Hook-plate fixation of unstable lateral clavicle fractures
A report on 63 patients

Tapio Flinkkilä, Jukka Ristiniemi, Martti Lakovaara, Pekka Hyvönen and Juhana Leppilähti

Background Hook-plate fixation of unstable lateral clavicle fractures has given promising results in previous reports, but numbers of patients have been small. We assessed the results of this technique in 63 patients.

Patients and methods 63 patients with unstable lateral clavicle fractures were operated on at Oulu University Hospital during 1997–2004, using a clavicle hook-plate. Fracture union and complications were assessed retrospectively from case records and radiographs. The subjective part of the Constant score, Oxford shoulder questionnaire data and subjective shoulder value (SSV) were assessed after an average of 3.6 years in 58 patients. 31 patients were reviewed at the outpatient clinic, using complete Constant scores and radiographs of both acromioclavicular joints.

Results 59 fractures united uneventfully. There was 1 case of delayed union and 3 nonunions, but only 1 of these required surgery. Additional complications involved 1 case of infection, 1 frozen shoulder and 3 cases of late fracture medial to the plate. The mean Oxford score was 15, the mean for the subjective part of the Constant score was 32, and the SSV was 86%.

Interpretation Clavicle hook-plate fixation of unstable lateral clavicle fractures results in a good union rate and good shoulder function.

The treatment of unstable lateral clavicle fractures (Neer type 2), although controversial, is often operative (Anderson 2003, Ritchie and McCarty 2004). Several surgical techniques have been described, such as transarticular Kirschner wire or Knowles pin fixation, tension band, coracoclavicular screw, and Dacron band fixation, with good results (Neer 1963, Eskola et al. 1987, Ballmer and Gerber 1991, Chen et al. 2002, Fann et al. 2004). Many of the studies have involved small case series reported by surgeons who described a new operative technique for this relatively rare fracture (Ballmer and Gerber 1991, Goldberg et al. 1997, Mall et al. 2002, Levy 2003, Bezer et al. 2005, Scadden and Richards 2005). Other authors have reported the results of several different operative methods carried out at a single center over a long period of time (Hessmann et al. 1996, Kruger-Franke et al. 2000). Patient numbers in published papers on surgical treatment of Neer type 2 unstable lateral clavicle fractures have ranged from 3 to 41 only, and it is difficult to draw reliable conclusions from these (Table 1). We have reported good outcome of clavicle hook-plate fixation in 17 patients (Flinkkilä et al. 2002). Other studies on this technique have involved up to 23 cases (Schmittinger and Sikorski 1983, Eberle et al. 1992, Hakenbruch et al. 1994, Mizue et al. 2000, Meda et al. 2006). Starting in 1997, we have used hook-plate fixation in 63 patients with unstable lateral clavicle fractures. The purpose of this paper is to report our experiences and results with these patients, and to describe the complications associated with this technique.
Patients and methods

All our patients with unstable Neer type 2 lateral clavicle fractures were operated on at Oulu University Hospital during 1997–2004. There were 63 patients (51 male) with a mean age of 39 (17–71) years. The 17 patients from our previous study (Flinkkilä et al. 2002) are also included in this study. The cause of injury was a bicycle accident in 21 cases, a simple fall in 19, a sports injury in 13, a fall from a height in 2, a motor vehicle accident in 3 and various other causes in 5 cases. The right clavicle was involved in 30 cases and the left in 33 cases. The patients were operated on within 7 days of the injury using a clavicle hook-plate (Stratec Medical, Oberdorf, Switzerland). The operation was carried out by the surgeon on duty and there were 23 operating surgeons. The mean number of operations per surgeon was 4 (1–24). 12 surgeons carried out only 1 operation and only 2 surgeons carried out more than 4 operations. Postoperative treatment was early mobilization after pain had
subsided, but heavy manual work was not allowed until the plate had been removed after 5(1–16) months. We evaluated the case records and radiographs of these 63 patients retrospectively to assess fracture union and complications.

The patients were reviewed after an average of 3.6 (0.6–6.9) years. 2 patients had died owing to causes unrelated to their clavicle fracture and 3 patients were lost to follow-up. All other 58 patients returned a self-administered Oxford shoulder questionnaire (Dawson et al. 1996), a subjective shoulder value (SSV) questionnaire (Jost et al. 2003) and the subjective part of the Constant score questionnaire (Constant and Murley 1987). In the Oxford shoulder questionnaire, a normal shoulder scores 12 points and severe disability scores 60 points. In the subjective part of the Constant score, a normal shoulder scores 35 points and severe disability scores 0 points. For the SSV, a completely normal shoulder scores 100%. The unaffected shoulder was used as a control where appropriate. The patients were invited to the outpatient clinic, but only 31 patients participated in follow-up examination, which was carried out by an independent physiotherapist (shoulder range-of-motion (ROM), acromioclavicular (AC) joint tenderness, Constant score, and radiographs of both AC joints). Most of those patients who did not pay a follow-up visit were contacted by phone, but most of them were not interested in a follow-up visit because they felt that they had recovered sufficiently.

Statistics

We used paired t-tests when comparison against the unaffected side was possible. Analysis of covariance (ANCOVA) was used to test the significance of age, sex and the length of follow-up to pain and subjective part of the Constant score. Because of the small number of patients, we constructed two different ANCOVA models: (1) age and sex, and (2) length of follow-up and sex, both of which were adjusted using control-side values. We used SPSS version 12.0.1 software. A p-value of less than 0.05 was considered statistically significant. Summary data is presented as mean (range) where appropriate.

Results

59 fractures united uneventfully. There was 1 case of delayed union (union after 6 months) and 3 cases of nonunion. 2 of these were probably the result of premature plate removal (at 2 and 3 months) and 1 patient had early plate loosening. Subsequent K-wire fixation failed, leading to nonunion. 1 patient with nonunion was operated on using a new hook-plate and bone grafting from the iliac crest, and union occurred uneventfully. The other 2 patients had only mild symptoms and no operation was needed. Additional complications involved 1 case of superficial infection, which was resolved with antibiotics, and 1 frozen shoulder, which needed manipulation under anesthesia with a good result eventually. There were 3 cases of late diaphyseal fractures medial to the plate after new falls. 1 patient was an epileptic who had recurrent seizures and the 2 other patients abused alcohol. 2 of these patients were treated nonoperatively; 1 needed plate fixation and eventually all 3 fractures united.

The mean Oxford shoulder score was 16 (12–43), indicating good shoulder function and minimal symptoms. Mild shoulder pain during exercise was the most common complaint. The subjective part of the Constant score (mean) was 32 (10–35) and the control side score was 34 (14–35), the difference being statistically significant (Table 2). Mean SSV was 86% (20–100).

Table 2. Shoulder pain and subjective part of the Constant score in 58 patients
Pain
Constant b

a P-values refer to differences between affected and control side (paired t-tests).
b Subjective part.
regarded their shoulder value as being 90–100%, 8 patients as 80–90%, 3 patients as 70–80% and 6 patients regarded it as being below 70%. Pain, as assessed by means of a 15-cm visual analog scale, had a mean value of 13 (3–15) and the control side 14 (1–15), the difference being statistically significant (Table 2). Among those 31 patients who could be assessed completely, the mean Constant score was 80 (30–94), while the control shoulder scored 82 (23–93). 10 patients showed pain on AC joint palpation. 10 shoulders showed mild AC osteoarthritis (irregularities of the clavicle joint surface/mild osteophytes). The number of patients was too small to allow statistical analysis regarding symptoms and osteoarthritis.

According to ANCOVA, age and sex (model 1, \(p = 0.9 \) and 0.1, respectively) and length of follow-up and sex (model 2, \(p = 0.5 \) and 0.2, respectively) were not significant covariates for the subjective part of the Constant score and the difference relative to the control side remained significant (\(p < 0.001 \) in both models).

Discussion

The hook-plate fixation resulted in a good union rate, good shoulder function and patient satisfaction, and the overall complication rate (14%) was acceptable. Although statistically significant, the difference between the affected and control sides in pain and the subjective part of the Constant score was very small, and probably not relevant clinically. A fracture medial to the plate was a typical late complication, usually caused by a new fall. Our results support previous reports with smaller patient material (Schmittinger and Sikorski 1983, Eberle et al. 1992, Hakenbruch et al. 1994, Flinkkilä et al. 2002).

Comparison of the hook-plate technique with other operative methods of fixation of unstable lateral clavicle fractures is difficult. Previous studies on fixation by means of K-wire, tension band wiring, coracoclavicular screws and Knowles pins have indicated good results, but patient numbers have been small (Table 1). The complication rate after K-wire fixation is also controversial, and high rates of wire migration have been reported (Kona et al. 1990, Flinkkilä et al. 2002). Migration after Knowles pin fixation is less common, but the pin violates the AC joint and may cause osteoarthritis (Fann et al. 2004). In our previous study, we compared hook-plate and K-wire fixation and found that the functional result was similar, but the complication rate was much higher with K-wire fixation (Flinkkilä et al. 2002), Eberle et al. (1992) compared the hook-plate technique with coracoclavicular screw fixation, and concluded that both methods resulted in good shoulder function—but mobilization could be started earlier after hook-plate fixation. A disadvantage of hook-plate fixation is greater soft tissue dissection, and removal of the plate requires general anesthesia.

Despite using several operating surgeons with only a little experience of hook-plate fixation, we obtained good results, and this indicates that successful hook-plate fixation requires experience of basic plating techniques only. Unstable lateral clavicle fractures are not common injuries, and the hook-plate technique is especially suitable for small centers and for surgeons who treat these fractures only rarely.

Because the hook is inserted in the subacromial space behind the AC joint, the posterior part of the supraspinatus tendon and the musculotendinous junction may be at risk of abrasion by the metal. Hackenberger et al. (2004) studied 28 shoulders after hook-plate fixation (Breithaler plate), using MRI and ultrasonography, and they found no high-grade rotator cuff lesions or signs of impingement. Our good clinical results support the idea that the hook does not harm the rotator cuff. If the plate is not removed, the hook can erode the acromion and even a low energy injury can break the clavicle medial to the plate (Nadarajah et al. 2005). Patients who cooperate poorly or who are likely to have recurrent falls are not suitable for clavicle hook-plate fixation. The clavicle hook-plate does not violate the AC joint, but as seen in our series, osteoarthritis is common and the effect of the initial trauma may play a major role in the development of osteoarthritis.

Although several authors have reported a high rate of nonunion, pain and shoulder dysfunction in nonoperative treatment (Table 1), the need for operative treatment of Neer type 2 fractures is still controversial. Robinson and Cairns (2004) and Norqvist et al. (1993) reported a nonunion in 32/86...
and 5/23 patients, respectively, but only a small proportion had symptoms sufficient to lead to late operative treatment. Robinson and Cairns (2004) recommended nonoperative treatment of patients older than 35 years. In a retrospective comparative study, Edwards et al. (1992) suggested that nonoperative treatment leads to nonunion in one-third of cases and delayed union in half of all cases. Local complications such as shoulder dysfunction were more common after nonoperative treatment than after operative treatment, and they recommended operative treatment. In contrast, Rokito et al. (2003), in their retrospective study of 30 patients, came to the opposite conclusion and suggested that operative treatment is unnecessary. One explanation for this may be the degree of displacement of the fragments, and soft tissue injury, which Neer fracture classification does not take into account. Nonoperative treatment is unlikely to be successful if there is skin tenting as a result of gross displacement. Prospective randomized studies are required in order to determine which unstable fractures eventually need operative treatment.

We feel that the results of our study are reliable, although clinical examination and complete scoring could be done for only half of the patients. The questionnaires concerning subjective results were valid and the number of patients lost to follow-up was small. Subjective shoulder values and the Oxford questionnaire in particular measure shoulder-specific quality of life, and they are probably more sensitive in revealing problems related to the shoulder girdle than the Constant score or ROM measurements. The assessment of osteoarthritis could be carried out in only half of the patients and the relationship between clinical symptoms and radiographic changes could not be assessed reliably.

Contributions of authors

TF reviewed the case records and radiographs and wrote the draft manuscript. All authors contributed equally to evaluation and revision of this manuscript.

The authors thank physiotherapist Nina Sevander-Kreus for her assistance in reviewing the patients and Pasi Ohtonen for statistical analysis.

No competing interests declared.

Anderson K. Evaluation and treatment of distal clavicle fractures. Clin Sports Med 2003; 22: 199–26.

Ballmer F T, Gerber C. Coracoclavicular screw fixation for unstable fractures of the distal clavicle. A report of five cases. J Bone Joint Surg (Br) 1991; 73: 291–4.

Bezer M, Aydin N, Guven O. The treatment of distal clavicle fractures with coracoclavicular ligament disruption: a report of 10 cases. J Orthop Trauma 2005; 19: 524–8.

Chen C H, Chen W J, Shih C H. Surgical treatment for distal clavicle fracture with coracoclavicular ligament disruption. J Trauma 2002; 52: 72–8.

Constant C R, Murley A H G. A clinical method of functional assessment of the shoulder. Clin Orthop 1987; (214): 160–4.

Dawson J, Fitzpatrick R, Carr A. Questionnaire on the perceptions of patients about shoulder surgery. J Bone Joint Surg (Br) 1996; 78: 593–600.

Eberle C, Fodor P, Metzger U. Hakenplatte (sog. Balserplatte) oder Zuggurtung mit Bosworth-Schraube bei vollständiger Acromio-claviculaf-Luxation und lateraler Claviculafraktur. Z Unfallchir Versicherungsmed 1992; 85: 134–9.

Edwards D J, Kavanagh T G, Flannery M C. Fractures of the distal clavicle: a case for fixation. Injury 1992; 23: 44–6.

Eskola A, Vainonpää S, Päätälä H, Rokkanen P. Outcome of operative treatment in fresh lateral clavicular fracture. Ann Chir Gynaecol 1987; 76: 167–9.

Fann C Y, Chiu F Y, Chuang T Y, Chen C M, Chen TH. Transacromial Knowles pin in the treatment of Neer type 2 distal clavicle fractures. A prospective evaluation of 32 cases. J Trauma 2004; 56: 1102–5.

Flinkkilä T, Ristiniemi J, Hyvonen P, Hamalainen M. Surgical treatment of unstable fractures of the distal clavicle. A comparative study of Kirschner wire and clavicular hook-plate fixation. Acta Orthop Scand 2002; 73: 50–3.

Goldberg J A, Bruce W J, Sonnabend D H, Walsh W R. Type 2 fractures of the distal clavicle: a new surgical technique. J Shoulder Elbow Surg 1997; 6: 380–2.

Hackenberger J, Schmidt J, Altmann T. The effects of hook-plates on the subacromial space – a clinical and MRT study. Z Orthop Ihre Grenzgeb 2004; 142: 603–10.

Hakenbruch W, Regazzoni P, Schwyzer K. Operative Behandlung der lateralen Clavicula-Fraktur mit der Clavicula-Hakenplatte. Z Unfallchir Versicherungsmed 1994; 87: 145–52.

Hessman M, Kirchner R, Baumgaertel F, Gehling H, Gotzen L. Treatment of unstable distal clavicular fractures with and without lesions of the acromioclavicular joint. Injury 1996; 27: 47–52.

Jost B, Puskas G J, Lustenberger A, Gerber C. Outcome of pectoralis major transfer for the treatment of irreparable subscapularis tears. J Bone Joint Surg (Br) 2003; 85: 1944-51.

Kao F C, Chao E K, Chen C H, Yu S W, Chen C Y, Yen C Y. Treatment of distal clavicle fracture using Kirschner wires and tension band wires. J Trauma 2001; 51: 522–5.
Kona J, Bosse M J, Staheli L W, Rosseau R L. Type II distal clavicle fractures: a retrospective review of surgical treatment. J Orthop Trauma 1990; 4: 115–20.

Kruger-Franke M, Köhne G, Rosemeyer B. Ergebnisse operativ behandelte lateraler Klavikulafrakturen. Unfallchirurg 2000; 103: 538–44.

Levy O. Simple, minimally invasive surgical technique for treatment of type 2 fractures of the distal clavicle. J Shoulder Elbow Surg 2003; 12: 24–8.

Macheras G, Kateros K T, Savvidou O D, Sofianos J, Fawzy E A, Papagelopoulos P J. Coracoclavicular screw fixation for unstable distal clavicle fractures. Orthopedics 2005; 28: 693–6.

Mall J W, Jacobi C A, Philipp, Peter F J. Surgical treatment of fractures of the distal clavicle with polydioxanone suture tension band wiring: an alternative osteosynthesis. J Orthop Sci 2002; 7: 535–7.

Meda P V K, Machani B, Sinopidis C, Braithwaite I, Brownson P, Frostick S P. Clavicular hook-plate for lateral end fractures – A prospective study. Injury 2006; 3: 277-83.

Mize F, Shirai Y, Itto H. Surgical treatment of comminuted fractures of the distal clavicle using Wolfer clavicular plates. J Nippon Med Sch 2000; 67: 32–4.

Nadarajah R, Mahaluxmivala J, Amin A, Goodier D W. Clavicular hook-plate: complications of retaining the implant. Injury 2005; 36: 681–3.

Neer C S. Fractures of the distal clavicle with detachment of the coracoclavicular ligaments in adults. J Trauma 1963; 3: 99–110.

Nordqvist A, Pettersson C, Redlund-Johnell I. The natural course of lateral clavicle fracture. 15 (11–21) year follow-up of 110 cases. Acta Orthop Scand 1993; 64: 87–91.

Ritchie P K, McCarty E C. Distal clavicle fractures: a current review. Curr Opin Orthop 2004; 15: 257–60.

Robinson C M, Cairns D A. Primary nonoperative treatment of displaced lateral fractures of the clavicle. J Bone Joint Surg (Am) 2004; 86: 778–82.

Rokito A S, Zuckerman J D, Shaari J M, Eisenberg D P, Cuomo F, Callgher M A. A comparison of nonoperative and operative treatment of type II distal clavicle fractures. Bull Hosp Joint Dis 2002-2003; 61: 32-9.

Scadden J E, Richards R. Intramedullary fixation of Neer type 2 fractures of the distal clavicle with an AO/ASIF screw. Injury 2005; 36: 1172-5.

Schmittinger K, Sikorski A. Erfahrungen mit der Balser-Platte bei Sprengung des Akromioklavikulargelenkes und lateralen Klavikulafrakturen. Aktuelle Traumatologie 1983; 13: 190–3.

Tamble A D, Motkur P, Quamar A, Drew S, Turner S M. Fractures of the distal third of the clavicle treated by hook plating. Int Orthop 2005; 19: 1–4.

Webber M C, Haines J F. The treatment of lateral clavicle fractures. Injury 2000; 31: 175–9.

Yamaguchi H, Arakawa H, Kobayashi M. Results of the Bosworth method for unstable fractures of the distal clavicle. Int Orthop 1998; 22: 366–8.