A Comparison of Fixed Cost Based Transmission Pricing Methods

M. Murali*, M. S. Kumari, M. Sydulu

Electrical Engineering Department, National Institute of Technology, Warangal, 506004, India

Abstract In the restructured power market, it is necessary to develop an appropriate pricing scheme that can provide the useful economic information to market participants, such as generation, transmission companies and customers. Proper pricing method is needed for transmission network to ensure reliability and secure operation of power system. Accurately estimating and allocating the transmission cost in the transmission pricing scheme still remains challenging task. This paper gives an overview of different costs incurred in transmission transaction, types of transmission transactions and the transmission pricing methodologies. Embedded as well as Incremental cost methods are explained. It mainly focused on determining the embedded transmission cost by various methods and compared the results for 6bus, IEEE 14bus and RTS 24 bus systems.

Keywords Bialek Tracing, Embedded Cost, GGDF, MVA-Mile, MW-Mile, Postage Stamp, Tracing

1. Introduction

The rapidly changing business environment for electric power utilities all around the world has resulted in unbundling of services provided by these utilities. With the introduction of restructuring into the electric power industry, the price of electricity has become the focus of all activities in the power market. The objective of transmission pricing is to recover all or part of the existing and new cost of transmission system. Pricing of transmission services plays a crucial role in determining whether providing transmission crucial role in determining whether providing transmission services is economically beneficial to both the wheeling utility and the wheeling customers. Engineering analysis which deals mainly with determining the feasibility and the cost of providing transmission services is only one of many considerations in the overall process of pricing transmission services. So, it is important to distinguish between transmission costs and prices.

1.1. Categories of Transmission Transactions

The following are the categories[2,3] of transmission transactions:

1.1.1. Firm Transmission Transactions

These transactions are not subject to discretionary interruptions and are specified in terms of MW of transmission capacity that must be reserved for the transaction. The transco makes arrangements for enough capacity on the network to meet these transaction needs. These could either be on a long-term basis, in the order of years or on short-term contracts (up to one year).

1.1.2. Non-firm Transmission Transactions

These transactions may be curtable or as-available. Curtailable transactions are ongoing transactions that may be curtailed at the utility's discretion. As-available transactions are short-term, mainly economy, transactions that take place when transmission capacity becomes available at specific areas of the system at specific times.

1.1.3. Long-term Transmission Transactions

A long-term transaction takes place over a period spanning several years. Long-term transmission transaction is long enough to allow building new transmission facilities. Transmission service provided as part of long-term firm power sales is an example of long-term transaction[3].

1.1.4. Short-term Transmission Transactions

A short-term transmission transaction may be as short as a few hours to as long as a year or two and as such are not generally associated with transmission reinforcements. Short term transaction may be a bilateral contract or pool trading[3].

1.2. Components of the Transmission Cost

The major components of the transmission cost of transmission transactions are[17]
1.2.1. Operating Cost
This is the cost due to generation rescheduling and reschedules to minimize the system losses, relieve congested transmission lines and enhance the system voltage profile.

1.2.2. Opportunity Cost
Benefits of all the transactions that the utility forgoes due to operating constraints. It is defined as costs that may be encountered in the transmission constrained case where the wheeling may prevent the transmission capacity. In other words it is the profit obtained to ISO during congestion in the system.

1.2.3. Reinforcement Cost
Capital cost of new transmission facilities needed to accommodate the transaction. It also includes the installation of additional reactive power resources to support the transaction.

1.2.4. Embedded Cost
The allocated cost of existing transmission facilities used by the transmission transaction. It includes:
Investment costs (including returns and depreciation of capital equipment) which is the highest proportion of the overall cost.
Administrative and general costs including scheduling and coordination services, billing and accounting staff, and salaries.
Investment for operation and maintenance costs.
Cost of voltage control and reactive power support.
Operating cost, opportunity cost and reinforcement cost constitute the incremental cost of the transmission transaction. Incremental costs are two types. They are short run and long run incremental costs. "Short-Run Incremental Cost" refer to operating cost and opportunity cost, "Long-Run Incremental Cost" refers to operating cost, opportunity cost and reinforcement cost. "Congestion Cost" is also called opportunity cost and "Embedded Cost" is also called existing system cost.

2. Transmission Pricing Methods
The main objective of any transmission pricing method is to recover the transmission system cost plus some profit. Transmission pricing methods are the overall processes of translating transmission costs into overall transmission charges. These methods are shown in Figure 1:

2.1. Incremental Transmission Pricing
These pricing methods allocate the incremental cost (i.e., variable cost) of the transmission transaction. Figure 2 shows different types of incremental pricing methods.

2.1.1. Short-run Incremental Cost Pricing (SRIC)
This pricing methodology entails evaluating and assigning the operating costs associated with a new transmission transaction to that transaction. The transmission transaction operating costs can be estimated using an optimal power flow (OPF) model that accounts for all operating constraints including transmission system (static or dynamic security) constraints and generation scheduling constraints.

2.1.2. Long-run Incremental Cost Pricing (LRIC)
This pricing methodology entails evaluating all long-run costs (operating and reinforcement costs) necessary to accommodate a transmission transaction and assigning such costs to that transaction. The reinforcement cost component of a transmission transaction can be evaluated based on the changes caused in long-term transmission plans due to the transmission transaction.

2.1.3. Short-run Marginal Cost Pricing (SRMC)
The short-run marginal cost of a Transco is the cost of supplying an additional 1 MW of power in a transaction. SRMC is the difference in marginal costs of supply bus and delivery bus. The marginal costs of two buses can be determined from the optimal power flow solution as the dual variables associated with the demand balance equation. The transaction price can be determined by multiplying the power transaction with the SRMC to obtain SRMC based price. [4,5,6,7] SRMC takes into consideration the variable costs incurred by the transaction i.e., the operating cost but not the reinforcement cost.

\[
SRMC_i = \sum_{i \in B} BMC_i \times P_{i,t} \tag{1}
\]

where, BMC is the bus i marginal cost, P is the injected power at bus i due to transaction t and B is the set of transmission buses involved in the transaction t. The bus marginal cost of power can be calculated using OPF sensitivity methods[12].

SRMC over the life of the transaction could be estimated using a detailed chronological production simulation model that incorporates all transmission constraints. SRMC prices for a transmission transaction can be negative.

Merits
- Gives correct price signals to generators and loads for ef-
2.1.4. Long-run Marginal Cost Pricing (LRMC)

LRMC determines the present value of future investments required to support a marginal increase in demand at different locations in the system, based on peak scenarios of future demands and supply growth[8]. In this pricing methodology the marginal operating and reinforcement costs of the power system are used to determine the prices for a transmission transaction.

2.2. Embedded Transmission Pricing

These pricing methods allocate the embedded system costs i.e., fixed cost among transmission system users. Embedded pricing methods can be categorized as in Figure 3:

![Figure 3. Types of embedded transmission pricing methods.](Image)

2.2.1. Network Based Methods

These methods depend on the structure of the transmission system but do not recognize the physical laws governing its operation[8].

a) Postage Stamp Method

Postage-stamp rate method is traditionally used by electric utilities to allocate the fixed transmission cost among the users of firm transmission service. This method is an embedded cost method, which is also called the rolled-in embedded method. This method does not require power flow calculations and is independent of the transmission distance and network configuration. The magnitude of the transacted power for a particular transmission transaction is usually measured at the time of system peak load condition:

\[R_T = TC \times (P_t/P_{peak}) \]

(2)

Where \(R_T \) is the transmission price for transaction \(t \), \(TC \) is the total transmission charges and \(P_t \) and \(P_{peak} \) are transaction load and the entire system load at the time of system peak load condition[13]. The main purpose of using this methodology is the entire system is considered as a centrally operated integrated system. This method is simpler. Since this method ignores the actual system operation, it is likely to send incorrect economic signal to transmission customers.

b) Contract Path Method

In this method a specific path between the points of delivery and receipt is selected for a wheeling transaction. This path is called the “contract path” and is selected by the utility company and the wheeling customer usually without performing a power flow study to identify the transmission facilities that are actually involved in the transaction[13]. This method also ignores the actual system operation.

c) Distance Based MW-Mile Method

This method allocates the transmission charges based on the magnitude of transacted power and the geographical distance between the delivery point and the receipt point i.e., it is the product of power due to a transaction times the distance this power travels in the network[8]. This method is DC power flow based method.

\[TC = TC \times \sum_{i=1}^{n} C_{ik} L_{ik} MW_{ik} \]

(3)

In (3) \(TC_t \) =cost allocated to transaction \(t \)

\(TC \) =total cost of all lines in $ \n
\(L_k \) =length of line \(k \) in mile \n
\(C_k \) =cost per MW per unit length of line \(k \) \n
\(MW_{ik} \) =flow in line \(k \), due to transaction \(t \) \n
\(T \) =set of transactions \n
\(K \) =set of lines

d) MVA-Mile Method

The MVA-Mile method is an extended version of the MW-Mile method. It takes into consideration both real power and reactive power where as MW-Mile method considers only real power. This method also allocates the transmission charges based on the magnitude of power and the geographical distance between the delivery point and the receipt point. This method is AC power flow based method.

2.2.2. Flow Based Methods

This approach allocates the charges of each transmission facility to a wheeling transaction based on the extent of use of that facility by the transaction. This is determined as a function of magnitude, the path, and the distance travelled by the transacted power. The flow based methods are Bialek tracing method and Distribution factors method.

a) Bialek Tracing Method

This algorithm works only on lossless flows when the flows at the beginning and end of each line are the same. The simplest way of obtaining lossless flows from the lossy ones is by assuming that a line flow is an average over the sending and receiving end flows and by adding half of the line loss to the power injections at each terminal node of the line[14].

The total flow \(P_i \) through node \(i \) (i.e., the sum of inflows or outflows) may be expressed, when looking at the inflows as[15]

\[P_{ij}^g = P_{ij}^g \sum_{k=1}^{n} [A_{ik}]_{jk} P_{ck}^g; j \in \alpha_i^d \]

(4)

In (4)

\[P_{ij}^g = \sum_{j \neq i} P_{ij}^g + P_{ii} \]

\([A_{ij}]_{ij} = 1 \]
\[j \in \alpha_i^u \]

and

\[P_{ij}^g = \text{an unknown gross line flow in line i-j} \]

\[P_{i}^g = \text{an unknown gross nodal power flow through node i} \]

\[A_{iu} = \text{upstream distribution matrix} \]

\[P_{Gk} = \text{generation in node k} \]

\[\alpha_i^d = \text{set of nodes supplied directly from node i} \]

\[\alpha_i^u = \text{set of buses supplying directly to bus i} \]

b) Distribution Factors Method

Distribution factors are calculated based on DC load flows. These factors are used to determine the impact of generation and load on transmission flows. The various distribution factors are Generation shift distribution factors (GSDF’s) and Generalized Generation/ load distribution factors (GGDF’s/GLDF’s) have been used extensively in power system security analysis to approximate the transmission line flows and generation /load values. GSDF’s or A factors provide line flow changes due to a change in generation. These factors can be used in determining maximum transmission flows for bounded generation and load injections. GGDF’s are applied to estimate the contribution by each generator\cite{15,16} to the line flow on the transmission grid and GLDF’s determine the contribution of each load to line flows.

3. Results

Tables 1 to 8 present the cost of one MW generation for each generator using various pricing methods applied to 6 bus system, IEEE-14 bus system and RTS 24 bus systems. 6 bus system\cite{19} has generators at bus numbers 1, 2, 3. In this paper line lengths are assumed to be proportional to the line reactance. For transformers line lengths are neglected and are taken as zero. Postage stamp method doesn’t consider system line lengths, and hence gives a very inferior result compared to other methods. MW-Mile method uses DC power flow solution and accounts for line lengths. MVA-Mile method uses AC power flow and also accounts for the line lengths. GGDF method uses DC power flow and Power transfer Distribution factors for pricing and traces the actual power flow of each line by each participant. Bialek tracing method uses AC power flow algorithm and it also traces the actual power flow of each line by each participant. The results shows that, power flow tracing based methods present more accurate pricing compared to postage stamp method, MW-Mile method and MVA-Mile method. Tables 1, 2, 3, 4 illustrates cost per MW generation for each generator using various methods for IEEE-14 bus system\cite{18} which has Generators at bus numbers 1, 2.Flow based Bialek tracing method is the best way of transmission pricing, which considers AC power flow and total line flows. Table 8 demonstrates the results obtained for RTS 24 bus system\cite{20} containing 10 generators. In all the methods for all bus systems transmission charges are allocated to generators only.

Table 1. Postage Stamp Method Results for 6 Bus System

Line k	Line cost \(C_i \) (\$)		
G1	G2	G3	
\(C_i^{MW1k} \)	\(C_i^{MW2k} \)	\(C_i^{MW3k} \)	
1	10	97.05	97.05
2	10	145.647	145.647
3	10	118.766	118.766
4	10	9.9452	9.9452
5	10	110.92	110.92
6	10	51.64	51.64
7	10	88.094	88.094
8	10	64.42	64.42
9	10	145.39	145.39
10	10	14.028	14.028
11	10	5.699	5.699
Total	110	851.5992	851.5992

Loss cost (\$) 84.46295
Total cost of each generator (\$) 879.75
Total cost (\$) 2639.26
Each transaction cost (\$) 36.666

Cost (\$/MW) 0.3381 0.7333 0.6111

Table 2. MW-Mile Method Results for 6 Bus System

Line k	Line cost \(C_i \) (\$)		
G1	G2	G3	
\(C_i^{LM1k} \)	\(C_i^{LM2k} \)	\(C_i^{LM3k} \)	
1	5780	48799.306	48799.306
2	2890	40043.035	40043.035
3	4630	51091.240	51091.240
4	2890	1785.7399	1785.7399
5	2890	31286.763	31286.763
6	5780	31248.418	31248.418
7	4050	33450.487	33450.487
8	6940	39168.677	39168.677
9	1160	17369.841	17369.841
10	11560	15585.863	15585.863
11	5780	577.7244	577.7244
Total	54350	310407.1	310407.1

Total cost (\$) 931221.297755
Each transaction cost (\$) 18116.666
Cost (\$/MW) 181.1667 362.3333 301.9444
Table 3. MVA-Mile Method Results for 6 Bus System.

Line k	Line cost	$C_{li}(\$)$	MVA-Mile method		
			$C_{iL_{MW_{1,k}}}$	$C_{iL_{MW_{2,k}}}$	$C_{iL_{MW_{3,k}}}$
1	5780	62662.8052	62662.8052	62662.8052	
2	2890	47445.2794	47445.2794	47445.2794	
3	4630	59595.4346	59595.4346	59595.4346	
4	2890	10631.3720	10631.3720	10631.3720	
5	2890	57534.290	57534.290	57534.290	
6	5780	46444.7241	46444.7241	46444.7241	
7	4050	41204.1692	41204.1692	41204.1692	
8	6940	76575.1978	76575.1978	76575.1978	
9	1160	30106.1825	30106.1825	30106.1825	
10	11560	18560.1565	18560.1565	18560.1565	
11	5780	17827.2732	17827.2732	17827.2732	
Total	54350	468586.885	468586.885	468586.885	

Total cost ($) 1405760.655195
Each transaction cost ($) 18116.666
Cost ($/MW) 167.0674

Table 4. GGDF Method and Bialek Tracing Method Results for 6 Bus System.

Line k	Line cost	$C_{li}(\$)$	GGDF method	Bialek Tracing method				
			$C_{iL_{MW_{1,k}}}$	$C_{iL_{MW_{2,k}}}$	$C_{iL_{MW_{3,k}}}$	$C_{iL_{MW_{1,k}}}$	$C_{iL_{MW_{2,k}}}$	$C_{iL_{MW_{3,k}}}$
1	5780	200960.504	35530.054	19032.529	168052.644	19032.529		
2	2890	103219.682	6108.325	10801.098	126504.836	10801.098		
3	4630	136657.198	18674.924	2058.401	164786.76	2058.401		
4	2890	27007.031	21371.361	43021.173	3244.213	43021.173		
5	2890	5478.859	47746.705	40634.726	35534.37	40634.726		
6	5780	36626.461	47000.107	10118.685	33306.705	10118.685		
7	4050	69622.344	47810.813	17081.696	40071.716	17081.696		
8	6940	11617.052	15767.633	113355.452	2359.0183	113355.452		
9	1160	12781.947	5942.611	33384.964	907.872	33384.964		
10	11560	49460.832	22753.456	25456.698	36607.791	25456.698		
11	5780	29615.045	1510.971	26370.900	6068.986	26370.900		
Total	54350	683046.962	270216.965	341316.327	617444.916	270216.965		

Total cost ($) 1294580.25535
Each transaction cost ($) 28676.169
Cost ($/MW) 226.888

Table 4. GGDF Method and Bialek Tracing Method Results for 6 Bus System.

Line k	Line cost	$C_{li}(\$)$	GGDF method	Bialek Tracing method				
			$C_{iL_{MW_{1,k}}}$	$C_{iL_{MW_{2,k}}}$	$C_{iL_{MW_{3,k}}}$	$C_{iL_{MW_{1,k}}}$	$C_{iL_{MW_{2,k}}}$	$C_{iL_{MW_{3,k}}}$
1	5780	200960.504	35530.054	19032.529	168052.644	19032.529		
2	2890	103219.682	6108.325	10801.098	126504.836	10801.098		
3	4630	136657.198	18674.924	2058.401	164786.76	2058.401		
4	2890	27007.031	21371.361	43021.173	3244.213	43021.173		
5	2890	5478.859	47746.705	40634.726	35534.37	40634.726		
6	5780	36626.461	47000.107	10118.685	33306.705	10118.685		
7	4050	69622.344	47810.813	17081.696	40071.716	17081.696		
8	6940	11617.052	15767.633	113355.452	2359.0183	113355.452		
9	1160	12781.947	5942.611	33384.964	907.872	33384.964		
10	11560	49460.832	22753.456	25456.698	36607.791	25456.698		
11	5780	29615.045	1510.971	26370.900	6068.986	26370.900		
Total	54350	683046.962	270216.965	341316.327	617444.916	270216.965		

Total cost ($) 1294580.25535
Each transaction cost ($) 28676.169
Cost ($/MW) 226.888
Table 5. Postage Stamp Method Results for IEEE-14 Bus System.

Line k	Line cost	Postage stamp method
	C_4 MW1,k	C_4 MW2,k
1	784.4853	784.4853
2	377.4858	377.4858
3	366.3253	366.3253
4	280.5858	280.5858
5	207.5823	207.5823
6	118.1756	118.1756
7	308.2598	308.2598
8	140.3549	140.3549
9	80.3806	80.3806
10	220.4746	220.4746
11	36.7807	36.7807
12	38.9408	38.9408
13	88.7531	88.7531
14	0	0
15	140.3549	140.3549
16	26.1255	26.1255
17	47.11	47.11
18	19.0019	19.0019
19	8.0814	8.0814
20	28.2408	28.2408
Total	3317.499	3317.499
Loss cost ($)	133.942211	
Total cost of each generator ($)	3384.47	
Total cost ($)	6768.94016	
Each transaction cost ($)	100	
Cost ($/MW)	0.43	2.5

Table 6. MW-Mile and MVA-Mile Method Results for IEEE-14 Bus System.

Line k	Line cost	MW-Mile method	MVA-Mile method	
	C_4 MW1,k	C_4 MW2,k	C_4 MW1,k	C_4 MW2,k
1	4375.0468	4375.0468	4680.9	4680.9
2	7931.2383	7931.2383	8431.0044	8431.0044
3	6933.9228	6933.9228	7260.6853	7260.6853
4	4868.756	4868.756	4948.772	4948.772
5	3556.1915	3556.1915	3611.3018	3611.3018
6	2065.1668	2065.1668	2014.3851	2014.3851
7	1312.5645	1312.5645	1321.508	1321.508
8	0	0	0	0
9	0	0	0	0
10	0	0	0	0
11	627.0084	627.0084	815.321	815.321
12	965.0617	965.0617	1046.638	1046.638
13	1109.4895	1109.4895	1248.831	1248.831
14	0	0	0	0
15	0	0	0	0
16	261.7488	261.7488	282.21	282.21
17	1341.242	1341.242	1362.2593	1362.2593
18	269.355	269.355	397.638	397.638
19	144.2427	144.2427	178.554	178.554
20	866.3673	866.3673	1030.715	1030.715
Total	36627.5879	36627.5879	38630.72925	38630.72925
Total cost ($)	73255.175833	77261.457849		
Each transaction cost ($)	1361.675	1361.675		
Cost ($/MW)	6.2177	3.0419	5.8593	3.0419
Table 7. GGDF Method and Bialek Tracing Method Results for IEEE-14 Bus System.

Line k	Line cost C_L_k	GGDF method $C_L_kMW_{1,k}$	GGDF method $C_L_kMW_{2,k}$	GGDF method $C_L_kMW_{3,k}$	Bialek Tracing method $C_L_kMW_{1,k}$	Bialek Tracing method $C_L_kMW_{2,k}$
1	59.17	9075.845	325.752	9306.547	0	0
2	223.04	14634.561	1227.914	16788.656	0	0
3	197.97	11543.006	2324.839	3005.3024	0	0
4	176.32	7892.390	1845.121	8033.773	0	0
5	173.88	5558.716	1553.666	5927.922	0	0
6	171.03	3334.272	796.061	3629.637	0	0
7	42.11	2105.733	519.395	2440.359	0	0
8	0	0	0	0	0	0
9	0	0	0	0	0	0
10	0	0	0	0	0	0
11	198.9	1078.765	175.251	1564.289	124.013	
12	255.81	1635.514	294.609	1982.86	157.196	
13	130.27	1882.477	336.501	2292.032	181.707	
14	0	0	0	0	0	0
15	0	0	0	0	0	0
16	84.5	434.823	88.674	345.759	54.049	
17	270.38	2251.659	430.824	2137.757	334.18	
18	192.07	437.725	100.984	852.085	67.551	
19	199.88	246.963	41.892	359.889	28.531	
20	348.02	1486.422	246.312	2149.112	170.376	
Total	2723.35	63598.877	10307.8025	69627.899	8434.447	

Total cost ($) = 73906.67975 78062.346831
Each transaction cost ($) = 2343.522 379.827 2429.098 294.251
Cost ($/MW) = 10.701 9.4957 10.4452 7.3563

Table 8. Comparison of Various Methods for RTS 24 Bus System.

Method	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10		
Postage stamp method	Total cost = 60082.95	Each transaction cost ($)	34	34	34	34	34	34	34	34		
Cost ($/MW)	-0.126	0.177	0.113	0.057	0.158	0.219	0.085	0.085	0.113	0.0515		
MW-MILE method	Total cost = 277997.312276	Each transaction cost ($)	212.34	212.34	212.34	212.34	212.34	212.34	212.34	212.34		
Cost ($/MW)	-0.585	1.1059	0.7078	0.3593	0.9876	1.3699	0.5309	0.5309	0.7078	0.3217		
MVA-MILE method	Total cost = 271847.739937	Each transaction cost ($)	212.34	212.34	212.34	212.34	212.34	212.34	212.34	212.34		
Cost ($/MW)	-0.792	1.1059	0.7078	0.3593	0.9876	1.3699	0.5309	0.5309	0.7078	0.3217		
GGDF method	Total cost = 862526.4524	Each transaction cost ($)	378.98	199.63	302.87	313.04	94.39	65.43	168.64	164.79	155.09	280.51
Cost ($/MW)	-1.044	1.0398	1.0096	0.5297	0.439	0.4221	0.4216	0.412	0.517	0.425		
Bialek tracing method	Total cost = 262640.92634	Each transaction cost ($)	0	14.45	113.72	391.49	109.11	88.64	124.02	259.301	420.07	602.59
Cost ($/MW)	0	0.0753	0.3791	0.6624	0.5075	0.5719	0.3101	0.6483	1.4	0.913		
4. Conclusions

In this paper embedded cost based methods of transmission pricing have been discussed. Different cost components incurred by the transmission transaction were explained. Case studies of postage stamp method, MW-Mile method, MVA-Mile method, Distribution factors method and Bialek tracing method for 6bus, IEEE14bus and RTS24 bus systems are presented. Postage stamp method for calculating embedded cost provides a very inferior solution compared to other network based and flow based methods. Bialek tracing method is the best way of transmission pricing, among all embedded cost based methods. It is observed that combination of incremental and embedded cost based methods could result in the recovery of true transmission system costs.

ACKNOWLEDGEMENTS

I wish to acknowledge my colleague Rakesh Chandra who helped me a lot in doing this work.

REFERENCES

[1] P.S. Kulkarni, O.P. Yadav, “SRMC based Transmission Pricing for Wheeling Transactions under Deregulated Environment of Power Sector”, IE (I) Journal-EL, May 2008.
[2] R.A.Wakefield, J.S.Graves and J.F.Vojdani, “A transmission services costing framework”, IEEE Transactions on Power systems, vol 12, No.2, May.1997.
[3] D.Shirmohammadi, C.Rajagoapalan, E.R.Alward and C.L.Thomas, “Cost of transmission transactions: An introduction”, IEEE Transactions on Power systems, Nov.’91, pp.1546-1556.
[4] D.Shirmohammadi, P.R.Gribik, E.T.K.Law, J.H.Malinowski and R.E.O Donnel, “Evaluation of transmission network capacity use for wheeling transactions”, IEEE transactions on Power Systems, Oct.’89, pp.1405-1413.
[5] Y.Z.Li and A.K.David, “Wheeling rates of reactive power flow under marginal cost pricing”, IEEE Transactions on Power Systems, Aug.’94, pp.1263-1269.
[6] C.W.Yu and A.K.David, “Pricing transmission services in the context of industry deregulation”, IEEE Transactions on Power Systems, Feb.’97, pp.503-510.
[7] M.C.Caramanis, R.E.Bohn and F.C.schweppe, “The cost of wheeling and optimal wheeling rates”, IEEE Transac-tions on Power Systems, Feb.’86, pp.63-73.
[8] Mohamed A.M.Shaaban, “Cost-based pricing of transmission system services: An overview”, IEEE Conference
[9] M.B. Rosenzweig, J. Bar-Lev, “Transmission Access and Pricing: Some Other Approaches”, Public Utilities Fort-nightly, August 21, 1986, pp. 20-26.
[10] A.S. Holmes, "A Review and Evaluation of Selected
Wheeling Arrangements and a Proposed General wheeling Tariff, FERC Paper, September 1983.

[11] D. Shirmohammadi, "An Engineering Perspective of Transmission Access and Wheeling", Proceedings of the 3rd International Symposium of Specialists in Electric Operational and Expansion Planning (SEPOPE III), Belo- Horizonte, Brazil, 1992.

[12] P.R. Gribik, D. Shirmohammadi, S. Hao, C.L. Thomas, “Optimal Power Flow Sensitivity Analysis“, IEEE Transactions on Power Systems, Vol. 5, No. 3, August 1990, pp. 969-976.

[13] D. Shirmohammadi, Xisto Vieira, Boris Gorenstin, Mario V.P.Pereira, “Some fundamental technical concepts about cost based transmission pricing", IEEE Transactions on Power Systems, Vol. 11, No. 2, May 1996.

[14] J. Bialek, “Tracing the flow of electricity”, IEE Proc. Gener. Transm. Distrib., Vol 143, No.4 July 1996.

[15] Mohammad Shahidehpour, Hatim Yamin, Zuyi Li, “Market operations in Electric Power Systems”, New York: Wiley, 2002.

[16] O.P. Rahi, Y.R. Sood, R.C. Chauhan, “Transmission pricing methodologies under restructured environment: An overview”, NPSC 2004 paper.

[17] Kankar Bhattacharya, Math H.J. Bollen, Jaap E. Daalder, “Operation of Restructured Power Systems”, Springer, 2001.

[18] P.K. Iyambo, R. Tzoneva, “Transient Stability Analysis of the IEEE 14-Bus Electric Power System”, IEEE conference, Africon 2007.

[19] Ching-Tzong Su, Ji-Horng Liaw, “Power wheeling pricing using power tracing and MVA-KM method”, IEEE Power Tech Conference, Porto, Portugal, 2001.

[20] P.F. Albrecht, M.P. Bhavaraju, B.E. Biggerstaff, R. Billinton, G. Else Jorgensen, N.D. Reppen, P.B. Shortley, “IEEE Reliability Test System”, IEEE Transactions on Power Apparatus and Systems, Vol. 1, PAS-98, No. 6, Nov./Dec. 1979, pp. 2047-2054.

[21] Orfaros G.A, Tziasiou G.T, Georgilakis P.S, Hatziargyriou N.D, “Evaluation of transmission pricing methodologies for pool based electricity markets”, IEEE conference, Power Tech, 2011.

[22] Manescu L.G, Rusinaru D, Dadulescu P, Anghelina V, “Usage based cost allocation for transmission cost under open access”, IEEE conference, Power Tech, 2009.

[23] Majidi Q.M, Ghazizadeh M.S, Afsharmia S, “A novel approach to calculate transmission embedded cost based on MW-Mile method under deregulated environment”, IEEE conference, Electric Power Conference, 2008.

[24] M.Yi, B. Jeyasurya, “Investigation of transmission cost allocation using a power flow tracing method”, Proceedings of IEEE Power Engineering Society General Meeting, June 2007, pp. 1-7.

[25] N. Kumar, Y.R.V. Reddy, D. Das, N.P. Padhy, “Allocation of transmission charge by using MVA-Mile approaches for restructured Indian power utility”, IEEE conference, Power and Energy Society General Meeting, 2011.

[26] Ghayeni M, Ghazi R, “Transmission network cost allocation with nodal pricing approach based on Ramsey pricing concept”, IET Journal on Generation, Transmission & Distribution, 2011, pp. 384-392.

[27] Yog Raj Sood, Narayana Prasad Padhy, H.O. Gupta, “A new method for allocating embedded cost of transmission under deregulated environment of power system”, IEEE conference, Power Engineering Society General Meeting, 2006.

[28] R. Bhakar, V.S. Sriram, N.P. Padhy, H.O. Gupta, “Probabilistic Game approaches for network cost allocation”, IEEE Transactions on Power Systems, vol. 25, No. 1, February 2010.

[29] Alves C.C, Saavedra O.R, Vargas A, Arias M, Paucar V.L, “Transmission network cost allocation considering counter-flows”, IEEE Latin America Transactions, vol. 9, No. 3, June 2011, pp. 322-330.