Quantitative proteomics of Sf21 cells during Baculovirus infection reveals progressive host proteome changes and its regulation by viral miRNA

Nishtha Nayyar1,2, Inderjeet Kaur3, Pawan Malhotra3 & Raj K. Bhatnagar1

System level knowledge of alterations in host is crucial to elucidate the molecular events of viral pathogenesis and to develop strategies to block viral establishment and amplification. Here, we applied quantitative proteomics approach to study global proteome changes in the host; Spodoptera frugiperda upon infection by a baculovirus, Spodoptera litura NPV at two stages i.e. 12 h and 72 h post infection. At 12 hpi, >95% of host proteins remained stable, however at 72 hpi, 52% host proteins exhibited downregulation of 2-fold or more. Functional analysis revealed significant upregulation of transposition and proteasomal machinery while translation, transcription, protein export and oxidative phosphorylation pathways were adversely affected. An assessment of perturbed proteome after viral infection and viral miRNA expression led to the identification of 117 genes that are potential targets of 10 viral miRNAs. Using miRNA mimics, we confirmed the down regulation of 9 host genes. The results comprehensively show dynamics of host responses after viral infection.

Establishment and replication of viruses in their host is dependent upon the interplay between viral and host factors where the latter largely outnumber their viral counterparts. A systemic analysis of temporal changes in the expression of host components can reveal the sequential impact of viral factors upon host physiology, yielding critical viral pathogenesis mechanisms and cues to alleviate them. In recent years, a combination of transcriptomics, proteomics and other high-throughput technologies have allowed us to gain important insights into virus-host interactions at the molecular level1,2. Also, the data suggests that besides some specific pathways, different viruses target common pathways and machineries, which forms the basis for the discovery of broad range antiviral inhibitors or drugs3,4. Our study explores the sequential effect of baculoviral infection on the proteome of Lepidopteran cell line.

Baculoviruses are natural pathogens of over 600 species of insects, predominant of which are Lepidopterans and are frequently employed in a wide range of biotechnological applications. Due to their inability to replicate in mammalian cells, these are being used as successful vectors for the expression of thousands of proteins and are also being studied as potential vectors for gene therapy5. Certain baculoviruses are used in agriculture and forestry as viable alternatives to chemical insecticides in insect pest control5,7. Baculoviruses comprise of a dsDNA genome and replicate in nucleus of insect cells. The life cycle is broadly divided in three phases; an early phase(0–6hpi) where actin-based motility drives the virus in host nucleus and early viral proteins are transcribed using host RNA polymerase; a late phase(6–24 hpi) marked by viral DNA replication, viral RNA polymerase driven transcription and release of budded virions from cell envelope; and a very late phase (>24 hpi) where virus forms occlusion bodies in the nucleus of infected cell8,9. Carsten et al. (1979) first reported that baculoviral infection leads to shutoff of host protein synthesis upon 18 h of Autographa californica multinucleopolyhedrovirus

1Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India. 2Institute of Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, GKV, Bellary Road, Bangalore, 560065, India. 3Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India. Correspondence and requests for materials should be addressed to P. M. (email: pawanmal@gmail.com) or R. K. B. (email: raj@icgeb.res.in)
(AcMNPV) infection. Subsequently, shutoff of host mRNA expression was also noticed between 12–18 h of infection. High-throughput transcriptomic studies performed at different stages of infection have identified differential regulation of several host pathways like stress response, heat shock response, metabolism, protein expression, ER trafficking etc. But till date, there have been very few studies, which have systematically investigated the effect of baculoviral infection on the host proteome. Carinhas et al. (2011) and Yu et al. (2015) have studied the differential proteome of S. frugiperda cells after baculovirus infection at 6 hpi and 12 hpi intervals and identified differential regulation of 648 and 413 proteins respectively. Recently, Xing et al. (2017) have carried an integrated transcriptomic and proteomic analysis in infected fat body of Helicoverpa armigera and identified differential regulation of ~450 proteins, in particular those involved in cell metabolism.

In this report, we describe comprehensive proteome profile of Lepidopteran cell line Sf21, identifying 5915 host proteins upon infection with a wild type baculovirus, Spodoptera litura NPV (SpitNPV) at two time-points i.e 12 h and 72 h post infection. Further, we carefully analysed the impact of viral infection on different biological pathways. The proteomic changes post infection were studied in context to gene regulation by baculoviral miRNAs. Nine of the predicted viral miRNA targets were validated by transfecting viral miRNA mimics in Sf21 cells. The present work thus describes a comprehensive analysis of proteome of Sf21 cells at early and late stages of SpitNPV infection and the regulatory mechanisms activated upon SpitNPV infection.

Results

SpitNPV infection and quantitative proteomics of infected Sf21 cells. To gain insights into baculoviral pathogenic mechanisms, Sf21 cells were infected with wild-type SpitNPV at two different time intervals of infection i.e 12 hpi representing the late phase of infection and associated with viral replication and budded virion formation; and 72 hpi that represents the very late phase of viral infection characterized by occluded virion formation. The time intervals thus chosen were expected to yield dynamic changes in host protein expression as per the transcriptomic studies. Sf21 cells were infected with SpitNPV at a low MOI to permit viral establishment as well as to avoid considerable cell lysis. Viral infection of insect cells was confirmed by the enlargement of cells as well as nuclei and appearance of occlusion bodies. At 12 hpi and 72 hpi, mock-infected and SpitNPV-infected Sf21 cells in two biological replicates each were harvested and crude protein extract was prepared. Equal amount of lysate from each sample was subjected to trypsin digestion and the resultant peptides were labelled using different reporter ions of a quadruplex TMT labelling kit. The labelled peptide mixtures of mock and infected cells from two biological replicates were pooled together for 12 hpi and 72 hpi samples. The samples were fractionated using HILIC chromatography and sixteen fractions thus obtained were analysed using Orbitrap LC-MS/MS in two technical replicates each. The mass spectra obtained from all the samples were combined to analyse the global proteome at each time interval. A diagrammatic representation of the experimental setup is shown in Fig. 1a. The spectra were mapped onto predicted proteins from recently reported Sf21 genome assembly. A total of 4733
protein groups with 15980 peptides and 3914 protein groups with 11222 peptides were identified at 5% FDR from 12 hpi and 72 hpi respectively. At early stage, 3116 proteins were found to be common between two technical replicates while 2580 proteins were common at late stage. In all, this accounts for nearly 40% of the predicted proteome of *S. frugiperda*. Additionally, 101 *SpltNPV* proteins out of a total of 141 viral proteins were identified, with 61 proteins commonly present at both the time intervals. Six proteins were specific to the early stage, while thirty four of them were specifically found at late stages of infection including the well characterized very late phase proteins like Polyhedrin and P10. A list of all *S21* and *SpltNPV* proteins identified from the protein pool at both time intervals is provided in Supplementary Tables S1 and S2 respectively. Table 1 lists the total number of peptides/proteins identified upon mass spectrometric analysis of protein lysates from 12 h and 72 h mock/infected *S21* cells.

Table 1. Statistics of data obtained from LC-MS/MS analysis of mock-infected and *SpltNPV* infected *S21* cells at 12 h and 72 h of infection. Trypsin digested peptides were labelled with TMT-quadruplex reagents and subjected to LC-MS/MS.

Time Interval	No. of protein groups	No. of peptides
12 h Mock/Infected	4068	15391
S21 cell sample	Technical Replicate1	Technical Replicate1
12 h Mock/Infected	4015	15980
cell sample	Technical Replicate2	Technical Replicate2
72 h Mock/Infected	3179	10469
S21 cell sample	Technical Replicate1	Technical Replicate1
72 h Mock/Infected	3342	11222
cell sample	Technical Replicate2	Technical Replicate2

Quantitative proteomics reveals differential host proteome regulation at different time intervals of *SpltNPV* infection. As expected, the overall pattern of host protein regulation was markedly distinct at the two time intervals tested. In case a stringent criterion of upto two-fold regulation is considered, the levels of nearly 95% of the proteins remained unaltered after 12 h of infection, while 0.5% of them were upregulated. Only 0.02% of the proteins were found to be downregulated at this stage. In comparison, at late stages of viral infection nearly 95% of the proteins remained unaltered after 12 h of infection, while 0.5% of them were upregulated. Only 0.02% of the proteins were found to be downregulated at this stage. In contrast, the amount of upregulated proteins was very less i.e. 0.8% of the total proteome. Figure 1b depicts the global pattern of differential regulation of *S21* proteins at 12 h and 72 h of *SpltNPV* infection. Expression levels of all detected host proteins with respect to mock infection at 12 h and 72 h are provided in Supplementary Table S1.

Despite the protein shutdown at late stages, 0.5% and 0.8% of the total proteome exhibited induced expression during early and late stages of baculoviral infection in respective order. A Pao retrotransposon peptidase family protein was found to be highly upregulated at both 12 hpi and 72 hpi time intervals; it showed 20-fold and 3-fold higher expression in infected cells at respective time intervals. At 72 h interval, Ubiquitin protein ligase E3B-like protein was the most over-expressed protein showing an activation of 22-folds in infected cells. A Sentrin/Sumoy-specific protease Seng7 was also up-regulated by 8-folds. Certain other ubiquitination proteins like UBA domain-containing protein 1, DDB1- and CUL4-associated factor 7-like protein were slightly induced upon 12 h of *SpltNPV* infection. Immune defence-related proteins like antimicrobial protein 6Tox precursor, Hemocytome protein-glutamine gamma-glutamyltransferase-like, RNAi factors like maternal protein Tudor-like, R2D2 protein and 72 h post infection time intervals. Ecdysis triggering hormone receptor isoform B was found to be over-expressed by 5-folds in 72 h of infection, while Ecdysone 20-hydroxylase showed 1.7-fold higher expression at 12 hpi. A vast majority of proteins at early stages of infection showed no significant down-regulation in expression after *SpltNPV* infection. A clear exception was hypothetical protein LOC100167034, which showed two-fold down-regulation in its expression in infected cells. Expression of only 0.4% of the total proteins was reduced by 0.75-folds or higher at this stage which included proteins like cytokinesis regulators, ATP binding cassette, kinesin and ferritin among others. Quant spectra of certain representative proteins at different time intervals of infection are shown in Supplementary Figure S1.

Functional annotation of *SpltNPV* infected *S21* proteome. Functional annotation of *S21* proteome was performed using KEGG Automation Annotation Server (KAAS) that compares the proteins on the basis of their BLAST homology with KEGG genes database. KEGG pathways and Orthologues could be assigned to nearly 65% of the detected *S21* proteins. 3094 and 2573 proteins were respectively annotated in 12 h and 72 h proteome assembly. KEGG pathway distribution of the 12 h proteome is shown in Fig. 2a. The largest proportion of the proteins detected at 12 h interval belonged to translational machinery (15.6%), followed by signal transduction mechanisms (13.67%), protein folding, sorting and degradation (11%), carbohydrate metabolism (9.5%) and amino acid metabolism (8%).

To get a better idea of impact on host physiological pathways after infection, we divided the 72 h proteome in two broad categories, ones displaying more than two-fold reduction in their expression represented the down-regulated category while the ones displaying relative expression values between 0.5-folds to 1.5-folds...
represented the relatively constant category. It is to note that the constant category does include vast majority of proteins which show down-regulation upon infection but we included them in a separate category since their relative suppression was lower than the down-regulated category. We wanted to study the distribution of KEGG pathways across the two categories and find if there was a differential impact of viral infection on specific KEGG pathways. At 72 h of infection, we did observe substantial differences across BRITE hierarchy distribution between the two categories. The pathways which were most afflicted upon SpiltNPV infection were those involved in translational machinery, energy and lipid metabolism, transcription while DNA replication and repair, carbohydrate metabolism remained relatively unaltered throughout the course of infection. KEGG pathway distribution of host proteome at 72 hpi across both the categories is shown in Fig. 2b,c.

Upon further inspection, it was observed that the proteins belonging to the ribosomal machinery underwent maximum repression showing 18-times higher representation in the down-regulated group in comparison to the constant one. Also, proteins involved in amino acid degradation, fatty acid metabolism, protein export, oxidative phosphorylation and splicing exhibited significant suppression. In comparison, proteins related to DNA replication and repair mechanisms were reasonably unaltered even after 72 h of infection and were five-fold enriched in the constant category. Other pathways showing relatively constant expression were Proteasomal machinery, starch and sucrose metabolism, steroid hormone biosynthesis, and pentose glucuronate interconversion pathway, indicating that these pathways show less repression in infected cells. A representation of all pathways along with their fold enrichment in down-regulated and constant category is provided in Fig. 3a and the down-regulated components of Ribosomal machinery and Oxidative phosphorylation pathways which had been highly afflicted upon SpiltNPV infection are shown in Fig. 3b,c.

Expression analysis of selected genes upon SpiltNPV infection. qPCR analysis of thirty two genes was performed for comparative expression analysis of the proteomic data. Quantitative proteomics data
suggested that at 12 h of infection, two of these proteins were up-regulated while rest thirty showed no change in protein expression level upon infection. At 72 h of infection, twenty eight of these genes were predicted to be down-regulated by proteomic analysis, while four were up-regulated. The results from qPCR analysis of all thirty-two tested Sf21 genes are shown in Fig. 4a,b. Upon qPCR analysis, it was observed that most of the genes showed expression patterns similar to the ones obtained in proteomic analysis, with a general trend of unchanged expression at 12 hpi and downregulation at 72 hpi. However, at 12 hpi, mRNA levels of some genes like 14-3-3 epsilon, lark, translation initiation factors eIF1a, eIF4a, V-type proton ATPase subunit H isoform 2, MCM7, cytochrome c oxidase subunit Va, glutathione S-transferase sigma 1, actin-depolymerizing factor 1 did not quite correlate with unchanged protein levels observed at the proteomic level. The differences observed at mRNA level of certain genes are not unexpected owing to variable protein half-lives and existence of post-transcriptional gene regulatory pathways in eukaryotic cells. Nevertheless, at 72 hpi there was a higher correlation between mRNA and protein levels since twenty seven out of twenty eight down-regulated proteins showed remarkably lower mRNA levels as well. Transcript levels of only one gene, cyclin3, did not show any decline as opposed to its protein levels and it is well established that cyclin proteins are generally regulated at proteomic level through ubiquitination18.

For the genes which showed upregulated expression in our proteomic analysis, three out of the four genes tested displayed similar mRNA levels in the infected samples as the mock infected ones (Fig. 4b). We did not observe up-regulation at transcriptional level, but notably these were neither down-regulated as rest of the 27 genes.

Together the results emphasize the significance of undertaking studies at the proteomic level.

As a representative of general expression trend of our quantitative proteomics analysis, we analysed the expression of Sf21 Histone H3 using western blot analysis. Proteomics analysis suggested that the levels of this protein were similar in uninfected and infected Sf21 cells at 12h of infection but were reduced to more than a half in infected cells at 72h of infection. Western blot analysis of the protein at both the time intervals confirmed these findings (Fig. 4c).

Regulation of host proteome by SpltNPV miRNAs. We had previously identified and validated the expression of ten novel SpltNPV miRNAs encoded upon infection of Sf21 cells and predicted their targets using...
To understand the regulation of host proteome by SpNPV miRNAs, we analysed the expression of their predicted targets in our analysis. 117 predicted targets of viral miRNAs displayed significant down-regulation in proteomic analysis while 1 protein was found to be upregulated. A list of all the predicted SpNPV miRNA targets showing differential regulation upon proteome analysis is provided in Supplementary Table S3 along with the observed changes in their levels after infection. Importantly, 28 of these 117 proteins also showed down regulation by qPCR (Fig. 4a). Notably, some of the down-regulated proteins were computationally targeted by more than one baculoviral miRNA. Examples of such proteins include V-type proton ATPase subunit H which was a predicted target of 11672_3p and 11698_3p; Prostaglandin reductase 1-like was targeted by 11684_3p and 11701_5p; Cytochrome b5 by 11672_3p and 11660_3p; Translation initiation factors targeted by RNAHybrid v2.0. To understand the regulation of host proteome by SpNPV miRNAs, we analysed the expression of their predicted targets in our analysis. 117 predicted targets of viral miRNAs displayed significant down-regulation in proteomic analysis while 1 protein was found to be upregulated. A list of all the predicted SpNPV miRNA targets showing differential regulation upon proteome analysis is provided in Supplementary Table S3 along with the observed changes in their levels after infection. Importantly, 28 of these 117 proteins also showed down regulation by qPCR (Fig. 4a). Notably, some of the down-regulated proteins were computationally targeted by more than one baculoviral miRNA. Examples of such proteins include V-type proton ATPase subunit H which was a predicted target of 11672_3p and 11698_3p; Prostaglandin reductase 1-like was targeted by 11684_3p and 11701_5p; Cytochrome b5 by 11672_3p and 11660_3p; Translation initiation factors targeted by...
11684_3p, 11694_5p, 11672_5p and 11660_3p; Constitutive coactivator of PPAR-gamma-like by 11684_3p and 11701_5p and few more. Additionally, some down-regulated proteins had conserved miRNA binding sites in a related organism Bombyx mori as well, indicating possibility of evolutionarily preserved role for viral miRNAs across baculoviral species. For instance, predicted target for 11684_5p is 14-3-3 epsilon protein and its target site is conserved in B. mori and S21. Similarly, binding sites of 11672_3p in RNA-binding protein Lark and Alpha-tocopherol transfer protein are preserved in both the insect species.

We carried out functional analysis of these 117 genes using KAAS and assigned KEGG orthologues to 89 of these genes. Most of the genes belonged to metabolic pathways (19%) majorly biosynthesis of secondary metabolites (10%) and oxidative phosphorylation (7%). Other targeted pathways were RNA transport, cell cycle, phosphoglycerate, protein export and DNA replication. Several KEGG pathways were targeted by multiple miRNAs. For instance, six viral miRNAs had binding sites for proteins involved in secondary metabolite biosynthesis while five of them had predicted targets in oxidative phosphorylation pathway. Figure 5a represents the distribution of most significantly targeted KEGG pathways after proteomic analysis. The analysis reflects upon the probable role of viral miRNAs in regulating metabolic pathways and cellular growth.

Validation of SplNPV miRNA targets in S21 cells. To determine whether the host proteins which show profound changes upon SplNPV infection are the targets of the viral miRNAs induced during the infection, we chose two viral miRNAs, 11684_3p and 11698_3p for experimental validation, since both of these miRNAs have been documented in several studies and our analysis conformed to the same12, 13, 24, 25. On similar lines, activation of DNA damage response, which is essential for viral replication 23. Consistent with the observation, we found base excision repair, nucleotide excision repair and phosphatidylinositol 3-kinase (PI3K)-Akt signalling at initial stages of infection is reportedly required for efficient BmNPV replication26, 27. Correspondingly, we found increased expression of several proteins related to these pathways at 12h of infection.

Several transposable elements including retroelements like Pao retrotransposon peptidase family protein, endonuclease/reverse transcriptase, piggyBac transposable element-derived protein 4 and enzymes...
like transposases were found to be significantly upregulated post infection. PiggyBac transposable elements were initially identified as insertion sequences in baculoviruses, but were later found to be encoded from the Lepidopteran genomes, after baculoviral infection\(^28, 29\). Transcripts derived from insect retroviruses, also termed as errantiviruses have previously been shown to be over-expressed in baculovirus infected hemocytes of \(Heliothis\) \(virescens\) larva as well as infected \(H.\) \(zea\) cells\(^20, 30\). Menzel and Rohrmann were the first to speculate an increased transposition in baculovirus infected insect cells and since then several lines of investigation have provided credence to the hypothesis and our results resonate with the same\(^31, 32\). We had earlier reported significant reduction in piRNA population of \(Sf21\) cells after 12 h of \(Splt\)NPV infection\(^19\). This might be responsible for activated transposition since piRNAs are believed to play an important role in silencing of transposons\(^33\). However, it would be interesting to understand the advantages of piRNA suppression for baculoviral pathogenesis.

Figure 5. \(Splt\)NPV miRNAs and host proteome regulation. (a) KEGG pathway distribution of 89 predicted miRNA target genes which show profound down-regulation in proteomics analysis. Genes involved in secondary metabolite production and oxidative phosphorylation were enriched in this category. Relative transcript abundance of host genes upon transfection of 10 \(\mu\)M, 50 \(\mu\)M and 100 \(\mu\)M concentrations of miRNA mimics of \(Splt\)NPV miRNA (b) 11698_3p, and (c) 11684_3p. The genes marked with red asterisk showed progressively lower transcript levels with increasing concentration of miRNA mimics.
One of the most highly upregulated proteins in our analysis at 72 h of infection was ubiquitin-protein-ligase E3B-like protein. Earlier, Nguyen et al. (2013) have also reported E3 ubiquitin protein ligase to be amongst the top 5 upregulated transcripts during 24 and 48 hpi intervals. E3 ubiquitin ligases bind to the protein substrates and act as a scaffold for binding of ubiquitin conjugating enzyme which then marks the protein for degradation. Certain RING finger proteins of baculoviruses have earlier been shown to demonstrate E3 ligase activities suggesting that these viruses might possess the ability to manipulate the specificity of ubiquitination. Studies have also reported increased proteotoxicity, accumulation of ubiquitinated proteins and aggresomes during AcMNPV infection. It was postulated that heat shock proteins fused with the aggresomes and were responsible for diminishing the observed proteotoxicity by lysosomal degradation. In tandem, our study observed increased or constant levels of several components of ubiquitin machinery, heat shock proteins as well as lysosomal proteins during both the stages of infection.

We also found the levels of actin polymerization proteins like Strumpellin and Formin to be induced at 72 h of SpltNPV infection. Strumpellin is a subunit of WASH complex, an endosomal Arp2/3 activator belonging to WASP family proteins, which is required for formation of branched actin networks, while Formin is a Rho GDPase which also promotes actin polymerization by associating with the barbed end of actin filaments. Baculoviruses have been known to promote actin rearrangement and nucleation by virtue of its own proteins like Arif-1 and p78/83 etc. Our data indicates active actin cytoskeletal dynamics at 72 h of infection, which might be helpful for viral egress at very late stages of infection.

Amongst the most highly afflicted processes after infection, translation ranked amongst the highest. Previously, transcriptional repression of several ribosomal proteins, EF-Tu, EF1d, eIF3-6, eIF3-2b, eIF1a and down-regulated protein levels of eIF5A and eIF4E have been observed. Expression of all these proteins as well as other proteins involved in translational mechanisms was found to be highly suppressed upon infection in our analysis at 72 h of infection. Besides, several ATP dependent RNA helicases, which play important roles in transcription regulation, splicing, ribosome biogenesis, mRNA export and other RNA metabolism pathways were found to be highly suppressed after viral infection at late stages. The down-regulation of vesicular transport and protein export mechanisms observed in the study might have its implications in regulation of budded virus formation and transition to the occluded form.

Metabolic perturbation is a well-studied aspect of virus induced pathology and several viruses have been found to result in metabolic or mitochondrial dysfunction. Recent study of Xing et al. (2017) has highlighted the impact of viral infection on metabolic genes/proteins. Consistent to their study, we have also found significant down-regulation of citrate cycle and oxidative phosphorylation pathway associated proteins at 72 h of infection. Some components of glycolytic machinery like Phosphoenolpyruvate carboxykinase, Fructose bis-phosphate aldolase were also downregulated by >2-folds at late infection stages. Yet, other glycolytic components like Hexokinase, Fructose-1,6-bisphosphatase, Triosephosphate isomerase, Phosphoglyceromutase, Pyruvate kinase etc showed less suppression. Similarly, though propanoate metabolism represents one of the most down-regulated biological pathways, metabolism of sugars like sucrose, fructose, mannose and galactose were not much affected in our study. An analysis of S. frugiperda metabolic activity after baculovirus infection has earlier reported slightly elevated rates of sucrose and maltose uptake at 48–72 h of infection, providing significance to our analysis. Notably, we also observed the levels of UDP-glucosyltransferases, UDP-glucose 4-epimerase, and some components of pentose and glucorionate-interconversions to be enriched in the constant category. In insects, conjugation of moulting hormone, ecdysteroid, with sugars by baculoviral enzyme, Ecdysteroid UDP-glucosyltransferase, is considered to prevent moulting and support virus amplification. In S. frugiperda larvae, it was found that UDP-galactose and UDP-glucose were the most favoured substrates. In this context, it would be interesting to find the significance of higher levels of galactose and UDP-sugar metabolism in infected insects.

Although the current study substantiates the global transcriptional and translational repression model, KEGG pathway analysis suggests significant differences in the extent of regulation of different pathways during the course of infection. It would thus be fascinating to understand the mechanisms controlling this specificity. One such proposed mechanism could be the selective ubiquitination mediated by E3 ligases as discussed before. Another mechanism capable of selective manipulation is overexpression of small regulatory RNAs such as miRNAs during the infection. We have previously demonstrated the expression of SpltNPV encoded miRNAs after 12 h of infection and identified their targets in S21 cells. Since the expression of viral miRNAs was coherent with the proposed initiation of protein shutdown, we were interested to find a correlation between both the studies. Upon comparison of predicted S21 targets of validated SpltNPV miRNAs with the proteome data, it was observed that 117 predicted targets were downregulated in proteome analysis, while one protein was upregulated. qPCR analysis further confirmed the down-regulation of most of these genes. To know whether the viral miRNAs affected host gene expression, we analysed the effect of two viral miRNA mimics in S21 cells. Nine of the host genes were found to be targeted by these viral miRNAs. Interestingly, both viral miRNAs were found to target a scaffold in OXPHOS pathway like NADH-ubiquinone oxidoreductase Fe-S protein 7, FAD-dependent oxidoreductase and NADH dehydrogenase [ubiquinone] 1 subunit C2, thereby indicating that baculoviruses might be employing miRNAs to efficiently down-regulate OXPHOS pathway. In addition, 11684_3p was found to specifically inhibit Translation initiation factor 4a which is required to unwind mRNA secondary structure and to prepare them for binding to ribosomes for initiation of translation. Besides these factors, replication factor C4, which is required for loading of proliferating cell nuclear antigen to DNA and facilitating the highly processive DNA replication, was also found to be targeted by miRNA 11684_3p. Previously, Heliothis virescens ascovirus miRNA-1 has been reported to regulate transcriptional levels of DNA polymerase I and thus regulate its own replication and late stages of infection. Here, we observe regulation of other replication proteins as well.

To conclude, the present work describes a comprehensive analysis of Lepidopteran insect proteome and its modulation following baculoviral infection. The work has revealed molecular basis for baculovirus-induced physiological phenomena and has led to the elucidation of novel aspects of baculoviral host interactions. The study
thus provides a systemic analysis of proteome changes in Sf21 cells at different stages of viral infection and role(s) of viral miRNAs in regulating the expression of host proteins. Overall, this study provide meaningful insights into the dynamics of host responses during viral infection as well as the conserved viral mechanisms in controlling host cellular machinery.

Methods

Cell Culture and SpltNPV infection. For SpltNPV infection, Sf21 cells were maintained as a monolayer in serum-free TNM-FH insect medium at 27 °C. 1 × 10⁶ Sf21 cells were infected with wild type SpltNPV (MOI = 2) for two hours in duplicates and harvested after 12 h and 72 h interval. Mock infected Sf21 cells were used as a control and were also processed similarly in duplicates.

Trypsin digestion, TMT-labelling and LC-MS/MS analysis. After 12 h and 72 h, the cells were harvested, lysed in lysis buffer (20 mM Tris-Cl, pH 8.0, 150 mM NaCl, 1 mM DTT, 0.015% Nonidet P-40 and 8 M Urea) and centrifuged at 13000 rpm for 30 min. The protein concentration in the supernatant was estimated using Bradford assay. The proteins were subjected to Trypsin digestion and subsequent TMT labelling as per the manufacturer's protocol (Thermo Fisher Scientific Inc., USA) using 6-plex-TMT labelling kit. Equal amount (100 µg) from each of the sample was reduced with DTT for 1 h at RT followed by alkylation using IAA for additional 1 h at RT. After reduction and alkylation, the protein samples were acetone precipitated and re-dissolved in 100 mM TEAB buffer. These proteins were then subjected to overnight trypsin digestion at 37 °C (Trypsin gold, Promega, USA). The peptides from control and infected cells (in duplicates each) from 12 hpi and 72 hpi were labelled individually with different labels for 1 h at RT. The labelling reaction was stopped by addition of hydroxylamine for 10 minutes at RT. The labelled peptides from control and infected cells were mixed together and vacuum dried. For internal experimental control, 20 fmol of BSA digest were spiked in each sample before labelling.

The mixed peptide pools from both the samples were re-suspended in 0.1% formic acid in 95% acetonitrile and fractionated into 15 fractions using HILIC chromatography. Each fraction was separately analysed in duplicates on LC-MS/MS. Tandem mass spectrometry experiments were performed using the Easy-nLC 1000 HPLC system (Thermo Fisher Scientific, Waltham, MA) via nano-electrospray ion source connected to hybrid Orbitrap Velos Pro mass spectrometer (Thermo Fisher Scientific, Waltham, MA). The nano-LC was equipped with Acclaim® PepMap100 C18 column (75 µm × 2 cm) pre-column packed with 3 µm C18 resin which was further connected to Acclaim® PepMap100 C18 column (50 µm × 5 cm) analytical column (Dionex, USA) packed with 2 µm C18 beads.

Peptides were separated by a 120 min gradient of 5% buffer B to 90% buffer B (Buffer B 0.1% Formic Acid in 95% Acetonitrile; Buffer A: 0.1% Formic Acid in 5% Acetonitrile) with a flow-rate of 300 nL/min. Peptides eluting from the column were electro-sprayed directly into the Orbitrap velos MS with a spray voltage of 1.4 kV. Data acquisition was performed in a data-dependent mode to automatically switch between MS and MS2. Precursor ion spectra were acquired in Full-scan mode with a resolution of 60,000 in Orbitrap. Top 20 parent ions were sequentially isolated, fragmented using high-energy collision dissociation and acquired at a resolution of 7500. A dynamic exclusion of ions previously sequenced within 90 s was applied. All unassigned charge states and singly charged ions were excluded from sequencing. A minimum of 1000 counts was applied for MS2 selection. Accurate mass measurements were enabled with the lock mass option on in both MS1 as well as MS2.

Data analysis and functional annotation. The raw data were imported to Proteome Discoverer 1.4 (Thermo Fisher, Waltham, MA, USA) and the proteins were identified by searching against the recently reported Sf21 genome assembly proteome databases using SEQUEST algorithm57. The peptide matches were validated using Percolator at 5% FDR. The search parameters included a mass tolerance of 20 ppm for the precursors and 0.1 Da for fragmented ions. Upto 2 missed cleavages were allowed for trypsin specificity. Carbamidomethyl (C), Deamidation (NQ) and 6-plex TMT label (N-term and K) were set as variable modifications. The differential expression of proteins was calculated using reporter ion quantification approach available in Proteome Discoverer using default parameters. The mass spectrometry proteomics data were deposited to the ProteomeXchange Consortium via the PRIDE partner repository57.

Functional annotation of the identified proteins was performed using KEGG Automation Annotation Server (KAAS). Protein sequences were searched on the basis of their blast homology with KEGG genes database and KEGG orthologues, BRITE hierarchies and pathway maps were generated58–61.

miRNA mimic transfection. miRNA mimics were ordered for SpltNPV miRNAs 11684_3p and 11698_3p (ThermoFisher Scientific). Both the mimics were transfected in 70–80% confluent Sf21 cells at three concentrations i.e 10 µM, 50 µM and 100 µM using recommended concentration of Cellfectin II reagent (ThermoFisher Scientific). The transfection was carried out at room temperature for four hours in serum-free TNM-FH medium (Sigma-Aldrich) with intermittent shaking. Scrambled miRNA mimic was also transfected at a concentration of 10 µM, 50 µM and 100 µM in a similar fashion. After four hours, the medium was replaced with 10% FBS containing TNM-FH medium and the cells were maintained for 48 h.

qPCR validation and Western blot. To validate the proteome data, total RNA was extracted from mock infected and SpltNPV infected Sf21 cells at 12 h and 72 h of infection using TRIzol reagent (Invitrogen). This was followed by DNase I digestion (Invitrogen) to remove genomic DNA contamination. One-step qPCR was used to determine the level of 32 selected Sf21 genes using Verso SYBR Green 1-Step qRT-PCR ROX mix kit (Thermo Scientific). A list of oligonucleotide primers used for this study is provided in Table S4. 100 ng of DNase I treated total RNA from 12 h and 72 h mock and SpltNPV infected Sf21 cells was used as a template. qPCR reaction was set up in triplicates for each gene with the following conditions: reverse transcription at 50 °C for 15 min, enzyme activation at 95 °C for 15 min, followed by 40 cycles of denaturation (95 °C)-15 s, annealing (respective
temperature)-30s and extension (72°C)-30s. No Template control sample was run for each gene to ensure the fidelity of experiment. Relative expression levels of the miRNAs were calculated by normalizing against 28S RNA levels using 2−ΔΔCT method.

To check relative expression of gene transcripts after administration of increasing concentration of miRNA mimics, total RNA of Sf21 cells was extracted after 48 h of transfection with 10 µM, 50 µM and 100 µM of both miRNA mimics. Total RNA was also extracted from 10 µM, 50 µM and 100 µM of scrambled miRNA control as well as mock transfection. After DNaseI digestion, one step qPCR was performed for selected transcripts as described before. A list of oligonucleotide primers used for this study is provided in Table S4. Normalization of expression was done using 28S RNA.

Western blot was done according to the method described by Towbin et al. with minor modifications. Mock-infected and SfNPV infected Sf21 cells were collected after 12 h and 72 h and lysed by sonication in the following buffer: 50 mM Tris-Cl (pH 7.5), 150 mM NaCl, 1X Complete Protease inhibitor cocktail (Roche). The lysate was centrifuged at 13000 rpm for 15 min and the supernatant was estimated for protein concentration using Bradford assay. 50 µg of crude protein lysate was loaded for each sample along with PageRuler/Bio-Rad Pre-stained Protein Ladder for molecular weight determination and visualization of protein transfer onto the membrane. Mini Transblot Electrophoretic Cell apparatus (Bio-Rad) was used to transfer the proteins from gel onto nitrocellulose membrane. Electro blotting was performed in the presence of 1X Native PAGE buffer at a constant current of 170 mA for 1 hour. The membrane after transfer was rinsed briefly in 1X PBS and incubated in blocking solution (3% BSA in PBS buffer) for 1 h with gentle shaking at room temperature. The blocking solution was replaced with 1:2500 dilution of primary antibody solution [polyclonal Anti-Histone H3 raised in rabbit (Abcam), 1 mg/ml], and incubated for 1 h at room temperature with gentle shaking. Thereafter, the membrane was washed thrice with PBS buffer and 0.05% Tween-20 for 10 min each. After washing, alkaline-phosphatase conjugated secondary antibody solution (ThermoFisher Scientific, 0.6 mg/ml at 1:7500 dilution in PBS buffer) was added to the membrane and incubated for 1 h at room temperature with constant shaking. After that, membrane was washed thrice with PBS buffer and 0.05% Tween-20 for 10 min each. The protein-antibody complex was developed by adding 2–3 ml of Western Blue (Promega) stabilized substrate for alkaline phosphatase.

Data availability. The mass spectrometry datasets generated during the current study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD005870.

References

1. Arvey, A. et al. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. *Cell Host Microbe.* 12(2), 233–245 (2012).
2. Woodhouse, S. D. et al. Transcriptome sequencing, microarray, and proteomic analyses reveal cellular and molecular impact of hepatitis C virus infection in vitro. *Hepatology.* 52(2), 443–453 (2010).
3. Law, G. L., Korth, M. J., Benecke, A. G. & Katze, M. G. Systems virology: host-directed approaches to viral pathogenesis and drug targeting. *Nat. Rev. Microbiol.* 11(7), 455–466 (2013).
4. De Chassy, B., Meyniel-Schlicklin, L. N., Aublin-Gex, A., Andre, P. & Lotteau, V. New horizons for antiviral drug discovery from virus-host protein interaction networks. *Curr. Opin. Virol.* 2, 606–613 (2012).
5. Hu, Y. C. Baculovirus vectors for gene therapy. *Adv. Virus. Res.* 68, 287–320 (2006).
6. Black, B. C., Brennan, L. A., Dierks, P. M. & Gard, I. E. The Baculoviruses (ed. Miller, L. K.) 341–387 (Springer, 1997).
7. Brooks, E. M. & Hines, E. R. Viral bipectiscence for heliothine control-fact or fiction. *Today’s Life. Sci.,* 38–44 (1999).
8. Ohkawa, T., Volkman, L. E. & Welch, M. D. Actin-based motility drives baculovirus transit to the nucleus and cell surface. *J. Cell Biol.* 190, 187–195 (2010).
9. Huh, N. E. & Weaver, R. F. Categorizing some early and late transcripts directed by the Autographa californica nuclear polyhedrosis virus. *J. Gen. Virol.* 71, 2195–2200 (1990).
10. Carstens, E. B., Tjia, S. T. & Doerfler, W. Infection of Spodoptera frugiperda cells with Autographa californica nuclear polyhedrosis virus I. Synthesis of intracellular proteins after virus infection. *Virology.* 99, 186–194 (1979).
11. Ooi, B. G. & Miller, L. K. Regulation of host RNA levels during baculovirus infection. *Virology.* 166, 515–523 (1998).
12. Nobiron, I., O’Reilly, D. R. & Olszewski, J. A. Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda cells: a global analysis of host gene regulation during infection, using a differential display approach. *J. Gen. Virol.* 84, 3029–3039 (2003).
13. Salem, T. Z., Zhang, F., Xie, Y. & Thiem, S. M. Comprehensive analysis of host gene expression in Autographa californica nucleopolyhedrovirus-infected Spodoptera frugiperda cells. *Virology.* 412, 167–178 (2011).
14. Carinhas, N. et al. Quantitative proteomics of Spodoptera frugiperda cells during growth and baculovirus infection. *PLoS one.* 6, 26444 (2011).
15. Yu, Q. et al. Comparative proteomics analysis of Spodoptera frugiperda cells during Autographa californica nuclear polyhedrovirus infection. *Virology.* 12(1), 115 (2015).
16. Xing, L. et al. Dynamics of the interaction between cotton bollworm Helicoverpa armigera and nucleopolyhedrovirus as revealed by integrated transcriptomic and proteomic analyses. *Mol. Cell. Proteomics.* 16(6), 1009–1028 (2017).
17. Kakumani, P. K., Malhotra, P., Mukherjee, S. K. & Bhatnagar, R. K. A draft genome assembly of the army worm, Spodoptera frugiperda. *Genomics.* 104, 134–143 (2014).
18. Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. *Nature.* 349, 132–138 (1991).
19. Hrabaranda, N., Jalali, S. K., Ohja, R. & Bhatnagar, R. K. Temporal expression profiling of novel Spodoptera litura nucleopolyhedrovirus-encoded microRNAs upon infection of Sf21 cells. *J. Gen. Virol.* 96, 688–700 (2015).
20. Nguyen, Q., Chan, L. C. L., Nielsen, L. K. & Reid, S. Genome scale analysis of differential mRNA expression of Helicoverpa zea insect cells infected with a H. armigera baculovirus. *Virology.* 444, 158–170 (2013).
21. Bracconi, C. T. et al. Proteomic analyses of baculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus budded and occluded virus. *J. Gen. Virol.* 95, 980–989 (2014).
22. Hou, D. et al. Comparative proteomic reveals fundamental structural and functional differences between the two progeny phenotypes of a baculovirus. *J. Virol.* 87, 829–839 (2013).
23. Huang, N. et al. Baculovirus infection induces a DNA damage response that is required for efficient viral replication. *J. Virol.* 05766–05711 (2011).
24. Lypina, Y. V. et al. An important role of the heat shock response in infected cells for replication of baculoviruses. *Virology.* 406, 336–341 (2010).
25. Sagisaka, A. et al. Genome-wide analysis of host gene expression in the silkworm cells infected with Bombyx mori nucleopolyhedrovirus. *Virology.* 147, 166–175 (2010).
26. Katsuma, S., Mita, K. & Shimada, T. ERK- and JNK-dependent signaling pathways contribute to Bombyx mori nucleopolyhedrovirus infection. J. Virol. 81, 13700–13709 (2007).

27. Xiao, W. et al. The role of the PI3K–Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells. Virology. 391, 83–89 (2009).

28. Cary, L. C. et al. Transposon mutagenesis of baculoviuses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP locus of nuclear polyhedrosis viruses. Virology. 172, 156–169 (1989).

29. Fraser, M. J., Smith, G. E. & Summers, M. D. Acquisition of host cell DNA sequences by baculoviuses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses. J. Virol. 47, 287–300 (1983).

30. Breitenbach, J. E., Shelby, K. S. & Popham, H. J. R. Baculovirus induced transcripts in hemocytes from the larva of Heliothis virescens. Viruses. 3, 2047–2064 (2011).

31. Gilbert, C. et al. Continuous Influence of Genetic Material from Host to Virus Populations. PLoS. Genet. 12(2), 1005838 (2016).

32. Menzel, T. & Rohrmann, G. F. Diversity of errnavirus (reovirus) sequences in two cell lines used for baculovirus expression, Spodoptera frugiperda and Trichoplusia ni. Virus. Genes. 36, 583–586 (2008).

33. Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrasfish. Cell. 129, 69–82 (2007).

34. Huang, H.-K. et al. The Inhibitor of Apoptosis, cIAP2, Functions as a Ubiquitin-Protein Ligase and Promotes in Vitro Monoubiquitination of Caspases 3 and 7. J. Biol. Chem. 275, 26661–26664 (2000).

35. Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Nat. Acad. Sci. 98, 8662–8667 (2001).

36. Imai, N. et al. Ubiquitin ligase activities of Bombyx mori nucleopolyhedrovirus RING finger proteins. J. Virol. 77, 923–930 (2003).

37. Lyupina, Y. V. et al. Proteotoxic stress induced by Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda S9 cells. Virology. 436, 49–58 (2013).

38. Lyupina, Y. V. et al. New insights into the induction of the heat shock proteins in baculovirus infected insect cells. Virology. 421, 34–41 (2011).

39. Ha. D. et al. WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc. Nat. Acad. Sci. 107, 10442–10447 (2010).

40. Wang, F. et al. WASH complex regulates Arp2/3 complex for actin-based polar body extrusion in mouse oocytes. Sci. Rep. 4, 5596 (2014).

41. Evangelista, M., Zigmond, S. & Boone, C. Formins: signaling effectors for assembly and polarization of actin filaments. Nucleic. Acids. Res. 40, 7106–7120 (2012).

42. Carinhas, N. & O'Reilly, D. R. Baculovirus-encoded ecdysteroid UDP-glucosyltransferases. Virology. 247, 1–5 (1998).

43. Reynolds, N., Fantes, P. A. & MacNeill, S. A. A key role for replication factor C in DNA replication checkpoint function in fission yeast. Mol. Biol. Cell. 12, 255–264 (2001).

44. Schmid, S. R. & Linder, P. Translation initiation factor 4A from Saccharomyces cerevisiae: analysis of residues conserved in the DEAD family of RNA helicases. Mol. Biol. Cell. 11, 3463–3471 (1991).

45. Van Oers, M. M., Van der Veken, L., Vlak, J. M. & Thomas, A. A. M. Cloning and analysis of cDNAs encoding the hypusine-containing protein eIF5A of two lepidopteran insect species. Insect. Mol. Biol. 15, 311–319 (2006).

46. Xue, J. et al. Dynamic interactions between Bombyx mori nucleopolyhedrovirus and its host cells revealed by transcriptome analysis. J. Virol. 86, 7345–7359 (2012).

47. Linder, P. & Jankowsky, E. From unwinding to clamping: the DEAD box RNA helicase family. Nat. Rev. Mol. Cell. Biol. 12, 505–516 (2011).

48. El-Bacha, T. & Da Poian, A. T. Virus-induced changes in mitochondrial bioenergetics as potential targets for therapy. Int. J. Biochem. Cell. Biol. 45, 41–46 (2013).

49. Ripoli, M. et al. Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1alpha-mediated glycolytic adaptation. J. Virol. 84, 647–660 (2010).

50. Vestag, L., Koyuncu, E., Grady, S. L., Shenk, T. E. & Rabinowitz, J. D. Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS. Pathogens. 7, 1002124 (2011).

51. Carinhas, N. et al. Improving baculovirus production at high cell density through manipulation of energy metabolism. Metab. Eng. 12.1, 39–52 (2010).

52. O’Reilly, D. R. Baculovirus-encoded ecdysteroid UDP-glucosyltransferases. Insect Biochem. Mol. Biol. 25(5), 541–550 (1995).

53. O’Reilly, D. R., Brown, M. R. & Miller, L. K. Alteration of ecdysteroid metabolism due to baculovirus infection of the fall armyworm Spodoptera frugiperda: host ecdysteroids are conjugated with galactose. Insect. Biochem. Mol. Biol. 22(4), 313–320 (1992).

54. Schmid, S. R. & Linder, P. Translation initiation factor 4A from Saccharomyces cerevisiae: analysis of residues conserved in the DEAD family of RNA helicases. Mol. Biol. Cell. 11, 3463–3471 (1991).

Acknowledgements
We sincerely thank the help from Bioinformatics Infrastructure Facility at ICGEB. This work was supported by financial help from Department of Biotechnology, Government of India and research fellowship awarded by Council of Scientific and Industrial Research, India.
Author Contributions
N.N. and I.K. conducted the experiments. N.N. drafted the manuscript, PM. and R.K.B. made substantial contributions to the conception and design of the experiments. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-10787-z

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017