Homogeneous Lorentzian manifolds of semisimple group

D.V. Alekseevsky

Edinburgh University and Hamburg University

Abstract

We describe the structure of d-dimensional homogeneous Lorentzian G-manifolds $M = G/H$ of a semisimple Lie group G. Due to a result by N. Kowalsky, it is sufficient to consider the case when the group G acts properly, that is the stabilizer H is compact. Then any homogeneous space G/H with a smaller group $\tilde{H} \subset H$ admits an invariant Lorentzian metric. A homogeneous manifold G/H with a connected compact stabilizer H is called a minimal admissible manifold if it admits an invariant Lorentzian metric, but no homogeneous G-manifold G/\tilde{H} with a larger connected compact stabilizer $\tilde{H} \supset H$ admits such a metric. We give a description of minimal homogeneous Lorentzian n-dimensional G-manifolds $M = G/H$ of a simple (compact or noncompact) Lie group G. For $n \leq 11$, we obtain a list of all such manifolds M and describe invariant Lorentzian metrics on M.
Contents

1 Introduction 2

2 Preliminaries 4

3 Invariant Lorentzian metrics on a proper homogeneous G-manifolds 4
 3.1 A criterion for existence of an invariant Lorentzian metric on a proper homogeneous manifold $M = G/H$ 5
 3.2 Minimal homogeneous Lorentzian G-manifolds where $G = G_1 \times G_2$ is a direct product 7

4 Homogeneous Lorentzian manifolds of simple compact Lie group 8

5 Homogeneous Lorentzian manifolds of a simple noncompact Lie group 10
 5.1 Case when the group G has infinite center 10
 5.2 Duality 11
 5.3 A characterization of noncompact homogeneous Lorentzian manifolds of class I and class II 11
 5.4 Homogeneous Lorentzian $SL_n(\mathbb{R})$-manifolds 13
 5.5 Homogeneous Lorentzian G-manifolds where G is a simple Lie group of real rank one 15
 5.5.1 Case of the group $G = SO_{1,n}^0$ 15
 5.5.2 Case of the group $G = SU_{1,n}$ 16
 5.5.3 Case of the group $G = Sp_{1,n}$ 18
 5.5.4 Case of the group $G = F_4$ 19

6 Homogeneous Lorentzian class II manifolds of dimension $d \leq 11$ of a simple noncompact Lie group 19
 6.1 Case of the group $G = SO_{p,q}$ 20
 6.2 Case of the group $G = G_2$ 22
 6.3 The main theorem 22
1 Introduction

We discuss the problem of classification of homogeneous Lorentzian G-manifolds $M = G/H$ of a semisimple Lie group G. We say that a G-manifold M is proper if the action of the isometry group G on M is proper. In contrast with the Riemannian case, there are nonproper homogeneous Lorentzian manifolds, for example, the De Sitter space $dS^n = SO_{1,n}/SO_{1,n-1}$ and the anti De Sitter space $AdS^n = SO_{2,n}/SO_{1,n-1}$.

A surprising result by Nadin Kowalsky shows that these spaces of constant curvature exhaust all nonproper homogeneous Lorentzian manifolds of a simple group G (up to a local isometry).

This result had been generalized by M. Deffaf, K. Melnick and A. Zeghib to the case of a semisimple group G:

Any nonproper homogeneous Lorentzian manifold of a semisimple Lie group G is a local product of the (anti) De Sitter space and a Riemannian homogeneous manifold. This reduces the classification of homogeneous Lorentzian manifolds $M = G/H$ of a semisimple Lie group to the case when the stabilizer H is compact.

We will always assume that all considered Lie groups are connected. In particular, by a stability subgroup of an action of a Lie group on a manifold we will understand a connected stability subgroup.

We say that a proper homogeneous manifold $M = G/H$ (and the stability subgroup H) is **admissible** if M admits an invariant Lorentzian metric. Then any homogeneous manifold $G/	ilde{H}$, where $\tilde{H} \subset H$ is a closed subgroup is admissible. We say that $M = G/H$ is a **minimal admissible** manifold (and the stabilizer H is **maximal admissible**) if there is no admissible connected compact Lie subgroup \tilde{H} which contains H properly.

The main goal of the paper is to describe minimal admissible manifolds $M = G/H$ of a semisimple Lie group G and determine invariant Lorentzian metrics on them.

In section 2, we fix notations and recall an infinitesimal description of invariant pseudo-Riemannian metrics on a homogeneous manifold $M = G/H$ in terms of the Lie algebras $\mathfrak{g}, \mathfrak{h}$ of the groups G, H.

In section 3, we give a necessary and sufficient conditions that a proper homogeneous manifold admits an invariant Lorentzian metric. We also give a description of minimal admissible manifolds $M = G/H$ of a group G which is a direct product $G = G_1 \times G_2$. This reduces the classification of minimal admissible manifolds of a semisimple Lie group G to the case of a simple group.

An explicit description of minimal admissible manifolds $M = G/H$ of a simple compact Lie group G and invariant Lorentzian metrics on M is given in section 4. Any such manifold $M = G/H$ is the total space on the canonical T^1-bundle

$$\pi : M = G/H = G/H_\alpha \to F_\alpha = G/H_\alpha \cdot T^1$$

over a minimal adjoint orbit

$$\text{Ad}_G t_\alpha = G/Z_G(t_\alpha) = G/H_\alpha \cdot T^1.$$
The minimal adjoint orbits corresponds to simple roots α of G and are the orbits of elements t_{α} of a Cartan subalgebra associated with the corresponding fundamental weights. The stabilizer H_{α} is the semisimple part of the centralizer $Z_{G}(t_{\alpha})$. The Dynkin diagram of H_{α} is obtained from the Dynkin diagram of G by deleting the vertex α. Invariant Lorentzian metrics in $M = G/H_{\alpha}$ are described in terms of invariant Riemannian metrics in F_{α} and the invariant connection in the bundle π. If M is not the total space of the sphere bundle over a compact rank one symmetric space, then they depends on $m(\alpha) + 1$ real parameters, where $m(\alpha)$ is the Dynkin mark associated with the root α.

The section 5 is devoted to investigation of minimal homogeneous Lorentzian manifolds $M = G/H$ of a simple noncompact Lie group G. If G has infinite center, then the stabilizer H is a maximal compact subgroup of G. In the case of a finite center, the coset space $S = G/K$ by a maximal compact subgroup K is an irreducible Riemannian symmetric space with the symmetric decomposition $g = k + p$. Let $H \subset K$ be a closed subgroup and

$$g = h + m = h + (n + p)$$

the corresponding reductive decomposition, where $\mathfrak{k} = h + n$. The subgroup H is admissible if the space $m^{H} = n^{H} + p^{H}$ of Ad_{H}-invariant vectors is nontrivial. We say that the associated admissible manifold $M = G/H$ belongs to the class I if $n^{H} \neq 0$ and belongs to the class II if $p^{H} \neq 0$.

Geometrically, an admissible manifold $M = G/H$ belongs to the class I if it admits an invariant Lorentzian metric such that the projection $\pi : M = G/H \to S = G/K$ is a pseudo-Riemannian submersion with Lorentzian totally geodesic fibres K/H. In particular, the orbits of an invariant time-like vectors field on M are circles. An admissible manifold $M = G/H$ belongs to the class II, if it admits an invariant Lorentzian metrics with an invariant time-like vector field which generates a noncompact 1-parameter subgroup \mathbb{R}.

Classification of minimal admissible manifolds $M = G/H$ of a simple noncompact Lie group G reduces to description of maximal admissible subgroup H of the compact Lie group K. This problem had been solved in section 4.

The classification of admissible manifolds of class II of a simple Lie group G reduces to determination of the stabilizers $H = K_v$ of minimal orbits for the isotropy representation $j : K \to SO(p)$

of the symmetric space $S = G/K$. As an example, we determine such stabilizers K_v for the group $SL_n(\mathbb{R})$ and for all simple Lie groups of real rank one and describe invariant Lorentzian metrics on the associated minimal admissible manifold $M = G/K_v$.

Starting from the list of irreducible symmetric spaces G/K of dimension $m \leq 10$, by analyzing the isotropy representation $j(K)$ we derive also the list of all class II minimal admissible manifolds $M^d = G/H$ of dimension $d \leq 11$ and describe invariant Lorentzian metrics on M^d.

3
2 Preliminaries

By a homogeneous manifold $M = G/H$ we will understand the homogeneous manifold of a connected Lie group G modulo a closed connected subgroup H. We identify the tangent space $T_o M$ at the point $o = eH$ with the coset space $V = \mathfrak{g}/\mathfrak{h}$ where $\mathfrak{g} = \text{Lie}(G)$ is the Lie algebra of G and $\mathfrak{h} = \text{Lie} H$ is the subalgebra associated with the subgroup H. We denote by $j : H \to GL(V)$ (resp., $j : \mathfrak{h} \to \mathfrak{gl}(V)$) the isotropy representation of the stability subgroup H (resp., the stability subalgebra \mathfrak{h}). It is induced by the adjoint representation of H (resp., \mathfrak{h}). Since the group H is connected, a tensor T in V is $j(H)$-invariant if and only if it is $j(\mathfrak{h})$-invariant, that is $j(h)T = 0$ for all $h \in \mathfrak{h}$.

Recall the following

Proposition 1 There is a natural bijection between G-invariant Riemannian (resp., Lorentzian) metrics in a homogeneous space $M = G/H$ and $j(\mathfrak{h})$-invariant Euclidean (resp., Lorentzian) scalar products g_o in V. An invariant scalar product g_o defines the metric, whose value g_x at a point $x = L_o o := ao, a \in G$ is given by

$$g_x := (L_o)^* g_o = g_o((L_o)^{-1}, (L_o)^{-1}).$$

Sometimes we will identify g_o and g and say that g_o is an invariant metric in M.

Recall that if the group G acts effectively on a pseudo-Riemannian homogeneous manifold $M = G/H$, then the isotropy representation is exact and the stability subgroup H is isomorphic to the isotropy group $j(H) \subset GL(V)$. In particular, we have

Proposition 2 A homogeneous manifold $M = G/H$ admits an invariant Lorentzian metric if and only if the isotropy representation j defines an isomorphism of the stability group H onto a subgroup L of the connected Lorentz group $SO_0(V)$ or, equivalently, isomorphism of the stability subalgebra \mathfrak{h} onto a subalgebra \mathfrak{l} of the Lorentz algebra $so(V)$.

A homogeneous manifold $M = G/H$ is called to be **reductive** if there is an Ad_H-invariant (reductive) decomposition

$$\mathfrak{g} = \mathfrak{h} + \mathfrak{m}.$$

In this case, the complementary to \mathfrak{h} subspace \mathfrak{m} is identified with the tangent space $T_o M = \mathfrak{g}/\mathfrak{h}$ and the isotropy representation is identified with the restriction $\text{Ad}_H|\mathfrak{m}$ of the adjoint representation.

Any homogeneous manifold with a compact stabilizer is reductive.

3 Invariant Lorentzian metrics on a proper homogeneous G-manifolds

Definition 1 An action of a Lie group G on a manifold M is called **proper** if the map

$$G \times M \to M \times M, \ (a, x) \mapsto (ax, x)$$

is proper.
is proper, or, equivalently, \(G \) preserves a complete Riemannian metric on \(M \). In this case \(G \)-manifold \(M \) is called proper.

The orbit space \(M/G \) of a proper \(G \)-manifold is a metric space and has a structure of a stratified manifold.

For a nonproper \(G \)-manifold, the topology of the orbit space can be very bad, for example, non-Hausdorff, see e.g. the action of the Lorentz group on the Minkowski space. On the other hand, in most cases the isometry group of a compact Lorentzian manifold is compact and, hence, acts properly. G. D’Ambra [DA] proved that the isometry group of any simply connected compact analytic Lorentzian manifold is compact (hence, it acts properly). M. Gromov [DAG] states the problem of description of all compact Lorentzian manifolds which admits a noncompact (= nonproper) isometry group. It is a special case of his more general problem of classification of geometric structures of finite order on compact manifold with a noncompact group of automorphisms. Recall the following

Proposition 3 Let \(M = G/H \) be a homogeneous manifold with an effective action of \(G \). Then the following conditions are equivalent:

a) \(M = G/H \) is proper;

b) the stabilizer \(H \) is compact.

c) \(M \) admits an invariant Riemannian metric (which is defined by an \(H \)-invariant Euclidean metric \(g_o \) in \(T_o M_o = eH \in M \))

An \(H \)-invariant metric \(g_o \) can be constructed as the center of the ball of minimal radius in \(S^2(T^*_o M) \) (w.r.t. some Euclidean metric \(g_1 \)) which contains the orbit \(j(H)g_1 \).

3.1 A criterion for existence of an invariant Lorentzian metric on a proper homogeneous manifold \(M = G/H \)

Proposition 4 A proper homogeneous manifold \(M = G/H \) admits an invariant Lorentzian metric if and only if the isotropy group \(j(H) \) preserves an 1-dimensional subspace \(L = \mathbb{R}v \subset V = g/h \).

Moreover, let \(h \) be a \(j(H) \)-invariant Euclidean scalar product and \(\eta \) is the 1-form which defines the hyperplane \(L^\perp = \ker \eta \) orthogonal to \(L \). Then one can associate with \((L, h)\) an invariant Lorentzian scalar product

\[
g_0 = h - \lambda \eta \otimes \eta
\]

where \(\lambda > 0 \) is sufficiently big number, which defines an invariant Lorentzian metric in \(M \). Any invariant Lorentzian metric can be obtained by this construction.

Proof. The first claim is obvious. Now we prove that any invariant Lorentzian metric \(g \) on \(M \) is obtained by this construction. The restriction \(g_o = g|_o \) is a \(j(H) \)-invariant Lorentzian scalar product in \(V = T_o M \) and \(j(H) \) is a compact subgroup of the group
\[SO(V) = SO_{1,n-1} \] which preserves \(g_o \). Hence it belongs to a maximal compact subgroup \(O_{n-1} \subset SO_{1,n-1} \) which preserves a time-like line \(L = \mathbb{R} t \in V \). Then

\[h := \lambda \eta \otimes \eta + g_o \]

for \(\eta := g_o(t, \cdot) \) and sufficiently big \(\lambda > 0 \) is a \(j(H) \)-invariant Euclidean metric such that \(g = -\lambda \eta \otimes \eta + h \). So the Lorentzian metric \(g \) is obtained from a Riemannian metric (associated with \(h \)) by the described construction. \(\square \)

Corollary 1 If \((M = G/H, g) \) be a proper homogeneous Lorentzian manifold with connected stabilizer \(H \). Then it admits an invariant time-like vector field \(T \) with \(g(T, T) = -1 \) and the formula

\[h = \lambda g \circ T \otimes g \circ T + g \]

defines an invariant Riemannian metric for any \(\lambda > 1 \).

We will always assume in the sequel that the stability subgroup \(H \) is connected.

Definition 2 A proper homogeneous manifold \(M = G/H \) (and the corresponding stability group \(H \)) is called **admissible** if \(M \) admits an invariant Lorentzian metric. Moreover, a compact subgroup \(H \) is called **maximal admissible** if it is a maximal compact subgroup such that \(M = G/H \) admits an invariant Lorentzian metric. Then the manifold \(M = G/H \) is called a **minimal admissible manifold**.

Corollary 2 A proper homogeneous manifold \(M = G/H \) with a reductive decomposition \(g = h + m \) is admissible if and only if \(m^H \neq 0 \) where \(m^H \) is the space of \(\text{Ad}_H \)-invariant vectors from \(m \).

Proposition 5 Any closed subgroup \(H' \) of an admissible subgroup \(H \) is admissible.

Proof. Let \(g = h + m \) be a reductive decomposition of an admissible manifold \(M = G/H \) and \(H' \subset H \) is a subgroup with \(h' = \text{Lie}H' \). Then

\[g = h' + m' = h' + (p + m), \]

where \(p \) is an \(\text{Ad}_{H'} \)-invariant complement to \(h' \) in \(h \), is a reductive decomposition of \(G/H' \) and

\[m^{H'} = p^{H'} + m^{H'} \supset m^H \neq 0. \]

This shows that \(H' \) is an admissible subgroup. \(\square \)

The above observations reduce the problem of description of admissible homogeneous \(G \)-manifolds \(M = G/H \) to classification of maximal admissible subgroups \(H \) of \(G \) and a description of all closed subgroup of the (compact) maximally admissible groups \(H \). The problem of construction of all invariant Lorentzian metrics on a given admissible homogeneous manifold \(M = G/H \) with a reductive decomposition \(g = h + m \) reduces to a description of all invariant Riemannian metrics on \(M \) (or , equivalently, \(\text{ad}_h \)-invariant
Euclidean scalar products in \mathfrak{m}) and a description of the space \mathfrak{m}^H of Ad_H-invariant vectors in \mathfrak{m}.

Example Let $M = G/H$ be an admissible homogeneous manifold with a reductive decomposition $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$. Assume that the $j(H)$-module \mathfrak{m} admits a decomposition

$$\mathfrak{m} = \mathfrak{m}_0 + \mathfrak{m}_1 + \cdots + \mathfrak{m}_k$$

where \mathfrak{m}_0 is a trivial module and \mathfrak{m}_i, $i > 0$ are non-equivalent irreducible modules. Then any invariant Lorentzian metric on M is defined by a scalar product of the form

$$g = g_0 + \lambda_1 g_1 + \cdots + \lambda_k g_k$$

where g_0 is a Lorentzian scalar product, g_i are invariant Euclidean scalar product in \mathfrak{m}_i, $i > 0$ and λ_i are positive numbers.

We will use this construction in the sequel.

3.2 Minimal homogeneous Lorentzian G-manifolds where $G = G_1 \times G_2$ is a direct product

In this subsection we describe the structure of minimal admissible homogeneous G-manifold $M = G/H$ where $G = G_1 \times G_2$ is a direct product of two Lie groups. It reduces the classification of minimal admissible homogeneous manifolds of a semisimple Lie group G to the case of simple Lie group G.

The reductive decomposition of $M = (G_1 \times G_2)/H$ can be written as

$$\mathfrak{g} = \mathfrak{h} + \mathfrak{m} = (\mathfrak{h}_1 + \mathfrak{h}_1 + \mathfrak{l}) + (\mathfrak{m}_1 + \mathfrak{m}_2 + \mathfrak{l}_1)$$

where $\mathfrak{h}_i = \mathfrak{h} \cap \mathfrak{g}_i$, \mathfrak{l} is the complementary to $\mathfrak{h}_1 + \mathfrak{h}_2$ ideal of \mathfrak{h}, $\mathfrak{l}_i = \pi_i(\mathfrak{l}) \simeq \mathfrak{l}$ is the projection of \mathfrak{l} to \mathfrak{h}_i and \mathfrak{m}_i is an $\text{ad}_\mathfrak{h}$-invariant complement to the compact subalgebra $\mathfrak{h}_i + \mathfrak{l}_i$ in \mathfrak{g}_i, $i = 1, 2$. Assume that the space \mathfrak{m}_1^H of H-invariant vectors in \mathfrak{m}_1 is not zero. Then the subalgebra $\mathfrak{h}_1 + \mathfrak{l}_1 + \mathfrak{h}_2 + \mathfrak{l}_2$ generates an admissible subgroup which, by maximality of H, coincides with H. Hence $\mathfrak{l} = 0$ and the homogeneous manifold M is a direct product $M = G/H = G_1/H_1 \times G_2/H_2$. Note that a subgroup $H_1 \times H_2 \subset G_1 \times G_2$ is maximal admissible if one of the factors, say H_1 is a maximal admissible subgroup of G_1 and the other factor H_2 is a maximal compact subgroup of G_2.

Assume now that $\mathfrak{m}_i^H = 0$, $i = 1, 2$. Then the compact subalgebra \mathfrak{l}_1 must have a center and from the condition that H is a maximal admissible subgroup we conclude that $\mathfrak{l}_i = \mathbb{R} t_i$ is an 1-dimensional subalgebra of \mathfrak{g}_i and $\mathfrak{h}_i + \mathbb{R} t_i$ is its centralizer in a maximal compact subalgebra \mathfrak{t}_i of \mathfrak{g}_i. This implies the following result.

Theorem 1 Let $M = G/H$ be a minimal admissible homogeneous manifold of a Lie group $G = G_1 \times G_2$.
If \(H = H_1 \times H_2 \) is consistent with the decomposition of \(G \), then one of the subgroups \(H_1, H_2 \), say \(H_1 \), is maximal admissible in \(G_1 \) and the other subgroup \(H_2 \) is maximal compact subgroup of \(G_2 \).

If \(H \) is not consistent with the decomposition, then its Lie algebra has the form

\[
h = h_1 + h_2 + \mathbb{R}(t_1 + t_2)
\]

where \(h_i + \mathbb{R}t_i = Z_{\mathfrak{k}_i}(t_i) \) is the centralizer of an element \(t_i \in \mathfrak{g}_i \) into a maximal compact subalgebra \(\mathfrak{k}_i := \text{Lie} K_i \) of \(\mathfrak{g}_i \), \(i = 1, 2 \). The reductive decomposition associated with \(M = G/H \) can be written as

\[
g = h + m = h + (m_1 + m_2 + \mathbb{R}(t_1 - t_2))
\]

where \(m_i \) is an \(\text{ad}_h \)-invariant complement to \(Z_{\mathfrak{k}_i}(t_i) \) in \(\mathfrak{g}_i \).

This theorem can be applied to the case when \(G \) is a semisimple Lie algebra and it reduces the description of admissible homogeneous manifolds of a semisimple Lie group \(G \) to the case of simple Lie groups.

4 \ Homogeneous Lorentzian manifolds of simple compact Lie group

Let \(G \) be a compact simple Lie group. The adjoint orbit \(F = \text{Ad}_G t \simeq G/Z_G(t) \) of \(G \) is called to be minimal, if the stability subgroup \(Z_G(t) \) (which is the centralizer of an element \(t \in \mathfrak{g} \)) is not contained properly in the centralizer of other non-zero element \(t' \in \mathfrak{g} \). Recall that the centralizer \(Z_G(t) \) is connected.

It is know, see, for example [Al2] that the orbit \(F \) if minimal if and only if \(Z_G(t) \) has 1-dimensional center \(T^1 = \{ \exp \lambda t \} \) and can be written as \(Z_G(t) = H \cdot T^1 \) where \(H \) is a semisimple normal subgroup. Minimal adjoint orbits (up to an isomorphism) correspond to simple roots \(\alpha \) of the Lie algebra \(\mathfrak{g} \). Moreover, the Dynkin diagram of the semisimple group \(H \) is obtained from the Dynkin diagram of \(\mathfrak{g} \) by deleting the vertex \(\alpha \). We will denote the minimal orbit associated with a simple root \(\alpha \) by \(F_\alpha \). Below we give the list of all such semisimple subgroups \(H \) for all simple Lie groups \(G \):

\[
\begin{align*}
G &= SU_n, \quad H = SU_p \times SU_q, \quad p + q = n, \quad p = 1, 2, \ldots, n - 1; \\
G &= SO_n, \quad H = SU_p \times SO_q, \quad 2p + q = n, \quad p = 1, 2, \ldots, \left\lfloor \frac{n}{2} \right\rfloor; \\
G &= Sp_n, \quad H = Sp_p \times Sp_q, \quad n = p + q, \quad p = 1, 2, \ldots, n - 1; \\
G &= G_2, \quad H = SU_{2}^{\text{short}} \times SU_{2}^{\text{long}} \\
G &= F_4, \quad H = Sp_3, \quad SU_3^{\text{short}} \times SU_2^{\text{long}}, \quad SU_2^{\text{short}} \times SU_3^{\text{long}}, \quad Spin_7; \\
G &= E_6, \quad H = Spin_{10}, \quad SU_2 \times SU_5, \quad SU_3 \times SU_3 \times SU_2, \quad SU_6; \\
G &= E_7, \quad H = E_6, \quad SU_2 \times Spin_{10}, \quad SU_3 \times SU_5, \quad SU_4 \times SU_3 \times SU_2, \quad SU_6 \times SU_2, \quad Spin_{12}, \quad SU_7; \\
G &= E_8, \quad H = E_7, \quad SU_2 \times E_6, \quad SU_3 \times Spin_{10}, \quad SU_4 \times SU_5, \quad SU_5 \times SU_3 \times SU_2, \quad SU_7 \times SU_2, \quad Spin_{14}.
\end{align*}
\]
Let \(F_\alpha = G/H \cdot T^1 \) be a minimal orbit associated with a simple root \(\alpha \). Then
\[
\pi : M_\alpha = G/H \to F_\alpha = G/H \cdot T^1
\]
is a principal fibration with the structure group \(T^1 \). Denote by
\[
\theta : TM_\alpha \to \mathbb{R} = \text{Lie}(T^1)
\]
the \(G \)-invariant principal connection defined by the condition \(\theta(t) = 1, \theta(p) = 0 \) where
\[
g = (\mathfrak{h} + \mathbb{R}t) + \mathfrak{p}
\]
is the reductive decomposition associated with the orbit \(F_\alpha = G/H \cdot T^1 \). We say that \(\pi \) is the canonical \(T^1 \) bundle with connection over the orbit \(F_\alpha \).

It is known that the tangent space \(T_oF_\alpha \simeq \mathfrak{p} \) as an \(\text{Ad}(H \cdot T^1) \)-module is decomposed into mutually non equivalent irreducible submodules
\[
\mathfrak{p} = \mathfrak{p}_1 + \cdots + \mathfrak{p}_m
\]
and the number \(m \) of these submodules equal to the Dynkin number \(m(\alpha) = m_i \) of the corresponding simple root \(\alpha = \alpha_i \) that is the coordinate \(m_i \) over \(\alpha_i \) in the decomposition \(\mu = \sum_j m_j \alpha_j \) of the maximal root \(\mu \) with respect to the simple roots \(\alpha_1, \cdots, \alpha_r \). This implies that any invariant Riemannian metric \(g_F \) in \(F \) at the point \(o = e(H \cdot T^1) \) is given by
\[
g_o = \lambda_1 b_1 + \cdots + \lambda_m b_m
\]
where \(b_j = -B|_{\mathfrak{p}_j} \) is the restriction of the minus Killing form \(-B \) to \(\mathfrak{p}_j \) and \(\lambda_j \) are positive constants.

Theorem 2 Any minimal admissible manifold of a simple compact Lie group \(G \) is the total space \(M_\alpha = G/H \) of the canonical fibration over a minimal orbit \(F = F_\alpha = G/H_\alpha \cdot T^1 \). Moreover, if \(M = G/H_\alpha \) is not the total space of the sphere bundle of a compact rank one symmetric space that is
\[
S(S^n) = \text{SO}_{n+1}/\text{SO}_{n-1}, \text{Spin}_7/\text{SU}_3 = S(S^7) = S^7 \times S^6, S(S^3) = \text{SU}_2 \times \text{SU}_2/T^1 = S^3 \times S^2;
\]
\[
S(\mathbb{C}P^n) = \text{SU}_{n+1}/\text{SU}_n, S(\mathbb{H}^n) = \text{Sp}_{n+1}/\text{Sp}_1 \times \text{Sp}_n/\text{Sp}_2, S(\mathbb{O}P^2) = F_4/\text{Spin}_7
\]
then any invariant Lorentz metric \(g \) on \(M \) is given by
\[
g = -\lambda \theta^2 + \pi^* g_F
\]
where \(\theta \) is the principal connection, \(g_F \) is an invariant Riemannian metric on \(F \) and \(\lambda \) is a positive number. In particular, the metric \(g \) depends on \(m(\alpha) + 1 \) positive parameters, where \(m(\alpha) \) is the Dynkin mark.

Proof. Let \(M = G/H \) be a minimal admissible homogeneous manifold of a simple compact Lie group \(G \) with the reductive decomposition \(\mathfrak{g} = \mathfrak{h} + \mathfrak{m} \). Denote by \(t \in \mathfrak{m} \) an \(\text{Ad}_H \)-invariant non-zero vector. We can assume that \(t \) generates a closed one-parameter
subgroup since \(H \) preserves pointwise the curve \(\exp \lambda t \), hence, also its closure in \(G \). The centralizer \(\mathfrak{z}(t) \) of \(t \) in \(\mathfrak{g} \) can be decomposed into a direct sum \(\mathfrak{z}(t) = \mathfrak{h} + \mathbb{R}t \) where \(\mathfrak{h} \supset \mathfrak{h} \) is a subalgebra which generates a closed subgroup \(\tilde{H} \) of \(G \). Since \(\text{Ad}_{\tilde{H}} \) preserves \(t \), the homogeneous space \(G/\tilde{H} \) is admissible and due to minimality of \(M \) it coincides with \(M \). Hence, \(H = \tilde{H} \) and \(Z_G(t) = H \cdot T^1 \) where \(T^1 \) is the closed subgroup generated by \(t \). It is proven in [AS], that if \(M \) is not the total space of the sphere bundle of a compact rank one symmetric space, then all irreducible \((H \cdot T^1) \)-submodules of the decomposition (1) remain irreducible and non-equivalent as \(H \)-submodules. This implies the last claim of the theorem.

\[\square \]

5 Homogeneous Lorentzian manifolds of a simple noncompact Lie group

Now we consider minimal admissible homogeneous manifolds of a simple noncompact Lie group \(G \).

5.1 Case when the group \(G \) has infinite center

Assume at first that \(G \) has infinite center. It is known that such group \(G \) acts transitively (and almost effectively) on a non-compact irreducible Hermitian symmetric space \(S = G/K \cdot \mathbb{R} \) with the symmetric decomposition

\[\mathfrak{g} = (\mathfrak{k} + \mathbb{R}t) + \mathfrak{p} \]

where \(\mathbb{R}t \) is the 1-dimensional centralizer of the Lie algebra \(\mathfrak{k} \) of a maximal compact subgroup \(K \) of \(G \) and \(\text{ad}_{\mid \mathfrak{p}} \) is \(j(K \cdot \mathbb{R}) \)-invariant complex structure in the tangent space \(\mathfrak{p} = T_o S \). Obviously, we get the following

Proposition 6 Let \(G \) be a simple non-compact Lie group and \(S = G/K \cdot \mathbb{R} \) the associated Hermitian symmetric space. Then the manifold \(M = G/K \) is the only minimal admissible \(G \)-manifold and all invariant Lorentzian metrics on \(M \) are defined by the scalar product in \(\mathfrak{m} = \mathbb{R}t + \mathfrak{p} \) of the form

\[g = -\lambda \theta^2 + gp \]

where \(\lambda > 0 \), \(\theta \) is the 1-form dual to the vector \(t \) (such that \(\theta(t) = 0, \theta(p) = 0 \)) and \(gp \) is the invariant Euclidean scalar product in \(\mathfrak{p} \) which defines the symmetric Riemannian metric in \(S \). In particular,

\[\pi : M = G/K \rightarrow S = G/K \cdot \mathbb{R} \]

is a pseudo-Riemannian submersion.
5.2 Duality

Now we will assume that G is a simple noncompact Lie group with a finite center. Then the quotient $S = G/K$ by a maximal compact subgroup K is a symmetric space of noncompact type. We will denote by $\hat{S} = \hat{G}/\hat{K}$ the dual compact symmetric space. Let

$$\mathfrak{g} = \mathfrak{h} + \mathfrak{p}$$

be a symmetric decomposition associated with the symmetric space S. Then the symmetric decomposition associated with \hat{S} can be written as

$$\hat{\mathfrak{g}} = \mathfrak{h} + i\mathfrak{p}$$

where $[iX, iY] = -[X, Y]$ for $X, Y \in \mathfrak{p}$.

In particular, the dual symmetric spaces S, \hat{S} have the same stabilizer K and isomorphic isotropy representation $j(K) = Ad_K|_{\mathfrak{p}} \simeq Ad_K|_{i\mathfrak{p}}$. This implies the natural bijection between (maximal) admissible subgroups $H \subset K$ of the dual Lie groups G and \hat{G}. In terms of homogeneous Lorentzian manifolds this can be reformulated as follows.

Proposition 7 There exists a natural one-to-one correspondence between proper homogeneous Lorentzian G-manifolds $M = G/H$ of a simple noncompact Lie group G and homogeneous Lorentzian manifolds $\hat{M} = \hat{G}/\hat{H}$ of the dual compact Lie group \hat{G} such that the stabilizer H belongs to the subgroup $K \subset \hat{G}$.

Proof. Let $M = G/H, H \subset K$ be an admissible G-manifold with reductive decomposition

$$\mathfrak{g} = \mathfrak{h} + \mathfrak{m} := \mathfrak{h} + (\mathfrak{n} + \mathfrak{p}), \ \mathfrak{k} = \mathfrak{h} + \mathfrak{n}$$

with the invariant Lorentzian metric defined by an Ad_H-invariant Lorentzian scalar product g_o in $\mathfrak{m} = \mathfrak{h} + \mathfrak{p}$, then the dual compact homogeneous Lorentzian manifold is the homogeneous manifold $\hat{M} = \hat{G}/\hat{H}$ with the reductive decomposition

$$\hat{\mathfrak{g}} = \mathfrak{h} + \hat{\mathfrak{m}} := \mathfrak{h} + (\mathfrak{n} + i\mathfrak{p})$$

and the metric defined by the Lorentzian scalar product in $\hat{\mathfrak{m}}$ which corresponds to the scalar product g_o under the natural isomorphism

$$\hat{\mathfrak{m}} = \mathfrak{n} + i\mathfrak{p} \simeq \mathfrak{m} = \mathfrak{n} + \mathfrak{p}.$$

\[\square\]

5.3 A characterization of noncompact homogeneous Lorentzian manifolds of class I and class II

Let $M = G/H, H \subset K$ be an admissible homogeneous space of a noncompact simple Lie group G with the reductive decomposition $[2]$. Then the space $\mathfrak{m}^H = \mathfrak{n}^H + \mathfrak{p}^H$ of $j(H)$-invariant vectors is not zero.
Definition 3 We say that the admissible homogeneous manifold \(M = G/H \) belongs to
the class I if \(n^H \neq 0 \) and belongs to the class II if \(p^H \neq 0 \).

Geometrically, homogeneous spaces of the class I and the class II can be characterized
as follows.

Proposition 8 An admissible \(G \)-manifold \(M = G/H \) of a simple noncompact Lie group
\(G \) belongs to the class I if it admits an invariant Lorentzian metric such that \(\pi : M = G/H \to S = G/K \) is a pseudo-Riemannian submersion with totally geodesic Lorentzian
fibres over the noncompact Riemannian symmetric space \(S = G/K \). In particular, the
invariant time-like vector field generate a compact group \(S^1 \).

An admissible manifold \(M = G/H \) belongs to the class II if it admits an invariant
Lorentzian metric with a time-like invariant vector field, which generates a noncompact
1-parameter subgroup \(\mathbb{R} \).

Proof. Assume that \(M \) belongs to the class I. Let \(t \in n^H \) be an \(H \)-invariant vector and
\(g = g_n \oplus g_p \) an Euclidean scalar product in \(m \) which is a sum of \(\text{Ad}_n \)-invariant scalar
product in \(n \) and the unique (up to a scaling) \(\text{Ad}_K \)-invariant scalar product in \(p \). Then
the invariant Lorentzian metric in \(M \) defined by the Lorentzian scalar product of the form
\(g_{\lambda, \lambda} = g - \lambda g \circ t \otimes g \circ t \) for sufficiently big \(\lambda \) satisfies the stated property. \(\square \)

Remark It is possible that a minimal admissible \(G \)-manifold belongs to the class I
and the class II at the same time.

Let \(K \subset GL(V) \) be a linear Lie group. Recall that by the (connected) stabilizer \(K_v \) of
a vector \(v \in V \) we understand the connected component of the subgroup which preserves \(v \).

Definition 4 Let \(K \subset GL(V) \) be a linear Lie group. The orbit \(K_v \) of a vector \(v \neq 0 \) is
called a minimal orbit is the the (connected) stabilizer \(K_v \) does not contained properly
in the (connected) stabilizer \(K_w \) of any other non-zero vector \(w \). Then the stabilizer \(K_v \is called a maximal stabilizer.

The following obvious proposition reduces the classification of all minimal admissible
homogeneous \(G \)-manifolds \(M = G/H \) of the class I to the classification of maximal admissible
subgroups \(H \) of the maximal compact subgroup \(K \) of \(G \) and the classification of
such manifolds of the class II to the description of maximal isotropy subgroups \(K_v \) of the
isotropy representation \(\text{Ad}_K|p \) of the symmetric space \(S = G/K \).

Proposition 9 Let \(M = G/H \) be a minimal admissible homogeneous \(G \)-manifold of a
simple noncompact Lie group \(G \).

i) If \(M \) belongs to the class I, then \(H \) is a maximal admissible subgroup of a maximal
compact subgroup \(K \supset H \) of \(G \).

ii) If \(M \) belongs to the class II, then \(H = K_v \) is a maximal (connected) stabilizer of the
isotropy representation of the Riemannian symmetric space \(S = G/K \).
Let \(\mathfrak{g} = \mathfrak{k} + \mathfrak{p} \) be the symmetric decomposition of a symmetric space \(S = G/K \). For any nonzero vector \(v \in \mathfrak{p} \) we denote by \(\mathfrak{k}_v \) the stability subalgebra of the isotropy representation \(j(\mathfrak{t}) \) and by \(K_v \subset K \) corresponding connected stability subgroup.

Definition 5 The subalgebra \(\mathfrak{k}_v \subset \mathfrak{k} \) (resp., corresponding subgroup \(K_v \subset K \)) is called a maximal stability subalgebra (resp., maximal stability subgroup) if it does not contained properly in any other stability subalgebra (resp., stability subgroup) of the isotropy representation of \(G/K \).

Proposition 10 Let \(S = G/K \) be a symmetric space of noncompact type and \(H \subset K \) a maximal admissible subgroup of \(K \) such that the admissible manifold \(G/H \) belongs to the class II. Then \(H = H_v \) is a maximal stability subgroup of \(K \). Conversely, any maximal stability subgroup \(K_v \) of \(K \) is admissible and defines an admissible manifold \(M = G/K_v \) of the class II.

So the classification of proper homogeneous Lorentzian manifolds of a semisimple noncompact group \(G \) reduces to description of maximal stability subgroups \(K_v \) of the isotropy representation of the associated symmetric space \(S = G/K \).

Due to theorem 1, it is sufficient to describe such subgroups for simple Lie groups.

5.4 Homogeneous Lorentzian \(SL_n(\mathbb{R}) \)-manifolds

In this subsection we classify all minimal homogeneous Lorentzian \(G \)-manifolds of the class II where \(G = SL_n(\mathbb{R}) \).

Let \(S = SL_n(\mathbb{R})/SO_n \). We identify \(S \) with the codimension one orbit \(SL_n(\mathbb{R})g_0 \) of the Euclidean metric \(g_0 \) in the space \(S^2V^* \) of symmetric bilinear forms in \(V = \mathbb{R}^n \) (or with the space of symmetric matrices). In particular, the tangent space \(T_{g_0}S = T_0S \) is identified with the space of \(S_0^2(V^*) \) of traceless (w.r.t. \(g_0 \)) bilinear forms. Let \(V = U + W \) be a decomposition of \(V \) into a \(g_0 \)-orthogonal sum of subspaces of dimension \(p \) and \(q \), respectively, and \(H = SO(U) \times SO(W) = SO_p \times SO_q \) the connected subgroup of \(SO(V) = SO_n \) which preserves this decomposition. Consider the homogeneous manifold

\[
M_{p,q} = G/H := SL_n(\mathbb{R})/SO_p \times SO_q, \quad p + q = n.
\]

It has the natural fibration

\[
M_{p,q} = SL_n/(SO_p \times SO_q) \to S = SL_n/SO_n
\]
over the symmetric space $S = SL_n/SO_n$ with the Grassmannian $Gr_p(\mathbb{R}^n) = SO_n/SO_p \times SO_q$ as a fibre. The Grassmannian is an irreducible symmetric manifold with the symmetric decomposition
$$\mathfrak{so}_n = \mathfrak{so}(V) = (\mathfrak{so}(U) + \mathfrak{so}(W)) + U \wedge W.$$ Then the reductive decomposition of the homogeneous manifold
$$M_{p,q} = SL(V)/SO(U) \times SO(W) = SL_n(\mathbb{R})/SO_p \times SO_q$$
can be written as
$$\mathfrak{g} := \mathfrak{sl}(V) = \mathfrak{h} + \mathfrak{m} = (\mathfrak{so}(U) + \mathfrak{so}(W)) + (\mathbb{R}b + U^* \wedge W^* + S_0^2U^* + S_0^2W^* + U^* \vee W^*)$$
where \vee is the symmetric product, $b := qg_0|_U - pg_0|_W$ and $S_0^2U^*, S_0^2W^*$ are irreducible submodules of traceless bilinear forms. As a $j(H)$-module, the tangent space \mathfrak{m} is isomorphic to
$$\mathfrak{m} = \mathbb{R}b + (U \otimes V) \otimes \mathbb{R}^2 + S_0^2U + S_0^2W.$$ In particular,
$$\mathfrak{m}^H = \mathbb{R}b \neq 0.$$ We get

Proposition 11 The homogeneous manifold $M_{p,q}$ is an admissible manifold. Any invariant Lorentzian metric on it is defined by the scalar product of the form
$$g = -\lambda_1 b^* \otimes b^* + g_1 \otimes g_{\mathbb{R}^2} + \lambda_2 g_2 + \lambda_3 g_3$$
where $\lambda_i, i = 1, 2, 3$ are positive constants, g_1, g_2, g_3 are the Euclidean scalar products in $U \otimes V, S_0^2U$ and S_0^2W respectively, induced by the metric g_0 and $g_{\mathbb{R}^2}$ is an Euclidean scalar product in \mathbb{R}^2.

The following theorem shows that the spaces $M_{p,q}$ exhaust all minimal homogeneous Lorentzian $SL_n(\mathbb{R})$-manifolds of the class II.

Theorem 3 A minimal admissible homogeneous $SL_n(\mathbb{R})$-manifold M of class II is isomorphic to the manifold $M_{p,q} = SL_n/(SO_p \times SO_q)$ for some p, q with $p + q = n$.

Proof. The isotropy representation j of the symmetric space $S = SL_n(\mathbb{R})/SO_n$ is the standard representation of $K = SO_n$ in the space $T_0S = S_0^2\mathbb{R}^n$ of traceless symmetric matrices. The stability subgroups of $j(SO_n)$ are $SO_{p_1} \times \cdots \times SO_{p_s}$ and maximal admissible subgroups are $SO_p \times SO_q$. They defines manifolds $M_{p,q}$. \qed

14
5.5 Homogeneous Lorentzian G-manifolds where G is a simple Lie group of real rank one

In this subsection we describe minimal homogeneous Lorentzian manifolds $M = G/H$ of the class II for all simple Lie group G of real rank 1. The isotropy group $j(K)$ of the associated rank one symmetric space $S = G/K$ acts transitively on the unit sphere in T_oS and the stability subgroups K_v of a point $0 \neq v \in T_oS$ is unique (up to a conjugation), hence, maximal.

The list of all noncompact rank one symmetric space $S = G/K$ is given below, see [H].

List of rank one noncompact symmetric spaces $S = G/K$.

- $\mathbb{R}H^n = SO_{1,n}/SO_n$, $\mathbb{C}H^n = SU_{1,n}/U_n$, $\mathbb{H}H^n = Sp_{1,n}/Sp_1 \times Sp_n$, $\mathbb{O}P^2 = F_4/Spin_9$.

We describe corresponding minimal admissible manifolds $M = G/H = G/K_v$ of the class II for each of these groups together with the reductive decomposition $g = h + m$ and the decomposition of the tangent space m into irreducible $j(H)$-modules. It allows to give an explicit description of all invariant Lorentzian metrics on M.

5.5.1 Case of the group $G = SO_{1,n}^0$

Let $V = \mathbb{R}^{1,n}$ is the Minkowski vector space and $V = \mathbb{R}e_0 + E$ its decomposition where $e_0, e_0^2 = -1$, is a unit time-like vector and $E = e_0^\perp$. The hyperbolic space is the orbit $\mathbb{R}H^n = G/K = SO_{1,n}^0e_0$ and $E = T_{e_0}\mathbb{R}H^n$ is the tangent space with the standard action of the isotropy group $SO_n = SO(E)$. We will identify the Lie algebra $\mathfrak{so}_{1,n} = \mathfrak{so}(V)$ with the space Λ^2V of bivectors. Then the reductive decomposition of G/K is given by

$$g = \mathfrak{h} + \mathfrak{p} = \Lambda^2E + e_0 \wedge E.$$

The stability subalgebra $\mathfrak{h} = \mathfrak{k}_{e_1}$ of a unit vector $e_1 \in E$ is $\mathfrak{so}(W) = \Lambda^2W$ where $W = e_1^\perp$ is the orthogonal complement of e_1 in E. This implies

Proposition 12 The only class II minimal admissible manifold of the group $G = SO_{1,n}$ is the manifold $M = SO_{1,n}^0/\text{SO}_{n-1}$. It has the reductive decomposition

$$\mathfrak{so}_{1,n} = \mathfrak{so}(V) = \mathfrak{so}(W) + (\mathbb{R}(e_0 \wedge e_1) + e_0 \wedge W + e_1 \wedge W)$$

where

$$\mathbb{R}^{1,n} = V = \mathbb{R}e_0 + \mathbb{R}e_1 + W$$

is an orthogonal decomposition of the Minkowski space V. In particular, $m^H = \mathbb{R}(e_0 \wedge e_1)$.

15
5.5.2 Case of the group $G = SU_{1,n}$

Let $\mathbb{C}^{1,n} = V$ be the complex pseudo-Hermitian space with the Hermitian scalar product $\langle \cdot, \cdot \rangle$ of complex signature $(1, n)$ and

$$V = \mathbb{C}e_0 + E = \mathbb{C}e_0 + \mathbb{C}e_1 + W$$

an orthogonal decomposition, such that

$$\langle e_0, e_0 \rangle = -1, \langle e_1, e_1 \rangle = 1.$$

The complex hyperbolic space is the orbit

$$\mathbb{C}H^n = SU_{1,n}[e_0] = SU_{1,n}/U_n$$

of the point $[e_0] := \mathbb{R}e_0 \in PV$ in the projective space $PV = \mathbb{CP}^{n+1}$. The tangent space $T_{[e_0]}\mathbb{C}H^n$ is identified with $E = \mathbb{C}e_1 + W$. In matrix notations (with respect to an orthonormal basis e_0, e_1, \cdots, e_n of V) the reductive decomposition of $\mathbb{C}H^n$ can be written as

$$G = h + p = u_n + C^n,$$

$$u_n = \left\{ \begin{pmatrix} -\alpha & 0 \\ 0 & A \end{pmatrix} \mid A \in u_n, \alpha = \text{tr} A \right\}, \quad p = \{ X := \begin{pmatrix} 0 & X^* \\ X & 0 \end{pmatrix} \mid X \in C^n, X^* := \bar{X}^t \}.$$

The stability subalgebra $\mathfrak{k} = \mathfrak{su}_n \oplus \mathbb{R}z_0$, where

$$z_0 = i \text{diag} (1, -\frac{1}{n} \text{Id}_n).$$

We identify the tangent space $p = T_{e_0}\mathbb{C}H^n = E$ with the space C^n of columns. Then the subalgebra \mathfrak{su}_n acts in $p = C^n$ by the matrix multiplication and z_0 as the multiplication by $-\frac{n-1}{n}i$.

The element $v = (1, 0, \cdots, 0)^t \in C^n = T_{e_0}\mathbb{C}H^n = m$ corresponds to the matrix

$$v = e_1 \otimes e_0^* - e_0 \otimes e_1^* = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The stabilizer $H = K_v \simeq U_{n-1}$ has the Lie algebra

$$\mathfrak{h} = \mathfrak{k}_v = \mathfrak{su}_{n-1} \oplus \mathbb{R}z$$

where $\mathfrak{su}_{n-1} = \mathfrak{su}(W)$ acts trivially on e_0, e_1 and with respect to the decomposition $V = \mathbb{C}e_0 + \mathbb{C}e_1 + W$ the matrix $z \in \mathfrak{h} \subset \mathfrak{su}_{1,n}$ is given by

$$z = i \text{diag} (1, 1, -\frac{2}{n-1} \text{Id}_W).$$

The stability subalgebra $\mathfrak{h} = \mathfrak{su}_{n-1} \oplus \mathbb{R}z$ annihilates the 2-dimensional space

$$\mathbb{C}v = \{ cv = ce_1 \otimes e_0^* - e_0 \otimes (ce_1)^* \} \subset m.$$
The Lie algebra $\mathfrak{su}_{n-1} \subset \mathfrak{h}$ acts in the standard way on the complementary subspace $\mathfrak{p}' = \{ w \otimes e_0^* - e_0 \otimes w^*, w \in W \} \subset \mathfrak{p}$ isomorphic to W. The element z acts on \mathfrak{p}' as a multiplication by $-\frac{n+1}{n-1}i$.

The reductive decomposition of the sphere $K/H = U_n/U_{n-1}$ has the form

$$\mathfrak{k} = \mathfrak{h} + \mathfrak{n} = (\mathfrak{su}_{n-1} + \mathbb{R}z) + (\mathbb{R}z' + \mathfrak{n}')$$

where $z' := \text{diag}(1, -1, 0_{n-1})$ and

$$\mathfrak{n}' := \{ w \otimes e_0^* - e_0 \otimes w^*, w \in W \}.$$

The $j(H)$- invariant subspace $\mathfrak{n}^H = \mathbb{R}z'$ and $j(z)$ acts on $\mathfrak{n}' \cong \mathbb{C}^{n-1}$ as multiplication by $-\frac{n+1}{n-1}i$. We get

Proposition 13 The only minimal admissible $SU_{1,n}$- manifold of the class II is the manifold $M = SU_{1,n}/U_{n-1}$ with the reductive decomposition

$$\mathfrak{su}_{1,n} = (\mathfrak{su}_{n-1} + \mathbb{R}z) + (\mathbb{R}z' + \mathfrak{n}')$$

(We indicate the action of the central element $z \in \mathfrak{h}$ on the corresponding irreducible subspaces.)

Since $\mathfrak{n}^H = \mathbb{R}z' \neq 0$, the manifold M belongs also to the the class I. The next proposition, which follows from Theorem 2 and Theorem 3, describe all minimal admissible $SU_{1,n}$-manifolds of the class I. Let $\mathfrak{g}_n = \mathbb{R}z_0 + \mathfrak{su}_n$ be the Lie algebra of the group U_n and $a \in \mathfrak{su}_n$ an element such that $\mathbb{R}(z_0 + a)$ generate a closed subgroup T^1_a of U_n.

Proposition 14 Any class I minimal admissible $SU_{1,n}$-manifold is isomorphic to one of the manifolds :

a) $SU_{1,n}/SU_n$,

b) $SU_{1,n}/T^1_a \cdot Z_{SU_n}(a), \ 0 \neq a \in \mathfrak{su}_n$ or

c) $SU_{1,n}/T^1_0 \cdot H'$ where H' is a maximal admissible subgroup of SU_n.

Proof. We have to describe maximal admissible subgroups H of U_n. If the Lie algebra \mathfrak{h} of H contains the center $\mathfrak{z} = \mathbb{R}z_0$, we get c). If the projection of \mathfrak{h} on \mathfrak{z} is trivial, then $\mathfrak{h} = \mathfrak{su}_n$ and we get a). If the projection is non trivial, then $\mathfrak{h} = \mathbb{R}(z + a) \oplus \mathfrak{h}'$ for some non-zero $a \in \mathfrak{su}_n$, where \mathfrak{h}' is a subalgebra of \mathfrak{su}_n. The reductive decomposition of \mathfrak{u}_n can be written as

$$\mathfrak{u}_n = \mathfrak{h} + (\mathbb{R}z + \mathfrak{m}')$$

where $\mathfrak{su}_n = (\mathbb{R}a + \mathfrak{h}') + \mathfrak{m}'$ is a reductive decomposition of \mathfrak{su}_n. The maximally of \mathfrak{h} implies that $\mathbb{R}(z + a) = \mathfrak{z}\mathfrak{su}_n(a)$ and we get b), where T^1_a is the 1-parameter subgroup generated by $z + a$. □
5.5.3 Case of the group $G = Sp_{1,n}$

Let $V = \mathbb{H}^{1,n}$ be the quaternionic vector space with a Hermitian form $<.,.>$ of quaternionic signature $(1,n)$ and

$$V = \mathbb{H}e_0 + E = \mathbb{H}e_0 + \mathbb{H}e_1 + W$$

its orthogonal decomposition with $<e_0,e_0> = <e_1,e_1> = -1$. The quaternionic hyperbolic space $\mathbb{H}P^n = G/K = SU_{1,n}/Sp_1 \cdot Sp_n$ is the orbit $\mathbb{H}H^n = SU_{1,n}[e_0]$ in the quaternionic projective space $\mathbb{H}P^{n+1}$. The tangent space $T_{[e_0]}\mathbb{H}H^n = E$. In terms of an orthonormal basis e_0,e_1,\cdots,e_n of $\mathbb{H}^{1,n}$, the reductive decomposition of $\mathbb{H}H^n$ is given by

$$\mathfrak{sp}_{1,n} = \mathfrak{h} + \mathfrak{p}$$

$\mathfrak{h} = \{(\alpha, 0, 0, A), \alpha \in \text{Im} \mathbb{H} = \mathfrak{sp}_1, A \in \mathfrak{sp}_n\}$, $\mathfrak{p} = \{(0, X^t, 0), X \in \mathbb{H}^n\}$.

Under identification $T_{[e_0]}\mathbb{H}H^n = E = \mathfrak{p}$, the vector e_1 is identified with the matrix

$$v = e_1 \otimes e_0^* - e_0 \otimes e_1^* = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0_{n-1} \end{pmatrix}.$$

The stabilizer $H = K_v$ of the vector $v = e_1 \in E = T_{[e_0]}\mathbb{H}H^n$ has the Lie algebra

$$\mathfrak{h} = \mathfrak{sp}_1 + \mathfrak{sp}_{n-1} = \{(\alpha, A) := \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & A \end{pmatrix}, \alpha \in \text{Im} \mathbb{H}, A \in \mathfrak{sp}_{n-1}\}.$$

The action $j(\alpha, A)$ on the space

$$\mathfrak{p} = \mathbb{H}v + \mathfrak{p}' = \{(x, X) := \begin{pmatrix} 0 & x^* & X^* \\ x & 0 & 0 \\ X & 0 & 0 \end{pmatrix}, x \in \mathbb{H}, X \in \mathbb{H}^{n-1}, X^* = X^t\}$$

is given by

$$j(\alpha, A)(x, X) = (\alpha x - x \alpha, AX - X\alpha).$$

The complementary subspace \mathfrak{n} to \mathfrak{h} in \mathfrak{k} is given by

$$\mathfrak{n} = \text{Im} H + \mathfrak{n}' = \{(y', Y) := \begin{pmatrix} -y' & 0 & 0 \\ 0 & y' & -Y^* \\ 0 & Y & 0_{n-1} \end{pmatrix}, y' \in \text{Im} \mathbb{H}, Y \in \mathbb{H}^{n-1}\}.$$

The action $j(\alpha, A) \in j(\mathfrak{h})$ on $(y', Y) \in \mathfrak{n}$ is given by

$$j(\alpha, A)(y', Y) = (\alpha y' - y' \alpha, AY = Y\alpha).$$

These formulas implies the following proposition.
Proposition 15 The minimal admissible $SU_{1,n}$-manifold of the class II is the manifold $M = Sp_{1,n+1}/Sp_1 \times Sp_{n-1}$ with the reductive decomposition
\[
\mathfrak{sp}_{1,n} = \mathfrak{h} + \mathfrak{m} = (\mathfrak{sp}_1 + \mathfrak{sp}_{n-1}) + (\text{Im}\mathbb{H} + \mathfrak{n}' + \mathbb{R}v + (\text{Im}\mathbb{H})v + p').
\]
where $\mathfrak{n}' \simeq p' \simeq \mathbb{H}^{n-1}$.
In particular, the space $\mathfrak{m}^H = \mathbb{R}v$ is one-dimensional. As $(\mathfrak{sp}_1 + \mathfrak{sp}_{n-1})$-module, the tangent space \mathfrak{m} is isomorphic to
\[
\mathfrak{m} = \mathbb{R}v + \mathfrak{sp}_1 \otimes \mathbb{R}^2 + \mathbb{H}^{n-1} \otimes \mathbb{R}^2
\]
with the natural action of $\mathfrak{h} = \mathfrak{sp}_1 + \mathfrak{sp}_{n-1}$. Any invariant Lorentzian metric in M is defined by the scalar product of the form
\[
g = -\lambda v^* \otimes v^* + g_1 \otimes h_1 + g_2 \otimes h_2
\]
where g_1, g_2 are invariant Euclidean scalar products on $\mathfrak{sp}_1, \mathbb{H}^{n-1}$, respectively, h_1, h_2 are any invariant Euclidean scalar products in \mathbb{R}^2, and λ is a positive constant.

5.5.4 Case of the group $G = F_4$

We consider the noncompact exceptional Lie group F_4 with maximal compact subgroup $K = Spin_9$. The symmetric space $O\mathbb{H}^2 = G/K = F_4/Spin_9$ is dual to the octonion plane. The isotropy group $j(K)$ acts transitively on the unit sphere S^{15} in the tangent space $T_0O\mathbb{H}^2 = \mathfrak{m}$ with stability subgroup $Spin_7$. The irreducible spinor $Spin_9$-module $\mathfrak{p} \simeq \mathbb{R}^{16}$ as a $Spin_7$-module is decomposed into the following irreducible $Spin_7$-submodules
\[
\mathfrak{m} = \mathbb{R}v + \mathfrak{m}_1^8 + \mathfrak{m}_2^7
\]
where $\mathfrak{spin}_7 + \mathfrak{m}_2^7 \simeq \mathfrak{spin}_8 \simeq so_8$ and \mathfrak{m}_1 is 8-dimensional spinor $Spin_7$-module. We get

Proposition 16 The minimal admissible F_4-manifold is the manifold $M = F_4/Spin_7$ with the reductive decomposition
\[
f_4 = \mathfrak{spin}_7 + \mathfrak{m} = \mathfrak{spin}_7 + (\mathbb{R}v + \mathfrak{m}_1^8 + \mathfrak{m}_2^7).
\]
Any invariant Lorentzian metric is given by
\[
g = -\lambda_0 v^* \otimes v^* + \lambda_1 g_1 + \lambda_2 g_2
\]
where g_1, g_2 are some fixed Euclidean invariant scalar products in \mathfrak{m}_1^8 and \mathfrak{m}_2^7 and $\lambda_i > 0, i = 0, 1, 2$.

6 Homogeneous Lorentzian class II manifolds of dimension $d \leq 11$ of a simple noncompact Lie group

Here we describe noncompact minimal admissible class II manifolds $M = G/H$ of dimension $d \leq 11$ with a simple Lie group G. The stability subgroup H is the stability subgroup $H = K_v$ of a minimal orbit $j(K)v$ of the isotropy representation
\[
j : K \rightarrow GL(\mathfrak{p})
\]
of the corresponding noncompact symmetric space $S = G/K$ of dimension $m \leq 10$. Since we already treated the case of $G = SL_n(\mathbb{R})$ and the case of real rank one, it is sufficient to consider simple Lie groups $G \neq SL_n(\mathbb{R})$ of real rank greater then one. Any such manifold G/H admits a fibration over a noncompact symmetric space of dimension $m \leq 10$. Due to section 5.4, we may assume that $G \neq SL_n(\mathbb{R})$.

List of symmetric spaces $S = G/K$ of dimension $m \leq 10$, where $G \neq SL_n(\mathbb{R})$ is a simple noncompact group of real rank > 1 (up to a local isomorphism)

m	$G_r^k(\mathbb{C}) = SU_{2,2}/SU_2 \times SU_2$	$p = \mathbb{C}^2 \times \mathbb{C}^2$
8	$Gr_2^3(\mathbb{C}^4) = SU_{2,2}/SU_2 \times SU_2$	$p = \mathbb{R}^2 \times \mathbb{R}^2$
$2p,q$	$Gr_2^{2q}(\mathbb{R}^{2+q}) = SO_{2,q}/SO_2 \times SO_q$	$p = \mathbb{R}^3 \times \mathbb{R}^3$
$2p,3$	$Gr_3^9(\mathbb{R}^6) = SO_{3,3}/SO_3 \times SO_3$	$p = \mathbb{C}^2 \times \mathbb{C}^2$

Remark Here we take into account the local isomorphism of the following symmetric spaces:

- $SU_{1,1}/U_1 \simeq SO_4/U_2 \simeq Sp_1(\mathbb{R})/U_1 \simeq SL_2(\mathbb{R})/SO_2 = \mathbb{R}H^2$,
- $Sp_{1,1}/Sp_1 \times Sp_1 \simeq SO_{1,4}/SO_4 = \mathbb{R}H^4$,
- $SO_{p}^q/U_3 \simeq SU_{1,3}/U_3 = \mathbb{C}H^3$,
- $Sp_2(\mathbb{R})/U_2 \simeq SO_{2,3}/SO_2 \times SO_3$.

Recall that local isomorphism means the isomorphism of the universal covering and we consider all homogeneous spaces up to a covering.

6.1 Case of the group $G = SO_{p,q}$

The isotropy representation of the symmetric space $SO_{p,q}/SO_p \times SO_q$ is the standard representation of $K = SO_p \times SO_q = SO(U) \times SO(W)$, $U = \mathbb{R}^p$, $W = \mathbb{R}^q$ in the space $V = p = U \otimes W$. Any element $v \in V$ belongs to the K_v-invariant subspace $U(v) \times W(v)$ where

$$U(v) := i_W v, \quad W(v) = i_V v$$

are supports of v. Note that $\dim U(v) = \dim W(v) = r$, where r is the rank of v. This reduces the classification of K-orbits in V to the case when $\dim U = \dim V = r$, that is to the classification of the orbits of nondegenerate $r \times r$ matrices $v \in Mat_r$ with respect to the natural action of the group $K = SO_r \times SO_r$. Since any matrix can be decomposed into a product of an orthogonal matrix and a symmetric matrix and any symmetric matrix is conjugated by element from SO_r to a diagonal matrix, we get

Lemma 1 Any $K = SO_r \times SO_r$-orbit in the space Mat_r contains a diagonal matrix. The orbit of a nondegenerate matrix is minimal if it is the orbit of the diagonal matrix of the form λD_k, where

$$D_k = \text{diag} (\text{Id}_{r-k}, -\text{Id}_k)$$
The stability subgroup of the identity matrix D_0 is the diagonal subgroup $K_{D_0} = SO^{\text{diag}}_r \subset K = SO_r \times SO_r$. The stability subgroup $K_{D_k} \simeq SO_r$ is a twisted diagonal subgroup of K with the Lie algebra

$$\mathfrak{e}_{D_k} = \{ \left(\begin{array}{cc} A_{11} & A_{12} \\ -A^t_{12} & A_{22} \end{array} \right), \left(\begin{array}{cc} -A_{11} & A_{12} \\ -A^t_{12} & -A_{22} \end{array} \right) \}$$

Using this lemma, one can easily describe all class II minimal admissible manifolds $M^m = SO_{p,q}/H$ of dimension $m \leq 11$. To state the final result, we fix some notations.

We denote by $e_i, i = 1, \cdots, p$ an orthonormal basis of $U = \mathbb{R}^p$ and by f_1, \cdots, f_q an orthonormal basis of $W = \mathbb{R}^q$ and we use the identifications

$$\mathfrak{so}_p = \mathfrak{so}(U) = \Lambda^2 U, \mathfrak{so}_q = \mathfrak{so}(W) = \Lambda^2 W.$$

Now we describe the minimal admissible manifolds $M = SO_{p,q}/H = SO_{p,q}/K_v$ associated with minimal orbits $j(K)v$ of different diagonal elements $v \in V = U \otimes W$. We indicate also the stability subalgebra $\mathfrak{h} = \mathfrak{e}_v \subset \mathfrak{so}(U) + \mathfrak{so}(W)$ and the reductive decomposition

$$\mathfrak{so}_{p,q} = \mathfrak{h} + \mathfrak{m} = \mathfrak{h} + (n + p)$$

and the subspace m^H of invariant vectors. We set

$$U' = e_1^1, \ W' = f_1^1, \ U'' = \text{span}(e_1, e_2), \ W'' = \text{span}(f_1, f_2),$$

$$E = \text{span}(e_1, e_2), \ F = \text{span}(f_1, f_2).$$

a) $v = e_1 \otimes f_1$.

$$H = K_v = SO(U') \times SO(W'),$$

$$\mathfrak{h} = \mathfrak{so}(U') + \mathfrak{so}(W'),$$

$$\mathfrak{n} = (e_1 \wedge U' + f_1 \wedge W'),$$

$$\mathfrak{p} = (\mathbb{R}v + e_1 \otimes W' + U' \otimes f_1 + U' \otimes W').$$

$$m^H = \mathfrak{p}^H = \mathbb{R}v.$$

b) $v = e_1 \otimes f_1 \pm e_2 \otimes f_2$.

$$K_v = SO_2^{\text{diag}} \times SO(U'') \times SO(W '').$$

$$\mathfrak{h} = \mathbb{R}(e_1 \wedge e_2 \pm f_1 \wedge f_2) + \mathfrak{so}(U'') + \mathfrak{so}(W''),$$

$$\mathfrak{n} = \mathbb{R}(e_1 \wedge e_2 \mp f_1 \wedge f_2) + E \wedge W'' + U'' \wedge F,$$

$$\mathfrak{p} = \mathbb{R}v + \mathbb{R}(e_1 \otimes f_2 \mp e_2 \otimes f_1) + \text{span}(e_1 \otimes f_2 \pm e_2 \otimes f_1, e_1 \otimes f_1 \mp e_2 \otimes f_2) +$$

$$E \otimes W'' + U'' \otimes F + U'' \otimes W''$$

$$n^H = \mathbb{R}(e_1 \wedge e_2 \mp f_1 \wedge f_2),$$

$$p^H = \mathbb{R}v.$$

c) $v_\pm = e_1 \otimes f_1 \pm e_2 \otimes f_2 \pm e_3 \otimes f_3$.

We assume for simplicity that $p = q = 3$.

$$K_{v_\pm} = SO_3^{\text{diag}} \subset K = SO_3 \times SO_3,$$

$$\mathfrak{h} = \mathfrak{e}_{v_\pm} = \text{span}(e_i \wedge e_j + f_i \wedge f_j, i, j = 1, 2, 3),$$

$$\mathfrak{n} = \text{span}(e_i \wedge e_j - f_i \wedge f_j),$$

$$\mathfrak{p} = \mathbb{R}v_\pm + \mathfrak{sl}_3(\mathbb{R}) = \mathbb{R}v_\pm + \Lambda^2(\mathbb{R}^3) + S_0^3(\mathbb{R}).$$

$$m^H = p^H = \mathbb{R}v.$$
Remark i) The group $K_v = SO_3$ acts in the space $p = Mat_3 = \mathfrak{gl}_3(\mathbb{R})$ by conjugation and its preserves the 1-dimensional space $\mathbb{R}v_+$ of scalar matrices and acts irreducibly on the space $\Lambda^2(\mathbb{R}^3)$ of skew-symmetric matrices and on the space $S^2_0(\mathbb{R}^3)$ of traceless symmetric matrices.

ii) The case of the minimal orbit of the vector v_- is similar, but the description of the reductive decomposition is more complicated and it is omitted.

Proposition 17 All class II minimal admissible $SO_{p,q}$-manifolds $M = SO_{p,q}/K_v$ of dimension $m \leq 11$ belong to the following list:

- $M^5 = SO_{2,2}/SO_2^{\text{diag}}$ for $v = e_1 \otimes f_1 + e_2 \otimes f_2$
- $M^5_1 = SO_{2,2}/\{e\} \times SO_2$ for $v = e_1 \otimes f_1 - e_2 \otimes f_2$
- $M^9 = SO_{2,3}/SO_2^{\text{diag}}$ for $v = e_1 \otimes f_1 \pm e_2 \otimes f_2$.

Proof. The proof follows from given above description of the stability subgroup K_v of diagonal elements of the form

$$v = e_1 \otimes f_1, e_1 \otimes f_1 \pm e_2 \otimes f_2, e_1 \otimes f_1 + e_2 \otimes f_2 \pm e_3 \otimes f_3$$

and calculation of the dimension of the corresponding manifold $SU_{p,q}/K_v$. □

6.2 Case of the group $G = G_2$

The isotropy action of the symmetric space $G_2/SU_2 \times SU_2$ is the standard action of $K = SU_2 \times SU_2$ in the space $p = C^2 \otimes C^2 = \mathfrak{gl}_2(C)$ of complex matrices. The manifold $M = G_2/K_v$ has dimension ≤ 11 if $\dim K_v \geq 3$. There is the only one such stability subgroup, the diagonal subgroup SU_2^{diag}, which is the stabilizer of the identity matrix. The group SU_2^{diag} acts irreducibly on the subspace $\text{Herm}_2^0 \subset \mathfrak{gl}(\mathbb{C})$ of Hermitian matrices with zero trace and on the space $i\text{Herm}_2^0(\mathbb{C}) = \mathfrak{su}_2$ of skew-Hermitian matrices. We get

Proposition 18 The only class II minimal admissible G_2-manifold is the manifold $M^{11} = G_2/SU_2^{\text{diag}}$. It has the following reductive decomposition

$$\mathfrak{g}_2 = \mathfrak{gsu}_2^{\text{diag}} + (\mathfrak{su}_2^{\text{diag}} + \mathbb{C} \text{Id} + \text{Herm}_2^0 + i\text{Herm}_2^0)$$

where $\mathfrak{su}_2^{\text{diag}}$ is the anti-diagonal subspace, such that

$$\mathfrak{su}_2 + \mathfrak{su}_2 = \mathfrak{su}_2^{\text{diag}} + \mathfrak{su}_2^{\text{diag}}.$$

In particular, $\mathfrak{m}^H = \mathbb{C} \text{Id} \simeq \mathbb{R}^2$ and $\mathfrak{su}_2^{\text{diag}}$-module $\mathfrak{m} \simeq \mathbb{R}^2 + 3\mathfrak{su}_2$.

6.3 The main theorem

Combining all obtained results, we get the following theorem.
Theorem 4 All minimal admissible class II manifolds \(M^d = G/H \) of dimension \(d \leq 11 \) where \(G \) is a simple noncompact Lie group are described in the Table I. There are also indicated the maximal compact subgroup \(K \) of \(G \) and the space \(m = T_0G/K \) of its isotropy representation, the dimension \(m \) of the symmetric space \(G/K \) and the fibre \(K/H \) of the natural \(G \)-equivariant fibration \(M = G/H \rightarrow S = G/K \) over the symmetric space \(S = G/K \).

Table I.

\(d \)	\(M^d \)	\(K \)	\(m \)	\(m \)	\(K/H \)
3	\(SL_2(\mathbb{R}) \)	\(SO_2 \)	\(\mathbb{R}^2 \)	2	\(S^1 \)
5	\(SO_{1,3}/SO_2 \)	\(SO_3 \)	\(\mathbb{R}^3 \)	3	\(S^2 \)
7	\(SL_3(\mathbb{R})/SO_2 \)	\(SO_3 \)	\(S_0^2(\mathbb{R}^4) \)	5	\(S^2 \)
7	\(SU_{1,2}/U_1 \)	\(U_2 \)	\(\mathbb{C}^2 \)	4	\(S^3 \)
7	\(SO_{1,4}/SO_3 \)	\(SO_4 \)	\(\mathbb{R}^4 \)	4	\(S^3 \)
9	\(SO_{1,5}/SO_4 \)	\(SO_5 \)	\(\mathbb{R}^5 \)	5	\(S^4 \)
11	\(SU_{1,3}/U_2 \)	\(U_3 \)	\(\mathbb{C}^3 \)	6	\(S^5 \)
11	\(SO_{1,6}/SO_5 \)	\(SO_6 \)	\(\mathbb{R}^6 \)	6	\(S^6 \)
11	\(G_2/SU_2^{\text{sing}} \)	\(SU_3 \times SU_2 \)	\(\mathbb{C}^2 \otimes \mathbb{C}^2 \)	8	\(S^3 \)

References

[A] Adams S., Dynamics on Lorentzian manifolds. Workd Sci. Publishing, 2001,

[A1] Adams S., Transitive actions on Lorentzian manifolds with noncompact stabilizer, Geom. Dedicata, 98,2003, 1–45,

[A2] Adams S., Orbit nonproper actions on Lorentz manifolds, GAFA, Geom. Funct. Anal. 11,n 2, 2001, 201–243,

[A3] Adams S., Orbit nonproper dynamics on Lorentz manifolds , Illinois J. Math. 45,n 4, 2001, 1191–1245,

[A4] Adams S., Dynamics of semisimple Lie groups on Lorentz manifolds, Geom. Ded. 105, 2004, 1–12,

[A5] Adams S., Induction of geometric actions, Geom. Ded. 88, 2001, 91–112,

[A6] Adams S., Locally free actions on Lorentz manifolds, Geom. Funct. Anal. 10, n.3, 2000, 453-515,

[AS] Adams S., Stuck G., The isometry group of a compact Lorentz manifold I, Inv. Math. 129, n 2, 1997, 239–261,

[AS1] Adams S., G. Stuck G., The isometry group of a compact Lorentz manifold II, Inv. Math. 129, n 2 1997, 263–287,

[AS2] Adams S., Stuck G., Isometric actions of \(SL_n(R) \times \mathbb{R}^n \) on Lorentz manifolds, Israel J. Math. 121, 2001, 93-111,
[Al] Alekseevsky D.V., *Space-homogeneous Lorentzian manifolds*, Tartu Univ. Toime-tised, v.940, 1992, 17–20,

[All] Alekseevsky D.V., *Lorentzian homogeneous manifolds with completely reducible isotropy*, Pure and Applied Differential Geometry, PAGE 2007, Shaker Verlag, ed., F. Dillen and I. Van de Woestyne, 2007, 7–13,

[Al2] Alekseevsky D.V., *Flag manifolds*, Zbornik Radova, book 6 (14), 11 Yugoslav. Seminar, Beograd, 1997,3–35,

[AS] Alekseevsky D.V., Spiro A., *Invariant CR structures on compact homogeneous manifolds*, Hokk. Math. J, v. 32, no.2, 209–276, 2003,

[ADZ] Arouche A., Deffaf M., Zeghib A., *On Lorentz dynamics: From group actions to warped products via homogeneous spaces*, Trans. Amer. Math. Soc. 359, 2007, 1253–1263,

[BZ] Barbot T., Zeghib A., *Group actions on Lorentz spaces, mathematical aspects: a survey*, in "The Einstein Equations and the Large-Scale Behavior of Gravitational Fields" (P. Chrusciel, H. Friedrich, eds.) Birkhäuser, Basel, 2004, 401–439,

[DA] D’Ambra G., *Isometry groups of Lorentzian manifolds*, Invent. Math., 92, 1988, 555–565,

[DAG] D’Ambra G., Gromov M., *Lectures on transformation groups: geometry and dynamics*, in "Surveys in Diff. Geom.” Cambridge, MA. 1990, 19–111,

[DMZ] Deffaf M., Melnick K., Zeghib A., *Actions of noncompact semisimple groups on Lorentz manifolds*, Geom. Funct. Anal. 18, n 2, 2008, 463–488,

[DK] Doubrov B., Komrakov B., *Low-dimensional Pseudo-Riemannian Homogeneous Spaces*, Preprint University of Oslo, No. 13, March 1995,

[H] Helgason S., *Differential geometry, Lie groups and symmetric spaces*, Academic Press, 1978, 628p.,

[Ko] Komrakov K., *Four-dimensional Pseudo-Riemannian Homogeneous Spaces. Classification of real pairs*, Preprint University of Oslo, No. 32 June, 1995,

[K] Kowalsky N., *Noncompact simple automorphism groups of Lorentz manifolds*, Ann. Math. 144, 1997, 611–640,

[P] Patrangenaru V., *Lorentz manifolds with the three largest degrees of symmetry*, Geom. Dedicata 102, 2003, 25–33,

[W] Witte D., *Homogeneous Lorentzian manifolds with simple isometry group*, Beiträge Alg. Geom., 42, 2001, 451–461,

[Z] Zeghib A., *Sur les espaces-temps homogènes*, The Epstein birthday schrift, 551-576 , Geom. Topol.Monogr., 1, Geom. Topol. Publ., Coventry, 1998.