Case Report

Brain abscess caused by *Trueperella bernardiae* in a child

James Pan, Allen L. Ho¹, Arjun V. Pendharker¹, Eric S. Sussman¹, May Casazza¹, Samuel H. Cheshier¹, Gerald A. Grant¹

Department of Neurological Surgery, University of Washington School of Medicine, Seattle WA, ¹Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA

E-mail: James Pan ‑ jamespan@uw.edu; Allen L. Ho ‑ aho5@stanford.edu; Arjun V. Pendharker ‑ apendhar@stanford.edu; Eric S. Sussman ‑ esussman@stanford.edu; May Casazza ‑ MCasazza@stanfordchildrens.org; Samuel H. Cheshier ‑ cheshier@stanford.edu; *Gerald A. Grant ‑ ggrant2@stanford.edu

*Corresponding author

Received: 12 October 17 Accepted: 05 March 18 Published: 29 March 19

Abstract

Background: Recurrent intracranial abscesses secondary to refractory otitis media present a challenge which demands multidisciplinary collaboration.

Case Description: We present the first known case of pediatric brain abscess caused by a polymicrobial infection of *Trueperella bernardiae*, *Actinomyces europaeus*, and mixed anaerobic species resulting from acute-on-chronic suppurative left otitis media. This patient required two separate stereotactic abscess drainages and a complex course of antibiotics for successful management.

Conclusion: Surgery is essential in the management of cerebral abscess both in agent identification and therapeutic drainage. Management of abscesses secondary to unusual and polymicrobial organisms often requires consultation from other medical and surgical specialties.

Key Words: Brain abscess, neurology, neurosurgery, pediatrics, polymicrobial

INTRODUCTION

Intracranial cerebral abscesses are life threatening conditions that require immediate medical and neurosurgical attention. If left untreated, permanent neurological damage and result from damage to the brain parenchyma, or resulting inflammation from ventricular dissemination can prove to be fatal. Identification of the etiology and organisms associated with the abscess is crucial to selecting an appropriate antibiotic regimen. Surgery plays an important role in initial biopsy for identification of organisms, and resection can be considered for residual disease. We review an unusual case of pediatric brain abscess caused by *Trueperella bernardiae* and review both medical and surgical management strategies.

CASE REPORT

The patient is a 5-year-old male with a history of acute-on-chronic suppurative left otitis media status post bilateral percutaneous tymanostomy tube placement.
and multiple courses of antibiotics. He initially presented to his local emergency department with left-sided otalgia, lethargy, emesis, and decreased oral intake. As per the family, he did not have any focal neurological deficits or headaches at that time. He was diagnosed with suppurative acute otitis externa and prescribed ciprofloxacin ear drops.

Five days later, he returned to his local emergency department with a tactile fever and seizures. Upon arrival, his temperature was 38.4°C and he was found to have tonic-clonic movements. A febrile seizure was suspected, successfully aborted with acetaminophen and lorazepam, and he was loaded on levetiracetam. A computed tomography (CT) scan demonstrated a low-density temporal lesion with left to right midline shift. There was increased density of the external auditory meatus, middle ear, and inner ear. Laboratory studies were notable for a white blood count (WBC) of 33.9 (82.3% neutrophils, 11% bands). He was given one dose of ceftriaxone and piperacillin/tazobactam, intubated, started on a midazolam infusion, and was transferred to our institution for further evaluation.

He was stabilized in our pediatric intensive care unit (PICU) with a non-focal neurologic examination. Vancomycin, cefepime, and metronidazole were started for empiric coverage. On hospital day 2, a magnetic resonance imaging (MRI) demonstrated left tympanomastoiditis with a 5.0 × 1.7 × 2.5 cm left temporal lobe brain abscess. Stereotactic burr hole aspiration yielded 3 mL of foul-smelling yellow-gray fluid, which was sent for cultures [Figure 1a]. The left external auditory canal was found to be filled with copious purulent otorrhea, the tympanic membrane was bulging with purulent middle ear effusion, and the middle ear space filled with granulation tissue. A left tympanoplasty tube was also placed.

The patient tolerated the procedure well and was extubated without any complication. Post-operative MRI demonstrated interval drainage of the left temporal lobe abscess [Figure 1b]. He recovered well neurologically with only a mild receptive and expressive aphasia. He continued to receive a combination of vancomycin, cefepime, and metronidazole. On hospital day 7, cultures from aspirated pus grew *Truelperella bernardiae*, *Actinomyces europaues*, and mixed anaerobic Gram-positive cocci. Cultures from the left ear were positive for *Truelperella bernardiae*, *Corynebacterium amycolatum*, and *Corynebacterium aurimucosum*. These species were identified using matrix-assisted laser desorption ionization. Antibiotics were switched to intravenous meropenem 40 mg/kg every 8 h for a total of 6 weeks. The remainder of his hospital course was unremarkable, with no further febrile episodes or seizures. He was discharged on hospital day 13 at his baseline neurological status with a PICC line for continued meropenem administration.

After returning home, the patient was doing well until he presented to his ED the next day with persistent emesis and left ear pain with intermittent purulent drainage. An MRI obtained at this time demonstrated an interval increase in size of the left temporal lobe abscess with small satellite abscesses extending to the ependymal surface of the left lateral ventricle [Figure 1c]. His antibiotics were re-broadened to vancomycin, cefepime, and metronidazole. Out of concern for recurrence of the abscess, he was taken for stereotactic aspiration and mastoidectomy. Intraoperatively, 26 mL of thick purulent liquid was aspirated from the abscess.

Cultures of the repeat aspiration remained sterile. Our infectious disease colleagues recommended continuation of triple therapy of vancomycin, cefepime, and metronidazole for 6 weeks and he was discharged on hospital day 14 at his neurologic baseline. Susceptibility testing later revealed that this particular strain of *Actinomyces* was sensitive to the penicillin class; therefore, after he completed a 6-week course of triple therapy, and he was transitioned to oral amoxicillin monotherapy for 6 additional months.

DISCUSSION

The development of recurrent intracranial abscesses secondary to refractory otitis media presents a clinical challenge in terms of neurosurgical and antimicrobial treatment. Bacterial cerebral abscess formation can result from direct or hematogenous spread. The direct spread of bacterial agents from a contiguous site is responsible for

Figure 1: (a) Magnetic resonance imaging of the brain illustrating left temporal brain abscess, pachymeningitis, leptomeningitis, ependymitis, and left tympanomastoiditis. (b) Post-surgical changes showing interval drainage of left temporal lobe abscess with decreased amounts of perihilar material in the resection cavity. (c) Interval increase in size of left temporal lobe abscess with small satellite abscesses seen extending to the ependymal surface of the left lateral ventricle.
To the best of our knowledge, this case is the only known case of *Staphylococcus aureus* before surgical excision due to a lower complication rate and adverse neurological sequelae. With modern neurosurgical techniques, almost any abscess that measures at least 1 cm in diameter, regardless of location, is amenable to stereotactic aspiration. Needle aspiration and surgical resection are both effective. Needle aspiration can be achieved relatively easily through a twist drill hole, at any stage of the abscess, even in severe cases. This technique can also be used to access technically challenging locations such as the brainstem and periventricular regions. However, one study comparing 23 patients undergoing image-guided burr hole aspiration versus 22 patients receiving surgical resection of brain abscesses reported that needle aspiration is associated with a need for longer antibiotic therapy and prolonged neurological recovery time.

Surgical resection is a much more invasive approach and is now infrequently performed as first-line therapy. However, excision can be considered in cases where the abscess is superficial and not located in or near eloquent structures, and particularly when there is suspicion of fungal or tuberculous infection or of branching bacteria (e.g., *Actinomyces* or *Nocardia* spp.). Surgical excision can also be considered after initial needle aspiration if there is no clinical improvement within 1 week, decline in neurological function, signs of increased intracranial pressure, or interval increase in the size of the abscess. If an abscess is located adjacent to the ventricular system, but has not yet ruptured into the ventricle, needle aspiration would be favored over surgical excision due to the risk of rupture and high morbidity and mortality associated with disseminated ventriculitis.

This rare case of a cerebral abscess due to *Trueperella bernardiae* clearly benefited from multidisciplinary collaboration among infectious disease specialists, otolaryngologists, and neurosurgeons to achieve the best possible outcomes.
possible outcome in this child with a life-threatening condition.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Brouwer MC, Coutinho JM, van de Beek D. Clinical characteristics and outcome of brain abscess: Systematic review and meta-analysis. Neurology 2014;82:806-13.
2. Brouwer MC, Tunkel AR, McKhann GM, van de Beek D. Brain abscess. N Engl J Med 2014;371:447-56.
3. Chun CH, Johnson JD, Hofstetter M, Raff MJ. Brain abscess: A study of 45 consecutive cases. Medicine 1986;65:415.
4. Gilarranz R, Chamizo F, Horcajada I, Bordes-Benítez A. Prosthetic joint infection caused by Trueperella bernardiae. J Infect Chemother 2016;22:642-4.
5. Gutiérrez-Cuadra M, Ballesteros MA, Vallejo A, Miñambres E, Faríñas-Alvarez C, García-Palomo JD, et al. Brain abscess in a third-level hospital: Epidemiology and prognostic factors related to mortality. Rev Esp Quimioter 2009;22:201-6.
6. Kangsanarak J, Foonan S, Ruckphaopunt K, Navacharoen N, Teotrakul S. Extracranial and intracranial complications of suppurative otitis media. Report of 102 cases. J Laryngol Otol 1993;107:999-1004.
7. Masalma Al M, Lonjon M, Richet H, Dufour H, Roche PH, Drancourt M, et al. Metagenomic analysis of brain abscesses identifies specific bacterial associations. Clin Infect Dis 2012;54:202-10.
8. Parha E, Alalade A, David K, Kaddour H, Degun P, Namnyak S. Brain abscess due to Trueperella bernardiae. Br J Neurosurg 2015;29:728-9.
9. Ratnaike TE, Das S, Gregson BA, Mendelow AD. A review of brain abscess surgical treatment—78 years: Aspiration versus excision. World Neurosurg 2011;76:431-6.
10. Rattes A LR, Araujo MR, Federico MP, Magnoni CD, Neto PAM, Furtado GH. Trueperella bernardiae: First report of wound infection post laparoscopic surgery. Clin Case Rep 2016;4:812-5.
11. Yassin AF, Hupfer H, Siering C, Schumann P. Comparative chemotaxonomic and phylogenetic studies on the genus Arcanobacterium Collins et al. 1982 emend. Lehnen et al. 2006: Proposal for Trueperella gen. nov. and emended description of the genus Arcanobacterium. Int J Syst Evol Microbiol 2011;61:1265-74.
12. Yen PT, Chan ST, Huang TS. Brain abscess: With special reference to otolaryngologic sources of infection. Otolaryngol Head Neck Surg 1995;113:15-22.