Tumor Immune Microenvironment Clusters in Localized Prostate Adenocarcinoma: Prognostic Impact of Macrophage Enriched/Plasma Cell Non-enriched Subtypes

Neil K. Jairath1*, Mark W. Farha1*, Sudharsan Srinivasan1, Ruple Jairath1, Michael D. Green1, Robert T Dess1, William C Jackson1, Adam B. Weiner2, Edward M. Schaeffer2, Shuang G. Zhao1, Felix Y. Feng3, Issam El Naqa1, Daniel E. Spratt1#

1 Department of Radiation Oncology; University of Michigan, Ann Arbor, MI 48104
2 Department of Urology; Northwestern University, Chicago, IL
3 Department of Radiation Oncology; UCSF, San Francisco, CA

* These authors contributed equally to this manuscript
Correspondence: Daniel E. Spratt, MD; University of Michigan Medical Center, Department of Radiation Oncology, 1500 East Medical Center Dr, Ann Arbor, MI 48109-0010; Phone: (734) 647-1372; Fax: (734) 936-1900; e-mail: sprattda@med.umich.edu

Abstract: Background: Prostate cancer (PCa) is characterized by significant heterogeneity in its molecular, genomic, and immunologic characteristics. Methods: Whole transcriptome RNAseq data from The Cancer Genome Atlas of prostate adenocarcinomas (n=496) was utilized. The immune microenvironment was characterized using the CIBERSORTX tool to identify immune cell type composition. Unsupervised hierarchical clustering was performed based on immune cell type content. Analyses of progression-free survival (PFS), distant metastases, and overall survival (OS) were performed using Kaplan-Meier estimates and Cox-regression multivariable analyses. Results: Four immune clusters were identified, largely defined by plasma cell, CD4+ Memory Resting T Cells (CD4 MR), M0 and M2 macrophage content (CD4 MRHigh Plasma CellHigh M0Low M2Low, CD4 MRLow Plasma CellHigh M0Low M2Low, CD4 MRHigh Plasma CellLow M0High M2Low, and CD4 MRHigh Plasma CellLow M0Low M2High). The two macrophage-enriched/plasma cell non-enriched clusters (3&4) demonstrated worse PFS (HR 2.24, 95% CI 1.46–3.45, p=0.0002) than the clusters 1&2. No metastatic events occurred in the non-macrophage-enriched clusters. Comparing clusters 3 vs 4, in patients treated by surgery alone, cluster 3 had zero progression events (p<0.0001). However, cluster 3 patients had worse outcomes after post-operative radiotherapy (p=0.018). Conclusion: Distinct tumor immune clusters with a macrophage-enriched phenotype and reduced plasma cell enrichment independently characterize an aggressive phenotype in localized prostate cancer that may differentially respond to treatment.

Keywords: Prostate Cancer, Immunotherapy, Radiation Therapy, Macrophages, RNAseq, tumor immune microenvironment, plasma cells
1. Introduction

Globally, there were 358,989 deaths from prostate cancer (PCa) in 2018, and there are expected to be 378,553 deaths from PCa in 2020 [1][2]. Despite the largely favorable survival rates for non-metastatic patients, the disease is characterized by an important heterogeneity from molecular, genomic and ultimately clinical standpoints [3–5]. Historically, standard clinicopathological factors including prostatic specific antigen (PSA), T category, Gleason score, and various combinations of these factors have been used for risk stratification and management decisions. Yet, increasing evidence has shown that these parameters are not accurate prognosticators for patients with newly diagnosed PCa [6,7]. There remains a need to develop more effective risk stratification tools and predictive biomarkers to guide treatment. The advent of rapid sequencing technologies has opened the door across oncology to more precise targeting of treatment modalities tailored to specific patient subgroups.

The tumor immune microenvironment (TIME) has been shown to have prognostic significance and implications for therapeutic response in many different cancers [8–10]. The heterogeneity of tumors’ molecular and cellular composition is exacerbated during the progression of the cancer, creating complexity in the cellular and noncellular components of the tumor niche—the tumor microenvironment (TME). This complexity may relate to spatial and temporal phenomena, polarization of cellular phenotypes due to plasticity, and genomic or epigenomic instability [11,12]. Cell types across the immune system may be found within the TIME, but depending on varying molecular signals, the same immune cell type may promote or inhibit tumor progression [13,14]. This implies the multifactorial nature of the TIME, involving the interplay between antigen presentation, immune activation and immune suppression.

Cancer cells with inherent genetic instability form abnormal proteins that have not been previously recognized by the immune system, and these proteins become immunogenic antigens (neoantigens) that can trigger CD8+ T-cell responses via macrophage presentation or spontaneously. Cancer cells that present immunogenic neoantigens are eliminated from the host through the process of immune surveillance [15]. Cancers then promote an immune-suppressive TIME in which immune-suppressing cells, including tumor-associated macrophages (TAMs), regulatory T (Treg) cells, and MDSCs exist. Although prognostic implications of TIME composition have been demonstrated for breast, lung, liver, pancreatic, gastrointestinal cancers, and malignant melanoma [16], in PCa, there is emerging data for the heterogeneous impact of specific cell types [17]. Given the complex interplay of the immunologic composition, we sought to characterize the presentation and clinical outcomes of discrete immune clusters in localized PCa, and to test whether these TIME subtypes inform prognosis.

2. Experimental Section

Study Design:
We conducted a retrospective analysis of patients with histological diagnosis of prostate adenocarcinoma (PRAD) in the TCGA database. Samples came from institutions across Australia, Brazil, Canada, Georgia, Germany, Moldova, Romania, Russia, the United States, Vietnam, and
Yemen. Each patient with clinical and genomic data was independently reviewed by two authors (N.K. and M.F.) Patients with metastatic disease at the time of diagnosis were not included in the study.

Clustering Based on Immune Cell Subpopulations

The CIBERSORT “in silico flow cytometry” tool was used to quantify the relative levels of distinct immune cell types in the TCGA PRAD dataset [18]. A mixture file containing the RNA Seq by Expression Maximization (RSEM) gene expression data from the samples in the TCGA PRAD dataset was downloaded from the cBioPortal and formatted according to the guidelines outlined in the CIBERSORT manual [19,20]. The LM22 signature genes file was used as a reference point for comparison. LM22 contains 547 genes that accurately distinguish 22 mature human hematopoietic populations and activation states, including seven T cell types, naïve and memory B cells, plasma cells, NK cells and myeloid subsets. The LM22 file was constructed from the gene expression profiles of those cell types measured on Affy U133A/Plus2 and Illumina Expression BeadChip (HumanHT-12 v4) platforms. By default, CIBERSORT estimates the relative fraction of each cell type in the sample, such that the sum of all relative fractions for each of the 22 cell subsets is equal to 1 for the sample. Designations of “High” and “Low” were created using median expression values based on the relative fractions of each cell type in the total cohort. CIBERSORT was also used to produce a quantitative score that measures the overall abundance of each cell type. The absolute immune fraction score was compared across cell types and samples.

The package “ComplexHeatmap” was downloaded from Bioconductor [21]. Unsupervised hierarchical clustering was performed by sample rather than by cell type. The clustering distance metric was set to maximum distance between rows, and the clustering method was the Ward’s minimum variance. The dataset was divided into four clusters based on visual interpretation of the immune cell subpopulation distribution, minimizing intracluster heterogeneity. Sample IDs corresponding to each cluster were extracted for further analysis.

Survival Analysis of Clusters

The primary outcome in our analysis was progression-free survival (PFS), defined as the time from pathologic diagnosis to the first occurrence of a new tumor, including biochemical recurrence (BCR), locoregional recurrence (LRR), distant metastases (DM) or death. Overall survival (OS) was also evaluated and defined as the time from pathologic diagnosis to death or loss to follow-up, as defined by the TCGA study group. Treatment details including timing and dose of radiation was obtained from the Firebrowse web tool [22]. Patients still alive were censored at the time of last follow up. Each endpoint was assessed using the Kaplan-Meier method, and survival curves were compared using the Mantel-Cox log-rank test. Survival analysis was carried out using the survminer R package (R Foundation for Statistical Computing Version 3.6.2, Vienna, Austria) [23]. Log-rank p-value and risk tables are displayed on each chart.

Retrieving Raw Count Data

The “TCGAbiolinks” package was downloaded from Bioconductor [24–26]. The GDC query function was used to retrieve Illumina HiSeq RNA data from primary tumors in the TCGA PRAD
dataset and the data was downloaded using the GDCdownload function. Raw count data was normalized, and low count genes were filtered according to the default 25% quantile across all samples. The table of normalized and filtered raw count data was extracted for use in downstream analysis.

Statistical Analysis

Clinical, pathologic and molecular characteristics were compared between clusters using statistical methods in R using a chi-square test. The Kaplan Meier method was used to compare endpoints across clusters with the log-rank test. To determine the influence of immunologic and clinicopathologic covariates on PFS, a multivariable Cox-regression analysis was performed. Statistical significance was set at p<0.05.

3. Results

TIME clustering

Patients were divided into clusters based on the relative fractions of immune cell subsets within the TIME; 139 (28.0%) patients were grouped into cluster 1 (CD4 Memory Resting T cell [CD4 MR]^High^Plasma Cell^High^M0^Low^M2^Low^), 115 (23.2%) in cluster 2 (CD4 MR^Low^Plasma Cell^High^M0^Low^M2^Low^), 112 (22.6%) in cluster 3 CD4 MR^High^Plasma Cell^Low^M0^High^M2^Low^, and 126 (25.4%) into cluster 4 (CD4 MR^High^Plasma Cell^Low^M0^Low^M2^High^) (Figure 1). Only immune cell subsets with non-zero expression were displayed. Full unsupervised hierarchical clustering for 22 immune cell subsets can be visualized in Figure S1.
Figure 1: Panel (A) displays the clusters of immune populations in the PRAD TCGA dataset. The columns display the individual immune cells represented in each column, while the rows display the unique identifiers within each cluster. CD4 MR represents CD4 Memory Resting T cells. Cluster 1 is CD4 $^{MR^{High}}$Plasma CellHighM0LowM2Low. Cluster 2 is CD4 $^{MR^{Low}}$Plasma CellHighM0LowM2Low. Cluster 3 is CD4 $^{MR^{High}}$Plasma CellLowM0HighM2Low. Cluster 4 is CD4 $^{MR^{High}}$Plasma CellLowM0LowM2High. Panel (B) displays the median cell infiltration, derived from CIBERSORT absolute immune fraction, for the most prominent cell types in the TCGA PRAD database by cluster.

Abbreviations: T follic, T follicular helper T cells; NK Act, activated natural killer cells; Mast Rest, resting mast cells.

Baseline demographic and treatment details by TIME cluster

Complete demographic variables by cluster can be seen in Table 1. Patients in the macrophage enriched/plasma cell non-enriched clusters (3 and 4) had higher rates of Gleason 8-10 (25%, 29%, 52%, and 60% for clusters 1-4), high risk disease (30%, 34%, 46%, 48% for clusters 1-4), and older age (60, 61, 63, and 65 years old) compared to plasma cell high subtypes (clusters 1 and 2). TMPRSS2:ERG fusion status was similar across clusters, as was predominant tumor location within the prostate gland. Post-operative radiotherapy (adjuvant or salvage) was more common in the macrophage enriched/plasma cell non-enriched clusters (13%, 15%, 25%, 23% for clusters 1-4), as was salvage hormone therapy or chemotherapy (9%, 14%, 22%, 20% for clusters 1-4). Post-operative radiotherapy dose was similar across clusters (66-70 Gy).
Table 1: Demographic and treatment data for all patients in the TCGA PRAD cohort, divided by cluster.

	Cluster 1 (N = 139)	Cluster 2 (N = 115)	Cluster 3 (N = 112)	Cluster 4 (N = 126)
Median Age (years)	59.9	61.1	62.5	64.7
Median PSA (IQR)	7.2 (5.0-11.6)	7.6 (5.6-9.9)	7.5 (4.8-12.1)	7.5 (5.0-11.3)
Gleason Score ≤6	20 (14.4%)	10 (8.7%)	6 (5.4%)	8 (6.3%)
	7	84 (60.4%)	72 (62.6%)	46 (41.4%)
	8-10	35 (25.2%)	33 (28.7%)	58 (51.8%)
Pathologic T category	pT2	53 (38.1%)	46 (40.0%)	38 (33.9%)
	pT3a	53 (38.1%)	36 (31.3%)	31 (27.7%)
	pT3b	28 (20.1%)	32 (27.8%)	35 (31.3%)
	pT4	4 (2.9%)	0	4 (3.6%)
Risk Group	Low	14 (10.1%)	5 (4.3%)	3 (2.7%)
	Intermediate	74 (53.2%)	66 (57.4%)	42 (37.5%)
	High	42 (30.2%)	39 (33.9%)	51 (45.5%)
Zone of Origin	Peripheral	26 (18.7%)	37 (32.2%)	30 (26.8%)
	Central	1 (0.7%)	0	1 (0.9%)
	Transition	2 (1.4%)	2 (1.7%)	3 (2.7%)
	Multiple	32 (23.0%)	22 (19.1%)	32 (28.6%)
TMPRSS2:ERG Fusion	Wild-Type	91 (65.5%)	66 (57.4%)	71 (63.4%)
	Fusion	47 (33.8%)	48 (41.7%)	40 (35.7%)
Median Follow Up (months)	28	34.3	31.2	30.8
Recurrence	BCR	10 (7.2%)	15 (13.0%)	22 (19.6%)
	LRR	3 (2.2%)	0	1 (0.9%)
	Metastasis	0	0	2 (1.8%)
	Death	2 (1.4%)	3 (2.6%)	3 (2.7%)
	Radiation	11 (7.9%)	12 (10.4%)	19 (17.0%)
	Adjuvant	7 (5.0%)	5 (4.3%)	9 (8.0%)
	Salvege	66.6	67.5	70
	Median Dose (Gy)	33.5	35	35
	Median Fractions	13 (9.3%)	16 (13.9%)	25 (22.3%)
	Salvage Systemic Therapy	13 (9.3%)	16 (13.9%)	25 (19.9%)

Abbreviations: PSA, prostate-specific antigen; IQR, interquartile range; BCR, biochemical recurrence; LRR, locoregional recurrence.
TIME cluster prognostic effect

The median follow-up time for all patients was 31 months and was similar across clusters (28, 34, 31, and 31 months for clusters 1-4, respectively). Overall, 9 patients (1.8%) had died at the time of this study due to their prostate cancer, and 82 (16.5%) had recurrence of their disease. Of those that recurred, 68 (13.7%) had a BCR, 7 (1.4%) had LRR, and 7 (1.4%) had DM.

The primary endpoint of the study, PFS, was analyzed for each cluster using Kaplan-Meier estimates and compared using the log-rank test. Median time from pathologic diagnosis to a new tumor event, defined as BCR, LRR, DM, or death was 29.5 months in cluster 1, 30.1 months in cluster 2, 23.1 months in cluster 3, and 26.1 months in cluster 4 (Global p-value<0.0001, **Figure 2**). The two clusters with the poorest performance were clusters 3 and 4, as demonstrated by pairwise comparisons, both of which uniquely expressed a macrophage-enriched phenotype in comparison to clusters 1 and 2.

Figure 2: Figure 2 demonstrates the Kaplan-Meier curve for Progression-free survival for each of the clusters in the TCGA PRAD cohort. Clusters are color coded, with a legend at the top of the figure. Number at risk at various time points is displayed at the bottom of the figure. Pairwise log-rank comparisons were conducted for each of the curves listed, and results displayed within the figure.

When clusters 3 and 4 were pooled and compared to clusters 1 and 2, clusters 3 and 4 (macrophage enriched/plasma cell non-enriched) had shorter PFS (HR 2.24, 95% CI 1.46 – 3.45, p = 0.0002, **Figure 3A**), increased BCR (HR 2.13, 95% CI 1.30 – 3.48, p = 0.0026, **Figure 3B**), DM (all metastatic events occurred only in clusters 3 and 4, p<0.0001, **Figure 3C**) and no significant difference in OS (HR 0.932, 95% CI 0.249 – 3.49, p = 0.917, **Figure 3D**).
Figure 3: Panel (A) demonstrates the Kaplan-Meier curve for progression-free survival for grouped clusters 1 and 2 versus grouped clusters 3 and 4 (HR 2.243, 95% CI 1.458 – 3.450, p = 0.0002). Panel (B) Biochemical recurrence (HR 2.128, 95% CI 1.302 – 3.479, p = 0.0026). Panel (C) Distant metastasis (all events occurred in clusters 3 and 4, p < 0.0001). Panel (D) Overall survival (HR 0.9319, 95% CI 0.2488 – 3.49, p = 0.917).

Subgroup analyses were then performed on clusters 3 and 4. When comparing PFS for only patients receiving surgery in cluster 3 vs. 4, cluster 4 displayed significantly worse PFS (HR 18.1, 95% CI 2.41–135.5, p<0.0001, Figure 4A). In contrast, when isolating only patients who received surgery and radiation, cluster 3 displayed a poorer prognosis, with median PFS of 29.2 months in cluster 4 and 20 months in cluster 3 (HR 0.37, 95% CI 0.157 – 0.864, p = 0.0217, Figure 4B). A test for interaction revealed no significant interaction for the outcome of PFS in the fitted Cox regression analysis between treatment groups and clusters (p = 0.5640).
Figure 4: Panel (A) demonstrates progression-free survival for only patients receiving surgery in cluster 3 vs. 4, with cluster 4 displaying significantly worse progression-free survival (HR 18.1, 95% CI 2.41 – 135.5, p < 0.0001). Panel (B) displays progression-free survival for patients receiving both surgery and radiation in cluster 3 vs. 4, with cluster 3 displaying significantly worse progression-free survival (log-rank p=0.018; HR 0.368, 95% CI 0.1568 – 0.8642, p = 0.0217). The Kaplan-Meier curves are color-coded, with figure legends at the top of each panel.

After establishing that macrophage-enriched PCa offers the poorest prognosis of the immune subpopulations, and particularly cluster 3, a multivariable analysis was performed to determine the independent prognostic impact of TIME clusters on PFS (Figure 5). Cluster 3 (cluster 1 was reference, HR 3.64, 95%CI 1.81–7.3, p< 0.001) was independently prognostic for the endpoint of PFS. Cluster 4 trended towards also having independently worse prognosis (HR 1.85, 95%CI 0.98-3.50, p=0.06), but did not reach statistical significance.
4. Discussion

In this retrospective analysis of whole-exome sequenced samples, we characterized the landscape of the TIME in localized PCa and identified four distinct immune clusters that are defined by four cell types. The two clusters (3 and 4) with low plasma cell content and expression of macrophages (M0 and M2, respectively) had worse outcomes compared to the plasma cell enriched clusters (1 and 2). M0 macrophages are plastic cells that can change their phenotype, potentially shifting toward pro-tumor TAMs, under the influence of environmental signals such as radiation damage [27]. In PCa, TAMs and other myeloid subsets are known to constitute up to 70% of tumor immune subsets, and they are known to influence tumor progression through angiogenesis, tumor cell proliferation, control over adaptive immunity, and metastasis formation [28–34]. Other studies have shown that TAMs confer poor prognosis in prostate cancer, likely through their ability to promote metastasis and progression through the CCL2-CCR2 and CCL22-CCR4 axes [17,35–38]. For this reason, TAMs have been an attractive target of therapy in cancer patients, and strategies to deplete these cell populations have been investigated in the clinical setting [31,39,40]. However, the reported overall benefit from these therapies has been negative to date [41]. This may owe to the extreme plasticity of these cells, as TAMs may be either pro-tumoral or anti-tumoral, and blunting the pro-tumoral effects may be offset by the depletion of anti-tumoral macrophage populations [41].

There is growing interest in immunoradiotherapy. A recent study found PD-L2, a checkpoint inhibitor targeting PD-1, to have significant interaction with predicted radiation therapy response [17]. Another recent study demonstrated that radiation therapy may lead to the polarization of macrophages toward the immunosuppressive, pro-tumoral phenotype [42]. In fact, both in vitro and
in vivo experiments have demonstrated that TAMs from irradiated tumors support tumor growth and resistance to radiation therapy [43,44]. Thus, strategies for eliminating or inhibiting macrophages in conjunction with radiation therapy have demonstrated enhanced anti-tumor efficacy [45,46]. One animal study has been conducted in PCA with CSF1R signaling blockade, and one phase 2 clinical trial with sunitinib, did not show significantly improved results over radiation alone [47,48]. These studies did not account for the noncellular components of the TIME that may have influenced these results. Our analysis demonstrated that within patients receiving post-operative radiotherapy, cluster 3, dominated by M0 macrophages, especially has suboptimal outcomes. These results support the potential benefit for further research into immunoradiotherapy targeting macrophages in prostate cancer.

Our study is not without limitations. This is a retrospective analysis, and therefore subject to the limitations associated with this exploratory study design. Cell types were approximated through RNAseq algorithms, rather than direct assessment (i.e. immunohistochemistry). The median follow-up in TCGA for PCA is short and the number of events are limited. Thus, smaller effect sizes are likely to not be captured in our analyses.

Our study has built on the previous literature by characterizing immune clusters within localized PCA [17]. Additionally, by characterizing the aggressive nature of macrophage-enriched/plasma cell non-enriched PCA, these results shed light on a potential risk stratification tool and rational subgroups in which to test TIME-based treatment strategies.

Supplementary Materials: The following are available online at https://osf.io/srbcf/?view_only=4756b3cfff4fc6e6a8d20d5a17ddc781, supplemental data files and R code repository.

Author Contributions: Conceptualization, N.K.J., M.F., S.S., R.J., M.D.G., R.T.D., W.C.J, A.B.W., E.M.S, S.G.Z, F.Y.F. I.E.N, D.E.S.; Methodology, N.K.J., M.F., S.S., R.J., M.D.G., R.T.D., W.C.J, A.B.W., E.M.S, S.G.Z, F.Y.F. I.E.N, D.E.S.; Software, R Foundation for Statistical Computing, V 3.6.2, Venice, Austria; Validation, N.K.J., M.F., S.S., R.J., I.E.N, D.E.S.; Formal Analysis, M.F. and N.K.J.; Investigation, N.K.J. and M.F.; Resources, N.K.J., M.F., D.E.S.; Data Curation, N.K.J. and M.F.; Writing – Original Draft Preparation, N.K.J., M.F. and S.S.; Writing – Review & Editing, N.K.J., M.F., S.S., R.J., M.D.G., R.T.D., W.C.J, A.B.W., E.M.S, S.G.Z, F.Y.F. I.E.N, D.E.S.; Visualization, N.K.J., R.J., and M.F.; Supervision, I.E.N and D.E.S.; Project Administration, D.E.S.; Funding Acquisition, N.K.J., D.E.S.

Funding: This research was funded the National Institute of Health T35 grant number HL007690-35 (NKJ), P50 CA186786 (DES), and the Prostate Cancer Foundation (DES).

Acknowledgments: none

Conflicts of Interest: The authors declare no conflict of interest except as listed below:
- Daniel E. Spratt- funding from Janssen, personal fees from Janssen, Blue Earth, AstraZeneca
- Felix Y. Feng- personal fees from Astellas, Bayer, BlueEarth Diagnostics, Celgene, Clovis, EMD Serono, Genentech, Janssen, Myovant, Ryovant, and Sanofi, and is a co-founder and has an ownership stake in PFS Genomics, patent applications with Decipher biosciences on molecular signatures in prostate cancer unrelated to this work, for a molecular signature in breast cancer unrelated to this work and licensed to PFS genomics, and with Celgene unrelated to this work.
Shuang G. Zhao - patent applications with Decipher biosciences on molecular signatures in prostate cancer unrelated to this work, for a molecular signature in breast cancer unrelated to this work and licensed to PFS genomics, and with Celgene unrelated to this work.

Appendix

Figure S1: Supplemental Heatmap displaying all clustering data for gene signatures in the TCGA PRAD dataset. Due to the unsupervised nature of the clustering the order of clusters 1 and 2 are interchanged from Figure 1, as is much of the intra-cluster ordering. However, the unique identifiers in each cluster remain the same (rows of the heatmap). **Abbreviations**: CD8, CD8$^+$ T cells; CD4, CD4$^+$ T cells; T gamma, T cells gamma delta; NK, natural killer cells; Dend Rest, resting dendritic cells; Dend Active, activated dendritic cells; Mast Rest, resting mast cells; Mast Active, activated mast cells.
References

1. Global Cancer Observatory. Cancer today data table Available online: http://gco.iarc.fr/today/online-analysis-table?v=2018&mode=cancer&mode_population=continents&population=900&key=asr&sex=0&cancer=39&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=1&include_nmsc_other=1.

2. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018, 68, 394–424, doi:10.3322/caac.21492.

3. Yadav, S.S.; Stockert, J.A.; Hackert, V.; Yadav, K.K.; Tewari, A.K. Intratumor heterogeneity in prostate cancer. Urol. Oncol. 2018, 36, 349–360, doi:10.1016/j.urolonc.2018.05.008.

4. Beerenwinkel, N.; Antal, T.; Dingli, D.; Traulsen, A.; Kinzler, K.W.; Velculescu, V.E.; Vogelstein, B.; Nowak, M.A. Genetic progression and the waiting time to cancer. PLoS Comput. Biol. 2007, 3, e225, doi:10.1371/journal.pcbi.0030225.

5. Liu, A.Y.; Roudier, M.P.; True, L.D. Heterogeneity in primary and metastatic prostate cancer as defined by cell surface CD profile. Am. J. Pathol. 2004, 165, 1543–1556, doi:10.1016/S0002-9440(10)63412-8.

6. Ross, A.E.; D’Amico, A.V.; Freedland, S.J. Which, when and why? Rational use of tissue-based molecular testing in localized prostate cancer. Prostate Cancer Prostatic Dis. 2016, 19, 1–6, doi:10.1038/pcan.2015.31.

7. Moschini, M.; Spahn, M.; Mattei, A.; Cheville, J.; Karnes, R.J. Incorporation of tissue-based genomic biomarkers into localized prostate cancer clinics. BMC Med 2016, 14, 67, doi:10.1186/s12916-016-0613-7.

8. Nagarsheth, N.; Wicha, M.S.; Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 2017, 17, 559–572, doi:10.1038/nri.2017.49.

9. Seager, R.J.; Hajal, C.; Spill, F.; Kamm, R.D.; Zaman, M.H. Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. Converg Sci Phys Oncol 2017, 3, doi:10.1088/2057-1739/aa7e86.

10. Roma-Rodrigues, C.; Mendes, R.; Baptista, P.V.; Fernandes, A.R. Targeting Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 2019, 20, doi:10.3390/ijms20040840.

11. Stanta, G.; Bonin, S. Overview on Clinical Relevance of Intra-Tumor Heterogeneity. Front Med (Lausanne) 2018, 5, 85, doi:10.3389/fmed.2018.00085.

12. Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; et al. Role of tumor microenvironment in tumorigenesis. J Cancer 2017, 8, 761–773, doi:10.7150/jca.17648.

13. Netea-Maier, R.T.; Smit, J.W.A.; Netea, M.G. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett. 2018, 413, 102–109, doi:10.1016/j.canlet.2017.10.037.

14. Hui, I.; Chen, Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett. 2015, 368, 7–13, doi:10.1016/j.canlet.2015.07.039.

15. Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331, 1565–1570, doi:10.1126/science.1203486.
16. Nishikawa, H.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. *Curr. Opin. Immunol.* 2014, 27, 1–7, doi:10.1016/j.coi.2013.12.005.

17. Zhao, S.G.; Lehrer, J.; Chang, S.L.; Das, R.; Erho, N.; Liu, Y.; Sjöström, M.; Den, R.B.; Freedland, S.J.; Klein, E.A.; et al. The Immune Landscape of Prostate Cancer and Nomination of PD-L2 as a Potential Therapeutic Target. *JNCI: Journal of the National Cancer Institute* 2019, 111, 301–310, doi:10.1093/jnci/djy141.

18. Newman, A.M.; Steen, C.B.; Liu, C.L.; Gentles, A.J.; Chaudhuri, A.A.; Scherer, F.; Khodadoust, M.S.; Esfahani, M.S.; Luca, B.A.; Steiner, D.; et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. *Nat. Biotechnol.* 2019, 37, 773–782, doi:10.1038/s41587-019-0114-2.

19. Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov* 2012, 2, 401–404, doi:10.1158/2159-8290.CD-12-0095.

20. Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. *Sci Signal* 2013, 6, pl1, doi:10.1126/scisignal.2004088.

21. Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. *Bioinformatics* 2016, 32, 2847–2849, doi:10.1093/bioinformatics/btw313.

22. TCGA Firebrowse Available online: http://firebrowse.org/.

23. Kassambara A, Kosinski M, Biecek P, Fabian S. Drawing survival curves using ‘ggplot2’. R package version 0.4.2.

24. Mounir, M.; Lucchetta, M.; Silva, T.C.; Olsen, C.; Bontempi, G.; Chen, X.; Noushmehr, H.; Colaprico, A.; Papaleo, E. New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx. *PLoS Comput. Biol.* 2019, 15, e1006701, doi:10.1371/journal.pcbi.1006701.

25. Silva, C T, Colaprico, Antonio, Olsen, Catharina, D’Angelo, Fulvio, Bontempi, Gianluca, Ceccarelli, Michele, Noushmehr, Houtan TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages 2016.

26. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabelot T, Malta TM, Pagnotta SM, Castiglioni I, Ceccarelli M, Bontempi G, Noushmehr H TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. 2015.

27. Qiu, S.-Q.; Waaijer, S.J.H.; Zwager, M.C.; de Vries, E.G.E.; van der Vegt, B.; Schröder, C.P. Tumor-associated macrophages in breast cancer: Innocent bystander or important player? *Cancer Treat. Rev.* 2018, 70, 178–189, doi:10.1016/j.ctrv.2018.08.010.

28. Calcinotto, A.; Spataro, C.; Zagato, E.; Di Mitri, D.; Gil, V.; Crespo, M.; De Bernardis, G.; Losa, M.; Mirenda, M.; Pasquini, E.; et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. *Nature* 2018, 559, 363–369, doi:10.1038/s41586-018-0266-0.

29. Baer, C.; Squadrito, M.L.; Laoui, D.; Thompson, D.; Hansen, S.K.; Kiialainen, A.; Hoves, S.; Ries, C.H.; Ooi, C.-H.; De Palma, M. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. *Nat. Cell Biol.* 2016, 18, 790–802, doi:10.1038/ncb3371.
30. Bingle, L.; Brown, N.J.; Lewis, C.E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 2002, 196, 254–265, doi:10.1002/path.1027.

31. Guerriero, J.L.; Sotayo, A.; Ponichtera, H.E.; Castrillon, J.A.; Pourzia, A.L.; Schad, S.; Johnson, S.F.; Carrasco, R.D.; Lazo, S.; Bronson, R.T.; et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 2017, 543, 428–432, doi:10.1038/nature21409.

32. Kaneda, M.M.; Messer, K.S.; Ralainirina, N.; Li, H.; Leem, C.J.; Gorjestani, S.; Woo, G.; Nguyen, A.V.; Figueiredo, C.C.; Foubert, P.; et al. PI3Kγ is a molecular switch that controls immune suppression. Nature 2016, 539, 437–442, doi:10.1038/nature19834.

33. Mantovani, A.; Schioppa, T.; Porta, C.; Allavena, P.; Sica, A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006, 25, 315–322, doi:10.1007/s10555-006-9001-7.

34. Qian, B.-Z.; Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141, 39–51, doi:10.1016/j.cell.2010.03.014.

35. Lissbrant, I.F.; Stattin, P.; Wikstrom, P.; Damber, J.E.; Egevad, L.; Bergh, A. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int. J. Oncol. 2000, 17, 445–451, doi:10.3892/ijo.17.3.445.

36. Izumi, K.; Fang, L.-Y.; Mizokami, A.; Namiki, M.; Li, L.; Lin, W.-J.; Chang, C. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol Med 2013, 5, 1383–1401, doi:10.1002/emmm.201202367.

37. Lin, T.-H.; Izumi, K.; Lee, S.O.; Lin, W.-J.; Yeh, S.; Chang, C. Anti-androgen receptor ASC-J9 versus anti-androgens MDV3100 (Enzalutamide) or Casodex (Bicalutamide) leads to opposite effects on prostate cancer metastasis via differential modulation of macrophage infiltration and STAT3-CCL2 signaling. Cell Death Dis 2013, 4, e764, doi:10.1038/cddis.2013.270.

38. Maolake, A.; Izumi, K.; Shigehara, K.; Natsagdorj, A.; Ishimoto, H.; Kadomo, S.; Takezawa, Y.; Machioka, K.; Narimoto, K.; Namiki, M.; et al. Tumor-associated macrophages promote prostate cancer migration through activation of the CCL22-CCR4 axis. Oncotarget 2017, 8, 9739–9751, doi:10.18632/oncotarget.14185.

39. Pienta, K.J.; Machiels, J.-P.; Schrijvers, D.; Alekseev, B.; Shkolnik, M.; Crabb, S.J.; Li, S.; Seetharam, S.; Puchalski, T.A.; Takimoto, C.; et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs 2013, 31, 760–768, doi:10.1007/s10637-012-9869-8.

40. Ries, C.H.; Cannarile, M.A.; Hoves, S.; Benz, J.; Wartha, K.; Runza, V.; Rey-Giraud, F.; Pradel, L.P.; Feuerhake, F.; Klamann, I.; et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 2014, 25, 846–859, doi:10.1016/j.ccr.2014.05.016.

41. Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017, 14, 399–416, doi:10.1038/nrclinonc.2016.217.
42. Shi, X.; Shiao, S.L. The role of macrophage phenotype in regulating the response to radiation therapy. *Transl Res* **2018**, *191*, 64–80, doi:10.1016/j.trsl.2017.11.002.

43. Tsai, C.-S.; Chen, F.-H.; Wang, C.-C.; Huang, H.-L.; Jung, S.-M.; Wu, C.-J.; Lee, C.-C.; McBride, W.H.; Chiang, C.-S.; Hong, J.-H. Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. *Int. J. Radiat. Oncol. Biol. Phys.* **2007**, *68*, 499–507, doi:10.1016/j.ijrobp.2007.01.041.

44. Milas, L. Tumor bed effect in murine tumors: relationship to tumor take and tumor macrophage content. *Radiat. Res.* **1990**, *123*, 232–236.

45. De Palma, M.; Lewis, C.E. Macrophage regulation of tumor responses to anticancer therapies. *Cancer Cell* **2013**, *23*, 277–286, doi:10.1016/j.ccr.2013.02.013.

46. Hughes, R.; Qian, B.-Z.; Rowan, C.; Muthana, M.; Keklikoglou, I.; Olson, O.C.; Tazzyman, S.; Danson, S.; Addison, C.; Clemons, M.; et al. Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy. *Cancer Res.* **2015**, *75*, 3479–3491, doi:10.1158/0008-5472.CAN-14-3587.

47. Xu, J.; Escamilla, J.; Mok, S.; David, J.; Priceman, S.; West, B.; Bollag, G.; McBride, W.; Wu, L. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. *Cancer Res.* **2013**, *73*, 2782–2794, doi:10.1158/0008-5472.CAN-12-3981.

48. Armstrong, A.J.; Halabi, S.; Healy, P.; Lee, W.R.; Koontz, B.F.; Moul, J.W.; Mundy, K.; Creel, P.; Wood, S.; Davis, K.; et al. A phase 2 multimodality trial of docetaxel/prednisone with sunitinib followed by salvage radiation therapy in men with PSA recurrent prostate cancer after radical prostatectomy. *Prostate Cancer Prostatic Dis.* **2016**, *19*, 100–106, doi:10.1038/pcan.2015.59.