\textbf{L1}-Convergence of Double Trigonometric Series

Karanvir Singha, Kanak Modib

aDepartment of Applied Mathematics, GZS Campus College of Engineering and Technology, Maharaja Ranjit Singh Punjab Technical University
Bathinda, Punjab, India

bDepartment of Mathematics, Amity University of Rajasthan, Jaipur, India

\textbf{Abstract.} In this paper we study the pointwise convergence and convergence in \(L1 \)-norm of double trigonometric series whose coefficients form a null sequence of bounded variation of order \((p, 0), (0, p)\) and \((p, p)\) with the weight \((jk)^{p-1}\) for some integer \(p > 1 \). The double trigonometric series in this paper represents double cosine series, double sine series and double cosine sine series. Our results extend the results of Young [9], Kolmogorov [4] in the sense of single trigonometric series to double trigonometric series and of Móricz [6, 7] in the sense of higher values of \(p \).

1. Introduction

Consider the double trigonometric series

\[
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{jk} \psi_j(x) \psi_k(y)
\] \hspace{1cm} (1.1)

on positive quadrant \(T = [0, \pi] \times [0, \pi] \) of the two dimensional torus. The double trigonometric series (1.1) represents

(a) double cosine series \(\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \lambda_j \lambda_k a_{jk} \cos jx \cos ky \) where \(\lambda_0 = \frac{1}{2} \) and \(\lambda_j = 1 \) for \(j = 1, 2, 3, \ldots \).

(b) double sine series \(\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} \sin jx \sin ky \)

(c) double cosine-sine series \(\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \lambda_j \lambda_k a_{jk} \cos jx \sin ky \) where \(\lambda_0 = \frac{1}{2} \) and \(\lambda_j = 1 \) for \(j = 1, 2, 3, \ldots \).

The rectangular partial sums \(\psi_{mn}(x, y) \) and the Cesàro means \(\sigma_{mn}(x, y) \) of the series (1.1) are defined as

\[
\psi_{mn}(x, y) = \sum_{j=0}^{m} \sum_{k=0}^{n} a_{jk} \psi_j(x) \psi_k(y),
\]
Many authors like M. M. M. M. \cite{6, 7, 2, 3, 5} studied integrability and concerned where as in \cite{6} he studied complex double trigonometric series under \cofactor. Let the sum of the series (1.1) be denoted by \(\sum \psi_{jk}(x, y) \) and for \(\lambda > 1 \), the truncated Cesàro means are defined by

\[
V_{mn}^\lambda(x, y) = \frac{1}{([\lambda m] - m)((\lambda n) - n)} \sum_{j=m+1}^{[\lambda m]} \sum_{k=n+1}^{[\lambda n]} \psi_{jk}(x, y).
\]

Assuming the coefficients \(|a_{jk} : j, k \geq 0| \) in (1.1) be a double sequence of real numbers which satisfy the following conditions which may be called as conditions of bounded variation for some positive integer \(p \):

\[
|a_{jk}|(jk)^p \to 0 \quad \text{as} \quad \max(j, k) \to \infty,
\]

\[
\lim_{k \to \infty} \lim_{j \to \infty} |\Delta_{pq} a_{jk}|(jk)^{p-1} = 0,
\]

\[
\lim_{j \to \infty} \lim_{k \to \infty} |\Delta_{pq} a_{jk}|(jk)^{p-1} = 0,
\]

\[
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |\Delta_{pq} a_{jk}|(jk)^{p-1} < \infty.
\]

For some integers \(p \) and \(q \), the finite order differences \(\Delta_{pq} a_{jk} \) are defined by

\[
\Delta_{00} a_{jk} = a_{jk};
\]

\[
\Delta_{pq} a_{jk} = \Delta_{p-1, q} a_{jk} - \Delta_{p-1, q} a_{j+1, k} \quad (p \geq 1, q \geq 0);
\]

\[
\Delta_{pq} a_{jk} = \Delta_{p, q-1} a_{jk} - \Delta_{p, q-1} a_{jk+1} \quad (p \geq 0, q \geq 1).
\]

Also a double induction argument gives

\[
\Delta_{pq} a_{jk} = \sum_{s=0}^{p} \sum_{t=0}^{q} (-1)^{p+t} \binom{p}{s} \binom{q}{t} a_{j+s, k+t}.
\]

The above mentioned (1.2)-(1.5) conditions generalise the concept of monotone sequences. Also any sequence satisfying (1.5) with \(p = 2 \) is called a quasi-convex sequence \cite{4, 7}. Clearly the conditions (1.2) and (1.5) implies (1.3) and (1.4) for \(p = 1 \) and moreover for \(p = 1 \), the conditions (1.2) and (1.5) reduce to

\[
|a_{jk}| \to 0 \quad \text{as} \quad \max(j, k) \to \infty \quad \text{and} \quad \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |\Delta_{11} a_{jk}| < \infty.
\]

Generally the pointwise convergence of the series (1.1) is defined in Pringsheim’s sense \cite{10, vol. 2, ch. 17}. Let the sum of the series (1.1) be denoted by \(f(x, y) \) (provided it exists).

Also let \(\|f\| \) denotes the \(L^1(\mathbb{T}^2) \)-norm, i.e.,

\[
\|f\| = \pi \int_0^\pi \int_0^\pi |f(x, y)| dx \, dy.
\]

Many authors like Móricz \cite{6, 7}, Chen \cite{2}, K. Kaur et al. \cite{3} and Krasniqi \cite{5} studied integrability and \(L^1 \)-convergence of double trigonometric series under different classes of coefficients. In \cite{7}, Móricz studied both double cosine series and double sine series as far as their integrability and convergence in \(L^1 \)-norm is concerned where as in \cite{6} he studied complex double trigonometric series under coefficients of bounded variation.

These authors mainly discussed the case for \(p = 1 \) or \(p = 2 \) and preferred the condition of bounded variation on coefficients. Our aim in this paper is to extend the above results from \(p = 1 \) or \(p = 2 \) to general cases for double trigonometric series of all types as mentioned above.

For convenience, we write \(\lambda n = [\lambda n] \) where \(n \) is a positive integer, \(\lambda > 1 \) is a real number and \([\] \) means greatest integral part and in the results, \(C_p \) denote constants which may not be the same at each occurrence.

Our first main result is as follows:
Theorem 1.1. Assume that conditions (1.2) – (1.5) are satisfied for some integer \(p \geq 1 \), then
(i) \(\psi_{mn}(x, y) \) converges pointwise to \(f(x, y) \) for every \((x, y) \in T^2 \setminus \{(0, 0)\};
(ii) \(||\psi_{mn}(x, y) - f(x, y)|| = o(1) \) as \(\min(m, n) \to \infty \).

The results mentioned in above theorem has been proved by Móricz [6, 7] for \(p = 1 \) and \(p = 2 \) using suitable estimates for Dirichlet’s kernel \(D_j(x) \) and Fejér kernel \(K_j(x) \) where as in the case of a single series for \(p = 2 \), the results regarding convergence have been proved by Kolmogorov [4].

Obviously, condition (1.5) implies any of the following conditions:

\[
\lim_{\lambda \to 1} \lim_{n \to \infty} \sum_{j=0}^{\lambda_n} \sum_{k=0}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} |\Delta_p a_j (j, k)|^{p-1} = 0; \tag{1.6}
\]

\[
\lim_{\lambda \to 1} \lim_{m \to \infty} \sum_{j=m+1}^{\lambda_m} \sum_{k=0}^{\lambda_m} \frac{\lambda_m - j + 1}{\lambda_m - m} |\Delta_p a_j (j, k)|^{p-1} = 0. \tag{1.7}
\]

We introduce the following three sums for \(m, n \geq 0 \) and \(\lambda > 1 \):

\[
S_{10}^j(m, n, x, y) = \sum_{j=m+1}^{\lambda_m} \sum_{k=0}^{\lambda_m} \frac{\lambda_m - j + 1}{\lambda_m - m} a_j \psi_j(x) \psi_2(y);
\]

\[
S_{01}^j(m, n, x, y) = \sum_{j=0}^{\lambda_n} \sum_{k=0}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} a_j \psi_j(x) \psi_2(y);
\]

\[
S_{11}^j(m, n, x, y) = \sum_{j=m+1}^{\lambda_m} \sum_{k=m+1}^{\lambda_m} \frac{\lambda_m - j + 1}{\lambda_m - m} \frac{\lambda_n - k + 1}{\lambda_n - n} a_j \psi_j(x) \psi_2(y);
\]

and we have

\[
S_{11}^j(m, n; x, y) = \frac{1}{(\lambda_m - m)} \sum_{u=m+1}^{\lambda_m} \left(S_{01}^j(u, n; x, y) - S_{10}^j(m, n; x, y) \right);
\]

\[
S_{11}^j(m, n; x, y) = \frac{1}{(\lambda_n - n)} \sum_{v=n+1}^{\lambda_n} \left(S_{10}^j(m, v; x, y) - S_{01}^j(m, n; x, y) \right).
\]

This implies

\[
S_{11}^j(m, n; x, y) \leq \left\{ \begin{array}{ll}
2 \sup_{m \leq u \leq \lambda_m} \left| S_{01}^j(u, n; x, y) \right| & \text{if } m \leq n, \\
2 \sup_{n \leq u \leq \lambda_n} \left| S_{10}^j(m, u; x, y) \right| & \text{if } m > n.
\end{array} \right. \tag{1.8}
\]

The second result of this paper is the following theorem:

Theorem 1.2. Let \(E \subset T^2 \). Assume that the following conditions are satisfied:

\[
\lim_{\lambda \to 1} \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} \left| S_{10}^j(m, n; x, y) \right| \right) = 0; \tag{1.9}
\]

\[
\lim_{\lambda \to 1} \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} \left| S_{01}^j(m, n; x, y) \right| \right) = 0. \tag{1.10}
\]

If \(V^j_{mn}(x, y) \) converges uniformly on \(E \) to \(f(x, y) \) as \(\min(m, n) \to \infty \), then so does \(\psi_{mn} \).
We will also prove the following theorem:

Theorem 1.3. Assume that the conditions (1.2)-(1.4) and (1.6)-(1.7) are satisfied for some integer \(p \geq 1 \), then (i) if \(V^\lambda_{mn}(x, y) \) converges uniformly to \(f(x, y) \) as \(\min(m, n) \to \infty \), then \(\psi_{mn} \) will also converge uniformly to \(f(x, y) \) as \(\min(m, n) \to \infty \). (ii) If \(\|V^\lambda_{mn} - f\| \to 0 \) then \(\|\psi_{mn} - f\| \to 0 \) as \(\min(m, n) \to \infty \).

2. Notations and formulas

The Cesàro sums of order \(\alpha \) of the sequence \(\{\psi_j(t)\} \) for any real number \(\alpha \) are denoted by \(\psi_j^\alpha(t) \). Thus we have

\[
\psi_j^\alpha(t) = \sum_{s=0}^{j} \psi_s^{\alpha-1}(t) \quad (\alpha \geq 1, j \geq 0) \tag{2.1}
\]

In this paper \(\psi_j^\alpha(t) \) either represents \(D_j(t) \) or \(D^*_j(t) \) where \(D_j(t) \) and \(D^*_j(t) \) represents Dirichlet and conjugate Dirichlet Kernels respectively. Also from [8], we have following estimates

(i) \(|\psi_j^\alpha(x)| = O((j+1)^\alpha) \) for all \(\alpha \geq 1, -\pi \leq x \leq \pi \). \tag{2.2}

(ii) \(\psi_j^\alpha(x) = O\left(\frac{1}{x^\alpha}\right) \) for all \(p \geq 2, \ (0 < x \leq \pi) \) \tag{2.3}

3. Lemmas

We require the following lemmas for the proof of our results:

Lemma 3.1. For \(m, n \geq 0 \) and \(p > 1 \), the following representation holds:

\[
\psi_{mn}(x, y) = \sum_{j=0}^{m} \sum_{k=0}^{n} a_{jk} \psi_j(x) \psi_k(y) = \sum_{j=0}^{m} \sum_{k=0}^{n} \Delta_{p} a_{jk} \psi_j^p(x) \psi_k^p(y) + \sum_{j=0}^{m} \sum_{l=0}^{p-1} \Delta_{p} a_{j,l+1} \psi_j^{p-1}(x) \psi_{l+1}^p(y) + \sum_{k=0}^{n} \sum_{s=0}^{p-1} \Delta_{p} a_{m+1,k} \psi_k^{p-1}(x) \psi_{m+1}^s(y) + \sum_{r=0}^{p-1} \sum_{l=1}^{n} \Delta_{p} a_{r+1,n+1} \psi_{r+1}^s(x) \psi_{n+1}^l(y).
\]

Lemma 3.2. [2] For \(m, n \geq 0 \) and \(\lambda > 1 \), the following representation holds:

\[
\psi_{mn} - \sigma_{mn} = \lambda_m + 1 \left(\frac{\lambda_n + 1}{\lambda_m - n} \sigma_{m,n} - \frac{1}{\lambda_n} \sigma_{m,n} \right) - \lambda_m + 1 \left(\frac{\lambda_n + 1}{\lambda_m - n} \sigma_{m,n} \right) - S^1_{11}(m, n, x, y) - S^1_{10}(m, n, x, y) - S^1_{01}(m, n, x, y).
\]

Lemma 3.3. For \(m, n \geq 0 \) and \(\lambda > 1 \), we have the following representation:

\[
V^\lambda_{mn} - \psi_{mn} = S^1_{11}(m, n, x, y) + S^1_{10}(m, n, x, y) + S^1_{01}(m, n, x, y).
\]
Proof. We have

\[V_m^\lambda(x, y) = \frac{1}{(\lambda_m - m)(\lambda_n - n)} \sum_{j=m+1}^{\lambda_m} \sum_{k=n+1}^{\lambda_n} \psi_{jk}(x, y) \]

Now we can write

\[\frac{1}{(\lambda_m - m)} \sum_{j=m+1}^{\lambda_m} \psi_{jk}(x, y) = \frac{1}{(\lambda_m - m)} \left[\sum_{j=0}^{\lambda_m} \psi_{jk}(x, y) - \sum_{j=0}^{m} \psi_{jk}(x, y) \right] \]

Thus

\[V_m^\lambda(x, y) = \frac{1}{(\lambda_n - n)} \sum_{k=n+1}^{\lambda_n} \left[\frac{1}{(\lambda_m - m)} \sum_{j=m+1}^{\lambda_m} \psi_{jk}(x, y) \right] \]

\[= \frac{1}{(\lambda_n - n)} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_m + 1}{(\lambda_m - m) \lambda_m + 1} \sum_{j=0}^{\lambda_m} \psi_{jk}(x, y) - \frac{m + 1}{m + 1} \sum_{j=0}^{m} \psi_{jk}(x, y) \]

\[= \frac{1}{(\lambda_n - n)} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_m + 1}{(\lambda_m - m) \lambda_m + 1} \sum_{j=0}^{\lambda_m} \sum_{k=0}^{\lambda_n} \psi_{jk}(x, y) - \frac{1}{(\lambda_n - n)} \sum_{j=0}^{m} \sum_{k=0}^{\lambda_n} \psi_{jk}(x, y) \]

\[= S11 + S22 \]

Now

\[S11 = \frac{1}{(\lambda_n - n)} \frac{\lambda_m + 1}{(\lambda_m - m) \lambda_m + 1} \sum_{j=0}^{\lambda_m} \sum_{k=0}^{\lambda_n} \psi_{jk}(x, y) - \sum_{j=0}^{m} \sum_{k=0}^{\lambda_n} \psi_{jk}(x, y) \]

\[= \frac{\lambda_m + 1}{(\lambda_m - m) \lambda_m + 1} \sum_{j=0}^{\lambda_m} \sum_{k=0}^{\lambda_n} \psi_{jk}(x, y) - \sum_{j=0}^{m} \sum_{k=0}^{\lambda_n} \psi_{jk}(x, y) \]

Similarly we get

\[S22 = \frac{m + 1}{m + 1} \frac{\lambda_n + 1}{(\lambda_n - n) \lambda_n + 1} \sum_{j=0}^{\lambda_m} \sum_{k=0}^{\lambda_n} \psi_{jk}(x, y) - \sum_{j=0}^{m} \sum_{k=0}^{\lambda_n} \psi_{jk}(x, y) \]

Thus we have

\[V_m^\lambda(x, y) = \frac{\lambda_m + 1}{(\lambda_m - m) \lambda_m + 1} \sum_{j=0}^{\lambda_m} \sum_{k=0}^{\lambda_n} \psi_{jk}(x, y) - \sum_{j=0}^{m} \sum_{k=0}^{\lambda_n} \psi_{jk}(x, y) \]

\[= \frac{\lambda_m + 1}{(\lambda_m - m) \lambda_m + 1} \sum_{j=0}^{\lambda_m} \sum_{k=0}^{\lambda_n} \psi_{jk}(x, y) - \sum_{j=0}^{m} \sum_{k=0}^{\lambda_n} \psi_{jk}(x, y) \]

\[\text{(by rearrangement of terms)} \]

The use of Lemma 3.2 gives

\[V_m^\lambda(x, y) = \sum_{j=m+1}^{\lambda_m} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_m - j + 1}{\lambda_m - m} \frac{\lambda_n - k + 1}{\lambda_n - n} \psi_{jk}(x) \psi_{jk}(y) \]

\[+ \sum_{j=m+1}^{\lambda_m} \sum_{k=0}^{\lambda_n} \frac{\lambda_m - j + 1}{\lambda_m - m} \psi_{jk}(x) \psi_{jk}(y) + \sum_{j=0}^{m} \sum_{k=0}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} \psi_{jk}(x) \psi_{jk}(y). \]

\[\square \]
Lemma 3.4. For $m, n \geq 0$ and $\lambda > 1$, we have the following representation:

$$S_{10}^3(m, n; x, y) = \sum_{j=m+1}^{\lambda_m} \sum_{k=0}^{n} \frac{\lambda_m - j + 1}{\lambda_m^j - m} a_{jk} \psi_j(x) \psi_k(y)$$

$$= \sum_{j=m+1}^{\lambda_m} \sum_{k=0}^{n} \frac{\lambda_m - j + 1}{\lambda_m^j - m} \Delta_{npa} \lambda_j^{p-1} \psi_j^{(p-1)}(x) \psi_k^{p-1}(y) + \sum_{j=m+1}^{\lambda_m} \sum_{i=0}^{p-1} \frac{\lambda_m - j + 1}{\lambda_m^j - m} \Delta_{p\lambda} \lambda_{j+1,n+1} \psi_j^{p-1}(x) \psi_n^{p-1}(y)$$

$$+ \frac{1}{\lambda_m^j - m} \sum_{j=m+1}^{\lambda_m} \sum_{i=0}^{p-1} \sum_{k=0}^{n} \Delta_{\lambda} \lambda_{j+1,k} \psi_j^{(p-1)}(x) \psi_k^{p-1}(y) + \frac{1}{\lambda_m^j - m} \sum_{j=m+1}^{\lambda_m} \sum_{i=0}^{p-1} \sum_{k=0}^{n} \Delta_{\lambda} \lambda_{j+1,n+1} \psi_j^{p-1}(x) \psi_k^{p-1}(y)$$

$$- \sum_{i=0}^{p-1} \sum_{k=0}^{n} \Delta_{p\lambda} \lambda_{m+1,k} \psi_m^{p-1}(y) \psi_n^{p-1}(y) - \sum_{i=0}^{p-1} \sum_{k=0}^{n} \Delta_{\lambda} \lambda_{m+1,n+1} \psi_m^{p-1}(x) \psi_n^{p-1}(y).$$

Proof. We have by summation by parts,

$$S_{10}^3(m, n; x, y) = \sum_{k=0}^{n} \psi_k(y) \left(\sum_{j=m+1}^{\lambda_m} \frac{\lambda_m - j + 1}{\lambda_m^j - m} a_{jk} \psi_j(x) \right)$$

$$= \sum_{k=0}^{n} \psi_k(y) \left(\sum_{j=m+1}^{\lambda_m} \frac{\lambda_m - j + 1}{\lambda_m^j - m} \Delta_{npa} \lambda_j^{p-1} \psi_j^{(p-1)}(x) + \frac{1}{\lambda_m^j - m} \sum_{j=m+1}^{\lambda_m} \sum_{i=0}^{p-1} \Delta_{\lambda} \lambda_{j+1,k} \psi_j^{(p-1)}(x) \psi_k^{p-1}(y) - \sum_{i=0}^{p-1} \sum_{k=0}^{n} \Delta_{\lambda} \lambda_{m+1,k} \psi_m^{p-1}(x) \psi_k^{p-1}(y) \right)$$

$$= \sum_{j=m+1}^{\lambda_m} \frac{\lambda_m - j + 1}{\lambda_m^j - m} \psi_j^{(p-1)}(x) \left(\sum_{k=0}^{n} \Delta_{npa} \lambda_j^{p-1} \psi_k(y) + \frac{1}{\lambda_m^j - m} \sum_{j=m+1}^{\lambda_m} \sum_{i=0}^{p-1} \sum_{k=0}^{n} \Delta_{\lambda} \lambda_{j+1,k} \psi_j^{p-1}(x) \psi_k^{p-1}(y) \right)$$

$$- \sum_{i=0}^{p-1} \sum_{k=0}^{n} \Delta_{p\lambda} \lambda_{m+1,k} \psi_m^{p-1}(x) \psi_k^{p-1}(y)$$

Similarly we can have representation for $S_{01}^3(m, n; x, y)$. □

4. Proof of Theorems

Proof of Theorem 1.1

For $m, n \geq 0$ and $p > 1$, we have from Lemma 3.1

$$\psi_m(x, y) = \sum_{k=0}^{m} \sum_{l=0}^{n} \Delta_{p\lambda} \lambda_j^{p-1} \psi_j^{p-1}(x) \psi_k^{p-1}(y) + \sum_{k=0}^{m} \sum_{l=0}^{n} \Delta_{\lambda} \lambda_{j+1,n+1} \psi_j^{p-1}(x) \psi_k^{p-1}(y)$$
and similarly

$$
+ \sum_{k=0}^{n} \sum_{s=0}^{p-1} \Delta_{\alpha, \alpha+1,k} \psi_{\alpha+1}^{s}(x) \psi_{\alpha+1}^{p-1}(y) + \sum_{s=0}^{p-1} \sum_{t=0}^{t} \Delta_{\alpha, \alpha+1,n+1, \alpha+1} \psi_{\alpha+1}^{s}(x) \psi_{\alpha+1}^{p-1}(y) = \sum_{1} + \sum_{2} + \sum_{3} + \sum_{4}.
$$

Using (2.3), that is, \(\psi_{j}^{p}(x) = O\left(\frac{1}{x^{p}} \right) \) for all \(p \geq 2, (0 < x \leq \pi) \) etc, we have for \((0 < x, y \leq \pi) \),

$$
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |\Delta_{\alpha, \alpha+1,k} \psi_{\alpha+1}^{p-1}(x) \psi_{\alpha+1}^{p-1}(y)| < \infty \quad \text{(by (1.2))}
$$

and also by (1.3) - (1.5), we have

$$
\sum_{j=0}^{m} \sum_{k=0}^{p-1} \Delta_{\alpha, \alpha+1,k} \psi_{\alpha+1}^{p-1}(x) \psi_{\alpha+1}^{p-1}(y) \rightarrow 0 \quad \text{as} \quad \min(m, n) \rightarrow \infty.
$$

and similarly

$$
\sum_{s=0}^{n} \sum_{t=0}^{t} \Delta_{\alpha, \alpha+1,s} \psi_{\alpha+1}^{s}(x) \psi_{\alpha+1}^{p-1}(y) \rightarrow 0 \quad \text{as} \quad \min(m, n) \rightarrow \infty.
$$

Thus

$$
\sum_{j=0}^{m} \sum_{k=0}^{p-1} \Delta_{\alpha, \alpha+1,k} \psi_{\alpha+1}^{p-1}(x) \psi_{\alpha+1}^{p-1}(y) \rightarrow 0 \quad \text{as} \quad \min(m, n) \rightarrow \infty.
$$

Also

$$
\sum_{s=0}^{n} \sum_{t=0}^{t} \Delta_{\alpha, \alpha+1,n+1} \psi_{\alpha+1}^{s}(x) \psi_{\alpha+1}^{p-1}(y) \rightarrow 0 \quad \text{as} \quad \min(m, n) \rightarrow \infty.
$$

Consequently series (1.1) converges to the function \(f(x, y) \) where

$$
f(x, y) = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \Delta_{\alpha, \alpha+1,k} \psi_{\alpha+1}^{p-1}(x) \psi_{\alpha+1}^{p-1}(y) \quad \text{and} \quad \lim_{m,n \rightarrow \infty} \psi_{m,n}(x, y) = f(x, y).
$$
Now we will calculate \(\| \sum_{1} \|, \| \sum_{2} \|, \| \sum_{3} \| \) and \(\| \sum_{4} \| \) in the following way:

\[
\| \sum_{1} \| = \| \sum_{j=0}^{m} \sum_{k=0}^{n} \Delta_{pp, j, k} \psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y) \|
\leq \sum_{j=0}^{m} \sum_{k=0}^{n} |\Delta_{pp, j, k}| \int_{0}^{\pi} \int_{0}^{\pi} |\psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y)| \, dx \, dy
\leq C_{p} \sum_{j=0}^{m} \sum_{k=0}^{n} |\Delta_{pp, j, k}| k^{p-1} \int_{0}^{\pi} \int_{0}^{\pi} \, dx \, dy \quad \text{(by (2.2))}
\leq C_{p} \sum_{j=0}^{m} \sum_{k=0}^{n} |\Delta_{pp, j, k}| k^{p-1}.
\]

\[
\| \sum_{2} \| = \| \sum_{j=0}^{m} \sum_{k=0}^{n} \Delta_{pp, j, k+1} \psi_{j}^{p-1}(x) \psi_{k}^{p}(y) \|
\leq \sum_{j=0}^{m} \sum_{k=0}^{n} \left(\frac{1}{2} \right)^{j} \sum_{n' \leq j+n} |\Delta_{pp, j, n'+1}| \int_{0}^{\pi} \int_{0}^{\pi} |\psi_{j}^{p-1}(x) \psi_{n'}^{p}(y)| \, dx \, dy
\leq C_{p} \sup_{n \leq k \leq m+n} \sum_{j=0}^{m} |\Delta_{pp, j, k}| k^{p-1} \left(\sum_{n' \leq j+n} n' \right) \quad \text{(by (2.2))}
\leq C_{p} \sup_{n \leq k \leq m+n} \sum_{j=0}^{m} |\Delta_{pp, j, k}| k^{p-1}.
\]

\[
\| \sum_{3} \| = \| \sum_{j=0}^{m} \sum_{k=0}^{n} \Delta_{pp, m+1, k} \psi_{m}^{p}(x) \psi_{k}^{p-1}(y) \|
\leq \sum_{s=0}^{m-1} \sum_{u=0}^{n} \left(\frac{s}{u} \right) \sum_{k=0}^{n} |\Delta_{pp, m+u+1, k}| u^{s} k^{p-1}
\leq C_{p} \sup_{m \leq j \leq m+n} \sum_{k=0}^{n} |\Delta_{pp, j, k}| k^{p-1} \left(\sum_{s=0}^{m} m^{s} \right)
\leq C_{p} \sup_{m \leq j \leq m+n} \sum_{k=0}^{n} |\Delta_{pp, j, k}| k^{p-1}.
\]

\[
\| \sum_{4} \| = \| \sum_{j=0}^{m} \sum_{k=0}^{n} \Delta_{pp, m+1, n+1} \psi_{m}^{p}(x) \psi_{n+1}^{p}(y) \|
\leq \sum_{s=0}^{m-1} \sum_{u=0}^{n} \sum_{v=0}^{1} \left(\frac{s}{u} \right) \sum_{k=0}^{n} |\Delta_{pp, m+u+1, v+1}| m^{s} n^{v}
\leq C_{p} \sup_{j \geq m, k \geq n} |\Delta_{pp, j, k}| k^{p-1}.
\]
Now let R_{mn} consists of all (j,k) with $j > m$ or $k > n$, that is,
\[
\sum \sum_{(j,k) \in R_{mn}} = \sum_{j=m+1}^{\infty} \sum_{k=0}^{n} + \sum_{j=0}^{m} \sum_{k=n+1}^{\infty} + \sum_{j=m+1}^{\infty} \sum_{k=n+1}^{\infty}.
\]

Then
\[
\|f - \psi_{mn}\| = \left(\int_{0}^{\pi} \int_{0}^{\pi} |f(x,y) - \psi_{mn}(x,y)| \, dx \, dy \right)^{1/2}
\]
\[
\leq \sum_{(j,k) \in R_{mn}} \Delta_{p}^{|a| \lambda} \psi_{j}^{p-1}(x) \psi_{k}^{p-1}(y) + \| \sum_{j=0}^{m} \sum_{t=0}^{p-1} \Delta_{p}^{|a| \lambda} \psi_{j}^{p-1}(x) \psi_{t}^{p-1}(y) \|
\]
\[
+ \sum_{k=0}^{n} \sum_{s=0}^{p-1} \Delta_{p}^{|a| \lambda} \psi_{m}^{p-1}(x) \psi_{s}^{p-1}(y) + \| \sum_{k=0}^{n} \sum_{s=0}^{p-1} \Delta_{p}^{|a| \lambda} \psi_{m}^{p-1}(x) \psi_{s}^{p-1}(y) \|
\]
\[
\leq C_{p} \left(\sum_{(j,k) \in R_{mn}} | \Delta_{p}^{|a| \lambda} | p^{-1} k^{p-1} \right) + \left(\sup_{n < s < n + p} \sum_{j=0}^{m} | \Delta_{p}^{|a| \lambda} | p^{-1} k^{p-1} \right)
\]
\[
+ \left(\sup_{m < s < m + p} \sum_{k=0}^{n} | \Delta_{p}^{|a| \lambda} | p^{-1} k^{p-1} \right) + \left(\sup_{m < s < m + p} \sum_{k=0}^{n} | \Delta_{p}^{|a| \lambda} | p^{-1} k^{p-1} \right)
\]
\[
\rightarrow 0 \text{ as } \min(m,n) \rightarrow \infty \quad \text{(As discussed above)}
\]

which proves (ii) part.

Proof of Theorem 1.2

Using the relation (1.8), we find that (1.9) or (1.10) implies
\[
\lim_{\lambda \downarrow 1} \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} |S_{11}^{\lambda}(m,n;x,y)| \right) = 0. \quad (4.1)
\]

Assume that $V_{mn}(x,y)$ converges uniformly on E to $f(x,y)$. Then by Lemma 3.3, we get
\[
\lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} |\psi_{mn}(x,y) - V_{mn}(x,y)| \right)
\]
\[
\leq \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} |S_{10}^{\lambda}(m,n;x,y)| \right)
\]
\[
+ \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} |S_{01}^{\lambda}(m,n;x,y)| \right)
\]
\[
+ \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} |S_{11}^{\lambda}(m,n;x,y)| \right).
\]

After taking $\lambda \downarrow 1$ the result follows from (1.9), (1.10) and (4.1).

Proof of Theorem 1.3
Using the Lemma 3.4, we can write the expression for $S_{01}^1(m,n;x,y)$ as

$$
S_{01}^1(m,n;x,y) = \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} \Delta_{\mu \nu \delta \alpha \beta}^j \psi_{\lambda_k}^j(x) \psi_{\lambda_k}^j(y)
$$

$$
= \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} \Delta_{\mu \nu \delta \alpha \beta}^j \psi_{\lambda_k}^j(x) \psi_{\lambda_k}^j(y) + \sum_{k=n+1}^{\lambda_n} \sum_{s=0}^{\lambda_n - 1} \frac{\lambda_n - k + 1}{\lambda_n - n} \Delta_{\mu \nu \delta \alpha \beta}^j \psi_{\lambda_m}^j(x) \psi_{\lambda_m}^j(y)
$$

$$
+ \frac{1}{\lambda_n - n} \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \sum_{i=0}^{p-1} \Delta_{\mu \nu \delta \alpha \beta}^j \psi_{\lambda_k}^j(x) \psi_{\lambda_k}^j(y) + \frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} \sum_{s=0}^{\lambda_n - 1} \Delta_{\mu \nu \delta \alpha \beta}^j \psi_{\lambda_m}^j(x) \psi_{\lambda_m}^j(y)
$$

Now by using (1.2)-(1.4) and (1.6) along with estimates of $\psi_{\lambda_k}^j(x)$ etc., as mentioned in [8], we have the following estimates:

$$
\left| \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} \Delta_{\mu \nu \delta \alpha \beta}^j \psi_{\lambda_k}^j(x) \psi_{\lambda_k}^j(y) \right|
$$

$$\leq \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} |\Delta_{\mu \nu \delta \alpha \beta}^j| \psi_{\lambda_k}^j(x) \psi_{\lambda_k}^j(y) \to 0 \text{ as min}(m,n) \to \infty.
$$

Consequently

$$
\left| \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} \Delta_{\mu \nu \delta \alpha \beta}^j \psi_{\lambda_k}^j(x) \psi_{\lambda_k}^j(y) \right|
$$

$$\leq \sum_{s=0}^{p-1} \sum_{j=0}^{m} \frac{\lambda_n}{\lambda_n - n} |\Delta_{\mu \nu \delta \alpha \beta}^j| \psi_{\lambda_m}^j(x) \psi_{\lambda_m}^j(y) \to 0 \text{ as min}(m,n) \to \infty.
$$

So

$$
\left| \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \Delta_{\mu \nu \delta \alpha \beta}^j \psi_{\lambda_k}^j(x) \psi_{\lambda_k}^j(y) \right|
$$

$$\leq \sup_{m<\lambda_n} \sum_{s=0}^{p-1} \sum_{j=0}^{m} |\Delta_{\mu \nu \delta \alpha \beta}^j| \psi_{\lambda_m}^j(x) \psi_{\lambda_m}^j(y) \to 0 \text{ as min}(m,n) \to \infty.
$$

And

$$
\left| \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \Delta_{\mu \nu \delta \alpha \beta}^j \psi_{\lambda_k}^j(x) \psi_{\lambda_k}^j(y) \right|
$$

$$\leq \sup_{m<\lambda_n} \sum_{s=0}^{p-1} \sum_{j=0}^{m} |\Delta_{\mu \nu \delta \alpha \beta}^j| \psi_{\lambda_m}^j(x) \psi_{\lambda_m}^j(y) \to 0 \text{ as min}(m,n) \to \infty.
$$
\[\leq \sup_{n < k \leq L + p} \sum_{j=0}^{m} |A_{ij}a_{jk}|^{p-1}k^{p-1} \rightarrow 0 \quad \text{as} \min(m,n) \rightarrow \infty. \]

which implies \(\lim_{\lambda_{11} m,n \rightarrow \infty} \left(\sup_{x,y \in E} |\Sigma_{13}| \right) \rightarrow 0 \quad \text{as} \min(m,n) \rightarrow \infty. \)

Similarly we estimate others in brief

\[|\Sigma_{14}| \leq \sup_{n < k \leq L + p} \sum_{t=0}^{p-1} \sum_{r=0}^{p-1} \sum_{s=0}^{r-1} \sum_{u=0}^{s-1} \sum_{v=0}^{u-1} |A_{ij}a_{jk}|^{p-1}k^{p-1} \]

\[\leq \sup_{j > m,k > n} |a_{jk}|^{p-1}k^{p-1} \rightarrow 0 \quad \text{as} \min(m,n) \rightarrow \infty. \]

Thus \(\lim_{\lambda_{11} m,n \rightarrow \infty} \left(\sup_{x,y \in E} |\Sigma_{14}| \right) \rightarrow 0 \quad \text{as} \min(m,n) \rightarrow \infty. \)

which implies \(\lim_{\lambda_{11} m,n \rightarrow \infty} \left(\sup_{x,y \in E} |\Sigma_{15}| \right) \rightarrow 0 \quad \text{as} \min(m,n) \rightarrow \infty. \)

\[|\Sigma_{16}| \leq \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \sum_{u=0}^{r-1} \sum_{v=0}^{s-1} \sum_{w=0}^{t-1} \sum_{y=0}^{u-1} |A_{ij}a_{jk}|^{p-1}k^{p-1} \]

\[\leq \sup_{j > m,k > n} |a_{jk}|^{p-1}k^{p-1} \rightarrow 0 \quad \text{as} \min(m,n) \rightarrow \infty. \]

So \(\lim_{\lambda_{11} m,n \rightarrow \infty} \left(\sup_{x,y \in E} |\Sigma_{16}| \right) \rightarrow 0 \quad \text{as} \min(m,n) \rightarrow \infty. \)

Thus combining all these, we have

\[\lim_{\lambda_{11} m,n \rightarrow \infty} \left(\sup_{x,y \in E} |\Sigma_{17}(m,n;x,y)| \right) = 0. \]

Similarly (1.2)-(1.4) and (1.7) results in

\[\lim_{\lambda_{11} m,n \rightarrow \infty} \left(\sup_{x,y \in E} |\Sigma_{18}(m,n;x,y)| \right) = 0; \]

Thus first part of theorem follows from Theorem 4.2

Proof of (ii) We have

\[\|\psi_{mn} - f\| \leq \|\psi_{mn} - V_{mn}^{\lambda}\| + \|V_{mn}^{\lambda} - f\|. \]

By assumption \(\|V_{mn}^{\lambda} - f\| \rightarrow 0 \), so it is sufficient to show that

\[\|\psi_{mn} - V_{mn}^{\lambda}\| \rightarrow 0 \quad \text{as} \min(m,n) \rightarrow \infty. \]
By Lemma 3.3, we have

$$\|\psi_{nn} - V_{nn}^\lambda\| \leq \|S_{01}^\lambda(m, n; x, y)\| + \|S_0^\lambda(m, n; x, y)\|$$

Now in order to estimate $\|S_{01}^\lambda(m, n; x, y)\|$, we first find $\|\Sigma_{11}\|$, $\|\Sigma_{12}\|$

$$\|\Sigma_{13}\|, \|\Sigma_{14}\|, \|\Sigma_{15}\|$$

and $\|\Sigma_{16}\|$, so we have

$$\|\Sigma_{11}\| = \|\sum_{j=0}^m \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} \Delta_{pp}a_{jk} \psi_j^{p-1}(x) \psi_k^{p-1}(y)\|$$

$$\leq \sum_{j=0}^m \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} \Delta_{pp}a_{jk} \left|\psi_j^{p-1}\right| \left|\psi_k^{p-1}\right| \int_0^\pi \int_0^\pi dx dy$$

$$\leq C_p \sum_{j=0}^m \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} |\Delta_{pp}a_{jk}| \left|\psi_j^{p-1}\right| \left|\psi_k^{p-1}\right| \left|\psi_m^{p-1}\right| \left|\psi_n^{p-1}\right|$$

$$\|\Sigma_{12}\| = \|\sum_{j=0}^{p-1} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} \Delta_{pp}a_{m+k, j} \psi_j^{p-1}(x) \psi_k^{p-1}(y)\|$$

$$\leq C_p \sup_{m \leq \lambda} \left(\sum_{k=n+1}^{\lambda_n} |\Delta_{pp}a_{jk}| \right) \left(\sum_{j=0}^{p-1} m^p \right)$$

$$\leq C_p \sup_{m \leq \lambda} \sum_{k=n+1}^{\lambda_n} |\Delta_{pp}a_{jk}| \left|\psi_j^{p-1}\right| \left|\psi_k^{p-1}\right| \left|\psi_m^{p-1}\right| \left|\psi_n^{p-1}\right|$$

$$\|\Sigma_{13}\| \leq C_p \sup_{n \leq \lambda} \sum_{k=n+1}^{\lambda_n} |\Delta_{pp}a_{jk}| \left|\psi_j^{p-1}\right|$$

$$\leq C_p \sup_{n \leq \lambda} \sum_{k=n+1}^{\lambda_n} \left(\sum_{j=0}^{p-1} \sum_{j=0}^{p-1} m \right) |\Delta_{pp}a_{jk}| \left|\psi_j^{p-1}\right| \left|\psi_k^{p-1}\right|$$

$$\leq C_p \sup_{n \leq \lambda} \sum_{k=n+1}^{\lambda_n} |\Delta_{pp}a_{jk}| \left|\psi_j^{p-1}\right| \left|\psi_k^{p-1}\right| \left|\psi_m^{p-1}\right| \left|\psi_n^{p-1}\right|$$

$$\|\Sigma_{14}\| \leq C_p \sup_{n \leq \lambda} \sum_{k=n+1}^{\lambda_n} |\Delta_{pp}a_{m+k,k+1}| \left|\psi_j^{p-1}\right|$$

$$\leq C_p \sup_{n \leq \lambda} \sum_{k=n+1}^{\lambda_n} |\Delta_{pp}a_{jk}| \left|\psi_j^{p-1}\right| \left|\psi_k^{p-1}\right| \left|\psi_m^{p-1}\right| \left|\psi_n^{p-1}\right|$$

$$\|\Sigma_{15}\| \leq C_p \sum_{t=0}^{p-1} \sum_{v=0}^{p-1} \left(\sum_{j=0}^{p-1} \sum_{j=0}^{p-1} m \right) |\Delta_{pp}a_{jk}| \left|\psi_j^{p-1}\right| \left|\psi_k^{p-1}\right|$$

$$\leq C_p \sum_{t=0}^{p-1} \sum_{v=0}^{p-1} |\Delta_{pp}a_{jk}| \left|\psi_j^{p-1}\right| \left|\psi_k^{p-1}\right| \left|\psi_m^{p-1}\right| \left|\psi_n^{p-1}\right|$$
Thus we can estimate

\[\| S_{\alpha \beta}^1(m,n;x,y) \| \leq C_p \sum_{k=0}^{\lambda} \sum_{j=0}^{m} \frac{\lambda_n - k + 1}{\lambda_n - n} |\Delta_{p\alpha} a_{\beta j}|^{p-1} k^{p-1} + C_p \left(\sup_{m<0} \sum_{k=0}^{\lambda} |\Delta_{\alpha j} a_{\beta k}|^{p-1} k^{p-1} \right) \]

\[+ C_p \left(\sup_{n<k<\lambda+p} \sum_{j=0}^{m} |\Delta_{p\alpha} a_{\beta j}|^{p-1} k^{p-1} \right) \]

\[+ C_p \left(\sup_{n<k<\lambda+p} \sum_{j=0}^{m} |\Delta_{\alpha j} a_{\beta k}|^{p-1} k^{p-1} \right) \]

By (1.2)-(1.4) and (1.6), we conclude that

\[\lim_{\lambda \uparrow 1} \lim_{m,n \to \infty} \left(\| S_{\alpha \beta}^1(m,n;x,y) \| \right) = 0. \]

Similarly by conditions (1.2)-(1.4) and (1.7), we get

\[\lim_{\lambda \uparrow 1} \lim_{m,n \to \infty} \left(\| S_{\alpha \beta}^2(m,n;x,y) \| \right) = 0. \]

Also by (1.8), we have

\[\lim_{\lambda \uparrow 1} \lim_{m,n \to \infty} \left(\| S_{\alpha \beta}^3(m,n;x,y) \| \right) = 0. \]

Thus \[\| \psi_{mn} \| \infty \to 0 \quad \text{as} \quad \min(m,n) \to \infty. \]

References

[1] N.K. Bary : A treatise on trigonometric series, Vol.II, Pergamon Press, London 1964.
[2] C.P. Chen and Y.W. Chauang : L^1-convergence of double Fourier series, Chinese Journal of Math. 19 (4) (1991), 391-410.
[3] K. Kaur, S. S. Bhatia and B. Ram : L^1-Convergence of complex double trigonometric series, Proc. Indian Acad. Sci., Vol. 113, No. 3 (Nov.2003), 01-09.
[4] A. N. Kolmogorov : Sur l’ordre de grandeur des coefficients de la série de Fourier-Lebesgue, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. (1923), 83-86.
[5] Xh. Z. Krasniqi : Integrability of double cosine trigonometric series with coefficients of bounded variation of second order, Commentationes Mathematicae, 51 (2011), 125-139.
[6] F. Móricz : Convergence and integrability of double trigonometric series with coefficients of bounded variation, Proc. Amer. Math. Soc. 102 (1988), 633-640.
[7] F. Móricz : On the integrability and L^1-convergence of double trigonometric series, Studia Math. (1991), 203-225.
[8] T. M. Yukoleva : Certain properties of trigonometric series with monotone coefficients (English, Russian original), Mosc. Univ. Math. Bull., 39(6) (1984), 24-30; translation from Vestn. Mosk. Univ., Ser.I, (1984), No.6, 1B-23.
[9] W. H. Young : On the Fourier series of bounded functions, Proc. London Math. Soc. 12 (2) (1913), 41-70.
[10] A. Zygmund : Trigonometric series, Vols. I,II, Cambridge University Press (1959).