Case Report

Spinal Cord Ischemia Following Endovascular Repair of Infrarenal Abdominal Aortic Aneurysm

Shingo Nakai, MD, Tetsuro Uchida, MD, PhD, Yoshinori Kuroda, MD, PhD, Atsushi Yamashita, MD, Eiichi Oba, MD, PhD, Kimihiro Kobayashi, MD, Tomonori Ochiai, MD, and Mitsuaki Sadahiro, MD, PhD

Spinal cord injury (SCI) following endovascular aortic repair (EVAR) for an abdominal aortic aneurysm (AAA) is a rare but serious complication. Case 1 presented with ruptured AAA and shock and underwent emergency EVAR. The patient developed incomplete paraplegia 2 days following EVAR. Case 2, diagnosed with impending rupture of AAA with extremely shaggy aorta, was treated with emergency EVAR. The patient was diagnosed with complete paraplegia soon after EVAR. Case 3 underwent elective EVAR and developed delayed paraplegia 2 weeks later. In EVAR, the etiology of SCI leading to paraplegia is often multifactorial. Surgeons must consider the possibility of SCI-induced paraplegia.

Keywords: spinal cord ischemia, paraplegia, EVAR

Introduction

Spinal cord injury (SCI) following infrarenal abdominal aortic aneurysm (AAA) repair is an unusual but serious complication that impairs activities of daily living. Following endovascular aortic repair (EVAR), post-surgical paraplegia and paraparesis are less common than open surgery. Since 2010, 320 patients underwent EVAR for AAA with/without iliac arterial aneurysm in our hospital. Of these 320 patients, 3 (0.009%) experienced paraplegia. Herein, we report these 3 cases of SCI-related paraplegia following EVAR for AAA and consider the underlying pathophysiology.

Case Report

Case 1
A 79-year-old man with a 66 mm ruptured AAA was admitted to our hospital in shock. Computed tomography (CT) revealed a 51 mm serial left common iliac artery (CIA) aneurysm from the AAA, retroperitoneal hematoma, and evidence of active bleeding from the anterior wall of the AAA (Fig. 1A). EVAR was conducted as an emergency surgery. Before EVAR, an intra-aortic balloon was inserted and inflated at the descending aorta for hemostasis. Initially, the left internal iliac artery (IIA) was occluded by using embolization coils (Tornado® Embolization Coil, Cook Inc., Bloomington, IN, USA). A bifurcated endovascular graft (Gore Excluder Endoprosthesis, W. L. Gore & Associates Inc., Flagstaff, AZ, USA) was deployed at the infrarenal lesion to land distally in the right CIA and external iliac artery (EIA) with limb extension. The patient’s blood pressure increased immediately after completion of EVAR, although more than 4 h had passed since the onset of the AAA rupture. The operation time was 115 min.

On the second postoperative day, the patient was found to have developed left lower limb incomplete paraplegia. Based on suspicion of SCI, the patient was treated with cerebrospinal fluid (CSF) drainage, high-dose steroid infusions, naloxone, and edaravone. Magnetic resonance imaging (MRI) identified spinal cord infarction at T11–L1. Retrospective analysis of preoperative CT scans revealed the origin of the Adamkiewicz artery at L1–L2 level (Figs. 1B and 1C). This origin may have been unintentionally covered by the endograft. Based on patient records, the patient did not have any drop in his blood pressure below 80 mmHg in the postoperative period. Currently, the patient is receiving walking rehabilitation; his bladder incontinence has remained unchanged 43 months post-surgery.
AAA on non-contrast-enhanced CT. A contrast-enhanced CT conducted 4 years ago showed an extremely shaggy aorta (Fig. 2A). This patient was considered unsuitable for open surgery because of his poor general condition, severe renal dysfunction, and sarcopenia. Emergency EVAR was conducted to prevent AAA rupture. The right IIA was occluded by using embolization coils since the landing length of right CIA was short (15 mm) with a hostile neck and raised concerns regarding a type1b endoleak. This was followed by EVAR with Gore Excluder endoprosthesis. The distal landing sites were left CIA and right EIA with limb extension. The patient was diagnosed with complete paraplegia soon after EVAR. Although SCI was intensively managed, including CSF drainage, steroid infusions, and naloxone, the patient died 9 days following EVAR secondary to bowel necrosis.

Case 3
A 77-year-old man with AAA underwent elective EVAR. Preoperative CT scan identified a 56 mm infrarenal AAA and a 26 mm right IIA aneurysm, with chronic total occlusion of left IIA, and collateral circulation from the left femoral artery (Fig. 2B). At first, the right IIA was embolized by using Tornado coils. Subsequently, EVAR was conducted using an Endurant stent graft system (Medtronic, Inc., Santa Rosa, CA, USA). Distal legs of the endograft were placed in the right EIA and left CIA. Four days after EVAR, the patient complained of right lower limb paresis. Brain MRI and CT scans did not identify any abnormal findings. Initially, the patient appeared to recover well and was able to walk around the ward. However, on the 12th postoperative day, he developed right lower limb paralysis for the second time. Emergency spinal MRI confirmed subacute spinal cord infarction at T3–T6. He was treated medically without CSF drainage. Although his muscle power improved to the point that he could walk with a cane, the patient died of lung cancer 21 months later.

Discussion
Spinal cord ischemia leading to paraplegia after AAA repair is a rare but serious complication. The incidence of SCI is 0.1%–0.2% following elective open AAA surgery and 1.4%–2.0%, following emergency surgery for ruptured AAA.1) EVAR has brought about a major paradigm shift in the treatment of AAA. However, similar to open surgery, postoperative SCI has also been reported following EVAR. According to the Eurostar database, the incidence of SCI after EVAR was reported as 0.21%.2) The cause of SCI after EVAR is not clearly understood, and various factors may contribute to its pathogenesis, such as prolonged...
EVAR-related spinal cord ischemia

EVAR clamping, perioperative hypotension, atheromatous embolization, interruption of the great radicular artery (the Adamkiewicz artery), or collateral perfusion through pelvic circulation. In Case 1, perioperative hypotension secondary to hemorrhagic shock was considered to be the main cause of paraplegia. In ruptured AAA, rapid completion of EVAR is required to achieve adequate arterial blood pressure. The interval between the onset of hypotension and EVAR completion could be prolonged because of IIA coiling. Peppelenbosch et al. proposed emergency EVAR with aorto-uni-iliac stent graft system to avoid SCI by minimizing IIA ischemia. The Adamkiewicz artery is not occluded in most EVAR cases, because its typical origin is at the lumbar as well as the thoracic vertebral levels. However, the Adamkiewicz artery in Case 1 originated only from the L1–L2 level. Thus, the spinal cord perfusion through the Adamkiewicz artery may have decreased because of stent graft coverage of its origin.

Case 2 was known to have a shaggy aorta with severe atherosclerotic changes based on imaging. Therefore, intraoperative embolism, which decreased the spinal cord perfusion, was considered as pathogenesis of SCI. Frequent device insertion and removal from the shaggy aorta may have contributed to SCI. Gentle catheterization is mandatory for preventing paraplegia due to embolism.

In Case 3, the apparent cause of delayed SCI is not clear. However, bilateral occlusion of IIA may have been a possible cause of paraplegia. Collateral pelvic circulation, such as through IIA and lumbar artery, is known to be important for spinal cord perfusion. One report mentions a lack of neurological deficits in cases with bilateral IIA interruption following open as well as endovascular surgery for AAA. Bratby et al. reported a 3% incidence of SCI in patients who underwent bilateral IIA embolization before EVAR. There is no reference to the timing of delayed onset of SCI in literature. Goldstein et al. reported a case of delayed SCI following the use of an aorto-uni-iliac device wherein the patient developed paraplegia 3 weeks following the procedure. The authors reported that secondary hypotension might induce further reduction in spinal cord perfusion and contribute to the development of delayed paraplegia. The precise pathophysiology in Case 3 could not be determined.

Conclusion

EVAR is widely accepted as a less-invasive alternative to open surgery, especially in high-risk patients. However, being aware of the possibility of postoperative SCI following EVAR is important. The main causes of SCI following EVAR are multifactorial and vary from patient to patient. Some of the factors include pre-existing complications, anatomical characteristics of spinal cord perfusion, urgency of the operation, and general patient condition before surgery. Surgeons conducting EVAR should always exercise caution and be aware of the possibility of SCI-induced paraplegia as a procedural complication.

Acknowledgments

We thank Editage (www.editage.jp) for English language editing.

Ethical Statement

The ethical committee of Yamagata University approved this study (approval number: 2020-S-2).

Disclosure Statement

None of the authors have any conflict of interests to declare.

Author Contributions

Study conception: SN
Data collection: SN
Drafting: SN
Study supervision: TU and YK
Critical review and revision: all authors
Final approval of the article: all authors
Accountability for all aspects of the work: all authors

Case 1	Prolonged hypotension	Onset and severity	Outcome
	Occlusion of the Adamkiewicz artery	POD 2 (subacute) complete	Alive
		Immediately after EVAR (acute) complete	Walking with a cane

Case 2	Micro embolism due to manipulation in severely shaggy aorta	Onset and severity	Outcome
		POD 4 and POD 12 (delayed) incomplete	Alive

Case 3	Instability of pelvic circulation (occlusion of Bilateral IIA, IMA, lumbar artery, etc.)	Onset and severity	Outcome
		No improvement	Died

IIA: internal iliac artery; IMA: inferior mesenteric artery; POD: postoperative day
References

1) Awad H, Ramadan ME, El Sayed HF, et al. Spinal cord injury after thoracic endovascular aortic aneurysm repair. J Can Anesth 2017; 64: 1218-35.

2) Berg P, Kaufmann D, Van Marrewijk CJ, et al. Spinal cord ischemia after stent-graft treatment for infra-renal abdominal aortic aneurysms. Analysis of the Eurostar database. Eur J Vasc Endovasc Surg 2001; 22: 342-7.

3) Bajwa A, Davis M, Moawad M, et al. Paraplegia following elective endovascular repair of abdominal aortic aneurysm: reversal with cerebrospinal fluid drainage. Eur J Vasc Endovasc Surg 2008; 35: 46-8.

4) Peppelenbosch N, Cuypers PW, Vahl AC, et al. Emergency endovascular treatment for ruptured abdominal aortic aneurysm and the risk of spinal cord ischemia. J Vasc Surg 2005; 42: 608-14.

5) Koshino T, Murakami G, Morishita K, et al. Does the Adamkiewicz artery originate from the larger segmental arteries? J Thorac Cardiovasc Surg 1999; 117: 898-905.

6) Melissano G, Bertoglio L, Civelli V, et al. Demonstration of the Adamkiewicz artery by multidetector computed tomography angiography analysed with the open-source software osirIX. Eur J Vasc Endovasc Surg 2009; 37: 395-400.

7) Morisaki K, Matsumoto T, Matsubara Y, et al. A rare complication of spinal cord ischemia following endovascular aneurysm repair of an infrarenal abdominal aortic aneurysm with arteriosclerosis obliterans: report of a case. Ann Vasc Dis 2016; 9: 253-7.

8) Mehta M, Veith FJ, Darling RC III, et al. Effects of bilateral hypogastric artery interruption during endovascular and open aortoiliac aneurysm repair. J Vasc Surg 2004; 40: 698-702.

9) Bratby MJ, Munneke GM, Belli AM, et al. How safe is bilateral internal iliac artery embolization prior to EVAR? Cardiovasc Intervent Radiol 2008; 31: 246-53.

10) Goldstein LJ, Rezayat C, Shrikhande GV, et al. Delayed permanent paraplegia after endovascular repair of abdominal aortic aneurysm. J Vasc Surg 2010; 51: 725-8.