Asian Pacific Society of Cardiology Consensus Recommendations on Dyslipidaemia

Natalie Koh 1, Brian A Ference 2, Stephen J Nicholls 3, Ann Marie Navar 4, Derek P Chew 5, Karam Kostner 6, Ben He 7, Hung Fat Tse 8, Jamshed Dalal 9, Anwar Santos 10, Juny Ako 11, Hayato Tada 12, Jin Joo Park 13, Mei Lin Ong 14, Eric Lim 15, Tavin Subramaniam 15, Yi-Heng Li 16, Arintaya Phrommintikul 17, SS Iyengar 18, Saumitra Ray 19, Kyung Woo Park 20, Hong Chang Tan 21, Narathip Chunhamaneewat 22, Khung Keong Yeo 23 and Jack Wei Chieh Tan 23

1. National Heart Centre Singapore, Singapore; 2. University of Cambridge, UK; 3. Victorian Heart Institute, Melbourne, Australia; 4. UT Southwestern Medical Center, Texas, US; 5. Flinders University of South Australia, Australia; 6. Mater Hospital and University of Queensland, Australia; 7. Shanghai Chest Hospital, China; 8. University of Hong Kong, Hong Kong; 9. Centre for Cardiac Sciences, Kakilaben Dhirubhai Ambani Hospital, Mumbai, India; 10. National Cardiovascular Centre, Harapan Kita Hospital, Department of Cardiology-Vascular Medicine, Universitas Indonesia, Indonesia; 11. Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan; 12. Kanazawa University Hospital, Japan; 13. Seoul National University Bundang Hospital, South Korea; 14. Gleneagles Hospital Penang, Malaysia; 15. Khao Teck Puat Hospital, Singapore; 16. National Cheng Kung University Hospital, Taiwan; 17. Chiang Mai University, Thailand; 18. Manipal Hospital, Bangalore, India; 19. Vivekananda Institute of Medical Sciences, Kolkata, India; 20. Seoul National University Hospital, Seoul, Korea; 21. Singapore General Hospital, Singapore; 22. Siriraj Hospital, Mahidol University, Bangkok, Thailand; 23. Sengkang General Hospital, Singapore.

Abstract
The prevalence of dyslipidaemia has been increasing in the Asia-Pacific region and this is attributed to dietary changes and decreasing physical activity. While there has been substantial progress in dyslipidaemia therapy, its management in the region is hindered by limitations in awareness, adherence and healthcare costs. The Asian Pacific Society of Cardiology (APSC) developed these consensus recommendations to address the need for a unified approach to managing dyslipidaemia. These recommendations are intended to guide general cardiologists and internists in the assessment and treatment of dyslipidaemia and are hoped to pave the way for improving screening, early diagnosis and treatment. The APSC expert panel reviewed and appraised the evidence using the Grading of Recommendations Assessment, Development, and Evaluation system. Consensus recommendations were developed, which were then put to an online vote. The resulting consensus recommendations tackle contemporary issues in the management of dyslipidaemia, familial hypercholesterolaemia and lipoprotein(a) in the Asia-Pacific region.

Keywords
Asia-Pacific, consensus, dyslipidaemia, familial hypercholesterolaemia, lipoprotein(a).

Disclosure: This work was funded through Asian Pacific Society of Cardiology by unrestricted educational grants from Abbott Vascular, Amgen, AstraZeneca, Bayer and Roche Diagnostics. JWCT has received honoraria from AstraZeneca, Bayer, Amgen, Medtronic, Abbott Vascular, Biosensors, Alvimedica, Boehringer Ingelheim and Pfizer; research and educational grants from Medtronic, Biosensors, Biotronik, Philips, Amgen, AstraZeneca, Roche, Otuka, Terumo and Abbott Vascular; and consulting fees from Ekir and CSL Behring. JWCT is on the European Cardiology Review editorial board; this did not influence peer review. AMN has received research funding from BMS, Esperion, Amgen and Janssen; and honoraria and consulting fees from Amarin, Amgen, AstraZeneca, Boehringer Ingelheim, Esperion, Janssen, Lilly, Sanofi, Regeneron, NovoNordisk, Novartis, The Medicines Company, New Amsterdam, 89Bio and Pfizer. MLD has received consulting fees, lecture fees and travel grants from Abbott, Asian Pacific Society of Cardiology, Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Menarini, MSD, Novartis, Novo Nordisk, Pfizer and Sanofi. HFT has received grants, research support, speakers bureau, honoraria or consulting fees from Abbott, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Boston Scientific, Daiichi Sankyo, Medtronic, Novartis, Pfizer and Sanofi. SSL has received investigator fees from Amgen and lecture honoraria from Reddy’s Lab, Sanofi, and Novartis. TS has received advisory board honoraria from Amgen, AstraZeneca, MSD, Novo Nordisk, Pfizer, Novartis and Sanofi. SJJ has received research support from AstraZeneca, Amgen, Anthera, Eli Lilly, Esperion, Novartis, Cerenis, The Medicines Company, Resverlogix, InfraReDx, Roche, Sanofi-Regeneron and LipidScience; and is a consultant for AstraZeneca, Akcea, Eli Lilly, Anthera, Omthera, Merck, Takeda, Resverlogix, Sanofi-Regeneron, CSL Behring, Esperion and Boehringer Ingelheim. KKY has received institutional research funding from Medtronic, Boston Scientific, AstraZeneca and Shockwave Medical; consulting or honoraria fees from Medtronic, Boston Scientific, Abbott Vascular, Amgen, Bayer and Novartis; and speaker or proctor fees from Abbott Vascular, Boston Scientific, Medtronic, Philips, Shockwave Medical, Almedica, Menarini, AstraZeneca, Amgen and Bayer. All other authors have no conflicts of interest to declare.

Acknowledgements: Medical writing support was provided by Agnes Agustin and Ivan Olegario of MIMS Pte Ltd.

Received: 15 July 2021 Accepted: 4 October 2021 Citation: European Cardiology Review 2021;16:e54. DOI: https://doi.org/10.15420/ecr.2021.36

Correspondence: Jack Wei Chieh Tan, National Heart Centre, Singapore, 5 Hospital Dr, Singapore 169609. E: jack.tan.w.c@singhealth.com.sg

Open Access: This work is open access under the CC-BY-4.0 License which allows users to copy, redistribute and make derivative works for non-commercial purposes, provided the original work is cited correctly.
Dyslipidaemia, one of the major risk factors of atherosclerotic cardiovascular disease (ASCVD), is a condition marked by the imbalance of atherogenic and protective lipids, such as triglycerides, LDL cholesterol (LDL-C) and HDL cholesterol (HDL-C). As ASCVD is one of the leading causes of mortality worldwide, effective management of dyslipidaemia is more important than ever. The increasing prevalence of dyslipidaemia in the Asia Pacific is associated with dietary changes and decreasing physical activity. While there has been substantial progress in dyslipidaemia therapy, its management in the region is hindered by limitations in awareness, adherence and healthcare costs.

The Asian Pacific Society of Cardiology (APSC) developed these consensus recommendations to address the need for a unified approach to managing dyslipidaemia. These recommendations are intended to guide general cardiologists and internists in the assessment and treatment of dyslipidaemia. Although there is limited published clinical evidence and a lack of country-specific guidelines on dyslipidaemia management in the region, these recommendations hope to pave the way for improving screening, early diagnosis, and treatment throughout the region.

Methods

The APSC convened an expert consensus panel to review the literature on the assessment of dyslipidaemia, discuss gaps in current management, determine areas where further guidance is needed to and develop consensus recommendations on the use of LDL-C lowering therapies. The 26 experts of the panel are members of the APSC who were nominated by national societies and endorsed by the APSC consensus board or invited international experts. The expert consensus panel comprised cardiologists from Australia, China, Hong Kong, India, Indonesia, Japan, South Korea, Malaysia, Philippines, Singapore, Taiwan, Thailand, UK and US. For the development of these consensus recommendations, the panel agreed to use the APSC ‘CVD’ system for defining high-risk and very-high-risk patients (Table 1).

Assessment of High-risk Chronic Coronary Syndrome
C = CORONARY
Prior coronary event
High-risk coronary anatomy
Documented multi-vessel coronary disease
V = VASCULAR
Established peripheral artery disease
Cerebrovascular disease
D = DISEASE
Diabetes on treatment
eGFR <60 mg/min/1.73 m²
Micro- and macro-albuminuria
Heart failure due to coronary artery disease

The presence of any single factor listed would indicate high thrombotic risk in a chronic coronary syndrome patient. Presence of multiple factors would indicate even higher risk of thrombosis in the patient. *Left main PCI, bifurcation PCI, multivessel PCI, more than three stents. †Documented by CT cardiac angiography, severe ischaemia on functional stress test, prior PCI, CABG or bypass. ‡Claudication or prior peripheral intervention, carotid stenosis >50%, mesenteric artery disease, renal artery stenosis. §Ischaemic stroke or transient ischaemic attacks due to atherosclerosis. CABG = coronary artery bypass graft; eGFR = estimated glomerular filtration rate; PCI = percutaneous coronary intervention. Source: Tan et al. 2021. Reproduced with permission from Radcliffe Cardiology.

Table 1: High Thrombotic Risk ‘Coronary–Vascular–Disease’ Algorithm

The authors adjusted the level of evidence if the estimated effect when applied in the Asia-Pacific region might differ from the published evidence because of various factors such as ethnicity, cultural differences and/or healthcare systems and resources.

The available evidence was then discussed during two consensus meetings (May 2020 and December 2020). Consensus recommendations were developed during the meetings, which were then put to an online vote. Each recommendation was voted on by each panel member using a three-point scale (agree, neutral, or disagree). Consensus was reached when 80% of votes for a recommendation were agree or neutral. In the case of non-consensus, the recommendations were further discussed using email, then revised accordingly until the criteria for consensus were fulfilled.

Consensus Recommendations

Dyslipidaemia

Recommendation 1. Patients with chronic coronary syndrome (CCS) should be assessed according to the Coronary–Vascular–Disease (‘CVD’) system (APSC CCS consensus recommendations) and categorised as having high-risk CCS (one risk factor) or very-high-risk CCS (more than one risk factor).

Level of evidence: Low.
Consensus: 96.3% agree, 3.7% neutral, 0% disagree.

In these consensus statements, CCS is defined as the clinically stable phase between the index cardiovascular event and recurrent events in patients with coronary artery disease (CAD). To ensure that these consensus recommendations are aligned with other recommendations by the APSC, these recommendations adopted the ‘CVD’ classification of high-risk and very-high-risk CCS developed by the APSC. The ‘CVD’ system was developed to serve as the backbone of risk classification for the patient with dyslipidaemia. The presence of any single factor listed would indicate high clinical risk in a CCS patient. The presence of factors from multiple (more than one) categories (but not two factors from the same category only) would indicate even higher risk of clinical events in the patient. The assessment table was created through a separate APSC consensus and followed the pattern of levels of total cardiovascular risk presented in the 2019 European Society of Cardiology and European Atherosclerosis Society guidelines for the management of dyslipidaemia. Some countries in the Asia Pacific have created their own guidelines for the prevention, assessment and management of dyslipidaemia. These guidelines were also taken into consideration during the creation of the consensus recommendations to create a unified approach in the region.

It should be noted that total cardiovascular risk estimation is a part of a continuum. The cut-off points that were used to define high-risk levels are partly based on clinical trial evidence and — by necessity — partly based on clinical judgement. As the categories are based on an ideal setting with unlimited resources and best available evidence, appropriate measures within the local healthcare system should still be considered in clinical practice.

1. High (authors have high confidence that the true effect is similar to the estimated effect).
2. Moderate (authors believe that the true effect is probably close to the estimated effect).
3. Low (true effect might be markedly different from the estimated effect).
4. Very low (true effect is probably markedly different from the estimated effect).
In primary prevention, physicians may consider upfront initiation of combination therapy with high-intensity statins and ezetimibe. It is recommended to achieve target within 4 weeks of initial therapy. A PCSK9 inhibitor may be added for those who do not achieve target.

Recommendation 5. For high-risk CCS patients already treated with maximally tolerated statins, ezetimibe and/or a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor may be added for those who do not achieve target.

Recommendation 6. For very-high-risk CCS, upfront initiation of combination therapy with high-intensity statins and ezetimibe may be considered. A PCSK9 inhibitor may be added for those who do not achieve target within 4 weeks of initial therapy.

Level of consensus: 100% agree; 0% neutral; 0% disagree.

Level of evidence: Low.

The expert panel agreed that there is a need to aggressively treat the high-risk group as lipid treatment targets are often not reached in the region. Non-statin pharmacological options, such as ezetimibe and PCSK9 inhibitors, can also be effective in lowering cardiovascular event rates in high-risk and very-high-risk patients, when used in combination with statins. Upfront initiation of combination therapy may be considered early in very-high-risk patients to shorten the time to achieve LDL-C-lowering targets.

Reassessments of lipid levels after 4 weeks of therapy to assess treatment response and the need for uptitraton of therapy was agreed on for patients with very-high-risk CCS to avoid treatment inertia and ensure that targets are reached in the shortest time possible.

The recommendations for dyslipidaemia are summarised in Figure 1.

Familial Hypercholesterolaemia

Recommendation 7. Familial hypercholesterolaemia (FH) should be considered in people with:
- Severely elevated LDL-C (in adults, >4.9 mmol/l; in children up to age 19 years, >3.9 mmol/l);
- LDL-C of >2.6 mmol/l while adherent to a high-intensity statin;
- Premature ASCVD (age <55 years for men and <60 years for women);
- Elevated LDL-C (in adults >41 mmol/l) AND a first-degree relative with premature cardiovascular disease; and
- A first-degree relative with FH, tendon xanthoma or arcus cornealis.

Level of evidence: Low.

Level of consensus: 100% agree, 0% neutral, 0% disagree.

Recommendation 8. Clinical criteria can be used to identify and diagnose suspected FH. The choice of criteria used may vary across and within countries.

Level of evidence: Low.

Level of consensus: 96.3% agree, 3.7% neutral, 0% disagree.

Recommendation 9. Confirmation of FH via genetic testing is not necessary for treatment initiation but may be discussed for the purposes of diagnostic confirmation and cascade screening to identify family members with FH.
Level of evidence: Low.
Level of consensus: 100% agree, 0% neutral, 0% disagree.

Recommendation 10. Once an index case is diagnosed, family cascade screening (lipid profile) is recommended. Level of evidence: Low. Level of consensus: 96.3% agree, 3.7% neutral, 0% disagree.

Recommendation 11. Patients with FH and ASCVD or another major cardiovascular risk factor are considered to be very high risk. All other patients with FH are considered to be high risk. These patients should be treated with lipid-lowering therapies in accordance with their risk profile. Level of evidence: Low. Level of consensus: 96.3% agree, 0% neutral, 3.7% disagree.

FH screening is important as FH is the most common monogenic lipid disorder and the most strongly related to ASCVD. The pooled prevalence of FH from a meta-analysis of 19 studies was 0.40% (95% CI [0.29%–0.52%]), which corresponds to a frequency of 1 in 250 individuals. However, only a small fraction of people with FH are identified and properly treated. If left untreated, FH patients typically develop premature CAD due to lifelong elevation of plasma LDL-C, with the risk of coronary heart disease (CHD) estimated to be increased at least 10-fold (~50% lifetime risk of fatal CAD). The Copenhagen General Population Study showed that the prevalence of CHD among people with definite/probable FH was 33% and only 48% received statins.

While there is a growing awareness of FH worldwide, there are still limited studies about FH in the Asia-Pacific region. These gaps are because of low disease awareness, lack of national screening programs and limited availability of genetic testing. Therefore, data on the prevalence of FH are very limited in Asian countries. The genetic epidemiology of FH in Asian countries may be different from that in European cohorts. The panel acknowledged the various clinical criteria used in the region to diagnose FH. Internationally, the three most widely used diagnostic criteria were developed by the US MEDPED program, the UK Simon Broome Registry Group (SBRG) and the Dutch Lipid Clinic Network (DLCN). Across 16 Asian countries, six used DLCN, five used SBRG, three used MEDPED and 14 used their own criteria.

Japan, South Korea and China, in particular, have developed their own diagnostic criteria that are localised for their population. Of note, the cut-off is >4.7 mmol/l in guidelines from Japan and China and might vary between countries according to the distribution of LDL-C levels in the countries.

The availability of genetic testing is also variable within and between Asian countries. Hence, the panel has voted to allow individual countries to adopt the clinical criteria most appropriate for their population.
unavailable or cost-prohibitive in some areas. In these circumstances, clinical evaluation and lipid testing should be emphasised.

The Copenhagen General Population Study found that CHD was increased 13-fold among patients with definite/probable FH not receiving statins, while the risk remained 10-fold higher among persons treated with a statin.23 This suggests that high-intensity statin therapy is needed in many FH patients. A study of 70 patients with heterozygous FH treated with high-dose statins and ezetimibe found that the regimen improved total cholesterol (p<0.05), LDL-C (p<0.05), triglycerides (p<0.05) and apolipoprotein-B (p<0.05) in comparison to statin monotherapy over a 12-month follow-up period.27 Furthermore, a study of 50 patients with homozygous FH that patients receiving ezetimibe plus atorvastatin or simvastatin (40 mg or 80 mg for either drug) significantly reduced LDL-C levels compared with those receiving 80 mg of either statin as monotherapy (~20.7% versus ~6.7%, p<0.007).28 The study also found that the addition of ezetimibe was safe and well tolerated.

Lipoprotein(a)

Recommendation 12. Resources permitting, lipoprotein(a) measurement should be performed at least once in each adult person’s lifetime, especially those with family history of premature ASCVD. Those with very high inherited lipoprotein(a) levels >430 nmol/l (>180 mg/dl) may have a lifetime risk of ASCVD equivalent to the risk associated with heterozygous FH.

Level of evidence: Low.

Level of consensus: 92.6% agree, 7.4% neutral, 0% disagree.

Recommendation 13. Lipoprotein(a) measurement should be considered in selected patients with a family history of premature cardiovascular disease.

Level of evidence: Low.

Level of consensus: 92.6% agree, 7.4% neutral, 0% disagree.

Recommendation 14. As lipoprotein(a) is a risk enhancer, measurement may be considered for people who are borderline between high- and very-high risk.

Level of evidence: Low.

Level of consensus: 92.6% agree, 7.4% neutral, 0% disagree.

The INTERHEART study demonstrated how lipoprotein(a) can be used for the risk assessment of acute MI in ethnically diverse populations. South Asian people with elevated lipoprotein(a) concentrations had the highest odds for acute MI (OR 2.14; 95% CI [1.59–2.89]; p<0.001) and the highest population-attribution risk (10%) of ASCVD (adjusted for age, sex, apolipoprotein-A, and apolipoprotein-B).29,30 This was followed by Southeast Asian people, with an OR of 1.83 (95% CI [1.17–2.88]; p=0.009).

The panel agreed on the contemporary need to include lipoprotein(a) in the consensus recommendations. It is also acknowledged that there is a lack of evidence regarding lipoprotein(a) in the region and that it will be more useful as a risk modifier rather than a treatment target.

Lipoprotein(a) kits are widely available in the West and in developed Asia-Pacific regions, such as Australia, New Zealand, Singapore, Japan and South Korea. However, the availability and the cost of testing are prohibitive elsewhere in the Asia-Pacific region, and lipoprotein(a) testing is often not reimbursed by national insurers.

The 2018 Cholesterol Clinical Practice Guideline has recognised elevated lipoprotein(a) as an ASCVD risk enhancer.32 Among patients with enhanced risk because of elevated lipoprotein(a) levels, the initiation or intensification of statin therapy may be considered. The current management strategies for persons with elevated lipoprotein(a) include cascade screening as well as aggressive prevention and control of all modifiable risk factors.32 In particular, this should emphasise more intensive lowering of LDL-C as the initial therapeutic action. Currently available treatments have not been shown to lower ASCVD risk via lipoprotein(a) lowering per se. While PCSK9 inhibitors lower lipoprotein(a) by 30%, and this may explain some of their benefit, most of their benefit is because of their effect on LDL-C.33

New therapies are under development that potently and specifically lower lipoprotein(a) levels. Lp(a)HORIZON (NCT0423552) is a large phase 3 cardiovascular outcome trial underway that is evaluating whether lowering lipoprotein(a) with one of these newer agents will reduce the risk of major cardiovascular events. Increasing screening for elevated lipoprotein(a) to identify individuals who may benefit from these therapies will allow more rapid integration of these therapies into clinical practice in the future. Mendelian randomisation implies that lipoprotein(a) plays a causal role in both ASCVD and aortic stenosis. If so, lowering lipoprotein(a) may be favourable.34

Conclusion

These consensus recommendations aim to provide a comprehensive guide on the management of dyslipidaemia, in patients in the Asia-Pacific region. The 14 recommendations presented in this paper aim to guide clinicians based on the most updated evidence. However, given the varied clinical situations and healthcare resources present in the region, these recommendations should not replace clinical judgement. The management of dyslipidaemia should be managed on an individual basis, accounting for an individual’s baseline risk, clinical characteristics and comorbidities, as well as patient concerns and preferences. Clinicians should also be aware of the challenges that may limit the applicability of these consensus recommendations, such as the availability and affordability of specific drugs, interventions and other technologies, differences in each country’s healthcare resources and currently accepted standards of care along with cultural factors.

1. Lin C-F, Chang YH, Chien S-C, et al. Epidemiology of dyslipidaemia in the Asia Pacific region. Int J Genet Couns. 2018;19:2–6. https://doi.org/10.1007/s10810-018-0210-0.
2. Tan JWC, Chew DP, Brieger D, et al. 2020 Asian Pacific Society of Cardiology consensus recommendations on antithrombotic management for high-risk chronic coronary syndrome. Eur Heart J. 2021;42:n6. https://doi.org/10.15420/ecc.2020.45. PMID: 34249148.
3. Balachon H, Heifeld M, Schünemann HJ, et al. GRADE guidelines. 3. Rating the quality of evidence. J Clin Epidemiol. 2019;114:401–6. https://doi.org/10.1016/j.jclinepi.2019.07.015. PMID: 31208879.
4. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur J Cardiovasc Prev Rehabil. 2020;27:411–88. https://doi.org/10.1197/j.1394-5771.2020.421887. PMID: 31940146.
5. Cholesterol Treatment Trials (CTT) Collaborators. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380:581–90. https://doi.org/10.1016/S0140-6736(12)61080-1. PMID: 22007382.
6. Tramacek I, Boncoraglio GB, Banzi R, et al. Comparison of statins for secondary prevention in patients with ischaemic stroke or transient ischaemic attack: a systematic review and network meta-analysis. BMJ Med J. 2019;57:67 https://doi.org/10.1186/s12916-019-1296-5. PMID: 30946063.
7. Bruijs JJ, Yetgin T, Hoeks SE, et al. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. BMJ. 2009;338:b2276. https://doi.org/10.1136/bmj.b2276. PMID: 19567909.
8. Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of 30 randomised trials in 100,000 people. Lancet. 2010;376:1829–39. https://doi.org/10.1016/S0140-6736(10)60135-5. PMID: 20967804.
9. Mills EJ, Rathlis B, Wu P, et al. Primary prevention of cardiovascular mortality and events with statin treatments. J Am Coll Cardiol. 2008;52:1769–81. https://doi.org/10.1016/j.jacc.2008.08.039. PMID: 19022156.
Cholesterol Treatment Trials (CCT) Collaboratio. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet 2015;385:1397–405. https://doi.org/10.1016/S0140-6736(15)61368-4; PMID: 25579834.

Cheung BMY, Cheng CH, Lau CP, et al. A consensus statement on prevention of atherosclerotic cardiovascular disease in the Hong Kong population. Hong Kong Med J 2017;23:291–201. https://doi.org/10.12809/hkmj/65045; PMID: 28387202.

Kinosita M, Yokote K, Arai H, et al. Japan Atherosclerosis Society (JAS) guidelines for prevention of atherosclerotic cardiovascular diseases 2017. J Atheroscler Thromb 2018;25:846–584. https://doi.org/10.5551/jat.66207; PMID: 30353344.

Rhee E-J, Kim HC, Kim JH, et al. 2018 Guidelines for the management of dyslipidemia in Korea. Korean J Intern Med 2019;34:1171. https://doi.org/10.3904/kjim.2019.188.e1; PMID: 31466435.

Ministry of Health Singapore. Lipids: MOH Clinical Practice Guidelines 2/2016. Singapore: Ministry of Health, 2016.

Byrne P, Cullinan J, Smith A, Smith M. Statins for the primary prevention of cardiovascular disease: an overview of systematic reviews. BMJ Open 2016;6:e012085. https://doi.org/10.1136/bmjopen-2016-012085; PMID: 30152652.

Papademetriou V, Stavopoulou K, Papapoulos C, et al. Role of PCSK9 inhibitors in high-risk patients with dyslipidemia: focus on familial hypercholesterolemia. J Pharm Des 2018;24:3647–53. https://doi.org/10.1177/1381613318781024; PMID: 30317985.

Choi JY, Na JO. Pharmacological strategies beyond statins: Ezetimibe and PCSK9 inhibitors. J Lipid Atheroscler 2019;1:183–91. https://doi.org/10.25997/jla.2018.2.2.183; PMID: 32821087.

Akiyam EN, Genest J, Shin SD, et al. Estimating the prevalence of heterozygous familial hypercholesterolemia: a systematic review and meta-analysis. BMJ Open 2017;7:e016461. https://doi.org/10.1136/bmjopen-2017-016461; PMID: 2884687.

Benn M, Watts GF, Tybjerg Hansen A, Nordestgaard BG. Familial hypercholesterolemia in the Danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J Clin Endocrinol Metab 2012;97:3956–64. https://doi.org/10.1210/jc.2012-1563; PMID: 22893794.

Jackson CL, Zordik M, Kulik U. Familial hypercholesterolemia in Southeast and East Asia. Am J Prev Cardiol 2021;61:10057. https://doi.org/10.1016/j.ajpcrd.2021.10057; PMID: 34327494.

Liu A, Lye S. Familial hypercholesterolemia in Asia: a review. JOMCS Research 2011;1:22–31.

Zhou M, Zhao D. Familial hypercholesterolemia in Asian populations. J Atheroscler Thromb 2016;23:539–49. https://doi.org/10.5551/jat.34405; PMID: 27075771.

Harada-Shiba M, Arai H, Ishigaki Y, et al. Guidelines for diagnosis and treatment of familial hypercholesterolemia 2017. J Atheroscler Thromb 2018;25:751–70. https://doi.org/10.5551/jat.CR003; PMID: 29877295.

Atherosclerosis and Coronary Heart Disease Group of the Chinese Society of Cardiology of Chinese Medical Association; Editorial Board of Chinese Journal of Cardiology. Chinese expert consensus on screening, diagnosis and treatment of familial hypercholesterolemia. Zhonghua Xin Xue Guan Bing Za Zhi 2018;46:99–103 [in Chinese]. https://doi.org/10.3760/cma.j.issn.0253-3758.2018.02.006.

Wundering D, Uman Eckenhausen M, Marks D, et al. Cost-effectiveness analysis of the genetic screening program for familial hypercholesterolemia in Denmark. CMAJ 2019;191:E574–E80. https://doi.org/10.1503/cmaj.181136; PMID: 30697453.

Harada-Shiba M, Arai H, Ishigaki Y, et al. Guidelines for diagnosis and treatment of familial hypercholesterolemia 2017. J Atheroscler Thromb 2018;25:751–70. https://doi.org/10.5551/jat.CR003; PMID: 29877295.

Atherosclerosis and Coronary Heart Disease Group of the Chinese Society of Cardiology of Chinese Medical Association; Editorial Board of Chinese Journal of Cardiology. Chinese expert consensus on screening, diagnosis and treatment of familial hypercholesterolemia. Zhonghua Xin Xue Guan Bing Za Zhi 2018;46:99–103 [in Chinese]. https://doi.org/10.3760/cma.j.issn.0253-3758.2018.02.006.

Wundering D, Uman Eckenhausen M, Marks D, et al. Cost-effectiveness analysis of the genetic screening program for familial hypercholesterolemia in the Netherlands. Semin Vasc Med 2020;20:97–104. https://doi.org/10.1055/a-1172-1566; PMID: 3198439.

Nherera L, Marks D, Minhas R, et al. Probabilistic cost-effectiveness analysis of cascade screening for familial hypercholesterolemia using alternative diagnostic and treatment strategies. Health Policy 2016;120:680–91. https://doi.org/10.1016/j.healthpol.2016.08.006; PMID: 27485482.

Pitsavos C, Skoumas I, Toutoulos D, et al. The impact of ezetimibe and high-dose of statin treatment on LDL levels in patients with heterozygous familial hypercholesterolemia. Int J Cardiol 2009;134:280–1. https://doi.org/10.1016/j.ijcard.2007.06.055; PMID: 18353459.

Gagné C, Gaudet D, Bruckert E, Group ES. Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation 2002;105:2469–75. https://doi.org/10.1161/01.CIR.0000018744.58460.62; PMID: 12034651.

Paré G, Cuku A, McQueen M, et al. Lipoprotein(a) levels and the risk of myocardial infection among 7 ethnic groups. Circulation 2019;139:1472–82. https://doi.org/10.1161/CIRCULATIONAHA.118.034311; PMID: 30667276.

Eras EA, Verhey B, Dharmarajan KS, et al. Lipoprotein(a): An independent, genetic, and causal factor for cardiovascular disease and acute myocardial infarction. Indian Heart J 2019;71:99–112. https://doi.org/10.1016/j.ihj.2019.03.004; PMID: 31280836.

Grundy SM, Stone NJ, Bailey AL, et al. AHA/ACC/AACVPR/ AAPA/ABC/ACPM/AGS/APhA/ASPC/NLA/APCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019;139:e1082–143. https://doi.org/10.1161/CIR.0000000000000625;

Atikar M, Thansouls G. Lipoprotein(a): new insights from modern genomics. Curr Opin Lipidol 2017;28:170–6. https://doi.org/10.1097/MOL.0000000000000392; PMID: 28059593.

Bitner VA, Szarek M, Aylward PE, et al. Effect of alirocumab on lipoprotein(a) and cardiovascular risk after acute coronary syndrome. J Am Coll Cardiol 2020;75:133–44. https://doi.org/10.1016/j.jacc.2019.10.057; PMID: 31948481.

Schroeter JG, Ali L, Groenen AG, et al. Lipoprotein(a) as an orchestrator of calcific aortic valve stenosis. Biomolecules 2019;9:760. https://doi.org/10.3390/biom9120760; PMID: 31766423.