THE EFFECT OF CROPPING PATTERN ON THE PROFITABILITY OF LIQUID FERTILIZER USAGE IN DRY SEASON VEGETABLE PRODUCTION IN THE SOUTHERN GUINEA SAVANNAH ZONE OF NIGERIA

Ivie L. Olaghere*, Olubunmi A. Omotesho and Abdulazeez Muhammad-Lawal

University of Ilorin, Ilorin, Nigeria

Abstract: Liquid fertilizers in dry season vegetable production are applied using different cropping patterns with little or no empirical evidence on which pattern is the most profitable. This study, therefore, investigated the effect of cropping patterns on the profitability of liquid fertilizer usage in dry season vegetable production. Specifically, the study identified the various vegetable enterprises, assessed the inputs and outputs of the different vegetable enterprises and estimated the profitability of the vegetable enterprises. A multi-stage random sampling procedure was used to select 309 farmers in the Southern Guinea Savannah zone. Pretested and structured interview schedules were used for data collection. Descriptive statistics and partial budgeting techniques were used for data analysis. Twelve different vegetable enterprises were identified in the study. Sixty percent of users of liquid fertilizer cultivated only fruit vegetables such as okra and peppers. The usage of the combination of both liquid and non-liquid fertilizers in mixed vegetable production yielded the highest quantity of output of about 1374kg/ha. However, usage of sole liquid fertilizer on exotic vegetables gave the highest profitability of 323 percent on the rate of return to capital investment. The study has concluded that the use of liquid fertilizer increases profitability and therefore recommends the formulation and implementation of policies that will encourage liquid fertilizer usage among the farmers.

Key words: liquid fertilizer, dry season, vegetable enterprise, profitability, fertilizing, crop production.

Introduction

The Southern Guinea Savannah zone is characterized by low rainfall and long dry periods which make it an excellent location for vegetable production. Dry season vegetable production is an important component of the farming systems in

*Corresponding author: e-mail: ivieaburime@yahoo.com
this zone. This is because it provides an opportunity for diet improvement and serves as a source of income and employment to the farmers. Vegetables are usually planted as sole crops or intercropped with staple crops like rice, maize or tubers (James et al., 2010). Farmers frequently intercrop vegetables on the same bed, so that a single bed can hold as many as five different vegetables (Ogunyinka et al., 2004). Intercropping is economically more profitable than sole cropping (James et al., 2010). This is because it increases the farmers’ income per unit of land and labor; helps maintain good soil structure, and the incidences of pests and diseases are reduced.

Fertilizers are needed in vegetable production due to the poor health conditions of the soils used for production in Nigeria. In the absence of the regular chemical fertilizers, farmers are left with no choice than to look for alternative means of fertilizing their soils. Commercial liquid fertilizer was first introduced into the country in 2003. Even though it had been around for over a decade, very little is known about it, especially with regards to its usage in dry season vegetable production. These liquid fertilizers act fast, and studies have shown that apart from an increase in output, crops grown with liquid fertilizer are more nutritious (Agbulu and Idu, 2008; Criollo et al., 2011). Its use has been associated with superior quality as well as the quantity of crops. There is also the advantage of improved efficiency in the application of liquid fertilizer. This is because it can be done alongside irrigation (drip or sprinkler) and pesticide application thereby saving time and resources (Finck, 1992; Dittmar, 2007).

Since vegetables are usually intercropped, an assessment of the cropping pattern of vegetable production on the profitability of liquid fertilizer usage will bring to limelight the interaction of the different cropping patterns, farm resources, and farm enterprises. This will enable the farmers to make the best decision as to what vegetables to grow, the quantity of inputs required as well as the output they stand to get.

In view of the foregoing, the study sought to: (i) identify the different vegetable enterprises in the study; (ii) assess the inputs and outputs of the different vegetable enterprises; and (iii) estimate the profitability of the vegetable enterprises in the study.

Materials and Methods

Study area, sampling technique, and sample size

This study was carried out in the Southern Guinea Savannah zone of Nigeria. The rainfall in this zone shows two peaks in July and September (Ogundare et al., 2012). Despite the fact that this is the most luxuriant of the savannah vegetation belts in Nigeria, the soils are low in organic matter and chemical fertility.
The population for the study comprised all dry season vegetable farmers in the study area. Locations, where dry season vegetable production was predominantly carried out, were identified from the 2012 Crop Area Yield Survey (CAYS) manual of the zone. Twenty-five percent of the identified locations in the zone were randomly selected. This gave a total of seventeen locations. Next, the different farmer groups in each of the selected locations were identified. A list of all dry season vegetable farmers was obtained from the leader of each of the groups. From those lists, another list was compiled to give the total number of vegetable farmers in that location irrespective of the group they belonged to. From the compiled list, twenty-five percent of the listed vegetable farmers were randomly selected from each location to give a sample size of 317 vegetable farmers who were interviewed for the study. Data for only 309 farmers were eventually useful for analysis due to insufficient information given by the remaining eight.

Method of data collection

Data for the study were collected for the 2013/2014 dry season vegetable production using a well-structured interview schedule administered to vegetable farmers. Focus Group Discussion (FGD) was also organized with the local leaders of the vegetable farmer groups to supplement the data obtained from the interview schedule, and pretesting was done with 30 vegetable growers.

Analytical techniques

Descriptive statistics which include measures of central tendencies such as frequency distribution, mean, mode and percentages were used to identify the various vegetable enterprises encountered in the study, while the mean was used to assess the input and output of the different vegetable enterprises. The study also adopted the use of partial budgeting to calculate the profitability of liquid fertilizer usage for the vegetable enterprises. The gross margin (GM) was used specifically to estimate the costs and returns of the vegetable enterprises. GM analysis enables the comparison of the relative performances regarding returns of similar enterprises directly. Since GM is not a measure of farm profit per se because it does not include capital or fixed cost, profitability indices such as the operating ratio (OR) and return to capital invested (RCI) which can be calculated from the gross margin, and net profit were, therefore, employed in this study to show the profitability of the vegetable enterprises.

Mathematically,

\[GM = GVO - TVC \]
\[GVO = P \times Q \]
Net profit = GM – TFC \hspace{1cm} (3)

where,

\(GVO = \) Gross value of output;

\(TVC = \) Total variable cost;

\(P = \) Unit price of each vegetable; \(Q = \) Quantity of vegetable output; and

\(TFC = \) Total fixed cost.

\(TVC \) was then computed by summing up all the cost incurred for labor and purchased inputs for the production season while the \(TFC \) was computed by depreciating the fixed cost components. The straight line method of depreciation was used, and this is given as

\[
\text{Cost of item - salvage value} \div \text{Useful life} \hspace{1cm} (4)
\]

For this study, the salvage value was assumed to be zero because the vegetable farmers rarely sell off their equipment and machines. They use them until the value is completely or almost completely lost.

Profitability indices used were given as:

\(OR = \frac{TVC}{GVO} \hspace{1cm} (5) \)

\(RCI = \frac{\text{Net profit}}{\text{Total cost (TC)}} \hspace{1cm} (6) \)

where \(TC = TFC + TVC \).

\(GM \) is best calculated on a per hectare basis. This allows for easy projection/estimation of figures based on the actual land size intended for use in vegetable production. Consequently, the analysis was therefore done on a per plot basis. Thus, the 309 sampled farmers had a total of 448 plots.

Results and Discussion

The results obtained from the data analysis and the corresponding discussions are presented in this section.

Dry season vegetable production according to vegetable enterprises

The classes of vegetables cultivated by farmers and the different categories of fertilizers used in the study are presented in Table 1.

Table 1. Distribution of farms based on the category of fertilizer usage and class of vegetables.

Category of fertilizer usage/ class of vegetables	Sole fruit vegetables	Sole leafy vegetables	Sole exotic vegetables	Mixed vegetables	Total
Liquid fertilizer only	40	7	4	2	53
Liquid with non-liquid fertilizer	35	21	10	7	73
Non-liquid fertilizer	112	133	13	64	322
Total	187	161	27	73	448

(41.70) \hspace{1cm} (35.90) \hspace{1cm} (6.10) \hspace{1cm} (16.30) \hspace{1cm} (100.00)

Source: Field survey, 2015; *Figures in parentheses are in percentages.
The vegetables encountered on the field during the survey were amaranthus, bitter leaf, celosia, corchorus, kenaf, pumpkin, scent leaf and waterleaf (classified as leafy vegetables). The fruit vegetables were garden egg, okra, onion, sweet pepper, hot pepper, long pepper, green pepper, and tomatoes. Others were cabbage, cucumber, lettuce, and carrots and these were classified as exotic vegetables.

Table 1 shows that the modal class of vegetables planted was the sole fruit, accounting for about 42 percent of total plots for dry season vegetable production. Almost 60 percent of plots where liquid fertilizer was used, either solely or with non-liquid fertilizers, also had sole fruit vegetables planted on them. This was contrary to expectation. This was probably due to the fact that the information gathered during the pilot survey showed that liquid fertilizers were mainly used for leafy vegetables because they made the leaves of the vegetables very green. The reason for this unexpected trend may be because the vegetable farmers in the study area are fruit vegetable experts. It may also be because the returns for fruit vegetables are higher during the dry season than those for leafy vegetables. Profitability analysis will help to throw more light on the latter reason. It may also be because the liquid fertilizers simply work better with the fruit vegetables compared with the leafy vegetables. Liquid fertilizers were mostly used for okra, followed by garden egg, hot pepper, and sweet pepper among the fruit vegetables. Overall, the dominant leafy vegetables planted by the farmers were amaranthus and corchorus while it was okra and peppers generally for the fruit vegetables. Four different classes of vegetables were identified as well as three fertilizer categories, making a total of twelve (12) vegetable enterprises identified in the study. These are presented in Table 2.

Table 2. Distribution of farms according to vegetable enterprises.

Vegetable enterprise	Frequency	Percentage
Liquid only on sole fruit vegetables (E₁)	40	8.93
Liquid only on sole leafy vegetables (E₂)	7	1.56
Liquid only on sole exotic vegetables (E₃)	4	0.89
Liquid only on mixed vegetables (E₄)	2	0.45
Liquid with non-liquid on sole fruit vegetables (E₅)	35	7.81
Liquid with non-liquid on sole leafy vegetables (E₆)	21	4.68
Liquid with non-liquid on sole exotic vegetables (E₇)	10	2.23
Liquid with non-liquid on mixed vegetables (E₈)	7	1.56
Non-liquid only on sole fruit vegetables (E₉)	112	25.00
Non-liquid only on sole leafy vegetables (E₁₀)	133	29.70
Non-liquid only on sole exotic vegetables (E₁₁)	13	2.90
Non-liquid only on mixed vegetables (E₁₂)	64	14.29
Total	448	100.00

Source: Field survey, 2015.
As shown in Table 2, plots, where non-liquid fertilizers were used on sole leafy vegetables (E10), were the modal class of vegetable enterprises. Plots where liquid fertilizer was used accounted for 28 percent of the total number of plots (E1 – E8).

Input-output analysis of the different vegetable enterprises

The physical quantities of liquid and non-liquid fertilizers used as well as other inputs used in vegetable production for the different enterprises are presented in this sub-section. These are presented in Table 3.

Table 3. Summary of physical inputs and outputs per hectare for the vegetable enterprises.

Variables	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	Total
No. of plots	40	7	4	2	35	21	10	7	112	133	13	64	448
Average farm size (ha)	0.76	0.82	1.03	0.5	0.64	0.37	0.94	0.71	0.56	0.29	0.69	0.66	
Total farm size (ha)	30.3	5.75	4.1	1.0	30.18	13.5	3.65	6.6	79.09	74.70	3.82	44.17	296.85
Qty of output (kg)	433.99	104.68	293.71	721.59	763.54	281.75	300.19	1374.21	438.06	176.73	174.33	253.53	350.52
Qty of labor (man-day)	126.15	162.51	161.72	296.63	198.84	208.17	130.48	235.24	286.65	482.44	188.87	359.7	320.21
Qty of liquid fert. (litres)	3.95	2.71	6.92	4.00	3.22	2.82	3.51	1.35	0	0	0	0	3.41
Qty of non-liq.fert. (kg)	0	0	0	0	214.98	162.62	175.83	274.29	348.43	219.08	398.95	284.63	278.8
Qty of seed (kg)	0.10	0.07	0.01	0.15	0.17	0.11	0.02	0.05	0.20	0.51	0.03	0.28	0.27
Qty of herbicide (litres)	2.10	1.86	2.50	1.00	2.79	0.81	0.90	4.14	1.87	0.74	0.92	1.29	1.48
Qty of pesticide (litres)	3.44	1.78	8.17	3.00	5.91	3.08	8.33	7.48	7.10	4.31	9.65	5.71	5.48
Qty of fuel for irrigation (litres)	216.39	226.92	217.44	207.69	199.52	248.46	72.31	211.15	235.46	252.4	140.77	179.66	227.80
Qty of water for irrigation (Ha cm³)	61.12	113.75	90.7	68.04	60.7	77.54	43.66	94.16	127.92	118.50	58.59	69.83	95.38

Source: Field survey, 2015.
Table 3 shows that users of sole liquid fertilizers on exotic vegetables (E₃) had the largest average plot size, while users of sole non-liquid fertilizers on the same exotic vegetables (E₁₁) had the smallest. Regarding total farm size, users of sole non-liquid fertilizers on fruit vegetables (E₉) had the largest total farm size, while users of sole liquid fertilizers on mixed vegetables (E₄) had the smallest. Users of both liquid and non-liquid fertilizers on mixed vegetables (E₈) had the highest output, measured in grain equivalent, while users of sole liquid fertilizers on leafy vegetables (E₂) had the least. This trend was, however, contrary to expectation.

The results on the quantity of labor used in dry season vegetable production show that users of sole non-liquid fertilizer on leafy vegetables (E₁₀) used the highest quantity of labor, and users of sole liquid fertilizers on fruit vegetables (E₁) used the least. Users of sole liquid fertilizers on exotic vegetables (E₃) used the highest quantity of liquid fertilizer, while users of both liquid fertilizers and non-liquid fertilizers on mixed vegetables (E₈) used the least quantity. Similarly, users of sole non-liquid fertilizers on exotic vegetables (E₁₁) used the highest quantity of non-liquid fertilizers while users of both liquid and non-liquid fertilizer on leafy vegetables (E₈) used the smallest quantity. Analysis on the quantity of seed used in the study shows that users of sole liquid fertilizers on exotic vegetables (E₃) used the least quantity of seeds while users of sole non-liquid fertilizers on leafy vegetables (E₁₀) used the highest quantity. This may have been due to the very tiny nature of the seeds of the exotic vegetables which made them almost weightless. Also, most of the farmers planted an improved variety of the exotic vegetables and so did not need to sow more than the recommended seed rate because a hundred percent germination rate was almost guaranteed. The same could not be said for farmers who planted leafy vegetables. They used more of the local varieties and so had to sow more than the recommended seed rate to ensure a relatively high germination rate. The healthy looking vegetable plants are usually left on the field after germination, while the rest are weeded out.

On the average, users of both liquid and non-liquid fertilizers on mixed vegetables (E₈) used the highest quantity of herbicides. This may have stemmed from their relatively larger plot sizes, and as such, use of herbicides especially during land preparation may have been cheaper. Users of sole non-liquid fertilizers on leafy vegetables (E₁₀), on the other hand, used the least quantity of herbicides. Again, this may have stemmed from their relatively small plot sizes, so that clearing the weed with manual labor was more cost-effective, especially if the source of the labor was the family. In the same vein, users of sole liquid fertilizers on leafy vegetables (E₂) used the least quantity of pesticides while users of sole non-liquid fertilizers on exotic vegetables (E₁₁) used the highest quantity.

Users of sole non-liquid fertilizers on leafy vegetables (E₁₀) used the highest quantity of fuel for irrigation while users of both liquid and non-liquid fertilizers on exotic vegetables (E₇) used the least quantity. The same trend was noticed for the
quantity of water used for irrigation. This may have been because more than half of the farmers in this group (E7) irrigated the land manually; hence, this could have contributed to the low usage of fuel and water for irrigation.

Profitability of liquid fertilizer usage in dry season vegetable production

This sub-section presents the results obtained from the profitability analysis of liquid fertilizer usage among the vegetable farmers in the study. These are presented in Table 4.

Table 4. Profitability analysis of the vegetable enterprises (₦/ha).

Variables	E1	E2	E3	E4	E5	E6	E7
Gross value of output (A)	517,313	176,843	1,030,250	804,500	675,158	388,972	401,925
Rent on land	10,154	0	0	0	13,780	7,500	21,000
Cost of hired labor & imputed family labor	92,369	55,808	143,233	130,700	172,573	74,701	93,758
Cost of liquid fertilizers	9,164	6,614	14,833	11,000	8,372	4,718	7,919
Cost of non-liquid fertilizers	0	0	0	0	37,501	15,353	20,792
Cost of seeds	11,236	8,029	28,290	12,500	20,356	12,120	9,810
Cost of herbicides	3,513	2,257	7,767	2,000	3,891	2,222	2,883
Cost of pesticides	3,714	1,800	8,167	3,200	6,720	3,214	8,658
Cost of fueling and maintenance of pumps (B)	33,355	19,857	28,092	24,000	23,162	24,590	10,817
Total variable cost (B)	163,505	94,365	230,382	183,400	286,355	144,418	175,637
Total fixed cost (C)	13,421	10,285	13,059	10,498	13,691	4,338	12,649
Gross margin (D = A – B)	353,808	82,478	799,868	621,100	388,803	244,554	226,288
Net profit (E = D – C)	340,387	72,193	786,809	610,602	375,112	240,216	213,639
Operating ratio (B/A)	0.32	0.53	0.22	0.22	0.42	0.37	0.44
Return to investment (E/B+C)	1.92	0.69	3.23	3.15	1.25	1.61	1.13
Table 4. Continued.

Variables	E8	E9	E10	E11	E12	Total
Gross value of output (A)	326,743	531,431	249,881	293,105	330,089	396,690
Rent on land	14,500	10,022	11,450	10,000	12,600	12,334
Cost of hired labor & imputed family labor	35,078	106,602	65,297	65,120	73,985	89,569
Cost of liquid fertilizers	3,369	0	0	0	0	8,866
Cost of non-liquid fertilizers	46,275	51,718	26,581	30,566	30,876	33,550
Cost of seeds	10,985	18,447	15,489	12,883	13,760	15,465
Cost of herbicides	4,228	3,590	1,218	4,467	2,179	2,666
Cost of pesticides	9,771	7,521	4,486	8,878	5,602	5,739
Cost of fueling and maintenance of pumps	23,086	22,558	21,267	30,566	30,876	24,352
Total variable cost (B)	147,742	220,458	145,770	162,480	169,878	192,541
Total fixed cost (C)	12,680	12,247	7,379	5,630	8,216	9,866
Gross margin (D = A–B)	179,001	310,973	104,111	130,625	160,211	204,149
Net profit (E = D–C)	166,321	298,726	96,732	124,995	151,995	194,283
Operating ratio (B/A)	0.45	0.41	0.58	0.55	0.49	0.49
Return to investment (E/B+C)	1.04	1.28	0.63	0.74	0.85	0.96

Table 4 confirms that dry season vegetable production was profitable for all the 12 enterprises. This agrees with the findings by Nwanchukwu and Onyenweaku (2007), Iwuchukwu and Uzoh (2009), Enete and Okon (2010), Ogunniyi (2011), Tsuho and Salau (2012) that dry season vegetable production is a profitable enterprise. Table 4 also shows that except for enterprise two (E2), users of liquid fertilizers either solely or with non-liquid fertilizers had higher net profit than users of non-liquid fertilizers when comparison is done based on the class of vegetables planted (i.e. compare E1 and E5 with E9; E3 and E7 with E11; and E4 and E8 with E12). Users of sole liquid fertilizers on exotic vegetables (E3) had the highest net
profit. This was followed by users of sole liquid fertilizers on exotic vegetables (E₄), then by users of both liquid fertilizers and non-liquid fertilizers on fruit vegetables (E₅), and then by users of sole liquid fertilizers on fruit vegetable (E₁). As earlier hypothesized, the result of cost and returns clearly shows that cultivation of fruit vegetables was more profitable than the cultivation of leafy vegetables. This is because, in all three fertilizer use categories, only the fruit vegetable class (E₁, E₃, E₅) had higher net profit than the average recorded for the study which was calculated to be ₦194,283.

Enterprises E₃, E₄, and E₁, in that order, had the highest rate of return to capital invested and the lowest operating ratio, while enterprises E₁₀ and E₁₁, in that order, had the lowest rate of return to capital invested and the highest operating ratio.

Conclusion

The study concluded that there were four different classes of vegetables and three different fertilizer usage categories, thus making a total of 12 vegetable enterprises identified in the study. Users of sole liquid fertilizers on leafy vegetables (E₂) had the least cost of production, while users of sole liquid fertilizers on exotic vegetables (E₃) had the highest gross margin and net profit, and consequently, the highest return to capital invested. Based on the findings, the study concludes that usage of liquid fertilizers whether solely or in combination with non-liquid fertilizers was more profitable for the dry season vegetable production. The study, therefore, recommended the use of sole liquid fertilizers for dry season vegetable production in the study area.

References

Agbulu, O., & Idu, E. (2008). An Assessment of organic and inorganic vegetable farming in Benue Valley of North Central Nigeria. *Journal of Human Ecology*, 23 (3), 345-350.

Criollo, H., Lagos, T., Piarpuezan, E., & Perez, R. (2011). The effect of three liquid bio-fertilizers on the production of Lettuce (*Lactuca sativa* L.) and cabbage (*Brassica oleracea* L. var. capitata). *Agronomia Colombiana*, 29 (3), 415-421.

Dittmar, H. (2007). Liquid fertilizer. *Ullmann’s Agrochemicals*, 1, 32-42.

Enete, A., & Okon, U. (2010). Economics of waterleaf (*Talinum triangulare*) production in Akwa Ibom State, Nigeria. *Field Actions Science Report*. Retrieved on 12/8/2013 from www.factsreports.org.

Finck, A. (1992). Fertilizers and their efficient use. World fertilizer use manual. International Fertilizer Industry Association (IFA), Paris.

Iwuchukwu, J., & Uzoh, U. (2009). Constraints to vegetable production among women in Enugu North Agricultural Zone of Enugu State. *Journal of Agricultural Extension*, 13 (1), 16-23.

James, B., Atcha-Ahowe, C., Godonou, I., Baimey, H., Georgen, G., Sikirou, R., & Toko, M. (2010). Integrated pest management in vegetable production: A guide for extension workers in West Africa. International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State.
Nwachukwu, I., & Onyenweaku, C. (2007). Economic efficiency of fadama Telferia production in Imo State Nigeria: A translog profit function approach. *Munich Personal RePEc Archive (MPRA)* Paper No. 13469. http://mpra.ub.uni-muenchen.de/13469/

Ogundare, K., Agele, S., & Aiyelari, P. (2012). Organic amendment of an ultisol: Effects on soil properties, growth, and yield of maize in Southern Guinea Savanna zone of Nigeria. *International Journal of Recycling of Organic Waste in Nigeria, 1*, 1-11.

Ogunniyi, L. (2011). Economic efficiency of leafy vegetable production in Oyo State, Nigeria. *Report and Opinion, 3* (1), 85-92.

Ogunyinka, E.O., Odeh, O.O., & Ajibefun, I.A. (2004). Examining efficiency under multi-cropping systems. Selected paper prepared for presentation at the Southern Agricultural Economics Association Annual Meeting.

Tsoho, B., & Salau, S. (2012). Profitability and constraints to dry season vegetable production under fadama in Sudan Savanna ecological zone of Sokoto State. *Journal of Development and Agricultural Economics, 4* (7), 214-222.

Received: May 18, 2017
Accepted: August 24, 2018
UTICAJ SISTEMA GAJENJA NA PROFITABILNOST UPOTREBOM TEČNOG DUBRIVA U POVRTARSKOJ PROIZVODNJI TOKOM SUŠNE SEZONE U SAVANSKOJ ZONI JUŽNE GVINEJE U NIGERIJI

Ivie L. Olaghere*, Olubunmi A. Omotesho i Abdulazeez Muhammad-Lawal

Univerzitet u Ilorinu, Ilorin, Nigerija

Rezime

Tečna đubriva se u povrtarskoj proizvodnji tokom sušne sezone primenjuju korišćenjem različitih sistema gajenja sa malo ili bez empirijskih dokaza o tome koji je oblik najprofitabiliji. Ovim se istraživanjem, stoga, ispituje uticaj sistema gajenja na profitabilnost upotrebе tečnог đubrива u povrtarskoj proizvodnji tokom sušне sezone. Naime, u ovom istraživanju identifikovana su različита povrtarsка predužećа/gazdinstva, procenjena su ulaganja i prinosi različитих povrtarsких kultури и procenjena je njihова profitabilnost. Za odaber 309 proizvođača u savansкоj zoni južне Gvineje korišćena je višestepena procedure slučajног uzorkovanja. Za prikupljanje podataka korišćeni су predtestirани и strukturirani intervjuji prema rasporedu za prikupljanje podataka. Za analizu podataka korišćене су deskriptivna statistika и tehnike delimičног budžetiranja. Za istraživanje je indentifikовано dvanaest različитих povrtarsких kultура. Šezdeset procenata korisnika tečnог đubrива uzgajalo je само плодовито поврће, kao što су bamija i paprika. Upotreba kombinacije и tečних и ђврстих đubрива у mešovitoj povrtarskoj proizvodnji dala je najvišи prinos od 1.374 kg/ha. Međutim, najvećа profitabilnost у visinи od 323 procената po stopi povraćaja на kapitalна ulaganja ostvarena je prilikom upotrebe isključиво tečnог đubrива у proizvodnji egzotičног povrćа. Ovim istraživanjem se zaključuje da upotreba tečног đubrива povećava profitabilnost и stoga se preporučuje formulacija i sprovedenje politika koje će podsticati korišćenje tečног đubrива od стране poljoprivredних proizvođačа.

Ključне rečи: tečno dubrivo, sušna sezona, povrtarsko preduzeće/gazdinstvo, profitabilnost, dubrenje, ratarska proizvodnja.

Primljeno: 18. maja 2017.
Odobreno: 24. avgusta 2018.

*Autor za kontakt: e-mail: ivieaburime@yahoo.com