POTENTIAL POLYNOMIALS AND MOTZKIN PATHS

Yidong Sun
Department of Mathematics, Dalian Maritime University, 116026 Dalian, P.R. China
sydmath@yahoo.com.cn

Abstract. A Motzkin path of length n is a lattice path from $(0,0)$ to $(n,0)$ in the plane integer lattice $\mathbb{Z} \times \mathbb{Z}$ consisting of horizontal-steps $(1,0)$, up-steps $(1,1)$, and down-steps $(1,-1)$, which never passes below the x-axis. A u-segment (resp. h-segment) of a Motzkin path is a maximum sequence of consecutive up-steps (resp. horizontal-steps). The present paper studies two kinds of statistics on Motzkin paths: "number of u-segments" and "number of h-segments". The Lagrange inversion formula is utilized to represent the weighted generating function for the number of Motzkin paths according to the statistics as a sum of the partial Bell polynomials or the potential polynomials. As an application, a general framework for studying compositions are also provided.

Keywords: Partial Bell polynomials, potential polynomials, Motzkin paths, compositions

2000 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 05C90

1. Introduction

A Motzkin path of length n is a lattice path from $(0,0)$ to $(n,0)$ in the plane integer lattice $\mathbb{Z} \times \mathbb{Z}$ consisting of up-steps $u = (1,1)$, horizontal-steps $h = (1,0)$, and down-steps $d = (1,-1)$. Denote by \mathcal{M}_n the set of Motzkin paths of length n. Let $\mathcal{M}_n^{m,k}$ denote the set of Motzkin paths of length n (i.e. $n = 2m + k$) with m up steps and k horizontal steps and \mathcal{D}_m denote the set of Dyck paths, namely, Motzkin paths in $\mathcal{M}_n^{0,0}$. Let P be any Motzkin path in \mathcal{M}_n, a u-segment (resp. h-segment) of P is a maximum sequence of consecutive up-steps (resp. horizontal-steps) in P and define $u_i(P)$ (resp. $h_i(P)$) to be the number of u-segments (resp. h-segments) of length i in P and call P having the u-segments (h-segments) of type $1^{u_1(P)}2^{u_2(P)}\ldots$ (resp. $1^{h_1(P)}2^{h_2(P)}\ldots$).

In two previous papers [15, 16], we study two kinds of statistics on (k-generalized) Dyck paths: "number of u-segments" and "number of internal u-segments". In this paper, we consider the statistics "number of u-segments" and "number of h-segments". In order to do this we present two tools we will use: the Lagrange inversion formula and the potential polynomials.

Lagrange Inversion Formula [19]. If $f(x) = \sum_{n \geq 1} f_n x^n$ with $f_1 \neq 0$, then the coefficients of the composition inverse $g(x)$ of $f(x)$ (namely, $f(g(x)) = g(f(x)) = x$) can be given by

$$[x^n]g(x) = \frac{1}{n} [x^{n-1}]\left(\frac{x}{f(x)}\right)^n. \tag{1.1}$$

More generally, for any formal power series $\Phi(x)$,

$$[x^n]\Phi(g(x)) = \frac{1}{n} [x^{n-1}]\Phi'(x)\left(\frac{x}{f(x)}\right)^n, \tag{1.2}$$

for all $n \geq 1$, where $\Phi'(x)$ is the derivative of $\Phi(x)$ with respect to x.

The Potential Polynomials \cite{S} pp. 141,157. The potential polynomials $P_n^{(\lambda)}$ related to a given sequence $(f_n)_{n \geq 1}$ are defined for each complex number λ by

$$1 + \sum_{n \geq 1} P_n^{(\lambda)} \frac{x^n}{n!} = \left\{ 1 + \sum_{n \geq 1} f_n \frac{x^n}{n!} \right\}^\lambda,$$

which can be represented by Bell polynomials

$$P_n^{(\lambda)} = P_n^{(\lambda)}(f_1, f_2, f_3, \ldots) = \sum_{1 \leq k \leq n} \binom{\lambda}{k} k! B_{n,k}(f_1, f_2, f_3, \ldots),$$

or if $\lambda = r$ is a positive integer, then

$$P_n^{(r)} = P_n^{(r)}(f_1, f_2, f_3, \ldots) = \binom{n + r}{r}^{-1} B_{n+r,r}(1, 2f_1, 3f_2, 4f_3, \ldots),$$

where $B_{n,i}(x_1, x_2, \ldots)$ is the partial Bell polynomial on the variables $\{x_j\}_{j \geq 1}$ \cite{S}, which has the explicit formula

$$B_{n,r}(x_1, x_2, \ldots) = \sum_{\sigma_n(r)} \frac{n!}{r_1! r_2! \cdots r_n!} \binom{x_1}{1!}^{r_1} \binom{x_2}{2!}^{r_2} \cdots \binom{x_n}{r_n}^{r_n},$$

where the summation $\sigma_n(r)$ is for all the nonnegative integer solutions of $r_1 + r_2 + \cdots + r_n = r$ and $r_1 + 2r_2 + \cdots + nr_n = n$.

In this paper, using the Lagrange inversion formula, we can represent the generating functions for the number of Motzkin paths according to our statistics (see Sections 2) as a sum of partial Bell polynomials or the potential polynomials, for example

$$\sum_{P \in \mathcal{M}_{n,k}} \prod_{i \geq 1} t_i^{u_i(P)} \prod_{i \geq 1} s_i^{h_i(P)} = \sum_{j=0}^{k} \sum_{\ell=j}^{k} (-1)^{\ell-j} \binom{\ell - 1}{j} \binom{m + j}{\ell - j} P_m^{(m+j+1)}(1! t_1, 2! t_2, \ldots) \ell! B_{k,\ell}(1! s_1, 2! s_2, \ldots).$$

Many important special cases are considered which generate several surprising results. As an application (see Section 3), compositions can be regarded as a kind of special Motzkin paths, which leads to a general framework to studying compositions by specializing the parameters. Moreover, in the last section we generalize compositions to matrix compositions.

2. "u-segments" and "h-segments" statistics

We start this section by studying the ordinary generating function for the number of Motzkin paths of length n according to the statistics u_1, u_2, \ldots and h_1, h_2, \ldots, that is,

$$M(x, y; t; s) = M(x, y; t_1, t_2, \ldots; s_1, s_2, \ldots) = \sum_{m,k \geq 0} x^m y^k \sum_{P \in \mathcal{M}_{m,k}} \prod_{i \geq 1} t_i^{u_i(P)} \prod_{i \geq 1} s_i^{h_i(P)}.$$

Proposition 2.1. The generating function $M(x, y; t; s)$ satisfies the functional recurrence relation

$$M(x, y; t; s) = \frac{T(z)}{1 - S(y) - 1 \cdot T(z)},$$

where $T(x) = 1 + \sum_{i \geq 1} t_i x^i$, $S(y) = 1 + \sum_{i \geq 1} s_i y^i$ and $z = xM(x, y; t; s)$.

Proof. Let \(P := P(x, y; t; s) \) and \(Q := Q(x, y; t; s) \) be the ordinary generating functions for the set of Motzkin paths beginning with up-steps and with horizontal steps respectively, according to the statistics \(u_1, u_2, \ldots \) and \(h_1, h_2, \ldots \). Then \(M(x, y; t; s) \) satisfies
\[
(2.2) \quad M(x, y; t; s) = 1 + P + Q.
\]
Note that \(P(x, y; t; s) \) can be written as
\[
P(x, y; t; s) = \sum_{j \geq 1} P_j(x, y; t; s),
\]
where \(P_j(x, y; t; s) \) is the ordinary generating function for the number of Motzkin paths starting with \(j \) up-steps according to the statistics \(u_1, u_2, \ldots \) and \(h_1, h_2, \ldots \). An equation for the generating function \(P_j(x, z; t; s) \) is obtained from the first return decomposition of a Motzkin path \(M \) starting with a \(u \)-segment of length \(j \): either
\[
M = u^i dP^{(j)} d \ldots dP^{(2)} dP^{(1)} \quad \text{or} \quad M = u^i Q^{(j+1)} dP^{(j)} d \ldots dP^2 dP^1,
\]
where \(P^{(1)}, \ldots, P^{(j)} \) are Motzkin paths and \(Q^{(j+1)} \) is a Motzkin path beginning with horizontal steps, see Figure 1.

Thus \(P_j(x, y; t) = (1 + Q)x^j t_j M^j(x, y; t; s) \). Hence, \(P(x, y; t; s) \) satisfies
\[
(2.3) \quad P(x, y; t; s) = (1 + Q) \sum_{j \geq 1} t_j x^j M^j(x, y; t; s).
\]
Similarly, one can derive that \(Q(x, y; t; s) \) satisfies
\[
(2.4) \quad Q(x, y; t; s) = (1 + P) \sum_{j \geq 1} s_j y^j.
\]
Define \(T(x) = 1 + \sum_{i \geq 1} t_i x^i \), \(S(y) = 1 + \sum_{i \geq 1} s_i y^i \) and \(z = xM(x, y; t; s) \). By \((2.2), (2.4) \), one can deduce \((2.1) \), as required.

Theorem 2.2. For any integers \(n, m, k \geq 0 \), there holds
\[
\sum_{P \in A_{n,k}} \prod_{i \geq 1} t_{u_i(P)} \prod_{i \geq 1} s_{h_i(P)} = \sum_{j=0}^{k} \sum_{\ell=j}^{k} (-1)^{\ell-j} \binom{\ell-1}{\ell-j} \binom{m+j}{j} P_m^{(m+j+1)} \frac{(1! t_1, 2! t_2, \ldots)}{(m+1)!} \frac{\ell! B_{k,\ell}(1! s_1, 2! s_2, \ldots)}{k!}.
\]

Proof. Applying the Lagrange inversion formula \((1.2) \) to \((2.1) \), by the identity
\[
(2.5) \quad \sum_{i=0}^{j} (-1)^i \binom{j}{i} \binom{-i}{\ell} = (-1)^{\ell-j} \binom{\ell-1}{\ell-j},
\]
we obtain
\[
\sum_{P \in \mathcal{M}^{m,k}} \prod_{i \geq 1} t_{i}^{u_{i}(P)} \prod_{i \geq 1} s_{i}^{h_{i}(P)} = [x^{m+1}y^{k}]xM(x, y; \mathbf{t}; \mathbf{s}) = [x^{m+1}y^{k}]z
\]
\[
= \frac{1}{m+1} [x^{m}y^{k}] \left(\frac{T(x)}{1 - S(y)^{-1}T(x)} \right)^{m+1}
\]
\[
= \frac{1}{m+1} \sum_{j=0}^{k} \binom{m+j}{j} [x^{m}y^{k}]T(x)^{m+j+1} \left(\frac{S(y) - 1}{S(y)} \right)^{j}
\]
\[
= \frac{1}{m+1} \sum_{j=0}^{k} \sum_{i=0}^{j} (-1)^{i} \binom{m+j}{j} \binom{j}{i} [x^{m}]T(x)^{m+j+1} [y^{i}]S(y)^{-i}
\]
\[
= \sum_{j=0}^{k} \binom{m+j}{j} \frac{P_{m}^{m+j+1}(1!t_{1}, 2!t_{2}, \ldots)}{(m+1)!} \sum_{i=0}^{j} (-1)^{i} \binom{j}{i} \frac{P_{k}^{i}(1!s_{1}, 2!s_{2}, \ldots)}{k!}
\]
\[
= \sum_{j=0}^{k} \binom{m+j}{j} \frac{P_{m}^{m+j+1}(1!t_{1}, 2!t_{2}, \ldots)}{(m+1)!} \sum_{i=0}^{j} (-1)^{i} \binom{j}{i} \sum_{\ell=0}^{k} (-\ell) \frac{\ell!B_{k,\ell}(1!s_{1}, 2!s_{2}, \cdots)}{k!}
\]
\[
= \sum_{j=0}^{k} \binom{m+j}{j} \frac{P_{m}^{m+j+1}(1!t_{1}, 2!t_{2}, \ldots)}{(m+1)!} \sum_{\ell=0}^{k} (-\ell)^{\ell-j} \frac{\ell!B_{k,\ell}(1!s_{1}, 2!s_{2}, \cdots)}{k!}
\]
\[
= \sum_{j=0}^{k} \binom{m+j}{j} \frac{P_{m}^{m+j+1}(1!t_{1}, 2!t_{2}, \ldots)}{(m+1)!} \prod_{\ell=0}^{k} (-\ell)^{\ell-j} \frac{\ell!B_{k,\ell}(1!s_{1}, 2!s_{2}, \cdots)}{k!},
\]
as claimed. \hfill \Box

Let \(\mathcal{M}^{m,k}_{n,r,\ell}\) be the subset of \(\mathcal{M}^{m,k}_{n}\) with \(r\) number of \(u\)-segments and \(\ell\) number of \(h\)-segments. Note that \(B_{m,r}(1!t_{1}, 2!t_{2}, \cdots) = q^{r}B_{m,r}(1!t_{1}, 2!t_{2}, \cdots)\) by (1.5), combining (1.3) and (2.5). Then Theorem 2.2 produces

Corollary 2.3. For any integers \(n, m, r, k, \ell \geq 0\), there holds
\[
\sum_{P \in \mathcal{M}^{m,k}_{n,r,\ell}} \prod_{i \geq 1} t_{i}^{u_{i}(P)} \prod_{i \geq 1} s_{i}^{h_{i}(P)} = \frac{r!q^{r}\ell!V_{m,k}^{r,\ell}}{k!(m+1)!} B_{m,r}(1!t_{1}, 2!t_{2}, \cdots) B_{k,\ell}(1!s_{1}, 2!s_{2}, \cdots),
\]
where
\[
V_{m,k}^{r,\ell} = \sum_{j=0}^{k} (-1)^{\ell-j} \binom{\ell-j}{\ell-j} \binom{m+j}{m} \binom{m+j+1}{r}.
\]

Recall that
\[
B_{m,r}(x_{1}, x_{2}, \cdots) = \sum_{\sigma_{m}(r)} \frac{m!}{r_{1}!r_{2}! \cdots r_{m}!} \left(\frac{x_{1}}{1!} \right)^{r_{1}} \left(\frac{x_{2}}{2!} \right)^{r_{2}} \cdots \left(\frac{x_{m}}{m!} \right)^{r_{m}},
\]
where the summation \(\sigma_{m}(r)\) is for all the nonnegative integer solutions of \(r_{1} + r_{2} + \cdots + r_{m} = r\) and \(r_{1} + 2r_{2} + \cdots + mr_{m} = m\).

If comparing the coefficient of \(t_{1}^{r_{1}}t_{2}^{r_{2}} \cdots t_{m}^{r_{m}}s_{1}^{s_{1}}s_{2}^{s_{2}} \cdots s_{k}^{s_{k}}\) in Corollary 2.3, one can obtain that
Corollary 2.4. The number of Motzkin paths in $\mathcal{A}_{n,r,\ell}^{m,k}$ with a number r of u-segments of type $1^r2^r\cdots m^r m$ and a number ℓ of h-segments of type $1^\ell2^\ell\cdots k^\ell k$ is

$$\frac{1}{m+1} \binom{r}{r_1,r_2,\ldots,r_m} \binom{\ell}{\ell_1,\ell_2,\ldots,\ell_k} V_{m,k}^{r,\ell}.$$

Next, specialization for $T(x)$ and $S(y)$ are considered, which generate several interesting results, as described in Examples 2.5-2.6.

Example 2.5. Let $T(x) = e^x$, $S(y) = e^y$, that is, $t_i = s_i = 1/i!$ for all $i \geq 1$. And Stirling numbers $S(k,i)$ of the second kind satisfy $(e^x - 1)^i / i! = \sum_{k \geq i} S(k,i)x^k / k!$. Then Theorem 2.2 gives

$$\sum_{P \in \mathcal{A}_{n}^{m,k}} \prod_{i \geq 1} \left\{ \frac{1}{i!} \right\} u_i(P) + h_i(P) = \sum_{j=0}^{k} (-1)^{k-j} \binom{m+j}{j} j! \frac{(m+j)!}{k!(m+1)!} S(k,j).$$

Note that $B_{k,i}(1,1,1,\cdots) = S(k,i)$ [8 pp.135], by Corollary 2.3 we have

$$\sum_{P \in \mathcal{A}_{n}^{m,k}} \prod_{i \geq 1} \left\{ \frac{1}{i!} \right\} u_i(P) + h_i(P) = \frac{r! \ell! V_{m,k}^{r,\ell}}{k!(m+1)!} S(m,r) S(k,\ell).$$

Example 2.6. Let $T(x) = f(x), S(y) = g(y)$, where $f(x), g(y)$ are the generating function for the complete b-ary and d-ary plane trees (see, for instance, [11] and [12] pp. 112-113), which satisfies the relations $f(x) = 1 + xf'(x)$ and $g(y) = 1 + yg'(y)$ respectively. By the Lagrange inversion formula (1.2), one can deduce $t_i = \frac{1}{(b+1)i} \binom{bi+1}{i}$ and $s_i = \frac{1}{(di+1)(di+1)}$. Then Theorem 2.2 leads to

$$\sum_{P \in \mathcal{A}_{n}^{m,k}} \prod_{i \geq 1} \left\{ \frac{1}{bi+1} \right\} u_i(P) \prod_{i \geq 1} \left\{ \frac{1}{di+1} \right\} h_i(P) \bigg|_{b=1, d=1} = \frac{1}{m+1} \sum_{j=0}^{k} \binom{m+j}{j} \frac{m+j+1}{(b+1)m+j+1} \frac{dj-j}{dk-j} \binom{dk-j}{k-j},$$

which, in the case $d = 1$, generates

$$\sum_{P \in \mathcal{A}_{n}^{m,k}} \prod_{i \geq 1} \left\{ \frac{1}{bi+1} \right\} u_i(P) = \frac{1}{(b+1)m+k+1} \binom{m+k+1}{m} \binom{(b+1)m+k+1}{k}.$$

Recently, Abbas and Bouroubi [1] derived two new identities for Bell polynomials, that is,

Lemma 2.7. Let $f(x) = 1 + \sum_{i \geq 1} f_i x^i$ be any analytic function about the origin and define $f_m(i) = D^m[f(x)]^{(i)}|_{x=0}$, where D is the differential operator d/dx. Then for any integers $m \geq r \geq 1$, there holds

$$B_{m,r}(1, f_1(2), f_2(3), \cdots) = \binom{m-1}{r-1} f_{m-r}(m).$$

Lemma 2.8. Let $\{\phi_n(x)\}_{n \geq 0}$ be a binomial sequence. Then for any integers $m \geq r \geq 1$, there holds

$$B_{m,r}(1, 2\phi_1(1), 3\phi_2(1), \cdots) = \binom{m}{r} \phi_{m-r}(r).$$
Recall that a sequence of polynomials \(\{ \phi_n(x) \}_{n \geq 0} \) with \(\phi_0(x) = 1 \) is called binomial if
\[
\phi_n(x + y) = \sum_{i=0}^{n} \binom{n}{i} \phi_i(x) \phi_{n-i}(y),
\]
or equivalently, there exists a power series \(\lambda(u) = \sum_{i \geq 1} \lambda_i u^i \) with \(\lambda_1 \neq 0 \) such that
\[
\sum_{n \geq 0} \phi_n(x) \frac{u^n}{n!} = \exp(x \lambda(u)).
\]
For examples, the following binomial sequences are well known [13],
- Power polynomials \(\phi_n(x) = x^n; \)
- Factorial polynomials \(\phi_n(x) = x(x + 1) \cdots (x + n - 1); \)
- Abel polynomials \(\phi_n(x) = x(x - qn)^{n-1} \) for fixed \(q; \)
- Exponential polynomials \(\phi_n(x) = \sum_{i=0}^{n} S(n, i)x^i. \)

Let \(t_i = \frac{f_{i+1}(i)}{i+1}! \) and \(s_i = \frac{g_{i+1}(i)}{i+1} \), where \(g_m(i) = D^m[g(x)]|_{x=0} \) and \(g(x) = 1 + \sum_{i \geq 1} g_i x^i \), using (1.4) and (2.5), by Theorem 2.2 and Lemma 2.8, one can deduce that

Corollary 2.9. For any integers \(n, m, k \geq 0 \), there holds
\[
\sum_{P \in \mathcal{M}_{n,k}} \prod_{i \geq 1} \left(\frac{f_{i+1}(i+1)}{(i+1)!} \right) u_i^{(P)} \prod_{i \geq 1} \left(\frac{g_{i+1}(i)}{i!} \right) h_i^{(P)}
\]

\[
= \sum_{\ell=0}^{k} \sum_{j=0}^{k} (-1)^{\ell-j} \binom{\ell}{j} \binom{k}{\ell} k^{m+j+1} \frac{\sum_{i=0}^{(m+j+1)} f_m(2m+j+1)}{(m+1)!},
\]

which, in the case \(g_m(i) = \binom{i}{m} m! \) for all \(i \geq 1 \), by the identity
\[
\sum_{\ell=0}^{k} (-1)^{\ell-j} \binom{\ell}{j} \binom{k}{\ell} = \delta_{k,j},
\]
leads to

Example 2.10. Let \(f_r(x) = \sum_{i \geq 0} (ri+1)^{-1}x^i i! \), which is the exponential generating function for rooted complete \(r \)-ary labeled trees for \(r \geq 0 \) and satisfies the relation \(f_r(x) = e^{x f_r(x)^r} \). By the Lagrange inversion formula, one can deduce \(f_r,i = \binom{i}{m} m! \) Then (2.4) produces
\[
\sum_{P \in \mathcal{M}_{n,k}} \prod_{i \geq 1} \left(\frac{(r+1)i+1)^{-1}}{i!} \right) u_i^{(P)} = \binom{m+k+1}{k} \binom{(r+2)m+k+1}{m+1}.
\]

Let \(t_i = \phi_{i+1}(1) \) and \(s_i = \psi_{i+1}(1) \), where \(\{ \phi_n(x) \}_{n \geq 0} \) and \(\{ \psi_n(x) \}_{n \geq 0} \) are binomial sequences, using (1.4) and (2.5), by Theorem 2.2 and Lemma 2.8, one can deduce that

Corollary 2.11. For any integers \(n, m, k \geq 0 \), there holds
\[
\sum_{P \in \mathcal{M}_{n,k}} \left(\frac{\phi_{i}(1)}{i!} \right) u_i^{(P)} \prod_{i \geq 1} \left(\frac{\psi_{i+1}(1)}{(i-1)!} \right) h_i^{(P)}
\]

\[
= \sum_{j=0}^{k} \sum_{\ell=j}^{k} (-1)^{\ell-j} \binom{\ell-j}{\ell-j} \binom{k-1}{k-j} \binom{m+j}{j} \frac{\phi_m(m+j+1)}{(m+1)!}.
\]
Example 2.12. Corollary [2.11] in the case \(\psi_n(x) = x(x+1) \cdots (x+n-1) \), by (2.8), produces

\[
\sum_{P \in \mathcal{C}_{m,k}} \prod_{i \geq 1} \left(\frac{\phi_i(1)}{i!} \right)^{u_i(P)} = \frac{(m+k)(m+k+1)}{(m+1)!}.
\]

In addition, let \(\phi_n(x) = x(x-qn)^{n-1} \) for fixed \(q \). Then (2.10) generates

\[
\sum_{P \in \mathcal{C}_{m,k}} \prod_{i \geq 1} \left(\frac{1-q^n}{i!} \right)^{u_i(P)} = \frac{(m+k+1)}{m!} \left(\frac{(1-q)m+k+1}{m!} \right)^{m-1},
\]

which, in the case \(q = -(r+1) \), coincides with Example [2.10].

Let \(\phi_n(x) = \sum_{i=0}^{n} S(n,i)x^i \), which implies \(\phi_n(1) \) is the \(n \)-th Bell number \(B_n \). Then (2.10) produces

\[
\sum_{P \in \mathcal{C}_{m,k}} \prod_{i \geq 1} \left(B_i \right)^{u_i(P)} = \frac{(m+k)}{m!} \sum_{i=0}^{m} S(m,i)(m+k+1)^i
\]

\(\frac{1}{(m+1)!} \).

3. Special Motzkin paths: Compositions

A composition of nonnegative integer \(\lambda \) into \(j \) parts is an ordered sequence \(\lambda_1, \lambda_2, \ldots, \lambda_j \) of length \(j \) such that \(\lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_j \) with each \(\lambda_i \geq 0 \). Each \(\lambda_i \) is called the \(i \)-th summand of the composition. Compositions are well known combinatorial objects [2, 5, 8] and several of their properties have been discussed in some recent papers, as in [4, 9, 10, 13, 14, 17].

A composition can be regarded as a special Motzkin path if each summand \(\lambda_i \) is replaced by \(u^{\lambda_i}d^{\lambda_i} \) when \(\lambda_i \geq 1 \) and by a \(h \) when \(\lambda_i = 0 \). A \(u \)-segment or \(h \)-segment of a composition is defined to be that of its corresponding Motzkin path.

Let \(\mathcal{C}_{m,k,j} \) denote the set of compositions of \(m \) with \(j \) parts and \(k \) zero summands, so any \(C \in \mathcal{C}_{m,k,j} \) has \(j-k \) \(u \)-segments. Define the ordinary generating functions for weighted compositions according to the statistics \(u_1, u_2, \ldots \) and \(h_1, h_2, \ldots \) as follows

\[
C_j(x, y; t; s) = \sum_{m,k \geq 0} x^m y^k \sum_{C \in \mathcal{C}_{m,k,j}} \prod_{i \geq 1} t_i^{u_i(C)} \prod_{i \geq 1} s_i^{h_i(C)}
\]

\[
C(x, y; t; s; q) = \sum_{j \geq 0} q^j C_j(x, y; t; s).
\]

Proposition 3.1. The explicit formula for \(C(x, y; t; s; q) \) is

\[
C(x, y; t; s; q) = \frac{S(qy)}{1 + qS(qy) - qS(qy)T(x)},
\]

where \(T(x) = 1 + \sum_{i \geq 1} t_i x^i \), \(S(y) = 1 + \sum_{i \geq 1} s_i y^i \).

Proof. A recurrence relation for \(C_j(x, y; t; s) \) can be derived as follows

\[
C_j(x, y; t; s) = s_j y^j + \sum_{i=1}^{j} s_{j-i} y^{j-i} C_{i-1}(x, y; t; s)(T(x) - 1),
\]
for \(j \geq 1 \) and \(C_0(x, y; t; s) = 1 \) if one notices that a composition begins with a \(h \)-segment of length \(i \) for \(0 \leq i \leq j \) or a \(u \)-segment of length \(r \) for \(r \geq 1 \). Then

\[
C(x, y; t; s; q) = \sum_{j \geq 0} q^j C_j(x, y; t; s)
\]

\[
= 1 + \sum_{j \geq 1} q^j \left\{ s_j y^j + \sum_{i=1}^{j} s_{j-i} y^{j-i} C_{i-1}(x, y; t; s)(T(x) - 1) \right\}
\]

\[
= S(qy)(1 + q(T(x) - 1)C(x, y; t; s; q)),
\]

which leads to (3.1).

Theorem 3.2. For any integers \(m, k, j \geq 0 \), there holds

\[
\sum_{C \in \mathcal{C}_{m,k,j}} \prod_{i \geq 1} \binom{\mu_i(C)}{t_i} \prod_{i \geq 1} s_i^{h_i(C)} = \frac{P_{k}^{(j-k+1)}(1! s_1, 2! s_2, \ldots)(j-k)! B_{m,j-k}(1! t_1, 2! t_2, \ldots)}{k! m!}.
\]

Proof. By the definition of potential polynomials and (3.1), using the identity

\[
\sum_{i=0}^{j-k} (-1)^i \binom{j-k}{i} \binom{j-k-i}{r} = \delta_{r,j-k},
\]

where \(\delta_{r,j-k} \) is the Kronecker symbol, we have

\[
\sum_{C \in \mathcal{C}_{m,k,j}} \prod_{i \geq 1} \binom{\mu_i(C)}{t_i} \prod_{i \geq 1} s_i^{h_i(C)} = [x^m y^k q^j] C(x, y; t; s; q)
\]

\[
= [x^m y^k q^j] \frac{S(qy)}{1 + qS(qy) - qS(qy)T(x)} = [x^m y^k q^j] \sum_{i \geq 0} q^i S(qy)^{i+1}(T(x) - 1)^i
\]

\[
= [x^m (qy)^k] S(qy)^{j-k+1}(T(x) - 1)^{j-k} = [(qy)^k] S(qy)^{j-k+1} [x^m](T(x) - 1)^{j-k}
\]

\[
= [(qy)^k] S(qy)^{j-k+1} \sum_{i=0}^{j-k} (-1)^i \binom{j-k}{i} [x^m] T(x)^{j-k-i}
\]

\[
= \frac{P_{k}^{(j-k+1)}(1! s_1, 2! s_2, \ldots)}{k!} \sum_{i=0}^{j-k} (-1)^i \binom{j-k}{i} \frac{P_{m}^{(j-k-i)}(1! t_1, 2! t_2, \ldots)}{m!}
\]

\[
= \frac{P_{k}^{(j-k+1)}(1! s_1, 2! s_2, \ldots)}{k!} \sum_{i=0}^{j-k} (-1)^i \binom{j-k}{i} \sum_{r=0}^{m} \frac{r!}{m!} \binom{j-k-i}{r} B_{m,r}(1! t_1, 2! t_2, \ldots)
\]

\[
= \frac{P_{k}^{(j-k+1)}(1! s_1, 2! s_2, \ldots)}{k!} \sum_{r=0}^{m} \frac{r!}{m!} B_{m,r}(1! t_1, 2! t_2, \ldots) \sum_{i=0}^{j-k} (-1)^i \binom{j-k}{i} \binom{j-k-i}{r}
\]

\[
= \frac{P_{k}^{(j-k+1)}(1! s_1, 2! s_2, \ldots)}{k!} (j-k)! B_{m,j-k}(1! t_1, 2! t_2, \ldots) \sum_{j=1}^{m} \frac{r!}{m!} B_{m,r}(1! t_1, 2! t_2, \ldots),
\]

as claimed.

Remark: Theorem 3.2 provides a unified method to investigate compositions. This very general framework can be applied to many special cases by specializing the parameters. For example, let \(T(x) = \frac{1}{1-x} - x^r \), i.e., \(t_r = 1 \) except for \(t_r = 0 \) for \(r \geq 1 \), then Theorem 3.2 in the case \(k = 0 \) leads to compositions without occurrences of \(r \); More generally, let \(T(x) = 1 + \sum_{i \in A} x^i \), where \(A \) is a given set of positive integers, then Theorem 3.2 in the case \(k = 0 \) leads to compositions with summands in a given set \(A \).
Recall that any $C \in \mathcal{C}_{m,k,j}$ has $j - k$ u-segments. Let $\mathcal{C}^\ell_{m,k,j}$ be the subset of $\mathcal{C}_{m,k,j}$ with ℓ number of h-segments. Note that $\mathbf{B}_{m,r}(1!q_1t_1, 2!q_2t_2, \cdots) = q^r \mathbf{B}_{m,r}(1!t_1, 2!t_2, \cdots)$ by (1.5), combining (1.3) with Theorem 3.2, we have

Proposition 4.1. The explicit formula for

$$C \in \mathcal{C}^\ell_{m,k,j}$$

for some $0 \leq \ell \leq m$, $k = 0, \ldots, m$, is given by

$$\sum_{C \in \mathcal{C}^\ell_{m,k,j}} \prod_{i \geq 1} t_i^{u_i(C)} \prod_{i \geq 1} s_i^{h_i(C)} = \binom{j - k + 1}{\ell} \binom{j - k}{r_1, r_2, \ldots, r_m} \binom{\ell}{\ell_1, \ell_2, \ldots, \ell_k} \cdot \mathbf{B}_{m,j-k}(1!t_1, 2!t_2, \cdots) \mathbf{B}_{k,\ell}(1!s_1, 2!s_2, \cdots).$$

Using (1.5) and then comparing the coefficient of $t_1^{r_1}t_2^{r_2} \cdots t_m^{r_m} s_1^{\ell_1} s_2^{\ell_2} \cdots s_k^{\ell_k}$ in Corollary 3.3 one can obtain that

Corollary 3.4. The number of compositions in $\mathcal{C}^\ell_{m,k,j}$ with u-segments of type $1^{r_1} 2^{r_2} \cdots m^{r_m}$ and h-segments of type $1^{\ell_1} 2^{\ell_2} \cdots k^{\ell_k}$ is

$$C_{j}(x, y; t; s) = \sum_{i=0}^{j} \frac{y^i x^{m-i} t^{j+i} (1!s_1, 2!s_2, \cdots)}{(j - i)!} (T(x) - 1)^i.$$

However, it seems that the coefficients of $[x^m y^k]$ in $C_j^p(x, y; t; s)$ have no simple explicit formulas. For the sake of this, we can consider a kind of special matrix compositions, called *bipartite matrix compositions*, namely, each row has the type $(a_1, a_2, \ldots, a_i, 0, \ldots, 0)$ for some $0 \leq i \leq j$, where $a_1, \ldots, a_i \geq 1$. If $a_1 = \cdots = a_i = 1$, then we call it a *bipartite* $(0, 1)$-matrix.

Let $\mathcal{B}_{m,p,j}$ denote the set of $p \times j$ bipartite matrix compositions of m and let $B_{p,j}(x; t)$ denote the ordinary generating functions for weighted $p \times j$ bipartite matrix compositions according to the statistics u_1, u_2, \ldots and h_1, h_2, \ldots is just $C_j^p(x, y; t; s)$. From Proposition 3.1 one can deduce easily that

$$B_{p,j}(x; t) = \sum_{m \geq 0} x^m \sum_{B \in \mathcal{B}_{m,p,j}} \prod_{i \geq 1} t_i^{u_i(B)}.$$

Proposition 4.1. The explicit formula for $B_{p,j}(x; t)$ is

$$B_{p,j}(x; t) = \left\{ \frac{1 - \{(T(x) - 1)^{j+1}\}}{1 - \{(T(x) - 1)^j\}} \right\}^p,$$

where $T(x) = 1 + \sum_{i \geq 1} t_i x^i$.

Proof. For any $1 \times j$ bipartite matrix compositions, it has the type $(a_1, a_2, \ldots, a_i, 0, \ldots, 0)$ for some $0 \leq i \leq j$, where $a_1, a_2, \ldots, a_i \geq 1$, then each a_r has the weight t_{a_r} which is a term
of \(T(x) - 1\). Hence we have

\[B_{1,j}(x; t) = \sum_{i=0}^{j} (T(x) - 1)^i = \frac{1 - \{(T(x) - 1)^{j+1}\}}{1 - \{(T(x) - 1)^{j+1}\}}.\]

Then by the relation \(B_{p,j}(x; t) = B_{1,j}(x; t)^p\), we obtain (4.1).

Theorem 4.2. For any integers \(m, p, j \geq 0\), there holds

\[
\sum_{B \in \mathbb{B}_{m,p,j}^r} \prod_{i \geq 1} t_i^{u_i(B)} = \sum_{r=0}^{m} \frac{r!}{m!} U_{p,j,r} B_{m,r}(1!t_1, 2!t_2, \cdots),
\]

where

\[U_{p,j,r} = \sum_{i=0}^{r} (-1)^i \binom{p}{i} \frac{(p + r - i(j + 1) - 1)}{p - 1} \cdot \frac{1}{i!} \cdot \frac{1}{(j + 1)!} \cdot \frac{1}{(r - i)!} .\]

Proof. Similar to the proof of Theorem 3.2 we have

\[
\sum_{B \in \mathbb{B}_{m,p,j}^r} \prod_{i \geq 1} t_i^{u_i(B)} = [x^{m}] B_{p,j}(x; t) = [x^{m}] \left\{ \frac{1 - \{(T(x) - 1)^{j+1}\}}{1 - \{(T(x) - 1)^{j+1}\}} \right\}^p
\]

\[
= \sum_{r=0}^{m} \frac{r!}{m!} U_{p,j,r} B_{m,r}(1!t_1, 2!t_2, \cdots)
\]

as claimed. \(\square\)

Let \(\mathbb{B}_{m,p,j}^r\) be the subset of \(\mathbb{B}_{m,p,j}\) with \(r\) number of nonzero entries. Note that \(B_{m,r}(1!t_1, 2!t_2, \cdots) = q^r B_{m,r}(1!t_1, 2!t_2, \cdots)\) by (1.5), combining (1.3) with Theorem 4.2 we have

Corollary 4.3. For any integers \(m, p, j, r \geq 0\), there holds

\[
\sum_{B \in \mathbb{B}_{m,p,j}^r} \prod_{i \geq 1} t_i^{u_i(B)} = \frac{r!}{m!} B_{m,r}(1!t_1, 2!t_2, \cdots) U_{p,j,r} .
\]

Using (1.5) and comparing the coefficient of \(t_1^{r_1} t_2^{r_2} \cdots t_m^{r_m}\) in Corollary 4.3 one can obtain that

Corollary 4.4. The number of \(p \times j\) bipartite matrix compositions of \(m\) in \(\mathbb{B}_{m,p}^{j,r}\) with nonzero entries of type \(1^{r_1} 2^{r_2} \cdots m^{r_m}\) is

\[
\binom{r}{r_1, r_2, \cdots, r_m} \sum_{i=0}^{\lceil \frac{r}{j+1} \rceil} (-1)^i \binom{p}{i} \frac{(p + r - i(j + 1) - 1)}{p - 1} .
\]

Example 4.5. Let \(T(x) = 1 + x\), then Theorem 4.2 signifies that the number of \(p \times j\) bipartite matrix compositions of \(m\) with nonzero summands 1 or, in other words, of \(p \times j\) bipartite \((0,1)\)-matrices with \(m\) ones is counted by \(U_{p,j,m}\). Specializing to \(p = m + 1\), we have

\[U_{m+1,j,m} = \sum_{i=0}^{\lceil \frac{r}{j+1} \rceil} (-1)^i \binom{m+1}{i} \binom{2m - i(j + 1)}{m} .
\]

Note that the number \(\frac{1}{m+1} U_{m+1,j,m}\) counts the unlabeled plane trees on \(m+1\) vertices in which every vertex has outdegree not greater than \(j\). Klarner [12] first considered this problem, which
was solved by Chen [6] and later by Mansour and Sun [15]. Then it is clear that \(U_{m+1,j,m} \) counts the unlabeled double rooted plane trees on \(m + 1 \) vertices in which every vertex has outdegree not greater than \(j \). We leave it as an open problem to find the bijection between these two settings.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous referees for the helpful suggestions and comments. The work is supported by The National Science Foundation of China (10726021).

REFERENCES

[1] M. Abbas and S. Bouroubi, On new identities for Bell's polynomials, *Discr. Math.* 293 (2005) 5–10.
[2] G.E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass., 1976.
[3] E. T. Bell, Partition Polynomials, *Annals Math.* 29 (1927) 38–46.
[4] A. Björner and R. P. Stanley, An analogue of Young's lattice for compositions, 2005, http://arxiv.org/abs/math.CO/0508043
[5] L. Carlitz, Restricted compositions, *The Fibonacci Quart.*, 14 (1976), 254-264.
[6] W.Y.C. Chen, A general bijective algorithm for trees, *Proc. Natl. Acad. Sci. USA* 87 (1990) 9635–9639.
[7] P. Chinn and S. Heubach, Compositions of \(n \) with no occurrence of \(k \), *Congr. Numer.*, 164 (2003), 33–51.
[8] L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht-Holland, 1970.
[9] S. Heubach and T. Mansour, Compositions of \(n \) with parts in a set, *Congr. Numer.*, 168 (2004), 127–143.
[10] S. Heubach and T. Mansour, Counting Rises, Levels and Drops in Compositions, *INTEGERS: Electronic Journal of Combinatorial Number Theory* 5 (2005), #A11.
[11] I.P. Goulden, D.M. Jackson, *Combinatorial Enumeration*, John Wiley, New York, 1983.
[12] D.A. Klarner, Correspondences between plane trees and binary sequences, *J. Combin. Theory, Ser. A.* 9 (1970) 401–411.
[13] A. Knopfmacher and H. Prodinger, On Carlitz compositions, *European J. of Combinatorics* 19 (1998), 579–589.
[14] A. Knopfmacher and N. Robbins, Compositions with parts constrained by the leading summand, *Ars Combinatoria*, to appear.
[15] T. Mansour and Y. Sun, Dyck Paths and partial Bell polynomials, *Austr. J. Combinatorics*, to appear.
[16] T. Mansour and Y. Sun, Bell polynomials and \(k \)-generalized Dyck paths, *Disc. Appl. Math.*, to appear.
[17] D. Merlini, F. Uncini and M. C. Verri, A unified approach to the study of general and palindromic compositions, *INTEGERS: Electronic Journal of Combinatorial Number Theory* 4 (2004), #A23.
[18] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Univ. Press, Cambridge, 1999.
[19] H. Wilf, *Generatingfunctionology*, Academic Press, New York, 1990.