Remarks on A_2 Toda Field Theory

S. A. Apikyan
Department of Theoretical Physics
Yerevan State University
Al. Manoogian 1, Yerevan 375049, Armenia

C. Efthimiou
Department of Physics
University of Central Florida
Orlando, FL 32816, USA

Abstract

We study the Toda field theory with finite Lie algebras using an extension of the Goulian-Li technique. In this way, we show that, after integrating over the zero mode in the correlation functions of the exponential fields, the resulting correlation function resembles that of a free theory. Furthermore, it is shown that for some ratios of the charges of the exponential fields the four-point correlation functions which contain a degenerate field satisfy the Riemann ordinary differential equation. Using this fact and the crossing symmetry, we derive a set of functional equations for the structure constants of the A_2 Toda field theory.

1 Introduction

The Toda field theory (TFT) provides an extremely useful description of a large class of two-dimensional integrable quantum field theories. For this reason these models have attracted a considerable interest in recent years and many outstanding results in various directions have been established.

TFTs are divided in three broad categories: finite Toda theories (FTFTs) for which the underlying Kac-Moody algebra is a finite Lie algebra, affine Toda theories (ATFTs) for which the underlying Kac-Moody algebra

\footnotesize

1apikyan@lx2.yerphi.am
2costas@physics.ucf.edu
is an affine algebra and indefinite Toda theories (ITFTs) for which the under-
lying Kac-Moody algebra is an indefinite Kac-Moody algebra. The classes of
FTFTs and ATFTs are well-studied and known to be integrable. In addition,
the FTFTs enjoy conformal invariance. A review of the most interesting de-
velopments in ATFTs is presented in Ref. [3] where there is also a list of
references to the original papers. The class of ITFTs is the least studied
as there are still many open questions regarding the indefinite Kac-Moody
algebras. A special class of the ITFTs, namely the hyperbolic Toda Theo-
ries (HTFTs), for which the underlying Kac-Moody algebra is a hyperbolic
Kac-Moody algebra were studied in Ref. [4] and it was shown that they are
conformal but not integrable.

However, despite all progress in TFTs, there still remain many unresolved
questions and problems. For example, one may ask what the structure con-
stants of the conformally invariant TFTs are. In this paper, we address this
question. We focus on FTFs and, in particular, on the A_2 FTFT.

In Sec. 2 the A_2 FTFT is introduced, some notations are fixed, and then
we continue to show how the correlation function of exponential fields in the
FTFT reduces to correlation functions of a free field theory with conformal
W-symmetry [5, 6, 7, 8]. In Sec. 3 we prove that, for some special cases of
the exponential fields, the four-point correlation functions which contain a
“degenerate” primary field satisfy the Riemann ordinary differential equa-
tion. Then, in Sec. 4 the conformal bootstrap technique is applied to derive
a set of functional equations for the structure constants of the A_2 FTFT.

\section{A_2 Finite Toda Field Theory}

We consider the finite conformal Toda field theory associated with the simply-
laced Lie algebra A_2 described by the action

$$S = \int d^2x \left[\frac{1}{8\pi} (\partial \varphi)^2 + \mu \sum_{i=1}^{2} e^{b_{ei} \cdot \varphi} + \frac{R}{4\pi} Q \cdot \varphi \right].$$ \hspace{1cm} (1)

In the above equation, $e_i, i = 1, 2$ are the simple roots of Lie algebra A_2. These define the fundamental weights w_i of the Lie algebra by the equation

$$e_i \cdot w_j = \delta_{ij}.$$
The background charge \(Q \) is proportional to the Weyl vector \(\rho \):

\[
Q = (b + 1/b) \rho, \quad \rho = \sum_{i=1}^{2} w_i.
\]

The local conformal invariance of the FTFT with central charge

\[c = 2 + 12Q^2 \]

is ensured by the existence of the holomorphic and antiholomorphic energy-momentum tensors

\[
T(z) = -\frac{1}{2}(\partial \varphi)^2 + Q \cdot \partial^2 \varphi,
\]

\[
\overline{T}(\bar{z}) = -\frac{1}{2}(\bar{\partial} \varphi)^2 + Q \cdot \bar{\partial}^2 \varphi.
\]

It is well-known that the FTFTs possess, besides the standard conformal symmetry, an additional \(W \)-symmetry. In particular, the \(A_2 \) FTFT we are studying in the present paper contains the additional holomorphic and antiholomorphic currents \(W(z), \overline{W}(\bar{z}) \) with spin 3, which generate the \(W_3 \) algebra.

The vertex operators

\[
V_a(x) = e^{2a \cdot \varphi(x)}
\]

are spinless primary fields of the \(W \)-algebra. Let \(L_n, W_n \) be the Fourier modes of the holomorphic fields \(T(z), \overline{T}(\bar{z}) \). Then

\[
L_0 V_a = \Delta(a) V_a, \quad W_0 V_a = w(a) V_a,
\]

\[
L_n V_a = 0, \quad W_n V_a = 0, \quad n > 0,
\]

where the conformal dimension \(\Delta(a) \) is given by

\[
\Delta(a) = 2a \cdot (Q - a).
\]

The correlation function of \(N \) vertex operators is formally defined by the functional integral

\[
G_{a_1, \ldots, a_n}(x_1, \ldots, x_n) = \int D\varphi \prod_{i=1}^{N} e^{2a_i \cdot \varphi(x_i)} e^{-S[\varphi]}.
\]
We introduce the following orthogonal decomposition of the field φ:

$$\varphi(x) = \varphi_0 + \tilde{\varphi}(x),$$

where φ_0 is the zero mode and $\tilde{\varphi}$ denotes the part of the field that is orthogonal to the zero mode:

$$\int d^2x \, \tilde{\varphi}(x) = 0.$$

Now, the integration of the functional integral (2) over the zero mode φ_0 can be done in a similar fashion to the Liouville case [9] to find

$$G_{a_1, \ldots, a_n}(x_1, \ldots, x_n) = \left(\frac{\mu}{8\pi}\right)^{s_1+s_2} \frac{1}{b^2|\det e|} \Gamma(-s_1)\Gamma(-s_2)$$

$$\times \int \mathcal{D}\tilde{\varphi} \prod_{i=1}^{N} e^{2a_i\tilde{\varphi}(x_i)} \left(\int d^2x \, e^{be_1 \cdot \tilde{\varphi}}\right)^{s_1} \left(\int d^2x \, e^{be_2 \cdot \tilde{\varphi}}\right)^{s_2} e^{-S_0[\tilde{\varphi}]}, \quad (3)$$

where S_0 is the action of the free field theory,

$$S_0 = \int d^2x \left(\frac{1}{8\pi}(\partial \tilde{\varphi})^2 + \frac{R}{4\pi} Q \cdot \tilde{\varphi}\right),$$

and

$$s_1 = (b \det e_{ij})^{-1}[-Qe_{22} + k_1e_{22} - k_2e_{21}],$$

$$s_2 = (b \det e_{ij})^{-1}[-Qe_{12} + k_2e_{11} - k_1e_{12}],$$

$$k = 2 \sum_{i=1}^{N} a_i, \quad Q = (Q, 0).$$

Assuming that s_1 and s_2 are both positive integers, then the remaining functional integral in expression (3) can be reduced to the correlation function of the W_3 minimal model [7, 8]. Unfortunately, the situation is much more complicated, i.e., in general, s_1 and s_2 are not positive integers. However, the solution of the problem is hidden in the previous observation: supposing that we know the exact expressions of the structure constants for the W_3 minimal model, then we can recover the expressions for the structure constants of the A_2 FTFT by analytic continuation (similarly to the Liouville case) [10, 11].
3 Four-Point Correlation Functions

Now, let’s concentrate on the following 4-point correlation function:

\[\langle V_{a_1}(z)V_{a_1}(z_1)V_{a_2}(z_2)V_{a_3}(z_3) \rangle = G_{a_1a_1a_2a_3}(z, z_1, z_2, z_3), \]

(4)

where the special vertex operator

\[V_{a_1}(z) = e^{2a_+ \varphi}, \quad a_+ = \left(-b, b/\sqrt{3}\right) \]

satisfies the null vector equation

\[[\Delta_+(5\Delta_+ + 1)W_{-2} - 12w_+L_{-1}^2 + 6w_+(\Delta_+ + 1)L_{-2}]V_{a_+} = 0. \]

(5)

Taking into account the last equation and the explicit representation of the current \(W \) in terms of the field \(\partial \varphi \) (see Ref. [8]), we find that the selected 4-point correlation function satisfies the differential equation

\[
(\Delta_+ + 1) \frac{\partial^2}{\partial z^2} \langle V_{a_1}(z)V_{a_1}(z_1)V_{a_2}(z_2)V_{a_3}(z_3) \rangle \\
- 2 \sum_{i=1}^{3} \left[\frac{\Delta_i + \delta_i}{(z - z_i)^2} + \frac{1}{z - z_i} \frac{\partial}{\partial z} \right] \langle V_{a_1}(z)V_{a_1}(z_1)V_{a_2}(z_2)V_{a_3}(z_3) \rangle \\
+ 4 \sum_{i=1}^{3} \frac{A_i}{z - z_i} \langle V_{a_1} \cdots \partial \varphi_1 V_{a_1} \cdots \rangle \\
+ 4 \sum_{i=1}^{3} \frac{B_i}{z - z_i} \langle V_{a_1} \cdots \partial \varphi_2 V_{a_1} \cdots \rangle = 0, \tag{6}
\]

where

\[
\delta_i = -2\sqrt{2}i[2a_{i+2}(a_{i+2}^2 - a_{i1}^2) + 2a_{i2}(a_{i+1}^2 - a_{i2}^2) \\
+ a_{i+2}a_{i1}(4a_{i+1} - Q) - a_{i+1}a_{i2}(4a_{i1} - Q)],
\]

\[
A_i = 2\sqrt{2}i(a_{i+2}a_{i1} + a_{i+1}a_{i2}),
\]

\[
B_i = 2\sqrt{2}i(a_{i+1}a_{i1} - a_{i+2}a_{i2}).
\]

Moreover, for the special ratios

\[
\frac{a_{i2}}{a_{i1}} = -\frac{a_{i+2}}{a_{i+1}} \pm \sqrt{1 + \left(\frac{a_{i+2}}{a_{i+1}}\right)^2} \tag{7}
\]
of the charges a_i, equation (6) can be further reduced to the equation
\[
(\Delta + 1) \frac{\partial^2}{\partial z^2} \langle V_{a_+(z)} V_{a_1}(z_1) V_{a_2}(z_2) V_{a_3}(z_3) \rangle \\
-2 \sum_{i=1}^{3} \left[\frac{\Delta_i + \delta_i}{(z - z_i)^2} + \frac{1 + A}{(z - z_i)} \frac{\partial}{\partial z_i} \right] \langle V_{a_+(z)} V_{a_1}(z_1) V_{a_2}(z_2) V_{a_3}(z_3) \rangle = 0, \tag{8}
\]
where
\[
A = \pm 2\sqrt{2}i\sqrt{a_{+1}^2 + a_{+2}^2}.
\]
It is well-known that in the case of the four-point functions, the partial differential equation (8), using the projective Ward identities \[12\], can be reduced to the Riemann ordinary differential equation
\[
\frac{1}{2}(\Delta + 1) \frac{d^2}{dz^2} + \sum_{i=1}^{3} \left[\frac{1 + A}{z - z_i} \frac{d}{dz} - \frac{\Delta_i + \delta_i}{(z - z_i)^2} \right] \\
+ (1 + A) \sum_{i<j}^{3} \frac{\Delta_i + \Delta_{ij}}{(z - z_i)(z - z_j)} \langle V_{a_+(z)} V_{a_1}(z_1) V_{a_2}(z_2) V_{a_3}(z_3) \rangle = 0, \tag{9}
\]
where $\Delta_{ij} = \Delta_i + \Delta_j - \Delta_k$, $(k \neq i, j)$, $(i, j, k = 1, 2, 3)$.

4 Functional Equations for Structure Constants

Now any four-point function can be explicitly decomposed in terms of the three-point function
\[
G_{a_1a_2a_3a_4}(z, \bar{z}) = \langle V_{a_1}(z_1) V_{a_2}(z_2) V_{a_3}(z_3) V_{a_4}(z_4) \rangle \\
= \sum_{a} C(a_1, a_2, Q - a)C(a, a_3, a_4) \left| F_a \left(\frac{a_1 a_2}{a_3 a_4} \right) (z, \bar{z}) \right|^2. \tag{10}
\]
Conformal invariance allows us to set $z_1 = 0$, $z_2 = z$, $z_3 = 1$, $z_4 = \infty$. As a consequence, the crossing symmetry condition is written as
\[
G_{a_1a_2a_3a_4}(z, \bar{z}) = G_{a_1a_2a_3a_4}(1 - z, 1 - \bar{z}) = z^{-2\Delta_2} \bar{z}^{-2\Delta_2} G_{a_1a_3a_2a_4}(1/z, 1/\bar{z}).
\]
To discover additional information about the structure constant \(s \) of the FTFT, we will use technique suggested in Ref. [13]. So, let’s assume that \(a_2 = a_+ \), i.e. the correlation function \((10) \) includes the degenerate field \(V_{a_+} \). Then the charges of the intermediate channel will take the following values

\[
(a_{11} + a_{+1}, a_{12} + a_{+2}), \\
(a_{11} - a_{+1}, a_{12} + a_{+2}), \\
(a_{11}, a_{12} - 2a_{+2}).
\]

This implies the following “fusion rules”

\[
V_{a_+} V_a = [V_{a_1+a_{+1},a_{2}+a_{+2}}] + [V_{a_1-a_{+1},a_{2}+a_{+2}}] + [V_{a_1,a_{2}-2a_{+2}}].
\]

It is more convenient to introduce the following “parametrization” of the intermediate charge \((11) \)

\[
a(s) = (a_{11} + sa_{+1}, a_{12} + (3s^2 - 2)a_{+2}), \quad s = 0, \pm 1.
\]

Using this parametrization, we can rewrite \((10) \) as follows:

\[
G_{a_1 a_+, a_3 a_4}(z, \bar{z}) = \sum_{s=0, \pm 1} \mathbb{C}(a_1, a_+, Q - a(s)) \mathbb{C}(a(s), a_3, a_4) \left| F_s \left(\frac{a_1 a_+}{a_3 a_4} \right) (z, \bar{z}) \right|^2.
\]

(12)

In this notation the crossing symmetry relation for \(G_{a_1 a_+, a_3 a_4}(z, \bar{z}) \) is

\[
\sum_{s=0, \pm 1} \mathbb{C}_s(a_1) \mathbb{C}(a(s), a_3, a_4) \left| F_s \left(\frac{a_1 a_+}{a_3 a_4} \right) (z, \bar{z}) \right|^2
\]

\[
= |z|^{-4\Delta_2} \sum_{p=0, \pm 1} \mathbb{C}_p(a_4) \mathbb{C}(a(p), a_3, a_1) \left| F_p \left(\frac{a_4 a_+}{a_3 a_1} \right) \left(1/z, 1/\bar{z} \right) \right|^2,
\]

(13)

where we have denoted

\[
\mathbb{C}(a_1, a_+, Q - a(s)) = \mathbb{C}_s(a_1)
\]

and

\[
\mathbb{C}(a_4, a_+, Q - a(s)) = \mathbb{C}_p(a_4).
\]
It follows from (9) that the conformal block must satisfy the following relation

\[
F_s \left(\frac{a_1 a_+}{a_3 a_4} \right) (z, \bar{z}) = z^{-2\Delta_+} \sum_{p=0,\pm1} M_{ps} F_p \left(\frac{a_4 a_+}{a_3 a_1} \right) (1/z, 1/\bar{z}),
\]

(14)

where \(M_{ps}\) is a matrix that is determined by the monodromy properties of the differential equation equation (9) or, alternatively, can be determined by the method developed in Ref. [14].

Substituting (14) into (13), we find the following functional equations for the \(A_2\) TFTFT structure constants:

\[
\begin{align*}
\sum_{s=0,\pm1} \mathbb{C}_s(a_1) \mathbb{C}(a(s), a_3, a_4) M_{s,0} M_{s,1} &= 0, \\
\sum_{s=0,\pm1} \mathbb{C}_s(a_1) \mathbb{C}(a(s), a_3, a_4) M_{s,0} M_{s,-1} &= 0, \\
\sum_{s=0,\pm1} \mathbb{C}_s(a_1) \mathbb{C}(a(s), a_3, a_4) M_{s,1} M_{s,-1} &= 0,
\end{align*}
\]

(15)

provided \(a_1, a_3, a_4\) satisfy the constraint (7).

It is important to notice that Eq. (5), admits additional solutions besides \(a_+\). In particular, \(a^+ = (-\frac{1}{b}, -\sqrt{3}b)\), \(a_- = (-\frac{1}{b}, \frac{1}{b\sqrt{3}})\), \(a^- = (-\frac{1}{b}, -\frac{1}{b\sqrt{3}})\) are all solutions of (5). Therefore the set of Eqs. (15) should be complemented by a similar set of equations obtained for the special case \(a^+\) and then add for each equation its ‘dual equation’ using the substitutions \(b \rightarrow 1/b\) and \(\mu \rightarrow \widetilde{\mu}\). The parameter \(\widetilde{\mu}\) is defined by duality relations [14]

\[
\pi \mu \gamma \left(\frac{e^2 b^2}{2} \right) = \pi \widetilde{\mu} \gamma \left(\frac{2}{e^2 b^2} \right) e^{\eta b^2/2}
\]

where \(\gamma(x) = \Gamma(x)/\Gamma(1-x)\).

In principle, the complete set of the bootstrap equations derived above for the special cases \(a_+, a^+, a_-, a^-\) allows the computation of all structure constants for the \(A_2\) TFTFT. We postpone the difficult problem of the exact determination of the structure constants for future studies.

Acknowledgments

The work of S.A. is supported in part by the ANSEF and INTAS fundations.
References

[1] V.G. Kac, “Infinite Dimensional Algebras”, 3rd ed, Cambridge University Press.

[2] P. Goddard, D. Olive, “Kac-Moody and Virasoro Algebras in Relation to Quantum Physics”, Int. J. Mod. Phys. A1, 303 (1986).

[3] E. Corrigan, “Recent Developments in Affine Quantum Toda Field Theory”, hep-th/9412213.

[4] R.W. Gebert, T. Inami, and S. Mizoguchi, “The Painleve Property, W Algebras and Toda Field Theories associated with Hyperbolic Kac-Moody Algebras”, Int. J. Mod. Phys. A11, 5479 (1996).

[5] A. Bilal, “Introduction to W-Algebras”, in the proceedings of the Trieste Spring School String Theory and Quantum Gravity.

[6] P. Bouwknegt and K. Schoutens, “W-Symmetry in Conformal Field Theory”, 223, 183 (1993).

[7] V. Fateev and A. Zamolodchikov, “Conformal quantum field theory models in two dimensions having Z_3 symmetry”, Nucl. Phys. B280 [FS18], 644 (1987).

[8] V. Fateev and S. Lukyanov, “Additional symmetries and exactly solvable models in two-dimensional conformal field theory”, Sov. Sci. Rev. A212, 212 (1990).

[9] M. Goulian and M. Li, “Correlation functions in Liouville theory”, Phys. Rev. Lett. 66, 2051 (1991).

[10] H. Dorn and H. Otto, “On correlation functions for noncritical strings with $C \leq 1, D \geq 1$”, Phys. Lett. B291, 39 (1992).

[11] A. Zamolodchikov and Al. Zamolodchikov, “Structure constants and conformal bootstrap in Liouville field theory”, Nucl. Phys. B477, 577 (1996).

[12] A. Belavin, A. Polyakov and A. Zamolodchikov, “Infinite conformal symmetry in 2D quantum field theory”, Nucl. Phys. B241, 333 (1984).
[13] J. Teschner, “On the Liouville three-point function”, *Phys. Lett.* **B363**, 65 (1995).

[14] V. Dotsenko and V. Fateev, “Conformal algebra and multipoint correlation functions in 2D statistical models”, *Nucl. Phys.* **B240** [FS12], 312 (1984).

[15] C. Ahn, P. Baseilhac, V. Fateev, C. Kim and C. Rim, “Reflection amplitudes in non-simply laced Toda theories and thermodynamic Bethe ansatz”, [hep-th/0002213](https://arxiv.org/abs/hep-th/0002213).