Article

Invariance Analysis, Exact Solution and Conservation Laws of (2 + 1) Dim Fractional Kadomtsev-Petviashvili (KP) System

Sachin Kumar 1, Baljinder Kour 1,2, Shao-Wen Yao 3, *, Mustafa Inc 4,5, * and Mohamed S. Osman 6,7

1 Department of Mathematics and Statistics, Central University of Punjab, Bathinda 151401, Punjab, India; sachin.kumar@cup.edu.in (S.K.); Baljinder_math@auts.ac.in (B.K.)
2 Department of Mathematics, Akal University, Talwandi Sabo, Bathinda 151302, Punjab, India
3 School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China
4 Department of Mathematics, Firat University, Elazig 23119, Turkey
5 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
6 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt; mofatzi@sci.cu.edu.eg
7 Department of Mathematics, Faculty of Applied Science, Umm Alqurah University, Makkah 21955, Saudi Arabia
* Correspondence: yaoshaowen@hpu.edu.cn (S.-W.Y.); minc@firat.edu.tr (M.I.)

Abstract: In this work, a Lie group reduction for a (2 + 1) dimensional fractional Kadomtsev-Petviashvili (KP) system is determined by using the Lie symmetry method with Riemann Liouville derivative. After reducing the system into a two-dimensional nonlinear fractional partial differential system (NLFPDEs), the power series (PS) method is applied to obtain the exact solution. Further the obtained power series solution is analyzed for convergence. Then, using the new conservation theorem with a generalized Noether’s operator, the conservation laws of the KP system are obtained.

Keywords: fractional Kadomtsev-Petviashvili system; lie group analysis; power series solutions; convergence analysis; conservation laws

MSC: 35R11; 34A05; 34C14; 70S10

1. Introduction

In the field of fractional order differential equations, prevalent advancement is currently speculated. The dominant use of multifarious projects which are masked by fractional differential equations (FDEs), lies in the field of nano-technology, bio-informatics, control system, chemical engineering, heat conduction, ion-acoustic wave, mechanical engineering, diffusion equations and, additionally, several other sciences. Because of its prodigious scope and applications in the various area of science and technology, congruent consideration has been given to the exact solutions of FDEs. There are many techniques that can be used to analyze NLFPDEs [1–14]. The exact solution provides a proper understanding of the physical phenomena modeled by NLFPDEs. Finding exact solutions to NLFPDEs are quite difficult as compared to approximate solutions. The Lie symmetry method is one of the most powerful methods used to find the exact solution of NLFPDEs [15–23]. This technique is used to reduce the NLFPDEs into a lower dimension. The conservation laws can be investigated for nonlinear FPDEs, which are very important tool for the study of differential equations. Noether’s theorem involves a methodology for constructing conservation laws, using symmetries associated with Noether’s operator [19–22,24–29]. In general, there is no technique that provides specific solutions for the system. In recent years, many researchers have concentrated on the approximate analytical solutions to the FDE system and some methods have been developed. One of the most useful techniques for solving the linear system and non-linear system of fractional differential equations with a quick convergence rate and small calculation error is the fractional power series method.
Another major benefit is that this approach can be used directly, without requiring linearization, discretization, Adomian polynomials, etc., to the non-linear fractional PDE system. The power series method is applied to finding an exact solution in the form of a power series of a fractional differential equation. The $(2 + 1)$ dimensional Kadomtsev-Petviashvili (KP) system [30,31] is given by

$$u_{tx} - uu_{xx} - u_x^2 - u_{xxxx} = u_{yy},$$

which can also be written as the system

$$u_t - uu_x - u_{xxx} - w_y = 0,$$

$$w_x - u_y = 0.$$ \hspace{1cm} (1)

In nonlinear wave theory, the KP system is one of the most universal models which arises as a reduction in the system with quadratic nonlinearity. This system has been broadly studied in terms of its mathematical association in recent years. The KP equation was originated by the two Soviet physicists, Boris Kadomtsev and Vladimir Petviashvili in [32]. The KP equation has been studied by many authors for integer-order or fraction-order derivatives by different methods in recent years. Exact traveling wave solutions have been analyzed in [31]. In [30], KP equation is studied for symmetry reduction using a loop algebra. In [33], KP solitary waves has been studied. Symmetries of the integer order KP equation have been studied in [34]. In [35], the Cauchy problem for the fractional KP equations has been discussed.

The main goal of this work is to analyze the fractional order KP system with arbitrary constant coefficients as

$$\partial_\alpha^\beta_x u - A_1 u \partial_\gamma_y w - A_2 \partial_\gamma_y w - A_3 u_{xxx} = 0,$$

$$\partial_\beta^\gamma_x w - A_4 \partial_\gamma_y u = 0.$$ \hspace{1cm} (2)

This is a system of NLPDEs of fractional order, which depicts the evolution of nonlinear long waves with small amplitude. Here, u and w are dependent functions of x, y, t, and A_1, A_2, A_3, A_4 are arbitrary constants. x and y are the longitudinal and transverse spatial coordinates, respectively.

In this work, the KP system (2) is considered for symmetry reduction. The exact solutions, in the form of power series, are obtained, and the conservation laws are investigated.

To find some new exact solutions to the system (2), we apply the Lie symmetry method to reduce the system into lower dimensions. The system is also studied for conservation laws by using the new conservation theorem [27]. The preliminary material is given in Section 2. In Section 3, the symmetry of system (2) is obtained via the classical Lie method. Through the corresponding generators, we reduce system (2) to lower-dimensional NLFPDEs. Some exact solutions are obtained, corresponding to the reduced equation, by using the power series method in Section 4. In Section 5 the obtained power series solutions are analyzed for convergence. Some conservation laws are investigated in Section 6. In the last section, the conclusion to the study is presented.

2. Preliminaries

In this section, we will discuss basic definitions and theories for Lie symmetry analysis.

Definition 1. Riemann-Liouville fractional derivative [36,37]

Let $f : [a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}$, such that $t^\alpha f$ is continuous and integrable for all $n \in \mathbb{N} \cup \{0\}$ and $n - 1 < \alpha < n$, then the Riemann-Liouville fractional derivative of order $\alpha > 0$ is defined by
\[0^D f(x, y, t) = \frac{\partial^\alpha f(x, y, t)}{\partial t^\alpha} = \begin{cases} \frac{1}{\Gamma(n-\alpha)} \frac{\partial^\alpha}{\partial t^\alpha} \int_0^t (t-s)^{n-\alpha-1} f(x, y, s) ds, & t > 0, \quad n - 1 < \alpha < n, \\ \alpha = n \in \mathbb{N}, \end{cases} \]

(3)

where \(\Gamma(\alpha) \) is the Euler’s gamma function.

Definition 2. Erdélyi-Kober operator

The left-hand-side Erdélyi-Kober fractional differential operator \((P_{\alpha_1, \alpha_2}) \) is defined as

\[(P^{\alpha_0}_{\alpha_1, \alpha_2} g)(y_1, y_2) = \prod_{k=0}^{\alpha_0-1} \left(\theta + k - \frac{1}{\alpha_2} y_1 \frac{d}{dy_1} - \frac{1}{\alpha_2} y_2 \frac{d}{dy_2} \right) (M^{\alpha_1, \alpha_2 - \alpha} g)(y_1, y_2), \quad y_i > 0, \quad \alpha_i > 0, \quad i = 1, 2, \]

\[r = \begin{cases} [\alpha] + 1 & \text{if} \quad \alpha \notin \mathbb{N}, \\ \alpha & \text{if} \quad \alpha \in \mathbb{N}, \end{cases} \]

(4)

where

\[(M^{\alpha_1, \alpha_2} g)(y_1, y_2) = \begin{cases} \frac{1}{\Gamma(\alpha)} \int_1^\infty (\rho - 1)^{\alpha_2 - 1} \rho^{-(\alpha_1 + \alpha)} g(y_1, \rho y_1, y_2, \rho y_2) d\rho & \text{if} \quad \alpha > 0, \\ g(y_1, y_2) & \text{if} \quad \alpha = 0, \end{cases} \]

(5)

is the left-hand-side Erdélyi-Kober fractional integral operator.

The right-hand-side Erdélyi-Kober fractional differential operator \((P_{\beta_1, \beta_2}) \) is defined as

\[(P^{\beta_0}_{\beta_1, \beta_2} g)(y_1, y_2) = \prod_{k=1}^{\beta_0-1} \left(\theta + k + \frac{1}{\beta_1} y_1 \frac{d}{dy_1} + \frac{1}{\beta_2} y_2 \frac{d}{dy_2} \right) (M^{\beta_1, \beta_2} g)(y_1, y_2), \quad y_i > 0, \quad \beta_i > 0, \quad i = 1, 2, \]

\[r = \begin{cases} [\beta] + 1 & \text{if} \quad \beta \notin \mathbb{N}, \\ \beta & \text{if} \quad \beta \in \mathbb{N}, \end{cases} \]

(6)

where

\[(M^{\beta_1, \beta_2} g)(y_1, y_2) = \begin{cases} \frac{1}{\Gamma(\beta)} \int_0^1 (1 - \rho)^{\beta_2 - 1} \rho^{\beta_1} g(y_1, \rho y_1, y_2, \rho y_2) d\rho & \text{if} \quad \beta > 0, \\ g(y_1, y_2) & \text{if} \quad \beta = 0, \end{cases} \]

(7)

is the right-hand-side Erdélyi-Kober fractional integral operator.

Symmetry Analysis

Consider the system of NLFPDEs as follows

\[\Delta_h = F_h \left(x, y, t, \nabla, \frac{\partial^\alpha \nabla}{\partial t^\alpha}, \frac{\partial^\alpha \nabla}{\partial x^\alpha}, \frac{\partial^\alpha \nabla}{\partial y^\alpha}, \frac{\partial^\alpha \nabla}{\partial z^\alpha}, \ldots \right), \quad h = 1, 2, \ldots, \]

(8)
where $\frac{\partial^{\alpha} y}{\partial x^{\alpha}}, \frac{\partial^{\beta} y}{\partial x^{\beta}}$ and $\frac{\partial^{\gamma} y}{\partial x^{\gamma}}$ are the fractional derivatives of Riemann-Liouville (RL) type. Suppose that the Lie group of transformations are given by

\[
x^* = x + \epsilon \xi(x, y, t, \nu) + O(\epsilon^2),
\]
\[
t^* = t + \epsilon \tau(x, y, t, \nu) + O(\epsilon^2),
\]
\[
y^* = t + \epsilon \mu(x, y, t, \nu) + O(\epsilon^2),
\]
\[
\nu^* = \nu + \epsilon \eta^{(r)}(x, t, \nu) + O(\epsilon^2),
\]
\[
\frac{\partial^2 \nu^*}{\partial t^2} = \frac{\partial^2 \nu^*}{\partial t^2} + \epsilon \eta^{(r)ab} + O(\epsilon^2),
\]
\[
\frac{\partial^3 \nu^*}{\partial x^3} = \frac{\partial^3 \nu^*}{\partial x^3} + \epsilon \eta^{(r)bc} + O(\epsilon^2),
\]
\[
\frac{\partial^4 \nu^*}{\partial x^4} = \frac{\partial^4 \nu^*}{\partial x^4} + \epsilon \eta^{(r)cd} + O(\epsilon^2),
\]
\[
\vdots
\]

where ϵ being the group parameter and $\xi, \tau, \mu, \eta^{(r)}$ are the infinitesimals,

\[
\eta^{(k), \xi} = D_x(\eta^{(k)}) - v^k D_x(\xi) - v^k(\tau) - v^k D_y(\mu),
\]
\[
\eta^{(k)\alpha, \xi} = D_x(\eta^{(k)}(\xi)) + \xi D_x^\alpha (v^k) - D_x^\alpha (\xi v^k) + \tau D_x^{\alpha} (v^k) - D_x^{\alpha} (\tau v^k) + \mu D_x^{\alpha} (v^k) - D_x^{\alpha} (\mu v^k),
\]
\[
\eta^{(k)\beta, \xi} = D_x(\eta^{(k)}(\xi)) + \xi D_x^\beta (v^k) - D_x^\beta (\xi v^k) + \tau D_x^{\beta} (v^k) - D_x^{\beta} (\tau v^k) + \mu D_x^{\beta} (v^k) - D_x^{\beta} (\mu v^k),
\]
\[
\eta^{(k)\gamma, \xi} = D_x(\eta^{(k)}(\xi)) + \xi D_x^\gamma (v^k) - D_x^\gamma (\xi v^k) + \tau D_x^{\gamma} (v^k) - D_x^{\gamma} (\tau v^k) + \mu D_x^{\gamma} (v^k) - D_x^{\gamma} (\mu v^k),
\]

are extended infinitesimals. In (10), D_x and D_t are total derivative operators. The α^{th}, β^{th} and γ^{th} extended infinitesimals related to the RL fractional derivative are given in [38].

The associated vector field is

\[
X = \xi(x, y, t, \nu) \frac{\partial}{\partial x} + \mu(x, y, t, \nu) \frac{\partial}{\partial y} + \tau(x, y, t, \nu) \frac{\partial}{\partial t} + \sum_{r=1}^p \eta^{(r)}(x, y, t, \nu) \frac{\partial}{\partial \nu^r}.
\]

The corresponding extended symmetry generator is as follows

\[
p_{\eta^{(x, \beta, \gamma)}} X = x + \sum_{r} \eta^{(r)\alpha, \xi} \partial_{\nu^r} + \sum_{r} \eta^{(r)\beta, \xi} \partial_{\nu^r} + \sum_{r} \eta^{(r)\gamma, \xi} \partial_{\nu^r} + \sum_{r} \eta^{(r)\nu, \xi} \partial_{\nu^r} + \ldots,
\]

As the lower limit of RL fractional derivative [36,37,39] is fixed, we have

\[
\xi(x, y, t, u, w) \big|_{x=0} = 0, \quad \tau(x, y, t, u, w) \big|_{t=0} = 0, \quad \mu(x, y, t, u, w) \big|_{y=0} = 0.
\]
3. Symmetry Analysis of (2 + 1)-Dimensional Fractional Kadomtsev-Petviashvili System

Let us assume that the system (2) is invariant under group of transformations (9), then we have
\[
\begin{align*}
\partial_{t_1}^\alpha u^\beta - A_1 u_t^\beta \partial_{x_1}^\beta u^\alpha - A_2 \partial_x^\phi u^\beta - A_3 u_{x_1}^\alpha u_{x_2}^\beta &= 0, \\
\partial_x^\phi w^\alpha - A_4 \partial_{y_2}^\gamma u^\alpha &= 0. \tag{14}
\end{align*}
\]

Therefore, using (9) in (14) the invariance criteria for (2) are obtained as
\[
\begin{align*}
\eta^\alpha_t - A_1 \eta^\beta_x u - A_1 u \eta^\beta_x - A_2 \phi^\gamma y - A_3 \eta^\gamma_{xxx} &= 0, \\
\phi^\gamma_x - A_4 \eta^\gamma_{yy} &= 0. \tag{15}
\end{align*}
\]

Using the value of extended infinitesimals and collecting the coefficients of various powers of \(u \) and \(w \), we have
\[
\begin{align*}
\xi_t &= \xi_u = \xi_w = 0, \\
\tau_x &= \tau_u = \tau_v = 0, \\
\eta_w &= \phi_u = 0, \\
\eta_{uu} &= \phi_{ww} = 0, \\
\eta_u - \phi_w &= -\alpha D_t \tau + \gamma D_y \mu = 0, \\
3\xi_x - \alpha D_1 \tau &= 0, \\
\eta_u - \phi_w + \beta D_x \xi &= 2 \gamma D_y \mu = 0, \\
\eta - u \beta D_x \xi + u a D_1 \tau &= 0, \\
\partial_x^\gamma \eta - A_1 u \partial_x^\eta \eta - A_1 u (\partial_x^\beta \eta - u \partial_x^\beta \eta u) - A_2 (\partial_y^\phi \phi - w \partial_y^\phi \phi w) - A_3 \eta_{xxx} &= 0, \\
\partial_x^\beta \phi - w \partial_x^\beta \phi w &= A_3 \partial_y^\phi \eta + A_4 \partial_y^\gamma \eta = 0, \\
\frac{\partial^n \eta u}{n!} - \frac{\partial^n \phi u}{n!} + \frac{\partial^n \phi w}{n!} - \frac{\partial^n \phi w}{n!} &= 0, \\
\frac{\partial^n \eta u}{n!} - \frac{\partial^n \phi u}{n!} + \frac{\partial^n \phi w}{n!} &= 0, \\
\frac{\partial^n \phi w}{n!} &= 0, \\
\frac{\partial^n \phi w}{n!} &= 0. \tag{16}
\end{align*}
\]

where \(n \in \mathbb{N} \).

Solving these equations simultaneously, we get the infinitesimals
\[
\begin{align*}
\xi &= C_1 x, \quad \tau = \frac{3}{\alpha} C_1 t, \quad \mu = \frac{3 + \beta}{2 \gamma} C_1 y, \\
\eta &= (\beta - 3) C_1 u, \quad \phi = \frac{3(\beta - 3)}{2} C_1 w. \tag{17}
\end{align*}
\]

where \(C_1 \) is the arbitrary constant.

Thus, the corresponding vector field is
\[
V = x \partial_x + \frac{3}{\alpha} \partial_t + \frac{3 + \beta}{2 \gamma} y \partial_y + (\beta - 3) u \partial_u + \frac{3(\beta - 3)}{2} w \partial_w. \tag{18}
\]
Corresponding to vector field \(V \), the characteristic equation is written as
\[
\frac{dx}{dt} = \frac{dy}{\beta t} = \frac{du}{(\beta - 3)u} = \frac{dw}{\frac{3(\beta - 3)}{2}w}.
\]

After solving these equations, we get the symmetry variables
\[
z_1 = xt^{\frac{\alpha}{3}}, \quad z_2 = yt^{-\frac{\alpha(\beta+3)}{3}}, \quad (19)
\]
and symmetry transformations
\[
u = t^{\frac{\alpha}{3}}f(z_1, z_2), \quad \varphi = t^{-\frac{\alpha(\beta-3)}{3}}g(z_1, z_2), \quad (20)
\]
where \(f \) and \(g \) are arbitrary functions.

Theorem 1. The symmetry reduction in the system (2) corresponding to the symmetry variables (19) and symmetry transformations (20) is
\[
\begin{align*}
(P_{\beta \alpha}^\varphi) (z_1, z_2) &- A_1 z_1^{-\beta} f(z_1, z_2) \left(D_{1,1}^\beta f\right)(z_1, z_2) - A_2 z_2^{-\gamma} \left(D_{1,1}^\gamma g\right)(z_1, z_2) \\
-A_3 \frac{\partial^3 f(z_1, z_2)}{\partial z_1^3} & = 0, \\
z_1^{-\beta} \left(D_{1,1}^\beta g\right)(z_1, z_2) - A_4 z_1^{-\gamma} \left(D_{1,1}^\gamma f\right)(z_1, z_2) & = 0,
\end{align*}
\]
where \((P_{\beta \alpha}^\varphi)\) and \((D_{1,1}^\beta)\) are the left- and right-hand-side Erdélyi-Kober fractional differential operators, respectively.

Proof. Let us assume \(n - 1 < \alpha < n \), where \(n \in \mathbb{N} \); then, using the definition of RL fractional differentiation, we have
\[
\frac{\partial^n u}{\partial t^n} = \frac{\partial^n}{\partial t^n} \left(\frac{1}{\Gamma(n - \alpha)} \int_0^t (t - s)^{n-\alpha-1} s^\frac{\alpha(\beta-3)}{3} f(xs^{-1}, ys^{-\frac{\alpha(\beta+3)}{3}}) ds \right).
\]

Let \(s = \frac{t}{\rho} \); then, we get
\[
\frac{\partial^n u}{\partial t^n} = \frac{\partial^n}{\partial t^n} \left(\int_0^\rho (\rho - 1)^{n-\alpha-1} \rho^{-\frac{\alpha(\beta+3)}{3}} f(z_1 \rho^\alpha, z_2 \rho^{-\frac{\alpha(\beta+3)}{3}}) d\rho \right).
\]

\(\square\)

By using the definition of the left-hand-side EK fractional integral operator \((M_{\rho}^\varphi f)(z_1, z_2)\), defined in [36,37,39], we have
\[
\frac{\partial^n u}{\partial t^n} = \frac{\partial^n}{\partial t^n} \left(\int_0^\rho (\rho - 1)^{n-\alpha-1} \rho^{-\frac{\alpha(\beta+3)}{3}} f(z_1 \rho^\alpha, z_2 \rho^{-\frac{\alpha(\beta+3)}{3}}) d\rho \right),
\]
where
\[
\left(M_{\rho}^\varphi f\right)(z_1, z_2) = \frac{1}{\Gamma(n - \alpha)} \int_1^\rho (\rho - 1)^{n-\alpha-1} \rho^{-\frac{\alpha(\beta+3)}{3}} f(z_1 \rho^\alpha, z_2 \rho^{-\frac{\alpha(\beta+3)}{3}}) d\rho.
\]
For further simplification, let us assume that \(\mu(z_1, z_2) \) is a continuously differential function for \(z_1, z_2 \) given in (19); then
\[
\frac{t^\alpha}{\partial t} \mu(z_1, z_2) = -\alpha z_1 - \frac{a(\beta + 3)}{6\gamma} z_2^2 \frac{\partial \mu}{\partial z_2}.
\]

Thus, Equation (22) becomes
\[
\frac{\partial^\alpha u}{\partial t^\alpha} = \frac{\partial^n}{\partial t^n} \left(t^{\alpha} \frac{d^{\alpha-n}}{d \gamma^{\alpha-n}} \left(\frac{1}{(1 + f)\gamma} \left(z_1 \partial_{z_1} - \frac{a(\beta + 3)}{6\gamma} z_2 \frac{\partial}{\partial z_2} \right) \left(\frac{1}{(1 + f)\gamma} \left(z_1 \partial_{z_1} - \frac{a(\beta + 3)}{6\gamma} z_2 \frac{\partial}{\partial z_2} \right) \right) \right) \right) (z_1, z_2).
\]

Continuing in this way, we get
\[
\frac{\partial^\gamma u}{\partial \tau^\gamma} = \left(t^{\alpha} \frac{d^{\alpha-n}}{d \gamma^{\gamma-n}} \left(\frac{1}{(1 + f)\gamma} \left(z_1 \partial_{z_1} - \frac{a(\beta + 3)}{6\gamma} z_2 \frac{\partial}{\partial z_2} \right) \left(\frac{1}{(1 + f)\gamma} \left(z_1 \partial_{z_1} - \frac{a(\beta + 3)}{6\gamma} z_2 \frac{\partial}{\partial z_2} \right) \right) \right) \right) (z_1, z_2).
\]

By using the right-hand-side EK fractional differential operator \((P_{i}^{\alpha} f)(z_1, z_2) \) \([36,37,39]\) into (23), we have
\[
\frac{\partial^\alpha u}{\partial t^\alpha} = t^{\alpha} \frac{d^{\alpha-n}}{d \gamma^{\alpha-n}} \left(\frac{1}{(1 + f)\gamma} \left(z_1 \partial_{z_1} - \frac{a(\beta + 3)}{6\gamma} z_2 \frac{\partial}{\partial z_2} \right) \left(\frac{1}{(1 + f)\gamma} \left(z_1 \partial_{z_1} - \frac{a(\beta + 3)}{6\gamma} z_2 \frac{\partial}{\partial z_2} \right) \right) \right) (z_1, z_2).
\]

In similar manner, the RL fractional derivatives of order \(\beta, \gamma > 0 \) are obtained as
\[
\frac{\partial^\beta u}{\partial x^\beta} = t^{-\alpha} z_1^{-\beta} (D_{1,\infty}^{-\beta, \beta} f)(z_1, z_2), \quad \frac{\partial^\gamma w}{\partial x^\gamma} = t^{\alpha} z_1^{-\gamma} (D_{1,\infty}^{-\gamma, \gamma} g)(z_1, z_2),
\]
\[
\frac{\partial^\gamma u}{\partial y^\gamma} = t^{-\alpha} z_2^{-\gamma} (D_{0,\infty}^{\gamma, \gamma} f)(z_1, z_2), \quad \frac{\partial^\gamma w}{\partial y^\gamma} = t^{\alpha} z_2^{-\gamma} (D_{0,\infty}^{\gamma, \gamma} g)(z_1, z_2),
\]
\[\text{where} \ (D_{1,\infty}^{-\beta, \beta}) \text{ and } (D_{0,\infty}^{\gamma, \gamma}) \text{ are the differential operators defined in } [36,37,39].\]

By using (24) and (25), the symmetry reduction in KP system (2) is obtained as
\[
\left(P_{i}^{\alpha} (z_1, z_2) f(z_1, z_2) - A_1 z_1^{-\beta} f(z_1, z_2)(D_{1,\infty}^{-\beta, \beta} f)(z_1, z_2) - A_2 z_2^{-\gamma} g(z_1, z_2) D_{0,\infty}^{\gamma, \gamma} g)(z_1, z_2) - A_3 z_1^{-\beta} D_{1,\infty}^{-\beta, \beta} f)(z_1, z_2) = 0,
\]
\[z_1^{-\beta} D_{1,\infty}^{-\beta, \beta} f(z_1, z_2) - A_4 z_2^{-\gamma} D_{0,\infty}^{\gamma, \gamma} f)(z_1, z_2) = 0.
\]

4. Power Series Solution

In this section, we will obtain the power series solutions of NLFPDEs (26) \([18,28,40]\).

Let us consider two double power series
\[
f(z_1, z_2) = \sum_{n,m=0}^{\infty} a_{n,m} z_1^{n} z_2^{m}, \quad g(z_1, z_2) = \sum_{n,m=0}^{\infty} b_{n,m} z_1^{n} z_2^{m}.
\]

(27)
Therefore, from (27), we have
\[
\frac{\partial f}{\partial z_1} = \sum_{n,m=0}^{\infty} (n+1)a_{n+1,m}z_1^n z_2^m, \\
\frac{\partial^2 f}{\partial z_1^2} = \sum_{n,m=0}^{\infty} (n+2)(n+1)a_{n+2,m}z_1^n z_2^m, \\
\frac{\partial^3 f}{\partial z_1^3} = \sum_{n,m=0}^{\infty} (n+3)(n+2)(n+1)a_{n+3,m}z_1^n z_2^m
\]

Inserting (27) and (28) into (26), we have
\[
\sum_{n,m=0}^{\infty} \frac{\Gamma\left(\frac{\alpha(\beta-3)}{3} + 1 - \frac{m(\beta+3)}{6} + \frac{a(\alpha+3)}{6}\right)}{\Gamma\left(\frac{\alpha(\beta-6)}{3} + 1 - \frac{m(\beta+3)}{6} + \frac{a(\alpha+3)}{6}\right)} d_{n,m} z_1^n z_2^m - A_1 z_1^{-\beta} \sum_{n,m=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{\Gamma(1+k)}{\Gamma(1-k-\beta)} a_{n-k,m-j} a_{k,j} \right) \\
- A_2 z_2^{-\gamma} \sum_{n,m=0}^{\infty} \frac{\Gamma(1+m)}{\Gamma(1+n-m-\gamma)} b_{n,m} z_1^n z_2^m - A_3 \sum_{n,m=0}^{\infty} \frac{\Gamma(1+m)}{\Gamma(1+n-m-\gamma)} d_{n,m} z_1^n z_2^m = 0.
\]

Comparing coefficients for \(n = m = 0 \), we have
\[
a_{3,0} = \frac{1}{6A_3} \left\{ \frac{\Gamma\left(\frac{\alpha(\beta-3)}{3} + 1 - \frac{m(\beta+3)}{6} + \frac{a(\alpha+3)}{6}\right)}{\Gamma\left(\frac{\alpha(\beta-6)}{3} + 1 - \frac{m(\beta+3)}{6} + \frac{a(\alpha+3)}{6}\right)} a_{0,0} - A_1 z_2^{-\beta} \frac{1}{\Gamma(1-\beta)} a_{0,0} - A_2 z_2^{-\gamma} \frac{1}{\Gamma(1-\gamma)} b_{0,0} \right\}, \\
b_{0,0} = A_4 z_2^{-\beta-\gamma} \frac{\Gamma(1-\beta)}{\Gamma(1-\gamma)} a_{0,0}.
\]

When \(n \geq 0, m \geq 0 \), but both are not simultaneously zero, we have
\[
a_{n+3,m} = \frac{1}{A_3(n+3)(n+2)(n+1)} \left\{ \frac{\Gamma\left(\frac{\alpha(\beta-3)}{3} + 1 - \frac{m(\beta+3)}{6} + \frac{a(\alpha+3)}{6}\right)}{\Gamma\left(\frac{\alpha(\beta-6)}{3} + 1 - \frac{m(\beta+3)}{6} + \frac{a(\alpha+3)}{6}\right)} d_{n,m} \\
- A_1 z_1^{-\beta} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{\Gamma(1+k)}{\Gamma(1-k-\beta)} a_{n-k,m-j} a_{k,j} - A_2 z_2^{-\gamma} \Gamma(1+m) \frac{\Gamma(1+n-m)}{\Gamma(1+n-m-\gamma)} b_{n,m} \right\}, \\
b_{n,m} = A_4 z_2^{-\beta-\gamma} \frac{\Gamma(1+n-\beta)\Gamma(1+m)}{\Gamma(1+n)\Gamma(1+m-\gamma)} a_{n,m}.
\]

In view of (31), we can obtain all coefficients \(a_{n,m} \) \((n \geq 3, m \geq 0)\) and \(b_{n,m} \) \((n, m \geq 0)\) of the power series (27) for arbitrary chosen series \(\sum_{m=0}^{\infty} a_{i,m} \) \((i = 0, 1, 2)\).

Therefore, the system (2) has the exact power series solution, and the coefficient of the series depends on (31). Hence, we can write the power series (27) as
\[
f(z_1, z_2) = a_{0,0} + a_{1,0}z_1 + a_{2,0}z_2 + \frac{1}{6A_3} \left(\frac{\Gamma\left(\frac{\alpha(\beta-3)}{3} + 1 - \frac{m(\beta+3)}{6} + \frac{a(\alpha+3)}{6}\right)}{\Gamma\left(\frac{\alpha(\beta-6)}{3} + 1 - \frac{m(\beta+3)}{6} + \frac{a(\alpha+3)}{6}\right)} a_{0,0} - A_1 z_1^{-\beta} \frac{1}{\Gamma(1-\beta)} a_{0,0} - A_2 z_2^{-\gamma} \frac{1}{\Gamma(1-\gamma)} b_{0,0} \right) z_1^3 \\
+ \sum_{n=1,m=0}^{\infty} A_3(n+3)(n+2)(n+1) \left(\frac{\Gamma\left(\frac{\alpha(\beta-3)}{3} + 1 - \frac{m(\beta+3)}{6} + \frac{a(\alpha+3)}{6}\right)}{\Gamma\left(\frac{\alpha(\beta-6)}{3} + 1 - \frac{m(\beta+3)}{6} + \frac{a(\alpha+3)}{6}\right)} d_{n,m} \\
- A_1 z_1^{-\beta} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{\Gamma(1+k)}{\Gamma(1-k-\beta)} a_{n-k,m-j} a_{k,j} - A_2 z_2^{-\gamma} \Gamma(1+m) \frac{\Gamma(1+n-m)}{\Gamma(1+n-m-\gamma)} b_{n,m} \right) z_1^n z_2^m,
\]
\[
g(z_1, z_2) = \sum_{n,m=0}^{\infty} A_4 z_2^{-\beta-\gamma} \frac{\Gamma(1+n-\beta)\Gamma(1+m)}{\Gamma(1+n)\Gamma(1+m-\gamma)} a_{n,m} z_1^n z_2^m.
\]
Therefore, the required exact solution of the reduced form (26) is

\[u(x, t) = t^{(\beta - 3)} a_{0,0} + x t^{(\beta - 4)} a_{1,0} + x^2 t^{(\beta - 5)} a_{2,0} + \frac{1}{6} \frac{\Gamma(\frac{\alpha(\beta - 3)}{3} + 1)}{\Gamma(\frac{\alpha(\beta - 6)}{3} + 1)} a_{0,0} - A_1 x^{\beta - 1} t^{\frac{\alpha}{1 - \alpha}} \frac{1}{\Gamma(1 - \beta)} a_{0,0} ^2 \]

\[- A_2 y^{-\gamma} t^{(\beta + 3)} \frac{1}{\Gamma(1 - \gamma)} b_{0,0} \] \[\times \left(\frac{\Gamma(\alpha(\beta - 3) + 1 - m - \frac{m(\beta + 3)}{3})}{\Gamma(\alpha(\beta - 6) + 1 - m - \frac{m(\beta + 3)}{3})} \right) a_{n,m} - A_1 x^{\beta - 1} t^{\frac{\alpha}{1 - \alpha}} \sum_{k=0}^{n} \sum_{j=0}^{m} \frac{\Gamma(1 + k)}{\Gamma(1 + k - \beta)} a_{n-k,m-j} a_{k,j} \]

\[w(x, t) = \sum_{n,m=0}^{\infty} A_4 \frac{\Gamma(1 + n - \beta) \Gamma(1 + m)}{\Gamma(1 + n) \Gamma(1 + m - \gamma)} a_{n,m} x^{n+\beta} y^{n+\gamma} t^{\frac{\alpha(\beta - 3) - m - \frac{m(\beta + 3)}{3}}{\gamma}} \] \[\times \frac{\Gamma(\beta - 3)}{\Gamma(\beta - 6)} \left(\frac{\Gamma(\frac{\alpha(\beta - 3)}{3} + 1 - m - \frac{m(\beta + 3)}{3})}{\Gamma(\frac{\alpha(\beta - 6)}{3} + 1 - m - \frac{m(\beta + 3)}{3})} \right) \]

\[\times \frac{\Gamma(1 + m)}{\Gamma(1 + m - \gamma)} b_{n,m} \] \[\sum_{n,m=0}^{\infty} A_4 \frac{\Gamma(1 + n - \beta) \Gamma(1 + m)}{\Gamma(1 + n) \Gamma(1 + m - \gamma)} a_{n,m} x^{n+\beta} y^{n+\gamma} t^{\frac{\alpha(\beta - 3) - m - \frac{m(\beta + 3)}{3}}{\gamma}} \] (33) (34)

5. Analysis of the Convergence

In this section, we will analyze the convergence of the power series solution (33) and (34).

Theorem 2. The power series of the solutions (33) and (34) converges.

Proof. From (31), we have

\[|a_{n+3,m}| \leq M \left\{ |a_{n,m}| + \sum_{k=0}^{n} \sum_{j=0}^{m} |a_{n-k,m-j}| |a_{k,j}| + |b_{n,m}| \right\} \] (35)

where \(M = \max \left(\frac{\frac{\Gamma(\alpha(\beta - 3) + 1 - m - \frac{m(\beta + 3)}{3})}{\Gamma(\alpha(\beta - 6) + 1 - m - \frac{m(\beta + 3)}{3})}}{\frac{\Gamma(1 + m)}{\Gamma(1 + m - \gamma)} \left(\frac{A_1 z_1^{\beta - 1} A_2 z_2^{m - \gamma}}{A_3 \Gamma(1 + n) \Gamma(1 + m - \gamma)} \right)} \right) \)

and

\[|b_{n,m}| \leq N(|a_{n,m}|) \] (36)

where \(N = \max \left(1, A_4 z_1^{\beta - 1} A_2 z_2^{m - \gamma} \frac{\Gamma(1 + n - \beta) \Gamma(1 + m)}{\Gamma(1 + n) \Gamma(1 + m - \gamma)} \right) \).

Let us consider two double power series

\[P = P(z_1, z_2) = \sum_{n,m=0}^{\infty} p_{n,m} z_1^{n} z_2^{m} \] (37)

\[R = R(z_1, z_2) = \sum_{n,m=0}^{\infty} r_{n,m} z_1^{n} z_2^{m} \]

by

\[p_{n,m} = |a_{n,m}|, \quad r_{i,j} = |b_{i,j}|, \quad n = 0, 1, 2, \quad m = 0, \quad i, j = 0, \] (38)

and

\[p_{n+3,m} = M \left(|a_{n,m}| + \sum_{k=0}^{n} \sum_{j=0}^{m} |a_{n-k,m-j}||a_{k,j}| + |b_{n,m}| \right) \]

\[r_{n,m} = N(|a_{n,m}|) \] (39)

where \(n = 0, 1, 2, 3, \ldots \). Therefore, one can easily check that

\[|a_{n,m}| \leq p_{n,m}, \quad |b_{n,m}| \leq r_{n,m}, \quad n = 0, 1, 2, \ldots \] (40)
Therefore, the series
\[P = P(z_1, z_2) = \sum_{n,m=0}^{\infty} p_{n,m} z_1^n z_2^m \]
and
\[R = R(z_1, z_2) = \sum_{n,m=0}^{\infty} r_{n,m} z_1^n z_2^m \]
are the majorant series of the series \(f(z_1, z_2) \) and \(g(z_1, z_2) \), respectively.

Let us consider one particular case,
\[A_i = \sum_{m=0}^{\infty} p_{i,m} z_1^m z_2^m, \quad i = 0, 1, 2. \]

Next, we investigate the convergence of the series \(P = P(z_1, z_2) \) and \(R = R(z_1, z_2) \).

\[
P = \sum_{m=0}^{\infty} \left\{ p_{0,m} + p_{1,m} z_1 + p_{2,m} z_1^2 + p_{3,m} z_1^3 + \sum_{n=1}^{\infty} p_{n+3,m} z_1^{n+3} \right\} z_2^m
\]
\[
= \sum_{m=0}^{\infty} p_{0,m} z_2^m + \sum_{m=0}^{\infty} p_{1,m} z_1 z_2^m + \sum_{m=0}^{\infty} p_{2,m} z_1^2 z_2^m + \sum_{m=0}^{\infty} p_{3,m} z_1^3 z_2^m
\]
\[+ \sum_{n=1,m=0}^{\infty} M \left(p_{n,m} + \sum_{k=0}^{n} \sum_{j=0}^{m} p_{n-k,m-j} p_{k,j} + r_{n,m} \right) z_1^n z_2^m \quad (41) \]
\[
= A_0 + A_1 z_1 + A_2 z_1^2 + A_3 z_1^3 + M z_1^3 \left((P - A_0) + (P^2 - A_0^2) + N(P - A_0) \right), \quad (42) \]

and
\[
R = \sum_{n,m=0}^{\infty} r_{n,m} z_1^n z_2^m = \sum_{n,m=0}^{\infty} N p_{n,m} z_1^n z_2^m
\]
\[
= N \left[A_0 + A_1 z_1 + A_2 z_1^2 + A_3 z_1^3 + M z_1^3 \left((P - A_0) + (P^2 - A_0^2) + N(P - A_0) \right) \right]. \quad (43) \]

Consider the implicit functional system as follows
\[
F(z_1, z_2, P, R) = \quad P - A_0 - A_1 z_1 - A_2 z_1^2 - A_3 z_1^3 - M z_1^3 \left((P - A_0) + (P^2 - A_0^2) + N(P - A_0) \right),
\]
\[
H(z_1, z_2, P, R) = R - N \left[A_0 + A_1 z_1 + A_2 z_1^2 + A_3 z_1^3 + M z_1^3 \left((P - A_0) + (P^2 - A_0^2) + N(P - A_0) \right) \right].
\]

\(F, H \) are analytics in the neighbourhood of \((0,0,A_0,N A_0)\). \(F(0,0,A_0,N A_0) = 0, \ G(0,0,A_0,N A_0) = 0 \), and the Jacobian determinant is
\[
\frac{\partial (F,H)}{\partial (P,R)} \bigg|_{(0,0,A_0,N A_0)} = 1 \neq 0.
\]

Then, by the implicit function theorem \([41]\), both power series are convergent. Hence, an exact solution of KP system (2) exists.

6. Conservation Laws
In this section, conservation laws of (2) will be constructed by using the new conservation theorem and the nonlinear self adjointness \([27,29]\).
The conservation laws for (2) are introduced as

\[D_t(C^1) + D_x(C^2) + D_y(C^3) = 0, \]

(44)

where \(C^1(x, y, t, u, w), C^2(x, y, t, u, w) \) and \(C^3(x, y, t, u, w) \) are conserved vectors of (2).

The Euler–Lagrange operators given by

\[\frac{\delta}{\delta u^i} = \frac{\partial}{\partial u^i} + (D^i_{\alpha})^* \frac{\partial}{\partial (D^\alpha u^i)} + (D^i_{\beta})^* \frac{\partial}{\partial (D^\beta u^i)} + (D^i_{\gamma})^* \frac{\partial}{\partial (D^\gamma u^i)} + \sum_{k=1}^{\infty} (-1)^k D_{i1}, \ldots, D_{ik} \frac{\partial}{\partial (u^i)_{ij, \ldots, k}}, \]

(45)

where \(D_{ik} \) represents the total derivative operator. \((D^i_{\alpha})^*, (D^i_{\beta})^* \) and \((D^i_{\gamma})^* \) are also the adjoint operators of the RL derivative operators \([36,39] \]

\[D^i_{\alpha}, D^i_{\beta}, D^i_{\gamma} \]

respectively, given as follows

\[(D^i_{\alpha})^* = (-1)^a I_p^{n-a}(D^i_p) = \int^x_x f(x, y, t) \frac{\partial}{\partial \alpha} f(x, y, s) \]
\[(D^i_{\beta})^* = (-1)^m I_q^{m-\beta}(D^i_q) = \int^y_y f(x, y, t) \frac{\partial}{\partial \beta} f(x, y, s) \]
\[(D^i_{\gamma})^* = (-1)^k I_r^{k-\gamma}(D^i_r) = \int^z_z f(x, y, t) \frac{\partial}{\partial \gamma} f(x, y, s) \]

(46)

where \(I_p^{n-a}, I_q^{m-\beta} \) and \(I_r^{k-\gamma} \) are the right-hand-side fractional integral operators of order \(n - \alpha, m - \beta \) and \(k - \gamma \), respectively, defined as follows

\[I_p^{n-a} f(x, t) = \frac{1}{\Gamma(n - \alpha)} \int_t^x f(x, y, s) \frac{s - t}{s - t}^{1+n-a} ds, \]

(47)

where \(n = [\alpha] + 1 \)

\[I_q^{m-\beta} f(x, t) = \frac{1}{\Gamma(m - \beta)} \int_x^y f(s, y, t) \frac{s - x}{s - x}^{1+m-\beta} ds, \]

(48)

where \(m = [\beta] + 1 \)

\[I_r^{k-\gamma} f(x, t) = \frac{1}{\Gamma(k - \gamma)} \int_y^z f(x, s, t) \frac{s - y}{s - y}^{1+k-\gamma} ds, \]

(49)

where \(k = [\gamma] + 1 \)

The formal Lagrangian of the system (2) is given by

\[L = T(\partial_t u - A_1 u \partial_x^5 u - A_2 \partial_x^7 w - A_3 u_{xxx}) + Q(\partial_x^5 w - A_4 \partial_y^7 u), \]

(50)

where \(T \) and \(Q \) are new dependent variables.

The adjoint equations are defined by

\[F_{ij}^* = \frac{\delta L}{\delta u^i} = 0, \quad j = 1, 2. \]

(51)

From (50) and (51), the adjoint equations are

\[\frac{\delta L}{\delta u} = F_1^* = (D^i_{\alpha})^* T - A_1 u (D^i_{\alpha})^* T - A_4 (D^i_{\beta})^* Q + A_3 D^i_{\gamma} T = 0, \]

\[\frac{\delta L}{\delta w} = F_2^* = (D^i_{\beta})^* Q - A_2 (D^i_{\gamma})^* T = 0. \]

(52)
If, by substituting the values

\[T = \varphi(x, y, t, u, w), \quad Q = \psi(x, y, t, u, w), \] \hfill (53)

Equation \((52)\) satisfies, with at least one of \(T, Q\) variable being non-zero, the system \((2)\) is called the nonlinear self adjoint. Now, the derivative(s) of \(T = \varphi(x, y, t, u, w)\) with respect to \(x\), are

\[T_x = \varphi_x + \varphi_u u_x + \varphi_w w_x, \]
\[T_{xx} = \varphi_{xx} + 2\varphi_x u_x + 2\varphi_w w_x + \varphi_{uu} u_x^2 + 2\varphi_{ww} w_x^2 + \varphi_{uuu} u_{xx} + \varphi_{www} w_{xx}, \]
\[T_{xxx} = \varphi_{xxx} + 6\varphi_{xu} u_x w_x + 3\varphi_{uu} u_x^2 w_x + 3\varphi_{uuu} u_{xx}^2 w_x + 3\varphi_{uuu} u_x^3 + 3\varphi_{xuuu} u_{xxx} + 3\varphi_{www} w_x^2 + 3\varphi_{www} w_{xxx} + 3\varphi_{xxx} u_x w_x + 3\varphi_{xuu} u_x^2 w_x + 3\varphi_{uuu} u_{xx} w_x + 3\varphi_{www} w_{xx} + \varphi_{uu} u_{xxx} + \varphi_{w} w_{xxx} + 3\varphi_{xxu} u_x w_x + 3\varphi_{xxx} u_x u_{xx} + 3\varphi_{xxx} u_x^2 w_x + 3\varphi_{xxx} u_x^3 + \varphi_{www} w_{xx}^3. \] \hfill (54)

Thus, the nonlinear self adjointness conditions are

\[\frac{\delta L}{\delta u} = \lambda_1 (\delta^2_x^u - A_1 w_x^6 u - A_2 w_y^6 w - A_3 u_{xxx}^6) + \lambda_2 (\delta^2_x^w w - A_4 w_y^6 u), \]
\[\frac{\delta L}{\delta w} = \lambda_3 (\delta^2_x^u - A_1 w_x^6 u - A_2 w_y^6 w - A_3 u_{xxx}^6) + \lambda_4 (\delta^2_x^w w - A_4 w_y^6 u), \] \hfill (55)

where \(\lambda_i\) \((i = 1, 2, 3, 4)\) are to be determined.

Therefore, we have

\[(D_x^i)^* \varphi - A_1 u (D_x^i)^* \varphi - A_4 (D_y^i)^* \varphi + A_3 \left(\varphi_{xxx} + 6\varphi_{xu} u_x w_x + 3\varphi_{uu} u_x^2 w_x + 3\varphi_{uuu} u_{xx} w_x + 3\varphi_{www} w_x + 3\varphi_{www} w_{xx} + 3\varphi_{xxx} u_x w_x + 3\varphi_{xxx} u_x u_{xx} + 3\varphi_{www} w_x^2 + 3\varphi_{www} w_{xx} + 3\varphi_{xxx} u_x w_x + 3\varphi_{xxx} u_x u_{xx} + 3\varphi_{xxx} u_x^2 w_x + 3\varphi_{xxx} u_x^3 + \varphi_{www} w_{xx}^3 \right) = \lambda_1 (\delta^2_x^u - A_1 w_x^6 u - A_2 w_y^6 w - A_3 u_{xxx}^6) + \lambda_2 (\delta^2_x^w w - A_4 w_y^6 u), \]
\[(D_x^i)^* \psi - A_2 (D_y^i)^* \psi = \lambda_3 (\delta^2_x^u - A_1 w_x^6 u - A_2 w_y^6 w - A_3 u_{xxx}^6) + \lambda_4 (\delta^2_x^w w - A_4 w_y^6 u). \] \hfill (56)

Collecting the coefficients of various powers of \(u, w\) and their derivatives on both sides of \((56)\), and solving them simultaneously, we have \(\lambda_i = 0, \quad i = 1, 2, 3, 4, \) and

\[\varphi = a(t, y) x^2 + b(t, y) x + c(t, y), \quad \psi = \psi(x, y, t, u, w), \] \hfill (57)

where \(a(t, y), b(t, y)\) and \(c(t, y)\) are functions of \(t, y\).

Corresponding with symmetry generators, the characteristic functions \(W^1\) and \(W^2\), are defined by

\[W^1 = \eta - \xi u_t - \mu u_y - \tau u_t, \quad W^2 = \phi - \xi w_t - \mu w_y - \tau w_t. \] \hfill (58)

The fractional Noether’s operator \([28]\) is defined as

\[C^i = \sum_{j=1}^{2} \sum_{k=0}^{m-1} (-1)^k D_t^{-1-k} (W^1) D_t^k \left(\frac{\partial L}{\partial (D_x^i u_j)} \right) - (-1)^m J_1 \left(W^i, D_t^m \left(\frac{\partial L}{\partial (D_x^i u_j)} \right) \right), \] \hfill (59)
where \(m = [\alpha] + 1 \), and \(W^j \) (\(j = 1,2 \)) are defined in (58) and \(u_1, u_2 \) are dependent variables. Additionally, \(\mathcal{J}_1(h_1, h_2) \) is the integral

\[
\mathcal{J}_1(h_1, h_2) = \frac{1}{\Gamma(m-\alpha)} \int_0^t \int_t^r h_1(x,y,s)h_2(x,y,r) (r-s)^{\alpha} + 1-m \, drds,
\]

for any two functions \(h_1(x,y,t) \) and \(h_2(x,y,t) \).

In a similar way, other fractional Noether’s operators \(C^x \) and \(C^y \) are defined.

By using (58) and vector field (18), the characteristic functions are

\[
W^1 = (\beta - 3)u - xu_x - \frac{3 + \beta}{2\gamma}yu_y - \frac{3}{\alpha}t, \quad W^2 = \frac{3(\beta - 3)}{2}w - xu_x - \frac{3 + \beta}{2\gamma}yu_y - \frac{3}{\alpha}t. \tag{60}
\]

Now, we will obtain the conserved vectors of the system (2) as follows.

Case 1. For \(0 < \alpha < 1 \), we have

\[
C^i = I^{1-\alpha}_t(W^1)\varphi + \mathcal{J}_1(W^1, \varphi t).
\]

Case 2. For \(1 < \alpha < 2 \), we have

\[
C^i = D^\gamma_D - 1(W^1)\varphi - I^{2-\alpha}_t(W^1)\varphi + \mathcal{J}_1(W^1, \varphi t).
\]

Case 3. Similarly, for \(0 < \beta < 1 \), we have

\[
C^x = -I^{1-\beta}_x(W^1)(A_1u\varphi) + I^{1-\beta}_x(W^2)(\varphi) + \mathcal{J}_2(W^1, D_x(-A_1u\varphi)) + \mathcal{J}_2(W^2, D_x(\varphi)).
\]

Case 4. For \(1 < \beta < 2 \), we have

\[
C^x = -D^{\beta-1}_x(W^1)(A_1u\varphi) + D^{\beta-1}_x(W^2)(\varphi) + I^{2-\beta}_x(W^1)D_x(A_1u\varphi) - I^{2-\beta}_x(W^2)D_x(\varphi) - \mathcal{J}_2(W^1, D^2_x(-A_1u\varphi)) - \mathcal{J}_2(W^2, D^2_x(\varphi)).
\]

Case 5. For \(0 < \gamma < 1 \), we have

\[
C^y = -I^{1-\beta}_y(W^1)(A_2\varphi) - I^{1-\beta}_y(W^2)(A_2\varphi) + \mathcal{J}_3(W^1, D_x(-A_2\varphi)) + \mathcal{J}_3(W^2, D_x(-A_2\varphi)).
\]

Case 6. For \(1 < \gamma < 2 \), we have

\[
C^y = -D^{\beta-1}_y(W^1)(A_2\varphi) - D^{\beta-1}_y(W^2)(A_2\varphi) + I^{2-\beta}_y(W^1)D_x(A_2\varphi) + I^{2-\beta}_y(W^2)D_x(A_2\varphi) - \mathcal{J}_3(W^1, D^2_y(-A_2\varphi)) - \mathcal{J}_3(W^2, D^2_y(-A_2\varphi)).
\]

7. Concluding Remarks

In this work, we have studied a \((2 + 1)\)-dimensional fractional Kadomtsev-Petviashvili system (2) by Lie symmetry analysis and power series expansion techniques, via an RL fractional derivative. First, we obtained the Lie point symmetries, and then the similarity transformations were successfully presented. Using the similarity transformations, we were able to reduce the system of NLFPDEs (2) of three dimensions into a system of NLFPDEs of two dimensions. Further, the explicit exact solution for the reduced NLFPDEs was obtained using the power series expansion method. The analysis of convergence for the power series solution was also performed. Using the new conservation theorem [27], the conservation laws of the system are successfully obtained. The obtained solutions might be of substantial consequence in the corresponding physical phenomena of science and applied mathematics.

Author Contributions: S.K. and B.K., methodology; S.-W.Y., funding acquisition; M.I., formal analysis; M.S.O., writing—review and editing. All authors have read and agreed to the published version of the manuscript.
Funding: National Natural Science Foundation of China (No. 71601072), Key Scientific Research Project of Higher Education Institutions in Henan Province of China (No. 20B110006) and the Fundamental Research Funds for the Universities of Henan Province.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Acknowledgments: The author ‘Baljinder Kour’ thankfully acknowledge the support of CSIR SRF Grant.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Akbulut, A.; Kaplan, M. Symmetries, Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math. Appl. 2018, 75, 876–882. [CrossRef]
2. Jia, J.; Wang, H. Symmetries, A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput. Math. Appl. 2018, 75, 2031–2043. [CrossRef]
3. Chen, C.; Jiang, Y.L. Symmetries, Simplest equation method for some time-fractional partial differential equations with conformable derivative. Comput. Math. Appl. 2018, 75, 2978–2988. [CrossRef]
4. Höök, L.J.; Ludvigsson, G.; von Sydow, L. The Kolmogorov forward fractional partial differential equation for the CGMY-process with applications in option pricing. Comput. Math. Appl. 2018, 76, 2330–2344. [CrossRef]
5. Osman, M.S.; Rezazadeh, H.; Eslami, M. Traveling wave solutions for (3 + 1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity. Nonlinear Eng. 2019, 8, 559–567. [CrossRef]
6. Abdel-Gawad, H.I.; Osman, M.S. On the variational approach for analyzing the stability of solutions of evolution equations. Kyungpook Math. J. 2013, 53, 661–680. [CrossRef]
7. Akinyemi, L.; Iyiola, O.S. A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations. Adv. Differ. Equ. 2020, 169, 1–27. [CrossRef]
8. Senol, M.; Iyiola, O.S.; Kasmaei, H.D.; Akinyemi, L. Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulet-Miodek system with energy-dependent Schrödinger potential. Adv. Differ. Equ. 2019, 1, 462. [CrossRef]
9. Kumar, S.; Kumar, A.; Samet, B.; Gómez-Aguilar, J.F.; Osman, M.S. A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos Solitons Fractals 2020, 141, 110321. [CrossRef]
10. Arqub, O.A.; Osman, M.S.; Abdel-Aty, A.H.; Mohamed, A.B.A.; Momani, S. A numerical algorithm for the solutions of ABC singular Lane-Emden type models arising in astrophysics using reproducing kernel discretization method. Mathematics 2020, 8, 923. [CrossRef]
11. Senol, M. New analytical solutions of fractional symmetric regularized-long-wave equation. Rev. Mex. Fis. 2020, 66, 297–307. [CrossRef]
12. Kour, B.; Kumar, S. Time fractional Biswas Milovic equation: Group analysis, soliton solutions, conservation laws and residual power series solution. Optik 2019, 183, 1085–1098. [CrossRef]
13. Kumar, S.; Kumar, R.; Osman, M.S.; Samet, B. A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Method Partial Differ. Equ. 2021, 37, 1250–1268. [CrossRef]
14. Kumar, D.; Kaplan, M.; Haque, M.; Osman, M.S.; Baleanu, D. A Variety of Novel Exact Solutions for Different Models With the Conformable Derivative in Shallow Water. Front. Phys. 2020, 8, 177. [CrossRef]
15. Kour, B.; Kumar, S. Space time fractional Drinfeld-s-Sokolov-Wilson system with time-dependent variable coefficients: Symmetry analysis, power series solutions and conservation laws. Eur. Phys. J. Plus 2019, 134, 467. [CrossRef]
16. Kumari, P.; Gupta, R.K.; Kumar, S. The time fractional D (m, n) system: Invariant analysis, explicit solution, conservation laws and optical soliton. Waves Random Complex Media 2020. [CrossRef]
17. Feng, L.L.; Tian, S.F.; Wang, X.B.; Zhang, T.T. Lie symmetry analysis, conservation laws and exact power series solutions for time-fractional Fordy-Gibbons equation. Commun. Theor. Phys. 2016, 66, 321–329. [CrossRef]
18. Zhang, Y. Lie symmetry analysis and exact solutions of general time fractional fifth-order Korteweg-de Vries equation. Int. J. Appl. Math. 2017, 47, 66–74.
19. Rui, W.; Zhang, X. Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation. Commun. Nonlinear Sci. Numer. Simul. 2016, 34, 38–44. [CrossRef]
20. Sil, S.; Sekhar, T.R.; Zeidan, D. Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation. Chaos Soliton Fractals 2020, 139, 110010. [CrossRef]
21. Du, X.X.; Tian, B.; Qu, Q.X.; Yuan, Y-Q.; Zhao, X.-H. Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma. Chaos Soliton Fractals 2020, 134, 109709. [CrossRef]
22. Bansal, A.; Kara, A.H.; Biswas, A.; Khan, S.; Zhou, Q.; Moshokoa, S.P. Optical solitons and conservation laws with polarization-mode dispersion for coupled Fokas-Lenells equation using group invariance. Chaos Soliton Fractals 2019, 120, 245–249. [CrossRef]
23. Osman, M.S.; Baleanu, D.; Adem, A.R.; Hosseini, K.; Mirzazadeh, M.; Eslami, M. Double-wave solutions and Lie symmetry analysis to the (2 + 1)-dimensional coupled Burgers equations. *Chin. J. Phys.* 2020, 63, 122–129. [CrossRef]

24. Kumar, S.; Kour, B. Fractional (3 + 1)-dim Jimbo Miwa system: Invariance properties, exact solutions, solitary pattern solutions and conservation laws. *Int. J. Nonlinear Sci. Numer. Simul.* 2020, 21, 843–854. [CrossRef]

25. Juan, J.D.; Zhang, Y. Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay. *Chaos Soliton Fractals* 2020, 139, 110284. [CrossRef]

26. Zayed, E.M.; Alngar, M.E.; Biswas, A.; Asma, M.; Ekici, M.; Alzahrani, A.K.; Belic, M.R. Optical solitons and conservation laws with generalized Kudryashov’s law of refractive index. *Chaos Solitons Fractals* 2020, 139, 110284. [CrossRef]

27. Ibragimov, N.H. A new conservation theorem. *J. Math. Anal. Appl.* 2007, 333, 311–328. [CrossRef]

28. Kour, B.; Kumar, S. Symmetry analysis, explicit power series solutions and conservation laws of space-time fractional variant Boussinesq system. *Eur. Phys. J. Plus* 2018, 133, 520. [CrossRef]

29. Ibragimov, N.K.; Avdonina, E.D. Nonlinear self adjointness, conservation laws, and the construction of solutions to partial differential equations using conservation laws. *Russ. Math. Surv.* 2013, 68, 111–146. [CrossRef]

30. David, D.; Kamran, N.; Levi, D.; Winternitz, P. Symmetry reduction for the Kadomtsev-Petviashvili equation using a loop algebra. *J. Math. Phys.* 1986, 27, 1225–1237. [CrossRef]

31. Khan, K.; Ali Akbar, M. Exact traveling wave solutions of Kadomtsev-Petviashvili equation. *J. Egypt. Math. Soc.* 2015, 23, 278–281. [CrossRef]

32. Bouard, A.; Saut, J.C. Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves. *SIAM J. Math. Anal.* 1997, 28, 1064–1085. [CrossRef]

33. Lou, S.Y. Symmetries of the Kadomtsev-Petviashvili equation. *J. Phys. A* 1993, 26, 4387–4394. [CrossRef]

34. Linares, F.; Pilod, D.; Saut, J.C. The Cauchy problem for the Fractional Kadomtsev-Petviashvili Equations. *SIAM J. Math. Anal.* 2018, 50, 3172–3209. [CrossRef]

35. Podlubny, I. *Fractional Differential Equations*; Academic Press: San Diego, CA, USA, 1999.

36. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. *Fractional Integrals and Derivatives*; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993.

37. Singla, K.; Gupta, R.K. Generalized Lie symmetry approach for fractional order systems of differential equations. *J. Math. Phys.* 2017, 58, 14. [CrossRef]

38. Kiryakova, V. *Generalized Fractional Calculus and Applications*; John Wiley & Sons, Inc.: New York, NY, USA, 1994.

39. Gao, B. Symmetry analysis and explicit power series solutions of the Boussinesq-Whitham-Broer-Kaup equation. *Waves Random Complex Media* 2017, 27, 700–710. [CrossRef]

40. Rudin, W. *Principles of Mathematical Analysis*; McGraw-Hill Book Co.: New York, NY, USA, 1964.