Host control and nutrient trading in a photosynthetic symbiosis

Andrew D. Deana,b, Ewan J.A. Mintera, Megan E.S. Sørensena, Christopher D. Lowec, Duncan D. Camerond, Michael A. Brockhursta, A. Jamie Wooda,b

a Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
b Department of Mathematics, University of York, York YO10 5DD, UK
c Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Treliever Road, Penryn TR10 9FE, UK
d Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK

HIGHLIGHTS

\begin{itemize}
 \item We present a model of photosymbiosis, including nutrient trading between partners.
 \item Horizontal transmission determines symbiont distribution across host population.
 \item Host control of horizontal transmission is necessary to optimise host growth.
 \item We reproduce recent experimental results in the \textit{P. bursaria}–\textit{Chlorella} symbiosis.
 \item Intermediate levels of host control are an evolutionary stable strategy.
\end{itemize}

ABSTRACT

Photosymbiosis is one of the most important evolutionary trajectories, resulting in the chloroplast and the subsequent development of all complex photosynthetic organisms. The ciliate \textit{Paramecium bursaria} and the alga \textit{Chlorella} have a well established and well studied light dependent endosymbiotic relationship. Despite its prominence, there remain many unanswered questions regarding the exact mechanisms of the photosymbiosis. Of particular interest is how a host maintains and manages its symbiont load in response to the allocation of nutrients between itself and its symbions. Here we construct a detailed mathematical model, parameterised from the literature, that explicitly incorporates nutrient trading within a deterministic model of both partners. The model demonstrates how the symbiotic relationship can manifest as parasitism of the host by the symbions, mutualism, wherein both partners benefit, or exploitation of the symbionts by the hosts. We show that the precise nature of the photosymbiosis is determined by both environmental conditions (how much light is available for photosynthesis) and the level of control a host has over its symbiont load. Our model provides a framework within which it is possible to pose detailed questions regarding the evolutionary behaviour of this important example of an established light dependent endosymbiosis; we focus on one question in particular, namely the evolution of host control, and show using an adaptive dynamics approach that a moderate level of host control may evolve provided the associated costs are not prohibitive.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Endosymbiotic relationships are widespread in nature and play key roles in the functioning of many ecosystems (Esteban et al., 2010; Howells et al., 2012; Jeong et al., 2010; Johnson, 2011, 2011; Moorthi et al., 2009; Stoecker et al., 2009). Different symbioses have evolved many times throughout history; of particular note is the evolution of cellular organelles such as chloroplasts from a cyanobacteria–eukaryote symbiosis (Keeling, 2013). One well-known example of endosymbiosis is the relationship between the ciliate \textit{Paramecium bursaria} and the alga \textit{Chlorella} (Karakashian, 1963). These organisms (Karakashian, 1963; Fujishima, 2009) and their close relatives (Esteban et al., 2010; Fenchel, 1980; Finlay et al., 1996) have been the focus of much study in both symbiotic and free-living contexts, and therefore provide an excellent model system for the study of alga-protist endosymbioses.

The primary benefit of an endosymbiotic relationship between a heterotrophic host and a photosynthetic symbiont (photosymbiosis) is thought to be nutrition (Johnson, 2011, 2011; Karakashian, 1963). The host obtains nutrients from its
environment via phagotrophy—the engulfing of cells or particles and subsequent digestion within a vacuole. Free-living algae are also ingested in this manner, but not all digested; rather, some resist digestion long enough for a section of the digestive vacuole membrane to ‘pinch off’ and form a new, distinct vacuole. Known as the perialgal vacuole, this provides an alga with protection from the environment via phagotrophy—the engulfing of cells or particles and subsequent digestion within a vacuole. Free-living algae are also ingested in this manner, but not all digested; rather, some resist digestion long enough for a section of the digestive vacuole membrane to ‘pinch off’ and form a new, distinct vacuole. Known as the perialgal vacuole, this provides an alga with protection from the

A relevant recent paper modelled the general photosymbioses. Conditions determining the evolution of trading and differences in growth rates between partners yield a model encapsulating the many facets of symbiosis across a range of environmental conditions.

The consequence of this nutrient exchange is that the photosymbiosis exists on a context-dependent continuum whereby the nature of the interaction depends on the light level (Lowe et al., 2016). In low light, the correspondingly low photosynthetic output of the symbionts results in a net loss of nutrition for the host—this is effectively parasitism. As light increases, the increase in photosynthesis results in symbionts providing a net nutritional benefit to their host, yielding a mutualistic relationship.

A key step in the establishment of a permanent symbiotic relationship is the maintenance of a stable symbiont population (Muscatine and Pool, 1979). Clearly, if the host population grows more rapidly than the symbiont population, successive generations of host cells will become increasingly diluted until a completely apysymbiotic state is reached. This can occur when P. bursaria are grown in the dark (Karakashian, 1963). Conversely, if the symbiont population is the faster growing of the two, it will increase to the point of saturation, with severe consequences for the host—the symbionts have become parasites. Hence, if a host is to maintain a stable symbiont population it must carefully balance the gain and loss of symbionts so the two populations increase at approximately equal rates, either through controlling the rate of intake of new symbionts and the rate of removal (through expulsion or digestion), or by synchronising the cellular division cycles of the organisms. Both of these mechanisms could potentially lead to conflict between host and symbiont and the need for greater control by the dominant partner—presumed to be the host—to maintain the symbiosis.

Alga–protist endosymbioses have been addressed only briefly in the mathematical literature; see Momeni et al. (2011) for a review. There has been much emphasis on potential mechanisms for cell-cycle synchronisation in Chlorella–Hydra symbioses (Taylor et al., 1989; McAuley and Darragh, 1990) and Chlorella–ciliate symbioses (Stabell et al., 2002), while others focus on the role of nutrient trading (Flynn and Mitra, 2009; Hallock, 1981) in more general photosymbioses. Conditions determining the evolution of an obligate endosymbiosis were investigated in Law and Dieckmann (1998), Weisbuch and Duchateau (1993), and Yamamura (1996). A relevant recent paper modelled the P. bursaria–Chlorella symbiosis, showing how the combination of dynamic nutrient trading and differences in growth rates between partners yield a steady symbiotic population, but neglected to incorporate the potentially significant effects of symbiont intake and removal (Iwai et al., 2015). To the best of our knowledge, the present work represents the first attempt to provide a comprehensive ecological model encapsulating the many facets of symbiosis across a range of environmental conditions.

In this paper we develop a model to illustrate the mechanistic basis for a photosymbiotic relationship and the configuration of the resultant mixotrophic holobiont. We describe host–symbiont interactions by a deterministic system of ordinary differential equations, incorporating the vertical transmission of symbionts via host cytokinesis and the horizontal transmission of symbionts via ingestion from, and egestion into, the environment. The above discussion on host–symbiont cell–cycle synchronisation forms the basis of a key assumption; namely that on the timescale of our model, host and symbiont cytokinesis is almost concurrent, in that daughter cells have a symbiont load equal to that of their mother cell. This has been directly observed in P. bursaria (Takahashi et al., 2007), and is in contrast to asynchronous cell cycles, for example, in which daughter cells have a symbiont load half that of their mother cell. The interplay between horizontal and vertical transmission of symbionts selects a particular symbiont distribution across the host population. We investigate how this distribution responds to different environmental conditions, in particular light levels, and how host control mechanisms may evolve. Note that our model is constructed in reference to the specific relationship between P. bursaria and Chlorella, but is readily reparameterised so as to be applicable to other photosymbioses. Hence we formulate our model using the language of a general symbiotic relationship between a heterotrophic host and a phototrophic symbiont, and parameterise it using data available in the literature on the P. bursaria–Chlorella symbiosis.

The paper is organised as follows. In Section 2 we derive our model. Incorporating nutrient trading and limitation allows us to formulate the host growth rate in terms of symbiont load and nutrient availability, highlighting the different strategies available to the host. This leads to the inclusion of general host control mechanisms, with particular attention paid to their impact on symbiont distribution via horizontal transmission. In Section 3 we perform numerical simulations of our model, highlighting the roles played by host control and irradiance in determining population equilibria. We then employ adaptive dynamics to illustrate how host control is able to evolve in Section 4. We conclude by discussing our findings and intentions for future investigation in Section 5.

2. The model

We describe the distribution of symbionts among the host population by defining the time-dependent set of variables $\phi = (\phi_1, \phi_2, \ldots, \phi_k)^\top$, where each entry $\phi_k(t), k \in \mathbb{N}_0$, of the column vector ϕ represent the concentration of hosts with k symbionts at time t. We assume that the composition of the population changes due to the following processes:

- Cytokinesis of host cells, at rate c_k: We assume that the host and symbiont cell cycles are synchronised so as to be concurrent on the appropriate timescale; thus a host containing k symbionts divides into two hosts that each contain k symbionts. Also, we suppose that host cytokinesis is mediated by total host population density.
- Death of host cells, at rate d_k: Host death is independent of population density.
- Symbiont gain via ingestion of free-living potential symbionts, at rate g_k.
- Symbiont loss, at rate l_k: We assume hosts lose symbionts at a rate proportional to their symbiont load.

Note that the first process encodes vertical transmission of symbionts, while the third and fourth encode horizontal transmission via the free-living population.

Empirical evidence supports the hypothesis of cell cycle synchrony; Takahashi et al. (2007) found that symbionts divided only when host cytoplasmic streaming ceased, which occurred just prior to host division. Each symbiont divided approximately once, resulting in two daughter cells with symbiont loads approximately...
equal to that of the mother before cessation of cytoplasmic streaming. This is opposed to, for example, a timescale-separated situation in which symbiont and host division is not concurrent, or a complete lack of synchrony as expected in an evolutionarily young symbiosis. In addition, we suppose that maintaining symbionts diverts nutrients away from cell growth, so that an excess of symbionts results in a net detrimental effect on the host (parasitism).

We have simplified the gain and loss processes to include only those ingestion events which result in the retention of a new symbiont and assume that symbiont loss occurs only via ejection from the cell. Although digestion of unwanted symbionts is more likely, for the sake of simplicity we do not explicitly account for this, nor for predation of free-living potential symbionts, in our model. We instead consider such effects to be sufficiently accounted for by the general feeding behaviour of the host (cf. (10) and (11)).

Note that all rates depend on the symbiont number k, allowing us to explicitly incorporate the costs and benefits different symbiont loads bring to the host. Moreover, each of the two horizontal transmission processes yields a potential mechanism for host control of the symbiont population, by altering the gain and loss rates in response to the cost/benefit trade-off inherent to the symbiosis.

Taking all this into account, we see that the system varies according to the infinite set of ordinary differential equations

$$\frac{d\phi_0}{dt} = \left[c_0 \left(1 - \frac{\phi_0}{\lambda} \right) - g_0 \right] \phi_0 + l_1 \phi_1,$$

(1)

$$\frac{d\phi_k}{dt} = g_k \phi_{k-1} + \left[c_k \left(1 - \frac{\phi_0}{\lambda} \right) - g_k - l_k k \right] \phi_k + l_{k+1} (k+1) \phi_{k+1},$$

(2)

where (2) holds for all $k \in \mathbb{N}$ and we define the total host population

$$\phi = \sum_{j=0}^\infty \phi_j.$$

(3)

K is the carrying capacity of the system. Note that if we define $\phi_{-1} \equiv 0$, setting $k=0$ in (2) yields (1). We write the equation for ϕ_0 explicitly in order to emphasise the differing behaviour at the boundary $k=0$; in particular, that the only way for a host to leave the aposymbiotic state ϕ_0 is to gain a symbiont via ingestion of an organism from the free-living population.

Eqs. (1) and (2) can be written using matrix notation as

$$\frac{d\phi}{dt} = (A-\Phi B)\phi,$$

(4)

where the entries of the matrix A are given by

$$A_{kj} = \begin{cases} c_k - d_k - g_k - l_k k, & j = k, \\ l_{k+1} (k+1), & j = k+1, \\ g_k & j = k-1, \\ 0 & \text{otherwise}, \end{cases}$$

(5)

and those of B by

$$B_{kj} = \begin{cases} c_k/\lambda, & j = k, \\ 0 & \text{otherwise}, \end{cases}$$

(6)

for $(k,j) \in \mathbb{N}^2_0$. Note that we have separated (4) into linear and nonlinear parts, with the coefficients of the linear part yielding a tridiagonal matrix, A, and those of the nonlinear part yielding a diagonal matrix, B.

The symbiotic relationship is characterised by a transfer of nutrients from the host to its symbionts in exchange for photosynthetically fixed carbon. Identifying carbon and nitrogen as the primary elements limiting growth, we describe this nutrient trading in the following manner. We assume that the host uses carbon and nitrogen in the ratio λ_b, and hence host growth rate is limited by

$$\min \left(C_k, \lambda_b N_k \right),$$

(7)

where C_k (N_k) is the net intake rate of carbon (nitrogen) used directly by the host for growth, and is dependent upon symbiont number due to nutrient trading. We assume that the uptake of nutrients by phagotrophy (by the host) or photosynthesis (by the symbiont) occurs according to a Holling type II functional response (Fenchel, 1980; Dorling et al., 1997). Each symbiont then yields a proportion $z_k \in [0, 1]$ of its photosynthetic resources to its host; in return, the k symbionts receive a share of the nutrients (in particular, nitrogen) obtained by the host via phagotrophy. We assume that the total nutrient released by the host to its symbionts also varies according to a Holling type II functional response, with maximum $z_k \in [0, 1]$; hence, as the symbiont load increases, the host gives up an increasing proportion of its phagotrophically obtained nutrition, but the share received by each individual symbiont decreases. We therefore have

$$C_k = C_F \left(1 - \frac{z_k k}{k + \lambda_b} \right) + C_z z_k k,$$

(8)

$$N_k = N_F \left(1 - \frac{z_k k}{k + \lambda_b} \right),$$

(9)

where C_F and N_F are the amount of usable carbon and nitrogen provided by the hosts food, given by

$$C_F = \eta_C \lambda_b \frac{bF}{1 + \lambda_b F + \nu F},$$

(10)

$$N_F = \eta_N \frac{bF}{1 + \lambda_b F + \nu F},$$

(11)

and C_z is the amount of usable carbon provided by symbiont photosynthesis, given by

$$C_z = \eta_Z \frac{aL}{L + \nu L}$$

(12)

Here a represents the maximum symbiont photosynthesis rate and b the maximum host phagotrophy rate; F is the amount of bacterial food available to the host and L the light level, each assumed constant; ν, η_C, ν_F and η_N are the appropriate half-saturation constants; λ_b, η_C and η_N are the conversion efficiencies of photosynthetically obtained carbon, phagotrophically obtained carbon and phagotrophically obtained nitrogen to cell growth; and νF is the C:N ratio of the hosts food source. Thus the nutrient trading is characterised by the host and symbiont trading traits z_k and x_k and the half-saturation constant ν, relating to how a host distributes nutrients among its symbionts.

Associated with each symbiont there is also an upkeep cost, separate to nutrition, incorporating such processes as the maintenance of the perialgal vacuole, and production of transporters. For simplicity, we assume this cost to be proportional to symbiont load. Note that we discount the possibility that symbionts produce any benefits in addition to nutrition, in order to focus our attention on the nutrient trading. We therefore write the host cytokinesis rate as

$$c_k = c_t R(\min(C_k, \lambda_b N_k) - Q_k),$$

(13)

where we define the ramp function

$$R(y) = \begin{cases} \gamma, & y > 0, \\ 0, & y \leq 0, \end{cases}$$

(14)

and c_t is the rate at which a host converts nutrition into growth (and therefore cytokinesis), while Q is the additional upkeep cost
per symbiont. Note that above a certain threshold symbionts become parasites, as the cost of upkeep becomes so burdensome to the host as to outweigh any nutritional benefits. Hence the host death rate is

\[d_k = \alpha_k (R (Q k - \min(C_k, \lambda_d N_k)) + \alpha_d), \]

(15)

comprising the effects of an excessively burdensome symbiont load and the base death rate in the absence of symbionts, denoted by the constant \(\alpha_d \). Thus we see that a hosts symbiont load directly affects its potential for growth.

We now introduce the possibility of a host actively managing its symbionts over and above metabolic provision, as opposed to them being simply a passive load. In effect, the control of its symbiont load becomes a trait of the host. We suppose that control is implemented via the symbiont gain/loss terms in (4), thus enabling hosts to bring about dynamic changes in the symbiont population, and that hosts choose to alter their symbiont load on the basis of increasing fitness, i.e. increasing \(r_k \). This mathematical formulation serves as a proxy for the underlying physiological factors influencing the choice between investing in symbionts, or shedding them.

We therefore define

\[g_k = \beta k \left\{ \frac{L}{L + k_c} \left[1 + \gamma \Theta(r_{k+1} - r_k) \right] \left[1 - \frac{1}{2} \Theta(r_{k-1} - r_k) \right] \right\}, \]

(16)

and

\[l_k = \beta k \left\{ 1 + \gamma \Theta(r_{k-1} - r_k) \right\} \left[1 - \frac{1}{2} \Theta(r_{k-1} - r_k) \right], \]

(17)

where \(\Theta(x) \) is the Heaviside step function with \(\Theta(0) = 0 \) and we assign \(r_{-1} = 0 \). If \(r > 0 \), there is no active host control and horizontal transmission of symbionts is a purely passive process. If \(\gamma \) is non-zero, however, the host manages its symbiont load in order to increase its growth rate, increasing either its gain or loss rate as required in order to achieve this. The terms inside square brackets in (16) and (17) ensure that hosts do not get trapped at a local minimum of \(r_k \); rather, hosts escape the minimum by either gaining or losing a symbiont, with equal proportions choosing each of the two strategies. In contrast, if a host finds itself at a local maximum it reverts to passive symbiont gain and loss only. If its symbiont load should change due to passive processes, host control kicks in once more to restore the more favourable state. For simplicity, we assume hosts invest equally in both their gain and their loss rates, increasing each by an equal proportion of the respective passive values. We include the light-dependent factor in \(g_k \) as a proxy for the free-living population of potential symbionts (cf. the rate of algal photosynthesis per cell in (12)), which we assume constant with respect to time. This ensures that there is no ingestion of new symbionts in the dark, as purely phototrophic organisms cannot survive in the absence of light to drive photosynthesis. Our chosen formulation of the host control via a step increase in an appropriate parameter is probably the simplest from a mathematical point of view; however, it incorporates sufficient biological detail as to yield a useful means by which to investigate the phenomenon of host control.

The various processes at work in our model (4) can be grouped into two categories: growth (\(c_k \) and \(d_k \)), incorporating vertical transmission of symbionts, and horizontal transmission (\(g_k \) and \(l_k \)). Although the precise details of the interplay between these processes are too complicated to describe analytically, we are able to gain a reasonable understanding of the model dynamics by considering each of the two processes in turn.

Vertical transmission is encapsulated by the net host growth rate

\[r_k = c_k - d_k = \alpha_c (\min(C_k, \lambda_d N_k) - Q k) - \alpha_d, \]

(18)

encoding the effect of symbiont load \(k \) and environment \(L \) and \(F \) on the fitness of a host. A key point in \(k \)-space is the point of optimal host nutrient intake \(k = k_{\text{min}} \) defined by \(C_k = \lambda_d N_k \); here hosts switch from carbon-limited to nitrogen-limited growth. We assume that \(k_{\text{min}} > 0 \), as otherwise hosts would be nitrogen-limited no matter their symbiont load and symbiosis would confer no net benefit. Note that \(k_{\text{min}} \) is not necessarily an integer; we therefore also define \(k_{\text{max}}^* \) to be the symbiont load \(|k_{\text{min}}| \) or \(|k_{\text{min}}| + 1 \) conferring the higher growth rate \(r_k \) with \(k_{\text{max}}^* \) taking both values if there is no difference. Here \(\lfloor \cdot \rfloor \) denotes the integer part of a given real number.

Considering first carbon-limited growth, it is easy to see that \(C_k - Q k \) has a local minimum at some \(k = k_{\max} \) provided that \(C_k > Q \). In fact, this equality must hold if our model is to be biologically relevant, as it is a necessary but not sufficient condition for symbiosis to be beneficial to the host—simply put, the per capita carbon gain must outweigh the per capita cost. In contrast, \(\lambda_d N_k - Q k \) is a monotonically decreasing function of \(k \in \mathbb{N}_0 \). The qualitative behaviour of \(r_k \) as a function of \(k \) can therefore be classified in terms of the location of the minimum \(k_{\text{min}} \) in relation to the point of optimal nutrient intake \(k_{\text{max}}^* \), i.e. whether the growth rate “sees” the minimum or not. This can be summarized as follows:

- \(k_{\text{min}} \leq 0 \): In this region of parameter space \(C_k - Q k \) is monotonically increasing for \(k \in \mathbb{N}_0 \). Hence, \(k = k_{\text{max}}^* \) is a global maximum of \(r_k \) over \(k \in \mathbb{N}_0 \), with a local minimum at \(k = 0 \) and a global minimum at \(k = \infty \). The optimal host strategy is a symbiont load of \(k_{\text{max}}^* \), or at near the point of optimal nutrient intake \(k_{\text{min}} \).
- \(0 < k_{\text{min}} < k_{\text{max}}^* \): Increasing past zero creates a local minimum of \(r_k \) at \(k = k_{\text{min}} \), with local maxima at \(k = 0, k_{\text{max}}^* \). The existence of two maxima in the growth rate indicates a potential choice of strategy for the hosts, the precise details of which will depend heavily on horizontal transmission of symbionts.
- \(k_{\text{min}} = k_{\text{max}}^* \): Once \(k_{\text{min}} \), has increased past \(k_{\text{max}}^* \), \(C_k - Q k \) is monotonically decreasing for \(0 \leq k \leq k_{\text{max}}^* \), i.e. when hosts are carbon-limited. Hence, \(r_{k+1} > r_k \) for all \(k \in \mathbb{N}_0 \), and symbiont-free hosts exhibit the highest growth rate.

The derivation of the behaviour of \(r_k \) is described in detail in Appendix A, along with explicit formulae for \(k_{\text{max}}^* \) and \(k_{\text{min}} \). The functional form of \(r_k \) for the biologically important region \(k_{\text{min}} \leq 0 \), and the double-peaked scenario \(0 < k_{\text{min}} < k_{\text{max}}^* \) can both be seen in Fig. 1.

Motivated by the observation that (4) is a discrete Burger’s equation, we define the approximate rate of horizontal transmission, or “velocity”, to be

\[v_k = g_k - l_k. \]

(19)

Although this is an approximate formula only, it is nonetheless informative as to the qualitative behaviour of the symbiont distribution. Roughly speaking, if \(v_k \) is positive then symbiont loads increase, while if \(v_k \) is negative they decrease. Of course, this picture is complicated by interplay between horizontal transmission and host population growth. However, one feature of (19) is especially relevant; when \(v_k \) decreases through zero, horizontal transmission acts to create a net flux towards this point from both directions, in effect creating an attractor for the symbiont dynamics. We denote such attractors by \(k_{\max} \), noting that \(k_{\max} \) is not necessarily integer-valued and may have multiple solutions. A detailed derivation of \(k_{\max} \) can be found in Appendix B. We expect peaks to form at or near such attractors, depending on how strongly horizontal transmission is acting. Furthermore, an increase in host control will shift \(k_{\max} \) towards maxima of \(r_k \); hence, investing in host control improves a hosts growth.
We plot r_k (18) and v_k (19) for two qualitatively different parameter regimes in Fig. 1. In the scenario depicted by the left-hand panels, in which nutrient trading is relatively cheap for the host, r_k has a single peak. Thus increasing the host control γ from zero acts to shift k_+ closer to k^*_\min, the point at which r_k is maximal, and at the same time increases the magnitude of the rate of horizontal transmission. On the other hand, the right-hand panels depict nutrient trading which is relatively expensive for the host, yielding a growth rate with two maxima. Increasing γ from zero in this instance initially has the same qualitative effect as before. However, once γ increases over a certain threshold then a second point appears at which v_k decreases through zero and k_+ becomes multi-valued. Thus we now have two possible attractors, separated by a repellor at k_{\min}, at which v_k increases through zero. We discuss the consequences of this further in Section 3.

We can therefore interpret the effects of increasing host control as follows. When $\gamma = 0$, horizontal transfer is strictly passive. As γ increases from zero, k_+ approaches the local maxima of r_k as γ increases, with k_+ double-valued if $0 < k_{\min} < k^*_\min$. We note that there is a third possibility, in which $k=0$ is a global maximum; in this case increasing host control pushes k_+ closer to zero, in effect destroying the symbiosis. We dismiss this case as being biologically uninteresting, and mention it only for completeness. Hence, there are four possible outcomes of the population dynamics:

- **Stable symbiosis**: k_+ is single-valued; the peak drifts until it reaches the attractor at or near k_+, where it remains.
- **Dichotomous symbiosis**: k_+ is double-valued. Hosts may potentially split between the two strategies of low and high symbiont loads.
- **Near loss of symbionts**: A high loss rate results in a very low but non-vanishing symbiont load.
- **Extinction due to symbiont overload**: Gain of symbionts is sufficiently higher than loss to push the population into the region of negative growth ($r_k < 0$), at which point the cost of maintaining symbionts is too much and the hosts die, leading to host population crash.

We shall focus on the first two outcomes as biologically relevant, with particular attention paid to the stable, single-peaked symbiosis.

3. Population equilibria

We now present numerical solutions of the model (4), highlighting the key ecological processes leading to population equilibria. Choice of parameter values is detailed in Appendix C and summarised in Table C1. We truncate the system at $k = k_{\text{ trunc}}$, where $k_{\text{ trunc}}$ is chosen so that ϕ_k is exponentially small and therefore has a negligible effect on the solution near the symbiont peak. For the present purposes, setting $k_{\text{ trunc}} = 500$ turns out to be sufficient; although the growth rate r_{500} is usually positive for the parameter values in Table C1, horizontal transmission is sufficiently negative near $k=500$ as to render population equilibria in which $\phi_k \approx 0$. We calculate steady-state solutions of the nonlinear problem (4) using Newton–Raphson iteration. We also calculate the dominant eigenvalues of the associated linear problem and the dominant eigenvectors of the associated linear problem.

![Fig. 1. Net host growth rates (upper panels, cf. (18)), and associated approximate rates of horizontal transmission (lower panels, cf. (19)), in two qualitatively different host trading scenarios, for various values of the host control parameter γ. The left-hand panels represent a symbiosis which is relatively cheap for the host, with $z_0 = z_1 = 0.8$, $k_+ = 500$ and $Q = 5 \times 10^{-8}$, while the right-hand panels represent one which is relatively expensive, with $z_0 = 0.8$, $z_1 = 0.25$, $k_+ = 200$ and $Q = 7 \times 10^{-8}$. All other parameter values are as specified in Table C1. We truncate the system at $L=20$. Note r_k is independent of γ in this formulation. Grey regions indicate host carbon limitation.](image-url)
increasing host control regions indicate host carbon limitation. We see that the solution is closely approximated by the dominant eigenvalue of the associated linear problem. Furthermore, the location of the peak is approximately given by the dominant eigenvectors with no negative components.

\(\dot{\phi} = A\phi \), i.e. the eigenvector of \(A \) with eigenvalue of largest real part of all eigenvectors with no negative components.

In Fig. 2 we present steady state solutions of (4) with a single-peaked growth rate distribution, corresponding to the left-hand panels of Fig. 1. We see that the solution is closely approximated by the dominant eigenvalue of the associated linear problem. In fact, our numerical investigations showed that this agreement is excellent for a wide range of relevant parameter values, suggesting horizontal transmission rapidly organises the symbiont distribution. Furthermore, the location of the peak is approximately given by \(k_+ \) (not shown for the sake of clarity: cf. (B.2)), indicating that \(v_k \) (19) is an excellent description of the rate of horizontal transmission. We can also see how increasing host control strength \(\gamma \) moves the symbiont peak closer to the optimal value \(k^* \), and reduces its variance, indicating that hosts are maximising their benefit from the symbiotic relationship as \(\gamma \) increases.

In Fig. 3 we present steady-state solutions for a double-peaked growth rate distribution, corresponding to the right-hand panels of Fig. 1. Again, agreement between steady state solutions and dominant eigenvectors is excellent, although we omit the eigenvectors for clarity. As in Fig. 2, the symbiont peak approaches \(k_+ \) as \(\gamma \) increases from zero. However, as \(\gamma \) continues to increase a bifurcation occurs, in which the peak moves from near \(k_+ \) to a point to the left of \(k_{\text{min}} \), and thereafter approaches \(k=0 \) as \(\gamma \) increases. In this case, increasing \(\gamma \) without bound has the effect of destroying the symbiosis, as increased host control moves the lower peak ever closer to zero. We note that double-peaked distributions are also possible in certain parameter regimes (cf. Fig. 6), although the scenario depicted in Fig. 3 appears to be by far the more common response to a double-peaked growth rate.

A key environmental property affecting the symbiosis is light. In Fig. 4 we plot the total host population \(\Phi \) and the mean symbiont load

\[
\bar{k} = \frac{1}{\Phi} \sum_{j=0}^{\infty} j \bar{\phi}_j,
\]

of steady state solutions to (4), for four levels of host control. We note that in each case the agreement between the numerically computed values of \(\bar{k} \) and the approximate prediction \(k_+ \), is excellent, but neglect to plot this information to preserve clarity. We see in the lower panel of Fig. 4 that when there is no host control, the mean symbiont number simply increases with light according to the functional response incorporated into \(g_k \) (cf. (16)). With a moderate level of host control, the mean symbiont number increases from zero to a local maximum, at which point it decreases in line with \(k_+ \) before increasing again as passive gain overcomes host control due to an increasing free-living population. Strong enough host control prevents this, ensuring optimal nutrient intake at all light levels above a threshold, correlating...
4. Adaptive dynamics

Having discussed in detail the ecological aspects of the model, we now turn our attention to the evolution of the symbiosis. In particular, we shall investigate the evolution of host control by allowing the strength of control, γ, to evolve in an adaptive dynamics framework (Dieckmann and Law, 1996; Geritz et al., 1998). The benefits of increased host control are likely to be balanced by an associated cost, which we model by taking the per capita cost of symbiosis maintenance to be a monotonically increasing function of γ, specifically

$$Q = Q(\gamma) = Q_0 + \frac{Q_1 \gamma}{Q_2 + \gamma}.$$ \hspace{1cm} (21)

where the Q_i, $i = 1, 2, 3$, are constants. Thus the cost of symbiosis increases from an initial value of Q_0 at $\gamma = 0$ to a maximum of $Q_0 + Q_1$ at $\gamma = \infty$, with Q_2 determining the rate at which this transition occurs. This limiting behaviour of the per symbiont cost provides a trade-off curvature as the trait evolves.

The adaptive dynamics approach assumes a separation of timescales between ecological and evolutionary dynamics, in that the ecological equilibrium is continually updated in evolutionary time by a series of successful invasions by initially rare mutants. A host with a mutant trait γ' must be able to overcome the background state provided by the resident steady state population with trait γ. Hence the initial dynamics of a rare mutant $\psi(t)$ are governed by

$$\frac{d\psi^*_k}{dt} = g_{k-1}^*_\psi_{k-1}^* + \left[c_k^* \left(1 - \frac{\Phi^*}{K} \right) - d_k^* - g_k^* - b_k^* \right] \psi_k^* + \ell_{k+1}^* (k+1) \psi_{k+1}^*,$$ \hspace{1cm} (22)

where $\Phi^* = \sum_{j=0}^{\infty} \phi_j^*$ and the ϕ_j^* are a steady-state solution of (4) in the absence of mutants, i.e.

$$0 = g_{k-1}^*_\psi_{k-1}^* + \left[c_k^* \left(1 - \frac{\Phi^*}{K} \right) - d_k^* - g_k^* - b_k^* \right] \phi_k^* + \ell_{k+1}^* (k+1) \phi_{k+1}^*.$$ \hspace{1cm} (23)

Note that unprimed rate functions refer to the resident population with trait γ, and primed variables refer to the mutant population with trait γ'.

We can see that (22) is an eigenvalue problem. Therefore, if there exists an eigenvalue with positive real part corresponding to an eigenvector with no negative elements, the initially rare mutant population will exhibit exponential growth until nonlinear effects become significant. We shall make the usual adaptive dynamics assumption that such an invasion is always successful, with mutants replacing residents and achieving a new equilibrium, distinct from ϕ^* due to the updated trait value γ'. The eigenvalues of (22) must be calculated numerically. To this end, we first found the solution curve comprising solutions to (23) for values of the resident trait γ across the desired range. Then, for each resident trait we calculated the eigenvalues of (22), for each value of the mutant trait γ' across the same range. Following the adaptive dynamics methodology, we differentiate between the regions in which at least one eigenvalue corresponding to an eigenvector with no negative components has positive real part, and those in which none do. The former regions of trait space are therefore those in which a successful invasion may occur. We plot our results in Fig. 5 for various values of Q_1, taking $Q_0 = 2 \times 10^{-8}$ and $Q_2 = 0.5$. We see that if the cost increases relatively gradually with γ, a moderate level of host control will evolve. As Q_1 increases, an evolutionary steady state which is not convergence stable emerges from the origin, resulting in a barrier to the evolution of host control; however, there still exists an evolutionary stable strategy with $\gamma \neq 0$, which remains achievable should a sufficiently large mutation arise. As Q_1 increases further, the two evolutionary steady states approach one another and coalesce before vanishing, in which case evolution favours no host control.

We note that evolutionary stable strategies are associated with host population maxima, and evolutionary unstable strategies with population minima.

Fig. 5. Adaptive dynamics of (4), for increasing values of the cost parameter Q_1. Upper panels: solution curves of (23), i.e. steady-state solutions of (4) with the cost of symbiosis Q increasing with host control strength γ as in (21). Lower panels: corresponding pairwise invasibility plots (cf. the discussion around (22)). Dark regions indicate resident trait values γ which are invisible by the corresponding mutant trait γ', whereas light regions are uninvasible. We fix $Q_0 = 2 \times 10^{-8}$ and $Q_2 = 0.5$ in all four cases. All other parameter values are as specified in Table C1, with $z_0 = z_1 = 0.8$, $\kappa_0 = 300$ and $l = 20$.

with the observed increase in host population with higher levels of host control. We note that there is an initial dip in host population as irradiance increases from zero, indicating that at first symbionts are not photosynthesising enough to provide a net benefit to their hosts. Increased host control reduces this dip as the hosts invest in expelling unwanted symbionts. Note the sharp increase in Φ at low light; the solution changes qualitatively at this point, with a discontinuous change in the location of the peak.
5. Discussion

We have constructed a deterministic model of the endosymbiosis between a heterotrophic host and a phototrophic symbiont. By formulating the host growth rate in terms of its nutritional state, we were able to explicitly incorporate nutrient trading between a host and its symbionts into our model, allowing us to investigate the consequences of symbiosis for host fitness. A novel feature of our model is an explicit mechanism, captured by a single parameter, by which the host can exert a degree of control over the number of endosymbionts via adjustment of the rates of loss and gain of symbionts.

Host control is an essential addition to a model of this symbiosis in order to describe the behaviour of holobiont in response to variable levels of light. The model presented here predicts that the optimal symbiont load k_0 (A.3) decreases monotonically with irradiance from infinity at zero light. This is because fewer symbionts are needed for the same gain as photosynthetic output increases, but this gain can only be realised if the host divests itself of excess symbionts, thus diverting nitrogen from symbiont nutrition back to its own growth. Such a response requires a level of host control over its symbiont load—without it, the symbiont population will increase with light to the detriment of the host. Thus, as light increases from zero, the symbiotic relationship moves from parasitism through commensalism to exploitation of one party by the other, depending on the level of control exerted by the host.

The model leads to the following predictions at different light levels. When environmental irradiance increases from zero, after an initial dip in which symbiosis is slightly detrimental to the host, we observe a sharp increase in symbiont load. This is mainly due to an increase in ingestion as the free-living population of algae increases from zero in the dark. As light levels continue to increase, at a certain irradiance the mean symbiont load coincides with the optimal load k_0. According to the level of explicit control imposed by the host on the symbiont, the model predicts that either the symbiont load will continue to increase, proportional to the rate of photosynthesis, or will remain at k_0 and therefore decrease with increasing light. If host control is strong enough, this decrease is monotonic and the mean symbiont load remains approximately equal to k_0. However, for weaker levels of host control, the symbiont load once again begins to increase due to the free-living population becoming too large for the host to effectively manage (cf. Fig. 4). Thus the differing strategies at higher light levels introduce conflict between host and symbionts, with the possibility that symbionts may counter-act defences against host control. Our model therefore demonstrates that adaptation to different light levels may not lead to easily predictable results, as coevolution may drive the symbiosis to differing regimes. In particular, strains adapted to higher light levels should exhibit a greater level of host control in order to overcome the increased symbiont gain due to increased growth of free-living algae and prevent exploitation of the hosts by their symbionts.

This pattern of behaviour is precisely that seen in recent experiments on this host–symbiont relationship. Lowe et al. (2016) show that a peak in symbiont load is observed at a relatively low irradiance, and the symbiont load then decreases monotonically as the light levels increase. In our model this suggests that the symbiotic relationship of the strain studied has evolved to have a high level of host control. To confirm that such an evolutionary end point is a likely result of our model we have presented an adaptive dynamics approach using the host control strength γ as the evolvable trait. The control is traded off against the per symbiont cost to the host, representing the investment of the host in explicit mechanisms to restrain the symbiont – nutrient consumption is explicitly accounted for elsewhere in the model. Our evolutionary model demonstrates that when the cost to the host of imposing control is low then it is favourable to adopt a high level of host control; there is a convergent and evolutionary stable state at a finite value of γ. However, the fine detail of this evolutionary end point is sensitive to the per-capita costs of control, which suggests that different strains are likely to have evolved different levels of host control and this should be reflected in their response to a light gradient.

If the per capita cost Q increases too severely with the evolution of control then the convergent and evolutionary stable state is $\gamma = 0$, i.e. hosts do not evolve control. In this parameter regime our adaptive dynamics description no longer encapsulates the essential evolutionary pressures, with evolution likely to begin affecting the passive gain and loss rates via the parameters β_i (16) and β_l (17), for example. A probable end result of such evolution is the transition back into a regime in which conditions are favourable for the evolution of host control.

There exists also a more drastic scenario which we have not covered in Section 4. If Q increases sufficiently it can cause a transition from the solution branch in which the symbiont peak is near k_0 to that with a peak to the left of k_{min}. In this case, increasing host control acts to destroy the symbiosis as the symbiont peak moves towards $k=0$ (cf. the discussion around Fig. 3 in Section 3). Furthermore, γ is then free to increase without bound until the symbiosis is completely destroyed. However, once again we find our adaptive dynamics description failing to capture all relevant evolutionary effects; in this case, we expect ever increasing investment in host control to begin to have a detrimental effect on host growth in other ways than only increasing Q, for example decreasing the cytokinesis rate s_i (13) or increasing the death rate α_0 (15).

Double-peaked growth rate distributions, in which the host has a choice of strategies, occur when nutrient trading is expensive for the host, thus reducing its benefit from the symbiosis. In reinfection experiments (Karakashian and Karakashian, 1973; Kodama and Fujishima, 2012), it is often observed that the resulting symbiont load distribution is double-peaked. Our model suggests that this could be due to a decreased release of photosynthate from new symbionts to their hosts, potentially a result of the time spent living autonomously, or perhaps due to a delay between ingestion of symbionts and commencement of nutrient trading. Moreover, our results indicate it is likely that one peak is transient, and given enough time, will decay leaving only a single peak. As discussed above, the double-peaked growth rate distribution provides a mechanism, as Q increases, whereby it is possible for the evolutionary system to select a non-symbiotic state, but without explicit modelling of the symbiont dynamics and ecology this remains a speculation.

The construction of a more realistic mechanism by which cell-cycles become synchronised, by incorporating nutritional dependence into symbiotic growth rates, is a desirable feature currently lacking in our model. This also permits the inclusion of other host control mechanisms, implicit here, whereby the host manages the nutrient supply to its symbionts in order to maintain a stable population, perhaps including such dynamic nutrient trading as that described in Iwai et al. (2015). The precise nature of cell-cycle synchronisation is at present poorly understood, and including such effects in our more comprehensive model would build greatly on the simpler approaches attempted here and previously (Taylor et al., 1989; McAuley and Darrah, 1990; Stabell et al., 2002; Iwai et al., 2015). We note that, in contrast to Iwai et al. (2015), for example, our model highlights the importance of horizontal transmission in determining the stable symbiont distribution. In fact horizontal transmission of symbionts is necessary, when combined with host control, in order to react appropriately to environmental changes (cf. Lowe et al. (2016)).
The model presented here forms an excellent basis for further study of endosymbiotic relationships. Our model gives a number of detailed predictions regarding the photosymbiotic relationship between *P. bursaria* and *Chlorella*, in particular, the dependence of symbiont load on light and host control. These predictions provide insight into the underlying mechanisms and trading relationships between the two partners. Subsequent investigations into these details may permit greater understanding of the nature of the relationship between the two partners including its equality, its history, its future trajectory and ultimately greater understanding of this important route to complex lifeforms.

Acknowledgments

The authors are grateful to the editor and referees for their insightful comments, leading to substantial improvements to the original manuscript, and to Professor Richard Law for helpful discussions throughout the development of this work. The work was funded by NERC grant NE/K011774/1.

Appendix A. Derivation of \(k_0^s \) and \(k_{\text{min}} \)

A host is carbon-limited if \(C_k < \lambda_k N_k \), and nitrogen-limited if \(C_k > \lambda_k N_k \). The conversion of nutrients into growth is therefore most efficient when \(C_k - \lambda_k N_k = 0 \) (cf. (8) and (9)). We rearrange this condition to obtain

\[
z_k k^2 + [\lambda_k z_k + \mu(1 - z_k)]k + \mu \kappa_k = 0,
\]

where

\[
\mu = \frac{C_l - \lambda_l N_l}{C_l}
\]

(A.2)

compares the \(\lambda_k \)-weighted nutrient intake via phagotrophy to the per capita symbiont carbon production (note that photosynthesis yields no nitrogen, and so the denominator contains only a carbon term). From the point of view of the host, \(\mu < 0 \) represents carbon-deficient food and \(\mu > 0 \) represents carbon-rich food. Roughly speaking, the closer \(|\mu| \) is to zero, the more efficient phagotrophy is, in the sense that nutrient intake is closer to the optimal ratio \(\lambda_k \).

Eq. (A.1) has at most one non-negative solution \(k = k_s \), where

\[
k_s = 1 + \frac{\mu}{\sum_k \lambda_k z_k + \sqrt{\left(\mu(1 - z_k) - \lambda_k z_k + \sqrt{(\mu(1 - z_k) + \lambda_k z_k)^2 - 4\mu \kappa_k z_k}}\right)}
\]

(A.3)

We can discount the negative square root as that solution of (A.1) is always negative (unless \(\kappa_k = 0 \), in which case the negative square root yields \(k_s = 0 \); we assume \(\kappa_k > 0 \) throughout). As \(z_k, z_l \in [0, 1] \), inspection of (A.3) indicates that \(k_s \) is real and positive only if \(\mu < 0 \), i.e. if food is carbon-deficient. If \(\mu = 0 \) then \(k_s = 0 \), representing the fact that symbionts provide no nutritional benefit when the host feeds on prey with a C:N ratio which is precisely that required for host growth. If \(\mu > 0 \) or \(z_k = 0 \) then (A.1) has no non-negative solutions and (A.3) is physically meaningless; rather, the best strategy for a host in these cases is to divert itself of symbionts.

From inspection of \(C_k \) (8) and \(N_k \) (9), we see that the hosts are carbon-limited for \(0 \leq k < k_s \), and nitrogen-limited for \(k > k_s \). Hence, if \(k_s < 0 \) hosts are nitrogen-limited no matter their symbiont load. Note that \(k_s \) is in general not integer-valued, and so a perfect balance of nutrients according to the ratio \(\lambda_k \) is in general unobtainable since the symbiont load \(k \) is an integer. The best a host can do in practice is choose the symbiont load which minimises \(C_k - \lambda_k N_k \), i.e. that for which \(C_k - \lambda_k N_k \) is closest to zero, thus minimising any nutrient surplus.

Recalling the definition of the net host growth rate \(r_k \) (18), we therefore have

\[
r_{k+1} - r_k = \begin{cases}
\alpha C_0 \left(-C_k - \frac{z_k \lambda_k}{(k + 1 + \kappa_k)(k + \kappa_k)} + C_l z_l - Q \right), & 0 \leq k \leq |k_j| - 1, \\
\alpha C_0 \left(z_k N_k |k_j| - 1 - C_{|k_j|} - Q \right), & k = |k_j|, \\
-\alpha C_0 \left(\frac{z_k \lambda_k}{(k + 1 + \kappa_k)(k + \kappa_k)} + Q \right), & k \geq \max(|k_j| + 1, 0),
\end{cases}
\]

(A.4)

where \(|k| \) denotes the integer part of a given real number and \(k_s \) is defined in (A.3). When \(k_s < 0 \), hosts are always nitrogen-limited \((C_k > \lambda_k N_k \text{ for } k \in \mathbb{N}_0) \) and \(r_k \) is a monotonically decreasing function from \(r_0 \). In such a situation symbionts provide no benefit to the host. As our aim in the present paper is to model photosymbiosis, we discount this situation as unrepresentative of the biological reality that we are interested in, and shall not discuss it further.

Assuming \(k_j \geq 0 \), we can identify three parameter ranges, in each of which the behaviour of \(r_k \) as a function of \(k \) is qualitatively distinct. We see that the first line of the right-hand side of (A.4) vanishes at \(k = k_0 \), defined as

\[
k_0 = -\frac{z_h - 1}{\mu} + \frac{1}{2} \sqrt{\frac{1}{4} + \frac{C_l z_l \lambda_h}{C_l z_l - Q}}
\]

(A.5)

where \(k_0 \) is not necessarily integer-valued. Thus, provided \(k_0 \) is real and positive, \(r_k \) has a local minimum at \(k = k_{\text{min}} \), defined as

\[
k_{\text{min}} = \begin{cases}
|k_j| + 1, & k_0 \neq \mathbb{N}_0, \\
k_0, & k_0 \in \mathbb{N}_0.
\end{cases}
\]

(A.6)

Inspection of (A.4) indicates that if \(C_l z_l < Q \) then \(r_k \) is monotonically decreasing; moreover, if \(C_l z_l \geq Q \) then \(k_{\text{min}} \) is always real-valued. We shall henceforth assume the latter, as otherwise the per capita cost of maintaining the symbiosis outweighs the gain, in which case the model does not represent a biologically relevant relationship. In addition, we define \(k_s^0 \) to be the symbiont load \(|k_j| \) or \(|k_j| + 1 \) which yields the higher host growth rate, allowing \(k_s^0 \) to take both values if there is no difference, i.e.

\[
k_s^0 = \begin{cases}
|k_j|, & Q > \lambda_k N_k |k_j| + 1 - C_{|k_j|}, \\
|k_j| \text{ and } |k_j| + 1, & Q = \lambda_k N_k |k_j| + 1 - C_{|k_j|}, \\
|k_j| + 1, & Q < \lambda_k N_k |k_j| + 1 - C_{|k_j|},
\end{cases}
\]

(A.7)

where \(\lambda_k \) and \(N_k \) are defined in (8) and (9).

Appendix B. Derivation of \(k_+ \)

We denote the possible attractors, i.e. the points at which \(v_k \) decreases through zero, by \(k_+ \). These can be found analytically. To this end, we define

\[
k_{10} = \frac{L}{L + k_1} \frac{\beta_L}{\beta_L} (1 + \gamma),
\]

\[
k_{01} = \frac{L}{L + k_1} \frac{1}{\beta_L} 1 + \gamma,
\]

\[
k_{00} = \frac{L}{L + k_1} \frac{\beta_L}{\beta_L} = k_{11},
\]

(B.1)

to be the four possible (and not necessarily integer-valued) solutions of \(v_k = 0 \). The subscripts indicate which of the symbiont gain (first subscript) and loss (second subscript) processes are merely passive (subscript 0) or under host control (subscript 1) in the region of \(k \)-space that particular solution falls. Then \(k_+ \) can be
determined by calculating whether v_k is positive to the left and negative to the right of each of these solutions. Note we assume β_g and β_t are strictly positive throughout.

We note first that if $\gamma = 0$ then $k_+ = k_{00}$. For $\gamma > 0$, the situation is more complicated due to our formulation of the gain and loss rates (16) and (17) in terms of the discontinuous Heaviside function. Assuming a single-peaked growth rate, so that $k_0 < 0$ (cf. (A.5)), we have

$$k_+ = \begin{cases} k_{10}, & 0 \leq k_{10} < k_s^t, \\ k_s^t, & k_{10} = k_s^t, \\ k_{01}, & k_{01} > k_s^t; \end{cases}$$

(B.2)

see the left-hand panels of Fig. 1. If instead $k_0 \geq 0$, yielding a growth rate with two maxima, then

$$k_+ = \begin{cases} k_{01}, & 0 < k_{01} < k_{\min}, \\ k_{10}, & k_{\min} < k_{01} < k_s^t, \\ k_s^t, & k_{01} = k_s^t, \\ k_{01}, & k_{01} > k_s^t; \end{cases}$$

(B.3)

see the right-hand panels of Fig. 1. Note that

$$k_{01} \leq k_{00} \leq k_{10},$$

(B.4)

for all physically realistic parameter values. Increasing γ results in an increase in k_{10} and a decrease in k_{01}. Thus k_+ approaches the local maxima of r_k as γ increases, with k_+ double-valued if $0 < k_{\min} < k_s^t$, k_{\min} is never an attractor if $\gamma > 0$, and neither is zero if $\beta_g > 0$; hence, we have omitted these possibilities from (B.3).

Appendix C. Parameterisation

We have estimated the model parameters from data available in the literature, summarising the values used in Table C1. Some data have been converted into the units used in the present work; we omit the details where this is trivial, e.g. hours to days. All data have been converted into the units used in the present work;

Process	Parameter	Dimensions	Value(s)	Source
C:N ratios	λ	mol C mol N$^{-1}$	4.1	Finlay and Uhlig (1981)
	μ	mol C mol N$^{-1}$	4.6	Fagerbakke et al. (1996)
Conversion efficiencies	η_ℓ	1	0.85	Herrig and Falkowski (1989)
	η_c	1	0.12	Jones et al. (2002), Mauclaire and Pelz (2003)
	η_n	1	0.3	Jones et al. (2002), Mauclaire and Pelz (2003)
Photosynthesis	a	μmol C cell$^{-1}$ d$^{-1}$	1.2×10^{-6}	Dorling et al. (1997)
	k_1	μmol photon m$^{-2}$ s$^{-1}$	7.1	Dorling et al. (1997)
	L	μmol photon m$^{-2}$ s$^{-1}$	0–50	n/a
Phagotrophy	b	μmol nutrient d$^{-1}$	4.4×10^{-3}	Fenchel (1980)
	k_2	cell ml$^{-1}$	2×10^7	Fenchel (1980)
	F	cell ml$^{-1}$	5.8×10^6	n/a
Nutrient trading	z_3	1	0–1	n/a
	z_4	1	0–1	n/a
	z_5	cell	0–∞	n/a
Host growth	a_C	μmol nutrient$^{-1}$	1.8×10^6	Karakashian and Karakashian (1973)
	a_d	d$^{-1}$	0.7	Karakashian and Karakashian (1973)
	Q	μmol nutrient cell$^{-1}$ d$^{-1}$	$[0.2,2.2] \times 10^{-7}$	Karakashian and Karakashian (1973)
	K	cell ml$^{-1}$	1000	n/a
Horizontal transmission	β_g	d$^{-1}$	30	Karakashian and Karakashian (1973)
	β_t	cell$^{-1}$ d$^{-1}$	0.1	n/a
	γ	1	0–∞	Karakashian and Karakashian (1973)

- **C:N ratios**: Finlay and Uhlig (1981, Table 1) calculated the elemental composition of various protozoa, of which the closest relative to *P. bursaria* is *P. caudatum*, which has a C:N ratio of 3.5 by weight, or 4.1 by amount of substance. They also found the C:N ratio by weight of a freshwater bacterial sample to be 3.9, or 4.6 by amount of substance. This is in agreement with the value given by Fagerbakke et al. (1996, Table 2), for various native aquatic and cultured bacteria.

- **Conversion efficiencies**: Herrig and Falkowski (1989) found the conversion efficiency of photosynthetically produced carbon into growth by algae to be 85%, which we shall use for η_c. Jones et al. (2002) found that nitrogen growth efficiency was around 2.5 times the carbon growth efficiency of a marine copepod when nitrogen was in short supply, and so intake is maximised at the expense of efficiency. As hosts must uptake enough nitrogen for themselves and their symbionts, we expect nitrogen intake to be similarly prioritised in our system. Furthermore, Mauclaire and Pelz (2003) found that 12% of predated bacterial carbon was transformed into protist biomass in a bacteria–protist predator–prey system. These data lead us to assign the values $\eta_c = 0.12$ and $\eta_n = 0.3$ to the phagotrophic conversion efficiencies.

- **Photosynthesis**: Finlay et al. (1996) analysed symbiont photosynthesis in a naturally occurring population of mixotrophic ciliates. In particular, they fitted photosynthetic data to a Holling type II function as in (12), calculating the maximum rate of photosynthesis to be 123 μmol C mg$^{-1}$ Chl a h$^{-1}$ and the slope of the light-response curve at low light to be 17.4 μmol C mg$^{-1}$ Chl a h$^{-1}$ (mol mol photon m$^{-2}$ s$^{-1}$) (Finlay et al., 1996, Fig. 3). Using the value given in the text of 0.4 pg chlorophyll a per *Chlorella* and converting to units of d$^{-1}$, we therefore arrive at $a = 1.2 \times 10^{-6}$ μmol μmol photon m$^{-2}$ s$^{-1}$. We consider irradiances L in the range 0–50 μmol photon m$^{-2}$ s$^{-1}$.

- **Phagotrophy**: Fenchel (1980) performed a comprehensive investigation of suspension feeding in ciliates, including data from the two *Paramecium* species *P. caudatum* and *P. trichium*, which
we shall use in lieu of data on *P. bursaria*. Fig. 2 of Fenchel (1980) provides an estimate for the maximum ingestion rate as \(4.32 \times 10^6 \, \text{μm}^3 \, \text{d}^{-1}\). Table 2 in Fagerbakke et al. (1996) yields the estimated values for the cellular C:volume ratio of \(8.3 \times 10^{-5} \, \text{mmol} \, \text{μm}^{-3}\). As the C:N ratio is \(λ_f = 14/3\), the proportion of food by amount of substance which is carbon is \(λ_f/(1+λ_f) = 14/17\). Hence \(β = (17/14) \times 4.3 \times 8.3 \times 10^{-4} = 4.4 \times 10^{-1} \, \text{μmol} \, \text{d}^{-1}\). Fig. 6 in Fenchel (1980) provides a value of \(4 \times 10^6 \, \text{μm}^{-1}\) for the half saturation constant. We estimate the volume of a bacterial cell to be \(2 \, \text{μm}^3\) from the data in Table 1 of Fagerbakke et al. (1996), yielding \(κ_f = 2 \times 10^6 \, \text{cell} \, \text{ml}^{-1}\). We take the bacterial food concentration to be \(5.8 \times 10^6 \, \text{cell} \, \text{ml}^{-1}\).

- **Host growth**: The precise values of \(α_c\), \(α_f\) and \(Q\) are difficult to determine, as we have formulated our model in terms of a growth rate \(r_k\) dependent on individual symbiont loads, whereas data is calculated at the population level. However, the data of Karakashian (1963), who carried out a series of growth experiments in differing environmental conditions, yields enough information for us to make reasonable estimates. Bleached *P. bursaria* grown in sterile media were found to simply die due to the complete lack of available nutrition, providing an estimate for the base death rate \(α_d = 0.7 \, \text{d}^{-1}\) (Karakashian, 1963, Fig. 1). Green *P. bursaria* grown with abundant food and light had a mean daily fission rate of around \(1.9 \, \text{d}^{-1}\) (Karakashian, 1963, Table 2). Furthermore, we know from the analysis around (A.5) that for symbiosis to be desirable the upkeep cost \(Q\) per symbiont must be less than the nutritional benefit per symbiont. Combining these considerations leads us to choose \(α_c = 1.8 \times 10^6 \, \text{cell} \, \text{μmol} \, \text{nutrient}^{-1}\) and \(Q = [0.2, 2.2] \times 10^{-7} \, \text{μmol} \, \text{nutrient}^{-1} \, \text{cell}^{-1} \, \text{d}^{-1}\). We choose \(K = 1000 \, \text{cell} \, \text{ml}^{-1}\) as representative of a typical carrying capacity, noting that we are in fact free to choose \(K\) arbitrarily as scaling \(φ_k\) by a constant in (4) is equivalent to a redefinition of \(K\).

- **Nutrient trading**: \(z_h\), \(z_s\) and \(κ_h\) are traits we vary in order to investigate the symbiosis, and so we shall not fix them at any particular value.

- **Horizontal transmission**: In a reinfection experiment, Karakashian and Karakashian (1973) reported that aposymbiotic *P. bursaria* exposed to a highly concentrated algal population ingested a mean of 285 in 2.5 min, and after 23.5 h a mean of 60 of these remained. We shall therefore take \(60 \, \text{d}^{-1}\) as the maximum ingestion rate, as we assume that if the hosts had means and motive to ingest more symbionts then more than 60 would have remained. We shall assume that, as experimental irradiance was high, host control was in effect, and so the passive ingestion rate \(β_g = 30 \, \text{d}^{-1}\) and vary \(γ\) from zero. Data appears to be scarce to nonexistent for rates of symbiont loss. We therefore simply assume a low passive loss of \(β_L = 0.1 \, \text{d}^{-1}\).

References

Brown, J.A., Nielsen, P.J., 1974. Transfer of photosynthetically produced carbohydrate from endosymbiotic Chlorellae to Paramecium bursaria. J. Protozool. 21 (4), 569–570.

Dieckmann, U., Law, R., 1996. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34 (5), 579–612.

Dorling, M., McAuley, P.J., Hodge, H., 1997. Effect of pH on growth and carbon metabolism of maltose-releasing Chlorella (Chlorophyta). Eur. J. Phycol. 32 (1), 15–24.

Esteban, G.F., Fenchel, T., Finlay, B.J., 2010. Mixotrophy in ciliates. Protist 161 (5), 621–641.
