The end of the lunar dynamo

Saied Mighani1,2*, Huabei Wang1,2, David L. Shuster3,4, Cauê S. Borlinga1, Claire I. O. Nichols1, Benjamin P. Weiss1†

Magnetic measurements of the lunar crust and Apollo samples indicate that the Moon generated a dynamo magnetic field lasting from at least 4.2 until <2.5 billion years (Ga) ago. However, it has been unclear when the dynamo ceased. Here, we report paleomagnetic and 40Ar/39Ar studies showing that two lunar breccias cooled in a near-zero magnetic field (<0.1 μT) at 0.44 ± 0.01 and 0.91 ± 0.11 Ga ago, respectively. Combined with previous paleointensity estimates, this indicates that the lunar dynamo likely ceased sometime between ~1.92 and ~0.80 Ga ago. The protracted lifetime of the lunar magnetic field indicates that the late dynamo was likely powered by crystallization of the lunar core.

INTRODUCTION
The intensity of the present-day magnetic field across much of the lunar surface is <0.2 nT, indicating that the Moon currently does not have a global magnetic field (1). However, paleomagnetic measurements of Apollo samples indicate that the Moon once generated a core dynamo with surface field intensities of several tens of microtesla (comparable to that of Earth today) during the period 4.25 to 3.56 billion years (Ga) ago (2–7). Following this high-field epoch, the field declined by at least an order of magnitude by 3.2 Ga ago (8) and persisted in a weakened state (~5 μT) until at least 2.5 Ga ago (9). It has been unknown how long the dynamo persisted beyond this time. The youngest lunar paleointensity constraint is an upper limit of 7 μT at <7 million years (Ma) ago provided by an impact glass splash (10).

The time of the dynamo’s cessation has major implications for the mechanism of magnetic field generation as well as the thermal and mechanical evolution of the lunar interior (6). For example, a core dynamo powered purely by thermal convection (11–14) is thought to only be able to persist until ~3.5 Ga ago (15). In comparison, a dynamo driven by mantle precession (16) is thought to be sustainable until sometime between ~3.4 and 2.0 Ga ago for typical lunar physical parameters (6, 9). Alternatively, a thermochemical convection dynamo powered by core crystallization could power the dynamo even until close to the present time (15, 17).

To constrain the late history of the lunar magnetic field, we studied the paleomagnetism of the young Apollo 15 breccias 15465 and 15015 (18). During the assembly of these breccias, their clasts were welded together by 60 to 90 volume % matrix melt glass formed by impact melting of the local lunar regolith (section S1) (19). Breccia 15465 was a float sample collected from the rim of Spur crater and contains clasts with diameters ranging from <1 to ~80 mm that are dominantly regolith breccias (figs. S1 and S7). Our 40Ar/39Ar, 39Ar/36Ar, and 40Ar/36Ar measurements, combined with previous Ar analyses, indicate that the assembly of 15465 and the formation of its matrix glass most likely occurred at 0.44 ± 0.01 Ga ago (age ranges are 1 SD), while a ~20-mm-diameter regolith breccia clast formed at ~3.4 Ga ago (section S7, table S20, and fig. S38). The latter clast contains a diversity of subclasts, including anorthosites, norites, and KREEP (potassium–rare earth element–phosphorus)–rich basalts that resemble the nearby Apollo 15 basalts (20, 21). Sample 15015 is a regolith breccia collected as float on the mare surface ~20 m from the Apollo 15 Lunar Module (19, 22). It contains <0.1- to 7-mm-diameter clasts in the form of rock, mineral, and glass fragments (figs. S2 and S11). Our 40Ar/39Ar, 38Ar/36Ar, and 40Ar/36Ar chronometry data indicate that 15015’s matrix glass likely formed at 0.91 ± 0.11 Ga ago, consistent with previous measurements (see section S7, table S21, and fig. S39). Combined with our thermal diffusion calculations (section S2), these data indicate that the matrix melt glass, clasts smaller than ~10 mm in diameter, and the thermally equilibrated exteriors of larger clasts should have recorded any ambient lunar magnetic field at ~0.4 Ga ago (15465) and ~0.9 Ga ago (15015).

Similar to previously studied regolith breccias (9), the ferromagnetic carriers in the glassy matrices of 15015 and 15645 have exceptional magnetic recording properties compared to most lunar rocks (section S6). Our electron microscopy observations indicate that the dominant ferromagnetic minerals in the glass matrix of 15465 are kamacite (α-Fe1−xNix with x < ~0.04) and schreibersite (Fe1−xNi3)xP with x ~ 0.1, while the aforementioned glassy regolith breccia clast contains mostly kamacite and martensite (α2-Fe1−xNi1−y, with x ~ 0.08) (fig. S24). Previous analytical electron microscopy (AEM) studies of the matrix glass in 15015 found that it contains kamacite (23), while our electron microscopy observations identified both kamacite and schreibersite (fig. S28). Our hysteresis and isothermal remanent magnetization (IRM) and first-order reversal curve (FORC) measurements of the regolith breccia clast in 15465 and the glass matrix in 15015, along with the AEM data (23), indicate a dominantly single-vortex to superparamagnetic grain size, while the glass matrix in 15465 contains grains ranging from single domain to multidomain in size (figs. S25 to S27, S29, and S30).

Given the mineralogies and compositions of the ferromagnetic grains in 15465 and 15015, these grains should have acquired mostly a total thermonermal magnetization (TRM) in any ambient magnetic field following the last major heating event (see section S6). The degree of crystallinity in the matrix glasses of the two breccias indicates that they cooled from the 780°C Curie point of kamacite to ambient surface temperatures over ~24 hours (section S2 and fig. S4). Because this time scale exceeds the estimated lifetime of putative impact-generated fields from even the largest lunar impacts (24), the matrix glasses in these breccias should have only recorded any ambient dynamo field during cooling. The lack of microfractures in the
glass matrices of both breccias (see figs. S1 and S2) constrains post-cooling peak shock pressures to below ~3 GPa (25). We analyzed the paleomagnetism of the breccias in the Massachusetts Institute of Technology (MIT) Paleomagnetism Laboratory using a 2G Enterprises superconducting rock magnetometer (SRM), focusing on the matrix glass. Natural remanent magnetization (NRM) components were determined using alternating field (AF) and thermal demagnetization. Paleointensities were estimated using both nonthermal [i.e., anhysteretic remanent magnetization (ARM) and IRM] and double-heating (26) experiments (sections S3 and S4). To mitigate thermochemical alteration, the thermal demagnetization and paleointensity experiments were conducted in a CO$_2$-H$_2$ gas-mixing controlled-atmosphere oven (27) at an oxygen fugacity of 0.5 to 1 log unit below the iron-wüstite buffer (28, 29). We measured the paleomagnetism of 8 and 22 matrix glass–rich subsamples of 15465 and 15015, respectively, 3 subsamples of the regolith breccia clast of 15465, 1 subsample of a ~7-mm-diameter 15015 clast, and 2 composite 15015 subsamples each composed of a single large clast and surrounding matrix glass. Note that the matrix glass–rich subsamples from 15015 also commonly contain some small (<1-mm-diameter) clasts. To our knowledge, the NRM of 15465 has never been previously studied. Two previous studies briefly characterized the IRM (30) of 15015 and estimated paleointensities using nonthermal experiments (31) (section S3).

![Fig. 1. NRM demagnetization of matrix glass subsamples from breccias 15465 and 15015. Shown are endpoints of the NRM vectors during progressive alternating field (AF) and thermal demagnetization. Closed and open symbols represent projections of the NRM vectors onto the horizontal (N-E) and vertical (U-E) planes, respectively. (A) 15465 subsample 4-2. (B) 15465 subsample 5-3. (C) 15015 subsample 229a1m. (D) 15015 subsample 229b8. Inset: Magnified view of HT demagnetization steps for 229b8. The legend in (A) shows the sample holder magnetic moment (denoted by the size of the large black box) and the MIT SRM moment resolution (denoted by the size of the small black box) (section S3). The initial NRM, AF levels, and temperatures for selected demagnetization steps are labeled. For both breccias, after removal of low coercivity (LC) and low temperature (LT) components (blue arrows), there is no discernible origin-trending magnetization in the high coercivity (HC)/high temperature (HT) range (as indicated by scattered vector endpoints).](http://advances.sciencemag.org/content/6/1/eaax0883)
RESULTS
Breccia 15465
We found that the matrix glass in 15465 contains a low coercivity (LC) and a low temperature (LT) component that unblocked by ~3 to 10 mT and 330° to 390°C, respectively (Fig. 1, fig. S9, and table S4). This component is non-unidirectionally oriented throughout the sample (fig. S8A). Given that the matrix glass was heated above the kamacite Curie temperature during its formation and so should have acquired a stable, unidirectional magnetization in the direction of any ambient field, the low AF and thermal stability and the non-unidirectionality of these components suggest that they are secondary and postdate breccia formation. Blocking temperature relationships for single-domain and single-vortex iron indicate that lunar samples are expected to have viscous overprints with 1-hour blocking temperatures somewhere between ~125° and 485°C (32, 33), consistent with the observed peak unblocking temperature of the LC component. Our laboratory viscous remanent magnetization (VRM) experiments indicate that the magnitude of terrestrial VRM acquired over four decades of storage in Earth’s magnetic field at Johnson Space Center (JSC) could have reached ~130% of the LC/LT components (section S5). Therefore, the LC/LT components are likely VRMs acquired in the geomagnetic field, although there may also
be a contribution from exposure to stray fields during handling by the astronauts or at JSC (34). The LC/LT components for the clast subsamples unblocked by ~16 to 65 mT (fig. S9) and 200°C (fig. S10B) and likely have similar origins to those in the matrix glass (section S3).

After removal of the LC/LT components in 15465, further demagnetization of matrix glass samples produced directionally unstable moments with no consistent decay in magnitude (Fig. 1 and fig. S9). Principal components analysis (PCA) of these high coercivity (HC) and high temperature (HT) ranges yielded non-origin-trending components (deviation angle > maximum angular deviation (MAD) (35); table S4) with highly scattered directions and most MAD values >40° (fig. S8B and table S4). This indicates the absence of any HC/HT components and a lack of total TRM in the glass subsamples. Furthermore, we found that the ARM, IRM, and thermal paleointensities for the glass subsamples are within error of zero for the HC/HT range (Fig. 2, figs. S16 and S18, tables S6 to S7, and section S4). For the nonthermal paleointensities, the mean HC paleointensity value for glass samples is −0.10 ± 0.08 µT (paleointensity ranges are 2 SDs), with ~90% of experiments yielding nominal values of <0.7 µT.

Glass sample HT thermal paleointensities are less well constrained but also near zero (mean value of 3.8 ± 2.9 µT). Partial TRM (pTRM) checks during the thermal experiments indicate a lack of thermochemical alteration during laboratory heating up to 730°C (section S4 and fig. S18), although the samples acquired substantial pTRM during in-field heating steps. Like the matrix glass samples, we also found that subsample 6-3, which is from the exterior of the 15465 regolith breccia that is expected to have been heated above the kamacite Curie temperature by surrounding matrix melt after breccia assembly, exhibits an unmagnetized HC range (ARM and IRM mean paleointensity of −0.13 ± 0.22 µT and residual ARM paleointensity of <0.06 µT) (Fig. 2A, tables S6 and S7, and section S4). The lack of stable NRM in 15465 is not only due to poor magnetic recording properties of the sample: Our 15465 paleointensity fidelity analyses indicate that our nonthermal methods can accurately measure paleointensities of <0.4 µT (Fig. 2B, section S4, and table S11). Overall, our measurements of 15465 show that the lunar surface field was almost certainly below 0.4 µT and very likely below even 0.06 µT, at the time it was assembled at 0.44 ± 0.01 Ga ago.

DISCUSSION

Our results from both breccias show that the lunar surface field was very likely below 0.06 and 0.08 µT at 0.44 ± 0.01 Ga ago and 0.91 ± 0.11 Ga ago, respectively. These upper limits are at or below inferred lunar
surface fields over much of the mare (1) and compatible with the weak fields measured at the Apollo 15 site (2). These upper limits are also below the surface fields typically predicted by dynamo scaling laws (36): In particular, all published lunar thermal and evolution models (12, 14–16, 37, 38) predict surface fields of >0.1 μT for >~90% of the dynamo’s active period. Such a weak intensity is also below the weakest known dynamo surface field in the solar system today, that of Mercury (39). Therefore, we conclude that the lunar dynamo was likely no longer operating at 0.91 ± 0.11 Ga ago.

The youngest evidence for the existence of the lunar dynamo is the ~5 ± 2 μT paleointensity estimate from regolith breccia 15498, whose age of assembly is constrained using ⁴⁰Ar/³⁹Ar chronometry (9) to ~1.75 ± 0.75 Ga ago and using trapped ⁴⁰Ar/³⁶Ar data (40) to 1.32–0.52 (section S7.5). We obtain a new refined age of the NRM in 15498 by adopting the weighted mean of these two ages of 1.47 ± 0.45 Ga ago. Combining the 1-SD extremes of the age estimates for 15498 and 15015, we conclude that the dynamo ceased sometime between 1.92 and 0.80 Ga ago. Furthermore, the age and paleointensity constraints on 15465 indicate that the dynamo field remained absent at 0.44 ± 0.01 Ga ago (Fig. 4). Such a protracted history is likely inconsistent with the late magnetic field being generated by precession (16, 41), which is thought to have only been capable of powering a dynamo until ~2.0 Ga ago given the expected evolution of the lunar orbit (9). Instead, the persistence of the magnetic field until after 1.92 Ga ago is likely compatible with the late dynamo being driven by core crystallization for relatively low values of core thermal conductivity and expansivity (17). Future paleointensity studies on young Apollo samples should determine whether the dynamo ceased permanently after 1.92 Ga ago or, alternatively, whether it entered a start-stop regime (17).

METHODS

Paleomagnetism

Paleomagnetic analyses were conducted using a 2G Enterprises SRM 755 inside the MIT Paleomagnetism Laboratory. We prepared mutually oriented subsamples of 15465 and 15015 in this shielded room using a wire saw previously shown to not measurably disturb the NRM of lunar samples (8).

Static three-axis AF demagnetization of NRM was conducted up to a maximum AF of 145 mT for most subsamples (in some cases, up to 290 mT). Thermal demagnetization and thermal paleointensity experiments were conducted up to 780°C in a CO₂-H₂ gas-mixing controlled-atmosphere oven (27) at an oxygen fugacity set to the estimated formation conditions of lunar materials (0.5 to 1 log units

Fig. 4. Paleointensities for breccias 15465 and 15015 and those of other modern measurements of lunar rocks. Points labeled 15015 and 15465 are new paleointensity estimates reported by this study, while the remaining points are previously measured values (6, 9). Red points denote upper limits on the field (i.e., values indistinguishable from zero), while blue points denote nonzero values (i.e., detections of the paleofield). Vertical and horizontal arrows and error bars indicate the paleointensity and age limits and 1-SD uncertainties, respectively. The blue and red shaded regions indicate the epochs when the dynamo is inferred to be active and have ceased, respectively. Vertical and horizontal arrows and error bars indicate the paleointensity and age limits and uncertainties, respectively. The vertical dashed lines are the lifetime for proposed dynamo mechanisms: thermal convection in a dry mantle (11), impact-driven changes in mantle rotation (50), thermal convection in a dry mantle covered by a thermal blanket (12), thermal convection in a wet mantle (13), lunar precession (16), and core crystallization (15). The upper and lower horizontal dashed lines denote the maximum field predicted by energy flux scaling (36) and the predicted field exceeded by all published dynamo models for >90% of the dynamo lifetime, respectively. Data are tabulated in table S22.
below the iron-wüstite buffer) (28, 29). ARM and IRM paleointensities were conducted using multicomponent methods (42, 43). The thermal paleointensities were conducted following the IZZI (in-field, zero-field, zero-field, in-field) protocol (44) and included pTRM checks for alteration. NRM components were estimated using PCA (45).

ARM and IRM measurements were obtained using the MIT SRM. Hysteresis and FORC measurements were conducted at the MIT Department of Materials Science and Engineering using a vibrating sample magnetometer.

40Ar/39Ar, 38Ar/37Ar, and 40Ar/36Ar chronometry

40Ar/39Ar, 38Ar/37Ar, and 40Ar/36Ar thermochronometry experiments were conducted at the Berkeley Geochronology Center following our previously described procedures (4, 8, 46). We analyzed both whole rock matrix glass and clast subsamples from both lithologies. We calculated apparent 40Ar/39Ar ages for each degassing step relative to the Hb3gr flume monitor [age = 1081 Ma (47)] using the decay constants of (47) and the isotopic abundances of (48). For 15465 glass subsample 6-4-1, 15465 clast subsample 6-2, and 15015 glass subsample 229b1, we corrected the 40Ar/39Ar ages for the trapped 40Ar using the ordinate-intercept 40Ar/36Ar ratios determined by error-weighted linear regressions in three-isotope plots. Cosmogenic 38Ar exposure ages for each degassing step were estimated following the procedures described in (46).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/6/1/eaax0883/DC1

Section S1. Overview of samples
Section S2. Breccia thermal history
Section S3. NRM
Section S4. Paleointensities
Section S5. VRM experiments
Section S6. Magnetization carriers
Section S7. 40Ar/39Ar, 38Ar/37Ar, and 40Ar/36Ar chronometry
Fig. S1. Photomicrographs of 15465.
Fig. S2. Photomicrographs of 15015.
Fig. S3. Schematic time-temperature transformation curve for a generic cooling melt.
Fig. S4. Estimated melt cooling rate for breccias 15465 and 15015.
Fig. S5. Temperature distribution inside a clast with a one-dimensional contact with a cooling melt.
Fig. S6. Temperature distribution inside a spherical clast surrounded by a linearly cooling melt.
Fig. S7. Location of our 15465 subsamples relative to the parent sample 15465, 44, 115.
Fig. S8. Magnetization directions in 15465 inferred from PCA.
Fig. S9. AF demagnetization of 15465.
Fig. S10. Thermal demagnetization of 15465.
Fig. S11. Location of our 15015 subsamples and cuts relative to the parent samples 229a1, 229a2, and 229b.
Fig. S12. Magnetization directions in 15015 inferred from PCA.
Fig. S13. AF demagnetization of 15015 glass subsamples.
Fig. S14. Thermal demagnetization of 15015 subsamples.
Fig. S15. Magnetic overprints in 15015 subsamples from bandsaw cutting at JSC.
Fig. S16. Paleointensity estimates for breccia 15465 matrix glass and clast samples.
Fig. S17. Paleointensity estimates for breccia 15015 subsamples.
Fig. S18. Thermal paleointensity experiments for breccia 15465 subsamples.
Fig. S19. Thermal paleointensity experiments for breccia 15015 glass subsamples.
Fig. S20. Paleointensity fidelity tests for breccia 15465.
Fig. S21. Paleointensity fidelity tests for breccia 15015.
Fig. S22. VRM acquisition by 15465 glass.
Fig. S23. VRM acquisition by 15465 glass.
Fig. S24. Electron microprobe analysis of magnetization carriers in 15465.
Fig. S25. Hysteresis and IRM acquisition/demagnetization curves for 15465 glass and clast subsamples.
Fig. S26. Dunlop-Day plot showing the domain state of breccias compared to other lunar rocks analyzed in the MIT Paleomagnetism Laboratory.
Fig. S27. FORC analysis of 15465 breccia subsamples.
Fig. S28. Electron microprobe analysis of magnetization carriers in 15015.

REFERENCES AND NOTES

1. D. S. Mitchell, J. S. Halekas, R. P. Lin, S. Frey, L. L. Hood, M. H. Acuña, A. Binder, Global mapping of lunar crustal magnetic fields by Lunar Prospector. *Icarus* 194, 401–409 (2008).
2. M. Fuller, S. M. Cisowski, Lunar paleomagnetism, in *Geomagnetism*, J. A. Jacobs, Ed. (Academic Press, 1987), vol. 2, pp. 307–455.
3. I. Garrick-Bethell, B. P. Weiss, D. L. Shuster, J. Buz, Early lunar magnetism. *Science* 323, 356–359 (2009).
4. E. K. Shea, B. P. Weiss, W. S. Cassata, D. L. Shuster, S. M. Tikoo, J. Gattacceca, T. L. Grove, M. D. Fuller, A long-lived lunar core dynamo. *Science* 335, 453–456 (2012).
5. C. Courmède, J. Gattacceca, P. Rochette, Magnetic study of large Apollo samples: Possible evidence for an ancient centered dipolar field on the Moon. *Earth Planet. Sci. Lett.* 313–314, 31–42 (2012).
6. B. P. Weiss, S. M. Tikoo, The lunar dynamo. *Science* 346, 1246753 (2014).
7. I. Garrick-Bethell, B. P. Weiss, D. L. Shuster, S. M. Tikoo, M. Tremblay, Further evidence for early lunar magnetism from troctolite 76355. *J. Geophys. Res.* 121, 76–93 (2016).
8. S. M. Tikoo, B. P. Weiss, W. S. Cassata, D. L. Shuster, J. Gattacceca, E. A. Lima, C. Suavet, F. Nimmo, M. D. Fuller, Decline of the lunar core dynamo. *Earth Planet. Sci. Lett.* 404, 89–97 (2014).
9. S. M. Tikoo, B. P. Weiss, D. L. Shuster, C. Suavet, H. Wang, T. L. Grove, A two-billion-year history for the lunar dynamo. *Sci. Adv.* 3, e1700207 (2017).
10. J. Buz, B. P. Weiss, S. M. Tikoo, D. L. Shuster, J. Gattacceca, T. L. Grove, Magnetism of a very young lunar glass. *J. Geophys. Res.* 120, 1720–1735 (2015).
11. W. Konrad, T. Spoon, Thermal history of the Moon: Implications for an early core dynamo and post-accretional magnetism. *Adv. Space Res.* 19, 1511–1521 (1997).
12. D. R. Stegman, A. M. Jehlicka, S. A. Zatman, J. R. Baumgardner, M. A. Richards, An early lunar core dynamo driven by thermochemical mantle convection. *Nature* 421, 143–146 (2003).
13. A. J. Evans, M. T. Zubek, B. P. Weiss, S. M. Tikoo, A wet, heterogeneous lunar interior: Lower mantle and core dynamo evolution. *J. Geophys. Res.* 119, 1061–1077 (2014).
14. F. Takahashi, H. Tsunakawa, Thermal core-mantle coupling in an early lunar dynamo: Implications for a global magnetic field and magnetosphere of the early Moon. *Geophys. Res. Lett.* 36, L24202 (2009).
15. M. Laneuville, M. A. Wieczorek, D. Breuer, J. Aubert, G. Morard, T. Rückriemen, A long-lived lunar dynamo powered by core crystallization. *Earth Planet. Sci. Lett.* 401, 251–260 (2014).
16. C. A. Dwyer, D. J. Stevenson, F. Nimmo, A long-lived lunar dynamo driven by continuous mechanical stirring. Nature 479, 212–214 (2011).
17. A. Scheinberg, K. M. Soderlund, G. Schubert, Magnetic field generation in the lunar core: The role of inner core growth. J. geophys. Res. 120, 1–20 (2015).
18. H. Wang, S. Mignighi, B. P. Weiss, D. L. Shuster, K. V. Hodges, Lifetime of the lunar dynamo constrained by young Apollo returned breccias 15015 and 15465. Proc. Lunar Planet. Sci. Conf. 48, 1439 (2017).
19. C. Meyer, The Lunar Sample Compendium (2016); https://curator.jsc.nasa.gov/lunar/lsc/index.cfm.
20. S. Simon, J. Papike, D. Gosselin, J. Lau, Petrology, chemistry and origin of Apollo 15 regolith breccias. Geochim. Cosmochim. Acta 50, 2675–2691 (1986).
21. K. Cameron, J. Delano, Petrology of Apollo 15 consortium breccia 15465. Proc. Lunar Planet. Sci. Conf. 4th 1, 461–466 (1973).
22. D. S. McKay, D. D. Bogard, R. v. Morris, R. L. Korotov, S. J. Wentworth, P. Johnson, Apollo 15 regolith breccias: Window to a KREEP regolith, in 19th Proceedings of Lunar and Planetary Science Conference (1989), pp. 19–41.
23. S. Mehta, J. I. Goldstein, Analytical electron microscopy study of submicroscopic metal particles in glassy constituents of lunar breccias 15015 and 60095, in 10th Proceedings of Lunar and Planetary Science Conference (1979), pp. 1507–1521.
24. L. L. Hood, N. A. Artemieva, Antipodal effects of lunar basin-forming impacts: Initial 3D simulations and comparisons with observations. Icarus 193, 485–502 (2008).
25. S. M. Tikoo, B. P. Weiss, J. Buz, E. A. Lima, E. K. Shea, G. Melo, T. L. Grove, Magnetic fidelity of lunar samples and implications for an ancient core dynamo. Earth Planet. Sci. Lett. 337–338, 93–103 (2008).
26. E. Thellier, O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Geophys. 15, 285–376 (1959).
27. C. Suvret, B. P. Weiss, T. L. Grove, Controlled-atmosphere thermal demagnetization and paleointensity analyses of extraterrestrial rocks. Geochem. Geophys. Geosyst. 15, 2733–2743 (2014).
28. M. S. McKay, D. W. Collins, S. K. Runcorn, Lunar behavior L. Mehta, J. C. Russ, R. P. R. Min, Response to 1–7 (2010).
29. I. Goldstein, Analytical electron microscopy study of submicroscopic metal particles in glassy constituents of lunar breccias 15015 and 60095, in 10th Proceedings of Lunar and Planetary Science Conference (1979), pp. 1507–1521.
30. A. S. Schaeffer, Laser probe 3Ar/39Ar ages of individual mineral grains in lunar basalt 15607 and lunar breccia 15465. Proc. Lunar Planet. Sci. Conf. 7th 2, 2055–2066 (1976).
31. R. Schaal, F. Hörz, T. D. Thompson, J. Bauer, Shock metamorphism of granulated lunar basalt. Proc. Lunar Planet. Sci. Conf. 10th, 2547–2571 (1979).
32. G. Ryder, in Catalog of Apollo 15 Rocks (NASA Curatorial Branch Publication 72, 1985), p. 1296.
33. The European Consortium, in Lunar Sample Studies (1977), pp. 1–33.
34. J. E. Tauxe, H. Holtz, Change in the geomagnetic field inferred from the solar wind and geomagnetic field, in Open problems in the study of the magnetic field of the Earth. Geophys. J. Roy. Astronom. Soc. 98, 373–381 (1993).
35. J. G. Spray, Lithification mechanisms for planetary regoliths: The glue that binds. Annu. Rev. Earth Planet. Sci. 44, 139–174 (2016).
36. D. R. Uhlmann, L. C. Klein, Sintering, cryocrystallization, and breccia formation. Moon 13, 277–284 (1975).
37. R. K. Cardwell, D. S. Chinn, G. F. Moore, D. L. Turcotte, Frictional heating on a fault zone magnetism. Earth Planet. Sci. Lett. 294, 1–7 (2010).
38. G. W. Pearce, W. A. Goce, D. W. Strangway, Magnetic studies on Apollo 15 and 16 lunar samples. Proc. Lunar Sci. Conf. 4, 3045–3076 (1973).
39. K. Lawrence, K. Johnson, L. Tauxe, J. Gee, Lunar paleointensity measurements: Implications for lunar magnetic evolution. Phys. Earth Planet. Inter. 16, 71–87 (2008).
40. U. R. Christensen, Dynamo scaling laws and applications to the planets. Space Sci. Rev. 152, 565–590 (2010).
41. M. Laneuville, M. A. Wieczorek, D. Breuer, N. Tosi, Asymmetric thermal evolution of the Moon. J. Geophys. Res. 118, 1435–1452 (2013).
42. M. LeBars, M. A. Wieczorek, D. Karatekin, D. Cebon, M. Laneuville, An impact-driven dynamo for the early Moon. Nature 479, 215–218 (2011).
43. B. J. Anderson, M. H. Acuña, H. Korth, J. A. Slavin, H. Uno, C. L. Johnson, M. E. Purucker, S. C. Solomon, J. M. Raines, T. H. Zurbuchen, G. Glocleck, R. L. McNutt Jr., The magnetic field of Mercury. Space Sci. Rev. 152, 307–339 (2010).
44. A. L. Fagan, K. H. Joy, D. D. Bogard, D. A. Kring, Ages of globally distributed lunar palaeoregoliths and soils from 3.9 Ga to the present. Earth Moon Planets 112, 59–71 (2014).
45. J. Meyer, J. Wisdom, Precission of the lunar core. Icarus 211, 921–924 (2011).
46. A. Stephenson, D. W. Collins, Lunar magnetic field paleointensities determined by an anhydricferent remanent magnetization method. Earth Planet. Sci. Lett. 223, 220–228 (1974).
47. J. Tauxe, P. Rochette, Toward a robust normalized magnetic paleointensity method applied to meteorites. Earth Planet. Sci. Lett. 227, 377–393 (2004).
48. E. Ben-Yosef, H. Ron, L. Tauxe, A. Agnon, A. Genevey, T. E. Levy, U. Avner, M. Najjar, Application of copper slag in geomagnetic archaeointensity research. J. Geophys. Res. 113, B08101 (2008).
49. J. L. Kirschvink, The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Int. 62, 699–718 (1980).
50. D. L. Shuster, W. S. Cassata, Paleotemperatures at the lunar surfaces from open system behavior of cosmogenic 39Ar and radiogenic 39Ar. Geochim. Cosmochim. Acta 155, 154–171 (2015).
79. L. Tauxe, Essentials of Paleomagnetism: Fifth Web Edition (2018).
80. G. A. Paterson, L. Tauxe, A. J. Biggin, R. Shaar, L. C. Jonesstrak, On improving the selection of Thellier-type paleointensity data. Geochim. Geophys. Geosyst. 15, 1180–1192 (2014).
81. J. F. J. Bryson, B. P. Weiss, R. J. Harrison, J. Herrera-Albillos, F. Kronast, Paleomagnetic evidence for dynamo activity driven by inward crystallisation of a metallic asteroid. Earth Planet. Sci. Lett. 472, 152–163 (2017).
82. D. J. Dunlop, Theory and application of the Day plot (M_{x}/M, versus H_{x}/H_{y})—1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. 107, EPM 4-1–EPM 4-22 (2002).
83. D. J. Dunlop, Theory and application of the Day plot (M_{x}/M, versus H_{x}/H_{y})—2. Application to data for rocks, sediments, and soils. J. Geophys. Res. 107, EPM 5-1–EPM 5-15 (2002).
84. R. J. Harrison, J. M. Feinberg, FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochim. Geophys. Geosyst. 9, Q01056 (2008).
85. L. J. Swartzendruber, V. P. Itkin, C. B. Alcock, The Fe-Ni (iron-nickel) system. J. Phase Equilib. 12, 288–312 (1991).
86. J. I. Goldstein, H. Yakowitz, Metallic inclusions and metal particles in the Apollo 12 lunar soil. Proc. Lunar Sci. Conf. 2, 177–191 (1971).
87. A. El Goresy, P. Ramdohr, L. A. Taylor, The geochemistry of the opaque minerals in Apollo 14 crystalline rocks. Earth Planet. Sci. Lett. 13, 121–129 (1971).
88. A. S. Doan, J. I. Goldstein, The ternary phase diagram, Fe–Ni–P. Metall. Trans. 1, 1759–1767 (1970).
89. R. J. Gambino, T. R. McGuire, Y. Nakamura, Magnetic properties of the iron-group metal phosphides. J. Appl. Phys. 38, 1253–1255 (1967).
90. J. Gattacceca, P. Rochette, F. Lagroix, P.-E. Mathé, B. Zanda, Low temperature magnetic transition of chromite in ordinary chondrites. Geophys. Res. Lett. 38, L10203 (2011).
91. J. L. Carter, VLS (Vapor-Liquid-Solid): Newly discovered growth mechanism on the lunar surface? Science 181, 841–842 (1973).
92. I. McDougall, T. M. Harrison, Geochronology and Thermochronology by the 40Ar/39Ar Method (Oxford Univ. Press, ed. 2, 1999).
93. O. Eugster, G. F. Herzog, K. Marti, M. W. Caffee, in Meteorites and the Early Solar System II, D. S. Lauretta, H. Y. McSween, Eds. (University of Arizona Press, 2006), pp. 829–851.
94. O. Eugster, D. Terrillini, E. Polnau, J. Kramers, The antiquity indicator argon-40/argon-36 for lunar surface samples calibrated by uranium-235-xenon-136 dating. Meteorit. Planet. Sci. 36, 1097–1115 (2001).
95. K. H. Joy, D. A. King, D. D. Bogard, D. S. McKay, M. Zolensky, Re-examination of the formation ages of the Apollo 16 regolith breccias. Geochim. Cosmochim. Acta 75, 7208–7225 (2011).
96. D. Stöffler, G. Ryder, B. A. Ivanov, N. A. Artemieva, Cratering history and lunar chronology. Rev. Mineral. Geochem. 60, 519–596 (2006).
97. L. Husain, in The Apollo 15 Lunar Samples (Lunar and Planetary Institute, 1972), pp. 374–375.
98. R. W. Carlson, G. W. Lugmair, Sm-Nd constraints on early lunar differentiation and the evolution of KREEP. Earth Planet. Sci. Lett. 45, 123–132 (1979).
99. P. Vermeesch, Isoplot/R: A free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493 (2018).
100. H. H. Schmitt, N. E. Petro, R. A. Wells, M. S. Robinson, B. P. Weiss, C. M. Mercer, Revisiting the field geology of Taurus-Littrow. Icarus 298, 2–33 (2017).
101. R. D. Warner, G. F. Taylor, G. H. Conrad, H. R. Northrop, S. Barker, K. Keil, Apollo 17 high-Ti mare basalts: New bulk compositional data, magma types, and petrogenesis. Proc. Lunar Planet Sci. Conf. 10th 1, 225–247 (1979).
102. J. B. Paces, S. Nakai, C. R. Neal, L. A. Taylor, A. N. Halliday, D.-C. Lee, A strontium and neodymium isotopic study of Apollo 17 high-Ti mare basalts: Resolution of ages, evolution of magmas, and origins of source heterogeneities. Geochim. Cosmochim. Acta 55, 2025–2043 (1991).
103. D. Phinney, S. B. Kahl, J. H. Reynolds, 40Ar/39 Ar dating of Apollo 16 and 17 rocks. Proc. Lunar Sci. Conf. 6th 2, 1593–1608 (1975).

Acknowledgments: We thank B. Carbone and K. Willis for administrative assistance.

Funding: We thank the NASA Solar System Workings and Planetary Major Equipment Programs (grant no. NNX15AL62G) and the NASA Solar System Exploration Research Virtual Institute node at Brown-MIT (grant no. NNA14AB01A) for support. Author contributions: B.P.W., H.W., and S.M. designed the research. H.W. and S.M. led the paleomagnetic analyses of the lunar surface? Science 181, 841–842 (1973).

Submitted 20 February 2019
Accepted 22 October 2019
Published 1 January 2020
10.1126/sciadv.aax0883

Citation: S. Mighani, H. Wang, D. L. Shuster, C. S. Borlina, C. I. O. Nichols, B. P. Weiss, The end of the lunar dynamo. Sci. Adv. 6, eaax0883 (2020).
The end of the lunar dynamo
Saied Mighani, Huapei Wang, David L. Shuster, Cau? S. Borlina, Claire I. O. Nichols and Benjamin P. Weiss

Sci Adv 6 (1), eaax0883.
DOI: 10.1126/sciadv.aax0883