Supplementary information to

Hydroxyl radical production by air pollutants in epithelial lining fluid governed by interconversion and scavenging of reactive oxygen species

Steven Lelieveld¹, Jake Wilson¹, Eleni Dovrou¹, Ashmi Mishra¹, Pascale S. J. Lakey², Manabu Shiraiwa², Ulrich Pöschl¹, Thomas Berkemeier¹*

[1] Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
[2] Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA

*Correspondence to: Thomas Berkemeier (t.berkemeier@mpic.de)
Contents of Supporting Information

Additional information

S1. ELF antioxidant concentrations
S2. ELF enzymatic reactions
S3. OH reactions with unspecified organic matter and estimated OH lifetime in the ELF
S4. Particulate pollutant concentrations in the ELF
S5. Gas-phase pollutant concentrations in the ELF
S6. Acid dissociation
S7. pH of the ELF

Tables

Table S1. Chemical reactions
Table S2. Input parameters to the KM-SUB-ELF model
Table S3. List of symbols and definitions
Table S4. Mathematical formulas used to calculate ROS metrics
Table S5. PM2.5 and transition metal mass fractions
Table S6. PM2.5 and Secondary Organic Aerosol (SOA) mass fractions
Table S7. PM2.5 and quinone mass fractions

Figures

Figure S1. Mass fractions of all redox-active PM2.5 constituents quantified in field data.
Figure S2. Endpoint, and average ROS concentration, C_{ROS}, in the ELF as a function of PM2.5 concentration.
Figure S3. ROS concentration, C_{ROS}, and antioxidant consumption rate as a function of pollutant concentration.
Figure S4. Gross chemical production of individual ROS in the ELF as a function of the concentration of three distinct pollutants.
Figure S5. O$_3$ and NO$_2$ concentration and saturation point in the ELF as a function of ambient pollutant concentration.
Figure S6. pH 4 sensitivity study.
S1. ELF antioxidant concentrations

Four low molecular weight antioxidants are included in this study, ascorbate (AscH), glutathione (GSH), uric acid (UA) and α-tocopherol (α-Toc). The concentrations of AscH, GSH, and UA in the ELF are 40 µM, 108 µM, and 200 µM, respectively. The total α-Toc concentration in the ELF is reported as 0.7 µM. However, in the presented study α-Toc is assumed to reside in the surfactant layer of the ELF with a concentration of 200 µM. It is found that pollutant exposure can lead to a spike in C_{EROS} at pollutant concentrations above 100 µg m\(^{-3}\) in the model (Fig. S3a) due to NO\(_2\)-driven depletion of ELF antioxidants within the two hours simulation time (Fig. S3b). The reaction mechanism of ROS formation by NO\(_2\) involves formation of GS\(^-\) (R84-85, Tab. S1) and reaction to GSSG\(^-\) (R89), leading to O\({}_2^-\) production (R91). In the presence of physiological concentrations of UA and AscH, GS is efficiently recycled to GSH (R96, R100) and GSSG\(^-\) formation a minor reaction pathway. However, at low levels of UA and AscH, this O\({}_2^-\) formation pathway becomes increasingly important.

Although earlier studies have shown that antioxidants can be consumed in bronchoalveolar lavage fluid after pollutant exposure, a study using healthy volunteers suggested that the ELF antioxidants may not be fully depleted, even after exposure to high pollutant concentrations. Kelly et al. found antioxidant concentrations to be non-zero 1.5 hours after exposure to 2 ppm NO\(_2\) stopped, and in some cases exceeded the initial antioxidant concentration several hours after exposure due to antioxidant replenishment. We are not aware of kinetic data that details the replenishment rates of antioxidants in ELF, but we can assume that they are likely fast enough to prevent full depletion of antioxidants in our two-hour simulations, preventing a spike in C_{EROS} (Fig. S3a). Thus, for simplicity, antioxidant and surfactant concentrations are assumed to stay constant in this study.

In Fig. S3b, antioxidant consumption rates are shown as a function of NO\(_2\), PM2.5 and O\(_3\) concentration. The dashed line represents the antioxidant consumption rate above which the initial concentration of low molecular mass antioxidants depletes within two hours of pollutant exposure. Note that, without consideration of enzymatic reactions and antioxidant replenishment, it represents a lower limit for healthy individuals.

S2. ELF enzymatic reactions

Reactions of the enzymes superoxide dismutase (SOD) and catalase are included in the chemical mechanism (R124, R125, Tab. S1). In our previous work, the SOD-catalyzed reaction of two O\({}_2^-\) forming H\(_2\)O\(_2\) and O\(_2\) was described as a second-order reaction with respect to O\({}_2^-\) and a rate coefficient of 2.70 \times 10\(^{-12}\) cm\(^{-3}\) s\(^{-1}\). Dismutation of O\({}_2^-\) by SOD is a multi-step process, in which one O\({}_2^-\) is oxidized to O\(_2\), another reduced to H\(_2\)O\(_2\), and operates close to the diffusion limit. Because SOD activity is often reported in terms of a single rate and turnover number, we combine both steps into one effective reaction of SOD...
and O$_2^-$ yielding 0.5 H$_2$O$_2$ and 0.5 O$_2$ (R124, Tab. S1). Note that this reaction is first order with respect to both, O$_2^-$ and enzyme.

Cantin et al. (1990) showed experimentally that catalase is the most important molecule in H$_2$O$_2$ defense of the ELF, exceeding the glutathione peroxidase concentration by nearly two orders of magnitude.10 The reaction between catalase and H$_2$O$_2$ is a two-step reaction in which a molecule of H$_2$O$_2$ reacts with catalase to form an enzyme-substrate complex, which then further reacts with another molecule of H$_2$O$_2$ to release H$_2$O and O$_2$. Because catalase activity is often reported in terms of a single rate and turnover number, we combine both steps into one effective reaction of catalase and H$_2$O$_2$, yielding 0.5 H$_2$O and 0.5 O$_2$ (R125, Tab. S1).11

The catalytic activity of a particular enzyme in biological samples is often reported using the enzyme unit (U) per sample volume or mass. One U is defined as the amount of enzyme needed to catalyze one micromole of substrate per minute. The catalytic activity of a biological sample is generally determined by monitoring substrate decomposition in excess of substrate. Under these conditions, catalytic activity is maximal and a first order dependence exists between the velocity of the enzymatic reaction (v_{max}, in U mL$^{-1}$) and the enzyme concentration (Eq. S1).12 The proportionality factor is the turnover number k_{cat}, sometimes referred to as catalytic constant, and can be used to infer enzyme concentrations.13

$$[\text{Enzyme}] = \frac{v_{max}}{k_{cat}}$$ (Eq. S1)

For SOD, k_{cat} is reported to range between $10^5 – 10^6$ s$^{-1}.$9,14 The activity of SOD in ELF was measured as 36.8 ± 2.0 U mL$^{-1},$ which translates to an enzyme concentration of SOD of 0.58 – 6.5 nM using Eq. S1. Note that, the enzymatic reactions in this study do not occur in excess of substrate. Thus, a second-order rate coefficient for the reaction of SOD with O$_2^-$ of 2.65×10^{-12} cm3 s$^{-1}$ is used in the chemical mechanism (K_{R124}, Tab. S1).15,16

Catalase activity in ELF has been estimated to be 3.7 ± 0.6 U mL$^{-1}$ and for k_{cat}, values in the range of 3×10^6 and 4×10^7 s$^{-1}$ can be found.10,13 From these numbers, we derive a concentration of catalase of $1.3 – 24$ pM. Second-order rate coefficients for catalase have been measured in the range of $1.6 \times 10^{-14} – 1.6 \times 10^{-13}$ cm3 s$^{-1}$. For this study, we use a rate coefficient of 3.2×10^{-14} cm3 s$^{-1}$ (k_{R125}, Tab. S1).11,17

Given the broad reported ranges of v_{max} and k_{cat}, and the difficulty of sampling ELF, we acknowledge that there is large uncertainty associated with the concentrations of SOD and catalase in the ELF. Therefore, we restrict the determination of enzyme concentration to order of magnitude estimations and use 1 nM for SOD and 5 pM for catalase in this study.

Note that the presence of PM may decrease the activity of antioxidant enzymes, as shown for SOD previously.18 At the high PM concentrations for which these effects were observed, however, antioxidant
enzymes contribute only marginally to overall ROS scavenging and interconversion in the model (Figs. 112 4b,d). Thus, enzyme inhibition by PM2.5 requires further investigation in future experimental and modelling studies to clarify whether enzyme inhibition promotes the shift to the PM2.5-dominated kinetic regime of ROS conversion.

S3. Unspecific reaction of OH radicals with organic matter and estimated OH lifetime in the ELF

OH reacts with nearly all matter present in the ELF with a rate coefficient approaching diffusion limitation.\(^{19}\) Because of this unspecific reactivity, effective scavenging of OH radicals, e.g. through lung antioxidants, is not possible.\(^{19,20}\) As an estimate, we assume that the amount of protein in the ELF corresponds to the total amount of dissolved organic matter. The protein mass in the ELF amounts to approximately 10 mg per mL lung fluid.\(^3\) Using an average molecular weight of ~125 g mole\(^{-1}\) of a single amino acid, the total amino acid concentration in the ELF can be estimated to ~80 mmol L\(^{-1}\). A second-order reaction of amino acids with OH is included, using a reaction rate coefficient on the order of 1.66 \(\times 10^{-12}\) cm\(^3\) s\(^{-1}\) (R122, Tab. S1).\(^{21}\)

Because proteins are folded, not all amino acids will be surface exposed, and thus accessible reaction partners for OH. In general, spherical proteins have fewer surface exposed amino acids due to a smaller surface-to-volume ratio, while elongated, cuboid or conical proteins have more surface exposed amino acids. Furthermore, the surface exposure of amino acids depends on the physical properties, e.g. the polarity of the respective amino acid.\(^{22}\) Therefore, as an order of magnitude estimation, we assume that 50% of all amino acids are surface exposed in the ELF, yielding an effective amino acid concentration of ~40 mmol L\(^{-1}\) and, in turn, a lifetime of OH with respect to reaction with dissolved organic matter of \(2.5 \times 10^8\) s.

Pryor estimated the lifetime of OH in a cell to \(10^9\) s, assuming a rate coefficient of \(1 \times 10^9\) M\(^{-1}\) s\(^{-1}\) (equivalent to \(1.66 \times 10^{-12}\) cm\(^3\) s\(^{-1}\)) and an effective organic matter concentration of 1 mol L\(^{-1}\).\(^{21}\) From comparing the ELF protein mass of ~10 mg mL\(^{-1}\) to the cellular protein mass of ~250 mg mL\(^{-1}\), we infer that the ELF must be about ~25 times more dilute compared to a cell with respect to dissolved organic matter.\(^{2,23,24}\) Multiplying Pryor’s OH lifetime in cells with this dilution factor yields an estimate for the OH lifetime in ELF of \(~2.5 \times 10^8\) s, which is identical to the estimate above and consolidates our description of OH reactivity.

We find that inclusion of this second-order loss reaction of OH results in a decrease of momentary OH concentrations by one order of magnitude compared to our earlier calculations (Fig. 2a).\(^1\) This finding suggests that OH will react unspecifically with organic matter and only secondarily with antioxidants (7%) in the ELF. Due to the fast reaction of OH, spatial gradients of reactants could play a role in OH fate, e.g. through local depletion of antioxidants around a dissolving particle or inhomogeneous distribution of organic matter and PM2.5 constituents in the ELF. However, for the calculations in this study, starting concentrations of antioxidants and organic matter were homogeneous across the bulk ELF.
S4. Particulate pollutant concentrations in the ELF

The ELF concentrations of redox-active PM2.5 constituents, \(C_{\text{ELF,Y}} \), with Y standing for copper, iron, SOA, or quinones, are calculated using Eq. S2.¹

\[
C_Y = \frac{C_{\text{gas,PM2.5}} \times VR \times t_{\text{acc}} \times d_{\text{PM2.5}} \times MF_Y \times SF_Y}{M_Y \times V_{\text{ELF}}} \quad \text{(Eq. S2)}
\]

Inhaled particles can reside in the ELF for several hours.²⁵ For this study, we assume a residence time of PM2.5 of 2 hours and use this as accumulation time of inhaled particles (\(t_{\text{acc}} \)) and simulation time (\(t_{\text{sim}} \)) to mimic a pseudo steady-state of ROS concentrations that would be achieved through continuous inhalation, in line with our previous studies.¹ It should be noted that there is some uncertainty regarding the residence time of PM2.5 in the ELF, with estimates on PM2.5 clearance also exceeding 2 hours.²⁶ As lung ventilation rate, \(VR \), 1.5 m³ h⁻¹ is used, and the PM2.5 deposition fraction in the ELF, \(d_{\text{PM2.5}} \), is assumed to be 0.45.¹,²⁷ The total ELF volume, \(V_{\text{ELF}} \), is set to 20 mL.¹,²⁸ This study only includes copper and iron as transition metals, because these are the only two that have been shown to significantly produce ROS in surrogate ELF (sELF).²⁹,³⁰ The fractional solubilities, \(SF_Y \), of copper and iron ions were discussed and tested extensively in our previous study, including the effects of varying trace metal solubilities.¹ In line with the main results of our previous study, the fractional solubilities of copper and iron ions are set to 0.4, 0.1, respectively.¹ Due to the relatively small concentration of iron ions and the large concentration of potential organic ligands, iron ions are expected not to precipitate in the ELF.³¹ For the organic fraction in PM2.5, full solubility is assumed. Mass fractions (\(MF \)) of redox-active PM2.5 constituents are derived from field observations and tabulated in Tables S4-S6. Not all references in Tables S4 and S6 include PM2.5 concentrations. In such cases, PM2.5 concentrations are estimated based on similar geographical locations and indicated with an asterisk. Additionally, secondary organic aerosol (SOA) forms ROS and is included in the model.³²-³⁴ However, because the exact mechanism of ROS formation by SOA in the ELF, first order formation rates of \(\text{H}_2\text{O}_2 \) and OH by SOA were parameterized based on experimental observations.¹,³²,³³ Quinones in PM2.5 are included in this study as previously described.¹ Three quinones are included that were shown to form ROS in sELF, phenanthrenequinone (PQN), 1,2-naphthoquinone (1,2-NQN), and 1,4-naphthoquinone (1,4-NQN) in a molar ratio of 2:1:1.²⁹

S5. Gas-phase pollutant concentrations in the ELF

Exposure to gas-phase oxidants, \(\text{O}_3 \) and NO₂ is quantified in the model using a simplified breathing mechanism. In our previous study, it was assumed that the concentrations of these gas-phase oxidants in the lung were equal to their respective ambient concentrations. However, because of the reactivity of these oxidants, we find that lung gas-phase concentrations of these oxidants are depressed and limited by supply from inhalation of ambient air. In order to get accurate estimates for the amount of gas-phase oxidants
transferred to the surfactant layer and ELF, an average lung volume of four L, an average breath volume of 1.5 L and an average duration of a breath of 3.6 s are used to compute mass fluxes into and out of the lung (Table S2). Application of this simplified breathing mechanism results in a significant decrease in the amount of gaseous oxidants in the surfactant layer and ELF. Therefore, neither O₃, nor NO₂ are saturated in ELF with respect to their ambient concentrations in this study (Fig. S5).

S6. Acid dissociation
In this study, corresponding acid/base-pairs are treated as a single species in the numerical computation of ordinary differential equations (ODE). This effectively reduces the stiffness of the ODE system and applies to glutathione (GSH/GS), superoxide radicals (HO₂/O₂⁻) and peroxynitrous acid (ONOOH/ONOO⁻). Instead of treating each species explicitly with separate differential equations and explicit protonation and deprotonation reactions, the pKa of these species was used to calculate the acid/base-ratio at the pH of the ELF (Table S2). Then, if a reaction requires only one of the two species to react, the rate of that reaction was multiplied with the inferred fraction of the reacting species.

S7. pH of the ELF
Following estimations by Holma (1985, 1989), the pH of the ELF was assumed to stay constant upon air pollutant exposure. In diseased individuals such as asthmatics, chronic obstructive pulmonary disease, or cystic fibrosis patients the pH of the ELF may be decreased. Figure S6 shows the ROS concentration, production, interconversion and transition metal valence state at pH 7 and pH 4 as a function of PM2.5 concentration. Panel a shows that C_ΣROS displays a very similar behavior at pH 4 and pH 7. C_O₂⁻ and C_HO₂ are slightly increased at low PM2.5 concentrations, but depressed at elevated PM2.5 concentrations (panel b). This reduction is due to a higher rate of Fe²⁺-mediated interconversion of HO₂ and O₂⁻ to H₂O₂ (Table S1, R38 and R39), which in turn is due to a higher Fe²⁺/Fe³⁺ ratio (panel c). The Cu⁺/Cu²⁺ ratio shows the opposite trend at reduced pH (panel j).

Panel e shows that at pH 4, N_ΣROS is marginally reduced compared to pH 7. In panel f, N_ΣROS is broken down to its components. P_O₂⁻ is slightly reduced due to decreased Cu⁺-dependent O₂⁻ formation (Table S1, R54). P_OH is slightly increased due to the higher Fe²⁺/Fe³⁺ ratio and the according increase in the Fenton reaction (Table S1, R40).

Panel g shows that CF_O₂⁻→H₂O₂ is slightly decreased at low PM2.5 concentration and slightly increased at higher PM2.5 concentrations compared to pH 7. Panel h shows that CF_H₂O₂→OH is mostly unaffected by a change in pH. The reduction in N_ΣROS (panel e) paired with the increase in P_OH (panel f) at higher PM2.5 concentrations results in a larger OH fraction (panel i) and a larger increase in OH dose (panel j) at pH 4.

Reduced pH in the ELF may additionally lead to a reduction in antioxidant enzyme activity, increased transition metal solubility, and increased OH yield from the Fenton reaction. These effects are not included in the presented study, and are expected to all reduce ROS buffering and promote the PM2.5-
controlled OH radical production regime, which may exacerbate oxidative stress. Furthermore, in the presented study SOA produces H₂O₂ and OH,\(^{32,33}\) which at lower pH may increasingly shift towards only H₂O₂ production, without OH getting formed.\(^{43,44}\) However, a thorough investigation of pH effects is beyond the scope of the presented study and warrants future investigations.
References

(1) Lakey, P. S. J.; Berkemeier, T.; Tong, H.; Arangio, A. M.; Lucas, K.; Pöschl, U.; Shiraiwa, M. Chemical Exposure-Response Relationship between Air Pollutants and Reactive Oxygen Species in the Human Respiratory Tract. Sci. Rep. 2016, 6 (1), 32916. https://doi.org/10.1038/srep32916.

(2) Mudway, I. S.; Kelly, P. J. Ozone and the Lung: A Sensitive Issue. Mol. Aspects Med. 2000, 21 (1–2), 1–48. https://doi.org/10.1016/S0009-2997(00)00003-0.

(3) van der Vliet, A.; O'Neill, C. A.; Cross, C. E.; Kostra, J. M.; Volz, W. G.; Halliwell, B.; Louie, S. Determination of Low-Molecular-Mass Antioxidant Concentrations in Human Respiratory Tract Lining Fluids. Am. J. Physiol.-Lung Cell. Mol. Physiol. 1999, 276 (2), L289–L296. https://doi.org/10.1152/ajplung.1999.276.2.L289.

(4) Kirsch, M.; Lehnig, M.; Korth, H.-G.; Sustmann, R.; de Groot, H. Inhibition of Peroxynitrite-Induced Nitration of Tyrosine by Glutathione in the Presence of Carbon Dioxide through Both Radical Repair and Peroxynitrite Formation. Chem. Eur. J. 2001, 7 (15), 3313–3320. https://doi.org/10.1002/1521-3765(20010803)7:15<3313::AID-CEUR3313>3.0.CO;2-7.

(5) Wardman, P.; Sonntag, C. [3] Kinetic factors that control the fate of thyl radicals in cells. In Methods in Enzymology; Elsevier: gr, 1995; Vol. 251, pp 31–45. https://doi.org/10.1016/0076-6879(95)51108-3.

(6) Kelly, F. J.; Tetley, T. D. Nitrogen Dioxide Depletes Uric Acid and Ascorbic Acid but Not Glutathione from Lung Lining Fluid. Biochem. J. 1997, 325 (1), 95–99. https://doi.org/10.1042/bj3250095.

(7) Kelly, F. J.; Blomberg, A.; Frew, A.; Holgate, S. T.; Sandstrom, T. Antioxidant Kinetics in Lung Lavage Fluid Following Exposure of Humans to Nitrogen Dioxide. Am. J. Respir. Crit. Care Med. 1996, 154 (6), 1700–1705. https://doi.org/10.1164/ajrccm.154.6.8970358.

(8) Kohen, R.; Nyska, A. Invited Review: Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. Toxicol. Pathol. 2002, 30 (6), 620–650. https://doi.org/10.1080/01926230290166724.

(9) Fee, J. A.; Bull, C. Steady-State Kinetic Studies of Superoxide Dismutases. Saturative Behavior of the Copper- and Zinc-Containing Protein. J. Biol. Chem. 1986, 261 (28), 13000–13005. https://doi.org/10.1016/S0021-9258(18)69261-0.

(10) Cantin, A. M.; Fells, G. A.; Hubbard, R. C.; Crystal, R. G. Antioxidant Macromolecules in the Epithelial Lining Fluid of the Normal Human Lower Respiratory Tract. J. Clin. Invest. 1990, 86 (3), 962–971. https://doi.org/10.1172/JCI114798.

(11) Aebi, H. [13] Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126.

(12) Bisswanger, H. Practical Enzymology; John Wiley & Sons, 2019.

(13) Smejkal, G. B.; Kakumanu, S. Enzymes and Their Turnover Numbers. Expert Rev. Proteomics 2019, 16 (7), 543–544. https://doi.org/10.1080/14789450.2019.1630275.

(14) Bar-Even, A.; Noor, E.; Savir, Y.; Liebermeister, W.; Davidi, D.; Tawfik, D. S.; Milo, R. The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters. Biochemistry 2011, 50 (21), 4402–4410. https://doi.org/10.1021/bi2002289.

(15) Forman, H. J.; Fridovich, I. Superoxide Dismutase: A Comparison of Rate Constants. Arch. Biochem. Biophys. 1973, 158 (1), 396–400. https://doi.org/10.1016/0003-9861(73)90636-X.

(16) Fridovich, I. Superoxide Dismutases. Annu. Rev. Biochem. 1975, 44 (1), 147–159.

(17) Jones, P.; Suggett, A. The Catalase—Hydrogen Peroxide System. Kinetics of Catalytic Action at High Substrate Concentrations. Biochem. J. 1968, 110 (4), 617–620. https://doi.org/10.1042/bj1100617.
Anthropocene.

Pöschl, U.; Shiraiwa, M. Reactive Oxygen Species Formed in Aqueous Mixtures of Secondary
Tong, H.; Lakey, P. S. J.; Arangio, A. M.; Socorro, J.; Kampf, C. J.; Brune, W. H.; Pöschl, U.; Shiraiwa, M. Hydroxyl Radicals from Secondary Organic Aerosol Decomposition in Water. Free Radic. Biol. Med. 2014, 66, 24–35. https://doi.org/10.1016/j.freeradbiomed.2013.05.045.

(18) Hatzis, C.; Godleski, J. J.; González-Flecha, B.; Wolfson, J. M.; Koutrakis, P. Ambient Particulate Matter Exhibits Direct Inhibitory Effects on Oxidative Stress Enzymes. Environ. Sci. Technol. 2006, 40 (8), 2805–2811. https://doi.org/10.1021/es0518732.

(19) Forman, H. J.; Davies, K. J. A.; Ursini, F. How Do Nutritional Antioxidants Really Work: Nucleophilic Tone and Para-Hormesis versus Free Radical Scavenging in Vivo. Free Radic. Biol. Med. 2016, 90, 5193(05)80422-9.

(20) Sies, H.; Berndt, C.; Jones, D. P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. https://doi.org/10.1146/annurev-biochem-061516-045037.

(21) Pryor, W. A. Oxy-Radicals and Related Species: Their Formation, Lifetimes, and Reactions. Annu. Rev. Physiol. 1986, 48 (1), 657–667.

(22) Holbrook, S. R.; Muskal, S. M.; Kim, S.-H. Predicting Surface Exposure of Amino Acids from Protein Sequence. Protein Eng. Des. Sel. 1990, 3 (8), 659–665. https://doi.org/10.1093/protein/3.8.659.

(23) Milo, R. What Is the Total Number of Protein Molecules per Cell Volume? A Call to Rethink Some Published Values. BioEssays 2013, 35 (12), 1050–1055. https://doi.org/10.1002/bies.201300066.

(24) Brown, G. C. Total Cell Protein Concentration as an Evolutionary Constraint on the Metabolic Control Distribution in Cells. J. Theor. Biol. 1991, 153 (2), 195–203. https://doi.org/10.1016/S0022-5193(05)80422-9.

(25) Ghio, A. J.; Richards, J. H.; Dittrich, K. L.; Samet, J. M. Metal Storage and Transport Proteins Increase After Exposure of the Rat Lung to an Air Pollution Particle. Toxicol. Pathol. 1998, 26 (3), 388–394. https://doi.org/10.1177/019262339802600313.

(26) Lippmann, M.; Yeates, D. B.; Albert, R. E. Deposition, Retention, and Clearance of Inhaled Particles. Occup. Environ. Med. 1980, 37 (4), 337–362. https://doi.org/10.1136/oem.37.4.337.

(27) Sarangapani, R. The Role of Dispersion in Particle Deposition in Human Airways. Toxicol. Sci. 2000, 54 (1), 229–236. https://doi.org/10.1093/toxsci/54.1.229.

(28) Walters, D. V. Lung Lining Liquid – The Hidden Depths. Neonatology 2002, 81 (1), 2–5. https://doi.org/10.1159/000056764.

(29) Charrier, J. G.; McFall, A. S.; Richards-Henderson, N. K.; Anastasio, C. Hydrogen Peroxide Formation in a Surrogate Lung Fluid by Transition Metals and Quinones Present in Particulate Matter. Environ. Sci. Technol. 2014, 48 (12), 7010–7017. https://doi.org/10.1021/es501011w.

(30) Charrier, J. G.; Anastasio, C. Impacts of Antioxidants on Hydroxyl Radical Production from Individual and Mixed Transition Metals in a Surrogate Lung Fluid. Atmos. Environ. 2011, 45 (40), 7555–7562. https://doi.org/10.1016/j.atmosenv.2010.12.021.

(31) Gonzalez, D. H.; Diaz, D. A.; Baumann, J. P.; Ghio, A. J.; Paulson, S. E. Effects of Albumin, Transferrin and Humic-like Substances on Iron-Mediated OH Radical Formation in Human Lung Fluids. Free Radic. Biol. Med. 2021, 165, 79–87. https://doi.org/10.1016/j.freeradbiomed.2021.01.021.

(32) Wang, Y.; Kim, H.; Paulson, S. E. Hydrogen Peroxide Generation from α- and β-Pinene and Toluene Secondary Organic Aerosols. Atmos. Environ. 2011, 45 (18), 3149–3156. https://doi.org/10.1016/j.atmosenv.2011.02.060.

(33) Tong, H.; Arangio, A. M.; Lakey, P. S. J.; Berkemeier, T.; Liu, F.; Kampf, C. J.; Brune, W. H.; Pöschl, U.; Shiraiwa, M. Hydroxyl Radicals from Secondary Organic Aerosol Decomposition in Water. Atmospheric Chem. Phys. 2016, 16 (3), 1761–1771. https://doi.org/10.5194/acp-16-1761-2016.

(34) Tong, H.; Lakey, P. S. J.; Arangio, A. M.; Socorro, J.; Kampf, C. J.; Berkemeier, T.; Brune, W. H.; Pöschl, U.; Shiraiwa, M. Reactive Oxygen Species Formed in Aqueous Mixtures of Secondary Organic Aerosols and Mineral Dust Influencing Cloud Chemistry and Public Health in the Anthropocene. Faraday Discuss. 2017, 200, 251–270. https://doi.org/10.1039/C7FD00023E.
Endogenous Airway Acidification: Implications for Asthma Pathophysiology. Am. J. Respir. Crit. Care Med. 2000, 161 (3), 694–699. https://doi.org/10.1164/ajrccm.161.3.9911005.

Ricciardolo, F. L. M.; Gaston, B.; Hunt, J. Acid Stress in the Pathology of Asthma. J. Allergy Clin. Immunol. 2004, 113 (4), 610–619. https://doi.org/10.1016/j.jaci.2003.12.034.

Tate, S.; MacGregor, G.; Davis, M.; Innes, J.; Greening, A. Airways in Cystic Fibrosis Are Acidified: Detection by Exhaled Breath Condensate. Thorax 2002, 57 (11), 926–929.

Fang, T.; Guo, H.; Zeng, L.; Verma, V.; Nenes, A.; Weber, R. J. Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity. Environ. Sci. Technol. 2017, 51 (5), 2611–2620. https://doi.org/10.1021/acs.est.6b06151.

Hug, S. J.; Leupin, O. Iron-Catalyzed Oxidation of Arsenic(III) by Oxygen and by Hydrogen Peroxide: PH-Dependent Formation of Oxidants in the Fenton Reaction. Environ. Sci. Technol. 2003, 37 (12), 2734–2742. https://doi.org/10.1021/es026208x.

Bataineh, H.; Pestovsky, O.; Bakac, A. PH-Induced Mechanistic Changeover from Hydroxyl Radicals to Iron(IV) in the Fenton Reaction. Chem. Sci. 2012, 3 (5), 1594. https://doi.org/10.1039/c2sc20099f.

Qiu, J.; Tonokura, K.; Enami, S. Proton Catalyzed Decomposition of α-Hydroxyalkyl-Hydroperoxides in Water. Environ. Sci. Technol. 2020, 54 (17), 10561–10569. https://doi.org/10.1021/acs.est.0c03438.

Enami, S. Fates of Organic Hydroperoxides in Atmospheric Condensed Phases. J. Phys. Chem. A 2021, 125 (21), 4513–4523. https://doi.org/10.1021/acs.jpca.1c01513.

Saunders, S. M.; Jenkin, M. E.; Derwent, R. G.; Pilling, M. J. Protocol for the Development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric Degradation of Non-Aromatic Volatile Organic Compounds. Atmos Chem Phys 2003, 3 (1), 161–180. https://doi.org/10.5194/acp-3-161-2003.

Jenkin, M. E.; Saunders, S. M.; Wagner, V.; Pilling, M. J. Protocol for the Development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric Degradation of Aromatic Volatile Organic Compounds. Part B 2003, 3 (1), 181–193. https://doi.org/10.5194/acp-3-181-2003.

Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (·OH/·O−) in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17 (2), 513–886. https://doi.org/10.1063/1.555805.

Hoffman, M. Z.; Hayon, E. Pulse Radiolysis Study of Sulphhydryl Compounds in Aqueous Solution. J. Phys. Chem. 1973, 77 (8), 990–996. https://doi.org/10.1021/j100627a005.

Zhao, M. J.; Jung, L.; Tanianelli, C.; Mechlin, R. Kinetics of the Competitive Degradation of Deoxyribose and Other Biomolecules by Hydroxyl Radicals Produced by the Fenton Reaction. Free Radic. Res. 1994, 20 (6), 345–363. https://doi.org/10.3109/10715769409145635.

Kanofsky, J. R.; Sima, P. D. Reactive Absorption of Ozone by Aqueous Biomolecule Solutions: Implications for the Role of Sulphhydryl Compounds as Targets for Ozone. Arch. Biochem. Biophys. 1995, 316 (1), 52–62. https://doi.org/10.1006/abbi.1995.1009.

Pryor, W. A.; Giamalva, D. H.; Church, D. F. Kinetics of Ozonation. 2. Amino Acids and Model Compounds in Water and Comparisons to Rates in Nonpolar Solvents. J. Am. Chem. Soc. 1984, 106 (23), 7094–7100. https://doi.org/10.1021/ja00335a038.
Kim, H. I.; Kim, H.; Shin, Y. S.; Beegle, L. W.; Jang, S. S.; Neidholdt, E. L.; Goddard, W. A.; Heath, J. R.; Kanik, I.; Beauchamp, J. L. Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System. J. Am. Chem. Soc. 2010, 132 (7), 2254–2263. https://doi.org/10.1021/ja908477w.

Hasson, A. S.; Ho, A. W.; Kuwata, K. T.; Paulson, S. E. Production of Stabilized Criegee Intermediates and Peroxides in the Gas Phase Ozonolysis of Alkenes: 2. Asymmetric and Biogenic Alkenes. J. Geophys. Res. Atmospheres 2001, 106 (D24), 34143–34153. https://doi.org/10.1029/2001JD000598.

Hewitt, C. N.; Kok, G. L. Formation and Occurrence of Organic Hydroperoxides in the Troposphere: Laboratory and Field Observations. J. Atmospheric Chem. 1991, 12 (2), 181–194. https://doi.org/10.1007/BF00115779.

Zhou, Z.; Abbatt, J. P. D. Formation of Gas-Phase Hydrogen Peroxide via Multiphase Ozonolysis of Unsaturated Lipids. Environ. Sci. Technol. Lett. 2021, 8 (2), 114–120. https://doi.org/10.1021/acs.estlett.0c00757.

Navarrete, M.; Rangel, C.; Corchado, J. C.; Espinosa-García, J. Trapping of the OH Radical by α-Tocopherol: A Theoretical Study. J. Phys. Chem. A 2005, 109 (21), 4777–4784. https://doi.org/10.1021/jp050717e.

Kermani, S.; Ben-Jebria, A.; Ullman, J. S. Kinetics of Ozone Reaction with Uric Acid, Ascorbic Acid, and Glutathione at Physiologically Relevant Conditions. Arch. Biochem. Biophys. 2006, 451 (1), 8–16. https://doi.org/10.1016/j.abb.2006.04.015.

Rush, J. D.; Bielski, B. J. Pulse Radiolytic Studies of the Reaction of Perhydroxyl/O2- with Iron(Ill)/Iron(III) Ions. The Reactivity of HO2/O2- with Ferric Ions and Its Implication on the Occurrence of the Haber-Weiss Reaction. J. Phys. Chem. 1985, 89 (23), 5062–5066. https://doi.org/10.1021/j100269a035.

Christensen, H.; Sehested, K.; Corfitzen, H. Reactions of Hydroxyl Radicals with Hydrogen Peroxide at Ambient and Elevated Temperatures. J. Phys. Chem. 1982, 86 (9), 1588–1590. https://doi.org/10.1021/j100206a023.

Sehested, K.; Rasmussen, O. L.; Fricke, H. Rate Constants of OH with HO2,O2- and H2O2+ from Hydrogen Peroxide Formation in Pulse-Irradiated Oxygenated Water. J. Phys. Chem. 1968, 72 (2), 626–631. https://doi.org/10.1021/j100848a040.

Koppenol, W. H. The Haber-Weiss Cycle – 70 Years Later. Redox Rep. 2001, 6 (4), 229–234. https://doi.org/10.1179/135100001101536373.

Jayson, G. G.; Parsons, B. J.; Swallow, A. J. Oxidation of Ferrous Ions by Perhydroxyl Radicals. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1973, 69, 236–242. https://doi.org/10.1039/t19736900236.

Lewis, S.; Lynch, A.; Bachas, L.; Hampson, S.; Ormsbee, L.; Bhattacharyya, D. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems. Environ. Eng. Sci. 2009, 26 (4), 849–859. https://doi.org/10.1089/ees.2008.0277.

Stuglik, Z.; PawelZagórski, Z. Pulse Radiolysis of Neutral Iron(II) Solutions: Oxidation of Ferrous Ions by OH Radicals. Radiat. Phys. Chem. 1977 1981, 17 (4), 229–233. https://doi.org/10.1016/0146-5724(81)90336-8.

Masuda, T.; Shinohara, H.; Kondo, M. Reactions of Hydroxyl Radicals with Nucleic Acid Bases and the Related Compounds in Gamma-Irradiated Aqueous Solution. J. Radiat. Res. (Tokyo) 1978, 16 (3), 153–161.

Liphard, M.; Bothe, E.; Schulte-Frohlinde, D. The Influence of Glutathione on Single-Strand Breakage in Single-Stranded DNA Irradiated in Aqueous Solution in the Absence and Presence of Oxygen. Int. J. Radiat. Biol. 1990, 58 (4), 589–602. https://doi.org/10.1080/09553009014551951.
Carr, A.; Lykkesfeldt, J. *Vitamin C in Health and Disease*; MDPI-Multidisciplinary Digital Publishing Institute, 2018.

Shen, J.; Griffiths, P. T.; Campbell, S. J.; Utinger, B.; Kalberer, M.; Paulson, S. E. Ascorbate Oxidation by Iron, Copper and Reactive Oxygen Species: Review, Model Development, and Derivation of Key Rate Constants. *Sci. Rep.* **2021**, *11* (1), 7417. https://doi.org/10.1038/s41598-021-86477-8.

Adams, G. E.; Boag, J. W.; Currant, J.; Michael, B. D. *Absolute Rate Constants for the Reaction of the Hydrosyl Radical with Organic Compounds*; Pulse Radiolysis, 1965.

Goldstein, S.; Lind, J.; Merenyi, G. Reaction of Organic Peroxyl Radicals with *NO* and *NO* in Aqueous Solution: Intermediacy of Organic Peroxynitrate and Peroxynitrite Species. *J. Phys. Chem. A* **2004**, *108* (10), 1719–1725. https://doi.org/10.1021/jp037431z.

Jones, C. M.; Lawrence, A.; Wardman, P.; Burkitt, M. J. Electron Paramagnetic Resonance Spin Trapping Investigation into the Kinetics of Glutathione Oxidation by the Superoxide Radical: Re-Evaluation of the Rate Constant. *Free Radic. Biol. Med.* **2002**, *32* (10), 982–990. https://doi.org/10.1016/S0891-5849(02)00791-8.

Winterbourn, C. C.; Metodiewa, D. The Reaction of Superoxide with Reduced Glutathione. *Arch. Biochem. Biophys.* **1994**, *314* (2), 284–290. https://doi.org/10.1006/abbi.1994.1444.

Wefers, H.; Sies, H. Oxidation of Glutathione by the Superoxide Radical to the Disulfide and the Sulfonate Yielding Singlet Oxygen. *Eur. J. Biochem.* **1983**, *137* (1–2), 29–36. https://doi.org/10.1111/j.1432-1033.1983.tb07791.x.

Ford, E.; Hughes, M. N.; Wardman, P. Kinetics of the Reactions of Nitrogen Dioxide with Glutathione, Cysteine, and Uric Acid at Physiological PH. *Free Radic. Biol. Med.* **2002**, *32* (12), 1314–1323. https://doi.org/10.1016/S0891-5849(02)00850-X.

Luo, D.; Smith, S. W.; Anderson, B. D. Kinetics and Mechanism of the Reaction of Cysteine and Hydrogen Peroxide in Aqueous Solution. *J. Pharm. Sci.* **2005**, *94* (2), 304–316. https://doi.org/10.1002/jps.20253.

Winkler, B. S.; Orselli, S. M.; Rex, T. S. The Redox Couple between Glutathione and Ascorbic Acid: A Chemical and Physiological Perspective. *Free Radic. Biol. Med.* **1994**, *17* (4), 333–349. https://doi.org/10.1016/0891-5849(94)90019-1.

Buettner, G. R.; Jurkiewicz, B. A. Catalytic Metals, Ascorbate and Free Radicals: Combinations to Avoid. *Radiat. Res.* **1996**, *145* (5), 532. https://doi.org/10.2307/3579271.

Alfassi, Z. B.; Huie, R. E.; Neta, P.; Shoute, L. C. T. Temperature Dependence of the Rate Constants for Reaction of Inorganic Radicals with Organic Reductants. *J. Phys. Chem.* **1990**, *94* (25), 8800–8805. https://doi.org/10.1021/j100388a011.

Augusto, O.; Bonini, M. G.; Amanso, A. M.; Linares, E.; Santos, C. C. X.; De Menezes, S. L. Nitrogen Dioxide and Carbonate Radical Anion: Two Emerging Radicals in Biology. *Free Radic. Biol. Med.* **2002**, *32* (9), 841–859. https:// doi.org/10.1016/S0891-5849(02)00786-4.

Goldstein, S.; Czapski, G. Reactivity of Peroxynitrite versus Simultaneous Generation of *NO* and *O* toward NADH. *Chem. Res. Toxicol.* **2000**, *13* (8), 736–741. https://doi.org/10.1021/tr00009n.

Graetzel, M. Pulsradiolytische Untersuchung einiger Elementarprozesse der Oxydation un reduktion des Nitrits. *Berichte Bunsenges. Fuer Phys. Chem.* **1969**, *73* (7).

Jacob, D. Heterogeneous Chemistry and Tropospheric Ozone. *Atmos. Environ.* **2000**, *34* (12–14), 2131–2159. https://doi.org/10.1016/S1352-2310(99)00462-8.

Bonini, M. G.; Augusto, O. Carbon Dioxide Stimulates the Production of Thiyl, Sulfinyl, and Disulfide Radical Anion from Thiol Oxidation by Peroxynitrite. *J. Biol. Chem.* **2001**, *276* (13), 9749–9754. https://doi.org/10.1074/jbc.M008456200.
Kurz, C. R.; Kissner, R.; Nauser, T.; Perrin, D.; Koppenol, W. H. Rapid Scavenging of Peroxynitrous Acid by Monohydroascorbate. Free Radic. Biol. Med. 2003, 35 (12), 1529–1537. https://doi.org/10.1016/j.freeradbiomed.2003.08.012.

Squadrito, G. L.; Cueto, R.; Splenser, A. E.; Valavanidis, A.; Zhang, H.; Uppu, R. M.; Pryor, W. A. Reaction of Uric Acid with Peroxynitrite and Implications for the Mechanism of Neuroprotection by Uric Acid. Arch. Biochem. Biophys. 2000, 376 (2), 333–337. https://doi.org/10.1006/abbi.2000.1721.

Arana, A. A.; Artaxo, P.; Rizzo, L. V.; Bastos, W. Long Term Measurements of the Elemental Composition and Optical Properties of Aerosols in Amazonia. E3S Web Conf. 2013, 1, 03005. https://doi.org/10.1051/e3sconf/20130103005.

Birmili, W.; Allen, A. G.; Bary, F.; Harrison, R. M. Trace Metal Concentrations and Water Solubility in Size-Fractionated Atmospheric Particles and Influence of Road Traffic. Environ. Sci. Technol. 2006, 40 (4), 1144–1153. https://doi.org/10.1021/es052583p.

Heal, M. R.; Hibbs, L. R.; Agius, R. M.; Beverland, I. J. Total and Water-Soluble Trace Metal Content of Urban Background PM10, PM2.5 and Black Smoke in Edinburgh, UK. Atmos. Environ. 2005, 39 (8), 1417–1430. https://doi.org/10.1016/j.atmosenv.2004.11.026.

Harrison, R. M.; Yin, J. Chemical Speciation of PM2.5 Particles at Urban Background and Rural Sites in the UK Atmosphere. J. Environ. Monit. 2010, 12 (7), 1404–1414. https://doi.org/10.1039/c0em00329h.

Maenhaut, W.; Salma, I.; Cafmeyer, J.; Annegarn, H. J.; Andreae, M. O. Regional Atmospheric Aerosol Composition and Sources in the Eastern Transvaal, South Africa, and Impact of Biomass Burning. J. Geophys. Res. Atmospheres 1996, 101 (D19), 23631–23650. https://doi.org/10.1029/95JD02930.

Artaxo, P.; Gerab, F.; Yamase, M. A.; Martins, J. V. Fine Mode Aerosol Composition at Three Long-Term Atmospheric Monitoring Sites in the Amazon Basin. J. Geophys. Res. 1994, 99 (D11), 22857–22868. https://doi.org/10.1029/94JD01023.

Pakkanen, T. A.; Loukkola, K.; Korhonen, C. H.; Aurela, M.; Mäkelä, T.; Hillamo, R. E.; Aarnio, P.; Koskentalo, T.; Kousa, A.; Maenhaut, W. Sources and Chemical Composition of Atmospheric Fine and Coarse Particles in the Helsinki Area. Atmos. Environ. 2001, 35 (32), 5381–5391. https://doi.org/10.1016/S1352-2310(01)00307-7.

Olson, D. A.; Turlington, J.; Duvall, R. M.; McDow, S. R.; Stevens, C. D.; Williams, R. Indoor and Outdoor Concentrations of Organic and Inorganic Molecular Markers: Source Apportionment of PM2.5 Using Low-Volume Samples. Atmos. Environ. 2008, 42 (8), 1742–1751. https://doi.org/10.1016/j.atmosenv.2007.11.035.

Lee, P. K. H.; Brook, J. R.; Dabeck-Zlotorzynska, E.; Mabury, S. A. Identification of the Major Sources Contributing to PM 2.5 Observed in Toronto. Environ. Sci. Technol. 2003, 37 (21), 4831–4840. https://doi.org/10.1021/es026473i.

Upadhyay, N.; Clements, A.; Fraser, M.; Herckes, P. Chemical Speciation of PM 2.5 and PM 10 in South Phoenix, AZ. J. Air Waste Manag. Assoc. 2011, 61 (3), 302–310. https://doi.org/10.3155/1047-2289.61.3.302.

Hassanvand, M. S.; Naddaf, K.; Faridi, S.; Nabizadeh, R.; Sowlat, M. H.; Momeniha, F.; Gholampour, A.; Arhami, M.; Kashani, H.; Zare, A.; Niazi, S.; Rastkari, N.; Nazmara, S.; Ghani, M.; Yunessian, M. Characterization of PAHs and Metals in Indoor/Outdoor PM10/PM2.5/PM1 in a Retirement Home and a School Dormitory. Sci. Total Environ. 2015, 527–528, 100–110. https://doi.org/10.1016/j.scitotenv.2015.05.001.

Contini, D.; Cesari, D.; Donateo, A.; Chirizzi, D.; Belosi, F. Characterization of PM10 and PM2.5 and Their Metals Content in Different Typologies of Sites in South-Eastern Italy. Atmosphere 2014, 5 (2), 435–453. https://doi.org/10.3390/atmos5020435.
(112) Janssen, N. A. H.; Van Mansom, D. F. M.; Van Der Jagt, K.; Harosemite, H.; Hoek, G. Mass Concentration and Elemental Composition of Airborne Particulate Matter at Street and Background Locations. *Atmos. Environ.* **1997**, *31* (8), 1185–1193. https://doi.org/10.1016/S1352-2310(96)00291-9.

(113) Na, K.; Cocker, D. R. Characterization and Source Identification of Trace Elements in PM2.5 from Mira Loma, Southern California. *Atmospheric Res.* **2009**, *93* (4), 793–800. https://doi.org/10.1016/j.atmosres.2009.03.012.

(114) Shaltout, A. A.; Boman, J.; Al-Malawi, D. R.; Shehadeh, Z. F. Elemental Composition of PM2.5 Particles Sampled in Industrial and Residential Areas of Taif, Saudi Arabia. *Aerosol Air Qual. Res.* **2013**, *13* (4), 1356–1364. https://doi.org/10.4209/aaqr.2012.11.0320.

(115) Chow, J. C.; Watson, J. G.; Lu, Z.; Lowenthal, D. H.; Frazier, C. A.; Solomon, P. A.; Thuillier, R. H.; Magliano, K. Descriptive Analysis of PM2.5 and PM10 at Regionally Representative Locations during SJVAQS/AUSPEX. *Atmos. Environ.* **1996**, *30* (12), 2079–2112. https://doi.org/10.1016/1352-2310(95)00402-5.

(116) Kendall, M.; Pala, K.; Ucakli, S.; Gucer, S. Airborne Particulate Matter (PM2.5 and PM10) and Associated Metals in Urban Turkey. *Air Qual. Atmosphere Health* **2011**, *4* (3–4), 235–242. https://doi.org/10.1007/s11869-010-0129-9.

(117) Mansha, M.; Ghauri, B.; Rahman, S.; Amman, A. Characterization and Source Apportionment of Ambient Air Particulate Matter (PM2.5) in Karachi. *Sci. Total Environ.* **2012**, *425*, 176–183. https://doi.org/10.1016/j.scitotenv.2011.10.056.

(118) Pant, P.; Shukla, A.; Kohl, S. D.; Chow, J. C.; Watson, J. G.; Harrison, R. M. Characterization of Ambient PM2.5 at a Pollution Hotspot in New Delhi, India and Inference of Sources. *Atmos. Environ.* **2015**, *109*, 178–189. https://doi.org/10.1016/j.atmosenv.2015.02.074.

(119) Tolis, E. I.; Saraga, D. E.; Filiou, K. F.; Tziavos, N. I.; Tsaiousis, C. P.; Dinas, A.; Bartzis, J. G. One-Year Intensive Characterization on PM2.5 Nearby Port Area of Thessaloniki, Greece. *Environ. Sci. Pollut. Res.* **2015**, *22* (9), 6812–6826. https://doi.org/10.1007/s11356-014-3883-7.

(120) López, M. L.; Ceppi, S.; Palancar, G. G.; Olcese, L. E.; Tirao, G.; Toselli, B. M. Elemental Concentration and Source Identification of PM10 and PM2.5 by SR-XRF in Córdoba City, Argentina. *Atmos. Environ.* **2011**, *45* (31), 5450–5457. https://doi.org/10.1016/j.atmosenv.2011.07.003.

(121) Cao, L.; Zeng, J.; Liu, K.; Bao, L.; Li, Y. Characterization and Cytotoxicity of PM<0.2, PM0.2–2.5 and PM2.5–10 around MSWI in Shanghai, China. *Int. J. Environ. Res. Public. Health* **2015**, *12* (5), 5076–5089. https://doi.org/10.3390/ijerph120505076.

(122) Yin, L.; Niu, Z.; Chen, X.; Chen, J.; Xu, L.; Zhang, F. Chemical Compositions of PM2.5 Aerosol during Haze Periods in the Mountainous City of Yong’an, China. *J. Environ. Sci.* **2012**, *24* (7), 1225–1233. https://doi.org/10.1016/S1001-0742(11)60940-6.

(123) Zhou, S.; Yuan, Q.; Li, W.; Lu, Y.; Zhang, Y.; Wang, W. Trace Metals in Atmospheric Fine Particles in One Industrial Urban City: Spatial Variations, Sources, and Health Implications. *J. Environ. Sci.* **2014**, *26* (1), 205–213. https://doi.org/10.1016/S1001-0742(13)60399-X.

(124) Wang, X.; Bi, X.; Sheng, G.; Fu, J. Chemical Composition and Sources of PM10 and PM2.5 Aerosols in Guangzhou, China. *Environ. Monit. Assess.* **2006**, *119* (1–3), 425–439. https://doi.org/10.1007/s10661-005-9034-3.

(125) Kulshrestha, A.; Satsangi, P. G.; Masih, J.; Taneja, A. Metal Concentration of PM2.5 and PM10 Particles and Seasonal Variations in Urban and Rural Environment of Agra, India. *Sci. Total Environ.* **2009**, *407* (24), 6196–6204. https://doi.org/10.1016/j.scitotenv.2009.08.050.

(126) Yadav, S.; Satsangi, P. G. Characterization of Particulate Matter and Its Related Metal Toxicity in an Urban Location in South West India. *Environ. Monit. Assess.* **2013**, *185* (9), 7365–7379. https://doi.org/10.1007/s10661-013-3106-6.
Particulate Phases. Atmospheric Concentrations of Quinones and Polycyclic Aromatic Hydrocarbons in Vapour and Delgado

Southern California. Avol, E. L.; Froines, J. R. Atmospheric Distribution of Gas Eiguren

Selective Quin Valavanidis, A.; Fiotakis, K.; Vlahogianni, T.; Papadimitriou, V.; Pantikaki, V. Determination of 2011 Oxygenated PAHs, PAHs, and n

Wingfors, H. Characterization of the Size Piazzalunga, A.; Schwikowski, M.; Abbaszade, G.; Schnelle

Particulate Pollution during Haze Events in China. Nature 2014, 514 (7521), 218–222. https://doi.org/10.1038/nature13774.

Wingfors, H. Characterization of the Size-Distribution of Aerosols and Particle-Bound Content of Oxygenated PAHs, PAHs, and n-Alkanes in Urban Environments in Afghanistan. Atmos. Environ. 2011, 45 (26), 4360–4369. https://doi.org/10.1016/j.atmosenv.2011.05.049.

Valavanidis, A.; Fiotakis, K.; Vlahogianni, T.; Papadimitriou, V.; Pantikaki, V. Determination of Selective Quinones and Quinoid Radicals in Airborne Particulate Matter and Vehicular Exhaust Particles. Environ. Chem. 2006, 3 (2), 118–123. https://doi.org/10.1071/EN05089.

Eiguren-Fernandez, A.; Miguel, A. H.; Di Stefano, E.; Schmitz, D. A.; Cho, A. K.; Thuraiaratnam, S.; Avol, E. L.; Froines, J. R. Atmospheric Distribution of Gas- and Particle-Phase Quinones in Southern California. Aerosol Sci. Technol. 2008, 42 (10), 854–861. https://doi.org/10.1080/02786820802339546.

Delgado-Saborit, J. M.; Alam, M. S.; Godri Pollitt, K. J.; Stark, C.; Harrison, R. M. Analysis of Atmospheric Concentrations of Quinones and Polycyclic Aromatic Hydrocarbons in Vapour and Particulate Phases. Atmos. Environ. 2013, 77, 974–982. https://doi.org/10.1016/j.atmosenv.2013.05.080.
Alam, M. S.; Delgado-Saborit, J. M.; Stark, C.; Harrison, R. M. Investigating PAH Relative Reactivity Using Congener Profiles, Quinone Measurements and Back Trajectories. *Atmospheric Chem. Phys.* **2014**, *14*(5), 2467–2477. https://doi.org/10.5194/acp-14-2467-2014.

Cho, A. K.; Di Stefano, E.; You, Y.; Rodriguez, C. E.; Schmitz, D. A.; Kumagai, Y.; Miguel, A. H.; Eiguren-Fernandez, A.; Kobayashi, T.; Avol, E.; Froines, J. R. Determination of Four Quinones in Diesel Exhaust Particles, SRM 1649a, and Atmospheric PM$_{2.5}$ Special Issue of *Aerosol Science and Technology* on Findings from the Fine Particulate Matter Supersites Program. *Aerosol Sci. Technol.* **2004**, *38*(sup1), 68–81. https://doi.org/10.1080/02786820390229471.
Table S1. Chemical reactions, rate constants as used in the KM-SUB-ELF, with reference

#	Reaction	Rate constant (cm3 s$^{-1}$ or s$^{-1}$)	Reference
1	NO* + O$_3$ → NO$_2^*$ + O$_2$	2.05 × 10$^{-14}$	45,46
2	NO$_2^*$ + O$_3$ → NO$_3^*$ + O$_2$	4.85 × 10$^{-17}$	45,46
3	NO* + NO* + O$_2$ → NO$_2^*$ + NO$_2^*$	8.93 × 10$^{-20}$	45,46
4	NO* + NO$_3^*$ → NO$_2^*$ + NO$_2^*$	2.57 × 10$^{-11}$	45,46
5	NO$_2^*$ + NO$_3^*$ → NO* + NO$_2^*$ + O$_2$	7.73 × 10$^{-16}$	45,46
6	NO$_2^*$ + NO$_3^*$ → N$_2$O$_5$	1.21 × 10$^{-12}$	45,46
7	*OH + O$_3$ → HO$_2^*$ + O$_2$	8.20 × 10$^{-14}$	45,46
8	*OH + H$_2$O$_2$ → HO$_2^*$ + H$_2$O	1.73 × 10$^{-12}$	45,46
9	HO$_2^*$ + O$_3$ → *OH + O$_2$ + O$_2$	8.24 × 10$^{-16}$	45,46
10	*OH + HO$_2^*$ → H$_2$O + O$_2$	1.08 × 10$^{-10}$	45,46
11	HO$_2^*$ + HO$_2^*$ → H$_2$O$_2$ + O$_2$	5.09 × 10$^{-12}$	45,46
12	HO$_2^*$ + HO$_2^*$ → H$_2$O$_2$	3.50 × 10$^{-12}$	45,46
13	*OH + NO* → HONO	8.91 × 10$^{-12}$	45,46
14	*OH + NO$_2^*$ → HNO$_3$	8.91 × 10$^{-12}$	45,46
15	*OH + NO$_3^*$ → HO$_2^*$ + NO$_2^*$	2.00 × 10$^{-11}$	45,46
16	HO$_2^*$ + NO* → *OH + NO$_2^*$	8.24 × 10$^{-12}$	45,46
17	HO$_2^*$ + NO$_2^*$ → HO$_2$NO$_2$	6.87 × 10$^{-13}$	45,46
18	HO$_2$NO$_2$ → HO$_2^*$ + NO$_2^*$	2.49 × 10$^{-1}$	45,46
19	*OH + HO$_2$NO$_2$ → NO* + H$_2$O + O$_2$	2.96 × 10$^{-12}$	45,46
20	HO$_2^*$ + NO$_3^*$ → *OH + NO$_2^*$	4.00 × 10$^{-12}$	45,46
21	*OH + HONO → NO$_2^*$ + H$_2$O	5.78 × 10$^{-12}$	45,46
22	*OH + HNO$_3$ → NO* + H$_2$O	1.37 × 10$^{-13}$	45,46
23	N$_2$O$_5$ → NO$_2^*$ + NO$_3^*$	1.83 × 10$^{-1}$	45,46

Gas-phase reactions

Surfactant reactions

#	Reaction	Rate constant (cm3 s$^{-1}$ or s$^{-1}$)	Reference
24	SPB + *OH → SPB-ox	1.70 × 10$^{-11}$	47–49
25	POG + *OH → POG-ox	1.70 × 10$^{-11}$	1
26	SPB + O$_3$ → SPB-ox	1.00 × 10$^{-14}$	50,51
27	POG + O$_3$ → POG-ox + 0.17 H$_2$O	1.66 × 10$^{-16}$	52–55
28	aToc + OH → aToc-ox	4.50 × 10$^{-13}$	56
29	aToc + O$_3$ → aToc-ox	1.20 × 10$^{-18}$	57

ELF reactions

#	Reaction	Rate constant (cm3 s$^{-1}$ or s$^{-1}$)	Reference
30	O$_2^*$ + HO$_2$ + H$_2$O → H$_2$O$_2$ + OH* + O$_2$	1.70 × 10$^{-13}$	1,58
31	HO$_2$ + HO$_2$ → H$_2$O$_2$ + O$_2$	1.40 × 10$^{-15}$	58
32. \(O_2^- + O_2^- + 2H^+ \rightarrow H_2O_2 + O_2 \)
33. \(H_2O_2 + \cdot OH \rightarrow HO_2 + H_2O \)
34. \(\cdot OH + \cdot OH \rightarrow H_2O \)
35. \(\cdot OH + O_2^- \rightarrow O_2 + OH^- \)
36. \(\cdot OH + HO_2 \rightarrow H_2O + O_2 \)
37. \(H_2O_2 + HO_2 \rightarrow \cdot OH + O_2 + H_2O \)
38. \(Fe^{2+} + O_2^- + 2H^+ \rightarrow Fe^{3+} + H_2O_2 \)
39. \(Fe^{2+} + HO_2 + H^+ \rightarrow Fe^{3+} + H_2O_2 \)
40. \(Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + \cdot OH + OH^- \)
41. \(Fe^{2+} + \cdot OH \rightarrow Fe^{3+} + OH^- \)
42. \(Fe^{2+} + H_2O_2 \rightarrow Fe^{4+} + H_2O \)
43. \(Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HO_2 + H^+ \)
44. \(Fe^{3+} + HO_2 \rightarrow Fe^{2+} + O_2 + H^+ \)
45. \(Fe^{4+} + Fe^{2+} \rightarrow Fe^{3+} + Fe^{3+} \)
46. \(Fe^{3+} + Asch \rightarrow Fe^{2+} + Asc^- \)
47. \(Fe^{4+} + Asch \rightarrow Fe^{3+} + Asc^- \)
48. \(Fe^{2+} + O_2 \rightarrow O_2^- + Fe^{3+} \)
49. \(Cu^+ + HO_2 + H^+ \rightarrow Cu^{2+} + H_2O_2 \)
50. \(Cu^+ + O_2^- + H_2O \rightarrow Cu^{2+} + H_2O_2 + OH^- \)
51. \(Cu^{2+} + HO_2 \rightarrow Cu^+ + O_2 + H^+ \)
52. \(Cu^{2+} + O_2^- \rightarrow Cu^+ + O_2 \)
53. \(Cu^{2+} + Asch \rightarrow Cu^+ + Asc^- \)
54. \(Cu^+ + O_2 \rightarrow Cu^{2+} + O_2^- \)
55. \(Cu^+ + H_2O_2 \rightarrow Cu^{2+} + \cdot OH + OH^- \)
56. \(Cu^+ + H_2O_2 \rightarrow Cu^{3+} + OH^- + OH^- \)
57. \(Cu^+ + Cu^{3+} \rightarrow Cu^{2+} + Cu^{2+} \)
58. \(Cu^{2+} + H_2O_2 \rightarrow Cu^+ + O_2^- + H^+ \)
59. \(PQN + Asch \rightarrow PQN^+ + Asc^- \)
60. \(PQN^+ + O_2 \rightarrow PQN + O_2^- \)
61. \(PQN^+ + O_2^- + 2H^+ \rightarrow PQN + H_2O_2 \)
62. \(NQN12 + Asch \rightarrow NQN12^+ + Asc^- \)
63. \(NQN12^+ + O_2 \rightarrow NQN12 + O_2^- \)
64. \(NQN12^+ + O_2^- + 2H^+ \rightarrow NQN12 + H_2O_2 \)
65. \(NQN14 + Asch \rightarrow NQN14^+ + Asc^- \)
66. \(NQN14^+ + O_2 \rightarrow NQN14 + O_2^- \)
67. \(NQN14^+ + O_2^- + 2H^+ \rightarrow NQN14 + H_2O_2 \)
68. \(UA + O_3 \rightarrow Products \)
| Reaction | Rate Constant | | |
|---|---|---|---|
| UA + OH → Products + OH⁻ | 1.20×10^{-11} |
| GSH + OH → Products + OH⁻ | 1.50×10^{-11} |
| GSSG + OH → Products + OH⁻ | 1.50×10^{-11} |
| Asc* + Asc* + H⁺ → Asc + DHA | 5.00×10^{-16} |
| AscH + O₂⁺ + H⁺ → Asc⁺ + H₂O₂ | 5.10×10^{-17} |
| AsCH + HO₂ → AsC⁺ + H₂O₂ | 2.65×10^{-17} |
| AsCH + OH → Products + OH⁻ | 1.80×10^{-11} |
| AsCH + O₃ → Products | 9.10×10^{-17} |
| 1.25 GS⁻ + 0.5 O₃ → Products | 9.60×10^{-20} |
| 1.25 GSH + 0.5 O₃ → Products | 9.60×10^{-20} |
| GSOO + GSOO → 0.56 O₂⁺ + Products | 6.79×10^{-13} |
| O₂⁺ + GSH → GSO⁺ + OH⁻ | 3.32×10^{-19} |
| NO₂⁺ + GS⁻ → GSNO₂ | 4.98×10^{-12} |
| GSOO⁺ + NO₂⁺ → GSOONO₂ | 2.49×10^{-12} |
| GSOO₂⁻ → GSOO⁺ + NO₂⁻ | 7.5×10^{-1} |
| NO₂⁺ + GS⁻ → NO₂⁻ + GS⁺ | 4.00×10^{-13} |
| NO₂⁺ + GSH → NO₂⁻ + GS⁺ + H⁺ | 1.66×10^{-14} |
| GSOO⁺ + GSH → GSO⁺ + GSOH | 3.32×10^{-15} |
| GSO + NO₂ → GSOONO | 7.47×10^{-12} |
| GSOONO → Products | 7.00×10^{2} |
| GS⁻ + GS⁻ → GS⁻ + GS⁻ | 1.59×10^{-14} |
| GSSG⁻ → GS⁻ + GS⁻ | 1.60×10^{5} |
| GSSG⁻ + O₂ → GSSG + O₂⁻ | 8.30×10^{-12} |
| GS⁻ + GS⁻ → GSS | 8.30×10^{-12} |
| GSO⁻ + GSO⁻ → Products | 9.96×10^{-14} |
| GS⁻ + H₂O₂ → GSOH + OH⁻ | 1.60×10^{-21} |
| GS⁻ + AsCH → GSH + Asc⁺ | 1.00×10^{-12} |
| UA + NO₂⁺ → UA⁺ + NO₂⁻ | 3.00×10^{-14} |
| AsCH + NO₂⁺ → Asc⁺ + NO₂⁻ | 5.80×10^{-14} |
| UA⁺ + AsCH → UA + Asc⁺ | 1.70×10^{-15} |
| GS⁻ + UA → GSH + UA⁻ | 5.00×10^{-14} |
| O₂⁺ + NO₂⁺ → O₂NOO⁻ | 7.50×10^{-12} |
| O₂NOO⁻ → NO₂⁻ + O₂ | 7.00×10^{-1} |
| O₂NOO⁻ → O₂⁺ + NO₂⁻ | 1.10×10^{0} |
| NO₂⁺ + NO₂⁺ → N₂O₄ | 7.50×10^{-13} |
| Equation | Reactions | Rate Constant | References |
|----------|-----------|---------------|------------|
| 105 | $\text{N}_2\text{O}_4 \rightarrow \text{NO}_2^* + \text{NO}_2^*$ | 6.90×10^5 | 81 |
| 106 | $\text{N}_2\text{O}_4 + \text{H}_2\text{O} \rightarrow \text{NO}_2^- + \text{NO}_3^- + 2\text{H}^+$ | 1.00×10^3 | 4 |
| 107 | $\text{O}_2^- + \text{O}_3 + \text{H}_2\text{O} \rightarrow \text{OH} + 2\text{O}_2 + \text{OH}^-$ | 2.50×10^{-12} | 82 |
| 108 | $\text{HO}_2 + \text{O}_3 \rightarrow \text{OH} + 2\text{O}_2$ | 1.66×10^{-17} | 82 |
| 109 | $\text{NO}_2^- + \cdot\text{OH} \rightarrow \text{NO}_2^* + \text{OH}^-$ | 8.80×10^{-12} | 80 |
| 110 | $\cdot\text{OH} + \text{NO}_2^* \rightarrow \text{ONO}_2^-$ | 7.50×10^{-12} | 4 |
| 111 | $\cdot\text{OH} + \text{NO}_2^- \rightarrow \text{ONO}_2$ | 7.50×10^{-12} | 4 |
| 112 | $\text{ONO}_2 \rightarrow \text{NO}_2^- + \cdot\text{OH}$ | 3.00×10^{-1} | 4 |
| 113 | $\text{ONO}_2 \rightarrow \text{NO}_3^- + \text{H}^+$ | 7.00×10^{-1} | 4 |
| 114 | $\text{ONO}_2^- + \text{GSH} \rightarrow \text{NO}_2^- + \text{GSO}_2$ | 1.10×10^{-18} | 83 |
| 115 | $\text{GSO}_2^- + \text{NO}_2^* \rightarrow \text{GSOO}_2$ | 7.50×10^{-12} | 4 |
| 116 | $\text{GSOO}_2 + \text{H}_2\text{O} \rightarrow \text{Products}$ | 7.00×10^2 | 4 |
| 117 | $\text{ONO}_2 + \text{AscH} \rightarrow \text{Im}_1$ | 1.66×10^{-15} | 84 |
| 118 | $\text{Im}_1 \rightarrow \text{ONO}_2 + \text{AscH}$ | 5.00×10^{-2} | 84 |
| 119 | $\text{Im}_1 \rightarrow \text{Im}_2$ | 4.00×10^1 | 84 |
| 120 | $\text{Im}_2 \rightarrow \text{Im}_1$ | 5.00×10^0 | 84 |
| 121 | $\text{Im}_2 + \text{AscH} \rightarrow \text{Asc} + \text{DHA} + \text{NO}_2^- + \text{H}_2\text{O}$ | 1.66×10^{-19} | 84 |
| 122 | $\text{Im}_2 \rightarrow \text{Asc} + \text{NO}_3^- + \text{H}^+$ | 8.50×10^{-1} | 84 |
| 123 | $\text{ONO}_2 + \text{UA} \rightarrow \text{UA}^{\text{rad}} + \text{NO}_2 + \text{Products}$ | 2.60×10^{-19} | 85 |
| 124 | $\text{O}_2^- + \text{SOD} + \text{H}^+ \rightarrow 0.5 \text{H}_2\text{O}_2 + \text{SOD}$ | 2.65×10^{-12} | See text S2. |
| 125 | $\text{H}_2\text{O}_2 + \text{catalase} \rightarrow \text{H}_2\text{O} + 0.5 \text{O}_2 + \text{catalase}$ | 3.20×10^{-14} | See text S2. |
| 126 | $\cdot\text{OH} + \text{organic matter} \rightarrow \text{oxidized organic matter}$ | 1.66×10^{-12} | 21.65 |
Table S2. Input parameters to the KM-SUB-ELF model

Parameter	Description	Value
$K_{H_{\text{O}_3}}$	Henrys law equilibrium constant for O$_3$ [aq]/[gas]	1.7×10^{-1}
$K_{H_{\text{NO}_2}}$	Henrys law equilibrium constant for NO$_2$ [aq]/[gas]	2.2×10^{-1}
$K_{H_{\text{NO}}}$	Henrys law equilibrium constant for NO [aq]/[gas]	3.9×10^{-2}
$K_{H_{\text{OH}}}$	Henrys law equilibrium constant for OH [aq]/[gas]	4.3×10^{2}
$K_{H_{\text{H}_2\text{O}_2}}$	Henrys law equilibrium constant for H$_2$O$_2$ [aq]/[gas]	1.7×10^{3}
ω_{O_3}	Mean thermal velocity of O$_3$	3.7×10^{4} cm s$^{-1}$
ω_{NO_2}	Mean thermal velocity of NO$_2$	3.8×10^{4} cm s$^{-1}$
ω_{NO}	Mean thermal velocity of NO	4.7×10^{4} cm s$^{-1}$
ω_{OH}	Mean thermal velocity of OH	6.2×10^{4} cm s$^{-1}$
ω_{HO_2}	Mean thermal velocity of HO$_2$	4.5×10^{4} cm s$^{-1}$
$\omega_{\text{H}_2\text{O}_2}$	Mean thermal velocity of H$_2$O$_2$	4.4×10^{4} cm s$^{-1}$
MW_{aa}	Average molecular weight of amino acids	125 g mole$^{-1}$
MW_{Cu}	Molecular weight copper	63.6 g mole$^{-1}$
MW_{Fe}	Molecular weight iron	55.6 g mole$^{-1}$
MW_{SOA}	Average molecular weight SOA	250 g mole$^{-1}$
MW_{PQN}	Molecular weight phenanthrenequinone (PQN)	208.2 g mole$^{-1}$
MW_{NQN}	Molecular weight naphthoquinone (NQN)	158.2 g mole$^{-1}$
$pK_{a_{\text{GSH}}}$	Acid dissociation constant of GSH	8.8
$pK_{a_{\text{HO}_2}}$	Acid dissociation constant of HO$_2$	4.8
$pK_{a_{\text{ONOOH}}}$	Acid dissociation constant of ONOOH	6.5
VR	Lung ventilation rate	1.5 m3h$^{-1}$
BR	Breathing rate	16 min$^{-1}$
FCR	Functional residual capacity of the lung	2750 cm3
TV	Tidal Volume – Breath volume	1500 cm3
SA_{ELF}	Total ELF surface area	890000 cm2
T_{RT}	Respiratory tract temperature	37°C
pH_{ELF}	pH of the ELF	7
Table S3. List of symbols and definitions

Symbol	Meaning	SI unit
CY	ELF concentration of PM2.5 constituent Y	µmol L⁻¹
Cgas,PM2.5	Ambient gas phase concentration of PM2.5	µg m⁻³
CEROS	ROS concentration in the ELF during or after model simulation	nmol L⁻¹
dm,PM2.5	Fraction of PM2.5 that deposits in the ELF	µg
DPM2.5	Dose of PM2.5 deposited in the ELF	nmol L⁻¹
Ii→j	Gross chemical interconversion between individual ROS in the ELF	nmol L⁻¹
IΣROS	Gross chemical interconversion between all ROS in the ELF	nmol L⁻¹
MF_Y	PM2.5 mass fraction of constituent Y	g mol⁻¹
M_Y	Molar mass of PM2.5 constituent Y	g mol⁻¹
NΣROS	Cumulative production of ROS in the ELF	nmol L⁻¹
N'ΣROS	Cumulative production rate of ROS in the ELF	nmol L⁻¹ s⁻¹
PΣROS	Gross chemical production of ROS in the ELF	nmol L⁻¹
P'ΣROS	Gross chemical production rate of ROS in the ELF	nmol L⁻¹ s⁻¹
P_Y	Gross chemical production of an individual ROS in the ELF	nmol L⁻¹
SF_Y	Soluble fraction of PM2.5 constituent Y in ELF	h
tacc	Accumulation time of PM2.5 in the ELF	h
t_sim	Model simulation time	h
VELF	Volume of the ELF	mL
VR	Lung ventilation rate	m³ h⁻¹
YOH	OH yield in the ELF	pmol

Table S4. Mathematical formulas used to calculate ELF ROS metrics

- \(k_{ROS} = \sum_{i>j} k_{i\rightarrow j} \)
- \(N_{ROS} = P_{ROS} - k_{ROS} \)
- \(N'_{ROS} = (P_{ROS} - k_{ROS}) / t_{sim} \)
- \(P'_{ROS} = P_{ROS} / t_{sim} \)
Table S5. PM2.5 and transition metal concentrations with mass fractions as quantified in PM2.5 collected at different sampling sites throughout the world.

Sampling location	PM2.5 (µg m\(^{-3}\))	Fe (ng m\(^{-3}\))	Cu (ng m\(^{-3}\))	Fe mass fraction	Cu mass fraction	Reference
Amazon (wet season)	1.65	33	0.07	2.00 × 10\(^{-2}\)	4.24 × 10\(^{-5}\)	86
Mace Head (Ireland)	4.2	5.68	0.71	1.35 × 10\(^{-3}\)	1.69 × 10\(^{-4}\)	87
Amazon (dry season)	4.87	19	0.8	3.90 × 10\(^{-3}\)	1.64 × 10\(^{-4}\)	86
Edinburgh (Scotland)	7.1	27.6	1.39	3.89 × 10\(^{-3}\)	1.96 × 10\(^{-4}\)	88
West Midlands (UK, rural)	7.6	51.3	13.5	6.75 × 10\(^{-3}\)	1.78 × 10\(^{-4}\)	89
West Midlands (UK, urban)	9	80.2	13.9	8.91 × 10\(^{-3}\)	1.54 × 10\(^{-3}\)	89
Skukuza (South Africa)	9.4	51	0.41	5.43 × 10\(^{-3}\)	4.36 × 10\(^{-5}\)	90
Amazon (Serro do Navio)	9.87	120	1.65	1.22 × 10\(^{-2}\)	1.67 × 10\(^{-4}\)	91
Amazon (Cuiabá)	10.5	175	1.55	1.67 × 10\(^{-2}\)	1.48 × 10\(^{-4}\)	91
West Midlands (UK, rural, average)	10.5	87.1	20	8.30 × 10\(^{-3}\)	1.91 × 10\(^{-3}\)	89
West Midlands (UK, urban, average)	11.6	102	21.9	8.79 × 10\(^{-3}\)	1.89 × 10\(^{-3}\)	89
Helsinki (Finland)	11.8	96	3.1	8.14 × 10\(^{-3}\)	2.63 × 10\(^{-4}\)	92
Tampa (Florida)	12.7	79	2.4	6.22 × 10\(^{-3}\)	1.89 × 10\(^{-4}\)	93
Toronto (Canada)	12.7	55	2.5	4.33 × 10\(^{-3}\)	1.97 × 10\(^{-4}\)	94
South Phoenix (Texas)	12.95	147	7.6	1.14 × 10\(^{-2}\)	5.87 × 10\(^{-4}\)	95
Tehran (inside a school dormitory)	14	102.13	22.17	7.30 × 10\(^{-3}\)	1.58 × 10\(^{-3}\)	96
Tehran (inside a retirement home)	15	130.78	25.1	8.72 × 10\(^{-3}\)	1.67 × 10\(^{-3}\)	96
South-Eastern Italy (background sites)	16.4	86.8	3.1	5.29 × 10\(^{-3}\)	1.89 × 10\(^{-4}\)	97
Patras (Greece)	17.4	124	7.28	7.13 × 10\(^{-3}\)	4.18 × 10\(^{-4}\)	98
Yeongwol (South Korea)	19.7	31.2	9.8	1.58 × 10\(^{-3}\)	4.98 × 10\(^{-4}\)	99
Budapest (Hungary)	20	430	18.3	2.15 × 10\(^{-2}\)	9.15 × 10\(^{-4}\)	100
South-Eastern Italy (industrial sites)	21.7	85	5.1	3.92 × 10\(^{-3}\)	2.35 × 10\(^{-4}\)	97
Location	Value1	Value2	Value3	Value4	Value5	
---	--------	--------	-----------------	-----------------	-----------------	
Zabrze (upper Silesia, Poland)	22	160.8	6.5	7.31×10^{-3}	2.96×10^{-4}	
Chuncheon (South Korea)	23	29.6	9.9	1.29×10^{-3}	4.30×10^{-4}	
Detroit (Michigan)	23	234	6	1.02×10^{-2}	2.61×10^{-4}	
Megalopolis (Greece)	23	87	4.02	3.78×10^{-3}	1.75×10^{-4}	
Tehran (outside a retirement home)	24	238.81	25.99	9.95×10^{-3}	1.08×10^{-3}	
South-Eastern Italy (urban sites)	24.1	78.8	5.7	3.27×10^{-3}	2.37×10^{-4}	
Tehran (outside a school dormitory)	26	280	32.42	1.08×10^{-2}	1.25×10^{-3}	
Anaheim (California)	26.8	29.6	39.6	1.11×10^{-3}	1.48×10^{-3}	
Milan (Summer, Italy)	27.2	186	10	6.84×10^{-3}	3.68×10^{-4}	
Jeddah City (Saudi Arabia)	28.4	590	5.6	2.08×10^{-2}	1.97×10^{-4}	
Hong Kong	29	140	5.7	4.83×10^{-3}	1.97×10^{-4}	
Rio de Janeiro (Brazil)	29.2	307	35	1.05×10^{-2}	1.20×10^{-3}	
Katowice (upper Silesia, Poland)	31	157	8.2	5.07×10^{-3}	2.65×10^{-4}	
Porto Marghera (Italy)	31	200	9.3	6.45×10^{-3}	3.00×10^{-4}	
Erzgebirge (Germany)	32.5	188	3	5.79×10^{-3}	9.23×10^{-5}	
Barcelona (Spain)	35	260	52	7.43×10^{-3}	1.49×10^{-3}	
Santa Catarina (Mexico)	36.15	466	16	1.29×10^{-2}	4.42×10^{-4}	
Escobedo (Mexico)	37.78	493	13	1.31×10^{-2}	3.44×10^{-4}	
Arnhem (the Netherlands)	38.95	241	13.5	6.19×10^{-3}	3.47×10^{-4}	
Mira Loma (Southern California, average)	41.8	581	75	1.39×10^{-2}	1.79×10^{-3}	
Taif (residential area, Saudi Arabia)	46	2000	5.3	4.35×10^{-2}	1.15×10^{-4}	
Taif (industrial site, Saudi Arabia)	47	2300	13	4.89×10^{-2}	2.77×10^{-4}	
Azusa (California)	47.1	281.9	13.4	5.99×10^{-3}	2.85×10^{-4}	
Edison (New Jersey)	49.6	1953	10	3.94×10^{-2}	2.02×10^{-4}	
Bursa (Turkey)	53	875	15	1.65×10^{-2}	2.83×10^{-4}	
Karachi (summer, Pakistan)	55.89	3360	56	6.01×10^{-2}	1.00×10^{-3}	
New Delhi (summer, high traffic, India)	58.2	710	20	1.22×10^{-2}	3.44×10^{-4}	
Sampling location	PM2.5 (μg m$^{-3}$)	SOA (μg m$^{-3}$)	SOA mass fraction	Reference		
---	--------------------------	------------------------	-------------------	-----------		
Amazon (Brazil)	1.8	0.34	0.189	130		
Hyttijärvi (Finland)	2	1.2	0.60	131		
Storm Peak (Colorado)	2.1	0.7	0.333	131		
Iron and copper medians	–	–	8.14 x 10^{-3}	This study		

Table S6. PM2.5 and SOA concentrations with mass fractions as quantified in PM2.5 collected at different sampling sites throughout the world.
Location	Temperature	Humidity	Precipitation	Notes
Jungfraujoch (Switzerland)	2.2	1.2	0.545	
Duke Forest (North Carolina)	2.8	1.3	0.464	
Chebogue Pt. (Canada)	2.9	1.5	0.517	
Edinburgh (Scotland)	3	1.2	0.400	
Mainz (Germany)	4.3	1.1	0.256	
Boulder (Colorado)	4.4	2.5	0.568	
Manchester (winter, UK)	5.2	0.6	0.115	
Chelmsford (UK)	5.3	1.8	0.340	
Vancouver (Canada)	7	2.5	0.357	
Okinawa (Japan)	7.9	1.7	0.215	
Off New England Coast	8.5	4.9	0.576	
Thompson Farm (New Hampshire)	9.5	4.2	0.442	
Zurich (winter, Switzerland)	9.6	4.3	0.448	
Cheju (South Korea)	10.7	4	0.374	
Fukue (Japan)	11	3.6	0.327	
New York City (winter, New York)	11.6	2.6	0.224	
New York City (summer, New York)	12.2	4.8	0.393	
Pinnacle Park (New York)	12.3	5.4	0.439	
Houston (Texas)	12.8	2.7	0.211	
Tokyo (summer, Japan)	13.2	4.7	0.356	
Manchester (summer, UK)	14.3	3	0.210	
Pittsburgh (Pensylvania)	14.7	3.1	0.211	
Tokyo (winter, Japan)	16.2	2.3	0.142	
Taunus (Germany)	16.3	7.9	0.485	
Riverside (California)	19.1	7	0.366	
Zurich (summer, Switzerland)	25.5	5.1	0.200	
Mexico City (Mexico)	26.8	8.1	0.302	
Table S7. PM2.5, Phenanthrenequinone (PQN), 1,4-naphthoquinone (1,4-NQN) and 1,2-naphthoquinone (1,2-NQN) concentrations with mass fractions as quantified in PM2.5 collected at different sampling sites throughout the world. *see SI section on particulate pollutant concentrations in the ELF.*

Sampling location	PM2.5 (µg m\(^{-3}\))	PQN (ng m\(^{-3}\))	1,2-NQN (ng m\(^{-3}\))	1,4-NQN (ng m\(^{-3}\))	PQN mass fraction	1,2-NQN mass fraction	1,4-NQN mass fraction	Reference
Umea (Sweden)	7.8	Unknown	Unknown	0.03	2.6 × 10\(^{-6}\)	1.3 × 10\(^{-6}\)	1.3 × 10\(^{-6}\)	133
Athens (Greece)	35.6	0.071	0.157	0.26	2.69 × 10\(^{-6}\)	5.95 × 10\(^{-6}\)	9.86 × 10\(^{-6}\)	134
Mazar-e Sharif (Afghanistan)	69	Unknown	Unknown	0.027	1.06 × 10\(^{-6}\)	5.28 × 10\(^{-7}\)	5.28 × 10\(^{-7}\)	133
Kabul (Afghanistan)	86	Unknown	Unknown	0.2	6.28 × 10\(^{-6}\)	3.14 × 10\(^{-6}\)	3.14 × 10\(^{-6}\)	133
Atascadero (California)	5*	0.023	0.0127	0.0246	6.21 × 10\(^{-6}\)	3.43 × 10\(^{-6}\)	6.64 × 10\(^{-6}\)	120
Birmingham (UK)	15*	4.6	3.2	1.7	4.14 × 10\(^{-4}\)	2.88 × 10\(^{-4}\)	1.53 × 10\(^{-4}\)	136
Lake Elsinore (California)	20*	0.311	0.246	0.14	2.1 × 10\(^{-5}\)	1.66 × 10\(^{-5}\)	9.45 × 10\(^{-6}\)	135
Norfolk (UK)	5*	0.058	0.024	0.012	1.57 × 10\(^{-5}\)	6.48 × 10\(^{-6}\)	3.24 × 10\(^{-6}\)	137
Riverside (California)	25*	0.57	0.06	0.23	3.08 × 10\(^{-5}\)	3.24 × 10\(^{-6}\)	1.24 × 10\(^{-5}\)	138
Quinones median	–	–	–	–	6.28 × 10\(^{-6}\)	3.43 × 10\(^{-6}\)	6.64 × 10\(^{-6}\)	*This study*
Figure S1. Mass fractions of all redox-active PM2.5 constituents quantified in field data (Tabs. S5-7). The median mass fraction of each redox-active PM2.5 constituent is indicated by the red horizontal line.
Figure S2. (a) ROS concentration, $C_{\text{ROS, end}}$, after pollutant exposure, and (b) the average ROS concentration, $C_{\text{ROS, avg}}$, during pollutant exposure as a function of PM2.5 concentration. The solid lines represent a standard composition of PM2.5 using median mass fractions of the redox-active constituents. Black markers represent calculations using explicit PM2.5 composition field data (Tab. S5-7)
Figure S3. (a) ROS concentrations, C_{ROS}, as a function of pollutant concentration with and without consideration of antioxidant depletion in the model. One µg of the co-pollutant NO$_2$ is added per µg PM2.5. For O$_3$, a constant concentration of 30 µg m$^{-3}$ was used, independent of PM2.5 concentration. (b) Antioxidant consumption rate of NO$_2$, PM2.5 and O$_3$ as a function of pollutant concentration. The dashed line indicates the antioxidant consumption rate at which the ELF antioxidants would deplete in healthy humans within two hours of pollutant exposure without the consideration of enzymes or antioxidant replenishment.
Figure S4. Gross chemical production of individual ROS in the ELF solely associated with and as a function of the concentration of three pollutants: (a) PM2.5, (b) O₃, and (c) NO₂. Simulations were carried out using only the single pollutant. In panel a, the solid lines represent standard PM2.5 composition, and the markers represent explicit PM2.5 composition data for redox-active constituents (Tabs. S5-7). O₃ does not contribute to production of O₂⁻ or OH in the model.

Figure S5. Aqueous-phase (a) NO₂ concentration and (b) O₃ concentration in the ELF as a function of pollutant concentration and comparison to hypothetical saturation with respect to ambient air. Dashed lines indicate saturation concentrations assuming Henry’s law equilibrium, which are calculated using the ambient gas phase pollutant concentration and the dimensionless water–air partitioning coefficients for O₃ and NO₂, respectively (Table S2).
Figure S6. Effect of using different pH on the main results (panels a,b, e-j) and transition metal valence state (panels c,d) using the median mass fractions of all redox-active PM2.5 constituents, co-varied NO$_2$ (PM2.5:NO$_2$ = 1:1) and an O$_3$ concentration of 30 µg m$^{-3}$.