Evaluation of Load Capacity of Stratified Soils (2 Layers) by Means of Numerical Analytical Comparison

Jairo-Alejandro Quintero-Chamorro; Brayan-Julián Martínez-Ortega; Lucio-Gerardo Cruz-Velasco

Citación: J.-A. Quintero-Chamorro, B.-J. Martínez-Ortega, L.-G. Cruz-Velasco, “Evaluation of Load Capacity of Stratified Soils (2 Layers) by Means of Numerical Analytical Comparison,” Revista Facultad de Ingeniería, vol. 30 (55), e12080, 2021.
https://doi.org/10.19053/01211129.v30.n55.2021.12080

Recibido: Noviembre 01, 2020; Aceptado: Febrero 23, 2021; Publicado: Febrero 24, 2021

Derechos de reproducción: Este es un artículo en acceso abierto distribuido bajo la licencia CC BY

Conflicto de intereses: Los autores declaran no tener conflicto de intereses.
Evaluation of Load Capacity of Stratified Soils (2 Layers) by Means of Numerical Analytical Comparison

Jairo-Alejandro Quintero-Chamorro
Brayan-Julián Martínez-Ortega
Lucio-Gerardo Cruz-Velasco

Abstract
The methods for determining load capacity in stratified soils are numerous and differ in their methods and results. These differences in analysis lead to uncertainty in engineering practices or over-dimensioning of the foundation solution. This study seeks to determine three analytical methods of load capacity in stratified soils (2 layers) for shallow foundations: 1) Imaginary foundation, 2) Average parameter method (APM), and 3) Terzaghi’s method to compare their results with those obtained from numerical modeling by means of the finite element method using a widely applied software (Abaqus academic version). Within the methodology developed in the finite element modeling, variables were parameterized (modulus of elasticity, depth of deflection, and displacement-load) and two behavioral laws were evaluated (Elastic and Drucker-Prager). The results that were obtained from the analysis show that when performing numerical modeling using the law of elastic behavior in soils of two layers, exaggerated results are generated with respect to analytical methods. Another important result is that when hard soils are on top of soft soils the results of numerical and analytical methods tend to be similar to each other.

1 Universidad del Cauca (Popayán-Cauca, Colombia). jairoalejan@unicauca.edu.co. ORCID: 0000-0003-1365-7629
2 Universidad del Cauca (Popayán-Cauca, Colombia). bjmartinez@unicauca.edu.co. ORCID: 0000-0002-2221-8444
3 Ph. D. Universidad del Cauca (Popayán-Cauca, Colombia). lucruz@unicauca.edu.co. ORCID: 0000-0003-2438-5526

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (55), e12080. Enero-Marzo 2021. Tunja-Boyacá, Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328. DOI: https://doi.org/10.19053/01211129.v30.n55.2021.12080
Most importantly, the variables that have the greatest influence on the load capacity in soils of one and two layers are the angle of friction, yield stress, and in the case of numerical analysis the constraint displacement (load). In addition, it was observed that for numerical modeling better results are obtained when considering an elastoplastic model, such as Drucker Prager.

Keywords: APM; FEM; finite elements; imaginary foundation; load capacity; numerical modeling; stratified soils; Terzaghi method.

Evaluación de capacidad de carga de suelos estratificados (2 estratos) mediante comparativa analítica-numérica

Resumen

Los métodos para encontrar capacidad de carga en suelos estratificados son cuantiosos y difieren en sus métodos y resultados. Lo anterior, hace que exista incertidumbre en la práctica de la ingeniería o que se incurra en sobredimensionamiento de la solución de cimentación. Este trabajo busca estudiar tres métodos analíticos de capacidad de carga en suelos estratificados (2 estratos) para cimentaciones superficiales: 1) Zapata imaginaria, 2) Método de Parámetros Promedio (APM) y 3) Método de Terzaghi, para comparar sus resultados con los obtenidos de la modelación numérica por medio del método de elementos finitos usando un software de amplia aplicación (Abaqus) versión académica. Dentro de la metodología desarrollada en la modelación de elementos finitos se parametrizaron variables (módulo de elasticidad, profundidad de desplante y desplazamiento-carga) y se evaluaron dos leyes de comportamiento (Elástica y Drucker-Prager). Los resultados que se obtuvieron en el desarrollo del análisis apuntan a que al realizar las modelaciones numéricas usando la ley de comportamiento elástica en suelos de dos estratos dan resultados exagerados respecto a los de métodos analíticos, otro resultado importante es que cuando se tiene suelos duros sobre suelos blandos los resultados de métodos numéricos y analíticos tienden a ser similares entre sí.

Dentro de las conclusiones más importantes tenemos que las variables que más influyen en la capacidad de carga en suelos de un estrato y dos estratos son, el ángulo de fricción, esfuerzo de fluencia y en el caso de las modelaciones numéricas
el desplazamiento impuesto de falla (carga). Además, se tiene que para las modelaciones numéricas se obtiene mejores resultados cuando se considera un modelo elastoplástico, como Drucker Prager.

Palabras clave: APM; capacidad de carga; elementos finitos; FEM; método de Terzaghi; modelación numérica; suelos estratificados; zapata imaginaria.

Avaliação da capacidade de suporte de solos estratificados (2 estratos) por comparação analítico-numérica

Resumo

Os métodos para encontrar a capacidade de suporte em solos estratificados são numerosos e diferem em seus métodos e resultados. Isso leva à incerteza na prática de engenharia ou ao superdimensionamento da solução de base. Este trabalho visa estudar três métodos analíticos de capacidade de suporte em solos estratificados (2 estratos) para fundações rasas: 1) Base imaginária, 2) Método dos Parâmetros Médios (APM) e 3) Método de Terzaghi, para comparar seus resultados com os obtidos. modelagem numérica por meio do método dos elementos finitos utilizando um software de aplicação ampla (Abaqus) versão acadêmica. Dentro da metodologia desenvolvida na modelagem de elementos finitos, variáveis foram parametrizadas (módulo de elasticidade, profundidade de deflexão e deslocamento-carga) e duas leis comportamentais foram avaliadas (Elastic e Drucker-Prager). Os resultados obtidos no desenvolvimento da análise sugerem que ao realizar a modelagem numérica usando a lei do comportamento elástico em solos de dois estratos, eles dão resultados exagerados em relação aos dos métodos analíticos, outro resultado importante é que quando você tem Solos duros acima de solos moles, os resultados dos métodos numéricos e analíticos tendem a ser semelhantes entre si. Entre as conclusões mais importantes temos que as variáveis que mais influenciam a capacidade de carga em solos de um e dois estratos são o ângulo de atrito, a tensão de escoamento e, no caso de modelos numéricos, o deslocamento de falta imposto (carga). Além disso, para modelagem numérica, melhores resultados são obtidos quando um modelo elastoplástico é considerado, como Drucker Prager.
Evaluation of Load Capacity of Stratified Soils (2 Layers) by Means of Numerical Analytical Comparison

Palavras-chave: APM; capacidade de carga; elementos finitos; FEM; método de Terzaghi; modelagem numérica; solos estratificados; sapato imaginário.
I. INTRODUCCIÓN
En los proyectos de infraestructura las cimentaciones son fundamentales para un buen desempeño de las superestructuras [1], las cuales deben cumplir con niveles de seguridad, servicio y economía sujetas al entorno y reglas de diseño impuesto. Uno de los elementos a tener en cuenta es la estratificación del terreno de cimentación, donde pobres caracterizaciones pueden conducir a sobrepasar un estado límite no deseado, tal como la falla por corte general del terreno [2-3]. Sin embargo, la mayoría de los cálculos descritos en la teoría consideran al suelo como algo homogéneo [4] obviando su heterogeneidad y dando resultados posiblemente alejados del comportamiento esperado en campo. Por tal motivo, este trabajo realiza la evaluación de capacidad de carga [5] en suelos estratificados (dos estratos) [6, 7-8] por medio de una comparativa entre tres métodos analíticos actuales y resultados de la modelación numérica. Los métodos analíticos para considerar son el de Terzaghi [9], Zapata imaginaria [10] y método de parámetros promedio (APM) [11], los cuales difieren considerablemente. Por lo anterior, se compara los resultados obtenidos con los de la modelación numérica por medio del método de elementos finitos [12, 13-14], estos últimos se obtienen cuando se forma la superficie de falla de Prandtl mediante incrementos de desplazamiento controlados. La modelación numérica es un método ampliamente usado y estudiado en ingeniería de cimentaciones, por ejemplo: [12, 18-19]; y adicionalmente es aceptado como metodología de diseño en algunos países, por ejemplo, Colombia con su norma para construcción de edificaciones: NSR-10. En la modelación de elementos finitos, de este trabajo, se parametrizaron variables (módulo de elasticidad, profundidad de desplante y desplazamiento-carga) y se evaluaron dos leyes de comportamiento (Elástica, Drucker-Prager). Lo anterior, permite identificar los parámetros que más influencia tienen en el cálculo de una cimentación superficial [15]. Además, su interés puede extenderse a otros campos, teniendo en cuenta de que toda obra de infraestructura se soporta en una cimentación; un ahorro significativo de fundaciones generará impactos positivos tanto en la economía como en la seguridad de lo que son las estructuras.
II. METODOLOGÍA
La metodología desarrollada en el trabajo de investigación se caracteriza principalmente por modelaciones en el programa Abaqus [16] y cálculos de capacidad de carga de manera analítica para su posterior comparación. De las metodologías de capacidad de carga en suelos estratificados se eligieron tres, APM, método de Terzaghi y zapata imaginaria, debido a que son los métodos más conocidos y usuales en nuestro medio.
Inicialmente, se realizaron los cálculos respectivos a un estrato usando la Ecuación General de Capacidad de Carga (EGCC), de igual manera se modelo el suelo de un estrato usando la modelación con elementos finitos en Abaqus considerando el caso donde se modifica Esfuerzo de fluencia [17].
Se continua con la metodología de suelos estratificados (dos estratos), inicialmente se selecciona las variables a parametrizar, luego se procede a encontrar la capacidad de carga con métodos analíticos, APM, zapata imaginaria y Terzaghi, seguidamente se calcula la capacidad de carga con métodos numéricos utilizando la ley de comportamiento elastoplástico mediante el método de Drucker Prager [18].
Los espesores de suelo a trabajar son e=0.15 m y e=0.5 m considerando que por debajo de espesores de 1 m es más probable la formación de la falla de Prandtl [19], la cual será un punto de referencia entre métodos analíticos y numéricos.
Como nota importante se tiene que de las modelaciones numéricas realizadas con un estrato se toman los valores ideales de Esfuerzo de fluencia para modelar con dos estratos. Se tiene como condición inicial que la cohesión en suelos de un estrato y dos estratos será nula tanto para el caso de $Df=0$ m como $Df=0.5$ m. Además, se aclara que al referirse a un $Df=0.5$ m y $e=0.15$ m la cimentación estará desplantada en un estrato de similares características, en los métodos analíticos el dato del espesor de estrato de suelo no se tiene en cuenta y en la modelación numérica estará representado por una sobrecarga.
A. Metodología para suelo de un estrato

Se procede a describir detalladamente los métodos analíticos evaluados en un suelo de un estrato, el modelo para un estrato se describe en la Fig. 1 y el modelo de dos estratos en la Fig. 2.

Fig. 1. Identificación del problema, suelo de un estrato.

Fig. 2. Identificación del problema, suelo estratificado (2 estratos).

En la Tabla 1 se muestran los datos a variar para el modelo de un estrato y dos estratos con su respectiva nomenclatura.

Nomenclatura para un estrato	Nomenclatura para dos estratos	Módulo [Mpa]	Ángulo de fricción [°]
A	E1	9.375	23.22
B	E2	12.5	28.42
C	E3	25	40.1
D	E4	50	54.12

Para desarrollar el modelo elastoplástico de Drucker Prager en el programa de elementos finitos se necesita las siguientes variables de entrada, ver Tabla 2.

Propiedad	Valor
Densidad (kg/m³)	1733.5
Poisson ratio	0.3
Cohesive Strengh (kPa)	<1
Friction angle (°) φ	23.22
Dilation angle (°) ψ	-6.78
Flow Stress Ratio	1
B. *Metodología para suelo estratificado (2 estratos)*

Posteriormente con el modelo, y para definir las simulaciones de suelos finos sobre suelos gruesos; y suelos gruesos sobre suelos finos, se utilizan las siguientes combinaciones (Tabla 3).

Tabla 3. Combinación de suelos.
Suelos
Nomenclatura

III. RESULTADOS Y ANÁLISIS

Los resultados encontrados de los métodos analíticos y numéricos se presentan a continuación.

A. *Suelo de un estrato*

Se presenta los resultados de los cálculos desarrollados con el método numérico y analítico para un estrato modificando el esfuerzo de fluencia.

1) *Cálculo de capacidad de carga, Df=0 m, e=0.15 m.* Luego de realizar los cálculos de capacidad de carga con el método analítico de la EGCC y la modelación numérica en el software de elementos finitos se consiguieron los resultados respectivos que se presentan en la Tabla 4.

Tabla 4. Resumen de resultados modificando el Esfuerzo de fluencia, Df=0 m, e=0.15 m.
Datos
ID
A
B
C
D
Seguidamente se presentan los resultados gráficos que se obtienen del software de elementos finitos luego de someter el modelo en el programa, en la Fig. 3 aparecen el diagrama de contorno de deformaciones plásticas (PE), después en la Fig. 4 se presenta el diagrama de contorno de esfuerzos verticales, las figuras descritas corresponden al Suelo A, con Df=0 m y e=0.5 m.

Fig. 3. Diagrama de contorno de deformaciones plásticas, PE. Suelo A, con Df=0 m, e=0.5 m.

Fig. 4. Diagrama de contorno de esfuerzos verticales, suelo A, Df=0 m, e=0.5 m.

2) **Cálculo de capacidad de carga, Df=0 m, e=0.5 m.** Los resultados obtenidos de capacidad de carga modificando el esfuerzo de fluencia con Df=0 m y e=0.5 m se presentan en la Tabla 5.

ID	Desplazamiento U [m]	Ángulo de dilatación [°]	Ángulo de fricción [°]	Esfuerzo de fluencia [Pa]	Abs Plastic Strain	qu [kPa]	Abaqus	EGCC
A	0.05	-6.78	23.22	11984	0	44	43	
B	0.05	-1.58	28.42	25172	0	95	91	
C	0.05	10.1	40.1	189234	0	584	568	
D	0.08	24.12	54.12	8637904	0	10703	10365	

3) **Cálculo de capacidad de carga, Df=0.5 m, e=0.15 m.** Ahora, se presentan los resultados de capacidad de carga obtenidos de las modelaciones numérica y
analítica con una profundidad de desplante de Df=0.5 m, para un espesor de e=0.15 m (Tabla 6).

Tabla 6. Resumen de resultados modificando el Esfuerzo de fluencia, Df=0.5 m, e=0.15 m.

ID	Desplazamiento U [m]	Ángulo de dilatación [°]	Ángulo de fricción [°]	Esfuerzo de fluencia [Pa]	Abs Plastic Strain	qu [kPa]
A	0.015	-6.78	23.22	36802	0	172
B	0.015	-1.58	28.42	70520	330	323
C	0.015	10.1	40.1	499826	1810	1696
D	0.0254	24.12	54.12	2351551	22473	25971

4) **Cálculo de capacidad de carga, Df=0.5 m, e=0.5 m.** Los resultados de esta condición con Df=0.5 m y e=0.5 m obtenidos de la comparativa analítico numérica se muestran en la Tabla 7.

Tabla 7. Resumen de resultados modificando el Esfuerzo de fluencia, Df=0.5 m, e=0.15 m.

ID	Desplazamiento U [m]	Ángulo de dilatación [°]	Ángulo de fricción [°]	Esfuerzo de fluencia [Pa]	Abs Plastic Strain	qu [kPa]
A	0.05	-6.78	23.22	49070	180	168
B	0.05	-1.58	28.42	94026	346	323
C	0.04	10.1	40.1	749738	1629	1696
D	0.2	24.12	54.12	11757757	24530	25971

De las Figuras 5 a 8 se puede observar los resultados obtenidos de la EGCC y modelación numérica considerando una variación en su módulo de elasticidad para un espesor de suelo e=0.5 m y profundidad de desplante Df=0 m, primeramente se tiene que todos los resultados de las modelaciones numéricas son superiores a los obtenidos del método de EGCC, junto a esto se tiene que a medida que se incrementa el módulo de elasticidad se incrementa la capacidad de carga, además, para los dos primeros módulos o los que se consideran suelos finos el comportamiento de los datos obtenidos del software de modelación numérica
presenta similitud en estos dos suelos, dando como característica una mínima variación a medida que aumenta la profundidad, por el contrario cuando se tiene suelos de mayores módulos elásticos o suelos duros el comportamiento de la serie de datos varía considerablemente a medida que se aumenta la profundidad.

B. **Suelo estratificado (dos estratos)**

A continuación, se presenta los resultados de los métodos analíticos (APM, Terzaghi y zapata imaginaria) y métodos numéricos (Abaqus) para dos estratos. Primero, se desarrolló las modelaciones numéricas y cálculos analíticos para una condición con

Revista Facultad de Ingeniería (Rev. Fac. Ing.) Vol. 30 (55), e12080. Enero-Marzo 2021. Tunja-Boyacá, Colombia. L-ISSN: 0121-1129, e-ISSN: 2357-5328.
DOI: https://doi.org/10.19053/01211129.v30.n55.2021.12080
Df=0 m considerando los dos espesores de estudio, para los resultados de e=0.15 m (Tabla 8).

Tabla 8. Resultados modelación numérica y métodos analíticos, Df=0 m, e=0.15 m.

Suelos	Abaqus [kPa]	APM [kPa]	Zapata Imaginaria [kPa]	Método de Terzaghi [kPa]
1	58	8328	43	
2	122	8812	91	
3	577	9730	568	
4	613	580	1279	1096
5	111	94	221	178
6	43	45	110	84

Se presenta los resultados gráficos del suelo estratificado (2 estratos) de la combinación de suelo 1, con Df=0 m y e=0.5 m, para el diagrama de contorno de deformaciones plásticas (Fig. 9) y para el diagrama de esfuerzos verticales (Fig. 10).

Fig. 9. Diagrama de contorno de deformaciones plásticas, suelo 1, Df=0.5 m, e=0.5 m.

Fig. 10. Diagrama de contorno de esfuerzos verticales, Suelo 1, Df=0.5 m, e=0.5 m.

Para los resultados de las modelaciones numéricas y cálculos analíticos con un Df=0 m y e=0.5 m (Tabla 9).

Tabla 9. Resultados modelación numérica y métodos analíticos, Df=0 m, e=0.5 m.

Suelos	Abaqus [kPa]	APM [kPa]	Zapata Imaginaria [kPa]	Método de Terzaghi [kPa]
1	40	5128	43	
Seguidamente se presenta los resultados del análisis para un Df=0.5 m, para un e=0.15 m (Tabla 10).

Suelos	Abaqus [kPa]	APM [kPa]	Zapata Imaginaria [kPa]	Método de Terzaghi [kPa]
1	165	21821	168	
2	328	22789	323	
3	1464	24645	1696	
4	1463	1727	291	1719
5	326	332	52	327
6	149	173	26	169

A continuación, en la Tabla 11, se presentan los resultados con Df=0.5 m y e=0.5 m.

Suelos	Abaqus [kPa]	APM [kPa]	Zapata Imaginaria [kPa]	Método de Terzaghi [kPa]
1	152	14805	168	
2	291	16975	323	
3	1537	21845	1696	
4	1383	1804	1697	2437
5	272	354	323	489
6	117	186	168	248

Se continua con el análisis de dos estratos, considerando el criterio de Drucker Prager; primeramente, se toman los resultados de los suelos 1, 2 y 3 (Tabla 8 a Tabla 11). Se puede observar que los resultados que se obtuvieron de la capacidad de carga con el método de elementos finitos y Zapata Imaginaria son muy similares, en cambio los resultados del método de APM son notablemente mayores, ya que este método en la teoría [20], dice que se obtiene mejores...
resultados para cuando el suelo duro está sobre el suelo blando, de igual manera
se hace la aclaramiento nuevamente de que el método de Terzaghi se omite para la
combinación de los tres primeros suelos debido a que no ha sido definido para estas
estructuras de suelo.
Ahora, se analiza el suelo duro sobre suelo blando representado por las
combinaciones de las últimas tres filas de las Tablas 9 a 12.
En la Tabla 10, al comparar los resultados que se obtuvieron del método de Terzaghi
y APM se observa que estos últimos son mayores a su referencia obtenida en
Abaqus, a diferencia del método de Zapata Imaginaria que da un valor menor que
el de Abaqus. Además, se presenta un caso especial donde la diferencia de
resultados entre método analítico (método de Terzaghi) y método numérico
(Abaqus) es menor que 1, esto se presenta en la combinación de suelo 5.
En la (Tabla 8), se indica que los resultados de suelos 4 y 5 referentes al método de
Zapata Imaginaria y método de Terzaghi son menores que los de Abaqus, y
respecto al método de APM los resultados de Abaqus son mayores. Además, se
tiene que para el suelo 6 todos los resultados de métodos analíticos son mayores
que el método numérico.
En las Tablas Tabla 11 y 12, se tiene que los valores que se obtuvieron de la
modelación en Abaqus son menores que los resultados con métodos analíticos,
ahora bien, para la primera tabla se tiene que los valores más cercanos a Abaqus
se obtienen con el método de Zapata imaginaria, seguido de los resultados de APM,
por último y marcando la mayor diferencia está el método de Terzaghi. En el caso
de la segunda tabla los valores de los métodos analíticos más próximos a los
numéricos son los que se obtuvieron con el método de APM, siendo su diferencia
entre 38 y 49 kPa, seguido del método de Terzaghi con una diferencia entre 227 y
1019 kPa, por último, destaca el método de Zapata imaginaria el cual presenta
resultados más alejados respecto a los resultados de Abaqus.

IV. CONCLUSIONES
Una vez desarrollados los cálculos numéricos y analíticos, se puede afirmar que las
variables que influyen principalmente la capacidad de carga en suelos de un estrato
y dos estratos es el ángulo de fricción, esfuerzo de fluencia y el desplazamiento de falla (carga – condición de frontera). Los suelos más resistentes, no alcanzan a plastificarse completamente (valores de esfuerzo de fluencia alto) debido a que no logran los niveles de deformación en el continuo necesario para representar la condición de falla. En otras palabras, sería necesario alcanzar niveles de deformación muy altos que no es posible que sean representados con el método de elementos finitos convencional. Cuando se realiza el enmallado, entre más fino sea este, se alcanzarán niveles de representación mejores, pero tomará más tiempo computacional someter el modelo en el programa. La gravedad se debe considerar en el modelo de elementos finitos, esto permitirá al continuo alcanzar esfuerzos geostáticos naturales. Para una estructura de suelo estratificado (2 estratos), suelo duro sobre suelo blando en la evaluación de capacidad de carga usando el comportamiento elastoplástico, los métodos que mejor se aproximan a lo que físicamente se esperaría son el método de APM y el método de modelación numérica, por el contrario cuando se tiene suelo blando sobre suelo duro los métodos que mejor se aproximan a lo que físicamente se esperaría semi-empíricamente son: el método analítico de zapata imaginaria y el método de modelación numérica. Los resultados del método de APM para suelos blandos sobre suelos duros no representan resultados que concuerden con otros métodos y los respectivos valores que físicamente se esperaría en campo, por lo tanto, se recomienda no tenerlo en cuenta como método de diseño en este último caso.

Por último, en este trabajo la falla de Prandtl se logra reproducir o formar detalladamente en las modelaciones numéricas cuando los espesores de suelo modelado son menores a 1 m.

CONTRIBUCIÓN DE LOS AUTORES

Jairo-Alejandro Quintero-Chamorro: Investigación, Validación, Visualización, Redacción – borrador original.

Brayan-Julián Martínez-Ortega: Investigación, Validación, Visualización, Redacción – borrador original.
Lucio-Gerardo Cruz-Velasco: Conceptualización, Adquisición de fondos, Metodología, Validación, Visualización, Administración del proyecto de investigación, Redacción – revisión y edición.

FINANCIAMIENTO
A la Universidad del Cauca, la cual financió el trabajo de investigación en modalidad de convocatoria interna.

REFERENCIAS
[1] B. Das, N. Sivakugan, Principles of foundation Engineering. Boston: Cengage Learning, 2019, pp. 2.
[2] L. Cruz. 042082. Class Lecture, Topic: “Load Capacity.” School of Civil Engineering, University of Cauca, Popayan, 2007.
[3] C. Le, “Estimation of bearing capacity factors of cohesive-frictional soil using the cell-based smoothed finite element method,” Computers and Geotechnics, vol. 83, pp. 178-183, Mar. 2017. https://doi.org/10.1016/j.compgeo.2016.10.023
[4] S. Eshkevari, A. Abbo, G. Kouretzis, “Bearing capacity of strip footings on sand over clay,” Canadian Geotechnical Journal, vol. 56, no. 5, pp. 699-709, May 2019. https://doi.org/10.1139/cgj-2017-0489
[5] J. Lee, S. Jeong, J. Shang, “Undrained bearing capacity of ring foundations on two-layered clays,” Ocean Engineering, vol. 119, pp. 47-57, Jun. 2016. https://doi.org/10.1016/j.oceaneng.2016.04.019
[6] P. Rao, Y. Liu, J. Cui, “Bearing capacity of strip footings on two-layered clay under combined loading,” Computers and Geotechnics, vol. 69, pp. 210-218, Sep. 2015. https://doi.org/10.1016/j.compgeo.2015.05.018
[7] S. Feng, X. Ding, Q. Zheng, Z. Chen, D. Zhang, “Extended stiffness matrix method for horizontal vibration of a rigid disk embedded in stratified soils,” Applied Mathematical Modelling, vol.77, pp. 663-689, Jan. 2020. https://doi.org/10.1016/j.apm.2019.07.035
[8] H. Kou, W. Guo, M. Zhang, Y. Xu, “Axial resistance of long rock-socketed bored piles in stratified soils,” Ocean Engineering, vol. 8, pp. 58-65, Sep. 2016. https://doi.org/10.1016/j.oceaneng.2016.06.080
[9] R. Casusol, “Análisis comparativo de la capacidad de carga para un suelo granular empleando métodos analíticos y computacionales,” Grade Thesis, Pontificia Universidad Católica del Perú, Lima, 2020. http://hdl.handle.net/20.500.12404/16778
[10] L. Cruz. 042082. Class Lecture, Topic: “Imaginary Foundation.” School of Civil Engineering, University of Cauca, Popayan, Sep. 2018.
[11] J. Duque, C. Lascarro, M. Gil, O. Garcia, W. Fuentes, “An extended bearing capacity equation for shallow foundations on granular trenches in soft soil,” Acta Geotechnica Slovenica, vol. 17, pp. 1-29, 2020. https://doi.org/10.18690/actageotechslov.17.1.12-22.2020
[12] M. Huang, X. Qu, X. Lü, “Regularized finite element modeling of progressive failure in soils within nonlocal softening plasticity,” Computational Mechanics, vol. 62, pp. 347-358, Sep. 2018. https://doi.org/10.1007/s00466-017-1500-6
[13] Y. Chok, M. Jaksa, W. Kaggwaa, D. Griffiths, “Assessing the influence of root reinforcement on slope stability by finite elements,” Chok et al. Geo-Engineering, vol. 6, pp. 6-12, Oct. 2015. https://doi.org/10.1186/s40703-015-0012-5

[14] J. Tamayo, A. Awruch, “On the Validation of a Numerical Model for the Analysis of Soil-Structure Interaction Problems,” Latin American Journal of Solids and Structures, vol. 13, pp. 1545-1878, Apr. 2016. https://doi.org/10.1590/1679-78252450

[15] N. Le, S. Ohtsuka, T. Hoshina, K. Isobe, “Discussion on size effect of footing in ultimate bearing capacity of sandy soil using rigid plastic finite element method,” Soils and Foundations, vol. 56, pp. 1-11, 2016. https://doi.org/10.1016/j.sandf.2016.01.007

[16] M. Pérez, “Modelación de la capacidad de carga de cimentaciones superficiales apoyados en suelos no homogéneos,” Grade Thesis, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba, 2016.

[17] S. Koltuk, J. Song, R. iyisan, R. Azzam, “Seepage failure by heave in sheeted excavation pits constructed in stratified cohesionless soils,” Frontiers of Structural and Civil Engineering, vol. 13, pp. 1415-1431, Dec. 2019. https://doi.org/10.1007/s11709-019-0565-z

[18] M. Hamlaoui, A. Oueslati, B. Lamri, G. Saxcé, “Finite element analysis of the plastic limit load and the collapse mechanism of strip foundations with non-associated Drucker-Praguer model,” European Journal of Environmental and Civil Engineering, vol. 19, pp. 1179-1201, 2015. https://doi.org/10.1080/19648189.2015.1005162

[19] A. Mosadegh, H. Nikraz, “Bearing Capacity Evaluation of Footing on a Layered - Soil using ABAQUS,” Earth Science & Climatic Change, vol. 6, pp. 264-272, 2015. https://doi.org/10.4172/2157-7617.1000264

[20] L. Quesada, “Determinación de la capacidad de carga en cimentaciones superficiales sobre bases estratificadas en suelos friccionales,” Grade Thesis, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba, 2017.