Broad Anti-Viral Capacities of Lian-Hua-Qing-Wen Capsule and Jin-Hua-Qing-Gan Granule and Rational use Against COVID-19 Based on Literature Mining

Mingfei Shi†, Bo Peng†, An Li†, Ziyun Li3, Ping Song4, Jing Li5*, Ruodan Xu1* and Ning Li1*

1Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China, 2State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China, 3The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China, 4Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China, 5Department of Nephropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China

The novel coronavirus disease 2019 (COVID-19) has become a matter of international concern as the disease is spreading exponentially. Statistics showed that infected patients in China who received combined treatment of Traditional Chinese Medicine and modern medicine exhibited lower fatality rate and relatively better clinical outcomes. Both Lian-Hua-Qing-Wen Capsule (LHQWC) and Jin-Hua-Qing-Gan Granule (JHQGG) have been recommended by China Food and Drug Administration for the treatment of COVID-19 and have played a vital role in the prevention of a variety of viral infections. Here, we desired to analyze the broad-spectrum anti-viral capacities of LHQWC and JHQGG, and to compare their pharmacological functions for rational clinical applications. Based on literature mining, we found that both LHQWC and JHQGG were endowed with multiple antiviral activities by both targeting viral life cycle and regulating host immune responses and inflammation. In addition, from literature analyzed, JHQGG is more potent in modulating viral life cycle, whereas LHQWC exhibits better efficacies in regulating host anti-viral responses. When translating into clinical applications, oral administration of LHQWC could be more beneficial for patients with insufficient immune functions or for patients with alleviated symptoms after treatment with JHQGG.

Keywords: broad-spectrum antivirals, Lian-Hua-Qing-Wen capsule, Jin-Hua-Qing-Gan granule, medicinal plants, COVID-19, SARS-CoV-2, host-directed therapy

INTRODUCTION

Lian-Hua-Qing-Wen Capsule and Jin-Hua-Qing-Gan Granule are Both Recommended as Effective “Chinese Solution” Against COVID-19

The novel coronavirus disease 2019 (COVID-19) pandemics has reached almost every country in the world. Compared with the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003 and the pandemic of Middle East Respiratory Syndrome (MERS) in 2012, COVID-19 caused by the novel coronavirus SARS-CoV-2 infection has relatively low fatality rate, whereas much more rapid and
higher human-to-human transmissibility (Meo et al., 2020). Typically, the existence of a large number of asymptomatic carriers of SARS-CoV-2 additionally exerts potential burden to the control and prevention of COVID-19.

SARS-CoV-2 can be easily transmitted through respiratory droplets or by aerosol, and infected people have a wide range of reported symptoms, from mild symptoms to severe illness. The most common manifestations of COVID-19 are fever or chill, dry cough and fatigue, which could be accompanied with a temporary loss of smell or taste, muscle or body aches. In critical cases, acute myocardial injury, liver or kidney dysfunction and blood-clotting complications may occur (Huang et al., 2020; Khider et al., 2020), consequently leading to septic shock and acute respiratory distress syndrome (ARDS) or death. The “Clinical Treatment for COVID-19” issued by the World Health Organization recommends that symptomatic treatments that relieve fever and pain, together with adequate nutritional supports are basically required for mild cases of COVID-19. For severe SARS-CoV-2 infections, oxygen therapy and fluid supply need to be reinforced. In spite of supportive measures above, potential anti-viral drugs which were used for diseases due to viral infections other than SARS-CoV-2 have been repurposed for COVID-19, such as remdesivir, ribavirin and hydroxychloroquine are however not addressed because of reported side-effects or lack of supporting evidence from large-scale randomized controlled trials (Izcvich et al., 2020; Trivedi et al., 2020; Qaseem et al., 2021). Likewise, vaccine development involves a difficult, complex and costly process, and the success of which is at a high risk of failure protecting against mutant viral variants (Biswas and Majumder, 2020; Penarrubia et al., 2020). Despite the development of vaccines, scientists are still tirelessly designing new drugs and repurposing existing drugs against SARS-CoV-2. Though tremendous strides have been made in the fight against coronaviruses, a lack of safe and effective anti-SARS-CoV-2 drugs is still a key factor restricting the prevention and control of COVID-19 pandemics.

The practice of Traditional Chinese Medicine (TCM) has accumulated a wealth of clinical experience in the treatment of infectious diseases since Qin-Han (about 221 BC to 220 AD) and developed into a theory in Ming-Qing period (about 1368–1777 AD). Infectious diseases in TCM have been described as “infections caused by toxic qi”, “warm pathogen first invades lung via nose and mouth”, and “disease spreads due to close contact”. These descriptions fit well with the epidemiological characteristics of modern acute infectious diseases. According to TCM theory, COVID-19 is the result of invasion by dampness-toxin pathogens, therefore COVID-19 is pathogenically characterized by dampness-toxin and host healthy-qi deficiency. Most patients first present mild sign of dampness, like fatigue, poor appetite and greasy thick tongue coating (Zheng, 2020). As disease progresses, dampness-toxin invades interiority and diffuses into triple energizer, leading to vital qi impairment and accumulation of toxin-qi in viscera. Excessive accumulation of dampness-toxin may easily lead to vital qi exhaustion and consequently loss of life. Hence, TCM formulae functioning to remove dampness-toxin are effective in preventing COVID-19 progress. Being the first country that was attacked by COVID-19, approximately 91.5% confirmed patients in China were treated with TCM formulae and the total effective rate has reached to 90%. In Wuhan Jiang-Xia Square Cabin Hospital, none of the 564 COVID-19 patients who received combined treatment of TCM and modern medicine developed into severe conditions, and TCM addition significantly reduced the course of hospitalization (Ren et al., 2020).

Both LHQWC and JHQGG belong to “Three Drugs, Three Prescriptions”, official prescriptions of TCM used in the fight against COVID-19 in China. LHQWC, composed of Forsythia suspensa (Thunb.) Vahl, Lonicera japonica Thunb., honey-fried Ephedra sinica Stapf, fried Prunus sibirica L., Gypsum Fibrosum, Isatis tinctoria L., Dryopteris crassirhizoma Nakai, Hawthornia cordata Thunb., Pogostemon cablin (Blanco) Benth., Rheum palmatum L., Rhodiola crenulata (Hook.f. and Thomson) H. Ohba, Mentha canadensis L. and Glycyrrhiza glabra L., is innovative Chinese Patent Medicine (CPM) approved during the SARS epidemics in 2003. JHQGG, the other CPM constituting Forsythia suspensa (Thunb.) Vahl, Lonicera japonica Thunb., Ephedra sinica Stapf, Prunus sibirica L., 1-Menthol, Glycyrhiza glabra L., Scutellaria baicalensis Georgi, Fritillaria thunbergii Miq., Anemarrhena asphodeloides Bunge, Arctium lappa L. and Artemisia annua L., has been approved to treat H1N1 influenza virus infection since 2009. Both LHQWC and JHQGG are developed based on Ma-Xing-Shi-Gan Decotion and Yin-Qiao Powder, classic TCM decoctions used for respiratory infections recorded in Treatize on Exogenous Febrile Disease (about 210 AD) and Systematic Differentiation of Warm Diseases (1798 AD), respectively. In clinical practices resolving respiratory infections, LHQWC is mainly used to clear away plague, remove toxins, ventilate lungs and discharge heat, whereas JHQGG is applied to dispel wind, clear heat and resolve toxicity. In the combat against COVID-19, National Health Commission of China approved both LHQWC and JHQGG as clinical therapies in China, and observational studies showed that both can effectively relieve fever, fatigue, cough and phlegm in the early stage of COVID-19, contributing to reductions in risks of rapid clinical deterioration. Supportively, in vitro studies have revealed that both formulae have anti-inflammatory effects, providing fundamental evidence for clinical application of both formulae in the fight against COVID-19 (Cheng, 2020; Duan, 2020; Hu et al., 2020; Runfeng et al., 2020; Zhang et al., 2020).

Holism Theory of TCM and Anti-viral Actions of Lian-Hua-Qing-Wen Capsule and Jin-Hua-Qing-Gan Granule, a Reflection of Host-Directed Therapy in Modern Medicine

Holism is the fundamental concept in TCM, which emphasizes the connections of the whole body and intends to treat the whole person rather than focusing on individual symptoms. Directed by holistic view, TCM practitioners adopt syndrome differentiation (Bian Zheng), a comprehensive analysis of a variety of clinical information, and herbal formulae to resolve single or complex uncomformability of patients. This holism theory of TCM
dovetails with the principle of host-directed therapy (HDT). HDT is a novel concept in the treatment for infectious diseases and was first used in *tuberculosis* in 2015 (Zumla et al., 2015). After then, HDT was gradually fulfilled as anti-viral strategies. Compared to conventional anti-viral therapies, which focus on inhibiting virus activity, HDT aims to maintain homeostasis of host by stimulating anti-viral responses and suppressing immune injuries. It has been shown that compared to single anti-pathogen treatment, HDT is able to reduce the risks of drug resistance induced by bacteria and viruses, endowing HDT a therapeutic potential of being broad-spectrum anti-viral tactics (Kaufmann et al., 2018). Clinical investigations proposed that viral infection-triggered cytokine storm was a vital factor mediating the rapid progress of COVID-19 (Wang T. et al., 2020). High levels of IL (Interleukin) -6 and IL-10, while low levels of CD4+ T and CD8+ T cells can be observed in COVID-19 patients (Guan et al., 2020; Wan et al., 2020). Moreover, plasma IL-2, IL-7, IL-10, GCSF (granulocyte colony-stimulating factor), IP-10 (interferon gamma-induced protein-10), MCP-1 (monocyte chemoattractant protein-1), MIP-1α (macrophage inflammatory protein-1 alpha) and TNF-α (tumor necrosis factor-alpha) are consistently higher in intensive care unit (ICU) patients compared to mild cases (Huang et al., 2020), suggesting that virus-induced exaggerated immune responses and the resulting immune injuries are involved in the progression of COVID-19. Accordingly, HDT-oriented treatments that inhibit IL-6 signaling by down-regulating IL-6 receptors have been suggested as a potential solution for COVID-19 patients (Zumla et al., 2020). Consistent with HDT, in the combat against COVID-19, TCM addresses that sufficient healthy-qi within the body is key to prevent pathogen invasion, so-called “strengthening host resistance to eliminate pathogenic factors”. Accordingly, inspiring vital qi is at the root of preventing infectious diseases in TCM. The functions of “healthy-qi” resemble “immunity” of host, and “pathogenic factors” stand for all substances that affect host homeostasis, such as viruses and bacteria. As emphasized in HDT that considering individuals as a whole rather than separating parts, “strengthening host resistance to eliminate pathogenic factors” in TCM addresses an overall reaction of host in response to invasive viruses, whereas the destiny of pathogen itself is not primarily important. Moreover, same as the HDT concept implicates, the ultimate goal of TCM treatment is to maintain host homeostasis via balancing interactions between host and pathogens, or by establishing equilibrium between stimulating anti-viral reactions and suppressing overactivated immune responses that subsequently cause tissue injuries.

Following the HDT principle and holism theory of TCM, this study primarily desired to gain more insight into the broad anti-viral features of LHQWC and JHQGG, both of which have been applied to treat a variety of viral infections. However, considering that the main herbal composition of LHQWC and JHQGG largely overlap, it therefore appears confusing in the selection of appropriate formula for individual clinical cases. In this scenario, it is of prime importance to also distinguish the similarities and differences between the two formulae in terms of pharmacological anti-viral functions. To implement these goals, we manually grouped the individual active components from either LHQWC or JHQGG or both into two categories, namely constituents that interfere with viral life cycle and components that regulate host immune responses and inflammation. Through comprehensive literature review, data mining and pharmacological target enrichment analysis, we investigated the strength of LHQWC and JHQGG in the above-mentioned virus or host arm to compare their anti-viral functionalities. The holism-directed analysis of LHQWC and JHQGG will provide more insightful information and comprehensive understanding for rational use of these two CPMs in the combat against COVID-19, as well as the emerging or re-emerging pandemics of infectious diseases.

MATERIALS AND METHODS

Literature Collection and Inclusion

In order to collect sufficient data on anti-viral effects of LHQWC and JHQGG, we employed Pubmed (https://pubmed.ncbi.nlm.nih.gov), Ovid (https://ovidsp.ovid.com/), CNKI (https://www.cnki.net), WANFANG (http://www.wanfangdata.com.cn/index.html) and WEIPU (http://www.cqvip.com/) database by searching either the full name of formulae, such as “Lianhua Qingwen Capsules”, “Jinhua Qinggan Granules”, or names of individual medicinal herbs, or active ingredients, together with “virus” as keywords. In addition, bioactive components that were proposed to be antivirals were included via network pharmacology-based prediction and analysis. A total of 1,110 articles were collected for next filtration. For the analysis of broad anti-viral activities, we then excluded studies reporting negative outcomes, clinical trials generally indicating viral infections without clarifying taxonomy of viruses, investigations using inactivated or attenuated viruses as vaccines, and articles with no access to full context due to age. A total of 812 articles were analyzed at this stage. For detailed comparisons of active anti-viral components and pharmacological functions of formulae, studies without indicating names of active components were further excluded. Notably, no information regarding Gypsum Fibrosum and fried *Prunus sibirica* L. in relevant to virus, and we did not find data by searching bioactive components directly isolated from JHQGG, hence we only took ingredients determined by predictive parsing of network pharmacology. Finally, 117 articles were included for comparison of pharmacological functions.

Constructing “Formula–Herb–Virus–Baltimore Classification of Viruses” Network

In order to describe broad-spectrum anti-viral activities of LHQWC and JHQGG, we grouped antiviral data collected as mentioned, and built a network in forms of “Formula-herb-virus-Baltimore classification of viruses”. To further interpret the common and distinctive anti-viral activities of LHQWC and JHQGG in terms of holism theory of TCM, we classified the anti-viral actions reported for LHQWC and JHQGG into being either associated with viral life cycle or responsible to host...
immune responses and inflammation. To gain more insightful understanding, we further categorized active components that disrupt virus life cycle into three levels, including direct virucidal activity, inhibition of viral entry, and suppression of viral replication and egress. Generally, inhibitors of virus entry act through deforming viral particles or blocking the attachment or
TABLE 1 | Active anti-viral components from LHQWC and JHQGG, and their mechanisms of action regulating viral life cycle.

1.1 Direct virucidal activity

Virus	Active component	Herb References
Chikungunya Virus	Baicalin	Scutellaria baicalensis Georgi (Huang Qin) Oo et al. (2018)
Coxackievirus A16	Glycyrrhizic acid	Glycyrrhiza glabra L. (Gan Cao) Wang et al. (2013)
Herpes simplex virus type1	Chinonin/Asphoain	Anemarrhena asphodeloides Bunge (Zhi Mu) Jiang and Xiang (2004)
Newcastle disease virus	Baicalin	Scutellaria baicalensis Georgi (Huang Qin) Jia et al. (2016)
Respiratory syncytial virus	Lonicera japonica	Lonicera japonica Thunb. (Jin Yin Hua) Zhang et al. (2014)

1.2 Inhibit viral entry

Virus	Active component	Mechanisms	Herb References
Coxackie virus B3	Artemisinin	Inhibits viral absorption	Artemisia annua L. (Qing Hao) Ma (2004)
	Baicalin	Reduces cellular lipid synthesis	Scutellaria baicalensis Georgi (Huang Qin) Wang et al. (2020a)
Herpes simplex virus	Houttuynia cordata	Blocks viral binding and penetration	Houttuynia cordata Thunb. (Yu Xing Cao) Zhou (2017); Hung et al. (2015)
Herpes simplex virus type1	Isatis tinctoria L. extracts	Inhibits viral entry	Isatis tinctoria L. (Ban Lan Gen) Fang, 2005
type2 and varicella zoster virus	Houttuynoid A	Blocks viral membrane fusion	Houttuynia cordata Thunb. (Yu Xing Cao) Li et al. (2017a)
Herpes simplex virus type2	Chinonin/Asphoain	Inhibits viral adsorption	Anemarrhena asphodeloides Bunge (Zhi Mu) Jiang et al. (2005)
Human cytomegalovirus	Baicalin	Blocks viral entry through inhibiting epidermal growth factor receptor tyrosine kinase activity and viral nuclear translocation	Scutellaria baicalensis Georgi (Huang Qin) Evers et al. (2005)
Human rotavirus	*Rheum palmatum* L. extracts	Inhibits viral entry	*Rheum palmatum* L. (Da Huang) He et al. (2013)
Influenza A Virus	Flavonoids-enriched extract from Scutellaria baicalensis root	Reduces hemagglutinin	Scutellaria baicalensis Georgi (Huang Qin) Zhi et al. (2019)
	Rhein	Inhibits viral absorption	Rheum palmatum L. (Da Huang) Wang et al. (2018)
Isatis tinctoria L. extract	Clemastanin B, epigotrin, phenylpropanoids portion and the mixture of phenylpropanoids, alkaloids and organic acid fractions	Blocks viral attachment	*Isatis tinctoria* L. (Ban Lan Gen) Xiao et al. (2016)
	Glycyrrhizin	Reduces endocytotic activity and virus uptake	Glycyrrhiza glabra L. (Gan Cao) Wolkerstorfer et al. (2009)
Isatis tinctoria L. water extracts	Inhibits attachment of viruses to cells	*Isatis tinctoria* L. (Ban Lan Gen) Chen et al. (2006)	
(+)-catechin	Inhibits acidification of endosomes and lysosomes	Ephedra sinica Stapf (Ma Huang) Mantani et al. (2001)	
5,7,4′- trihydroxy-8-methoxyflavone	Inhibits fusion of virus with endosome/lysosome membrane	Scutellaria baicalensis Georgi (Huang Qin) Nagai et al. (1995a); Nagai et al. (1995b)	
Influenza A virus, Coxsackievirus B3, Adenovirus	Patchouli alcohol	Inhibits infection at the earliest stages of the viral life cycle, including virus attachment and entry	Pogostemon cablin (Blanco) Benth. (Guang Hui Xiang) Wei et al. (2013)
Porcine reproductive and respiratory syndrome virus	Flavaspidic acid AB	Inhibits viral endocytosis	Oxypteris crassinervata Nakai (Mian Ma Guan Zhong) Yang et al. (2013)
Respiratory syncytial virus	Lonicera japonica Thunb. Extracts	Inhibits viral absorption	Lonicera japonica Thunb. (Jin Yin Hua) Zhang et al. (2014)
Ephedra Sinica water extracts	Inhibits viral absorption and penetration	Ephedra sinica Stapf (Ma Huang) Zhu and Li (2012)	
Radix Glycyrrhizae water extracts	Inhibits viral attachment and penetration	Glycyrrhiza glabra L. (Gan Cao) Yeh et al. (2013)	
SARS Coronavirus	Emodin	Targets spike glycoprotein thus inhibits receptor binding	*Rheum palmatum* L. (Da Huang) Ho et al. (2007)

(Continued on following page)
TABLE 1 | (Continued) Active anti-viral components from LHQWC and JHQGG, and their mechanisms of action regulating viral life cycle.

1.3 Inhibit viral replication and release

Virus	Active component	Mechanisms	Herb	Ref
Bovine viral diarrhea virus, a surrogate in vitro model of hepatitis C virus	Novel artemisinin derivatives (AD)	AD1 and AD2 inhibit the release of Bovine virus diarrhea virus -RNA	Artemisia annua L. (Qing Hao)	Blazquez et al. (2013)
Coxsackie virus B3	Emodin	Unknown	Rheum palmatum L. (Da Huang)	Cai and Luo (2014)
	Artemisinin	Inhibits viral replication	Artemisia annua L. (Qing Hao)	Ma (2004)
	Isatis tinctoria L. polysaccharides extracts	Inhibits viral replication	Isatis tinctoria L. (Ban Lan Gen)	Zhang et al. (2009)
Coxsackievirus B5 and respiratory syncytial virus	Emodin	Inhibits Viral biological synthesis	Rheum palmatum L. (Da Huang)	Liu et al. (2015)
Dengue virus	Lonicerla japonica Thunb. aqueous extracts	The microRNA let-7a targets viral non-structural protein1	Lonicerla japonica	Lee et al. (2017)
	18β-glycoxythinic acid	Binds to nucleoprotein	Glycyrrhiza glabra L. (Gan Cao)	Fu et al. (2016)
Enterovirus 71	Glycyrrhizic acid	Inhibits viral replication	Glycyrrhiza glabra L. (Gan Cao)	Wang et al. (2013)
	Rheum palatum L. extracts	Reduces viral replication	Rheum palatum L. (Da Huang)	Lin et al. (2009)
	Norwogonin, oroxylin A, mosloflavone	Inhibits expression of viral capsid proteins	Scutellaria baikalensis	Choi et al. (2016)
	Baicalin	Interferes with 3D polymerase transcription and translation	Scutellaria baikalensis	Li et al. (2015)
	Honeysuckle-encoded microRNA2911	Targets viral envelope protein1 gene of Enterovirus 71	Lonicerla japonica	Li et al. (2018)
	Emodin	Diminishes cell cycle arrest at S phase induced infection	Rheum palatum L. (Da Huang)	Zhong et al. (2017)
Epstein-Barr Virus	Baicalin	Represses Epstein-Barr nuclear antigen1 Q-promoter activity	Scutellaria baikalensis	Zhang et al. (2018)
	5,7,2'-trihydroxy- and 5,7,2',3'-tetrahydroxyflavone	Unknown	Scutellaria baikalensis	Konoshima et al. (1992)
	Arctium lappa L. extracts	Suppresses viral replication and decreases viral antigen expression, including capsid antigen and early antigen	Arctium lappa L. (Niu Bang Z1)	Chen and Huang (1994)
Hepatitis B virus	Novel artemisinin derivatives (AD)	AD1 and AD2 reduce the release of Hepatitis B virus -DNA	Artemisia annua L. (Qing Hao)	Blazquez et al. (2013)
Hepatitis C virus	Pheophytin	Inhibits Hepatitis C virus -nonstructural3 protease	Lonicerla japonica	Wang et al. (2009a)
Herpes simplex virus	Houttuynia cordata Thunb. Extracts	Suppresses viral replication via inhibiting NF-κB activation	Houttuynia cordata Thunb. (Yu Xing Cao)	Huyng et al. (2015)
Herpes simplex virus type1	Isatis tinctoria L. extracts	Inhibits viral replication	Isatis tinctoria L. (Ban Lan Gen)	Fang (2005)
	Arctium lappa L. hydroalcoholic extracts	Suppresses viral replication	Arctium lappa L. (Niu Bang Z1)	Dias et al. (2017)
	Chinonin/Asphomin	Inhibits viral replication	Anamartenha asphodeloides Bunge (Zhi Mu)	Jiang and Xiang (2004)
Herpes simplex virus type2	Chinonin/Asphomin	Inhibits viral replication	Anamartenha asphodeloides Bunge (Zhi Mu)	Jiang et al. (2005)
Human cytomegalovirus	Artemisinin-derived monomers artesunate (AS)	Inhibits viral replication as hypophosphorylation (activity) of the retinoblastoma protein (pRb)	Artemisia annua L. (Qing Hao)	Roy et al. (2015)
	Genistin	Blocks viral immediate-early protein functioning	Scutellaria baikalensis	Evers et al. (2005)
Human immunodeficiency virus type1	Artemisia afra	Unknown	Artemisia annua L. (Qing Hao)	Lubbe et al. (2012)
	Sennoside A	Inhibits viral replication by targeting viral reverse transcription process including inhibiting HIV-1 Reverse Transcriptase-associated DNA Polymerase and Ribonuclease H activities	Rheum palatum L. (Da Huang)	Esposito et al. (2016)

(Continued on following page)
Virus	Active component	Mechanisms	Herb	Ref
Human rotavirus	*Rheum palmatum* L. extracts	Inhibits viral replication	*Rheum palmatum* L. (Da Huang)	He et al. (2013)
Influenza A Virus	*Isatis tinctoria* L. eruc acid	Reduces viral polymerase transcription activity	*Isatis tinctoria* L. (Ban Lan Gen)	Liang et al. (2020)
	Aloe-emodin	Inhibits viral replication	*Aloe-emodin*	
	Baicalin and biochinin A	Inhibits neuraminidase	*Aloe-emodin*	
	Chlorogenic acid	Inhibits neuraminidase	*Aloe-emodin*	
	Flavonoids-enriched extract from Scutellaria baicalensis root	Inhibits neuraminidase activities	*Scutellaria baicalensis*	Zhi et al. (2019)
	Baicalin	Inhibits RNA polymerase activity	*Scutellaria baicalensis*	Guo et al. (2016)
	Baicalin	Interacts with RNA binding domain of Non-structural protein1	*Scutellaria baicalensis*	Nayak et al. (2014)
	Glycyrrhizin	Inhibits influenza virus polymerase activity	*Scutellaria baicalensis*	Moisy et al. (2012)
	Aloe-emodin	Inhibits viral replication through galectin-3 up-regulation	*Aloe-emodin*	
	Baicalin	Inhibits viral replication	*Scutellaria baicalensis*	Sithisarn et al. (2013)
	Baicalin	Inhibits neuraminidase activity	*Scutellaria baicalensis*	Sithisarn et al. (2013)
	Isatis tinctoria L. extract Clemastanin B (GB), epigotrin, phenylpropanoids portion (PEP) and the mixture of phenylpropanoids, alkaloids and organic acid fractions	Inhibits viral replication	*Isatis tinctoria* L. (Ban Lan Gen)	Xiao et al. (2016)
	Isatis tinctoria L. extracts	Inhibits neuraminidase activity	*Scutellaria baicalensis*	
	Pogostemon cablin (Blanco) Benth extracts	Suppresses viral replication	*Pogostemon cablin* (Blanco) Benth. (Guang Huo Xiang)	Yang (2010)
	Fritillaria thunbergii	Unknown	*Fritillaria thunbergii* Miq. (Zhe Bei Mu)	Kim et al. (2020)
	Chlorogenic acid	Inhibits neuraminidase	*Lonicera japonica* Thunb. (Jin Yin Hua)	Ding et al. (2017)
	Honesuckle (HS)-encoded atypical microRNA-MIR2911	Inhibits IAV-encoded PB2 and NS1 protein expression	*Lonicera japonica* Thunb. (Jin Yin Hua)	Zhou et al. (2015)
	Forsythia suspensa (Thunb.) Vahl fruit	Reduces influenza viral M1 protein	*Forsythia suspensa* (Thunb.) Vahl. (Lian Qiao)	Law et al. (2017)
	Chalcones	Inhibits neuraminidase activity	*Glycyrrhiza glabra L. (Zhe Bei Mu)	Dao et al. (2011)
	Houttuynia cordata Thunb. flavonoids extracts	Inhibits neuraminidase activity	*Houttuynia cordata* Thunb. (Yu Xing Cao)	Ling et al. (2020)
	Isatis tinctoria L. N-butanol extracts	Inhibits viral replication	*Isatis tinctoria* L. (Bar Lan Gen)	Liu et al. (2012)
Newcastle disease virus	*Baicalin*	Inhibits apoptosis of virus-infected cells and suppresses viral spread	*Scutellaria baicalensis*	Jia et al. (2016)
	Pogostemon cablin (Blanco) Benth polyphenolic extracts	Inhibits neuraminidase activity	*Pogostemon cablin* (Blanco) Benth. (Guang Huo Xiang)	Liu (2016)
Porcine epidemic diarrhea virus	*Pogostemon cablin* (Blanco) Benth poly saccharides extracts	Inhibits viral replication	*Pogostemon cablin* (Blanco) Benth. (Guang Huo Xiang)	Chen et al. (2020)
Porcine reproductive and respiratory syndrome virus	*Isatis tinctoria* L. polysaccharides extracts	Inhibits viral replication	*Isatis tinctoria* L. (Ban Lan Gen)	Wei et al. (2011)
	Flavaspidic acid AB from Dryopteris crassirhizoma	Inhibits viral replication	*Dryopteris crassirhizoma* Naikai (Mian Ma Guan Zhong)	Yang et al. (2013)

(Continued on following page)
binding of virions to host cells. The control of virus replication is mainly mediated by inhibiting replicator machineries encoded by viral systems, and prevention of virus egress is a process involves an interference with assembly and release of progeny viruses, which may initiate a secondary round infection. For the actions of regulating host immune responses and inflammation, it represents any virucidal effects due to an indirect response by modulating host immune system, such as increasing interferons (IFNs) expression, or decreasing self-targeted inflammatory injuries, or promoting repair process post virus infection without involving viral molecule-associated biological events. Based on literature mining and analysis, we next counted the frequencies of active components of LHQWC and JHQGG that have been sorted into each of the two categories, and accordingly a radar chart was drawn to visualize and compare the power of LHQWC and JHQGG against viral infection in terms of modulating viral life cycle and regulating host immune responses and inflammation.

RESULTS

The broad-Spectrum Anti-Viral Activities of Lian-Hua-Qing-Wen Capsule and Jin-Hua-Qing-Gan Granule

Multi-ingredients, multi-targets and multi-pathways are primary features of TCM formulae, suggesting that active ingredients of one medicinal herb may exert anti-viral functions via diverse pharmacological mechanisms. As shown in Figure 1, active components in both LHQWC and JHQGG have been shown to target 87 different types of viruses, covering all the seven classes according to the Baltimore classification. This wide range of anti-viral activities of LHQWC and JHQGG addresses that TCM formulae used in COVID-19 pandemics could be potentially applied for other virological infections, such as influenza A virus, Zika virus and herpesvirus.

Similarities and Differences of Lian-Hua-Qing-Wen Capsule and Jin-Hua-Qing-Gan Granule as Antivirals

Both LHQWC and JHQGG possess broad-spectrum anti-viral potentials through interfering with viral life cycle and modulating host immune responses, which are associated with a diversity of proposed pharmacological actions as detailed in Tables 1, 2, 3; Figure 2. When comparing LHQWC and JHQGG, no difference was found in the types of their targeted viruses (Table 1; Figure 1). In terms of active components that disrupt viral life cycle (Table 1; Figure 2), only few literatures reported a direct virucidal activity from components of LHQWC and JHQGG (Table 1-1.1; Figure 2), about 24% studies showed suppression of viral entry (Table 1-1.2; Figure 2), while 70% studies focused on inhibitory effects toward viral replication and release (Table 1-1.3; Figure 2) Among all data analyzed, constituents from *Scutellaria baicalensis* Georgi (Huang Qin) of JHQGG have been mostly reported to interfere with viral life cycle in all three phases analyzed. Besides, components from *Isatis tinctoria* L. (Ban Lan Gen) and *Rheum palmatum* L. (Da Huang) of LHQWC are shown highly effective in blocking viral entry, replication and release. JHQGG weights slightly higher than LHQWC in terms of viral replication and release, whereas little difference was obtained in the early phase of viral life cycle (Table 1; Figure 2). Regarding “host immune responses and inflammation”, it is interesting that constituents from *Scutellaria baicalensis* Georgi (Huang Qin) of JHQGG again exhibited the greatest potential, followed by components from *Isatis tinctoria* L (Ban Lan Gen) and *Rheum palmatum* L (Da Huang) in LHQWC. When comparing LHQWC and JHQGG, LHQWC weights slightly higher than JHQGG (Table 2; Figure 2). In addition, several studies have proposed other anti-viral mechanisms that could not be grouped into the above two categories, such as maintaining host redox homeostasis, or acting on microbiota, or gut-lung axis, or

Virus	Active component	Mechanisms	Herb	Ref
Respiratory syncytial virus	*Isatis tinctoria* L. polysaccharide extracts	Inhibits viral replication	*Isatis tinctoria* L. (Ban Lan Gen)	Lu (2016)
	Artemisin	Inhibits viral replication	*Artemisia annua* L. (Qing Hao)	Lu (2016)
	Houttuynia cordata root extract	Inhibits viral NS1 and L proteins	*Isatis tinctoria* L. (Ban Lan Gen)	Zhang (2017)
	未知	Inhibits viral biosynthesis	*Lonicera japonica* Thunb.	Li (2010)
SARS coronavirus	*Houttuynia cordata* Thunb. Extracts	Inhibits SARS-CoV 3C-like protease and RNA-dependent RNA polymerase	*Houttuynia cordata* Thunb. (Jin Yin Hua)	Liu et al. (2008)
	Rheum palmatum L. extracts	Inhibits SARS coronavirus 3C-like protease	*Rheum palmatum* L. (Da Huang)	Luo et al. (2009)
TABLE 2 | Active anti-viral components from LHQWC and JHQGG regulating host immune responses and inflammation.

Virus	Active component	Mechanisms	Herb	References
Bovine viral diarrhea virus	Forsythoside A	Promotes peripheral blood mononuclear cell proliferation and T cell activation, TRAF2-dependent CD28-4-1BB signaling; induces IFN-γ	Forsythia suspensa (Thunb.) Vahl (Lian Qiao)	Li et al. (2011)
Coxsackie virus B3	Emodin	Reduces pro-inflammatory cytokines	Rheum palmatum L. (Da Huang)	Cai and Luo (2014)
	Emodin	Regulates IL-17/IL-23 axis	Rheum palmatum L. (Da Huang)	Jiang et al. (2014)
	Rhodiola	Unknown	Rhodiola crenulata (Hook.f. and Thomson) H.Ohba (Hong Jing Tian)	Liu et al. (2002)
Coxsackievirus BS and respiratory syncytial virus	Emodin	Decreases IFN-α, enhances TNF-γ	Rheum palmatum L. (Da Huang)	Liu et al. (2015)
Hepatitis B virus	Isatis tinctoria L polysaccharide extracts	Enhances IFN-α and antiviral proteins, including p-STAT-1, p-STAT-2, p-JAK1, p-TYK2, OAS1, and Mx, via activation of JAK/STAT signal pathway	Isatis tinctoria L. (Ban Lan Gen)	Wang et al. (2020b)
Hepatitis C virus	Artemisia annua polysaccharides	Promotes IFN-γ secretion	Artemisia annua L. (Qing Hao)	Bao et al. (2015)
	Essential oil of Mentha suaveolens	Reduces viral RNA-induced pro-inflammatory mediators through inactivation of NF-κB and p38 MAPK signaling pathway, Reduces CD8 (+) cytotoxic T lymphocyte recruitment	Mentha canadensis L. (Bohe)	Ovtelli et al. (2014)
Influenza A Virus	Isatis tinctoria L. erucic acid	Reduces viral RNA-induced pro-inflammatory mediators through inactivation of NF-κB and p38 MAPK signaling pathway, Reduce CD8 (+) cytotoxic T lymphocyte recruitment	Isatis tinctoria L. (Ban Lan Gen)	Liang et al. (2020)
	Oroxylin A	Increases IFN-β and IFN-γ	Scutellaria baicalensis Georgi (Huang Qin)	Jin et al. (2018)
	Flavonoids-enriched extract from Scutellaria baicalensis root	Reduces TNF-α, IL-6 and MCP-1, increases IFN-γ and IL-10	Scutellaria baicalensis Georgi (Huang Qin)	Zhi et al. (2014)
	Baicalin	Modulates non-structural protein1-mediated cellular innate immune responses, IFN-induced antiviral signaling and a decrease in PI3K/Akt signaling	Scutellaria baicalensis Georgi (Huang Qin)	Nayak et al. (2014)
	Phyllyrin	Decreases IL-6	Forsythia suspensa (Thunb.) Vahl (Lian Qiao)	Qu et al. (2016)
	Aloe-emodin	Restores NS1-inhibited STAT1-mediated antiviral responses	Rheum palmatum L. (Da Huang)	Li et al. (2014)
	Ephedra alkaloids: L-ephedrine and D-pseudo- ephedrine	Regulating TLRs and RIG-1 pathways	Ephedra sinica Stapf (Ma Huang)	Wei et al. (2019)
Radix Isatidis extract	Promotes T, B lymphocytes	Isatis tinctoria L. (Ban Lan Gen)	Jin (2007)	
Radix Isatidis polysaccharides	Promotes IFN-γ secretion	Isatis tinctoria L. (Ban Lan Gen)	Zuo (2008)	
	Scaldsrisde	Reduces IL-1β, IL-6, TNF-α and CRP, increases the number of CD4 (+) T cells	Radhola crenulata (Hook.f. and Thomson) H.Ohba (Hong Jing Tian)	Lin (2020)
	Baicalin	Balances host inflammatory response to limit immunopathologic injury; downregulated the key factors of the RLRs signaling pathway	Scutellaria baicalensis Georgi (Huang Qin)	Pang et al. (2018)
	Baicalin	Inhibits TLR7/MyD88 signaling pathway	Scutellaria baicalensis Georgi (Huang Qin)	Wan et al. (2014)
	Biochanin A	Reduces AKT, ERK 1/2 and NF-kB	Scutellaria baicalensis Georgi (Huang Qin)	Sithisam et al. (2013)
	Biochanin A	Reduces IL-6, IL-8 and IP-10	Scutellaria baicalensis Georgi (Huang Qin)	Sithisam et al. (2013)
	Baicalin	Inhibits IL-6 and IL-8	Scutellaria baicalensis Georgi (Huang Qin)	Sithisam et al. (2013)
	Radix Isatidis polysaccharides	Suppresses pro-inflammatory IL-6 and chemokines (IP-10, MIG, and CCL-5), inhibits host TLR3 Signaling	Isatis tinctoria L. (Ban Lan Gen)	Li et al. (2017b)
	Wogonin	Reduces inflammatory factors	Scutellaria baicalensis Georgi (Huang Qin)	Wu (2011)
	Epigoitrin	Reduces mitochondria mitofusin-2, which elevated mitochondria antiviral signaling and subsequently increased IFN-β and interferon inducible transmembrane 3 (IFITM3)	Isatis tinctoria L. (Ban Lan Gen)	Luo et al. (2019)

(Continued on following page)
Virus	Active component	Mechanisms	Herb	References
Rhein	Activates TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways	Rheum palmatum L. (Da Huang)	Wang et al. (2018)	
Baicalin	Reduces TNF-α, IL-1 and 5-HT; increases IFN-γ,	Scutellaria baicalensis Georgi (Huang Qin)	Li (2019)	
Isatis tinctoria L. extracts	Regulates immune response by enhancing proliferation and function of T and B cells	Isatis tinctoria L. (Ban Lan Gen)	Jin (2007)	
Dryocarssin ABBA	Decreases bronchoalveolar lavage fluid pro-inflammatory cytokines, including IL-6, TNF-α, and IFN-γ, and increases anti-inflammatory cytokines, including IL-10 and MCP-1	Dryopteris crassihizoma Nakai (Mian Ma Guan Zhong)	Ou et al. (2015)	
Baicalin	Increases IFN-γ production	Scutellaria baicalensis Georgi (Huang Qin)	Chu et al. (2015)	
Lonicera Japonica Thunb polysaccharide	Increases IFN-γ	Lonicera japonica Thunb. (Jin Yin Hua)	Jia (2018)	
Lonicera Japonica water decoction	Increases IFN-γ	Lonicera japonica Thunb. (Jin Yin Hua)	Zhu (2016)	
Lonicerae Japonicae Los and Forsythiae Fructus	Modulates MMP pathway and PRKCA pathway	Lonicera japonica Thunb. (Jin Yin Hua)	Li (2017)	
Forsythoside A	Reduces TLR7, MyD88 and NF-κB secretion	Forsythia suspensa (Thunb.) Vahl (Lian Qiao)	Deng et al. (2016)	
Ethanol extracts of Forsythia suspensa Vahl. (Oleaceae), Strobilanthes cusia (Ness.) O. Kurtze (Acanthaceae), Glycyrrhiza uralensis Fischer. (Leguminosae)	Suppresses RANTES secretion	Forsythia suspensa (Thunb.) Vahl (Lian Qiao)	Ko et al. (2006)	
Houttuynia cordata Thunb. flavonoid extracts	Inhibits TLR signaling, increases IFN-β, decreases of TLR3/4/7 and NF-κB p65(p), MCP-1, IL-8, TNF-α and MDA	Houttuynia cordata Thunb. (Yu Xing Cao)	Ling et al. (2020)	
Influenza A Virus and Influenza B Virus				
Wogonin	Increases IFN	Scutellaria baicalensis Georgi (Huang Qin)	Seong et al. (2018)	
Arctigenin	Anti-inflammatory	Arctium lappa L. (Ni Bang Zi)	Swarup et al. (2008)	
Porcine reproductive and respiratory syndrome virus				
Flavaspidic acid AB	Induces IFN-α, IFN-β, and IL1-β expression in porcine alveolar macrophages	Dryopteris crassihizoma Nakai (Mian Ma Guan Zhong)	Yang et al. (2013)	
Respiratory Syncytial Virus				
Baicalin	Increases IFN-1, decreases IL-6, IL-12	Scutellaria baicalensis Georgi (Huang Qin)	Zhang (2018)	
Rhein	Inhibits NLRP3 inflammasome activation through NF-κB pathway	Rheum palmatum L. (Da Huang)	Shen et al. (2020)	
4(Z)-Quinazolone	Inhibits IFN-β secretion	Isatis tinctoria L. (Ban Lan Gen)	He et al. (2017)	
Total alkaloids, lignans and organic acids of Radix Isatidis extracts	Regulates IFN-γ, synergistic effects through RIG-I and MDAS signaling pathways	Isatis tinctoria L. (Ban Lan Gen)	Xu et al. (2019)	
Baicalin joint resveratrol	Increase serum TNF-α, IL-2, IFN-γ and SlgA in bronchoalveolar lavage fluid	Scutellaria baicalensis Georgi (Huang Qin)	Cheng et al. (2014)	
Radix Glycyrrhizae water extracts	Reduces TNF-α, IL-2, IFN-γ and IL-10; increases secretion of IL-2 and IL-10 by mouse splenic lymphocytes	Glycyrrhiza glabra L. (Gan Cao)	Yeh et al. (2013)	
SARS coronavirus	Immunomodulatory effects: stimulating mouse splenic lymphocytes	Scutellaria baicalensis Georgi (Huang Qin)	Lau et al. (2008)	
Houttuynia cordata Thunb. Extract				
Vesicular stomatitis virus	Inhibits IFN-alpha and IFN-γ, and stimulates TNF-α and IL (IL-12, IL-10) production	Scutellaria baicalensis Georgi (Huang Qin)	Blach-Olszewska et al. (2008)	
Baicalin	Increases IFN-γ, reduces TNF-α and IL-10 production	Scutellaria baicalensis Georgi (Huang Qin)	Orzechowska et al. (2014)	

IFN, Interferon; IL, Interleukin; MCP-1 Monocyte chemoattractant protein-1; MDAS, Melanoma differentiation-associated protein 5; MRG, Monokine induced by gamma interferon; MMP, Matrix metalloproteinases; MYD88, Myeloid differentiation factor 88; NLRP3, NLR Family Pyrin Domain Containing 3; PRKCA, Protein Kinase C Alpha; RANTES, Regulated upon activation, normal T cell expressed and presumably secreted; RIG-I, Retinoic acid-inducible gene I; STAT, Signal transducer and activator of transcription; TLR, Toll-like receptor; TNF, Tumor Necrosis Factor; TRAF2, TNF Receptor-associated Factor 2; 5-HT, 5-hydroxytryptamine.
TABLE 3 | Active anti-viral components from LHQWC and JHQGG regulating host redox homeostasis and other molecular actions.

3.1 Regulate redox homeostasis

Virus	Active component	Mechanisms	Herb	References
Herpes simplex virus type 1	Piperitenone oxide	Interferes with redox-sensitive cellular pathways for viral replication	Mentha canadensis L. (Bohe)	Civitelli et al.
Japanese encephalitis virus	Arctigenin	Promotes antioxidative effects	Arctium lappa L. (Nu Bang Zi)	Swarup et al.
Influenza A virus	Oroxylin A	Activates the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription to increase antioxidant activities	Scutellaria baicalensis Georgi (Huang Qin)	J et al. (2015)
Rhein		Reduces antioxidative stress	Rheum palmatum L. (DaHuang)	Wang et al.
Coxsackie virus B3	Emodin	Up-regulates anti-oxidant enzymes	Rheum palmatum L. (DaHuang)	Cai and Luo
Honeysuckle		Increases myocardial SOD activity and decreases MDA	Isatis tinctoria L. (Ban Lan Gen)	Wang et al. (2009b)
Porcine epidemic diarrhea virus	Pogostemon cablin (Blanco) Benth polysaccharides extracts	Increases SOD and GSH-Px activity and decreases MDA	Pogostemon cablin (Blanco)	Wang (2010)
Hepatitis C virus	A glycyrrhizin-containing preparation	Protects mitochondria against oxidative stress	Glycyrrhiza glabra L. (Gan Cao)	Korenaga et al. (2011)

3.2 Other molecular actions

Virus	Active component	Mechanisms	Herb	References
Enterovirus 71	Baicalin	Inhibits virus-induced apoptosis through regulating the Fas/	Scutellaria baicalensis Georgi (Huang Qin)	Li et al. (2015)
		FasL signaling pathways	Houttuynia cordata Thunb.	Chen et al.
Influenza A Virus	Houttuynia cordata Thunb. polysaccharides extracts	Acts on intestine and microbiota	Houttuynia cordata Thunb. (Yu Xing Cao)	Zhu et al. (2018)
		Protects intestinal barrier and regulates mucosal immunity, which may be related to the regulation of gut-lung axis	Houttuynia cordata Thunb. (Yu Xing Cao)	Wang (2015)
		Reduces endothelin (ET-1) and ET-1 receptor	Scutellaria baicalensis Georgi (Huang Qin)	Shu et al. (2020)
	Houttuynia cordata Thunb.polysaccharides	Regulates the balance of Th17/Treg cells in gut-lung axis	Houttuynia cordata Thunb. (Yu Xing Cao)	Shu et al. (2020)
Influenza A Virus and influenza B Virus	Wogonin	Suppresses AMPK phosphorynation	Scutellaria baicalensis Georgi (Huang Qin)	Seong et al. (2018)
Human cytomegalovirus	Baicalin	Regulates vasoactive intestinal peptide	Scutellaria baicalensis Georgi (Huang Qin)	Qiao et al. (2013)
	Artemisin	Modulates cell cycle through CDKs and hypophosphorylation (activity) of the retinoblastoma protein (pRb)	Artemisia annua L. (Qing Hao)	Roy et al. (2015)
Herpes simplex virus type 1	Triterpene glycyrrhizic acid	Induces autophagy activator Beclin 1 to establish a resistance state to viral replication	Glycyrrhiza glabra L. (Gan Cao)	Lacom et al. (2014)

GSH-Px: Glutathione peroxidase; MDA: Malondialdehyde; SOD: Superoxide dismutase.

AMPK: AMP-activated protein kinase; CDKs: Cyclin-dependent kinases; Th17/Treg: T helper 17 (Th17)/regulatory T cells (Tregs).

energy sensor AMPK, or autophagy (Table 3; Figure 2). Detailed information regarding the TCM features, pharmacological functions of individual herbs and components was outlined in Table 4.

In terms of COVID-19, the ACE-2 has been identified as the most important receptor for SARS-CoV-2 viral entry, which constitutes the initial step of infection (Walls et al., 2020). Through informatic analysis, the Rheum palmatum L (Da Huang) in LHQWC was found to be able to suppress viral infection by directly blocking interactions between the spike protein and ACE2. In addition, in the SARS-CoV, MERS-CoV and other coronaviruses, the 3CL (3C-like) protease is one of the crucial enzymes that mediates viral replication and has been recognized as a potential therapeutic target (Pillaiyar et al., 2016; Galasiti Kankanamalage et al., 2018). These predictive evaluations showed that Scutellaria baicalensis Georgi (Huang Qin), Anemarrhena asphodeloides Bunge (Zhi Mu) and Arctium lappa L (Niu Bang Zi) in JHQGG, as well as Rheum palmatum L (Da Huang) and Houttuynia cordata Thunb (Yu Xing Cao) in LHQWC can inhibit viral transcription and replication, especially that the Rheum palmatum L (Da Huang) in LHQWC was shown as a potential inhibitor of 3CL protease, suggesting underlying mechanisms of both LHQWC and JHQGG in the treatment of COVID-19.

Since LHQWC and JHQGG are both commonly used for the treatment of influenza in China, we additionally
analyzed their possible roles in the inhibition of influenza viral invasion. Hemagglutinin (HA) on the surface of influenza virus is a tri-polymer, which promotes virus binding and entering into host cells. In contrast to HA, the neuraminidase (NA) of influenza viruses involves detachment and release of mature viruses from host cells (Gamblin and Skehel, 2010; Gaymard et al., 2016). Components of *Scutellaria baicalensis* Georgi (Huang Qin) of JHQGG have been shown to inhibit the whole life cycle of influenza viruses, such as inhibiting HA and NA, and suppressing replicons. Meanwhile, *Isatis tinctoria* L. (Ban Lan Gen) and *Rheum palmatum* L. (Da Huang) of LHQWC have also been reported to reduce the internalization and replication of influenza viruses. The shared herbs, such as *Ephedra sinica* Stapf (Ma Huang), *Lonicera japonica* Thunb (Jin Yin Hua), *Forsythia suspensa* (Thunb.) Vahl (Lian Qiao) and *Glycyrrhiza glabra* L. (Gan Cao) in both LHQWC and JHQGG were experimentally proved as inhibitors of influenza virus life cycle (Table 1; Table 1).

DISCUSSION

In clinical practices of TCM, medicinal herbs are generally applied in the form of decoctions, which contain mixtures of a variety of herbs with different pharmacological functions. Instead of directly inactivating pathogens, therapeutic effects of TCM decoctions are achieved mainly through balancing host anti-viral responses and pathogenic factors. During COVID-19 epidemics, synergistic therapy of LHQWC with clinically approved repurposing antivirals, such as oseltamivir, umifenovir, ribavirin, lopinavir, peramivir, penciclovir or ganciclovir, has shown its advantages in improving associated symptoms and reducing the course of hospitalization and disease progression in several reported trials (Liu M. et al., 2020; Yu, 2020a; Yu, 2020b; Cheng, 2020; Hu et al., 2020; Li et al., 2020; Lv and Wang, 2020; Xiao et al., 2020; Chen, 2021; Liu et al., 2021). Similarly, combined anti-viral treatment with JHQGG in mild or moderate COVID-19 was beneficial in relieving clinical symptoms and reducing risks of severe COVID-19 (Liu Z. et al., 2020; Duan, 2020; Duan,
4.1 Specific medicinal herbs of LHQWC

Components of medicinal herbs	TCM properties	Key characteristics	Active component	Virus	Pharmacological functions	References
Rheum palmatum L. (Da Huang)	Bitter	Purges clumped heat in the intestines	Emodin	Coxackie virus B3	Decreases overall mortality of virus-induced murine viral myocarditis model and potentially could act through inhibiting viral replication, reducing pro-inflammatory cytokines and up-regulation of anti-oxidant enzymes	Cai and Luo (2014)
	Cold	Removes blood stasis		IL-17/IL-23 axis	Reduces mice mortality rate and ameliorates myocardial damage by regulating the	Jang et al. (2014)
		Stops bleeding in its charred form		Enterovirus 71	Inhibits viral replication and diminishes cell cycle arrest at S phase induced by EV71 infection in MRC5 cells	Zhong et al. (2017)
			Aloe-emodin	Herpes simplex virus type 1	Inhibits viral replication through galectin-3 up-regulation	Li et al. (2014)
			Rhein	Influenza A Virus	Suppresses lung inflammatory injury by reducing the release of pro-inflammatory cytokines, including IL-1β, IL-6, TNF-a, IL-18, and IL-33, in the serum and lung tissues of RSV-induced BALB/c mice through inhibiting NLRP3 inflammasome activation via NF-κB pathway	Shen et al. (2020)
Houttuynia cordata Thunb. (Yu Xing Cao)	Acrid	Disperses heat	Houttuynoid A	Influenza A virus	Inhibits viral absorption	Wang et al. (2018)
				Human immunodeficiency virus type 1	Inhibits the HIV-1 replication by targeting the HIV-1 reverse transcription process including inhibiting HIV-1	Esposito et al. (2018)
				SARS coronavirus	Inhibits SARS coronavirus 3C-like protease	Luo et al. (2009)
				Extracts	Inhibits viral entry and replication in MA-104 cells	He et al. (2013)
				Rotavirus		Li et al. (2017a)
Isatis tinctoria L. (Ban Lan Gen)	Bitter	Drains heat	Erucic acid	Influenza A virus	Oral administration could ameliorate lung injury in virus-infected mice via directly regulating the balance of Th17/Treg cells in gut-lung axis	Shi et al. (2020)
					Acts on intestine and microbiota	Chen et al. (2019)
				Influenza A virus	Significantly inhibit viral proliferation and suppress neuraminidase activity and TLR3, TLR4, and TLR7 agonist-stimulated cytokine secretion, NF-κB p65 phosphorylation, and nuclear translocation in vitro	Ling et al. (2020)
				Extracts	Protects intestinal barrier and regulates mucosal immunity, which may be related to the regulation of gut-lung axis	Zhu et al. (2018)
				Enterovirus 71	Reduces plaque formation and neutralizes virus-induced cytopathic effects in Vero cells and could affect apoptotic processes in virus-infected Vero cells by inhibiting viral replication	Lin et al. (2009)
				SARS coronavirus	Exerts anti-viral effects, including inhibitory effects on SARS-CoV 3C-like protease and RNA-dependent RNA polymerase. Exhibits immunomodulatory effects, including stimulating the proliferation of mouse splenic lymphocytes and increasing the proportion of CD4 (+) and CD8 (+) T cells and the secretion of IL-2 and IL-10 by mouse splenic lymphocytes	Lau et al. (2008)
				Herpes simplex virus	Inhibits the infection of HSV-1, HSV-2, and acyclovir-resistant HSV-1 via blocking viral binding and penetration. Suppresses viral replication via inhibiting NF-κB activation	Hung et al. (2015)

(Continued on following page)
4.1 Specific medicinal herbs of LHQWC

Components of medicinal herbs	TCM properties	Key characteristics	Active component	Virus	Pharmacological functions	References
Cold		Resolves fire toxicity	Epigoitrin	Influenza A virus	Reduces mitochondria mitofusin-2, which elevated mitochondria antiviral signaling and subsequently increased IFN-β and interferon inducible transmembrane 3	Luo et al. (2019)
Cools the blood		Benefits the throat	4(3H)-Quinazolone	Respiratory Syncytial Virus	Inhibits IFN-β secretion	He et al. (2017)
			Clemastatin B, epigoitrin, phenylpropanoids portion and the mixture of phenylpropanoids, alkaloids and organic acid fractions	Influenza A virus	Inhibits viral replication, entry and improves the viability of infected MDCK cells	Xiao et al. (2016)
		Poly saccharide extracts		Influenza A virus		
Pogostemon cablin (Blanco)	Sweet	Raises qi	Salidroside	Influenza A virus	Relieves lung inflammation in infected mice and reduce the level of inflammatory factors, including IL-1β, IL-6, TNF-α, and C-reactive protein in both serum and lung tissue. Increases the number of CD4^+ T cells	Lin (2020)
(Guang Huo Xiang)						
Thomson H.Ohiba (Hong Jing Tian)	Bitter	Invigorates the blood	Salidroside	Coxsackievirus B3	Decreases LDH release of infected cardiomyocytes and increase myocardial SOD activity and decreases MDA concentration of CVB3-induced viral myocarditis mice	Wang et al. (2009b)
		Neutral	Rhodiola	Coxsackievirus B3	Decreases LDH release of CVB3-infected viral myocarditis mice	Li et al. (2012)
		Poly saccharides extract		Coxsackievirus B3		
Rhodiola crenulata (Hook.f. and Thomson H.Ohiba (Hong Jing Tian))	Acrid	Transform turbidity with aroma	Patchouli alcohol	Influenza A virus	Inhibits viral replication and protect cardiomyocytes against virus-induced cell apoptosis	Chen et al. (2009)
	Slightly	Check retching		Coxsackievirus B3		Wei et al. (2013)
	Warm	Resolve summerheat		Adenovirus		
		Poly phenolic extracts		Influenza A virus		

(Continued on following page)
Components of medicinal herbs	TCM properties	Key characteristics	Active component	Virus	Pharmacological functions	References	
Arctium lappa L. (Niu Bang Zi)	Acid	Disperses heat in the exterior and clears internal heat toxin	Arctin	Influenza A virus	Arctigenin could inhibit viral replication and suppress the release of progeny viruses from the host cells.	Hayashi et al. (2010)	
	Bitter	Benefits the throat	Arctigenin				
	Cold						
Anemarrhena asphodeloides	Bitter, Sweet	Clears fire and nourishes the Yin of the Lungs, Stomach, and Kidneys	Chinonin	Herpes simplex virus type 1	Suppress viral replication	Swarup et al. (2008)	
	Cold		(—)-(R)-nyasol, (—)-(R)-4'-O-methylnyasol	Broussonin A	Respiratory syncytial virus	Suppresses viral replication more effective than ribavirin	Bai et al. (2007)
Artemisia annua L. (Qing Hao)	Bitter	Clears all types of yin level heat without injuring the qi, blood, or Yin	Artemisinin	Coxsackievirus B3	Inhibits viral replication	Ma (2004)	
	Cold						
Scutellaria baicalensis Geor	Bitter	Cools heat	Baicalein	Influenza A virus	Suppresses H5N1 replication with antioxidant N-acetylcySTEINE combination	Michalis et al. (2014)	
	Cold	Dries dampness					
		Stops bleeding					
		Quits the fetus in pregnancy					
Shi et al.							
TABLE 4 (Continued) Detailed information of TCM features and pharmacological functions of single medicinal herbs from LHQWC and JHQGG.

4.2 Specific medicinal herbs of JHQGG

Components of medicinal herbs	TCM properties	Key characteristics	Active component	Virus	Pharmacological functions	References	
Baicalin joint resveratrol		Respiratory Syncytial Virus	Increases serum TNF-α, IL-2, IFN-γ and SigA in bronchoalveolar lavage fluid	Wogonin	Suppresses both influenza A and B virus replication in MDCK and A549 cells	Cheng et al. (2014)	
				5,7,4′-trihydroxy-8-methoxyflavone	Influenza A virus	Inhibits fusion of virus with endosome/lysosome membrane	Wu (2011)
				5,7,2′-trihydroxy- and 5,7,2′,3′-tetrahydroxyflavone	Influenza A virus	Inhibits viral replication and release	Konoshima et al. (1992)
				Oroxylin A	Influenza A Virus	Inhibits neuraminidase	Jin et al. (2018)
				Norwogonin, Oroxylin A, mosloflavone	Enterovirus 71	Inhibits expression of viral capsid proteins	Choi et al. (2016)
				Artemisinin derivatives	Hepatitis B virus	Reduces viral release	Blazquez et al. (2013)
				Extract containing baikalein and wogonin	Vesicular stomatitis virus	Inhibits IFN-α and IFN-β, and stimulates TNF-α and IL-12 production	Blach-Olszewska et al. (2008)
				Flavonoids-enriched extracts	Influenza A virus	Exhibits antiviral activity, including inhibiting viral replication in H1N1-infected MDCK cells, decreasing lung virus titers, reducing hemagglutinin titers and inhibiting neuraminidase activities in lungs of H1N1-infected mice	Zhi et al. (2019)
				Aqueous extracts	Human immunodeficiency virus type 1	Inhibits HIV type-1 protease activities	Lam et al. (2000)
Fritillaria thunbergii Miq. (Zhe Bei Mu)	Bitter Cold			Extracts	Influenza A virus	Inhibits virus replication in embryonated eggs and reduces H1N1-infected mice mortality rate	Kim et al. (2021)

(Continued on following page)
Table 4 (Continued) Detailed information of TCM features and pharmacological functions of single medicinal herbs from LHQWC and JHQGG.

Components of medicinal herbs	TCM properties	Key characteristics	Active component	Virus	Pharmacological functions	References
Lonicera japonica Thunb. (Jin Yin Hua)	Sweet	Disperses heat	Chlorogenic acid	Influenza A virus	Suppresses the nucleocapsid protein expression and the release of progeny viruses by inhibiting neuraminidase activity	Ding et al. (2017)
	Cold	Resolves toxicity	Pheophytin	Hepatitis C virus	Inhibits HCV viral proteins and RNA and exhibits synergistic anti-HCV activity with IFNa-2a	Wang et al. (2006b)
	Cools the blood	Honeycomb-encoded atypical microRNA2911	Enterovirus 71	Influenza A virus	Inhibits EV71 replication by targeting the VP1 gene	Li et al. (2018)
	Stops bleeding	Polysaccharides extracts	Influenza A virus	Respiratory	Inhibits virus attachment and replication in Hela cells	Li (2010)
		Extracts	Respiratory	Syncytial Virus	Inhibits viral replication and release via the microRNA let-7a targeting viral non-structural protein 1	Lee et al. (2017)
			Dengue virus		Inhibits viral replication and release via the microRNA let-7a targeting viral non-structural protein 1	Lou (2017)
			Coxackie virus B3		Increases serum SOD activity and decreases MDA concentration of CVB3-induced viral myocarditis mice	Zhou et al. (2015)
Ephedra sinica Stapf (Ma Huang)	Acrid	Induces sweating	(+)-catechin	Influenza A virus	Suppresses viral replication by inhibiting acidification of endosomes and lysosomes	Mantani et al. (2001)
	Slightly bitter	Calms wheezing	L-methylephedrin, L-ephedrine, D-pseudo- ephedrine	Influenza A virus	Increases IFN-γ and decreases TNF-α level by regulating TLRs and RIG-1 pathways	Wei et al. (2019)
	Warm	Promotes urination	Water Extract	Respiratory	Inhibits viral absorption and penetration	Zhu and Li (2012)
	Slightly acid	Resolves toxicity	Forsythoside A	Influenza A virus	Inhibits virus spread by reducing influenza viral M1 protein	Law et al. (2017)
	Slightly cold	Disperses clumps	Phlytin	Influenza A virus	Reduces TLR7, MyD88 and NF-kB p65 protein	Deng et al. (2016)
					Decreases IL-6 levels, and reduces the expression of hemagglutinin in mice infected with influenza A virus	Qu et al. (2016)
Forsythia suspensa (Thunb.) Vahl (Lian Qiao)	Bitter	Cools and vents heat, particularly in the Heart and upper burner	Forsythoside A			
	Slightly acid	Resolves toxicity	Forsythoside A			
	Slightly cold	Disperses clumps	Phlytin	Influenza A virus	Inhibits viral replication	Civitelli et al. (2014)
Mentha canadensis L. (Bo He)	Acrid	Facilitates the dispersal of upper burner wind-heat	Essential oil extract, piperitenone oxide	Herpes simplex virus type 1	Inhibits viral replication	
	Aromatic	Cools the upper burner and clears the eyes and head				
	Cooling	Soothers the throat				
		Facilitates the flow of Liver qi and expels turbid filth				
Glycyrrhiza glabra L. (Gan Cao)	Sweet	Tonifies the Spleen qi	Glycyrrhizin	Influenza A virus	Reduces endocytosis activity and virus uptake	Wolkerstorfer et al. (2009)
	Neutral	Moistens the Lungs	Glycyrrhizinic acid	Enterovirus 71	Inhibits influenza virus polymerase activity	Moisy et al. (2012)
		Moderates urgency and toxicity	Chalcones	Influenza A virus	Inhibits viral replication	Wang et al. (2013)
		Drains fire	Triterpene glycyrrhizinic acid	Herpes simplex virus type 1	Inhibits neuraminidase activity	Dao et al. (2011)
			18β-glycyrrhetinic acid	Ebola virus	Induces autophagy activator Beclin 1 to establish a resistance state to viral replication	Lacconi et al. (2014)
			A glycyrrhizin-containing preparation	Hepatitis C virus	Binds to nucleoprotein	Fu et al. (2016)
			Water extracts	Respiratory	Protects mitochondria against oxidative stress	Korenaga et al. (2011)
			Ethanol extracts	Syncytial virus	Induces IFN-γ secretion	Yen et al. (2013)
					Suppresses RANTES secretion	Ko et al. (2008)
These studies provide clinical evidence that combined treatment with either LHQWC or JHQGG is superior to conventional monotherapy of antivirals.

The primary conclusion of our study is that both LHQWC and JHQGG are efficient for a large range of viral diseases has supported that TCM formulae can be potentially an alternative therapy for emerging viral diseases, especially when specific drugs and vaccines have not been fully developed and applied. However, when it comes to appropriate or precise clinical applications of LHQWC and JHQGG, differences of their associated pharmacological actions turn out to be an essential point to be addressed. When comparing the anti-viral targets of LHQWC and JHQGG, both CPMs have been documented effective in interfering with viral components, with Isatis tinctoria L. (Ban Lan Gen) and Rheum palmatum L. (Da Huang) in LHQWC being the predominate viral inhibitors, followed by Lonicera japonica Thunb (Jin Yin Hua) and Houttuynia cordata Thunb (Yu Xing Cao). While in JHQGG, the Scutellaria baicalensis Georgi (Huang Qin) and subsequently Lonicera japonica Thunb (Jin Yin Hua) are the most important virucidal herbs. Typically, Scutellaria baicalensis Georgi (Huang Qin) of JHQGG have been highly nominated among all analyzed herbs contributing to suppression of the whole viral life cycle. Intriguingly, a direct virucidal activity was observed mostly in components from Scutellaria baicalensis Georgi (Huang Qin) and Anemarrhena asphodeloides Bunge (Zhi Mu) of JHQGG, though shared herbs, Lonicera japonica Thunb (Jin Yin Hua) and Glycyrrhiza glabra L (Gan Cao) were also involved. This set of data indicate that from the angle of viral life cycle, JHQGG may overweight LHQWC due to Scutellaria baicalensis Georgi (Huang Qin), and will be appropriate for patients with high fever, sore throat and cough. On the other hand, owning to existence of Rhodiola crenulata (Hook.f. and Thomson) H. Ohba (Hong Jing Tian), LHQWC may have more essential roles in the balancing of host immunity, suggesting that LHQWC could be more suitable for patients with non-efficient anti-viral immune responses.

There are some possible limitations in this study. Firstly, based on five databases, we finally included relatively more articles associated with LHQWC compared with those of JHQGG; therefore, bias could be unintendedly introduced to conclusions supporting superiority of LHQWC. Secondly, a certain number of included studies focus on Scutellaria baicalensis Georgi (Huang Qin), Isatis tinctoria L (Ban Lan Gen) and Rheum palmatum L (Da Huang); therefore, this may lead to biases that only these herbs are important as antivirals. Thirdly, the quality of articles included in this study is variable, and the judgment for potential pharmacological actions may to some degree rely on the knowledge of authors.

COVID-19 initiates with mild or moderate symptoms in most cases, and the strategy to reduce risks in evolving into severe or critical COVID-19 is highly desired. Through literature mining, we provide general evidence that both LHQWC and JHQGG are effective for mild to moderate COVID-19 patients and potentially being able to prevent the progress of COVID-19 into severe or critical conditions. As discussed above, TCM therapy fits well with the principle of HDT, and anti-viral TCM formulae generally show a broad spectrum of anti-viral properties through balancing between viral activities and host immune reactions. This has gained TCM a key advantage over target-specific anti-viral medications. Since LHQWC and JHQGG are both CPMs with clear safety information, it is imperative that application of LHQWC and JHQGG can be contextualized to worldwide combat against the emerging or re-emerging of human pandemics.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

NL, RX and JL initiated and supervised this study, NL, RX, MS, BP, and AL performed data analysis and wrote this manuscript. PS assisted in organizing and analyzing data, and ZL contributed to editing.

FUNDING

This research was funded by a grant from the Key Projects for International Cooperation on Science, Technology and Innovation (2020YFE0205100), and Fundamental Scientific Research of Central Public Welfare Foundation from China Academy of China Medical Sciences (YZ-202012).

ACKNOWLEDGMENTS

Authors thank Zhenji LI, World Federation of Chinese Medicine Societies for his supports and valuable input.

REFERENCES

Ahn, H., Lee, S. Y., Kim, J. W., Son, W. S., Shin, C. G., and Lee, B. J. (2001). Binding Aspects of Baicalein to HIV-1 Integrase. Mol. Cells 12 (1), 127–130.

Bae, G., Yu, J.-R., Lee, J., Chang, J., and Soo, E.-K. (2007). Identification of Nyasol and Structurally Related Compounds as the Active Principles fromAnemarrhena Asphodeloides against Respiratory Syncytial Virus (RSV). Chem. Biodivers. 4 (9), 2231–2235. doi:10.1002/cbdv.200790181

Bao, L. D., Ren, X. H., Ma, R. L., Wang, Y., Yuan, H. W., and Lv, H. J. (2015). Efficacy of Artemisia Annua Polysaccharides as an Adjuvant to Hepatitis C Vaccination. Genet. Mol. Res. 14 (2), 4957–4965. doi:10.4238/2015.may.11.29

Biswas, N. K., and Majumder, P. P. (2020). Analysis of RNA Sequences of 3636 SARS-CoV-2 Collected from 55 Countries Reveals Selective Sweep of One
Cheng, K., Wu, Z., Gao, B., and Xu, J. (2014). Analysis of Inflammation.

Cheng, D., Wang, W., Li, Y., Wu, X., Zhou, B., and Song, Q. (2020). Analysis of Inflammation.

Frontiers in Pharmacology | www.frontiersin.org May 2021 | Volume 12 | Article 640782

Shi et al. Anti-Viral Medicinal Plants

Blazquez, A. G., Fernandez-Dolon, M., Sanchez-Vicente, L., Maestre, A. D., Deng, L., Pang, P., Zheng, K., Nie, J., Xu, H., Wu, S., et al. (2016). Forsythoside A Derived from the Traditional Chinese Medicine Plant Rheum L., Is a New Dual HIV-1 Inhibitor Effective on HIV-1 Replication. Phytomedicine 23 (12), 1383–1391. doi:10.1016/j.phymed.2016.08.001

Evers, D. L., Chao, C.-F., Wang, X., Zhang, Z., Huang, S.-M., and Huang, E.-S. (2005). Human Cytomegalovirus-Inhibitory Flavonoids: Studies on Antiviral Activity and Mechanism of Action. Antiviral Res. 68 (3), 124–134. doi:10.1016/j.antiviral.2005.08.002

Pang, J., Tang, J., Yang, Z., Hu, Y., Liu, Y., and Wang, W. (2005). Effect of Radix Isatis against Herpes Simplex Virus Type I In Vitro. Chin. Traditional Herbal Drugs 36 (2), 242–244. doi:10.3321/j.issn.0253-2670.2005.02.034

Fu, X., Wang, Z., Li, L., Dong, S., Li, Z., Jiang, Z., et al. (2016). Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches. Sci. Rep. 6, 29680. doi:10.1038/srep29680

Galasiti Kankanamalage, A. C., Kim, Y., Damalanka, V. C., Rathnayake, A. D., Fehr, A. R., Mehrabean, N., et al. (2018). Structure-guided Design of Potent and Permeable Inhibitors of MERS Coronavirus 3CL Protease that Utilize a Piperidine Moiety as a Novel Design Element. Eur. J. Med. Chem. 150, 334–346. doi:10.1016/j.ejmech.2018.03.004

Gambir, S. J., and Skelton, J. E. (2010). Influenza Hemagglutinin and Neuraminidase Membrane Glycoproteins. J. Biol. Chem. 285 (37), 28403–28409. doi:10.1074/jbc.R110.92809

Gaynard, A., Le Briand, N., Frobert, E., Lina, B., and Escuret, V. (2016). Functional Balance between Neuraminidase and Haemagglutinin in Influenza Viruses. Clin. Microbiol. Infect. 22 (12), 975–983. doi:10.1111/imi.13973

Guo, S., Yao, L., and Cui, X. (2016). Effects of Baicalin on Activity of Influenza A Virus RNA Polymerase by Silencing Host Factors PACT. Chin. J. Pharmacovigilance 13 (3), 129–131. doi:10.19803/j.issn:1672-8629.2016.03.003

Hayashi, K., Narutaki, K., Nagaoka, Y., Hayashi, T., and Usai, S. (2010). Therapeutic Effect of Arctium and Arctigenin in Immunocompetent and Immunocompromised Mice Infected with Influenza A Virus. Biol. Pharm. Bull. 33 (7), 1199–1205. doi:10.1248/bpb.33.1199

He, F., Liu, Q., Wei, F., Liu, Y., Xiong, H., Zhou, X., et al. (2013). Anti-viral Activity of Rhubarb Extract and Emodin in Rotavirus-Infected Cells. Chin. J. Viral Dis. 3 (2), 112–116. doi:10.16550/j.2059-0136.2013.02.005

He, L., Fan, F., Hou, X., Wu, H., Wang, J., Xu, H., et al. (2017). 4(H)-Quinazolone Regulates Innate Immune Signaling upon Respiratory Syncytial Virus Infection by Moderately Inhibiting the RIG-I Pathway in RAW264.7 Cell. Int. Immunopharmacology 52, 245–252. doi:10.1016/j.intimp.2017.09.010

Ho, T., Wu, S., Chen, J., Li, C., and Hsiang, C. (2007). Emodin Blocks the SARS Coronavirus Spike Protein and Angiotensin-Converting Enzyme 2 Interaction. Antiviral Res. 74 (2), 92–101. doi:10.1016/j.antiviral.2006.04.014

Hu, K., Guan, W.-J., Yi, Y., Zhang, W., Li, Zhang, B., et al. (2020). Efficacy and Safety of Lianghuaqingwen Capsules, a Repurposed Chinese Herb, in Patients with Coronavirus Disease 2019: A Multicenter, Prospective, Randomized Controlled Trial. Phytomedicine 85, 153242. doi:10.1016/j.phymed.2020.153242

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical Features of 2019 Novel Coronavirus Infection in China. N. Engl. J. Med. 382 (18), 1708–1720. doi:10.1056/NEJMc200236

Izci, E. (2016). Resveratrol Retention Enema on the TNF-α, SIgA, IL-2, IFN-γ Expression of Epstein-Barr Virus Antigen. Cell Biochem Biophys 71 (1), 57–74. doi:10.1007/s12013-012-9710-0

Jiang, Z., and Zhang, H. (2004). The Inhibitory Effect of Burdock on the Expression of Epstein-Barr Virus Antigen. Chin. J. Exp. Clin. ViroL 8 (4), 323–326.
Luo, Z., Ma, N., Zhong, Y., and Yang, Z.-q. (2015). Antiviral Effect of Emomin from Rheum Palmatum against Coxsackievirus B5 and Human Respiratory Syncytial Virus In Vitro. J. Huazhong Univ. Sci. Technol. Med. Sci. 35 (6), 916–922. doi:10.1007/s11596-015-1528-9

Lou, X., Hu, J., Ge, D., and Lu, W. (2017). Protective Effect of Honeysuckle on Viral Myocarditis in Mice and its Mechanism. J. Traditional Chin. Med. 45 (1), 37–41. doi:10.3969/j.issn.1002-2392.2017.01.010

Lubbe, A., Seibert, I., Klimkait, T., and van der Kooy, F. (2012). Ethnopharmacology in Overdrive: the Remarkable Anti-HIV Activity of Artemisia Annu. J. Ethnopharmacol 141 (3), 854–859. doi:10.1016/j.jep.2012.03.024

Luo, W., Su, X., and Gong, S. (2009). Anti-SARS Coronavirus 3C-like Protease Effects of Rheum Palmatum L. Extracts. Biosci. Trends 3 (4), 124–126. https://www.biosciencetrends.com/article/3/4/124

Luo, Z., Liu, I. F., Wang, X. H., Li, W., Jie, C., Chen, H., et al. (2019). Epigallocatechin, an Alkaloid from Isatis Indigotica, Reduces H1N1 Infection in Stress-Induced Susceptible Model In Vivo and In Vitro. Front. Pharmacol. 10, 78. doi:10.3389/fphar.2019.00078

Lv, R., and Wang, W. L. X. (2020). Clinical Observation on Lianhua Qinqing Granules Combined with Western Medicine Conventional Therapy in the Treatment of 63 Suspected Cases of Coronavirus Disease 2019. J. Traditional Chin. Med. 6 (18), 655–659.

Ma, P., et al. (2004). Study on Anti-Coxsackie Virus B3 Effect of Artemisinin. M. K., Agrawal, A. S., Bose, S., Naskar, S., Bhowmick, R., Chakrabarti, S., Ou, C., Zhang, Q., Wu, G., Shi, N., and He, C. (2015). Dryocrassin ABBA, a Novel Alkaloid from Isatis Indigotica, Reduces H1N1 Infection in Stress-Induced Susceptible Model In Vivo and In Vitro. Arch. Pharmac. Res. 37 (9), 998–1005. doi:10.1007/s12272-016-0775-z

Ren, X. H., Qi, X., Zuo, Q., Tang, J., and Liu, D. (2020). Analysis of Treatment of 813 COVID-19 Patients in the Fangcang Hospital. Med. Guide 39 (9), 926–930. doi:10.3870/j.issn.1004-0781.2020.07.008

Roy, S., He, R., Kapoor, A., Forman, M., Mazzone, J. R., Posner, G. H., et al. (2015). Inhibition of Human Cytomegalovirus Replication by Artemisinins: Effects Mediated through Cell Cycle Modulation. Antimicrob. Agents Chemother. 59 (7), 3870–3879. doi:10.1128/aac.00922-15

Qu, X.-y., Li, Q.-j., Zhang, H.-m., Zhang, X.-j., Shi, P.-h., Zhang, X.-j., et al. (2016). Protective Effects of Phyllirryn against Influenza A Virus In Vivo. Arch. Pharmac. Res. 39 (7), 861–869. doi:10.1007/s12272-016-0775-z

Shi, C.-c., Zhu, H.-y., Li, H., Zeng, D.-l., Shi, X.-l., Zhang, Y.-y., et al. (2020). Regulating the Balance of Th17/Treg Cells in Gut-Lung axis Contributed to the Therapeutic Effect of Houttuynia Cordata Polysaccharides on H1N1-Induced Acute Lung Injury. Int. J. Mol. Macromolecules 158, 52–66. doi:10.1016/j.ijbiomac.2020.04.211

Sithisarn, P., Michaelis, M., Schubert-Zsilavecz, M., and Cinatl, J., Jr. (2013). Differential Antiviral and Anti-inflammatory Mechanisms of the Flavonoids Baicalein and Baicalin in H5N1 Influenza Virus-Infected Cells. Antiviral Res. 98 (3), 414–418. doi:10.1016/j.antiviral.2012.10.004

Swarup, V., Ghosh, J., Mishra, M. K., and Basu, A. (2008). Novel Strategy for Treatment of Japanese Encephalitis Using Arctigenin, a Plant Lignan. J. Antimicrob. Chemother. 61 (3), 679–688. doi:10.1093/jac/dkm053

Trivedi, A., Sharma, S., and Ashtey, B. (2020). Investigational Treatments for COVID-19. J. Infect. Dis. 221 (2), 181–202. doi:10.1093/clinid/mn052

Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., and Veeser, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181 (2), 281–292. doi:10.1016/j.cell.2020.02.058

Wan, Q., et al. (2015). Effects of Baicalin on ET-1 and its Receptors of Pneumonia Infection with SARS-CoV-2. Cell. Physiol. Biochem. 31 (5), 1411–1419. doi:10.1159/000455025

Wan, Q., Wang, H., Han, X., Lin, Y., Yang, Y., Gu, L., et al. (2014). Baicalin Inhibits TLR7/8 Signaling Pathway to Control Influenza A Virus Infection and Improve the Prognosis. Evid. Based Complement. Alternat. Med. 2015, 4923062. doi:10.1155/2015/4923062

Penarrubia, A. L., Ruiz, M., Porco, R., Rao, S. N., Vella, S. A., Juana-Falgarona, M., et al. (2020). Multiple Assays in a Real-Time RT-PCR SARS-CoV-2 Panel Can Mitigate the Risk of Loss of Sensitivity by New Genomic Variants during the COVID-19 Outbreak. Int. J. Infect. Dis. 97, 225–229. doi:10.1016/j.ijid.2020.06.027

Pillayar, T., Manickam, M., Namasivayam, V., Hayashi, Y., and Jung, S. -H. (2016). An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemothrapy. J. Med. Chem. 59 (14), 6595–6628. doi:10.1021/acs.jmedchem.5b01461

Qaseem, A., Yost, J., Etexandia-Ikobaltzeta, I., Abraham, G. M., Forciea, M. A., et al. (2021). Should Remdesivir Be Used for the Treatment of Patients with COVID-19? Rapid, Living Practice Points from the American College of Physicians (Version 2). Ann. Intern. Med. 202801. doi:10.7326/m20-8101

Qiao, Y., Fang, J.-g., Xiao, J., Liu, T., Liu, J., Zhang, Y.-l., et al. (2013). Effect of Baicalen on the Expression of VIP in Extravillous Cytotrophoblasts Infected with Human Cytomegalovirus In Vitro. J. Huazhong Univ. Sci. Technol. Med. Sci. 33 (3), 406–411. doi:10.1329/jhums.s013-1132-9

Xu, C.-c., Zhu, H.-y., Li, Q.-j., Zhang, H.-m., Zhang, X.-j., Shi, P.-h., Zhang, X.-j., et al. (2016). Regulatory Effect of Phyllirryn against Influenza A Virus In Vivo. Arch. Pharmac. Res. 39 (7), 861–869. doi:10.1007/s12272-016-0775-z
