus the outcome of transport. Physiological deteriorations should be anticipated and managed appropriately if they do occur. An inter-facility transport triage guideline can practically, effectively and objectively stratify risk before actual transport thus anticipating deterioration en route (Lee et al., 1996).

Conclusion

Familiarity with monitoring devices and pharmacological agents are essential in IFT preparedness due to their frequent use. AED staff need to be familiar with the available resources in ambulances. Both well established hardware (clinical guidelines and appropriate escort kits) and competent staff with relevant training are required to minimize risks and maximize outcomes and patient safety.

Acknowledgements

The authors thank Mr. Stones Wong (President of the Hong Kong Emergency Nurses Association), Ms. Wong Lai King (Department Operation Manager, AED, Queen Elizabeth Hospital, Kowloon) and Mr. Lau Ping Fat (Nursing Specialist, AED, PYNEH) for examining the draft questionnaires for content.

Figure 2 Box plot of total score against clinical experience.
validity and for their expert advice. The authors also thank the Chiefs-of-Service and Department Operation Managers of the three AEDs involved for their kind approval and genuine support for the study.

References

Ambulance Command, 1998. EMA Trauma Kit Equipment Check List. Hong Kong Fire Service Department.
Ambulance Command, 1998. EMA Vehicle Equipment Check List. Hong Kong Fire Service Department.
American College of Critical Care Medicine Task Force, 1993. Guideline committee of the American college of critical care medicine. Critical Care Medicine 21, 931–937.
American College of Emergency Physicians, 1990. Principles of appropriate patient transfer. Annual Emergency Medicine 19, 337–338.
Australasian College for Emergency Medicine, 2003. Minimum standards for transport of critically ill patients. Emergency Medicine 15, 197–201.
Barbara, B.P., 2003. Provide safe passage for patients. Nursing Manage 34, 41–46.
Blackwell, T.H., 2002. Interfacility transports. Seminars in Respiratory and Critical Care Medicine 23, 11–18.
Britto, J., Nadel, S., Maconochie, I., Levin, M., Habibi, P., 1995. Morbidity and severity of illness during interhospital transfer: specialized paediatric retrieval team. British Medical Journal 311, 836–839.
Cheung, N.K., Yeung, J.H.H., Chan, J.T.S., Cameron, P.A., Graham, C.A., Rainer, T.H., 2006. Primary trauma diversion: initial experience in Hong Kong. Journal of Trauma 61, 954–960.
College Organizing Committee of Intensive Care, 2004. Guidelines on Inter-Hospital Transport of Critically Ill Adult Patients. Hong Kong Hospital Authority.
Etxebarria, M.J., Serrano, S., Ruiz Ribo, D., Cia, M.T., Olaz, F., Lopez, J., 1998. Prospective application of risk score in the interhospital transport of patients. European Journal of Emergency Medicine 5, 13–17.
Inter-facility and Critical Care Transport Medicine Team, 2007. Quarterly Audits 2007. Accident and Emergency Department of Alice Ho Miu Ling Nethersole Hospital.
Lee, A., Lum, M.E., Beehan, S.J., Hillman, K.M., 1996. Interhospital transfers: decision-making in critical care areas. Critical Care Medicine 24, 618–622.
Markakis, C., Dalezios, M., Chatzicostas, C., Chalkiadaki, A., Politi, K., Agouridakis, P.J., 2006. Evaluation of a risk score for interhospital transport of critically ill patients. Emergency Medical Journal 23, 313–317.
Maxwell, B., Miller, B., 1988. Smooth the way for safe emergency transfers. Registered Nurse 51, 34–37.
McGinn, G.H., MacKenzie, R.E., Donnelly, J.A., Smith, E.A., Runcie, C.J., 1996. Interhospital transfer of the critically ill trauma patient: the potential role of a specialist transport team in a trauma system. Journal of Accident and Emergency Medicine 13, 90–92.
Oakley, P.A., 1999. Interhospital transfer of the trauma patient. Trauma 1, 61–70.
Tan, T.K., 1997. Interhospital and intrahospital transfer of the critically ill patient. Singapore Medical Journal 38, 244–248.
Uusaro, A., Parviainen, I., Ruokonen, E., 2002. Safe long-distance interhospital ground transfer of critically ill patients with acute severe unstable respiratory and circulatory failure. Intensive Care Medicine 28, 1122–1125.
Vos, G.D., Nissen, A.C., Nieman, F.H., Meurs, M.M., van Waardenburg, D.A., Ramsay, G., Donckerwolcke, R.A., 2004. Comparison of interhospital pediatric intensive care transport accompanied by a referring specialist or a specialist retrieval team. Intensive Care Medicine 30, 302–308.
Warren, J., Fromme, R.E., Orr, R.A., Rotello, L.C., Horst, H.M., 2004. Guidelines for inter- and intrahospital transport of critically ill patients. Critical Care Medicine 32, 256–262.