Title	**Epitaxial growth of (111)-oriented LaAlO$_3$/LaNiO$_3$ ultra-thin superlattices.**
Author(s)	**Middey, S.; Meyers, D.; Kareev, M.; Moon, E. J.; Gray, B. A.; Liu, X.; Freeland, J. W.; Chakhalian, J.**
Citation	**Middey, S., Meyers, D., Kareev, M., Moon, E. J., Gray, B. A., Liu, X., et al. (2012). Epitaxial growth of (111)-oriented LaAlO$_3$/LaNiO$_3$ ultra-thin superlattices. Applied physics letters, 101(26), 261602-.**
Date	**2012**
URL	**http://hdl.handle.net/10220/18810**
Rights	© 2012 American Institute of Physics. This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of American Institute of Physics. The paper can be found at the following official DOI: [http://dx.doi.org/10.1063/1.4773375]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Epitaxial growth of (111)-oriented LaAlO$_3$ / LaNiO$_3$ ultra-thin superlattices
S. Middey, D. Meyers, M. Kareev, E. J. Moon, B. A. Gray, X. Liu, J. W. Freeland, and J. Chakhalian

Citation: Applied Physics Letters 101, 261602 (2012); doi: 10.1063/1.4773375
View online: http://dx.doi.org/10.1063/1.4773375
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/101/26?ver=pdfcov
Published by the AIP Publishing
Epitaxial growth of (111)-oriented LaAlO₃/LaNiO₃ ultra-thin superlattices

S. Middey, D. Meyers, M. Kareev, E. J. Moon, B. A. Gray, X. Liu, J. W. Freeland, and J. Chakhalian

1Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
2Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
3Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

(Received 28 September 2012; accepted 7 December 2012; published online 27 December 2012)

The epitaxial stabilization of a single layer or superlattice structures composed of complex oxide materials on polar (111) surfaces is severely burdened by the reconstructions at the interface that commonly arise to neutralize the polarity. We report on the synthesis of high quality LaNiO₃/mLaAlO₃ pseudo cubic (111) superlattices on polar (111)-oriented LaAlO₃, the proposed complex oxide candidate for a topological insulating behavior. Comprehensive X-Ray diffraction measurements, reflection high energy electron diffraction, and element specific resonant X-ray absorption spectroscopy affirm their high structural and chemical quality. The study offers an opportunity to fabricate interesting interface and topology controlled (111)-oriented superlattices based on ortho-nickelates. © 2012 American Institute of Physics.

Over the past few years, complex oxide superlattices (SL) with correlated carriers have been widely studied owing to the range of exciting phenomena emerging at the interface which are unattainable in the bulk constituents. Recently, active experimental investigations on the class of SLs consisting of paramagnetic metal LaNiO₃ (LNO) and LaAlO₃ (LAO) were initiated after the prediction of a possible high T_c superconductivity in the LaNiO₃/LaMO₃ heterostructures (where LaMO₃ is a wide band-gap insulator). The experimental realization of LNO/LO LAO SLs grown on a (001) (Ref. 10) surface of SrTiO₃ (STO), however, revealed the presence of an unexpected transition to Mott insulating ground state with antiferromagnetic order due to quantum confinement and the effect of d-orbital polarization by the interface. Inspired by this approach, several recent theoretical proposals have been put forward regarding the physics which may emerge in a bilayer of LaNiO₃ sandwiched between LaAlO₃ layers grown along the [111] crystallographic direction. Specifically, the theory predicts the appearance of exotic topological phases (e.g., Dirac half-semimetal phase, quantum anomalous Hall insulator phase, or ferromagnetic nematic phase) modulated by the strength of electron-electron correlations. To date, very little experimental work has been done to develop such heterojunctions along the [111] direction to verify the theoretical predictions about this class of artificial materials with interesting electronic and magnetic ground states.

One of the main challenges in developing growth along [111] is that commonly used substrates such as LaAlO₃ (or SrTiO₃) consist of alternating $\text{LaO}_3\text{Al}^{3+}$ (or $\text{SrO}_3\text{Ti}^{4+}$) charged planes stacked along the [111] direction. The epitaxial thin film growth along this highly polar direction is far less understood due to the possible occurrence of complex surface reconstructions that act to compensate for the polar mismatch. For example, recently, it has been demonstrated that for the systems with strong polarity mismatch, e.g., BiFeO₃ on STO or CaTiO₃ on LAO, the epitaxial stabilization is possible only if a "screening" buffer layer is grown first on the polar surface. On the other hand, the polarity matching at the interface can have strong influence on the epitaxial growth, defects formation, and overall stoichiometry of the layers as observed by the marked interfacial electronic reconstruction for polar LNO film grown on the top of charge neutral STO vs. polar LAO (001) surface.

In this letter, we present the results of artificial layer-by-layer growth of a unique class of (111)-oriented 2LNO/mLAO heterostructures (with $m = 2, 3$, and 4 unit cells) on LAO (111) single crystal (see Fig. 1(a)). The LAO substrate was selected to eliminate the effects of lattice mismatch (i.e.,...
strain) between the layers, which otherwise may hinder the quality of growth. The extensive characterization using reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray diffraction (XRD), and synchrotron based resonant X-ray absorption spectroscopy (XAS) confirm the high structural, chemical, and electronic quality of these superlattices designed to facilitate the realization of the geometry driven electronic and magnetic phases.

Fully epitaxial 2LNO/mLAO SLs were grown by laser MBE operating in interval deposition mode on commercially available high-quality mixed terminated LAO (111) substrates.20 The \textit{in-situ} growth was monitored by high-pressure RHEED. The growth was carried out under 50 mTorr of partial pressure of oxygen at a deposition rate of 20–30 Hz; the substrate temperature was set at 670 °C. To maintain correct oxygen stoichiometry, the grown samples were subsequently post annealed \textit{in-situ} for 30 min in 1 atm of ultra pure oxygen. Electrical d.c. transport was performed in a commercial physical properties measurement system using the \textit{van der Paw} geometry.

In order to elucidate how the formally polar (111) surfaces of LAO substrate neutralizes the charge, we have investigated the as-received LAO substrate by combination of AFM and X-ray photoelectron spectroscopy (XPS) obtained at the different core states at both the grazing and normal orientation between the detector and the sample surface. The detailed characterization has revealed that the substrate possesses mixed termination (i.e., Al3+ and (LaO\textsubscript{3})3-) and the charge polarity is largely compensated by the formation of hydroxides on the LAO surface;21 heating of the LAO substrate to the high growth temperature removes hydroxides.22 In addition, a sequence of RHEED images was recorded at different stages of the growth and is shown in Figs. 1(b)–1(e). As seen in Fig. 1(b), the streak pattern observed along the Laue circles and the strongly developed Kikuchi lines clearly exclude the possibility of faceted morphology of the bare LAO (111) substrate.23 Furthermore, as seen in Figs. 1(c) and 1(d), the specular intensity oscillations (not shown) along with the retention of the original (111) diffraction pattern after the subsequent deposition of LNO and LAO layers confirm the layer-by-layer growth along [111] direction; upon cooling down to ambient temperature, the high morphological quality of the [2LNO/2LAO] superlattices remained unaltered (see Fig. 1(e)). In order to gain further insight in to the structural quality of growth along the [111] direction, we have recorded X-ray diffraction 2θ – ω pattern using Cu K\textsubscript{α} radiation. Fig. 2 displays the X-ray diffraction obtained in the vicinity of the LAO (111) and (222) reflections. The XRD data further support the proper [111] orientation of the heterostructures and negate the possibility of a detectable impurity phase formation. The analysis of the Bragg reflections yields the expected 1.5% tetragonal enhancement of the unit cell along the growth direction due to the in-plane compressive strain characteristic of full heteropitaxy.

Since perovskite rare-earth nickelates are characterized by the unusually high valence state of Ni3+, the high structural quality of the ultra-thin SLs cannot guarantee their proper stoichiometry, especially against the formation of oxygen defects. In order to investigate the electronic and chemical structure of the SLs, measurements on the Ni L-edge, sensitive to the Ni charge state were performed in both total electron yield (TEY) and total fluorescence yield (TFY) modes at the soft X-ray branch of the 4-ID-C beam line at the Advanced Photon Source in Argonne National Laboratory. The absorption data are depicted in Fig. 3 along with the absorption on the bulk LaNi(O\textsubscript{3})3+ and Ni(O\textsubscript{2}) reference samples taken in TFY mode to avoid the chemical issues associated with the surface. The absence of the characteristic of Ni2+ multiplet structure in line-shape on Ni L\textsubscript{2}-edge and the peak position at 870.5 eV perfectly aligned to the bulk LaNi(O\textsubscript{3})3+ reference testify for the expected +3 charge state of Ni in these (111) SL’s and further affirms the lack of any sizable charge transfer at the LNO/LAO interface. These results validate a proper superlattice stoichiometry critical for material quality which is in sharp contrast to

![FIG. 2. 2θ-ω XRD scan for [2LNO/2LAO] superlattice using Cu K\textsubscript{α} radiation.](image)

![FIG. 3. Polarization averaged Ni L\textsubscript{2} XAS spectra obtained for 1LNO/1LAO and 2LNO/4LAO (111) superlattices and compared with bulk Ni(O) and bulk LaNi(O) reference samples.](image)
the case of polar LNO grown on non-polar STO (100) surface.19

After structural and local chemical quality had been verified, we proceed with the macroscopic d.c. transport measurements. Figure 4(a) shows the evolution of sheet resistance with temperature for a series of SL with varying LAO layer thickness. The data show a strong variance with the metallic state deduced from the earlier band structure calculations,13 all the heterostructures are highly insulating instead, hinting for a possible Mott behavior. However, further work are needed to confirm the nature of this insulating phase. The analysis of the transport temperature dependence under assumption of a single exponentially activated gap [\(\sigma \propto \exp(-E_g/(2k_B T))\)] illustrated in Fig. 4(b) yields the value of gap \(E_g\) of \(\sim 95\) meV. The importance of the geometrical stacking of atoms is further highlighted by the observation that the (111) SL’s exhibit markedly higher resistivity compared to (001) SL (see Fig. 4(a)). Moreover, the transport for the 3LNO/3LAO SL grown on LAO (001) follows the variable-range hopping4 contrary to the single gap activated behavior observed in the (111) SLs.

In summary, we have synthesized the high-quality fully epitaxial 2LNO/mLAO superlattices on formally polar LAO (111). A combination of RHEED, XRD, and XAS studies has confirmed the excellent structural, chemical, and electronic quality of these heterostructures. All the fabricated SL’s are insulating in nature, contrary to the metallic ground state, proposed from \textit{ab-initio} calculations. The presented results also open the exciting prospects for fabrication of other ortho-nickelate based (111) superlattices (e.g., NdNiO\(_3\)/LAO and EuNiO\(_3\)/LAO) with interesting geometry-driven magnetic and electronic ground states.

The authors acknowledge fruitful discussions with G. A. Fiete and D. Khomskii. J.C. was supported by DOD-ARO under Grant No. 0402-17291 and NSF Grant No. DMR-0747808. Work at the Advanced Photon Source, Argonne was supported by the U.S. Department of Energy, Office of Science under Grant No. DEAC02-06CH11357.

\begin{thebibliography}{10}
\bibitem{1} J. Chakhalian, A. J. Millis, and J. Rondinelli, Nature Mater.\textbf{ 11}, 92 (2012).
\bibitem{2} H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nature Mater.\textbf{ 11}, 103 (2012).
\bibitem{3} E. Detemple, Q. M. Ramasse, W. Sigle, G. Cristiani, H.-U. Habermeier, E. Benckiser, A. V. Boris, A. Frano, P. Wochner, M. Wu, B. Keimer, and P. A. van Aken, Appl. Phys. Lett.\textbf{ 99}, 211903 (2011).
\bibitem{4} J. Liu, S. Okamoto, M. van Veenendaal, M. Kareev, B. Gray, P. Ryan, J. W. Freeland, and J. Chakhalian, Phys. Rev. B\textbf{ 83}, 161102(R) (2011).
\bibitem{5} J. W. Freeland, J. Liu, M. Kareev, B. Gray, J. W. Kim, P. Ryan, R. Petchova, and J. Chakhalian, Euro Phys. Lett.\textbf{ 96}, 076004 (2011).
\bibitem{6} A. V. Boris, Y. Matiks, E. Benckiser, A. Frano, P. Popovich, V. Hinkov, P. Wochner, M. Castro-Colin, E. Detemple, V. K. Malik, C. Bernhard, T. Prokscha, A. Suter, Z. Salmon, E. Morenzoni, G. Cristiani, H.-U. Habermeier, and B. Keimer, Science\textbf{ 332}, 937 (2011).
\bibitem{7} E. Benckiser, M. W. Haverkort, S. Brück, E. Goering, S. Macke, A. Frano, X. Yang, O. K. Andersen, G. Cristiani, H.-U. Habermeier, A. V. Boris, T. Zegkinglou, P. Wochner, H.-J. Kim, V. Hinkov, and B. Keimer, Nature Mater.\textbf{ 10}, 189 (2011).
\bibitem{8} J. Chaloupka and G. Khaliullin, Phys. Rev. Lett.\textbf{ 100}, 016404 (2008).
\bibitem{9} P. Hansmann, X. Yang, A. Toschi, G. Khaliullin, O. K. Andersen, and K. Held, Phys. Rev. Lett.\textbf{ 103}, 016401 (2009).
\bibitem{10} For all of the crystallographic directions, planes are in pseudocubic notations.
\bibitem{11} K.-Y. Yang, W. Zhu, D. Xiao, S. Okamoto, Z. Wang, and Y. Ran, Phys. Rev. B\textbf{ 84}, 210104(R) (2011).
\bibitem{12} A. Rüegg and G. A. Fiete, Phys. Rev. B\textbf{ 84}, 201103 (2011).
\bibitem{13} A. Rüegg, C. Mitra, A. A. Demkov, and G. A. Fiete, Phys. Rev. B\textbf{ 85}, 245131 (2012).
\bibitem{14} D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Nat. Commun.\textbf{ 2}, 596 (2011).
\bibitem{15} B. Gray, H. N. Lee, J. Liu, J. Chakhalian, and J. W. Freeland, Appl. Phys. Lett.\textbf{ 97}, 013105 (2010).
\bibitem{16} S. Chakraverty, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett.\textbf{ 97}, 243107 (2010).
\bibitem{17} S. Chakraverty, M. Saito, S. Tsukimoto, Y. Ikuhara, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett.\textbf{ 99}, 223101 (2011).
\bibitem{18} J. L. Blok, X. Wan, G. Koster, D. H. A. Blank, and G. Rijnders, Appl. Phys. Lett.\textbf{ 99}, 151917 (2011).
\bibitem{19} J. Liu, M. Kareev, S. Prosandeev, B. Gray, P. Ryan, J. W. Freeland, and J. Chakhalian, Appl. Phys. Lett.\textbf{ 96}, 133111 (2010).
\bibitem{20} M. Kareev, S. Prosandeev, B. Gray, J. Liu, P. Ryan, A. Kareev, E. J. Moon, and J. Chakhalian, J. Appl. Phys.\textbf{ 109}, 114303 (2011).
\bibitem{21} See supplementary material at http://dx.doi.org/10.1063/1.4773375 for atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) results on LaAlO\(_3\) substrate.
\bibitem{22} E. Figielin and D. Walter, J. Therm. Anal. Calorim.\textbf{ 110}, 199 (2012).
\bibitem{23} A. Ichimiya and P. I. Cohen, Reflection High Energy Electron Diffraction (Cambridge University Press, New York, 2011), p. 193.
\end{thebibliography}