Clogging, Dynamics and Reentrant Fluid For Active Matter on Periodic Substrates

C. Reichhardt and C. J. O. Reichhardt
Theoretical Division and Center for Nonlinear Studies,
Los Alamos National Laboratory,
Los Alamos, New Mexico 87545, USA

(Dated: December 28, 2021)

We examine the collective states of run-and-tumble active matter disks driven over a periodic obstacle array. When the drive is applied along a symmetry direction of the array, we find a clogged state with low activity, while at higher activity, the density becomes increasingly heterogeneous and an active clogged state emerges in which the mobility is strongly reduced. For driving along non-symmetry or incommensurate directions, there are two different clogging behaviors consisting of a drive dependent clogged state in the low activity thermal limit and a drive independent clogged state at high activity. These regimes are separated by a uniform flowing liquid state at intermediate activity. There is a critical activity level above which the thermal clogged state does not occur, as well as an optimal activity level that maximizes the disk mobility. Thermal clogged states are dependent on the driving direction while active clogged states are not. In the low activity regime, diluting the obstacles produces a monotonic increase in the mobility; however, for large activities, the mobility is more robust against obstacle dilution. We also examine the velocity-force curves for driving along non-symmetry directions, and find that they are linear when the activity is low or intermediate, but become nonlinear at high activity and show behavior similar to that found for the plastic depinning of solids. At higher drives the active clustering is lost. For low activity we also find a reentrant fluid phase, where the system transitions from a high mobility fluid at low drives to a clogged state at higher drives and then back into another fluid phase at very high drives. We map the regions in which the thermally clogged, partially clogged, active uniform fluid, clustered fluid, active clogged, and directionally locked states occur as a function of disk density, drift force, and activity.

Active matter describes systems that have some form of self-propulsion, such as biological entities, artificial swimmers, and robots. This area is attracting increasing attention due to the experimental realization of new types of active matter including individual or collective elements in uniform or complex environments [1,2]. One class of active matter is composed of assemblies of self-driven particles such as disks or elongated objects, in which the activity can arise from driven diffusion, run-and-tumble dynamics, chiral motion, or other forms of mobility [3,4]. In disorder-free environments, one of the most striking features of such particle-based active matter is the appearance of motility-induced phase separation [5,6], which occurs when the activity is large enough to induce a transition from a uniform fluid to a coexistence of dense or solid regions with a low density active gas. The dense regions form even when all of the pairwise interactions between the particles are repulsive.

When active matter particles are coupled to some form of complex environment such as walls, obstacles, or pinning sites, additional behaviors can arise. These include the induced locomotion of passive objects as well as a wetting phenomenon in which active particles can align with a barrier or accumulate in corners [7,8]. If the active particles interact with a random array of obstacles, pins, or other types of quenched disorder, the clustering or flocking transition can be destroyed, and under application of a drive can be replaced by a transition from isotropic to anisotropic cluster phases [17,22]. It is also possible for different types of trapping effects to appear [23,24], as well as transport or hopping rates that are non-monotonic as a function of activity [25,27]. The non-monotonicity arises because at low activity the system is easily pinned or clogged, at intermediate activity it acts like a freely flowing fluid, and at high activity it undergoes motility-induced phase separation accompanied by active clogging in which the motion is strongly reduced and occurs only intermittently or in avalanches [25,28,29].

It is also possible to place active matter particles on a periodic array of obstacles or a periodic pinning array [30,33]. In this case, there is a well defined average distance between the obstacles as well as clear preferred symmetry directions for motion. For non-active particles driven over periodic arrays, strong directional locking effects occur when the direction of the drive is changed with respect to the symmetry of the underlying substrate [33,36]. The particles preferentially flow along the symmetry directions of the substrate even when the external drive is not aligned with one of those directions. As a result, a series of locking steps appear in the velocity versus driving angle curves, as has been studied for colloidal [35,37,39,42] and other driven particle systems [33,43,45] coupled to a periodic substrate. The locking can be used as a method for steering the motion of particles along certain directions or for performing particle separation in which one species locks to one symmetry direction and another species locks to another direction [46,50]. Directional locking is the most pronounced in the single particle limit, where the existence of multiple
locking directions produces a devil’s staircase structure in the velocity versus angle response; however, when collective effects become important, different types of pattern formation can arise in which ordered flowing solids are stable for motion along symmetry locking directions but liquid or disordered states appear for flow along incommensurate angles [33, 39, 42, 51].

There have been several experimental [30] and numerical studies [33, 52, 55] of active matter systems interacting with a periodic substrate. At large activity in the single particle limit, the active disk motion is directionally locked even in the absence of external driving, and the prominence of this locking effect increases with increasing run times [33]. For a driven or directed active matter system, the activity can enhance the directional locking effect [30, 32, 33].

In this work we expand upon our previous studies of individual active matter disks interacting with periodic obstacle arrays [33], and consider the strongly collective regime in which clogging effects appear at both very low and very high activity. We show that different types of clogging occur depending on the direction of drive with respect to the symmetry directions of the substrate. For driving along a major symmetry direction such as \(\theta = 0^\circ \), the system forms a uniform liquid state at low activity and the mobility monotonically decreases with increasing activity until an activity-induced cluster state emerges in which the mobility is strongly reduced. For driving along an incommensurate angle, there can be two distinct clogging phases. The first, which we call thermal clogging, is a low activity clogged state similar to the clogging studied in previous work for zero activity [58, 59] and for the low activity regime of active matter on random substrates [60, 61], where the active particles form a heterogeneous system-spanning cluster. The second is a high activity state called active clogging which is associated with motility induced phase separation. There is a critical activity level above which the thermally clogged state is lost. Under a finite drive, both the thermal and active clogging depend on the active disk density. We examine the role of the driving force and find that active clogging persists down to the smallest drives since the activity itself induces the clustering effect. At higher drives, the active clogging is diminished since the drive interferes with cluster formation. In the low activity limit, we observe a reentrant fluid phase in which the system is a uniform fluid at low drives, transitions into a drive-induced clogged state, and breaks apart into a moving fluid or partially clustered state at high drives. These transitions are associated with a finite depinning threshold and negative differential mobility. For the active clogged state, there is no depinning threshold but the velocity-force curves develop nonlinearity at low drives similar to that found at plastic depinning in a non-thermal system, while at intermediate activity the velocity-force curves are linear. At high driving along incommensurate angles, for both low and high activity a directionally locked state appears in which the clustering is lost and the disks flow in strictly one-dimensional (1D) channels. In this work we focus on a fixed obstacle size and density. The collective effects that appear for changing obstacle size were studied in earlier work [57], where it was shown that commensuration effects arise when the spacing of the obstacle lattice matches with the active disk size, permitting the formation of large scale crystalline structures.

I. SIMULATION

We consider a two-dimensional (2D) system of size \(L \times L \) with periodic boundary conditions in the \(x \) and \(y \) directions. The sample contains a square array of \(N_{\text{obs}} \) obstacles of radius \(R_{\text{obs}} \) and lattice spacing \(a \), giving an obstacle density of \(\phi_{\text{obs}} = N_{\text{obs}}\pi R_{\text{obs}}^2/L^2 \). There are also \(N_a \) active disks with a radius of \(R_a \). The density of the active disks is \(\phi_a = N_a\pi R_a^2/L^2 \), and the total system density is \(\phi_{\text{tot}} = \phi_a + \phi_{\text{obs}} \). After initialization we apply a drift force \(F_D \) along either the \(x \) direction at \(\theta = 0^\circ \), which is a symmetry direction of the obstacle array, or along \(\theta = 35^\circ \), which is a non-symmetry direction. In our previous work with this system in the zero activity limit at higher \(\phi_{\text{tot}} \), we found that the disks are susceptible to clogging when \(\theta = 35^\circ \) but generally flow when \(\theta = 0^\circ \) [58].

The equation of motion for an active disk \(i \) is given by

\[
\alpha_d \mathbf{v}_i = F_{i}^{dd} + F_{i}^{m} + F_{i}^{obs} + F_{i}^{D}.
\]

Here \(\mathbf{v}_i = dx_i/dt \) is the disk velocity, \(r_i \) is the disk position, and the damping constant \(\alpha_d = 1.0 \). The active disks are modeled as run-and-tumble particles with strong harmonic repulsive interactions of the form

\[
F_{i}^{dd} = \sum_{j \neq i} k |2R_a - |r_{ij}| \theta(2R_a - |r_{ij}|) \Theta(2 |r_{ij}| / L - 1),
\]

where \(\Theta \) is the Heaviside step function, \(r_{ij} = r_i - r_j \), and \(|r_{ij}| = |r_i - r_j| / L \). We fix the spring constant to \(k = 100 \), which is large enough that the system behaves close to the hard disk limit over the range of forces we consider. The obstacles are also modeled as disks with the same form of harmonic repulsion but with a different radius \(R_{\text{obs}} \). In this work we fix \(R_{\text{obs}} = 1.0 \), \(R_a = 0.45 \), and the obstacle lattice constant \(a = 3.0 \), giving \(\phi_{\text{obs}} = 0.349 \). We consider varied system sizes between \(L = 36 \) and \(L = 72 \), but unless otherwise noted, the system size is \(L = 36 \). The activity of the disk is produced by a motor force \(F_{m}^a = F_M r_i^m \) where \(F_M = 1.0 \) and \(r_i^m \) is a randomly chosen direction which changes instantaneously every \(\tau_i \) time steps. All of the active disks use the same value of \(\tau_i \), but the running of each disk is started at different randomly chosen times in the cycle so that the disks do not all tumble simultaneously. We quantify the activity using the run length \(l_r \) which is the distance a single isolated active disk would move during the run time \(\tau_i \). In general, we find that when \(l_r < 0.1a \), the behavior is close to the thermal limit, as studied previously in the single particle limit [33]. A uniform drift force \(F_D = F_D \hat{d} \) is applied to all the active disks, where \(\hat{d} \) is along either \(\theta = 0^\circ \) or \(\theta = 35^\circ \).
We characterize the transport by measuring $\langle V_x \rangle = N_a^{-1} \sum_{i=1}^{N_a} \mathbf{v} \cdot \hat{x}$ and $\langle V_y \rangle = N_a^{-1} \sum_{i=1}^{N_a} \mathbf{v} \cdot \hat{y}$. The net velocity is given by $\langle V \rangle = (\langle V_x \rangle^2 + \langle V_y \rangle^2)^{1/2}$. We define the mobility of the system as $M = \langle V \rangle / F_D$.

II. RESULTS

In Fig. 1(a) we plot the mobility M versus active run length l_r for a system with a fixed external drift force of $F_D = 0.1$ applied along the x-direction at $\theta = 0^\circ$ for $\phi_{tot} = 0.622$. Figure 1(b) shows the corresponding fraction of disks that are in the largest cluster C_l versus l_r. To measure C_l, we identify all disks N_c which are in contact with each other in the largest cluster, and divide this by the total number of active disks to obtain $C_l = N_c / N_a$. In Fig. 1(a), $M \approx 0.7$ at low drives, indicating a high mobility, and gradually decreases with increasing l_r. There is a sharper decrease in M for $l_r > 1.0$ corresponding to an increase in C_l, which indicates the onset of activity-induced clustering. For $l_r > 1000$, M drops to $M = 0.01$, almost two orders of magnitude smaller than its value in the low activity regime.

In Fig. 2(a) we illustrate the positions of the disks and obstacles in the system from Fig. 1 for the high mobility state with $l_r = 0.00025$, where the disks move in 1D channels between the obstacles. There is some buckling of the channel structure, resulting in disk-obstacle collisions which reduce the mobility to $M < 1.0$. As l_r increases, the disk configurations become more disordered and disk-obstacle collisions become more frequent. This produces a fluctuating uniform liquid state in which the 1D channeling is lost and the mobility has decreased moderately, as shown in Fig. 2(b) at $l_r = 0.175$. At $l_r = 17.5$ in Fig. 2(c), an active clustering effect is beginning to occur which causes a reduction in the mobility to $M = 0.35$, while at $l_r = 7500$ in Fig. 2(d), the system forms an almost completely frozen cluster in what we term an active clogged state, with a mobility close to zero and only occasional small collective rearrangements. As l_r increases, the mobility decreases further, until in the infinite running time or ballistic limit, $M = 0$.

The results in Fig. 1 can be compared to the behavior of active matter on random substrates. In Ref. [25], the drift velocity or mobility in a random obstacle array is generally low at small l_r, reaches a maximum at intermediate l_r, and then decreases again for larger l_r. Similarly, in Ref. [28], the system is in a clogged state at low l_r, forms a liquid state for intermediate run lengths, and enters an active clogged state with nearly zero mobility at high drives. In contrast, Fig. 1 shows that there is no clogged or low mobility state at small l_r in an ordered obstacle array. Here the disks follow easy flow 1D channels between the obstacles for driving along $\theta = 0^\circ$ at low ϕ_{tot}, as illustrated in Fig. 2(a), and the mobility $M \approx 1$.
since disk-obstacle collisions are minimized. At larger l_r, an active clogged state appears regardless of whether the obstacle lattice geometry is periodic or random.

In Fig. 3 we plot M and C_l versus l_r for the same system as in Fig. 1 but with the drive applied along $\theta = 35^\circ$. For $l_r < 0.01$, $M \approx 0$ and $C_l \approx 0.92$. Here we find a non-active or thermally clogged state of the type shown in Fig. 4(a) at $l_r = 0.00125$. The clogging arises from the formation of bottlenecks and arches that build up over time and block the flow. This state is similar to the $T = 0$ clogging states studied previously for passive particles in periodic arrays \cite{58, 60, 61}, random arrays \cite{62, 63}, and bottleneck systems \cite{64, 65}, where the clogged state is associated with strongly heterogeneous particle density. We note that for smaller F_D at these small values of l_r, the activity is still large enough that the system forms a liquid rather than a clogged state, as we describe in Section V.

For $0.01 < l_r < 1.0$ in Fig. 3(a,b), a uniform liquid state appears with $C_l < 0.2$ and a mobility of $M \approx 0.55$, as illustrated in Fig. 4(b) for $l_r = 0.175$. There is a drop in the mobility at higher l_r corresponding to the formation of an activity-induced cluster state of the type shown in Fig. 4(c) at $l_r = 3.75$. For $l_r > 100$, the system enters an actively clogged state with little motion, as shown in Fig. 4(d) at $l_r = 7500$.

The behavior of M versus l_r in Fig. 4 has differences from previous work on active matter driven through random arrays at low activity \cite{28}. The transition from the passive clustered state to the active fluid state is much sharper in the periodic array. This is likely a result of the well-defined spacing between obstacles in the periodic array. In general, the onset of active clustering occurs when the run length becomes larger than the distance between the obstacles. For smaller l_r, the formation of the thermally clogged state is sensitive to the direction θ of the drive with respect to the substrate symmetry, while the active clogged state at large l_r is independent of θ.

Since driving along different angles can produce both thermal and active clogging, we next consider the evolution of the different phases as a function of the active disk density ϕ_{tot} for fixed F_D. In Fig. 5(a) we plot M versus l_r for the system in Fig. 3 with $\theta = 35^\circ$ at $\phi_{tot} = 0.6708$, 0.622, 0.573, 0.5238, 0.4743, 0.4264, and 0.3655, while in Fig. 5(b) we plot the corresponding C_l versus l_r. For $\phi_{tot} > 0.5238$, a thermally clogged state appears at small l_r, while the critical l_r at which the system transitions into the active fluid phase decreases with decreasing ϕ_{tot}. When $\phi_{tot} \leq 0.5238$, the mobility is almost independent of l_r for small and intermediate values of l_r. For all values of ϕ_{tot}, there is a transition at larger l_r to an active clustered state which is associated with a simultaneous drop in M and increase in C_l. The maximum value of C_l in the active clustered phase gradually drops with decreasing ϕ_{tot} as the clusters become more spatially separated. The crossover to the active clogged state shifts to larger values of l_r as ϕ_{tot} decreases.

In Fig. 6 we show a phase diagram as a function of
l_r versus φ_tot for the system from Figs. 3 and 5 with θ = 35°. In the active fluid, the mobility is high but no clustering occurs. For the thermally clogged state, the mobility is zero and strong clustering occurs. The thermally clogged state is present only for incommensurate driving angles such as θ = 35°, but the active clogged state is always present for sufficiently large l_r and φ_tot. We use the value of the mobility to draw a distinction between the active cluster state and the active clogged state. In the active cluster state, C_l is high and M is larger than 15% of its maximum value, while in the active clogged state, C_l is also high but M is less than 15% of its maximum value. Other definitions for the boundary of the active clogged state could be used that involve lower values of M. The transition from the active fluid to the active cluster state is best described as a crossover, as shown in Fig. 5(a). A similar phase diagram can be constructed for driving at θ = 0° (not shown). Here the thermal clogging phase is absent but it would be possible to define additional 1D and quasi-2D channeling phases at low l_r which would be distinct from the 2D uniform active fluid state. For large enough φ_tot at θ = 0°, the active fluid could cross over into a uniform jammed state, but these extremely dense states become very computationally expensive, so we limit our study to densities at which only heterogeneous clogging occurs. Similarly, at values of φ_tot larger than what we consider for the θ = 35° system in Fig. 6, a crossover could occur from the thermally clogged phase to a uniform jammed phase near φ_tot = 0.9 (63).

We have explored the robustness of the phases described above to changes in the system size. As shown
in Fig. 7, we find similar results for a system with the same parameters as in Fig. 3 but with a larger size of \(L = 72 \). Figure 7(a) illustrates the initial state for \(\phi_{\text{tot}} = 0.622 \) and \(l_r = 0.00125 \) where the active disk density is still nearly uniform. In Fig. 7(b), the same sample has reached a thermally clogged state containing a large system-spanning cluster. Figure 7(c) shows the configuration in the active clogged state at \(\phi_{\text{tot}} = 0.622 \) and \(l_r = 7500 \). The morphology of the clusters in the active clogged state differs from those in the thermally clogged state. The active clogged clusters are much more fragmentary and do not form a single system-spanning cluster.

The thermally clogged states generally contain a cluster that is as wide as the system, while the active clogged state forms individual clusters that are each considerably smaller than the system width. This suggests that the thermally clogged state requires the total disk density to be above a 2D percolation threshold, while the active clogged state does not. In Fig. 7(d) we show an active clogged state at \(l_r = 7500 \) and \(\phi_{\text{tot}} = 0.4265 \). At low \(l_r \) for this same total density, the system does not form a thermally clogged state. In Fig. 8 we plot \(C_l \) versus \(L \) for the system in Fig. 3 at \(l = 0.00125 \) in the thermally clogged phase and \(l = 7500 \) in the active clogged phase. For the thermally clogged phase, \(C_l \lesssim 1 \) independent of the system size, indicating that the system is dominated by a single system-spanning cluster as shown in Fig. 7(b). In contrast, for the active clogging phase illustrated in Fig. 7(c), \(C_l \) drops as \(L \) increases since the size of the largest cluster does not increase with system size; instead, the total number of clusters grows as \(L \) increases, so that each cluster contains a smaller fraction of the total number of disks.

III. DILUTED OBSTACLE ARRAYS

We next consider the effects of randomly diluting the obstacle array by removing a fraction \(D \) of the obstacles. In Fig. 9(a,b) we plot \(M \) and \(C_l \) versus the dilution factor \(D \) for the system in Fig. 3 with \(\theta = 35^\circ \), \(\phi_{\text{tot}} = 0.622 \), and \(D_D = 0.1 \) at \(l_r = 0.00025 \), 0.005, 0.0075, 0.0175, and 0.05. For \(l_r = 0.00025 \), 0.005, and 0.0075, the thermally clogged state with \(M \approx 0 \) survives at low \(D \). The threshold for a transition to a depinned state with finite \(M \) shifts to lower values of \(D \) as \(l_r \) increases. For \(l_r = 0.00025 \), the onset of mobility occurs for \(D \approx 0.4 \) and is accompanied by a small local peak in \(C_l \). As \(D \) increases, the mobility increases monotonically, reaching \(M = 1.0 \) at \(D = 1.0 \) when there are no obstacles left in the system. In general, \(C_l \) decreases with increasing \(D \) and reaches \(C_l \approx 0 \) for \(D = 1.0 \) since the disks are no longer in contact. For \(l_r = 0.005 \) and 0.0075, some clustering still persists even when \(M \) is finite due to the formation of a partially clogged state, but the clustering diminishes when \(D > 0.6 \). For \(l_r > 0.0125 \), there is no clogged state, \(M \) is finite for all values of \(D \), and the clustering is strongly reduced.

In Fig. 9(c,d) we plot \(M \) and \(C_l \) versus \(D \) for the same system as in Fig. 9(a,b) at \(l_r = 0.175, 17.5, 75.0, 175 \), and 1750. Here the average value of \(M \) decreases with increasing \(l_r \). For \(l_r = 17.5 \), the mobility remains low up to \(D = 0.2 \) and then begins to increase gradually, which also correlates with the point at which the value of \(C_l \) begins to drop. For \(l_r = 75 \), the mobility increase starts near \(D = 0.4 \). For the three largest values of \(l_r \), there is a tendency for \(M \) to be flat or even decrease slightly with increasing \(D \) up to \(D = 0.4 \). This occurs because under moderate obstacle dilution, the activity-induced
clusters can become more coherent or better ordered. For \(l = 0.175 \), there is no clustering and the mobility increases monotonically with \(D \), while at \(l = 17.5 \) some clustering appears for small \(D \). In the regime of larger \(l \), \(C_l \) remains large even for \(D = 1.0 \) since the clustering or motility-induced phase separation occurs for these run length values even in the absence of obstacles.

Based on the results in Fig. 9 we can identify several different phases. At low \(l \) and low dilution \(D \), the system is in a thermally clogged phase with \(M \approx 0 \), while at finite dilution the system enters a partially clogged state consisting of a combination of flowing and clogged configurations, as shown in Fig. 10(a) for \(l = 0.005 \) and \(D = 0.41 \). As a result, even though \(M \) is finite, \(C_l \) remains large. In Fig. 10(b) we illustrate the same system at \(D = 0.833 \) where \(M \) is high and the clustering is strongly reduced, giving a low value of \(C_l \). Figure 10(c) shows the uniform fluid at \(l = 0.175 \) and \(D = 0.694 \), while in Fig. 10(d) at \(l = 1750 \) for the same dilution, the system forms a clustered state with a reduced mobility of \(M = 0.35 \).

From the results in Fig. 10 we can construct a phase diagram as a function of \(l_r \) versus \(D \), shown in Fig. 11. We identify a thermally clogged state in which \(M \approx 0 \) and \(C_l \) is high. This is adjacent to a partially clogged state of the type shown in Fig. 10(a) containing a combination of clogged disks and mobile disks, where \(M \) is finite but \(C_l \) is high. There is a uniform fluid phase of the type illustrated in Fig. 10(b,c) where the mobility is high and clustering is low, an active clogged phase where \(M \) is low and \(C_l \) is high, and a clustered fluid where \(M \) is high and \(C_l \) is high. The phase diagram in Fig. 11 has several similarities to the phase diagram found in experiments with colloids moving over random obstacles [61]. In particular, as the obstacle density is decreased, both systems are in a clogged phase with close to zero motion when \(D \) is low, transition into partially clogged phases with intermediate velocities for intermediate \(D \), and reach flowing phases for high \(D \).

IV. VARIED DRIVING ANGLES

In Fig. 12 we plot the \(x \) direction mobility \(M_x = \langle V_x \rangle / F_D \) versus driving direction \(\theta \) for the system in Fig. 6 with \(F_D = 0.1 \) and \(\phi_{\text{tot}} = 0.622 \) for varied \(l_r = 0.0025, 0.175, 17.5 \), and 175. For \(l_r = 0.0025 \), the mobility is high for \(\theta < 10^\circ \) since the active disks are moving along quasi-1D channels similar to those shown in Fig. 2(a). For \(10^\circ \leq \theta < 20^\circ \), a partially clogged state forms, while for \(20^\circ \leq \theta < 25^\circ \), the active disks flow in another quasi-1D state. For \(\theta < 30^\circ \), the thermally clogged state appears as shown earlier. The emergence of clogged states for certain driving directions and flowing states for other driving directions was also observed in \(T = 0 \) passive disk studies [60]. For \(l_r = 0.175 \) in Fig. 12, the system forms a uniform fluid for all values of \(\theta \) and there are no clogging phases or locking steps. For \(l_r = 17.5 \), some clustering occurs but there is still no clogging phase, and the mobility \(M_x \) is reduced at all values.
FIG. 12. The mobility in the x-direction M_x vs θ for the system in Fig. 3 with $F_D = 0.1$ and $\phi_{tot} = 0.622$ at $l_r = 0.0025$ (red), 0.175 (light blue), 17.5 (green), and 175 (dark blue).

of θ. At $l_r = 175$, M_x is even more strongly reduced for all values of θ but there is still no directional locking. For lower disk densities than those considered in the present work, steps in the mobility occur at certain driving angles which correspond to symmetry directions of the obstacle array [33]. At the higher disk densities of Fig. 12, the steps disappear. These results differ from the previously studied collective behavior of $T = 0$ non-active systems [51] and from individual active matter particles moving on periodic obstacle arrays [32], where locking steps appeared. It may be possible that additional locking states could emerge for lower active disk densities, smaller obstacle radii, or larger a; however, the general trend is that collective effects reduce directional locking.

V. DRIVE DEPENDENCE

We next examine the effect on the different phases of varying the magnitude of the external driving amplitude F_D. In Fig. 13(a,b) we plot $\langle V_x \rangle$ and $d\langle V_x \rangle/dF_D$ versus F_D for the system in Fig. 3 at $\phi_{tot} = 0.67$ for driving along $\theta = 35^\circ$ at $l_r = 0.00025$, 0.0075, 0.0175, and 0.05. At $l_r = 0.00025$, there is a well defined depinning threshold near $F_D = 0.5$ corresponding to the break up of the clogged state, which also appears as a peak in the corresponding $d\langle V_x \rangle/dF_D$ curve. For $l_r = 0.0075$, an increase in $\langle V_x \rangle$ from zero occurs near $F_D = 0.15$, followed by a sharper increase in $\langle V_x \rangle$ at $F_D = 0.3$ and a saturation in the response for $F_D > 0.6$. The depinning near $F_D = 0.15$ results from the partial breakup of the clogged state into a phase where clogging and flowing disks coexist, while at the second stronger increase in $\langle V_x \rangle$, nearly all of the disks are flowing.

For $l_r = 0.0075$ and 0.0175 in Fig. 13(a,b), the disks immediately begin to flow at small but nonzero F_D, but at slightly higher drives, $\langle V_x \rangle$ drops nearly back down to zero. Here, there is a uniform fluid phase for low F_D and finite run lengths since the drive is not strong enough to cause the disks to get stuck behind obstacles. When F_D increases, however, the driving force overwhelms the activity and the disks begin to accumulate behind the obstacles, forming a clogged state in which the disks are unable to hop backward in order to move around the obstacles. The transition from the fluid state to the clogged state produces negative differential mobility with $d\langle V_x \rangle/dF_D < 0$, while in the clogged phase, $d\langle V_x \rangle/dF_D \approx 0$. Negative differential mobility has been observed previously for the single particle limit of passive particles driven through random obstacles, where sufficiently strong drives hold the particle trapped behind an obstacle, while under smaller drives the particle can thermally escape from behind the obstacle [63-68]. In our active system, the clogged phase at small but finite drives extends down to lower drives as l_r decreases. Even for $l_r = 0.00025$ there is a flowing fluid phase at drives lower than those shown in Fig. 13 but at $l_r = 0$ the initial fluid phase is lost. For $l_r = 0.05$, both the clogging and depinning threshold behavior are lost.

Negative differential mobility was also observed for active particles on random obstacle arrays [69], but there are some differences in the response compared to what we find for the periodic obstacle arrays. The negative differential mobility decreases when the total density of the system is increased in the random arrays, as shown in Ref. [69], whereas it increases with increasing total density in the periodic obstacle array. This is because collective clogging is responsible for the negative differential mobility in the periodic array, while individual particle trapping produces the negative differential mobility in the random array and in most other systems which display this effect.

In Fig. 13(c,d) we plot $\langle V_x \rangle$ and $d\langle V_x \rangle/dF_D$ versus F_D...
for the system from Fig. 13(a, b) at \(l_r = 0.175, 1.75, 17.5, \) and 175. For \(l_r = 0.175, \) the velocity-force curve is almost linear, which is the expected behavior for the depinning of a fluid \([70]\). Some deviation from linearity appears at \(l_r = 1.75 \) and becomes more pronounced at \(l_r = 17.5 \) and \(l_r = 175. \) The \(d\langle V_x \rangle /dF_D \) curves also show increasing nonlinearity as \(l_r \) increases, with a drop in value at low \(F_D \) followed by a linear increase and a saturation at higher \(F_D \). There is also an overall drop in the velocity with increasing \(l_r \). The nonlinear behavior in the velocity-force curves is similar to what is found for plastic depinning of passive particle assemblies driven over quenched disorder, such as colloids or superconducting vortices \([70,72]\). As the run length increases in the active disk system, the disks spend more time in a strongly clustered state and begin to act like a solid or glass coupled to random disorder. Increasing the run length is similar to decreasing the temperature in a glass. In the limit of infinite run length, we expect that there would be a true finite depinning threshold.

Figure 13(c) shows that the differences between the velocity-force curves for the different activity levels begin to disappear at higher drives. To make this more clear, in Fig. 13 we plot the ratio \(R \) of \(\langle V_x \rangle \) divided by \(\langle V_x \rangle \) for the \(l_r = 0.175 \) sample from Fig. 13(c) versus \(F_D \) for \(l_r = 175, 17.5, \) and 1.75. For \(l_r = 175, \) the mobility at low \(F_D \) is nearly eight times as large as in the \(l_r = 0.175 \) system, but as \(F_D \) increases, the ratio of the two mobilities approaches \(R = 1.0. \) At higher drives, the collisions with obstacles become strong enough to break apart the clusters, while the driving force prevents the active disks from reorganizing into a cluster state; therefore, the system remains in a fluid state. This can also be viewed as a drive dependent shear thinning transition in which the drive breaks up the large scale structures and thereby reduces the viscosity of the system.

FIG. 14. The ratio \(R \) of \(\langle V_x \rangle \) divided by \(\langle V_x \rangle \) for the \(l_r = 0.175 \) system from Fig. 13(c) versus \(F_D \) in samples with \(\phi_{\text{tot}} = 0.67 \) and \(\theta = 35^\circ \) for \(l_r = 175 \) (green), 17.5 (blue), and 1.75 (red), showing that \(R \) goes to \(R = 1.0 \) at large drives.

As \(\phi_{\text{tot}} \) is reduced, the extent of the clogged state appearing in Fig. 13(a, b) is also reduced. To better characterize both the clogged phase and the reentrant fluid, in Fig. 15(a, b) we plot \(\langle V_x \rangle \) and \(C_l \) versus \(F_D \) for a system with \(\phi_{\text{tot}} = 0.622 \) and \(l_r = 0.0075. \) Here \(\theta = 35^\circ. \) There are four distinct phases: the low drive fluid phase illustrated in Fig. 15(a), the intermediate drive thermally clogged phase shown in Fig. 15(b), the flowing partially clustered phase appearing in Fig. 15(c), and the high drive moving liquid phase shown in Fig. 15(d). (c) \(\langle V_x \rangle \) and (d) \(C_l \) vs \(F_D \) for the same system at \(\phi_{\text{tot}} = 0.5238. \) There are only two phases: the liquid phase shown in Fig. 17(a) and the directionally locked phase flowing along \(45^\circ, \) shown in Fig. 17(b).

FIG. 15. (a) \(\langle V_x \rangle \) and (b) \(C_l \) vs \(F_D \) for a system with \(\phi_{\text{tot}} = 0.622 \) and \(l_r = 0.0075. \) Here \(\theta = 35^\circ. \) There are four distinct phases: the low drive fluid phase illustrated in Fig. 15(a), the intermediate drive thermally clogged phase shown in Fig. 15(b), the flowing partially clustered phase appearing in Fig. 15(c), and the high drive moving liquid phase shown in Fig. 15(d). (c) \(\langle V_x \rangle \) and (d) \(C_l \) vs \(F_D \) for the same system at \(\phi_{\text{tot}} = 0.5238. \) There are only two phases: the liquid phase shown in Fig. 17(a) and the directionally locked phase flowing along \(45^\circ, \) shown in Fig. 17(b).

A. Density Dependence of the Driven Dynamics

As \(\phi_{\text{tot}} \) is reduced, the extent of the clogged state appearing in Fig. 13(a, b) is also reduced. To better characterize both the clogged phase and the reentrant fluid, in Fig. 15(a, b) we plot \(\langle V_x \rangle \) and \(C_l \) versus \(F_D \) for a system with \(\phi_{\text{tot}} = 0.622 \) and \(l_r = 0.0075. \) In Fig. 15(a), \(\langle V_x \rangle \) increases linearly with increasing \(F_D \) up to \(F_D = 0.08, \) as expected for a fluid, and then decreases with increasing drive up to \(F_D = 0.225. \) For \(F_D < 0.08 \) in Fig. 15(b), \(C_l < 0.03 \) and the system forms a diffusing liquid state without any clustering. When \(0.08 < F_D < 0.225, \) \(C_l \) jumps up to \(C_l = 0.94 \) and the disks form a system-spanning thermally clogged state. The velocity does not drop completely to zero in this clogged phase since there are still occasional thermal-like jumps of the disks. For \(F_D > 0.225, \) \(\langle V_x \rangle \) increases with increasing \(F_D \) again and there is a drop down in \(C_l; \) however, there is still a partial clustering effect. The clustering diminishes as \(F_D \) increases, and at high drives \(C_l = 0.05 \) when the system is in a uniform fluid state.

We define the different phases in Fig. 15(a, b) as a low drive uniform diffusing fluid, a thermally clogged state, a partially clustered fluid, and a high drive fluid state. The transitions between the different states appear as changes in \(d\langle V_x \rangle /dF_D \) and \(C_l. \) In studies of driven vortices, colloids, and other particle assemblies \([71]\), different dynamical phases also appear as a function of drive; however, in most of these systems the substrate is modeled as pinning sites rather than obstacles, so the low drive fluid phase is not present. Additionally, since many of these systems have longer range particle-particle interactions, clustered or clogged states do not occur since the pairwise
energy cost of strong density inhomogeneities would be too large; however, the disorder or roughening of the system is still maximized just at the depinning transition \cite{71}. At higher drives, systems with pinning generally show a transition to an ordered state since the effectiveness of the pinning diminishes as the driving increases; however, in systems such as ours containing obstacles, the overall density becomes more uniform at higher drives but the particle positions remain disordered.

In Fig. 16(a) we plot the disk trajectories, obstacle locations, and active disk positions for the system in Fig. 15(a) at $F_D = 0.025$ where the particles form a low drive diffusing fluid. Here there is no clustering and the trajectories are strongly disordered as the disks gradually drift along 35°. Figure 16(b) shows the same system at $F_D = 0.2$ in a thermally clogged phase, where there are still some small regions of motion. At $F_D = 0.7$ in Fig. 16(c), most of the disks are flowing in a fluid state and there is intermittent clustering. We show only the disk positions without trajectories in Fig. 16(d) for the high drive uniform fluid at $F_D = 15.0$, where there is no clustering but the disk positions are disordered.

In Fig. 16(c,d) we plot $\langle V_x \rangle$ and C_I for the system in Fig. 15(a,b) at a lower $\phi_{\text{tot}} = 0.5238$. In this case there is no clogged phase or clustering, indicating that there is a critical value of ϕ_{tot} below which the clogging phase cannot occur. For low values of ϕ_{tot} at lower F_D, the system forms a moving liquid phase in which the average motion is along the driving direction of $\theta = 35^\circ$, as shown in Fig. 17(a). (b) $F_D = 10.0$, where the motion is locked along 45° and occurs in 1D non-overlapping channels.

In Fig. 17 we plot the time series of the velocities V_x (red) and V_y (blue) for the system in Fig. 16(c,d) with $\theta = 35^\circ$, $\phi_{\text{tot}} = 0.5238$, and $l_r = 0.0075$. (a) $F_D = 0.5$, where the system forms a moving fluid translating along the driving direction of $\theta = 35^\circ$, as shown in Fig. 17(a). (b) $F_D = 10.0$, where the motion is locked along 45° and occurs in 1D non-overlapping channels.
between channels, as shown in Fig. 17(b) at $F_D = 10.0$. Here V_x and V_y have identical average values, as shown in Fig. 18(b). At even lower densities or for smaller obstacle sizes, additional directional locking phases appear.

In Fig. 19(a,b) we plot $\langle V_x \rangle$ and C_l versus F_D for the system in Fig. 13(a,b) with $\phi_{tot} = 0.622$ at a higher $l_r = 175$. Since the clustering in this regime is due to the activity, $C_l > 0.9$ down to arbitrarily low values of F_D. This is in contrast to the drive dependent clogging effect which appears at smaller l_r. Near $F_D = 0.5$, there is a change in the velocity-force curve corresponding to a drop in C_l, while a second small cusp in C_l is visible near $F_D = 7.0$. For $F_D < 0.5$, the system is in the active clogged state and the velocity-force curve is nonlinear, as indicated by the orange dashed line which shows a power law fit to $\langle V_x \rangle \propto F_D^{1.45}$. Above the cusp in $\langle V_x \rangle$, the green dashed line indicates that the behavior is linear with $\langle V_x \rangle \propto F_D$. For passive 2D systems with quenched disorder at $T = 0$, plastic flow regimes are associated with a velocity-force signature of $V \propto F^\alpha$ with $1.33 < \alpha < 2.0$, where $\alpha \approx 1.5$ is often observed [70, 71, 72]. This suggests that the active clogged regime behaves like a plasticly distorting solid moving over quenched disorder. At higher drives, the self clustering starts to break down and the velocity response becomes linear, as expected for a strongly driven fluid in quenched disorder [68, 71].

In Fig. 19(c,d) we plot $\langle V_x \rangle$ and C_l versus F_D for the system from Fig. 17(a,b) at a lower $\phi_{tot} = 0.523$. We find a similar behavior in which the system starts out in a clustered state at low drives and transitions to a moving fluid at higher drives. There is a cusp in $\langle V_x \rangle$ near $F_D = 1.0$ which corresponds to a drop in C_l. Below the cusp, $\langle V_x \rangle \propto F^{1.15}$, while above the cusp, $\langle V_x \rangle \propto F^{1.0}$. This suggests that although clustering is occurring at the lower drives, the cluster sizes are smaller compared to the $l_r = 175$ case. As a result, the system behaves more like a fluid than like a plasticly moving solid. There is also a small cusp in C_l near $F_D = 5.0$ which corresponds to the transition from a moving fluid to locked flow along 45°.

In Fig. 20(a) we plot C_l versus F_D for a system with fixed $l_r = 0.0075$ at varied $\phi_{tot} = 0.671, 0.6465, 0.622, 0.59744, 0.5729, 0.5238, 0.475$, and 0.475. The four phases are clearly visible. In the low drive fluid phase, $C_l < 0.1$. The clogged phase corresponds to the peak in C_l, while the partially clustered liquid with $C_l > 0.5$ appears above the clogging peak. At high drives, there is a liquid with $C_l < 0.5$. The width of the clogged phase decreases with decreasing ϕ_{tot}. For $\phi_{tot} = 0.59744$, the system passes directly from the clogged state to the liquid phase, while for $\phi_{tot} < 0.59744$, the system is always in a fluid state at lower drives and reaches a directionally locked phase with motion along 45° at higher drives.

In Fig. 21(a) we plot a phase diagram as a function of ϕ_{tot} versus F_D for the system in Fig. 20(a) with $l_r = 0.0075$. The transitions between the phases are obtained based on the behavior of C_l, the velocities, and the trajectories. At low F_D and low ϕ_{tot} we find a fluid phase, while at high F_D a 1D locked phase with motion along 45° emerges. For $\phi_{tot} \geq 0.59744$, both clogged and reentrant fluid phases can occur. The boundaries of the clustered fluid phase shift at different rates to higher F_D with increasing ϕ_{tot}, causing the clustered fluid to increase in extent for larger ϕ_{tot}. The transition from the fluid to the symmetry locked flow along 45° shift to lower drives with decreasing ϕ_{tot}.

In Fig. 22(b) we plot C_l versus F_D for the system in Fig. 20(a) at $l_r = 175$ for $\phi = 0.671, 0.6465, 0.622, 0.59744, 0.5729, 0.548, 0.5238, 0.5, 0.475, 0.45, 0.4256,
We have numerically examined run-and-tumble active disks moving over a periodic obstacle array in the collective limit. For driving along the \(x\) axis, we find that the system forms an active clustered state and an active clogged state at large run lengths. The onset of clustering is associated with a drop in the mobility. For driving along an incommensurate angle, we find two distinct clogging phases: a heterogeneous thermally clogged state at low activity, and an active clogged state at large activity. The two phases are separated by a uniform fluid state, and there is an active clustered state between the active clogged state and the fluid state. The thermally clogged state is strongly sensitive to whether the driving is along a symmetry direction of the substrate or whether it is along an incommensurate angle, while the active clogged state is independent of the driving direction. The thermally clogged state is always system-spanning and involves the formation of a single large cluster, while the active clogged state contains multiple smaller clusters which are scattered throughout the sample. When the

\[
0.401, \text{ and } 0.3765. \text{ We find clustering with } C_l > 0.5 \text{ for lower drives when } \phi_{tot} > 0.4256. \text{ The transition from the cluster phase to a moving state shifts to lower } F_D \text{ as } \phi_{tot} \text{ is reduced. Additionally, for higher drives the system enters the 1D locking phase with motion along } 45^\circ. \text{ In general, as } l_r \text{ increases, a higher driving force is needed to reach the locked state. In Fig. 21(b) we plot a phase diagram as a function of } \phi_{tot} \text{ versus } F_D \text{ for the system in Fig. 20(b) highlighting the four phases. The active clogged phase is defined to occur when } M \text{ is below 15% of its maximum value and } C_l \text{ is large. The clustered phase appears when } C_l > 0.5 \text{ and } M \text{ is greater than 15% of its maximum value. In the fluid phase, the mobility is high and there is no clustering, while in the locked phase, there is 1D motion along } 45^\circ. \text{ The clogging and cluster phases extend to lower } \phi_{tot} \text{ and larger } F_D. \]

In Fig. 22 we plot a phase diagram as a function of \(F_D\) versus \(l_r\) for the system in Fig. 21 at fixed \(\phi_{tot} = 0.622\) showing the relationships between the thermally clogged phase, the reentrant fluid phase, and the active clogged phase. At finite but low \(F_D\) and small \(l_r\), the thermally clogged phase appears, and its onset shifts to higher \(F_D\) with increasing \(l_r\) until it is completely lost for \(l_r > 0.025\). The clogged phase extends all the way down to \(F_D = 0\) only when \(l_r\) reaches zero. Under increasing \(F_D\), there is a crossover from the zero mobility thermally clogged phase to the low mobility partially clogged phase composed of coexisting clogged and moving disks. Another transition occurs at higher drives to a uniform fluid with high \(M\) and low \(C_l\). When \(l_r > 1.0\), an active clogged state and active clustered fluid appear for low drives. Unlike the thermally clogged state, the active clogged state can persist down to \(F_D = 0\) since the clustering is produced by the activity instead of by the driving. For all values of \(l_r\), once \(F_D\) becomes sufficiently large, the system enters a locked phase of 1D flow along \(45^\circ\). For driving along \(\theta = 0^\circ\), the thermally clogged and partially clogged phases at small \(l_r\) are absent, while the locked flow along \(45^\circ\) is replaced by locked flow along \(0^\circ\). For other driving angles \(\theta\), the widths of the thermally clogged, partially clogged, and fluid phases vary, but the active clogged phases persist.

VI. SUMMARY

FIG. 21. (a) Phase diagram as a function of \(\phi_{tot}\) vs \(F_D\) for the system in Fig. 20(a) with \(\theta = 35^\circ\) at \(l_r = 0.0075\), showing the reentrant fluid phase (green), the thermally clogged phase (red), the partially clustered moving phase (blue) and the directionally locked phase (light purple). (b) Phase diagram as a function of \(\phi_{tot}\) vs \(F_D\) for the system in Fig. 20(b) with \(l_r = 175\), showing the active clogged phase (orange), the clustered fluid (blue), the fluid phase (green), and the directionally locked phase (light purple).
obstacle lattice is diluted via the random removal of a fraction of the obstacles, there is a critical dilution fraction above which the thermally clogged state is lost; however, the active clogged state is much more robust against dilution. We observe a reentrant fluid phase as a function of driving force in the low activity regime. For finite activity, the system can always flow when the drive is low enough, but as the drive increases, a drive dependent clogged state appears that can depin for sufficiently high driving. This drive dependent clogged state is associated with negative differential mobility in the velocity-force curves. Above depinning, there is a partially clogged state consisting of coexisting clogged and moving regions, with the system can transition from thermal clogging behavior to active clogging behavior as a function of increasing activity.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD program for this work. This work was supported by the U.S. Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy (Contract No. 89233218NCA000001).

[1] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha, “Hydrodynamics of soft active matter,” Rev. Mod. Phys. 85, 1143–1189 (2013)
[2] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe, “Active particles in complex and crowded environments,” Rev. Mod. Phys. 88, 045006 (2016)
[3] Y. Fily and M. C. Marchetti, “Athermal phase separation of self-propelled particles with no alignment,” Phys. Rev. Lett. 108, 235702 (2012)
[4] G. S. Redner, M. F. Hagan, and A. Baskaran, “Structure and dynamics of a phase-separating active colloidal fluid,” Phys. Rev. Lett. 110, 055701 (2013)
[5] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaikin, “Living crystals of light-activated colloidal surfers,” Science 339, 936–940 (2013)
[6] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, and T. Speck, “Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles,” Phys. Rev. Lett. 110, 238301 (2013)
[7] M. E. Cates and J. Tailleur, “Motility-induced phase separation,” Annual Review of Condensed Matter Physics 6, 219–244 (2015)
[8] C. Reichhardt and C. J. Olson Reichhardt, “Absorbing phase transitions and dynamic freezing in running active matter systems,” Soft Matter 10, 7502–7510 (2014)
[9] X. Yang, M. L. Manning, and M. C. Marchetti, “Aggregation and segregation of confined active particles,” Soft Matter 10, 6477–6484 (2014)
[10] S. A. Mallory, C. Valeriani, and A. Cacciuto, “Curvature-induced activation of a passive tracer in an active bath,” Phys. Rev. E 90, 032309 (2014)
[11] S. C. Takatori, W. Yan, and J. F. Brady, “Swim pressure: Stress generation in active matter,” Phys. Rev. Lett. 113, 028103 (2014)
[12] D. Ray, C. Reichhardt, and C. J. Olson Reichhardt, “Casimir effect in active matter systems,” Phys. Rev. E 90, 013019 (2014)
[13] R. Ni, M. A. Cohen Stuart, and P. G. Bolhuis, “Tunable long range forces mediated by self-propelled colloidal hard spheres,” Phys. Rev. Lett. 114, 018302 (2015)
[14] C. J. Olson Reichhardt and C. Reichhardt, “Ratchet effects in active matter systems,” Annual Review of Condensed Matter Physics 8, 51–75 (2017)
[15] A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M. Kardar, and J. Tailleur, “Pressure is not a state function for generic active fluids,” Nature Phys. 11, 673–678 (2015)
[16] T. Speck, “Collective forces in scalar active matter,” Soft Matter 16, 2652 (2020)
[17] O. Chepizhko, E. G. Altmann, and F. Peruani, “Optimal noise maximizes collective motion in heterogeneous media,” Phys. Rev. Lett. 110, 238101 (2013)
[18] A. Morin, N. Desreuxaux, J.-B. Caussin, and D. Bartolo, “Distortion and destruction of colloidal flocks in disordered environments,” Nature Phys. 13, 63–67 (2017)
[19] Cs. Sándor, A. Libál, C. Reichhardt, and C. J. Olson Reichhardt, “Dewetting and spreading transitions for active matter on random pinning substrates,” J. Chem. Phys. 146, 204903 (2017)
[20] D. Yllanes, M. Leoni, and M. C. Marchetti, “How many dissenters does it take to disorder a flock?” New J. Phys. 19, 103026 (2017)
[21] Cs. Sándor, A. Libál, C. Reichhardt, and C. J. Olson Reichhardt, “Dynamic phases of active matter systems with quenched disorder,” Phys. Rev. E 95, 032606 (2017)
[22] A. Chardac, S. Shankar, M. C. Marchetti, and D. Bartolo, “Emergence of dynamic vortex glasses in disordered polar active fluids,” arXiv e-prints , arXiv:2002.12893 (2020)
[23] T. Bhattacharjee and S. S. Dutta, “Bacterial hopping and trapping in porous media,”
[24] S. Shi, H. Li, G. Feng, W. Tian, and K. Chen, “Transport of self-propelled particles across a porous medium: trapping, clogging, and the Matthew effect,” Phys. Chem. Chem. Phys. 22, 14052 (2020).

[25] C. Reichhardt and C. J. Olson Reichhardt, “Active matter transport and jamming on disordered landscapes,” Phys. Rev. E 90, 012701 (2014).

[26] A. Morin, D. Lopes Cardozo, V. Chikkadi, and D. Bartolo, “Diffusion, subdiffusion, and localization of active colloids in random post laser media,” Phys. Rev. E 96, 042611 (2017).

[27] T. Bertrand, Y. Zhao, O. Bénichou, J. Tailleur, and R. Voituriez, “Optimized diffusion of run-and-tumble particles in crowded environments,” Phys. Rev. Lett. 120, 198103 (2018).

[28] C. Reichhardt and C. J. O. Reichhardt, “Clogging and depinning of ballistic active matter systems in disordered media,” Phys. Rev. E 97, 052613 (2018).

[29] C. J. O. Reichhardt and C. Reichhardt, “Avalanche dynamics for active matter in heterogeneous media,” New J. Phys. 20, 025002 (2018).

[30] G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmeler, and C. Bechinger, “Microwimmers in patterned environments,” Soft Matter 7, 8810–8815 (2011).

[31] C. Lozano, B. ten Hagen, H. Löwen, and C. Bechinger, “Phototaxis of synthetic microswimmers in optical landscapes,” Nature Commun. 7, 12828 (2016).

[32] M. Brun-Cosme-Bruny, A. Fürtsch, W. Zimmermann, E. Bertin, P. Peyla, and S. Rafaï, “Deflection of phototactic microswimmers through obstacle arrays,” Phys. Rev. Fluids 5, 093302 (2020).

[33] C. Reichhardt and C. J. O. Reichhardt, “Directional locking effects for active matter particles coupled to a periodic substrate,” Phys. Rev. E 102, 042616 (2020).

[34] C. Reichhardt and F. Nori, “Phase locking, devil’s staircases, Farey trees, and Arnold tongues in driven vortex lattices with periodic pinning,” Phys. Rev. Lett. 82, 414–417 (1999).

[35] P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).

[36] A. Gopinathan and D. G. Grier, “Statistically locked-in transport through periodic potential landscapes,” Phys. Rev. Lett. 92, 130602 (2004).

[37] M. Balvin, E. Sohn, T. Trächt, G. Drazer, and J. Frechette, “Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microrheological devices,” Phys. Rev. Lett. 103, 078301 (2009).

[38] J. Koplik and G. Drazer, “Nanoscale simulations of directional locking,” Phys. Fluids 22, 052005 (2010).

[39] C. Reichhardt and C. J. Olson Reichhardt, “Dynamical ordering and directional locking for particles moving over quasicrystalline substrates,” Phys. Rev. Lett. 106, 060603 (2011).

[40] T. Böhlein and C. Bechinger, “Experimental observation of directional locking and dynamical ordering of colloidal monolayers driven across quasiperiodic substrates,” Phys. Rev. Lett. 109, 058301 (2012).

[41] R. L. Stoop, A. V. Straube, T. H. Johansen, and P. Tierno, “Collective directional locking of colloidal monolayers on a periodic substrate,” Phys. Rev. Lett. 124, 058002 (2020).

[42] X. Cao, E. Panizon, A. Vanossi, N. Manini, and C. Bechinger, “Orientalational and directional locking of colloidal clusters driven across periodic surfaces,” Nature Phys. 15, 776 (2019).

[43] A. V. Silhanek, L. Van Look, S. Raedts, R. Jonckheere, and V. V. Moshchalkov, “Guided vortex motion in superconductors with a square antidot array,” Phys. Rev. B 68, 214504 (2003).

[44] N. P. Vizarim, C. Reichhardt, C. J. O. Reichhardt, and P. A. Venegas, “Skyrmion dynamics and topological sorting on periodic obstacle arrays,” New J. Phys. 22, 053025 (2020).

[45] J. Feilhauer, S. Saha, J. Tobik, M. Zelent, L. J. Heyderman, and M. Mruczkiewicz, “Controlled motion of skyrmions in a magnetic antidot lattice,” Phys. Rev. B 102, 184425 (2020).

[46] M. P. MacDonald, G. C. Spalding, and K. Dhokalia, “Microfluidic sorting in an optical lattice,” Nature (London) 426, 421–424 (2003).

[47] L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, “Continuous particle separation through deterministic lateral displacement,” Science 304, 987–990 (2004).

[48] S. R. Risbud and G. Drazer, “Directional locking in deterministic lateral-displacement microfluidic separation systems,” Phys. Rev. E 90, 012302 (2014).

[49] Y. Reichman, Y. Wong, and D. G. Grier, “Colloidal transport through optical tweezer arrays,” Phys. Rev. E 75, 011107 (2007).

[50] B. R. Long, M. Heller, J. P. Beech, H. Linke, H. Bruus, and J. O. Tegenfeldt, “Multidirectional sorting modes in deterministic lateral displacement devices,” Phys. Rev. E 78, 046304 (2008).

[51] C. Reichhardt and C. J. O. Reichhardt, “Collective effects and pattern formation for directional locking of discs moving through obstacle arrays,” Phys. Rev. E 102, 022608 (2020).

[52] M. Zeitz, K. Wolff, and H. Stark, “Active Brownian particles moving in a random Lorentz gas,” Eur. Phys. J. E 40, 23 (2017).

[53] S. Pattanayak, R. Das, M. Kumar, and S. Mishra, “Enhanced dynamics of active Brownian particles in periodic obstacle arrays and corrugated channels,” Eur. Phys. J. E 42, 62 (2019).

[54] R. Alonso-Matilla, B. Chakrabarti, and D. Santillan, “Transport and dispersion of active particles in periodic porous media,” Phys. Rev. Fluids 4, 043101 (2019).

[55] K. Schakenraad, L. Ravazzano, N. Sarkar, J. A. J. Wondergem, R. M. H. Merks, and L. Giomi, “Topotaxis of active Brownian particles,” Phys. Rev. E 101, 032602 (2020).

[56] H. E. Ribeiro, W. P. Ferreira, and Fabrício Q. Potiguar, “Trapping and sorting of active matter in a periodic background potential,” Phys. Rev. E 101, 032126 (2020).

[57] C. Reichhardt and C. J. O. Reichhardt, “Active matter commensuration and frustration effects on periodic substrates,” Phys. Rev. E 103, 022602 (2021).

[58] H. T. Nguyen, C. Reichhardt, and C. J. Olson Reichhardt, “Clogging and jamming transitions in periodic obstacle arrays,” Phys. Rev. E 95, 030902 (2017).

[59] H. Peter, A. Libal, C. Reichhardt, and C. J. O. Reichhardt, “Crossover from jamming to clogging behaviours in heterogeneous environments,” Sci. Rep. 8, 10252 (2018).
[60] C. Reichhardt and C. J. O. Reichhardt, “Directional clogging and phase separation for disk flow through periodic and diluted obstacle arrays,” Soft Matter 17, 1548 (2021).

[61] R. L. Stoop and P. Tierno, “Clogging and jamming of colloidal monolayers driven across disordered landscapes,” Commun. Phys. 1, 68 (2018).

[62] S. G. Leyva, R. L. Stoop, P. Tierno, and I. Pagonabarraga, “Dynamics and clogging of colloidal monolayers magnetically driven through a heterogeneous landscape,” Soft Matter 16, 6985–6992 (2020).

[63] C. Reichhardt and C. J. Olson Reichhardt, “Aspects of jamming in two-dimensional athermal frictionless systems,” Soft Matter 10, 2932–2944 (2014).

[64] I. Zuriguel, D. R. Parisi, R. C. Hidalgo, C. Lozano, A. Jauda, P. A. Gago, J. P. Peralta, L. M. Ferrer, L. A. Pugnaloni, E. Clément, D. Maza, I. Pagonabarraga, and A. Garcimartín, “Clogging transition of many-particle systems flowing through bottlenecks,” Sci. Rep. 4, 7324 (2015).

[65] E. Dressaire and A. Sauret, “Clogging of microfluidic systems,” Soft Matter 13, 37–48 (2017).

[66] S. Leitmann and T. Franosch, “Nonlinear response in the driven lattice Lorentz gas,” Phys. Rev. Lett. 111, 190603 (2013).

[67] P. Baerts, U. Basu, C. Maes, and S. Safaverdi, “Frenetic origin of negative differential response,” Phys. Rev. E 88, 052109 (2013).

[68] O. Bénichou, P. Illien, G. Oshanin, A. Sarraucino, and R. Voituriez, “Microscopic theory for negative differential mobility in crowded environments,” Phys. Rev. Lett. 113, 268002 (2014).

[69] C. Reichhardt and C. J. O. Reichhardt, “Negative differential mobility and trapping in active matter systems,” J. Phys.: Condens. Matter 30, 015404 (2018).

[70] D. S. Fisher, “Collective transport in random media: from superconductors to earthquakes,” Phys. Rep. 301, 113–150 (1998).

[71] C. Reichhardt and C. J. Olson Reichhardt, “Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review,” Rep. Prog. Phys. 80, 026501 (2017).

[72] C. Reichhardt and C. J. Olson, “Colloidal dynamics on disordered substrates,” Phys. Rev. Lett. 89, 078301 (2002).

[73] Y. Fily, E. Olive, N. Di Scala, and J. C. Soret, “Critical behavior of plastic depinning of vortex lattices in two dimensions: Molecular dynamics simulations,” Phys. Rev. B 82, 134519 (2010).