Moderne Schwindeldiagnostik
Current Diagnostic Procedures for Diagnosing Vertigo and Dizziness

1. Einleitung

Das fachübergreifende Symptom „Schwindel“ stellt in der Medizin eine besondere Herausforderung dar [1]. Es ist eines der häufigsten Leitsymptome [2, 3]. Episodischer oder permanenter „Schwindel“ beeinträchtigen die Lebensqualität sowie die Unabhängigkeit und Selbstbestimmung zur Fortbewegung. Die Komplexität der Beeinträchtigungen durch „Schwindel“ hat Auswirkungen auf alle Lebensbereiche. Anhaltende Beschwerden fördern Ängste und können so depressive Entwicklungen begünstigen. Permanenter „Schwindel“ kann ebenfalls zu einer Reduktion der körperlichen Aktivität, zu einem Verlust an sozialen Kontakten bis hin zu einer möglichen Arbeitsunfähigkeit führen. Tre-}

current Diagnostic Procedures for Diagnosing Vertigo and Dizziness
Inhaltsverzeichnis

Zusammenfassung 183
Abstract 183
1. Einleitung 183
2. Diagnostische Grundbegriffe bei „Schwindel“ 185
3. „Schwindel“ und Orientierungssinn 186
4. Diagnostisches Vorgehen bei „Schwindel“ 187
5. Anamnese beim Leitsymptom „Schwindel“ 187
6. Klinische Untersuchung bei Schwindelsyndromen 188
6.1 Orientierende Untersuchungen bei „Schwindel“ 188
6.2 Klinische Untersuchung bei akutem „Schwindel“ 190
6.2.1 fünfstufiges Vorgehen 191
6.2.2 HINTS-Test 191
7. Moderne apparative Untersuchung des vestibulären Systems 191
7.1 Diagnostik des VOR mit dem Videokopfimpulstest 191
7.1.1 Anatomische und physiologische Grundlagen 193
7.1.2 Durchführung und Messbedingungen 193
7.1.3 Bewertung der Ergebnisse 193
7.1.4 Klinischer vs. Videokopfimpulstest 194
7.1.5 Videokopfimpulstest und thermische Prüfung 194
7.1.6 Der Videokopfimpulstest in der Notfallambulanz 195
7.2 Otolithenfunktion: Vestibulär evozierte myogene Potenziale 196
7.2.1 Anatomische und physiologische Grundlagen 196
7.2.2 Zervikale vestibulär evozierte myogene Potenziale 196
7.2.3 Okuläre vestibulär evozierte myogene Potenziale 197
7.2.4 Bewertung der Ergebnisse 197
7.2.5 Modifikationen der VEMP-Diagnostik 197
7.2.6 VEMP in der klinischen Praxis 198
8. Weitere moderne vestibuläre Testverfahren 198
8.1 Dynamische Sehschärfe 198
8.2 Vibrationsinduzierter Nystagmus 198
9. Differenzierte vestibuläre Funktionsanalyse Mithilfe moderner Diagnostik 198
10. Moderne interdisziplinäre Diagnostik bei „Schwindel“ 199
10.1 Endolympatischer Hydrops 199
10.2 Funktionelle Schwindelsyndrome 199
10.3 Vestibuläre Migräne 200
10.4 Vestibularisparoxysmie 200
10.5 Stürze und Gangstörungen im höheren Lebensalter 200
10.6 „Zervikogener Schwindel“ (Störung der Kopf-Körperposition) 200
11. Moderne Diagnostik von „Schwindel“ in der HNO-Begutachtung 201
Literatur 202

FAZIT

„Schwindel“ ist ein subjektives Symptom. Mithilfe moderner diagnostischer Konzepte ist heute mit hoher diagnostischer Sicherheit eine umfassende, objektive Klärung der Frage möglich, ob die Beschwerden vestibulär bedingt sind oder nicht.
2. Diagnostische Grundbegriffe bei „Schwindel“

Im Schrifttum hat sich in den letzten Jahren ein einheitliches Vokabular für Erkrankungen mit dem Leitsymptom „Schwindel“ durchgesetzt. „Schwindel“ hat syndromalen Charakter. „Schwindel“ dominiert subjektiv als Wahrnehmung, tritt aber individuell unterschiedlich, z. B. in Kombination mit vegetativen Begleitscheinungen, einer Störung der Orientierung im Raum, Beeinträchtigungen von Stand (Fallneigung) und Gang (Gangstörungen) sowie psychischen Symptomen auf. Man spricht daher bei Erkrankungen mit dem Leitsymptom „Schwindel“ von „Schwindelsyndromen“ (siehe ICD-10 H81 und H82, Version 2016) [2, 3, 57–59].

Eine Einteilung von Schwindelsyndromen folgt im Wesentlichen topologisch-fachlichen Entstehungssursachen. Entsprechend dem Entstehungsort werden vestibuläre Schwindelsyndrome aus didaktischen Gründen und zur topologischen Einordnung in periphere Schwindelsyndrome (periphere Vestibulopathie) und zentrale Schwindelsyndrome (zentrale Vestibulopathie) unterteilt [3, 59, 60]. Für die psychogene Entstehung und Mitbeteiligung werden, je nach Ursache, unterschiedliche Begriffe in der Fachliteratur (primärer und sekundärer somatoformer „Schwindel“, phobischer Schwindel, chronischer subjektiver „Schwindel“) verwendet [61–64]. In der letzten Zeit gibt es Bemühungen, diese als funktionelle Schwindelsyndrome zusammenzufassen [59, 65]. Internistische Ursachen (z. B. Orthostatische Hypotonie, Synkopen, Herzrhythmusstörungen), bei denen vestibuläre Reflexe nicht ursächlich beteiligt sind, werden unter nicht-vestibulärem „Schwindel“ zusammengefasst [66]. Seiteneinschlagen im augenärztlichen Bereich (z. B. Refraktionsprobleme) werden häufig als „okulärer“ oder „ophthalmologischer Schwindel“ bezeichnet [67]. Kontroversen gibt es um den „zervikalen“ oder „zervikogenen Schwindel“ [68, 69], dessen Existenz im Akutstadium jedoch nicht mehr prinzipiell angezweifelt wird [70].

Die Orientierung an Fachgrenzen spielt im Rahmen der Kompetenzen interdisziplinärer Zusammenarbeit, aber auch im Rahmen der medizinischen Begutachtung eine Rolle. Maßgebend ist die je-weils aktuelle Fassung der Musterweiterbildungsordnung der Bundesärztekammer.

Nach der Zeitdauer der Beschwerden unterscheidet man akute und chronische Schwindelsyndrome. Schwindelsyndrome mit symptomfreien Intervallen werden als episodischer (attackenartiger) „Schwindel“ bezeichnet. Diese können von solchen mit kontinuierlichen Beschwerden (Dauerschwindel) abgegrenzt werden [66, 71].

Die Akutphase mit „Schwindel“ nennt man akutes vestibuläres Syndrom. Für einseitige akute periphere Störungen wurde kürzlich der Begriff „akute einseitige Vestibulopathie“ [72] (z. B. „Neuritis vestibularis“) geprägt. Differenzialdiagnostische Überschneidungen gibt es zum Hirnstamm- und Kleinhirninfarkt (akuter zentraler „Schwindel“), der sich mit nahezu identischen Symptomen einer akuten einseitigen peripher bedingten Vestibulopathie (akute periphere Vestibulopathie) präsentieren kann [3].

Über mehrere Wochen und Monate anhaltende Schwindelsyndrome sind chronischen Schwindelsyndromen zuzuordnen. Ursachen können periphere Vestibulopathien mit einer unzureichenden vestibulären Kompensation sein oder ein funktioneller „Schwindel“. Gangstörungen werden häufig mit „Schwindel“ assoziiert [73, 74]. Die Fortbewegung über das Gehen ist eine selbstverständliche, alltägliche sensomotorisch kontrollierte Leistung, die komplizierte Interaktionen zwischen Motorik, sensorischer Kontrolle und kognitiven Funktionen voraussetzt. Im höheren Lebensalter oder hinsichtlich von Krankheitsbedingungen sind diese sensomotorischen Leistungen häufig beeinträchtigt. Unter altersassozierten Gangstörungen versteht man eine Störung des qualitativen und quantitativen Bewegungsablaufs, eine Reduktion der Geschwindigkeit und mangelhaften Gang-initiation bzw. Kontrolle über das Körpergleichgewicht [73, 74]. Häufige Ursachen stellen sensorische Defizite (bilateraler Vestibulopathie, Polyneuropathie), degenerative Erkrankungen (Morbus Parkinson) oder toxische Einflüsse (Alkohol) dar [73, 74].

In der Vestibularisdiagnostik gibt es ein definiertes Vokabular. Der vestibulokuläre Reflex, die neuronale Verbindung zwischen den Bögen und den Augenmuskel, kann apparativ traditionell mit der thermischen Stimulation der horizontalen Bogengänge (horizontaler VOR, hVOR) analysiert werden, die den niederfrequenten Teilbereich des VOR und die lateralen Bogengänge objektiv erfasst [1, 2]. Der Kopfimpulstest (KIT) reflektiert den vestibulokulären Reflex im hochfrequenten Bereich [37]. Die nichtapparative Testdurchführung ist der klinische KIT. Die apparative Variante bezeichnet man als Videokopfimpulstest (Video-KIT, vKIT,engl. video head impulse test, vHIT) [38, 39]. Hauptbestandteile sind eine sehr leichte Video-brille, die mit einem Computer (Laptop) verbunden ist. Damit lässt sich der VOR objektiv darstellen. Mit dem vKIT kann der VOR aller Bogengänge quantitativ und selektiv analysiert werden. Der vKIT ist die einzige Methode zur objektiven Analyse des VOR der oberen Bogengänge.

Die Aufklärung otolithenbezogener Reflexbahnen hat auch die Otolitotherapie entscheidend für die objektive Diagnostik zugänglich gemacht [23–25]. Sacculocollische und utriculokuläre Reflexe können mithilfe der vestibulären myografie analysiert werden [33, 34]. Die zervikalen Ableitungen (cVEMP) (ca. < 500 µV) in Luftleitung reflektieren die überwiegende Sacculusfunktion bzw. den sacculocollischen Reflex. Oktäre Luftleitungsinduzierte VEMP (oVEMP) (ca. < 20 µV) sind ein Indikator für den überwiegenden Teil des otolith-okulären Reflexes bzw. der Utriculusfunktion [42–45]. Der Anteil der Reflexe bei cVEMP- und oVEMP-Stimulation wurde kürzlich von Covender et al. kalkuliert [75]. Bei dahin gibt es im Schrifttum eine mit Leidenschaft geführte kontroverse Debatte über die oVEMP-Diagnostik [76–79], die damit beendet scheint. Strenggenommen extrapoliert man bei der VEMP-Diagnostik die Otolithenfunktion auf die akustisch sensiven parastriolären Typ-1-Haarzellen von Sacculus und Utriculus, die einen stimulierbaren Frequenzbereich von ca. < 100 bis > 4 kHz besitzen. Die optimale Stimulationsfrequenz in Luftleitung beträgt 500 Hz, diese Frequenz wird gegenwärtig auch hauptsächlich in der Praxis verwendet.

Forschungsergebnisse der letzten Jahre haben gezeigt, dass es praktisch bedeutsame Interaktionen zwischen vestibulären visuellen und somatosensorischen Funktionen gibt. Vestibuläre Funktionen beeinflussen ebenfalls zentrale Vorgänge, wie mentale Prozesse, Raumgedächtnis und Navigation [80–83]. Diese kürzlich im Konzept „höherer vestibulärer Funktionen“ zusammengefassten Abläufe, die sich z. B. bei peripheren Vestibulopathien mit Symptomen einer gestörten multisensorischen Integration äußern können, erfordern u. a. eine detaillierte Analyse kognitiver Funktionen [84]. Daher ist „Schwindel“
3. „Schwindel“ und Orientierungssinn

Um das Problem „Schwindel“ zu verstehen, benötigt der Kliniker u. a. komplexes Wissen über den Orientierungssinn. Ein gesunder menschlicher Organismus ist in der Lage, sich in Ruhe und bei Bewegung räumlich und zeitlich problemlos zu orientieren. Visuelle (Augen), propriozeptive (Haut, Muskeln, Gelenke) und vestibuläre Sinneseingänge sind die „Haupteingänge“ des Orientierungssinnes [8, 37]. Leistungen wie der ungestörte Gang sowie die Stabilisierung der Blickachse unter unterschiedlichen Anforderungen sind im Alltag permanent erforderlich. Dies komplizierte Zusammenspiel der unterschiedlichen Sinnesysteme wird vor allem bei Bewegungen stark beansprucht. Dies erfordert eine ständig freie Aufmerksamkeit, Weiterleitung und Verarbeitung vestibularer, visueller und propriozeptiver Informationen [2, 8, 37].

Die Fortbewegung des Körpers (Navigation) setzt intakte Sinneseingänge (vestibuläre Rezeptoren) und reflektorische Verbindungen (vestibuläre Reflexe), eine ungestörte aufrechte Haltung und Bewegung im Raum (posturale Kontrolle) sowie ein stabiles Abbild auf der Retina (Blickstabilisierung) voraus. Diese grundlegenden Leistungen des Orientierungssinnes benötigen eine intakte Dynamik, die ein sehr breites Frequenzspektrum umfasst, die den Anforderungen im täglichen Leben, als Funktion des Alters, standhält. Zusätzlich sind ergänzende Informationen (z. B. Hörvermögen, Somatosensorik) ein intaktes Herz-Kreislauf-System sowie eine ungestörte Psyche Voraussetzung für die Stabilität der Funktionen [84].

Ist das Zusammenwirken dieser verschiedenen Funktionen beeinträchtigt, entsteht „Schwindel“. Straumann bezeichnet „Schwindel“ aus pathophysiologischer Sicht als eine Störung des Orientierungssinnes, eine gestörte Wahrnehmung der Körperposition im Raum [8].

Nach Bisdorf [91] unterscheidet man unter phänomenologischen Aspekten unterschiedlich Definitionen von „Schwindel“:

- Innerer „Schwindel“: Das Gefühl der Eigenbewegung (Bewegungstumult) des Körpers („engl. vertigo“). Empfindungen wie „Drehen“, „Schwanken“ und „Kippen“.
- Äußerer „Schwindel“: Visuelle Bewegungsempfindungen der Umwelt (Scheinempfindungen, Oszillopsien).
- Benommenheit: Gestörte Wahrnehmung der räumlichen Orientierung ohne Bewegungstumulten (Benommenheit, engl. dizziness).
- Stand- und Gangunsicherheit: Probleme beim Stehen, Gehen und im Sitzen [94].

Im Hinblick auf die Komplexität der zur Verfügung stehenden Testverfahren ist der letzte Zeit eine „frequenzspezifische“ Bewertung der Ergebnisse von Testverfahren des VOR in den Vordergrund gerückt. Es ist bekannt, dass der Orientierungssinn mit Signalen aus unterschiedlichen Frequenzbereichen „arbeitet“, um die außerdentlich hohe Flexibilität vor allem für Bewegungsreize störungsfrei zu garantieren. Die zielgerichtete Bewegung im Raum (Navigation) erfordert niederkomplizierte Signale. Höherfrequente Signale werden beim Gehen und schnellen Laufen benötigt (ca. 3–5 Hz). Eine ungeübte Orientierung setzt voraus, dass stationäre oder bewegte Blickzüge visuell fixiert oder verfolgt werden können, auch wenn Eigenbewegungen des Körpers (Kopfbewegungen und Erschütterungen) aufgetreten (Frequenzen bis 10 kHz). Zudem müssen Entfernungen korrigiert werden. Während dieser Leistungen und Korrekturen muss permanent ein scharfes Abbild auf der Retina garantiert sein [8, 37].

Dazu tragen vor allem die Systeme der Augenbewegung (Blickfolge-, sakkadisches System, Vergenzsystem) und der VOR bei [38, 39]. Aufgrund der kurzen Latenzzeit des VOR (ca. 7–10 ms) und seiner hohen dynamischen Eigenschaften spielt der VOR bei der Blickstabilisierung eine tragende Rolle. Physiologisch weniger bedeutsam niedrigerfrequente Frequenzbereiche für die alltägliche Funktion des VOR aber funktionsdiagnostisch wichtige Aspekte werden mit der thermischen Prüfung erfasst. Mittel- und hochfrequente Eigenschaften des VOR reflektieren rotatorische Testverfahren bzw. der Videokopfimpulstest. Das Verständnis dieser Zusammenhänge ist für die Interpretation der Testergebnisse bei Störungen des Orientierungssinnes von entscheidender Bedeutung [37–39].
4. Diagnostisches Vorgehen bei „Schwindel“

Der diagnostische Prozess des unspezifischen Symptoms „Schwindel“ beruht auf Erkenntnisgewinn und spielt sich in einem fortlaufenden Erkenntnisprozess ab. Er basiert auf Informationen aus der Krankengeschichte (Anamnese), klinischen (orientierende Untersuchungen mit qualitativem Ergebnis) und apparativen Untersuchungen (Quantifizierung mit Orientierung an Referenzbereichen). Hinzu kommen ggf. und fachübergreifende Informationen. Dieser Prozess orientiert sich an den medizinischen Standards. Die am Ende dieses Prozesses stehende Gesamtbewertung (Diagnose) wird in der Schwindeldiagnostik häufig nach dem Grad der Gewissheit mit Be- griffen wie „gesichert“, „wahrscheinlich“ oder „möglich“ graduert bewertet. Üblich ist auch die Bezeichnung „Verdacht auf“, „Aus- schluss von“ oder „Gesichert“.

Bei Schwindelsyndromen ist es empfehlenswert, die erwähnten aktuellen Klassifikationen heranzuziehen [85–91]. So ist die bloße „Möglichkeit“ einer Diagnose (z. B. möglicher Morbus Menière) als Variante der Wirklichkeit einer niedrigen Wahrscheinlichkeit zuzuordnen. Die Bárány-Society für Neurootologie hat den Begriff des möglichen Morbus Menière, der in der Klassifikation der American Academy noch existierte, daher (möglicherweise) gerade wegen der niedrigen Diagnosewahr- scheinlichkeit in ihrer neuen Fassung nicht mehr aufgegriffen [86, 87]. Ein eindeutiger Morbus Menière hingegen spricht für eine hohe Wahrscheinlichkeit. Diese Diagnosewahr- scheinlichkeit für Schwindelsyndrome hat Bedeutung für die Empfehlung und Einleitung einer Therapie und deren Erfolg. Schwindelsyndrome, die nicht die Kriterien aktueller Klassifikationen erfüllen, werden in der wissenschaftlichen Literatur häufig mit dem Begriff „atypisch“ umschrieben. Das ist Ausdruck einer Unsicherheit bzw. einer neuen, noch nicht klassifizierten Entität. Obwohl die Klassifika- tionen vorwiegend auf anamnestischen Angaben basieren, sind klinische Untersuchungen unverzichtbar. Diese tragen dazu bei, Stö- rungen festzustellen oder auszuschließen.

Moderne Vestibularisdiagnostik ist heute in der Lage, objektive Informationen zu liefern. Die im wahrsten Sinne des Wortes „augenschei- nliche Beziehung zwischen Symptomen und Diagnosen“, wie sie von den Philosophen Fangerau und Martin als „Grad der höchsten Überzeugung“ bezeichnet wird [95], lässt sich heute mit moderner Schwindeldiagnostik realisieren: Moderne Systeme der Augen- bewegungsanalyse verfügen über Videodokumentationssysteme und Möglichkeiten der optischen Darstellung, mit denen sich der Untersuchungsablauf in einem Zeitenfasser reproduzierbar darstel- len lässt. Diese objektiven Informationen (auch als Video) sind ein schlagkräftiges „Beweismittel“ und haben einen hohen Überzeu- gungsgrad.

Referenzbereiche sind in der apparativen Vestibularisdiagnostik das „Maß“ für die Bewertung diagnostischer Ergebnisse und das Kri- terium für die Einschätzung „normal“ bzw. „pathologisch“. Die Behandlung von Erkrankungen, aber auch die Einschätzung im Rahmen der HNO-Begutachtung beruht auf den Ergebnissen diagnostischer Untersuchungen.

Der relativ unscharfe Begriff „Goldstandard“ bezeichnet die nach dem aktuellen Kenntnisstand und den Ergebnissen der evidenz- basierten Medizin „beste“ diagnostische Methode, an der sich mo- derne Methoden messen müssen. In den letzten Jahren ist im Rah- men der Entwicklung des Videokopfimpulstests bspw. die Frage auf- getaucht, ob dieser einen „Ersatz“ für die thermische Prüfung (den bishierigen „Goldstandard“ bei der Analyse des hVOR) darstellt oder ggf. andere Funktionen erfasst werden. Die moderne Diagnostik des Morbus Menière mittels intratympanaler Gadoliniumapplikation stellt nach bisherigen Untersuchungen eine „Konkurrenz“ für die bis- herige Objektivierung eines endolympathischen Hydrops mit der Elektrocochleografie dar.

Nicht immer ist das diagnostische Vorgehen bei „Schwindel“ kompliziert. In vielen Fällen können bereits durch eine gezielte Befragung spezifische diagnostische Schritte abgeleitet werden, um eine individuelle Therapie zu planen.

5. Anamnese beim Leitsymptom „Schwindel“

Moderne Schwindeldiagnostik beginnt immer mit einer strukturierten Anamnese. Die Anamnese ist ein wichtiger Mosaikstein bei der Diagnosestellung. Sie vermittelt dem Arzt u. a. Informationen über die Art und Dringlichkeit der Beschwerden, die Gesamtbeteiligung sowie das soziale und berufliche Umfeld des Patienten. Ziel der Schwindeldiagnostik ist eine zügige Abklärung der Beschwerden mit Aufklärung des Patienten, um die Folgen einer gestörten Gleichgewichtsfunktion wie Ängste, sekundäre somatoforme Störungen, depressive Entwicklungen, soziale Isolation und längere Arbeitsunfähigkeit durch eine frühe Einleitung von Therapien zu vermeiden.

Aus Sicht der Patienten wird das Symptom individuell unter- schiedlich, aber prinzipiell ähnlich interpretiert. Für den Arzt erge- ben sich aufgrund der vielseitigen und unspezifischen Symptomatik nicht selten Schwierigkeiten. Zur Erfassung von anamnestischen Informationen bei „Schwindel“ hat sich eine analytische Vorgehens- weise mit folgenden Grundelementen und in der angegebenen Reihenfolge bewährt [66, 71, 94].

Die Erfassung der Dringlichkeit und der Ausschluss einer gravieren- den Komplikation (Schlaganfall, Synkopen) hat Priorität (Tab. 1). Bei permanenten, chronischen Schwindelbeschwerden stellt sich für den HNO-Arzt die Frage, ob die Beschwerden mit einem objektivierbaren vestibulären Defizit einhergehen oder nicht. Da moderne Diagnostik die Chance bietet, die sensorischen vestibulären Funktionen und Reflexwege umfassend zu analysieren (Tab. 2), können Beschwerden gegenwärtig mit hoher diagnostischer Sicherheit einer objektiven Störung zugeordnet oder bei Fehlen von Hinweisen Stö- rungen der peripheren Funktionen ausgeschlossen werden. Häufige Ursachen bei chronischen Beschwerden sind unzureichend vestibulär kompensierte akute einseitige Vestibulopathien, primäre oder sekundäre somatoforme Störungen bzw. ein funktioneller „Schwindel“.

Walther LE. Moderne Schwindeldiagnostik. Laryngo-Rhino-Otol 2017; 96: S183–S208
Episodisch auftretender „Schwindel“ ist durch unvermittelte oder sich mit einer Aura andeutende „Schwindel“-Attacken von Sekunden über Stunden bis Tage gekennzeichnet. Die differenzialdiagnostische Zuordnung kann Schwierigkeiten bereiten. Für die Einordnung nehmen die Zeitdauer der Schwindelattacken und Begleitsymptome (Lagerungsabhängigkeit, Kopfschmerzen, Hörstörungen) eine Schlüsselstellung ein. Lassen sich keine objektiven Symptome nachweisen, ist eine internistische und neurologische Konsiliaruntersuchung sinnvoll. Zu berücksichtigen ist auch, dass in der klinischen Praxis auch Komorbiditäten auftreten können. So tritt eine vestibuläre Migräne auch konkomitierend mit einem Morbus Menière und anderen peripheren Vestibulopathien auf. U. a. beim Morbus Menière sind psychische Komorbiditäten häufig.[96–100]. Die konsiliarische psychologische und psychiatrische Mitbehandlung ist in Deutschland diesbezüglich unterrepräsentiert.

Die diagnostische Konstellation von Schwindelsyndromen unterscheidet sich in Abhängigkeit vom Lebensalter. Im höheren Lebensalter zählt „Schwindel“ (z. B. benigner paroxysmaler Lagerungsschwindel, Gangstörungen, Herzrhythmusstörungen, multiakausal und multirsensorischer „Schwindel“) zu den häufigsten Beschwerden. Die Diagnosekonstellation im Kindes- und Jugendalter beinhaltet seltener anzutreffende Schwindelformen, wie z. B. die vestibuläre die funktionellen „Schwindel“ oder eine orthostatische Dysregulation). Bei einem multisensorischen „Schwindel“ tritt eine Beeinträchtigung von mehreren (mindestens 2) Bestandteilen des Orientierungssinnes auf. Bei einem multikausalen „Schwindel“ sind Komorbiditäten (internistische, neurologische Erkrankungen) vorhanden. Die anamnestische Erfassung von Stürzen oder Beinahestürzen sollte in der Anamnese berücksichtigt werden. „Schwindel“ ist ein wichtiger Risikofaktor für Stürze im höheren Lebensalter. Bei mehr als 3 Sturzrisikofaktoren ist statistisch mit einem erhöhten Sturzzrisko zu rechnen.[5]. Die Evaluierung des Medikationsplanes nimmt bei „Schwindel“ auch im Hinblick auf die Sturzgefahr eine Schlüsselrolle ein. „Schwindel“ und Stürze werden besonders häufig bei der Einnahme von Klasse-1A-Antiarrhythmika, Antihypertensiva und psychotropen Pharmaka beschrieben. Ursachen von „Schwindel“ und Stürzen (sog. FRID, engl. fall risc increasing drugs) können häufig auch Nebenwirkungen oder Interaktionen (kardiotoxische Effekte mit orthostatischer bzw. bradykarder Reaktion) sein.[101–104]. Im täglichen Handeln sollte auch die aktuelle PRISCUS-Liste (Potenziell inadäquate Medikation für ältere Menschen) berücksichtigt werden.[105]. Tritt im Rahmen einer Schwindelepisode eine Sturz- und Fallneigung auf, empfiehlt es sich auch zu klären, ob eine Bewusstseinsstörung vorliegt. Eine Synkope (z. B. Reflexsynkope, orthostatische Hypotension, kardiale Synkope) ist eine unvermittelt einsetzende, reversible Bewusstlosigkeit, die mit einem Verlust der Haltungskontrolle einhergeht. Synkopen gehen selten mit der Gefahr einen plötzlichen Herztones einher. Demgegenüber bleibt das Bewusstsein bei lokomotorisch bedingten Stürzen erhalten. Auch Stürze im Rahmen der sogenannten „Tumarkin-Otolithenkrise“ („vestibular drop attacks“) erfolgen bei Bewusstsein.[101–104].

Evaluierete deutschsprachige psychometrische Tests (z. B. Dizziness handicap inventory, DHI) erleichtern die Einordnung der Beschwerden ebenfalls.[106, 107]. Für die Zuordnung der Beschwerden eignet sich außerdem ein vom Patienten angefertigtes „Schwindeltagebuch“. Aufarbeitung der Informationen aus der Anamnese trägt dazu bei, weitere Diagnostik gezielt zu planen. Im Anschluss an die Anamnese folgt bei pathognomonischen Hinweisen eine zielgerichtete Untersuchung (z. B. Lagerungsmanöver beim gutartigen Lagerungsschwindel). Im Rahmen der weiteren Differenzierung wird eine orientierende körperliche Untersuchung des vestibulären und okulomotorischen Systems empfohlen.

Fazit

„Schwindel“ sollte im Rahmen der Anamnese analysiert aufgearbeitet werden. Das weitere diagnostische Vorgehen (klinische Untersuchung) kann damit strukturiert werden. Priorität hat die Abklärung des akuten „Schwindels“.

6. Klinische Untersuchung bei Schwindelsyndromen

6.1 Orientierende Untersuchungen bei „Schwindel“

Neben den häufigen klassischen Schwindelsyndromen (z. B. benigner paroxysmaler Lagerungsschwindel, Neuritis vestibularis, Morbus Menière) mit „Schwindel“ als Leitsymptom [2, 3] ist der HNO-Arzt jedoch auch täglich mit einer Vielzahl weiterer Erkrankungen mit dem Primär- oder Begleitsymptom „Schwindel“ konfrontiert, die nicht in publizierten Statistiken erscheinen. Dazu zählen Hörstörungen, durch festes Cerumen okkludierte Gehorgänge, Tubenfunktionsstörungen, bakterielle (Otitis media acuta) und virale Infektionen (z. B. Gripppeotitis, Zoster oticus, Mumps Virusinfektion) mit labyrinthärer Beteiligung, verletzungsbedingte Störungen (z. B. Barotrauma, Otobasisfraktur, Labyrinthkontusion, Trommelfellschädigung), chronisch entzündliche Knochenprozesse (z. B. Chronische epitympanale Otitis media) und „Schwindel“ nach chirurgischen Eingriffen (z. B. offene Mastoidhöhle, Stapedotomie, Tympanoplastik, Cochleaimplantation) usw.[1, 55, 69]. Daher sollte die HNO-ärztliche Untersuchung beim Symptom „Schwindel“ mit einer ohrmikroskopischen Untersuchung beginnen. Sie ist im interdisziplinären Kontext der Abklärung „Schwindel“ von zentraler Bedeutung, vor allem wenn „Ohrsymptome“ (z. B. Tinnitus, Ohrhörung, Otalgie, Hörstörungen) vorhanden sind.

Orientierende Untersuchungen dienen in Ergänzung zur Anamnese der weiteren Eingrenzung von „Schwindel“. Dabei wird ohne aufwändige apparative Hilfe nach qualitativen Symptomen von Störungen der Sinneseingänge des Orientierungssinnes gesucht. Untersuchung von Stand und Gang, die Analyse von Augenbewegungsstörungen, Nystagmus und der Okulomotorik stehen im Vordergrund [2, 57, 59, 69].

Steh- und Gehversuche (Romberg-Versuch, Unterberger-Tretversuch) mit offenen und geschlossenen Augen, unter verschärften Bedingungen (Tandem-Romberg, Einbeinstand) sind unspezifisch, geben jedoch Aufschluss über Probleme beim Stand und Gang. Zeigeversuchen (Finger-Nase-Test, Finger-Folge-Test) prüfen die Koordination [2, 3].

Lagerungsmanöver werden u. a. bei anamnestischen Hinweisen für einen benignen paroxysmalen Lagerungsschwindel (BPLS) durchgeführt [1, 108]. Neben den deutschen Leitlinien [92] und der aktuellen Empfehlung der Bárány Society for Neurootologie [85] gibt es detailierte Empfehlungen der AAO-HNS [109] und der American Academy of Neurology [110] mit evidenzbasierten Analysen. Am häufigsten sind
die hinteren Bogengänge und dabei der rechte hintere Bogengang betr"offen [111]. Das Dix-Hallpike-Lagerungsm"anöver (f"ur die Diagnostik der hinteren Bogeng"ange) sollte an den Anfang des Untersuchungsganges gestellt werden. Der objektive Nachweis VOR (bogengangsspezifischer Nystagmus) gilt als Beweis f"ur das Vorliegen der Erkrankung, wenn die klassischen Kriterien f"ur einen peripheren BPLS erf"ullt sind (kurze Latenz, kurze Dauer, Ersch"opfbarkeit des Nystagmus, „Schwindel“ mit vegetativen Symptomen, Richtungs"anderung bei Lagerungswechsel). Eine Kanalolithiatrie im kurzen Arm des hinteren Bogengangs wurde k"urzlich beschrieben, ohne dass jedoch dieser Form eine eindeutige Nystagmusreaktion (VOR) zugeordnet werden kann [112]. Die "Uberlagerung mit nichtvestibul"aren St"orungen ist m"oglich. Zentrale L"asionen sind eine seltene Ursache f"ur einen Lagerungsschwindel [113]. Okulomotorikst"orungen und Kleinhirnsymptome sind diagnostisch wegweisend. Lageschwindel mit oder ohne Nystagmus ist meistens ein Zeichen zentraler St"orungen. Von Bedeutung ist die Abgrenzung einer orthostatischen Hypotonie (Blutdruck- und Herzfrequenz"anderungen bei K"ippdrehung).
suchung bzw. Schellong-Test), orthostatischer Tachykardiesyndrom oder bradykarder Herzrhythmusstörungen. Bei Synkopen sollte eine zügige internistische Synkopendiagnostik erfolgen, um die Ursache zu ermitteln. Bei Synkopen besteht die Gefahr einer Rezidivsynkope bzw. eines plötzlichen Herztodes.

Die Relation von Augenstellung, Kopf- und Körperhaltung können auf Augenmuskelecken hinweisen (z. B. Trochlearisparesen). Eine „Asymmetrie der Kopf-Augen-Stellung“ (engl. ocular tilt) ist ein Symptomkomplex aus vertikaler Schielstellung (Hertwig-Magendie), Kopfnegierung und Augentorsion bei peripheren oder zentralen Störungen.

Augenbewegungsstörungen und Nystagmus werden in den 9 Blickpositionen untersucht. Dabei erhält der Untersucher vor allem Informationen über einen vorliegenden Spontannystagmus und die Augenmotilität [114, 115].

Mit der Provokation durch Kopfschütteln, ca. in der Ebene des horizontalen Bogengangs und ggf. vertikal, können unilaterale Vestibulopathien zeitweilig demaskiert werden (ca. 30–mal, 45° Amplitude, Frequenz 2 Hz). Zeichen für eine periphere Vestibulopathie ist ein durch Provokation in der Horizontalebene induzierter horizontaler Nystagmus unter der Frenzelbrille, der mit seiner langsamen Phase in Richtung der Seite der Läsion schlägt. Ursache ist eine Asymmetrie des Geschwindigkeitspeichers im Hirnstamm nach peripheren Läsionen, kann bei diesen aber auch fehlen [116]. Selten kommt er in Richtung der Seite der Läsion vor [117–119].

Ein vertikaler Nystagmus nach Provokation wird als widernatürlicher, atypischer Nystagmus („perverted head-shaking nystagmus“) bezeichnet. Dies ist ein Indikator für eine zentrale Läsion, die z. B. bei Kleinhirninfarkten vorkommt [120].

Bei Fixation eines stationären Zielen in Geradeausposition kann geprüft werden, ob sich ein Spontannystagmus als Zeichen einer peripheren Läsion unterdrücken lässt oder (bei zentralen Störungen) eher zunimmt [59]. Aktuelle Studien haben jedoch gezeigt, dass eine mangelhafte Fixationssuppression bei Kleinhirninfarkten ein eher unspezifisches Zeichen ist und meistens nur dann zu beobachten ist, wenn der Nodus betroffen ist [121].

Blickrichtungsystagmosen lassen sich anhand ihrer Formen topografisch-anatomisch zuordnen. Ergänzend wird die orientierende Untersuchung der Blickfolgebewegungen, des Sakkadensystems und der Optokinetik (Streifentrommel) empfohlen [114, 115].

Mit der Frenzelbrille lässt sich ein Spontannystagmus bei Geradeausposition unverzichtbarer Bestandteil der orientierenden Untersuchung [114–117]. Die Untersuchungsabfolge zur Diagnostik kann ohne apparatives Vorgehen mit dem Kopfschüttelnystagmus genutzt werden.

Der Abdecktest, der im HNO-Fachgebiet noch wenig verbreitet ist, stellt einen wichtigen Test zur Abgrenzung zentraler Störungen dar. Er ist hilfreich, um Fehlstellungen der Augenachsen festzustellen. Dieser Test hat zentrale Bedeutung im Rahmen der Abklärung eines akuten vestibulären Syndroms [94, 114, 115].

Der klinische Kopfimpulstest (KIT) ist ein moderner, aber inzwischen unverzichtbarer Bestandteil der orientierenden Untersuchung bei „Schwindel“. Beim klinischen (bedside) Kopfimpulstest blickt der Untersucher in die Augen des Patienten. Der Patient fixiert z. B. die Nase oder die Stirnmitte des Untersuchers. Anschließend erfolgen ca. 5–10 Kopfimpulse in der Ebene der horizontalen Bogengänge, am besten von der Mittelstellung aus nach lateral. Bei der Durchführung des Kopfimpulstests ist zu berücksichtigen, dass ausreichend hohe Kopfgeschwindigkeiten erforderlich sind (> 150°/s). Bei zu geringen Kopfgeschwindigkeiten (ca. < 100°/s) kann das Blickfolgesystem noch aktiv sein. Bei zu hohen Geschwindigkeiten (> 300°/s) kann die Stimulation gegen null gehen [38, 39]. Der Raum sollte ausreichend beleuchtet sein, der Abstand zwischen Untersucher und Patient sollte ca. eine Armlänge betragen. Okuläre Besonderheiten und Unregelmäßigkeiten des Visus sollten berücksichtigt und ggf. Probleme mit der Halswirbel säule erfragt werden. Es wird empfohlen, die Kopfimpulse unregelmäßig und nicht seitendifferent durchzuführen. Der Patient sollte passiv bleiben, sodass die Bewegung des Kopfes nicht antizipiert werden kann, was das Ergebnis beeinflussen kann [38, 39].

FAZIT

Orientierende Untersuchungen, wie Analyse von Stand, Gang, Augenbewegungsstörungen, Nystagmus und der Okulomotorik, dienen der Plausibilisierung von Beschwerden und liefern qualitativ befunde.

6.2 Klinische Untersuchung bei akutem „Schwindel“

Ein standardisiertes Vorgehen bei akutem „Schwindel“ hat sich in den letzten Jahren durchgesetzt [46–49]. Bei anamnestischen und orientierenden diagnostischen Hinweisen im Rahmen einer Akutsymptomatik mit „Schwindel“ (akutes vestibuläres Syndrom) und Kriterien, die für eine unilaterale Vestibulopathie („Neuritis vestibularis“) sprechen (Drehschwindel, horizontal-rotierender Spontanystagmus, Fallneigung, Gangabweichung, Übelkeit und Erbrechen), ist die Abgrenzung einer unilateralen peripheren Vestibulopathie von einer zentralen Störung vorzüglicherweise. Der Kliniker ist mit der schweren Problematik konfrontiert, dass eine akute unilaterale Vestibulopathie („Neuritis vestibularis“) exakt die gleichen Symptome aufweisen kann wie ein Schlaganfall („Pseudoneuritis“), z. B. Infektion eines Hirnstamms- bzw. Kleinhirninfarktes. Die akute einseitige Vestibulopathie gilt als Notfall, zügiges Handeln und ein interdisziplinäres Vorgehen sind erforderlich.

Die Untersuchungsabfolge zur Differenzierung kann ohne apparative Hilfsmittel in der Notfallambulanz (bettseitig) erfolgen. Sie hat vor weiteren diagnostischen Schritten Priorität und eine unmittelbare therapeutische Konsequenz (z. B. intravenöse Trombolyse, Zeitfenster ca. 4,5 Stunden) [122].

Cynrim et al. [46] stellten erstmals fest, dass mit der Kombination unterschiedlicher orientierender Testverfahren eine Differenzierung peripherer vestibulärer Ursachen von einer Pseudoneuritis möglich ist. Zentrale Bedeutung hat die Prüfung der Blickmotorik mit dem Abdecktest (engl. skew deviation: vertikale Achenabweichung der Augen), die als sehr spezifisches Testverfahren gilt.

Newman-Toker et al. [47] und Kattah et al. [48] konnten zeigen, dass dem klinischen Kopfimpulstest eine zentrale Bedeutung bei der sicheren Detektion zentraler Störungen (z. B. AICA-, PICA-Infarkte) zukommt. Die meisten Patienten mit einem Schlaganfall hatten in dieser Studie einen negativen klinischen Kopfimpulstest (hVOR) (> 90%). Nur in wenigen Fällen war ein positiver klinischer Kopfimpulstest trotzdem mit zentralen Läsionen verbunden.
Gegenwärtig existieren 2 mögliche Vorgehensweisen, die bettseitig ohne apparative Hilfsmittel durchgeführt werden können. Beide Vorgehensweisen sind hochsensitiv und hochspezifisch und einer Bildgebung (Kernspintomografie) im Akutstadium überlegen [123, 124].

6.2.1 fünf-stufiges Vorgehen
Das 5stufige Vorgehen („The big five“) [46, 49] ist ein Algorithmus zur orientierenden Untersuchung beim akuten vestibulären Syndrom. Folgende Schritte werden empfohlen:

- **Abdecktest:** Findet sich eine Achsenabweichung der Augen (skew deviation), spricht das für eine zentrale Läsion.
- **Abgrenzung eines peripheren Spontannystagmus von einem zentralen Fixationsnystagmus mittels Fixations-suppression und Frenzel-Brille:** Lässt sich ein Spontannystagmus supprimieren oder nimmt er bei Fixation zu, spricht das für eine zentrale Läsion.
- **Untersuchung der Augen in den Hauptblickpositionen:** Ein Blickrichtungsnystagmus entgegen der Richtung eines Spontannystagmus spricht für eine zentrale Störung.
- **Untersuchung der langsamen Blickfolge:** Eine Blickfolgesakkadierung spricht für eine zentrale Störung.
- **Durchführung des klinischen Kopfimpulstests für den hVOR:** Das Fehlen einer Rückstellsakkade spricht für eine zentrale Läsion.

6.2.2 HINTS-Test
Bei der von Kattah. et al. 2009 und Newman-Toker beschriebenen Methodik (Head-Impulse-Nystagmus-Test-of-Skew) finden 3 klinische, nichtapparative Testmethoden Anwendung. [47, 48]:

1. **Klinischer Kopfimpulstest für den hVOR:** Ein normales Ergebnis spricht für eine zentrale Läsion.
2. **Untersuchung der Augen in den Hauptblickpositionen:** Das Vorhandensein eines Spontannystagmus und eines Blickrichtungsnystagmus entgegen der Richtung des Spontannystagmus spricht für eine zentrale Störung.
3. **Abdecktest:** Findet sich eine Achsenabweichung der Augen (skew deviation), spricht das für eine zentrale Läsion. Nur in seltenen Fällen (ca. < 10 %) kann auch bei Kriterien, die für eine periphere Läsion sprechen eine zentrale Läsion vorliegen. Aukte „Schwindel“ ohne Nystagmus ist selten, jedoch in der Akutphase bei Kleinhirninfarkten beschrieben [125]. Akute, kombiniert auftretende periphere und zentrale Störungen sind als Einzelfälle publiziert [126]. Auch bei einem positiven Kopfimpulstest kann in Einzelfällen ein Hirnninfarkt vorliegen [127, 128].

Das zeigt, dass die Abgrenzung peripherer und zentraler Ursachen nach wie vor schwierig ist. Daher ist es wichtig, weitere Argumente zusammuzutragen, die für oder gegen eine zentrale Läsion sprechen. Begleitende Hirnnervenläsionen und Kopfschmerzen sind hinweisende Symptome. Aber auch begleitende Hörstörungen können für eine zentrale Ursache sprechen [128–130].

Apparative Untersuchungsmethoden, zu denen beim HNO-Facharzt auch eine Untersuchung der Hörfunktion zählt, erhöhen die diagnostische Sicherheit und dienen einer Quantifizierung von Störungen. Das Vorgehen ergibt sich aus dem Ergebnis orientierender Untersuchungen.

7. Moderne apparative Untersuchung des vestibulären Systems
Moderne apparative Vestibularisdiagnostik, vor allem der Videokopfimpulstest und die VEMP-Diagnostik, haben in den letzten Jahren dazu geführt, dass eine komplexe Untersuchung der vestibulären Reflexstrukturen realisiert werden kann. Diese Untersuchungsmethoden sind in der Praxis in Deutschland immer mehr verbreitet [37–39, 42–45]. Auch die Anwendung im Rahmen der HNO-Begutachtung setzt sich zunehmend durch [56].

Während orientierende Untersuchungsmethoden eine qualitativ aussage über eine vestibuläre Störung geben, kann das Ausmaß der Beeinträchtigung mithilfe apparativer Methoden durch „Mes sung“ ermittelt (quantifiziert) werden. Die Möglichkeiten der apparativen Diagnostik sind vielfältig (Tab. 3). Nachfolgend werden die modernen Verfahren, der Videokopfimpulstest und die Diagnostik mittels zervikaler und okulärer vestibulär evokerter myogener Potenziale, ausführlich dargestellt und deren Stellung und Nutzen für die klinische Praxis kritisch diskutiert.

7.1 Diagnostik des VOR mit dem Videokopfimpulstest
Im Gegensatz zum qualitativen klinischen Kopfimpulstest quantifiziert und visualisiert der Videokopfimpulstest den VOR. Das Verhältnis von Kopf- und Augenbewegungen kann für jeden der 3 Bogengänge beider Seiten im Zeitverlauf separat dargestellt werden. Der Videokopfimpulstest ist gegenwärtig die einzige Methode zur Prüfung der vertikalen Bogengänge. Am besten ist die Methode für die Analyse des horizontalen VOR (hVOR) untersucht. Der Befund kann dokumentiert und als Videodatei gespeichert werden. Er stellt ein objektives Analyseverfahren dar. Aus physiologischer Sicht werden mehrfrequente Anteile des VOR (ca. 3–5 Hz) gemessen, während die thermische Prüfung den niedrigfrequenten Bereich des VOR (ca. 0,005 Hz) reflektiert [37–39, 132, 133].

Der Videokopfimpulstest wird im klinischen Alltag immer häufiger eingesetzt. Die bisherigen Erfahrungen haben gezeigt, dass sein Haupteinsatzgebiet die Detektion peripherer Vestibulopathien ist. Wegen der Schlüsselrolle des klinischen Kopfimpulstests in der Differenzialdiagnostik des akuten vestibulären Syndroms ist der vKIT, der dem klinischen Kopfimpulstest überlegen ist, auch in Notfallambulanzen unverzichtbar. Nach McDougal et al. liefert der vKIT Ergebnisse, die mit der Methode der skleralen Magnetspulentechnik (engl.
Tab. 3 Funktionsprüfungen für die 5 labyrinthären Rezeptoren und reflektorischen Verbindungen.

Rezeptoren	Funktionsprüfung	Rezeptor-spezifität	Frequenz-selektivität	Seiten-spezifität	Statisch/Dynamisch	Testcharakter	Stimulus	Quantifizierung	Zeitaufwand (min)
Horizontaler Bogengang	Klinischer Kopfimpulstest	J	HF	J	D	O	P	N	2
	Videokopfimpulstest	J	HF	J	D	O	P	J	10
	Dynamische Sehschärfe	J	HF	J	S	S	P	J	10
	Thermische Prüfung Wasser	N	NF	J	S	O	U	J	35
	Rotatorische Testverfahren	N	NF-MF	N	D	O	P	J	20
	Vibrationsnystagmus	N	?	J	D	O	P	J	10
Vorderer Bogengang	Klinischer Kopfimpulstest	J	HF	J	D	O	P	N	2
	Videokopfimpulstest	J	HF	J	D	O	P	J	10
	Dynamische Sehschärfe	J	HF	J	D	D	P	J	10
Hinterer Bogengang	Klinischer Kopfimpulstest	J	HF	J	D	O	P	N	2
	Videokopfimpulstest	J	HF	J	D	O	P	J	10
	Dynamische Sehschärfe	J	HF	J	D	S	P	J	10
Utriculus	AC vOEMP, BC vOEMP	J	250–4 000 Hz	J	S	O	U	J	10
	SVV statisch/Kippung	J	N	J	S/D	S	P	J	15
	SVV zentrisch/exzentrisch	J	N	J	D	S	P	N	20
	SHV	N	N	J	D	S	P	J	15
	Exzentrische Rotation	J	NF–MF	J	D	O	P	J	20
	Head Heave Test	N	HF	J	D	O	P	J	10
Sacculus	AC vOEMP, BC vOEMP *	J	250–4 000 Hz	J	S	O	U	N	10
	Schaumstoff-Posturografie	N	NF	N	D	S	P	J	10
Otolithenorgane	Langsamer Tandem-Gang	N	NF	N	D	S	P	N	2
	Schrägcachenrotation	N	NF-MF	N	D	O	P	J	25

NF: niederfrequentes, MF: mittelfrequentes, HF: hochfrequentes Testverfahren. S: statischer Test, D: dynamischer Test. O: Objektiver Test, S: Subjektiver Test. J: Ja, N: Nein, P: Physiologischer Stimulus, U: Unphysiologischer Stimulus. SVV: Subjektive Visuelle Vertikale, SHV: Subjektive haptische Vertikale. AC (Air Conduction: Luftleitung) BC (Bone Conduction: Knochenleitung). Ungefähre Zeitangaben mit Testvorbereitung und Pausen. Modifiziert nach [56].

Walter SE. Moderne Schwindeldiagnostik. Laryngo-Rhino-Otol 2017; 96: S183–S208
scleral search coil method), dem bisherigen Standardverfahren der 3-dimensionalen Augenbewegungsanalyse [z. B. 14, 18, 19], vergleichbar sind [134]. Der vKIT ist ein nichtinvasives Verfahren und unabhängig vom Zustand des äußeren und Mittellohores einfach und mit relativ kurzer Zeitlaufwand (ca. 10 min) durchführbar [135]. Die Diagnostik mit dem vKIT ist auch im Kindesalter möglich [136].

7.1.1 Anatomische und physiologische Grundlagen
Der adäquate Reiz für die Erregung aller Bogengangszentren ist ein Drehbeschleunigungsreiz. Man spricht deshalb auch vom angu- laren VOR. Das Bogengangssystem ist paarig vorhanden und erfasst Drehbeschleunigungen in allen 3 Dimensionen des Raumes. Kopf- beschleunigungsreize werden über den Rezeptor und nachgeschaltete Neurone innerhalb kürzester Zeit, nahezu verzögertenglos (ca. 7–10 ms), zu den Augenmuskeln fortgeleitet. Dies geschieht im All- tag unmerklich. Vestibulookuläre Reflexe (VOR) zählen zu den schnellsten Reflexen im menschlichen Körper. Gemeinsam mit den o. g. Systemen der Augenbewegung und unter der Voraussetzung eines normalen Visus realisieren sie bei allen alltäglichen Bewegun- gen einen stabiles Abbild auf der Retina (Blickstabilisierung). Der VOR ist zentraler Bestandteil des Orientierungssinnes [38, 39, 132].

Der vKIT prüft die Fähigkeit zur Blickstabilisierung. Im 3-dimen- sionalen Raum können alle 3 Bogengänge seitenspezifisch in der je- weils optimalen Arbeitsbene stimuliert werden. Die horizontalen Bogengänge werden bei einer Kopfbewegung in der horizontalen Ebene (HOR) selektiv gereizt. Die vertikalen Bogengänge, die beim Aufblick auf den Kopf einen nach außen offenen Winkel von etwa 90° bilden, sind so angeordnet, dass der linke vordere und der rechte hintere Bogengang in einer Ebene gelegen sind. Diese optimalen Stimulationsebenen bezeichnet man nach der Lage der Bogengänge als RALP-Ebene (Right Anterior Left Posterior) und LARP-Ebene (Left Anterior Right Posterior). Eine „Messung“ des VOR erfolgt beim Videokopfimpulstest wie beim klinischen Kopfimpulstest mit Kopf- beschleunigungen in allen Ebenen der Bogengänge (HOR, RALP, LARP). Die besondere Anordnung der Bogengangslauffläche bedingt eine antagonistische Antwort („Push-pull-Prinzip“), was eine gleichzeiti- ge Inhibition („push“) und Exzitation („pull“) von vestibulären Neur- enon gewährleistet. Die Reizung jedes Bogengangszentren durch Kopfimpulse führt deshalb zu einer selektiv messbaren reflektori- schen Augenbewegung (VOR) für jeden der 3 Bogengänge [38, 39].

7.1.2 Durchführung und Messbedingungen
Aus gerätetechnischer Sicht besteht der „Videokopfimpulstest“ aus einer sehr leichten Videobrücke, in die ein Girokop zur Messung der Kopfbewegungen integriert ist, mit Soft- und Hardware (z. B. Laptop). Bei der Untersuchung steht der Untersucher hinter dem sitzen- den Patienten. Der Patient fixiert mit weit geöffneten Augen ein sta- tionäres Blickziel in Augenhöhe (Entfernung ca. 1,5 m). Die Beleuchtung des Raumes muss ausreichend sein. Vor jeder Messung sollte eine Kalibrierung durchgeführt werden. Kontaktilinien können getra- gen werden. Im Schrifttum werden unterschiedliche und aus klini- scher Sicht in etwa gleichwertige Methoden für die Stimulation (z. B. Umfassen des oben Kopfes, Kopfimpulstest entlang des horizontalen Unterkieferastes, Bewegung von der Mitte nach außen oder von außen nach „innen“) beschrieben [137–139].

Es sollten ca. 5–10 Kopfimpulse zu jeder Seite in allen optimalen Stimulationsebenen (HOR, RALP, LARP) erfolgen. Die durch Kopf- impulse induzierte Winkelgeschwindigkeit sollte ca. > 150°/s betra- gen, die Kopfbewegung ca. 20 Grad nicht überschreiten. Der induzierte VOR im Zeitverlauf wird vom Ausmaß der Kopfbewegung und der Kopfbewegung beeinflusst. Bei einem intakten VOR ist die Kopf- und Augenbewegung nach ca. 100–200 ms beendet. Während der Un- tersuchung können die induzierten Kopfimpulse und der Ablauf der Augenbewegung in Echtzeit über einen Monitor beobachtet und de- monstriert werden [38, 39].

7.1.3 Bewertung der Ergebnisse
Für die Bewertung der Ergebnisse sind derzeit der „Gain“ beider Sei- ten, die Gainasymmetrie [%] und das Auftreten von Korrektursakka- den von Bedeutung. Am besten ist bisher diesbezüglich der hVOR untersucht. Zur Diagnostik der vertikalen Bogengänge gibt es bisher nur wenige Erfahrungen [35, 36, 140, 141].

Der „Gain“-Wert (Verhältnis der Augen- zur Kopfbewegung) bei- der Seiten beträgt, in Abhängigkeit von der Gerätevariante und den Untersuchungsbedingungen, beim Gesunden etwas weniger als 1 (ca. 0,8–1). Vermindert sich die Augenbewegung, reduziert sich auch der Gain. Bei den auf dem Markt verfügbaren Systemen wer- den sowohl unterschiedliche Algorithmen zur Erkennung der Augen- bewegung als auch verschiedene mathematische Methoden bei der Kalkulation des Gainwertes eingesetzt. Alhabib und Saliba identifi- zierten (bis heute, 2006) 6 Systeme, mit denen Untersuchungen in der Praxis weltweit durchgeführt werden. Der Grenzwert für einen normalen hVOR-Gain war mit den verschiedenen Systemen sehr stab- il (<0,79–<0,81) [142].

Das Seitenverhältnis beider Gainwerte wird als Gainasymmetrie bezeichnet und wird in [%] angegeben. Wir bewerten ein Gain-Sei- tenverhältnis von > 8,5 % als pathologisch [143].

Korrektursakkaden sind reflektorische Sakkaden, die sich dann ma- nifestieren, wenn Störungen des VOR auftreten. Eine Beeinträchtigung des VOR führt dazu, dass das Auge bei einer impulsartigen Stimulation die Kopfbewegung bei Blickfixation nicht mehr erreicht. Das Auge bleibt hinter der Kopfbewegung zurück. Um den Blick stabil zu halten, muss es deshalb eine Korrektur in Form einer Sakkade ausführen (Re- fixationssakkade). Bei Störungen des VOR werden Korrektursakkaden in Form von verdeckten (engl. covert, d. h. im Zyklus der Kopf-Augen- Bewegung verborgen) und offenen Sakkaden (engl. overt, d. h. nach Beendigung des Kopfimpulses) [35, 36, 143, 144] induziert. Wir haben bei chronischen peripheren Vestibulopathien nur 3 Varianten von Kor- rektursakkaden beobachtet: Isoliert auftretende verdeckte Sakkaden, alleinige offene Sakkaden und die Kombination beider Sakkadenfor- men. Eine Beziehung zwischen Sakkadentyp und Erkrankung bestand nicht. Sakkaden mit geringer Amplitude (ca. < 50°) haben unseres Erachtens keine pathologische Bedeutung [143]. Mossman et al. stell- ten fest, dass sich der Gainwert des hVOR mit zunehmendem Alter um ca. 5–10% reduziert [145]. Kompensatorische Sakkaden zeigten keine Altersabhängigkeit. Auch andere Arbeitsgruppen konnten eine Re- duktion des Gainwertes im höheren Lebensalter (> 70) nachweisen [146–149]. Anson et al. wiesen auf den Zusammenhang einer Gain- reduktion mit einer Zunahme der Amplitude von Korrektursakkaden im Alter hin. Dies wird mit einer Beeinträchtigung hochfrequenter, ir- regulärer vestibulärer Typ-1-Fasern durch „Altersprozesse“ erklärt [146, 147]. Die Interpretation im höheren Lebensalter (ca. >70) muss also mit diesbezüglich korrigierten Referenzbereichen erfolgen. Kor-
rektursakkaden ohne Krankheitswert können im Alter gehäuft auftreten. Die exakte Identifizierung physiologischer bzw. pathologischer offener Sakkaden ist jedoch bei älteren Patienten schwierig [146–148].

Eine akute einseitige vestibuläre Störung beeinflusst hauptsächlich den Gain der Seite der Läsion. Es sollte jedoch auch die Gegenseite berücksichtigt werden. Bei unilateralen Vestibulopathien kann es z. B. zu einer Reduktion des hVOR-Gain der gesunden Seite kommen [150]. Diese Gainveränderung wird z. B. bei der „Neuritis vestibularis“ im Rahmen einer vestibulären Kompensation beobachtet. Beurteilt man in diesen Fällen die Gainswerte und das Gain-Seitenvverhältnis entsprechend den Referenzbereichen, kann sich so das Bild einer bilateralen Vestibulopathie mit erniedrigten Gainwerten beiderseits präsentieren. Die Ursache ist nicht vollständig geklärt. Es werden zentrale regulatorische Prozesse aber auch Modulationen der efferenten Nervenbahnen diskutiert [150–153, 154]. Auch Vorschädigungen des VOR-Gain können bei der Bewertung der Ergebnisse des vKIT Schwierigkeiten bereiten.

FAZIT
Der Videokopfimpulstest reflektiert objektiv die hochfrequente Funktion des VOR. Er ist die einzige apparative Testmethode zur Prüfung der vertikalen Bogengänge. Für die Beurteilung sind offene und verdeckt auftretende Korrektursakkaden, das Verhältnis von Kopf- und Augenbewegung (Gain-Wert) sowie der Gain-Wert beider Seiten (Gainasymmetrie) von Bedeutung.

7.1.4 Klinischer vs. Videokopfimpulstest
Vom klinischen Kopfimpulstest wurde bisher angenommen, dass er in der Lage ist, bei Prüfung der hVOR Ergebnisse mit hoher Testpräzision zu liefern, die für oder gegen das objektive Vorhandensein einer vestibulären Störung sprechen. Aktuelle Untersuchungen haben jedoch gezeigt, dass die Sensitivität dieses Tests nur 66 % beträgt (Spezifität 86 %). Der positive prädiktive Wert betrug 44 % und der negative prädiktive Wert 96 % [154]. Neben subjektiven Einschätzungen (z. B. Erfahrung des Untersuchers) und unterschiedlicher Testmethodik (z. B. Kopfgeschwindigkeit und Kopfdrehung) spielen die Art der Korrektursakkaden (offenen oder verdeckte bzw. die Kombination beider) und die Beeinträchtigung des hVOR-Gain eine Rolle [154].

Verdeckte Sakkaden entziehen sich der visuellen Analyse. Wie erläutert, sind sie im Zyklus der Kopf-Augen-Bewegung verborgen. Auch früh auftretende offene Sakkaden können sich der Erkennung mit dem klinischen KIT entziehen.

Wie oft treten verdeckte Sakkaden im akuten und chronischen Stadium bei vestibulären Störungen auf? Für das akute vestibuläre Syndrom gibt es diesbezüglich keine Untersuchungen. Für unterschiedliche chronische periphere Vestibulopathien haben wir einen Wert von ca. 15 % ermittelt [143]. Periphere Vestibulopathien können sich mit isolierten verdeckten Sakkaden präsentieren, die mit der klassischen Testdurchführung des klinischen Kopfimpulstests vom Untersucher nicht erkannt werden. Tajerström und Magnusson haben festgestellt, dass höheramplitudige Kopfauslenkungen zu einer Demaskierung der verdeckten Sakkade beitragen können („uncover-Test“). Dieser „Trick“ kann in der klinischen Praxis bei der Durchführung des klinischen Kopfimpulstests genutzt werden [155].

Höhergradige Beeinträchtigungen des hVOR bzw. eine größere Seitendifferenz bei der thermischen Prüfung führen bei unilateralen Vestibulopathien mit dem klinischen Kopfimpulstest zu einer höheren Sensitivität als geringere [40, 41]. Diese für die Praxis wichtige Erkenntnis für den klinischen KIT [41] wurde kürzlich auch bei Untersuchungen mittels vKIT bestätigt [154, 156, 157]. Als Grenzbereich gilt eine Seitendifferenz der thermischen Prüfung von ca. 40–50 %. Bei einer höhergradigen Beeinträchtigung des hVOR nimmt demnach auch die Sensitivität des klinischen Kopfimpulstests deutlich zu [154].

Das neurale Schädigungsmuster bei unilateralen Vestibulopathien scheint dabei eine entscheidende Rolle zu spielen. Schädigungen schneller vestibärer Typ-1-Fasern spielen offenbar für das Zustandekommen einer pathologischen thermischen Prüfung eine untergeordnete Rolle oder es muss erst eine erhebliche Beeinträchtigung der schnellen Nervenfasern erfolgt sein, bis auch der Kopfimpulstest pathologische Resultate zeigt. Diese Beobachtung zeigt auch, dass Videokopfimpulstest und thermische Prüfung keine identischen Aussagen liefern können.

FAZIT
Mit dem klinischen Kopfimpulstest wird vorwiegend der hVOR (z. B. horizontale Bogengänge) qualitativ geprüft (Auftreten einer offenen Korrektursakkade). Mit dem „uncover Test“ [155] lassen sich verdeckte Sakkaden ggf. demaskieren. Der Videokopfimpulstest besitzt eine höhere diagnostische Präzision als der klinische Kopfimpulstest.

7.1.5 Videokopfimpulstest und thermische Prüfung
Mit der Einführung des Videokopfimpulstests stellte sich die Frage nach der alleinigen Durchführung des Testverfahrens in der Vestibularisdiagnostik mit „Ersatz“ der thermischen Prüfung. Vorschnell wurde der Verzicht auf die bisherige dominierende Methode, die thermische Prüfung, ausgerufen [158].

Zur Stellung von thermischer Prüfung und vHIT in der Vestibularisdiagnostik gibt es inzwischen hinsichtlich der Prüfung des hVOR gesicherte Erkenntnisse:

Die thermische Prüfung erfasst im Wesentlichen die Funktion der lateralen Bogengänge [159]. Es wird hauptsächlich der hVOR geprüft. Das Zustandekommen der VOR-Antwort beruht wahrscheinlich auf mehreren Faktoren, die Schwerkraft ist jedoch nicht der alleinige Faktor [160]. Thermische und neurale Effekte sowie der centrale Geschwindigkeitsspeicher (engl. velocity storage) modulieren die Antwort des VOR [161]. Der Videokopfimpulstest beruht auf einer bei Blickstabilisierung geprüften direkten Analyse des VOR bei relativ hochfrequenten Stimulation infolge einer Reizung vorwiegend schneller Nervenfasern des VOR [162–165].

Für das Zustandekommen der VOR-Antwort als Folge der thermischen Prüfung sind wahrscheinlich andere Mechanismen verantwortlich als beim Videokopfimpulstest [160]. Höherfrequente Antworten, die vorzugsweise durch irreguläre vestibuläre Typ-1-Afferenzen vermittelt werden, spielen beim hochfrequenten Videokopfimpulstest eine tragende Rolle. Bei der niederfrequenten thermischen Prüfung sind offenbar andere, langsamer feuernende vestibuläre Neurone bzw. der centrale Geschwindigkeitsspeicher beteiligt [162–165]. Ein selektiver „Schaden“ der schnelln Typ-1-Fasern
würde also zu einer Auffälligkeit im Videokopfimpulstest (Gain-reduktion auf der betroffenen Seite, Auftreten von Refixationssakkaden) führen. Eine Beeinträchtigung von Nervenfasern, die nicht an der Entstehung des Videokopfimpulstests beteiligt sind, würde sich in einer Pathologie in der thermischen Prüfung widerspiegeln (Seitendifferenz > 25%).

Setzt man nun beide Methoden bei definierten Schwindelsyndromen ein, gelangt man zu der Erkenntnis, dass sich die Ergebnisse tatsächlich voneinander unterscheiden können. In der Praxis werden sowohl Fälle mit einer normalen thermischen Erregbarkeit und pathologischem Videokopfimpulstest, solche mit einem normalen Ergebnis im Videokopfimpulstest und pathologischer thermischer Prüfung sowie Mischformen beobachtet, bei denen das Ergebnis in beiden Fällen pathologisch ist [157, 166].

Aktuelle Untersuchungen bei peripheren Vestibulopathien haben folgende Besonderheiten gezeigt: Bei Patienten mit einem Vestibularisschwannom weist die thermische Prüfung eine höhere Sensitivität als der vKIT auf [36, 167]. Die Seitenasymmetrie korreliert mit dem Tumorstadium [167]. Aufgrund der vorzugsweise Affektion von Nervenfasern des niederfrequenten Frequenzbereiches des hVOR und der geringen Affektion des hochfrequenten Bereiches, repräsentiert durch den vKIT, ist der thermischen Prüfung in der Diagnostik des Vestibularisschwannomes unverzichtbar. Patienten, die unter chronischem „Schwindel“ aufgrund eines Vestibularisschwannoms leiden, werden, unabhängig von der Tumorgröße, mit der thermischen Prüfung eher und besser als „krank“ identifiziert als mit dem Videokopfimpulstest (hVOR) [161].

Beim Morbus Menière finden sich pathologische Testresultate des Videokopfimpulstests ebenfalls seltener [168, 169]. Auch bei Patienten mit einer vestibulären Migräne findet sich in der Mehrzahl eine Auffälligkeit bei der thermischen Prüfung als im Videokopfimpulstest [168].

Die „Neuritis vestibularis“ ist häufiger mit einer Beeinträchtigung des Hochfrequenzbereiches des hVOR assoziiert. Im akuten Stadium zeigte sich im Vergleich beider Methoden in ca. 2/3 der Fälle ein pathologischer Videokopfimpulstest, im Zeitverlauf (eingeschlossen die Fälle, bei denen sich eine partielle oder vollständige Erholung zeigte) änderte sich das Verhältnis. Hier war der Videokopfimpulstest in ca. 1/3 der Fälle pathologisch [157, 163–166].

Einzelbeobachtungen gibt es zum Syndrom des erweiterten Aquaeductus vestibuli (pathologische thermische Prüfung, negativer vKIT) [170].

Somit deutet sich ein erkrankungspezifisches Bild der Beeinträchtigung bei peripheren Vestibulopathien an, wenn der hVOR mit der thermischen Prüfung und mit dem vKIT geprüft wird. Das Testergebnis von thermischer Prüfung und Videokopfimpulstest dissoziiert häufig. Dies ist wahrscheinlich auch durch eine Schädigung unterschiedlicher Faserantenile (s.o.) des VOR erklärbar.

Für die klinische Praxis ergeben sich derzeit folgende Konsequenzen:

- A. Bei akuten Störungen (akutes vestibuläres Syndrom) hat der Einsatz des Videokopfimpulstests wegen der höheren Sensitivität und Spezifität Priorität vor der Durchführung der thermischen Prüfung.
- B. Bei chronischen Affektionen zeigen sich nach aktueller Datenlage bei den meisten peripheren Vestibulopathien zu einem höheren Prozentsatz Auffälligkeiten bei der thermischen Prüfung als bei dem vKIT. In Unkenntnis der Erkrankung hat dennoch der Einsatz der thermischen Prüfung vor der Durchführung des vKIT Priorität.
- C. vKIT und thermische Prüfung sind in der apparativen Vestibularisdiagnostik unverzichtbar und konkurrieren auch nicht miteinander, sondern ermöglichen eine erweiterte, frequenzdynamische Beurteilung des hVOR. Für eine umfassende, differenzierte Diagnostik müssen beide Methoden eingesetzt werden.
- D. Ab einer Seitenasymmetrie von ca. 40% in der thermischen Prüfung kann ein positiver KIT bzw. vKIT erwartet werden. Ein positiver vKIT spricht meistens auch für eine pathologische thermische Prüfung. Aus pragmatischer Sicht kann in solchen Fällen ggf. auf die thermische Prüfung verzichtet werden. Einige Autoren plädieren deshalb dafür, die Diagnostik mit dem Videokopfimpulstest zu beginnen [166, 171]. Das ist nach bisherigen Erkenntnissen bei einem V.a. eine „Neuritis vestibularis“ sinnvoll.

Die frequentenspezifischen Besonderheiten des hVOR haben zum Konzept einer differenzierten Analyse der vestibulären Rezeptorfunktion geführt [37]. Danach kann u. a. eine umfassende Analyse des hVOR mithilfe weiterer Testverfahren erfolgen. Diese Aussage geht in die Gesamteinschätzung über den Status der 5 Rezeptoren und der nachgeschalteten Reflexwege ein [37].

FAZIT

Videokopfimpulstest (hochfrequentes Testverfahren) und thermische Prüfung (niederfrequentes Testverfahren) reflektieren unterschiedliche Funktionen des VOR. Bei peripheren Vestibulopathien ist das Bild der Beeinträchtigung bei Anwendung beider Testverfahren erkrankungsspezifisch und nicht einheitlich. Bei einer Seitendifferenz von ca. > 40% in der thermischen Prüfung zeigt der Kopfimpulstest (hVOR) meist pathologische Resultate.

7.1.6 Der Videokopfimpulstest in der Notfallambulanz

Die Vergleichbarkeit von Studien, die das Leitsymptom „Schwindel“ und die Häufigkeit eines Schlaganfalls evaluiert haben, ist z.B. hinsichtlich der Einschlusskriterien eingeschränkt. Nach bisheriger Studienlage muss im Falle einer Akutsituation mit „Schwindel", z.B. in einer Notfallambulanz, in ca. 2,5% der Fälle mit einer zentralen neurologischen Komplikation gerechnet werden [171–176].

Mantokoudis et al. [177] haben kürzlich anhand des Videokopfimpulstests und der thermischen Prüfung diagnostische Kriterien ermittelt, die für einen Schlaganfall bzw. für oder gegen eine periphere Vestibulopathie im Notfall (akutes vestibuläres Syndrom) sprechen. Eine große Gaindifferenz mit dem vKIT spricht für eine „Neuritis vestibularis“. Bei einem Schlaganfall mit Beteiligung der PICA ist der hVOR-Gainwert meistens normal. Allerdings zeigt die thermische Prüfung in bis zu 22% der Fälle pathologische Ergebnisse. Eine geringere Gaindifferenz (< 20% Gain-Asymmetrie) spricht für einen AICA-Infarkt. Der HNO-Arzt ist aufgrund seiner fachlichen Kompetenzen in die Diagnostik eines Schlaganfalls eingebunden und trägt hier eine Verantwortung im Rahmen der Notfalldiagnostik. Bei Nut-
zung des Videokopfimpulstests in Kombination mit orientierenden Untersuchungen erhöht sich die diagnostische Sicherheit bei der Erkennung zentraler neurologischer Störungen.

Die klinische Evaluierung des Videokopfimpulstests im klinischen Alltag steht erst am Anfang. Trotzdem hat der Test innerhalb kürzester Zeit einen festen Platz in der Vestibulardiagnostik eingenommen. Aktuelle Studien haben gezeigt, dass z.B. auch Alkohol und Medikamente das Ergebnis beeinflussen können [178–180]. Darüber hinaus zeigt sich, dass der hochfrequente hVOR durch Gentamicin frühzeitig beeinträchtigt wird. Das hat Bedeutung im Rahmen der Erkennung otootoxischer Störungen (Monitoring bei systemischer Gentamicingabe) bzw. in der Therapiekontrolle (intratympanale Gentamicinapplikation beim Morbus Menière) [50, 181].

Detaillierte Analysen von Sakkaden haben in der letzten Zeit zu neuen Erkenntnissen geführt, sind aber bisher für die tägliche Anwendung in der klinischen Praxis derzeit noch wenig untersucht [182, 183].

7.2 Otolithenfunktion: Vestibulär evozierte myogene Potenziale

Vestibulär evozierte myogene Potenziale haben sich in den letzten Jahren zu einem unverzichtbaren diagnostischen Instrument bei der Abklärung von „Schwindel“ entwickelt. Die vestibuläre Stimulation erfolgt dabei durch überschwellige akustische Stimuli, vorzugsweise in Luftleitung. Die Methodik ist bis heute gut evaluiert.

7.2.1 Anatomische und physiologische Grundlagen

Die paarig angelegten Otolithengänge sind ovalär geformt, ca. 1–2 mm² groß und etwas gewölbt [184]. Der Utriculus, in Horizontal- und Vertikalrichtung gelegen, befindet sich etwa in Projektion auf den unteren inneren Orbitarand, der Sacculus, ca. in der Sagittalebene, ungefähr in Projektion auf den Tränenkanal. Die Otolithengänge vermitteln aufgrund der Träger der in der Otolithenhälfte in ca. 2–3 Schichten vorhandenen Otokonien Linearbeschleunigungsreize, Kopfkippungen bzw. die Relation zum Gravitationsvektor [185]. Die Reizfortleitung erfolgt über den Nervus vestibularis inferior (Sacculus) und den Nervus vestibularis superior (Utriculus). Der Voits-Nerv ist eine Anastomose zwischen Sacculus und Nervus vestibularis superior, die vom Hakenanteil, einem kleinen Bestandteil des Sacculus, ausgeht [186]. Diese Doppellinervation des Sacculus trägt dazu bei, dass bei einer Stimulation des Utriculus auch über den Sacculus ein Nervenimpuls in den Nervus vestibularis superior erreicht. Im Rahmen der phylogenetischen Entwicklung wurden in beiden Otolithengängen akustisch sensible Zellen konserviert. Die physiologische Funktion dieser Zellen ist verlorengegangen, da sie offenbar keinem evolutionären Druck unterlag [187]. Die rudimentäre akustische Empfindlichkeit von parastriolären vestibulären Zellen in Utriculus und Sacculus wird im Rahmen der VEMP-Diagnostik ausgenutzt. Mit überschwelligen akustischen Stimuli (z.B. 100 dB nHL), optimalerweise bei 500 Hz, können reflektorische Nervenimpulse vorwiegender regulärer otootoxischer Neuronen aktiviert werden [188, 189]. Die generierten elektronischen Potenziale lassen sich mittels Oberflächenlektromyografie von zervikalen (Musculus sternocleidomastoideus) und okulären Ableitungen (M.obliquus und M. rectus inferior) objektivieren und man erhält jeweils typische VEMP-Kurven [23–25, 33, 34, 44, 45]. Deren Morphologie (Amplitude und Latenzzeit) im Zeitverlauf und im Seitenvergleich (Amplitudenver- hältnis, Latenzeitverhältnis) wird in der Diagnostik als Maß für die Funktion genutzt. Über die Herkunft der okulären VEMP-Ableitungen gab es in den letzten Jahren kontroverse Diskussionen, insbesondere aufgrund der o.g. Doppellinervation des Sacculus [76–79]. Heute ist akzeptiert, dass cVEMP und oVEMP in Luftleitung ein Indikator für die überwiegende Sacculusfunktion (sacculocollischer Reflex) bzw. Utriculusfunktion (utriculookulärer Reflex) sind [75]. Beide Methoden werden in der letzten Zeit immer häufiger in der täglichen klinischen Praxis sowie im Rahmen der HNO-Begutachtung eingesetzt. VEMP sind in jedem Lebensalter einsetzbar [44, 45, 56].

7.2.2 Zervikale vestibulär evozierte myogene Potenziale

Cobebatch und Halmagyi haben 1992 erstmals über die Methodik der zervikalen vestibulär evozierte myogene Potenziale publiziert [23]. In der Praxis hat sich die Ableitung über dem oberen Anteil des M. sternocleidomastoideus durchgesetzt [33, 34, 44, 45].

Vor jeder VEMP-Untersuchung sind eine mikroskopische Ohrunter- suchung (ggf. Entfernung von Cerumen, Einschätzung der Gehörgangs- und Trommelfellverhältnisse) sowie eine audiologische, Diagnostik (z.B. Tympanometrie, Tonschwellenaudiometrie, Ermittlung der Luft- und Knochenleitungsschwellen) empfehlenswert. Schalleitungsförderungsführungen bessern, je nach Ausmaß, zu einer Reduktion aller VEMP-Antworten. Schallemittigungsförderungsbehandlungen (auch eine Surditas) hingen beeinträchtigen den Untersuchungsgang der VEMP nicht.

Für die tägliche klinische Praxis sind derzeit Ableitungen mittels Luftleitung am besten evaluiert. Knochenleitungsuntersuchungen sind im Falle einer Schalleitungsförderung möglich. Für die Untersuchung mittels Luftleitung eigenen sich Einsteckhörer oder Kopfhörer. Vor- aussetzung für die VEMP-Messung ist ein VEMP-Modul. Die Oberflächenlektroden können z.B. in den Bereich des oberen Drittels beider M. sternocleidomastoidei, in Stirnmitte (neutrale Elektrode) und im Bereich des Jugulums (Referenzelektrode) angebracht werden. Für eine schnelle und störungsfreie Messung sind niedrige Impedanzen (z.B. <5 kΩ) erforderlich. Bei der Messung im Sitzen oder liegen wird der Kopf zur Gegenseite gedreht bzw. leicht nach vorn geneigt oder angehoben, sodass der m. sternocleidomastoideus der stimulierten Seite angespannt ist. Während der cVEMP-Ableitungen hat sich die simultane Kontrolle der Muskelspannung mittels EMG durchgesetzt [190–192]. Als Stimmfrequenz wird entsprechend den aktuellen internationalen Empfehlungen [192] zunächst die Frequenz der besten akustischen Empfindlichkeit der Otolithengänge gewählt (Stimultocharakteristicen 500 Hz). Bei dieser Frequenz finden sich die niedrigsten Schwellen und die höchsten Amplituden. Als Stimulus eignen sich Click-Stimuli oder Burst-Reize. Clicks besitzen jedoch einen relativ breiten Frequenzgang mit Hochfrequenzanteilen und die frequenzspezifische Stimulation ist unspezifischer als bei Burst-Reizen [193]. Für die Stimulation eignen sich z.B. 50–100 Wiederholungen bis zur Messung eines typischen Amplitudenverhaltens bei z.B. 100 dB. cVEMP sind inhibitorische Reflexantworten. Als objektives Zeichen eines intakten sacculocollischen Reflexes finden sich bei ipsilateraler Stimulation ipsilaterale biphasische Muskelpotenziale (positives Potenzial bei ca. 13 ms und negatives Potenzial bei ca. 23 ms) sowie akustisch generierte Potenziale bei ca. 33 ms und ca. 44 ms, deren Eigenschaften bisher nicht exakt untersucht worden sind [33, 34, 44, 45]. Die Amplituden (engl. peak-to-peak: Messung der Amplitudenvorwärts) sind in Abhängigkeit vom Alter starken Schwankungen unterworfen und betragen ca. <500 µV.
7.2.3 Okuläre vestibulär evozierte myogene Potenziale

Da die Nervenfasern des utriculookulären Reflexes zentral zur Gegeneseite kreuzen, erfolgt die Ableitung der Muskelpotenziale bei den oVEMP in Luft- oder Knochenleitung von der kontralateralen Seite. Die Oberflächenlektroden zur Analyse der oVEMP können z. B. am Orbitauterrand beiderseits und die Referenzelektroden ca. 1 cm parallel darunter platziert werden. Für die Neutralelektrode empfiehlt sich die Stirnmitte. Govender et al. haben kürzlich eine modifizierte Elektrodenlage vorgeschlagen, die ebenfalls hohe oVEMP-Amplituden garantiert [194]. Der Patient muss während der Stimulation nach oben blicken, um die äußeren Augenmuskeln, den M. obliquus und rectus inferior, anzuspanzen.

OVEMP sind exzitatorische elektromyografische Antworten. Eine elektromyografische Kontrolle der Muskelanspannung während der Messung ist nicht erforderlich. Das klassische oVEMP-Potenzial ist ebenfalls biphasisch (negatives Potenzial bei ca. 10 ms, positives Potenzial bei ca. 5 ms). Die Amplituden sind kleiner als bei den cVEMP (ca. < 20 µV) und erreichen z. T. den Nanovoltbereich [33, 34, 42–45]. Der Blickwinkel nach oben und horizontale Blickabweichungen sowie Körperposition beeinflussen die oVEMP-Ergebnisse. Die Kopfrotation und der Visus haben keinen signifikanten Einfluss auf die Ergebnisse [195].

7.2.4 Bewertung der Ergebnisse

Die VEMP-Ableitung in Luftleitung (500 Hz) stellt die klassische Stimulationsmethode in der Praxis dar. Für die Bewertung der Ergebnisse nutzt man die Amplitude (Messung zwischen den Amplitudenmaxima [µV]) der erhaltenden Messung und die zugehörigen Latenzzeiten [s] sowie das Amplitudenverhältnis (Asymmetrieverhältnis = AV [%]). In der Berechnung des AV gehen die jeweils größeren (g) und kleineren (k) Amplituden (A) beider Seiten ein: AV = 100 (Ag–Ak)/(Ag+Ak). Ein Amplitudenverhältnis von > 50 % ist pathologisch [192]. Damit kann eine Quantifizierung der Befunde vorgenommen werden. Die Angabe der Referenzbereiche schwankt in der Literatur z. T. erheblich [33, 34, 141, 192].

Pathologische Latenzzeiten und Amplitudenverhältnisse sprechen für eine Beeinträchtigung des jeweiligen Reflexes. Es muss jedoch die gesamte Reflexbahn berücksichtigt werden, da sowohl die Otolithenorgane als auch der obere oder untere Gleichgewichtsnerv, zentrale Bahnen oder selten auch die Muskelfunktion beeinträchtigt sein können [196]. Der Einsatz der VEMP setzt eine vorherige differenzialdiagnostische Einordnung der Beschwerden voraus. Die Abnahme der Muskelvorspannung (cVEMP) mit zunehmendem Alter [190] und die alterssassozierte Rarefizierung der vestibulären Nervenfasern und Sinneszellen, u. a. in Utriculus und Sacculus [197], tragen dazu bei, dass VEMP-Ableitungen ca. ab dem 60. Lebensjahr nicht mehr in 100 % der Fälle gelingen [198, 199]. Das kann die Interpretation der VEMP und somit die Beurteilung der Otolithen -erheblich [33, 34, 141, 192].

Die Nutzung von Chirp-Stimuli scheint eine vielversprechende Modifikation der VEMP-Analyse zu sein, insbesondere auch im Rahmen der Diagnostik frequenzdynamischer Veränderungen der Otolithenorgane [193, 212]. Chirps sind spezielle Reize, deren Frequenzveränderung sich im Zeitverlauf sehr flexibel gestalten lässt. Wir konnten kürzlich zeigen, dass die Amplipotenziale aus Chirp-Reizen, die für schmal- und breitbandige Frequenzstrukturen konstruiert waren, hohe VEMP-Amplituden generierter werden können [193, 212]. Die klinischen Erfahrungen hierzu sind bisher jedoch noch gering.

FAZIT

Zervikale bzw. okuläre VEMP in Luftleitung (500 Hz) reflektieren die überwiegende Sacculus- bzw. Utriculusr funktion. Für die Bewertung der Ergebnisse werden die Amplitude, die Latenzzeiten sowie das Amplitudenverhältnis genutzt. Bei den cVEMP muss die Muskelvorspannung bei der Referenzbereichsermittlung berücksichtigt werden.

7.2.5 Modifikationen der VEMP-Diagnostik

Neben der Luftleitungsdiagnostik wird in der Literatur die Stimulation mittels Knochenleitung, z. B. mit herkömmlichen Knochenleitungs- hörnern, Minishakern oder einem Reflexhammer, beschrieben. Eine Reizung mittels Knochenleitung kann z. B. in Stirnmitte oder im Bereich des Mastoids durchgeführt werden [33, 34, 44, 45, 201]. Sie kann z. B. dann sinnvoll sein, wenn eine Schalleitungsstörung (z. B. Trommelfellperforation, offene Mastoidöhle) vorhanden ist. Govender et al. vermuten unterschiedliche Mechanismen bei der Stimulation der Otolithenorgane, wobei die Knochenleitungsreize eher zu einer Reizung der Otolithenmembran und die Luftleitungstumulte eher zu einer direkten Reizung akustisch sensitiver vestibulärer Haarzellen führen soll [202].

Die akustische Reizung der Otolithenorgane ist neben der optimalen Stimulusfrequenz bei 500 Hz mit weiteren Stimulusfrequenzen (< 100–> 4 kHz) möglich. Eine ergänzende VEMP-Analyse ist bspw. im Falle traumatischer Störungen und peripherer Vestibulopathien mit veränderter Innenohrmekanik sinnvoll [193, 203]. So konnten u. a. Sandhu et al. und Kim-Lee et al. feststellen, dass es beim Morbus Menière zu frequenzdynamischen Veränderungen mit Verschiebung der VEMP-Amplitudemaxima in den höherfrequenten Bereich (bis zu 1 kHz) kommt [204, 205].

Die Nutzung von Chirp-Stimuli scheint eine vielversprechende Modifikation der VEMP-Analyse zu sein, insbesondere auch im Rahmen der Diagnostik frequenzdynamischer Veränderungen der Otolithenorgane [193, 212]. Chirps sind spezielle Reize, deren Frequenzveränderung sich im Zeitverlauf sehr flexibel gestalten lässt. Wir konnten kürzlich zeigen, dass die Amplipotenziale aus Chirp-Reizen, die für schmal- und breitbandige Frequenzstrukturen konstruiert waren, hohe VEMP-Amplituden generierter werden können [193, 212]. Die klinischen Erfahrungen hierzu sind bisher jedoch noch gering.

Walther LE. Moderne Schwindeldiagnostik. Laryngo-Rhino-Otol 2017; 96: S183–S208
7.2.6 VEMP in der klinischen Praxis

In der letzten Zeit sind zahlreiche Arbeiten erschienen, die zeigen, dass die VEMP-Diagnostik zu einer entscheidenden Verbesserung in der Vestibularisdiagnostik beigetragen hat. Erstmalig ist man in der Lage, eine Mitbeteiligung der Otolithenorgane bei Schwindelsyndromen, aber auch isolierte Störungen der Otolithenfunktion objektiv auf einfachem Weg zu erfassen [33, 34, 37, 44, 45, 213, 214].

Im Rahmen einer „Neuritis vestibularis“ ermöglichen cVEMP und oVEMP Aussagen über eine Beteiligung der Otolithengänge. Sind allein die cVEMP-Ableitungen pathologisch, kann eine Beteiligung des Nervus vestibularis inferior (bzw. der Sacculusfunktion) ange nommen werden. Bei zusätzlich auffälligen oVEMP-Untersuchungen kann auf eine Beteiligung des Nervus vestibularis superior (bzw. der Utriculusfunktion) geschlossen werden. VEMP bestätigten die bereits von Fetter und Dichgans [14] gemachten Beobachtungen bei der VOR-Diagnostik, dass der „Neuritis vestibularis“ unterschiedliche Differenzialdiagnosen aufgrund separater Nervenauffektionen des oberen und unteren Gleichgewichtsnerven zugrunde liegen können. Die „Neuritis des Nervus vestibularis inferior“ [215] ist ein neues Krankheitsbild mit einer Funktionstörung des Sacculus (pathologische cVEMP) und im hinteren Bogengang. Die klinischen Beschwerden sind eher moderat. Es dominiert Schwankschwindel. Spontannystagmus kann fehlen [216].

VEMP spielen in der Diagnostik der Bogengangsdehiszenz eine zentrale Rolle. Govender et al. fanden in 85 % der Fälle auffällige cVEMP-Befunde. In 62 % der Fälle waren oVEMP pathologisch. Hin weise für ein Dehiszenzsyndrom ergeben sich, wenn verminderte VEMP-Schwellen bei der Luftleitungstimulation mit 500 Hz sowie erhöhte VEMP-Amplituden nachweisbar sind [217]. Hunter et al. wiesen nach, dass cVEMP und oVEMP-Amplituden und cVEMP-Schwellen mit dem Ausmaß einer Dehiszenz korrelieren [218]. Nach Brantberg und Verrecchia ist bei einem klinischen Verdacht auf ein Dehiszenzsyndrom die Stimulation mit 90 dB nHL ausreichend [219].

Einige Arbeitsgruppen publizierten kürzlich über pathologische oVEMP bei einem gutartigen Lagerungsschwindel [220–222]. Damit lässt sich der bisher mit aufwändigen rotatorischen Tests bestätigte Zusammenhang dieser Erkrankung mit einer Utriculusfunktionsstörung [223] einfach objektivieren [222].

VEMP-Untersuchungen eignen sich bei allen peripheren Vestibulopathien [33, 34, 44, 45] sowie bei der vestibulären Migräne [207], um eine Otolithenbeteiligung festzustellen. Beim Morbus Menière ist die Erfassung mehrerer Frequenzen sinnvoll, da der endolympha tische Hydrops offenbar zu einem veränderten Frequenzverhalten der vestibulären Neurone führt [224–226].

VEMP sind in den letzten Jahren auch zur Kontrolle nach Eingrif fen am Labyrinth (z. B. Normalisierung der Schwelle und Amplitude nach Operation einer Bogengangsdehiszenz, Therapiekontrolle beim Morbus Menière nach intratympanaler Gentamicintherapie [50–52]) und im Rahmen eines perioperativen Neuromonitorings [53, 54] eingesetzt worden.

8. Weitere moderne vestibuläre Testverfahren

8.1 Dynamische Sehsschärfe

Die Prüfung der dynamischen Sehsschärfe (dynamic visual acuity test, DVA) [227] beruht auf subjektiven Angaben über das Fixationsobjekt bei der Durchführung des klinischen Kopfimpulstests. Dies erfordert jedoch auch eine normale oder korrigierte Sehsschärfe bei Anblick des Zieles [228]. Automatisierte Varianten (z. B. bei Nutzung von Landolt-Ringen), zeigen eine hohe Testgenauigkeit und ermöglichen eine Differenzierung von Vestibulopathien [229, 230]. Die Testvarianten sind noch wenig in der Praxis verbreitet.

8.2 Vibrationsinduzierter Nystagmus

Lücke konnte 1973 erstmals beobachten, dass sich mittels eines vibrat orischen Stimulus (100 Hz) ein Nystagmus in Mastoidnähe induzie ren lässt [231]. Mit dem Test können Asymmetrien des VOR bei Vestibulopathien diagnostiziert werden. Hamann und Schuster wiesen nach, dass der vibrationsinduzierte Nystagmus (VIN) bei Patienten mit peripheren Vestibulopathien zur nichtbetroffenen Seite schlägt [232]. Koo et al. schlussfolgerten anhand ihrer Untersuchungen, dass der VIN mit der thermischen Prüfung vergleichbar ist und bessere Resultate als eine orientierende Untersuchung mittels Provokation (Kopfschütteln) erbringt [233]. Perez et al. stellten fest, dass die Geschwindigkeit der langsamen Nystagmussphase relativ gering ist [234]. Dumas et al. konnten beobachten, dass sich ein kalorischer Nystagmus invertieren lässt [235]. Der VIN komplementiert andere Testverfahren. Die diagnostische Präzision wird als sehr gut eingeschätzt. Der Test ist seitenspezifisch und unabhängig vom Zustand des Ohres einsetzbar. Eine selektive Analyse der Bogengangs- bzw. VOR-Funktion ist nicht möglich. Welcher Frequenzbereich des VIN exakt stimuliert wird, ist bisher noch vollständig geklärt. Die Verbreitung in der Praxis ist noch relativ gering.

9. Differenzierte vestibuläre Funktionsanalyse mithilfe moderner Diagnostik

Mit den vorgestellten modernen Testverfahren (Videokopfimpuls test und VEMP) und apparativen Methoden der Vestibularisdiag nostik (z. B. thermische Stimulation, subjektiven visuellen Vertikalen, rotatorischen Tests, siehe Tab. 3) lässt sich heute mit hoher diagnostischer Sicherheit eine umfassende Einschätzung über die Funktion der 5 Rezeptoren des Gleichgewichtssorgans und der nach geschalteten Reflexstrecken machen. Da funktionell alle 5 sensori schen Elemente des Gleichgewichtssorgans erfasst werden können, haben wir in der Vergangenheit auch den Begriff „5-Rezeptoren-Diagnostik“ verwendet [56]. Unter Berücksichtigung frequenzspe zifischer Aussagen der Testverfahren (Abb. 1) und der Möglichkeit
10. Moderne interdisziplinäre Diagnostik bei „Schwindel“

Viele Erkrankungen mit dem Primär- oder Begleit symptom „Schwindel“ lassen sich auch ohne interdisziplinäre Mitwirkung gut diagnostizieren und einer Behandlung zuführen. Bei einigen Schwindelsyndromen ist die diagnostische Abgrenzung schwierig. Nicht selten können Komorbiditäten vorliegen. Der erschwerte Therapieentscheidungen. In den letzten Jahren haben Fortschritte in der interdisziplinären Diagnostik dazu beigetragen, die Diagnosesicherheit im Rahmen der Diagnostik zu erhöhen, dies erfordert jedoch eine enge interdisziplinäre Kooperation. So ist z. B. bei funktionellen Schwindelsyndromen, Funktionsstörungen der Halswirbelsäule mit assoziiertem „Schwindel“, Gangstörungen bzw. einer Sturzniedigung im höheren Lebensalter und in der Differenzialdiagnostik der vestibulären Migräne bzw. der Vestibularisparoxysmie eine interdisziplinäre Diagnostik notwendig. Vielversprechende neue diagnostische Methoden konkurrieren mit den gegenwärtigen diagnostischen Standards.

10.1 Endolymphatischer Hydrops

Der endolymphatische Hydrops stellt eine abnorme Dillation der endolymphatischen Flüssigkeitsräume des Innenohres dar, er ist das pathogenetische Korrelat beim Morbus Menière [90]. Der Arbeitsgruppe um Nakashima gelang im Jahre 2007 erstmals die kernspintomografische Visualisierung eines endolymphatischen Hydrops nach intratympanaler Applikation eines verdünnten Gadoliniumpräparates [237]. Diese ist der intravenösen Darstellung [238] überlegen und kann auch beiderseits erfolgen [239].

Zylan et al. führten im Jahre 2016 eine evidenzbasierte Analyse durch und verglichen Elektrocochleografie und intratympanale Gadoliniumapplikation. Im Ergebnis zeigte sich, allerdings bei wenigen Patienten, ein Vorteil für die intratympanale Gadoliniuminstillation [240]. Nebenwirkungen in Hinsicht auf Innenohrstörungen, insb. andere Auswirkungen auf das Hörvermögen, sind nach einer aktuellen Studie nicht zu erwarten. Darstellung und Auswertung der Methode wurden inzwischen verbessert [241]. Für die Praxis ergibt sich ein unmittelbarer medizinischer Nutzen: Erkrankungen, die mit einem endolymphatischen Hydrops einhergehen, insbesondere der Morbus Menière, lassen sich erstmals mit einer höheren diagnostischen Sicherheit und objektiv diagnostizieren. Dies hat eine unmittelbare therapeutische Konsequenz. Diese vielversprechende Methode steht damit in Konkurrenz mit den bisherigen diagnostischen Standards zur Hydropserkennung. Die Methode erfordert eine Kooperation von HNO-Ärzten und Radiologen.

10.2 Funktionelle Schwindelsyndrome

Zu den häufigsten Schwindelsyndromen zählen in der Praxis solche, die sich nicht vollständig durch eine organischer erklären lassen oder in der Folge einer vestibulären Erkrankung entstehen. BRANDT et al. erkannten die Zusammenhänge von Psyche und Schwindelsyndromen („Phobischer Anfallsschwindel“) [11, 12]. Eckardt-Henn et al. [61] und DIETERICH [242] prägten die Begriffe des primären und sekundären somatoformen Schwindels. Beide Begriffe sind für die tägliche Arbeit des HNO-Arztes von Bedeutung: Beim primären somatoformen Schwindel findet sich kein Korrelat für eine organische Erkrankung. Der sekundäre somatoforme Schwindel bildet sich in der Folge einer organischen (vestibulären) Störung heraus und betrifft einen hohen Prozentsatz der Patienten mit chronischen episodischen Beschwerden [42, 61]. Die frühe Erkennung ist die Basis für die frühzeitige Einleitung einer Psychotherapie und den Therapieerfolg [243]. STAAB et al. entwickelten in den letzten Jahren Konzepte, die unter dem Begriff „chronisch-subjektiver Schwindel“ zusammengefasst werden [62–64]. Gegenwärtig spricht man auch von „funktionellem Schwindel“. Dieser tritt nach STRUPP et al. [2] in 2 Unterformen auf, als „persistierender subjektiver Schwankschwindel“ und „phobischer Schwankschwindel“. Ein Konsens besteht hier noch nicht. Eine Klassifikation ist in Vorbereitung [2] und Überlappungen der Begriffe in Praxis kommen daher häufig vor.

Beim rezidivierenden (episodisch) auftretenden Schwindelsyndromen, insbesondere der Vestibulopathien, wie dem Morbus Menière, dem gutartigen Lagerungsschwindel sowie unvollständig vestibulär kompensierten unilateralen akuten Störungen („Neuritis
vestibularis”), aber auch bei der vestibulären Migräne treten häufig Komorbiditäten auf. Das betrifft insbesondere Angststörungen und Depressionen [98, 100]. Eckardt-Henn et al. [244] ermittelten bei der vestibulären Migräne in 65 % und beim Morbus Menière in 57 % der Fälle psychiatrische Komorbiditäten. Der HNO-Arzt sollte diese Zusammenhänge kennen und erkennen. Das kann im Einzelfall Schwierigkeiten bereiten, insbesondere dann, wenn im beginnenden Krankheitsstadium noch keine identifizierbaren Defizite vorhanden sind, die eine organische Störung erhärten. Hinweise können sich aus der Anamnese ergeben, eine interdisziplinäre Zusammenarbeit mit Neurologen, Psychiatern und Psychologen ist bei der Diagnostik und Therapie von Bedeutung.

10.3 Vestibuläre Migräne

Die vestibuläre Migräne gehört zu den häufigsten Erkrankungen mit episodischem „Schwindel“. Es gibt differenzialdiagnostische Überschneidungen mit anderen Schwindelsyndromen mit episodischem „Schwindel“ (▶ Tab. 2).

Für die Einordnung werden die aktuellen Klassifikationen der International Headache Society (ICHD-3 beta version) [245] und der Bárány-Society für Neurootologie [246–248] aus dem Jahre 2013 genutzt. Danach wird eine Attackendauer von mindestens 5 min gefordert (Morbus Menière > 20 min). Isolierte Schwindelepisoden ohne Begleitsymptome sind möglich. Kopfschmerzen, Ohrsymptome (z. B. „Ohrdruck“), Hörstörungen, eine visuelle Aura sind kommen mindestens 50 % der Fälle vor.

Eine differenzialdiagnostische Abgrenzung kann Schwierigkeiten bereiten, wenn sich bis auf die subjektiven Symptome keine objektiven Befunde „messem“ lassen. Hauptsächliche Differenzialdiagnose ist der Morbus Menière.

Störungen der vestibulären Funktionen finden sich auch im Akutstadium selten, sodass die Erkrankung meistens auf klinischer Basis diagnostiziert werden muss. Hörstörungen sind trotz subjektiver Problematik im Mittel nur bei ca. 38 % der Patienten nachweisbar [249]. Einen Beeinträchtigung der thermischen Erregbarkeit wurde in 22 % der Fälle gefunden, bei nur 9 % der Patienten zeigte sich ein pathologischer Videokopfimpulstest [168]. Ein gutartiger Lage symptomatische Hinweise für Gangstörungen im Alter kürzlich zusammen [73]. Eine Verlangsaming bzw. ein Stehenbleiben sind ein Zeichen für eine gestörte kognitive Leistung (z. B. infolge vaskulärer zentraler Störungen oder Demenzen).

Für die moderne Analyse des Gangablaufes nutzt man heute Videosysteme und drucksensitive Bodenmatten [73, 101, 102]. Funktionelle kernspintomografische und nuklearmedizinische Methoden sind bei der Differenzialdiagnostik hilfreich [73].

10.6 „Zervikogener Schwindel“ (Störung der Kopf-Körper-Position)

Der „zervikogene“ „Schwindel“ wird immer wieder kontrovers diskutiert [2, 69, 70, 252, 253] jedoch nicht mehr grundsätzlich abgelehnt [68]. Eine hohe diagnostische Sicherheit bietet jedoch kein diagnostisches Verfahren. Daher ist es empfehlenswert, nach Befunden zu suchen, die neben der Anamnese für oder gegen das Vorliegen eines zervikogenen „Schwindels“ bzw. besser einer Störung der Kopf-Körper-Position sprechen. Brandt und Huppert publizierten kürzlich einen Fallbericht, bei dem „Schwindel“ für wenige Tage im Zusammenhang mit Nackenschmerzen bei Kopfbewegungen aufgetreten ist [68]. Die Autoren diskutierten, dass eine Orientierungsstörung („Schwindel“) in solchen Fällen durch zentrale Mechanismen zustande kommen kann (z. B. Fehlinterpretation erwarteter und aktuell vor-
handener visueller somatischer und vestibulärer Afferenzen und Ef- ferenzsignale, „neural mismatch concept“). Hözl et al. vermuten an- hand der Ergebnisse ihrer Untersuchungen, dass ein Upbeat-Nystagmus im Halsdreh- und Vertikaltest Ursache eines durch Halsdrehung indu- zierten zerviko-okulären Reflexes ist [254].

Neben der Untersuchung der Augenbewegungen steht bei einem klinischen Verdacht eine gezielte funktionelle Untersuchung des Schädels, der Beweglichkeit der Halswirbelsäule, der Hals-, Nacken- und Kaumuskulatur sowie des Kiefergelenkes im Vordergrund. Schmerzen im Bereich der Dornfortsätze, ein Benommenheitsgefühl, auffällige Bewegungsstörungen der zervikalen Halsgelenke und ein positiver Halsdreh- und Vertikaltest mit Nystagmus sprechen nach L’Heureux-Lebeau et al. ebenfalls für die Diagnose eines zervikogenen „Schwindel“ [255].

Die Diagnostik erfordert eine Zusammenarbeit mit Zahnärzten, Kieferorthopäden, Orthopäden, Physiotherapeuten und Ärzten mit osteopathischen und manualtherapeutischen Befähigungen.

FAZIT
Nur mit interdisziplinärer Zusammenarbeit gelingt heute eine diagnostische Abgrenzung bei „Schwindel“.

11. Moderne Diagnostik von „Schwindel“ in der HNO-Begutachtung
Die Begutachtung stellt eine Besonderheit im Rahmen des ärztlichen Alltags dar. Ein Arzt-Patienten-Verhältnis im klassischen Sinne be- steht in den meisten Fällen nicht. Die Kriterien sind durch den Auf- traggeber und die rechtlichen Rahmenbedingungen vorgegeben. Richtungsweisend für die Bewertung ist die Lehrmeinung. Häufig sind die erhobenen diagnostischen Befunde auf einer Wahrschein- lichkeitsskala einzuschätzen, die von der „einfachen Wahrscheinlich- keit“ bis hin zu „An Sicherheit grenzender Wahrscheinlichkeit“ rei- chen und von den rechtlichen Rahmenbedingungen abhängig sind [256].

Bis auf Ausnahmen (gutartiger Lagerungsschwindel [257], Morbus Menière [258]) wird „Schwindel“ im Rahmen einer einheitlichen Bemes- sungsgrundlage nach den Stoll-Tabellen [259–261] bewertet. Grund- lage für die Begutachtung von „Schwindel“ sind danach jedoch aus- schließlich subjektive Angaben. Angaben aus der Anamnese auf der einen Seite („Intensität“) werden Anforderungen im Alltag und im Beruf auf der anderen Seite („Belastung“) gegenübergestellt. Die „Belastbar- keit“ (MdE/Gdb/Gds) ergibt sich nach Korrelation der subjektiven An- gaben (0 = nahezu beschwerdefrei . . 4 = heftiger „Schwindel“ und Ori- entierungsverlust) mit Attributen wie „alltäglich“, „vermeidbar“ und „ungenöhnlich“, wobei Beispiele subjektiver Testverfahren (Romberg, Unterberger, Tandem Romberg, Balancieren) aufgeführt sind [262].

Trotz dieser Abhängigkeit von subjektiven Angaben wird eine dif- ferenzierte Einschätzung von „Schwindel“ durch eine klinische Un- tersuchung gefordert [260, 262]. Dies trägt dazu bei zu klären, ob bzw. zu welchem Ausmaß eine Störung des Orientierungsinnnes plausibilisiert werden kann. Wichtig ist auch, ob der überwiegende Teil der vermuteten Störung in das HNO-Fachgebiet fällt bzw. ob Ne- bengutachten erforderlich sind.

Die Erhebung der Anamnese mit Berücksichtigung des Grades der subjetiven Beeinträchtigung in Ruhe und bei Bewegung ist von zentraler Bedeutung. Ggf. muss ein berufliches Betroffenensein evalu- iert werden. Auch in der Begutachtung gilt, dass nur solche Verfah- ren im Rahmen der Diagnostik eingesetzt werden können, die der Lehrmeinung des Fachgebietes entsprechen (überwiegende Befür- wortung, nachgewiesene Evidenz und Nutzen der Methode). Refer- renzbereiche sollten immer angegeben werden. Sie sind der Maß- stab für die Bewertung. Bei der Bewertung der Befunde muss auch im Rahmen der HNO-Begutachtung berücksichtigt werden, dass z. B. Alkohol und Medikamente das Ergebnis moderner Diagnostik beein- flussen können [178–180].

Wir haben kürzlich festgestellt, dass die modernen diagnosti- schen Verfahren, wie der klinische und Videokopfimpulstest sowie zervikale und okuläre vestibulär evozierte myogene Potenziale, heute vor allem aufgrund ihrer Objektivität, unverzichtbarerer „(zeitgemäß“) Bestandteil des Untersuchungsganges im Rahmen der HNO- Begutachtung bei der Fragestellung von „Schwindel“ an einen HNO- Arzt sind [56].

Zu den Aufgaben des HNO-Arztes gehört ebenfalls die deskripti- ve Einschätzung, ob bei „Schwindel“ zentrale Vestibulopathien bzw. psychische Komorbiditäten vorhanden sind. Diese können dann im Rahmen einer fachspezifischen Zusatzbegutachtung zugeführt wer- den, wenn signifikante Teilauswirkungen auf die Gesamteinschätz- zung vermutet werden.

Wie sind chronische Beschwerden nach einer akuten einseitigen Vestibulopathie einzuschätzen und lassen sich diese mit den Ergeb- nissen objektiver Diagnostik korrelieren?

Patel et al. konnten nachweisen, dass moderne Diagnostik (Videokopfimpulstest aller 3 Kanäle beiderseits) nicht mit der subjek- tiv evaluierten Beeinträchtigung bei chronischen „Schwindel“-Be- schwerden korreliert. Patienten mit geringen und solche mit erheb- lichen Beschwerden zeigten identische Befunde [263].

McCaslin et al. untersuchten kürzlich Patienten mit einer unilate- ralen Beeinträchtigung der Sacculusfunktion (pathologische cVEMP) und einseitiger Vestibulopathie (pathologische thermische Prüfung, ggf. pathologische cVEMP). Patienten mit einer Beeinträchtigung der Sacculusfunktion zeigten auch eine signifikant beeinträchtigte Standstabilität, die jedoch besser war als die bei Patienten mit einer pathologischen thermischen Prüfung allein bzw. zusätzlich beein- trächtigter Sacculusfunktion. Subjektiv (Ermittlung mittels DHI) wur- den jedoch keine Differenzen festgestellt [264].

Piker et al. fanden, dass pathologische Testergebnisse bei chro- nischen Schwindelbeschwerden viel besser mit psychischen Symptomen wie Angst und Depressionen korreliert sind [265]. Da chroni- scher „Schwindel“ zu einem hohen Prozentsatz mit psychischen Komorbiditäten einhergeht [98, 100, 244], sollte vor einer Gesamt- bewertung eingeschätzt werden, ob eine psychologische bzw. psy- chiatrische Zusatztbegutachtung notwendig ist, um zu klären, wel- chen Anteil die HNO-Erkrankung an der Gesamtproblematik hat bzw. ob Komorbiditäten diese signifikant beeinflussen.

Befunde moderner Diagnostik sind in der HNO-Begutachtung wegen ihres objektiven Charakters unverzichtbar. Sie tragen ent-
scheidend zur Klärung der Frage bei, ob und in welchem Ausmaß (kausal oder final) eine Störung im HNO-Fachgebiet vorliegt oder nicht. Die bisherige Literatur zeigt, dass die subjektive Beeinträchtigung durch „Schwindel“ gegenwärtig nicht mit objektiven Befunden der Vestibularisdiagnostik „gemessen“ werden kann.

FAZIT

Die gutachterliche Schätzung bei Dauer-„Schwindel“ erfolgt gegenwärtig unabhängig vom Rechtsgebiet nach einer einheitlichen Tabelle. Eine krankheitsspezifische Bewertung wird derzeit nur bei episodischen Schwindelsyndromen praktiziert.

Bei der gutachterlichen Bewertung dominieren subjektive Symptome und damit eine subjektive Einschätzung. Moderne Verfahren (Videokopfimpulstest, VEMP) sind aufgrund ihrer hohen Überzeugungskraft (Objektivität) bei der Begutachtung ein wichtiges Element im Rahmen der Suche nach der Wahrheit. Damit kann geklärt werden, ob eine objektive Störung der Vestibularisfunktion im HNO-Fachgebiet vorliegt oder nicht. Befunde der Vestibularisprüfung korrelieren nicht mit subjektiven Empfindungen bei „Schwindel“. Die Angabe einer Diagnose (nach ICD-10) basiert auf Referenzbereichen und ist medizinischer Standard.

Literatur

[1] Walther LE. Wiederherstellende Verfahren bei gestörtem Gleichgewicht. Laryngorhinootologie 2005; 84 (Suppl 1): 70–91
[2] Brandt T, Dieterich M, Strupp M., (Hrsg.), Vertigo-Leitsymptom Schwindel. 2. Aufl. 2013 Springer; Heidelberg
[3] Strupp M, Dieterich M, Zwergal A et al. Periphery, zentrale und funktionelle Schwindelsyndrome. Der Nervenarzt 2015; 86: 1573–1587
[4] Walther LE. Dizziness and vertigo in older individuals. MMW Fortschr Med 2014; 156: 48–52
[5] Walther LE, Kleeberg J, Rejmanowski G et al. Falls and fall risk factors. Are they relevant in ENT outpatient medical care? HNO 2012; 60: 448–456
[6] Hegemann SCA, Palla A. New methods for diagnosis and treatment of vestibular diseases. F1000 Medicine Reports 2010; 2: 60
[7] Strupp M. Challenges in neuro-otology. Front Neurol 2010; 11: 121
[8] Straumann D, Müri RM, Hess K. Neurootologie und Neuroophthalmologie. In: Hess K, Steck AJ. Kompendium der Neurologie. 2002: Hans Huber Verlag: 355–372
[9] Brandt T, Dieterich M. Vestibular paroxysmia: vascular compression of the eighth nerve? Lancet 1994; 343: 798–799
[10] Straumann D, Zee DS. Three-dimensional aspects of eye movements, Curr Opin Neurol 1995; 69–71
[11] Brandt T, Dieterich M. Phobischer Attacken-Schwankschwindel, ein neues Syndrom. Münch Med Wochenschr 1996; 128: 247–250
[12] Brandt T. Phobic postural vertigo. Neurology 1996; 46: 1515–1519
[13] Lempert T, Tiel-Wick K, A positional maneuver for treatment of horizontal‐canal benign positional vertigo. Laryngoscope 1996; 106: 476–478
[14] Fetter M, Dichtgans J. Vestibular neuritis spares the inferior division of the vestibular nerve. Brain 1996; 119: 755–763
[15] Minor LB, Solomon D, Zinreich JS et al. Sound- and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal. Arch Otalaryngol Head Neck Surg 1998; 124: 249–258
[16] Dieterich M, Brandt T. Episodic vertigo related to migraine. J Neurol 1999; 246: 883–892
[17] Lempert T, Leopold M, von Brevern M, Neuhauser H. Migraine and benign positional vertigo. Ann Otol Rhinol Laryngol 2000; 109: 1176
[18] Halmagyi GM, Aw ST, Cremer PD, Curthoys IS, Todd MJ. Impulsive testing of individual semicircular canal function. Ann NY Acad Sci 2001; 942: 192–200
[19] Aw ST, Fetter M, Cremer PD et al. Individual semicircular canal function in superior and inferior vestibular neuritis. Neurology 2001; 57: 768–774
[20] Neuhauser H, Leopold M, von Brevern et al. The interrelations of migraine, vertigo and migrainous vertigo. Neurology 2001; 56: 436–441
[21] Böldow A, Helbig R, Bloching M et al. Isolated functional loss of the lateral semicircular canal in vestibular neuritis. HNO 2013; 61: 46–51
[22] Halmagyi GM, Curthoys IS. A clinical sign of canal paresis. Arch Neurol 1988; 45: 737–739
[23] Colebatch JG, Halmagyi GM. Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation. 1992; 42: 1635–1636
[24] Todd NP, Curthoys IS, Aw ST et al. Vestibular evoked ocular responses to air- (AC) and bone-conducted (BC) sound I: eye movements and timing in relation to vestibular evoked peri-ocular potentials (VEPP). J Vestib Res 2004; 14: 123–124
[25] Todd NP, Rosengren SM, Colebatch JG. Vestibular evoked ocular responses to air- (AC) and bone-conducted (BC) sound II: a neuroanatomical and physiological interpretation of AC-OVEMP. J Vestib Res 2004; 14: 215–216
[26] Ulmer E, Chays A. (2005) Curthoys and Halmagyi Head Impulse test: an analytical device. Ann Otolaryngol Chir Cervicofac 2005; 122: 84–90
[27] Bartl K, Lennh, Kohlbecher S, Schneider E. Head impulse testing using video-oculography. Ann NY Acad Sci 2009; 1164: 331–333
[28] Schneider E, Villgrattner T, Vockeroth J et al. EyeSeeCam: an eye movement-driven head camera for the examination of normal visual exploration. Ann NY Acad Sci 2009; 1164: 461–467
[29] Weber KP, MacDougall HC, Halmagyi GM et al. Impulsive testing of semicircular canal function using video-oculography. Ann NY Acad Sci 2009; 1164: 466–491
[30] MacDougall HC, McCarron LA, Halmagyi GM, Curthoys IS, Weber KP. The video Head Impulse Test (vHIT) detects vertical semicircular canal dysfunction. PLoS One 2013; 22: e61488
[31] MacDougall HC, McCarron LA, Halmagyi GM, Curthoys IS, Weber KP. Application of the video head impulse test to detect vertical semicircular canal dysfunction. Otol Neurotol 2013; 34: 974–979
[32] Vital D, Hegemann SC, Straumann D et al. A new dynamic visual acuity test to assess peripheral vestibular function. Arch Otolaryngol Head Neck Surg 2010; 136: 686–691
[33] Rossengren SM, Welgampola MS, Colebatch JG. Vestibular evoked myogenic potentials: past, present and future. Clin Neurophysiol 2010; 121: 636–651
[34] Welgampola MS, Colebatch JG. Characteristics and clinical applications of vestibular-evoked myogenic potentials. Neurology 2005; 24: 1682–1688
[35] Curthoys IS. A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin Neurophysiol. 2010; 121: 132–144
[123] Newman-Toker DE, Kerber KA, Hsieh YH et al. HINTS outperforms ABCD2 to screen for stroke in acute continuous vertigo and dizziness. Acad Emerg Med. 2013; 20: 986–996

[124] Newman-Toker DE, Curthoys IS, Halmagyi GM. Diagnosing Stroke in Acute Vertigo: The HINTS Family of Eye Movement Tests and the Future of the ‘Eye ECC’. Semin Neurol 2015; 35: 506–521

[125] Ogawa Y, Otsuka K, Hagiwara A et al. Clinical evaluation of acute phase nystagmus associated with cerebellar lesions. J Laryngol Otol 2016; 130: 536–540

[126] Choi SY, Kee HJ, Park JH et al. Moderate Schwindeldiagnostik. Laryngo-Rhino-Otol 2017; 96: S183–S208

[127] Kerber KA, Fendrick AM. The evidence base for the evaluation and management of dizziness. J Eval Clin Pract 2010; 16: 186–191

[128] Park HK, Kim JS, Strupp M, Zee DS. Isolated floccular infarction: impaired vestibular responses to horizontal head impulse. Neurorosc 2013; 260: 1576–1582

[129] Pogson JM, Taylor RL, Young AS et al. Vertigo with sudden hearing loss: audio-vestibular characteristics. J Neurol 2016, doi:10.1007/s00415-016-8214-0 [in press]

[130] Kim HA, Yi HA, Lee H. Recent advances in cerebellar ischemic stroke syndromes causing vertigo and hearing loss. Cerebrellum 2015, doi:10.1007/s12311-015-0745-x [in press]

[131] Kerber KA, Fendrick AM. The evidence base for the evaluation and management of dizziness. J Eval Clin Pract 2010; 16: 186–191

[132] Kim HJ, Lee SH, Park JH et al. Isolated vestibular nuclear infarction: report of two cases and review of the literature. J Neurol 2014; 261: 121–129

[133] Raphan T, Cohen B. The vestibulo-ocular reflex in three dimensions. Exp Brain Res 2002; 145: 1–27

[134] Herdman SJ. Role of vestibular adaptation in vestibular rehabilitation. Otolaryngol Head Neck Surg 1998; 119: 49–54

[135] MacDougall HG, Weber KP, McGarvie LA et al. The video head-impulse test: diagnostic accuracy in peripheral vestibulopathy. Neurology 2009; 73: 1134–1141

[136] Wahrle LE. Der Videokopfimpulstest. In: Ernst A, Basta D. Vertigo-Neue Horizonte in Diagnostik und Therapie. 2012; 117–127; Springer

[137] Lehnen N, Bartl K, Kuhlbecher S et al. HITS for kids: The video-based head-impulse test in children and adolescents. In: Bárány Society XXVI International Congress. J Vestib Res 2010; 20: 313

[138] Schubert MC, Mantokoudis G, Xie L et al. Acute VOR gain differences for outward vs. inward head impulses. J Vestib Res 2014; 24: 397–402

[139] Nyström A, Tjernström F, Magnusson M. Outward versus inward head thrusts with video-head-impulse testing in normal subjects: does it matter? Otol Neurotol 2015; 36: e97–e94

[140] Patterson JN, Bassett AM, Mollak CM et al. Effects of hand placement technique on the video head impulse test (vHIT) in younger and older adults. Otol Neurotol 2015; 36: 1061–1068

[141] Tarnutzer AA, Bockisch CJ, Buffone E et al. Disease-specific sparing of the anterior semicircular canals in bilateral vestibulopathy. Clin Neurophysiol 2016; 127: 2791–2801

[142] Walther LE, Blödow A. Ocular vestibular evoked myogenic potential to air conducted sound stimulation and video head impulse test in acute vestibular neuritis. Otol Neurotol 2013; 34: 1084–1089

[143] Alhabib SF, Saliba I. Video head impulse test: a review of the literature. Eur Arch Otorhinolaryngol 2016, doi:10.1007/s00405-016-4157-4

[144] Blödow A, Pannasch S, Walther LE. Detection of isolated covert saccades with the video head impulse test in peripheral vestibular disorders. Auris Nasus Larynx 2013; 40: 348–351

[145] Weber KP, Aw ST, Todd MJ et al. Head impulse test in unilateral vestibular loss: vestibulo-ocular reflex and catch-up saccades. Neurology 2008; 70: 454–463

[146] Mossman B, Mossman S, Purdie G et al. Age dependent normal horizontal VOR gain of head impulse test as measured with video-oculography. J Otolaryngol Head Neck Surg 2015; 44: 29

[147] Anson ER, Bigelow RT, Carey JP et al. VOR gain is related to compensatory saccades in healthy older adults. Front Aging Neurosci 2016; 8: 150

[148] Anson ER, Bigelow RT, Carey JP. Aging increases compensatory saccade amplitude in the video head impulse test. Front Neurol 2016; 11: 173

[149] Rambold HA. Age-related refixating saccades in the three-dimensional video-head-impulse test: source and dissociation from unilateral vestibular failure. Otol Neurotol 2016; 37: 171–178

[150] Matiño-Soler E, Esteller-More E. Normative data on angular vestibulo-ocular responses in the yaw axis measured using the video head impulse test. Otol Neurotol 2015; 36: 466–471

[151] Palla A, Straumann D. Recovery of the high-acceleration vestibulo-ocular reflex after vestibular neuritis. J Assoc Res Otolaryngol 2004; 5: 427–435

[152] Fetter M, Zee DS. Recovery from unilateral labyrinthectomy in rhesus monkey. J Neurophysiol 1988; 59: 370–393

[153] Lasker DM, Hullar TE, Minor LB. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. III. Responses after labyrinthectomy. J Neurophysiol 2000; 83: 2482–2496

[154] Hübner PP, Khan SI, Migliaccio AA. The mammalian efferent vestibular system plays a crucial role in the high-frequency response and short-term adaptation of the vestibuloocular reflex. J Neurophysiol 2015; 114: 3154–3165

[155] Yip CW, Glaser M, Frenzel C et al. Comparison of the bedside head-impulse test with the video head-impulse test in a clinical practice setting: A prospective study of 500 outpatients. Front Neurol 2016; 20: 58

[156] Tjernström F, Nyström A, Magnusson M. How to uncover the covert saccade during the head impulse test. Otol Neurotol 2012; 33: 1583–1585

[157] Jorns-Haderli M, Straumann D, Palla A. Accuracy of the bedside head impulse test in detecting vestibular hypofunction. J Neurosurg Psychiatry 2007; 78: 1113–1118

[158] Mahringer A, Rambold HA. Caloric test and video-head-impulse: a study of vertigo/dizziness patients in a community hospital. Eur Arch Otorhinolaryngol 2014; 271: 463–472

[159] Curthoys I. Clinicians ask why vHIT? http://headimpulse.com/sites/default/files/7-26-30009-EN_00_PRINT.pdf

[160] Böhmer A, Straumann D, Henn V et al. Acta Otolaryngol Suppl 1995; 520: 178–180

[161] Scherer H, Brandt U, Clarke AH et al. European vestibular experiments on the Spacelab-1 mission: 3. Caloric nystagmus in microgravity. Exp Brain Res 1986; 64: 255–263

[162] Arai Y, Yashkin SB, Dari M, Kunin M, Raphan T, Suzuki J, Cohen B. Spatial orientation of caloric nystagmus. Ann N Y Acad Sci 2002; 956: 190–204

[163] Mantokoudis G, Schubert M, Saber T. Early adaptation and compensation of clinical vestibular responses after unilateral vestibular deafferentation surgery. Otol Neurotol 2013; 35: 148–154

[164] Schmid-Prisccione A, Böhmer A, Obzina H et al. Caloric and search-coil head-impulse testing in patients after vestibular neuritis. J Assoc Res Otolaryngol 2001; 2: 72–78

[165] Bartolomeo M, Bibolette R, Pierre G et al. Value of the video head impulse test in assessing vestibular deficits following vestibular neuritis. Eur Arch Otorhinolaryngol 2014; 271: 681–688

[166] McCaslin DL, Jacobson GP, Bennett ML et al. Predictive properties of the video head impulse test: measures of caloric symmetry and self-report dizziness handicap. Ear Hear 2014; 35: e185–e191

[167] Rambold HA. Economic management of vertigo/dizziness disease in a county hospital: video-head-impulse test vs. caloric irrigation. Eur Arch Otorhinolaryngol 2015; 272: 2621–2628
[254] Hölzl M, Gabel P, Weikert S. Influence of different head-trunk positions to the upbeat-nystagmus. Laryngorhinootologie 2009; 88: 92–100

[255] L'Heureux-Lebeau B, Godbout A, Berbiche D et al. Evaluation of paraclinical tests in the diagnosis of cervicogenic dizziness. Otol Neurotol 2014; 35: 1858–1865

[256] Feldmann H, Brusis T. Das Gutachten des Hals-Nasen-Ohrenarztes. 7. überarbeitete Auflage. Thieme-Verlag Stuttgart; 2012

[257] Walther LE, Brusis T. Of the expert office: expert evaluation of benign paroxysmal positional vertigo (BPPV) to current criteria. Laryngorhinootologie 2012; 91: 36–39

[258] Stoll W. Expert assessment of Menière's disease. Laryngol Rhinol Otol (Stuttg) 1988; 67: 465–468

[259] Stoll W. Die Begutachtung vestibulärer Störungen. Laryngol Rhinol Oto 1979; 58: 509–525

[260] Stoll W. Untersuchungsmethoden zur Objektivierung und Begutachtung vestibulärer Störungen. Neurol 1982; 9: 121–125

[261] Stoll M, Stoll W. Ein Plädoyer für MdE-Tabellen. Sozialgerichtsbarkeit 1984; 31: 515–518

[262] Stoll W. Das neurootologische Gutachten. Interdisziplinäre Begutachtung von Schwindel und neurootologischen Funktionsstörungen. Thieme-Verlag Stuttgart; New York: 2002

[263] Patel M, Arshad Q, Roberts RE. Chronic symptoms after vestibular neuritis and the high-velocity vestibulo-ocular reflex. Otol Neurotol 2016; 37: 179–184

[264] McCaslin DL, Jacobson GP, Grantham SL et al. The influence of unilateral saccular impairment on functional balance performance and self-report dizziness. J Am Acad Audiol 2011; 22: 542–549

[265] Piker EG, Kaylie DM, Garrison D et al. Hospital anxiety and depression Scale: factor structure, internal consistency and convergent validity in Patients with dizziness. Audiol Neurootol 2015; 20: 394–399