The discovery of a melanistic Leopard *Panthera pardus delacouri* (Linnaeus, 1758) (Mammalia: Carnivora: Felidae) at Bukit Kudung in Jeli, Kelantan, Peninsular Malaysia: conservation and ecotourism

Kamarul Hambali, Nor Fakhira Muhamad Fazli, Aainaa Amir, Norashikin Fauzi, Nor Hizami Hassan, Muhamad Azahar Abas, Muhammad Firdaus Abdul Karim & Ai Yin Sow

26 January 2021 | Vol. 13 | No. 1 | Pages: 17513–17516
DOI: 10.11609/jott.6060.13.1.17513-17516
The discovery of a melanistic Leopard *Panthera pardus delacouri* (Linnaeus, 1758) (Mammalia: Carnivora: Felidae) at Bukit Kudung in Jeli, Kelantan, Peninsular Malaysia: conservation and ecotourism

Kamarul Hambali 1,2, Nor Fakhira Muhamad Fazli 3, Aainaa Amir 4, Norashikin Fauzi 4, Nor Hizami Hassin 3, Muhamad Azahar Abas 5, Muhammad Firdaus Abdul Karim 6 & Ai Yin Sow 8

1-2 Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia.
3Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia.
4kamarul@umk.edu.my (corresponding author), 5fakhiro847@gmail.com, 6syazwani@umk.edu.my, 7ashikin@umk.edu.my, 8gsomaster87@gmail.com

Abstract: Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. During a study near an ecotourism site, we recorded a melanistic Leopard *Panthera pardus delacouri* on top of Bukit Kudung in Jeli District. This finding is considered important because the Indochinese Leopard *P. p. delacouri* is classified as Critically Endangered in the Red List of Threatened Species by the International Union for Conservation of Nature (IUCN). We hope that this record will foster conservation efforts in the area.

Keywords: Camera trapping, felid conservation, Indochinese Leopard, melanism.

The melanistic Leopard has been recorded throughout Peninsular Malaysia (Azlan 2006; Hedges et al. 2015). During camera trapping studies conducted between 1996 and 2009 in southern Thailand and Peninsular Malaysia, melanistic Leopards were recorded only south of the Isthmus of Kra, indicating a near fixation of melanism in Leopards in this region (Kawanishi et al. 2010). Nine Leopards recorded in a wildlife corridor in central Peninsular Malaysia were also melanistic (Hedges et al. 2015). Latter authors assumed that Peninsular Malaysia is the only region in the world where the entire Leopard population consists of melanistic morphs. Medway (1983), however, also reported spotted Leopards in the region. Kawanishi et al. (2010) referred to the presence of spotted Leopards in Endau Rompin National Park in the southern part of Peninsular Malaysia. Tan et al. (2015) recorded two spotted Leopards in Ulu Muda Forest Reserve in the northern state of Kedah. Melanistic Leopards are most common in tropical and subtropical moist broadleaf forests (da Silva et al. 2017).

From India, while reporting about melanistic and other range of over 12 colour variations in *Panthera tigris*, Singh (1999) also mentioned about the black panthers, whom nature has possibly given the way to favourable selection. Melanistic leopards were captured in camera trap from the eastern state of Odisha in India.
during June 2014 (Anonymous 2015a) and 2018 (Palei et al. 2018). Mahabal et al. (2019) have tabulated 45 instances of black or melanistic Leopard from India starting with Buckland (1889) to Anonymous (2015b) and Sayyed & Mahabal (2015).

Melanism in the Leopard *Panthera pardus delacouri* is caused by a non-synonymous mutation in the coding region of a gene that regulates the production of melanin, while keeping black rosettes visible (Schneider et al. 2012). According to da Silva et al. (2017), they demonstrate that this distribution is non-random across the subspecies’ range, with the observed spatial patterns significantly supporting an association with moist forests and a decrease in frequency in open/dry habitats. It has been suggested that melanism is an evolutionary response to dipterocarp forest with a close canopy and low light levels (Kawanishi et al. 2010). While these results support classical adaptive hypotheses, implying that melanism in Leopards is influenced by natural selection related to habitat type and moisture, several questions remain unanswered, such as the exact selective mechanism in different areas.

In this article, we report a melanistic Leopard near an ecotourism attraction in Jeli District, Kelantan, Peninsular Malaysia. It was recorded by camera traps employed in autumn 2019. This finding is expected to promote conservation efforts for the Leopard in Malaysia and to enhance ecotourism in the area. An education centre in the area may provide exposure and awareness for tourists about the subspecies and the importance of conserving them in their natural habitat.

STUDY AREA

Our research focused on collecting terrestrial vertebrate data in Bukit Kudung, Jeli District, Kelantan, Peninsular Malaysia from October 2019 to December 2019 (Figure 1). The study area is a hill dipterocarp forest with streams and rivers at an elevation of 90–500 m. During the camera trapping survey, there was no evidence of snares and human footprints that indicated the presence of illegal hunting.

MATERIAL AND METHODS

In this study, five camera traps units [Bushnell Natureview HD Model 119436 and Browning Spec Ops Advantage Trail Camera] were installed and left in selected areas where wildlife were expected to be present. The distance between any two camera traps was about 257m. The camera traps were set to one second interval between three consecutive images and were fitted with 8GB SD secure digital card storage and 12 double AA batteries to ensure that they were able to cope with this study period. The strap of camera was properly tied with appropriate angle, and checked before setting the feature. Possible stealing away of cameras or their damage by wildlife were the risks in this study. The GPS location of each point had been taken by using the Military Navigation application.

Figure 1. Overview of the study area and its location in Peninsular Malaysia (Google Map 2020).
RESULTS

From this study, 57 days of data from the entire camera traps were collected and 1,254 images obtained. A melanistic Leopard was recorded by two camera traps. One image was taken on 27 October 2019 at 07.04h (Image 1). Three consecutive images show a melanistic Leopard on 11 November 2019 at 04.42h (Image 2). The coordinates of the findings are kept confidential to ensure the safety of the Leopard.

DISCUSSION

The Indochinese Leopard has been recorded in primary and secondary forests, tropical dry and moist deciduous forests, evergreen and semi-evergreen forests, and also plantations (Rostro-García et al. 2019). As such, melanism has been proposed as an evolutionary reaction to acclimatize to specific environments where pigment genes can allow melanistic types to better adapt to green dipterocarp forest with a closed canopy and low light levels, whereas spotted Leopards are ideally adapted for disguising in open field environments (da Silva et al. 2017).

A geographical gradation is seen with spotted, melanistic and black leopard in the distributional range of the extant subspecies of Panthera pardus in their global distribution range. In India, it is possible that nature has already given way to favourable selection of black panthers (Singh 1999: page 52–53), and that the normal-spotted and black leopards have biologically settled for togetherness, and genetically settled with comparable body features except for the colour. Photographs of black and melanistic leopards are time and again have been posted in social media during 2020. As pointed out by Singh (1999) preponderance of black or melanistic large cats is an indication that the gene pool for normal spotted or striped forms is changing fast.

The Indochinese Leopard is listed as Critically Endangered (Rostro-García et al. 2019). The population trend of the Leopard is decreasing in Peninsular Malaysia because of high threats to its survival and habitat (Chew 2019). Dead Leopards have been seized from poachers and wildlife traders (Lai 2013; Traffic 2013, 2014). In addition, habitat destruction caused by development of infrastructure especially in rural areas also plays a role in the decline of the population.

The discovery of a melanistic Leopard in Bukit Kudung emphasizes the importance of this location as a conservation area. Today, Bukit Kudung, has been developed into an ecotourism destination known as Lalong’s Chalet and Campsite. Governmental and non-governmental organizations need to cooperate in ensuring the safety of the Leopard population in...
the area. Among the forms of recommendations and joint measures that can be highlighted is establishing an area learning centre and also gazette the area as a wildlife protected area. The location of this study area has the potential to act as an important wildlife corridor connecting the forests of Thailand (Hala-Bala Wildlife Sanctuary) and Jeli Permanent Forest Reserve. Members of the near-by Faculty of Earth Sciences of Universiti Malaysia Kelantan should play a vital role in raising the awareness of visitors about the necessity of normal gene pool and biodiversity conservation.

REFERENCES

Anonymous (2015a). Melanistic Leopard in Baisipalli Sanctuary. Newsletter, Nature and Wildlife Conservation Society of Orissa, p. 3.

Anonymous (2015b). Melanistic leopard spotted in Sanguem. Times of India Goa 30 December 2015. http://timesofindia.indiatimes.com/city/goa/Melanistic-leopard-spotted-in-Sanguem/articleshow/50373819.cms.

Azlan, J.M. (2006). Mammal diversity and conservation in a secondary forest in Peninsular Malaysia. Biodiversity and Conservation 15: 1013–1025. https://doi.org/10.1007/s10531-004-3953-0

Buckland, C.T. (1889). A black tiger. Journal of the Bombay Natural History Society 4(2): 149–150.

Chew, S.Y. (2019). Natural history of the Leopard (Panthera pardus) in Peninsular Malaysia. Malayana Nature Journal 71(2): 127–137.

da Silva, L.G., K. Kawanishi, P. Henschel, A. Kittle, A. Sanei, A. Miqelle, A.B. Stein, A. Watson, L.B. Kekule, R.B. Machado & E. Eizirik (2017). Mapping black panthers: Macroecological modeling of melanism in Leopards (Panthera pardus). PloS ONE 12(4): e0170378. https://doi.org/10.1371/journal.pone.0170378

Hedges, L., WY. Lam, A.M.R.D. Campos-Arceiz, W. Laurence, C.J. Latham, S. Saaban & R.C. Gopalasamy (2015). Melanistic Leopards reveal their spots: Infrared camera traps provide a population density estimate of Leopards in Malaysia. The Journal of Wildlife Management 79(5): 846–853. https://doi.org/10.1002/jwmg.901

Kawanishi, K., M.E. Sunquist, E. Eizirik, A.J. Lynam, D. Ngoprasert, W.N. Wan Shahruddin, M.R. Darmaraj, S.K.S. Dionysius & R. Steinmetz (2010). Near fixation of melanism in Leopards of the Malay Peninsula. Journal of Zoology 282(3): 201–206. https://doi.org/10.1111/j.1469-7998.2010.00731.x

Lai, I. (2013). Man charged with having tiger and Leopard carcasses. The Star. 13 Feb 2014. http://www.thestar.com.my/News/Nation/2013/09/15/Man-charged-with-having-tiger-and-leopard-carcasses Electronic version accessed 18 July 2020

Mahabal, A., R.M. Sharma, R.N. Patil & S. Jadhav (2019). Colour aberration in Indian mammals: a review from 1886 to 2017. Journal of Threatened Taxa 11(6): 13690–13719. https://doi.org/10.1111/jott.3843.11.6.13690-13719

Medway, L. (1983). The Wild Mammals of Malaya (Peninsular Malaysia) and Singapore. Second Edition. Oxford University Press, Kuala Lumpur, 131pp.

Palei, N.C., B.P. Rath, H.S. Palei & A.K. Mishra (2018). Occurrence of melanistic leopard in Odisha, eastern India. Cat News, No.68, Autumn 2018: 7–9

Rostro-Garcia, S., J.F. Kamler, G.R. Clements, A.J. Lynam & H. Naing (2019). Panthera pardus ssp. delacouri. The IUCN Red List of Threatened Species 2019: e.T124159083A124159128. Downloaded on 7 July 2020 https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T124159083A163986056.en

Sayyed, A. & A. Mahabal (2015). Second record of melanistic Leopard Panthera pardus (Linnaeus) from Satara, Maharashtra: a case of roadkill. Zoo’s Print 30(5): 29.

Schneider, A., V.A. David, W.E. Johnson, S.I. O’Brien, G.S. Barsh, M. Menotti-Raymond & E. Eizirik (2012). How the Leopard Hides its Spots: ASIP Mutations and Melanism in Wild Cats. PLoS ONE 7(12): e50386. https://doi.org/10.1371/journal.pone.0050386

Singh, L.A.K. (1999). Born Black: The Melanistic Tiger in India. WWF-India, New Delhi, viii+66pp.

Tan, C.K.W., J. Moore, S. bin Saaban, A. Campos-Arceiz & D.W. Macdonald (2015). The discovery of two spotted Leopards (Panthera pardus) in Peninsular Malaysia. Tropical Conservation Science 8(3): 732–737. https://doi.org/10.194008291500800310

Traffic (2013). Man charged for illegal possession of Tiger and four Leopards. News. Electronic version accessed 17 July 2020. https://www.traffic.org/news/man-charged-for-illegal-possession-of-tiger-and-four-leopards/Traffic

Traffic (2014). Wildlife Department vigilance leads to five Leopards seized in five months. Traffic News. Electronic version accessed 17 July 2020. https://www.traffic.org/news/wildlife-department-vigilance-leads-to-five-leopards-seized-in-five-months/
Communications

Diversity and distribution of snakes in Trashigang Territorial Forest Division, eastern Bhutan
 – Bal Krishna Koirala, Karma Jamtsho, Phuntsho Wangdi, Dawa Tshering, Rinchen Wangdi, Lam Norbu, Sonam Phuntsho, Sonam Lhendup & Tshering Nidup, Pp. 17455–17469

Freshwater fishes of Cauvery Wildlife Sanctuary, Western Ghats of Karnataka, India
 – Naren Sreenivasan, Neethi Mahesh & Rajeev Raghavan, Pp. 17470–17476

Fish communities and associated habitat variables in the upper Subansiri River of Arunchal Pradesh, eastern India
 – Sutanu Satpathy, Kuppusamy Sivakumar & Jeyaraj Antony Johnson, Pp. 17477–17486

An assessment of the population status of the threatened medicinal plant Illicium griffithii Hook.f. & Thomson in West Kameng District of Arunchal Pradesh, India
 – Tashi Dorjee Bapu & Gijbi Nimasow, Pp. 17504–17512

Short Communications

The discovery of a melanistic Leopard Panthera pardus delacouri (Linnaeus, 1758) (Mammalia: Carnivora: Felidae) at Bukit Kudung in Jeli, Kelantan, Peninsular Malaysia: conservation and ecotourism
 – Kamarul Hambali, Nor Fakhira Muhamad Fazli, Aainaa Amir, Norashikin Fauzi, H.U. Abhijit, Y .L. Krishnamurthy & K. Gopalakrishna Bhat, Pp. 17554–17560

Historyopathological findings of infections caused by canine distemper virus, Trypanosoma cruzi, and other parasites in two free-ranging White-nosed Coatis (Procyon lotor) from the Sierra Nevada in western North America
 – Alastair A. Paterson, John F. Elwood, Emily J. Delacour & Sean M. Young, Pp. 17564–17568

On a new species of Macrophialbus Spence Bate (Decapoda: Palaemonidae) from Ayeeyawady River, Myanmar
 – H.H.S. Myo, K.V. Jayachandran & K.L. Khin, Pp. 17529–17536

On the occurrence and distribution of the narrowly endemic Andaman Lantern Flower Ceropogia andamanica (Apocynaceae: Ceropogieae)
 – M. Uma Maheshwari & K. Karthigeyan, Pp. 17580–17586

Ecological importance of two large heritage trees in Moyar River valley, southern India
 – Vedagiri Thirumurugan, Nehru Prabakaran, Vishnu Sreedharan Nair & Chinnasamy Ramesh, Pp. 17557–17560

Bulbophyllum spathulatum (Orchidaceae), a new record for Bhutan
 – Pema Zangpo, Phub Gyeltshen & Pankaj Kumar, Pp. 17579–17582

On a new species of Macrobrachium Spence Bate (Decapoda: Palaemonidae) from Ayeeyarwady River, Myanmar
 – H.H.S. Myo, K.V. Jayachandran & K.L. Khin, Pp. 17529–17536

Review of the tiger beetle genus Colomera Motschulsky, 1862 (Coleoptera: Cicindelidae) of the Philippines
 – Milton Norman Medina, Alexander Anichtchenko & Jürgen Wiesner, Pp. 17537–17543

On the occurrence and distribution of the narrowly endemic Andaman Lantern Flower Ceropogia andamanica (Apocynaceae: Ceropogieae)
 – M. Uma Maheshwari & K. Karthigeyan, Pp. 17557–17560

The oat-like grass Trisetopsis aspera (Comm. ex Trin.) Rostr. & A.W.R. (Poaceae): a new record for Bhutan
 – Pema Zangpo, Phub Gyeltshen & Pankaj Kumar, Pp. 17529–17536

Star Grass Lily Iphigenia stellata Blatter (Colchicaceae) – a new addition to the flora of Gujarat, India
 – Mitesh B. Patel, Pp. 17604–17606

A new record of pyrenocarpous lichen to the Indian biota
 – Pema Zangpo, Phub Gyeltshen & Pankaj Kumar, Pp. 17564–17568

Notes

First report of the Asiatic Brush-tailed Porcupine Atherurus macrourus (Linnaeus, 1758) (Mammalia: Rodentia: Hystricidae) from West Bengal, India
 – Suraj Kumar Dash, Abhisek Chetri, Dipanjan Naha & Sambandham Sathyakumar, Pp. 17561–17563

Record of the world’s biggest pangolin? New observations of bodyweight and total body length of the Indian Pangolin Manis crassicaudata Gray, 1827 (Mammalia: Pholidota: Manidae) from Munnar District, Kerala, India
 – Priyan Perera, Hirsha Randimal Algawatta & Buddhika Vidanage, Pp. 17564–17568

First record of Toutil melanonotus (Wied, 1820) (Aves: Psittaciformes: Psittacidae) in Cantareira State Park, Brazil: new colonization or simply unnoticed?
 – Marcos Antônio Melo & David de Almeida Braga, Pp. 17569–17573

Is Bombus pomorum (Panzer, 1805) (Hymenoptera: Apidae) a new bumblebee for Siberia or an indigenous species?
 – Alexandr Byvaltsev, Svatoslav Kniazev & Anatoly Afinogenov, Pp. 17574–17579

Some new records of scarab beetles of the genus Onthophagus Latreille, 1802 (Coleoptera: Scarabaeidae) from northern Western Ghats, Maharashtra, with a checklist
 – Aparna Sureshchandra Kalawate, Banani Mukhopadhyay, Sonal Vithal Pawar & Vighnesh Durgaram Shinde, Pp. 17580–17586

The oat-like grass Trisetopsis aspera (Comm. ex Trin.) Rostr. & A.W.R. (Poaceae): a new record for Bhutan
 – Pema Zangpo, Phub Gyeltshen & Pankaj Kumar, Pp. 17529–17536

On the occurrence and distribution of the narrowly endemic Andaman Lantern Flower Ceropogia andamanica (Apocynaceae: Ceropogieae)
 – M. Uma Maheshwari & K. Karthigeyan, Pp. 17557–17560

The oat-like grass Trisetopsis aspera (Comm. ex Trin.) Rostr. & A.W.R. (Poaceae): a new record for the flora of central Western Ghats of Karnataka, India
 – H.U. Abhijit, Y. L. Krishnamurthy & K. Gopalakrishna Bhat, Pp. 17601–17603

Star Grass Lily Iphigenia stellata Blatter (Colchicaceae) – a new addition to the flora of Gujarat, India
 – Mitesh B. Patel, Pp. 17604–17606

A new record of pyrenocarpous lichen to the Indian biota
 – N. Rajaprabu, P. Ponmurugan & Gaurav K. Mishra, Pp. 17607–17610