The value of single-molecule real-time technology in the diagnosis of rare thalassemia variants and analysis of phenotype–genotype correlation

Shiqiang Luo1,2,7, Xingyuan Chen3,4,7, Dingyuan Zeng5, Ning Tang3, Dejian Yuan1,2, Qingyan Zhong1,2, Aiping Mao6, Ruofan Xu6 and Tizhen Yan1,2

© The Author(s) 2021

To compare single-molecule real-time technology (SMRT) and conventional genetic diagnostic technology of rare types of thalassemia mutations, and to analyze the molecular characteristics and phenotypes of rare thalassemia gene variants, we used 434 cases with positive hematology screening as the cohort, then used SMRT technology and conventional gene diagnosis technology ([Gap-PCR, multiple ligation probe amplification technology (MLPA), PCR-reverse dot blot (RDB)]) for thalassemia gene screening. Among the 434 enrolled cases, conventional technology identified 318 patients with variants (73.27%) and 116 patients without variants (26.73%), SMRT identified 361 patients with variants (83.18%), and 73 patients without variants (16.82%). The positive detection rate of SMRT was 9.91% higher than conventional technology. Combination of the two methods identified 485 positive alleles among 49 types of variant. The genotypes of 354 cases were concordant between the two methods, while 80 cases were discordant. Among the 80 cases, 76 cases had variants only identified in SMRT method, 3 cases had variants only identified in conventional method, and 1 false positive result by the traditional PCR detection technology. Except the three variants in HS40 and HBG1-HBG2 loci, which was beyond the design of SMRT method in this study, all the other discordant variants identified by SMRT were validated by further Sanger sequencing or MLPA. The hematological phenotypic parameters of 80 discordant cases were also analyzed. SMRT technology increased the positive detection rate of thalassemia genes, and detected rare thalassemia cases with variable phenotypes, which had great significance for clinical thalassemia gene screening.

Keywords: Single molecule real-time technology (SMRT); α-thalassemia rare variant; β-thalassemia rare variant; Carrier screening

Journal of Human Genetics (2022) 67:183–195; https://doi.org/10.1038/s10038-021-00983-1

INTRODUCTION

Thalassemia, also known as Mediterranean anemia, is a hereditary hemolytic anemia mainly caused by deletions or point mutations of globin genes. It is one of the most common single gene diseases in the world. The global thalassemia gene carriers comprise ~1.67% of the total population, which are mainly distributed in the Mediterranean coast, North Africa, the Middle East, the Indian mainland, Southeast Asia, and southern China [1]. Thalassemia is one of the most common genetic diseases in southern China. The pathogenic variants of thalassemia include single-nucleotide variations (SNVs), indels, and large fragments of copy number variants (CNVs) and structural variations (SVs). Among them, α-thalassemia is mainly caused by large fragment deletions, and β-thalassemia mainly involves point mutations. In China, simple and low cost red blood cell and hemoglobin tests are used as a first-tier screening strategy. Then molecular diagnosis will be performed for individuals with positive results of blood test. Conventional molecular diagnosis methods for detecting thalassemia genes include Gap-PCR, PCR-RDB, PCR-flow fluorescence hybridization, and MLPA. Other common technologies used in China include gene chip, Sanger sequencing, and next generation sequencing (NGS). Conventional screening methods can only detect a limited spectrum of gene mutations, which sometimes lead to misdiagnosis. NGS used in thalassemia screening can effectively reduce the need for various types of conventional genetic testing, but there could be missed diagnoses [2]. Although the probe hybridization target capture NGS method can simultaneously detect deletions and SNV/indels, the detection cost is high, and the accuracy is not ideal. Gap-PCR combined with NGS technology is currently used to compensate for the shortcomings of NGS capture sequencing technology. In addition, due to the high homology between HBA2 and HBA1 genes, the short-
read NGS method cannot distinguish HBA2 and HBA1 effectively [3, 4]. With the advantage of long-molecule sequencing, PacBio real-time sequencing technology (SMRT) had been used for comprehensive and precious thalassemia test [5, 6]. In this study, SMRT technology and conventional methods were performed for 434 suspected carriers of thalassemia to simultaneously detect deletion and non-deletion variants of α-thalassemia and β-thalassemia. Compared to conventional methods, SMRT technology detected more abnormal hemoglobin variant sites on the HBA1, HBA2, and HBB genes, which illustrated the value of SMRT technology in the diagnosis of common and rare types of α-thalassemia and β-thalassemia variants.

PATIENTS AND METHODS

Patients

A total of 434 patients who attended Liuzhou Maternal and Child Health Hospital in Guangxi, China from January 2018 to December 2020, were included in the study. The enrolled patients should meet at least one of the following inclusion criteria: (1) routine hematologic examination showed abnormal mean corpuscular volume (MCV ≤80 fl) and/or mean corpuscular hemoglobin (MCH ≤27 pg); (2) hemoglobin electrophoresis showed HBA2 < 2.5% or elevated HBF or abnormal hemoglobin; (3) the results of conventional genetic diagnosis were inconsistent with the results of the hematologic phenotype; (4) the patient gave birth to children with moderate or severe thalassemia; and (5) there may be abnormalities outside the scope of conventional genetic testing techniques. The exclusion criteria included: (1) incomplete basic clinical data; (2) the patient had other blood diseases; and (3) the patient had mental abnormalities or cognitive dysfunctions. The study group was comprised of 185 males and 249 females, with age range 3 days to 56 years, and an average age of 26.4 ± 12.59 years. This study was approved by the ethics committee of our hospital, and all research subjects or their legal guardians signed an informed consent form.

Methods

Hematology and hemoglobin electrophoresis analysis. An automatic blood cell analyzer was used for routine blood analyses, and high-performance liquid chromatography was used for hemoglobin analysis to detect HBF, HBA2, HBF, and other hemoglobin variants.

Genomic DNA extraction. The magnetic bead method was used to extract nucleic acids (LabAid20; Xiamen Zhishan Biotechnology, Xiamen, China). The nucleic acid analyzer (ASP-2680; ACTGene, Piscataway, NJ, USA) was used to detect DNA concentration and purity. The A260/A280 of extracted DNA was between 1.6 and 1.9, and the concentration was 20–30 ng/µL.

α-thalassemia and β-thalassemia genotyping. Genomic DNA extracted from peripheral blood were used for thalassemia test. Gap-PCR (Yishengtang, Shenzhen, China) was performed for the four common α-thalassemia deletions [–SEA (Southeast Asia), –ßer (rightward), –αβ (leftward), –THAI (Thailand)] were performed using the gap-polymerase chain reaction (Gap-PCR). PCR-RDB assay (Yishengtang, Shenzhen, China) was performed for the three common non-deletional α-thalassemia mutations including Hb Constant Spring (Hb CS, HBB: c.345T>C), and Hb Westmead (Hb WS, HBB: c.369G>C), and the 17 known β-thalassemia mutations including −28 (A>Г) (HBB: c.76αA>G), −29 (A>Г) (HBB: c.79αA>G), −30 (Т>C) (HBB: c.80Т>C), −32 (А>Г) (HBB: c.82АГ), codons 14/15 (I>G) (HBB: c.4546InsG), codon 17 (А>Т) (HBB: c.52АT), codon 26 (or Hb E) (Г>А) (HBB: c.79ГC), codon 27/28 (+С) (HBB: c.8455insC), codon 31 (–С) (HBB: c.94delC), codons 41/42 (–TTC) (HBB: c.126129delCTT), codon 43 (Г>Т) (HBB: c.130G>T), codons 71/72 (+A) (HBB: c.216217insA), IVS-I-1 (G>T) (HBB: c.92+1G>T), IVS-I-5 (G>C) (HBB: c.92+5G>C), IVS-I-54 (C>T) (HBB: c.316-197C>T), CAP-1 (А>С) (HBB: c.50АС), and initiation codon (Т>G) (HBB:c.27G). MLPA detection was performed using the P102 and P140 probe kit (MRC-Holland, Amsterdam, The Netherlands) to analyze the copy number variation of the deleted plutionium-Mediterranean gene. Capillary electrophoresis was performed on amplified products using the 3500Dx genetic Analyzer (Applied Biosystems, Foster City, CA, USA).

SMRT and data analysis. Genomic DNA was extracted from peripheral blood leukocytes using the QIAmp DNA blood mini kit (Qiagen, Hilden, Germany). Purified DNA samples were quantified using the Qubit dsDNA BR assay kit (Thermo Fisher Scientific, Waltham, MA, USA) using a Qubit 2.0 fluorometer (Life Technologies, Carlsbad, CA, USA). Samples were sent to an independent laboratory (Berry Genomics, Beijing, China) for sequencing using the Sequel II platform and data analysis (PacBio, Menlo Park, CA, USA). Briefly, genomic DNA samples were subjected to multiplex long-molecule PCR using optimized primers to generate specific amplicons that encapsulated currently known structural variation (SV) regions, single-nucleotide variations (SNVs), and indels (insertions and deletions) in the HBA1, HBA2, and HBB genes. After purification and end repair, the barcoded adapters were ligated to the 5′ and 3′ ends, and SMRT bell libraries were prepared using the sequel binding and internal Ctrl Kit 3.0 (PacBio). Primed DNA-polymerase complexes were loaded onto SMRT cells (PacBio) and sequencing was performed on the PacBio Sequel II system to generate 10–25 subjects per molecule following alignment of subreads, the consensus circular sequence was mapped to the GRCh38 reference and variant identifiers (FreeBayes software, version 1.2.0). Variant pathogenicity was classified according to general guidelines and information provided in hemoglobin variant databases. Phenotypes were finally assigned from known genotypic-phenotypic associations. Large deletion variants was confirmed by Gap-PCR or MLPA, SNVs and indels were confirmed by PCR-RDB or Sanger sequencing.

Sanger sequencing for HBA and HBB gene

Four sets of primer pairs were designed and used to amplify and sequence the α-globin genes (HBA1 and HBA2) and β-globin gene (HBB); HBA1-F: 5′-TGG AGG GTG GAG ACC CGC CGC CCT GCC TCC TTG TC-3′; HBA1-R: 5′-TCC ATC ATC TCC GCC CGC CCT TCG CTI TTC-3′; HBB2-F: 5′-TTG AGG GTG GAG ACC TCT TG-3′; HBB2-R: 5′-CCG TTG TTG GCA CAT TCC GG-3′; HBF-FP: 5′-AAT CTC TAA GCC AGT GCC AG-3′; Avall-HBB-FP: 5′-TTGG GGG ATC TCG TCA CT-3′; Acul-HBB-RP: 5′-CCA GCC TTA TCC CAA CAA TAA AA A-3′; and HBB-RP: 5′-ATG CAC TGA CTT ACC ACA TTC CCT-3′. DNA sequencing was performed using the Sanger dye deoxy termination sequencing method, and the reference sequence was NM_000517. Amplification was performed using 50 ng of genomic DNA, and 20 pmol of forward (F) and reverse (R) primers, on a C1000 Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA). The PCR products were sequenced on the ABI PRISM® 3130 automated sequencer (Applied Biosystems).

Fig. 1 Combined analyses of the two techniques. Comparison of variants detection results between conventional technology and SMRT technology.

Fig. 2 Comparison of genotyping results between conventional technology and SMRT technology. SMRT method showed that the genotype of sample D141966 was −αβ−/−αβ−, while by conventional Gap-PCR it was −αβ−/−αβ−. Validation by MLPA confirmed D141966 had heterozygous −αβ− deletion.
Common name	HGVS name	Clinical significance	Allele frequency	Occurrence	n (%)	Detection range of conventional technology	Detection range of SMRT	Verification method	Reference
HbA1c & HbA2	N/A1	Pathogenic	None	Chinese	130 (26.80)	Yes	Yes	Gap-PCR/MLPA	[2]
HbA1c & HbA2	N/A1	Pathogenic	None	East Asian	94 (19.59)	Yes	Yes	Gap-PCR/MLPA	[2]
HbA1c & HbA2	N/A1	Pathogenic	None	East Asian	94 (19.38)	Yes	Yes	Gap-PCR/MLPA	[2]
CD142 (TAA>C)	HBA2:c.427T>C	Pathogenic	14/248854, GnomAD_exome	Arabian, Cambodian, Chinese, Greek, Indian, Indonesian, Laotian, Malaysian, Sicilian, Vietnamese	18 (3.71)	Yes	Yes	RDB/Sanger	[2]
CD125 (CTG>C)	HBA2:c.377T>C	Pathogenic	1/136864, GnomAD	Chinese	3 (0.62)	Yes	Yes	RDB/Sanger	[2]
CD122 (CAC>C)	HBA2:c.369C>G	Uncertain-significance	19/116218, ExAC	Chinese	2 (0.41)	Yes	Yes	RDB/Sanger	[2]
CD11 (AAG>CAG)	HBA1:c.345A>C	Uncertain-significance	19/116218, ExAC	Chinese	1 (0.21)	No	Yes	Sanger	[13]
CD16 (AAG>AAC)	HBA1:c.517G>C	Uncertain-significance	None	Chinese	1 (0.21)	No	Yes	Sanger	[14]
CD27 (AAG>AAT)	HBA1:c.844G>T	Uncertain-significance	None	Chinese	2 (0.41)	No	Yes	Sanger	[15]
CD6 (GAC>TAC)	HBA1:c.193G>T	Uncertain-significance	None	Vietnamese	1 (0.21)	No	Yes	Sanger	[16]
Common name	HGVS name	Clinical significance	Allele frequency*	Occurrence*	n (%)	Detection range of conventional technology	Detection range of SMRT	Verification method	Reference
-------------	-----------	-----------------------	-------------------	-------------	--------	--	--------------------------	-------------------	----------
CD18 (GGC>GCG)	HBA1.c.55G>C	Uncertain-significance	2/138328, GnomAD	Chinese Indian	4 (0.82)	No	Yes	Sanger	[17]
Init CD (ATG>A-G)	HBA2c.2delT	Pathogenic	None	Vietnamese	1 (0.21)	No	Yes	Sanger	[18]
Init CD (ATG>ACG)	HBA2c.2T>C	Pathogenic	0/654, ALFA	Italian	1 (0.21)	No	Yes	Sanger	[19]
CD17 (GTC>TTC)	HBA2c.52G>T	Uncertain-significance	None	Chinese	1 (0.21)	No	Yes	Sanger	[20]
CD30 (GAG>CAG)	HBA2c.91G>C	Uncertain-significance	1/264690, TOPMED	Chinese	3 (0.62)	No	Yes	Sanger	[21]
−22 C>T	HBA2c.—59C>T	Pathogenic-like-pathogenic	None	Nedlands	1 (0.21)	No	Yes	Sanger	[22]
CD85 (GAC>AAC)	HBA2c.256G>A	Uncertain-significance	None	English	1 (0.21)	No	Yes	Sanger	[23]
CD41/42 (-TTCT)	HBB:c.126_129delCTTT	Pathogenic	7/140174, GnomAD	Chinese 41.84% English 4.35% Indonesian 1.69% Japanese 5.99% Korean 4.17% Malaysian 26.32% Punjabi 13.22% Singapore 37.59% Taiwanese 30.63% Thai 37.24%	22 (4.54)	Yes	Yes	RDB/Sanger	2
CD17 (AAG>TAG)	HBB:c.52A>T	Pathogenic	3/140268, GnomAD	Chinese 14.1% Indonesian 1.69% Japanese 0.32% Korean 16.67% Malaysian 5.26% Singapore 9.02% Taiwanese 8.13% Thai 18.56%	15 (3.09)	Yes	Yes	RDB/Sanger	2
−28 (A>G)	HBB:c.—78A>G	Pathogenic-like-pathogenic	1/140226, GnomAD	Chinese 12.31% Japanese 0.32% Malaysian 6.43% Taiwanese 9.38% Thai 6.83%	10 (2.06)	Yes	Yes	RDB/Sanger	2
CD26 (GAG>AAG)	HBB:c.79G>A	Pathogenic	9/140272, GnomAD	Thai 0.12%	5 (1.03)	Yes	Yes	RDB/Sanger	2
CD71/72(+A)	HBB:c.216_217insA	Pathogenic	2/251430, GnomAD_exome	Chinese	3 (0.62)	Yes	Yes	RDB/Sanger	2

S. Luo et al.

Journal of Human Genetics (2022) 67:183 – 195
Common name	HGVS name	Clinical significance	Allele frequency*	Occurrence*	n (%)	Detection range of conventional technology	Detection range of SMRT	Verification method	Reference
IVS-II-654 (C>T)	HBB:c.316-197C>T	Pathogenic	7/140170, GnomAD	Chinese 21.37%	2 (0.41)	Yes	Yes	RDB/Sanger	[2]
				Indonesian 11.86%					
				Japanese 11.99%					
				Malaysian 10.53%					
				Russian 1.52%					
				Singapore 25.56%					
				Taiwanese 46.25%					
				Thai 5.13%					
CD14/15(+G)	HBB:c.45dupG	Pathogenic	1/251224, GnomAD_exome	Chinese 0.12%	1 (0.21)	Yes	Yes	RDB/Sanger	[2]
				Thai 0.12%					
--29 (A>G)	HBB:c.79A>G	Pathogenic	127/140260, GnomAD	Algerian 3.8%	1 (0.21)	Yes	Yes	RDB/Sanger	[2]
				Black 59.38%					
				Chinese 2.37%					
				Malaysian 0.58%					
				Taiwanese 0.63%					
CD27/28(+C)	HBB:c.84_85insC	Pathogenic	1/264690, TOPMED	Chinese 0.59%	1 (0.21)	Yes	Yes	RDB/Sanger	[2]
				Singapore 0.75%					
				Taiwanese 2.5%					
				Thai 0.24%					
IVS-I-5 (G>C)	HBB:c.92+5G>C	Pathogenic	1/140258, GnomAD	Frequent in Asian Indian, UAE, and East Asian populations	1 (0.21)	Yes	Yes	RDB/Sanger	[2]
--50 (G>A)	HBB:c.100G>A	Uncertain-significance	2/140260, GnomAD	Chinese 1 (0.21)	No	No	Sanger		
				Lebanese, Thai 0.24%					
IVS-II-5 (G>C)	HBB:c.315+5G>C	Pathogenic	1/140204, GnomAD	Chinese 0.15%	10 (2.06)	No	Yes	Sanger	[26]
CD126 (GTG>GAG)	HBB:c.380T>G	Pathogenic	1/140228, GnomAD	German	1 (0.21)	No	Yes	Sanger	[27]
				Italian					
				Thai					
--31 (A>C)	HBB:c.81A>C	Pathogenic	1/264690, TOPMED	Italian	1 (0.21)	No	Yes	Sanger	[22]
				Chinese					
CD30 (A>G)	HBB:c.91A>G	Likely-pathogenic	None	Sephardic Jewish	5 (1.03)	No	Yes	Sanger	[28]
CD56 (GGC>GAC)	HBB:c.170G>A	Likely-benign	5/251448, GnomAD_exome	Found in Thai, Indonesian, Black, and Chinese families	5 (1.03)	No	Yes	Sanger	[29]
CD64 (GGC>GAG)	HBB:c.193G>A	Likely-benign	None	Chinese	1 (0.21)	No	Yes	Sanger	[30]
CD77 (CAC>TAC)	HBB:c.232C>T	Likely-benign	1/251428, GnomAD_exome	Caucasian, Indonesian, Japanese, Swedish	1 (0.21)	No	Yes	Sanger	[31]
Common name	HGVS name	Clinical significance	Allele frequency*	Occurrence*	n (%)	Detection range of conventional technology	Detection range of SMRT	Verification method	Reference
-----------------------	-------------------	-----------------------	-------------------	-------------	-------	---	-------------------------	-------------------	----------
−198A>G	HBB:c.−248A>G	Uncertain significance	None	This study	3 (0.62)	No	Yes	Sanger	This study
CD113 (GTG>GAG)	HBB:c.341T>A	Pathogenic	2/140270, GnomAD	American	14 (2.89)	No	Yes	Sanger	[32]
CD143 (CAC>GGC)	HBB:c.431A>G	Likely-pathogenic	1/251362, GnomAD_exome	American	1 (0.21)	No	Yes	Sanger	[33]
IVS-II-806 (G>C)	HBB:c.316-45G>C	Benign-likely-benign	34/140174, GnomAD	Chinese	3 (0.62)	No	Yes	Sanger	This study
IVS-II-672 (A>C)	HBB:c.316-179A>C	Benign-likely-benign	None	Chinese	1 (0.21)	No	Yes	Sanger	This study
IVS-II-308 (-A)	HBB:c.315-308delA	Benign-likely-benign	None	Chinese	1 (0.21)	No	Yes	Sanger	This study
Total					485 (100)				

Gap-PCR: Gap-polymerase chain reaction, MLPA: multiple ligation probe amplification technology, RDB: reverse dot blot.

*Data come from HbVar (https://globin.bx.psu.edu/hbvar/hbvachtml), GnomAD (https://gnomad.broadinstitute.org/), and dbSNP (https://www.ncbi.nlm.nih.gov/snp/).
Data analysis
The subjects with positive test results were diagnosed as carriers or patients of thalassemia. The concordance of the two methods were then calculated. SPSS statistical software for Windows, version 220 (SPSS, Chicago, IL, USA) was used for statistical analyses. The measurement data are expressed as x ± SD and the count data are expressed as examples and percentages.

RESULTS
Comparison of genotyping results between traditional methods and SMRT technology
Among the 434 enrolled cases, using conventional methods (gap-PCR and/or MLPA, RDB), 318 patients with variants (73.27%), and 116 patients without variants (26.73%) were identified. SMRT identified 361 patients with variants (83.18%) and 73 patients without variants (16.82%). The positive detection rate of SMRT was 9.91% higher than that of conventional methods. Combined analyses of the two techniques revealed that there were 485 positive alleles among 49 variant types (Fig. 1). Among them, conventional technology identified 408 positive alleles (84.12%) among 19 variant types (38.78%), and SMRT identified 482 positive alleles (99.38%) among 47 variant types (95.92%) (Fig. 2). Of the 49 types of variants, 30 types (61.23%) were detected by SMRT only, 9 types (18.37%) were detected by conventional methods only, and 17 types (34.69%) were detected by both methods (Fig. 2). Of the 485 positive alleles, 77 (15.88%) were identified by SMRT only, three (0.62%) were identified by conventional methods and 405 (83.50%) were identified by both methods (Table 1 and Fig. 2). A total of 354 cases had completely concordant results between the two types of techniques, including 73 negative and 281 positive total of 354 cases had completely concordant results between the two methods.

The routine hematology examination results of patients with αα/αβ−thalassemia and αα/αα−thalassemia were normal, but HbA2 was decreased and HbF was significantly increased to 12.3% and 16.2%, respectively. When αα/αα−antit3.7 and αα/αα−antit4.2 were combined with β-thalassemia, they were assigned as intermediate β-thalassemia, and HbF was also significantly increased. Patients with HKαα/αα presented with silent α-thalassemia, and patients with HKαα/−SEa presented with mild α-thalassemia. The HBG1−HBG2 deletion combined with βCD41/42(TCTC)/βN was clinically manifested as mild β-thalassemia (Table 3).

Hematology examination and hemoglobin electrophoresis results in patients with rare variants in HBA1/2
Sixteen rare HBA1/2 variants were found, including 3.7/SEα/HBA2: c2delT, 3.7/SEα/HBA2:c.T>C, 3.7/SEα/HBA2:c.52G>T, 3.7/SEα/HBA2:c.19G>T, HBA1:c.34A>G, CHBA1:c.55G>C, SEα/HBA1:c.55G>C, SEα/HBA1:c.54G>T, CHBA1:c.19G>T, HBA1:c.91G>C, HBA2:c.91G>C, HBA2:c.52G>T. Among them, HBA1: c.34A>G and HBA1: c.55G>C had normal routine blood test results, but abnormal hemoglobin was detected. The routine blood phenotypes of the genotypes HBA1: c.34A>G, HBA1:c.19G>T, and HBA1:c.55G>C were normal. If it was compounded with other deletion variant, it manifested as mild or silent thalassemia, and abnormal hemoglobin was detected. The 3.7/SEα/HBA2:c.2delT, 3.7/SEα/HBA2:c.2T>C, and 3.7/SEα/HBA2:c.52G>T manifested as non-deletion HbH disease. HBA2: c.91G>T had normal hematologic phenotype, though with abnormal HbF content, and reduced HbA2. In cases with HBA2: c.59C>T/HBA2: c.91G>C compound heterozygous variants, hemoglobin electrophoresis showed abnormal hemoglobin peaks at 3.784 and 4.349 min, the routine hematologic phenotype was normal, and HbA2 was significantly increased. HBA2: c.256G>A cases had a normal phenotype, though abnormal hemoglobin was detected, and HbA2 was reduced (Table 4).

Hematology examination and hemoglobin electrophoresis results in patients with rare variants in HBB
The c.100G>A, c.136C>G, c.315−5G>C, c.380T>G, and c.−81A>C belonged to beta+ thalassemia (partial loss of function of β-globin gene). Heterozygous variants of these types showed silent or mild β-thalassemia. c.91A>G belonged to beta0 thalassemia (complete loss of function of the β-globin gene), and heterozygous mutations manifested as mild β thalassemia. The hematological phenotype of the c.170G>A, c.431A>G, c.232C>T, c.341T>A, and c.431A>G heterozygous variation was normal, the HbA2 and HbF contents were within the reference range, but abnormal hemoglobins were detected. Abnormal hemoglobin of case with c.341T>A/c.315−5G>C accounted for 93.5%, and HbA2 was almost undetectable. HbA2 content of case with c.431A>G heterozygous variation was increased. The hematological
Table 3. Hematology examination and hemoglobin electrophoresis results of 14 cases with rare deletions and triplicate α-globin genes.

Genotype	n	Age (y)	RBC	Hb (g/L)	MCV (fL)	MCH (pg)	HbA (%)	HbA2 (%)	HbF (%)	HbH (%)
−SEA/−α 24	1	39	4.05	85	69.3	21.2	68.2	1.2	0.4	20.1
HS-40 deletion/αα with βCD41/42−TTCT/βN	1	0.1	5.03	127	79.1	25.2	10.6	0.2	86.6	–
−αα/HS-40 deletion	1	44	4.78	84	57.3	17.5	80.2	2.1	0.4	5.3
αα/anti3.7	1	34	4.97	150	92	30.1	76.5	2.1	12.3	–
αα/anti3.7 with βCD41/42−TTCT/βN	1	36	4.45	102	71.2	23.2	69.7	3.7	19.5	–
αα/anti3.7 with βCD41/42−TTCT/βN	1	37	4.67	143	91.5	23.1	85.3	4.8	9.9	–
αα/anti4.2	1	34	4.97	150	92	30.1	76.5	2.1	12.3	–
αα/anti4.2 with βCD41/42−TTCT/βN	1	36	4.45	102	71.2	23.2	69.7	3.7	19.5	–
αα/anti4.2 with βCD41/42−TTCT/βN	1	50	4.41	102	77.7	23.2	85.3	4.8	9.9	–
HBG1-HBG2 deletion with βCD41/42−TTCT/βN	1	3d	4.75	165	103	34.8	15	0	85	–
−SEA/Hkαα	4	32.00 ± 9.31	5.75 ± 0.56	130.50 ± 12.15	69.80 ± 2.19	22.70 ± 1.16	94.70 ± 6.33	2.25 ± 0.26	0.08 ± 0.15	–
HKαα/αα	2	35.00 ± 1.41	4.34 ± 0.54	134.50 ± 3.54	94.80 ± 9.48	31.15 ± 3.18	90.60 ± 9.33	3.00 ± 0.28	2.05 ± 2.90	–
Total	14	–	–	–	–	–	–	–	–	–

Table 4. Hematology examination and hemoglobin electrophoresis results of 16 cases with rare variants in HBA1/2 gene.

Genotype	Cases (n)	Age (y)	RBC	Hb (g/L)	MCV (fL)	MCH (pg)	HbA (%)	HbA2 (%)	HbF (%)	HbH (%)	Abnormal hemoglobin
−SEA/HBA2c.2delT	1	31	4.71	81	61.6	17.1	61.2	1.1	0.4	31	–
−SEA/HBA2c.2>T C	1	1	4.92	81	65.4	19.2	89.3	0.6	2.2	8.1	–
−SEA/HBA2c.52G>T	1	33	5.65	106	63.2	18.7	89	0.8	0	85	–
−αα/HHBA1c.19G>T	1	28	5.64	150	80.3	26.6	73.2	2.2	0.5	–	4.129 min
HBA1c.34A>C	1	31	4.93	165	97.5	33.5	75.7	1.9	0	–	22.4%
HBA1c.51G>C	2	21.10 ± 2.83	5.10 ± 0.16	127.00 ± 33.94	76.15 ± 15.06	24.85 ± 5.73	73.45 ± 16.33	2.2	11.85 ± 16.76	–	4.498 min
HBA1c.55G>C	2	33.00 ± 4.28	5.40 ± 0.71	105.50 ± 23.33	63.55 ± 5.59	19.35 ± 1.77	64.75 ± 0.49	2.85 ± 0.07	0.65 ± 0.35	–	4.515–4.528 min
HBA1c.84G>T	2	30.00 ± 2.83	5.43 ± 0.34	123.00 ± 14.14	72.75 ± 4.17	22.65 ± 1.06	71.10 ± 22.20	2.05 ± 0.21	0.75 ± 0.07	–	–/2.310 min
HBA2c.91G>C	2	41.00 ± 4.24	4.62 ± 0.66	144.50 ± 20.51	92.20 ± 0.42	31.25 ± 0.07	74.20 ± 0.14	1.95 ± 0.35	0	–	23.5%
HBA2c.91G>C	1	27	5	137	83.4	27.4	68.3	21.6	0.4	–	3.784/4.349 min
HBA2c.256G>A	1	0.5	4.54	126	84	27.8	64.5	1.6	3.1	–	4.059 min
Total	16	–	–	–	–	–	–	–	–	–	–
Genotype	Cases	Age (y)	RBC (×10^12/L)	Hb (g/L)	MCV (fl)	MCH (pg)	HbA (%)	HbA2 (%)	HbF (%)	HbH (%)	Abnormal hemoglobin
----------	-------	---------	----------------	----------	----------	-----------	---------	----------	---------	---------	-------------------
HBB:c.315+5G>C/WT	6	32.17 ± 5.74	5.16 ± 0.41	143.5 ± 12.44	84.42 ± 3.81	27.85 ± 1.28	8.60 ± 0.46	3.68 ± 0.10	0.67 ± 0.20	–	–
HBB:c.315+5G>C/c.52A>T	1	8	3.75	94	76.5	25	70	3.6	17.3	–	–
αSSEA/αSSEA with HBB:c.315+5G>C/c.315+5G>C	1	31	4.23	101	73.6	23.7	94.3	4.5	1.2	–	–
αSSEA/αSSEA with HBB:c.315+5G>C/WT	1	23	3.82	91	76.5	23.9	85.9	3.6	0.3	–	–
HBB:c.380T>G/WT	1	31	4.98	192	78.6	24.7	96	3.7	0.3	–	–
HBB:c.170G>A/WT	5	17.32 ± 15.86	4.19 ± 0.66	127.60 ± 20.46	91.64 ± 7.99	30.52 ± 2.49	39.74 ± 10.89	2.24 ± 0.81	16.04 ± 26.43	–	2.066–2.497 min
HBB:c.341T>G/WT	11	23.82 ± 17.19	4.46 ± 0.47	126.18 ± 17.66	86.39 ± 7.26	28.28 ± 2.42	54.04 ± 10.70	2.80 ± 0.35	2.24 ± 5.61	–	45%
HBB:c.431A>G/WT	1	31	4.98	148	88.6	29.7	86	1.8	0.2	–	4.742 min
αSSEA/αSSEA with HBB:c.341T>A/WT	1	28	4.82	103	68.4	21.5	0	4.6	1.9	–	93.5%
αSSEA/αSSEA with HBB:c.316-45G>C/WT	2	33.25 ± 6.09	5.12 ± 0.75	131.88 ± 24.74	79.40 ± 8.93	25.74 ± 3.25	76.39 ± 15.61	8.90 ± 1.5	9.00 ± 1.6	–	–
αSSEA/αSSEA with HBB:c.316-179A>C/WT	1	33	4.42	129	88.4	29.1	96.3	2.8	0.9	–	–
αSSEA/αSSEA with HBB:c.315+308delA/WT	1	30	5.92	161	79.1	27.1	69.1	1.7	0	–	28.6%/Hb Q-Thailand?

Total | 49 | – | – | – | – | – | – | – | – | – | – |
phenotype of c.-248A>G heterozygous variation was normal, and mainly manifested as decreased HbA2 content. c.316-45G>C, c.316-179A>C, and c.315+308delA combined with other types of α-thalassemia were manifested as silent or mild α-thalassemia (Table 5).

DISCUSSION

Thalassemia is a single gene disease, which is difficult to cure but more straightforward to diagnose and be prevented clinically. Its gene mutation types are diverse and complex. As of 2021, the LOVD (https://databases.lovd.nl/shared/genes) database had more than 2000 thalassemia and abnormal hemoglobin-related variant sites, and most of the sites have not been studied by conventional genetic testing methods, especially the large deletion variant type. At present, common clinical testing techniques for thalassemia genetic testing methods, especially the large deletion variant type. The conventional screening mode can only detect variants in known gene loci, which is far from sufficient for the detection of other variant loci, leading to missed diagnoses and misdiagnoses. There is therefore an urgent need to use more accurate and effective diagnostic techniques to screen thalassemia patients in clinical practice. In recent years, there have been reports of missed detections of thalassemia using conventional genetic testing methods. The SMRT technology can detect the thalassemia gene without interrupting the DNA, and can directly read the full-length gene sequence. The DNA does not need to be amplified by PCR during sequencing, which facilitates individual sequencing of each DNA molecule, and it has very long read lengths (a read length up to 30–100 kb), high accuracy (QV30 > 99.8%), no GC preference, and single-molecule resolution characteristics [7]. SMRT technology can facilitate the simultaneous detection of α-thalassemia and β-thalassemia in 1 μL of whole blood or 10–15 mL of amniotic fluid sample. It can also detect hotspots and rare variant sites and their arrangements with high accuracy, including comprehensive coverage of 2062 variant sites related to thalassemia, and detection of 18 α-globin gene deletion variants, four α-globin genes triplicate and two β-globin gene deletion. It can detect 96 samples at a time with high efficiency and high accuracy.

Xu et al. [5] first used the SMRT to sequence full-length thalassemia-related genes (HBA1/2 and HBB) to obtain complete variant information of two alleles that were difficult to obtain by conventional genetic testing techniques. Twelve hospitals in southern China assessed a comprehensive analysis of thalassemia alleles (CATSA) for identifying both α and β thalassemia genetic carrier status by third-generation sequencing (TGS). Compared with standard thalassemia variant PCR panel testing, TCS can detect 33 more positive variants, and found that the traditional PCR detection technology had 1 false negative and 8 false positive result [6]. The present study used the SMRT and conventional technologies to test the thalassemia gene in the thalassemia screening positive population in this area. The results showed that the percentage of thalassemia gene was high and the genotype was complex, rare variant types of thalassemia and the phenotypes were diverse. Among the 434 cases, 49 variant types were detected, of which 19 were detected by conventional technology and 47 were detected by SMRT technology. Compared with conventional technology, SMRT technology detected 28 more variant types. The positive detection of SMRT was 9.91% higher than that of conventional technology, and SMRT technology increased the detection of thalassemia genes. At present, the detection range of the reagents we used only included 2062 variant sites related to thalassemia on the HBA1/2 and HBB genes. HS-40 deletion occurs upstream of the α-globin gene cluster, and HBG1-HBG2 deletion occurs upstream of the HBB gene cluster. The SMRT method developed in this study focused on detection of variants in HBA1, HBA2, and HBB genes, which consisted the vast majority of thalassemia variants. With expanded primer pairs, the SMRT technology can definitely detect HS-40 and HBG1-HBG2 deletions. However, the sequencing cost will increase with more primer pairs [7]. So, it was the limit of the design of SMRT method in this study but not SMRT technology itself.

This study found 14 cases of rare deletions or triplicate α-globin genes. Among them, the -α3.7,-α4.2, and -α3.7/HS-40 deletion patients all manifested with HbH disease [8, 9]. Carriers of ααα-anti3.7 and ααα-anti4.2 had normal phenotypes, but HbF was significantly increased by 12.3% and 16.2%, respectively, and HbA2 was reduced. When compounded with β-thalassemia, it can manifest as intermediate β-thalassemia due to the aggravation of the imbalance between the α and β chains, and HbF is also significantly increased [10, 11]. In the present study, among the thalassemia carriers whose detection results were -α3.7/ααα by conventional methods, two of them were found to be HKAα/ααα using SMRT technology, and the misdiagnosis rate was as high as 4.17% (2/48). HKααα/ααα patients presented with silent α-thalassemia, and HKααα/ααα patients presented with mild α-thalassemia, which is consistent with past reports [12]. Although the HBG1-HBG2 deletion combined with c.126-129delCTTT/WT had two allelic variants in the HBB gene, HBG1-HBG2 was functionally closed in adulthood and did not affect the expression of β globin, so it was clinically mild β-thalassemia. SMRT method showed that the genotype of sample D141966 was -α3.7/aa, while by conventional Gap-PCR it was -α3.7,-α3.7. Validation by MLPA confirmed D141966 had heterozygous -α3.7 deletion. To investigate the basis of this discordance, we analyzed the SNV/indels in the α allele identified by SMRT method and found there were three SNPs in the 3′-terminal of HBA2, which caused dropout of the α allele in conventional Gap-PCR method that designed primer in this region.

This study found 16 rare HBA gene variants. Among them, c.34A>C, c.51G>C, c.84G>T, and c.196>G>T were located in the HBA1 gene. c.34A>C and c.51G>C showed normal hematology, and
A. SV in *HBA1/2*

![Integrative Genomics Viewer plots of selected samples.](image)

Fig. 5 The Integrative Genomics Viewer plots of selected samples. Integrative Genomics Viewer plots of rare HBA1/2 structural variations (SVs; **A**) and single-nucleotide variations (SNVs; **B**) identified by comprehensive analysis of thalassemia alleles. Both the normal and variant alleles are visible in each profile. Red boxed areas indicate the position of the thalassemia variants.

B. SNVs in *HBA1* and *HBB*

![Integrative Genomics Viewer plots of selected samples.](image)
abnormal hemoglobin was detected [13, 14]. Carriers with HBA1: c.84G>T, HBA1:c.19G>T, and HBA1:c.55G>C genotypes had a normal blood phenotype. When they were compounded with other deletion types, they could be mild or silent [15–17]. Carriers of these gene variants all showed abnormal hemoglobin, and no HbH phenotype was found in the compound Southeast Asian deletion. The -SPE1/HBA2:c.2delT, -SPE1/HBA2:c.2T>C, and -SPE1/HBA2:c.52G>T are located in the more functional HBA2 gene, causing a chain synthesis to be affected, showing that the non-deletion HbH disease was more serious than the deletion of HbH disease [18–20]. HBA2: c.91G>C has a normal phenotype, the main manifestation is abnormal hemoglobin, and HbA2 is reduced [21]. Qadah et al. [22] reported that the HBA2: c.–59C>T variant caused a significant reduction in the transcription level of HBA2 by 53.7%. Our study reported, for the first time, HBA2:c.–59C>T and HBA2: c.91G>C compound heterozygous cases. Hemoglobin electrophoresis detected abnormal hemoglobin peaks at 3.784 min and 4.349 min, and the routine blood phenotype was normal, due to the abnormal hemoglobin peak time being very close to HbA2, so it could be easily misdiagnosed as a significant increase in HbA2. There are related reports of HBA2:c.256G>C [23], but no related reports of HBA2:c.256G>A. The phenotype of this case was normal, the main manifestation was abnormal hemoglobin, and HbA2 was reduced.

Among the rare variants in the HBB gene, carriers with c.–100G>A, c.–136C>G, c.315–35G>C, c.380T>G, and c.–81A>C were manifested as silent or mild β-thalassemia. The normal hematological phenotype of some cases is consistent with related reports [24–27]. Carrier with c.91A>G was manifested as mild β-thalassemia, which is consistent with related reports [28]. Carriers with c.170G>A, c.431A>G, c.232C>T, c.341T>A, and c.431A>G s had normal hematological phenotypes. The content of HbA2 and Hbf was within the reference range, and abnormal hemoglobin was detected [29–32]. In the first report of c.341T>A:c.315–35G>C case, abnormal hemoglobin accounted for 93.5%, and HbA2 was not detected. Carrier with c.431A>G had the peak time of abnormal hemoglobin and HbA2 overlapped, and the content of each component could not be detected correctly. The blood routine examination of c.–248A>G carrier was normal, mainly manifested as a decrease in HbA2 content [33].The phenotype of c.316–45C>G, c.316–179A>C, and c.315+308delA combined with other types of α-thalassemia may be as silent or mild α-thalassemia.

CONCLUSIONS
In summary, in this region, the incidences of rare gene variants and abnormal hemoglobin cases were high. SMRT technology used in the genetic diagnosis of thalassemia had wide detection spectrum with improved efficiency and accuracy over conventional methods. The application of this technology has greatly enriched the thalassemia gene mutation bank and hemoglobin gene profiles in the region, and provided a reference for better prevention and control of thalassemia. However, the pathogenicity of many rare mutant genes is still unclear, and family analysis is required, which brings great challenges to clinical genetic counseling.

DATA AVAILABILITY
Individual participant data describing the results reported in this article, after de-identification (text, tables, figures, and appendices), together with the study protocol, will be available, beginning 9 months and ending 36 months following article publication. Data will be available for investigators whose proposed use of the data has been approved by an independent review committee identified for this purpose and for individual participant data meta-analysis.

REFERENCES
1. Weatherall DJ. The evolving spectrum of the epidemiology of thalassemia. Hematol Oncol Clin North Am. 2018;32:165–75.
2. Shang X, Peng Z, Ye Y, Asan, Zhang X, Chen Y, et al. Rapid targeted next-generation sequencing platform for molecular screening and clinical genotyping in subjects with hemoglobinopathies. ElifeMedicine. 2017;23:150–9.
3. Zebisch A, Schulze E, Grosso M, Lombardo B, Acierno G, Sill H, et al. Identification of a novel variant of epsilon-gamma-delta-beta-thalassemia highlights limitations of next generation sequencing. Am J Hematol. 2015;90:552–4.
4. Zhang H, Li C, Li J, Hou S, Chen D, Yan H, et al. Next-generation sequencing improves molecular epidemiological characterization of thalassemia in Chenzhou Region, P.R. China. J Clin Lab Anal. 2019;33:e22845.
5. Xu L, Mao A, Liu H, Gui B, Choy KW, Huang H, et al. Long-molecule sequencing: a new approach for identification of α-thalassemia trait and β-thalassemia carriers. J Mol Diagn. 2020;22:1087–95.
6. Liang Q, Gu W, Chen P, Li Y, Liu Y, Tian M, et al. A more universal approach to comprehensive analysis of thalassemia alleles (CATSA). J Mol Diagn. 2021;23:1195–204.
7. Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37:155–62.
8. Eng B, Walsh R, Walker L, Patterson M, Waye JS. Characterization of a rare alpha-globin gene deletion in a Chinese woman with Hb H disease. Hemoglobin 2005;29:297–92.
9. Luo S, Chen X, Zhong Q, Wang Q, Xu Z, Qin L, et al. Analysis of rare thalassemia caused by HS-40 regulatory site deletion. Hematology. 2020;25:286–91.
10. Wang W, Ma ES, Chan AY, Prior J, Erber WN, Chan LC, et al. Single-tube multiplex-PCR screen for anti-3.7 and anti-4.2 alpha-globin gene triplications. Clin Chem. 2003:49:1679–82.
11. Farashi S, Bayat N, Faramarzi Garous N, Ashki M, Montajabi Niat M, Vakili S, et al. Interaction of an α-globin gene triplet with β-globin gene mutations in Iranian patients with β-thalassemia intermedia. Hemoglobin. 2015;39:201–6.
12. Zhang M, Huang H, Chen M, Chen L, Wang Y, Lin N, et al. Variant analysis for patients from Fujian area with Hong Kong α type thalassemia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2019;36:297–300.
13. Wang WC, Carter H, Choitz HC, Hall RJ, Hine TK, DEJ, et al. Characterization of Hb volga [beta 27(B9)/A(a)–>Asp] and Hb J-Wenchang-Wuming [alpha 11(A9)/Lys–>Gln] in the population of the United States. Hemoglobin. 1993;17:67–71.
14. Lin M, Han JJ, Wang Q, Zhong L, Wang Y, Yang H, et al. Molecular epidemiological survey of hemoglobinopathies in the Wuji region of Jiangsu Province, eastern China. Hemoglobin 2013;37:454–66.
15. Henderson SJ, Timbs AT, McCarthy J, Gallienne AE, Proven M, Ruggles MJ, et al. Ten years of routine α- and β-globin gene sequencing in UK hemoglobinopathy referrals reveals 80 novel mutations. Hemoglobin 2016;40:75–84.
16. Como PF, Barber S, Sage RE, Trent RJ, Kronenberg H. Hemoglobin Woodville: alpha (2/64)A4 aspartic acid-tyrosine. Hemoglobin 1986;10:335–41.
17. Griffiths KD, Lang A, Lehmham H, Mann JR, Plowman D, Raine DN. Haemoglobin Handsworth alpha 18 (A16) glycine leads to arginine. FEBS Lett. 1977;73:95–3.
18. Viprakasit V, Chinchaw W, Glomglao W, Tanphaichitr VS. A rare association of alpha-thalassemia (-SEA) and an initiation codon mutation (ATG->A-G) of the alpha2 gene causes Hb H disease in Thai population. Hemoglobin 2005;29:235–40.
19. Pirastu M, Saglio G, Chang JC, Cao A, Kan YW. Initiation codon mutation as a cause of alpha thalassemia. J Biol Chem. 1984;259:12315–7.
20. Yang Y, Li DZ, He P, Hb Dapu (HBA2: c.52G>T): a novel non-deletional α-thalassemia mutation. Hemoglobin 2016;40:264–6.
21. Chang JG, Shih MC, Liu SC, Chen CM, Chan WL, Peng CT. Hb G-Chinese: a G->C substitution at codon 30 of the alpha2-globin gene creates a PstI cutting site. Hemoglobin 2002;26:95–7.
22. Qadah T, Finlayson J, Dennis M, Ghassemifar R. Molecular and cellular analysis of three novel alpha2-globin gene promoter mutations [HBA2: c.–59C>T], [HBA2: c.–81C>A], and [HBA2: c.–91G>A] reveal varying patterns of transcriptional and translational activities. Pathology 2014;46:46–52.
23. Cohen-Solal M, Manesse B, Thillet J, Rosa J. Haemoglobin G Norfolk alpha 85 (F6) Asp leads to Asn. Structural characterization by sequencer analysis and functional properties of a novel variant with high oxygen affinity. FEBS Lett. 1975;50:163–7.
24. Li DZ, Liao C, Xie XM, Zhou JY. A novel mutation of –50 (G->A) in the direct repeat element of the beta-globin gene identified in a patient with severe beta-thalassemia. Ann Hematol. 2009;88:1149–50.
25. Moassas F, Alabbiog A, Musat H. Description of a Rare β-Globin Gene Mutation: –86 (C>G) (HBB: c.–136C>G) Observed in a Syrian Family. Hemoglobin 2018;42:203–5.
26. Jiang NH, Liang S, Su C, Nechtman JF, Stoming T.AA mutation novel beta-thalassemia mutation (IVS-9-5 (G>C)) in a Chinese family from Guangxi Province, P.R. China. Hemoglobin. 1993;17:563–7.
27. Bardakdjian-Michau J, Fucharoen S, Delanoe-Garin J, Kister J, Lacombe C, Wini-
chagoon P, et al. Hemoglobin Dhonburi alpha 2 beta 2 (H4) Val-Gly: a new
unstable beta variant producing a beta-thalassemia intermedia phenotype in
association with beta zero-thalassemia. Am J Hematol. 1990;35:96–9.
28. Waye JS, Eng B, Patterson M, Chui DH, Fernandes BJ. Novel beta-thalassemia
mutation in patients of Jewish descent: [beta 30(B12)Arg->Gly or IVS-II(-2)(A-
->G)]. Hemoglobin. 1998;22:83–5.
29. Chang JG, Shih MC, Liu SC, Chen CM, Chan WL, Lee TP, et al. Hb G-Honolulu
[alpha30(B11)Glu->Gln (alpha2)], Hb J-Meinung [beta56(D7)Gly->Asp], and beta-
thalassemia [codons 41/42 (TCTT)] in a Taiwanese family. Hemoglobin. 2002;26:
325–8.
30. Zhao YL, Lin QF, He XW, Li YQ, Liang L. Hb Hezhou [beta64(E8)Gly
->Ser; HBB: c.193G>A]: a novel variant on the
beta-globin gene. Hemoglobin 2021;45:133–5.
31. Moo-Penn WF, Hine TK, Johnson MH, Jue DL, Piersma H, Therrell B.Jr. et al. Hb
Luxembourg [alpha24(B5)Tyr-His], Hb Maputo [beta 47(CD6)Asp-Tyr], and Hb
Fukuyama [beta 77(EF1)His-Tyr]. Hemoglobin. 1991;15:97–101.
32. Viprakasit V, Tachavanich K, Suwantol L, Pung-Amritt P, Chinchang W, Tan-
phaichitr VS. Allele related mutation specific-polymerase chain reaction for rapid
diagnosis of Hb New York (beta 113 (G15) Val->Glu, beta(CD113 GTG->GAG). J
Med Assoc Thai. 2002;85:S558–S563.
33. Tentori L, Carta SORCINI M, Buccella C. Hemoglobin Abruzzo: beta 143 (H 21) His
leads to Arg. Clin Chim Acta. 1972;38:258–62.

ACKNOWLEDGEMENTS
We are grateful to our current laboratory members for their helpful comments on the
manuscript.

AUTHOR CONTRIBUTIONS
LS and YT designed the study, performed experimental studies, and drafted the
manuscript. CX compiled the data, contributed to writing, and helped in drafting the
manuscript. ZQ contributed to revising the manuscript, MA and XR performed
experimental studies and data analysis, ZD, YT, and TN performed analysis and
provided valuable suggestions and clinical outputs. All authors read and approved
the final manuscript.

FUNDING
This work was supported by the Scientific Research Fund of the Health and
Family Planning Commission of Guangxi Zhuang Autonomous Region (grant no.
Z20170528), the Liuzhou Science Technology Innovation Capability and Conditions
Construction Project (grant no. 2018AF10501), the Key Research and Development
Program of Guangxi (grant no. Gutke AB18126056), the Key Research and

Development Program of Liuzhou (grant no. 2018BJ10301), and the Scientific
Research and Technology Development Project of Liuzhou (no. 2018DB20501).

Declarations

CONFLICT OF INTEREST
The authors declare no competing interests.

ETHICAL APPROVAL
This study was conducted in accordance with ethical principles.

INFORMED CONSENT
All participants provided written informed consent before participating in any study
procedures. Written informed consent has been obtained from the patients to
publish this paper.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Tizhen Yan.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article's Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article's Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021