High Doses of Ascorbate (Vitamin C): A New Frontier in the Treatment of Intraocular Cancer

Introduction: Retinoblastoma and Uveal Melanoma

Retinoblastoma is a rare intraocular tumour affecting the retina of young children and infants [1]. Chemotherapeutic agents such as carboplatin and etoposide, have been shown to effectively reduce the volume of intraocular tumours in these children [2,3]. However, the toxicity of systemic chemotherapy, still represents an issue which deserves further investigation [4,5], particularly when genomic instability is involved, as in the case of retinoblastoma [6,7].

Uveal Melanoma is a malignant cancer of the uvea, affecting around 4.3-5 individuals per million, in the United States, the vast majority of which are Caucasian males [8]. Despite its paucity, uveal melanoma is the most common primary tumour of the eye in adults, with the choroid as the most commonly involved anatomical structure [9]. Up to 50% of patients develop metastatic disease in a time-lapse variable from five to 15 years after diagnosis, with preferential involvement of the liver, and about 90% of them will ultimately succumb to metastatic spread in less than three months [10-15].

Until the late eighties, the only treatment available for uveal melanoma was enucleation of the affected eye, though brachytherapy, thermotherapy and radiation therapy can be used to treat small/medium size tumours with preservation of the eye [16]. Several different chemotherapeutic agents have been used, such as Dacarbazine, alone or in combination with Interferon-alpha 2b, after primary treatment, to patients at high risk of developing metastatic disease, but they have not improved the outcome of these patients [17,18].

Globally, despite the improvements in the treatment of primary tumours and although very rarely patients show detectable metastasis at presentation, still half of the patients die of metastatic disease. Regarding the mechanisms of malignant transformation, in uveal melanoma, emphasis has been given to genetic changes, but, although both cytogenetics and genetics have amount of catalase of 10-to 100 times lower than the normal ones, and this explains the selective toxicity of high concentration of Vitamin C, leads to accumulation of this ROS in cancer cells, which can be enhanced by divalent cations such as iron and copper [43-46]. The amount of hydrogen peroxide generated is usually proportional to the amount of Vitamin C administered [47-50]. However, other factors influence the formation of hydrogen peroxide, after administration of high doses of Vitamin C; in particular, cupric ion is a catalyst of the oxidation of Vitamin C, and, as such, it increases the production of hydrogen peroxide, starting from Vitamin C [51-54].

The increased levels hydrogen peroxide, upon administration of Vitamin C, leads to accumulation of this ROS in cancer cells, which have amount of catalase of 10-to 100 times lower than the normal ones, and this explains the selective toxicity of high concentration of Vitamin C for cancer cells, as compared to the normal ones [55-60]. In addition to Vitamin C per se, some products of Vitamin C metabolism have shown anticancer properties; among others: dehydroascorbic acid, 2,3-diketogulonic acid, and 5-methyl 1,3,4-dehydroxytetrone [27,28,60-63].

Secondary anticancer properties of Vitamin C include:

i. Improved collagen synthesis with consequent limitation of cancer spread [64,65].

ii. Improved immune competence, through enhanced synthesis of immunoglobulin’s, phagocytosis and production of interferon [66-69].

iii. Inhibition of prostaglandins and the release of arachidonic acid, which is supposed to represent a synergistic signal leading to cell proliferation [70,71].

The Anticancer Properties of Vitamin C in High Concentrations

Among its innumerable physiologic properties, Vitamin C (in the form of both ascorbic acid or sodium ascorbate), when administered in high ("pharmacologic") concentrations, is toxic for cancer cells, both in vitro and in vivo, in a number of different ways. Although widely known as the founder of all antioxidants and free radical scavengers, Vitamin C is cytotoxic for cancer cells, in vitro, mainly because of its pro-oxidant properties [25-33], and this activity seems to be primarily mediated by hydrogen peroxide; therefore, Vitamin C in pharmacologic concentrations is considered a prodrug of hydrogen peroxide [34-42].

When oxidized, in biological systems, Vitamin C generates hydrogen peroxide, which can be considered a ROS; this action can be enhanced by divalent cations such as iron and copper [43-46]. The amount of hydrogen peroxide generated is usually proportional to the amount of Vitamin C administered [47-50]. However, other factors influence the formation of hydrogen peroxide, after administration of high doses of Vitamin C; in particular, cupric ion is a catalyst of the oxidation of Vitamin C, and, as such, it increases the production of hydrogen peroxide, starting from Vitamin C [51-54].

The increased levels hydrogen peroxide, upon administration of Vitamin C, leads to accumulation of this ROS in cancer cells, which have amount of catalase of 10-to 100 times lower than the normal ones, and this explains the selective toxicity of high concentration of Vitamin C for cancer cells, as compared to the normal ones [55-60]. In addition to Vitamin C per se, some products of Vitamin C metabolism have shown anticancer properties; among others: dehydroascorbic acid, 2,3-diketogulonic acid, and 5-methyl 1,3,4-dehydroxytetrone [27,28,60-63].

Secondary anticancer properties of Vitamin C include:

i. Improved collagen synthesis with consequent limitation of cancer spread [64,65].

ii. Improved immune competence, through enhanced synthesis of immunoglobulin’s, phagocytosis and production of interferon [66-69].

iii. Inhibition of prostaglandins and the release of arachidonic acid, which is supposed to represent a synergistic signal leading to cell proliferation [70,71].

Review Article

Volume 4 Issue 1 - 2016

Domenico Mastrangelo* and Lauretta Massai
Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze – Università degli Studi di Siena, Italy,
*Corresponding author: Domenico Mastrangelo, Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze – Università degli Studi di Siena, Italy, Email: domenico.mastrangelo@unisi.it
Received: December 10, 2015 | Published: January 08, 2016

Submit Manuscript | http://medcraveonline.com

MedCrave
Step into the World of Research

Adv Ophthalmol Vis Syst 2016, 4(1): 00090
iv. Stabilization of p53, a protein involved in the control of cell proliferation [72,73].

Current Chemotherapy for Retinoblastoma and High Doses of Vitamin C: Evidence from in vitro Studies

Chemotherapeutic agents such as carboplatin and etoposide, have been shown to effectively reduce the volume of intraocular tumours in children affected by retinoblastoma [74,75]. However, the toxicity of systemic chemotherapy, still represents an issue which deserves further investigation [76,77], particularly when genomic instability is involved, as in retinoblastoma [6,7]. In an effort to improve drug delivery to the tumour, and simultaneously reduce systemic toxicity, clinical researchers have more recently developed super selective Ophthalmic Artery Infusion (SOAI) of chemotherapeutic agents [70] which, although still controversial [79,80], promises a dramatic improvement in the rate of preservation of the affected eye [81-83], particularly when different drugs are combined [84-86].

Although widely used, chemotherapy of retinoblastoma is based on studies testing only a few chemotherapeutic agents [87,88] using the clonogenic assay, which has been largely criticized, in the past [89, 90] and almost completely abandoned nowadays, given its low reliability [91]. More recently, the combination of carboplatin and cell immunotherapy has been demonstrated superior to carboplatin alone, in killing Y79 cells [92] and carboplatin-resistant retinoblastoma cells in vitro [93]. However, even at its best, cancer chemotherapy has limited value in the treatment of retinoblastoma while in vitro testing on Vitamin C, has already shown promising results and a clear superiority, when compared to conventional chemotherapy.

As a matter of fact, Medina and Schweigerer, in 1993-4, showed that Ascorbate has cytotoxic effect on Y79 cells in long-term incubations in the presence of limited amounts of serum in the medium [94,95], while other Authors have demonstrated that a mixture, containing, among others, ascorbic acid, induces apoptosis on Y79 cells, in vitro [96]. In our experience, Y79 cells are highly sensitive to sodium ascorbate, when exposed to this vitamin for only one hour, under standard culture conditions (RPMI 1640, supplemented with antibiotics, Glutamine, 10% heat inactivated Fetal Bovine Serum in an atmosphere of 5% CO2), with an increase in the production of ROS, which represents an indication for prevention with antioxidant and treatment with pro-oxidant molecules, a role which can be fully interpreted by ascorbate, depending on the dose administered.

In our experience, uveal melanoma cell lines (C918 and OCM1) exposed for two hours to increasing concentrations of ascorbate in the culture medium, are highly sensitive to the cytotoxic effects of the vitamin. In particular, at 7mM of sodium ascorbate in the medium, the percentage of live cells is well below the 10%, and, in most cases, below the 5%. Arsenic Trioxide (ATO), which is known to induce apoptotic/necrotic cell death through production of hydrogen peroxide (H2O2), has been used in phase II clinical trials in uveal melanoma, even if with limited results [116]; interestingly, in our experience, adding arsenic trioxide to the culture, significantly increased the cytotoxic effects of ascorbate on uveal melanoma cell lines [117].

Concluding Remarks

In spite of the great number of reports showing a strong anticancer activity of high concentrations of ascorbate in vitro [118,119] the in vivo antitumor effect of high doses of the vitamin is still controversial and further controlled clinical trials are needed to fully elucidate it. However, ascorbate administered in high doses by intravenous route, has great potentialities in the treatment of cancer, once a few technical issues are further clarified.

In a recent, excellent review on this matter, Gonzalez and Coll. enumerate the variables that may interfere with the clinical response to high doses of intravenous ascorbate [120]. In particular the Authors underscore the level of tissue oxygenation, the level of blood glucose, and the physiological Red-Ox balance, as the most relevant physiological/cellular variables to take into account, to fully exploit the anticancer potential of high doses of ascorbate in vivo. In 1956, Otto Warburg clarified that cancer cells are metabolically different from their normal counterpart, since they not only survive under adverse conditions such as hypoxia, but are also capable of proliferation and distant invasion (metastasis) [121,122].

The so called “Warburg effect” (or phenomenon), is represented by a metabolic shift which compels cancer cells to rely on the inefficient glycolytic mode of ATP synthesis (2 ATPs/
glucose), rather than respiration that produces substantially more ATP/glucose (about 36 ATPs/glucose). As a consequence, cancer cells must adopt a mode of increased glucose import to meet their energy demands, and this explains why they increase their levels of glucose transporters (GLUT) [123] and crave for glucose [124-127]. Taken together, these data indicate that, since high concentrations of ascorbate seem to kill cancer cells essentially by increasing the local production of hydrogen peroxide (H$_2$O$_2$), it is clear that a good local oxygenation and a reduced intake of glucose are fundamental pre-requisites to optimize the cytotoxic effect of the vitamin on cancer cells. Once optimized as suggested by the metabolic changes occurring in cancer cells, the intravenous injection of high doses of Vitamin C promises to radically improve the outcome and the quality of life of patients affected by both retinoblastoma and uveal melanoma, since:

I. In both its oral and intravenous (IV) formulations, ascorbate is remarkably safe.

II. It improves the quality of life of cancer patients.

III. It reduces the many complications of the disease.

IV. It enhances the cytotoxic effects and reduces the side effects of chemotherapy.

V. As a pro-drug of hydrogen peroxide, it is toxic only for cancer cells.

References

1. Mastrangelo D, De Francesco S, Di Leonardo A, Lentini L, Hadjistilianou T (2008) The retinoblastoma paradigm revisited. Med Sci Monit 14(12): RA231-240.

2. Friedman DL, Himelstein B, Shields CL, Shields JA, Needle M, et al. (2000) Chemoprevention and local ophthalmic therapy for intraocular retinoblastoma. J Clin Oncol 18(1): 12-17.

3. Rodriguez-Galindo C, Wilson MW, Haik BG, Merchant TE, Billups CA, et al. (2003) Treatment of intraocular retinoblastoma with vincristine and carboplatin. J Clin Oncol 21(10): 2019-2025.

4. Leahey A (2012) A cautionary tale: dosing chemotherapy in infants with retinoblastoma. J Clin Oncol 30(10): 1023-1024.

5. Rizzuti AE, Dunkel IJ, Abramson DH (2008) The adverse events of chemotherapy for retinoblastoma. Exp Pathol 6(7): 1230-1244.

6. van Harn T, Foijer F, van Vugt M, Banerjee R, Yang F, et al. (2010) Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes Dev 24(13): 1377-1388.

7. Lefèvre SH, Vogt N, Dutrillaux AM, Chauveine L, Stoppa-Lyonnet D, et al. (2001) Genome instability in secondary solid tumours developing after radiotherapy of bilateral retinoblastoma. Oncogene 20(56): 8092-8099.

8. Singh AD, Topham A (2003) Incidence of uveal melanoma in the United States: 1973-1997. Ophthalmology 110(5): 956-961.

9. Katz NR, Finger PT, McCormick SA, Tello C, Ritch R, et al. (1995) Ultrasound biomicroscopy in the management of malignant melanoma of the iris. Arch Ophthalmol 113(11): 1462-1463.

10. Hawkins BS, Collaborative Ocular Melanoma Study Group (2004) The Collaborative Ocular Melanoma Study (COMS) randomized trial of pre-enucleation radiation of large choroidal melanoma: IV. Ten-year mortality findings and prognostic factors. COMS report number 24. Am J Ophthalmol138(6): 936-951.

11. Collaborative Ocular Melanoma Study Group (1998) The Collaborative Ocular Melanoma Study (COMS) randomized trial of pre-enucleation radiation of large choroidal melanoma II: initial mortality findings. COMS report no. 10. Am J Ophthalmol 125(6): 779-796.

12. Rijal S, Moore R, Karakousis CP (1983) Survival in metastatic ocular melanoma. Cancer 52: 334-336.

13. The Rotterdam Ocular Melanoma Study Group, Koopmans AE, de Klein AM, Naus NC, Kilic E (2013) Diagnosis and management of uveal melanoma. Eur Ophthal Rev 7(1): 56-60.

14. Einhorn LH, Burgess MA, Gottlieb JA (1974) Metastatic patterns of choroidal melanoma. Cancer 34(4): 1001-1004.

15. Mavligit GM, Charnsangavej C, Carrasco CH, Patt YZ, Benjamin RS, et al. (1988) Regression of ocular melanoma metastatic to the liver after hepatic arterial chemoembolization with cisplatin and polyvinyl sponge. JAMA 260(7): 974-976.

16. van den Bosch T, van Beek J, Klijn E, Naus N, Paridaens D, et al. (2001) Genetics of Uveal Melanoma. In: Armstrong A (Ed.), Advances in Malignant Melanoma - Clinical and Research Perspectives. InTech pp. 137-158.

17. Trizoli PL, Eng C, Singh AD (2008) Targeted therapy for uveal melanoma. Cancer Treat Rev 34(3): 247-258.

18. Kuja E, Mäkitie T, Kivelä T (2003) Very long-term prognosis of patients with malignant uveal melanoma. Invest Ophthalmol Vis Sci 44(11): 4651-4659.

19. Jouysonnic P, Mihalovic M, Djordjeric-Jocic J, Vlajkovic S, Cekic S, et al. (2013) Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol 6(7): 1230-1244.

20. Cabello CM, Bair WB, Wondrak GT (2007) Experimental therapeutics: targeting the redox Achilles heel of cancer. Curr Opin Investig Drugs 8(12): 1022-1037.

21. Fruehauf JP, Meyskens FL (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13(3): 789-794.

22. Fruehauf JP, Trapp V (2008) Reactive oxygen species: an Achilles’ heel of melanoma? Expert Rev Anticancer Ther 8(11): 1751-1757.

23. Meyskens FL, Farmer PJ, Fruehauf JP (2001) Redox regulation in human melanocytes and melanoma. Pigment Cell Res 14(3): 148-154.

24. Meyskens FL, Farmer PJ, Yang S, Anto-Culver H (2007) New perspectives on melanoma pathogenesis and chemoprevention. Recent Results Cancer Res 174: 191-195.

25. González MJ, Mora E, Riordan NH, Riordan HD, Mojica P (1988) Rethinking vitamin C and cancer: an update on nutritional oncology. Cancer Prev Int 3: 215-224.

26. Yamamoto K, Takahashi M, Niki E (1987) Role of iron and ascorbic acid in the oxidation of methyl linoleate micelles. Chem Lett 1: 49-52.

27. Tsao CS, Dunhan WB, Leung PY (1988) In vivo antineoplastic activity of ascorbic acid for human mammary tumour. In vivo 2(2): 147-150.

28. Tsao CS, Dunhan WB, Leung PY (1989) Effect of ascorbic acid and its derivatives on the growth of human mammary tumour xenografts in mice. Cancer J 5: 59-59.

29. Poydock ME (1982) Effect of combined ascorbic acid and B12 on survival of mice implanted with Ehrlich carcinoma and L1210.
leukemia. Am J Clin Nutr 54(6 Suppl): 1261s-1265s.

30. Edgar JA (1970) Dehydroascorbic acid and cell division. Nature 227: 24-26.

31. Bram S, Frousard P, Guichard M, Jasmine C, Augery Y, et al. (1980) Vitamin C preferential toxicity for malignant melanoma cells. Nature 284(5757): 629-631.

32. Riordan NH, Riordan HD, Meng XL, Li Y, Jackson JA (1995) Intravenous ascorbate as a tumor cytotoxic chemotherapeutic agent. Med Hypotheses 44(3): 207-213.

33. Sakagami H, Satoh K (1997) Pro-oxidant action of two antioxidants: ascorbic acid and gallic acid. Anticancer Res 17(1A): 221-224.

34. Makino Y, Sakagami H, Takei M (1999) Induction of cell death by ascorbic acid derivatives in human renal carcinoma and glioblastoma cell lines. Anticancer Res 19: 3125-3132.

35. Nakamura Y, Yamafuji K (1968) Antitumor activities of oxidized products of ascorbic acid. Sci Bull Fac Kyushu Univ 23: 119-125.

36. Yamafuji K, Nakamura Y, Omura H, Soeda T, Gyotoku K (1971) Antitumor potency of ascorbic acid, dehydromoric acid or 2,3-diketogulonolactone and their action on deoxyribonucleic acid. Z Krebsforsch Klinik Onkol Cancer Res Clin Oncol 17(1): 1-7.

37. Omura H, Tomita Y, Yashikou N, Murakami H (1974) Antitumor potentiality of some ascorbate derivatives. J Fac Agr Kyushu Univ 18: 181-189.

38. Peterskyk G, Prather W (1971) Cytotoxicity of ascorbate and other reducing agents towards cultured fibroblasts as a result of hydrogen peroxide formation. J Cell Physiol 76(1): 61-70.

39. Clement MV, Ramalingam J, Long LH, Halliwell B (2001) The in vitro cytotoxicity of ascorbate depends on the culture medium used to perfom assay and involves hydrogen peroxide. Antioxid Redox Signal 3: 157-163.

40. González MJ, Schemmel RA, Dugan L, Gray JJ, Welsch CW (1993) Dietary fish oil inhibits human breast carcinoma growth: a function of increased lipid peroxidation. Lipids. 28(9): 827-832.

41. Sakagami H, Satoh K, Hakeda Y, Kumezawa M (2000) Apoptosis-inducing activity of vitamin C and vitamin K. Cell Mol Biol (Noisy-le-Grand) 46(1): 129-143.

42. Iwasaka K, Koyama N, Nogaki A, Murayama S, Tamura A, et al. (1998) Role of hydrogen peroxide in cytotoxicity induction by ascorbates and other redox compounds. Anticancer Res 18(6A): 4333-4337.

43. Muñoz E, Blazquez MV, Ortiz C, Gómez-Díaz C, Navas P (1997) Role of ascorbate in the activation of NF-KappaB by tumour necrosis factor-alpha in T-cells. Biochem J 325: 23-28.

44. Halliwell B (1996) Vitamin C: antioxidant or pro-oxidant in vivo? Free Red Res 25(5): 439-454.

45. AlciníFJ, Burell MJ (1996) Ascorbate on cell growth and differentiation. J Bioenerg Biomembr 28(4): 393-398.

46. Asano K, Satoh K, Hosaka M, Arakawa N, Wagaki M, et al. (1999) Production of hydrogen peroxide in cancerous tissue by intravenous administration of sodium 5,6 benzylidene-L-ascorbate. Anticancer Res 19(1A): 229-236.

47. Akawaka N, Nemoto S, Suzuki E, Otsuka M (1994) Role of hydrogen peroxide in the inhibitory effect of ascorbate on cell growth. J Nutr Sci Vitaminol (Tokyo) 40(3): 219-227.

48. Ohno S, Ohno Y, Suzuki N, Soma GI, Inoue M (2009) High-dose Vitamin C (Ascorbic Acid) Therapy in the Treatment of Patients with Advanced Cancer. Anticancer Res 29(3): 809-816.

49. Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48(1): 41-47.

50. Dasgupta A, Zdunek T (1992) In vitro lipid peroxidation of human serum catalyzed by cupric ion: antioxidant rather than pro-oxidant role of ascorbate. Life Sci 50: 875-882.

51. Leung PY, Miyashita K, Young M, Tao CS (1993) Cytotoxic effect of ascorbate and its derivative on cultured malignant and non-malignant cell lines. Anticancer Res 13(2): 47-50.

52. Iyanagi T, Yamazaki I, Anan KF (1985) One-electron oxidation-reduction properties of ascorbic acid. Biochem Acta 802(2): 255-261.

53. Venugopal M, Jamison JM, Giltinotaux J, Koch JA, Summers M, et al. (1996) Synergistic antitumor activity of vitamins C and K 3 on human urological tumour cell lines. Life Sci 59(17): 1389-1400.

54. Satoh K, Kadofuku T, Sakagami H (1997) Copper but not iron, enhances apoptosis-inducing activity of antioxidants. Anticancer Res 17(4A): 2487-2490.

55. Powers HJ, Gibson AT, Bates CJ, Primhak RA, Beresford J (1994) Does vitamin C intake influence the rate of tyrosine catabolism in premature babies? Ann Nutr Metab 38(3): 166-173.

56. Palumbo A, Missurica G, D’Ischia M, Prota G (1985) Effect of metal ions on the kinetics of tyrosine oxidation catalysed by tyrosinase. Biochem J 288(3): 647-651.

57. Sun Y, Oberley LW, Oberley TD, Elwell JH, Sierra-Rivera E (1993) Lowered antioxidant enzymes in spontaneously transformed embryonic mouse liver cells in culture. Carcinogenesis 14(7): 1457-1463.

58. Benade L, Howard T, Burk D (1969) Synergistic killing of Ehrlich ascites carcinoma cells by ascorbate and 3-amino-1,2,4-triazole. Oncology 23(1): 33-43.

59. Pumonen K, Ahotupa M, Asaishi K, Hyoty M, Kudo R, et al. (1994) Antioxidant enzyme activities and oxidative stress in human breast cancer. J Cancer Res Clin Oncol 120(6): 374-377.

60. Jurupa P, Olinsr R (1994) Activity of antioxidant enzymes in cancer diseases. Postepy Hig Med Dosw 48(4): 443-455.

61. Chen Q, Espey MG, Sun AV, Lee JH, Krishna MC, et al. (2007) Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci U S A 104(21): 8749-8754.

62. Peydock ME (1982) Effect of combined ascorbic acid and B12 on survival of mice implanted with Erlich carcinoma and L1210 leukemia. Am J Clin Nutr 54(6 Suppl): 1261s-1265s.

63. Edgar JA (1970) Dehydroascorbic acid and cell division. Nature 227: 24-26.

64. Cameron E, Pauling L, Leibovitz B (1979) Ascorbic acid and cancer: a review. Cancer Res 39(3): 663-681.

65. McCormick WJ (1959) Cancer: a collagen disease, secondary to a nutritional deficiency? Arch Pediatr 76(4): 166-171.

66. Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48(1): 41-47.

67. Leung PY, Miyashita K, Young M, Tao CS (1993) Cytotoxic effect of ascorbate and its derivative on cultured malignant and non-malignant cell lines. Anticancer Res 13(2): 47-50.

68. Siegel BV (1975) Enhancement of interferon production by poly (r1, 24-26).

Citation: Mastrangelo D, Massai L (2016) High Doses of Ascorbate (Vitamin C): A New Frontier in the Treatment of Intraocular Cancer. Adv Ophthalmol Vis Syst 4(1): 00090. DOI: 10.15406/aovs.2016.04.00090
poly (rC) in mouse cell cultures by ascorbic acid. Nature 254: 531-532.
69. Dahl H, Degre M (1976) The effect of ascorbic acid on production of human interferon and the antiviral activity in vitro. Acta Pathol Scand Sect B 84B(5): 280-284.
70. Beetsens JR, Hermen AG (1983) Ascorbic acid and Prostaglandin formation. Int J Vitam Nutr Res Suppl: 13:1-14s.
71. El Attar TM, Lin HS (1992) Effect of vitamin C and Vitamin E on prostaglandin synthesis by fibroblasts and squamous carcinoma cells. Prostaglandins Leukot Essent Fatty Acids 47(4): 253-257.
72. Reddy VG, Khanna D, Singh N (2001) Vitamin C augments chemotherapeutic response of cervical carcinoma beta cells by stabilizing P53. Biochem Biophys Res Commun 282(2): 409-415.
73. Mirvish SS (1994) Experimental evidence for inhibition of N-nitroso compound formation as a factor in a negative correlation between vitamin C consumption and the incidence of certain cancers. Cancers Res 54(7 Suppl): 1948s-1951s.
74. Friedman DL, Heimstein B, Shields CL, Shields JA, Needle M, et al. (2000) Chemoreduction and local ophthalmic therapy for intracocular retinoblastoma. J Clin Oncol 18(1): 12-17.
75. Rodríguez-Galindo C, Wilson MW, Haik RG, Merchant TE, Billups CA, et al. (2003) Treatment of intraocular retinoblastoma with vincristine and carboplatin. J Clin Oncol 21(10): 2019-2025.
76. Mares T, Moll AC, Imhof SM, de Boer MR, Ringens PJ, et al. (2008) Risk of second malignancies in survivors of retinoblastoma: More than 40 years of follow-up. J Natl Cancer Inst 100(24): 1771-1779.
77. Rizzuti AE, Dunkel IJ, Abramson DH (2008) The adverse events of chemotherapy for retinoblastoma: what are they? Do we know? Arch Ophthalmol 126(6): 862-865.
78. Abramson DH (2011) Benefits and Risks of Intraarterial Chemotherapy for Retinoblastoma: An Update. Retina Today.
79. Shields CL, Biancotti CG, Jabbour P, Ramasubramanian A, Lally SE, et al. (2011) Intra-arterial chemotherapy for retinoblastoma: report No. 1, control of retinal tumours, subsurreal seeds, and vitreous seeds. Arch Ophthalmol 129(11): 1399-1406.
80. Shields CL, Biancotti CG, Jabbour P, Giffin GC, Ramasubramanian A, et al. (2011) Intra-arterial chemotherapy for retinoblastoma: report No. 2, treatment complications. Arch Ophthalmol 129(11): 1407-1415.
81. Yamane T, Kaneko A, Mohri M (2004) The technique of ophthalmic arterial infusion therapy for patients with intraocular retinoblastoma. Int J Clin Oncol 9(2): 69-73.
82. Gobin VP, Dunkel IJ, Marr BP, Francis JH, Brodie SE, et al. (2012) Combined, sequential intravascular and intra-arterial chemotherapy (bridge chemotherapy) for young infants with retinoblastoma. PLoS One 7(9): e44322.
83. Sakauevich P, Ceciliano A, Milan N, Taich P, Villasante E, et al. (2012) Intra-arterial chemotherapy is more effective than sequential pericocular and intravenous chemotherapy as salvage treatment for relapsed retinoblastoma. Pediatr Blood Cancer 60(5): 766-770.
84. Abramson DH, Dunkel IJ, Brodie SE, Kim JW, Gobin VP (2008) A phase I/II study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results. Ophthalmology 115(8): 1398-1404.
85. Vajovic LM, Murray TG, Aziz-Sultan MA, Scheffer AG, Fernandes CE, et al. (2010) Clinicopathologic review of enucleated eyes after intra-arterial chemotherapy with melphalan for advanced retinoblastoma. Arch Ophthalmol 128(12): 1619-1623.
86. Aziz HA, Boutrid H, Murray TG, Berrocal A, Wolfe SQ, et al. (2010) Supraselective injection of intraarterial melphalan as the primary treatment for late presentation unilateral multifocal stage Vb retinoblastoma. Retina 30(4 Suppl): S63-65.
87. Kaneko A, Suzuki S (2003) Eye-preservation treatment of retinoblastoma with vitreous seeding. Jpn J Clin Oncol 33(12): 601-607.
88. Inomata M, Kaneko A (1987) Chemosensitivity profiles of primary and cultured human retinoblastoma cells in a human tumour clonogenic assay. Jpn J Cancer Res 78(8): 858-868.
89. Hoffman RM (1991) In vitro sensitivity assays in cancer: a review, analysis, and prognosis. J Clin Lab Anal 5(2): 133-143.
90. Hoffman RM (1993) In vitro assays for chemotherapy sensitivity. Crit Rev Oncol Hematol 15(2): 99-111.
91. Inomata M, Kaneko A (2004) In vitro chemosensitivity assays of retinoblastoma cells. Int J Clin Oncol 19(1): 31-35.
92. Liu Q, Wang X, Wang H, Liu Y, Liu T, et al. (2013) Tandem therapy for retinoblastoma: immunotherapy and chemotherapy enhance cytotoxicity on retinoblastoma by increasing apoptosis. J Cancer Res Clin Oncol 139(8): 1357-1372.
93. Wang YF, Kunda PE, Lin JW, Wang H, Chen XM, et al. (2013) Cytokine-induced killer cells co-cultured with complete tumour antigen-loaded dendritic cells, have enhanced selective cytotoxicity on carboplatin-resistant retinoblastoma cells. Oncol Rep 29(5): 1841-1850.
94. Medina MA, Schweigerer L (1993) A plasma membrane redox system in human retinoblastoma cells. Biochem Mol Biol Int 29(5): 881-887.
95. Medina MA, García de Veas R and Schweigerer L (1994) Ascorbic acid is cytotoxic for pediatric tumour cells cultured in vitro. Biochem Mol Biol Int 34(5): 871-874.
96. Roomin MW, Roomin N, Bhanap B, Niedzwiecki A, Rath M (2013) Antineoplastic activity of a nutrient mixture in Y-79 malignant retinoblastoma cells. Oncology Reports 29(1): 29-33.
97. Mastrangelo D, Massai L, Micheli L, Muscettola M, Cevenini G, et al. (2013) High Doses of Ascorbic Acid Kill Y79 Retinoblastoma Cells In vitro. J Clin Exp Ophthalmol 4: 268.
98. Orjuela MA, Titiesvsky L, Liu X, Ramirez-Ortiz M, Ponce-Castaneda V, et al. (2005) Fruit and vegetable intake during pregnancy and risk for development of sporadic retinoblastoma. Cancer Epidemiol Biomarkers Prev 14(6): 1433-1440.
99. Adithi M, Nalini V, Krishnakumar S (2005) The role of nitric oxide synthases and nitrotyrosine in retinoblastoma. Cancer 103(8): 1701-1711.
100. Kandalam M, Mitra M, Subramanian K, Biswas J (2010) Molecular pathology of retinoblastoma. Middle East Afr J Ophthalmol 17(3):217-1711.
101. Roomi MW, Roomi N, Bhanap B, Niedzwiecki A, Rath M (2013) Antineoplastic activity of a nutrient mixture in Y-79 malignant retinoblastoma cells. Oncology Reports 29(1): 29-33.
102. Deepa PR, Nalini V, Mailikkarjunab K, Vandhanab S, Krishnakumar B (2009) Oxidative Stress in Retinoblastoma: Correlations with Clinicopathologic Features and Tumor Invasiveness. Curr Eye Res 34(12): 1001-1018.
103. Frenkel S, Nir I, Hendler K, Lotem M, Eid A, et al. (2009) Long-term survival of uveal melanoma patients after surgery for liver metastases. Br J Ophthalmol 93(8): 1042-1046.
104. Pflugfelder A, Kochs C, Garbe C, Schadendorf D, Blum A, et al. (2013) S3-guideline “diagnosis, therapy and follow-up of melanoma” version.
105. Singh AD, Turell ME, Topham AK (2011) Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology 118(9): 1881-1885.
105. Diener-West M, Reynolds SM, Agugliaro DJ, Caldwell R, Cumming K, et al. (2005) Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report No. 26. Arch Ophthalmol 123(12): 1639-1643.

106. Augsburger JJ, Correa ZM, Shaikh AH (2009) Effectiveness of treatments for metastatic uveal melanoma. Am J Ophthalmol 148(1): 119-127.

107. Buder K, Gesierich A, Gelbrich G, Goebeler M (2013) Systemic treatment of metastatic uveal melanoma: review of literature and future perspectives. Cancer Med 2(5): 674-686.

108. http://www.cancer.org/acs/groups/cid/documents/webcontent/003063-pdf.pdf

109. http://www.nccn.org/patients/guidelines/melanoma/files/assets/common/downloads/files/melanoma.pdf

110. Jovanovic P, Mihajlovic M, Djordjevic-Jocic J, Vlajkovic S, Cekic S, et al. (2013) Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol 6(7): 1230-1244.

111. Majdi M, Milani BY, Movahedan A, Wasielewski L, Djalilian AR (2014) The Role of Ultraviolet Radiation in the Ocular System of Mammals. Photonics 1(4): 347-368.

112. Meierjohann S (2014) Oxidative stress in melanocyte senescence and melanoma transformation. Eur J Cell Biol 93(1-2): 36-41.

113. Venza M, Visalli M, Beninati C, De Gaetano GV, Teti D, et al. (2015) Cellular Mechanisms of Oxidative Stress and Action in Melanoma. Oxid Med Cell Longev 2015: 481782.

114. Ibañez IL, Notovich C, Polcastro LL, Durán H (2011) Reactive Oxygen Species in the Biology of Melanoma. Breakthroughs in Melanoma Research*, book Edited by Yohei Tanaka, ISBN 978-953-307-291-3, 642.

115. Annibaldi A, Widmann C (2010) Glucose metabolism in cancer cells. Curr Opin Clin Nutr Metab Care 13(4): 466-470.

116. Park S (2013) The Effects of High Concentrations of Vitamin C on Cancer Cells. Nutrients 5(9): 3496-3505.

117. Gonzalez MJ, Miranda-Massari JR, Duonge J, Berdie M (2015) Increasing the Effectiveness of Intravenous Vitamin C as an Anticancer Agent. JOM 30(1): 45-50.

118. Wilson MK, Bagueley BC, Wall C, Jameson MB, Findlay MP (2014) Review of high-dose intravenous vitamin C as an anticancer agent. Asia-Pacific J Clin Oncol 10: 22-37.

119. Meierjohann S (2014) Oxidative stress in melanocyte senescence and melanoma transformation. Eur J Cell Biol 93(1-2): 36-41.

120. Hussaini HM, Ahlfors ME, Kujala JT (2010) Glucose transporters GLUT1 and GLUT3 are down-regulated in human cancer cells. BMC Cancer 10: 62.

121. Warburg O (1956) On the origin of cancer cells. Science 123(3191): 309-314.

122. Dakubo GD (2010) Mitochondrial genetics and cancer. XV, 356p., Hardcover. ISBN: 978-3-642-11415-1, Springer.

123. Barron C, Tsi E, Tsakiridis T (2012) Expression of the glucose transporters GLUT1, GLUT3, GLUT4 and GLUT12 in human cancer cells. BMC Proceedings 6(Suppl 3): P4.

124. Meierjohann S, Ahlfors ME, Kujala JT (2010) Glucose transporters GLUT1 and GLUT3 are down-regulated in human cancer cells. BMC Cancer 10: 62.

125. Meierjohann S, Ahlfors ME, Kujala JT (2010) Glucose transporters GLUT1 and GLUT3 are down-regulated in human cancer cells. BMC Cancer 10: 62.

126. Warburg O (1956) On the origin of cancer cells. Science 123(3191): 309-314.

127. Meierjohann S, Ahlfors ME, Kujala JT (2010) Glucose transporters GLUT1 and GLUT3 are down-regulated in human cancer cells. BMC Cancer 10: 62.

128. Warburg O (1956) On the origin of cancer cells. Science 123(3191): 309-314.