Supporting information

Decisive Role of Heavy-Atom Orientation for Efficient Enhancement of Spin-Orbit Coupling in Organic Thermally Activated Delayed Fluorescence Emitters

Michał Mońka,¹ Daria Grzywacz,² Estera Hoffman,¹ Vladyslav Ievtukhov,² Karol Kozakiewicz,² Radosław Rogowski,¹ Aleksander Kubicki,¹ Beata Liberek,² Piotr Bojarski,¹ Illia E. Serdiuk¹*

¹ Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
² Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland

*Corresponding author. E-mail: illia.serdiuk@ug.edu.pl, phone + 48 58 523 22 44

Table of contents

Section S1: Photophysical measurements
Section S2: Quantum chemical calculations
Section S3: NMR spectra of target emitters
Section S4 Determination of photophysical parameters
Section S1: Photophysical measurements

Steady-State PL (6% CBP)

A

Normalized PL Intensity

Wavelength [nm]

600 700 800 900

Steady-State PL (10% CBP)

C

Normalized PL Intensity

Wavelength [nm]

500 600 700 800 900

Phosphorescence (6% CBP)

B

Normalized PL Intensity

Wavelength [nm]

500 600 700 800 900

Phosphorescence (10% CBP)

D

Normalized PL Intensity

Wavelength [nm]

500 600 700 800 900

Steady-State PL (6% CBP)

E

Normalized PL Intensity

Wavelength [nm]

450 500 550 600 650 700 750 800 850 900

Phosphorescence (6% CBP)

F

Normalized PL Intensity

Wavelength [nm]

450 500 550 600 650 700 750 800 850 900
Figure S1. Steady-State PL spectra of investigated compounds: 6% (A, E) and 10% (C) CBP with onsets and phosphorescence spectra measured in 10K, 6% (B, F) and 10% (D) CBP.

Table S1. Experimental determination of 1CT, 3CT and 3LE - onset values.

w\textsubscript{X/CBP}	Fluorescence	Phosphorescence	Phosphorescence					
	λ\textsubscript{onset}	1CT energy	λ\textsubscript{onset}	3CT energy	$\Delta E_{^{1}\text{CT}$-3CT}	λ\textsubscript{onset}	3LE energy	$\Delta E_{^{1}$CT-3LE}
ZNX 0.1%	[nm]	[eV]	[nm]	[eV]	[eV]	[nm]	[eV]	[eV]
H 6%	597	2.07	608	2.04	0.04	552	2.25	-0.18
H 10%	600	2.07	609	2.04	0.03	552	2.25	-0.07
1Br 6%	569	2.18	589	2.10	0.08	552	2.25	0.00
1Br 10%	579	2.14	595	2.08	0.06	552	2.25	0.00
2Br 6%	552	2.25	585	2.12	0.13	552	2.25	0.00
2Br 10%	560	2.21	585	2.11	0.10	552	2.25	0.13
3Br 6%	521	2.37	571	2.17	0.20	552	2.25	0.13
3Br 10%	527	2.35	575	2.16	0.19	552	2.25	0.13

Figure S2. Phosphorescence spectra of investigated compounds dispersed in ZNX, measured in 10K under excitation wavelength $\lambda_{\text{exc}} = 370$ nm with a 20ms delay after excitation pulse.
Figure S3. PL spectra of H (A), 1Br (B), 2Br (C), and 3Br (D) in 6% CBP, taken at different time delays.

Figure S4. PL intensity decays of investigated compounds (10% CBP) measured in vacuum under excitation wavelength $\lambda_{exc} = 330$ nm.
Section S2: Quantum chemical calculations

Theoretical rate constants of rISC were calculated using Marcus-Hush equation:

\[k_{(r)ISC} = \frac{V^2}{\hbar} \sqrt{\frac{\pi}{k_B T \lambda}} \exp \left[\frac{(\Delta E_{ST} + \lambda)^2}{4k_B T \lambda} \right], \]

(S1)

where \(V \) is SOC constant, \(\hbar \) is reduced Planck constant, \(\lambda \) is sum of internal \(\lambda_{int} \) and external \(\lambda_{solv} \) reorganization energies for respective transition (in our calculations we assumed \(\lambda_{solv} = 0.3 \text{ eV} \) \(\Delta E_{ST} \) is the energy gap between singlet and respective triplet state, \(k_B \) stands for Boltzmann constant, \(T \) is temperature.

Relative contribution of \(i \)-th rotamers in \(\text{H, 1Br, 2Br and 3Br} \)-rotamers was calculated using Boltzmann distribution law:

\[\mu_i[\%] = \frac{\exp \left(-\frac{\Delta E_i}{k_B T} \right)}{\sum_{i=1}^{N} \exp \left(-\frac{\Delta E_i}{k_B T} \right)}. \]

(S2)

where \(N \) is the number of existing isomers (for \(\text{H, 1Br 2Br and 3Br} \)-rotamers \(N = 2, 16, 16 \) and 32, respectively), \(\Delta E_i \) denotes the energy difference between \(i \)-th rotamer and most stable rotamer (with lowest energy). Procedure for theoretical prediction rate constants described in details in [1].
Figure S5. Calculated electronic parameters of all H, 1Br and 2Br – rotamers. In main text, key rotamers (depicted in Figure 5, Table 3) from each group: H-rotamers: 1 (as H-1) and 2 (as H-2); 1Br-rotamers: 3 (as 1Br-endo) and 12 (as 1Br-exo); 2Br-rotamers: 5 (as 2Br-syn) and 9 (as 2Br-anti).
Calculated electronic parameters of all 3Br rotamers. In main text, key rotamers (depicted in Figure 5, Table 3) from 3Br-rotamers group: 32 (as 3Br-C$_{3v}$), 17 (as 3Br-A), 21 (as 3Br-A), 12 (as 3Br-B), 1 (as 3Br-C).
Table S2. Calculated values of different geometry (dihedrals θ_a, θ_b, and θ_h) and electronic parameters (plotted in Figures S5 and S6) of all rotamers.

	1	2	χ°		1	2	χ°		1	2	χ°	
θ_a (\degree)	0.05	0.08	0.06		0.05	0.08	0.06		0.05	0.08	0.06	
$\Delta f_{\text{ET-CT}}$ (eV)			0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
ϵ_f (eV)	0.10	0.11	0.109	0.109	0.109	0.109	0.109	0.109	0.109	0.109	0.109	0.109
θ_h (\degree)	0.18	0.17	--		0.18	0.17	--		0.18	0.17	--	
σ_{S2}	67.2	52.8	--		67.2	52.8	--		67.2	52.8	--	
k_{ISC} (10^5 s^{-1})			0.16	0.30	0.20		0.16	0.30	0.20		0.16	0.30

- θ - rotation angles
- $\Delta f_{\text{ET-CT}}$ (eV) - Energy gap between C^\prime and C^\prime excited states
- ϵ_f (eV) - Oscillator strength
- E_a (eV) - Activation energy
- μ [%] - Relative contribution estimated using Boltzmann distribution law - equation S2
- k_{ISC} (10^5 s^{-1}) - Calculated rate constant for $C^\prime\rightarrow C^\prime$ transition
- θ_a, θ_b, θ_h - dihedral angles (Figure 3)
Calculations of the $^{3}\text{LE}\rightarrow^{1}\text{CT}$ rate constants. To verify whether $^{3}\text{LE}\rightarrow^{1}\text{CT}$ channel has an impact on rISC, we performed theoretical calculations of its rate constants ($k_{3\text{LE}-1\text{CT}}$) using Marcus-Hush equation (S1) and experimental $\Delta E_{3\text{LE}-1\text{CT}}$ values. Since we consider two triplet states from which rISC is potentially possible, at first, we estimated relative population of these levels using Boltzmann distribution law:

$$\chi_i[\%] = \frac{\exp\left(-\frac{\Delta E_i}{k_BT}\right)}{\sum_{i=1}^{N}\exp\left(-\frac{\Delta E_i}{k_BT}\right)},$$ \hspace{1cm} (S3)

where ΔE_i denotes the energy difference between lowest triplet state (T_1) and respective triplet state (T_i):

$$\Delta E_i = (T_i - T_1),$$ \hspace{1cm} (S4)

$$a_i = \exp\left(-\frac{(T_i - T_1)}{k_BT}\right).$$ \hspace{1cm} (S5)

Table S3. Theoretical constant rates $k_{3\text{LE}-1\text{CT}}$ with determined population of lowest triplet excited states of emitters.

Alignment of triplet excited states:	CBP 10%
$T_2 = ^{3}\text{LE(A)}$	
$T_1 = ^{3}\text{CT}$	
$^{3}\text{LE(A)}$	^{3}CT

| T_1 | T_2 | $\Delta E_{T_2-T_1}$ | a_1 | a_2 | $\chi_{3\text{LE}(A)}$ | $\chi_{3\text{CT}}$ | $k_{3\text{LE}-1\text{CT}}$ | $\chi_{3\text{LE}(A)} k_{3\text{LE}-1\text{CT}}$ |
[eV]	[eV]	[eV]			[%]	[%]	[10^4 s^{-1}]	[10^4 s^{-1}]	
H	2.03	2.25	0.22	1	0.0003	0.03	99.97	186.2	0.04
1Br	2.08	2.25	0.17	1	0.0018	0.18	99.82	24.4	0.03
2Br	2.11	2.25	0.14	1	0.0070	0.70	99.30	1.1	0.01
3Br	2.16	2.25	0.09	1	0.0281	2.92	97.08	3.8	0.10

From the results included in Table S3, it can be seen, that population of triplet states is strongly dominated by ^{3}CT state due to large difference in energies between ^{3}CT and ^{3}LE levels.

Next, values of $k_{3\text{LE}-1\text{CT}}$ for each emitter were calculated just as $k_{3\text{CT}-1\text{CT}}$, taking into account population of ^{3}LE state $\chi_{3\text{LE}(A)}$. Results are presented in Table S3 and Figure 4.

Since theoretical predictions of rISC constant rates based on exclusively $^{3}\text{LE}-^{1}\text{CT}$ channel did not showed a good correlation with experimental values, we conclude that $^{3}\text{LE}-^{1}\text{CT}$ channel has not considerable impact on rISC in most of the cases except for the rotamers with very low rates of $^{3}\text{CT}-^{1}\text{CT}$ transition as 2Br-anti ones.
Figure S7. Differences in the orbital transition moment of H rotamers. *note that contour value is 0.01 (high)

Figure S8. Natural transition orbitals for the S1-S0 and T1-S0 transitions for selected H, 1Br and 2Br rotamers. NTO indicate almost negligible role of bromine atoms in the electronic transitions.
Figure S9. Natural transition orbitals for the S_1-S_0 and T_1-S_0 transitions for selected 3Br rotamers. NTO indicate almost negligible role of bromine atoms in the electronic transitions.
Figure S10. Triplet spin density distribution (TSDD) maps
Section S3: NMR spectra of target emitters

1H NMR spectrum of 3-((4-((2-bromo-4-methylphenyl)(p-tolyl)amino)phenyl)-dibenzo[a,c]phenazine-11,12-dicarbonitrile (1Br) in CDCl$_3$
1H NMR spectrum of 3-(4-(bis(2-bromo-4-methylphenyl)amino)phenyl)dibenzo[a,c] phenazine-11,12-dicarbonitrile (2Br) in CDCl$_3$.
1H NMR spectrum of 3-((4-(bis(2-bromo-4-methylphenyl)amino)phenyl)dibenzo [a,c]phenazine-11,12-dicarbonitrile (3Br) in CDCl$_3$.

S15
1H NMR spectrum of 3-(4-(bis(2-bromo-4-methylphenyl)amino)phenyl)phenanthrene-9,10-dione (2) in CDCl$_3$.

1H NMR spectrum of 3-(4-(bis(2-bromo-4-methylphenyl)amino)-3-bromophenyl)-phenanthrene-9,10-dione (3) in CDCl$_3$
Section S4: Determination of photophysical parameters

PL decay curves (presented in Figures 2F and S4) were fitted with the multiexponential equation:

\[I(t) = A_0 + \sum_{i=1}^{n} A_i \exp\left(-\frac{t}{\tau_i}\right) \quad \text{(S6)} \]

where \(A_i\) is the pre-exponential factor, \(\tau_i\) is the decay time and \(I(t)\) is emission intensity. Average lifetimes of prompt (\(\tau_{PF}\)) and delayed fluorescence (\(\tau_{DF}\)) were determined using the following formula:

\[\tau_{PF}, \tau_{DF} = \sum_{i=1}^{n} f_i \tau_i \quad \text{(S7)} \]

where \(f_i\) is fractional contribution of \(i\)-th component expressed as:

\[f_i = \frac{A_i \tau_i}{\sum_{i=1}^{n} A_i \tau_i} \quad \text{(S8)} \]

The ratio of DF and PF quantum yields \(\varphi_{DF}/\varphi_{PF}\) was determined as follows:

\[\frac{\varphi_{DF}}{\varphi_{PF}} = \frac{\sum_{i=1}^{n} \tau_{DF(i)} A_{DF(i)}}{\sum_{j=1}^{n} \tau_{PF(j)} A_{PF(j)}} \quad \text{(S9)} \]

where \(A_{DF(i)}\) and \(A_{PF(j)}\) is the pre-exponential factor of delayed and prompt fluorescence component, respectively; \(\tau_{DF(i)}\) and \(\tau_{PF(j)}\) is the lifetime of delayed and prompt fluorescence component, respectively. The rate constants of radiative (\(k_r\)) and nonradiative (\(k_{nr}\)) decay and intersystem crossing (\(k_{ISC}\)) are given by equations[S2]:

\[k_r = \frac{\varphi_{PF}}{\tau_{PF}}, \quad \text{(S10)} \]

\[k_{ISC} = \frac{\varphi_{DF}}{\varphi_{PF} \tau_{PF}}, \quad \text{(S11)} \]

\[k_{nr} = \frac{1}{\tau_{PF}} - (k_r + k_{ISC}). \quad \text{(S12)} \]

where \(\varphi\) is PLQY (\(\varphi_{DF} + \varphi_{PF}\)). Further, the quantum yields for ISC and rISC were calculated as

\[\varphi_{ISC} = k_{ISC} \tau_{PF}, \quad \text{(S13)} \]
\[\varphi_{\text{rISC}} = \frac{1 - \varphi_{PF}/\varphi}{\varphi_{ISC}}. \] \hspace{1cm} \text{(S14)}

Finally, the rate constant of rISC \((k_{\text{rISC}})\) was calculated as

\[k_{\text{rISC}} = \frac{\varphi_{\text{rISC}}}{\tau_{DF}} \left(\frac{\varphi}{\varphi_{PF}} \right). \] \hspace{1cm} \text{(S15)}

Thus obtained photophysical parameters are presented in Table 2 (main text).

References

[S1] M. Mońka, I. E. Serdiuk, K. Kozakiewicz, E. Hoffman, J. Szumilas, A. Kubicki, S. Y. Park and P. Bojarski, Mater. Chem. C. 2022, 10, 7925-7934.

[S2] Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Adv. Mater. 2015, 26, 7931 – 7958.