H.E.S.S. observations of γ-ray bursts in 2003–2007

F. Aharonian1,13, A.G. Akhperjanian2, U. Barres de Almeida8,*, A.R. Bazer-Bachi3, B. Behera14, W. Benbow1, K. Bernlör1,15, C. Boisson6, A. Bochow1, V. Borrel3, I. Braun1, E. Brion7, J. Brucker16, P. Brun7, R. Bühler1, T. Bulik24, I. Büsching9, T. Boutelier17, S. Carrigan1, P.M. Chadwick8, A. Charbonnier19, R.C.G. Chaves1, A. Cheesebrough9, L.-M. Chounet10, G. Coignet11, M. Dalton5, B. Degrange10, C. Deil1, H.J. Dickinson8, A. Djannati-Ataï12, W. Domainko1, L.O.C. Druty13, F. Dubois11, G. Dubus17, J. Dyks24, M. Dyrdal28, K. Egberts1, D. Emmanoulopoulos14, P. Espigat12, C. Farnier13, F. Feinstein13, A. Fiasson15, A. Förster1, G. Fontaine10, M. Füßling8, S. Gabici13, Y.A. Gallant13, L. Gérard1, B. Giebels10, J.F. Glicenstein7, B. Glück16, P. Goret1, C. Hadjichristidis8, D. Hauser14, M. Hauser14, S. Heinz16, G. Heinzelmann4, G. Heng17, G. Hermann1, J.A. Hinton25, A. Hoffmann18, W. Hofmann1, M. Holleran9, S. Hoppe1, D. Horns4, A. Jacholkowska19, O.C. de Jager9, I. Jung16, K. Katarzyński27, S. Kaufmann14, E. Kendziorra18, M. Kerschhaggl5, D. Khangulyan1, B. Khélifi10, D. Koegh8, Nu. Komin7, K. Kosack13, G. Lamanna11, J.-P. Lenain6, T. Lohse5, V. Marandon12, J.M. Martin6, O. Martineau-Huynh19, A. Marcowith15, D. Maurin19, T.J.L. McComb8, M.C. Medina6, R. Moderski24, E. Moulin7, M. Naumann-Godo10, M. de Naurois19, D. Nebdal20, D. Nekrassov1, J. Niemiec28, S.J. Nolan8, S. Ohm1, J-F. Olive3, E. de Oña Wilhelmi12,29, K.J. Orford8, J.L. Osborne8, M. Ostrowski23, M. Panter1, G. Pedaletti14, G. Pelletier17, P.-O. Petrucci8, S. Pita1, G. Pühlhofer12, M. Punch12, A. Quirrenbach14, B.C. Raubenheimer9, M. Raue1, S.M. Rayner8, M. Renaud1, F. Rieger12,9, J. Ripken1, L. Rob20, S. Rosier-Lee11, G. Rowell26, B. Rudak24, C.B. Rulten8, J. Ruppel21, V. Sahakian9, A. Santangelo10, R. Schlickeiser21, F.M. Schöck16, R. Schröder21, U. Schwanke5, S. Schwarzburg18, S. Schwemmer14, A. Shalchi21, J.L. Skilton25, H. Sof6, D. Spangler6, L. Stawarz23, R. Steenkamp22, C. Stegmann16, G. Superina10, P.H. Tam14, J.-P. Tavernier19, R. Terrier12, O. Tibolla14, C. van Eldik1, G. Vasileiadis15, C. Venter9, L. Venter6, J.P. Vialle11, P. Vincent19, M. Vivier7, H.J. Völk1, F. Volpe10,29, S.J. Wagner14, M. Ward8, A.A. Zdziarski24, and A. Zech6

(Affiliations can be found after the references)

Preprint online version: January 21, 2009

ABSTRACT

Aims. Very-high-energy (VHE; ≳100 GeV) γ-rays are expected from γ-ray bursts (GRBs) in some scenarios. Exploring this photon energy regime is necessary for understanding the energetics and properties of GRBs.

Methods. GRBs have been one of the prime targets for the H.E.S.S. experiment, which makes use of four Imaging Atmospheric Cherenkov Telescopes (IACTs) to detect VHE γ-rays. Dedicated observations of 32 GRB positions were made in the years 2003–2007 and a search for VHE γ-ray counterparts of these GRBs was made. Depending on the visibility and observing conditions, the observations mostly start minutes to hours after the burst and typically last two hours.

Results. Results from observations of 22 GRB positions are presented and evidence of a VHE signal was found neither in observations of any individual GRBs, nor from stacking data from subsets of GRBs with higher expected VHE flux according to a model-independent ranking scheme. Upper limits for the VHE γ-ray flux from the GRB positions were derived. For those GRBs with measured redshifts, differential upper limits at the energy threshold after correcting for absorption due to extra-galactic background light are also presented.

Key words. gamma rays: bursts – gamma rays: observations

1. Introduction

Gamma-ray bursts (GRBs) are the most energetic events in the γ-ray regime. Depending on their duration (e.g. T_{90}), GRBs are categorized into long GRBs ($T_{90} > 2$ s) and short GRBs ($T_{90} < 2$ s). First detected in late 1960s (Klebesadel et al. 1973), GRBs remained mysterious for three decades. Breakthroughs in understanding GRBs came only after the discovery of longer-wavelength afterglows with the launch of BeppoSAX in 1997 (van Paradijs et al. 2000). Multi-wavelength (MWL) observations have proved to be crucial in our understanding of GRBs, and provide valuable information about their physical properties. These MWL afterglow observations are generally explained by synchrotron emission from shocked electrons in the relativistic fireball model (Piran 1999, Zhang & Meszaros 2004). A plateau phase is revealed in many of the Swift/XRT light curves, the origin of which is still not clear (Zhang et al. 2006). Observations of GRBs at energies >10 GeV may test some of the ideas that have been suggested to explain the X-ray observations (Fan et al. 2008).

In the framework of the relativistic fireball model, photons with energies up to ~10 TeV or higher are expected from the GRB afterglow phase (Zhang & Meszaros 2004; Fan & Piran 2008). Possible leptonic radiation mechanisms include forward-shocked electrons up-scattering self-emitted synchrotron photons (SSC processes; Dermer et al. 2000; Zhang & Meszaros 2001; Fan et al. 2008) or photons from other
shocked regions (Wang et al. 2001). Physical parameters, such as the ambient density of the surrounding material (n_0), magnetic field equipartition fraction (ϵ_B), and bulk Lorentz factor (Γ_{bulk}) of the outflow, may be constrained by observations at these energies (Wang et al. 2001; Pe’er & Waxman 2005).

A possible additional contribution to VHE emission relates to the X-ray flare phenomenon. X-ray flares are found in more than 50% of the Swift GRBs during the afterglow phase (Chincarini et al. 2007). The energy fluence of some of them (e.g. GRB 050502B) is comparable to that of the prompt emission. Most of them are clustered at $\sim10^{-9}$–10^{-8} s after the GRB (see Figure 2 in Chincarini et al. 2007), while late X-ray flares ($>10^4$ s) are also observed; when these happen they can cause an increase in the X-ray flux of an order of magnitude or more over the power-law temporal decay (Curran et al. 2008).

The cause of X-ray flares is still a subject of debate, but corresponding VHE γ-ray flares from inverse-Compton (IC) processes are predicted (Wang et al. 2004; Galli & Piro 2007; Fan et al. 2008). The accompanying external-Compton flare may be weak if the flare originated behind the external shock, e.g. from prolonged central engine activity (Fan et al. 2008). However, in the external shock model, the expected SSC flare is very strong at GeV energies and can be readily detected using a VHE instrument with an energy threshold of ~100 GeV (Galli & Piro 2008), such as the H.E.S.S. array, for a typical GRB at $z=1$. Therefore, VHE γ-ray data taken during an X-ray flare may help for distinguishing the internal/external shock origin of the X-ray flares, and may be used as a diagnostic tool for the late central engine activity.

Waxman & Bahcall (2000) and Murase et al. (2008) suggest that GRBs may be sources of ultra-high-energy cosmic rays (UHECRs). In this case, π-decays from proton–γ interaction may generate VHE emission. The VHE γ-ray emission produced from such a hadronic component is generally expected to decay more slowly than the leptonic sub-GeV radiation (Böttcher & Dermer 1998). Dermer (2007) suggests a combined leptonic/hadronic scenario to explain the rapidly-decaying phase and plateau phase seen in many of the Swift/XRT light curves. This model can be tested with VHE observations taken minutes to hours after the burst.

Most searches for VHE γ-rays from GRBs have obtained negative results (Connaughton et al. 1997; Atkins et al. 2005). There may be indications of excess photon events from some observations, but these results are not conclusive (Amenomori et al. 1992; Padilla et al. 1998; Atkins et al. 2008; Poirier et al. 2003). Currently, the most sensitive detectors in the VHE γ-ray regime are IACTs. Horan et al. (2004) presented upper limits from 7 GRBs observed with the Whipple Telescope during the pre-Swift era. Upper limits for 9 GRBs with redshifts that were either unknown or >3.5 were also reported by the MAGIC collaboration (Albert et al. 2007). In general, these limits do not violate a power-law extrapolation of the keV spectra obtained with satellite-based instruments. However, most GRBs are now believed to originate at cosmological distances, therefore absorption of VHE γ-rays by the EBL (Nikishov 1962) must be considered when interpreting these limits.

In this paper, observations of 22 γ-ray bursts made with H.E.S.S. during the years 2003–2007 are reported. They represent the largest sample of GRB afterglow observations made by an IACT array and result in the most stringent upper limits obtained in the VHE band. The prompt phase of GRB 060602B was observed serendipitously with the Whipple Telescope during the pre-Swift era. Upper limits for 9 GRBs with redshifts that were either unknown or >3.5 were also reported by the MAGIC collaboration (Albert et al. 2007). In general, these limits do not violate a power-law extrapolation of the keV spectra obtained with satellite-based instruments. However, most GRBs are now believed to originate at cosmological distances, therefore absorption of VHE γ-rays by the EBL (Nikishov 1962) must be considered when interpreting these limits.

In this paper, observations of 22 γ-ray bursts made with H.E.S.S. during the years 2003–2007 are reported. They represent the largest sample of GRB afterglow observations made by an IACT array and result in the most stringent upper limits obtained in the VHE band. The prompt phase of GRB 060602B was observed serendipitously with H.E.S.S. The results of observations before, during, and after this burst are presented in Aharonian et al. (2009).

2. The H.E.S.S. experiment and GRB observation strategy

The H.E.S.S. array\(^{1}\) is a four of 13m-diameter IACTs located at 1800 m above sea level in the Khomas Highland of Namibia (23°16′18″ S, 16°30′00″ E). Each of the four telescopes is located at a corner of a square with a side length of 120 m. This configuration was optimized for maximum sensitivity to ~100 GeV photons. The effective collection area increases from $\sim10^4$ m\(^2\) at 100 GeV to more than 10^5 m\(^2\) at 1 TeV for observations at a zenith angle (Z.A.) of 20°. The system has a point source sensitivity above 100 GeV of $\sim1.4\times10^{-13}$ erg cm\(^{-2}\) s\(^{-1}\) (3.5% of the flux from the Crab nebula) for a 5σ detection in a 2 h observation. Each H.E.S.S. camera consists of 960 photomultiplier tubes (PMTs), which in total provide a field of view (FoV) of $\sim5\degree$. This relatively large FoV allows for the simultaneous determination of the background events from off-source positions, so that no dedicated off run is needed (Aharonian et al. 2006c). The slew rate of the array is ~100 per minute, enabling it to point to any sky position within ~2 minutes. The H.E.S.S. array is currently the only IACT array in the Southern Hemisphere used for an active GRB observing programme\(^{1}\).

The trigger system of the H.E.S.S. array is described in Funk et al. (2004). The stereoscopic technique is used, i.e. a coincidence of at least two telescopes triggering within a window of (normally) 80 nanoseconds is required. This largely rejects background events caused by local muons that trigger only a single telescope.

The observations reported here were obtained over the period March 2003 to October 2007. The observations of two GRBs in 2003 were made using two telescopes while the system was under construction. Before 2003 July, each of the two telescopes took data separately. Stereo analysis was then performed on the data, which requires coincidence of events to be determined offline using GPS time stamps. After the installation of the central trigger system in 2003, the stereo multiplicity requirement was determined on-line. All observations since 2004 have made use of the completed four-telescope array and the stereo technique (Aharonian et al. 2006d).

Most of the data were taken in 28 minute runs using 'wobble' mode, i.e. the GRB position is placed at an offset, θ_{offset}, of ±0.5 or 0.7 (in R.A. and Decl.) relative to the centre of the camera FoV during observations. Onboard GRB triggers distributed by the Swift satellite, as well as triggers from INTEGRAL and HETE-II confirmed by ground-based analysis, are followed by H.E.S.S. observations. Upon the reception of a GCN\(^{5}\) notice from one of these satellites (with appropriate indication\(^{5}\) that the source is a genuine GRB), the burst position is observed if θ_{offset} \leq $\pm45\degree$ (to ensure a reasonably low-energy threshold) during H.E.S.S. dark time\(^{5}\). An automated program is running on site to keep the shift crew alerted of any new detected GRBs in real time. Depending on the observational constraints and the measured redshifts of the GRBs reported through GCN circulars\(^{4}\), observations of the burst positions are started up to ~24 hours after the burst time, typically with an exposure time of ~120 minutes in wobble mode. The remarkably nearby, bright GRB 030329 was an exceptional case. It was not observed until 11.5 days after the burst because of poor weather, which prohibited observation any earlier.

3. The GRB observations

Thirty-two GRBs were observed with H.E.S.S. during the period from March 2003 to October 2007. After applying a set of data-quality criteria that rejects observation runs with non-optimal weather conditions and hardware status, 22 GRB observations were selected for analysis and are described in this section.

3.1. Properties of the GRBs

For each burst, the observational properties as obtained from the triggering satellite are shown in Table\(^{1}\). These include trigger number, energy band, fluence in that energy band, and the duration of the burst (T_90). Whenever there were follow-up observations in the X-ray, optical, or}2 [http://www.lsw.uni-heidelberg.de/projects/heess/HESS/grbs.html]

3 The Gamma ray bursts Coordinates Network, http://gcn.gsfc.nasa.gov\(^{3}\) which include, e.g., burst position incompatible with known sources, and a high signal-to-noise ratio of the burst

4 H.E.S.S. observations are taken in darkness and when the moon is below the horizon. The fraction of H.E.S.S. dark time is about 0.2

5 http://gcn.gsfc.nasa.gov/gcn3archive.html
Table 1. Properties of GRBs observed with H.E.S.S. from March 2003 to October 2007.

GRB	Satellite	Trigger number	R.A.*	Decl.*	Error°	Energy band (keV)	Fluence°	T_{90}°	X"O"°	Rank°	
071003	Swift	292934	20°07′24.23	+10°56′48.8′	5.7	15−150	3.430	√ √	1.664°	5	
070808	Swift	287260	00°27′03.36	-01°10′34.8′	1.9	15−150	120	∼32	√ √	9	
070724A	Swift	285948	01°51′13.96	-18°35′40.1′	2.2	15−150	3	-0.4	× ×	21	
070721B	Swift	286564	02°12′32.95	-02°11′40.6′	0.9	15−150	360	-340	√ √	10	
070721A	Swift	285653	00°12′39.24	-28′22′00.6′	2.3	15−150	7.1	3.868	√ √	20	
070621	Swift	282808	21°35′10.14	-24′49′03.1′	2	15−150	430	33	× ×	1	
070612B	Swift	282073	17°26′54.64	-08′45′08.7′	4.7	15−150	168	13.5	√ √	15	
070429A	Swift	277571	19°50′48.88	-32′24′17.9′	2.4	15−150	91	163.3	√ √	3	
070419B	Swift	276212	21°02′49.57	-31′15′49.7′	3.5	15−150	736	236.4	√ √	7	
070209	Swift	259083	03°04′50.0′	-47′22′30.0′	168	15−150	560	0.9	× ×	0.314°	22
061110A	Swift	238108	22°25′09.9′	-02′15′30.7′	3.7	15−150	106	40.7	√ √	11	
060526	Swift	211957	15°31′18.4′	+00′17′11.0′	6.8	15−150	126	298.2	√ √	3.21°	8
060505	Swift	208654	22°07′04.50	-27′49′57.8′	4.7	15−150	94.4	-4	√ √	0.758°	18
060403	Swift	203755	18°49′21.80	+08′19′45.3′	5.5	15−150	135	30.1	× ×	0.088°	16
050801	Swift	148522	13°36′35.6′	-21′55′41.1′	1	15−150	31	19.4	× √	1.56°	2
050726	Swift	147788	13°20′12.30	-32′03′50.8′	6	15−150	194	49.9	× √	13	
05059C	HETE-II	H3751	12°52′53.94	-44′50′04.1′	1	2−30	60	25	× √	19	
050209	HETE-II	U11568	08°26′06″	+19′41′41″	420	30−400	200	46.0	× ×	14	
041211B	HETE-II	H3622	06°43′12.9′	+20′23′42″	80	30−400	1000	>100.0	× ×	4	
041006	HETE-II	H3570	00°54′50.23	+01′14′04′9′	0.1	30−400	713	∼20	√ √	0.716°	6
030821	HETE-II	H2814	21′42′52″	-44′52′	30	30−400	280	23	√ √	17	
030329	HETE-II	H2652	10′44′49′96′	+21′31′17′44	10°3′	30−400	10760	33	√ √	0.168°	12

* R.A., Decl., and the positional errors (90% containment) were taken from GCN Reports (http://gcn.gsfc.nasa.gov/report_archive.html) for GRB 061110A – GRB 071003 and GCN Circulars otherwise.

** Fluence and T_{90} data for GRB 050726 – GRB 070612B were taken from Sakamoto et al. (2008) except that T_{90} of GRB 060505 was taken from Palmer et al. (2006). Fluence and T_{90} data of GRB 030329 and GRB 030821 were taken from Sakamoto et al. (2005), and those of GRB 041006 from Shara et al. (2008). Other data were taken from GCN Circulars and HETE pages (http://space.mit.edu/HETE/Bursts).

† X: X-ray, O: optical, R: radio; "√" indicates the detection of a counterpart; "×" a null detection; and "···" that no measurement was reported in the corresponding energy range, from http://grl40.as.utexas.edu/grlblog.php.

‡ The relative expected VHE flux for each GRB is ranked according to the empirical scheme described in Sect. 3.3.

§ Perley et al. (2008).

‖ Cucchiara et al. (2007).

¶ Malesani et al. (2007).

bos Redshift of a candidate host galaxy (Berger & Fox 2007).

j Frybo et al. (2007).

k Berger & Gladders (2006).

l Ofek et al. (2006).

m Redshift according to de Pasquale et al. (2007), based on afterglow modelling.

n Although this burst was referred to as GRB 041211 in various GCN Circulars, the proper name GRB 041211B (e.g., in Pélangeon et al. 2006) should be used to distinguish it from another burst, GRB 041211A (≡H3621) which occurred earlier on the same day (Pélangeon, A., private communication).

o Soderberg et al. (2006).

p The position error of this burst is large, see Fig. 3.

3.2. H.E.S.S. observations

For each burst, the start time, T_{start}, of the H.E.S.S. observations after the burst is shown in Table 2. Since an observing strategy to start observing the burst position up to ~24 hours after the burst time is applied, the mean T_{start} is of the order of 10 hours. The (good-quality) exposure time of the observations using N_{tel} telescopes for each burst is included. The mean Z.A. of the observations is also presented.

3.3. The ranking scheme

As mentioned in the introduction, there is no lack of models predicting VHE emission from GRBs. However, the evolution of the possible VHE γ-ray emission with time is model-dependent. To give an empirical, model-independent estimate of the relative expected VHE flux of each GRB (which also depends on T_{start}), it is assumed that: (1) the relative...
VHE signal scales as the energy released in the prompt emission, taken as a typical energy measure of a GRB. Hence \(F_{\text{VHE}} \propto F_{\gamma} \), where \(F_{\gamma} \) is the fluence in the Swift/BAT band. For bursts not triggered by BAT, the measured fluence is extrapolated into this energy band; (2) the possible VHE signal fades as time goes on, as observed in longer wavelength (e.g. X-ray) data. In particular, the VHE flux follows the average decay of the X-ray flux and therefore \(F_{\text{VHE}} \propto F_{\gamma} \times t^{-1.3} \) where \(t \) denotes the time after the burst and 1.3 is the average X-ray afterglow late-time power-law decay index \(\Gamma \) (Nousek et al., 2000). Since in most cases the exposure time of the observations is much shorter than \(T_{\text{start}} \) (the start time of the corresponding H.E.S.S. observations after the trigger), the expected flux at \(T_{\text{start}} \) can be used as a measure of the strength of the VHE signal, and therefore of the relative possibility of detecting a VHE signal from that GRB. By setting \(t \) to \(T_{\text{start}} \), we have

\[
F_{\text{VHE}} \propto F_{\gamma} \times t^{-1.3} \tag{1}
\]

The rank of each GRB according to equation 1 is shown in the last column in Table 1. Note that redshift information (available for only a few GRBs), and thus the corresponding EBL absorption, is not taken into account in the ranking scheme.

4. Data Analysis

Calibration of data, event reconstruction and rejection of the cosmic-ray background (i.e. gamma-ray event selection criteria) were performed as described in Aharonian et al. (2006c), which employs the techniques described by Hillas (1996).

Gamma-like events were then taken from a circular region (on-source) of radius \(\theta_{\text{cut}} \) centred at the burst position given in Table 1. The background was estimated using the reflected-region background model as described in Berge et al. (2007), in which the number of background events in the on-source region \((N_{\text{on}}) \) is estimated from \(N_{\text{off-source}} \) off-source regions located at the same \(\theta_{\text{cut}} \) as the on-source region during the same observation. The number of gamma-like events is given by \(N_{\text{on}} = \alpha N_{\text{off}} \) where \(N_{\text{off}} \) is the total number of events detected in the off-source region and \(\alpha = 1/n_{\text{region}} \), the normalization factor.

Independent analyses of various GRBs using different methods and background estimates (Berge et al. 2007) yielded consistent results.

4.1. Analysis technique

Two sets of analysis cuts were applied to search for a VHE \(\gamma \)-ray signal from observational data taken with three or four telescopes. These are ‘standard’ cuts (Aharonian et al. 2006a) and ‘soft’ cuts (the latter have lower energy thresholds, as described in Aharonian et al. 2006a). For standard (soft) cuts, \(\theta_{\text{cut}} = 0.11^\circ \) (\(\theta_{\text{cut}} = 0.14^\circ \)). While standard cuts are optimized for a source with a power-law photon index \(\Gamma = 2.6 \), soft cuts are optimized for a source with a steep spectrum (\(\Gamma = 5.0 \)), and have better sensitivity at lower energies. Since EBL absorption is less severe for lower energy photons, the soft-cut analysis is useful in searching for VHE \(\gamma \)-rays from GRBs which are at cosmological distances. For example, the photon indices of two blazars PKS 2005-489 (Aharonian et al. 2008) and PG 1553+113 (Aharonian et al. 2008) were measured to be \(\Gamma \geq 4 \).

An exception to this analysis scheme is GRB 030329. As the central trigger system had yet to be installed when this observation was made, a slightly different analysis technique was used. The description of the image and analysis cuts used for the data from GRB 030329 can be found in Aharonian et al. 2008. For GRB 030821, only the standard-cut analysis (for two-telescope data) was performed (see Sect. 5.4).

The positional error circle of most GRBs, with the exceptions of GRB 030821, GRB 050209, and GRB 070209, is small compared to the H.E.S.S. point spread function (PSF). The 68% \(\gamma \)-ray containment radius, \(\theta_{\text{68}} \), of the H.E.S.S. PSF can be as small as \(-3^\circ\), depending on the Z.A. and \(\theta_{\text{start}} \) of the observations, and the analysis cuts applied. The 68% containment radius, \(\theta_{\text{68}} \), of the observations of GRB 030209 and GRB 070209 is about 9’ using standard-cut analysis, slightly larger than the corresponding error circles. Therefore, point-source analyses were performed for all GRBs except GRB 030821, the error box of which is much bigger than the H.E.S.S. PSF (see Sect. 5.4 for its treatment).
Table 2. H.E.S.S. observations of GRBs from March 2003 to October 2007.

GRB	T_{start}	Exposure	N_{rad} Z.A.	N_{ON}	N_{OFF}	α	α_{th}	E_{th}	E_{flux} ULs (cm$^{-2}$ s$^{-1}$)	χ^2/d.o.f.	$P(\chi^2)$
070621	6.5	234.6	4 16	204	2273	0.091	-2.6 -0.18	250	2.8×10^{-12}	190	5.6×10^{-11} 19.2/28 0.89
050801	15.0	28.2	4 43	13	173	0.091	-2.7 -0.68	400	3.2×10^{-12}	46	1.6×10^{-11} 0.168/3 0.98
070429A	64	28.2	4 23	4	78	0.091	-3.1 -1.2	290	2.4×10^{-12}	20	1.0×10^{-11} 6.39/3 0.94
041211B	567.1	14.2	3 64	9	87	0.11	-0.67 -0.21	1850	6.8×10^{-12}	27	2.6×10^{-11} 14.6/14 0.40
071003b	742.3	112.3	4 44	76	1247	0.063	-1.9 -0.21	380	3.7×10^{-12}	7	1.8×10^{-11} 1360 2.6/10 0.008
041006	626.1	81.9	4 27	80	770	0.10	3 0.32	200	1.1×10^{-11}	302	6.8×10^{-11} 8.89/9 0.45
070419B	907	56.4	4 47	28	391	0.091	-7.5 -1.3	700	2.4×10^{-12}	121	7.5×10^{-12} 11.9/6 0.064
060526	284.2	112.8	4 25	93	1068	0.10	-13.8 -1.3	280	2.9×10^{-12}	492	2.2×10^{-12} 19.8/12 0.072
070808	306.2	112.8	4 34	49	659	0.091	-11 -1.4	310	3.2×10^{-12}	209	2.5×10^{-12} 15.8/12 0.20
070721B	925.7	103.8	4 40	59	984	0.063	-2.5 -0.31	440	1.4×10^{-12}	237	8.8×10^{-12} 15.5/11 0.16
061110A	407.68	112.8	4 25	76	838	0.093	-1.9 -0.21	280	4.3×10^{-12}	314	8.4×10^{-12} 4.66/11 0.95
030329c	254.3	5.3	2 60	4	26	0.14	0.27 0.13	1360	2.6×10^{-12}	...	5.93/3 0.12
050726	772.7	112.8	4 40	107	1031	0.083	2 2.1	320	7.1×10^{-12}	333	3.4×10^{-11} 14.7/12 0.26
050209	1208.5	168.6	4 48	104	1096	0.061	-18 -1.6	480	4.4×10^{-12}	528	3.4×10^{-11} 36.3/18 0.0065
070612B	901.7	112.8	4 18	104	1190	0.091	-4.2 -0.39	240	4.1×10^{-11}	415	1.5×10^{-11} 4.87/12 0.96
060403	820.4	52.8	4 39	33	252	0.091	1 1.9	440	4.8×10^{-12}	128	1.3×10^{-11} 10.4/6 0.11
060505	1163	111	4 42	99	837	0.091	2 2.4	520	5.6×10^{-12}	339	3.9×10^{-12} 22.1/12 0.036
050509C	1289	28.2	4 22	31	344	0.083	2 0.41	200	1.7×10^{-11}	112	1.5×10^{-10} 0.301/3 0.96
070721A	893.5	112.8	4 30	90	1436	0.059	5.5 0.58	320	6.5×10^{-12}	280	6.3×10^{-12} 6.78/12 0.87
070724A	927.5	84.6	4 23	73	720	0.091	7.5 0.88	260	7.3×10^{-12}	246	1.0×10^{-11} 14.3/9 0.11
070209	926.7	56.4	4 41	37	444	0.091	-3.4 -0.51	480	2.3×10^{-12}	185	1.1×10^{-11} 5.35/6 0.50

a The GRBs are listed in the order of the ranking scheme described in Sect. 3.3. GRB 030821 is not listed, the results of which are given in Sect. 5.4.
b Three- and four-telescope data are presented.
c A slightly different analysis technique was used, see Sect. 4.1. Soft-cut analysis is not available for this observation.
The mean is derived from the observations of 20 GRBs using soft-cut analysis. The mean is consistent with zero throughout the observation period is correct is 1.2×10^{-3} (for GRB 071003) and no significant deviation from zero within any of the GRB temporal data was found. Standard-cut analysis produced consistent results.

5.3. GRB 070621: Observations of a GRB with the fastest reaction and the longest exposure time

GRB 070621 is the highest-ranked GRB in the sample (Sect. 5.3), i.e. it has the highest relative expected VHE flux at the start time of the observations. The duration of the Swift burst was $T_{90} \sim 33$s, thus clearly classifying the burst as a long GRB. The fluence in the 15–150 keV band was $\sim 4.3 \times 10^{-6} \text{ erg cm}^{-2}$. The XRT light curve is represented by an initial rapidly-decaying phase and a shallow phase, with the transition happening around $t_0 + 380s$ where t_0 denotes the trigger time (Shahivati et al. 2007). Despite extensive optical monitoring, no fading optical counterpart was found. The H.E.S.S. observations started at $t_0 + 420s$ and lasted for ~5 hours, largely coincident with the X-ray shallow phase. These observations were both the most prompt and the longest among those presented. Figure 2 shows the 99.9% H.E.S.S. energy flux upper limits above 200 GeV (using soft-cut analysis), together with the XRT results (Evans et al. 2007). As seen, the limits for this period are at levels comparable to the X-ray energy flux during the same period. Unfortunately the lack of redshift information for this burst prevents further interpretation of the limits.

5.4. GRB 030821: Observations of a GRB with a high positional uncertainty

Some GRBs, such as GRB 030821, have a high uncertainty in position; with a relatively large camera FoV ($\sim 5^\circ$), the H.E.S.S. telescopes are able to cover the whole positional error box of such GRBs. Observations of GRB 030821 started 18 hours after the burst and lasted for a live-time of 55.5 minutes, with a mean Z.A. of 28°. The observations were taken when the array was under construction and only two telescopes were operating, resulting in an energy threshold of 260 GeV. The GRB has a relatively high uncertainty in position as determined from IPN (the third Interplanetary Network) triangulation (Hurley et al. 2003), and its error box is bigger than the PSF of H.E.S.S. However, because of the relatively large FoV of the camera, the whole error box, and thus the possible GRB position, is within the H.E.S.S. FoV. The sky excess map overlaid with the error box is shown.
The upper limits presented in this paper are among the most stringent ever derived from VHE γ-ray observations of GRBs during the afterglow period. In fact, the 99.9% confidence level limits (in energy flux) are at levels comparable to the X-ray energy flux as observed by Swift/XRT during the same period (see, e.g. Fig. 2). Unless most of the GRBs are located at high redshifts and thus their VHE flux is severely absorbed by the EBL, (this possibility is discussed below), one expects detection of the predicted VHE component with energy flux levels comparable to those in X-rays in some scenarios (Dermer et al., 2000; Wang et al., 2001; Zhang & Meszéros, 2001; Pe'er & Waxman, 2005; Fan et al., 2008).

On the other hand, the unknown redshifts of many of the GRBs in the sample (including GRB 070621, the highest-ranking, which is discussed in Sect. 3) complicate the physical interpretation of the data, because EBL absorption at VHE energies is severe for a GRB with $z > 1$. The mean and median redshift of the 10 GRBs with reported redshifts is 1.3 and 0.7, respectively. If the 12 GRBs without redshift have the same redshift distribution, one would expect ~40% of them (~5 GRBs) to have $z < 0.5$. In this case, the EBL absorption may not preclude the detection of the predicted VHE γ-rays for the GRB sample presented here.

There is no reported X-ray flare during the H.E.S.S. observational time windows, therefore no conclusion on whether or not X-ray flares are accompanied by VHE flares, as well as the origin of X-ray flares, can be drawn. If UHECRs are generated in nearby GRB sources, as suggested by some authors, a detectable VHE flux is expected from nearby GRBs. Therefore, although the unknown redshifts of a significant fraction of GRBs in our sample (12 out of 22) and the uncertainty in the modeled VHE temporal evolution are surely in play, the results presented here do not indicate (but also not exclude) that GRBs are dominant sources of UHECRs.

The data from our sample of 22 GRBs do not provide any evidence for a strong VHE γ-ray component from GRBs during the afterglow phase. EBL absorption can explain the lack of detection in our sample. However, this does not exclude a population of GRBs that exhibit a strong VHE component. While the EGRET experiment did not detect MeV–GeV photons from most BATSE GRBs in its FoV, some strong bursts (e.g. GRB 940217) have proved to emit delayed emission, ~1.5 hours after the burst, at energies as high as ~20 GeV (Dermer et al., 1994). With Fermi’s observations of GRBs having started in mid-2008, it is likely that our knowledge of the high-energy emission of GRBs will be improved in the near future.

The future prospects for detection at VHE energies rely on the likelihood of observing a GRB with low redshift (e.g. $z < 0.5$) early enough. In the cases where there is no detection, sensitive and early upper limits on the intrinsic VHE luminosity of these nearby GRBs will still improve our understanding of the radiation mechanisms of GRBs. The existence of a distinct population of low-luminosity (LL) GRBs was suggested based on the high detection rate of low-redshift LL GRBs such as GRB 980425 and GRB 060218 (e.g. Soderberg et al., 2004). Due to their proximity, they are good targets for VHE observations. Since they are sub-emergent compared to other GRBs, they may be accompanied by a lower VHE luminosity. On the other hand, if most radiation is emitted at high energies, the detection probability would be much higher.

Franceschini et al. (2008) claimed a very small γ-ray opacity due to EBL absorption. The optical depth is about a factor of three less than the one we used, depending on the energies (Aharonian et al., 2006b). Therefore, on-going GRB observations with H.E.S.S., as well as other ground-based VHE detectors, are crucial to test this model.

6. Discussion

7. Outlook

10 A larger excess implies a higher value of the upper limit, since the integrated exposure, that depends on Z.A. and θ_{offset}, of the observations, is largely the same over the whole error box.

11 The optical depth of EBL absorption for a ~100 GeV photon is ~3 at $z = 1$, according to the P.0.45 model demonstrated in Aharonian et al. (2006b).
8. Conclusions

During 5 years of operation (2003–2007), 32 GRBs were observed during the afterglow phase using the H.E.S.S. experiment. Those 22 GRBs with high-quality data were analysed and the results presented in this paper. Depending on the visibility and observing conditions, the start time of the observations varied from minutes to hours after the burst.

There is no evidence of VHE emission from any individual GRB during the period covered by the H.E.S.S. observations, nor from stacking analysis using the whole sample and a priori selected sub-sets of GRBs. Fine-binned temporal data revealed no short-term variability from any observation and no indication of VHE signal from any of these time bins was found. Upper limits of VHE γ-ray flux during the observations from the GRBs were derived. These 99.9% confidence level energy flux upper limits are at levels comparable to the contemporary X-ray energy flux. For those GRBs with reported redshifts, differential upper limits at the energy threshold after correcting for EBL absorption are presented.

H.E.S.S. phase II will have an energy threshold of about 30 GeV. With much less absorption by the EBL at such low energies, it is hoped that the H.E.S.S. experiment will enable the detection of VHE γ-ray counterparts of GRBs.

Acknowledgements. The support of the Namibian authorities and of the University of Namibia in facilitating the construction and operation of H.E.S.S. is gratefully acknowledged, as is the support by the German Ministry for Education and Research (BMBF), the Max Planck Society, the French Ministry for Research, the CNRS-IN2P3 and the Astroparticle Interdisciplinary Programme of the CNRS, the U.K. Science and Technology Facilities Council (STFC), the IPNP of the Charles University, the Polish Ministry of Science and Higher Education, the South African Department of Science and Technology and National Research Foundation, and by the University of Namibia. We appreciate the excellent work of the technical support staff in Berlin, Durham, Hamburg, Heidelberg, Palaiseau, Paris, Saclay, and in Namibia in the construction and operation of the equipment. P.H. Tam acknowledges support from IMPRS-HD. This work has made use of the GCN Notices and Circulars provided by NASA’s Goddard Space Flight Center, as well as data supplied by the UK Swift Science Data Centre at the University of Leicester.
References

Aharonian, F. A., Akhperjanian, A. G., Aye, K.-M., et al. (HESS collaboration) 2005, A&A, 434, L17
Aharonian, F. A., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (HESS collaboration) 2006a, A&A, 448, L19
Aharonian, F. A., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (HESS collaboration) 2006b, Nature, 440, 1018
Aharonian, F. A., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. (HESS collaboration) 2006c, A&A, 457, 399
Aharonian, F. A., Akhperjanian, A. G., Barres de Almeida, U., et al. (HESS collaboration) 2008, A&A, 477, 481
Aharonian, F. A., Akhperjanian, A. G., Barres de Almeida, U., et al. (HESS collaboration) 2009, ApJ, 690, 1068
Albert, J., Aliu, E., Anderhub, H., et al. (MAGIC collaboration) 2007, ApJ, 667, 358
Atkins, R., Bendow, B., Berley, D., et al. 2000, ApJ, 533, L119
Atkins, R., Bendow, B., Berley, D. 2005, ApJ, 630, 996
Amenomori, M., Cao, Z., Dai, B. Z., et al. 1996, A&A, 311, 919
Baring, M. G. 2006, ApJ, 655, 396
Berger, E., & Gladders, M. 2006, GCN Circular 5170
Berger, E., Atkins, R. W., Badran, H. M., et al. 2007, ApJ, 655, 396
Böttcher, M., & Dermer, C. D. 1998, ApJ, 499, L131
Butler, N. R., Kocevski, D., Bloom, J. S., et al. 2007, ApJ, 671, 656
Chincarini, G., Moretti, A., Romano, P., et al. 2007, ApJ, 671, 1903
Connaughton, V., Akerlof, C. W., Barthelmy, S., et al. 1997, ApJ, 479, 859
Cucchiara, A., Fox, D. B., & Cenko, S. B., et al. 2007, GCN Circular 6665
Curran, P. A., Starling, R. L. C., O'Brien, P. T., et al. 2008, A&A, 487, 533
Dermer, C. D., Chiang, J., & Mitman, K. E. 2000, ApJ, 537, 785
Dermer, C. D. 2007, ApJ, 664, 384
Evans, P. A., Beardmore, A. P., & Page, K. L., et al. 2007, A&A, 469, 1219
Fan, Y.-Z., Piran, T., Narayan, R., & Wei, D.-M. 2008, MNRAS, 384, 1483
Fan, Y.-Z., & Piran, T. 2008, Frontiers of Physics in China, 3, 306
F. Aharonian et al.: H.E.S.S. observations of y-ray bursts in 2003–2007
1 Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany
2 Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 Yerevan, Armenia
3 Centre d’Étude Spatiale des Rayonnements, CNRS/UPS, 9 av. du Colonel Roche, BP 4346, F-31029 Toulouse Cedex 4, France
4 Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany
5 Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany
6 LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 Place Jules Janssen, 92190 Meudon, France Observatorium Astronomiczne, Uniwersytet Szt.
7 IRFU/DSM/CEA, CE Saclay, F-91191 Gif-sur-Yvette, Cedex, France
8 University of Durham, Department of Physics, South Road, Durham DH1 3LE, U.K.
9 Unit for Space Physics, North-West University, Potchefstroom 2520, South Africa
10 Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
11 Laboratoire d’Annecy-le-Vieux de Physique des Particules, CNRS/IN2P3, 9 Chemin de Bellevue - BP 110 F-74941 Annecy-le-Vieux Cedex, France
12 Astroparticule et Cosmologie (APC), CNRS, Université Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13, France
13 Observatory of Paris, 10, rue de l’Aurore, F-75014 Paris, France
14 Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2, Ireland
15 Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany
16 Laboratoire de Physique Théorique et Astroparticules, CNRS/IN2P3, Université Montpellier II, CC 70, Place Eugene Bataillon, F-34095 Montpellier Cedex 5, France
17 University Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany
18 Laboratoire d’Astrophysique de Grenoble, INSU/CNRS, Université Joseph Fourier, BP 53, F-38041 Grenoble Cedex 9, France
19 Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D 72076 Tübingen, Germany
20 LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5, France
21 Institute of Particle and Nuclear Physics, Charles University, V Holesovickách 2, 180 00 Prague 8, Czech Republic
22 Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum, D 44780 Bochum, Germany
23 University of Namibia, Private Bag 13301, Windhoek, Namibia
24 Observatory Astronomiczne, Uniwersytet Jagielloński, ul. Orla 171, 30-244 Kraków, Poland
25 Nicolaus Copernicus Astronomical Centre, ul. Bartycka 18, 00-716 Warsaw, Poland
26 School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, UK
27 School of Chemistry & Physics, University of Adelaide, Adelaide 5005, Australia
28 Toruń Centre for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100 Toruń, Poland
29 Instytut Fizyki Jądrowej PAN, ul. Radzikowskiego 152, 31-342 Kraków, Poland
30 European Associated Laboratory for Gamma-Ray Astronomy, jointly supported by CNRS and MPG