Bivectorial Mesoscopic Nonequilibrium Thermodynamics: Landauer-Bennett-Hill Principle, Cycle Affinity and Vorticity Potential

Ying-Jen Yang* and Hong Qian†

Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA

In mesoscopic nonequilibrium thermodynamics (NET), Landauer-Bennett-Hill principle emphasizes the importance of kinetic cycles. For continuous stochastic systems, a NET in phase space is formulated in terms of cycle affinity $\nabla \wedge (D^{-1} b)$ and vorticity $A(x)$ representing the stationary flux $J = \nabla \times A$. Each bivectorial cycle couples two transport processes represented by vectors and gives rise to Onsager’s reciprocity; the scalar product of the two vectors $A \cdot \nabla \wedge (D^{-1} b)$ is the rate of local entropy production in the nonequilibrium steady state. An Onsager operator that maps vorticity to cycle affinity is introduced.

Introduction. Nonequilibrium thermodynamics (NET) pioneered by L. Onsager [1] is concerned with a diverse array of macroscopic physical and chemical processes: mass transport, heat conduction, chemical reactions, etc. A unified treatment in continuous systems was developed since the 1960s [2]. In recent years, introducing a NET of mesoscopic stochastic dynamics in its phase space has provided a more fundamental formulation in which the different physical and chemical fluxes are all represented by a single probability flux. Positivity of mean entropy production can be mathematically demonstrated and large deviation fluctuation theorems were discovered [3]. The local equilibrium assumption required in [2] does not enter the stochastic theory per se until its application when constitutive models for real world processes are required. In discrete-state systems, cycle flux and cycle affinity play fundamental roles in its NET; the initial idea goes back to [4]. See [5] for a recent synthesis.

Landauer-Bennett-Hill Principle. Consider a stochastic trajectory of a discrete-state Markov process one step short of the completion of a full cycle: i_0, i_1, \ldots, i_k which are all distinct. Before the transition from $i_k \rightarrow i_0$, the trajectory can always be reversible. Actually, denoting the ratio of conditional probabilities of the forward and its reversed paths,

$$\sigma = \frac{q_{i_{k+1}i_{k+2}} \cdots q_{i_1i_0}}{q_{i_1i_0}q_{i_2i_1} \cdots q_{i_{k+1}i_k}},$$

there is always the possibility that the last step balanced out the probability difference, $q_{i_{k+1}i_{k+2}/(q_{i_0i_{k}}) = \sigma^{-1}}$. In that case, the trajectory would have completed a reversible cycle with no dissipation. In other words, before the completion of a cycle, one cannot know whether a system is detailed balanced or not. We shall call this observation Landauer-Bennett-Hill (LBH) principle: In the theory of computation, Landauer applied the second law of thermodynamics to point out the necessary accompanied heat dissipation of “erasing one bit” [6]; Bennett then used Landauer’s principle to argue that it is the last step of “erasing bits” in a cyclic Maxwell demon that “saves” the second law [7]; Independently in the theory of cycle kinetics driven by chemostat chemical potential, T. L. Hill introduced the concept of cycle completion [8] and argued that cycles are more fundamental object in mesoscopic NET than transitions [4]. The notion of “erasing one bit” of Landauer’s and Bennett’s matches exactly the idea of “completing one cycle”!

Parallel to the cycle representation of discrete-state Markov processes which has been extensively studied [9], here we present a cycle representation for the NET of continuous Markovian stochastic dynamics in its phase space \mathbb{R}^n and discuss how the LBH principle comes in. It turns out that both the cycle flux and cycle affinity in the continuous system are bivectors (see Appendix); they can be represented by skew-symmetric $n \times n$ matrices. More importantly, while nonequilibrium steady state (NESS) cycle flux as a kinematic concept is nonlocal and requires highly nontrivial computation, the cycle affinity that quantifies NET thermodynamic force is locally determined and completely independent of the kinematics. The bivectorial nature of a cycle reflects the coupling between two different transport processes in real world. This further implies the fundamental importance of cycles: A nonequilibrium device converts the force in one dimension to the transport in other, and a symmetry naturally follows. This yields a clear physical picture and the mathematical representation of reciprocity in NET envisioned by Onsager.

Diffusion Processes. Consider a mesoscopic system represented by a continuous stochastic process with diffusion matrix $D(x)$ and drift $b(x)$, $x \in \mathbb{R}^n$. The stochastic dynamics is described by a time-dependent probability density function $p(x,t)$ that follows the Fokker-Planck equation (FPE)

$$\frac{\partial}{\partial t} p(x,t) = -\nabla \cdot [b(x)p(x,t) - D(x)\nabla p(x,t)].$$

With Ito’s calculus, this has a corresponding trajectory-based stochastic differential equation,

$$dX_t = [b(X_t) + \nabla \cdot D(X_t)] dt + \Gamma(X_t) dB_t$$

where $D = \Gamma \Gamma^T / 2$, $((\nabla \cdot D)_{ij} = \sum_{j=1}^{n} \partial_j D_{ji}$, and B_t is the n-D Brownian motion. We’ve denoted ∂_j as the partial derivative with respect to x_j.

With Eq. (2), the probability flux at t is defined as

$$J(x,t) = b(x)p(x,t) - D(x)\nabla p(x,t),$$

and the notion of “probability velocity” can be introduced as $\gamma(x,t) = J(x,t)/p(x,t)$. In the stationary state, we
have an invariant probability density $\pi(x)$, a divergence-free stationary flux
\[J^*(x) = b(x)\pi(x) - D(x)\nabla\pi(x), \tag{5} \]
and a “stationary probability velocity” $\gamma^*(x) = J^*(x) / \pi(x)$. An equilibrium corresponds to detailed balanced condition: $J^*(x) = 0 = \gamma^*(x)$.

Infinitesimal change and cyclic change of thermodynamic quantities. Mesoscopic thermodynamics concerns the rate of change, production and dissipation of mainly three thermodynamic quantities: the (stochastic) Shannon entropy $S(x, t) := -\ln p(x, t)$, the nonequilibrium potential energy $\Phi(x) := -\ln \pi(x)$, and the free energy $F(x, t) := \Phi(x) - S(x, t)$ [10, 11]. Their infinitesimal change along X_t from t to $t + dt$ can be expressed as
\[d\Phi(X_t) = \nabla\Phi(X_t) \circ dX_t \tag{6a} \]
\[dS(X_t, t) = \partial_t S(X_t, t) dt + \nabla S(X_t, t) \circ dX_t \tag{6b} \]
\[dF(X_t, t) = -\partial_t S(X_t, t) dt + \nabla F(X_t, t) \circ dX_t. \tag{6c} \]
Here \circ denotes the Stratonovich midpoint integration $u(X_t, t) \circ dX_t = u(X_t + \frac{1}{2}dX_t, t) \cdot dX_t$, which takes care of the extra term in Ito’s calculus due to the \sqrt{dt} scaling of dB_t.

The instantaneous production of entropy dS has a decomposition $dS = dS_{\text{tot}} - dQ$ in terms of two new quantities,
\[dQ = D^{-1}b \circ dX_t, \quad dS_{\text{tot}} = \partial_t S dt + D^{-1}\gamma \circ dX_t. \tag{7} \]
They are the total amount of heat dissipated from the system to the environment [3] and the total entropy production of the system and the environment. Note the important distinction: Infinitesimal change of a function $A(X_t, t)$ is $dA \equiv A(X_{t+dt}, t + dt) - A(X_t, t)$; but there is no such a function for dB in general. The latter represents work against a non-conservative force, or a “source” term.

When the system reaches its NESS, the total entropy production at the steady state is the difference between the total heat dissipation dQ and the excess heat dissipation associated with the change in the nonequilibrium potential $dQ_{\text{ex}} = -\nabla \Phi \circ dX_t$. It is the amount of energy needed to sustain the steady state, called housekeeping heat,
\[dQ_{\text{hk}} \equiv dQ - dQ_{\text{ex}} = D^{-1}\gamma^*(X_t) \circ dX_t. \tag{8} \]
From Eqs (6c), (7) and (8), one gets the entropy production decomposition $dS_{\text{tot}} = dQ_{\text{hk}} - dF$.

We thus consider the infinitesimal change of a “work”-like quantity W associated with a “force” field $f(X_t, t)$,
\[dW = f(X_t, t) \circ dX_t. \tag{9} \]
For a smooth cyclic path $\Gamma : x(t)$, $0 \leq t \leq T$ where $x(0) = x(T) = \xi$ in \mathbb{R}^n, the cyclic “work” can be rewritten by Stoke’s theorem [12],
\[W(\Gamma) = \int_{\Gamma} f \cdot dx = \int_{\Sigma} \nabla \wedge f \cdot d\sigma. \tag{10} \]
where Γ is the boundary of a surface Σ, $(d\sigma)_{ij} = dx_i \wedge dx_j$, and $(\nabla \wedge f)_{ij} = \partial_i f_j - \partial_j f_i$ is the “curl” of f. Note that $\nabla \wedge f$ is not a vector in \mathbb{R}^n in general; rather it is a bivector, a skew-symmetric matrix.

The cyclic changes of the thermodynamic quantities are then given by,
\[\Delta \Phi(\Gamma) = -Q_{\text{ex}}(\Gamma) = 0 \tag{11a} \]
\[\Delta S(\Gamma) = -\Delta F(\Gamma) = S(\xi, T) - S(\xi, 0) \tag{11b} \]
\[Q(\Gamma) = Q_{hk}(\Gamma) = \int_{\Sigma} \nabla \wedge (D^{-1}b) \cdot d\sigma \tag{11c} \]
\[S_{\text{tot}}(\Gamma) = \Delta S(\Gamma) + Q(\Gamma). \tag{11d} \]
If path probability of the Markovian Γ starts with the invariant probability as the initial distribution, $\Delta S(\Gamma) = 0$ for all cycles Γ, over which the total entropy production equals to the heat dissipation:
\[S_{\text{tot}}^*(\Gamma) = Q(\Gamma) = \int_{\Sigma} \nabla \wedge (D^{-1}b) \cdot d\sigma. \tag{12} \]
S and Φ are state functions, but Q and S_{tot}^* are not. These are direct consequences of (6) and (7) in the cycle representation.

The mean rate of $W(t)$ in (10) can be computed following Ito’s calculus [13],
\[w \equiv \frac{1}{dt} \mathbb{E}[dW] = \int_{\mathbb{R}^n} J(x, t) \cdot f(x, t) dx \tag{13} \]
where $dx = \prod_{i=1}^n dx_i$ and $\mathbb{E}[\cdot]$ denotes expectation. The mean rates of Φ, S, F, S_{tot}, Q_{hk} can then be obtained by plugging in the corresponding forces f. We note that since $\mathbb{E}[\partial_t S] = 0$, the first terms in Eqs. (6b) and (6c) do not contribute to the mean rate.

Cycle representation of kinematic NESS flux. The divergence-free stationary flux J^* can be expressed in terms of a bivector potential $A(x)$, $\nabla \times A = J^*$. Note that A is also not a vector in \mathbb{R}^n in general; rather it is a bivector whose components satisfy
\[J^*_i(x) = (\nabla \times A)_i = \sum_{j=1}^n \partial_j A_{ij}(x). \tag{14} \]
It is straightforward to verify that $\nabla \cdot (\nabla \times A) = 0$. See Appendix for more discussion on the generalized vector potential and curl in \mathbb{R}^n. We fix the notion $\nabla \times A$ to denote a vector from a bivector A, $(\nabla \times A)_i := \sum_{j=1}^n \partial_j A_{ij}$ and $\nabla \times v$ to map a vector v to a bivector: $(\nabla \times v)_{ij} := \partial_i v_j - \partial_j v_i$.

The physical meaning of Eq. (14) is rather clear. For every infinitesimal vector dx_i in the x_i direction at the point $x \equiv (x_1, \cdots, x_n) \in \mathbb{R}^n$, there are $(n-1)$ orthogonal vectors $dx_j, j \neq i$, and $dx_i \wedge dx_j$ forms a bivector, an infinitesimal planar element, as shown in Fig. 1(a). $A_{ij}(x)$ then denotes the stationary cycle flux around the oriented infinitesimal planar element $dx_i \wedge dx_j$ at x. The ith component of J^*, J^*_i, is then determined from all the neighboring infinitesimal planes $dx_i \wedge dx_j, j \neq i$. And, $\partial_j A_{ij}$ is thus the net edge flux.
along x_i due to the pair of A_{ij} at $(x_1, \ldots, x_j, \ldots, x_n)$, and at $(x_1, \ldots, x_j - dx_j, \ldots, x_n)$ as shown in Fig. 1(b). An increasing A_{ij} in the jth direction leads to a positive net flow $\partial_j A_{ij}$ in the x_i direction. Eq. 14 gives a cycle representation of the steady state fluxes J^*_{ij} along the edges in terms of the cycle fluxes around the planar elements. An earlier discussion for 3-D cases can be found in [14]. $A(x)$ is a potential of J^* in terms of vorticity components at x.

Landauer-Bennett-Hill principle for diffusion. In NESS, the $J(x, t)$ in Eq. (13) is replaced by the divergence-free stationary flux $J^*(x)$. With our bivector potential, the mean rate of W in Eq. (9) with corresponding force f can be rewritten as

$$w^* = \int_{\mathbb{R}^n} J^* \cdot f \, dx = \int_{\mathbb{R}^n} (\nabla \times A) \cdot f \, dx \quad (15a)$$
$$= \int_{\mathbb{R}^n} A \cdot (\nabla \times f) \, dx. \quad (15b)$$

The scalar product in (15a) is between two vectors in \mathbb{R}^n, but is between two bivectors in (15b). It is the half of the Frobenius product between two matrices. See Appendix for detailed calculation.

This immediately implies that thermodynamics quantities with a gradient force would have zero mean rate in NESS. That includes all the functions Φ, S, and F, implying that the mean rates of s_{tot}, Q, and Q_{hk} are all identical at NESS, $s_{\text{tot}}^* = q^* = q_{hk}^*$. This has been termed as a “gauge freedom” in [12, 15].

Thus, the average total entropy production rate at NESS can be written as

$$s_{\text{tot}}^* = \int_{\mathbb{R}^n} A \cdot (\nabla \times (D^{-1}b)) \, dx. \quad (16)$$

The stationary cycle flux A is a purely kinematic concept that devioes any thermodynamic content. A closed loop Γ in \mathbb{R}^n contains a surface Σ which can be tiled by an array of tiny oriented infinitesimal planar elements at x, for all $x \in \Sigma$. $A(x)$ then decomposes $J^*(x)$, following Kirchhoff’s law, in terms of the occurrence rate of these tiny oriented elements along the infinitely long ergodic path X_t. As a vorticity description of the NESS, A is nonlocally determined.

On the other hand, the cycle affinity [5], as the Onsager’s thermodynamic force corresponding to the cycle flux, is locally determined through $\nabla \cdot (D^{-1}b)$. $D^{-1}b$ should be identified as the vector potential of the cycle affinity. This is in sharp contrast to the standard expression $s_{\text{tot}} = \int_{\mathbb{R}^n} J^* \cdot D^{-1} \gamma^* \, dx$ where the thermodynamic force corresponding to J^* is nonlocally defined by $D^{-1} \gamma^*$. Note that the cycle affinity is a bivector with components

$$[\nabla \times (D^{-1}b)]_{ij} = \partial_i (D^{-1}b)_j - \partial_j (D^{-1}b)_i, \quad (17)$$

representing how the two dimensions x_i and x_j are coupled.

This constitutes the the LBH principle for diffusion processes: Entropy production in NESS is characterized by the locally-defined cycle affinity; entropy production of a bigger loop is the integral of the cycle affinity of infinitesimal cycles; and the average entropy production rate is the average cycle affinity, weighted by the cycle flux of infinitesimal cycles. The fundamental unit of NESS is the non-detailed-balanced kinetic cycle [4], in terms of bivectors.

Mean rate decomposition outside of NESS. For the mean rate of thermodynamics quantities outside of NESS, we rewrite Eq. (13) as $w = \mathbb{E}[\gamma(X(t), t) \cdot f(X(t), t)]$. By $\gamma(x, t) = \gamma^*(x) - D \nabla F(x, t)$, the w has a decomposition,

$$w = \mathbb{E}[f \cdot \gamma^*] = \mathbb{E}[f \cdot D \nabla F]. \quad (18)$$

Outside of NESS, the two terms within can be rewritten as

$$\mathbb{E}[f \cdot \gamma^*] = \int_{\mathbb{R}^n} A \cdot (\nabla \times (\frac{\pi}{\pi} f)) \, dx \quad (19a)$$
$$\mathbb{E}[f \cdot D \nabla F] = \int_{\mathbb{R}^n} \frac{\pi}{\pi} \nabla \cdot (\pi D f) \, dx. \quad (19b)$$

This implies an average perpendicularity between $-\nabla F$ and γ^*, $\mathbb{E}[-\nabla F \cdot \gamma^*] = 0$.

With inner product defined as $\langle u, v \rangle = \mathbb{E}[u \cdot D^{-1}v]$, this average perpendicularity becomes $\langle -D \nabla F, \gamma^* \rangle = 0$.

The decomposition in Eq. (18) then have a rather nice geometric interpretation under the provided inner product. The mean rate of a “work”-like quantity W of Eq. (9) with the force f is determined by the inner product of $D f$ with two perpendicular vectors, γ^* and $-D \nabla F$,

$$w = \langle D f, \gamma^* \rangle + \langle D f, -D \nabla F \rangle. \quad (20)$$

This gives the Pythagorean-like relation between γ^*, γ^*, and $-D \nabla F$ [16] hidden behind the famous entropy production rate decomposition [17].

$$\langle \gamma, \gamma \rangle = \langle \gamma^*, \gamma^* \rangle + \langle -D \nabla F, -D \nabla F \rangle. \quad (21)$$
Results above indicate that γ^* and $-D\nabla F$ originate from two rather disjoint irreversibilities, and that the geometry defined through the Riemannian metric $D^{-1}(x)$ may be the most natural one in thermodynamics.

Onsager’s reciprocality and the Onsager operator. Diffusion process in \mathbb{R}^n always has its NESS thermodynamic force $D^{-1}\gamma^*$ linearly related to transport flux J^*: $(D^{-1}\gamma^*)_i = e^\Phi D^{-1}j^*_i$. Many previous studies have explore this unique feature [13, 18]. In the bivectorial representations there is a further linear affinity-vorticity relationship

$$\nabla \wedge (D^{-1}b)(x) = OA(x). \quad (22)$$

where $O = \nabla \wedge (e^\Phi D^{-1}\nabla \times)$. We shall call the operator O the Onsager operator. It linearly maps the vorticity bivector to the cycle affinity bivector.

For discrete-state systems, it was understood in [5, 19] that such a relation at the cycle level is the fundamental origin of the Onsager’s reciprocal relation. We note that the mean NESS entropy production rate has a simple bilinear form:

$$s_{tot}^* = \int_{\mathbb{R}^n} A \cdot OA \, dx. \quad (23)$$

Incidentally, Onsager has also considered tiny vortices “who wanted to play” as the fundamental objects in hydrodynamic turbulent flow [20].

The probabilistic gauge of the bivector potential A. The bivector potential A obtained for the divergence-free $J^*(x) = \nabla \times A(x)$ is not unique: It has a gauge freedom with an arbitrary curl-free bivector. The situation has an analogue to that of discrete-state Markov process [21, 22], and the vector potential in classical electrodynamics. Interestingly, for discrete-state Markov process, Qian and Qian have proven the existence and uniqueness of a gauge with a probabilistic meaning: Cycles are not just represented in terms of Kirchhoff decomposition via linearly independent bases; rather the space of all possible cycles are considered, on which the unique probabilistic gauge, as NESS cycle flux, is the occurrence rate of a given cycle along the infinitely long, ergodic path [22]. Whether such a unique probabilistic gauge also exists for bivector potential A on \mathbb{R}^n, or a more extended space of loops [23], remains to be further investigated.

Conclusions and discussion. This study clearly points to the importance of cycle representation for mesoscopic nonequilibrium thermodynamics (NET) in term of cycle flux A and cycle affinity $\nabla \wedge (D^{-1}b)$. The former is a pure kinematic concept and the latter contains all the fundamental information on NET. We discover that the cycle flux and cycle affinity are not simple vectors in \mathbb{R}^n; rather they are bivectors, e.g., skew-symmetric matrices. The cycle flux is the bivector potential of the conventional NESS flux; and the cycle affinity has a vector potential $D^{-1}(x)b(x)$ which is obtained locally.

Some of the mathematics in the present work is contained in the diffusion process on a manifold [24] and the gauge field formulations of NET [12, 15]. The present work provides a clearer physics of NET in phase space as a formulation of Onsager’s general principle for entropy production. We identify the bivector nature of the cycle representation in terms of a local cycle affinity and a nonlocal kinematic cycle flux; and reveal a unified Landauer-Bennett-Hill thermodynamic principle for stationary nonequilibrium systems.

Finally, we noted a parallel between quantum mechanical phase giving a reality to the “indeterminate” vector potential in electromagnetism [25] and our stochastic formulation giving a vorticity interpretation to the bivector A in stochastic thermodynamics: Steady state flux J^* turns out to be a derivative.

The authors thank Yu-Chen Cheng for helpful discussions. This work is partially supported by the Olga Jung Wan Endowed Professorship for the second author, who also acknowledges Profs. Zhang-Ju Liu (PKU) and Xiang Tang (Wash. U.) for teaching him the mathematics.
[15] M. Polettini, “Nonequilibrium thermodynamics as a gauge theory,” *Eur. Phys. Lett.* **97**, 30003 (2012).

[16] H. Qian, Y.-C. Cheng, and Y.-J. Yang, “Kinematic Basis of Emergent Energetics of Complex Dynamics,” arXiv:1704.01828 [math-ph, physics:physics] (2020).

[17] H. Ge, “Extended forms of the second law for general time-dependent stochastic processes,” *Phys. Rev. E* **80**, 021137 (2009).

[18] D. Reguera, J. M. Rubí, and J. M. G. Vilar, “The Mesoscopic Dynamics of Thermodynamic Systems,” *J. Phys. Chem. B* **109**, 21502–21515 (2005).

[19] T. L. Hill, “The linear Onsager coefficients for biochemical kinetic diagrams as equilibrium one-way cycle fluxes,” *Nature* **299**, 84 (1982).

[20] G. L. Eyink and K. R. Sreenivasan, “Onsager and the theory of hydrodynamic turbulence,” *Rev. Mod. Phys.* **78**, 87–135 (2006).

[21] M.-P. Qian and M. Qian, “The decomposition into a detailed balance part and a circulation part of an irreversible stationary Markov chain.” *Sci. Sinica Special Issue II on Math.,* 69–79 (1979).

[22] M.-P. Qian and M. Qian, “Circulation for recurrent markov chains,” *Z. Wahrscheinlichkeitstheorie. verw. Gebiete* **59**, 203–210 (1982).

[23] Y. Le Jan, “Markov loops and renormalization,” *Ann. Probab.* **38**, 1280–1319 (2010).

[24] M. Qian and Z.-D. Wang, “The Entropy Production of Diffusion Processes on Manifolds and Its Circulation Decompositions,” *Commun. Math. Phys.* **206**, 429–445 (1999).

[25] A. C. T. Wu and C. N. Yang, “Evolution of the concept of the vector potential in the description of fundamental interactions,” *Int. J. Mod. Phys. A* **21**, 3235–3277 (2006).

[26] V. I. Arnold, *Mathematical Methods of Classical Mechanics*, 2nd ed. (Springer, New York, 1997).
APPENDIX: CURL AND BIVECTOR POTENTIAL IN n-DIMENSION

To summarize the mathematics to be used in the present work: According to the Poincaré lemma, on a contractible domain, every closed form is exact, implying the existence of a “vector” potential of a divergence-free vector field. The “vector” potential of a n-dimensional divergence-free vector field $\mathbf{F}(\mathbf{x})$ is actually a bivector, a skew-symmetric matrix $\mathbf{A}(\mathbf{x})$: $F_i(\mathbf{x}) = \sum_{j=1}^{\infty} \partial_j A_{ij}(\mathbf{x})$ where ∂_j denote the partial derivative w.r.t. x_j. The curl of a n-dimensional vector $\mathbf{v}(\mathbf{x})$ is also a bivector $[\nabla \wedge \mathbf{v}(\mathbf{x})]_{ij} = \partial_i v_j(\mathbf{x}) - \partial_j v_i(\mathbf{x})$. The scalar product of the vector potential of \mathbf{F} and the curl of \mathbf{v} then is half of the Frobenius product between matrices,

$$\mathbf{A} \cdot (\nabla \wedge \mathbf{v}) = \sum_{i<j} A_{ij}(\mathbf{x}) \left[\partial_i v_j(\mathbf{x}) - \partial_j v_i(\mathbf{x}) \right]$$

(24)

The concept of exterior calculus is needed to generalize the curl and cross product to dimensions higher than 3 [26]. One takes the dual of a vector space, the space of linear functions, in which elements are called covectors or 1-forms. Therefore corresponding to the vector $\mathbf{v} = (v_1, v_2, \cdots, v_n)$ we have the 1-form

$$\sum_{k=1}^{n} v_k \, dx_k.$$

(25)

The exterior derivative of a differential form can be interpreted, geometrically, as the integral over the boundary of an infinitesimal parallelepiped. The exterior derivative of a k-form is a $(k + 1)$-form. The Stokes-Cartan theorem states that the integral of a differential form ω over the boundary of some orientable manifold Ω is equal to the integral of its exterior derivative $d\omega$ over the whole of Ω:

$$\oint_{\partial \Omega} \omega = \int_{\Omega} d\omega.$$

(26)

One of the most important consequences of the Stokes-Cartan theorem in Eq. (26) is that if Ω is a closed manifold without boundary, then $\partial \Omega = \emptyset$ and

$$\int_{\Omega} d\omega = 0.$$

(27)

For example, the integral over every closed curve Γ

$$\oint_{\Gamma} \mathbf{F}(\mathbf{x}) \cdot d\ell = \oint_{\Gamma} d\varphi(\mathbf{x}) = \oint_{\Gamma} \sum_{k=1}^{n} (\partial_k \varphi) \, dx_k = 0$$

(28)

if and only if the vector field $\mathbf{F}(\mathbf{x})$ is the exterior derivative of a 0-form, a scalar $\varphi(\mathbf{x})$.

Using exterior derivatives and differential forms, the integral of an n-dimensional vector field $\mathbf{F}(\mathbf{x})$ over an $(n - 1)$-dimensional closed surface Σ

$$\oint_{\Sigma} \sum_{k=1}^{n} F_k(\mathbf{x}) \, d\sigma_k = \oint_{V} \sum_{k=1}^{n} \left\{ \sum_{j=1}^{n} (\partial_j F_k) \, dx_j \right\} \, d\sigma_k$$

$$= \oint_{V} \sum_{k,j=1}^{n} (\partial_j F_k) \, dx_j \wedge d\sigma_k$$

$$= \oint_{V} \sum_{j=1}^{n} (\partial_j F_j) \, dx_j,$$

(29)

where V is the n-volume contained by the closed $(n - 1)$-surface Σ, and

$$d\sigma_k = dx_1 \wedge dx_2 \wedge \cdots \wedge dx_{k-1} \wedge dx_{k+1} \wedge \cdots \wedge dx_n$$

(30)

with dx_k missing. Thus, $dx_j \wedge d\sigma_k = (-1)^{j-k} \delta_{jk} \, dx$. Note that according to the rule of geometric product of multivectors, $(dx_i)(dx_j) = dx_i \cdot dx_j + dx_i \wedge dx_j$ in which the first term is a lower grade quantity which is negligible in a higher grade integration. Now if a vector field $\mathbf{F}(\mathbf{x})$ is divergence free, then the integral on the left-hand-side of (29) is zero for every closed surface Σ. Applying the Stokes-Cartan theorem again, this implies that

$$\sum_{k=1}^{n} F_k(\mathbf{x}) \cdot d\sigma_k = d\omega,$$

(31)

where ω is expected to be a $(n - 2)$-form with the general expression

$$\omega = \sum_{i,j=1}^{n} u_{ij}(\mathbf{x}) d\eta_{ij},$$

(32)

in which

$$d\eta_{ij} = dx_1 \cdots dx_{i-1} \wedge dx_{i+1} \cdots dx_j \wedge dx_{j+1} \cdots dx_n$$

(33)

with dx_i and dx_j missing. We shall assume that $i < j$. Then,
\[
d\omega = \sum_{i,j=1: i<j}^{n} \sum_{k=1}^{n} (\partial_k u_{ij}(x)) \, dx_k \wedge d\eta_{ij} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \{ (\partial_i u_{ij}(x)) \, dx_i \wedge d\eta_{ij} + (\partial_j u_{ij}(x)) \, dx_j \wedge d\eta_{ij} \}
\]

\[
= \sum_{i=1}^{n} \left\{ \sum_{j=1}^{i-1} (-1)^{j-1} (\partial_j u_{ji}(x)) + \sum_{j=i+1}^{n} (-1)^{j} (\partial_j u_{ij}(x)) \right\} \, d\sigma_i = \sum_{i=1}^{n} \sum_{j=1}^{n} (\partial_j A_{ij}(x)) \, d\sigma_i. \tag{34}
\]

In the last step we have introduced \(A_{ij}(x) = (-1)^{j} u_{ij}(x) \) for \(i < j \), \(A_{ij}(x) = -A_{ji}(x) \) for \(i > j \) and \(A_{ii}(x) = 0 \). It is easy to verify that

\[
F_i(x) = \sum_{j=1}^{n} (\partial_j A_{ij}(x)) \tag{35}
\]

is a divergence free vector field:

\[
\nabla \cdot F(x) = \sum_{i=1}^{n} \partial_i F_i(x) = \sum_{i,j=1}^{n} (\partial_i \partial_j A_{ij}(x)) = 0. \tag{36}
\]

The vector potential \(A(x) \) of a divergence-free field is a bivector, an anti-symmetric matrix.

In terms of the bivector potential, the curl is best understood via the integration by parts:

\[
\int_{\mathbb{R}^n} F(x) \cdot v(x) \, dx = \int_{\mathbb{R}^n} \sum_{i,j=1}^{n} \partial_j A_{ij}(x) v_i(x) \, dx
\]

\[
= \int_{\mathbb{R}^n} \sum_{i,j=1}^{n} A_{ij}(x) (\partial_i v_j(x) - \partial_j v_i(x)) \, dx. \tag{37}
\]

We have assumed that the integrand vanishes at infinity. The term inside \((\cdots)\) in (37) can be formally thought as \(\nabla \wedge v\).

Eq. (37) is the \(n\)-dimensional generalization of

\[
\int_{\mathbb{R}^3} F(x) \cdot v(x) \, dx = \int_{\mathbb{R}^3} (\nabla \times A) \cdot v(x) \, dx
\]

\[
= \int_{\mathbb{R}^3} A(x) \cdot (\nabla \times v) \, dx \tag{38}
\]

for 3-dimensional vector field.