VAR2CSA-Mediated Host Defense Evasion of
Plasmodium falciparum Infected Erythrocytes in
Placental Malaria
Alice Tomlinson, Jean-Philippe Semblat, Benoît Gamain, Arnaud Chêne

To cite this version:
Alice Tomlinson, Jean-Philippe Semblat, Benoît Gamain, Arnaud Chêne. VAR2CSA-Mediated Host Defense Evasion of Plasmodium falciparum Infected Erythrocytes in Placental Malaria. Frontiers in Immunology, Frontiers, 2021, 11, pp.624126. 10.3389/fimmu.2020.624126 . inserm-03212016

HAL Id: inserm-03212016
https://www.hal.inserm.fr/inserm-03212016
Submitted on 29 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
VAR2CSA-Mediated Host Defense Evasion of Plasmodium falciparum Infected Erythrocytes in Placental Malaria

Alice Tomlinson1,2,3, Jean-Philippe Semblat1,2,3, Benoît Gamain1,2,3 and Arnaud Chêne1,2,3*

1 Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France, 2 Institut National de la Transfusion Sanguine, Paris, France, 3 Laboratory of Excellence GR-Ex, Paris, France

Over 30 million women living in P. falciparum endemic areas are at risk of developing malaria during pregnancy every year. Placental malaria is characterized by massive accumulation of infected erythrocytes in the intervillous space of the placenta, accompanied by infiltration of immune cells, particularly monocytes. The consequent local inflammation and the obstruction of the maternofetal exchanges can lead to severe clinical outcomes for both mother and child. Even if protection against the disease can gradually be acquired following successive pregnancies, the malaria parasite has developed a large panel of evasion mechanisms to escape from host defense mechanisms and manipulate the immune system to its advantage. Infected erythrocytes isolated from placentas of women suffering from placental malaria present a unique phenotype and express the pregnancy-specific variant VAR2CSA of the Plasmodium falciparum Erythrocyte Membrane Protein (PfEMP1) family at their surface.

The polymorphic VAR2CSA protein is able to mediate the interaction of infected erythrocytes with a variety of host cells including placental syncytiotrophoblasts and leukocytes but also with components of the immune system such as non-specific IgM. This review summarizes the described VAR2CSA-mediated host defense evasion mechanisms employed by the parasite during placental malaria to ensure its survival and persistence.

Keywords: Plasmodium falciparum, placental malaria, VAR2CSA, PfEMP1, immune evasion, immuno-modulation, VAR2CSA polymorphism

INTRODUCTION

Nearly half the world’s population, implicating 90 countries, lives in areas at risk of malaria transmission. In 2019, an estimated 11 million pregnant women were infected by Plasmodium in sub-Saharan Africa, where P. falciparum is the most prevalent parasite species, accounting for 99.7% of estimated malaria cases (1). P. falciparum infection contracted during pregnancy can lead to placental malaria (PM), a condition that could cause very serious clinical outcomes for both mother
and child, including maternal anemia (2, 3), hypertension (4, 5), stillbirth (6, 7) as well as low birth-weight infants, which affected over 800,000 children in 2019 (1).

PM may result in significant morphological and immunological changes in the placenta. Focal syncytial necrosis, loss of syncytial microvilli, and proliferation of cytotrophoblastic cells are frequently observed as well as thickening of trophoblastic basement membranes together with the apparition of syncytial knots (8–10). Acute infection is also characterized by the substantial presence of infected erythrocytes (IEs) in the intervillous spaces of the placenta (Figure 1A).

Several transcriptomic and proteomic studies revealed that parasitized red blood cells isolated from *P. falciparum*-infected pregnant women display specific signatures, over-expressing a variety of different genes (11–13) and proteins (14–16) as compared to non-pregnancy-specific parasites. They also present a unique adhesive phenotype, interacting with chondroitin sulfate A (CSA), a low-sulfated glycosaminoglycan (GAG), which is the major host receptor involved in the adhesion of IEs to syncytiotrophoblastic cells (17–21) (Figure 1B). Chondroitin sulfate-proteoglycans (CSPGs) are present in the intervillous space of the placenta during the entire second and third trimesters and possibly during the latter part of the first trimester (22).

To date, the pregnancy-specific variant of the *Plasmodium falciparum* erythrocyte membrane protein 1 family (PfEMP1) VAR2CSA has been identified as the sole parasite-derived protein interacting with placental CSA (23–28).

This review focuses on the roles played by VAR2CSA in PM pathogenesis and introduces the latest information on its involvement in host defense evasion mechanisms ranging from cytoadhesion in the placenta, modulation of the placental microenvironment to escape of pregnancy-specific IEs from recognition by protective antibodies.

VAR2CSA STRUCTURE AND CHONDROITIN SULFATE A (CSA)-BINDING

VAR2CSA is a large protein of 350 kDa, with an extracellular region of approximately 300 kDa, displayed at the surface of IEs on membrane protrusions called knobs (29). PfEMP1 clustering

![Figure 1](https://smart.servier.com/)
on knob structures is thought to maximize cytoadhesion under flow conditions but also to act as an immune evasion mechanism, impairing antibody accessibility to key residues involved in CSA-binding (30, 31). Quantitative studies report an estimate of 3 to 80 VAR2CSA molecules per knob (32, 33). Knob density at the IEs surface has been shown to be linked to the PEMP1 variant expressed by the parasite (34) and IEs stained by the monoclonal antibody PAM1.4 revealed that erythrocytes infected by the FCR3 parasite strains displayed more VAR2CSA clusters at the cell surface than erythrocytes infected by NF54 (35). Even if further studies are needed to precisely determine how these differences in PEMP1 presentation impact antibody recognition, these observations highlight that P. falciparum is capable of complex variations at both intra- and inter-strain levels.

The cysteine-rich extracellular region of VAR2CSA has a complex architecture and is composed of six Duffy-Binding Like domains (DBLs), which are interspersed by four inter-domain regions (IDs) (Figure 1B). High-resolution structures have been obtained for the individual domains DBL3x, DBL6c (36–40) as well as for the multidomain DBL3x-DBL4c (41), providing a first step towards the definition of inter-domain interfaces and of the overall structure of the extracellular part of VAR2CSA. Low-resolution structures of the full-length extracellular part of VAR2CSA, obtained by small-angle X-ray scattering or single particle electron microscopy, reveal a compact organization of the protein maintained by specific inter-domain interactions (42–44). Nevertheless, the relative locations of the DBL domains within the overall structure of VAR2CSA significantly differ from one study to another (43, 44). In the recent work from Bewley et al., the VAR2CSA ectodomain low resolution structure appears as a duck-like shape with a packing of three tandem domains (DBL1x/DBL2x, DBL3x/DBL4c, and DBL5e/DBL6e), which would form two pores, each theoretically susceptible to accommodate a 10-12-mer CSA molecule (44). This model suggests that the higher-order structural organization of VAR2CSA is most likely allowing the formation of one, or maybe two, CSA-binding site(s), which comprise(s) several domains. The current definition of the boundaries of the core binding region, established using truncated fragments of recombinant VAR2CSA, localizes the high affinity CSA-binding site within the N-terminal part of the protein (45) between the ID1-ID2a section (46) even though the accessory implication of other domains such as DBL4c cannot be excluded (44). Additional VAR2CSA structural data at high resolution, ideally in complex with CSA, is still required to determine the precise determinants of CSA-binding, which might also include post-translational modifications (47).

VAR2CSA-MEDIATED MODULATION OF THE PLACENTAL MICROENVIRONMENT

The placenta is a tightly controlled pro-inflammatory and anti-inflammatory environment, depending upon the stage of gestation. In healthy pregnancies, a pro-inflammatory milieu is required for fetal implantation, notably by promoting trophoblast invasion. A shift toward a type 2 cytokine/chemokine milieu gradually occurs during gestation favoring pregnancy maintenance and rapid fetal growth and development [reviewed in (60)]. P. falciparum infection during pregnancy can affect the placental environment, notably promoting inflammatory responses (61–65), some of which are associated with fetal growth retardation, low birth-weight babies, and in more extreme cases, poor pregnancy outcomes, such as preterm delivery and pregnancy loss (66–71). P. falciparum is thus able to upset the fine equilibrium between pro-inflammatory and anti-inflammatory responses, deregulating the immune system, with detrimental consequences for the human host.

Syncytiotrophoblast Activation

The syncytiotrophoblasts covering the placental villi are terminally differentiated cells, which result from the...
syncytialization of underlying villous cytotrophoblasts. They exhibit high metabolic activity and are involved in many physiological processes such as the active transport of molecules, the diffusion of gases, and the synthesis and secretion of large amounts of hormones, including steroids [Reviewed in (72)]. Experiments performed using primary placental cells, as well as the widely used choriocarcinoma cell line BeWo, revealed that VAR2CSA-dependent binding of IEs to syncytiotrophoblasts induces a broad range of cellular responses, notably activating MAPK pathways (73, 74). Activation of syncytiotrophoblasts leads to the secretion of pro-inflammatory cytokines/chemokines such as macrophage inflammatory protein (MIP), the neutrophil chemotactic factor interleukin (IL) 8 and IL-6 (74, 75), but also to the production of soluble ICAM-1 (75), which may act as a protection mechanism to regulate the inflammatory response (76). The interaction of syncytiotrophoblasts with VAR2CSA-expressing IEs might therefore participate in the immunological shaping of the local environment, establishing a complex network of factors which could promote the migration of immune cells to the intervillous space (74), as well as the in situ modulation of their activity.

Macrophage and Monocyte Immunomodulation

Sections taken from healthy placenta at different time-points throughout normal pregnancy showed that nearly half of the decidual cells are of bone marrow origin, comprising 18–20% macrophages (77, 78). Polarization of decidual macrophages varies with gestational age, shifting from an M1 polarization during fetal implantation, towards a mixed M1/M2 profile which remains until mid-pregnancy (79). After the placental development is completed, decidual macrophages are predominantly of the M2 phenotype, contributing to a tolerant immune environment and to fetal immunoprotection (80, 81).

PM is characterized by a significant increase in the number of monocytes and macrophages in the intervillous space (8–10, 82, 83), which is notably associated with elevated expression of the β chemokines IL-8 and MIP-1 (84). *In vitro* co-incubation experiments, performed in absence of human plasma/serum, i.e. in absence of opsonic antibodies, showed that VAR2CSA-expressing IEs are able to modulate specific transcription factor activation in RAW-macrophages, as compared to erythrocytes infected with genetically modified parasites presenting a deficiency in the export of PfEMP1 at the cell surface (PfEMP1-null) (85). The decreased activation of NF-κB-, CREB-, and GAS/ISRE-binding factors is accompanied by reduced production of TNF and IL-10. Similar experiments using human primary monocytes also revealed that VAR2CSA-expressing IEs are able to alter the production profiles of other cytokines/chemokines, limiting the release of IL-1β, IL-6, IL-10, MCP-1, MIP-1α, and MIP-1β, as compared to cells infected withimmu2020.624126 PfEMP1-null parasites (85). Although the precise nature of the monocyte receptor(s) involved still remains to be elucidated, these observations highlight how *P. falciparum* could exploit the host cellular pathways to modulate the immune response.

Interestingly, a study performed in an area of low prevalence of malaria, revealed gravidity-dependent differences in the capacity of peripheral blood mononuclear cells (PBMCs) to produce cytokines and chemokines in response to pregnancy-specific IEs (86). Despite no differences in opsonic antibody levels, cellular immune responses differed between women in their second to fourth pregnancy (G2-4) and grand nulligravida (G5-G7). Indeed, more IL-10, IL-1β, IL-6, tumor necrosis factor (TNF) but less CXCL-8, CCL-8, IFNγ, and CXCL-10 were detected in G2-4 compared to G5-7, highlighting the modulation of immune cell function occurring during PM (86).

VAR2CSA BINDING TO NON-SPECIFIC IGM AND DIVERSION OF THE IMMUNE RESPONSE

PM induces VAR2CSA-specific immunoglobulin Gs (IgGs) belonging to the IgG1 subclass, and to a lower extent the IgG3 subclass (87, 88), both highly potent at interacting with Fcγ receptors present at the surface of phagocytic cells. Concordantly, women living in areas where malaria is endemic naturally acquire specific antibodies that promote the phagocytosis of VAR2CSA-expressing IEs (89–91), thus participating in parasite clearance. Binding of non-specific IgM on the surface of IEs was first demonstrated on rosetting parasites (92–94) and subsequently on VAR2CSA-expressing red blood cells (95). Following these observations, the function of IgM binding to VAR2CSA has been uncertain for several years. In 2011, a study performed by Barford et al. showed that non-specific IgM binding participates in the masking of protective epitopes on VAR2CSA, leading to IE evasion of macrophage-mediated opsonic phagocytosis (96). The same study revealed that non-specific IgM binding to VAR2CSA-expressing IEs did not interfere with their capacity to adhere to CSA and did not increase their susceptibility to undergo complement-mediated lysis (96). The extensive analysis of non-specific IgM binding to large panels of PfEMP1 members demonstrated that IgM binding is a common functional phenotype found in multiple PfEMP1 variants across various parasite strains, thus providing a better understanding of the underlying molecular mechanisms (97–99). Although the CSA-binding site of VAR2CSA resides within the N-terminal region of the protein (100, 101), the IgM interacting residues appear to be mainly located within the C-terminal section, at the level of the DBL5ε or DBL6ε domains in VAR2CSA variants carried by the 3D7 and FCGR3/IT parasite strains, respectively (102, 103) as well as in DBLε and DBLζ domains near the C-terminus of other PfEMP1 variants (98, 99, 104, 105).

The PfEMP1 binding sites on IgM have been located within the μ region of the fragment crystallizable (Fcμ) of polymeric immunoglobulins (97), and more precisely in the Cμ4 domain for the DBL4β domain of PfEMP1-VAR1 of the TM284 strain (106). These observations, together with the additional definition of the architecture of the IgM/PfEMP1 complex (107), provide critical molecular elements which could explain how PfEMP1s...
interfere with the binding of the complement component C1q to the adjacent Cm3 domain, thus inhibiting complement-mediated lysis. Furthermore, these findings demonstrate how IgMs participate in PfEMP1 clustering on the cell surface, strengthening the interactions with host receptors (107–109). PfEMP1 binding to IgM has also been proposed as a non-exclusive molecular mechanism involved in the triggering of polyclonal B cell activation, a hallmark of malaria (110, 111). This activation would lead to hyper-gamma-immunoglobulinemia and the subsequent diversion of the specific humoral immune response towards antigens relevant for protection.

VAR2CSA POLYMORPHISM

All the *P. falciparum* genomes sequenced to date reveal the presence of one or more var2csa gene copies (112–114). VAR2CSA is a highly polymorphic multidomain protein, usually consisting of six DBL domains; the first three DBL domains belong to the DBLx subtype and the three others to the DBLe subtype. The protein also contains a CIDR_PAM domain (also referred to as ID2) between the DBL2x and DBL3x domains. A recent study has identified atypical extended or truncated VAR2CSA structures (115). Extended structures include one or two additional DBLe domains downstream of the conventional DBL1x-6e domain structure (115). Within the conventional six DBL domain structure, DBL6e is the most conserved DBL domain while DBL6e is the most polymorphic DBL domain (112). *Var2csa* is present in all genomes of known *Laverania* sub-genus members (116). One of the closest *P. falciparum* relatives, the chimpanzee parasite *Plasmodium reichenowi*, possesses a var2csa-like gene which is annotated as a pseudogene and encodes a functional truncated protein (NTS-DBL1x-ID1-DBL2x-truncated ID2) (117).

Global sequence diversity and analysis of *var2csa* have been reported in different studies (118–121) and more recently for 1,249 sequences spanning 7 Kb of *var2csa* (NTS-DBL5e) from various strains and field isolates (122). Although it was previously shown that the DBL6e domain is the most polymorphic domain (112), this latest study, which does not include DBL6e, demonstrates that the nucleotide diversity is higher towards the N-terminus of the protein and that the
diversity is generally higher in African parasite populations than in South East Asian populations. While the DBL2x domain has the lowest nucleotide diversity (122), it possesses the highest density of insertions and deletions, with sequence length across samples ranging from 430 to 550 amino acids (122). In a population structure analysis performed on var2csa sequences from Benin and Malawi, five different clades of ID1-DBL2x (encoding for the CSA-binding region) were identified and the authors found an association between the 3D7-like clade and low birth-weight (120). Only four clades were identified, including a 3D7-like clade (clade 1) and an FCR3-like clade (clade 2) (120). Indeed, two of the previously identified clades could not be separated using this much larger dataset. Clades 1, 2, and 4 were present across all the P. falciparum malaria endemic areas and clade 1, which is associated with low birth-weight, is highly represented in the West African populations (41.7%), followed by East Africa (27.5%), South East Asia (23.5%), and South America (21.1%). However, clade 3 is exclusively found in African parasite populations but appears to represent less than 1% of the var2csa sequences.

A recent study, which used plasma obtained from Tanzanian and Malian women at the time of delivery, simultaneously examined the capability of antibodies to recognize native VAR2CSA expressed by either NF54 or FCR3, to inhibit the binding of IEs to CSA and to promote phagocytosis by THP1 cells. Plasma from Malian women reacted more strongly with VAR2CSA-expressing erythrocytes infected by the FCR3 parasite strain whereas Tanzanian plasma preferentially reacted with erythrocytes infected by NF54 (35). Analysis of antibody functionality showed that the balance between binding inhibition capability and opsonizing activity could be biased depending on the expressed VAR2CSA variant and on the geographical location (35), suggesting that epitopes involved in each functional process may differ among parasite strains and that parasite transmission in a given place could therefore shape antibody profiles. In addition, the multiplicity of var2csa genes within the parasite genome may also confer a greater capacity for antigenic variation and evasion of variant-specific immune responses (114).

CONCLUDING REMARKS

P. falciparum infection contracted during pregnancy elicits a broad range of immune responses, combining components of both the innate and the adaptive immunity, orchestrated by a complex network of pro- and anti-inflammatory cytokines (Figure 2). P. falciparum has developed the ability to manipulate the immune system to its advantage, to ensure its survival and persistence within the human host.

Although the parasite is able to escape host defense processes and manipulate the induced immune response using a variety of mechanisms described herein, women living in malaria endemic areas can gradually acquire protective clinical immunity against PM, depending on the intensity of parasite transmission (123). In moderate malaria transmission, PM adverse clinical outcomes can be seen in women of all parity status (124), whereas protection appears to develop in a more marked parity-dependent manner in high transmission settings (125).

Importantly, PM protection has been linked to the presence of antibodies targeting PM-specific variant surface antigens (126) and more specifically VAR2CSA (127–129). These observations led to the belief that a VAR2CSA-based vaccine against PM could potentially be achieved. However, the high degree of sequence diversity within VAR2CSA represents a major hurdle for vaccine design.

Following extensive preclinical evaluation, two recombinant vaccine candidates PRIMVAC and PAMVAC, comprising the CSA-binding region of VAR2CSA from the 3D7 (clade 1) and FCR3 (clade 2) strains respectively, have been assessed in Phase I clinical trials in Europe and Africa (ClinicalTrials.gov identifiers NCT02658253 and NCT02647489, respectively) (130–134). The identification of immunological correlates of protection against PM being complex, there is to date no clear surrogate allowing an easy evaluation of the protective effects of vaccines in early clinical trials (135). Exploratory analyses performed for the PRIMVAC and PAMVAC trials nevertheless revealed that vaccine-induced antibodies had a limited capability to cross-react with VAR2CSA originating from heterologous parasite strains (133, 134), highlighting the difficulty to compose with the high degree of polymorphisms of the protein when designing vaccines. Alternative vaccine approaches, using VAR2CSA in combination with other P. falciparum antigens, such as the circumsporozoite protein (CSP) (136), or virus-like particles (VLPs) to display VAR2CSA-derived antigens are also currently under investigation (137–139).

Improving our understanding on how P. falciparum escapes host defenses, modulates the immune system and on how natural immunity develops during PM despite VAR2CSA polymorphisms is therefore crucial to design efficient and effective immuno-therapeutic approaches but also to appropriately evaluate them.

AUTHOR CONTRIBUTIONS

AT, J-PS, BG, and AC wrote the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by a grant from the ANR-18-IDEX-0001, IdEx Université de Paris attributed to AT and BG.

ACKNOWLEDGMENTS

We would like to thank Auria Godard for creating the illustration of the placental villus presented in Figure 1A. We also thank the peer-reviewers for critical review of the former version of the manuscript.
REFERENCES

1. World Health Organization. World Malaria Report 2019. Geneva: World Health Organization (2019) Licence: CC BY-NC-SA 3.0 IGO.

2. Verhoef HH, Brabin BJ, Chimsuku L, Kazembe P, Broadhead RL. An analysis of the determinants of anaemia in pregnant women in rural Malawi—a basis for action. Ann Trop Med Parasitol (1999) 93:119–33. doi: 10.1080/00034899958609

3. Shulman CE, Graham WJ, Jilo H, Lowe BS, New L, Obiero J, et al. Malaria is an important cause of anaemia in primigravidae: evidence from a district hospital in coastal Kenya. Trans R Soc Trop Med Hyg (1996) 90:535–9. doi: 10.1016/s0035-9203(96)90312-0

4. Ndào CT, Dumont A, Fivet N, Doucoure S, Gaye A, Leheusan JY. Placental malarial infection as a risk factor for hypertensive disorders during pregnancy in Africa: a case-control study in an urban area of Senegal, West Africa. Am J Epidemiol (2009) 170:847–53. doi: 10.1093/aje/kwp207

5. Muehlenbachs A, Mutubingwa TK, Edmonds S, Fried M, Duffy PE. Hypertension and maternal-fetal conflict during placental malaria. PLoS Med (2006) 3:e446. doi: 10.1371/journal.pmed.0030446

6. Akuze J, Blencowe H, Waiswa P, Baschieri A, Gordeev VS, Kwasiga D, et al. Randomised comparison of two household survey modules for measuring stillbirths and neonatal deaths in five countries: the Every Newborn-INDDEPTH study. Lancet Glob Health (2020) 8:e535–66. doi: 10.1016/s2214-109x(20)30044-9

7. Moore KA, Simpson JA, Scouller MJL, McGreedy R, Fowkes FJL. Quantification of the association between malaria in pregnancy and stillbirth: a systematic review and meta-analysis. Lancet Glob Health (2017) 5:e1101–12. doi: 10.1016/s2214-109x(17)30340-6

8. Galbraith RM, Fox H, Hsi B, Galbraith GM, Bray RS, Faulk WP. The human materno-fetal relationship in malaria. II. Histological, ultrastructural and immunopathological studies of the placenta. Trans R Soc Trop Med Hyg (1980) 74:61–72. doi: 10.1016/0035-9203(80)90012-7

9. Walter PR, Garin Y, Blot P. Placental pathologic changes in malaria. A histologic and ultrastructural study. Am J Pathol (1982) 109:330–42.

10. Ismail MR, Ordji J, Menendez C, Ventura PJ, Aponte JJ, Kahigwa E, et al. PFI1785w: A highly conserved protein associated with pregnancy malaria. J Infect Dis (2000) 181:1542–5. doi: 10.1086/324137

11. Tuikue Ndam N, Bischoff E, Proux C, Lavstsen T, Salanti A, Guitard J, et al. Chondroitin sulfate Proteoglycan Expression and Binding of Plasmodium falciparum-Infected Erythrocytes in the Human Placenta during Pregnancy. IAI (2003) 71:2455–61. doi: 10.1128/IAI.71.5.2455-2461.2003

12. Viebgh NK, Gamain B, Scheidig C, Léopard C, Przyborski J, Lanzer M, et al. A single member of the Plasmodium falciparum var multigene family determines cytoadhesion to the placental receptor chondroitin sulphate A. EMBO Rep (2005) 6:775–81. doi: 10.1038/sj.embor.7400466

13. Duffy MF, Byrne TJ, Elliott SR, Wilson DW, Rogerson SJ, Beeson JG, et al. Broad analysis reveals a consistent pattern of var gene transcription in Plasmodium falciparum isolated from pregnant women in African countries: the Every Newborn-INDEPTH study. Lancet Glob Health (2005) 3:81–93. doi: 10.1016/j.lgg.2005.04.077

14. Gamain B, Trimmell AR, Scheidig C, Scherf A, Miller LH, Smith JD. Identification of multiple chondroitin sulphate A (CSA)-binding domains in the var2CSA gene transcribed in CSA-binding parasites. J Infect Dis (2005) 191:1010–3. doi: 10.1086/428137

15. Salanti A, Dahlbäck M, Turner L, Nielsen MA, Barford L, Magistrado P, et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J Exp Med (2004) 200:1197–203. doi: 10.1084/jem.20041579

16. Salanti A, Staalsoe T, Lavstsen T, Jensen ATR, Sowa MPK, Arnot DE, et al. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell (1997) 89:287–96. doi: 10.1016/s0092-8674(00)80207-x

17. Raventos-Suarez C, Kaul DK, Macaluso F, Nagel RL. Membrane knobs are unique chondroitin sulfate proteoglycans of the intervillous spaces that mediate the adherence of Plasmodium falciparum-infected erythrocytes to the placenta. J Biol Chem (2000) 275:40344–54. doi: 10.1074/jbc.m006398200

18. Gysin J, Pouvelle B, Fivet N, Scharf A, Lépolid C. Ex vivo desequstration of Plasmodium falciparum-infected erythrocytes from human placenta by chondroitin sulfate A. Infect Immun (1999) 67:6596–602. doi: 10.1128/IAI.67.12.6596-6602

19. Maubert B, Guilbert LJ, Deloron P. Cytoadherence of Plasmodium falciparum to intercellular adhesion molecule 1 and chondroitin-4-sulphate expressed by the syncytiotrophoblast in the human placenta. Infect Immun (1997) 65:1251–7. doi: 10.1128/IAI.65.4.1251-1257.1997

20. Maubert B, Fivet N, Tami G, Boudin C, Deloron P. Cytoadherence of Plasmodium falciparum-infected erythrocytes in the human placenta. Parasite Immunol (2000) 22:191–9. doi: 10.1046/j.1365-3024.2000.00292.x

21. Agbor-Enoh ST, Achur RN, Vallyavettil M, Leke R, Taylor DW, Gowda DC. Plasmodium falciparum Trophozoite Proteolytic Expression and Binding of Plasmodium falciparum-Infected Erythrocytes in the Human Placenta during Pregnancy. IAI (2003) 71:2455–61. doi: 10.1128/IAI.71.5.2455-2461.2003

22. Gruenberg J, Fridell DR, Sherman IW. Scanning electron microscope-analysis of the protrusions (knobs) present on the surface of Plasmodium falciparum-infected erythrocytes. J Cell Biol (1983) 97:795–802. doi: 10.1083/jcb.97.3.795

23. Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, Davern KM, et al. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell (1997) 89:287–96. doi: 10.1016/s0092-8674(00)80207-x

24. Hoicv J, Pouvelle B, Beersch P, Czajkowski M, Przyborski J, Lanzer M, et al. Functional Antibodies against Placental Malaria Parasites Are Variant
Vuchelen A, Pardon E, Steyaert J, Gamain B, Loris R, van Nuland NAJ, et al. Structural and immunological correlations between the variable blocks of the VAR2CSA Domain DBL6e from two Plasmodium falciparum parasite lines. J Mol Biol (2013) 425:1697–711. doi: 10.1016/j.jmb.2013.02.014

Singh K, Gittis RK, Dinh TV, Zhou H, Gowda DC, Miura K, et al. Subdomain 3 of Plasmodium falciparum VAR2CSA DBL3x is identified as a minimal chondroitin sulfate A-binding region. J Biol Chem (2010) 285:24855–62. doi: 10.1074/jbc.M110.111862

Khunrae P, Philip JMD, Bull DR, Higgins MK. Structural comparison of two CSP-binding DBL domains from the VAR2CSA protein important in Plasmodium falciparum-infected erythrocytes. Curr Opin Microbiol (2011) 14:93–20. doi: 10.1016/j.mib.2011.01.007

Robert C, Pouvelle B, Meyer P, Muanza K, Fujioka H, Aikawa M, et al. Chondroitin-4-sulphate (proteoglycan), a receptor for Plasmodium falciparum-infected erythrocyte adherence on brain microvascular endothelial cells. Res Immunol (1999) 146:383–93. doi: 10.1016/S0923-2490(99)81042-x

Takeda M, Briand V, Ibitokou S, Dechavanne S, Massougbodji A, Deloron P, et al. Macromolecular expression of the Plasmodium falciparum VAR2CSA protein in insect cells. FEBS Lett (2002) 520:446–50. doi: 10.1016/S0014-5793(02)01814-0

Kajee S, Dewar J, Dorin-Scott J, Thirumalai S, Lee S, Washburn M, et al. Deformability of Plasmodium falciparum-infected red blood cells in malaria patients. Cell Microbiol (2012) 14:1880–91. doi: 10.1111/cmi.12007

Herricks T, Seydel KB, Molyneux M, Taylor T, Rathod PK. Estimating physical splenic filtration of Plasmodium falciparum-infected red blood cells in malaria patients. Cell Microbiol (2012) 14:1880–91. doi: 10.1111/cmi.12007

Nyirenda T, et al. Malaria and pregnancy: placental cytokine expression and outcomes. Infect Immun (2014) 82:3785–60. doi: 10.1128/IAI.00220-12

Kapulu GM, Anbalagan R, Picchio C, Goujon C, Thomas S, Biesterfeld S, et al. Production, crystallization and X-ray diffraction analysis of two nanobodies against the Duffy binding-like (DBL) domain DBL6e-FCR3 of the Plasmodium falciparum VAR2CSA protein. Acta Crystallogr Sect F Struct Biol Cryst Commun (2013) 69:270–4. doi: 10.1107/S174430911300197-9

Chai W, Beeson JG, Lawson AM. The structural motif in chondroitin sulfate for CSPG-binding DBL domains from the VAR2CSA protein important in Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulphate is cooperative and shear enhanced. Blood (2015) 125:5383–91. doi: 10.1182/blood-2014-03-561019

Robert C, Pouvelle B, Meyer P, Muanza K, Fujioka H, Aikawa M, et al. Chondroitin-4-sulphate (proteoglycan), a receptor for Plasmodium falciparum-infected erythrocyte adherence on brain microvascular endothelial cells. Res Immunol (1999) 146:383–93. doi: 10.1016/S0923-2490(99)81042-x

Chai W, Beson JG, Lawson AM. The structural motif in chondroitin sulfate for adhesion of Plasmodium falciparum-infected erythrocytes comprises disaccharide units of 4-0-sulfated and non-sulfated N-acetylgalactosamine linked to glucuronic acid. J Biol Chem (2002) 277:22438–46. doi: 10.1074/jbc.M111402100

Ngai M, Weckman AM, Erice C, McDonald CR, Cahill LS, Sled JG, et al. Malaria in Pregnancy and Adverse Birth Outcomes: New Mechanisms and Therapeutic Opportunities. Trends Parasitol (2020) 36:127–37. doi: 10.1016/j.pt.2019.12.005

Beleza I, Pimentel T, Pinto-da-Rocha F, Pimentel S, Chaves NM, et al. The human placental malaria protein VAR2CSA interacts with a chemo-enzymatically synthesized chondroitin sulfate library. Glycoconj J (2016) 33:985–94. doi: 10.1007/s10719-016-9685-z

Krogh S, Teglbjaerg E, Keiding N, Smedegaard-Jensen B, et al. Differences between prospective and current birth registries in Denmark: Do we have a valid comparison? Int J Epidemiol (2007) 36:974–83. doi: 10.1093/ije/dym144

Krogh S, Teglbjaerg E, Keiding N, Smedegaard-Jensen B, et al. Differences between prospective and current birth registries in Denmark: Do we have a valid comparison? Int J Epidemiol (2007) 36:974–83. doi: 10.1093/ije/dym144
87. Elliott SR, Brennan AK, Beeson JG, Tadesse E, Molyneux ME, Brown GV, Sampaio NG, Eriksson EM, Schoetz AM, Segura C, Blair S. Induction of pro-inflammatory response of the placental trophoblast by Plasmodium falciparum infected erythrocytes and TNF. Malar J (2013) 12:421. doi: 10.1186/1475-2875-12-421.

88. Villows NW, Borawska MH. Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur Cytokine Netw (2004) 15:91–8.

89. Mues B, Langer D, Zwadlo G, Sorg C. Phenotypic characterization of macrophages in human term placenta. Immunology (1989) 67:303–7.

90. Vince GS, Starkey PM, Jackson MC, Sargent IL, Redman CW. Flow cytometric characterisation of cell populations in human pregnancy decidua and isolation of developmental macrophages. J Immunol Methods (1990) 132:181–9. doi: 10.1016/0172-1759(90)90028-4.

91. Jaiswal MK, Mallers TM, Larsen B, Kwak-Kim J, Chaouat G, Gilman-Sachs A, et al. V-ATPase upregulation during early pregnancy: a possible link to establishment of an inflammatory response during preimplantation period of pregnancy. Reproduction (2012) 143:713–25. doi: 10.1530/REP-12-0036.

92. Ilivuji VM, Beeson JG, Tadesse E, Fauvet AK, Molyneux ME. A host defense mechanism against malaria-facilitated invasion of malaria-infected erythrocytes by placental macrophages. Am J Reprod Immunol (2014) 71:389–400. doi: 10.1111/1600-089X.12180.

93. Sivastava A, Gangnard S, Devchavanne S, Amirat F, Lewit Bentley A, Bentley GA, et al. VarCSA minimal CSA binding region is located within the N-terminal region. PLoS One (2011) 6:e20270. doi: 10.1371/journal.pone.0020270.

94. Dahlbäck M, Jørgensen LM, Nielsen MA, Clausen TM, Ditlev SB, Resende JM. Evasion of immune response to Plasmodium falciparum var1CSA and var2CSA domains that bind IgM natural antibodies of the cytophilic IgG subclass responses to variant surface antigens. Infect Immun (2005) 73:5903–7. doi: 10.1128/IAI.73.9.5903-5907.2005.

95. Ludlow LE, Hasang W, Umbers AJ, Forbes EK, Ome M, Unger HW, et al. Peripheral blood mononuclear cells derived from grand multigravidae display a distinct cytokine profile in response to P. falciparum infected erythrocytes. PLoS One (2014) 9:e86160. doi: 10.1371/journal.pone.0086160.

96. Sampaio NG, Eriksson EM, Schofeld L. Plasmodium falciparum PiEMP1 Modulates Monocyte/Macrophage Transcription Factor Activation and Cytokine and Chemokine Responses. Infect Immun (2018) 86(1):e00447-17. doi: 10.1128/IAI.00447-17.

97. Megnkonou R, Staalsoe T, Taylor DW, Leke R, Hvidl A. Effects of pregnancy and intensity of Plasmodium falciparum transmission on immunoglobulin G subclass responses to variant surface antigens. Infect Immun (2005) 73:4112–8. doi: 10.1128/IAI.73.7.4112-4118.2005.

98. Keen J, Sgróda L, Ayisi K, Paten SN, Ayisi J, van Eijk J, et al. HIV impairs opsonic phagocytic clearance of pregnancy-associated malaria parasites. PLoS Med (2007) 4:e181. doi: 10.1371/journal.pmed.0040181.

99. Ataide R, Mwapasa V, Molyneux ME, Meshnick SR, Rogerson SJ. Antibodies that induce phagocytosis of malaria infected erythrocytes: effect of HIV infection and its relationship to intrauterine growth retardation. J Infect Dis (1999) 180:1987–93. doi: 10.1086/315135.

100. Boelaert J, Fowke J. The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci (2015) 370:20140066. doi: 10.1098/rstb.2014.0066.
108. Stevenson L, Huda P, Jeppesen A, Laursen E, Rowe JA, Craig A, et al. Investigating the function of Fc-specific binding of IgM to Plasmodium falciparum erythrocyte membrane protein 1 mediating erythrocyte rosetting. Cell Microbiol (2015) 17:1819–31. doi: 10.1111/cmi.12403

109. Stevenson L, Laursen E, Cowan GJ, Bandoh B, Barford L, Cavanagh DR, et al. a2-Macroglobulin Can Crosslink Multiple Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Molecules and May Facilitate Adhesion of Parasitized Erythrocytes. PLoS Pathog (2015) 11:e1005022. doi: 10.1371/journal.ppat.1005022

110. Donati D, Zhang LP, Che, C, Mok B, Che, A, Xu H, Thangarajh M, et al. Increased B cell survival and preferential activation of the memory compartment by a malaria polyclonal B cell activator. J Immunol (2006) 177:3035–44. doi: 10.4049/jimmunol.177.5.3035

111. Donati D, Mok B, Che, A, Xu H, Thangarajh M, et al. Identification of a polyclonal B-cell activator in Plasmodium falciparum. Infect Immun (2004) 72:5412–8. doi: 10.1128/IAI.72.9.5412-5418.2004

112. Donati D, Mok B, Che, A, Xu H, Thangarajh M, et al. Increased B cell survival and preferential activation of the memory compartment by a malaria polyclonal B cell activator. J Immunol (2006) 177:3035–44. doi: 10.4049/jimmunol.177.5.3035

113. Sander AF, Salanti A, Lavstsen T, Nielsen MA, Theander TG, Leke RGF, et al. Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria. Lancet (2004) 363:283–9. doi: 10.1016/S0140-6736(03)15836-X

114. Che, A, Gangnard S, Dechavanne C, Dechavanne S, Srivastava A, Tétard M, et al. Down-selection of the VAR2CSA DBL1-2 expressed in E. coli as a lead antigen for placental malaria vaccine development. NPJ Vaccines (2018) 3:28. doi: 10.1038/s41541-018-0064-6

115. Che, A, Gangnard S, Guadall A, Gimisty H, Leroy O, Havelange N, et al. Preclinical immunogenicity and safety of the cGMP-grade placental malaria vaccine PRIMVAC. EBioMedicine (2019) 42:145–56. doi: 10.1016/j.ebiom.2019.03.010

116. Stevenson L, Huda P, Jeppesen A, Mok B, Che, A, Xu H, Thangarajh M, et al. Identification of a polyclonal B-cell activator in Plasmodium falciparum. Infect Immun (2004) 72:5412–8. doi: 10.1128/IAI.72.9.5412-5418.2004

117. Larremore DB, Sundararaman SA, Liu W, Proto WR, Clauset A, Loy DE, et al. First-in-human, Randomized, Double-blind Clinical Trial of Differentially Down-selected of the VAR2CSA DBL1-2 expressed in E. coli as a lead antigen for placental malaria vaccine development. NPJ Vaccines (2018) 3:28. doi: 10.1038/s41541-018-0064-6

118. Bordbar B, Tuikue Ndam N, Renard E, Jafari-Guemouri S, Tavul L, Jennison C, et al. Polyvalent antibody titers raised against multiple Plasmodium falciparum VAR2CSA-DBL1-2 expressed in E. coli. J Infect Dis (2011) 203:1679–85. doi: 10.1086/656107

119. Bodar B, Tuikue Ndam N, Renard E, Jafari-Guemouri S, Tavul L, Jennison C, et al. Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: impact on vaccine design for placental malaria. Infect Genet Evol (2014) 25:81–92. doi: 10.1016/j.meegid.2014.04.010

120. Otto TD, Gilabert A, Crellein T, Böhme U, Arnathau C, Sanders M, et al. Placental malaria vaccine candidate antigen VAR2CSA displays atypical domain architecture in some Plasmodium falciparum strains. Commun Biol (2018) 1:245. doi: 10.1038/s42003-018-00667-y

121. Magrath HJ, Mok B, Che, A, Xu H, Thangarajh M, et al. Positive selection of Plasmodium falciparum parasites with multiple var2csa-type PFEMP1 genes during the course of infection in pregnant women. J Infect Dis (2011) 203:1679–85. doi: 10.1086/656107

122. Recnik D, Mok B, Che, A, Xu H, Thangarajh M, et al. Identification of a polyclonal B-cell activator in Plasmodium falciparum. Infect Immun (2004) 72:5412–8. doi: 10.1128/IAI.72.9.5412-5418.2004

123. Mayr A, Bardai A, Macet E, Nhampossa T, Fonsec a AM, González R, et al. Changing Trends in P. falciparum Burden, Immunity, and Disease in Pregnancy. N Engl J Med (2015) 373:1607–17. doi: 10.1056/NEJMoa1406459

124. Shulman CE, Marshall T, Dorman EK, Bulmer JN, Cutts F, Pesu H, et al. Malaria in pregnancy: adverse effects on haemoglobin levels and birthweight in primigravidae and multigravidae. Trop Med Int Health (2001) 6:770–8. doi: 10.1046/j.1365-3156.2001.00786.x

125. Walker PGT, ter Kuile FO, Garske T, Menendez C, Ghan i AC. Estimated risk of placental infection and low birthweight attributable to Plasmodium falciparum malaria in Africa in 2010: a modelling study. Lancet Glob Health (2014) 2.e460–67. doi: 10.1016/S2214-109X(14)70256-6

Copyright © 2021 Tomlinson, Semblat, Gamain and Chéne. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.