Machine learning based spatio-temporal super resolution reconstruction of turbulent flows

Kai Fukami\(^1\)†, Koji Fukagata\(^1\) and Kunihiko Taira\(^2\)

\(^1\)Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan
\(^2\)Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA

We present a new turbulent data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening, which can recover high-resolution turbulent flows from grossly coarse flow data in space and time. For the present machine learning based data reconstruction, we use the downsampled skip-connection/multi-scale model based on a convolutional neural network to incorporate the multi-scale nature of fluid flows into its network structure. As an initial example, the model is applied to a two-dimensional cylinder wake at \(Re_D = 100\). The reconstructed flow fields by the proposed method show great agreement with the reference data obtained by direct numerical simulation. Next, we examine the capability of the proposed model for a two-dimensional decaying homogeneous isotropic turbulence. The machine-learned models can follow the decaying evolution from coarse input data in space and time, according to the assessment with the turbulence statistics. The proposed concept is further investigated for a complex turbulent channel flow over a three-dimensional domain at \(Re_	au = 180\). The present model can reconstruct high-resolved turbulent flows from very coarse input data in space, and it can also reproduce the temporal evolution when the time interval is appropriately chosen. The dependence on the amount of training snapshots and duration between the first and last frames based on a temporal two-point correlation coefficient are also assessed to reveal the capability and robustness of spatio-temporal super resolution reconstruction. These results suggest that the present method can meet a range of flow reconstructions for supporting computational and experimental efforts.

Key words: computational methods, turbulence simulation

1. Introduction

In recent years, machine learning methods have been utilized to tackle various problems in fluid dynamics \cite{Brunton2020, Fukami2020, Brenner2019}. Applications of machine learning for turbulence modeling have been particularly active in fluid dynamics \cite{Duraisamy2019, Kutz2017}. Ling et al. \cite{Ling2016} proposed a tensor-basis neural network based on the multi-layer perceptron (MLP) \cite{Rumelhart1986} for Reynolds-Averaged Navier–Stokes simulation. Embedding the Galilean invariance into the machine learning structure was formed to be important and was verified by considering their model for flows in a duct and on a wavy-wall. For large eddy simulation (LES), subgrid modeling assisted by machine learning was proposed by Maulik et al. \cite{Maulik2019}. They showed the capability of machine learning assisted subgrid modeling in both a priori and a posteriori tests for the Kraichnan turbulence. Furthermore, machine learning is proving itself as a promising tool

† Email address for correspondence: kai.fukami@keio.jp
for developing reduced order models (ROM). For instance, [Murata et al. (2020)] proposed nonlinear mode decomposition using an autoencoder (Hinton & Salakhutdinov 2006) based on convolutional neural networks (CNNs) (LeCun et al. 1998) and demonstrated its use on transient and asymptotic laminar cylinder wakes at ReD = 100. Their method shows a great potential of autoencoder in terms of the feature extraction of flow fields in lower dimension. More recently, [Hasegawa et al. (2020)] combined a CNN and the long short term memory (LSTM) (Hochreiter & Schmidhuber 1997) for developing an ROM for a two-dimensional unsteady wake behind various bluff bodies. Although the aforementioned examples deal with only laminar flows, the strengths of machine learning have been capitalized for reduced order modeling of turbulent flows. [San & Maulik (2018)] utilized an extreme learning machine (Huang et al. 2004) based on MLP for developing an ROM of geophysical turbulence. [Srinivasan et al. (2019)] used LSTM to predict temporal evolution of the coefficients of nine-equation turbulent shear flow model. They demonstrated that the chaotic behavior of those coefficients can be reproduced well. They also confirmed that the statistics obtained from machine learning agreed well with the reference data. In addition to the above references, combinations of machine learning and fluid dynamics have attracted increasing attentions in the community (Maulik & San 2017; Maulik et al. 2019a; Lui & Wolf 2019; Salehipour & Peltier 2019; Wu et al. 2018).

Of particular interest here for fluid dynamics is the use of machine learning as a powerful approximator (Kreinovich 1991; Hornik 1991; Cybenko 1989; Baral et al. 2018), which can incorporate nonlinearities. We recently proposed a super resolution reconstruction method for fluid flows, which was tested with two-dimensional laminar cylinder wake and two-dimensional decaying homogeneous isotropic turbulence (Fukami et al. 2019a). We demonstrated that the high resolution two-dimensional turbulent flow field of 128 × 128 grid can be reconstructed from the input data of a coarse 4 × 4 grids via machine learning method. Applications and extensions of super resolution reconstruction can be considered for not only computational (Onishi et al. 2019; Liu et al. 2020) but also experimental fluid dynamics (Deng et al. 2019). Although these attempts showed the great potential of machine learning based super resolution methods to handle high-resolved fluid big data efficiently, their applicability has been so far limited only to two-dimensional spatial reconstruction.

Recently, a machine learning based temporal super resolution technique called inbetweening was demonstrated by Li et al. (2019) to estimate the snapshot sequences between the start and last frames for image and video processing. They tried to reconstruct 14 frames between two frames of videos using machine learning to save on storage. In the fluid dynamics community, a similar concept has recently been considered by Krishna et al. (2020) to temporal data interpolation for PIV measurement. They developed a model based on the rapid distortion theory and Taylor’s hypothesis.

In the present study, we perform a machine learning based spatio-temporal super resolution analysis inspired by the aforementioned spatial super resolution and temporal inbetweening techniques to reconstruct high-resolution turbulent flow data from extremely low resolution flow data both in space and time. The present paper is organized as follows. We first introduce our machine learning based spatio-temporal super resolution approach in section 2 with a simple demonstration for a two-dimensional laminar cylinder wake at ReD = 100. We then apply the present method to two-dimensional decaying isotropic turbulence and turbulent channel flow over three-dimensional domain in section 3. The capability of machine learning based spatio-temporal super resolution method is assessed through various turbulence statistics. Finally, concluding remarks are provided in section 4.
Machine learning based spatio-temporal super resolution for turbulence

Figure 1. Data reconstruction methods used in the present study: (a) Spatial super resolution. (b) Temporal super resolution (inbetweening).

2. Approach

2.1. Spatio-temporal super resolution flow reconstruction with machine learning

The objective of this work is to reconstruct high-resolution flow field data \(q(x_{\text{HR}}, t_{\text{HR}}) \) from low-resolution data in space and time \(q(x_{\text{LR}}, t_{\text{LR}}) \). To achieve this goal, we combine spatial super resolution analysis with temporal inbetweening. Super resolution analysis can reconstruct a spatially high-dimensional data from spatially low-dimensional input data, as illustrated in figure 1(a). Temporal inbetweening is able to find the temporal sequences between the first and the last frames in the time-series data, as shown in figure 1(b). We describe how one can combine these two reconstruction methods in section 2.2.

In the present study, we use a supervised machine learning model to reconstruct fluid flow data in space and time. For supervised machine learning, we prepare a set of input \(x \) and output (answer) \(y \) as the training data. We then train the supervised machine learning model with these training data such that a nonlinear mapping function \(y \approx F(x; w) \) can be built, where \(w \) holds weights within the machine learning model. The training process here can be mathematically regarded as an optimization problem to determine the weights \(w \) such that

\[
\min_w \mathbb{E}(y, F(x; w)),
\]

where \(\mathbb{E} \) is the loss (cost) function.

For the machine learning models for super resolution in space \(F_x \) and time \(F_t \), we use a hybrid downsampled skip-connection and multi-scale (DSC/MS) model (Fukami et al. 2019a) presented in figure 2. The DSC/MS model is based on a convolutional neural network (CNN) (LeCun et al. 1998) which is one of the widely used supervised machine learning methods for image processing. Here, let us briefly introduce the mathematical framework for the CNN. The CNN is trained with filter operation such that

\[
q_{ijm}^{(l)} = \varphi \left(\sum_{k=0}^{K-1} \sum_{p=0}^{L-1} \sum_{s=0}^{L-1} h_{pskm}^{(l)} q_{i+p,j+s,k}^{(l-1)} \right),
\]

where \(q^{(l)} \) is an output at layer \(l \), \(h \) is the filter, \(K \) is the number of variables per each position of data, and \(\varphi \) is an activation function which is generally chosen to be a monotonically increasing nonlinear function. In the present paper, we use the rectified linear unit (ReLU), \(\varphi(s) = \max(0, s) \), as the activation function \(\varphi \). It is widely known that the use of ReLU
Figure 2. The hybrid down-sampled skip-connection/multi-scale (DSC/MS) super resolution model (Fukami et al. 2019a). Spatial reconstruction of two-dimensional cylinder wake at $Re_D = 100$ is shown as an example.

enables machine learning models to be stable during the weight update process (Nair & Hinton 2010).

As shown in figure 2, the present machine learning model is comprised of two models: namely the downsampled skip-connection model (DSC) model shown in blue and the multi-scale (MS) model shown in green. The DSC model is robust against rotation/translation of the objects within the input images by combining compression procedures and skip-connection structures (Le et al. 2010; He et al. 2016). On the other hand, the MS model (Du et al. 2018) is able to take multi-scale properly of the flow field account into its model structure. Readers are referred to Fukami et al. (2019a) for additional details on the hybrid machine learning model and its capability for spatial super resolution reconstruction of two-dimensional turbulent flows. The DSC/MS model is utilized for both spatial and temporal data reconstruction in the present study.

2.2. Order of spatio-temporal super resolution reconstruction

For the reconstruction of the flow field, we can consider the following two approaches:

(i) Apply the spatial super resolution model $F^*_x : \mathbb{R}^{n_{LR} \times m_{LR}} \rightarrow \mathbb{R}^{n_{HR} \times m_{LR}}$, then the inbetweening model $F_t : \mathbb{R}^{n_{HR} \times m_{LR}} \rightarrow \mathbb{R}^{n_{HR} \times m_{HR}}$ such that

$$q(x_{HR}, t_{HR}) = F_t(F^*_x(q(x_{LR}, t_{LR}))) + \epsilon_{tx}, \quad (2.2)$$

(ii) Apply the inbetweening model $F^*_t : \mathbb{R}^{n_{LR} \times m_{LR}} \rightarrow \mathbb{R}^{n_{HR} \times m_{LR}}$, then the spatial super resolution model $F_x : \mathbb{R}^{n_{HR} \times m_{HR}} \rightarrow \mathbb{R}^{n_{HR} \times m_{HR}}$ such that

$$q(x_{HR}, t_{HR}) = F_x(F^*_t(q(x_{LR}, t_{LR}))) + \epsilon_{xt}, \quad (2.3)$$

where n is a spatial dimension of data, m is a temporal dimension of data, ϵ_{tx} is the error for the first case, and ϵ_{xt} is the error for the second case. The subscripts LR and HR represent low-resolution and high-resolution variables, respectively.

We seek the approach that achieves lower error between the above two formulations. The
Machine learning based spatio-temporal super resolution for turbulence

Lp norms of these error are assessed as

\[||\epsilon_{tx}||_p = ||q(x_{HR},t_{HR}) - F_t(x_{LR},t_{LR})||_p \]
\[= ||q(x_{HR},t_{HR}) - F_t(q(x_{HR},t_{LR}) + \epsilon_x)||_p, \]
(2.4)

\[||\epsilon_{xt}||_p = ||q(x_{HR},t_{HR}) - F_x(x_{LR},t_{LR})||_p \]
\[= ||q(x_{HR},t_{HR}) - F_x(q(x_{LR},t_{HR}) + \epsilon_t)||_p, \]
(2.5)

where \(\epsilon_x \) is an error from the spatial super resolution algorithm for the first case and \(\epsilon_t \) is an error from the inbetweening process for the second case. The difference in the magnitudes of the above errors depend on \(\epsilon_x \) and \(\epsilon_t \). Since spatial super resolution algorithm is not a function of the temporal resolution algorithm in our problem setting, \(\epsilon_x \) is not affected by data coarseness in time. On the other hand, \(\epsilon_t \) is the error resulting from inbetweening with spatial low-resolution data which lacks the phase information more than a spatially high-resolution data. For this reason, the error \(\epsilon_t \) is likely to be large due to the spatial coarseness. This leads us to first establish a machine learning model for spatio-temporal super resolution reconstruction as illustrated in figure 3 for the example of a cylinder wake. The cylinder flow example confirms the above trend for error.

Each of these machine learning models is trained individually for the spatial and temporal super resolution reconstructions. In the supervised machine learning process for regression tasks, the training process is formulated as an optimization problem to minimize a loss function in an iterative manner. The objectives of the two machine learning models can be expressed as

\[w_x = \text{argmin}_{w_x} ||q(x_{HR},t_{LR}) - F_x^*(q(x_{LR},t_{LR}))||_2, \]
\[w_t = \text{argmin}_{w_t} ||q(x_{HR},t_{HR}) - F_t(q(x_{HR},t_{LR}))||_2, \]

where \(w_x \) and \(w_t \) are the weights of the spatial and temporal super resolution models, respectively. In the present study, we use the \(L_2 \) norm to determine the optimized weights \(w \) for each of the machine learning models. Moreover, we use \(p = 2 \) for assessing the errors in what follows. We emphasize that the present approach goes for beyond traditional interpolation schemes, which are not suitable for reconstruction of physical phenomena with transport nature.

2.3. Demonstration: two-dimensional laminar cylinder wake

As a demonstration, let us apply the proposed formulation to the two-dimensional cylinder wake at \(Re_D = 100 \). The snapshots for this wake are generated by two-dimensional direct numerical simulation (DNS) (Taira & Colonius 2007; Colonius & Taira 2008), which
K. Fukami, K. Fukagata and K. Taira

Figure 4. Spatio-temporal super resolution reconstruction with machine learning for cylinder wake at \(Re_D = 100 \). The bar graph located on the center shows the \(L_2 \) error norm \(\epsilon \) for the reconstructed flow fields. SR indicates super resolution.

numerically solves the incompressible Navier–Stokes equations,

\[
\nabla \cdot \mathbf{u} = 0, \tag{2.8}
\]

\[
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re_D} \nabla^2 \mathbf{u}. \tag{2.9}
\]

Here \(\mathbf{u}, p \) and \(Re_D \) are the non-dimensionalized velocity vector, pressure and Reynolds number, respectively. For this example, we use five nested levels of multi-domains with the finest level being \((x, y)/D = [-1, 15] \times [-8, 18]\) and the largest domain being \((x, y)/D = [-5, 75] \times [-40, 40]\). Each domain uses \([N_x, N_y] = [400, 400]\) for discretization. The time step for DNS is set to \(\Delta t = 2.50 \times 10^{-3} \) and yielding a maximum CFL number of 0.3. As the training data set, we extract the domain around a cylinder body over \((x^*, y^*)/D = [-0.7, 15] \times [-5, 5]\) with \([N_x, N_y] = (192, 112)\). For the present study, we use 70% of the snapshots for training and the remaining 30% for validation. An early stopping criterion (Prechelt 1998) with 20 iterations of the learning process is also utilized to avoid overfitting such that the model retains generality for any unseen data in the training process.

The results of the preliminary examination with the undersampled cylinder wake data are summarized in figure 4. The machine learning models are trained by using \(n_{\text{snapshot,x}} = 1000 \) for spatial super resolution and \(n_{\text{snapshot,t}} = 100 \) for inbetweening. Here, the spatial super resolution model \(F_x \) has the role of a mapping function from the low spatial resolution data \(\mathbf{q}(x_{LR}) \in \mathbb{R}^{12 \times 7} \) to the high spatial resolution data \(\mathbf{q}(x_{HR}) \in \mathbb{R}^{192 \times 112} \). Next, two spatial high-resolved flow fields illustrated at \(t = 1\Delta t \) and \(9\Delta t \) in figure 4 are used as the input for the temporal super resolution model \(F_t \), so that the inbetween snapshots from
Figure 5. The problem set up of spatio-temporal super resolution analysis for two-dimensional decaying homogeneous isotropic turbulence.

$t = 2\Delta t$ to $8\Delta t$ corresponding to a period in time can be reconstructed. As shown in figure 4, the spatio-temporal super resolution analysis achieves excellent reconstruction of the flow field that is practically indistinguishable from the reference DNS data. The L_2 error norm $\epsilon = \frac{\|q_{DNS} - q_{ML}\|_2}{\|q_{DNS}\|_2}$ is shown in the middle of figure 4. The L_2 error level is approximately 5% of the reference DNS data. As the machine learning model is provided with the information at $t = 1\Delta t$ and $9\Delta t$, the error level shows slight increase between those two instances.

3. Results

3.1. Example 1: two-dimensional decaying homogeneous isotropic turbulence

As the first example, let us consider two-dimensional decaying homogeneous isotropic turbulence. The training data set is obtained by numerically solving the two-dimensional vorticity transport equation,

$$\frac{\partial \omega}{\partial t} + \mathbf{u} \cdot \nabla \omega = \frac{1}{Re_0} \nabla^2 \omega,$$

where $\mathbf{u} = (u, v)$ and ω are the velocity and vorticity, respectively (Taira et al. 2016). The size of the biperiodic computational domain and the numbers of grid points here are $L_x = L_y = 1$ and $N_x = N_y = 128$, respectively. The Reynolds number is defined as $Re_0 \equiv \frac{u^* l^*_0}{\nu}$, where u^* is the characteristic velocity obtained by the square root of the spatially averaged initial kinetic energy, l^*_0 is the initial integral length, and ν is the kinematic viscosity. The initial Reynolds numbers are $Re_0 = u^*(t_0)l^*(t_0)/\nu = 81.2$ for training/validation data and 85.4 for test data. For the input and output attributes to the machine learning model, we use the vorticity field ω.

For spatio-temporal super resolution analysis of two-dimensional turbulence, we consider four cases comprised of two spatial and two temporal coarseness levels as shown in figure 5. For spatial super resolution analysis, we prepare two levels of spatial coarseness: medium- (16×16) and low resolution (8×8 grids) data, analogous to our previous work (Fukami et al. 2019a). These spatial low resolution data are obtained by an average downsampling of the reference DNS data set. For the temporal resolution set up, we define medium- ($\Delta T = 1.0$) and wide time step ($\Delta T = 4.0$), where ΔT is the time step between the first and last frames of the inbetweening analysis. Note here that the training data includes the low Taylor
Reynolds number portion (Regime II in figure 5) so as to assess the influence on the decaying physics compared to Regime I. For the training process, we considered a fixed number of snapshots \((n_{\text{snapshot},x}, n_{\text{snapshot},t}) = (10000, 10000)\) for this two-dimensional example.

In the example of two-dimensional turbulence, the machine learning model for inbetweening analysis plays the role of a mapping function to reconstruct 8 snapshots between the first and last frames (given by the spatial reconstruction model). The flow fields reconstructed from spatio-temporal super resolution analysis of two-dimensional turbulence with various coarse input data are summarized in figure 6. On the left side, the reconstructed fields from Regime I with coarse data in space and time are shown. As shown, the temporal evolution of the complex vortex dynamics can be accurately reconstructed by the machine-learned models. For almost all cases, the \(L_2\) error norms \(\epsilon = \|q_{\text{DNS}} - q_{\text{ML}}\|_2/\|q_{\text{DNS}}\|_2\) listed below the contour plots for the spatially low-resolution input show larger errors compared to the medium-resolution case due to the effect of input coarseness in space. On the right side of the figure, we show the results from Regime II. Analogous to the results for Regime I, the reconstructed flow fields are in agreement with the reference DNS data. Noteworthy here is the peak \(L_2\) error norm of 0.198 appearing at \(t = (n + 7)\Delta t\) for Regime II using low resolution input and a wide time step. This is in contrast with the other cases that give peak errors at \(t = (n + 4)\Delta t\). This is caused by the periodic spatial boundary condition within the present machine learning model having to handle the temporal evolution over a bi-periodic domain with the relatively large structure (i.e., bottom left on the color map). Furthermore, the model is also affected by the error from the spatial super resolution reconstruction. For this reason, the peak in error here is shifted in time against the other cases in figure 6.
Figure 7. Time-ensemble L_2 error norms for the (a) medium- and (b) low-spatial input cases.

To examine the dependence on the regime of test data with simple assessment, the time-ensemble L_2 error norms of medium- and low spatial input cases are shown in figure 7. For all cases, the errors for Regime I are larger than those for Regime II. One of considerable reasons here is that the relative change in vortex structures for Regime II is less than that for Regime I, which we can see in figure 6. We also find that the reconstructions are affected by the input coarseness in space as evident from comparing figures 7(a) and (b).

Next, let us present the kinetic energy spectrum and the probability density function of the vorticity field ω for all coarse input cases with spatial and temporal reconstructions in figure 8. For comparison, we compute these statistics for Regimes I (purple) and II (yellow). The statistics with all coarse input data show similar distributions with the reference DNS trends. The high wavenumber region of the kinetic energy spectrum obtained from the reconstructed fields do not match with the reference curve due to the lack of correlation between the low and high wavenumber components. Besides, the effect of temporal coarseness for data reconstruction is larger than that of spatial coarseness in our problem setting, as it can be seen in figures 7 and 8. However, we should note that these observations do not imply that a temporal reconstruction is more challenging than a spatial reconstruction, since that depends highly on the problem settings.

3.2. Example 2: turbulent channel flow over three-dimensional domain

To investigate the applicability of machine learning based spatio-temporal super resolution reconstruction to three-dimensional turbulence, let us consider a turbulent channel flow at $Re_\tau = 180$ (Fukagata et al. 2006). The governing equations are the incompressible Navier-Stokes equations,

$$\nabla \cdot \mathbf{u} = 0,$$

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u} \mathbf{u}) = -\nabla p + \frac{1}{Re_\tau} \nabla^2 \mathbf{u},$$

where $\mathbf{u} = [u \ v \ w]^T$ represents the velocity vector with components u, v and w in the streamwise (x), wall-normal (y) and spanwise (z) directions. Here, t is time, p is pressure, and $Re_\tau = u_\tau \delta / \nu$ is the friction Reynolds number. The variables are normalized by the half-width δ in the channel and the friction velocity u_τ. The size of the computational domain and the number of grid points here are $(L_x, L_y, L_z) = (4 \pi \delta, 2 \delta, 2 \pi \delta)$ and $(N_x, N_y, N_z) = (256, 96, 256)$, respectively. The grids in the x and z directions are taken to be uniform. A non-uniform grid is utilized in the y direction. As the baseline data, we prepare the data snapshots on a uniform grid interpolated from the non-uniform grid data of DNS. We also examine the influence of grid type in Appendix for completeness. A no-slip boundary
Figure 8. Statistical assessments for spatio-temporal super resolution analysis of two-dimensional turbulence. (a), (c), (e), and (g): Kinetic energy spectrum. (b), (d), (f), and (h): Probability density function of vorticity ω. (a)–(d): Medium time step. (e)–(f): Wide time step. (a), (b), (e), and (f): Regime I. (c), (d), (g), and (h): Regime II.

Condition is imposed on the walls and a periodic boundary condition is prescribed in the x and z directions. The flow is driven by a constant pressure gradient at $Re_\tau = 180$. For the present study, subspace of the whole computational domain is extracted and used for machine learning, i.e., $(L_x^*, L_y^*, L_z^*) = (2\pi \delta, \delta, \pi \delta)$, $x, y, z \in [0, L_x^*] \times [0, L_y^*] \times [0, L_z^*]$, and $(N_x^*, N_y^*, N_z^*) = (128, 48, 128)$. Due to the symmetry of turbulence statistics in the y
Figure 9. The problem set up for the present study. We consider two spatial coarseness with three temporal resolutions. Note that $Q^+ = 0.005$ and 0.07 are used for visualization of spatial and temporal resolutions, respectively. The plot on the upper right shows the temporal two-point correlation coefficients R at $y^+ = 11.8$ for the present turbulent channel flow.

direction and homogeneity in the x and z directions, the extracted subdomain maintains the turbulent characteristics of the channel flow over the original domain size. We generally use 100 training data set for both the spatial and temporal super resolution analyses in this case. The dependence of the reconstruction on the number of snapshots is investigated later. For the input and output attributes to the machine learning model, we use the velocity fields $u = [u \ v \ w]^T$.

We illustrate in figure 9 the problem setting of the spatio-temporal super resolution analysis for three-dimensional turbulence. Regarding the spatial resolution, medium- and low resolutions are defined as $16 \times 6 \times 16$ and $8 \times 3 \times 8$ grids in the x, y, and z directions, respectively. These coarse input data sets are generated by the average downsampling operation from the reference DNS data of $128 \times 48 \times 128$ grids. Note that we are unable to detect the vortex core structures at $Q^+ = 0.005$ with low-resolution input in figure 9 due to the gross coarseness. As shown in figure 10, the vortex structure cannot be seen with a contour level of $Q^+ = 0.07$ with either medium or low spatial input data. For the inbetweening reconstruction, three time steps are considered; $\Delta T^+ = 12.6$ (medium), 25.2 (wide), and 126 (super-wide time step) in viscous time units, where ΔT^+ is the time step between first and last snapshots. These ΔT^+ correspond to temporal two-point correlation coefficients at $y^+ = 11.8$ of $R = R_{uu}^+(t^+)/R_{uu}(0) \approx 0.50$ (medium), 0.25 (wide), and 0.05 (super-wide time step), respectively (Fukami et al. 2019).

Let us summarize the reconstructed flow field visualized by the Q-criteria isosurface based on $n_{\text{snapshots},x} = 100$ in figure 10. The machine learning models are able to reconstruct the flow field from extremely coarse input data, despite the input data showing almost no vortex-core structures in the streamwise direction as shown in figure 10(a). We also present the velocity contours at a $y-z$ section ($x^+ = 1127$) in figure 11. We hereafter report the L_2 error norms normalized by the fluctuation component $\epsilon = \|u_{i,\text{DNS}} - u_{i,\text{ML}}\|_2/\|u'_{i,\text{DNS}}\|_2$ in this example to remove the influence on magnitude of each velocity attribute in the present turbulent channel flow. With both coarse input data, the reconstructed flow fields are in reasonable agreement with the reference DNS data in terms of the contour plots and the L_2 error norms listed below the reconstructed flow field. We also assess the turbulence statistics as summarized in figure 12. Noteworthy here is that the trends in wall-normal direction can be captured by the machine learning model from as little as 6 (medium) or 3 (low resolution)
Figure 10. Isosurfaces of the Q criterion ($Q^+ = 0.07$). (a) The input coarse data with medium and low resolutions. For comparison, $Q^+ = 0.005$ with medium resolution is also utilized. (b) Reference DNS data. (c) Reconstructed flow field from medium resolution input data. (d) Reconstructed flow field from low resolution input data.

Figure 11. The velocity contours at a $y-z$ section ($x^+ = 1127$) of the reference DNS data, coarse input data, and the recovered flow field through spatial super resolution analysis. The values listed below the contours are the L_2 error norm ϵ.

grid points, as shown in figures 12(a) and (b). Regarding the kinetic energy spectrum at $y^+ = 11.8$, the maximum wavenumber k_{max} in the streamwise and spanwise directions can also be recovered from the extremely coarse input data as presented in figures 12(c) and (d). The high wavenumber components for both cases are underestimated due to the fact that the dissipation range has no strong correlation with the energy-containing region.
Machine learning based spatio-temporal super resolution for turbulence

Figure 12. Turbulence statistics of the reference DNS data, input coarse data, and recovered flow fields by spatial super resolution analysis. (a) Root mean square of velocity fluctuation \(u_{i,\text{rms}} \), (b) Reynolds stress \(-u'u'\), (c) streamwise energy spectrum \(E_{uu}^+(k_x^+)\), and (d) spanwise energy spectrum \(E_{uu}^+(k_z^+)\).

Next, let us combine the spatial super resolution reconstruction with inbetweening to obtain the spatio-temporal high-resolution data \(q(x_{HR}, t_{HR}) \), as summarized in figure 13. We show in figure 13 (a) only the results for the medium spatial resolution input. With the medium time step, the reconstructed flow fields show reasonable agreement with the reference DNS data in terms of both the \(Q \) isosurface and \(L_2 \) error norm listed below the isosurface plots. In contrast, the flow fields cannot be reconstructed with wide- and super-wide time steps due to the lack of temporal correlation, as summarized in figure 9. Although the vortex core can be somewhat captured with the wide time step at \(n + 2 \) and \(n + 7 \), the reconstructed flow fields are essentially attenuated since the machine-learned models for inbetweening are given only the information with low correlation at the first and last frames obtained from spatial super resolution reconstruction, as shown in figure 13 (b). The time-ensemble \(L_2 \) error norm \(\tilde{\epsilon} \) with all combinations of coarse input data in space and time are summarized in figure 13 (c). It can be seen that the results with the machine-learned models are more sensitive to the temporal resolution than the spatial resolution level. This observation coincides with the previous example in section 3.1.

Let us demonstrate the robustness of the composite model against noisy input data for spatio-temporal super resolution analysis in figure 14. For this example, we use the medium spatially coarse input data with the medium time step. Here, the \(L_2 \) error norm for noisy input is defined as \(\epsilon'_{\text{noise}} = || q_{HR} - F(q_{LR} + \kappa n) ||_2 / || q'_{HR} ||_2 \), where \(n \) is the Gaussian noise, \(\kappa \) is the magnitude of noisy input, and \(q'_{HR} \) is the fluctuation component of the reference velocity. The reported values on the right side of figure 14 are the ensemble-averaged \(L_2 \) error ratio against the original error without noisy input, \(\epsilon'/\epsilon_{n=0} \). As it can be observed, the error increases with the magnitude of noise \(\kappa \) for both coarse input levels. The \(x-z \) sectional streamwise velocity contours from intermediate output of inbetweening at \(t = (n + 5)\Delta t \)
Figure 13. Spatio-temporal super resolution reconstruction for three-dimensional turbulent channel flow. (a) The Q isosurfaces ($Q^+ = 0.07$) of the reference DNS and super-resolved flow field with medium-, wide-, and super-wide time step. The medium resolution data in space are used as the input for spatial super resolution reconstruction. (b) The L_2 error norm of inbetweening for spatial medium resolution input with wide time step. (c) Summary of the time-ensemble L_2 error norms for all combinations of coarse input data in space and time.

Figure 14. Robustness of the machine learning model for noisy input with medium time step models. The $x - z$ sectional streamwise velocity contours are chosen from $y^+ = 19.4$, with medium spatial coarse input model. The intermediate snapshots at $t = (n + 5)\Delta t$ is used for assessment.

are shown in the left side of figure 14. The model exhibits reasonable robustness for the considered noise levels, especially for reconstructing large-scale structures.

In the above discussions, we used 100 snapshots for both spatial and temporal super resolution analyses with three-dimensional turbulent flow. Here, let us discuss the dependence
of the results on the number of snapshots for the spatial super resolution analysis $n_{\text{snapshot},x}$ and inbetweening $n_{\text{snapshot},t}$. The ensemble L_2 error norm τ with various number of snapshots is presented in figure 15. In the figure, we summarize the effect from the number of training snapshots on the spatial and temporal reconstructions. With up to $n_{\text{snapshot},t} = 50$, the L_2 errors are approximately 0.4 and the reconstructed fields cannot detect the vortex core structures from the Q-value visualizations, even if $n_{\text{snapshot},x}$ is increased. For cases with $n_{\text{snapshot},t} \geq 100$ with $n_{\text{snapshot},x} \geq 100$, the errors drastically decreases. For this particular example with the three-dimensional turbulent channel flow, one hundred training data sets is the minimum requirement for recovering the flow field for both in space and time. These findings suggest that data sets consisting with as few as 100 snapshots with the appropriate spatial and temporal resolutions hold sufficient physical characteristics for reconstructing the turbulent channel flow.

We also assess the computational costs with increasing number of training data for the NVIDIA Tesla V100 graphics processing unit (GPU), as shown in figure 16. The computational time per an iteration (epoch) linearly increases with the number of snapshots for both spatial and temporal super resolution analyses. Plainly speaking, complete training process takes approximately 3 days with $\{n_{\text{snapshot},x}, n_{\text{snapshot},t}\} = \{100, 100\}$ and 15 days with $\{n_{\text{snapshot},x}, n_{\text{snapshot},t}\} = \{1000, 1000\}$. The computational costs for the full iterations can deviate slightly from the linear trend since the error convergence is influenced within the machine learning models due to early stopping.

Let us also discuss the challenges associated with the spatio-temporal machine learning based super resolution reconstruction. As discussed above, supervised machine learning model
is trained to minimize a chosen loss function through an iterative training process. In other words, the machine learning models aim to solely minimize the given loss function, which can be a different objective than actually learning physics. We here discuss the dependence of the error in the real space and wave space.

The L_2 error distribution over each direction of turbulent channel flow is summarized in figure 17. The case with combination of medium spatial input ($16 \times 6 \times 16$ grids) with medium time step ($\Delta T^+ = 12.6$) is presented. As shown in figure 17, the errors at the edge of the domain in all directions are large. This may be due to the difficulty in predicting a temporal evolution over boundaries and padding operation of convolutional neural networks. Noteworthy here is the error trend in the wall-normal direction in figure 17. The errors for all attributes are high near the wall. One of possible reasons is the low probability of velocity attributes near wall region. Since the present machine learning models are trained with L_2 minimization as mentioned above, it is relatively tougher to predict those region than high probability for fluctuations.

We further examine how well the machine learning model performs over the wavenumber space. The kinetic energy spectrum at $y^+ = 11.8$ in the streamwise and spanwise directions of spatio-temporal super resolution reconstruction is shown in figure 18. For the input data, spatial medium resolution ($16 \times 6 \times 16$ grids) with medium- ($\Delta T^+ = 12.6$) and wide time steps ($\Delta T^+ = 25.2$) are considered. The L_2 error here is defined as $\epsilon_{E_{uu}^+(t^+)} = ||E_{uu}^+(t^+)_\text{DNS} - E_{uu}^+(t^+)_\text{ML}||_2/||E_{uu}^+(t^+)_\text{DNS}||_2$. With the medium time step, the error over the high-wavenumber space are higher than that over the low-wavenumber space. This observation agrees with the machine learning models being able to recover the low-wavenumber space from grossly coarse data seen in figure 12. With the case of wide time step, we can infer the influence of temporal coarseness, as discussed above. The L_2 error distributions of kinetic energy spectrum show high-error concentration on high-wavenumber portion at intermediate output in time, as shown in bottom part of figure 18.
Figure 18. Streamwise and spanwise kinetic energy spectrum of spatio-temporal super resolution analysis. Top results are based on medium time step, and bottom results are based on wide time step. Left side presents the streamwise energy spectrum, and right side shows the spanwise energy spectrum.

The machine learning models capture low-wavenumber components preferentially to minimize the reconstruction error.

4. Conclusions

We developed supervised machine learning methods for spatio-temporal super resolution analysis to reconstruct high-resolution flow data from grossly under-resolved input data both in space and time. First, a two-dimensional cylinder wake was considered as the preliminary demonstration. The machine-learned model was able to recover the data in space and reconstruct the temporal evolution from only the first and last frames.

As the first turbulent flow example, a two-dimensional decaying homogeneous isotropic turbulence was considered. In this example, we considered two spatial resolutions based on our previous work (Fukami et al. 2019a) and two different time steps to examine the capability of the proposed model. The reconstructed flow fields were in reasonable agreement with the reference data in terms of the L_2 error norm, the kinetic energy spectrum, and the probability density function of vorticity field. We also found that the machine-learned models were affected substantially by the temporal range of training data, i.e., between Regimes I and II.

We further examined the capability of the proposed method using a turbulent channel flow over three-dimensional domain at $Re_\tau = 180$. The machine learning based spatio-temporal super resolution analysis showed its great capability to reconstruct the flow field from grossly coarse input data in space and time when an appropriate time step size between the first and
the last frames is used. The proposed method, however, was unable to recover the turbulent flow fields in time when the temporal two-point correlation coefficient was $R^+ \leq 0.25$ because of the nature of supervised machine learning model whose weights are updated in an iterative manner based on the correlation between the input and the output. It was also seen that the machine learning models tend to preferentially extract the features in the low-wavenumber space so as to minimize a loss function efficiently. For improving the accuracy of the spatio-temporal super resolution analysis, we likely need to prepare a well-designed architecture which can take physics into account in its structure, e.g., loss function (Lee & You 2019; Raissi et al. 2020) and choice for input and output attributes, i.e., feature engineering. Such efforts will be undertaken in future work.

The robustness of the present model for noisy input and dependence on the amount of the training snapshots were also investigated. The proposed model showed reasonable capability for up to 10% noisy input in terms of both qualitative and quantitative assessments. We found that the flow field can be reconstructed by the machine learning-based methods with as little as 100 training data sets for both the spatial and temporal models.

We foresee a range of applications for the spatio-temporal super resolution analysis in fluid dynamics. For example, we may be able to leverage the current technique for large-eddy simulations as an augmentation tool. We may also be able to consider super resolution as a compression tool to store big fluid data. In fact, in the present paper, we can recover the three-dimensional turbulent channel flow which has 7864320 grid points in space and time, from low-resolution data which has 3072 grid points in space and time: approximately 0.04% in terms of data compression. Although these applications are just a few possible examples, we hope that the present paper would provide a hint for fluid dynamicists who try to analyze and handle big fluid flow data efficiently with data-oriented methods.

Acknowledgements

Kai Fukami and Koji Fukagata thank the support from Japan Society for the Promotion of Science (KAKENHI grant number: 18H03758). Kunihiko Taira acknowledges the generous support from the US Army Research Office (grant number: W911NF-17-1-0118) and US Air Force Office of Scientific Research (grant number: FA9550-16-1-0650). Kai Fukami also thanks Takaaki Murata, Masaki Morimoto, Taichi Nakamura (Keio Univ.) and Kazuto Hasegawa (Keio Univ., Polimi) for the insightful discussions.

Appendix

In this appendix, we assess the influence of spatial discretization in the wall-normal direction on the results from filter operation of the convolutional neural network which is usually performed for uniform image data. Note that we use the interpolated flow fields on a uniform grid generated from the non-uniform grid data in y direction, as input and output attributes for the discussions in the main text.

Here, we do not interpolate but use the data on a non-uniform grid. We present the streamwise velocity contours at a $y-z$ section of spatial super resolution analysis with medium coarse input data for both grid types in figure 19(a). Although we observe some visual difference in the input data as shown in figure 19(a), significant difference is not observed in terms of the streamwise velocity contours and the L^2 error norm below the figures. We also compare the L^2 error norm of the spatio-temporal super resolution analysis with both grid types in figure 19(b). For all cases, the errors using the uniform grid data is slightly larger than those from the non-uniform grid data. This is due to the original non-uniform data holding more information of near wall region than uniform data. However, the
Figure 19. (a) Dependence on the grid style of streamwise velocity contours u at a $y-z$ section ($x^+ = 1127$) for spatial super resolution reconstruction. Listed values are L_2 error norm. (b) Time-ensemble L_2 error norm of spatio-temporal super resolution reconstruction with uniform and non-uniform grid data in wall-normal direction.

Filter operation of the convolutional neural network is not sensitive to the choice of the spatial discretization at least for this problem.

References

Baral, C., Fuentes, O. & Kreinovich, V. 2018 Why deep neural networks: A possible theoretical explanation, In Constraint Programming and Decision Making: Theory and Applications. Springer pp. 1–5.

Brenner, M. P., Eldredge, J. D. & Freund, J. B. 2019 Perspective on machine learning for advancing fluid mechanics. Phys. Rev. Fluids 4, 100501.

Brunton, S. L., Noack, B. R. & Koumoutsakos, P. 2020 Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508.

Colonius, T. & Taira, K. 2008 A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Comput. Methods Appl. Mech. Eng. 197, 2131–2146.

Cybenko, G. 1989 Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314.

Deng, Z., He, C., Liu, Y. & Kim, K. C. 2019 Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework. Phys. Fluids 31, 125111.

Du, X., Qu, X., He, Y. & Guo, D. 2018 Single image super-resolution based on multi-scale competitive convolutional neural network. Sensors 789 (18), 1–17.

Duraisamy, K., Iaccarino, G. & Xiao, H. 2019 Turbulence modeling in the age of data. Annu. Rev. Fluid. Mech. 51, 357–377.

Fukagata, K., Kasagi, N. & Koumoutsakos, P. 2006 A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18, 051703.

Fukami, K., Fukagata, K. & Taira, K. 2019a Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 870, 106–120.

Fukami, K., Fukagata, K. & Taira, K. 2020 Assessment of supervised machine learning methods for fluid flows. Theor. Comput. Fluid Dyn. (available online), https://doi.org/10.1007/s00162-020-00518-y.

Fukami, K., Nabaee, Y., Kawai, K. & Fukagata, K. 2019b Synthetic turbulent inflow generator using machine learning. Phys. Rev. Fluids 4, 064603.

Hasegawa, K., Fukami, K., Murata, T. & Fukagata, K. 2020 Machine-learning-based reduced order modeling for unsteady flows around bluff bodies of various shapes. Theor. Comput. Fluid Dyn., accepted.

He, K., Zhang, X., Ren, S. & Sun, J. 2016 Deep residual learning for image recognition. In Proceedings of Computer Vision and Pattern Recognition pp. 770–778.
Hinton, G. E. & Salakhutdinov, R. R. 2006 Reducing the dimensionality of data with neural networks. Science 313 (5786), 504–507.

Hochreiter, S. & Schmidhuber, J. 1997 Long short-term memory. Neural Comput. 9, 1735–1780.

Hornik, K. 1991 Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257.

Huang, G., Zhu, Q. & Siew, C. 2004 Extreme learning machine: a new learning scheme of feedforward neural networks. In IEEE International Joint Conference on Neural Networks pp. 985–990.

Kreinovich, V. Y. 1991 Arbitrary nonlinearity is sufficient to represent all functions by neural networks: a theorem. Neural Netw. 4, 381–383.

Krishna, C. V., Wang, M., Hemati, M. S. & Luhar, M. 2020 Reconstructing the time evolution of wall-bounded turbulent flows from non-time resolved PIV measurements. Phys. Rev. Fluids (accepted).

Kutz, J. N. 2017 Deep learning in fluid dynamics. J. Fluid Mech. 814, 1–4.

Lee, S. & You, D. 2019 Data-driven prediction of unsteady flow fields over a circular cylinder using deep learning. J. Fluid Mech. 879, 217–254.

Li, Y., Roblek, D. & Tagliasacchi, M. 2019 From here to there: Video inbetweening using 3D convolutions. arXiv:1905.10240.

Ling, J., Kurzawski, A. & Templeton, J 2016 Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166.

Liu, B., Tang, J., Huang, H. & Lu, X.-Y. 2020 Deep learning methods for super-resolution reconstruction of turbulent flows. Phys. Fluids 32, 025105.

Lui, H. F. S. & Wolf, W. R. 2019 Construction of reduced-order models for fluid flows using deep feedforward neural networks. J. Fluid Mech. 872, 963–994.

Maulik, R. & San, O. 2017 A neural network approach for the blind deconvolution of turbulent flows. J. Fluid Mech. 831, 151–181.

Maulik, R., San, O., Jacob, J. D. & Crick, C. 2019a Sub-grid scale model classification and blending through deep learning. J. Fluid Mech. 870, 784–812.

Maulik, R., San, O., Rasheed, A. & Vedula, P. 2019b Sub-grid modelling for two-dimensional turbulence using neural networks. J. Fluid Mech. 858, 122–144.

Murata, T., Fukami, K. & Fukagata, K. 2020 Nonlinear mode decomposition with convolutional neural networks for fluid dynamics. J. Fluid Mech. 882, A13.

Nair, V. & Hinton, G. E. 2010 Rectified linear units improve restricted Boltzmann machines. In Proc. 27th International Conference on Machine Learning.

Onishi, R., Sugiyama, D. & Matsuda, K. 2019 Super-resolution simulation for real-time prediction of urban micrometeorology. Scientific Online Letters on the Atmosphere (SOLA) 15, 178–182.

Precelte, L. 1998 Automatic early stopping using cross validation: quantifying the criteria. Neural Netw. 11 (4), 761–767.

Raissi, M., Yazdani, A. & Karniadakis, G. E. 2020 Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 367 (6481), 1026–1030.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. 1986 Learning representations by back-propagation errors. Nature 322, 533–536.

Salehipour, H. & Peletier, W. R 2019 Deep learning of mixing by two ‘atoms’ of stratified turbulence. J. Fluid Mech. 861, R4.

San, O. & Maulik, R. 2018 Extreme learning machine for reduced order modeling of turbulent geophysical flows. Phys. Rev. E 97, 04322.

Srinivasan, P. A., Guastoni, L., Azizpour, H., Schlatter, P. & Vinuesa, R 2019 Predictions of turbulent shear flows using deep neural networks. Phys. Rev. Fluids 4, 054603.

Taira, K. & Colonius, T. 2007 The immersed boundary method: A projection approach. J. Comput. Phys. 225 (2), 2118–2137.
Taira, K., Nair, A. G. & Brunton, S. L. 2016 Network structure of two-dimensional decaying isotropic turbulence. *J. Fluid Mech.* 795, R2.

Wu, J-L., Xiao, H. & Paterson, E. 2018 Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework. *Phys. Rev. Fluids* 3 (074602).