Plasma von Willebrand factor level as a prognostic indicator of patients with metastatic colorectal carcinoma

Wei-Shu Wang, Jen-Kou Lin, Tzu-Chen Lin, Tzeon-Jye Chiou, Jin-Hwang Liu, Chueh-Chuan Yen, Po-Min Chen

AIM: To evaluate the correlations of plasma von Willebrand factor (vWF) level with the distant metastasis and prognosis of patients with colorectal cancer.

METHODS: A total of 86 patients with histologically confirmed metastatic colorectal cancers receiving treatment at Taipei Veterans General Hospital were enrolled. All patients had measurable metastatic lesions and life expectancies of more than 3 mo. Plasma vWF levels were measured by immuno-turbidimetric assay and compared with results from 40 non-metastatic colorectal cancer patients and 22 healthy controls. Patients with metastatic colorectal cancer were divided into two groups according to serum vWF levels and the differences between these two groups were analyzed using χ^2 test. Data on age, gender, performance status, location of primary tumor, extent of metastasis, site of metastases, histological differentiation, serum CEA and plasma vWF levels were analyzed to determine association with survival. Survival curves were constructed by Kaplan-Meier product limit method and the data was analyzed using log-rank test on a microcomputer. Multivariate analysis using the Cox’s proportional hazards regression model was then performed to determine the independent prognostic indicators among all of the possible variables.

RESULTS: Colorectal cancer patients were identified as having significantly higher plasma vWF concentrations than healthy controls ($P<0.05$). Moreover, higher vWF plasma levels were associated with advanced tumor stage ($P<0.05$) and the presence of multiple metastases ($P = 0.014$). Patients with lower vWF plasma levels ($\leq 160\%$) survived significantly longer than those with a higher plasma vWF level (log-rank test, $P = 0.0043$). By multivariate analysis, plasma vWF levels ($P<0.001$), the extent of metastasis ($P = 0.012$), and the performance status ($P = 0.014$) were identified as independent prognostic factors.

CONCLUSION: Our data indicates that high plasma vWF concentrations correlate with advanced diseases and significantly poor prognosis of patients with metastatic colorectal carcinoma. It may serve as a potential biological marker of disease progression in these patients.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: von Willebrand factor; colorectal carcinoma; prognosis

Wang WS, Lin JK, Lin TC, Chiou TJ, Liu JH, Yen CC, Chen PM. Plasma von Willebrand factor level as a prognostic indicator of patients with metastatic colorectal carcinoma World J Gastroenterol 2005; 11(14): 2166-2170
http://www.wjgnet.com/1007-9327/11/2166.asp

INTRODUCTION

Recently, colorectal cancer has become one of the leading causes of cancer-related mortality in Taiwan and the incidence of colorectal cancer in Taiwan has increased over the past few decades. One possible reason is the introduction of Western foods to the local diets[1]. Blood-borne metastasis is the major cause of death from colorectal carcinoma[2]. The development of metastasis is a stepwise process that starts when cancer cells separate from a primary tumor, migrate across blood vessel walls into the bloodstream, and disperse throughout the body to generate new colonies. During the transit into the circulating system, tumor cells are exposed to fluid mechanical forces, plasma proteins, and vascular cells such as platelets. All of which may affect their survival and extravasations from the vasculature[3,4].

Von Willebrand factor (vWF) is a glycoprotein that synthesized mainly in endothelial cells and in megakaryocytes[5]. It mediates the adherence of platelets to sub-endothelial matrices during vascular-endothelial damage and acts as a carrier protein for coagulation factor VIII[6]. Increased plasma vWF concentrations have been reported in various clinical conditions such as diabetes mellitus[7], myocardial infarction[8], liver diseases[9], connective tissue diseases[10], and acute infections, probably as a result of increased endothelial cell proliferation or as a part of the acute-phase reaction in response to vascular damage[11]. High plasma vWF concentrations have been reported in patients with various
types of cancer, such as prostate cancer[12-14], cervical and ovarian carcinoma[15,16], head and neck cancer[17,18], and colorectal cancer[19,20]. Moreover, high plasma vWF concentrations often correlate with advanced tumor staging and may have prognostic significance in these patients[12-16].

vWF plays a very important role in the pathogenesis of metastasis, by promoting the binding of tumor cells to platelets, and subsequently, to vascular subendothelium[17-20]. This interaction forms heterotypic cellular emboli, which are not easily recognized by the immune system and have more chance of attaching to the endothelial surfaces than single tumor cells[17-20]. Since blood-borne metastasis is the major cause of death from colorectal carcinoma and vWF is related to the process of metastatic dissemination of malignant cells, to evaluate its potential as a marker of tumor metastasis is warranted. In the current study we investigate the correlation of plasma vWF levels with the distant metastasis of colorectal cancer patients; furthermore, we determine the prognostic significance of plasma vWF levels in these patients.

MATERIALS AND METHODS

Patients
A total of 86 patients with histologically confirmed metastatic colorectal carcinoma receiving treatment at Taipei Veterans General Hospital were enrolled between 2002 and 2003. All patients had measurable metastatic lesions and life expectancies of more than 3 mo. They all received 5-fluorouracil (5-FU)-based systemic chemotherapy and the treatments were continued until disease progression or intolerable toxicity appeared. Salvage chemotherapy with CPT-11, oxaliplatin or capecitabine was allowed. Data on age, gender, performance status, location of primary tumors, extent of metastases, site of metastases, histological differentiation, serum CEA level, and plasma vWF levels was analyzed to determine the association with survival. The characteristics of these patients are shown in Table 1.

Methods
Plasma vWF concentrations were measured using immunoturbidimetric assay according to manufacturer’s instruction (DIAGNOSTICA STAGO, France). Briefly, this assay is based on the change in turbidity of a microparticle suspension that is measured by photometry. A suspension of latex microspheres, coated by covalent bonding with antibodies specific for vWF, is mixed with the test plasma whose vWF antigen level is to be assayed. An antigen-antibody reaction leads to an agglutination of the latex microspheres which induces an increase in turbidity of the reaction medium. The increase in turbidity is reflected by an increase in absorbance which can be measured photometrically. The cut-off level of vWF was set at 160%.

Patients with metastatic colorectal cancer were divided into two groups according to plasma vWF levels. Stratification and the differences between these two groups were analyzed using the χ² test[21]. Survival curves were constructed by the Kaplan-Meier product limit method and the data was analyzed by log-rank test on a microcomputer[22]. Multivariate analysis using the Cox’s proportional hazards regression model was then performed to determine the independent prognostic indicators among all of the possible variables[23]. All statistical analyses were carried out with SPSS statistical software package.

RESULTS

High plasma vWF level is associated with advanced stage of colorectal carcinoma
The mean plasma level of vWF was 241.3±68.2% in patients with colorectal cancer and 110.1±27.0% in healthy controls (P<0.001). vWF measurements according to Dukes’ stage are presented in Figure 1. In patients with tumors invading regional lymph nodes (Dukes’ C, n = 26), the mean plasma vWF level was similar to those without regional lymph node invasion (Dukes’ B, n = 14) (211.7±40.0% vs 207.9±36.0%). However, the plasma vWF level was 266.1±91.3% in patients with metastatic diseases (Dukes’ D, n = 86), which was significantly higher than those without distant metastasis (Dukes’ B or C, P = 0.001). As shown in Table 1, there was no significant correlation between plasma vWF concentrations and age, gender, performance status, location of tumor, histological grading, or serum carcinoembryonic antigen level. However, higher vWF plasma levels were correlated with multiple metastatic sites (P = 0.014) and, to some extent, trend of liver metastasis (P = 0.110).

Table 1. Patients’ characteristics according to different plasma vWF levels

Characteristics	vWF≥160%	vWF≤160%	P
Age (yr)	53	33	0.986
<50	23	14	
50-70	18	11	
>70	12	8	
Gender	36	20	0.496
Male	17	13	
Female	17	13	
Performance status			0.656
0	32	18	
1, 2	21	15	
Primary tumor	28	16	0.825
Colon	25	17	
Extent of metastases	20	22	0.014
One site	33	11	
Multiple sites	33	11	
Site of metastases	37	17	0.110
Liver	34	20	
Lung	6	3	
Lymph nodes	8	5	
Peritoneum	3	1	0.558
Others			
Histology			
Well-differentiated	8	5	
Moderately-differentiated	25	19	
Poorly-differentiated	13	4	
Unknown	7	5	
Serum CEA level	19	10	0.646
≤20ng/mL	34	23	

CEA: Carcinoembryonic antigen; vWF: Von Willebrand factor.
High plasma vWF level is associated with poor prognosis of patients with metastatic colorectal carcinoma

As shown in Table 2, by univariate analysis the plasma vWF levels (P < 0.001), performance status (P = 0.022), and extent of metastasis (P = 0.028) were identified as survival predicting factors, while age, gender, location of primary tumor, site of metastasis, histological differentiation, and pre-treatment serum CEA levels were not statistically significant. By multivariate analysis, plasma vWF levels (P < 0.001), performance status (P = 0.014), and extent of metastasis (P = 0.012) were identified as independent prognostic factors. As shown in Figure 2, the survival curves plotted by Kaplan-Meier method and analyzed by log-rank test revealed that patients with plasma vWF level of less than 160% survived significantly longer than those with plasma vWF of more than 160% (P = 0.0043).

DISCUSSION

Metastasis is a multi-step process involved in the alterations of cell-cell adhesion, angiogenesis, degradation of extracellular matrix, escape of immune surveillance, and cell-matrix adhesion[24]. Cell-matrix adhesive interaction plays an important role in the normal organization and stabilization of the cell layer in epithelial tissue. However, in tumor cells the adhesive interaction for these cells and the subendothelial matrices is essential for their metastasis, and molecules that mediate this adhesive process may facilitate tumor cells to metastasize. vWF appears to play an important role in this process, and higher plasma vWF levels have indeed been reported in various types of cancer[12-16]. Evidence has shown that this phenomenon is related to the accelerated endothelial synthesis associated with tumor-dependent angiogenesis[17,18]. In addition, the release of thrombin by tumor cells may induce vWF production in endothelial cells and enhance the adhesion of tumor cells[25,26]. A deficiency of vWF-cleaving activity by its protease control system has recently been identified in colorectal cancer patients, and this deficiency was associated with the progression of the disease[27]. Moreover, a high vWF-positive microvessel number was also identified as an unfavorable prognostic marker for patients with stage-II and stage-III colorectal cancer[28].

The binding of vWF to several types of collagen may contribute to the attachment of platelets to the extracellular matrices of subendothelium; furthermore, a direct interaction between vWF and neoplastic cells has been demonstrated[29]. The expression of surface glycoprotein GpIb and GpIIb-IIIa complex, the adhesive ligands for vWF, has been reported in tumor cells[25,26], which may contribute to the metastatic process by promoting the binding of tumor cells to platelets via plasma vWF. Moreover, such interaction results in heterotypic cell aggregates, which are not easily recognized by the immune system and are more capable of producing adherence to endothelial surface than single tumor cells[3,4]. Interestingly, experiments on animals have shown that anti-platelet and anti-vWF antibodies can substantially reduce the occurrence and number of metastasis[25-27,29], indicate that plasma vWF indeed plays a crucial role in the process of metastasis of tumor cells.

A positive correlation between Dukes’ stage and plasma vWF concentrations in colorectal cancer patients was recently reported[14]. Our study demonstrated a similar result that plasma vWF levels in colorectal cancer patients were significantly higher than in healthy controls, and the highest vWF plasma levels were observed in patients with metastatic diseases (Figure 1). Moreover, a higher vWF plasma level was shown to be associated with multiple metastases (P = 0.014) in our study (Table 1). Elevations in vWF plasma levels of patients with disseminated diseases reflect the enhancement

Table 2 Analysis of prognostic factors on survival

Variables	n	Univariate(%)	Multivariate(%)
Age (yr)			
<50	37	0.528	
≥50	49		
Gender			
Male	56	0.986	
Female	30		
Performance status			
0	50	0.022	0.014
1, 2	36		
Site of primary tumor			
Colon	44	0.430	
Rectum	42		
Extent of metastases			
One site	42	0.028	0.012
Multiple sites	44		
Liver metastases			
Present	54	0.658	
Absent	32		
Lung metastases			
Present	54	0.443	
Absent	32		
Histological differentiation			
Well/moderate	57	0.718	
Poor/unknown	29		
Pre-treatment CEA			
≤6 ng/mL	29	0.213	
>6 ng/mL	57		
Pre-treatment vWF			
≤160%	33	<0.001	<0.001
>160%	53		

CEA, carcinoembryonic antigen; vWF: von Willebrand factor; -: no significance.
of angiogenic activity to sustain a larger tumor cell burden and the metastatic progression[12]. Furthermore, the metastatic status of these patients may represent an effect of the adhesive property of vWF, which seems to play a crucial role during the course of hematological spread[11]. Recently, a high vWF-positive microvessel number was identified as an independent prognostic marker of patients with stage-II/III colorectal carcinoma[10]. However, the relationship between plasma vWF levels and the survival of patients with metastatic colorectal cancer remains unclear. Since high plasma vWF concentrations were associated with advanced stage and multiple metastasis of colorectal cancer patients in our study, its impact on survival is of interest. In the current study, by log-rank test, patients with lower vWF plasma levels (<160%) survived significantly longer than those with higher plasma vWF levels (Figure 2). By multivariate analysis, plasma vWF level (P<0.001) was also identified as an independent prognostic factor (Table 2).

Serum carcinoembryonic antigen (CEA) level is the most widely used marker for both prognostic predicting and post-treatment monitoring of patients with colorectal cancer[33]. Furthermore, serum CEA levels could also be used in the monitoring of response to systemic chemotherapy in patients with metastatic colorectal carcinoma[33]. In addition to CEA, CA19-9 is another useful serum marker for predicting the prognosis of metastatic colorectal cancer patients[10]. However, in spite of higher plasma vWF levels correlating with both advanced stage and poor prognosis of colorectal patients in our study, a higher plasma vWF level was not identified to be associated with higher serum CEA level (Table 1).

In summary, our data indicates that plasma vWF levels are elevated in colorectal cancer patients in a stage-dependent manner, and a high plasma vWF level correlates with significantly poor prognosis of patients with metastatic diseases. Plasma vWF level may serve as a potential biological marker of disease progression in colorectal cancer patients.

REFERENCES

1. Lee JA. Recent trends of large bowel cancer in Japan compared to United States and England and Wales. Int J Epidemiol 1976; 5: 187-194
2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70
3. Gutman M, Fidler JJ. Biology of human colon cancer metastasis. World J Surg 1995; 19: 226-234
4. Hart IR. Saini A. Biology of tumour metastasis. Lancet 1992; 339: 1453-1457
5. Ruggeri ZM. Structure and function of von Willebrand factor: relationship to von Willebrand's disease. Mayo Clin Proc 1991; 66: 847-861
6. Ruggeri ZM. von Willebrand factor. J Clin Invest 1997; 99: 559-564
7. Lufkin EG, Fass DN, O’Fallon WV, Bowie EJ. Increased von Willebrand factor in diabetes mellitus. Metabolism 1979; 28: 63-66
8. Giustolisi R, Musso R, Cacciola E, Cacciola RR, Russo M, Petralito A. Abnormal plasma levels of factor VIII/von Willebrand factor complex in myocardial infarction—expression of acute phase reaction or index of vascular endothelium damage? Thromb Haemost 1984; 51: 408
9. Castillo R, Maragall S, Rodes J, Clemente C, Profitos J, Ordinas A. Increased factor VIII complex and defective ristocetin-induced platelet aggregate in liver disease. Thromb Res 1977; 11: 899-906
10. Gordon JL, Pottinger BE, Woo P, Rosenbaum J, Black CM. Plasma von Willebrand factor in connective tissue disease. Ann Rheum Dis 1987; 46: 491-492
11. Pottinger BE, Read RC, Paleolog EM, Higgins PG, Pearson JD. Von Willebrand factor is an acute phase reactant in man. Thromb Res 1989; 53: 387-394
12. Ablin RJ, Bartkus JM, Gonder MJ. Immunonoquantitation of factor VIII-related antigen (von Willebrand factor antigen) in prostate cancer. Cancer Lett 1988; 40: 283-289
13. Facchini V, Gadducci A, Baichi U, Del-Bravo B, Vispi M, Teti G, Fioretti P. Factor VIIIIR: Ag plasma levels in patients with cervical and ovarian carcinoma. Eur J Gynaecol Oncol 1988; 9: 87-93
14. Sweeney JD, Killion KM, Pruett CF, Spaulding MB. von Willebrand factor in head and neck cancer. Cancer 1990; 66: 2387-2398
15. Paczuski R, Bielakowska A, Kotschy M, Burdak D, Betlejewski S. Von Willebrand factor in plasma of patients with advanced stages of larynx cancer. Thromb Res 1999; 95: 197-200
16. Damin DC, Rosito MA, Gus P, Roisemberg I, Bandinelli E, Schwartzmann G, Von Willebrand factor in colorectal cancer. Int J Colorectal Dis 2002; 17: 42-45
17. Gasic GJ, Gasic TB, Galanti N, Johnson T, Murphy S. Platelet-tumor cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer 1973; 11: 704-718
18. Marcum JM, McGill M, Bastida E, Ordinas A, Jamieson GA. The interaction of platelets, tumor cells and vascular subendothelium. J Lab Clin Med 1980; 96: 1046-1053
19. McCarty OJ, Moussa SA, Bray PF, Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 2000; 96: 1789-1797
20. Morganti M, Carpi A, Amo-Takyi B, Sagripanti A, Nicolini A, Giardino R, Mittermayer C. Von Willebrand’s factor mediates the adherence of human tumor cells to human endothelial cells and ticlopidine interferes with this effect. Biomed Pharmacother 2000; 54: 431-436
21. Fisher RA, Yates F. Statistical Tables for Biological, Agricul- tural and Medical Research, 6th ed. New York: Hafner 1964
22. Petrucci R, Pike MC. Conservatism of the approximation sigma (O-E)/2 in the logrank test for survival data or tumor incidence data. Biometrics 1973: 29: 579-584
23. Thall PF, Lachin JM. Assessment of stratum-covariate interactions in Cox’s proportional hazards regression model. Stat Med 1986; 5: 73-83
24. Bogenrieder T, Herlyn M. Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 2003; 22: 6524-6536
25. Nierodzik M1, Plotkin A, Kajumo F, Karpatkin S. Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. J Clin Invest 1991; 87: 229-236
26 Nierodzik ML, Kajumo F, Karpatkin S. Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and tumor metastasis in vivo. Cancer Res 1992; 52: 3267-3272

27 Koo BH, Oh D, Chung SY, Kim NK, Park S, Jang Y, Chung KH. Deficiency of von Willebrand factor-cleaving protease activity in the plasma of malignant patients. Thromb Res 2002; 105: 471-476

28 Lackner C, Jukic Z, Tsybrovskyy O, Jatzko G, Wette V, Hoefler G, Klimpfinger M, Denk H, Zatloukal K. Prognostic relevance of tumour-associated macrophages and von Willebrand factor-positive microvessels in colorectal cancer. Virchows Arch 2004; 445: 160-167

29 Floyd CM, Irani K, Kind PD, Kessler CM. von Willebrand factor interacts with malignant hematopoietic cell lines: evidence for the presence of specific binding sites and modification of von Willebrand factor structure and function. J Lab Clin Med 1992; 119: 467-476

30 Wang WS, Chen PM, Chiou TJ, Liu JH, Fan FS, Lin TC, Jiang JK, Yang SH, Yen CC, Wang HS, Lin JK. Factors predictive of survival in patients with node-positive colorectal cancer in Taiwan. Hepatogastroenterology 2000; 47:1590-1594

31 Slentz K, Senagore A, Hibbert J, Mazier WP, Talbott TM. Can preoperative and postoperative CEA predict survival after colon cancer resection? Am Surg 1994; 60: 528-531; discussion 531-532

32 Wang WS, Lin JK, Lin TC, Chiou TJ, Liu JH, Fan FS, Yen CC, Chen WS, Jiang JK, Yang SH, Wang HS, Chen PM. Carcinoembryonic antigen in monitoring of response to systemic chemotherapy in patients with metastatic colorectal cancer. Int J Colorectal Dis 2001; 16: 96-101

33 Wang WS, Lin JK, Chiou TJ, Liu JH, Fan FS, Yen CC, Lin TC, Jiang JK, Yang SH, Wang HS, Chen PM. CA 19-9 as the most significant prognostic indicator of metastatic colorectal cancer. Hepatogastroenterology 2002; 49: 160-164