Supporting Information S2 for

Cranial ecomorphology of turtles and neck retraction as a possible trigger of ecological diversification

This file includes:

- Supplementary Methods
- Supplementary Results
 - Figures S1 to S32
 - Tables S1 to S11
- Other Supplementary Data
- SI References

Other supplementary data for this manuscript include:

- Supporting Information S1
- Annotated R scripts and associated files
Supplementary Methods

Landmarks description

In the following landmark list, landmarks are numbered and associated with a short title (in **bold**) that represents our working nomenclature for landmarks used in the Avizo files, in which we landmarked the data. These short-titles sometimes include abbreviations that do not appropriately describe the landmarks, as the landmark definitions evolved during this process whereas initial names of landmark objects were kept as there is no straight forward way to rename landmark object names across different files. However, as each landmark is associated with a short description (**underlined**) and a “Remarks” section, landmark definitions should be clear irrespective of their titles. Most landmarks used herein are type I landmarks, for which homology is supported by a unique topological arrangement of the bones that define the respective landmark. However, in some instances we also use type II landmarks, for which evidence for the homology only comes from geometric arguments, whereas the bony composition of the landmarked region may vary between turtles. Type II landmarks were necessary in order to bound open semilandmark series, which are used to capture specific geometric properties of the skulls that are generally considered useful when comparing skull geometries. For instance, LM1 is a type II landmark, because it defined the anterior end of the skull roof above the external nares, irrespective of whether this point is formed by the nasal, or by the prefrontal (if nasals are lost). This landmark further bounds SL5 anteriorly, which extends across the skull roof and captures variation in skull length, and shape of the skull roof. For geometric comparisons of skull length of skull roof flexure, it is irrelevant if the anteriormost point of the compared entity is formed by the nasal or prefrontal, and thus the usage of type II landmarks is justified for our study.

Landmarks

1. **Skull-anteriormost**: anteriormost median junction between the bones that form the dorsal margin of the external nares

 Remarks: This landmark usually is between the prefrontals or nasals, depending on which of these bones form the anterior margin of the skull dorsal to the nares.

2. **FR-anteriormost**: anteriormost contact between the frontals

 Remarks: This landmark is placed on the quadruple-junction of right and left frontals with anteriorly adjacent bones (prefrontals or nasals).

3. **PA-anteriormost**: anteriormost contact between the parietals

 Remarks: This landmark is placed on the quadruple-junction of right and left parietals with anteriorly adjacent bones, which are usually the frontals.

4. **PA-posteriormost-roof**: posteriormost contact between the parietals on the skull roof

 Remarks: This landmark is usually placed on a triple junction between the parietals and supraoccipital. Whenever the supraoccipital is completely covered by the parietals, the landmark is in the posterior skull roof margin.

5. **SO-posteriormost**: posteriormost point of the supraoccipital

 Remarks: This landmark is mostly placed at the posterior end of the supraoccipital crest. However, in *Hydromedusa*, a dorsal extension of the exoccipitals (see landmarks 26/27 below)
restricts the supraoccipital to be present only in the skull roof, so that the landmark is not the posterioriormost point of the skull along the skull midline.

6. Left-FR-orbit: anterioriormost point of the lateral process of the left frontal which extends towards the orbit rim

Remarks (this applies for landmarks 6 and 7): Turtles show variation regarding whether the frontal extends laterally into the orbital margin or not. When the frontal extends into the orbit, the landmark is placed in the orbital margin between the frontal and the anteriorly adjacent bone, usually the prefrontal. This condition is present, the landmark is placed in the anterior suture of the frontal that contacts the orbital margin. When the lateral frontal process is retracted from contributing to the orbit, the homologous point is the frontal-prefrontal-postorbital triple junction somewhat medially to the orbit. When the latter condition is present, landmarks 6 and 7 are placed in the same spot as landmarks 67 and 70 (see below).

7. Right-FR-orbit: anterioriormost point of the lateral process of the right frontal which extends towards the orbit rim

Remarks: See remarks of landmark 6.

8. Left-MX-orbit: anterioriormost contact of the left maxilla in the orbit rim

Remarks: This landmark is usually positioned on the interception of the maxilla-prefrontal suture with the orbital margin.

9. Right-MX-orbit: anterioriormost contact of the right maxilla in the orbit rim

Remarks: See remarks for landmark 8.

10. Left-FR-PA-posterolateral: lateralmost contact between the left frontal and the left parietal

Remarks: In most turtles, this landmark is positioned in the triple junction between frontal, parietal, and postorbital, but the post

11. Right-FR-PA-posterolateral: lateralmost contact between the right frontal and the right parietal

Remarks: See remarks for landmark 10.

12. Left-SQ-posteriormost: posterioriormost point of the left squamosal

Remarks: In most turtles, the posterior part of a squamosal either forms a pointed tip or a curved, vertical ridge. In the latter case, this landmark is placed along the ridge in the posteriormost possible position.

13. Right-SQ-posteriormost: posterioriormost point of the right squamosal

Remarks: See remarks for landmark 12.

14. Left-QU-SQ-Temporal-margin: contact between left squamosal and adjacent bone within margin of the temporal emargination

Remarks: The squamosal always forms the most posterolaterally positioned element in all turtle skulls, and thus always forms the posterior part of the temporal emargination. This landmark is placed in the margin of the temporal emargination, at the contact of the squamosal with the anteriorly (or laterally) adjacent bone. Depending on the extent of the temporal emargination,
this contact can be with the parietal (e.g. when the emargination is weak as in chelonioids), but more often is with the quadrate and/or quadratojugal at the anterior end of the squamosal.

15. **Right- QU-SQ-Temporal-margin**: contact between right squamosal and adjacent bone within margin of the temporal emargination

Remarks: See remarks for landmark 14.

16. **Left-PO-orbit**: anteriormost contact of the left postorbital in the orbit rim

Remarks: This landmark always is positioned within the orbital margin, and between the postorbital and frontal or prefrontal, depending on if the frontal contributes to the orbit or is retracted from the orbital margin. In the former case, landmarks 16 and 17 coincide with landmarks 67 and 70 (see below).

17. **Right-PO-orbit**: anteriormost contact of the right postorbital in the orbit rim

Remarks: See remarks for landmark 16.

18. **Left-PA-SO-PR**: left contact between parietal-supraoccipital-prootic

Remarks: This landmark is positioned on the dorsal surface of the otic capsule. *Dermochelys* presents a unique condition in which its descending parietal process is not ossified. Because of this, it lacks the triple contact between the parietal, supraoccipital and prootic bones. However, the supraoccipital and prootic are still in contact in *Dermochelys*, and this landmark is placed at the anteriormost point where these bones contact each other. Therefore, despite of the unusual ossification of such taxon, the landmark still follows the same homology criterion.

19. **Right-PA-SO-PR**: right contact between parietal-supraoccipital-prootic

Remarks: See remarks for landmark 18.

20. **Left-SO-PR-OP**: left contact between supraoccipital-prootic-opisthotic

Remarks: This is positioned on the dorsal surface of the otic capsule. In cyclanorbine trionychids (e.g. *Cylcanorbis, Cycloderma* and *Lissemys*) and *Chelonoidis carbonaria*, the parietal has an unusually long posterior extension that reaches over the supraoccipital, prootic and opisthotic bones, hereby concealing the triple contact between these bones. However, as this contact is actually just concealed by a thin sheet of the parietal, we digitally removed the parietal extension and placed the landmark for these turtles. For these taxa, landmarks 20 and 21 coincide with the positions of landmarks 18 and 19. This landmark combination thus acknowledges both the extreme posterior extent of the parietal, but also the homology with other turtles in the general presence of a triple junction between prootic-opisthotic-supraoccipital in the otic capsule.

21. **Right-SO-PR-OP**: right contact between supraoccipital-prootic-opisthotic

Remarks: See remarks for landmark 20.

22. **Left-QU-PR**: left posteriormost junction between the prootic and the quadrate on the surface of the otic chamber

Remarks: The prootic and quadrate mediolaterally abut one another in the otic capsule of all turtles. Posteriorly, these bones usually form a triple junction with the opisthotic, but the latter can be substituted for different bones. Thus, this landmark is defined only in terms of the
prootic and quadrato, and usually lies in the central portion of the otic capsule, on its dorsal surface.

23. **Right-QU-PR**: right posteriormost junction between the prootic and the quadrato on the surface of the otic chamber

Remarks: See remarks for landmark 22.

24. **Left-SO-EX-OP**: left junction between supraoccipital-exoccipital-opisthotic

Remarks: This landmark is positioned in the posterior aspect of the dorsal surface of the otic capsule.

25. **Right-SO-EX-OP**: right junction between supraoccipital-exoccipital-opisthotic

Remarks: See remarks for landmark 24.

26. **Left-EX-Foramen-magnum**: most posterodorsal point of the left exoccipital in the margin of the foramen magnum

Remarks: This landmark is usually positioned in the exoccipital-supraoccipital suture along the margin of the foramen magnum. However, in most chelid turtles, the exoccipitals each possess a dorsal process that, when present, contact one other in the skull midline, excluding the supraoccipital from contributing to the foramen magnum. When this condition occurs, landmarks 26 and 27 are placed in the same spot.

27. **Right-EX-Foramen-magnum**: most posterodorsal point of the right exoccipital in the margin of the foramen magnum

Remarks: See remarks for landmark 26.

28. **PM-anterodorsal**: Point of contact between the right and left premaxillae in the ventral margin of the external nares

Remarks: This landmark is an unpaired, median landmark and can usually be identified by the dorsal end of the interpremaxillary suture. When the premaxillae are fused, this landmark is placed in a median position in the ventral margin of the external naris.

29. **PM-Labial-ridge**: Point of contact between the right and left premaxillae in the labial ridge of the triturating surface

Remarks: This landmark is an unpaired, median landmark and can usually be identified by the ventral end of the interpremaxillary suture. When the premaxillae are fused, this landmark is placed in a median position in the labial margin of the skull.

30. **Anteromedian-Triturating-surf**: median point of contact between the medial margins of the right and left triturating surface

Remarks: This landmark specifies the anteromedial termination of each triturating surface, and primarily is to capture variation in the depth of the triturating surface. We thus defined this landmark as the median point between the triturating surfaces. It always lies at the border of triturating surfaces and the internal narial openings. In turtles with clearly distinguished right and left triturating surfaces (i.e., in absence of a secondary palate), the landmark is usually positioned at the posterior end of the interpremaxillary contact on the palate, which often coincides with the premaxilla-premaxilla-vomer triple junction. However, in turtles with
extensive secondary palates, such as chelonioids, the landmark lies on the vomer, and in the posterior margin of the secondary palate. As the secondary palate basically represents an extension of palatal bones and a merging of the triturating surface, we believe that this landmark is topologically homologous despite the fact that it will lie on different bones across different turtle clades.

31. **Left-MX-lateroventral:** posterior end of left maxillar labial ridge

Remarks: In all turtles, the maxilla forms most of the anterolateral margin of the skull, including the labial ridge onto which the keratinous rhamphotheca articulates. Posteriorly, the labial ridge either ends by articulation of the maxilla with posteriorly adjacent bones, usually the jugal, or by an upturned maxillar margin that defines the beginning of the cheek emargination. This landmark is placed in this position.

32. **Right-MX-lateroventral:** posterior end of right maxillar labial ridge

Remarks: See remarks for landmark 31.

33. **Left-Triturating-surf-posterior:** most posteromedial point of the left triturating surface

Remarks: This point is usually positioned on the maxilla, and defined the posterior end of the lingual margin of the triturating surface.

34. **Right-Triturating-surf-posterior:** most posteromedial point of the right triturating surface

Remarks: See remarks for landmark 33.

35. **Left-QU-posteroventral:** anteroventral point of maximum curvature of the lateral wall of the left quadrate

Remarks: This landmark defines the posterior end of the cheek emargination, which ends in the lateroventral margin of the skull formed by the quadrate just anterior to the level of the quadrate articular processes.

36. **Right-QU-posteroventral:** anteroventral point of maximum curvature of the lateral wall of the right quadrate

Remarks: See remarks for landmark 35.

37. **BS-anteriormost-ventral:** anteriormost point of the basisphenoid on the ventral surface of the skull

Remarks: This unpaired landmark is positioned in the skull midline. Depending on the anterior structure of the palate, the landmark lies in the triple junction between basisphenoid and right and left pterygoids, or in the basisphenoid-vomer suture.

38. **BS-anteriormost-dorsal:** anteriormost point of the basisphenoid on the dorsal surface of the basicranium (tip of the rostrum basisphenoidale)

Remarks: This unpaired, medial landmark is positioned on the internal of the skull.

39. **Left-BS-clinoid:** tip of the left clinoid process.

Remarks: This landmark is positioned on the internal of the skull.

40. **Right-BS-clinoid:** tip of the right clinoid process
Remarks: See remarks for landmark 39.

41.Left-MX-PAL-anterior: most anteromedial junction between the left maxilla and the left palatine on the palate

Remarks: The palatine of turtle usually extends with anterolateral processes toward the maxilla, and contacts this bone along the lingual margin of the triturating surface. In species with extended secondary palates, this landmark is the triple junction between maxilla-palatine-vomer.

42.Right-MX-PAL-anterior: most anteromedial junction between the right maxilla and the right palatine on the palate

Remarks: See remarks for landmark 41.

43.Left-BO-BS-lateralmost: lateralmost point of contact between the basisphenoid and basioccipital on the left side

Remarks: In all turtles, the basisphenoid and basioccipital form a transverse suture in the ventral skull surface. This landmark is positioned in the lateral end of this contact, which forms a triple junction with laterally adjacent bones that can vary between clades, but usually are either the quadrate, prootic or pterygoid.

44.Right-BO-BS-lateralmost: lateralmost point of contact between the basisphenoid and basioccipital on the right side

Remarks: See remarks for landmark 43.

45.BO-BS-medial: median point between the basisphenoid and the basioccipital on the ventral surface of the skull

Remarks: This unpaired landmark is in a median position on the suture between basisphenoid and basioccipital.

46.Left-FPCCI: position of the left foramen posterius canalis carotici interni

Remarks: This landmark marks the ventral margin of the foramen posterius canalis carotici interni, through which the internal carotid artery enters the cranium.

47.Right-FPCCI: position of the right foramen posterius canalis carotici interni

Remarks: See remarks for landmark 46.

48.Left-basitubera: posteriormost tip on the left basituber

Remarks: The tubercula basioccipitale are formed by various combinations of bones in turtles, but usually the basioccipital is prominently involved. In all turtles, the processes can be identified easily, and the posteriormost point of the structure is landmarked, which is often formed as a pointed tip.

49.Right-basitubera: posteriormost tip on the right basituber

Remarks: See remarks for landmark 48.

50.Occipital-cond-posterior: posteriormost point on the occipital condyle

Remarks: This landmark is positioned centrally on the posterior surface of the occipital condyle, usually in the triple junction of both exoccipitals with the basioccipital.
51. **Left-Cavum_tympani_posterodorsal**: most posterodorsal point on the margin of the left cavum tympani

Remarks: To define a semilandmark curve around the cavum tympani, we defined a start and end landmark in the posterodorsal and posteroventral corners of the cavum tympani, respectively. The posterodorsal starting point is usually relatively easy to identify as a small lateral tip on the squamosum or quadrate, just above the posteroventral notch that often opens into the cavum tympani for the Eustachian tube and/or stapes. The posteroventral end point lies on the quadrate. In turtles in which the cavum tympani is ‘closed’, start and end landmarks fall on the same position. The position in these cases is mostly indicated by a suture of the quadrate with itself, which can be traced medially into the cavum tympani and toward the incisura columella auris, which is completely surrounded by the quadrate in such turtles.

52. **Left-Cavum_tympani_posteroventral**: most posteroventral point on the margin of the left cavum tympani

Remarks: See remarks for landmark 51.

53. **Right-Cavum_tympani_posterodorsal**: most posterodorsal point on the margin of the right cavum tympani

Remarks: See remarks for landmark 51.

54. **Right-Cavum_tympani_posteroventral**: most posteroventral point on the margin of the right cavum tympani

Remarks: See remarks for landmark 51.

55. **Left-PR-QU-PT**: left junction between the prootic, quadrate and pterygoid (or parietal) in the otic capsule region

Remarks: In all turtles, the anterior portion of the otic capsule if formed between the prootic medially and the quadrate laterally. These bones form an anteroposteriorly extending suture. Anteriorly, the suture slopes ventrally from the floor of the supratemporal fossa into the posterior wall of the subtemporal fossa. In this area, on the anterior surface of the otic capsule, the prootic-quadrate suture meets with the anteroventrally adjacent bone, which usually is the pterygoid. This landmark is placed on this triple junction.

56. **Right-PR-QU-PT**: right junction between the prootic, quadrate and pterygoid (or parietal) in the otic capsule region

Remarks: See remarks for landmark 55.

57. **Left-JU-PO-posterior-contact**: the most posterior contact between the left jugal and the left postorbital

Remarks: This landmark is found on the lateral side of the skull. The postorbital-jugal suture extends anteroposteriorly, and in its posterior end, it either forms a triple junction with the quadratojugal, but may instead merge into the margin of the upper temporal emargination.

58. **Right-JU-PO-posterior-contact**: the most posterior contact between the right jugal and the right postorbital

Remarks: See remarks for landmark 57.
59. **Left-PAL-posteromedian:** the most posteromedian contact of the left palatine in the ventral surface of the skull

Remarks: The palatines of turtles form part of the anterior region of the palate, but there is significant variation to their form and contacts to surrounding bones: the palatines may contact one another in the skull midline, or they are separated from one another by either the vomer, pterygoids, or basisphenoid. This landmark captures the posteriormost contact of the palatine with the bones that lie in the skull midline. When the right and left palatines have a midline contact, right and left landmarks for this point fall on the same position.

60. **Right-PAL-posteromedian:** the most posteromedian contact of the right palatine in the ventral surface of the skull

Remarks: See remarks of landmark 59.

61. **Left-PT-base-ventral-proc:** anteriormost contact of the ventral process of the left parietal with the ventrally adjacent bone

Remarks: The descending process of the parietal forms the anterior margin of the ossified braincase in turtles. Ventrally, the process contacts the palate, usually the crista pterygoidei of the pterygoid, but in some turtles the palatine. We place the landmark at the ventral end of the anterior margin of the descending process of the parietal, irrespective of which bone it contacts ventrally. This landmark captures variation pertaining to the extent of the secondary lateral braincase wall.

62. **Right-PT-base-ventral-proc:** anteriormost contact of the ventral process of the right parietal with the ventrally adjacent bone

Remarks: See remarks for landmark 61.

63. **Left-PA-SO-posterolateral:** most posterolateral contact between the left parietal and the supraoccipital on the skull roof

Remarks: In all turtles, the parietals have a midline contact in the skull roof, but contact the supraoccipital posteriorly. Depending on whether parts of the supraoccipital are integrated into the skull roof or whether most of the bone is overlain by the parietals, right and left landmarks are separated from the skull midline, or fall on the same point (together with landmark 4), respectively. This landmark serves as the medial bound for the temporal emargination.

64. **Right-PA-SO-posterolateral:** most posterolateral contact between the right parietal and the supraoccipital on the skull roof

Remarks: See remarks for landmark 63.

65. **Left-OP-posteriormost:** posteriormost point of the left opisthotic

Remarks: The paroccipital process of the opisthotic braces against the posterior part of the otic capsule in turtles, and ends laterally near the posterior squamosal process, and may even extend beyond that level posteriorly and thus form the posteriormost point of the skull. We place this landmark at the posteriormost tip of the paroccipital process.

66. **Right-OP-posteriormost:** posteriormost point of the right opisthotic

Remarks: See remarks for landmark 65.
67. **Left-FR-orbit-posterior:** posteriormost point of the lateral process of the left frontal which extends towards the orbit rim

Remarks: Turtles show variation regarding whether the frontal extends laterally into the orbital margin or not. When the frontal extends into the orbit, the landmark is placed in the orbital margin between the frontal and the posteriorly adjacent bone, which is the postorbital. In this case, landmarks 67 and 70 are in the identical spot as landmarks 16 and 17, which define the anteriormost point of the postorbital in the orbital margin. When the lateral frontal process is retracted from contributing to the orbit, the homologous point is the frontal-prefrontal-postorbital triple junction somewhat medially to the orbit. When the latter condition is present, landmarks 67 and 70 are placed in the same spot as landmarks 6 and 7 (see above).

68. **Left-MX-orbit-posterior:** posteriormost contact of the left maxilla in the orbit rim

Remarks: In all turtles, the maxilla forms parts of the ventral margin of the orbit. Posteriorly, it forms a contact with the posteriorly adjacent bone, usually the jugal, with which it forms a suture that crosses the orbital margin. This landmark is placed in this position, irrespective of whether the posterior bone is the jugal or postorbital.

69. **Left-PO-orbit-posterior:** ventralmost contact of the left postorbital in the orbit rim

Remarks: In all turtles, the postorbital forms parts of the posterior margin of the orbit. The postorbital has a ventral process that extends along the orbital margin until it reaches the ventrally adjacent bone, which is usually the jugal, but may be the maxilla when the jugal is retracted from contributing to the orbit. The landmark is placed in the suture with the ventrally adjacent bone within the orbital margin. When the postorbital directly contact the maxilla in the orbital margin, this landmark coincides with landmark 68.

70. **Right-FR-orbit-posterior:** posteriormost point of the lateral process of the right frontal which extends towards the orbit rim

Remarks: See remarks for landmark 67.

71. **Right-MX-orbit-posterior:** posteriormost contact of the right maxilla in the orbit rim

Remarks: See remarks for landmark 68.

72. **Right-PO-orbit-posterior:** ventralmost contact of the right postorbital in the orbit rim

Remarks: See remarks for landmark 69.

73. **Left-PAL-anteromedian:** the most anteromedian contact of the left palatine in the primary palate

Remarks: In all turtles, the palatine forms parts of the anterior palate, but significant variation exists in the form and relative position of this bone. The right and left palatines may form a midline contact, in which case this landmark is placed at the anterior end of this contact, and in which case right and left landmarks fall in the same position. However, in many turtles the palatines are separated from one another by either the vomer, pterygoids, or basisphenoid. In this case, right and left landmarks are in distinct positions to either side of the skull midline, and at the anterior end of the palate with the medially adjacent bone. In turtles with a secondary palate, the palate has two ‘levels’ that forms dorsoventrally separate plates. The ventral one is integrated into the secondary palate, whereas the dorsal one forms the roof of the internal narial passage. Both plates usually contact the vomer medially, and thus candidate positions for this
landmark exist both on the primary palate (dorsal plate) and secondary palate (ventral plate).
We place this landmark on the primary palate, as this surface is homologous to the part of the palate in taxa without secondary palates, which in turn are interpreted to be neomorphic structures in turtles that possess them.

74. **Right-PAL-anteromedian**: the most anteromedian contact of the left palatine in the primary palate

Remarks: See remarks for landmark 73.

75. **Dorsal_foramen_magnum**: the most dorsal point of the foramen magnum on the midline

Remarks: The foramen magnum in turtles usually form a dorsoventrally high oval, with a narrow concave dorsal margin that is usually formed by the supraoccipital, but may be formed by the exoccipitals instead. This landmark is placed in the midline dorsal margin of the foramen magnum.

76. **Ventral_foramen_magnum**: the most ventral point of the foramen magnum on the midline

Remarks: The foramen magnum in turtles usually form a dorsoventrally high oval, with a broad concave ventral margin that is usually formed by the basioccipital, but may be formed by the exoccipitals instead. This landmark is placed in the midline ventral margin of the foramen magnum.

Series of sliding semilandmarks

SL1. **Left-Internal-nares**: open curve of semilandmarks in clockwise direction from landmark 1 to landmark 28 that follows the left margin of the external nares

SL2. **Right-Internal-nares**: open curve of semilandmarks in anticlockwise direction from landmark 1 to landmark 28 that follows the right margin of the external nares

SL3. **Left-Orbit**: closed loop of semilandmarks starting in the suture the maxilla forms with the anteriorly adjacent bone (usually prefrontal) and extending around the left orbit in clockwise direction

SL4. **Right-Orbit**: closed loop of semilandmarks starting in the suture the maxilla forms with the anteriorly adjacent bone (usually prefrontal) and extending the left orbit in anticlockwise direction

SL5. **Skull-midline**: open curve of semilandmarks from landmark 1 to landmark 4 that follows the skull midline

SL6. **Left-Temporal_emargination_new**: open curve of semilandmarks from landmark 63 to landmark 14 that follows the left temporal emargination

SL7. **Right-Temporal_emargination_new**: open curve of semilandmarks from landmark 64 to landmark 15 that follows the right temporal emargination

SL8. **Left-Cheek-emargination**: open curve of semilandmarks from landmark 31 to 35 that follows the left cheek emargination
SL9. Right-Cheek-emargination: open curve of semilandmarks from landmark 32 to 36 that follows the right cheek emargination

SL10. Left-Labial-ridge: open curve of semilandmarks from landmark 31 to landmark 29 that follows the left labial ridge

SL11. Right-Labial-ridge: open curve of semilandmarks from landmark 32 to landmark 29 that follows the right labial ridge

SL12. Left-Triturating-surf: open curve of semilandmarks from landmark 33 to landmark 30 that follows the medial margin of the left triturating surface

SL13. Right-Triturating-surf: open curve of semilandmarks from landmark 34 to landmark 30 that follows the medial margin of the right triturating surface

SL14. Left-Cavum-tympani-loop: open curve of semilandmarks from landmark 52 to landmark 51 that follows the outline of the left cavum tympani in clockwise direction

SL15. Right-Cavum-tympani-loop: open curve of semilandmarks from landmark 53 to landmark 54 that follows the outline of the left cavum tympani in anticlockwise direction

SL16. Left-Mandibular-cond: a closed loop of semilandmarks going in clockwise direction around the left articulation facet of the condylus mandibularis, starting at the level of the contact between the condylus and the pterygoid

SL17. Right-Mandibular-cond: a closed loop of semilandmarks going in anticlockwise direction around the right articulation facet of the condylus mandibularis, starting at the level of the contact between the condylus and the pterygoid

SL18. BS-sella-turcica: open curve of semilandmarks from landmark 39 to landmark 40 that follows the outline of the dorsum sellae

Remarks: The landmark title says ‘sella turcica’ but we are actually landmarking the dorsum sellae between the clinoid processes.

SL19. Left-PR-QU-suture: open curve of semilandmarks from landmark 22 to landmark 55 that follows the left prootic-quadrate suture

Remarks: This suture is landmarked because it captures variation of the form of the anterior portion of the otic capsule (and thus, in cryptodires, variation pertaining to the otic trochlea). In *Rhinoclemmys pulcherrima*, the parietal extends so far laterally, that it overlay the prootic completely in this region. Consequentially, the prootic is not expressed in the otic capsule. However, as the parietal does not overlap the quadrate, the quadrate-parietal suture of *R. pulcherrima* traces the suture of quadrate with the prootic directly underneath the dorsally exposed skull surface. Thus, in *R. pulcherrima*, we landmarked the quadrate-parietal suture.

SL20. Right-PR-QU-suture: open curve of semilandmarks from landmark 23 to landmark 56 that follows the left prootic-quadrate suture

Remarks: See remarks for SL19.

SL21. BS-length: open curve of semilandmarks from landmark 37 to landmark 45 that follows the basisphenoid length
SL22.Left_half_foramen_magnum: a series of semilandmarks on the left side foramen magnum rim extending from landmark 75 to landmark 76

SL23.Right_half_foramen_magnum: a series of semilandmarks on the right side foramen magnum rim extending from landmark 75 to landmark 76

Surface semilandmarks

In addition to landmarks and sliding semilandmarks, we placed surface semilandmarks to capture more densely potential rugosities on the triturating surfaces of the palate, and the depth of the mandibular condyles. We followed the suggestions in Bardua et al. (2019) and used as a template the specimen of which the shape was closest to the estimated mean shape of aligned 3D Procrustes coordinates. To identify such specimen, we used the “findMeanSpec” function of the R package “geomorph” 3.2.1 (Adams et al. 2020). These surface semilandmarks were placed as follows:

Surface_palate_left: surface semilandmarks placed labio-lingually(?) on the left side triturating surface of the palate, starting close to landmark 31 until reaching the midline contact between the premaxillae

Remarks: the triturating surfaces are the primary food-grinding structure of most turtles. Besides describing its outline with our landmark/sliding semilandmark concept (more specifically landmarks 29-34 and sliding semilandmarks 10-13), we found it important to include variation present on the surface itself, because many turtles bear one or multiple serrated rows of accessory ridges on the maxillae/palatines (Pritchard 1979). Therefore, these surface semilandmarks were placed on the left half of the triturating surface to capture these potential additional structures.

Surface_palate_right: surface semilandmarks placed labio-lingually(?) on the left side triturating surface of the palate, starting close to landmark 31 until reaching the midline contact between the premaxillae

Remarks: see remarks for ‘Surface_palate_left’.

Surface_condyle_left: surface semilandmarks placed anteroposteriorly on the left mandibular condyle surface, starting on the lateralmost edge of the structure and following it medially

Surface_condyle_right: surface semilandmarks placed anteroposteriorly on the right mandibular condyle surface, starting on the lateralmost edge of the structure and following it medially

These new points were then imported back to R environment in which we combined the new surface semilandmark coordinates with previous ones (landmarks and sliding semilandmarks). The combined set of landmarks were used to create an ‘atlas’ object using the “createAtlas” function of the package “Morpho” 2.8 (Schlager 2017). This atlas is used to define which are the landmarks that will be projected on the remaining specimens of our sample in an automated process. This last step was performed with the “placePatch” function of “Morpho” 2.8.
Description of binary ecological traits

To account for the multiple components of feeding aspects present in turtles’ diets, we developed a multivariate scheme classification containing the main resources described in turtles’ natural history surveys (see “Extra SI References” for list of bibliography). For each item we attributed “0” (absent) or “1” (present). Besides food items, we also scored absence/presence for: the use of suction feeding, feeding in the water and/or on land, marine habits, being fully-flippered (as a proxy for a fully aquatic open swimming lifestyle), capacity of neck retraction, and sideways neck retraction. This follows similar previous approaches for mammalian and avian ecology (e.g. Taylor & Thomas 2014; Wilman et al. 2014; Benson et al. 2017; Campuzano 2018) in recognising that multiple factors can influence skull shape in turtles.

The traits match those present in Supporting Information S1 table, and correspond to the presence/absence of:

Seeds_fruits: fruits, including also the consumption of seeds and nuts;

Flowers: flowers;

Stems: plant stems, including also plant roots;

Terrestrial_leaves: leaves from terrestrial plants (e.g. bushes, grasses, riparian vegetation);

Aquatic_leaves: aquatic macrophytes, sedges, aquatic angiosperms, and algae;

Fungi: mushrooms;

Vertebrates: mainly fishes and tadpoles, including also sporadic consumption of larger vertebrates (e.g. waterbirds, other turtles);

Jellyfish: jellyfish, but also free-living tunicates, for the similarity with medusae lifestyle;

Aquatic_insects: insects that rely on water for completing their life cycles (e.g. dragonflies, mayflies, dipteran chironomids), including also their larvae;

Terrestrial_arthropods: insects that mainly live on land (e.g. beetles, grasshoppers), arachnids, millipedes;

Worms: mostly oligochaetes, but can also include similar tubular-shaped animals (e.g. marine worms);

Mollusks: snails, clams, mussels;

Crustaceans: prawns, shrimps, crabs;

Mostly_vegetable_matter: this variable was included to help distinguishing between sporadic and regular feeding on plants by turtles, according to authors’ assessment on the regularity of the presence of vegetable matter in an animal’s diet through a given period of time. In the ecomorphological hypotheses (see below), this trait was used as proxy for “herbivory”;

Mostly_animal_matter: this variable was included to help distinguishing between sporadic and regular feeding on animals by turtles, according to authors’ assessment on the regularity of the presence of animal matter in an animal’s diet through a given period of time. In the ecomorphological hypotheses (see below), this trait was used as proxy for “carnivory”;
Mostly_hard_food: this variable was included to help distinguish between sporadic (e.g. Kimmel 1980; Jones & Seminoff 2013) and regular (e.g. Bels et al. 1998; Richards-Dimitrie et al. 2013) feeding on hard food (durophagy) by turtles. This follows authors’ assessment on the regularity of the presence of e.g. hard-shelled invertebrates in an animal’s diet through a given period of time. In the ecomorphological hypotheses (see below), this trait was used as proxy for “durophagy”.

Feed_on_water: scored ‘present’ for those turtles capable of feeding underwater;

Feed_on_land: scored ‘present’ for those turtles capable of feeding on land; turtles that can capture food on land but need to drag it underwater to eat (e.g. Natchev et al. 2008) were scored as ‘absent’ (see Natchev et al. 2015 for further discussion on the subject);

Suction_feeding: apart from turtles that actively hunt their preys (see main text), we also scored presence for turtles that exhibit neustophagia (e.g. Belkin & Gans 1968; Rhodin et al. 1981), since the jaw opening and pharyngeal expansion mechanisms of this feeding strategy parallel those of turtles described as ‘suction-feeders’;

Marine: scored ‘present’ for turtles that live in marine habitats;

Open_swimmer: scored ‘present’ for turtles that exhibit fully-flippered limbs as a proxy for a specialised highly aquatic lifestyle;

Neck_retraction: scored ‘present’ for turtles capable of retracting their necks;

Our multivariate scheme also includes two continuous traits: “food evasiveness” and “food hardness” indices. Based on the approach by Vanhooydonck et al. (2007), for each of the first 13 food items from the list above (i.e. from “Seeds_fruits” to “Crustaceans”) we attributed different weights depending on whether it represented a sedentary/soft (weight = 0), intermediate (0.5) or evasive/hard (1) item. The absence/presence (i.e. 0/1) of each item was then multiplied by their respective weight, and then divided by the sum of the absence/presence of such items.
Ecomorphological hypotheses – skull shape

Our D-PGLS models were built to allow that multiple factors can influence shape aspects of the turtle skull. We first tested each predictor individually alongside ‘allometry’ (see below), and then built more complex models including those predictors found to be statistically significant. To run D-PGLS analyses, we used the “procD.pgl” function of the R package “geomorph” (Adams et al. 2020), running 1000 iterations, and setting the sums of squares as hierarchical (argument “SS.type = II”). The phylogenetic tree used for these analyses is derived from the topology of Pereira et al. (2017), which accounts for nearly all extant species of turtles and is based on molecular data. From this topology, we pruned and retained only those taxa present in our analyses (Figure S6).

Using species-specific data, our regression analyses were used to test hypotheses of relationships between skull shape and the following main independent binary and continuous variables:

‘Size’: log₁₀-transformed centroid size, output from the alignment of 3D landmark coordinates (GPA). This tests the hypothesis that shape changes in turtle skulls result from modification in size, i.e. allometry (e.g. Pfaller et al. 2010). Yet, after accounting for the individual effect of size (i.e. shape ~ size), this predictor was always subsequently included as a covariate in more complex models; [continuous]; Note that this continuous variable was also used in pGLS regressions testing for the importance of different effects on turtle skull size variation (see below and Main Text);

‘Suction’: presence of suction-feeding. This behaviour implies in modifications in the feeding apparatus that accommodate wider gapes and more powerful intraoral negative pressures (Van Damme & Aerts 1997; Lemell et al. 2002). This variable tests the hypothesis that shape changes in turtle skulls result from adaptation to using this food-capturing strategy; [binary];

‘Durophagy’ : presence of durophagy, identifying turtles that feed mostly on hard food (e.g. shelled invertebrates). Because triturating this sort of food requires a larger area of the jaw surfaces to crush it prior to ingestion (Claude et al. 2004), as well as more developed muscles involved in biting, this tests the hypothesis that skull changes in turtles are explained by the acquisition of a durophagous diet; [binary];

‘Herbivory’ : presence of herbivory, identifying turtles that feed mostly on plant material (e.g. fruits, leaves, algae). Herbivory in extant reptiles is relatively rare, with changes in body size and teeth morphology recorded for lizards (Zimmerman & Tracy 1989) and physiological adaptations in the digestive system recorded for some turtles (Bjorndal 1979; 1987). Additionally, many herbivorous chelonians exhibit finely serrated ridges in the palate (Pritchard 1979; Davenport et al. 1992), usually paralleling the inner border of the triturating surface. This predictor tests the hypothesis that skull shape changes in turtles result from the acquisition of a more herbivorous lifestyle; [binary];

‘Carnivory’: this identifies turtles that feed mostly on other animals. This tests the hypothesis that changes in turtle skull shape are associated with faunivory/scavenging, and is based on a previous assumption that ‘in predatory and scavenging species the jaw surfaces may be exceedingly sharp’ (Pritchard 1979, p. 35); [binary];

‘Aquatic feeding’: indicates the capacity to feed underwater. This tests the hypothesis that the capacity to feed in water is correlated with skull shape changes, in tandem with the different
functional requirements for feeding in this medium (Lemell et al. 2019). This was shown to be the case for Testudinoidea i.e. tortoises, terrapins, Old World pond turtles (Claude et al. 2004). However, this is still to be tested for Testudines as a whole; [binary];

‘Terrestrial feeding’: indicates the capacity of feeding on land. Previous studies have shown that terrestrialisation in turtles involved drastic changes in their Bauplan, including morphological changes in limb (Joyce & Gauthier 2004), shell (Claude et al. 2003; Benson et al. 2011), and feeding apparatus (Bramble & Wake 1985; Winokur 1988; Richter et al. 2007; Natchev et al. 2015). This predictor tests the hypothesis that skull morphology in turtles can be explained by their role as terrestrial feeders; [binary];

‘Marine’: this predictor tests the hypothesis that aspects in turtle skull shape change in association with the presence of a marine lifestyle, based on previous assumptions of potential osteological cranial correlates to the presence of salt glands or modifications possibly correlating to underwater hearing (e.g. Hirayama 1998; Ferreira et al. 2015; Evers & Benson 2019); [binary];

‘Opal swimming’: this variable was included to test the hypothesis that highly aquatic fully-flippered turtles adapted to swimming non-stop in large or moving water bodies (e.g. oceans) evolved distinct cranial shapes from other turtles; [binary];

‘Neck retraction’: capacity of neck retraction. Previous studies (Werneburg 2015; Ferreira et al. 2020) revealed associations between the architecture of the posterior region of the skull and neck motion. Therefore, besides ecological factors related to diet and habitat, we included this predictor to test the hypothesis that changes in the overall skull shape of turtles (not only the posterior part) correlate with their capacity of retracting the neck; [binary];

‘Hardness index’: considering that turtles eat a wide range of food items that vary in their hardness (from soft aquatic plants to hard-shelled invertebrates; Bonin et al. 2006), this predictor tests the hypothesis that food hardness correlates to turtle cranial shape, as it has been demonstrated for some lizards, for instance (Vanhooydonck et al. 2007); [continuous];

‘Evasiveness index’: similar to the above, turtles eat a wide range of food items that vary in their evasiveness capacity (from sedentary plants to fish and elusive invertebrates; Bonin et al. 2006). Therefore, this predictor tests the hypothesis that food evasiveness correlates to turtle cranial shape, as it has also been demonstrated for some lizards (e.g. Vanhooydonck et al. 2007); [continuous];

Ecomorphological hypotheses – skull size

Similarly, our pGLS models were account for the hypothesis that multiple factors may influence turtle skull size variation. We first tested each predictor individually, and then built more complex models including those predictors found to be statistically significant. To run pGLS analyses, we used the “gls” function of the R package “nlme” (Pinheiro et al. 2020), and correlation structures from the “ape” package (Paradis & Schliep 2019), estimating Pagel’s λ during the model fitting process. Models were then compared using AICc with the “aictab” function of the “AICcmodavg” package (Mazerolle 2020). The phylogenetic tree used and the explanatory variables included are the same as those from the D-PGLS analyses (see above). The only additional variable included here is “carapace size”, retrieved from TTWG (2021). This was included to account for allometric effects of turtle skull size (e.g. Herrel et al. 2002).
Predictions for fossils

Our phylogenetic flexible discriminant analyses (pFDA) were conducted both on extant and extinct turtle taxa, and separately on all binary predictors of the best D-PGLS model (“partial landmark dataset”, Table S5). pFDA on living turtle species were conducted as a “training step”, to verify how accurately our analyses could discriminate between turtles that presented or not a given trait. Although we had already accounted for phylogenetic covariance when retrieving regression scores, it is important to stress that the D-PGLS regression scores, as well as its residuals, are provided in the “original, phylogenetically dependent space” (Revell 2009, p. 3259). We can verify this since residuals calculation using the “phyl.resid” function (detailed in Revell 2009) yield the exact same values as residuals from a “procD.pglS” test (Adams 2014). This means that downstream analyses (e.g. discriminant analysis) should still employ methods that take phylogeny into account (e.g. pFDA; Motani & Schmitz 2011) when treating data.

In our pFDA, we randomly sampled an equal number of extant turtles from each category, so the prior probability of being classified to a given class would always be the same (see Motani & Schmitz 2011 for further discussion on the implications assuming “equal” or “empirical” prior probabilities). In each round of pFDA, considering \(j \) as the number of extant species, we obtained the posterior probability of a trait (\(PP_{\text{trait}} \)) for the \(j \)-th taxon along with the extinct taxa as if it was a fossil with unknown ecology too. This allowed us to assess how accurately our pFDA could classify extant turtles. In the end, we set an arbitrary \(PP_{\text{trait}} \) value of \(\geq 0.66 \) (e.g. Chapelle et al. 2020) to represent “likely presence” of a given trait, \(\leq 0.33 \) to represent “likely absence”, and a value in between 0.33 and 0.66 to represent “uncertainty”.

The phylogenetic trees used for these pFDA comprise composite topologies based on two different hypotheses: one from Evers et al. (2019) and the other from Sterli et al. (2018). As mentioned in the main text, relationships within extant groups follow Pereira et al. (2017), whereas the relationships between extant and extinct clades follow either the consensus tree of Evers et al. (2019) or the MkA model tree of Sterli et al. (2018; see Figure S6). Unlike the phylogeny used in the ecomorphological hypothesis tests (see above), these were calibrated using Bayesian inference (using a fossilised birth-death model), and actually represent “sub-trees” pruned from a larger topology (to be published), including only turtle taxa sampled in our analyses. Files of these pruned topologies are available at GitHub (https://github.com/G-Hermanson/Turtle-cranial-ecomorphology).

Finally, to predict the “food evasiveness index” for extinct taxa we conducted phylogenetic generalised least squares regressions (pGLS) to assess what combination of regression scores from the best D-PGLS model (“partial landmark dataset”) best explained this index for extant turtles (Supplementary Table 4). To do that, we ran pGLS using the “phylostep” function of the R package “phylolm” (Ho & Ane 2014), which compares the improvement of AIC values (i.e. obtaining lower values) from dropping and adding variables (regression scores) until no further improvement is possible (Chambers & Hastie 1992). This model was then used to calculate indices for fossil turtles using the “predict” function from R “stats” (R Core Team 2020).
Supplementary Results and Discussion

Potential correlation between certain explanatory variables

Our hypothesis tests were formulated to assess the independent effects of individual variables against skull shape and size variation (Tables S1-S4), most of the correlations having been previously suggested in the literature. For that purpose, apart from continuous variables, our binarisation of main ecological and functional explanatory traits had ultimately the goal to address questions of the sorts of: “Do turtles that use/are capable of [trait] have different cranial shapes/sizes than those that do not use/are incapable of [it]?”.

Our rationale differs from typical ecomorphology studies that, most of the time, only analyse multi-level categorical traits such as diet or habitat preference. Our models allow for the observed variation to be explained not only by one, but by multiple simultaneously important factors, which is usually the case for biological structures. However, the inclusion of some explanatory variables in the same model may imply certain statistical dependency between them at first glance, but this should not preclude one from inspecting the relative biological importance of each item. More specifically, we highlight here the inclusion of selected pairs of potentially correlated explanatory variables: “aquatic feeding” and “suction”, “durophagy” and “food hardness index”, and “suction” and “food evasiveness index”. This is noticeable, for instance, when inspecting the decrease in their individual explanatory power (R-squared) when included together in a same model, which is expected since these variables share information (Figure S27-S32). However, as we show with our shape deformation plots (Figures S8-S22), each one of these traits correlate with changes in different aspects of turtles skull shape.

In the first case, all turtles scored “presence” for “suction” are also scored that way for “aquatic feeding”, since it refers to a mechanism only physically possible under water (Bramble & Wake 1985; Lauder 1985; Lemell et al. 2019). However, because “suction” is an exclusively aquatic feeding mode, it does not make biological sense to analyse it without also taking into consideration the effects of feeding in the water. Only by evaluating what are the individual effects of each of these traits we can then understand what are the main changes in the skull shape of a turtle adapted to feeding in the water that correlate with the evolution of this feeding mechanism (e.g., Figures S8 and S10-S11).

In the second case, turtles scored 1 for “durophagy” are among those with the highest “hardness index” values (Figures S28 and S31), since their diets include mostly hard food. However, our sample also includes turtles with high hardness indices that are not considered durophagous (Figures S28 and S31), but rather generalists with a mixed diet that may include hard food items (e.g. Kinosternon baurii, Platysternon megacephalum), which is important to highlight. It shows that, despite potentially correlated (e.g., it is probable that the higher a turtle hardness index, the greater is the probability of being a durophagous), the use of these variables represents two different hypotheses. Regarding “durophagy”, it asks: “Do durophagous turtles have different head shapes/sizes than non-durophagous species?”, which considers a specific type of dietary item to be important and the others to be unimportant. On the other hand, the use of the “hardness” variable asks: “Does the shape/size of a turtle skull correlate with the proportion of hard food items in their diets?”, which proposes that the proportion of such items is the main control of morphology, and that morphological changes scale linearly with that.

Finally, as with the previous pairs of variables, “suction” and “evasiveness” also have partially redundant effects, although these traits overlap much more among each other (Figures
S29 and S32). Similar to the previous case, they represent different hypotheses: (1) “Do suction-feeding turtles have different head shapes/sizes than those species that are not?” and (2) “Does the shape/size of a turtle skull correlate with the proportion of evasive food items in their diets?” These ask whether (1) a specific feeding mode or (2) the proportion of a type of food item in their diets are the main controls of skull shape changes. Our sample includes turtles that, despite equally scored 1 for the use of suction-feeding, employ such mechanism towards preys of very different degrees of evasiveness. It spans species with very low (e.g., *Dermochelys coriacea* feeding on jellyfishes), medium-range (e.g., *Phrynops geoffroanus* feeding on aquatic plants, fish and insects), and very high indices (e.g., *Chelodina oblonga* feeding on fish and small insects). Likewise, our sample of non-suction feeders also include turtles that feed on relatively agile preys, highlighting that the evolution of this feeding mechanism does not necessarily correlate with the preference for such type of food.

Classification accuracy of extant turtle ecological and functional traits

The misclassification rate in our pFDA tests varied from 7% (“suction”) to 28% (“neck retraction”) based on either topology (Tables S9 and S10). Overall, the misclassified taxa were the same in both cases. In pFDA results for the presence of “suction”, 93% of extant turtles were correctly classified. Turtles scored “presence” for this trait but misclassified (i.e. PP_{suction} < 0.66) include *Chrysemys picta*, *Dermochelys coriacea* and *Podocnemis unifilis*. These actually correspond to taxa that employ either a suction-like feeding mechanism called “neustophagia” (i.e. *C. picta* and *P. unifilis*; Rhodin et al. 1981) or have a skull shape that largely deviates from the expected for the effects of suction-feeding (Figures S11 and S19), although reported to be a suction-feeder (i.e. *D. coriacea*; Bels et al. 1998). On the other hand, turtles scored “absence” for this trait but misclassified include *Chelydra serpentina* and *Podocnemis expansa*. With respect to the former, experimental studies demonstrated the negligible effect that suction has during *C. serpentina* feeding behaviour (Lauder & Prendergast 1992), whereas in the latter, field observations did not report similar suction mechanism for *P. expansa* as it did for *P. unifilis* (Rhodin et al. 1981).

The pFDA results for the presence of “durophagy” had an accuracy of 88% correctly classified turtles. Durophages misclassified as “absent” for this trait include *Lepidochelys olivacea* (PP_{durophagy}: 0.58) and *Cycloderma frenatum* (0.33). The misidentification of *C. frenatum* is not unexpected given its cranial shape more akin to that of other trionychids (more elongate and dorsoventrally flattened; Gaffney 1979), although authors have described a durophagous habit for this species (e.g. Mitchell 1959; Broadley & Sachsse 2011). However, *L. olivacea* misclassified as a durophage comes as a surprise, considering its great resemblance to the predicted shape of “durophagy” (Figure S12 and S20) that include very mediolaterally expanded triturating surfaces. Conversely, non-durophagous turtles misclassified as such were *Batagur baska*, *Morenia ocellata*, *Chelonia mydas*, *Natator depressus*, *Macrochelys temminckii*, *Claudius angustatus* and *Kinosternon baurii*. It is important to highlight that many of these species exhibit a very broad palate, sometimes a fully-developed secondary palate also (e.g. *B. baska*, *M. ocellata*, *C. mydas*, *N. depressus*; Gaffney 1979), similar to strict durophages. However, this mediolateral expansion may be regarded instead as a capacity a turtle has to crush harder food, which is true for some of the abovementioned turtles (e.g. Pritchard 1979; Moll 1980; Legler & Vogt 2013) or even reflect shared ancestry, from which closely related species likely inherited similar palatal architecture (e.g. Hirayama 1994; Sasaki et al. 2006).
Lastly, regarding the “neck retraction” trait, 78% of extant turtles were accurately classified. Among taxa incapable of neck retraction, only Peltoccephalus dumerilianus was misclassified. This also comes as a counterintuitive result considering the macrocephalic structure of *P. dumerilianus* skull, in addition to its correspondence to the predicted shape concerning the absence of neck retraction (Figures S13 and S21). In contrast, 17 extant turtles were wrongly predicted “absence” for this trait using the topology of Sterli et al. (2018): *Cuora flavomarginata, Heosemys grandis, Notochelys platynota, Malayemys subtrijuga, Orlitia borneensis, Geoclemys hamiltonii, Batagur baska, Aldabrachelys gigantea, Gopherus polyphemus, Dermatemys mawii, Staurotypus salvini, Claudia angustatus, Sternotherus minor, Sternotherus odoratus, Kinosternon subrubrum, and Kinosternon baurii*; and 19 using the topology from Evers et al. (2019), namely the 17 abovementioned taxa in addition to *Siebenrockiella crassicollis* and *Enys orbicularis*.

It is worth mentioning that indeed some of these turtles do have higher-domed skulls (e.g. *Cuora flavomarginata* or *Aldabrachelys gigantea*) and relatively large heads (e.g. kinosternids), or some degree of resemblance with the predicted head shape deformations regarding the “neck retraction” variable (Figures S13 and S21). However, the greatest degree of misclassification for this trait suggests different reasons that might be influencing it: (i) issues with the algorithm, that is unable to fully distinguish between turtles that can and cannot withdraw their heads based on the input data (i.e. regression scores); (ii) our arbitrary threshold (0.66) to detect absence/presence, which ultimately would change the proportion of misclassifications if modified; or (iii) aspects external to skull architecture that may also correlate to neck retraction, such as cervical anatomy, neck adjacent musculature, or the carapace anterior space (Gaffney 1975; Pritchard 1979; Ferreira & Werneburg 2019).

Nevertheless, because “neck retraction” misidentifications mostly represent neck retracting turtles being classified as lacking it, this provides us confidence in assigning the presence of this trait to the extinct turtles analysed here.
Figure S1. Landmark concept including type I and II landmarks and series of sliding semilandmarks. Numbers correspond to definitions in the text. Drawing based on the pleurodire Pelomedusa subrufa SMF 70504 (African helmeted turtle).
Figure S2. Landmark concepts of (A) “full landmark dataset” and (B) “partial landmark dataset” illustrated on 3D renderings of the Mediterranean pond turtle (*Mauremys leprosa* NHMUK unnumbered) and yellow-headed temple turtle (*Hieremys annandalii* FMNH 260389), respectively. These specimens correspond to those with the closest landmark coordinates to the mean shape of turtle skulls after initial Generalised Procrustes Analyses.
Figure S3. PC1 and PC2 axes of shape variation using the “full landmark dataset” (N = 71), coloured by major clades of extant turtles. (A) Chelidae: 1- Chelodina oblonga; 2- Chelus fimbriatus; 3- Elseya denata; 4- Hydromedusa tectifera; 5- Phrynops geoffroanus; 6- Phrynops hilarii. (B) Chelonioida: 1- Caretta caretta; 2- Chelonia mydas; 3- Dermochelys coriacea; 4- Eretmochelys imbricata; 5- Lepidochelys olivacea; 6- Lepidochelys kempii; 7- Natator depressus. (C) Chelydridae: 1- Chelydra serpentina; 2- Claudius angustatus; 3- Dermatemys mawii; 4- Kinosternon baurii; 5- Kinosternon subrubrum; 6- Macrochelys temminckii; 7- Staurotypus salvini; 8- Sternotherus minor; 9- Sternotherus odoratus. (D) Emysternia: 1- Chrysemys picta; 2- Clemmys guttata; 3- Deirochelys reticularia; 4- Emydidae blandingii; 5- Emys orbicularis; 6- Glyptemys insculpta; 7- Glyptemys muhlenbergii; 8- Graptemys geographica; 9- Malaclemys terrapin; 10- Platysternon megacephalum; 11- Pseudemys concinna; 12- Terrapene coahuila; 13- Terrapene ornata; 14- Trachemys scripta. (E) Geoemydidae: 1- Batagur baska; 2- Cuora amboinensis; 3- Cuora flavomarginata; 4- Heosemys grandis; 5- Malayemys subtrijuga; 6- Mauremys leprosa; 7- Melanochelys trijuga; 8- Morenia ocellata; 9- Notochelys platyrrhynchos; 10- Orlitia borneensis; 11- Pangshura tecta; 12- Rhinoclemmys melanosterna; 13- Rhinoclemmys pulcherrima; 14- Siebenrockiella crassicollis. (F) Pelomedusoides: 1- Pelomedusa subrufa; 2- Peltocephalus dumerilii; 3- Plemmys sinuatus; 4- Podocnemis expansa; 5- Podocnemis unifilis. (G) Testudinidae: 1- Aldabrachelys gigantea; 2- Chelonia gigantea; 3- Chelodina carolina; 4- Gopherus agassizii; 5- Gopherus flavomarginatus; 6- Gopherus polyphemus; 7- Malacochersus tornieri; 8- Testudo marginata. (H) Trionychia: 1- Amyda cartilaginea; 2- Apalone mutica; 3- Apalone spinifera; 4- Carettochelys insculpta; 5- Chitra indica; 6- Cyclorhynchus senegalensis; 7- Cycloderma frenatum; 8- Pelodiscus sinensis.
Figure S4. PC1 and PC2 axes of shape variation using the “partial extant landmark dataset” ($N = 76$), coloured by major clades of extant turtles. (A) Chelidae: 1- Chelodina oblonga; 2- Chelus fimbriatus; 3- Elseyia denata; 4- Hydromedusa tectifera; 5- Phrynops geoffroanus; 6- Phrynops hilarii. (B) Chelonioidae: 1- Caretta caretta; 2- Chelonia mydas; 3- Dermochelys coriacea; 4- Eretmochelys imbricata; 5- Lepidochelys olivacea; 6- Lepidochelys kempi; 7- Natator depressus. (C) Chelydridae: 1- Chelydra serpentina; 2- Claudius angustatus; 3- Dermatemys mawii; 4- Kinosternon baeri; 5- Kinosternon subrubrum; 6- Macrochelys temminckii; 7- Staurotypus salvini; 8- Sternotherus minor; 9- Sternotherus odoratus. (D) Emydidae: 1- Chrysemys picta; 2- Clemmys guttata; 3- Deirochelys reticularia; 4- Emydoidea blandingii; 5- Emys orbicularis; 6- Glyptemys insculpta; 7- Glyptemys muhlenbergii; 8- Graptemys geographica; 9- Malaclemys terrapin; 10- Platysternon megacephalum; 11- Pseudemys concinna; 12- Terrapene coahuila; 13- Terrapene ornata; 14- Trachemys scripta. (E) Geoemydidae: 1- Batagur baska; 2- Cuora amboinensis; 3- Cuora flavomarginata; 4- Cyclcopemys dentata; 5- Geoclemys hamiltonii; 6- Heosemys grandis; 7- Hieremys annandali; 8- Malayemys subtrijuga; 9- Mauremys leprosa; 10- Melanochelys trijuga; 11- Morenia ocellata; 12- Notochelys platynota; 13- Ortilia borneensis; 14- Pangshura tecta; 15- Rhinoclemmys melanosterna; 16- Rhinoclemmys pulcherrima; 17- Siebenrockiella crassicollis. (F) Pelomedusoides: 1- Pelomedusa subrufa; 2- Peltocephalus dumerilans; 3- Pelusios sinuatus; 4- Podocnemis expansa; 5- Podocnemis unifilis. (G) Testudinidae: 1- Aldabrachelys gigantea; 2- Chelonioidis carbonaria; 3- Chelonoidis nigra; 4- Gopherus agassizii; 5- Gopherus
flavomarginatus; 6- Gopherus polyphemus; 7- Malacochersus tornieri; 8- Testudo marginata. (H) Trionychia: 1- Amyda cartilaginea; 2- Apalone mutica; 3- Apalone spinifera; 4- Carettochelys insculpta; 5- Chitra indica; 6- Cyclanorbis senegalensis; 7- Cycloderma frenatum; 8- Lissemys punctata; 9- Pelodiscus sinensis; 10- Trionyx tringuis.
Figure S5. PC1 and PC2 axes of shape variation using the “combined landmark dataset” (N = 93), coloured by major clades of extant turtles as well as “stem turtles”. (A) Chelidae: 1- Chelodina oblonga; 2- Chelus fimbriatus; 3- Elseyia denata; 4- Hydromedusa tectifera; 5- Phrynops geoffroanus; 6- Phrynops hilarii. (B) Cheloniidae: 1- Argillochelys antiqua; 2- Caretta caretta; 3- Chelonia mydas; 4- Dermochelys coriacea; 5- Desmatochelys fowii; 6- Eochelone brabantica; 7- Eretmochelys imbricata; 8- Lepidochelys olivacea; 9- Lepidochelys kempi; 10- Natator depressus; 11- Pappigerus camperi; 12- Rhinochelys pulchriceps. (C) Chelydridae: 1- Chelydra serpentina; 2- Claudia angustatus; 3- Dermatemys mawii; 4- Kinosternon baurii; 5- Kinosternon subrubrum; 6- Macrochelys temminckii; 7- Staurotypus salvini; 8- Sternotherus minor; 9- Sternotherus odoratus. (D) Emydidae: 1- Chrysemys picta; 2- Clemmys guttata; 3- Deirochelys reticularia; 4- Emydidea blandingii; 5- Emys orbicularis; 6- Glyptemys insculpta; 7- Glyptemys muhlenbergii; 8- Graptemys geographica; 9- Malaclemys terrapin; 10- Platysternon megacephalum; 11- Pseudemys concinna; 12- Terrapene coahuila; 13- Terrapene ornata; 14- Trachemys scripta. (E) Geoemydidae: 1- Batagur baska; 2- Cuora amboinensis; 3- Cuora flavomarginata; 4- Cyclemys dentata; 5- Geoclemys hamiltonii; 6- Hoesemys grandis; 7- Hieremys annandali; 8- Malayemys subtrijuga; 9- Mauremys leprosa; 10- Melanochelys trijuga; 11- Morenia ocellata; 12- Notochelys platynota; 13- Orlitia borneensis; 14- Pangshura tecta; 15- Rhinoclemmys melanochelys; 16- Rhinoclemmys pulcherrima; 17- Siebenrockiella crassicollis. (F) Pelomedusoides: 1- Araiochelys hirayamai; 2- Bairdemyx hartsteini; 3- Galianemys emringeri; 4- Labrostocheles galkini; 5- Lapparentemys
vilavilensis; 6- Sahonachelys mailakavava; 7- Pelomedusa subrufa; 8- Peltocephalus dumerilianus; 9- Pelusios sinuatus; 10- Phosphatochelys tedfordi; 11- Podocnemis expansa; 12- Podocnemis unifilis; 13- Ummulisani rutgersensis. (G) Testudinidae: 1- Aldabrachelys gigantea; 2- Chelonoidis carbonaria; 3- Chelonoidis nigra; 4- Gopherus agassizii; 5- Gopherus flavomarginatus; 6- Gopherus polyphemus; 7- Malacochersus tornieri; 8- Testudo marginata. (H) Trionychia: 1- Amyda cartilaginea; 2- Apalone mutica; 3- Apalone spinifera; 4- Carettochelys insculpta; 5- Chitra indica; 6- Cyclanorbis senegalensis; 7- Cycloderma frenatum; 8- Lissemys punctata; 9- Pelodiscus sinensis; 10- Trionyx tringuis. (I) “stem turtles”: 1- Annemys sp.; 2- Eubaena cephalica; 3- Jurassichelon oleronensis; 4- Sandownia harrisi.
Figure S6. Phylogenetic tree of Pereira et al. (2017) pruned to match tips in our sample. On the left, tips included in the “full landmark dataset” analyses ($N = 71$); on the right, tips included in the “partial extant landmark dataset” analyses ($N = 76$).
Figure S7. Different phylogenetic frameworks used in phylogenetic flexible discriminant analyses. On the left, calibrated composite topology comprising extant and fossil taxa based on the consensus tree of Evers et al. (2019). On the right, composite calibrated topology based on the MKA model tree of Sterli et al. (2018). Numbers after tip labels simply denote the order they are listed in the tree.
- skull size (allometry)
- feeds in water
- suction-feeding
- durophagy
- neck retraction
- food hardness
- food evasiveness

Figure S8. Shape deformations of size-related, ecological and functional predictors of the turtle skull from the best D-PGLS model using the “full landmark dataset”. Landmark configurations describe the effects (from the top to the bottom row) of allometry, absence/presence of aquatic feeding, absence/presence of suction, absence/presence of durophagy, absence/presence of neck retraction, food hardness index, and food evasiveness index. Left, middle and right columns illustrate lateral right, dorsal and ventral views, respectively.
Figure S9. Shape deformation related to effect of “allometry” using the “full landmark dataset” (N = 71). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the predicted shapes with minimum skull size value (i.e., 1st quartile of skull size variation) and with maximum skull size value (i.e., 3rd quartile). Vectors indicate the direction of change from the minimum to the maximum value predicted shape.

Figure S10. Shape deformation related to effect of “aquatic feeding” using the “full landmark dataset” (N = 71). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the predicted shapes with minimum “aquatic feeding” value (i.e., 0, denoting “absence”) and with maximum “aquatic feeding” value (i.e., 1, denoting “presence”). Vectors indicate the direction of change from the minimum to the maximum value predicted shape.
Figure S11. Shape deformation related to effect of “suction” using the “full landmark dataset” (N = 71). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the predicted shapes with minimum “suction” value (i.e., 0, denoting “absence”) and with maximum “suction” value (i.e., 1, denoting “presence”). Vectors indicate the direction of change from the minimum to the maximum value predicted shape.

Figure S12. Shape deformation related to effect of “durophagy” using the “full landmark dataset” (N = 71). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the predicted shapes with minimum “durophagy” value (i.e., 0, denoting “absence”) and with maximum “durophagy” value (i.e., 1, denoting “presence”). Vectors indicate the direction of change from the minimum to the maximum value predicted shape.
Figure S13. Shape deformation related to effect of “neck retraction” using the “full landmark dataset” (N = 71). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the predicted shapes with maximum “neck retraction” value (i.e., 1, denoting “presence”) and with minimum “neck retraction” value (i.e., 0, denoting “absence”). Vectors indicate the direction of change from the maximum to the minimum value predicted shape.

Figure S14. Shape deformation related to effect of “food hardness index” using the “full landmark dataset” (N = 71). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the predicted shapes with minimum “food hardness index” value (i.e., 1st quartile of hardness index variation) and with maximum “food hardness index” value (i.e., 3rd quartile). Vectors indicate the direction of change from the minimum to the maximum value predicted shape.
Figure S15. Shape deformation related to effect of “food evasiveness index” using the “full landmark dataset” (N = 71). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the predicted shapes with minimum “food evasiveness index” value (i.e., 1st quartile of evasiveness index variation) and with maximum “food evasiveness index” value (i.e., 3rd quartile). Vectors indicate the direction of change from the minimum to the maximum value predicted shape.

Figure S16. Shape deformation related to effect of “neck ratio” using the smaller “full landmark dataset” (N = 60). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the predicted shapes with minimum “neck ratio” value (i.e., 1st quartile of relative neck length variation) and with maximum “neck ratio” value (i.e., 3rd quartile). Vectors indicate the direction of change from the minimum to the maximum value predicted shape.
Figure S17. Shape deformations of size-related, ecological and functional predictors of the turtle skull from the best D-PGLS model using the “partial extant landmark dataset”. Landmark configurations describe the effects (from the top to the bottom row) of allometry, absence/presence of suction, absence/presence of durophagy, and food evasiveness index. Left, middle and right columns illustrate lateral right, dorsal and ventral views, respectively.

Figure S18. Shape deformation related to effect of “allometry” using the “partial landmark dataset” (N = 76). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the
predicted shapes with minimum skull size value (i.e., 1st quartile of skull size variation) and with maximum skull size value (i.e., 3rd quartile). Vectors indicate the direction of change from the minimum to the maximum value predicted shape.

Figure S19. Shape deformation related to effect of “suction” using the “partial landmark dataset” (N = 76). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the predicted shapes with minimum “suction” value (i.e., 0, denoting “absence”) and with maximum “suction” value (i.e., 1, denoting “presence”). Vectors indicate the direction of change from the minimum to the maximum value predicted shape.

Figure S20. Shape deformation related to effect of “durophagy” using the “partial landmark dataset” (N = 76). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the predicted shapes with minimum “durophagy” value (i.e., 0, denoting “absence”) and with maximum “durophagy” value (i.e., 1, denoting “presence”). Vectors indicate the direction of change from the minimum to the maximum value predicted shape.
Figure S21. Shape deformation related to effect of “neck retraction” using the “partial landmark dataset” (N = 76). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the predicted shapes with maximum “neck retraction” value (i.e., 1, denoting “presence”) and with minimum “neck retraction” value (i.e., 0, denoting “absence”). Vectors indicate the direction of change from the maximum to the minimum value predicted shape.

Figure S22. Shape deformation related to effect of “food evasiveness index” using the “partial landmark dataset” (N = 76). Plots show (A) only the half right side (in right lateral view), (B) only “more dorsal” landmarks (in dorsal view) and (C) only “more ventral” landmarks (in ventral view) for clearer visualisation purposes. Redder points indicate larger Euclidean distance between the predicted shapes with minimum “suction” value (i.e., 0, denoting absence of evasive prey in the diet) and with maximum “suction” value (i.e., 1, denoting presence of only evasive prey in the diet). Vectors indicate the direction of change from the minimum to the maximum value predicted shape.
Figure S23. Size relationships and emargination aspects of turtle skulls. (A) pGLS regression (as in Figure 2 in the main text), with labelled points. (B) phylogenetic 2B-PLS between shape of turtle skull emarginations (as in Figure 2 in the main text), with labelled points. Numbers correspond to: 1- *Rhinoclemmys pulcherrima*; 2- *Rhinoclemmys melanosterna*; 3- *Melanochelys trijuga*; 4- *Mauremys leprosa*; 5- *Cuora flavomarginata*; 6- *Cuora amboinensis*; 7- *Heosemys grandis*; 8- *Notochelys platynota*; 9- *Malayemys subtrijuga*; 10- *Orlitia borneensis*; 11- *Pangshura tecta*; 12- *Bataagur baska*; 13- *Morenia ocellata*; 14- *Siebenrockiella crassicollis*; 15- *Malacochersus tornieri*; 16- *Testudo marginata*; 17- *Chelonoidis nigra*; 18- *Chelonoidis carbonaria*; 19- *Aldabrachelys gigantea*; 20- *Gopherus flavomarginatus*; 21- *Gopherus polyphemus*; 22- *Gopherus agassizii*; 23- *Platysternon megacephalum*; 24- *Glyptemys insculpta*; 25- *Glyptemys muhlenbergii*; 26- *Emys orbicularis*; 27- *Emydoidea blandingii*; 28- *Terrapene ornata*; 29- *Terrapene coahuila*; 30- *Clemmys guttata*; 31- *Deirochelys reticularia*; 32- *Trachemys scripta*; 33- *Graptemys geographica*; 34- *Malaclemys terrapin*; 35- *Chrysemys picta*; 36- *Pseudemys concinna*; 37- *Dermochelys coriacea*; 38- *Caretta caretta*; 39- *Lepidochelys olivacea*; 40- *Lepidochelys kempi*; 41- *Eretmochelys imbricata*; 42- *Chelonia mydas*; 43- *Natator depressus*; 44- *Macrochelys temminckii*; 45- *Chelydra serpentina*; 46- * Dermatemys mawii*; 47- *Staurotypus salvini*; 48- *Claudius angustatus*; 49- *Sternotherus minor*; 50- *Sternotherus odoratus*; 51- *Kinosternon subrubrum*; 52- *Kinosternon baurii*; 53- *Carettochelys insculpta*; 54- *Chitra indica*; 55- *Apalone mutica*; 56- *Apalone spinifera*; 57- *Amphibolichnus aspergillum*; 58- *Pelodiscus sinensis*; 59- *Cycloderma frenatum*; 60- *Cyclanorbis senegalensis*; 61- *Pelomedusa subrufa*; 62- *Pelusios sinuatus*; 63- *Peltochelys dumerilius*; 64- *Podocnemis expansa*; 65- *Podocnemis unifilis*; 66- *Elseya dentata*; 67- *Chelodina oblonga*; 68- *Hydromedusa tectifera*; 69- *Chelus fimbriatus*; 70- *Phrynops hilarii*; 71- *Phrynops geoffroanus*.
Figure S24. Relationships of skull shape and predicted vs. observed ecology in turtles. (A–D) Multivariate morphospaces of the regression scores for selected variables taken from the best D-PGLS models using the “full landmark dataset” (see main text). Numbers correspond to: 1- Rhinoclemmys pulcherrima; 2- Rhinoclemmys melanosterna; 3- Melanochelys trijuga; 4- Mauremys leprosa; 5- Cuora flavomarginata; 6- Cuora amboinensis; 7- Heosemys grandis; 8- Notochelys platynota; 9- Malayemys subtrijuga; 10- Orlitia borneensis; 11- Pangshura tecta; 12- Batagur baska; 13- Morenia ocellata; 14- Siebenrockiella crassicollis; 15- Malacocephalus tornieri; 16- Testudo marginata; 17- Chelonoidis nigra; 18- Chelonoidis carbonaria; 19- Aldabrachelys gigantea; 20- Gopherus flavomarginatus; 21- Gopherus polyphemus; 22- Gopherus agassizii; 23- Platysternon megacephalum; 24- Glyptemys insculpta; 25- Glyptemys muhlenbergii; 26- Emys orbicularis; 27- Emydidae blandingii; 28- Terrapene ornata; 29- Terrapene coahuila; 30- Clemmys guttata; 31- Deirochelys reticularia; 32- Trachemys scripta; 33- Graptemys geographica; 34- Malaclemys terrapin; 35- Chrysemys picta; 36- Pseudemys concinna; 37- Dermochelys coriacea; 38- Caretta caretta; 39- Lepidochelys olivacea; 40- Lepidochelys kempi; 41- Eretmochelys imbricata; 42- Chelonia mydas; 43- Natator depressus; 44- Macrochelys temminckii; 45- Chelydra serpentina; 46- Dermatemys mawii; 47- Staurotypus salvinii; 48- Cladius angustatus; 49- Sternotherus minor; 50- Sternotherus odoratus; 51- Kinosternon subrubrum; 52- Kinosternon baurii; 53- Caretochelys insculpta; 54- Chitra indica; 55- Apalone mutica; 56- Apalone spinifera; 57- Amyda cartilaginea; 58- Pelodiscus sinensis; 59- Cycloderma frenatum; 60- Cyclanorbis senegalensis; 61- Pelomedusa subrufa; 62- Pelusios sinuatus; 63- Peltoccephalus dumerilianus; 64- Podocnemis expansa; 65- Podocnemis unifilis; 66- Elseya dentata; 67- Chelodina oblonga; 68- Hydromedusa tectifera; 69- Chelus fimbriatus; 70- Phrynops hilarii; 71- Phrynops geoffroanus.
Figure S25. Multivariate regression scores of (A) suction, (B) durophagy, (C) evasiveness, and (D) neck retraction traits derived from the best D-PGLS model using the “partial extant landmark dataset” \((N = 76)\) plotted against respective posterior probabilities of exhibiting it (for “suction”, “durophagy” and “neck retraction”) and against their evasiveness indices. Numbers correspond to: 1- Eubaena cephalica; 2- Annemys sp.; 3- Sandownia harrisi; 4- Jurassichelon oleronensis; 5- Hydromedusa tectifera; 6- Chelus fimbriatus; 7- Phrynops hilarii; 8- Phrynops geoffroanus; 9- Chelodina oblonga; 10- Elseya dentata; 11- Pelomedusa subrufa; 12- Pelusios sinuatus; 13- Sahonachelys mailakavava; 14- Galianemys emringeri; 15- Araiochelys hirayamai; 16- Labrostochelys galkini; 17- Phosphatochelys tedfordi; 18- Ummulisani ratgersensis; 19- Lapparentemys vilavilensis; 20- Podocnemis unifilis; 21- Podocnemis expansa; 22- Pelocephalus dumerilianus; 23- Bairdmys hartsteini; 24- Carettochelys insculpta; 25- Lissemys punctata; 26- Cyclanorbis senegalensis; 27- Cycloderma frenatum; 28- Trionyx triunguis; 29- Chitra indica; 30- Apalone spinifera; 31- Apalone mutica; 32- Pelodiscus sinensis; 33- Amyda cartilaginea; 34- Rhinoclemmys pulchriceps; 35- Desmatochelys lowii; 36- Dermochelys coriacea; 37- Chelonia mydas; 38- Natator depressus; 39- Eretmochelys imbricata; 40- Caretta caretta; 41- Lepidochelys kempii; 42- Lepidochelys olivacea; 43- Eochelone brabantica; 44- Puppigerus camperi; 45- Argillochelys antiqua; 46- Chelydra serpentina; 47- Macrochelys temminckii; 48- Dermatemys mawii; 49- Claudius angustatus; 50- Staurotypus salvini; 51- Sternotherus minor; 52- Sternotherus odoratus; 53- Kinosternon baurii; 54- Kinosternon subrubrum; 55- Platysternon megacephalum; 56- Glyptemys insculpta; 57- Glyptemys muhlenbergii; 58- Emydidae blandingii; 59- Emys orbicularis; 60- Clemmys guttata; 61- Terrapene coahuila; 62- Terrapene ornata; 63- Deirochelys reticularia; 64- Chrysemys picta; 65- Pseudemys concinna; 66- Trachemys scripta; 67- Malaclemys terrapin; 68- Graptemys geographica; 69- Rhinoclemmys pulcherrima; 70- Rhinoclemmys melanosterna; 71- Siebenrockiella crassicollis; 72- Malayemys subtrijuga; 73- Orlitia borneensis; 74- Morenia
ocellata; 75- Geoclemys hamiltonii; 76- Pangshura tecta; 77- Batagur baska; 78- Melanochelys trijuga; 79- Cyclemys dentata; 80- Notochelys platynota; 81- Hieremys annandali; 82- Heosemys grandis; 83- Mauremys leprosa; 84- Cuora amboinensis; 85- Cuora flavomarginata; 86- Gopherus polyphemus; 87- Gopherus agassizii; 88- Gopherus flavomarginatus; 89- Malacochersus tornieri; 90- Testudo marginata; 91- Aldabrachelys gigantea; 92- Chelonia carbonaria; 93- Chelonia nigra.
Figure S26. Correlation between the posterior probabilities (PP) of fossils to present ecological and functional traits, based on the two different topologies, calculated using pFDA. The dashed red lines indicate threshold of 0.66 indicative of “likely presence” (e.g. Chapelle et al. 2020), and “cor” represents Pearson’s coefficient of correlation. Numbers correspond to the following taxa: 1, *Annemys* sp.; 2, *Araiochelys hirayamai*; 3, *Argillochelys antiqua*; 4, *Bairdemys hartsteini*; 5, *Desmatochelys lowii*; 6, *Eochelone brabantica*; 7, *Eubaena cephalica*; 8, *Galianemys emringeri*; 9, *Jurassichelon oleronensis*; 10, *Labrostochelys galkini*; 11, *Lapparentemys vilavilensis*; 12, *Sahonachelys mailakavava*; 13, *Phosphatochelys tedfordi*; 14, *Puppigerus camperi*; 15, *Rhinochelys pulchriceps*; 16, *Sandownia harrisi*; 17, *Ummulisani rutgersensis*.

Figure S27. Variation of shape (x-axis) explained by pairs of potentially correlated variables in each procD.pglsl model (y-axis) using the “full landmark dataset” (N = 71). (A) R² of the “aquatic feeding” variable in each model, when included without (grey) and with (purple) the “suction” variable. (B) R² of the “suction” variable in each model, when included without (grey) and with (purple) the “aquatic feeding” variable. No bar indicates that the variable was not included in the model. Arrows indicate the best model discussed in the Main Text.
Figure S28. Variation of shape (x-axis) explained by pairs of potentially correlated variables in each procD.pglS model (y-axis) using the “full landmark dataset” (N = 71). (A) R² of the “durophagy” variable in each model, when included without (grey) and with (purple) the “food hardness” variable. (B) R² of the “food hardness” variable in each model, when included without (grey) and with (purple) the “durophagy” variable. No bar indicates that the variable was not included in the model. Arrows indicate the best model discussed in the Main Text. (C) Distribution of the “food hardness index” variable among extant turtles, plotted against the absence (white) or presence (black) of “durophagy”. Numbers correspond to: 1- *Rhinoclemmys pulcherrima*; 2- *Rhinoclemmys melanosterna*; 3- *Melanochelys trijuga*; 4- *Mauremys leprosa*; 5- *Cuora flavomarginata*; 6- *Cuora amboinensis*; 7- *Heosemys grandis*; 8- *Notochelys platynota*; 9- *Malayemys subtrijuga*; 10- *Orlitia borneensis*; 11- *Pangshura tecta*; 12- *Batagur baska*; 13- *Morenia ocellata*; 14- *Siebenrockiella crassicollis*; 15- *Malacochersus torquatus*; 16- *Testudo marginata*; 17- *Chelonia mydas*; 18- *Lepidochelys kempii*; 19- *Malaclemys terrapin*; 20- *Gopherus flavomarginatus*; 21- *Gopherus polyphemus*; 22- *Gopherus agassizii*; 23- *Platysternon megacephalum*; 24- *Glyptemys insculpta*; 25- *Glyptemys muhlenbergii*; 26- *Emys orbicularis*; 27- *Emydoidea blandingii*; 28- *Terrapene ornata*; 29- *Terrapene coahuila*; 30- *Clemmys guttata*; 31- *Deirochelys reticularia*; 32- *Trachemys scripta*; 33- *Graptemys geographica*; 34- *Chrysemys picta*; 35- *Pseudemys concinna*; 36- *Dermochelys coriacea*; 37- *Caretta caretta*; 38- *Eretmochelys imbricata*; 39- *Chelonoidis nigra*; 40- *Lepidochelys olivacea*; 41- *Chelonia mydas*; 42- *Natator depressus*; 44-...
Macrochelys temminckii; 45- Chelydra serpentina; 46- Dermatemys mawii; 47- Staurotypus salvinii; 48- Claudius angustatus; 49- Sternotherus minor; 50- Sternotherus odoratus; 51- Kinosternon subrubrum; 52- Kinosternon baurii; 53- Carettochelys insculpta; 54- Chitra indica; 55- Apalone mutica; 56- Apalone spinifera; 57- Amyda cartilaginea; 58- Pelodiscus sinensis; 59- Cycloderma frenatum; 60- Cyclanorbis senegalensis; 61- Pelomedusa subrufa; 62- Pelusios sinuatus; 63- Peltochelys dumeriliana; 64- Podocnemis expansa; 65- Podocnemis unifilis; 66- Elseya dentata; 67- Chelodina oblonga; 68- Hydromedusa tectifera; 69- Chelus fimbriatus; 70- Phrynops hilarii; 71- Phrynops geoffroanus.

Figure S29. Variation of shape (x-axis) explained by pairs of potentially correlated variables in each procD.pgl model (y-axis) using the “full landmark dataset” (N = 71). (A) R^2 of the “suction” variable in each model, when included without (grey) and with (purple) the “food evasiveness” variable. (B) R^2 of the “food evasiveness” variable in each model, when included without (grey) and with (purple) the “suction” variable. No bar indicates that the variable was not included in the model. Arrows indicate the best model discussed in the Main Text. (C) Distribution of the “food evasiveness index” variable among extant turtles, plotted against the absence (white) or presence (black) of “suction”. Numbers correspond to: 1- Rhinoclemmys pulcherrima; 2- Rhinoclemmys melanosterna; 3- Melanochelys trijuga; 4- Mauremys leprosa.
5- Cuora flavomarginata; 6- Cuora amboinensis; 7- Heosemys grandis; 8- Notochelys platynota; 9- Malayemys subtrijuga; 10- Orlitia borneensis; 11- Pangshura tecta; 12- Batagur baska; 13- Morenia ocellata; 14- Siebenrockiella crassicollis; 15- Malacochersus tornieri; 16- Testudo marginata; 17- Chelonoidis nigra; 18- Chelonoidis carbonaria; 19- Aldabrachelys gigantea; 20- Gopherus flavomarginatus; 21- Gopherus polyphemus; 22- Gopherus agassizii; 23- Platysternon megacephalum; 24- Glyptemys insculpta; 25- Glyptemys muhlenbergii; 26- Emys orbicularis; 27- Emydoidea blandingii; 28- Terrapene ornata; 29- Terrapene coahuila; 30- Clemmys guttata; 31- Deirochelys reticularia; 32- Trachemys scripta; 33- Graptemys geographica; 34- Malaclemys terrapin; 35- Chrysemys picta; 36- Pseudemys concinna; 37- Dermochelys coriacea; 38- Caretta caretta; 39- Lepidochelys olivacea; 40- Lepidochelys kempii; 41- Eretmochelys imbricata; 42- Chelonia mydas; 43- Natator depressus; 44- Macrochelys temminckii; 45- Chelydra serpentina; 46- Dermatemys mawii; 47- Staurotypus salvinii; 48- Clausdius angustatus; 49- Sternotherus minor; 50- Sternotherus odoratus; 51- Kinosternon subrubrum; 52- Kinosternon baurii; 53- Carettochelys insculpta; 54- Chitra indica; 55- Apalone mutica; 56- Apalone spinifera; 57- Amyda cartilaginea; 58- Pelodiscus sinensis; 59- Cycloderma frenatum; 60- Cyclanorbis senegalensis; 61- Pelomedusa subrufa; 62- Pelusios sinuatus; 63- Peltodermus dumerilianus; 64- Podocnemis expansa; 65- Podocnemis unifilis; 66- Elseya dentata; 67- Chelodina oblonga; 68- Hydromedusa tectifera; 69- Chelus fimbriatus; 70- Phrynops hilarii; 71- Phrynops geoffroanus.

Figure S30. Variation of shape (x-axis) explained by pairs of potentially correlated variables in each procD.pgl model (y-axis) using the “partial landmark dataset” (N = 76). (A) R² of the “aquatic feeding” variable in each model, when included without (grey) and with (purple) the “suction” variable. (B) R² of the “suction” variable in each model, when included without (grey) and with (purple) the “aquatic feeding” variable. No bar indicates that the variable was not included in the model. Arrows indicate the best model discussed in the Main Text.
Figure S31. Variation of shape (x-axis) explained by pairs of potentially correlated variables in each procD.pglS model (y-axis) using the “partial landmark dataset” (N = 76). (A) R² of the “durophagy” variable in each model, when included without (grey) and with (purple) the “food hardness” variable. (B) R² of the “food hardness” variable in each model, when included without (grey) and with (purple) the “durophagy” variable. No bar indicates that the variable was not included in the model. Arrows indicate the best model discussed in the Main Text. (C) Distribution of the “food hardness index” variable among extant turtles, plotted against the absence (white) or presence (black) of “durophagy”. Numbers correspond to: 1- *Rhinoclemmys pulcherrima*, 2- *Rhinoclemmys melanosterna*, 3- *Melanochelys trijuga*, 4- *Mauremys leprosa*, 5- *Cuora flavomarginata*, 6- *Cuora amboinensis*, 7- *Cyclemys dentata*, 8- *Hieremys annandalii*, 9- *Heosemys grandis*, 10- *Notochelys platynota*, 11- *Malayemys subtrijuga*, 12- *Orlitia borneensis*, 13- *Geoclemys hamiltonii*, 14- *Pangshura tecta*, 15- *Batagur baska*, 16- *Morenia ocellata*, 17- *Siebenrockiella crassicollis*, 18- *Malacochersus tornieri*, 19- *Testudo marginata*, 20- *Chelonoidis nigra*, 21- *Chelonoidis carbonaria*, 22- *Aladabrachelys gigantea*, 23- *Gopherus flavomarginatus*, 24- *Gopherus polyphemus*, 25- *Gopherus agassizii*, 26- *Platysternon megacephalum*, 27- *Glyptemys insculpta*, 28- *Glyptemys muhlenbergii*, 29- *Emys orbicularis*, 30- *Emydoidea blandingii*, 31- *Terrapene ornata*, 32- *Terrapene coahuila*, 33- *Clemmys guttata*, 34- *Deirochelys reticularia*, 35- *Trachemys scripta*, 36- *Graptemys geographica*, 37- *Malaclemys terrapin*, 38- *Chrysemys picta*, 39- *Pseudemys concinna*, 40- *Dermochelys*
Figure S32. Variation of shape (x-axis) explained by pairs of potentially correlated variables in each procD.pgl model (y-axis) using the “partial landmark dataset” (N = 76). (A) R^2 of the “suction” variable in each model, when included without (grey) and with (purple) the “food evasiveness” variable. (B) R^2 of the “food evasiveness” variable in each model, when included without (grey) and with (purple) the “suction” variable. No bar indicates that the variable was not included in the model. Arrows indicate the best model discussed in the Main Text. (C) Distribution of the “food evasiveness index” variable among extant turtles, plotted against the
absence (white) or presence (black) of “suction”. Numbers correspond to: 1- *Rhinoclemmys pulcherrima*, 2- *Rhinoclemmys melanosterna*, 3- *Melanochelys trijuga*, 4- *Mauremys leprosa*, 5- *Cuora flavomarginata*, 6- *Cuora amboinensis*, 7- *Cyclemys dentata*, 8- *Hieremys annandallii*, 9- *Heosemys grandis*, 10- *Notochelys platynota*, 11- *Malayemys subtrijuga*, 12- *Orlitia borneensis*, 13- *Geoclemys hamiltonii*, 14- *Pangshura baska*, 15- *Morenia ocellata*, 17- *Siebenrockiella crassicollis*, 18- *Malacochersus tornieri*, 19- *Testudo marginata*, 20- *Chelonoidis nigra*, 21- *Chelonoidis carbonaria*, 22- *Aldabrachelys gigantea*, 23- *Gopherus flavomarginatus*, 24- *Gopherus polyphemus*, 25- *Gopherus agassizii*, 26- *Platysternon megacephalum*, 27- *Glyptemys insculpta*, 28- *Glyptemys muhlenbergii*, 29- *Emys orbicularis*, 30- *Emydoidea blandingii*, 31- *Terrapene ornata*, 32- *Terrapene coahuila*, 33- *Clemmys guttata*, 34- *Deirochelys reticularia*, 35- *Trachemys scripta*, 36- *Graptemys geographica*, 37- *Malaclemys terrapin*, 38- *Chrysemys picta*, 39- *Pseudemys concinna*, 40- *Dermochelys coriacea*, 41- *Caretta caretta*, 42- *Lepidochelys olivacea*, 43- *Lepidochelys kempii*, 44- *Eretmochelys imbricata*, 45- *Chelonia mydas*, 46- *Natator depressus*, 47- *Macrochelys temminckii*, 48- *Chelydra serpentina*, 49- *Dermatemys mawii*, 50- *Staurotypus salvini*, 51- *Claudius angustatus*, 52- *Sternotherus minor*, 53- *Sternotherus odoratus*, 54- *Kinosternon subrubrum*, 55- *Kinosternon baurii*, 56- *Carettochelys insculpta*, 57- *Trionyx triunguis*, 58- *Chitra indica*, 59- *Apalone mutica*, 60- *Apalone spinifera*, 61- *Amyda cartilaginea*, 62- *Pelodiscus sinensis*, 63- *Cycloderma frenatum*, 64- *Cyclanorbis senegalensis*, 65- *Lissemys punctata*, 66- *Pelomedusa subrufa*, 67- *Pelusios sinuatus*, 68- *Peletocephalus dumerilianus*, 69- *Podocnemis expansa*, 70- *Podocnemis unifilis*, 71- *Elseya dentata*, 72- *Chelodina oblonga*, 73- *Hydromedusa tectifera*, 74- *Chelus fimbriatus*, 75- *Phrynops hilarii*, 76- *Phrynops geoffroanus*.
Tables S1 to S11

Table S1. Relative neck length data, extended from previous dataset of Joyce et al. (2021).

Abbreviations: CAS, California Academy of Sciences, San Francisco, USA; INPA, Instituto Nacional de Pesquisas da Amazônia, Belém, Brazil; LIRP, Laboratório de Ictiologia de Ribeirão Preto, Ribeirão Preto, Brazil; MVZ, Museum of Vertebrate Zoology, Berkeley, USA; NMNS, Natural Museum of Natural Science, Taichung City, Taiwan; UF, University of Florida, Florida Museum of Natural History, Gainesville, USA; UMMZ, University of Michigan Museum of Zoolog, Ann Arbor, USA. See Joyce et al. (2021) for the other collection acronyms.

Taxon	Specimen	Neck length [mm]	Carapace length [mm]	Ratio	Source
Aldabrachelys gigantea	NA	NA	NA	NA	NA
Amyda cartilaginea	USNM 22522	319.5	319	1	Joyce et al. 2021
Apalone matica	USNM 313562	126.7	141	0.9	Joyce et al. 2021
Apalone spinifera	YPM R 190893	226.4	251	0.9	Joyce et al. 2021
Batagur baska	USNM 226381	229	580	0.39	Joyce et al. 2021
Caretta caretta	AMNH 129869	189.7	585.3	0.32	Joyce et al. 2021
Caretochelys insculpta	CRI 14	193.1	487	0.4	Joyce et al. 2021
Chelodina oblonga	CRI 4632	202.8	263	0.77	Joyce et al. 2021
Chelonia mydas	AMNH 5912	237	694	0.34	Joyce et al. 2021
Chelonoidis carbonaria	UF H52533	119.5	230.4	0.519	Morphosource
Chelonia nigra	MNHN 1883-230	468	1300	0.36	Vlachos&Rabi 2018; specimen photos
Chelus fimbriatus	AMNH 70638	258.4	441	0.59	Joyce et al. 2021
Chelydra serpentina	UFR VP1	244	650	0.38	Joyce et al. 2021
Chitra indica	UMMZ 227967	98.8623	100.2791	0.986	Morphosource
Chrysemys picta	AMNH 75250	65.6	143	0.46	Joyce et al. 2021
Claudius angustatus	MVZ Herps 164771	68.9742	88.89	0.776	Morphosource
Clemmys guttata	USNM 220858	48.9	107	0.46	Joyce et al. 2021
Cuora amboinensis	USNM 241427	61.3	120	0.51	Joyce et al. 2021
Cuora flavomarginata	MVZ Herps 23932	104.6254	187.0974	0.559	Morphosource
Cyclanorbis senegalensis	NA	NA	NA	NA	NA
Cyclemys dentata	CAS Herps 248369	89.2747	190.8185	0.468	Morphosource
Cycloderma frenatum	AMNH 110180	354.2	377	0.94	Joyce et al. 2021
Deirochelys reticularia	USNM 80965	166.2	216	0.77	Joyce et al. 2021
Dermatemys mawii	SMF 59462	160.7	351	0.46	Joyce et al. 2021
Dermochelys coriacea	NMNS 003619-003772	310	1521	0.203	Chang et al. 2003
Elseya dentata	QM J59280	64.9	244	0.27	Joyce et al. 2021
EmYPDoeida_blandingii	USNM 220869	135	215	0.63	Joyce et al. 2021
Emys orbicularis	MNHN Pal unnumbered	88.6	152	0.58	Joyce et al. 2021
Eretmochelys imbricata	NA	NA	NA	NA	NA
Geoclemys hamiltonii	CRI 487	134.2	262	0.51	Joyce et al. 2021
Glyptemys insculpta	YPM VZ5947	72.7559	136.088	0.535	Morphosource
Glyptemys mahunbergii	NA	NA	NA	NA	NA
Species	Catalogue Numbers	Longitude	Latitude	Accuracy	Source
-------------------------	-------------------	-----------	----------	----------	--------
Gopherus agassizii	USNM 222094	129.3	275	0.47	Joyce et al. 2021
Gopherus flavomarginatus	USNM 51357	166.1	389	0.43	Joyce et al. 2021
Gopherus polyphemus	AMNH 73053	104.5	273	0.38	Specimen photos
Graptemys geographica	FMNH 22080	83	199	0.42	Joyce et al. 2021
Heosemys grandis	UMMZ 227766	40.8362	89.9306	0.454	Morphosource
Hieremys annandali	UCMVZ 241498	240	114.7	0.48	Joyce et al. 2021
Hydromedusa tectifera	AMNH 133629	102.5	157	0.65	Joyce et al. 2021
Kinosternon baurii	USNM 167527	56.8	99.5	0.57	Joyce et al. 2021
Kinosternon subrubrum	MVZ Herps 137439	55.2982	78.7032	0.703	Morphosource
Lepidochelys kempii	NA	NA	NA	NA	NA
Lepidochelys olivacea	QM J85545	162.5	476	0.34	Joyce et al. 2021
Lissemys punctata	NHMUK 172.2066; USNM 293490; CRI 2819; AMNH 108907	131.27	174.12	0.75	Joyce et al. 2021
Macrochelys temminckii	CRI 6880	261	488	0.53	Joyce et al. 2021
Malaclemys terrapin	NA	NA	NA	NA	NA
Malacochersus tornieri	USNM 72539	56.6	145	0.39	Joyce et al. 2021
Malayemys subtrijuga	NHMUK 1903.4.13.1	73.937	140.278	0.527	Morphosource
Mauremys leprosa	MVZ Herps 237439	85.6486	172.2602	0.497	Morphosource
Melanochelys trijuga	YPM VZ014519	40.6291	83.5291	0.486	Morphosource
Morenia ocellata	NHMUK 91.11.26.1-5	75.7585	185.7099	0.408	Morphosource
Natator depressus	QM J14463	231.3	794	0.29	Joyce et al. 2021
Notochelys platynota	NA	NA	NA	NA	NA
Orilia borneensis	NA	NA	NA	NA	NA
Pangshura tecta	UF H81010	42.8562	80.55	0.532	Morphosource
Pelodiscus sinensis	USNM 539335	90.3	109	0.83	Joyce et al. 2021
Pelomedusa subrufa	AMNH 131262	69.6	143	0.49	Joyce et al. 2021
Peltocephalus dumerilianus	INPA-H 12940	140.9	388	0.36	Specimen photos
Pelusios sinuatus	UMZC R18170	53.0563	113.6439	0.467	Morphosource
Phrynops geoffroanus	AMNH 79048	174.4	372	0.47	Joyce et al. 2021
Phrynops hilarii	NA	NA	NA	NA	NA
Platysternon megacephalus	NCSM 76497	49.71	106	0.47	Joyce et al. 2021
Podocnemis expansa	LIRP unnumbered	261	684	0.38	Specimen photos
Podocnemis unifilis	USNM 313861; USNM 222470; CRI 7527; AMNH 6823	153	463.75	0.318	Joyce et al. 2021
Pseudemys concinna	NA	NA	NA	NA	NA
Rhinoclemmys melanosterna	MVZ Herps 79099	84.9585	178.9594	0.475	Morphosource
Rhinoclemmys pulcherrima	MVZ Herps 79099	84.9585	178.9594	0.475	Morphosource
Siebenrockiella crassicollis	YPM VZ014452	47.7359	97.5836	0.489	Morphosource
Species	Museum Accession	X	Y	X/Y	Source
-------------------------	------------------	--------	--------	-------	------------------
Staurotypus salvinii	UF H33255	133.0374	257.1466	0.517	Morphosource
Sternotherus minor	USBM 167534	59.1	90	0.66	Joyce et al. 2021
Sternotherus odoratus	AMNH 69040	66.1	109	0.627	Joyce et al. 2021
Terrapene coahuila	OUMNH 8795	60.84	115.1	0.530	Joyce et al. 2021
Terrapene ornata	MVZ Herps 250709	71.2382	130.0525	0.548	Morphosource
Testudo marginata	MVZ Herps 247484	96.8553	239.1132	0.405	Morphosource
Trachemys scripta	UF H49423	102.3495	206.6832	0.495	Morphosource
Trionyx triunguis	UF H65522	89.5447	91.2998	0.981	Morphosource
Table S2. Full results of phylogenetic regressions (pGLS) of turtle skull size against size-related, ecological and functional traits as explanatory variables. AICc-best model shown on top. Abbreviations: Coef., estimated coefficient; SE, standard error; t-value, t statistics value; P-value, P statistics value, in which numbers in **bold** denote significance at an α < 0.05 level; P-value (FDR), P statistics value corrected using “false discovery rate (FDR)” method; AAICc, scores of Akaike Information Criterion for small samples; AICc, relative difference to AICc score of best model; AICc w, relative importance of the model; R², coefficient of determination of the model, calculated as in Ives (2019); λ, phylogenetic signal (Pagel’s lambda) of residuals estimated as part of the model-fitting process. N = 71 in all analyses.

Model	λ	R²	AICc	ΔAICc	AAICc	Variable	Coef.	SE	t-value	P-value	P-value (FDR)
skull size ~ carapace size + neck retraction	0.132	0.806	-103.307	0	0.354	(Intercept)	0.409	0.165	2.483	0.015	0.015
skull size ~ carapace size + neck retraction + open swimming	0.137	0.81	-101.911	1.396	0.176	(Intercept)	0.416	0.165	2.518	0.014	0.018
skull size ~ carapace size + marine + open swimming + neck retraction	0.103	0.813	-101.31	1.997	0.131	(Intercept)	0.431	0.163	2.64	0.01	0.017
skull size ~ carapace size + neck retraction + hardness	0.153	0.807	-101.026	2.281	0.113	(Intercept)	0.434	0.177	2.444	0.017	0.022
skull size ~ carapace size + neck retraction + durophagous	0.129	0.806	-100.93	2.377	0.108	(Intercept)	0.405	0.173	2.379	0.02	0.026
skull size ~ carapace size + neck retraction + marine	0.132	0.806	-100.918	2.389	0.107	(Intercept)	0.409	0.166	2.463	0.015	0.021
skull size ~ carapace size + marine	0.163	0.779	-93.531	9.776	0.003	(Intercept)	0.173	0.158	1.091	0.278	0.278
skull size ~ carapace size	0.491	0.773	-89.615	13.692	0	(Intercept)	0.185	0.054	3.417	0.001	0.007
skull size ~ neck retraction	0.825	0.599	-43.968	59.339	0	(Intercept)	2.087	0.121	17.192	0.000	0.000
skull size ~ open swimming	0.819	0.596	-42.364	60.943	0	(Intercept)	1.735	0.094	18.33	0.000	0.000
skull size ~ marine	0.832	0.593	-41.936	61.371	0	(Intercept)	1.768	0.095	18.532	0.000	0.000
skull size ~ herbivory	0.907	0.581	-35.336	67.971	0	(Intercept)	1.777	0.112	15.861	0.000	0.000
skull size ~ suction	0.92	0.572	-34.248	69.059	0	(Intercept)	1.755	0.118	14.864	0.000	0.000
skull size ~ hardness	0.921	0.574	-32.836	70.471	0	(Intercept)	1.836	0.124	14.744	0.000	0.000
skull size ~ durophagous	0.917	0.578	-32.831	70.476	0	(Intercept)	1.8	0.115	15.611	0.000	0.000
skull size ~ terrestrial feeding	0.915	0.578	-32.679	70.628	0	(Intercept)	1.799	0.115	15.632	0.000	0.000
skull size ~ evasiveness	0.911	0.577	-32.678	70.629	0	(Intercept)	1.828	0.121	15.072	0.000	0.000
skull size ~ aquatic feeding	0.914	0.577	-32.125	71.182	0	(Intercept)	1.818	0.145	12.506	0.000	0.000
skull size ~ carnivory	0.916	0.577	-32.069	71.238	0	(Intercept)	1.798	0.118	15.147	0.000	0.000
Table S3. Full results of phylogenetic regressions (pGLS) of turtle skull size against size-related, ecological, and functional traits, including relative neck length (“neck ratio”) as an additional explanatory variable. Abbreviations: Coef., estimated coefficient; SE, standard error; \(t\)-value, \(t\) statistics value; P-value, P statistics value, in which numbers in bold denote significance at an \(\alpha < 0.05 \) level; P-value (FDR), P statistics value corrected using “false discovery rate (FDR)” method; AIC, scores of Akaike Information Criterion; \(\Delta \text{AIC} \), relative difference to AIC score of best model; \(R^2 \), coefficient of determination of the model, calculated as in Ives (2019); \(\lambda \), phylogenetic signal (Pagel’s lambda) of residuals estimated as part of the model-fitting process. \(N = 60 \) in all analyses.

Model	\(\lambda \)	\(R^2 \)	AIC	\(\Delta \text{AIC} \)	Variable	Coef.	SE	\(t\)-value	P-value	P-value (FDR)
skull size ~ carapace size	0.856	0.814	-82.418	15.998	(Intercept)	0.138	0.191	0.720	0.475	0.475
					carapace size	0.614	0.067	9.192	0.000	0.000
skull size ~ aquatic feeding	0.631	-32.35	66.066		(Intercept)	1.764	0.146	12.052	0.000	0.000
					aquatic feeding	0.036	0.080	0.447	0.657	0.657
skull size ~ terrestrial feeding	0.62	-32.234	66.182		(Intercept)	1.800	0.124	14.483	0.000	0.000
					terrestrial feeding	-0.018	0.061	-0.294	0.770	0.770
skull size ~ suction	0.611	-35.151	63.265		(Intercept)	1.755	0.124	14.165	0.000	0.000
					suction	0.103	0.060	1.726	0.090	0.090
skull size ~ durophagous	0.622	-32.684	65.732		(Intercept)	1.803	0.124	14.552	0.000	0.000
					durophagous	-0.038	0.052	-0.724	0.472	0.472
skull size ~ herbivory	0.618	-32.946	65.47		(Intercept)	1.788	0.124	14.410	0.000	0.000
					herbivory	0.056	0.063	0.883	0.381	0.381
skull size ~ carnivory	0.618	-32.678	65.738		(Intercept)	1.817	0.126	14.389	0.000	0.000
					carnivory	-0.034	0.047	-0.720	0.474	0.474
skull size ~ marine	0.91	0.64	-43.325	55.091	(Intercept)	1.769	0.097	18.232	0.000	0.000
					marine	0.572	0.152	3.761	0.090	0.090
skull size ~ neck retraction	0.939	0.65	-44.867	53.549	(Intercept)	2.084	0.124	16.754	0.000	0.000
					neck retraction	-0.335	0.086	-3.875	0.000	0.000
skull size ~ open swimming	0.906	0.64	-43.335	55.081	(Intercept)	1.730	0.098	17.704	0.000	0.000
					open swimming	0.486	0.129	3.782	0.000	0.000
skull size ~ hardness	0.618	-32.301	66.115		(Intercept)	1.817	0.133	13.687	0.000	0.000
					hardness	-0.033	0.085	-0.389	0.698	0.698
skull size ~ evasiveness	0.62	-32.146	66.27		(Intercept)	1.801	0.131	13.793	0.000	0.000
					evasiveness	-0.003	0.076	-0.043	0.966	0.966
skull size ~ neck ratio	0.989	0.619	-32.608	65.808	(Intercept)	1.876	0.161	11.639	0.000	0.000
					neck ratio	-0.141	0.194	-0.726	0.471	0.471
skull size ~ carapace size + marine	0.148	0.806	-86.209	12.207	(Intercept)	0.207	0.164	1.265	0.211	0.211
					carapace size	0.578	0.062	9.307	0.000	0.000
					marine	0.241	0.068	3.524	0.001	0.001
skull size ~ carapace size + open swimming	0	0.809	-88.516	9.9	(Intercept)	0.169	0.144	1.174	0.245	0.245
					carapace size	0.586	0.057	10.325	0.000	0.000
					open swimming	0.233	0.056	4.164	0.000	0.000
skull size ~ carapace size + neck retraction	0	0.835	-97.27	1.146	(Intercept)	0.409	0.153	2.669	0.010	0.010
					carapace size	0.581	0.051	11.472	0.000	0.000
					neck retraction	-0.238	0.044	-5.387	0.000	0.000

Abbreviations
- Coef.: estimated coefficient
- SE: standard error
- \(t\)-value: \(t\) statistics value
- P-value: P statistics value
- \(\Delta \text{AIC} \): relative difference to AIC score of best model
- \(R^2 \): coefficient of determination of the model
- FDR: false discovery rate
| Model | carapace size | neck ratio | skull size | marine | open swimming | neck retraction | durophagous | hardness | marine | open swimming | neck retraction | marine | open swimming | neck retraction | durophagous | hardness | marine | open swimming | neck retraction | marine | open swimming | neck retraction | durophagous | hardness | marine | open swimming | neck retraction |
|--|---------------|------------|------------|--------|---------------|----------------|-------------|-----------|--------|---------------|----------------|--------|---------------|----------------|-------------|-----------|--------|---------------|----------------|--------|---------------|----------------|-------------|-----------|--------|---------------|----------------|
| skull size ~ carapace size + neck ratio | 0.616 | 0.070 | 8.839 | | | | | | | | | | | | | | | | | | | | | | | | |
| skull size ~ carapace size + marine + open swimming + neck retraction | 0.085 | 0.846 | -98.416 | 0 | | -0.188 | 0.112 | | | | | | | | | | | | | | | | | | | | |
| skull size ~ carapace size + neck retraction + open swimming + marine | 0.098 | 0.838 | -95.741 | 2.675 | | -0.209 | 0.059 | | | | | | | | | | | | | | | | | | | | |
| skull size ~ carapace size + neck retraction + hardness | 0.082 | 0.811 | -84.49 | 13.926 | | 0.057 | 0.245 | | | | | | | | | | | | | | | | | | | | |
| skull size ~ carapace size + marine + neck ratio | 0.117 | 0.802 | -84.49 | 13.926 | | 0.045 | 0.245 | | | | | | | | | | | | | | | | | | | | |
Table S4. Full results of D-PGLS analyses using the “full landmark dataset” testing different models of ecomorphological associations of turtle skull shape. In all analyses, \(N = 71\). Abbreviations: \(Df\), degrees of freedom; \(SS\), sum of square; \(MS\), mean sum of square; \(R^2\), coefficient of determination of the predictor; \(F\), \(F\)-statistic value; \(Z\), \(Z\)-test statistics; \(P\)-value, \(P\) statistics value, in which numbers in **bold** denote significance at an \(\alpha < 0.05\) level; \(P\)-value (FDR), \(P\) statistics value corrected using “false discovery rate (FDR)” method; \(R^2\) model, coefficient of determination of the whole model (i.e. sum of \(R^2\)'s of individual predictors).

Model	\(R^2\) model	Variable	\(R^2\)	\(F\)	\(Z\)	\(P\)-value	\(P\)-value (FDR)
shape ~ skull size	0.0562	skull size	0.0562	4.1053	4.2948	0.001	0.001
shape ~ skull size + aquatic feeding	0.0807	skull size, aquatic feeding	0.0562	4.1537	4.2741	0.001	0.002
shape ~ skull size + terrestrial feeding	0.0734	skull size, terrestrial feeding	0.0566	4.15	4.2602	0.001	0.002
shape ~ skull size + suction	0.1069	skull size, suction	0.0567	4.311	4.4853	0.001	0.001
shape ~ skull size + durophagy	0.1039	skull size, durophagy	0.0557	4.2253	4.4853	0.001	0.001
shape ~ skull size + herbivory	0.0896	skull size, herbivory	0.0582	4.34	4.5232	0.001	0.002
shape ~ skull size + carnivory	0.0805	skull size, carnivory	0.0562	4.1552	4.401	0.001	0.002
shape ~ skull size + open swimming	0.0746	skull size, open swimming	0.0533	3.9253	4.2003	0.001	0.002
shape ~ skull size + neck_retraction	0.1008	skull size, neck_retraction	0.0484	3.6933	3.934	0.001	0.001
shape ~ skull size + hardness	0.1007	skull size, hardness	0.0561	4.2427	4.4491	0.001	0.001
shape ~ skull size + evasiveness	0.1148	skull size, evasiveness	0.0564	4.3296	4.5829	0.001	0.001
shape ~ skull size + suction + durophagy + herbivory + carnivory + neck retraction + hardness + evasiveness	0.2203	skull size, suction, durophagy, herbivory, carnivory, neck retraction, hardness, evasiveness	0.0456	3.9518	4.2758	0.001	0.004
shape ~ skull size + suction + durophagy + neck retraction + hardness + evasiveness	0.1996	skull size, suction, durophagy, neck retraction, hardness, evasiveness	0.0445	3.8226	4.2256	0.001	0.002
shape ~ skull size + aquatic feeding + suction + durophagy + neck retraction + hardness + evasiveness	0.2177	skull size, aquatic feeding, suction, durophagy, neck retraction, hardness, evasiveness	0.0445	3.8684	4.2069	0.001	0.003

Abbreviations: \(Df\), degrees of freedom; \(SS\), sum of square; \(MS\), mean sum of square; \(R^2\), coefficient of determination of the predictor; \(F\), \(F\)-statistic value; \(Z\), \(Z\)-test statistics; \(P\)-value, \(P\) statistics value, in which numbers in **bold** denote significance at an \(\alpha < 0.05\) level; \(P\)-value (FDR), \(P\) statistics value corrected using “false discovery rate (FDR)” method; \(R^2\) model, coefficient of determination of the whole model (i.e. sum of \(R^2\)'s of individual predictors).
	durophagy	neck retraction	hardness	evasiveness
shape ~ skull size + aquatic feeding + suction + durophagy + open swimming + neck retraction + hardness + evasiveness	0.0294	0.0481	0.02	0.0298
	2.556	4.1855	1.7405	2.5969
	3.0534	4.4295	1.9571	3.2433
	0.003	0.001	0.032	0.002
	0.005	0.003	0.037	0.004
skull size	0.046	0.0207	0.0255	0.0312
	4.0307	1.8092	2.2294	2.7307
	4.3404	1.8526	2.5234	3.2251
	0.001	0.04	0.011	0.002
0.002	0.044	0.017	0.004	0.002
aquatic feeding	0.0162	0.0424	0.02	0.0293
	1.4166	3.7142	1.7485	2.5699
	1.2909	4.0028	1.9685	3.1912
	0.107	0.001	0.032	0.001
	0.106	0.002	0.042	0.002
Table S5. Full results of D-PGLS analyses using the “partial extant landmark dataset” testing different models of ecomorphological associations of turtle skull shape. In all analyses, $N = 76$. Abbreviations: Df, degrees of freedom; SS, sum of square; MS, mean sum of square; R^2, coefficient of determination of the predictor; F, F-statistic value; Z, Z-test statistics; P, P-value, P statistics value, in which numbers in **bold** denote significance at an $\alpha < 0.05$ level; P-value (FDR), P statistics value corrected using “false discovery rate (FDR)” method; R^2 model, coefficient of determination of the whole model (i.e. sum of R^2s of individual predictors).

Model	R^2 model	Variable	R^2	F	Z	P-value	P-value (FDR)
shape ~ skull size	0.038	skull size	0.038	2.887	2.76	**0.004**	**0.004**
shape ~ skull size + aquatic feeding	0.061	skull size	0.038	2.931	2.834	**0.004**	**0.008**
		aquatic feeding	0.024	1.842	1.531	0.067	0.068
shape ~ skull size + terrestrial feeding	0.054	skull size	0.035	2.744	2.671	**0.005**	**0.01**
		terrestrial feeding	0.018	1.403	1.079	0.153	0.15
shape ~ skull size + suction	0.096	skull size	0.04	3.254	3.076	**0.002**	**0.002**
		suction	0.055	4.463	3.718	**0.001**	**0.002**
shape ~ skull size + durophagy	0.09	skull size	0.041	3.254	3.144	**0.002**	**0.002**
		durophagy	0.049	3.958	3.509	**0.001**	**0.002**
shape ~ skull size + herbivory	0.084	skull size	0.038	3.048	2.871	**0.001**	**0.001**
		herbivory	0.045	3.612	3.249	**0.001**	**0.001**
shape ~ skull size + carnivory	0.067	skull size	0.038	2.957	2.877	**0.005**	0.01
		carnivory	0.029	2.243	2.109	**0.021**	**0.023**
shape ~ skull size + open swimming	0.061	skull size	0.044	3.391	3.141	**0.003**	**0.006**
		open swimming	0.017	1.296	0.825	0.217	0.217
shape ~ skull size + neck retraction	0.079	skull size	0.041	3.246	3.035	**0.001**	**0.002**
		neck retraction	0.038	3.016	2.573	**0.005**	**0.005**
shape ~ skull size + hardness	0.088	skull size	0.04	3.219	3.022	**0.002**	**0.002**
		hardness	0.047	3.776	3.269	**0.001**	**0.002**
shape ~ skull size + evasiveness	0.109	skull size	0.038	3.125	2.974	**0.001**	**0.001**
		evasiveness	0.071	5.771	4.309	**0.001**	**0.001**
shape ~ skull size + suction + durophagy + herbivory + carnivory + neck retraction + hardness + evasiveness	0.196	skull size	0.04	3.663	3.407	**0.001**	**0.008**
		suction	0.021	1.904	1.797	**0.035**	0.052
		durophagy	0.026	2.371	2.408	**0.008**	**0.016**
		herbivory	0.019	1.701	1.591	0.056	0.073
		carnivory	0.013	1.225	0.659	0.264	0.0269
		neck retraction	0.033	2.988	2.781	**0.003**	**0.01**
		hardness	0.017	1.555	1.304	0.091	0.11
		evasiveness	0.027	2.484	2.498	**0.004**	**0.01**
shape ~ skull size + suction + durophagy + neck retraction + evasiveness	0.184	skull size	0.043	3.869	3.544	**0.001**	**0.002**
		suction	0.021	1.886	1.752	**0.036**	**0.033**
		durophagy	0.044	3.907	3.709	**0.001**	**0.002**
		neck retraction	0.036	3.214	2.918	**0.004**	**0.005**
		evasiveness	0.041	3.631	3.452	**0.002**	**0.003**
shape ~ skull size + suction + neck retraction + hardness + evasiveness	0.17	skull size	0.044	3.837	3.575	**0.001**	**0.005**
		suction	0.025	2.229	2.153	**0.013**	**0.013**
		neck retraction	0.032	2.838	2.582	**0.006**	**0.007**
		hardness	0.031	2.754	2.691	**0.005**	**0.007**
		evasiveness	0.037	3.287	3.132	**0.002**	**0.005**
	skull size	suction	durophagy	neck retraction	evasiveness	aquatic feeding	
--------------------------	------------	---------	-----------	-----------------	-------------	-----------------	
shape ~ skull size + suction + durophagy + neck retraction + evasiveness + aquatic feeding	0.043	3.891	3.602	0.001	0.002		
	suction	0.021	1.881	1.753	0.034	0.042	
	durophagy	0.044	4.012	3.793	0.001	0.002	
	neck retraction	0.036	3.242	2.909	0.004	0.006	
	evasiveness	0.036	3.269	3.158	0.001	0.002	
	aquatic feeding	0.017	1.563	1.231	0.12	0.125	
shape ~ skull size + suction + durophagy + neck retraction + evasiveness + open swimming	0.048	4.3	3.834	0.001	0.003		
	suction	0.021	1.901	1.785	0.036	0.042	
	durophagy	0.046	4.165	3.902	0.001	0.003	
	neck retraction	0.037	3.34	2.888	0.003	0.004	
	evasiveness	0.039	3.565	3.438	0.002	0.004	
	open swimming	0.018	1.621	1.363	0.088	0.086	
Table S6. Full results of D-PGLS analyses using the smaller “full landmark dataset” testing different models of ecomorphological associations of turtle skull shape. These include the “neck ratio” trait as an additional explanatory variable. In all analyses, N = 60. Abbreviations: Df, degrees of freedom; SS, sum of square; MS, mean sum of square; R², coefficient of determination of the predictor; F, F-statistic value; Z, Z-test statistics; P-value, P statistics value, in which numbers in bold denote significance at an α < 0.05 level; P-value (FDR), P statistics value corrected using “false discovery rate (FDR)” method; R² model, coefficient of determination of the whole model (i.e. sum of R²’s of individual predictors).

Model	R² model	Variable	R²	F	Z	P-value	P-value (FDR)
shape ~ skull size	0.056	skull size	0.056	3.419	3.583	0.001	0.001
shape ~ skull size + aquatic feeding	0.084	skull size	0.055	3.423	3.515	**0.001**	**0.002**
		aquatic feeding	0.029	1.786	1.565	0.072	0.072
shape ~ skull size + terrestrial feeding	0.076	skull size	0.056	3.427	3.582	**0.001**	**0.002**
		terrestrial feeding	0.02	1.259	0.812	0.221	0.221
shape ~ skull size + suction	0.112	skull size	0.055	3.528	3.844	**0.001**	**0.001**
		suction	0.058	3.698	4.047	**0.001**	**0.001**
shape ~ skull size + durophagous	0.109	skull size	0.057	3.633	3.853	**0.001**	**0.001**
		durophagous	0.052	3.301	3.265	**0.001**	**0.001**
shape ~ skull size + herbivory	0.08	skull size	0.056	3.493	3.58	**0.001**	**0.002**
		herbivory	0.023	1.43	1.161	0.125	0.125
shape ~ skull size + carnivory	0.09	skull size	0.056	3.517	3.493	**0.001**	**0.002**
		carnivory	0.033	2.086	2.368	0.01	0.01
shape ~ skull size + open swimming	0.077	skull size	0.051	3.147	3.376	**0.001**	**0.002**
		open swimming	0.027	1.664	1.515	0.064	0.064
shape ~ skull size + neck retraction	0.1	skull size	0.039	2.538	2.924	**0.003**	**0.003**
		neck retraction	0.06	3.879	3.644	0.001	0.002
shape ~ skull size + hardness	0.098	skull size	0.057	3.581	3.478	**0.001**	**0.002**
		hardness	0.041	2.593	2.783	**0.004**	**0.004**
shape ~ skull size + evasiveness	0.111	skull size	0.056	3.574	3.457	**0.001**	**0.001**
		evasiveness	0.055	3.55	4.215	**0.001**	**0.001**
shape ~ skull size + neck ratio	0.099	skull size	0.054	3.437	3.584	**0.001**	**0.001**
		neck ratio	0.045	2.858	3.215	**0.001**	**0.001**
shape ~ skull size + suction + durophagous + herbivory + carnivory + neck retraction + hardness + evasiveness + neck ratio	0.239	skull size	0.029	2.146	2.459	**0.008**	**0.024**
		suction	0.027	2.021	2.13	**0.014**	**0.025**
		durophagous	0.03	2.219	2.283	**0.014**	**0.025**
		herbivory	0.016	1.222	0.771	0.218	0.245
		carnivory	0.01	0.724	-0.9	0.819	0.819
		neck retraction	0.049	3.645	3.568	**0.001**	**0.009**
		hardness	0.024	1.767	1.87	**0.036**	**0.046**
		evasiveness	0.024	1.806	1.993	**0.026**	**0.039**
		neck ratio	0.029	2.165	2.631	**0.003**	**0.013**
shape ~ skull size + suction + durophagous + neck retraction + hardness + evasiveness + neck ratio	0.229	skull size	0.034	2.499	2.788	**0.004**	**0.009**
		suction	0.028	2.052	2.194	**0.015**	**0.017**
		durophagous	0.032	2.354	2.511	**0.007**	**0.012**
		neck retraction	0.054	4.04	3.881	**0.001**	**0.007**
		hardness	0.023	1.74	1.835	**0.037**	**0.037**
shape ~ skull size + aquatic feeding + suction + durophagous + neck retraction + hardness + evasiveness + neck ratio							
---	---	---	---	---	---	---	
skull size	aquatic feeding	suction	durophagous	neck retraction	hardness	evasiveness	neck ratio
0.033	0.024	0.026	0.032	0.054	0.023	0.024	0.029
2.506	1.829	1.965	2.415	4.11	1.713	1.846	2.197
2.801	1.855	2.039	2.517	3.866	1.767	2.072	2.714
0.004	0.029	0.023	0.007	0.001	0.037	0.015	0.004
0.01	0.033	0.03	0.014	0.008	0.037	0.024	0.01

| shape ~ skull size + aquatic feeding + suction + durophagous + open swimming + neck retraction + hardness + evasiveness + neck ratio |
|---|---|---|---|---|---|---|---|
| skull size | aquatic feeding | suction | durophagous | open swimming | neck retraction | hardness | evasiveness | neck ratio |
| 0.037 | 0.024 | 0.026 | 0.034 | 0.017 | 0.05 | 0.023 | 0.025 | 0.024 |
| 2.825 | 1.816 | 2.006 | 2.567 | 1.317 | 3.827 | 1.744 | 1.901 | 1.816 |
| 3.059 | 1.859 | 2.101 | 2.731 | 0.958 | 3.545 | 1.807 | 2.139 | 2.089 |
| 0.004 | 0.03 | 0.02 | 0.006 | 0.168 | 0.001 | 0.037 | 0.014 | 0.018 |
| 0.018 | 0.038 | 0.03 | 0.018 | 0.168 | 0.009 | 0.041 | 0.03 | 0.03 |
Table S7. Full results of D-PGLS analyses using the smaller “partial landmark dataset” testing different models of ecomorphological associations of turtle skull shape. These include the “neck ratio” trait as an additional explanatory variable. In all analyses, N = 65. Abbreviations: Df, degrees of freedom; SS, sum of square; MS, mean sum of square; R^2, coefficient of determination of the predictor; F, F-statistic value; Z, Z-test statistics; P-value, P statistics value, in which numbers in bold denote significance at an $\alpha < 0.05$ level; P-value (FDR), P statistics value corrected using “false discovery rate (FDR)” method; R^2 model, coefficient of determination of the whole model (i.e. sum of R²s of individual predictors).

Model	R^2 model	Variable	R^2	F	Z	P-value	P-value (FDR)
shape ~ skull size	0.027	skull size	0.027	1.737	1.445	0.078	0.078
shape ~ skull size + aquatic feeding	0.054	skull size	0.026	1.716	1.435	0.077	0.077
shape ~ skull size + terrestrial feeding	0.048	skull size	0.026	1.709	1.419	0.073	0.144
shape ~ skull size + suction	0.09	skull size	0.03	2.024	1.844	0.033	0.033
shape ~ skull size + durophagous	0.083	skull size	0.03	2.047	1.862	0.033	0.033
shape ~ skull size + herbivory	0.059	skull size	0.028	1.831	1.569	0.062	0.062
shape ~ skull size + carnivory	0.067	skull size	0.03	1.979	1.792	0.033	0.033
shape ~ skull size + open swimming	0.063	skull size	0.038	2.49	2.229	0.016	0.032
shape ~ skull size + neck retraction	0.069	skull size	0.037	2.646	2.553	0.009	0.018
shape ~ skull size + hardness	0.066	skull size	0.028	1.873	1.676	0.047	0.047
shape ~ skull size + evasiveness	0.089	skull size	0.028	1.873	1.658	0.046	0.046
shape ~ skull size + neck ratio	0.068	skull size	0.028	1.861	1.603	0.057	0.057
shape ~ skull size + suction + durophagous + herbivory + carnivory + neck retraction + hardness + evasiveness + neck ratio	0.191	skull size	0.024	1.811	1.637	0.053	0.115
shape ~ skull size + suction + durophagous + neck retraction + hardness + evasiveness + neck ratio	0.195	skull size	0.028	2.125	2.024	0.02	0.035
	skull size	suction	durophagous	neck retraction	evasioness	neck ratio	
----------	------------	---------	-------------	----------------	------------	------------	
shape ~	0.24	0.024	0.043	0.001	0.024	0.113	
skull size	2.058	1.956	2.022	2.009	1.898	0.915	
suction	0.027	0.024	0.049	0.037	0.032	0.017	
durophagous	3.649	3.391	3.791	2.832	2.447	1.308	
neck retraction	2.774	2.704	2.774	2.613	2.362	1.101	
evasioness	0.043	0.043	0.043	0.035	0.028	0.114	
neck ratio	1.46	1.189	3.235	3.215	2.101	0.016	

shape ~ skull size + suction + durophagous + neck retraction + evasioness

	skull size	suction	durophagous	neck retraction	evasioness	neck ratio
shape ~	0.022	0.022	0.047	0.008	0.022	0.178
skull size	2.113	2.022	1.797	1.308	2.009	1.898
suction	0.028	0.024	0.05	0.017	0.039	0.035
durophagous	3.791	3.539	2.832	2.447	2.374	1.308
neck retraction	2.774	2.704	2.774	2.613	2.362	1.101
evasioness	0.032	0.032	0.032	0.035	0.028	0.114
neck ratio	1.308	1.189	3.235	3.215	2.101	0.016

shape ~ skull size + suction + durophagous + neck retraction + neck ratio

	skull size	suction	durophagous	neck retraction	neck ratio
shape ~	0.033	0.033	0.001	0.002	0.016
skull size	2.009	1.898	2.009	1.987	1.898
suction	0.027	0.039	0.047	0.035	0.028
durophagous	3.498	3.336	2.874	2.613	2.062
neck retraction	2.797	2.797	2.797	2.595	2.101
neck ratio	0.028	0.016	0.016	0.016	0.114
Table S8. Phylogenetic regression model \((N = 76)\) used to predict the “evasiveness index” for fossil turtles. Abbreviations: \(\lambda\), phylogenetic signal (Pagel’s lambda) of residuals estimated as part of the model-fitting process; \(R^2\), coefficient of determination of the model; \(SE\), standard error of coefficient values; \(t\)-value, \(t\)-test statistics; \(p\)-value, significance at an \(\alpha < 0.05\) level; \(AICc\), scores of Akaike Information Criterion for small samples.

Model	\(\lambda\)	\(R^2\)	AICc	Variable	Coefficient	SE	t-value	p-value
evasiveness ~ skull size + durophagy + neck retraction	0.88	0.41	-8.04	(Intercept)	0.40	0.13	3.03	< 0.01
				skull size	-322.88	44.94	-7.18	< 0.001
				durophagy	270.56	36.49	7.41	< 0.001
				neck retraction	214.16	38.88	5.5	< 0.001
Table S9. Posterior probabilities calculated for extant turtle taxa using pFDA based on the topology of Evers et al. (2019). Numbers in **bold** indicate species misclassified as “absent”, whereas asterisks (*) after numbers indicate species misclassified as “present” for a given trait.

Taxon	Suction	Durophagous	Neck_retraction	
Rhinoclemmys pulcherrima	0.47	0.01	0.79	
Rhinoclemmys melanosterna	0.24	0.05	0.73	
Melanochelys trijuga	0.51	0	0.89	
Mauremys leprosa	0.36	0.07	0.85	
Cuora flavomarginata	0.47	0.16	0.62*	
Cuora amboinensis	0.4	0.01	0.82	
Cyclemys dentata	0.3	0.03	0.88	
Hieremys annandali	0.27	0.12	0.7	
Heosemys grandis	0.34	0.02	0.56*	
Notochelys platynota	0.24	0.11	0.37*	
Malayemys subtrijuga	0.12	1	0.54*	
Orlitia borneensis	0.2	0.26	0.53*	
Geoclemys hamiltonii	0.06	0.77	0.26*	
Pangshura tecta	0.3	0.18	0.79	
Batagur baska	0.16	0.89*	0.5*	
Morenia ocellata	0.14	0.72*	0.67	
Siebenrockiella crassicollis	0.31	0.01	0.66*	
Malacochersus tornieri	0.36	0.02	0.73	
Testudo marginata	0.32	0.03	0.72	
Chelonoidis nigrum	0.37	0.01	0.86	
Chelonoidis carbonaria	0.05	0.12	0.74	
Aldabrachelys gigantea	0.27	0	0.59*	
Gopherus flavomarginatus	0.39	0.02	0.89	
Gopherus polyphemus	0.15	0.02	0.53*	
Gopherus agassizii	0.34	0.02	0.89	
Platysternon megacephalum	0.12	0.64	0.12	
Glyptemys insculpta	0.24	0.52	0.66*	
Glyptemys muhlenbergii	0.19	0.08	0.86	
Emys orbicularis	0.13	0.11	0.65*	
Emydoidea blandingii	0.77	0.09	0.94	
Terrapene ornata	0.13	0.17	0.78	
Terrapene coahuila	0.14	0.22	0.64*	
Clemmys guttata	0.1	0.07	0.76	
Deirochelys reticularia	0.91	0.03	0.97	
Trachemys scripta	0.33	0.06	0.74	
Graptemys geographica	0.24	0.83	0.8	
Malaclemys terrapin	0.34	0.76	0.84	
Chrysemys picta	**0.53**	0.04	0.9	
Pseudemys concinna	0.27	0.1	0.89	
Dermochelys coriacea	**0.01**	0.01	0.64	
Caretta caretta	0.01	0.97	0.02	
Lepidochelys olivacea	0.02	**0.59**	0.14	
Lepidochelys kempii	0.01	0.84	0.3	
Species	Value1	Value2	Value3	
---------------------------------	--------	--------	--------	
Eretmochelys imbricata	0.01	0.99	0.44	
Chelonia mydas	0.05	0.82*	0.56	
Natator depressus	0.04	0.76*	0.46	
Macrochelys temminckii	0.15	0.96*	0.03	
Chelydra serpentina	0.93*	0.03	0.91	
Dermatemys mawii	0.17	0.22	0.6*	
Staurotypus salvini	0.15	0.89	0.4*	
Claudius angustus	0.19	0.71*	0.32*	
Sternotherus minor	0.03	0.98	0.3*	
Sternotherus odoratus	0.09	0.58	0.34*	
Kinosternon subrubrum	0.04	0.9	0.52*	
Kinosternon baurii	0.05	0.85*	0.4*	
Carettochelys insculpta	0.28	0.17	0.78	
Trionyx triunguis	0.78	0.04	0.93	
Chitra indica	0.96	0.6	0.95	
Apalone mutica	0.87	0.06	0.98	
Apalone spinifera	0.77	0.19	0.98	
Amyda cartilaginea	0.83	0.11	0.96	
Pelodiscus sinensis	0.89	0.12	0.99	
Cycloderma frenatum	0.92	0.32	0.91	
Cyclanorbis senegalensis	0.97	0.15	0.98	
Lissemys punctata	0.92	0.26	0.98	
Pelomedusa subrufa	0.53	0.01	0.86	
Pelusios sinatus	0.6	0.02	0.89	
Peltococephalus dumerilianus	0.27	0.46	0.74	
Podocnemis expansa	0.67*	0.22	0.85	
Podocnemis unifilis	0.58	0.15	0.93	
Elseya dentata	0.28	0.09	0.81	
Chelodina oblonga	0.84	0.04	0.97	
Hydromedusa tectifera	0.96	0.01	0.99	
Chelus fimbriatus	0.99	0.01	0.91	
Phrynops hilarii	0.79	0.01	0.92	
Phrynops geofroanus	0.68	0.01	0.9	
Taxon	suction	durophagy	neck retraction	
-----------------------------	---------	-----------	-----------------	
Rhinoclemmys pulcherrima	0.39	0.01	0.84	
Rhinoclemmys melanosterna	0.19	0.04	0.77	
Melanochelys trijuga	0.41	0	0.92	
Mauremys leprosa	0.27	0.06	0.88	
Cuora flavomarginata	0.12	0.15	0.65*	
Cuora amboinensis	0.31	0.01	0.85	
Cyclemys dentata	0.22	0.02	0.9	
Hieremys annandalii	0.17	0.11	0.73	
Heosemys grandis	0.25	0.01	0.61*	
Notochelys platynota	0.17	0.1	0.38*	
Malayemys subtrijuga	0.08	1	0.55*	
Orlitia borneensis	0.13	0.25	0.57*	
Geoclemys hamiltonii	0.03	0.78	0.24*	
Pangshura tecta	0.21	0.18	0.81	
Batagur baska	0.09	0.9*	0.5*	
Morenia ocellata	0.08	0.72*	0.66	
Siebenrockiella crassicolor	0.22	0.01	0.7	
Malacochersus tornieri	0.26	0.02	0.75	
Testudo marginata	0.22	0.02	0.75	
Chelonoidis nigra	0.26	0.01	0.88	
Chelonoidis carbonaria	0.03	0.11	0.76	
Aldabrachelys gigantea	0.16	0	0.6*	
Gopherus flavomarginatus	0.25	0.02	0.91	
Gopherus polyphemus	0.1	0.02	0.55*	
Gopherus agassizii	0.23	0.02	0.91	
Platysternon megacephalum	0.09	0.64	0.11	
Glyptemys insculpta	0.18	0.52	0.69	
Glyptemys muhlenbergii	0.14	0.07	0.88	
Emyrs orbicularis	0.1	0.1	0.68	
Emydoidea blandingii	0.74	0.08	0.96	
Terrapene ornata	0.1	0.16	0.8	
Terrapene coahuila	0.11	0.21	0.67	
Clemmys guttata	0.07	0.06	0.79	
Deirochelys reticularia	0.91	0.03	0.98	
Trachemys scripta	0.28	0.05	0.77	
Graptemys geographica	0.21	0.84	0.8	
Malaclemys terrapin	0.29	0.77	0.86	
Chrysemys picta	0.44	0.04	0.93	
Pseudemys concinna	0.2	0.1	0.91	
Dermochelys coriacea	0.01	0.01	0.66	
Caretta caretta	0	0.97	0.01	
Lepidochelys olivacea	0.01	0.6	0.1	
Lepidochelys kempii	0.01	0.85	0.23	
Species	R	S	I	
------------------------------	---	----	----	---
Eretmochelys imbricata	0	0.99	0.38	
Chelonia mydas	0.02	0.82*	0.5	
Natator depressus	0.02	0.76*	0.42	
Macrochelys temminckii	0.14	0.96*	0.02	
Chelydra serpentina	0.93*	0.03	0.93	
Dermatemyx mawii	0.11	0.21	0.57*	
Staurotypus salvinii	0.09	0.89	0.39*	
Claudius angustatus	0.15	0.71*	0.3*	
Sternotherus minor	0.02	0.98	0.26*	
Sternotherus odoratus	0.06	0.59	0.3*	
Kinosternon subrubrum	0.03	0.91	0.48*	
Kinosternon baurii	0.03	0.86*	0.35*	
Carettochelys insculpta	0.24	0.16	0.8	
Trionyx triunguis	0.87	0.04	0.94	
Chitra indica	0.98	0.6	0.97	
Apalone mutica	0.93	0.05	0.98	
Apalone spinifera	0.84	0.18	0.98	
Amyda cartilaginea	0.9	0.11	0.97	
Pelodiscus sinensis	0.94	0.04	0.99	
Cycloderma frenatum	0.96	0.32	0.92	
Cyclanorbis senegalensis	0.98	0.15	0.99	
Lissemys punctata	0.95	0.25	0.98	
Pelomedausa subrufa	0.57	0.01	0.89	
Pelusios sinuatus	0.64	0.02	0.92	
Peltocephalus dumerilianus	0.28	0.46	0.79	
Podocnemis expansa	0.72*	0.21	0.88	
Podocnemis unifilis	0.62	0.14	0.95	
Elseya dentata	0.32	0.08	0.84	
Chelodina oblonga	0.89	0.04	0.98	
Hydromedusa tectifera	0.98	0.01	1	
Chelus fimbriatus	0.99	0.01	0.94	
Phrynops hilarii	0.83	0	0.95	
Phrynops geoffroanus	0.74	0.01	0.93	
Table S11. Predicted posterior probabilities (PP\text{trait}) of fossils to have ecological/functional traits present in the best D-PGLS model using the “partial extant landmark dataset”. PPs were calculated using pFDA with two different phylogenetic hypotheses: Evers et al. (2019) and Sterli et al. (2018). “Evasiveness” denotes the “food evasiveness index” of extinct turtles predicted with pGLS (see main text and Supplementary Table 4 above).

Taxon	Evers et al. (2019)	Sterli et al. (2018)	Evers et al. (2019)	Sterli et al. (2018)			
	suction	durophy	neck retraction	suction	durophy	neck retraction	evasiveness
Annemys sp.	0.91	0.01	0.98	0.92	0.01	0.98	0.73
Araiochelys hirayamai	0.48	0.05	0.85	0.51	0.05	0.88	0.46
Argillochelys antiqua	0	0.98	0.23	0	0.98	0.17	0.03
Bairdemys hartsteini	0.19	0.42	0.61	0.19	0.42	0.6	0.16
Desmatochelys lowii	0.08	0.37	0.61	0.02	0.37	0.55	0.0
Eochelone brabantica	0.21	0.8	0.67	0.11	0.81	0.65	0.38
Eubena cephalica	0.07	0.86	0.58	0.07	0.87	0.59	0.5
Galianemys emringeri	0.61	0.1	0.65	0.67	0.1	0.68	0.36
Jurassichelon oleronensis	0.22	0	0.97	0.24	0	0.97	0.66
Labrostochelys galkini	0.92	0	0.99	0.93	0	0.99	0.73
Lapparentemys vilavilensis	0.75	0.15	0.89	0.8	0.15	0.91	0.53
Sahonachelys mailakavava	0.98	0	0.96	0.98	0	0.98	0.84
Phosphatochelys tedfordi	0.07	0.02	0.14	0.07	0.01	0.15	0.1
Puppigerus camperi	0	0.99	0.39	0	0.99	0.32	0.02
Rhinocolyphus pulchriceps	0	0.92	0.64	0	0.92	0.53	0.23
Sandownia harrisi	0.95	0.17	1	0.96	0.16	1	0.41
Ummulisani rutgersensis	0.15	0	0.49	0.14	0	0.52	0.17
Other Supplementary Data

Supporting Information S1. Spreadsheet including specimen data, size-related, ecological and functional explanatory variables used for analyses.

Scripts and associated files. GitHub repository including (i) 3D landmark coordinates information for each specimen used; (ii) Phylogenetic trees in Newick format required for analyses; and (iii) R scripts used to load landmark data, perform geometric morphometric analyses, hypothesis tests, predictions for fossils and graphical visualisation of results. Available at (https://github.com/G-Hermanson/Turtle-cranial-ecomorphology).
SI References

Adams, D.C. (2014). A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution 68, 2675-2688.

Adams, D.C. et al. (2020). Geomorph: Software for geometric morphometric analyses. R package version 3.2.1. https://cran.r-project.org/package=geomorph.

Bardua, C. et al. (2019). A practical guide to sliding and surface semilandmarks in morphometric analyses. Integrative Organismal Biology 1(1), obz016.

Belkin, D.A. & Gans, C. (1968). An unusual chelonian feeding niche. Ecology 49(3), 768-769.

Bels, V.L. et al. (1998). Food ingestion in the estuarine turtle Malaclemys terrapin: comparison with the marine leatherback turtle Dermochelys coriacea. Journal of the Marine Biological Association of the United Kingdom 78(3), 953-972.

Benson, R.B.J. et al. (2011). Shell geometry and habitat determination in extinct and extant turtles (Reptilia: Testudinata). Paleobiology 37(4), 547-562.

Benson, R.B.J. et al. (2017). Comparative analysis of vestibular ecomorphology in birds. Journal of Anatomy 231(6), 990-1018.

Bjorndal, K.A. (1979). Cellulose digestion and volatile fatty acid production in the green turtle, Chelonia mydas. Comparative Biochemistry and Physiology – Part A: Physiology 63(1), 127-133.

Bjorndal, K.A. (1987). Digestive efficiency in a temperate herbivorous reptile, Gopherus polyphemus. Copeia 1987, 714-720.

Bonin, F. et al. (2006). Turtles of the World. Johns Hopkins University Press.

Bramble, D.M. & Wake, D.B. (1985). Feeding Mechanisms of Lower Tetrapods. In Functional vertebrate morphology (eds. Hildebrand, M., Bramble, D.M., Liem, K.F. & Wake, D.B.), 230-261. University of Chicago Press.

Broadley, D.G. & Sachsee, W. (2011). Cycloderma frenatum Peters 1854 – Zambezi Flapshell Turtle, Nkhasi. In Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B., & Mittermeier, R.A. (eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs, 5, pp. 055.1–055.5. doi:10.3854/crm.5.055.frenatum.v1.2011.

Campuzano, C.A.E. (2018). Geometric morphometric exploration of the skull phenotypic matrix of Columbimorphae (Pteroclidiformes, Mesitornithiformes and Columbiformes): Allometry, heterochrony, ecological factors, modularity, biomechanics, diet, and domestication (Doctoral dissertation, University of Oxford, Oxford, UK). Retrieved from https://ora.ox.ac.uk/objects/uuid:9f7df3a9-b109-431c-b3c1-e08574568e10.

Chambers, J.M. & Hastie, T.J. (1992). Statistical Models in S. S. Chapman & Hall.

Chapelle, K.E.J., Benson, R.B.J., Stiegler, J., Otero, A., Zhao, Q. & Choiniere, J.N. (2020). A quantitative method for inferring locomotory shifts in amniotes during ontogeny, its application to dinosaurs and its bearing on the evolution of posture. Palaeontology 63(2), 229-242.

Claude, J. et al. (2003). A geometric morphometric assessment of the effects of environment and cladogenesis on the evolution of the turtle shell. Biological Journal of the Linnean Society 79(3), 485-501.

Claude, J. et al. (2004). Ecological correlates and evolutionary divergence in the skull of turtles: a geometric morphometric assessment. Systematic Biology 53(6), 933-948.

Collyer, M.L. & Adams, D.C. (2018). RRPP: An R package for fitting linear models to high-dimensional data using residual randomization. Methods in Ecology and Evolution 9(2), 1772-1779.

Davenport, J. et al. (1992). Feeding and digestion in the omnivorous estuarine turtle Batagur baska (Gray). Herpetological Journal 2(4),133–139.
Drake, A.G. & Klingenberg, C.P. (2008). The pace of morphological change: historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society B: Biological Sciences 275(1630), 71-76.

Evers, S.W. & Benson, R.B.J. (2019). A new phylogenetic hypothesis of turtles with implications for the timing and number of evolutionary transitions to marine lifestyles in the group. Palaeontology 62(1), 93-134.

Evers, S.W. et al. (2019). Anatomy of Rhinocelhys pulchriceps (Protostegidae) and marine adaptation during the early evolution of chelonioids. PeerJ 7, e6811.

Ferreira, G.S. & Werneburg, I. (2019). Evolution, Diversity, and Development of the CranioCervical System in Turtles with Special Reference to Jaw Musculature. In Heads, Jaws, and Muscles (eds. Ziermann, J., Diaz Jr., R. & Diogo, R.), 171-206, Springer.

Ferreira, G.S. et al. (2015). The last marine pelomedusoids (Testudines: Pleurodira): a new species of Bairdemys and the paleoecology of Stereogenyina. PeerJ 3, e1063.

Ferreira, G.S. et al. (2020). Feeding biomechanics suggests progressive correlation of skull architecture and neck evolution in turtles. Scientific Reports 10(1), 1-11.

Foth, C. et al. (2017). Skull shape variation in extant and extinct Testudinata and its relation to habitat and feeding ecology. Acta Zoologica 98(3), 310-325.

Gaffney, E.S. (1979). Comparative cranial morphology of Recent and fossil turtles. Bulletin of the American Museum of Natural History 164(2), 67-376.

Hirayama, R. (1998). Oldest known sea turtle. Nature 392(6677), 705-708.

Ho & Ane 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology 63(3), 397-408.

Ives, A.R. (2019). R’s for correlated data: phylogenetic models, LMMs, and GLMMs. Systematic Biology 68(2), 234-251.

Jones, T.T. & Seminoff, J.A. (2013). Feeding Biology: Advances from Field-Based Observations, Physiological Studies, and Molecular Techniques. In The Biology of Sea Turtles (eds. Wyneken, J., Lohmann, K.J. & Musick, J.A.), 211-247. CRC Press.

Joyce, W.G. & Gauhtier, J.A. (2004). Palaeoecology of Triassic stem turtles sheds new light on turtle origins. Proceedings of the Royal Society of London. Series B: Biological Sciences 271(1534), 1-5.

Joyce, W.G. et al. (2021). A new pelomedusoid turtle, Sahonachelys mailakavava, from the Late Cretaceous of Madagascar provides evidence for convergent evolution of specialized suction feeding among pleurodires. Royal Society Open Science 8, 210098.

Kimmel, C.E. (1980). A Diet and Reproductive Study for Selected Species of Malaysian Turtles (Master thesis, Eastern Illinois University, Charleston, USA.). Retrieved from https://thekeep.eiu.edu/theses/3111/.

Lauder, G.V. & Prendergast, T. (1992). Kinematics of aquatic prey capture in the snapping turtle Chelydra serpentina. Journal of Experimental Biology 164(1), 55-78.

Legler, J. & Vogt, R.C. (2013). The Turtles of Mexico: Land and Freshwater Forms. University of California Press.

Lemell, P. et al. (2002). Feeding patterns of Chelus fimbriatus (Pleurodira: Chelidae). Journal of Experimental Biology 205(10), 1495-1506. Lemell et al. 2019

Mitchell, B.L. (1959). Some notes on the Nkhasi or Nyasa soft-shelled turtle (Cycloderma frenatum). The Journal of the Herpetological Association of Rhodesia 6(1), 5-6.

Molina, F.B. et al. (1998). Comportamento alimentar e dieta de Phrynops hilarii (Duméril & Bibron) em cativeiro (Reptilia, Testudines, Chelidae). Revista Brasileira de Zoologia, 15(1), 73-79.
Moll, E.O. (1980). Natural history of the river terrapin, *Batagur baska* (Gray) in Malaysia (Testudines: Emydidae). Malaysian Journal of Science 6(A), 23-62.

Motani & Schmitz 2011

Natchev, N. *et al.* (2008). Kinematic analysis of prey capture, prey transport and swallowing in the Common Musk Turtle *Sternotherus odoratus* (Chelonia, Kinosternidae). Comparative Biochemistry and Physiology, Part A 3(150), S95.

Natchev *et al.* 2015. Feeding behaviour in a ‘basal’ tortoise provides insights on the transitional feeding mode at the dawn of modern land turtle evolution. PeerJ 3, e1172.

Pereira, A.G. *et al.* (2017). Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Molecular Phylogenetics and Evolution 113, 59-66.

Pfaller, J.B. *et al.* (2010). Ontogenetic scaling of cranial morphology and bite-force generation in the loggerhead musk turtle. Journal of Zoology 280(3), 280-289.

Pritchard, P.C.H. (1979). Encyclopedia of Turtles. TFH Publications, Inc. Ltd.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Revell, L.J. (2009). Size correction and principal components for interspecific comparative studies. Evolution 63, 3258-3268.

Rhodin, A.G.J. *et al.* (1981). The occurrence of neustophagia among podocnemine turtles. British Journal of Herpetology 6, 175-176.

Ribeiro, L.E.S. *et al.* (2017). Diet of *Phrynops geoffroanus* (Schweigger 1812) (Chelidae) in an Environmental Protection Area in the Amazon region of Maranhão state, Brazil. Herpetological Conservation and Biology 12(2), 556-564.

Richards-Dimittrie, T. *et al.* (2013). Diet of northern map turtles (*Graptemys geographica*): sexual differences and potential impacts of an altered river system. Copeia 2013(3), 477-484.

Richter, S. *et al.* (2007). Variation of hyoid morphology in geoemydid terrapins. Amphibia-Reptilia 28(1), 148-153.

Schlager, S. (2017). Morpho and Rvcm – Shape Analysis in R. In Statistical Shape and Deformation Analysis (eds. Zheng, G, Li, S & Szekely, G.), 217–256. Academic Press. ISBN 9780128104934.

Sterli, J. *et al.* (2018). New remains of *Condorchelys antiqua* (Testudinata) from the Early-Middle Jurassic of Patagonia: anatomy, phylogeny, and paedomorphosis in the early evolution of turtles. Journal of Vertebrate Paleontology 38(4), 1-17.

Taylor, G. & Thomas, A. (2014). Evolutionary Biomechanics. Oxford University Press, Oxford.

Van Damme, J. & Aerts, P. (1997). Kinematics and functional morphology of aquatic feeding in Australian snake-necked turtles (*Pleurodira; Chelodina*). Journal of Morphology 233(2), 113-125.

Vanhooydonck, B. *et al.* (2007). Interactions between habitat use, behavior, and the trophic niche of lacertid lizards. In Lizard Ecology: The Evolutionary Consequences of Foraging Mode (eds. Reilly, S.M., McBrayer, L.D. & Miles, D.B.), 427-449. Cambridge University Press.

Vlachos, E. & Rabi, M. (2018). Total evidence analysis and body size evolution of extant and extinct tortoises (Testudines: Cryptodira: Pan-Testudinidae). Cladistics 34(6), 652-683.

Werneburg, I. (2015). Neck motion in turtles and its relation to the shape of the temporal emargination. Comptes Rendus Palevol 14(6-7), 527-548.

Wilman, H. *et al.* (2014). EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals. Ecological Archives, 95(7), 2027-2027.

Winokur, R.M. (1988). The buccopharyngeal mucosa of the turtles (Testudines). Journal of Morphology 196(1), 33-52.

Zimmerman, L.C. & Tracy, C.R. (1989). Interactions between the environment and ectothermy and herbivory in reptiles. Physiological Zoology 62(2), 374-409.
Extra SI References

The following references correspond to the primary literature used to obtain data on size-related, ecological and functional traits of extant turtles (see Supporting Information S1).

Alcalde, L. *et al.* (2010). Feeding in syntopy: diet of *Hydromedusa tectifera* and *Phrynops hilarii* (Chelidae). Chelonian Conservation Biology 9(1), 33-44.

Angielczyk, K.D. *et al.* (2015). Do turtles follow the rules? Latitudinal gradients in species richness, body size, and geographic range area of the world's turtles. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 324(3), 270-294.

Auliya, M. *et al.* (2016). *Amyda cartilaginea* (Boddart 1770) – Asian Softshell Turtle, Southeast Asian Softshell Turtle. In: Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B., and Mittermeier, R.A. (Eds.). Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs 5(9):092.1–17, doi:10.3854/crm.5.092.cartilaginea.v1.2016.

Aun, P.K. (1990). Malayan Testudines. The Journal of Wildlife and Parks, vol IX, pp. 20-31.

Barrio-Amorós, C.L. & Narbaiza, I. (2008). Turtles of the Venezuelan Estado Amazonas. Radiata 17(1), 2-19.

Behera, S. *et al.* (2015). Stomach contents of olive ridley turtles (*Lepidochelys olivacea*) occurring in Gahirmatha, Odisha coast of India. Proceedings of the Zoological Society 68(1), 91-95.

Bels, V.L. *et al.* (1998). Food ingestion in the estuarine turtle *Malaclemys terrapin*: comparison with the marine leatherback turtle *Dermochelys coriacea*. Journal of the Marine Biological Association of the United Kingdom 78(3), 953-972.

Bhupathy, S. *et al.* (2014). *Lissemys punctata* (Bonnaterre 1789) – Indian Flapshell Turtle. In Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B., & Mittermeier, R.A. (eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs, 5, pp. 076.1–12. doi:10.3854/crm.5.076.punctata.v1.2014.

Bjørndal, K.A. (1985). Nutritional ecology of sea turtles. Copeia 1985, 736-751.

Blake, S. *et al.* (2012). Seed dispersal by Galápagos tortoises. Journal of Biogeography 39(11), 1961-1972.

Bonin, F. *et al.* (2006). Turtles of the World. Johns Hopkins University Press.

Broadley, D.G. & Sachsee, W. (2011). *Cycloderma frenatum* Peters 1854 – Zambezi Flapshell Turtle, Nkhasi. In Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B., & Mittermeier, R.A. (eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs, 5, pp. 055.1–055.5. doi:10.3854/crm.5.055.frenatum.v1.2011.

Brown, W. (1974). Ecology of the aquatic box turtle, *Terrapene coahuila* (Chelonia, Emydidae) in northern Mexico. Bulletin of the Florida State Museum, Biology Science Series 19, 1–67.

Carr, A. & Stancyk, S. (1975). Observations on the ecology and survival outlook of the hawksbill turtle. Biological Conservation 8(3), 161-172.

Cayot, L.J. (1987). Ecology of Giant Tortoises (*Geochelone elephantopus*) in the Galapagos Islands (Doctoral dissertation, Syracuse University, New York, USA.). Retrieved from https://elibrary.ru/item.asp?id=7536757.

Çiçek, K. & Ayaz, D. (2011). Food composition of the European pond turtle (*Emys orbicularis*) in Lake Süülükü (Western Anatolia, Turkey). Journal of Freshwater Ecology 26(4), 571-578.

Colman, L.P. *et al.* (2014). Diet of olive ridley sea turtles, *Lepidochelys olivacea*, in the waters of Sergipe, Brazil. Chelonian Conservation and Biology 13(2), 266-271.
Das, I. & Bhupathy, S. (2009). Melanochelys trijuga (Schweigger 1812) – Indian black turtle. In Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B. & Mittermeier, R.A. (eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs, 5, pp. 038.1–038.9. doi:10.3854/crm.5.038.trijuga.v1.2009.

Das, I. & Bhupathy, S. (2010). Geoclemys hamiltonii (Gray 1830)–Spotted Pond Turtle, Black Pond Turtle. Chelonian Research Monographs, 5, 043-1.

Das, I. & Sengupta (2010). Morenia petersi Anderson 1879 – Indian eyed turtle. In Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B. & Mittermeier, R.A. (eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs, 5, pp. 045.1–045.5. doi:10.3854/crm.5.045.petersi.v1.2010.

Das, I. (2015). A Field Guide to the Reptiles of South-East Asia. Bloomsbury Publishing.

Davenport, J. et al. (1992). Feeding and digestion in the omnivorous estuarine turtle Batagur baska (Gray). Herpetological Journal 2(4),133–139.

DeGraaf, R.M. & Rudis, D.D. (1986). New England wildlife: habitat, natural history, and distribution. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment. 491 pp.

Demuth, J.P. & Buhlmann, K.A. (1997). Diet of the turtle Deirochelys reticularia on the Savannah River site, South Carolina. Journal of Herpetology 31(3), 450-453.

Diagne, T. et al. (2016). Cyclanorbis senegalensis. The IUCN Red List of Threatened Species 2016, e.T6005A96447114. http://dx.doi.org/10.2305/IUCN.UK.2016-2. RLTS.T6005A96447114.en.

Dreslik, M.J. (1999). Dietary notes on the red-eared slider (Trachemys scripta) and river cooter (Pseudemys concinna) from southern Illinois. Transactions of the Illinois State Academy of Science 92(3), 233-241.

Elsey, R.M. (2006). Food habits of Macrochelys temminckii (alligator snapping turtle) from Arkansas and Louisiana. Southeastern Naturalist 5(3), 443-452.

Fachín-Teran, A. et al. (1995). Food habits of an assemblage of five species of turtles in the Rio Guapore, Rondonia, Brazil. Journal of Herpetology 29, 536-547.

Forkerts, G.W. (1968). Food habits of the stripe-necked musk turtle, Sternotherus minor peltifer Smith and Glass. Journal of Herpetology 2(3/4), 171-173.

Garnett, S.T. et al. (1985). The diet of the green turtle, Chelonia mydas (L.), in Torres Strait. Wildlife Research 12(1), 103-112.

Georges, A. et al. (2008). Carettochelys insculpta Ramsay 1886 – pig-nosed turtle, Fly River turtle. In Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A. & Iverson, J.B. (eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs, 5, pp. 009.1-009.17. doi:10.3854/crm.5.009.insculpta.v1.2008.

Guebert-Bartholo, F.M. et al. (2011). Using gut contents to assess foraging patterns of juvenile green turtles Chelonia mydas in the Paranaguá Estuary, Brazil. Endangered Species Research 13(2), 131-143.

Hamilton, J. & Coe, M. (1982). Feeding, digestion and assimilation of a population of giant tortoises (Geochelone gigantea (Schweigger)) on Aldabra atoll. Journal of Arid Environments 5(2), 127-144.

Hazard, L.C. et al. (2010). Nutritional quality of natural foods of juvenile and adult desert tortoises (Gopherus agassizii): calcium, phosphorus, and magnesium digestibility. Journal of Herpetology, 44(1), 135-147.
Herrel, A. et al. (2002). Evolution of bite performance in turtles. Journal of Evolutionary Biology 15(6), 1083-1094.

Hossain, M.L. & Sarker, M.S.U. (1995). Observations on the narrow-headed softshell turtle (Chitra indica) in Bangladesh. Journal of the Bombay Natural History Society 92(3), 423-426.

Itescu, Y. et al. (2014). Is the island rule general? Turtles disagree. Global Ecology and Biogeography 23(6), 689-700.

Jensen, K.A. & Das, I. (2008). Dietary observations on the Asian softshell turtle (Amyda cartilaginea) from Sarawak, Malaysian Borneo. Chelonian Conservation and Biology 7(1), 136-141.

Jolman, M. (2003). “Rhinoclemmys pulcherrima” (On-line). Animal Diversity Web. Accessed June 17, 2020 at https://animaldiversity.org/accounts/Rhinoclemmys_pulcherrima/.

Jones, T.T. & Seminoff, J.A. (2013). Feeding Biology: Advances from Field-Based Observations, Physiological Studies, and Molecular Techniques. In The Biology of Sea Turtles (eds. Wyneken, J., Lohmann, K.J. & Musick, J.A.), 211-247. CRC Press.

Kennett, R. & Tory, O. (1996). Diet of two freshwater turtles, Chelodina rugosa and Elseya dentata (Testudines: Chelidae) from the wet-dry tropics of northern Australia. Copeia 409-419.

Kimmel, C.E. (1980). A Diet and Reproductive Study for Selected Species of Malaysian Turtles (Master thesis, Eastern Illinois University, Charleston, USA.). Retrieved from https://thekeep.eiu.edu/theses/3111/.

Kofron, C.P. & Schreiber, A.A. (1985). Ecology of two endangered aquatic turtles in Missouri: Kinosternon flavescens and Emydoida blandingii. Journal of Herpetology 19, 27-40.

Lauder, G.V. & Prendergast, T. (1992). Kinematics of aquatic prey capture in the snapping turtle Chelydra serpentina. Journal of Experimental Biology 164(1), 55-78.

Legler, J. & Vogt, R.C. (2013). The Turtles of Mexico: Land and Freshwater Forms. University of California Press.

Lemell, P. et al. (2002). Feeding patterns of Chelus fimbriatus (Pleurodira: Chelidae). Journal of Experimental Biology 205(10), 1495-1506.

Lideman, P.V. (1996). Comparative life history of painted turtles (Chrysemys picta) in two habitats in the inland Pacific Northwest. Copeia 1996, 114-130.

Lintner, M. et al. (2012). The oropharyngeal morphology in the semiaquatic giant Asian pond turtle, Heosemys grandis, and its evolutionary implications. PloS ONE 7(9), e46344.

Luiselli, L. et al. (2004). Dietary shifts of sympatric freshwater turtles in pristine and oil-polluted habitats of the Niger Delta, southern Nigeria. Herpetological Journal 14(2), 57-64.

MacDonald, L.A. & Mushinsky, H.R. (1988). Foraging ecology of the gopher tortoise, Gopherus polyphemus, in a sandhill habitat. Herpetologica 44, 345-353.

Mahmoud, I.Y. (1968). Feeding behavior in kinosternid turtles. Herpetologica 24(4), 300-305.

Mazerolle, M.J. (2020). AICmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-1. https://cran-r-project.org/package=AICmodavg.

Melendez, N.A. et al. (2017). Diet of bog turtles (Glyptemys muhlenbergii) from northern and southern New Jersey, USA. Herpetological Conservation and Biology 12, 272-278.

Méndez-Salgado, E. et al. (2020). Trophic ecology of hawksbill turtles (Eretmochelys imbricata) in Golfo Dulce, Costa Rica: integrating esophageal lavage and stable isotope (δ13C, δ15N) analysis. Latin American Journal of Aquatic Research 48(1), 114-130.

Meylan, A. (1988). Spongivory in hawksbill turtles: a diet of glass. Science 239(4838), 393-395.

Molina, F.B. et al. (1998). Comportamento alimentar e dieta de Phrynops hilarii (Duméril & Bibron) em cativeiro (Reptilia, Testudines, Chelidae). Revista Brasileira de Zoologia, 15(1), 73-79.
Moll, E.O. (1980). Natural history of the river terrapin, *Batagur baska* (Gray) in Malaysia (Testudines: Emydidae). Malaysian Journal of Science 6(A), 23-62.

Moll, E.O. (1989). Food and feeding behavior of the turtle, *Dermatemys mawei*, in Belize. Journal of Herpetology 23(4), 445-447.

Moll, E.O. *et al.* (2009). *Batagur baska* (Gray 1830) – northern river terrapin. In *Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B. & Mittermeier, R.A.* (eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs, 5, pp. 037.1–037.10. doi:10.3854/crm.5.037.baska.v1.2009.

Moskovits, D.K. & Bjorndal, K.A. (1990). Diet and food preferences of the tortoises *Geochelone carbonaria* and *G. denticulata* in northwestern Brazil. Herpetologica 46, 207-218.

Mwaya, R.T. *et al.* (2018). *Malacochersus tornieri* (Siebenrock 1903) – Pancake Tortoise, Tornier’s Tortoise, Soft-shelled Tortoise, Crevice Tortoise, Kobe Ya Mawe, Kobe Kama Chapati. In *Rhodin, A.G.J., Iverson, J.B., van Dijk, P.P., Stanford, C.B., Goode, E.V., Buhlmann, K.A., Pritchard, P.C.H. & Mittermeier, R.A.* (eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs, 5(12), pp. 107.1–107.10. doi:10.3854/crm.5.107.tornieri.v1.2018.

Nuthpand, W. (1979). The Turtles of Thailand. Siamfarm Zoological Garden. 222 pp.

Ota, H. *et al.* (2009). *Cuora flavomarginata* (Gray 1863) – yellow-marginined box turtle. In *Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B. & Mittermeier, R.A.* (eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs, 5, pp. 035.1–035.10. doi:10.3854/crm.5.035.flavomarginata.v1.2009.

Padgett, D.J. *et al.* (2010). The dietary composition of *Chrysemys picta picta* (eastern painted turtles) with special reference to the seeds of aquatic macrophytes. Northeastern Naturalist 17(2), 305-312.

Paradis, E. & Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in *R*. Bioinformatics 35, 526-528.

Parker, D.M. *et al.* (2005). Diet of oceanic loggerhead sea turtles (*Caretta caretta*) in the central North Pacific. Fishery Bulletin 103(1), 142-152.

Pérez-Emán, J.L. & Paolillo, A. (1997). Diet of the pelomedusid turtle *Peltodiscus dumerilius* in the Venezuelan Amazon. Journal of Herpetology 31(2), 173-179.

Pérez-Santigosa, N. *et al.* (2011). Does the exotic invader turtle, *Trachemys scripta elegans*, compete for food with coexisting native turtles?. Amphibia-Reptilia 32(2), 167-175.

Pinheiro, J. *et al.* (2020). nlme: Linear and Nonlinear Mixed Effects Models. *R* package version 3.1-148. https://CRAN.R-project.org/package=nlme.

Plummer, M.V. & Farrar, D.B. (1981). Sexual dietary differences in a population of *Trionyx muticus*. Journal of Herpetology 15, 175-179.

Pritchard, P.C.H. (1979). Encyclopedia of turtles. TFH Publications, Inc. Ltd.

Pritchard, 2008. *Chelus fimbriata* (Schneider 1783) – matamata turtle. In *Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A. & Iverson, J.B.* (eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs 5, pp. 020.1-020.10. doi:10.3854/crm.5.020.fimbriata.v1.2008.

Rasmussen, M.L. *et al.* (2009). Foraging ecology of spotted turtles (*Clemmys guttata*) in Ontario, Canada. Herpetological Review 40(3), 286.

Ribeiro, L.E.S. *et al.* (2017). Diet of *Phrynops geoffroanus* (Schweigger 1812) (Chelidae) in an Environmental Protection Area in the Amazon region of Maranhão state, Brazil. Herpetological Conservation and Biology 12(2), 556-564.
Richards-Dimitrie, T. et al. (2013). Diet of northern map turtles (Graptemys geographica): sexual differences and potential impacts of an altered river system. Copeia 2013(3), 477-484.

Rowe, J.W. (1992). Dietary habits of the Blanding’s turtle (Emydoidea blandingi) in northeastern Illinois. Journal of Herpetology 26(1), 111-114.

Rueda-Almonacid, J.V. et al. (2007). Las tortugas y los cocodrilianos de los países andinos del trópico. Serie de guías tropicales de campo 6, 412-423.

Schoppe, S. & Das, I. (2011). Cuora amboinensis (Riche in Daudin 1801) – Southeast Asian Box Turtle. In Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B. & Mittermeier, R.A. (eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs, 5, pp. 053.1–053.13. doi:10.3854/crm.5.053.amboinensis.v1.2011.

Seney, E.E. & Musick, J.A. (2005). Diet analysis of Kemp’s ridley sea turtles (Lepidochelys kempii) in Virginia. Chelonian Conservation and Biology 4(4), 864-871.

Souza, F.L. & Abe, A.S. (2000). Feeding ecology, density and biomass of the freshwater turtle, Phrynops geoffroanus, inhabiting a polluted urban river in south-eastern Brazil. Journal of Zoology 252(4), 437-446.

Spawls, S. et al. (2018). Field Guide to East African Reptiles. Bloomsbury Publishing.

Stephens, J.D. & Ryan, T.J. (2009). Diet of Trachemys scripta (red-eared slider) and Graptemys geographica (common map turtle) in an urban landscape. Urban Naturalist 21, 1-11.

Strang, C.A. (1983). Spatial and temporal activity patterns in two terrestrial turtles. Journal of Herpetology 17, 43-47.

Sung, Y.H. et al. (2016). Diet of the endangered big-headed turtle Platysternon megacephalum. PeerJ 4, e2784.

Tomas, J. et al. (2001). Feeding ecology of the loggerhead turtle Caretta caretta in the western Mediterranean. Journal of Zoology 255(4), 525-532.

Tucker, A.D. et al. (1995). Resource partitioning by the estuarine turtle Malaclemys terrapin: trophic, spatial, and temporal foraging constraints. Herpetologica 51, 167-181.

Vogt, R.C. et al. (2011). Dermatemys mawii Gray 1847 – Central American River Turtle, Tortuga Blanca, Hickatee. In Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B. & Mittermeier, R.A. (eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs, 5, pp. 058.1–058.12. doi:10.3854/crm.5.058.mawii.v1.2011.

Wang, E. et al. (2011). Food habits and notes on the biology of Chelonoidis carbonaria (Spix 1824) (Testudinidae, Chelonia) in the southern Pantanal, Brazil. South American Journal of Herpetology 6(1), 11-19.

Welsh, M.A. et al. (2017). Resource partitioning among five sympatric species of freshwater turtles from the wet–dry tropics of northern Australia. Wildlife Research 44(3), 219-229.