RESEARCH ARTICLE

METACOGNITIVE APPROACH TO ENHANCING MATHEMATICAL PERFORMANCE AMONG PRIMARY SCHOOL STUDENTS IN RURAL AND URBAN AREAS OF KOGI STATE

David Okpanachi and Samuel A. Umoru
Department of Mathematics, Kogi State College of Education, Ankpa.

Manuscript Info

Abstract

In this study, a quasi-experimental design was employed to ascertain the effect of the metacognitive instruction approach on primary school students' mathematical performance in Kogi State. A total of seventy-two students with an age range of 7 – 11 years and a mean age of (M=9.12), (SD= 1.22) participated in the study. The participants were grouped into two and were subjected to a pre-test and post-test study. Mean, and standard deviation scores were used, and an independent t-test analysis conducted on the data established a statistically significant difference between the groups, MD = 11.54 (95% CI, 7.91 to 15.14), t (70) = 6.313, p = .001. Thus, the result supported the study's hypothesis. It was concluded that metacognition is effective in enhancing student's mathematics performance. The study recommends that teachers be regularly trained on the use of the metacognitive approach in the classroom.

Introduction:

The importance of mathematics in achieving success and national development is very noticeable in developing and developed countries (Etuk & Bello, 2016; Josiah & Olubunmi Adejoke, 2014). Mathematics plays a crucial role in the development of human capital in Science, Technology, Engineering, and other critical sectors of the economy (Musa & Dauda, 2014), and anchors as one of the implications for the attainment of the shared vision of the Federal Government of Nigeria (Charles-Ogan, 2015). Accordingly, Usman (2002) pointed to mathematics and its applications as an inevitable part of education. Mathematics education has been implicated as one of the criteria for measuring a country's socio-economic development.

In Nigeria, mathematics is one of the core subjects for students at the senior secondary school level (NPE, 2004) and a compulsory subject for all students (Ugodulunwa & Okolo, 2015). Mathematics is necessary for anybody wishing to advance in any academic career, whether science or art. Mathematics is a core subject that students must study at any education level (Adebule & Ayoola, 2015). However, Mathematics education is currently not in a good phase regarding pedagogy (Adedeji, 2018). Over the years, the subject of mathematics has been perceived mostly as a complex subject (Dele-Ajayi et al., 2019). The trend has contributed to the growing loss of interest and poor performance in math-related tasks among students in different education levels in Nigeria.

Despite the importance of mathematics, evidences has shown that students' performance relating to mathematics in Nigeria remains poor (Aburime, 2007; Agnes & Mathew, 2019; Dada & Akpan, 2019; Joseph et al., 2020; Muhammad et al., 2015; Ogochukwu, 2010; Olanrewaju & Suleiman, 2019; Owan, 2018; Salami & Okeke, 2017).
For instance, factors such as curriculum and methods (Muhammad et al., 2015), class size (Afolabi et al., 2020; Idowu, 2016), poor mathematics foundation and unconducive environment (Adolphus, 2011), student's handwriting (Oche, 2014), and other student's factors (Adesoji & Yara, 2008) have been associated with the observed poor performance in mathematics in Nigeria. Consequently, the continuous reliance on the conventional and theoretical approach in teaching and learning mathematics within Nigeria's primary and secondary education levels seems unproductive. The trend is pervasive within the rural communities and is implicated in the lower performance in mathematically related tasks among students. Perhaps, there is the need to explore further instructional alternatives to improve mathematical learning in the Nigerian context.

Metacognition is increasingly becoming an essential factor in the teaching and learning of mathematics. Metacognition refers to the ability to represent, monitor, and control ongoing cognitive processes (Heyes et al., 2020). It is the set of processes people adopt in monitoring ongoing cognition to checkmate their behavior (Rhodes, 2019). (Fleming & Lau, 2014) stated that metacognition is the ability to recognize one's successful cognitive processing in perceptual or memory tasks. Indeed, metacognition enables an individual to engage in explicit reasoning (Shea, 2020). Previous studies have established a link between metacognition and increased learning performance (Ali-jarrah et al., 2019; Kane et al., 2014; Millis, 2016; Persky & Dinsmore, 2019; Schleifer & Dull, 2009). The strong benefits of metacognition and active learning on student performance are well understood (Mutambubki et al., 2020). However, evidence that metacognition has an impact on learning mathematics is still growing.

Following the relevance attached to mathematics and the observed low achievement in mathematics, various instructional strategies have been explored by scholars. For example, strategies such as motivational and enhancement of academic self-efficacy (Fehintola, 2020), problem-based learning (Fatade et al., 2013), flipped classes (Makinde, 2020), peer tutoring strategy (Muhammad Sani Abdurrahman et al., 2015), improvisation (Okori & Jerry, 2017), multimedia presentations (Nwaocha, 2010), and student-problem skills (Nenty, 2001) has been deployed in enhancing mathematical learning, and the results are all positive. For instance, (Ofem et al., 2017) used the diagnostic and feedback assessment approach. The outcome proved effective in enhancing mathematics achievement among secondary school students in Nigeria. The present study is aimed to explore metacognition as an instructional approach to enhance teaching and learning of mathematics among rural and urban students in Kogi state. The study's primary purpose is to examine whether the metacognitive approach will enhance student's performance in mathematics. Thus, the study hypothesized that the metacognitive approach would enhance student's performance in mathematics.

Method:-

The research adopted a quasi-experimental design with pre-test and post-tests, and two groups (experimental and control) were applied. Seventy-two school-going children were randomly selected from primary schools in urban and rural areas of Kogi State as the research participants. The students comprising males and females within the age range of 7 – 11 years and mean age of (M=9.12) and (SD= 1.22) were assigned to groups. The student's mathematics knowledge was established in the pre-test study. The student in the treatment group was exposed to a mathematical task containing metacognitive questions. The control group students were given the same mathematical task without the metacognitive questions in the post-test study. After that, the performance was assessed using a mathematics performance test.

Measure:-

Mathematics performance was assessed using a self-developed instrument adapted from relevant literature. The Likert type scale contains two parts: A, and B, with part assessing basic conceptual knowledge comprising three questions demanding brief response while part B consists of problem-solving and processes of five questions, two of which are routine problems while the other three questions are non-routine problems. The instrument was scored over one hundred (100). The instrument recorded a 0.79 internal consistency reliability coefficient.

Result:-

Table 1:- Table shows mean and standard deviation scores of the students' mathematics performance for groups A and B.

Group	N	Mean	SD
Group A	37	21.11	3.14
The table above shows that in the pre-test study, the mean scores of 21.11 and 21.29 were obtained for both groups respectively, on the other hand, standard deviation scores of 3.14 and 2.91 were recorded. This means no significant difference was obtained in the experimental and control groups' mean scores in the pre-test study. This indicates that the group's mathematics performance level was almost equal.

Table 2:- Table showing the mean and standard deviation scores of the two groups (A and B) following the Post-test study.

Group	N	Mean	SD
Group A	37	34.71	9.45
Group B	35	23.18	5.39

The above table shows that the mean scores of 34.71 and 23.18 were recorded for groups A and B after the post-test study. The data indicates a high mean score for the study group (34.71) compared to the control group (23.18). The standard deviation scores also revealed an increased score of 9.45 for the study group and a lower score of 5.39 for the control group. Therefore, we assume that the mean scores show that group A's performance was enhanced due to the exposure to metacognitive tasks.

Table 3:- t-test comparison of the mathematical performance of the experimental and control groups.

Source of variation	N	Mean	SD	df	t	Sig
Group A	37	34.71	9.45	70	6.313	000
Group B	35	23.18	5.39	70	6.313	000

An independent-samples t-test was conducted to determine if there were differences between the experimental and the control groups on mathematics performances in the post-test study. The mathematics performance of the experimental group was found to increase (34.71 ± 9.45) compared to the control group (23.18 ± 5.39), a statistically significant difference of 11.54 (95% CI, 7.91 to 15.14), t (70) = 6.313, p = .001.

Discussion:-

The current study was conducted to determine whether metacognition as a teaching strategy would enhance primary school students' mathematical performance. Perhaps the independent t-test conducted on the data following the pre-test and post-test studies proved that metacognition enhanced the participants' mathematical performance at MD = 11.54 (95% CI, 7.91 to 15.14), t (70) = 6.313, p = .001. Thus, the result supported the assumption of the study that metacognition will enhance the mathematical performance of primary school students. The study's result is consistent with the previous studies (Nett et al., 2012; Veenman et al., 2006). For instance, (Desoete et al., 2019) reported that metacognitive skills were significant predictors of mathematical accuracy. This indicates that applying the metacognition approach in the teaching and learning of mathematics in Nigeria will significantly promote students' performance and achievement in mathematics-related tasks. The study provides insight into the effectiveness of metacognition in the classroom and suggests the adoption in all spheres of primary education. Perhaps, research suggests that children who lag in metacognitive development may be at risk of study play in mathematics (Desoete & de Craene, 2019). A similar study conducted using secondary school students found that math metacognitive strategy improved pupils' achievement in fractional mathematics (Olu et al., 2012). Although research in metacognition is increasing in Nigeria, it is reported that students are not fully aware of the importance of the strategy in learning (Okoza et al., 2013). Thus, there is still a need for a robust step-up in metacognition literature. In line with similar studies utilizing metacognition in other learning domains (Owo & Ikwut, 2015; Oyelekan et al., 2019), the present study is proof of the relevance of metacognition in enhancing learning in Nigeria. However, according to (Stanton et al., 2015), the utilization of metacognitive strategy in learning is useful for some students. However, most students may need help with metacognitive knowledge to execute the learning strategies they select. It is suggested that teachers recognize differences in students' responses to metacognitive instruction packages to establish differences and solutions.

Conclusion:-

In response to the study hypothesis, the result revealed, in line with Nett et al. (2012) and Desoete et al. (2019), that metacognition predicted the variance in student's mathematical performance. Thus, it was concluded that metacognition is an indispensable tool in mathematics in primary school. The study contributes to the mathematics literature by supporting the use of metacognition in enhancing student's performance in mathematics in Nigeria. Nevertheless, the present study encountered certain limitation that needs to be addressed. First, the sample size was...
small and may not be reliable for generalization. Also, the design of the study did not allow for cause-effect determination. Future researchers are advised to include more representative samples and adopt pure experimentation to ascertain cause-effect relationships. However, we recommend that teachers be regularly trained on using the metacognitive approach in the classroom. The use of metacognition should be embedded in the school curriculum.

Ethical consideration
The researchers made sure that the study procedures involving human participants were done following the institution's ethical standard.

Funding
This study was sponsored by the Tertiary Education Trust Fund (TetFund Nigeria)

References:
1. Aburime, F. E. (2007). How Manipulatives After the Mathematics Achievement of Students in Nigerian Schools. Educational Research Quarterly, 31(1).
2. Adebule, S. O. & Ayoola, O. O. (2015). Evaluation of Instructional Materials Commonly Used in the Teaching of Mathematics in Junior Secondary Schools in Ekiti State. Online, 5(18).
3. Adepoju, T. (2018). Revitalizing Mathematics Education Preparation in Nigeria for National Development: An Innovative View. International Electronic Journal of Mathematics Education, 13(3). https://doi.org/10.12973/iejme/3923
4. Adesoji, F. A., & Yara, P. O. (2008). Some student factors as correlates of achievement in mathematics in Southwestern Nigeria. European Journal of Scientific Research, 19(3).
5. Adolphus, T. (2011). Problems of Teaching and Learning of Geometry in Secondary Schools in Rivers State, Nigeria. International Journal of Emerging Sciences, 1(2).
6. Afolabi, B. Y., Wakili, L. B., Afolabi, O. O., Onwuegbunam, N. E., Ademuwagun, A. A. (2020). An Investigation of Class Size on Teaching and Learning of Mathematics in Secondary Schools (A Case Study of Chikun Local Government Area) of Kaduna State, Nigeria. Journal of Education, Society and Behavioural Science. https://doi.org/10.9734/jesbs/2020/v33i1030263
7. Agnes, P. A., & Mathew, O. O. (2019). Does Math-Anxiety Affect Senior School Students' Mathematics Performance? Evidence from Ekiti State, Nigeria. Journal of Mathematics Education, 4(2), 43–51. https://doi.org/10.31327/jomedu.v4i2.895
8. Al-jarrah, T. M., Mansor, N., Talafhah, R. H., & Al-jarrah, J. M. (2019). The application of metacognition, cognitivism, and constructivism in teaching writing skills. European Journal of Foreign Language Teaching, 3(4).
9. Charles-Ogan, G. (2015). Mathematics As a Tool for Achieving the Vision 20:2020 Goal of National Transformation. International Journal of Education, Learning, and Development, 3(8).
10. Dada, O. A., & Akpan, S. M. (2019). Discriminant analysis of psychosocial predictors of mathematics achievement of gifted students in Nigeria. Journal for the Education of Gifted Young Scientists, 7(3). https://doi.org/10.17478/jegys.605981
11. Dele-Ajayi, O., Strachan, R., Pickard, A. J., & Sanderson, J. J. (2019). Games for Teaching Mathematics in Nigeria: What Happens to Pupils' Engagement and Traditional Classroom Dynamics? IEEE Access, 7. https://doi.org/10.1109/ACCESS.2912359
12. Desoete, A., Baten, E., Vercaemst, V., de Busschere, A., Baudonck, M., &Vanhaeke, J. (2019). Metacognition and motivation as predictors for mathematics performance of Belgian elementary school children. ZDM - Mathematics Education, 51(4). https://doi.org/10.1007/s11858-018-01020-w
13. Desoete, A., & de Craene, B. (2019). Metacognition and mathematics education: an overview. ZDM - Mathematics Education, 51(4). https://doi.org/10.1007/s11858-019-01060-w
14. Etuk, E. D., & Bello, D. O. (2016). Challenges and Prospects of Mathematics Education in Nigeria. Journal of Assertiveness.
15. Fatade, A. O., Mogari, D., Arigbabu, A. A. (2013). Effect of Problem-Based Learning on Senior Secondary School Students' Achievements in Further Mathematics. Acta Didactica Napocensia, 6(3).
16. Fehintola, J. O. (2020). Motivational Enhancement Therapy and Academic Self-Efficacy Training in Enhancing Academic Performance of Underachievers in Junior Mathematics in Ibadan, Nigeria. Journal of Humanities Therapy, 11(1). https://doi.org/10.33252/jht.2020.06.11.1.33
17. Fleming, S. M., & Lau, H. C. (2014). How to measure metacognition. In Frontiers in Human Neuroscience (Vol. 8, Issue JULY). https://doi.org/10.3389/fnhum.2014.00443
18. Heyes, C., Bang, D., Shea, N., Frith, C. D., & Fleming, S. M. (2020). Knowing Ourselves Together: The Cultural Origins of Metacognition. In Trends in Cognitive Sciences (Vol. 24, Issue 5). https://doi.org/10.1016/j.tics.2020.02.007
19. Idowu, O. O. (2016). An Investigation of Mathematics Performance of High School Students in Lagos State, Nigeria: External Factors. Urban Education Research & Policy Annals, 4(1).
20. Joseph Ofem, U., Idika ii, D. O., & Ovat iii, S. v. (2017). Effect of Diagnostic and Feedback Assessment Approaches in Enhancing Achievement in Mathematics among Secondary School Students in Calabar Municipality. International Journal of Scientific Research in Education, 10(2).
21. Joseph Owan, V., Asuquo Bassey, B., OmorobiOmorobi, G., &UwaseEsuong, U. (2020). Poll Everywhere E-Learning Platform, Test Anxiety, and Undergraduates' Academic Performance in Mathematics: Empirical Evidence from Nigeria. American Journal of Social Sciences and Humanities, 5(1). https://doi.org/10.20448/801.51.141.150
22. Josiah, O., & Olubunmi Adejoke, E. (2014). Effect of Gender, Age and Mathematics Anxiety on College Students' Achievement in Algebra. American Journal of Educational Research, 2(7).
23. Kane, S., Lear, M., & Dube, C. M. (2014). Reflections on the role of metacognition in student reading and learning at the higher education level. Africa Education Review, 11(4).
24. Makinde, S. O. (2020). Impact of Flipped Classroom on Mathematics Learning Outcome of Senior Secondary School Students in Lagos, Nigeria. African Journal of Teacher Education, 9(2).
25. Millis, B. J. (2016). Using metacognition to promote learning. Idea, 63.
26. Muhammad Sani Abdurrahman, Faruk Abdullahi, Mustapha Ibrahim, &Muktta Muhammad Sani. (2015). Research Article Teachers' Perception of the causes of student's poor mathematics performance in secondary schools of Kebbi State, Nigeria. Asian Journal of Science and Technology, 6(2).
27. Musa, M., & Dauda, E. S. (2014). Trends analysis of students' mathematics performance West African Senior School Certificate Examination from 2003 to 2013: Implications for Nigerian's vision 20:2020. British Journal of Education, 2(7).
28. Mutambuki, J. M., Mwavita, M., Muteti, C. Z., Jacob, B. I., & Mohanty, S. (2020). Metacognition and Active Learning Combination Reveal Better Performance on Cognitively Demanding General Chemistry Concepts than Active Learning Alone. Journal of Chemical Education, 97(7).
29. NENTY, H. J. (2001). Student-Problem (S-P) Skill Analysis of Pupils' Mathematics Performance: A Strategy for Enhancing Quality in Education. IFE PsychologIA, 9(1). https://doi.org/10.4314/ifep.v9i1.23609
30. Nett, U. E., Goetz, T., Hall, N. C., & Frenzel, A. C. (2012). Metacognitive Strategies and Test Performance: An Experience Sampling Analysis of Students' Learning Behavior. Education Research International, 2012. https://doi.org/10.1155/2012/958319
31. Nwaocha, V. O. (2010). Enhancing student's interest in mathematics via multimedia presentation. African Journal of Mathematics and Computer Science Research, 3(7).
32. Ogochukwu, N. V. (2010). Enhancing student's interest in mathematics via multimedia presentation. African Journal of Mathematics and Computer Science Research, 3(July).
33. Okori, O. A., & Jerry, O. (2017). Improvisation and utilization of resources in the teaching and learning of science and mathematics in secondary schools in Cross River state. Global Journal of Educational Research, 16(1). https://doi.org/10.4314/gjedr.v16i4
34. Okoza, J., Aluede, O., & Owens-Sogolo, O. (2013). Assessing students' metacognitive awareness of learning strategies among secondary school students in Edo State, Nigeria. Research in Education, 90(1). https://doi.org/10.7227/RIE.90.1.6
35. Olanrewaju, M. K., & Suleiman, Y. (2019). Effects of collaborative learning technique and mathematics anxiety on mathematics learning achievement among secondary school students in Gombe State, Nigeria. Asian Journal of University Education, 15(1).
36. Onu, V., Eskay, M., Igbo, J., Obiyo, N., & Agbo, O. (2012). Effect of Training in Math Metacognitive Strategy on Fractional Achievement of Nigerian Schoolchildren. Online Submission.
37. Owan, V. J. (2018). Some Causes of Poor Performance of Pupils in Primary School Mathematics. A Case Study in Akamkpa Local Government Area of Cross River State, Nigeria. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3221784
38. Owo, W. J., & Ikwut, E. F. (2015). Relationship Between Metacognition, Attitude and Academic Achievement of Secondary School Chemistry Students In Port Harcourt, Rivers State. IOSR Journal of Research & Method in Education, 5(6).
39. Oyelekan, O. S., Jolayemi, S. S., & Upahi, J. E. (2019). Relationships among senior school students' self-efficacy, metacognition, and their achievement in chemistry. Cypriot Journal of Educational Sciences, 14(2). https://doi.org/10.18844/cjes.v14i2.2564
40. Persky, A. M., & Dinsmore, D. L. (2019). Metacognitive changes and sources of confidence judgments in health professions classroom learning. Currents in Pharmacy Teaching and Learning, 11(4). https://doi.org/10.1016/j.cptl.2019.01.005
41. Rhodes, M. G. (2019). Metacognition. The teaching of Psychology, 46(2). https://doi.org/10.1177/0098628319834381
42. Salami, I. A., & Okeke, C. I. O. (2017). Transformation and decolonization of mathematics education for sustainable development: A case study of its learning trend in Nigeria. Perspectives in Education, 35(2). https://doi.org/10.18820/2519593X/pe.v35i2.4
Schleifer, L. L. F., & Dull, R. B. (2009). Metacognition and performance in the accounting classroom. Issues in Accounting Education, 24(3). https://doi.org/10.2308/iace.2009.24.3.339
43. Shea, N. (2020). Concept-metacognition. Mind and Language, 35(5). https://doi.org/10.1111/mila.12235
44. Stanton, J. D., Neider, X. N., Gallegos, I. J., & Clark, N. C. (2015). Differences in metacognitive regulation in introductory biology students: When prompts are not enough. CBE Life Sciences Education, 14(2). https://doi.org/10.1187/cbe.14-08-0135
45. Sunday Oche, E. (2014). The Influence of Poor Handwriting on Students' Score Reliability in Mathematics. Mathematics Education Trends and Research, 2014. https://doi.org/10.5899/2014/met-00035
46. Ugodulunwa, C., & Okolo, U. P. (2015). Effects of Formative Assessment on Mathematics Test Anxiety and Performance of Senior Secondary School Students in Jos, Nigeria. IOSR Journal of Research & Method in Education Ver. II, 5(2).
47. Veenman, M. V. J., van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. In Metacognition and Learning (Vol. 1, Issue 1). https://doi.org/10.1007/s11409-006-6893-0.