Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia

Adityo Prakosa17,27, Hermenegild J. Arevalo127, Dongdong Deng17, Patrick M. Boyle27, Plamen P. Nikolov1, Hiroshi Ashikaga3, Joshua J. E. Blauer4, Elyar Ghafoori6, Carolyn J. Park1, Robert C. Blake III1, Frederick T. Han5, Rob S. MacLeod4,4, Henry R. Halperin3, David J. Callans6, Ravi Ranjan4, Jonathan Chrispin3, Saman Nazarian6 and Natalia A. Trayanova13.*

Ventricular tachycardia (VT), which can lead to sudden cardiac death, occurs frequently in patients with myocardial infarction. Catheter-based radio-frequency ablation of cardiac tissue has achieved only modest efficacy, owing to the inaccurate identification of ablation targets by current electrical mapping techniques, which can lead to extensive lesions and to a prolonged, poorly tolerated procedure. Here, we show that personalized virtual-heart technology based on cardiac imaging and computational modelling can identify optimal infarct-related VT ablation targets in retrospective animal (five swine) and human studies (21 patients), as well as in a prospective feasibility study (five patients). We first assessed, using retrospective studies (one of which included a proportion of clinical images with artefacts), the capability of the technology to determine the minimum-size ablation targets for eradicating all VTs. In the prospective study, VT sites predicted by the technology were targeted directly, without relying on prior electrical mapping. The approach could improve infarct-related VT ablation guidance, where accurate identification of patient-specific optimal targets could be achieved on a personalized virtual heart before the clinical procedure.

Ventricular tachycardia (VT), a life-threatening fast heart rhythm, occurs frequently in patients with myocardial infarction and can lead to sudden cardiac death. Catheter-based radio-frequency ablation, which delivers energy to destroy the ability of cardiac tissue to conduct electrical signals, offers the possibility of a permanent cure as it disrupts the propagation of abnormal electrical waves sustaining VT. However, eliminating infarct-related VT with ablation has achieved only modest success, at rates of around 50–88%1,2. This stems from limitations in current techniques for mapping the electrical functioning of the heart and identifying targets for ablation. These include limited spatial sampling during mapping, with resolution often insufficient to identify critical VT propagation pathways3–5, haemodynamic intolerance during the VT ablation procedure, and ambiguities in correlating electrical maps with heart anatomy6. Furthermore, the complex 3D pathways of cardiac impulse propagation around/through the zone of infarct during VT are often difficult to reconstruct by mapping the ventricular surfaces only7,8. These limitations could translate into inaccurate ablation targets and extensive lesions, and could prolong the duration of the procedure (4–12 h), potentially increasing the risk of complications and radiation overexposure9,10.

Here we present the proof of concept of a ‘virtual heart’ methodology for determining the optimal targets for infarct-related VT ablation that completely eliminates the need for invasive electrical mapping. We call this non-invasive approach ‘virtual-heart arrhythmia ablation targeting’ (VAAT). The approach is based on cardiac imaging and computational modelling, and is personalized to each patient. Similarly to our previously developed ‘virtual-cardiac imaging and computational modelling, and is personalized to each patient. Similarly to our previously developed ‘virtual-heart arrhythmia risk prediction’ (VARP) approach11 for stratifying patients at risk of sudden cardiac death, the new VAAT technique involves constructing 3D computer models of patients’ hearts (ventricles) from clinical magnetic resonance imaging (MRI) data and executing simulations to evaluate the patient-specific VTs. In the current study, the virtual-heart simulation strategy is further developed and applied in a different clinical arena: the non-invasive planning and guidance of the clinical procedure of VT ablation. With the VAAT approach, once all patient-specific VTs are evaluated, we determine automatically (using an algorithm) the optimal ablation targets that render, with minimum lesion size, each heart not inducible for VT from any ectopic site. In a significant departure from all current VT ablation procedures, the VAAT approach targets termination not only of VTs that are clinically manifested or induced at the time of procedure, but of all VTs that could arise from the given post-infarction substrate, including those that might arise following initial ablation, thus potentially eliminating the need for repeated ablations and offering long-term freedom from VT. In addition to automatically determining the ablation targets, VAAT overcomes significant additional technical challenges in combining virtual-heart output with the clinical electroanatomical navigation system, and represents the first direct integration of computational modelling in cardiac patient care.

1Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. 2Cardiac Modelling Department, Simula Research Laboratory, Fornebu, Norway. 3Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. 4Department of Bioengineering, University of Utah, Salt Lake City, UT, USA. 5University of Utah Health Sciences Center, Salt Lake City, UT, USA. 6Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 7These authors contributed equally: Adityo Prakosa, Hermenegild J. Arevalo, Dongdong Deng. *e-mail: ntrayanova@jhu.edu
Described in the paper are the animal (n = 5) and human (n = 21) retrospective studies, and the proof-of-concept prospective patient study (n = 5), that illustrate the utility of VAAT to non-invasively determine the optimal ablation targets.

Overview of VAAT

The arrowed steps in Fig. 1a summarize the VAAT method, as we envision it for guidance of the clinical procedure of infarct-related VT ablation. First, an individualized geometric model of the post-infarction ventricles is reconstructed from late-gadolinium-enhanced (LGE)-MRI, as previously described, with representations of both scar and infarct border zone (termed the grey zone). Determining the personalized fibre orientations using a validated approach completes geometric reconstruction. Region-specific cell and tissue electrical properties are then assigned to the geometric model. To determine all VT reentrant pathways that the infarct-remodelled ventricular substrate can sustain, we conduct a virtual multi-site delivery of electrical stimuli (pacing) from a number of bi-ventricular locations, each attempting to elicit VT from a site positioned differently with respect to the infarct. The methodology for evaluating the VTs in post-infarction heart models has been previously presented and validated in an arrhythmia risk prediction clinical study involving 41 patients.

The next step in the VAAT method determines the minimum-size (optimal) ablation lesions in each personalized virtual heart that render it no longer inducible for VT from any pacing location. These optimal targets are determined using an automatic algorithm we developed recently. The algorithm represents reentrant wave propagation associated with each of the inducible VTs in the given heart model as a flow network, and identifies the smallest amount of tissue that, when eliminated from the network, disrupts and terminates the flow. The algorithm was validated in a retrospective study in patients with atypical atrial flutter, and this is its first application to ventricular arrhythmias.

Once the VAAT ablation lesions are calculated, they are incorporated back in the corresponding virtual-heart model and the VT inducibility protocol is repeated to assess whether VT is inducible from any of the pacing sites. Should a new VT arise in the modified-by-ablation ventricular substrate, the VAAT protocol is repeated until complete VT non-inducibility is achieved. The resulting set of ablation lesions represents the targets that will be directly approached during the clinical procedure, without any electrical mapping. The set of VAAT ablation lesions is expected to result in the complete elimination of the ability of the infarct-remodelled ventricular substrate to sustain VT.
In the prospective study, VAAT is executed during the brief time interval between the acquisition of patient MRI and the clinical ablation procedure (<24 h). Once calculated, the set of predicted ablation targets are exported, then uploaded and co-registered in the clinical electroanatomical navigation system before the procedure commences.

A full description of the VAAT methodology is provided in the Methods.

VAAT proof-of-concept studies

The capability of VAAT to non-invasively determine the ablation targets that eliminate all infarct-related VTs with minimum lesions was illustrated in retrospective and prospective studies (Fig. 1a).

A retrospective animal study (swine model, \(n = 5 \)) showed that VAAT is able to reproduce successful mapping-based ablation outcomes but with reduced lesion size, and provides superior targets when mapping-based ablation failed. For the two cases of successful experimental ablation (swine 1 and 2; Fig. 1b top and Supplementary Fig. 1, respectively), VAAT lesions were in the same regions as experimental lesions (red dots mark the ablation catheter tip, visible in computed tomography (CT) scans), highlighting the predictive capability of the virtual-heart approach. Analysis of post-ablation MRI scans showed significant difference in lesion volumes between experiment and VAAT (swine 1, 0.39 cm\(^3\) vs 0.19 cm\(^3\); swine 2, 0.37 cm\(^3\) vs 0.28 cm\(^3\)). In the remaining animals (swine 3 to 5, Fig. 1b bottom and Supplementary Fig. 1), mapping-based lesions that failed to terminate VT were located away from the locations of the VAAT targets that eliminated the VTs (see Supplementary Table 1 for simulated lesion volumes).

Two retrospective human studies (\(n = 21 \) total) in patients that had undergone pre-procedure LGE-MRI and successful infarct-related VT ablation were then undertaken to demonstrate that VAAT lesions fall within the areas ablated clinically. The first study was in patients without implantable cardioverter defibrillator (ICD) devices (\(n = 16 \)). Four cases are shown in Fig. 2 and another 10 are presented in Supplementary Fig. 2. Fig. 2 (third and fourth columns) shows that in patients 2–4, the predicted lesions (see Supplementary Table 2 for calculated lesion sizes in all 16 patients) were smaller than the clinical lesions (compared to the extent of endocardial surface enclosing ablation catheter tip locations in the electroanatomical navigation (CARTO) maps; each lesion is of typical size\(^1\): 6.7 \(\times \) 9.4 \(\times \) 3.4 mm\(^3\), that is, 0.21 cm\(^3\)).

Since the majority of patients who undergo infarct-related VT ablation have ICDs, which impose image artefact, we conducted a second human retrospective study (\(n = 5 \)) to assess the feasibility of determining the optimal infarct-related VT ablation targets.
in patients with ICDs despite the artefact burden, thus broadening the clinical utility of the VAAT approach. For this purpose, we developed an enhanced model generation methodology (see Methods and Supplementary Fig. 3) applicable for cases where the ICD artefact did not cover the LGE regions. Of the five randomly selected patients with ICDs, two had a negligible myocardial artefact burden, while in the remaining three the artefact ranged from 46 to 62%. LGE regions indicative of infarct-related structural remodelling were identifiable outside of the ICD artefact in all five cases. In this retrospective study, simulations were conducted blind to the clinical data. For all patients, targets predicted by VAAT generally corresponded to clinical lesions (Fig. 3 presents the ablation results for two patients, with Supplementary Video 1 showing VT in one; the rest are shown in Supplementary Fig. 4), but were smaller in size; myocardial burden artefacts and simulated lesion sizes are presented in Supplementary Table 3. Note that in patient 1, the clinical ablation lesion known in this case to have resulted in acute VT termination and the VAAT lesion fully coincided. In this patient’s clinical procedure, the infarct scar was additionally encircled with lesions targeting the grey zone in an attempt to prevent VT recurrence; VAAT demonstrated that this lesion was sufficient to eliminate the arrhythmogenic propensity of infarct substrate. This retrospective patient study showed that despite the ICD artefact, in cases when the ICD artefact does not obscure the zone of infarct, the VAAT approach could non-invasively predict the optimal VT ablation targets and thus be used to guide clinical ablation.

We next embarked on a prospective human study (n = 5) at two different clinical centres, the University of Utah (three patients, January 2015 to December 2016) and the University of Pennsylvania (two patients, November to December 2017), to assess the feasibility of VT ablation that directly targets sites predicted by the VAAT approach, without prior intracardiac mapping. The prospective study also served to determine whether the VT protocol could be executed within the relevant clinical timeframe.

Figure 4 presents two cases, one from each clinical centre, of successful VAAT-guided ablations in a post-infarction patients with inducible sustained VT. Model-generated ventricular images with the VAAT targets were imported into the clinical electroanatomical navigation system (Fig. 4), so that the ablation catheter could be directly steered towards the targets. After ablation of the VAAT targets, a clinical VT inducibility pacing protocol (see Methods for details on the clinical protocol) was executed to confirm that VT was no longer inducible. Activation maps of the two VT morphologies in a Utah patient are shown in Fig. 4b, and Supplementary Fig. 5 and Supplementary Video 2 present transmembrane potential maps over time for one of the two induced VT morphologies in this patient. The patient has since remained VT-free, over the 23-month follow-up period. Similarly, in another patient at the same centre, VT was also inducible, and the VAAT-predicted sites were directly ablated. However, the patient went into ventricular fibrillation following the procedure and had to be cardioverted. Nonetheless, following the VAAT-driven ablation, the patient has since remained VT-free, over the follow-up period of 21 months. In the third patient, despite the presence of scar tissue on the MRI, the model predicted that VT would not be inducible. This matched the clinical outcome, as infarct-related VT was indeed not inducible during the electrophysiological study despite the patient’s history of myocardial

Fig. 3 | Results from the retrospective human study in patients with ICDs. Representative examples of in silico models and predictions from two patients. The myocardial wall artefact burden was 59% and 46% for patients 1 and 2, respectively. a, LGE MRI scans with ICD artefact burden and reconstructed ventricular models with different remodelled regions. b, Electrical activation maps of the infarct-related VTs on the epi- or endocardial surfaces (chosen for best visualization). White arrowheads indicate the direction of VT propagation. The colour scale indicates activation times and black indicates tissue regions that did not activate. c, Co-registration of ventricular model surfaces and the VAAT ablation targets (purple) with the CARTO endocardial surfaces (blue) showing clinical ablation locations corresponding to red dots representing locations of the tip of the catheter during ablation. The CARTO endocardial surfaces show the left ventricle for patient 1 and the right ventricle for patient 2 co-registered with the corresponding MRI shells obtained in the corresponding individuals at the time of their clinical procedure. In patient 1, the predicted ablation target overlapped with the clinical lesions at the same location. The clinical ablation also identified extensive lesions at the periphery of the infarct (the grey zone). In patient 2, the VAAT lesion was within the area ablated clinically. Non-injured, scar and grey zone tissues and VAAT ablation targets are shown in red, yellow, grey and purple, respectively.
feasible within the clinical workflow and timeline, and that it can be demonstrated that a simulation-driven VT ablation procedure is during the procedure (Fig. 4h). The prospective human studies co-registration of VAAT targets and ablation catheter tip locations.

As the lesion data are retrospective, and represents information of scar tissue/grey zone. In the other patient, the VAAT targets were successfully ablated and VT terminated. Two VT morphologies in this patient are shown in Fig. 4f, with targets in Fig. 4g, and co-registration of VAAT targets and ablation catheter tip locations during the procedure (Fig. 4h). The prospective human studies demonstrated that a simulation-driven VT ablation procedure is feasible within the clinical workflow and timeline, and that it can be executed at different clinical centres.

Discussion
This study presents VAAT, a virtual-heart approach to predict the optimal targets for infarct-related VT ablation. The approach could eliminate the need for invasive electrical mapping during the clinical procedure. VAAT determines the ablation targets non-invasively, on the basis of a comprehensive evaluation of all 3D VT reentrant circuits that the infarct-remodelled substrate can support. The targets are calculated by an algorithm that determines the minimum amount of tissue that, when rendered non-excitabile, eliminates all VTs—not only those manifested clinically or induced during the procedure, but also those VTs that could arise if the arrhythmogenic propensity of the substrate was not fully eliminated during the initial ablation. The VAAT approach could thus have the potential to not only guide infarct-related VT without prior electrical mapping, but to also eliminate the need for repeated ablations, offering long-term freedom from VT.

Here we describe the conceptual underpinning of the approach, and present comparisons of VAAT lesions with retrospective experimental (5 animals) and clinical (21 patients) ablation lesion data. As the lesion data are retrospective, and represents information about all lesions inflicted during the clinical procedure, such a comparison serves to primarily demonstrate VAAT lesion location correspondence and lesion size advantage. The promising results from the proof-of-concept prospective studies (5 patients) at two clinical centres demonstrate the feasibility of conducting a large prospective patient study, and underscore the VAAT potential for translation to the clinic for guidance of VT ablation in patients. Should the capability of the VAAT approach be demonstrated in such prospective studies, VAAT holds the promise to radically change infarct-related VT ablation, engendering swift and precise delivery of ablation without prior electrical mapping, and eradicating all possible VTs the substrate can sustain, thus eliminating or at least reducing the need for redo procedures. This could result in a dramatic improvement in the efficacy of and tolerance for the therapy, as well as in the reduction of post-procedure complications. Finally, since early use of VT ablation post-infarction has been shown to result in much improved patient outcomes (SMASH-VT trial)\(^16\), an accurate and easily executed VT ablation will lead to significant widening of the therapeutic potential of the procedure: the latter could become first-line therapy for infarct-related VT, in contrast to its current use only after drugs have failed.

Notably, the VAAT approach bypasses the need to establish the entity targeted by ablation, whether the latter is a channel in the scar\(^\text{17,18}\), part or all of the grey zone\(^\text{19}\) or one or more reentrant drivers\(^\text{20}\). Additional utility of the approach is derived from the fact that it could inform the operator whether the approach to the target(s) is endo- or epicardial, as these require different anticoagulation set-ups, thus providing additional money and time savings, and decreasing radiation and associated complications. Importantly, since the predicted targets are 3D, they may not always be fully reachable via an endo- or epicardial approach; in such cases, we envision re-computing the targets, taking into account that a given portion of the initial predicted target will need to remain excitable.

The VAAT approach could be extended\(^\text{21}\) to the rapidly increasing population of patients with non-ischaemic cardiomyopathy, where myocardial structure incorporates distributed fibrosis/scar tissue, and to patients with arrhythmias secondary to surgical repair in congenital heart disease, such as Tetralogy of Fallot. Furthermore, since VAAT is based on a simulation method representing processes from the molecular to the whole organ, it could be potentially modified to input patient-specific genetic and
pathophysiological data, and thus its application could be broadened to arrhythmias arising from cardiac diseases of various etiologies. Integrating image-based computational modelling into treatments for heart rhythm disorders could thus advance personalized approaches to heart disease.

Methods

MRI datasets and experimental protocol of the retrospective animal study. The retrospective animal study (swine model, n = 5) was conducted to demonstrate that the VAAAT methodology was able to reproduce successful mapping-based ablation outcomes but with reduced target size, and to provide superior alternative targets when mapping-based ablation failed. The details of both in vivo MRI acquisition and the electrophysiology study (EPS) in these animals have been previously described. In brief, myocardial infarction was induced via occlusion of the mid-left anterior descending coronary artery. All animals were ~2 months old, with weight ranging from 18–23 kg, and 2/5 were male. Four weeks after occlusion, ablation of VT at the Johns Hopkins Hospital in the period between July 2006 and April 2013; the MRI data used in this study have been previously published. The mean patient age in this retrospective study was 64.4 ± 9 years, the mean left ventricular ejection fraction (LVEF) was 38 ± 4.17%, and the cohort was 75% male. The other 8 patients were referred for catheter ablation of VT also at the Johns Hopkins Hospital in the period between November 2010 and October 2017; their MRI data have not been used for model reconstruction in any previous study. Results from 4 of these patients are shown in Fig. 2. The mean patient age in this group was 64.1 ± 15.5 years, the mean LVEF was 31.1% ± 16.4%, and the cohort was 75% male.

In the second retrospective study, 5 patients with ICDs were chosen randomly to demonstrate that VAAAT could also be used to predict ablation targets in such patients; these patients were referred for catheter ablation of VT at the Johns Hopkins Hospital between December 2010 and November 2013. The mean patient age was 54.2 ± 9.3 years, the mean LVEF was 39 ± 13.8%, and the cohort was 100% male. ICD artefact burden in the MRIIs of these patients ranged from 0–62% of myocardial volume but did not cover the LGE regions (see the main text for details). For clarity, in this paragraph we reproduce parts of the section on ‘EPS and ablation’ from our previously published paper. All patients underwent the standard EPS and ablation of scar-related VT under the 3D CARTO guidance during sinus rhythm. If non-clinical VT morphologies were inducible, those were also ablated; all the clinical ablation lesions executed during each procedure are shown in the corresponding figures. After completing ablation, programmed stimulation was repeated to determine inability to induce VT. Acute success was defined as the inability to induce clinical VT at the end of the procedure.

The first human retrospective study involved 16 patients, all without ICDs (so that myocardial wall was not obscured in MRI), with the aim to compare the VAAAT targets with the clinical lesions and determine whether the VAAAT prediction fell that myocardial wall was not obscured in MRI), with the aim to compare the VAAAT targets with the clinical lesions and determine whether the VAAAT prediction fell short of the clinical ablation. All patients had VT, and were referred for ablation; they all underwent LGE-MRI. At the University of Utah, three patients were targeted for ablation between January 2015 and December 2016. The mean patient age was 66.6 ± 9.9 years, the mean LVEF was 40 ± 6.6%, and 2/3 patients were male. At the University of Pennsylvania, two patients were targeted for ablation between October and December 2017. The mean patient age was 73.5 ± 3.4 years, the mean LVEF was 33 ± 4.4%, and the cohort was 100% male.

At both clinical centres, during the ablation procedure VT was induced by programmed electrical stimulation. VAAAT-predicted ablation site(s) were then imported in CARTO (see below for import and merge methodology details). Ablation was then targeted to these sites using an irrigated thermocool ablation catheter. After ablation, VT non-inducibility was verified by repeating programmed electrical stimulation. The protocol was approved by the Institutional Review Board of the University of Utah Health Sciences Centre and the Hospital of the University of Pennsylvania. All patients enrolled gave informed consent.

VAAAT approach. Heart structural model construction. Both animal and human models of 3D ventricular structure were reconstructed from the cardiac LGE-MRI data. The procedure is described in full detail in our recent publication on arrhythmia risk stratification in patients with myocardial infarction. Briefly, for each heart, the myocardial boundaries in the MRI stack were contoured and the 3D ventricular wall geometry was reconstructed using a method based on variational implicit functions interpolation used previously by our team and validated with clinical data. To represent the geometry of the infarct in each ventricular geometrical model, myocardial regions were classified as infarcted and non-infarcted areas by means of signal thresholding. Each infarct region was further classified into scar and grey zone tissue using a full-width half-maximum (FWHM) approach that has been validated previously. The 3D geometries of the infarct zones were reconstructed and merged with the corresponding ventricular geometry reconstruction.

Construction of ventricular models from LGE-MRI scans of patients with ICDs involved additional processing steps to overcome the presence of artefact in the image. Following segmentation of the ventricular wall portion unobstructed by the shadow, we extrapolated the ventricular boundaries into the area occluded by the ICD artefact. Within the reconstructed ventricular wall, myocardium covered by the ICD shadow was delineated from unobstructed myocardium on the basis of the 3D radial distance from the ICD (Fig. 3 and Supplementary Figs. 3 and 4). Outside of the shadow, standard image processing classified the myocardium as scarred, normal tissue, based on pixel intensity, as described above. The ventricular wall within the region of ICD shadow was assumed to have non-infarcted tissue properties, as it was outside of the zone of infarct. The burden of ICD artefact in the ventricular wall in each of the 5 patients is presented in Supplementary Table 3.

Generating the computational meshes and assigning fibre orientation. For both animal and human heart models, finite-element ventricular meshes were generated as described previously, with an average resolution of 350 μm; ventricular models thus comprised of ~4 million nodes. The choice of finite element size was dictated by the need to resolve wavefront propagation in the simulations while simultaneously minimizing computational expense.

Finally, fibre orientations, specific to the individual geometry of the ventricles, were assigned to each ventricular computational mesh on a per-element basis (as in our previous publications) using an efficient rule-based approach that we developed and validated. This fibre orientation methodology uses the Laplacian braintract method to define transmural and apicalobasal dimensions at every point in the patient-specific ventricles. It then employs bi-directional spherical linear interpolation to assign fibre orientations based on a set of fibre orientation properties (rules). After fibre orientation was assigned to the elements of the ventricular mesh, the corresponding ‘masks’ of infarct scar and grey zone tissue were superimposed. Additional detail can be found in our recent publication.

After fibre orientations were assigned, the corresponding grey zone and scar ‘masks’ are superimposed. Grey zone fibre orientations did not incorporate any changes in fibre orientation in that region (although there are changes in grey zone conductivity and anisotropy; see below). The justification of this representation is based on a recent study that used sub-millimetre-resolution diffusion tensor and LGE-MRI on a clinical scanner to examine the detailed organization of the intramyocardial structure in the ventricles. The study demonstrated preservation of primary eigenvector (fibre) orientation at the thinned region of infarct in both human and porcine hearts.

Altogether, reconstruction of each patient heart took up to 8 h.

Electrophysiological modelling. Details regarding electrophysiological modelling in the swine hearts can be found in our recent paper. Details on all aspects of human ventricular electrophysiological modelling in myocardial infarction is presented in another of our recent publications. Briefly, for all heart models, both animal and human, once the 3D finite-element ventricular mesh was generated, regionally-uniform cell and tissue electrophysiological properties were assigned to the three regions identified in the virtual heart from the LGE-MRI scan: infarcted, scarred, and non-infarcted tissue. All finite elements that belonged to the scar region were considered electrically non-conductive. In the patient-specific heart models, finite
elements that belonged to non-infarcted tissue and grey zone were assigned human ventricular cell action potential dynamics; a different action potential model was used in the animal study. Modifications to the ionic model based on experimental recordings were implemented to represent the original action potential parameters as follows: peak sodium current to 38%, peak L-type calcium current to 31%, and peak potassium currents I_K and I_{Kr} to 30 and 20%, respectively. The human action potential model in the patient studies was similarly modified to represent electrophysiological remodelling in the grey zone, based on experimental data, as described in our previous patient study: 62% reduction in peak sodium current, 69% reduction in L-type calcium current and a reduction of 70 and 80% in potassium currents I_K and I_{Kr}, respectively.

Tissue properties representing animal or human ventricular cell-to-cell electrical communication were also assigned to the non-infarcted and grey zone regions, as described previously; the grey zone region was characterized by a decrease in transverse conductivity to reflect connexin-43 remodelling in the infarct border zone. Similar to the latter study, the values of the non-infarcted tissue conductivities used here were 0.255 and 0.0775 S m$^{-1}$ in the longitudinal and transverse directions, respectively.

Simulation of electrical activity and numerical aspects. The propagation of electrical activity was simulated by iterating, using the finite-element method, a reaction-diffusion partial differential equation, representing the spread of current in the ventricular myocardium, together with the ordinary differential and algebraic equations representing myocyte membrane dynamics at each node in the mesh. Simulations of electrical activity in the patient-specific heart models were executed in a monodomain representation of the myocardium using the software package CARP (Johns Hopkins University, University of Bordeaux and University of Graz) on a parallel computing system. The system of equations was solved with a time step of 25 μs. Full details regarding the simulations of electrical activity in the heart models is found in our recent publication as well as in a number of earlier publications from our team.

VT induction protocol. Each individualized ventricular model was subjected to pacing from multiple bi-ventricular locations in an attempt to elicit reentrant arrhythmias, thus revealing the potential of the disease-remodelled ventricles to cause degeneration of electrical signal propagation into arrhythmic activity following premature beats that originate at different locations in the heart. The protocol used here is identical to that in the VARP approach in our previous study, with the exception of the larger number of pacing sites used here. Each virtual heart was paced from 26 uniformly distributed (basal, medial, apical, lateral, septal, posterior and anterior) locations, 9 on the right ventricular endocardium, and 17 on the left ventricular (LV) endocardium, the latter one in each of the AHA LV segments. The rationale for choosing a large number of pacing sites was based on clinical studies demonstrating that the site of the shock that terminated the ventricular fibrillation (VF) most frequently occurred at a site that was distant from the location of the initial shock. In this study, we found that the exact locations of the phase singularities varied only slightly depending on the number of pacing sites. Importantly, simulations with a large number of pacing sites did not uncover more unique VTs. All pacing sites were assigned in the model automatically using an approach described previously.

The pacing pulse trains were the same as in our previous studies and consisted of 8 pacing stimuli (S1) at a cycle length of 600 ms for the human models and 300 ms for the swine models. A premature stimulus (S2) was delivered 250 ms after S1. If S2 did not result in the generation of reentrant arrhythmia, the S1–S2 interval was shortened, in 10 ms steps, until arrhythmia was induced or the S2 failed to capture the tissue. If arrhythmia was not induced, an additional S3, and if necessary S4, were delivered in the same fashion as S2 (initially delivered 250 ms after previous stimulus and then shortened until arrhythmia was induced or the stimulus failed to capture). In all simulations, the size of the pacing electrode was $1 \times 1 \times 1$ mm3 for in vivo, and $3 \times 3 \times 3$ mm for in silico. In each network, we assumed that an excitation wave was initiated and propagated away from the pacing location. To ensure computational tractability of the study, each simulation run was calculated using μ s of electrical activity in the ventricles (corresponding to about 7 h execution time), the first 5 s of which was the pacing protocol, and the remaining 2 s representing the post-pacing period used to determine presence of arrhythmia. Arrhythmias were considered persistent if they did not self-terminate over the 2 s period. Initial simulations analysing 5 s post-pacing activity in heart models demonstrated that arrhythmias that persisted for 2 s did not self-terminate after another 3 s. This behaviour is consistent with the deterministic nature of the model; the low level of the post-pacing activity also ensures turnaround time of <24 h per patient in the prospective human study.

Individual reentrant arrhythmia periods in the simulations here could not be compared to those of the reentrant circuits induced during mapping in the human retrospective studies since the pacing sites in the virtual heart were at locations different from those of the clinical pacing sites. Importantly, simulations preliminary to this study demonstrated that changes in human action potential duration and conduction velocities within physiological boundaries changed the location of the organizing centre of the arrhythmia (often isthmus or grey-zone-anchored phase singularity) remained the same or nearly the same, as it was predominantly determined by the individual distribution of scar and grey zone. Indeed, for patient-specific models with structural remodelling, in simulations with ±20% of the normal magnitude of the potassium current I_{Kr} or the calcium current I_CaL (resulting in action potential duration variation of ±25 ms) and ±30% variation in tissue conductivity (resulting in conduction velocity variation of ±10 cm s$^{-1}$), we found that the exact locations of the phase singularities varied by only ±0.2 cm on average. These findings underscore the feasibility of ablation target prediction on the basis of the patient-specific artificial heart models constructed from patient LGE-MRI scans that incorporate average human electrophysiological properties (and thus do not require invasive electrophysiological measurements in the given patient for model parameter input).

Validation of the electrophysiological modelling of pacing-induced arrhythmias in the post-infarction ventricles. The approach used here to construct a model of the post-infarction ventricles by thresholding the infarct into scar and (homogeneous) grey zone tissue has been recently validated with experimental data. In a previous study, sock epicardial electrograms from infarct-related VT, obtained from in vivo swine hearts, were used to demonstrate that ventricular models reconstructed from in vivo data of the corresponding hearts were able to predict fairly accurately the morphology of each VT reentry circuit and its organizing centre (for example, isthmus). These results indicated that small heterogeneities in grey zone tissue and the Purkinje system, and additional regional electrophysiological heterogeneities, play a secondary role in determining inducibility and organization of VT; primary influences include the geometrical morphologies of the scar and grey zone, as well as the representation of different electrophysiological properties in non-infarcted tissue and grey zone. These findings are consistent with those published previously, which described a parameter sensitivity analysis of the grey zone model representation. That study found that the inclusion of small scar heterogeneities with density within physiological range did not alter inducibility of infarct-related VT. These studies provided the initial justification for the electrophysiological modelling approach in this study.

The virtual-heart approach used here was recently validated in a human retrospective study of 41 post-infarction patients who underwent ICD implantation. Patients were followed for the primary endpoint of appropriate ICD firing due to ventricular arrhythmia or cardiac death for 4.8 ± 2.9 years. Blind to the clinical outcome, the virtual-heart approach assessed sudden cardiac death risk by determining VT inducibility in the patient-specific heart models following pacing from sites distributed throughout the left and right ventricles. The virtual heart test significantly outperformed several existing clinical metrics in predicting future arrhythmic events, validating the predictive capability of the modelling approach employed in the present study.

In this study, we have an additional validation of our patient-specific modelling methodology in an ongoing clinical trial in patients receiving an ICD. An abstract of this study has been already published.

Approach to automatically determine the optimal VT ablation targets. We developed an approach based on the in silico models constructed in this study, the virtual-heart approach assessed sudden cardiac death risk by determining VT inducibility in the patient-specific heart models following pacing from sites distributed throughout the left and right ventricles. The virtual heart test significantly outperformed several existing clinical metrics in predicting future arrhythmic events, validating the predictive capability of the modelling approach employed in the present study.

In this approach, we represent wave propagation during each cycle of reentry as a flow network. A flow network is a mathematical graph that abstracts directional movement between interconnected objects. Interconnected objects are represented as vertices in a graph; links between adjacent pairs of vertices, where flow can pass through, are called edges; and the maximum possible flow between two adjacent vertices is termed edge capacity. The flow network approach is manifest in the LGE-MRI-derived geometric model. Two vertices in the network were defined to be adjacent to each other if they (1) corresponded to elements that shared a common face and (2) if the difference in activation time between these elements was <20 ms. An edge in the flow network corresponded to the shared face between adjacent vertices. The capacity of each network edge was defined to be equal to the cross-sectional area of the corresponding face.

The 'minimum cut' (MC) in a flow network represents the number of edges that, when removed, separate the 3D network into 2 disconnected components. Here it was determined using the Boykov–Kolmogorov algorithm. The tissue that contains elements that have at least one normal set of ablation lesions needed to terminate VT. In silico ablation was performed by rendering tissue within 1 mm of the MC non-excitable. The VT induction protocol was then repeated to establish that VT was no longer inducible. If a new
VT arose after implementing the calculated ablation lesions, then additional targets corresponding to that VT were calculated. The protocol was repeated until VT was no longer inducible.

Examples that illustrate the advantages of the MC approach, highlighting its 3D nature, can be found in our earlier published study14 (see the supplementary material of that paper). Importantly, the use of the MC algorithm bypasses the need to establish in each patient what constitutes an ablation target, whether channels in the scar15–17, part of or the entire grey zone18, or reentrant drivers19. Finally, as already discussed in the main text, as the predicted targets are 3D, they may not be reachable in every patient via a particular endo- or epicardial approach; in such cases, we envision the targets to be re-calculated, taking into account that a given portion of the initial predicted target will need to remain excitable.

Merger of V AAT predicted targets with CARTO electroanatomical map in the prospective patient studies. To guide the ablation using the V AAT approach, the predicted targets had to be imported into the CARTO-electroanatomical mapping system (CARTO 3, BioSense Webster) during the clinical procedure. To do so, we extracted the predicted targets from the virtual heart model on surface meshes and exported them into CARTO as virtualization toolkit (VTK) files (Kitware), ensuring that the resulting files are compatible with the CARTO system. To register the V AAT targets to the patient heart during the clinical procedure, additional landmarks from the patient’s virtual heart geometric model were required for the registration process; the latter was performed with CartoMerge within the electroanatomical navigation system. The following surfaces were also extracted from the patient's virtual heart model, to serve as landmarks: left ventricular endocardium, left ventricular apex, right ventricular endocardium, cardiac valves and infarct surfaces. Additional surfaces segmentated and used as landmarks included the aorta, the left aortic cusp and the right aortic cusp. All surfaces were exported as VTK files and imported into the CARTO system at the beginning of the clinical ablation procedure. The registration process performed with CartoMerge aligned the coordinates of the left ventricular apex and left and right aortic cusps of the model landmarks to the coordinates of the left ventricular apex and left and right aortic cusps of the surfaces created with the intracardiac ultrasound catheter during the procedure. This landmark-based registration superimposed the virtual heart model landmarks, including the V AAT targets, to those of the patient heart. This enabled the clinician to navigate the ablation catheter to the V AAT targets accurately. After the procedure, the CARTO study, which included the CARTO clinical electroanatomical surfaces and the ablation lesion locations registered to the patient’s virtual heart model were exported for analysis. The exported files were converted to VTK files, and Paraview (Kitware) was used for visualization and comparison of the V AAT targets with the clinical ones.

The mean and standard deviation of the distance between the registered CARTO surface and the model LV endocardium was 5.77 ± 2.32 mm.

Uncertainty in target predictions and limitations of the V AAT approach. The V AAT strategy involves the use of personalized geometry and distribution of structural remodelling, but it is not personalized with respect to the electrophysiology of the heart. We use some pre-determined “average” electrophysiology modelling to represent non-infarcted tissue and grey zone in all of our patient-derived models. An ideal option would be to use personalized electrophysiology in each model, however acquisition of such personalized information would most likely be invasive, in contrast to the V AAT approach, which offers a non-invasive prediction of the ablation targets. Thus, the V AAT-predicted ablation targets have a level of uncertainty associated with the fact that pre-determined electrophysiology is used. One could potentially endeavour to re-calculate, as part of the V AAT workflow, the predicted patient-specific ablation targets with different pre-determined electrophysiology and then examine the differences in the resulting targets, if any. However, this is currently impossible within the clinical workflow, because of the short time window to conduct the simulations, that between clinical LGE-MRI acquisition and the ablation procedure; hospital workflow necessitates cardiac MRI acquisition the day before procedure. The issue is further exacerbated by the fact that as part of V AAT, in silico ablation with the predicted targets is also conducted and the model paced again from all pacing sites to examine VT inducibility—this procedure is repeated until the substrate is non-inducible for VT. Thus, to be able to predict the VT ablation targets non-invasively and as part of the clinical workflow, the use of pre-determined electrophysiology, with its potential uncertainty (different for each patient), will need to be retained.

In V AAT, this potential uncertainty is compounded with that associated with co-registration of predicted targets and CARTO images, as described in the previous section. Other limitations of the approach include the fact that clinical LGE-MRI quality could be operator-dependent and thus could introduce uncertainty in image processing of scar and grey zone. Despite the presence of some level of uncertainty, determining the ablation targets non-invasively using V AAT is shown here to be a very promising approach. Although V AAT will most probably not succeed in all patients, we are expecting it to be able to significantly raise the success rate in infracted VT ablation. This is similar to our experience with use of the rule-based approach to assign fibre orientations in the computational mesh, the original publication18 presents a set of algorithms and subroutines that can be easily implemented. The electrophysiology simulator CARTO has been developed by our team and used in over 60 publications; it can currently be obtained from Johns Hopkins University, the University of Bordeaux or the University of Graz. The ventricular simulations can also be executed using the open-source software CHASTE (http://www.cs.ox.ac.uk/chaste).

Data availability. All data supporting the findings of this study are available within the paper and its Supplementary Information. The patient MRI images used to construct the personalized heart models are available on request on approval of Johns Hopkins Institutional Review Board. Source data for activation maps shown in Figs. 1–4 are available in fighere. Received: 27 July 2017; Accepted: 27 July 2018; Published online: 3 September 2018

References

1. Stevenson, W. G. et al. Radiofrequency catheter ablation of ventricular tachycardia after myocardial infarction. Circulation 98, 308–314 (1998).
2. Aliot, E. M. et al. EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias. Heart Rhythm 6, 866–933 (2009).
3. Zhong, H., Lacomis, J. M. & Schwartzman, D. On the accuracy of CartoMerge for guiding posterior left atrial ablation in man. Heart Rhythm 4, 595–602 (2007).
4. Brugada, J. et al. Nonsurgical transthoracic epicardial radiofrequency ablation: an alternative in incessant ventricular tachycardia. J. Am. Coll. Cardiol. 41, 2036–2043 (2003).
5. Sosa, E., Scanavacca, M., d’Avila, A., Oliveira, F. & Ramires, J. A. Nonsurgical transthoracic epicardial catheter ablation to treat recurrent ventricular tachycardia occurring late after myocardial infarction. J. Am. Coll. Cardiol. 35, 1442–1449 (2000).
6. Dong, J. et al. Impact of heart rhythm status on registration accuracy of the left atrium for catheter ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 18, 1269–1276 (2007).
7. de Bukker, J. M. et al. Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation 77, 589–606 (1988).
8. Peters, N. S. & Wit, A. L. Myocardial architecture and ventricular arrhythmogenesis. Circulation 97, 1746–1754 (1998).
9. Callans, D. I. et al. Efficacy of radiofrequency catheter ablation for ventricular tachycardia in healed myocardial infarction. Am J Cardiol 82, 429–432 (1998).
10. Calkins, H. et al. Catheter ablation of ventricular tachycardia in patients with structural heart disease using cooled radiofrequency energy: results of a prospective multicenter study. Cooled RF Multi Center Investigators Group. J. Am. Coll. Cardiol. 35, 1905–1914 (2000).
11. Arevalo, H. J. et al. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7, 11437 (2016).
12. Prakosa, A. et al. Methodology for image-based reconstruction of ventricular geometry for patient-specific modeling of cardiac electrophysiology. Prog. Biophys. Mol. Biol. 115, 226–234 (2014).
13. Bauer, J. D., Blake, R. C., Plank, G. & Trayanova, N. A. A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann. Biomed. Eng. 40, 2243–2254 (2012).
14. Zahid, S. et al. Feasibility of using patient-specific models and the “minimum cut” algorithm to predict optimal ablation targets for left atrial flutter. Heart Rhythm 13, 1687–1698 (2016).
15. Lardo, A. C. et al. Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation 102, 698–705 (2000).
16. Tung, R., Josephson, M. E., Reddy, V., Reynolds, M. R. & SMASH-VT Investigators. Influence of clinical and procedural predictors on ventricular tachycardia ablation outcomes: an analysis from the substrate mapping and ablation in Suus Rhythm to Halt Ventricular Tachycardia Trial (SMASH-VT). J. Cardiovasc. Electrophysiol. 21, 799–803 (2010).

17. Hsia, H. H., Lin, D., Sauer, W. H., Callans, D. J. & Marchlinski, F. E. Anatomic characterization of endocardial substrate for hemodynamically stable reentrant ventricular tachycardia: identification of endocardial conducting channels. Heart Rhythm 3, 503–512 (2006).

18. Tung, R. et al. Impact of local ablation on interconnected channels within ventricular scar: mechanistic implications for substrate modification. Circ Arrhythm Electrophysiol 6, 1131–1138 (2013).

19. Verma, A. et al. Relationship between successful ablation sites and the scar border zone defined by substrate mapping for ventricular tachycardia post-myocardial infarction. J. Cardiovasc. Electrophysiol. 16, 465–471 (2005).

20. Krummen, D. E. et al. Modifying ventricular fibrillation by targeted rotor substrate ablation: proof-of-concept from experimental studies to clinical VF. J. Cardiovasc. Electrophysiol. 26, 1117–1126 (2015).

21. Nikolov, P., Prakosa, A., Arevalo, H. J., Wu, K. C. & Trayanova, N. A novel approach to arrhythmia risk stratification in patients with non-ischemic cardiomyopathy. Circulation 134, A20903–A20903 (2016).

22. Estner, H. L. et al. The critical isthmus sites of ischemic ventricular tachycardia are in zones of tissue heterogeneity, visualized by magnetic resonance imaging. Heart Rhythm 8, 1942–1949 (2011).

23. Ashukaga, H. et al. Feasibility of image-based simulation to estimate ablation target in human ventricular arrhythmia. Heart Rhythm 10, 1109–1116 (2013).

24. Schmidt, A. et al. Infarct tissue heterogeneity by magnetic resonance imaging from image-based models reconstructed from low and high resolution MRI. Biomech. Model. Mechanobiol. 10, 295–306 (2011).

25. Prassl, A. J. et al. Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems. IEEE Trans. Biomed. Eng. 56, 1318–1330 (2009).

26. Arevalo, H., Plank, G., Helm, P., Halperin, H. & Trayanova, N. Tachycardia in the canine infarcted heart: a computational analysis. Am. J. Physiol. Heart Circ. Physiol. 286, H1588–H1597 (2004).

27. Decker, K. F. & Rudy, Y. Ionic mechanisms of electrophysiological heterogeneity and conduction block in the infarct border zone. Am. J. Physiol. Heart Circ. Physiol. 299, H1588–H1597 (2010).

28. Deng, D. et al. Accuracy of prediction of infarct-related arrhythmic cardiac romance from image-based models reconstructed from low and high resolution MRI. Front. Physiol. 6, 282 (2015).

29. Pashahanzhaloo, F. et al. Submillimeter diffusion tensor imaging and late gadolinium enhancement cardiovascular magnetic resonance of chronic myocardial infarction. J. Cardiovasc. Magn. Reson. 19, 9 (2017).

30. Ten Tusscher, K. H., Noble, D., Noble, P. J. & Panfilov, A. V. A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H1573–H1589 (2004).

31. Decke, K. F. & Rudy, Y. Ionic mechanisms of electrophysiological heterogeneity and conduction block in the infarct border zone. Am. J. Physiol. Heart Circ. Physiol. 299, H1588–H1597 (2010).

32. Cabo, C. & Royden, P. A. Electrical remodeling of the epicardial border zone in the canine infarcted heart: a computational analysis. Am. J. Physiol. Heart Circ. Physiol. 284, H372–H384 (2003).

33. Vignoud, J. F., Weber dos Santos, R., Prassl, A., J. Deo, M. & Plank, G. Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. 96, 3–18 (2008).

34. Rodriguez, B., Li, L., Eason, J. C., Efimov, I. R. & Trayanova, N. A. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks. Circ. Res. 97, 168–175 (2005).

35. Rantner, L. J. et al. Three-dimensional mechanisms of increased vulnerability to electric shocks in myocardial infarction: altered virtual electrode polarizations and conduction delay in the peri-infarct zone. J. Physiol. 590, 4537–4551 (2012).

Acknowledgements
This work was supported by the NIH Pioneer Award (DP1-HL123271) to N.A.T.

Author contributions
A.P., H.J.A., D.D., H.A. and P.P. performed animal and human LGE-MRI scan segmentation and model creation. A.P., H.J.A., D.D. and N.A.T. designed the simulation protocols. D.D., H.J.A., A.P. and P.P. performed simulations of VT in all models. D.D., A.P., P.M.B., H.J.A. and N.A.T. analysed the data. A.P. developed the pipeline for model generation from MRI scans with ICD artefact. D.D. and A.P. adopted the adaptive algorithm for determining the ablation targets in the ventricles. H.H. provided the swine MRI and electrophysiological data, as well as input for the animal study. S.N. provided part of the human MRI scans (at Johns Hopkins), conducted the prospective studies at the University of Pennsylvania, and provided clinical guidance and input. J.C. provided the remainder of the human MRI scans and patient outcomes. A.P. developed the methodology for input of simulation data into the clinical CARTO mapping system. J.B., E.G., R.M. and R.R. developed and implemented the clinical protocols at the University of Utah. R.R. and E.H. recruited patients and conducted VT ablations for the prospective human study at the University of Utah. S.N. and D.C. recruited patients and conducted VT ablations for the prospective human study at the University of Pennsylvania. N.A.T. initiated the collaborations, designed and coordinated the studies with contributions from H.J.A. and H.H. (retrospective swine and human studies), S.N. and R.R. (prospective human studies), and A.P. and S.N. (retrospective human with ICD study), and supervised all simulation studies. H.J.A., D.D., A.P., P.M.B., E.G. and R.R. generated figures, tables and videos. N.A.T. wrote the manuscript with input from A.P. and H.J.A. All authors discussed the results and commented on the manuscript.

Competing interests
N.A.T. holds partial ownership of CardioSolv Ablation Technologies LLC. S.N. is a scientific advisor to CardioSolv Ablation Technologies LLC. The other authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41551-018-0282-2.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to N.A.T.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

- [x] The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- [x] An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- [x] The statistical test(s) used AND whether they are one- or two-sided
 Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- [x] A description of all covariates tested
- [x] A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- [x] A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- [x] For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 Give P values as exact values whenever suitable.
- [x] For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- [x] For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- [x] Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated
- [x] Clearly defined error bars
 State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection

- No software was used in the data-collection component of this study.

Data analysis

- The software CARP (ver. 1.8.1) was used to perform all simulations. This software has been extensively used and tested by our group and others. A free version of this software (Carpentry) can be downloaded for academic use at https://carp.medunigraz.at/carpentry/. The image-processing software, CardioViz3D (ver. 1.5), can be freely obtained from http://www-sop.inria.fr/asclpios/software/CardioViz3D/. The open-source software Seg3D (ver. 2.4.1) used in gray-level thresholding can be obtained from http://www.sci.utah.edu/cbic-software/seg3d.html. Computational meshes are generated using the software Simpleware Scap2IP (ver. 7), available from Synopsys. The ionic models are freely available from the repository CellML (https://www.cellml.org/). The ventricular simulations can also be executed using the open-source software CHASTE: http://www.cs.ox.ac.uk/chaste/.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Relevant data, including patient MRI scans, are available from the authors upon approval of the Johns Hopkins Institutional Review Board; other than IRB approval, there are no specific restrictions on the availability of the materials used in the study. Source data for activation maps shown in Figs. 1–4 are available in figshare, with the identifier doi:10.6084/m9.figshare.6613289. No antibodies or eukaryotic cell lines were used in this study.

Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

The number of subjects available for the study was limited by the available experimental and clinical data.

1. Retrospective pig study – All 5 pigs for which experimental data was collected in [22] were used in this simulation study.
2. Retrospective human study – 21 patient-specific heart models, from patients that underwent clinical ablation were used in this study. Of those, 16 were without ICDs and 5 were with ICDs. The patient clinical LGE-MRI scans were of sufficient quality to construct a virtual heart model.
3. Prospective human study – A prospective study of 5 patients was conducted, at two different clinical centers. Of these 3 were enrolled in the study at the University of Utah and 2 were enrolled at the University of Pennsylvania. The MRI scans were of sufficient quality to construct a model.

Data exclusions

All data generated are presented in the study.

Replication

The numerical stability and reproducibility of the software CARP has been thoroughly tested by our group. Since all models are deterministic, simulation results would be the same when repeated.

Randomization

Not applicable because this is a pilot study, not a randomized clinical trial.

Blinding

In the prospective study, the team performing the simulations were only given the patient MRI. No other clinical information was available. In the retrospective patient with and without ICD study, the simulation team was blinded to patient clinical information and outcomes.

Reporting for specific materials, systems and methods

Materials & experimental systems

- n/a
- Involved in the study
- Unique biological materials
- Antibodies
- Eukaryotic cell lines
- Palaeontology
- Animals and other organisms
- Human research participants

Methods

- n/a
- Involved in the study
- ChIP-seq
- Flow cytometry
- MRI-based neuroimaging
Animals and other organisms

Laboratory animals
Details on the animals can be found in reference [22]. Domestic swine were studied with an occlusion of their mid-left anterior descending coronary artery. All animals were ~2 months old, with weights ranging 18–23 kg, and 2/5 were male.

Wild animals
The study did not involve wild animals.

Field-collected samples
The study did not involve samples collected from the field.

Human research participants

Population characteristics
All human participants had ischemic cardiomyopathy and presented with clinical ventricular tachycardia. All human participants had LGE-MRI scans of sufficient quality to construct a virtual heart model. Covariate-relevant population characteristics of the participants for the different sub-studies were as follows:

1) Retrospective study #1: mean age 64.4±9 y, mean LVEF 38.4±12%, 87.5% male
2) Retrospective study #2: mean age 64.1±15.5 y, mean LVEF 31.1±16.4, 75% male
3) Retrospective study of patients with ICDs: mean age 54.2±9.3 y, mean LVEF 39±13.8%, 100% male
4A) Prospective study (University of Utah cohort): mean age 66.6±9.9 y, mean LVEF 40±6.6%, 2/3 male
4B) Prospective study (University of Pennsylvania cohort): mean age 73.5±3.4 y, mean LVEF 33±4.4%, 2/2 male

Recruitment
The number of subjects available for the study was limited by the available clinical data.