Fast Reduction Method in Dominance-Based Information Systems

Yan Li, Qinghua Zhou and Yongchuan Wen
School of Applied Mathematics, Beijing Normal University, Zhuhai, Zhuhai City 519087, Guangdong, China
Email: ly@hbu.edu.cn

Abstract. In real world applications, there are often some data with continuous values or preference-ordered values. Rough sets based on dominance relations can effectively deal with these kinds of data. Attribute reduction can be done in the framework of dominance-relation based approach to better extract decision rules. However, the computational cost of the dominance classes greatly affects the efficiency of attribute reduction and rule extraction. This paper presents an efficient method of computing dominance classes, and further compares it with traditional method with increasing attributes and samples. Experiments on UCI data sets show that the proposed algorithm obviously improves the efficiency of the traditional method, especially for large-scale data.

1. Introduction

Rough set theory [1] is a powerful mathematical tool to deal with imprecise, incomplete and incompatible knowledge. It has been widely used in decision making, data mining and pattern recognition [2, 3], among others. In practical problems, there are often some continuous valued or preference ordered data, such as the attribute "score" can be numerical or can be divided into three attribute values: high, medium and low. This type of attributes is often used to evaluate objects in the universe, for example, to evaluate students by their scores of some subjects. In this case, the ordered information contained in the attribute values should not be ignored for better understanding the data. Since the traditional rough set (TRS) cannot effectively deal with this kind of information, dominance relation based rough set approach was proposed [4, 5] by replacing equivalence relations in TRS with dominance relations. DRSA is very useful to deal with practical problems with continuous-valued partial ordered attributes [6-8]. Ever since DRSA has been proposed, many researches and improvements have been made in the literature [9-12]. Nowadays, efficiently processing of large-scale data with dominance relations has become a main concern [13, 14]. A fast algorithm is developed in [15] to reduce the time efficiency of computing dominance classes through gradually reducing the search space. This method can further improve the computational efficiency of attribute reduction as well as rule extraction. Based on this fast algorithm, we develop a complete method of attribute reduction and compare this method with the traditional dominance relation based method with increasing attributes or sample to show its effectiveness and potential usefulness on large-scale datasets.

2. Preliminaries

In this section, some necessary concepts are given for reference.

Definition 1 (Target information system) A 4-tuple $S = (U, A, V, f)$ is called as a target information system, where U is a non-empty set of objects; A is a non-empty set of attributes. $A = \ldots$
on the value range of an attribute, i.e., a criterion \(x \in U \), \(x \geq a \) represents that \(x \) is at least as good as \(y \) under criterion \(a \), i.e., \(x \) is superior to \(y \) on \(a \). When all attributes in the information system are criteria, the information system is called an ordered information system [8].

For the attribute set \(B \subseteq A \), \(x \geq y \) means that \(x \) is superior to \(y \) on all the criteria in \(B \).

Definition 2 (Dominance/inferior relation) In an ordered information system, for any set of attributes \(B \subseteq A \), the dominance relation \(R_B^d \) is defined as

\[
R_B^d = \{ (x,y) \mid U^2 | f(x,a) > a f(y,a), a \in B \}.
\]

Obviously, if \(x \) and \(y \) satisfy \((x,y) \in R_B^d\), \(y \) is called to be superior to \(x \) on each attribute in \(B \). In contrast, for any set of attributes \(B \subseteq A \), the inferior relation \(R_B^i \) is defined as

\[
R_B^i = \{ (x,y) \mid U^2 | f(x,a) > a f(y,a), a \in B \}.
\]

Definition 3 (Dominance/inferior class) In an ordered information system, for any set of attributes \(B \subseteq A \), \([x]_B \) is called the dominance class of the object \(x \), defining as

\[
[x]_B = \{ y \mid U^1 f(x,a) > f(y,a), a \in B \}.
\]

\([x]_B^i \) is called the inferior class of object \(x \), defining as

\[
[x]_B^i = \{ y \mid U^1 f(x,a) > f(y,a), a \in B \}.
\]

Definition 4. (Dominance matrix) Given a target information system \(S = (U, A, V, f) \), for \(B \subseteq A \), dominance matrix \(A^x \) is defined as

\[
A^x(x_i, x_j) = \begin{cases} 1, & \text{if } f(x_j, a) \geq f(x_i, a) \\ 0, & \text{otherwise} \end{cases}
\]

where \(i = 1, 2, ..., n; j = 1, 2, ..., n; A^x(x_i, x_j) = 1 \) represents that \(x_j \) is superior to \(x_i \).

On the basis, the approximation sets of a given target concept and attribute reduction can be defined as follows.

Definition 5. (Lower and upper approximations) Suppose that \((U, A, V, f)\) is a continuous-valued information system. For \(x \in U \), define

\[
\overline{R}_B(x) = \{ v \mid [x]_B \cap v \neq \emptyset \}, \quad \underbar{R}_B(x) = \{ v \mid [x]_B \subseteq v \}.
\]

3. Fast Algorithm for Attribute Reduction in Dominance-based Information Systems

One of the important applications of rough set theory is to reduce attributes in data. The most informative information is preserved while some redundant attributes are removed. Based on the
concepts in Section II, computing dominance classes is a necessary step for the computation of approximation sets and then the attribute reduction. In the following, a fast algorithm is presented.

3.1. Computing Dominance Classes

Input: An ordered information system
\[S = (U, A) , \]
\[U = \{ x_1, x_2, ..., x_n \}, A = \{ a_1, a_2, ..., a_m \}. \]

Output: The dominance classes of all objects in \(U \).

Step 1. The current attribute and the dominance class for an arbitrary object \(x \) in the universe are initialized as \(j=1; a = a_j \); \([x]^j = U \). While \(j < m \), performs step 2;

Step 2. Compute the dominance class of object \(x \) on current attribute \(a \) by comparing the attribute values of \(x \) with the attribute values of the \(\left\lceil \frac{|x|}{a} \right\rceil -1 \) remaining objects in the dominance class \([x]^j \) (instead of the entire universe \(U \)), and then the dominance class of \(x \) is updated as \([x]^j = [x]^j \cap [x]_j^j; j = j + 1 \).

The dominance class of object \(x \) can be obtained until all attribute are added;

Step 3. Steps 1-2 are repeatedly performed for all the \(n \) objects.

3.2. Computing the Positive Region Based on Dominance-Equivalence Relations

Based on the obtained dominance classes from Section A, the positive region can be quickly computed as follows.

Step 1. Computing the decision classes according to the given target information system as \(U/d = \{ D_1, D_2, ..., D_j \} \);

Step 2. Computing the dominance matrix \(A^S \) and decision class matrix \(D \), and conducting “or” operation and obtain the positive region of each decision class:

\[POS^S(D_j) = \{ x_i | A(i,n) \cup D(j,n) = D(j,n) \}. \]

Step 3. Output positive region \(POS^S(D) = \bigcup_{j=1}^n POS^S(D_j) \).

3.3. Computing Attribute Reduction

According to the obtained positive region, the discernibility matrix based on dominance relations can be computed. Then the attribute core and reduction can be also computed by conducting “and”/ “or” operations. The attribute core is found by detecting the singular element in the discernibility matrix and then other attributes are gradually added into the core until the intersection of the current reduction set and all the elements in the matrix is not empty.

4. Experimental Results

The proposed algorithm is compared with the traditional algorithm with respect to the time efficiency. Here, traditional method refers to the attribute reduction algorithm which computes the dominance classes by scanning all the attributes and sample two times, and does not use the concept of dominance matrix to compute the positive region and attribute reduction.

4.1. Data Sets

Totally, six groups of datasets are selected from the UCI repository [16]. The range of the number of samples is from 198 to 10000; and the number of attributes is from 8 to 60. We divide the experiment into two parts: (1) in the first part, we select three datasets which have comparative more samples and less attributes. The proposed method is compared with the traditional method by adding more attributes each time on the original data. (2) In the second part, we select another three data sets which have comparatively less samples but more attributes. In this part, the two methods are compared with increasing samples. The “Size” of data is denoted as (the number of samples* the number of attributes).
4.2. Running Time of Computing Dominance Classes

In this section, we compare the fast algorithm for computing dominance classes and the traditional algorithm with increasing attributes. Three dataset are used: Clapping data, Running data and the ae-test data. In each round of the experiments, two randomly selected attributes are added to the original dataset. The two algorithms are implemented on these datasets and the running time is recorded and compared. The following tables in TABLE I (a) (b) (c) on three groups of data show the results. In each table, the first line of results indicates those on the original dataset. In the following lines, each time two attributes are added on the original data.

| Table 1. Running time of the two algorithms with the increase of attributes |
|-----------------------------|-----------------------------|-----------------------------|
| (a) Clapping Dataset | Traditional Method | Fast Method Reduction Rate |
| Data | Size | t_1 (s) | t_2 (s) | Percentage (%) |
| Clapping0 | 10000*8 | 117.955 | 105.823 | 10.285 |
| Clapping1 | 10000*10 | 143.233 | 106.460 | 25.674 |
| Clapping2 | 10000*12 | 168.317 | 109.273 | 35.079 |
| Clapping3 | 10000*14 | 195.411 | 110.913 | 43.241 |
| Clapping4 | 10000*16 | 219.116 | 112.506 | 48.655 |
| Clapping5 | 10000*18 | 247.486 | 115.392 | 53.374 |
| Average | 10000*13 | 181.920 | 110.061 | 36.051 |

Reduction rate = (t_1 - t_2) / t_1 × 100% (the same in all the following tables)

| (b) Running Dataset |
|---------------------|-----------------------------|-----------------------------|
| Data | Size | Traditional Method | Fast Method Reduction Rate |
| Data | Size | t_1 (s) | t_2 (s) | Percentage (%) |
| Running0 | 9964*8 | 121.137 | 104.946 | 13.366 |
| Running1 | 9964*10 | 152.289 | 115.573 | 24.109 |
| Running2 | 9964*12 | 180.238 | 124.123 | 31.134 |
| Running3 | 9964*14 | 203.675 | 126.716 | 37.785 |
| Running4 | 9964*16 | 231.723 | 128.601 | 44.502 |
| Running5 | 9964*18 | 256.192 | 133.220 | 48.000 |
| Average | 9964*13 | 190.876 | 122.197 | 33.149 |

| (c) ae-test Dataset |
|---------------------|-----------------------------|-----------------------------|
| Data | Size | Traditional Method | Fast Method Reduction Rate |
| Data | Size | t_1 (s) | t_2 (s) | Percentage (%) |
| ae-test1 | 5687*12 | 51.593 | 33.047 | 35.947 |
| ae-test1 | 5687*14 | 61.728 | 37.203 | 39.731 |
| ae-test2 | 5687*16 | 69.243 | 37.677 | 45.587 |
| ae-test3 | 5687*18 | 80.990 | 42.047 | 48.084 |
| ae-test4 | 5687*20 | 88.792 | 44.021 | 50.422 |
| ae-test5 | 5687*22 | 98.325 | 46.154 | 53.060 |
| Average | 5687*17 | 75.112 | 40.025 | 45.472 |
We can see from these tables that the fast method is much more efficient in computing the dominance classes which can reduce at most over 50% of the running time by using traditional method. Another observation is, with the increasing of attributes, the effect is more obvious.

4.3. Running Time with Increasing Samples

In this section, we increasingly add the number of samples on the original data sets. Three dataset are used: Thyroid data, Sonar data and Wpbc data. In each round of the experiments, one copy of original data is added and the number of samples is proportionally increased. The following tables in TABLE II (a) (b) (c) on the three groups of data show the results. The same as those in TABLE I, here in each table, the first line of results indicates those on the original dataset. In the following lines, each time one copy of the original data is added.

Table 2. Running time of the two algorithms with the increase of samples

(a) Thyroid Dataset	Data	Size	Traditional Method	Fast Method	Reduction Rate
			t1 (s)	t2 (s)	Percentage (%)
Thyroid1	970*28	3.843	3.021	21.390	
Thyroid2	1940*28	15.886	11.318	28.755	
Thyroid3	2910*28	25.246	24.208	31.317	
Thyroid4	3880*28	63.351	41.414	34.628	
Thyroid5	4850*28	92.103	59.375	35.534	
Thyroid6	5820*28	129.110	79.574	38.367	
Average	3395*28	56.590	36.485	31.665	

Reduction rate = (t1 - t2)/t1 × 100% (the same in all the following tables)

(b) Sonar Dataset	Data	Size	traditional algorithm	fast algorithm	Reduction rate
		t1 (s)	t2 (s)	Percentage (%)	
Sonar0	208*60	0.317	0.242	23.659	
Sonar1	416*60	1.292	0.894	30.805	
Sonar2	624*60	2.954	1.845	37.542	
Sonar3	832*60	5.146	3.077	40.206	
Sonar4	1040*60	8.199	4.501	45.103	
Sonar5	1248*60	11.674	6.150	47.319	
Average	728*60	4.930	2.785	37.439	

(c) Wpbc Dataset	Data	Size	traditional algorithm	fast algorithm	Reduction rate
		t1 (s)	t2 (s)	Percentage (%)	
Wpbc0	198*33	0.165	0.107	35.152	
Wpbc1	396*33	0.634	0.410	35.331	
Wpbc2	594*33	1.515	0.803	46.997	
Wpbc3	792*33	2.652	1.290	51.357	
Wpbc4	990*33	4.165	1.943	53.349	
Wpbc5	1188*33	6.086	2.642	56.589	
Average	693*33	2.536	1.199	46.463	
Similar to the results in TABLE I, with the increasing number of samples, the reduction rate also increases greatly, which is at most 56.589% in the Wpbc data. All these results show the potential use of the fast algorithm in large-scale datasets with more attributes and samples.

5. Conclusions
This paper presents a fast attribute reduction method for dominance relation-based information systems. A lot of experiments have been conducted to compare the proposed method and the traditional method, and the results show that the fast method is much more effective with increasing number of samples and attributes.

6. Acknowledgment
This work is supported by NSFC (No. 61473111) and the Natural Research Program Foundation of Hebei University (No. 799207217069).

7. References
[1] Z. Pawlak, “Rough set”, International Journal of Computer and Information Science, 1982, 11(5): 341-356.
[2] Y. Wang, D. Q. Miao, and Y. J. Zhou, “A survey of rough set theory and its application”, Pattern Recognition and Artificial Intelligence, 1996, 9(4): 337-344.
[3] Z. Pawlak, A. Skowron, “Rough sets: some extensions”, Information Sciences, 2000, 14(4): 1-12.
[4] S. Greco, B. Matarazzo, and R. Slowingski, “Rough approximation of a preference relation by dominance relation”, European Journal of Operation Research, 1999, 117(1): 63-83.
[5] S. Greco, B. Matarazzo, and R. Slowingski, “Rough approximation by dominance relations”, International Journal of Intelligent Systems, 2002, 17(2): 153-171.
[6] S. Greco, B. Matarazzo, and R. Slowingski, “A new rough set approach to multicriteria and multiattribute classification”, Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag, 1998, 1424: 60-67.
[7] S. Greco, B. Matarazzo, and R. Slowingski, “A new rough sets approach to evaluation of bankruptcy risk”, in Operational Tools in the Management of Financial Risks, Dordrecht: Kluwer, 1999: 121-136.
[8] S. Greco, B. Matarazzo, and R. Slowingski, “Rough sets theory for multi-criteria decision analysis”, European Journal of Operational Research, 2001, 55(1): 1-47.
[9] Y.H. Qian, J.Y. Liang, and C.Y. Dang, “Incomplete multi-granular rough set”, IEEE Transactions on Systems, Man and Cybernetics, 2010, 40(2): 420-431.
[10] L. H. Wei, Z. M. Tang, and B. L. Yang, “Rough set based on the dominance relation and knowledge reduction for incomplete fuzzy systems”, Computer Science, 2009, 36(6): 192-195.
[11] K. Zaras, J.C. Marin, and B. Boudreau-Trude, “Dominance-based rough set approach in selection of portfolio of sustainable development projects”, American Journal of Operations Research, 2012, 2:502-508.
[12] T. Azar, H. H. Inbarani, and K. R. Devi, “Improved dominance rough set-based classification system”, Neural Computing and Applications, 2016, 6:1-16.
[13] S. S. Qu, Y. S. Lu, “Research on fast attribute reduction algorithm based on rough set”, Computer Engineering, 2011, 181(5): 987-1002.
[14] D.W. Xiao, G.Y. Wang, and F. Hu, “A fast parallel attribute reduction algorithm based on rough set theory”, Computer Science, 2009, 36(3): 208-211.
[15] Y. Li, Q. Yu. A Fast Algorithm for Computing Dominance Classes, International Journal of Intelligent Information and Management, vol. 5, no. 6, pp. 45-48, 2016
[16] K. Bache, M. Lichma. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.