A New Set of Microsatellite Primers for Coelogyne fimbriata (Orchidaceae) and Cross-Amplification in C. ovalis

Authors: Huang, Wei-Chang, Jiang, Kai, Hu, Chao, Xiao, Yue-E, Seyler, Barnabas C., et al.

Source: Applications in Plant Sciences, 5(5)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1700025
A NEW SET OF MICROSATELLITE PRIMERS FOR *Coelogyne fimbriata* (Orchidaceae) AND CROSS-AMPLIFICATION IN *C. ovalis*

Wei-Chang Huang2,3,4, Kai Jiang2,3,5,7, Chao Hu2,3, Yue-E Xiao2,3, Barnabas C. Seyler6, and Yuan-Yuan Li5

2Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201602, People’s Republic of China; 3Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, People’s Republic of China; 4College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China; 5School of Ecological and Environmental Sciences, Shanghai Key Laboratory of Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, People’s Republic of China; and 6Department of Botany, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, USA

Premise of the study: Declining orchid populations have made it necessary to prioritize the study of population structure and genetic diversity for species including *Coelogyne fimbriata* (Orchidaceae).

Methods and Results: A biotin-streptavidin capture method was used to construct a microsatellite library for *C. fimbriata*. A total of 15 polymorphic nuclear microsatellite loci were isolated and characterized using 47 *C. fimbriata* individuals from two natural populations in China. The number of alleles per locus for the two populations ranged from two to 17. The observed and expected heterozygosities ranged from 0.000 to 1.000 and from 0.000 to 0.867, respectively. Among these polymorphic primers, 11 loci were also successfully amplified in *C. ovalis*, and 10 loci showed moderate to high-level polymorphism. Cross-amplification of the 15 polymorphic loci was tested in five related species: *C. cumingii*, *C. eberhardtii*, *C. mayeriana*, *C. peltastes*, and *C. velutina*.

Conclusions: Fifteen microsatellites in *C. fimbriata* and 10 in *C. ovalis* have moderate to high-level genetic variation, indicating their utility in population genetic studies, thus contributing to orchid conservation.

Key words: *Coelogyne fimbriata; Coelogyne ovalis*; medicinal orchid; microsatellites; Orchidaceae; polymorphic markers.

Coelogyne fimbriata Lindl. (Orchidaceae), a medicinal orchid, is mainly distributed in southern China, Cambodia, northeastern Indonesia, Laos, Malaysia, Thailand, and Vietnam (Clayton and Beaman, 2002). Because southern China is the northernmost edge of its distribution region, Chinese *C. fimbriata* populations are of particular concern because populations on distribution margins are most vulnerable to disturbance (Channell and Lomolino, 2000). Furthermore, in consideration of global climate change and habitat fragmentation, it is urgent to design effective conservation strategies for endangered natural orchid populations (Swarts and Dixon, 2009). *Coelogyne fimbriata* is an epiphytic or lithophytic orchid, which requires a dormant period in winter. This species grows on its substrate with creeping and slender rhizomes. It can reproduce both sexually via seed and vegetatively by rhizomatic growth. Usually blooming in late summer, it produces one or two flowers on a scape. The flowers exhibit a type of pollinator deception in which the flower odor mimics food for foraging female wasps (Cheng et al., 2009).

Many studies have focused on the pollination syndromes of orchids (Tang et al., 2014); however, there is a lack of genetic information documented for this species. Because genetic information is important for the conservation and sustainable utilization of orchids (Gijbels et al., 2015), we developed microsatellite markers to allow studies of the genetic diversity, genetic structure, and mating system of *C. fimbriata*. In total, 15 polymorphic microsatellite loci were isolated and characterized to study genetic variation within this species clade. These highly polymorphic loci displayed high genetic variation and extensive usability in congeneric species, and may serve as a universal tool for orchid genetic studies.

METHODS AND RESULTS

A biotin-streptavidin capture method was employed to construct a microsatellite-enriched DNA library (Jiang et al., 2011). First, we extracted genomic DNA from silica gel-dried leaves of one *C. fimbriata* individual using a Plant Genomic DNA Extraction Kit (Tiangen, Beijing, China). The enzyme *MseI* (New England Biolabs, Beverly, Massachusetts, USA) was used to...
digest approximately 300 ng of genomic DNA in a 25-μL reaction volume for 2 h at 37°C. Fragments 200–1000 bp in length were then ligated to an Msel-adaptor pair (F: 5′-TACTCGAGACTCAT-3′ and R: 5′-GAGTAGTGTCCCT-
GAG-3′). The ligation-digestion mixture was diluted with ultrapure water (1:4), and the diluted fragments were amplified using Msel-N primer (5′-GATGTCCTGTAGTAAN-3′) in a 25-μL PCR reaction volume at 95°C for 5 min, followed by 23 cycles of 94°C for 30 s, 53°C for 1 min, and 72°C for 1 min. Next, to obtain microsatellite-enriched DNA fragments, the PCR products were hybridized with 5′-biotinylated (AC)₅ probes. We used streptavidin-coated magnetic beads (Promega Corporation, Madison, Wisconsin, USA) to capture single-stranded DNA fragments containing microsatellites. The enriched products were amplified using Msel-N primers for 28 cycles. After the PCR products were purified using a multifunctional DNA Extraction Kit (Bioteke Corporation, Beijing, China), they were ligated into Excherichia coli strain DH5α with the pMD19-T vector (TaKaRa Biotechnology Co., Dalian, Liaoning, China).

We randomly selected and sequenced 249 positive clones using M13+/M13- primers on an ABI 3730 DNA Sequence Analyzer (Applied Biosystems, Foster City, California, USA). Of the 249 sequenced clones, 136 contained microsatellites. Twenty-four sequences were discarded because of short flanking regions for primer design. Finally, we designed 112 primer pairs using Premier 5.0 (PREMIER Biosoft International, Palo Alto, California, USA). We selected 28 individuals from Dawei Mountain, Yunnan Province, and 19 from Diabloo Mountain, Hainan Province, China (Appendix 1), for PCR using these 112 primers. Of the 112 primers, 47 produced an expected band on 1% agarose gel, 40 failed to obtain amplification products, and 25 others produced multiple bands. These primer pairs were selected for further testing.

Table 1. Characteristics of 15 polymorphic microsatellite loci developed for Coelogyne fimbriata.

Locus	Primer sequences (5′-3′)*	Tₘ (°C)	Repeat motif	A	Allele size range (bp)	GenBank accession no.
CFI-11	F: <6-FAM>CGACCATCTCCCGCATAT	60	(GT)₉	7	429–443	KP676048
	R: GACACACACTACCTACAC					
CFI-26	F: <6-FAM>ATATACACAGCGGATTC	60	(CT)₃	3	210–218	KP676049
	R: CTGTGTGTCCTGTGT					
CFI-30	F: <6-FAM>CACTCTTCTACATTCA	58	(ATC)₉	2	103–109	KP676050
	R: AGTGGGCGTTAGGCTATAG					
CFI-51	F: <6-FAM>TGAGAAGTGCTCGAGTT	58	(AG)₁₄	7	336–362	KP676052
	R: GGGATGGAGTAAAGGTT					
CFI-60	F: <6-FAM>AAACCTCTGTCCGCTTT	60	(TC)₃,…(CT)₃,…(TC)₃	2	344–346	KP676053
	R: GTGCTGAGTGGTTCACA					
CFI-120	F: <6-FAM>GGRATCACTCCATTCACAC	60	(GT)₆	5	362–372	KP676054
	R: ATCATAGGATTGACTCTG					
CFI-167	F: <6-FAM>CAAGAACGCAAGCAGGAA	58	(AG)₆	8	259–293	KP676055
	R: GAGCACTAACCAGCTAGTTA					
CFI-229	F: <6-FAM>AGGCTTACCTGGCATACTCT	52	(CT)₇,…(TC)₇	2	181–187	KP676056
	R: ATTCCTGGCTGGCTCACA					
CFI-231	F: <6-FAM>GCGGTGAGTGTGAA	52	(AG)₃,…(GA)₈	2	285–289	KP676057
	R: CAGAGCCATACAGGACGATA					
CFI-26	F: <6-FAM>CTCCCATACCACTAATTT	55	(AG)₁₆,…(AG)ₖ	4	153–171	KX237659
	R: ATAGCTCATCCCAAGAGCA					
CFI-29	F: <6-FAM>TTGAGTGTGTGTCTTCTT	52	(TG)₅	5	270–308	KX237660
	R: TCTAGTCTACACTATCTT					
CFI-57	F: <6-FAM>GGAGAAGAGAAGGAG	55	(CT)₇	17	173–213	KX237661
	R: GAGCAAGGAGGAGGAGAGA					
CFI-126	F: <6-FAM>CTCCGGTTGCTGTTTTC	52	(CT)₁₀	4	253–259	KX237663
	R: ATTCCTGGCTTGTGCAGTA					
CFI-147	F: <6-FAM>GGAGGTGGTGGATG	52	(CT)₁₀,CA,CT₁₀	2	254–260	KX237664
	R: ATGAGGATATATGCAGTA					
CFI-172	F: <6-FAM>CTGGTTTTTTCTCTGTT	52	(CT)₁₀,CA,k	4	257–271	KX237666
	R: TCTGAGAATACAAACAGA					

Note: A = number of alleles; Tₘ = annealing temperature.

*Fluorescent dyes (i.e., HEX, ROX, and 6-FAM) are presented with the forward primers.
Table 2. Characteristics of 15 polymorphic microsatellite loci in Coelogyne fimbriata and C. ovalis populations, respectively.*

Locus	Coelogyne fimbriata	Coelogyne ovalis										
	DWS population (n = 28)	DLS population (n = 19)	MHX population (n = 21)	JGX population (n = 16)								
CF1-11	7	0.259*	0.740	4	0.500	0.475	—	—	—	—		
CF1-26	1	0.000	0.000	3	0.053*	0.101	9	0.333*	0.859	5	0.188*	0.756
CF1-30	2	1.000*	0.500	2	0.158	0.229	1	0.000	0.000	2	0.000*	0.469
CF1-51	7	0.286*	0.665	4	0.250	0.736	4	0.095	0.255	5	0.500*	0.585
CF1-60	2	0.643	0.436	2	0.688	0.451	1	0.000	0.000	4	0.000	0.516
CF1-120	4	0.889*	0.658	3	0.316	0.277	—	—	—	—	—	—
CF1-167	7	0.964*	0.766	5	0.579*	0.672	3	0.929	0.554	6	0.875*	0.809
CF1-229	2	0.179	0.316	2	0.063	0.061	1	0.000	0.000	5	0.200*	0.391
CF1-231	2	0.680	0.449	1	0.000	0.000	1	0.000	0.000	5	0.200*	0.391
CF2-26	2	0.750	0.469	3	0.368	0.597	6	0.667*	0.604	10	0.625*	0.813
CF2-29	3	0.769	0.500	4	0.333	0.474	4	0.900	0.546	3	0.929	0.554
CF2-57	5	0.926*	0.598	14	0.789*	0.867	—	—	—	—	—	—
CF2-126	2	0.111*	0.500	4	0.474*	0.669	6	0.952*	0.585	6	0.875*	0.809
CF2-147	1	0.000	0.000	3	0.842	0.554	2	0.000	0.000	4	0.000	0.000
CF2-172	2	0.036	0.035	3	0.421	0.639	10	0.529	0.877	7	0.063*	0.510

Note: — = failed to amplify; A = number of alleles; H_e = expected heterozygosity based on Hardy–Weinberg equilibrium; H_o = observed heterozygosity; n = number of individuals genotyped.

*Voucher and locality information for the populations are shown in Appendix 1.

* Indicates significant deviation from Hardy–Weinberg equilibrium (P < 0.001).

CONCLUSIONS

In the current study, although a majority of the developed loci showed monomorphism (68.1%), 15 polymorphic loci were identified in C. fimbriata. These polymorphic loci are valuable for orchid population genetic studies. For example, these markers can be used to characterize the clonal structure of C. fimbriata to estimate seed and pollen flow at a fine scale. Furthermore, these polymorphic loci can provide more information, such as genetic diversity indices, which are important for the conservation and management of the species.

LITERATURE CITED

Channell, R., and M. V. Lomolino. 2000. Dynamic biogeography and conservation of endangered species. Nature 403: 84–86.

Cheng, J., J. Shi, F. Z. Shangguan, A. Dafni, Z. H. Deng, and Y. B. Luo. 2009. The pollination of a self-incompatible, food-mimic orchid, Coelogyne fimbriata (orchidaceae), by female vespula wasps. Annals of Botany 104: 565–571.

Clayton, D., and R. S. Beaman. 2002. The genus Coelogyne: A synopsis. Natural History Publications, Kota Kinabalu, Borneo.

George, É., and J. C. George. 2011. Les Coelogynes. Belin, Paris, France.

Gibbs, P., K. De Hert, H. Jacquemyn, and O. Honnay. 2015. Reduced fecundity and genetic diversity in small populations of rewarding versus deceptive orchid species: A meta-analysis. Plant Ecology and Evolution 148: 153–159.

Goudet, J. 1995. FSTAT: A computer program to calculate F-statistics, version 1.2. Journal of Heredity 86: 485–486.

Govarts, R. 1999. World checklist of seed plants 3 (1, 2a & 2b). MIM, Deurne, Belgium.

Jiang, K., H. Gao, N. N. Xu, E. P. K. Tsang, and X. Y. Chen. 2011. A set of microsatellite primers for Zostera japonica (Zosteraceae). American Journal of Botany 98: e236–e238.

Peakall, R., and P. E. Smouse. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–An update. Bioinformatics (Oxford, England) 28: 2537–2539.

Pelser, P. B., B. Gravendeel, and E. F. De Vogel. 2000. Revision of Coelogyne section Fuliginosae (Orchidaceae). Blumea 45: 253–273.

Table 3. Amplification of 15 microsatellite loci developed for Coelogyne fimbriata in five other Coelogyne species.

Locus	C. cumingii (n = 5)	C. mayeriana (n = 5)	C. eberhardtii (n = 5)	C. peltastes (n = 5)	C. velutina (n = 5)
CF1-11	+	—	—	—	+
CF1-26	+	+	+	+	+
CF1-30	—	—	—	—	+
CF1-51	+	—	—	—	—
CF1-60	—	—	—	—	—
CF1-120	—	—	+	—	—
CF1-167	+	+	+	+	+
CF1-229	—	—	—	—	—
CF1-231	—	—	—	—	—
CF2-26	—	—	+	—	—
CF2-29	—	—	+	—	—
CF2-57	—	—	+	—	—
CF2-126	—	—	—	—	—
CF2-147	+	+	+	+	+
CF2-172	+	+	+	+	+

Note: + = primer successfully amplified; — = primer failed to amplify; n = number of individuals.
1. Locality information for the Coelogyne fimbriata and *C. ovalis* samples used in this study.\(^a\)

Species	Locality ID	Collection locality	Geographic coordinates	Collector	Collection no.	\(n\)
Coelogyne fimbriata Lindl.	DWS	Yunnan, China	22.931°N, 103.685°E	Wei-Chang Huang	CS-HWC201606-2	28
Coelogyne fimbriata	DLS	Hainan, China	18.659°N, 109.916°E	Ming-Zhong Huang	CS-HMZ201610-6	19
Coelogyne ovalis Lindl.	MHX	Yunnan, China	23.051°N, 103.356°E	Wei-Chang Huang	CS-HWC201606-5	21
Coelogyne ovalis	JGX	Yunnan, China	23.523°N, 100.646°E	Wei-Chang Huang	CS-HWC201509-8	16
Coelogyne cumingii Lindl.\(^b\)	—	Taiwan	—	Wei-Chang Huang	—	5
Coelogyne eberhardtii Gagnep.\(^b\)	—	Thailand	—	Wei-Chang Huang	—	5
Coelogyne mayeriana Rchb. \(^b\)	—	Taiwan	—	Wei-Chang Huang	—	5
Coelogyne peltastes Rchb. \(^b\)	—	Taiwan	—	Wei-Chang Huang	—	5
Coelogyne velutina de Vogel\(^b\)	—	Taiwan	—	Wei-Chang Huang	—	5

Note: — = no detailed information available; \(n\) = number of individuals sampled.

\(^a\) All voucher specimens were deposited in Shanghai Chenshan Herbarium (CSH), Shanghai, China.

\(^b\) Samples of *Coelogyne cumingii*, *C. eberhardtii*, *C. mayeriana*, *C. peltastes*, and *C. velutina* were collected from living plants at Shanghai Chenshan Botanical Garden (introduced from Taiwan and Thailand according to the record).
Appendix 2. Characteristics of 32 monomorphic microsatellite markers developed for *Coelogyne fimbriata*.

Locus	Primer sequences (5′–3′)	T_a (°C)	Repeat motif	Allele size (bp)	GenBank accession no.
CF1-33	F: TAATGATATTCCAGCCTCCCC	55	(CT)$_8$	197	KP676050
	R: CAGGAGATTTCCAGGCTATTAA				
CF1-2	F: CAAATCCAAAATCAGGGAGAAGG	56	(AG)$_{15}$	152	KY744706
	R: TCCAGAAATATATGAGGCGAGGC				
CF1-3	F: GAGAAATTTCAAGGACCAATG	56	(TCT)$_3$	198	KX237656
	R: TCTGAGACAGAAGGAGGGC				
CF1-8	F: TTAGGGTTGGAGGAGGAA	56	(AG)$_{13}$	402	KX237657
	R: CCAAGATGCAAGAGAAAACAA				
CF1-15	F: CGACTTCACTTCCAGTATCTC	56	(AG)$_{14}$	248	KY744707
	R: CACTCACTGAGCCACTTC				
CF1-20	F: GGAATATTGATAAAAAGCACT	56	(TC)$_{18}$	181	KY744708
	R: TCCCAACTCTTCAACACCC				
CF1-23	F: TTCCCGCTTGGTATATCCAATCAT	64	(CT)$_{12}$	178	KY744709
	R: GTTCCCTCTTGGCCTAGTTTAG				
CF1-24	F: ACCCTTCTATGCTGTATT	62	(CT)$_{7}$	186	KX237658
	R: CTTTCTCAACCAAGCTTTTT				
CF1-27	F: GAGGAGGCTGAGTGAGGAA	62	(AG)$_{6}$	111	KY766112
	R: GGAGGAGGCTCAGGAGGAG				
CF1-59	F: GAAGCAGAAAATACATA	56	(TC)$_{22}$	90	KY744710
	R: TCTCACTCCACTCTATCT				
CF1-101	F: TGTCAGCTCCGAGGAGG	64	(TC)$_{27}$	355	KY744711
	R: ATGGAGGGTGGTAGTGTGUG				
CF1-112	F: GGGATTCGGACTGAGATT	64	(GA)$_{39}$	228	KX237663
	R: TTAGTAGGGATGCGAGGAG				
CF1-127	F: TCAAAGTCCTACATC	53	(CT)$_{23}$	153	KY744712
	R: TTTTAGGTCCACACATT				
CF1-129	F: TTGGCATTTTCGCTTCT	59	(CT)$_{12}$–(TC)$_{16}$	235	KY744713
	R: CCTGCTTTTTGTGGTTT				
CF1-136	F: TCGACCGCTGATAGCGCAACA	64	(TC)$_{6}$	285	KY744714
	R: ATGGACCACTCGGCCAGGAC				
CF1-137	F: GGAAGGCTTACGAGAAT	64	(TC)$_{10}$–(CT)$_{3}$	126	KY744715
	R: ATGGGATGACAGGAGGAG				
CF1-140	F: GAGATGCGGAGAGAAGAAAG	62	(GA)$_{10}$	108	KY744716
	R: TGAAGGAGGAGTGGAGGAG				
CF1-146	F: TATCCAATGATATGATGA	53	(TC)$_{15}$–(AC)$_{10}$	347	KY744717
	R: GGAATGCGGAGAAAAGGT				
CF1-148	F: TGAAATAGATATCCGATGATTA	56	(AG)$_{20}$	227	KY744718
	R: AAATCGGTGTATAGGGAC				
CF1-149	F: GTCAACAGAAAGACCGAAG	56	(CT)$_{18}$	350	KY738665
	R: AAAGATCCCTCCTCATTAT				
CF1-155	F: TCTGTGCTTTTCTCTCTTACC	56	(CT)$_{20}$	104	KY744719
	R: CCAATGCTCCCTGAGATAC				
CF1-160	F: GAATCCCTCTGCTCCATT	53	(TG)$_{12}$–(GA)$_{15}$	109	KY744720
	R: GTGTTGTTAAGTGTGTTCGAGTA				
CF1-171	F: TCCCTGTCCGGTGAAAC	59	(GA)$_{31}$	232	KY744721
	R: GAGATCCCTCCGACACATAC				
CF1-177	F: AAGGTTAGAATGGTGAGGGG	59	(AG)$_{14}$–AA(AG)$_{13}$	405	KY744722
	R: GGGAGATGAGCTTTATGAT				
CF1-192	F: ACCTGTTGATATCTCCGAGTC	64	(CA)$_{16}$	274	KY744723
	R: GAGGGTGTGAGAATCTCCATTTA				
CF1-213	F: ACCAAATAGGAAGATGAGGAGAAGGAA	64	(CT)$_{16}$	151	KY744724
	R: ATGGCGGAGCAAGAAAGG				
CF1-217	F: CTTGTTGTCTATATTAGG	64	(CT)$_{12}$–(CA)$_{13}$	181	KX237667
	R: CTTTTTCTACAGCCTTCATT				
CF1-222	F: TACGGAAATCAGGGAGAACAA	63	(CT)$_{46}$	181	KY744725
	R: CGATTTAGGATTAGGAGGTT				
CF1-232	F: AATAAGATAATGGGAGGAGA	62	(GA)$_{9}$	108	KY744726
	R: ACGGAGAGCTGCCTTTTA				
CF1-234	F: ATCAAAACTCTATTATCC	64	(TC)$_{8}$	292	KY744727
	R: AGATTTACGCTGGCAGC				
CF1-238	F: AACCCCGACGACACAATA	64	(GA)$_{11}$	379	KY744728
	R: CGCCGCTATTCCCTACACA				
CF1-240	F: TACAGGCCCTCTAATACCCA	60	(TC)$_{13}$	488	KY744729
	R: CGGAGGGAGGTGTGAGAT				

Note: T_a = annealing temperature.