Dissipated work and fluctuation relations for non-equilibrium single-electron transitions

Jukka P Pekola, Aki Kutvonen and Tapio Ala-Nissila

1 Low Temperature Laboratory (OVLL), Aalto University School of Science, PO Box 13500, FI-00076 Aalto, Finland
2 COMP CoE at the Department of Applied Physics, Aalto University School of Science, PO Box 11000, FI-00076 Aalto, Finland
3 Department of Physics, Brown University, Providence, RI 02912-1843, USA
E-mail: jukka.pekola@aalto.fi, aki.kutvonen@gmail.com and tapio.alanissila@aalto.fi

Received 9 November 2012
Accepted 15 January 2013
Published 18 February 2013

Abstract. We discuss a simple but experimentally realistic model system, a single-electron box (SEB), where common fluctuation relations can be tested for driven electronic transitions. We show analytically that when the electron system on the SEB island is driven to a non-equilibrium state by the control parameter (gate voltage), the common fluctuation relation (Jarzynski equality) is not valid due to dissipated heat even when the system starts at thermal equilibrium and returns to it after the drive has been stopped. We perform no feedback on the system. However, an integral fluctuation relation based on total entropy production works also in this situation. We perform extensive Monte Carlo simulations of single-electron transitions in the SEB setup and find good agreement with the theoretical predictions.

Keywords: mesoscopic systems (theory), transport processes/heat transfer (theory), fluctuations (theory), current fluctuations
1. Introduction

The statistical mechanics of small systems has been the focus of intense interest over recent years. The common fluctuation relations, formulated, e.g., in [1]–[4], introduce equalities to describe irreversible processes. In the thermodynamic limit these are replaced by inequalities, of which the second law of thermodynamics is the best known one. The said equalities govern statistical averages over many repeated realizations of a given process driven by external control parameters. An individual realization is either dissipative or it extracts energy from the heat bath; however, the Jarzynski equality (JE)

\[\langle e^{-\beta(W-\Delta F)} \rangle = 1 \] (1)

should be valid [2]. Here \(\langle \cdot \rangle \) refers to averaging over an infinite number of repetitions, \(W \) is the work done in the driven process, \(\Delta F \) is the free-energy difference between the equilibrium states of the system at the end points of the drive trajectory, and \(\beta \equiv (k_B T)^{-1} \) is the inverse temperature of the heat bath. The conditions for JE to be valid are claimed to be amazingly few [2, 5]: foremost, the system needs to be in thermal equilibrium with the bath in the beginning of the drive. Typically, the validity and conditions of equation (1) have been theoretically discussed for abstract model systems [5, 6], and experimentally for systems, where controlled large sample averages are difficult to obtain [7].

A physical system of driven single-electron tunneling at low temperatures [9] satisfies the requirements of concrete experimental feasibility: averaging over a large number of realizations, and simple but accurate expressions of transition rates and energy relaxation become available. It has been recently shown theoretically [10] and experimentally [11] that equation (1) is valid for driven (isothermal) transitions in a single-electron box. The general assertion is that this equality is valid even if the system is driven to a full...
Dissipated work and fluctuation relations for non-equilibrium single-electron transitions

Figure 1. Single-electron box (SEB). (a) Circuit diagram showing the electronic configuration and schematically the energy relaxation by wavy lines. Electrons tunnel at rates Γ^\pm between the isothermal lead on the left and the small island in the center. The potential of the island is controlled capacitively (capacitance C_g) by a variable gate voltage V_g. The island is not necessarily isothermal due to the dissipative gate driving and weak energy relaxation (γ) to the phonon bath. For more details, see text. (b) The energies of the two lowest lying charge states $n = 0$ and 1 in the gate voltage range around $\delta n_g = 0$. The vertical red arrow depicts energy release in a $n: 0 \rightarrow 1$ transition at a positive value of δn_g. (c) A section of the harmonic drive and a schematic presentation of the corresponding transitions of charge number n on the island. (d) Schematic presentation of the approximate island temperature evolution during the drive in quasi-equilibrium (regime (i), see text).

non-equilibrium state. Here we demonstrate that this is not the case for the single-electron box, when the tunneling events lead to overheating of the system. Under such conditions, when the overheating is a result of the control parameter drive, the JE is still supposed to be valid, see, e.g., chapter 4 in [5]. However, we find that an integral fluctuation theorem due to Seifert [8] applies even in this situation.

2. Single-electron box

The single-electron box (SEB) [13, 14] (cf. figure 1) considered in [10]–[12] is a simple, yet representative system for our arguments. In a SEB, a tunnel contact allows electrons to enter or leave the island of the box. The electrostatic energy of the box with n (integer number) excess electrons on the island is given by $U(n, n_g) = E_C(n - n_g)^2$. Here $E_C = e^2/2C_{\Sigma}$ is the elementary charging energy of the box determined by the total capacitance $C_{\Sigma} = C + C_g + C_0$, where C is the capacitance of the tunnel junction, C_g the...
The injection rate is the largest frequency in the problem, \(f \) for a balance condition in the sense of, and as required by the fluctuation theorems \([4, 15]\). This condition prevails if the drive injects non-equilibrium electrons (holes in out-tunneling) on the SEB island at a rate which is slower than the energy relaxation rate \(\gamma \) of non-equilibrium excitations. The opposite limit \(f \gg \gamma \), where \(f \) is the frequency of the cyclic gate drive, is the domain of the present discussion. In this case there are two main regimes to consider as regards the energy distribution on the island. (i) The electron–electron relaxation rate is much faster than the drive, \(\gamma_{e-e} \gg f \gg \gamma \), in which case the electrons on the island occupy a non-equilibrium distribution, which can be described by a Fermi–Dirac distribution with an effectively higher temperature than the bath, see figure 1(d). We emphasize that here we do not introduce two separate heat baths in the problem, but the second temperature is solely a result of the energy deposition on the island due to the drive by the control gate. If the protocol of the control parameter is stopped during the process to an arbitrary value, the system will relax to a canonical equilibrium corresponding to the value of the control parameter. Thus the system obeys a balance condition in the sense of, and as required by the fluctuation theorems \([4, 15]\). (ii) The injection rate is the largest frequency in the problem, \(f \gg \gamma_{e-e}, \gamma \), which leads to a full non-equilibrium on the island, i.e., the electronic energy distribution deviates from the Fermi–Dirac one. If we consider the standard metallic SEBs, regime (i) is typical in experiments since \(\gamma_{e-e} \approx 10^9 \text{ s}^{-1} \) in an ordinary metal, whereas \(\gamma \approx 10^6 \text{ s}^{-1} \) for the corresponding electron–phonon relaxation at the sub-kelvin temperatures where the SEBs are typically operated \([11, 16, 17]\). In this work we discuss quantitatively the case (i) only.

We consider a symmetric gate drive around the degeneracy, moving between charge states \(^4 n = 0 \) and \(1 \) as depicted in figure 1(c). We assume unit peak-to-peak amplitude, where \(\delta n_g(t) \) varies between \(-1/2 \) and \(+1/2 \). We assume as usual that the system is in equilibrium with the bath before the gate drive starts at \(t = 0 \), as requested by the fluctuation relations in general. The drive ends after \(N \) back-and-forth ramps of the gate. The thermodynamic work done is straightforward to obtain from its definition \([2]\), or from the Markovian viewpoint \([4]\). Since the beginning and end points of the drive are the same, \(\delta n_g = -1/2 \), there is no ambiguity of the proper expression of work to use \([18]\), and the dissipation can be written as \(W - \Delta F = \sum_i \pm \Delta U_i \), where the + sign refers to the rising \(n_g \) half-periods, and the – sign to the descending ones \([10, 12]\). Moreover, for the sake of a simple argument, we assume in our analytical treatment that exactly one transition

\(^4\) We can show that the contributions of other possible trajectories (\(n: \) 0 \(\rightarrow \) 1 \(\rightarrow \) 0 or 1 \(\rightarrow \) 1) can be neglected, as they introduce expectation values that are exponentially (in \(\beta E_C \)) smaller than those arising from the main \(n: \) 0 \(\rightarrow \) 1 trajectories.
between the two charge states occurs in each half-cycle of the gate drive. This is a regime that can be achieved to a high accuracy—the probability of half-cycles with multiple transitions in a fully normal system to be considered below is \(\approx 3.0T^2/(\beta^4E_C^2e^4R_T^2) \), where \(T \) is the duration of the half-cycle and \(R_T \) is the junction resistance. Numerical results will be provided later for more general cases, where also multiple jumps in each leg can occur.

For the \(i \)th half-cycle of the gate drive (increasing \(\delta n_g \)), we may write in the single-jump approximation

\[
\langle e^{-\beta \Delta U} \rangle = \int_0^T d\tau e^{-\beta \Delta U(\tau)} e^{-\int_0^\tau d\tau' \Gamma^+(\tau') \Gamma^+(\tau) e^{-\int_0^\tau d\tau' \Gamma^-(\tau')}}
\]

where \(\Delta U = 2E_C\delta n_g \) is the work dissipated in the half-cycle, and \(\delta n_g \) is the gate position where the transition occurs. \(\Gamma^+ (\Gamma^-) \) is the transition rate into (out from) the island, which depends explicitly on time due to the gate drive, but also on the island distribution, which can be different from that of the bath due to the dissipative transitions in the earlier half-cycles. Equation (2) is obtained by standard path-averaging arguments \[10\] for a Poisson process. In the single-jump approximation, since the jump can occur at any time instant between 0 and \(T \), the quantity \(e^{-\beta \Delta U(\tau)} \) is weighted by the corresponding differential probability, given by the product of the following three probabilities: (i) there is no transition before the time instant \(\tau \), i.e. \(e^{-\int_0^\tau d\tau' \Gamma^+(\tau')} \), (ii) the transition into the island occurs in the time interval \((\tau, \tau + d\tau) \), i.e. \(\Gamma^+(\tau) d\tau \), and (iii) there is no transition out from the island in the remaining time interval up to \(T \), i.e. \(e^{-\int_\tau^T d\tau' \Gamma^-(\tau')} \). The tunneling rates we apply in what follows are those for static biasing conditions, since we envision drive frequencies that are far below any relevant energy scale in the system. The descending half-cycles where an electron tunnels out of the island are identical in terms of the energetics and our argument. In what follows we assign the dissipated work in a multi-leg ramp as \(W - \Delta F \), and in a single leg as \(\Delta U \).

If the electron energy distribution on the island is the Fermi–Dirac one at temperature \(T \), the detailed balance for the tunneling rates into and out of the island holds, \(\Gamma^-(t) = e^{-\beta \Delta U(t)} \Gamma^+(t) \), and by simple arguments presented in appendix A we obtain from equation (2)

\[
\langle e^{-\beta \Delta U} \rangle = P_R = 1.
\]

Here \(P_R \) is the probability of making a \(n: 1 \rightarrow 0 \) transition in the corresponding reverse path, and the last step follows from our assumption of the symmetry of the path and of exactly one transition in each leg. If the electron energy distribution is the Fermi–Dirac one at temperature \(T \) again at all times, all the legs of the drive are independent, and JE is trivially satisfied in this case. This argument is naturally more general, not limited to the single-jump trajectories \[10\].

The situation is qualitatively different if the island is driven out of equilibrium. In what follows, we consider tunneling in a fully normal metal box, where

\[
\Gamma^\pm = \frac{1}{e^2R_T} \int dE f(E, \beta)[1 - f_{NE}(E \pm \Delta U)]
\]

are the tunneling rates when the lead is in equilibrium with the Fermi–Dirac distribution \(f(E, \beta) \) and the island has a distribution \(f_{NE}(E) \). For the full equilibrium case, \(f_{NE}(E) = f(E, \beta) \), we have \(\Gamma^\pm_0 = \pm(e^2R_T)^{-1}\Delta U(1 - e^\pm\beta\Delta U)^{-1} \). For the island in regime (i), as
explained previously in this section, the non-equilibrium distribution for the electrons can be described by the Fermi–Dirac distribution at an effectively higher temperature, i.e. $f_{\text{NE}}(E) = f(E, \beta + \Delta \beta)$. A further simplified analysis in this regime can be carried out if we assume that the island stays close to the equilibrium energy distribution. We write $\Delta \beta$ for the instantaneous deviation of the inverse temperature of the island from that of the bath at the moment of the tunneling event, and assume that $|\Delta \beta/\beta| \ll 1$. Linear expansion in $\Delta \beta$ then yields

$$\Gamma^\pm \simeq \Gamma^\pm_0 \left(1 - \frac{e^2 R T}{2} \Gamma^\pm_0 \Delta \beta \right).$$

We see immediately that detailed balance at temperature T is no longer obeyed if $\Delta \beta \neq 0$, but

$$\Gamma^-/\Gamma^+ \simeq e^{-\beta \Delta U} \left[1 - \frac{1}{2} \Delta U \Delta \beta \right].$$

We find a corresponding linear correction to the expression in equation (2) for the ith half-period of the gate drive as

$$\langle e^{-\beta \Delta U} \rangle \simeq 1 - \frac{1}{2} \langle Q \rangle \Delta \beta,$$

see appendix B for details. Here $\langle Q \rangle$ is the average value of heat dissipated in crossing the degeneracy, which is evaluated for the isothermal system here: according to [10], $\langle Q \rangle > 0$ is approximately proportional to the sweep rate.

Although $\langle e^{-\beta \Delta U} \rangle \neq 1$ in equation (7) in general, this of course does not prove JE wrong, since the requirement of equilibrium at the beginning of the gate (half-)period was not imposed here. However, we may make use of equation (7) to prove that JE does not hold in the following simple example where the ramp starts under the equilibrium conditions, despite the fact that the assumptions about the validity of the JE are satisfied.

Suppose that the symmetric gate ramp consists of only two linear legs ($N = 1$), see inset in figure 3. Again exactly one tunneling event occurs in each period. Next, we assume that the first tunneling event heats or cools the island by an amount determined by its heat capacity C, such that $\Delta T = 0$ before the first tunneling, and $\Delta T = E/C$ after the first tunneling, where $\Delta T = -k_B T \Delta \beta/\beta^2$ and E is the energy deposited on the island by the tunneling electron. Furthermore, we assume that the relaxation of heat is so slow that the temperature of the island is changing only at the transitions during the sweep\(^5\). In this sweep, we may then write a similar evolution for the full cycle as in equation (2), but now assuming that the temperature on the island depends on the energy at which the electron tunnels in the first leg. This analysis is presented in appendix C. After straightforward algebra we obtain for the dissipated work $W - \Delta F = \Delta U_1 - \Delta U_2$

$$\langle e^{-\beta(W - \Delta F)} \rangle \simeq 1 - \frac{k_B}{4C} \beta^2 \langle Q \rangle^2.$$

This equation shows that although $\langle e^{-\beta \Delta U_1} \rangle = 1$ for the first half-period with $\Delta \beta = 0$, and $\langle e^{-\beta \Delta U_2} \rangle > 1$ for the second half-period with typically $\Delta \beta < 0$, the overall average assumes values $\langle e^{-\beta(W - \Delta F)} \rangle < 1$, due to the correlation between the two legs. We note by using Jensen’s inequality, $e^{-\langle x \rangle} \leq \langle e^{-x} \rangle$, that this conclusion is consistent with the second law of thermodynamics.

\(^5\) Yet after the gate ramp has stopped, the system returns to equilibrium due to this weak relaxation. Since no work is done after the ramp, the conditions of Jarzynski equality are satisfied.
3. Monte Carlo simulations

To check our analytic predictions we performed numerical simulations of single-electron transitions in the SEB setup by using the standard stochastic Monte Carlo simulation method. Unlike in the analysis above, in these simulations no approximations were made: the number of jumps within a leg was not restricted to one, and we used the exact form of the tunneling rates instead of the linearized approximation of equation (A.5). Furthermore, in the analytical results, we have expanded the tunneling rates up to the second order in $\Delta \beta$ for more precise comparison here. We set the resolution of $\Delta U(t) \in [-1,1]$ to 0.0005 using linear increments and the resolution of the temperature difference between the lead and the island $\Delta T \in [0,2T]$ to 0.001T. The control parameter protocol consisted of a linearly increasing half-sweep $n_g(t) : [0,t_f], n_g(t) = t/t_f$, and a linearly decreasing one $n_g(t) : [t_f,2t_f], n_g(t) = 2 - t/(2t_f)$, with 4000 steps. We set the sweep rate $f = 2/t_f$ to 10^7 s$^{-1}$, which gives about 95% single jump legs. In each simulation the temperature of the heat bath was set to $T = 0.1$ K, the charging energy to $E_C = 40k_B T$ and the tunneling resistance to $R_T = 450$ kΩ.

We calculated the tunneling rates (equation (A.3)) numerically using the standard trapezoidal rule integration. We determined the integration limits and the number of trapezoids by doubling both of them until the error was less than 10^{-15} for all values of ΔU and $\Delta \beta$. The heat generation method is presented in detail in appendix C. We assumed weak coupling between the electrons on the island and the phonon bath. Thus the temperature of the island was controlled only by the heat generation due to the tunneling events during the sweep.

To numerically test the prediction of equation (8) for $\langle e^{-\beta(W-\Delta F)} \rangle$, we performed 1.75×10^{11} repetitions for different values of the heat capacity C ranging from $11E_C$ K$^{-1}$ to $50E_C$ K$^{-1}$. The simulation data are shown in figure 2. First, as expected JE is accurately satisfied in the limit of $\Delta T = 0$. This was verified with several different sweep rates (data not shown). Most importantly, we find that $\langle e^{-\beta(W-\Delta F)} \rangle$ decreases with increased heating, in good agreement with the theoretical prediction.

To explicitly demonstrate the details behind the violation of the JE, we calculated $\langle e^{-\beta \Delta U} \rangle$ separately for the increasing and decreasing parts of the sweep. The results are shown in figure 3. The average is very close to unity for the first half of the sweep, which starts in equilibrium. The slow increase is a result of the contribution from multijump legs. However, during the second half-sweep the initial effective temperature of the island is higher than that of the bath and we obtain $\langle e^{-\beta \Delta U} \rangle > 1$ for that leg. This result is in agreement with the theoretical prediction of equation (7).

4. Integral fluctuation theorem

An integral fluctuation theorem (IFT) based on total entropy production on a trajectory, Δs_{tot}, was discussed by Seifert in [8]. It was concluded that IFT in the form

$$\langle e^{-\Delta s_{\text{tot}}} \rangle = 1$$

Besides the simple two-leg trajectory, numerical simulations were run for multiperiod trajectories consisting of either linear or harmonic (figure 1) legs. The average $\langle e^{-\beta(W-\Delta F)} \rangle$ decreases monotonically with the number N of periods (results not shown).

doi:10.1088/1742-5468/2013/02/P02033
Dissipated work and fluctuation relations for non-equilibrium single-electron transitions

Figure 2. Simulation results (triangles) of \(\langle e^{-\beta(W-\Delta F)} \rangle \) and the corresponding theoretical approximation of the single jump and small \(\Delta T/T \) approximation, equation (8) (dashed line). The horizontal axis shows the average temperature after the first half-sweep. The corresponding values of the heat capacities from left to right are: 50\(E_C \), 30\(E_C \), 20\(E_C \), 15\(E_C \), 12\(E_C \) and 11\(E_C \) K\(^{-1}\). The error bars are the standard error of the mean of the corresponding data. Each data point is obtained from 1.75 \(\times \) 10\(^{11} \) independent realizations of the tunneling process. The insets (a) and (b) show the sampling from simulation with \(C = 12 E_C \) K\(^{-1}\) with all the 1.75 \(\times \) 10\(^{11} \) repetitions, (b) demonstrating explicitly that even the tails of the distribution are well sampled.

applies without either the assumptions of equilibrium starting condition or detailed balance. The total entropy production is divided into the system entropy change and that of the medium, respectively, as \(\Delta s_{\text{tot}} = \Delta s + \Delta s_m \). Applied to the discrete two-state system of the present manuscript, the system entropy change can be written as \(\Delta s = - \ln[p_1(T)/p_0(0)] \), where \(p_n(t) \) is the probability of having \(n \) electrons on the island at time \(t \). The medium entropy production can be written as \(\Delta s_m = 0 \) for the trajectories with no transitions, and otherwise \(\Delta s_m = \ln[(\Gamma^{-}(\tau_1)/\Gamma^{+}(\tau_1))(\Gamma^{+}(\tau_2)/\Gamma^{-}(\tau_2)) \cdots (\Gamma^{\pm}(\tau_\ell)/\Gamma^{\mp}(\tau_\ell))] \) for a trajectory with \(\ell \) tunneling events at time instants \(\tau_i, i = 1, \ldots, \ell \). Here, \(\pm = (-1)^i \) and \(\mp = (-1)^{i+1} \).

We can apply the single-trajectory entropy production for the SEB, with the assumptions in the analytic treatment of this paper in a straightforward manner, and obtain the relation

\[
\langle e^{-\Delta s_{\text{tot}}} \rangle = \langle e^{-\beta \Delta U} \rangle - \frac{1}{2} \Delta \beta \langle \Delta U e^{-\beta \Delta U} \rangle.
\] (10)

By applying the single-jump techniques above, we find that \(\langle \Delta U e^{-\beta \Delta U} \rangle = -\langle Q \rangle \), and inserting this result and equation (7) into (10), we conclude that equation (9) is valid identically (at least within the approximations made) for a leg with arbitrary effective island temperature. Therefore equation (9) is valid also for the overheated two-leg trajectory where equation (1) fails. We have checked equation (9) also numerically from our MC simulations, and find it to be satisfied within the numerical accuracy for various values

doi:10.1088/1742-5468/2013/02/P02033
5. Summary and conclusions

In summary, we have analyzed the prediction of the Jarzynski equality for driven single-electron transitions under experimentally relevant conditions: the system may be either in equilibrium, in quasi-equilibrium (overheating) or in true non-equilibrium. The JE is satisfied in the first case only. We have shown both analytically and numerically that equation (1) is not applicable when dissipative heat induces a non-equilibrium electron distribution in the SEB, although the system starts at equilibrium and returns to it and there is no additional control on the system. In particular, we do not perform any feedback or fix the tunneling rates by hand. However, the integral fluctuation theorem of equation (9) holds even in this case. The experimental realization of our setup requires low tunneling rates and slow relaxation rate between the system and the bath: these requirements are best satisfied using tunnel junctions between normal metals and superconductors [17], or in semiconducting quantum dots [19, 20].

Acknowledgments

This work has been supported in part by the Academy of Finland through its COMP (project no. 251748) and LTQ (project no. 250280) CoE grants, and by the National Doctoral Programme in Materials Physics (NGSMP). We thank Udo Seifert, Dmitri
Appendix A. Derivation of equation (3) of the main text

We start with equation (2) of the main text:

$$\langle e^{-\beta \Delta U} \rangle = \int_0^T d\tau \ e^{-\beta \Delta U(\tau)} e^{-\int_0^\tau d\tau' \Gamma^+(\tau') \Gamma^-(\tau)} e^{-\int_\tau^T d\tau' \Gamma^-(\tau')}.$$ \hspace{1cm} (A.1)

Inserting the detailed balance condition $\Gamma^-(t) = e^{-\beta \Delta U(t)} \Gamma^+(t)$ into this equation we may rewrite it into

$$\langle e^{-\beta \Delta U} \rangle = \int_0^T d\tau \ e^{-\int_0^\tau d\tau' \Gamma^+(\tau') \Gamma^-(\tau)} e^{-\int_\tau^T d\tau' \Gamma^-(\tau')}.$$ \hspace{1cm} (A.2)

Next we make a change of variable in the main integral, $t = T - \tau$, and note that $\Gamma^\pm(u) = \Gamma_R^\pm(T - u)$ for the reverse trajectory R and for any time instant u along the symmetric trajectories considered here, yielding

$$\langle e^{-\beta \Delta U} \rangle = \int_0^T dt \ e^{-\int_t^T d\tau' \Gamma_R^+(T - \tau') \Gamma_R^-(t)} e^{-\int_T^t d\tau' \Gamma_R^-(T - \tau')}.$$ \hspace{1cm} (A.3)

Making the change of integration variable in the integrals of the exponents as well, $\tau'' = T - \tau'$, and reordering the terms in the integrand, we finally obtain

$$\langle e^{-\beta \Delta U} \rangle = \int_0^T dt \ e^{-\int_t^T d\tau' \Gamma_R^+(T - \tau') \Gamma_R^-(t)} e^{-\int_T^t d\tau' \Gamma_R^-(T - \tau')}.$$ \hspace{1cm} (A.4)

By direct inspection we identify this as the probability of making exactly one $n: 1 \rightarrow 0$ transition in the reverse trajectory, i.e., P_R, and due to the condition that exactly one transition is taking place in its mirror trajectory, we finally conclude that

$$\langle e^{-\beta \Delta U} \rangle = P_R = 1$$ \hspace{1cm} (A.5)

in this case.

Appendix B. Derivation of equation (7) of the main text

We first expand the tunneling rate into the box

$$\Gamma^+ = \frac{1}{e^2 R_T} \int dE \ f(E, \beta) [1 - f(E + \Delta U, \beta + \Delta \beta)]$$ \hspace{1cm} (B.1)

for a small inverse temperature difference $\Delta \beta$ up to the linear correction. Since $\partial f(E, \beta)/\partial \beta = -E f(E, \beta) [1 - f(E, \beta)]$, we obtain

$$\Gamma^+ \simeq \frac{1}{e^2 R_T} \int dE \ f(E, \beta) [1 - f(E + \Delta U, \beta)]$$

$$+ \frac{\Delta \beta}{e^2 R_T} \int dE \ (E + \Delta U) f(E, \beta) [1 - f(E + \Delta U, \beta)].$$ \hspace{1cm} (B.2)
Since all the temperature arguments in Fermi distributions are now equal (\(=\beta\)), we may drop them for now. Equation (B.2) can thus be written as

\[
\Gamma^+ \simeq \frac{1}{e^2 R_T} \int dE f(E)[1 - f(E + \Delta U)] \\
+ \frac{\Delta \beta}{e^2 R_T} \int dE (E + \Delta U) f(E) f(E + \Delta U)[1 - f(E + \Delta U)].
\]

(B.3)

Since \(f(E)[1 - f(E + x)] = [f(E) - f(E + x)]/(1 - e^{-\beta x})\), we obtain from equation (B.3)

\[
\Gamma^+ \simeq \Gamma_0^+ + \frac{\Delta \beta}{e^2 R_T} \int dE (E + \Delta U)[f(E) - f(E + \Delta U)] f(E + \Delta U),
\]

(B.4)

where

\[
\Gamma_0^+ = \frac{1}{e^2 R_T} \int dE f(E, \beta)[1 - f(E + \Delta U, \beta)] = \frac{1}{e^2 R_T} \frac{\Delta U}{1 - e^{-\beta \Delta U}}
\]

is the tunneling rate into the box at equilibrium temperature. Let us derive the analytic expression of the integral in equation (B.4) step by step for illustration.

\[
\int dE (E + \Delta U)[f(E) - f(E + \Delta U)] f(E + \Delta U)
\]

\[
= \int dE (E + \Delta U)f(E + \Delta U)[1 - f(E + \Delta U)]
- \int dE (E + \Delta U)f(E + \Delta U)[1 - f(E)]
- \int dE' E' f(E')[1 - f(E')] - \int dE' E' f(E')[1 - f(E' - \Delta U)].
\]

(B.6)

Using

\[
\int dE E f(E)[1 - f(E + x)] = -\frac{1}{2} \frac{x^2}{1 - e^{-\beta x}},
\]

we obtain from equation (B.6),

\[
\int dE (E + \Delta U)[f(E) - f(E + \Delta U)] f(E + \Delta U) = \frac{1}{2} \frac{\Delta U^2}{1 - e^{\beta \Delta U}}.
\]

(B.8)

Combining equations (B.4) and (B.8), we get

\[
\Gamma^+ \simeq \Gamma_0^+ - \frac{\Delta \beta}{2 e^2 R_T} \frac{\Delta U}{1 - e^{-\beta \Delta U}} \frac{\Delta U}{e^{\beta \Delta U} - 1} = \Gamma_0^+ \left(1 - \frac{e^2 R_T}{2} \Gamma_0^- \Delta \beta\right),
\]

(B.9)

where

\[
\Gamma_0^- = \frac{1}{e^2 R_T} \int dE f(E)[1 - f(E - \Delta U)] = \frac{1}{e^2 R_T} \frac{\Delta U}{e^{\beta \Delta U} - 1}
\]

is the tunneling rate out from the box at equilibrium temperature.

Similarly we find for the opposite rate

\[
\Gamma^- \simeq \Gamma_0^- \left(1 - \frac{e^2 R_T}{2} \Gamma_0^+ \Delta \beta\right).
\]

(B.11)
Therefore, instead of the original detailed balance $\Gamma_0^+ / \Gamma_0^- = e^{\beta \Delta U}$, we find
\begin{equation}
\frac{\Gamma^+}{\Gamma^-} \approx \frac{\Gamma_0^+}{\Gamma_0^-} \left[1 + \frac{e^2 R T}{2} (\Gamma_0^+ - \Gamma_0^-) \Delta \beta \right] = e^{\beta \Delta U} \left[1 + \frac{1}{2} \Delta U \Delta \beta \right],
\end{equation}
which is the reason why JE fails. Here, in the last step we have used $\Gamma_0^+ - \Gamma_0^- = \Delta U / (e^2 R T)$.

Now consider a symmetric trajectory of the gate from time 0 to τ. We assume that one and only one jump occurs when crossing the energy degeneracy. We find for this leg
\begin{align}
\langle e^{-\beta \Delta U} \rangle &= \int_0^\tau e^{-\beta \Delta U(\tau)} e^{-f_0^+ d\tau'} \Gamma^+(\tau) e^{-f_0^- d\tau'} \Gamma^-(\tau') d\tau \\
&\approx \int_0^\tau e^{-f_0^+ d\tau'} \Gamma^+(\tau) e^{-f_0^- d\tau'} \Gamma^-(\tau') d\tau \\
&+ \frac{1}{2} \Delta \beta \int_0^\tau \Delta U(\tau) e^{-f_0^+ d\tau'} \Gamma^+(\tau') e^{-f_0^- d\tau'} \Gamma^-(\tau') d\tau.
\end{align}
In the second step we have made use of the result in equation (B.12). Note that from now on we can use the expressions or values of the quantities at the initial temperature, since the corrections would yield errors in the next order only. Now, we find that the second line of equation (B.13) can be rewritten such that
\begin{equation}
\langle e^{-\beta \Delta U} \rangle \approx \frac{P_R}{2} + \frac{1}{2} \langle Q \rangle_R \Delta \beta,
\end{equation}
where P_R is the probability of the transition in the reverse trajectory over the same gate section, and $\langle \Delta U \rangle_R$ is the expectation value of ΔU over this reversed trajectory. Since we assume linear trajectory and the assumption of success with one jump each time $P = 1$, we have $P_R = P = 1$ and $\langle Q \rangle_R = -\langle Q \rangle$. Thus,
\begin{equation}
\langle e^{-\beta \Delta U} \rangle \approx 1 - \frac{1}{2} \langle Q \rangle \Delta \beta.
\end{equation}
We can write equation (B.15) also in the form
\begin{equation}
\langle e^{-\beta \Delta U} \rangle \approx 1 - \frac{1}{2} \langle Q \rangle \Delta \beta.
\end{equation}
Since $\langle Q \rangle > 0$, and $\Delta \beta < 0$, we find that $\langle e^{-\beta \Delta U} \rangle > 1$ in the case of an overheated island.

Appendix C. Derivation of equation (8) of the main text

Now we consider a back-and-forth gate trajectory as in the main text. We make use of equation (B.16)
\begin{equation}
\langle e^{-\beta \Delta U} \rangle \approx 1 - \frac{1}{2} \langle Q \rangle \Delta \beta
\end{equation}
to prove that JE is not satisfied. Here $\beta = 1/k_B T$, where T is the bath temperature. We consider a simple trajectory, which consists of a linear n_g: 0 \rightarrow 1 sweep followed immediately by a similar but opposite sweep n_g: 1 \rightarrow 0. We make the simplifying assumption that in each half-period, one electron tunnels in the preferred direction. We also assume that when heat is released in the island, it adjusts its temperature instantaneously, but the relaxation rate of heat to environment is much longer than the duration of the sweep. In this sweep, lasting over a period $2\tau = \tau + \tau$, we may then write.
the average as
\[
\langle e^{-\beta(W-\Delta F)} \rangle = \int_{-\infty}^{\infty} dE \int_{0}^{2\tau} d\tau_1 \int_{0}^{\tau} d\tau_2 e^{-\beta[\Delta U(\tau_1) - \Delta U(\tau_2)]} e^{-\int_{0}^{\tau_1} \Gamma_{+}(\Delta U(\tau'), T_0) d\tau'} \gamma_+(E, \tau_1) \\
\times e^{-\int_{\tau_1}^{\tau} \Gamma_{-}(\Delta U(\tau'), T(E)) d\tau'} \Gamma_{-}(\Delta U(\tau_2), T(E)). \tag{C.2}
\]

Unlike in appendices A and B, we have dropped in the integrals the probability of the second transition, since we explicitly assume that only one transition occurs in each leg. Here, \(\Gamma_{\pm}(\Delta U(t), T') \) are the tunneling rates into/out of the island when the island has temperature \(T' \), and
\[
\gamma_+(E, \tau_1) = \frac{1}{e^{2R_T}} f(E - \Delta U(\tau_1), \beta)[1 - f(E, \beta)] \tag{C.3}
\]
is the corresponding equilibrium transition rate density of \(\Gamma_+ \) at energy \(E \). The expression in equation (C.2) assumes that the system starts in equilibrium (temperature \(T \)), and the tunneling event in the first leg influences the temperature via \(T(E) = T + \Delta T(E) \), and therefore the tunneling probability out from the box in the second half of the cycle. We assume that
\[
\Delta T(E) = \frac{E}{C}, \tag{C.4}
\]
i.e. the increase of temperature is proportional to the energy \(E \) deposited on the island, and \(C \) is the heat capacity. Since
\[
\Gamma_{-}(\Delta U, T') = \frac{1}{e^{2R_T}} \int dE f(E, \beta')[1 - f(E - \Delta U, \beta)] \\
= \frac{1}{e^{2R_T}} \int dE f(E + \Delta U, \beta)[1 - f(E, \beta')]) = \Gamma_{+}(-\Delta U, T') \tag{C.5}
\]
always, we may write formally equation (C.2) as averaging over two \(n_g : 0 \rightarrow 1 \) sweeps at the two different temperatures as
\[
\langle e^{-\beta(W-\Delta F)} \rangle = \int_{-\infty}^{\infty} dE \int_{0}^{\tau} d\tau_1 e^{-\beta\Delta U(\tau_1)} e^{-\int_{0}^{\tau_1} \Gamma_{+}(\Delta U(\tau'), T) d\tau'} \gamma_+(E, \tau_1) \\
\times \int_{0}^{\tau} d\tau_2 e^{-\beta\Delta U(\tau_2)} e^{-\int_{\tau_1}^{\tau_2} \Gamma_{+}(\Delta U(\tau'), T(E)) d\tau'} \Gamma_{+}(\Delta U(\tau_2), T(E)). \tag{C.6}
\]
Here the second line is the average of equation (C.1) with \(\Delta \beta = -\Delta T(E)/(k_B T^2) \). Thus we may write equation (C.6) as
\[
\langle e^{-\beta(W-\Delta F)} \rangle \approx \int_{-\infty}^{\infty} dE \int_{0}^{\tau} d\tau_1 e^{-\beta\Delta U(\tau_1)} e^{-\int_{0}^{\tau_1} \Gamma_{+}(\Delta U(\tau'), T) d\tau'} \gamma_+(E, \tau_1) \left(1 + \frac{k_B}{2} \frac{\beta^2(Q)}{C} E\right) \\
= \int_{0}^{\tau} d\tau_1 e^{-\beta\Delta U(\tau_1)} e^{-\int_{0}^{\tau} \Gamma_{+}(\Delta U(\tau'), T) d\tau'} \Gamma_{+}(\Delta U(\tau_1), T) \\
+ \frac{k_B}{2} \frac{\beta^2(Q)}{C} \int_{0}^{\tau} d\tau_1 e^{-\beta\Delta U(\tau_1)} e^{-\int_{0}^{\tau} \Gamma_{+}(\Delta U(\tau'), T) d\tau'} \\
\times \left[\int_{-\infty}^{\infty} dE E f(E - \Delta U(\tau_1), T)[1 - f(E, T)] \right] = 1 + \frac{k_B}{4} \frac{\beta^2(Q)}{C} (\Delta U)_R. \tag{C.7}
\]
Here, $\langle \Delta U \rangle_R = -\langle Q \rangle$ is the average value of ΔU in the reverse trajectory, and finally
\[
\langle e^{-\beta(W-\Delta F)} \rangle \simeq 1 - \frac{k_B}{4C} \beta^2 \langle Q \rangle^2.
\] (C.8)

References

[1] Bochkov G N and Kuzovlev Yu E, Non-linear fluctuation -dissipation relations and stochastic models in non-equilibrium thermodynamics. I. Generalized fluctuation -dissipation theorem, 1981 Physica A 106 443
[2] Jarzynski C, Nonequilibrium equality for free energy differences, 1997 Phys. Rev. Lett. 78 2690
[3] Crooks G E, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, 1999 Phys. Rev. E 60 2721
[4] Crooks G E, Path-ensemble averages in systems driven far from equilibrium, 2000 Phys. Rev. E 61 2361
[5] Jarzynski C, Nonequilibrium work relations: foundations and applications, 2008 Eur. Phys. J. B 64 331
[6] Campisi M, Hänggi P and Talkner P, Colloquium: quantum fluctuation relations: foundations and applications, 2011 Rev. Mod. Phys. 83 771
[7] Alemay A and Ritort F, Fluctuation theorems in small systems: extending thermodynamics to the nanoscale, 2010 Europhys. News 41 27
[8] Seifert U, Entropy production along a stochastic trajectory and an integral fluctuation theorem, 2005 Phys. Rev. Lett. 95 040602
[9] Averin D V and Likharev K K, Coulomb blockade of tunneling, and coherent oscillations in small tunnel junctions, 1986 J. Low Temp. Phys. 62 345
[10] Averin D V and Pekola J P, Statistics of the dissipated energy in driven single-electron transitions, 2011 Europhys. Lett. 96 67004
[11] Saira O-P, Yoon Y, Tanttu T, Möttönen M, Averin D V and Pekola J P, Test of the Jarzynski and Crooks fluctuation relations in an electronic system, 2012 Phys. Rev. Lett. 109 180601
[12] Pekola J P and Saira O-P, Work, free energy and dissipation in voltage driven single-electron transitions, 2012 J. Low Temp. Phys. 169 70
[13] Böttiker M, Zero-current persistent potential drop across small-capacitance Josephson junctions, 1987 Phys. Rev. B 36 3548
[14] Lafarge P, Pothier H, Williams E R, Esteve D, Urbina C and Devoret M H, Direct observation of macroscopic charge quantization, 1991 Z. Phys. B 85 327
[15] Jarzynski C, Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale, 2011 Annu. Rev. Condens. Matter Phys. 2 329
[16] Pothier H, Guérorn S, Birge N O, Esteve D and Devoret M H, Energy distribution function of quasiparticles in mesoscopic wires, 1997 Phys. Rev. Lett. 79 3490
[17] Saira O-P, Möttönen M, Maisi V F and Pekola J P, Environmentally activated tunneling events in a hybrid single-electron box, 2010 Phys. Rev. B 82 155443
[18] Jarzynski C, Comparison of far-from-equilibrium work relations, 2007 C. R. Physique 8 495
[19] Vilar J M and Rubi J M, Failure of the work-Hamiltonian connection for free-energy calculations, 2008 Phys. Rev. Lett. 100 020601 and the following discussion
[20] Utsumi Y, Golubev D S, Marthaler M, Saito K, Fujisawa T and Schön G, Bidirectional single-electron counting and the fluctuation theorem, 2010 Phys. Rev. B 81 125331
[21] Künk B, Rößler C, Beck M, Marthaler M, Golubev D S, Utsumi Y, Ihn T and Ensslin K, Irreversibility on the level of single-electron tunneling, 2012 Phys. Rev. X 2 011001

doi:10.1088/1742-5468/2013/02/P02033 14