Eligibility of persons who inject drugs for treatment of hepatitis C virus infection

Amber Arain, Geert Robaeys

Amber Arain, Geert Robaeys, Department of Gastroenterology and Hepatology, Ziekenhuis Oost-Limburg, 3600 Genk, Belgium
Amber Arain, Geert Robaeys, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
Geert Robaeys, Department of Hepatology, UZ Leuven, 3000 Leuven, Belgium

Author contributions: Arain A and Robaeys G contributed equally to this work; both authors performed the literature review and wrote the paper.

Supported by Limburg Clinical Research Program (LCRP) and by the Limburg Sterk Merk Foundation of Hasselt University, Ziekenhuis Oost-Limburg and Jessa Hospital

Correspondence to: Geert Robaeys, MD, PhD, Department of Gastroenterology and Hepatology, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600 Genk, Belgium. geert.robaeys@zol.be
Telephone: +32-89-326505 Fax: +32-89-327916
Received: November 20, 2013 Revised: April 3, 2014 Accepted: May 19, 2014 Published online: September 28, 2014

Abstract

In this decade, an increase is expected in end-stage liver disease and hepatocellular carcinoma, most commonly caused by hepatitis C virus (HCV) infection. Although people who inject drugs (PWID) are the major source for HCV infection, they were excluded from antiviral treatments until recently. Nowadays there is incontrovertible evidence in favor of treating these patients, and substitution therapy and active substance use are no longer contraindications for antiviral treatment. The viral clearance in PWID after HCV antiviral treatment with interferon or pegylated interferon combined with ribavirin is comparable to the viral clearance in non-substance users. Furthermore, multidisciplinary approaches to delivering treatment to PWID are advised, and their treatment should be considered on an individualized basis. To prevent the spread of HCV in the PWID community, recent active PWID are eligible for treatment in combination with needle exchange programs and substitution therapy. As the rate of HCV reinfection is low after HCV antiviral treatment, there is no need to withhold HCV treatment due to concerns about reinfection alone. Despite the advances in treatment efficacies and data supporting their success, HCV assessment of PWID and initiation of antiviral treatment remains low. However, the proportion of PWID assessed and treated for HCV is increasing, which can be further enhanced by understanding the barriers to and facilitators of HCV care. Removing stigmatization and implementing peer support and group treatment strategies, in conjunction with greater involvement by nurse educators/practitioners, will promote greater treatment seeking and adherence by PWID. Moreover, screening can be facilitated by noninvasive methods for detecting HCV antibodies and assessing liver fibrosis stages. Recently, HCV clearance has become a major endpoint in the war against drugs for the Global Commission on Drug Policy. This review highlights the most recent evidence concerning HCV infection and treatment strategies in PWID.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Hepatitis C virus; Persons who inject drugs; Methadone; Sustained viral response; Adherence

Core tip: People who inject drugs are considered to be the main reservoir for hepatitis C virus (HCV) infection. Accumulating evidence indicates that HCV-infected injection drug users can be successfully treated, and the earlier they are treated, the better the outcome. Therefore, in the future, the barriers for antiviral treatment for these individuals must be overcome. This topic highlight presents the most recent data concerning HCV infection and treatment of injection drug users.

Arain A, Robaeys G. Eligibility of persons who inject drugs for treatment of hepatitis C virus infection. World J Gastroenterol
INTRODUCTION

At the end of the nineties (1997) substance users were excluded from antiviral therapy against hepatitis C virus (HCV) infection\[41\]. However, a great deal of evidence, accumulated between 2000 and 2005, showed a favorable outcome of HCV antiviral therapy in persons who inject drugs (PWID), and by 2009, they were no longer excluded from antiviral therapy in the American Association for the Study of Liver Diseases guidelines[3]. Since then, the International Network on Hepatitis in Substance Users (www.inhsu.com) has organized forums at three international symposia distributing substantial information on the epidemiology and management of substance users infected with HCV, portions of which have been published in a supplemental issue of Clinical Infections Diseases[4-5]. Indeed, international recommendations for the treatment of HCV infection in PWID have recently been published[8] and are being integrated into the European guidelines for HCV management[9]. In addition, the eradication of HCV has become an actionable, evidence-based recommendation for constructive legal and policy reform of the Global Commission on Drug Policy[7]. In view of the recent changes, this article aims to review and highlight new aspects concerning HCV infection in PWID.

HCV INFECTION AMONG PWID

HCV infection is one of the leading causes of chronic liver disease, and the prevalence of liver cirrhosis is increasing[8,9]. In developed countries, 50%-80% of HCV infection occurs in current and former PWID[5,10]. The prevalence of HCV among PWID is approximately 65%, and can reach as high as 80% in long-term users[11,12]. There are multiple strains of HCV, and PWID are generally infected with genotypes 1a, 1b, and 3a[13], though genotype 4d is common among PWID in Europe[14,15], and genotype 6 is found in those from Southeast Asia[16,17]. Factors associated with HCV infection in PWID include sex (female)[18], ethnicity[19,20], unstable housing[21], frequent injection of cocaine[22-24], imprisonment[25], presence of injecting social-networks[26,27] and sharing of injection equipment[22,27].

Disease progression and diagnosis

Progression to chronic HCV (CHC) infection occurs in 75% of cases, with cirrhosis developing over two to three decades in 10%-20%[28-30]. HCV disease progression is slow and depends on the presence of several cofactors such as age[9], continued moderate to heavy alcohol consumption[31-33], HIV[34,37], obesity[38,39], insulin resistance[40,41], daily cannabis[42,43] and daily tobacco use[43]. However, coffee consumption is associated with lower necro-inflammatory activity and less advanced fibrosis[46-49]. There have been no reports of liver toxicity with heroin[50] or methadone[51], though buprenorphine occasionally increases transaminases[52], and methylenedioxymetamphetamine rarely causes acute liver failure due to direct liver toxicity[53-56].

The ageing population of PWID with CHC infection combined with low treatment uptake are leading to an increase in the burden of HCV related morbidity and mortality[57-59]. In many countries where PWID are the largest population affected by HCV, 15%-30% of deaths are from drug-related causes, 20%-25% of deaths are from liver disease[59] and liver failure, which increases over time, becomes the most common cause of death by the end of follow-up[55,60].

There are various techniques available to assess liver disease progression and liver fibrosis, though the gold standard is diagnosis from liver biopsy[53]. However, non-invasive methods have a greater acceptance among patients, including transient elastography (Fibroscan), which has been shown to enhance liver disease screening among PWID[64,65] and acoustic radiation force impulse imaging.

HCV TREATMENT

Treatment of PWID

A treatment for HCV infection combines pegylated interferon (Peg-IFN) and ribavirin (RBV), which is safe and effective in PWID[66-69] and has been recommended by international guidelines[5,6]. In CHC treatment trials, the median sustained virologic response (SVR) rate among PWID is 54.3%, and is comparable to rates among non-PWID[60]. In CHC patients infected with genotype 1, therapy with direct acting agents (DAA) combined with Peg-IFN and RBV enhances treatment response[70-72], though the first cohort studies on the outcome of DAA therapy in substance users are underway. Studies evaluating drug interactions, including combinations of telaprevir and boceprevir with methadone[101] and buprenorphine[102], found no clinically important interactions[49]. Furthermore, there is currently no indication that history of substance use, substitution therapy or active substance use influences SVR[103-105].

It is important to note that PWID are typically younger[80], are infected with genotype 3 and have mild liver disease[72] compared to non-substance users, which are characteristics associated with favorable HCV treatment outcome[9]. However, treatment of HCV-infected PWID is complicated by their complex social, medical and psychiatric comorbidities[108], lack of HCV knowledge and inaccurate perceptions of patients[107-110]. Other factors that may prevent HCV-infected PWID from seeking treatment include age[111], being of an ethnic minority[111], former or ongoing drug[112,114] and alcohol use[111,112], advanced liver disease[113], comorbid diseases[114], psychiatric disease[111,113] and opioid substitution treatment[5,112]. In order to overcome these barriers, recent guidelines
recommend linking PWID to social support services and peer support by providing pre-therapeutic education and counseling about the impact of alcohol, cannabis, tobacco and drug use on their life[8]. HCV treatment for PWID should be considered on an individualized basis and delivered within a multidisciplinary team setting[5].

Treatment of active PWID

Acceptable treatment outcomes, with a low rate of re-infection (2.4 per 100 patient years), can be achieved in actively injecting PWID, as they show high adherence to treatment (82%)[13]. The first randomized controlled trial among active PWID reported that the delivery of directly observed therapy (DOT) with Peg-IFN and self-administered (SA) RBV within multidisciplinary community health centers was an effective strategy for the treatment of HCV with a low re-infection rate[16]. In this trial nearly 80% completed treatment, two-thirds responded to therapy, and drug use at the time of treatment initiation was not associated with reduced SVR. Additional studies have confirmed that SVR rates are not affected, with an SVR rate of 55.5% among treated PWID that is comparable to rates of 54% and 56% recorded in Peg-IFN plus RBV registration trials[117,118].

Treatment completion and adherence among PWID

Recently, a meta-analysis of 32 studies by Dimova et al[9] found that the treatment completion rate among PWID was 83.4%. Moreover, it has been shown that there is no difference between PWID and non-PWID with respect to treatment adherence[71,80]. However, among studies that compared addiction-treated and untreated PWID during HCV therapy, the higher the proportion of addiction-treated patients, the higher the HCV treatment completion rate. Thus, the assessment of a patient’s social circumstances and the availability of support (in addition to injection behavior) are important aspects to consider when starting HCV treatment.

Review of the literature shows that seven studies have evaluated antiviral treatment adherence in patients with a history of drug use[90,91,96,119,121]. These studies defined adherence differently, and do not present a consensus regarding what adequate treatment adherence is. These studies defined adherence as receiving ≥ 80% of expected Peg-IFN and RBV dosage for ≥ 80% of the expected therapy duration[91,96,119,121], presentation at ≥ 80% of visitation dates[122], fulfillment of the treatment schedule and 6-mo follow-up[96], or being ≥ 80% compliant with the planned cumulative doses of Peg-IFN, RBV and the prescribed duration of treatment[121]. One study reported that patients attending 80% of addiction care sessions demonstrated an adherence of more than 80%[8]. In this study, the consumption of crack and heroin was significantly associated with reduced compliance, with users being five times more likely not to comply. Three of the reports studied adherence in PWID on opioid substitution therapy[96,119,121]. Adherence rates of 68%[8] and 85%[96] were reported for the total population. However, when DOT and SA groups were compared, 67 and 63% of patients were > 80% compliant with Peg-IFN treatment, 50 and 54% were > 80% compliant with RBV treatment, and 67 and 63% were > 80% compliant with the prescribed duration of treatment, respectively[121]. Former drug users also demonstrate an excellent adherence to therapy[123]. In a study evaluating adherence in patients with a history of intravenous drug use, 65% of the 175 patients were considered to be adherent to therapy, as they completed the recommended treatment schedule and attended the follow-up period[124]. An adherence rate of 92% was reported in patients on heroin maintenance[125].

Barriers for HCV antiviral management in PWID

There are barriers for HCV care and management that are present at multiple levels. At the level of government, competing national priorities can impede the healthcare system, and promote a lack of awareness of HCV infection. At the level of the clinical management team, there is often a lack of experience and collaborative networking. There is also a paucity of treatment settings adapted for the needs of PWID[126,128]. The lack of HCV knowledge and the limited infrastructure for treatment in addiction and primary care centers prevents them from treating PWID[106,125,126]. Finally, the patients themselves are an obstacle, and they may not seek treatment because of insufficient awareness of HCV, competing life priorities, fear of side effects, anxieties of being stigmatized, etc.[126,110,127,131].

The stigmatization of HCV patients is an important barrier to receiving HCV care, a topic which has been discussed in great detail by Treloar et al[132]. Patients are stigmatized because of their drug use and their HCV infection. Stigmas perceived by PWID can persist even after reducing or ceasing drug use[133], and can have a negative effect on their mental and physical health[134-136]. The stigma associated with HCV infection negatively impacts the prevention of transmission, the seeking of and adherence to treatment and the overall quality of life[137,141].

Patients can be stigmatized by family members or partners[138], the public[139] and most commonly by healthcare settings[132]. However, trust in healthcare professionals can impact health-related patient behavior, and improving this trust may reduce the associated stigmas and create a willingness to use health services and adherence to treatment[132,149].

STRATEGIES AND TREATMENT MODELS TO IMPROVE HCV CARE IN PWID

The HCV care of patients can be improved by treating comorbidities, side effects and providing all the necessary
support. A multidisciplinary approach to HCV treatment can be provided by utilizing community-based and hospital-based clinics, as well as opioid substitution treatment and drug detoxification centers.[87,92,144-147] For example, the placement of an internist addiction medicine specialist from an opioid substitution program in a hepatitis clinic proved to be an effective and efficient way to deliver HCV evaluation and treatment to patients in opioid substitution therapy.[2] A meta-analysis by Dimova et al.[89] identified “treatment of addiction during HCV therapy” as a parameter leading to higher treatment completion.[86] Integrating HCV care into both primary addiction care and into general practices has also proved to be effective.[145,148-150]

An overview on management of mental health problems in HCV patients with drug addictions by Schaefer et al.[28] indicated that PWID do not have an increased risk of developing major or severe depression during HCV antiviral treatment with IFN. However, it is recommended to make case-by-case decisions and provide antidepressant treatment when needed, especially for patients who are depressed or have a history of depression. It was also shown that the integration of psychologist-led interventions into a hepatology unit increased HCV treatment eligibility in an underserved population with mental health and substance abuse comorbidities.[132] This trial by Evon et al.[132] enrolled 101 HCV patients who were deferred from antiviral therapy owing to mental health or substance abuse. The integrated care intervention group received counseling and case management, including monthly phone and in-person intervention sessions with the hepatology psychologist for up to nine months. In an intent-to-treat analysis, 42% of intervention group participants became eligible for therapy compared to 18% of standard care participants. Additionally, a study by Reimer et al.[133] found that CHC patients (infected with genotype 1/4) who attended at least five psychoeducation sessions showed significantly higher SVR rates.

The involvement of nurse educators/practitioners can greatly improve HCV management. Systematic consultations with a nurse after each medical visit enhanced treatment adherence (74.0% vs. 62.8%) and increased SVR rates (38.2% vs. 24.8%) compared to a conventional follow-up.[134] Psychotherapy provided by a psychiatric nurse along with administration of psychopharmacological medication in an HCV clinic can significantly improve assessment and treatment uptake.[135] A nurse-led model of HCV assessment and treatment developed by Lloyd et al.[90] involved a substantial task transfer from specialist physicians to trained nurses. In this two-year study, 108 patients were treated, including 85 (79%) triaged for specialist review conducted by telemedicine only. Antiviral treatment delivery was found to be both safe (7% treatment discontinuations, 12% serious adverse events) and efficacious (69% SVR for those with completed datasets and 44% by intention-to-treat analysis).

Opioid substitution clinics, which provide substance abuse treatment, have begun to integrate DOT of Peg-IFN and/or RBV in collaboration with a secondary or tertiary setting that is providing the HCV care with favorable results.[100] Grebely et al.[86] observed an end of treatment response in 67% of the subjects despite ongoing drug use in 75% of patients during treatment with an SVR rate of 55%. An SVR rate of 98% was reported in a similar study evaluating the efficacy and tolerability of DOT with Peg-IFN and RBV in 49 opioid-addicted injection drug users.[54]

Other models of HCV treatment incorporating peer support and group treatment are very effective. In these models, peers stimulate each other in developing positive and healthy behaviors, and have been shown to increase the assessment and treatment of HCV.[67,157-161] The group treatment model used by Stein et al.[157] was found to be acceptable by all patients, and no patient expressed discomfort with receiving medical care in a group setting. Of the first 27 patients who initiated the group treatment, 42% achieved an SVR. Results from the nonprofit community clinic OASIS indicate that the peer-based model is successful at engaging, educating and treating a diverse spectrum of chaotic drug users.[101] This model allowed for successful treatment of more challenging HCV patients, including those with active drug use, mental illness and psychosocial instability. In a clinic with only one physician and one or two physician assistants, almost 3500 people were tested and several hundred were treated. The peer-based models show encouraging results not only in assessment and treatment but also in the prevention of HCV.[162-166]

Current knowledge suggests that as no one model meets all the needs of a heterogeneous patient population, offering a range of various settings is the best way to reach the greatest needs of PWID. Close collaboration of all involved health professionals is crucial for every model to be successful. Furthermore, acceptance of the individual circumstances of PWID will determine the level of success of any model of HCV management, rather than rigid exclusion criteria.[158]

Cost-Effectiveness of HCV Management in PWID

As the majority of new HCV infections occur in PWID, successful screening and treatment of this population will prevent new cases and lower costs associated with disease progression.[165-167] Martin et al.[167] determined that HCV case-finding among PWID by offering dried blood spot testing in specialist addiction services or prisons as compared to using venipuncture was cost-effective. However, the cost-effectiveness of prison case-finding interventions depends on adequate continuity of care with the community after release from prison. Another modeling study by this group explored the feasibility of DAA-based HCV treatment as prevention and indicated that scaling-up treatment could lead to substantial reductions in HCV prevalence.[166] However, the cost of treatment may limit its scaling-up, thus, treatment cost also needs to
be addressed.

HCV IN CORRECTIONAL SETTINGS

The prevalence of HCV is much higher in prison inmates than in the general population, ranging from 30%-40%.[108] Furthermore, there is a clear association between the HCV prevalence and inmate history of injection drug use, sex (female) and tattooing.[109] Thus, prisons may be important settings for health intervention such as screening, diagnosis, prevention and treatment of HCV infection. Screening rates could be improved in correctional settings with the introduction of dried blood spot testing[174]. SVR rates for prison patients treated with a combination therapy are comparable to those observed in non-inmate patients, therefore, antiviral treatment in prison may be cost-effective[171]. Prevention and treatment could also be improved if more programs were developed to ensure continuity of care and follow-up upon release or transfer from prisons[172].

REINFECTION AFTER SUCCESSFUL HCV TREATMENT

Frequent testing and viral sequencing are necessary to discriminate between relapse and reinfection in high-risk populations. Guidelines recommend monitoring for HCV reinfection with annual HCV RNA assessments in PWID with ongoing risk behaviors[17]. As ongoing injection drug use after treatment is common, harm reduction and counseling about the risk of reinfection is important[178]. However, rates of HCV reinfection among PWID is low, at approximately 1%-5%[174], even among persons who continue injection drug use during and after treatment. A recent meta-analysis by Aspinall et al[115] reported that the pooled HCV reinfection risk was 2.4 per 100 person-years, suggesting that HCV treatment should not be withheld due to concerns about reinfection alone. Moreover, HCV reinfection after treatment may clear spontaneously[178].

PREVENTION OF HCV TRANSMISSION

HCV prevention strategies in PWID have been described in detail by Page et al[74] who state that it is essential to promote access to sterile injection materials (increased needle/syringe distribution) in combination with strategies to encourage injection cessation, opioid substitution treatment, interventions to reduce risk behaviors, rapid and accurate HCV testing and diagnosis and increased access and initiation of HCV treatment. The impact and feasibility of treatment as a prevention strategy could be substantially increased by future IFN-free DAA treatment regimes with enhanced efficacy (> 90%), once-daily oral-only dosing, reduced toxicity and shortened treatment duration (about 12 wk)[175].

IMPROVEMENTS IN HCV CARE FOR THE FUTURE

There are several changes that can be made to improve the treatment and management of HCV care. Firstly, patients should be treated irrespective of their liver fibrosis stage, which is not the case at this moment in many countries, as a fibrosis stage of at least F2 is a prerequisite to obtain antiviral treatment. Secondly, the risk of reinfection should be an indication for treatment, as people at risk of reinfection are also the ones most likely to further spread the virus. Thirdly, treatment could be increased among PWID by decriminalizing drug use and reducing other barriers to HCV care, such as high treatment costs[176].

Only five countries offer systematic annual screening for infectious diseases to all PWID according to the European Liver Patients Association, and only two countries have governmental funding for a national hepatitis strategy[175]. Thus, systematic screening for HCV infection in PWID needs to be developed. Oral IFN-free regimens are approaching 100% efficacy, but real world effectiveness will remain very low without fundamental change in health care delivery[177]. An increase in instrumental support provided by healthcare professionals is needed. As suggested by the Global Commission on Drug Policy, the war against drugs must be substituted with “drug policy success measurement” indicators that have real meaning in communities, such as reduced rates of HCV infection, fewer overdose deaths, reduced drug market violence, fewer individuals incarcerated and lowered rates of problematic substance abuse[7].

CONCLUSION

PWID are the major reservoir for infectious HCV, and as a result, an increase is expected in compensated and decompensated liver disease and hepatocellular carcinoma in this population. At the end of the nineties, PWID were excluded from antiviral therapy in official guidelines, but nowadays there is incontrovertible evidence supporting treatment of these patients. The guidelines recommend that these patients be considered on an individualized basis for antiviral therapy and that therapy should be provided within a multidisciplinary team setting. Indeed, HCV clearance has recently become a major endpoint in the war against drugs for the Global Commission on Drug Policy.

Although the outcome of antiviral treatment and treatment compliance in PWID is comparable to non-PWID, there are still several barriers to accessing care. By understanding the barriers to and facilitators of HCV care, the proportion of PWID assessed and treated for HCV is being increased. HCV screening has been facilitated by noninvasive methods for detecting HCV antibodies and stage of liver fibrosis. Treatment has been
facilitated by implementing various strategies and models of HCV care that include the integration of psychologists-led interventions, involvement of nurse practitioners and DOT and peer support models. Despite the high prevalence of HCV-infected patients and the favorable outcome of antiviral treatment in custodial settings, the uptake for HCV management needs to be increased substantially. Eligibility of recently active PWID for treatment in combination with needle exchange programs and substitution therapy can help to prevent the spread of HCV in the PWID community. Although HCV screening and treatment in PWID is shown to be cost-effective, the assessment of PWID for antiviral treatment remains low. Despite the irrefutable evidence in favor of treating PWID, the management of their care has yet to be initiated in some countries, and optimized in many others.

REFERENCES

1 National Institutes of Health Consensus Development Conference Panel statement: management of hepatitis C. Hepatology 1997; 26: 25-105 [PMID: 9305656 DOI: 10.1002/hep.510260701]

2 Ghany MG, Strader DB, Thomas DL, Seeff LB. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 2009; 49: 1335-1374 [PMID: 19330875 DOI: 10.1002/hep.22759]

3 Prevention and management of hepatitis C virus infection among people who inject drugs: Moving the agenda forward. Clin Infect Dis 2013; 57 (Suppl 2): NP [DOI: 10.1093/cid/cist50]

4 Grebely J, Bruggmann P, Backmund M, Dore GJ. Moving the agenda forward: the prevention and management of hepatitis C virus infection among people who inject drugs. Clin Infect Dis 2013; 57 Suppl 2: S29-S31 [PMID: 23884062 DOI: 10.1093/cid/cist246]

5 Robaeys G, Grebely J, Mauss S, Bruggmann P, Mousalli J, De Gottardi A, Swan T, Arain A, Kautitz A, Stöver H, Wedemeyer H, Schaefer M, Taylor L, Backmund M, Dulgord O, Prins M, Dore GJ. Recommendations for the management of hepatitis C virus infection among people who inject drugs. Clin Infect Dis 2013; 57 Suppl 2: S129-S137 [PMID: 23884061 DOI: 10.1093/cid/cist202]

6 European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of hepatitis C virus infection. J Hepatol 2011; 55: 245-264 [PMID: 21371579 DOI: 10.1016/j.jhep.2011.02.023]

7 The Global Commission on Drug Policy. The negative impact of the war on drugs on public health: the hidden hepatitis C epidemic 2013. Available from: URL: http://www.globalcommissionondrugs.org/hepatitis/

8 Health Protection Agency. Hepatitis C in the UK, Figure 15, 2013 Report. Available from: URL: http://www.hpa.org.uk/web/HPAwebFile/HPAweb_C/1317139502002.

9 Grebely J, Dore GJ. What is killing people with hepatitis C virus infection? Semin Liver Dis 2011; 31: 331-339 [PMID: 21989973 DOI: 10.1055/s-0031-1297922]

10 Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 2005; 5: 558-567 [PMID: 16122679 DOI: 10.1016/S1473-3099(05)70216-4]

11 Hagan H, Pouget ER, Des Jarlais DC, Lelutiu-Weinberger C. Meta-regression of hepatitis C virus infection in relation to time since onset of illicit drug injection: the influence of time and place. Am J Epidemiol 2008; 168: 1099-1109 [PMID: 18949037 DOI: 10.1093/aje/kwn257]

12 Nelson PK, Mathers BM, Cowie B, Hagan H, Des Jarlais D, Horyniak D, Degenhardt L. Global epidemiology of hepatitis B and hepatitis C in people who inject drugs; results of systematic reviews. Lancet 2011; 378: 571-583 [PMID: 21802134 DOI: 10.1016/S0140-6736(11)60719-9]

13 Pybus OG, Cochrane A, Holmes EC, Simmonds P. The hepatitis C virus epidemic among injecting drug users. Infect Genet Evol 2005; 5: 151-159 [PMID: 15639745 DOI: 10.1016/j.meegid.2004.08.001]

14 van Asten L, Verhaest I, Lamzira S, Hernandez-Aguado I, Zangerle R, Boufassa F, Rezza G, Broers B, Robertson JR, Brettle RP, McNemarin J, Prins M, Cochrane A, Simmonds P, Coutinho RA, Bruisten S. Spread of hepatitis C virus among European injection drug users infected with HIV: a phylogenetic analysis. J Infect Dis 2004; 189: 292-302 [PMID: 14722895 DOI: 10.1086/388021]

15 de Bruijne J, Schinkel J, Prins M, Koekkoek SM, Aronson SJ, van Ballegoijen MW, Reesink HW, Molenvijk K, van de Laar TJ. Emergence of hepatitis C virus genotype 4: phylogenetic analysis reveals three distinct epidemiological profiles. J Clin Microbiol 2009; 47: 3832-3838 [PMID: 19794404 DOI: 10.1128/JCM.01146-09]

16 Sievert W, Altraif I, Razavi HA, Abdo A, Ahmed EA, Almair A, Amarapurkar D, Chen CH, Dou X, El Khayat H, Elshazy M, Esmat G, Guan R, Han KH, Koike K, Laren G, McCaughan G, Mogawer S, Monis A, Nawaz A, Piratsivuth T, Sanai FM, Sharma AI, Sibbel S, Sood A, Suh DJ, Wallace C, Young K, Negro F. A systematic review of hepatitis C virus epidemiology in Asia, Australia and Egypt. Liver Int 2011; 31 Suppl 2: 61-80 [PMID: 21651703 DOI: 10.1111/j.1478-3231.2011.02540.x]

17 Antaki N, Craxi A, Kamal S, Moucari R, Van der Merwe S, Haffar S, Gadano A, Zein N, Lai CL, Pawlotsky JM, Heathcote EJ, Dusheiko G, Marcellin P. The neglected hepatitis C virus genotypes 4, 5 and 6: an international consensus report. Liver Int 2010; 30: 342-355 [PMID: 20015149 DOI: 10.1111/j.1478-3231.2009.02189.x]

18 Patrick DM, Tyndall MW, Cornelisse PG, Li K, Sherlock CH, Rekart ML, Strathdee SA, Currie SL, Schechter MT, O’Shaughnessy MV. Incidence of hepatitis C virus infection among injection drug users during an outbreak of HIV infection. CMAJ 2001; 165: 889-895 [PMID: 11599327]

19 Maher L, Li J, Jalaludin B, Chant KG, Kaldor JM. High hepatitis C incidence in new injecting drug users: a policy failure? Aust N Z J Public Health 2007; 31: 30-35 [PMID: 17333606 DOI: 10.1111/j.1753-6405.2007.00007.x]

20 Miller CL, Wood E, Spittal PM, Li K, Frankish JC, Braitstein P, Montaner JS, Schechter MT. The future face of coinfection: prevalence and incidence of HIV and hepatitis C virus coinfection among young injection drug users. J Acquir Immune Defic Syndr 2004; 36: 743-749 [PMID: 15167294 DOI: 10.1097/01.aids.2004061000012]

21 Kim C, Kerr T, Li K, Zhang R, Tyndall MW, Montaner JS, Wood E. Unstable housing and hepatitis C incidence among injection drug users in a Canadian setting. BMC Public Health 2009; 9: 270 [PMID: 19640297 DOI: 10.1186/1471-2458-9-270]

22 Miller CL, Johnston C, Spittal PM, Li K, Laliberté N, Montaner JS, Schechter MT. Opportunities for prevention: hepatitis C prevalence and incidence in a cohort of young injection drug users. Hepatology 2002; 36: 737-742 [PMID: 12198668 DOI: 10.1053/heap.2002.33065]

23 Roy E, Alary M, Morissette C, Leclerc P, Boudreau JF, Parent R, Rochefort J, Claessens C. High hepatitis C virus prevalence and incidence among Canadian intravenous drug users. Int J STD AIDS 2007; 18: 23-27 [PMID: 17326888 DOI: 10.1258/09564670777994880]

24 Bruneau J, Daniel M, Kestens Y, Abramowicz M, Zang G. Availability of body art facilities and body art piercing do not predict hepatitis C acquisition among injection drug users in Montreal, Canada. Results from a cohort study. Int J Drug Policy 2010; 21: 477-484 [PMID: 20541926 DOI: 10.1016/j.drugpo.2010.07.003]
Arain A et al. HCV infection management in PWID.
Kaye S, Duflou J. Comparative cardiac pathology among deaths due to cocaine toxicity, opioid toxicity and non-drug-related causes. *Addiction* 2006; 101: 1771-1777 [PMID: 17156176 DOI: 10.1111/j.1360-4437.2006.01601.x]

Sherman M, Shafren S, Burak K, Doucette K, Wong W, Ginger N, Yoshida E, Renner E, Wong P, Deschênes M. Management of chronic hepatitis C: consensus guidelines. *Can J Gastroenterol* 2007; 21 Suppl C: 25C-34C [PMID: 17568824]

Kielland KB, Skaug K, Amundsen EJ, Dalgard O. All-cause and liver-related mortality in hepatitis C infected drug users followed for 33 years: a controlled study. *J Hepatol* 2013; 58: 31-37 [PMID: 22960427 DOI: 10.1016/j.jhep.2012.08.024]

Gibbon A, Randall D, Degenhardt L. The increasing mortality burden of liver disease among opioid-dependent people: cohort study. *Addiction* 2011; 106: 2196-2192 [PMID: 21749525 DOI: 10.1111/j.1360-4437.2011.03575.x]

Darke S, Kaye S, Duflou J. Systemic disease among cases of fatal opioid toxicity. *Addiction* 2006; 101: 1299-1305 [PMID: 16911729 DOI: 10.1111/j.1360-4437.2006.01495.x]

Degenhardt L, Bucello C, Mathers B, Briegleb C, Ali H, Hickman M, McLaren J. Mortality among regular or dependent users of heroin and other opioids: a systematic review and meta-analysis of cohort studies. *Addiction* 2011; 106: 32-51 [PMID: 21054613 DOI: 10.1111/j.1360-4437.2010.03140.x]

Amin J, Law MG, Bartlett M, Kaldor JM, Dore GJ. Causes of death after diagnosis of hepatitis B or hepatitis C infection: a large community-based linkage study. *Lancet* 2006; 368: 938-945 [PMID: 16962885 DOI: 10.1016/S0140-6736(06)67364-7]

Moessner BK, Jørgensen TR, Skamling M, Vyberg M, Junker P, Pedersen C, Christensen PB. Outreach screening of drug users for cirrhosis with transient elastography. *Addiction* 2011; 106: 970-976 [PMID: 21182552 DOI: 10.1111/j.1360-4437.2010.03246.x]

Foucher J, Reiller B, Jullien V, Léal F, di Cesare ES, Merrouche W, Delile JM, de Lédinghen V. FibroScan used in street-based outreach for drug users is useful for hepatitis C virus screening and management: a prospective study. *Clin Infect Dis* 2009; 49: 561-573 [PMID: 19589081 DOI: 10.1086/600304]

Greely J, Knight E, Genoway KA, Viljoen M, Khara M, Elliott D, Gallagher L, Storms M, Raffen JD, Devlaminq S, Dunfan C, Conway B. Optimizing assessment and treatment for hepatitis C virus infection in illicit drug users: a novel model incorporating multidisciplinary care and peer support. *Eur J Gastroenterol Hepatol* 2010; 22: 270-277 [PMID: 20425880 DOI: 10.1097/MEG.0b013e32833a6b8c]

Lindenburg CE, Lambers FA, Urbanus AT, Schinkel J, Jansen PL, Krol A, Casteelen G, van Santen G, van den Berg CH, Coutinho RA, Prins M, Weegink CJ. Hepatitis C testing and treatment among active drug users in Amsterdam: results from the Dutch C project. *Eur J Gastroenterol Hepatol* 2011; 23: 23-31 [PMID: 21042221 DOI: 10.1097/MEG.0b013e328340c651]

Dore GJ, Hellard M, Matthews GV, Greely J, Haber PS, Petoumenos K, Yeung B, Marks P, van Beek I, McCaughan G, White P, French R, Rawlinson W, Lloyd AR, Kaldor JM. Effective treatment of injecting drug users with recently acquired hepatitis C virus infection. *Gastroenterology* 2010; 138: 123-35.e1-2 [PMID: 19782085]
Guadagnino V, Trotta MP, Montesano F, Babudieri S, Carloso B, Armingnacco O, Carioti J, Maio G, Monarca R, Antonelli R. Effectiveness of a multi-disciplinary standardized management model in the treatment of hepatitis C in drug users engaged in detoxification programmes. *Addiction* 2007; 102: 423-431 [PMID: 17298650 DOI: 10.1111/j.1366-4260.2006.00169.x]

Grebley J, Raffa JD, Meagher C, Duncan F, Genoway KA, Khara M, McLean M, Mead A, Viljoen M, DeVlaming S, Fraser C, Conway B. Directly observed therapy for the treatment of hepatitis C virus infection in current and former injection drug users. *J Gastroenterol Hepatol* 2007; 22: 1519-1525 [PMID: 17665460 DOI: 10.1111/j.1440-1746.2007.05032.x]

Grebley J, Genoway K, Khara M, Duncan F, Viljoen M, Elliott D, Raffa JD, DeVlaming S, Conway B. Treatment uptake and outcomes among current and former injection drug users receiving directly observed therapy within a multidisciplinary group model for the treatment of hepatitis C virus infection. *Int J Drug Policy* 2007; 18: 457-443 [PMID: 17854734 DOI: 10.1016/j.drugpo.2007.01.009]

Schaefer M, Hinzpeter A, Mohmamed A, Janssen G, Pich M, Schwager M, Sarkar F, Friebe A, Heinz A, KuscheK M, Ziemer M, Gutsche J, Weich V, Halangk J, Berg T. Hepatitis C treatment in “difficult-to-treat” psychiatric patients with pegylated interferon-alpha and ribavirin: response and psychiatric side effects. *Hepatology* 2007; 46: 991-998 [PMID: 17668880 DOI: 10.1002/hep.21791]

Bruggmann P, Falcato L, Dober S, Helbling B, Keiser O, Negro F, Meili D, Falcato L. Active intravenous drug use during chronic hepatitis C therapy does not reduce sustained virological response rates in adherent patients. *J Viral Hepat* 2008; 15: 747-752 [PMID: 18637072 DOI: 10.1111/j.1365-2893.2008.01010.x]

Papadopoulos V, Gogou A, Mylopoulou T, Mimikis K. Should active injecting drug users receive treatment for chronic hepatitis C? *Arq Gastroenterol* 2010; 47: 238-241 [PMID: 21140082 DOI: 10.1590/S0004-28032010000300005]

Manolakopoulou S, Deutsch MJ, Anagnostou O, Karatapanis S, Tinaiakou E, Papatheodoridis GV, Georgiou E, Manesis N, Sulkowski MS, Jacobson IM, Reddy KR, Goodman ZD, Burroughs M, Brust CA, Albrecht JK, Bronowicki JP, Boceprevir for previously treated chronic HCV genotype 1 infection. *N Engl J Med* 2011; 364: 1207-1217 [PMID: 21449784 DOI: 10.1056/NEJMoai1010494]

van Heeswijk R, Verboven P, Vandevoorde A, Vinck P, Snoeys J, Goedarts G, De Paepe E, Van Solingen-Ristea R, Witte J, Garg V. Pharmacokinetic interaction between telaprevir and methadone. *Antimicrob Agents Chemother* 2013; 57: 2304-2309 [PMID: 23478952 DOI: 10.1128/AAC.02262-12]

Luo X, Trevejo J, van Heeswijk RP, Smith E, Garg V. Effect of telaprevir on the pharmacokinetics of buprenorphine in volunteers on stable buprenorphine/naloxone maintenance therapy. *Antimicrob Agents Chemother* 2012; 56: 3641-3647 [PMID: 22564847 DOI: 10.1128/AAC.00777-12]

Arain A, Bourgeois S, de Galoccy C, Deltetre P, d’Hoygere F, Georges C, Bastens B, Van Overbeke L, Verrando R, Bruckers L, Mathie B, Buntinx F, Van Vlierberghe H, Franque S, Lalenom W, Moreno C, Robaey G. The Belgian experience in treatment of persons who used drugs with the new standard of care in genotype 1 HCV infected patients: an interim analysis. Abstract In: 3rd international symposium on hepatitis C care in substance users; 2013 Sep 5-6; Germany. Munich: Suchtmedizin, 2013: 228

Litwin AH, Soloway IJ, Cockerham-Colas L, Reynoso S, Roose RJ. Successful treatment of chronic hepatitis C with Direct-Acting Antiviral Agents in an opiate agonist treatment program. Abstract In: 3rd international symposium on hepatitis C care in substance users; 2013 Sep 5-6; Germany. Munich: Suchtmedizin, 2013: 227

Christensen S, Naumann U, Gölz J. Triple therapy of chronic hepatitis C in opiate addicts-First results from 2 centres in Germany. Abstract In: 3rd international symposium on hepatitis C care in substance users; 2013 Sep 5-6; Germany. Munich: Suchtmedizin, 2013: 228

Grebley J, Tyndall MW. Management of HCV and HIV infections among people who inject drugs. *Curr Opin HIV AIDS* 2011; 6: 501-507 [PMID: 22001894 DOI: 10.1097/COH.0b013e3283cb3e6]

Grebley J, Genoway KA, Raffa JD, Dhdwal G, Rajan T, Showler V, Kalousek K, Duncan F, Tyndall MW, Fraser C, Conway B, Fischer B. Barriers associated with the treat-
Van Brakel WH. Measuring health-related stigma—a literature review. *Psychol Health Med* 2006; 11: 307-334 [PMID: 17130688 DOI: 10.1080/13548500600591560]

Earnshaw VA, Quinn DM. The impact of stigma in healthcare on people living with chronic illnesses. *J Health Psychol* 2012; 17: 157-168 [PMID: 21799078 DOI: 10.1177/1359105311414952]

Golden J, Conroy RM, O’Dwyer AM, Golden D, Hardouin JB. Illness-related stigma, mood and adjustment to illness in persons with hepatitis C. *Soc Sci Med* 2006; 63: 3188-3198 [PMID: 17010490 DOI: 10.1016/j.socscimed.2006.08.005]

Crockett B, Gifford SM. “Eyes Wide Shut”: narratives of women living with hepatitis C in Australia. *Women Health* 2004; 39: 117-135 [PMID: 15690188 DOI: 10.1300/J139v39n04_07]

Spiegel BM, Younossi ZM, Hays RD, Revicki D, Robbins S, Kanwals F. Impact of hepatitis C on health related quality of life: a systematic review and quantitative assessment. *Hepatology* 2005; 41: 790-800 [PMID: 15791608 DOI: 10.1002/hep.20659]

Ahern J, Stubber J, Galea S. Stigma, discrimination and the health of illicit drug users. *Drug Alcohol Depend* 2007; 88: 188-196 [PMID: 17118578 DOI: 10.1016/j.drugalcdep.2006.10.014]

Miller ER, McNally S, Wallace J, Schlichthorst M. The ongoing impacts of hepatitis c--a systematic narrative review of the literature. *BMJ Public Health* 2012; 2: 672 [PMID: 22900973 DOI: 10.1136/bmjpubh-2012-000993]

Zickmund S, Ho EY, Masuda M, Ippolito L, LaBrecque DR. “They treated me like a leper”. Stigmatization and the quality of life of patients with hepatitis C. *J Gen Intern Med* 2003; 18: 835-844 [PMID: 14521647 DOI: 10.1046/j.1525-1497.2003.20826.x]

Hall MA, Dugan E, Zheng B, Mishra AK. Trust in physicians and medical institutions: what is it, can it be measured, and does it matter? *Milbank Q* 2001; 79: 613-39 [PMID: 11789919 DOI: 10.1111/1468-0009.00223]

Curcio F, Di Martino F, Capraro C, Angelucci F, Bulla F, Caprio N, Cascone A, D’asculi G, Focaccia F, Gaveglia M, Longobardo A, Martini S, Masucci S, Morra A, Pasquale G, Pisapia R, Plenzik M, Veneruso C, Villano G, Russo M, De Rosa G, Filippini P. Together … to take care: multi-disciplinary management of hepatitis C virus treatment in randomly selected drug users with chronic hepatitis C. *J Addict Med* 2010; 4: 223-232 [PMID: 21769040 DOI: 10.1097/ADM.0b013e3181e4edf]

Litwin AH, Harris KA, Nahvi S, Zamor PJ, Soloway IJ, Tompkins LF, Trevisanuto D, Hawke K, Dieperink E, Willenbring ML, Heit S, Durfee JM, Wingert M, Johnson JR, Thurs P, Ho SB. Integrated psychiatric/medical care in a chronic hepatitis C clinic: effect on antiviral treatment evaluation and outcomes. *J Gen Intern Med* 2011; 26: 1078-1084 [PMID: 23362288 DOI: 10.1007/s10876-010-9202-1]

Stein MR, Soloway IJ, Jefferson KS, Roose RJ, Arnsten JH, Litwin AH. Concurrent group treatment for hepatitis C: implementation and outcomes in a methadone maintenance treatment program. *J Subst Abuse Treat* 2013; 42: 424-432 [PMID: 23036920 DOI: 10.1016/j.jsat.2012.08.007]

Bruggmann P, Litwin AH. Models of care for the management of hepatitis C virus among people who inject drugs: one size does not fit all. *Clin Infect Dis* 2013; 57 Suppl 2: S56-S61 [PMID: 23884067 DOI: 10.1093/cid/cit271]

Crawford S, Bath N. Peer support models for people with a history of injecting drug use undertaking assessment and treatment for hepatitis C virus infection. *Clin Infect Dis* 2013; 57 Suppl 2: S57-S59 [PMID: 23884070 DOI: 10.1093/cid/cit297]

Til L, Kaplan K, Hayashi K, Suwanawong P, Wood E, Kerr T. Low rates of hepatitis C testing among people who inject drugs in Thailand: implications for peer-based interventions. *J Public Health (Oxf)* 2013; 35: 578-584 [PMID: 23335599 DOI: 10.1093/pubmed/fdt105]

Sylvestre DL, Zweben JE. Integrating HCV services for drug users: a model to improve engagement and outcomes. *Int J Drug Policy* 2007; 18: 406-410 [PMID: 17854729 DOI: 10.1016/j.drugpo.2007.01.010]

Latka MH, Hagan H, Kapadia F, Golub ET, Bonner S, Campbell JV, Coady MH, Garfein RS, Pu M, Thomas DL, Thiel TK, Stratthae SA. A randomized intervention trial to reduce the lending of used injection equipment among injection drug users infected with hepatitis C. *Am J Public Health* 2008; 98: 853-861 [PMID: 18382005 DOI: 10.2105/AJPH.2007.113415]

Garfein RS, Golub ET, Greenberg AE, Hagan H, Hanson DL, Hudson SM, Kapadia F, Latka MH, Ouellet LJ, Purcell DW, Stratthae SA, Thiede H. A peer-education
intervention to reduce injection risk behaviors for HIV and hepatitis C virus infection in young injection drug users. *AIDS* 2007; 21: 1923-1932 [PMID: 17721100 DOI: 10.1097/QAD.0b013e328230066]

164 Mackesy-Amiti ME, Finnegan L, Ouellet LJ, Golub ET, Hagan H, Hudson SM, Latka MH, Garfein RS. Peer-education intervention to reduce injection risk behaviors benefits high-risk young injection drug users: a latent transition analysis of the CIDUS 3/DUIT study. *AIDS Behav* 2013; 17: 2075-2083 [PMID: 23142857 DOI: 10.1007/s10461-012-0373-0]

165 Martin NK, Mackesy-Amiti ME, Finnegan L, Ouellet LJ, Golub ET, Hagan H, Hudson SM, Latka MH, Garfein RS. Peer-education intervention to reduce injection risk behaviors benefits high-risk young injection drug users: a latent transition analysis of the CIDUS 3/DUIT study. *AIDS Behav* 2013; 17: 2075-2083 [PMID: 23142857 DOI: 10.1007/s10461-012-0373-0]

166 Martin NK, Vickerman P, Miners A, Hutchinson SJ, Taylor A, Vickerman P. Cost-effectiveness of HCV case-finding for people who inject drugs via dried blood spot testing in specialist addiction services and prisons. *BMJ Open* 2013; 3: [PMID: 23943776 DOI: 10.1136/bmjopen-2013-003153]

167 Martin NK, Vickers J, Miners A, Hutchinson SJ, Taylor A, Vickerman P. Cost-effectiveness of HCV case-finding for people who inject drugs via dried blood spot testing in specialist addiction services and prisons. *BMJ Open* 2013; 3: [PMID: 23943776 DOI: 10.1136/bmjopen-2013-003153]

168 Visconti AJ, Doyle JS, Weir A, Shiell AM, Hellard ME. Assessing the cost-effectiveness of treating chronic hepatitis C virus in people who inject drugs in Australia. *J Gastroenterol Hepatol* 2013; 28: 707-716 [PMID: 23173753 DOI: 10.1111/jgh.12041]

169 Fazel S, Baillargeon J. The health of prisoners. *Lancet* 2011; 377: 956-965 [PMID: 21093904 DOI: 10.1016/S0140-6736(10)61053-7]

170 Vescio MF, Longo B, Babudieri S, Starnini G, Carbonara S, Rezza G, Monarca R. Correlates of hepatitis C virus seropositivity in prison inmates: a meta-analysis. *J Epidemiol Community Health* 2008; 62: 305-313 [PMID: 18339822 DOI: 10.1136/jech.2006.051599]

171 Hickman M, McDonald T, Judd A, Nichols T, Hope V, Skidmore S, Parry JV. Increasing the uptake of hepatitis C virus testing among injecting drug users in specialist drug treatment and prison settings by using dried blood spots for diagnostic testing: a cluster randomized controlled trial. *J Viral Hepat* 2008; 15: 250-254 [PMID: 19886182 DOI: 10.1111/j.1365-2893.2007.00937.x]

172 Elger B, Ritter C, Stöver H. Emerging Issues in Prison Health. Heidelberg/New York: Springer, 2014: In press

173 Post JJ, Arain A, Lloyd AR. Enhancing assessment and treatment of hepatitis C in the custodial setting. *Clin Infect Dis* 2013; 57 Suppl 2: S70-S74 [PMID: 23884069 DOI: 10.1093/cid/cit265]

174 Grady BP, Schinkel J, Thomas XV, Dalgard O. Hepatitis C virus reinfection following treatment among people who use drugs. *Clin Infect Dis* 2013; 57 Suppl 2: S105-S110 [PMID: 23884057 DOI: 10.1093/cid/cit301]

175 Page K, Morris MD, Hahn JA, Maher L, Prins M. Injection drug use and hepatitis C virus infection in young adult injectors: using evidence to inform comprehensive prevention. *Clin Infect Dis* 2013; 57 Suppl 2: S32-S38 [PMID: 23884063 DOI: 10.1093/cid/cit300]

176 Martin NK, Vickers J, Miners A, Hutchinson SJ, Taylor A, Vickerman P. Combination interventions to prevent HCV transmission among people who inject drugs: modeling the impact of antiviral treatment, needle and syringe programs, and opiate substitution therapy. *Clin Infect Dis* 2013; 57 Suppl 2: S59-S65 [PMID: 23884064 DOI: 10.1093/cid/cit296]

177 Bruggmann P. Treatment as prevention: the breaking of taboos is required in the fight against hepatitis C among people who inject drugs. *Hepatology* 2013; 58: 1523-1525 [PMID: 23729291 DOI: 10.1002/hep.26539]

178 Kautz A. Personal communication at 3rd international symposium on hepatitis C care in substance users; 2013 Sep 5-6; Germany. Munich. 2013

P- Reviewer: Chetty R, Kim JS, Pantopoulos K, Zeisel MB
S- Editor: Qi Y L- Editor: A E- Editor: Zhang DN
