Energetics and Vibrational Signatures of Nucleobase Argyrophilic Interactions

Suhwan Paul Lee
University of Mississippi. Sally McDonnell Barksdale Honors College

Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis
Part of the Chemistry Commons

Recommended Citation
Lee, Suhwan Paul, "Energetics and Vibrational Signatures of Nucleobase Argyrophilic Interactions" (2018). Honors Theses. 877.
https://egrove.olemiss.edu/hon_thesis/877

This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact egrove@olemiss.edu.
Energetics and Vibrational Signatures of Nucleobase Argyrophilic Interactions

by

Suhwan Paul Lee

A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College.

Oxford
May 2018

Approved by

Advisor: Dr. Gregory S. Tschumper

Reader: Dr. Nathan I. Hammer

Reader: Dr. Susan D. Pedigo
Acknowledgements

I would like to thank Dr. Gregory Tschumper for giving me the opportunity to work in his research group as an undergraduate researcher and for providing the training necessary to become a research scientist. I would like to thank the Tschumper Research Group, especially Thomas Ellington and Sarah Johnson, for their guidance and support. Being a member of the Tschumper Research Group has been the most influential experience during my time at The University of Mississippi. Also, I would like to thank Dr. Nathan Hammer and Dr. Susan Pedigo for taking the time to review my thesis as well as sharing their knowledge of physical chemistry and biochemistry. Lastly, I would like to thank the Sally McDonnell Barksdale Honors College and the Department of Chemistry and Biochemistry for providing me with wonderful opportunities and a high-quality education. This work was supported by the Mississippi Center for Supercomputing Research for the computational resources and funded by the National Science Foundation (CHE-1338056, OIA-1430364, and CHE-1664998).
Abstract

This study investigates the interactions of both purine (adenine and guanine) and pyrimidine (cytosine, thymine, and uracil) nucleobases with a pair of silver atoms (Ag$_2$). Full geometry optimizations were performed on several structures of each nucleobase/Ag$_2$ complex and the corresponding isolated monomers using the M06-2X density functional theory (DFT) method with a correlation consistent triple-ζ basis set augmented with diffuse functions on all atoms and a relativistic pseudopotential on Ag (aug-cc-pVTZ for H, C, N, and O and aug-cc-pVTZ-PP for Ag; denoted aVTZ). Harmonic vibrational frequency computations indicate that each optimized structure corresponds to a minimum on the M06-2X/aVTZ potential energy surface. Relative electronic energies for interactions between Ag$_2$ and each nucleobase were compared to elucidate energetic differences between isomers. Further analysis of the changes in vibrational frequencies, infrared intensities, and Raman scattering activities reveals how different Ag$_2$ binding sites might be identified spectroscopically. These results provide molecular-level insight into the interactions between nucleobases and silver, which may lead to better understanding and interpretation of surface-enhanced Raman spectroscopy (SERS) experiments on nucleobases and related systems.
1 Introduction

1.1 Nucleobases

The groundbreaking discovery of DNA and RNA structures was the result of astonishing scientific research over several decades from the first discovery of nucleic acid by Miescher to the famous double helix model by Watson and Crick using Franklin’s X-ray crystallography work.1–3 DNA and RNA are found in the form of nucleotides, which are composed of a phosphate group, a pentose sugar (ribose for RNA and deoxyribose for DNA), and one of five nucleobases. Nucleobases can exist in multiple tautomeric forms, different from one another based on the position of the protons and double bonds.4 Figure 1 depicts the optimized structures of the most common resonance structures of purine (adenine and guanine) and pyrimidine (cytosine, thymine, and uracil) nucleobases in the tautomeric forms that can be found in DNA and RNA.5 The common numbering convention for atoms in the ring of nucleobases represented in Figure 1 is used throughout this study.
As the only varying component of nucleotides, nucleobases constitute the most important pieces of genetic information and are involved in many cellular processes. Thus, the ability to detect and identify individual nucleobase is a significant asset to many fields of science such as biology, biochemistry, analytical chemistry, and medicine.6–10

1.2 Vibrational Spectroscopy

Vibrational spectroscopy is a powerful analytical tool that provides a way to elucidate the structures of interaction in specific molecular systems as changes in the vibrational spectra of interacting molecules indicate which and to what extent atoms and bonds are affected by weak intermolecular interactions.11 This is possible because the vibrational energy levels are quantized and molecules have vibrations with each
vibrational mode having different energy.12

Spectroscopy is regarded as the study of light-matter interactions as spectroscopic techniques are based on transitions that occur between different energy states of molecules when they interact with electromagnetic radiation. The two types of these interactions are absorption and scattering. Absorption occurs when the energy of the photon matches that of a vibrational, rotational, or electronic transition, whereas scattering occurs when the energy does not match. Infrared spectroscopy utilizes the absorption interaction, and Raman spectroscopy utilizes the scattering interaction.12

1.3 Raman Spectroscopy

Raman spectroscopy can be used to study biomolecules because the Raman spectrum created by scattered light due to a change in polarizability can provide a structural fingerprint of a particular molecule.$^{13–16}$ Three different forms of scattering can occur: Rayleigh scattering, Stokes scattering, and anti-Stokes scattering shown in Figure 2.
Rayleigh scattering is elastic meaning that there is no energy change between the incident light and scattered light. On the other hand, there are energy changes in inelastic scattering, which are Stokes scattering and anti-Stokes scattering. In Stokes scattering, the molecule in the vibrational ground state is excited to the virtual state and relaxed to the vibrational excited state. In anti-Stokes scattering, the molecule in the vibrational excited state is excited to the virtual state and relaxed down to the vibrational ground state. Raman spectroscopy utilizes these inelastic scattering forms; thus, they are known as Raman scattering. The identification of biomolecules using Raman spectroscopy presents a difficult problem in which biomolecules have a small scattering cross-section and are found in low concentrations due to their low
solubility in water.15,17–19

1.4 Surface-Enhanced Raman Spectroscopy

First discovered in 1974 through pyridine adsorbed at a silver electrode, surface-enhanced Raman spectroscopy (SERS) provides the solution for weak scattering.20 The weak Raman activity can be greatly enhanced by a factor of up to 10^{14}, which provides a sufficient SERS cross section for single molecule detection, when the molecule is adsorbed onto a specially prepared metal surface or nanoparticles that can function as the antenna.16,21–28 This high enhancement factor allows for the acquisition of high resolution vibrational spectra of biomolecules from very diluted aqueous solutions down to 10^{-8} M.14,17,29 As such, the detection and identification of nucleotides are made possible due to the unique SERS spectra of nucleobases.13,22,29,30

There are two widely accepted mechanisms for the SERS effect: electromagnetic enhancement (resonance between the incident or Raman scattered light with surface plasmons of the metal substrate) and chemical enhancement (a charge transfer between the metal and the adsorbate).8,13,16,18,19,23,25–27,31 The physical-chemical phenomena present in SERS can be understood better by theoretical studies, which can provide information on relationship between the molecular level properties of the interfacial structure and the SERS process.27,32,33

Unfortunately, a detailed knowledge of the interactions between nucleobases and metal surface is difficult to obtain because the adsorption and Raman properties depend strongly on adsorption site, and multiple binding sites are available in nucleobases.34,35 The knowledge of the preferred adsorption site of silver on each nucleobase can provide molecular-level insight into the interactions between nucleobases and silver because varying interacting sites lead to different structural modulations, which can change the electron distribution force constants, polarizability, dipole moment, and vibrational spectra.36 For these reasons, a theoretical investigation of the inter
actions between nucleobases and silver using computational chemistry is presented in this study.

1.5 The Schrödinger Equation

Computational chemistry utilizes simulation and modeling in many different ways to predict molecular properties for various chemical systems. One way to do this is solving the Schrödinger equation. Erwin Schrödinger was the first to formulate an equation that integrated an appropriate wave function needed to be solved for the wave-particle duality necessary for understanding physical phenomena at the atomic level. The Schrödinger equation ($\hat{H}\Psi = E\Psi$) contains three terms: the Hamiltonian operator (\hat{H}), the wave function (Ψ), and the total energy (E). \hat{H} is the total energy energy operator that describes the kinetic and potential energies for each particle, and Ψ is the n-electron wave function that depends on the identities and positions of the nuclei and on the total number of electrons. By solving the Hamiltonian operator and the wave function, it is possible to obtain the total energy of the system.12

The Schrödinger equation has been successfully solved exactly for the hydrogen atom with only one electron. The presence of electron correlation in multi-electron atoms or molecules results in a loss of spherical symmetry, and the Schrödinger equation cannot be solved exactly for these multi-electron systems. The electrons dictate the most important aspects of the interactions; thus, computational chemists developed numerical methods that calculate approximate wave functions and values for observables such as energy, bond lengths and angles, and dipole moments.12

1.6 Level of Theory

The selection of the level of theory, which is comprised of a method and basis set, is crucial to have the correct balance between the accuracy of the results and the computational demands. *Ab initio* methods attempt to solve the Schrödinger equation
as accurately as possible. This can be extremely challenging and computationally demanding, so density functional theory replaces the correlated motions of electrons with a physical observable, the electron density, allowing the computational demands to be much cheaper than the \textit{ab initio} methods. Of many different possible density functionals, M06-2X has been proven to adequately describe a variety of non-covalent interactions.18,37 A basis set mathematically describes the space in which the electrons reside. The basis set of choice (aug-cc-pVTZ-PP) utilizes a pseudopotential (PP) for Ag. Due to the large molecular weight and size of Ag, classical basis sets cannot be used. The pseudopotential replaces the core electrons to account for relativistic effects and helps to reduce the high computational demands of Ag. The level of theory used in this study was chosen specifically because the same level of theory was found to be the most effective at reproducing the experiment frequencies in the previous study of pyrimidine and its interactions with Ag\textsubscript{2} and H\textsubscript{2}O molecules.18
2 Computational Details

Full geometry optimizations were performed on several structures of each nucleobase/Ag₂ complex and the corresponding isolated monomers using the M06-2X density functional theory (DFT) method with a correlation consistent triple-ζ basis set augmented with diffuse functions on all atoms and a relativistic pseudopotential on Ag (aug-cc-pVTZ for H, C, N, and O and aug-cc-pVTZ-PP for Ag; denoted aVTZ). Harmonic vibrational frequencies as well as infrared intensities (IR) and Raman scattering activities (RA) were computed in order to confirm that each optimized structure corresponds to a minimum on the M06-2X/aVTZ potential energy surface and to investigate vibrational spectra of the nucleobase before and after complex formation.

A pair of silver atoms (Ag₂) is utilized to probe the interactions between the nucleobases and silver as well as the resulting spectroscopic perturbations. Even though, the number of silver atoms affects the adsorption and Raman properties, the adsorption site is more important in determining the binding interactions. The enhancement mechanism for small and large clusters of silver is similar, and the Raman enhancement decreases as the distance between the molecule and the silver cluster increases.

The electronic energetics of each nucleobase/Ag₂ complex with various binding sites are computed to determine the interaction strength of each nucleobase with Ag₂ depending on the binding site. This interaction strength will be referred to as binding energy \(E_{\text{bind}} = E_{\text{nucleobase/Ag}_2} - E_{\text{nucleobase}} - E_{\text{Ag}_2} \). The difference in \(E_{\text{bind}} \) in each nucleobase/Ag₂ complex with various binding sites will be referred to as relative energy \(\Delta E = E_{\text{nucleobase/Ag}_2} - E_{\text{minimum/nucleobase/Ag}_2} \).

Moreover, the vibrational signatures of nucleobase/Ag₂ complexes are examined because the analysis of changes in the vibrational spectra can provide detailed infor-
mation on the interaction between each nucleobase and silver as well as adsorption mechanism.11, 44

All computations were performed using analytic gradients and Hessians available in the Gaussian 09 software package.45 Pure angular momentum ($5d$, $7f$, etc.) atomic orbital basis functions were used in place of their Cartesian counterparts ($6d$, $10f$, etc.) functions. Additionally, a pruned numerical integration grid having 99 radial shells and 590 angular points per shell was used. All electronic energies were converged to at least 1.0×10^{-10} E$_h$, and the maximum Cartesian forces in the optimized structures were below 1.2×10^{-5} E$_h$ a.u.$^{-1}$.
3 Results and Discussion

3.1 Structures and Energetics

A variety of interactions between Ag$_2$ and electron rich regions of the nucleobases (π, N, and O) were examined because the adsorption process is thought to involve an interaction of the π-electron system of the heteroaromatic ring with a silver electrode.46 Nevertheless, all initial structures collapsed during the geometry optimization to those shown in Figure 3 exhibiting either N or O interactions with the Ag$_2$ unit. Using these structures, intermolecular distances were defined by the shortest distance between an Ag atom and a nucleobase atom, denoted by the dashed lines in each structure.
Figure 3. Structures of each nucleobase/Ag$_2$ complex with varying binding sites optimized at the M06-2X/aVTZ level of theory.
Table 1 compares electronic binding energies (E_{bind}), relative energies (ΔE), and intermolecular distances (R) of each nucleobase/Ag$_2$ complex shown in Figure 3.

Table 1. Electronic binding and relative energies (E_{bind} and ΔE in kcal mol$^{-1}$) of nucleobase/Ag$_2$ complexes with varying binding sites computed at the M06-2X/aVTZ level of theory as well as intermolecular distances (R in Å) denoted by the dashed lines in Figure 3.

Nucleobase	Binding Site	E_{bind}	ΔE	R
Adenine	N1	−15.2	+0.2	2.35
	N3	−15.4	0.0	2.34
	NH$_2$ @ C6	−8.2	+7.2	2.50
	N7	−14.8	+0.6	2.33
Guanine	NH$_2$ @ C2	−7.4	+7.7	2.50
	N3	−14.0	+1.1	2.35
	O @ C6	−13.6	+1.4	2.36
	N7	−15.1	0.0	2.35
Cytosine	O @ C2	−14.4	+3.0	2.33
	N3	−17.4	0.0	2.35
	NH$_2$ @ C4	−7.7	+9.7	2.51
Thymine	O @ C2/N1	−11.3	0.0	2.39
	O @ C2/N3	−9.9	+1.4	2.38
	O @ C4/N3	−10.3	+1.0	2.38
	O @ C4/C5	−10.7	+0.6	2.38
Uracil	O @ C2/N1	−10.9	0.0	2.39
	O @ C2/N3	−9.5	+1.4	2.39
	O @ C4/N3	−10.2	+0.7	2.38
	O @ C4/C5	−10.6	+0.3	2.39

In the adenine/Ag$_2$ complex, four potential binding sites were identified (Figure 3). The one with Ag$_2$ interacting with N3 has the lowest electronic energy and therefore exhibits the strongest binding. The three sp^2 hybridized N binding sites (N1, N3, and N7) have E_{bind} around $−15$ kcal mol$^{-1}$ (within ±0.5 kcal mol$^{-1}$ of each other). On the other hand, the out-of-plane binding at the sp^3 N (NH$_2$ @ C6) is 7 kcal mol$^{-1}$ higher in energy than that of the sp^2 hybridized N binding sites. In addition, intermolecular distance for the NH$_2$ site increases by 0.15 Å. This same trend in E_{bind}, ΔE, and R
can be seen in the guanine/Ag$_2$ and cytosine/Ag$_2$ complexes as well.

The guanine/Ag$_2$ complex also exhibits the strongest binding at the sp^2 hybridized N sites, around -14 kcal mol$^{-1}$ at N3 and -15 kcal mol$^{-1}$ at N7, and R is virtually identical at all three of these structures. Another energetically competitive site is at sp^2 O @ C6 with E_{bind} approaching -14 kcal mol$^{-1}$. The sp^3 N (NH$_2$ @ C2) is again the weakest binding site with E_{bind} of only -7.4 kcal mol$^{-1}$ and an R value of 2.50 Å compared to 2.35 Å or 2.36 Å for the other binding sites.

Each structure of the cytosine/Ag$_2$ complex shows a clear difference in the energetics. There is only one sp^2 hybridized N site (N3) with a marked decrease in E_{bind} to more than -17 kcal mol$^{-1}$. The sp^2 O @ C2 site exhibits binding similar to the sp^2 O site available in guanine with E_{bind} of approximately -14 kcal mol$^{-1}$. The binding at the sp^3 NH$_2$ @ C4 site is around -8 kcal mol$^{-1}$, which is much weaker than the lowest energy binding site (N3) with ΔE over 9 kcal mol$^{-1}$. The large differences in the energetics among the three possible binding sites in the cytosine/Ag$_2$ complex indicate that the silver will most likely to bind to the N3 binding site.

The thymine/Ag$_2$ and uracil/Ag$_2$ complexes show a synonymous trend in the energetics due to their similarities in structures. There are no sp^2 hybridized or sp^3 N sites and only sp^2 O sites. It is important to note that an oxygen atom provides two possible binding sites with its two lone pairs of valence electrons as observed in the optimized structures of the thymine/Ag$_2$ and uracil/Ag$_2$ complexes in Figure 3. Nevertheless, Ag$_2$ ignores the possible binding site located on the oxygen side close to N7 in the guanine/Ag$_2$ complex and converges to the N7 binding site instead despite starting its initial geometry optimization unarguably closer to the oxygen atom. The same phenomenon happens in the cytosine/Ag$_2$ complex, which silver ignores the oxygen binding site close to N3. Silver only binds to oxygen when the nearby nitrogen is protonated, and ΔE is higher when the silver binds to oxygen compared to nitrogen. Thus, it is quite evident that silver prefers in-plane binding at sp^2 hy-
bridized nitrogen instead of oxygen. The most difficult problem in the thymine/Ag₂
and uracil/Ag₂ complexes is the proximity of ∆E in every binding site. In both cases
of the thymine/Ag₂ and uracil/Ag₂ complexes, the largest difference in ∆E among
various binding sites is less than 1.5 kcal mol⁻¹ when compared to the lowest en-
ergy binding site, O @ C2/N1. Experimentally, thymine has been found to have the
weakest interaction with silver when compared to adenine, guanine, and cytosine. The
same interaction strength trend can be predicted for uracil due to its similarities
with thymine. This agrees with the overall weaker E_{bind} of the thymine/Ag₂ and
uracil/Ag₂ complexes (around -11 kcal mol⁻¹) compared to the guanine/Ag₂ and
cytosine/Ag₂ complexes with sp^2 O sites (around -14 kcal mol⁻¹).

The energetics of each nucleobase/Ag₂ complex with varying binding sites allowed
the elimination of the sp^3 N amino group as a possible binding site from all complexes
because of the large ∆E. However, the analysis of the energetics was not sufficient
to determine the most preferred binding site of Ag₂ because other binding sites (sp^2
hybridized N and sp^2 O) displayed the similarities in the energetics. This supports
the necessity of examining the vibrational signatures of each nucleobase/Ag₂ complex
upon complexation.

3.2 Vibrational Signatures

The binding of Ag₂ affects the vibrational frequency, infrared intensity, and Raman
scattering activity of a nucleobase, while the magnitude and direction of the changes
depend on the location of Ag₂. The examination of these vibrational perturbations
complement the information presented in the previous section and provide further
insight into the interaction between each nucleobase/Ag₂.

Table 2 shows the vibrational frequencies (Freq), Raman scattering activities
(RA), and corresponding changes (ΔFreq and ΔRA, respectively) associated with
the nucleobase/Ag₂ complexation depicted in Figure 3.
Nucleobase	Binding Site	Freq	RA	∆Freq	∆RA																
Adenine	Isolated	1532	1	1430	26	1340	39	1021	6	952	5	906	2								
	N1	+6	+39	0	+23	+18	+29	+7	+9	+3	0	+11	+6								
	N3	0	+2	+12	+29	+1	+15	+2	+5	+3	-1	+18	0								
	NH$_2$ @ C6	-5	+6	-3	+2	-10	+19	+43	0	-3	+1	-2	0								
	N7	0	+12	+8	+11	-5	-11	-3	-3	+23	-4	0	0								
Guanine	Isolated	1841	54	1342	6	1156	4	1081	7	956	6	845	1								
	NH$_2$ @ C2	+13	-14	-5	-1	+8	-1	+3	-3	+1	0	-10	0								
	N3	+14	+15	+6	+22	-10	+6	+6	+6	+1	+1	+18	0								
	O @ C6	-73	+95	+31	+61	+19	-2	-3	+8	-2	+5	0	+2								
	N7	+3	+22	+6	-1	+2	-1	+15	-2	+22	-4	+4	0								
Cytosine	Isolated	1815	30	1454	4	1284	22	1101	3	994	3	940	3								
	O @ C2	-76	+102	+7	+112	+34	+4	+16	+1	+4	+2	+17	-1								
	N3	-3	-15	+11	+8	+10	+6	+22	+1	+13	+5	+25	+10								
	NH$_2$ @ C4	+13	+11	+1	+1	-34	-13	+38	+1	+10	0	+9	+3								
Thymine	Isolated	1840	25	1806	41	1446	3	1413	1	1216	0	980	6								
	O @ C2/N1	-70	+33	+14	+48	+21	+51	0	+2	+11	+4	+11	0								
	O @ C2/N3	-65	+49	+20	+9	+15	+5	+5	+52	+52	+52	0	0	+13	0						
	O @ C4/N3	+13	-8	-61	+231	+3	+12	+10	+40	+13	+2	+5	+12								
	O @ C4/C5	+11	+2	-52	+217	+4	+2	+5	+1	+11	+4	+3	0								
Uracil	Isolated	1846	34	1821	46	1435	2	1424	2	1213	0	984	3								
	O @ C2/N1	-72	+35	+17	+63	+22	+25	+2	+9	+18	+2	+4	-1								
	O @ C2/N3	-67	+47	+21	+9	+18	+1	+3	+29	+4	+4	+5	0								
	O @ C4/N3	+12	-12	-58	+206	+5	+3	+8	+30	+3	+2	+16	+6								
	O @ C4/C5	+9	-5	-58	+165	+7	+8	+4	+2	+5	+4	+8	+2								
These modes were selected from the region around 800 cm\(^{-1}\) to 2000 cm\(^{-1}\) because these vibrations primarily involve the motion of non-hydrogen atoms and produce intense Raman bands, while containing a significant amount of vibrational information about nucleobases.\(^{47}\) In addition, this region has been found to be the most effective at reproducing the experiment in the previous study of pyrimidine and its interactions with Ag\(_2\) and H\(_2\)O molecules using the same level of theory (M06-2X/aVTZ).\(^{18}\) Figure 4-8 show the simulated Raman spectra of isolated nucleobase with each nucleobase/Ag\(_2\) complex. The simulated Raman spectra were created by fitting computed harmonic frequencies to the Lorentzian curve with half width of 2 cm\(^{-1}\).

In the adenine/Ag\(_2\) complex, the mode at 906 cm\(^{-1}\) presents a symmetrical N1-C2-N3 stretching of the six-membered ring. When Ag\(_2\) binds to the N1 or N3 site of this mode, there is an increase in frequency (+11 cm\(^{-1}\) and +18 cm\(^{-1}\), respectively) since both N1 and N3 are the constituents of the six-membered ring. However, the binding of Ag\(_2\) to the two other sites, N7 and NH\(_2\) C6, results in no change or a decrease (−2 cm\(^{-1}\)) in frequency. A symmetrical N7-C8-N9 stretching of the five-membered ring is at 952 cm\(^{-1}\) and exhibits a frequency shift of +23 cm\(^{-1}\) only with the adsorption of Ag\(_2\) to the constituent of the N7 site. Even though the NH\(_2\) site has been eliminated as a competitive binding site energetically, the mode with the NH\(_2\) rocking at 1021 cm\(^{-1}\) is worth mentioning due to the large frequency shift of +43 cm\(^{-1}\) as Ag\(_2\) binds to the NH\(_2\) group. Therefore, an increase in frequency is present when Ag\(_2\) binds to an atom or a group within the motion of the modes. The most interesting mode of the adenine/Ag\(_2\) complex is present at 1340 cm\(^{-1}\) with an asymmetrical N1-C2-N3 stretching. A similar change in frequency and Raman scattering activity is expected whether Ag\(_2\) binds to the N1 or N3 site because of the trend examined in the modes with a symmetrical stretching. However, a shift to higher energy (+18 cm\(^{-1}\)) is present when Ag\(_2\) adsorbs to the N1 site, but barely
changes when Ag₂ adsorbs to the N3 site, which is most likely due to the involvement of the amino group adjacent to N1. It has been found experimentally that the modes dominated by motion of the amino group causes a strong Raman enhancement when the amino group is close to the metal surface.²⁵ This explanation can be supported by the mode at 1532 cm⁻¹ characterized as the scissoring of the NH₂ group. There is a significant Raman enhancement (×40) when Ag₂ binds to the N1 site but almost no Raman enhancement with the addition of Ag₂ to the N3 site instead.

![Figure 4. Simulated Raman spectra of isolated adenine with each adenine/Ag₂ complex.](image)

The guanine/Ag₂ complex has three modes that can distinguish the O @ C6 binding site from the other binding sites. The mode at 1841 cm⁻¹ with the C=O stretching experiences a substantial shift to lower energy (−73 cm⁻¹) and an enhancement of Raman scattering activity (around ×3) when Ag₂ binds to the O @ C6 site. In several experiments, this was found to be caused by a loss in the double bond character of the carbonyl group as electrons are donated to the silver surface.
from the carbonyl group. The same phenomenon can also be observed in the cytosine/Ag$_2$, thymine/Ag$_2$, and uracil/Ag$_2$ complexes, which all contain a carbonyl group. Experimentally, the presence of a decrease in frequency and enhancement in Raman of the C=O stretching band revealed the proximity of the carbonyl group to the silver surface. Two alternate modes of the guanine/Ag$_2$ complex at 1342 cm$^{-1}$ and 1156 cm$^{-1}$ contain a wagging motion of N1-H. These modes shift to much higher energy when Ag$_2$ binds to the O @ C6 site compared to other binding sites with a large Raman enhancement (around $\times 11$) at 1342 cm$^{-1}$. The N7 binding site can be differentiated through a solitary increase in frequency when Ag$_2$ binds to the N7 site at 1081 cm$^{-1}$ and 956 cm$^{-1}$ that consist of the stretching inside the five-membered ring. On the other hand, the N3 binding site can be distinguished from other binding sites through the frequency shift of $+18$ cm$^{-1}$ at the 845 cm$^{-1}$ mode.

Figure 5. Simulated Raman spectra of isolated guanine with each guanine/Ag$_2$ complex.
The cytosine/Ag$_2$ complex shows a clear difference in the energetics for each binding site, and fortunately, this characteristic also applies to the vibrational signatures. All of the six selected modes have noticeable change in frequency with either varying magnitude or direction. The most noticeable mode is at 1454 cm$^{-1}$ with a N1-H wagging motion. When Ag$_2$ binds to the O @ C2 site, Raman scattering activity is enhanced significantly ($\times 29$), whereas the binding of Ag$_2$ to other sites causes no substantial enhancement. Three modes at 1101 cm$^{-1}$, 994 cm$^{-1}$, and 940 cm$^{-1}$ all share the NH$_2$ rocking and stretching within the ring. All sites exhibit a shift to higher energy, and in a higher magnitude when Ag$_2$ adsorbs to the N3 site. On the other hand, at the 1284 cm$^{-1}$ mode with a C2-N3 stretching and a N1-H wagging, a greater increase in frequency is predicted with the addition of Ag$_2$ to the O @ C2 site (+34 cm$^{-1}$) compared to the N3 (+10 cm$^{-1}$) and NH$_2$ @ C4 (-34 cm$^{-1}$).

![Simulated Raman spectra of isolated cytosine with each cytosine/Ag$_2$ complex.](image)

Figure 6. Simulated Raman spectra of isolated cytosine with each cytosine/Ag$_2$ complex.
In the thymine/Ag\(_2\) complex, the mode at 1840 cm\(^{-1}\) includes a C2=O stretching, whereas the mode at 1806 cm\(^{-1}\) includes a C4=O stretching. When Ag\(_2\) binds to the two binding sites present at the oxygen atom involved in a C=O stretching, the frequency decreases significantly, while the Raman scattering activity is notably enhanced for both sites. On the contrary, when Ag\(_2\) binds to the oxygen atom not involved in a C=O stretching, the mode shifts to higher energy, and Raman scattering activity is slightly affected. The mode at 1446 cm\(^{-1}\) is characterized as an asymmetrical N1-C2-N3 stretching and a N1-H wagging. The adsorption of Ag\(_2\) to the O @ C2/N1 site causes a shift to higher energy and a large Raman enhancement (\(\times 18\)). In comparison, the mode at 1413 cm\(^{-1}\) with a N3-C4 stretching and a N3-H wagging shifts to higher energy and enhances Raman scattering activity significantly when Ag\(_2\) interacts with the O @ C2/N3 (\(\times 53\)) or the O @ C4/N3 site (\(\times 41\)). The frequency shifts and Raman enhancement computed for both modes are influenced greatly by the wagging motion of N1-H and N3-H.
Figure 7. Simulated Raman spectra of isolated thymine with each thymine/Ag\textsubscript{2} complex.

Experimentally, the SERS spectra of cytosine and uracil have been found to be similar due to the same ring structure and a similar geometry on the surface50. Even more so, the thymine/Ag\textsubscript{2} and uracil/Ag\textsubscript{2} complexes share similarities in structures, energetics, and vibrational signatures. The previously discussed trends in the thymine/Ag\textsubscript{2} complex apply directly to the uracil/Ag\textsubscript{2} complex modes at 1846 cm-1, 1821 cm-1, 1435 cm-1, and 1424 cm-1. The 1216 cm-1 and 980 cm-1 modes of the thymine/Ag\textsubscript{2} complex in comparison to 1213 cm-1 and 984 cm-1 modes of the uracil/Ag\textsubscript{2} complex are particularly interesting. Despite all the similarities shared between the two nucleobase/Ag\textsubscript{2} complexes, the methyl group of the thymine/Ag\textsubscript{2} complex, which does not form any coordination bond with silver, is clearly affecting these two modes differently from the hydrogen atom of the uracil/Ag\textsubscript{2} complex48. For example, the thymine/Ag\textsubscript{2} complex mode at 980 cm-1 shifts to higher energy with a larger magnitude when Ag\textsubscript{2} binds to the O @ C2/N1 or O @ C2/N3 site. However, a
larger increase in frequency is present in the uracil/Ag$_2$ complex mode at 984 cm$^{-1}$ when Ag$_2$ interacts with the O @ C4/N3 or O @ C4/C5 site.

![Simulated Raman spectra of isolated uracil with each uracil/Ag$_2$ complex.](image)

Figure 8. Simulated Raman spectra of isolated uracil with each uracil/Ag$_2$ complex.

Various trends in the vibrational signatures of each nucleobase/Ag$_2$ complex have been identified. When Ag$_2$ binds to the site in motion or the substituent of atoms in motion, especially in the case of a symmetrical stretching, an increase in frequency is expected. This trend was observed experimentally in which the totally symmetrical ring mode shifts to higher energy in all derivatives of adenine once these molecules are adsorbed to the silver surface.51 The NH$_2$ group motion such as rocking and scissoring shifts the mode to higher energy and enhances the Raman scattering activity when Ag$_2$ binds to a nearby binding site. A similar phenomenon is present with the wagging motion of N-H. The addition of Ag$_2$ to the oxygen atom involved in a C=O stretching causes a significant decrease in frequency and enhancement of Raman scattering activity.
4 Conclusions

The nature of the interaction between the molecule and a metal surface is unclear; thus, a theoretical study of the interaction between each nucleobase and silver was presented in this work. By modeling the silver surface with Ag$_2$, the optimized structures of each nucleobase/Ag$_2$ complex with various possible binding sites (sp^2 hybridized N, sp^2 O, and sp^3 N) were found. The electronic binding energies of each nucleobase/Ag$_2$ complex were compared to determine the most energetically favored binding site. Only the sp^3 N amino group binding site could be eliminated energetically because the complexation of Ag$_2$ through this site increased the binding energy by approximately 7 kcal mol$^{-1}$ to 9 kcal mol$^{-1}$ compared to the lowest energy binding site. In some cases, sp^2 hybridized N was more favorable than sp^2 O; however, both were found to be equally energetically competitive, making them essentially isoenergetic. Because of this ambiguity in the energetics, vibrational signatures of each nucleobase/Ag$_2$ complex upon complexation were examined.

The enhancement in Raman scattering activity upon complexation was not as large as a factor of up to 10^{14}. Nevertheless, the change in frequency and Raman scattering activity upon complexation differed noticeably depending on the binding site in several modes such as a symmetrical stretching, an NH$_2$ group motion, an wagging motion of N-H, and a C=O streching. These modes could be used qualitatively to discriminate between particular binding motifs experimentally.
References

[1] R. Dahm, *Dev. Biol.*, **278**, 274 (2005). Friedrich Miescher and the discovery of DNA. http://dx.doi.org/10.1016/j.ydbio.2004.11.028.

[2] R. Dahm, *Hum Genet*, **122**, 565 (2008). Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. http://dx.doi.org/10.1007/s00439-007-0433-0.

[3] J. D. Watson and F. H. C. Crick, *Nature*, **171**, 737 (1953). Molecular Structure of Nucleic Acids. A Structure for Deoxyribose Nucleic Acid. http://dx.doi.org/10.1038/171737a0.

[4] V. Singh, B. I. Fedele, and J. M. Essigmann, *RNA*, **21**, 1 (2015). Role of tautomerism in RNA biochemistry. http://dx.doi.org/10.1261/rna.048371.114.

[5] G. Sun and M. C. Nicklaus, *Theor. Chem. Acc.*, **117**, 323 (2007). Natural resonance structures and aromaticity of the nucleobases. http://dx.doi.org/10.1007/s00214-006-0154-9.

[6] R. Santamaria, E. Charro, A. Zacarías, and M. Castro, *J. Comput. Chem.*, **20**, 511 (1999). Vibrational Spectra of Nucleic Acid Bases and Their Watson-Crick Pair Complexes. http://dx.doi.org/10.1002/(SICI)1096-987X(19990415)20:5<511::AID-JCC4>3.0.CO;2-8.

[7] M. Shanmugasundaram and M. Puranik, *J. Raman Spectrosc.*, **40**, 1726 (2009). Computational prediction of vibrational spectra of normal and modified DNA nucleobases. http://dx.doi.org/10.1002/jrs.2533.
[8] K. M. Ervin, E. Koglin, J. M. Séquaris, P. Valenta, and H. W. Nürnberg, J. Electroanal. Chem., 114, 179 (1980). Surface Enhanced Raman Spectra of Nucleic Acid Components Adsorbed at a Silver Electrode. http://dx.doi.org/10.1016/S0022-0728(80)80446-3.

[9] R. P. Lopes, R. Valero, J. Tomkinson, M. P. M. Marques, and L. A. E. B. de Carvalho, New J. Chem., 37, 2691 (2013). Applying vibrational spectroscopy to the study of nucleobases - adenine as a case-study. http://dx.doi.org/10.1039/c3nj00445g.

[10] Z.-G. Shang, D. N. Ting, Y. T. Wong, Y. C. Tan, B. Ying, and Y.-J. Mo, J. Mol. Struct., 826, 64 (2007). A study of DFT and surface enhanced Raman scattering in silver colloids for thymine. http://dx.doi.org/10.1016/j.molstruc.2006.05.007.

[11] A. A. Howard, G. S. Tschumper, and N. I. Hammer, J. Phys. Chem. A, 114, 6803 (2010). Effects of Hydrogen Bonding on Vibrational Normal Modes of Pyrimidine. http://dx.doi.org/10.1021/jp101267w.

[12] T. Engel and P. Reid, Physical Chemistry, Third Edition, Pearson Education, Inc., Glenview, 2012.

[13] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, J. Phys.: Condens. Matter, 14, R597 (2002). Surface-enhanced Raman scattering and biophysics. http://dx.doi.org/10.1088/0953-8984/14/18/202.

[14] A. Rasmussen and V. Deckert, J. Raman Spectrosc., 37, 311 (2006). Surface- and tip-enhanced Raman scattering of DNA components. http://dx.doi.org/10.1002/jrs.1480.

[15] M. Muniz-Miranda, C. Gellini, M. Pagliai, M. Innocenti, P. R. Salvi, and V. Schettino, J. Phys. Chem. C, 114, 13730 (2010). SERS and
Computational Studies on MicroRNA Chains Adsorbed on Silver Surfaces. http://dx.doi.org/10.1021/jp103304r.

[16] N. Valley, N. Greeneltch, R. P. V. Duyne, and G. C. Schatz, *J. Phys. Chem. Lett.*, 4, 2599 (2013). A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment. http://dx.doi.org/10.1021/jp4012383.

[17] E. Koglin and J. M. Séquaris, *Top. Curr. Chem.*, 134, 1 (1986). Surface Enhanced Raman Scattering of Biomolecules.

[18] J. T. Kelly, A. K. McClellan, L. V. Joe, A. M. Wright, L. T. Lloyd, G. S. Tschumper, and N. I. Hammer, *ChemPhysChem*, 17, 2782 (2016). Competition between Hydrophilic and Argyrophilic Interactions in Surface Enhanced Raman Spectroscopy. http://dx.doi.org/10.1002/cphc.201600678.

[19] C. Otto, T. J. J. van den Tweel, F. F. M. de Mul, and J. Greve, *J. Raman Spectrosc.*, 17, 289 (1986). Surface-Enhanced Raman Spectroscopy of DNA Bases. http://dx.doi.org/10.1002/jrs.1250170311.

[20] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, *Chem. Phys. Lett.*, 26, 163 (1974). Raman Spectra of Pyridine Adsorbed at a Silver Electrode. http://dx.doi.org/10.1016/0009-2614(74)85388-1.

[21] E. Koglin, J. M. Séquaris, J. C. Fritz, and P. Valenta, *J. Mol. Struct.*, 114, 219 (1984). Surface Enhanced Raman Scattering (SERS) of Nucleic Acid Bases Adsorbed on Silver Colloids. http://dx.doi.org/10.1016/0022-2860(84)87131-8.

[22] K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, *Phys. Rev. E*, 57, R6281 (1998). Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). http://dx.doi.org/10.1103/PhysRevE.57.R6281.
[23] B. Giese and D. McNaughton, *J. Phys. Chem. B*, **106**, 101 (2002). Surface-Enhanced Raman Spectroscopic and Density Functional Theory Study of Adenine Adsorption to Silver Surfaces. http://dx.doi.org/10.1021/jp010789f.

[24] B. Giese and D. McNaughton, *Phys. Chem. Chem. Phys.*, **4**, 5161 (2002). Density functional theoretical (DFT) and surface-enhanced Raman spectroscopic study of guanine and its alkylated derivatives. Part 1. DFT calculations on neutral, protonated and deprotonated guanine. http://dx.doi.org/10.1039/b203829c.

[25] B. Giese and D. McNaughton, *Phys. Chem. Chem. Phys.*, **4**, 5171 (2002). Density functional theoretical (DFT) and surface-enhanced Raman spectroscopic study of guanine and its alkylated derivatives. Part 2: Surface-enhanced Raman scattering on silver surfaces. http://dx.doi.org/10.1039/b203830g.

[26] S. Bhunia, S. Forster, N. Vyas, H.-C. Schmitt, and A. K. Ojha, *Spectrochim. Acta, Part A*, **151**, 888 (2015). Direct visual evidence of end-on adsorption geometry of pyridine on silver surface investigated by surface enhanced Raman scattering and density functional theory calculations. http://dx.doi.org/10.1016/j.saa.2015.07.019.

[27] C. M. Aikens and G. C. Schatz, *J. Phys. Chem. A*, **110**, 13317 (2006). TDDFT Studies of Absorption and SERS Spectra of Pyridine Interacting with Au$_2$O. http://dx.doi.org/10.1021/jp065206m.

[28] A. Campion and P. Kambhampati, *Chem. Soc. Rev.*, **27**, 241 (1998). Surface-enhanced Raman scattering. http://dx.doi.org/10.1039/a827241z.

[29] S. E. J. Bell and N. M. S. Sirimuthu, *J. Am. Chem. Soc.*, **128**, 15580 (2006). Surface-Enhanced Raman Spectroscopy (SERS) for Sub-Micromolar Detection of DNA/RNA Mononucleotides. http://dx.doi.org/10.1021/ja066263w.
[30] S. Basu, S. Jana, S. Pande, and T. Pal, *J. Colloid Interface Sci.*, **321**, 288 (2008). Interaction of DNA bases with silver nanoparticles: Assembly quantified through SPRS and SERS. http://dx.doi.org/10.1016/j.jcis.2008.02.015.

[31] U. Laor and G. C. Schatz, *Chem. Phys. Lett.*, **82**, 566 (1981). The Role of Surface Roughness in Surface-Enhanced Raman Spectroscopy (SERS): The Importance of Multiple Plasmon Resonances. http://dx.doi.org/10.1016/0009-2614(81)85442-5.

[32] S. V. Krasnoshchekov, N. Vogt, and N. F. Stepanov, *J. Phys. Chem. A*, **119**, 6723 (2015). Ab Initio Anharmonic Analysis of Vibrational Spectra of Uracil Using the Numerical-Analytic Implementation of Operator Van Vleck Perturbation Theory. http://dx.doi.org/10.1021/acs.jpca.5b03241.

[33] A. Vivoni, R. L. Birke, R. Foucault, and J. R. Lombardi, *J. Phys. Chem. B*, **107**, 5547 (2003). Ab Initio Frequency Calculations of Pyridine Adsorbed on an Adatom Model of a SERS Active Site of a Silver Surface. http://dx.doi.org/10.1021/jp027642o.

[34] L. Jensen, L. L. Zhao, and G. C. Schatz, *J. Phys. Chem. C*, **111**, 4756 (2007). Size-Dependence of the Enhanced Raman Scattering of Pyridine Adsorbed on Ag$_n$ (n = 2-8, 20) Clusters. http://dx.doi.org/10.1021/jp067634y.

[35] M. Pagliai, S. Caporali, M. Muniz-Miranda, G. Pratesi, and V. Schettino, *J. Phys. Chem. Lett.*, **3**, 242 (2012). SERS, XPS, and DFT Study of Adenine Adsorption on Silver and Gold Surfaces. http://dx.doi.org/10.1021/jz201526v.

[36] S. Liu, G. Zheng, and J. Li, *Spectrochim. Acta, Part A*, **79**, 1739 (2011). Raman spectral study of metal-cytosine complexes: A density functional theoretical (DFT) approach. http://dx.doi.org/10.1016/j.saa.2011.05.049.
[37] J. Gu, J. Wang, and J. Leszczynski, *Chem. Phys. Lett.*, **512**, 108 (2011). Stacking and H-bonding patterns of dGpdC and dGpdCpdG: Performance of the M05-2X and M06-2X Minnesota density functionals for the single strand DNA. http://dx.doi.org/10.1016/j.cplett.2011.06.085.

[38] Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, **120**, 215 (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. http://dx.doi.org/10.1007/s00214-007-0310-x.

[39] J. Thom H. Dunning, *J. Chem. Phys.*, **90**, 1007 (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. http://dx.doi.org/10.1063/1.456153.

[40] R. A. Kendall, J. Thom H. Dunning, and R. J. Harrison, *J. Chem. Phys.*, **96**, 6796 (1992). Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. http://dx.doi.org/10.1063/1.462569.

[41] D. Feller, *J. Comput. Chem.*, **17**, 1571 (1996). The Role of Databases in Support of Computational Chemistry Calculations. http://dx.doi.org/10.1002/jcc.9.

[42] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, *J. Chem. Inf. Model.*, **47**, 1045 (2007). Basis Set Exchange: A Community Database for Computational Sciences. http://dx.doi.org/10.1021/ci600510j.

[43] G. C. Schatz, *Acc. Chem. Res.*, **17**, 370 (1984). Theoretical Studies of Surface Enhanced Raman Scattering. http://dx.doi.org/10.1021/ar00106a005.

[44] K. Cho, J. Choo, and S. Joo, *Spectrochim. Acta, Part A*, **61**, 1141 (2005). Surface-enhanced Raman scattering and density functional
theory calculation of uracil on gold and silver nanoparticle surfaces.
http://dx.doi.org/10.1016/j.saa.2004.06.032.

[45] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,
M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Montgomery Jr., J. A.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin,
V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.
Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz,
J. Cioslowski, and D. J. Fox, gaussian Inc. Wallingford CT 2009. Gaussian09
Revision D.01.

[46] E. Koglin, J. M. Séquaris, and P. Valenta, J. Mol. Struct., 60, 421 (1980). Surface
Raman Spectra of Nucleic Acid Components Adsorbed at a Silver Electrode.
http://dx.doi.org/10.1016/0022-2860(80)80102-5.

[47] George J. Thomas, Jr., Annu. Rev. Biophys. Biomol. Struct., 28, 1
(1999). Raman Spectroscopy of Protein and Nucleic Acid Assemblies.
http://dx.doi.org/10.1146/annurev.biophys.28.1.1.

[48] S. Sánchez-Cortés and J. V. Garcia-Ramos, J. Raman Spectrosc., 23, 61
(1992). SERS of Cytosine and its Methylated Derivatives on Metal Colloids.
http://dx.doi.org/10.1002/jrs.1250230108.
[49] H. Lee, S. W. Suh, and M. S. Kim, *J. Raman Spectrosc.*, **21**, 237 (1990). Surface-Enhanced Raman Scattering of Cytosine and its Derivatives in Silver Sol. http://dx.doi.org/10.1002/jrs.1250210405.

[50] J. S. Suh and M. Moskovits, *J. Am. Chem. Soc.*, **108**, 4711 (1986). Surface-Enhanced Raman Spectroscopy of Amino Acids and Nucleotide Bases Adsorbed on Silver. http://dx.doi.org/10.1021/ja00276a005.

[51] C. Otto, F. F. M. de Mul, A. Huizinga, and J. Greve, *J. Phys. Chem.*, **92**, 1239 (1988). Surface Enhanced Raman Scattering of Derivatives of Adenine. The Importance of the External Amino Group in Adenine for Surface Binding. http://dx.doi.org/10.1021/j100316a046.
Appendix

A 1. Cartesian coordinates in angstroms (Å) for the Ag$_2$ structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
Ag	3.537134	0.187469	0.000000
Ag	6.007358	1.176673	0.000000

A 2. Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for Ag$_2$ with the M06-2X method/aVTZ level of theory.

Freq	IR	RA
153	0	56
A 3. Cartesian coordinates in angstroms (Å) for the adenine structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
N	-2.169804	0.005311	0.024898
C	-0.936389	0.603158	0.016711
C	-0.037666	-0.452755	-0.003999
N	-0.690095	-1.668313	-0.008566
C	-1.950598	-1.349580	0.008990
C	1.322168	-0.103550	-0.016099
N	1.651559	1.188145	-0.007117
C	0.671396	2.098554	0.013090
N	-0.638705	1.902742	0.026146
H	0.999169	3.131007	0.019540
N	2.294167	-1.034730	-0.036332
H	-3.055669	0.480707	0.039704
H	-2.769034	-2.051038	0.011405
H	2.055980	-2.009447	-0.043599
H	3.253510	-0.740211	-0.044772
A 4. Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in A^4 amu$^{-1}$) for adenine with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
17	175	0	1092	18	8
171	23	0	1161	25	2
224	0	0	1262	15	8
277	11	3	1279	33	11
307	0	0	1340	57	39
522	4	3	1380	12	4
534	2	2	1388	63	72
547	20	1	1430	10	26
555	29	0	1462	36	5
594	73	0	1532	54	1
623	1	6	1551	46	84
681	6	0	1624	39	4
708	0	0	1674	144	25
737	3	25	1683	673	12
845	10	1	3198	15	130
900	7	1	3266	0	116
906	15	2	3628	119	169
952	14	5	3678	111	128
1012	3	0	3766	76	43
1021	5	6			
A 5. Cartesian coordinates in angstroms (Å) for the guanine structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
N	2.050657	1.518243	−0.026025
C	2.834905	0.484927	−0.029729
N	2.144635	−0.706368	−0.009409
C	0.820355	−0.390822	0.009271
C	0.780450	0.990981	−0.002236
N	−0.205186	−1.278475	0.023808
C	−1.365987	−0.694547	0.050512
C	−0.500698	1.641283	0.021019
N	−1.532907	0.658647	0.048637
O	−0.796602	2.810436	0.025900
N	−2.505605	−1.450662	0.131059
H	3.911751	0.513039	−0.046690
H	2.524142	−1.637574	−0.006324
H	−2.461355	1.048380	0.124046
H	−2.350674	−2.430672	−0.041175
H	−3.347881	−1.076816	−0.272664
A 6. Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for guanine with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
142	3	0	1065	8	3
166	1	0	1081	17	7
206	11	0	1100	19	1
319	6	1	1156	33	4
336	71	1	1190	45	1
343	13	2	1319	1	13
371	2	1	1342	58	6
490	8	3	1380	14	12
531	42	3	1406	27	84
543	198	3	1466	32	18
568	92	1	1540	1	94
620	63	2	1583	73	45
638	10	27	1630	64	9
674	8	0	1637	313	98
680	19	0	1681	537	49
728	39	0	1841	799	54
760	6	0	3273	0	119
820	23	1	3601	71	159
845	11	1	3615	69	107
870	8	1	3674	99	121
956	8	6	3714	54	54
A7. Cartesian coordinates in angstroms (Å) for the cytosine structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	−0.685348	0.903846	−0.000546
C	0.559525	1.420268	−0.002037
N	1.631483	0.602846	−0.001869
C	1.533992	−0.809033	−0.000171
N	0.269614	−1.326723	0.001334
C	−0.769569	−0.530944	0.001165
O	2.557095	−1.454550	−0.000163
N	−1.990725	−1.108345	0.002706
H	−2.040996	−2.111957	0.003905
H	−2.831925	−0.564763	0.002696
H	0.756736	2.483009	−0.003402
H	−1.561277	1.531237	−0.000638
H	2.571405	0.965120	−0.002960
Vibrational frequencies, infrared intensities, and Raman scattering activities for cytosine with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
48	176	0	1101	36	3
144	1	0	1137	3	8
207	14	0	1219	56	8
365	3	1	1284	27	22
410	15	1	1366	47	8
542	5	2	1454	108	4
547	2	1	1520	129	6
549	3	0	1602	217	23
581	2	6	1634	244	11
644	56	0	1721	525	16
742	32	0	1815	802	30
786	4	28	3223	2	82
796	6	0	3258	0	102
814	50	0	3628	124	133
940	4	3	3644	85	127
994	1	3	3771	67	49
1001	0	1			
A 9. Cartesian coordinates in angstroms (Å) for the thymine structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	0.707102	0.235115	−0.043948
C	0.465964	−1.081457	0.004370
N	−0.803187	−1.605711	0.086008
C	−1.945790	−0.835578	0.126020
N	−1.684353	0.516006	0.075678
C	−0.440406	1.144481	−0.007429
O	−3.056753	−1.303073	0.197713
C	2.068302	0.842142	−0.132713
O	−0.364114	2.351028	−0.044013
H	1.263255	−1.811603	−0.018353
H	−0.955618	−2.599711	0.120912
H	−2.493842	1.120307	0.102443
H	2.836999	0.072132	−0.152841
H	2.247667	1.501490	0.716225
H	2.154784	1.454413	−1.030072
A 10. Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for thymine with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
114	0	0	1171	6	2
158	2	0	1216	156	0
170	0	0	1250	7	5
280	3	0	1387	7	32
302	1	0	1413	3	1
398	23	1	1424	8	6
407	18	1	1446	89	3
464	20	4	1474	8	5
552	7	4	1497	4	5
562	61	0	1521	149	17
613	2	5	1744	67	49
697	63	1	1806	784	41
747	5	16	1840	725	25
781	19	0	3070	15	216
800	49	1	3130	5	70
814	6	4	3154	9	56
941	15	1	3219	3	89
980	12	6	3615	82	75
1030	3	2	3662	121	101
1079	1	1			
A 11. Cartesian coordinates in angstroms (Å) for the uracil structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	1.322552	0.510483	−0.072101
C	1.110199	−0.806809	0.032585
N	−0.150499	−1.338623	0.104719
C	−1.303469	−0.573539	0.076364
N	−1.056115	0.775734	−0.031623
C	0.185357	1.420555	−0.111786
O	−2.407877	−1.054307	0.140677
O	0.242378	2.623151	−0.203879
H	1.916590	−1.525021	0.066219
H	−0.298261	−2.331052	0.183278
H	−1.873361	1.369838	−0.055626
H	2.312506	0.929591	−0.128857
A 12. Vibrational frequencies (Freq in cm\(^{-1}\)), infrared intensities (IR in km mol\(^{-1}\)), and Raman scattering activities (RA in Å\(^4\) amu\(^{-1}\)) for uracil with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
155	2	0	1004	0	2
169	0	0	1099	6	5
396	24	1	1213	112	0
404	22	1	1238	6	19
523	21	2	1395	11	17
549	8	5	1424	30	2
567	4	2	1435	100	2
581	43	0	1520	145	12
686	75	1	1711	96	34
742	14	0	1821	970	46
784	4	22	1846	536	34
788	38	0	3231	2	87
838	65	0	3279	3	96
984	9	3	3612	82	68
996	8	1	3662	125	91
A 13. Cartesian coordinates in angstroms (Å) for the adenine/Ag$_2$ complex (N1) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
N	2.364572	0.503418	0.042805
C	1.020043	0.750550	0.019164
C	0.433838	−0.504641	0.035057
N	1.381958	−1.502570	0.067561
C	2.513333	−0.861256	0.071141
C	−0.969501	−0.541754	0.016051
N	−1.622752	0.628229	−0.015620
C	−0.919945	1.777076	−0.027830
N	0.386936	1.927271	−0.012354
H	−1.517005	2.680468	−0.053588
N	−1.646450	−1.696947	0.028747
H	3.092752	1.197642	0.039688
H	3.488202	−1.320297	0.093667
H	−1.139287	−2.564079	0.052539
H	−2.653914	−1.700524	0.014655
Ag	−3.972794	0.689777	−0.049832
Ag	−6.623403	0.457678	−0.082648
A 14. Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for the adenine/Ag$_2$ complex (N1) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
19	0	0	955	20	5
20	0	5	1009	2	1
57	0	12	1029	19	14
92	1	9	1091	15	11
99	2	9	1166	23	2
171	1	1	1266	99	9
174	13	50	1274	31	10
224	41	0	1358	45	69
265	93	9	1389	60	58
292	24	3	1391	17	43
309	0	1	1430	34	49
531	6	4	1470	25	23
541	7	2	1538	21	40
544	14	2	1551	43	118
563	30	0	1632	67	12
600	77	2	1667	155	22
641	17	2	1694	644	4
680	3	2	3201	3	59
709	0	0	3271	0	167
738	2	29	3583	139	307
842	7	0	3670	146	192
906	7	1	3725	161	45
917	11	8			
A 15. Cartesian coordinates in angstroms (Å) for the adenine/Ag$_2$ complex (N3) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
N	1.835865	0.426575	-0.090976
C	0.475465	0.532220	-0.063966
C	0.019559	-0.748381	0.198774
N	1.069662	-1.630185	0.332189
C	2.126573	-0.893883	0.153445
C	-1.373466	-0.909178	0.278284
N	-2.156309	0.161115	0.099225
C	-1.590068	1.337292	-0.147229
N	-0.292633	1.614181	-0.245788
H	-2.265907	2.172075	-0.284614
N	-1.937507	-2.099085	0.527306
H	2.484810	1.181896	-0.259179
H	3.144497	-1.246133	0.185899
H	-1.361026	-2.909950	0.663542
H	-2.938269	-2.167502	0.575347
Ag	0.818040	3.628677	-0.672805
Ag	2.600693	5.558010	-1.106803
A 16. Vibrational frequencies (Freq in cm\(^{-1}\)), infrared intensities (IR in km mol\(^{-1}\)), and Raman scattering activities (RA in Å\(^4\) amu\(^{-1}\)) for the adenine/Ag\(_2\) complex (N3) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
16	1	4	955	10	5
21	0	0	1010	3	0
62	0	12	1024	5	10
79	2	5	1098	12	19
102	4	13	1170	60	2
169	1	0	1263	18	12
173	15	48	1286	17	44
212	52	0	1341	178	54
256	139	0	1385	44	23
280	11	3	1398	89	42
316	1	1	1442	9	55
531	4	1	1475	44	4
545	10	2	1532	52	3
568	0	1	1548	24	77
572	7	2	1632	23	2
612	66	7	1671	125	18
623	2	7	1687	1166	47
682	6	0	3206	3	68
709	2	0	3272	0	100
743	22	35	3611	176	219
841	7	1	3622	180	298
906	7	0	3759	82	57
924	33	2			
A 17. Cartesian coordinates in angstroms (Å) for the adenine/Ag$_2$ complex (NH$_2$ @ C6) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
N	2.080713	0.599980	0.059774
C	0.728196	0.809163	0.094409
C	0.177719	−0.468070	0.057336
N	1.156859	−1.436625	0.005176
C	2.266714	−0.759327	0.006760
C	−1.215553	−0.524224	0.073059
N	−1.916075	0.596979	0.133931
C	−1.252743	1.761837	0.169419
N	0.057012	1.955287	0.151129
H	−1.870477	2.649193	0.219118
N	−1.890131	−1.728831	−0.041565
H	2.790283	1.313025	0.064654
H	3.254715	−1.188939	−0.029653
H	−1.370591	−2.531226	0.288385
H	−2.844790	−1.686524	0.288209
Ag	−1.977839	−2.122889	−2.504829
Ag	−2.069148	−2.593288	−5.120306
A 18. Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for the adenine/Ag$_2$ complex (NH$_2$ @ C6) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
12	1	10	949	11	6
18	0	12	1006	4	1
39	0	3	1065	13	6
46	0	2	1093	22	6
112	13	9	1156	26	6
162	10	49	1271	44	9
224	5	7	1274	27	5
230	17	6	1330	11	58
272	13	1	1361	55	8
315	1	2	1390	61	69
506	2	3	1427	15	28
535	5	1	1454	59	4
554	26	5	1527	89	8
563	9	9	1554	58	77
595	86	2	1617	23	8
629	1	5	1670	425	26
672	45	14	1691	152	7
684	89	11	3208	11	133
733	33	27	3270	0	116
762	422	2	3544	60	173
848	49	7	3654	56	36
904	7	2	3671	138	155
912	5	2			
A 19. Cartesian coordinates in angstroms (Å) for the adenine/Ag$_2$ complex (N7) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
N	2.101436	0.759610	−0.003926
C	0.740472	0.946345	0.018954
C	0.203630	−0.331633	0.010890
N	1.215896	−1.273872	−0.016288
C	2.323018	−0.582771	−0.024242
C	−1.203022	−0.413080	0.031072
N	−1.894665	0.728251	0.055930
C	−1.237046	1.889920	0.060695
N	0.072329	2.096097	0.043565
H	−1.859488	2.775977	0.081297
N	−1.876035	−1.573876	0.026545
H	2.794108	1.489631	−0.005139
H	3.314445	−1.004006	−0.044517
H	−1.407405	−2.465199	0.008205
H	−2.880379	−1.540764	0.042104
Ag	1.001746	−3.594737	−0.042408
Ag	0.373188	−6.178551	−0.065572
Vibrational frequencies (Freq in cm\(^{-1}\)), infrared intensities (IR in km mol\(^{-1}\)), and Raman scattering activities (RA in Å\(^4\) amu\(^{-1}\)) for the adenine/Ag\(_2\) complex (N7) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
19	0	5	975	27	1
20	0	0	1013	3	0
53	1	10	1018	5	3
80	1	4	1114	35	6
111	2	15	1162	20	5
172	0	1	1258	26	2
177	14	41	1283	40	25
215	27	1	1335	61	28
245	92	12	1381	1	9
305	9	2	1393	60	48
310	3	0	1438	37	36
527	3	5	1461	67	4
532	1	4	1532	154	13
534	7	2	1557	96	87
563	10	1	1629	1	10
603	106	1	1673	177	18
626	4	7	1684	600	8
679	2	1	3201	16	183
709	0	0	3277	5	67
737	1	33	3579	262	444
843	11	0	3667	158	243
900	6	0	3721	187	136
906	15	1			
A 21. Cartesian coordinates in angstroms (Å) for the guanine/Ag₂ complex (NH₂ @ C2) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
N	−2.067365	0.673783	−0.815340
C	−2.673596	−0.457044	−0.616009
N	−1.860783	−1.399891	−0.031297
C	−0.648088	−0.809689	0.146946
C	−0.793733	0.473292	−0.342776
N	0.447083	−1.388968	0.709028
C	1.463091	−0.591597	0.735139
C	0.337752	1.362818	−0.308026
N	1.456471	0.684267	0.268522
O	0.459541	2.502068	−0.674308
N	2.687762	−1.059202	1.221651
H	−3.698928	−0.672790	−0.866516
H	−2.096127	−2.345820	0.217105
H	2.315574	1.217650	0.251667
H	2.561145	−1.948204	1.688952
H	3.177148	−0.400818	1.814544
Ag	4.286241	−1.409385	−0.669194
Ag	6.080831	−1.562060	−2.619593
A 22. Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for the guanine/Ag$_2$ complex (NH$_2$ @ C2) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
12	0	9	867	322	6
14	1	9	877	9	1
40	1	3	957	7	6
48	2	3	1069	15	6
97	2	5	1084	21	4
153	1	24	1100	53	1
164	2	32	1164	24	3
202	6	4	1191	54	2
222	27	6	1307	10	24
320	2	1	1338	56	4
339	2	1	1382	15	14
387	1	3	1412	34	111
454	44	15	1472	55	24
491	4	2	1532	20	109
533	1	4	1578	99	142
579	73	1	1628	55	17
616	115	10	1631	330	209
634	15	22	1687	446	52
675	11	1	1854	712	39
678	19	4	3272	0	147
703	57	40	3538	52	192
740	73	7	3594	61	74
820	8	1	3632	47	48
835	146	1	3670	112	126

52
A 23. Cartesian coordinates in angstroms (Å) for the guanine/Ag$_2$ complex (N3) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
N	-2.265598	1.073597	-0.002022
C	-2.741987	-0.132454	-0.024391
N	-1.754514	-1.094038	-0.031756
C	-0.570516	-0.428815	-0.012472
C	-0.900790	0.910173	0.006527
N	0.666782	-0.997917	-0.005583
C	1.642207	-0.125043	0.008266
C	0.157282	1.882284	0.027005
N	1.424406	1.214631	0.026285
O	0.131197	3.084526	0.040134
N	2.930955	-0.547813	-0.034992
H	-3.785790	-0.398022	-0.036451
H	-1.869164	-2.096005	-0.045676
H	2.210794	1.848140	-0.000705
H	3.085030	-1.535701	0.095461
H	3.665209	0.065346	0.271974
Ag	0.904721	-3.330565	0.029160
Ag	1.117151	-5.975867	0.120277
A 24. Vibrational frequencies (Freq in cm\(^{-1}\)), infrared intensities (IR in km mol\(^{-1}\)), and Raman scattering activities (RA in Å\(^4\) amu\(^{-1}\)) for the guanine/Ag\(_2\) complex (N3) with the M06-2X method/aVTZ level of theory.

\[
\begin{array}{cccccc}
\text{Freq} & \text{IR} & \text{RA} & \text{Freq} & \text{IR} & \text{RA} \\
17 & 1 & 6 & 863 & 29 & 1 \\
20 & 2 & 0 & 878 & 9 & 1 \\
49 & 5 & 9 & 957 & 5 & 7 \\
77 & 4 & 3 & 1066 & 11 & 2 \\
94 & 3 & 12 & 1087 & 15 & 11 \\
145 & 1 & 2 & 1101 & 23 & 3 \\
167 & 1 & 0 & 1145 & 46 & 10 \\
174 & 10 & 48 & 1194 & 90 & 1 \\
208 & 6 & 1 & 1321 & 4 & 12 \\
288 & 135 & 1 & 1348 & 27 & 28 \\
326 & 9 & 2 & 1385 & 49 & 11 \\
355 & 11 & 3 & 1410 & 38 & 70 \\
373 & 2 & 3 & 1475 & 51 & 25 \\
437 & 92 & 8 & 1545 & 1 & 96 \\
498 & 1 & 4 & 1589 & 48 & 26 \\
540 & 2 & 1 & 1630 & 93 & 38 \\
587 & 51 & 5 & 1645 & 381 & 50 \\
624 & 61 & 1 & 1675 & 493 & 86 \\
639 & 30 & 34 & 1855 & 1036 & 68 \\
674 & 7 & 0 & 3277 & 0 & 113 \\
683 & 19 & 1 & 3588 & 103 & 204 \\
723 & 33 & 1 & 3609 & 74 & 186 \\
756 & 0 & 1 & 3631 & 118 & 146 \\
816 & 17 & 1 & 3719 & 133 & 57 \\
\end{array}
\]
A 25. Cartesian coordinates in angstroms (Å) for the guanine/Ag₂ complex (O @ C6) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
N	-2.519512	0.398844	-0.022440
C	-2.927765	-0.827746	0.065334
N	-1.890415	-1.734938	0.118460
C	-0.737662	-1.016040	0.058025
C	-1.146235	0.306029	-0.029275
N	0.515838	-1.518451	0.089428
C	1.427092	-0.590918	0.008823
C	-0.142148	1.314141	-0.105818
N	1.140403	0.742102	-0.087068
O	-0.270230	2.530649	-0.181223
N	2.743421	-0.925228	-0.022641
H	-3.956451	-1.146580	0.096387
H	-1.952278	-2.736522	0.187814
H	1.906942	1.405280	-0.160896
H	2.953736	-1.880649	0.209174
H	3.439048	-0.234536	0.202457
Ag	1.610205	3.957603	-0.105824
Ag	4.264308	4.226391	0.044897
A 26. Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in A4 amu$^{-1}$) for the guanine/Ag$_2$ complex (O @ C6) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
10	2	4	844	19	3
17	0	0	880	8	1
47	3	7	954	15	11
72	2	7	1068	2	1
102	9	6	1078	12	14
145	1	0	1115	2	1
160	10	44	1174	18	2
183	2	1	1204	52	2
208	7	1	1329	2	12
319	134	5	1374	67	67
335	8	1	1382	29	11
368	5	0	1408	75	129
380	46	5	1457	14	111
452	100	2	1545	15	195
498	7	5	1587	34	36
543	5	6	1630	54	55
579	102	0	1641	197	92
650	15	25	1680	414	101
657	10	12	1768	1423	149
676	6	6	3273	0	161
688	27	4	3488	372	1081
735	18	6	3608	85	206
756	3	1	3671	123	178
823	18	1	3730	103	32
A 27. Cartesian coordinates in angstroms (Å) for the guanine/Ag$_2$ complex (N7) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
N	-1.986130	0.247185	0.027946
C	-2.471813	-0.960111	-0.007330
N	-1.483232	-1.906653	-0.046007
C	-0.288758	-1.244801	-0.034733
C	-0.621953	0.090432	0.012115
N	0.941145	-1.807318	-0.055699
C	1.896078	-0.920730	-0.046483
C	0.418970	1.076005	0.028280
N	1.682196	0.428527	-0.006451
O	0.344271	2.278751	0.059958
N	3.193662	-1.329491	-0.122439
H	-3.518323	-1.213829	-0.006935
H	-1.600549	-2.905683	-0.078655
H	2.467899	1.062185	-0.047009
H	3.329426	-2.318435	0.005877
H	3.916792	-0.733695	0.241659
Ag	-3.058443	2.341505	0.112008
Ag	-4.702168	4.443165	0.211835
Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for the guanine/Ag$_2$ complex (N7) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
15	1	0	849	8	1
19	0	6	881	7	0
49	1	3	978	16	2
53	1	15	1057	6	2
99	1	12	1096	16	5
152	7	1	1107	45	2
168	0	1	1157	43	3
171	17	52	1199	86	4
204	7	1	1325	3	13
314	111	2	1348	89	5
328	32	0	1387	4	17
345	5	2	1418	37	68
373	2	1	1471	67	9
486	152	1	1544	14	107
498	51	7	1587	135	49
540	11	3	1630	72	4
595	65	3	1651	446	180
625	81	2	1679	666	44
640	17	32	1844	697	76
673	3	1	3282	8	67
681	21	1	3607	72	107
726	29	0	3612	121	217
758	3	0	3665	137	236
820	20	1	3725	63	59
A29. Cartesian coordinates in angstroms (Å) for the cytosine/Ag$_2$ complex (O @ C2) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	-1.483704	1.085043	-0.120606
C	-0.325437	1.772078	-0.072569
N	0.847440	1.117100	0.063348
C	0.929312	-0.276067	0.159900
N	-0.227269	-0.973834	0.112694
C	-1.372331	-0.340498	-0.019605
O	2.034025	-0.800103	0.281923
N	-2.487387	-1.092547	-0.059993
H	-2.391837	-2.090731	0.012128
H	-3.396817	-0.683540	-0.158999
H	-0.270536	2.849131	-0.137782
H	-2.434087	1.581221	-0.228508
H	1.723757	1.624360	0.100503
Ag	4.046240	0.368196	0.367037
Ag	5.788030	2.383401	0.375846
\textbf{A 30.} Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for the cytosine/Ag$_2$ complex (O@C2) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
15	1	5	957	1	2
21	0	0	998	3	4
53	3	9	1009	0	1
78	2	6	1116	23	3
120	12	14	1140	3	18
159	1	1	1238	52	3
175	26	41	1318	11	25
206	81	0	1377	73	36
217	101	0	1461	68	117
383	26	1	1521	327	19
425	7	0	1602	145	18
550	7	4	1636	566	40
560	9	1	1720	642	19
566	9	0	1740	1302	132
599	32	10	3233	2	43
674	23	20	3261	0	152
743	19	1	3539	390	883
799	1	29	3623	146	267
804	4	2	3764	73	70
819	44	0			
A 31. Cartesian coordinates in angstroms (Å) for the cytosine/Ag$_2$ complex (N3) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	−1.049176	1.349835	0.030564
C	0.170462	1.922214	0.004748
N	1.285916	1.161513	−0.015367
C	1.256671	−0.242373	−0.010961
N	0.013945	−0.817386	0.015324
C	−1.082194	−0.084694	0.035132
O	2.290956	−0.867495	−0.029833
N	−2.261754	−0.719147	0.060312
H	−2.281341	−1.729457	0.063451
H	−3.125646	−0.210281	0.076102
H	0.315240	2.993032	−0.001050
H	−1.951543	1.937913	0.046905
H	2.205716	1.573054	−0.034784
Ag	0.081016	−3.171068	0.020397
Ag	−0.820391	−5.685753	0.045175
A 32. Vibrational frequencies (Freq in cm\(^{-1}\)), infrared intensities (IR in km mol\(^{-1}\)), and Raman scattering activities (RA in \(\AA^4\) amu\(^{-1}\)) for the cytosine/Ag\(_2\) complex (N3) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
19	2	6	965	1	13
22	1	0	1007	2	7
63	3	12	1008	0	1
71	7	1	1122	45	4
102	1	13	1137	3	6
155	1	1	1227	56	15
169	15	43	1294	56	27
208	3	3	1380	24	14
307	117	9	1465	177	12
385	10	5	1530	84	28
421	20	0	1599	340	52
542	7	4	1650	159	28
557	7	1	1717	431	17
570	0	9	1812	521	16
595	4	7	3231	1	109
652	52	1	3262	0	167
744	34	1	3555	193	340
795	1	32	3642	128	195
800	0	1	3734	144	71
812	47	2			
A 33. Cartesian coordinates in angstroms (Å) for the cytosine/Ag$_2$ complex (NH$_2$ @ C4) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	-1.110812	1.060567	0.161617
C	-0.014266	1.573885	-0.437790
N	1.105593	0.833790	-0.541272
C	1.220494	-0.487631	-0.054451
N	0.096347	-1.002261	0.548948
C	-0.977010	-0.278438	0.642933
O	2.267647	-1.070476	-0.185454
N	-2.095213	-0.890091	1.199242
H	-1.863558	-1.740623	1.695894
H	-2.718208	-0.280427	1.709129
H	0.018510	2.569487	-0.856802
H	-2.032804	1.612610	0.240895
H	1.934376	1.195987	-0.986847
Ag	-3.533844	-1.392515	-0.791876
Ag	-5.214801	-1.600591	-2.839377
Vibrational frequencies (Freq in cm\(^{-1}\)), infrared intensities (IR in km mol\(^{-1}\)), and Raman scattering activities (RA in \(\text{Å}^4\) amu\(^{-1}\)) for the cytosine/Ag\(_2\) complex (NH\(_2\) @ C4) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
15	0	9	950	8	6
20	6	9	1004	3	3
40	0	2	1007	0	2
50	5	2	1135	25	14
118	13	11	1138	17	3
146	0	5	1216	74	18
170	18	46	1250	7	9
249	12	5	1342	92	23
362	4	1	1455	174	5
422	9	1	1514	95	15
520	52	6	1615	221	27
545	3	3	1628	69	16
554	36	5	1720	522	21
579	2	5	1828	896	42
660	19	7	3228	1	78
717	354	10	3260	1	66
760	48	9	3548	62	167
779	17	36	3635	125	137
809	18	1	3657	46	41
825	238	4			
A 35. Cartesian coordinates in angstroms (Å) for the thymine/Ag$_2$ complex (O @ C2/N1) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	-1.297362	-0.465153	0.007722
C	-0.522761	-1.555712	-0.050582
N	0.854256	-1.494089	-0.076689
C	1.550120	-0.319788	-0.045568
N	0.760675	0.793301	0.013917
C	-0.640211	0.842005	0.044796
O	2.772096	-0.254974	-0.068343
C	-2.789619	-0.488528	0.037696
O	-1.209362	1.905066	0.097781
H	-0.932817	-2.555352	-0.080847
H	1.409659	-2.339338	-0.120948
H	1.244197	1.680907	0.038319
H	-3.163487	-1.509607	0.005851
H	-3.194760	0.066303	-0.808144
H	-3.158586	-0.001462	0.939943
Ag	4.097653	-2.237006	-0.172606
Ag	4.654072	-4.835299	-0.284843
A 36. Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for the thymine/Ag$_2$ complex (O@C2/N1) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
13	1	6	991	8	5
18	3	0	1036	4	6
46	0	7	1079	1	1
71	1	5	1170	9	4
111	12	8	1227	184	5
122	0	0	1257	1	9
154	0	0	1396	4	73
169	14	46	1413	5	3
169	2	1	1425	3	5
280	4	1	1467	80	54
312	1	0	1473	8	5
415	7	0	1496	0	6
420	38	1	1523	125	61
473	67	7	1744	59	95
560	4	8	1770	1819	57
616	16	17	1820	445	90
621	7	13	3072	12	264
701	60	3	3132	4	83
751	3	14	3159	7	58
781	6	2	3229	4	54
801	50	0	3558	392	916
818	28	7	3607	96	89
939	14	2			
A 37. Cartesian coordinates in angstroms (Å) for the thymine/Ag$_2$ complex (O @ C2/N3) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	−1.449426	−0.531928	0.014836
C	−0.833400	−1.712865	−0.113061
N	0.539465	−1.832819	−0.168205
C	1.390895	−0.765793	−0.097941
N	0.763716	0.439881	0.032580
C	−0.619177	0.672289	0.098337
O	2.604164	−0.906218	−0.149823
C	−2.929775	−0.352302	0.078899
O	−1.042033	1.795355	0.214725
H	−1.377085	−2.644582	−0.180842
H	0.981608	−2.732162	−0.264736
H	1.361301	1.258261	0.088254
H	−3.441959	−1.309475	0.007775
H	−3.268181	0.294859	−0.729822
H	−3.212164	0.135497	1.011462
Ag	4.196415	0.863544	−0.039073
Ag	5.556784	3.138830	0.125403
Vibrational frequencies (Freq in cm\(^{-1}\)), infrared intensities (IR in km mol\(^{-1}\)), and Raman scattering activities (RA in Å\(^4\) amu\(^{-1}\)) for the thymine/Ag\(_2\) complex (O @ C2/N3) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
15	0	6	993	4	6
15	3	0	1036	4	2
44	0	8	1079	1	1
57	0	4	1164	3	1
114	4	12	1215	151	0
122	0	2	1257	2	3
164	0	0	1394	5	28
165	0	1	1418	8	53
174	13	47	1426	4	4
281	0	0	1461	132	3
310	0	0	1473	8	6
410	10	1	1496	2	6
418	73	3	1519	193	43
468	25	6	1747	51	58
557	17	6	1775	1689	73
574	63	1	1826	375	50
621	2	3	3072	13	250
708	30	8	3133	3	68
751	5	22	3157	8	65
781	9	1	3228	3	130
801	41	1	3543	195	374
821	28	10	3656	136	112
934	15	1	68		
A 39. Cartesian coordinates in angstroms (Å) for the thymine/Ag$_2$ complex (O @ C4/N3) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	-1.031393	-0.479525	0.001224
C	-0.317277	-1.615447	-0.006425
N	1.053748	-1.631392	-0.007643
C	1.832248	-0.492941	-0.001196
N	1.082144	0.670526	0.006652
C	-0.295212	0.777096	0.008439
O	3.035583	-0.510426	-0.002288
C	-2.523728	-0.418108	0.002824
O	-0.841603	1.871976	0.015696
H	-0.789873	-2.587946	-0.012089
H	1.565551	-2.498559	-0.013455
H	1.617214	1.533272	0.011582
H	-2.951434	-1.418424	-0.003049
H	-2.884838	0.126829	-0.868896
H	-2.883409	0.115939	0.881844
Ag	0.235631	3.991309	0.028003
Ag	1.874926	6.081335	0.039676
A 40. Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for the thymine/Ag$_2$ complex (O @ C4/N3) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
14	0	7	986	12	17
16	2	0	1030	9	3
53	1	11	1080	1	0
58	0	4	1182	30	2
100	4	8	1228	118	2
117	0	0	1247	11	21
169	8	52	1382	23	74
171	0	1	1424	3	41
172	0	1	1427	3	12
300	19	2	1449	90	15
304	1	1	1475	9	5
412	70	3	1498	1	4
413	15	1	1534	125	15
469	23	4	1736	5	19
557	13	4	1746	1312	272
596	67	0	1853	717	17
623	11	7	3071	12	210
708	20	6	3132	4	56
757	2	14	3156	10	68
781	18	0	3223	2	146
803	38	3	3538	195	315
816	4	7	3655	156	152
946	12	1			
Cartesian coordinates in angstroms (Å) for the thymine/Ag\(_2\) complex (O @ C4/C5) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	-0.803365	-0.591118	-0.048421
C	-0.095225	-1.731812	-0.059741
N	1.267668	-1.768619	0.084437
C	2.047283	-0.644550	0.254952
N	1.305384	0.521397	0.264568
C	-0.064983	0.652346	0.126823
O	3.244528	-0.675212	0.381736
C	-2.287743	-0.531390	-0.203936
O	-0.561129	1.768267	0.159099
H	-0.570381	-2.694906	-0.185040
H	1.769872	-2.641369	0.071511
H	1.833102	1.375334	0.387142
H	-2.703081	-1.529891	-0.325550
H	-2.566283	0.068198	-1.072236
H	-2.753782	-0.065526	0.666014
Ag	-2.708209	2.789599	0.006437
Ag	-5.127716	3.879282	-0.170256
Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for the thymine/Ag$_2$ complex (O @ C4/C5) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
10	0	0	984	17	6
20	0	5	1029	5	1
48	0	13	1074	2	1
65	0	3	1183	28	5
94	7	6	1227	217	4
117	0	0	1249	12	14
168	14	60	1382	7	73
170	1	1	1418	9	2
224	0	0	1423	2	5
291	3	0	1450	59	5
303	1	0	1475	13	5
411	25	1	1493	27	39
412	18	1	1533	177	16
468	38	2	1734	38	47
567	26	8	1754	1576	258
587	60	0	1851	949	26
616	1	16	3057	12	315
697	53	1	3112	1	48
754	7	17	3150	20	63
780	21	0	3222	2	87
803	46	2	3604	90	71
816	2	13	3652	167	158
946	11	1			
A 43. Cartesian coordinates in angstroms (Å) for the uracil/Ag$_2$ complex (O @ C2/N1) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	1.422776	0.970992	−0.084344
C	0.361092	1.782287	−0.021149
N	−0.92209	1.300760	0.065481
C	−1.216016	−0.038057	0.093953
N	−0.123818	−0.853732	0.028799
C	1.227556	−0.471502	−0.061572
O	−2.356041	−0.471763	0.170955
O	2.089626	−1.311942	−0.111599
H	0.444564	2.859060	−0.034116
H	−1.713709	1.930744	0.112429
H	−0.310145	−1.847426	0.047856
H	2.429129	1.347688	−0.152278
Ag	−4.230255	1.014224	0.282132
Ag	−5.505059	3.347483	0.348495
Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for the uracil/Ag$_2$ complex (O @ C2/N1) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
14	1	5	843	61	0
21	3	0	988	5	3
48	0	7	1006	6	1
74	1	5	1010	0	2
112	13	8	1102	1	10
161	2	0	1231	137	3
168	14	45	1239	16	32
183	0	0	1405	3	38
413	10	0	1426	2	11
417	55	2	1457	103	26
527	37	3	1518	152	63
560	30	13	1716	117	51
576	4	1	1774	1654	69
613	12	18	1837	556	110
707	63	3	3236	3	47
742	4	2	3278	5	139
788	16	23	3546	414	872
794	31	1	3608	98	85
A 45. Cartesian coordinates in angstroms (Å) for the uracil/Ag₂ complex (O @ C2/N3) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	1.123916	1.595441	0.118722
C	−0.166190	1.845485	0.363344
N	−1.117380	0.855056	0.324418
C	−0.826543	−0.454957	0.035266
N	0.493015	−0.696002	−0.212195
C	1.548105	0.238028	−0.199738
O	−1.699009	−1.308495	0.009814
O	2.672856	−0.117637	−0.438704
H	−0.537000	2.830823	0.604162
H	−2.087775	1.050009	0.509702
H	0.744435	−1.655093	−0.429795
H	1.873805	2.367519	0.147777
Ag	−0.387081	−6.034219	−1.073587
Ag	−1.326164	−3.622283	−0.479283
A 46. Vibrational frequencies (Freq in cm\(^{-1}\)), infrared intensities (IR in km mol\(^{-1}\)), and Raman scattering activities (RA in Å\(^4\) amu\(^{-1}\)) for the uracil/Ag\(_2\) complex (O @ C2/N3) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
12	4	0	843	59	0
17	0	6	989	7	3
51	0	9	1004	0	2
58	0	4	1007	8	3
116	4	13	1098	5	5
158	1	0	1217	99	4
174	12	45	1239	16	10
179	0	1	1403	5	33
406	15	1	1427	4	31
411	63	3	1453	231	3
528	19	2	1514	154	25
550	17	4	1718	79	32
578	49	0	1779	1519	80
580	23	2	1842	443	56
700	40	8	3238	2	120
743	9	0	3275	5	157
789	8	33	3538	196	335
791	25	2	3654	139	104
A 47. Cartesian coordinates in angstroms (Å) for the uracil/Ag₂ complex (O @ C4/N3) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	0.861951	1.589743	0.538388
C	-0.414594	1.899547	0.270848
N	-1.292192	0.981978	-0.232122
C	-0.950980	-0.331523	-0.507912
N	0.370813	-0.620815	-0.222000
C	1.328517	0.241306	0.287600
O	-1.730623	-1.132354	-0.950702
O	2.469290	-0.142330	0.496545
H	-0.819581	2.887224	0.436955
H	-2.249716	1.223712	-0.430163
H	0.657864	-1.576210	-0.411794
H	1.559213	2.307338	0.934777
Ag	3.309418	-2.335740	0.111169
Ag	3.730173	-4.888487	-0.492234
Vibrational frequencies (Freq in cm\(^{-1}\)), infrared intensities (IR in km mol\(^{-1}\)), and Raman scattering activities (RA in Å\(^4\) amu\(^{-1}\)) for the uracil/Ag\(_2\) complex (O @ C4/N3) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
15	3	0	841	54	1
18	0	6	995	17	9
53	1	11	1000	7	9
61	0	4	1009	0	1
119	6	13	1107	6	5
164	1	0	1216	109	3
175	16	45	1247	2	29
177	0	2	1395	49	87
409	20	1	1432	0	32
414	75	2	1440	88	5
529	28	3	1533	128	11
559	19	6	1705	66	41
576	1	2	1762	1394	252
596	52	0	1858	620	22
701	26	7	3236	1	142
745	20	0	3281	5	105
790	29	2	3531	207	335
793	0	24	3649	160	146
A 49. Cartesian coordinates in angstroms (Å) for the uracil/Ag\(_2\) complex (O @ C4/C5) structure with the M06-2X/aVTZ level of theory.

Atom	x	y	z
C	0.948911	0.922814	0.100882
C	−0.205697	1.589335	−0.043000
N	−1.399118	0.946779	−0.215431
C	−1.525566	−0.430502	−0.257015
N	−0.320127	−1.088512	−0.106123
C	0.933249	−0.524900	0.072993
O	−2.578824	−0.991731	−0.409093
O	1.905138	−1.255595	0.191077
H	−0.256582	2.668369	−0.030650
H	−2.260161	1.458454	−0.322472
H	−0.366955	−2.098498	−0.130428
H	1.892286	1.427617	0.237126
Ag	4.128668	−0.450624	0.505347
Ag	6.452755	0.796333	0.841052
Vibrational frequencies (Freq in cm$^{-1}$), infrared intensities (IR in km mol$^{-1}$), and Raman scattering activities (RA in Å4 amu$^{-1}$) for the uracil/Ag$_2$ complex (O @ C4/C5) with the M06-2X method/aVTZ level of theory.

Freq	IR	RA	Freq	IR	RA
13	1	0	843	47	4
19	1	6	992	13	6
53	0	12	999	12	1
65	0	4	1011	1	4
108	12	8	1113	19	23
166	1	1	1218	146	5
171	18	53	1251	9	63
176	0	0	1394	21	13
409	21	1	1428	3	4
416	37	2	1443	81	9
533	62	4	1532	229	19
560	5	7	1703	75	20
576	8	3	1762	1579	212
599	48	0	1855	860	29
698	61	1	3233	2	72
748	11	0	3250	4	177
790	39	0	3603	98	78
792	1	28	3648	163	165