Higher twist effects in charmed-strange νDIS diffraction

R. Fiore1† and V.R. Zoller2‡

1Dipartimento di Fisica, Università della Calabria and
Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza,
I-87036 Rende, Cosenza, Italy
2ITEP, Moscow 117218, Russia

Abstract

The non-conservation of charmed-strange current in the neutrino deep inelastic scattering (νDIS) strongly affects the longitudinal structure function, F_L, at small values of Bjorken x. The corresponding correction to F_L is a higher twist effect enhanced at small-x by the rapidly growing gluon density factor. As a result, the component of F_L induced by the charmed-strange current prevails over the light-quark component and dominates $F_L = F_{L}^{cs} + F_{L}^{ud}$ at $x \lesssim 0.01$ and $Q^2 \sim m_c^2$. The color dipole analysis clarifies the physics behind the phenomenon and provides a quantitative estimate of the effect.

\daggeremail address: fiore@cs.infn.it

\ddaggeremail address: zoller@itep.ru
1 Introduction

Weak currents are not conserved. For the light flavor currents the hypothesis of the partial conservation of the axial-vector current (PCAC) [1] provides quantitative measure of the charged current non-conservation (CCNC) effect. [2]. The non-conservation of the charm and strangeness changing (cs) current is not constrained by PCAC. Here we focus on manifestations of the cs current non-conservation in small-x neutrino DIS. At small x the color dipole (CD) approach to QCD [3, 4] proved to be very effective. Within this approach it is natural to quantify the effect of CCNC in terms of the light cone wave functions (LCWF)1

$$\Psi \sim g\epsilon \nu j^\nu /\Delta E,$$

where $j^\nu = \bar{c}(k)\gamma^\nu(1 - \gamma_5)s(p)$, $\Delta E = E_q - E_p - E_k$ and ϵ^ν is the four-vector of the so-called longitudinal polarization of the W-boson with the four-momentum q. Notice that $\epsilon^\nu \rightarrow q^\nu /Q$ for $Q^2 = -q^2 \rightarrow 0$.

The observable which is highly sensitive to the CCNC effects is the longitudinal structure function $F_L(x, Q^2)$ related, within the CD approach, to the quantum mechanical expectation value of the color dipole cross section,

$$F_L \sim Q^2 \langle \Psi |\sigma |\Psi \rangle.$$

Our finding is that the higher twist correction to F_L arising from the cs current non-conservation appears to be enhanced at small x by the BFKL [6] gluon density factor,

$$F_L^{cs} \sim \frac{m_c^2}{Q^2} \left(\frac{1}{x}\right)^\Delta.$$

The color dipole analysis reveals mechanism of enhancement: the ordering of dipole sizes

$$(m_c^2 + Q^2)^{-1} < r^2 < m_s^{-2}$$

typical of the Double Leading Log Approximation (DLLA) and the multiplication of log’s like

$$\alpha_s \log((m_c^2 + Q^2)/\mu_G^2) \log(1/x)$$

1Preliminary results have been reported at the Diffraction’08 Workshop [5]
to higher orders of perturbative QCD. As a result, the component \(F_L^{cs} \) induced by the charmed-strange current
\[
F_L = F_L^{ud} + F_L^{cs}
\]
grows rapidly to small-\(x \) and dominates \(F_L \) at \(Q^2 \lesssim m_c^2 \) [7, 8].

2 CCNC in terms of LCWF

In the CD approach to small-\(x \) \(\nu \)DIS [9] the responsibility for the quark current non-conservation takes the light-cone wave function of the quark-antiquark Fock state of the longitudinal (\(L \)) electro-weak boson\(^2\). For Cabibbo-favored transitions the Fock state expansion reads
\[
|W_L^+⟩ = Ψ^{cs}|c\bar{s}⟩ + Ψ^{ud}|u\bar{d}⟩ + ...,
\]
where only \(u\bar{d}- \) and \(c\bar{s}-\)states (both vector and axial-vector) are retained.

In the current conserving eDIS the Fock state expansion of the longitudinal photon contains only \(S \)-wave \(q\bar{q} \) states and \(Ψ \) vanishes as \(Q^2 \to 0 \),
\[
Ψ(z, r) \sim 2δ_{L,-λ}Qz(1 - z) \log(1/εr).
\]
Here \(r \) is the \(q\bar{q} \)-dipole size and \(z \) stands for the Sudakov variable of the quark.

In \(\nu \)DIS the CCNC adds to Eq.(6) the \(S \)-wave mass term [11, 12]
\[
\sim δ_{L,-λ}Q^{-1} [(m ± μ)(1 - z)m ± zμ] \log(1/εr)
\]
and generates the \(P \)-wave component of \(Ψ(z, r) \),
\[
\sim iζ δ_{L,λ}e^{-i2λφ}Q^{-1}(m ± μ)r^{-1},
\]
where upper sign is for the axial-vector current, lower - for the vector one and \(ζ = 2λ \) - for the vector current and \(ζ = 1 \) - for the axial-vector one. Clearly seen are the built-in divergences of the vector and axial-vector currents \(\partial_νV^ν \sim m - μ \) and \(\partial_νA^ν \sim m + μ \). This LCWF describes the quark-antiquark state with quark of mass \(m \) and helicity \(λ = ±1/2 \) carrying fraction \(z \) of the \(W^+ \) light-cone momentum and antiquark having mass \(μ \), helicity \(\bar{λ} = ±1/2 \).
and momentum fraction $1 - z$. The distribution of dipole sizes is controlled by the attenuation parameter

$$\varepsilon^2 = Q^2 z (1 - z) + (1 - z) m^2 + z \mu^2$$

that introduces, in fact, the infrared cut-off, $r^2 \sim \varepsilon^{-2}$.

3 High Q^2: z-symmetric $c\bar{s}$-states

In the color dipole representation [3, 4] the longitudinal structure function $F_L(x, Q^2)$ in the vacuum exchange dominated region of $x \lesssim 0.01$ can be represented in a factorized form

$$F_L(x, Q^2) = \frac{Q^2}{4\pi^2 \alpha_W} \int dz d^2r |\Psi(z, r)|^2 \sigma(x, r) , \quad (9)$$

where g is the weak charge, $\alpha_W = g^2/4\pi$ and $G_F/\sqrt{2} = g^2/m_W^2$. The light cone density of color dipole states $|\Psi|^2$ is the incoherent sum of the vector (V) and the axial-vector (A) terms,

$$|\Psi|^2 = |V|^2 + |A|^2 . \quad (10)$$

The Eq. (6) makes it obvious that for large enough virtualities of the probe, $Q^2 \gg m_c^2$, the S-wave components of both F_L^{ud} and F_L^{cs} in expansion (4) are dominated by the “non-

\footnote{for an alternative description of the νDIS structure functions see e.g. [10].}
partonic" configurations with \(z \sim 1/2 \) with characteristic dipole sizes \([13]\)

\[r^2 \sim Q^{-2}. \]

In the CD approach the BFKL-\(\log(1/x)\) evolution \([6]\) of \(\sigma(x, r)\) in Eq.(9) is described by the CD BFKL equation of Ref.[14]. For qualitative estimates it suffices to use the DLLA (also known as DGLAP approximation \([15, 16]\)) Then, for small dipoles \([17]\)

\[\sigma(x, r) \approx \frac{\pi^2 r^2}{N_c} \alpha_S(r^{-2}) G(x, r^{-2}), \]

(11)

and from Eq.(9) it follows that

\[F_{L}^{ud} \approx F_{L}^{cs} \approx \frac{2}{3\pi} \alpha_S(Q^2) G(x, Q^2), \]

(12)

where \(G(x, k^2) = x g(x, k^2) \) is the gluon structure function and \(\alpha_S(k^2) = 4\pi/\beta_0 \log(k^2/\Lambda^2) \) with \(\beta_0 = 11 - 2N_f/3. \)

The rhs of (12) is quite similar to \(F_{L}^{(e)} \) of eDIS \([15, 18]\) (see \([17]\) for discussion of corrections to DLLA-relationships between the gluon density \(G \) and \(F_{L}^{(e)} \)). Two \(S \)-wave terms in the expansion (4) that mimics the expansion (5) evaluated within the CD BFKL model of Ref.[19] are shown by dotted curves in Fig. 1. The full scale BFKL evolution of the \(\nu N \) structure function \(F_L(x, Q^2) \) with boundary condition at \(x_0 = 0.03 \) is shown in Fig. 2 of Ref.[20].

4 Moderate \(Q^2 \): asymmetric \(c\bar{s} \)-states and \(P \)-wave dominance

The \(S \)-wave term dominates \(F_L \) at high \(Q^2 \gg m_c^2 \). At moderate \(Q^2 \lesssim m_c^2 \) the \(P \)-wave component takes over (see Fig.1). To evaluate it we turn to Eq. (9). For \(m_c^2 \gg m_s^2 \) in Eq.(10),

\[|V_L|^2 \sim |A_L|^2 \propto \left(\frac{m_c^2}{Q^2} \right) \varepsilon^2 K_1^2(\varepsilon r) \]

, where \(K_1(x) \) is the modified Bessel function and one can integrate in (9) over \(r^2 \) to see that the \(z \)-distribution, \(dF_{L}^{cs}/dz \), develops the parton model peaks at \(z \to 0 \) and \(z \to 1 \) \([7]\). To clarify the issue of relevant dipole sizes we integrate in (9) first over \(z \) near the endpoint \(z = 1 \).
For \(r^2 \) from the region

\[
(m_c^2 + Q^2)^{-1} \lesssim r^2 \ll m_s^2
\]

this yields [8]

\[
\int dz |\Psi^{cs}(z, r)|^2 \approx \frac{\alpha_W N_c m_c^2}{\pi^2 (m_c^2 + Q^2) Q^2 r^4}. \tag{13}
\]

This is the \(r \)-distribution for \(cs \)-dipoles with \(c \)-quark carrying a fraction \(z \sim 1 \) of the \(W^+ \)'s light-cone momentum. Thus, the singularity \(\sim r^{-4} \) in Eq.(13) together with the factorization relation (9) and \(\sigma(r) \sim r^2 \) give rise to nested logarithmic integrals over dipole sizes. Indeed, in the Born approximation the gluon density \(G \) in Eq.(11) is

\[
G(x, r^{-2}) \approx C_F N_c L(r^{-2}), \tag{14}
\]

where

\[
L(k^2) = \frac{4}{\beta_0} \log \frac{\alpha_S(\mu_G^2)}{\alpha_S(k^2)}. \tag{15}
\]

Notice, that perturbative gluons do not propagate to large distances and \(\mu_G \) in Eq.(15) stands for the inverse Debye screening radius, \(\mu_G = 1/R_c \). The lattice QCD data suggest \(R_c \approx 0.3 \text{ fm} \) [21]. Because \(R_c \) is small compared to the typical range of strong interactions, the dipole cross section evaluated with the decoupling of soft gluons, \(k^2 \ll \mu_G^2 \), would underestimate the interaction strength for large color dipoles. In Ref.[22, 19, 23] this missing strength was modeled by a non-perturbative, soft correction \(\sigma_{npt}(r) \) to the dipole cross section \(\sigma(r) = \sigma_{pt}(r) + \sigma_{npt}(r) \). Here we concentrate on the perturbative component, \(\sigma_{pt}(r) \), represented by Eqs.(11) and (14).

Then, for the charmed-strange \(P \)-wave component of \(F_L \) with fast \(c \)-quark \((z \rightarrow 1) \) one gets

\[
F_{L}^{cs} \sim \frac{N_c C_F}{4} \frac{m_c^2}{(m_c^2 + Q^2)} \frac{1}{2!} L^2(m_c^2 + Q^2). \tag{16}
\]

There is also a contribution to \(F_{L}^{cs} \) from the region \(0 < r^2 < (m_c^2 + Q^2)^{-1} \)

\[
F_{L}^{cs} \sim \frac{N_c C_F}{4} \frac{m_c^2}{(m_c^2 + Q^2)} \alpha_S(m_c^2 + Q^2) L(m_c^2 + Q^2) \tag{17}
\]

which is, however one \(L \) short. Thus, the CD analysis reveals the ordering of dipole sizes
Figure 2: The nucleon structure function F_2 at smallest available x_{Bj} as measured in νFe CC DIS by the CCFR [24] (circles) and CDHSW Collaboration [25] (squares, $x_{Bj} = 0.015$). Triangles are the CHORUS Collaboration measurements [26] of F_2 in νPb CC DIS. Solid curves show the vacuum exchange contribution to F_2. Also shown are the charm-strange (dashed curves) and light flavor (dotted curves) components of F_2, dashed-dotted curves for the valence contribution to F_2.

$$(m_c^2 + Q^2)^{-1} \lesssim r^2 \ll m_s^{-2}$$

(18)

typical of the DGLAP approximation. The rise of $F_2^{cs}(x, Q^2)$ towards small x is generated by interactions of the higher Fock states, $c\bar{s} + \text{gluons}$. The DLLA ordering of Sudakov variables and dipole sizes in the n-gluon state $|c\bar{s}g_1g_2...g_n\rangle$

$$x \ll z_n \ll ... \ll z_1 \ll z < 1$$

(19)

$$(m_c + Q^2)^{-1} \ll r^2 \ll \mu_1^2 \ll ... \ll \mu_n^2 \ll \mu_G^{-2}$$

(20)

results in the density $|\Phi_{n+1}|^2$ of multi-gluon states in the color dipole space [3]
\begin{equation}
\Phi_{n+1} = |\Psi(z, r)|^2 \frac{C_F \alpha_S(r^{-2})}{\pi^2} \cdot \frac{1}{z_1} \cdot r^2 \times \frac{C_F \alpha_S(\rho_1^{-2})}{\pi^2} \cdot \frac{1}{z_2} \cdot \frac{\rho_1^2}{\rho_1^4} \ldots \frac{C_F \alpha_S(\rho_{n-1}^{-2})}{\pi^2} \cdot \frac{1}{z_n} \cdot \frac{\rho_{n-1}^2}{\rho_n^4}.
\end{equation}

By virtue of (19,20) the $c\bar{s}g_1g_2...g_n$-state interacts like color singlet octet-octet state with the cross section $(C_A/C_F)\sigma(\rho_n)$. Then, making an explicite use of Eqs.(11,14) and (13) we arrive at the P-wave component of F_L that rises rapidly to small x,

\begin{equation}
F_L^{cs} \approx \left(\frac{Q^2}{4\pi^2\alpha_W} \right) \pi^2 C_F \int dz d^2 r |\Psi(z, r)|^2 \times r^2 \alpha_S(r^{-2}) \sqrt{L(r^{-2})} I_1 \left(2\sqrt{\xi(x, r^{-2})} \right)
\end{equation}

\begin{equation}
\approx \frac{N_c C_F}{4} \frac{m_c^2}{(m_c^2 + Q^2)} L(m_c^2 + Q^2) \eta^{-1} I_2 \left(2\sqrt{\xi(x, m_c^2 + Q^2)} \right).
\end{equation}

In Eq.(22), which is the DGLAP-counterpart of Eq.(3),

\[I_{1,2}(z) \approx \exp(z)/\sqrt{2\pi z} \]

is the Bessel function,

\[\xi(x, k^2) = \eta L(k^2) \]

is the DGLAP expansion parameter with $\eta = C_A \log(x_0/x)$.

Additional contribution to F_L^{cs} comes from the P-wave $c\bar{s}$-dipoles with “slow” c-quark, $z \to 0$. For low $Q^2 \ll m_c^2$ this contribution is rather small,

\begin{equation}
F_L^{cs} \approx \frac{N_c C_F}{4} \frac{(Q^2 + m_c^2)}{m_c^2} \left(\frac{\alpha_S^2}{\pi} \right)^2 \log(m_c^2/\mu_G^2).
\end{equation}

If, however, Q^2 is large enough, $Q^2 \gg m_c^2$, corresponding distribution of dipole sizes valid for

\[(m_c^2 + Q^2)^{-1} \lesssim r^2 \ll m_c^{-2}\]

is

\begin{equation}
\int dz |\Psi^{cs}(z, r)|^2 \approx \frac{\alpha_W N_c m_c^2}{Q^2} \frac{1}{Q^2 r^4}.
\end{equation}

The DLLA summation over the s-channel multi-gluon states, results in [5]

\begin{equation}
F_L^{cs} \approx \frac{N_c C_F}{4} \frac{m_c^2}{Q^2} L(Q^2) \eta^{-1} I_2 \left(2\sqrt{\xi(x, Q^2)} \right).
\end{equation}

Therefore, at high $Q^2 \gg m_c^2$ both kinematical domains $z \to 1$ and $z \to 0$ (Eqs.(22) and (25), respectively) contribute (within the DLLA accuracy) equally to F_L^{cs}.
5 Low Q^2: light quark dipoles and Adler’s theorem.

The P-wave component of F_{ud}^L is small because of small factor m_q^2/Q^2, where m_q is the constituent u, d-quark mass. Here we deal with constituent quarks in the spirit of Weinberg [27]. This suppression factor, m_q^2/Q^2, comes from the light-cone wave function $\Psi_{ud} \sim m_q(Qr)^{-1}$ and is of purely perturbative nature.

In [20] we checked accuracy of the color dipole description of $F_L(x, Q^2)$ in the non-perturbative domain of low Q^2 making use of Adler’s theorem [2],

$$F_{ud}^L(x, 0) = \frac{f_\pi^2}{\pi} \sigma_{\pi},$$ \hspace{1cm} (26)

In (26) f_π is the pion decay constant, σ_{π} is the on-shell pion-nucleon total cross section.

Invoking the CD factorization, which is valid for soft as well as for hard diffractive interactions, we evaluated first the vacuum exchange contribution to both σ_{π} and $F_L(x, 0)$. The parameter f_π in Eq.(26) was evaluated within the CD LCWF technique [28, 29]. The approach successfully passed the consistency test: $\pi F_{ud}^L(x, 0)/(f_\pi^2\sigma_{\pi}) \approx 1$ to within 10%. The cross section σ_{π} was found to be in agreement with data. However, the value of f_π appeared to be underestimated. It was found that for $m_q = 150$ MeV, commonly used now in CD models successfully tested against DIS data, our F_L at $Q^2 \rightarrow 0$ undershoots the empirical value of $f_\pi^2\sigma_{\pi}/\pi$ by about 40% [20], not quite bad for the model evaluation of non-perturbative parameters. One can think of improving accuracy at higher $Q^2 \sim m_c^2$ which we are interested in.

Notice, that Adler’s theorem allows only a slow rise of $F_{ud}^L(x, 0)$ to small x,

$$F_{ud}^L(x, 0) \propto \left(\frac{1}{x}\right)^{\Delta_{soft}},$$ \hspace{1cm} (27)

much slower than the rise of F_{ud}^{res} following from our DLLA estimates. The value of the so-called soft pomeron intercept $\Delta_{soft} \simeq 0.08$ comes from the Regge parameterization of the total πN cross section [30].
6 Comparison with experimental data.

We evaluate nuclear (νA) and nucleon (νN) structure functions within the color dipole BFKL approach [19] (for alternative approaches to nuclear shadowing in neutrino DIS see [31, 32, 33, 34, 35]).

The structure function F_2 for the νFe and νPb interactions are shown in Fig. 2. From comparison with experimental data [24], [25] and [26] we conclude that the excitation of charm contributes significantly to F_2 at $x \lesssim 0.01$ and dominates F_2 at $x \lesssim 0.001$ and $Q^2 \lesssim m_c^2$.

For comparison with data taken at moderately small-x the valence component, $F_{2\text{val}}$, of the structure function F_2 should be taken into account. We resort to the parameterization of $F_{2\text{val}}(x, Q^2)$ suggested in [36]. This parameterization gives $F_{2\text{val}}(x, Q^2)$ vanishing as $Q^2 \to 0$ which is not quite satisfactory from the point of view of PCAC. The latter requires $F_{2\text{val}}(x, 0) = F_{2\text{val}}^{PCAC}(x, 0)$ with

$$F_{2\text{val}}^{PCAC}(x, 0) = \frac{f^2}{\pi} \sigma_{\pi}^{R}(W).$$

Here $x = m_a^2/W^2$ and $\sigma_{\pi}^{R}(W)$ stands for the secondary reggeon contribution to the total pion-nucleon cross section that diminishes at high cms collision energy as $\sigma_{\pi}^{R}(W) \sim (W^2)^{\alpha_R-1}$, where $\alpha_R \simeq 0.5$. However, at smallest values of $Q^2 \simeq 0.2 - 0.3$ GeV2 accessible experimentally $F_{2\text{val}}(x, Q^2) \gg F_{2\text{val}}^{PCAC}(x, 0)$, remind, the characteristic mass scale in the axial channel is $m_a \sim 1$ GeV. Therefore, the accuracy of $F_{2\text{val}}(x, Q^2)$ of Ref.[36] is quite sufficient for our purposes. In Fig. 2 the valence contributions to F_2 are shown by dash-dotted curves. The agreement with data is quite reasonable.

One more remark is in order, the perturbative light-cone density of ud states, $|\Psi^{ud}|^2 \sim r^{-2}$, apparently overestimates the role of short distances at low Q^2 (see Ch. 5) and gives the value of $F_L^{ud}(x, 0)$ which is smaller than the value dictated by Adler’s theorem [20]. This also may lead to underestimation of F_2 in the region of moderately small $x \gtrsim 0.01$ dominated by the light quark current.
7 Summary

Summarizing, it is shown that at small x and moderate virtualities of the probe, $Q^2 \sim m_c^2$, the higher twist corrections brought about by the non-conservation of the charmed-strange current dramatically change the longitudinal structure function, F_L. The effect survives the limit $Q^2 \to 0$ and seems to be interesting from a point of view of feasible tests of Adler’s theorem [2] and the PCAC hypothesis.

8 Acknowledgments

V.R. Z. thanks the Dipartimento di Fisica dell’Università della Calabria and the Istituto Nazionale di Fisica Nucleare - gruppo collegato di Cosenza for their warm hospitality while a part of this work was done. The work was supported in part by the Ministero Italiano dell’Istruzione, dell’Università e della Ricerca and by the RFBR grants 07-02-00021 and 09-02-00732.

References

[1] Y. Nambu, Phys. Rev. Lett. 4, 380 (1960); M. Gell-Mann and M. Levy, Nuovo Cimento 17, 705 (1960),

[2] S. Adler, Phys. Rev. 135, B963 (1964).

[3] N.N. Nikolaev and B.G. Zakharov, Z.Phys. C 49, 607 (1991); ibid. C 53, 331 (1992); ibid. C 64, 631 (1994).

[4] A.H. Mueller, Nucl. Phys. B 415, 373 (1994); A.H. Mueller and B. Patel, Nucl. Phys. B 425, 471 (1994).

[5] R. Fiore and V.R. Zoller, “Current non-conservation effect in νDIS diffraction”, in Diffraction 2008, Proc. of the Int. Workshop on Diffraction in High Energy Physics, La Londe-les-Maures, France, 2008, e-Print: arXiv:0811.2894.
[6] E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977); I.I. Balitsky and L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).

[7] R. Fiore and V.R. Zoller, JETP Lett. 87, 524 (2008).

[8] R. Fiore and V.R. Zoller, “Full of charm neutrino DIS”, in '08 QCD and High Energy Interactions, Proc. of 43rd Rencontres de Moriond on QCD and Hadronic Interactions, La Thuile, Italy, 2008, e-Print: arXiv:0805.2090.

[9] V. Barone, M. Genovese, N.N. Nikolaev, E. Predazzi and B.G. Zakharov, Phys.Lett. B 292, 181 (1992).

[10] S. Kretzer, F.I. Olness, R.J. Scalise, R.S. Thorne and U.K. Yang, Phys. Rev. D 64, 033003 (2001).

[11] R. Fiore and V.R. Zoller, JETP Lett. 82, 385 (2005).

[12] R. Fiore and V.R. Zoller, Phys.Lett. B 632, 87 (2006).

[13] V. Barone, M. Genovese, N.N. Nikolaev, E. Predazzi and B.G. Zakharov, Phys. Lett. B 328 143 (1994).

[14] N.N. Nikolaev, B.G. Zakharov and V.R. Zoller, JETP Lett. 59, 6 (1994).

[15] Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977); Yu.L. Dokshitzer, D.I. Dyakonov and S.I. Troyan, Phys. Rep. C 58, 265 (1980).

[16] V.N. Gribov and L.N. Lipatov. Sov. J. Nucl. Phys. 15, 438 (1972); G. Altarelli and G. Parisi. Nucl. Phys. B 126, 298 (1977).

[17] N.N. Nikolaev and B.G. Zakharov, Phys. Lett. B 332 184 (1994).

[18] A.M. Cooper-Sarkar, G. Ingelman, K.R. Long, R.G. Roberts and D.H. Saxon, Z. Phys. C 39, 281 (1988); R.G. Roberts, “The structure of the proton”, Cambridge Univ. Press, 1990.

[19] N.N. Nikolaev, W. Schäfer, B.G. Zakharov, V.R. Zoller, JETP Lett. 84, 537 (2007).
[20] R. Fiore and V.R. Zoller, JETP Lett. **85**, 309 (2007).

[21] M. D'Elia, A. Di Giacomo and E. Meggiolaro, Phys. Rev. D **67**, 114504 (2003).

[22] N.N. Nikolaev and B.G. Zakharov, Phys. Lett. B **327**, 147 (1994); N.N. Nikolaev, B.G. Zakharov and V.R. Zoller, JETP Lett. **66**, 138 (1997); N.N. Nikolaev, J. Speth and V.R. Zoller, Phys. Lett. B **473**, 157 (2000).

[23] P.V. Landshoff and O. Nachtmann, Z. Phys. C **35**, 405 (1987); H.G. Dosch, T. Gousset, G. Kulzinger and H.J. Pirner, Phys. Rev. D **55**, 2602 (1997).

[24] B.T. Fleming et al., Phys. Rev. Lett. **86**, 5430 (2001).

[25] CDHSW Collab., P. Berge et al., Z. Phys. C **49**, 187 (1991).

[26] CHORUS Collab., G. Onengut et al., Phys. Lett. B **632**, 65 (2006).

[27] S. Weinberg, Phys. Rev. Lett. **65**, 1181 (1991); Phys. Rev. Lett. **67**, 3473 (1991).

[28] W. Jaus, Phys. Rev. **D44**, 2851 (1991).

[29] A. Szczurek, N.N. Nikolaev and J. Speth, Phys. Rev. **C60**, 055206 (2002).

[30] A. Donnachie and P.V. Landshoff, Phys.Lett. B **296**, 227 (1992).

[31] G. A. Miller, A. W. Thomas, Int. J. Mod. Phys. A **20**, 95 (2005); C. Boros, J.T. Londergan and A.W. Thomas, Phys. Rev D **58**, 114030 (1998).

[32] S.J. Brodsky, I. Schmidt and Jian-Jun Yang, Phys.Rev. D **70**, 116003 (2004).

[33] J. Qiu and I. Vitev, Phys. Lett. B **587**, 52 (2004).

[34] M.B. Gay Ducati, M.M. Machado and M.V.T. Machado, Phys.Lett. B **644**, 340 (2007).

[35] S.A. Kulagin and R. Petti, Phys. Rev. D **76**, 094023 (2007).

[36] M.H. Reno, Phys. Rev. D **74**, 033001 (2006).