New Solid Solution and Phase Equilibria in the Subsolidus Area of the Three-Component CuO–V₂O₅–Ta₂O₅ Oxide System

Grażyna Dąbrowska *, Elżbieta Filipek and Piotr Tabero

Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Awe. 42, 71-065 Szczecin, Poland; elafil@zut.edu.pl (E.F.); ptab@zut.edu.pl (P.T.)

* Correspondence: grada@zut.edu.pl

Abstract: The results of the study of the three-component system of CuO–V₂O₅–Ta₂O₅ oxides showed, inter alia, that in the air atmosphere in one of its cross-sections, i.e., in the CuV₂O₆–CuTa₂O₆ system, a new substitutional solid solution with the general formula CuTa₂₋ₓVₓO₆ and homogeneity range for \(x > 0.0 \) and \(x \leq 0.3 \) is formed. The influence of the degree of incorporation of \(V^{5+} \) ions into the CuTa₂O₆ crystal lattice in place of \(Ta^{5+} \) ions on the unit cell volume, thermal stability and IR spectra of the obtained solid solution was determined. Moreover, the value of the band gap energy of the CuTa₂₋ₓVₓO₆ solid solution was estimated in the range of \(0.0 < x \leq 0.3 \), and on this basis, the new solid solution was classified as a semiconductor. On the basis of the research results, the studied system of CuO–V₂O₅–Ta₂O₅ oxides was also divided into 12 subsidiary subsystems.

Keywords: CuTa₂₋ₓVₓO₆ solid solution; phase equilibria; DTA; XRD; semiconductor

1. Introduction

The three-component system of metal oxides CuO–V₂O₅–Ta₂O₅ has not been studied so far in terms of the phases formed in it, and also in order to determine the phase equilibria established in this system over the entire range of concentrations of components in the air atmosphere in the solid state. In turn, the CuO, V₂O₅ and Ta₂O₅ oxides, which are the components of the system selected for the study, belong to an interesting class of oxides, due to their electrical and optical properties, are commercially important materials that are used in optoelectronic devices, energy conversion and as catalysts or photocatalysts [1–12]. Copper (II) oxide is used to obtain optical switches, field emission devices, lithium-ion electrode materials, gas sensors, biosensors and magnetic data carriers [1–4]. The applications of vanadium (V) oxide include catalytic processes and the production of field-effect transistors, gas sensors, infrared detectors, glass dyes [5–10]. Tantalum (V) oxide, due to its high dielectric constant, is used in the production of semiconductors used in DRAM memories, high-frequency CMOS integrated circuits and flash memories [11,12].

The literature data show that the reactivity of oxides in the binary CuO–V₂O₅, CuO–Ta₂O₅, V₂O₅–Ta₂O₅ systems constituting a side limitation of the three-component CuO–V₂O₅–Ta₂O₅ system was the subject of numerous studies. Most of the works concern the CuO–V₂O₅ system. They show that in the reactions between CuO and V₂O₅ oxides, the following compounds are formed in the air atmosphere: CuV₂O₆, Cu₂V₂O₇, Cu₃V₂O₈, Cu₅V₂O₁₀ and Cu₁₁V₆O₂₆ [13–28]. The basic physicochemical properties of these phases and their thermal stability are known [13–28]. Copper (II) metavanadate (V) has two polymorphic forms: the \(\alpha \)-CuV₂O₆ form crystallizing in a triclinic system and the \(\beta \)-CuV₂O₆ form crystallizing in a monoclinic system [13,14]. The CuV₂O₆ compound melts incongruently at 650 °C with the release of \(\alpha \)-Cu₂V₂O₇ [15,16]. The Cu₂V₂O₇ compound crystallizes in three polymorphs: orthorhombic \(\alpha \)-Cu₂V₂O₇ [17], monoclinic \(\beta \)-Cu₂V₂O₇ [18] and triclinic \(\gamma \)-Cu₂V₂O₇ [19]. The transition temperature of \(\alpha \rightarrow \beta \)-Cu₂V₂O₇ is 712 °C [20]. The
Cu$_2$V$_2$O$_7$ compound melts congruently at 760 °C [15,21]. Cu$_3$V$_2$O$_8$ has two polymorphs: triclinic α and monoclinic β [22,23] and is stable up to the temperature of 780 °C, where it melts incongruently with the release of Cu$_5$V$_2$O$_{10}$ [20]. The compounds Cu$_5$V$_2$O$_{10}$ and Cu$_{11}$V$_6$O$_{26}$ do not have polymorphs [24–26]. Cu$_{11}$V$_6$O$_{26}$ melts incongruently at 795 °C with the release of Cu$_5$V$_2$O$_{10}$ [15]. Whereas Cu$_5$V$_2$O$_{10}$ melts incongruently at 820 °C with the release of CuO [26]. Vanadates (V) of copper (II), and especially Cu$_2$V$_6$O$_{10}$, are used as cathode materials in lithium batteries, as catalysts for SO$_3$ decomposition during thermochemical reactions of hydrogen production, and as photocatalysts for water decomposition [27–29].

Less work has been conducted on the V$_2$O$_5$–Ta$_2$O$_5$ system [30–37]. It was found that vanadium (V) oxide reacts with tantalum (V) oxide in the air atmosphere with the formation of TaVO$_5$ and Ta$_9$VO$_{25}$ compounds [30–33] and a substitution solid solution with a limited range of homogeneity with the structure of Ta$_9$VO$_{25}$, the existence of which was indicated only in work [34]. The TaVO$_5$ compound has two polymorphs: orthorhombic and tetragonal [30,31,33]. The temperature of this transformation, depending on the source, is 880 °C [30] or 600 °C [33]. TaVO$_5$ decomposes at 940 °C to Ta$_9$VO$_{25}$ and V$_2$O$_5$ [30]. Ta$_9$VO$_{25}$ is stable in the air atmosphere at least 1650 °C [31].

It is known from the available literature that the CuTa$_2$O$_6$ compound is formed in the binary system of CuO-Ta$_2$O$_5$ oxides [38–41]. Three crystallographic forms of CuTa$_2$O$_6$ are known: monoclinic, cubic and tetragonal [38–40]. Vincent and his colleagues report that there is also an orthorhombic form of the CuTa$_2$O$_6$ compound [41]. The temperature of transition of polymorphic monoclinic to tetragonal variety is 227 °C [38]. Due to its properties, the CuTa$_2$O$_6$ compound improves the piezoelectric properties of ceramics used in the production of transformers, transducers, ultrasonic motors and devices for surface acoustic waves [42–44].

The large variety of properties of the oxides that build the CuO–V$_2$O$_5$–Ta$_2$O$_5$ ternary system, as well as the compounds formed in its side systems, such as CuTa$_2$O$_6$ and CuV$_2$O$_6$, make them interesting for technical applications. Therefore, it seemed justified to study the mutual reactivity of both the oxides and the known compounds in order to find out whether they react with the formation of new phases with potential, interesting application properties.

The presented work also includes the results of research on phase equilibria established in the title three-component system of metal oxides in the entire range of concentrations of the components of this system. The results of these studies allowed us to determine, inter alia, the ranges of concentrations of the components of the tested system and the temperatures in which the identified phases (both known and obtained for the first time in this work) coexist in the solid state.

2. Materials and Methods

The following oxides were used for the tests: CuO p.a. (Aldrich, St. Louis, MO, USA), V$_2$O$_5$ p.a. (POCh, Gliwice, Poland) and Ta$_2$O$_5$ p.a. (Aldrich, St. Louis, MO, USA). The reactants were weighed in the appropriate amounts, homogenized by trituration, pelleted and heated in an air atmosphere under conditions that allowed the reaction to proceed in the solid phase. The samples were heated in the temperature range of 550–900 °C in several 24-h stages.

After each heating stage, the samples were left in the furnace until they cooled to room temperature and then were ground and tested by XRD to determine their phase composition.

The temperatures of the final stage of heating the samples and the kind of phases in equilibria are given in Tables 1 and 2.

The powder diffractograms of the tested phases were recorded at room temperature using an Empyrean II diffractometer (CuKα radiation, graphite monochromator, semiconductor PIXcel3D detector, measuring step 0.013°, counting time in the measuring interval 70s, manufacturer PanAnalytical, The Netherlands). The phases were identified using the data from the ICDD 2021 PDF database. The Refinement program (DHN, Poland) was used to indexation the powder diffraction patterns.
Table 1. The composition of initial mixtures and the results of phase XRD analysis of the samples from the CuV\textsubscript{2}O\textsubscript{6}–CuTa\textsubscript{2}O\textsubscript{6} system after the last heating stage.

No.	Composition of Initial Mixtures [Mol%]	Composition of Initial Mixtures Calculated as Oxides [Mol%]	Final Heating Temperature [°C]	Composition of Samples at Equilibrium			
	CuV\textsubscript{2}O\textsubscript{6}	CuTa\textsubscript{2}O\textsubscript{6}	CuO	V\textsubscript{2}O\textsubscript{5}	Ta\textsubscript{2}O\textsubscript{5}		
1	90.00	10.00	50.00	45.00	5.00	620	CuV\textsubscript{2}O\textsubscript{6}, TaVO\textsubscript{5}, CuV\textsubscript{2}O\textsubscript{7}
2	75.00	25.00	50.00	37.50	12.50	720	Ta\textsubscript{9}VO\textsubscript{25} (s.s.), CuV\textsubscript{2}O\textsubscript{7}, TaVO\textsubscript{5}
3	66.67	33.33	50.00	33.33	16.67		
4	63.64	36.36	50.00	31.82	18.18		
5	60.00	40.00	50.00	30.00	20.00	700	CuTa\textsubscript{2}O\textsubscript{6} (s.s.), TaVO\textsubscript{5}
6	50.00	50.00	50.00	25.00	25.00		
7	40.00	60.00	50.00	20.00	30.00	725	Ta\textsubscript{9}VO\textsubscript{25} (s.s.), CuV\textsubscript{2}O\textsubscript{7}
8	33.33	66.67	50.00	16.67	33.33		
9	20.00	80.00	50.00	10.00	40.00		
10	10.00	90.00	50.00	5.00	45.00	900	CuTa\textsubscript{2}O\textsubscript{6} (s.s.)

Table 2. The composition of initial mixtures and the results of phase XRD analysis of additional samples from the CuTa\textsubscript{2}O\textsubscript{6}–CuV\textsubscript{2}O\textsubscript{6} system at equilibrium state.

No.	Composition of Initial Mixtures [Mol%]	Composition of Initial Mixtures Calculated as Oxides [Mol%]	Parameter X in the Obtained Solid Solution with Formula CuTa\textsubscript{2}\textsubscript{−}\textsubscript{x}V\textsubscript{x}O\textsubscript{6} (s.s.)	Composition of Samples at Equilibrium			
	CuV\textsubscript{2}O\textsubscript{6}	CuTa\textsubscript{2}O\textsubscript{6}	CuO	V\textsubscript{2}O\textsubscript{5}	Ta\textsubscript{2}O\textsubscript{5}	X	CuTa\textsubscript{1.80}V\textsubscript{0.20}O\textsubscript{6}
1.	10.00	90.00	50.00	45.00	0.20	CuTa\textsubscript{2}O\textsubscript{6} (s.s.)	
2.	12.50	87.50	50.00	43.75	0.25	CuTa\textsubscript{1.75}V\textsubscript{0.25}O\textsubscript{6}	
3.	15.00	85.00	50.00	42.50	0.30	CuTa\textsubscript{1.70}V\textsubscript{0.30}O\textsubscript{6}	
4.	17.50	82.50	50.00	41.25	0.30	CuTa\textsubscript{1.70}V\textsubscript{0.30}O\textsubscript{6}, CuV\textsubscript{2}O\textsubscript{7}, Ta\textsubscript{9}VO\textsubscript{25}	

DTA-TG studies were performed with the F. Paulik–L. Paulik–L. Erdey derivatograph, MOM Budapest, Hungary. The measurements were made in the air atmosphere, in the temperature range 20–1000 °C, with the galvanometer’s sensitivity of DTA 1/5 and the constant heating rate of 10 °C/min. All tests were performed in quartz crucibles. The mass of the tested samples was always 500 mg. The accuracy of the temperature reading, determined on the basis of iterations, was found to be ±5 °C.

Selected samples were tested by the DTA-TG method using the SDT 2960 from TA Instruments. Measurements were carried out in an air atmosphere, in the temperature range of 20–1500 °C, at a heating rate of 10 °C/min. Measurements were made in corundum crucibles. The mass of the tested samples was ~20 mg.

The IR spectra were recorded with the help of the SPECORD M 80 IR spectrometer, manufactured by Carl Zeiss, Jena, East Germany, using the KBr pellet pressing technique in a mass ratio of 1:300. Measurements were made in the range of wavenumber 1200–200 cm-1.

A UV-Vis-V-670 spectrophotometer (JASCO, Tokyo, Japan) with an integrating sphere PIV-756/PIN-757 was used for the UV-Vis spectroscopy tests. The optical absorption was measured in the 200–1000 nm range at room temperature.

As part of the presented work, tests of phase equilibria in the CuO–V\textsubscript{2}O\textsubscript{5}–Ta\textsubscript{2}O\textsubscript{5} system were additionally carried out in the air atmosphere in a solid state. In this stage of the study, 20 samples made of oxides were synthesized in conditions ensuring achievement of the equilibrium state, and the achievement of such a state was found when the results
of the samples, carried out with the XRD and DTA methods after two successive heating stages, were identical, and the number of phases was consistent with the extended Gibbs phase rule.

3. Results and Discussion

3.1. Reactivity of CuO and V₂O₅ with Ta₂O₅ in the Air

The study of the three-component system of CuO–Ta₂O₅–V₂O₅ oxides began with the examination of one of the hypothetical cross-sections of this system, i.e., CuV₂O₆–CuTa₂O₆. For this purpose, ten samples were prepared from the separately obtained compounds, i.e., CuTa₂O₆ and CuV₂O₆, with compositions selected to represent the entire range of concentrations of the components of the tested system (Table 1). The location of weighed samples’ compositions is marked in the area of the triangle of concentrations of the components of the CuO–Ta₂O₅–V₂O₅ system.

The synthesis of the compound CuTa₂O₆ was carried out in an air atmosphere according to the reaction equation below:

\[\text{Ta}_2\text{O}_5(s) + \text{CuO}(s) = \text{CuTa}_2\text{O}_6(s) \]

Under the following conditions: 900 °C (24 h) → 1000 °C (24 h) → 1050 °C (24 h) → 1200 °C (24 h). The obtained compound showed a green color, and the position of the lines in the diffraction pattern was consistent with the data given in the PDF card 00-032-0349, which proved that the tetragonal form of the CuTa₂O₆ compound was obtained.

In order to obtain copper (II) metavanadate (V), the sample consisting of oxides with the composition: 50 mol% CuO and 50 mol% V₂O₅ was weighed and subjected to two-stage 24-h heating at the following temperatures: 550 °C and 600 °C. A plum gray compound was obtained. X-ray phase analysis of the sample after the last heating step confirmed that the diffraction lines characterizing this compound are consistent with the data contained in the PDF card of the triclinic modification polymorph of the CuV₂O₆ compound with the number 00-045-1054, i.e., α-CuV₂O₆.

The results of the XRD analysis of the tested samples after the last heating stage and the temperature of the last heating stage are presented in Table 1.

The phase compositions of samples No. 1 and No. 2 in the equilibrium state presented in Table 1 and contained in the initial mixtures were 90.00 mol% CuV₂O₆ and 10.00 mol% CuTa₂O₆, and 75.00 mol% CuTa₂O₆ and 25.00 mol% CuV₂O₆, respectively, indicating that the samples reacted as:

\[3 \text{CuV}_2\text{O}_6(s) + \text{CuTa}_2\text{O}_6(s) = 2 \text{Cu}_2\text{V}_2\text{O}_7(s) + 2 \text{TaVO}_5(s) \]

In sample 1, the components CuV₂O₆ and CuTa₂O₆ in the reaction mixture remained in a molar ratio of 9:1; therefore, with respect to the stoichiometry of the reaction taking place in the reaction mixture, the CuV₂O₆ substrate is in excess and therefore, this compound is ultimately in equilibrium with the reaction products (2).

The phase composition of samples 3 and 4 at equilibrium shows that the CuV₂O₆ present in the samples reacted with CuTa₂O₆ with the formation of three compounds Cu₁₂V₂O₂₇, TaVO₅ and Ta₉VO₂₅. Thus, in sample No. 3, the initial mixture of which contained 66.67 mol% of CuV₂O₆ and 33.33 mol% CuTa₂O₆, the reaction proceeded according to the following reaction equation:

\[16 \text{CuV}_2\text{O}_6(s) + 8 \text{CuTa}_2\text{O}_6(s) = 12 \text{Cu}_2\text{V}_2\text{O}_7(s) + 7 \text{TaVO}_5(s) + \text{Ta}_9\text{VO}_{25(s)} \]

The presented results of the X-ray analysis of samples 5–9 after the last heating stage show that in these samples, the reaction between CuV₂O₆ and CuTa₂O₆ resulted in the formation of compounds, i.e., Cu₂V₂O₇ and Ta₉VO₂₅. The excess substrate in these reactions
is CuTa$_2$O$_6$. For sample No. 7, which in the initial mixture contained 40.00% mol of CuV$_2$O$_6$ and 60.00% mol of CuTa$_2$O$_6$, the reaction proceeded according to the reaction equation:

$$11 \text{CuV}_2\text{O}_6(s) + 9 \text{CuTa}_2\text{O}_6(s) = 10 \text{Cu}_2\text{V}_2\text{O}_{7(s)} + 2 \text{Ta}_9\text{VO}_{25(s)}$$ \hspace{1cm} (4)$$

Heating of sample 10 at the temperature of 900 °C resulted in the presence of only lines characterizing the compound CuTa$_2$O$_6$ in the diffraction pattern. These lines were slightly shifted towards the higher angles 2θ, i.e., they corresponded to smaller values of the d$_{hkl}$ interplanar distances. It was found that the shift of the diffraction lines belonging to the CuTa$_2$O$_6$ set and the absence of the Cu$_2$V$_2$O$_7$ compound in the sample proves that a substitutional solid solution is formed in the sample, the matrix of which is CuTa$_2$O$_6$, according to the reaction equation:

$$(1 - 0.5x)\text{CuTa}_2\text{O}_6(s) + 0.5x\text{CuV}_2\text{O}_6(s) = \text{CuTa}_{2-x}\text{V}_x\text{O}_{6(s.s.)}$$ \hspace{1cm} (5)$$

In order to determine the homogeneity range of the formed solid solution, additional samples were prepared from the finished phases, i.e., CuTa$_2$O$_6$ and CuV$_2$O$_6$, containing 12.5 mol%, 15.00 mol% and 17.5 mol% CuV$_2$O$_6$, respectively, in the initial mixtures. X-ray phase analysis showed that only the samples with the initial composition of 12.5 mol% CuV$_2$O$_6$ and 15.00 mol% CuV$_2$O$_6$ and 85 mol% CuTa$_2$O$_6$ were monophase and contained CuTa$_{1.75}V_{0.25}O_6$ and CuTa$_{1.70}V_{0.30}O_6$ solid solution, respectively.

The chemical formula of the formed solid solution was determined on the basis of the composition of the initial mixture of substrates, taking into account their complete conversion, which was found on the basis of the X-ray phase analysis of the synthesized samples after the last stage of heating them at 900 °C (Table 2).

In the sample whose initial mixtures contained 17.50 mol% CuV$_2$O$_6$ and 82.50 mol% CuTa$_2$O$_6$, the phases: CuTa$_{1.70}V_{0.30}O_6$, Cu$_2$V$_2$O$_7$ and Ta$_9$VO$_{25}$ were present at equilibrium.

In Table 2, apart from the composition of the initial mixtures of substrates from which single-phase samples containing a solid solution were obtained, the phase composition of the sample after exceeding its homogeneity is given.

At this stage of the research, however, it cannot be ruled out that in the obtained single-phase samples containing the solid solution, no other phases are still present, but if so, they are in amounts not detectable by the XRD method. However, this does not affect the general formula of the obtained new solid solution and the proposed range of its homogeneity.

Based on the research, it was found that the CuTa$_{2-x}V_xO_{6(s.s.)}$ solid solution formed in the three-component CuO–V$_2$O$_5$–Ta$_2$O$_5$ oxide system has a homogeneity range of 0 < x ≤ 0.3, which shows that the maximum degree of incorporation of V$^{5+}$ ions in place of ions Ta$^{5+}$ in the CuTa$_2$O$_6$ crystal lattice is 15 mol%.

As part of the work, samples containing a CuTa$_{2-x}V_xO_6$ solid solution, where x = 0.30 in equilibrium with other phases, were annealed at higher temperatures and then frozen (rapidly cooled to room temperature) in order to determine the change in their phase composition. XRD analysis did not show such a change, which means that the solubility range of the synthesized solution does not significantly depend on the temperature.

Figure 1 presents fragments of the powder diffraction patterns of the CuTa$_2$O$_6$ compound (fragment a) and the CuTa$_{2-x}V_xO_6$ solid solution for x = 0.20; 0.25 and 0.30 (fragments b–d) showing changes in the angular positions of selected diffraction reflections with an increase in vanadium content in CuTa$_{2-x}V_xO_6$ samples. The analysis of the presented diffractograms showed that with the increase of the degree of incorporation of vanadium ions into the crystal lattice of the CuTa$_2$O$_6$ matrix, the diffraction reflections shifted towards higher 2θ angles up to x = 0.30.
with an increase in vanadium content in CuTa$_{2-x}$V$_x$O$_6$ samples. The thermal stability of the CuTa$_{2-x}$V$_x$O$_6$ solid solution for $x = 0.00$, 0.20, 0.25 and 0.30. Meanwhile, in the DTA curves of all samples, made up to 1500 °C, one endothermic effect was recorded, with an onset temperature in the range of 1270–1350 °C, depending on the composition of the sample. The temperature of the onset of the effects recorded for all samples was always lower than the melting point of CuTa$_2$O$_6$, and it decreased with the increasing degree of incorporation of V$^{5+}$ ions. DTA curves of the tested samples are not included in this work due to the recorded very small thermal effect.

Indexing of the powder diffraction patterns of the CuTa$_{2-x}$V$_x$O$_6$ solid solution for $x = 0.20$; 0.25 and 0.30 and the CuTa$_2$O$_6$ compound were made using the REFINEMENT program. The results of the indexing, presented in Table 3, indicate that with the increase of the degree of incorporation of V$^{5+}$ ions in place of Ta$^{5+}$ ions into the CuTa$_2$O$_6$ crystal lattice, the $a = b$ and c parameters of unit cells and the volume of unit cells decrease, and the crystal lattice becomes contracted.

Table 3. Unit cell parameters and volumes for the CuTa$_2$O$_6$ ($x = 0$) and solid solution CuTa$_{2-x}$V$_x$O$_6$ for $x = 0.20$, 0.25 and 0.30.

x	$a = b$ [nm]	c [nm]	V [nm3]	$d_{cal.}$ [g/cm3]	$d_{exp.}$ [g/cm3]
0.00	7.5221	3.7582	212.64643	8.14355	7.9775
0.20	7.5188	3.7572	212.40336	7.74633	7.9368
0.25	7.5172	3.7568	212.29037	7.64876	7.8163
0.30	7.5150	3.7560	212.12095	7.5531	7.5088

The thermal stability of the CuTa$_{2-x}$V$_x$O$_6$ solid solution was determined by performing DTA-TG tests of all single-phase samples for $x = 0.00$, 0.20, 0.25 and 0.30.
In order to characterize the properties more closely and confirm the structure of the obtained CuTa$_{2-x}$V$_x$O$_6$ solid solution, IR spectra of all its single-phase samples (x = 0.2, 0.25 and 0.3) and the CuTa$_2$O$_6$ matrix were recorded. Figure 2 shows the IR spectra of CuV$_2$O$_6$ (curve a), CuTa$_{2-x}$V$_x$O$_6$ solid solution for x = 0.3, with the highest degree of incorporation of V$^{5+}$ ions into the CuTa$_2$O$_6$ crystal lattice (curve b) and the CuTa$_2$O$_6$ compound (curve c). High distortion of MO$_6$ polyhedra characteristic for compounds of vanadium, tantalum and copper makes analysis of their IR spectra very difficult [45–49].

![Figure 2. IR spectra of: (a) CuV$_2$O$_6$, (b) CuTa$_{1.70}$V$_{0.30}$O$_6$ (x = 0.30), (c) CuTa$_2$O$_6$.](image)

The IR spectrum of CuV$_2$O$_6$ comprised two broad absorption bands with maxima at 864 and 550 cm$^{-1}$ (Figure 2, curve a). The absorption band with a maximum at 864 cm$^{-1}$ can be ascribed to stretching vibrations of V-O bonds in distorted VO$_6$ octahedra (characteristic for CuV$_2$O$_6$ structure) [48,50]. IR spectra of solid solution CuTa$_{1.70}$V$_{0.30}$O$_6$ (x = 0.30), (Figure 2, curve b), and its matrix CuTa$_2$O$_6$ (Figure 2, curve c) contains four bands in the boundaries of 950–850 cm$^{-1}$, 750–550 cm$^{-1}$, 520–430 cm$^{-1}$ and 380–300 cm$^{-1}$ with maxima at about 890, 640, 460 and 330 cm$^{-1}$. It follows from the literature survey that these bands are characteristic of solid tantalates (V) and vanadates (V) [48,50–53]. The similarity of these IR spectra corroborates that the solid solution adopts the CuTa$_2$O$_6$ structure. An intensive band with an absorption maximum registered in the region 950–850 cm$^{-1}$ at \sim870 cm$^{-1}$ can be attributed to the stretching vibrations of Ta-O and V-O bonds in distorted TaO$_6$ and TaO$_7$ as well as VO$_4$ and VO$_6$ polyhedra [48,49,51,52,54]. Bands in the range of 750 to 550 cm$^{-1}$ and 520–430 cm$^{-1}$ can be attributed to the stretching vibrations of the Cu-O bonds in the distorted CuO$_6$ polyhedra [45,46] and the stretching vibrations of M-O (M = Ta, V) bonds in the moderately distorted Mo$_6$, Mo$_7$, and VO$_4$ polyhedra [48–54]. The bands registered in the range of 350 to 330 cm$^{-1}$ can be attributed to bending vibrations of the O-M-O bridges (M = Cu, Ta, V), or they are of mixed character [48–50,53].

The comparative analysis of positions and intensities of absorption bands in IR spectra of CuTa$_2$O$_6$ and CuTa$_{2-x}$V$_x$O$_6$ solid solution samples has revealed that incorporation of
vanadium ions in the crystal lattice of CuTa₂O₆ mainly affects the position of the band with a maximum at 600 cm⁻¹, which shifts gradually towards higher wavenumbers with an increase of vanadium content reaching 640 cm⁻¹ in the spectrum of CuTa₂₋ₓVₓO₆ for x = 0.3 (Figure 2, curve d). The affection of the position of only one absorption band as a result of the increase of vanadium content seems to indicate that the crystal structure of the solid solution is built up of at least two crystallographically-independent polyhedra, and this less distorted one is preferentially occupied by vanadium ions.

In the next stage of works, in order to qualify the new phase obtained by the class of conductors, insulators or semiconductors, single-phase samples containing the CuTa₂₋ₓVₓO₆ solid solution were tested by the UV-Vis-DRS method. The UV-vis diffuse reflectance spectra were converted to absorbance spectra by the Kubelka-Munk method [55]. Figure 3 shows the UV-Vis absorption spectra of compounds: CuTa₂O₆ (curve a), CuV₂O₆ (curve b) and a solid solution of CuTa₂₋ₓVₓO₆ for x = 0.30 (curve c).

Figure 3. UV-Vis absorption spectra of: (a) CuTa₂O₆ (x = 0), (b) CuV₂O₆, (c) CuTa₁.₇₅V₀.₃₀O₆ (x = 0.30).

In addition, the values of the band gap energy were estimated for the CuTa₂O₆ and CuV₂O₆ compounds and the solid solution formed as a function of the degree of incorporation (x) of V⁵⁺ ions into the CuTa₂O₆ crystal lattice in place of Ta⁵⁺ ions. It was found that the value of the energy gap for CuV₂O₆ is 1.85 eV, and the energy gap for the CuTa₂₋ₓVₓO₆ solid solution ranges from 2.75 to 2.47 eV for 0.0 ≤ x ≤ 0.30 (Figure 4). These results show that the magnitude of the energy gap decreases with increasing the degree of incorporation of V⁵⁺ ions in the CuTa₂O₆ crystal lattice in place of Ta⁵⁺ ions.

The determined values of the band gap energy indicate that the new solid solution is a semiconductor.

3.2. Phase Equilibria in the Subsolidus Region of the CuO-TaO₂-V₂O₅ System

The phase composition of the tested samples (1–10) after the last heating stage, i.e., in the state of equilibrium (Table 1), made it possible to distinguish seven partial subsystems in the CuO-TaO₂-V₂O₅ system (Figure 5), i.e., I. V₂O₅-TaVO₅-CuV₂O₆, II. CuV₂O₆-TaVO₅-Cu₂V₂O₇, III. Cu₂V₂O₇-TaVO₅-Ta₉VO₂₅, IV. Ta₉VO₂₅-CuTa₂O₆(₃₃₃)-Cu₂V₂O₇, V. CuTa₂O₆(₃₃₃)-Ta₉VO₂₅, VI. CuTa₂O₆-Ta₉VO₂₅-Ta₂O₅, VII. Cu₂V₂O₇-CuTa₂O₆(₃₃₃).
Figure 4. Estimated band gap energy of: (a) CuTa$_2$O$_6$ (x = 0), (b) CuV$_2$O$_6$, (c) CuTa$_{1.70}$V$_{0.30}$O$_6$ (x = 0.30).

Figure 5. Division of the CuO–Ta$_2$O$_5$–V$_2$O$_5$ ternary system into partial subsystems.

The final verification of the subsolidus area of the CuO–Ta$_2$O$_5$–V$_2$O$_5$ system consisted in the preparation of additional samples (Nos. 11–30) constituting mixtures of these phases, which, based on the results of previous studies, were considered to be equilibrium and represent real two-component systems (samples containing two phases in a state of equilibrium) or partial systems (samples containing three phases in equilibrium). The compositions of these mixtures, as calculated for the components of the CuO–Ta$_2$O$_5$–V$_2$O$_5$ system, corresponding to the compositions of the samples, are presented in Table 4.
Table 4. The compositions of the initial mixtures of oxides and the results of the XRD analysis of the samples after the last heating stage.

No.	Composition of the Initial Mixtures [Mol%]	Final Stage of Heating [°C]	Phase Composition of the Samples in Equilibrium State
11	CuO 15.00, V2O5 70.00, Ta2O5 15.00	620	CuV2O5, TaVO5, V2O5
12	CuV2O5 25.00, TaVO5 50.00, V2O5 25.00	625	CuV2O5, TaVO5
13	CuV2O5 35.00, TaVO5 41.00, V2O5 24.00	725	CuV2O5, TaVO5, Cu5V2O7, Ta9VO25(s.s.)
14	CuV2O5 35.00, TaVO5 23.00, V2O5 42.00	25	Cu5V2O7, Ta9VO25(s.s.)
15	CuTa2O5 26(s.s.), Ta9VO25(s.s.) 30.00, V2O5 14.00, Ta9VO25(s.s.) 56.00	900	CuTa2O5, Ta9VO25(s.s.)
16	CuTa2O5 29(s.s.), Ta9VO25(s.s.) 15.00, V2O5 13.00, Ta9VO25(s.s.) 72.00	900	CuTa2O5, Ta9VO25(s.s.)
17	CuTa2O5 28(s.s.), Ta9VO25(s.s.) 30.00, V2O5 9.00, Ta9VO25(s.s.) 61.00	900	CuTa2O5, Ta9VO25(s.s.)
18	CuTa2O5, Ta9VO25(s.s.), Ta2O5 15.00, V2O5 7.00, Ta9VO25(s.s.) 78.00	900	CuTa2O5, Ta9VO25(s.s.), Ta2O5
19	CuTa2O5, Ta9VO25(s.s.), Ta2O5 30.00, V2O5 4.00, Ta9VO25(s.s.) 66.00	900	CuTa2O5, Ta9VO25(s.s.), Ta2O5
20	CuTa2O5, Ta9VO25(s.s.), Ta2O5 25.00, V2O5 2.00, Ta9VO25(s.s.) 73.00	900	CuTa2O5, Ta9VO25(s.s.), Ta2O5
21	CuTa2O5, Ta9VO25(s.s.), Ta2O5 54.00, V2O5 11.00, Ta9VO25(s.s.) 35.00	725	Cu2V2O7, CuTa2O5(s.s.)
22	Cu2V2O7, CuTa2O5(s.s.), Cu3V2O8 65.00, V2O5 25.00, Ta9VO25(s.s.) 10.00	725	Cu2V2O7, CuTa2O5(s.s.), Cu3V2O8
23	Cu2V2O7, CuTa2O5(s.s.), Cu3V2O8 64.00, V2O5 16.00, Ta9VO25(s.s.) 20.00	725	Cu2V2O7, CuTa2O5(s.s.), Cu3V2O8
24	Cu3V2O8, CuTa2O5(s.s.), Cu11V6O26(s.s.) 70.00, V2O5 18.00, Cu11V6O26(s.s.) 12.00	750	Cu3V2O8, CuTa2O5(s.s.), Cu11V6O26(s.s.)
25	Cu11V6O26(s.s.), CuTa2O5(s.s.), Cu3V2O8 65.00, V2O5 15.00, Cu11V6O26(s.s.) 20.00	750	Cu11V6O26(s.s.), CuTa2O5(s.s.), Cu3V2O8
26	Cu11V6O26(s.s.), CuTa2O5(s.s.), Cu3V2O8 70.00, V2O5 13.00, Cu11V6O26(s.s.) 17.00	750	Cu11V6O26(s.s.), CuTa2O5(s.s.), Cu3V2O8
27	Cu11V6O26(s.s.), CuTa2O5(s.s.), Cu3V2O8 65.00, V2O5 12.00, Cu11V6O26(s.s.) 23.00	750	Cu11V6O26(s.s.), CuTa2O5(s.s.), Cu3V2O8
28	Cu11V6O26(s.s.), CuTa2O5(s.s.), Cu3V2O8 80.00, V2O5 10.00, Cu11V6O26(s.s.) 10.00	750	Cu11V6O26(s.s.), CuTa2O5(s.s.), Cu3V2O8
29	Cu11V6O26(s.s.), CuTa2O5(s.s.), Cu3V2O8 70.00, V2O5 5.00, Cu11V6O26(s.s.) 25.00	900	CuO, CuTa2O5(s.s.), Cu3V2O8
30	CuO, CuTa2O5(s.s.), Cu3V2O8 65.00, V2O5 3.00, Cu11V6O26(s.s.) 32.00	900	CuO, CuTa2O5(s.s.), Cu3V2O8

The prepared mixtures of phases were subjected to long-term heating at temperatures slightly lower (by ~20°) than the temperatures of the first effects recorded on their DTA curves. XRD analysis of these preparations showed that despite many hours of heating at temperatures close to the onset of melting, the phase composition of the samples did not change. This proves that the initial mixtures corresponded with their composition to the predetermined coexisting phases in the equilibrium state in individual systems.

The data presented in Table 3 not only confirmed the conclusions resulting from previous studies on the CuV2O5–CuTa2O5 binary system, but also allowed us to divide the CuO–Ta2O5–V2O5 system into twelve partial systems (Figure 5), i.e.,

1. V2O5–TaVO5–CuV2O5
2. CuV2O5–TaVO5–Cu2V2O7
3. Cu2V2O7–TaVO5–Ta9VO25(s.s.)
4. Ta9VO25(s.s.)–CuTa2O5(s.s.)–Cu2V2O7
5. CuTa2O5(s.s.)–Ta9VO25(s.s.)–Cu2V2O7
6. CuTa2O5(s.s.)–Ta9VO25(s.s.)–Ta2O5
7. Cu11V6O26(s.s.)–CuTa2O5(s.s.)–Ta2O5
8. Cu2V2O7–CuTa2O5(s.s.)–Cu2V2O7
9. Cu3V2O8–CuTa2O5(s.s.)–Cu11V6O26(s.s.)
10. Cu11V6O26(s.s.)–CuTa2O5(s.s.)–Cu3V2O8
11. Cu5V2O10–CuTa2O5(s.s.)–CuO
12. CuO–CuTa2O5(s.s.)
On the basis of the DTA tests of samples after the last heating stage, the temperatures to which the phases representing individual partial systems and the relevant real two-component systems coexist in the solid state were determined. The temperatures of the onset of the first endothermic effect, recorded on the DTA curves of preparations in the state of equilibrium, and corresponding to a given partial system or a real two-component system, were assumed as these temperatures. The melting points of the mixtures of the phases coexisting in the given system are given in Table 5.

Table 5. Melting point of the samples in equilibrium state.

No.	Phases at Equilibrium	Melting Point [°C]
1.	V₂O₅–TaVO₅–CuV₂O₆	625
2.	Cu₂V₂O₇, TaVO₅	650
3.	Cu₂V₂O₇–TaVO₅–Cu₂V₂O₇	640
4.	Cu₂V₂O₇, TaVO₅	730
5.	Cu₂V₂O₇–TaVO₅–Ta₉VO₂₅(s.s.)	730
6.	Cu₂V₂O₇–TaVO₅–Ta₉VO₂₅(s.s.)	760
7.	Ta₉VO₂₅(s.s.)–CuTa₂O₆(s.s.)–Cu₂V₂O₇	760
8.	CuTa₂O₆(s.s.)–Ta₉VO₂₅(s.s.)	>1000
9.	Cu₂V₂O₇–CuTa₂O₆(s.s.)	760
10.	Cu₂V₂O₇–CuTa₂O₆(s.s.)–Cu₃V₂O₈	740
11.	Cu₃V₂O₈–CuTa₂O₆(s.s.)	750
12.	Cu₃V₂O₈–CuTa₂O₆(s.s.)–Cu₁₁V₆O₂₆	780
13.	Cu₁₁V₆O₂₆–CuTa₂O₆(s.s.)	780
14.	Cu₁₁V₆O₂₆–CuTa₂O₆(s.s.)–Cu₃V₂O₁₀	770
15.	Cu₃V₂O₁₀–CuTa₂O₆(s.s.)	810
16.	Cu₅V₂O₁₀–CuTa₂O₆(s.s.)–CuO	820
17.	Ta₉VO₂₅(s.s.)–CuTa₂O₆(s.s.)–Ta₂O₅	>1000
18.	CuO–CuTa₂O₆(s.s.)	>1000
19.	CuTa₂O₆(s.s.)–Ta₂O₅	>1000

The DTA curves of selected samples recorded in the air atmosphere up to 1000 °C are shown in Figure 6.

The presented DTA curves of selected samples in the equilibrium state showed, among others, that the partial V₂O₅–TaVO₅–CuV₂O₆ system (Figure 6a) melts eutectically at a temperature of 625 ± 5 °C, which means that its components coexist in the solid state to this temperature. Determining the composition of the triple eutectic mixture formed in this constituent system is beyond the scope of this work and will be determined in future studies.

In this part of the study, it was also established that the components of the second partial system CuV₂O₆–TaVO₅–Cu₂V₂O₇ coexist in the subsolidus area up to the temperature of 640 ± 5 °C (Figure 6b). This temperature is related to the smelting of the eutectic mixture formed between CuV₂O₆ and Cu₂V₂O₇ in the two-component V₂O₅–CuO system [13–21].
Figure 6. Fragment of DTA curves of samples containing coexisting phases: (a) CuV$_2$O$_6$, TaVO$_5$, V$_2$O$_5$ (subsystem I), (b) CuV$_2$O$_6$, TaVO$_5$, Cu$_2$V$_2$O$_7$ (subsystem II), (c) TaVO$_5$, Cu$_2$V$_2$O$_7$; Ta$_9$VO$_{25}$(s.s.) (subsystem III), (d) Cu$_2$V$_2$O$_7$, CuTa$_2$O$_6$(s.s.), Ta$_9$VO$_{25}$(s.s.) (subsystem IV), (e) Cu$_2$V$_2$O$_6$, CuTa$_2$O$_6$(s.s.), Cu$_{11}$V$_6$O$_{26}$ (subsystem IX), (f) Cu$_5$V$_2$O$_{10}$, CuTa$_2$O$_6$(s.s.), CuO (subsystem XI).

Based on the DTA curve of a sample containing TaVO$_5$ at equilibrium with Cu$_2$V$_2$O$_7$ and with a saturated solid solution of Ta$_{9-x}$V$_x$O$_{25}$ (Figure 6c), it was found that these phases coexist in the solid state up to 730 ± 5 °C. In this case, it is related to the melting of the TaVO$_5$ eutectic mixture with Cu$_2$V$_2$O$_7$.

Moreover, it was found that the solid solution obtained as part of this work, with the structure of CuTa$_2$O$_6$ and the maximum degree of incorporation of V$^{5+}$ ions, remains at equilibrium in the solid state with Ta$_{9-x}$V$_x$O$_{25}$ and Cu$_2$V$_2$O$_7$, as well as Cu$_2$V$_2$O$_7$ and
Cu₃V₂O₉ up to 760 and 740 ± 5 °C, respectively (Figure 6d). The melting point of subsystem IV is related to the congruent melting of Cu₃V₂O₅, and the VIII subsystem to the melting of the eutectic mixture formed between Cu₂V₂O₇ and Cu₃V₂O₈ [15,21].

It was additionally established that CuTa₂–V₂O₅ coexists in the subsolidus region with Cu₃V₂O₆ and Cu₁₁V₆O₂₆ to ~780 °C (Figure 6e) and with Cu₁₁V₆O₂₆ and Cu₃V₂O₁₀ to ~770 °C, while with Cu₃V₂O₁₀ and CuO up to 820 °C (Figure 6f). These results indicate that the fields IX and XI of the tested ternary oxide system V₂O₅–CuO–Ta₂O₅ (Figure 5) melt peritectically but X eutectically. It is related to both the incongruent melting of Cu₃V₂O₆ and Cu₅V₂O₁₀ compounds and the eutectic formed between Cu₁₁V₆O₂₆ and Cu₅V₂O₁₀ [15,20,26].

The exact melting points of the partial systems V-VII and XII were not determined because no thermal effects were recorded on the DTA curves of samples in equilibrium state, representing these fields, in the temperature range up to 1000 °C.

Nevertheless, on the basis of such observation, it can be stated without doubt that the mixtures of components of the mentioned subsystems melt above 1000 °C.

The results of these studies are of great practical importance, including when designing new multi-component materials, such as, e.g., catalysts. They provide important information on the type of phases formed in the CuO–V₂O₅–Ta₂O₅ system, and at what temperatures these phases coexist with each other in the solid state, i.e., their mixtures can be used without the risk of melting and the associated change in their composition.

4. Conclusions

The research results obtained as part of this work authorize the following conclusions:

1. In the three-component system of CuO–V₂O₅–Ta₂O₅ oxides, a substitution solid solution is formed with a limited range of homogeneity and the general formula Cu₃₉₋ₓVₓO₉ for 0 < x ≤ 0.3.

2. The new solid solution is formed by the incorporation of V⁵⁺ ions in the CuTa₂O₆ crystal lattice in place of Ta⁵⁺ ions. The maximum degree of V⁵⁺ ion incorporation is 15 mol%.

3. CuTa₁₋ₓVₓO₆ for 0 < x ≤ 0.3 crystallizes in the tetragonal system, and with the increase of the degree of incorporation of V⁵⁺ ions in place of Ta⁵⁺ ions into the CuTa₂O₆ crystal lattice, the parameters a = b and c and the volume of unit cells decrease, and the crystal lattice contracts.

4. The CuTa₂₋ₓVₓO₆ solid solution is stable, depending on its composition, from a temperature of 1350 °C for x = 0.00 to 1270 °C for x = 0.30.

5. The IR spectra of solid solution CuTa₂₋ₓVₓO₆ (0 < x ≤ 0.30) and its matrix CuTa₂O₆ are very similar what corroborates their isostructural character. IR spectra of these phases contain bands in the boundaries of 950–850 cm⁻¹, indicating that crystal lattices of these phases are built up of considerably distorted polyhedra. The incorporation of vanadium ions in the crystal lattice of CuTa₂O₆ mainly affects the position of the band with a maximum at 600 cm⁻¹, which shifts gradually reaching 640 cm⁻¹ in the spectrum of CuTa₂₋ₓVₓO₆ for x = 0.30.

6. The CuTa₂₋ₓVₓO₆ solid solution is a semiconductor, and the value of the energy gap for the solid solution ranges from 2.75 to 2.47 eV for 0.00 ≤ x ≤ 0.30.

7. The three-component system of metal oxides CuO–V₂O₅–Ta₂O₅ consists of 12 partial systems, i.e., I. V₂O₅–TaVO₅–CuV₂O₆, II. Cu₂V₂O₆–TaVO₅–Cu₂V₂O₇, III. Cu₂V₂O₇–TaVO₅–Ta₉VO₂₅(s.s.), IV. Ta₉VO₂₅(s.s.)–CuTa₂O₆(s.s.)–Cu₂V₂O₇, V. CuTa₂O₆(s.s.)–Ta₉VO₂₅(s.s.), VI. CuTa₂O₆(s.s.)–Ta₉VO₂₅–Ta₂O₅, VII. CuTa₂O₆(s.s.)–Ta₂O₅, VIII. Cu₂V₂O₇–CuTa₂O₆(s.s.)–Cu₃V₂O₉, IX. Cu₃V₂O₉–CuTa₂O₆(s.s.)–Cu₁₁V₆O₂₆, X. Cu₁₁V₆O₂₆–CuTa₂O₆(s.s.)–Cu₃V₂O₁₀, XI. Cu₃V₂O₁₀–CuTa₂O₆(s.s.)–CuO, XII. CuO–CuTa₂O₆(s.s.).
Author Contributions: Conceptualization, G.D. and E.F.; formal analysis, G.D., E.F. and P.T.; investigation, G.D.; methodology, G.D. and E.F.; software, G.D. and P.T.; supervision, E.F.; validation, G.D., E.F. and P.T.; visualization, G.D. and P.T.; writing—original draft, G.D., E.F. and P.T.; writing—review and editing, E.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hansen, B.J.; Kouklin, N.; Lu, G.; Lin, I.K.; Chen, J.; Zhang, X. Transport, analyte detection, and opto-electronic response of p-type CuO nanowires. J. Phys. Chem. C 2010, 114, 2440–2447. [CrossRef]

2. Feng, L.; Yan, H.; Li, H.; Zhang, R.; Li, Z.; Chi, R.; Yang, S.; Ma, Y.; Fu, B.; Liu, J. Excellent field emission properties of vertically oriented CuO nanowire films. AIP Adv. 2018, 8, 045109. [CrossRef]

3. Xin Ch Zhang, N.; Sun, K. Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties. J. Mater. Chem. 2012, 22, 13637–13642. [CrossRef]

4. Singh, J.; Kaur, G.; Rawat, M. A Brief Review on Synthesis and Characterization of Copper Oxide Nanoparticles and its Applications. J. Bioelectro. Nanotechnol. 2016, 1, 9. [CrossRef]

5. Kim, G.T.; Muster, J.; Krstic, V. Field-effect transistor made of individual V₂O₅ nanofibers. Appl. Phys. Lett. 2000, 76, 1875–1877. [CrossRef]

6. Schneider, K.; Lubecka, M.; Czapla, A. V₂O₅ thin films for gas sensor applications. Sens. Actuator B Chem. 2016, 236, 970–977. [CrossRef]

7. Deepak, P.; Gupta, S.; Sridharan, M. Nanostructured V₂O₅ thin films deposited at low sputtering power. Mat. Sci. Semicon. Proc. 2015, 36, 426–432. [CrossRef]

8. Vo, P.N.X.; Le-Phuc, N.; Tran, T.V.; Ngo, P.T.; Luong, T.N. Oxidative regeneration study of spent V₂O₅ catalyst from sulfuric acid manufacture. Reac. Kinet. Mech. Cat. 2018, 125, 887–900. [CrossRef]

9. Rogers, O.; Pattisson, S.; Engel, R.V.; Jenkins, R.L.; Whiston, K.; Taylor, S.H.; Hutchings, G.J. Adipic acid formation from cyclohexanediol using vanadium catalysts: Elucidating the role of homogeneous species. Catal. Sci. Technol. 2020, 10, 4210–4218. [CrossRef]

10. Gimeno, M.P.; Gascón, J.; Téllez, C.; Herguido, J.; Menéndez, M. Selective oxidation of α-xylene to phthalic anhydride over V₂O₅/TiO₂: Kinetic study in a fluidized bed reactor. Chem. Eng. Process. 2008, 9, 1844–1852. [CrossRef]

11. De Sousa, B.P.; Marcondes, L.M.; Maestri, S.A.; da Cunha, C.R.; Cassanjes, F.C.; Poirier, G.Y. Phosphate glasses with high tantalum content in air. J. Phys. Chem. C 2020, 125, 1875–1877. [CrossRef]

12. Kosiel, K.; Pagowska, K.; Kozubal, M.; Guziewicz, M.; Lawnizcak-Jablonska, K.; Jakiel, R.; Syryany, Y.; Gabler, T.; Smietana, M. Compositional, structural, and optical properties of atomic layer deposited tantalum oxide for optical fiber sensor overlays. J. Vac. Sci. Technol. 2018, 36, 031505. [CrossRef]

13. Calvo, C.; Manolescu, D. Refinement of the structure of CuV₂O₅. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 1743–1745. [CrossRef]

14. Lavaud, D.; Galy, J. Structure cristalline de CuV₂O₅. Bull. Soc. Fr. Mineral. Cristallogr. 1972, 95, 134–135.

15. Dąbrowska, G.; Filipek, E. Reactivity of the oxides in the ternary V₂O₅–CuO–α-Sb₂O₃ system in air. J. Therm. Anal. Cal. 2008, 93, 839–845. [CrossRef]

16. Prokofiev, A.V.; Kremer, R.K.; Assmus, W. Crystal growth and magnetic properties of α-CuV₂O₅. J. Cryst. Growth 2001, 231, 498–505. [CrossRef]

17. Calvo, C.; Faggiani, R. α Cupric Divanadate. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1975, 31, 603–605. [CrossRef]

18. Mercurio, D.; Frit, M. Structure crystalline de la varieté haute temperature du pyrovanadate de cuivre: Cu₅(VO₄)₂β. CR Acad. Sci. Paris 1973, 277, 1001–1104.

19. Krivovichev, S.V.; Filatov, S.K.; Cherepansky, P.N.; Armbruster, T.; Pankratova, O.Y. Crystal structure of γ-Cu₂V₂O₇ and its comparison to bloslise (α-Cu₂V₂O₇) and ziesite (β-Cu₂V₂O₇). Can. Mineral. 2005, 43, 671–677. [CrossRef]

20. Fleury, P. Etudes sur les systèmes V₂O₅–CuO ou Ag₂O ou TiO₂ et sur les combinaisons interoxydes correspondantes. Rev. Chim. Min. 1969, 6, 819–830.

21. Clark, G.M.; Garlick, R. Formation and properties of copper(II) divanadate(V). J. Inorg. Nucl. Chem. 1978, 40, 1347–1349. [CrossRef]

22. Coing-Boyat, J. Structure de la varieté ordinaire, Triclinique, de l’orthovanadate de cuivre(II), Cu₃(VO₄)₂. Acta Crystal. B 1982, 38, 1546–1548. [CrossRef]

23. Shannon, R.; Calvo, C. Crystal structure of a new form of Cu₃V₂O₈. Can. J. Chem. 1972, 50, 3944–3949. [CrossRef]

24. Birnie, R.; Stoiberite, H.M. Cu₅V₂O₁₀, a new copper vanadate from Izalco Volcano El Salvador. Am. Mineral. 1979, 64, 941–944.
54. Dąbrowska, G.; Kurzawa, M.; Tabero, P. Phase Relations in the Al_2O_3–V_2O_5–MoO_3 system in the solid state. The crystal structure of AlVO_4. *J. Phase Equilibria Diffus.* 2009, 30, 220–229. [CrossRef]

55. Kubelka, P.; Munk, F. Ein Beitrag Zur Optik der Farbanstriche. *Z. Tech. Phys.* 1931, 12, 593–601.