Breaking Down Multilingual Machine Translation

Ting-Rui Chiang1 Yi-Pei Chen2 Yi-Ting Yeh1 Graham Neubig1
Carnegie Mellon University1, The University of Tokyo2
Background: Multilingual Training for Machine Translation

We were wondering why there is more improvement in one direction than the other.

encoder -> decoder

many-to-one

↑ has more improvement than ↓
Observation

Azerbaijani
Belarusian
Arabic
German

encoder
decoder

English

many-to-one

affects the number of modalities exposed to the encoder/decoder

English
encoder
decoder

one-to-many

Azerbaijani
Belarusian
Arabic
German
Investigation

- How does multilingual training affect the encoder/decoder?
 - i.e. How useful are the parameters learned from multilingual training?
Experiment - Step 1: Train a Multilingual Model

- Azerbaijani
- Belarusian
- Arabic
- German

encoder

decoder

train

parameters
Experiment - Step 2: Initialize Several Bilingual Models

Encoder	Decoder
English | Arabic

Encoder	Decoder
English | Arabic

Encoder	Decoder
English | Arabic

Encoder	Decoder
English | Arabic
Experiment - Step 2: Initialize Several Bilingual Models

Load both encoder and decoder parameters.
Experiment - Step 2: Initialize Several Bilingual Models

- **Load both encoder and decoder parameters**
 - English to Arabic
- **Load encoder**
 - English to Arabic
 - English to Arabic
 - English to Arabic
Experiment - Step 2: Initialize Several Bilingual Models

Load both
- English
- Arabic

Load encoder
- English
- Arabic

Load decoder
- English
- Arabic
Experiment - Step 2: Initialize Several Bilingual Models

- **Load both**
 - English Encoder → Arabic Decoder

- **Load encoder**
 - English Encoder → Arabic Decoder

- **Load decoder**
 - English Encoder → Arabic Decoder

- **From scratch**
 - English Encoder → Arabic Decoder
Experiment - Step 3: Train with Bilingual Data

- **Load both**
 - English: Encoder → Decoder (Arabic)

- **Load encoder**
 - English: Encoder → Decoder (Arabic)

- **Load decoder**
 - English: Encoder → Decoder (Arabic)

- **From scratch**
 - English: Encoder → Decoder (Arabic)
Experiment - Final Step: Compare their performance

We can infer how multilingual training benefits the encoder/decoder.
Low-resource: Multilingual training benefits both the encoder and the decoder.
High-resource: Multilingual training only benefits encoder.
Investigating Parameter Sharing

1. Identify important attention heads for languages.
2. Compute the coherence of important heads.
Investigating Parameter Sharing
Improvement by Training with Related Languages

Model	az	be	gl	sk	ar	de	he	it
En-All (Aharoni et al., 2019)	5.1	10.7	26.6	24.5	16.7	30.5	27.6	35.9
Bilingual Baseline	1.3	1.9	3.9	13.1	15.6	27.1	25.4	32.0
All-All	3.1	6.2	20.5	18.4	12.7	24.5	21.1	30.5
All-All w/ f.t. on related clusters	7.9	12.8	27.5	24.9	-	30.2	27.0	35.4
All-All w/ f.t. on random groups	6.9	13.3	22.5	24.3	-	-	27.5	35.2
En-All	4.9	9.0	24.2	21.9	15.1	27.9	24.1	33.3
En-All w/ f.t. on related clusters	**7.9**	13.9	21.0	**26.2**	16.7	30.4	27.1	35.4
En-All w/ f.t. on random groups	7.0	13.1	23.1	24.7	-	-	27.6	35.2
Load En-All w/ f.t. on closest	7.8	**15.2**	**28.6**					
Conclusion

We found that multilingual training is more useful for the encoder.

We proposed a purely data-driven way to identify related languages.

Our experiments can serve as analysis tools for future research.