A W^n_2-Theory of Stochastic Parabolic Partial Differential Systems on C^1-domains

Kyeong-Hun Kim · Kijung Lee

Received: 11 August 2011 / Accepted: 12 July 2012 / Published online: 11 August 2012
© Springer Science+Business Media B.V. 2012

Abstract In this article we present a W^n_2-theory of stochastic parabolic partial differential systems. In particular, we focus on non-divergent type. The space domains we consider are \mathbb{R}^d, \mathbb{R}^d_+ and eventually general bounded C^1-domains Ω. By the nature of stochastic parabolic equations we need weighted Sobolev spaces to prove the existence and the uniqueness. In our choice of spaces we allow the derivatives of the solution to blow up near the boundary and moreover the coefficients of the systems are allowed to oscillate to a great extent or blow up near the boundary.

Keywords Stochastic parabolic partial differential systems · Weighted Sobolev spaces

Mathematics Subject Classifications (2010) Primary 60H15 · 35R60; Secondary 35K45 · 35K50

The research of this authors was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Kyeong-Hun Kim, 20120005158) and (Kijung Lee, 2011-0005597).

K.-H. Kim
Department of Mathematics, Korea University, Seoul, 136-701, South Korea
e-mail: kyeonghun@korea.ac.kr

K. Lee
Department of Mathematics, Ajou University, Suwon, 443-749, South Korea
e-mail: kijung@ajou.ac.kr
1 Introduction

In this article we consider the following general stochastic parabolic partial differential system:

\[du^k = \left(a_{kr}^{ij} u_{x^i}^l + b_{kr}^l u_{x^l}^j + c_{kr} u^l + f^k \right) dt + \left(\sigma_{kr,m}^{ij} u_{x^i}^l + \nu_{kr,m} u_{x^l}^j + g_{kr,m}^k \right) dw^m_t, \quad t > 0, \ x \in \mathcal{O} \subset \mathbb{R}^d \]

\(u^k(0) = u^k_0, \) \hspace{1cm} (1.1)

where \(i, j = 1, 2, \ldots, d \) and \(k, r = 1, 2, \ldots, d \) and we used the summation convention on the repeated indices \(i, j, r. \) The system 1.1 models the interactions among \(d \) diffusive quantities with other physical phenomena like convection, internal source or sink, and randomness caused by lack of information. Moreover, the countable sum of the stochastic integrals against independent one-dimensional Brownian motions \(\{ w^m : m = 1, 2, \ldots \} \) enables us to include the stochastic integral against a cylindrical Brownian motion in Eq. 1.1 (see Section 8.2 of [12]). The solution \(u = (u_1, u_2, \ldots, u_d) \) not only depends on \(t > 0, x \in \mathcal{O}, \) but also depends on \(\omega \) in a probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t; t \geq 0\}, P) \) on which \(w^m \) are defined. The coefficients \(a_{kr}^{ij}, b_{kr}^l, c_{kr}, \sigma_{kr,m}^{ij}, \nu_{kr,m} \) also depend on \((\omega, t, x) \). The detailed formulation of Eq. 1.1 follows in the subsequent sections.

The concrete motivations of studying (Eq. 1.1) can be easily found in the literature. If \(d_1 = 1, \) Eq. 1.1 is a stochastic partial differential equation (SPDE) of parabolic type. Such equations arise in many applications of probability theory (see [12] and [23]). For instance, the conditional density in nonlinear filtering problems for a partially observable diffusion process obeys a SPDE and the density of a super-diffusion process also satisfies a SPDE when the dimension of the space domain is 1. If \(d_1 = 3, \) the motion of a random string can be modeled by a stochastic parabolic partial differential system (see [2] and [22]).

General \(L_p \)-theory with \(p \geq 2 \) for stochastic parabolic equations (not systems) has been well studied. An \(L_p \)-theory of SPDEs with space domain \(\mathbb{R}^n \) was first introduced by Krylov in [12] (cf. [14] for \(L_2 \)-theory), and since then the results were extended for SPDEs defined on arbitrary \(C^1 \) domains \(\mathcal{O} \) in \(\mathbb{R}^d \) by Krylov, his collaborators and many other mathematicians (see, for instance, [5, 6, 15, 16, 18] and references therein). On the contrary \(L_p \)-theory of general systems of type (Eq. 1.1) is not available in the literature except \(L_p \)-theory of the system on \(\mathbb{R}^d \) with \(a_{kr}^{ij} = a^{ij} \) and \(\sigma_{kr}^{ij} = \sigma^{ij} \) (see, for instance, [20, 21] and the reference therein).

Our goal in this article is to prove unique solvability of the systems of type (Eq. 1.1) in Sobolev spaces with weights. It is known that unless certain compatibility conditions (see, for instance, [1]) are fulfilled, the second and higher derivatives of solutions blow up near the boundary (see [14]). Hence, we measure this blow-up by using appropriate weights.

We extend the results for single equations in [5, 7, 12, 15], and [16] to the case of the systems under the algebraic condition 2.3 for the the leading coefficients \(a_{kr}^{ij}, \sigma_{kr,m}^{ij} \) and very minimal smoothness conditions for the coefficients. Under these assumptions \(a_{kr}^{ij}, \sigma_{kr,m}^{ij} \) are allowed to oscillate to a great extent near the boundary,
and b^{i}, c_{kr}, $v_{kr,m}$ may blow up fast near the boundary. For instance, for the case $d = d_{1} = 1$ with the space domain \mathbb{R}_{+} we allow $a := a_{11}^{1}$ to behave like $2 + \cos |\ln x|^{d}$ near $x = 0$, where $\alpha \in (0, 1)$ (see Remark 4.1). In this case the oscillation of $a(t, x)$ increases to infinity as x approaches the boundary.

For the stability of the numerical solution of Eq. 1.1, W_{2}^{1}-theory may be enough in most cases. But, we are interested in the regularity of the solutions and we are aiming at W_{p}^{n} theory. However, unlike the results for single equations in [5, 7, 12], and [16], we were able to obtain only W_{2}^{n}-estimates instead of W_{p}^{n}-estimates due to many technical difficulties at this point. For instance, the proofs of Lemmas 38 and 39 below are not working for $p > 2$. Nevertheless, we believe that W_{2}^{n}-theory of the system is a main basis for W_{p}^{n}-theory. The evidences are the results for single equations. For instance, in [9] W_{p}^{n}-theory is established based on Hardy-Littlewood(HL) theorem, Fefferman-Stein(FS) theorem, and W_{2}^{n}-theory. In the future we plan to to develop W_{p}^{n}-theory of the system 1.1 by constructing weighted version of HL and FS theorems and using the result in this article.

The organization of this article is as follows. Section 2 handles the Cauchy problem. In Section 3 we prove the result with space domain \mathbb{R}_{+}^{d} and in Section 4 we finally prove the results on any bounded C^{1}-domains.

In this article \mathbb{R}_{+}^{d} stands for the Euclidean space of points $x = (x^{1}, \ldots, x^{d})$, $\mathbb{R}_{+}^{d} = \{x \in \mathbb{R}^{d} : x^{1} > 0\}$ and $B_{r}(x) := \{y \in \mathbb{R}^{d} : |x - y| < r\}$. For a function $u(x)$ we denote

$$u_{x^{i}} = \frac{\partial u}{\partial x^{i}} = D_{i}u, \quad D^{\beta}u = D_{1}^{\beta_{1}} \cdots D_{d}^{\beta_{d}}u, \quad |\beta| = \beta_{1} + \cdots + \beta_{d}$$

for the multi-indices $\beta = (\beta_{1}, \ldots, \beta_{d})$, $\beta_{i} \in \{0, 1, 2, \ldots\}$. By $c = c(\cdots)$ or $N = N(\cdots)$ we mean that the constant c or N depends only on what are in parenthesis. Throughout the article, for functions depending on ω, t, x, the argument $\omega \in \Omega$ will be omitted.

2 The System with the Space Domain $\mathcal{O} = \mathbb{R}^{d}$

In this section we develop a W_{2}^{n}-theory of the Cauchy problem with the system 1.1. For this we don’t need weights yet since we don’t have a boundary.

Let (Ω, \mathcal{F}, P) be a complete probability space and $(\mathcal{F}_{t} : t \geq 0)$ be a filtration such that \mathcal{F}_{0} contains all P-null sets of Ω. By \mathcal{D} we denote the predictable σ-algebra on $\Omega \times (0, \infty)$. Let $\{w_{t}^{m}\}_{m=1}^{\infty}$ be independent one-dimensional (\mathcal{F}_{t})-adapted Wiener processes defined on (Ω, \mathcal{F}, P) and $C_{0}^{\infty} := C_{0}^{\infty}(\mathbb{R}^{d}; \mathbb{R}^{d})$ denote the set of all \mathbb{R}^{d}-valued infinitely differentiable functions with compact support in \mathbb{R}^{d}. By \mathcal{D} we denote the space of \mathbb{R}^{d}-valued distributions on C_{0}^{∞}; precisely, for $u \in \mathcal{D}$ and $\phi \in C_{0}^{\infty}$ we define $(u, \phi) \in \mathbb{R}_{+}^{d}$ with components $(u, \phi)^{k} = (u^{k}, \phi^{k}), k = 1, \ldots, d_{1}$. Here, each u^{k} is a usual \mathbb{R}-valued distribution defined on $C_{0}^{\infty}(\mathbb{R}^{d}; \mathbb{R})$.

We define $L_{p} = L_{p}(\mathbb{R}^{d}; \mathbb{R}^{d})$ as the space of all \mathbb{R}^{d}-valued functions $u = (u^{1}, \ldots, u^{d})$ satisfying

$$\|u\|_{L_{p}} := \sum_{k=1}^{d_{1}} \|u^{k}\|_{L_{p}(\mathbb{R}^{d})} < \infty.$$
Let $p \in [2, \infty)$ and $\gamma \in (-\infty, \infty)$. We define the space of Bessel potential $H^\gamma_p = H^\gamma_p(\mathbb{R}^d; \mathbb{R}^{d1})$ as the space of all distributions u such that $(1 - \Delta)^{-\gamma/2}u \in L_p$, where we define each component of it by

$$(1 - \Delta)^{-\gamma/2}u^k = (1 - \Delta)^{-\gamma/2}u^k$$

and the operator $(1 - \Delta)^{-\gamma/2}$ is defined by

$$(1 - \Delta)^{-\gamma/2}f = \text{the inverse Fourier transform of } (1 + |\xi|^2)^{\gamma/2} \mathcal{F}(f)(\xi)$$

with $\mathcal{F}(f)$ the Fourier transform of f. The norm is given by

$$\|u\|_{H^\gamma_p} := \|(1 - \Delta)^{-\gamma/2}u\|_{L_p}.$$

Then, H^γ_p equipped with the given norm is a Banach space and C_0^∞ is dense in H^γ_p (see [24]). For non-negative integer $\gamma = 0, 1, 2, \cdots$, it turns out that

$$H^\gamma_p = W^\gamma_p := \{u : D^\alpha u \in L_p, \forall \alpha, |\alpha| \leq \gamma\}.$$

It is well known that the first order differentiation operators, $\partial_i : H^\gamma_p(\mathbb{R}^d; \mathbb{R}) \to H^\gamma_p^{-1}(\mathbb{R}^d; \mathbb{R})$ given by $u \to u_{\xi^i}$ ($i = 1, 2, \cdots, d$), are bounded. On the other hand, for $u \in H^\gamma_p(\mathbb{R}^d; \mathbb{R})$, if $\text{supp}(u) \subset (a, b) \times \mathbb{R}^{d-1}$ with $-\infty < a < b < \infty$, we have

$$\|u\|_{H^\gamma_p(\mathbb{R}^d; \mathbb{R})} \leq c(d, \gamma, a, b)\|u_x\|_{H^{\gamma-1}_p(\mathbb{R}^d; \mathbb{R})}$$

(see, for instance, Remark 1.13 in [13]).

By ℓ_2 we denote the set of all real-valued sequences $e = (e_1, e_2, \cdots)$ with the inner product $(e, f)_{\ell_2} = \sum_{m=1}^{\infty} e_m f_m$ and the norm $|e|_{\ell_2} := (e, e)_{\ell_2}^{1/2}$. If $g = (g^1, g^2, \cdots, g^{d1})$ and each g^k is an ℓ_2-valued function, then we define

$$\|g\|_{H^\gamma_p(\ell_2)}^p := \sum_{k=1}^{d1} \|(1 - \Delta)^{\gamma/2}g^k\|_{\ell_2}^p.$$

Let $\tilde{\mathcal{P}}$ denote the completion of \mathcal{P} with respect to the measure $P \times dt$. For a fixed time $T < \infty$, we define the stochastic Banach spaces

$$H^\gamma_p(T) = H^\gamma_p(\mathbb{R}^d, T) := L_p(\Omega \times (0, T], \tilde{\mathcal{P}}, H^\gamma_p),$$

$$H^\gamma_p(T, \ell_2) := L_p(\Omega \times (0, T], \tilde{\mathcal{P}}, H^\gamma_p(\ell_2)), $$

$$L_p(T) := L^0_p(T), \quad L_p(T, \ell_2) := L^0_p(T, \ell_2)$$

with the norms given by

$$\|u\|_{H^\gamma_p(T)} = \left(\mathbb{E} \int_0^T \|u(t)\|_{H^\gamma_p}^p dt\right)^{1/p}, \quad \|g\|_{H^\gamma_p(T, \ell_2)} = \left(\mathbb{E} \int_0^T \|g(t)\|_{H^\gamma_p(\ell_2)}^p dt\right)^{1/p}.$$

Note that $u \in H^\gamma_p(T)$ if and only if u is an H^γ_p-valued $\tilde{\mathcal{P}}$-measurable process defined on $\Omega \times [0, T]$ so that $\|u\|_{H^\gamma_p(T)} < \infty$.

Finally, we set $U^\gamma_p := L_p(\Omega, \mathcal{F}_0, H^{\gamma-2/p}_p)$ for the initial data of the Cauchy problem. The Banach space $H^{\gamma+2}(T)$ below is modified from \mathbb{R}^d-valued version in [12] to the \mathbb{R}^{d1}-valued version.
Definition 2.1 For a \mathcal{D}-valued function $u = (u^1, \cdots, u^d) \in \mathbb{H}_p^{\nu \overrightarrow{+} 2}(T)$, we write $u \in \mathcal{H}_p^{\nu \overrightarrow{+} 2}(T)$ if $u(0, \cdot) \in U_p^{\nu \overrightarrow{+} 2}$, and there exist $f \in \mathbb{H}_p^{\nu \overrightarrow{+} 1}(T)$, $g \in \mathbb{H}_p^{\nu \overrightarrow{+} 1}(T, \ell_2)$ such that, for any $\phi \in C_0^\infty$, (a.s.) the equality

$$
(u^k(t, \cdot), \phi) = (u^k(0, \cdot), \phi) + \int_0^t \left(f^k(s, \cdot), \phi \right) ds + \sum_{m=1}^\infty \int_0^t \left(g^k_m(s, \cdot), \phi \right) dw_s^m
$$

holds for each $k = 1, \cdots, d_1$ and $t \in (0, T]$. The norm of u in $\mathcal{H}_p^{\nu \overrightarrow{+} 2}(T)$ is defined by

$$
\|u\|_{\mathcal{H}_p^{\nu \overrightarrow{+} 2}(T)} = \|u\|_{\mathbb{H}_p^{\nu \overrightarrow{+} 2}(T)} + \|f\|_{\mathbb{H}_p^\nu(T)} + \|g\|_{\mathbb{H}_p^{\nu \overrightarrow{+} 1}(T, \ell_2)} + \|u(0, \cdot)\|_{U_p^{\nu \overrightarrow{+} 2}}.
$$

We write Eq. 2.2 in the following simplified ways,

$$
u(t) = u(0) + \int_0^t f(s) ds + \int_0^t g_m(s) dw_s^m \quad \text{or} \quad du = f dt + g_m dw_t^m, \quad t \in (0, T]
$$

and we say that $du = f dt + g_m dw_t^m$ holds in the sense of distributions.

For any $m \times n$ real-valued matrix $C = (c_{kr})$, we define its norm by

$$
|C| := \sqrt{\sum_{k=1}^m \sum_{r=1}^n (c_{kr})^2}.
$$

We set $A^{ij} = (a_{kr}^{ij})$, $\Sigma^i = (\sigma_{kr}^i)$, and $A^{ij} = (\alpha_{kr}^{ij})$, where

$$
a_{kr}^{ij} = \frac{1}{2} \sum_{l=1}^{d_1} \left(\sigma_{ik}^l, \sigma_{lr}^j \right) \ell_2, \quad \sigma_{kr}^i = (\sigma_{kr,1}^i, \sigma_{kr,2}^i, \cdots).
$$

Throughout the article we assume the followings.

Assumption 2.2

(i) The coefficients a_{kr}^{ij}, b_{kr}^i, c_{kr}, $\sigma_{kr,m}^i$, and $\nu_{kr,m}$ are $\mathcal{P} \otimes \mathcal{B}(\mathbb{R}^d)$-measurable.

(ii) There exist finite constants δ, K^j, $L > 0$ so that

$$
\delta |\xi|^2 \leq \xi^* \left(A^{ij} - A^{ij} \right) \xi, \quad |A^{ij}| \leq K^j, \quad |A^{ij}| \leq L, \quad i, j = 1, 2, \ldots, d
$$

hold for any $\omega \in \Omega$, $t \geq 0$, $x \in \mathbb{R}^d$, where ξ is any (real) $d_1 \times d$ matrix, ξ is the ith column of ξ, $*$ denotes the matrix transpose, and again the summations on i, j are understood.

Before we consider the general system 1.1, we give a W_2^ν-theory for the Cauchy problem with the coefficients independent of x:

$$
du^k = \left(a_{kr}^{ij} u_{x^i}^j + f^k \right) dt + \left(\sigma_{kr,m}^i u_{x^i}^j + g_m^k \right) dw_t^m, \quad u^k(0, \cdot) = u_0^k(\cdot),
$$

\[\square \]
where \(i, j = 1, 2, \ldots, d \), \(k, r = 1, 2, \ldots, d_1 \), \(m = 1, 2, \ldots \). Recall that we are using summation notation on \(i, j, r, m \), that is, Eq. 2.5 means

\[
du^k = \left(\sum_{r=1}^{d_1} \sum_{i,j=1}^{d} a_{kr}^i u'_{x^i x^r} + f^k \right) dt + \sum_{m=1}^{\infty} \left(\sum_{r=1}^{d_1} \sum_{i=1}^{d} \sigma_{kr,m}^i u'_{x^i} + g^k_m \right) dw^m_i, \quad u^k(0, \cdot) = u^k_0(\cdot)
\]

for each \(k = 1, 2, \ldots, d_1 \).

Theorem 2.3 Let \(a_{kr}^i = a_{kr}^i(\omega, t) \) and \(\sigma_{kr,m}^i = \sigma_{kr,m}^i(\omega, t) \). Then for any \(f \in \mathbb{H}^{2,1}_2(T) \), \(g \in \mathbb{H}^{2,1}_2(T, \ell_2) \), and \(u_0 \in \mathcal{H}^{2,2}_2(T) \), the problem 2.5 has a unique solution \(u \in \mathcal{H}^{2,2}_2(T) \) and for this solution we have

\[
\|u_{xx}\|_{\mathbb{H}^2_2(T)} \leq c \left(\|f\|_{\mathbb{H}^{2,1}_2(T)} + \|g\|_{\mathbb{H}^{2,1}_2(T, \ell_2)} + \|u_0\|_{\mathcal{H}^{2,2}_2(T)} \right),
\]

(2.6)

\[
\|u\|_{\mathcal{H}^{2,2}_2(T)} \leq ce^{cT} \left(\|f\|_{\mathbb{H}^{2,1}_2(T)} + \|g\|_{\mathbb{H}^{2,1}_2(T, \ell_2)} + \|u_0\|_{\mathcal{H}^{2,2}_2(T)} \right),
\]

(2.7)

where \(c = c(d, d_1, \gamma, \delta, K^l, L) \).

Proof Let \(\Delta \) denote the usual Laplace operator. By Theorem 4.10 and Theorem 5.1 in [12], for each \(k \), the single equation

\[
du^k = (\delta \Delta u^k + f^k) dt + g^m_i dw^m_i, \quad u^k(0) = u^k_0
\]

has a solution \(u^k \in \mathcal{H}^{2,2}_2(T) \). For \(\lambda \in [0, 1] \) and \(d_1 \times d_1 \) identity matrix \(I \) we define

\[
\tilde{A}^i_j = (\tilde{a}_{kr,\lambda}^i) := (1 - \lambda)(A^i_j - A^i_\lambda) + \delta^i_j \lambda \delta I
\]

\[
= ((1 - \lambda)A^i_j + \delta^i_j \lambda \delta I) - (1 - \lambda)A^i_\lambda = A^i_j - A^i_\lambda,
\]

where \(A^i_\lambda := (1 - \lambda)A^i_j + \delta^i_j \lambda \delta I \), \(A^i_j := (1 - \lambda)A^i_\lambda \). Then

\[
|A^i_j| \leq |A^i_\lambda|, \quad |A^i_j| \leq |A^i_j|, \quad \delta|\xi|^2 \leq \sum_{i,j} \xi_i^2 \xi_j^2 \tilde{A}^i_j \xi_j
\]

for any \(d_1 \times d_1 \)-matrix \(\xi \). Thus, having the method of continuity in mind (see the proof of Theorem 5.1 in [12] for the details), we only prove that the a priori estimates Eqs. 2.7 and 2.6 hold given that a solution \(u \) already exists.

Step 1. Assume \(\gamma = 0 \). By Itô’s formula (see Theorem 2.1 in [8]) for \(H^1_2 \)-valued processes, for each \(k \) we have

\[
\int_{\mathbb{R}^d} |u^k(t)|^2 \, dx = \int_{\mathbb{R}^d} |u^k_0|^2 \, dx + \int_0^t \int_{\mathbb{R}^d} \left[2u^k \left(a_{kr}^i u'_{x^i x^r} + f^k \right) + |\sigma_{kr,m}^i u'_{x^i} + g^k_m|^2 \right] dx ds
\]

\[
+ \int_0^t \int_{\mathbb{R}^d} 2u^k \left(\sigma_{kr,m} u'_{x^r} + g^k_m \right) dxdw^m_i, \quad t > 0.
\]

(2.8)
Making the summation on \(r, i \) appeared, we note that

\[
\sum_{k} \left| \sum_{r, i} \sigma_{kr}^{i} u_{x_{r}}^{i} + g_{k} \right|_{\ell_{2}}^{2} = \sum_{k} \left[\sum_{r, i} \sigma_{kr}^{i} u_{x_{r}}^{i} \right]_{\ell_{2}}^{2} + 2 \left(\sum_{r, i} \sigma_{kr}^{i} u_{x_{r}}^{i}, g_{k} \right)_{\ell_{2}} + |g_{k}|_{\ell_{2}}^{2} \\
= 2 \sum_{i, j} (u_{x_{r}}^{i})^{*} A^{ij} u_{x_{r}}^{j} + 2 \sum_{k, r, i} (\sigma_{kr}^{i} u_{x_{r}}^{i}, g_{k})_{\ell_{2}} + \sum_{k} |g_{k}|_{\ell_{2}}^{2}.
\]

By using integration by parts and taking expectation, we get from Eq. 2.8

\[
\mathbb{E} \int_{\mathbb{R}^{d}} |u(t)|^{2} dx + 2 \mathbb{E} \int_{0}^{t} \int_{\mathbb{R}^{d}} (u_{x_{r}}^{i})^{*} (A^{ij} - A^{ji}) u_{x_{j}} dx ds \\
= \mathbb{E} \int_{\mathbb{R}^{d}} |u_{0}|^{2} dx + \mathbb{E} \int_{0}^{t} \int_{\mathbb{R}^{d}} \left[2u^{*} f + 2 \sum_{k, r, i} (\sigma_{kr}^{i} u_{x_{r}}^{i}, g_{k})_{\ell_{2}} + \sum_{k} |g_{k}|_{\ell_{2}}^{2} \right] dx ds.
\]

(2.9)

Note that

\[
2 \left| \sum_{k, r, i} (\sigma_{kr}^{i} u_{x_{r}}^{i}, g_{k})_{\ell_{2}} \right| \leq 2 \sum_{k} \sum_{r, i} \sigma_{kr}^{i} u_{x_{r}}^{i} |g_{k}|_{\ell_{2}} \\
\leq \sum_{k} \left(\frac{\varepsilon}{2} \sum_{r, i} \sigma_{kr}^{i} u_{x_{r}}^{i} |g_{k}|_{\ell_{2}}^{2} + \frac{2}{\varepsilon} |g_{k}|_{\ell_{2}}^{2} \right) \\
\leq \frac{\varepsilon}{2} |u_{x}|^{2} \sum_{k, r, i} \sigma_{kr}^{i} |2 + \frac{2}{\varepsilon} \sum_{k} |g_{k}|_{\ell_{2}}^{2} \\
= \varepsilon |u_{x}|^{2} \sum_{k, r, i} \sigma_{kr}^{i} |2 + \frac{2}{\varepsilon} \sum_{k} |g_{k}|_{\ell_{2}}^{2}
\]

(2.10)

for any \(\varepsilon > 0 \). Hence, it follows that

\[
\mathbb{E} \int_{\mathbb{R}^{d}} |u(t)|^{2} dx + 2 \delta \mathbb{E} \int_{0}^{t} \int_{\mathbb{R}^{d}} |u_{x}|^{2} dx ds \\
\leq \mathbb{E} \int_{\mathbb{R}^{d}} |u_{0}|^{2} dx + \varepsilon \cdot d \cdot L^{2} \mathbb{E} \int_{0}^{t} \int_{\mathbb{R}^{d}} |u_{x}|^{2} dx ds + \mathbb{E} \int_{0}^{t} \int_{\mathbb{R}^{d}} |u|^{2} dx ds \\
+ \mathbb{E} \int_{0}^{t} \int_{\mathbb{R}^{d}} |f|^{2} dx ds + c \sum_{k} \mathbb{E} \int_{0}^{t} \int_{\mathbb{R}^{d}} |g_{k}|_{\ell_{2}}^{2} dx ds.
\]

(2.11)

Note that for \(n \in \{1, 2, \cdots, d\} \), \(v := u_{x_{n}} \) is an \(H^{1}_{2} \)-valued process and satisfies

\[
dv^{k} = (a_{kr}^{i} v_{x_{r}}^{i} + f_{x_{r}}^{i}) dt + (\sigma_{kr}^{i} u_{x_{r}}^{i} + (g_{m}^{k})_{x_{n}}) du_{t}^{m}, \quad v^{k}(0) = (u_{0}^{k})_{x_{n}}
\]
in the sense of distribution. By Itô’s formula (see Theorem 2.1 in [8]) we get (also see Eq. 2.9)

\[\mathbb{E} \int_{\mathbb{R}^d} |v(t)|^2 dx + 2\delta \mathbb{E} \int_0^t \int_{\mathbb{R}^d} |v_x|^2 dx ds \]

\[= \mathbb{E} \int_{\mathbb{R}^d} |(u_0)_{xv}|^2 dx + \mathbb{E} \int_0^t \int_{\mathbb{R}^d} \left[-2v_{xx} f + 2 \sum_{k,r,i} (\sigma_{kr} v_{\cdot ri}, g_{\cdot i})_{\ell_2} + \sum_k g_{x}^k |\cdot|^2 \right] dx ds. \]

\[\leq \|u_0\|^2_{\ell_2^\gamma} + \epsilon \|u_{xx}\|^2_{\ell_2^\gamma} + c\|f\|^2_{\ell_2^\gamma} + c\|g\|^2_{\ell_2^\gamma}. \quad (2.12) \]

Choosing small \(\epsilon \) and considering all \(n \), we have Eq. 2.6. Now, Eqs. 2.12, 2.11 and Gronwall’s inequality easily lead to Eq. 2.7.

Step 2. Let \(\gamma \neq 0 \). The result of this case easily follows from the fact that \((1 - \Delta)^{\mu/2} : H_p^\gamma \to H_p^{\gamma - \mu} \) is an isometry for any \(\gamma, \mu \in \mathbb{R} \) when \(p \in (1, \infty) \); indeed, \(u \in H_2^{\gamma + 2}(T) \) is a solution of Eq. 2.5 if and only if \(v := (1 - \Delta)^{\gamma/2} u \in H_2^\gamma(T) \) is a solution of Eq. 2.5 with \((1 - \Delta)^{\gamma/2} f, (1 - \Delta)^{\gamma/2} g, (1 - \Delta)^{\gamma/2} u_0 \) in places of \(f, g, u_0 \) respectively. Moreover, for instance, we have

\[\|u\|_{H_2^{\gamma + 2}(T)} = \|v\|_{H_2^\gamma(T)} \]

\[\leq c e^{cT} \left(\|(1 - \Delta)^{\gamma/2} f\|_{L_2(T)} + \|(1 - \Delta)^{\gamma/2} g\|_{H_2^{\gamma}(T, \ell_2)} + \|(1 - \Delta)^{\gamma/2} u_0\|_{\ell_2^\gamma} \right) \]

\[= c e^{cT} \left(\|f\|_{H_2^\gamma(T)} + \|g\|_{H_2^{\gamma + 1}(T, \ell_2)} + \|u_0\|_{\ell_2^{\gamma + 2}} \right). \]

The theorem is proved. \(\square \)

Now we extend Theorem 2.3 to the case of the Cauchy problem with variable coefficients. Fix \(\varepsilon_0 > 0 \). For \(\gamma \in \mathbb{R} \) let us define \(|\gamma|_+ = |\gamma| \) if \(|\gamma| = 0, 1, 2, \ldots \) and \(|\gamma|_+ = |\gamma| + \varepsilon_0 \) otherwise. Then we define

\[B^{\gamma|_+} = \left\{ \begin{array}{ll}
B(\mathbb{R}^d) & : \gamma = 0 \\
C^{\gamma|_+ - 1, 1}(\mathbb{R}^d) & : |\gamma| = 1, 2, \ldots \\
C^{\gamma|_+ + \kappa}(\mathbb{R}^d) & : \text{otherwise},
\end{array} \right. \]

where \(B \) is the space of bounded functions, and \(C^{\gamma|_+ - 1, 1} \) is the space of \(|\gamma - 1| \) times continuously differentiable functions whose derivatives of order \(|\gamma - 1| \) are Lipschitz continuous, and \(C^{\gamma|_+ + \kappa} \) are the usual Hölder spaces, that is if \(|\gamma| + \kappa = n + \delta \) \((n = 0, 1, \ldots, \delta \in (0, 1))\) then \(C^{\gamma|_+ + \kappa} \) is the Banach space of \(n \)-times continuously differentiable functions \(f \) so that

\[|f|_{C^{\gamma|_+}} := \sum_{|\alpha| \leq n} \sup_x |D^\alpha f| + \sum_{|\alpha| = n} \sup_{x \neq y} \frac{|D^\alpha f(x) - D^\alpha f(y)|}{|x - y|^\delta} < \infty. \]

The Banach space \(B^{\gamma|_+} \) is also defined for \(\ell_2 \)-valued functions. For instance, if \(g = (g_1, g_2, \ldots) \), then

\[|g|_{B_0} = \text{ess sup}_x |g(x)|_{\ell_2}, \quad |g|_{C^{\gamma|_+ - 1, 1}} = \sum_{|\alpha| \leq n - 1} |D^\alpha g|_{B_0} + \sum_{|\alpha| = n - 1} \sup_{x \neq y} |D^\alpha g(x) - D^\alpha g(y)|_{\ell_2}. \]

Here is the main result of this section.
Theorem 2.4 Assume that the coefficients \(a_{ikr}(\omega, t, x) \) are uniformly continuous in \(x \), that is, for any \(\varepsilon > 0 \) there exists \(\delta = \delta(\varepsilon) > 0 \) so that for any \(\omega, t > 0, i, j, k, r, \)
\[
|a_{ikr}(\omega, t, x) - a_{ikr}(\omega, t, y)| + |\sigma_{ikr}(\omega, t, x) - \sigma_{ikr}(\omega, t, y)| \leq \varepsilon, \quad \text{if} \quad |x - y| < \delta.
\]
Also, assume for any \(\omega, t > 0, i, j, k, r, \)
\[
|a_{ikr}(\omega, t, \cdot)|_{[\gamma]} + |b_{ikr}(\omega, t, \cdot)|_{[\gamma]} + |c_{ikr}(\omega, t, \cdot)|_{[\gamma]} + |v_{ikr}(\omega, t, \cdot)|_{[\gamma+1]} < L.
\]
Then for any \(f \in H^2_\gamma(T), g \in H^{\gamma+2}(T, \ell_2) \) and \(u_0 \in U^{\gamma+2}_2 \), the Cauchy problem 1.1 has a unique solution \(u \in H^{\gamma+2}_2(T) \), and for this solution we have
\[
\|u\|_{H^{\gamma+2}_2(T)} \leq c \left(\|f\|_{H^\gamma(T)} + \|g\|_{H^{\gamma+1}_2(T, \ell_2)} + \|u_0\|_{U^{\gamma+2}_2} \right),
\]
where \(c = c(d, d_1, \gamma, \delta, K^J, L, T) \).

Proof It is enough to repeat the proof of Theorem 5.1 in [12], where the theorem is proved for single equations. The only difference is that one needs to use Theorem 2.3 of this article, instead of Theorem 4.10 in [12]. We leave the details to the reader. \(\square \)

3 The System with the Space Domain \(O = \mathbb{R}^d_+ \)

In this section we study a \(W^\alpha_\gamma \)-theory of the initial value problem with the space domain \(\mathbb{R}^d_+ \). We use the Banach spaces introduced in [13]. Let \(\zeta \in C_0^\infty(\mathbb{R}_+) \) be a function satisfying
\[
\sum_{n=\infty}^\infty \zeta(e^{\theta+n}) > c > 0, \quad \forall x \in \mathbb{R}, \tag{3.1}
\]
where \(c \) is a constant. It is easy to check that any nonnegative function \(\zeta \) with the property \(\zeta > 0 \) on \([1, \varepsilon]\) satisfies (Eq. 3.1). For \(\theta, \gamma \in \mathbb{R} \), let \(H^\gamma_{p, \theta} \) be the set of all distributions \(u = (u^1, u^2, \ldots, u^{d_1}) \) on \(\mathbb{R}^d_+ \) such that
\[
\|u\|^{p}_{H^\gamma_{p, \theta}} := \sum_{n \in \mathbb{Z}} e^{\theta n} \|\zeta(\cdot) u(e^{n \cdot})\|^{p}_{H^\gamma_{p}} < \infty. \tag{3.2}
\]
If \(g = (g^1, g^2, \ldots, g^{d_1}) \) and each \(g^k \) is an \(\ell_2 \)-valued function, then we define
\[
\|g\|^{p}_{H^\gamma_{p, \theta}(\ell_2)} = \sum_{n \in \mathbb{Z}} e^{\theta n} \|\zeta(\cdot) g(e^{n \cdot})\|^{p}_{H^\gamma_{p}(\ell_2)}. \]

It is known [13] that up to equivalent norms the space \(H^\gamma_{p, \theta} \) is independent of the choice of \(\zeta \). Also, for any \(\eta \in C_0^\infty(\mathbb{R}_+) \), we have
\[
\sum_{n=\infty}^\infty e^{\theta n} \|u(e^{n \cdot}) \eta\|^{p}_{H^\gamma_{p}} \leq c \sum_{n=\infty}^\infty e^{\theta n} \|u(e^{n \cdot}) \zeta\|^{p}_{H^\gamma_{p}}, \tag{3.3}
\]
where c depends only on $d, \gamma, \theta, p, \eta, \zeta$. Furthermore, if γ is a nonnegative integer, then

$$H^\gamma_{p,\theta} = \{ u : u, x^1 Du, \ldots, (x^1)^{|\alpha|} D^\alpha u \in L_p(\mathbb{R}^d_+, (x^1)^{\theta-d} dx), \ |\alpha| \leq \gamma \},$$

$$\|u\|_{H^\gamma_{p,\theta}}^p \sim \sum_{|\alpha| \leq \gamma} \int_{\mathbb{R}^d_+} |(x^1)^{|\alpha|} D^\alpha u(x)|^p (x^1)^{\theta-d} dx.$$

Below we collect some other properties of spaces $H^\gamma_{p,\theta}$. For $\mu \in \mathbb{R}$ let M^μ be the operator of multiplying by $(x^1)^\mu$ and $M = M^1$. Recall that C^ν (where $\nu \in (0, 1]$) denotes that space of bounded continuous functions f so that

$$|f|_{C^\nu} = |f|_{C^0} + |f|_{C^\nu} := \sup_x |f(x)| + \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^\nu} < \infty.$$

Lemma 3.1 [13]

(i) Assume that $\gamma - d/p = m + \nu$ for some $m = 0, 1, \ldots$ and $\nu \in (0, 1]$. Then for any $u \in H^\gamma_{p,\theta}$ and $i \in \{0, 1, \ldots, m\}$, we have

$$|M^{i+\gamma/p} D^i u|_{C^\nu} + [M^{m+\gamma/p} D^m u]_{C^\nu} \leq c\|u\|_{H^\gamma_{p,\theta}}.$$

(ii) Let $\mu \in \mathbb{R}$. Then $M^\mu H^\gamma_{p,\theta+\mu p} = H^\gamma_{p,\theta}$,

$$\|u\|_{H^\gamma_{p,\theta}} \leq c\|M^{-\mu} u\|_{H^\gamma_{p,\theta+\mu p}} \leq c\|u\|_{H^\gamma_{p,\theta}}.$$

(iii) $MD, DM : H^\gamma_{p,\theta} \rightarrow H^{\gamma-2}_{p,\theta}$ are bounded linear operators, and it holds that

$$\|u\|_{H^{\gamma-1}_{p,\theta}} \leq c\|u\|_{H^\gamma_{p,\theta}} + c\|MDu\|_{H^{\gamma-2}_{p,\theta}} \leq c\|u\|_{H^\gamma_{p,\theta}},$$

$$\|u\|_{H^{\gamma-1}_{p,\theta}} \leq c\|u\|_{H^\gamma_{p,\theta}} + c\|D Mu\|_{H^{\gamma-2}_{p,\theta}} \leq c\|u\|_{H^\gamma_{p,\theta}}.$$}

(iv) The operator $\mathcal{L} := M^2 \Delta + 2MD_1$ is a bounded operator from $H^\gamma_{p,\theta}$ onto $H^{\gamma-2}_{p,\theta}$ with the bounded inverse \mathcal{L}^{-1} for any γ.

Let us denote

$$H^\gamma_{p,\theta}(T) = L_p(\Omega \times [0, T], \mathcal{F}, H^\gamma_{p,\theta}), \quad H^\gamma_{p,\theta}(T, \ell_2) = L_p(\Omega \times [0, T], \mathcal{F}_0, H^\gamma_{p,\theta}(\ell_2)),$$

$$U^\gamma_{p,\theta} = M^{1-2/p} L_p(\Omega, \mathcal{F}_0, H^{\gamma-2/p}_{p,\theta}), \quad \mathbb{L}^0_{p,\theta}(T) = \mathbb{H}^0_{p,\theta}(T).$$

Note that $f \in U^\gamma_{p,\theta}$ if

$$\|f\|_{U^\gamma_{p,\theta}} := \left(\mathbb{E}\|M^{-1+2/p} f\|_{H^{\gamma-2/p}_{p,\theta}}^p \right)^{1/p} < \infty$$

and $u \in H^\gamma_{p,\theta}(T)$ if u is an $H^\gamma_{p,\theta}$-valued \mathcal{F}-measurable process defined on $\Omega \times [0, T]$ so that

$$\|u\|_{H^\gamma_{p,\theta}(T)} := \left(\mathbb{E}\int_0^T \|u\|_{H^\gamma_{p,\theta}}^p \ dt \right)^{1/p} < \infty.$$
The Banach space $S^{\gamma+2}_p(T)$ below is modified from \mathbb{R}-valued version in [16] to the \mathbb{R}^{d_1}-valued version. We write $u \in M^{\mu}_pH^{\gamma}_p(T)$ if and only if $M^{-\mu}u \in H^{\gamma}_p(T)$.

Definition 3.2 We write $u \in S^{\gamma+2}_p(T)$ if $u = (u^1, \cdots, u^{d_1}) \in M^{\mu}_pH^{\gamma+2}_p(T)$, $u(0, \cdot) \in U^{\gamma+2}$, and for some $f \in M^{-1}H^{\gamma+2}_p(T), g \in H^{\gamma+1}_p(T, \ell_2)$,

$$du = f \, dt + g_m \, dw^m_t, \quad t \in [0, T]$$

in the sense of distributions. We define the norm by

$$\|u\|_{S^{\gamma+2}_p(T)} := \|M^{-1}u\|_{H^{\gamma+2}_p(T)} + \|Mf\|_{H^{\gamma+2}_p(T)} + \|g\|_{H^{\gamma+1}_p(T, \ell_2)} + \|u(0, \cdot)\|_{U^{\gamma+2}}. \quad (3.4)$$

Theorem 3.3 For any nonnegative integer $n \geq \gamma$, the set

$$S^n_p(T) \bigcap \bigcup_{k=1}^{\infty} L_p(\Omega, C([0, T], C^n_0(G_k))),$$

where $G_k = (1/k, k) \times \{|x'| < k\}$ is dense in $S^n_p(T)$.

Proof See Theorem 2.9 of [16]. \Box

Definition 3.4 Let $A^{ij} = (a^{ij}_{kl})$ and $\Sigma^i = (\sigma^i_{kr})$ be independent of x. We say that $(A^{ij}, \Sigma^i, \theta)$ is admissible (with constant N) if whenever $u \in M^{\mu}_pH^{\gamma}_p(T)$ is a solution of the problem

$$du^k = (a^k_{ix}u^i_x + f^k)dt + (\sigma^k_{x,m}u^i_x + g^k_m)dw^m_t, \quad t > 0, \quad x \in \mathbb{R}^d, \quad u^k(0, \cdot) = u^k_0(\cdot), \quad (3.5)$$

satisfying $u \in L^2(\Omega, C([0, T], C^n_0((1/n, n) \times \{x' : |x'| < n\})))$ for some constant $n > 0$, it holds that

$$\|M^{-1}u\|_{L^2_p(T)} \leq N \left(\|Mf\|^2_{L^2_p(T)} + \|g\|^2_{L^2_p(T, \ell_2)} + \|u_0\|^2_{L^2_1(T, \ell_2)} \right). \quad (3.6)$$

In Theorem 3.5 below we give some sufficient conditions under which $(A^{ij}, \Sigma^i, \theta)$ is admissible. We define the symmetric part (S^{ij}) and the diagonal part (S^{ij}_d) of A^{ij} as follows:

$$S^{ij} = \left(s^{ij}_{kr} \right) := \left(A^{ij} + (A^{ij})^* \right)/2, \quad S^{ij}_d = \left(s^{ij}_{d,kr} \right) := \left(\delta_{kr}a^{ij}_{kr} \right) = \left(\delta_{kr}s^{ij}_{kr} \right).$$

We also define

$$H^{ij} := A^{ij} - (A^{ij})^*, \quad S^{ij}_o = S^{ij} - S^{ij}_d.$$

Assume that there exist constants $\alpha, \beta_1, \cdots, \beta_d \in [0, \infty)$ such that

$$|H^{ij}| \leq \beta^i \quad \forall j = 1, 2, \cdots, d, \quad |S^{ij}_o| \leq \alpha. \quad (3.7)$$

We denote

$$K := \sqrt{\sum_{j=1}^{d}(K_j)^2}, \quad \beta := \sqrt{\sum_{j=1}^{d}(\beta_j)^2}.$$
Theorem 3.5 Let one of the following four conditions be satisfied:

\[
\theta \in \left(d - \frac{\delta}{2K - \delta}, \; d + \frac{\delta}{2K + \delta} \right),
\]

where \(\varepsilon > 0\), \(\xi\) is any (real) \(d_1 \times d\) matrix and \(\xi_i\) is the \(i\)th column of \(\xi\). Then there exists a constant \(N = N(\theta, \delta, K) > 0\) so that \((A_{ij}, \Sigma^i, \theta)\) is admissible with constant \(N\).

Remark 3.6

(i) If \(A_{ij}\) are symmetric, i.e., \(\beta = 0\), then Eq. 3.10 combined with Eq. 3.9 is the same as the condition \(\theta \in (d - \frac{\delta}{2K - \delta}, \; d + \frac{\delta}{2K + \delta})\), which is weaker than Eq. 3.8.

(ii) If \(A_{ij}\) are diagonal matrices and \(\Sigma^i = 0\), then \(\alpha = \beta^i = 0\) and \(A_{ij} = S^i_{ij}\). Since \(1 - 2(d - \theta)/(d + 1 - \theta) > 0\) for \(\theta > d - 1\), Eq. 3.11 combined with Eq. 3.9 is the same as the condition \(\theta \in (d - 1, d + 1)\). This is the case when the equations in the system are not correlated.

Remark 3.7 We do not know how sharp the above conditions are. However, it is known [13] that if \(\theta \notin (d - 1, d + 1)\), then Theorem 3.5 is false even for the (deterministic) heat equation \(u_t = \Delta u + f\). i.e., \((\delta^j I, 0, \theta)\) is not admissible for such \(\theta\).

Theorem 3.5 is proved in the following two lemmas.

Lemma 3.8 Assume that \(a_{kr,ij}^i, \sigma_{kr,m}^i\) are independent of \(x\), and

\[
\theta \in \left(d - \frac{\delta}{2K - \delta}, \; d + \frac{\delta}{2K + \delta} \right).
\]

Assume that \(u \in S^1_{2}(T)\) is a solution of Eq. 3.5 and \(u \in L_2(\Omega, C([0, T], C^0_0((1/n, n) \times \{x' : |x'| < n\})))\) for some \(n > 0\) and \(f^k, g^k\) are sufficiently smooth in \(x\). Then we have

\[
\|M^{-1}u\|_{L_2,\theta(T)}^2 \leq N \left(\|Mf\|_{L_2,\theta(T)}^2 + \|g\|_{L_2,\theta(T,\ell_2)}^2 + \|u_0\|_{L_{1,\theta}}^2 \right),
\]

where \(N = N(d, d_1, \delta, \theta, K, L)\).
Proof} Since u, u_x, u_{xx}, f^k, g^k are continuous in x, for each x we get (see the proof of Theorem 3.7 in [12] for the detail),

$$u^k(t, x) = u_0^k(x) + \int_0^t \left(a_{kr}^i u_{x, x}^r + f^k \right) ds + \int_0^t (\sigma_{kr,m,} u_{x}^r + g_m^k) du_m^s \quad (a.s.) \; \forall t \leq T.$$

Applying the stochastic product rule $d|u^k|^2 = 2u^k du^k + du^k du^k$ for each k, we have

$$|u^k(t)|^2 = |u_0^k|^2 + \int_0^t \left(2u^k \left(a_{kr}^i u_{x, x}^r + f^k \right) + \left| \sigma_{kr,m} u_{x}^r + g_m^k \right|^2 \right) ds$$

$$+ \int_0^t 2u^k \left(\sigma_{kr,m} u_{x}^r + g_m^k \right) du_m^s, \quad t > 0,$$

where the summations on i, j, r are understood. Denote $c := \theta - d$. For each k, we have

$$0 \leq E \int_{R^d_t} |u^k(T, x)|^2 (x^1) dx$$

$$= E \int_{R^d_t} |u^k(0, x)|^2 (x^1) dx + 2E \int_0^T \int_{R^d_t} a_{kr}^i u_{x, x}^r (x^1) c dx ds$$

$$+ 2E \int_{R^d_t} \left(\sigma_{kr,m} u_{x}^r, g_m^k \right) (x^1) c dx ds + E \int_0^T \int_{R^d_t} (M^{-1} u^k)(Mc^k)(x^1) c dx ds$$

$$+ 2E \int_0^T \int_{R^d_t} |g_m^k|^2 (x^1) c dx ds.$$ (3.14)

Note that, by integration by parts, the second term in the right hand side of Eq. 3.14 is

$$- 2E \int_0^T \int_{R^d_t} a_{kr}^i u_{x}^r (x^1) c dx ds - 2c E \int_0^T \int_{R^d_t} \left(a_{kr}^i u_{x}^r \right) (M^{-1} u^k) (x^1) c dx ds.$$ (3.15)

By summing up the terms in the right hand side of Eq. 3.14 over k and rearranging the terms, we get

$$2E \int_0^T \int_{R^d_t} u^* (A^j - A^{ij}) u_{x}^j (x^1) c dx ds$$

$$\leq -2cE \int_0^T \int_{R^d_t} a_{kr}^i u_{x}^r (M^{-1} u^k) (x^1) c dx ds + \varepsilon \left(\| M^{-1} u \|^2_{L^2,	heta(T)} + \| u_x \|^2_{L^2,	heta(T)} \right)$$

$$+ c(\varepsilon) \left(\| Mf \|^2_{L^2,	heta(T)} + \| g \|^2_{L^2,	heta(T)} \right) + \| u(0) \|^2_{L^2,	heta}$$

$$\leq \kappa \| u_x \|^2_{L^2,	heta(T)} + K^2 \kappa^{-1} \| M^{-1} u \|^2_{L^2,	heta(T)} + \varepsilon \left(\| M^{-1} u \|^2_{L^2,	heta(T)} + \| u_x \|^2_{L^2,	heta(T)} \right)$$

$$+ c(\varepsilon) \left(\| Mf \|^2_{L^2,	heta(T)} + \| g \|^2_{L^2,	heta(T)} + \| u(0) \|^2_{L^2,	heta},$$ (3.16)
where for the second inequality we used Eqs. 2.4 and 2.10, and the fact: for any vectors \(v, w \in \mathbb{R}^n \) and \(\kappa > 0 \),
\[
| \langle A^{1/2}v, w \rangle | \leq |A^{1/2}v||w| \leq K^{1/2}|v||w| \leq \frac{1}{2} \left(\kappa |v|^2 + \kappa^{-1} (K')^2 |w|^2 \right);
\]
\(\kappa, \varepsilon \) will be decided below and \(\langle \cdot, \cdot \rangle \) denotes the inner product on \(\mathbb{R}^d \).

Condition 2.3, inequality 3.16 and the inequality
\[
\| M^{-1}u \|^2_{L^2_\sigma} \leq \frac{4}{(d + 1 - \theta)^2} \| u \|^2_{L^2_\sigma}
\]
(see Corollary 6.2 in [13]) lead us to
\[
2\delta \| u \|^2_{L^2_\sigma(T)} - |c| \left(\kappa + \frac{4K^2}{\kappa(d + 1 - \theta)^2} \right) \| u \|^2_{L^2_\sigma(T)} \leq \varepsilon \left(\frac{4}{(d + 1 - \theta)^2} + \frac{d^2 L}{2} \right) \| u \|^2_{L^2_\sigma(T)} + c(\varepsilon) \left(\| M \|^2_{L^2_\sigma(T)} + \| g \|^2_{L^2_\sigma(T)} \right)
\]
\[
+ \| g \|^2_{L^2_\sigma(T)} + \| u(0) \|^2_{L^2_\sigma(T)}.
\]

Now it is enough to take \(\kappa = 2K/(d + 1 - \theta) \) and observe that Eq. 3.12 is equivalent to the condition
\[
2\delta - |c| \left(\kappa + \frac{4K}{\kappa(d + 1 - \theta)^2} \right) = 2\delta - \frac{4|c|K}{d + 1 - \theta} > 0.
\]

Choosing a small \(\varepsilon = \varepsilon(d, d_1, \delta, \theta, K, L) > 0 \), the lemma is proved. \(\square \)

Lemma 3.9 Assume that \(a_{ij}^{kr}, \sigma_{kr,m}^i \) are independent of \(x \), and one of Eqs. 3.9–3.11 holds. Then the assertion of Lemma 38 holds.

Proof We modify the proof of Lemma 38.

1. Denote \(S^{1/2} = (s^{1/2})^{kr} = \frac{1}{2}(A^{1/2} + (A^{1/2})^*) \) as the symmetric part of \(A^{1/2} \). Then \(A^{1/2} = S^{1/2} + \frac{1}{2} H^{1/2} \) and for any \(\xi \in \mathbb{R}^{d_1} \)
\[
\xi^* A^{1/2} \xi = \xi^* S^{1/2} \xi.
\]

Let \(c := \theta - d \). Note that, by integration by parts, we have
\[
\int_{\mathbb{R}_+^d} u^* S^{1/2} u(x^1) c^{-1} dx = - \frac{c - 1}{2} \int_{\mathbb{R}_+^d} u^* S^{1/2} u(x^1) c^{-2} dx
\]
\[
= - \frac{c - 1}{2} \int_{\mathbb{R}_+^d} u^* A^{1/2} u(x^1) c^{-2} dx
\]
and hence
\[
-2c \int_{\mathbb{R}_+^d} u^* A^{1/2} u(x^1) c^{-1} dx = -2c \int_{\mathbb{R}_+^d} u^* S^{1/2} u(x^1) c^{-1} dx - c \int_{\mathbb{R}_+^d} u^* H^{1/2} u(x^1) c^{-1} dx
\]
\[
= c(c - 1) \int_{\mathbb{R}_+^d} u^* A^{1/2} u(x^1) c^{-2} dx - c \int_{\mathbb{R}_+^d} u^* H^{1/2} u(x^1) c^{-1} dx.
\]
Moreover, another usage of integration by parts gives us

\[
\int_{\mathbb{R}^d_+} u^* S^l u(x^1)^{c-1} dx = - \int_{\mathbb{R}^d_+} u^* S^l u(x^1)^{c-1} dx = - \int_{\mathbb{R}^d_+} u^*(S^l)^* u(x^1)^{c-1} dx
\]

for \(j \neq 1 \), meaning that \(\int_{\mathbb{R}^d_+} u^* S^l u(x^1)^{c-1} dx = 0 \) and

\[-2c \int_{\mathbb{R}^d_+} u^* A^l u(x^1)^{c-1} dx = -c \int_{\mathbb{R}^d_+} u^* H^l u(x^1)^{c-1} dx.
\]

Thus the second term in Eq. 3.15 is

\[-2c \int_0^T \int_{\mathbb{R}^d_+} (a^l_{kr} u_{x^i}) u^k(x^1)^{c-1} dx\]

\[= c(c - 1) \mathbb{E} \int_0^T \int_{\mathbb{R}^d_+} u^* A^l u(x^1)^{c-2} dx - c \mathbb{E} \int_0^T \int_{\mathbb{R}^d_+} u^* H^l u(x^1)^{c-1} dx,
\]

where the summation on \(j \) includes \(j = 1 \).

Now, as in the proof of Lemma 38, we have

\[2\delta \| u_x \|^2_{L^2_\theta(T)} \leq 2 \mathbb{E} \int_0^T \int_{\mathbb{R}^d_+} u^* (A^{ij} - A^{ij}) u_{x^i}(x^1)^c dx ds\]

\[\leq \mathbb{E} \int_{\mathbb{R}^d_+} |u^k(0, x)|^2 x^c dx\]

\[+ c(c - 1) \mathbb{E} \int_0^T \int_{\mathbb{R}^d_+} a^l_{kr}(M^{-1} u^k)(M^{-1} u^r)(x^1)^c dx ds\]

\[- c \mathbb{E} \int_0^T \int_{\mathbb{R}^d_+} (h^l_{kr} u^r)^c(x^1)^c dx ds\]

\[+ 2 \mathbb{E} \int_0^T \int_{\mathbb{R}^d_+} (M^{-1} u^k)(M f^k)(x^1)^c dx ds\]

\[+ 2 \mathbb{E} \int_0^T \int_{\mathbb{R}^d_+} (\sigma_{kr} u^r g^k \ell_2(x^1)^c dx ds\]

\[+ \mathbb{E} \int_0^T \int_{\mathbb{R}^d_+} |g^k|^2_{\ell_2}(x^1)^c dx ds.
\]

Note that the terms, except the second term and the third term, in the right hand side of Eq. 3.18 are bounded by

\[\varepsilon \left(\| M^{-1} u \|^2_{L^2_{\theta}(T)} + \| u_x \|^2_{L^2_{\theta}(T)} \right) + c(\varepsilon) \left(\| M f \|^2_{L^2_{\theta}(T)} + \| g \|^2_{L^2_{\theta}(T)} \right) + \| u(0) \|^2_{L^2_{\theta}}.
\]

The second and the third terms will be estimated below in three steps.
2. If \(c(c - 1) \geq 0 \), then we have

\[
c(c - 1) E \int_0^T \int_{\mathbb{R}_+^d} a_{ij}^{11} (M^{-1}u^k) (M^{-1}u') (x_1)^c \, dx \, ds
\]

\[
\leq c(c - 1) K^1 \| M^{-1}u \|^2 \| L_{2, \theta}(T) \leq \frac{4}{(d + 1 - \theta)^2} c(c - 1) K^1 \| u_x \|^2 \| L_{2, \theta}(T) \]

and also

\[
\left| -c \int_0^T \int_{\mathbb{R}_+^d} \left(h_{ij}^{11} u_{ij}' \right) (M^{-1}u^k)(x_1)^c \, dx \, ds \right| \leq \frac{1}{2} |c| \left(\kappa \| u_x \|_{L_{2, \theta}(T)} + \kappa^{-1} \beta^2 \| M^{-1}u \|^2 \| L_{2, \theta}(T) \right)
\]

\[
\leq \frac{1}{2} |c| \left(\kappa + \frac{4 \beta^2}{\kappa(d + 1 - \theta)^2} \right) \| u_x \|^2 \| L_{2, \theta}(T) \]

for any \(\kappa > 0 \). To minimize this we take \(\kappa = 2 \beta / (d + 1 - \theta) \). Then

\[
\left| -c \int_0^T \int_{\mathbb{R}_+^d} \left(h_{ij}^{11} u_{ij}' \right) (M^{-1}u^k)(x_1)^c \, dx \, ds \right| \leq \frac{2 \beta(d - \theta)}{(d + 1 - \theta)} \| u_x \|^2 \| L_{2, \theta}(T) \cdot (3.19)
\]

Thus from Eq. 3.18 we deduce

\[
\left(2\delta - \frac{2 \beta(d - \theta)}{(d + 1 - \theta)} - \frac{4}{(d + 1 - \theta)^2} c(c - 1) K^1 \right) \| u_x \|^2 \| L_{2, \theta}(T) \]

\[
\leq \epsilon \| u_x \|_{L_{2, \theta}(T)}^2 + c(\epsilon) \left(\| Mf \|_{L_{2, \theta}(T)}^2 + \| g \|_{L_{2, \theta}(T)}^2 \right) \| u(0) \|_{U_{1, \theta}}^2
\]

This and Eq. 3.17 yield the inequality 3.13 since 3.10 is equivalent to

\[
2\delta - \frac{2 \beta(d - \theta)}{(d + 1 - \theta)} - \frac{4}{(d + 1 - \theta)^2} c(c - 1) K^1 > 0.
\]

3. Again assume \(c(c - 1) \geq 0 \). By Eqs. 3.18 and 3.19, we have

\[
2 E \int_0^T \int_{\mathbb{R}_+^d} u^*_x \left(A^{ij} - A^{ij} \right) u_{ij} (x_1)^c \, dx \, ds
\]

\[
\leq E \int_{\mathbb{R}_+^d} |u^k(0, x)|^2 x^c \, dx
\]

\[
+ c(c - 1) E \int_0^T \int_{\mathbb{R}_+^d} \left(s_{11}^{11} + s_{11}^{s_{11, kr}} (M^{-1}u^k)(M^{-1}u')(x_1)^c \right) \, dx \, ds
\]

\[
+ \frac{2 \beta(d - \theta)}{(d + 1 - \theta)} \| u_x \|^2 \| L_{2, \theta}(T) \]
By Corollary 6.2 of [13], for each t, we get

$$c(c - 1) \int_{\mathbb{R}^d_t} s_{d,kr}^{i1} (M^{-1}u^k)(M^{-1}u') (x^1)^c \, dx$$

$$= c(c - 1) \int_{\mathbb{R}^d_t} a_{kk} |M^{-1}u^k|^2 (x^1)^c \, dx$$

$$\leq \frac{4(d - \theta)}{(d + 1 - \theta)} \int_{\mathbb{R}^d_t} a_{kk} u^k u_k (x^1)^c \, dx = \frac{4(d - \theta)}{(d + 1 - \theta)} \int_{\mathbb{R}^d_t} u^*_i S^j_d u_{x_i} (x^1)^c \, dx$$

and by Eqs. 3.7 and 3.17,

$$c(c - 1) \int_{\mathbb{R}^d_t} s_{0,kr}^{i1} M^{-1}u^k M^{-1}u' (x^1)^c \, dx$$

$$\leq \alpha c(c - 1) \int_{\mathbb{R}^d_t} |M^{-1}u|^2 (x^1)^c \, dx \leq \frac{4\alpha(d - \theta)}{(d + 1 - \theta)} \int_{\mathbb{R}^d_t} |u_{x_i}|^2 (x^1)^c \, dx.$$

It follows that

$$\mathbb{E} \int_0^T \int_{\mathbb{R}^d_t} u^*_i \left(A^{ij} - A^{ij} - \frac{2(d - \theta)}{(d + 1 - \theta)} S^j_d \right) u_{x_i} (x^1)^c \, dxds$$

$$\leq \frac{(d - \theta)}{(d + 1 - \theta)} (\beta + 2\alpha) \|u_x\|^2_{L^2,\theta(T)} + \varepsilon \|u_x\|^2_{L^2,\theta(T)}$$

$$+ c(\varepsilon) \left(\|Mf\|^2_{L^2,\theta(T)} + \|g\|^2_{L^2,\theta(T)} \right) + \|u(0)\|^2_{U^1,\theta}.$$

This, Eqs. 3.11 and 3.17 lead to Eq. 3.13.

4. If $c(c - 1) \leq 0$, hence $\theta \in [d, d + 1)$, then

$$c(c - 1) \mathbb{E} \int_0^T \int_{\mathbb{R}^d_t} a_{kr}^{i1} (M^{-1}u^k)(M^{-1}u') (x^1)^c \, dxds \leq \delta c(c - 1) \|M^{-1}u\|^2_{L^2,\theta(T)};$$

for this we consider a $d_1 \times d$ matrix ξ consisting of $M^{-1}u$ as the first column and zeros for the rest and apply the condition 2.3. Next, as before, we have

$$\left| -c \mathbb{E} \int_0^T \int_{\mathbb{R}^d_t} (h_{kr}^{i1} u_{x_i}^k) \right(M^{-1}u^k)(x^1)^c \, dxds \right| \leq \frac{1}{2} c \left(\kappa \|u_x\|^2 + \kappa^{-1} \beta^2 \|M^{-1}u\|^2_{L^2,\theta(T)} \right)$$

and hence

$$2\delta \|u_x\|^2_{L^2,\theta(T)} - \frac{1}{2} c \left(\kappa \|u_x\|^2 + \kappa^{-1} \beta^2 \|M^{-1}u\|^2_{L^2,\theta(T)} \right) - \delta c(c - 1) \|M^{-1}u\|^2_{L^2,\theta(T)}$$

$$\leq \varepsilon \left(\frac{4}{(d + 1 - \theta)^2} + d^2 L \right) \|u_x\|^2_{L^2,\theta(T)} + c(\varepsilon) \left(\|Mf\|^2_{L^2,\theta(T)} + K \|g\|^2_{L^2,\theta(T)} \right)$$

$$+ \|g\|^2_{L^2,\theta(T)} + \|u(0)\|^2_{U^1,\theta}.$$

(3.20)

As we take

$$\kappa = \frac{\beta^2}{2\delta(1 - c)},$$
the terms with $\|M^{-1}u\|_{L^2_x(T)}^2$ in the left hand side of Eq. 3.20 are canceled out.

Now, Eq. 3.9 which is equivalent to $2\delta - \frac{\varepsilon^2}{4S(1-c)} > 0$ gives us Eq. 3.13. The lemma is proved.

\[\square\]

Recall that we write $u \in M^{\mu}_{2,\theta}(T)$ if $M^{-\mu}u \in H^{\mu}_{2,\theta}(T)$. The following lemma with Definition 3.4 will lead to an a priori estimate:

Lemma 3.10 Let $\mu \in \mathbb{R}$, $f \in M^{-\mu}_{2,\theta}(T)$, $g \in H^{\mu+1}_{2,\theta}(T, \ell_2)$, $u(0) \in U^{\mu+2}_{2,\theta}$ and $u \in H^{\mu+1}_{2,\theta}(T)$ be a solution of the problem 3.5. on $[0, T] \times \mathbb{R}^d_+$, then $u \in M^{\mu+2}_{2,\theta}(T)$ and

$$
\|M^{-1}u\|_{L^{2+}_{2,\theta}(T)} \leq c \left(\|M^{-1}u\|_{L^{2+}_{2,\theta}(T)} + \|Mf\|_{L^{\mu+1}_{2,\theta}(T)} + \|g\|_{L^{\mu+1}_{2,\theta}(T, \ell_2)} + \|u(0)\|_{U^{\mu+2}_{2,\theta}}\right),
$$

where $c = c(d, d_1, \mu, \theta, \delta, K, L)$.

Proof By Lemma 3.1 (ii) and Eq. 2.1, we have

$$
\|M^{-1}u\|_{L^{2+}_{2,\theta}(T)}^2 \leq c \sum_n e^{n(\theta-2)}\|u(t, e^n x)\|_{L^{2+}_{2,\theta}(T)}^2

= c \sum_n e^{n\theta}\|u(e^{2n}t, e^n x)\|_{L^{2+}_{2,\theta}(e^{2n}T)}^2

\leq c \sum_n e^{n\theta}\|u(e^{2n}t, e^n x)\|_{L^{2+}_{2,\theta}(e^{2n}T)}^2.
$$

Denote

$$v_n(\omega, t, x) = u(\omega, e^{2n}t, e^n x)\xi(x), \quad (a_n)^{ij}_{kr}(\omega, t) = a^{ij}_{kr}(\omega, e^{2n}t), \quad (\sigma_n)^{ij}_{kr}(\omega, t) = \sigma^{ij}_{kr}(\omega, e^{2n}t)

A_n^{ij} = ((a_n)^{ij}_{kr}), \quad \Sigma_n^{ij} = ((\sigma_n)^{ij}_{kr}).$$

Then, since v_n has compact support in \mathbb{R}^d_+, we can regard it as a distribution defined on the whole space. Thus v_n is in $H^{\mu+1}_{2,\theta}(e^{-2n}T)$ and satisfies

$$dv_n = \left(\Sigma_n^{ij} \frac{\partial}{\partial x^j} \right) + f_n\,dt + ((\Sigma_n^{ij} v_n)_{x^j} + (g_n)_m)\,d(e^{-n}w_{e^{2n}t}^m), \quad v_n(0, x) = \xi(x)u_0(e^n x),$$

where $(\Sigma_n)^m = ((\sigma_n)^{ij}_{kr,m})$ and

$$f_n = -2e^n A_n^{ij}u_{x^j}(e^{2n}t, e^n x)\xi(x) - A_n^{ij}u(e^{2n}t, e^n x)\xi_{x^j}(x) + e^{2n} f(e^{2n}t, e^n x)\xi(x),

(g_n)_m = -((\Sigma_n)^m)\,u(e^{2n}t, e^n x)\xi_{x^j}(x) + e^n g_m(e^{2n}t, e^n x)\xi(x).$$

Then, by Theorem 2.3, v_n is in $H^{\mu+2}_{2,\theta}(e^{-2n}T)$ and

$$\|(v_n)_{x^j}\|_{L^{2+}_{2,\theta}(e^{-2n}T)}^2 \leq c(d, d_1, \mu, \theta, \delta, K, L)

\times \left(\|f_n\|_{L^{2+}_{2,\theta}(e^{-2n}T)}^2 + \|g_n\|_{L^{\mu+1}_{2,\theta}(e^{-2n}T, \ell_2)}^2 + \|\xi(x)u_0(e^n x)\|_{U^{\mu+2}_{2,\theta}}^2\right).$$

\[\heartsuit\] Springer
Thus, by Eq. 3.3 and Lemma 3.1,
\[\sum_n e^{n\theta} \left\| u \left(e^{2n t}, e^n x \right) \right\|_{H^2_x((e^{-2n} T)}^2 \leq c \sum_n \left[e^{n\theta} \left\| \partial_x \left(u, e^n \cdot \partial_x \right) \right\|_{H^2_x(T)}^2 + c \sum_n \left(e^{n(\theta - 2)} \left\| \partial_x \left(u, e^n \cdot \partial_x \right) \right\|_{H^2_x(T)}^2 \right) \right] \]
\[+ c \sum_n e^{n(\theta + 2)} \left\| f \left(t, e^n x \right) \right\|_{H^2_x(T)}^2 \]
\[+ c \sum_n e^{n\theta} \left\| g \left(t, e^n x \right) \right\|_{H^2_x(T, \ell_2)}^2 + c \sum_n \left(e^{n\theta} \left\| u_0 \left(t, e^n x \right) \right\|_{H^2_x(T, \ell_2)}^2 \right) \]
\[\leq c \left\| M^{-1} u \right\|_{H^{\gamma + 2}}^2 \leq c \left(\left\| M f \right\|_{H^{\gamma}} + \left\| g \right\|_{H^{\gamma + 1}} + \left\| u_0 \right\|_{H^{\gamma + 2}} \right). \]

The lemma is proved. \(\square \)

From this point on we assume the following:

Assumption 3.11 There exists a constant \(N > 0 \), independent of \(x \), so that for each fixed \(x \), \((A^{ij}(\cdot, \cdot, x), \Sigma^{ij}(\cdot, \cdot, x), \theta) \) is admissible with constant \(N \).

First, we prove our results for the problem 3.13 with the coefficients independent of \(x \).

Theorem 3.12 Suppose Assumptions 2.2 and 3.11 hold. Also assume that \(A^{ij}, \Sigma^{ij} \) are independent of \(x \). Then for any \(f \in M^{-1} H^\gamma_x(T), g \in H^{\gamma + 1}_x(T, \ell_2), u_0 \in U^{\gamma + 2}_x \), the problem 3.5 admits a unique solution \(u \in \mathcal{S}^{\gamma + 2}_x(T) \), and for this solution
\[\left\| u \right\|_{\mathcal{S}^{\gamma + 2}_x(T)} \leq c \left(\left\| M f \right\|_{H^\gamma_x(T)} + \left\| g \right\|_{H^{\gamma + 1}_x(T, \ell_2)} + \left\| u_0 \right\|_{H^{\gamma + 2}_x} \right). \] (3.22)

where \(c = c(d, d_1, \delta, \theta, K^1, L) \).

Proof

1. **By** Theorem 3.3 in [16], for each \(k \), the single equation
\[du^k = (\delta \Delta u^k + f^k) \, dt + g^k \, dw_t, \quad u^k(0) = u_0^k \]
has a solution \(u^k \in \mathcal{S}^{\gamma + 2}_x(T) \). As in the proof of Theorem 2.3 we only need to show that the estimate 3.22 holds given that a solution already exists. Also by Lemma 3.1 and Eq. 3.4 it is enough to show
\[\left\| M^{-1} u \right\|_{H^{\gamma + 2}_x(T)} \leq c \left(\left\| M f \right\|_{H^\gamma_x(T)} + \left\| g \right\|_{H^{\gamma + 1}_x(T, \ell_2)} + \left\| u_0 \right\|_{H^{\gamma + 2}_x} \right). \] (3.23)

2. Assume \(\gamma \geq 0 \). By Theorem 3.3, we may assume that \(u \) is sufficiently smooth in \(x \) and vanishes near the boundary. Similarly we may assume that \(f^k, g^k \) are sufficiently smooth in \(x \). Let \(m \) be an integer so that \(\gamma + 1 - m \leq 0 \). Then by applying Lemma 3.10 with \(\mu = \gamma, \gamma - 1, \cdots, \gamma - m \) in order,
\[\left\| M^{-1} u \right\|_{H^{\gamma + 2}_x(T)} \leq c \left(\left\| M^{-1} u \right\|_{H^{\gamma + 1 - m}_x(T)} + \left\| M f \right\|_{H^\gamma_x(T)} + \left\| g \right\|_{H^{\gamma + 1}_x(T, \ell_2)} + \left\| u_0 \right\|_{H^{\gamma + 2}_x} \right). \]
Thus to get Eq. 3.23 it is enough to use the fact $\| \cdot \|_{H^2_0} \leq \| \cdot \|_{L_2,0}$ and the
inequality 3.13.

3. Assume $\gamma \in [-1, 0]$, i.e., $\gamma + 1 \geq 0$. Recall $\mathcal{L} u := (M^2 \Delta + 2MD_1) u = (x^1)^2 \Delta u + 2x^1 u_{x^1}$. We have $\tilde{f} := \mathcal{L}^{-1} f \in M^{-1}\mathbb{H}^\gamma_{2,0}(T)$, $\tilde{g} := \mathcal{L}^{-1} g \in \mathbb{H}^{\gamma+1}_{2,0}(T, \ell_2)$ and $\tilde{u}_0 := \mathcal{L}^{-1} u_0 \in \mathcal{U}^{\gamma+4}_{2,0}$. If $\tilde{u} \in \mathcal{S}^{\gamma+4}_{2,0}(T)$ is the solution of the problem

$$d\tilde{u} = \left(A^{ij} \tilde{u}_{x^i x^j} + \tilde{f} \right) dt + (\Sigma^i_m \tilde{u}_{x^i} + \tilde{g}_m) dw^m_t, \quad \tilde{u}(0) = \tilde{u}_0$$

with $\Sigma^i_m = (\sigma^i_{kr,m})$, then for $v = \tilde{L} \tilde{u}$ we have $v \in \mathcal{S}^{\gamma+2}_{2,0}(T)$ and

$$dv = \left(A^{ij} v_{x^i x^j} + f - 2(A^{ij} + A^{il}) (\tilde{u}_{x^i x^j} + x^1 \Delta \tilde{u}_{x^j}) - 2A^{11} \Delta \tilde{u} \right) dt$$

$$+ \left(\Sigma^i_m v_{x^i} + g_m - 2\Sigma^i_m (\tilde{u}_{x^i} + x^1 \Delta \tilde{u}) \right) dw^m_t, \quad t > 0$$

$v(0) = u_0$.

Since $\tilde{u}_{x^i x^j} + x^1 \Delta \tilde{u}_{x^1} = M^{-1} \mathcal{L}(\tilde{u}_{x^i}) \in M^{-1}\mathbb{H}^\gamma_{2,0}(T)$, $\tilde{u}_{x^i} \in M^{-1}\mathbb{H}^{\gamma+2}_{2,0}(T)$, $\tilde{u}_{x^1} \in \mathbb{H}^{\gamma+3}_{2,0}(T)$, and $\gamma + 1 \geq 0$, we can find a $\tilde{u} \in \mathcal{S}^{\gamma+3}_{2,0}(T)$ as the solution of

$$d\tilde{u} = \left(A^{ij} \tilde{u}_{x^i x^j} - 2(A^{ij} + A^{il})(\tilde{u}_{x^i x^j} + x^1 \Delta \tilde{u}_{x^j}) - 2A^{11} \Delta \tilde{u} \right) dt$$

$$+ \left(\Sigma^i_m \tilde{u}_{x^i} - 2\Sigma^i_m (\tilde{u}_{x^i} + x^1 \Delta \tilde{u}) \right) dw^m_t,$$

$\tilde{u}(0) = 0$.

Then $u := v - \tilde{u} \in \mathcal{S}^{\gamma+2}_{2,0}(T)$ satisfies 3.5 and estimate 3.23 follows from the formula defining v, \tilde{u} and the fact that

$$\| M^{-1} v \|_{\mathbb{H}^\gamma_{2,0}(T)} \leq c \| M^{-1} \tilde{u} \|_{\mathbb{H}^{\gamma+4}_{2,0}(T)}, \quad \| M^{-1} \tilde{u} \|_{\mathbb{H}^{\gamma+4}_{2,0}(T)} \leq c \| M^{-1} \tilde{u} \|_{\mathbb{H}^{\gamma+4}_{2,0}(T)}.$$

Now, we pass to proving the uniqueness of the solution in the space $\mathcal{S}^{\gamma+2}_{2,0}(T)$. Let $u \in \mathcal{S}^{\gamma+2}_{2,0}(T)$ be a solution with $f = 0$, $g = 0$, $u_0 = 0$. We claim that $u \equiv 0$. For this we just show that $u \in \mathcal{S}^{\gamma+3}_{2,0}(T)$, or equivalently $v = \mathcal{L}^{-1} u \in \mathcal{S}^{\gamma+5}_{2,0}(T)$ since we have already proved the uniqueness in $\mathcal{S}^{\gamma+3}_{2,0}(T)$ at step 2; recall $\gamma + 1 \geq 0$. In fact, since $u \in \mathcal{S}^{\gamma+2}_{2,0}(T)$ at least, we have $v \in \mathcal{S}^{\gamma+4}_{2,0}(T)$ and

$$dv = \left(A^{ij} v_{x^i x^j} + \tilde{f} \right) dt + (\Sigma^i_m v_{x^i} + \tilde{g}_m) dw^m_t,$$

where

$$\tilde{f} = A^{ij} (\mathcal{L}^{-1} (u_{x^i x^j}) - A^{ij} (\mathcal{L}^{-1} u)_{x^i x^j}), \quad \tilde{g}_m = \Sigma^i_m (\mathcal{L}^{-1} (u_{x^i} - \Sigma^i_m (\mathcal{L}^{-1} u)_{x^i}).$$

However, we observe

$$\mathcal{L} \tilde{f} = A^{ij} (u_{x^i x^j} - \mathcal{L}((\mathcal{L}^{-1} u)_{x^i x^j}))$$

$$= 2(A^{ij} + A^{il}) M^{-1} u_{x^i} - 8A^{11} M^{-2} u + 2A^{11} \Delta (\mathcal{L}^{-1} u) \in M^{-1}\mathbb{H}^\gamma_{2,0}(T),$$

$$\mathcal{L} \tilde{g} = \Sigma^i (u_{x^i} - \mathcal{L}((\mathcal{L}^{-1} u)_{x^i})) = 2\Sigma^i M^{-1} u \in \mathbb{H}^{\gamma+2}_{2,0}(T, \ell_2).$$

Thus $\tilde{f} \in M^{-1}\mathbb{H}^\gamma_{2,0}(T)$ and $\tilde{g} \in \mathbb{H}^{\gamma+4}_{2,0}(T, \ell_2)$. Consequently, $v \in \mathcal{S}^{\gamma+5}_{2,0}(T)$ and $u \equiv 0$.
4. The case $\gamma \in \{-n-1, -n\}$ with $n \in \{1, 2, \ldots\}$ is treated similarly. The theorem is proved.

Proof

Now, we prove our results for the problem 1.1 with variable coefficients. For $n \in \mathbb{Z}$, $\mu \in (0, 1]$ and $k = 0, 1, 2, \ldots$, we define

$$[u]^{(n)}_{k} = \sup_{x \in \mathbb{R}^d} \left(x^1 \right)^{k+n} |D^\beta u(x)|,$$

$$[u]^{(n)}_{k+\mu} = \sup_{x, y \in \mathbb{R}^d} \left(x^1 \wedge y^1 \right)^{k+n} \frac{|D^\beta u(x) - D^\beta u(y)|}{|x - y|^{\mu}},$$

$$|u|^{(n)}_k = \sum_{j=0}^n [u]^{(n)}_j, \quad |u|^{(n)}_{k+\mu} = |u|^{(n)}_k + |u|^{(n)}_{k+\mu}.$$

Here is the main result of this section.

Theorem 3.13 Let $\gamma \in \mathbb{R}$. Suppose that Assumptions 2.2 and 3.11 hold,

$$|a^{ij}_{kr}(t, \cdot)|_{y|y^1+}^{(0)} + |b^i_{kr}(t, \cdot)|_{y|y^1+}^{(1)} + |c^i_{kr}(t, \cdot)|_{y|y^1+}^{(2)} + |\sigma^i_{kr}(t, \cdot)|_{y|y^1+}^{(0)} + |\nu_{kr}(t, \cdot)|_{y|y^1+}^{(1)} \leq L$$

and

$$|a^{ij}_{kr}(t, x) - a^{ij}_{kr}(t, y)| + |\sigma^i_{kr}(t, x) - \sigma^i_{kr}(t, y)|_{\ell_2} + |Mb^i_{kr}(t, x)| + |M^2c^i_{kr}(t, x)| + |M\nu_{kr}(t, x)|_{\ell_2} < \kappa$$

for all $x, y \in \mathbb{R}$ with $|x - y| \leq x^1 \wedge y^1$. Then there exists $\kappa_0 = \kappa_0(d, d_1, \theta, \delta, \gamma, K, L)$ so that if $\kappa \leq \kappa_0$, then for any $f \in M^{-1}H^r_{\gamma, \theta}(T)$, $g \in H^{r+1}_{\gamma, \theta}(T, \ell_2)$ and $u_0 \in U^{r+2}_{\gamma, \theta}$, the problem 1.1 defined on $\Omega \times [0, T] \times \mathbb{R}^d$ admits a unique solution $u \in H^{r+2}_{\gamma, \theta}(T)$, and it holds that

$$\|M^{-1}u\|_{H^{r+2}_{\gamma, \theta}(T)} \leq c \left(\|Mf\|_{H^r_{\gamma, \theta}(T)} + \|g\|_{H^{r+1}_{\gamma, \theta}(T, \ell_2)} + \|u_0\|_{U^{r+2}_{\gamma, \theta}} \right)$$

where $c = c(d, d_1, \delta, K, L)$.

Remark 3.14 See Remark 4.7(i) for the better understanding of the condition 3.28.

Remark 3.15 Since C_0^∞ is dense in $H^r_{\gamma, \theta}$, zero boundary condition is implicitly imposed in Theorem 3.13 (and in Theorem 4.8 below).

To prove Theorem 3.13 we use the following three lemmas taken from [7].

Lemma 3.16 Let constants C, δ be in $(0, \infty)$, and q be the smallest integer such that $|\gamma| + 2 \leq q$.

(i) Let $\eta_n \in C^\infty(\mathbb{R}^d), n = 1, 2, \ldots$, satisfy

$$\sum_{n} M^{a_\eta} |D^a \eta_n| \leq C \quad \text{in} \quad \mathbb{R}^d$$

(3.30)
For any multi-index α such that $0 \leq |\alpha| \leq q$. Then for any $u \in H_{p,\theta}^\gamma$

$$\sum_n \eta_n u \|_{H_{p,\theta}^\gamma}^p \leq N C^p \|u\|_{H_{p,\theta}^\gamma},$$

where the constant N is independent of u, θ, and C.

(ii) If, in addition to the condition in (i), $\sum_n \eta_n^2 \geq \delta$ on \mathbb{R}_+^d, then for any $u \in H_{p,\theta}^\gamma$

$$\|u\|_{H_{p,\theta}^\gamma} \leq N \sum_n \|\eta_n u\|_{H_{p,\theta}^\gamma}^p,$$

where the constant N is independent of u and θ.

The reason that the first inequality in Eq. 3.32 below is written for η_n^d (not for η_n^2 as in the above lemma) is to have the possibility to apply Lemma 3.16 to η_n^2. Also, note $\sum d^2 \leq (\sum |d|)^2$.

Lemma 3.17 For each $\varepsilon > 0$ and $q = 1, 2, \ldots$, there exist non-negative functions $\eta_n \in C_0^\infty(\mathbb{R}_+^d)$, $n = 1, 2, \ldots$ such that (i) on \mathbb{R}_+^d for each multi-index α with $1 \leq |\alpha| \leq q$ we have

$$\sum_n \eta_n^d \geq 1, \quad \sum_n \eta_n \leq N(d), \quad \sum_n M^{\alpha|\alpha|} D^\alpha \eta_n \leq \varepsilon;$$

$$\sum_n \eta_n^2 \geq 1, \quad \sum_n \eta_n \leq N(d), \quad \sum_n M^{\alpha|\alpha|} D^\alpha \eta_n \leq \varepsilon;$$

(ii) for any n and $x, y \in \text{supp} \eta_n$ we have $|x - y| \leq N(x^1 \wedge y^1)$, where $N = N(d, q, \varepsilon) \in [1, \infty)$.

Lemma 3.18 Let $p \in (1, \infty)$, $\gamma, \theta \in \mathbb{R}$. Then there exists a constant $N = N(\gamma, |\gamma|_+, p, d)$ such that if $f \in H_{p,\theta}^\gamma$ and a is a function with the finite norm $|a|_{|\gamma|_+}^{(0)}$, then

$$\|af\|_{H_{p,\theta}^\gamma} \leq N|a|_{|\gamma|_+}^{(0)} \|f\|_{H_{p,\theta}^\gamma}.$$

In addition,

(i) if $\gamma = 0, 1, 2, \ldots$, then

$$\|af\|_{H_{p,\theta}^\gamma} \leq N_1 \sup |a|_{|\gamma|_+} \|f\|_{H_{p,\theta}^\gamma} + N_2 \|f\|_{H_{p,\theta}^{\gamma-1}} \sup_{1 \leq |\alpha| \leq |\gamma|} |M^{\alpha|\alpha|} D^\alpha a|,$$

where, obviously, one can take $N_1 = 1$ and $N_2 = 0$ if $\gamma = 0$.

(ii) if γ is not integer, then

$$\|af\|_{H_{p,\theta}^\gamma} \leq N(\sup |a|_{|\gamma|_+}^{(0)}d^{1-s}) \|f\|_{H_{p,\theta}^\gamma},$$

where $s := 1 - \frac{|\gamma|}{|\gamma|_+} > 0$.

The same assertions hold true for ℓ_2-valued a.

Proof of Theorem 3.13 We proceed as in Theorem 2.16 of [6], where the theorem is proved for single equations. As usual, for simplicity, we assume $u_0 = 0$ (see the proof of Theorem 5.1 in [12]). Also having the method of continuity in mind, we convince ourselves that to prove the theorem it suffices to show that there exists κ_0 such that the a priori estimate 3.29 holds given that the solution $u \in \mathcal{D}_{p,\theta}^{\gamma+2}(T)$ already exists.
and $\kappa \leq \kappa_0$. We divide the proof into 6 cases. The reason for this is that if γ is not an integer we use Eq. 3.35 and if γ is a non-negative integer we use Eq. 3.34, but if γ is a negative integer we use the somewhat different approaches used in [6].

Case 1 $|\gamma| \notin \{0, 1, 2, \ldots\}$. Take the least integer $q \geq |\gamma| + 4$. Also take an $\varepsilon \in (0, 1)$ which will be specified later, and take a sequence of functions η_n, $n = 1, 2, \ldots$ from Lemma 3.17 corresponding to ε, q. Then by Lemma 3.16, we have

$$
\|M^{-1}u\|_{L^2_{\gamma,\rho}(T)}^2 \leq N_1 \sum_{n=1}^{\infty} \|M^{-1}u\|_{L^2_{\gamma,\rho}(T)}^2.
$$

(3.36)

For any n let x_n be a point in $\text{supp} \eta_n$ and $d_{kr,n}^i(t) = a_{kr}^i(t, x_n), \sigma_{kr,n}^i(t) = \sigma_{kr}^i(t, x_n)$. From Eq. 1.1, we easily have

$$
d(u^k \eta^2) = \left(d_{kr,n}^i \left(u^k \eta^2 \right) + M^{-1} f_n^k \right) dt + \left(\sigma_{kr,n}^i \left(u^k \eta^2 \right) + g_{n,m}^k \right) dw^m_i,
$$

where

$$
f_n^k = \left(a_{kr}^i - d_{kr,n}^i \right) \eta^2 M u^x_{x^k} - 2a_{kr,n}^i M \left(\eta^2 u^x_{x^k} \right) + a_{kr,n}^i M^{-1} \eta^{2} \left(\eta^2 u^x_{x^k} \right) + \left(\eta^2 M M_{kr}^i u^x_{x^k} \right) + \frac{1}{2} \eta^2 \left(M M_{kr}^i u^x_{x^k} \right) \gamma^2,
$$

$$
g_{n,m}^k = \left(\sigma_{kr,n}^i - \sigma_{kr,n,m}^i \right) \eta^2 u^x_{x^k} - \sigma_{kr,n,m}^i M^{-1} \eta^{2} \left(\eta^2 u^x_{x^k} \right) + M_{kr,m}^{-1} \eta_n^2 + s_n^k \eta_n^2.
$$

By Theorem 3.12, for each n,

$$
\|M^{-1}u\|_{L^2_{\gamma,\rho}(T)}^2 \leq N \left(\|f_n\|_{L^2_{\gamma,\rho}(T)}^2 + \|g_n\|_{L^2_{\gamma,\rho}(T)}^2 \right)
$$

(3.37)

and by Eq. 3.35,

$$
\left\| \left(a_{kr}^i - a_{kr,n}^i \right) \eta^2 M u^x_{x^k} \right\|_{L^2_{\gamma,\rho}(T)} \leq N \|\eta_n M u_{xx}\|_{L^2_{\gamma,\rho}(T)} \sup_{x_1 \in T} \left| \left(a_{kr}^i - a_{kr,n}^i \right) \eta_n \right|^s,
$$

(3.38)

where $s > 0$ is a constant depending only on γ and $|\gamma| + 1$.

By Lemma 3.17 (ii), for each n and $x, y \in \text{supp} \eta_n$ we have $|x - y| \leq N(\varepsilon)(x^1 \wedge y^1)$, where $N(\varepsilon) = N(d, q, \varepsilon)$, and we can easily fix points x_i lying on the straight segment connecting x and y and including x and y so that the number of points are not more than $N(\varepsilon) + 2 \leq 3N(\varepsilon)$ and $|x_i - x_{i+1}| \leq x^1 \wedge x^1_{i+1}$. It follows from our assumptions

$$
\sup_{x_1 \in T} \left| \left(a_{kr}^i - a_{kr,n}^i \right) \eta_n \right| \leq 3N(\varepsilon) \kappa_0.
$$

We substitute this to Eq. 3.38 and get

$$
\left\| \left(a_{kr}^i - a_{kr,n}^i \right) \eta^2 M u^x_{x^k} \right\|_{L^2_{\gamma,\rho}(T)} \leq NN(\varepsilon) \kappa^s \|\eta_n M u_{xx}\|_{L^2_{\gamma,\rho}(T)}.
$$

Similarly,

$$
\|\eta_n^2 M b_{kr}^i u^x_{x^k} \|_{L^2_{\gamma,\rho}(T)} + \|\eta_n^2 M c_{kr} M^{-1} u^x_{x^k} \|_{L^2_{\gamma,\rho}(T)} + \|\left(\sigma_{kr}^i - \sigma_{kr,n}^i \right) \eta_n^2 u^x_{x^k} \|_{L^2_{\gamma,\rho}(T)} + \|\sigma_{kr,n}^i \eta_n^2 \|_{L^2_{\gamma,\rho}(T)} + \|\eta_n M^{-1} u \|_{L^2_{\gamma,\rho}(T)}.
$$

\(\copyright\) Springer
Coming back to Eqs. 3.37 and 3.36 and using Lemma 3.16, we conclude
\[
\|M^{-1}u\|^2_{H^{r+2}_0(T)} \leq NN(\varepsilon)\kappa^{2s}\left(\|M_{xx}\|^2_{H^{r}_0(T)} + \|u_x\|^2_{H^{r+1}_0(T)} + \|M^{-1}u\|^2_{H^{r+1}_0(T)}\right)
+ NC^2\left(\|u_x\|^2_{H^{r}_0(T)} + \|M^{-1}u\|^2_{H^{r+1}_0(T)}\right) + N\left(\|Mf\|^2_{H^{r}_0(T)} + \|g\|^2_{H^{r+1}_0(T,T_{\varepsilon})}\right),
\]
(3.39)
where
\[
C = \sup_{\mathbb{R}^d} \sup_{|\alpha| \leq g-2} \sum_{n=1}^{\infty} M^{i\alpha}|\langle D^\alpha (M(\eta^2_n)_{x}), + |D^\alpha (M^2(\eta^2_n)_{x})\rangle|).
\]
By construction, we have \(C \leq N\varepsilon\). Furthermore (see Lemma 3.1)
\[
\|u_x\|_{H^{r+1}_0} \leq N\|M^{-1}u\|_{H^{r+2}_0}, \quad \|M_{xx}\|_{H^{r}_0} \leq N\|M^{-1}u\|_{H^{r+2}_0}.
\]
(3.40)
Hence Eq. 3.39 yields
\[
\|M^{-1}u\|^2_{H^{r+2}_0(T)} \leq N_1(\varepsilon)\kappa^{2s+\varepsilon^2}\|M^{-1}u\|^2_{H^{r+2}_0(T)} + N\left(\|Mf\|^2_{H^{r}_0(T)} + \|g\|^2_{H^{r+1}_0(T,T_{\varepsilon})}\right).
\]
Finally, to get a priori estimate 3.29 it’s enough to choose first \(\varepsilon\) and then \(\kappa_0\) so that \(N_1(\varepsilon)\kappa^{2s+\varepsilon^2} \leq 1/2\) for \(\kappa \leq \kappa_0\).

Case 2 \(\gamma = 0\). Proceed as in Case 1 with \(\varepsilon = 1\) and arrive at Eq. 3.37 which is
\[
\|M^{-1}u\eta^2_n\|^2_{H^{r}_0(T)} \leq N\left(\|f_n\|^2_{L_2(T)} + \|g_n\|^2_{L_2(T,T_{\varepsilon})}\right).
\]
Notice that Eq. 3.38 holds with \(s = 1\) (since \(\gamma = 0\)). Also by Eq. 3.34,
\[
\left\|\left(\sigma^{i}_{kr} - \sigma^{i}_{kr,n}\right) \eta^2_nu_x\right\|_{H^{r+1}_0(T,T_{\varepsilon})} \leq N\sup_{\omega,\ell} \left|\left(\sigma^{i}_{kr} - \sigma^{i}_{kr,n}\right) \eta_n u_x\right\|_{H^{2}_0(T)} + N\|\eta_n u_x\|_{L_2(T)}
\leq N\kappa\|\eta_n u_x\|_{H^{2}_0(T)} + N\|\eta_n u_x\|_{L_2(T)}.
\]
(3.41)
From this point, by following the arguments in Case 1, one gets
\[
\|M^{-1}u\|^2_{H^{r}_0(T)} \leq N_1\kappa\|M^{-1}u\|^2_{H^{r}_0(T)} + N\|M^{-1}u\|^2_{H^{r+1}_0(T)} + N\|Mf\|^2_{L_2(T)} + N\|g\|^2_{H^{r}_0(T)}.
\]
Thus, if \(N_1\kappa_0 \leq 1/2\) and \(\kappa \leq \kappa_0\), then we have
\[
\|M^{-1}u\|^2_{H^{r}_0(T)} \leq N\|M^{-1}u\|^2_{H^{r}_0(T)} + N\|Mf\|^2_{L_2(T)} + N\|g\|^2_{H^{r}_0(T,T_{\varepsilon})}.
\]
(3.42)
Next, if necessary, by reducing \(\kappa_0\) (note that we are free to do this) we will estimate the norm \(\|M^{-1}u\|^2_{H^{r+1}_0(T)}\). Take an \(\varepsilon \in (0, 1)\) which will be specified later and proceed as in Case 1 and write Eqs. 3.36 and 3.37 for \(\gamma = -1\). The latter is
\[
\|M^{-1}u\|^2_{H^{r+1}_0(T)} \leq N\left(\|f_n\|^2_{H^{r-1}_0(T)} + \|g_n\|^2_{L_2(T,T_{\varepsilon})}\right).
\]
Similarly, where C with ε maps the couples N This easily leads to inequality (3.42) in [13] we have the following representations bounded.

Case 4. We temporarily assume that Eq. 3.27 holds with $\varepsilon = 1$. By Eq. 3.34,

$$\left\| M^{-1}u \right\|_{2,0}^2 \leq N(\varepsilon) \left\| M^{-1}u \right\|_{2,0}^2 + N \left\| Mf \right\|_{2,0}^2 + \left\| g \right\|_{2,0}^2.$$

Similarly,

$$\left\| f_n \right\|_{2,0}^2 \leq N \left(\left\| M^{-1}u \right\|_{2,0}^2 + N \left\| Mf \right\|_{2,0}^2 + \left\| g \right\|_{2,0}^2 \right).$$

This easily leads to

$$\left\| M^{-1}u \right\|_{2,0}^2 \leq N \left(\left\| M^{-1}u \right\|_{2,0}^2 + N \left\| Mf \right\|_{2,0}^2 + \left\| g \right\|_{2,0}^2 \right).$$

Now additionally assume $N \leq 1/4$. Then it is enough to use the interpolation inequality ([11], Theorem 2.6)

$$\left\| M^{-1}u \right\|_{2,0}^2 \leq \varepsilon \left\| M^{-1}u \right\|_{2,0}^2 + N(\varepsilon, \gamma) \left\| M^{-1}u \right\|_{2,0}^2$$

and the results in Case 2.

Case 4 $\gamma = -1$. We temporarily assume that Eq. 3.27 holds with $\gamma = 1$. In this case we prove the theorem directly without depending on an a priori estimate. Take κ_0 which corresponds to the case $\gamma = 0$. Assume $\kappa \leq \kappa_0$, then the operator R which maps the couples $(f, g) \in \mathcal{M}^{-1}2,0(T) \times \mathcal{H}_{2,0}^2(T)$ into the solutions $u \in \mathcal{H}_{2,0}^2(T)$ of the problem 1.1 defined on $\Omega \times [0, T] \times \mathbb{R}^d$ with zero initial data is well-defined and bounded. Now take $(f, g) \in \mathcal{M}^{-1}H_{2,0}^2(T) \times H_{2,0}^2(T)$. By Corollary 2.12 (also see Remark 2.15) in [13] we have the following representations

$$f = MD_\ell f^\ell, \quad g = MD_\ell g^\ell,$$

(3.43)
where \(f^\ell = (f^{\ell,1}, \ldots, f^{\ell,d_1}) \in M^{-1}\mathbb{I}_{2,\theta}(T), g^\ell = (g^{\ell,1}, \ldots, g^{\ell,d_1}) \in \mathbb{H}^1_{2,\theta}(T, \ell_2), \ell = 1, 2, \ldots, d \) and

\[
\sum_{\ell = 1}^d \| Mf^\ell \|_{\mathbb{L}_{2,\theta}(T)} \leq N \| Mf \|_{\mathbb{H}^{-1}_{2,\theta}(T)} , \quad \sum_{\ell = 1}^d \| g^\ell \|_{\mathbb{L}_{2,\theta}(T, \ell_2)} \leq N \| g \|_{\mathbb{L}_{2,\theta}(T, \ell_2)} . \tag{3.44}
\]

Next denote \(u^\ell = (u^{\ell,1}, \ldots, u^{\ell,d_1}) = R(f^\ell, g^\ell) \) and \(\bar{u} = (\bar{v}^1, \ldots, \bar{v}^{d_1}) = \sum_{\ell = 1}^d M\ell u^\ell \). Then by Eq. 3.40, \(\bar{v} \in M\mathbb{H}^1_{2,\theta}(T) \) and satisfies

\[
d\bar{v}_k = \left(a_{kr}^{ij} v^r_{x_i x_j} + b_{kr}^i v^r_{x_i} + c_{kr} v^r + f^k + \tilde{f}^k \right) dt + \left(\sigma_{kr,m}^{ij} v^r_{x_i x_j} + v_{kr,m} v^r + \beta^k_m + g_{m}^k \right) dw^m, \]

where

\[
\tilde{f}^k = \left(M\ell a_{kr}^{ij} v^r_{x_i x_j} - 2b_{kr}^i v^r_{x_i} + \left(M^2 D_\ell b_{kr}^i \right) M^{-1} v^r_{x_i} \right.
- M b_{kr} M^{-1} v^r_{x_i} + \left. \left(M^3 D_\ell c_{kr} \right) M^{-2} v^r \right),
\]

\[
\tilde{g}^k = \left(M\ell \sigma_{kr}^{ij} v^r_{x_i x_j} - \sigma_{kr} v^r_{x_i} + \left(M^2 D_\ell v_{kr} \right) M^{-1} v^r_{x_i}. \right.
\]

By assumptions one can easily check that \(| \cdot |_{0}^0\)-norm of \(M\ell a_{kr}^{ij}, M^2 D_\ell b_{kr}^i, M^3 D_\ell c_{kr} \) and \(| \cdot |_{1}^0\)-norm of \(M\ell \sigma_{kr}^{ij}, M^2 D_\ell v_{kr} \) are finite. Therefore

\[
\tilde{f} \in \mathbb{L}_{2,\theta}(T), \quad \tilde{g} \in \mathbb{H}^1_{2,\theta}(T, \ell_2).
\]

Finally we define \(\bar{u} = R(\tilde{f}, \tilde{g}) \) and \(u := \bar{v} - \bar{u} \). Then \(u \in \mathcal{S}_{2,\theta}(T) \) satisfies 1.1 and the a priori estimate follows from the formulas defining \(\bar{u} \) and \(\bar{v} \).

Next, we prove the uniqueness of solutions. Let \(k \leq k_0 \) with \(k_0 \) found above for the case \(\gamma = 0 \) and assume \(u \in \mathcal{S}_{2,\theta}(T) \) satisfies 1.1 with \(f = 0, g^k = 0 \) and \(u_0 = 0 \). Since we already have the uniqueness in the space \(\mathcal{S}_{2,\theta}(T) \), to show \(u \equiv 0 \) we only need to show \(u \in \mathcal{S}_{2,\theta}^2(T) \). Take \(\eta_n \) from Lemma 3.17 corresponding to \(\varepsilon = 1 \). From Eq. 1.1 one can write the system for \(\eta_n u \) for each \(n \) and get

\[
d(\eta_n u^k) = \left(a_{kr}^{ij} (\eta_n u')_{x_i x_j} + b_{kr}^i (\eta_n u')_{x_i} + c_{kr} (\eta_n u') + \tilde{f}_n^k \right) dt
\]

\[
+ \left(\sigma_{kr,m} (\eta_n u')_{x_i x_j} + v_{kr,m} (\eta_n u') + \tilde{g}_m^k \right) dw^m, \]

where

\[
\tilde{f}_n^k = -2a_{kr}^{ij} \eta_n u_{x_i} u'_{x_j} - \left(a_{kr}^{ij} \eta_n u_{x_i x_j} + b_{kr}^i \eta_n u_{x_i} \right) u', \quad \tilde{g}_m^k = -\sigma_{kr,m} (\eta_n)_{x_i} u'.
\]

Since \(u \in M\mathbb{H}^1_{2,\theta}(T) \) and \(\eta_n \) has compact support, we easily have \((\tilde{f}, \tilde{g}) \in \mathbb{L}_{2}(T) \times \mathbb{H}^1_{2,\theta}(T, \ell_2) \). Also the above system will not change if we arbitrarily change \(a_{kr}^{ij}, b_{kr}^i, c_{kr}, \sigma_{kr}^i, v_{kr} \) outside of the support of \(\eta_n \). Therefore using Theorem 2.4, one easily concludes that \(\eta_n u \in \mathbb{H}^1_2(T) \) and hence \(M^{-1} \eta_n u \in \mathbb{H}^2_{2,\theta}(T), \eta_n u \in \mathcal{S}_{2,\theta}^2(T) \). Then finally by using Eq. 3.29 (which we have for \(\gamma = 0 \)) and Lemma 3.16 one obtains

\[
\| M^{-1} u \|_{\mathbb{H}^2_{2,\theta}(T)} < \infty, \text{ that is, } u \in \mathcal{S}_{2,\theta}^2(T).
\]
Case 5 $\gamma = -1$ with no additional assumptions. To prove the a priori estimate we use the results of Case 3. Fix a non-negative smooth function $\phi \in C_0^\infty(B_{1/2}(0))$ with a unit integral. Define

$$\tilde{\sigma}(x) = \int \sigma(y)(x^1)^{-d} \phi \left(\frac{x - y}{x^1} \right) \, dy,$$

and define \tilde{v} similarly. Observe that

$$|\tilde{\sigma} - \sigma| \leq \kappa, \quad |M\tilde{v}| \leq 2\kappa.$$

Also using the fact $x^1 \leq 2(x^1 - x^1 z^1) \leq 4x^1$ for $|z^1| \leq 1/2$, one can easily check that there is a constant $N_0 < \infty$ such that

$$|\tilde{\sigma}|_0^2 + |\tilde{v}|_2^2 < N_0.$$

For instance, let $i, j \geq 2$, and $\delta_{1\ell} = 1$ if $\ell = 1$ and $\delta_{1\ell} = 0$ otherwise, then

$$x^1 \tilde{\sigma}_{x^i}(x) = \int_{|z| \leq 1/2} \sigma(x - x^1 z)[-d\phi(z) + \phi_x(z) \cdot (\delta_{1\ell} - z^\ell)] \, dz,$n

$$(x^1)^2 \tilde{v}_{x^i}(x) = \int_{|z| \leq 1/2} x^1 \nu(x - x^1 z)[-d\phi(z) + \phi_x(z) \cdot (\delta_{1\ell} - z^\ell)] \, dz,$n

$$(x^1)^2 \tilde{\sigma}_{x^i x^j}(x) = \int_{|z| \leq 1/2} \sigma(x - x^1 z) \phi_{x^i x^j}(z) \, dz,$n

and therefore it is obvious that the functions above are bounded. Also, all other cases can be considered similarly.

Take $(f, g) \in M^{-1}H_2^{-1}(T) \times \ell_2, \theta(T, \ell_2)$ and let $u \in \mathcal{S}_{2, \theta}(T)$ be a solution of Eq. 1.1 with zero initial data. Then

$$du^k = \left(b_{kr}^i u_{x^i}^k + c_{kr}^i u_{x^j}^k + f^k \right) dt + \left(\tilde{\sigma}_{kr,m}^i u_{x^j}^m + \tilde{v}_{kr,m} u_{x^j}^m + \tilde{g}_{m}^k \right) d\omega^m_t,$n

where $\tilde{g}^k = g^k + (\sigma_{kr}^i - \tilde{\sigma}_{kr}^i) u_{x^i}^j + (\nu_{kr} - \tilde{v}_{kr}) u^j$. Note

$$\|\tilde{g}\|_{L_2, \theta(T, \ell_2)} \leq \|g\|_{L_2, \theta(T, \ell_2)} + \kappa \|u_x\|_{L_2, \theta(T)} + 3\kappa \|M^{-1}u\|_{L_2, \theta(T)}. \quad (3.45)$$

Thus, by the results of Case 4, if $\kappa \leq \kappa_0$, then

$$\|M^{-1}u\|_{H_2^{-1}, \theta(T)} \leq N \left(\|Mf\|_{H_2^{-1}, \theta(T)} + \|\tilde{g}\|_{L_2, \theta(T, \ell_2)} \right) \leq N_1 \left(\|Mf\|_{H_2^{-1}, \theta(T)} + \|g\|_{L_2, \theta(T, \ell_2)} + \kappa \|M^{-1}u\|_{H_2^{-1}, \theta(T)} \right), \quad (3.46)$$

where the second inequality comes from Eqs. 3.45 and 3.40. Finally we assume

$$\kappa \leq \kappa_0 \wedge (2N_1)^{-1}.$$

Then Eq. 3.46 yields

$$\|M^{-1}u\|_{H_2^{-1}, \theta(T)} \leq 2N_1 \left(\|Mf\|_{H_2^{-1}, \theta(T)} + \|g\|_{L_2, \theta(T, \ell_2)} \right).$$

Thus we get the desired result for $\gamma = -1$.

[Springer]
Case 6 $\gamma = -2, -3, -4, \ldots$. In this case it is enough to repeat the processes in Case 4, but since $|\gamma| \geq |\gamma + 2|$, additional smoothness assumption on the coefficients is unnecessary. The theorem is proved. □

4 The System with Bounded C^1-Domain \mathcal{O}

Assumption 4.1 The bounded domain \mathcal{O} is of class $C^1_{1\mu}$. In other words, for any $x_0 \in \partial \mathcal{O}$, there exist constants $r_0, K_0 \in (0, \infty)$ and a one-to-one continuously differentiable mapping Ψ of $B_{r_0}(x_0)$ onto a domain $J \subset \mathbb{R}^d$ such that

(i) $J_+ := \Psi(B_{r_0}(x_0) \cap \mathcal{O}) \subset \mathbb{R}^d$ and $\Psi(x_0) = 0$;
(ii) $\Psi(B_{r_0}(x_0) \cap \partial \mathcal{O}) = J \cap \{y \in \mathbb{R}^d : y^1 = 0\}$;
(iii) $\|\Psi\|_{C^1(B_{r_0}(x_0))} \leq K_0$ and $|\Psi^{-1}(y_1) - \Psi^{-1}(y_2)| \leq K_0|y_1 - y_2|$ for any $y_i \in J$;
(iv) Ψ_x is uniformly continuous in for $B_{r_0}(x_0)$.

To proceed further we introduce some well known results from [3] and [7] (also, see [17] for the details).

Lemma 4.2 Let the domain \mathcal{O} be of class $C^1_{1\mu}$. Then

(i) there is a bounded real-valued function ψ defined in $\bar{\mathcal{O}}$, the closure of \mathcal{O}, such that the functions $\psi(x)$ and $\rho(x) := \text{dist}(x, \partial \mathcal{O})$ are comparable. In other words, $N^{-1}\rho(x) \leq \psi(x) \leq N\rho(x)$ with some constant N independent of x,
(ii) ψ is infinitely differentiable in \mathcal{O} (but not on $\partial \mathcal{O}$) and for any multi-index α,

$$
\sup_{\mathcal{O}} \psi^{(\alpha)}(x)|D^\alpha \psi(x)| < \infty.
$$

(4.1)

Now, we take the Banach spaces introduced in [7] and [19]. Let $\zeta \in C^\infty_0(\mathbb{R}^d_+)$ be a function satisfying (Eq. 3.1). For $x \in \mathcal{O}$ and $n \in \mathbb{Z} = \{0, \pm 1, \ldots\}$ we define

$$
\zeta_n(x) = \zeta(e^n \psi(x)).
$$

Then we have $\sum_n \zeta_n \equiv c$ in \mathcal{O} and

$$
\zeta_n \in C^\infty_0(\mathcal{O}), \quad |D^m \zeta_n(x)| \leq N(m)e^{mn}.
$$

For $\theta, \gamma \in \mathbb{R}$, let $H^\gamma_{p, \theta}(\mathcal{O})$ be the set of all distributions $u = (u^1, u^2, \ldots, u^d)$ on \mathcal{O} such that

$$
\|u\|_{H^\gamma_{p, \theta}(\mathcal{O})} := \sum_{n \in \mathbb{Z}} e^{n\theta} \|\zeta_n(e^n \cdot)u(e^n \cdot)\|_{H^\gamma_p} < \infty.
$$

(4.2)

If $g = (g^1, g^2, \ldots, g^d)$ and each g^k is an ℓ_2-valued function, then we define

$$
\|g\|_{H^\gamma_{p, \theta}(\mathcal{O}, \ell_2)} := \sum_{n \in \mathbb{Z}} e^{n\theta} \|\zeta_n(e^n \cdot)g(e^n \cdot)\|_{H^\gamma_p(\ell_2)}.
$$

It is known (see, for instance, [19]) that up to equivalent norms the space $H^\gamma_{p, \theta}(\mathcal{O})$ is independent of the choice of ζ and ψ. Moreover if γ is a non-negative integer, then

$$
H^\gamma_{p, \theta}(\mathcal{O}) = \{u : u, \psi Du, \ldots, \psi^{(\alpha)} D^\alpha u \in L_p(\mathcal{O}, \psi^{\theta-d}dx), \ |\alpha| \leq \gamma\}.
$$
\[\|u\|_{H^\rho_{p,\theta}(\mathcal{O})} \sim \sum_{|\alpha| \leq p} \int_{\mathcal{O}} |\psi| |D^\alpha u(x)|^{p} \psi^{d} \, dx. \]

Denote \(\rho(x, y) = \rho(x) \wedge \rho(y) \) and \(\psi(x, y) = \psi(x) \wedge \psi(y) \). For \(n \in \mathbb{Z}, \mu \in (0, 1] \) and \(k = 0, 1, 2, \ldots \), we define
\[
[u]_C = \sup_{\mathcal{O}} |u(x)|, \quad [u]_{C^\mu} = \sup_{x \neq y} \frac{|u(x) - u(y)|}{|x - y|^\mu}.
\]
\[
[u]^{(n)}_{k} = [u]^{(n)}_{k, \mathcal{O}} = \sup_{x \in \Omega, |\beta| = k} \psi^{k+n}(x) |D^\beta u(x)|,
\]
\[
[u]^{(n)}_{k+\mu} = [u]^{(n)}_{k+\mu, \mathcal{O}} = \sup_{x, y \in \mathcal{O}, |\beta| = k} \psi^{k+\mu+n}(x, y) \frac{|D^\beta u(x) - D^\beta u(y)|}{|x - y|^\mu},
\]
\[
[u]^{(n)}_{k} = [u]^{(n)}_{k, \mathcal{O}} = \sum_{j=0}^{k} [u]^{(n)}_{j, \mathcal{O}}, \quad [u]^{(n)}_{k+\mu} = [u]^{(n)}_{k+\mu, \mathcal{O}} = [u]^{(n)}_{k, \mathcal{O}} + [u]^{(n)}_{k+\mu, \mathcal{O}}.
\]

Remember that in case \(\mathcal{O} = \mathbb{R}^d_+ \), to define \([u]^{(n)}_{k} = [u]^{(n)}_{k, \mathcal{R}^d} \), we used \(\rho(x) (= x^1) \) and \(\rho(x) \wedge \rho(y) \) in place of \(\psi(x) \) and \(\psi(x, y) \) respectively in Eqs. 4.3 and 4.4.

Below we collect some other properties of the spaces \(H^\rho_{p,\theta}(\mathcal{O}) \).

Lemma 4.3 [19]

(i) The assertions (i)–(iii) in Lemma 3.1 hold if one formally replace \(M \) and \(H^\rho_{p,\theta} \) by \(\psi \) and \(H^\rho_{p,\theta}(\mathcal{O}) \), respectively.

(ii) There is a constant \(N = N(\gamma, |\gamma|_+, p, \theta) > 0 \) so that
\[
\|af\|_{H^\rho_{p,\theta}(\mathcal{O})} \leq N|a|_{|\gamma|_+} \|f\|_{H^\rho_{p,\theta}(\mathcal{O})}.
\]

Denote
\[
\mathbb{H}^\rho_{p,\theta}(\mathcal{O}, T) = L_p(\Omega \times [0, T], \mathcal{P}, H^\rho_{p,\theta}(\mathcal{O})),
\]
\[
\mathbb{H}^\rho_{p,\theta}(\mathcal{O}, T, \ell_2) = L_p(\Omega \times [0, T], \mathcal{P}, H^\rho_{p,\theta}(\mathcal{O}, \ell_2)),
\]
\[
U^\gamma_{p,\theta}(\mathcal{O}) = \psi^{1-2/p} L_p(\Omega, \mathcal{F}_0, H^{p-2/p}_{p,\theta}(\mathcal{O})),
\]
\[
\mathbb{L}_{p,\theta}(\mathcal{O}, T) = \mathbb{H}^0_{p,\theta}(\mathcal{O}, T).
\]

Definition 4.4 We say \(u \in \mathbb{H}^\gamma_{p,\theta}^{+,2}(\mathcal{O}, T) \) if \(u = (u^1, \cdots, u^d) \in \psi \mathbb{H}^\gamma_{p,\theta}^{+,2}(\mathcal{O}, T), u(0, \cdot) \in \mathbb{U}^\gamma_{p,\theta}^{+,2}(\mathcal{O}) \) and for some \(f \in \psi^{-1} \mathbb{H}^\gamma_{p,\theta}(\mathcal{O}, T), g \in \mathbb{H}^\gamma_{p,\theta}^{+,1}(\mathcal{O}, T, \ell_2) \),
\[
du = f \, dt + g_m \, dw^m_t,
\]
in the sense of distributions. The norm in \(\mathbb{H}^\gamma_{p,\theta}^{+,2}(\mathcal{O}, T) \) is defined by
\[
\|u\|_{\mathbb{H}^\gamma_{p,\theta}^{+,2}(\mathcal{O}, T)} = \|\psi^{-1} u\|_{\mathbb{H}^\gamma_{p,\theta}^{+,2}(\mathcal{O}, T)} + \|\psi f\|_{\mathbb{H}^\gamma_{p,\theta}(\mathcal{O}, T)} + \|g\|_{\mathbb{H}^\gamma_{p,\theta}^{+,1}(\mathcal{O}, T)} + \|u(0, \cdot)\|_{\mathbb{U}^\gamma_{p,\theta}^{+,2}(\mathcal{O})}.
\]

The following result is due to N.V. Krylov (see [10] and [4]).
Lemma 4.5 Let $p \geq 2$. The space $\mathcal{H}_{p,\theta}^{r+2}(T)$ is a Banach space and there exists a constant $c = c(d, p, \theta, \gamma, T)$ such that
\[
\mathbb{E} \sup_{t \leq T} \|u(t)\|_{\mathcal{H}_{p,\theta}^{r+1}(\mathcal{O})}^p \leq c \|u\|_{\mathcal{H}_{p,\theta}^{r+2}(\mathcal{O}, T)}^p.
\]
In particular, for any $t \leq T$,
\[
\|u\|_{\mathcal{H}_{p,\theta}^{r+1}(\mathcal{O}, T)}^p \leq c \int_0^t \|u\|_{\mathcal{H}_{p,\theta}^{r+2}(\mathcal{O}, s)}^p ds.
\]

Assumption 4.6

(i) The functions $a_{kr}^i(t, \cdot)$, $\sigma_{kr}^i(t, \cdot)$ are point-wise continuous in \mathcal{O}. That is, for any $\varepsilon > 0$ and $x \in \mathcal{O}$, there exists $\delta = \delta(\varepsilon, x)$ such that
\[
\left| a_{kr}^i(t, x) - a_{kr}^i(t, y) \right| + \left| \sigma_{kr}^i(t, x) - \sigma_{kr}^i(t, y) \right|_{L^2} < \varepsilon
\]
whenever $x, y \in \mathcal{O}$ and $|x - y| < \delta$.

(ii) There is a control on the behavior of $a_{kr}^i, b_{kr}^i, c_{kr}, \sigma_{kr}$, and v_{kr} near $\partial\mathcal{O}$, namely,
\[
\lim_{\rho(x) \to 0} \sup_{t, \omega} \sup_{y \in \mathcal{O}} \left[\left| a_{kr}^i(t, x) - a_{kr}^i(t, y) \right| + \left| \sigma_{kr}^i(t, x) - \sigma_{kr}^i(t, y) \right|_{L^2} \right] = 0. \tag{4.5}
\]
\[
\lim_{\rho(x) \to 0} \sup_{t, \omega} \left[\rho(x) \left| b_{kr}^i(t, x) \right| + \rho^2(x)|c_{kr}(t, x)| + \rho(x)|v_{kr}(t, x)|_{L^2} \right] = 0. \tag{4.6}
\]

(iii) For any $t > 0$ and $\omega \in \Omega$,
\[
\left| a_{kr}^i(t, \cdot) \right|_{|y| +}^{(0)} + \left| b_{kr}^i(t, \cdot) \right|_{|y| +}^{(1)} + \left| c_{kr}(t, \cdot) \right|_{|y| +}^{(2)} + \left| \sigma_{kr}^i(t, \cdot) \right|_{|y| +}^{(0)} + \left| v_{kr}(t, \cdot) \right|_{|y| +}^{(1)} \leq L.
\]

Remark 4.7

(i) The condition 4.5 is equivalent to
\[
\lim_{\rho(x) \to 0} \sup_{\omega, t} \left(\text{osc} \left(a_{kr}^i \right)_{B_{\frac{1}{2}d}(x)} + \text{osc} \left(\sigma_{kr}^i \right)_{B_{\frac{1}{2}d}(x)} \right) = 0.
\]

(ii) It is easy to see that Eq. 4.5 is much weaker than uniform continuity condition. For instance, if $\delta \in (0, 1), d = d_1 = 1$, and $\mathcal{O} = \mathbb{R}_+$, then the function $a(x)$ equal to $2 + \sin(\ln x^2)$ for $0 < x \leq 1/2$ satisfies Eq. 4.5. Indeed, if $x, y > 0$ and $|x - y| \leq x \land y$, then
\[
|a(x) - a(y)| = |x - y||a'(\xi)|,
\]
where ξ lies between x and y. In addition, $|x - y| \leq x \land y \leq \xi \leq 2(x \land y)$, and $\xi|a'(\xi)| \leq |\ln[2(x \land y)]^{d-1} \to 0$ as $x \land y \to 0$.

(iii) We observe that Eq. 4.6 allows the coefficients b_{kr}^i, c_{kr}, and v_{kr} to blow up near the boundary at a certain rate. For instance, it holds if
\[
|b_{kr}^i| \leq N\rho^{-1+\varepsilon}, \quad |c_{kr}| \leq N\rho^{-2+\varepsilon}, \quad |v_{kr}|_{L^2} \leq N\rho^{-1+\varepsilon}
\]
for some constants $N, \varepsilon > 0$.
Here is the main result of this article.

Theorem 4.8 Let Assumptions 2.2, 3.11 and 4.6 hold. Then for any \(f \in \psi^{-1} \mathbb{L}^p_{2,\bar{\psi}}(\mathcal{O}, T), \ g \in \mathbb{L}^{p+1}_{2,\bar{\psi}}(\mathcal{O}, T, \ell_2), \ u_0 \in U_{2,0}^{\psi}(\mathcal{O}), \) the problem 1.1 on \(\Omega \times [0, T] \times \mathcal{O} \) admits a unique solution \(u = (u^1, \ldots, u^{d+1}) \in \mathcal{S}_{2,\bar{\psi}}^{\psi+2}(\mathcal{O}, T), \) and for this solution

\[
\|\psi^{-1} u\|_{\mathbb{L}^{\psi+2}_{2,\bar{\psi}}(\mathcal{O}, T)} \leq c \left(\|\psi f\|_{\mathbb{L}^{\psi}_{2,\bar{\psi}}(\mathcal{O}, T)} + \|g\|_{\mathbb{L}^{p+1}_{2,\bar{\psi}}(\mathcal{O}, T, \ell_2)} + \|u_0\|_{U_{2,\bar{\psi}}^{\psi}(\mathcal{O})} \right), \tag{4.7}
\]

where \(c = c(d, d_1, \delta, \theta, K, L, T). \)

Proof Since the theorem was already proved for single equations [5], as in the proof of Theorem 2.3, we only need to establish the a priori estimate Eq. 4.7 assuming that a solution \(u \in \mathcal{S}_{2,\bar{\psi}}^{\psi+2}(\mathcal{O}, T) \) already exists. As usual, we assume \(u_0 = 0. \)

Let \(x_0 \in \partial \mathcal{O} \) and \(\Psi \) be a function from Assumption 4.1. In [6] it is shown that \(\Psi \) can be chosen in such a way that for any non-negative integer \(n \)

\[
|\Psi^{-1}_x(x)_{n,B_{r_0}(x_0) \cap \mathcal{O}} + |\Psi^{-1}_x(0)_{n,B_{r_0}(x_0) \cap \mathcal{O}} < N(n) < \infty \tag{4.8}
\]

and

\[
\rho(x) \Psi_{xt}(x) \to 0 \quad \text{as} \quad x \in B_{r_0}(x_0) \cap \mathcal{O}, \quad \text{and} \quad \rho(x) \to 0, \tag{4.9}
\]

where the constants \(N(n) \) and the convergence in Eq. 4.9 are independent of \(x_0. \)

Define \(r = r_0/K_0 \) and fix smooth functions \(\eta \in C^\infty_0(B_1(0)), \varphi \in C^\infty(\mathbb{R}) \) such that \(0 \leq \eta, \varphi \leq 1, \) and \(\eta = 1 \) in \(B_{r/2}(0), \varphi(t) = 1 \) for \(t \leq -3, \) and \(\varphi(t) = 0 \) for \(t \geq -1 \) and \(0 \leq \varphi' \leq -1. \) Observe that \(\Psi(B_{r_0}(x_0)) \) contains \(B_r(0). \) For \(n = 1, 2, \ldots, t > 0 \) and \(x \in \mathbb{R}_+^d \) we introduce \(\varphi_n(x) = \varphi(n^{-1} \ln x^1), \)

\[
a^{ij,n} := \tilde{a}^{ij}(x)\varphi_n + \delta^{ij}(1-\eta\varphi_n)I, \quad b^{in} := \tilde{b}^i\eta\varphi_n, \quad c^n := \tilde{c}^n := \tilde{\gamma}\varphi_n,
\]

\[
\sigma^{in} := \tilde{\sigma}^i\eta\varphi_n, \quad \nu^n := \tilde{\nu}^n := \tilde{\nu}\varphi_n,
\]

where

\[
\tilde{a}^{ij}(t, x) = \tilde{a}^{ij}(t, \Psi^{-1}(x)), \quad \tilde{b}^i(t, x) = \tilde{b}^i(t, \Psi^{-1}(x)),
\]

\[
\tilde{\sigma}^i(t, x) = \tilde{\sigma}^i(t, \Psi^{-1}(x)), \quad \tilde{\nu}^n(t, x) = \tilde{\nu}(t, \Psi^{-1}(x)).
\]

Using Lemma 3.4 of [6], one can easily check that there is a constant \(L' \) independent of \(n \) and \(x_0 \) so that

\[
|a^{ij,n}(t, \cdot)|_{\mathbb{L}^1_1} + |b^{in}(t, \cdot)|_{\mathbb{L}^1_1} + |c^n(t, \cdot)|_{\mathbb{L}^1_1} + \|\sigma^{in}(t, \cdot)\|_{\mathbb{L}^2_1} + \|\nu^n(t, \cdot)\|_{\mathbb{L}^2_1} \leq L'.
\]

\[
(4.10)
\]
Take κ_0 from Theorem 3.13 corresponding to $d, \theta, \delta, K, \nu$ and L'. Observe that $\varphi(m^{-1} \ln x^1) = 0$ for $x^1 \geq e^{-m}$ and $|\varphi(m^{-1} \ln x^1) - \varphi(m^{-1} \ln y^1)| \leq m^{-1}$ if $|x^1 - y^1| \leq x^1 \wedge y^1$. Also we easily see that Eq. 4.9 implies $x^1 \Psi_{x_0}(\Psi^{-1}(x)) \to 0$ as $x^1 \to 0$. Using these facts, Eqs. 4.5 and 4.6, one can find and fix $n > 0$ independent of x_0 such that

$$
\left| a_{kr}^{i,n}(t, x) - a_{kr}^{i,n}(t, y) \right| + \left| \sigma_{kr}^{i,n}(t, x) - \sigma_{kr}^{i,n}(t, y) \right| + x^1 \left| b_{kr}^{i,n}(t, x) \right| \\
+ (x^1)^2 \left| c_{kr}^{n}(t, x) \right| + x^1 \left| v_{kr}^{n}(t, x) \right| \leq \kappa_0,
$$

(4.11)

whenever $t > 0$, $x, y \in \mathbb{R}_+^d$ and $|x - y| \leq x^1 \wedge y^1$. Now we fix a $\rho_0 < r_0$ such that

$$
\Psi(B_{\rho_0}(x_0)) \subset B_{r_0/2}(0) \cap \{x : x^1 \leq e^{-3n}\}.
$$

(4.12)

Let ξ be a smooth function with support in $B_{\rho_0}(x_0)$ and denote $v := (\xi u)(\Psi^{-1})$ and continue v as zero in $\mathbb{R}_+^d \setminus \Psi(B_{\rho_0}(x_0))$. Since $\eta v_{kr} = 1$ on $\Psi(B_{\rho_0}(x_0))$, the function v satisfies

$$
dv^k = \left(a_{kr}^{i,n}v_x^r + b_{kr}^{i,n}v_x^r + c_{kr}^{n}v + \hat{f}^k \right) dt + \left(\sigma_{kr,m}v_x^r + v_x^r u + \hat{g}_m^k \right) dv^m,
$$

where

$$
\hat{f}^k = \hat{f}(\Psi^{-1}), \quad \hat{f} = -2a_{kr}^{i,n}u_x^r \xi_x^r - a_{kr}^{i,n}u_x^r \xi_x^r - b_{kr}^{i,n}u_x^r \xi_x^r + \xi f^k,
$$

$$
\hat{g} = \hat{g}(\Psi^{-1}), \quad \hat{g}_m^k = -a_{kr}^{i,n}u_x^r \xi_x^r + \xi g^k.
$$

Next, we observe that by Lemma 4.2 and Theorem 3.2 in [19] (or see [7]) for any $v, \alpha \in \mathbb{R}$ and $h \in \psi^{-a} H_{p, \theta}(O)$ with support in $B_{\rho_0}(x_0)$ we have

$$
\|\psi^\alpha h\|_{H_{p, \theta}(O)} \sim \| M^\alpha h(\Psi^{-1}) \|_{H_{p, \theta}}.
$$

(4.13)

Therefore, we conclude that $v \in \bar{S}_{2, \theta}^{r+2}(T)$. Hence, by Theorem 3.13 we get for any $t \leq T$

$$
\| M^{-1}v \|_{L_{p, \theta}^{r+2}(t)} \leq N \left(\| M \hat{f} \|_{L_{p, \theta}^{r}(t)} + \| \hat{g} \|_{L_{p, \theta}^{r+1}(t, \ell_2)} + \| u_0(\Psi^{-1}) \|_{L_{p, \theta}^{r+2}} \right).
$$

By using Eq. 4.13 again, we obtain

$$
\| \psi^{-1} u \xi \|_{L_{p, \theta}^{r+2}(O, t)} \\
\leq N \| a_{\xi \psi} u \|_{L_{p, \theta}^{r}(O, t)} + N \| a_{\xi \psi} u \|_{L_{p, \theta}^{r}(O, t)} + N \| \xi \psi b u \|_{L_{p, \theta}^{r}(O, t)} + N \| \xi \psi f \|_{L_{p, \theta}^{r}(O, t)} + N \| \xi \psi u_0 \|_{L_{p, \theta}^{r+2}(O, t)}.
$$

Remembering that ρ and ψ are comparable in O, one can easily check that the functions

$$
|\xi \alpha(t, \cdot)|_{L^1}^{(0)}, |\xi \psi a(t, \cdot)|_{L^1}^{(0)}, |\xi \psi b(t, \cdot)|_{L^1}^{(0)}, |\xi \psi f(t, \cdot)|_{L^1}^{(0)}, |\xi \psi u_0|_{L^1}^{(0)}
$$

are bounded on $\Omega \times [0, T]$. Then one concludes

$$
\| \psi^{-1} u \xi \|_{L_{p, \theta}^{r+2}(O, t)} \\
\leq N \| u \|_{L_{p, \theta}^{r+2}(O, t)} + N \| u \|_{L_{p, \theta}^{r+2}(O, t)} + N \| \psi f \|_{L_{p, \theta}^{r}(O, t)} + N \| \psi u_0 \|_{L_{p, \theta}^{r+2}(O, t)}.
$$
Note that the above constants \(\rho_0, m, L', N \) are independent of \(x_0 \). Therefore, to estimate the norm \(\| \psi^{-1}u \|_{H^s_{2,\rho}(\Omega,t)} \), one introduces a partition of unity \(\xi(0), i = 0, 1, 2, \ldots, N \) such that \(\xi(0) \in C_0^\infty(\Omega) \) and \(\xi(0) \in C_0^\infty(B_{\rho_0}(x_i)), x_i \in \partial\Omega \) for \(i \geq 1 \). Then one estimates \(\| \psi^{-1}u \xi(0) \|_{H^s_{2,\rho}(\Omega,t)} \) using Theorem 2.4 and the other norms as above. We only mention that since \(\psi^{-1}u \xi(0) \) has compact support in \(\Omega \),

\[
\| \psi^{-1}u \xi(0) \|_{H^s_{2,\rho}(\Omega,t)} \sim \| u \xi(0) \|_{H^s_{2,\rho}(\Omega,t)} \sim \| u \xi(0) \|_{H^s_{2,\rho}(\Omega,t)}.
\]

By summing up those estimates one gets

\[
\| \psi^{-1}u \|_{H^s_{2,\rho}(\Omega,t)} \leq N\| u \|_{H^s_{2,\rho}(\Omega,t)} + N\| u \|_{H^s_{2,\rho}(\Omega,t)} + N\| \psi f \|_{H^s_{2,\rho}(\Omega,t)} + N\| g \|_{H^s_{2,\rho}(\Omega,t,\ell_2)} + N\| u_0 \|_{H^s_{2,\rho}(\Omega,t)}.
\]

By this and the inequality

\[
\| \psi u_x \|_{H^s_{2,\rho}(\Omega,t)} \leq N\| u \|_{H^s_{2,\rho}(\Omega,t)},
\]

we get for each \(t \leq T \),

\[
\| u \|_{H^s_{2,\rho}(\Omega,t)}^2 \leq N\| u \|_{H^s_{2,\rho}(\Omega,t)}^2 + N\left(\| \psi f \|_{H^s_{2,\rho}(\Omega,t)}^2 + \| g \|_{H^s_{2,\rho}(\Omega,t,\ell_2)}^2 + \| u_0 \|_{H^s_{2,\rho}(\Omega,t)}^2 \right).
\]

(4.14)

Now the a priori estimate follows from Lemma 4.5 and Gronwall’s inequality. The theorem is proved.

\[\square \]

Acknowledgement The authors are sincerely grateful to the referee for carefully reading the article and giving many useful comments.

References

1. Flandoli, F.: Dirichlet boundary value problem for stochastic parabolic equations: compatibility relation and regularity of solutions. Stoch. Stoch. Rep. 29(3), 331–357 (1990)
2. Funaki, T.: Random motion of strings and related stochastic evolution equations. Nagoya Math. J. 89, 129–193 (1983)
3. Gilbarg, D., Hörmander, L.: Intermediate Schauder estimates. Arch. Ration. Mech. Anal. 74(4), 297–318 (1980)
4. Kim, K.: \(L_p(L_p) \) theory and Hölder estimates for parabolic SPDE. Stoch. Process. their Appl. 114(2), 313–330 (2004)
5. Kim, K.: On stochastic partial differential equations with variable coefficients in \(C^1 \) domains. Stoch. Process. their Appl. 112(2), 261–283 (2004)
6. Kim, K., Krylov, N.V.: On SPDEs with variable coefficients in one space dimension. Potential Anal. 21(3), 203–239 (2004)
7. Kim, K., Krylov, N.V.: On the Sobolev space theory of parabolic and elliptic equations in \(C^1 \) domains. SIAM J. Math. Anal. 36, 618–642 (2004)
8. Krylov, N.V.: Itô’s formula for the \(L_p \)-norm of stochastic \(W^1_p \)-valued processes. Probab. Theory Relat. Fields 147, 583–605 (2010)
9. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. American Mathematical Society, Prudence, RI (2008)
10. Krylov, N.V.: Some properties of traces for stochastic and deterministic parabolic weighted Sobolev spaces. Journal of Functional Analysis 183, 1–41 (2001)
11. Krylov, N.V.: Some properties of weighted Sobolev space in \mathbb{R}^d_+. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(28), 675–693 (1999)
12. Krylov, N.V.: An analytic approach to SPDEs. In: Stochastic Partial Differential Equations: Six Perspectives, Mathematical Surveys and Monographs, vol. 64, pp. 185–242. AMS, Providence, RI (1999)
13. Krylov, N.V.: Weighted Sobolev spaces and Laplace’s equation and the heat equations in a half space. Comm. PDEs 23(9–10), 1611–1653 (1999)
14. Krylov, N.V.: A $W^{m,p}_\omega$-theory of the Dirichlet problem for SPDEs in general smooth domains. Probab. Theory Refat. Fields 98, 389–421 (1994)
15. Krylov, N.V., Lototsky, S.V.: A Sobolev space theory of SPDEs with constant coefficients on a half line. SIAM J. Math. Anal. 30(2), 298–325 (1999)
16. Krylov, N.V., Lototsky, S.V.: A Sobolev space theory of SPDEs with constant coefficients in a half space. SIAM J. Math. Anal. 31(1), 19–33 (1999)
17. Lapic, S.K.: On the first-initial boundary value problem for stochastic partial differential equations. Ph.D. thesis, University of Minnesota, Minneapolis, MN (1994)
18. Lototsky, S.V.: Dirichlet problem for stochastic parabolic equations in smooth domains. Stoch. Stoch. Rep. 68(1–2), 145–175 (1999)
19. Lototsky, S.V.: Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equations. Methods Appl. Anal. 1(1), 195–204 (2000)
20. Mikulevicius, R., Rozovskii, B.: Stochastic Navier-Stokes equations for turbulent flows. SIAM J. Math. Anal. 35(5), 1250–1310 (2004)
21. Mikulevicius, R., Rozovskii, B.: A note on Krylov’s L_p-theory for systems of SPDEs. Electron. J. Probab. 6(12), 1–35 (2001)
22. Mueller, C., Tribe, R.: Hitting properties of a random string. Electron. J. Probab. 7(10), 1–29 (2002)
23. Rozovskii, B.: Stochastic Evolution Systems. Kluwer, Dordrecht (1990)
24. Triebel, H.: Theory of Function Spaces. Birkhäuser Verlag, Basel-Boston-Stuttgart (1983)