Species Tree Inference Methods Intended to Deal with Incomplete Lineage Sorting Are Robust to the Presence of Paralogs

Supplementary Information

Zhi Yan, Megan L. Smith, Peng Du, Matthew W. Hahn, and Luay Nakhleh

- Characteristics of the 16-taxon simulated yeast data sets of population size 10^7 are shown in Fig. S1 (a), (c) and (e).

- Characteristics of the 12-taxon simulated fly data sets of population size 10^6 are shown in Fig. S1 (b), (d) and (f).

- Accuracy of inferred species trees on the 16-taxon simulated yeast data sets of population size 10^7 from true gene trees, true locus trees, estimated gene trees, and estimated locus trees, are shown in Figs. S4 to S7.

- Gene tree and locus tree estimation error on the 16-taxon simulated yeast data sets are shown in Fig. S2.

- Gene tree and locus tree estimation error on the 12-taxon simulated fly data sets are shown in Fig. S3.

- Accuracy of inferred species trees on the 16-taxon simulated yeast data sets of population size 10^7 from true gene trees, true locus trees, estimated gene trees, and estimated locus trees, are shown in Figs. S4 to S7.

- Accuracy of inferred species trees on the 12-taxon simulated fly data sets from true gene trees, true locus trees, estimated gene trees, and estimated locus trees, are shown in Figs. S8 to S11.

- Simulation commands are shown in Section S2.
Figure S1: Characteristics of the simulated data under different settings of the duplication/loss rates and tree topologies. The duplication/loss rates are denoted by the rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the rate found in nature for the clade represented by each species tree topology (see Methods). (a-b) Distribution of the total number of gene copies in individual gene families in the 16-taxon and 12-taxon data sets, respectively. (c-d) Scatter plots of XL(Species tree, Locus tree), the number of extra lineages when reconciling the true locus trees with the true species tree, for the 16-taxon and 12-taxon data sets, respectively. These plots therefore represent the effects of GDL alone. (e-f) Scatter plots of XL(Locus tree, Gene tree), the number of extra lineages when reconciling the true gene trees with the true locus tree, for the 16-taxon and 12-taxon data sets, respectively. These plots therefore represent the effects of ILS alone, though note that higher rates of GDL allow there to be more gene tree branches on which ILS can act.
Figure S2: The normalized RF distances between the true and estimated gene trees as well as the true and estimated locus trees for the 16-taxon simulated yeast data sets. Gene trees and locus trees were inferred from sequence data using IQ-TREE.
Figure S3: The normalized RF distances between the true and estimated gene trees as well as the true and estimated locus trees for the 12-taxon simulated fly data sets. Gene trees and locus trees were inferred from sequence data using IQ-TREE.
Figure S4: Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of 10^7 and varying GDL rates; note that simulations include the effects of both ILS and GDL (but no gene tree estimation error). Species tree estimation error was measured as the normalized RF distance between the true species tree and the ones inferred from true gene trees. The five inference methods used are ASTRAL, InferNetworkMPL, NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fungi. Each row corresponds to a combination of population size and GDL rates. The X-axis in each panel represents the number of gene families used and the Y-axis represents the normalized RF distance.
Figure S5: Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of 10^7 and varying GDL rates; note that simulations include the effects of GDL only (no ILS or gene tree estimation error). Species tree estimation error was measured as the normalized RF distance between the true species tree and the ones inferred from true locus trees. The five inference methods used are ASTRAL, InferNetworkMPL, NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fungi. Each row corresponds to a combination of population size and GDL rates. The X-axis in each panel represents the number of gene families used and the Y-axis represents the normalized RF distance.
Figure S6: Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of 10^7 and varying GDL rates; note that simulations include the effects of ILS, GDL and gene tree estimation error. Species tree estimation error was measured as the normalized RF distance between the true species tree and the ones inferred from estimated gene trees. The five inference methods used are ASTRAL, InferNetworkMPL, NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fungi. Each row corresponds to a combination of population size and GDL rates. The X-axis in each panel represents the number of gene families used and the Y-axis represents the normalized RF distance.
Figure S7: Species tree estimation error for data simulated from the 16-taxon fungal tree with a population size of 10^7 and varying GDL rates; note that simulations include the effects of GDL and gene tree estimation error (no ILS). Species tree estimation error was measured as the normalized RF distance between the true species tree and the ones inferred from estimated locus trees. The five inference methods used are ASTRAL, InferNetworkMPL, NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS. The duplication/loss rates are denoted by the rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fungi. Each row corresponds to a combination of population size and GDL rates. The X-axis in each panel represents the number of gene families used and the Y-axis represents the normalized RF distance.
Figure S8: Species tree estimation error for data simulated from the 12-taxon fly tree under different GDL rates and population sizes; note that simulations include the effects of both ILS and GDL (but no gene tree estimation error). Species tree estimation error was measured as the normalized RF distance between the true species tree and the ones inferred from true gene trees. The five inference methods used are ASTRAL, InferNetworkMPL, NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS, and data is simulated on the 12-taxon tree under different GDL rates and population sizes. The duplication/loss rates are denoted by the rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fly. Each row corresponds to a combination of population size and GDL rates. The X-axis in each panel represents the number of gene families used and the Y-axis represents the normalized RF distance.
Figure S9: Species tree estimation error for data simulated from the 12-taxon fly tree under different GDL rates and population sizes; note that simulations include the effects of GDL only (no ILS or gene tree estimation error). Species tree estimation error was measured as the normalized RF distance between the true species tree and the ones inferred from true locus trees. The five inference methods used are ASTRAL, InferNetworkMPL, NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS, and data is simulated on the 12-taxon tree under different GDL rates and population sizes. The duplication/loss rates are denoted by the rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fly. Each row corresponds to a combination of population size and GDL rates. The X-axis in each panel represents the number of gene families used and the Y-axis represents the normalized RF distance.
Figure S10: Species tree estimation error for data simulated from the 12-taxon fly tree under different GDL rates and population sizes; note that simulations include the effects of ILS, GDL, and gene tree estimation error. Species tree estimation error was measured as the normalized RF distance between the true species tree and the ones inferred from estimated gene trees. The five inference methods used are ASTRAL, InferNetworkMPL, NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS, and data is simulated on the 12-taxon tree under different GDL rates and population sizes. The duplication/loss rates are denoted by the rate multiplier (0x, 1x, 2x, 5x, and 10x), where 1x is the rate estimated in nature for fly. Each row corresponds to a combination of population size and GDL rates. The X-axis in each panel represents the number of gene families used and the Y-axis represents the normalized RF distance.
Figure S11: Species tree estimation error for data simulated from the 12-taxon fly tree under different GDL rates and population sizes; note that simulations include the effects of GDL and gene tree estimation error (no ILS). Species tree estimation error was measured as the normalized RF distance between the true species tree and the ones inferred from estimated locus trees. The five inference methods used are ASTRAL, InferNetworkMPL, NJst, ASTRAL-Pro (“A-pro”), and FastMulRFS), and data is simulated on the 12-taxon tree under different GDL rates and population sizes. The duplication/loss rates are denoted by the rate multiplier (0x, 1x, 2x, 5x and 10x), where 1x is the rate estimated in nature for fly. Each row corresponds to a combination of population size and GDL rates. The X-axis in each panel represents the number of gene families used and the Y-axis represents the normalized RF distance.
S2 Supplementary Simulation Details

S2.1 SimPhy configurations

The SimPhy configuration files used for generating the data sets are included in the supplementary file simphy-configuration-files.zip.

S2.2 Seq-Gen commands

Fly data:
- **Gene tree:** `seq-gen -mHKY -l1500 -or <tree file>`
- **Locus tree:** `seq-gen -mHKY -l1500 -s0.000000003 -or <tree file>`

Fungal data:
- **Gene tree:** `seq-gen -mHKY -l1500 -or <tree file>`
- **Locus tree:** `seq-gen -mHKY -l1500 -s0.000000004 -or <tree file>`

S2.3 IQ-TREE command

`iqtree -s <sequence file> -nt <number of CPU cores>`