In-vitro Antimalarial and Antileishmanial Studies of Markhamia platycalyx Sprague Leaves

Basma Khalaf Mahmoud¹, Ashraf Nageeb El-Sayed Hamed¹*, Mamdouh Nabil Samy¹, Amira Samir Wanas¹,², Mohamed M Radwan², Mahmoud A ElSohly²,³, Mohamed Salah Kamel¹

¹Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
²National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
³Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

Abstract

Bignoniaceae is rich in active metabolites and includes numerous genera of high economic and therapeutic values. One of these plants is Markhamia platycalyx. The petroleum ether fraction of the total ethanol leaf extract of M. platycalyx exhibited IC₅₀ 26760 ng/mL against Plasmodium falciparum D₆ and 22430 ng/mL against P. falciparum W₂ in the 2nd phase assay. It did not show any cytotoxic activity against the VERO mammalian cells, indicating the safety of the petroleum ether fraction. Additionally, the dichloromethane fraction of the same extract was the most active fraction against Leishmania donovani amastigotes in THP1 with 86% inhibition in the 1st phase assay, which was higher than Amphotericin B.

Introduction

Natural products have extensive significant attention in recent years due to their various pharmacological activities as cytotoxic [1], hepatoprotective [2], anti-inflammatory [3], anti-pyretic [3], gastroprotective [3], anti-diabetic [3],...etc.

The parasitic diseases (malaria, trypanosomiasis, leishmaniasis, schistosomiasis, lymphatic filariasis and onchocerciasis) in tropical regions have been a dangerous public health problem especially in middle- and low-income countries. These diseases affect millions of people, resulting in thousands of death annually [4-5].

Family Bignoniaceae is rich in the secondary metabolites and includes numerous genera of high economic and therapeutic values [6,7]. It is found in tropical and subtropical areas with a few species in temperate climates [8]. It is comprised of 104 genera and 860 species [8]. One of these species is Markhamia platycalyx Sprague (Syn. Dolichandrone platycalyx Baker). M. platycalyx tree, known in Uganda under the native name Lusambia, is said to yield “the finest of local timbers” (Mahon) [9].

By reviewing the literature, some researchers considered M. platycalyx as a synonym of M. lutea, however, a recent study on cultivated plants in Egypt, classified both of them in two different lineages [10].

By reviewing the antimalarial and antileishmanial literature of the genus; M. lutea was investigated for many therapeutic activities such as antimalarial [11], antileishmanial [11] and antiviral [12]. Moreover, the stem bark of M. tomentosa had a good antimalarial activity in-vitro [13]. While, nothing could be found for M. platycalyx. This provoked us to carry out extensive studies on this plant including viz., in-vitro antimalarial in addition to antileishmanial activities.

Materials and Methods

Materials

Amphotericin B, Chloroquine, Artemisin and Amikacin (Sigma-Aldrich, USA). Solvents used in this work, e.g. light petroleum ether, chloroform, ethyl acetate, ethanol, methanol and distilled water were purchased from El-Nasr Company for Pharmaceuticals and Chemicals, Egypt.

Apparatus

Rotary evaporator (Laborota Heidolph, Germany) was used for distillation the solvents. Circulating hot-air oven (Carbolite, Germany) was used for drying. Sonicator (Wise Clean WUC Research Article

In-vitro Antimalarial and Antileishmanial Studies of Markhamia platycalyx Sprague Leaves. SM J Med Plant Stud. 2017; 1(1): 1002.

How to cite this article

Mahmoud BK, Hamed ANE, Samy MN, Wanas AS, Radwan MM, ElSohly MA, et al. In-vitro Antimalarial and Antileishmanial Studies of Markhamia platycalyx Sprague Leaves. SM J Med Plant Stud. 2017; 1(1): 1002.
In-vitro antimalarial activity

Antimalarial activity was estimated in-vitro against chloroquine sensitive (D₆, Sierra Leone) and resistant (W₂, Indo China) strains of Plasmodium falciparum by determining Plasmidial Lactate Dehydrogenase (PLDH) activity [16]. A 200 μL suspension of P. falciparum culture (2% parasitemia and 2% hematocrit in RPMI 1640 medium supplemented with 10% human serum and 60 μg/ml Amikacin) was added to the wells of a 96-well plate containing 10 μL of serially diluted samples. The plate was flushed with a gas mixture of 90% N₂, 5% O₂ and 5% CO₂ and incubated at 37°C for 72 h in a modular incubation chamber. PLDH activity was determined by using MalstatTM reagent (Flow Inc., Portland, OR). Briefly, 20 μL of the incubation mixture was mixed with 100 μL of the MalstatTM reagent and incubated for 30 min. Then, 20 μL of a 1:1 mixture of NBT/PES (Sigma, St. Louis, MO) was added and the plate is further incubated for an hour in dark. The reaction was stopped by adding 100 μL of a 5% acetic acid solution. The plate was measured at 650 nm using the EL-340 BioKinetics Reader (Bio-Tek Instruments, Vermont). IC₅₀ values were obtained from the dose-response curves generated by plotting percent growth versus drug concentration. Chloroquine was included in each assay as positive control. DMSO (0.25%) was used as a vehicle control. The TEE and different fractions of M. platycalyx leaves were initially tested against P. falciparum D₆ strain in a 1st phase screening at 15867 ng/mL and the percentage of inhibition was calculated relative to the negative and positive controls. The tested samples that resulted in % inhibition ≥ 50% proceeded to 2nd assay.

In the 2nd phase assay, the tested extract and fractions passing 1st phase screening dissolved to 20 mg/mL and tested at three concentrations 47600, 15867, 5289 ng/mL and IC₅₀ were determined. The Selectivity Index (SI) was calculated. All IC₅₀ were calculated using the Xlfit curve. Artemisin and Chloroquine (standard antimalarial drugs) were used as positive controls. All experiments were carried out in duplicate. The results of the antimalarial activity were listed in tables 1 and 2. The in-vitro cytotoxicity was also determined against mammalian kidney fibroblasts (VERO cells). The assay was performed in 96-well tissue culture-treated plates as described earlier [17]. Briefly, cells were seeded in the wells of a 96-well plate (25,000 cells/well) and incubated for 24 h. Samples were added and plates were again incubated for 48 h. The number of viable cells was determined by neutral red assay. IC₅₀ values were determined from dose-response curves. Amphoteresin B was used as a positive control, while DMSO was used as vehicle control. The results were showed in table 2.

In-vitro antileishmanial activity

The antileishmanial activity of the TEE and different fractions of M. platycalyx leaves were tested in-vitro against a culture of Leishmania donovani promastigotes [18]. The promastigotes were grown in RPMI 1640 medium supplemented with 10% fetal calf

Table 1: In-vitro antimalarial activity (1st screening) of M. platycalyx leaves against P. falciparum D₆ strain.

Extract/Fraction/Compound	% of Inhibition
TEE	8
Petroleum ether fraction	87
DCM fraction	47
EtOAc fraction	24
Aqueous fraction	14
CP	1
Chloroquine	100
All (15867 ng/mL) except Chloroquine (79 ng/mL)	

Table 2: In-vitro antimalarial activity (2nd assay) of the petroleum ether fraction of M. platycalyx leaves.

Fraction/Compound	P. falciparum D₆	P. falciparum W₂	VERO cells		
	IC₅₀ (ng/mL)	SI	IC₅₀ (ng/mL)	SI	IC₅₀ (ng/mL)
Petroleum ether fraction (47600- 5289 ng/mL)	26760	> 1.8	22430	> 2.1	> 47600
Artemisin (238-26.4 ng/mL)	< 26.4	> 9	172.6	> 1.4	> 238
Chloroquine (238-26.4 ng/mL)	< 26.4	> 9	< 26.4	> 9	> 238

Citation: Mahmoud BK, Hamed ANE, Samy MN, Wanas AS, Radwan MM, EI-Sohly MA, et al. In-vitro Antimalarial and Antileishmanial Studies of Markhamia platycalyx Sprague Leaves. SM J Med Plant Stud. 2017; 1(1): 1002.
The petroleum ether fraction of Markhamia platycalyx leaves showed the presence of carbohydrates and/or glycosides, flavonoids, unsaturated sterols and/or triterpenes and anthraquinones. On the other hand, it was free from crystalline sublimate substances, saponins, alkaloids, tannins, cardenolides and coumarins. This preliminary phytochemical screening showed many classes of secondary metabolites indicating various expected biological activities. **In-vitro antimalarial activity**

The petroleum ether fraction showed the highest percentage of inhibition (87%) against *P. falciparum* D6 strain relative to chloroquine. Any drug caused ≥ 50% inhibition; it proceeded to 2nd assay. In the 2nd assay, the tested extract and fractions were dissolved to 20 mg/mL and tested at (40.0, 8.0 & 1.6 µg/mL). All IC_{50} and IC_{90} were calculated using the Xlfit curve. The Amphotericin B (standard drug) was used as positive control [19,20]. All experiments were carried out in duplicate. The results of the antileishmanial (1st phase) were listed in Table 3.

Results and Discussion

Preliminary phytochemical screening

The TEE of *M. platycalyx* leaves showed the presence of carbohydrates and/or glycosides, flavonoids, unsaturated sterols and/or triterpenes and anthraquinones. On the other hand, it was free from crystalline sublimate substances, saponins, alkaloids, tannins, cardenolides and coumarins. This preliminary phytochemical screening showed many classes of secondary metabolites indicating various expected biological activities.

Extract/Fraction/Compound	% of Inhibition		
	L. donovani Pinh	L. donovani AMAST_Pinh	L. donovani AMASTTHP_Pinh
TEE	0	9	13
Petroleum ether fraction	6	8	31
DCM fraction	18	48	86
EtOAc fraction	1	12	0
Aqueous fraction	2	12	0
CP	2	13	5
Amphotericin B	99	96	81

As mentioned before, the earlier phytochemical review exhibited the presence of different classes of compounds isolated and identified from Markhamia viz., phenylpropanoids, lignans, naphthoquinones, anthraquinones, sterols, cycloartane triterpenes and their glycoside derivatives, phenolic glycosides and triterpene acids. These compounds are isolated from different plant parts including roots, leaves, stem, root bark and heart wood [21].

Moreover, sterols and triterpenes were found in the preliminary phytochemical screening of TEE. Consequently, petroleum ether has an ability to extract sterols and triterpenes from TEE. Therefore, the activity may be due to presence of sterols and triterpenes in this fraction [22,23]. Our findings are in line with the previous studies [11,13].

In-vitro antileishmanial activity

The 1st phase screening of antileishmanial activity in Table 3 revealed that the DCM fraction was the most active against *L. donovani* amastigotes in THP1 with 86% inhibition, which is even higher than Amphotericin B. While, the other fractions showed weak or no activity. The DCM fraction in 2nd phase assay showed IC_{50} and IC_{90} against *L. donovani* amastigote > 20 µg/mL.

Leishmaniasis is a vector-borne disease, affecting 72 developing countries and 13 of the least developed countries. Visceral leishmaniasis due to *L. donovani* is the most severe form of Leishmania infections. The annual incidence of visceral leishmaniasis is estimated to be 500,000 cases. The overall prevalence of visceral leishmaniasis is 12 million people and the population at risk is 350 million [24]. The drug of choice for the treatment is still a problem. Therefore, there is an urgent need to discover new drugs with high activity and low side effects. Natural products have become a key source of new drugs in the last years [19,25].

As mentioned before, the earlier phytochemical review exhibited the presence of different classes of compounds isolated and identified from Markhamia species as phenyl propanoids, lignans, naphthoquinones, anthraquinones, sterols, cycloartane triterpenes and their glycoside derivatives, phenolic glycosides and triterpene acids [21]. Moreover, sterols and triterpenes were found in the preliminary phytochemical screening of TEE. Consequently, DCM has an ability to extract sterols and triterpenes from TEE. Therefore, the activity may be due to presence of sterols and triterpenes [20,22].

Our results are in line with the previous studies on another two species [11,13].
Conclusion

In this study, the significant antimalarial and antileishmanial activities make *Markhamia platycalyx* leaves a potential source for the antiprotozoal drugs that are strongly recommended for further development.

References

1. Hamed ANE, Wälten W, Schmitz R, Chovolou Y, Edrada-Ebel R, Youssef DTA, et al. A New Bioactive Sesquiterpenoid Quinone from the Mediterranean Sea Marine Sponge *Dysidea avara*. Nat Prod Commun. 2013; 8: 289-292.

2. Hamed ANE, Wahid A. Hepatoprotective activity of *Borago officinalis* extract against CCl4-induced hepatotoxicity in rats. J Nat Prod. 2015; 8: 113-122.

3. Mohammed MHH, Hamed ANE, Khalil HE, Kamel MS. Phytochemical and pharmacological studies of *Citharexylum quadrangulare* Jacq leaves. J Med Plants Res. 2016; 10: 232-241.

4. Bhutta ZA, Sommerfeld J, Lassi ZS, Salam RA, Das JK. Global burden, distribution, and interventions for infectious diseases of poverty. Infect Dis Poverty. 2014; 3: 21.

5. Hotez PJ, Alvarado M, Basáñez MG, Bolliger I, Bourne R, Boussinesq M, et al. The Global Burden of Disease Study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis. 2014; 8: e2865.

6. Dash S, Das C, Sahoo DC, Sahoo AC. Phytochemical composition, anti-inflammatory and analgesic activities of *Tecoma stans* Linn. (Bignoniaceae). Nat Pharm Technol. 2011; 1: 5-8.

7. Abdel-Wahab NM, Hamed ANE, Khalil HE, Kamel MS. Pharmacotherapeutic evaluation of *Parmentiera cereifera* Seem. (Family Bignoniaceae) cultivated in Egypt on albino rats. Eur J Med Plants. 2015; 8: 29-38.

8. Fischer E, Theisen I, Lohmann LG, Kaderelt JW. Bignoniaceae. Flowering plants dicotyledons. The Families and Genera of Vascular Plants. K. Kubitzki, Fischer E, Theisen I, Lohmann LG, Kadereit JW. Bignoniaceae. Flowering plants dicotyledons. The Families and Genera of Vascular Plants. Springer Berlin Heidelberg. 2004; 7: 9-13.

9. Sprague TA. Flora of Tropical Africa. 1905; 4: 516.

10. Abdel-Hameed UK. Morphological phylogenetics of Bignoniaceae Juss. Beni-Suef Univ J Basic Appl Sci. 2014; 3: 172-177.

11. Lacroix D, Prado S, Deville A, Krief S, Dumontet V, Kasenele J, et al. Hydroperoxy-cycloartane triterpenoids from the leaves of *Markhamia lutea* a plant ingested by wild Chimpanzees. Phytochemistry. 2009; 70: 1239-1245.

12. Kernan MR, Amarquaye A, Chen JL, Chan J, Sein DF, Parkinson N, et al. Antiviral phenyl propanoid glycosides from the medicinal plant *Markhamia lutea*. J Nat Prod. 1998; 61: 564-570.

13. Tantangmo F, Lentia BN, BoyomFF, Ngouela S, Kaiser M, Tisamo E, et al. Antiprotozoal activities of some constituents of *Markhamia tomentosa* (Bignoniaceae). Ann Trop Med Parasitol. 2010; 104: 391-398.

14. Harborne JB. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis. 3rd edn. UK: Chapmann & Hall. 1998.

15. Trease GE, Evans WC. Pharmacognosy. 14th edn. London: WB Saunders Company. 1988.

16. Makker MT, Hinrichs DJ. Measurement of the lactate-dehydrogenase activity of *Plasmodium falciparum* as an assessment of parasitemia. Am J Trop Med Hyg. 1993; 46: 205-210.

17. Mustafa J, Khan SI, Ma GY, Walker LA, Khan IA. Synthesis and antitumor activities of fatty acid analogs of podophyllotoxin. Lipids. 2004; 39: 167-172.

18. Ma GY, Khan SI, Jacob MR, Tekwali BL, Li ZQ, Pasco DS, et al. Antimicrobial and antileishmanial activities of hypocrellins A and B Antimicrob Agents Chemother. 2004; 48: 4450-4452.

19. Foumet A, Muñoz V. Natural products as trypanocidal, antileishmanial and antimalarial drugs. Curr Top Med Chem. 2002; 2: 1215-1237.

20. Pan L, Lezama-Díazma CM, Isaac-Marquez AP, Calomeni EP, Fuchs JR, Saboskar AR, et al. Steroids with antileishmanial activity isolated from the roots of *Pentalinon andreuxii*. Phytochemistry. 2012; 82: 128-135.

21. Ali S, El-Ahmady S, Ayoub N, Singab AN. Phytochemicals of *Markhamia Species* (Bignoniaceae) and Their Therapeutic Value: A Review. Eur J Med Plants. 2015; 6: 124-142.

22. Mazzar N, Benharref A, Ballén M, Reina M, González-Coloma A, Martínez-Díaz RA. Antileishmanial and antitrypanosomal activity of triterpene derivatives from latex of two Euphorbia species. Z Naturforsch C. 2011; 66: 360-366.

23. Hoet S, Pieters L, Muccioli GG, Habib-Jiwan J, Oppedorff ES, Quetin-Leclerq J. Antitrypanosomal activity of triterpenoids and sterols from the leaves of *Strychnos spinosa* and related compounds. J Nat Prod. 2007; 70: 1360-1363.

24. Desjieux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004; 27: 305-318.

25. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007; 70: 461-477.