ABSTRACT
A thorough background in craniofacial growth and development is necessary for every dentist. An important concept in the study of growth and development is variability. Cephalometrics is an important part of morphological diagnostic procedures to assess craniofacial growth and development. The aim of this study was to obtain cephalometric norms for Mewari children of Rajasthan by Steiner analysis and compare with Caucasian norms. The method involved clinical examination, collection and analysis of 100 lateral cephalometric radiographs of Mewari children (50 males and 50 females, between 11 and 13 years of age). All cephalometric landmarks were located and determined and subsequently tracing was done according to Steiner analysis. The mean value and standard deviation of each measurement were calculated. Statistical comparison was done using Student t-test. The result of this study showed that the Mewari children had retrusion of mandible relative to cranial base, proclined maxillary and mandibular teeth, with greater convexity of face. They also showed anteriorly placed occlusal plane to cranium and Less prominent chin. In conclusion, these ethnic differences should be considered during orthodontic treatment.

Keywords: Lateral cephalometric radiograph, Steiner analysis, Mewari children, Cephalometric norms.

INTRODUCTION
A thorough background in craniofacial growth and development is necessary for every dentist. An important concept in the study of growth and development is variability. Everyone is not alike in the way that they grow; there is always diversity in growth pattern. Rather than categorizing people as normal or abnormal, it is more useful to think in terms of deviations from usual patterns and to express variability quantitatively. Radiographic cephalometrics is a radiographic technique for abstracting the human skull into a geometric scheme. It is an important part of morphological diagnostic procedures to assess craniofacial growth and development. It allows changes associated with growth to be observed. To diagnose and classify a malocclusion, the measured values of cephalometric parameters are compared with standard values.

Steiner CC (1953) published a method of interpreting both the hard and soft tissues using cephalometric radiographs. Steiner proposed the appraisal of various parts of the skull separately, namely the skeletal, dental and soft tissue. The skeletal analysis entails relating the upper and lower jaws to the skull and to each other. The dental analysis entails relating the upper and lower incisor teeth to their respective jaws and to each other. And, the soft tissue analysis provides the balance and harmony of the lower facial profile.

The craniofacial features both skeletal as well as dental are either genetically in origin; nutritionally acquired or dietary patterns acquired from parents and are specific to some ethnic, racial, subracial as well as from different community groups. Rajasthan is one of the largest state in India and Mewar is one of the major areas of it. With the increasing number of children of Rajasthan seeking professional treatment for malocclusion, it has become apparent that there is need to determine what constitutes a pleasing or normal face for the children of Rajasthan. A comprehensive and accurate diagnostic assessment of any orthodontic patient involves the comparison of the patient’s cephalometric findings with the norms of his or her ethnic groups or racial groups or subgroups.

AIMS AND OBJECTIVES
• To determine cephalometric norms for Mewari children (males and females) of Rajasthan between the age group of 11 and 13 years using Steiner’s analysis.
• To compare values obtained for Mewari children using Steiner’s analysis with the values/norms given by Steiner for Caucasian population.

MATERIALS AND METHODS
This cephalometric radiographic study was carried out in the Department of Pedodontics and Preventive Dentistry, Darshan Dental College and Hospital, Udaipur. Ethical Clearance was taken for the study.

Source of Data
A total of 100 children, with equal male and female ratio, between the age group of 11 and 13 years were taken for the study from various schools of Mewar region of Rajasthan.
Method of Collection of Data

Inclusion Criteria

- Subjects with Angle’s class I occlusion
- Normal overjet and overbite
- No crossbite
- Competent lips
- To ascertain the place of origin of the subject, the family linkage of each subject was traced up to three generations
- Subjects with history of systemic disease were excluded from the study
- Consent from the parents of each subject was taken after explaining the nature and purpose of radiograph.

Radiographic Technique

To have standardized cephalometric radiographs, it becomes important that all the radiographs should have similar patient orientation and also same amount of magnification. For this purpose all the lateral cephalometric radiographs were taken from the standardized Ortho Ralix 9200, Gendex OPG machine with a Cephalostat (Dentsply Italia, Italy) on a standard Kodak C-MAT Green sensitive 8 × 10 inch film with an anode-to-midsurface distance of 5 feet. Subjects were asked to look straight in a long mirror which was placed in front of them and plumb line was placed on right side of the subject to obtain natural head position (Fig. 1). Thyroid shield and lead apron was worn by the subject to reduce radiation exposure (Fig. 2). All the films were exposed with 80 KVP, 7.5 mA and an exposure time of 2.5 seconds.

All the radiographs were traced on a standard matte acetate tracing paper in a random order by a single operator in order to reduce bias (Figs 3 and 4). Each landmark and point was rechecked and then Steiner’s analysis was done.

RESULTS

The collected data was analyzed statistically using SPSS software (version 10 Inc Chicago, IL). The mean value and
standard deviation of each measurement were calculated
(Table 1). Student t-test was used to compare measurements
of Mewari children with measurements given by Steiner
(Table 2).

DISCUSSION

This study was carried out to determine cephalometric norms
for Mewari children of Rajasthan between the age group of
11 and 13 years. The ranges of most of the dimensions of
the present study were significantly different than those
obtained by Steiner, although all selected individuals had a
pleasant appearance and good facial harmony.

SNA angle: The mean value of SNA angle in the present
study was slightly less in Mewari children, i.e. (81.06° ±
2.93°) than those presented by Steiner (82 ± 2°), indicating
maxillary retrusion relative to cranial base for Mewari
children as compare to those given by Steiner. The
measurement of SNA angle for Mewari children (81.06 ±
2.93°) is in agreement with the study done by Chandranee3
(1982) on North Indian and Aryo-Dravidians respectively.

SNB angle: The mean value of SNB angle for Mewari
(3.05 ± 1.38°) children was slightly more than those
presented by Steiner2 (2°), indicating greater convexity. This
is in agreement with the study done by Chandranee3 (1982)
on North Indian children (ANB-3.12°), Anuradha5 et al (1990)
on North Indian preschool children (4.95°) and Abraham KK6
in (2001) on children of South Kanara (ANB- 3.2°)
significant difference of ANB angle in all these studies was
found when compared with those presented by Steiner.

Occlusal plane angle: In the present study, the mean of
occlusal plane angle for Mewari (19.73° ± 1.52°) children
showed a significant difference than measurements given
by Steiner (14°). This indicates more anteriorly placed
occlusal plane as compared to those given by Steiner. This
is in agreement with the study done by Anuradha 5 et al
(1990) on North Indian preschool children (occlusal angle—
21.7°) which is greater than those presented by Steiner.

Mandibular plane angle suggests growth patterns
in individuals, the mean values of this angle for Mewari
(30.36 ± 1.59°) children was slightly less than those
presented by Steiner (32°). This finding is in agreement
with the study done by Joshi7 (1975) on dentofacial patterns
of Gurkhas (mandibular plane angle—29.7°) and Kannappan
JG8 et al (1976) on Madras population (mandibular plane
angle–31.0°), where mandibular plane angle was lesser than
the value given by Steiner.

Maxillary incisor position represents the relative location
and axial inclination of the upper incisors.

Parameters	Min	Max	Mean	SD
SNA angle	74°	88°	81.06°	2.93°
SNB angle	70°	86°	77.15°	2.52°
ANB angle	1°	7°	3.05°	1.38°
Occlusal angle	14°	24°	19.73°	1.52°
Mandibular plane angle	24°	33°	30.36°	1.59°
Maxillary incisor (angular)	14°	34°	23.98°	5.19°
Maxillary incisor (mm)	0	11	5.11	2.39
Mandibular incisor (angular)	18°	38°	28.36°	4.18°
Mandibular incisor (mm)	1	12	5.345	2.07
Interincisal angle	105°	138°	123.63°	7.19
Lower incisor to chin (mm)	− 2	4.5	1.71	1.38

Table 1: Cephalometric norms for Mewari children using Steiner’s analysis (derived from 100 children)

Parameters	t-value	p-value
SNA angle	− 3.20	≤0.01
SNB angle	− 4.37	≤0.01
ANB angle	7.60	≤0.01
Occlusal angle	37.69	≤0.01
Mandibular plane angle	− 10.31	≤0.01
Maxillary incisor (angular)	3.81	≤0.01
Mandibular incisor (mm)	4.66	≤0.01
Mandibular incisor (angular)	8.03	≤0.01
Mandibular incisor (mm)	6.49	≤0.01
Interincisal angle	− 8.85	≤0.01
Lower incisor to chin (mm)	− 16.54	≤0.01

Table 2: Comparison of measurements between Mewari children and measurements given by Steiner’s analysis

ANB angle: The mean value of ANB angles for Mewari
(3.05 ± 1.38°) children was slightly more than those
presented by Steiner2 (2°), indicating greater convexity. This
is in agreement with the study done by Chandranee3 (1982)
on North Indian children (ANB-3.12°), Anuradha5 et al (1990)
on North Indian preschool children (4.95°) and Abraham KK6
in (2001) on children of South Kanara (ANB- 3.2°)
significant difference of ANB angle in all these studies was
found when compared with those presented by Steiner.

Mandibular plane angle suggests growth patterns
in individuals, the mean values of this angle for Mewari
(30.36 ± 1.59°) children was slightly less than those
presented by Steiner (32°). This finding is in agreement
with the study done by Joshi7 (1975) on dentofacial patterns
of Gurkhas (mandibular plane angle—29.7°) and Kannappan
JG8 et al (1976) on Madras population (mandibular plane
angle–31.0°), where mandibular plane angle was lesser than
the value given by Steiner.

Maxillary incisor position represents the relative location
and axial inclination of the upper incisors.

The upper incisor to N-A reading in degrees indicates
the relative angular relationship of the upper incisor teeth
to N-A line, the mean value of maxillary incisor position in
degrees in present study for Mewari (23.98 ± 5.19°) children
is significantly higher than those presented by Steiner
indicating more labial inclination of maxillary teeth in
Mewari children.
The upper incisors to N-A reading in millimeters provides information on the relative forward or backward positioning of the incisor teeth to N-A line, the mean value in present study for Mewari (5.11 ± 2.39 mm) children is significantly higher than those presented by Steiner indicating more forward positioning of mandibular teeth in Mewari and children.

This finding is in agreement with the study done by Valiathan A° (1975) on Indian population in which she had concluded that the teeth of people from India were more labially placed. This finding is also in agreement with the study done by Kannappan JG et al (1976) on Madras population (Angular measurement—23.5°, linear measurement—4.2 mm) and also study done by Chandranee (1982) on North Indian children (angular measurement—4.3°, linear measurement—4.9 mm) where both the angular and linear measurements were more as compared to those given by Steiner.

Mandibular incisor position represents the relative anteroposterior location and angulation of the lower incisor teeth.

The lower incisor to N-B line in degrees indicates relative angular relation. The mean value of mandibular incisor position in degrees in present study for Mewari (28.36 ± 4.18°) children is significantly higher than those presented by Steiner indicating more labial inclination of mandibular teeth in Mewari children.

The lower incisors to N-B reading in millimeters provides information on the relative forward or backward positioning of the incisor teeth to N-B line, the mean values in present study for Mewari (5.34 ± 2.07 mm) children is significantly higher than those presented by Steiner, indicating more forward positioning of mandibular teeth in Mewari children.

This finding is in agreement with the study done by Valiathan A° (1975), Valiathan A° (1976) on Indian population in which she had concluded that the incisor teeth of people from India were more labially placed. This finding is also in agreement with the study done by Kannappan JG et al (1976) on Madras population (Angular measurement—23.5°, linear measurement—4.2 mm) and also in a study done by Chandranee (1982) on North Indian children (angular measurement—24.9°, linear measurement—4.9 mm) where both the angular and linear measurements were more as compared to those given by Steiner.

The finding is also in agreement with the study done by Elbe et al (2000) in which it was found that interincisal angle was less for North Indians as compared to Caucasians and was concluded that North Indians have more proclined lower incisors as compared to Caucasians.

Lower incisor to chin indicates the prominence of chin when compared with lower incisors. The mean value of lower incisor to chin in present study for Mewari (1.71 ± 1.38 mm) children is significantly lesser than those presented by Steiner (4 mm), indicating less prominence of chin to lower incisors for Mewari children as compared to those given by Steiner.

CONCLUSION

- Mewari children showed retrusion of mandible relative to cranial base
- Greater convexity of face was found for Mewari children
- Mewari children showed anteriorly placed occlusal plane to cranium
- Mewari children showed proclined maxillary and mandibular teeth
- Less prominent chin was found for Mewari children.

REFERENCES

1. Moyers, RE. Analysis of craniofacial skeleton: Cephalometrics. Handbook of orthodontics for the student and the general practitioner. Chicago: Year Book Medical Publishers Inc; 1988. 247 p.
2. Steiner CC. Cephalometric for you and me. American Journal of Orthodontics 1953;39(10):729-754.
3. Chandranee, NJ. Roentgenographic cephalometric study of children and permanent dentition. MDS thesis, PGI Chandigarh; 1982.
4. Kharbanda OP, Sidhu SS, Sundaram KR. Cephalometric profile of Aryo-Dravidians Part II. J Indian Orthodontic Society 1989;20:89-94.
5. Anuradha, Taneja JR, Chopra SL, Gupta A. Steiner’s norms for North Indian preschool children. J Indian Soc of Pedod and Prev Dent 1990 March;8:108-109.
6. Abraham KK (Department of Pedodontics and Preventive Dentistry, College of Dental Surgery, Manipal), Tandon S, Paul U. Selected cephalometric norms in south Kanara children. J Indian Soc Pedod Prev Dent 2000 Sep;18(3):95-102.
7. Joshi MR. Dentofacial characteristics of a group of Gurkhas. J Indian Orthod Soc 1975;7(4):3-12.
8. Kannappan JG, Balasubramaniam MR. Cephalometric norms for Madras city population. J Ind Dent Assoc 1976;48:359-362.
9. Valiathan A. Downs’ cephalometric analysis on adults from India. J Indian Dent Assoc 1974 Nov;46(11):437-441.
ABOUT THE AUTHORS

Ambika Singh Rathore (Corresponding Author)
Assistant Professor, Department of Pediatric and Preventive Dentistry
Government Dental College and Hospital, Jaipur, Rajasthan, India
e-mail: dr.ambika.rathore@gmail.com

Vineet Dhar
Associate Professor, Department of Pediatric Dentistry, Health
Promotion and Policy, University of Maryland Dental School, Baltimore
Maryland, USA

Ruchi Arora
Professor and Head, Department of Pedodontics, Darshan Dental
College and Hospital, Udaipur, Rajasthan, India

Amish Diwanji
Senior Lecturer, Department of Pedodontics, Faculty of Dental
Science, Dharmsinh Desai University, Nadiad, Gujarat, India