Preliminary analysis of the sensitivity of the algebraic dry ice agglomeration model using multi-channel dies to change their geometrical parameters

J Górecki
Poznan University of Technology, Chair of Basic Machine Design, Piotrowo 3, 61-138 Poznan, Poland
E-mail: jan.gorecki@put.poznan.pl

Abstract. The article presents the results of a preliminary analysis of the algebraic sensitivity of the model describing the change in the limit values of densification stress in the process of dry ice agglomeration using multi-channel dies in the piston technique. In the available literature, it was noted that the limit value of compaction stresses significantly exceeds the effective value. This justifies the sense of undertaking work on the development of a multi-channel die that allows the reduction of the value of the indicated stress, which will reduce the consumption of electricity necessary for the production of dry ice pellets. The sensitivity analysis performed is related to the attempt to determine the significance of the impact of individual geometric parameters of the multi-channel die on the value of the limit stress. The results will significantly contribute to the development of a work program related to the optimization of geometrical parameters of the tools used to implement the indicated process.

1. Introduction
Modern economy often emphasizes the utilization of waste materials from the manufacturing processes as a major factor in the economic balance. Very often such materials become a side product with numerous interested recipients [1–3]. Among such materials, we have the crystallized carbon dioxide which is a waste product in the ammonia manufacturing process [3]. This material is compressed and delivered in liquid form to interested recipients. Due to sudden expansion of liquid carbon dioxide, it crystallizes [4, 5]. The resulting product is fragmented and features peculiar characteristics in relation to its low temperature of approx. -78.5 °C and sublimation in normal conditions [6–8]. The indicated properties allow for a broad industrial application of the material, e.g. in refrigeration, in transportation of thermolabile materials, disinfection and surface cleaning [8–13].

The efficiency of processes employing dry ice very often depends on sublimation time [3, 7, 14]. Therefore, the fragmented material is subject to agglomeration under pressure to limit the surface area for phase transition to extend its time. Machines for dry ice agglomeration are available commercially. The examination of available machines indicates that in most cases the piston method of agglomeration is employed. The method utilizes special assemblies fitted with multi-channel dies, whose example is illustrated in figure 1.
The geometric parameters of multi-channel dies influence the final form of the compressed dry ice together with the resistance force arising in the process of agglomeration. The force value is directly related to the consumption of electrical energy powering the machine during use. Both factors directly affect the cost-efficiency of the dry ice compaction process, which justifies the need to carry out research and development efforts to improve the manufacturing efficiency. Additionally, the recipients of dry ice are interested in receiving high quality material which is measurable through the density of agglomerated material. The maximum value is 1650 kg m$^{-3}$ and is achieved at limit compaction stress value equal to or greater than 14 MPa [14, 15]. Available literature observes that the limit value of densification stress significantly exceeds the effective value of 14 MPa, which justifies the need for the carried out study [14, 16, 17]. Both needs cited above can be fulfilled by means of the performed research and development works, potentially leading to the development of a new methodology of design of forming dies.

Available subject literature demonstrates a high degree of interest in works aiming to study and develop the shape of the tooling used in the process in order to improve the quality of the product as well as energy efficiency of the manufacturing process [18–32]

2. Algebraic model

Multi-channel dies with their geometric parameters are illustrated on figure 2. One of the views illustrates a forming channel consisting of a cylindrical and convergent, circular symmetric shape sections. The difference in results of the model was compared in literature to the results of empirical testing in laboratory conditions, enabling to determine the error rate not exceeded 9.5 % [17]. This allows to assume that the accuracy thereof is sufficient for the purpose of preliminary analyses of its susceptibility to variance of geometrical parameters.

The presented model indicates the F_{OP} value depends on the value of 12 parameters, thus enabling to formulate the following function:

$$F_{OP} = f(k_T, \mu_T, R_{in}, R_{out}, n, \alpha, a, b, l_T, R_C, e, n_g)$$

(1)

In a multi-channel die, there is a co-dependency between the values of individual geometrical parameters which allowed to formulate the following mathematical relationships:

$$R_{in} = R_{out} + b \cdot \tan \alpha$$

(2)

$$e = R_C - R_{in}$$

(3)

$$n_g = 6\left\lceil \frac{e}{2R_{in}} \right\rceil - 1$$

(4)

$$n = f(R_C, R_{in})$$

(5)
The use of presented functions allows to simplify equation 1 to the below form:

\[F_{OP} = f(k_T, \mu_T, R_{out}, \alpha, a, b, l_T, R_C) \] (6)

In the simplified equation, it is indicated that the \(F_{OP} \) value varies as a function of 8 parameters, where \(k_T \) and \(\mu_T \) are material constants, which are not subject to the model susceptibility analysis to the variance in geometrical parameters of the multi-channel die. Analogically, the variables \(R_C \) and \(l_T \) constitute geometrical parameters describing the radius of the densification chamber used in the pellet maker as well as the volume of the compressed, crystallized carbon dioxide present in the chamber. Therefore, the indicated parameters were not included in the preliminary susceptibility analysis of the algebraic model because their value is not directly related to the geometrical parameters of the die.

3. Analysis of the sensitivity of the algebraic model

For the purpose of susceptibility analysis of the model to variance in value change of the indicated group of geometrical parameters, an indicator was employed which was the gradient of function variance. It is described by the following formula, with \(x \) parameter value is replaced with the examined variable.

\[\nabla F_{OP} = \frac{\partial F_{OP}(x)}{\partial x} \] (7)

While determining the individual functions \(F_{OP}(x) \), parameter values provided in table 1 were used.
Table 1. Initial values of the geometrical parameters of the multi-channel die.

k_T (MPa)	μ_T	R_{out} (mm)	α (deg)	a (mm)	b (mm)	l_T (mm)	R_C (mm)
1.56	0.02	1.5	10	3	15	21	36

During calculations, only one parameter value was varied, and the variability range of examined parameters was limited to the ranges as provided below, the value of these ranges is based on codependence of individual geometrical parameters of the multi-channel die.

- $R_{out} \in (0.15; R_{in})$ mm
- $\alpha \in (0.01; 17)$ deg
- $a \in (0.01; 50)$ mm
- $b \in (4.5; 10)$ mm

The obtained data allowed to develop characteristics employed to determine an approximation line for the variable F_{OP} values as a function of the examined parameter. For $F_{OP}(\alpha)$, $F_{OP}(a)$, $F_{OP}(b)$ the data set used in calculation was characterized by correlation coefficient not lower than 0.95. Whereas the graph line analysis for the function $F_{OP}(R_{out})$ was limited to the range of 0.5 mm to 2 mm, in which the data exhibited a correlation coefficient value equal to 0.996. This allowed to approximate the graph line with a linear function. The characteristics are shown in figures 3–6.

Figure 3. Characteristic of F_{OP} value change as a function of R_{out}.

Figure 4. Characteristic of F_{OP} value change as a function of α.
Figure 5. Characteristic of F_{OP} value change as a function of a.

Figure 6. Characteristic of F_{OP} value change as a function of b.

Table 2 shows the value of the unicriterion model susceptibility coefficient based on the illustrated characteristics.

	$\nabla F_{OP} = f(R_{out})$	$\nabla F_{OP} = f(\alpha)$	$\nabla F_{OP} = f(a)$	$\nabla F_{OP} = f(b)$
	(N mm$^{-1}$)	(N/$^{\circ}$)	(N mm$^{-1}$)	(N mm$^{-1}$)
∇F_{OP}	3864.1	0.7642	32.819	1.7386

4. Conclusions
The developed results of a preliminary analysis of the algebraic model susceptibility allows to formulate the following conclusions:

- Comparing the results for parameters R_{out}, a and b, it is observed that the highest influence on the F_{OP} value is exhibited by R_{out}.
- Parameter b has negligibly small influence in comparison to other parameters measured in N mm$^{-1}$.
- Parameter α is described in units N$/^{\circ}$, therefore value comparison cannot provide unambiguous results in regards its relevance for the determination of the F_{OP} value.
The formulated conclusions indicate that when designing multi-channel dies allowing to agglomerate dry ice at the effective value of densification stress one needs to begin with determining the correct value of R_{out}. Whereas during subsequent stages of design work, it is necessary to determine the values of a and α parameters.

The developed results and conclusions will be utilized in further studies on the optimization of multi-channel dies used for agglomeration of crystallized carbon dioxide. Further actions planned in relation to the developed algebraic model involve:

- The optimization of shape of the multi-channel die with cylindrical-conical channels.
- The development of an algebraic model for multi-channel dies with different shapes of the conical section.
- The examination of the possibility to adapt the examined model to other fragmented materials.

5. References

[1] Górecki J, Malujda I, and Wilczyński D 2019 The influence of geometrical parameters of the forming channel on the boundary value of the axial force in the agglomeration process of dry ice MATEC Web of Conferences 254 05001
[2] Li M, Liu W, Qing X, Yu Y, Liu L, Tang Z, Wang H, Dong Y and Zhang H 2016 Feasibility study of a new approach to removal of paint coatings in remanufacturing Journal of Materials Processing Technology 234 102–112
[3] Mazzoldi A, Hill T and Colls J 2008 CO$_2$ transportation for carbon capture and storage: Sublimation of carbon dioxide from a dry ice bank International Journal of Greenhouse Gas Control 2 210–2018
[4] Górecki J, Malujda I, Talaśka K et al. D 2018 Influence of geometrical parameters of convergent sleeve on the value of limit stress MATEC Web of Conferences 157 05006
[5] Liu Y, Maruyama H and Matusaka S 2010 Agglomeration process of dry ice particles produced by expanding liquid carbon dioxide Advanced Powder Technology 21 652–657
[6] Górecki J, Malujda I and Talaśka K. 2017 Dry ice compaction in piston extrusion process Acta Mechanica et Automatica 11 313–316
[7] Otto C, Zahn S, Rost F, Zahn P, Jaros D and Rohm H 2011 Physical Methods of cleaning and Disinfection of Surfaces Food Engineering Review 3 171–188
[8] Witte A, Bobal M, David R, Blattler B, Schoeder D and Rossmannith P 2017 Investigation of the potential of dry ice blasting for cleaning and disinfection in the food production environment LWT - Food Science and Technology 75 735–741
[9] Dong S, Song B, Hansz B, Liao H L and Coddet C 2012 Modelling of dry ice blasting and its application in thermal spray Material Research Innovations 16 61–66
[10] Górecki J, Malujda I, Talaśka K, Kukla M and Tarkowski P 2017 Influence of the compression length on the ultimate stress in the process of mechanical agglomeration of dry ice Procedia Engineering 177 363–368
[11] Górecki J, Malujda I and Talaśka K 2016 Investigation of internal friction of agglomerated dry ice Procedia Engineering 136 275–279
[12] Mikołajczak A, Krawczyk P, Stępień M and Badyda K 2018 Preliminary specification of the dry ice blasting converging-divergent nozzle parameters basing on the standard (analytical) methods Rynek Energii 4 91–96
[13] Yamaguchi H, Niu X, Sekimoto K and Neksa P 2011 Investigation of dry ice blockage in an ultralow temperature cascade refrigeration system using CO$_2$ as a working fluid International Journal of Refrigeration 34 466–475
[14] Górecki J, Malujda I, Talaśka K, Kukla M and Tarkowski P 2016 Influence of the value of limit densification stress on the quality of pellets during the agglomeration process of CO$_2$ Procedia Engineering 136 269–274
[15] Talaśka K 2018 Study of Research and Modelling of Compaction Processes of Powder and Shredded Materials (Poznan: Poznan University of Technology)
[16] Górecki J, Malujda I, Wilczyński D and Wojtkiak D 2019 Influence of the face surface shape of the piston on the limit value of compaction stress in the process of dry ice agglomeration MATEC Web of Conferences 254 06001

[17] Górecki J 2017 Shaping of the geometrical parameters of the working assembly of the CO$_2$ agglomeration machine using the modeling of the limit stress Doctoral Thesis (Poznan: Poznan University of Technology (in polish))

[18] Dudziak M, Kołodziej A, Domek G and Talaśka K 2017 Multi-angularity – identification of parameters and compatibility conditions of the axisymmetric connection with form deviations Procedia Engineering 177 431–438

[19] Kukla M, Wieczorek B, Wargula Ł and Berdychowski M 2019 An analytical model of the demand for propulsion torque during manual wheelchair propelling Disabil Rehabil Assist Technol. doi: 10.1080/17483107.2019.1629109

[20] Kukla M, Górecki J, Malujda I, Talaśka K and Tarkowski P 2017 The determination of mechanical properties of magnetorheological elastomers (MREs) Procedia Engineering 177 324–330

[21] Talaśka K 2017 Analysis of the energy efficiency of the shredded wood material densification process Procedia Engineering 177 352–357

[22] Wałęsa K, Malujda I and Talaśka K 2018 Butt welding of round drive belts Acta Mechanica et Automatica 12 115–126

[23] Wałęsa K, Malujda I, Górecki J and Wilczyński D 2019 The temperature distribution during heating in hot plate welding process MATEC Web of Conferences 254 02033

[24] Wałęsa K, Mysiukiewicz O, Pietrzak M, Górecki J and Wilczyński D 2019 Preliminary research of the thermomechanical properties of the round drive belts MATEC Web of Conferences 254 06007

[25] Wilczyński D, Malujda I, Talaśka K and Długi R 2017 The study of mechanical properties of natural polymers in the compacting process Procedia Engineering 177 411–418

[26] Wilczyński D, Talaśka K, Malujda I and Jankowiak P 2018 Experimental research on biomass cutting process MATEC Web of Conferences 157 07016

[27] Wilczyński D, Berdychowski M, Wojtkowiak D, Górecki J and Wałęsa K 2019 Experimental and numerical tests of the compaction process of loose material in the form of sawdust MATEC Web of Conferences 254 02042

[28] Wilczyński D, Malujda I, Górecki J, and Domek G 2019 Experimental research on the process of cutting transport belts MATEC Web of Conferences 254 05014

[29] Wilczyński D, Malujda I, Górecki J and Jankowiak P 2019 Research on the process of biomass compaction in the form of straw MATEC Web of Conferences 254 05015

[30] Wojtkowiak D and Talaśka K 2019 Determination of the effective geometrical features of the piercing punch for polymer composite belts The International Journal of Advanced Manufacturing Technology 104 315–332

[31] Wojtkowiak D, Talaśka K, Malujda I and Domek G 2018 Estimation of the perforation force for polymer composite conveyor belts taking into consideration the shape of the piercing punch The International Journal of Advanced Manufacturing Technology 98 2539–2561

[32] Wojtkowiak D and Talaśka K 2019 The influence of the piercing punch profile on the stress distribution on its cutting edge MATEC Web of Conferences 254 02001