CHROMATIC POLYNOMIALS OF SIMPLICIAL COMPLEXES

JESPER M. MØLLER AND GESCHE NORD

Abstract. In this note we consider s-chromatic polynomials of finite simplicial complexes. The s-chromatic polynomials of simplicial complexes are higher dimensional analogues of chromatic polynomials for graphs.

1. Introduction

Let \(K \) be a finite simplicial complex with vertex set \(V(K) \neq \emptyset \) and let \(r \geq 1 \) and \(s \geq 1 \) be two natural numbers. A map \(\text{col} : V(K) \to \{1, 2, \ldots, r\} \) is an \((r, s)\)-coloring of \(K \) if there are no monochrome \(s \)-simplices in \(K \) [5]. We write \(\chi^s(K, r) \) for the number of \((r, s)\)-colorings of \(K \).

Definition 1.1. The \(s \)-chromatic polynomial of \(K \) is the function \(\chi^s(K, r) \) of \(r \). The \(s \)-chromatic number of \(K \), \(\text{chr}^s(K) \), is the minimal \(r \geq 1 \) with \(\chi^s(K, r) > 0 \).

The theorem below shows that \(\chi^s(K, r) \) is indeed polynomial in \(r \) for fixed \(K \) and \(s \). (By notational convention, \([r]^i = r(r-1)\cdots(r-i+1) \) is the \(i \)th falling factorial in \(r \).)

Theorem 1.2. The \(s \)-chromatic polynomial of \(K \) is

\[
\chi^s(K, r) = \sum_{i=\text{chr}^s(K)}^{\vert V(K) \vert} S(K, i, s)[r]^i
\]

where \(S(K, i, s) \) is the number of partitions of \(V(K) \) into \(i \) blocks containing no \(s \)-simplex of \(K \).

For \(s = 1 \), an \((r, 1)\)-coloring of \(K \) is a usual graph coloring, \(\chi^1(K, r) \) is the usual chromatic polynomial, and \(\text{chr}^1(K) \) the usual chromatic number of the 1-skeleton of \(K \). In general, \(\chi^s(K, r) \) depends only on the \(s \)-skeleton of \(K \). Although the higher \(s \)-chromatic polynomials for simplicial complexes are analogues of 1-chromatic polynomials for graphs we shall shortly see that there are structural differences between the cases \(s = 1 \) and \(s > 1 \).

Figure 1 shows a triangulation MB of the Möbius band. To the left is a \((5, 1)\)- and to the right a \((2, 2)\)-coloring of MB. The chromatic polynomials and chromatic numbers \(^1\) of MB are

\[
\chi^s(MB, r) = \begin{cases}
 r^5 - 10r^4 + 35r^3 - 50r^2 + 24r & s = 1 \\
 r^5 - 5r^3 + 5r^2 - r & s = 2 \\
 r^5 & s \geq 3
\end{cases}
\]

\(^1\)The computations behind the examples of this note were carried out in the computer algebra system Magma [3].
1.1. Notation. We shall use the following notation throughout the paper:

- K: a finite simplicial complex
- K^s: the s-skeleton of K
- $F^s(K)$: the set of s-simplices of K
- $\#V$ or $|V|$: the number of elements in the finite set V
- $V(K)$: the vertex set $\bigcup K$ of K and $m(K) = |V(K)|$ is the number of vertices in K
- $D[V]$: the complete simplicial complex of all subsets of the finite set V
- $[m]$: the finite set $\{1, \ldots, m\}$ of cardinality m
- $[r]$: the falling factorial polynomial $[r]_i = i!(r)_i$ in r
- $P(a, b)$: the open interval (a, b) in the poset P

2. Three ways to the s-chromatic polynomial of a simplicial complex

In this section we present three different approaches to the s-chromatic polynomial $\chi^s(K, r)$:

- Theorem 2.5 via 1-chromatic polynomials of graphs;
- Theorem 2.25 via the Möbius function for the s-chromatic lattice;
- Theorem 1.2 via the simplicial s-Stirling numbers of the second kind.

2.1. Block-connected s-independent vertex partitions. Let $s \geq 1$ be a natural number.

Definition 2.1. Let $B \subset V(K)$ be a set of vertices of K. Then

- B is s-independent if B contains no s-simplex of K;
- B is connected if $K \cap D[B]$ is a connected simplicial complex;
- the connected components of B are the maximal connected subsets of B.

Definition 2.2. Let P be a partition of $V(K)$.

- The graph $G_0(P)$ of P is the simple graph whose vertices are the blocks of P and with two blocks connected by an edge if their union is connected;
- The block-connected refinement P_0 of P is the refinement whose blocks are the connected components of the blocks of P;
- P is block-connected if the blocks of P are connected (i.e., if $P = P_0$).

Lemma 2.3. Let P be a partition of $V(K)$. If two different blocks of the block-connected refinement P_0 are connected by an edge in the graph $G_0(P_0)$ of P then they lie in different blocks of P.

Proof. The connected components of the blocks of P are maximal with respect to connectedness.

Definition 2.4. $BCP^s(K)$ is the set of all block-connected s-independent partitions of $V(K)$.

Recall that $\chi^1(G_0(P), r)$ is the 1-chromatic polynomial of the simple graph $G_0(P)$ of the partition P.

Theorem 2.5. The s-chromatic polynomial for K is the sum

$$\chi^s(K, r) = \sum_{P \in BCP^s(K)} \chi^1(G_0(P), r)$$

of the 1-chromatic polynomials and the s-chromatic number of K is the minimum

$$\chi^r(K) = \min_{P \in BCP^s(K)} \chi^1(G_0(P))$$

of the 1-chromatic numbers for the graphs of all the block-connected s-independent partitions of $V(K)$.

Proof. Let $\text{col}: V(K) \to [r]$ be an (r, s)-coloring of K. The monochrome partition $P(\text{col})$ of $V(K)$ is the s-independent partition whose blocks are the nonempty monochrome sets of vertices $\{\text{col} = i\}$ for $i \in [r]$. The block-connected refinement $P(\text{col})_0$ of the monochrome partition is a block-connected s-independent partition of K. The original coloring col of K is also a coloring of the graph $G_0(P(\text{col})_0)$ of $P(\text{col})_0$ for, by Lemma 2.3, distinct vertices of 1-simplices of this graph have distinct colors. We have shown that any (r, s)-coloring col of K induces an $(r, 1)$-coloring col_0 of the graph $G_0(P(\text{col})_0)$ of the block-connected refinement of the monochrome partition.

Let $P \in BCP^s(K)$ be a block-connected s-independent partition of $V(K)$ and $\text{col}_0: P \to \{1, \ldots, r\}$ an $(r, 1)$-coloring of its graph $G_0(P)$. Then col_0 determines a map $\text{col}: V(K) \to [r]$ that is constant on the blocks of P. An s-simplex of K can not be monochrome under col as it intersects at least two different blocks of P connected by an edge of $G_0(P)$. Thus col is an (r, s)-coloring of K.

These two constructions are inverses of each other.
Remark 2.6 (The minimal block-connected s-independent partition). Let $C_0 = \{ \{v\} \mid v \in V(K) \}$ be the block-connected s-independent partition of $V(K)$ whose blocks are singletons. The graph $G_0(C_0) = K^1$ is the 1-skeleton of K. Thus the 1-chromatic polynomial of the 1-skeleton of K is always one of the polynomials in the sum of Theorem 2.5. If K is 1-dimensional, $BCP^1(K)$ consists only of the partition C_0 and Theorem 2.5 simply says that the 1-chromatic polynomial of a simplicial complex is the 1-chromatic polynomial of its 1-skeleton.

Example 2.7 (The block-connected 2-independent partitions for $D[3]$). The 2-simplex $D[3]$ has 4 block-connected 2-independent partitions C_0, $\{\{1\}, \{2, 3\}\}$, $\{\{2\}, \{1, 3\}\}$, and $\{\{3\}, \{1, 3\}\}$. The graph of C_0 is the complete graph K_3, the 1-skeleton of $D[3]$. The graphs of the other three partitions are all the complete graph K_2. Thus the 2-chromatic polynomial of $D[3]$ is $\chi^2(D[3], r) = \chi^1(K_3, r) + 3\chi^1(K_2, r) = \left| r \right|_3 + 3 \left| r \right|_2 = \left| r \right|_2(r + 1) = r^2 - r$ and the 2-chromatic number is $\text{chr}^2(D[3]) = 2$.

Example 2.8 (A $(2, 2)$-coloring and the graph of the block-connected refinement of its monochrome partition). The picture below illustrates a $(2, 2)$-coloring of a 9-vertex triangulation of the torus

and its corresponding graph. There are 6937 block-connected partitions of the vertex set, and 3 of them has the graph shown above. The 2-chromatic polynomial is $21[r]^2 + 742[r]_3 + 3747[r]_4 + 4908[r]_5 + 2295[r]_6 + 444[r]_7 + 36[r]_8 + [r]_9 = [r]_2(r^2 + r - 1)(r^2 + r - 1)(r^2 + r - 1)$ and the 2-chromatic number is 2.

Example 2.9 (The $(r, 2)$-colorings of a simplicial complex K). Let K be the pure 2-dimensional complex with facets $F^2(K) = \{\{1, 2, 3\}, \{2, 3, 4\}, \{4, 5, 6\}\}$.

The picture shows a $(2, 2)$-coloring of K and the corresponding $(2, 1)$-coloring of the associated graph, $G_0(P_0)$, the block connected refinement of the monochrome partition $P = \{\{1, 2, 5, 6\}, \{3, 4\}\}$. Table 1 shows the graphs $G_0(P)$ for all block connected partitions $P \in BCP^2(K)$. For each graph, the table records its 1-chromatic polynomial and its 1-chromatic number. The 2-chromatic polynomial of K is $\chi^2(K, 2) = 15[r]_2 + 73[r]_3 + 62[r]_4 + 15[r]_5 + [r]_6 = [r]_2(r - 1)(r + 1)(r^2 + r - 1)$ and the 2-chromatic number is $\text{chr}^2(K) = 2$.

Example 2.10 (The $(r, 2)$-colorings of the Möbius band). The set $BCP^2(MB)$ of block-connected 2-independent partitions of the triangulated Möbius band MB (Figure 1) has 36 elements. There are 5, 5, 15, 10, 1 partitions in $BCP^2(MB)$ realizing the partitions $[3, 2]$, $[3, 1, 1]$, $[2, 2, 1]$, $[2, 1, 1, 1]$, $[1, 1, 1, 1, 1]$ of the integer $|V(MB)| = 5$. All associated graphs are complete graphs. This yields the 2-chromatic polynomial $\chi^2(MB, r) = 5[r]_2 + 20[r]_3 + 10[r]_4 + [r]_5 = [r]_2(r^3 + r^2 - 4r + 1) = r^5 - 5r^3 + 5r^2 - r$ and the 2-chromatic number is $\text{chr}^2(MB) = 2$.

Remark 2.11 (The S-chromatic polynomial of K). Let S be a set of connected subcomplexes of K. A set $B \subset V(K)$ of vertices is S-independent if B is not a superset of any member of S. Let $BCP^S(K)$ be the set of
S-independent partitions of $V(K)$. An (r,S)-coloring is a map $V(K) \to \{1,\ldots,r\}$ such that $\#\text{col}(S) > 1$ for all $S \in S$. The number of (r,S)-colorings of K is

$$\chi^S(K,r) = \sum_{P \in \text{BCP}^S(K)} \chi^1(G_0(P),r)$$

as one sees by an obvious generalization of Theorem 2.5. An (r,s)-coloring of K is an (r,S)-coloring of K where $S = F^s(K)$ is the set of s-simplices.

2.2. The s-chromatic linear program. Read [9, §10] explains how to construct a linear program with minimal value equal to the s-chromatic number $\text{chr}^s(K)$ of K.

Definition 2.13. $M^s(K)$ is the set of all maximal s-independent subsets of $V(K)$.

Let A be the $(m(K) \times |M^s(K)|)$-matrix

$$A(v,M) = \begin{cases} 1 & v \in M \\ 0 & v \not\in M \end{cases}$$

recording which vertices $v \in V(K)$ belong to which maximal s-independent sets $M \in M^s(K)$). Now the s-chromatic number

$$\text{chr}^s(K) = \min\{ \sum_{M \in M^s(K)} x(M) \mid x: M^s(K) \to \{0,1\}, \forall v \in V(K): \sum_{M \in M^s(K)} A(v,M)x(M) \geq 1 \}$$

is the minimal value of the objective function $\sum_{M \in M^s(K)} x(M)$ in $|M^s(K)|$ variables $x: M^s(K) \to \{0,1\}$, taking values 0 or 1, and $m(K)$ constraints $\sum_{M \in M^s(K)} A(v,M)x(M) \geq 1$, $v \in V(K)$.

2.3. The s-chromatic lattice. Our approach here simply follows Rota’s classical method for computing chromatic polynomials from Möbius functions of lattices [10, §9]. We need some terminology in order to characterize the monochrome loci for colorings of K. Recall that $F^s(K)$ is the set of s-simplices of K.

Definition 2.12. Let $S \subset F^s(K)$ be a set of s-simplices of K.

- The equivalence relation \sim is the smallest equivalence relation in S such that $s_1 \cap s_2 \neq \emptyset \Rightarrow s_1 \sim s_2$ for all $s_1, s_2 \in S$;
- the connected components of S are the equivalence classes under \sim;
- $\pi_0(S)$ is the set of connected components of S;
- S is connected if it has at most one component;
- $V(S) = \bigcup S$ is the vertex set of S
- $\pi(S)$ is the partition of $V(K)$ whose blocks are the vertex sets of the connected components of S together with the singleton blocks $\{v\}$, $v \in V(K) - V(S)$, of vertices not in any simplex in S;
• S is closed if S contains any s-simplex in K contained in the vertex set of S, i.e.
\[\{ \sigma \in F^s(K) \mid \sigma \subset V(S) \} = S \]
• the closure of S is the smallest closed set of s-simplices containing S.

For instance, the empty set $S = \emptyset$ of 0-simplices is connected with 0 connected components. If $K = D[4]$, the set $\{\{1, 2\}, \{2, 4\}\}$ of 1-simplices is connected while $\{\{1, 2\}, \{3, 4\}\}$ has the two components $\{\{1, 2\}\}$ and $\{\{3, 4\}\}$.

A set of s-simplices is closed if and only if it equals its closure. For instance in $F^2(D[5])$, the set $\{\{1, 2, 3\}, \{3, 4, 5\}\}$ is not closed because its closure is the set of all 2-simplices in $D[5]$. The empty set of s-simplices, any set of just one s-simplex, and any set of disjoint s-simplices are closed.

In this picture the green set of 2-simplices is connected and not closed, closed and not connected, closed and connected, respectively.

The partition $\pi(S)$ has $|\pi(S)| = |\pi_0(S)| + m(K) - |V(S)|$ blocks.

Lemma 2.14. Let S be a set of s-simplices in K and S_0 a connected component of S. Then S_0 is closed if and only if
\[\{ \sigma \in F^s(K) \mid \sigma \subset V(S_0) \} \subset S \]

Proof. Since the condition is certainly necessary we only need to see that it is sufficient. Let σ be an s-simplex in K with all its vertices in $V(S_0)$. Then σ lies in S by assumption. But σ is equivalent to all elements of the equivalence class S_0. Thus $\sigma \in S_0$. \hfill \qed

Lemma 2.15. Let S and T be sets of s-simplices in K.

1. If S and T are closed, so is $S \cap T$.
2. If S and T have closed connected components, so does $S \cap T$.

Proof. (1) Let σ be an s-simplex of K and suppose that $\sigma \subset V(S \cap T)$. Then $\sigma \subset V(S)$ an $\sigma \subset V(T)$ so that $\sigma \in S$ and $\sigma \in T$ as S and T are closed.
(2) Let R be a connected component of $S \cap T$. Let S_0 be the connected component of S containing R and T_0 be the connected component of T containing R. Then $R \subset S_0 \cap T_0$. Suppose that $\sigma \in F^s(K)$ is an s-simplex with $\sigma \subset V(R)$. Then $\sigma \subset V(S_0 \cap T_0)$ so $\sigma \in S_0 \cap T_0$ by (1) as the connected components S_0 and T_0 are assumed to be closed. In particular, $\sigma \in S \cap T$. According to Lemma 2.14, the connected component R is closed. \hfill \qed

Definition 2.16. The s-chromatic lattice of K is the set $L^s(K)$ of all subsets of $F^s(K)$ with closed connected components. $L^s(K)$ is a partially ordered by set inclusion.

The set $L^s(K)$ contains the empty set \emptyset of s-simplices and the set $F^s(K)$ of all s-simplices. These two elements of $L^s(K)$ are distinct when K has dimension at least s.

Corollary 2.17. $L^s(K)$ is a finite lattice with $\hat{0} = \emptyset$, $\hat{1} = F^s(K)$, and meet $S \cap T = S \cap T$.

Proof. If $S, T \in L^s(K)$ then $S \cap T$ is also in $L^s(K)$ by Lemma 2.15 and this is clearly the greatest lower bound of S and T. It is now a standard result that $L^s(K)$ is a finite lattice [12, Proposition 3.3.1]. The join $S \vee T$ of $S, T \in L^s(K)$ is the intersection of all supersets $U \in L^s(K)$ of $S \cup T$. \hfill \qed

Example 2.18 (The s-chromatic lattice $L^s(D[m])$). The closed and connected elements of the s-chromatic lattice $L^s(D[m])$ of the complete simplex $D[m]$ on $m > s$ vertices are \emptyset and the $\binom{m}{s}$ sets $F^s(D[k])$ of all s-simplices in the subcomplexes $D[k]$ for $s < k \leq m$. The map $S \rightarrow \pi(S)$ is an isomorphism between the lattice $L^s(D[m])$ and the lattice, ordered by refinement, of all partitions of the set $[m]$ into blocks of size $> s$ or 1. The least element, $\hat{0} = (1) \cdots (m)$, is the partition with m blocks and the greatest element, $\hat{1} = (1 \cdots m)$, the partition with 1 block.
$L^s(D[m])$ is not a graded lattice [12, p 99] in general when $s \geq 2$. To see this, observe that the 2-chromatic lattices $L^2(D[3])$, $L^2(D[4])$, and $L^2(D[4])$ are graded but the lattice $L^2(D[6])$ is not graded as it contains two maximal chains
\[
\hat{0} = (1)(2)(3)(4)(5)(6) < (123)(4)(5)(6) < (1234)(5)(6) < (12345)(6) < (123456) = \hat{1}
\]
\[
\hat{0} = (1)(2)(3)(4)(5)(6) < (123)(4)(5)(6) < (123)(45)(6) < (123)(456) < (123456) = \hat{1}
\]
of unequal length. In contrast, the 1-chromatic lattice of any finite simplicial complex is always graded and even geometric [10, §9, Lemma 1].

Remark 2.19 (The Möbius function for the s-chromatic lattices \(L^s(D[m])\)). Our discussion of the Möbius function for the lattice \(L^s(D[m])\) echoes the exposition of the Möbius function for the geometric lattice \(L^1(D[m])\) of all partitions from [12, Example 3.10.4].

Let \(w: [m] \to \mathbb{N}\) be a function that to every element of \([m]\) associates a natural number, thought of as a weight function. We write \(w = 1^t \cdot 2^s \cdots r^m\), or something similar, for the weight function \(w\) defined on the set \([m]\) of cardinality \(m = \sum_i i_j\) and mapping \(i_j\) elements to \(j\) for \(1 \leq j \leq r\). The map \(w\) extends to a map, also called \(w\), defined on the set of all nonempty subsets \(X\) of \([m]\) given by \(w(X) = \sum x \in X w(x)\). Let \(L^s_m(w)\) be the lattice of all partitions of the set \([m]\) into blocks \(X\) that are singletons or have weight \(w(X) > s\). The non-singleton blocks of the meet \(\sigma \wedge \tau\) of two partitions \(\sigma, \tau \in L^s_m(w)\) are the subsets of weight \(> s\) of the form \(S \cap T\) where \(S\) is a block in \(\sigma\) and \(T\) a block in \(\tau\). Write \(\mu^s_m(w)\) for the Möbius function of \(L^s_m(w)\).

In particular, \(L^s_m(1^m)\) is a synonym for \(L^s(D[m])\) and we are primarily interested in the Möbius function \(\mu^s_m(1^m)\) of the uniform weight \(w = 1^m\). However, the computation of this Möbius function will involve the Möbius functions of other weights as well. We shall therefore discuss the Möbius functions \(\mu^s_m(w)\) for general weight functions \(w\).

Suppose that \(\sigma \in L^s_m(w)\), \(\sigma < \widehat{1}\), is a partition of \([m]\) into singleton blocks or blocks of weight \(> s\). Let \(w(\sigma)\) be the restriction of \(w\) to the set of blocks of \(\sigma\). Thus \(w(\sigma)(X) = \sum x \in X w(x)\) for any block \(X\) of \(\sigma\). Then the interval

\[
L^s_m(w) \supset [\sigma, \widehat{1}] = L^s_{|\sigma |}(w(\sigma))
\]

so that \(\mu^s_m(w(\sigma))(\widehat{1}) = \mu^s_{|\sigma |}(w(\sigma))(\widehat{0}, \widehat{1})\). More generally, suppose that \(\sigma < \tau\) for some \(\tau \in L^s_m(w)\). Assume that the partition \(\tau\) has blocks \(\tau_j\). Let \(\sigma_j\) be the set of those blocks of \(\sigma\) that intersect the block \(\tau_j\) of \(\tau\). Let \(w(\sigma_j)\) be the restriction of \(w(\sigma)\) to \(\sigma_j\). Then the interval

\[
L^s_m(w) \supset [\sigma, \tau] = \prod_j L^s_{|\sigma_j |}(w(\sigma_j))
\]

and therefore the value of the Möbius function on the pair \((\sigma, \tau)\)

\[
\mu^s_m(w)(\sigma, \tau) = \prod_j \mu^s_{|\sigma_j |}(w(\sigma_j))(\widehat{0}, \widehat{1})
\]

by the product theorem for Möbius functions [12, Proposition 3.8.2]. We conclude that the complete Möbius functions on all the lattices \(L^s_m(w)\), are actually determined by the values \(\mu^s_m(w)(\widehat{0}, \widehat{1})\) of these Möbius functions on just \((\widehat{0}, \widehat{1})\). See Equation (2.36) for more information about these Euler characteristics.

For the following it is convenient to name the elements of the domain \([m]\) of \(w\) so that the element \(m\) carries minimal weight. Assume that \(a_m = (1 \cdots m - 1)(m)\) is an element of \(L^s_m(w)\), ie that \(w(1) + \cdots + w(m - 1) > s\). We shall determine the set of lattice elements \(x\) with \(\chi \wedge a_m = \widehat{0}\). There is only one solution to this equation with \(x \leq a_m\) and that is \(x = \widehat{0}\). As the other solutions satisfy \(x \not< a_m\), they must have a block that contains \(m\) and at least one other element. It follows that the solutions \(x \not= \widehat{0}\) are all elements of the form

\[
x = (x_1 \cdots x_t m)(\cdot \cdots \cdot) \quad \text{with} \quad \begin{cases} w(x_1) > s - w(m) \\
 s \geq w(x_1) + \cdots + w(x_t) > s - w(m)
\end{cases} \quad t = 1
\]

where all blocks but the unique block containing \(m\) are singletons. There are \(t + 1\) elements in the block containing \(m\) where \(t\) is some number in the range \(1 \leq t \leq s\). (All the solutions \(x \not= \widehat{0}\) are atoms in the lattice \(L^s_m(w)\).) Since we are in a lattice, the Möbius function satisfies the equation [12, Corollary 3.9.3]

\[
\mu^s_m(w)(\widehat{0}, \widehat{1}) = - \sum_{x \wedge a_m = \widehat{0}} \mu^s_m(w)(x, \widehat{1})
\]

which translates to

\[
(2.20) \quad \mu^s_m(w)(\widehat{0}, \widehat{1}) = - \sum_{x \wedge a_m = \widehat{0}} \mu^s_{|x|}(w(x))(\widehat{0}, \widehat{1})
\]

\[- \sum_{1 \leq x_1 \leq m-1 \atop w(x_1) > s - w(m)} \mu^s_{m-1}(w(x_1 m) w(\cdot \cdots \cdot))(\widehat{0}, \widehat{1}) - \sum_{1 \leq t \leq s \atop s \geq w(x_1) + \cdots + w(x_t) > s - w(m)} \sum_{1 \leq x_1, \ldots, x_t \leq m-1} \mu^s_{m-t}(w(x_1 \cdots x_t m))(\cdot \cdots \cdot)(\widehat{0}, \widehat{1})
\]

This describes a recursive procedure for computing all values of the Möbius function on the weight lattices \(L^s_m(w)\).
As an illustration we compute $\mu_2^2(1^6)(\bar{0}, \bar{1})$. Using (2.20) twice gives
$$\mu_2^2(1^6)(\bar{0}, \bar{1}) = -10\mu_2^2(3111)(\bar{0}, \bar{1}) = 10(\mu_2^2(411)(\bar{0}, \bar{1}) + \mu_2^2(33)(\bar{0}, \bar{1}))$$
The lattices $L_3^2(411)$ and $L_2^2(33)$ have 4 and 2 elements, respectively, and they look like

```
  \[ \begin{array}{c}
    \mu(\bar{0}, \cdot) = 1 \\
    \mu(\bar{1}, \cdot) = -1 \\
  \end{array} \]
```

\[\begin{array}{c}
 \mu(\bar{0}, \cdot) = 1 \\
 \mu(\bar{1}, \cdot) = 1 \\
 \mu(\bar{0}, \cdot) = 1 \\
 \mu(\bar{1}, \cdot) = 1 \\
 \end{array} \]

so that $\mu_2^2(411)(\bar{0}, \bar{1}) = 1$ and $\mu_2^2(33)(\bar{0}, \bar{1}) = -1$. Therefore $\mu_2^2(1^6)(\bar{0}, \bar{1}) = 0$.

We remind the reader of the well-known fact that $\mu_m^s(w)(\bar{0}, \bar{1})$ is the reduced Euler characteristic of the open interval $L_m^s(w)(\bar{0}, \bar{1})$ between $\bar{0}$ and $\bar{1}$ in the lattice $L_m^s(w)$.

Proposition 2.21. [10, §6] [12, Proposition 3.8.5] Let $x < y$ be two elements in a finite poset. The value of the Möbius function on the pair (x, y) is the reduced Euler characteristic of the open interval (x, y).

Proof. Write μ be the Möbius function of P and E for Euler characteristic. The closed interval from x to y has Euler characteristic 1 since it has a smallest element. Thus

$$1 = E([x, y]) = \sum_{a, b \in [x, y]} \mu(a, b) = \sum_{a, b \in (x, y)} \mu(a, b) + \sum_{a \in [x, y]} \mu(a, y) + \sum_{b \in [x, y]} \mu(x, b) - \mu(x, y) = E((x, y)) + 0 + 0 - \mu(x, y) = E((x, y)) - \mu(x, y)$$
or $\mu(x, y) = \bar{E}((x, y))$. \square

For $1 \leq s \leq m + 1$ let $B(m, s)$ be the graded poset of nonempty subsets of $[m]$ of cardinality less than s.

Lemma 2.22. The reduced Euler characteristic of $B(m, s)$ is

$$\bar{E}(B(m, s)) = (-1)^s \binom{m - 1}{s - 1}, \quad 1 \leq s \leq m + 1$$

Proof. It is rather easy to get the recurrence relation

$$E(B(m, 2)) = m$$

$$E(B(m, s)) = E(B(m, s - 1)) + \binom{m}{s - 1} \sum_{j=1}^{s-1} (-1)^{s-1-j} \binom{s-1}{j}, \quad 2 < s < 2 + m$$

Since the sum of binomial coefficients has value $(-1)^s$, we get the recurrence relation

$$\bar{E}(B(m, 2)) = m - 1$$

$$\bar{E}(B(m, s)) = \bar{E}(B(m, s - 1)) + (-1)^s \binom{m}{s - 1}, \quad 2 < s < 2 + m$$

for the reduced Euler characteristic. The claim of the lemma follows immediately. \square

Example 2.23 (Reduced Euler characteristics of the s-chromatic lattice intervals $L_m^s(w)(\bar{0}, \bar{1})$). The reduced Euler characteristics $\mu_m^s(1^m)(\bar{0}, \bar{1}) = \bar{E}(L_m^s(1^m)(\bar{0}, \bar{1}))$, $m \geq s + 2$, for $s = 1, 2, \ldots, 8$ are

2. $-6, 24, -120, 720, -5040, 40320, -362880, 3628800, -39916800, 479001600, -6227020800, 87178291200, \ldots$

3. $-6, 0, 90, -630, 2520, 0, -113400, 1247400, -7484400, 681080400, -10216206000, 81729648000, \ldots$

4. $-10, 20, -70, 560, -4200, 25200, -138600, 924000, -8408400, 84084000, -798798000, 7399392000, \ldots$

5. $-15, 35, -70, 0, 2100, -23100, 173250, -1051050, 5255250, -15765750, -10510500, 285885600, \ldots$

6. $-21, 56, -126, 252, -924, 11088, -126126, 1093092, -76936864, 46143496, -254438184, 1492322832, \ldots$

7. $-28, 84, -210, 462, -924, 0, 42042, -630630, 6306300, -51459408, 351639288, -2118412296, 11406835440, \ldots$

8. $-36, 120, -330, 792, -1716, 3432, -12870, 205920, -3150576, 35706528, -322583976, 2460949920, \ldots$

9. $-45, 165, -495, 1287, -3003, 6435, -12870, 0, 787644, -14965236, 191222460, -1920538620, \ldots$
The first sequence, $\mu_m^1(1^m)(\emptyset, 1)$, $m \geq 2$, is the sequence $(-1)^{m-1}(m-1)!$ of reduced Euler characteristics of the lattice of partitions of $[m]$ [12, Example 3.10.4]. The second sequence, $\mu_m^2(1^m)(\emptyset, 1)$, $m \geq 3$, seems to coincide with first terms of the sequence A009014 from The On-Line Encyclopedia of Integer Sequences (OES). The remaining 6 sequences apparently do not match any sequences of the OES.

The first s terms of these sequences are signed binomial coefficients. This is because the interval $(\emptyset, 1)$ in $L^s(D[m])$ is isomorphic to the opposite of the poset $B(m, m-s)$ when $s+2 \leq m \leq 2s+1$. Thus the reduced Euler characteristic

$$\mu_m^s(1^m)(\emptyset, 1) = \hat{E}(B(m, m-s)) = (-1)^{m-s} \binom{m-1}{s}, \quad s + 2 \leq m \leq 2s+1,$$

according to Lemma 2.22.

The first terms of the sequence $\mu_m^2(3^11^{m-1})(\emptyset, 1)$, $m \geq 3$, of reduced Euler characteristics of the weighted lattice intervals $L_m^2(3^11^{m-1})(\emptyset, 1)$,

$$1, 0, -6, 30, -90, 0, 2520, -22680, 113400, 0, -7484400, 97297200, -681080400, 0, 81729648000, -1389404016000, \ldots$$

 seem to coincide up to sign with first terms of the sequence A009775 from OES. The sequence of reduced Euler characteristics $\mu_m^2(3^21^{m-2})(\emptyset, 1)$, $m \geq 3$, of the lattice interval $L_m^2(3^21^{m-2})(\emptyset, 1)$,

$$2, -4, 6, 120, 720, -2520, -2520, 136080, -1360800, 7484400, 7484400, -778377600, 10897286400, -81729648000, 0, 1389404016000, \ldots$$

 apparently does not match any sequence in the OES.

Define the s-monochrome set of a map col: $V(K) \to [r] = \{1, \ldots, r\}$ to be the set

$$M^s(\text{col}) = \{\sigma \in F^s(K) \mid |\text{col}(\sigma)| = 1\}$$

of all monochrome s-simplices in K. The map col is an (r, s)-coloring of K if and only if $M^s(\text{col}) = \emptyset$.

Lemma 2.24. The s-monochrome set $M^s(\text{col})$ of any map col: $V(K) \to [r]$ is an element of the s-chromatic lattice $L^s(K)$.

Proof. Let S be a connected component of $M^s(\text{col})$. Since S is connected, all vertices in S have the same color. Let $\sigma \in F^s(K)$ be an s-simplex of K such that $\sigma \in V(S)$. The σ is monochrome: $\sigma \in M^s(\text{col})$. By Lemma 2.14, S is closed. \qed

Theorem 2.25. The number of (r, s)-colorings of K is

$$\chi^s(K, r) = \sum_{T \in L^s(K)} \mu(\emptyset, T)^{|\pi(T)|}$$

where μ the Möbius function for the s-chromatic lattice $L^s(K)$.

Proof. For any $B \in L^s(K)$, let $\chi(K, r, s, B)$ be the number of maps col: $V(K) \to [r]$ with $M^s(\text{col}) = B$. We want to determine $\chi(K, r, s, \emptyset) = \chi^s(s, K)$. For any $A \in L^s(K)$,

$$r^{|\pi(A)|} = \sum_{A \leq B} \chi(K, r, s, B)$$

because there are $r^{|\pi(A)|} r^{|m(K)|-|V(A)|} = r^{|\pi(A)|}$ maps col: $V(K) \to [r]$ with $A \leq M^s(\text{col})$. Equivalently,

$$\sum_{A \leq B} \mu(A, B)^{r^{|\pi(B)|}} = \chi(K, r, s, A)$$

by Möbius inversion [12, Proposition 3.7.1]. The statement of the theorem is the particular case of this formula where $A = \emptyset$. \qed

The defining rules for the Möbius function of the poset $L^s(K)$ [12, 3.7]

- $\mu(S, S) = 1$ for all $S \in L^s(K)$
- $\sum_{R \leq S \leq T} \mu(R, S) = 0$ when $R \lessdot T$
- $\mu(R, S) = 0$ when $R \lessdot S$

imply that $\mu(\emptyset, 0) = 1$ and $\mu(\emptyset, |\sigma|) = (-1)^{|\sigma|}$ for every s-simplex $\sigma \in F^s(K)$.

Corollary 2.26. The highest degree terms of the s-chromatic polynomial are

$$\chi^s(K, r) = r^{|m(K)|} - f^s_s(K) r^{|m(K)|-s} + \ldots$$

Thus the s-chromatic polynomial determines $f_0(K)$ and $f_s(K)$.

Proof. The s-chromatic polynomial is
\[\chi_s(K, r) = \mu(\hat{0}, \hat{0})r^{f_0(K)} + \sum_{\sigma \in F^s(K)} \mu(\hat{0}, \{\sigma\})r^{f_0(K) - s} + \ldots \]
where $\mu(\hat{0}, \hat{0}) = 1$ and $\mu(\hat{0}, \{\sigma\}) = -1$ for all s-simplices σ of K. \qed

Example 2.27. Consider the 2-dimensional complex K from Example 2.9. The 2-chromatic lattice $L^2(K)$ of K

\[
\begin{array}{c}
\hat{1} \\
\{1, 2, 3\} & \{1, 2, 3\} & \{2, 3, 4\} & \{4, 5, 6\} & \{3, 5, 6\}
\end{array}
\]

consists of all subsets of $F^2(K)$. The 2-chromatic polynomial is
\[\chi^2(K, r) = r^6 - r^4 - r^4 + r^3 + r^2 - r = r^6 - 3r^4 + r^3 + 2r^2 - r \]
K has $\chi^2(K, 2) = 30 (2, 2)$-colorings and $\chi^2(K, 3) = 528 (3, 2)$-colorings.

Example 2.28. The triangulation MB of the Möbius band with f-vector $f(MB) = (5, 10, 5)$ shown in Figure 1 has the following (reduced) 2-chromatic lattice $L^2(MB) - \{\hat{0}, \hat{1}\}$

\[
\begin{array}{c}
\{1, 3, 5\} & \{1, 3, 5\} & \{2, 4, 5\} & \{1, 2, 4\} & \{2, 4, 5\} \\
\{2, 3, 5\} & \{1, 3, 4\} & \{2, 3, 5\} & \{1, 3, 4\} & \{1, 2, 4\}
\end{array}
\]

\[
\begin{array}{c}
\{1, 3, 5\} & \{2, 3, 5\} & \{1, 3, 4\} & \{2, 4, 5\} & \{1, 2, 4\}
\end{array}
\]

and 2-chromatic polynomial
\[\chi^2(MB, r) = r^5 - 5r^3 + 5r^2 - r \]
The lattice $L^2(MB)$ is graded but it is still not semi-modular [12, Proposition 3.3.2]: The meet and join of $a = \{\{2, 3, 5\}\}$ and $b = \{\{1, 3, 4\}\}$ are $a \wedge b = \hat{0}$ and $a \vee b = \hat{1}$. Thus a and b cover $a \wedge b$ but $a \vee b$ covers neither a nor b.

Example 2.29. Let MT be Möbius’s minimal triangulation of the torus with f-vector $f(MT) = (7, 21, 14)$ and P_2 the triangulation of the projective plane with f-vector $f(P_2) = (1, 6, 15, 10)$ shown in Figure 2 (decorated with $(3, 2)$-colorings). The chromatic polynomials of these two simplicial complexes are
\[
\begin{align*}
\chi^1(MT, r) &= [r]_7, \\
\chi^2(MT, r) &= r^7 - 14r^5 + 21r^4 + 7r^3 - 21r^2 + 6r \\
\chi^1(P_2, r) &= [r]_6, \\
\chi^2(P_2, r) &= r^6 - 10r^4 + 15r^3 - 6r^2
\end{align*}
\]
In both cases, the 1-skeleton is the complete graph on the vertex set. The chromatic numbers are $\text{chr}^1(MT) = 7$, $\text{chr}^1(P_2) = 6$, and $\text{chr}^2(MT) = 3 = \text{chr}^2(P_2)$.

The chromatic polynomials of simple graphs (the 1-chromatic polynomials of simplicial complexes) are known to have these properties:
- The coefficients are sign-alternating [10, §7, Corollary]
- The coefficients are log-concave (Definition 2.43) in absolute value [7]
- There are no negative roots and no roots between 0 and 1 [14]
In contrast, the coefficients of the 2-chromatic polynomial
\[\chi^2(\text{MT}, r) = r^7 - 14r^5 + 21r^4 + 7r^3 - 21r^2 + 6r = [r]_3(r + 1)(r^3 + 2r^2 - 9r + 3) \]
are not sign-alternating, not log-concave in absolute value, and the polynomial has a negative root and a root between 0 and 1.

2.4. The s-chromatic polynomial in falling factorial form. Theorem 1.2 provides an interpretation of the coefficients of the falling factorial $[r]_s$ in the s-chromatic polynomial of the simplicial complex K.

Definition 2.30. $S(K, r, s)$ is the number of partitions of $V(K)$ into r s-independent blocks.

We think of $S(K, r, s)$ as an s-Stirling number of the second kind for the simplicial complex K. If $s > \dim(K)$, then there are no s-simplices in K and all partitions of $V(K)$ are s-independent, so that $S(K, r, s)$ is the Stirling number of the second kind $S(m(K), r)$ [12, p 33]. We now explain the general relation between these simplicial Stirling numbers $S(K, r, s)$ and the usual Stirling numbers of the second kind.

Define the s-monochrome set of a partition P of $V(K)$ to be the set
\[M^s(P) = \{ \sigma \in F^s(K) \mid \sigma \text{ is contained in a block of } P \} \]
of all s-simplices entirely contained in one of the blocks of P. The set $M^s(P)$ is an element of the s-chromatic lattice $L^s(K)$ by Lemma 2.24.

Theorem 2.31. The number of partitions of $V(K)$ into r s-independent blocks is
\[S(K, r, s) = \sum_{T \in L^s(K)} \mu(\emptyset, T)S(|\pi(T)|, r) \]
where μ the Möbius function for the s-chromatic lattice $L^s(K)$.

Proof. For any $B \in L^s(K)$, let $S(K, r, s, B)$ be the number of partitions P of $V(K)$ into r blocks with monochrome set $M^s(P) = B$. We want to determine $S(K, r, s, \emptyset) = S(K, r, s)$. For any $A \in L^s(K)$,
\[S(|\pi(A)|, r) = \sum_{A \leq B} S(K, r, s, B) \]
because there are $S(|\pi(A)|, r)$ partitions P of $V(K)$ into r blocks with $A \leq M^s(P)$. Equivalently,
\[\sum_{A \leq B} \mu(A, B)S(|\pi(B)|, r) = S(K, r, s, A) \]
by Möbius inversion [12, Proposition 3.7.1]. The statement of the theorem is the particular case of this formula where $A = \emptyset$. \qed

Proof of Theorem 1.2. We simply follow the proof of the similar statement for chromatic polynomials for graphs [9, Theorem 15]. When $r \geq i$ we can get an (r, s)-coloring out of one of the $S(K, i, s)$ partitions of $V(K)$ into i s-independent blocks by choosing i out of the r colors and assigning them to the i blocks. There are \(\binom{r}{i} \) ways of
choosing the \(i\) out of \(r\) colors and \(i!\) ways of coloring \(i\) blocks in \(i\) colors. The number of \((r, s)\)-colorings of \(K\) in exactly \(i\) colors is thus

\[
S(K, i, s) \binom{r}{i} i! = S(K, i, s)[r]_i
\]

so that

\[
\chi^s(K, r) = \sum_{i=1}^{m(K)} S(K, i, s)[r]_i
\]

is the total number of \((r, s)\)-colorings of \(K\).

\[
\square
\]

Corollary 2.32. The reduced Euler characteristic of the open interval \((\hat{0}, \hat{1})\) in \(s\)-chromatic lattice \(L^s(K)\) is

\[
\mu(L^s(K))(\hat{0}, \hat{1}) = \sum_{i=\text{chr}^s(K)}^{m(K)} (-1)^{i-1}(i-1)!S(K, i, s)
\]

Proof. Equate the terms of degree 1 of the two expressions

\[
\sum_{T \in L^s(K)} \mu(\hat{0}, T)\pi(|\pi(T)|) = \sum_{i=\text{chr}^s(K)}^{m(K)} S(K, i, s)[r]_i
\]

from Theorem 2.25 and Theorem 1.2 for the \(s\)-chromatic polynomial of \(K\).

\[
\square
\]

We observe that

\[
\sum_i S(K, i, s)[r]_i = \sum_i \mu(\hat{0}, T)S(|\pi(T)|, i)[r]_i = \sum_i \mu(\hat{0}, T)S(|\pi(T)|, i)[r]_i = \sum_i \mu(\hat{0}, T)r^{|\pi(T)|}
\]

so that Theorem 2.31 implies Theorem 1.2.

The \(s\)-chromatic number of \(K\) is immediately visible with the \(s\)-chromatic polynomial in factorial form because

\[
\text{chr}^s(K) = \min\{i \mid S(K, i, s) \neq 0\}
\]

is the lowest degree of the nonzero terms. The positive integer sequence

\[
\chi^s(K, \text{chr}^s(K)), \ldots, \chi^s(K, m(K)) = 1
\]

has no internal zeros. (If there is a partition of \(V(K)\) into \(r\) blocks not containing any \(s\)-simplex of \(K\) and \(r < m(K)\), then split one of the blocks with more than one vertex into two sub-blocks to get a partition of \(V(K)\) into \(r + 1\) blocks containing no \(s\)-simplices of \(K\).)

The simplicial Stirling numbers satisfy the recurrence relations

\[
S(K, r, s) = \sum_{\emptyset \subseteq U \subseteq V(K) \setminus \{v_0\} \atop V(K) - U \text{ s-independent}} S(K \cap D[U], r - 1, s), \quad S(K, 1, s) = \begin{cases} 1 & s > \text{dim}(K) \geq 0 \\ 0 & \text{otherwise} \end{cases}
\]

To see this, fix a vertex \(v_0\) of \(K\). Let \(P\) be partition of \(V(K)\) into \(r\) \(s\)-independent subsets. Let \(U_0\) be the block containing \(v_0\). The other blocks in \(P\) form a partition \(P_0\) of \(K \cap D[V(K) - U_0]\) into \(r - 1\) \(s\)-independent subsets. The map \(P \leftrightarrow (P_0, U_0)\) is a bijection.

The familiar recurrence relation \(S(m, r) = S(m - 1, r - 1) + rS(m - 1, r)\) for Stirling numbers of the second kind does not readily apply to simplicial Stirling numbers. The closest analogue may be

\[
S(K, r, s) = S(K \cap D[V(K) - \{v_0\}], r - 1, s) + \sum_{P \in S(K \cap D[V(K) - \{v_0\}], r, s)} |\{B \in P \mid B \cup \{v_0\} \text{ is s-independent in } K\}|
\]

where \(v_0\) is a vertex of \(K\) and \(S(K \cap D[V(K) - \{v_0\}], r, s)\) is the set of partitions \(P\) of the vertex set of \(K \cap D[V(K) - \{v_0\}]\) into \(r\) \(s\)-independent subsets.

Proposition 2.34. Let \(K\) be a subcomplex of \(L\) and assume that \(V(K) = V(L)\).

1. \(S(K, r, s) \geq S(L, r, s)\) for all \(r\).
2. If \(S(K, r, s) = S(L, r, s)\) for some \(r\) with \(\frac{1}{3}(|V| - 1) \leq r \leq |V| - s\), then \(K^s = L^s\).
shows that \(S(1) \) can be used to compute these numbers. Table 2, column \(\sigma \), provides a means to compute these numbers. Table 2. Chromatic tables for complete simplices \(D[m] \) for \(m = 2, \ldots, 7 \)

Proof. (1) Let \(V \) be the vertex set of \(K \) and \(L \). Write \(S(K, r, s) \) and \(S(L, r, s) \) for the set of partitions of \(V \) into \(r \) blocks containing no \(s \)-simplex of \(K \) or \(L \), respectively. Then \(S(L, r, s) \subseteq S(K, r, s) \) for all \(r \) and \(s \). Thus \(S(L, r, s) \subseteq S(K, r, s) \).

(2) Suppose that \(\sigma \in F^s(L) - F^s(K) \) is an \(s \)-simplex of \(L \) that is not an \(s \)-simplex of \(K \). Any partition of the form

\[
\emptyset \subseteq \tau, \quad \tau \in S(D[V - \sigma], r - 1, s),
\]

in \(S(K, r, s) \) - \(S(L, r, s) \). The set \(S(D[V - \sigma], r - 1, s) \) is nonempty when

\[
\text{chr}^s(D[V - \sigma]) = \left\lfloor \frac{|V| - s - 1}{s} \right\rfloor \leq r - 1 \leq |V| - s - 1
\]

and thus \(S(K, r, s) \) is strictly greater than \(S(L, r, s) \) when \(\frac{|V| - 1}{s} \leq r \leq |V| - s \).

Remark 2.35 \((S(K, r, s) \) for the complete simplex \(K = D[m] \)). For any finite set \(M \), let \(S(M, r, s) \) stand for \(S(D[M], r, s) \) (Definition 2.30), the number of partitions of the set \(M \) into \(r \) blocks containing at most \(s \) elements. Let us even write \(S(m, r, s) \) in case \(M = [m] \), \(m \geq 1, r, s \geq 0 \). Clearly, \(S(m, r, s) \) is nonzero only when \(m/s \leq r \leq m \). Also, \(S(m, r, s) = S(m, r) \) when \(r \) is among the \(s \) numbers \(m - s + 1, \ldots, m \). The recurrence relation

\[
S(m, r, s) = \sum_{j=m-s}^{m-1} \binom{m-1}{j} S(j, r - 1, s)
\]

can be used to compute these numbers. Table 2 shows \(S(m, r, s) \) for small \(m \); the number \(S(m, r, s) \) is in row \(s \) and column \(r \) in the chromatic table (Definition 2.39) for \(D[m] \). All the red numbers are usual Stirling numbers of the second kind.

According to Theorem 1.1, the numbers \(S(m, r, s) \) determine the \(s \)-chromatic polynomial in falling factorial form of the complete simplex on \(m \) vertices

\[
\chi^s(D[m], r) = \sum_{i=[m/s]}^{m} S(m, i, s)[r]_i
\]

and, according to Corollary 2.32, they also determine the reduced Euler characteristic

\[
\mu^s_m(1^m)(\hat{0}, \hat{1}) = \sum_{i=[m/s]}^{m} (-1)^{i-1}(i-1)!S(m, i, s)
\]

of the \(s \)-chromatic lattice \(L^s(D[m]) \).

More generally, if \(w: M \to \mathbb{N} \) is a function on \(M \) with natural numbers as values, let \(S(M, w, r, s) \) be the number of partitions of \(M \) into admissible blocks, where we declare a block admissible if it is a singleton or it has weight at most \(s \). (Then \(S(m, r, s) = S([m], 1^m, r, s) \) occur when \(M = [m] \) and \(w = 1^m \) places weight 1 on all elements.) Any such partition is a partition of \(M \) into blocks of weight at most \(s \), and therefore \(S(M, w, r, s) \leq S(#M, r, s) \).

In particular, \(S(M, w, r, s) \) is nonzero only when \(#M/s \leq r \leq #M \). The recurrence relation

\[
S(M, w, r, s) = \sum_{\emptyset \neq J \subseteq M - \{\text{max}(M)\}} S(J, w, j, r - 1, s)
\]

provides a means to compute these numbers.
The weighted version of Equation (2.33) for $K = D[m]$,\
\[
\sum_{\sigma \in L^*_m(w)} \mu^m_{\sigma}(w)(\hat{0}, \sigma)^{[\sigma]} = \sum_{i=[m/s]}^{m} S([m], w, i, s)[r]i,
\]
implies, by equating coefficients of first degree terms, the expression\
\[
\mu^m_{\sigma}(w)(\hat{0}, \hat{1}) = \sum_{i=[m/s]}^{m} (-1)^{i-1}(i-1)!S([m], w, i, s)
\]
for the Euler characteristic of the weighted lattice $L^*_m(w)$ from Remark 2.19.

Because any simplicial complex K is a subcomplex of the complete simplex $D[m(K)]$ on its vertex set, we have\
\[
S(m(K), r) \geq S(K, r, s) \geq S(m(K), r, s), \quad 1 \leq r \leq m(K)
\]
Moreover, these inequalities are equalities for the s highest values $m(K) - s + 1, \ldots, m(K)$ of r. Thus the s terms of highest falling factorial degree in the s-chromatic polynomial of K
\[
\chi^s(K, r) = \sum_{i=0}^{m(K)-s} S(K, i, s)[r]i + \sum_{i=m(K)-s+1}^{m(K)} S(m(K), i)[r]i,
\]
are given by the s Stirling numbers $S(m(K), m(K)-s+1), \ldots, S(m(K), m(K))$ of the second kind. These coefficients depend only on the size of the vertex set of K. We shall next show that the coefficient number $s + 1$ counted from above, $S(K, m(K) - s, s)$, informs about the number $f_s(K)$ of s-simplices in K.

Proposition 2.38. $S(K, m(K) - s, s) = S(m(K), m(K) - s) - f_s(K)$. If $S(K, m(K) - s, s) = S(m(K), m(K) - s)$ then $K^s = D[m(K)]^s$.

Proof. The only partitions of the $S(m, m-s)$ partitions of $V(K)$ into $m-s$ blocks that are not s-independent are those consisting of one s-simplex of K together with singleton blocks. If $S(K, m(K) - s, s) = S(D[m(K)], m(K) - s, s)$ then $f_s(K) = f_s(D[m(K)])$ so $K^s = D[m(K)]^s$. (This is a special case of Proposition 2.34.(2).) \hfill \square

Definition 2.39. The chromatic table, $\chi(K)$, of K is the $(\text{dim}(K) \times m(K))$-table with $S(K, r, s)$ in row s and column r.

This means that row s in the chromatic table lists the coefficients of the s-chromatic polynomial. The chromatic table of a 3-dimensional simplicial complex K, for instance, looks like this

\[
\begin{array}{cccccccc}
 & r = 1 & r = 2 & \cdots & r = m-3 & r = m-2 & r = m-1 & r = m \\
S(K, 1, 1) & S(K, 1, 1) & S(K, 2, 1) & \cdots & S(K, m-3, 1) & S(K, m-2, 1) & S(m, m-1) - f_1 & S(m, m) = 1 \\
S(K, 2, 2) & S(K, 1, 2) & S(K, 2, 2) & \cdots & S(K, m-3, 2) & S(m, m-2) - f_2 & S(m, m-1) & S(m, m) = 1 \\
S(K, 3, 3) & S(K, 1, 3) & S(K, 2, 3) & \cdots & S(m, m-3) - f_3 & S(m, m-2) & S(m, m-1) & S(m, m) = 1 \\
\end{array}
\]

where the red entries in row s are Stirling numbers of the second kind $S(m, r)$ for $m-s+1 \leq r \leq m$, and the blue entry in row s is $S(m(K), m(K) - s) - f_s(K)$.

Example 2.40. The chromatic tables of the 2-dimensional simplicial complexes from Examples 2.9, 2.28, and 2.29 are

\[
\chi(K) = \begin{pmatrix}
0 & 0 & 2 & 10 & 7 & 1 \\
0 & 15 & 73 & 62 & 15 & 1 \\
\end{pmatrix} \quad \chi(\text{MB}) = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 5 & 20 & 10 & 1 \\
\end{pmatrix}
\]

\[
\chi(\text{MT}) = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 84 & 231 & 126 & 21 & 1 \\
\end{pmatrix} \quad \chi(\text{P2}) = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 45 & 55 & 15 & 1 \\
\end{pmatrix}
\]

The red entries in column r are Stirling numbers $S(m, r)$ and they are independent of the row index. The blue entry in row s and column $m-s$, which equals $S(m-s, s) - f_s(K)$, detects if K has maximal s-skeleton by Proposition 3.

Example 2.41. Let $K = \text{AS3}$ be Altshuler’s peculiar triangulation of the 3-sphere with f-vector $f = (10, 45, 70, 35)$ [1]. The 1-chromatic polynomial is $\chi^1(\text{AS3}, r) = [r]_{10}$ as K^1 is the complete graph on 10 vertices. The chromatic table is

\[
\chi(\text{AS3}) = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 26 & 4320 & 25915 & 38550 & 22152 & 5845 & 750 & 45 & 1 \\
\end{pmatrix}
\]

The blue numbers determine the f-vector

\[
f(\text{AS3}) = (10, S(10, 9) - \chi(\text{AS3}), S(10, 8) - \chi(\text{AS3}), S(10, 7) - \chi(\text{AS3}))
\]
The simplicial Stirling numbers for $S^3_{17,74}$

The row numbers of the first nonzero term in each row tell us that $\text{chr}^1(AS3) = 10$, $\text{chr}^2(AS3) = 4$, and $\text{chr}^3(AS3) = 2$.

Example 2.42. The nonconstructible, nonshellable 3-sphere $S^3_{17,74}$, $f = (17, 91, 148, 74)$, found by Lutz [8], has

as its chromatic table. Figure 3 shows a semi-logarithmic plot of the simplicial Stirling numbers $S(S^3_{17,74}, r, s)$. The triangulation Σ^3_{16}, $f = (16, 106, 180, 90)$, of the Poincaré homology 3-sphere constructed by Björner and Lutz [2, Theorem 5] has

as its chromatic table.

Observe that all the above chromatic tables have strictly log-concave rows.

Definition 2.43. [11] A finite sequence a_1, a_2, \ldots, a_N of $N \geq 3$ nonnegative integers is strictly log-concave if $a_i a_{i+1} < a_i^2$ for $1 < i < N$ (and log-concave if $a_i a_{i+1} \leq a_i^2$).
It has been conjectured that the sequence of coefficients of the 1-chromatic polynomial of a simple graph in falling factorial form, \(r \to S(K, 1, r) \), \(\text{chr}^1(K) \leq r \leq m(K) \), is log-concave [4, Conjecture 3.11]. More generally, one may ask

Question 2.44. Is the finite sequence of simplicial Stirling numbers

\[
\begin{align*}
 r & \to S(K, r, s), \\
 \text{chr}^s(K) & \leq r \leq m(K),
\end{align*}
\]

log-concave for fixed \(K \) and \(s \)?

This seems to be the right question to ask as it may be true for all the chromatic polynomials of a simplicial complex and we have seen that the absolute value of the coefficients of the \(s \)-chromatic polynomial are simply not log-concave for \(s > 1 \).

Note that the Stirling numbers of the second kind, which are upper bounds for the simplicial Stirling numbers \(S(K, r, s) \) by the inequalities (2.37), are log-concave in \(r \) [11, Corollary 2].

We shall now examine Question 2.44 on two spherical boundary complexes of cyclic \(n \)-polytopes.

Definition 2.45. \(\partial \text{CP}(m, n) \), \(m > n \), is the \((n − 1)\)-dimensional simplicial complex on the ordered set \([m]\) with the following facets: An \(n \)-subset \(\sigma \) of \([m]\) is a facet if and only if between any two elements of \([m] − \sigma \) there is an even number of vertices in \(\sigma \).

By Gale’s Evenness Theorem [6], the simplicial complex \(\partial \text{CP}(m, n) \) triangulates the boundary of the cyclic \(n \)-polytope on \(m \) vertices. Thus \(\partial \text{CP}(m, n) \) is a simplicial \((n − 1)\)-sphere on \(m \) vertices and it is \([n/2]\)-neighborly in the sense that \(\partial \text{CP}(m, n) \) has the same \(s \)-skeleton as the full simplex on its vertex set when \(s < [n/2] \).

Example 2.46 (Cyclic polytopes with log-concave simplicial Stirling numbers of the second kind). Let \(\partial \text{CP}(m, n) \) be the triangulated boundary of the cyclic polytope on \(m \) vertices in \(\mathbb{R}^n \). The simplicial complex \(\partial \text{CP}(m, n) \) is an \(m \)-vertex triangulation of \(S^{n−1} \). The chromatic tables of the simplicial 3-spheres \(\partial \text{CP}(m, 4) \) on \(m = 6, 7, 8, 9, 10 \) vertices are

\[
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 21 & 47 & 15 & 1 \\
0 & 16 & 81 & 65 & 15 & 1 \\
0 & 94 & 1062 & 2523 & 1719 & 408 & 36 & 1 \\
0 & 36 & 1729 & 6471 & 6591 & 2619 & 462 & 36 & 1 \\
0 & 46 & 4445 & 25960 & 38550 & 22152 & 4225 & 680 & 45 & 1
\end{pmatrix}
\]

All rows are strictly log-concave. As \(\partial \text{CP}(m, 4)^3 = D[m]^3 \), the 1-chromatic number \(\text{chr}^1(\partial \text{CP}(m, 4)) = m \), and it is not difficult to see that the 2-chromatic number \(\text{chr}^2(\partial \text{CP}(m, 4)) = 2 \) if \(m \) is even and 3 if \(m \) is odd [5].

Right multiplication with the upper triangular matrix \(([ij]_{1 \leq i,j \leq m(K)}) \) with \([ij] = \binom{i}{j} \) in row \(i \) and column \(j \) transforms, by Theorem 1.2, the chromatic table into the \((\dim(K) \times m(K))\)-matrix

\[
\chi(K) | [ij]_{1 \leq i,j \leq m(K)} = (\chi^s(K, i))_{1 \leq s \leq \dim(K)}
\]

with the \(m(K) \) values \(\chi^s(K, i) \), \(1 \leq i \leq m(K) \), of the \(s \)-chromatic polynomial in row \(s \). This matrix of chromatic polynomial values appears also to have log-concave rows.

3. Chromatic uniqueness

In this section we briefly discuss to what extent simplicial complexes are determined by their chromatic polynomials. Proposition shows that the chromatic table of a simplicial complex determines its \(f \)-vector.

Definition 3.1. \(K \) is chromatically unique if it is determined up to isomorphism by its chromatic table.

In Lemma 3.2 below, \(K \sqcup L \) is the disjoint union and \(K \vee L \) the one-point union of \(K \) and \(L \). The proof is identical to the one for the similar statements about chromatic polynomials for simple graphs.

Lemma 3.2. If \(K \) and \(L \) are finite simplicial complexes then

\[
\chi^s(K \sqcup L, r) = \chi^s(K, r)\chi^s(L, r), \quad \chi^s(K \vee L, r) = \frac{\chi^s(K, r)\chi^s(L, r)}{r}
\]

for all \(r \) and all \(s \geq 0 \).

The two nonisomorphic simplicial complexes
are not chromatically unique as they have identical chromatic tables
\[
\begin{pmatrix}
0 & 0 & 2 & 10 & 7 & 1 \\
0 & 15 & 73 & 62 & 15 & 1
\end{pmatrix}
\]
by Lemma 3.2. (These two complexes are, however, PL-isomorphic.) On the other hand, Proposition 2.34.(2) immediately implies that the s-skeleton of a full simplex is chromatically unique (in a very strong sense).

Proposition 3.3. If K has the same s-chromatic polynomial as a full simplex $D[N]$, then K and $D[N]$ have isomorphic s-skeleta.

Proof. If K and $D[N]$ have the same s-chromatic polynomial for some $s \geq 1$, then K has N vertices (Corollary 2.26), and, since $\chi^s(K, N-s) = \chi^s(D[N], N-s)$, the s-skeleton of K is isomorphic to the s-skeleton of the full simplex on N vertices (Proposition 2.34.(2)). □

References

1. A. Altshuler, *A peculiar triangulation of the 3-sphere*, Proc. Amer. Math. Soc. 54 (1976), 449–452. MR MR0397744 (53 #1602)
2. Anders Björner and Frank H. Lutz, *Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere*, Experiment. Math. 9 (2000), no. 2, 275–289. MR MR1780212 (2001h:57026)
3. Wieb Bosma, John Cannon, and Catherine Playoust, *The Magma algebra system. I. The user language*, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, Computational algebra and number theory (London, 1993). MR 1484478
4. Francesco Brenti, *Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update*, Jerusalem combinatorics ’93, Contemp. Math., vol. 178, Amer. Math. Soc., Providence, RI, 1994, pp. 71–89. MR 1310575 (95h:05026)
5. Natalia Dobrinskaya, Jesper M. Møller, and Dietrich Notbohm, *Vertex colorings of simplicial complexes*, arXiv, 2010.
6. David Gale, *Neighborly and cyclic polytopes*, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 225–232. MR MR0152944 (27 #2915)
7. June Huh, *Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs*, arXiv:1008.4749v3.
8. Frank H. Lutz, *Small examples of nonconstructible simplicial balls and spheres*, SIAM J. Discrete Math. 18 (2004), no. 1, 103–109 (electronic). MR MR2112491 (2005i:57028)
9. Ronald C. Read, *An introduction to chromatic polynomials*, J. Combinatorial Theory 4 (1968), 52–71. MR 0224505 (37 #104)
10. Gian-Carlo Rota, *On the foundations of combinatorial theory. I. Theory of Möbius functions*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368 (1964). MR 0174487 (30 #4688)
11. Bruce E. Sagan, *Inductive and injective proofs of log concavity results*, Discrete Math. 68 (1988), no. 2-3, 281–292. MR 926131 (89b:05009)
12. Richard P. Stanley, *Enumerative combinatorics. Vol. 1*, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. MR MR1442260 (98a:05001)
13. Yi Wang and Yeong-Nan Yeh, *Log-concavity and LC-positivity*, J. Combin. Theory Ser. A 114 (2007), no. 2, 195–210. MR 2293087 (2008g:11042)
14. D. R. Woodall, *Zeros of chromatic polynomials*, Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway College, Egham, 1977), Academic Press, London, 1977, pp. 199–223. MR 0463010 (57 #2974)