ON REAL LOG CANONICAL THRESHOLDS

MORIHIKO SAITO

Abstract. We introduce real log canonical threshold and real jumping numbers for real algebraic functions. A real jumping number is a root of the b-function up to a sign if its difference with the minimal one is less than 1. The real log canonical threshold, which is the minimal real jumping number, coincides up to a sign with the maximal pole of the distribution defined by the complex power of the absolute value of the function. However, this number may be greater than 1 if the codimension of the real zero locus of the function is greater than 1. So it does not necessarily coincide with the maximal root of the b-function up to a sign, nor with the log canonical threshold of the complexification. In fact, the real jumping numbers can be even disjoint from the non-integral jumping numbers of the complexification.

Introduction

Let f_C be a nonconstant holomorphic function on a complex manifold X_C, and ω be a C^∞ form of the highest degree with compact support on X_C. Then the integral $\int_{X_C} |f_C|^2 \omega$ is extended to a meromorphic function in s on the entire complex plane (using a resolution of singularities [5] together with a partition of unity, see [1], [2].) Moreover, the largest pole of $\int_{X_C} |f_C|^2 \omega$ coincides up to a sign with the log canonical threshold of f_C if ω is nonnegative and does not vanish on a point x of $D_C := f_C^{-1}(0)$ where the log canonical threshold of (f_C, x) attains the minimal. (This follows from the definition by using a resolution of singularities, see [7].)

Let f be a nonconstant real algebraic function on a real algebraic manifold X_R, and ω be a C^∞ form of the highest degree with compact support on X_R such that the open subset $\{x \in X_R \mid \omega(x) \neq 0\}$ is oriented and $\omega(x)$ is positive on this subset. Then $\int_{X_R} |f|^s \omega$ is similarly extended to a meromorphic function in s on the entire complex plane. But the largest pole of $\int_{X_R} |f|^s \omega$ does not necessarily coincide up to a sign with the log canonical threshold of the complexification $f_C : X_C \to \mathbb{C}$ of $f : X_R \to \mathbb{R}$, see Corollary 2 and Theorem 1 below.

Let \mathcal{O}_{X_R} denote the sheaf of real analytic functions on X_R. We define the real multiplier ideals $\mathcal{J}(X_R, f^\alpha) \subset \mathcal{O}_{X_R}$ for $\alpha \in \mathbb{Q}_{>0}$ by the local integrability of $|g|/|f|^{\alpha}$ for $g \in \mathcal{O}_{X_R}$. (Here coherence of $\mathcal{J}(X_R, f^\alpha)$ is unclear.) We have $\mathcal{J}(X_R, f^\alpha) = \mathcal{O}_{X_R}$ for $0 < \alpha \ll 1$, but not necessarily $f^s \mathcal{J}(X_R, f^\alpha) = \mathcal{J}(X_R, f^{\alpha+1})$ for $\alpha > 0$, unless f is of ordinary type. Here we say that f is of ordinary type if $\text{codim} \, D_R = 1$ where $D_R = f^{-1}(0) \subset X_R$, and of exceptional type otherwise. Note that the above equality always holds in the complex case.

Date: July 25, 2007, v.3.
By Hironaka [5], there is a resolution of singularities as real algebraic manifolds \(\pi_R : X'_R \to X_R \) which is a composition of blowing-ups along smooth centers over \(R \) and such that \(\pi^* f \) and \(\pi^* dx_1 \cdots dx_n \) are locally of the form \(u \prod_{i=1}^{r} x_i^{m_i} \) and \(u' \prod_{i=1}^{r} x_i'^{n_i} dx'_1 \cdots dx'_n \), respectively, where \(m_i \geq 1 \) for \(i \in [1, r] \). Here \(x_1, \ldots, x_n \) and \(x'_1, \ldots, x'_n \) are local coordinates of \(X_R \) and \(X'_R \) respectively, and \(u, u' \) are nowhere vanishing. So \(\pi^* f \) defines a divisor with normal crossings \(D'_R = \sum_{j \in J_R} m_j D'_{j,R} \), and we may assume that each \(D'_{j,R} \) is smooth by local cit. Let \(a_j \) be the multiplicity of the Jacobian of \(\pi_R \) along \(D'_{j,R} \). Note that \(m_j \) and \(a_j \) are given by the above \(m_i \) and \(a_i \) respectively if \(D'_{j,R} \) is locally defined by \(y'_i = 0 \).

Proposition 1. For \(g \in \mathcal{O}_{X_R,x} \) we have

\[
g \in \mathcal{J}(X_R, f^\alpha)_x \iff \pi^* g dx_1 \cdots dx_n \in (\pi_* \Omega^n_{X_R} - \sum_{j}[am_j]D'_{j,R})_x.
\]

However, \(\pi_* \Omega^n_{X_R} - \sum_{j}[am_j]D'_{j,R} \) may be larger than \(\mathcal{J}(X_R, f^\alpha)_{X_R} \) in general (even for \(0 < \alpha \ll 1 \)), and coherence of these sheaves are unclear. By Proposition 1 there are increasing rational numbers \(0 < \alpha_1 < \alpha_2 < \cdots \) such that

\[
\mathcal{J}(X_R, f^{\alpha_j}) = \mathcal{J}(X_R, f^{\alpha}) \supset \mathcal{J}(X_R, f^{\alpha_{j+1}}) \text{ if } \alpha_j < \alpha < \alpha_{j+1} \text{ } (j \geq 1),
\]

and \(\mathcal{O}_{X_R} = \mathcal{J}(X_R, f^\alpha) \supset \mathcal{J}(X_R, f^1) \text{ if } 0 < \alpha < \alpha_1 \). These numbers \(\alpha_j \) are called **real jumping numbers** of \(f \). (Here we add “real” since the complexification \(f_C \) of \(f \) can be identified with \(f \) in case \(f \in \mathbb{R}[x] \subset \mathbb{C}[x] \).) The minimal real jumping number \(\alpha_1 \) is called the **real log canonical threshold**, and is denoted by \(\text{lct}(f) \). This is the smallest number such that \(|f|^{-\alpha} \) is not locally integrable on \(X_R \). It may be strictly greater than 1 in case of exceptional type, see Theorem 1 below. We define the graded pieces by

\[
\mathcal{G}(X_R, f^\alpha) = \mathcal{J}(X_R, f^{\alpha-\varepsilon})/\mathcal{J}(X_R, f^\alpha) \text{ for } 0 < \varepsilon \ll 1,
\]

so that \(\alpha \) is a real jumping number of \(f \) if and only if \(\mathcal{G}(X_R, f^\alpha) \neq 0 \). Proposition 1 implies

Corollary 1. We have

\[
\text{lct}(f) = \min_{j \in J_R} \left\{ \frac{a_j + 1}{m_j} \right\}.
\]

A similar assertion holds for the log canonical threshold \(\text{lct}(f_C) \) by applying the same argument to the resolution of singularities of the complexification \(f_C \), and \(-\text{lct}(f_C) \) coincides with the largest root of \(b_{f_C}(s) \), see [7]. Let \(-p(f, \omega) \) denote the maximal pole of \(\int_{X_R} |f|^s \omega \). Then

Corollary 2. We have in general

\[
p(f, \omega) \geq \text{lct}(f) \geq \text{lct}(f_C),
\]

and \(p(f, \omega) = \text{lct}(f) \) if \(\omega(x) \neq 0 \) for some \(x \in X_R \) such that \(\mathcal{G}(X_R, f^\alpha)_x \neq 0 \) with \(\alpha = \text{lct}(f) \).

For the corresponding assertion in the complex case, see [7]. The relation with the complexification is quite complicated as is shown by the following.
Theorem 1. There are cases where \(\text{rlct}(f) > \text{lct}(f_C) \), and even \(\text{rlct}(f) > 1 \) in case of exceptional type. Moreover the real jumping numbers of \(f \) can be disjoint from the non-integral jumping numbers of \(f_C \) even in the case \(f_C \) has only an isolated singularity at a real point \(x \in X_R \subset X_C \).

This kind of phenomena may happen in case \(f \) has an isolated zero of simple type, see (3.3). Let \(b_f(s) \) be the \(b \)-function of \(f \) which is by definition the least common multiple of the local \(b \)-functions \(b_{f,x}(s) \) for \(x \in X_R \). Note that \(b_{f,x}(s) \) coincides with the local \(b \)-function \(b_{f_C,x}(s) \) of \(f_C \), since \(b_{f_C,x}(s) \in \mathbb{Q}[s] \) by Kashiwara [6]. So \(b_f(s) = b_{f_C}(s) \) in case \(\text{Sing} f \subset X_R \).

Theorem 2. Any real jumping number of \(f \) which is smaller than \(\text{rlct}(f) + 1 \) is a root of \(b_f(-s) \).

For the corresponding assertion in the complex case, see [4]. It seems that the case of an ideal generated by \(f_1, \ldots, f_r \) is reduced to the case \(r = 1 \) by considering \(f = \sum_{i=1}^{r} f_i^2 \) in the real case.

This note is written to answer questions of Professor S. Watanabe which are closely related to problems in the theory of learning machines (see e.g. [10]). I would like to thank him for interesting questions.

In Section 1 we recall some facts from the theory of resolutions of singularities due to Hironaka [5]. In Section 2 we prove Proposition 1 and Theorem 2. In Section 3 we prove Theorem 1 by constructing examples.

1. Resolution of singularities

In this section we recall some facts from the theory of resolutions of singularities due to Hironaka [5].

1.1. Analytic spaces associated to R-schemes. Let \(X \) be a scheme of finite type over \(\mathbb{R} \). We denote the associated real analytic space by \(X_{\mathbb{R}} \). The underlying topological space of \(X_{\mathbb{R}} \) is the set of \(\mathbb{R} \)-valued points \(X(\mathbb{R}) \) with the classical topology. The sheaf of real analytic functions on \(X_{\mathbb{R}} \) is defined by taking local embeddings of \(X \) into affine spaces and dividing the sheaf of real analytic functions on the affine spaces by the corresponding ideal.

We define \(X_{\mathbb{C}} \) similarly for a scheme \(X \) of finite type over \(\mathbb{C} \). In case \(X \) is a scheme of finite type over \(\mathbb{R} \), \(X_{\mathbb{C}} \) means the complex algebraic variety associated to the base change of \(X \) by \(\mathbb{R} \to \mathbb{C} \). So the underlying topological space of \(X_{\mathbb{C}} \) coincides with \(X(\mathbb{C}) \).

1.2. Hironaka’s resolution of singularities. Let \(X \) be a smooth scheme over \(\mathbb{R} \), and \(D \) an effective divisor on \(D \). By Hironaka [5] we have a resolution of singularities \(\pi : (X', D') \to (X, D) \) which is a composition of blowing-ups along smooth centers defined over \(\mathbb{R} \) and such that \(D' \) is a divisor with normal crossings which is locally defined by algebraic local coordinates defined over \(\mathbb{R} \), see loc. cit., Cor. 3 in p. 146 and also Def. 2 in p. 141. (Note that the last condition implies that the irreducible components \(D'_j \) of \(D' (j \in J) \) are smooth over \(\mathbb{R} \) by taking a point of \(\text{Sing} D'_j \)).
This induces a resolution of singularities \(\pi_\mathbb{R} : (X'_\mathbb{R}, D'_\mathbb{R}) \to (X_\mathbb{R}, D_\mathbb{R}) \) as in Introduction, and
\[
J_\mathbb{R} = \{ j \in J \mid D'_j(\mathbb{R}) \neq \emptyset \}.
\]
Note that if a smooth center \(C \) of a blow-up has a real point \(x \), then \(C \) is defined locally by using local algebraic coordinates over \(\mathbb{R} \), and hence \(C_\mathbb{R} \) is a smooth subvariety.

2. Proofs of Proposition 1 and Theorem 2

In this section we prove Proposition 1 and Theorem 2.

2.1. Proof of Proposition 1. With the notation of Introduction, we have locally
\[
\pi^* g f^{-\alpha} dx_1 \cdots dx_n = v \prod_{i=1}^r x_i'^{a_i + b_i - \alpha m_i} dx_1' \cdots dx'_n,
\]
if \(\pi^* g = u'' \prod_i x_i'^{b_i} \) locally, where \(v, u'' \) are nondivisible by \(x_i' (1 \leq i \leq r) \). For \(\gamma, c > 0 \), we have
\[
\int_0^c x^{\gamma-1} dx = \frac{c^\gamma}{\gamma},
\]
where \(x \) means \(x_i' \). Moreover, we have for \(\beta = \alpha m_i \) and \(p = a_i + b_i \)
\[
(2.1.1) \quad p \geq \lfloor \beta \rfloor \iff p > \beta - 1.
\]
So the implication \(\Leftarrow \) in Proposition 1 follows. For the converse, assume the right-hand side does not hold. Then the left-hand side does not hold by restricting to a neighborhood of a sufficiently general point of \(D'_j(\mathbb{R}) \) which is defined locally by \(x_i' = 0 \) and such that \(a_i + b_i - \alpha m_i \leq -1 \) (using positivity). So the assertion follows.

2.2. Proof of Corollary 1. By definition the minimal real jumping number is the smallest number \(\alpha \) such that \(1 \notin \mathcal{J}(X_\mathbb{R}, f^\alpha) \), i.e. \(|f|^{-\alpha} \) is not locally integrable on \(X_\mathbb{R} \). By Proposition 1, this condition is equivalent to that \(a_j < \lfloor \alpha m_j \rfloor \) (i.e. \(a_j \leq \alpha m_j - 1 \), see (2.1.1)) for some \(j \in J_\mathbb{R} \). So the assertion follows.

2.3. Proof of Corollary 2. We take a resolution of singularities as in (1.2). This gives a resolution of singularities of the complexification. We define similarly \(a_j, m_j \) for any irreducible components \(D'_j \) of \(D' (j \in J) \), and we have as in [7]
\[
\text{lct}(f_\mathbb{C}) = \min_{i \in J} \left\{ \frac{a_j + 1}{m_j} \right\}.
\]
So the last inequality follows. Since \(\text{rlct}(f) \) is the smallest number \(\alpha \) such that \(|f|^{-\alpha} \) is not locally integrable on \(X_\mathbb{R} \), the first inequality and the last assertion follow.

2.4. Proof of Theorem 2. Let \(f_+(x) = f(x) \) if \(f(x) > 0 \) and \(f_+(x) = 0 \) otherwise. Set \(f_- = (-f)_+ \). Since \(|f|^s = (f_+)^s + (f_-)^s \), we consider
\[
I(\omega, s) = \int_{X_\mathbb{R}} (f_+)^s \omega,
\]
where \(\omega \) is a \(C^\infty \) form of the highest degree whose support is compact and is contained in a sufficiently small open subset \(U_\mathbb{R} \) of \(X_\mathbb{R} \) with local coordinates.
x_1, \ldots, x_n giving an orientation of U_R. Then $I(\omega, s)$ is a holomorphic function on $\{ s \in \mathbb{C} \mid \text{Re } s > 0 \}$, and it is extended to a meromorphic function on the entire complex plane using a resolution of singularities, see \cite{1}, \cite{2}.

Let x be a point of $D_R := f^{-1}(0) \subset X_R$, and $b_f(s)$ be the b-function of f at x. We assume that U_R is a sufficiently small open neighborhood of x in X_R so that we have the relation

\begin{equation}
(2.4.1) \quad b_f(s)f^s = Pf^{s+1} \text{ in } (\mathcal{O}_U[\frac{1}{f}])[s], \quad P \in \Gamma(U_R, \mathcal{D}_U[s]).
\end{equation}

Here P is replaced by $-P$ if f_+ is replaced by f_- (and f by $-f$). Note that (2.4.1) holds in $\mathcal{O}_U[\frac{1}{f}]$ when s is specialized to any complex number.

Let * be the involution of \mathcal{D}_U such that $g^* = g$ for $g \in \mathcal{O}_U$, $(\partial/\partial x_i)^* = -\partial/\partial x_i$, and $(Q_1Q_2)^* = Q_2^*Q_1^*$ for $Q_1, Q_2 \in \mathcal{D}_U$, fixing the local coordinates x_1, \ldots, x_n on U. This gives a right \mathcal{D}_U-module structure on Ω^n_U using a basis $dx_1 \wedge \cdots \wedge dx_n$.

Write $P = \sum_j P_j s^j$ with $P_j \in \mathcal{D}_U$, and set $P^* = \sum_j P^*_j s^j$. Let $r = \max\{ \text{ord } P_j \}$. Then, for any complex number s with $\text{Re } s > r$, we have by (2.4.1) together with integration by parts

\begin{equation}
(2.4.2) \quad b_f(s)I(\omega, s) = \int_{U_R} b_f(s)(f_+)^*\omega = \int_{U_R} (f_+)^{s+1}(P^*\omega) = \sum_j I(P_j^*\omega, s+1)s^j,
\end{equation}

since $\prod((\partial/\partial x_i)^{\nu_i}(f_+)^s)$ is a continuous function on U if $\text{Re } s > \sum_i \nu_i$. Here $P_j^*\omega$ is defined by trivializing Ω^n_U by $dx_1 \wedge \cdots \wedge dx_n$, and it may be written as ωP_j using the right \mathcal{D}-module structure explained above. By analytic continuation, (2.4.2) holds as meromorphic functions in s on the entire complex plane.

Let α be a real jumping number of f which is smaller than $\text{rlct}(f) + 1$. Assume that the above x belongs to the support of $G(X_R, f^\alpha)$, and $\omega(x) \neq 0$. There is $g \in \Gamma(U_R, \mathcal{O}_U)$ such that $g \in \mathcal{J}(U_R, f^\alpha-\varepsilon)_x$ for $\varepsilon > 0$ and $g \notin \mathcal{J}(U_R, f^\alpha)_x$ (shrinking U_R if necessary). Then $I(g\omega, s)$ is a holomorphic function in s for $\text{Re } s > -\alpha$ using a resolution of singularities as in (2.1), and

\[I(g\omega, s) \to +\infty \quad \text{as } s \to -\alpha, \]

(replacing f_+ with f_- if necessary). On the other hand, the $I(P_j^*(g\omega), s+1)$ are holomorphic functions in s for $\text{Re } s+1 > -\text{rlct}(f)$. Thus, replacing ω with $g\omega$ in (2.4.2), we get $b_f(-\alpha) = 0$ since $-\alpha + 1 > -\text{rlct}(f)$. So the assertion follows.

Remark. This argument shows that the order of pole of $I(\omega, s)$ at $-\text{rlct}(f)$ is at most the multiplicity of $-\text{rlct}(f)$ as a root of $b_f(s)$.

2.5. b-Function of the complexification. For $f \in \mathbb{R}\{\{x\}\}$, the b-function $b_f(s)$ of f coincides with the b-function $b_{fc}(s)$ of the complexification fc (which is identified with f by $\mathbb{R}\{\{x\}\} \subset \mathbb{C}\{\{x\}\}$), since $b_{fc}(s) \in \mathbb{Q}[s]$ by Kashiwara \cite{6}.

Indeed, if there is $P = \sum_{\nu, \mu, k} a_{\nu, \mu, k} x^\nu \partial^\mu s^k$ with $a_{\nu, \mu, k} \in \mathbb{C}$ and satisfying

\[b_{fc}(s)f^s = Pf^{s+1}, \]

then the same equation holds with P replaced by $\sum_{\nu, \mu, k}(\text{Re } a_{\nu, \mu, k}) x^\nu \partial^\mu s^k$.

2.6. Case of ideals. For an ideal \mathcal{I} generated by f_1, \ldots, f_r, we may define the multiplier ideals $\mathcal{J}(X_R, \mathcal{I}^\alpha)$ by local integrability of \[|g|/\left(\sum_i |f_i|^\alpha\right). \]
However, this is calculated by $\mathcal{J}(X_R, f^{\alpha/2})$ with $f = \sum_i f_i^2$, using \[\sum_i |f_i|^2 \leq \left(\sum_i |f_i^\alpha|\right)^2 \leq r \sum_i |f_i|^\alpha. \]

3. Proof of Theorem 1

In this section we prove Theorem 1 by constructing examples.

3.1. Definition. We say that f is of ordinary type if $\text{codim } D_R = 1$, and of exceptional type otherwise. Here $D_R = f^{-1}(0) \subset X_R$.

Write $f = \sum_{k \geq d} f_k \in R\{(x_1, \ldots, x_n)\}$ with f_k homogeneous of degree k and $f_d \neq 0$. We say that f has an isolated zero of simple type if the equation $f_d = 0$ has no solution in $R^n \setminus \{0\}$ (e.g. if $f_d = \sum_{i=1}^n x_i^d$ with d even).

3.2. Remarks. (i) The function f is of ordinary type if and only if the reduced complex zero locus $(D_C)_{\text{red}}$ has a smooth real point. Note that \[\dim_R(D_R \cap \text{Sing } (D_C)_{\text{red}}) < n-1, \] since $\text{Sing } (D_C)_{\text{red}}$ is defined over R and has dimension $< n-1$ where $n = \dim X_R$.

(ii) In the case of exceptional type, the D'_j for $j \in J_R$ are all exceptional divisors.

(iii) In the case of ordinary type, we have $\mathcal{J}(X_R, f^\alpha) \subset fO_{X_R}$ for $\alpha \geq 1$, and hence \[(3.2.1) \quad f\mathcal{J}(X_R, f^\alpha) = \mathcal{J}(X_R, f^{\alpha+1}) \text{ for } \alpha > 0, \] shrinking X_R to an open neighborhood of the points where the dimension of D_R is $n-1$.

(iv) The above equality (3.2.1) always holds in the complex case, and \[(3.2.2) \quad \text{JN}(f_C) = (\text{JN}(f_C) \cup \{0, 1\}) + N, \] where JN(f_C) is the set of jumping numbers of f_C.

The following Proposition implies the first and second assertions of Theorem 1 in the case $n > d$, since we have always lct(f_C) ≤ 1.

3.3. Proposition. If f has only an isolated zero of simple type (3.1), then \[\mathcal{J}(X_R, f^\alpha_0) = m_0^{[\alpha d-n+1]} \quad \text{RJN}(f) = \{k/d \mid k \geq n\}, \quad \text{rlct}(f) = n/d, \] where m_0 be the maximal ideal of $O_{X_R, 0}$ and RJN(f) denote the set of real jumping numbers of f.

Proof. In this case, we get a real resolution of singularities by the blow-up along the origin, and $D_R = \{0\}$ since the exceptional divisor is the total transform of D_R. In particular, f is of exceptional type, see (3.1). Then $J_R = \{1\}$ and $(m_1, a_1) = (d, n-1)$. So the assertion follows from Proposition 1.
3.4 Example. Assume we have an expansion
\[f = f_{d_1} + \sum_{k \geq d_2} f_k \in \mathbb{R}\{x_1, \ldots, x_n\}, \]
with \(f_k \) homogeneous of degree \(k \), \(f_{d_1} = g^e \) with \(g \) irreducible, \(h := f - g^e = \sum_{k \geq d_2} f_k \) is nondivisible by \(f_{d_1} \), and \(d_1 < d_2 \). Let \(Y \subset \mathbb{P}^{n-1} \) be the projective hypersurfaces defined by \(g \). Assume
\[c := d_2 - d_1 \geq e \geq 2, \quad n > d := d_1/e, \]
and \(Y_\mathbb{R} \) is empty in the notation of (1.1). Then \(f \) has an isolated zero of simple type at the origin, and
\[\text{rlct}(f) > \text{lct}(f_\mathbb{C}), \]
restricting \(f \) to a sufficiently small Zariski-open subset \(X \) of the affine space \(\mathbb{A}^n \) containing the origin and such that it is the only singular point of \(f \).

Indeed, let \(\pi : X' \rightarrow X \) be a resolution of singularities as in (1.2). Here we may blow-up along the origin first. Let \(D'_1 \subset X' \) denote the proper transform of the exceptional divisor of this blow-up. The pull-back of \(f \) by the blow-up along the origin is locally given by \(x_{d_1}^d(y^e + x^ez) \), where the exceptional divisor is locally defined by \(x = 0 \), and the proper transforms of \(g \) and \(h \) are locally given by \(y \) and \(z \) respectively. So the intersection of the proper transform of \(D \) and the exceptional divisor by the blow-up along the origin is identified with \(Y \), and the total transform of \(D \) is not a divisor with normal crossings at the generic point of \(Y \) since \(c \geq e \geq 2 \) and \(h \) is nondivisible by \(f_{d_1} \). So we have to blow-up along the proper transform of \(Y \) (after making it smooth). Let \(D'_2 \subset X' \) denote the proper transform of the exceptional divisor of this blow-up. Then we have
\[\text{rlct}(f) = \frac{a_1 + 1}{m_1} = \frac{n}{d_1} > \frac{a_2 + 1}{m_2} = \frac{n + 1}{d_1 + e} \geq \text{rlct}(f_\mathbb{C}). \]

This also implies the first assertion of Theorem 1 with \(\text{rlct}(f) < 1 \) if \(n < d_1 \).

3.5 Example. With the above notation and assumptions, assume further
\[h = f_{d_2}, \quad n = 3, \quad c = d = e = 2, \]
and \(Y_\mathbb{C} \) is smooth and intersects \(Z_\mathbb{C} \) at smooth points of \(Z_\mathbb{C} \), where \(Z \) is the hypersurface defined by \(h \). Then the resolution \(\pi : X' \rightarrow X \) is obtained by the two blowing-ups in Example (3.4), and we have \(J = \{1, 2\} \), \(J_\mathbb{R} = \{1\} \), \(m_1 = 4 \), \(m_2 = 6 \). So \(f \) has an isolated singularity at the origin, and the eigenvalues \(\lambda \) of the Milnor monodromy on \(H^2(F_0, \mathbb{C}) \) satisfy \(\lambda^4 = 1 \) or \(\lambda^6 = 1 \), where \(F_0 \) denotes the Milnor fiber.

For \(\lambda = i \), the \(\lambda \)-eigenspace of the Milnor cohomology \(H^2(F_0, \mathbb{C})_\lambda \) is calculated by the filtered de Rham complex of a filtered simple regular holonomic \(\mathcal{D} \)-module \((M, F)\) on \(\mathbb{P}_\mathbb{C}^2 \) whose restriction to the complement of \(Y_\mathbb{C} \) is a complex variation of Hodge structure of type \((0, 0)\) and rank 1, and whose local monodromy around \(Y_\mathbb{C} \) is \(-1\), see [9] (or [8], 3.3 and 3.5). Since \(F_0M \) is a line bundle such that \(\otimes^2 F_0 M = \mathcal{O}_{\mathbb{P}_2}(Y) \), we have \(F_0 M = \mathcal{O}_{\mathbb{P}_2}(1) \). Since \(\Gamma(\mathbb{P}_2, \mathcal{O}_{\mathbb{P}_2}(1)) = 0 \), this implies
\[F^2 H^2(F_0, \mathbb{C})_\lambda = 0. \]
Thus \(\text{rlct}(f) (= 3/4) \) does not appear in the spectrum \([9]\) of \(f_C \). Then \(3/4 \) is not a jumping number of \(f_C \) by \([3]\) in the isolated singularity case. Since the minimal jumping number of \(f_C \) is \(2/3 \) by (3.4.1), we get by (3.2.2)

\[
\text{JN}(f_C) \subset \left\{ \frac{k}{6} + j \mid k = 4, 5, 6; j \in \mathbb{N} \right\}.
\]

(In fact, we can show the equality.) On the other hand, we have by Proposition (3.3)

\[
\text{RJN}(f) = \left\{ \frac{k}{4} \mid k \geq 3 \right\}.
\]

This implies the last assertion of Theorem 1.

REFERENCES

[1] M.F. Atiyah, Resolution of singularities and division of distributions, Comm. Pure Appl. Math. 23 (1970), 145–150.
[2] I.N. Bernstein, S.I. Gel’fand, Meromorphic property of the functions \(P^\lambda \), Functional Analysis and its Application 3 (1969), 68–69.
[3] N. Budur, On Hodge spectrum and multiplier ideals, Math. Ann. 327 (2003), 257–270.
[4] L. Ein, R. Lazarsfeld, K.E. Smith, D. Varolin, Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), 469–506.
[5] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109–326.
[6] M. Kashiwara, \(B \)-functions and holonomic systems, Inv. Math. 38 (1976/77), 33–53.
[7] J. Kollár, Singularities of pairs, Proc. Symp. Pure Math., A.M.S. 62 Part 1, (1997), 221–287.
[8] M. Saito, Mixed Hodge modules, Publ. RIMS, Kyoto Univ. 26 (1990), 221–333.
[9] J.H.M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, in Real and Complex Singularities (Proc. Nordic Summer School, Oslo, 1976) Alphen a/d Rijn: Sijthoff & Noordhoff 1977, pp. 525–563.
[10] S. Watanabe, Algebraic analysis for nonidentifiable learning machines, Neural Computation 13 (2001), 899–933.