Vertical WSe$_2$ -MoSe$_2$ p-n heterostructure with tunable gate rectification

Hailiang Liu$^{a, b}$, Sajjad Hussain$^{a, b}$, Ali Asif$^{a, b}$, Bilal Abbas Naqvi$^{a, b}$, Dhanasekaran Vikramanc, Woonyoung Jeong$^{a, b}$, Wooseok Songd, Ki-Seok And and Jongwan Jung$^{*a, b}$

aGraphene Research Institute, Sejong University, Seoul 143-747, Republic of Korea
bInstitute of Nano and Advanced Materials Engineering, Sejong University, Seoul 143-747, Republic of Korea
cDivision of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 046 20, Republic of Korea
dThin Film Materials Research Group, Korea Research Institute of Chemical Technology, Daejon 305-600, Korea

*Corresponding author E-mail: jwjung@sejong.ac.kr (Jongwan Jung)

Keywords: MoSe$_2$, WSe$_2$, MoSe$_2$/WSe$_2$ Heterostructures, Sputtering, p-n junction, rectification ratio
Figure S1. (a-c) FESEM elemental mapping images of WSe$_2$/MoSe$_2$ (a) Mo, (b) W and (c) Se elements.
Figure S2. XPS survey scans for (a) WSe$_2$ and (b) MoSe$_2$.
Figure S3. XPS survey scans of MoSe$_2$/WSe$_2$ heterostructure.