EVENT-TRIGGERED ADAPTIVE FAULT-TOLERANT CONTROL FOR MULTI-AGENT SYSTEMS WITH UNKNOWN DISTURBANCES

HONGRU REN
School of Automation and Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, Guangdong University of Technology
Guangzhou 510006, China

SHUO LI* AND CHANGXIN LU
College of Engineering, Bohai University
Jinzhou 121013, China

ABSTRACT. This paper presents an event-triggered consensus control protocol for a class of multi-agent systems with actuator faults, sensor faults and unknown disturbances. The adaptive neural network compensation control method is introduced to solve the problem of sensor faults. The event-triggered mechanism is developed to reduce the communication burden. In the control design process, the radial basis function neural networks are used to approximate the unknown nonlinear functions, and a nonlinear disturbance observer is used to eliminate the effect of unknown external disturbances. Furthermore, based on the graph theory and Lyapunov stability theory, it is further shown that the consensus tracking errors are semi-globally uniformly ultimately bounded. Finally, the simulation example illustrates the effectiveness of the designed control protocol.

1. INTRODUCTION. Over the last decade, some control problems have been investigated such as finite-time control [4, 12, 15, 21, 39, 51], delay-dependent control [13, 14, 19], networked control [20, 22, 23, 48]. However, the cooperative tracking control problems of multi-agent systems (MASs) have received much more attention [7, 17, 18, 30, 35, 52, 53]. As far as we know, the cooperative tracking control problems of MASs widely exist in the practical applications, such as spacecraft formation [26], animal groups [32] and distributed sensor networks [27]. The consensus problem of MASs is an important topic and the distributed cooperative control problem has been intensively investigated in the past few years, e.g., [5, 6, 9, 37, 49]. In [5], the consensus control problem of MASs with uncertain nonlinear dynamics and external disturbances was addressed, and a robust adaptive control approach was proposed to deal with the approximation errors and external disturbances. Hu et al. [6] considered the consensus control problem of high-order MASs with antagonistic interactions, and a novel control strategy was developed by using the relative state information from its neighbors. The leader-following output consensus control problem for a class of high-order nonlinear MASs was studied in [9]. Zhang et
al. [49] investigated the consensus tracking control problem of nonlinear MASs with state constraints and unknown disturbances. Wu et al. [37] studied the consensus control problem for positive MASs with nonlinear control input, and the global and local consensus control results were analyzed for the case of saturation-type sector input nonlinearities.

Compared with the time-sampling, the event-triggered control strategy can reduce resource consumption and improve resource utilization [3,10,11,40,47,54,55]. Hence, the event-triggered control of MASs has attracted considerable attention. More specifically, Tan et al. [33] investigated the leader-following consensus control problem of MASs by using a distributed event-triggered impulsive control method. You et al. [43] addressed the distributed event-triggered consensus control problem for a class of nonlinear MASs subject to actuator saturation. The output consensus control problem was considered for heterogeneous linear MASs via event-triggered control method in [25]. The event-triggered consensus control problem was studied in [42] for the fractional-order MASs. Wang et al. [34] investigated the tracking consensus control problem for the second-order leader MASs by designing fractional-order follower observer, where a periodic sampled-based data event-triggered control method was employed. In addition, an event-triggered strategy was presented for MASs to solve the cooperative output regulation problem under switching communication topologies in [8]. Zheng et al. [50] studied the event-triggered problem for interconnected switched MASs.

From another point of view, some different fault-tolerant consensus control methods have been studied for MASs. In [44], the output feedback control problem was considered for a class of uncertain nonlinear systems with actuator failures. The problem of consensus tracking control was addressed for MASs with actuator faults under directed networks in [38]. Luo et al. [24] considered the event-triggered consensus control problem for linear MASs with actuator faults. The work in [29] addressed the consensus fault-tolerant control problem for MASs subject to linear fractional transformation uncertain parameters. In [28], the robust fault-tolerant control protocol with actuator saturation was proposed to solve the consensus control problem of MASs. The event-triggered control method for MASs with sensor faults was proposed to solve the consensus control problem [2].

Inspired by the above observations, the event-triggered control problem for MASs with unknown disturbances, sensor and actuator faults are considered in this paper. The main contributions and difficulties of this paper are highlighted as follows:

1) In order to eliminate the effect of unknown external disturbances, the disturbance observer is designed in this paper, and the unknown nonlinear functions are considered in MASs with unknown disturbances, which is a new challenge for the design of the disturbance observer.

2) Different from the works in [24,28,29], the fault problems are considered for the MASs in this paper, which not only contains actuator faults but also includes sensor faults. In addition, the sensor faults problem is solved via the proposed adaptive neural network (NN) compensation control method.

3) An event-triggered fault-tolerant consensus control protocol is provided for MASs. Compared with the results in [41] and [36] that only deal with a limited number of actuator faults, the event-triggered control mechanism is introduced in this paper for MASs with actuator failures which is able to withstand infinite failure times, and the communication resources can also be successfully saved.
The remaining of this paper is arranged as follows. In the next section, we describe the graph theory and give the formulation of the consensus problem of nonlinear MASs. The event-triggered controller is designed in Section 3. The numerical simulation is provided in Section 4, and the conclusions are finally drawn in Section 5.

2. Preliminaries.

2.1. Basic graph theory. The information exchanges among the agents can be modeled by a directed graph $\zeta = (\mathcal{V}, \mathcal{E}, \mathcal{A})$ including a set of agents $\mathcal{V} = \{1, \ldots, N\}$, a set of edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ and the relevant adjacency matrix $\mathcal{A} = [a_{i,j}] \in \mathbb{R}^{N \times N}$, which is defined as $a_{i,i} = 0$, $a_{i,j} > 0$ if an edge $(\mathcal{V}_i, \mathcal{V}_j) \in \mathcal{E}$ and $a_{i,j} = 0$, otherwise. The Laplacian matrix $L = (l_{i,j}) = D - A$ and $L \times 1_N = 0$, where 1_N is a column vector with 1 for each element, $D = \text{diag}(d_1, \ldots, d_N)$ and the in-degree for agent i is $d_i = \sum_{j=1}^N a_{i,j}$. The $\zeta_c = (\mathcal{V}_c, \mathcal{E}_c)$ is augmented graph with $\mathcal{V}_c = \{0, 1, \ldots, N\}$ and $\mathcal{E}_c \subseteq \mathcal{V}_c \times \mathcal{V}_c$, where 0 is called as leader. The directed graph ζ is defined as a spanning tree, if there exists at least a directed path from the root to all other agents.

Lemma 2.1. [46] If denote $B = \text{diag}(a_1, 0, \ldots, a_{N,0})$, all eigenvalues of the matrix $L + B$ have positive real part if and only if the graph contains a spanning tree with vertex 0 as the root.

2.2. Problem formulation. For $i = 1, \ldots, N$, the system model of the i-th agent is described by

$$
\begin{aligned}
\dot{x}_{i,m} &= x_{i,m+1} + f_{i,m}(x_i) + H_{i,m}(t) \\
\dot{x}_{i,n} &= \sum_{p=1}^M b_{i,p} u_{i,p} + f_{i,n}(x_i) + H_{i,n}(t) \\
y_i &= h_i(x_{i,1})
\end{aligned}
$$

where $x_i = [x_{i,1}, \ldots, x_{i,n}]^T \in \mathbb{R}^n$, $u_i = [u_{i,1}, u_{i,2}, \ldots, u_{i,M}]^T \in \mathbb{R}^M$ and y_i stand for the system state, control input, and the system output, respectively. For $m = 1, 2, \ldots, n - 1$, $f_{i,m}(x_i)$ and $f_{i,n}(x_i)$ are unknown nonlinear functions, $H_{i,m}(t)$ and $H_{i,n}(t)$ are unknown external disturbances, $b_{i,p}$ is a known scalar, and $h_i(x_{i,1}) = k_i(\cdot)x_{i,1} + \rho_i(\cdot)$, where $k_i(\cdot)$ and $\rho_i(\cdot)$ denote the parameters of sensor faults.

Remark 1. The actuator fault model is considered in this paper. Therefore, the controller design procedure is more difficult than the ordinary tracking control problem. Moreover, the sensor faults are considered in each agent output, which is a challenge to solve faults problem.

The actuator fault model [16] is described by

$$
\begin{aligned}
u_{i,p}^S(t) &= k_{i,p,g} u_{i,p}(t) + \bar{u}_{i,p,g}(t), \quad t \in [t_{i,p,g}^S, t_{i,p,g}^E] \\
k_{i,p,g} \bar{u}_{i,p,g}(t) &= 0
\end{aligned}
$$

where $k_{i,p,g} \in [0, 1]$, $t_{i,p,g}^S$, $t_{i,p,g}^E$ are all unknown constants, and $\bar{u}_{i,p,g}(t)$ is an unknown, bounded and piecewise continuous signal, where $p = 1, 2, \ldots, M$, $g = 1, 2, \ldots$.

Define

$$
k_i(p) = \begin{cases} k_{i,p,g} & \text{if } t \in [t_{i,p,g}^S, t_{i,p,g}^E] \\ 1 & \text{if } t \in (t_{i,j,g}^S, t_{i,j,g+1}^E) \end{cases}
$$
Lemma 2.2. Choose W where

$$W = \begin{cases} \bar{u}_{i,p}(t) & \text{if } t \in [t_{i,p,g}^S, t_{i,p,g}^E] \\ 0 & \text{if } t \in (t_{i,p,g}^E, t_{i,p,g+1}^S) \end{cases}$$

The actuator faults model can be expressed as

$$u_{i,p}^E(t) = k_{i,p}(t)u_{i,p}(t) + \bar{u}_{i,p}(t)$$

Assumption 1. There exist an unknown constant $\bar{u}_{i,p}$ such that $0 < \bar{u}_{i,p}(t) \leq u_{i,p}$.

Assumption 2. For the i-th agent, up to $M - 1$ actuator faults are allowed at the same time, and the desired control objective can still be achieved by the remaining actuators.

In sensor fault model [1], let $f_{si} = (k_i(\cdot) - 1)x_{i,1} + \rho_i(\cdot)$. Therefore, y_i can be rewritten as

$$y_i = x_{i,1} + f_{si}.$$

The time derivative of y_i is presented as

$$\dot{y}_i = \dot{x}_{i,1} + f_{psi}$$

where $f_{psi} = \dot{f}_{si}$.

2.3. Radial basis function neural networks. The following radial basis function neural networks (RBF NNs) are used to estimate nonlinear functions [19]:

$$\bar{f}(Z) = W^* S(Z) + F(Z), \quad \forall Z \in \Omega \subset \mathbb{R}^m, \quad |F(Z)| \leq \varepsilon$$

where $F(Z)$ is the approximation error. $S(Z) = [S_1(Z), S_2(Z), \ldots, S_k(Z)]^T$. Furthermore, $S_i(Z)$ denotes the Gaussian basis function

$$S_i(Z) = \exp \left[-\frac{(Z - \bar{v}_i)^T (Z - \bar{v}_i)}{v_i^2} \right]$$

where $\bar{v}_i = [\bar{v}_{i,1}, \bar{v}_{i,2}, \ldots, \bar{v}_{i,q}]^T$ is the receptive field’s center and v_i represents the width of the Gaussian basis function with $i = 1, \ldots, k$. Additionally, $W^* = [W_1, W_2, \ldots, W_k]^T \in \mathbb{R}^k$ is weight vector which defined as

$$W^* = \arg \min_{W \in \mathbb{R}^k} \left\{ \sup_{Z \in \Omega} |\bar{f}(Z) - W^T S(Z)| \right\}$$

where $W \in \mathbb{R}^k$.

Lemma 2.2. [31] Choose $S(\bar{x}_c) = [S_1(\bar{x}_c), S_2(\bar{x}_c), \ldots, S_k(\bar{x}_c)]^T$ where $\bar{x}_c = [x_1, \ldots, x_c]^T$ is the RBF NNs’ basis function vector. For any positive integer $p \leq c$, the following inequality holds

$$\|S(\bar{x}_c)\|^2 \leq \|S(\bar{x}_p)\|^2$$

2.4. Disturbance observer design. The unknown nonlinear function $f_{i,k}(x_i)$ is estimated by RBF NNs as follows

$$f_{i,k}(x_i) = M_{i,k}^* S_{i,k}(x_i) + v_{i,k}(x_i), \quad \forall x_i \in \Omega_{x_i}$$

where $M_{i,k}^*$ means the weight vector, $S_{i,k}(x_i)$ denotes the Gaussian basis function, and $v_{i,k}(x_i)$ is approximation error satisfying $|v_{i,k}(x_i)| \leq v_{i,k,0}$ with $v_{i,k,0} > 0$.
Then, we can get
\[
\begin{align*}
\dot{x}_{i,m} &= x_{i,m+1} + M_{i,m}^T S_{i,m}(x_i) + v_{i,m}(x_i) + H_{i,m}(t) \\
\dot{x}_{i,n} &= \sum_{p=1}^{\bar{M}} \bar{b}_{i,p}(k_{i,p} u_{i_p} + \bar{u}_{i_p}) + M_{i,n}^T S_{i,n}(x_i) + v_{i,n}(x_i) + H_{i,n}(t) \\
y_i &= h_i(x_{i,1})
\end{align*}
\]

The disturbance observer is designed as follows
\[
\begin{align*}
\dot{\hat{z}}_{i,k} &= \lambda_{i,k}(x_{i,k} - \hat{Q}_{i,k}) \\
\dot{\hat{Q}}_{i,k} &= x_{i,k+1} + \hat{z}_{i,k} + \bar{M}_{i,k}^T S_{i,k}(x_i)
\end{align*}
\]
where \(\lambda_{i,k} > 0\), \(\bar{M}_{i,k} = M_{i,k}^* - \bar{M}_{i,k}\) and \(x_{i,n+1} = u_i\). Besides, we can separately get the disturbance estimation and the disturbance estimation error as follows
\[
\begin{align*}
\dot{\hat{z}}_{i,k} &= \lambda_{i,k}(\hat{x}_{i,k} - \hat{Q}_{i,k}) \\
&= \lambda_{i,k} \left(H_{i,k}(t) - \hat{z}_{i,k} + \bar{M}_{i,k}^T S_{i,k}(x_i) + \hat{v}_{i,k}(x_i) \right) \\
\dot{\hat{z}}_{i,k} &= -\lambda_{i,k} \hat{z}_{i,k} + \bar{H}_{i,k}(t) - \lambda_{i,k}(\bar{M}_{i,k} S_{i,k}(x_i) + \hat{v}_{i,k}(x_i)) \\
\dot{\hat{z}}_{i,k} &= H_{i,k}(t) - \hat{z}_{i,k}
\end{align*}
\]

3. **Control law design and stability analysis.** The tracking errors are presented as
\[
e_{i,1} = \sum_{j=1}^{N} a_{i,j}(y_j - y_j) + a_{i,0}(y_i - \bar{y}_r) \\
e_{i,\beta} = x_{i,\beta} - a_{i,\beta-1}
\]
where \(i = 1, ..., N\), \(\beta = 2, ..., n\). \(a_{i,\beta-1}\) is the virtual controller, and \(a_{i,0} \geq 0\). Define
\[
\theta_i = \max \left\{ \| W_{i,k}^* \|, k = 1, ..., n \|, i = 1, ..., N \right\}
\]
where \(\theta_i = \theta_i - \hat{\theta}_i\).

Lemma 3.1. [45] Define \(e_1 = \text{col}\{e_{1,1}, e_{2,1}, ..., e_{N,1}\}\), \(y = \text{col}\{y_1, y_2, ..., y_N\}\), \(\bar{y}_r = 1_N \otimes \bar{y}_r\), then
\[
\|y - \bar{y}_r\| \leq \frac{\|e_1\|}{\sigma(L + B)}
\]
where \(\sigma(L + B)\) is minimum singular value.

Step 1: The derivative of \(e_{i,1}\) yields
\[
\begin{align*}
\dot{e}_{i,1} &= (d_i + a_{i,0})(x_{i,2} + f_{i,1}(x_i) + H_{i,1}(t) + f_{psi}) \\
&- \sum_{j \in N_i} a_{i,j}(x_{j,2} + f_{j,1}(x_j) + f_{psi} + H_{j,1}(t)) - a_{i,0}\bar{y}_r
\end{align*}
\]
Consider the Lyapunov candidate as
\[
V_{i,1} = \frac{1}{2} e_{i,1}^2 + \frac{1}{2\gamma_i} \bar{\theta}_i^2 + \frac{\bar{z}_{i,1}^2}{2} + \frac{1}{2\eta_{i,1}} \bar{M}_{i,1}^T \bar{M}_{i,1}
\]
where \(\gamma_i > 0\) and \(\eta_{i,1} > 0\). Then, we get
\[
\dot{V}_{i,1} = e_{i,1} [(d_i + a_{i,0})(x_{i,2} + f_{i,1}(x_i) + H_{i,1}(t) + f_{psi}) - a_{i,0}\bar{y}_r]
\]
where \(p \in H \).

By using RBF NNs, the unknown nonlinear function \(\tilde{f}_{i,1}(Z_{i,1}) \) is estimated as follows

\[
\tilde{f}_{i,1}(Z_{i,1}) = (d_i + a_{i,0})(f_{i,1}(x_j) + H_{i,1}(t) + f_{ps}) - \sum_{j \in N_i} a_{i,j}(x_{j,2} + f_{j,1}(x_j)) + f_{ps} + H_{i,1}(t) + \sum_{j \in N_i} a_{i,j}(x_{j,2} + f_{j,1}(x_j))
\]

where \(Z_{i,1} = [x_{i,1}^T, x_{j,1}^T, y_0, \hat{v}_{i,1}, \hat{z}_{i,1}, \hat{z}_{j,1}]^T \) and \(\tilde{f}_{i,1}(Z_{i,1}) \) denotes the estimation error which satisfies \(0 < |\tilde{f}_{i,1}(Z_{i,1})| \leq \varepsilon_{i,1} \). Based on the Young’s inequality and Lemma 2.2, one has

\[
e_{i,1} \tilde{f}_{i,1}(Z_{i,1}) \leq \frac{\|W_{s,1}\|^2}{2p_{i,1}^2} e_{i,1}^2 S_{i,1}(Z_{i,1})S_{i,1}(Z_{i,1}) + \frac{p_{i,1}^2}{2} + \frac{e_{i,1}^2}{2} + \frac{e_{i,1}^2}{2}
\]

where \(p_{i,1} > 0 \) and \(\tilde{Z}_{i,1} = [x_{i,1}, x_{j,1}, y_0, \hat{y}_0, \hat{v}_{i,1}, \hat{z}_{i,1}, \hat{z}_{j,1}]^T \). Then, it yields,

\[
e_{i,1}(d_i + a_{i,0}) \hat{z}_{i,1} \leq \frac{d_i + a_{i,0}}{2} e_{i,1} + \frac{d_i + a_{i,0}}{2} \hat{z}_{i,1}^2
\]

\[
\sum_{j \in N_i} a_{i,j} \hat{z}_{j,1} e_{i,1} \leq \frac{d_i}{2} e_{i,1} + \sum_{j \in N_i} a_{i,j} \hat{z}_{j,1}^2
\]

\[-\lambda_{i,1} \hat{z}_{i,1} v_{i,1}(x_i) \leq \frac{\lambda_{i,1}^2 v_{i,1}^2}{2}
\]

Define

\[
\alpha_{i,1} = \frac{1}{d_i + a_{i,0}} \left[-k_{i,1} e_{i,1} - \frac{e_{i,1}}{2} - \frac{\hat{\theta}_i}{2p_{i,1}^2} e_{i,1} S_{i,1}(\tilde{Z}_{i,1})S_{i,1}(\tilde{Z}_{i,1}) \right]
\]

\[
\dot{\hat{M}}_{i,1} = -\eta_{i,1} \lambda_{i,1} \hat{z}_{i,1} S_{i,1}(\tilde{Z}_{i,1}) - \lambda_{i,1} \hat{M}_{i,1}
\]

where \(k_{i,1} > 0 \) and \(\lambda_{i,1} > 0 \). By using the above mentioned RBF NNs, the Young’s inequality, the virtual controller \(\alpha_{i,1} \) and the adaptive law \(\dot{\hat{M}}_{i,1} \), the following formula holds

\[
\dot{\hat{V}}_{i,1} \leq -k_{i,1} e_{i,1}^2 + (d_i + a_{i,0}) e_{i,2} + \hat{\theta}_i \left(\frac{1}{2p_{i,1}^2} e_{i,1}^2 S_{i,1}(\tilde{Z}_{i,1})S_{i,1}(\tilde{Z}_{i,1}) - \frac{\hat{\theta}_i}{\lambda_{i,1}} \right)
\]
Step \(m (m = 2, \ldots, n - 1) \): The derivatives of error \(e_{i,m} \) yields

\[
\dot{e}_{i,m} = x_{i,m+1} + f_{i,m}(x_i) - \dot{\alpha}_{i,m-1} + H_{i,m}(t)
\]

where

\[
\dot{\alpha}_{i,m-1} = \sum_{\vartheta=1}^{m-1} \frac{\partial \alpha_{i,m-1}}{\partial x_{i,\vartheta}} [x_{i,\vartheta+1} + f_{i,\vartheta}(x_i) + H_{i,\vartheta}(t)] + \sum_{\vartheta=0}^{m-1} \frac{\partial \alpha_{i,m-1}}{\partial y_{0}} y_{0}^{(\vartheta+1)}
\]

\[
+ \sum_{\vartheta=1}^{m-1} \sum_{j \in N_i} \frac{\partial \alpha_{i,m-1}}{\partial x_{j,\vartheta}} [x_{j,\vartheta+1} + f_{j,\vartheta}(x_j) + H_{j,\vartheta}(t)] + \frac{\partial \alpha_{i,m-1}}{\partial \theta_{i}} \dot{\theta}_{i}
\]

\[
+ \sum_{\vartheta=1}^{m-1} \lambda_{i,\vartheta}(\dot{z}_{i,\vartheta} + \tilde{M}_{i,\vartheta} \tilde{S}_{i,\vartheta}(x_i) + v_{i,\vartheta}(x_i))
\]

\[
+ \sum_{\vartheta=1}^{m-1} \sum_{j \in N_i} \lambda_{j,\vartheta}(\dot{\tilde{z}}_{j,\vartheta} + \tilde{M}_{j,\vartheta} \tilde{S}_{j,\vartheta}(x_j) + v_{j,\vartheta}(x_j))
\]

Define

\[
V_{i,m} = V_{i,m-1} + \frac{e_{i,m}^{2}}{2} + \frac{\dot{z}_{i,m}^{2}}{2} + \frac{\tilde{M}_{i,m}^{T} \tilde{M}_{i,m}}{2\eta_{i,m}}
\]

where \(\eta_{i,m} > 0 \). The \(\dot{V}_{i,m} \) is derived as

\[
\dot{V}_{i,m} = e_{i,m}[x_{i,m+1} + f_{i,m}(x_{i,m}) + H_{i,m}(t) - \dot{\alpha}_{i,m-1}]
\]

\[
+ \dot{z}_{i,m}(-\lambda_{i,m} \dot{z}_{i,m} + \tilde{H}_{i,m} - \lambda_{i,m} \tilde{M}_{i,m}^{T} \tilde{S}_{i,m}(x_{i}))
\]

\[-\lambda_{i,m} v_{i,m}(x_{i}) - \frac{1}{\eta_{i,m}} \tilde{M}_{i,m}^{T} \tilde{M}_{i,m} + \dot{V}_{i,m-1}
\]

\[
= \dot{V}_{i,m-1} + e_{i,m}(e_{i,m+1} + \alpha_{i,m} + \tilde{f}_{i,m}(Z_{i,m}) + \tilde{z}_{i,m}) - \tilde{m}_{i,m} e_{i,m}^{2}
\]

\[-\dot{e}_{i,m} e_{i,m}^{2} - e_{i,m} \sum_{\vartheta=1}^{m-1} \sum_{j \in N_i} \left(\frac{\partial \alpha_{i,m-1}}{\partial x_{j,\vartheta}} + \frac{\partial \alpha_{i,m-1}}{\partial \tilde{z}_{j,\vartheta}} \lambda_{j,\vartheta} \right) \dot{z}_{j,\vartheta}
\]

\[+
\sum_{\vartheta=1}^{m-1} \left(\frac{\partial \alpha_{i,m-1}}{\partial x_{i,\vartheta}} + \frac{\partial \alpha_{i,m-1}}{\partial \tilde{z}_{i,\vartheta}} \lambda_{i,\vartheta} \right) \dot{z}_{i,\vartheta} - \lambda_{i,m} \tilde{z}_{i,m} v_{i,m}(x_{i})
\]

\[-\frac{1}{\eta_{i,m}} \tilde{M}_{i,m}^{T} \tilde{M}_{i,m} \dot{\theta}_{i} + e_{i,m}(-\varphi_{i,m}(Z_{i,m}) - \frac{\partial \alpha_{i,m-1}}{\partial \theta_{i}}) \dot{z}_{i,m} - \lambda_{i,m} \tilde{z}_{i,m} + \tilde{H}_{i,m}
\]

with

\[
\tilde{f}_{i,m}(Z_{i,m}) = f_{i,m}(x_i) - \sum_{\vartheta=1}^{m-1} \frac{\partial \alpha_{i,m-1}}{\partial x_{i,\vartheta}} [x_{i,\vartheta+1} + f_{i,\vartheta}(x_i)] - \sum_{\vartheta=0}^{m-1} \frac{\partial \alpha_{i,m-1}}{\partial y_{0}} y_{0}^{(\vartheta+1)}
\]

\[-\sum_{\vartheta=1}^{m-1} \sum_{j \in N_i} \frac{\partial \alpha_{i,m-1}}{\partial x_{j,\vartheta}} [x_{j,\vartheta+1} + f_{j,\vartheta}(x_j)] - \sum_{\vartheta=1}^{m-1} \sum_{j \in N_i} \frac{\partial \alpha_{i,m-1}}{\partial x_{j,\vartheta}} \dot{z}_{j,\vartheta}
\]
where for \(m = 2 \), \(\tilde{d}_i + \tilde{a}_i,0 = d_i + a_i,0 \), and for \(m > 2 \), \(\tilde{d}_i + \tilde{a}_i,0 = 1 \). Define \(c_i > 0 \) and \(m_i > 0 \), let

\[
\begin{align*}
\hat{c}_{i,m} &= \sum_{\vartheta=1}^{m-1} \left(\frac{1}{4c_i} \right) \left[(\frac{\partial \alpha_{i,m-1}}{\partial x_i, \vartheta}) + (\frac{\partial \alpha_{i,m-1}}{\partial z_j, \vartheta}) \lambda_{i,\vartheta} \right]^2 \\
\hat{m}_{i,m} &= \sum_{\vartheta=1}^{m-1} \sum_{j \in \mathcal{N}_i} \left(\frac{1}{4m_i} \right) \left[(\frac{\partial \alpha_{i,m-1}}{\partial x_j, \vartheta}) + (\frac{\partial \alpha_{i,m-1}}{\partial z_j, \vartheta}) \lambda_{j,\vartheta} \right]^2
\end{align*}
\]

According to Young's inequality, it has

\[
\begin{align*}
-e_{i,m} \sum_{\vartheta=1}^{m-1} \left(\frac{\partial \alpha_{i,m-1}}{\partial x_i, \vartheta} + \frac{\partial \alpha_{i,m-1}}{\partial z_j, \vartheta} \lambda_{i,\vartheta} \right) \tilde{z}_{i,\vartheta} &\leq \hat{c}_{i,m} e_{i,m}^2 + \sum_{\vartheta=1}^{m-1} c_{i,\vartheta} \tilde{z}_{i,\vartheta}^2 \\
-e_{i,m} \sum_{\vartheta=1}^{m-1} \sum_{j \in \mathcal{N}_i} \left(\frac{\partial \alpha_{i,m-1}}{\partial x_j, \vartheta} + \frac{\partial \alpha_{i,m-1}}{\partial z_j, \vartheta} \lambda_{j,\vartheta} \right) \tilde{z}_{j,\vartheta} &\leq \hat{m}_{i,m} e_{i,m}^2 + \sum_{\vartheta=1}^{m-1} \sum_{j \in \mathcal{N}_i} n_{i} \tilde{z}_{j,\vartheta}^2 \\
e_{i,m} \tilde{z}_{i,m} &\leq \frac{e_{i,m}}{2} + \frac{\tilde{z}_{i,m}}{2} + \frac{\lambda_{i,m}^2 \nu_{i,m}^2}{2}
\end{align*}
\]

The function \(\varphi_{i,m}(Z_{i,m})(2 \leq m \leq n - 1) \) is used to estimate \(\frac{\partial \alpha_{i,m-1}}{\partial \theta_i} \), where

\[
\begin{align*}
\varphi_{i,m}(Z_{i,m}) = - \rho \frac{\partial \alpha_{i,m-1}}{\partial \theta_i} - \sum_{\vartheta=2}^{m} e_{i,m} \frac{\gamma_i}{2p_i^m} \left(\partial \alpha_{i,\vartheta-1} \right) \frac{\partial \alpha_{i,\vartheta-1}}{\partial \theta_i} + \sum_{\vartheta=1}^{m-1} \frac{\partial \alpha_{i,m-1}}{\partial \theta_i} \frac{\gamma_i}{2p_i^m} e_{i,m}^2 S_{i,\vartheta}^T S_{i,\vartheta}
\end{align*}
\]

The RBF NNs are used to compensate \(\hat{f}_{i,m} \) with \(\bar{Z}_{i,m} = \left[x_i^T, z_j^T, \hat{y}_0, \hat{\theta}_i, \hat{z}_m^T, \hat{z}_j^T \right]^T \) \((j \in \mathcal{N}_i)\). Hence, one has

\[
\begin{align*}
\hat{f}_{i,m} &= W_{i,m}^{*T} S_{i,m}(Z_{i,m}) + F_{i,m}(Z_{i,m})
\end{align*}
\]

where \(0 < |F_{i,m}(Z_{i,m})| \leq \varepsilon_{i,m} \). According to Young's inequality, we can get

\[
\begin{align*}
e_{i,m} \hat{f}_{i,m}(Z_{i,m}) &\leq \frac{\theta_{i,m}^2}{2p_i^m} e_{i,m}^2 S_{i,m}^T(\bar{Z}_{i,m}) S_{i,m}(\bar{Z}_{i,m}) \\
&\leq \frac{\mu_i^2}{2} + \frac{\varepsilon_{i,m}^2}{2} + \frac{\bar{\varepsilon}_{i,m}^2}{2}
\end{align*}
\]
where \(p_{i,m} > 0 \) and \(\hat{Z}_{i,m} = [x_{i,m}^T, x_{j,m}^T, \theta_0, \theta_i, z_{i,m}^T, z_{j,m}^T]^T \). Design

\[
\alpha_{i,m} = -k_{i,m}e_{i,m} - \frac{e_{i,m}}{2} - \frac{\hat{\theta}_i}{2p_{i,m}}e_{i,m}S_{i,m}(\hat{Z}_{i,m})S_{i,m}(\hat{Z}_{i,m})
\]

\[
\dot{M}_{i,m} = -\eta_{i,m}\hat{\lambda}_{i,m}\hat{\theta}_{i,m}S_{i,m}(x_i) - l_{i,m}\dot{M}_{i,m}
\]

where \(k_{i,m} > 0 \), \(p_{i,m} > 0 \) and \(l_{i,m} > 0 \). Similarly, one obtains

\[
\dot{V}_{i,m} \leq e_{i,m}e_{i,m+1} - \sum_{\vartheta = 1}^{m}k_{i,\vartheta}e_{i,\vartheta}^2 + \sum_{\vartheta = 1}^{m}(\varphi_{i,\vartheta}^2 + \frac{\varphi_{i,\vartheta}^2}{2}) + \sum_{\vartheta = 1}^{m-1}e_{i,\vartheta}(m - \vartheta)e_{i,\vartheta}^2
\]

\[
+ \frac{\hat{\theta}_i}{2} \sum_{\vartheta = 1}^{m} \frac{\gamma_{i,\vartheta}}{2} e_{i,\vartheta}^2 S_{i,\vartheta}(\hat{Z}_{i,\vartheta})S_{i,\vartheta}(\hat{Z}_{i,\vartheta}) - \hat{\theta}_i) + \sum_{\vartheta = 1}^{m-1} \sum_{j \in N_i} (m - \vartheta)m_{i,j}\vartheta_{i,j,\vartheta}^2
\]

\[
+ \sum_{\vartheta = 1}^{m} \frac{\varphi_{i,\vartheta}}{2} (\lambda_{i,\vartheta}\varphi_{i,\vartheta} + \frac{1}{2} \varphi_{i,\vartheta}^2 + H_{i,\vartheta}) + \sum_{\vartheta = 1}^{m} \frac{l_{i,\vartheta}}{2} M_{i,\vartheta}^T M_{i,\vartheta}
\]

\[
+ \sum_{\vartheta = 1}^{m} e_{i,\vartheta}[\varphi_{i,m}(Z_{i,m}) - \frac{\partial \alpha_{i,m-1}}{\partial \theta_i}]\]

Step n: The dynamics of \(\varphi_{i,n} \) is shown as

\[
\dot{\varphi}_{i,n} = \sum_{p=1}^{M} b_{i,p}(k_{i,p}u_{i,p} + \bar{u}_{i,p}) + f_i,n(x_i) + H_{i,n}(t) - \dot{\alpha}_{i,n-1}
\]

where

\[
\dot{\alpha}_{i,n-1} = \sum_{\vartheta = 1}^{n-1} \sum_{j \in N_i} \frac{\partial \alpha_{i,n-1}}{\partial \tilde{z}_{j,\vartheta}} \lambda_{i,\vartheta}(\tilde{z}_{i,\vartheta} + M_{j,\vartheta}^T S_{i,\vartheta}(x_j) + v_{j,\vartheta}(x_j))
\]

\[
+ \sum_{\vartheta = 1}^{n-1} \frac{\partial \alpha_{i,n-1}}{\partial \tilde{z}_{i,\vartheta}} \lambda_{i,\vartheta}(\tilde{z}_{i,\vartheta} + M_{i,\vartheta}^T S_{i,\vartheta}(x_i) + v_{i,\vartheta}(x_i))
\]

\[
+ \sum_{\vartheta = 1}^{n-1} \frac{\partial \alpha_{i,n-1}}{\partial x_{i,\vartheta}} [f_i,\vartheta(x_i) + H_{i,\vartheta}(t)] + \sum_{\vartheta = 0}^{n-1} \frac{\partial \alpha_{i,n-1}}{\partial \theta_{\vartheta}^{(\vartheta+1)}} y_0^{(\vartheta+1)}
\]

Then, the triggering event is defined for the \(p \)-th actuator as

\[
u_{i,p}(t) = \omega_{i,p}(t^p_k), \quad \forall t \in [t^p_k, t^p_{k+1})
\]

\[
t^p_{k+1} = \inf \{t > t^p_k || \Lambda_{i,p} \geq \Delta_{i,p} | u_{i,p} + \epsilon_{i,p} \}
\]

where the mechanism error is \(\Lambda_{i,p} = \omega_{i,p}(t) - u_{i,p}(t), 0 < \Delta_{i,p} < 1 \) and \(\epsilon_{i,p} > 0 \) with \(p = 1, ..., M \).

Remark 2. For \(\forall t \in [t^p_k, t^p_{k+1}) \), the \(p \)-th actuator’s input signal holds \(\omega_{i,p}(t^p_k) \). If (4) is triggered, the time instant will be marked as \(t^p_{k+1} \).
Furthermore, $u_{i,p}$ can be presented as

$$u_{i,p} = \frac{\omega_{i,p} - \tau_{i,2}^p U_{i,p}}{1 + \tau_{i,1}^p \Delta_{i,p}}$$

where $|\tau_{i,1}^k(t)| \leq 1$ and $|\tau_{i,2}^p(t)| \leq 1$. Let $\Pi_i = \inf_{t \geq 0} \sum_{p=1}^m b_{i,p} k_{i,p}$, $\Upsilon_i = (\frac{1}{\Pi_i})$, $P_i = \Upsilon_i \sup_{t \geq 0} \|\varpi_i\|$ with $\varpi_i = \left[b_{i,1} u_{i,1} - \frac{b_{i,p} \tau_{i,2}^p U_{i,p} z_i}{1 + \tau_{i,1}^p \Delta_{i,p}}, \ldots, b_{i,p} u_{i,p} - \frac{b_{i,p} \tau_{i,2}^p U_{i,p} z_i}{1 + \tau_{i,1}^p \Delta_{i,p}} \right]^T$. Moreover, define $\tilde{I} = [1, \ldots, 1]^T$. The Lyapunov function $V_{i,n}$ is chosen as

$${V_{i,n}} = V_{i,n-1} + \frac{1}{2} \tilde{I}^T \tilde{P} \tilde{I} + \sum_{p=1}^m b_{i,p} \frac{\omega_{i,p}}{1 + \tau_{i,1}^p \Delta_{i,p}} + e_{i,n}(f_{i,n}(x_i) + H_{i,n}(t) - \alpha_{i,n}) - \dot{\tilde{z}}_{i,n}(\lambda_{i,n} \tilde{z}_{i,n} + \tilde{H}_{i,n} - \lambda_{i,n} \tilde{z}_{i,n}) - \frac{\Pi_i}{\tilde{h}_{i,1}} \tilde{Y}_i \tilde{\dot{Y}}_i$$

Then, we have

$$\begin{align*}
\dot{V}_{i,n} &\leq \dot{V}_{i,n-1} + e_{i,n} \sum_{p=1}^m b_{i,p} \frac{\omega_{i,p}}{1 + \tau_{i,1}^p \Delta_{i,p}} + e_{i,n} \left[f_{i,n}(x_i) + H_{i,n}(t) - \alpha_{i,n-1} - \dot{\tilde{z}}_{i,n}(\lambda_{i,n} \tilde{z}_{i,n} + \tilde{H}_{i,n} - \lambda_{i,n} \tilde{z}_{i,n}) - \frac{\Pi_i}{\tilde{h}_{i,1}} \tilde{Y}_i \tilde{\dot{Y}}_i \right] \\
&\quad - \dot{e}_{i,n} \frac{\hat{m}_{i,n} e_{i,n}}{2} - e_{i,n} \sum_{p=1}^{n-1} \frac{\partial \alpha_{i,n-1}}{\partial x_{i,\theta}} + \frac{\partial \alpha_{i,n-1}}{\partial \tilde{z}_{i,\theta}} \tilde{z}_{i,\theta} \\
&\quad + \sum_{\theta=1}^{n-1} \sum_{j \in N_i} \left(\frac{\partial \alpha_{i,n-1}}{\partial x_{j,\theta}} + \frac{\partial \alpha_{i,n-1}}{\partial \tilde{z}_{j,\theta}} \tilde{z}_{j,\theta} \right) - \lambda_{i,n} \tilde{z}_{i,n} \varpi_{i,n}(x_i) \\
&\quad - \frac{1}{\tilde{h}_{i,1}} \tilde{M}_{i,n} \tilde{\dot{Y}}_i - e_{i,n} \varpi_{i,n} \tilde{e} \tilde{I} + e_{i,n} \tilde{f}_{i,n}(Z_{i,n})
\end{align*}$$

with

$$\begin{align*}
\tilde{f}_{i,n}(Z_{i,n}) &= f_{i,n}(x_i) - \sum_{\theta=1}^{n-1} \frac{\partial \alpha_{i,n-1}}{\partial x_{i,\theta}} [x_{i,\theta+1} + f_{i,\theta}(x_i)] - \sum_{\theta=1}^{n-1} \frac{\partial \alpha_{i,n-1}}{\partial \tilde{z}_{i,\theta}} \tilde{z}_{i,\theta}
\end{align*}$$
According to Young’s inequality, it has further

\[-\varphi_{i,n}(Z_{i,n}) \leq \sum_{\vartheta=1}^{n-1} \frac{\partial \alpha_{i,n-1}}{\partial x_{j,\vartheta}} \left[x_{i,\vartheta+1} + f_{i,\vartheta}(x_{j}) \right] - \sum_{\vartheta=1}^{n-1} \frac{\partial \alpha_{i,n-1}}{\partial y_0} y_0^{(\vartheta+1)} \]

Further, one has

\[e_{i,n} \varpi_i \leq \Pi_i P_i |e_{i,n}| = \Pi_i \hat{P}_i |e_{i,n}| + \Pi_i \hat{P}_i |e_{i,n}| \]

Then, according to \(0 < |g| - F \tanh(g/\nu_i) \leq 0.2785\nu_i \), one has

\[\Pi_i \hat{P}_i |e_{i,n}| \leq \Pi_i (e_{i,n} \hat{P}_i \tanh(e_{i,n} P_i) + 0.2785\nu_i) \]

where \(\nu_i > 0 \) and \(g \in \mathbb{R} \). It can be obtained that

\[e_{i,n} \sum_{p=1}^{M} b_{i,p} \frac{\omega_{i,p}}{1 + \tau_{i,p}^2 \Delta_{i,p}} \leq \Pi_i e_{i,n}(\hat{Y}_i \alpha_{i,n} \tanh(\frac{\hat{Y}_i \alpha_{i,n}}{\nu_i}) + \hat{P}_i \tanh(\frac{e_{i,n} \hat{P}_i}{\nu_i})) \]

\[\leq \Pi_i \hat{Y}_i |e_{i,n} \alpha_{i,n}| + 0.2785\nu_i \Pi_i - \Pi_i e_{i,n} \hat{P}_i \tanh(\frac{e_{i,n} \hat{P}_i}{\nu_i}) \]

Furthermore, we have

\[-\Pi_i \hat{Y}_i |e_{i,n} \alpha_{i,n}| = \Pi_i \hat{Y}_i |e_{i,n} \alpha_{i,n}| - |e_{i,n} \alpha_{i,n}| \]

Let

\[\hat{c}_{i,n} = \sum_{\vartheta=1}^{n-1} \frac{1}{4e_i} \left[\left(\frac{\partial \alpha_{i,n-1}}{\partial x_{i,\vartheta}} \right)^2 + \left(\frac{\partial \alpha_{i,n-1}}{\partial z_{i,\vartheta}} \right)^2 \right] \]

\[\hat{m}_{i,n} = \sum_{\vartheta=1}^{n-1} \frac{1}{4m_i} \left[\left(\frac{\partial \alpha_{i,n-1}}{\partial x_{j,\vartheta}} \right)^2 + \left(\frac{\partial \alpha_{i,n-1}}{\partial z_{j,\vartheta}} \right)^2 \right] \]

According to Young’s inequality, it has

\[-e_{i,n} \sum_{\vartheta=1}^{n-1} \frac{\partial \alpha_{i,n-1}}{\partial x_{i,\vartheta}} \hat{z}_{i,\vartheta} \leq \hat{c}_{i,n} e_{i,n}^2 + \sum_{\vartheta=1}^{n-1} c_i \hat{z}_{i,\vartheta}^2 \]

\[-e_{i,n} \sum_{\vartheta=1}^{n-1} \frac{\partial \alpha_{i,n-1}}{\partial x_{j,\vartheta}} \hat{z}_{j,\vartheta} \leq \hat{m}_{i,n} e_{i,n}^2 + \sum_{\vartheta=1}^{n-1} m_i \hat{z}_{j,\vartheta}^2 \]

\[e_{i,n} \hat{z}_{i,n} \leq \frac{e_{i,n}^2}{2} + \frac{z_{i,n}^2}{2} \]

\[\leq \frac{1}{2} \left(e_{i,n}^2 + \frac{z_{i,n}^2}{2} \right) \]
The function $\varphi_{i,n}(Z_{i,n})$ is used to compensate $(\frac{\partial \alpha_{i,n-1}}{\partial \hat{\theta}_i})\hat{\theta}_i$, where

$$\varphi_{i,n}(Z_{i,n}) = -\rho_1 \frac{\partial \alpha_{i,n-1}}{\partial \hat{\theta}_i} - \sum_{\vartheta=2}^{n} \frac{e_i,n_{\vartheta_i}^2}{2\rho_i,n_{\vartheta_i}^2} \frac{\partial \alpha_{i,\vartheta-1}}{\partial \hat{\theta}_i} + \sum_{\vartheta=1}^{n-1} \frac{\partial \alpha_{i,n-1}}{\partial \hat{\theta}_i} \frac{\gamma_i}{2\rho_i,n_{\vartheta_i}^2} e_i,n_{\vartheta_i}^2 S_{i,\vartheta}^T S_{i,\vartheta}$$

The RBF NNs are employed to approximate $\bar{f}_{i,n}$:

$$\bar{f}_{i,n} = W_{i,n}^T S_{i,n}(Z_{i,n}) + \delta_{i,n}(Z_{i,n})$$

where $0 < |\delta_{i,n}(Z_{i,n})| \leq \varepsilon_{i,n}$, $Z_{i,n} = \left[x_i^T, x_j^T, \dot{\theta}_i, \ddot{\theta}_i, \dddot{\theta}_i, \dddot{x}_i, \dddot{x}_j \right]^T (j \in N_i)$. Similarly, it yields,

$$e_{i,n} \bar{f}_{i,n}(Z_{i,n}) \leq \frac{\theta_{i,n}}{2\rho_i,n_{\vartheta_i}^2} e_i,n_{\vartheta_i}^2 S_{i,n}(\bar{Z}_{i,n}) S_{i,n}(\bar{Z}_{i,n}) + \frac{P_{i,n}^2}{2} + \frac{\varepsilon_{i,n}^2}{2}$$

where $\rho_{i,n} > 0$ and $Z_{i,n} = \bar{Z}_{i,n}$. The adaptive laws are given as

$$\dot{\hat{\theta}}_i = \sum_{\vartheta=1}^{n} \frac{\gamma_i}{2\rho_i,n_{\vartheta_i}^2} e_i,n_{\vartheta_i}^2 S_{i,\vartheta}^T (Z_{i,\vartheta}) S_{i,\vartheta}(Z_{i,\vartheta}) - \rho_1 \hat{\theta}_i$$

$$\dot{\hat{M}}_{i,n} = -\eta_{i,n} l_{i,n} \ddot{z}_{i,n} S_{i,n}(x_i) - l_{i,n} \hat{M}_{i,n}$$

$$\dot{\hat{\gamma}}_i = h_{i,1} |e_{i,n}\alpha_{i,n}| - h_{i,2} \hat{\gamma}_i$$

$$\dot{\hat{P}}_i = \gamma_{i,1} |e_{i,n}| - \gamma_{i,2} \hat{P}_i$$

(7)

where $\eta_{i,n}$, $l_{i,n}$, ρ_i, $h_{i,1}$, $h_{i,2}$, $g_{i,1}$ and $g_{i,2}$ are positive parameters. The following inequality holds

$$\dot{V}_{i,n} \leq -\sum_{\vartheta=1}^{n} k_{i,\vartheta} e_{i,\vartheta}^2 + 0.557 \nu_i \Pi_i + \frac{h_{i,2} \Pi_i}{h_{i,1}} \dddot{\hat{\gamma}}_i + \frac{(d_i + a_{i,0}) + 1}{2} \dddot{z}_{i,1}^2$$

$$+ \frac{\gamma_{i,1}^2}{\gamma_i} \dot{\hat{P}}_i \hat{P}_i + \frac{\rho_i}{\gamma_i} \hat{\theta}_i \dddot{\gamma}_i + \sum_{\vartheta=1}^{n-1} (n - \vartheta) c_{i,n} \dddot{z}_{i,\vartheta}^2 + \frac{1}{2} \sum_{j \in N_i} a_{i,j} \dddot{z}_{j,1}^2$$

$$+ \sum_{\vartheta=1}^{n-1} (n - \vartheta) r_{i,n} \dddot{z}_{i,\vartheta}^2 + \sum_{\vartheta=1}^{n-1} \dddot{z}_{i,\vartheta} (-\lambda_{i,n} \dddot{z}_{i,\vartheta} + \dddot{H}_{i,\vartheta}) + \sum_{\vartheta=2}^{n} \dddot{z}_{i,\vartheta}^2$$

$$+ \sum_{\vartheta=1}^{n} \frac{P_{i,n}^2}{2} + \frac{\varepsilon_{i,n}^2}{2} + \frac{\lambda_{i,0}^2 \dddot{v}_{i,0}^2}{2} + \sum_{\vartheta=1}^{n} l_{i,n} \hat{M}_{i,\vartheta}^T \hat{M}_{i,\vartheta}$$

(8)

Theorem 3.2. Considering the MASs with actuator faults, sensor faults and unknown disturbances (1), under the event-triggering rules (3), (4), the event-triggered controller (5), and the adaptive laws (7), then, it can be realized that all the signals are semi-globally uniformly ultimately bounded and the tracking errors arrive at a bounded compact set of the origin.

Proof. Design the Lyapunov function as

$$V = \sum_{i=1}^{N} V_{i,n}$$
According to the Young's inequality, we have
\[\tilde{\theta}_i \leq -\frac{1}{2} \tilde{\theta}_i^2 + \frac{1}{2} \tilde{\theta}_i^2 \]
\[M_i^T \tilde{M}_i,\theta \leq -\frac{1}{2} M_i^T \tilde{M}_i,\theta + \frac{1}{2} M_i^T M_i^* \]
\[h_i \tilde{P}_i \tilde{Y}_i \leq \frac{h_i \Pi_i}{2 h_i} \tilde{Y}_i^2 - h_i \Pi_i \tilde{Y}_i^2 \]
\[\gamma_i \tilde{P}_i \tilde{P}_i \leq \frac{\gamma_i \Pi_i}{2 \gamma_i} \tilde{P}_i^2 - \frac{\gamma_i \Pi_i}{2 \gamma_i} \tilde{P}_i^2 \]

The derivative of \(V \) can be described as
\[\dot{V} \leq \sum_{i=1}^{n} \sum_{\theta=1}^{n} \left\{ \lambda_i - \sum_{j \in N_i} \frac{a_{i,j}}{2} - (n-1)c_i - \sum_{j \in N_i} (n-1)r_j - \frac{d_i + a_{i,0} + 1}{2} \right\} \frac{\tilde{z}_{i,1}^2}{\tilde{z}_{i,1}} \]
\[+ \sum_{i=1}^{n} \sum_{\theta=1}^{n} \left[\frac{l_i,0}{2 \eta_i} M_i^T \tilde{M}_i,\theta + \sum_{i=1}^{n} \sum_{\theta=1}^{n} l_i,\theta M_i^T M_i^* + \sum_{i=1}^{n} \sum_{\theta=1}^{n} \tilde{z}_{i,\theta} \tilde{H}_i,\theta \right] \]

Define the following inequality
\[\lambda_{i,1} > \sum_{j \in N_i} \frac{a_{i,j}}{2} + (n-1)c_i + \sum_{j \in N_i} (n-1)r_j + \frac{d_i + a_{i,0} + 1}{2} \]
\[\lambda_{i,q} > 1 + (n-q)c_i - \sum_{j \in N_i} (n-q)r_j \]
\[\lambda_{i,n} > 1 \]
when \(\| \tilde{z}_{i,\theta} \| \geq \frac{\| \tilde{H}_i,\theta \|}{\lambda_{i,0}} \), and
\[\lambda_{i,0} = \min \left\{ \lambda_{i,1} - \sum_{j \in N_i} \frac{a_{i,j}}{2} - (n-1)c_i - \sum_{j \in N_i} (n-1)r_j - \frac{d_i + a_{i,0} + 1}{2}, \right\} \]
\[\lambda_{i,q} - (n-q)c_i - \sum_{j \in N_i} (n-q)r_j - 1, \lambda_{i,n} - 1 \}

where \(q = 2, \ldots, n-1 \). Define
\[\mu = \min_{1 \leq i \leq N} \left\{ \sum_{\theta=1}^{n} 2 \eta_i,\gamma_i \Pi_i, h_i \Pi_i, 2(\lambda_{i,1} - (n-1)c_i \right. \]
\[- \sum_{j \in N_i} (n-1)r_j - \frac{d_i + a_{i,0} + 1}{2} - \sum_{j \in N_i} \frac{a_{j,i}}{2} - \lambda_{i,0} \), \]
\[2(\lambda_{i,q} - (n-q)c_i - \sum_{j \in N_i} (n-q)r_j - 1 - \lambda_{i,0}), \]
\[2(\lambda_{i,n} - 1 - \lambda_{i,0}), l_{i,\vartheta} \]
and
\[\Theta = \sum_{i=1}^{N} 0.557 \nu_i \Pi_i + \sum_{i=1}^{N} \frac{\eta_i}{2} \theta_i^2 + \sum_{i=1}^{N} \sum_{\vartheta=1}^{n} \left(\frac{p_{i,\vartheta,\vartheta}^2}{2} + \frac{e_{i,\vartheta,\vartheta}^2}{2} \right) \]
\[+ \sum_{i=1}^{N} \sum_{\vartheta=1}^{n} \frac{l_{i,\vartheta}}{2 \eta_i,\vartheta} M_{i,\vartheta}^T M_{i,\vartheta} + \frac{h_{i,2} \Pi_i}{2 h_{i,1}} \gamma_i^2 + \frac{\gamma_{i,2} \Pi_i}{2 \gamma_{i,1}} p_i^2 \]

where \(q = 2, \ldots, n - 1 \). Thus, we can obtain
\[\dot{V}(t) \leq -\mu V(t) + \Theta \]

Then, one has
\[\frac{1}{2} \epsilon_{i,1}^2 \leq V \leq e^{-\mu t} V(0) + \frac{\Theta}{\mu} (1 - e^{-\mu t}) \]

According to Lemma 3.1, we get
\[\lim_{t \to \infty} \| y - \bar{y} \| \leq \frac{1}{\sigma(L + B)} \sqrt{\frac{2\Theta}{\mu}} \]

By recalling \(\Lambda_{i,p} = \omega_{i,p}(t) - u_{i,p}(t) \), \(\forall t \in [t_k^p, t_{k+1}^p] \), we can get
\[\frac{d}{dt} |\Lambda_i(t)| = \frac{d}{dt} (\Lambda_i(t) \times \Lambda_i(t))^{\frac{1}{2}} = \text{sign}(\Lambda_i(t)) \dot{\Lambda_i}(t) \leq |\omega_{i,p}(t)| \]

Since \(\omega_{i,p}(t) \) is differentiable and bounded, \(|\omega_{i,p}(t)| \leq \nabla_{i,p} \), where \(\nabla_{i,p} > 0 \). By noting that \(e_{i,p}(t_p) = 0 \) and \(\lim_{t \to t_{k+1}} e_{i,p}(t_p) = m_{i,p} \), we obtain that the lower bound of inter-execution intervals \(t^* \) must satisfy \(t^* \geq \frac{m_{i,p}}{\nabla_{i,p}} \), the Zeno-behavior is successfully avoided. \(\square \)

Remark 3. In this paper, the actuator faults, sensor faults and unknown disturbances have been considered in MASs with event-triggered rules, and the proposed control strategy in this paper can also save communication resources.

4. Simulation results. This paper provides the following simulation example to verify the theoretical analysis. In this section, the dynamics of MASs are given as
\[
\begin{align*}
\dot{x}_{i,1} &= x_{i,2} - \sin(x_{i,2})x_{i,1}^2 + H_{i,1} \\
\dot{x}_{i,2} &= \sum_{j=1}^{2} b_{i,j} k_{i,j} u_{i,j} + \sin(x_{i,1}) x_{i,2} + H_{i,2} \\
y_p &= 0.5 \sin(2.46t)
\end{align*}
\]

The following fault model is considered:
\[
\begin{align*}
\begin{cases}
\begin{array}{ll}
u_{i,1,1} & \text{if } t \in [2k, 2k+1) \\
0.5 \nu_{i,1,1} & \text{if } t \in [2k+1, 2k+2) \\
0.3 \nu_{i,1,2} & \text{if } t \in [2k, 2k+1) \\
0 & \text{if } t \in [2k+1, 2k+2)
\end{array}
\end{cases}
\end{align*}
\]
Figure 1. Topology of communication graph

Figure 2. Output trajectories of followers and the leader

Figure 3. The trajectories of tracking errors

\[u_{2,1}^F = \begin{cases} u_{2,1} & \text{if } t \in [2k, 2k + 1) \\ 0.6u_{2,1} & \text{if } t \in [2k + 1, 2k + 2) \end{cases} \]

\[u_{2,2}^F = \begin{cases} u_{2,2} & \text{if } t \in [0, 1) \\ 0.2 + 0.2 \sin(t) & \text{if } t \in [1, \infty) \end{cases} \]
Figure 4. The trajectories of event-triggered controllers

Figure 5. The trajectories of errors between disturbances and disturbance observers

Figure 6. The trajectories of errors between disturbances and disturbance observers
where $k = 0, 1, \ldots$ Apparently, the above matrices are given as follows,

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad L = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

From Fig. 1, we know $B = \text{diag}(1, 0, 1, 0)$. The simulation results are shown by Figs. 2-7 and the correlative design parameters are chosen as $\lambda_{1,1} = 401$, $\lambda_{2,1} = 401.6$, $\lambda_{3,1} = 402.1$, $\lambda_{4,1} = 402$, $\lambda_{1,2} = 410.5$, $\lambda_{2,2} = 400.5$, $\lambda_{3,2} = 400.6$, $\lambda_{4,2} = 410.5$, $\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 = 4.96$, $k_{1,1} = 108$, $k_{2,1} = 255$, $k_{3,1} = 105$, $k_{4,1} = 109$, $k_{1,2} = k_{2,2} = k_{3,2} = k_{4,2} = 66.5$, $\rho_1 = \rho_2 = \rho_3 = \rho_4 = 0.59$, $p_{i,1} = p_{i,2} = 11.3$, $\eta_{i,1} = \eta_{i,2} = 36.4$, $l_{i,1} = 1.7$, $l_{i,2} = 1.5$, $\nu_i = 2.6$, $\Delta_i = 0.28$, $h_{i,1} = 2.71$, $h_{i,2} = 3.45$, $g_{i,1} = 2.9$, $g_{i,2} = 3.2$.

The simulation results are presented in Figs. 2-7. The outputs of followers can track the leader’s signal in Fig. 2, and 3 shows the trajectories of tracking errors. Fig. 4 displays the event-triggered controller. Figs. 5 and 6 describe the errors of the disturbances. The trigger times and the trigger intervals of the agents are drawn in Fig. 7. It can be seen from the above simulation results that the event-triggered adaptive consensus of MASs with actuator faults and unknown disturbances are basically realized.

5. **Conclusion.** The consensus problem in event-triggered MASs with actuator faults and unknown disturbances has been considered in this paper. Furthermore,
the event-triggered controller has been proposed to avoid some unnecessary triggering operations. In addition, a disturbance observer has been proposed to solve the unknown disturbances. Finally, simulation results have been utilized to prove the effectiveness of the proposed method. In our future research, based on the fuzzy logic systems arbitrary approximation property, we will extend the results of this paper to the fuzzy fault detection and switching topology for MASs.

Acknowledgments. This work was partially supported by the National Key R&D Program of China (2018YFB1700400), and the National Natural Science Foundation of China (U1911401).

REFERENCES

[1] A. Bounemeur, M. Chemachema and N. Essounbouli, Indirect adaptive fuzzy fault-tolerant tracking control for mimo nonlinear systems with actuator and sensor failures, *ISA Transactions*, 79 (2018), 45–61.

[2] L. Cao, H. Li, G. Dong and R. Lu, Event-triggered control for multiagent systems with sensor faults and input saturation, *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 2019, 1–12.

[3] Z. Chen, Q.-L. Han, Y. Yan and Z. Wu, How often should one update control and estimation: Review of networked triggering techniques, *SCIENCE CHINA Information Sciences*, 63 (2020), 150201.

[4] P. Du, H. Liang, S. Zhao and C. K. Ahn, Neural-based decentralized adaptive finite-time control for nonlinear large-scale systems with time-varying output constraints, *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 2019, 1–12.

[5] Z. Hou, L. Cheng and M. Tan, Decentralized robust adaptive control for the multiagent system consensus problem using neural networks, *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 39 (2009), 636–647.

[6] J. Hu, Y. Wu, T. Li and B. K. Ghosh, Consensus control of general linear multiagent systems with antagonistic interactions and communication noises, *IEEE Transactions on Automatic Control*, 64 (2018), 2122–2127.

[7] W. Hu, L. Liu and G. Feng, Consensus of linear multi-agent systems by distributed event-triggered strategy, *IEEE Transactions on Cybernetics*, 46 (2016), 148–157.

[8] W. Hu, L. Liu and G. Feng, Event-triggered cooperative output regulation of linear multi-agent systems under jointly connected topologies, *IEEE Transactions on Automatic Control*, 64 (2019), 1317–1322.

[9] C. Hua, K. Li and X. Guan, Leader-following output consensus for high-order nonlinear multiagent systems, *IEEE Transactions on Automatic Control*, 64 (2018), 1156–1161.

[10] M. Hui, L. Hongyi, L. Renquan and T. Huang, Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances, *SCIENCE CHINA Information Sciences*, 63 (2020), 150212.

[11] J. Leng, H. Zhang, D. Yan, Q. Liu, X. Chen and D. Zhang, Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop, *Journal of Ambient Intelligence and Humanized Computing*, 10 (2019), 1155–1166.

[12] X. Li, D. W. Ho and J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, *Automatica*, 99 (2019), 361–368.

[13] X. Li and S. Song, Stabilization of delay systems: Delay-dependent impulsive control, *IEEE Transactions on Automatic Control*, 62 (2017), 406–411.

[14] X. Li and J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, *Automatica*, 64 (2016), 63–69.

[15] X. Li, X. Yang and S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, *Automatica*, 103 (2019), 135–140.

[16] Y. Li and G. Yang, Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems with actuator faults and unknown dead zones, *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 47 (2016), 729–740.

[17] H. Liang, L. Zhang, Y. Sun and T. Huang, Containment control of semi-Markovian multiagent systems with switching topologies, *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 2019, 1–11.
[18] H. Liang, X. Guo, Y. Pan and T. Huang, Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers, *IEEE Transactions on Fuzzy Systems*, 2020, 1–1.

[19] Q. Liu, H. Zhang, J. Leng and X. Chen, Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system, *International Journal of Production Research*, 57 (2019), 3903–3919.

[20] Y. Liu, X. Liu, Y. Jing, X. Chen and J. Qiu, Direct adaptive preassigned finite-time control with time-delay and quantized input using neural network, *IEEE Transactions on Neural Networks and Learning Systems*, 31 (2020), 1222–1231.

[21] Q. Liu, J. Leng, D. Yan, D. Zhang, L. Wei, A. Yu, R. Zhao, H. Zhang and X. Chen, Digital twin-based designing of the configuration, motion, control, and optimization model of a flow-type smart manufacturing system, *Journal of Manufacturing Systems*, 2020, 1–13.

[22] Y. Liu, X. Liu, Y. Jing and Z. Zhang, A novel finite-time adaptive fuzzy tracking control scheme for nonstrict feedback systems, *IEEE Transactions on Fuzzy Systems*, 27 (2018), 646–658.

[23] R. Lu, Y. Xu, A. Xue and J. Zheng, Networked control with state reset and quantized measurements: Observer-based case, *IEEE Transactions on Industrial Electronics*, 60 (2012), 5206–5213.

[24] R. Lu, W. Yu, J. Lü and A. Xue, Synchronization on complex networks of networks, *IEEE Transactions on Neural Networks and Learning Systems*, 25 (2014), 2110–2118.

[25] S. Luo and D. Ye, Adaptive double event-triggered control for linear multi-agent systems with actuator faults, *IEEE Transactions on Circuits and Systems I: Regular Papers*, 66 (2019), 4829–4839.

[26] Y. Qian, L. Liu and G. Feng, Output consensus of heterogeneous linear multi-agent systems with adaptive event-triggered control, *IEEE Transactions on Automatic Control*, 64 (2018), 2606–2613.

[27] W. Ren, *Distributed attitude alignment in spacecraft formation flying*, *Internat. J. Adapt. Control Signal Process.*, 21 (2007), 95–113.

[28] R. O. Saber and R. M. Murray, Consensus protocols for networks of dynamic agents, 2003 American Control Conference, 2 (2003), 951–956.

[29] R. Sakthivel, A. Parivallal, B. Kaviarasan, H. Lee and Y. Lim, Finite-time consensus of Markov jumping multi-agent systems with time-varying actuator faults and input saturation, *ISA Transactions*, 83 (2018), 89–99.

[30] R. Sakthivel, R. Sakthivel, B. Kaviarasan, H. Lee and Y. Lim, Finite-time leaderless consensus of uncertain multi-agent systems against time-varying actuator faults, *Neurocomputing*, 325 (2019), 159–171.

[31] Y. Su, Q. Wang and C. Sun, Self-triggered consensus control for linear multi-agent systems with input saturation, *IEEE/CAA Journal of Automatica Sinica*, 7 (2020), 150–157.

[32] Y. Su, B. Chen, C. Lin, H. Wang and S. Zhou, Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach, *Information Sciences*, 369 (2016), 748–764.

[33] D. Sumpter and S. Pratt, A modelling framework for understanding social insect foraging, *Behavioral Ecology and Sociobiology*, 53 (2003), 131–144.

[34] X. Tan, J. Cao and X. Li, Consensus of leader-following multiagent systems: A distributed event-triggered impulsive control strategy, *IEEE Transactions on Cybernetics*, 49 (2018), 792–801.

[35] A. Wang, X. Liao and T. Dong, Fractional-order follower observer design for tracking consensus in second-order leader multi-agent systems: Periodic sampled-based event-triggered control, *Journal of the Franklin Institute*, 355 (2018), 4618–4628.

[36] W. Wang, H. Liang, Y. Pan and T. Li, Prescribed performance adaptive fuzzy containment control for nonlinear multi-agent systems using disturbance observer, *IEEE Transactions on Cybernetics*, 2020, 1–13.

[37] X. Wang, S. Li, X. Yu and J. Yang, Distributed active anti-disturbance consensus for leader-follower higher-order multi-agent systems with mismatched disturbances, *IEEE Transactions on Automatic Control*, 62 (2017), 5795–5801.

[38] H. Wu and H. Su, Observer-based consensus for positive multiagent systems with directed topology and nonlinear control input, *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 49 (2018), 1459–1469.

[39] Y. Wu, Z. Wang, S. Ding and H. Zhang, Leader–follower consensus of multi-agent systems in directed networks with actuator faults, *Neurocomputing*, 275 (2018), 1177–1185.
[40] G. Xie, L. Sun, T. Wen, X. Hei and F. Qian, Adaptive transition probability matrix-based parallel IMM algorithm, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 1–10.
[41] D. Yao, H. Li, R. Lu and Y. Shi, Distributed sliding mode tracking control of second-order nonlinear multi-agent systems: An event-triggered approach, IEEE Transactions on Cybernetics, 2020, 1-11.
[42] F. Ye, B. Sun, L. Ou and W. Zhang, Disturbance observer-based control for consensus tracking of multi-agent systems with input delays from a frequency domain perspective, Systems & Control Letters, 114 (2018), 66–75.
[43] Y. Ye, H. Su and Y. Sun, Event-triggered consensus tracking for fractional-order multi-agent systems with general linear models, Neurocomputing, 315 (2018), 292–298.
[44] X. You, C. Hua and X. Guan, Event-triggered leader-following consensus for nonlinear multi-agent systems subject to actuator saturation using dynamic output feedback method, IEEE Transactions on Automatic Control, 63 (2018), 4391–4396.
[45] C. Zhang and G. Yang, Event-triggered adaptive output feedback control for a class of uncertain nonlinear systems with actuator failures, IEEE Transactions on Cybernetics, 50 (2018), 201–210.
[46] H. Zhang and F. L. Lewis, Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics, Automatica, 48 (2012), 1432–1439.
[47] H. Zhang, F. L. Lewis and Z. Qu, Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs, IEEE Transactions on Industrial Electronics, 59 (2012), 3026–3041.
[48] L. Zhang, H. Liang, Y. Sun and C. K. Ahn, Adaptive event-triggered fault detection scheme for semi-Markovian jump systems with output quantization, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 1–12.
[49] X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue and C. Peng, Networked control systems: A survey of trends and techniques, IEEE/CAA Journal of Automatica Sinica, 7 (2020), 1–17.
[50] S. Zheng, P. Shi, S. Wang and Y. Shi, Event triggered adaptive fuzzy consensus for interconnected switched multiagent systems, IEEE Transactions on Fuzzy Systems, 27 (2019), 144–158.
[51] Q. Zhou, P. Du, H. Li, R. Lu and J. Yang, Adaptive fixed-time control of error-constrained pure-feedback interconnected nonlinear systems, IEEE Transactions on Systems, Man and Cybernetics: Systems, 2019, 1–12.
[52] Q. Zhou, W. Wang, H. Liang, M. Basin and B. Wang, Observer-based event-triggered fuzzy adaptive bipartite containment control of multi-agent systems with input quantization, IEEE Transactions on Fuzzy Systems, 2019, 1–1.
[53] Q. Zhou, W. Wang, H. Ma and H. Li, Event-triggered fuzzy adaptive containment control for nonlinear multi-agent systems with unknown Bouc-Wen hysteresis input, IEEE Transactions on Fuzzy Systems, 2019, 1–1.
[54] S. Zhu, Y. Liu, Y. Lou and J. Cao, Stabilization of logical control networks: An event-triggered control approach, SCIENCE CHINA Information Sciences, 63 (2020), 112203.
[55] Z. Zhu, Y. Pan, Q. Zhou and C. Lu, Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis, IEEE Transactions on Fuzzy Systems, 2019, 1–1.

Received January 2020; revised February 2020.

E-mail address: renhongru2019@gdut.edu.cn
E-mail address: liushubo2018@163.com
E-mail address: luchangxin2018@gmail.com