Synthesis, characterisation, and feasibility studies on the use of vanadium tellurate(VI) as a cathode material for aqueous rechargeable Zn-ion batteries†

Mangayarkarasi Nagarathinam, Cindy Soares, Yue Chen, Valerie R. Seymour, Vlastimil Mazanek, Mark A. Isaacs, Zdenek Sofer, John M. Griffin and Nuria Tapia-Ruiz

Aqueous rechargeable zinc-ion batteries (AZIBs) have drawn enormous attention in stationary applications due to their high safety and low cost. However, the search for new positive electrode materials with satisfactory electrochemical performance for practical applications remains a challenge. In this work, we report a comprehensive study on the use of the vanadium tellurate $(\text{NH}_4)_4(\text{VO}_2)_2(\text{Te}_2\text{O}_8(\text{OH})_2)\cdot 2\text{H}_2\text{O}$, which is tested for the first time as a cathode material in AZIBs.

1. Introduction

Rechargeable aqueous zinc-ion batteries (AZIBs) are a promising alternative to lead-acid batteries in grid energy storage systems. This is owing to the unique properties of Zn, which include a two-electron redox reaction, high theoretical gravimetric capacity (820 mA h g$^{-1}$), low redox potential (−0.76 V vs. standard hydrogen electrode (SHE)), low cost and abundance. Furthermore, AZIBs are risk-free and easier to scale up than the classic alkali-ion batteries, due to their non-toxicity, the use of a highly stable Zn metal anode, and non-flammable and non-volatile aqueous electrolytes. Nevertheless, the success of this technology remains a challenge, as AZIBs require high demanding conditions, such as multivalent electrode materials with large interlayer spacing, and robust architectures to withstand the huge stress imparted upon reversible solvated Zn$^{2+}$ ion intercalation. To date, significant efforts have been made to develop new manganese and vanadium-based cathode materials, where the latter have demonstrated impressively high capacities (~300 mA h g$^{-1}$) superior rate performance and prolonged cycle life, albeit with low operation voltages. In the pursuit of finding alternative vanadium-based electrode systems with improved electrochemical properties in AZIBs, we have investigated the use of $(\text{NH}_4)_4(\text{VO}_2)_2\text{Te}_2\text{O}_8(\text{OH})_2\cdot 2\text{H}_2\text{O}$ as an electrode material, here abbreviated as VTe, which was first synthesised hydrothermally at 150 °C for 3 days by Hyejin et al. more than a decade ago. VTe consists of 1D infinite anionic $\{\text{VO}_2\text{Te}_2\text{O}_8(\text{OH})_2\}$ chains separated by NH$_4^+$ cations and H$_2$O molecules, which act as strong pillars to keep structural integrity (Fig. 1a). Electrode materials with polyatomic groups such as phosphates, silicates and sulfates have been reported to have higher electrochemical potential and improved thermal stability than their corresponding oxide counterparts. Thus, we will investigate the inductive and resonance effect of the $\text{Te}_2\text{O}_8(\text{OH})_2$ 16 polyatomic moiety in the redox potential of the vanadium oxide system and explore the redox activity of the Te ions upon Zn$^{2+}$ ion insertion/extraction. This is the first example of a vanadium tellurate(VI) compound synthesised at room temperature and tested as a cathode in AZIBs, only preceded by studies on the high-voltage K$_2\text{Ni}_3\text{TeO}_6$ cathode used in potassium-ion batteries, and Na$_2\text{M}_2\text{TeO}_6$ compounds (M = Ni, Co, Zn, Mg), which showed high ionic conductivities (4–11 S m$^{-1}$) at 300 °C.

2. Experimental section

2.1 Synthesis of VTe

V_2O_5 (0.270 g, 1.5 mmol) and H_2TeO_3 (0.690 g, 3.0 mmol) were added to 10 ml of H$_2$O and stirred in a beaker until a homogeneous mixture was achieved. Then, 0.42 ml of 35% NH$_4$OH solution was added dropwise with constant stirring to this solution. The yellow-orange reaction mixture was stirred at room temperature for 24 h and filtered to obtain a yellow precipitate.
yellow precipitate was washed with water and then dried at 60 °C under vacuum (0.850 g, 82% yield). All the chemicals were used as received from Sigma Aldrich without further purification. All the solvents used were of reagent grade.

2.2 Characterisation

Powder X-ray diffraction (PXRD) data were collected at ambient temperature using a Rigaku Smartlab X-ray diffractometer with a 9 kW Cu source generator (λ Kα1 = 1.54051 Å) equipped with a high-resolution Vertical 0/0 4-Circle Goniometer and a D/teX-ULTRA 250 high-speed position sensitive detector system. The crystal structure obtained by PXRD data were refined by the Rietveld refinement method using the TOPAS R2-1 software program.22

Fourier transform infrared (FTIR) spectra were collected in the 400–4000 cm⁻¹ range with a resolution of 8 cm⁻¹ using a Shimadzu IRTracer-100 FTIR spectrophotometer. Spectra were collected as the sum of 36 scans. Samples were prepared by mixing the VTe powders with KBr (Sigma Aldrich, 99%) using an agate mortar and pestle and then pressing the mixture into pellets at 5 tonnes per cm².

Elemental analysis was carried out on a Vario MICRO Cube instrument in CHNS analysis mode with a program designed for measuring 2 mg samples. For the measurement, samples were weighed directly into Sn boats using a high-precision balance. Oxygen was injected into the sample for 70 s and He was used as a carrier gas. The system was zeroed by running blank samples and then it was subsequently calibrated using a sulfanilamide (C₈H₆N₂O₆S) standard. Elemental analysis data for H₂₂N₄O₁₆Te₂V₂ (in %): H 3.31; N 8.05. (Theoretical (in %): H 3.21, N 8.11)

Thermogravimetric analyses (TGA) were carried out using a Thermys Analyzer (Setaram) with a DTA protected sensor. The sample was placed in an alumina crucible and heated from room temperature to 700 °C in an argon atmosphere at a heating rate of 10 °C min⁻¹.

The microstructure of the samples was analysed using field emission scanning electron microscopy (FESEM), where the images were acquired using a JEOL JSM-7800F operating at 10.0 kV. Elemental analysis was performed at 12.0 kV using an X-ray Energy Dispersive Spectrometer (EDS) (X-Max50), large area 50 mm² Silicon Drift Detector (SDD) from Oxford Instruments. Samples were placed onto carbon tabs (G3348N, Agar Scientific) attached to the metal holder and coated with a thin layer of gold using a Quorum Q150RES sputter coater (Quorum Technologies Ltd) to increase their conductivity.

Transmission electron microscopy (TEM) images and selected area electron diffraction (SAED) patterns were obtained using an EFTEM 2200 FS microscope (JEOL). A 200 keV acceleration voltage was used for TEM data collection. Sample preparation was attained by drop-casting the suspension (1 mg ml⁻¹ in water) on a TEM grid (Cu; 200 mesh; formvar/carbon) and then drying it at 60 °C for 12 h.

¹H and ¹¹N solid-state NMR spectra were obtained at 16.4 T on a Bruker Avance III spectrometer operating at Larmor frequencies of 700.1 and 71.0 MHz, respectively. For ¹H experiments, powdered samples were dried at 100 °C under vacuum for 24 h and packed into 2.5 mm rotors and spun at 30 kHz. For ¹¹N experiments, powdered samples were packed into 4 mm rotors and spun at 12.5 kHz. ¹H spectra were acquired using a DEPTH pulse sequence to remove the background signal, with a recycle interval of 10 s. ¹¹N spectra were acquired using cross polarisation from ¹H. ¹²⁵Te solid-state NMR spectra were obtained at 9.4 T on a Bruker Avance III 400 MHz spectrometer operating at a Larmor frequency of 126.2 MHz. Powdered samples were packed into 4 mm rotors and spun at 14 kHz. ¹²⁵Te spectra were acquired using a single 90° pulse with a repeat interval of 360 s. Spectra were referenced via secondary solid references of alanine (NH, δiso = 8.5 ppm), glycine (NH, δiso = −347.4 ppm), and Te(OH)₆ (higher frequency peak δiso = 692.2 ppm) for ¹H, ¹¹N and ¹²⁵Te, respectively.

¹H chemical shifts were calculated using density functional theory (DFT). A calculation was carried out on the (NH₄)₄[(VO₃)₂[Te₂O₈(OH)₂]]·2H₂O crystal structure (ICSD 416841) using the CASTEP code. The structure was fully geometry optimised before calculation of the NMR parameters, using the GIPAW formalism23 as implemented within CASTEP.²⁴,²⁵ Chemical shielding tensors were referenced via a separate calculation on 1-
alanine (reference shielding = 30.5 ppm). Calculated 1H chemical shifts are shown in Table S1.† Chemical shifts for crystallographically-distinct protons within H$_2$O molecules and NH$_4^+$ ions are averaged under the assumption of fast dynamic exchange between these positions.

2.3 Electrochemical tests

To fabricate the working electrodes, active material, super P carbon black and binder (Kynar 2801) in the weight ratio of 70:20:10 were thoroughly mixed with an agate mortar and pestle. The powdered mixture was then added to a vial and a few ml of N-methyl-2-pyrrolidone (NMP) were added to the mixture to make an electrode slurry. The slurry was stirred for 8 h at room temperature. 1.5 cm diameter electrodes with a thickness of 20 µm were prepared by casting the slurry onto Ti foil (used as a current collector) with a doctor-blade, and punching the electrode-coated foil with a heavy-duty manual puncher. The mass loading of the active material was typically 2–3 mg cm$^{-2}$.

The electrochemical properties of VTe were evaluated using CR2032 stainless steel coin cells. Zn metal (180 µm thickness) was used as the counter and the reference electrode, glass microfiber filter (GB-100R, Whatman) as the separator, and a 3 M ZnSO$_4$·7H$_2$O aqueous solution as the electrolyte. Coin cells were aged at room temperature for 6 h before data collection took place. Galvanostatic charge/discharge cycling (GC) at different current rates and voltage windows were carried out using a Neware battery cycler (current range: 1–10 mA). Cyclic voltammetry (CV) data were collected at room temperature using an Iviumstat instrument (Ivium, Alvatek). Data were collected using a scan rate of 0.2 mV s$^{-1}$ in the voltage window of 0.4–1.4 V vs. Zn$^{2+}$/Zn.

For the preparation of the concentration cells, VTe half-cells were discharged to 0.2 V to insert Zn$^{2+}$ ions in the VTe electrode. The electrodes were removed in an open atmosphere from the discharged cells, paired immediately with a fresh VTe electrode and assembled in a CR2032 coin cell using a glass microfiber filter (a thickness of 20 µm) with a mixture of the VTe powder (active material), super P carbon black (conductive agent), and Kynar 2801 (binder) in a weight ratio of 20:17:58. Then, the electrodes were heated at 60 °C for 24 h. The thickness of the composite electrode was ca. 20 µm. Operating EQCM was conducted during cyclic voltammetry tests. The mass change of the VTe-coated QCM electrode, Δm, was calculated from the change in resonance frequency (Δf), using the Sauerbrey eqn (1):

$$\Delta m = - \frac{A f_0 \mu_s}{2 f_0^2} \Delta f$$

(1)

where f_0 is the resonance frequency of the QCM electrode before the electrochemical tests, A is the ratio of the top electrode area to the QCM effective sensing area, μ_s is the density of quartz (2.648 g cm$^{-3}$), and μ_s is the shear modulus of quartz (2.947 × 1011 g cm$^{-1}$ s$^{-2}$).

The number of moles of electrons that participate in the charge transfer (N), can be calculated by applying Faraday’s law (eqn (2)):

$$N = \frac{n \Delta m}{M_m} = \frac{\Delta C}{F}$$

(2)

where ΔC is the charge passed corresponding to the Δm mass change during electrolysis, M_m is the molecular weight, F is Faraday’s constant, 96 485 C mol$^{-1}$ and n is the valence number of Zn.

Eqn (2) can be then written as:
the TeO\textsubscript{5}(OH) dimers (Fig. 1a). No impurities were observed in disassembled and the electrodes washed with deionised water packed in the glovebox under Ar atmosphere. Electrodes were in room temperature. For XPS measurements, electrodes were transferred immediately to a glovebox antechamber which was flushed with Ar gas 5 times and then dried under vacuum at room temperature. For post-mortem studies, electrodes were electrochemically cycled at different states of charge and then coin cells were disassembled and the electrodes washed with deionised water a few times under a steady flow of nitrogen gas. Electrodes were transferred immediately to a glovebox antechamber which was first flushed with Ar gas 5 times and then dried under vacuum at room temperature. For XPS measurements, electrodes were packed in the glovebox under Ar atmosphere. Electrodes were in contact with air during PXRD, FTIR and, FESEM data collection.

3. Results and discussion

\[(\text{NH}_4)_2[\text{VO}_3\text{Te}_2\text{O}_9(\text{OH})_2]\cdot 2\text{H}_2\text{O} (\text{VTe})\], was obtained using a modified synthetic procedure from the literature (see Experimental section). Rietveld analysis on the XRD data showed that the structure crystallises in a monoclinic \(\text{P2}_1/\text{n}\) space group with \(a = 7.37(1) \, \text{Å}, \quad b = 17.12(2) \, \text{Å}, \quad c = 7.37(1) \, \text{Å}, \quad \beta = 118.70(3)^\circ\), in agreement with the literature (Fig. 1b). The structure of VTe consists of 1\(\text{D}^\text{f}\) infinite anionic \([\text{VO}_2]^2[\text{Te}_2\text{O}_9(\text{OH})_2]^\text{4-}\) chains along the \(c\) direction with edge-shared VO\textsubscript{6} and TeO\textsubscript{5}(OH) octahedral units that form V\textsubscript{2}O\textsubscript{10} and TeO\textsubscript{5}(OH)\textsubscript{2} dimers. These chains are connected by an extended hydrogen network of N–H···O and O–H···O bonds (originated by the presence of NH\textsubscript{4}+ cations and H\textsubscript{2}O molecules in the structure), and O–H···O hydrogen bonds from the OH group of the TeO\textsubscript{5}(OH) dimers (Fig. 1a).

By plotting the \(\Delta m\) vs. \(\Delta C\), the molecular weight of the exchanged ion can be calculated from the slope value according to the eqn (3).

\[
\frac{\Delta m}{\Delta C} = \frac{M_w}{F_n}
\]

2.6 Post-mortem studies

For post-mortem studies, electrodes were electrochemically cycled at different states of charge and then coin cells were disassembled and the electrodes washed with deionised water a few times under a steady flow of nitrogen gas. Electrodes were transferred immediately to a glovebox antechamber which was first flushed with Ar gas 5 times and then dried under vacuum at room temperature. For XPS measurements, electrodes were packed in the glovebox under Ar atmosphere. Electrodes were in contact with air during PXRD, FTIR and, FESEM data collection.

The large interlayer spacing of 8.6 Å in VTe allows a rapid migration of Zn2+ ions along the \(ac\) plane. The intralayer spacing compares well to other ammonium vanadate systems with excellent electrochemical performance due to their large ion diffusion channels, such as NH\textsubscript{4}V\textsubscript{4}O\textsubscript{10} and (NH\textsubscript{4})\textsubscript{0.5}V\textsubscript{2}O\textsubscript{5}. Elemental analysis confirmed the percentage of nitrogen and hydrogen as in the proposed molecular formula for VTe (see Experimental section), while EDX analysis confirmed that the V : Te and V : N elemental ratio is nearly equal to 1 : 1 and 1 : 2, respectively (Fig. S1†). Thermogravimetric analysis data showed a mass loss of 23.4% between R.T. and 410 °C, which agrees with the removal of all the H\textsubscript{2}O and NH\textsubscript{3} molecules in the compound (Fig. S2†). SEM/TEM images in Fig. 1c and d showed that the VTe sample consists of 200–500 nm platelets. The TEM image in Fig. 1d showed that the platelets have smooth edges, and its corresponding ring-like SAED pattern (Fig. S3†) revealed the polycrystalline nature of the sample. The \(\text{H}^\text{15}\) MAS NMR spectrum of VTe showed three main resonances at 10, 7 and 5 ppm. Based on their relative intensities and chemical shifts, these were attributed to OH groups, pillared NH\textsubscript{4}+ ions and H\textsubscript{2}O molecules, respectively (Fig. 1e). DFT calculations on the published crystal structure16 support this assignment (Fig. 1e).

The OH resonance was slightly broader than the NH\textsubscript{4}+ and H\textsubscript{2}O resonances owing to stronger dipolar interactions, which reduced its apparent intensity in the experimental spectrum.

The \(\text{H}^\text{15}\) N MAS NMR spectrum for the pristine material showed a single peak at ~357 ppm, which contrasts with the two crystallographic NH\textsubscript{4}+ environments in the crystal structure (Fig. S4†). DFT calculations predicted a small chemical shift difference of 6 ppm between the two N sites, which is less than the ~8 ppm linewidth in the experimental spectrum. This explains the inability to distinguish between these two sites. The \(\text{H}^\text{16}\) Te MAS NMR spectrum showed two distinct resonances of similar intensity at 765 and 740 ppm (Fig. S5†). This is inconsistent with the published crystal structure, which shows a single Te site. An explanation for this might be a small break in the symmetry of VTe due to the loss of H\textsubscript{2}O molecules.

Electrochemical studies were conducted to assess the performance of VTe as a cathode material in AZIBs. CV data showed a multistep Zn2+ ion insertion/extraction process, where the first scan showed cathodic peaks at 1.04 and 0.59 V and anodic peaks at 0.75, 1.06 and 1.23 V, which correspond to reversible reactions involving V5+/V4+ and V4+/V3+ redox couples (Fig. 2a). These peaks were assigned by direct comparison to other vanadate systems.28,29 Peaks at 1.06 and 1.23 V might be attributed to the extraction of Zn2+ ions from energetically different crystallographic sites during V5+/V4+ oxidation.31 GC data in the 0.4–1.4 V voltage window showed three discharge plateaus at ca. 0.90 V, 0.57 V and 0.49 V, totalling a capacity of 287 mA h g-1 (Fig. 2b, and magnified view in Fig. S6†). Upon charge, the capacity was not be fully retrieved (232 mA h g-1), due to the irreversible nature of the lowest voltage plateau, leading to an initial coulombic efficiency (CE) of ca. 80%.
progressive capacity decay occurred with increasing cycle number, leading to a discharge capacity of 141 mA h g$^{-1}$ in the 20th cycle (Fig. S7†). FESEM images of the VTe electrode revealed particle agglomeration after the 20th cycle, which could be one of the reasons for poor cycling performance (Fig. S8†). GC tests were run using different voltage windows to optimise the long-term cycling stability of VTe without any further improvement on the cycling stability (Fig. S9†). Furthermore, rate capability studies in the 0.4–1.2 V voltage window using 10–340 mA g$^{-1}$ current rates are shown in Fig. S10.† Although the performance of VTe was not remarkable at high rates, several approaches previously used with other Zn cathodes might be followed to improve Zn$^{2+}$ insertion/extraction kinetics, e.g., further structure tuning and mixing VTe with conducting carbon-based materials.32,33 This work, however, falls outside the remit of the work presented in this article.

Electrochemical tests using concentration [VTe] \equiv 3 M ZnSO$_4$ aq., [Zn$_2$VTe] cells (Fig. 2c) were run to disregard parasitic reactions arising from the use of Zn as a counter electrode, e.g., uncontrolled dendrite formation and Zn passivation, which could be the cause for the capacity decay observed in Zn half-cells.34 Load curves showed well-defined, long, and reversible voltage plateaus at ca. 0.5 and −0.5 V upon charge and discharge, respectively. The charge capacity increased from 219 to 258 mA h g$^{-1}$ from the first to the second cycle, while the discharge capacity remained the same (271 mA h g$^{-1}$). A reversible discharge capacity of 251 mA h g$^{-1}$ was observed after 20 cycles, which corresponds to an excellent capacity retention of 91% (Fig. 2d). These results contrast with the poorer capacity retention observed for VTe in the Zn half-cell after 20 cycles ($i.e.$, 61%) (Fig. S7†). Therefore, these data suggest that potential success in the implementation of VTe in AZIBs will most likely require, at least, further optimisation of the Zn anode. Despite the good capacity retention, a large voltage hysteresis was observed between the charge and discharge plateau (Fig. 2c).

We attribute this large voltage hysteresis to high energetics/structural re-ordering occurring in the material, and slow kinetics during Zn$^{2+}$ ion (de)insertion.35 This may be reduced by optimising the electrolyte solution, tailoring the crystal size, morphology, and carbon coating of the material, among others.36,37

Zn 2p XPS spectrum of the electrode after 6 h under rest conditions (OCV) confirmed the presence of Zn$^{2+}$ ions by showing two asymmetric peaks with binding energies of 1021.5 and 1044.6 eV, assigned to Zn 2p$_{3/2}$ and Zn 2p$_{1/2}$ core levels, respectively (Fig. 3a). Furthermore, the N1s XPS spectrum of the OCV sample showed a decrease in the intensity of the N1s peak (centred at 401.77 eV in the pristine electrode and indicative of the presence of NH$_4^+$ ions), which confirmed that almost all the NH$_4^+$ ions acting as pillars between the [[VO$_2$]$_3$[Te$_2$O$_6$(OH)$_4$]]$^{1-}$ chains are removed at this stage (Fig. S11†). Nevertheless, it needs to be noted that XPS is a surface analysis technique and that some NH$_4^+$ ions could have been trapped in the bulk structure. Therefore, these data demonstrate that VTe is not completely stable in contact with the 3 M ZnSO$_4$ aqueous mild electrolyte solution, and that some pre-intercalation of Zn$^{2+}$ ions takes place before applying current. Charge neutrality is then achieved by the reduction of V$^{5+}$ ions to V$^{4+}$, as observed in the V-2p XPS spectrum (Fig. 3b), where two peaks with maxima at 517.4 and 516.3 eV that correspond to the coexistence of V$^{5+}$ and V$^{4+}$ oxidation states were observed.

By contrast, the V-2p XPS spectrum of the pristine electrode showed a single V 2p$_{3/2}$ peak with a binding energy of 517.5 eV and a broader V 2p$_{1/2}$ spin–orbit pair at higher binding energy, i.e., 524.9 eV, which are typical for V$^{5+}$ ions in oxides.38,39

Preliminary operando EQCM studies were conducted to identify active charge carriers during Zn$^{2+}$ ion intercalation (Fig. 3d, S12 and Table S2†). During the initial stages of discharge (Region I), the mass change per charge transfer ($\Delta m/\Delta C$) matched with the theoretical value of ca. 1.1 Zn$^{2+}$ (347.89 µg C$^{-1}$), implying that Zn$^{2+}$ ions were inserted in their non-hydrated form. These data agrees with the cathodic peak observed in the CV data for the reduction of V$^{5+}$ to V$^{4+}$ (Fig. 2a). Region 2, which coincides with the second cathodic peak related to the further reduction of V$^{4+}$ ions to V$^{3+}$, corresponds to a total charge value of 309 µg C$^{-1}$, equivalent to the insertion of 0.9 Zn$^{2+}$ ions. During charge, the reverse process occurs, showing extraction of only one Zn$^{2+}$ based on the $\Delta m/\Delta C$ value measured (292 µg C$^{-1}$), in agreement with the Zn 2p XPS spectrum, which shows that there are remaining Zn$^{2+}$ ions upon charge (Fig. 3a) and that all V$^{4+}$ ions have been oxidised to V$^{5+}$ and V$^{3+}$ ions (Fig. 3b).
N1s XPS spectra of the fully discharged and charged electrodes showed that the removal of NH4+ ions was irreversible upon Zn2+ intercalation (Fig. S11†). Similar behaviour was reported in (NH4)3V2O7·0.9H2O, where it was noted that Zn2+ insertion irreversibly displaced the NH4+ ions from the structure.45 FTIR data agreed with the XPS data, showing a broad peak at about 3153 cm⁻¹ corresponding to the N–H asymmetric stretching mode of the NH4+ ions, which is no longer present in the fully discharged and charged states (Fig. S13†).46 Upon discharge to 0.4 V, the Zn 2p peaks present in the Zn-2p XPS spectrum of the OCV sample shifted to lower binding energies (Fig. 3a). This is explained with a more covalent environment than that in the OCV state. Concomitant to the insertion of Zn2+ ions into VTe, we observed a reduction of the V5+/V4+ redox couple to V5+/V4+, which explains the broadening and shift toward lower binding energies of the V 2p1/2 and V 2p3/2 peaks in the V-2p XPS spectrum (Fig. 3b).5,6,8,39 Furthermore, EDX data showed a qualitative increase in Zn2+ ions in the discharged state compared to the charged state (Table S3†). The extra discharge capacity observed in the galvanostatic data might be accounted for the irreversible formation of insulating by-products such as zinc hydroxide sulfate (ZHS) salts at the electrode surface due to electrolyte decomposition.41,42 IR spectrum of the discharged sample showed strong peaks at 1055 and 1116 cm⁻¹, typically attributed to the S–O stretching bands of SO4²⁻ moieties in the sample (Fig. S13†).45

After charging to 1.4 V, we observed that the Zn 2p1/2 and Zn 2p3/2 peaks did not fully disappear in the XPS spectrum due to incomplete removal of Zn2+ ions (Fig. 3a), confirming the low first coulombic efficiency observed in the galvanostatic data (Fig. 2b). The Zn 2p peaks showed lower binding energy to those observed in the discharged state, which suggests weaker interactions between Zn2+ ions and the electrode host.6 Zn2+ ion extraction was followed by re-oxidation of the majority of the V5+ and V4+ ions to V4+ (Fig. 2b), further confirming the reversible reactions involving the V5+/V4+ and V4+/V3+ redox couples observed in the CV data shown in Fig. 2a.

Te-3d XPS spectra of VTe at the pristine state showed two peaks at 576.9 and 587 eV corresponding to the Te-3d3/2 and Te 3d5/2 core levels, respectively, and characteristic of the binding energy of Te5+ ions (Fig. 3c).44–46 At the OCV state, we observed a shift of the two peaks to lower binding energy, which we attribute to the presence of different Te environments in the electrode in contact with the electrolyte. For instance, Te6+ ions in Te(OH)6 and TeO3 have binding energies of 576.7 and 577.3 eV.47,48 Upon full discharge, these peaks further shifted to lower binding energies, i.e., 576 and 586.4 eV and two additional peaks with maxima at 577.7 and 588.2 eV appeared, which might be attributed to a change in the valence state of Te6+ to Te5+.48 Nevertheless, given the different forms in which Te5+ can be present, detailed research is required to unambiguously assign those peaks to Te5+. On the other hand, at the fully charged state, the peaks associated with the Te-3d3/2 and Te3d5/2 showed almost identical binding energies to those observed at the OCV state, suggesting a reversible process.

Ex situ XRD studies were performed on VTe electrodes at different charge states to understand the structural changes taking place during the first cycle (Fig. S14†). XRD data, showed structural changes occurring in the material during the first discharge process, guided by the presence of new main diffraction peaks at 11.9°, 32.3° and 35.6° 2θ (marked with a star symbol). Attempts to model the structure of the fully reduced phase were carried out using Expo2014 software.49,50 The best possible solution found yielded a phase with a monoclinic crystal structure and lattice parameters a = 9.67 Å, b = 7.44 Å and c = 4.66 Å; α = γ = 90° and β = 92.3°. No traces of crystalline impurities were observed in the XRD data despite the presence of IR peaks originating from SO4²⁻ ions. Therefore, it is likely that these sulfate-containing compounds are amorphous (Fig. S13†).

XRD data of the charged electrode showed a clear loss of crystallinity in the material, as reflected by the peak broadening observed in the diffraction pattern. Nevertheless, some of the diffraction peaks observed in the discharged product were still present, showing that the structure is kept after charge. A detailed diffraction study of the effects of Zn2+ insertion/extraction in this material is still required. Based on the above-mentioned experimental results, we propose that the following reactions occur during OCV (eqn (4)), and first discharge (eqn (5)) and charge processes (eqn (6)):

Cathode at the OCV state:

$$\text{(NH}_4\text{)}_4\{\text{VO}_2\}_2\{\text{Te}_2\text{O}_8\text{(OH)}_2\}\cdot 2\text{H}_2\text{O} + x\text{Zn}^{2+} \rightarrow \text{(NH}_4\text{)}_4\cdot \text{Zn}_x\{\text{VO}_2\}_2\{\text{Te}_2\text{O}_8\text{(OH)}_2\}\cdot n\text{H}_2\text{O} + 2x\text{NH}_4^+ \quad (4)$$

Cathode during the first discharge:

$$\text{(NH}_4\text{)}_4\cdot \text{Zn}_x\{\text{VO}_2\}_2\{\text{Te}_2\text{O}_8\text{(OH)}_2\}\cdot n\text{H}_2\text{O} + (4-x-y)\text{Zn}^{2+} \rightarrow \text{Zn}_y\{\text{VO}_2\}_2\text{Te}_2\text{O}_8\text{(OH)}_2\cdot 2\cdot n\text{H}_2\text{O} + (4-y)\text{NH}_4^+ \quad (5)$$

Cathode during the first charge:

$$\text{Zn}_y\{\text{VO}_2\}_2\text{Te}_2\text{O}_8\text{(OH)}_2\cdot 2\cdot n\text{H}_2\text{O} \rightarrow \text{Zn}_{4-y}\{\text{VO}_2\}_2\text{Te}_2\text{O}_8\text{(OH)}_2\cdot n\text{H}_2\text{O} \quad (6)$$

4. Conclusions

In conclusion, we tested (NH4)4{[VO2]2[Te2O8(OH)2]}·2H2O as a cathode material in AZIBs. Reversible Zn²⁺ ion intercalation in the material is attainable due to the presence of redox centres and large spacing between the 1D {[VO2]2[Te2O8(OH)2]}⁴⁻ chains. To the best of our knowledge, this is the first-ever reported vanadium tellurate(vi) tested as a positive electrode in AZIBs. The material shows a remarkable discharge capacity of ca. 283 mA h g⁻¹ in the 0.4–1.4 V vs. Zn²⁺/Zn voltage range, using a current density of 10 mA g⁻¹. Furthermore, in concentration cells, VTe shows excellent cycling stability, retaining about 91% of its initial discharge capacity after 20 cycles. Despite the promising results, improvements to the present work are under progress and include various strategies, such as the optimisation of suitable electrolyte formulations, where the V⁵⁺ state remains stable and prevents the pre-insertion of Zn²⁺ ions, and cycling with a modified Zn anode in a half-cell. Nevertheless, we
believe that these results provide great opportunities for the exploration of this material and family-related compounds as energy storage materials for AZIBs.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

NTR is indebted to the Royal Society (RG170150), Faraday Institution (FIRG018), Energy Lancaster and Lancaster University for financial support. We are grateful to Dr Sara Baldock for assistance with SEM data collection and Dr Nathan Halcoivitch for his help with elemental analysis. XPS data collection was performed at the EPSRC National Facility for XPS (“HarwellXPS”), operated by Cardiff University and UCL, under Contract No. PR16195. ZS would like to thank the Czech Science Foundation (GAČR No. 20-16124J) for financial support.

Notes and references

1. L. E. Blanc, D. Kundu and L. F. Nazar, Joule, 2020, 4, 771–799.
2. B. Tang, L. Shan, S. Liang and J. Zhou, Energy Environ. Sci., 2019, 12, 3288–3304.
3. W. Xu and Y. Wang, Nano-Micro Lett., 2019, 11, 90.
4. K. Kordesh and M. Weissenbacher, J. Power Sources, 1994, 51, 61–78.
5. C. Xu, B. Li, H. Du and F. Kang, Angew. Chem., Int. Ed., 2012, 51, 933–935.
6. D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah and L. F. Nazar, Nat. Energy, 2016, 1, 16119.
7. A. Konarov, N. Voronina, J. H. Jo, Z. Bakanov, Y.-K. Sun and S.-T. Myung, ACS Energy Lett., 2018, 3, 2620–2640.
8. X. Wang, Z. Zhang, B. Xi, W. Chen, Y. Jia, J. Feng and S. Xiong, ACS Nano, 2021, 15, 9244–9272.
9. M. Song, H. Tan, D. Chao and H. J. Fan, Adv. Funct. Mater., 2018, 28, 1802564.
10. M. D. Slater, D. Kim, E. Lee and C. S. Johnson, Adv. Funct. Mater., 2013, 23, 947–958.
11. Y. Zhang, E. H. Ang, K. N. Dinh, K. Rui, H. Lin, J. Zhu and Q. Yan, Mater. Chem. Front., 2021, 5, 744–762.
12. N. Bensalah and Y. De Luna, Energy Sci. Technol., 2021, 9, 2100011.
13. L. Shan, Y. Wang, S. Liang, B. Tang, Y. Yang, Z. Wang, B. Lu and J. Zhou, InfoMat, 2021, 3, 1028–1036.
14. Z. Liu, Y. Yang, S. Liang, B. Lu and J. Zhou, Small Struct., 2021, 2, 2100119.
15. I. Stoševski, A. Bonakdarpour, B. Fang, S. T. Voon and D. P. Wilkinson, Int. J. Energy Res., 2021, 45, 220–230.
16. K. Hyejin, C. Yoonsuk, Y. Hoseop and D. Junghwan, Zeitschrift für Anorg. und Allg. Chemie, 2007, 633, 473–477.
17. C. Liu, Z. G. Neale and G. Cao, Mater. Today, 2016, 19, 109–123.
18. C. Masquelier and L. Crogueennec, Chem. Rev., 2013, 113, 6552–6591.
19. T. Masese, K. Yoshii, Y. Yamaguchi, T. Okumura, Z. D. Huang, M. Kato, K. Kubota, J. Furutani, Y. Orikasa, H. Senoh, H. Sakaee and M. Shikano, Nat. Commun., 2018, 9, 3823.
20. M. A. Evstigneeva, V. B. Nalbandyan, A. A. Petrenko, B. S. Medvedev and A. A. Kataev, Chem. Mater., 2011, 23, 1174–1181.
21. K. Sau and P. P. Kumar, J. Phys. Chem. C, 2015, 119, 1651–1658.
22. A. A. Coelho, J. Appl. Crystallogr., 2018, 51, 210–218.
23. C. J. Pickard and F. Mauri, Phys. Rev. B: Condens. Matter Mater. Phys., 2001, 63, 245101.
24. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, Zeitschrift für Krist., 2005, 220, 567–570.
25. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Phys.: Condens. Matter, 2002, 14, 2717–2744.
26. N. Fairley, V. Fernandez, M. Richard-Deudon, J. Walton, E. Smith, D. Flahaut, M. Greiner, M. Biesinger, S. Tougaard, D. Morgan and J. Baltrusaitis, Appl. Surf. Sci., 2021, 5, 100112.
27. G. Sauerbrey, Zeitschrift für Phys., 1959, 155, 206–222.
28. D. Bin, Y. Liu, B. Yang, J. Huang, X. Dong, X. Zhang, Y. Wang and Y. Xia, ACS Appl. Mater. Interfaces, 2019, 11, 20796–20803.
29. C. Zhu, C. Wang, F. Liu, J. Zhou, S. Liang, B. Tang, A. Pan and G. Fang, J. Mater. Chem. A, 2018, 7, 940–945.
30. B. Sambandam, V. Soundharrajan, S. Kim, M. H. Alfaruqi, J. Jo, S. Kim, V. Mathew, Y. K. Sun and J. Kim, J. Mater. Chem. A, 2018, 6, 3850–3856.
31. S. Islam, M. H. Alfaruqi, B. Sambandam, D. Y. Putro, S. Kim, J. Jo, S. Kim, V. Mathew and J. Kim, Chem. Commun., 2019, 2–5.
32. C. Shen, X. Li, N. Li, K. Xie, J. G. Wang, X. Liu and B. Wei, ACS Appl. Mater. Interfaces, 2018, 10, 25446–25453.
33. F. Tang, J. Gao, Q. Ruan, X. Wu, X. Wu, T. Zhang, Z. Liu, Y. Xiang, Z. He and X. Wu, Electrochim. Acta, 2020, 353, 136570.
34. H. Jia, Z. Wang, B. Tawiah, Y. Wang, C. Y. Chan, B. Fei and F. Pan, Nano Energy, 2020, 70, 104523.
35. W. Oh, H. Park, B.-S. Jin, R. Thangavel and W.-S. Yoon, J. Mater. Chem. A, 2020, 8, 10331–10336.
36. H. Huang, S. C. Yin, T. Kerr, N. Taylor and L. F. Nazar, Adv. Mater., 2002, 14, 1525–1528.
37. H. S. Lee, V. Ramar, S. Kuppan, M. Nagarathinam, M. Law, C. Wang, A. Tripathi and P. Balaya, Electrochim. Acta, 2021, 372, 137831.
38. T. Wei, Q. Li, G. Yang and C. Wang, J. Mater. Chem. A, 2018, 6, 8006–8012.
39. Z. Li, S. Ganapathy, Y. Xu, Z. Zhou, M. Sarilar and M. Wagemaker, Adv. Energy Mater., 2019, 9, 1801819.
40. F. Hu, Y. Gu, F. Cui, G. Song and K. Zhu, Chinese Chem. Lett., 2021, 32, 3793–3798.
41. G. Yang, Q. Li, K. Ma, C. Hong and C. Wang, J. Mater. Chem. A, 2020, 8, 8084–8095.
42 L. Zhang, X. Dai, X. Wang, J. Chen, Z. Niu and F. Wan, Nat. Commun., 2018, 9, 1656.
43 N. V. Chukanov, R. K. Rastsvetaeva, S. M. Aksenov, I. V. Pekov, D. I. Belakovskiy, G. Blass and G. Möhn, Geol. Ore Deposits, 2013, 55, 663–668.
44 M. K. Bahl, R. L. Watson and K. J. Irgolic, J. Chem. Phys., 1977, 66, 5526–5535.
45 W. E. Swartz, K. J. Wynne and D. M. Hercules, Anal. Chem., 1971, 43, 1884–1887.
46 L. Y. Zhang and K. H. Lii, Dalton Trans., 2019, 48, 15231–15235.
47 J. M. M. Millet, H. Roussel, A. Pigamo, J. L. Dubois and J. C. Jumas, Appl. Catal., A, 2002, 232, 77–92.
48 D. Xiao, S. Wang, E. Wang, Y. Hou, Y. Li, C. Hu and L. Xu, J. Solid State Chem., 2003, 176, 159–164.
49 A. Altomare, M. Camalli, C. Cuocci, C. Giacovazzo, A. Moliterni and R. Rizzi, J. Appl. Crystallogr., 2009, 42, 1197–1202.
50 P. M. de Wolff, J. Appl. Crystallogr., 1968, 1, 108–113.