Publisher Correction: Evidence linking microRNA suppression of essential prosurvival genes with hippocampal cell death after traumatic brain injury

Deborah Kennedy Boone1, Harris A. Weisz1, Min Bi2, Michael T. Falduto2, Karen E. O. Torres3, Hannah E. Willey1, Christina M. Volsko1, Anjali M. Kumar1, Maria-Adelaide Micci1, Douglas S. Dewitt1, Donald S. Prough1 & Helen L. Hellmich1

Correction to: Scientific Reports https://doi.org/10.1038/s41598-017-06341-6, published online 27 July 2017

In this Article, Figure 1B is omitted. The correct Figure 1 appears below.

1Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA. 2Genus Biosystems, Inc., Northbrook, Illinois, USA. Correspondence and requests for materials should be addressed to H.L.H. (email: hhellmic@utmb.edu)
Table A

Gene Name	miRNA Symbol	miRNA changes (FJ+)	Surviving (FJ-)	OMIM Acc#	RM ID
ABCG4	miR-379/miR-352/miR-1193-5p	-1.272	7.270	NA	807784
ADCYAP1	miR-365	1.330	-13.866	NA	102890
CAT	miR-146a/miR-146b/miR-146b-5p	1.268	-3.922	NA	115500
DDX3X	miR-758/miR-153*	-1.458	13.100	10.730	300160
IGF1	miR-758/miR-153*	-1.458	NA	12.870	607784
MAPK1	miR-19b/miR-19a	1.950	-9.434	NA	176948
MAPK9	miR-20a/miR-106b/miR-17-5p (includes others)	1.774	-9.534	NA	602896
NFAT5	miR-18a/miR-18b/miR-4735-3p	2.761	-6.061	NA	115500
NOTCH2	miR-18a/miR-18b/miR-18d (includes others)	-1.285	NA	8.788	604708
Synaptic Function					
BDNF	miR-365	1.330	-7.752	-2.865	113505
EPHA4	miR-20a/miR-106b/miR-17-5p (includes others)	1.774	-10.246	NA	602188
GABRA4	miR-18a/miR-18b/miR-4735-3p	2.761	-6.061	NA	137141
NETO2	miR-20a/miR-106b/miR-17-5p (includes others)	1.774	-13.316	NA	607974
NLGN1	miR-16/miR-497/miR-195 (includes others)	1.317	-13.532	NA	600568
NOTCH2	miR-18a/miR-18b/miR-18d (includes others)	-1.285	NA	7.185	600275
Cell Cycle					
ABCE1	miR-19b/miR-19a	1.950	-4.016	NA	601213
CCNG1	miR-365	1.330	-6.757	-1.883	601578
CCNY	miR-16/miR-497/miR-195 (includes others)	1.317	-7.576	NA	612786
Homeostatic Cell Function					
ACSL4	miR-16/miR-197/miR-195 (includes others)	1.317	-7.752	-2.732	300157
ARCN1	miR-16/miR-497/miR-195 (includes others)	1.317	-9.091	NA	600820
JKAMP	miR-19b/miR-19a	1.950	-8.264	NA	601324
MGEA5	miR-16/miR-497/miR-195 (includes others)	1.317	-9.091	NA	600820
SYNAP25	miR-16/miR-197/miR-195 (includes others)	1.317	-7.576	NA	612786
Growth and Development					
CDH10	miR-92a/miR-92b/miR-32 (includes others)	1.605	-8.929	-1.751	604555
GHRHR	miR-379/miR-352/miR-1193-5p	-1.272	NA	7.738	139191
NAPOL2	miR-19b/miR-19a	1.950	-10.799	-2.725	300026
NFASC	miR-146a/miR-146b/miR-146b-5p	1.268	-12.870	NA	600145
VRK1	miR-20a/miR-106b/miR-17-5p (includes others)	1.774	-9.174	NA	614121
DNA Repair					
NHEJ1	miR-379/miR-352/miR-1193-5p	-1.272	3.999	NA	813290
SMC5	miR-146a/miR-146b/miR-146b-5p	1.268	4.902	NA	600386
USP47	miR-146a/miR-146b/miR-146b-5p	1.268	-15.267	NA	614460
RNA Processing					
CELF2	miR-146a/miR-146b/miR-146b-5p	1.268	-6.173	NA	805538
HNRNP0	miR-19b/miR-19a	1.950	-9.346	NA	613242
PAFD4	miR-19b/miR-19a	1.950	-10.823	NA	614121
Overexpression Linked to Disease					
ARFGEF2	miR-18a/miR-18b/miR-18d (includes others)	-1.285	10.330	NA	605371
SOAT1	miR-758/miR-153*	-1.458	7.546	NA	102842

Figure 1

Ten Traumatic brain injury (TBI)-altered microRNAs target approximately 600 pro-survival and/or pro-death genes in dying and surviving hippocampal pyramidal neurons that were obtained by laser capture microdissection 24 h after TBI. (A) Ingenuity pathway analysis miRNA target filter was used to identify predicted gene targets in dying, Fluoro-Jade-positive (FJ+) and surviving, Fluoro-Jade-negative (FJ−) neurons. These genes were identified in our previous microarray study as significantly differentially expressed in dying and surviving neurons. (B) Differentially expressed miRNA target genes in dying and surviving neurons play essential roles in neuronal function and their misregulation is associated with human disease (see Online Mendelian Inheritance in Man database). The complete, annotated list of differentially expressed miRNA target genes in dying and surviving neurons is shown in Supplementary Table 3.
As a result, the Figure legend,

“Ten Traumatic brain injury (TBI)-altered microRNAs target approximately 600 pro-survival and/or pro-death genes in dying and surviving hippocampal neurons. In our previous microarray study, we showed that these genes were significantly differentially expressed in dying and surviving neurons 24 h after TBI. Ingenuity pathway analysis miRNA target filter was used to identify predicted gene targets in laser captured dying, Fluoro-Jade-positive (FJ+) and surviving, Fluoro-Jade-negative (FJ−) hippocampal pyramidal neurons”.

should read:

“Ten Traumatic brain injury (TBI)-altered microRNAs target approximately 600 pro-survival and/or pro-death genes in dying and surviving hippocampal pyramidal neurons that were obtained by laser capture microdissection 24 h after TBI. (A) Ingenuity pathway analysis miRNA target filter was used to identify predicted gene targets in dying, Fluoro-Jade-positive (FJ+) and surviving, Fluoro-Jade-negative (FJ−) neurons. These genes were identified in our previous microarray study as significantly differentially expressed in dying and surviving neurons. (B) Differentially expressed miRNA target genes in dying and surviving neurons play essential roles in neuronal function and their misregulation is associated with human disease (see Online Mendelian Inheritance in Man database). The complete, annotated list of differentially expressed miRNA target genes in dying and surviving neurons is shown in Supplementary Table 3”.

Additionally, there are typographical errors in the text. In the Results section:

“We found that ten TBI-dysregulated miRNAs targeted, either singly or frequently in combination, about 600 TBI-dysregulated genes (Fig. 1, manually curated functional data including GeneCard and PubMed links for all miRNA gene targets with gene information shown left of the blue line and miRNA data shown right of the blue line, are provided in Supplementary Tables 1 and 2)”.

should read:

“We found that ten TBI-dysregulated miRNAs targeted, either singly or frequently in combination, about 600 TBI-dysregulated genes (Fig. 1A, manually curated functional data including GeneCard and PubMed links for all miRNA gene targets with gene information shown left of the blue line and miRNA data shown right of the blue line, are provided in Supplementary Tables 1 and 2)”.

In the same section:

“Analysis of the annotated genes that displayed strikingly disparate expression levels in dying and surviving neurons (Table 1, the complete list of differentially expressed miRNA target genes in dying and surviving neurons described in the manuscript are shown in Supplementary Table 3 along with links to OMIM and supporting literature for each gene in Supplementary References) showed that the majority of transcripts are thought to play essential roles in cell function”.

should read:

“Analysis of the annotated genes that displayed strikingly disparate expression levels in dying and surviving neurons (Fig. 1B, the complete list of differentially expressed miRNA target genes in dying and surviving neurons described in the manuscript are shown in Supplementary Table 3 along with links to OMIM and supporting literature for each gene in Supplementary References) showed that the majority of transcripts are thought to play essential roles in cell function”.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018