Analytical approximations for the oscillators with anti-symmetric quadratic nonlinearity

Md. Alal Hosen¹,³, M S H Chowdhury²,*, Mohammad Yeakub Ali³ and Ahmad Faris Ismail⁴

¹ Department of Mathematics, Rajshahi University of Engineering and Technology (RUET), Rajshahi-6204, Bangladesh
² Department of Science in Engineering, Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
³ Department of Manufacturing and Material Engineering, Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
⁴ Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia

Email: sazzadbd@iium.edu.my (Corresponding author: M. S. H. Chowdhury)

Abstract. A second-order ordinary differential equation involving anti-symmetric quadratic nonlinearity changes sign. The behaviour of the oscillators with an anti-symmetric quadratic nonlinearity is assumed to oscillate different in the positive and negative directions. In this reason, Harmonic Balance Method (HBM) cannot be directly applied. The main purpose of the present paper is to propose an analytical approximation technique based on the HBM for obtaining approximate angular frequencies and the corresponding periodic solutions of the oscillators with anti-symmetric quadratic nonlinearity. After applying HBM, a set of complicated nonlinear algebraic equations is found. Analytical approach is not always fruitful for solving such kinds of nonlinear algebraic equations. In this article, two small parameters are found, for which the power series solution produces desired results. Moreover, the amplitude-frequency relationship has also been determined in a novel analytical way. The presented technique gives excellent results as compared with the corresponding numerical results and is better than the existing ones.

1. Introduction
In recent past, the mathematical interpretation of the nonlinear oscillations has received extensive attention in the field of physics, applied mathematics engineering and other discipline. The mathematical model of oscillation of the human eardrum is the quadratic nonlinear oscillator [1]. Researchers have been investigated many analytical approaches to solve nonlinear differential equations. Perturbation technique [2-5] is the versatile technique, whereby the solution is expanded in powers of a small parameter. However, for the strongly nonlinear regime the perturbation technique is almost fail. Several authors employed many other powerful analytical methods (non-perturb) to drive approximate periodic solutions especially for the strongly nonlinear oscillators, include as, the Max-
Min Approach [6], Parameter Expansion Method [7], Variational Iteration Method [8], Amplitude Frequency Formulation [9], Energy Balance Method [10-12], He’s Energy Balance Method [13], Global Residue Harmonic Balance Method [14] and so on.

Cveticanin [15] has used the Jacobi elliptic functions to derive the exact solution of the anti-symmetric quadratic equation. However, the author only assumed that its exact solution is given by an equation which includes the Jacobian elliptic function and five unknown parameters that need to be determined. The author did not solve the nonlinear differential equation. Mickens and Mixon [16] obtained accurate analytical approximate solutions to an anti-symmetric quadratic non-linear oscillator using the generalized harmonic balance method and Chen et. al. [17] using the elliptic perturbation method. Beléndez et. al. approximately solved this nonlinear oscillator using a modified He’s homotopy perturbation method [18] as well as a novel rational harmonic balance approach [19]. Hu [20] has used Harmonic Balance Method to determine an approximate solution of a quadratic nonlinear oscillator; but the method is not a simple one. Hu [20] has obtained two separate harmonic balance solutions respectively for two regions $x > 0$ and $x < 0$. The solution is continuous, but the derivative does not exist when it cuts the axis. Momani et. al. [21] introduced the modified homotopy perturbation method for solving strongly nonlinear oscillators with anti-symmetric quadratic nonlinearity. Recently, Cveticanin et. al. [22] obtained approximate solutions for the oscillators with symmetric and asymmetric quadratic nonlinearity in the form of Jacobi elliptic functions. Mahtab et. al. [23] has also approximated the quadratic nonlinear oscillators using Harmonic balance method. An iteration procedure has been applied to determine approximate frequencies for the Quadratic Nonlinear Oscillator by Haque et. al. [24].

Solving strongly nonlinear systems, the method of harmonic balance [25-32] is another efficient method. As a rule, a set of complex nonlinear algebraic equations are appeared when Harmonic Balance Method is imposed. In this paper, such nonlinear algebraic equations are approximated using a power series solutions by a new small parameter. Moreover, an analytical technique has also been applied to obtain the amplitude-frequency relationship. The approximated results have compared with the existing results and the corresponding numerical solutions (Runge-Kutta fourth order method).

2. The Solution Procedure

A second-order nonlinear differential equation can be considered as

$$y'' + a_0 y = -\varepsilon f(y, y')$$

and the initial conditions $y(0) = A_0$, $y'(0) = 0$, where $f(y, y')$ is a nonlinear function such that $f(-y, -y') = f(y, y')$, $a_0 \geq 0$ and ε is a constant.

A n-th order periodic solution of Eq. (1) can be supposed as

$$y = A_n(\rho \cos(\omega t) + u \cos(3\omega t) + v \cos(5\omega t) + w \cos(7\omega t) + z \cos(9\omega t) + \cdots),$$

where A_n, ρ and ω are constants. If $\rho = 1 - u - v - \cdots$, the solution Eq. (2) readily satisfies the initial condition given in Eq. (1).

Substituting Eq. (2) into Eq. (1) and expanding $f(y, y')$ in a Fourier series, it can be converted to an algebraic identity as follows

$$A_n[\rho(\omega_0^2 - \omega^2) \cos(\omega t) + u(\omega_0^2 - 9\omega^2) \cos(3\omega t) + \cdots] = -\varepsilon[F_1(A_n, u, \cdots) \cos(\omega t) + F_3(A_n, u, \cdots) \cos(3\omega t) + \cdots]$$(3)

By comparing the coefficients of equal harmonics of Eq. (3), the following nonlinear algebraic equations can be obtained as

$$\rho(\omega_0^2 - \omega^2) = -\varepsilon F_1, \quad u(\omega_0^2 - 9\omega^2) = -\varepsilon F_3, \quad v(\omega_0^2 - 25\omega^2) = -\varepsilon F_5, \quad \cdots$$

With the help of the first equation, ω^2 is eliminated from all the rest of Eq. (4). Thus Eq. (4) takes the following form

$$\rho \omega_0^2 = \rho \omega_0^2 + \varepsilon F_1, \quad 8\omega_0^2 u \rho = \varepsilon(\rho F_1 - 9u F_3), \quad 24\omega_0^2 v \rho = \varepsilon(\rho F_3 - 25v F_5), \quad \cdots$$

Substituting $\rho = 1 - u - v - \cdots$, and simplification, second-, third- equations of Eq. (5) can be transformed into
$$u = G_1(\omega_0, \varepsilon, A_0, u, v, \ldots, \lambda_0), \quad v = G_2(\omega_0, \varepsilon, A_0, u, v, \ldots, \lambda_0), \cdots,$$

where G_1, G_2, \cdots exclude respectively the linear terms of u, v, \cdots.

Whatever the values of ε, ω_0 and A_0 there exists a parameter $\lambda_0(\varepsilon, \omega_0, A_0) \ll 1$, such that u, v, \cdots are expandable in following power series in terms of λ_0 as

$$u = U_1 \lambda_0 + U_2 \lambda_0^2 + \cdots, \quad v = V_1 \lambda_0 + V_2 \lambda_0^2 + \cdots, \quad \cdots$$

where $U_1, U_2, \ldots, V_1, V_2, \ldots$ are constants.

Finally, substituting the values of u, v, \cdots from Eq. (7) into the first equation of Eq. (5), the angular frequency ω is determined. This completes the determination of all related functions for the proposed n-th order periodic solution as given in Eq. (2).

3. Example

3.1 Differential equation with anti-symmetric quadratic nonlinearity

Let us consider the following equation which has investigated in Momani et. al. [21] is

$$y'' + 2y + y^2 = 0 \quad \text{and the initial conditions } \{y(0) = a_0, \ y'(0) = 0\}. \quad (8)$$

As we know, an asymmetric behavior of the nonlinear oscillator is different in positive and negative directions. An asymmetric limit zone $[-b, a]$, for positive a and negative b has been considered where the system is assumed to oscillate. Both $y = a$ and $y = -b$ represent the turning points in which $\dot{y} = 0$, a and b are an unknown amplitude to be determined.

The method is applicable to determine approximate solutions of various differential equations whose nonlinear function satisfies the relation, $f(-y, -y') = -f(y, y')$. However, the method is also useful when nonlinear function satisfies the relation, $f(-y, -y') = f(y, y')$ (quadratic nonlinearities as well as to some nonlinear problems with mixed parity).

We use the solution of the form of Eq. (2) in both regions where $y > 0$ and $y < 0$. In this regard, we usually match the solution satisfying the conditions, $y_1(\phi) = y_2(\phi), \ y_1'(\phi) = y_2'(\phi)$. In article [20], such type of approximate solution (only first approximation) was obtained satisfying the first condition. Since the second condition was ignored, the solution was not clearly matched at the point considered. But the higher approximation gradually coincides with the numerical solution.

For the region $y > 0$, a second approximate solution of Eq. (8), can be considered as

$$y_1(t) = a_0(\rho \cos(\omega_0 t) + u_1 \cos(3\omega_0 t)) \quad (9).$$

Let us consider y_1', can be expanded in a Fourier series as

$$b_1 \cos(\omega_0 t) + b_3 \cos(3\omega_0 t) + \cdots. \quad (10)$$

Herein b_1, b_3, \ldots are evaluated as

$$b_1 = \frac{8a_0^2}{105\pi}(35 - 56u_1 + 48u_1^2),$$

$$b_3 = \frac{8a_0^2}{315\pi}(21 + 120u_1 - 176u_1^2). \quad (11)$$

Now substituting $\rho = 1 - u_1$, using Eq. (9)-(11) into Eq. (8) and then equating the coefficients of $\cos(\omega_0 t)$ and $\cos(3\omega_0 t)$, the following equations can be obtained as

$$-(1 - u_1)\omega_0^2 + 2 - 2u_1 + \frac{8a_0}{105\pi}(35 - 56u_1 + 48u_1^2) = 0,$$

and
\[-9u_\omega^2 + 2u_\omega + \frac{8a_0}{315\pi}(21 + 120u_\omega - 176u_\omega^2) = 0.\] (13)

After simplification, Eq. (12) can be expressed into another form as

\[\omega^2 = 2 + \frac{8a_0}{3\pi} - \frac{8a_0u_\omega}{5\pi} + \frac{72a_0u^2_\omega}{35\pi} + \frac{72a_0u^4_\omega}{35\pi} + \cdots.\] (14)

By elimination of \(u_\omega\) from Eq. (13), with the help of Eq. (14), the equation of \(u_\omega\) can be expressed as

\[u_\omega = \lambda_0 \left(1 + \frac{30\pi u^2_\omega}{a_0} + \frac{1216u^2_\omega}{21} - \frac{160u^8_\omega}{3}\right), \quad \text{where} \quad \lambda_0 = \frac{7a_0}{210\pi + 282a_0}.\] (15)

Therefore, the power series solution of Eq. (15) can be obtained in terms of \(\lambda_0\) as

\[u_\omega = \lambda_0 + \left(\frac{1216}{21} + \frac{30\pi}{a_0}\right)\lambda_0^3 - \frac{160}{3}\lambda_0^4 + \cdots.\] (16)

Now substituting the value of \(u_\omega\) from Eq. (16) into Eq. (14), the relation between \(\omega_\omega\) and \(\lambda_\omega\) is determined and then the approximate angular frequency approximated as

\[\omega_\omega = \sqrt{2 + \frac{8a_0}{3\pi} - \frac{8a_0}{5\pi} \lambda_\omega + \frac{72a_0}{35\pi} \lambda_\omega^3 - 48\lambda_\omega^4 - \frac{9728a_0}{105\pi} \lambda_\omega^5 + \cdots.}\] (17)

Therefore, Eq. (9) represents the second approximate solution of Eq. (8) where \(\omega_\omega\) and \(u_\omega\) are respectively given by Eq. (17) and (16). Now for the region \(y < 0\), the second approximate solution of Eq. (9) can be written as

\[y = b_0(\rho \cos(\omega_\omega t) + u_\omega \cos(3\omega_\omega t)),\] (18)

where \(b_0\) is determined as

\[b_0 = (3 + 2a_0 - 3\sqrt{1 - 4a_0(1 + a_0)/3})/4.\] (19)

From Eq. (19), it has been shown that \(a_0 \leq 0.5\) and \(b_0 \leq 1,\) (see [20] for details). Without repeating the solution process, \(u_\omega\) and \(\omega_\omega\) are respectively obtained from Eqs. (16)-(17), replacing \(a_0\) by \(-b_0\). Therefore, it becomes

\[u_\omega = \lambda_\omega + \left(\frac{1216}{21} - \frac{30\pi}{b_0}\right)\lambda_\omega^3 - \frac{160}{3}\lambda_\omega^4 + \cdots, \quad \lambda_\omega = \frac{-7b_0}{210\pi - 282b_0},\] (20)

and

\[\omega_\omega = \sqrt{2 + \frac{8b_0}{3\pi} + \frac{8b_0}{5\pi} \lambda_\omega - \frac{72b_0}{35\pi} \lambda_\omega^3 - 48\lambda_\omega^4 + \frac{9728b_0}{105\pi} \lambda_\omega^5 + \cdots}.\] (21)

4. Results and Discussions

The approximated solutions have been compared with the existing solutions obtained by homotopic perturbation method (HPM) and modified MHBM [21], and the available exact solutions which are illustrated in table 1 for initial oscillation amplitude \(a_0 = 0.1\). The comparison between the results obtained by present study and the corresponding numerical solutions are shown in figure 1 to figure 2 for the initial oscillation amplitude \(a_0 = 0.2\) and \(a_0 = 0.3\) respectively. It is observed from all tables and figures that the results obtained by modified harmonic balance method (MHBM) are in good agreement with the corresponding numerical solutions compare to those obtained by Momani et al. [21] applying homotopy perturbation method. Moreover, using the MHBM the angular frequency as well as the period of oscillatory problem can be calculated for different values of initial amplitudes.

4
5. Conclusion
In this paper, an analytical approximate technique based on the Harmonic Balance Method has been introduced to determine approximate angular frequencies and the corresponding periodic solutions of the oscillators with anti-symmetric quadratic nonlinearity. The solution procedure is straightforward and simple as compared with the existing methods. The approximated solutions show a good agreement with its exact ones and much better than the existing results. All of these allow us to conclude that the method presented in this article for solving the oscillators with anti-symmetric quadratic nonlinearity can be considered as an efficient alternative of the already published methods.

Table 1. The comparison the approximated results with existing solutions and the corresponding numerical solutions for the initial oscillation amplitude \(a_0 = 0.1 \).

\(t \)	\(y_{(21)}^{\text{HPM}} \)	\(y_{(23)}^{\text{HPM}} \)	\(y_{(\text{Numerical})} \)	\(y_{(\text{Presented})}^{\text{HBM}} \)
0	0.1	0.1	0.1	0.1
0.5	0.07492588	0.07492588	0.07492584	0.07606976
1	0.01261291	0.01262114	0.01260204	0.01574689
1.5	-0.05542130	-0.05564197	-0.05599434	-0.05208194
2	-0.08949363	-0.09641338	-0.09857369	-0.09488080
2.5	-0.02186309	-0.08941601	-0.09605590	-0.09218266
3	0.34944163	-0.03758556	-0.04954852	-0.04547820
3.5	1.63139818	0.03306331	0.02002292	0.02285490
4	5.37207116	0.08689346	0.07971480	0.08009427
4.5	14.98507704	0.09750473	0.09971271	0.09873981
5	37.20789062	0.05990474	0.06971159	0.07017312

Note: In table 1, \(y_{(21)}^{\text{HPM}} \) and \(y_{(23)}^{\text{HPM}} \) respectively denote approximate solutions determined previously in Momani et. al. [21] by using Homotopy Perturbation Method and Modified Homotopy Perturbation Method. \(y_{(\text{Presented})}^{\text{HBM}} \) represents the approximate solutions obtained in the presented technique. \(y_{(\text{Numerical})} \) indicates the numerical solutions (Runge-Kutta fourth order method) which has considered to be the exact solutions.
Figure 1. Comparison between the approximated solutions (represented by blue dashed line) and the corresponding numerical solutions (represented by red solid line) for the initial amplitude $a_0 = 0.2$.

Figure 2. Comparison between the approximated solutions (represented by blue dashed line) and the corresponding numerical solutions (represented by red solid line) for the initial amplitude.

Acknowledgments
This research was funded by Ministry of Science, Technology and Innovation, Malaysia under Research Grant SF15-016-0066. The work is also partially supported by the International Islamic University Malaysia (IIUM) and Ministry of Higher Education Malaysia through the research grant FRGS-14-143-0384.
6. References

[1] Porwal R and Vyas N S 2008 Damped quadratic and mixed-parity oscillator response using Krylov-Bogoliubov method and energy balance J. Sound Vib. 309 877-86.

[2] Marion J B 1970 Classical Dynamics of Particles and System (San Diego, CA: Harcourt Brace Jovanovich).

[3] Krylov N N and Bogoliubov N N 1947 Introduction to Nonlinear Mechanics (Princeton University Press, New Jersey).

[4] Nayfeh A H 1973 Perturbation Methods (J. Wiley, New York).

[5] Azad A K, Hosen M A and Rahman M S 2012 A perturbation technique to compute initial amplitude and phase for the Krylov-Bogoliubov-Mitropolskii method Tamkang J Math 43(4) 563-75.

[6] Ganji D D and Azimi M 2012 Application of max min approach and amplitude frequency formulation to nonlinear oscillation systems UPB Scientific Bulletin, Series A: App. Math. Phy. 74(3) 131-40.

[7] Wang S Q and He J H 2008 Nonlinear oscillator with discontinuity by parameter-expansion method Chaos, Solitons & Fractals 35(4) 688-91.

[8] Baghani M, Fattahi M and Amjadian A 2012 Application of the variational iteration method for nonlinear free vibration of conservative oscillators Scientia Iranica 19(3) 513-18.

[9] Akbarzade M and Farshidianfar A 2014 Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire Inter. Applied Mechanics 50 476-83.

[10] Hosen M A, Chowdhury M S H, Ali M Y and Ismail A F 2017 An analytical approximation technique for the duffing oscillator based on the energy balance method Italian journal of pure and applied mathematics 37 455-66.

[11] Hosen M A, Chowdhury M S H, Ali M Y and Ismail A F 2016 A new analytical approximation technique for highly nonlinear oscillations based on the energy balance method Results in Physics 6 496-504.

[12] Akbarzade M and Farshidianfar A 2017 Nonlinear transversely vibrating beams by the improved energy balance method and the global residue harmonic balance method Applied Mathematical Modelling 45 393-404.

[13] Khan Y and Mirzabeigy A 2014 Improved accuracy of He’s energy balance method for analysis of conservative nonlinear oscillator Neural Comput & Applic 25 889-95.

[14] Peijun J 2015 Global residue harmonic balance method for Helmholtz–Duffing oscillator Applied Mathematical Modelling 39(8) 2172-79.

[15] Cvetkovic L 2004 Vibrations of the nonlinear oscillator with quadratic nonlinearity Physica A 341 123-35.

[16] Mickens R E and Mixon M 1992 Application of generalized harmonic balance method to an anti-symmetric quadratic non-linear oscillator Journal of Sound and Vibrations 159 546-68.

[17] Chen S H, Yang X M and Cheung Y K 1998 Periodic solutions of strongly quadratic nonlinear oscillators by the elliptic perturbation method Journal of Sound and Vibrations 212 771-80.

[18] Beléndez A, Pascual C, Beléndez T and Hernández A 2009 Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He’s homotopy perturbation method Nonlinear Analysis: Real World Applications 10 416-27.

[19] Beléndez A, Gimeno E, Álvarez M L, Yebra M S and Méndez D I 2010 Analytical approximate solutions for conservative nonlinear oscillators by modified rational harmonic balance method International Journal of Computer Mathematics 87 1497-1511.

[20] Hu H 2006 Solution of a quadratic nonlinear oscillator by the method of harmonic balance J. Sound Vib. 293 462-68.

[21] Momani S, Erjaee G H and Alnasr M H 2009 The modified homotopy perturbation method for solving strongly nonlinear oscillators Computers and Mathematics with Applications 58 2209-20.
[22] Cveticanin L, Zukovic M, Mester G, Biro I and Sarosi J 2016 Oscillators with symmetric and asymmetric quadratic nonlinearity Acta Mechanica 227(6) 1727-42.
[23] Mondal M M H, Molla M H U, Razzak M A and Alam M S 2016 A new analytical approach for solving quadratic nonlinear oscillators Alexandria Engineering Journal (In Press).
[24] Haque B M I and Hossain M R 2016 An analytic investigation of the quadratic nonlinear oscillator by an iteration method British Journal of Mathematics & Computer Science 13(1) 1-8.
[25] Mickens R E 2010 Truly nonlinear oscillations (World Scientific Publishing, Singapore).
[26] Mickens R E 1986 A generalization of the method of harmonic balance J. Sound Vib. 111 515-18.
[27] Hosen M A, Rahman M S, Alam M S and Amin M R 2012 An analytical technique for solving a class of strongly nonlinear conservative systems Applied Mathematics and Computation 218 5474-86.
[28] Hosen M A and Chowdhury M S H 2015 A new reliable analytical solution for strongly nonlinear oscillator with cubic and harmonic restoring force Results in Physics 5 111-114.
[29] Razzak M A 2016 A simple harmonic balance method for solving strongly nonlinear oscillators Journal of the Association of Arab Universities for Basic and Applied Sciences 21 68-76.
[30] Hosen M A and Chowdhury M S H 2015 A new analytical technique based on harmonic balance method to determine approximate periods for Duffing-harmonic oscillator Alexandria Engineering Journal 54(2) 233-39.
[31] Hosen M A 2014 Approximate solutions of the equation of motion's of the rigid rod which rocks on the circular surface without slipping Ain Shams Engineering Journal 5(3) 895-99.
[32] Hosen M A 2015 Determination of approximate periods of Duffing-harmonic oscillator Walailak Journal of Science and Technology 12(10) 923-31.