Analysis of the temperature dependence of the electron spin resonance linewidth in exchange-coupled magnetic insulators

M. Acikgoz a and D. L. Huber b

a Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA. E-mail address: muhammed.acikgoz@rutgers.edu

b Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA. E-mail address: dhuber@wisc.edu

Abstract

We analyze the temperature dependence of the electron spin resonance linewidth in exchange-coupled magnetic insulators using results from Co$_3$O$_4$ as an example. The focus is on separating the contributions from spin-spin interactions, spin-one-phonon interactions and spin-two-phonon interactions. Expressing the linewidth as a sum of the three contributions, varying as const., BT, and CT^2, respectively, we use a least-squares fit over the temperature range $50 K \leq T \leq 500 K$ to obtain values of the three components. It is found that the spin-spin mechanism is dominant below 100 K, while the two-phonon mechanism is most important above 250 K. In the intermediate region, all three mechanisms make significant contributions. The success of the high temperature approximations for the one and two-phonon terms, which occurs well below the Debye temperature of 525 K in Co$_3$O$_4$, is attributed to extreme exchange narrowing of the bandwidth of phonons contributing to the linewidth.

The authors declare that there is no conflict of interest regarding publication of this paper.
1. Introduction

Studies of the electron spin resonance (ESR) linewidth in the magnetic insulator CrBr₃ revealed a linear temperature dependence well above the critical region [1]. Subsequent analysis show that the linear temperature dependence was associated with the spin-phonon interaction [2,3]. Since Cr³⁺ is not an S-state ion, the interactions between the spins and phonons are comparatively strong in contrast to S-state systems such as MnF₂ where the linewidth approaches a constant value at high temperatures. Recently, results have been reported which indicate that in Co₃O₄, the linewidth begins to vary quadratically with increasing temperature [4,5] suggesting the growing importance of two-phonon processes. In this note we demonstrate how one can separate the contributions to the linewidth from the three processes.

2. Analysis

As pointed out in [3], above the critical region, the ESR linewidth in magnetic insulators can be expressed in the form

$$\Delta H(T) = \left(\frac{\chi_0(T)}{\chi(T)} \right) [A + BT + CT^2]$$

where $\chi_0(T)$ denotes the Curie susceptibility and $\chi(T)$ is the static susceptibility. The letters A, B and C refer to the spin-spin, spin-one-phonon, and spin-two-phonon contributions, respectively. In our analysis of Co₃O₄ we can use the Curie-Weiss approximation for the susceptibility so that the first factor in (1) takes the form

$$\frac{\chi_0(T)}{\chi(T)} = \frac{T - \theta}{T}$$

We analyze the data for Co₃O₄ from [5] over the range $50 \text{ K} \leq T \leq 500 \text{ K}$ with $\theta = -110 \text{ K}$ [5]. We assume that A, B and C are temperature-independent above 50 K, a high-temperature approximation consistent with the Néel temperature, 39 K. In Fig. 1 we show the results obtained from fitting the X-band linewidth data shown in Fig. 4 of [5]. The corresponding fitting parameters are

$$A = 3.607 \times 10^2 \text{ Oe}$$

$$B = 1.225 \text{ OeK}^{-1}$$

$$C = 8.570 \times 10^{-3} \text{ OeK}^{-2}$$

We discuss these results in the following section.

3. Discussion

As noted, the temperature dependence of the ESR linewidth of Co₃O₄ above the critical region reflects the interplay of spin-spin and spin-lattice interactions. In Fig. 2, we plot the temperature dependence of the three terms contributing to the product $[T / (T + 110)]\Delta H(T)$. It is apparent that below 100 K, the linewidth is dominated by the contribution from spin-spin interactions, while the two-phonon processes are dominant above 250 K [4,5]. The range 100 K
< \ T \ < \ 250 \ K \ is \ a \ cross-over \ region \ where \ all \ three \ processes \ are \ making \ a \ significant \ contribution \ to \ the \ width.

It \ should \ be \ noted \ that \ the \ functional \ forms \ \(BT \) \ and \ \(CT^2 \) \ are \ high-temperature \ approximations \ to \ the \ expressions \ for \ the \ one-phonon \ and \ two-phonon \ processes. \ The \ explanation \ for \ the \ high \ temperature \ form \ is \ discussed \ in \ [3] \ where \ it \ is \ shown \ that \ exchange \ interactions \ between \ the \ magnetic \ ions \ limit \ the \ frequencies \ of \ the \ phonons \ contributing \ to \ the \ linewidth \ in \ a \ one-phonon \ process. \ Similar \ arguments \ apply \ to \ two-phonon \ processes \ as \ well. \ An \ estimate \ of \ the \ cut-off \ energy \ of \ the \ phonons \ in \ a \ system \ with \ nearest-neighbor \ exchange \ interactions \ is \ given \ in \ [3] \ and \ takes \ the \ form

\[
E_{\text{cut-off}}^{\text{phonon}} = (2S(S + 1)n_{nn}J_{nn}^2)^{1/2}
\]

where \(J_{nn} \) \ is \ the \ nearest-neighbor \ exchange \ interaction \ and \ \(n_{nn} \) \ is \ the \ number \ of \ nearest \ neighbors. \ With \ \(S = 3/2, n_{nn} = 4 \) \ and \ \(J_{nn} = 11.7 \ K \) \ [4], \ we \ obtain \ a \ cut-off \ temperature \ equal \ to \ 64 \ K. \ As \ a \ result, \ we \ expect \ the \ high \ temperature \ form \ for \ the \ spin-phonon \ contributions \ is \ appropriate \ for \ \(T > 60 – 70 \ K \). \ For \ comparison, \ we \ note \ that \ the \ Debye \ temperature \ is \ the \ nominal \ boundary \ of \ the \ high \ temperature \ regime \ for \ acoustic \ phonons. \ In \ the \ case \ of \ Co3O4 \ the \ experimental \ Debye \ temperature \ is \ 525 \ K \ [6], \ eight \ times \ larger \ than \ the \ exchange \ cut-off, \ indicating \ an \ extreme \ exchange \ narrowing \ of \ the \ width \ of \ the \ phonon \ band \ contributing \ to \ the \ linewidth.

4. Summary

We \ have \ outlined \ an \ approach \ for \ separating \ the \ contributions \ to \ the \ high-temperature \ ESR \ linewidth \ in \ magnetic \ insulators \ that \ are \ associated \ with \ spin-spin \ and \ one- \ and \ two-phonon \ processes. \ The \ analysis \ is \ applicable \ above \ the \ critical \ regime, \ which \ we \ loosely \ identify \ as \ the \ region \ where \ the \ Curie-Weiss \ approximation \ is \ useful, \ provided \ the \ temperature \ exceeds \ a \ cutoff \ temperature \ of \ the \ band \ of \ contributing \ phonons. \ ESR \ studies \ of \ Co3O4 \ show \ evidence \ of \ an \ extreme \ exchange \ narrowing \ of \ the \ spectrum \ of \ contributing \ phonons.

Acknowledgment

The authors would like to thank Z. Seidov for the ESR measurements.
References

[1] M. S. Seehra and R. P. Gupta, Phys. Rev. B 9 (1974) 197.
[2] D. L. Huber and M. S. Seehra, J. Phys. Chem. Solids 36 (1975) 723.
[3] D. L. Huber J. Phys. Cond. Mat. 26 (2014) 056002.
[4] P. Dutta, M. S. Seehra, S.Thota and J. Kumar, J. Phys. Cond. Mat. 20 (2008) 015218.
[5] Z. Seidov, M. Acikgoz, S. Kazan and F. Mikailzade, Ceram. Inter. 42 (2016) 12928.
[6] W. L. Roth, J. Phys. Chem. Solids 25 (1964) 1.
Figure captions

Fig. 1. Co$_3$O$_4$. ESR linewidth vs T. The data points are from [5]. The solid curve is a three-parameter least squares fit described in the text.

Fig. 2. Co$_3$O$_4$. Contributions to $[T/(T+110)] \Delta H(T)$ from spin-spin interactions, A; one-phonon processes, BT; two-phonon processes, CT^2
Fig. 1
Fig. 2