ABSTRACT
Objective: Wound dressings are frequently developed by introducing new products to target different aspects of the wound healing process. Many medicated dressings incorporated with natural extracts and chemicals have been developed. Chronic wounds could be invaded by many bacteria and Pseudomonas aeruginosa and Staphylococcus aureus are the most common. S. aureus and P. aeruginosa are usually detected in the higher layer of wounds or in the deepest region of wound bed, respectively. They can express many virulence factors affecting wound healing process and leading to severe infections and antibiotic resistance.
Methods: Starch based impregnated gauze containing either N. sativa honey, myrtle berries hydro-alcoholic extract or a combination were prepared. There efficacy against both P. aeruginosa and S. aureus isolated from chronic wounds.
Results: N. sativa honey mixture was the most potent against P. aeruginosa with an inhibition zone diameter of 18.1±0.3 mm, while the myrtle berries hydro-alcoholic extract mixture was the most potent against S. aureus with an inhibition zone diameter of 18.4±0.5 mm. The prepared impregnated gauzes deliver a moist environment that helps wounds epithelialize more rapidly.
Conclusion: In conclusion, honey and myrtle berries hydro-alcoholic extract provide antibacterial and anti-inflammatory properties that will accelerate the healing process of wounds.
Keywords: Myrtle berries hydro-alcoholic extract, N. sativa honey, Pseudomonas aeruginosa, Staphylococcus aureus, starch based impregnated gauzes.

INTRODUCTION
A wound is defined as a simple or severe break in an anatomical structure such as the skin and can outspread to other tissues. Infection occurs in wounds due to competition with the host natural immune system and causes a delay in wound healing. The most common causes of infection are Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pyogenes, and some Proteus, Clostridium, and Cloflorn species. The efficacy of topical solutions, creams or ointments for drug delivery to the wound is very low as they rapidly lose their rheological characteristics due to the absorption of fluids. Traditionally, wound dressings are used to protect the wound from contamination, but they can be developed to deliver bioactive molecules such as antimicrobial drugs to wound sites. Wound dressings uploaded with natural products, including the β-glucans, aloe, essential oils, honey, cocoa, and oak bark extracts are already being used in wound healing due to their antibacterial activity and wound healing properties. Various parts of Myrtle (Myrtus communis L.) such as berries, fruits and leaves have been widely used as traditional medicine for the treatment of several diseases due to their anti-inflammatory, antioxidant and antimicrobial properties. Many components have been extracted from this herb and are considered to be the main biologically active components including polyphenols, myrtucommunol, semimmurcummone, pinen-5, 1, 8-cineole, myrteryl acetate, limonene, linalool and α-terpinolene. High antibacterial activity of ethanol, methanol, and ethyl acetate berry myrtle extracts was observed when tested against S. aureus, P. aeruginosa and Escherichia coli. Some results have indicated that phenolic compounds and tannins greatly contributed to the antibacterial efficacy. In folk medicine, a decoction of leaves and fruits is used externally for wound healing. Traditionally, honey has been considered to have therapeutic properties.
since ancient times. Results of different researches had previously proved the efficacy of honey against different types of microbes depending on many factors such as the type, natural structure of the nectar and the environmental conditions. Bacterial resistance is less likely to develop as a result of treatment with honey because of the composition of honey which contains a number of different components responsible for the antimicrobial efficacy. This includes pH, sugar content, hydrogen peroxide levels and the presence of some phytochemicals, mainly phenolic compounds including phenolic acids and flavonoids. Honey has also been proved to accelerate wound healing by offering antibacterial activity, maintaining a moist wound environment that promotes healing, and providing a protective barrier to prevent infection. Many researchers report that honey could be an effective dressing for the treatment of different skin infections resulting from burns and wounds.

In this study, the anti-bacterial effect of impregnated sterile gauzes containing myrtle berries extract and Nigella sativa honey was studied on both P. aeruginosa and S. aureus.

### MATERIALS AND METHODS

**Myrtle extracts preparation**

Myrtle berries were collected from a mountainous region of Syria. 2 g of dried powders of myrtle berries were extracted by maceration in 100 ml of ethanol 50% for 2 hours. The ethanol was evaporated using a rotary evaporator.

**Starch based gel preparation**

A starch based gel containing 20 g of starch, 20 ml of glycerol, and 100 ml of water was prepared first. The solution was gently stirred until starch dissolved. It was then homogenized, heated for about 15 min at 80-85°C and finally cooled to room temperature. Three different mixtures were prepared using 10 ml of the starch based gel with 10 ml of N. sativa honey (purchased directly from beekeepers), 10 ml of myrtle extract or a combination of them in 1:1 ratio. N. sativa honey was used in this study as it was found to be more potent on P. aeruginosa and S. aureus than other types of honey.

**Impregnated gauze preparation**

Standard sterile gauze 3 inch by 3 inch was dipped into different starch based mixtures till saturation and the excess solution was extruded by applying pressure. The hardening of the gel on the gauze was accomplished by refrigeration then the prepared impregnated gauzes were placed in sterile envelopes.

**Antibacterial efficacy**

P. aeruginosa and S. aureus were isolated from chronic wounds and tested for their antibiotic sensitivity. Antimicrobial activity test was carried out using agar diffusion method on Muller Hinton Agar plates. Bacterial isolates were spread on plates, and then a hole was punched into plates with a diameter of 6 mm. One hundred micro liter of each mixture was introduced into the hole and the plates were incubated for 24h at 37°C. The average of three cross sectional points of inhibition zone diameter was taken as the inhibition zone.

### RESULTS AND DISCUSSION

Application of conventional antibiotics is becoming more difficult due to several problems especially antimicrobial resistance and side effects. This has reinforced the use of natural alternative agents to replace synthetic antimicrobials. Accordingly, extensive research has been carried out in order to assess the antimicrobial activity of the natural extracts and different types of honey which showed the ability to inhibit the growth of various pathogenic microorganisms.

#### Table 1: Antibiotic sensitivities of P. aeruginosa isolate.

| Antibiotic name | Inhibition zone diameter (mm) | Result   |
|-----------------|-------------------------------|----------|
| Levofloxacin    | 29                            | Sensitive|
| Cefipime        | 26                            | Sensitive|
| Cefazidime      | 20                            | Sensitive|
| Imipenem        | 20                            | Sensitive|
| Gentamycin      | 15                            | Intermediate|
| Doxycycline     | 15                            | Intermediate|
| Ceftriazone     | 10                            | Resistant|
| Amoxicillin+    | No inhibition                 | Resistant|
| Clavulanic acid | zone                          |          |

The antibiotic sensitivities of both P. aeruginosa and S. aureus isolated from chronic wounds are presented in Table 1 and Table 2. Table 3 shows the results of inhibition zone diameter of different prepared starch based mixtures on under-study microorganisms. Accordingly, the N. sativa honey mixture was the most potent against P. aeruginosa with an inhibition zone diameter of 18.4±0.3 mm similar to that of imipenem and cefazidime, while the myrtle berries hydro-alcoholic extract mixture was the most potent against S. aureus with an inhibition zone diameter of 18.4±0.5 mm similar to that of tetracycline and chloramphenicol.

#### Table 2: Antibiotic sensitivities of S. aureus isolate.

| Antibiotic name | Inhibition zone diameter (mm) | Result   |
|-----------------|-------------------------------|----------|
| Imipenem        | 31                            | Sensitive|
| Levofloxacin    | 30                            | Sensitive|
| Erythromycin    | 23                            | Sensitive|
| Meroxenem       | 22                            | Sensitive|
| Tetracycline    | 20                            | Sensitive|
| Chloramphenicol | 19                            | Intermediate|
| Cefotaxime      | 13                            | Resistant|
| Linezolid       | 11                            | Resistant|
| Cefazolin       | 10                            | Resistant|
| Cefaclor        | No inhibition zone            | Resistant|
| Ceftriazone     | No inhibition zone            | Resistant|
| Cefdinir        | No inhibition zone            | Resistant|

The positive and potent effect of myrtle extract on S. aureus in this study is consistent with the results obtained by Taheri et al., who had previously found that the concentration of 80 mg/ml of myrtle hydro-alcoholic extract showed the greatest effect on the S. aureus bacterium with an inhibition zone diameter of 20.4±0.3 mm. Same results were obtained by Salvagnini who studied the effect of the oil and ethanolic extract of myrtle on different strains and reported that the ethanolic extract of myrtle has a...
positive effect on *S. aureus* with 12 mm inhibition zone\(^{28,29}\). Ghlamhsyyn Najjar *et al.*, acknowledged that the activity of myrtle extract on *S. aureus* strain is partly due to the stimulation of free radicals\(^{30}\). The efficacy of honey against different types of microbes has been previously proved in different researches\(^{23,24,32}\) and bacterial resistance is less likely to develop as a result of the composition of honey which contains a number of different components\(^{15}\). Results of different researchers proved that honey was more potent against *P. aeruginosa* than *S. aureus* which is consistent with current results. Boateng and Nso Diunase found that the zone of inhibition values for *P. aeruginosa* ranged from 26.3±0.6 mm for Manuka honey to 34±2.0 mm for Cameroon standard honey, whilst the zones of inhibition against *S. aureus* was not more than 18.7±1.2 mm for Manuka honey\(^{32}\).

### Table 3: Sensitivity of *P. aeruginosa* and *S. aureus* isolates against different mixtures.

| Mixture                        | *P. aeruginosa* | *S. aureus* |
|-------------------------------|-----------------|-------------|
| *N. sativa* honey             | 18.1±0.3        | 11.2±0.3    |
| Myrtle extract                | 15.3±0.2        | 18.4±0.5    |
| Myrtle extract with honey 1:1 | 13.6±0.4        | 15.6±0.2    |

As shown in Table 3, the combination between *N. sativa* honey and myrtle berries extract was effective against both *P. aeruginosa* and *S. aureus* with a diameter zone of inhibition of 13.06±0.4 mm and 15.6±0.2 mm, respectively. It is important to care properly for wound, whether it is a minor cut or a major incision. Dressings are a part of this process and are designed to be in contact with the wound, help in faster re-epithelialization, collagen synthesis and promote angiogenesis\(^{33}\). Bioactive wound dressings incorporated with antimicrobials are one of the most important modern wound dressings developed to play an important role in healing process compared with traditional wound dressings used only for covering the wound\(^{34}\). Commercially available antimicrobial dressings include honey-impregnated dressings, iodine-impregnated dressings, silver-impregnated dressings and chlorohexidine gauze dressing\(^{35}\). Misirlioglu *et al.*, used honey-impregnated gauze for the treatment of a split-thickness skin graft donor site. The gauze showed a lower sense of pain and faster epithelialization time than paraffin gauzes and saline-soaked gauzes\(^{36}\). In the UK, dressings impregnated with Manuka honey were successfully used in the wound care clinic\(^{37}\). Subrahmanyam *et al.*, has shown in a randomized clinical study that residual scars decrease in patients treated with honey-impregnated gauze compared with those treated with amniotic membrane\(^{38}\). It was also proved that wounds dressed with honey-impregnated gauze showed earlier healing compared with silver sulfadiazene dressing in burn patients\(^{39}\). As presented in Figure 1, the prepared impregnated gauzes contain either *N. sativa* honey, myrtle berries hydro-alcoholic extract or a combination. The gauze can be cut to fit around the wound due to their soft elastic properties which provides easy application and removal without any damage. They also deliver active compounds with anti-inflammatory and antimicrobial properties; and play an active role in the wound healing process. Starch based mixtures provide a moist environment in addition to a soothing and cooling effect.

### CONCLUSION

Simple woven gauze although commonly used, they are known to be painful to remove, destructive to newly formed granulation tissue and provoke infection by leaving some fibers behind in the wound bed. A wide range of more appropriate dressings ensuring appropriate healing process has been available for a number of years such as medicated dressings. Plant extracts with antimicrobial and healing properties in addition to natural antimicrobial agents that were known to ancient cultures such as silver, honey and iodine are used for the preparation of medicated dressings. Although the perfect dressing is yet to be developed, wound dressings have evolved and further researches are still to be done.

### AUTHOR’S CONTRIBUTION

The manuscript was carried out, written, and approved in collaboration with all authors.

### CONFLICT OF INTEREST

No conflict of interest associated with this work.

### REFERENCES

1. Velnar T, Bailey T, Smrkolj V. The wound healing process: An overview of the cellular and molecular mechanisms. J Int Med Res 2009; 37(5):1528–1542.  https://doi.org/10.1177/14732847090370531
2. Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 2001; 14(2):244–269.
3. Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: A review. J Pharm Sci 2008; 97(8):2892–2923. https://doi.org/10.1002/jps.21130

4. Davis SC, Perez R. Cosmeceuticals and natural products: wound healing. Clin Dermatol 2009; 27(5):502–506. https://doi.org/10.1016/j.clindermatol.2009.05.015

5. Alipour G, Dashgi S, Hosseinzadeh H. Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytother Res 2014; 28:1125–1136. https://doi.org/10.1002/ptr.5122

6. Hosseinzadeh H, Khoshdel M, Ghorbani M. Antinociceptive, anti-inflammatory effects and acute toxicity of aqueous and ethanolic extracts of Myrtus communis L. aerial parts in mice. J Acupunct Meridian Stud 2011; 4:242–247. PMID: 22946016

7. Chryssavgi G, Vassiliki P, Athanasios M, Kibouris T, Michael K. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: evaluation of antioxidant capacity of methanolic extracts. Food Chem 2008; 107:1120–1130. https://doi.org/10.1016/j.foodchem.2007.09.036

8. Sobel JD. Bacterial vaginosis. Ann Rev Med 2000; 51:349-56.

9. Mert T, Fatih T, Kişçak B, Oztürk HT. Antimicrobial and cytotoxic activities of Myrtus communis L. J Fac Pharm Ankara 2008; 37:191-199.

10. Shan B, Cai YZ, Brooks JD, Corke H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol 2010; 117:112-119. https://doi.org/10.1016/j.ijfoodmicro.2007.03.003

11. Akiyama H, Fujii K, Yamasaki O, Oono T, Iwatsuki K. Antibacterial action of several tannins against Staphylococcus aureus. J Antimicrob Chemother 2001; 48:487-491. https://doi.org/10.1093/jac/48.4.487

12. Serce S, Ercisli S, Sengul M, Gunduz K, Orhan E. Antibacterial activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits. Pharmacogn Mag 2010; 6:9-12. https://doi.org/10.4103/0973-2969.59660

13. Molan PC. The antibacterial activity of honey. 1. The nature of the antibacterial activity. Bee World 1992; 73:5-28.

14. Abd-El Elaam AM, El-Haddiy MR, El-Mashad NB, El-Sebae AH. Antimicrobial effect of bee honey in comparison to antibiotics of organisms isolated from infected burns. Ann Burns Fire Disast Med 2007; 20:83-88. PMID: 21991075

15. Cawkward R, Graham EM, Reynolds K, Pollock PJ. The antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol 2007; 112(4):863-867. https://doi.org/10.1016/j.ijfoodmicro.2008.06.055

16. Van den Berg AJ, Van den Worm E, Van Ufford HC, Halkes SB, Hoekstra MJ, Beukelman CJ. An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey. J Wound Care 2008; 17:172-178. https://doi.org/10.1016/j.21691401.2017.137702

17. Lusby PE, Coombes AL, Wilkinson JM. Bactericidal activity of different honeys against pathogenic bacteria. Arch Med Res 2005; 36:464-467. https://doi.org/10.1016/j.arcmed.2005.03.038

18. Cooper RA, Molan PC, Harding KG. Honey and gram positive cocci of clinical significance in wounds. J Appl Microbiol 2002; 93:857-863. https://doi.org/10.1046/j.1365-2672.2002.01761.x

19. Cooper RA, Halas E, Molan PC. The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. Burns Care Rehabil 2002; 2:512.

20. Cooper RA, Halas E, Molan PC. The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. Burns Care Rehabil 2002; 2:512.

21. Aksay S. Total Phenolic Content and Antioxidant Properties of Various Extracts of Myrtle (Myrtus communis L.) Berries. Çukurova J Agric Food Sci 2016; 31(2):43-50.