The leishmanicidal activity of essential oils: A systematic review

Shamsi Noorpisheh Ghadimi,1,2, Negin Sharifi,1 Mahmoud Osanloo3,4,*

1Department of Parasitology and Mycology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
2Department of Medicine, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
3Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa, Iran
4Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran

*Corresponding author: Mahmoud Osanloo, Email: m.osanloo@fums.ac.ir

Leishmaniasis is the neglected disease among parasitic diseases with an increasing rate of infections. Recently, numerous studies have been conducted on the leishmanicidal properties of various essential oils (EOs). In this research, literature have been systematically reviewed, from 20 years ago, and required information have been extracted. Overall, leishmanicidal effects of ~180 EOs against promastigotes of nine species of Leishmania have been documented. Inhibitory concentrations 50% (IC50) of around 30 EOs were less than 10 µg.mL⁻¹. EOs of Tetradenia riparia, Nectandra hihua, and Thymus hirtus with IC50s of 0.01, 0.20, and 0.25 µg.mL⁻¹ against Leishmania amazonensis, Leishmania infantum, and Leishmania major respectively, were identified as the most effective EOs. Furthermore, IC50 of Thymus hirtus on Leishmania infantum was 0.43 µg.mL⁻¹. Frequently, substantial differences were found between the observed IC50s of one EO against promastigotes of different species of Leishmania.

It can be concluded that the leishmanicidal activity of EOs is selective. Turning to the results, the combination of EOs for the design of multifunctional drugs can lead to excellent outcomes. Interestingly, the results have been classified by promastigote species, so this would be a valuable benchmark for researchers.

Implecation for health policy/practice/research/medical education:
This review provided a detailed insight into the leishmanicidal activities of around 180 plant-derived essential oil and showed that some of them could be used as a reliable source for developing new drugs or nano/formulations.

Please cite this paper as: Noorpisheh Ghadimi S, Sharifi N, Osanloo M. The leishmanicidal activity of essential oils: A systematic review. J Herbmed Pharmacol. 2020;9(4):300-308. doi: 10.34172/jhp.2020.38.
reported frequently (15,16). In this research, the LCA of EOs on different types of promastigotes systematically have been reviewed, form January 1, 2000 to June 30, 2019.

Data collection

Due to much publication on investigating LCA of EOs, data collection was included just to PubMed website (https://www.ncbi.nlm.nih.gov/pubmed/advanced). Steps for finding proper reports were described as follow: A: Included dates: 2000.01.01 - 2019.06.30. B: Leishmania*[Title/Abstract] C: Essential oil*[Title/Abstract] D: Leishmania*[Title/Abstract] AND essential oil*[Title/Abstract]: 120 docs.

Full texts of all 120 papers were collected. Required information including scientific names of plants, parts of used for EOs extraction, and inhibitory concentration 50% (IC50) were also extracted. Fifty-five articles that had not reported IC50 were excluded. It should be noted that IC50 is a quantitative measure that indicates how much of an EO is needed to inhibit 50% of promastigotes growth in comparison to control groups, no treated with EO.

Leishmanicidal activity of essential oils

LCA of 179 EOs on promastigotes of 9 species of *Leishmania* was extracted from 66 documents. Those species were *L. amazonensis* (71 reports), *L. braziliensis* (15 reports), *L. chagasi* (14 reports), *L. donovani* (8 reports), *L. infantum* (17 reports), *L. major* (31 reports), *L. mexicana* (9 reports), *L. panamensis* (9 reports), and *L. tropica* (5 reports). Collected information about each species was listed in tables of 1-9 as follows:

LCA of EOs on promastigotes of *L. amazonensis* was listed in Table 1. *L. amazonensis* is an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil from New World (17). The most potent EO was *Tetradenia riparia* with IC50 of <1 µg.mL\(^{-1}\) (18-20).

Interestingly, LCA of 15 other EOs including Cymbopogon citratus, Eugenia uniflora, Nectandra gardneri, Protium ovatum, Chenopodium ambrosioides, Eugenia uniflora, Chenopodium ambrosioides, Chenopodium ambrosioide (Wild Type), Cryptocarya aschersoniana, Ocotea dispersa, Chenopodium ambrosioide, Nectandra megapotamica, Chenopodium ambrosioide, Anillosmopsis arborea, and *Achillea millefolium* were lower than 10 µg.mL\(^{-1}\). These mentioned EOs are excellent candidates for the development of new drugs.

Table 2 contains a list of EOs with their IC50s on promastigotes of *L. braziliensis*; in the new world is causative agents of cutaneous leishmaniasis (51). Among the examined EOs, IC50 (µg.mL\(^{-1}\)) of 3 EOs were lower than others; *Lantana camara*: 72.30 (52), *Piper aduncum*: 77.90 (53), and *Piper auritum*: 52.10 (54).

The most common form of leishmaniasis is cutaneous leishmaniasis, which causes several types of skin lesions on exposed parts of the body such as ulcers, leaving lifelong scars and severe disability or stigma (55,56).

Table 3 reports the LCA of many EOs against *L. chagasi*.

Table 1. Leishmanicidal activities of EOs on promastigotes of *Leishmania amazonensis*

Plant name	Part(s) of use	IC50 (µg.mL\(^{-1}\))	References
Achillea millefolium	Leaves/ flowers	7.80	(21)
Aloysia gratissima	Aerial part	25.00	(22)
Artemisia absinthium	Leaves	21.50	(23)
Artemisia absinthium	Leaves	14.40	(24)
Bulnesia sarmientoi	Leaves/ stems	85.50	(25)
Cananga odorata	Leaves/ stems	NSV*	(25)
Chenopodium ambrosioides	Green leaves	2.90	(26)
Chenopodium ambrosioides	Dry leaves	20.70	(26)
Chenopodium ambrosioides	(After IP treatment)	6.71	(27)
Chenopodium ambrosioides	(After O treatment)	5.55	(27)
Chenopodium ambrosioides	(wild type)	3.74	(27)
Chenopodium ambrosioides	N/A	3.70	(28)
Cinnamomum camphora	Leaves/ stems	54.00	(25)
Cinnamomum zeylanicum	Leaves	NSV	(25)
Cordia verbeneae	Leaves/ stems	64.70	(25)
Coriandrum sativum	Seeds	19.10	(30)
Cryptocarya aschersoniana	Leaves	4.46	(31)
Curcuma longa	Aerial parts	405.50	(29)
Cymbopogon citratus	Leaves	1.70	(32)
Elettaria cardamomum	Leaves/ stems	NSV	(25)
Plant name	Part(s) of use	IC50 (µg.mL⁻¹)	References
-------------------------	---------------	----------------	------------
Eugenia uniflora	Leaves	3.04	(33)
Eugenia uniflora	Leaves	1.75	(33)
Ferula galbaniflua	Leaves/ stems	95.70	(25)
Foeniculum officinalis	Leaves/ stems	328.20	(25)
Gaultheria fragrantissima	Leaves	22.20	(30)
Lavandula officinalis	Leaves/ stems	NSV	(25)
Lippia sidoides	Aerial parts	44.38	(34)
Litsea cubeba	Leaves/ stems	NSV	(25)
Matricaria chamomilla	Leaves/ stems	60.10	(25)
Melissa officinalis	Leaves/ stems	132.00	(25)
Myrocrodore urundeuva	Leaves	205.00	(35)
Myrocyon peruiferum	Leaves/ stems	162.20	(25)
Nectandra amazonum	Leaves	22.10	(36)
Nectandra gardneri	Leaves	2.10	(36)
Nectandra megapotamica	Leaves	6.66	(37)
Nectandra megapotamica	Leaves	21.30	(36)
Ocimum gratissimum	Leaves	135.00	(38)
Ocotea dispersa	Leaves	4.67	(39)
Ocotea odorifera	Leaves	11.67	(39)
Origanum vulgare	Aerial parts	308.40	(29)
Pelargonium graveolens	Leaves/ stems	363.70	(25)
Piper aduncum	Leaves	19.30	(40)
Piper aduncum.	Leaves	25.90	(41)
Piper arboreatum	Leaves	15.20	(41)
Piper cernuum	Leaves	27.10	(41)
Piper claussenianum	Leaves	30.40	(42)
Piper claussenianum	Inflorescence	NSV	(42)
Piper cubeba	Fruits	326.50	(43)
Piper demeraranum	Leaves	86.00	(44)
Piper diospyrifolium	Leaves	13.50	(41)
Piper duckei	Leaves	46.00	(44)
Piper gaudichaudianum	Leaves	93.50	(41)
Piper mikananum	Leaves	NSV	(41)
Piper mosenii	Leaves	17.40	(41)
Piper ossanum	Leaves	NSV	(40)
Piper rivinoides	Leaves	10.90	(41)
Piper xyloliseoides	Leaves	NSV	(41)
Pluchea carolinensis	Leaves	24.70	(45)
Protium ovatum	Leaves	2.280	(46)
Salvia scabra	Leaves/ stems	325.90	(25)
Siparuna guianensis	Leaves/ stems	48.50	(25)
Syzygium cumini	Leaves	36.00	(47)
Syzygium cumini	Leaves	60.00	(47)
Syzygium cumini	Leaves	115.00	(47)
Syzygium cumini	Steam	19.70	(48)
Tetradenia riparia	Leaves	0.53	(20)
Tetradenia riparia	Leaves	0.03	(19)
Tetradenia riparia	Leaves	0.01	(18)
Tunisian chamomile	Flower	10.80	(49)
Vanillosmopsis arboarea	Stems	7.35	(50)

No specified value; IC50 >X.
Table 2. Leishmanicidal activities of EOs against promastigotes of *Leishmania braziliensis*

Plant name	Part(s) of use	IC50 (µg.mL\(^{-1}\))	References
Argyreia speciosa	Leaves	104.14	(57)
Citrus limon	Leaves	NSV*	(58)
Citrus sinensis	Leaves	NSV	(58)
Coriandrum sativum	Leaves	NSV	(58)
Cymbopogon citratus	Leaves	194.05	(58)
Lantana camara	Leaves	72.30	(52)
Mentha piperita	Leaves	NSV	(58)
Ocimum basilicum	Leaves	NSV	(58)
Origaniun vulgare	Leaves	171.80	(58)
Piper aduncum	Leaves	77.90	(53)
Piper auritum	Leaves	52.10	(54)
Piper tuberculatum	Fruits	133.97	(59)
Rosmarinus officinalis	Leaves	NSV	(58)
Thymus vulgaris	Leaves	NSV	(58)
Zingiber officinale	Leaves	303.00	(58)

*No specified value; IC50 > X.

Table 3. Leishmanicidal activities of EOs against promastigotes of *Leishmania chagasi*

Plant name	Part(s) of use	IC50 (µg.mL\(^{-1}\))	References
Copaifera reticulata	Seeds	7.88	(62)
Coriandrum sativum	Seeds	181.00	(62)
Croton coajucara	Leaves	66.70	(63)
Cymbopogon citratus	Leaves	45.00	(64)
Lippia alba	Aerial parts	18.90	(65)
Lippia citriodora	Aerial parts	5.20	(65)
Lippia dulcis	Aerial parts	37.10	(65)
Lippia gracilis (LGRA-106)	Leaves	86.32	(66)
Lippia gracilis (LGRA-110)	Leaves	77.26	(66)
Lippia idoides	Leaves	89.00	(64)
Lippia micromera	Aerial parts	51.80	(65)
Lippia origanoides	Aerial parts	4.40	(65)
Lippia sidoides	Seeds	19.76	(62)
Ocimum gratissimum	Leaves	75.00	(64)

In the new world, visceral leishmaniasis is associated with *L. Chagasi* (60). As details show, IC50 of 3 EOs, including *Copaifera reticulata, Lippia citriodora, and Lippia origanoides*, are around 5 µg.mL\(^{-1}\). These EOs are suitable candidates for in-vivo studies. A fatal form of leishmaniasis is visceral, in which parasite affects internal organs such as the spleen, liver, and bone marrow (61).

Table 4 shows the leishmanicidal potency of eight EOs on *L. donovani*. In India and West Africa, *L. donovani* is the causative agent of visceral leishmaniasis (Kala-azar) (67). Among the reported IC50s, EOs of *Artemisia annua, Piper auritum, and Syzygium aromaticum* with values of 14.60, 12.80, and 21.00 µg.mL\(^{-1}\) respectively, were more effective than others (54,68,69).

In Table 5, IC50 of some EOs on *L. infantum* are summarized. *L. infantum* infection (causes of visceral leishmaniasis) is endemic in Southern Europe (73). LCA of *Nectandra hihua* and *Thymus hirtus* EOs with IC50 of 0.20 and 0.25 µg.mL\(^{-1}\) were very phantasies (36,74).

Results of LCA of some medicinal plants on *L. major* are summarized in Table 6. *L. major* and *L. tropica* in the old world are responsible for cutaneous leishmaniasis (7). Interestingly 3 documented IC50s were around 1 µg.mL\(^{-1}\); those values were related to EOs of *Mentha pulegium, Rosmarinus officinalis,* and *Thymus hirtus.*

Table 7 summarizes the effect of many EOs on *L. mexicana,* which is one of the primary causes of cutaneous leishmaniasis.
leishmaniasis in the New World (6). Between the reported IC50s (µg.mL⁻¹), EOs of Cinnamomum cassia (2.90) Zingiber zerumbet (3.30) and Ocimum gratissimum (4.80) were more effective than others (86).

Table 8 briefs the effect of 9 plant-derived EOs on L. panamensis promastigotes. Recently, it revealed that L. panamensis found in Central and South America, as well as it is the causative agent of the mucosal form (89). Origanum vulgare EO with IC50 of 42.23 µg.mL⁻¹ was better than others (58).

Results of LCA of many EOs on promastigotes of L. tropica was under 10 µg.mL⁻¹ respectively; LCA of 24 EOs has been examined against 9 types of Leishmania were gathered. The documented IC50s (µg.mL⁻¹) have been categorized as follow: IC50 < 1: 6 EOs, IC50 1-10: 29 EOs, 10-100: 79 EOs, 100-500: 40 EOs, and no specified value (NSV): 25 EOs (i.e., IC50 < X). LCA of 24 EOs has been examined against at least 2 species of Leishmania. However, just LCA of 2 EOs on targeted promastigotes was under 10 µg.mL⁻¹ simultaneously; Thymus hirtus EO with IC50 of 0.25 and 0.43 against L. infantum and L. major, respectively (74).

Table 6. Leishmanicidal activities of EOs against promastigotes of Leishmania major

Plant name	Part(s) of use	IC50 (µg.mL⁻¹)	References
Anise	Commercial	286.10	(82)
Balm mint	Commercial	7.00	(82)
Citrus limon	Leaves	231.40	(58)
Citrus sinensis	Leaves	NSV*	(58)
Clove	Commercial	58.40	(82)
Coriandrum sativum	Leaves	NSV	(58)
Cymbopogon citratus	Leaves	149.10	(58)
Cymbopogon citratus	Aerial parts	38.00	(76)
Dwarf Pine	Commercial	111.80	(82)
Konuka	Commercial	26.20	(82)
Lavandula angustifolia	N/A	110.00	(83)
Manuka	Commercial	208.10	(82)
Mentha pulegium	Aerial parts	1.30	(84)
Ocimum basilicum	Leaves	315.55	(58)
Origanum vulgare	Leaves	NSV	(58)
Peppermint	Commercial	227.50	(82)
Pine	Commercial	123.20	(82)
Piper auritum	Leaves	29.10	(54)
Pulicaria vulgaris	Aerial parts	244.70	(79)
Rosemary	Commercial	282.10	(82)
Rosmarinus officinalis	Aerial parts	1.20	(84)
Rosmarinus officinalis	Leaves	NSV	(58)
Rosmarinus officinalis	N/A	260.00	(83)
Satureja bakhtiarica	Leaves	150.00	(85)
Spruce	Commercial	29.90	(82)
Tea Tree	Commercial	403.00	(82)
Thyme	Commercial	127.40	(82)
Thymus capitellatus	Aerial parts	62.00	(80)
Thymus hirtus	N/A	0.43	(74)
Thymus vulgaris	Leaves	NSV	(58)
Zingiber officinalis	Leaves	256.95	(58)

*No specified value; IC50 > X.

Table 7. Leishmanicidal activities of EOs against promastigotes of Leishmania mexicana

Plant name	Part(s) of use	IC50 (µg.mL⁻¹)	References
Amomum aromaticum	Fruits	9.20	(86)
Cinnamomum cassia	Stem barks	2.90	(86)
Elsholtzia ciliata	Leaves	8.40	(86)
Haplophyllum tuberculatum	Seed	16.00	(87)
Haplophyllum tuberculatum	Leaf	16.60	(87)
Keetia leucantha	Leaves	20.90	(88)
Ocimum gratissimum	Leaves	4.80	(86)
Piper auritum	Leaves	63.30	(54)
Zingiber zerumbet	Rhizomes	3.30	(86)

Table 8. Leishmanicidal activities of EOs against promastigotes of Leishmania panamensis

Plant name	Part(s) of use	IC50 (µg.mL⁻¹)	References
Citrus limon	Leaves	NSV*	(58)
Citrus sinensis	Leaves	NSV	(58)
Coriandrum sativum	Leaves	427.95	(58)
Cymbopogon citratus	Leaves	180.83	(58)
Ocimum basilicum	Leaves	251.59	(58)
Origanum vulgare	Leaves	42.23	(58)
Rosmarinus officinalis	Leaves	402.23	(58)
Thymus vulgaris	Leaves	154.83	(58)

*No specified value; IC50 > X.

Table 9. Leishmanicidal activities of EOs against promastigotes of Leishmania tropica

Plant name	Part(s) of use	IC50 (µg.mL⁻¹)	References
Cymbopogon citratus	Aerial parts	52.00	(76)
Myrtus communis	Leaves	8.40	(90)
Nigella sativa	Seeds	9.30	(78)
Thymus capitellatus	Aerial parts	35.00	(80)
Zataria multiflora Boiss	Aerial parts	89.30	(91)
Besides, EO of *Nectandra gardneri* was also showed good LCA on *L. amazonensis* (2.1 µg.mL⁻¹) and *L. infantum* (2.7 µg.mL⁻¹) (36).

Interestingly, some EOs showed excellent LCA on one type of promastigotes, while its efficiency on other species was not acceptable. For instance, EO of *Ocimum gratissimum* (4.80 µg.mL⁻¹) (86), *L. chagasi* (75.00 µg.mL⁻¹) (64), and *L. amazonensis* (135 µg.mL⁻¹) (38). Also, *Nectandra megapotamica* EO against *L. amazonensis* and *L. infantum* was indicated different IC50s (µg.mL⁻¹), including 6.66 (37) and 12.50 (36), respectively.

Furthermore, IC50 of *Coriandrum sativum* EO on *L. amazonensis* and *L. chagasi* was reported as 19.10 µg.mL⁻¹ (30) and 181.00 µg.mL⁻¹ (62), respectively, while this value for *L. panamensis* was achieved at 427.95 µg.mL⁻¹ (58). Besides, IC50s for *Piper auritum* EO against *L. donovani*, *L. major*, *L. braziliensis*, and *L. mexicana* were reported at 12.80, 29.10, 52.10, and 63.30 µg.mL⁻¹, respectively (54).

Based on the results, it can be said that the LCA of EOs against different species is selective.

Conclusion

The articles published over the last 20 years on the leishmanicidal activity of EOs have been systematically reviewed. IC50s of 179 EOs on promastigotes of 9 different species of *Leishmania* were also documented, separately. Interestingly, thirty-five of IC50 values were lower than 10 µg.mL⁻¹, thus could be introduced for further investigations such as preparation of nano/formulations, performing in-vivo studies, and clinical trials. However, given the selective properties of EOs, their combination can lead to good results. In other words, depending on the endemic leishmaniasis, EOs can be combined and formulated as multifunctional drugs. In addition, the categorized results in this research would be an excellent guide for other researchers to select proper EOs.

Authors’ contributions

SNG contributed to the extraction of information from literature and providing of information on leishmaniasis. NS contributed in extraction of information from literature and providing of information on information about EOs. The idea of doing this research as well as writing the manuscript done by MO. All authors read and approved the final report.

Conflict of interests

There is no conflict of interest to declare.

Ethical considerations

Ethical issues have been observed by the authors.

Funding/Support

The authors appreciate Fasa University of Medical Sciences for financial support of this research, grant number of 97098.

References

1. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PloS one. 2012;7(5):e35671.

2. Yaghoobi-Ershadi M, Hanafi-Bojd A, Akhavan A, Zahrai-Ramazani A, Mohbali M. Epidemiological study in a new focus of cutaneous leishmaniasis due to *Leishmania major* in Ardestan town, central Iran. Acta tropica. 2001;79(2):115-21.

3. Desjeux P. The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg. 2001;95(3):239-43.

4. WHO WHO. Report of a meeting of the WHO Expert Committee on the Control of Leishmaniasis, Geneva, Switzerland, 22-26 March 2010. WHO Technical Report Series. 2010(949).

5. Dutra FL, Oliveira MM, Santos RS, Silva WS, Alviano DS, Vieira DP, et al. Effects of linalool and eugenol on the survival of *Leishmania* (L.) *infantum chagasi* within macrophages. Acta tropica. 2016;164:69-76.

6. Solano-Gallego L, Koutinas A, Miró G, Cardoso L, Pennisi M, Ferrer L, et al. Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniasis. Vet Parasitol. 2009;165(1-2):1-18.

7. de Morais SM, Vila-Nova NS, Beviláqua CML, Rondon FC, Lobo CH, Moura AdAAN, et al. Thymol and eugenol derivatives as potential antileishmanial agents. Bioorganic & medicinal chemistry. 2014;22(21):6250-55.

8. Postigo JAR. Leishmaniasis in the world health organization eastern Mediterranean region. Int J Antimicrob Agents. 2010;36:S62-5.

9. Osanloo M, Amani A, Sereshki H, Shayeghi M, Sedaghat MM. Extraction and chemical composition essential oil of *Kelisia odoratissima* and comparison its larvicidal activity with *Z-ligustilide* (major constituent) against *Anopheles stephensi*. J Entomol Zool Stud. 2017;25:27.

10. Osanloo M, Amani A, Sereshki H, Abai MR, Esmaeili F, Sedaghat MM. Preparation and optimization nanoemulsion of *Tarragon* (*Artemisia dracunculus*) essential oil as effective herbal larvicide against *Anopheles stephensi*. Ind Crops Prod. 2017;109:214-19.

11. Osanloo M, Sedaghat MM, Esmaeili F, Amani A. Larvicidal Activity of Essential Oil of *Syzygium aromaticum* (Clove) in Comparison with Its Major Constituent, Eugenol, against *Anopheles stephensi*. J Arthropod Borne Dis. 2018;12(4):361-69.

12. Osanloo M, Sereshki H, Sedaghat MM, Amani A. Nanoemulsion of *Dill* essential oil as a green and potent larvicide against *Anopheles stephensi*. Environ Sci Pollut Res Int. 2018;25(7):6466-73.

13. Peixoto LR, Rosalen PL, Ferreira GLS, Freires IA, de Carvalho FG, Castellano LR, et al. Antifungal activity, mode of action and anti-biofilm effects of *Laurus nobilis* *Linnaeus* essential oil against *Candida* spp. Archives of oral biology. 2017;73:179-85.

14. Osanloo M, Sedaghat MM, Saney-Dekkordi A, Amani A. Plant-derived essential oils; their larvicidal properties and potential application for control of Mosquito-Borne diseases. Galen. 2019;8:1532.

15. Luna EC, Luna IS, Scotti L, et al. Active essential oils and
their components in use against neglected diseases and arboviruses. Oxid Med Cell Longev. 2019;2019:6587150. doi: 10.1155/2019/6587150

16. Moraes Neto RN, Setubal RFB, Higino TMM, Brelaz-de-Castro MCA, da Silva LCN, Aliança A. Asteraceae plants as sources of compounds against leishmaniasis and Chagas disease. Front Pharmacol. 2019;10:477. doi: 10.3389/fphar.2019.00477.

17. Silveira FT, Lainson R, Corbett CE. Further observations on clinical, histopathological, and immunological features of borderline disseminated cutaneous leishmaniasis caused by Leishmania (Leishmania) amazonensis. Mem Inst Oswaldo Cruz. 2005;100(5):525-34. doi: 10.1590/s0074-02762005000500013.

18. Cardoso BM, de Mello TF, Lopes SN, Demarchi IG, Lera DS, Pedroso RB, et al. Antileishmanial activity of the essential oil from Tetradenia riparia obtained in different seasons. Mem Inst Oswaldo Cruz. 2015;110(8):1024-34. doi: 10.1590/0074-0276015010290.

19. Demarchi IG, Thomazella MV, de Souza Terron M, Lopes L, Gazim ZC, Cortez DA, et al. Antileishmanial activity of essential oil and 6,7-dehydroeryone isolated from Tetradenia riparia. Exp Parasitol. 2015;157:128-37. doi: 10.1016/j.exppara.2015.06.014.

20. Terron-Monich MS, Demarchi IG, da Silva PRF, Ramos-Milare A, Gazim ZC, Silveira TGV, et al. 6,7-Dehydroeryone diterpene derived from Tetradenia riparia essential oil modulates IL-4/IL-12 release by macrophages that are infected with Leishmania amazonensis. Parasitol Res. 2019 Jan;118(1):369-376. doi: 10.1007/s00436-018-1166-2.

21. Santos AO, Santin AC, Yamaguchi MU, Cortez LE, Ueda-Nakamura T, Dias-Filho BP, et al. Antileishmanial activity of an essential oil from the leaves and flowers of Achillea millefolium. Ann Trop Med Parasitol. 2010;104(6):47-83. doi: 10.1179/136485910X1278458991281.

22. Garcia MCF, Soares DC, Santana RC, Saraiva EM, Siani AC, Ramos MF, et al. The in vitro antileishmanial activity of essential oil from Aloysia scutellaria and guaiol, its major sesquiterpene against Leishmania amazonensis. Parasitology. 2018;145(9):1219-27. doi: 10.1017/S0031182017002335.

23. Tamargo B, Monzote L, Pinon A, Machin L, Garcia M, Scull R, et al. In vitro and in vivo evaluation of essential oil from Artemisia absinthium L. formulated in nanococleates against cutaneous leishmaniasis. Medicines (Basel). 2017;4(2):38. doi: 10.3390/medicines0400238.

24. Monzote L, Pinon A, Scull R, Setzer WN. Chemistry and leishmanicidal activity of the essential oil from Artemisia absinthium from Cuba. Nat Prod Commun. 2014;9(12):1799-804.

25. Andrade MA, Azevedo CD, Motta FN, Santos ML, Silva CL, Santana JM, et al. Essential oils: in vitro activity against Leishmania amazonensis, cytotoxicity and chemical composition. BMC Complement Altern Med. 2016;16(1):444. doi: 10.1186/s12906-016-1401-9.

26. Monzote L, Nance MR, Garcia M, Scull R, Setzer WN. Comparative chemical, cytotoxicity and antileishmanial properties of essential oils from Chenopodium ambrosioides. Nat Prod Commun. 2011;6(2):281-6.

27. Monzote L, Montalvo AM, Scull R, Miranda M, Abreu J. Activity, toxicity and analysis of resistance of essential oil from Chenopodium ambrosioides after intraperitoneal, oral and intraleisional administration in BALB/c mice infected with Leishmania amazonensis: a preliminary study. Biomed Pharmacother. 2007;61(2-3):148-53. doi: 10.1016/j.biopha.2006.12.001.

28. Monzote L, Garcia M, Pastor J, Gil L, Scull R, Maes L, et al. Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania, their mitochondria and other microorganisms. Exp Parasitol. 2014;136:20-6. doi: 10.1016/j.exppara.2013.10.007.

29. Teles AM, Rosa T, Mouchrek AN, Abreu-Silva AL, Calabrese KDS, Almeida-Souza F. Cinnamomum zeylanicum, Origanum vulgare, and Curcuma longa Essential Oils: Chemical Composition, Antimicrobial and Antileishmanial Activity. Evid Based Complement Alternat Med. 2019;2019:2421695. doi: 10.1155/2019/2421695.

30. Monzote L, Herrera J, Satyal P, Setzer WN. In-vitro evaluation of 52 commercially-available essential oils against Leishmania amazonensis. Nat Prod Res. 2019;24(7). doi: 10.3390/molecules24071248.

31. Andrade PM, Melo DC, Alcoba AET, Ferreira Junior WG, Pagotti MC, Magalhaes LG, et al. Chemical composition and evaluation of antileishmanial and cytotoxic activities of the essential oil from leaves of Cryptocarya aschersoniana Mez. (Lauraceae Juss.). An Acad Bras Cienc. 2018;90(3):2671-78. doi: 10.1590/0001-376520182017013.32.

32. Santin MR, dos Santos AO, Nakamura CV, Dias Filho BP, Ferreira IC, Ueda-Nakamura T. In vitro activity of the essential oil of Cymbopogon citratus and its major component (citral) on Leishmania amazonensis. Parasitol Res. 2009;105(6):1489-96. doi: 10.1007/s00436-009-1578-7.

33. Rodrigues KA, Amorim LV, de Oliveira JM, Dias CN, Moraes DF, Andrade EH, et al. Eugenia uniflora L. Essential oil as a potential anti-leishmania agent: effects on Leishmania amazonensis and possible mechanisms of action. Evid Based Complement Alternat Med. 2013;2013;279726. doi: 10.1155/2013/279726.

34. de Medeiros E, da Silva AC, Cito AM, Borges AR, de Lima SG, Lopes JA, et al. In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham. Exp Parasitol. 2011;136:20-6. doi: 10.1016/j.exppara.2013.10.007.

35. Carvalho CE, Sobrinho-Junior EP, Brito LM, Nicolaou LA, Carvalho TP, Moura PK, et al. Anti-Leishmania activity of essential oil of Myrcrodruon urundeuva (Engl.) Fr. All.: Composition, cytotoxicity and possible mechanisms of action. Exp Parasitol. 2017;175:59-67. doi: 10.1016/j.exppara.2017.05.004.

36. Maia JGS, Setzer WN, Bosquiroli LSS, Dos Santos Ferreira AC, Farias KS, da Costa EC, et al. In Vitro antileishmanial activity of sesquiterpene-rich essential oils from Nectandra species. Int J Mol Sci. 2017;18(5):1228-91. doi: 10.3390/ijms18051228.

37. Almeida KCR, Silva BB, Alves CCF, Vieira TM, Crotti AEM, Souza JM, et al. Biological properties and chemical composition of essential oil from Nectandra megapotamica (Spreng.) Mez. leaves (Lauraceae). Nat Prod Res. 2019;1-5. doi: 10.1080/14786419.2019.1608539.

38. Ueda-Nakamura T, Mendonca-Filho RR, Morgado-Diaz JA, Korehisa Maza P, Prado Dias Filho B, Aparicio Garcia Cortez D, et al. Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum. Parasitol Int.
promastigotes. Parasitol Res. 2017;116(3):423-30. doi: 10.1007/s00436-016-5294-1.

41. Alcoba AET, Melo DC, de Andrade PM, Dias HJ, Pagotti MC, Magalhaes LG, et al. Chemical composition and in vitro antileishmanial and cytotoxic activities of the essential oils of Ocotea dispersa (Nees) Mez and Ocotea odorifera (Vell) Rohwer (Lauraceae). Nat Prod Res. 2018;32(23):2865-2868. doi: 10.1080/14786419.2017.1385007.

42. Gutierrez Y, Montes R, Scull R, Sanchez A, Cos P, Monzote L, et al. Chemodiversity associated with cytotoxicity and antimicrobial activity of Piper aduncum var. osaunum. Chem Biodivers. 2016;13(12):1715-19. doi: 10.1002/cbdv.201600133

43. Bernuci KZ, Iwanaga CC, Fernandez-Andrade CM, Lorenzetti FB, Torres-Santos EC, Faioes VD, et al. Evaluation of chemical composition and antileishmanial and antituberculosis activities of essential oils of Piper species. Molecules. 2016;21(12):E1698. doi: 10.3390/molecules21121698.

44. Marques AM, Barreto AL, Batista EM, Curvelo JA, Velozo LS, Moreira Dde L, et al. Chemistry and biological activity of essential oils from Piper clausennium (Piperaceae). Nat Prod Commun. 2010;5(11):1837-40.

45. Esperandim VR, da Silva Ferreira D, Sousa Rezende KC, Magalhaes LG, Medeiros Souza J, Pauletti PM, et al. In vitro antiparasitic activity and chemical composition of the essential oil obtained from the fruits of Piper cubeba. Planta Med. 2013;79(17):1653-5. doi: 10.1055/s-0033-1351022.

46. Moura do Carmo DF, Amaral AC, Machado GM, Leon LL, Silva JR. Chemical and biological analyses of the essential oils and main constituents of Piper species. Molecules. 2012;17(2):1819-29. doi: 10.3390/molecules17021819.

47. Garcia M, Scull R, Satyal P, Setzer WN, Monzote L. Chemical characterization, antileishmanial activity, and cytotoxicity effects of the essential oil from leaves of Pluchea carolinensis (Jacq.) G. Don. (Asteraceae). Phytother Res. 2017;31(9):1419-26. doi: 10.1002/ptr.5869.

48. Estevam EBB, Deus IPB, Silva VPD, Silva E, Alves CCF, Alves JM, et al. In vitro antiparasitic activity and chemical composition of the essential oil from Protium ovatum leaves (Bureraceae). An Acad Bras Cienc. 2017;89(4):3005-3013. doi: 10.1590/0001-376520170170310.

49. Dias CN, Rodrigues KA, Carvalho FA, Carneiro SM, Maia JG, Andrade EH, et al. Molluscicidal and leishmanicidal activity of the leaf essential oil of Syzygium cumini (L.) SKEELS from Brazil. Chem Biodivers. 2013;10(6):1133-41. doi: 10.1002/cbdv.201200292.

50. Rodrigues KA, Amorim LV, Dias CN, Moraes DF, Carneiro SM, Carvalho FA. Syzygium cumini (L.) Skeels essential oil and its major constituent alpha-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J Ethnopharmacol. 2015;160:32-40. doi: 10.1016/j.jep.2014.11.024.

51. Haji J, Sifoua I, Lopez-Arencibia A, Reyes-Battle M, Jimenez IA, Bazzocchi IL, et al. Leishmanicidal activity of alpha-bisabolol from Tunisian chamomile essential oil. Parasitol Res. 2018;117(9):2855-67. doi: 10.1007/s00436-018-5975-7.

52. Colares AV, Almeida-Souza F, Taniwaki NN, Souza Cda S, da Costa JG, Calabrese Kda S, et al. In Vitro antileishmanial activity of essential oil of Vanillosmopsis arborea (Asteraceae) Baker. Evid Based Complement Alternat Med. 2013;2013:727042. doi: 10.1155/2013/727042.

53. Kaszak I, Planellas M, Dworecka-Kaszak B. Canine leishmaniosisis—an emerging disease. Ann Parasitol. 2015;61(2):69-76.

54. Monzote L, Garcia M, Montalbo AM, Scull R, Miranda M. Chemistry, cytotoxicity and antileishmanial activity of the essential oil from Piper auritum. Mem Inst Oswaldo Cruz. 2010;105(2):168-73. doi: 10.1590/s0074-0276201000020010.

55. WHO. Fact sheets of leishmaniasis. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis. Accessed September 10, 2019.

56. WHO. Leishmaniasis cutaneous. Available from: https://www.who.int/leishmaniasis/cutaneous_leishmaniasis/en. Accessed September 10, 2019.

57. Pereira PS, Maia AJ, Duarte AE, Oliveira-Tinto CDM, Tintino SR, Barros LM, et al. Cytotoxic and anti-kinetoplastid potential of the essential oil of Alpinia speciosa K. Schum. Food Chem Toxicol. 2018 Sep;119:387-391. doi: 10.1016/j.fct.2018.01.024.

58. Sanchez-Suarez J, Riveros I, Delgado G. Evaluation of the leishmanicidal and cytotoxic potential of essential oils derived from ten Colombian plants. Iran J Parasitol. 2013;8(1):129-36.

59. Dos Santos Sales V, Monteiro AB, Delmondes GA, do Nascimento EP, Sobreira Dantas Nobrega de Figueiredo FL, de Souza Rodrigues CK, et al. Antiparasitic Activity and Essential Oil Chemical Analysis of the Piper bubucatum Jacq. Fruit. Iran J Pharm Res. 2018;17(1):268-75.

60. Mauricio I, Stothard J, Miles M. The strange case of Leishmania chagasi. Parasitology today. 2000;16(5):188-89.

61. Razmjou S, Hejazy H, Motazedian MH, Baghaei M, Emamy M, Kalantary M. A new focus of zoonotic cutaneous leishmaniasis in Shiraz, Iran. Trans R Soc Trop Med Hyg. 2009;103(7):727-30.

62. Rondon FC, Bevilacqua CM, Accioly MP, de Morais SM, de Andrade-Junior HF, de Carvalho CA, et al. In vitro efficacy of Coriandrum sativum, Lippia sidoside and Copaifera reticulata against Leishmania chagasi. Rev Bras Parasitol Vet. 2012;21(3):185-91.

63. Rodrigues IA, Azevedo MM, Chaves FC, Bizzo HR, Corte-Real S, Alviano DS, et al. In vitro cytotoxic effects of the essential oil from Croton cajucara (red sacaca) and its major constituent 7- hydroxycalamene against Leishmania chagasi. BMC Complement Altern Med. 2013;13:1249. doi: 10.1186/1472-6882-13-249.

64. Oliveira VC, Moura DM, Lopes JA, de Andrade PP, da Silva NH, Figueiredo RC. Effects of essential oils from Cymbopogon citratus (DC) Stapf., Lippia sidoside Cham., and Ocimum gratissimum L. on growth and ultrastructure of Leishmania chagasi promastigotes. Parasitol Res. 2009;104(5):1053-9. doi: 10.1007/s00436-008-1288-6.

65. Escobar P, Milena Leal S, Herrera LV, Martinez JR, Stashenko E. Chemical composition and antiprotozoal activities
of Colombian Lippia spp essential oils and their major components. Mem Inst Oswaldo Cruz. 2010;105(2):184-90. doi: 10.1590/s0074-0276201000020013.

66. de Melo JO, Bitencourt TA, Fachin AL, Cruz EM, de Jesus HC, Alves PB, et al. Antidermatophytic and antileishmanial activities of essential oils from Lippia gracilis Schauer genotypes. Acta Trop. 2013;128(1):110-5. doi: 10.1016/j.actatropica.2013.06.024.

67. Rahajou M, Nasereddini A, Fellah H, Azmi K, Amarir F, Al-Jawabreh A, et al. New clinicopathologic profile of cutaneous leishmaniasis, Morocco. Emerg Infect Dis. 2007;13(9):1358.

68. Islamuddin M, Chouhan G, Tyagi M, Abdin MZ, Sahal D, Afrin F. Leishmanicidal activities of Artemisia annua leaf essential oil against Visceral Leishmaniasis. Front Microbiol. 2014;5:626. doi: 10.3389/fmicb.2014.00626.

69. Islamuddin M, Sahal D, Afrin F. Apoptosis-like death in Leishmania donovani promastigotes induced by eugenol-rich oil of Syzygium aromaticum. J Med Microbiol. 2014;63(Pt 1):74-85. doi: 10.1099/jmm.0.064709-0.

70. Parreira NA, Magalhaes LG, Morais DR, Caixeta SC, de Sousa JP, Bastos JK, et al. Antiprotoszoal, schistosomicidal, and antimicrobial activities of the essential oil from the leaves of Baccharis dracunculifolia. Chem Biodivers. 2010;7(4):993-1001. doi: 10.1002/cbdv.200900292.

71. Zheljazkov VD, Cantrell CL, Astawtique T, Hristov A. Yield, content, and composition of peppermint and spearmints as a function of harvesting time and drying. J Agric Food Chem. 2010;58(21):11400-7. doi: 10.1021/jf1022077.

72. Zheljazkov VD, Cantrell CL, Tekwani B, Khan SI. Content, composition, and bioactivity of the essential oils of three basil genotypes as a function of harvesting. J Agric Food Chem. 2008;56(2):380-5. doi: 10.1021/jf0725629.

73. WHO. Thirteenth Programme Report, UNDP/World Bank 1997.

74. Ahmed SB, Sghairer RM, Guesmi F, Kaabi B, Mejri M, Attia H, et al. Evaluation of antileishmanial, cytotoxic and antioxidant activities of essential oils extracted from plants isolated from the leishmaniasis-endemic region of Smed (Tunisia). Nat Prod Res. 2011;25(12):1195-201. doi: 10.1080/14786419.2010.534097.

75. Aloui Z, Messaoud C, Haoues M, Neffati N, Bassoumi F, Bouyahya A, Et-Touys A, Bakri Y, Talbaui A, Fellah H, Abrini J, et al. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb Pathog. 2017;111:41-9. doi: 10.1016/j.micpath.2017.08.015.

76. Mohammadpour G, Marzonyz ET, Farahmand M. Evaluation of the anti-Leishmania major activity of Satureja bakhtiarica essential oil in vitro. Nat Prod Commun. 2012;7(1):133-6.

77. Le TB, Beaufay C, Nghiem DT, Mingeot-Leclercq MP, Quetin-Leclercq J. In vitro anti-leishmanial activity of essential oils extracted from Vietnamese plants. Molecules. 2017;22(7):1071. doi: 10.3390/molecules22071071.

78. Hamdi A, Bero J, Beaufay C, Flamini G, Marzouk Z, Vander Heyden Y, et al. In vitro antileishmanial and cytotoxicity activities of essential oils from Habopodium tuberculosis A. Juss leaves, stems and aerial parts. BMC Complement Altern Med. 2018;18(1):60. doi: 10.1186/s12906-018-2128-6.

79. Bero J, Beaufay C, Hannaert V, Herent MF, Michels PA, Quetin-Leclercq J. Antityprpanosomal compounds from the essential oil and extracts of Keetia lecantha leaves with inhibitory activity on Trypanosoma brucei glyceralddehyde-3-phosphate dehydrogenase. Phytochemistry. 2013;20(3-4):270-4. doi: 10.1016/j.phytochem.2012.10.010.

80. Shoaler AJ, Boggild AK. Cutaneous leishmaniasis in travellers: a focus on epidemiology and treatment in 2015. Curr Infect Dis Rep. 2015;17(37):489. doi: 10.1007/s11908-015-0489-2.

81. Mahmoudvand H, Ezatzkhah F, Sharififar F, Shariif I, Dezaki ES. Antileishmanial and cytotoxic effects of essential oil and methanolic extract of Myrtus communis L. Korean J Parasitol. 2015;53(1):217. doi: 10.3347/kjp.2015.53.1.21.

82. Saedi Dezaki E, Mahmoudvand H, Sharififar F, Fallahi S, Monzote L, Ezatzkhah F. Chemical composition along with anti-leishmanial and cytotoxic activity of Zataria multiflora. Pharm Biol. 2016;54(5):752-8. doi: 10.3109/13880209.2015.1079223.