LINEAR TRANSFORMATIONS PRESERVING PROJECTIONS OF FIXED FINITE RANK

MARK PANKOV

Abstract. Let H be a complex Hilbert space whose dimension is not less than 3 and let $\mathcal{F}_s(H)$ be the real vector space formed by all self-adjoint operators of finite rank. For every non-zero natural $k < \dim H$ we denote by $\mathcal{P}_k(H)$ the set of all rank k projections. We describe all linear transformations L of $\mathcal{F}_s(H)$ such that $L(\mathcal{P}_k(H)) \subseteq \mathcal{P}_k(H)$ for a certain natural k and the restriction of L to $\mathcal{P}_k(H)$ is injective. Such transformations are induced by linear or conjugate-linear isometries (except the case when $\dim H = 2k$).

1. Introduction

Let H be a complex Hilbert space whose dimension is assumed to be not less than 3. For every non-zero natural $k < \dim H$ we write $\mathcal{P}_k(H)$ for the set of all rank k projections (self-adjoint idempotents whose images are k-dimensional subspaces). All finite rank self-adjoint operators on H form a real vector space which will be denoted by $\mathcal{F}_s(H)$. By the spectral theorem, every self-adjoint operator of finite rank is a real linear combination of rank one projections, and it is not difficult to show that every rank one projection can be presented as a real linear combination of rank k projections for every natural $k \geq 2$. Therefore, the vector space $\mathcal{F}_s(H)$ is spanned by each $\mathcal{P}_k(H)$.

Linear transformations preserving projections of fixed finite rank were investigated in [1, 8, 10]. Aniello and Chruściński [1] obtained the following result. Let L be a linear transformation of $\mathcal{F}_s(H)$ satisfying the following conditions:

- $L(\mathcal{P}_k(H)) = \mathcal{P}_k(H)$ for certain natural k,
- L is injective.

If $\dim H \neq 2k$, then L is induced by a unitary or anti-unitary operator U on H, i.e. $L(A) = UAU^*$ for every $A \in \mathcal{F}_s(H)$. The proof is based on Győry–Šemrl’s theorem on orthogonality preserving transformations of Hilbert Grassmannians [3, 9] (see also [1]) which explain the assumption that $\dim H \neq 2k$.

Using Gehér’s arguments [4] and results from [7], we describe all linear transformations of $\mathcal{F}_s(H)$ such that for certain natural k the following conditions hold:

- $L(\mathcal{P}_k(H)) \subseteq \mathcal{P}_k(H)$,
- the restriction of L to $\mathcal{P}_k(H)$ is injective

(without the assumption that $\dim H \neq 2k$). In almost all cases (except the case when $\dim H = 2k$), every such transformation is induced by a linear or conjugate-linear isometry of H to itself.

Keywords and phrases. Hilbert Grassmannian, projection, self-adjoint operator of finite rank.
2. Result

Let U be a linear or conjugate-linear isometry of H to itself. Then U^*U is identity. For every $A \in \mathcal{F}_s(H)$ we define

$$L_U(A) = UA^*U.$$

Then L_U is a linear injective transformation of $\mathcal{F}_s(H)$. It maps the projection on a finite-dimensional subspace X to the projection on $U(X)$ and

$$L_U(\mathcal{P}_k(H)) \subset \mathcal{P}_k(H)$$

for every non-zero natural $k < \dim H$. This is a linear automorphism of $\mathcal{F}_s(H)$ only in the case when U is a unitary or anti-unitary operator. If H is finite-dimensional, then every linear or conjugate-linear isometry of H to itself is a unitary or anti-unitary operator.

Suppose that $\dim H = n$ is finite and fix non-zero natural $k < n$. Consider the linear transformation L_k^\perp of $\mathcal{F}_s(H)$ defined as follows

$$L_k^\perp(A) = k^{-1}\text{tr}(A)\text{Id}_H - A,$$

where $A \in \mathcal{F}_s(H)$ and $\text{tr}(A)$ is the trace of A. This is a linear automorphism of $\mathcal{F}_s(H)$ which maps the projection on a k-dimensional subspace X to the projection on the orthogonal complement X^\perp and we have

$$L_k^\perp(\mathcal{P}_k(H)) = \mathcal{P}_{n-k}(H).$$

If $n = 2k$, then L_k^\perp preserves $\mathcal{P}_k(H)$.

Theorem 1. Let L be a linear transformation of $\mathcal{F}_s(H)$. Suppose that there is natural $k < \dim H$ such that

$$L(\mathcal{P}_k(H)) \subset \mathcal{P}_k(H)$$

and the restriction of L to $\mathcal{P}_k(H)$ is injective. Then one of the following possibilities is realized:

- $L = L_U$ for a certain linear or conjugate-linear isometry U,
- $\dim H = 2k$ and $L = L_k^\perp L_U$, where U is a unitary or anti-unitary operator.

Remark 1. Let P be a projection of rank k. Consider the linear transformation of $\mathcal{F}_s(H)$ which maps every $A \in \mathcal{F}_s(H)$ to $k^{-1}\text{tr}(A)P$. It sends every projection of rank k to P. Therefore, the second assumption in Theorem 1 (the restriction of L to $\mathcal{P}_k(H)$ is injective) cannot be omitted.

3. Preliminary

3.1. Geometric characterizations of linear and conjugate-linear isometries. Let V be a left vector space over a division ring R. The dimension of V is assumed to be not less than 3. Denote by $\mathcal{G}_k(V)$ the Grassmannian formed by k-dimensional subspaces of V. Recall that a line of $\mathcal{G}_1(V)$ is the set of all 1-dimensional subspaces in a certain 2-dimensional subspaces of V. A map $L : V \to V$ is called *semilinear* if

$$L(x + y) = L(x) + L(y)$$

for all $x, y \in V$ and there is an endomorphism σ of the division ring R such that

$$L(ax) = \sigma(a)L(x)$$

for all $a \in R$.
for all \(x \in V \) and \(a \in R \). Every semilinear injection \(L : V \rightarrow V \) induces a transformation of \(G_1(V) \) (not necessarily injective) which maps lines to subsets of lines. We will need the following version of the Fundamental Theorem of Projective Geometry.

Theorem 2 (Faure and Frölicher [2], Havlicek [6]). Let \(f \) be an injective transformation of \(G_1(V) \) satisfying the following conditions:

- \(f \) maps lines to subsets of lines,
- the image \(f(G_1(V)) \) is not contained in a line.

Then \(f \) is induced by a semilinear injective transformation of \(V \).

Let \(X \) be a set and let \(R \subset X \times X \) be a symmetric relation on \(X \). We write \(xRy \) if \((x, y) \in R\). A transformation \(f : X \rightarrow X \) is said to be \(R \)-preserving if

\[
xRx \implies f(x)Rf(y);
\]

in the case when

\[
xRx \iff f(x)Rf(y),
\]

we say that \(f \) is \(R \)-preserving in both directions.

Lemma 1. Every semilinear injective transformation of \(H \) preserving the orthogonality relation is a linear or conjugate-linear isometry.

Two elements of \(G_k(H) \) are called adjacent if their intersection is \((k - 1)\)-dimensional. Every linear or conjugate-linear isometry of \(H \) to itself induces an injective transformation of \(G_k(H) \) preserving the adjacency and orthogonality relations in both directions (note that pairs of orthogonal \(k \)-dimensional subspaces exist only in the case when \(\dim H \geq 2k \)).

Theorem 3 (Pankov [7]). If \(\dim H > 2k > 2 \), then every adjacency and orthogonality preserving transformation of \(G_k(H) \) is induced by a linear or conjugate-linear isometry.

For the case when \(\dim H = 2k \), there is the following weak version of the above result.

Proposition 1 (Pankov [7]). Suppose that \(\dim H = 2k > 2 \) and \(f \) is an orthogonality preserving transformation of \(G_k(H) \) which also preserves the adjacency relation in both directions. Then one of the following possibility is realized:

- \(f \) is induced by a unitary or anti-unitary operator,
- \(f \) is the composition of the orthocomplementation and the transformation induced by a unitary or anti-unitary operator.

3.2. Some properties of projections

Denote by \(P_X \) the projection on a closed subspace \(X \subset H \).

Lemma 2. If \(X \) and \(Y \) are closed subspaces of \(H \), then

\[
\text{Im}(P_X + P_Y) = X \oplus Y.
\]

Proof. The operator \(P_X + P_Y \) is self-adjoint and we have

\[
\text{Im}(P_X + P_Y) = \text{Ker}(P_X + P_Y)^\perp = (\text{Ker}(P_X) \cap \text{Ker}(P_Y))^\perp = (X^\perp \cap Y^\perp)^\perp = X \oplus Y.
\]

\(\square \)
Two closed subspaces of H are called compatible if there is an orthonormal basis of H such that these subspaces are spanned by subsets of this basis. It is well-know that P_X and P_Y commute if and only if X and Y are compatible.

For any $X, Y \in \mathcal{G}_k(H)$ we denote by $\mathcal{X}_k(X, Y)$ the set of all $Z \in \mathcal{G}_k(H)$ such that $P_X + P_Y - P_Z$ is a rank k projection.

Lemma 3. Suppose that $\dim H \geq 2k$. Then for any $X, Y \in \mathcal{G}_k(H)$ the following two conditions are equivalent:

1. X and Y are orthogonal.
2. $\dim(X + Y) = 2k$ and $\mathcal{X}_k(X, Y) = \mathcal{G}_k(X + Y)$.

Proof. (1) \Rightarrow (2). It is clear that $P_X + P_Y = P_{X+Y}$ is a projection of rank $2k$. If $P_Z + P_{Z'} = P_{X+Y}$ for some k-dimensional subspaces $Z, Z' \subset H$, then Lemma 2 implies that $Z, Z' \subset X + Y$. Therefore, every element of $\mathcal{X}_k(X, Y)$ is contained in $X + Y$. For every k-dimensional subspace $Z \subset X + Y$ we have $P_Z + P_{Z'} = P_{X+Y}$, where Z' is the k-dimensional subspace of $X + Y$ orthogonal to Z, i.e. Z belongs to $\mathcal{X}_k(X + Y)$.

(2) \Rightarrow (1). Consider a k-dimensional subspace $X' \subset X + Y$ spanned by some eigenvectors of the self-adjoint operator $P_X + P_Y$. Then $P_{X'}$ and $P_X + P_Y$ commute. The equality $\mathcal{X}_k(X, Y) = \mathcal{G}_k(X + Y)$ guarantees that X' belongs to $\mathcal{X}_k(X, Y)$, i.e. there exists a k-dimensional subspace $Y' \subset H$ such that

$$P_X + P_Y = P_{X'} + P_{Y'},$$

Since $P_{X'}$ and $P_X + P_Y$ commute, the latter equality shows that $P_{X'}$ and $P_{Y'}$ commute. Therefore, X' and Y' are compatible and

$$P_X + P_Y = P_{X'} + P_{Y'} = P_{X''} + P_{Y''} + 2P_{X'\cap Y'},$$

where

$$X'' = X' \cap (X' \cap Y')^\perp \text{ and } Y'' = Y' \cap (X' \cap Y')^\perp.$$

By Lemma 2

$$X + Y = X' + Y' = X'' + Y'' + X' \cap Y'.$$

The dimension of this subspace is equal to $2k$ only in the case when $X' \cap Y' = 0$ which means that X' and Y' are orthogonal. Then $P_X + P_Y = P_{X+Y}$ is a projection of rank $2k$. We have

$$P_X + P_Y = P_{X+Y} = P_X + P_Z,$$

where Z is the k-dimensional subspace of $X + Y$ orthogonal to X. Clearly, $Y = Z$, i.e. X and Y are orthogonal. \Box

Lemma 4 (Gehér [4]). The set $\mathcal{X}_k(X, Y)$ is a one-dimensional real manifold if and only if X and Y are non-compatible and adjacent.

4. **Proof of Theorem 1**

Let k be a non-zero natural number satisfying $k < \dim H$ and let L be a linear transformation of $\mathcal{F}_k(H)$ such that

$$L(P_k(H)) \subset P_k(H)$$

and the restriction of L to $P_k(H)$ is injective. Since $\mathcal{F}_k(H)$ is spanned by $P_k(H)$, it is sufficient to show that the restriction of L to $P_k(H)$ coincides with L_U or L^*_U.
for a certain linear or conjugate-linear isometry U. Let f be the transformation of $\mathcal{G}_k(H)$ induced by L, i.e.

$$L(P_X) = P_{f(X)}$$

for every $X \in \mathcal{G}_k(H)$. We need to prove the following: f is induced by a linear or conjugate-linear isometry or $\dim H = 2k$ and f is the composition of the orthocomplementation and the transformation induced by a unitary or anti-unitary operator.

First of all, we show that the general case can be reduced to the case when $\dim H \geq 2k$. Suppose that $\dim H = n$ is finite and $k > n - k$. Consider the transformation g of $\mathcal{G}_{n-k}(H)$ satisfying

$$g(X) = f(X^\perp)^\perp$$

for every $X \in \mathcal{G}_{n-k}(H)$. The associated transformation of $\mathcal{P}_{n-k}(H)$ is

$$P_X \to I - L(I - P_X).$$

This transformation can be extended to the linear transformation of $\mathcal{F}_s(H)$ which sends every $A \in \mathcal{F}_s(H)$ to

$$L(A) - (n - k)^{-1}\text{tr}(A)[L(I) - I].$$

If g is induced by a unitary or anti-unitary operator, then f is induced by the same operator.

From this moment we suppose that $\dim H \geq 2k$.

Let W be a subspace of H whose dimension is finite and greater than k. The subspace of $\mathcal{F}_s(H)$ consisting of all self-adjoint operators whose images are contained in W can be naturally identified with the real vector space $\mathcal{F}_s(W)$. Also, we observe that $\mathcal{G}_k(W)$ is a compact topological space. Using these facts, we prove the following.

Lemma 5. For every $(2k)$-dimensional subspace $W \subset H$ there is a $(2k)$-dimensional subspace $W' \subset H$ such that the restriction of f to $\mathcal{G}_k(W)$ is a homeomorphism to $\mathcal{G}_k(W')$.

Proof. For every k-dimensional subspace $X \subset W$ we have $P_W = P_X + P_Y$, where Y is the k-dimensional subspace of W orthogonal to X. The image of

$$L(P_W) = L(P_X) + L(P_Y) = P_{f(X)} + P_{f(Y)}$$

coincides with $f(X) + f(Y)$ (Lemma 2). Therefore,

$$f(\mathcal{G}_k(W')) \subset \mathcal{G}_k(W'),$$

where Z' is the image of $L(P_W)$. Since this image coincides with $f(X) + f(Y)$, we have $\dim W' \leq 2k$. The latter inclusion shows that the restriction of L to $\mathcal{F}_s(W)$ is a linear map to $\mathcal{F}_s(W')$. The vector space $\mathcal{F}_s(W)$ is finite-dimensional and this restriction is continuous. This means that the restriction of f to $\mathcal{G}_k(W)$ is continuous and, by our assumption, it is injective. Since $\mathcal{G}_k(W)$ is compact, this restriction is a homeomorphism to a subspace of $\mathcal{G}_k(W')$. Then the inequality $\dim W' \leq 2k$ implies that W' is $(2k)$-dimensional. The image $f(\mathcal{G}_k(W))$ is an open-closed subset of $\mathcal{G}_k(W')$, i.e. it coincides with $\mathcal{G}_k(W')$.

Lemma 6. The transformation f is adjacency preserving in both directions.
Proof. If \(X, Y \in \mathcal{G}_k(H) \) and \(Z \in \mathcal{X}_k(X, Y) \), then \(L \) sends the rank \(k \) projection \(P_X + P_Y - P_Z \) to the rank \(k \) projection

\[
L(P_X) + L(P_Y) - L(P_Z) = P_{f(X)} + P_{f(Y)} - P_{f(Z)}
\]

which implies that

\[f(\mathcal{X}_k(X, Y)) \subset \mathcal{X}_k(f(X), f(Y)). \]

Let \(W \) and \(W' \) be as in the previous lemma. Lemma 2 shows that

\[\mathcal{X}_k(X, Y) \subset \mathcal{G}_k(W) \quad \text{and} \quad \mathcal{X}_k(X', Y') \subset \mathcal{G}_k(W') \]

for any \(k \)-dimensional subspaces \(X, Y \subset W \) and \(X', Y' \subset W' \). Since \(f(\mathcal{G}_k(W)) = \mathcal{G}_k(W') \), we have \(f(\mathcal{P}_k(W)) = \mathcal{P}_k(W') \) which guarantees that

\[f(\mathcal{X}_k(X, Y)) = \mathcal{X}_k(f(X), f(Y)) \]

for any \(k \)-dimensional subspaces \(X, Y \subset W \). The restriction of \(f \) to \(\mathcal{G}_k(W) \) is a homeomorphism to \(\mathcal{G}_k(W') \) and Lemma 3 implies that \(X, Y \in \mathcal{G}_k(W) \) are non-compatible and adjacent if and only if \(f(X), f(Y) \) are non-compatible and adjacent. The set of all elements of \(\mathcal{G}_k(W) \) adjacent to \(X \in \mathcal{G}_k(W) \) is the closure of the set of all \(Y \in \mathcal{G}_k(W) \) such that \(X, Y \) are non-compatible and adjacent. Therefore, the restriction of \(f \) to \(\mathcal{G}_k(W) \) is adjacency preserving in both directions. Since for any two \(k \)-dimensional subspaces of \(H \) there is a \((2k) \)-dimensional subspace containing them, \(f \) is adjacency preserving in both directions. \(\square \)

Lemma 7. The transformation \(f \) is orthogonality preserving.

Proof. If \(X \) and \(Y \) are orthogonal, then \(\dim(X + Y) = 2k \) and

\[\mathcal{X}_k(X, Y) = \mathcal{G}_k(X + Y) \]

(Lemma 3). By Lemma 5 and arguments from the proof of Lemma 4 we have

\[\mathcal{X}_k(f(X), f(Y)) = f(\mathcal{X}_k(X, Y)) = f(\mathcal{G}_k(X + Y)) = \mathcal{G}_k(W'), \]

where \(W' \) is a certain \((2k) \)-dimensional subspace of \(H \). Then Lemma 4 implies that \(f(X) \) and \(f(Y) \) are orthogonal. \(\square \)

Suppose that \(k = 1 \). By our assumption, \(f \) is injective. Lemma 5 shows that \(f \) is a transformation of \(\mathcal{G}_1(H) \) sending lines to subsets of lines. Also, the image \(f(\mathcal{G}_1(H)) \) is not contained in a line (this follows from the condition \(\dim H \geq 3 \) and Lemma 7). By Theorem 2 \(f \) is induced by an injective semilinear transformation of \(H \). This semilinear transformation is orthogonality preserving (since \(f \) is orthogonality preserving) and Lemma 1 implies that it is a linear or conjugate-linear isometry.

In the case when \(k \geq 2 \), the transformation \(f \) is adjacency preserving in both directions (Lemma 5) and orthogonality preserving (Lemma 7). Theorem 3 and Proposition 1 give the claim.

References

[1] P. Aniello, D. Chruściński, Symmetry witnesses, J. Phys. A, Math. Theor. 50(2017), No. 28, 16 p.
[2] C.A. Faure, A. Frölicher, Morphisms of projective geometries and semilinear maps, Geom. Dedicata 53(1994), 237–262.
[3] G. P. Gehér, P. Semrl, Isometries of Grassmann spaces, J. Funct. Anal. 270(2016), 1585–1601.
[4] G. P. Gehér, Wigner’s theorem on Grassmann spaces, J. Funct. Anal., 273(2017), 2994–3001.
[5] M. Győry, Transformations on the set of all \(n \)-dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. Debrecen 65(2004), 233–242.
H. Havlicek, A generalization of Brauner’s theorem on linear mappings, Mitt. Math. Sem. Univ. Giessen 215 (1994), 27–41.

M. Pankov, Geometric version of Wigner’s theorem for Hilbert Grassmannians, J. Math. Anal. Appl. 459 (2018), 135–144.

G. Sarbicki, D. Chruściński, M. Mozrzymas, Generalising Wigner’s theorem, J. Phys. A: Math. Theor. 49 (2016), No 30, 7 p.

P. Šemrl, Orthogonality preserving transformations on the set of n-dimensional subspaces of a Hilbert space, Illinois J. Math. 48 (2004), 567–573.

E. Stormer, Positive maps which map the set of rank k projections onto itself, Positivity 21 (2017), 509–511.

Faculty of Mathematics and Computer Science, University of Warmia and Mazury, Słoneczna 54, Olsztyn, Poland
E-mail address: pankov@matman.uwm.edu.pl