Use of Supporting Post Width to Increase the CMUT’s Resonant Frequency

JIUJIANG WANG, (Senior Member, IEEE), SIO HANG PUN, (Senior Member, IEEE), YUANYU YU, (Member, IEEE), YIHE LIU, CHING-HSIANG CHENG, (Member, IEEE), KIN FONG LEI, (Senior Member, IEEE), SHUANG ZHANG, (Senior Member, IEEE), PENG UN MAK, (Senior Member, IEEE), AND MANG I VAI, (Senior Member, IEEE)

1School of Artificial Intelligence, Neijiang Normal University, Neijiang 641100, China
2State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China
3BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing 401332, China
4Neijiang City Engineering Technology Research Center of Neurological Disease Information Interference, Neijiang Normal University, Neijiang 641100, China
5School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
6Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
7Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Linkou 33305, Taiwan
8Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China

Corresponding authors: Yuanyu Yu (cdyu@163.com) and Peng Un Mak (fstpum@umac.mo)

This work was supported in part by the National Key Research and Development Program of China under Grant 2020YFB1313502; in part by the Sichuan Science and Technology Program under Grant 2022YFH0110; in part by the Shenzhen-Hong Kong-Macau S&T Program (Category C) of Shenzhen Science and Technology Innovation Committee (SZSTI) under Grant SGDX2020103094002009; in part by the University of Macau under Grant MYRG2018-00146-AMSV and Grant MYRG2019-00056-AMSV; in part by the Science and Technology Development Fund, Macau, under Grant 08/2016/A2, 014/2019/A3, Grant 0022/2020/AF1, Grant SKL-AMSV (FDCT-funded), Grant SKL-AMSV-ADDITIONAL FUND, and Grant SKL-AMSV(UM)-2020-2022; in part by the Foundation of Ph.D. Scientific Research of Neijiang Normal University under Grant 18B19; in part by the Foundation of Science and Technology of Neijiang Normal University under Grant 2019YZ04; in part by the Innovative Team Program of the Neijiang Normal University under Grant 2021TD02; in part by the Sichuan Province Academic and Technical Leader Training Funded projects under Grant 13XSJS002; and in part by the Science and Technology Program of Sichuan under Grant 2021YFSC0040 and Grant 2022JDRC0134.

ABSTRACT A new method is proposed to increase the resonant frequency of a Capacitive Micromachined Ultrasonic Transducer (CMUT) device while keeping the radii unchanged for devices fabricated by sacrificial release (SR) method. The resonant frequency of a CMUT cell is determined by the properties of the membrane such as the Young’s modulus, membrane dimensions and effective membrane mass. Effective Young’s modulus is used to calculate the resonant frequency of CMUT fabricated by SR method. The supporting post structure will affect the boundary conditions at the edge of the CMUT membrane and in turn affect the deflection together with the effective Young’s modulus of the membrane. The perturbation method is used to derive the solution for the governing von Kármán equations. The results show that the thicker is the supporting post width, the higher is the resonant frequency. This method can also be used to simplify the mask design and CMUT fabrication process.

INDEX TERMS Capacitive micromachined ultrasonic transducer (CMUT), resonant frequency, supporting post width.

I. INTRODUCTION The capacitive micromachined ultrasonic transducer (CMUT) has been a popular research topic [1]–[6] since its invention by the Khuri–Yakub group in the late 1990s. It is a promising candidate technology to conventional piezo transducer [7], [8] in biomedical imaging because of its wider fractional bandwidth, smaller acoustic impedance, better working temperature range, and ease of integration with integrated circuit (IC) [9]. CMUT can also be used in applications such as pressure sensor [10], volatile organic compounds (VOCs) sensor [11], tissue harmonic imaging [12], and high-intensity focused ultrasound (HIFU) [13].

Nowadays, the applications of biomedical imaging require the use of several different CMUT elements with different resonant frequencies working together to get a better
image [5], [14]. There is a need for pressure sensors to detect different pressure ranges and CMUT can fulfill this task [10]. The resonant frequency of the CMUT is determined by its membrane properties such as the dimensions [14], [15], the Young’s modulus [16]. Another factor that can affect the resonant frequency is the effective mass of the membrane, such as CMUT being used as gas sensor [7]. The spring softening effect will change the spring constant as well as affect the resonant frequency of CMUT [7], [10], [17], [18]. The gap height will affect the spring softening effect and thus also the resonant frequency.

Normally, to get a higher frequency device, the membrane will be made smaller [14] or thicker but the area for outputting pressure will change, too. The output pressure can be expressed approximately as (1), and, when the radius of the membrane decreases, the average deflection \(x \) of the membrane under the same condition will decrease, thus the output acoustic pressure will reduce.

\[
\begin{align*}
F_{ac} &\propto \frac{SV_{DC}V_{AC}}{(d_0 - x)^2} \\
P_{ac} &\propto \frac{V_{DC}V_{AC}}{(d_0 - x)^2}
\end{align*}
\]

where \(F_{ac} \) and \(P_{ac} \) are the force and pressure due to the applied voltage, respectively; \(S \) is the membrane area; \(V_{DC} \) and \(V_{ac} \) are the DC and AC voltage, respectively; \(d_0 \) is the initial gap of the CMUT; and \(x \) is the average deflection of the membrane under applied voltage.

A CMUT cell consists of a substrate, a membrane, and a vacuum cavity surrounded by the supporting post, as shown in Fig. 1. The CMUT membrane will undergo deformation when the membrane is subjected to a force either from DC/AC voltage applied between the top and bottom electrodes or from external pressure. There will be a restoring force (or stress) from the membrane to balance the external force, and thus the deformation at the point of the membrane will act on the supporting post [9], [19].

Wafer bonding (WB) method [20] and sacrificial release (SR) method [19] are currently two popular fabrication methods for CMUT. Fabricated by WB method, CMUT devices have supporting posts that are connected together for the inner parts or with thick posts for the peripheral devices. Wong et al. discussed the post width of CMUTs using wafer-bonding technology and stated that the support post bending would result in the neighboring membrane bulging upward, and the post would be stiff enough when the post width is about 5 \(\mu \text{m} \) or more (1.67 times the membrane thickness) [21]. In that case, the supporting post will not deform when bearing forces coming from the membranes, thus the boundary conditions for this type of CMUT is regarded as fixed or clamped.

On the other hand, devices fabricated by the SR method have standalone supporting posts. When there is a force acting on the membrane, the supporting post will endure a force coming from the membrane, and the supporting post will deform, as shown in Fig. 1. Oralukan et al. stated that the induced stress can balance the external force in conventional mode and, when the external force is greater than the stress, CMUT is in collapse mode [9]. The stress during fabrication process also bends the membrane post [22]. For a CMUT cell, the post of the CMUT can be regarded as a combination of many tiny beams, and the supporting post width corresponds to the beam height. According to [23], the bending of a beam will change with the force added on the free end of the beam, and the deformation is inversely proportional to the third order of the beam height. Thus, with different supporting post width, the deformation will be different, and the boundary condition is regarded as elastic support (ES).

Redesign of all the masks related to membrane radius of CMUT is needed even when there is a minor revision of the CMUT [3]. This research is to develop a method to increase the CMUT frequency by modifying the supporting post width without changing the membrane radius. During the sacrificial release fabrication process, alignment marks are mainly used to align the mask with the patterns on the wafers from the previous steps; sometimes, patterns on the wafers are also used to make alignment more precisely. By using this method, the mask redesign process can be reduced to modify only one mask layer (the etch hole protection mask), as described in Section V.

In the current research, the effect of the supporting post width is incorporated into the boundary conditions of the membrane. The main novelty of this article is to increase the resonant frequency by increasing the post width of the CMUT device without decreasing the membrane radius. The contribution of this work is to provide a method to increase the resonant frequency of CMUT by modifying the supporting post width.

In Section VI, the conclusion is presented. The conclusions are drawn in Section VI.
II. ANALYTICAL DERIVATION

The fundamental resonant frequency of a clamped circular membrane in air and vacuum can be calculated using the following equation or its variation [24]–[27].

\[f_0 = \frac{10.21 h}{2\pi a^2} \sqrt{\frac{E}{12\rho(1 - \nu^2)}} \]

where \(f_0 \) is the fundamental resonant frequency of the membrane, \(a \) is the membrane radius, \(h \) is the membrane thickness, \(E \) is the Young’s modulus of the membrane, \(\rho \) is the membrane density, and \(\nu \) is the Poisson’s ratio of the membrane.

From (2), the resonant frequency is proportional to the thickness \(h \) and the square root of Young’s modulus \(E \), while inversely proportional to the square of the membrane radius \(a \) and the square root of the mass density \(\rho \). In fact, the boundary condition of the membrane at the edge will affect the resonant frequency of the membrane. Leissa A. W. [28] presented the basic equations for classical plate vibration theory and demonstrated solutions under several different boundary conditions including plates clamped (fixed) all around, plates simply supported all around, etc. In the book, during the derivation of the resonant frequency, a parameter \(k \) is defined for convenience as in (3), and \(\lambda \) is defined as \(\lambda = ka \), where \(a \) is the radius of the plate. The major reason for this arrangement is to simplify the equations in the subsequent derivations. Therefore, \(\lambda^2 \) is expressed as in (4).

\[k^4 = \frac{\rho\omega^2}{D} \]

where \(\rho \) is the mass density per unit area of the plate, \(D \) is the flexural rigidity of the plate, and \(\omega \) is the circular frequency of the plate.

\[\lambda^2 = \frac{\rho}{D} a^2 \omega \]

where \(a \) is the plate radius.

From the book, for the same nodal diameter \(n \) equal to 0 and the same nodal circle \(s \) equal to 0, the parameter \(\lambda^2 \) value is about double (10.216) for fixed boundary conditions as that of simply supported boundary conditions (4.977). From (4), \(\lambda^2 \) is proportional to the resonant frequency of the plate. It can be inferred that for membranes with the same parameters, the resonant frequency of the simply supported case is about half the clamped case. To explain this phenomenon, the term effective Young’s modulus is introduced for membrane boundary conditions other than fixed boundary condition. The effective Young’s modulus is the value corresponding to that of the fixed case with the same center deflection. The reason for the mentioned resonant frequency difference is that the effective Young’s modulus of the membrane in the simply supported case is smaller when converted into the clamped case. This can be shown by calculating the center deflections of one membrane under the same pressure but with different boundary conditions. For example, for a membrane with radius of 30 \(\mu \)m, thickness of 1.2 \(\mu \)m, Young’s modulus of 200 GPa, and Poisson’s ratio of 0.27, the center deflection in simply supported case is 0.17 \(\mu \)m, while, for the same center deflection, the Young’s modulus is about 48 GPa in fixed boundary condition, which means the effective Young’s modulus is 48 GPa.

From (2), the resonant frequency of a circular membrane is determined by the Young’s modulus when the membrane dimensions are constants. For the CMUT devices, the membrane is always composed of a top electrode layer, which can be incorporated into one layer, as in [29], [30].

To calculate the resonant frequency of CMUT membranes using (2) with different boundary conditions other than fixed case, the effective Young’s modulus is used and can be derived by using the center deflection of the membrane under external pressure. The deflection profile of the membrane under a uniform pressure for membrane undergoing small deflections can be expressed as (5) [31]–[34].

\[\sigma(r) = \sigma_{pk} \left(1 - \frac{r^2}{a^2}\right)^2 \]

where \(\sigma_{pk} \) is the center deflection of the membrane, \(a \) is the membrane radius, and \(r \) is the radial position.

However, there will be much error when using this equation to describe membrane undergoing large deflection [35]. For the center deflection of a circular membrane CMUT under external pressure, the governing equations for both small deflections and large deflections can be described by von Kármán Equations (6) and (7) [36].

\[\frac{r}{Dr} \frac{d}{dr} \left(r^2 N_r \right) = -\frac{1}{2} Eh \left(\frac{d\sigma}{dr}\right)^2 \]

\[Dr \frac{d}{dr} \left(r \frac{d\sigma}{dr} \right) = rN_r \left(\frac{d\sigma}{dr}\right) + \frac{1}{2} qr^2 \]

where \(N_r \) is the lateral force at \(r \), \(\sigma \) is the deflection profile of the membrane, \(h \) is the membrane thickness, \(D \) is the flexural rigidity of the membrane, and \(q \) is the external uniform pressure.

The boundary conditions at the edge of the membrane for devices fabricated by wafer bonding and sacrificial release methods are as fixed boundary conditions (9) and ES boundary conditions ((10)) [31], [37]. The supporting post can be regarded as many tiny standalone beams interacting with each other and the post will bend under force coming from membrane deformation, the bend size is as in (8), by taking into consideration this phenomenon, a coefficient \(\alpha \) is added to the third one of the original boundary in (10).

\[u = \frac{4Ft_p^3}{Eb^3p} \]

where \(u \) stands for the deformation of the beam, \(F \) is the force acting on the beam per unit length, \(Eb \) depicts the Young’s modulus of the beam, \(t_p \) is the width of the beam, and \(t_b \) is
the height of the beam.

\[
\begin{align*}
\sigma &= 0 \\
\frac{d\sigma}{dr} &= 0 \\
\frac{dN_r}{dr} + (1 - \nu)N_r &= 0
\end{align*}
\]

(9)

\[
D \left(\frac{d^2\sigma}{dr^2} + \frac{v}{r} \frac{d\sigma}{dr} \right) = -k_2 \frac{d\sigma}{dr}
\]

(10)

\[
N_r = -\alpha k_1 u = -\frac{\alpha k_1 r}{Eh} \left[\frac{dN_r}{dr} + (1 - \nu)N_r \right]
\]

where \(k_1\) and \(k_2\) are parameters for certain boundary settings with different post widths. By using the perturbation method, the solutions for the governing equations with both boundary conditions can be derived, thus the center deflection can be calculated as in (11) [35].

\[
\sigma_0 = \frac{hW_m}{3(1 - \nu^2)}
\]

(11)

where \(\sigma_0\) is the center deflection of the membrane and \(W_m\) is the perturbation parameter used during the derivation process, which is a non-dimensionalized value of the center deflection of the CMUT membrane.

To design CMUTs that have different frequencies and the same membrane radius, the following procedure is used. First, the center deflections for one CMUT with different Young’s moduli are calculated under fixed boundary conditions to form a lookup table. Next, the center deflections for the same CMUT with one Young’s modulus value are calculated for SR devices with different supporting post width values. The third step is to approximate the Young’s modulus value to fixed boundary case for the SR device with different supporting post widths using the lookup table formed in the first step. The latter two steps can be repeated for other Young’s modulus values. When the effective Young’s modulus is determined, the resonant frequency can be calculated. Other CMUT devices with different membrane parameters can be designed in the same way. The flow chart of the approximation is shown in Fig. 2.

III. FEM MODELS

Two FEM models were built in solid mechanics physics domain to verify the analytical model using COMSOL Multiphysics 4.4 (COMSOL Inc., Stockholm, Sweden). The COMSOL model for WB devices (fixed boundary case) was depicted as in Fig. 3, and the device was simplified to a membrane, a vacuum cavity and an insulator layer (to represent the insulator layers and the substrate). One boundary Fixed Constraint was set at the bottom boundary of the supporting post and one domain Fixed Constraint was set to the insulator layer. Another 2D axisymmetric annular ring represented the supporting post, the membrane and the supporting post were of the same material. The lower boundary of membrane and the upper boundary of insulator layer was modeled by a contact pair. Physics controlled mesh was used and the normal size was chosen. The deflection profile was derived by using the stationary solver. After simulation, the data of deflection profile were compared with that of analytical results.

The COMSOL model for the SR device was depicted as in Fig. 4, and the device consisted of a membrane, a vacuum cavity and an insulator layer (to represent the insulator layers and the substrate). One boundary Fixed Constraint was set at the bottom boundary of the supporting post and one domain Fixed Constraint was set to the insulator layer.

Similar to that of the fixed boundary model, two 2D axisymmetric plates were used to present the insulator layer and the membrane, respectively. The lower boundary of membrane and the upper boundary of insulator layer was modeled by a contact pair, and a union
was formed by combining the membrane and the supporting post. Physics controlled mesh was used and the normal size was chosen. The resonant frequency was derived by using the Eigenfrequency solver. After simulation, the data of resonant frequencies were compared with that of analytical results.

IV. ANALYTICAL MODEL VERIFICATION

To demonstrate the proposed method, Si_3N_4 was used for the membrane and the parameters listed in Table 1 were adopted. Center deflections of the CMUT with fixed boundary conditions with several Young’s modulus values were derived by using the solution from the previous section, as shown in Fig. 5. The simulation results from COMSOL are also shown. Based on Fig. 5, the analytical and simulation results match well. In the same manner, using the same parameters as in Table 1 and selecting a Young’s modulus value of 210 GPa, center deflections of one CMUT with different supporting post width values were calculated, as listed in Table 2.

TABLE 1. Parameters of one CMUT.

Term	Value	Unit
Membrane radius, a	90	μm
Membrane thickness, h	0.8	μm
Young’s modulus, E	110–210	GPa
Poisson’s ratio, ν	0.27	
External pressure, q	101	KPa
Gap height, t_g	0.5	μm
Material density, ρ	3100	kg/m3

TABLE 2. Comparison of resonant frequencies between analytical and FEM results with different supporting post width values.

Supporting Post Width (μm)	Center Deflection (nm)	Effective Young’s Modulus (GPa)	Resonant Frequency (MHz)
0.5	172.0	157.6	3.09
0.8	141.6	192.9	3.42
1.0	136.2	200.7	3.48
1.5	132.1	207.1	3.54
2.0	131.1	208.8	3.55
3.0	130.6	209.6	3.56
4.0	130.5	209.8	3.56
5.0	130.4	209.9	3.56

TABLE 3. Parameters of the three typical membrane materials (Si_3N_4, Si, SiO_2).

Term	Value	Unit
Membrane thickness, h	0.5 – 1.0, step 0.1	μm
Young’s modulus of Si_3N_4, Si, SiO_2, E	210, 170, 70	GPa
Poisson’s ratio Si_3N_4, Si, SiO_2, ν	0.27, 0.28, 0.17	
External pressure, q	40, 60, 80, 101	KPa
Material density Si_3N_4, Si, SiO_2, ρ	3100, 2329, 2200	kg/m3

By using the approximation method in the previous section, effective Young’s modulus values corresponding to the fixed boundary conditions were also calculated, as listed in the same table. For this case, the maximum absolute relative error between the analytical and FEM resonant frequencies was 2.80 % and was listed in the fourth line of Table 4. The effective Young’s moduli and resonant frequencies corresponding to other Young’s moduli of fixed boundary conditions could be calculated by using the same procedure.

To further verify the model, three typical membrane materials with different properties were selected and the parameters were shown in Table 3, with the membrane radius and the gap height being equal to those in Table 1.

The relationships of the supporting post width and the corresponding resonant frequency data for the three materials with different membrane thickness values are shown in Fig. 6, along with the results from COMSOL for contrast. As shown in the figure, different materials can have different relationship curves between the supporting post width and the resonant frequency. The resonant frequency can be adjusted by modifying the material properties such as thickness and Young’s modulus. The resonant frequency has an upper bound corresponding to the clamped boundary condition. In the clamped boundary condition case, the frequency can be increased by thickening the membrane and/or reducing the membrane radius.

Resonant frequency of the CMUT cell can be estimated from the curve as a lookup table, although the relationship between the Young’s modulus and the resonant frequency is not linear.

For the range of the resonance frequency tuning, according to the current result, the effect of the supporting post width on the resonant frequency is limited to about 10%. Although 10% deviation may not pose significant impact for imaging purposes, this can extend the working ranges when CMUT is used as pressure sensors. In the pressure sensor application,
10% frequency deviation corresponds to about three times the measured pressure range [10].

The maximum relative error between analytical results and FEM results were listed in Table 4.

From Table 4, the maximum relative error between analytical results and FEM results was 4.51%, therefore, the analytical results matched well with the FEM simulation results.

Table 4: Comparison of resonant frequencies between analytical and FEM results for three different materials.

Membrane Material	Membrane Thickness μm	Maximum absolute Relative error %
Si₂N₄	0.5	1.64
	0.6	2.00
	0.7	2.37
	0.8	2.80
	0.9	4.49
	1.0	3.92
Si	0.5	1.85
	0.6	1.99
	0.7	2.36
	0.8	2.79
	0.9	4.50
	1.0	4.36
SiO₂	0.5	1.63
	0.6	1.97
	0.7	2.34
	0.8	2.78
	0.9	3.91
	1.0	4.51

V. MASK DESIGN AND FABRICATION PROCESS CONSIDERATION

The fabrication flow chart of the conventional sacrificial release method is shown in Fig. 7. The thickness of the whole wafer is increased during the process of sealing the etch holes. Thus, there is a thinning process to restore the original membrane thickness after the sealing process. Generally, the only protected parts during the thinning process are the etch hole areas. Our proposed method is to add an annular ring around the membrane during the thinning process in order to produce supporting posts with different widths. Thus, the fabrication can be achieved through the conventional sacrificial release method with a minor modification of one of the masks for thinning of the sacrificial layer and etch channels. Step 3 is formation of the membrane. Step 4 is releasing the sacrificial layer through etch holes. Step 5 is sealing the etch holes and thinning the membrane. Step 6 is the formation of the electrodes.
report regarding the present study. The authors declare that they have no conflicts of interest to
Taiwan.

Facility Center, National Chiao Tung University, and for the assistance in CMUT fabrication from the Nano
The authors would like to express their appreciation this method.

can be simplified when modifying the mask design by using can be fabricated simultaneously. The fabrication process for
devices with the same radii but different supporting post
the resonant frequency of a CMUT. By arranging CMUT
verified numerically, the resonant frequency of a CMUT can
calculated by this analytical method, thus the resonant
frequency can be derived. We proposed theoretically and
The proposed method.

Based on the relationship between the wafer bonding and
sacrificial release fabricated CMUT devices, an analytical
method is proposed to increase the CMUT resonant frequency
by increasing the supporting post width. The effective
Young’s modulus of the elastic support device can be calculated by this analytical method, thus the resonant
frequency can be derived. We proposed theoretically and
verified numerically, the resonant frequency of a CMUT can
be tuned by changing the post width. We also propose a
method to minimize the mask re-design procedures to alter the resonant frequency of a CMUT. By arranging CMUT
devices with the same radii but different supporting post
width values, devices with different resonant frequencies
can be fabricated simultaneously. The fabrication process for
configuring CMUTs with different frequencies in one array
can be simplified when modifying the mask design by using this method.

ACKNOWLEDGMENT

The authors would like to express their appreciation for the assistance in CMUT fabrication from the Nano Facility Center, National Chiao Tung University, and the NEMS Research Center, National Taiwan University, Taiwan.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest to report regarding the present study.

REFERENCES

[1] M. I. Haller and B. T. Khuri-Yakub, “A surface micromachined electro-
static ultrasonic air transducer,” IEEE Trans. Ultrason., Ferroelectr.,Freq.
Control, vol. 43, no. 1, pp. 1–6, Jan. 1996.
[2] O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci,
K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined
ultrasonic transducers: Next-generation arrays for acoustic imaging?”
IEEE Trans. Ultrason., Ferroelectr.,Freq. Control, vol. 49, no. 11,
pp. 1596–1610, Nov. 2002.
[3] Z. Zheng, S. Na, A. I.-H. Chen, Z. Li, L. L. P. Wong, Z. Sun, Y. Yao, P. Liu,
and J. T. W. Yeow, “Development of a novel CMUT-based concentric dual-
element ultrasonic transducer: Design, fabrication, and characterization,”
J. Microelectromech. Syst., vol. 27, no. 3, pp. 538–546, Jun. 2018.
[4] M. J. G. Molgaard, J. M. F. Hansen, M. H. Jakobsen, and E. V. Thomsen,
“Sensitivity optimization of wafer bonded gravimetric CMUT sensors,”
Microelectron. Syst., vol. 27, no. 6, pp. 1089–1096, Dec. 2017.
[5] S. H. Pun, Y. Yu, J. Zhang, J. Wang, C.-H. Cheng, K. F. Lei, Z. Yuan,
and P. U. Mak, “Monolithic multiband CMUTs for photoacoustic
computed tomography with in vivo biological tissue imaging,” IEEE
Trans. Ultrason., Ferroelectr.,Freq. Control, vol. 65, no. 3, pp. 465–475,
Mar. 2018.
[6] M. Maadi and R. J. Zemp, “A nonlinear lumped equivalent circuit
model for a single uncollapsed square CMUT cell,” IEEE Trans.
Ultrason., Ferroelectr.,Freq. Control, vol. 66, no. 8, pp. 1340–1351,
Aug. 2019.
[7] H. Nazemi and A. Emadi, “A new advanced analytical model for bi-layer
circular CMUT-based gas sensors,” in Proc. IEEE SENSORS, Montreal,
QC, Canada, Oct. 2019, pp. 1–4.
[8] H. Köynen, M. N. Senlik, A. Atalar, and S. Olcum, “Parametric
linear modeling of circular CMUT membranes in vacuum,” IEEE
Trans. Ultrason., Ferroelectr.,Freq. Control, vol. 54, no. 6, pp. 1229–1239,
Jun. 2007.
[9] O. Oralkan, B. Bayram, G. G. Yaralioglu, A. S. Ergun, M. Kupnik,
D. T. Yeh, I. O. Wygant, and B. T. Huri-Yakub, “Experimental charac-
terization of collapse-mode CMUT operation,” IEEE Trans. Ultrason.,
Ferroelectr.,Freq. Control, vol. 53, no. 8, pp. 1513–1523, Aug. 2006.
[10] X. Zhang, L. Yu, Q. Guo, D. Li, H. Zhang, and H. Yu, “Resonance
frequency analysis of a dual-frequency capacitive micromechanical
ultrasonic transducer for detecting high and low pressures simultaneously
with high sensitivity and linearity,” J. Phys. D. Appl. Phys., vol. 53, no. 3,
Jan. 2020, Art. no. 035401.
[11] M. Kumar, C. Seok, M. M. Mahmud, X. Zhang, and O. Oralkan, “A low-
power integrated circuit for interfacing a capacitive micromachined
ultrasonic transducer (CMUT) based resonant gas sensor,” in Proc. IEEE
SENSORS, Busan, South Korea, Nov. 2015, pp. 1–4.
[12] S. Satir and F. L. Degertekin, “Phase and amplitude modulation
techniques for nonlinear ultrasound imaging with CMUTs,” IEEE Trans.
Ultrason., Ferroelectr.,Freq. Control, vol. 63, no. 8, pp. 1086–1092, Aug. 2016.
[13] O. Farhanieh, A. Sahafi, R. B. Roy, A. S. Ergun, and A. Bozkurt,
“Integrated HIPU drive system on a chip for CMUT-based catheter
ablation system,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 3,
pp. 449–456, Mar. 2017.
[14] M. Maadi, C. Ceroici, and R. J. Zemp, “Dual-frequency CMUT arrays
for multiband ultrasound imaging applications,” IEEE Trans. Ultrason.,
Ferroelectr.,Freq. Control, vol. 68, no. 7, pp. 2532–2542, Jul. 2021.
[15] J. Joseph, B. Ma, and B. T. Khuri-Yakub, “Applications of capacitive
micromachined ultrasonic transducers: A comprehensive review,”IEEE
Trans. Ultrason., Ferroelectr.,Freq. Control, vol. 69, no. 2, pp. 456–467,
Feb. 2022.
[16] X. Zhuang, “Capacitive micromachined ultrasonic transducers with
through-wafer interconnects,” Ph.D. dissertation, Dept. Elect. En.,
Stanford Univ., Stanford, CA, USA, 2008.
[17] I. Ladabaum, X. Jin, H. T. Soh, A. Atalar, and B. T. Khuri-Yakub,
“Surface micromachined capacitive ultrasonic transducers,” IEEE Trans.
Ultrason., Ferroelectr.,Freq. Control, vol. 45, no. 3, pp. 678–690,
Mar. 1998.
[18] G. G. Yaralioglu, A. S. Ergun, B. Bayram, E. Haeggstrom, and
B. T. Khuri-Yakub, “Calculation and measurement of electromechanical
coupling coefficient of capacitive micromachined ultrasonic transducers,”
IEEE Trans. Ultrason., Ferroelectr.,Freq. Control, vol. 54, no. 4,
pp. 449–456, Apr. 2003.
[19] A. S. Ergun, G. G. Yaralioglu, and B. T. Khuri-Yakub, “Capacitive
micromachined ultrasonic transducers: Theory and technology,”J. Aerosp.
Eng., vol. 16, no. 2, pp. 76–84, Nov. 2002.
[20] Y. Huang, A. S. Ergun, E. Haeggstrom, M. H. Badi, and B. T. Khuri-
Yakub, “Fabricating capacitive micromachined ultrasonic transducers with
wafer-bonding technology,” J. Microelectromech. Syst., vol. 12, pp. 128–137,
Apr. 2003.
[21] S. H. Wong, M. Kupnik, X. Zhuang, D.-S. Lin, K. Butts-Pauly, and
B. T. Khuri-Yakub, “Evaluation of wafer bonded CMUTs with rectangular
membranes featuring high fill factor,”IEEE Trans. Ultrason.,
Ferroelectr.,Freq. Control, vol. 55, no. 9, pp. 2053–2065, Sep. 2008.
VOLUME 10, 2022

J. Wang et al.: Use of Supporting Post Width to Increase CMUT’s Resonant Frequency

[22] G. G. Yaralioğlu, A. S. Ergun, B. Bayram, T. Marentis, and B. T. Khuiri-Yakub, “Residual stress and Young’s modulus measurement of capacitive micromachined ultrasonic transducer membranes,” in Proc. IEEE Ultrason. Symp., Oct. 2001, pp. 953–956.

[23] R. C. Hibbeler, Mechanics of Materials. Upper Saddle River, NJ, USA: Pearson, 2014, pp. 289–287.

[24] Z. Li, L. Zhao, Z. Ye, H. Wang, Y. Zhao, and Z. Jiang, “Resonant frequency analysis on an electrostatically actuated microplate under uniform hydrostatic pressure,” J. Phys. D, Appl. Phys., vol. 46, no. 19, May 2013, Art. no. 195108.

[25] K. Park, H. Lee, M. Kupnik, O. Oralkan, J. P. Ramseyer, H. P. Lang, M. Hegner, C. Gerber, and B. T. Khuiri-Yakub, “Capacitive micromachined ultrasonic transducer (CMUT) as a chemical sensor for DMA detection,” Sens. Actuators B, Chem., vol. 160, no. 1, pp. 1120–1127, Dec. 2011.

[26] L. Zhao, Y. Zhao, Y. Xia, Z. Li, J. Li, J. Zhang, J. Wang, X. Zhou, Y. Li, Y. Zhao, and Z. Jiang, “A novel CMUT-based resonant biochemical sensor using electrospinning technology,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 7356–7365, Sep. 2019.

[27] Z. Wang, C. He, W. Zhang, Y. Li, P. Gao, Y. Meng, G. Zhang, Y. Yang, R. Wang, J. Cui, H. Wang, B. Zhang, Y. Ren, G. Zhe, X. Jiao, and S. Zhang, “Fabrication of 2-D capacitive micromachined ultrasonic transducer (CMUT) array through silicon wafer bonding,” Micromachines, vol. 13, no. 1, p. 99, Jan. 2022.

[28] A. W. Leissa, “Vibration of plates,” in Scientific and Technical Information Division. Washington, DC, USA: NASA, 1969, pp. 8–9.

[29] P. Pursula, J. Saariluoma, O. Pana, and V. Viikari, “Analytical electromechanical model for CMUTs with multi-layered, non-uniform-thickness diaphragm,” in Proc. IEEE, Karvina, Czech Republic, Sep. 2012, pp. 1–4.

[30] D. F. Lemmerhirt, X. Cheng, R. D. White, C. A. Rich, M. Zhang, J. B. Fowlkes, and O. D. Krippelans, “A 32×32 capacitive micromachined ultrasonic transducer array manufactured in standard CMOS,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 59, no. 7, pp. 1521–1536, Jul. 2012.

[31] S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells. New York, NY, USA: McGraw-Hill, 1959, pp. 83–86.

[32] H. Köymen, A. Atalar, S. Güler, I. Köymen, A. S. Tasdelen, and A. Ünlügedik, “Unbiased charged circular CMUT microphone: Lumped-element modeling and performance,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 65, no. 1, pp. 60–71, Jan. 2018.

[33] I. O. Wygant, M. Kupnik, and B. T. Khuri-Yakub, “Analytically calculating membrane displacement and the equivalent circuit model of a circular CMUT cell,” in Proc. IEEE Ultrasound. Symp., Beijing, China, Nov. 2008, pp. 1114–1211.

[34] X. Huang, H. Wang, and L. Yu, “Investigation on design theory and performance analysis of vacuum capacitive micromachined ultrasonic transducer,” Micromachines, vol. 12, no. 9, p. 1127, Sep. 2021.

[35] J. Wang, S. H. Pun, P. U. Mak, C.-H. Cheng, Y. Yu, P.-I. Mak, and M. I. Vai, “Improved analytical modeling of membrane large deflection with lateral force for the underwater CMUT based on von Kármán equations,” IEEE Sensors J., vol. 16, no. 17, pp. 6633–6640, Sep. 2016.

[36] W.-Z. Chien, “Large deflection of a circular clamped plate under uniform pressure,” Acta Phys. Sin., vol. 11, pp. 102–113, Jan. 1947.

[37] X. Zheng, Theory and Applications of Large Deflections of Thin Circular Membranes. Changchun, China: Jilin Science and Technology Press, 1990, pp. 18–19.

SIO HANG PUN (Senior Member, IEEE) received the master’s degree in computer and electrical program from the University of Porto, Portugal, in 1999, and the Ph.D. degree in electrical and electronics engineering from the University of Macau, Macau, in 2012. Since 2012, he has been an Associate Professor with the State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau. His current research interests include biomedical electronic circuits, miniaturized sensors for biomedical applications, and human body communication.

YUANYU YU (Member, IEEE) received the B.S. degree in biomedical engineering and the M.S. degree in measuring and testing technologies and instruments from the University of Electronic Science and Technology of China, Chengdu, China, in 2000 and 2005, respectively, and the Ph.D. degree in electrical and electronics engineering from the University of Macau, Macau, in 2017. From 2012 to 2017, he was a Research Fellow with the State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau. From 2017 to 2019, he was an Assistant Professor at the School of Information Engineering, Lingnan Normal University, Zhanjiang, China. From 2020 to 2022, he was a Postdoctoral Fellow with the Institute of Microelectronics, University of Macau. He is currently an Associate Professor with the School of Artificial Intelligence, Neijiang Normal University, Neijiang, China. His research interests include design, modeling, and fabrication of capacitive micromachined ultrasonic transducers.

YIHE LIU received the Ph.D. degree in applied mathematics from Sichuan University, Chengdu, Sichuan, China, in 2005. Since 2009, he has been involved in the research area of intra-body communication. He is currently a Professor with the School of Artificial Intelligence, Neijiang Normal University.

CHING-HSIANG CHENG (Member, IEEE) received the B.S. degree in mechanical engineering from the National Taiwan University, Taipei, Taiwan, in 1993, the master’s degree in mechanical, electrical engineering, and science from Cornell University, Ithaca, NY, USA, in 1996, 1997, and 1998, respectively, and the Ph.D. degree in electrical engineering from Stanford University, Stanford, CA, USA, in 2005. After completing his Postdoctoral Research with the Department of Mechanical Engineering, Stanford University, he joined the Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, as a Researcher and became a Project Leader. In 2006, he joined the Research Institute of Innovative Products and Technologies, The Hong Kong Polytechnic University (PolyU), Hong Kong, as an Assistant Professor and a Research Engineer. In 2010, he joined the Department of Industrial and Systems Engineering, PolyU, as an Assistant Professor. Since 2017, he has been an Associate Professor with the School of Automotive Engineering, Wuhan University of Technology, Wuhan, China. His research interests include AI deep learning for automotive applications, capacitive micromachined ultrasonic transducers (CMUT), solid-state lithium-ion batteries, ultra-thin vapor chambers, shear and normal force sensors, large strain and tactile sensors, microvalves and micropumps, gas sensors, electrical through-wafer interconnects, nanotechnology, and microelectromechanical systems.

JUJUANG WANG (Senior Member, IEEE) received the B.S. degree in microelectronic circuits and systems from the Beijing Institute of Technology, Beijing, China, in 1991, the M.S. degree in semiconductor devices and microelectronic from the Institute of Semiconductors, Chinese Academy of Sciences, Beijing, in 1994, and the Ph.D. degree from the University of Macau, Macau, in 2019. He was a System Design Engineer with an IC company. He has been an Associate Professor with the School of Artificial Intelligence, Neijiang Normal University, Neijiang, China. His current research interests include modeling and fabrication of CMUT devices, human body communication, body sensor networks, and neuromodulation.
KIN FONG LEI (Senior Member, IEEE) received the M.Phil. and Ph.D. degrees from The Chinese University of Hong Kong, Hong Kong, in 2000 and 2005, respectively. In 2006, he joined the University of Western Ontario, London, ON, Canada, as a Postdoctoral Fellow. From 2007 to 2010, he was a Lecturer with The Hong Kong Polytechnic University, Hong Kong. In 2010, he joined Chang Gung University, Taoyuan, Taiwan, as an Assistant Professor. In 2019, he was promoted to a Professor. He has authored over 100 academic papers. He was invited to contribute in eight books/book chapters. His current research interests include biophysics, biosensing, rapid diagnostics, and cancer biology. He served as a Technical Program Committee Member for the IEEE Conferences for MEMS/Microfluidics Researchers, such as IEEE-NEMS 2014, Hawaii; IEEE-NEMS 2017, Los Angeles, CA, USA; and IEEE-NEMS 2018, Singapore.

SHUANG ZHANG (Senior Member, IEEE) received the B.S. degree in mathematics and applied mathematics from Neijiang Normal University, Neijiang, China, in 2007, the M.S. degree in control engineering from the Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, in 2011, and the Ph.D. degree in electrical and electronic engineering from the University of Macau, Macau, in 2019. He has been an Associate Professor with the School of Artificial Intelligence, Neijiang Normal University; and a Postdoctoral Researcher with the School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC). His current research interests include human body communication, digital signal processing, and body sensor networks. He is a Senior Member of the Chinese Society of Biomedical Engineering (CSBME) and the Chinese Society For Electrical Engineering (CSEE).

PENG UN MAK (Senior Member, IEEE) received the B.Sc. degree in electrical engineering from the National Taiwan University, Taipei, Taiwan, and the M.Sc. and Ph.D. degrees in electrical engineering from Michigan State University, East Lansing, MI, USA. Since 1997, he has been an Assistant Professor with the Department of Electrical and Computer Engineering, University of Macau, Macau. He has authored or coauthored over 140 peer-reviewed technical publications (journals, book chapters, and conference proceedings). He has performed research in bio-signal extraction and processing, bio-electromagnetism, human body communication, and body sensor networks. He is also a Life Member of Phi Kappa Phi and an Invited Member of Eta Kappa Nu (currently IEEE-HKN).

MANG I VAI (Senior Member, IEEE) received the Ph.D. degree in electrical and electronics engineering from the University of Macau, in 2002. Since 1984, he has been performing research in the areas of digital signal processing and embedded systems. He is currently a Coordinator of the State Key Laboratory of Analog and Mixed-Signal VLSI and an Associate Professor at the Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau.