Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis

Raymond Salvador1.2 *, Joaquim Radua1.2.3.4, Erick J. Canales-Rodríguez1.2, Aleix Solanes1.5, Salvador Sarró1.2, José M. Goikolea2.6, Alicia Valiente7, Gemma C. Monte1.2.6, Maria del Carmen Natividad8, Amalia Guerrero-Pedraza7, Noemi Moro7, Paloma Fernández-Corcuera7, Benedikt L. Amann2.9.10.11, Teresa Maristany12, Eduard Vieta2.6, Peter J. McKenna1.2, Edith Pomarol-Clotet1.2

1 FIDMAG - Germanes Hospitalsaries, Barcelona, Spain, 2 Centro de Investigación Biomedica en Red de Salud Mental (CIBERSAM), Barcelona, Spain, 3 Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, United Kingdom, 4 Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, 5 University of Barcelona, Barcelona, Spain, 6 Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain, 7 Hospital Benito Menen – CASM, Sant Boi de Llobregat, Spain, 8 Hospital Mare de Déu de la Mercé, Barcelona, Spain, 9 Institut de Neuropsiquiatria i Addiccions, Centre Forum Research Unit, Parc de Salut Mar, Barcelona, Spain, 10 IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain, 11 Department of Psychiatry, Autonomous University of Barcelona, Barcelona, Spain, 12 Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain

* rsalvador@fidmag.com

Abstract

A relatively large number of studies have investigated the power of structural magnetic resonance imaging (sMRI) data to discriminate patients with schizophrenia from healthy controls. However, very few of them have also included patients with bipolar disorder, allowing the clinically relevant discrimination between both psychotic diagnostics. To assess the efficacy of sMRI data for diagnostic prediction in psychosis we objectively evaluated the discriminative power of a wide range of commonly used machine learning algorithms (ridge, lasso, elastic net and L0 norm regularized logistic regressions, a support vector classifier, regularized discriminant analysis, random forests and a Gaussian process classifier) on main sMRI features including grey and white matter voxel-based morphometry (VBM), vertex-based cortical thickness and volume, region of interest volumetric measures and wavelet-based morphometry (WBM) maps. All possible combinations of algorithms and data features were considered in pairwise classifications of matched samples of healthy controls (N = 127), patients with schizophrenia (N = 128) and patients with bipolar disorder (N = 128). Results show that the selection of feature type is important, with grey matter VBM (without data reduction) delivering the best diagnostic prediction rates (averaging over classifiers: schizophrenia vs. healthy 75%, bipolar disorder vs. healthy 63% and schizophrenia vs. bipolar disorder 62%) whereas algorithms usually yielded very similar results. Indeed, those grey matter VBM accuracy rates were not even improved by combining all feature types in a single prediction model. Further multi-class classifications considering the three groups simultaneously made evident a lack of predictive power for the bipolar group, probably due to its intermediate anatomical features, located between those observed in healthy controls.
and those found in patients with schizophrenia. Finally, we provide MRIPredict (https://www.nitrc.org/projects/mripredict/), a free tool for SPM, FSL and R, to easily carry out voxelwise predictions based on VBM images.

Introduction

Although the role of statistical methods in medical research has been historically dominated by inference, its use for prediction has become more relevant in recent years. In part, this shift in objectives has been allowed by the availability of large amounts of data together with the development of new computational tools that can deal with these large datasets [1]. Among other sources, structural magnetic resonance imaging (sMRI) data has been proposed as an input for clinical diagnosis and outcome prediction in different clinical areas [2].

Initially, due to the large extent of MRI datasets, intermediate steps aimed at reducing the number of predictor variables were required for computational feasibility. Such reduction could either involve a supervised step, where the researcher selected specific voxels or brain regions based on a priori information (i.e. feature selection), or an unsupervised procedure like a principal or independent component analysis [3]. In both cases, though, the risk of discarding relevant information was present. In recent years, however, optimized versions of commonly used classifiers which can be readily applied to MRI datasets without needing dimensionality reduction have been developed [4].

Studies evaluating the predictive power of sMRI images are particularly numerous in Alzheimer’s disease prediction [5], psychiatric diagnosis [6, 7] and in the assessment of brain tumor characteristics [8]. Still, it is difficult to extract reliable conclusions on optimal prediction procedures from individual studies as they usually evaluate the performance of specific algorithms on image sets that have been acquired and processed in particular ways, with only a small subset of studies systematically comparing the prediction capacity of available algorithms. While this comparison has been recently made for several pathologies including multiple sclerosis [9], fibromyalgia [10] and Alzheimer’s disease [11, 12] some other relevant clinical areas such as psychosis still lack a systematic evaluation.

Specifically, in the area of psychosis, where studies have traditionally focused on reporting statistically significant differences involving patients with schizophrenia and patients with bipolar disorder, there is a current interest in predicting the final diagnostic for patients undergoing a psychotic episode by means of these classifying algorithms. Most of the sMRI studies carried out so far, though, have mainly assessed the classification accuracy between patients with schizophrenia and controls [7], with only few evaluating the discriminative power of sMRI to separate patients with bipolar disorder from healthy subjects [13–16] and only one of them performing the most clinically relevant classification between bipolar and schizophrenic subjects [14].

Here, in order to objectively assess the utility of sMRI images in diagnostic prediction in psychosis, we systematically evaluate the performance of a large set of available machine learning algorithms (ridge, lasso, elastic net and L0 norm regularized logistic regressions, a support vector classifier, regularized discriminant analysis, random forests and a Gaussian process classifier) on some of the most commonly used sMRI data formats (grey and white matter voxel-based morphometry, vertex-based cortical thickness and volume, region of interest volumetric measures and wavelet-based morphometry maps). All possible combinations of algorithms and data formats are used to estimate the discriminability between well matched samples of
healthy controls (N = 127), of patients with schizophrenia (N = 128) and of patients with bi-
po lar disorder (N = 128). Furthermore, to maximize the predictive power of sMRI images, all dif-
ferent feature types are also combined in a single prediction model. Finally, several multi-class
approaches are considered in order to evaluate the accuracy rates to be found in a simulta-
neous classification of the three groups. As detailed later, we provide as well MRIPredict, a free
tool for SPM, FSL and R that allows an easy specification, validation and fitting of voxelwise
models that can be later applied to new MRI datasets, even if they have different voxel dimen-
sions (software available at https://www.nitrc.org/projects/mripredict/).

Material and methods

Sample
A sample of N = 128 individuals with a diagnosis of schizophrenia according to DSM-IV crite-
ria were recruited from Benito Menni CASM and Mare de Déu de la Mercè hospitals (Spain).
All individuals were right handed, in the 18 to 65 age interval, with no history of brain trauma
or neurological disease, and not having shown alcohol/substance abuse in the last 12 months.
All patients but one were taking antipsychotic medication (atypical N = 82, typical N = 9, both
N = 30, unknown N = 6, equivalents of Chlorpromazine: 824.0 mg (mean), 642.8 mg (sd)).
Considering the same exclusion criteria, a second sample of N = 128 patients with a diagnose
of type I bipolar disorder matched for age, gender and pre-morbid IQ, as estimated with the
Word Accentuation Test [17] were recruited from the Benito Menni CASM and the Hospital
Clinic de Barcelona (Spain). When scanned, 77 were in euthymia while 28 were undergoing a
manic phase and 23 were under depression. 75 where taking antipsychotic medication (atypi-
cal N = 64, typical N = 4, both N = 7, equivalents of Chlorpromazine: 399.4 mg (mean), 388.0
mg (sd)), 105 where taking mood stabilizers and 33 antidepressants. Finally, a third sample of
N = 127 healthy control individuals, matched by the same criteria was recruited from non-
medical hospital staff, their relatives and acquaintances, plus independent sources in the com-
munity. Apart from previous exclusion criteria, controls reporting a history of mental illness
and/or treatment with psychotropic medication were discarded. Table 1 gives further demo-
graphic and clinical information on the three samples. All participants gave written informed
consent and the study was approved by the Clinical Research Ethics Committee of the Sisters
Hospitallers (Comité de Ética de Investigación Clínica de las Hermanas Hospitalarias).

sMRI data features
For each subject, a structural brain image was acquired with a 1.5-T GE Signa scanner (Gen-
eral Electric Medical Systems, Milwaukee, WI, USA) using the following acquisition para-
eters: T1-weighted sequence, 180 axial slices, 1mm slice thickness with no gap, 512×512 matrix
size, 0.5×0.5×1mm³ voxel resolution, 4ms echo time, 2000ms repetition time, 15˚ flip angle.
Once acquired, information contained in the T1 images was summarized in the following data
features (see also Fig 1):

1. Cortical thickness of left and right hemispheres: sMRI data were analyzed with the FreeSur-
fer image analysis suite (http://surfer.nmr.mgh.harvard.edu/). Briefly, the pre-processing
included removal of non-brain tissue, automated Talairach transformation, tessellation of
the grey and white matter boundaries and surface deformation [18]. A number of deformation
procedures were performed in the data analysis pipeline, including surface inflation
and registration to a spherical atlas. Intensity and continuity information from the entire
three dimensional images in the segmentation and deformation procedures were used to
produce vertex-wise representations of cortical thickness (CT) in each vertex across the cortical mantle.

2. Cortical volume of left and right hemispheres: In addition to CT, the FreeSurfer also computes vertex-wise cortical surface area (SA). Both CT and SA are multiplied to obtain a vertex-wise representation of cortical volume (CV). All individual CT and CV maps were smoothed using a Gaussian kernel with full width at half maximum (FWHM) of 30 mm [19].

3. Grey and White matter voxel based morphometry (VBM) images: Structural images were segmented into grey and white matter partial volume images in the native space using the unified segmentation algorithm included in SPM12 [20]. Then, the original structural images were brain-extracted [21] and aligned to the Montreal Neurological Institute MNI152 2mm standard template using FSL registration tools [22]. The resulting deformation fields were applied to the initially segmented images to obtain grey and white matter normalized images. To reduce computational cost, those images were subsampled to a 4 x 4 x 4 mm resolution.

4. Grey and White matter wavelet based morphometry (WBM) images: Taking the grey and white matter normalized VBM images as inputs, we applied the methodology explained in [23] and implemented in the WBM toolbox (http://www.wbmorphometry.com/). Initially, input images were smoothed with a Gaussian kernel (FWHM≈7 mm) and were

Table 1. Demographic and clinical characteristics of samples of both patient groups and of healthy controls.

	Schizophrenia N = 128	Bipolar disorder N = 128	Controls N = 127	Statistical significance
Age	41.5 (10.3)	41.4 (10.4)	39.8 (10.3)	p(sch, bip) = 0.94
	Range: 18–65	Range: 20–64	Range: 20–64	p(sch, cnt) = 0.18
				p(bip, cnt) = 0.21
Gender (F/M)	54/74	54/74	54/73	p(sch, bip) = 1.0
				p(sch, cnt) = 0.96
				p(bip, cnt) = 0.96
Illness duration	18.4 (11.0)	14.7 (10.6)		p(sch, bip) = 0.0084
	Range: 0–43	Range: 0–42		
^TAP	22.09 (4.85)	22.72 (4.31)	23.0 (4.41)	p(sch, bip) = 0.29
				p(sch, cnt) = 0.14
				p(bip, cnt) = 0.64
^5WAIS-III	91.9 (17.6)	93.4 (15.6)	107.2 (15.5)	p(sch, bip) = 0.51
				p(sch, cnt)< 0.0001
				p(bip, cnt)< 0.0001
^6PANSS	72.6 (17.5)	46.0 (16.1)		p(sch,bip)< 0.0001
PANSS positive	16.9 (5.7)	10.4 (5.5)		
PANSS negative	21.4 (7.0)	10.7 (5.3)		
PANSS Gen. Psych.	34.3 (8.4)	24.9 (9.9)		
^5YMRS	5.95 (9.72)			
^6HDRS	7.43 (9.34)			

^TAP: Word Accentuation Test (Test de Acentuación de Palabras);
^5WAIS-III: Wechsler Adult Intelligence Scale III;
^6PANSS: Positive and Negative Syndrome Scale;
^5YMRS: Young Manic Rating Scale;
^6HDRS: Hamilton Depression Rating Scale.

Values given for single groups are mean and standard deviations.

https://doi.org/10.1371/journal.pone.0175683.t001
transformed to the wavelet-domain using a 3D discrete orthogonal wavelet transform based on symmetric spline wavelets with degree $n = 3$ and resolution level $J = 2$. By means of the minimum description length procedure, coefficients that best represented grey and white matter anatomy on all subjects were retained for the classifications.

5. Region of interest (ROI) based brain volumes and their interactions: The FreeSurfer was used to parcellate the brain parenchyma in cortical and subcortical ROIs [24]. Mean volume values for these ROIs were extracted and used together with cerebellum, white matter and ventricle volumes as independent variables for classification. In addition, after standardizing their values, we calculated the pairwise products between all volumes as modelers of pairwise interaction. This extended set of variables was also supplied to the classifiers together with the original regional volumes.

6. Joint dataset combining all previous data features: We evaluated the potential improvement in classification accuracy achieved by merging data from all feature types in a single matrix. The amount of independent variables involved, however, made the direct implementation
of algorithms computationally unfeasible. To reduce the number of variables in a meaningful way we implemented two different strategies: (a) following Wang et al. [25], we applied a previous dimensionality reduction through a principal component analysis (PCA), and (b) by considering a similar approach than in Dai et al. [26], we calculated the univariate t-values from pairwise group comparisons, selecting only the 1% of variables with highest t-scores (in absolute value).

Learning algorithms

Eight classifiers, selected for their habitual usage and their computational efficiency, were applied to the different data features described in the previous section. Prediction capability of each data feature—classifier pair on the three possible classifications involving the two groups of patients and controls was quantified. Specifically, the algorithms evaluated were: (I) ridge and (II) lasso logistic regressions [27], (III) elastic net regularization [28], (IV) L0-norm regularization [29], (V) a support vector classifier (SVC) [4], (VI) regularized discriminant function analysis (RDA) [30], (VII) a Gaussian process classifier (GPC) [31], and (VIII) Random forests (RF). A theoretical overview of these algorithms together with technical details on their implementation can be found in the S1 Appendix (Description of learning algorithms).

General procedure and cross validation scheme

To have a non-biased assessment of the performance we applied the classifiers, which had been previously built on training samples, on a completely independent group of individuals (i.e. a test sample). A 10-fold cross validation scheme was followed to divide the original sample (made of all individuals belonging to the two groups) in 10 non-overlapping partitions [4]. For each partition individuals included were considered as the test sample, and the remaining individuals as the training sample. A graphical representation of the general procedure for evaluating classification accuracy is given in Fig 2.

For all classifiers but RF and GPC cross-validation is used at two levels: at an outer level the complete sample is divided in 10 parts for training and testing, but within each training sample a second internal cross-validation is usually carried out to select the optimal values for the regularization parameters. From a range of parameter values, those minimizing the classification error in this internal cross-validation are used to build the classifier, which later is applied to the test data to have an objective assessment of classification accuracy. This procedure is repeated 10 times (for each of the 10-fold partitions) generating 10 accuracy estimates.

To avoid over-optimistic results the effect of nuisance covariates on test data should be regressed out by using those coefficients fitted in the training data (i.e. test data should not be used in the fitting of nuisance covariates) (see Fig 2). Individual performances of each algorithm—feature combination are given as frequencies of test individuals successfully classified (assuming a \(p(X) > 0.5 \) threshold) and by other quantities such as the area under the (receiver operating) curve (AUC) [4]. The receiver operating curve (ROC), which is based on the relative performances considering the whole range of possible probability thresholds (from 0 to 1) has an area that ranges from 0.5 for classifiers without any prediction capability to 1 for perfectly classifying algorithms.

Multi-class classifiers

Although many of the learning algorithms used here were initially designed for two group classifications, extensions have been built to deal with more than two groups simultaneously. Here we have applied three different approaches for simultaneous classification of the three groups.
On the one hand, after performing the three possible pairwise classifications (among our three groups) we have assigned each test individual to the class with highest mean probability (i.e. a one-versus-one classification approach [4]). Alternatively, we have carried out classifications between each class and a merged class containing subjects from the two remaining classes, assigning test individuals to the non-merged class with highest probability (i.e. a one-versus-all approach [4]) and, finally, for those classifiers with inbuilt multiclass functionality (all but the L0-norm and SVC) we have used the methods available. These involved the regularized

![Image of general cross validation scheme](https://doi.org/10.1371/journal.pone.0175683.g002)

This internal CV is not carried out in Random Forests and GPC

Fig 2. General cross validation scheme applied to evaluate the classification accuracy in all combinations of algorithms and data features. For most classifiers, cross-validation is used at two levels: at an outer level for training and testing and within each training sample to select the optimal values for the regularization parameters (delta). The effect of nuisance covariates on test data should be regressed out by using coefficients fitted in the training data. Individual performances are given as frequencies of test individuals successfully classified.

https://doi.org/10.1371/journal.pone.0175683.g002

On the one hand, after performing the three possible pairwise classifications (among our three groups) we have assigned each test individual to the class with highest mean probability (i.e. a one-versus-one classification approach [4]). Alternatively, we have carried out classifications between each class and a merged class containing subjects from the two remaining classes, assigning test individuals to the non-merged class with highest probability (i.e. a one-versus-all approach [4]) and, finally, for those classifiers with inbuilt multiclass functionality (all but the L0-norm and SVC) we have used the methods available. These involved the regularized
multinomial regression (for the ridge, lasso and elastic net), the multi-class regularized discriminant analysis, and the multi-class versions of the GPC and RF. It should be noted that in all three-class classifications we had a 0.333 probability of assigning, by chance, the individual to the correct class.

Results

Estimated classification accuracies for all possible combinations of algorithms and data features are shown in Fig 3 (healthy vs. schizophrenia), Fig 4 (healthy vs. bipolar) and Fig 5 (bipolar vs. schizophrenia). As a general trend, accuracies achieved in the healthy vs. schizophrenia classifications are higher than those observed in the healthy vs. bipolar and bipolar vs. schizophrenia classifications. On the other hand, although results vary depending on the algorithm and data feature, grey matter (GM) VBM (without data reduction) and WBM feature types show classification accuracies which equal or exceed those achieved by the other features. Indeed, when accuracy rates are averaged over classifiers GM-WBM, and in a higher degree GM-VBM, significantly outperform most of the other feature types in the healthy vs. schizophrenia and in the healthy vs. bipolar classifications (Fig 6). However, for the bipolar vs. schizophrenia classification this trend is less clear. In contrast, when classification rates are averaged over features and algorithms are compared, no single classifier outperforms the others (Fig 7), and a poor performance of the L0-norm classifier is the only distinctive and
significant pattern. In Figs 6 and 7 the better performance of healthy vs. schizophrenia classifications is even more evident. Indeed, when Wilcoxon tests were run on the average-over-feature accuracies of Fig 7, accuracies were significantly higher for all algorithms in the healthy vs. schizophrenia pair (See S2 Appendix).

Classification levels achieved by the different algorithms when applied to grey matter VBM (the best performing feature type) are shown in Table 2. Best rates were attained in the healthy vs. schizophrenia classifications, with accuracies as high as 0.77 for the SVC, although no classifier significantly outperformed any other (Wilcoxon paired test at $p < 0.05$) (average accuracy over all classifiers equaled 0.75) while misclassification between healthy individuals and individuals with bipolar disorder was higher (averaged accuracy declined to 0.63) but again no single classifier outperformed any other classifier. Finally, the classification between both psychiatric disorders reported similar classification levels with a mean accuracy of 0.62, although here the ridge regression algorithm (with mean accuracy of 0.66) significantly outperformed the L0-norm classifier (mean accuracy of 0.58); Wilcoxon paired test $p = 0.035$. However, no other comparison was significant.

Fig 8 portrays receiver operating curves (ROC) for classifiers in the three different pairwise classifications (for all classifiers except the RDA, for which we did not have reliable estimates of individual probabilities). As expected by the similar classification rates previously reported, plotted curves had similar trajectories. Highest AUC levels were achieved in the healthy vs. schizophrenia classification with an average AUC of 0.83 (values for each classifier are given in
Table 2) which declined to 0.69 for the healthy vs. bipolar disorder classification and to 0.68 in the classification between both disorders. A bootstrap-based statistical test comparing the AUC between classifiers reported very few significant differences between algorithm performances. These only included a higher AUC for the SVC versus the elastic net regression (p = 0.005) and versus the GPC (p = 0.009) in the healthy vs. schizophrenia classification.

To gain some insight on the inner functioning of algorithms applied to grey matter VBM data, maps of fitted coefficients and weights were obtained for most of the classifiers (see Fig 9). In Fig 9 coefficient maps are drawn together with maps of effect sizes, which were derived from standard univariate t-tests applied to each voxel (i.e. the standard method for generating maps of differences in group comparisons). Although the aspect of coefficient maps clearly differed among classifiers, there was a broad agreement between most prominent patterns and features in the effect size maps. A more quantitative view of such agreement is provided by plots of Fig 10 where, in most cases, a monotonic increasing relationship is shown between effect size and coefficient value. In those cases where this relationship was not clear (the lasso in controls vs. schizophrenia and all RF classifications) largest coefficients were still linked to voxels with largest effect sizes. Values of RF though, are not model coefficients but variable importance measures derived from the Gini index [4]. This agreement between coefficients and effect sizes links classifiers with likely anatomical group divergences.

When all information from the different data features was combined together, and after applying PCA for dimensionality reduction, classifiers reported accuracies clearly lower than
those achieved only with grey matter VBM (without dimensionality reduction) (Fig 11A). And although most mean accuracies were higher than 0.5, bootstrap intervals revealed that for the two classifications involving bipolar subjects many of these were not significantly different from 0.5 (see Table 3). In contrast, when the top 1% of variables with largest t-values were considered, accuracies achieved levels very similar to those provided by grey matter VBM (see Fig 11B), and in all cases they were considered significantly larger than 0.5 (see bootstrap intervals in Table 3). In any case, however, performances were higher than those provided by grey matter VBM.

Accuracies from one-versus-one multi-class classifications on grey matter VBM were, in general, lower than those delivered by pairwise classifications (see Fig 12). Furthermore, although significant predictive power was still found for controls (with an average accuracy of 60%) and for schizophrenia (with an average accuracy of 57%) classification rates for bipolar patients (with an average accuracy of 37%) were quite close to the 33% expected by chance.
Indeed, most classifiers included the 33% inside the bootstrap confidence intervals (see Table 4) suggesting that multi-class algorithms do not classify bipolar patients reliably. Results from the other two multi-class schemes (one-versus-all and inbuilt multiclass) delivered similar levels of accuracy than those of the one-versus-one design (see Tables 4 and 5). While mean overall accuracy was 51% for the one-versus-one approach a value of 52% was attained for both one-versus-all and inbuilt approaches. Again, all classifiers showed a significant predictive power for the control group (average of 64% for both schemes) and schizophrenia group (63% and 60%) but no reliable prediction power was found for the bipolar group (average accuracy of 30% and 32% respectively).

Discussion and conclusions

After applying the eight classifiers on the different feature types we can outline some general conclusions. First, it seems that while the election of the feature type may be of relevance to
achieve an optimal classification, the choice of classifier is not important. Most classifiers provide similar levels of accuracy when an adequate feature type is selected. Specifically, for the three pairwise classifications carried out here with patients with psychosis, grey matter VBM and, to a minor extent, grey matter WBM are the feature types leading to highest accuracies. For them no single classifier clearly outperforms the others. This is rather surprising since, although it has been recently proven that some of the applied classifiers have clear mathematical similarities [4] it is also clear that some of them are unmistakably different. The most obvious case being the Random forest classifier, which binarizes continuous variables by partitioning the feature space, and is not constrained by the additivity found in logistic regressions and support vector classifiers. This same result, though, has been previously reported by Khondoker et al. [32] whom, in a classification involving patients with Alzheimer and controls.

Table 2. Mean accuracy rate and area under the receiver operating curve (AUC) for the eight classifiers on VBM grey matter.

Algorithm	Mean accuracy	5%limit	95%limit	AUC	95%limit	95%limit	
Healthy vs. Schizophrenia	⁹ridge	0.756	0.701	0.806	0.836	0.788	0.885
	⁹lasso	0.741	0.683	0.792	0.82	0.769	0.872
	⁹elastic	0.76	0.703	0.812	0.815	0.762	0.869
	⁹L0 norm	0.752	0.712	0.795	0.835	0.785	0.884
	⁹SVC	0.772	0.731	0.812	0.85	0.804	0.896
	⁹RDA	0.745	0.683	0.804	---	---	---
	⁹GPC	0.756	0.699	0.805	0.828	0.778	0.878
	⁹RF	0.752	0.69	0.805	0.837	0.788	0.885
Healthy vs. Bipolar dis.	ridge	0.623	0.586	0.664	0.686	0.621	0.75
	lasso	0.655	0.616	0.7	0.702	0.639	0.766
	elastic	0.635	0.592	0.681	0.691	0.627	0.756
	L0 norm	0.651	0.613	0.69	0.706	0.643	0.769
	SVC	0.647	0.599	0.694	0.698	0.634	0.762
	RDA	0.616	0.557	0.668	---	---	---
	GPC	0.608	0.565	0.658	0.671	0.605	0.737
	RF	0.62	0.571	0.67	0.688	0.624	0.753
Bipolar dis. vs. Schizophrenia	ridge	0.66	0.605	0.716	0.692	0.627	0.756
	lasso	0.609	0.555	0.659	0.646	0.579	0.713
	elastic	0.616	0.562	0.676	0.689	0.624	0.753
	L0 norm	0.581	0.507	0.643	0.659	0.593	0.726
	SVC	0.652	0.593	0.712	0.696	0.632	0.761
	RDA	0.605	0.545	0.657	---	---	---
	GPC	0.621	0.583	0.661	0.696	0.632	0.76
	RF	0.613	0.581	0.646	0.685	0.621	0.75

Lower and upper limits for the 95% confidence intervals generated by bootstrap are also reported for these two quantities.

⁹ridge: Ridge regression,
⁹lasso: Lasso regression,
⁹elastic: Elastic net regularization,
⁹L0-norm: L0-norm regularization,
⁹SVC: Support vector classifier,
⁹RDA: Regularized discriminant analysis,
⁹GPC: Gaussian process classifier,
⁹RF: Random forest.

https://doi.org/10.1371/journal.pone.0175683.t002
showed that as effect size (i.e. the real discriminative power of data) increased different classifiers tended to achieve similar levels of classification accuracy, making the choice of algorithm less relevant. A distribution of observations in the multidimensional feature space largely following an unstructured pattern could be a plausible explanation for our results. Such a distribution with unstructured noise would not be better classified by any complex function than a hyperplane, which is a geometrical feature that all classifiers are to a large extent able to generate, and this would eventually lead to similar classification accuracies. We have also seen in Fig 9 that, in spite of working differently, classifiers give largest weights to voxels located in the same or similar areas, extracting and using similar information from the VBM images. As well, there are reasonable explanations for the best classifying performance of grey matter VBM. First, while substantial white matter abnormalities have been described in both schizophrenic and bipolar patients through diffusion MRI [33, 34], such patterns have not been as clear in the few VBM studies analyzing white matter, at least in schizophrenia [35]. On the other hand, lower accuracies delivered by region of interest measures are attributable to the intrinsic loss of information caused by spatial averaging of high resolution data. Finally, the poorer performance of both vertex based cortical features may be related to their restricted spatial extent, which excludes all subcortical structures. In addition, major structural abnormalities in schizophrenia and bipolar disorder have been described in the medial frontal cortex and the insulas [35, 36] which are regions with high topological complexity.

It should also be noted that the primary objective of this study was the comparison of commonly used classifiers and feature types for classification in psychosis, intentionally leaving

![Fig 8. Receiver Operating Curves (ROCs) for the different classifiers applied to grey matter VBM. Best classification performances are observed in the healthy vs. schizophrenia classification. The overlap between curves in each plot points to similar classification levels attained by the different algorithms. AUC: Area under the receiver operating curve. There are no ROCs for the Regularized discriminant analysis because no reliable individual probabilities were available for this algorithm.](https://doi.org/10.1371/journal.pone.0175683.g008)
Fig 9. Brain maps of coefficients from fitted classifiers on grey matter VBM images together with effect size maps as given by standard univariate t-tests. Values for the random forest classifier are variable importance measures derived from the Gini index. Functions for the Gaussian process classifier and the regularized discriminant analysis did not provide fitted coefficients and maps were not available.

https://doi.org/10.1371/journal.pone.0175683.g009
Fig 10. Plots of t-test based effect sizes (x-axis) versus (non-zero) coefficients from the different classifiers (y-axis) applied to grey matter VBM data. Non parametric local regression (lowess) lines are shown in blue. Random forest values are variable importances derived from the Gini index. No coefficients were available for the Gaussian process classifier and the regularized discriminant analysis.

https://doi.org/10.1371/journal.pone.0175683.g010
many other existing classifiers, subtypes and variants untested. Neither it was of interest to attain particularly high accuracies. Indeed, when performances in our study are compared to those found in other schizophrenia vs. healthy classifications reported in the recent revision by Wolfers et al. [7], they are average. The mean accuracy rate found for the bipolar vs. control classification based on the VBM data (63%) is also similar to values reported by the few studies analyzing the same classification on sMRI: 60% [14], 66% [15], 73% [16] with the exception of Bansal et al. [13] that achieved a surprisingly high classification accuracy of 98%. Finally, the only study directly classifying bipolar vs. schizophrenic patients [14] reported a classification accuracy of 88%, which is clearly higher than ours (62%). However, when they applied the fitted classifiers to an external sample, their classification accuracy descended to 65%.

Yet, most previous studies used smaller sample sizes, sometimes significantly smaller than ours, making their results less reliable. In our study, we have used large and well balanced samples and we have paid special attention in keeping the independence between test and training sets throughout all the image processing steps in order to avoid unintended biases and overoptimistic classification estimates. Also, when running the different classifiers we have noticed the relevance of carefully choosing the range of possible parameter values in the training phase which, if ignored, would lead to clearly suboptimal classification rates. Since our training samples had (nearly) equal number of individuals, classification rates assumed equal prior probabilities (of 0.5) for all classes. In real situations, though, this equality will sometimes not be met, and when using other priors, accuracy rates will be different from those reported here.

Similarities observed between effect sizes and classifier coefficients relate the later with apparent anatomical divergences, bringing some insight on the way classifiers use information from the images. However, such relation will hold true only if effect sizes contain patterns of real abnormality. Indeed, for both group pairs involving controls and patients we have found the highest effect sizes in areas, like the insulas and the medial frontal cortex, which have consistently reported as having grey matter reductions in VBM meta-analyses of both psychotic

![Fig 11. Estimated classification accuracies obtained by considering all feature types together as predictors.](https://doi.org/10.1371/journal.pone.0175683.g011)
disorders [35, 36]. Still, a close agreement between effect sizes and fitted coefficients should not be expected as the former simply report univariate between group dissimilarities while the later are weights from multivariate predictive models that, in some cases (e.g. Random Forests) have a very complex nature. Also, in settings with many more features than cases and with high levels of spatial autocorrelation (as it occurs in sMRI images), sparse classifiers like the Lasso or the L0-norm may lead to an extremely large number of competing models having optimized prediction capabilities [4].

The decrease in classification accuracies observed when using combined features and PCA reduction was unexpected. In contrast to results in [25], merging information from different feature types did not bring any improvement. But unlike Wang et al. [25] which combined

Algorithm	Mean accuracy	5% limit	95% limit	Mean accuracy	5% limit	95% limit	
Healthy vs. schizophrenia	ridge	0.6	0.516	0.673	0.733	0.686	0.776
	lasso	0.638	0.584	0.698	0.781	0.747	0.816
	elastic	0.662	0.598	0.728	0.752	0.711	0.791
	L0 norm	0.713	0.655	0.771	0.761	0.717	0.798
	SVC	0.582	0.495	0.675	0.737	0.693	0.781
	RDA	0.658	0.593	0.725	0.792	0.758	0.823
	GPC	0.619	0.561	0.688	0.717	0.657	0.776
	RF	0.674	0.624	0.725	0.729	0.657	0.792
Healthy vs. bipolar dis.	ridge	0.526	0.455	0.598	0.619	0.562	0.662
	lasso	0.553	0.5	0.612	0.596	0.561	0.639
	elastic	0.549	0.484	0.626	0.619	0.586	0.646
	L0 norm	0.557	0.495	0.62	0.564	0.518	0.618
	SVC	0.518	0.461	0.574	0.608	0.583	0.632
	RDA	0.529	0.464	0.603	0.608	0.563	0.663
	GPC	0.522	0.459	0.585	0.623	0.561	0.677
	RF	0.491	0.405	0.576	0.627	0.575	0.67
Bipolar dis. vs. schizophrenia	ridge	0.492	0.446	0.537	0.641	0.601	0.678
	lasso	0.56	0.506	0.614	0.594	0.557	0.637
	elastic	0.556	0.493	0.614	0.613	0.572	0.651
	L0 norm	0.579	0.507	0.65	0.609	0.564	0.657
	SVC	0.516	0.456	0.573	0.563	0.518	0.607
	RDA	0.571	0.513	0.628	0.613	0.564	0.661
	GPC	0.521	0.457	0.586	0.676	0.627	0.718
	RF	0.529	0.453	0.599	0.637	0.583	0.686

Limits for 95% confidence intervals are based on bootstrap.

aRidge: Ridge regression,
bLasso: Lasso regression,
cElastic: Elastic net regularization,
dL0-norm: L0-norm regularization,
eSVC: Support vector classifier,
fRDA: Regularized discriminant analysis,
gGPC: Gaussian process classifier,
hRF: Random forest.

https://doi.org/10.1371/journal.pone.0175683.t003
different MRI modalities (sMRI and resting state functional MRI), we have derived all features from the same T1 images (expecting higher levels of redundancy between data features). Furthermore, dimensionality reduction through principal components does not seem to have retained the most relevant information, as grey matter VBM clearly provided better classifying accuracies. In contrast, feature selection based on the t statistic has clearly been more successful in retaining the relevant information from the combined features, although grey matter VBM classification rates have not been surpassed by this approach.

Reductions found in multi-class classifications are easily explained by the presence of a third competing class in each classification. Here, the feature space should be divided in three excluding areas by the algorithm, thus increasing the probability of misclassification. Such effect is particularly noticeable in the bipolar disorder group, where classification levels do not depart significantly from what would be expected by chance (33%). This is likely due to the fact that, as made evident by the effect size maps of Fig 9, VBM intensities in bipolar patients tend to be located between those observed in controls and in patients with schizophrenia (i.e. patterns of abnormality in bipolar disorder are similar to those in schizophrenia but less intense). Such intermediate position between two competing classes has probably led to the higher misclassification rates observed in this clinical group. This result seems to be quite

![Fig 12. Classification accuracies generated by multi-class classifiers on grey matter VBM using the one-vs-one approach. All algorithms were used (except the regularized discriminant function analysis, which did not report reliable class probabilites). Overall accuracies are plotted together with accuracies for the three groups separately. Green line: mean accuracy for the 10 test samples; blue lines: approximate 95% confidence intervals for the mean accuracy; red line: highest and lowest accuracy values. ridge: Ridge regression, lasso: Lasso regression, elastic: Elastic net regularization, L0-norm: L0-norm regularization, SVC: Support vector classifier, GPC: Gaussian process classifier, RF: Random forest.](https://doi.org/10.1371/journal.pone.0175683.g012)
consistent as it has been replicated by the three multi-class schemes applied (the one-vs-one, the one-vs-all and the inbuilt multi-class approach) which have delivered similar correct classification rates. In any case, the lower accuracies observed in bipolar patients have practical implications for sMRI based classification in psychosis. Further lines of research include the optimal combination of the different classifiers to increase the currently reported accuracies. The inclusion of data features derived from other MRI modalities such as functional connectivity maps or diffusion based measures including fractional anisotropy and mean diffusivity may also allow achieving higher classification accuracies.

Table 4. Mean accuracies obtained by all classifiers (apart from the regularized discriminant function analysis) using a one-vs-one and a one-vs-all multi-class approach on grey matter VBM images. Lower and upper limits for the 95% bootstrap confidence intervals are also reported. 0.333 is the expected accuracy when no real predictive power is present.

Algorithm	One-versus-one	One-versus-all				
	Mean accuracy	5% limit	95% limit	Mean accuracy	5% limit	95% limit
Overall						
aridge	0.522	0.479	0.562	0.514	0.475	0.551
blasso	0.509	0.462	0.554	0.527	0.483	0.566
celastic	0.517	0.478	0.557	0.527	0.493	0.559
L0 norm	0.527	0.464	0.588	0.566	0.525	0.602
dSVC	0.509	0.481	0.537	0.491	0.443	0.538
fGPC	0.501	0.452	0.547	0.515	0.463	0.563
gRF	0.496	0.452	0.538	0.483	0.436	0.525
Controls						
ridge	0.592	0.512	0.657	0.632	0.562	0.694
lasso	0.613	0.514	0.698	0.584	0.507	0.656
elastic	0.571	0.494	0.647	0.639	0.558	0.707
L0 norm	0.607	0.535	0.688	0.632	0.56	0.709
SVC	0.531	0.463	0.608	0.66	0.537	0.772
GPC	0.633	0.543	0.72	0.656	0.564	0.741
RF	0.621	0.548	0.688	0.68	0.591	0.764
Schizophrenia						
ridge	0.635	0.544	0.738	0.631	0.544	0.74
lasso	0.481	0.409	0.556	0.588	0.524	0.654
elastic	0.614	0.542	0.694	0.621	0.545	0.704
L0 norm	0.547	0.451	0.648	0.636	0.555	0.715
SVC	0.551	0.48	0.617	0.629	0.531	0.723
GPC	0.607	0.55	0.668	0.66	0.589	0.735
RF	0.602	0.539	0.666	0.631	0.564	0.696
Bipolar dis.						
ridge	0.372	0.285	0.448	0.282	0.185	0.363
lasso	0.415	0.301	0.516	0.423	0.316	0.516
elastic	0.391	0.315	0.475	0.319	0.254	0.387
L0 norm	0.414	0.336	0.492	0.428	0.372	0.492
SVC	0.426	0.369	0.487	0.204	0.128	0.286
GPC	0.287	0.236	0.344	0.255	0.209	0.303
RF	0.291	0.218	0.367	0.164	0.103	0.221

aridge: Ridge regression,
blasso: Lasso regression,
celastic: Elastic net regularization,
dL0-norm: L0-norm regularization,
eSVC: Support vector classifier,
fGPC: Gaussian process classifier,
gRF: Random forest.
Finally, as an added feature of this study we also provide MRIPredict, a free tool for SPM, FSL and R that allows an easy specification of the MRI datasets, of confounds and covariates, of cross-validation parameters and of voxelwise models to be fit (this software is available at https://www.nitrc.org/projects/mripredict/). MRIPredict applies regularized logistic regression from the Glmnet library [37] and saves the models in MNI space, thus allowing a later application to new scans from other sites, even if they have different voxel dimensions. It must be noted, then, that the accuracy of the new predictions may be limited if the new scans show important methodological differences with the scans used to fit the model.

In summary, from our exhaustive analysis of algorithms and data features we conclude that while grey matter VBM is the feature of choice for sMRI based classification in psychosis, the selection of classifier is not relevant (most have similar performance levels). We also conclude that the combination of different features types (derived from the same T1 images) do not seem to increase classification accuracies over classification rates achieved by grey matter

Algorithm	Mean accuracy	5%limit	95%limit
Overall			
²ridge	0.533	0.48	0.58
²lasso	0.54	0.511	0.576
²elastic	0.538	0.506	0.575
²RDA	0.475	0.434	0.517
²GPC	0.504	0.456	0.551
²RF	0.507	0.458	0.557
Controls			
ridge	0.612	0.535	0.683
lasso	0.662	0.559	0.753
elastic	0.65	0.563	0.749
RDA	0.606	0.515	0.698
GPC	0.643	0.55	0.731
RF	0.646	0.568	0.719
Schizophrenia			
ridge	0.629	0.542	0.718
lasso	0.623	0.522	0.743
elastic	0.627	0.585	0.676
RDA	0.555	0.471	0.647
GPC	0.619	0.553	0.692
RF	0.602	0.538	0.67
Bipolar dis.			
ridge	0.358	0.274	0.449
lasso	0.359	0.305	0.417
elastic	0.34	0.286	0.384
RDA	0.287	0.2	0.368
GPC	0.279	0.224	0.324
RF	0.306	0.239	0.379

²ridge: Ridge regression,
²lasso: Lasso regression,
²elastic: Elastic net regularization,
²RDA: Regularized discriminant function analysis,
²GPC: Gaussian process classifier,
²RF: Random forest.

https://doi.org/10.1371/journal.pone.0175683.t005
Finally, multi-class classifications considering the three groups simultaneously have made evident a lack of predictive power for the bipolar group. This is probably due to its intermediate anatomical features, located between those observed in healthy controls and those found in patients with schizophrenia. We provide a new software tool that we hope will help many researchers conduct optimized voxelwise predictions.

Supporting information

S1 Appendix. Description of learning algorithms.

S2 Appendix. Results from comparing average-over-feature accuracies in the three group pairs.

Author Contributions

Conceptualization: RS JR EJC GCM PJM EPC.

Data curation: RS JR EJC AS.

Formal analysis: RS JR EJC GCM.

Funding acquisition: RS EPC.

Investigation: SS JMG AV MCN AGP NM PFC BLA TM EV.

Methodology: RS JR EJC.

Project administration: SS EPC.

Resources: TM.

Software: RS EJC AS.

Supervision: RS EPC.

Validation: RS JR EJC.

Writing – original draft: RS JR EJC PJM EPC.

References

1. Deo RC. Machine Learning in Medicine. Circulation. 2015; 132(20):1920–30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593 PMID: 26572668

2. Wang S, Summers RM. Machine learning and radiology. Medical image analysis. 2012; 16(5):933–51. https://doi.org/10.1016/j.media.2012.02.005 PMID: 22465077

3. Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage. 2009; 45(1 Suppl):S199–209. https://doi.org/10.1016/j.neuroimage.2008.11.007 PMID: 19070668

4. Hastie T, Tibshirani R, Friedman JK. The elements of statistical learning. Data mining, inference and prediction. second ed. New York: Springer; 2009.

5. Falahati F, Westman E, Simmons A. Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging. Journal of Alzheimer’s disease: JAD. 2014; 41(3):685–708. https://doi.org/10.3233/JAD-131928 PMID: 24718104

6. Patel MJ, Khalaif A, Aizenstein HJ. Studying depression using imaging and machine learning methods. NeuroImage Clinical. 2016; 10:115–23. https://doi.org/10.1016/j.nicl.2015.11.003 PMID: 26759786

7. Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics.
8. Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER, et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 2009; 62(6):1609–18.

9. Sweeney EM, Vogelstein JT, Cuzzocreo JL, Calabresi PA, Reich DS, Crainiceanu CM, et al. A comparison of supervised machine learning algorithms and feature vectors for MS lesion segmentation using multimodal structural MRI. PloS one. 2014; 9(4):e95753. https://doi.org/10.1371/journal.pone.0095753 PMID: 24781953

10. Robinson ME, O’Shea AM, Craggs JG, Price DD, Letzen JE, Staud R. Comparison of machine classification algorithms for fibromyalgia: neuroimages versus self-report. The journal of pain: official journal of the American Pain Society. 2015; 16(5):472–7.

11. Aguilar C, Westman E, Muehlboeck JS, Mecocci P, Vellas B, Tsolaki M, et al. Different multivariate techniques for automated classification of MRI data in Alzheimer’s disease and mild cognitive impairment. Psychiatry research. 2013; 212(2):89–98. https://doi.org/10.1016/j.psychres.2012.11.005 PMID: 23541334

12. Casanova R, Hsu FC, Espeland MA, Alzheimer’s Disease Neuroimaging I. Classification of structural MRI images in Alzheimer’s disease from the perspective of ill-posed problems. PloS one. 2012; 7(10):e44877. https://doi.org/10.1371/journal.pone.0044877 PMID: 23071501

13. Bansal R, Staib LH, Laine AF, Hao X, Xu D, Liu J, et al. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PloS one. 2012; 7(12):e50698. https://doi.org/10.1371/journal.pone.0050698 PMID: 23236384

14. Schnack HG, Nieuwenhuis M, van Haren NE, Abramovic L, Scheewe TW, Brouwer RM, et al. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage. 2014; 84:299–306. https://doi.org/10.1016/j.neuroimage.2013.08.053 PMID: 24004694

15. Serpa MH, Ou Y, Schaufelberger MS, Doshi J, Ferreira LK, Machado-Vieira R, et al. Neuroanatomical classification in a population-based sample of psychotic major depression and bipolar I disorder with 1 year of diagnostic stability. BioMed research international. 2014; 2014:706157. https://doi.org/10.1155/2014/706157 PMID: 24575411

16. Rocha-Rego V, Jogiia J, Marquand AF, Mourao-Miranda J, Simmons A, Frangou S. Examination of the predictive value of structural magnetic resonance scans in bipolar disorder: a pattern classification approach. Psychological medicine. 2014; 44(3):519–32. https://doi.org/10.1017/S0033291713001013 PMID: 23734914

17. Del Ser T, Gonzalez-Montalvo JI, Martinez-Espinosa S, Delgado-Villapalos C, Bermejo F. Estimation of premorbid intelligence in Spanish people with the Word Accentuation Test and its application to the diagnosis of dementia. Brain and cognition. 1997; 33(3):343–56. https://doi.org/10.1006/brcg.1997.0877 PMID: 9126399

18. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, et al. Automated labeling of the human cerebral cortex: a probabilistic atlas. NeuroImage. 2004; 23(3):125–35. https://doi.org/10.1016/j.neuroimage.2004.01.001 PMID: 15028917

19. Ashburner J. Computational anatomy with the SPM software. Magnetic resonance imaging. 2009; 27(8):1163–74. https://doi.org/10.1016/j.mri.2009.01.006 PMID: 19249168

20. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, et al. Automated parcellation of the human cerebral cortex: a probabilistic atlas. NeuroImage. 2004; 14(1):11–22. PMID: 14654453

21. Livet J, Devellis F, Parra E, Calvo MP, de la Torre-Farinós J, Lainscak M, et al. A high-resolution human brain atlas optimized for volumetric analysis. Nat Neurosci. 2010; 13(7):892–9. https://doi.org/10.1038/nn.2554 PMCID: 2910563

22. Sotiropoulos SN, Sotiropoulos SG, Fischl B, Gudbjartsson H, Harwell J,登陆注册__登录注册注册用户_1 ruined tells us about the shape of a brain? Why is a 3D MRI different from a 2D image? How can we use machine learning to predict outcomes in mental health disorders? What are the challenges in using MRI for differential diagnosis of psychiatric conditions? Is there a role for AI in improving the accuracy of diagnostic predictions based on MRI data? How can we optimize the use of MRI in research studies and clinical settings? What are the ethical considerations in using MRI-based diagnostic prediction models? How can we ensure the accessibility and reproducibility of MRI-based diagnostic prediction tools? How can we employ MRI-based diagnostic prediction in patient care and decision-making processes? These are just a few questions that highlight the potential impact of MRI-based diagnostic prediction in psychiatry. The use of MRI in psychiatric research is constantly evolving, and the integration of machine learning and other advanced analytical methods will likely play a crucial role in advancing our understanding of psychiatric disorders and improving patient care.
26. Dai Z, Yan C, Wang Z, Wang J, Xia M, Li K, et al. Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). NeuroImage. 2012; 59(3):2187–95. https://doi.org/10.1016/j.neuroimage.2011.10.003 PMID: 22008370

27. Tibshirani R. Regression Shrinkage and Selection via the lasso. Journal of the Royal Statistical Society Series B. 1996; 58:267–88.

28. Zou H, Hastie T. Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society, Series B. 2005; 67:301–20.

29. Bühlmann P, Meier L, van de Geer S. Discussion: A significance test for the lasso. The Annals of Statistics. 2014; 42:469–77.

30. Guo Y, Hastie T, Tibshirani R. Regularized discriminant analysis and its application in microarrays. Biostatistics. 2005; 1:1_18.

31. Matthias S. Gaussian Processes for Machine Learning. International Journal of Neural Systems. 2004; 14:69–104. https://doi.org/10.1142/S0129065704001899 PMID: 15112367

32. Khondoker M, Dobson R, Skirrow C, Simmons A, Stahl D. A comparison of machine learning methods for classification using simulation with multiple real data examples from mental health studies. Statistical methods in medical research. 2013.

33. Nortje G, Stein DJ, Radua J, Mataix-Cols D, Horn N. Systematic review and voxel-based meta-analysis of diffusion tensor imaging studies in bipolar disorder. Journal of affective disorders. 2013; 150(2):192–200. https://doi.org/10.1016/j.jad.2013.05.034 PMID: 23810479

34. Pomarol-Clotet E, Canales-Rodriguez EJ, Salvador R, Sarro S, Gomar JJ, Vila F, et al. Medial prefrontal cortex pathology in schizophrenia as revealed by convergent findings from multimodal imaging. Molecular psychiatry. 2010; 15(8):823–30. https://doi.org/10.1038/mp.2009.146 PMID: 20065955

35. Bora E, Fornito A, Radua J, Walterfang M, Seal M, Wood SJ, et al. Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophrenia research. 2011; 127(1–3):46–57. https://doi.org/10.1016/j.schres.2010.12.020 PMID: 21300524

36. Ellison-Wright I, Bullmore E. Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophrenia research. 2010; 117(1):1–12. https://doi.org/10.1016/j.schres.2009.12.022 PMID: 20071149

37. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of statistical software. 2010; 33(1):1–22. PMID: 20808728