Multiple critical points
for a class of nonlinear functionals

A. Azzollini † & P. d’Avenia‡ & A. Pomponio§

Abstract

In this paper we prove a multiplicity result concerning the critical points of a class of functionals involving local and nonlocal nonlinearities. We apply our result to the nonlinear Schrödinger-Maxwell system in \mathbb{R}^3 and to the nonlinear elliptic Kirchhoff equation in \mathbb{R}^N assuming on the local nonlinearity the general hypotheses introduced by Berestycki and Lions.

1 Introduction

In the celebrated papers [8, 9], Berestycki and Lions proved the existence of a ground state and a multiplicity result for the equation

$$-\Delta u = g(u), \quad u : \mathbb{R}^N \to \mathbb{R}, \quad (1)$$

for $N \geq 3$, assuming that

(g1) $g \in C(\mathbb{R}, \mathbb{R})$ and odd;

(g2) $-\infty < \liminf_{s \to 0^+} g(s)/s \leq \limsup_{s \to 0^+} g(s)/s = -m < 0$;

(g3) $-\infty \leq \limsup_{s \to +\infty} g(s)/|s|^{2^*-1} \leq 0$, with $2^* = 2N/(N-2)$;

(g4) there exists $\zeta > 0$ such that $G(\zeta) := \int_0^\zeta g(s) \, ds > 0$.

Modifying, if necessary, in a suitable way the nonlinearity g (without losing the generality of the problem), it can be proved that equation (1) possesses a variational structure, namely its solutions can be found as critical points of the functional

$$I(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 - \int_{\mathbb{R}^N} G(u).$$

Solutions of several nonlinear elliptic equations involving local and nonlocal nonlinearities can be found looking for critical points of a suitable perturbation of I, namely

$$I_q(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + qR(u) - \int_{\mathbb{R}^N} G(u), \quad u \in H^1(\mathbb{R}^N), \quad (2)$$

where $q > 0$ is a small parameter and $R : H^1(\mathbb{R}^N) \to \mathbb{R}$. In order to define the functional I_q we need to replace (g3) with the stronger assumption

$$(g3’) \lim_{s \to +\infty} g(s)/|s|^{2^*-1} = 0.$$

In this paper we are interested in providing a multiplicity result in critical point theory for I_q. To this end we suppose that $R = \sum_{i=1}^k R_i$ and, for each $i = 1, \ldots, k$ the functional R_i satisfies:

(R1) R_i is $C^1(H^1(\mathbb{R}^N), \mathbb{R})$, nonnegative and even;

$*$The authors are supported by M.I.U.R. - P.R.I.N. “Metodi variazionali e topologici nello studio di fenomeni non lineari”

†Dipartimento di Matematica ed Informatica, Università degli Studi della Basilicata, Via dell’Ateneo Lucano 10, I-85100 Potenza, Italy, e-mail: a.azzollini@unibas.it

‡Dipartimento di Matematica, Politecnico di Bari, Via E. Orabona 4, I-70125 Bari, Italy, e-mail: p.davenia@poliba.it

§Dipartimento di Matematica, Politecnico di Bari, Via E. Orabona 4, I-70125 Bari, Italy, e-mail: a.pomponio@poliba.it
(R2) there exists $\delta_i > 0$ such that $R_i'(u)[u] \leq C\|u\|^\delta_i$, for any $u \in H^1(\mathbb{R}^N)$;

(R3) if $\{u_j\}_j$ is a sequence in $H^1(\mathbb{R}^N)$ weakly convergent to $u \in H^1(\mathbb{R}^N)$, then
$$\limsup_j R_i'(u_j)[u - u_j] \leq 0;$$

(R4) there exist $\alpha_i, \beta_i \geq 0$ such that if $u \in H^1(\mathbb{R}^N)$, $t > 0$ and $u_t = u(. / t)$, then
$$R_i(u_t) = t^{\alpha_i} R_i(u^\beta_i);$$

(R5) R_i is invariant under the action of N-dimensional orthogonal group, i.e. $R_i(u(g \cdot)) = R_i(u(\cdot))$ for every $g \in O(N)$.

The effect deriving from the presence of the perturbation qR is to modify the structure of the functional I both as regards the geometrical properties, and as regards compactness properties. In particular two remarkable difficulties arise: the first is related with the problem of applying classical min-max arguments to find Palais-Smale sequences at suitable levels, the second is concerned with the compactness of these sequences. If, on one hand, just assuming the positiveness of the functional R we overcome the difficulty of finding suitable min-max levels, on the other, the problem of boundedness of Palais-Smale sequences is not nearly trivial. This is a consequence of the fact that no Ambrosetti-Rabinowitz hypothesis like
$$0 < \nu G(t) \leq t q(t), \text{ for } \nu > 2,$$

is assumed on q. The monotonicity trick based on an idea of Struwe [29] and formalized by Jeanjean [17] has turned out to be a powerful method to overcome this difficulty. By means of the monotonicity trick and a truncation argument based on an idea of Berti and Bolle [10] and of Jeanjean and Le Coz [18] (see also [21]), in [5] we have proved an existence result for a functional which is included in the class we are treating. The same arguments have been used also in [4] to prove a similar existence result also for another functional of the type described in (2). In both the results it is required that the parameter q is sufficiently small. The well known fact proved in [9] and more recently in [15] that I possesses infinitely many critical points has led us to wonder if, at least for small q, a multiplicity result on the number of critical points keeps holding for I_q. In this direction a fundamental contribution comes from the recent paper [15], where, developing some ideas of [16], a new method to find multiple solutions to equations involving general local nonlinearities has been introduced. Here we will get our multiplicity result by a suitable combination of the new method described in [15] with the truncation argument of [18].

Our main result is the following.

Theorem 1.1. Let us suppose (g1), (g2), (g3), (g4) and (R1)–(R5). Then for any $h \in \mathbb{N}, h \geq 1$, there exists $q(h) > 0$ such that for any $0 < q < q(h)$ the functional I_q admits at least h couples of critical points in $H^1(\mathbb{R}^N)$ with radial symmetry.

Some nonlinear mathematical physics problems can be solved looking for critical points of functionals strictly related with I_q. Among them, we recall, for instance, the electrostatic Schrödinger-Maxwell equations. This system constitutes a model to describe the interaction between a nonrelativistic charged particle and a truncation argument based on an idea of Berti and Bolle [72]. Among them, we recall, for instance, the electrostatic Schrödinger-Maxwell equations. This system constitutes a model to describe the interaction between a nonrelativistic charged particle and a truncation argument based on an idea of Berti and Bolle [72].

Finding solutions to the previous system is equivalent to look for critical points of the functional
$$I_q(u) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u|^2 + \frac{q}{4} \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * u^2 \right) u^2 - \int_{\mathbb{R}^3} G(u).$$

In [2], the authors study (3) with $g(u) = -u + |u|^{p-1} u$ and $1 < p < 5$ and use an abstract tool, based on the monotonicity trick, to prove a multiplicity result.

As a consequence of Theorem 1.1 we prove...
Theorem 1.2. Let us suppose (g1), (g2), (g3), (g4). Then for any \(h \in \mathbb{N}, h \geq 1 \), there exists \(q(h) > 0 \) such that for any \(0 < q < q(h) \) system (3) admits at least \(h \) couples of solutions in \(H^1(\mathbb{R}^3) \times D^{1,2}(\mathbb{R}^3) \) with radial symmetry.

Another variational problem related with our abstract result is the following. Let us consider the multidimensional Kirchhoff equation

\[
\frac{\partial^2 u}{\partial t^2} - \left(p + q \int_{\Omega} |\nabla u|^2 \right) \Delta u = 0 \quad \text{in} \; \Omega,
\]

where \(\Omega \subset \mathbb{R}^N, p > 0 \) and \(u \) satisfies some initial or boundary conditions. It arises from the following Kirchhoff’ nonlinear generalization (see [22]) of the well known d’Alembert equation

\[
\rho \frac{\partial^2 u}{\partial t^2} - \left(\frac{P_0}{h} + \frac{E}{2L} \int_0^L \left| \frac{\partial u}{\partial x} \right|^2 \, dx \right) \frac{\partial^2 u}{\partial x^2} = 0,
\]

and it describes a vibrating string, taking into account the changes in length of the string during the vibration. Here, \(L \) is the length of the string, \(h \) is the area of the cross section, \(E \) is the Young modulus of the material, \(\rho \) is the mass density and \(P_0 \) is the initial tension.

If we look for static solutions, the equation we have to solve is

\[
- \left(p + q \int_{\Omega} |\nabla u|^2 \right) \Delta u = 0.
\]

In the same spirit of [1, 4] we consider the semilinear perturbation

\[
- \left(p + q \int_{\Omega} |\nabla u|^2 \right) \Delta u = g(u), \quad \text{in} \; \Omega \subset \mathbb{R}^N. \tag{4}
\]

Recently this equation has been extensively treated by many authors in bounded domains, assuming Dirichlet conditions on the boundary (see for example [1, 14, 23, 24, 25, 26, 31]).

Here we are interested in showing an application of our abstract result to the equation (4) in all the space \(\mathbb{R}^N, N \geq 3 \). The solutions are the critical points of the functional

\[
I_q(u) = \frac{p}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + \frac{q}{4} \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2 - \int_{\mathbb{R}^N} G(u).
\]

We prove the following result.

Theorem 1.3. Let us suppose (g1), (g2), (g3), (g4). Then for any \(h \in \mathbb{N}, h \geq 1 \), there exists \(q(h) > 0 \) such that for any \(0 < q < q(h) \) equation (4) admits at least \(h \) couples of solutions in \(H^1(\mathbb{R}^N) \) with radial symmetry.

The paper is organized as follows: in Section 2 we prove Theorem 1.1; in Section 3 we show as it can be applied to the nonlinear Schrödinger-Maxwell system and the nonlinear elliptic Kirchhoff equation in order to prove Theorems 1.2 and 1.3.

NOTATION

We will use the following notations:

- for any \(1 \leq s \leq +\infty \), we denote by \(\| \cdot \|_s \) the usual norm of the Lebesgue space \(L^s(\mathbb{R}^N) \);
- \(H^1(\mathbb{R}^N) \) is the usual Sobolev space endowed with the norm
 \[
 \| u \|^2 := \int_{\mathbb{R}^N} |\nabla u|^2 + u^2;
 \]
- \(D^{1,2}(\mathbb{R}^N) \) is completion of \(C_0^\infty(\mathbb{R}^N) \) (the compactly supported functions in \(C^\infty(\mathbb{R}^N) \)) with respect to the norm
 \[
 \| u \|^2_{D^{1,2}(\mathbb{R}^N)} := \int_{\mathbb{R}^N} |\nabla u|^2;
 \]
- \(C, C', C_i \) are various positive constants which may also vary from line to line.
2 The abstract result

We set for any $s \geq 0$,

\[g_1(s) := (g(s) + ms)^+, \]
\[g_2(s) := g_1(s) - g(s), \]

and we extend them as odd functions. Since

\[
\lim_{s \to 0} g_1(s) = 0, \\
\lim_{s \to \pm \infty} \frac{g_1(s)}{|s|^{2^* - 1}} = 0,
\]

and

\[g_2(s) \geq ms, \quad \forall s \geq 0, \]

by some computations, we have that for any $\varepsilon > 0$ there exists $C_\varepsilon > 0$ such that

\[g_1(s) \leq C_\varepsilon |s|^{2^* - 1} + \varepsilon g_2(s), \quad \forall s \geq 0. \]

(7)

If we set

\[G_i(t) := \int_0^t g_i(s) \, ds, \quad i = 1, 2, \]

then, by (6) and (7), we have

\[G_2(s) \geq \frac{m}{2} s^2, \quad \forall s \in \mathbb{R} \]

and for any $\varepsilon > 0$ there exists $C_\varepsilon > 0$ such that

\[G_1(s) \leq C_\varepsilon |s|^{2^*} + \varepsilon G_2(s), \quad \forall s \in \mathbb{R}. \]

(9)

Since, for any $u \in H^1(\mathbb{R}^N)$, $R_i(u) - R_i(0) = \int_0^1 \frac{d}{dt} R_i(tu) \, dt$, by (R2) we have that

\[R_i(u) \leq C_1 + C_2 \|u\|^\delta. \]

(10)

The hypothesis (R5) assures that all functionals that we will consider in this paper are invariant under rotations. Then

\[H^1_r(\mathbb{R}^N) = \{ u \in H^1(\mathbb{R}^N) \mid u \text{ radial} \} \]

is a natural constraint to look for critical points, namely critical points of the functional restricted to $H^1_r(\mathbb{R}^N)$ are true critical points in $H^1(\mathbb{R}^N)$. Therefore, from now on, we will directly define our functionals in $H^1_r(\mathbb{R}^N)$.

As in [18], we consider a cut-off function $\chi \in C^\infty(\mathbb{R}_+, \mathbb{R})$ such that

\[
\begin{cases}
\chi(s) = 1, & \text{for } s \in [0, 1], \\
0 \leq \chi(s) \leq 1, & \text{for } s \in [1, +\infty[,
\chi(s) = 0, & \text{for } s \in [2, +\infty[, \\
\|\chi'\|_\infty \leq 2,
\end{cases}
\]

and we introduce the following truncated functional $I^T_q : H^1_r(\mathbb{R}^N) \to \mathbb{R}$

\[I^T_q(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + qk_T(u)R(u) - \int_{\mathbb{R}^N} G(u), \]

where

\[k_T(u) = \chi \left(\frac{\|u\|^2}{T^2} \right). \]

Of course, any critical point u of I^T_q with $\|u\| \leq T$ is a critical point of I_q.

The C^1–functional I^T_q has the symmetric mountain pass geometry:
Lemma 2.1. There exist \(r_0 > 0 \) and \(\rho_0 > 0 \) such that

\[
I_q^T(u) \geq 0, \quad \text{for } \|u\| \leq r_0, \tag{11}
\]

\[
I_q^T(u) \geq \rho_0, \quad \text{for } \|u\| = r_0. \tag{12}
\]

Moreover, for any \(n \in \mathbb{N}, n \geq 1 \), there exists an odd continuous map

\[
\gamma_n : S^{n-1} = \{ \sigma = (\sigma_1, \cdots, \sigma_n) \in \mathbb{R}^n \mid |\sigma| = 1 \} \rightarrow H^1_\tau(\mathbb{R}^N),
\]

such that

\[
I_q^T(\gamma_n(\sigma)) < 0, \quad \text{for all } \sigma \in S^{n-1}.
\]

Proof By (8), (9) and the positivity of the map \(R \),

\[
I_q^T(u) \geq C_1 \|u\|^2 - C_2 \|u\|^2
\]

from which we obtain (11) and (12).

Moreover, arguing as in \([9, \text{Theorem 10}]\), for every \(n \geq 1 \) we can consider an odd continuous map \(\pi_n : S^{n-1} \rightarrow H^1_\tau(\mathbb{R}^N) \) such that

\[
0 \notin \pi_n(S^{n-1}), \quad \int_{\mathbb{R}^N} G(\pi_n(\sigma)) \geq 1 \quad \text{for all } \sigma \in S^{n-1}.
\]

Then, for \(t \) sufficiently large, we take

\[
\gamma_n(\sigma) = \pi_n(\sigma) / t
\]

and we obtain

\[
I_q^T(\gamma_n(\sigma)) = \frac{t^{N-2}}{2} \int_{\mathbb{R}^N} |\nabla \pi_n(\sigma)|^2 + q \chi \left(\frac{t^{N-2} \|\nabla \pi_n(\sigma)\|^2}{2} + \int_{\mathbb{R}^N} G(\pi_n(\sigma)) \right) R(\gamma_n(\sigma))
\]

\[
\leq \frac{t^{N-2}}{2} \int_{\mathbb{R}^N} |\nabla \pi_n(\sigma)|^2 - t^N < 0.
\]

Let us define

\[
b_n = b_n(q, T) = \inf_{\gamma \in \Gamma_n} \max_{\sigma \in D_n} I_q^T(\gamma(\sigma))
\]

where \(D_n = \{ \sigma = (\sigma_1, \cdots, \sigma_n) \in \mathbb{R}^n \mid |\sigma| \leq 1 \}, \)

\[
\Gamma_n = \left\{ \gamma \in C(D_n, H^1_\tau(\mathbb{R}^N)) \mid \begin{array}{l}
\gamma(-\sigma) = -\gamma(\sigma) \\
\gamma(\sigma) = \gamma_n(\sigma)
\end{array} \quad \text{for all } \sigma \in D_n \right\}
\]

and \(\gamma_n : \partial D_n \rightarrow H^1_\tau(\mathbb{R}^N) \) is given in Lemma 2.1.

Analogously to \([15] \), we set

\[
\tilde{I}_q(\theta, u) = I_q(u e^{-\theta}),
\]

\[
\tilde{I}_q^T(\theta, u) = I_q^T(u e^{-\theta}),
\]

\[
\tilde{I}_q'(\theta, u) = \frac{\partial}{\partial u} \tilde{I}_q(\theta, u),
\]

\[
(\tilde{I}_q^T)'(\theta, u) = \frac{\partial}{\partial u} \tilde{I}_q^T(\theta, u),
\]

\[
\tilde{b}_n = \tilde{b}_n(q, T) = \inf_{\gamma \in \Gamma_n} \max_{\sigma \in D_n} \tilde{I}_q^T(\gamma(\sigma)),
\]

where

\[
\tilde{\Gamma}_n = \left\{ \tilde{\gamma} \in C(D_n, \mathbb{R} \times H^1_\tau(\mathbb{R}^N)) \mid \begin{array}{l}
\tilde{\gamma}(\sigma) = (\theta(\sigma), \eta(\sigma)) \text{ satisfies} \\
(\tilde{\theta}(\sigma), \eta(\sigma)) = (\theta(\sigma), -\eta(\sigma)) \\
(\tilde{\theta}(\sigma), \eta(\sigma)) = (0, \gamma_n(\sigma))
\end{array} \quad \text{for all } \sigma \in D_n \right\}.
\]
By (R4) we have
\[I_q(\theta, u) = \frac{e^{(N-2)\theta}}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + q \sum_{i=1}^k \alpha_i R_i(e^{\beta_i \theta} u) - e^{N\theta} \int_{\mathbb{R}^N} G(u), \]
\[\tilde{I}_q(\theta, u) = \frac{e^{(N-2)\theta}}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + q \chi \left(\frac{e^{(N-2)\theta}||\nabla u||^2 + e^{N\theta}||u||^2}{T^2} \right) \sum_{i=1}^k \alpha_i R_i(e^{\beta_i \theta} u) - e^{N\theta} \int_{\mathbb{R}^N} G(u). \]

Arguing as in [15], the following lemmas hold.

Lemma 2.2. We have
1. there exists \(b > 0 \) such that \(b_n \geq \tilde{b} \) for any \(n \geq 1 \);
2. \(b_n \to +\infty \);
3. \(b_n = \tilde{b}_n \) for any \(n \geq 1 \).

Lemma 2.3. For any \(n \geq 1 \), there exists a sequence \(\{ \{\theta_j, u_j\} \} \subseteq \mathbb{R} \times H^1(\mathbb{R}^N) \) such that
1. \(\theta_j \to 0 \);
2. \(\tilde{I}_q(\theta_j, u_j) \to b_n \);
3. \((\tilde{I}_q)'(\theta_j, u_j) \to 0 \) strongly in \((H^1(\mathbb{R}^N))^{-1} \);
4. \(\frac{\partial}{\partial \theta} \tilde{I}_q(\theta_j, u_j) \to 0 \).

Now we prove that for a suitable choice of \(T \) and \(q \), the sequence \(\{u_j\} \) obtained in Lemma 2.3 actually is a bounded Palais-Smale sequence for \(I_q \).

Proposition 2.4. Let \(n \geq 1 \) and \(T_n > 0 \) sufficiently large. There exists \(q_n \) which depends on \(T_n \), such that for any \(0 < q < q_n \), if \(\{ \{\theta_j, u_j\} \} \subseteq \mathbb{R} \times H^1(\mathbb{R}^N) \) is the sequence given in Lemma 2.3, then, up to a subsequence, \(\|u_j\| \leq T_n \) for any \(j \geq 1 \).

Proof. By Lemmas 2.2 and 2.3, we infer that
\[N \tilde{I}_q(\theta_j, u_j) - \frac{\partial}{\partial \theta} \tilde{I}_q(\theta_j, u_j) = Nb_n + o_j(1), \]
and so
\[e^{(N-2)\theta_j} \int_{\mathbb{R}^N} |\nabla u_j|^2 = q \chi \left(\frac{\|u_j(e^{-\theta_j} \cdot)\|^2}{T^2} \right) \sum_{i=1}^k (\alpha_i - N) R_i(u_j(e^{-\theta_j} \cdot)) \]
\[+ q \chi \left(\frac{\|u_j(e^{-\theta_j} \cdot)\|^2}{T^2} \right) \sum_{i=1}^k e^{\alpha_i \theta_j} R_i(e^{\beta_i \theta_j} u_j) \]
\[+ q \chi \left(\frac{\|u_j(e^{-\theta_j} \cdot)\|^2}{T^2} \right) \frac{(N-2)e^{(N-2)\theta_j}||\nabla u_j||^2 + Ne^{N\theta_j}||u_j||^2}{T^2} R(u_j(e^{-\theta_j} \cdot)) \]
\[+ Nb_n + o_j(1). \]

We are going to estimate the right part of the previous identity. By the min-max definition of \(b_n \), if \(\gamma \in \Gamma_n \), we have
\[b_n \leq \max_{\sigma \in D_n} I_q(T)(\gamma(\sigma)) \]
\[\leq \max_{\sigma \in D_n} \left\{ \frac{1}{2} \int_{\mathbb{R}^N} |\nabla \gamma(\sigma)|^2 - \int_{\mathbb{R}^N} G(\gamma(\sigma)) \right\} + \max_{\sigma \in D_n} \left\{ qk_T(\gamma(\sigma)) R(\gamma(\sigma)) \right\} \]
\[= A_1 + A_2(T). \]
Multiple critical points

Now, if \(\|\gamma(\sigma)\|^2 \geq 2T^2 \) then \(A_2(T) = 0 \), otherwise, by (10), we have

\[
A_2(T) \leq q(C_1 + C_2\|\gamma(\sigma)\|^\delta) \leq q(C_1 + C_2T^\delta),
\]

for a suitable \(\delta > 0 \). Moreover we have that

\[
q\chi \left(\frac{\|u_j(e^{-\theta_j \cdot})\|^2}{T^2} \right) \sum_{i=1}^{k} (\alpha_i - N) R_i(u_j(e^{-\theta_j \cdot})) \leq q(C_1 + C_2T^\delta);
\]

\[
q\chi \left(\frac{\|u_j(e^{-\theta_j \cdot})\|^2}{T^2} \right) \sum_{i=1}^{k} e^{\alpha_i \theta_j} R_i(e^{\beta_i \theta_j} u_j)[\beta_i e^{\beta_i \theta_j} u_j] \leq CqT^\delta; \tag{14}
\]

\[
q\chi' \left(\frac{\|u_j(e^{-\theta_j \cdot})\|^2}{T^2} \right) \frac{(N - 2)e^{(N-2)\theta_j}\|\nabla u_j\|_2^2 + Ne^{N\theta_j}\|u_j\|_2^2 R(u_j(e^{-\theta_j \cdot}))}{T^2} \leq q(C_1 + C_2T^\delta). \tag{15}
\]

Then, from (13) we deduce that

\[
\int_{\mathbb{R}^N} |\nabla u_j|^2 \leq C' + q(C_1 + C_2T^\delta). \tag{16}
\]

On the other hand, since \(\frac{\partial}{\partial \theta} \tilde{I}_q^T(\theta_j, u_j) = o_j(1) \), by (9) we have that

\[
\frac{(N - 2)e^{(N-2)\theta_j}}{2} \int_{\mathbb{R}^N} |\nabla u_j|^2 + q\chi \left(\frac{\|u_j(e^{-\theta_j \cdot})\|^2}{T^2} \right) \sum_{i=1}^{k} \alpha_i R_u(u_j(e^{-\theta_j \cdot}))
\]

\[
+ q\chi \left(\frac{\|u_j(e^{-\theta_j \cdot})\|^2}{T^2} \right) \sum_{i=1}^{k} e^{\alpha_i \theta_j} R_i(e^{\beta_i \theta_j} u_j)[\beta_i e^{\beta_i \theta_j} u_j]
\]

\[
+ q\chi' \left(\frac{\|u_j(e^{-\theta_j \cdot})\|^2}{T^2} \right) \frac{(N - 2)e^{(N-2)\theta_j}\|\nabla u_j\|_2^2 + Ne^{N\theta_j}\|u_j\|_2^2 R(u_j(e^{-\theta_j \cdot}))}{T^2} \leq q(C_1 + C_2T^\delta) \tag{17}.
\]

Now, by (8), (14), (15), (16) and (17), we obtain

\[
\frac{Ne^{N\theta_j} m(1 - \varepsilon)}{2} \int_{\mathbb{R}^N} u_j^2 \leq (1 - \varepsilon) Ne^{N\theta_j} \int_{\mathbb{R}^N} G_2(u_j)
\]

\[
\leq Ne^{N\theta_j} C_e \int_{\mathbb{R}^N} |u_j|^2 - q\chi \left(\frac{\|u_j(e^{-\theta_j \cdot})\|^2}{T^2} \right) \sum_{i=1}^{k} e^{\alpha_i \theta_j} R_i(e^{\beta_i \theta_j} u_j)[\beta_i e^{\beta_i \theta_j} u_j]
\]

\[
- q\chi' \left(\frac{\|u_j(e^{-\theta_j \cdot})\|^2}{T^2} \right) \frac{(N - 2)e^{(N-2)\theta_j}\|\nabla u_j\|_2^2 + Ne^{N\theta_j}\|u_j\|_2^2 R(u_j(e^{-\theta_j \cdot}))}{T^2} + q_j(1)
\]

\[
\leq C \left(\int_{\mathbb{R}^N} |\nabla u_j|^2 \right)^{2^*/2} + q(C_1 + C_2T^\delta) + q_j(1)
\]

\[
\leq C(C' + q(C_1 + C_2T^\delta))^{2^*/2} + q(C_1 + C_2T^\delta) + o_j(1). \tag{18}
\]

We suppose by contradiction that there exists no subsequence of \(\{u_j\}_j \) which is uniformly bounded by \(T \) in the \(H^1 \)-norm. As a consequence, for a certain \(j_0 \) it should result that

\[
\|u_j\| > T, \quad \forall j \geq j_0. \tag{19}
\]

Without any loss of generality, we are supposing that (19) is true for any \(u_j \). Therefore, by (16) and (18), we conclude that

\[
T^2 < \|u_j\|^2 \leq C_3 + C_4 qT^{2^*/\delta}
\]
which is not true for T large and q small enough: indeed we can find $T_0 > 0$ such that $T_0^q > C_4 + 1$ and $q_0 = q_0(T_0)$ such that $C_4 q T_0^{2q} < 1$, for any $q < q_0$, and we find a contradiction. \hfill \Box

In our arguments, the following variant of the Strauss' compactness result [28] (see also [8, Theorem A.1]) will be a fundamental tool.

Proposition 2.5. Let P and $Q : \mathbb{R} \to \mathbb{R}$ be two continuous functions satisfying
\[
\lim_{s \to \infty} \frac{P(s)}{Q(s)} = 0,
\]
\[
\{v_j\}, \quad v \text{ and } w \text{ be measurable functions from } \mathbb{R}^N \text{ to } \mathbb{R}, \text{ with } w \text{ bounded, such that}
\sup_j \int_{\mathbb{R}^N} |Q(v_j(x))w| \, dx < +\infty,
\]
\[
P(v_j(x)) \to v(x) \text{ a.e. in } \mathbb{R}^N.
\]
Then $\|(P(v_j) - v)w\|_{L^1(B)} \to 0$, for any bounded Borel set B.
Moreover, if we have also
\[
\lim_{s \to 0} \frac{P(s)}{Q(s)} = 0,
\]
\[
\lim_{|x| \to \infty} |v_j(x)| = 0,
\]
then $\|(P(v_j) - v)w\|_{L^1(\mathbb{R}^N)} \to 0$.

In analogy with the well-known compactness result in [9], we state the following result.

Lemma 2.6. Let $n \geq 1$, $T_n, q_0 > 0$ as in Proposition 2.4 and $\{\theta_j, u_j\} \subset \mathbb{R} \times H^1_q(\mathbb{R}^N)$ be the sequence given in Lemma 2.3. Then $\{u_j\}$ admits a subsequence which converges in $H^1_q(\mathbb{R}^N)$ to a nontrivial critical point of I_q at level b_n.

Proof. Since $\{u_j\}$ is bounded, up to a subsequence, we can suppose that there exists $u \in H^1_q(\mathbb{R}^N)$ such that
\[
u_j \to u \text{ weakly in } H^1_q(\mathbb{R}^N),
\]
\[
u_j \to u \text{ in } L^p(\mathbb{R}^N), \quad 2 < p < 2^*,
\]
\[
u_j \to u \text{ a.e. in } \mathbb{R}^N.
\]
(20)

By weak lower semicontinuity we have
\[
\int_{\mathbb{R}^N} |\nabla \nu_j|^2 \leq \liminf_j \int_{\mathbb{R}^N} |\nabla \nu_j|^2.
\]
(21)

Since $\|\nu_j\| \leq T_n$ we have
\[
\tilde{I}_q'\theta_j, \nu_j\nu_j = (\tilde{I}_q')\theta_j, \nu_j\nu_j\nu_j = e^{(N-2)\theta_j} \int_{\mathbb{R}^N} \nabla \nu_j \cdot \nabla v + \sum_{l=1}^k e^{(\alpha_l+\beta_l)\theta_j} R_l(\nu_j) \nu_j\nu_j\nu_j + e^{N\theta_j} \int_{\mathbb{R}^N} g_2(\nu_j) v - e^{N\theta_j} \int_{\mathbb{R}^N} g_1(\nu_j) v
\]
for every $v \in H^1_q(\mathbb{R}^N)$.

Then, by (iii) of Lemma 2.3
\[
\tilde{I}_q'\theta_j, \nu_j\nu_j = e^{(N-2)\theta_j} \int_{\mathbb{R}^N} \nabla \nu_j \cdot (\nabla \nu_j - \nabla \nu_j) + \sum_{l=1}^k e^{(\alpha_l+\beta_l)\theta_j} R_l(\nu_j) \nu_j\nu_j\nu_j + e^{N\theta_j} \int_{\mathbb{R}^N} g_2(\nu_j)(u - \nu_j) - e^{N\theta_j} \int_{\mathbb{R}^N} g_1(\nu_j)(u - \nu_j) = o_j(1).
\]
(22)
If we apply Proposition 2.5 for \(P(s) = g_1(s), i = 1, 2, \) \(Q(s) = |s|^2 - 1, (v_j)_j = (u_j)_j, v = g_i(u), i = 1, 2 \) and \(w \) a generic \(C^0_0(\mathbb{R}^N) \)-function, by (g3)', (5) and (20) we deduce that
\[
\int_{\mathbb{R}^N} g_i(u_j) w \to \int_{\mathbb{R}^N} g_i(u) w \quad i = 1, 2,
\]
and so
\[
\int_{\mathbb{R}^N} g_i(u_j) w \to \int_{\mathbb{R}^N} g_i(u) w \quad i = 1, 2.
\]
Moreover, applying Proposition 2.5 for \(P(s) = g_1(s), Q(s) = s^2 + |s|^2 - 1, (v_j)_j = (u_j)_j, v = g_1(u), \) and \(w = 1, \) by (g3)', (5) and (20), we deduce that
\[
\int_{\mathbb{R}^N} g_1(u_j) w \to \int_{\mathbb{R}^N} g_1(u) w.
\]
Moreover, by (20) and Fatou’s lemma
\[
\int_{\mathbb{R}^N} g_2(u) w \leq \liminf_j \int_{\mathbb{R}^N} g_2(u_j) w.
\]
By (22), (23), (24) (25) and (R3), we have
\[
\limsup_j \int_{\mathbb{R}^N} |\nabla u_j|^2 = \limsup_j e^{(N-2)\theta_j} \int_{\mathbb{R}^N} |\nabla u_j|^2
\]
\[
= \limsup_j \left[e^{(N-2)\theta_j} \int_{\mathbb{R}^N} \nabla u_j \cdot \nabla u + q \sum_{i=1}^{k} e^{(\alpha_i + \beta_i)\theta_j} R_i' (e^{\beta_i \theta_j} u_j) (u - u_j) \right]
\]
\[
\quad \quad + e^{N\theta_j} \int_{\mathbb{R}^N} g_2(u_j) (u - u_j) - e^{N\theta_j} \int_{\mathbb{R}^N} g_1(u_j) (u - u_j) \right]
\]
\[
\leq \int_{\mathbb{R}^N} |\nabla u|^2.
\]
By (21) and (26), we get
\[
\lim_j \int_{\mathbb{R}^N} |\nabla u_j|^2 = \int_{\mathbb{R}^N} |\nabla u|^2,
\]
hence, by (22),
\[
\lim_j \int_{\mathbb{R}^N} g_2(u_j) w = \int_{\mathbb{R}^N} g_2(u) w.
\]
Since \(g_2(s) = ms^2 + h(s) \), with \(h \) a positive and continuous function, by Fatou’s Lemma we have
\[
\int_{\mathbb{R}^N} h(u) \leq \liminf_j \int_{\mathbb{R}^N} h(u_j),
\]
\[
\int_{\mathbb{R}^N} u^2 \leq \liminf_j \int_{\mathbb{R}^N} u_j^2.
\]
These last two inequalities and (28) imply that, up to a subsequence,
\[
\lim_j \int_{\mathbb{R}^N} u_j^2 = \int_{\mathbb{R}^N} u^2,
\]
which, together with (27), shows that \(u_j \to u \) strongly in \(H_0^1(\mathbb{R}^N) \). Therefore, since \(b_n > 0 \), \(u \) is a non-trivial critical point of \(I_q \) at level \(b_n \).

Proof of Theorem 1.1 Let \(h \geq 1 \). Since \(b_n \to +\infty \), up to a subsequence, we can consider \(b_1 < b_2 < \cdots < b_n \). By Lemma 2.6 we conclude, defining \(q(h) = q_{b_n} > 0 \).

\(\square \)
3 Some applications

3.1 The nonlinear Schrödinger-Maxwell system

Let us consider the Schrödinger-Maxwell system:
\[
\begin{aligned}
-\Delta u + q\phi u &= g(u) \quad \text{in } \mathbb{R}^3, \\
-\Delta \phi &= qu^2 \quad \text{in } \mathbb{R}^3,
\end{aligned}
\]
where \(q > 0\) and \(g\) satisfies (g1)-(g4). Arguing as in [5, 8], without loss of generality, we can suppose that \(g\) satisfies (g3). The solutions \((u, \phi) \in H^1(\mathbb{R}^3) \times D^{1,2}(\mathbb{R}^3)\) of (SM) are the critical points of the action functional \(E_q: H^1(\mathbb{R}^3) \times D^{1,2}(\mathbb{R}^3) \to \mathbb{R}\), defined as
\[
E_q(u, \phi) := \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u|^2 - \frac{1}{4} \int_{\mathbb{R}^3} |\nabla \phi|^2 + \frac{q}{2} \int_{\mathbb{R}^3} \phi u^2 - \int_{\mathbb{R}^3} G(u).
\]

The action functional \(E_q\) exhibits a strong indefiniteness, namely it is unbounded both from below and from above on infinite dimensional subspaces. This indefiniteness can be removed using the reduction method described in [7], by which we are led to study a one variable functional that does not present such a strongly indefinite nature. Indeed, for every \(u \in L^{\infty}(\mathbb{R}^3)\), there exists a unique \(\phi_u \in D^{1,2}(\mathbb{R}^3)\) solution of
\[
-\Delta \phi = qu^2, \quad \text{in } \mathbb{R}^3.
\]
Moreover it can be proved that \((u, \phi) \in H^1(\mathbb{R}^3) \times D^{1,2}(\mathbb{R}^3)\) is a solution of (SM) (critical point of functional \(E_q\)) if and only if \(u \in H^1(\mathbb{R}^3)\) is a critical point of the functional \(I_q: H^1(\mathbb{R}^3) \to \mathbb{R}\) defined as
\[
I_q(u) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u|^2 + \frac{q}{4} \int_{\mathbb{R}^3} \phi u^2 - \int_{\mathbb{R}^3} G(u),
\]
and \(\phi = \phi_u\).

According to our notations, in this case \(R(u) = \frac{1}{4} \int_{\mathbb{R}^3} \phi_u u^2\). In order to check that \(R\) satisfies (R1)-(R5), we need some preliminary results on \(\phi_u\) (see for example [12]).

Lemma 3.1. The map \(u \in L^{\infty}(\mathbb{R}^3) \mapsto \phi_u \in D^{1,2}(\mathbb{R}^3)\) is \(C^1\). Moreover, for every \(u \in H^1(\mathbb{R}^3)\), we have
\[
i) \|\phi_u\|_{D^{1,2}(\mathbb{R}^3)} = q \int_{\mathbb{R}^3} \phi_u u^2;
\]
\[
ii) \phi_u \geq 0;
\]
\[
iii) \phi_{-u} = \phi_u;
\]
\[
iv) \text{for any } t > 0: \phi_{u_t}(x) = t^2 \phi_u(x/t), \text{where } u_t(x) = u(x/t);
\]
\[
v) \text{there exist } C, C' > 0 \text{ independent of } u \in H^1(\mathbb{R}^3) \text{ such that}
\]
\[
\|\phi_u\|_{D^{1,2}(\mathbb{R}^3)} \leq C q \|u\|_{L^4}^2,
\]
and
\[
\int_{\mathbb{R}^3} \phi_u u^2 \leq C' q \|u\|_{L^4}^4;
\]
\[
vi) \text{if } u \text{ is a radial function then } \phi_u \text{ is radial, too.}
\]

Now we use the previous lemma to deduce assumptions (R1)-(R5). Hypothesis (R1) is obvious. Since
\[
R'(u)[u] = \int_{\mathbb{R}^3} \phi_u u^2,
\]
(see for example [7]), then (R2) is again a consequence of (29). We pass to check (R3). Suppose that
\[
u_j \rightharpoonup u \text{ weakly in } H^1_0(\mathbb{R}^3).
\]
By compact embedding we deduce that

\[u_j \to u \text{ in } L^{\frac{12}{5}}(\mathbb{R}^3) \]

and then, by continuity,

\[\phi_{u_j} \to \phi_u \text{ in } D^{1,2}(\mathbb{R}^3). \]

Since \(R'(u)[v] = \int_{\mathbb{R}^N} \phi_u uv \), we have that

\[
\limsup_j R'(u_j)[u - u_j] = \limsup_j \int_{\mathbb{R}^3} \phi_{u_j}(u - u_j) \leq C \limsup_j \|\phi_{u_j}\|_{D^{1,2}(\mathbb{R}^3)} \|u - u_j\|_{L^2} = 0.
\]

Now in order to verify (R4), we consider \(u \in H^1(\mathbb{R}^3), u \neq 0 \) and the rescaled function \(u_t \). We compute

\[
R(u_t) = \frac{1}{4} \int_{\mathbb{R}^3} \phi_{u_t} u_t^2 = \frac{t^5}{4} \int_{\mathbb{R}^3} \phi_u u^2 = t^5 R(u)
\]

so (R4) holds true for \(\alpha = 5 \).

Finally (R5) follows from \(\text{vi) of Lemma 3.1.} \)

3.2 The elliptic Kirchhoff equation

In this subsection we treat the semilinear perturbation of the Kirchhoff equation

\[
- \left(p + q \int_{\mathbb{R}^N} |\nabla u|^2 \right) \Delta u = g(u) \quad \text{in } \mathbb{R}^N, \tag{K}
\]

where \(p > 0 \) and \(g \) satisfies (g1)-(g4). Arguing as in [4, 8], without loss of generality, we can suppose that \(g \) satisfies (g3'). We find the solution to (K) as the critical points of the functional

\[
I_g(u) = \frac{1}{2} \left(p + \frac{q}{2} \int_{\mathbb{R}^N} |\nabla u|^2 \right) \int_{\mathbb{R}^N} |\nabla u|^2 - \int_{\mathbb{R}^N} G(u).
\]

It is easy to see that \(I_g \) is of the type (2), where \(R(u) = \frac{1}{4} \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2 \).

Assumptions (R1)-(R2) are trivially satisfied as we can see by straight computations.

As to (R3), suppose that \(u_j \rightharpoonup u \) weakly in \(H^1(\mathbb{R}^N) \). By weak lower semicontinuity, we know that

\[
\int_{\mathbb{R}^N} |\nabla u|^2 \leq \liminf_j \int_{\mathbb{R}^N} |\nabla u_j|^2,
\]

and then

\[
\limsup_j R'(u_j)[u - u_j] = \limsup_j \int_{\mathbb{R}^N} |\nabla u_j|^2 \cdot \int_{\mathbb{R}^N} \nabla u_j \cdot \nabla (u - u_j) \leq \limsup_j \int_{\mathbb{R}^N} |\nabla u_j|^2 \cdot \limsup_j \int_{\mathbb{R}^N} \nabla u_j \cdot \nabla (u - u_j) \leq \limsup_j \int_{\mathbb{R}^N} |\nabla u_j|^2 \cdot \left(\int_{\mathbb{R}^N} \nabla u_j \cdot \nabla (u - \liminf_j \int_{\mathbb{R}^N} |\nabla u_j|^2) \right) \leq 0.
\]

By a simple computation, we have that

\[
R(u_t) = \frac{1}{4} \left(\int_{\mathbb{R}^N} |\nabla u_t|^2 \right)^2 = \frac{t^{2(2N-2)}}{4} \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2 = t^{2(2N-2)} R(u),
\]

and then also (R4) is satisfied.

Finally by a simple change of variable it can be proved that for any \(g \in O(N) \) we have

\[
R(u(gx)) = \frac{1}{4} \left(\int_{\mathbb{R}^N} |\nabla u(gx)|^2 \right)^2 = \frac{1}{4} \left(\int_{\mathbb{R}^N} |\nabla u(x)|^2 \right)^2 = R(u).
\]
Remark 3.2. Let us observe that we can easily apply Theorem 1.1 also to a sort of linear combination of the Schrödinger-Maxwell equation with the Kirchhoff one, namely we can find multiple critical points of the functional

\[I_q(u) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u|^2 + \frac{q}{4} \left[\lambda_1 \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * u^2 \right) u^2 + \lambda_2 \left(\int_{\mathbb{R}^3} |\nabla u|^2 \right)^2 \right] - \int_{\mathbb{R}^3} G(u), \]

with \(\lambda_1, \lambda_2 \in \mathbb{R}_+ \) and \(q \) sufficiently small.

References

[1] C.O. Alves, E.J.S.A. Correa, T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49, (2005), 85–93.

[2] A. Ambrosetti, D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10, (2008), 391–404.

[3] A. Azzollini, Concentration and compactness in nonlinear Schrödinger-Poisson system, (preprint).

[4] A. Azzollini, The elliptic Kirchhoff equation in \(\mathbb{R}^N \) perturbed by a local nonlinearity (preprint).

[5] A. Azzollini, P. d’Avenia, A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 779–791.

[6] A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345, (2008), 90–108.

[7] V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283–293.

[8] H. Berestycki, P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82, (1983), 313–345.

[9] H. Berestycki, P.L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82, (1983), 347–375.

[10] M. Berti, P. Bolle, Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys., 243, (2003), 315-328.

[11] G.M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7, (2003), 417–423.

[12] T. D’Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134, (2004), 893–906.

[13] P. d’Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2, (2002), 177–192.

[14] X. He, W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlin. Anal., 70, (2009), 1407–1414.

[15] J. Hirata, N. Ikoma, K. Tanaka, Nonlinear scalar field equations in \(\mathbb{R}^N \): mountain pass and symmetric mountain pass approaches, preprint.

[16] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28, (1997), 1633–1659.

[17] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \(\mathbb{R}^N \), Proc. R. Soc. Edinb., Sect. A, Math., 129, (1999), 787–809.

[18] L. Jeanjean, S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11, (2006), 813–840.
[19] Y. Jiang, H.S. Zhou, Bound states for a stationary nonlinear Schrödinger-Poisson system with sign-changing potential in \mathbb{R}^3, preprint.

[20] H. Kikuchi, On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations, Nonlinear Anal., Theory Methods Appl., 67, (2007), 1445–1456.

[21] H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7, (2007), 403–437.

[22] G. Kirchhoff, Mechanik, Teubner, Leipzig (1883).

[23] T.F. Ma, Remarks on an elliptic equation of Kirchhoff type, Nonlin. Anal., 63, (2005), e1967–e1977.

[24] A. Mao, Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlin. Anal., 70, (2009), 1275-1287.

[25] K. Perera, Z.T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Diff. Eq., 221, (2006), 246-255.

[26] B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Opt., 46, (2010), 543–549.

[27] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, Journ. Func. Anal., 237, (2006), 655–674.

[28] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55, (1977), 149–162.

[29] M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv., 60, (1985), 558–581.

[30] Z. Wang, H.S. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in \mathbb{R}^3, Discrete Contin. Dyn. Syst., 18, (2007), 809–816.

[31] Z.T. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317, (2006), 456-463.

[32] L. Zhao, F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346, (2008), 155–169.