A Tale of Seemingly “Identical” Silicon Quantum Dot Families: Structural Insight into Silicon Quantum Dot Photoluminescence

Alyxandra Thiessen, Lijuan Zhang, Anton Oliynyk, Haoyang Yu, Kevin O’Connor, Alkiviathes Meldrum, Jonathan G.C. Veinot

Submitted date: 14/02/2020 • Posted date: 17/02/2020
Licence: CC BY-NC-ND 4.0

Citation information: Thiessen, Alyxandra; Zhang, Lijuan; Oliynyk, Anton; Yu, Haoyang; O’Connor, Kevin; Meldrum, Alkiviathes; et al. (2020): A Tale of Seemingly “Identical” Silicon Quantum Dot Families: Structural Insight into Silicon Quantum Dot Photoluminescence. ChemRxiv. Preprint.
https://doi.org/10.26434/chemrxiv.11852040.v2

Two quantum dots, both alike in composition, but differing in structure, where we lay our scene. From broader classes, to bring deeper understanding, to the crystalline core that drives the quantum dot's sheen. In this contribution we examine two families of silicon quantum dots (SiQDs) that bring to mind the Capulets and the Montagues in Shakespeare’s Romeo and Juliet because of their stark similarities and differences. SiQDs are highly luminescent, heavy-metal-free and based upon earth-abundant elements. As such, they have attracted attention for far reaching applications ranging from biological imaging to luminescent solar concentrators to light-emitting diodes that rely on their size-dependent optical response. Unfortunately, correlating SiQD “size” to their photoluminescence maximum is often challenging. Herein, we provide essential structural insight into the correlation of SiQD dimension and PL maximum through a direct comparison of samples that exhibit statistically identical physical dimensions (d_{TEM}) and chemical compositions, but different crystallite size (d_{XRD}) and PL maxima. We then expand the scope of this investigation and systematically compare groupings of SiQDs: one in which the d_{XRD} and d_{TEM} agree and one where d_{XRD} < d_{TEM}. This latter comparison clearly shows d_{XRD} better predicts SiQD optical response when using the well-established effective mass approximation.

File list (2)

File Name	Size	View	Download
Two_Families_of_SiQDs.pdf	710.18 KiB	view on ChemRxiv	download file
Two_Families_of_SiQDs_Supplemental.pdf	1.23 MiB	view on ChemRxiv	download file
A Tale of Seemingly “Identical” Silicon Quantum Dot Families: Structural Insight into Silicon Quantum Dot Photoluminescence.

Alyxandra N. Thiessena, Lijuan Zhangb, Anton O. Oliynykc, Haoyang Yua, Kevin M. O’Connora, Alkiviathes Meldrumb, and Jonathan G. C. Veinota*

a Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

b Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

c Manhattan College, Riverdale, New York, United States, 10471

* Corresponding author’s email: jveinot@ualberta.ca
Abstract

Two quantum dots, both alike in composition, but differing in structure, where we lay our scene. From broader classes, to bring deeper understanding, to the crystalline core that drives the quantum dot's sheen. In this contribution we examine two families of silicon quantum dots (SiQDs) that bring to mind the Capulets and the Montagues in Shakespeare’s Romeo and Juliet because of their stark similarities and differences. SiQDs are highly luminescent, heavy-metal-free and based upon earth-abundant elements. As such, they have attracted attention for far reaching applications ranging from biological imaging to luminescent solar concentrators to light-emitting diodes that rely on their size-dependent optical response. Unfortunately, correlating SiQD “size” to their photoluminescence maximum is often challenging. Herein, we provide essential structural insight into the correlation of SiQD dimension and PL maximum through a direct comparison of samples that exhibit statistically identical physical dimensions (d_{TEM}) and chemical compositions, but different crystallite size (d_{XRD}) and PL maxima. We then expand the scope of this investigation and systematically compare groupings of SiQDs: one in which the d_{XRD} and d_{TEM} agree and one where $d_{XRD} < d_{TEM}$. This latter comparison clearly shows d_{XRD} better predicts SiQD optical response when using the well-established effective mass approximation.

KEYWORDS: Quantum dots; Silicon nanocrystals; Silicon; Luminescence; Lifetimes
Semiconductor nanoparticles (quantum dots; QDs) are fascinating structures that exhibit size- and shape-dependent optoelectronic properties. Prototypical CdSe@ZnS-QDs have been widely studied, are generally well understood, and many reports of prototype applications have appeared; in fact, InP-based QDs are revolutionizing consumer electronics as active systems in QLED-TV™ displays.\(^1\),\(^2\) Unfortunately, legislation limits use of heavy metals in consumer products and curtails widespread implementation of many QDs;\(^3\) furthermore, alternative QD materials such as InP contain costly non-earth abundant elements and exhibit ‘clear evidence of carcinogenic activity’ in animal models.\(^4\) In this context, QDs comprised of abundant, non-toxic elements must be prepared, manipulated, understood, and deployed.\(^5\)

Silicon-based QDs are attractive for many applications because they are heavy metal-free, comprised of earth-abundant elements, and biologically compatible. In this context, a variety of methods have been developed to prepare and functionalize these promising materials\(^6\)-\(^11\) and prototype applications including light-emitting diodes,\(^12\) luminescent solar concentrators (LSCs),\(^13\),\(^14\) biological imaging agents,\(^15\),\(^16\) sensors,\(^17\),\(^18\) and lithium ion battery anodes\(^19\),\(^20\) have appeared. Many of these uses rely on the unique tailorable optical properties of SiQDs; for example, LSCs take advantage of the large Stokes shift (i.e., the energy difference between excitation and photoluminescence maxima) that arises in part because of the indirect nature of the Si band gap.\(^13\),\(^14\) Despite impressive advances including spectral tuning throughout the full visible region and photoluminescence (PL) quantum yields rivaling that of compound semiconductor QDs, challenges remain;\(^21\)-\(^25\) paramount among these is the limited predictability of the PL maximum size dependence that appears throughout the literature.\(^26\)

The origin of SiQD PL is clearly complex;\(^27\)-\(^32\) for convenience, SiQDs can be categorized into two broad groupings based upon PL properties and associated excited-state lifetimes.\(^28\) The first
involves SiQDs exhibiting PL characterized by short-lived excited states (i.e., $\tau =$ nanoseconds); in these cases the PL maximum that often appears in the blue spectral region (i.e., 390-500 nm), is dependent on excitation wavelength, and largely independent of particle size. Such behavior has previously been attributed to surface-state mediated relaxation processes involving heteroatom containing species (e.g., N, Cl, O, etc.).21, 28, 29, 33-35 Other SiQDs show PL throughout the yellow/orange to near-IR regions with long-lived excited states (i.e., $\tau =$ microseconds) consistent with the indirect band gap of silicon; the proposal that this luminescence arises from band gap-based processes is further supported as the PL maximum generally trends with particle size and is broadly consistent with carrier quantum confinement.25, 29, 33, 36 A comprehensive review of SiQDs exhibiting microsecond lifetimes has appeared and a detailed discussion is beyond the scope of the present contribution.33 However, for context it is useful to consider that while the PL response of these QDs has been attributed to carrier confinement, the PL maximum of seemingly identical particles can vary greatly and its energy frequently does not correlate well with effective mass approximation (EMA) predictions (Figure 1).26, 37-39 Numerous explanations for these deviations have appeared; broad particle size distributions,40 among others.38, 41 As such, alternative strategies (e.g., empirical pseudopotential approximation (linear combination of atomic orbitals),42, 43 empirical tight binding band theory,44, 45 ab-initio local density approximation)46 for correlating PL maximum to SiQD dimensions have been proposed.26, 38, 39, 42
Figure 1: A summary representative literature data showing the relationship between SiQD peak PL emission and particle dimension.37, 39, 40, 47-51 Predicted relationships obtained using the effective mass approximation52 (solid line; $E_g(r) = 1.12 + 3.77/r^2$) and linear combination of atomic orbitals26, 42 (dashed line; $E_g(r) = 1.12 + 3.77/r^{1.39}$) are shown for comparison.

It is well-established that many challenges (as well as intriguing properties) associated with preparing and exploiting SiQDs arise from the extended covalent bonding manifested within the Si diamond-like crystal structure. While amorphous surface layers have been implicated in ultra-fast SiQD photoluminescence,53-56 the uniformity of the SiQD internal structure has largely been overlooked.57 We previously demonstrated the Si core of large (d\textsubscript{TEM} ~ 9 - 64 nm) SiQDs exhibits a radially graded structure consisting of a highly disordered surface that transitions to a crystalline core; in contrast, the structure of small SiQDs (d\textsubscript{TEM} ~ 3 nm) is dominated by disorder and they only possess very small crystallite regions (i.e., dx\textsubscript{R}D ~ 1.2 nm).57 Knowing the electronic structure of bulk silicon strongly depends on crystallinity (e.g., amorphous Si $E_{g,\text{optical}}$ = 1.6-1.7 eV; bulk crystalline Si E_g=1.1 eV),58 we endeavored to explore the impact of internal structure on SiQD optical response. Herein, we describe an evaluation of the size dependence of SiQD PL maximum
and excited-state lifetime while systematically varying particle and crystallite sizes as determined by transmission electron microscopy (TEM) and X-ray powder diffraction (XRD), respectively.

Results and discussion

To probe the impact of an internally graded crystal structure on SiQD optical properties it was necessary to predictably prepare QDs with the same *particle* (determined using TEM; \(d_{\text{TEM}}\)) and different *crystallite* (determined using XRD, \(d_{\text{XRD}}\)) sizes while maintaining all other contributing factors (e.g., surface chemistry/oxidation) the same. Drawing on our intimate knowledge of the hydrogen silsesquioxane (HSQ)-based procedure and the structure of the resulting SiQDs,\(^{57, 59-61}\) we prepared two different composites consisting of nanocrystalline silicon domains encased within an SiO\(_2\)-like matrix via HSQ reductive thermal processing at 1200 and 1300 °C. Evaluation of the Si domain sizes using TEM was precluded by the oxide matrix however, consistent with expectation,\(^{37, 60}\) XRD revealed reflections attributable to nanocrystalline Si domains and that, as expected, larger domains are obtained for products processed at higher-T (i.e., \(d_{1200}\sim 3.7\) nm; \(d_{1300}\sim 6.1\) nm).

The nanocrystalline domains were liberated as freestanding SiQDs upon etching with alcoholic aqueous hydrofluoric acid. Drawing on the expectation that amorphous/disordered silicon is more susceptible to this etching process, careful definition of the etching time allowed isolation of SiQDs from the two composites that possess statistically identical \(d_{\text{TEM}}\) but different \(d_{\text{XRD}}\) dimensions (i.e., different thicknesses of disordered Si shells). Following isolation, the SiQD surfaces were functionalized with dodecyl-moieties (confirmed to be identical at the sensitivity of the FTIR technique; Figure S1) using size independent radical-induced hydrosilylation to render them solution processable and minimize reactions (e.g., oxidation) that are known to impact optical
response. For the following discussion, SiQDs resulting from composites prepared at 1200 and 1300 °C will be referred to as 1200-SiQD and 1300-SiQD, respectively.

Prior to evaluating the size and optical properties of the SiQDs, it is essential to confirm the degree and speciation of surface oxidation is consistent across the samples because these factors can also impact SiQD PL response. To do so, the Si 2p XP spectra of the 1200- and 1300-SiQDs (Figure 2a) were deconvoluted into component spin-orbit couples (Si 2p$_{1/2}$ and 2p$_{3/2}$) corresponding to Si(0) (i.e., orange), Si(I) (i.e., green), and Si(II) (i.e., blue). Integrating the total area of the Si (I) and Si(II) components and comparing it to the integrated area of the Si(0) component, provided an estimation of the ratio of oxidized surface silicon species to elemental silicon. For the present samples, the total integrated signal of the Si(I) and Si(II) components corresponds to 21% for 1300-SiQDs and 27% for 1200-SiQDs of the total Si 2p signal intensity. This, combined with the reasonable assumption that the degree of surface functionalization (i.e., surface density of Si-C bonds) is equivalent for both samples indicates 1200- and 1300-SiQDs have similar amounts of oxidation. Furthermore, closer inspection of the O and Si spectral envelopes indicates the speciation of the oxides is near identical. In this context, we expect the influence (if any) of surface oxide species on the optical properties of 1200- and 1300-SiQDs to be equivalent.

Turning to the evaluation of QD particle and crystallite sizes, bright-field TEM analyses of the liberated dodecyl-functionalized particles afforded d_{TEM} of 5.3 ± 1.4 and 5.4 ± 1.1 nm (Figure 2b) for the 1200- and 1300-SiQDs, respectively, and are statistically similar to a 95 % confidence interval. To complement the TEM analyses, crystallite sizes of the identical samples were determined using XRD. Diffraction data were fit to the NIST Si line shape standard (640f) as an “infinite” crystallite reference to account for instrumental broadening and line shape. Having
accounted for instrumental factors, Gaussian and Lorentzian peak shape parameters, with the assumption that atomic displacement parameters and crystallographic site deficiencies do not play a role, only size and strain contributions to line broadening remain and can be qualitatively accounted for based on their diffraction angle dependence.\(^{57,63}\) In contrast to the d\(_{\text{TEM}}\) which were statistically identical, the d\(_{\text{XRD}}\) (i.e., crystallite sizes) determined from diffraction data (Figures 2e and 2f) were 3.2 ± 1.22 and 4.7 ± 0.4 nm for 1200-SiQDs and 1300-SiQDs, respectively. A straightforward comparison of the d\(_{\text{TEM}}\) and d\(_{\text{XRD}}\) clearly shows that, despite having the same physical dimensions, 1200-SiQDs have a smaller crystallite size (and by extension thicker disordered Si shell). This is further supported by high annular angle dark field scanning transmission electron microscopy (HAADF-STEM) that shows thicker disordered layers on 1200-SiQDs (1.7 nm 1200-SiQDs vs. 1.0 nm for 1300-SiQDs; Figure S2 and S3).
Figure 2: a) Si 2p XP spectrum with deconvolution/fitting of the data for 1200-SiQDs and 1300-SiQDs. Fitting peaks are shown as Si $2p_{1/2}$ and $2p_{3/2}$ components corresponding to Si(0) (i.e., orange), Si(I) (i.e., green), and Si(II) (i.e., blue). The black trace is the experimental spectrum and the red dashed line represents the overall fitting envelope. b) TEM image of 1200-SiQDs and 1300-SiQDs inset: average shifted histogram with the average size and the distribution width. c) XRD data for 1200-SiQDs and 1300-SiQDs showing experimental powder pattern (black) with fitting (red for 1300-SiQDs and purple for 1200-SiQDs) and residuals (light grey).
Figure 3: Comparing a) the photoluminescence emission of 1300-SiQDs (purple) and 1200-SiQDs (red) as well as b) the luminescence lifetimes of 1300-SiQDs (purple fit) and 1200-SiQDs (red fit). Luminescence lifetimes were fit to a stretched exponential function and the mean lifetimes were then calculated as described in the supplemental information. The fitting parameters are reported in Table S2.

Having shown 1200-SiQDs and 1300-SiQDs exhibit near-identical physical size (i.e., d_{TEM}) as well as composition (i.e., degree of oxidation, oxidation speciation, surface functionalization) and they only differ in crystallite size (i.e., d_{XRD}), we endeavored to evaluate the impact of the disordered Si shell on the 1200-SiQD optical properties. The PL spectra of SiQD toluene solutions (Fig. 3a) were evaluated using the 351 and 364 nm lines of an Ar ion laser and show maxima of
837 and 955 nm for 1200-SiQDs and 1300-SiQDs, respectively. The marked red-shift in PL maximum with increased d_{XRD} indicates the dimensions of the nanocrystalline domain dominate SiQD PL and band gap; there is little (or no) indication of a contribution from the disordered surface silicon species to these properties. This observation is also consistent with the amorphous silicon shell having a wider band gap than the crystalline core providing a core@shell structure similar to that of more commonly studied CdSe@ZnTe systems (i.e., Type II QDs).65 Contrary to the CdSe@ZnTe QD case, in which the ZnTe shell forms epitaxially on the CdSe to reduce interfacial dark defects and increase PL QYs, the interface between the crystalline and amorphous components of the present SiQDs can reasonably be expected to be ill-defined.57, 66, 67 As such, there is no obvious trend in the present PL QY data (Figure S5). We also note that 1300-SiQDs exhibit longer PL lifetimes (i.e., 547 μs for 1300-SiQDs vs. 267 μs for 1200-SiQDs), which are often noted for larger SiQDs.48

To further explore the broader scope of the relationship between SiQD optical properties with d_{XRD}, SiQD/SiO$_2$ composites were prepared via reductive thermal processing of HSQ at 1100, 1200, and 1300 °C; it is well-established that larger Si nanodomains form at higher temperatures.37, 60 SiQDs were liberated upon alcoholic HF etching for pre-determined times (See: Table S1) and surface functionalized with Si-C tethered 1-dodecyl surface groups via AIBN radical-initiated hydrosilylation. Subsequently, the d_{TEM}, d_{XRD}, as well as PL properties were evaluated/compared. This method yielded SiQDs with varying disordered layer thicknesses, where in all cases the d_{TEM} is larger than d_{XRD} (Figure S6). When examining the lifetimes of all of the SiQDs here studied as a function of PL energy, an obvious trend was observed where $\frac{1}{\tau_{SE}} = A * e^{E/E_0}$ (Figure S7). This trend is consistent across literature,68, 69 is independent of synthetic method and has been implicated with the indirect band gap of silicon.70
Figure 4: A comparison of the relationship between PL energy (c and d) and lifetimes (e and f) with \(d_{\text{TEM}} \) (blue squares) and \(d_{\text{XRD}} \) (red circles) for SiQDs with a thick amorphous layer (>1 nm; a, c, e) and a thin amorphous layer (<0.4 nm; b, d, f). The solid and dashed black lines in c) and d) represent the EMA and LCAO as in Figure 1. The solid black line in e) and f) is a fitting from all of the \(d_{\text{XRD}} \) vs. lifetime data according to \(\frac{1}{\tau_{SE}} = A \left(\frac{1}{d_{\text{XRD}}} \right)^3 + C \), with \(A \) and \(C \) being fit parameters.

To better illustrate/understand the relationship between SiQD dimensions and optical properties, we categorized the present data into two groupings. 1. Samples in which the \(d_{\text{TEM}} \) is substantially larger (i.e., \(d_{\text{TEM}} - d_{\text{XRD}} > 2 \) nm) than \(d_{\text{XRD}} \). (These particles possess comparatively thick amorphous/disordered Si layers on their surfaces.) 2. Samples for which \(d_{\text{TEM}} \) and \(d_{\text{XRD}} \) are similar (i.e., \(d_{\text{TEM}} - d_{\text{XRD}} < 0.8 \) nm). (These particles possess a thin amorphous/disordered Si layer on their...
surfaces.) Data were subsequently plotted and compared with the predictions of the effective mass approximation (EMA; Figures 4a and b).

Consistent with our previous observations (see above), there is a clear correlation between d_{XRD} and EMA predictions for the optical properties of SiQDs in Group 1 (i.e., $d_{\text{TEM}} - d_{\text{XRD}} > 2$ nm; Figure 4a) - this is not the case for d_{TEM}. We also note that the EMA consistently overestimates particle size when comparing to d_{XRD}. In contrast, for Group 2 SiQDs that bear a thin amorphous Si layer, the PL emission energy is closely related to d_{XRD} and d_{TEM} (Figure 4b); furthermore, the EMA becomes more representative. We also note similar relationships when evaluating excited-state lifetimes (i.e., τ) in the context of d_{TEM} and d_{XRD}.

Models have shown that the radiative lifetimes of silicon nanocrystals scale very nearly as the inverse cube of their radius. While there is also a non-radiative contribution whose contribution cannot be unambiguously determined, the dominant non-radiative decay rate has been calculated to also scale inversely with the crystallite volume. Thus, the lifetime data was fit to an inverse cubic function $\frac{1}{\tau_{\text{SE}}} = A\left(\frac{1}{d_{\text{XRD}}^3}\right) + C$ of the XRD radius, which appeared to yield a reasonably good fit to the experimental data (Fig. 4(c,d)).

The direct relationship between theoretical PL energy and lifetimes and the crystallite diameter of the studied SiQDs, especially when they have a thin amorphous layer (Group 2), suggests that the crystalline core controls the optical response. However, the relationships between SiQD luminescence, graded structure, and size presented for Group 1 are similar to those previously noted for CdSe@CdSe,xS$_{1-x}$@CdS QDs in which the confinement of carriers (i.e., electrons and holes) depends upon a radially varied structure. A detailed study of the interplay of these factors in the SiQD optical behavior is obviously complicated by the poorly-defined nature of the...
transitional region between the crystalline core and amorphous shell, however, one can expect that
the confinement should be stronger when the shell is thinner as implied by the results in Fig. 4.
This clearly highlights the importance (and promise) of establishing methods for controlling the
uniformity of the internal SiQD structure, as well as preparing well-defined core@shell SiQD
systems.

Conclusions

In conclusion, the optical properties of functionalized SiQDs have been evaluated in the context
of internal crystallinity by examining crystallite and particle dimensions using X-ray diffraction
and transmission electron microscopy. For SiQDs prepared via the widely employed “HSQ
method”, the d_{XRD} provides a better representation of the optically active QD dimensions,
regardless of the presence of an amorphous overlayer. In cases in which a thick Si amorphous
layer is present, no obvious correlation between d_{TEM} and optical response is noted. However,
EMA estimates derived from d_{TEM} and d_{XRD} dimensions agree when thin amorphous Si layers are
present. This fundamental understanding of SiQD structure and its influence on their optical
properties illuminates a foundation on which future efforts to better control SiQD optical response
can build.

Experimental

Materials:

Reagents:

Hydrofluoric acid (Electronic grade, 48–50%) was purchased from Fischer Scientific. Sulfuric
acid (reagent grade, 95–98%) was purchased from Caledon Laboratory Chemicals. Fuming
sulfuric acid (reagent grade, 20% free SO_3 bases) and trichlorosilane (99%) were purchased from
Sigma (now MilliporeSigma). All reagents were used as received unless otherwise specified. All
solvents were reagent grade and used as received. Toluene was collected from a Pure-Solv purification system immediately prior to use. Benzene was purchased from EMD Millipore (now Millipore Sigma).

Preparation of Hydrogen Silsesquioxane (HSQ):

HSQ was synthesized via known literature procedures where sulfuric acid is used to selectively oxidize trichlorosilane. Dry toluene (45.0 mL) was added to a mixture of concentrated (15.0 mL) and fuming (7.2 mL) sulfuric acid under inert atmosphere. Once the addition was complete, 110 mL of dry toluene was added to 16 mL of trichlorosilane and added drop-wise over a few hours to the sulfuric acid solution. The product dissolved in the organic layer was washed with sulfuric acid solution. After drying the organic layer, most of the toluene was removed via rotary evaporation and the rest was removed *in vacuo*. The resulting white solid was stored under vacuum until use.

Preparation of the SiQDs/SiO₂ composite:

Thermal decomposition of the HSQ, as previously reported, was used to produce the SiQDs used in this study. Six grams of HSQ was annealed in a tube furnace under a 5% H₂/Ar atmosphere at 1100, 1200, and 1300 °C to get various sizes of nanocrystals (the sizes associated with each temperature can be seen in Table S1). The composite was ground using an agate mortar and pestle then shaken for six hours to prepare a fine powder.

Preparation of alkyl passivated SiQDs:

The composite was then etched using a 1:1:1 solution of ethanol:DI water:HF to remove the SiO₂ matrix from the particles using 0.5 g of composite per etch and 15 mL total etching solution. The 1100 °C composite was etched for one hour (one hour and forty-five minutes to two hours and forty-five minutes for 1200 °C composite) and the resulting particles were extracted in toluene. The hydride-terminates SiQDs (H-SiQDs) were centrifuged twice in toluene and redispersed in 10
mL dry toluene with 6 mL of dodecene and 300 mg AIBN. The reaction mixture was degassed using three freeze-pump-thaw cycles and placed in an oil bath at 70 °C overnight (~17 hours). The resulting SiQDs were purified via centrifugation using 10 mL of toluene and 20 mL of methanol thrice to remove any unreacted dodecene and AIBN. The purified SiQDs were redispersed in toluene for subsequent characterization.

Characterization:

FTIR

Fourier transform infrared spectroscopy (FTIR) was performed on a Thermo Nicolet Continuum FT-IR microscope by drop casting SiQDs onto a silicon wafer from dry toluene solutions.

XPS

X-ray photoelectron spectroscopy (XPS) was measured using a Kratos Axis 165 Ultra X-ray photoelectron spectrometer. A monochromatic Al Kα source operating at 210 W with an energy $h\nu = 1486.6 \text{ eV}$ was used. Survey spectra were collected with an analyzer pass energy of 160 eV and step of 0.3 eV. For high-resolution spectra, the pass energy was 20 eV and the step was 0.1 eV with dwell time of 200 ms. XPS samples were prepared by drop-coating a dispersion of SiQDs in dry toluene onto a copper foil. Spectra were calibrated to the C 1s (284.8 eV) and fit to appropriate spin-orbit pairs using CasaXPS (VAMAS) software with a Shirley-type background. To fit the Si 2p high resolution spectrum the doublet area ratio was fixed at 2:1 and the separation was set at 0.6.

Electron Microscopy

Transmission electron microscopy (TEM) and HR-TEM were performed on a JEOL JEM-ARM200CF S/TEM (Cold Field Emission Gun) electron microscope with an accelerating voltage of 200 kV using SiQDs drop-coated from a toluene solution onto a holey carbon-coated copper
grid. The SiQD size was determined by averaging the size of 300 particles using ImageJ software (version 1.51j8).

XRD

Powder X-ray diffraction was measured on a Rigaku Ultima IV multipurpose X-ray diffraction system using a Cu Kα source for most of the samples. The sample was drop cast on a zero-background Si wafer and collected as a thin film. For thin film diffraction, a parallel beam as used with a glancing angle of 0.5°. Some of the data was also collected at the synchrotron, with a wavelength of 0.6892 Å, using transmission mode, to verify the size. These methods gave the same results within the error of the technique and the fitting. This is likely because the line width due to size broadening is significantly larger than the instrument broadening for either of these methods. Pawley fitting of powder pattern was performed on TOPAS was used to determine the crystallite domain size with integral breadth, FWHM and Lorentzian broadening methods. Instrumental effects were accounted for by refining a NIST Si line shape standard (640f) to ensure instrument alignment and line shape. A sample-independent synthetic peak was required at ~22° for all measurements on the laboratory instrument, which is believed to originate from the sample holder imperfections or amorphous products/unreacted materials. The synchrotron data required other small peaks (8, 9, 11, 14, 16, and 19°) due to imperfections in the background subtraction from the Kapton tube (sample holder).

Photoluminescence characterization

Photoluminescence spectroscopy measurements were performed on a solution of silicon nanocrystals dispersed in toluene in a quartz cuvette. Silicon nanoparticles were excited using an argon ion laser with a 351 nm emission wavelength. The resulting photoluminescence was collected by an optic fiber, passed through a 500 nm long-pass filter to eliminate scattered light
from the excitation source, and fed into an Ocean Optics USB2000 spectrometer. The spectral
response was calibrated by a blackbody radiator (Ocean Optics LS1). Photoluminescence lifetime
measurements were acquired using an argon ion laser (351 nm, ~20 mW) modulated by an acousto-
optic modulator (~50 ns response time) operated at a frequency of 200 Hz with a 50% duty cycle.
The photoluminescence was fed into an optic fiber and passed through a 500 nm long-pass filter
and was then incident on a Hamamatsu H7422P-50 photomultiplier tube (PMT) interfaced with a
Becker-Hickl PMS-400A gated photon counter. The photoluminescence data was collected with a
total of 10 000 sweeps for good signal-to-noise ratio and using 1 µs time steps. A log-normal fitting
of the data in MatLab was used to calculate the luminescence decay.
Quantum efficiency measurements were performed using a homemade integrating sphere with a
365 nm light emitting diode excitation source. Sample solutions were diluted to have an
absorbance between 0.1 and 0.15 at 405 nm, then they were transferred into a cuvette that was
lowered into the integrating sphere on a magnetic holder as was a distilled water blank. The
photoluminescence and excitation intensities were captured through a fiber attached to the sphere
and analyzed with a calibrated Ocean Optics spectrometer. The equation $\text{QE} = \frac{(I_{\text{PL,sample}} - I_{\text{PL,blank}})/(I_{\text{ex,blank}} - I_{\text{ex,sample}})}$ was used to calculate the absolute quantum efficiency, were
I_{PL} is integrated photoluminescence intensity and I_{ex} is excitation intensity recorded inside the
sphere. The measurements were performed in quintuplicates.

Acknowledgments
The Natural Science and Engineering Research Council (NSERC) of Canada Discovery Grants
Program (RGPIN-2015-03896) and the University of Alberta are acknowledged for their generous
research support. A. Thiessen is supported by the Alberta Innovates Graduate Student Scholarship.
L. Zhang is supported by China Scholarship Council (2018-31010). The ATUMS training program
is supported by NSERC CREATE and is thanked for continued generous financial support (CREATE-463990-2015). Part of the research described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan.

References

1. Samsung Newsroom. [NEXT for QLED] Part 1: Samsung Dominates the Large Screen TV Market. https://news.samsung.com/global/next-for-qled-part-1-samsung-dominates-the-large-screen-tv-market (01/02),
2. Halford, B., Quantum dot LEDs go cadmium-free. In American Chemical Society: Chemical and Engineering News, 2019; Vol. 97.
3. Union, T. E., Ed. Publications Office of the European Union: Official Journal of the European Union, 2017; Vol. 2017/1975, p 3.
4. Program, N. T. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Indium Phosphide in F344/N Rats and B6C3F1 Mice (Inhalation Studies); U.S. Department of Health and Human Services: July 2001, 2001.
5. Nanoco https://www.nanocotechnologies.com/ (01/02),
6. Veinot, J. G. C., Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. Chem. Commun. 2006, 40, 4160-4168.
7. Mangolini, L.; Kortshagen, U., Plasma-assisted synthesis of silicon nanocrystal inks. Adv. Mater. 2007, 19 (18), 2513-2519.
8. Tilley, R. D.; Warner, J. H.; Yamamoto, K.; Matsui, I.; Fujimori, H., Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. Chem. Commun. 2005, 14, 1833-1835.
9. Baldwin, R. K.; Pettigrew, K. A.; Ratai, E.; Augustine, M. P.; Kauzlarich, S. M., Solution reduction synthesis of surface stabilized silicon nanoparticles. Chem. Commun. 2002, 17, 1822-1823.
10. Zou, J.; Kauzlarich, S. M., Functionalization of Silicon Nanoparticles via Silanization: Alkyl, Halide and Ester. J. Clust. Sci. 2008, 19 (2), 341-355.
11. Yang, Z.; Gonzalez, C. M.; Purkait, T. K.; Iqbal, M.; Meldrum, A.; Veinot, J. G., Radical Initiated Hydrosilylation on Silicon Nanocrystal Surfaces: An Evaluation of Functional Group Tolerance and Mechanistic Study. Langmuir 2015, 31 (38), 10540-10548.
12. Liu, X.; Zhao, S.; Gu, W.; Zhang, Y.; Qiao, X.; Ni, Z.; Pi, X.; Yang, D., Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands. ACS Appl. Mater. Interfaces 2018, 10 (6), 5959-5966.
Dhamo, L.; Carulli, F.; Mauri, M.; Bruni, F.; Simonutti, R.; Kortshagen, U.; Brovelli, S., Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. *Nature Photon.* **2017**, *11*, 177-185.

Mazzaro, R.; Gradone, A.; Angeloni, S.; Morselli, G.; Cozzi, P. G.; Romano, F.; Vomiero, A.; Ceroni, P., Hybrid Silicon Nanocrystals for Color-Neutral and Transparent Luminescent Solar Concentrators. *ACS Photonics* **2019**, *6* (9), 2303-2311.

Erogbogbo, F.; Yong, K.-T.; Roy, I.; Hu, R.; Law, W.-C.; Zhao, W.; Ding, H.; Wu, F.; Kumar, R.; Swihart, M. T.; Prasad, P. N., In Vivo Targeted Cancer Imaging, Sentinel Lymph Node Mapping and Multi-Channel Imaging with Biocompatible Silicon Nanocrystals. *ACS Nano* **2011**, *5* (1), 413-423.

Tu, C.; Ma, X.; House, A.; Kauzlarich, S. M.; Louie, A. Y., PET Imaging and Biodistribution of Silicon Quantum Dots in Mice. *ACS Med. Chem. Lett.* **2011**, *2* (4), 285-288.

Gonzalez, C. M.; Iqbal, M.; Dasog, M.; Piercey, D. G.; Lockwood, R.; Klapotke, T. M.; Veinot, J. G. C., Detection of high-energy compounds using photoluminescent silicon nanocrystal paper based sensors. *Nanoscale* **2014**, *6* (5), 2608-2612.

Gonzalez, C. M.; Veinot, J. G. C., Silicon nanocrystals for the development of sensing platforms. *J. Mater. Chem. C* **2016**, *4* (22), 4836-4846.

Kim, H.; Seo, M.; Park, M. H.; Cho, J., A critical size of silicon nano-anodes for lithium rechargeable batteries. *Angew. Chem. Int. Ed.* **2010**, *49* (12), 2146-2149.

Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon Brian, W.; Wu, J., Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. *Adv. Energy Mater.* **2014**, *4* (1), 1300882.

Dasog, M.; De los Reyes, G. B.; Titova, L. V.; Hegmann, F. A.; Veinot, J. G. C., Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. *ACS Nano* **2014**, *8* (9), 9636-48.

Mobarok, M. H.; Purkait, T. K.; Islam, M. A.; Miskolzie, M.; Veinot, J. G. C., Instantaneous Functionalization of Chemically Etched Silicon Nanocrystal Surfaces. *Angew. Chem. Int. Ed.* **2017**, *56* (22), 6073-6077.

Islam, M. A.; Mobarok, M. H.; Sinelnikov, R.; Purkait, T. K.; Veinot, J. G. C., Phosphorus Pentachloride Initiated Functionalization of Silicon Nanocrystals. *Langmuir* **2017**, *33* (35), 8766-8773.

Sangghaleh, F.; Sychugov, I.; Yang, Z.; Veinot, J. G. C.; Linnros, J., Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation. *ACS Nano* **2015**, *9* (7), 7097-7104.

Jurbergs, D.; Rogojina, E.; Mangolini, L.; Kortshagen, U., Silicon nanocrystals with ensemble quantum yields exceeding 60%. *Appl. Phys. Lett.* **2006**, *88* (23), 233116.

Wheeler, L. M.; Anderson, N. C.; Palomaki, P. K. B.; Blackburn, J. L.; Johnson, J. C.; Neale, N. R., Silyl Radical Abstraction in the Functionalization of Plasma-Synthesized Silicon Nanocrystals. *Chem. Mater.* **2015**, *27* (19), 6869-6878.

Ddungu, J. L. Z.; Silvestrini, S.; Tassoni, A.; De Cola, L., Shedding Light on the Aqueous Synthesis of Silicon Nanoparticles by Reduction of Silanes with Citrates. *Faraday Discuss.* **2020**, Accepted Manuscript DOI:10.1039/C9FD00127A

Dasog, M.; Yang, Z. Y.; Regli, S.; Atkins, T. M.; Faramus, A.; Singh, M. P.; Muthuswamy, E.; Kauzlarich, S. M.; Tilley, R. D.; Veinot, J. G. C., Chemical Insight into the Origin of Red and Blue
Photoluminescence Arising from Freestanding Silicon Nanocrystals. *ACS Nano* **2013**, *7* (3), 2676-2685.

29. Sinelnikov, R.; Dasog, M.; Beamish, J.; Meldrum, A.; Veinot, J. G. C., Revisiting an Ongoing Debate: What Role Do Surface Groups Play in Silicon Nanocrystal Photoluminescence? *ACS Photonics* **2017**, *4* (8), 1920-1929.

30. Rodríguez, J. A.; Vásquez-Agustín, M. A.; Morales-Sánchez, A.; Aceves-Mijares, M., Emission Mechanisms of Si Nanocrystals and Defects in SiO₂ Materials. *J. Nanomater.* **2014**, 2014, 409482.

31. Canham, L. T., Luminescence Bands and their Proposed Origins In Highly Porous Silicon. *phys. stat. sol. (b)* **1995**, *190*, 9-14.

32. Lee, B. G.; Luo, J.-W.; Neale, N. R.; Beard, M. C.; Hiller, D.; Zacharias, M.; Stradins, P.; Zunger, A., Quasi-Direct Optical Transitions in Silicon Nanocrystals with Intensity Exceeding the Bulk. *Nano Lett.* **2016**, *16* (3), 1583-1589.

33. Mazzaro, R.; Romano, F.; Ceroni, P., Long-lived Luminescence of Silicon Nanocrystals: From Principles to Applications. *Phys. Chem. Chem. Phys.* **2017**, *19* (39), 26507-26526.

34. DeBenedetti, W. J. I.; Chiu, S.-K.; Radlinger, C. M.; Ellison, R. J.; Manhat, B. A.; Zhang, J. Z.; Shi, J.; Goforth, A. M., Conversion from Red to Blue Photoluminescence in Alcohol Dispersions of Alkyl-Capped Silicon Nanoparticles: Insight into the Origins of Visible Photoluminescence in Colloidal Nanocrystalline Silicon. *J. Phys. Chem. C* **2015**, *119* (17), 9595-9608.

35. Dasog, M.; Bader, K.; Veinot, J. G. C., Influence of Halides on the Optical Properties of Silicon Quantum Dots. *Chem. Mater.* **2015**, *27* (4), 1153-1156.

36. Li, X.; He, Y.; Talukdar, S. S.; Swihart, M. T., Process for Preparing Macroscopic Quantities of Brightly Photoluminescent Silicon Nanoparticles with Emission Spanning the Visible Spectrum. *Langmuir* **2003**, *19* (20), 8490-8496.

37. Hessel, C. M.; Reid, D.; Panthani, M. G.; Rasch, M. R.; Goodfellow, B. W.; Wei, J.; Fujii, H.; Akhavan, V.; Korgel, B. A., Synthesis of Ligand-Stabilized Silicon Nanocrystals with Size-Dependent Photoluminescence Spanning Visible to Near-Infrared Wavelengths. *Chem. Mater.* **2012**, *24* (2), 393-401.

38. Niquet, Y. M.; Delerue, C.; Allan, G.; Lannoo, M., Method for Tight-binding Parametrization: Application to Silicon Nanostructures. *Phys. Rev. B* **2000**, *62* (8), 5109-5116.

39. Yu, Y.; Fan, G.; Fermi, A.; Mazzaro, R.; Morandi, V.; Ceroni, P.; Smilgies, D.-M.; Korgel, B. A., Size-Dependent Photoluminescence Efficiency of Silicon Nanocrystal Quantum Dots. *J. Phys. Chem. C* **2017**, **121** (41), 23240-23248.

40. Jia, X.; Zhang, P.; Lin, Z.; Anthony, R.; Kortshagen, U.; Huang, S.; Puthen-Veettil, B.; Conibeer, G.; Perez-Wurfl, I., Accurate Determination of the Size Distribution of Si Nanocrystals from PL Spectra. *RSC Adv.* **2015**, *5* (68), 55119-55125.

41. de Boer, W. D. A. M.; Timmerman, D.; Dohnalová, K.; Yassievich, I. N.; Zhang, H.; Buma, W. J.; Gregorkiewicz, T., Red Spectral Shift and Enhanced Quantum Efficiency in Phonon-Free Photoluminescence from Silicon Nanocrystals. *Nat. Nanotechnol.* **2010**, *5* (12), 878-884.

42. Delerue, C.; Allan, G.; Lannoo, M., Theoretical Aspects of the Luminescence of Porous Silicon. *Phys. Rev. B* **1993**, *48* (15), 11024-11036.

43. Wang, L. W.; Zunger, A., Electronic Structure Pseudopotential Calculations of Large (apprx.1000 Atoms) Si Quantum Dots. *J. Phys. Chem.* **1994**, *98* (8), 2158-2165.
44. Hill, N. A.; Whaley, K. B., Size Dependence of Excitons in Silicon Nanocrystals. Phys. Rev. Lett. 1995, 75 (6), 1130-1133.

45. Hill, N. A.; Whaley, K. B., A Theoretical Study of Light Emission from Nanoscale Silicon. J. Electron. Mater. 1996, 25 (2), 269-285.

46. Öğüt, S.; Chelikowsky, J. R.; Louie, S. G., Quantum Confinement and Optical Gaps in Si Nanocrystals. Phys. Rev. Lett. 1997, 79 (9), 1770-1773.

47. Liu, S.-M.; Yang; Sato, S.; Kimura, K., Enhanced Photoluminescence from Si Nanoscale Silicon. J. Electron. Mater. 1996, 25 (2), 269-285.

48. Mastronardi, M. L.; Maier-Flaig, F.; Faulkner, D.; Henderson, E. J.; Kübel, C.; Lemmer, U.; Ozin, G. A., Size-Dependent Absolute Quantum Yields for Size-Separated Colloidally-Stable Silicon Nanocrystals. Nano Lett. 2012, 12 (1), 337-342.

49. Hannah, D. C.; Yang, J.; Podsiadlo, P.; Chan, M. K. Y.; Demortière, A.; Gosztola, D. J.; Prakapenka, V. B.; Schatz, G. C.; Kortshagen, U.; Schaller, R. D., On the Origin of Photoluminescence in Silicon Nanocrystals: Pressure-Dependent Structural and Optical Studies. Nano Lett. 2012, 12 (8), 4200-4205.

50. Wen, X.; Zhang, P.; Smith, T. A.; Anthony, R. J.; Kortshagen, U. R.; Yu, P.; Feng, Y.; Shrestha, S.; Coniber, G.; Huang, S., Tunability Limit of Photoluminescence in Colloidal Silicon Nanocrystals. Sci. Rep. 2015, 5 (1), 12469.

51. Jakob, M.; Javadi, M.; Veinot, J. G. C.; Meldrum, A.; Kartouzian, A.; Heiz, U., Ensemble Effects in the Temperature-Dependent Photoluminescence of Silicon Nanocrystals. Chem. Eur. J. 2019, 25 (12), 3061-3067.

52. Breitenecker, M.; Sexl, R.; Thirring, W., On the effective mass approximation. Z. Physik 1964, 182 (2), 123-129.

53. Hannah, D. C.; Yang, J.; Kramer, N. J.; Schatz, G. C.; Kortshagen, U. R.; Schaller, R. D., Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer. ACS Photonics 2014, 1 (10), 960-967.

54. Kůsová, K.; Ondič, L.; Pelant, I., Comment on “Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer”. ACS Photonics 2015, 2 (3), 454-455.

55. Hannah, D. C.; Yang, J.; Kramer, N. J.; Schatz, G. C.; Kortshagen, U. R.; Schaller, R. D., Reply to “Comment on ‘Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer’”. ACS Photonics 2015, 2 (3), 456-458.

56. Brown, S. L.; Miller, J. B.; Anthony, R. J.; Kortshagen, U. R.; Kryjevski, A.; Hobbie, E. K., Abrupt Size Partitioning of Multimodal Photoluminescence Relaxation in Monodisperse Silicon Nanocrystals. ACS Nano 2017, 11 (2), 1597-1603.

57. Thiessen, A. N.; Ha, M.; Hooper, R. W.; Yu, H.; Oliynyk, A. O.; Veinot, J. G. C.; Michaelis, V. K., Silicon Nanoparticles: Are They Crystalline from the Core to the Surface? Chem. Mater. 2019, 31 (3), 678-688.

58. Jarolimek, K.; Hazrati, E.; de Groot, R. A.; de Wijs, G. A., Band Offsets at the Interface between Crystalline and Amorphous Silicon from First Principles. Phys. Rev. Applied 2017, 8 (1), 014026.
59. Hessel, C. M.; Henderson, E. J.; Veinot, J. G. C., Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si–SiO2 Composites and Freestanding Hydride-Surface-Terminated Silicon Nanoparticles. Chem. Mater. 2006, 18 (26), 6139-6146.
60. Hessel, C. M.; Henderson, E. J.; Veinot, J. G. C., An Investigation of the Formation and Growth of Oxide-Embedded Silicon Nanocrystals in Hydrogen Silsesquioxane-Derived Nanocomposites. J. Phys. Chem. C 2007, 111 (19), 6956-6961.
61. Clark, R. J.; Aghajamali, M.; Gonzalez, C. M.; Hadidi, L.; Islam, M. A.; Javadi, M.; Mobarok, M. H.; Purkait, T. K.; Robidillo, C. J. T.; Sinelnikov, R.; Thiessen, A. N.; Washington, J.; Yu, H.; Veinot, J. G. C., From Hydrogen Silsesquioxane to Functionalized Silicon Nanocrystals. Chem. Mater. 2017, 29 (1), 80-89.
62. Dohnalova, K.; Gregorkiewicz, T.; Kusova, K., Silicon quantum dots: surface matters. J. Phys. Condens. Matter 2014, 26 (17), 173201.
63. Balzar, D.; Audebrand, N.; Daymond, M. R.; Fitch, A.; Hewat, A.; Langford, J. I.; Le Bail, A.; Louër, D.; Masson, O.; McCowan, C. N.; Popa, N. C.; Stephens, P. W.; Toby, B. H., Size-strain line-broadening analysis of the ceria round-robin sample. J. Appl. Cryst. 2004, 37 (6), 911-924.
64. Jakob, M.; Aissiou, A.; Morrish, W.; Marsiglio, F.; Islam, M.; Kartouzian, A.; Meldrum, A., Reappraising the luminescence lifetime distributions in silicon nanocrystals. Nanoscale Res. Lett. 2018, 13 (1), 383.
65. Kim, S.; Fisher, B.; Eisler, H.-J.; Bawendi, M., Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures. J. Am. Chem. Soc. 2003, 125 (38), 11466-11467.
66. Lee, B. G.; Hiller, D.; Luo, J. W.; Semonin, O. E.; Beard, M. C.; Zacharias, M.; Stradins, P., Strained Interface Defects in Silicon Nanocrystals. Adv. Funct. Mater. 2012, 22 (15), 3223-3232.
67. Kleovoulou, K.; Kelires, P. C., Stress state of embedded Si nanocrystals. Phys. Rev. B 2013, 88, 085424.
68. Miller, J. B.; Van Sickle, A. R.; Anthony, R. J.; Kroll, D. M.; Kortshagen, U. R.; Hobbie, E. K., Ensemble Brightening and Enhanced Quantum Yield in Size-Purified Silicon Nanocrystals. ACS Nano 2012, 6 (8), 7389-7396.
69. Huiskens, F.; Ledoux, G.; Guillois, O.; Reynaud, C., Light-Emitting Silicon Nanocrystals from Laser Pyrolysis. Adv. Mater. 2002, 14 (24), 1861-1865.
70. Delerue, C.; Allan, G.; Reynaud, C.; Guillois, O.; Ledoux, G.; Huiskens, F., Multiexponential Photoluminescence Decay in Indirect-Gap Semiconductor Nanocrystals. Phys. Rev. B 2006, 73 (23), 235318.
71. Belyakov, V. A.; Burdov, V. A.; Gaponova, D. M.; Mikhailov, A. N.; Tetelbaum, D. I.; Trushin, S. A., Phonon-Assisted Radiative Electron-Hole Recombination in Silicon Quantum Dots. Phys. Solid State 2004, 46, 27-31.
72. Belyakov, V. A.; Burdov, V. A.; Lockwood, R.; Meldrum, A., Silicon Nanocrystals: Fundamental Theory and Implications for Stimulated Emission. Adv. Opt. Technol. 2008, 2008, 279502.
73. Lannoo, M.; Delerue, C.; Allan, G., Nonradiative Recombination on Dangling Bonds in Silicon Crystallites. J. Lumin. 1993, 57 (1), 243-247.
74. Bae, W. K.; Padilha, L. A.; Park, Y.-S.; McDaniel, H.; Robel, I.; Pietryga, J. M.; Klimov, V. I., Controlled Alloying of the Core–Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination. ACS Nano 2013, 7 (4), 3411-3419.
A Tale of Seemingly “Identical” Silicon Quantum Dot Families: Structural Insight into Silicon Quantum Dot Photoluminescence.

Alyxandra N. Thiessena, Lijuan Zhangb, Anton O. Oliynykc, Haoyang Yua, Kevin M. O’Connora*, Alkiviadhes Meldrumb, and Jonathan G. C. Veinota*

a Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

b Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

c Manhattan College, Riverdale, New York, United States, 10471

* Corresponding author’s email: jveinot@ualberta.ca
Interpreting luminescence lifetimes:

To understand the luminescence lifetimes, the decays were fit with equation S1.\(^1\)

\[
I_t = A \exp \left[-\left(\frac{t}{\tau_D} \right)^\beta \right] + dc
\]

(1)

For this function, the mean lifetime is given by equation S2.

\[
\tau_{SE} = \frac{\tau_D \frac{\Gamma(2/\beta)}{\Gamma(1/\beta)}}{\Gamma(1/\beta)}
\]

(2)

Figure S1: FTIR of 1200-SiQDs (red) and 1300-SiQDs (purple).
Figure S2: High annular angle dark field STEM images of a) 1200-SiQDs and b) 1300-SiQDs.

Figure S3: Histograms showing the STEM determined non-crystalline shell thicknesses for a) 1200-SiQDs and b) 1300-SiQDs. The numbers represent the average amorphous shell thickness measured over N samples.
Figure S4: Survey XPS scan for a) 1200-SiQDs and b) 1300-SiQDs, showing the presence of only Si, C, O and F.

Figure S5: A comparison of the relationship between quantum efficiency with d_{TEM} (blue squares) and d_{XRD} (red circles) for SiQDs with a thick amorphous layer (>2 nm; a) and a thin amorphous layer (<0.8 nm; b).
Figure S6: Plot showing d_{TEM} vs. d_{XRD}, where the line is $d_{\text{TEM}} = d_{\text{XRD}}$.

Figure S7: A plot of the maximum photoluminescence energy against the lifetimes for all SiQDs in this study. A clear trend is observed that can be fit to the equation $\frac{1}{\tau_{\text{SE}}} = A \times e^{E/E_0}$, where $A = 62.5 \text{ s}^{-1}$ and $E_0 = 0.34 \text{ eV}$ (the black line).
Figure S8: A comparison of the relationship between PL energy with d_{TEM} (blue squares; standard deviation shown in blue error bars) and d_{XRD} (red circles; fit errors shown in red error bars) for SiQDs with a thick amorphous layer (>2 nm; a) and a thin amorphous layer (<0.8 nm; b). The solid black line in a) and b) represents the EMA as predicted using $E_g(r) = 1.12 + 4.19/r^2$.

Figure S9: Representative FTIR data showing samples 1 (gold), 2 (purple), 3 (green), 4 (blue), 5 (red), 6 (black). Sample numbers refer to numbers in Table S1.
Figure S10: Representative Si 2p XPS data for samples a) 1, b) 2, c) 3, d) 4, e) 5, and f) 6. The oranges peaks represent Si (0); green, Si(I); blue, Si(III); and magenta, Si(IV). The black solid line shows the experimental data and the red dashed line represents the fitting envelope. Sample numbers refer to numbers in Table S1.
Figure S11: Representative bright field TEM a) 1, b) 2, c) 3, d) 4, e) 5, and f) 6. Sample numbers refer to numbers in Table S1.
Figure S12: Average shifted histograms for SiNCs counted from TEM/STEM images for samples a)1, b) 2, c) 3, d) 4, e) 5, and f) 6. Sample numbers refer to numbers in Table S1.
Figure S13: X-ray diffraction powder patterns for samples a) 1, b) 2, c) 3, d) 4, e) 5, and f) 6. The black trace is the experimental data, the red is the fit and the grey is the difference. Samples a-c were collected at the Canadian Light Source synchrotron facility ($\lambda=0.6891$) and samples d-f was collected on the Rigaku Ultima with a Cu-Kα source. Sample numbers refer to numbers in Table S1.
Table S1: A summary of experimental parameters and results for all samples

Sample #	Anneal T^a (°C)	Etch time^b (min)	d_{TEM} (nm)	d_{XR} (nm)	PL Max (nm)	Lifetime^c (μs)	QE^d (%)
1300-SiQD^e	1300	240^g	5.5	4.69	955	546.8	N/A
1200-SiQD^f	1200	60	5.4	3.24	837	266.6	19.7
1^f	1200	90	4.1	2.07	715	98.8	21.5
2^f	1200	60	4.7	2.62	826	190.4	33.6
3^f	1300	135	5.8	2.99	782	135.7	19.0
4^e	1200	165	3.1	2.33	701	97.0	9.4
5^e	1200	75	3.2	2.64	815	218.7	20
6^e	1300	240	3.3	3.13	800	208.1	14.9
7^e	1100	30	2.8	1.71	659	73.6	8.8
8^e	1200	60	3.4	2.64	823	172.1	33.0
9^e	1200	130	2.5	2.21	675	81.6	7.3
10^e	1200	120	2.8	2.45	700	98.5	10.1
11^e	1100	45	2.8	2.05	684	107.3	4.3
12^f	1300	210	5.3	3.06	819	159.0	15.6
13^f	1200	105	4.8	1.63	641	63.1	10.0
14^f	1200	40	4.7	2.67	860	205.7	24.5

^a Temperature used for annealing HSQ to make the composite

^b Time used for HF etching

^c Mean lifetimes were calculated as described above.

^d Quantum efficiency

^e “Thin” amorphous shell samples (Figure 4 b and d).

^f “Thick” amorphous shell samples (Figure 4 a and c).

^g 5 mL of 49% HF added halfway through etch.

Table S2: Lifetime fitting parameters for 1200-SiQDs and 1300-QDs

	A	β	Dc
1200-SiQDs	1.031	0.8608	0.00091
1300-SiQDs	1.024	0.8346	0.0053

References

1. Jakob, M.; Aissiou, A.; Morrish, W.; Marsiglio, F.; Islam, M.; Kartouzian, A.; Meldrum, A., Reappraising the Luminescence Lifetime Distributions in Silicon Nanocrystals. *Nanoscale Res. Lett.* 2018, *13* (1), 383.

2. Delerue, C.; Allan, G.; Reynaud, C.; Guillois, O.; Ledoux, G.; Huisken, F., Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals. *Phys. Rev. B* 2006, *73* (23), 235318.
3. Miller, J. B.; Van Sickle, A. R.; Anthony, R. J.; Kroll, D. M.; Kortshagen, U. R.; Hobbie, E. K., Ensemble Brightening and Enhanced Quantum Yield in Size-Purified Silicon Nanocrystals. *ACS Nano* **2012**, *6* (8), 7389-7396.

4. Huiskes, F.; Ledoux, G.; Guillois, G; Reynaud, C., Light-Emitting Silicon Nanocrystals from Laser Pyrolysis. *Adv. Mater.* **2002**, *14* (24), 1861-1865.
