The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis

Qiang Gang, Conceicao Bettencourt, Pedro M. Machado, Zoe Fox, Stefien Brady, Estelle Healy, Matt Parton, Janice L. Holton, David Hilton-Jones, Perry B. Shieh, Edmar Zanotelli, Boel De Paepe, Jan De Bleeker, Aziz Shaibani, Michela Ripolone, Raffaella Violani, Maurizio Moggio, Richard J. Barohn, Mazen M. Dimachkie, Marina Mora, Renato Mantegazza, Simona Zanotti, Michael G. Hanna, Henry Houlden, the Muscle Study Group and the International IBM Genetics Consortium

A previous study showed that, in carriers of the apolipoprotein E (APOE) genotype ε3/ε3 or ε3/ε4, the presence of a very long (VL) polyT repeat allele in “translocase of outer mitochondrial membrane 40” (TOMM40) was less frequent in patients with sporadic inclusion body myositis (sIBM) compared with controls and associated with a later age of sIBM symptom onset, suggesting a protective effect of this haplotype. To further investigate the influence of these genetic factors in sIBM, we analyzed a large sIBM cohort of 158 cases as part of an International sIBM Genetics Study. No significant association was found between APOE or TOMM40 genotypes and the risk of developing sIBM. We found that the presence of at least 1 VL polyT repeat allele in TOMM40 was significantly associated with about 4 years later onset of sIBM symptoms. The age of onset was delayed by 5 years when the patients were also carriers of the APOE genotype ε3/ε3. In addition, males were likely to have a later age of onset than females. Therefore, the TOMM40 VL polyT repeat, although not influencing disease susceptibility, has a disease-modifying effect on sIBM, which can be enhanced by the APOE genotype ε3/ε3.

1. Introduction

Sporadic inclusion body myositis (sIBM) is known as the most common acquired myopathy among people 50 years and older (Machado et al., 2014). Given its similarities with Alzheimer’s disease such as the late age of onset and the abnormal accumulation of proteins, the apolipoprotein E (APOE, OMIM#107741) gene has been one of the most popular genes studied in sIBM (Gang et al., 2014), but no association with sIBM disease risk was confirmed.
Table 1

Variable	Count	Age of onset (mean ± SD; y)	Regression coefficient	p Value\(^b\)
Ethnicity				
Non-Caucasian	16	56.7 ± 5.7	Reference	
Caucasian	141	60.0 ± 10.0		
Gender				
F	52	57.9 ± 10.4	Reference	0.28
M	105	60.6 ± 9.3	2.7 (–0.5, 5.9)	0.095
APOE				
ε2/ε4\(^a\)	6	56.8 ± 5.8	Reference	
ε3/ε3	99	60.2 ± 9.8		
ε2/ε3	19	56.9 ± 10.0	Reference	0.23
ε3/ε4 and ε4/ε4	33	60.4 ± 9.7	–2.9 (–7.7, 1.9)	0.43
TOMM40 polyT				
No VL carriage	74	58.1 ± 9.7	Reference	0.027
VL carriage	83	61.2 ± 9.6	3.7 (0.4, 6.9)	
APOE-TOMM40				
ε3/ε3 and polyT	38	57.3 ± 9.9	Reference	
non-VL carriage				
ε3/ε3 and polyT	61	62.0 ± 9.4	4.9 (1.1, 8.7)	0.013
VL carriage				

Key: APOE, apolipoprotein E; CI, confidence interval; F, female; M, male; SD, standard deviation, sIBM, sporadic inclusion body myositis; TOMM40, translocase of outer mitochondrial membrane 40; VL, very long.

\(^a\) Each analysis was adjusted for gender, ethnicity, tissue, and genetic factors, except for the variable under study.

\(^b\) p value < 0.05 was considered statistically significant (marked in bold).
References

Gang, Q., Bettencourt, C., Machado, P., Hanna, M.G., Houlden, H., 2014. Sporadic inclusion body myositis: the genetic contributions to the pathogenesis. Orphanet J. Rare Dis. 9, 88.

Machado, P.M., Dimachkie, M.M., Barohn, R.J., 2014. Sporadic inclusion body myositis: new insights and potential therapy. Curr. Opin. Neurol. 27, 591–598.

Mastaglia, F.L., Rojana-Udomsart, A., James, I., Needham, M., Day, T.J., Kiers, L., Corbett, J.A., Saunders, A.M., Lutz, M.W., Roses, A.D., Alzheimer’s Disease Neuroimaging Initiative, 2013. Polymorphism in the TOMM40 gene modifies the risk of developing sporadic inclusion body myositis and the age of onset of symptoms. Neuromuscul. Disord. 23, 969–974.

Needham, M., Hooper, A., James, I., van Bockxmeer, F., Corbett, A., Day, T., Garlepp, M.J., Mastaglia, F.L., 2008. Apolipoprotein epsilon alleles in sporadic inclusion body myositis: a reappraisal. Neuromuscul. Disord. 18, 150–152.

Roses, A.D., Lutz, M.W., Amrine-Madsen, H., Saunders, A.M., Crenshaw, D.G., Sundseth, S.S., Huentelman, M.J., Welsh-Bohmer, K.A., Reiman, E.M., 2010. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J. 10, 375–384.