Mycophenolate mofetil inhibits the development of Coxsackie B3-virus-induced myocarditis in mice

Elizaveta Padalko¹, Erik Verbeken², Patrick Matthys³, Joeri L Aerts⁴, Erik De Clercq¹ and Johan Neyts*¹

Address: ¹Laboratory of Chemotherapy, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium, ²Division of Morphology and Molecular Pathology, University Hospitals, Minderbroedersstraat 12, B-3000 Leuven, Belgium, ³Laboratory of Immunobiology, Rega Institute, Katholieke Universiteit, Minderbroedersstraat 10, B-3000 Leuven, Belgium and ⁴Experimental Laboratory Medicine, University Hospitals, Herestaat 49, B-3000 Leuven, Belgium

Email: Elizaveta Padalko - epadalk1@jhmi.edu; Erik Verbeken - Erik.Verbeken@med.kuleuven.ac.be; Patrick Matthys - Patrick.Matthys@rega.kuleuven.ac.be; Joeri L Aerts - Ajoeriaerts@aol.com; Erik De Clercq - erik.declercq@rega.kuleuven.ac.be; Johan Neyts* - johan.neyts@rega.kuleuven.ac.be

* Corresponding author

Abstract

Background: Viral replication as well as an immunopathological component are assumed to be involved in the development of coxsackie B virus (CBV)-induced myocarditis. We observed that mycophenolic acid (MPA), the active metabolite of the immunosuppressive agent mycophenolate mofetil (MMF), inhibits coxsackie B3 virus (CBV3) replication in primary Human myocardial fibroblasts. We therefore studied whether MMF, which is thus endowed with a direct antiviral as well as immunosuppressive effect, may prevent CBV-induced myocarditis in a murine model.

Results: Four week old C3H-mice were infected with CBV3 and received twice daily, for 7 consecutive days (from one day before to 5 days post-virus inoculation) treatment with MMF via oral gavage. Treatment with MMF resulted in a significant reduction in the development of CBV-induced myocarditis as assessed by morphometric analysis, i.e. 78% reduction when MMF was administered at 300 mg/kg/day (p < 0.001), 65% reduction at 200 mg/kg/day (p < 0.001), and 52% reduction at 100 mg/kg/day (p = 0.001). The beneficial effect could not be ascribed to inhibition of viral replication since titers of infectious virus and viral RNA in heart tissue were increased in MMF-treated animals as compared to untreated animals.

Conclusion: The immunosuppressive agent MMF results in an important reduction of CBV3-induced myocarditis in a murine model.

Background

Viral myocarditis is a common pathological condition detected in approximately 1% of unselected asymptomatic individuals [1]. Many viruses have been shown to be involved as causative agents, but the principal agents belong to enteroviruses in general and coxsackieviruses in particular [2,3]. The proportion of cases of myocarditis with coxsackieviral ethiology varies but can in 25–50% of
the cases be attributed to coxsackie B group viruses (CBV) [4,5]. Although most enterovirus-related cardiac illnesses are subclinical, severe arrhythmias and sudden cardiac death may appear. About 10 to 20% of symptomatic patients will eventually develop chronic cardiomyopathy, which may progress to dilated cardiomyopathy, a severe pathological condition, often requiring heart transplantation [6-8]. Overall, the entroviral genome is present in the hearts of 15–20% of patients with dilated cardiomyopathy [4,5,9,10]. Both direct viral injury and the immune response of the host are believed to play a role in the pathogenesis of viral heart disease [11]. Recent studies in mouse models show that direct viral-induced damage to the heart is necessary to cause CBV3-induced myocarditis [12,13] and that a scenario of ‘molecular mimicry’ is believed to be unlikely [14]. There is a preponderance of evidence that cytotoxic T lymphocytes are involved in CBV3-induced myocarditis [15,16]. A therapeutic strategy against coxsackievirus myocarditis may therefore ideally be a combination of antiviral and immunosuppressive, ideally lymphocyte-selective, therapy. Mycophenolate mofetil (MMF), [the morpholinoethyl ester of mycophenolic acid (MPA)] is an immunosuppressive agent that is used with success in the prevention of acute renal allograft rejection and in the treatment of refractory rejection in renal, heart and liver transplant patients [17,18]. MMF is hydrolysed to MPA, the active immunosuppressive molecule, which is a potent inhibitor of inosine monophosphate dehydrogenase (IMP-DH). The latter enzyme is key in de novo purine synthesis and is responsible for the conversion of IMP through XMP to GMP. Since IMP represents an important intermediate in the generation of guanine-based nucleotides, MPA causes depletion of intracellular guanine nucleotide pools, which are responsible for the immunosuppressive effect of the drug [19]. T and B lymphocytes are singularly dependent on the de novo pathway for purine synthesis, what explains the lymphocyte-selective antiproliferative effects of MPA [19-23]. We earlier reported on the broad-spectrum antiviral activity of MPA and demonstrated that the molecule inhibits CBV replication in vitro [24]. Since MMF is thus endowed with both a direct inhibitory effect on CBV replication (in vitro), as well as with an immunosuppressive effect, we decided to study the effect of treatment with MMF in a murine model for CBV-induced myocarditis.

Results

In vitro anti-CBV3 activity of MPA

Both MPA and ribavirin inhibit the in vitro replication of CBV3 in Vero and HMF cells. The EC50-values for inhibition of CBV3 replication in Vero cells by ribavirin was 117 µg/ml and 55 µg/ml by MPA. In HMF cells EC50-values of ribavirin and MPA were 250 µg/ml and 80 µg/ml, respectively. In virus yield assays, MPA and ribavirin (both at 100 µg/ml) reduced viral yield by 89% and 87%, respectively (Table 1).

Effect of MMF on CBV3-induced myocarditis

C3H/HeN hs mice were infected intraperitoneally with CBV3 and were treated by oral gavage twice daily for a period of 6 consecutive days (starting one day before virus inoculation) with either 100, 200 or 300 mg/kg/day of MMF. The interferon inducer Poly IC [15 mg/kg/day once a day, given intraperitoneally for 3 consecutive days, i.e. on day one before virus inoculation, on the day of virus inoculation and one day after virus inoculation] was used as a positive control. No signs of toxicity of the compounds were noted in treated animals. In a parallel toxicity experiment, the body weight of drug-treated uninfected young mice was monitored. Animals that received treatment with MMF at 200 or 300 mg/kg/day showed some growth retardation, but appeared otherwise healthy. The bodyweight of mice that received either 200 mg/kg/day or 300 mg/kg/day of MMF for 5 consecutive days was respectively 117% and 108% of their body weight on day 0. The bodyweight of mice that had received vehicle only for 5 consecutive days was 132% of their body weight on day 0. All infected mice were sacrificed on day 7 post-virus inoculation and the severity of the myocarditis was assessed by morphometrical analysis (Fig. 1). A dose of 300 mg/kg/day MMF resulted in 78% reduction of the myocarditis score (p < 0.001), a 200 mg/kg/day dose of MMF resulted in 65% reduction (p < 0.001), and a dose of 100 mg/kg/day of MMF resulted in

Table 1: Effect of ribavirin and MPA on CBV3 replication in Vero cells and human myocardial fibroblasts (HMF)

	EC50 (µg/ml)	Yield reduction (%)	MTC (µg/ml)
	Vero	HMF	
MPA	55	80	89
Ribavirin	117	250	87

*Concentration of compound that reduces viral induced cytopathic effect by 50% *Reduction of virus yield in Vero cells in the presence of 100 µg/ml of either compound *As determined in Vero cells. Minimal toxic concentration, or correlation required to other normal cell morphology.
a reduction of 52% of the myocarditis foci (p = 0.001). The interferon inducer poly IC reduced the severity of myocarditis by 97% (p < 0.001). Prednisone, another immunosuppressive agent was included as a control. Mice received the compound at a dose of 15 mg/kg/day by intraperitoneal injections starting one day before the virus inoculation, until day 5 post-virus inoculation. In contrast to what was observed for MMF, treatment with prednisone resulted in an aggravation of the myocarditis, with a 75% increase in the number of myocardial foci (p = 0.004).

Immunosuppressive effect of MMF

To verify whether MMF at the highest and most effective dose used (i.e. 300 mg/kg/day), indeed suppressed the immune system in C3H mice, a flow cytometric analysis was carried out on cells isolated from spleen and blood of (i) CBV3 infected mice (at day 7 post-virus inoculation) that had been treated with 300 mg/kg/day of MMF for 7 consecutive days (n = 2) (ii) uninfected mice that had received treatment with 300 mg/kg/day of MMF for 7 consecutive days (n = 2) (iii) CBV3 infected but untreated mice (n = 2) and (iv) uninfected untreated mice (n = 2). A significant drop (50%) in the number of CD19+ cells was observed in spleen of MMF treated infected mice as comp-
pared to untreated infected mice (Fig. 2), indicating severe B-cell depletion. No significant effect of MMF administration on the numbers of CD4+ and CD8+ cells in spleen in the different groups of mice was observed (data not shown).

Effect of MMF on viral titers in heart

C3H/HeNHsd mice were infected intraperitoneally with CBV3 and were treated two times daily for a period of 7 consecutive days (starting one day before virus inoculation) with either 100, 200 or 300 mg/kg/day of MMF. Hearts were dissected on day 6 post-virus inoculation and viral load was determined by monitoring (i) the titer of infectious virus, as well as (ii) the levels of viral RNA by quantitative real-time RT-PCR. In contrast to expectations, a significant increase was noted in viral RNA levels in heart homogenates of animals that had been treated with either 100 mg/kg/day of MMF (28%, p < 0.001), 200 mg/kg/day of MMF (17%, p = 0.04) or 300 mg/kg/day of MMF (16%, p = 0.003) as compared to infected untreated controls (Fig. 3).

Discussion

Recent studies have shown that both direct viral induced damage, as well as immunopathological factors, are involved in coxsackievirus induced myocarditis [11,12]. We therefore hypothesised that a molecule that would have an inhibitory effect on both the immune system and on viral replication, may be efficient in preventing the development of CBV-induced myocarditis. Earlier we
observed that the replication of various RNA viruses can be inhibited by mycophenolic acid (MPA), the active component of mycophenolate mofetil [24]. MPA, which is a potent inhibitor of IMP-dehydrogenase depletes intracellular GTP pools thereby inhibiting viral RNA synthesis and as a consequence viral replication. MMF is a well known immunosuppressive agent that is being used in a variety of organ transplantations [25]. In the murine model for acute myocarditis treatment with MMF resulted in a marked and dose dependent reduction in the severity of the virus induced myocarditis. In marked contrast to MMF, prednisone, which was included as an example of another immunosuppressive agent, resulted in a significant increase in the number of myocarditis lesions. This is consistent with earlier studies where it was shown that corticosteroids increase the severity of the disease during the acute phase of viral myocarditis in murine models [26,27]. In contrast to expectations, and despite the protective effect of MMF on the progression of the myocarditis, RNA levels in heart tissue were markedly increased in MMF treated animals. This can only be explained if the antiviral effect of MPA is not potent enough or if the pharmacokinetic profile of the molecule is not favourable enough to allow MPA to elicit an antiviral effect in vivo. In addition, the immunosuppressive effect of MMF may "neutralize" its own antiviral effect since viral replication will not, or not more efficiently, be controlled by the immune system of the host. It remains puzzling, however, why MMF (despite the fact that it results in an increase in viral RNA levels in the heart), is able to reduce the severity of viral induced myocarditis, whereas prednisone, another immunosuppressive agent, aggravates the disease.

Figure 3

Effect of MMF on viral RNA load monitored by quantitative RT-PCR in the heart of CBV3-infected C3H mice. The different groups consisted of infected mice that had either been left untreated or that had been treated with MMF (at 100, 200 or 300 mg/kg/day). Each group consisted of 4 animals (*: p < 0.05; **: p < 0.01; ***: p < 0.001).
Conclusions
We conclude that the immunosuppressive agent MMF results in a marked and dose dependent reduction in the severity of CBV3-induced myocarditis in a murine model. However, we do not advise the use of this drug as a single therapy for this pathological condition because of the increase in the viral titers in the heart under MMF treatment. However, combination therapy with selective antivirals, if these would become available, may be an interesting option. Despite the fact that MPA, the metabolically active component of MMF, elicits in vitro activity against CBV3, the protective effect of MMF on CBV3-induced myocarditis in mice is apparently solely due to its immunosuppressive effects.

Methods
Cells and viruses
Coxsackievirus B3 (CBV3) (Nancy strain) was obtained from the American Type Culture Collection (ATCC: VR-30). CBV3 was propagated in Vero cells. Human myocardial fibroblasts of pediatric origin (HMF) were prepared from parts of myocardial tissue (kindly provided by Dr. B. Meyns (Cardiovascular Surgery Unit, University Hospitals, Leuven, Belgium), and obtained from the surgery for Fallot-tetralogy) that was digested with trypsin (Gibco, Life Technologies, Rockville, MD). HMF and Vero cells were propagated in minimal essential medium (MEM; Gibco, Life Technologies, Rockville, MD). HMF and Vero cells were propagated in minimal essential medium (MEM; Gibco, Life Technologies, Rockville, MD) supplemented with 10% fetal calf serum (FCS; Integro, Zaandam, The Netherlands), 1% L-glutamine (Gibco, Life Technologies, Rockville, MD), and 0.3% sodium bicarbonate (Gibco, Life Technologies, Rockville, MD).

Compounds
Mycohenolic acid (MPA) was purchased from Sigma (St. Louis, Mo., USA). MMF was kindly provided by Roche (Palo Alto, California, USA).

Antiviral assays
Human myocardial fibroblasts (HMF) or Vero cells were grown to confluency in microtiter trays (final cell density: \(\approx 10^5 \) cell/well) and were infected with an input of CBV3 that caused \(\approx 100\% \) CPE at 5 days postinfection (500 CCID\(_{50}\)). Virus was removed following a 2-h virus adsorption period after which serial dilutions of the compounds were added. Virus-induced cytopathic effect (CPE) in HMF was recorded microscopically at 5 days post infection following fixation with 70% ethanol and staining with a 2% Giemsa solution (Merck, Darmstadt, Germany). The CellTiter 96 \(\text{AQUous} \) Non-Radioactive Cell Proliferation Assay (MTS) was used to determine antiviral activity in Vero cells and proliferation of uninfected Vero cells. The MTS assay was performed according to the instructions of the manufacturer (Promega Corporation, Florida, USA). Briefly, 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) is bioreduced by cells into a formazan that is soluble in tissue culture medium after which absorbance of the formazan is read at 490 nm. To measure the effect on cell growth, cells were seeded (in MEM containing 10% FCS) at a density of 4000 cell/well in the presence of serial dilutions of the compounds. Cells were allowed to proliferate for 4 days after which the assay was read by means of the MTS-method.

Virus yield assay

Confluent cultures of Vero cells were infected with a titer of CBV3 that caused 100% CPE at 5 days post infection and were treated (or left untreated) with serial dilutions of the drugs. Cultures were harvested and frozen (-80°C) at 5 days postinfection. Following another freezing-thawing cycle, cell debris was removed by centrifugation and serial dilutions were inoculated on confluent Vero cell cultures. Virus titers were determined 5 days later.

Virus titration from heart homogenate

Hearts were dissected on day 6 post-virus inoculation, a time at which the highest viral titers were detected in untreated controls in preliminary experiments (data not shown). Serial dilutions of 10% (w/v) heart homogenates were inoculated on confluent Vero cell cultures and virus titers were determined 5 days later.

In vivo toxicity experiments

NMRI male mice [Centre d’Elevage, R. Janvier, France] weighing 15 g were treated for 6 consecutive days, by means of oral gavage, with mycophenolate mofetil (MMF) at 200 mg/kg/day or 300 mg/kg/day in 0.2 ml vehicle. Vehicle consisted of sodium chloride (0.9%), sodium carboxymethylcellulose (0.5%), polysorbate 80 (0.4%), benzyl alcohol (0.9%) and distilled water (97.3%).

Treatment of CBV3 infected mice

Four-week-old male C3H/HeNHsd mice (Harlan Laboratories, The Netherlands) weighing 15 g, were inoculated intraperitoneally (i.p.) with 10^7 CCID$_{50}$ of CBV3. MMF was administered by oral gavage, twice daily (starting one day before the virus inoculation until day 5 post-virus inoculation) at doses of 100, 200 or 300 mg/kg/day in the same vehicle as described for the toxicity experiments. Poly IC was dissolved in sterile PBS and was administered intraperitoneally, once a day for 3 consecutive days (one day before virus inoculation, the day of virus inoculation and one day after virus inoculation) at a dose of 15 mg/kg/day. Body weight was monitored daily. To assess the severity of acute CVB3-induced myocarditis, all animals were sacrificed on day 7 post-virus inoculation (following ether anesthesia). Hearts were fixed in 6% buffered formaldehyde. The heart was sliced parallel to the basis of the organ into three pieces. Each of these were embedded in paraffin and sectioned at 5 μm. Sections were subsequently stained with H & E and examined by light microscopy.

Morphometry

The extension of myocarditis was determined in H & E-stained sections of the heart of untreated, MMF-treated and polyIC-treated animals by means of a conventional point-counting method using an ocular grid containing 121 equally spaced points. Per grid 5 constant points were counted either hitting or non-hitting an affected area and this was done for 15 stratified random positions of the grid. A myocarditis “score” was defined as the proportion of points hitting the myocarditis area and is expressed in %. The counting was performed for 3 sections per heart. The counting resulted in a total of 75 points per heart. Sections were read at × 200.

Flow cytometric analysis

Spleens were removed and passed through cell strainers (BD Labware, Franklin Lakes, NJ). Blood, taken by heart puncture was collected on heparin. Erythrocytes were removed from blood and splenocyte suspensions by lysis with NH$_4$Cl (0.83% in 0.01 M Tris-HCl, ph 7.2; two consecutive incubations of 5 and 3 minutes at 37°C). Remaining cells were washed, resuspended in cold PBS, counted and stained for flow cytometric analysis as described [45]. Briefly, aliquots of 2×10^5 cells in 0.2 ml were stained with either FITC-conjugated anti-CD8 and PE-conjugated anti-CD4 or stained with FITC-conjugated anti-CD19 and PE-conjugated anti-Mac-1 (CD11b). All antibodies were purchased from R&D Systems Europe, Abingdon, U.K. Cells were analysed with a FACScan flow cytometer (BD Biosciences).

RNA isolation and cDNA synthesis

Heart homogenate of 10% (w/v) was used for the analysis. RNA extraction was performed using the QIAamp RNA Mini Kit (QIAGEN, Hilden, Germany) according to the procedure described by the manufacturer. cDNA was generated at 42°C for 45 minutes using 200 units M-MLV reverse transcriptase (Gibco, Life Technologies, Rockville, MD), 40 units RNasin Rnase Inhibitor (Promega Corporation, Florida, USA), 5 μM random hexamer primers (Amersham Pharmacia Biotech, Roosendaal, The Netherlands), 1 mM dNTPs (Gibco, Life Technologies, Rockville, MD) and buffer containing 250 mM Tris HCl (pH 8.3), 375 mM KCl and 15 mM Mg$^{2+}$ (Gibco, Life Technologies, Rockville, MD) following denaturation at 70°C for 10 minutes. The reaction was terminated by heating at 99°C for 3 minutes.
Quantitative analysis of CBV3 RNA by real-time RT-Taqman PCR

Real time PCR was performed on the ABI Prism™ 7700 Sequence Detection System (Applied Biosystems, Roche, Branchburg, New Jersey, USA). Primers and probes were developed using Primer Express software (Applied Biosystems, Roche, Branchburg, New Jersey, USA). The primers used were: forward primer 5’-ACGATCCAGTGT-TTTTG-3’, reverse primer 5’-TGTCAAAAACGGTAT-GGACAT-3’ and Taqman probe 5’-CGAGGAAAAACGGCCGCC-3’. The Taqman probe was labelled at the 5’ end with the reporter dye molecule FAM (emission wavelength 518 nm) and at the 3’ end with the quencher dye TAMRA (emission wavelength 582 nm). The Ct-value was <50. Results are expressed as genomic equivalents (GE), being the amount of cDNA corresponding to the amount of viral RNA.

Statistics

To assess differences in the number of heart lesions in treated versus untreated animals, data were analysed by means of the Student’s t test.

Authors’ contributions

EP carried out the in vitro and in vivo experiments as well as molecular biological studies. EV participated in the histological evaluation of the in vitro experiments. PM participated in the design and interpretation of flow cytometric data. JLA participated in the design and analysis of quantification of CBV3 RNA by real-time RT-Taqman PCR. EDC and JN are the principal investigators and conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the Geconcerteerde Onderzoeksactie (GOA 0/12). We thank Mr. W. Zeegers for assistance with the animal experiments, Mrs. T. Mitera for assistance with the flow cytometric analysis, critical reading, Mrs. D. Brabants for kind editorial help and Dr. C. Morrell for critical reading.

References

1. Gravanis MB, Sterby NH: Incidence of myocarditis: a 10-year autopsy study from Malmö, Sweden,. Arch Pathol Lab Med 1991, 115:390-392.
2. Friman G, Wesslen L, Fohman J, Karjalainen J, Roll C: The epidemiology of infectious myocarditis, lymphocytic myocarditis and dilated cardiomyopathy. Eur Heart J 1995, 16(Suppl O):36-41.
3. Leslie K, Blay R, Haidsch C, Lodge A, Weller A, Huber S: Clinical and experimental aspects of viral myocarditis. Clin Microbiol Rev 1989, 2(2):191-207.
4. Baboonian C, Davies MJ, Booth JC, McKenna WJ: Coxsackie B viruses and human heart disease. Curr Top Microbiol Immunol 1999, 223:31-52.
5. Baboonian C, Treasure T: Meta-analysis of the association of enteroviruses with human heart disease. Heart 1997, 78(6):539-543.
6. Laks H, Marelli D, Odim J, Fazio D: Heart Transplantation in the young and elderly. Heart Fail Rev 2001, 6(3):221-226.
7. Fujioka S, Kitaura Y: Coxsackie B virus infection in idiopathic dilated cardiomyopathy: clinical and pharmacological implications. BioDrugs 2001, 15(12):791-799.
8. Sole MJ, Liu P: Viral myocarditis: a paradigm for understanding the pathogenesis and treatment of dilated cardiomyopathy. J Am Coll Cardiol 1999, 34(2):83-88.
9. Szath M, Tamura G, Segawa I, Hiramori K, Sarodate R: Enteroviral RNA in dilated cardiomyopathy. Eur Heart J 1994, 15(7):934-939.
10. Knowlton KU, Badorff C: The immune system in viral myocarditis: maintaining the balance. Circ Res 1995, 85:559-561.
11. Howitz MS, La Cava A, Fine C, Rodriguez E, Ilic A, Sarvetnick N: Pancreatic expression of interferon-gamma protects mice from lethal coxsackievirus B3 infection and subsequent myocarditis. Nat Med 2000, 6(6):693-697.
12. Kawai C: From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future. Circulation 1999, 99:1091-1100.
13. Rose NR: Viral damage or ‘molecular mimicry’ – placing the blame in myocarditis. Nat Med 2000, 6(6):631-632.
14. Henke A, Huber SA, Stelzner A, Whitton JL: The role of CD8+ T lymphocytes in coxsackievirus B3-induced myocarditis. J Viral 1995, 69:6720-6728.
15. Kashimoto C, Hiroaka Y, Takada H: T cell-mediated immune response enhances the severity of myocarditis in secondary cardiotropic virus infection in mice. Basic Res Cardiol 2001, 96(3):439-445.
16. Behrend M: Mycophenolate mofetil: suggested guidelines for use in kidney transplantation. BioDrugs 2001, 15(1):37-53.
17. Vasquez EM, Sifontis NM, Pollak R, Benedetti E: Impact of mycophenolate mofetil on recurrent rejection in kidney transplant recipients. Clin Transplant 2001, 15(4):253-257.
18. Allison AC, Eugini EM: The design and development of an immunosuppressive drug, mycophenolate mofetil. Springer Semin Immunopathol 1993, 14:333-380.
19. Eugini EM, Mirkovich A, Allison AC: Lymphocyte-selective antiproliferative and immunosuppressive effects of mycophenolic acid in mice. Scand J Immunol 1991, 33:175-183.
20. Sintchak MD, Fleming MA, Futer O, Raybuck SA, Chambers SP, Caron PR, Murcko MA, Wilson KP: Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell 1996, 85:921-930.
21. Eugini EM, Almquist SJ, Muller CD, Allison AC: Lymphocyte-selective cytostatic and immunosuppressive effects of mycophenolic acid in vitro: role of deoxyguanosine nucleotide depletion. Scand J Immunol 1991, 33(2):161-173.
22. Kilic M, Kahan BD: New trends in immunosuppression. Drugs of Today 2000, 36(6):395-410.
23. Neyts J, Andrei G, De Clercq E: Differential antiviral activity of several IMP dehydrogenase inhibitors. Tenth International Conference on Antiviral Research, Atlanta, Georgia, USA, 6-11 April 1997. Antiviral Res 1997, 34(2):A87. abstract no 163.
25. Mele TS, Halloran PF: The use of mycophenolate mofetil in transplant recipients. *Immunopharmacology* 2000, 47(2-3):215-245.

26. Matsumori A, Tomioka N, Kawai C: Viral myocarditis: immunopathogenesis and the effect of immunosuppressive treatment in a murine model. *Jpn Circ J* 1989, 53(1):58-60.

27. Tomioka N, Kishimoto C, Matsumori A, Kawai C: Effects of prednisolone on acute viral myocarditis in mice. *Am J Cardiol* 1986, 7(4):868-872.

28. Herzum M, Huber SA, Weller R, Grebe R, Maisch B: Treatment of experimental murine coxsackie B3 myocarditis. *Eur Heart J* 1991, 12(Suppl D):200-202.

29. Hiraoka Y, Kishimoto C, Kurokawa M, Ochiai H, Sasayama S: The effects of FK-506, novel and potent immunosuppressant, upon murine coxsackievirus B3 myocarditis. *J Pharmacol Exp Ther* 1991, 260:1386-1391.

30. Kishimoto C, Throp KA, Abellmann WH: Immunosuppression with high doses of cyclophosphamide reduces the severity of myocarditis but increases the mortality in murine coxsackievirus B3 myocarditis. *Circulation* 1990, 82:989-989.

31. Geller TJ, Condie D: A case of protracted coxsackie virus meningoencephalitis in a marginally immunodeficient child treated successfully with intravenous immunoglobulin. *J Neurol Sci* 1995, 129(2):131-3.

32. Hertel NT, Pedersen FK, Heilmann C: Coxsackie B3 virus encephalitis in a patient with agammaglobulinaemia. *Eur J Pediatr* 1989, 148(7):642-3.

33. Misbah SA, Spickert GP, Ryba PC, Hockaday JM, Kroll JS, Sherwood C, Kurzt JB, Moxon ER, Chapel HM: Chronic enteroviral meningoencephalitis in agammaglobulinemia: case report and literature review. *J Clin Immunol* 1992, 12(4):266-70.

34. Anderson DR, Wilson JE, Carthy CM, Yang D, Kandolf R, McManus BM: Direct interactions of coxsackievirus B3 with immune cells in the splenic compartment of mice susceptible or resistant to myocarditis. *J Virol* 1996, 70(7):4632-45.

35. Klingel K, Stephan S, Sauter M, Zell R, McManus BM, Bultmann B, Kandolf R: Pathogenesis of murine enterovirus myocarditis: virus dissemination and immune cell targets. *J Virol* 1996, 70(12):8888-95.

36. Mena I, Perry CM, Harkins S, Rodriguez F, Gebhard J, Whitton JL: The role of B lymphocytes in coxsackievirus B3 infection. *Am J Pathol* 1999, 155(4):1205-15.

37. Cho CT, Feng KK, McCarthy VP, Lenahan MF: Role of antiviral antibodies in resistance against coxsackievirus B3 infection: interaction between preexisting antibodies and an interferon inducer. *Infect Immun* 1982, 37(2):726-7.

38. Gauntt CJ, Arizpe HM, Higdon AL, Wood HJ, Bowers DF, Rozek MM, Crawley R: Molecular mimicry, anti-coxsackievirus B3 neutralizing monoclonal antibodies, and myocarditis. *J Immunol* 1995, 154(6):2983-95.

39. Gauntt CJ, Arizpe HM, Higdon AL, Rozek MM, Crawley R, Cunningham MW: Anti-Coxsackievirus B3 neutralizing antibodies with pathological potential. *Eur Heart J* 1991, 12(Suppl D):124-9.

40. Giri J, Kavoosi M, Chantler J: Enhancement of coxsackievirus B3 infection by antibody to a different coxsackievirus strain. *J Gen Virol* 2002, 83(Pt 2):331-8.

41. Kishimoto C, Kurokawa M, Ochiai H: Antibody-mediated immune enhancement in coxsackievirus B3 myocarditis. *J Mol Cell Cardiol* 2002, 34(9):1227-38.

42. Fohlman J, Pauksen K, Hyypia T, Eggertsen G, Ehrnst A, Iback NG, Friman G: Antiviral treatment with WIN 54 954 reduces mortality in murine coxsackievirus B3 myocarditis. *Circulation* 1996, 94:2254-2259.

43. Padalko E, Verbeeken E, de Clercq E, Neyts J: Inhibition of Coxsackie B3 virus induced myocarditis in mice by 2-(3,4-dichlorophenox)-5-nitrobenzonitrile. *J Med Virol* in press.

44. Padalko E, Nuyens D, Verbeeken E, Aerts JL, de Clercq E, Carmeliet P, Neyts J: The interferon inducer Ampligen® [poly(I)-poly(C)] markedly protects against Coxsackie B3 virus-induced myocarditis in mice. *Antimicrobial Agents Chemotherapy* in press.

45. Matthis P, Vermeire K, Mitera T, Heremans H, Huang S, Schols D, De Wolf-Peeters C, Billiau A: Enhanced autoimmune arthritis in IFN-gamma receptor-deficient mice is conditioned by myco-