Sickle cell trait is not associated with chronic kidney disease in adult Congolese patients: a clinic-based, cross-sectional study

K Mukendi, FB Lepira, JR Makulo, KE Sumaili, PK Kayembe, MN Nseka

Abstract

Objective: The aim of this study was to evaluate the determinants of chronic kidney disease (CKD) with special emphasis on sickle cell trait (SCT).

Methods: Three hundred and fifty-nine patients (171 men and 188 women), aged 18 years or older, with reduced kidney function (eGFR < 90 ml/min/1.73 m²) and seen at secondary and tertiary healthcare in Kinshasa were consecutively recruited in this cross-sectional study. Serum creatinine and haemoglobin electrophoresis were performed in each patient. CKD was defined as < 60 ml/min/1.73 m². Logistic regression analysis was used to assess determinants of CKD with a special emphasis on SCT. A p-value < 0.05 defined the level of statistical significance.

Results: SCT was present in 19% of the study population; its frequency was 21 and 18% (p > 0.05) in patients with and without CKD, respectively. In multivariate analysis, sickle cell trait was not significantly (OR: 0.38, 95% CI: 0.55–1.839; p = 0.235) associated with CKD; the main determinants were dipstick proteinuria (OR: 1.86; 95% CI: 1.094–3.168; p = 0.02), the metabolic syndrome (OR: 1.69; 95% CI: 1.033–2.965; p = 0.03), haemoglobin ≥ 12 g/dl (OR: 0.36; 95% CI: 0.21–0.625; p = 0.001), and personal history of hypertension (OR: 2.16; 95% CI: 1.202–3.892; p = 0.01) and of diabetes mellitus (OR: 2.35; 95% CI: 1.150–4.454; p = 0.001).

Conclusion: SCT was not an independent determinant of CKD in the present case series. Traditional risk factors emerged as the main determinants of CKD.

Keywords: chronic kidney disease, determinants, sickle cell trait, black Africans

Submitted 9/8/14, accepted 1/12/14
Cardiovasc J Afr 2015; 26: 125–129 www.cvja.co.za
DOI: 10.5830/CVJA-2014-076

Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kinshasa Hospital, Kinshasa, Democratic Republic of Congo
K Mukendi, MD
FB Lepira, MD, PhD, lepslepira@yahoo.fr
KE Sumaili, MD
MN Nseka, MD
School of Public Health/University of Kinshasa, Kinshasa, Democratic Republic of Congo
PK Kayembe, MD

Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are associated with significant cardiovascular (CV) and renal morbidity and mortality rates, with substantial economic burden. Therefore, early identification of CKD patients at high risk of progression is urgently needed for early and targeted treatment to improve patient care. Diabetes and hypertension are the primary risk factors for CKD and ESRD but do not fully account for CKD and ESRD risk. Marked variability in the incidence of CKD suggests that factors other than diabetes and hypertension contribute to its aetiology.

Family studies have suggested a genetic component to the aetiology of CKD and ESRD. In African Americans, high-risk common variants in the Apol1/MYH9 locus may explain up to 70% of the differences in ESRD rates between European and African Americans. While this finding has great implications for ESRD, the identification of additional risk factors for CKD, including genetic loci in association with estimated glomerular filtration rate (eGFR), may help to advance our understanding of the underpinnings of CKD in African Americans. In this era of identifying genetic risk factors for kidney disease, it may be appropriate to revisit one of the most common genetic disorders: sickle cell haemoglobinopathies.

In this regard, sickle cell trait (SCT), present in approximately 7–9% of African Americans, has been reported to be a potential candidate gene. However, conflicting reports exist as to whether SCT is a risk factor for the progression of nephropathy. Haemoglobin S (HbS) was selected for in Africa because of the protection it affords from malarial infection, a scenario similar to the protection from trypanosomal infection provided by heterozygosity for APOL1 nephropathy risk variants.

Whereas APOL1 contributes to risk for nephropathy in an autosomal recessive inheritance pattern, HbS reportedly had a dominant effect on risk, with SCT being associated with ESRD. In line with this finding, a few small studies on African Americans reported HbS as an independent risk factor for CKD and ESRD. However, other studies using a large sample of African Americans stated that SCT was not independently associated with susceptibility to ESRD in African Americans, highlighting the need for further studies in other populations such as those of sub-Saharan Africa where SCT is prevalent.

Although SCT is very prevalent in black Africans, few studies have been conducted to assess the association between SCT and CKD. In Democratic Republic of Congo (DRC), the prevalence of CKD and SCT has been reported to be 12% and 17–24%, respectively. No study has evaluated the frequency of SCT among CKD patients to assess its association with reduced kidney function. Therefore, the aim of this clinic-based, cross-sectional study was to assess the potential association between SCT and CKD among adult Congolese patients.
Methods

From 30 April to 24 August 2012, all consecutively appearing patients with known CKD seen in tertiary care (University of Kinshasa Hospital) and those with diabetes or hypertension regularly followed in secondary care (General Hospital of Kinshasa and Saint Joseph Hospital) were asked to participate in this cross-sectional study. Inclusion criteria were: age ≥ 18 years, antihypertensive treatment for at least three months, and written informed consent.

The sample was a convenient one. Self-reported alcohol use, smoking habits, personal and family history of hypertension or diabetes, family history of sickle cell anaemia (SCA) and measure of adiposity [body mass index (BMI) and waist circumference (WC)] were obtained for all patients. Excessive alcohol intake was defined as regular intake of two or more glasses per day of beer or equivalent for at least one year, knowing that one glass of beer contains 10 g of alcohol. Smoking was defined as regular consumption of at least one cigarette per day for more than five years or having stopped smoking for less than five years. Overweight and obesity were defined as BMI ≥ 25 and ≥ 30 kg/m², respectively. Central obesity was defined as WC > 94 cm in men > 80 cm in women.

Seated blood pressure (BP) was measured using an electronic device Omron M3 on the left arm at the level of the heart after five minutes’ rest. Three consecutive BP measurements at two-minute intervals were made and the mean of the last two readings was used for analysis. Pulse pressure (PP) was calculated after five minutes’ rest. Three consecutive BP measurements at device Omron M3 on the left arm at the level of the heart were obtained for all patients. Excessive alcohol intake was defined as regular intake of two or more glasses per day of beer or equivalent for at least one year, knowing that one glass of beer contains 10 g of alcohol. Smoking was defined as regular consumption of at least one cigarette per day for more than five years or having stopped smoking for less than five years. Overweight and obesity were defined as BMI ≥ 25 and ≥ 30 kg/m², respectively. Central obesity was defined as WC > 94 cm in men > 80 cm in women.

A 12-hour overnight fasting blood sample was collected from each patient for measurement of haemoglobin (Hb), total cholesterol (TC) and its sub-fractions [low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C)], triglycerides (TG), glucose, uric acid and creatinine levels at the Laboratory of the National AIDS Control Program (NACP). LDL-C was calculated using the Friedewald formula. HDL-C (1.39 ± 0.54 mmol/l), triglycerides (TG), glucose, uric acid, Hb and eGFR were 5.32 ± 2.22 mmol/l, 1.49 ± 0.59 mmol/l, 1.31 ± 0.65 mmol/l, 8.16 ± 4.94 mmol/l, 360 ± 159 mmol/l, 11 ± 2.40 g/dl and 59 ± 46 ml/min/1.73 m², respectively (Table 2).

CKD was present in 188 patients (52%), of whom 40, 38 and 21% had CKD stage 3, 4 and 5, respectively (Tables 1, 2). The main causes of CKD were diabetes (44%), hypertension (39%), glomerulonephritis (14%) and other conditions (3%). Family history of sickle cell disease (FH-SCD) was present in 6% of patients. Average levels of TC, TG, glucose, uric acid, Hb and eGFR were 5.32 ± 2.22 mmol/l, 1.49 ± 0.59 mmol/l, 1.31 ± 0.65 mmol/l, 8.16 ± 4.94 mmol/l, 360 ± 159 mmol/l, 11 ± 2.40 g/dl and 59 ± 46 ml/min/1.73 m², respectively (Table 2).

CKD was present in 188 patients (52%), of whom 40, 38 and 21% had CKD stage 3, 4 and 5, respectively (Tables 1, 2). The main causes of CKD were diabetes (44%), hypertension (39%), glomerulonephritis (14%) and other conditions (3%). Family history of sickle cell disease was present in 7% and 6% of patients with and without CKD, respectively; the difference was not statistically significant (p > 0.05). Compared to patients without CKD, those with CKD had on average higher levels of WC (92 ± 16 vs 88 ± 12 cm; p = 0.009), SBP (151 ± 26 vs 136 ± 24; p = 0.001), DBP (85 ± 15 vs 81 ± 13 mmHg; p = 0.001) and PP (66 ± 21 vs 54 ± 19 mmHg; p = 0.001). They also had higher levels of TG (1.42 ± 0.75 vs 1.22 ± 0.54 mmol/l; p = 0.017) and uric acid (442 ± 165 vs 277 ± 100 mmol/l; p = 0.001), and lower levels of HDL-C (1.39 ± 0.67 vs 1.58 ± 0.46 mmol/l; p = 0.014), glucose (7.5 ± 5.16 vs 8.94 ± 4.61) and Hb (10 ± 2.20 vs 12 ± 2.10 g/dl; p = 0.001). The proportion of subjects with proteinuria was also higher in CKD patients (37 vs 24%; p = 0.001).

Table 3 summarises the distribution of CKD risk factors in the study population as a whole and by renal functional status. SCT was present in 19% of patients in the entire group, and 23 and 18% of those with and without CKD, respectively; the observed difference did not reach the level of statistical significance. Patients with CKD also had higher rates of the MetS (31 vs 24%; p = 0.001), anaemia (72 vs 42%; p = 0.001) and elevated PP (60 vs 39%, p = 0.001). Clinical and biological characteristics of CKD patients by Hb status are depicted in

concentration. It has been shown to be a reliable determinant of HbS concentration and allows for the determination of HbS and HbC traits.

Statistical analysis

Data are expressed as mean ± standard deviation (SD) or relative frequency in percentages. Chi-square and Student’s t-tests were used for comparing categorical and normally distributed continuous variables, respectively. The Mann–Whitney test was used for non-normally distributed continuous variables. Multiple logistic regression analysis and the likelihood ratio method were performed with CKD as the dependent variable for the assessment of the strength and independence of association with CKD risk factors, among them, SCT alone or in interaction with hypertension or diabetes. Adjusted odds ratio (aOR) and their 95% confidence intervals (CI) were calculated for each variable. All statistical analyses were performed with SPSS for Windows, version 12.0 at the Division of Epidemiology and Biostatistics of Kinshasa Public Health School, University of Kinshasa.
Table 1. Clinical characteristics of the study population as a whole and by renal functional status

Variable	Whole group (n = 359)	CKD− (n = 171)	CKD+ (n = 188)	p-value
Age (years)	56 ± 15	64 ± 10	64 ± 10	
Gender (%)				
Males	45	41	48	0.548
Females	55	59	52	
FH-SCD (%)	359	6	7	0.897
BMI (kg/m²)	25 ± 5	25 ± 5	26 ± 6	0.341
WC (cm)	90 ± 14	88 ± 12	92 ± 16	0.009
SBP (mmHg)	143 ± 26	136 ± 24	151 ± 26	0.001
DBP (mmHg)	83 ± 13	81 ± 14	85 ± 15	0.001
PP (mmHg)	60 ± 20	54 ± 19	66 ± 21	0.001
Causes of CKD				
Stage 3 (%)		40		
Stage 4 (%)		38		
Stage 5 (%)		21		

Table 2. Biological characteristics of the study population as a whole and by renal functional status

Variable	Whole group (n = 359)	CKD− (n = 171)	CKD+ (n = 188)	p-value
Hb (g/dl)	11 ± 2.40	12 ± 2.10	10 ± 2.20	0.001
Blood glucose (mmol/l)	8.16 ± 4.94	8.94 ± 4.61	7.50 ± 5.16	0.005
TC (mmol/l)	5.32 ± 2.22	5.14 ± 1.73	5.55 ± 2.22	0.312
LDL-C (mmol/l)	3.04 ± 1.65	2.99 ± 1.60	3.07 ± 1.70	0.662
HDL-C (mmol/l)	1.49 ± 0.59	1.38 ± 0.46	1.39 ± 0.67	0.014
TG (mmol/l)	3.14 ± 0.65	2.22 ± 0.54	1.42 ± 0.75	0.017
Uric acid (mg/dl)	316 ± 139	277 ± 100	442 ± 165	0.001
Creatinine (µmol/l)	87 ± 44	80 ± 24	94 ± 54	0.001
eGFR (ml/min/1.73 m²)	59 ± 46	95 ± 39	26 ± 20	0.001

Table 3. CKD risk factors among the study population as a whole and by renal functional status

Variable	Whole group (n = 359)	CKD− (n = 171)	CKD+ (n = 188)	p-value
HbAS (%)				
Smoking (%)	39	4	5	0.499
Alcohol (%)	359	4	4	0.763
Overweight/obesity (%)	359	29	29	0.715
Anaemia (%)	359	57	42	0.001
Elevated PP (%)	359	49	39	0.001

Discussion

The aim of this cross-sectional study was to assess determinants of CKD with a special emphasis on SCT. Traditional risk factors in isolation or combined as the MetS emerged as the main determinants of CKD; however, SCT was not associated with CKD.

Our finding of increased risk for CKD in the presence of the MetS agrees with the results of previous reports on the determinants of CKD. Cheng et al. found a greater risk of CI: 1.003–2.965; p = 0.038) and 3.12-fold (OR: 2.34 95% CI: 1.202–3.892; p = 0.001) greater risk for CKD, respectively, in comparison with patients without these risk factors.

Table 4. Clinical and biological characteristics of CKD patients by haemoglobin genotype status

Variable	HbAA (n=149)	HbAS (n=39)	p-value
Age, years	56 ± 15	55 ± 17	0.808
Gender (%)	44	67	0.017
BMI (kg/m²)	25 ± 5	26 ± 6	0.189
UC (cm)	88 ± 12	89 ± 13	0.051
SBP (mmHg)	150 ± 21	158 ± 29	0.065
DBP (mmHg)	85 ± 13	86 ± 16	0.550
PP mm Hg	64 ± 20	71 ± 21	0.061

Data are expressed as mean ± standard deviation (SD) or relative frequency (%).

BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; Hb, haemoglobin; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; eGFR, estimated glomerular filtration rate.
CKD (OR: 1.77 95% CI: 1.18–2.46) in patients with the MetS in comparison with those without this risk factor. A similar increased risk of CKD (OR: 1.55 95% CI: 1.34–1.80) was reported by Thomas et al.26 and Tanner et al.27 respectively. Thomas et al.26 indicated that the risk of CKD increased with the number of individual MetS components. A higher increased risk of CKD (OR: 2.60 95% CI: 1.68–4.45) in the presence of the MetS was reported by Chen et al.28 This increased risk of CKD is thought to rely on MetS-associated insulin resistance and subsequent oxidative stress and endothelial dysfunction.27,31,32

SCT was not associated with CKD in the present study. Conflicting reports exist as to whether SCT is a risk factor for the development and progression of CKD.2,5,6 Earlier small-scale reports suggested SCT to be an independent risk factor for CKD and ESRD.2,6 Derebail et al.28 observed among 188 ESRD African Americans on dialysis a greater prevalence of SCT (15 vs 7%, p = 0.001) in comparison with that inferred from the newborn haemoglobinopathy screening programme; they suggested SCT to be an independent risk factor for CKD.1

Ajayi et al.29 found in black Africans a greater prevalence of microalbuminuria and proteinuria in type 2 diabetes patients with SCT in comparison with those with normal haemoglobin levels. All these authors speculated that the increased prevalence of SCT could be due to accelerated progression of kidney disease either as a direct consequence of SCT or by HbAS enhancing the deleterious effects of another co-morbid condition, such as diabetes, hypertension or autosomal poly cystic kidney disease (APKD).3,5,7

With reference to methodological issues inherent in these cross-sectional studies and the geographical variations in the prevalence of HbAS, additional examination of SCT has been suggested in well-characterised, geographically diverse populations with advanced kidney disease.5 It may also be interesting to examine the interaction of SCT with other recently identified genetic risks for ESRD in black individuals, such as apolipoprotein 1 (APOL1) and non-muscle MYH9 risk variants (E1 risk haplotype) and SCT were assessed to determine whether interactions between these genes were present. The SCT genotype frequencies were similar in the cases (8.7% in non-diabetic and 7.1% in type 2 diabetes ESRD) and the controls (7.2%). No evidence of association between HbAS and either diabetic or non-diabetic aetiologies of ESRD was detected in this large sample of African Americans. In addition, no evidence of APOL1 or MYH9 interaction with SCT was observed.

The authors suggested both APOL1 and HbS to be associated with susceptibility to nephropathy in autosomal, recessive patterns, with no evidence of risk for nephropathy in individuals heterozygous for risk variants (e.g. those with SCT).5 They concluded that African Americans who have a single copy of the HbS gene are not at increased risk for developing non-diabetic or diabetic ESRD or subclinical nephropathy, relative to unaffected individuals.4 In addition, nephropathy risk variants in APOL1 function independently from HbS when contributing to non-diabetic ESRD.5 In contrast to earlier, small-scale reports using high-performance liquid chromatography (HPLC) to determine HbS, the strengths of this study include the large sample size and direct genotyping for HbS.6

The interpretation of the results of our study is confounded by some limitations. The cross-sectional design of the study precludes any causal relationship between CKD and associated risk factors. Moreover, the small sample size did not allow sufficient power to detect any additional associations. Definition of reduced kidney function and CKD was based on a unique determination of serum creatinine. As in earlier smaller studies, HbS determination was based on HPLC instead of direct genotyping of HbS. One wonders to what extent the conclusions of this clinic-based study could be extrapolated to the general population, given the bias in the referral of patients. The findings of our study, however, give some indications about the relationship between SCT and CKD, highlighting the need for a well-characterised study with a large sample of CKD patients.

Conclusion

In the present case series of black Africans, SCT did not emerge as an independent determinant of CKD. Classic CKD risk factors in isolation or combined as the MetS emerged as the main determinants of CKD.

The authors gratefully thank Dr Jeremie Muwonga for the use of the facilities at the National Laboratory of the National AIDS Control Program for the analysis of biological samples. We thank Prof Dr Léon Tshilolo for his outstanding help in the determination of haemoglobin genotypes at the Laboratory of Monkole Hospital. We are indebted to the staff of the BDOM network for their commitment during the study. We thank Dr Kensesse of the General Hospital of Kinshasha for his help during the study, and all the participants who by their consent made the study possible. We acknowledge the staff of the University of Kinshasha Hospital, Saint Joseph Hospital, especially Dr Josée Nkoyi, and the General Hospital of Kinshasha.
References

1. Levey AS, Andreoli SP, DuBose T, Provenzano R, Collins AJ. Chronic kidney disease: common, harmful, and treatable – World Kidney Day 2007. Clin J Am Soc Nephrol 2007; 2(2): 401–405.

2. Meguid El Nahas A, Bello AK. Chronic kidney disease: the global challenge. Lancet 2005; 365(9486): 331–340.

3. Shaw C, Sharpe CC. Could Sickle cell trait be a predisposing risk factor for CKD? Nephrol Dial Transplant 2010; 25: 2403–2405.

4. Iyengar SK, Schelling JR, Sedor JR. Approaches to understanding susceptibility to nephropathy: from genetics to genomics. Kidney Int 2002; 61(1Suppl): S61–67.

5. Cavanaugh KL, Lanzkron S. Time to recognize an overlooked trait. Kidney Int 2011; 80(12): 1339–1343.

6. Hicks PJ, Langefeld CD, Lu L, Bleyer AJ, Divers J, Nachman P, et al. Sickle cell trait is not independently associated with susceptibility to end-stage renal disease in African Americans. Kidney Int 2010; 78(2): 351–362.

7. Key NS, Derebail VK. Sickle cell trait: Novel clinical significance. Hematology Am Soc Hematol Educ Program 2010; 2010: 418–422.

8. Derebail VK, Nachman PH, Key NS, Anderseh H, Flink RJ, Kahrirrarg A. High prevalence of sickle cell trait in sickle cell African Americans with ESRD. J Am Soc Nephrol 2010; 21: 413–417.

9. Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood 2010; 115(22): 4331–4336.

10. Ajayi AA, Kolaowole BA. Sickle cell trait and gender influence type 2 diabetic complications in African patients. Eur J Intern Med 2004; 15: 312–315.

11. Sumaili EK, Nsekka MN, Lepira FB, Krzesinski JM, Makulu JK, Bukabau JB, et al. Screening for proteinuria and chronic kidney disease risk factors in Kinshasa: a World Kidney 2007 study. Neprhon Clin Pract 2008; 110(4): c220–228.

12. Tshiolo L, Assi LM, Luksuda D, Kinyaama C, Wembonyama S, Globis B, Vertongen F. Neonatal screening for sickle cell anemia in the Democratic Republic of the Congo: experience from a pioneer project on 31 204 newborns. J Clin Pathol 2009; 62(1): 35–38.

13. Agasa B, Bosunga K, Opara A, Tshibula K, Dupont E, Vertongen F, et al. Prevalence of sickle cell disease in a northeastern region of the Democratic Republic of Congo: what impact on transfusion policy? Transfus Med 2010, 20(1): 62–65.

14. Codreanu L, Perico N, Sharma SK, Schieppati A, Remuzzi G. Prevention programmes of progressive renal disease in developing nations. Nephrology 2006; 11(4): 321–328.

15. Orth SR, Stockmann A, Conradt C, Ritz E, Ferro M, Kreusser W, et al. Smoking as a risk factor for end-stage renal failure in men with primary renal disease. Kidney Int 1998; 53: 926–931.

16. World Health Organisation. Obesity: Preventing and managing the global epidemic. Report of a WHO Consultation. WHO Organ Techn Rep Ser 2000; 894: 1–XII, 1–253.

17. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120(16): 1640–1645.

18. Guidelines Committee 2007 European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2007; 25: 1105–1187.

19. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of LDL-cholesterol without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499–508.

20. Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003; 26(Suppl1): S5–20.

21. Bayouli MP, Lepira FB, Kayembe PK, M’buyanga-Kabangu JR. Left ventricular hypertrophy and geometry in type 2 diabetes patients with chronic kidney disease. An echocardiographic study. Cardiovasc J Afr 2012; 23(2): 73–77.

22. Levey AS, Coreil J, Greene T, Stevens LA, Zhang YL, Hendrickson S, et al. Using standardized serum creatinine values in the Modification of Diet in Renal Disease Study. Kidney Int 1997; 51: 1908–1919.

23. Sumaili EK, Krzesinski JM, Zinga CV, Cohen EP, Delanaye P, Munyanga SM, Nsekka NM. Prevalence of chronic kidney disease in Kinshasa: results of a pilot study from the Democratic Republic of Congo. Nephrol Dial Transplant 2009; 24(1): 117–122.

24. Longo AL, Lepira FB, Sumaili EM, Makulu JK, Bukabau JB, et al. Prevalence of low estimated glomerular filtration rate, proteinuria, and associated risk factors among HIV-infected black patients using Cockcroft-Gault and modification of diet in renal disease study equations. J Acquir Immune Defic Syndr 2012; 59(1): 59–64.

25. National Kidney Foundation K/DOQI clinical practical guidelines for chronic kidney disease: evaluation, classification and stratification. Kidney Disease Outcome Quality Initiative. Am J Kidney Dis 2002; 39(2Suppl): S22–26.

26. Bleyer AJ, Reddy SV, Sujata L, Russell GB, Akinwifed D, Bleyer AJ Jr, et al. Sickle cell trait and development of microvascular complications in diabetes mellitus. Clin J Am Soc Nephrol 2010; 5: 1015–1020.

27. Cheng HT, Huang JW, Chiang CK, Yen CJ, Hung JC. Metabolic syndrome and insulin resistance as risk factors for development of chronic kidney disease and rapid decline in renal function in elderly. J Clin Endocrinol Metab 2012; 97(4): 1268–1276.

28. Thomas G, Sehger AR, Kashyap SR, Srinivas TR, Kirwan JP, Navaneethan SD. Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol 2011; 6(10): 2364–2373.

29. Tanner RM, Brown TM, Muntner P. Epidemiology of obesity, metabolic syndrome and chronic kidney disease. Curr Hypertens Rep 2012; 14(2): 152–159.

30. Chen J, Muntner P, Hamon LL, Jones DW, Batuman V, Fonseca V, et al. The metabolic syndrome and chronic kidney disease in US adults. Am Intern Med 2004; 140(3): 167–174.

31. Liao MT, Sung CC, Hung KC, Wu CC, Le L, Lu KC. Insulin resistance in patients with chronic kidney disease. J Biomed Biotechnol 2012; 2012: 691369. Doi: 10.1155/2012/691369.

32. Prieto D, Contreras C, Sanchez A. Endothelial dysfunction, obesity and insulin resistance. Curr Vasc Pharmacol 2014; 12(3): 412–426.