Experimental and Numerical analysis of Metallic Bellow for Acoustic Performance

Amit A Panchwadkar
Research Scholar Sinhgad College of Engineering, Associate Professor PCCoE, SPPU,Pune

Dr. Pradeep J Awasare,
Professor and Head, PCCoE, SPPU, Pune

Dr. Ravindra B Ingle,
Professor and Head, MKSSS’s Cummins COEW, SPPU, Pune

Abstract—Noise will concern about the work environment of industry. Machinery environment has overall noise which interrupts communication between the workers. This problem of miscommunication and health hazard will make sense to go for noise attenuation. Modification in machine setup may affect the performance of it. Instead of that, Helmholtz resonator principle will be a better option for noise reduction along the transmission path. Resonator has design variables which gives resonating frequency will help us to confirm the frequency range. This paper deals with metallic bellow which behaves like inertial mass under incident sound wave. Sound wave energy is affected by hard boundary condition of resonator and bellow. Metallic bellow is used in combination with resonator to find out Transmission loss (TL). Microphone attachment with FFT analyzer will give the frequency range for numerical analysis. Numerical analysis of bellow and resonator is carried out to summarize the acoustic behavior of bellow. Bellow can be numerically analyzed to check noise attenuation for centrifugal blower. An impedance tube measurement technique is performed to validate the numerical results for assembly. Dimensional and shape modification can be done to get the acoustic performance of bellow.

Keywords: Helmholtz resonator, Metallic Bellow, Noise attenuation, White noise

1. INTRODUCTION

Noise is an unwanted sound; unpleasant to hear may also damage the environment. Many industries have pronounced effect on human health like hearing loss, change in heart and respiration rate. Noisy environment in industry has to become healthy one by controlling the overall noise level. Several techniques have been used for noise attenuation like installation of reactive silencers and use of passive noise control devices. Helmholtz resonator is the effective way of noise reduction to reduce tonal noise, works at resonance frequency. Classical HR can attenuate only tonal designed desired resonator frequency noise. Real applications involve multiple resonator frequencies may varies with speed. Frequency span will be another approach to study acoustic behavior of resonator. Type of application can decide frequency span for which modification in resonator to be done. Modification in resonator may give better solution to overcome the problem.
This paper includes noise reduction achieved by response of bellow. Bellow response will include acoustic parameter responsible for noise attenuation. Transmission loss (TL) and Sound Pressure Level (SPL) have major effect on acoustic behavior of resonator. Same acoustic parameter will be considered for bellow performance. Bellow performance be done with consideration of frequency range. A noise attenuation criterion for bellow will become novel approach of research includes numerical and experimental analysis with Helmholtz resonator and bellow.

S. Nudehi et. al.[1] have discussed about the modification in resonator in order to get multiple resonant frequencies. They developed the resonator which contains flexible plate at the cavity end. They have performed analytical calculation using receptance coupling approach. The researchers were used LABVIEW software to excite the speaker through an amplifier which simplifies the data collection from microphone. Experimental measurement was done by them to obtain the receptance of the resonator and assembly. Validation result would give the good agreement useful to confirm the resonator parameters. D. Yang et. al.[2] have considered about the sound absorption materials filled inside the neck. They proposed a sound absorption model in which incident sound wave propagates partly by reflection and transmission, whereas remaining sound wave immersed into the resonator. The sound absorption model was based on mass conservation equation which contains neck impedance and characteristic impedance. Whereas, the theoretical model may predict the neck impedance with consideration of nonlinear resistance offered by neck near resonance frequency. H. Kurdi [3] would describe the process to design a small volume resonator correspond to get high transmission loss. In this paper, the multi-objective optimization problem formulated with weight function, which simplifies the design process as a single objective problem. On the same basis second objective was formulated as a constraint. The method was calculated the Pareto set with solutions known as ε-constraint method. M. Munjal and J. Vinay [4] were discussed the acoustic performance of conical shaped bellow. The performance of bellow was evaluated on basis plane wave propagation. The paper introduced a transfer matrix method for bellow using successive multiplication of expanding and contraction portions. The researchers were substituted a rigid conical chamber with an equivalent expansion chamber. On a basis of that they discussed the effect of slope parameters on transmission loss of bellow.

Flexible end plate assembly would give higher transmission loss than Unmodified Helmholtz resonator. Multiple frequencies can be attenuated using flexible end plate in combination with Helmholtz resonator. Nonlinear effect near resonant frequency will be more dominant with increase in perforation diameter at neck portion. The fundamental characteristics of sound absorbing material may broaden the frequency range with variation in perforation diameter. Multi-objective optimization process was considered to compare the two objectives to get increased transmission loss. In this process, Optimization formulation was solved using gradient-based search method.

The paper includes acoustic performance of bellow, which contains unique part of study. Bellow performance is studied for different types of application.
2. ANALYTICAL DESIGN

Metallic bellow has expansion and contraction portion which have significant effect on transmission loss. When bellow is attached below the resonator then it will act as extended neck of the resonator. Bellow has dependency on neck dimension which is decided from resonator frequency. Resonator frequency has been represented in terms of neck length, neck area, cavity volume [5].

Bellow has different shapes with slope parameters which affects the transmission loss. Transmission loss is acoustic parameter required to get reduced noise level. Blower is subjected to forced passage of air responsible for noise generation. Centrifugal blower is working in frequency range of 140-600 Hz. This frequency value will give the neck dimension using equation (I), designed for noise attenuation.

3. EXPERIMENTAL ON BLOWER FOR IDENTIFICATION OF TONAL FREQUENCY

Measurement of pressure at exhaust section was done to get noise level. Microphone was hold at a distance of 1m from exhaust section. These readings were shown in below figure. Blade passing frequency \(f_b \) is calculated as \(\text{no. of blades} \times \text{revolutions per min} / 60 \).

![Fig.1: Resonator frequency range for blower](image)

Blade passing frequency is calculated from above formula found as 576 Hz. Numerical and experimental results are discussed in next section to get Transmission loss in dB.

2.1 Significance of Blade passing frequency

Sound generated at exhaust section of blower is due to turbulence of moving air. Blade passing frequency is pure tone produced when the blades of the impeller rotate past the housing cut-off sheet in centrifugal blower. If this frequency matches the natural frequency of the resonator, it could excite the resonator, thereby increasing the noise level. Because of this possible increase in sound, certain pure tones are generated which irritates the people. The sound output of the blade pass frequency should be investigated when sound reduction is desired. The above reading shows the two frequencies i.e. 244 and 585 Hz; which are dominantly generates tonal noise.

4. NUMERICAL ANALYSIS

Helmholtz resonator and bellow are numerically analyzed to have upper hand in determination of acoustic performance. The analysis is based on propagation of pressure waves uses
Helmholtz equation. Outer boundaries are acting as hard wall boundary condition during simulation. This condition is applied to achieve the resonance phenomena during wave propagation. The numerical analysis was done to get comparison between unmodified resonator and modified resonator. Modified resonator contains bellow coupled below the resonator. This numerical analysis is done on two-dimensional geometry represented in following figures.

Fig.2: Acoustic pressure response of resonator

Fig. 2 shows that, Acoustic pressure is more for modified resonator than the unmodified one. This will conclude that modified resonator is applicable for higher acoustic pressure.

Simulation represented in above figure shows the Sound pressure level inside the resonator and duct tube. Modified resonator [case (b)] will shows the more capability of noise reduction evaluated from SPL results. These results will show that the approach for bellow was correct.

Fig.3: Sound pressure response level of resonator

Transmission loss plots are represented for Unmodified and modified resonator shown in below figures.
Bellow shape has effect on simulation result suggested to go for nonlinear response. To compare this effect, numerical response was performed for those types of bellow. Simulation was done for frequency domain with incident sound wave pressure of 1 Pa. The normal velocity of wave incident on outer boundary has zero value. The simulation results are analyzed using boundary condition applied to acoustic wave energy.

The Sound pressure level for rectangular and circular bellow was plotted at resonance frequency of system. Similarly, Acoustic wave energy is useful for finding out the transmission loss which was shown in fig 6.

Transmission loss (dB) is calculated to get noise attenuation level for the particular setup dependent on surrounding environment.

5. EXPERIMENTAL ANALYSIS

An impedance tube is available to conduct an experiment on it. Experimental setup includes microphone attachment for measurement of wave pressure shown in fig. 7. Sound source is generated from speaker connected at the end of measurement tube. Resonator assembly was installed vertically in between the microphone attachment. Metallic bellow is mounted on tube to get wave response in frequency domain. To get this frequency-based response of bellow FFT analyzer is used.
Signal generation is done by connecting FFT analyzer to the speaker. Swept sine signal is given for measurement of sound wave pressure. Microphone fitted inside the tube also connected to the analyzer for measurement. Experimental results of assembly are shown in following figures.

Fig. 8: Sound wave pressure at inlet and outlet side for swept sine waveform

Fig. 9: Sound wave pressure at inlet and outlet side for white noise

Resonator-bellow assembly should be mounted at blower section to get noise reduction achieved at the exhaust end. Measurement duct is mounted at blower.

Fig. 10: Acoustic pressure vs. frequency plot at inletside

Fig. 11: Acoustic pressure vs. frequency plot at outletside

The above plot shows that the dominant blade passing frequency of blower get minimized and introduced with new discrete pressure and frequency values. Experimental result shows that resonator-bellow assembly resonates about its natural frequency; helpful to control the acoustic pressure. Sound wave pressure reduces as wave energy gets absorbed at that frequency.
6. RESULTS

Acoustic parameters are compared on basis bellow structure at neck with different shapes of bellow. The comparisons of these results are represented in below tables.

Table -1 Acoustic performance of modified and unmodified resonator

Type of resonator	Absolute (surface) pressure (Pa)	Sound Pressure Level (dB)	Transmission loss (dB)
Unmodified resonator	1.997	96.988	23
Modified resonator	2.0	96.989	37

Table -2 Acoustic performance of rectangular and circular bellow

Type of bellow	Acoustic pressure (Pa)	Sound Pressure Level (dB)	Transmission loss (dB)
Rectangular bellow	0.3217	108.05	25.2
Circular bellow	0.3332	107.95	25.4

Transmission loss has been increased by 16.66% due to insertion of bellow and Acoustic pressure decreases by 16.81% for modified resonator. To study the noise attenuation characteristics Modified resonator is applied. Rectangular bellow creates lesser pressure inside the resonator with higher SPL. Less acoustic pressure with more SPL will serve the noise attenuation criteria. Transmission loss of circular bellow is represented with slight change in dB level when compared with rectangular bellow. Table II shows that bellow shape changes the acoustic pressure value by 10%. Experimental results are included the sound wave pressure at inlet and outlet side. Swept sine signal was incident on inlet side enters in resonator assembly would result into decrease in sound wave pressure at outlet side. Resonator assembly was installed on tube reduces the acoustic pressure by 50% for white noise.

Noise attenuation will involve the transmission loss, which was found experimentally for different cases represented in above table. Numerical and experimental results are evaluated on basis of noise reduction.

7. CONCLUSION

The present work discusses about the noise attenuation using resonator and bellow. Numerical analysis of bellow was carried out for studies of acoustic performance. Modified resonator has shown a better numerical solution in comparison with unmodified resonator. Shape modification result shows that rectangular bellow is suitable for reducing the noise level.

Experimental result was carried out on setup to get pressure variation due to insertion of resonator and bellow. Experimental measurement was done to get a pressure of exhaust from blower. Numerical and experimental results are obtained to get an acoustic performance of bellow. Numerical analysis on various shapes of bellows is conducted to get an acoustic
performance helpful for noise attenuation. Resonator with bellow improves the capability of resonator which can withstand for higher acoustic pressure with increase in TL compared with HR contains constant neck.

REFERENCES

[1] S. S. Nudehi, G. Duncan, Umar Farooq, “Modeling and experimental Investigation of Helmholtz resonator with a flexible end plate”, Journal of Vibration and Acoustics, August 2013, volume 135, pp.1-6.
[2] Dong Yang, Wang, Zhu, “The impact of the neck material on the sound absorption performance of Helmholtz resonators”, Journal of sound and Vibration, 2014 (333), pp.6843-6857
[3] Mohammad Kurdi, G. Duncan, S. S. Nudehi, “Optimal design of Helmholtz resonator with flexible end plate”, Journal of Vibration and Acoustics, June 2014, volume 136, pp.1-8.
[4] M. L. Munjal, J. Vinay, “Acoustic performance of flexible bellows”, Journal of Acoustical Society of America, 1998, volume-104 (4), pp. 2040-2047.
[5] M. L. Munjal, “Noise and Vibration control”, IISc Press World Scientific Publishing ISBN 978-981-4434-73-7, 2013, volume-3, pp. 205-209.

Name: Amit A Panchwadkar
Research Scholar at Sinhgad College of Engineering, Vadgaon SPPU
Pune and Associate Professor at PCCoE
Qualification: M.E (Design)
Area of Interest : Noise, Vibration and Harshness,
Email Id: amit.panchwadkar@pccoepune.org

Name: Dr. Pradeep J Awasare
Professor and Head at Pimpri Chinchwad College of Engineering, Nigdi,
Pune
Qualification: Ph.D Mech, M. Tech. (Design), B E (Mech)
Area of Interest : Stress Analysis, Vibration
Publications: 31
Email Id: pijawasare123@gmail.com

Name: Dr Ravindra B Ingle
Dean Academics, Professor and Head at MKSSS’s Cummins COEW, Pune
Qualification: Ph.D Mech, M. Tech. (Design), B E (Mech)
Area of Interest : Noise and Vibration, Composite and Tribology
Publications: 43
Email Id: rbingle2002@yahoo.com