Title
MicroRNA-762 is upregulated in human corneal epithelial cells in response to tear fluid and Pseudomonas aeruginosa antigens and negatively regulates the expression of host defense genes encoding RNase7 and ST2.

Permalink
https://escholarship.org/uc/item/6nt6j1ck

Journal
PLoS One, 8(2)

Authors
Mun, James
Tam, Connie
Chan, Gary
et al.

Publication Date
2013

DOI
10.1371/journal.pone.0057850

Peer reviewed
MicroRNA-762 Is Upregulated in Human Corneal Epithelial Cells in Response to Tear Fluid and Pseudomonas aeruginosa Antigens and Negatively Regulates the Expression of Host Defense Genes Encoding RNase7 and ST2

James Mun¹,², Connie Tam¹, Gary Chan³, Jong Hun Kim⁴, David Evans¹,⁵, Suzanne Fleiszig¹,²,⁶

¹ School of Optometry, University of California, Berkeley, California, United States of America, ² Vision Science Program, University of California, Berkeley, California, United States of America, ³ Program in Bioengineering, University of California, Berkeley, California, United States of America, ⁴ Program in Molecular and Cell Biology, University of California, Berkeley, California, United States of America, ⁵ College of Pharmacy, Touro University California, Vallejo, California, United States of America, ⁶ Graduate Groups in Microbiology and Infectious Disease, University of California, Berkeley, California, United States of America

Abstract

Mucosal surfaces regulate defenses against infection and excessive inflammation. We previously showed that human tears upregulated epithelial expression of genes encoding RNase7 and ST2, which inhibited Pseudomonas aeruginosa invasion of human corneal epithelial cells. Here, microRNA microarrays were used to show that a combination of tear fluid exposure (16 h) then P. aeruginosa antigens (3 h) upregulated miR-762 and miR-1207, and down-regulated miR-92 and let-7b (all > 2-fold) in human corneal epithelial cells compared to P. aeruginosa antigens alone. RT-PCR confirmed miR-762 upregulation ~3-fold in tear-antigen exposed cells. Without tears or antigens, an antagonist reduced miR-762 expression relative to scrambled controls by ~50%, increased expression of genes encoding RNase7 (~80%), ST2 (~58%) and Rab5a (~75%), without affecting P. aeruginosa internalization. However, P. aeruginosa infection was increased > 3-fold by a miR-762 mimic which reduced RNase7 and ST2 gene expression. Tear fluid alone also induced miR-762 expression ~ 4-fold, which was reduced by the miR-762 antagonist. Combination of tear fluid and miR-762 antagonist increased RNase7 and ST2 gene expression. These data show that mucosal fluids, such as tears, can modulate epithelial microRNA expression to regulate innate defense genes, and that miR-762 negatively regulates RNase7, ST2 and Rab5a genes. Since RNase7 and ST2 inhibit P. aeruginosa internalization, and are upregulated by tear fluid, other tear-induced mechanisms must counteract inhibitory effects of miR-762 to regulate resistance to bacteria. These data also suggest a complex relationship between tear induction of miR-762, its modulation of innate defense genes, and P. aeruginosa internalization.

Introduction

Many mucosal epithelia in humans and animals have evolved to co-exist with a rich and complex microbiota, but have also retained the ability to respond to potential pathogens, and regulate inflammatory responses to avoid tissue damage and disease [1–4]. All of these mucosal epithelial surfaces are bathed in fluids, and yet little is known about how these fluids influence epithelial regulation of innate defense and inflammation.

Like many other tissues surfaces, e.g. airways, gastrointestinal and urogenital tracts, the ocular surface is bathed in a surface liquid, the tear film. We have shown that tear fluid protects ocular surface epithelial cells against bacterial virulence mechanisms in vitro [5,6] and in vivo [6], and that in vitro protection can be independent of direct antimicrobial activity [5,7,8]. Indeed, we recently showed that tear fluid can directly stimulate epithelial cells in vitro to enhance their resistance to bacterial virulence mechanisms. Correspondingly, tear fluid enhanced activation of NFkB and AP-1 transcription factors in response to bacterial antigens, and upregulated epithelial-derived innate defense genes. The latter included genes encoding RNase7 and ST2, both of which reduced bacterial internalization by corneal epithelial cells [9]. RNase7 is a potent antimicrobial peptide, active against a broad range of bacterial pathogens, that was originally identified from the stitatum corneum of human skin [10]. Keratinocytes are the major source of this secreted innate defense protein in human skin [10]. RNase7 has been shown to be present in other epithelia in different organ systems including the respiratory, urinary and gastrointestinal tracts, and the eye (cornea) [10–13]. While RNase7 is constitutively expressed in these tissues, it can also be
MicroRNA-762 and Host Defense Gene Expression

upregulated in response to various stimuli including proinflammatory cytokines (e.g. IL-1β) and microbial antigens [9,10,13]. ST2, on the other hand, has been shown to have an immunomodulatory role in innate defense, e.g. negative regulation of IL-1 receptor and TLR-4 receptor signaling [14,15]. ST2 is constitutively expressed in the corneal epithelium, and its immunomodulatory role is important for resolution of P. aeruginosa corneal infections in murine models by promoting Th2-mediated immune responses [16,17].

The aim of the present study was to further elucidate the mechanisms by which tear fluid modulates epithelial cell susceptibility to P. aeruginosa internalization, and the relationship to RNase7 and ST2 gene expression. Since epithelial cells become exposed to tear fluid when they reach the ocular surface through a process of exfoliation, the induction of resistance to microbes would need to be rapid. The hypothesis tested was that tear fluid effects on epithelial cells involve the induction of microRNA expression to modify innate defense gene responses to bacterial challenge.

MicroRNAs are small, 20- to 24 nucleotide, noncoding RNAs found in diverse organisms, which bind partially to the 3' UTR of their target mRNA to post-transcriptionally silence the target gene [18,19]. These endogenous, silencing RNAs play important roles in cell and tissue development and differentiation [20,21], cell signaling and migration [22,23], cellular stress responses [24], and resistance to bacterial virulence via gene suppression [25]. Moreover, microRNAs have been shown to play a role in modulating expression of innate defense genes including Toll-like receptors, their adaptor proteins, downstream signaling pathways, and transcription factors [26].

Since numerous microRNAs are expressed at the ocular surface [27], microarray analysis was performed to determine which microRNAs (miRs) were differentially regulated in corneal epithelial cells by bacterial antigens with and without tear fluid exposure. The results showed a selective and specific up- and down-regulation of four types of miR in tear fluid treated cells, of which miR-762 showed the greatest upregulation. A combination of antagonir [28] and microRNA mimic was then used to show that tear-induced miR-762 negatively regulates RNase7 and ST2 gene expression in corneal epithelial cells. Since expression of these two factors, which inhibit bacterial internalization, is also upregulated by tears, the data suggest that other tear-induced mechanisms must antagonize the inhibitory effects of miR-762 in regulating epithelial resistance to bacterial challenge.

Materials and Methods

Ethics statement

Reflex tear fluid was collected from the lower conjunctival sac of healthy human volunteers who had not worn contact lenses for at least three days using microcapillary tubes, as previously described [6]. Tears from 3 different subjects were pooled and stored at -80°C in aliquots.

Preparation of bacteria and bacterial antigens

P. aeruginosa clinical isolate 6294 was used for invasion assays [5]. All bacteria were grown on tryptic soy agar (TSA) plates overnight at 37°C. Bacteria were suspended in basal cell culture media (i.e. serum-free KGM-2 without growth factor “bullet” kit) to a spectrophotometric optical density of ~0.1 at OD650 equivalent to ~1×10⁶ CFU (colony-forming units)/ml, and diluted to ~1×10⁵ CFU/ml for invasion assays. Bacterial antigens of P. aeruginosa strain PA01 were prepared as previously described [30]. Briefly bacteria were grown as single colonies on TSA at 37°C overnight. A single colony was then grown at 37°C overnight with aeration to late-logarithmic phase in 5 ml of tryptic soy broth (TSB). The culture broth was centrifuged at 14,000 rpm (16,000 x g) for 30 min and the supernatant collected in a syringe, sterilized with a 0.22 µm polymer filter (Corning Star Corporation, Cambridge, MA), aliquoted and stored at -80°C until use. Bacterial supernatant (bacterial antigens) was diluted 1:5 with basal cell culture media to stimulate the corneal epithelial cells for experiments.

RNA purification

Total RNA of hTCEpi incubated under different conditions (e.g. pre-exposed to media or tear fluid for 16 h followed by 3 h incubation with P. aeruginosa antigens; transfected with microRNA antagonirs or mimics; exposed to cell culture media or human tear fluid for 6 h) was extracted using the RNeasy Kit (Qiagen, Valencia, CA) with QiaShredder columns used for cell lysis and inserting Qiagen on-column DNase steps to remove contaminating genomic DNA.

RNA target preparation/GeneChip microarray analysis

RNA quality was assessed using RNA pico & small RNA chips on a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). 100 ng of total RNA was processed for use on the microarray using the FlashTag™ HSR labeling kit (Genisphere LLC, Hatfield, PA) according to manufacturer’s protocols. The resultant biotinylated cRNA was hybridized to the GeneChip miRNA Array (Affymetrix). The arrays were washed, stained, and scanned using the Affymetrix Model 450 Fluidics Station and Affymetrix Model 3000 scanner using the manufacturer’s recommended protocols by the University of California Functional Genomics Lab. Expression values were generated using miRNA QC tool software (Affymetrix). Evaluation and normalization of Affymetrix genechip data .Cel files were subjected to the Affymetrix miRNA QC Tool. Expression levels were analyzed on a logarithmic scale. Level changes were determined by dividing the experimental group (tear fluid with bacterial antigens) by the control (media with bacterial antigens). A gene showing differential expression by at least two fold was considered for further study.
Transfection with microRNA antagonim and mimic

The hTCEpi were transfected with scrambled control antagonim/mimic (100 nmol/L) or miR-762 antagonim/mimic using Lipofectamine RNAi Max (Invitrogen, Carlsbad, CA) for 6 h. Cells were used for assays at 48 h after transfection.

Real-Time PCR

1 µg of total purified RNA was converted to cDNA using a RETROscript Kit (Ambion, Austin, TX) to detect mRNA expression levels of RNase7, ST2, Rab5a, hBD-2, and hBD-3 using CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA). Results were normalized to GAPDH. For miR-762, 1 µg of total purified RNA was converted to cDNA using miScript Reverse Transcriptase Mix (Qiagen, Valencia, CA) and miR-762 level determined by real-time PCR and normalized to U6. MiR-762 antagonims, mimics and primers were designed by Qiagen (Valencia, CA).

Invasion assays

The hTCEpi were either pre-exposed to high Ca²⁺ media or human tear fluid for 16 h (for effect of tear fluid pre-exposure experiments), washed with 100 µl of pre-warmed PBS, and 40 µl of 6294 diluted in cell culture media or tear fluid to a concentration of ~1 x 10⁶ CFU/ml was inoculated onto each well (in triplicates) for 3 h at 37°C, 5 % CO₂. The cells were then washed with PBS and incubated with 100 µl of gentamicin (0.4% [vol/vol]; 200 µg/ml; BioWhittaker, Walkersville, MD). After 1 h incubation at 37°C, the cells were lysed in Triton X-100 (0.25% [vol/vol]; LabChem Inc., Pittsburgh, PA) in PBS for 15 minutes. Cells were scraped for complete lysis and bacteria enumerated by viable count using MacConkey agar.

Statistical analysis

Data were expressed as a mean ± SEM (or a mean ± SD for invasion assays) (n = 3 or 4 samples per group) unless otherwise
stated. Student’s t-Test was used to evaluate the statistical significance of differences between two groups, e.g. miR antagomir (or mimic) versus scrambled control. \(P < 0.05 \) was considered significant. Experiments were repeated at least three times.

Results

Tear fluid modulates specific corneal epithelial microRNA responses to bacterial antigens

Microarray analysis was used to compare microRNA expression in human corneal epithelial cells after 16 h exposure to undiluted human tear fluid or cell culture media (control), and 3 h exposure to bacterial antigens (see Methods). Very few corneal epithelial microRNAs were up or down-regulated (2 and 6 probe sets, respectively) by 2-fold or more in tear and bacterial antigen treated cells relative to controls (Fig. 1a). MiR-762 and miR-1207 were both significantly upregulated; miR-92 and let-7b were both significantly downregulated. MiR-762 showed greatest upregulation in tear and bacterial antigen treated cells, which was confirmed by RT-PCR (> 3-fold, Fig. 1b, \(P < 0.05 \), t-Test).

![miR-762 Expression](image1)

![Rab5a Expression](image2)

![Epithelial Cell Invasion](image3)

These microarray data have been deposited in NCBI’s Gene Expression Omnibus [31], and are accessible through GEO Series accession number GSE39341. >(<).

An Antagomir to miR-762 enhances mRNA expression of Rab5a, RNase7, and ST-2, but does not influence bacterial internalization

We have previously shown that tear fluid upregulates epithelial genes encoding RNase7 and ST-2, and that these innate defense factors can protect epithelial cells against bacterial internalization [9]. Since miR-762 was the most profoundly upregulated microRNA by bacterial antigens in tear fluid treated cells (Fig. 1), we tested if miR-762 could influence epithelial expression of genes encoding RNase7 and/or ST-2, and/or affect bacterial internalization. Corneal epithelial cells were transfected with an antagomir to miR-762 (Antago-762) for 48 h under baseline conditions, i.e. without tear fluid or bacterial antigen exposure, to reduce miR-762 expression, and in turn, affect mRNA levels of genes targeted by this microRNA. As expected, Antago-762 effectively reduced epithelial expression of miR-762 at 48 h by

![Transfection of human corneal epithelial cells with an antagomir of miR-762 (antago-762) decreased the expression of miR-762 relative to a control (scrambled) antagomir, and increased the expression of Rab5a mRNA, a predicted target of miR-762](image4)

![Antago-762 also increased the expression of RNase7 and ST-2 mRNA suggesting that miR-762 negatively regulates these innate defense genes. Antago-762 did not affect genes encoding hBD-2 and hBD-3. The antagomir did not affect epithelial susceptibility to P. aeruginosa invasion. Gene expression was measured by real-time PCR, and P. aeruginosa invasion by using gentamicin exclusion assays. In each experiment, cells were used at 48 h after transfection. For invasion assays, epithelia were challenged at 72 h with 10^6 cfu invasive P. aeruginosa strain 6294 for 3 h followed by 1 h gentamicin treatment (see Methods). (* Significant difference vs. respective controls, t-Test).](image5)

\[\text{DOI: 10.1371/journal.pone.0057850.g002} \]
MicroRNA-762 and Host Defense Gene Expression

A mimic of miR-762 reduces expression of genes encoding RNase7 and ST-2, and increases epithelial susceptibility to bacterial invasion

Transfection with an antagomir of miR-762 did not reduce bacterial internalization, even though the suppression of miR-762 increased RNase7 and ST-2 mRNA levels. Therefore, we over-expressed miR-762 by transfection with a miR-762 mimic, and compared mRNA levels of target genes and bacterial internalization compared to a scrambled control. Real-time PCR confirmed successful transfection of miR-762 after 48 h (Fig. 3 a). Over-expression of miR-762 suppressed Rab5a mRNA expression by ~35% although this was not statistically significant (Fig. 3 b, p > 0.05, t-Test). However, miR-762 suppression of RNase7 (by ~30%) and ST-2 (by ~47%) mRNA expression was significant (Fig. 3 c, p < 0.05, t-Test, for each versus respective controls). The miR-762 mimic did not significantly affect mRNA levels of hBD-2 or hBD-3 (Fig. 3 c). The miR-762 mimic increased susceptibility to bacterial internalization by ~3.5-fold (Fig. 3 d, p < 0.05, t-Test).

Tear fluid induction of miR-762 negatively regulates RNase7 and ST2

Having shown tear-antigen upregulation of miR-762, and miR-762 negative regulation of genes encoding RNase7 and ST2 without tears, we next used a miR-762 antagomir to test the relationship between tear exposure, miR-762 induction, and...
RNase7 and ST2 mRNA expression. Corneal epithelial cells were transfected with Antago-762 or an irrelevant antagomir (control), then exposed to cell culture media or tear fluid for 16 h and tested for the expression of endogenous miR-762. Tear fluid alone upregulated the expression of miR-762 (~4-fold), which was partially reduced by the miR-762 antagomir (Fig. 4 a). The reduction in tear-induced miR-762 upregulation in antagomir treated cells versus scrambled controls was significant (p < 0.05, t-Test). In the presence of antagomir, tear fluid induced an even greater expression of RNase7 or ST2 mRNA than that found in the presence of scrambled controls (Fig. 4 b, p < 0.05, t-Test, for each comparison) confirming that miR-762 serves to negatively regulate the expression of these tear-induced innate defense genes.

Discussion

The results of this study show that mucosal fluid can influence epithelial microRNA expression to regulate expression of innate defense genes. Using a model of corneal epithelial cells exposed to natural human tear fluid, we showed that: 1) tear fluid treatment followed by bacterial antigens upregulates miR-762 and miR-1207, and down-regulates miR-92 and let-7b compared to bacterial antigens alone, 2) miR-762 negatively regulates the expression of genes encoding the antimicrobial RNase7, the immunomodulator ST2, and the RhoGTP-binding protein Rab5a, but not the defensins hBD-2 or hBD-3, 3) over-expression of miR-762 suppresses RNase7 and ST2 mRNA levels, and increases bacterial internalization, and 4) tear fluid alone induces miR-762 expression, which negatively regulates genes encoding RNase7 and ST2. Since both RNase7 and ST2 can protect against bacterial invasion [9], and like miR-762, are upregulated by tear fluid, these data suggest that tear induction of miR-762 helps counter over-expression of specific innate immune factors, and that other tear-induced factors antagonize or counteract miR-762 in regulating epithelial cell defenses against bacterial challenge.

This study focused on miR-762, the microRNA that showed the greatest change (either up- or down-regulated) in the microarray analysis (>3-fold upregulation when verified by RT-PCR), and
which was upregulated ~ 4-fold by tear fluid alone. While little is known about miR-762, it is upregulated in animal models of diabetic nephropathy [34] and oral carcinoma [35]. MR-762 has been found ubiquitously distributed in murine ocular tissues [36]. Its capacity to negatively regulate at least two different types of innate defense, RNase7 and ST2, suggests a role in regulation of ocular innate defense in response to infection that might also occur at other mucosal surfaces. That role would be consistent with previously documented roles for other microRNAs in this regard, e.g. the modulation of TLR responses from the level of receptors, to downstream signaling, to cytokine expression [26,37]. Further studies are needed to determine the how tear fluid upregulates miR-762, the influence of microbial antigens in that regard, and if negative regulation of RNase7 and ST2 genes involves direct effects or an intermediate factor(s). The latter possibility may be more likely since analysis using microRNA.org did not predict that RNase7 or ST2 would be direct targets of miR-762. The significance of miR-762 in influencing the pathophysiology of ocular (or epithelial) diseases involving altered exposure to tear (or mucosal) fluid also warrants further investigation.

Suppression of RNase7 and ST2 expression, by over-expressing miR-762 with a microRNA mimic, corresponded with increased bacterial internalization (≥ 3-fold). This observation was consistent with our previous findings that tear fluid induces the expression of genes encoding RNase7 and ST2, and siRNA knockdown of those genes increases epithelial cell internalization by *Pseudomonas aeruginosa* [9]. However, in the present study, reduced bacterial internalization did not occur when expression of RNase7 and ST2 was enhanced with a miR-762 antagonist. This might relate to the fact that antagonizing miR-762 also enhanced expression of Rab3a, known to be important for mammalian cell endocytosis and intracellular trafficking [39]. Moreover, it is very likely that miR-762 regulates the expression of numerous other genes some of which might also impact bacterial internalization. Whatever is the explanation for these internalization results, the data suggest that tear-induction of miR-762 does not mediate tear suppression of bacterial internalization, and that other tear-induced cornal epithelial factors (microRNA or otherwise) are responsible for that previously reported observation [9].

Epithelial surfaces play a vital role in innate defense against microbial pathogens, and in many instances, allowing mucosal colonization by commensal microflora. MicroRNAs have emerged as important contributors to the regulation of epithelial innate immunity. This study, and our previous study [9], support the hypothesis that tear fluid is important in regulating ocular innate defenses, and that microRNA induction or repression is involved.

Author Contributions

Conceived and designed the experiments: DE JM CT SF. Performed the experiments: JM GC JHK CT. Analyzed the data: JM CT DE SF. Wrote the paper: DE JM CT SF.

References

1. Hosper LV, Gordon JJ (2001) Communal host-bacterial relationships in the gut. Science 292: 1115–1118.
2. Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK (2010) Host-bacterial symbiosis in health and disease. Adv Immunol 107: 243–274.
3. Barton GM (2008) A calculated response: control of inflammation by the innate immune system. J Clin Invest 118: 413–420.
4. Campbell EL, Serhan CN, Colgan SP (2011) Antimicrobial aspects of immune system. J Clin Invest 118: 413–420.
5. Fleiszig SM, Kwong MS, Evans DJ (2003) Modification of interactions with corneal epithelial cells by human tear fluid. Infect Immun 71: 3866–3874.
6. Kwong MS, Evans DJ, Ni M, Cowell BA, Fleiszig SM (2007) Human tear fluid protects against *Pseudomonas aeruginosa* keratitis in a murine experimental model. Infect Immun 75: 2532–2535.
7. Tiffany JM (2006) The normal tear film. Dev Ophthalmol 41: 1–20.
8. Knop K, Knop N (2007) Anatomy and immunology of the ocular surface. Chem Immunol Allergy 92: 36–49.
9. Mun JJ, Tam C, Evans DJ, Fleiszig SM (2011) Modulation of epithelial immunity by mucosal fluid. Sci Rep 1: 8.
10. Harder J, Schroder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277: 46779–46784.
11. Spencer JD, Schweitzer AL, Diosoario JD, McHugh KM, McGillivray G, et al. (2011) Ribonuclease 7 is a potent antimicrobial peptide within the human urinary tract. Kidney Int 80: 174–180.
12. Kiehnke K, Fincke A, Brunke G, Lange T, Folsch UR, et al. (2007) Antimicrobial peptides in chronic and fistula epithelia. Scand J Gastroenterol 42: 1063–1069.
13. Oti M, Mohammed I, Abedin A, Cao Z, Hopkinson A, et al. (2010) Antimicrobial peptides expression by ocular surface cells in response to *Acanthamoeba castellanii* in an in vitro study. Br J Ophthalmol 94: 1525–1527.
14. Liu PY, Liu H, Xu D (2005) A novel negative regulator for IL-1 receptor and Toll-like receptor 4. Immunol Lett 96: 27–31.
15. Britt EK, Xu D, Liu H, Dunne A, McKenzie AN, et al. (2004) ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endocytosis tolerance. Nat Immunol 5: 373–379.
16. Huang X, Du W, Barrett RP, Hazlett LD (2007) ST2 is essential for Th2 responsiveness and resistance to *Pseudomonas aeruginosa* keratitis. Invest Ophthalmol Vis Sci 48: 4626–4633.
17. Hazlett LD, McClellan SA, Barrett RP, Huang X, Zhang Y, et al. (2010) IL-33 shifts macrophage polarization, promoting resistance against *Pseudomonas aeruginosa* keratitis. Invest Ophthalmol Vis Sci 51: 1524–1532.
18. Ambros V, Lee RC (2004) Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol 263: 131–150.
19. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.
20. Hornstein E, Mansfeldt JH, Yeka S, Hu JK, Harfe BD, et al. (2005) The microRNA mir-196 acts upstream of Hsob1 and Shh in limb development. Nature 430: 671–674.
21. Eau C, Kang X, Peralta E, Hanson E, Marcussen EG, et al. (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279: 52361–52365.
22. Yu J, Peng H, Yuan Q, Fatima A, Genov S, et al. (2010) MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHP2. J Cell Sci 123: 3950–3959.
23. Yu J, Ryan DG, Genov S, Oliveira-Fernandes M, Fatima A, et al. (2008) MicroRNA-181a antagonizes microRNA-203 to maintain SHP2 levels in epithelia. Proc Natl Acad Sci U S A 105: 19300–19305.
24. Leung AK, Sharp PA (2007) microRNAs: a safeguard against tumour Cell 130: 581–585.
25. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, et al. (2006) A plant microRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312: 436–439.
26. O'Neill LA, Shedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11: 163–173.
27. Ryan DG, Oliveira-Fernandes M, Lavker RM (2006) MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Mol Vis 12: 1175–1184.
28. Kutzfeld J, Rajewsky N, Braich R, Rajeev KG, Tuscher T, et al. (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 683–689.
29. Robertson DM, Li L, Fisher S, Pearce VP, Shay JW, et al. (2005) Characterization of growth and differentiation in a telomerase-immortalized human corneal epithelial cell line. Invest Ophthalmol Vis Sci 46: 479–478.
30. Malnseva IA, Fleiszig SM, Evans DJ, Keer S, Sidhu SS, et al. (2007) Exposure of human corneal epithelial cells to contact lenses in vitro suppresses the upregulation of human beta-defensin-2 in response to antigens of *Pseudomonas aeruginosa*. Exp Eye Res 85: 142–153.
31. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210.
32. McNamara NA, Van R, Tuchin OS, Fleiszig SM (1999) Ocular surface epithelia express miRNA for human beta defensin-2. Exp Eye Res 69: 483–490.
33. McDermott AM, Redfern RL, Zhang B, Pei Y, Huang L, et al. (2003) Defensin expression by the cornea: multiple signalling pathways mediate IL-beta stimulation of hBD-2 expression by human corneal epithelial cells. Invest Ophthalmol Vis Sci 44: 1589–1604.
34. Chen YQ, Wang XX, Yao XM, Zhang DL, Yang XF, et al. (2012) Abated expression of microRNA-193 expression protected mesangial cells from apoptosis in early diabetic renal injury in mice. J Nephrol 25: 566–76.
35. Yu T, Wang XY, Gong RG, Li A, Yang S, et al. (2009) The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthracene-induced oral carcinogenesis in Syrian hamster. J Exp Clin Cancer Res 28: 64.
36. Karali M, Peluso I, Gennarino VA, Bilio M, Verde R, et al. (2010) miRNeye: a microRNA expression atlas of the mouse eye. BMC Genomics 11: 715.
37. Quinn SR, O’Neill LA (2011) A trio of microRNAs that control Toll-like receptor signalling. Int Immunol 23: 421–425.
38. Roberts RL, Barbieri MA, Ullrich J, Stahl PD (2000) Dynamics of rab5 activation in endocytosis and phagocytosis. J Leukoc Biol 68: 627–632.