INFINITE EASIER WARING CONSTANTS FOR COMMUTATIVE RINGS

TED CHINBURG

Abstract. Suppose \(n \geq 2 \). We show that there is no integer \(v \geq 1 \) such that for all commutative rings \(R \) with identity, every element of the subring \(J(2^n, R) \) of \(R \) generated by \(2^n \)-th powers can be written in the form \(\pm f_1^{2^n} \pm \cdots \pm f_v^{2^n} \) for some \(f_1, \ldots, f_v \in R \) and some choice of signs.

1. Introduction

The object of this paper is to prove a result about easier Waring constants for commutative rings which was announced over thirty years ago in [3]. This result grew out of research of the author with Mel Henriksen in [4]. It is a pleasure to remember Mel’s generosity and the excitement of working with him. This paper is dedicated to Mel.

Let \(R \) be a commutative ring with identity, and suppose \(k \) is a positive integer. Define \(J(k, R) \) to be the subring of \(R \) generated by all \(k \)-th powers. If there is an integer \(v \) such that every element \(f \) of \(J(k, R) \) is of the form

\[
 f = \sum_{i=1}^{v} \pm f_i^k
\]

for some \(f_1, \ldots, f_v \in R \) and some choice of signs, let \(v(k, R) \) denote the smallest such \(v \). If no such \(v \) exists, put \(v(k, R) = \infty \). Let \(V(k) \) be the sup, over all \(R \), of \(v(k, R) \). Our main result is:

Theorem 1.1. For \(n \geq 2 \) one has

\[
 V(2^n) = v(2^n, R_\infty) = \infty
\]

when \(R_\infty = \mathbb{Z}[\{x_i\}_{i=1}^{\infty}] \) is the ring of polynomials with integer coefficients in countably many indeterminates.

To our knowledge, this provides the first example of an integer \(k \) for which \(V(k) \) is infinite.

Date: July 15, 2010.
The author was supported in part by NSF Grant DMS-0801030.
Concerning \(k \) for which \(V(k) \) is finite, Joly proved in [7, Thm. 7.9] that \(V(2) = 3 \). In [3, Thm. 1] it was shown that if \(k \) is a prime which is not of the form \((p^k - 1)/(p^c - 1) \) for some prime \(p \) and integers \(b \geq 2 \) and \(c \geq 1 \), then \(V(k) \) is finite. This implies that \(V(k) \) is finite for almost all primes \(k \). As of this writing, we do not know of further integers \(k \) for which \(V(k) \) has been shown to be finite. The smallest integer \(k > 2 \) for which the results of [3] show \(V(k) \) to be finite is \(k = 11 \).

Striking quantitative results concerning upper bounds on \(V(k) \) for various \(k \), and on \(v(k, R) \) for various \(R \), have been proved by a number of authors including Car, Cherly, Gallardo, Heath-Brown, Newman, Slater, Vaserstein and others. See [1, 2, 6, 5, 8, 11, 12, 10, 9] and their references.

For \(m \geq 1 \) let \(R_m = \mathbb{Z}[x_1, \ldots, x_m] \) be the ring of polynomials with integer coefficients in \(m \) commuting indeterminates. By [3, Theorems 3 and 4], \(v(k, R_m) \) is finite for all \(k \) and \(m \). By [7, Prop. 7.12],

\[
V(k) = \sup_{m \geq 1} v(k, R_m) = v(k, R_\infty).
\]

We show Theorem 1.1 by proving \(\lim_{m \to \infty} v(k, R_m) = \infty \) when \(k = 2^n > 2 \). We now summarize the strategy to be used in §2 for bounding \(v(k, R_m) \) from below in order to clarify how this approach might be applied for other values of \(k \).

The strategy is to construct a surjection

\[
\pi : J(k, R_m) \to A
\]

to an abelian group \(A \) with the following property. For \(v \geq 1 \), let \(J(k, R_m)_v \) be the subset of elements of \(J(k, R_m) \) of the form \(\sum_{i=1}^{v} \pm f_i^k \) for some \(f_i \in R_m \) and some choice of signs. One would like to produce a \(\pi \) such that \(\pi(J(k, R_m)_v) \) has order less than \(A \) unless \(v \) is at least some bound which goes to infinity with \(m \).

For \(k = 2^n > 2 \), the \(\pi \) we construct in §2 results from combining congruence classes of the coefficients of high degree monomials which appear in the expansions of elements of \(J(2^n, R_m) \). The group \(A \) is a vector space over \(\mathbb{Z}/2 \) of dimension \(m(m - 1)/2 \). The \(\pi \) we consider has the property that for \(f_i \in R_m \), the value of \(\pi(f_i^{2^n}) \) is 0 if \(f_i \) has odd constant term, and otherwise \(\pi(f_i^{2^n}) \) depends only on the coefficients mod 2 of the homogeneous degree 1 part of \(f_i \). This means that the value of \(\pi(\sum_{i=1}^{v} \pm f_i^{2^n}) \) depends only on at most \(vm \) elements of \(\mathbb{Z}/2 \), so that

\[
\# \pi(J(2^n, R_m)_v) \leq 2^{vm}.
\]

If \(v = v(2^n, R_m) \), so that \(J(2^n, R_m)_v = J(2^n, R_m) \), we must therefore have

\[
v m = v(2^n, R_m) \cdot m \geq \dim_{\mathbb{Z}/2}(A) = m(m - 1)/2 \tag{1.1}
\]
since π is surjective. This produces the lower bound

$$v(2^n, R_m) \geq (m - 1)/2$$

and implies Theorem 1.1

One can surely improve (1.2), but we will not attempt to optimize the above method in this paper. A systematic approach would be to consider which combinations of congruence classes of higher degree monomial coefficients of elements f^k of $J(k, R_m)$ can be shown to depend only on the congruence classes of lower degree monomial coefficients of $f \in R_m$. These combinations should be chosen to be independent of one another, in the sense that they together produce a surjection from $J(k, R_m)$ to a large abelian group A.

2. Proof of Theorem 1.1

Let $m \geq 1$ be fixed. We will write polynomials in $R_m = \mathbb{Z}[x_1, \ldots, x_m]$ in the form

$$f = \sum_{\alpha} c_f(x^\alpha)x^\alpha$$ \hspace{1cm} (2.3)

where

$$x^\alpha = \prod_{i=1}^{m} x_i^{\alpha_i}$$

is the monomial associated to a vector $\alpha = (\alpha_1, \ldots, \alpha_m)$ of non-negative integers and the integers $c_f(x^\alpha)$ are 0 for almost all α.

Lemma 2.1. Suppose $n \geq 2$ and $1 \leq i < j \leq m$. Then $c_{f^{2^n}}(x_i x_j)/2^n$ and $c_{f^{2^n}}(x_i^{2^{n-1}} x_j^{2^{n-1}})/2$ are integers. One has

$$\frac{c_{f^{2^n}}(x_i x_j)}{2^n} + \frac{c_{f^{2^n}}(x_i^{2^{n-1}} x_j^{2^{n-1}})}{2} \equiv (c_f(1) + 1)c_f(x_i)c_f(x_j) \pmod{2\mathbb{Z}}$$ \hspace{1cm} (2.4)

Proof. We first compute the coefficient $c_{f^{2^n}}(x_i x_j)$ of $x_i x_j$ in f^{2^n}. Write

$$f = c_f(1) + t$$

where t has constant term 0. Then

$$f^{2^n} = c_f(1)^{2^n} + 2^n c_f(1)^{2^{n-1} - 1}t + \frac{2^n(2^n - 1)}{2}c_f(1)^{2^n - 2}t^2 + z$$ \hspace{1cm} (2.5)

where all the terms of $z \in R_m$ have degree larger than 2. Here

$$t \equiv \sum_{\ell=1}^{m} c_f(x_\ell)x_\ell \pmod{\text{terms of degree } \geq 2}.$$
Because \(i < j \), the coefficient of \(x_i x_j \) in \(t^2 \) is \(2c_f(x_i)c_f(x_j) \). Putting this into (2.5), and noting that the coefficient of \(x_i x_j \) in \(t \) is \(c_f(x_i x_j) \) by definition, we conclude that

\[
c_{f_2^n}(x_i x_j) = 2^n c_f(1)2^{n-1} c_f(x_i x_j) + 2^n (2^n - 1) c_f(1)2^{n-2} c_f(x_i) c_f(x_j).
\]

(2.6)

Thus \(2^n \) divides \(c_{f_2^n}(x_i x_j) \). Because \(n > 1 \) and \(a^s \equiv a \mod 2 \) for all \(a \in \mathbb{Z} \) and \(s \geq 1 \), we find

\[
\frac{c_{f_2^n}(x_i x_j)}{2^n} \equiv c_f(1)\left(c_f(x_i x_j) + c_f(x_i) c_f(x_j) \right) \mod 2\mathbb{Z}.
\]

(2.7)

We now consider the coefficient \(c_{f_2^n}(x_i^{2^n-1} x_j^{2^n-1}) \) of \(x_i^{2^n-1} x_j^{2^n-1} \) in \(f_{2^n} \). Write

\[
f_{2^n} = \left(\sum_{\alpha} c_f(\alpha)^2 (x^{\alpha})^{2^n-1} \right) + 2g
\]

for some polynomial \(g \in R_m \). Then

\[
f_{2^n} = (f_{2^n-1})^2 \equiv \left(\sum_{\alpha} c_f(\alpha)^2 (x^{\alpha})^{2^n-1} \right)^2 \mod 4R_m.
\]

(2.8)

When one expands the square on the right side of (2.8), the coefficient of \(x_i^{2^n-1} x_j^{2^n-1} \) is

\[
2c_f(1)^2 c_f(x_i x_j)^{2^n-1} + 2c_f(x_i)^2 c_f(x_j)^{2^n-1}.
\]

Because of the congruence (2.9) and the fact that \(n > 1 \), we conclude that \(c_{f_2^n}(x_i^{2^n-1} x_j^{2^n-1}) \) is divisible by 2, and

\[
\frac{c_{f_2^n}(x_i^{2^n-1} x_j^{2^n-1})}{2} \equiv c_f(1)^2 c_f(x_i x_j)^{2^n-1} + c_f(x_i)^2 c_f(x_j)^{2^n-1} \mod 2\mathbb{Z}
\]

\[
\equiv c_f(1) c_f(x_i x_j) + c_f(x_i) c_f(x_j) \mod 2\mathbb{Z}
\]

(2.10)

Adding (2.7) and (2.10) gives (2.4) and completes the proof. \(\square \)

Proof of Theorem 1.1

Fix \(n > 1 \) and \(m \geq 2 \) and suppose \(1 \leq i < j \leq m \). By Lemma 2.1 there is a unique homomorphism

\[
\pi_{i,j} : J(2^n, R_m) \to \mathbb{Z}/2
\]

(2.11)

which for \(f \in R_m \) has the property that

\[
\pi_{i,j}(f_{2^n}) = \left(\frac{c_{f_2^n}(x_i x_j)}{2^n} + \frac{c_{f_2^n}(x_i^{2^n-1} x_j^{2^n-1})}{2} \right) \mod 2
\]
with the notation of Lemma 2.1. The product of these homomorphisms over all pairs \((i, j)\) of integers such that \(1 \leq i < j \leq m\) gives a homomorphism

\[
\pi : J(2^n, R_m) \to (\mathbb{Z}/2\mathbb{Z})^{\binom{m}{2}} = A
\]

(2.12)

Suppose we fix a pair \((i', j')\) of integers such that \(1 \leq i' < j' \leq m\) and we let \(f = x_{i'} + x_{j'}\). Formula (2.4) shows that \(\pi_{i,j}(f^{2^n}) = 0\) if \((i, j) \neq (i', j')\) while \(\pi_{i,j}(f^{2^n}) = 1\). It follows that \(\pi\) in (2.12) is surjective. On the other hand, formula (2.4) shows that \(\pi_{i,j}(f^{2^n}) = 0\) if \(f\) has odd constant term \(c_f(1)\), and that otherwise \(\pi_{i,j}(f^{2^n})\) depends only on the congruence classes mod 2 of the linear terms in \(f\). Therefore the same is true of \(\pi(f^{2^n})\). As explained in the second to last paragraph of the introduction, this leads to the lower bounds (1.1) and (1.2), which completes the proof.

REFERENCES

[1] M. Car, New bounds on some parameters in the Waring problem for polynomials over a finite field. Finite fields and applications, 59–77, Contemp. Math., 461, Amer. Math. Soc., Providence, RI, 2008.
[2] J. Cherly, Sommes d’exponentielles cubiques dans l’anneau des polynômes en une variable sur le corps à 2 éléments, et application au problème de Waring. Astérisque No. 198-200 (1991), 83–96 (1992).
[3] T. Chinburg, “Easier” Waring problems for commutative rings. Acta Arith. 35 (1979), no. 4, 303–331.
[4] T. Chinburg and M. Henriksen, Sums of \(k\)-th powers in the ring of polynomials with integer coefficients. Acta Arith. 29 (1976), no. 3, 227–250.
[5] L. Gallardo and D. R. Heath-Brown. Every sum of cubes in \(\mathbb{F}_2[t]\) is a strict sum of 6 cubes. Finite Fields Appl. 13 (2007), no. 4, 981–987.
[6] L. Gallardo and L. Vaserstein, The strict Waring problem for polynomial rings. J. Number Theory 128 (2008), no. 12, 29632972.
[7] J. R. Joly, Sommes de puissances d-ièmes dans un anneau commutatif, Acta Arith. 17 (1970), 37-114.
[8] D. J. Newman and M. Slater, Waring’s problem for the ring of polynomials. J. Number Theory 11 (1979), no. 4, 477–487.
[9] L. Vaserstein, Ramsey’s theorem and Waring’s problem for algebras over fields. The arithmetic of function fields (Columbus, OH, 1991), 435–441, Ohio State Univ. Math. Res. Inst. Publ., 2, de Gruyter, Berlin, 1992.
[10] L. Vaserstein, Sums of cubes in polynomial rings. Math. Comp. 56 (1991), no. 193, 349–357.
[11] L. Vaserstein, Waring’s problem for algebras over fields. J. Number Theory 26 (1987), no. 3, 286–298.
[12] L. Vaserstein, Waring’s problem for commutative rings. J. Number Theory 26 (1987), no. 3, 299–307.
T.C.: Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395

E-mail address: ted@math.upenn.edu