Glycogenotic hepatocellular carcinoma with glycogen-ground-glass hepatocytes: A heuristically highly relevant phenotype

Peter Bannasch

Abstract
Glycogenotic hepatocellular carcinoma (HCC) with glycogen-ground-glass hepatocytes has recently been described as an allegedly "novel variant" of HCC, but neither the historical background nor the heuristic relevance of this observation were put in perspective. In the present contribution, the most important findings in animal models and human beings related to the emergence and further evolution of excessively glycogen storing (glycogenotic) hepatocytes with and without ground glass features during neoplastic development have been summarized. Glycogenotic HCCs with glycogen-ground-glass hepatocytes represent highly differentiated neoplasms which contain subpopulations of cells phenotypically resembling those of certain types of preneoplastic hepatic foci and benign hepatocellular neoplasms. It is questionable whether the occurrence of glycogen-ground-glass hepatocytes in a glycogenotic HCC justifies its classification as a specific entity. The typical appearance of ground-glass hepatocytes is due to a hypertrophy of the smooth endoplasmic reticulum, which is usually associated with an excessive storage of glycogen and frequently also with an expression of the hepatitis B surface antigen. Sequential studies in animal models and observations in humans indicate that glycogen-ground-glass hepatocytes are a facultative, integral part of a characteristic cellular sequence commencing with focal hepatic glycogenosis potentially progressing to benign and malignant neoplasms. During this process highly differentiated glycogenotic cells including ground-glass hepatocytes are gradually transformed via various intermediate stages into poorly differentiated glycogen-poor, basophilic (ribosome-rich) cancer cells. Histochemical, microbiological, and molecular biochemical studies on focal hepatic glycogenosis and advanced preneoplastic and neoplastic lesions in tissue sections and laser-dissected specimens in rat and mouse models have provided compelling evidence for an early insulinomimetic effect of oncogenic agents, which is followed by a fundamental metabolic switch from gluconeogenesis towards the pentose-phosphate pathway and the Warburg type of glycolysis during progression from preneoplastic hepatic glycogenosis to the highly proliferative malignant phenotype.

Key words: Acquired focal hepatic glycogenosis; Inborn hepatic glycogenosis; Hepatic preneoplasia; Hepatic neoplasia; Early metabolic aberrations; Progression-linked metabolic switch

Peer reviewers: Markus Peck-Radosavljevic, Professor, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Dr. Maria Cristina Carrillo, Instituto de Fisiologia Experimental, Departamento de Ciencias Fisiologicas, Suipacha 570, Rosario 2000, Argentina

Bannasch P. Glycogenotic hepatocellular carcinoma with glycogen-ground-glass hepatocytes: A heuristically highly relevant phenotype. World J Gastroenterol 2012; 18(46): 6701-6708 Available from: URL: http://www.wjgnet.com/1007-9327/full/v18/i46/6701.htm DOI: http://dx.doi.org/10.3748/wjg.v18.i46.6701

INVITED COMMENTARY ON HOT ARTICLES
The glycogenotic hepatocellular carcinoma (glycogenotic...
HCC) with glycogen-ground-glass hepatocytes has recently been described as a “novel variant” of HCC by Callea et al. Relating the excessive storage of glycogen (glycogenesis) to a complete absence of glucose-6-phosphatase activity as measured by a biochemical approach, the authors referred to the long known finding of a focal hepatic glycogenesis (FGH) as an early event in experimental hepatocarcinogenesis[1], continuing “however, ground-glass cells have not been reported in FGH”. In contrast to this statement, the characteristic hepatocellular phenotype addressed was not only explicitly described for the first time in preneoplastic and neoplastic lesions in rodents[2,3] and in humans[5,6] (Figure 1) decades ago but has also been proven to be historically highly relevant in numerous publications since then. Glycogenotic ground-glass hepatocytes (GGH) predominate in subpopulations of many focal precancerous hepatocellular lesions, particularly in preneoplastic FHG and benign hepatocellular neoplasms such as hepatocellular adenomas and focal nodular hyperplasia, but may also occur in more or less extended subpopulations of HCC as observed in various species, including non-human primates and human beings[7,8]. However, glycogen-GGH hardly ever account for whole neoplasms. This also applies to the glycogenotic HCC depicted by Callea et al. in which the GGH are mixed with “clear” (glycogenotic) cells without ground-glass features. It is, hence, questionable whether glycogenotic HCC with glycogen-GGH should be considered a specific entity as proposed by Callea et al.[9]. Extensive investigations in models of chemical, viral, and hormonal hepatocarcinogenesis and some observations in humans suggest that FHG with and without GGH indicates a critical early metabolic aberration in the pathogenesis of benign and malignant hepatocellular neoplasms[7,8].

Animal models of hepatocarcinogenesis

The observations in humans were preceded by several seminal findings in animal models of hepatocarcinogenesis as repeatedly reviewed[10-12]. In their pioneering electron microscopic investigations in rats continuously exposed to 3-methyl-dimethylnitrosoazobenzene, Porter et al.[13] detected a hypertrophy of the smooth endoplasmic reticulum in many hepatocytes, and addressed its light microscopic counterpart as “hyaline degeneration”[10]. The authors related this characteristic subcellular change to a decreased rather than an increased storage of glycogen and felt “that only cells which, through mutation, lose the normal tendency to differentiate for glycogenesis will survive and so will be selected out for continued growth and differentiation”. However, investigations in other models of rat hepatocarcinogenesis, employing both continuous or limited (stop model) exposure to N-nitrosomorpholine at various dose levels and time schedules[14,15], or ethionine for up to approximately 20 wk[16] revealed that hypertrophy of the smooth endoplasmic reticulum is often associated with an excessive storage of glycogen, the smooth membranes forming either a typical network or peculiar lamellar complexes which often show a close spatial relationship with glycogen particles (Figure 2) but may also be free of glycogen forming “fingerprints”[17]. Steiner et al.[18] designated the complexes of the smooth endoplasmic reticulum associated with glycogen as “glycogen-bodies”, and speculated that these formations indicate a “resistance” to the carcinogen, reflecting a reactivation of the glycogen-storing ability after an early loss of glycogen in response to toxicity. In contrast to both of these considerations, many studies on experimental hepatocarcinogenesis in different species revealed that FGH composed of glycogenotic clear and/or acidophilic cells, the latter showing a pronounced hypertrophy of the smooth endoplasmic reticulum (corresponding to glycogenotic GGH), regularly occur in a multi-centric fashion in early stages of neoplastic development induced in small rodents by a variety of chemicals[11,14,15]. More recently, typical glycogenotic GGH were also found after chronic infection of woodchucks with hepadnaviridae[14,16], in hepatitis B virus (HBV)-transgenic mice[17], and during hormonal hepatocarcinogenesis in

Figure 1 Light micrographs of portions from human hepatocellular neoplasms with and without glycogenesis. A: Clear-cell hepatocellular adenoma consisting predominantly of glycogenotic cells. In some cells (arrows) there is a reduction of glycogen and focal increase in cytoplasmic basophilia; B: Highly differentiated hepatocellular carcinoma (HCC) composed of a mixed population of clear (glycogenotic) cells, acidophilic cells (ground-glass hepatocytes, arrows), and some glycogen-poor, basophilic cells; C: Poorly differentiated, glycogen-free, basophilic HCC. All: Hematoxylin and eosin stain, x 460, from Bannasch et al[9].

Figure 2 Light micrographs of portions from human hepatocellular neoplasms with and without glycogenesis. A: Clear-cell hepatocellular adenoma consisting predominantly of glycogenotic cells. In some cells (arrows) there is a reduction of glycogen and focal increase in cytoplasmic basophilia; B: Highly differentiated hepatocellular carcinoma (HCC) composed of a mixed population of clear (glycogenotic) cells, acidophilic cells (ground-glass hepatocytes, arrows), and some glycogen-poor, basophilic cells; C: Poorly differentiated, glycogen-free, basophilic HCC. All: Hematoxylin and eosin stain, x 460, from Bannasch et al[9].
produced in rat liver by N-nitrosomorpholine acquired hepatocellular glycogenosis. It has been suggested by a number of authors [10,12,22,23] that the preneoplastic glycogenotic clear cell foci are resistant to the storage of iron. The phenotype of preneoplastic FHG is not stable, but undergoes dramatic changes during progression to the benign and/or malignant neoplastic phenotype [13,14]. Collectively, all types of specific focal hepatocellular lesions appearing during the preneoplastic phase in rodents have been termed foci of altered hepatocytes, and have been widely used as early indicators of neoplastic development in toxicologic pathology [40-42]. The characteristic sequence of cellular changes starting with FHG follows an ordered pattern, passing through intermediate or mixed cell foci composed of glycogenotic, intermediate, and glycogen-poor basophilic (ribosome-rich) cell types, the latter corresponding to the typical cell type in poorly differentiated HCCs [4,24]. Detailed morphological analysis of intermediate cell types at the light- and electron microscopic level has suggested that the hypertrophied smooth endoplasmic reticulum is usually transformed into rough endoplasmic reticulum by the addition of ribosomes during this phenotypic conversion [13,20]. Frequently, the intermediate cells show an accumulation of neutral fat, often leading to a combination of glycogenosis and steatosis [2,24]. Evidence of this sequence of cellular changes was originally provided by light- and electron-microscopic studies in rats exposed to chemical carcinogens or oncogenic viruses provided evidence for an early insulin-like (insulinomimetic) effect of these agents [7,24,34,35]. This notion has been corroborated by a number of studies on hormonal hepatocarcinogenesis induced in diabetic rats and mice by local hyperinsulinemia.

The phenotype of preneoplastic FHG is not stable, but undergoes dramatic changes during progression to the benign and/or malignant neoplastic phenotype. Collectively, all types of specific focal hepatocellular lesions appearing during the preneoplastic phase in rodents have been termed foci of altered hepatocytes, and have been widely used as early indicators of neoplastic development in toxicologic pathology. The characteristic sequence of cellular changes starting with FHG follows an ordered pattern, passing through intermediate or mixed cell foci composed of glycogenotic, intermediate, and glycogen-poor basophilic (ribosome-rich) cell types, the latter corresponding to the typical cell type in poorly differentiated HCCs. Detailed morphological analysis of intermediate cell types at the light- and electron microscopic level has suggested that the hypertrophied smooth endoplasmic reticulum is usually transformed into rough endoplasmic reticulum by the addition of ribosomes during this phenotypic conversion. Frequently, the intermediate cells show an accumulation of neutral fat, often leading to a combination of glycogenosis and steatosis. Evidence of this sequence of cellular changes was originally provided by light- and electron-microscopic studies in rats exposed to chemical carcinogens or oncogenic viruses provided evidence for an early insulin-like (insulinomimetic) effect of these agents. This notion has been corroborated by a number of studies on hormonal hepatocarcinogenesis induced in diabetic rats and mice by local hyperinsulinemia.

The phenotype of preneoplastic FHG is not stable, but undergoes dramatic changes during progression to the benign and/or malignant neoplastic phenotype. Collectively, all types of specific focal hepatocellular lesions appearing during the preneoplastic phase in rodents have been termed foci of altered hepatocytes, and have been widely used as early indicators of neoplastic development in toxicologic pathology. The characteristic sequence of cellular changes starting with FHG follows an ordered pattern, passing through intermediate or mixed cell foci composed of glycogenotic, intermediate, and glycogen-poor basophilic (ribosome-rich) cell types, the latter corresponding to the typical cell type in poorly differentiated HCCs. Detailed morphological analysis of intermediate cell types at the light- and electron microscopic level has suggested that the hypertrophied smooth endoplasmic reticulum is usually transformed into rough endoplasmic reticulum by the addition of ribosomes during this phenotypic conversion. Frequently, the intermediate cells show an accumulation of neutral fat, often leading to a combination of glycogenosis and steatosis. Evidence of this sequence of cellular changes was originally provided by light- and electron-microscopic studies in rats exposed to chemical carcinogens or oncogenic viruses provided evidence for an early insulin-like (insulinomimetic) effect of these agents. This notion has been corroborated by a number of studies on hormonal hepatocarcinogenesis induced in diabetic rats and mice by local hyperinsulinemia.

The phenotype of preneoplastic FHG is not stable, but undergoes dramatic changes during progression to the benign and/or malignant neoplastic phenotype. Collectively, all types of specific focal hepatocellular lesions appearing during the preneoplastic phase in rodents have been termed foci of altered hepatocytes, and have been widely used as early indicators of neoplastic development in toxicologic pathology. The characteristic sequence of cellular changes starting with FHG follows an ordered pattern, passing through intermediate or mixed cell foci composed of glycogenotic, intermediate, and glycogen-poor basophilic (ribosome-rich) cell types, the latter corresponding to the typical cell type in poorly differentiated HCCs. Detailed morphological analysis of intermediate cell types at the light- and electron microscopic level has suggested that the hypertrophied smooth endoplasmic reticulum is usually transformed into rough endoplasmic reticulum by the addition of ribosomes during this phenotypic conversion. Frequently, the intermediate cells show an accumulation of neutral fat, often leading to a combination of glycogenosis and steatosis. Evidence of this sequence of cellular changes was originally provided by light- and electron-microscopic studies in rats exposed to chemical carcinogens or oncogenic viruses provided evidence for an early insulin-like (insulinomimetic) effect of these agents. This notion has been corroborated by a number of studies on hormonal hepatocarcinogenesis induced in diabetic rats and mice by local hyperinsulinemia.

For a long time the cause of these complex metabolic alterations in FHG remained elusive. More recently, however, histochemical, microbiobiochemical and molecular biochemical studies on FHG and advanced neoplastic and neoplastic liver lesions in tissue sections and laser-dissected specimens obtained from small rodents exposed to chemical carcinogens or oncogenic viruses provided evidence for an early insulin-like (insulinomimetic) effect of these agents. This notion has been corroborated by a number of studies on hormonal hepatocarcinogenesis induced in diabetic rats and mice by local hyperinsulinemia.

The phenotype of preneoplastic FHG is not stable, but undergoes dramatic changes during progression to the benign and/or malignant neoplastic phenotype. Collectively, all types of specific focal hepatocellular lesions appearing during the preneoplastic phase in rodents have been termed foci of altered hepatocytes, and have been widely used as early indicators of neoplastic development in toxicologic pathology. The characteristic sequence of cellular changes starting with FHG follows an ordered pattern, passing through intermediate or mixed cell foci composed of glycogenotic, intermediate, and glycogen-poor basophilic (ribosome-rich) cell types, the latter corresponding to the typical cell type in poorly differentiated HCCs. Detailed morphological analysis of intermediate cell types at the light- and electron microscopic level has suggested that the hypertrophied smooth endoplasmic reticulum is usually transformed into rough endoplasmic reticulum by the addition of ribosomes during this phenotypic conversion. Frequently, the intermediate cells show an accumulation of neutral fat, often leading to a combination of glycogenosis and steatosis. Evidence of this sequence of cellular changes was originally provided by light- and electron-microscopic studies in rats exposed to chemical carcinogens or oncogenic viruses provided evidence for an early insulin-like (insulinomimetic) effect of these agents. This notion has been corroborated by a number of studies on hormonal hepatocarcinogenesis induced in diabetic rats and mice by local hyperinsulinemia.

For a long time the cause of these complex metabolic alterations in FHG remained elusive. More recently, however, histochemical, microbiobiochemical and molecular biochemical studies on FHG and advanced neoplastic and neoplastic liver lesions in tissue sections and laser-dissected specimens obtained from small rodents exposed to chemical carcinogens or oncogenic viruses provided evidence for an early insulin-like (insulinomimetic) effect of these agents. This notion has been corroborated by a number of studies on hormonal hepatocarcinogenesis induced in diabetic rats and mice by local hyperinsulinemia. The phenotype of preneoplastic FHG is not stable, but undergoes dramatic changes during progression to the benign and/or malignant neoplastic phenotype. Collectively, all types of specific focal hepatocellular lesions appearing during the preneoplastic phase in rodents have been termed foci of altered hepatocytes, and have been widely used as early indicators of neoplastic development in toxicologic pathology. The characteristic sequence of cellular changes starting with FHG follows an ordered pattern, passing through intermediate or mixed cell foci composed of glycogenotic, intermediate, and glycogen-poor basophilic (ribosome-rich) cell types, the latter corresponding to the typical cell type in poorly differentiated HCCs. Detailed morphological analysis of intermediate cell types at the light- and electron microscopic level has suggested that the hypertrophied smooth endoplasmic reticulum is usually transformed into rough endoplasmic reticulum by the addition of ribosomes during this phenotypic conversion. Frequently, the intermediate cells show an accumulation of neutral fat, often leading to a combination of glycogenosis and steatosis. Evidence of this sequence of cellular changes was originally provided by light- and electron-microscopic studies in rats exposed to chemical carcinogens or oncogenic viruses provided evidence for an early insulin-like (insulinomimetic) effect of these agents. This notion has been corroborated by a number of studies on hormonal hepatocarcinogenesis induced in diabetic rats and mice by local hyperinsulinemia.

The phenotype of preneoplastic FHG is not stable, but undergoes dramatic changes during progression to the benign and/or malignant neoplastic phenotype. Collectively, all types of specific focal hepatocellular lesions appearing during the preneoplastic phase in rodents have been termed foci of altered hepatocytes, and have been widely used as early indicators of neoplastic development in toxicologic pathology. The characteristic sequence of cellular changes starting with FHG follows an ordered pattern, passing through intermediate or mixed cell foci composed of glycogenotic, intermediate, and glycogen-poor basophilic (ribosome-rich) cell types, the latter corresponding to the typical cell type in poorly differentiated HCCs. Detailed morphological analysis of intermediate cell types at the light- and electron microscopic level has suggested that the hypertrophied smooth endoplasmic reticulum is usually transformed into rough endoplasmic reticulum by the addition of ribosomes during this phenotypic conversion. Frequently, the intermediate cells show an accumulation of neutral fat, often leading to a combination of glycogenosis and steatosis. Evidence of this sequence of cellular changes was originally provided by light- and electron-microscopic studies in rats exposed to chemical carcinogens or oncogenic viruses provided evidence for an early insulin-like (insulinomimetic) effect of these agents. This notion has been corroborated by a number of studies on hormonal hepatocarcinogenesis induced in diabetic rats and mice by local hyperinsulinemia.

The phenotype of preneoplastic FHG is not stable, but undergoes dramatic changes during progression to the benign and/or malignant neoplastic phenotype. Collectively, all types of specific focal hepatocellular lesions appearing during the preneoplastic phase in rodents have been termed foci of altered hepatocytes, and have been widely used as early indicators of neoplastic development in toxicologic pathology. The characteristic sequence of cellular changes starting with FHG follows an ordered pattern, passing through intermediate or mixed cell foci composed of glycogenotic, intermediate, and glycogen-poor basophilic (ribosome-rich) cell types, the latter corresponding to the typical cell type in poorly differentiated HCCs. Detailed morphological analysis of intermediate cell types at the light- and electron microscopic level has suggested that the hypertrophied smooth endoplasmic reticulum is usually transformed into rough endoplasmic reticulum by the addition of ribosomes during this phenotypic conversion. Frequently, the intermediate cells show an accumulation of neutral fat, often leading to a combination of glycogenosis and steatosis. Evidence of this sequence of cellular changes was originally provided by light- and electron-microscopic studies in rats exposed to chemical carcinogens or oncogenic viruses provided evidence for an early insulin-like (insulinomimetic) effect of these agents. This notion has been corroborated by a number of studies on hormonal hepatocarcinogenesis induced in diabetic rats and mice by local hyperinsulinemia.
exposed for the lifetime or for limited time periods to N-nitrosomorpholine[3,4]. And it has since been substantiated by a series of morphometric studies[14-18] and by similar observations in other rodent models of hepatocarcinogenesis elicited by several “genotoxic” and “non-genotoxic” chemicals[7,41], by local hyperinsulinemia[38], by hepadnaviridae[14,15], and by oncogenic transgenes[17,40]. Most recently, multiple FHG, more advanced types of foci of altered hepatocytes, hepatocellular adenomas and HCC indicative of such a sequence, including an intermediate steatosis, were also observed in a knock-out mouse model with a reduced expression of the mitochondrial protein frataxin, which is responsible for the inherited neurodegenerative disease Friedreich’s ataxia in humans[47].

The conversion of the highly differentiated glycogenotic clear or acidophilic to the de-differentiated glycogen-poor, basophilic (ribosome-rich) phenotype is associated with a fundamental metabolic switch characterized by a reduction in gluconeogenesis, an activation of the pentose phosphate pathway and the Warburg type of glycolysis as detailed elsewhere[7,24], and by an ever increasing cell proliferation which is inversely related to the gradual reduction of the glycogen initially stored in excess[44]. Based on these observations, Kopp-Schneider et al[49] developed the so-called color-shift model of hepatocarcinogenesis considering epigenetic changes in parenchymal colonies rather than multiple successive genomic mutations in single cells as the main cause of neoplastic cell conversion induced in the liver by exogenous oncogenic agents. The importance of epigenetic events in chemical hepatocarcinogenesis has been discussed by several authors previously[7,24], and has been emphasized in recent years by Pogribny et al[63].

Human hepatocarcinogenesis

In human pathology, the predominance of clear (glycogenotic) cells (Figure 1A and B) in a minor proportion of HCCs[6,5,4], comprising about 8% in 150 cases studied by Buchanan et al[5], and in many hepatocellular adenomas[6,5,4,5-46] is well known. A favorable prognosis of the clear-cell variant of HCC has been reported[57]. Sasaki et al[59] described two cases of clear-cell HCC associated with hypoglycemia and hypercholesterolemia, and postulated a disturbed glucose metabolism of the tumor tissue, directed to lipogenesis and/or gluconeogenesis. Acquired FHG has been considered a preneoplastic condition in humans[3]. This idea was supported by the fortuitous observation of FHG (clear-cell foci) in HCC-bearing livers of children suffering from different disorders[59,60] in women after long-term use of oral contraceptives[51], in about 12% of 95 males studied in a consecutive autopsy series in Finland[3,5], in patients with Crohn’s disease treated over years with azathioprine which is apparently also responsible for associated HCC development[59,60], and in a variety of other chronic liver diseases prone to develop HCC[6,53,64,65]. Special cases are patients with genetic hemochromatosis endowed with a high risk of developing HCC, which frequently show FHG excluding iron similar to the iron-resistant FHG observed in experimental hepatocarcinogenesis in rodents[57].

Particularly relevant are systematic histochemical and histological investigations on the phenotype and proliferation kinetics of foci and nodules of altered hepatocytes in more than 150 explanted and resected human livers with and without HCC[60,74,79]. The results suggest that foci of altered hepatocytes are proliferative preneoplastic lesions, mixed cell foci (frequently with “small cell change”) being more advanced than FHG (Figure 3), potentially transforming into nodules of altered hepatocytes, highly differentiated HCC containing glycogenotic clear and ground-glass hepatocytes (Figure 4), and eventually also glycogen-poor, basophilic HCC (Figure 1C)[60]. In keeping with these findings, clear-cell change, steatosis and small cell change have been considered histological features predicting malignant transformation in non-malignant hepatocellular nodules[59]. Analysis of clonality and chromosomal aberrations in nodules of altered hepatocytes microdissected from cirrhotic livers revealed...
a loss of chromosomal inactivation mosaicism in three large “regenerative” nodules and in all (12) nodules of altered hepatocytes with small cell change, indicating their neoplastic nature. Even among 60 nodules of altered hepatocytes without small cell change, almost 50% (29) were shown to be monoclonal, whereas FHG and 14 “regenerative” nodules were found to be polyclonal. Interestingly, Cai et al. using a similar approach to analyze focal nodal hyperplasia, the pathogenesis and neoplastic nature of which has been debated for decades, found that this lesion, as a whole, is polyclonal, but represents a cluster of nodules of altered hepatocytes, some of which are monoclonal harboring chromosomal aberrations as in hepatocellular adenomas. The lack of genomic alterations in fatty and clear-cell changes in HCC and precursor nodular lesions in cirrhotic livers emphasized by some authors, is in line with the polyclonal nature of many of these lesions, but in view of the increasing evidence for a decisive role of epigenetic events in the development and progression of human HCC, the findings by Laurent et al. do not argue against a preneoplastic nature for these cellular changes.

A pronounced hypertrophy of the smooth endoplasmic reticulum was discovered in biopsies from cirrhotic livers and liver cell carcinomas at the light and electron microscopic level (Figure 1B) almost half a century ago, and related to aberrations of glycogen metabolism including glycogenosis from the very beginning. The altered hepatocytes (Figures 1B and 4) were designated as “acidophilic” (or “eosinophilic”). Later on, Popper et al. found frequent association of this phenomenon with the expression of the hepatitis B surface antigen (HBsAg) localized in the lumen of hypertrophied smooth endoplasmic reticulum (Figure 5), and coined the term “ground glass hepatocyte” which has become an important diagnostic entity in chronic liver diseases elicited by HBV and has dominated the literature since then.

Irrespective of the expression of HBsAg, glycogenotic hepatocytes showing hypertrophy of the smooth endoplasmic reticulum (corresponding to GGH) have often been observed in human FHG, hepatocellular adenomas, and HCC and considered preneoplastic or highly differentiated neoplastic phenotypes. In 30 specimens of HBV-associated cirrhosis, GGH were identified in 17 of 25 showing HBsAg expression (Figure 5). Without mentioning any particular relationship to glycogen, others described GGH containing pre-S mutants in patients of HBV-associated cirrhosis, showing an accumulation of glycogen granules (long arrow) in the nucleus (N) and abundant smooth endoplasmic reticulum containing filamentous hepatitis B surface antigen (short arrows). M: Mitochondria; P: Peroxisome. Transmission electron microscopy, lead citrate. Bar: 1 μm.

An intriguing form of acquired hepatic glycogenosis was discovered by Mauriac et al. in a child with poorly controlled insulin-dependent diabetes type 1. The excessive storage of glycogen resulted in hepatomegaly and was associated with growth retardation, delayed puberty, and a cushingoid face (named after Harvey Williams Cushing). Many additional cases resembling Mauriac's...
syndrome, especially with respect to hepatic glycogenosis, have subsequently been described. Torbenson et al. emphasized that this "glycogenic hepatopathy" is an underrecognized complication of diabetes mellitus. In addition to children with insulin-dependent diabetes, hepatomegaly due to glycogen storage has also been recognized in adults afflicted by non-insulin-dependent diabetes type 2 with poor glycemic control.

To the best of my knowledge neither GGH nor a relationship of glycogenic hepatopathy to the evolution of HCC in patients suffering from diabetes mellitus has hitherto been described, but it might be timely to take a closer look into this possibility.

The high risk of diffuse glycogenosis characterizing inborn hepatic glycogen storage diseases, particularly glycogen storage disease type 1 due to glucose-6-phosphatase deficiency, developing into hepatocellular adenomas potentially progressing to HCC has been well established since the first description of a case by Mason et al. In the meantime, hepatocellular neoplasms are now known to also be occasionally found in other types of glycogen storage disease, namely glycogenoses type III (amylo-1,6-glucosidase deficiency), type IV (α-1,4-glucanα-1,4-glucan-6-glycosyl transferase deficiency) and type VI (phosphorylase deficiency, Hersh syndrome). I am not aware of any explicit report of GGH in inborn glycogenoses, but from the findings outlined it is obvious that a more detailed comparison of the molecular, metabolic, and morphological aspects of hepatocarcinogenesis in inborn and acquired (focal) hepatic glycogenosis should help to further elucidate the pathogenesis of hepatocellular neoplasms, and facilitate development of appropriate measures for the prevention and therapy of this frequently fatal disease. From a diagnostic point of view it appears to be of great advantage to use the characteristic changes in hepatocellular glycogen content during hepatocarcinogenesis as simple "superficial" histochemical markers of complex basic aberrations at the molecular and metabolic level.

ACKNOWLEDGMENTS

I am indebted to Qin Su, MD, PhD, Professor, Shanghai, China, and Malcolm Moore, PhD, Nagoya, Japan, for critical reading of the manuscript.

REFERENCES

1. Callea F, Giovannoni I, Stefanelli M, Villanacci V, Lorini G, Franchalanci P. Glycogenetic hepatic carcinoma with glycogen-ground-glass hepatocytes: histological, histochemical and microbiochemical characterization of the novel variant. Histopathology 2012; 60: 1010-1012
2. Bannasch P, Hacker HJ, Klimk F, Mayer D. Hepatocellular glycogenosis and related pattern of enzymatic changes during hepatocarcinogenesis. Adv Enzyme Regul 1984; 22: 97-121
3. Bannasch P, Mueller HA. [Light microscopic studies on the effects of n-nitrosomorpholine on the liver of rats and mice]. Arzneimittel-Forschung 1964; 14: 805-814
4. Bannasch P. The cytoplasm of hepatocytes during carcinogenesis. Electron and light microscopic investigations of the nitrosomorpholine-intoxicated rat liver. In: Rentchnick P, editor. Recent Results in Cancer Research. Vol. 19. Heidelberg: Springer, 1968: 1-100
5. Klinge O, Bannasch P. [The increase of smooth endoplasmic reticulum in hepatocytes of human liver punctates]. Verh Dtsch Ges Pathol 1968; 52: 568-573
6. Bannasch P, Klinge O. [Hepatocellular glycogenosis and hepatoma development in man]. Virchows Arch A Pathol Pathol Anat 1971; 352: 157-164
7. Bannasch P. Pathogenesis of hepatocellular carcinoma: sequential cellular, molecular, and metabolic changes. Prog Liver Dis 1996; 14: 161-197
8. Bannasch P, Schröder CH. Tumors and tumor-like lesions of the liver and biliary tract: pathogenesis of primary liver tumors. In: MacSween RNM, Burt AD, Portman BC, Ishak KG, Schauer PJ, Anthony PP, editors. Pathology of the Liver. 4th ed. London: Churchill Livingstone, 2002: 777-825
9. Bannasch P, Mayer D, Hacker HJ. Hepatocellular glycogenosis and hepatocarcinogenesis. Biochim Biophys Acta 1980; 605: 217-245
10. Porter KR, Bruni C. An electron microscope study of the early effects of 3'-Me-DAB on rat liver cells. Cancer Res 1959; 19: 997-1009
11. Bruni C. Hylane degeneration of rat liver cells studied with the electron microscope. Lab Invest 1960; 9: 209-215
12. Steiner JW, Miyai K, Phillips MJ. Electron microscopy of membrane-particle arrays in liver cells of ethionine-intoxicated rats. Am J Pathol 1964; 44: 169-214
13. Carter JH, Carter HW, Deddens JA, Hurst BM, George MH, DeAngelo AB. A 2-year dose-response study of lesion sequences during hepatocellular carcinogenesis in the male B6C3F1 mouse given the drinking water chemical dichlormethane-acetic acid. Environ Health Perspect 2003; 111: 53-64
14. Bannasch P, Khoshkhou NJ, Hacker HJ, Radaeva S, Mrozek M, Zillmann U, Kopp-Schneider A, Haberkorn U, Elgas M, Tolle T. Synergistic hepatocarcinogenic effect of hepadderivational infection and dietary aflatoxin B1 in woodchucks. Cancer Res 1995; 55: 3318-3330
15. Radaeva S, Li Y, Hacker HJ, Burger V, Kopp-Schneider A, Bannasch P. Hepadnaviral hepatocarcinogenesis: in situ visualization of viral antigens, cytoplasmic compartmentation, enzymic patterns, and cellular proliferation in preneoplastic hepatocellular lineages in woodchucks. J Hepatol 2000; 33: 580-600
16. Xu C, Yamamoto T, Zhou T, Aldrich CE, Frank K, Cullen JM, Jillbert AR, Mason WS. The liver of woodchucks chronically infected with the woodchuck hepatitis virus contains foci of virus core antigen-negative hepatocytes with both altered ultrastructural alterations within hyperplastic liver nodules
17. Toshkov I, Chisari FV, Bannasch P. Hepatic preneoplasia in hepatitis B virus transgenic mice. Hepatology 1994; 20: 1162-1172
18. Dombrowski F, Bannasch P, Pfeifer U. Hepatocellular neoplasms induced by low-number pancreatic islet transplants in streptozotocin diabetic rats. Am J Pathol 1997; 150: 1071-1087
19. Dombrowski F, Mathieu C, Evert M. Hepatocellular neoplasms induced by low-number pancreatic islet transplants in autoimmune diabetic BB/Pd rats. Cancer Res 2006; 66: 1833-1843
20. Bannasch P. Cytology and cyogenesis of neoplastic (hyperplastic) hepatic nodules. Cancer Res 1976; 36: 2555-2562
21. Bannasch P, Hesse J, Angerer H. [Hepatocellular glycogenesis and the genesis of so-called hyperplastic liver nodules in thiacetamide intoxicated rats (author’s transl)]. Virchows Arch B Cell Pathol 1974; 17: 29-50
22. Faber E. Hyperplastic liver nodules. In: Busch H, editor. Methods Cancer Research. Vol. 7. New York: Academic Press, 1973: 345-379
23. Merkow LF, Epstein SM, Slifkin M, Faber E, Pardo M. Ultrastructural alterations within hyperplastic liver nodules
induced by ethionine. Cancer Res 1971; 31: 174-178

24 Bannasch P, Klimke F, Mayer D. Early bioenergetic changes in hepatocarcinogenesis: preneoplastic phenotypes mimic responses to insulin and thyroid hormone. J Bioenerg Biomembr 1997; 29: 303-313

25 Gossen W, Friedrich-Freska H. [Histological studies on glucose-6-phosphatase in the rat liver during carcinization by nitrosamino.]. Z Naturforsch B 1964; 19: 862-863

26 Epstein S, Ito N, Merkov L, Farber E. Cellular analysis of liver carcinogenesis: the induction of large hyperplastic nodules in the liver with 2-fluorenylacetaldehyde or ethionine and some aspects of their morphology and glycogen metabolism. Cancer Res 1967; 27: 1702-1711

27 Friedrich-Freska H, Gossen W, Börner P. [Histochromatic investigations of carcinogenesis in rat liver after continuous application of diethylnitrosamine.]. Z Krebsforsch 1969; 72: 226-239

28 Bianchi L. Glycogen storage disease I and hepatocellular tumors. Eur J Pediatr 1993; 152 Suppl 1: S63-570

29 Mutel E, Abdul-Wahed A, Ramamonsjana N, Stefanetti A, Houbiron D, Cavassila S, Filileu F, Beul O, Gautier-Stein A, Penhoat G, Mitieux G, Rajas F. Targeted deletion of liver glucose-6-phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas. J Hepatol 2011; 54: 529-537

30 Moore MA, Tatatemu M. Are the Phenotypes of Prenoeoplast-ic Lesions of Significance for Cancer Prevention? 1. Liver. Asian Pac J Cancer Prev 2001; 2: 27-42

31 Hacker HJ, Moore MA, Mayer D, Bannasch P. Correlative histomorphology of some enzymes of carbohydrate metabolism in preneoplastic and neoplastic lesions in the rat liver. Carcinogenesis 1982; 3: 1265-1272

32 Evert M, Schneider-Stock R, Dombrowski F. Overexpression of fatty acid synthase in chemically and hormonally induced hepatocarcinogenesis of the rat. Lab Invest 2005; 85: 99-108

33 Williams GM, Klaiber M, Parker SE, Farber E. Nature of early appearing, carcinogen-induced liver lesions to iron ac-cumulation. J Natl Cancer Inst 1976; 57: 157-165

34 Klimke F, Bannasch P. Isoenzyme shift from glucokinase to hexokinase is not an early but a late event in hepatocarcino-genesis. Carcinogenesis 1993; 14: 1857-1861

35 Nehrbs D, Klimke F, Bannasch P. Overexpression of insulin receptor substrate-1 emerges early in hepatocarcinogenesis and elicits preneoplastic hepatic glyco-genosis. Am J Pathol 1998; 152: 341-345

36 Aleem E, Nehrbs D, Klimke F, Mayer D, Bannasch P. Upregulation of the insulin receptor and type I insulin-like growth factor receptor are early events in hepatocarcino-genesis. Toxicol Pathol 2011; 39: 524-543

37 Scharf JG, Ramadottt D, Dombrowski F. Analysis of the IGF axis in preneoplastic hepatic foci and hepatocellular neoplasms developing after low-number pancreatic islet neoplas-tization into the livers of streptozotocin diabetic rats. Lab Invest 2000; 80: 1399-1411

38 Evert M, Sun J, Picher S, Slavova N, Schneider-Stock R, Dombrowski F. Insulin receptor, insulin receptor substrate-1, Ral-1, and Mek-1 during hormonal hepatocarcinogenesis by intrahepatic pancreatic islet transplantation in diabetic rats. Cancer Res 2004; 64: 8093-8100

39 Evert M, Calvisi DF, Evert K, De Murtas V, Gasparetti G, Mattu S, Destefanis G, Ladu S, Zimmermann A, Delogu S, Thiel S, Thiele A, Ribback S, Dombrowski F. V-AKT murine thymoma viral oncogene homolog/mamalian target of rapamycin activation induces a module of metabolic changes contributing to growth in insulin-induced hepatocarcinogenesis. Hepatology 2012; 55: 1473-1484

40 Histologic typing of liver tumors of the rat. Institute of Labo-ratory Animal Resources, National Research Council, National Academy of Sciences, Washington, D.C. J Natl Cancer Inst 1980; 64: 177-206

41 Bannasch P. Prenoeplastic lesions as end points in carcino-genicity testing. I. Hepatic preneoplasia. Carcinogenesis 1986; 7: 689-695

42 Bannasch P, Haertel T, Su Q. Significance of hepatic preneoplasia in risk identification and early detection of neoplasia. Toxicol Pathol 2003; 31: 134-139

43 Moore MA, Mayer D, Bannasch P. The dose dependence and sequential appearance of putative preneoplastic popula-tions induced in the rat liver by long-term experiments with N-nitrosomorpholine. Carcinogenesis 1982; 3: 1429-1436

44 Enzmann H, Bannasch P. Potential significance of pheno-typic heterogeneity of focal lesions at different stages in he-patocarcinogenesis. Carcinogenesis 1987; 8: 1607-1612

45 Weber E, Bannasch P. Dose and time dependence of the cel-lular phenotype in rat hepatic preneoplasia and neoplasia in-duced by continuous oral exposure to N-nitrosomorpholine. Carcinogenesis 1994; 15: 1235-1242

46 Kim CM, Koike K, Saito I, Miyamura T, Jay G. HBs gene of hepatitis B virus induces liver cancer in transgenic mice. Na-ture 1991; 351: 317-320

47 Thierbach R, Florian S, Wolfurk K, Voigt A, Drewes G, Blume U, Bannasch P, Ristow M, Steinberg P. Specific altera-tions of carbohydrate metabolism are associated with hepa-tocarcinogenesis of a transgenically impaired mice. Hum Mol Genet 2012; 21: 656-663

48 Zerban H, Radig S, Kopp-Schneider A, Bannasch P. Cell proliferation and cell death (apoptosis) in hepatic preneopla-sia and neoplasia are closely related to phenotypic cellular diversity and instability. Carcinogenesis 1994; 15: 2467-2473

49 Kopp-Schneider A, Portier C, Bannasch P. A model for he-patocarcinogenesis treating phenotypical changes in focal hepato-cellular lesions as epigenetic events. Math Biosci 1998; 148: 181-204

50 Ghoshal AK, Farber E. The induction of liver cancer by di-etary deficiency of choline and methionine without added carcinogens. Carcinogenesis 1984; 5: 1367-1370

51 Pogribny IP, Ross SA, Wise C, Pogribna M, Jones EA, Tryndyak VP, James SJ, Dragan VP, Poirier LA. Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat Res 2006; 593: 80-87

52 Pogribny IP, Shpyyleva SI, Mushkelishvili L, Bagnyukova TV, James SJ, Beland FA. Role of DNA damage and altera-tions in cytokine DNA methylation in rat liver carcinogen-esis induced by a methyl-deficient diet. Mutat Res 2009; 669: 56-62

53 Altman HW. Hepatic neoplasms. Pathol Res Pract 1994; 190: 513-577

54 Buchanan TF, Huvos AG. Clear-cell carcinoma of the liver. A clinicopathologic study of 13 patients. Am J Clin Pathol 1974; 61: 529-539

55 Garancis JC, Tang T, Panares R, Jurevics I. Hepatic ad-e-noma. Biochemical and electron microscopic study. Cancer 1969; 24: 560-568

56 Hamperl H. "Adrenal rest-tumors" (hypernephromas) of the liver. Z Krebsforsch 1970; 74: 310-317

57 Wu PC, Lai CL, Lam KC, Lok AS, Lin HJ. Clear cell carcino-ma of liver. An ultrastructural study. Cancer 1983; 52: 504-507

58 Sasaki K, Okuda S, Takahashi M, Sasaki M. Hepatic clear cell carcinoma associated with hyperphosphatemia and hypercho-listerolemia. Cancer 1981; 47: 820-822

59 Balazs M. [Light and electron microscopic examination of a case of primary liver carcinoma in an infant (author's trans)]. Zentralbl Allg Pathol 1976; 120: 3-13

60 Cain H, Kraus B. [Developmental anomalies of the liver and carcinoma of the liver in infants and children (author's trans)]. Dtsch Med Wochenschr 1977; 102: 505-509

61 Fischer G, Hartmann H, Droese M, Schauer A, Bock KW. Histochomical and immunohistochemical detection of putative preneoplastic liver foci in women after long-term use of oral contraceptives. Virchows Arch B Cell Pathol Incl Mol Pathol 1986; 50: 321-337
Bannasch P. Glycogenotic HCC with glycogen-ground-glass hepatocytes

62 Karhunen PJ, Penttilä A. Preneoplastic lesions of human liver. Hepatogastroenterology 1987; 34: 10-15
63 Cattan S, Wendum D, Chazouillères O, Schmitz J, Gendre JP. Hepatocellular carcinoma and focal hepatic glycogenosis after prolonged azathioprine therapy. Hum Pathol 2000; 31: 874-876
64 Klein WM, Molimenti EP, Colombani PM, Grover DS, Schwarz KB, Boitnott J, Torbenson MS. Primary liver carcinoma arising in people younger than 30 years. Am J Clin Pathol 2005; 124: 512-518
65 Chen SC, Cummings OW, Hartley MP, Filomena CA, Cho WK. Hepatocellular carcinoma occurring in a patient with Crohn’s disease treated with both azathioprine and infliximab. Dig Dis Sci 2006; 51: 952-955
66 Ishida M, Naka S, Shiomi H, Tsujikawa T, Andoh A, Nakamura T, Takechi Y, Uemura K, Okabe H. Hepatocellular carcinoma occurring in a Crohn’s disease patient. Pathol Int 2009; 59: 492-496
67 Bannasch P, Shiomi H, Tsujikawa T, Andoh A, Nakamura T, Takechi Y, Uemura K, Okabe H. Hepatocellular carcinoma occurring in a young Crohn’s disease patient. Virchows Arch 2017; 473: 151-157
68 Mori H, Tanaka T, Sugi T, Takahashi M, Williams GM. DNA content of liver cell nuclei of N-2-fluorenylacetamide-induced altered foci and neoplasms in rats and human hyperplastic foci. J Natl Cancer Inst 1982; 69: 1277-1282
69 Deugnier YM, Charalambous P, Le Quilleuc D, Turlin B, Searle J, Brisset P, Powell LW, Halliday JW. Preneoplastic significance of hepatic iron-free foci in genetic hemochromatotic livers. Hepatogastroenterology 1982; 29: 49-51
70 Mori H, Tanaka T, Sugi T, Takahashi M, Williams GM. DNA content of liver cell nuclei of N-2-fluorenylacetamide-induced altered foci and neoplasms in rats and human hyperplastic foci. J Natl Cancer Inst 1982; 69: 1277-1282
71 Su Q, Benner A, Hofmann WJ, Otto G, Pichlmayr R, Bannasch P. Human hepatic preneoplasia: phenotypes and proliferation kinetics of foci and nodules of altered hepatocytes and their relationship to liver cell dysplasia. Virchows Arch 1997; 431: 391-406
72 Evert M, Dombrowski F. [Hepatocellular carcinoma in the non-cirrhotic liver]. Pathologie 2008; 29: 47-52
73 Hirota N, Hamazaki M, Williams GM. Resistance to iron accumulation and presence of hepatitis B surface antigen in preneoplastic and neoplastic lesions in human hemochromatotic livers. Hepatogastroenterology 1982; 29: 49-51
74 Degnign YM, Charalambous P, Le Quilleuc D, Turlin B, Searle J, Brisset P, Powell LW, Halliday JW. Preneoplastic significance of hepatic iron-free foci in genetic hemochromatosis: a study of 185 patients. Hepatology 1993; 18: 1365-1369
75 Sá Cunha A, Blanc JF, Trillard H, De Ledinghen V, Balaud C, Bioulac-Sage P. Hypervascular nodule in a fibrotic area with preserved liver architecture. Comp Hepatol 2005; 4: 5
76 Bannasch P, Jahn U, Hacker H, Su Q, Hoffmann W, Pichlmayr R, Otto G. Focal hepatic glycogenosis. Int J Oncol 1997; 10: 261-268
77 Su Q, Bannasch P. Relevance of hepatic preneoplasia for human hepatocarcinogenesis. Toxicol Pathol 2003; 31: 126-133
78 Terasaki S, Kaneko S, Kobayashi K, Nomonura A, Nakamura Y. Histological features predicting malignant transformation of nonmalignant hepatocellular nodules: a prospective study. Gastroenterology 1998; 115: 1216-1222
79 Gong L, Li YH, Su Q, Chu X, Zhang W. Clonality of nodular lesions in liver cirrhosis and chromosomal abnormalities in monoclonal nodules of altered hepatocytes. Histopathology 2010; 56: 589-599
80 Cai YR, Gong L, Teng XY, Zhang HT, Wang CF, Wei GL, Guo L, Ding F, Liu ZH, Pan QJ, Su Q. Clonality and allelo-type analyses of focal nodular hyperplasia compared with hepatocellular adenoma and carcinoma. World J Gastroenterol 2009; 15: 4695-4700
81 Laurent C, Guadilla A, Foroni L, Bioulac-Sage P, Balabaud C, Dhillon AP. Genomic alteration is not associated with fatty and clear cell change in hepatocellular carcinomas and its precursor nodular lesions in cirrhotic liver. Hepatol Res 2006; 36: 40-47
82 Pogribny IP, Rusyn I. Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 2012 Feb 2 [Epub ahead of print]
83 Hadziyannis S, Gerber MA, Vissoulis C, Popper H. Cytoplasmic hepatitis B antigen in “ground-glass” hepatocytes of carriers. Arch Pathol 1973; 96: 327-330
84 Popper H. The ground glass hepatocyte as a diagnostic hint. Hum Pathol 1975; 6: 517-520
85 Su IW, Wang HC, Wu HC, Huang WY. Ground glass hepatocytes contain pre-S mutants and represent preneoplastic lesions in chronic hepatitis B virus infection. J Gastroenterol Hepatol 2008; 23: 1169-1174
86 Wills EJ. Ground glasslike hepatocytes produced by glycogen-membrane complexes (“glycogen bodies”). Ultrastuct Pathol 1992; 16: 491-503
87 Su Q, Zerban H, Otto G, Bannasch P. Cytokeratin expression is reduced in glycogenic clear hepatocytes but increased in ground-glass cells in chronic human and woodchuck hepatitis viral infection. Hepatology 1998; 28: 347-359
88 Wisse J, Boitnott J, Haas M, Anders RA, Hart J, Lewis JT, Abraham SC, Torbenson MS, Bioulac-Sage P. Glycogen pseudoground glass change in hepatocytes. Am J Surg Pathol 2006; 30: 1085-1090
89 Bejarano MA, Garcia MT, Rodriguez MM, Ruiz P, Tzakis AG. Liver glycogen bodies: ground-glass hepatocytes in transplanted patients. Virchows Arch 2006; 459: 539-545
90 Mauzac P. Gros ventre, hepatomegalie, troubles de la croissance chez les en enfants diabetiques traits depuis plusieurs annees par l’insuline. Gaz Hebd Sci Med Bordeaux 1930; 26: 402-404
91 Evans RW, Littler TR, Pemberton HS. Glycogen storage in the liver in diabetes mellitus. J Clin Pathol 1955; 8: 110-113
92 Chatila R, West AB. Hepatomegaly and abnormal liver tests due to glycogenosis in adults with diabetes. Medicine (Baltimore) 1996; 75: 327-333
93 Torbenson M, Chen YY, Brunt E, Cummings OW, Gottfried M, Jakate S, Liu YC, Yeh MM, Ferrell L. Glycogen hepatocytic atrophy: an underrecognized hepatic complication of diabetes mellitus. Am J Surg Pathol 2006; 30: 508-513
94 Vaisithana H, Gulati PD, Damodaran VN. Observations on the structure and function of liver in Indian diabetics. Diabetologia 1970; 6: 21-26
95 Tsujimoto T, Takano M, Nishiofuku M, Yoshiji H, Matsumura Y, Kuriyama S, Uemura M, Okamoto S, Fukui H. Rapid onset of glycogen storage hepatomegaly in a type-2 diabetic patient after a massive dose of long-acting insulin and large doses of glucose. Intern Med 2006; 45: 469-473
96 Wolfsdorf JI, Weintraub D. Glycogen storage diseases. Rev Endocr Metab Disord 2003; 4: 95-102
97 Mason HH, Andersen DH. Glycogen disease of the liver (von Gierke’s disease) with hepatoma: case report with metabolic studies. Pediatrics 1955; 16: 785-800
98 Alshak NS, Coccini J, Podesta L, van de Velde R, Makowka L, Rosenthal P, Geller SA. Hepatocellular adenoma in glycogen storage disease type IV. Arch Pathol Lab Med 1994; 118: 88-91
99 Labrune P, Triolo P, Duvahié L, Chevalier P, Odievre M. Hepatocellular adenomas in glycogen storage disease type I and III: a series of 43 patients and review of the literature. J Pediatr Gastroenterol Nutr 1997; 24: 276-279
100 Demo E, Frush D, Gottfried M, Koepeke J, Boney A, Baidi M, Ytsein JT, Kishnani PS. Glycogen storage disease type III-hepatocellular carcinoma: a long-term complication? J Hepatol 2007; 46: 492-498
101 Manzia TM, Angelico R, Toti L, Cillis A, Ciano P, Orlando G, Anselmo A, Angelico M, Tisone G. Glycogen storage disease type Ia and VI associated with hepatocellular carcinoma: two case reports. Transplant Proc 2011; 43: 1181-1183

S- Editor Xiong L L- Editor A E- Editor Xiong L