GLOBAL EXISTENCE AND GEVREY REGULARITY TO THE NAVIER-STOKES-NERNST-PLANCK-POISSON SYSTEM IN CRITICAL BESOV-MORREY SPACES

JINYI SUN

College of Mathematics and Statistics, Northwest Normal University
Lanzhou, 730070, China

ZUNWEI FU*

ICT School, The University of Suwon
Wau-ri, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 445-743, South Korea
and
School of Mathematical Sciences, Qufu Normal University
Qufu, 273100, China

YUE YIN AND MINGHUA YANG

Department of Mathematics, Jiangxi University of Finance and Economics
Nanchang, 330032, China

(Communicated by Chunyou Sun)

Abstract. The paper is concerned with the Navier-Stokes-Nernst-Planck-
Poison system arising from electrohydrodynamics in \mathbb{R}^d. By means of the implicit function theorem, we prove the global existence of mild solutions for Cauchy problem of this system with small initial data in critical Besov-Morrey spaces. In comparison to the previous works, our existence result provides a new class of initial data, for which the problem is global solvability. Meanwhile, based on the so-called Gevrey estimates, we verify that the obtained mild solutions are analytic in the spatial variables. As a byproduct, we show the asymptotic stability of solutions as the time goes to infinity. Furthermore, decay estimates of higher-order derivatives of solutions are deduced in Morrey spaces.

2020 Mathematics Subject Classification. Primary: 35Q30, 35Q35, 76D03, 42B37; Secondary: 35E15.

Key words and phrases. Navier-Stokes-Nernst-Planck-Poisson system, Gevrey regularity, global solution, Besov-Morrey space.

*Corresponding author: Zunwei Fu.

This paper was partially supported by the National Natural Science Foundation of China (Grant No. 11801236), the Postdoctoral Science Foundation of China (Grant Nos. 2018M632593, 2019M660555), the Natural Science Foundation of Gansu Province for Young Scholars (Grant No. 18JR3RA102), the innovation capacity improvement project for colleges and universities of Gansu Province (Grant No. 2019A-011), the Natural Science Foundation of Jiangxi Province for Young Scholars (Grant No. 20181BAB211001), the Postdoctoral Science Foundation of Jiangxi Province (Grant No. 2017KY23) and Educational Commission Science Programm of Jiangxi Province (Grant No. GJJ190272).
1. Introduction and main results. In this paper, we study the following Cauchy problem of the Navier-Stokes-Nernst-Planck-Poisson system

$$
\begin{aligned}
\begin{cases}
 u_t + u \cdot \nabla u - \Delta u + \nabla \Pi = \Delta \phi \nabla \phi, & \text{in } (0, \infty) \times \mathbb{R}^d, \\
 n_t + u \cdot \nabla n - \Delta n = -\nabla \cdot (n \nabla \phi), & \text{in } (0, \infty) \times \mathbb{R}^d, \\
 p_t + u \cdot \nabla p - \Delta p = \nabla \cdot (p \nabla \phi), & \text{in } (0, \infty) \times \mathbb{R}^d, \\
 \Delta \phi = n - p, & \text{in } (0, \infty) \times \mathbb{R}^d, \\
 \nabla \cdot u = 0, & \text{in } (0, \infty) \times \mathbb{R}^d, \\
 (u, n, p)|_{t=0} = (u_0, n_0, p_0), & \text{in } \mathbb{R}^d,
\end{cases}
\end{aligned}
$$

(1)

where unknown functions u, Π, n and p denote the velocity field, the pressure, the densities of the negative and positive charged particles, respectively, and ϕ denotes the electrostatic potential caused by the net charged particles. The Navier-Stokes-Nernst-Planck-Poisson system arises from electrohydrodynamics, which describes the dynamic coupling between incompressible flows and diffuse charge systems, and has very important applications in biology, chemistry and pharmacology, see [4, 13, 26] for more details.

Ryham [28] and Schmuck [29] obtained the global existence of weak solutions in a bounded domain with Neumann and Dirichlet boundary conditions, respectively. Li [24] studied the quasineutral limit in periodic domain. Joseph [13] established the existence of a unique smooth local solution by the Fujita-Kato approach. Deng, Zhao and Cui [7, 8, 35, 36] studied the local and global well-posedness in the Lebesgue spaces, modulation spaces, Triebel-Lizorkin spaces and Besov spaces for $d = 3$. In [33], the authors of present paper proved the global well-posedness of (1) for $d = 3$ with large initial vertical velocity component in the critical Besov spaces.

In the case that the flow is charge-free, i.e., $n \equiv 0$ and $p \equiv 0$, (1) reduces to the problem related to the classical incompressible Navier-Stokes equations

$$
\begin{aligned}
\begin{cases}
 u_t + u \cdot \nabla u - \Delta u + \nabla \Pi = 0, & \text{in } (0, \infty) \times \mathbb{R}^d, \\
 \nabla \cdot u = 0, & \text{in } (0, \infty) \times \mathbb{R}^d, \\
 u|_{t=0} = u_0, & \text{in } \mathbb{R}^d.
\end{cases}
\end{aligned}
$$

(2)

The mathematical theory of problem (2) originates with the celebrated paper [21], in which Leray proved the global existence of weak solutions for $d = 2, 3$, but the uniqueness and regularity of weak solutions are still open in \mathbb{R}^3. In 1964, Fujita and Kato [10] obtained the first well-posedness result of problem (2) and proved that it is locally well-posed in $H^s(\mathbb{R}^3)$ for $s \geq \frac{1}{2}$ and globally well-posed in $H^\frac{1}{2}(\mathbb{R}^3)$ with small initial data. These results were later extended to various other function spaces including particularly the following critical ones: $L^4(\mathbb{R}^d)$ by Kato [14], $B_{p,\infty}^{-1+\frac{d}{p}}(\mathbb{R}^d)$ by Cannone, Meyer and Planchon [5], BMO$^{-1}(\mathbb{R}^d)$ by Koch and Tataru [16], Morrey spaces $M_{p,d-p}(\mathbb{R}^d)$ by Kato [15] and Taylor [31], Besov-Morrey spaces $\dot{N}^{-1+\frac{d}{p}}_{r,\lambda,\infty}(\mathbb{R}^d)$ by Kozono and Yamazaki [18], Fourier-Besov spaces $F\dot{B}_{p,\infty}^{-1+\frac{d}{p}}(\mathbb{R}^d)$ (1 < p < ∞) by Konieczny and Yoneda [17], Fourier-Herz spaces $\dot{B}^{-1}_{q} = F\dot{B}_{1,q}^{-1}(1 \leq q \leq 2)$ by Lei and Lin [19], Iwabuchi and Takada [12] and Cannone and Wu [6]. For an extensive study of the Navier-Stokes equations by means of Fourier analysis techniques, the reader may refer to the monographs [3] by Bahouri et al. and [20] by Lemarié-Rieusset.
The goals of the present paper are to establish the global existence and the asymptotic stability of mild solutions to problem (1) in the critical Besov-Morrey spaces by applying the implicit function theorem, and prove the spatial analyticity of the obtained solutions by the Gevrey class approach pioneered by Foias and Temam [9] through estimating space analyticity radius as a function of time and subsequently developed by [2, 11, 27]. Let \mathcal{X} be a Banach space and $BC_w([0, \infty); \mathcal{X})$ be the set of bonded weakly-star continuous functions on $(0, \infty)$ with values in the Banach space \mathcal{X}. For an operator $T : \mathcal{X} \to \mathcal{X}$, we denote

$$T\mathcal{X} := \{ Tf : f \in \mathcal{X} \} \quad \text{with} \quad \|f\|_{T\mathcal{X}} := \|Tf\|_{\mathcal{X}},$$

and a solution $u(t, \cdot) \in \mathcal{X}$ is said to be Gevrey regular if

$$\sup_{0 < t \leq T} \|u\|_{e^{\sqrt{\lambda_1}} \mathcal{X}} < \infty \quad \text{for arbitrary } T > 0,$$

(3)

where Λ_1 is the Fourier multiplier whose symbol is given by $|\xi|_1 := \sum_{i=1}^d |\xi_i|$. We mention that the finiteness of the corresponding Gevrey norm implies that the functions are space analytic. This approach enables one to avoid cumbersome recursive estimation of higher order derivatives. For the studies on the space analyticity for other models, we refer to [22, 23, 30, 34, 37].

Before stating our main results, we introduce the following assumptions A1, A2 and A3 on the exponents $\lambda, q_i, r_i, \alpha_i, \beta_i$ for $i = 1, 2$:

A1: $d \geq 2, 0 \leq \lambda < d, 1 \leq r_i < q_i < \infty, \ i = 1, 2$;

A2: $d - \lambda < r_1, \frac{d - \lambda}{2} < r_2 < d - \lambda, \frac{2(d - \lambda)}{d - 4} < q_2 < d - \lambda, \frac{1}{r_i} - \frac{1}{q_i} < \frac{1}{q_2} - \frac{3}{2(d - \lambda)}$;

A3: $\alpha_1 = 1 - \frac{d - \lambda}{r_1}, \alpha_2 = 2 - \frac{d - \lambda}{r_2}, \beta_1 = 1 - \frac{d - \lambda}{q_1}, \beta_2 = 2 - \frac{d - \lambda}{q_2}$.

The first result in this paper is the following one concerning the Gevrey class regularity result of problem (1) in the critical Besov-Morrey spaces:

Theorem 1.1. Suppose that Assumptions A1, A2 and A3 hold. Let $\theta \in \{0, 1\}$. Then there exists $\epsilon > 0$ such that for every

$$(u_0, n_0, p_0) \in \tilde{N}^{-\alpha_1}_{r_1, \lambda, \infty}(\mathbb{R}^d) \times \tilde{N}^{-\alpha_2}_{r_2, \lambda, \infty}(\mathbb{R}^d) \times \tilde{N}^{-\alpha_2}_{r_2, \lambda, \infty}(\mathbb{R}^d)$$

(4)

with $\nabla \cdot u_0 = 0$ satisfying

$$\|(u_0, n_0, p_0)\|_{\tilde{N}^{-\alpha_1}_{r_1, \lambda, \infty} \times \tilde{N}^{-\alpha_2}_{r_2, \lambda, \infty} \times \tilde{N}^{-\alpha_2}_{r_2, \lambda, \infty}} < \epsilon,$$

(5)

problem (1) admits a unique global solution $(u, n, p) \in Y$, where

$$Y := \left\{ \begin{array}{l}
t^\frac{\partial}{\partial t} u \in BC_w\left([0, \infty); e^{\theta \sqrt{\lambda}} M_{q_1, \lambda}(\mathbb{R}^d)\right), \\
t^\frac{\partial}{\partial t} p \in BC_w\left([0, \infty); e^{\theta \sqrt{\lambda}} M_{q_2, \lambda}(\mathbb{R}^d)\right), \\
t^\frac{\partial}{\partial t} n \in BC_w\left([0, \infty); e^{\theta \sqrt{\lambda}} M_{q_2, \lambda}(\mathbb{R}^d)\right) : \|(u, n, p)\|_Y < \epsilon \end{array} \right\}$$

(6)

with the norm

$$\|(u, n, p)\|_Y := \sup_{t > 0} t^\frac{\partial}{\partial t} \left\| e^{\theta \sqrt{\lambda}} u \right\|_{M_{q_1, \lambda}} + \sup_{t > 0} t^\frac{\partial}{\partial t} \left\| e^{\theta \sqrt{\lambda}} n \right\|_{M_{q_2, \lambda}}$$

$$+ \sup_{t > 0} t^\frac{\partial}{\partial t} \left\| e^{\theta \sqrt{\lambda}} p \right\|_{M_{q_2, \lambda}}.$$

(7)
Remarks.

(i) In the case of $\theta = 0$, for the exponents $\lambda, q_i, r_i, \alpha_i, \beta_i, i = 1, 2$ prescribed in Assumptions A1-A3, Theorem 1.1 shows that there exists a $\epsilon > 0$ such that if $(u_0, n_0, p_0) \in \mathcal{N}_{r_1, \lambda, \infty}^\gamma(\mathbb{R}^d) \times \mathcal{N}^\gamma_{r_2, \lambda, \infty}(\mathbb{R}^d) \times \mathcal{N}^\gamma_{r_0, \lambda, \infty}(\mathbb{R}^d)$ satisfying (5), then problem (1) admits a unique global mild solution. In the case of $\theta = 1$, Theorem 1.1 indicates that the obtained solutions satisfies the Gevrey estimate (3) with
\[
\mathcal{Y} = M_{q_1, \lambda}(\mathbb{R}^d) \times M_{q_2, \lambda}(\mathbb{R}^d) \times M_{q_2, \lambda}(\mathbb{R}^d),
\]
which implies that the solutions are analytic in the spatial variables, i.e.,
\[
(u(t, \cdot), n(t, \cdot), p(t, \cdot)) \in C^\infty(\mathbb{R}^d) \times C^\infty(\mathbb{R}^d) \times C^\infty(\mathbb{R}^d), \text{ for any } t \in (0, \infty).
\]
(ii) For all $x \in \mathbb{R}^d$ and $t \geq 0$, then, if (u, n, p) solves problem (1) with initial data (u_0, n_0, p_0), so does (u_μ, n_μ, p_μ) with initial data
\[
(u_\mu, n_\mu, p_\mu)(x, t) = (\mu u_0, \mu^2 n_0, \mu^2 p_0)(\mu x, \mu^2 t)
\]
fors all $x \in \mathbb{R}^d$. The critical Besov-Morrey spaces \(\mathcal{N}^{\gamma_{r_1, \lambda, \infty}}(\mathbb{R}^d) \times \mathcal{N}^{\gamma_{r_2, \lambda, \infty}}(\mathbb{R}^d) \times \mathcal{N}^{\gamma_{r_0, \lambda, \infty}}(\mathbb{R}^d)\) are the ones whose norms are invariant under the scaling.

(iii) In [35] and [36], Zhao, Deng and Cui proved the global existence of problem (1) with the small initial data (u_0, n_0, p_0) in $L^d(\mathbb{R}^d) \times L^q(\mathbb{R}^d) \times L^p(\mathbb{R}^d)$ and in $\dot{B}^{-1+\epsilon}_{q, \infty}(\mathbb{R}^d) \times \dot{B}^{-1+\epsilon}_{p, \infty}(\mathbb{R}^d) \times \dot{B}^{-\epsilon}_{p, \infty}(\mathbb{R}^d)$ for $d < q < \infty, \frac{2}{d} < p < d$ and $\frac{1}{p} - \frac{1}{2q} < \frac{3}{2d}$, respectively. While, it follows [18] that
\[
L^d(\mathbb{R}^d) \hookrightarrow \dot{B}^{-1+\epsilon}_{q, \infty}(\mathbb{R}^d) \hookrightarrow \mathcal{N}^{\gamma_{r_1, \lambda, \infty}}(\mathbb{R}^d), \quad r_1 > q,
\]
and
\[
L^d(\mathbb{R}^d) \hookrightarrow \dot{B}^{-2+\epsilon}_{p, \infty}(\mathbb{R}^d) \hookrightarrow \mathcal{N}^{\gamma_{r_2, \lambda, \infty}}(\mathbb{R}^d), \quad r_2 > p,
\]
which imply that Theorem 1.1 improves the results in [35] and [36].

(iv) In [8], Deng, Zhao and Cui verified that for
\[
(u_0, n_0, p_0) \in \text{BMO}^{-1}(\mathbb{R}^d) \times \dot{B}^{-2+\epsilon}_{p, \infty}(\mathbb{R}^d) \times \dot{B}^{-\epsilon}_{p, \infty}(\mathbb{R}^d)
\]
with small norm, problem (1) exists a global-in-time solution. From [25, Page. 1314], it is easy to see that
\[
\mathcal{N}^{\gamma_{r, \lambda, \infty}}(\mathbb{R}^d) \subset \text{BMO}^{-1}(\mathbb{R}^d), \quad r \geq 2, \quad d \geq 2, \quad 0 \leq \lambda < d, \quad r > d - \lambda
\]
and
\[
\mathcal{N}^{\gamma_{r, \lambda, \infty}}(\mathbb{R}^d) \not\subset \text{BMO}^{-1}(\mathbb{R}^d), \quad \text{BMO}^{-1}(\mathbb{R}^d) \not\subset \mathcal{N}^{\gamma_{r, \lambda, \infty}}(\mathbb{R}^d), \quad 0 \leq \lambda < d, \quad d \geq 2,
\]
from which, the initial data class of us
\[
\mathcal{N}^{\gamma_{r_1, \lambda, \infty}}(\mathbb{R}^d) \times \mathcal{N}^{\gamma_{r_2, \lambda, \infty}}(\mathbb{R}^d) \times \mathcal{N}^{\gamma_{r_0, \lambda, \infty}}(\mathbb{R}^d)
\]
is not included in the space
\[
\text{BMO}^{-1}(\mathbb{R}^d) \times \dot{B}^{-2+\epsilon}_{p, \infty}(\mathbb{R}^d) \times \dot{B}^{-\epsilon}_{p, \infty}(\mathbb{R}^d).
\]
Hence, compared with [8], Theorem 1.1 provides a new class of initial data for which problem (1) is global solvability, and may be regarded as a new global existence result on problem (1).

Next, we present the global stability of solutions.
Theorem 1.2. Suppose that Assumptions A1, A2 and A3 hold. Let \((u_0, n_0, p_0)\) and \((u'_0, n'_0, p'_0)\) satisfy
\[
\| (u_0, n_0, p_0) \|_{\dot{N}^{-\alpha_1}_{r_1, \lambda, \infty} \times \dot{N}^{-\alpha_2}_{r_2, \lambda, \infty} \times \dot{N}^{-\alpha_2}_{r_2, \lambda, \infty}} < \epsilon
\]
and
\[
\| (u'_0, n'_0, p'_0) \|_{\dot{N}^{-\alpha_1}_{r_1, \lambda, \infty} \times \dot{N}^{-\alpha_2}_{r_2, \lambda, \infty} \times \dot{N}^{-\alpha_2}_{r_2, \lambda, \infty}} < \epsilon
\]
with \(\epsilon > 0\) obtained in Theorem 1.1, and let \((u, n, p)\) and \((u', n', p')\) be the solutions of (1) in \(Y_\epsilon\) with \((u, n, p)_{t=0} = (u_0, n_0, p_0)\) and \((u', n', p')_{t=0} = (u'_0, n'_0, p'_0)\), respectively. Then, for any given \(\eta > 0\), there is a constant \(\delta > 0\), it holds true that if
\[
\| (u_0 - u'_0, n_0 - n'_0, p_0 - p'_0) \|_{\dot{N}^{-\alpha_1}_{r_1, \lambda, \infty} \times \dot{N}^{-\alpha_2}_{r_2, \lambda, \infty} \times \dot{N}^{-\alpha_2}_{r_2, \lambda, \infty}} \leq \delta,
\]
we have
\[
\sup_{t>0} t^{\frac{\alpha}{2}} \| e^{\theta \sqrt{\Lambda}} (u(t) - u'(t)) \|_{M_{q_1, \lambda}} + \sup_{t>0} t^{\frac{\alpha}{2}} \| e^{\theta \sqrt{\Lambda}} (n(t) - n'(t)) \|_{M_{q_2, \lambda}}
\]
\[
+ \sup_{t>0} t^{\frac{\alpha}{2}} \| e^{\theta \sqrt{\Lambda}} (p(t) - p'(t)) \|_{M_{q_2, \lambda}} \leq \eta.
\]

Moreover, as a consequence of working with Gevrey norms, we also obtain the higher-order derivatives and the asymptotic behavior of the solutions.

Theorem 1.3. Let \(m \geq 0\) and \(D^m\) be the Fourier multiplier whose symbol is given by \(|\xi|^m\), where \(\xi = (\xi_1, \xi_2, \cdots, \xi_d) \in \mathbb{R}^d\). There exist a positive constant \(C\) such that
\[
\|D^m u\|_{M_{q_1, \lambda}} \leq Ct^{-\frac{\alpha}{2} - \frac{\beta_1}{2}} \text{ and } \|D^m n\|_{M_{q_2, \lambda}} \leq Ct^{-\frac{\alpha}{2} - \frac{\beta_2}{2}},
\]
\[
\|D^m p\|_{M_{q_2, \lambda}} \leq Ct^{-\frac{\alpha}{2} - \frac{\beta_1}{2}} \text{ and } \|D^m u - D^m e^{t\Delta} u_0\|_{M_{q_1, \lambda}} \leq Ct^{-\frac{\alpha}{2} - \frac{\beta_1}{2}},
\]
\[
\|D^m p - D^m e^{t\Delta} p_0\|_{M_{q_2, \lambda}} \leq Ct^{-\frac{\alpha}{2} - \frac{\beta_1}{2}} \text{ and } \|D^m n - D^m e^{t\Delta} n_0\|_{M_{q_2, \lambda}} \leq Ct^{-\frac{\alpha}{2} - \frac{\beta_1}{2}},
\]
where \(\beta_1 = 1 - \frac{d\lambda}{q_1}\) and \(\beta_2 = 2 - \frac{d\lambda}{q_2}\).

The layout of the paper is as follows. In Section 2, we collect and proof some technical Lemmas. Our main results are proved in Section 3.

2. Preliminaries. We first give the definition of the Morrey spaces \(M_{p, \lambda}(\mathbb{R}^d)\). For \(1 \leq p < \infty\) and \(0 \leq \lambda < d\), Morrey spaces \(M_{p, \lambda}(\mathbb{R}^d)\) are defined by
\[
M_{p, \lambda}(\mathbb{R}^d) := \left\{ f \in L^p_{loc}(\mathbb{R}^d), \| f \|_{p, \lambda} < \infty \right\}
\]
with norm given by
\[
\| f \|_{p, \lambda} := \sup_{x_0 \in \mathbb{R}^d} \sup_{r > 0} r^\lambda \left(\int_{B(x_0, r)} |f(y)|^p \, dy \right)^{\frac{1}{p}},
\]
where \(B(x_0, r)\) denotes the ball in \(\mathbb{R}^d\) with center \(x_0\) and radius \(r\). It is easy to see that \(M_{p, 0}(\mathbb{R}^d) = L^p(\mathbb{R}^d)\) for \(p > 1\), and \(M_{1, 0}(\mathbb{R}^d)\) is the set of finite Radon measures on \(\mathbb{R}^d\). Whereas \(p = \infty\), we can include \(M_{\infty, \lambda}(\mathbb{R}^d)\) means \(L^\infty(\mathbb{R}^d)\). The space \(M_{p, \lambda}(\mathbb{R}^d)\) endowed with the norm \(\| \cdot \|_{p, \lambda}\) is a Banach space and has the following nice scaling property
\[
\| f(\mu x) \|_{p, \lambda} = \mu^{-\frac{d\lambda}{p}} \| f(x) \|_{p, \lambda} \text{ for } \mu > 0.
\]

For the definition of Besov-Morrey space \(\dot{N}^{s}_{p, \lambda, q}(\mathbb{R}^d)\), we recall the homogeneous Littlewood-Paley decomposition. As usual, we denote by \(S(\mathbb{R}^d)\) the Schwartz class.
of rapidly decreasing functions and by \(\mathcal{S}(\mathbb{R}^d) \) the space of tempered distributions on \(\mathbb{R}^d \). Let \(\mathcal{F} \) and \(\mathcal{F}^{-1} \) denote Fourier and inverse Fourier transforms of \(L^1(\mathbb{R}^d) \) functions, respectively, which are defined by

\[
\mathcal{F} f = \hat{f}(\xi) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{R}^d} e^{-i\xi x} f(x) dx
\]

and

\[
\mathcal{F}^{-1} f = \hat{f}(x) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{R}^d} e^{i\xi x} f(\xi) d\xi.
\]

More generally, Fourier transform of \(f \in \mathcal{S}(\mathbb{R}^d) \) is given by \((\mathcal{F} f, g) = (f, \mathcal{F} g) \), for any \(g \in \mathcal{S}(\mathbb{R}^d) \). Choose two radial functions \(\varphi, \psi \in \mathcal{S}(\mathbb{R}^d) \) such that their Fourier transforms \(\hat{\varphi} \) and \(\hat{\psi} \) satisfy the following properties:

\[
\text{supp} \ \hat{\varphi} \subset B := \{ \xi \in \mathbb{R}^d : |\xi| \leq \frac{4}{3} \},
\]

\[
\text{supp} \ \hat{\psi} \subset C := \{ \xi \in \mathbb{R}^d : \frac{3}{4} \leq |\xi| \leq \frac{8}{3} \},
\]

and

\[
\sum_{j \in \mathbb{Z}} \hat{\psi}(2^{-j} \xi) = 1 \quad \text{for all} \ \xi \in \mathbb{R}^3 \setminus \{0\}.
\]

Let \(\varphi_j(x) := 2^{dj}\varphi(2^jx) \) and \(\psi_j(x) := 2^{dj}\psi(2^jx) \) for all \(j \in \mathbb{Z} \). The homogeneous dyadic blocks \(\Delta_j \) and the homogeneous low-frequency cutoff operators \(S_j \) are defined by

\[
\Delta_j f := \psi_j * f \quad \text{and} \quad S_j f := \varphi_j * f, \quad \text{for} \ j \in \mathbb{Z} \quad \text{and} \ f \in \mathcal{S}(\mathbb{R}^d).
\]

Define \(\mathcal{S}'(\mathbb{R}^3) := \mathcal{S}(\mathbb{R}^d)/\mathcal{P}[\mathbb{R}^d] \), where \(\mathcal{P}[\mathbb{R}^d] \) denotes the linear space of polynomials on \(\mathbb{R}^d \). Then we have the formal decomposition

\[
f = \sum_{j \in \mathbb{Z}} \Delta_j f \quad \text{and} \quad S_j f = \sum_{j' \leq j-1} \Delta_{j'} f \text{ in } \mathcal{S}'(\mathbb{R}^3).
\]

Moreover, Littlewood-Paley decomposition satisfies the property of almost orthogonality:

\[
\Delta_j \Delta_k f = 0, \quad \text{if} \ |j - k| \geq 2, \quad \text{and} \quad \Delta_j (S_{k-1} f \Delta_k f) = 0, \quad \text{if} \ |j - k| \geq 5.
\]

For the more facts on Littlewood-Paley theory, one can see [3] for instance.

In [18], Kozono and Yamazaki introduced the homogeneous Besov-Morrey spaces \(\dot{N}^s_{p,\lambda}(\mathbb{R}^d) \). Recall that the space \(\dot{N}^s_{p,\lambda}(\mathbb{R}^d) \) is defined by

\[
\dot{N}^s_{p,\lambda}(\mathbb{R}^d) = \left\{ f \in S'_d(\mathbb{R}^d) : \|f\|_{\dot{N}^s_{p,\lambda}(\mathbb{R}^d)} < \infty \right\},
\]

where

\[
\|f\|_{\dot{N}^s_{p,\lambda}} = \begin{cases} \left(\sum_{k \in \mathbb{Z}} \left(2^{ks} \left\| \Delta_k f \right\|_{p,\lambda} \right)^q \right)^{\frac{1}{q}} , & \text{if} \ 1 \leq p \leq \infty, 1 \leq q < \infty, s \in \mathbb{R}, \\ \sup_{k \in \mathbb{Z}} \left(2^{ks} \left\| \Delta_k f \right\|_{p,\lambda} \right) , & \text{if} \ 1 \leq p \leq \infty, q = \infty, s \in \mathbb{R}. \end{cases}
\]
Lemma 2.1. If $1 \leq p, q \leq \infty$, $s > 0$ and $0 \leq \lambda < d$, then $f \in \dot{N}^{-2s}_{p,\lambda,q}({\mathbb R}^d)$ if and only if
\[
\left\{ \left\{ \int_0^\infty \left(\frac{t}{t+1} \int_{t+1}^\infty \right)^q \frac{dt}{t} \right\}^\frac{1}{q} \right\}^\frac{1}{r}, \quad \text{if} \quad 1 \leq q < \infty,
\sup_{t>0} \left[t^s \| e^{t\Delta} f \|_{M_{p,\lambda}} \right], \quad \text{if} \quad q = \infty.
\]

The above lemma 2.1 can be found in [25]. The following two Lemmas can be found in [18, 25, 31].

Lemma 2.2. Let $s_1, s_2 \in {\mathbb R}$, $1 \leq p_i, q_i \leq \infty$ and $0 \leq \lambda_i < d$ when $i = 1, 2, 3$.

(i) If $p_1 > p_2$, $s_1 = \frac{d-\lambda_1}{p_1} = s_2 - \frac{d-\lambda_2}{p_2}$, then
\[
\dot{N}^{s_2}_{p_2,\lambda_2,q_2}({\mathbb R}^d) \hookrightarrow \dot{N}^{s_1}_{p_1,\lambda_1,q_2}({\mathbb R}^d) \quad \text{and} \quad \dot{N}^{0}_{p_1,\lambda_1,1}({\mathbb R}^d) \hookrightarrow \dot{N}^{0}_{p_1,\lambda_1,\infty}({\mathbb R}^d).
\]

(ii) If $1 \leq q_1 \leq q_2 < \infty$, then
\[
\dot{N}^{s_1}_{p_1,\lambda_1,q_1}({\mathbb R}^d) \hookrightarrow \dot{N}^{s_2}_{p_1,\lambda_1,q_2}({\mathbb R}^d).
\]

(iii) If $1 \leq p_1 \leq p_2 \leq \infty$ and $\frac{d-\lambda_1}{p_1} = \frac{d-\lambda_2}{p_2}$, then
\[
\dot{M}^{s_1}_{p_1,\lambda_1}({\mathbb R}^d) \hookrightarrow \dot{M}^{s_2}_{p_2,\lambda_2}({\mathbb R}^d).
\]

(iv) If $\lambda_1 = \lambda_2 = \lambda_3$ and $h_1 \in \dot{M}^{p_1,\lambda_1}({\mathbb R}^d)$ when $i = 1, 2$, then
\[
\| h_1 h_2 \|_{\dot{M}^{p_3,\lambda_3}} \leq \| h_1 \|_{\dot{M}^{p_1,\lambda_1}} \| h_2 \|_{\dot{M}^{p_2,\lambda_2}}.
\]

Lemma 2.3. Let $s_1 \leq s_2, 1 \leq q \leq \infty, 1 \leq p_1 \leq p_2 \leq \infty$ and $0 \leq \lambda < d$. If $f \in \mathcal{S}'({\mathbb R}^d)$, then there exists a constant c depending only on d such that
\[
\| e^{t\Delta} f \|_{M^{s_2}_{p_2,\lambda}} \leq c t^{-\frac{1}{2} \frac{(d-\lambda_2)}{p_2}}, \quad \| \partial^\gamma e^{t\Delta} f \|_{M^{s_2}_{p_2,\lambda}} \leq c t^{-\frac{1}{2} \frac{|\gamma|}{p_2}},
\]
where $\gamma = (\gamma_1, \gamma_2, \ldots, \gamma_d) \in {\mathbb N}^d$ be multi-index with $|\gamma| = \gamma_1 + \gamma_2 + \cdots + \gamma_d$.

Lemma 2.4. Let $d \geq 2$, $0 \leq \lambda < d$ and $1 < p < d - \lambda$. Then there exists a positive constant $C = C(d, p)$ such that
\[
\| \nabla (-\Delta)^{-1} f \|_{M^{p_1,\lambda}_{p_2}} \leq C \| f \|_{M^{p_1,\lambda}_{p_2}}
\]
for all $f \in M^{p_1,\lambda}_{p_2}({\mathbb R}^d)$, where $1/p_* = 1/p - 1/(d - \lambda)$.

Proof. Adams [1] showed the boundedness of fractional integral operators.

The following two Lemmas are useful to obtain the Gevrey estimates.

Lemma 2.5. If the operator $E := e^{-[(1-s)+\sqrt{s} - \sqrt{s}]}$ for $0 \leq s \leq t$, then E is either the identity operator or an $L^1({\mathbb R}^d)$ kernel whose $L^1({\mathbb R}^d)$ norm is bounded independent of s, t.

Proof. For the proof of Lemma 2.5, we refer the reader to [2, 32].
Lemma 2.6. The operator \(E = e^{\frac{1}{2}a\Delta + \sqrt{\tau}A} \) is a Fourier multiplier which maps boundedly \(M_{p,\lambda}(\mathbb{R}^d) \to M_{p,\lambda}(\mathbb{R}^d), 1 < p < \infty \), and its operator norm is uniformly bounded with respect to \(a \geq 0 \).

Proof. For the proof of Lemma 2.6, we refer the reader to [1].

Finally, we introduce the following bounded estimation involving with the bilinear operator \(B^p_t(f, g) \) of the form

\[
B_t^p(f, g) := e^{\theta \sqrt{\tau}A} \left(e^{-\theta \sqrt{\tau}A} f e^{-\theta \sqrt{\tau}A} g \right) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\xi \cdot e^{\theta \sqrt{\tau}A} \xi_1 - \xi \cdot |\eta|_1 - |\eta|_i} f(\xi - \eta) \hat{g}(\eta) d\eta d\xi
\]

for \(\theta \in \{0, 1\} \).

Lemma 2.7. Let \(1/p_1 + 1/p_2 = 1/p \) and \(1 < p < \infty \). Then we have

\[
\| B_t^p(f, g) \|_{M_{p,\lambda}(\mathbb{R}^d)} \leq C \| f \|_{M_{p_1,\lambda}(\mathbb{R}^d)} \| g \|_{M_{p_2,\lambda}(\mathbb{R}^d)}
\]

where \(C \) is a positive constant independent of \(f \) and \(g \).

Proof. When \(\theta = 0 \), it is obvious to get

\[
\| B_t^0(f, g) \|_{M_{p,\lambda}} \lesssim \| f \|_{M_{p_1,\lambda}} \| g \|_{M_{p_2,\lambda}}, 1/p_1 + 1/p_2 = 1/p, 1 < p < \infty.
\]

When \(\theta = 1 \), we borrow ideas from [11] completely. For the reader's convenience, we shall prove (10) here. Let \(\lambda = (\lambda_1, \lambda_2, ..., \lambda_d), \mu = (\mu_1, \mu_2, ..., \mu_d), \nu = (\nu_1, \nu_2, ..., \nu_d) \) with \(\lambda_i, \mu_i, \nu_i \in \{1, -1\} \) for \(i = 1, 2, ..., d \), we denote that

\[
D_{\lambda} := \{ \eta : \lambda_i\eta_i \geq 0, i = 1, 2, ..., d \},
\]

\[
D_{\mu} := \{ \xi - \eta : \mu_i(\xi_i - \eta_i) \geq 0, i = 1, 2, ..., d \},
\]

\[
D_{\nu} := \{ \xi : \nu_i\xi_i \geq 0, i = 1, 2, ..., d \}.
\]

Let \(\chi_D \) be the characteristic function on domain \(D \). Then we can rewrite \(B_t^1(f, g) \) as

\[
\sum_{\lambda_i, \mu_i, \nu_i \in \{1, -1\}} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{i\xi \cdot \chi_{D_\lambda}(\xi) e^{\sqrt{(\xi_i - |\eta|_i)^2}} e^{\sqrt{(\eta_i - |\eta|_i)^2}}} \chi_{D_\mu}(\xi - \eta) f(\xi - \eta) \hat{g}(\eta) d\eta d\xi
\]

When \(\eta \in D_\lambda, \xi - \eta \in D_\mu \) and \(\xi \in D_\nu \), we obtain

\[
e^{\sqrt{\tau}((\xi_i - |\xi|_i)^2 + (\eta_i - |\eta|_i)^2)} \in \mathfrak{M} := \left\{ 1, e^{-2\sqrt{\tau}|\xi|_i}, e^{-2\sqrt{\tau}|\eta|_i}, e^{-2\sqrt{\tau}|\eta_i|} \right\}
\]

for \(i = 1, 2, \cdots, d \). It is easy to see that \(\chi_D \) and each element of \(\mathfrak{M} \) are the multipliers on \(M_{p,\lambda}(\mathbb{R}^d) \) with \(1 < p < \infty \), and it follows from [18] that

\[
\| B_t^1(f, g) \|_{M_{p,\lambda}(\mathbb{R}^d)} \lesssim \| fg \|_{M_{p,\lambda}(\mathbb{R}^d)}.
\]

Thus, we have

\[
\| B_t^1(f, g) \|_{M_{p,\lambda}(\mathbb{R}^d)} \lesssim \| f \|_{M_{p_1,\lambda}(\mathbb{R}^d)} \| g \|_{M_{p_2,\lambda}(\mathbb{R}^d)} \text{ for } 1/p_1 + 1/p_2 = 1/p.
\]

This completes our proof.

\[\square\]
3. **Proofs of main results.** To solve problem (1) for the given initial data \((u_0, n_0, p_0)\), we make use of the implicit function theorem.

Let us introduce two Banach spaces \(X\) and \(Y\) defined by

\[
X := \mathcal{N}_{r_1, \lambda, \infty}(\mathbb{R}^d) \times \mathcal{N}_{r_2, \lambda, \infty}(\mathbb{R}^d) \times \mathcal{N}_{r_2, \lambda, \infty}(\mathbb{R}^d)
\]

and

\[
Y := \left\{ (u, n, p) : \int_{\mathbb{T}^d} u \in BC_w \left([0, \infty); e^{\sqrt{\lambda}M_{q_1, \lambda}(\mathbb{R}^d)} \right), \right. \\
\left. \int_{\mathbb{T}^d} p \in BC_w \left([0, \infty); e^{\sqrt{\lambda}M_{q_2, \lambda}(\mathbb{R}^d)} \right), \int_{\mathbb{T}^d} n \in BC_w \left([0, \infty); e^{\sqrt{\lambda}M_{q_2, \lambda}(\mathbb{R}^d)} \right) \right\}
\]

for \(\theta \in \{0, 1\}\) with the norm

\[
\|(u, n, p)\|_Y := \sup_{t > 0} \left\| e^{\sqrt{\lambda}t} u \right\|_{M_{q_1, \lambda}(\mathbb{R}^d)} + \sup_{t > 0} \left\| e^{\sqrt{\lambda}t} n \right\|_{M_{q_2, \lambda}(\mathbb{R}^d)}
\]

where the exponents \(\lambda, q_1, r, \alpha_1, \beta, i = 1, 2\) prescribed in Assumptions A1-A3 above.

For \((u_0, n_0, p_0) \in X\) and \((u, n, p) \in Y\), we define the map

\[
F(u_0, n_0, p_0, u, n, p) \equiv (U, N, P)
\]

by

\[
\begin{align*}
U(t) &= u(t) - e^{t \Delta} u_0 + \int_0^t e^{(t-s) \Delta} \mathbb{P}(u(s) \cdot \nabla u(s))ds \\
&\quad - \int_0^t e^{(t-s) \Delta} \mathbb{P}(\Delta \phi(s) \nabla \phi(s))ds,
\\
N(t) &= n(t) - e^{t \Delta} n_0 + \int_0^t e^{(t-s) \Delta} (u(s) \cdot \nabla n(s))ds \\
&\quad + \int_0^t e^{(t-s) \Delta} \nabla \cdot (n(s) \nabla \phi(s))ds,
\\
P(t) &= p(t) - e^{t \Delta} p_0 + \int_0^t e^{(t-s) \Delta} (u(s) \cdot \nabla p(s))ds \\
&\quad - \int_0^t e^{(t-s) \Delta} \nabla \cdot (p(s) \nabla \phi(s))ds,
\\
\phi(t) &= (-\Delta)^{-1}(p(t) - n(t))
\end{align*}
\]

where \(\mathbb{P}\) is the Leray projection operator, which can be expressed as an \(d \times d\) matrix:

\[
\mathbb{P} = \{ \mathbb{P}_{j,k} \}_{1 \leq j, k \leq d} = \{ \delta_{j,k} + \mathbb{R}_j \mathbb{R}_k \}_{1 \leq j, k \leq d}
\]

with \(\delta_{j,k}\) being the Kronecker symbol and \(\mathbb{R}_j = \partial_j (-\Delta)^{-1}\) being the Riesz transform.

Lemma 3.1. The map \(F\) defined by (13) is a continuous map from \(X \times Y\) into \(Y\).

Proof. *Step 1–To estimate*

\[
t^{\beta_1/2} U(\cdot) \in BC_w([0, \infty); e^{\sqrt{\lambda}t}M_{q_1, \lambda}(\mathbb{R}^d)).
\]
Due to $1 \leq r_1 < q_1 < \infty$, applying Lemmas 2.3 and 2.6 implies that there exists a positive constant C such that
\begin{equation}
\left\| e^{\theta \sqrt{\Lambda}} e^t \Delta u_0 \right\|_{M_{q_1, \lambda}} = \left\| e^{\theta \sqrt{\Lambda} + \frac{1}{2} e^\frac{1}{2} \Delta} u_0 \right\|_{M_{q_1, \lambda}} \leq C \left\| e^\frac{1}{2} \Delta u_0 \right\|_{M_{q_1, \lambda}} \tag{15}
\end{equation}
for $\theta \in \{0, 1\}$. Moreover, thanks to $r_1 > d - \lambda$, $\alpha_1 = 1 - \frac{d - \lambda}{r_1}$, $\beta_1 = 1 - \frac{d - \lambda}{q_1}$, it follows from Lemma 2.1 and Lemma 2.2(i) that
\begin{align*}
\left\| e^\frac{1}{2} \Delta u_0 \right\|_{M_{q_1, \lambda}} &\leq C \left(\frac{t}{2} \right)^{-\beta_1/2} \sup_{t > 0} \left(\frac{t}{2} \right)^{\beta_1/2} \left\| e^\frac{1}{2} \Delta u_0 \right\|_{M_{q_1, \lambda}} \\
&\leq C \left(\frac{t}{2} \right)^{-\beta_1/2} \left\| u_0 \right\|_{N^{-\alpha_1}_{r_1, \lambda, \infty}}. \tag{16}
\end{align*}
Hence, we arrive at
\begin{equation}
\left\| e^{\theta \sqrt{\Lambda}} e^t \Delta u_0 \right\|_{M_{q_1, \lambda}} \leq C \left(\frac{t}{2} \right)^{-\beta_1/2} \left\| u_0 \right\|_{N^{-\alpha_1}_{r_1, \lambda, \infty}}. \tag{17}
\end{equation}
Due to $1 \leq r_1 < q_1 < \infty$, applying Lemmas 2.3, 2.5 and 2.6 yields that
\begin{align*}
&\left\| e^{\theta \sqrt{\Lambda}} \int_0^t e^{(t-s)\Delta \mathcal{P}} (u \cdot \nabla u) (s) ds \right\|_{M_{q_1, \lambda}} \\
&\leq \int_0^t \left\| e^{\theta \sqrt{\Lambda}} \int_0^s e^{(t-s)\Delta \mathcal{P}} (u \cdot \nabla u) (s) ds \right\|_{M_{q_1, \lambda}} ds \\
&\leq \int_0^t \left\| \nabla e^{\frac{1}{2} \Delta} e^{\theta \sqrt{\Lambda}} (u \otimes u) (s) \right\|_{M_{q_1, \lambda}} ds \tag{18}
\end{align*}
for $\theta \in \{0, 1\}$. Moreover, thanks to $\beta_1 = 1 - \frac{d - \lambda}{q_1}$, it follows Lemmas 2.3 and 2.7 that
\begin{align*}
&\int_0^t \left\| \nabla e^{\frac{1}{2} \Delta} e^{\theta \sqrt{\Lambda}} (u \otimes u) (s) \right\|_{M_{q_1, \lambda}} ds \\
&\leq \int_0^t (t-s)^{-\frac{1}{2} - \frac{d-\lambda}{q_1}} \left\| e^{\theta \sqrt{\Lambda}} (e^{-\theta \sqrt{\Lambda}} e^{\theta \sqrt{\Lambda}} u \otimes e^{-\theta \sqrt{\Lambda}} e^{\theta \sqrt{\Lambda}} u) (s) \right\|_{M_{q_1/2, \lambda}} ds \\
&\leq C \int_0^t (t-s)^{-\frac{1}{2} - \frac{d-\lambda}{q_1}} \left\| e^{\theta \sqrt{\Lambda}} u (s) \right\|_{M_{q_1, \lambda}}^2 ds \\
&\leq C t^{-\frac{\beta_1}{2}} \left(\sup_{t > 0} \left\| e^{\theta \sqrt{\Lambda}} u (t) \right\|_{M_{q_1, \lambda}} \right)^2 B \left[\frac{1}{2} - \frac{d - \lambda}{2 q_1}, \frac{d - \lambda}{q_1} \right], \tag{19}
\end{align*}
where $B[\cdot, \cdot]$ denotes the alpha function:
\begin{equation*}
B[x, y] := \int_0^1 (1 - \tau)^{x-1} \tau^{y-1} d\tau,
\end{equation*}
for $x > 0$ and $y > 0$. Hence, we arrive at
\begin{equation}
\left\| e^{\theta \sqrt{\Lambda}} \int_0^t e^{(t-s)\Delta \mathcal{P}} (u \cdot \nabla u) (s) ds \right\|_{M_{q_1, \lambda}} \leq C t^{-\frac{\beta_1}{2}} \left(\sup_{t > 0} \left\| e^{\theta \sqrt{\Lambda}} u (t) \right\|_{M_{q_1, \lambda}} \right)^2. \tag{20}
\end{equation}
Similarly to (20) and (21), we have
\[
\left\| e^{\theta \sqrt{T} \Lambda} \int_0^t e^{(t-s)\Delta} \mathbb{P} (\Delta \phi \nabla \phi) (s) ds \right\|_{M_{q_1,\lambda}}
\leq C \int_0^t \left\| \nabla \cdot e^{\frac{t-s}{2} \Delta} e^{\theta \sqrt{T} \Lambda} \left(\nabla (-\Delta)^{-1} (p-n) \otimes \nabla (-\Delta)^{-1} (p-n) \right. \right.
\left. \left. - \left| \nabla (-\Delta)^{-1} (p-n) \right|^2 I_{d\times d} \right) (s) \right\|_{M_{q_1,\lambda}} ds
\leq C \int_0^t (t-s)^{-\frac{1}{2}} \left(\frac{2}{q_1} - \frac{2}{q_2} - \frac{2}{q_1} - \frac{2}{q_2} \right) \left\| e^{\theta \sqrt{T} \Lambda} \left(\nabla (-\Delta)^{-1} (p-n) \otimes \nabla (-\Delta)^{-1} (p-n) \right. \right.
\left. \left. - \left| \nabla (-\Delta)^{-1} (p-n) \right|^2 I_{d\times d} \right) (s) \right\|_{M_{q_2(q_1-q_2)\Lambda}} ds
\leq C \int_0^t (t-s)^{-\frac{1}{2}} \left(\frac{2}{q_1} - \frac{2}{q_2} - \frac{2}{q_1} - \frac{2}{q_2} \right) \left\| e^{\theta \sqrt{T} \Lambda} (p-n) \right\|_{M_{q_2,\lambda}}^2 ds
\leq C t^{-\frac{1}{2}} B \left[\frac{3}{2} + \frac{d-\lambda}{2q_1} - \frac{d-\lambda}{q_2}, -1 + \frac{d-\lambda}{q_2} \right] \left(\sup_{t>0} t^{\frac{d}{2}} \left\| e^{\theta \sqrt{T} \Lambda} (p-n) \right\|_{M_{q_2,\lambda}} \right)^2.
\]
Combining (17), (20) and (21) implies that
\[
\sup_{t>0} t^{\frac{d}{2}} \left\| e^{\theta \sqrt{T} \Lambda} U \right\|_{M_{q_1,\lambda}}
\leq C \left\| u_0 \right\|_{X_{-\alpha_1,\infty}} + C \sup_{t>0} t^{\frac{d}{2}} \left\| e^{\theta \sqrt{T} \Lambda} u \right\|_{M_{q_1,\lambda}} + C \left(\sup_{t>0} t^{\frac{d}{2}} \left\| e^{\theta \sqrt{T} \Lambda} u(t) \right\|_{M_{q_1,\lambda}} \right)^2
\Rightarrow \left(\sup_{t>0} t^{\frac{d}{2}} \left\| e^{\theta \sqrt{T} \Lambda} U \right\|_{M_{q_2,\lambda}} \right)^2.
\]
\[
\text{Step 2: To estimate}
\quad t^{\frac{d}{2}} N(t) \in BC_w ([0, \infty) : M_{q_2,\lambda}(\mathbb{R}^d)).
\]
Similarly to (17), there exists a positive constant C such that
\[
\left\| e^{\theta \sqrt{T} \Lambda} e^{\Delta} n_0 \right\|_{M_{q_2,\lambda}}
\leq C \left(\frac{d}{2} \right)^{-\beta_2/2} \sup_{t>0} \left(t^{\frac{d}{2}} \right)^{\beta_2/2} \left\| e^{\frac{d}{2} \Delta} n_0 \right\|_{M_{q_2,\lambda}}
\leq C \left(\frac{d}{2} \right)^{-\beta_2/2} \left\| n_0 \right\|_{X_{-\alpha_2,\infty}}.
\]
Similarly to (20) and (21), one has
\[
\left\| e^{\theta \sqrt{T} \Lambda} \int_0^t e^{(t-s)\Delta} (u \cdot \nabla n)(s) ds \right\|_{M_{q_2,\lambda}}
\leq \int_0^t \left\| e^{\theta \sqrt{T} \Lambda} \int_0^t e^{(t-s)\Delta} (u \cdot \nabla n)(s) ds \right\|_{M_{q_2,\lambda}} ds
\begin{align*}
& \leq C \int_0^t (t-s)^{-\frac{1}{3}} (s + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}) \frac{e^{-\lambda s}}{s^{\frac{1}{2}}}
& \quad \times \bigg\| e^{\theta \sqrt{\Lambda}} \left(e^{-\theta \sqrt{\Lambda}} e^{\theta \sqrt{\Lambda} u} \right) s \bigg\|_{M_{q_{12}, \lambda}} ds
& \leq C \int_0^t (t-s)^{-\frac{1}{3}} \left(\frac{d-\lambda}{2q_1}\right) e^{\theta \sqrt{\Lambda} u(s)} \left\| e^{\theta \sqrt{\Lambda} n(s)} \right\|_{M_{q_{1}, \lambda}} ds
& \leq CB \left[1 - \frac{d-\lambda}{2q_1}, 1 - \frac{\beta_1}{2} - \frac{\beta_2}{2} \right] t^{-\frac{\alpha_2}{2}} \sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} u(t)} \right\|_{M_{q_{1}, \lambda}}
& \quad \times \sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} n(t)} \right\|_{M_{q_{2}, \lambda}},
\end{align*}

and
\begin{align*}
& \left\| e^{\theta \sqrt{\Lambda}} \int_0^t e^{(t-s)\Delta} \nabla \cdot (n \nabla \phi)(\cdot, s) ds \right\|_{M_{q_{2}, \lambda}} \\
& \leq C \int_0^t \left\| \nabla e^{(-\frac{d-\lambda}{2q_1}) \Delta} e^{\theta \sqrt{\Lambda} \cdot (n \nabla (-\Delta)^{-1}(p-n))}(\cdot, s) \right\|_{M_{q_{2}, \lambda}} ds
\end{align*}

\begin{align*}
& \leq C \int_0^t (t-s)^{-\frac{1}{3}} \left(\frac{d-\lambda}{2q_1}\right) e^{\theta \sqrt{\Lambda} (n \nabla (-\Delta)^{-1}(p-n))(s)} \bigg\| M_{q_{2}(d-\lambda)} \frac{\lambda}{-\frac{d}{2} + 2}, \frac{\lambda}{2} \right\| \sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} (p, n)} \right\|_{M_{q_{2}, \lambda}}
& \quad \times \sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} n(t)} \right\|_{M_{q_{2}, \lambda}}.
\end{align*}

Thus it follows from (23)-(25) that
\begin{align*}
& \quad \sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} \left(\frac{1}{0}, \infty\right) : e^{\theta \sqrt{\Lambda} M_{q_{2}, \lambda}(\mathbb{R}^d)} \right\|
& \quad \leq C \left\| n_0 \right\|_{M_{r_{2}, \infty}} + C \sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} \left(\frac{1}{0}, \infty\right) : e^{\theta \sqrt{\Lambda} M_{q_{2}, \lambda}(\mathbb{R}^d)} \right\|
& \quad + \sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} n(t)} \right\|_{M_{q_{2}, \lambda}} \left(\sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} u(t)} \right\|_{M_{q_{1}, \lambda}}
& \quad + \sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} n(t)} \right\|_{M_{q_{2}, \lambda}} \sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} p(t)} \right\|_{M_{q_{2}, \lambda}} \right).
\end{align*}

\textbf{Step 3}

Similar as Step 2, it holds true that
\begin{align*}
& \quad \sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} \left(\frac{1}{0}, \infty\right) : e^{\theta \sqrt{\Lambda} M_{q_{2}, \lambda}(\mathbb{R}^d)} \right\|
& \quad \leq C \left\| p_0 \right\|_{M_{r_{2}, \infty}} + C \sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} \left(\frac{1}{0}, \infty\right) : e^{\theta \sqrt{\Lambda} M_{q_{2}, \lambda}(\mathbb{R}^d)} \right\|
& \quad + \sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} p(t)} \right\|_{M_{q_{2}, \lambda}} \left(\sup_{t>0} t^{\frac{\alpha_2}{2}} \left\| e^{\theta \sqrt{\Lambda} u(t)} \right\|_{M_{q_{1}, \lambda}}
\end{align*}
Now, by (22), (26) and (3), we conclude that
\[
\left(\frac{\partial}{\partial t} + \theta \sqrt{T} A\right) n(t) + \sup_{t > 0} \left\| \left(\frac{\partial}{\partial t} + \theta \sqrt{T} A\right) p(t) \right\|_{M_{2\lambda, 1}} \right).
\]

Now, by (22), (26) and (3), we conclude that \((U, N, P) \in Y\) with
\[
\left\| (U, N, P) \right\|_Y \leq C \left(\left\| (u_0, n_0, p_0) \right\|_X + C \left(\left\| (u, n, p) \right\|_Y (1 + \left\| (u, n, p) \right\|_Y)\right) \right).
\]

\(\square\)

Proposition 1. For \((u_0, n_0, p_0) \in X\), the map \(F(u_0, n_0, p_0, \ldots)\) is of class \(C^1\) from \(Y\) into \(Y\).

Proof. For each \((u, n, p) \in X\), we define a linear map \(L_{(u, n, p)}(\tilde{u}, \tilde{n}, \tilde{p}) \equiv (\tilde{U}, \tilde{N}, \tilde{P})\) by
\[
\begin{align*}
\tilde{U} &= \tilde{u}(t) + \int_0^t e^{(t-s)\Delta} \nabla \tilde{u}(s) \nabla u(s) + u(s) \nabla \tilde{u}(s) ds \\
&\quad - \int_0^t e^{(t-s)\Delta} \nabla (\Delta \tilde{u}(s) \nabla \phi(s) + \Delta \phi(s) \nabla \tilde{u}(s) ds), \\
\tilde{N} &= \tilde{n}(t) + \int_0^t e^{(t-s)\Delta} (\tilde{u}(s) \nabla n(s) + u(s) \nabla \tilde{n}(s) ds \\
&\quad + \int_0^t e^{(t-s)\Delta} \nabla \cdot (\tilde{n}(s) \nabla \phi(s) + n(s) \nabla \tilde{u}(s)) ds, \\
\tilde{P} &= \tilde{p}(t) + \int_0^t e^{(t-s)\Delta} (\tilde{u}(s) \cdot \nabla p(s) + u(s) \cdot \nabla \tilde{p}(s) ds \\
&\quad - \int_0^t e^{(t-s)\Delta} \nabla \cdot (\tilde{p}(s) \nabla \phi(s) + p(s) \nabla \tilde{u}(s)) ds, \\
\tilde{\phi}(t) &= (-\Delta)^{-1}(\tilde{p}(t) - \tilde{n}(t)), \\
\phi(t) &= (-\Delta)^{-1}(p(t) - n(t)).
\end{align*}
\]

We shall show that for each fixed \((u_0, n_0, p_0) \in X\), \(L_{(u, n, p)}(\tilde{u}, \tilde{n}, \tilde{p})\) is the Fréchet derivative of \(F(u_0, n_0, p_0, u, n, p)\) at \((u, n, p) \in Y\).

Let
\[
(U, N, P) := F\left(u_0, n_0, p_0, u + \tilde{u}, n + \tilde{n}, p + \tilde{p}\right) - F\left(u_0, n_0, p_0, u, n, p\right) - L_{(u, n, p)}\left(\tilde{u}, \tilde{n}, \tilde{p}\right).
\]

It thus holds true that
\[
\begin{align*}
\mathcal{U}(t) &= \int_0^t e^{(t-s)\Delta} \nabla \tilde{u}(s) \nabla u(s) ds - \int_0^t e^{(t-s)\Delta} \nabla (\Delta \tilde{u}(s) \nabla \phi(s)) ds, \\
\mathcal{N}(t) &= \int_0^t e^{(t-s)\Delta} (\tilde{u}(s) \nabla n(s)) + \int_0^t e^{(t-s)\Delta} \nabla \cdot (\tilde{n}(s) \nabla \tilde{u}(s)) ds, \\
\mathcal{P}(t) &= \int_0^t e^{(t-s)\Delta} (\tilde{u}(s) \cdot \nabla p(s)) - \int_0^t e^{(t-s)\Delta} \nabla \cdot (\tilde{p}(s) \nabla \tilde{u}(s)) ds, \\
\tilde{\phi}(t) &= (-\Delta)^{-1}(\tilde{p}(t) - \tilde{n}(t)).
\end{align*}
\]

Similarly, we have by (20), (21), (24), (25) and (3) that
\[
\int_0^t e^{\theta \sqrt{T} A} \mathcal{U}(t) \left\|_{M_{q\lambda, 1}} \right\|^2 \leq C \left(\left(\sup_{t > 0} \left\| e^{\theta \sqrt{T} A} \tilde{u}(t) \right\|_{M_{q\lambda, 1}} \right)^2 \\
+ \left(\sup_{t > 0} \left\| e^{\theta \sqrt{T} A} \tilde{p}(t) \right\|_{M_{q\lambda, 1}} \right)^2 \right).
\]
Hence, we obtain by (31)-(33) that

\[
\begin{align*}
&\lim_{\|\tilde{u},\tilde{n},\tilde{p}\|_Y \to 0} \frac{1}{\|U, N, P\|_Y} \left\| \left(F(u_0, n_0, p_0, u, n + \tilde{n}, p + \tilde{p}) - F(u_0, n_0, p_0, u, n, p) \right. \right. \\
&\quad \left. \left. - L_{\{u,n,p\}}(\tilde{u}, \tilde{n}, \tilde{p}) \right) \right\|_Y \| \left(\tilde{u}, \tilde{n}, \tilde{p} \right) \|_Y \\
&\leq C \lim_{\|\tilde{u},\tilde{n},\tilde{p}\|_Y \to 0} \frac{\|\tilde{u},\tilde{n},\tilde{p}\|_Y^2}{\|\tilde{u},\tilde{n},\tilde{p}\|_Y} = 0
\end{align*}
\]

for each \((u_0, n_0, p_0) \in X \) and each \((u, n, p) \in Y\), which implies that the Fréchet derivative of \(F\) at point \((u_0, n_0, p_0, u, n, p) \in X \times Y\) in the direction to \((u, n, p)\) is equal to \(L_{\{u,n,p\}}(\tilde{u}, \tilde{n}, \tilde{p})\).

Proof of Theorem 1.1 We shall show bijectivity of the Fréchet derivative \(L_{\{u,n,p\}}(\tilde{u}, \tilde{n}, \tilde{p})\) at \((u, n, p) = (0, 0, 0)\). We have an expression

\[
L_{\{0,0,0\}}(\tilde{u}, \tilde{n}, \tilde{p}) = (U_0, N_0, P_0)
\]

as \(U_0 = \tilde{u}, N_0 = \tilde{n}, P_0 = \tilde{p}\) for \((\tilde{u}, \tilde{n}, \tilde{p}) \in Y\). Hence it is easy to see that \((U_0, N_0, P_0) = (0, 0, 0)\) implies that \((\tilde{u}, \tilde{n}, \tilde{p}) = (0, 0, 0)\), which finally yields that \(L_{\{0,0,0\}}\) is injective.

For every \((U_0, N_0, P_0) \in Y\), we can take \((\tilde{u}, \tilde{n}, \tilde{p}) \in Y\) as \(\tilde{u} = U_0, \tilde{n} = N_0, \tilde{p} = P_0\), such that it holds true that \(L_{\{0,0,0\}}(\tilde{u}, \tilde{n}, \tilde{p}) = (U_0, N_0, P_0)\), which implies that \(L_{\{0,0,0\}}\) is surjective from \(Y\) onto itself.

Now, it follows from the Banach implicit function theorem that there exists a unique \(C^1\) map \(\Gamma:\)

\[
\Gamma : X_\epsilon = \{(u_0, n_0, p_0) \in X; \|(u_0, n_0, p_0)\|_X < \epsilon\} \to Y_\epsilon = \{(u, n, p) \in Y; \|(u, n, p)\|_Y < \epsilon\}
\]

for some \(\epsilon > 0\) such that

\[
\Gamma(0, 0, 0) = (0, 0, 0), \quad F(u_0, n_0, p_0, \Gamma(u_0, n_0, p_0)) = (0, 0, 0),
\]

where \((u_0, n_0, p_0) \in X_\epsilon\). It is easy to see that \(\Gamma(u_0, n_0, p_0)\) gives the unique solution of (1) provided that \((u_0, n_0, p_0)\) satisfies (4). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2 The stability (8) under the conditions of (7) is a consequence of continuity of the map \(\Gamma : X_\epsilon \to Y_\epsilon\). This proves Theorem 1.2.
Proof of Theorem 1.3 Theorem 1.1 tells us that the solution is globally in the Gevrey regular, that is, the solution \((u, n, p)\) of system (1) satisfies
\[
\sup_{t > 0} t^{\frac{3}{2}} \left\| e^{\sqrt{\Lambda} u} \right\|_{M_{q_1, \lambda}} + \sup_{t > 0} t^{\frac{3}{2}} \left\| e^{\sqrt{\Lambda} n} \right\|_{M_{q_2, \lambda}} + \sup_{t > 0} t^{\frac{3}{2}} \left\| e^{\sqrt{\Lambda} p} \right\|_{M_{q_2, \lambda}} < +\infty.
\]
(36)

Moreover, it is easy to check that the operator \(D^m e^{-\sqrt{\Lambda}}\) is the convolution operator with a kernel \(K_m(t) \in L^1(\mathbb{R}^d)\) for all \(m \geq 0\) and \(t > 0\), and there exists a positive constant \(C = C(m)\) such that
\[
\|K_m(t)\|_{L^1} \leq C_m t^{\frac{m}{2}}.
\]
Then, for \(m \geq 0\), there exists positive constant \(C\) such that
\[
\sup_{t > 0} t^{\frac{3}{2}} \left\| D^m u \right\|_{M_{q_1, \lambda}} + \sup_{t > 0} t^{\frac{3}{2}} \left\| D^m n \right\|_{M_{q_2, \lambda}} + \sup_{t > 0} t^{\frac{3}{2}} \left\| D^m p \right\|_{M_{q_2, \lambda}}
\]
\[
= \sup_{t > 0} t^{\frac{3}{2}} \left\| D^m e^{-\sqrt{\Lambda}} e^{\sqrt{\Lambda} u} \right\|_{M_{q_1, \lambda}} + \sup_{t > 0} t^{\frac{3}{2}} \left\| D^m e^{-\sqrt{\Lambda}} e^{\sqrt{\Lambda} n} \right\|_{M_{q_2, \lambda}}
\]
\[
+ \sup_{t > 0} t^{\frac{3}{2}} \left\| D^m e^{-\sqrt{\Lambda}} e^{\sqrt{\Lambda} p} \right\|_{M_{q_2, \lambda}}
\]
\[
\leq Ct^{-\frac{m}{2}} \left(\sup_{t > 0} t^{\frac{3}{2}} \left\| e^{\sqrt{\Lambda} u} \right\|_{M_{q_1, \lambda}} + \sup_{t > 0} t^{\frac{3}{2}} \left\| e^{\sqrt{\Lambda} n} \right\|_{M_{q_2, \lambda}} + \sup_{t > 0} t^{\frac{3}{2}} \left\| e^{\sqrt{\Lambda} p} \right\|_{M_{q_2, \lambda}} \right)
\]
\[
\leq Ct^{-\frac{m}{2}},
\]
(37)

from which, we have
\[
\|D^m u\|_{M_{q_1, \lambda}} \leq Ct^{-\frac{m}{2}} - \frac{3}{2} \quad \text{and} \quad \|D^m n\|_{M_{q_2, \lambda}} + \|D^m p\|_{M_{q_2, \lambda}} \leq Ct^{-\frac{m}{2}} - \frac{3}{2}.
\]

Furthermore, from (20), (21), (24), (25) and (3), we have
\[
\sup_{t > 0} t^{\frac{3}{2}} \left\| e^{\sqrt{\Lambda} (u - e^{t \Delta} u_0)} \right\|_{M_{q_1, \lambda}} + \sup_{t > 0} t^{\frac{3}{2}} \left\| e^{\sqrt{\Lambda} (n - e^{t \Delta} n_0)} \right\|_{M_{q_2, \lambda}}
\]
\[
+ \sup_{t > 0} t^{\frac{3}{2}} \left\| e^{\sqrt{\Lambda} (p - e^{t \Delta} p_0)} \right\|_{M_{q_2, \lambda}} < +\infty.
\]

Similar as (37), we have
\[
\|D^m (u - e^{t \Delta} u_0)\|_{M_{q_1, \lambda}} \leq Ct^{-\frac{m}{2}} - \frac{3}{2}
\]
and
\[
\|D^m (n - e^{t \Delta} n_0)\|_{M_{q_2, \lambda}} + \|D^m (p - e^{t \Delta} p_0)\|_{M_{q_2, \lambda}} \leq Ct^{-\frac{m}{2}} - \frac{3}{2}.
\]
We complete the proof of Theorem 1.3.

Acknowledgments. The authors are grateful to the referees for their careful reading and valuable comments and suggestions that improved the presentation of the paper.

REFERENCES

[1] D. R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765–778.
[2] H. Bae, A. Biswas and E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., 205 (2012), 963–991.
[3] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011.
[4] M. Z. Bazant, K. Thornton and A. Ajdari, Diffuse-charge dynamics in electrochemical systems, *Phys. Rev. E*, 70 (2004), 021506.

[5] M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes (French), *Séminaire sur les équations aux Dérivées Partielles*, 1993–1994.

[6] M. Cannone and G. Wu, Global well-posedness for Navier-Stokes equations in critical Fourier-Herz spaces, *Nonlinear Anal.*, 75 (2012) 3754–3760.

[7] C. Deng, J. Zhao and S. Cui, Well-posedness of a dissipative nonlinear electrohydrodynamic system in modulation spaces, *Nonlinear Anal.*, 73 (2010), 2088–2100.

[8] C. Deng, J. Zhao and S. Cui, Well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in Triebel-Lizorkin space and Besov space with negative indices, *J. Math. Anal. Appl.*, 377 (2011), 392–405.

[9] C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, *J. Funct. Anal.*, 87 (1989), 359-369.

[10] H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, *Arch. Ration. Mech. Anal.*, 16 (1964), 269–315.

[11] C. Huang and B. Wang, Analyticity for the (generalized) Navier-Stokes equations with rough initial data, *arXiv:1310.2141*.

[12] T. Iwabuchi and R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, *J. Funct. Anal.*, 267 (2014), 1321–1337.

[13] J. W. Joseph, Analytical approaches to charge transport in a moving medium, *Transport Theory Statist. Phys.*, 31 (2002), 333–366.

[14] T. Kato, Strong L^p-solutions of the Navier-Stokes equation in \mathbb{R}^m, with applications to weak solutions, *Math. Z.*, 187 (1984), 471-480.

[15] H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, *Adv. Math.*, 157 (2001), 22-35.

[16] P. Konieczny and T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, *J. Differential Equations*, 250 (2011), 3859–3873.

[17] H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, *Comm. Partial Differential Equations*, 19 (1994), 959–1014.

[18] C. Lei and F. Lin, Global mild solutions of Navier-Stokes equations, *Comm. Pure Appl. Math.*, 64 (2011), 1297-1304.

[19] Z. Lei and F. Lin, Global mild solutions of Navier-Stokes equations, *Comm. Pure Appl. Math.*, 64 (2011), 1297-1304.

[20] P. G. Lemarié-Rieusset, *The Navier-Stokes Problem in the 21st Century*, CRC Press, Boca Raton, FL, 2016.

[21] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, *Acta Math.*, 63 (1934), 193–248.

[22] Q. Liu and S. Cui, Regularizing rate estimates for mild solutions of the incompressible magneto-hydrodynamic system, *Commun. Pure Appl. Anal.*, 11 (2012), 1643–1660.

[23] Q. Liu, J. Zhao and S. Cui, Existence and regularizing rate estimates of solutions to a generalized magneto-hydrodynamic system in pseudomeasure spaces, *Ann. Mat. Pura Appl.*, 191 (2012), 293–309.

[24] F. Li, Quasineutral limit of the electro-diffusion model arising in electrohydrodynamics, *J. Differential Equations*, 246 (2009), 3620–3641.

[25] A. L. Mazzucato, Besov-Morrey spaces function space theory and applications to non-linear PDE, *Trans. Amer. Math. Soc.*, 355 (2003), 1297–1364

[26] J. Newman and K. Thomas-Alyea, *Electrochemical Systems*(3rd Edition), J. Wiley, Hoboken, 2004.

[27] M. Oliver and E. S. Titi, Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in \mathbb{R}^n, *J. Funct. Anal.*, 172 (2000), 1–18.

[28] R. J. Ryham, An energetic variational approach to mathematical modeling of charged fluids: Charge phases, simulation and well posedness (Doctoral dissertation), The Pennsylvania State University, 2006, 83pp.

[29] M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, *Math. Models Methods Appl. Sci.*, 19 (2009), 993–1014.

[30] J. Sun, M. Yang and S. Cui, Existence and analyticity of mild solutions for the 3D rotating Navier-Stokes equations, *Ann. Mat. Pura Appl.*, 196 (2017), no. 4, 1203–1229.
[31] M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, *Comm. Partial Differential Equations*, **17** (1992), 1407–1456.

[32] M. Yang, Z. Fu and J. Sun, Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces, *Sci. China Math.,* **60** (2017), 1837-1856.

[33] M. Yang and J. Sun, Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces, *Commun. Pure Appl. Anal.,* **16** (2017), 1617–1639.

[34] M. Yang, Z. Fu and J. Sun, Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces, *J. Differential Equations,* **266** (2019), 5867–5894.

[35] J. Zhao, C. Deng and S. Cui, Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces, *J. Math. Phys.,* **51** (2010), 093101.

[36] J. Zhao, C. Deng and S. Cui, Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces, *Differential Equations Appl.,* **3** (2011), 427–448.

[37] J. Zhao, Q. Liu and S. Cui, Regularizing and decay rate estimates for solutions to the Cauchy problem of the Debye-Hückel system, *NoDEA Nonlinear Differential Equations Appl.,* **19** (2012), 1–18.

Received March 2020; revised May 2020.

E-mail address: sunjinyi333@163.com
E-mail address: zwfu@suwon.ac.kr
E-mail address: zunweifu@163.com
E-mail address: ymh20062007@163.com