RÉSUMÉ

L’application de la technologie informatique dans la gestion des désordres du mécanisme verbal voix-parole et la réhabilitation phoniatrique

Introduction. De nos jours, diverses applications médicales mobiles (applications) ont été proposées, y compris des applications pour le diagnostic des troubles de la parole. La revue présentée vise à analyser un certain nombre de solutions et à évaluer l’efficacité des plate-formes de santé mobile (m-Health) utilisées dans la pratique clinique pour les patients souffrant de troubles de la parole et de la voix.

Matériel et méthode. Une revue systématique des études publiées entre 2008 et 2021 a été réalisée. Les 234 articles des bases de données PubMed, Web of Science et Cochrane Library ont été présélectionnés.
diagnoses. In terms of application, mobile apps have been developed for patients (children and adults) with speech disorders caused by autism, neuro-developmen-
tal speech impairment, Parkinson’s disease, aphasia, voice disorders, etc.

Conclusions. The analysis showed that the m-Health market offers various mobile applications for persons with speech impairments (as an adjuvant tool for thera-
py and rehabilitation). Despite the existence of a range of m-Health applications for patients with speech dis-
orders, there is a need for further large-scale studies aimed at studying their effectiveness, safety, and reli-
ability.

Keywords: speech disorders, aphasia, dysarthria, mo-
 bile applications, telemedicine, m-Health.

List of abbreviations
ASD – autism spectrum disorder
SM – selective mutism
DLD – developmental language disorder

INTRODUCTION

Up to date, a wide range of mobile applica-
tions have been proposed and integrated into the healthcare systems to improve the diagnoses, treat-
ment, and management of various disorders. Digital mobile health (m-Health) platforms encompass sev-
eral various technological solutions, including tel-
ehealth and remote patient monitoring. The recent situation with COVID-19 pandemics demonstrated
the high potential of digital health systems over the tradi-
tional approaches1. In fact, mobile health apps have been actively utilized in various areas, includ-
ing detection, screening, remote patient monitoring, data analysis, and treatment of infected patients. The
Global Observatory for eHealth of the World Health
Organization defines m-Health as “medical and pub-
lic health practice supported by mobile devices such as
mobile phones, patient monitoring devices, per-
sonal digital assistants, and other wireless devices”2.

In 2013, the number of app downloads on
Apple iTunes (which sells apps only for iOS devices
such as iPad, iPhone, and iPod touch [all Apple Inc.,
Cupertino, CA]) reached 50 billion3. Apart from
iOS platforms, there is a high number of downloads
for Android devices (Google Inc., Mountain View,
Calif.), as well4. The rapid development of mobile
technologies led to the expansion of the scope of use
of m-Health systems. As a result of its combination
with telemedicine (remote diagnoses and treatment
of patients using telecommunication technologies), a
range of digital platforms was proposed and imple-
mented to solve problems with consultations, patient
monitoring, remote treatment, etc5.

In addition, there is a stable growth of several
applications of digital technologies for people with
different types of disabilities6, such as speech impair-
ment and writing disorders that cause communica-
tion and social problems7. A speech disorder is a gen-
eral term encompassing a wide range of disabilities
and differences associated with the impaired articula-
tion of speech, fluency, and/or voice sounds8.

In fact, neurological diseases such as autism,
Parkinson’s disease, or dementia can cause difficul-
ties with communicating and social activity9. In this
case, mobile technologies could be helpful for
improving various aspects of speech and language in-
tercommunication, for example, for collecting data,
recording conversational patterns, and developing
communication skills10. Despite the number of re-
views and analytical reports on mobile applications
for speech disorders11,12, there is a lack of information
on their efficacy, safety, and clinical relevance.
In this regard, the presented review aimed at analysing the m-Health platforms used in clinical practice for patients with speech and voice disorders.

Materials and Methods

The study was conducted in accordance with the recommendations of the Cochrane Guidelines for Systematic Reviews of Interventions version 5.1.013,14, in accordance with the guidelines for preferred reporting clauses for systematic reviews and meta-analyses (PRISMA) statement11.

Data Sources and Search Strategy

The following databases were searched: PubMed, Web of Science, and Cochrane Library (no time limit). Search strategies were performed using a combination of free text terms and MeSH terms (“Speech Disorders” [Mesh]) OR “Aphasia” [Mesh]) OR “Dysarthria” [Mesh]) AND “Mobile Applications” [Mesh]) OR “Telemedicine” [Mesh]). Articles were selected in two stages. First, in the course of the above searches, articles by title were checked for relevant research. Second, the full texts of these shortlisted articles have been downloaded and assessed against the inclusion criteria.

All articles have been uploaded and revised in EndNote version X6 (Clarivate Analytics, New York, USA). Duplicates have been removed using EndNote software and manually. In addition, we employed the Rayyan online screening tool to search for articles15. No restrictions were applied to the date of publication.

Procedure of the Data Extraction

Two members of review independently extracted the data on study characteristics, intervention details and outcomes. Disagreements were resolved by oral discussion or resolved by a third author. Data were collected using a data extraction spreadsheet developed specifically for this study.

Criteria for considering studies for this review

Inclusion criteria were as follows: all clinical trials or randomized controlled trials, case-control studies, case reports, pilot tests using mobile applications or any Tele-Health/ m-Health technologies with the release of baseline data (aimed at improving the ongoing therapy or rehabilitation of patients with speech impairment). The analysis included publications written exclusively in English.

Only studies on the use of medical mobile applications were included in the analysis. The analysed applications (apps), depending on the functionality, were sub-divided into several groups: 1) an additional tool to improve communication skills (speech development), 2) apps for improving diagnoses, and 3) apps for rehabilitation.

Exclusion criteria

The studies conducted before 2008 were excluded from the analysis (the first Apple smartphones with the iOS operating system was released on June 29, 2007)16. The following publications were excluded from the analysis: review articles, systematic reviews, editorials, books and chapters books, conference proceedings, descriptions of research design (or research protocols) or descriptions of any mobile applications only under development, pilot studies without providing preliminary data. Articles discussing mobile applications in a different context were also excluded from the analysis: for example, research on the bio-effects of radiation from mobile phones.

Results

Study selection

The characteristics and main features of the analysed studies are presented in Table 1. Figure 1 shows a systematic procedure for searching and selecting the literature. Our initial query returned 234 potentially relevant records, from which 30 duplicates were eliminated. After examining the titles and abstracts, 67 entries were deleted (that did not correspond to the topic “speech disorders”). A total of 111 studies were assessed for eligibility, after which 37 studies were included in the analysis. For the analysis, we selected studies published between 2014 and 2021.

The analysis showed that studies on the use of mobile applications were carried out in the following countries: USA17,33, China36, Spain17,38, Australia39,40, Turkey41, Pakistan42, Canada43, Italy44, Brazil45, Great Britain4,46,47, Switzerland48, South Korea49. There is a range of studies on the use of digital platforms for the treatment of speech disorders and pathology of the vocal cords (improvement / development of communication skills, speaking, reading, speech recognition)4,9,17-24,26-29,30-32,34,36,37,39-45,48, rehabilitation25,29,33 diagnoses of speech disorders47,49-51, and the use as auxiliary devices for medical personnel working with patients with speech disorders35,38,46.

Mobile applications were used for the management of speech or vocalization disorders in children for the following pathologies: autism17,19-21,26,30,36,37, selective mutism18, developmental language disorder39,46, and speech sound disorder40,41,44. At the same time, the digital platforms were also proposed for the use predominantly in adults: communication disability31, hearing- and speech-impairment46, speech disorders due to intellectual and developmental disabilities22,
No.	Authors, country, year	App or tool name; main content;	Speech disorders type or cause	Participants number and characteristics	Follow-up time	Rehabilitation properties	Mode of delivery/Platform (cost)	Functionalities	Outcomes/efficiency	Limitations	
1	Alzraver et al., USA, 2017	“Proloquo2Go” app; for increasing multistep requesting skills by using content of picture library;	Autism spectrum disorder (ASD); Children: 8-10 y.o.; n=4;	N/A	-	iOS Apple iPad II;	Communication skills improvement	Effective in increasing multistep requesting; Some of the participants were partially under the control of the verbal cue to use the iPad; the tendency of the participants to exhibit challenging behaviours resulted in a contrived requesting task; the variability in clinical and demographic characteristics of the participants; the lack of social validity data;			
2	Muharib et al., USA, 2019	“Proloquo2Go” apps;	ASD and/or developmental disability; Children: 6-8 y.o.; n=3;	twice a day 5-10 min; (with a break of 5 to 20 min); 3 to 4 times a week, over the course of 11 weeks	-	iOS Apple iPad (Version 11.2.2);	Communication skills development	Effective in increasing multistep requesting;			
3	An et al., China, 2017	“Yuudee” app; to make requests by using content of 39 categories of pictures;	Minimally verbal children with ASD; Children: 3-6 y.o.; n=10;	n=8 30-min sessions, 1-2 sessions per week for 5 weeks.	-	iOS-iPad/iPad Mini; Android;	Communication skills improvement	Effective for helping minimally verbal children with ASD make requests; all children made progress in requesting items during the training; no follow-up sessions; the training sessions and evaluations were conducted only in a classroom; data on whether and how much the parents trained their children to use Yuudee at home wasn't collected; there was no control group;			
4	Bunnell et al., USA, 2018	Mobile app;	Selective mutism (SM); Children; 5-7 y.o.; G1: n=5 using mobile (i.e., Apple iPad) apps; G2: n=5 using other therapeutic tools/activities (tBT); G3: n=5 using reinforcement alone (rBT);	n=2, 5 55-min treatment sessions, conducted within the same week	-	iOS; Apple iPad;	Speech improvement	Mobile apps provide some utility during the treatment of SM; a single case design strategy with a randomized assignment to treatment groups; small sample size; the presented protocol is not intended as a comprehensive treatment for SM;			
5	Cabielle et al., Spain, 2017	“Chain of Words” tool; by repeating words, creating sentences with the pictograms from ARASAAC	ASD; Children with special educational needs.	N=10, 15 mins sessions for vocabulary and 7 sessions for sentences	-	-	Testing and validation of tool; for tablet Devices;	Communication skills improvement	Mobile devices may be another supporting tool to be used with children suffering from ASD; Preliminary results;		
6	Carson et al., Australia, 2020	“Reading Doctor” (RD) apps; Consists on 3 parts: Letter Sound; "1 Pro and finally Spelling Sound; Developmental language disorder (DLD); Children; 4-5 y.o.; IG: n=14; CG: n=10;	Developmental language disorder (DLD);	IG: twice a week in three RD apps for an 8-week period 20-25 min; CG: usual preschool programme;	-	iOS iPad;	Improvement of literacy skills	RD software can support code-based reading readiness among preschool children with DLD in the months just prior to school entry; Preliminary results; single center study;			
No.	Authors, country, year	App or tool name/e main content	Speech disorder/sound type or cause	Participants number and characteristics	Follow-up time	Rehabilitation properties	Mode of delivery/Platform (cost)	Functionalities	Outcomes/efficiency	Limitations	
-----	------------------------	--------------------------------	-----------------------------------	--	---------------	--------------------------	--------------------------------	----------------	--------------------	-------------	
7	Dural et al., Turkey, 2018	“Turkish Articulation Therapy Application” (TARTU), for computer-aided remote articulation therapy	Speech sound disorder	Children, 5 y.o.; n=1 TARTU app; n=1 paper-printed material	N=12 sessions 3 times a week + 2 follow-up sessions	-	iOS; iPad	Articulation improvement	TARTU did not play an important role in the success of the articulation therapy on the participants	A single subject study; having only word and sentence levels	
8	Caron et al., USA, 2018	“Transition to Literacy” (T2L) software on the sight word reading skills	ASD and complex communication needs	Children; 6-14 y.o.; n=5;	3-4 sessions per week length 15 min	-	Augmentative and alternative communication (AAC) app with T2L features	Improvement of the sight-word reading skills	Positively impact the sight-word reading of all participants during a structured task (identification of 12 targeted sight words).	Preliminary results; small sample size; study focused on an isolated skill – sight-word reading – with a small set of target words	
9	Irwin et al., USA, 2015	“Listening to Faces” (L2F) app to assist in perception of the spoken words.	ASD	Children; n=4	3 days/week (10 min each session) for 12 weeks	-	iOS; iPad; App for audio-visual speech perception	Children improved their performance on an untrained auditory speech-in-noise task	Preliminary results		
10	Hare et al., Australia, 2019	“PocketSphinx” (PS) app for speech recognition in a child with speech disorder	Disordered speech	Children; 7-9 y.o.; n=7;	N/A	N/A	Android; Samsung Tab 10.1 tablet (for the audio recording)	Speech recognition	Successful model for capture speech-specific production variations	Study focuses only on word recognition	
11	Halim et al., Pakistan, 2015	“Microsoft® Kinect” tool for detecting gestures stored in the dictionary with an accuracy of 91%	Hearing and Speech-impairement	Adults; 19-36 y.o.; n=16;	N/A	-	3D depth camera (Kinect); Communication tool	87% participants agreed that the system was useful. Small sample size; dictionary has a low performance on particular gestures	Small sample size; absence of control over intervention setting and number of intervention sessions		
12	Höflefield et al., USA, 2020	“The EasyVSD” app with the T2L feature	Intellectual and developmental disabilities (IDD) ASD, Down syndrome and cerebral palsy	Adults; 22-55 y.o.; n=6;	10 – 20 min sessions per week during 8 months.	-	Android; Samsung tablet;	Improvement of the single-word reading skills	AAC apps effective in single-word reading	Small sample size; The lack of control of intervention setting and number of intervention sessions	
13	Ireland et al., Australia, 2016	“Harlie” app for making conversation with the user on a variety of topics	Parkinson disease and developmental speech disorders	Adult; 27-87 y.o.; n=33;	Once a day, between 8AM – 8PM via randomly call	-	App for smartphone	Tool for measuring voice, communication outcomes, educational and supportive role	App can be used for measuring voice and communication outcomes	Overview/testing study	
14	Horin et al., USA, 2019	“Beats Medical Parkinsons Treatment” app to treat gait, speech and dexterity in people with Parkinson’s disease	Damage of gait, speech and dexterity in people with Parkinson’s disease	Adults; ≥30 y.o.; LG: n=17 with Parkinson use the app; CG: n=30 with Parkinson had traditional routine.	12 weeks;	+ iOS; iPhone	Therapeutic tool for improvement speech	App alone was not adequate to treat symptoms of gait, speech or dexterity in people with Parkinson’s disease	Small sample size; absence of feedback function via app		
No.	App/tool name	Author(s), country, year	Mode of delivery/Platform (cost)	Participants number and characteristics	Follow-up time	Rehabilitation	Functionalities	Outcome/efficiency	Limitations		
-----	---------------	--------------------------	---------------------------------	--	---------------	---------------	----------------	------------------	-------------		
15	Hyppa-Martin et al., USA, 2019	Tool for augmentative communication; Speech-generating tool	12 intervention sessions + 1 maintenance session	ASD Adult, 19 y.o.; n=1; Baseline and intervention phases 2-month period; Sessions occurred 3–5 times per week	3.5 sessions per week	Communication tool	The usage of video VSDs intervention support communication for children with ASD and limited speech during pretend play.	97%, and 96% of patients scored the mobile tablet-based communication therapy as at least moderately convenient 3/5 or better with 5/5 being most convenient	Pilot study, Small sample size, absence of comparative group, did not assess the long-term retention and adherence;		
16	Kurland et al., USA, 2014	Speech rehabilitation app (home practice program)	20 minutes, five or six days per week 6-month period	Post-stroke aphasia. Adults, 55-81 y.o.; n=5;	N/A	Communication and oral skills	App had a great potential for personalized home practice to maintain and augment traditional aphasia rehabilitation	Only 1 participant; absence of comparative group; lack of IOA;			
17	Mallet et al., Canada, 2016	Mobile tablet programmed app	Baseline and intervention phases 2-month period; Sessions occurred 3–5 times per week	Post-stroke communication deficits. Adults, 35-92 y.o.; n=29;	At least one hour per day	Communication tool			Pilot study; Small sample size; absence of comparative group; did not assess the long-term retention and adherence;		
18	Laubscher et al., USA, 2019	“GoVisual1™” app with video visual scene displays (video VSDs)	Baseline and intervention phases 2-month period; Sessions occurred 3–5 times per week	ASD Child with ASD, 8y.o.; n=1;		Communication tool	The usage of video VSDs intervention support communication for children with ASD and limited speech during pretend play.				
19	Laures-Gore et al., USA, 2021	App (had 1 = baseline phase and presented pictures only; 2 = intervention phase and presented the script plus pictures)	Once per day	Aphasia after stroke (naming impairment). Adults, 37-68 y.o.; n=4		Communication and oral skills	N=2 participants showed improvement in naming items following an imagery script				
20	Lorusso et al., Italy, 2018	“TagWriter” app; consists of several parts: introduction; story; picture; song; puzzle; Android-tablet; Communication tool (for therapy)	N=1, 45-minute speech therapy session	Language impairment (0-1). Children, 4-6 y.o.;		Communication and oral skills	A valuable aid to support and enhance communication in children with LI	Preliminary data; prototype limited number of activities;			
No.	Authors, country, year	App or tool name (main content)	Speech disorder type or cause	Participants number and characteristics	Follow-up time	Rehabilitation properties	Mode of delivery/Platform (cost)	Functionalities	Outcomes/efficiency	Limitations	
-----	------------------------	---------------------------------	-----------------------------	---------------------------------------	----------------	--------------------------	---------------------------------	----------------	----------------------	-------------	
22	Ramsberger et al., USA, 2014	Different 3 apps:	Aphasia	Participants (3 cases): 1) Case 1: 33 y.o.; post-stroke aphasia; 2) Case 2: aphasia after traumatic brain injury; 3) Case 1: 79 y.o.; post-stroke aphasia;	N/A +	+	Speech rehabilitation apps best-practice guidelines for integrating apps in aphasia rehabilitation	Case reports; absence of comparative groups;			
23	Silva et al., Brasil, 2021	“Talk Around It” app with exercises for word-finding (naming)	Cognitively-communicative disorder (CC-D)	Adult, 72 y.o., n=1; 50-min sessions during 13 weeks (at least 3 times a week over the 4-week period)	+	Android;	Language skills improvement	Case reports; absence of comparative groups;			
24	Simmons et al., USA, 2016	“SpeechPrompts” tool to treat prosodic and other communication impairments	Prosodic Deficits in ASD	Adult, 54-87 y.o., n=21; 2 Apps were used: Language Therapy© (had 4 categories: Reading, Naming, Comprehension and Writing); Bejeweled©;	At least once each week for 8 weeks	+	iOS-iPad (N/A); Therapeutic tool	App has potential to be a useful tool in the treatment of prosodic disorders	Pilot study;		
25	Stark et al., UK, 2018	2 Apps were used: Language Therapy© (had 4 categories: Reading, Naming, Comprehension and Writing); Bejeweled©;	Post-stroke chronic aphasia	Adult, 54-87 y.o., n=21; G1: n=3; firstly used Bejeweled© (4 weeks), than used Language Therapy© (4 weeks); G2: n=4; firstly used Language Therapy© (4 weeks), than used Bejeweled© (4 weeks);	20 minutes per day	+	iOS-iPad;	Language skills improvement /Automatic feedback Therapy via apps beneficial for chronic expressive aphasia.	Pilot study;		
26	Uslu et al., Switzerland, 2020	“High-frequency telerehabilitation speech and language therapy” (teleSLT) app compared to high-frequency telerehabilitative cognitive training (teleCT)	Post-stroke chronic aphasia	A randomised controlled, evaluator-blinded multicentre superiority trial; n=100 outpatients; IG: devoted 80% of their training time to teleSLT and the remaining 20% (42 min/day) to teleCT assigned by a speech and language therapist; CG: vice versa;	4 weeks (6 days per week), 2 hours a day independently at home by using the teleSLT and teleCT application	+	iOS-12.9 inch iPad Pro/table computer;	Language skills improvement	Lack of compliance to the training time over a 4-week duration might result in bias; Person-centric outcomes (quality of life, speech improvement) may limit generalization;		
No.	Authors, country, year	App or tool name; main content	Speech disorder or cause	Participants number and characteristics	Follow-up time	Rehabilitation properties	Mode of delivery/Platform (cost)	Functionalities	Outcomes/efficiency	Limitations	
-----	------------------------	---------------------------------	-----------------------	--	--------------	--------------------------	-------------------------------	----------------	----------------	-------------	
27	van Leer et al., USA, 2017	“Cepstral peak prominence” (CPP) app for patient self-monitoring of voice quality	Voice disorders	Adolescents and adults 16-72 y.o.; n=14 produced sustained phonation and connected speech tasks with CPP app;	N/A		iOS devices (Phones, iPads, and iPods); Therapeutic tool	App has potential to assist and motivate patients in the achievement of resonant voice production at home.			Participants did not receive clinician assistance in achieving resonant voice; CPP calculation limited to iOS devices; Preliminary results; Only for iOS devices; findings are limited to individuals with mild to moderate hyperfunctional dysphonia; only self-as-model recordings were examined;
28	van Leer et al., USA, 2019	App with “fake phone call” file;	Voice disorders	Adults, 22-56 y.o.; n=11; Received a simulated call four times daily for 1 week			iOS software app; Therapeutic tool	App had a positive effect on vocal self-evaluation skill			Preliminary results; Short study period; a small sample size;
29	Wang et al., USA, 2018	“EuTalk™” tablet-based communication app for communication	Communication disability	Adults, 20-64 y.o.; n=20;	N/A		Android+Samsung Galaxy Tab 10.1; Language skills improvement/rehabilitation	App has a great potential to maximize users’ communication effectiveness, enhance language skills, and ultimately improve users’ quality of life.			Preliminary results; Short study period; a small sample size;
30	Wendt et al., USA, 2019	“SPEAk11™” app with Picture Communication Symbols®4 (PCS®) and colored photographs to communicate using digitized and/or synthesized speech	Severe ASD	Adolescents and young adult, 14-23 y.o.; n=3; Twice a week for 30 to 40 min 12 sessions of 20 trials each, with a break in between			iOS+iPad; Speech improvement;	App increased requesting skills (requesting, speech production) for all three participants across intervention and maintenance phases			Small sample size; findings may limit to certain cohorts; generalization was tested after the completion of intervention;
31	Brandenburg et al., Australia, 2016	“CommFit™” to explore the use of talk time, as measured by the CommFit app, as an indicator of participation for people with aphasia	Aphasia	Adults; 28-84 y.o.; IG: n=12 with aphasia; CG: n=7 non-aphasic adults;	6 h a day for 14 days		iOS+iPhone 4 and Plantronics Voyager Pro+Bluetooth headset; Diagnostic tool for measurement talk time	On people with aphasia, talk time showed a correlation with participation status, and no correlation with impairment or activity limitation		Participants sampled only 6 h of their day; participants self-selected to participate in this study;	
32	Choi et al., South Korea, 2015	“Mobile aphasia screening test” (MAST) for for detecting aphasia in patients with stroke	Poststroke aphasia	Adults, 22-77 y.o.; IG: n=30 with aphasia after stroke; CG: n=30 non-aphasic patients after stroke;	N/A		Pilot study; iOS+iPad; Diagnostic tool/screening	MAST may be a convenient and cost-effective alternative to the existing aphasia screening tests for patients with stroke	The automatic scoring system in the program workflow did not allow the subjects to change their response;		
33	Guidi et al., Italy, 2015	App for analysing running speech	Bipolar disorder	Adult, 36 y.o.; n=1; 14 weeks, and the picture commenting task was performed 15 times while alive at home			Android app is integrated in a software tool of the PSYCHE Platform System; Diagnostic tool	Use of the app for the voiced segmentation procedure could allow to estimate speech features related to F0 variability within each voiced segment.			Only for Android devices; single-case study;
No	Authors, country, year	App or tool name; main content	Speech disorder type or cause	Participants number and characteristics	Follow-up time	Rehabilitation properties	Mode of delivery/Platform (cost)	Functionalities	Outcomes/efficiency	Limitations	
----	------------------------	--------------------------------	-----------------------------	--	---------------	---------------------------	-------------------------------	----------------	-------------------	-------------	
34	Mat Baki et al., UK, 2015	"OperaVOX" use for the acoustic analysis instead of Multidimensional Voice Program (MDVP)	Voice disorders (vocal fold pathologies)	Adults; Patients with voice disorders: n=50; Volunteers: n=50;	Recording the voice twice within 15 min	-	iOS; Paid	Diagnostic tool	OperaVOX is statistically comparable to 'gold standard' (MDVP) for most principal phonatory outcome measures.	Only acoustic parameter included.	
35	Marin et al., Spain, 2021	"NAO" robot; when the user speaks, the NAO Robot recognizes the voice and finds speech failures	To assist speech-language pathologists who are related to speech sounds/articulation disorder patients	Test sessions of the robotic platform with speech language pathologists supervision and analysing the experience of real patients;	N/A	-	-	Testing and validation of tool; Application Programming Interface (API) either from Python or from Apache CORDOVA; Platform to perform an exercise for articulation disorders	Several improvements were identified and human robot interaction was easy when the exercises were perceived as games with the support of mobile devices software integrated with robot	Preliminary qualitative data;	
36	Stockwell et al., UK, 2019	"KeepCam captured looped video" and "Relate allowed captured video" to be shared with the therapist and annotated with text	Cerebral palsy or non-progressive motor disorder affecting gross motor movements and speech	Children, 12 y.o.; n=5;	Intervention was provided by a research speech and language therapist in six once-weekly home visits, each lasting 50-70 min	-	Smartphone app* additional devices (Bluetooth, etc.); To increase communication frequency, including vocal/verbal output	-	Parents indicated positive experiences of the programme and remote coaching via the apps	Preliminary study; Slow recruitment rate and loss of participants;	
37	van Zyl et al., USA/South Africa, 2018	"hearSpeech" app for speech recognition, using monosyllabic word lists (+an audiometer was connected as a measurement control)	For audiologists	Adults, 18-30 y.o.; n=100;	N/A	-	Android; Samsung Galaxy J2; Diagnostic tool/speech recognition	Valid method for measuring word recognition scores, and can support standardisation and accessibility of recorded speech audiometry	Only for Android devices; Test-retest reliability was not evaluated;		
speech pathology due to Parkinson disease9,23, autism24,34, aphasia50, post-stroke aphasia3,15,27,29,63,49, vocal/voice disorders28,31,32,47, cognitive-communication disorder45, and bipolar disorder51.

DISCUSSION

The speech production requires the integrity of many systems and organs: phonological (cognitive and linguistic), articulatory (sensorimotor), praxis (planning / programming the spatial-temporal parameters of articulatory movements for speech) and prosodic (stress, intonation and voice quality, conveying meaning and effect)52. The impairment of each component of the speech production system can lead to a problem with speech. It can be caused by a range of psychological, neurological, or physical problems.

Communication disorders might have a widespread impact on all aspects of life. They reduce the ability of self-expression, independence, and often affect self-esteem and attitudes53.

An analysis of the available medical applications for smartphones/tablets or computer devices showed a significant progress in the use of the m-Health systems in patients with speech disorders. However, studies on mobile applications were mainly pilot ones26,27,39,43. Moreover, the studies were predominantly based on a small sample with single participants27,18,21,41, and often with the absence of a control group25,28,43.

In addition, some studies on mobile applications have not been shown to be effective as a full-fledged tool for the treatment of speech disorders of any aetiology23,41.

Figure 1. PRISMA flow chart for study selection process.
In many studies included in our review, in children with speech pathology, the use of mobile applications had a positive therapeutic effect. It could be directly related to the cognitive, developmental nature of the functionality of these mobile applications or computer devices. Some of the apps had a game format. However, in an earlier systematic review of mobile applications for children, assessing the content and quality of mobile applications according to the Mobile App Rating Scale (MARS) with speech impairments, only a small part of apps was considered very high quality or therapeutically useful.

Apart from that, in another published review (MARS scale), an analysis of downloadable mobile applications for adults with speech disorders was carried out by Vaezipour et al. The results indicated the lack of interactive and attractive elements in apps, which is a decisive factor in maintaining independent speech therapy. The authors pointed out that modern mobile apps for speech pathology demonstrated a low level of evidence of clinical efficacy. The results of our analysis indicated that there is a need for further research with a focus on human factors, user experience, convenience, and a patient-centred design approach.

Conclusions

At present, the m-Health market offers various mobile applications as auxiliary tools for the therapy and the rehabilitation of persons with speech impairments. In general, despite the existence of a different range of m-Health platforms for speech disorders, there is a lack of full-fledged approbation of these applications. Therefore, there is a need for further large-scale studies aimed at investigating effectiveness, safety, clinical relevance, and reliability of health digital platforms.

Authors Contributions:

Y.A. and A.T. conceived the original draft preparation. Y.A., A.T., N.P., and Y.R. were responsible for conception and design of the review. Y.A., A.D., and R.T. were responsible for the data acquisition. T.A., A.B., B.I. and Y.A. were responsible for the collection and assembly of the articles/published data, and their inclusion and interpretation in this review. All authors contributed to the critical revision of the manuscript for valuable intellectual content. All authors have read and agreed with the final version of the manuscript.

Compliance with Ethics Requirements:

“The authors declare no conflict of interest regarding this article”

No funding for this study

Acknowledgments

“The authors are thankful to the S.D. Asfendiyarov Kazakh National Medical University for the administrative and technical support.”

References

1. Alabdulkarim L. End users’ rating of a mHealth app prototype for paediatric speech pathology clinical assessment. Saudi Journal of Biological Sciences 2021; 28: 4484-4489.
2. Dunham G. The future at hand: mobile devices and apps in clinical practice. ASHA Leader. 2011;16:4. doi: 10.1044/leader.FTR6.16042011.4. Available at: http://leader.publish.asha.org/article.aspx?articleid=2279035.
3. 30 billion app downloads. Available at: http://www.apple.com/pr/library/2013/05/16/Apps-AppStore-Marks-Historic-50-Billionth-download.
4. Koetsier J. Android tablets will hit 60% market share this quarter, as iPad shipments dip, analyst says. Available at: http://venturebeat.com/2013/05/03/android-tablets-will-hit-60-market-share-this-quarter-as-ipad-shipments-dip-analyst-says/.
5. Stark BC, Warburton EA. Improved language in chronic aphasia after self-delivered iPad speech therapy. Neuropsychol Rehabil 2016; 28: 818-831. 20160229.
6. Jespersen LN, Michelsen SI, Tjornhøj-Thomsen T, et al. Living with a disability: a qualitative study of associations between social relations, social participation and quality of life. Disabil Rehabil 2019; 41: 1275-1286. 20180122.
7. Maas E. Speech and nonspeech: What are we talking about? Int J Speech Lang Pathol 2017; 19: 345-359. 20161005. DOI: 10.1080/17549507.2016.1221995.
8. Mullfari D, Meoni G, Marinì M, et al. Machine learning assistive application for users with speech disorders. Applied Soft Computing 2021; 103.
9. Ireland D, Aray C, Liddle J, et al. Hello Harlie: enabling speech monitoring through chat-bot conversations. Stud Health Technol Inform 2016; 227: 55-60.
10. Molini-Avejonas DR, Rondon-Melo S, Amato CA, et al. A systematic review of the use of telehealth in speech, language and hearing sciences. J Telemed Telecare 2015; 21: 367-376. 20150529.
11. Vaezipour A, Campbell J, Theodoros D, et al. Mobile apps for speech-language therapy in adults with communication disorders: review of content and quality. JMIR Mhealth Uhealth 2020; 8: e18588. 20200129.
12. Furlong L, Morris M, Serry T, et al. Mobile apps for treatment of speech disorders in children: An evidence-based analysis of quality and efficacy. Plo One 2018; 13.
13. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]; The Cochrane Collaboration; 2011.
14. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151: 264-269, w264. 2009/07/23.
15. Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for systematic reviews. Syst Rev 2016; 5: 210. 2016/12/07.
16. Bellis M. “Who Invented the iPhone?” ThoughtCo. Available at https://www.thoughtco.com/who-invented-the-iphone-1992004 (accessed May 22).
17. Muharib R, Alzrayer NM, Wood CL, et al. Backward chaining and speech-output technologies to enhance functional communication skills of children with autism spectrum disorder and developmental disabilities. Augment Altern Commun 2019; 35; 251-262. 20191226.
18. Bunnell BE, Mesa F and Beidel DC. A two-session hierarchy for shaping successive approximations of speech in selective mutism: pilot study of mobile apps and mechanisms of behavior change. Behavior Therapy 2018; 49: 966-980.
19. Alzrayer NM, Banda DR and Koul R. Teaching children with autism spectrum disorder and other developmental disabilities to perform multistep requesting using an iPad. Augmentative and Alternative Communication 2017; 33; 65-76.
20. Caron J, Light J, Holyfield C, et al. Effects of dynamic text in an AAC app on sight word reading for individuals with autism spectrum disorder. Augment Altern Commun 2018; 34: 143-154. 20180412.
21. Irwin J, Preston J, Brancazio L, et al. Development of an audio-visual speech perception app for children with autism spectrum disorders. Clin Linguist Phon 2015; 29: 76-83. 20140134.
22. Holyfield C, Light J, McNaughton D, et al. Effect of AAC technology with dynamic text on the single-word recognition of adults with intellectual and developmental disabilities. Int J Speech Lang Pathol 2020; 22: 129-140. 20190610.
23. Horin AP, McNeely ME, Harrison EC, et al. Usability of a daily mHealth application designed to address mobility, speech and dexterity in Parkinson’s disease. Neurodegener Dis Manag 2019; 9: 97-105. 20190418.
24. Hyppa-Martin JK, Stromberg AM, Chen M, et al. Comparing embedded and non-embedded visual scene displays for one adult diagnosed with autism spectrum disorder: A clinical application of single case design. Child Language Teaching & Therapy 2020; 36: 3-18.
25. Kurland J, Wilkins AR and Stokes P. iPractice: piloting the effectiveness of a tablet-based home practice program in aphasia treatment. Semin Speech Lang 2014; 35: 51-63. 20140121.
26. Laubscher E, Light J and McNaughton D. Effect of an application with video visual scene displays on communication during play: pilot study of a child with autism spectrum disorder and a peer. Augment Altern Commun 2019; 35: 299-308. 20191213.
27. Laurens-Gore J, Stache M, Moore E, et al. App-based data collection, mental imagery, and naming performance in adults with aphasia. Complement Ther Clin Pract 2021; 44: 101422. 20210529.
28. Meltzer GS, Heaton JT, Deng YB, et al. Development of sEMG sensors and algorithms for silent speech recognition. Journal of Neural Engineering 2018; 15.
29. Ramsberger G, Messamer P. Best practices for incorporating non-aphasia-specific apps into therapy. Semin Speech Lang 2014; 35: 17-24. 20140121.
30. Simmons ES, Paul R, Shic F. Brief report: a mobile application to treat prosodic deficits in autism spectrum disorder and other communication impairments: a pilot study. Journal of Autism and Developmental Disorders 2016; 46: 320-327.
31. van Leer E, Porcaro N. Feasibility of the fake phone call: an iOS app for covert, public practice of voice technique for generalization training. J Voice 2019; 33: 659-668. 20180605.
32. van Leer E, Pfister RC, Zhou XF. An iOS-based cepstral peak prominence application: feasibility for patient practice of resonant voice. Journal of Voice 2017; 31.
33. Wang EH, Zhou L, Chen SK, et al. Development and evaluation of a mobile AAC: a virtual therapist and speech assistant for people with communication disabilities. Disabil Rehabil Assist Technol 2018; 13: 731-739. 20170926.
34. Wendt O, Hsu N, Simon K, et al. Effects of an iPad-based speech-generating device infused into instruction with the picture exchange communication system for adolescents and young adults with severe autism spectrum disorder. Behavior Modification 2019; 43: 898-932.
35. van Zyl M, Swanepoel W and Myburgh HC. Modernising speech audiometry: using a smartphone application to test word recognition. Int J Audiol 2018; 57: 561-569. 20180420.
36. An S, Feng X, Dai Y, et al. Development and evaluation of a speech-generating AAC mobile app for minimally verbal children with autism spectrum disorder in Mainland China. Mol Autism 2017; 8: 52. 20171003.
37. Cabielles-Hernandez D, Perez-Perez JR, Paule-Ruiz M, et al. Specialized intervention using tablet devices for communication deficits in children with autism spectrum disorders. IEEE Transactions on Learning Technologies 2017; 10: 182-193.
38. Marin EG, Morales CA, Sanchez ES, et al. Designing a cyber-physical robotic platform to assist speech-language pathologists. Assistive Technology. 2021. DOI: 10.1080/10400435.2021.1934669.
39. Carson KL. Can an app a day keep illiteracy away? Piloting the efficacy of Reading Doctor apps for preschoolers with developmental language disorder. Int J Speech Lang Pathol 2020; 22: 454-465. 20191008.
40. Hair A, Ballard KJ, Ahmed B, et al. Evaluating automatic speech recognition for child speech therapy applications. Assets’19: the 21st International Acm Sigaccess Conference on Computers and Accessibility 2019: 578-580.
41. Dural R, Unal-Logacev O. Comparison of the computer-aided articulation therapy application with printed material in children with speech sound disorders. Int J Pediatr Otorhinolaryngol 2018; 109: 89-95. 20180328.
42. Halim Z, Abbas G. A Kinect-based sign language hand gesture recognition system for hearing-and speech-impaired: a pilot study of Pakistani sign language. Assist Technol 2015; 27: 34-43.
43. Mallet KH, Shamloul RM, Corbett D, et al. RecoverNow: feasibility of a mobile tablet-based rehabilitation intervention to treat post-stroke communication deficits in the acute care setting. PLoS One 2016; 11: e0167950. 20161221.
44. Lorusso ML, Biffi E, Molteni M, et al. Exploring the learnability and usability of a near field communication-based application for semantic enrichment in children with language disorders. Assistive Technology 2018; 30: 39-50.
45. Silva M, Almeida BPB, Barreto SDS. Use of an app as a complementary strategy to speech-language therapy in a case of cognitive-communication disorder. Codas 2021; 33: e20220011. 20210723.
46. Stockwell K, Alabdulqader E, Jackson D, et al. Feasibility of parent communication training with remote coaching using smartphone apps. Int J Lang Commun Disord 2019; 54: 265-280.
47. Mat Baki M, Wood G, Alston M, et al. Reliability of OperaVOX against Multidimensional Voice Program (MDVP), Clin Otolaryngol 2015; 40: 22-28.
48. Uslu AS, Gerber SM, Schmidt N, et al. Investigating a new tablet-based telerehabilitation app in patients with aphasia: a
randomised, controlled, evaluator-blinded, multicentre trial protocol. BMJ Open 2020; 10: e037702.

49. Choi YH, Park HK, Ahn KH, et al. A telescreening tool to detect aphasia in patients with stroke. Telemed J E Health 2015; 21: 729-734. 20150505.

50. Brandenburg C, Worrall L, Copland D, et al. An exploratory investigation of the daily talk time of people with non-fluent aphasia and non-aphasic peers. Int J Speech Lang Pathol 2017; 19: 418-429. 20160728.

51. Guidi A, Salvi S, Ottaviano M, et al. Smartphone application for the analysis of prosodic features in running speech with a focus on bipolar disorders: system performance evaluation and case study. Sensors (Basel) 2015; 15: 28070-28087. 20151106.

52. O’Hare A, Brenner L. Management of developmental speech and language disorders: Part 1. Arch Dis Child 2016; 101: 272-277. 20150724.

53. Dickson S, Barbour RS, Brady M, et al. Patients’ experiences of disruptions associated with post-stroke dysarthria. Int J Lang Commun Disord 2008; 43: 135-153.

54. Nordness A, Beukelman D. Speech practice patterns of children with speech sound disorders: the impact of parental record keeping and computer-led practice. Journal of Medical Speech-Language Pathology 2010; 18: 104-108.