SOME REMARKS CONCERNING SYMMETRY-BREAKING FOR THE GINZBURG-LANDAU EQUATION

PIERPAOLO ESPOSITO

Abstract. The correlation term, introduced in [13] to describe the interaction between very far apart vortices, governs symmetry-breaking for the Ginzburg-Landau equation in \(\mathbb{R}^2 \) or bounded domains. It is a homogeneous function of degree \((-2)\), and then for \(\frac{2\pi}{N} \)-symmetric vortex configurations can be expressed in terms of the so-called correlation coefficient. Ovchin- nikov and Sigal [13] have computed it in few cases and conjectured its value to be an integer multiple of \(\frac{\pi}{4} \). We will disprove this conjecture by showing that the correlation coefficient always vanishes, and will discuss some of its consequences.

Keywords: Ginzburg-Landau equation, Symmetry-breaking, correlation term

2010 AMS Subject Classification: 35Q56, 35J61, 82D55

1. Introduction

The Ginzburg-Landau theory is a very popular model in superconductivity [6]. Stationary states are described by complex-valued solutions \(u \) of the planar equation

\[-\Delta u = k^2 u (1 - |u|^2),\]

where \(k > 0 \) is the Ginzburg-Landau parameter. The condensate wave function \(u \) describes the superconductive regime in the sample by simply interpreting \(|u|^2 \) as the density of Cooper electrons pairs. The zeroes of \(u \), where the normal state is restored, are called vortices. The parameter \(k \) depends on the physical properties of the material and distinguishes between Type I superconductors \(k < \frac{1}{\sqrt{2}} \) (in this normalization of constants) and Type II superconductors \(k > \frac{1}{\sqrt{2}} \).

In the entire plane \(\mathbb{R}^2 \) the parameter \(k \) does not play any role, as we can reduce to the case \(k = 1 \) by simply changing \(u \) into \(u(\frac{x}{k}) \). Supplemented by the correct asymptotic behavior at infinity, the Ginzburg-Landau equation now reads as

\[
\begin{aligned}
-\Delta U &= U (1 - |U|^2) \quad \text{in } \mathbb{R}^2 \\
|U| &\to 1 \text{ as } |x| \to \infty.
\end{aligned}
\]

The condition \(|U| \to 1 \) as \(|x| \to \infty \) allows to define the (topological) degree \(\deg U \) of \(U \) as the winding number of \(U \) at \(\infty \):

\[
\deg U = \frac{1}{2\pi} \int_{|x|=R} d(\arg U),
\]

where \(R > 0 \) is chosen large so that \(|U| \geq \frac{1}{2} \) in \(\mathbb{R}^2 \setminus B_R(0) \). Given \(n \in \mathbb{Z} \), the only known solution of (1.1) with \(\deg U = n \) is the “radially symmetric” one \(U_n(x) = S_n(|x|)(\frac{x}{|x|})^n \) (in complex notations with \(x \in \mathbb{C} \)), where \(S_n \) is the solution of the following ODE:

\[
\begin{cases}
\frac{\dot{S}_n}{r} + \frac{1}{r} S_n - \frac{n^2}{r^2} S_n + S_n(1 - S_n^2) = 0 & \text{in } (0, +\infty) \\
S_n(0) = 0, & \lim_{r \to +\infty} S_n = 1.
\end{cases}
\]
Existence and uniqueness of S_n is shown in [11]. Moreover, the solution U_n is stable for $|n| \leq 1$ and unstable for $|n| > 1$ [11]. When $n = \pm 1$, the solution $U_{\pm 1}$ is unique, modulo translations and rotations, in the class of functions U with deg $U = \pm 1$ and $\int_{\mathbb{R}^2}(|U|^2 - 1)^2 dx < +\infty$ [10].

One of the open problems (Problem 1) – that Brezis-Merle-Rivi`ere raise out in [3] – concerns the existence of solutions U of (1.1) with conf U = n, $|n| > 1$, which are not “radially symmetric” around any point. So far there is no rigorous answer, but a strategy to find them has been proposed in [12]. Formally, a solution U of (1.1) is a critical point of the functional

$$\mathcal{E}(|\Psi|) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla \Psi|^2 dx + \frac{1}{4} \int_{\mathbb{R}^2} (|\Psi|^2 - 1)^2 dx.$$

Since $\mathcal{E}(|\Psi|) = +\infty$ for any C^1–map Ψ so that $|\Psi| \rightarrow 1$ as $|x| \rightarrow +\infty$ and $\text{deg} (\Psi) \neq 0$, Ovchinnikov and Sigal [11] have proposed to correct \mathcal{E} into

$$\mathcal{E}_{\text{ren}}(|\Psi|) = \int_{\mathbb{R}^2} \left(\frac{1}{2} |\nabla \Psi|^2 - \frac{(\text{deg} \Psi)^2}{|x|^2} \chi + \frac{1}{4} (|\Psi|^2 - 1)^2 \right) dx,$$

where χ is a smooth cut–off function with $\chi = 0$ when $|x| \leq R$ and $\chi = 1$ when $|x| \geq R + R^2$, and $R >> 1$ is given. Given a vortex configuration $(\underline{a}, \underline{n}) = (a_1, \ldots, a_K, n_1, \ldots, n_K)$, a C^1–map Ψ so that $|\Psi| \rightarrow 1$ as $|x| \rightarrow +\infty$ has vortex configuration $(\underline{a}, \underline{n})$ if a_1, \ldots, a_K are the only zeroes of Ψ with local indices n_1, \ldots, n_K, denoted for short as conf $\Psi = (\underline{a}, \underline{n})$. Given n_0, Ovchinnikov and Sigal [12] introduce the “intervortex energy” E given by

$$E(\underline{a}) = \inf \{ \mathcal{E}_{\text{ren}}(\Psi) : \text{conf } \Psi = (\underline{a}, \underline{n}) \},$$

and conjecture that \underline{a}_0 is a critical point of E if and only if there is a minimizer U for $E(\underline{a}_0)$, yielding to a solution of (1.1) with conf $U = (\underline{a}_0, \underline{n}_0)$ which is not “radially symmetric” around any point by construction. Letting $d_{\underline{a}} = \min_{i \neq j} |a_i - a_j|$, the following asymptotic expression is established [12]:

$$E(\underline{a}) = \sum_{j=1}^{K} \mathcal{E}_{\text{ren}}(U_{n_j}) + H(\frac{\underline{a}}{R}) + \text{Rem}$$

(1.2)

with Rem = $O(d_{\underline{a}}^{-2})$ as $d_{\underline{a}} \rightarrow +\infty$, where $H(\underline{a}) = -\pi \sum_{i \neq j} n_i n_j \ln |a_i - a_j|$ is the energy of the vortex pairs interactions. When $\nabla H(\underline{a}) = 0$, the estimate in (1.2) improves up to Rem = $O(d_{\underline{a}}^{-2})$.

When $\nabla H(\underline{a}) = 0$ (a so-called forceless vortex configuration), by choosing refined test functions the asymptotic expression (1.2) is improved [13] in the form of the following upper bound:

$$E(\underline{a}) \leq \sum_{j=1}^{K} \mathcal{E}_{\text{ren}}(U_{n_j}) + H(\frac{\underline{a}}{R}) - A(\underline{a}) + \text{Rem}$$

(1.3)

with Rem = $O(d_{\underline{a}}^{-2} + R^{-2})$ as $d_{\underline{a}} \rightarrow +\infty$, where the correlation term $A(\underline{a})$ is a homogeneous function of degree (-2) given as

$$A(\underline{a}) = \frac{1}{4} \int_{\mathbb{R}^2} \left(\sum_{j=1}^{K} |\nabla \varphi_j|^4 - \sum_{j=1}^{K} |\nabla \varphi_j|^4 \right),$$

with $\varphi_j(x) = n_j \theta(x - a_j), j = 1, \ldots, K,$ and $\theta(x)$ the polar angle of $x \in \mathbb{R}^2$.

To push further the analysis, in [13] the attention is restricted to symmetric vortex configurations in order to reduce the number of independent variables in $E(\underline{a})$. In particular, the simplest $\frac{2\pi}{N}$–symmetric vortex configurations $(\underline{a}, \underline{n})$ (which are invariant under $\frac{2\pi}{N}$–rotations...
and reflections w.r.t. the real axis) have the form: $a_0 = 0$, a_1, \ldots, a_N are the vertices of a regular N-polygon with $a_1 = 1$ and $n_1 = \cdots = n_N = m$. We impose also the forceless condition $\nabla H(\theta) = 0$, which simply reads as $n_0 = -\frac{N-1}{2}m$. Since $|a_1| = \cdots = |a_N|$, the only variable is the size $a = |a_1|$ of the polygon, and then the intervortex energy will be in the form $E(a)$. Since $A(\theta)$ is homogeneous of degree -2, we have that $A(\theta) = \frac{A_0}{a^2}$, where

$$A_0 := A(1, e^{2\pi i/N}, \ldots, e^{2\pi i(N-1)/N})$$

is the correlation coefficient for given $n_0 = -\frac{N-1}{2}m$ and $n_1 = \cdots = n_N = m$. In [13] the existence of c.p.'s of $E(a)$ is shown for the cases $(N, m) = (2, 2)$ and $(N, m) = (4, 2)$ by comparing $E(a)$ for a small and large, and using the positive sign of A_0 (the correlation coefficient has value 8π and 80π, respectively). It is also conjectured [13] that the correlation coefficient has values which are integer multiples of $\frac{\pi}{2}$. With a long but tricky computation, in the next section we will disprove such a conjecture by showing

Theorem 1.1. The correlation coefficient in (1.4) always vanishes: $A_0 = 0$, for all $N \geq 2$ and $m \in \mathbb{Z}$.

Beside the role of A_0 in symmetry-breaking phenomena for (1.1) in \mathbb{R}^2, as already discussed, we will also explain its connection with the Ginzburg-Landau equation

$$\begin{cases}
-\Delta u = k^2 u (1 - |u|^2) & \text{in } \Omega \\
u = g & \text{on } \partial \Omega
\end{cases}$$

(1.5)

on a bounded domain Ω for strongly Type II superconductors $k \to +\infty$, where $g : \partial \Omega \to S^1$ is a smooth map.

The energy functional for (1.5)

$$E_k(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{k^2}{4} \int_{\Omega} (1 - |u|^2)^2$$

has always a minimizer \tilde{u}_k in the space $H = \{u \in H^1(\Omega, \mathbb{C}) : u = g$ on $\partial \Omega\}$. When $d = \deg g \neq 0$, by [2][13][16] we know that on simply connected domains \tilde{u}_k has exactly $|d|$ simple zeroes $a_1, \ldots, a_{|d|}$ for k large, where $(a_1, \ldots, a_{|d|})$ is a critical point for a suitable “renormalized energy” $W(a_1, \ldots, a_{|d|})$. The symmetry-breaking phenomenon here takes place, driven by an external mechanism like the boundary condition that forces the confinement of vortices in some equilibrium configuration. A similar result does hold [2] on star-shaped domains for any solutions sequence u_k of (1.5). Near any vortex a_i, the function $u(\frac{x}{k} + a_i)$ behaves like $U_{a_i}(x)$.

Once the asymptotic behavior is well understood, a natural question concerns the construction of such solutions for any given c.p. (a_1, \ldots, a_K) of W, and a positive answer has been given by a heat-flow approach [8][9], by topological methods [1] and by perturbative methods [5][13] in case $n_1 = \cdots = n_K = \pm 1$. In [14], page 12, it is presented as an open problem to know whether or not there are solutions having vortices collapsing as $k \to \infty$, the simplest situation being problem (1.6) on the unit ball B with boundary value $g_0 = \frac{\pi^2}{|x|^2}$:

$$\begin{cases}
-\Delta u = k^2 u (1 - |u|^2) & \text{in } B \\
u = g_0 & \text{on } \partial B.
\end{cases}$$

It is conjectured the existence of solutions to (1.6) having a vortex of degree -1 at the origin $a_0 = 0$ and three vortices of degrees $+1$ at the vertices ia_j, $a_j = e^{2\pi i(j-1)}$ for $j = 1, 2, 3$, of a
small \((l << 1)\) equilateral triangle centered at 0. This vortex configuration is \(\frac{2\pi}{3}\)-symmetric, forceless and has “renormalized energy”

\[
W(l) = -6\pi \ln 3 - 6\pi \ln(1 - l^6) + O(l^9), \quad l > 0.
\]

(1.7)

In collaboration with J. Wei, we were working on this problem. Inspired by [5], we were aiming to use a reduction argument of Lyapunov-Schmidt type, starting from the approximating solutions \(U_k\) for (1.6) given by

\[
U_k(x) = e^{i\varphi_k(x)}U_{-1}(kx) \prod_{j=1}^{3} U_1 \left(k(x - le^{\frac{2\pi i}{3}(j - 1)})\right)
\]

with \(l \to 0\) and \(lk \to +\infty\), where the function \(\varphi_k\) is an harmonic function so that \(U_k|_{\partial B} = g_0\). The interaction due to the collapsing of three vortices onto 0 gives at main order a term \((lk)^{-2}\) with the plus sign, i.e. for some \(J_0 > 0\) there holds the energy expansion

\[
E_k(U_k) = 4\pi \ln k + I + \frac{1}{2}W(l) + J_0(lk)^{-2} + o((lk)^{-2})
\]

\[
= 4\pi \ln k + I - 3\pi \ln 3 + 3\pi l^6 + J_0(lk)^{-2} + o \left(l^6 + (lk)^{-2}\right),
\]

(1.8)

in view of (1.7). The aim is to construct a solution \(u_k\) in the form \(U_k[\eta(1 + \psi) + (1 - \eta)e^{\psi}]\), where \(\psi = \psi(k)\) is a remainder term small in a weighted \(L^\infty(B)\)-norm and \(l = l(k)\) as \(k \to +\infty\). The function \(\eta\) is a smooth cut-off function with \(\eta = 1\) in \(\bigcup_{j=0}^{3} B_{1/k}(l_a_j)\) and \(\eta \equiv 0\) in \(B \setminus \bigcup_{j=0}^{3} B_{2/k}(l_a_j)\). The function \(\psi = \psi(k)\) is found thanks to the solvability theory (up to a finite-dimensional kernel) of the linearized operator for (1.6) at \(U_k\) as \(l \to 0\) and \(lk \to +\infty\), and by the Lyapunov-Schmidt reduction the existence of \(l(k)\) follows as a c.p. of

\[
\tilde{E}_k := E_k(U_k[\eta(1 + \psi(k)) + (1 - \eta)e^{\psi(k)}]).
\]

If \(U_k\) is sufficiently good as an approximating solution of (1.6), we have that \(E_k = E_k(U_k) + o((lk)^{-2})\). Since \(3\pi l^6 + J_0(lk)^{-2}\) has always a minimum point of order \(k^{-\frac{1}{2}}\) as \(k \to +\infty\), by (1.8) we get the existence of \(l = l(k)\) in view of the persistence of minimum points under small perturbations.

Unfortunately, this is not the case. Pushing further the analysis, we were able to identify the leading term \(\psi_0 = \psi_0(k)\) of \(\psi = \psi(k)\), and compute its contribution into the energy expansion, yielding to a correction in the form:

\[
\tilde{E}_k = 4\pi \ln k + I + \frac{1}{2}W(l) + J_1(lk)^{-2} + o((lk)^{-2}).
\]

(1.9)

By (1.7) and (1.9) a c.p. \(l(k)\) of \(\tilde{E}_k\) always exists provided \(J_1 > 0\). First numerically, and then rigorously, we were disappointed to find that \(J_1 = 0\).

Later on, we realized that \(-J_1\) is exactly the correlation coefficient \(A_0\) in (1.4) (with \(N = 3\) and \(m = 1\)) introduced by Ovchinnikov and Sigal [13]. If \(u\) is a solution of (1.6) with vortices \(a_0 = 0\) and \(l_a j, a_j = e^{\frac{2\pi i}{3}(j - 1)}\) for \(j = 1, 2, 3\), with \(n_0 = -1\) and \(n_1 = n_2 = n_3 = 1\), then the function \(U(x) = u(\frac{x}{k})\) does solve

\[
\begin{cases}
-\Delta U = U(1 - |U|^2) & \text{in } B_k \\
U = g_0 & \text{on } \partial B_k
\end{cases}
\]

(1.10)

with vortices \(a_0\) and \(lka_j\) of vorticities \(n_0 = -1, n_1 = n_2 = n_3 = 1\). Since (1.1) and (1.10) formally coincide when \(k = +\infty\), it is natural to find a correlation term in the energy expansion
\[\tilde{E}_k \text{ in the form } -\frac{\Delta u}{\alpha} = J_1(\lambda k)^{-2}, \text{ where } a = \lambda k \text{ is the modulus of the } \lambda ka_j \text{'s for } j = 1, 2, 3. \] Even more and not surprisingly, the function \(\tilde{U}_k(x) \), where \(U_k[\eta(1 + \psi_0(k)) + (1 - \eta)e^{\psi_0(k)}] \) is a very good approximating solution for (1.6) which improves the approximation rate of \(U_k \), does coincide with the refined test functions used by Ovchinnikov and Sigal [13] to get the improved upper bound (1.3). In conclusion, the vanishing of the correlation coefficient \(A_0 \) does not support any conjecture concerning symmetry-breaking phenomena for (1.1) or the existence of collapsing vortices for (1.6) when \(k \to +\infty \). Higher-order expansions would be needed in their study.

2. The Correlation Coefficient

Let \(N \geq 2 \). Let \(a_j = e^{\frac{2\pi i(j-1)}{N}}, j = 1, \ldots, N \), be the \(N \)-roots of unity, and set \(n_j = m \in \mathbb{Z} \) for all \(j = 1, \ldots, N \), \(a_0 = 0 \) and \(n_0 = -\frac{N-1}{2}m \). We aim to compute the correlation coefficient \(A_0 = A_0(m) \) given in (1.4). Since (in complex notation) \(\nabla \theta(x) = |x|^{-2}(-x_2, x_1) \) has the same modulus as \(\bar{x}/|x|^2 \), the correlation coefficient takes the form

\[
A_0 = \frac{1}{4} \int_{\mathbb{R}^2} \left[\sum_{j=0}^{N} \frac{n_j}{x-a_j} \right]^4 - \sum_{j=0}^{N} \left| \frac{n_j}{x-a_j} \right|^4 \right]. \tag{2.1}
\]

Since the integer \(m \) comes out as \(m^4 \) from the expression (2.1), we have that \(A_0(m) = m^4A_0(1) \). Hereafter, we will assume \(m = 1 \) and simply denote \(A_0(1) \) as \(A_0 \).

Let us first notice that \(A_0 \) is not well-defined without further specifications, because the integral function in (2.1) is not integrable near the points \(a_j, j = 0, \ldots, N \). Recall that the \(N \)-roots of unity \(a_1, \ldots, a_N \) do satisfy the following symmetry properties:

\[
\sum_{j=1}^{N} a_j^l = 0 \quad \forall |l| \leq N, \ l \neq 0, \tag{2.2}
\]

as it can be easily deduced by the relation \(x^N - 1 = \prod_{j=1}^{N} (x - a_j) \). A first application of (2.2) is the validity of

\[
\sum_{j=1}^{N} \frac{1}{x-a_j} = \sum_{j=1}^{N} \frac{x^{N-1} + a_jx^{N-2} + \cdots + a_j^{N-1}}{x^N - 1} = \frac{Nx^{N-1}}{x^N - 1}, \tag{2.3}
\]

which implies that the integral function in (2.1) near 0 has the form

\[
\left| \sum_{j=0}^{N} \frac{n_j}{x-a_j} \right|^4 - \sum_{j=0}^{N} \left| \frac{n_j}{x-a_j} \right|^4 = -\frac{N(N-1)^3}{2} \text{Re} \left(\frac{x^N}{(x^N - 1)|x|^4} \right) + O(1) \tag{2.4}
\]
and is not integrable at 0 when $N = 2$. Similarly, setting $\alpha_k(x) = -\frac{N-1}{2x} + \sum_{j=1}^{N} \frac{1}{x - a_j}$ for $k = 1, \ldots, N$, near a_k we have that

$$|\sum_{j=0}^{N} \frac{n_j}{x - a_j}|^4 - |\sum_{j=0}^{N} \frac{n_j}{x - a_j}|^4 = \frac{4}{|x - a_k|^4} \text{Re}[(x - a_k)\alpha_k(x)] + \frac{2}{|x - a_k|^2} |\alpha_k(x)|^2$$ \hspace{1cm} (2.5)

$$+ \left(2 \text{Re}\left(\frac{x - a_k)\alpha_k(x)}{|x - a_k|^2} + |\alpha_k(x)|^2\right)^2 - \frac{(N - 1)^4}{16|x|^4} - \sum_{j=1}^{N} \frac{1}{|x - a_j|^4}.$$

The function α_k cannot be computed explicitly, but we know that

$$\alpha_k(a_k) = -\frac{N - 1}{2a_k} + \sum_{j=1, j \neq k}^{N} \frac{1}{a_k - a_j} = a_k^{N-1} \left(-\frac{N - 1}{2} + \sum_{j=2}^{N} \frac{1}{1 - a_j}\right)$$ \hspace{1cm} (2.6)

$$= a_k^{N-1} \left(-\frac{N - 1}{2} + \sum_{j=2}^{N} \frac{1 - \cos \frac{2\pi(j-1)}{N} + i \sin \frac{2\pi(j-1)}{N}}{2(1 - \cos \frac{2\pi(j-1)}{N})}\right)$$

$$= ia_k^{N-1} \sum_{j=2}^{N} \frac{\sin \frac{2\pi(j-1)}{N}}{2(1 - \cos \frac{2\pi(j-1)}{N})} = 0$$

in view of $\{a_j a_k^{N-1} : j = 1, \ldots, N, j \neq k\} = \{a_2, \ldots, a_N\}$ and the symmetry of $\{a_1, \ldots, a_N\}$ under reflections w.r.t. the real axis. By inserting (2.6) into (2.5) we deduce that the integral in (2.1) near a_k has the form

$$|\sum_{j=0}^{N} \frac{n_j}{x - a_j}|^4 - |\sum_{j=0}^{N} \frac{n_j}{x - a_j}|^4 = \frac{4}{|x - a_k|^4} \text{Re}[\alpha'_k(x - a_k)^2] + O\left(\frac{1}{|x - a_k|}\right)$$ \hspace{1cm} (2.7)

and is not integrable at a_k when $\alpha'_k(a_k) \neq 0$. Since the (possible) singular term in (2.4), (2.7) has vanishing integrals on circles, the meaning of A_0 is in terms of a principal value:

$$A_0 = \frac{1}{4} \lim_{\epsilon \to 0} \int_{\mathbb{R}^2 \setminus \cup_{k=0}^{N} B_\epsilon(a_k)} \left[\sum_{j=0}^{N} \frac{n_j}{x - a_j}|^4 - \sum_{j=0}^{N} |\frac{n_j}{x - a_j}|^4\right].$$ \hspace{1cm} (2.8)

We would like to compute A_0 in polar coordinates, even tough the set $\mathbb{R}^2 \setminus \cup_{k=0}^{N} B_\epsilon(a_k)$ is not radially symmetric. The key idea is to make the integral function in (2.8) integrable near any $a_j, j = 1, \ldots, N$, by adding suitable singular terms, in such a way that the integral in (2.8) will have to be computed just on the radially symmetric set $\mathbb{R}^2 \setminus B_\epsilon(a_0)$. To this aim, it is crucial to compute $\alpha'_k(a_k)$. Arguing as before, we get that

$$\alpha'_k(a_k) = -\frac{N - 1}{2a_k} - \sum_{j=1, j \neq k}^{N} \frac{1}{(a_k - a_j)^2} = a_k^{N-2} \left(-\frac{N - 1}{2} - \sum_{j=2}^{N} \frac{1}{(1 - a_j)^2}\right)$$

$$= a_k^{N-2} \left(-\frac{N - 1}{2} - \sum_{j=2}^{N} \frac{(1 - \cos \frac{2\pi(j-1)}{N})^2 - \sin^2 \frac{2\pi(j-1)}{N}}{4(1 - \cos \frac{2\pi(j-1)}{N})^2}\right)$$

$$= a_k^{N-2} \sum_{j=2}^{N} \frac{1}{2(1 - \cos \frac{2\pi(j-1)}{N})} = a_k^{N-2} \sum_{j=2}^{N} \frac{1}{|1 - a_j|^2}.$$ \hspace{1cm} (2.9)
Since there holds $\sum_{j=1}^{N-1} a_k^j = \sum_{j=2}^N a_j = -1$ for all $k = 2, \ldots, N$ in view of (2.2), we have that

$$\prod_{j=2}^N (z - a_j) = \frac{z^N - 1}{z - 1} = \sum_{p=0}^{N-1} z^p, \quad \prod_{j=2 \atop j \neq k}^N (z - a_j) = \sum_{p=0}^{N-1} z^p \sum_{l=0}^{N-2} a_k^l,$$

and then

$$\prod_{j=2}^N (1 - a_j) = N, \quad \prod_{j=2 \atop j \neq k}^N (1 - a_j) = \sum_{l=0}^{N-2} (N - l - 1)a_k^l. \quad (2.10)$$

By (2.10) we get that

$$\beta_N := \sqrt{\frac{4}{N^2}} \sum_{j=2}^N |1 - a_j|^2 = \sqrt{\frac{4}{N^2}} \prod_{k=2 \atop k \neq j}^N |1 - a_k|^2 = \sqrt{\frac{4}{N^2}} \sum_{j=2}^N \sum_{l=0}^{N-2} (N - l - 1)(N - p - 1)a_j^{l-p}$$

$$= \frac{4}{N^2} \left(N - 1 \right) \sum_{l=1}^{N-1} l^2 - \frac{4}{N^2} \sum_{l=1}^{N-1} l^p = \frac{4}{N^2} \left(N - 1 \right) \sum_{l=1}^{N-1} l^2 - \frac{4}{N^2} \left(\sum_{l=1}^{N-1} l \right)^2 = 2(N-1)(2N-1) - (N-1)^2$$

$$= \frac{N^2 - 1}{3}$$

in view of (2.2). Since by (2.9) $\alpha_k'(a_k) = \frac{d \alpha_k}{d a_k}$, by (2.7) we have that

$$|\sum_{j=0}^N \frac{n_j}{x - a_j}|^4 - |\sum_{j=0}^N \frac{n_j}{x - a_j}|^4 - \sum_{j=1}^N Re[\frac{\beta_N a_j^2}{(x - a_j)^2(1 + |x - a_j|^2)}] \in L^1(\mathbb{R}^2 \setminus \{0\}).$$

Since

$$\lim_{\epsilon \to 0} \int_{\mathbb{R}^2 \setminus \{0\}} \frac{a_j^2}{(x - a_j)^2(1 + |x - a_j|^2)} = \lim_{\epsilon \to 0} \int_{\mathbb{R}^2 \setminus B_\epsilon(a_j)} \frac{a_j^2}{(x - a_j)^2(1 + |x - a_j|^2)} = 0,$$

we can re-write A_0 as

$$A_0 = \frac{1}{4} \lim_{\epsilon \to 0} \int_{\mathbb{R}^2 \setminus B_\epsilon(0)} \left[\frac{(N + 1)x^N + (N - 1)}{2x(x^N - 1)} + \frac{(N - 1)4}{16|x|^4} - \sum_{j=1}^N \frac{1}{|x - a_j|^4} \right]$$

$$- \sum_{j=1}^N Re[\frac{\beta_N a_j^2}{(x - a_j)^2(1 + |x - a_j|^2)}]$$

$$= \frac{1}{4} \lim_{\epsilon \to 0} \int_{\mathbb{R}^2 \setminus B_\epsilon(0) \cup \{1 - \epsilon \leq |x| \leq \frac{1}{1 - \epsilon}\}} \left[\frac{(N + 1)x^N + (N - 1)}{2x(x^N - 1)} + \frac{(N - 1)4}{16|x|^4} - \sum_{j=1}^N \frac{1}{|x - a_j|^4} \right]$$

$$- \frac{1}{4} \Re \left[\lim_{\epsilon \to 0} \int_{\mathbb{R}^2 \setminus B_\epsilon(0) \cup \{1 - \epsilon \leq |x| \leq \frac{1}{1 - \epsilon}\}} \sum_{j=1}^N \frac{\beta_N a_j^2}{(x - a_j)^2(1 + |x - a_j|^2)} \right] = \frac{1}{4} - \frac{1}{4} \Pi \quad (2.11)$$

in view of (2.3).
As far as I, let us write the following Taylor expansions: for $|x| < 1$ there hold

$$\frac{(N + 1)x^N + (N - 1)}{(1 - x^N)^2} = \left((N - 1)^2 + 2(N^2 - 1)x^N + (N + 1)^2x^{2N} \right) \sum_{k \geq 0} (k + 1)x^k \Rightarrow (N - 1)^2 \sum_{k \geq 1} 4N(kN - 1)x^{kN} = \sum_{k \geq 0} c_kx^{kN}$$

(2.12)

and

$$\frac{(N - 1)x^N + (N + 1)}{(1 - x^N)^2} = \left((N + 1)^2 + 2(N^2 - 1)x^N + (N - 1)^2x^{2N} \right) \sum_{k \geq 0} (k + 1)x^k \Rightarrow (N + 1)^2 \sum_{k \geq 1} 4N(kN + 1)x^{kN} = \sum_{k \geq 0} d_kx^{kN},$$

(2.13)

where $c_k = \max\{4N(kN - 1), (N - 1)^2\}$ and $d_k = \max\{4N(kN + 1), (N + 1)^2\}$. Letting $\epsilon > 0$ small, by (2.12)-(2.13) we have that in polar coordinates (w.r.t. the origin) I writes as

$$I = \int_{1-\epsilon}^{1} \rho^2 \int_{0}^{2\pi} d\theta \left[\frac{1}{16\rho^4} \sum_{k \geq 0} c_k\rho^{kN}e^{ikN\theta} - \frac{(N - 1)^4}{16\rho^4} - \sum_{j=1}^{N} \sum_{k \geq 0} (k + 1)a_j^{k(N-1)}\rho^k e^{ik\theta} \right]$$

$$+ \int_{\pi}^{\pi+2\pi} \rho^2 \int_{0}^{2\pi} d\theta \left[\frac{1}{16\rho^4} \sum_{k \geq 0} d_k\rho^{-kN}e^{-ikN\theta} - \frac{(N - 1)^4}{16\rho^4} - \frac{1}{\rho^4} \sum_{j=1}^{N} \sum_{k \geq 0} (k + 1)a_j\rho^{-k}e^{-ik\theta} \right]$$

$$+ o_{c}(1)$$

with $o_{c}(1) \to 0$ as $\epsilon \to 0$, in view of

$$|x - a_j|^{-4} = |a_j^{N-1}x - 1|^{-4} = |\sum_{k \geq 0} (k + 1)a_j^{k(N-1)}x^k|^{-2}, \quad |1 - a_j|^{-4} = |\sum_{k \geq 0} (k + 1)a_j^kx^k|^{-2}$$

for $|x| < 1$. By the Parseval’s Theorem we get that

$$I = 2\pi \int_{0}^{1-\epsilon} \left[\frac{1}{16} \sum_{k \geq 1} |c_k|^2 \rho^{2kN - 3} - N \sum_{k \geq 0} (k + 1)^2 \rho^{2k+1} \right] d\rho$$

$$+ 2\pi \int_{\pi}^{\pi+2\pi} \left[\frac{1}{16} \sum_{k \geq 1} |d_k|^2 \rho^{-2kN - 3} + \frac{(N + 1)^4 - (N - 1)^4}{16\rho^3} - \sum_{k \geq 0} (k + 1)^2 \rho^{-2k-3} \right] d\rho$$

$$+ o_{c}(1)$$

$$= 2\pi N \int_{0}^{1-\epsilon} \left[N \sum_{k \geq 0} (kN + N - 1)^2 \rho^{2kN + 2N - 3} - \sum_{k \geq 0} (k + 1)^2 \rho^{2k+1} \right] d\rho$$

$$+ 2\pi N \int_{\pi}^{\pi+2\pi} \left[N \sum_{k \geq 0} (kN + N + 1)^2 \rho^{-2kN - 2N - 3} - \sum_{k \geq 0} (k + 1)^2 \rho^{-2k-3} \right] d\rho$$

$$+ o_{c}(1) = 2\pi N \int_{0}^{1-\epsilon} \left[N \sum_{k \geq 0} (kN + N - 1)^2 \rho^{2kN + 2N - 3} + N \sum_{k \geq 0} (kN + N + 1)^2 \rho^{2kN + 2N + 1}$$

$$- 2 \sum_{k \geq 0} (k + 1)^2 \rho^{2k+1} \right] d\rho + N(N^2 + 1)\frac{\pi}{2} + o_{c}(1)$$
as $\epsilon \to 0$. We compute now the integrals and let $\epsilon \to 0$ to end up with
\[I = 2\pi N \left[\frac{N}{2} \sum_{k \geq 0} (kN + N - 1)\rho^{2kN+2N^2-2} + \frac{N}{2} \sum_{k \geq 0} (kN + N + 1)\rho^{2kN+2N^2+2} - \sum_{k \geq 0} (k + 1)\rho^{2k+2} \right] \bigg|_0^1 + N(N^2 + 1)\frac{\pi}{2}. \]

Denoting the function inside brackets as $f(\rho)$, we need now to determine the explicit expression of $f(\rho)$ for $\rho < 1$:
\[
f(\rho) = \frac{N^2}{2}\rho^{2N^2-2}(1 + \rho^4) \sum_{k \geq 0} (k + 1)(\rho^{2N})^k - \frac{N^2}{2}\rho^{2N^2-2}(1 - \rho^4) \sum_{k \geq 0} (\rho^{2N})^k - \rho^2 \sum_{k \geq 0} (k + 1)(\rho^2)^k
\]
\[= \frac{N^2}{2}\rho^{2N^2-2} \frac{1 + \rho^4}{(1 - \rho^{2N})^2} - \frac{N^2}{2}\rho^{2N^2-2} \frac{1 - \rho^4}{(1 - \rho^{2N})^2} - \rho^2 \frac{\sum_{j = 0}^{N-1} \rho^{2j}}{(1 - \rho^{2N})^2}, \]

and then by the l'Hôpital’s rule we get that
\[
4N^2 f(1) = 2 \lim_{\rho \to 1} \frac{N(N - 1)\rho^{N-1} + N(N + 1)\rho^{N+1} - 2\rho(\sum_{j = 0}^{N-1} \rho^j)^2 + N\rho^{2N-1} - N\rho^{2N+1}}{(1 - \rho)^2}
\]
\[= \lim_{\rho \to 1} \frac{N^2(N - 2)\rho^{N-2} - N^2(N + 2)\rho^N + 2(\sum_{j = 0}^{N-1} \rho^j)^2 + 4\rho(\sum_{j = 0}^{N-1} \rho^j)(\sum_{j = 0}^{N-2} (j + 1)\rho^j)}{1 - \rho}
\]
\[+ N \lim_{\rho \to 1} \frac{(2N + 1)\rho^{2N} - (2N - 1)\rho^{2N-2} - \rho^{N+2} - \rho^N}{1 - \rho} = -\frac{N^2(N^2 + 5)}{3}. \]

In conclusion, for I we get the value
\[I = \frac{\pi}{3} N(N^2 - 1). \quad (2.14) \]

Remark 2.1. In [13] the value of A_0 was computed neglecting the term II in [2.11]. By [2.11] notice that $\frac{\mu}{\pi} I = \frac{\pi}{12} m^4 N(N^2 - 1)$ does coincide with 8π when $(N, m) = (2, 2)$ and 80π when $(N, m) = (4, 2)$, in agreement with the computations in [13].

As far as II, let us compute in polar coordinates the value of
\[
\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{\mathbb{R}^n \setminus B(0, \epsilon) \cup \{1 - \epsilon \leq |\mathbf{a}_j| \leq \epsilon \}} \frac{\mathbf{a}_j^2}{(x - \mathbf{a}_j)^2(1 + |x - \mathbf{a}_j|^2)} = \lim_{\epsilon \to 0} \int_{(0,1) \cup (\frac{1}{\epsilon}, +\infty)} \rho \Gamma(\rho) d\rho,
\]

where the function $\Gamma(\rho)$ is defined in the following way:
\[
\Gamma(\rho) = \sum_{j = 1}^{N} \int_{0}^{2\pi} \frac{(\rho e^{i\theta} - \mathbf{a}_j)^2(2 + \rho^2 - a_j \rho e^{-i\theta} - a_j^{N-1} \rho e^{i\theta})}{(\rho w - a_j)^2(w^2 - 2\frac{\rho^2}{w} a_j w + a_j^2)} d\theta
\]
\[= \frac{i}{\rho} \sum_{j = 1}^{N} a_j^3 \int_{\gamma} \frac{dw}{(\rho w - a_j)^2(w^2 - 2\frac{\rho^2}{w} a_j w + a_j^2)}. \]
with γ the counterclockwise unit circle around the origin. Since

$$w^2 - \frac{2 + \rho^2}{\rho}a_j w + a_j^2 = \left(w - \frac{2 + \rho^2}{2\rho}a_j\right)^2 + a_j^2 \left(1 - \frac{2 + \rho^2}{2\rho}\right),$$

observe that $w^2 - \frac{2 + \rho^2}{\rho}a_j w + a_j^2$ vanishes at ρa_j, with

$$\rho_{\pm} = \frac{2 + \rho^2}{2\rho} \pm \sqrt{\left(\frac{2 + \rho^2}{2\rho}\right)^2 - 1}$$

satisfying $\rho_- < 1 < \rho_+$ in view of $\frac{2 + \rho^2}{2\rho} > \sqrt{2}$. Since

$$\frac{1}{w^2 - \frac{2 + \rho^2}{\rho}a_j w + a_j^2} \frac{d}{d\rho} \left(\frac{a_j}{\rho}\right) = a_j^{N-3} \rho^5,$$

by the Cauchy’s residue Theorem the function $\Gamma(\rho)$ can now be computed explicitly as

$$\Gamma(\rho) = \frac{i}{\rho^3} \sum_{j=1}^{N} a_j^3 \int_{\gamma} \frac{dw}{(w - \frac{a_j}{\rho})^2(w - \rho_-a_j)(w - \rho_+a_j)} = 2\pi N \left\{ \begin{array}{ll} (pp_- - 1)^{-2}(pp_+ - pp_-)^{-1} & \text{if } \rho < 1 \\ (pp_- - 1)^{-2}(pp_+ - pp_-)^{-1} - \rho^2 & \text{if } \rho > 1. \end{array} \right.$$
Finally, inserting (2.14) and (2.17) into (2.11) we get that the correlation coefficient vanishes: \(A_0 = 0 \). Then, there holds \(A_0(m) = 0 \) for all \(m \in \mathbb{Z} \), as claimed.

REFERENCES

[1] L. Almeida and F. Bethuel, Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl. (9) 77 (1998), no. 1, 1–49.

[2] F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser, Boston, 1994.

[3] H. Brezis, F. Merle, and T. Riviè re, Quantization effects for \(-\Delta u = u(1 - |u|^2)\) in \(\mathbb{R}^2 \), Arch. Rat. Mech. Anal. 126 (1994), no. 1, 35–58.

[4] X. Chen, C.M. Elliott, and T. Qi, Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 6, 1075–1088.

[5] M. del Pino, M. Kowalczyk, and M. Musso, Variational reduction for Ginzburg-Landau vortices, J. Funct. Anal. 239 (2006), no. 2, 497–541.

[6] V.L. Ginzburg and L.D. Landau, On the theory of superconductivity, J. Exp. Theor. Phys. 20 (1950), 1064–1082.

[7] R.-M. Hervé and M. Hervé, Étude qualitative des solutions réelles d’une équation différentielle liée à l’équation de Ginzburg-Landau, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), no. 4, 427–440.

[8] F.H. Lin, Solutions of Ginzburg-Landau equations and critical points of the renormalized energy, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), no. 5, 599–622.

[9] F.H. Lin and T.-C. Lin, Minimax solutions of the Ginzburg-Landau equations, Selecta Math. (N.S.) 3 (1997), no. 1, 99–113.

[10] P. Mironescu, Local minimizers for the Ginzburg-Landau equation are radially symmetric, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 6, 593–598.

[11] Yu.N. Ovchinnikov and I.M. Sigal, Ginzburg-Landau equation. I. Static vortices, CRM Proc. Lecture Notes, Partial differential equations and their applications (Toronto, ON, 1995), Amer. Math. Soc., Providence, RI, 1997.

[12] ________, The energy of Ginzburg-Landau vortices, European J. Appl. Math. 13 (2002), no. 2, 153–178.

[13] ________, Symmetry-breaking solutions of the Ginzburg-Landau equation, J. Exp. Theor. Phys. 99 (2004), no. 5, 1090–1107.

[14] F. Pacard and T. Riviè re, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, vol. 39, Birkhäuser, Boston, 2000.

[15] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model, Differential Integral Equations 7 (1994), no. 5-6, 1613–1624.

[16] ________, Erratum: “On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions”, Differential Integral Equations 8 (1995), no. 1, 224.

Pierpaolo Esposito, Dipartimento di Matematica, Università degli Studi “Roma Tre”, Largo S. Leonardo Murialdo 1, 00146 Roma, Italy
E-mail address: esposito@mat.uniroma3.it