Effects of X-xylanase Incorporated in the Diet on the Growth Performance of Red tilapia (*Oreochromis* sp.)

Ann-Chang Cheng¹, Chia-Chun Chi² and Chun-Hung Liu²,³*

¹Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
²Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
³Research Center for Animal biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan

Received: 07.03.2018 / Accepted: 22.03.2018 / Published online: 29.03.2018

Abstract: The aim of this study was to evaluate the feasibility of using X-xylanase in the diet to improve tilapia growth. Four experimental diets containing X-xylanase (Hostazym®, Huvepharma, Antwerp, Belgium) at levels of 0 (control), 1050, 1500, and 1950 endopentosanase units (EPU) were used in this study. The growth performance trial was carried out for 56 days. At the end of the study, there were no significant differences between the groups fed by control and the experimental diets in terms of survival rate, condition factor and weight gain. However, the highest weight gain was recorded in fish fed a diet containing 1500 EPU of X-xylanase. Fish fed diets containing 1500 and 1950 EPU X-xylanase for 56 days had significant better feed efficiency compared to those of fish fed the commercial diet and other experimental diets. It was therefore concluded that the addition of X-xylanase to the tilapia diet was able to improve the feed utilization and consequently enhance fish growth.

Keywords: Tilapia; X-xylanase; Growth performance; Feed efficiency

*Correspondence to: Chun-Hung Liu, Department of Aquaculture, National Pingtung University of Science and Technology, Taiwan; Tel.: +886 8 7703202; E-mail: chliu@mail.npust.edu.tw
Introduction

Tilapia (*Oreochromis* sp.) farming is a widespread industry in the world because of its high growth performance and market value, and it has become one of the most important aquaculture species in the world. The production of tilapia is increasing annually, and 5,576,800 metric tons were produced worldwide in 2015. As tilapia aquaculture has dramatically grown over the past decade, feed quality and utilization have become major issues standing in the way of the sustainable development of tilapia aquaculture.

Formulated diets are the primary food source used in tilapia aquaculture. Plant-derived proteins, such as soybean meal, rice gluten meal, rapeseed meal, rice gluten meal, and wheat middling’s, are widely used as ingredients in tilapia feed. However, the low nutrient utilization of plant-derived proteins by fish might result in lower growth performances and pollution of pond environment (Leenhouwer et al., 2007). The limited nutrient availability in aquafeed is mainly caused by non-starch polysaccharide (NSP) components (Sinha et al., 2011) and/or other anti-nutritional factors in plant-derived proteins (Cheng et al., 2013). Therefore, issues of anti-nutritional factors in plant-derived proteins must be dealt with to improve nutrient utilization and animal growth to bring down consequent costs of aquafeed.

Microbial enzymes are widely used in feed to minimize the problem of anti-nutritional factors, thereby improving the nutritive value (Forster et al., 1999), nutrient utilization (Cheng and Hardy, 2003; Cheng et al., 2013), animal growth (Sajiadi and Carter, 2004; Cheng et al., 2013; Saputra et al., 2016), and so on. Xylanases are a class of enzymes that degrade linear polysaccharides in plant cell walls into xylose, thus breaking down hemicellulose. They are found in numerous bacteria, yeasts, and fungi and play a role in those organisms’ ability to thrive on plant sources by degrading plant matter into usable nutrition. Because of xylanase’s capability of enzymatic digestion, it is considered a potential candidate for improving the efficiency of feed utilization and degrading NSPs of plant ingredients in animal feed. Xylanase has been widely used in the poultry (Yang et al., 2008; Pirgosliev et al., 2015) and livestock (Prandini et al., 2014; Passos et al., 2015) industries to enhance energy and nutrient availability of plant ingredients, but little is known about its application in aquaculture. Xylanase-producing yeasts were found in some freshwater fish species, such as Indian major carp (*Cirrhinus mrigala*) and Nile tilapia (*Oreochromis niloticus*), and xylanases released from yeast strains are thus available in the gut of fish and might promote NSP digestibility and utilization by fish (Gatesoupe, 2007; Banerjee and Ghosh, 2014). Purified xylanase was used in a plant protein-enriched diet of Jian carp (*Cyprinus carpio* var. *Jian*), which resulted in improvements in growth, in intestinal enzyme activities, and the microflora (Jiang et al., 2014); similar results were also recorded in Japanese seabass (*Lateolabrax japonicus*) (Ai et al., 2007).

It is well known that xylanases have great potential, as they are widely applied in the feed of terrestrial animals (Prandini et al., 2014; Passos et al., 2015). However, little is known about their application in aquaculture. Therefore, the efficiency of an X-xylanase product in improving feed utilization was evaluated by tracking the growth performance of red tilapia (*Oreochromis* sp.) in this study.

Materials and Methods

Experimental fish

Red tilapia for this experiment were bought from a private farm in Pingtung, Taiwan and then transported to the farm at the Department of Aquaculture, National Pingtung University of Science and Technology. Before the experiment, fish were reared in an outdoor 10-ton cement tank with continuous water flow, and fed by a control diet (Table 1) twice daily at around 10% of their body weight. The average weight of fish used was 0.43 ± 0.01 g at the beginning of the experiment.

Preparation of the experimental diets

Table 1 shows ingredients of the experimental diets. Four experimental diets were formulated to contain graded levels of X-xylanase (0 (control), 1050, 1500, and 1950 endopeptosan units (EPU)) using Hostazym® X-xylanase (X 6000, Huvepharma, Antwerp, Belgium). X-xylanase was added to the experimental diets with a corresponding decrease in the amount of inactive-xylanase. Ingredients were ground in a Hammer mill until they passed through a 60-mesh screen. The experimental diets were prepared by mixing the dry ingredients with soybean oil and then adding water until a stiff dough resulted. Each diet was then passed through a mincer with a die, and the resulting spaghetti-like strings were dried to a moisture level of 10% in a drying cabinet at 50°C with an air blower. After drying, the pellets were stored in plastic bins at -4°C until being used. Proximate analysis of the experimental and commercial diet (moisture, crude protein, crude lipid and ash) was performed according to AOAC procedures (1984).

Growth performance trial

A 56-day growth performance trial was conducted in 2-ton cement tanks with continuous water flow and aeration to maintain suitable water quality and dissolved oxygen (DO) of ≥ 5 mg/L. Tilapia juveniles were randomly assigned to four groups, and tests were carried out in triplicate. Each replicate consisted of 50 fish. In addition, a group of fish fed a commercial diet was used as control. Fish were fed twice daily at a ratio of 10% of their body weight at 08:00 and 15:00. Any uneaten feed was collected 1 h after feeding, and then immediately dried in an oven at 80°C. The amount of all diets consumed was calculated by subtracting the uneaten feed and was recorded on a daily basis. The weight of fish was measured at the start of the experiment and at 2-week intervals until the end of the experiment. Water temperature, dissolved oxygen (DO), and pH were respectively determined daily using a thermometer, DO meter, pH meter. Ammonia-N (Solorzano, 1969) and nitrite-N (Bendschneider and Robinson, 1952) were measured every 2
weeks during the growing-out phase. At the end of the experiment fish were individually weighted. Condition factor, survival rate, weight gain and feed efficiency were determined using following equations:

\[
\text{Condition factor} = \frac{\text{body weight}}{(\text{body length})^3} \times 100\%,
\]

\[
\text{Survival rate} (%) = \frac{(\text{final number of tilapia/initial number of tilapia})}{\times 100\%,
\]

Percentage weight gain (\%) = \frac{([\text{final weight} - \text{initial weight}] \times 100\%) \times \text{Feed efficiency=weight gain/total feed intake.}}

The cost per kg fish production (NT$) was calculated as following formula: Cost per kg fish production=\{(\text{Feed cost per kg} \times \text{total feed intake (kg)})/\text{weight gain (kg).}}

Whole-body composition analysis

After the experiment, six fish from each treatment were selected for a whole-body composition analysis. All fish samples were analyzed in duplicate for proximate composition following the standard methods (AOAC, 1984). Moisture was determined by a moisture analyzer (MX-50, A & DJapan). Crude protein was measured by the Kjeldahl procedure using the Kjeltec System (Tecator, Sweden) after acid digestion. Crude lipids were analyzed by the method of Folch et al., 1957. Ash was determined after burning at 550°C in a muffle furnace.

Table 1: Ingredients of experimental diets used in the study.

Ingredient	Commercial diet	Experimental diets (g/kg)			
	Control	1050 EPU	1500 EPU	1950 EPU	
Soybean meal	350	350	350	350	
Fish meal	50	50	50	50	
Corn starch	50	50	50	50	
Wheat middlings	129.675	129.675	129.675	129.675	
Rice bran	250	250	250	250	
α-starch	100	100	100	100	
Soybean oil	10	10	10	10	
Xylanase (X 6000)	0.325	0.15	0.075	0	
Inactive-xylanase (X 6000)					
Mineral premix	30	30	30	30	
Vitamin premix	30	30	30	30	
Chemical analysis (%)					
Moisture	6.33	2.54	2.34	2.87	2.5
Crude protein	23.92	24.31	24.56	24.48	24.31
Crude lipids	8.03	8.68	9.12	8.24	9.01
Ash	7.8	9.2	9.1	9.05	8.85

Note: EPU-Endopentosanase units.

Results and Discussion

Proximate analysis of the experimental diets

Proximate analysis of the experimental diets showed no significant differences in the moisture (2.34%-2.50%), ash (8.85%-9.2%), crude protein (24.31%-24.56%), or crude lipid (8.24%-9.12%) levels among all experimental diets. Compared to the proximate analysis of the commercial diet (crude protein 23.92%, moisture 6.33%, crude lipids 8.03% and ash 7.8%), the experimental diets seemed to have similar nutrient values, which should not have influenced the growth performance of tilapia compared to fish fed the commercial diet.

Growth performance

During the experiment, the water quality did not significantly differ among the treatments. The water temperature ranged 25-26.3°C, pH 7.3-8.3, DO >5 mg/L, ammonia-N 0.002-0.22 mg/L, and nitrite-N 0.013-0.23 mg/L.

Figure 1 shows the growth performance of tilapia fed the different experimental diets for 56 days. Growth performance results indicated that no significant difference was seen in the growth of tilapia fed the experimental diets and commercial diet, which may have been caused by individual growth differences among fish. However, fish fed the diet containing X-xylanase at a level of 1500 EPU seemed to have the highest weight compared to those of fish fed the other experimental diets and the commercial diet, but the growth rate of tilapia was reduced when an excessive dose of X-xylanase in the diet was offered to fish for 56 days in this study (Figure 1). Fish fed xylanase-supplemented diets having better growth performances was also found in juvenile Jian.
carp (Jiang et al., 2014) and Japanese seabass (Ai et al., 2007). In addition, animals with poor weight gain after consuming a diet with an excessive amount of supplemented xylanase were also recorded in Jian carp (Jiang et al., 2014) and broilers (Mendes et al., 2013), which might have been due to the overproduction of xyloligosaccharides and xylose (Schute, 1999; Xu et al., 2009).

Xylanase applied in animal feed to improve feed utilization was reviewed (Goswami and Pathak, 2013), and previous studies showed that xylanase was able to improve the growth performance and feed utilization in poultry and pigs (Goswami and Pathak, 2013; Woyengo et al., 2013). In aquaculture, a case of using multiple exogenous enzymes (including xylanase) in the diet of African catfish (Clarias gariepinus) resulted in enhanced fish growth performance and feed utilization (Yildirim and Turan, 2010). In Nile tilapia, fish fed a diet containing the xylanase-expressing probiotic, Bacillus amyloliquefaciens R8, which expresses the xylanase gene from rumen fungi, also had a significantly better growth performance and health status compared to fish fed a control diet or wild B. amyloliquefaciens (Saputra et al., 2016). Similarity, X-xylanase incorporated in the diet at a level of 1500 EPU was able to improve the feed efficiency, a good indicator for evaluating feed quality (Table 2). The improved feed efficiency of fish fed the X-xylanase-supplemented diet at a level of 150 EPU indicated that the product really would be beneficial to tilapia aquaculture by improving feed utilization. At the end of the experiment, mean weights of fish in the commercial diet, control, 1050 EPU, 1500 EPU, and 1950 EPU groups were 9.36, 10.27 ± 0.7, 9.96 ± 1.15, 11.07 ± 0.48, and 9.01 ± 0.57 g, respectively (Table 2).

This study found no significant difference in the body composition of red tilapia, including moisture, protein, lipid, and ash contents among fish fed the commercial, control, and experimental diets. However, fish fed X-xylanase-supplemented diets seemed to have higher protein contents compared to the control and commercial diet groups (Table 3), and the increased tendency of protein content in the fish body was similar to the increase in feed efficiency which was highest at the optimal level (1500 EPU) of xylanase in the diet, and then decreased in the group supplemented with an excessive amount (1950 EPU) of X-xylanase in the diet. Net nutrient retention is considered an accurate and important indicator for evaluating the feed efficiency in fish (Belal, 2005). Results of increased body protein contents and feed efficiency in red tilapia fed X-xylanase-supplemented diets agree with results of Jiang et al. (2014). Furthermore, data on the body composition of tilapia in this study were similar to those of tilapia in a previous study (Gao et al., 2015).

Cost analysis

The cost of the experimental diet was estimated to be NT $31.38/kg. (The average exchange rate is US $1=New Taiwan (NT) $30) (Table 4). No difference in the cost was calculated among the experimental diets because the inactive enzyme was added with a corresponding decrease in the amount of X-xylanase (the cost of X-xylanase was NT $600/kg). The cost of feed for 1 kg of tilapia production in the control, and 1050, 1500, and 1950 EPU groups were NT $44.46 ± 0.30, NT $43.68 ± 2.07, NT $38.78 ± 0.46, and NT $41.62 ± 1.06, respectively. Therefore, producing 1 kg of tilapia using the X-xylanase-supplemented diets at the levels of 1050, 1500, and 1950 EPU could save NT $0.78, NT $5.68, and NT $2.84, respectively, compared to the control. It was thus concluded that using X-xylanase in the diet for tilapia aquaculture would be profitable, and the recommended level is 1500 EPU.

Figure 1: Growth of tilapia during the 56 days of the feeding experiment. EPU-Endopentosanase units.

Table 2: Initial weight, final weight, condition factor, survival, feed efficiency, and percentage weight gain of red tilapia fed by commercial, control and experimental diets. (Data ± standard error; different letters among treatments indicate a significant difference, p<0.05).

Experimental diets	Commercial feed	Control	1050 EPU	1500 EPU	1950 EPU
Initial weight (g)	0.43 ± 0.01	0.43 ± 0.01	0.43 ± 0.01	0.43 ± 0.01	0.43 ± 0.01
Final weight (g)	9.36	10.27 ± 0.7	9.96 ± 1.15	11.07 ± 0.48	9.01 ± 0.57
Condition factor	2.08	2.27 ± 0.03	2.25 ± 0.08	1.90 ± 0.30	2.12 ± 0.06
Survival (%)	98	100	96.67 ± 2.40	97.33 ± 1.76	98.67 ± 0.67
Feed efficiency	0.68	0.71 ± 0.01bc	0.72 ± 0.03bc	0.81 ± 0.01bc	0.76 ± 0.02bc
Percentage weight gain (%)	2076.08	2289.77 ± 162.46	2215.95 ± 266.47	2474.31 ± 110.35	1996.20 ± 133.19

Note: EPU- Endopentosanase units.
Conclusion

The present study clearly shows that X-xylanase is a great exogenous enzyme to improve feed utilization and consequently improve the fish growth performance when added to the diet at a level of 1500 EPU. It is therefore suggested that X-xylanase be used in the diet to improve the feed efficiency and tilapia growth performance at a level of 1500 EPU.

Acknowledgements

This study was supported by a grant (MOST 104-2313-B-020-006-MY3) from the Ministry of Science and Technology, ROC, and Huvepharma Taiwan (Brach of Huvepharma NV).

References

Ai, Q., Mai, K., Zhang, W., Xu, W., Tan, B., et al. (2007) Effects of exogenous enzymes (phytase, non-starch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, *Lateolabrax japonicas*. Comparative Biochemistry and Physiology Part A: Mol Integrative Physiol 147, 502-508.

AOAC (1984) Official Methods of Analysis of the Association of Official Analytical Chemists, 14th ed. Association of Official Analytical Chemists, Arlington, V.A.

Banerjee, S., Ghosh, K. (2014) Enumeration of gut associated extracellular enzyme-producing yeasts in some freshwater fishes. J Applied Ichthyol 30, 986-993.

Belal, I.E.H. (2005) A review of some fish nutrition methodologies. Bioresource Technol 96, 395-402.

Bendschneider, D.A., Robinson, R.J. (1952) A new spectrometric method for the determination of nitrite in the sea water. J Marine Res 11, 87-96.

Cheng, Z.J., Hardy, R.W. (2003) Effects of extrusion and expelling processing, and microbial phytase supplementation on apparent digestibility coefficients of nutrients in full-fat soybeans for rainbow trout (*Oncorhynchus mykiss*). Aquacult 218, 501-514.

Cheng, W., Chiu, C.S., Guu, Y.K., Tsai, S.T., Liu, C.H. (2013) Expression of recombinant phytase of *Bacillus subtilis* E20 in *Escherichia coli* HMS 174 and improving the growth performance of white shrimp, *Litopenaeus vannamei*, juveniles by using phytase-pretreated soybean meal-containing diet. Aquaculture Nutrition 19, 117-127.

Folch, J., Lees, M., Sloane-Stanley, C.H. (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226, 497-509.

Forster, L, Higgs, D.A., Dosanjh, B.S., Rowshandeli, M., Parr, J. (1999) Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout (*Oncorhynchus mykiss*) held in 11°C fresh water. Aquacult 179, 109-125.

Gao, Y., Wang, Z., Hur, J.W., Lee, J.Y. (2015) Body composition and compensatory growth in Nile tilapia *Oreochromis niloticus* under different feeding intervals. Chinese J Oceanology Limnol 33, 945-956.

Gatesoupe, F.J. (2007) Live yeast in the gut: Natural occurrence, dietary introduction, and their effects on fish health and development. Aquacult 267, 20-30.

Goswami, G. K., Pathak, RR. (2013) Microbial xylanase and their

Table 3: Effects of different diets on the body composition of red tilapia.

Experimental diets	Whole body composition (%)			
	Moisture	Protein	Lipids	Ash
Commercial feed	71.12 ± 2.22	17.28 ± 0.83	8.24 ± 0.83	4.72 ± 0.81
Control	70.28 ± 1.38	17.25 ± 0.63	8.32 ± 0.71	4.93 ± 0.25
1050 EPU	70.88 ± 2.27	18.02 ± 1.40	7.92 ± 0.683	4.88 ± 0.66
1500 EPU	71.25 ± 2.11	18.62 ± 0.86	7.81 ± 0.61	5.21 ± 0.91
1950 EPU	70.68 ± 2.47	17.92 ± 0.76	8.76 ± 0.66	5.08 ± 0.35

Note: EPU- Endopentosanase units.

Table 4: Cost analysis of the diets used in this study.

Diets	Cost (NT$)	Total feed intake (kg/fish)	Weight gain (kg/replicate)	Cost of 1 kg of fish production (NT$)
Control	31.38	0.698 ± 0.061	0.492 ± 0.043	44.46 ± 0.30
1050 EPU	31.38	0.658 ± 0.075	0.476 ± 0.070	43.68 ± 2.07
1500 EPU	31.38	0.658 ± 0.039	0.531 ± 0.029	38.78 ± 0.46
1950 EPU	31.38	0.571 ± 0.059	0.429 ± 0.035	41.62 ± 1.06

Note: EPU-Endopentosanase units. The average exchange rate is US$1≈New Taiwan (NT)$30.
biomedical applications: a review. International J Basic
Clinical Pharmacol 2, 237-246.
Jian, T.T., Feng, L., Liu, Y., Jiang, W.D., Jiang, J., et al. (2014)
Effects of exogenous xylanase supplementation in plant
protein-enriched diets on growth performance, intestinal
enzyme activities and microflora of juvenile Jian carp
(Cyprinus carpio var. Jian). Aquacult Nutrition 20, 632-645.
Leenhouders, J.I., ter Veld, M., Verreth J.A.J., Schrama, J.W.
(2007) Digesta characteristics and in relation to nutrient
digestibility and mineral absorption in Nile tilapia
(Oreochromis niloticus L.) fed cereal grains of increasing
viscosity. Aquacult 273, 556-565.
Mendes, A.R., Ribeiro, T., Correia, B.A., Bule, P., Maçâs, B., et
al. (2013) Low doses of exogenous xylanase improve the
nutritive value of triticale-based diets for broilers. Journal of
Applied Poultry Research 22, 92-99.
Passos, A.A., Andrade, C., Phillips, C.E., Coffey, M.T., Kim, S.W.
(2015) Nutrient value of spray field forages fed to pigs and
the use of feed enzymes to enhance nutrient digestibility. J
Animal Sci 93, 1721-1728.
Pirgozliev, V., Rose, S.P., Pellny, T., Amerah, A.M.,
Wickramasinghe, M. et al. (2015) Energy utilization
and growth performance of chickens fed novel wheat inbred
lines selected for different pentosane levels with and without
xylanase supplementation. Poultry Sci 94, 232-239.
Prandini, A., Sigolo, S., Morlacchini, M., Giuberti, G., Moschini,
M., et al. (2014) Addition of nonstarch polysaccharides
degrading enzymes to two hullless barley varieties fed in
diets for weaned pigs. J Animal Sci 92, 2080-2086.
Saijadi, M., Carter, C.G. (2004) Dietary phytase supplementation
and the utilization of phosphorus by Atlantic salmon
(Salmo salar L.) fed a canola-meal-based diet. Aquacult
240, 417-431.
Saputra, F., Shiu, Y.L., Chen, Y.C., Puspitasari, A.W., Danata,
R.H., et al. (2016) Dietary supplementation with xylanase-
expressing B. amyloliquifaciens R8 improves growth
performance and enhances immunity against Aeromonas
hydrophila in Nile tilapia (Oreochromis niloticus). Fish
Shellfish Immunol 58, 397-405.
Schutte, J.B. (1990) Nutritional implications and metabolizable
energy value of D-xylose and L-arabinose in chicks. Poultry
Sci 69, 1724-1730.
Sinha, A.K., Kumar, V., Makkar, H.P.S., De Boeck, G., Becker,
K. (2011) Non-starch polysaccharides and their role in fish
nutrition – a review. Food Chem 127, 1409-1426.
Solorzano, L. (1969) Determination of ammonia in natural water
by the phenolpochlorite method. Limnol Oceanography
14, 799-801.
Woyengo, T.A., Sands, J.S., Guenter, W., Nyachoti, C.M. (2013)
Nutrient digestibility and performance responses of growing
pigs fed phytase- and xylanase-supplemented wheat-based
diets. J Animal Sci 86, 848-857.
Xu, B., Wangm Y., Li, J., Lin, W. (2009) Effect of prebiotic
xylooligosacharides on growth performances and digestive
enzyme activities of algolgenenic crucian carp (Carassius
auratus gibelion). Fish Physiol Biochem 35, 351-357.
Yang, Y., Iji, P.A., Kocher, A., Mikkelsen, L.L., Choct, M. (2008)
Effects of xylanase on growth and gut development of
broiler chickens given a wheat-based diet. Asian-Australian
J Animal 21, 1659-1664.
Yildirim, Y.B., Turan, F. (2010) Effects of exogenous enzyme
supplementation in diets on growth and feed utilization in
African catfish, Clarias gariepinus. J Animal Veterinary
Advance 9, 327-331.