Inflammatory Arthritis in Patients With Myelodysplastic Syndromes

A Multicenter Retrospective Study and Literature Review of 68 Cases

Arsène Mekinian, MD, Thorsten Braun, MD, Olivier Decaux, MD, Géraldine Falgarone, PhD, Eric Toussiot, PhD, Loïc Raffray, MD, Mohamed Omouri, MD, Bruno Gombert, MD, Benoît De Wazieres, PhD, Anne-Laure Buchdaul, MD, Jean-Marc Ziza, PhD, David Launay, PhD, Guillaume Denis, MD, Serge Madaule, MD, Christian Rose, MD, Eric Grignano, MD, Pierre Fenaux, PhD, and Olivier Fain, MD, on behalf of the Club Rhumatismes et Inflammation (CRI), Groupe Francophone des Myélo dysplasies (GFM), and Société Nationale Française de Médecine Interne (SNFMI)

Abstract: We describe the characteristics and outcome of inflammatory arthritis in patients with myelodysplastic syndrome (MDS) in a French multicenter retrospective study. Twenty-two patients with MDS (median age, 77.5 yr [interquartile range, 69–81]); 10 women) were included. Inflammatory arthritis presented as polyarthritis in 17 cases (77%) and with symmetric involvement in 15 cases (68%). At diagnosis, the median disease activity score 28 based on C-reactive protein (DAS28-CRP) was 4.5 [2–6.5]. Two patients had anti-citrullinated protein antibodies (ACPAs), and 1 had radiologic erosions. The median time between the diagnoses of arthritis and MDS was 10 months [6–42], with a median articular symptom duration of 3 months [2–8]. The diagnosis of both diseases was concomitant in 6 cases (27%); arthritis preceded MDS in 12 cases (55%), and occurred after MDS in 4 (18%). While the number of swollen and tender joints significantly decreased during follow-up, as did the median DAS28-CRP (from 4.3 [3.8–4.6] at baseline to 2.9 [1.75–3.3]; p < 0.05), CRP remained elevated (CRP >20 mg/L) in 8 patients (42%). Nevertheless, radiographic progression and new ACPA positivity were not observed during a median follow-up of 29 months [9–76]. While most of the patients were treated with steroids (n = 16) for arthritis, additional treatment was administered in only 4 patients (hydroxychloroquine, n = 2; sulfasalazine [Salazopyrin] and etanercept, n = 1, respectively). Eleven patients died during follow-up from acute myeloid leukemia (n = 5); infections (n = 3); or cerebral bleeding, cardiorespiratory failure, or undetermined cause (n = 1, respectively).

Inflammatory arthritis associated with MDS can have various presentations and is often seronegative and nonerosive. Steroids alone are the most common treatment in MDS-associated arthritis, but that treatment is insufficient to control arthritis. Steroid-sparing strategies need to be identified.

(Medicine 2014;93: 1–10)

INTRODUCTION

Myelodysplastic syndromes (MDSs) are clonal marrow stem cell disorders characterized by ineffective hematopoiesis resulting in cytopenia and a high risk of progression to acute myeloid leukemia (AML). MDSs are frequently associated with various autoimmune and systemic features, but the mechanisms of this association remain insufficiently understood.19 The association with inflammatory arthritis, including rheumatoid or undifferentiated arthritis, polymyalgia rheumatica, and remitting seronegative symmetrical synovitis with pitting edema, WHO = World Health Organization.

Abbreviations: ACPA = anti-citrullinated protein antibody, ACR = American College of Rheumatology, AML = acute myeloid leukemia, ANA = antinuclear antibodies, CMML = chronic myelomonocytic leukemia, CRP = C-reactive protein, DAS28-CRP = disease activity score 28 based on C-reactive protein, ESR = erythrocyte sedimentation rate, IPSS = International Prognostic Scoring System, MDS = myelodysplastic syndrome, MDS-U = unclassified MDS, RAEB1 = refractory anemia with excess blasts-1, RAEB2 = refractory anemia with excess blasts-2, RARS = refractory anemia with ring sideroblasts, RCMD = refractory cytopenia with multilineage dysplasia, RCUD = refractory cytopenia with unilineal dysplasia, RS3PE = remitting seronegative symmetrical synovitis with pitting edema, SNFMI = Société Nationale Française de Médecine Interne.
TABLE 1. Baseline Characteristics and Follow-Up of Patients in the French Study

Characteristics	Baseline Assessment (n = 22)	First Visit (n = 19)	Second Visit (n = 11)	Third Visit (n = 9)	Last Visit (n = 19)
Arthritis characteristics					
Delay from the diagnosis (mo)	—	6 [3–14]	14 [8–32]	19 [13–27]	38 [17–61]
Arthralgia	22 (100%)	13 (68%)**	6 (55%)**	3 (33%)**	9 (47%)**
Arthritis	16 (73%)	5 (26%)**	2 (18%)**	1 (11%)**	3 (16%)**
Number of tender joints	6 [4–8]	2 [0–4]**	4 [0–4]**	0 [0–3]**	0 [0–4.5]**
Number of swollen joints	3 [0–4.5]	0 [0–2]**	0 [0–1]*	0 [0]*	0 [0]**
Morning stiffness (hr)	1 [0–1]	0 [0–0.5]**	0 [0–0.5]**	0 [0–0.5]**	0 [0]**
Erosions	1 (5%)		—	—	1 (5%)
CRP (mg/L)	30 [10–58]	10 [5–30]**	25 [3.5–56]	25 [8–140]	10 [3.5–55]
CRP >20 mg/L	14 (64%)	7 (37%)	5 (45%)	4 (44%)	8 (42%)
DAS28-CRP	4.3 [3.8–4.6]	3 [1.8–3.7]**	2.7 [2.2–4]**	2.8 [1.6–3.3]**	2.9 [1.75–3.3]**
Efficacy (by physician)	15 (79%)	7 (64%)	6 (67%)	15 (79%)	
Arthritis treatments					
Steroids (prednisone)	16 (73%)	12 (63%)	10 (91%)	8 (89%)	14 (74%)
Steroids (prednisone; mg/d)	27.5 [16–35]	15 [10–25]	10 [9.5–20]	9.5 [5–17]*	8 [5–15]**
Steroid dependence	—	5 (26%)	4 (36%)	1 (11%)	2 (11%)
Other treatments	4 (18%)	4 (21%)	3 (27%)	2 (22%)	4 (21%)
Hydroxychloroquine	13 (60%)				
Salazopyrin	26 (121%)				
MDS characteristics					
Hemoglobin (g/dL)	9 [8–11]	11 [8.5–11.5]	11 [8.7–13]	10 [8–11]	10 [8–12]
Platelets (n/mm³)	163 [62–657]	114 [50–242]	233 [75–250]	150 [40–244]	75 [12–146]*
Neutrophils (n/mm³)	2600 [740–5070]	1500 [1000–3000]	1300 [1150–2500]	1200 [1000–3105]	2300 [1000–4550]
Blasts (%)	0 [0–8]	0 [2]	0 [0–0]	0 [0–2.5]	0 [0–I]
MDS progression	—	3 (16%)	2 (18%)	4 (44%)	4 (21%)
MDS treatment	4 (18%)	6 (32%)	3 (27%)	3 (33%)	6 (32%)

Values are medians (interquartile ranges) and numbers (frequencies).

*<i>p < 0.05 versus baseline.</i>

**<i>p < 0.005 versus baseline.</i>

as well as the outcome and specific treatments. A literature review of MDS-associated arthritis was also performed.

PATIENTS AND METHODS

Patient Selection

Data were collected retrospectively from the physicians in charge of the patients. The physicians were asked to complete a standardized questionnaire distributed online with the support of the Club Rhumatismes et Inflammation (available online at http://www.cri-net.com) and the National Society of Internal Medicine (SNFMI) (see Supplemental Digital Content, http://links.lww.com/MD/A25, English version of the questionnaire). The inclusion criteria were as follows: 1) MDS according to the 2008 World Health Organization (WHO) criteria; 2) >2 tender joints and/or swollen joints for >6 weeks, with a diagnosis of inflammatory arthritis; 3) absence of extraarticular systemic features; 4) time between arthritis and MDS diagnosis <5 years. The exclusion criteria included crystal and septic arthritis. The study was performed in accordance with the ethical standards of the Helsinki Declaration.

Data Collection

One physician (AM) used the predefined standardized form to collect patient data. Patient clinical, laboratory, and radiologic data as well as treatments were recorded at baseline, at different points during the follow-up, and at the last visit (Table 1). The evaluated joints included the metacarpophalangeal (>10) and proximal interphalangeal (>10) joints, wrists (>2), metatarso-phalangeal joint (>10), shoulders (>2), knees (>2), ankles and elbows (>4). Laboratory data included standard tests, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), serum
fibrinogen, serum gammaglobulins, CH50, C3, C4, rheumatoid factor, anti-citrullinated protein antibodies (ACPAs), and antinuclear antibodies (ANAs) if available.

Definitions

The 1987 and 2010 American College of Rheumatology (ACR) criteria for rheumatoid arthritis were retrospectively applied to all patients. The response to treatment of arthritis was assessed using a subjective physician assessment and according to the DAS28-CRP variation (except for patients with polymyalgia rheumatica). Steroid dependence was defined as a daily prednisone dose ≥20 mg.

MDS was classified according to the 2008 WHO criteria. The International Prognostic Scoring System (IPSS) was retrospectively assessed, including the extent of cytopenia, cytogenetics, and the percentage of blasts in the bone marrow. The response of MDS to treatment was retrospectively defined according to the 2006 International Working Group criteria.

Statistical Analysis

Descriptive statistics included the medians (interquartile ranges [IQRs]) as appropriate for continuous variables and frequencies (percentages) for categorical variables. To consider missing data in the analyses, the results were expressed comparatively to the total number of available data. The Fisher exact test was used to compare categorical variables, and the nonparametric Mann-Whitney test or Wilcoxon test was used to compare continuous variables. A p value < 0.05 was considered significant. Statistical analyses were performed using Prism software (GraphPad Software, San Diego, CA).

Literature Review

Search Strategy

A literature search was performed by 2 investigators (AM and OF) using MEDLINE (National Library of Medicine, Bethesda, MD) (searching records from January 1987 to October 2012) using the following keywords: myelodysplastic syndrome, arthritis, rheumatoid arthritis, undifferentiated arthritis, systemic diseases, auto-immune diseases, polymyalgia rheumatica, and RS3PE. All articles with sufficient data were included in the literature review. The literature search yielded 31 citations; 23 were analyzed and included in the present study (7 were excluded because of insufficient data concerning arthritis, and 1 paper was in Japanese). Among these 31 studies, only 5 included more than 3 patients, with the largest study including 6 described cases (see Tables 2–4).

RESULTS

Baseline Patient Characteristics

Twenty-two patients with MDS and arthritis (median age, 77.5 yr [IQR, 69–81]; 12 men, 10 women) were included. The diagnosis of MDS included refractory cytopenia with unilineage dysplasia (RCUD) (n = 1), refractory anemia with ring sideroblasts (RARS) (n = 1), refractory anemia with excess blasts-1 (RAEB1) (n = 5), refractory anemia with excess blasts-2 (RAEB2) (n = 3), refractory cytopenia with multilineage dysplasia (RCMD) (n = 8), MDS with 5q deletion (n = 2), chronic myelomonocytic leukemia (CMML) (n = 1), and unclassified (MDS-U) (n = 1). Cytogenetics were available in 15 patients and were favorable in 11 cases including normal karyotype in 5/15 cases (33%), intermediate and poor in 2 cases each. The IPSS was low (n = 3), intermediate-1 (n = 7), and intermediate-2 (n = 5). The median medullar blast count was 4.5 [0–15], with a normal karyotype in 5/15 cases (33%).

Inflammatory arthritis presented as polyarthritic in 17 cases (77%) and with symmetric involvement in 15 cases (68%). Four patients had isolated shoulder arthralgia, compatible with polymyalgia rheumatica, and 4 (18%) had bilateral pitting edema of the hands with polyarthritis consistent with RS3PE syndrome. At diagnosis, rheumatoid factor was present in 5 patients (23%), and 2 of the 5 had ACPAs (9%), with radiologic erosions in 1 case. The median numbers of ACR-1987 and ACR-2010 rheumatoid arthritis criteria present were 3 [2.5–4] and 5 [4–7], respectively, with 8/18 patients (44%) and 6/18 (33%) fulfilling the rheumatoid arthritis criteria, respectively. The 2 sets of rheumatoid arthritis criteria were significantly correlated, with a kappa of 0.6 (p < 0.05).

The median time between the diagnoses of arthritis and MDS was 10 months [6–42], with an articular symptom duration of 3 months [2–8]. The appearance of these 2 diseases was concomitant in 6 cases (27%); arthritis preceded MDS in 12 cases (55%) and occurred after MDS in 4 (18%).

Outcome

The treatments administered during the follow-up and evolution of arthritis and MDS are shown in Table 1. While the number of swollen and tender joints and the median DAS28-CRP significantly decreased during follow-up (from 4.3 [3.8–4.6] at baseline to 2.9 [1.75–3.3]; p < 0.05), CRP remained elevated (CRP >20 mg/L in 8 [42%] vs. 14 patients at baseline). Nevertheless, no patients showed any radiographic progression or new ACPA positivity during a follow-up period of 29 months [9–76]. No significant correlation was found between MDS

Stable MDS or MDS-treatment response	MDS acceleration or absence of MDS-treatment response
N=13	N=8

FIGURE 1. Inflammatory arthritis outcome in relation to MDS evolution (data available for 21 of 22 patients).
First Author	Year	Age/Sex (yr)	Time Relation Arthritis-MDS (mo)	Type of MDS	Type of Arthritis	ESR/CRP (mm/h)/ (mg/L)	RF	Erosion	ACR-1987 RA	Treatment	Treatment of MDS	MDS Outcome	Follow-Up (mo)	Arthritis Outcome	
Castro	1991	74/M -48	RAEB1-2	P	107/ +	None	Yes	Prednisone	Remission						
George	1992	NA +18	RC	P	84/ -	None	Yes	Prednisone	Aggravation	Remission					
George	1992	NA -9	RAEB2	P	110/ -	None	Yes	NSAID	AL	Remission					
George	1992	NA Concomitant	RARS	P	33/ +	None	Yes	NSAID	Aggravation	Relapse					
George	1992	NA +5	RAEB1 O	None	64/ -	None	Yes	Prednisone	Aggravation	Remission	Steroid dependence				
George	1992	NA -13	RAEB2	P	60/ -	None	Yes	Prednisone	None	Remission	Recurrence				
Pajus	1992	74/F -6	CMML	P	+	None	Yes	Prednisone	None	AL	24	Remission			
Pajus	1992	54/M +12	CMML	O	+	None	None	Prednisone	30 mg/d	Steroid dependence					
Pajus	1992	75/M -5	RAEB2	O	+	None	None	None	Aracytine	Stable	36	Remission			
Pajus	1992	58/F +24	5q- M	P	35/ -	None	None	None	Stable	Stable	36	Remission			
Kuzmich	1994	64/M -9	RCMD	P	52/ -	None	Yes	Prednisone	Transfusions	AL	18	Remission			
Kuzmich	1994	61/M +5	P	55/ -	None	None	None	NSAID	None	Steroid dependence					
Pando	1995	59/M +2	RAEB1-2	O	68/ -	None	None	Prednisone	30 mg/d	None	6	No response			
Chandran	1996	80/M +36	RC	P	85/5 -	None	Yes	Prednisone	Transfusion	Stable	6	Remission			
Chandran	1996	84/F -6	RARS	P	71/ -	Yes	Yes	NSAID	None	No response					
Chandran	1996	75/M +9	CMML	P	10/14	None	Yes	Prednisolone	11	Remission					
Chandran	1996	73/M -3	CMML	P	70/20	None	None	Prednisone	20 mg/d	AL	12	Remission			
Carvajal	1996	72/M +24	RAEB1-2	P	72/ +	None	Yes	Prednisone	Transfusions	12	Steroid dependence				
Carvajal	1996	70/F Concomitant	CMML	P	127/ -	None	None	Prednisone	AL	Steroid dependence					
Kaufman	1997	77/F Concomitant	RAEB1-2	O	121/ -	None	None	Methylprednisolone	VP16	AL	9	Remission/relapses			
Cuende	1999	48/M +3	RAEB1-2	P	110/193 -	None	None	Prednisone	Transfusions	Stable	6	Remission			
Nam	1999	31/F +24	RCMD	P	+	Yes	None	Prednisone, HC	Androgens, transfections	Aracytine	AL	5	No response		
Soubrier	2002	77/M -12	RAEB1	P	93/42 +	None	Yes	Prednisone	10 mg/d, HC						
evolution and inflammatory arthritis, although among patients with stable MDS or responders to MDS treatment, 10 patients (77%) experienced arthritis remission compared to 4 (50%) in patients with progressive disease (Figure 1) \((p = 0.2)\). The arthritis treatments included steroids in 16/22 patients; only 4 patients received other treatments (hydroxychloroquine, \(n = 2\); sulfasalazine [Salazopyrin] and etanercept, \(n = 1\), respectively). For MDS, 6 patients received potentially disease-modifying drugs, including azacitidine in 4 cases and lenalidomide in 2, while other treatments included androgens \((n = 1)\), cyclosporine \((n = 1)\), and erythropoietin \((n = 8)\) for cytopenias. Among 4 patients receiving azacitidine, articular symptoms improved in 2 patients, with 1 patient achieving hematologic improvement and 1 patient stable while on azacitidine. No patient receiving lenalidomide improved in respect to articular symptoms. Complications that could be related to MDS and/or steroids were noted in 11 cases: infections \((n = 4)\), osteoporosis and fractures \((n = 2)\), steroid-related myopathy \((n = 2)\), cardiovascular failure \((n = 2)\), and secondary hemochromatosis \((n = 3)\). Eleven patients (50%) died during follow-up as a result of AML \((n = 5)\), infections \((n = 3)\), cerebral bleeding, cardiorespiratory failure or undetermined cause \((n = 1)\).

Literature Review

Rheumatoid Arthritis or Undifferentiated Arthritis

For the literature review we analyzed 42 cases with rheumatoid or undifferentiated arthritis, including 14 cases from the current study (Table 2). Arthritis was typically polyarticular \((n = 34; 83\%)\) and symmetrical \((80\%)\) with rheumatoid factor in 12/40 cases \((30\%)\), and radiologic erosions were present in only 2 cases \((5\%)\). The median time between the diagnosis of arthritis and MDS was 9 months [3.5–24]; arthritis preceded MDS in 21 cases \((50\%)\), and the 2 diseases were concomitant in 5 cases \((12\%)\). The number of ACR-1987 rheumatoid arthritis criteria met was 4 [2.5–4], and ≥4 were met in 21/41 patients \((51\%)\). Corticosteroids were used in 29/41 cases \((71\%)\), with daily prednisone at 30 mg [15–40]. Another disease-modifying anti-rheumatic drug was used in only 8 cases: hydroxychloroquine \((n = 5)\) and etanercept, tacrolimus, and sulfasalazine [Salazopyrin] \((n = 1)\), respectively. The types of MDS were RCUD \((n = 4)\), RAEB-1/-2 \((n = 15)\), RARS \((n = 3)\), MDS with 5q deletion \((n = 4)\), CMML \((n = 6)\), and RCMD \((n = 8)\). With a median follow-up of 12 months [8–33], 15/28 \((54\%)\) of the MDS patients had received treatment, including low-dose cytarabine, \((n = 3)\), azacitidine \((n = 2)\), androgens \((n = 2)\), VP16 \((n = 1)\), cyclosporine \((n = 1)\), and erythropoietin \((n = 5)\). MDS progression occurred in 10/23 cases \((43\%)\), with death in 11/19 cases \((58\%)\), whereas uncontrolled arthritis persisted in 17/34 cases \((50\%)\), with steroid dependence in 25%.

Polymyalgia Rheumatica

Eighteen cases of polymyalgia rheumatica, including our 4 cases, were analyzed (Table 3). Giant cell arteritis was reported in 3 cases \((17\%)\). The median time between the diagnosis of polymyalgia rheumatica and MDS was 4 months [3–27]; arthritis preceded MDS in 10 cases \((56\%)\), and the 2 diseases were concomitant in 3 cases \((17\%)\). Prednisone was used in all cases, with a median daily dose of 20 mg [19–40]. Additional treatment was administered in 3 cases (methotrexate in 2 cases and hydroxychloroquine in 1 case). Specific MDS treatment was administered in 6/16 cases; erythropoietin \((n = 4)\) and azacitidine, lenalidomide, and androgens \((n = 1)\), respectively. MDS progression occurred in 5/17 cases. Over a median follow-up of 29 months [10–47], polymyalgia rheumatica was in
First Author Year [ref]	Age/Sex (yr)	Time Relation Arthritis-MDS (mo)	GCA	ESR (mm/h)	CRP (mg/L)	Type of MDS	IPSS	Prednisone (mg/d)	MDS Treatment	MDS Outcome	Follow-Up (mo)	PMR Outcome
Kalra 1987	72/F	Concomitant	N	114	NA	RAEB2	NA	15	None	Progression	6	Remission
Kohli 1994	83/F	4	N	98	NA	RC	NA	20	Transfusions	Stable	5	Steroid dependence
Kohli 1994	59/F	4	N	105	NA	5q-	NA	15	Transfusions	Stable	60	Steroid dependence/relapses, methotrexate
Kohli 1994	67/F	3	Y	68	NA	RC	NA	60	Transfusions	Stable	228	Steroid dependence/relapses
Kuzmich 1994	82/F	-12	N	54	NA	RAEB2	NA	15	None	Progression	24	Remission/relapses
Mok 1996	59/F	Concomitant	N	140	NA	RAEB1	1	20	Transfusions	Stable	19	Remission
Billstrom 1995	68/F	-4	Y	105	NA	RAEB2	3.5	20	Stable	4	Remission	
Hubscher 1996	80/M	-4	N	140	NA	RAEB2	2.5	40	Androgens	Progression	8	Steroid dependence
Hubscher 1996	83/M	-4	N	130	NA	RC	1	40	None	Progression	9	Steroid dependence
Berthelot 1997	82/F	-96	N	50	40	RAEB1	0	15	Transfusions	Stable	36	Remission
Berthelot 1997	71/M	-32	N	110	70	RCMD	0.5	30	Transfusions	Stable	47	Relapses/hydroxychloroquine
Berthelot 1997	65/M	-10	N	60	46	RCMD	NA	51	NA	Stable	32	Steroid dependence/relapses
Giannouli 2004	67/M	-5	Y	NA	NA	RARS	2	NA	Erythropoietin, transfusions	Stable	14	Remission
Giannouli 2004	69/F	Concomitant	N	NA	NA	RAEB1	NA	NA	Erythropoietin, transfusions	Stable	47	Remission/methotrexate
PR, PMR Case 1	77/M	-2	N	100	120	RCMD	0.5	60	Erythropoietin/lenalidomide	No response	31	Steroid dependence
PR, PMR Case 2	80/M	+50	N	60	20	RAEB2	1.5	20	Azacytidine	No response	72	Partial response
PR, PMR Case 3	84/F	-34	N	15	27	RARS	NA	35	Erythropoietin	Progression	58	Remission/relapses
PR, PMR Case 4	74/F	-32	N	NA	NA	RCMD	1	30	None	Stable	27	Steroid dependence

Abbreviations: See previous tables. GCA= giant cell arteritis, HR = hematologic response, N = none, NA = not available, PMR = polymyalgia rheumatica, PR = present report, RC = refractory cytopenia.
remission in 7/18 cases (39%), and 8/18 cases (44%) had steroid dependence.

RS3PE Syndrome

Eight cases of RS3PE, including our 4 cases, were analyzed (Table 4). No patient presented with rheumatoid factor or radiologic erosion. Corticosteroids were used in all patients, with a daily dose of 14 mg 10Y20E and additional hydroxychloroquine treatment in 1 case. MDS was treated in 5/7 cases: erythropoietin (n = 2) and androgens, azacitidine, and lenalidomide (n = 1, respectively). MDS progression was observed in 1/5 cases. Over a median follow-up of 22 months 11Y30E, arthritis remission was achieved in 4/7 cases (57%), and steroid dependence was reported in 2/7 cases (29%).

All Patients With MDS Arthritis

Among 68 patients with MDS-associated arthritis, the median follow-up was 20 months 8Y36E. The median time between the diagnosis of arthritis and MDS was 5 months 1Y24E; arthritis preceded MDS in 34 cases (50%), and the 2 diseases were concomitant in 9 cases (13%) (Figure 2). Additionally, 12/49 (24%) patients were positive for rheumatoid factor, and 3/51 (6%) exhibited radiologic erosions. MDS-associated arthritis fulfilled the ACR-1987 rheumatoid arthritis criteria in 21 cases (31%), presented as polymyalgia rheumatica in 18 cases (26%), RS3PE syndrome in 8 cases (12%), and undifferentiated arthritis in 21 cases (31%). As shown in Table 5, MDS and arthritis appeared less than 12 months apart in most patients with RS3PE, polymyalgia rheumatica, and undifferentiated arthritis, and in 57% of patients with RA. Steroids were used in 54 cases (78%) with a median daily dose of 20 mg 15Y35 of prednisone. Complete arthritis remission was achieved in 22/65 cases (34%). The majority of patients had RAEB-1/j2 (n = 23/66; 35%). MDS was treated in 24/40 cases (60%), with stable disease in 26/57 cases (46%) and disease progression in 16/44 cases (36%).

DISCUSSION

In the current study focusing on MDS-associated arthritis, we describe 4 rheumatologic patterns of MDS-associated arthritis: rheumatoid and undifferentiated arthritis, polymyalgia rheumatica, and RS3PE syndrome. Despite the frequent and persistent increase of acute-phase reactants, radiologic erosions

TABLE 4. RS3PE Associated With MDS, Present and Previous Reports

First Author/Years	Age/Sex (yr)	Time Relation Arthritis-MDS	Type of MDS	ESR (mm/h)	CRP (mg/L)	RF	ACPA	Erosion	Prednisone (mg/d)	Other Treatment	MDS Outcome	Follow-Up (mo)	Arthritis Outcome	
Hernandez-Beriain	26	88/M, M +2	RC	80	NA	Negative	NA	None	15	None	None	Stable	8	Remission
Manganelli	34	72/M, M Concomitant	RAEB1	100	52	Negative	NA	None	20	None	None	Stable	31	Remission/relapse
Beyne-Rauzy	8	72/M, M Before MDS	RAEB1-2	NA	52	Negative	NA	None	20	None	None	Stable	24	Remission
Paira	41	75/M, M +11	NA	60	NA	Negative	NA	None	12	None	None	NA	24	Remission
PR, RS3PE Case 1	81/M	81/M, M Concomitant	RC	NA	15	Negative	NA	None	10	None	None	Stable	2	Remission
PR, RS3PE Case 2	77/M	77/M, M Before MDS	RAEB2	50	10	Negative	NA	None	20	None	None	Stable	10	Remission
PR, RS3PE Case 3	51/F	51/F, F Before MDS	RAEB1	65	10	Negative	NA	None	65	None	None	Stable	24	Remission
PR, RS3PE Case 4	89/M	89/M, M +6	RCMD	65	10	Negative	NA	None	65	None	None	Stable	24	Remission

Abbreviations: See previous tables.

FIGURE 2. Time between arthritis and MDS diagnoses in all patients.
targeting, particularly TNFα antagonists, is alone insufficient for MDS treatment, but some reports have sparked interest for their use in MDS-associated autoimmune disorders.5,45 Recently, hypomethylating agents, such as azacitidine and decitabine, have been shown to treat MDS effectively, and several reports have shown the benefits of these agents in MDS-associated autoimmune disorders.3,44 Similarly, lenalidomide has been shown to have immunomodulatory action in malignancy and to induce an increase in T-regulatory cells and a Th-17 cell imbalance; it may also be effective for the treatment of autoimmune features.3 In the current study, arthritis appeared to be better controlled in patients with stable MDS or treatment response. Nevertheless, large studies lack information on the impact of such treatments on MDS-associated autoimmune disorders, which is required to determine the optimal strategy in this setting.

Some limitations should be mentioned, including the retrospective design, the amount of missing data, and the small number of patients in the current study. The impact of MDS treatment on arthritis activity was difficult to assess, as treatments have changed over the years, and in particular, the impact of hypomethylating agents on arthritis could not be evaluated due to the small number of patients treated. Additionally, the efficacy of other immunosuppressive and steroid-sparing agents could not be assessed because the number of patients with non-steroid medications was low.

Conclusion

Inflammatory arthritis associated with MDS has various presentations, but joint destruction and serologic features are relatively rare. Steroids remain the main treatment regimen in these patients, and disease-modifying antirheumatic drugs are rarely used, most likely due to the associated cytopenia and concern about their impact on disease progression. Better treatment strategies for MDS-associated arthritis remain to be identified in the era of the new MDS agents.

REFERENCES

1. Aggarwal S, van de Loosdrecht AA, Alhan C, Ossenkoppele GJ, Westers TM, Bontkes HJ. Role of immune responses in the pathogenesis of low-risk MDS and high-risk MDS: implications for immunotherapy. Br J Haematol. 2011;153:568–581.

2. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO III, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawksa-Bienart E, Symmons D, Tak PP, Upchurch KS, Vencovsk J, Wolfe F, Hawker G. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European

TABLE 5. Delay Between Arthritis and MDS

Arthritis-MDS Delay	N Patients	RS3PE Patients	Polymyalgia Rheumatica Patients	RA Patients	Undifferentiated Arthritis Patients
≤12 mo	47 (69%)	7 (88%)	13 (72%)	12 (57%)	15 (71%)
<24 mo	54 (80%)	0	0	5	2
<36 mo	59 (87%)	1	3	1	0
<48 mo	61 (90%)	0	0	1	1
>48 mo	7	0	2	2	3
Total	68	8	18	21	21

Abbreviations: See previous tables.
League Against Rheumatism collaborative initiative. *Arthritis Rheum.* 2010;62:2569–2581.

3. Al Ustwani O, Francis J, Wallace PK, Ambrus J Jr, Wetzler M. Treating myelodysplastic syndrome improves an accompanying autoimmune disease along with a reduction in regulatory T-cells. *Leuk Res.* 2011;35:e35–36.

4. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, Medsger TA, Mitchell DM, Neustadt DL, Pinsal RS, Schaller JG, Sharp JT, Wilder RL, Hunder GG. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. *Arthritis Rheum.* 1988;31:315–324.

5. Baron F, Thyss A, Selleslag D, Indrak K, Osenkoppele G, de Witte T. Value of infliximab (Remicade) in patients with low-risk myelodysplastic syndrome: final results of a randomized phase II trial (EORTC trial 06023) of the EORTC Leukemia Group. *Haematologica.* 2012;97:529–533.

6. Berthelot JM, Hamidou M, Dauty M, Rodet D, Maugars Y, Prost A. Value of infliximab (Remicade) in patients with low-risk myelodysplastic syndrome. *Eur J Haematol.* 1997;64:95–100.

7. Berthier S, Magy N, Gil H, Schneider MB, Vuitton DA, Dupond JL. Autoimmune phenomena in myelodysplastic syndromes: final results of a randomized phase II trial (EORTC trial 06023) of the EORTC Leukemia Group. *Haematologica.* 2012;97:529–533.

8. Beyne-Rauzy O, Revel V, Desfossez V, Bousquet E, Nourhashemi F, Healey LA, Kaplan SR, Liang MH, Luthra HS, Medsger TA, Wilder RL, Hunder GG. Prevalence of rheumatic manifestations and antineutrophil cytoplasmic antibodies in haematological malignancies. A prospective study. *Rheumatology.* 2000;39:417–420.

9. Billstrom R, Johansson H, Johansson B, Mitelman F. Immune-mediated complications in patients with myelodysplastic syndromes—clinical and cytogenetic features. *Eur J Haematol.* 1995;55:42–48.

10. Bouali F, Berrah A, Si Ahmed-Bouali D, Harrieche F, Benhalima M, Hamladji RM, Arrada M. [Immunological abnormalities in myelodysplastic syndromes. Prospective study (series of 40 patients)]. *Rev Med Interne.* 2005;26:777–783.

11. Carvajal Mendez I, Garcia Vadillo JA, Herranz Varela A, Gonzalez Alvaro I, Casado Montero F, Castaneda Sanz S. [Polyarthritis associated with myelodysplastic syndromes]. *Rev Clin Exp.* 1996;196:539–541.

12. Castro M, Conn DL, Su WP, Garton JP. Rheumatic manifestations in myelodysplastic syndromes. *J Rheumatol.* 1991;18:721–727.

13. Chandran G, Ahern MJ, Seshadri P, Coghlan D. Rheumatic manifestations of myelodysplastic syndromes. *Clin J Med* 1996;26:683–688.

14. Cheson BD, Greenberg PL, Bennett JM, Lowenberg B, Wijermans PW, Nimer SD, Pinto A, Benan M, de Witte TM, Stone RM, Mittelman M, Sanz GF, Gore SD, Schiffer CA, Kantarjian H. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. *Blood.* 2006;108:419–425.

15. Cuenue E, Guinea J, Ortiz de Urbina F, Torrabedella S, Templado JA, Vesa JC. Seronegative oligoarthritis in the course of refractory anaemia with excess blasts. *Rheumatology (Oxford).* 1999;38:373–375.

16. de Hollanda A, Beucher A, Henrion D, Ghali A, Lavigne C, Levesque H, Hamidou M, Subra JF, Ifrah N, Belizna C. Systemic and immune manifestations in myelodysplasia: a multicenter retrospective study. *Arthritis Care Res (Hoboken).* 2011;63:1188–1194.

17. Enright H, Jacob HS, Vercellotti G, Howe R, Belzer M, Miller W. Paraneoplastic autoimmune phenomena in patients with myelodysplastic syndromes: response to immunosuppressive therapy. *Br J Haematol.* 1995;91:403–408.

18. Fain O, Hamidou M, Cacoub P, Godeau B, Wechsler B, Paries J, Stirnemann J, Morin AS, Gafosse M, Hanslik T, Belmatoag N, Bletry O, Cevallas R, Delevaux I, Fisher E, Hayem G, Kaplan G, Le Hello C, Mouton L, Larroche C, Lemaire V, Piette AM, Piette JC, Ponge T, Puechial X, Rossert J, Sarrot-Reynaud F, Sicard D, Ziza JM, Kahn MF, Guillelvin L. Vasculitides associated with malignancies: analysis of sixty patients. *Arthritis Rheum.* 2007;57:1473–1480.

19. Fain O, Braun T, Stirnemann J, Fenaux P. Systemic and autoimmune manifestations in myelodysplastic syndromes. *Rev Med Interne.* 2011;32:552–559.

20. George SW, Newman ED. Seronegative inflammatory arthritis in the myelodysplastic syndromes. *Semin Arthritis Rheum.* 1992;21:345–354.

21. Giagoundis AA, Haase S, Gersing U, Heinsech M, Aul C. Autoimmune disorders in two patients with myelodysplastic syndrome and 5q deletion. *Acta Haematol.* 2005;113:146–149.

22. Giannouli S, Voulgarelis M, Zintzaras E, Tzoufas AG, Moutsopoulos HM. Autoimmune phenomena in myelodysplastic syndromes: a 4-yr prospective study. *Rheumatology.* 2004;43:626–632.

23. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, Sanz M, Vallespi T, Hamblin T, Osiier D, Oshiyahski K, Toyama K, Aul C, Mufti G, Bennett J. International scoring system for evaluating prognosis in myelodysplastic syndromes. *Blood.* 1997;89:2079–2088.

24. Hamidou MA, Derenne S, Audrain MA, Berthelot JM, Bounalassa A, Grolleau JY. Prevalence of rheumatic manifestations and antineutrophil cytoplasmic antibodies in haematological malignancies. A prospective study. *Rheumatology.* 2000;39:417–420.

25. Hebbbar M, Hebbbar-Savek K, Fanou P. [Systemic diseases in myelodysplastic syndromes]. *Rev Med Interne.* 1995;16:897–904.

26. Hernandez-Beriaja IA, Cuesta-Callardo I, Segura-Garcia C. Remitting seronegative symmetrical synovitis with pitting oedema: a rheumatic manifestation of myelodysplastic syndrome? *Rev Rhum Engl Ed.* 1996;63:629–330.

27. Hubschker O, Vilches A, Solmesky S, Riveros D. Polymyalgia rheumatica in patients with myelodysplastic syndromes. *J Rheumatol.* 1996;23:792–793.

28. Kalra L, Delamere JP. Lymphoreticular malignancy and monoclonal gammopathy presenting as polymyalgia rheumatica. *Br J Rheumatol.* 1987;26:458–459.

29. Kaufman LD, Bahou WF, Fromowitz FB. Myelodysplasia presenting as monoarthritis. *J Rheumatol.* 1997;24:1446–1447.

30. Kohli M, Bennett RM. An association of polymyalgia rheumatica with myelodysplastic syndromes. *J Rheumatol.* 1994;21:1357–1359.

31. Kumar R, Garg ML, Jain GV, Maini PS. Sideroblastic anaemia presenting as monoarticular arthritis. *Acta Haematol.* 1974;52:169–172.

32. Kuzmich PV, Ecker GA, Karsh J. Rheumatic manifestations in patients with myelodysplastic and myeloproliferative diseases. *J Rheumatol.* 1994;21:1649–1654.

33. Lee BN, Gao H, Cohen EN, Badoux X, Wierda WG, Estrov Z, Faderl SH, Keating MJ, Ferrajoli A, Reuben JM. Treatment with lenalidomide modulates T-cell immunophenotype and cytokine production in patients with chronic lymphocytic leukemia. *Cancer.* 2011;117:3999–4008.

34. Manganelli P, Delsante G, Bianchi G, Fietta P, Quaini F. Remitting seronegative symmetrical synovitis with pitting oedema in a patient with myelodysplastic syndrome and relapsing polychondritis. *Clin Rheumatol.* 2001;20:132–135.

35. Mimura J, Ishikawa T, Yabe H, Nagai K, Nakayama S. [Arthritis in a case of myelodysplastic syndromes]. *Rinsho Ketsueki.* 1988;29:2292–2296.

36. Mok CC, Lau CS, Kumana CR. Polymyalgia rheumatica as the rheumatological manifestation of myelodysplastic syndrome in a Chinese patient. *Br J Rheumatol.* 1996;35:496–497.
37. Mufti GJ, Figes A, Hamblin TJ, Oscier DG, Copplestone JA. Immunological abnormalities in myelodysplastic syndromes. I. Serum immunoglobulins and autoantibodies. *Br J Haematol*. 1986;63:143–147.

38. Nam EJ, Kang YM, Kang HR, Kim JH, Rho HJ, Lee MK, Hyun SH, Kim GW, Lee JM, Kim NS. Rheumatoid arthritis associated with myelodysplastic syndrome: a case report. *J Korean Med Sci*. 1999;14:319–322.

39. Nozaki Y, Nagare Y, Kinoshita K, Urase F, Funauchi M. Successful treatment using tacrolimus plus corticosteroids in a patient with RA associated with MDS. *Rheumatol Int*. 2008;28:487–490.

40. Olive A, del Blanco J, Pons M, Vaquero M, Tena X. The clinical spectrum of remitting seronegative symmetrical synovitis with pitting edema. The Catalan Group for the Study of RS3PE. *J Rheumatol*. 1997;24:333–336.

41. Paira S, Graf C, Roverano S, Rossini J. Remitting seronegative symmetrical synovitis with pitting oedema: a study of 12 cases. *Clin Rheumatol*. 2002;21:146–149.

42. Pajus I, Amor B. [Rheumatological manifestations associated with myelodysplastic and myeloproliferative syndromes]. *Rev Rhum Mal Osteoartic*. 1992;59:11–16.

43. Pando JA, McLean RM, Flynn SD, Duffy TJ. Leukemic synovitis as the cause of arthritis in myelodysplastic syndrome. *J Clin Rheumatol*. 1995;1:125–127.

44. Pilorge S, Doleris LM, Dreyfus F, Park S. The autoimmune manifestations associated with myelodysplastic syndrome respond to 5-azacytidine: a report on three cases. *Br J Haematol*. 2011;153:664–665.

45. Pipitone N, Masini L, Salvarini C. A case of arthritis and vasculitis associated with the refractory anemia with excess of blasts syndrome resistant to glucocorticoids treatment that responded favorably to TNF-alpha blockade. *Clin Experimental Rheum*. 2006;24:S31–S34.

46. Soubrier M, Dubost JJ, Fournier P, Guilleminot C, Ristori JM. Myelodysplasia revealed by seropositive polyarthritis complicated by bictopenia after the first methotrexate dose. *Joint Bone Spine*. 2002;69:239–240.

47. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. *Blood*. 2009;114:937–951.