Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Development of New Hybrid Model of Discrete Wavelet Decomposition and Autoregressive Integrated Moving Average (ARIMA) Models in Application to One Month Forecast the Casualties Cases of COVID-19

Sarbjit Singh, Kulwinder Singh Parmar, Jatinder Kumar, Sidhu Jitendra Singh Makkhan

PII: S0960-0779(20)30266-6
DOI: https://doi.org/10.1016/j.chaos.2020.109866
Reference: CHAOS 109866

To appear in: Chaos, Solitons and Fractals

Received date: 24 April 2020
Accepted date: 4 May 2020

Please cite this article as: Sarbjit Singh, Kulwinder Singh Parmar, Jatinder Kumar, Sidhu Jitendra Singh Makkhan, Development of New Hybrid Model of Discrete Wavelet Decomposition and Autoregressive Integrated Moving Average (ARIMA) Models in Application to One Month Forecast the Casualties Cases of COVID-19, Chaos, Solitons and Fractals (2020), doi: https://doi.org/10.1016/j.chaos.2020.109866

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Ltd. All rights reserved.
Highlights

1. The study is about the forecasting the deaths because of COVID-19 in major countries around the globe. Its Noble study.

2. It will help the different countries to make the decision on this coronavirus disease.

3. Wavelet and ARIMA are coupled to develop new hybrid model, which computes accurate prediction with the least error.

4. The model provides the 99% approximate accuracy.

5. The manuscript will also help to all for preparing isolation wards and strategy for the newly infected patients.
Development of New Hybrid Model of Discrete Wavelet Decomposition and Autoregressive Integrated Moving Average (ARIMA) Models in Application to One Month Forecast the Casualties Cases of COVID-19

Sarbjit Singh¹,³, Kulwinder Singh Parmar²,*, Jatinder Kumar³, Sidhu Jitendra Singh Makkhan⁴,⁵

¹ Guru Nanak Dev University College, Narot Jaimal Singh, Pathankot, Punjab, India, 145026. sarbasr@gmail.com
² Department of Mathematics, I.K. Gujral Punjab Technical University, Punjab, India, 144603. kulmaths@gmail.com
³ Department of Mathematics, Guru Nanak Dev University, Amritsar, Punjab, India, 143005. bhatiakumar@gmail.com
⁴ Department of Mathematics, Sri Guru Angad Dev College, Khadoor Sahib, Tarn Taran, Punjab, India, 143117. sidhujatinder78@gmail.com
⁵ Department of Mathematics, Lovely Professional University, Punjab, India, 144411. sidhujatinder78@gmail.com

*Corresponding Author Email (dr.kulmaths@ptu.ac.in) (kulmaths@gmail.com)

ABSTRACT

Everywhere around the globe, the hot topic of discussion today is the ongoing and fast-spreading coronavirus disease (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). Earlier detected in Wuhan, Hubei province, in China in December 2019, the deadly virus engulfed China and some neighboring countries, which claimed thousands of lives in February 2020. The proposed hybrid methodology involves the application of discreet wavelet decomposition to the dataset of deaths due to COVID-19, which splits the input data into component series and then applying an appropriate econometric model to each of the component series for making predictions of death cases in future. ARIMA models are well known econometric forecasting models capable of generating accurate forecasts when applied on wavelet decomposed time series. The input dataset consists of daily death cases from most affected five countries by COVID-19, which is given to the hybrid model for validation and to make one month ahead prediction of death cases. These predictions are compared with that obtained from an ARIMA model to estimate the performance of prediction. The predictions indicate a sharp rise in death cases despite various precautionary measures taken by governments of these countries.
Keywords COVID-19 casualties cases, Discrete wavelet decomposition, Hybrid model, ARIMA model, Prediction.

1 Introduction

In Dec 2019, Wuhan, China, witnessed the start of an epidemic, which is just a period of two months overpowered the entire world and took the form of a pandemic named COVID-19 (Huang et al. 2020, Shen et al. 2020, Zhu et al. 2020). The novel coronavirus disease (COVID-19) pandemic caused by the virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has engulfed the entire world within a short period of time (Lai et al. 2020; Yang and Wang, 2020; WHO 2020). Being highly contagious in nature, it poses a massive threat to people’s health as till 10:00 CET, 30 March 2020 a total of 693282 confirmed cases and 33106 deaths were reported globally as per World Health Organization (WHO) (Lai et al. 2020; Wang et al. 2020; WHO 2020; Yang and Wang, 2020).

The outbreak of new infection has created an emergency situation that raises many important questions related to its transmission dynamics, mitigation, and control measures. Researchers are taking the help of mathematical modeling in order to provide answers to such urgent queries (Chen et al., 2020). For instance, to contain the spread, strategies such as social distancing, quarantine and contact tracing of the infected or suspected people, the complete lockdown of the area or countries dealing with it and screening international travelers are the results of model predictions (Hellewell et al. 2020; Prem et al. 2020; Mandal et al. 2019; Choi and Ki, 2020; Yuan et al. 2020). Early modeling results by Kucharski et al. based on the stochastic transmission model told about the variation of COVID-19 over a certain period of time, probability of an outbreak in other areas outside Wuhan and observed a decline in reproduction number from 2.35 to 1.05 after the introduction of travel restrictions (Kucharski et al. 2020). In another study by Chen et al. (2020), a Bats-Hosts-Reservoir-People
transmission network model was developed to simulate the probable transmission from bats to human beings. They also simplified the above model and found that majorly the transmission occurred from person to person relying on the reproduction number estimated as 3.58 (Prem et al. 2020). Li et al. also provided evidence about the person to person transmission route in Wuhan, China, and the calculated that the number of infections doubled in 7.4 days (Li et al. 2020). Similarly, several other models have been used to access the outbreak characteristics (Wu et al. 2020; Binti Hamzah et al. 2020; Lin et al. 2020). Moreover, once the vaccine is made available, its effective distribution could be carried out by mathematical modeling, as suggested in the literature for such infections (Abdirizak et al. 2019). However, looking at the severity of the pandemic and the rapidly changing numbers of the infected population, it demands constant data analysis.

Time series analysis and forecasting deal with understanding the past relationship among the variables by using various modeling techniques with the ultimate goal of obtaining accurate prediction of future values. Box-Jenkins based ARIMA (Autoregressive Integrated Moving Average) model is a widely used statistical model in time series analysis, which covers a wide variety of patterns, ranging from stationary to non-stationary and seasonal (periodic) time series (Melard and Pasteels, 2000; Valenzuela et al., 2008). However, in dealing with non-linear situations where data is not a linear function of time, Box-Jenkins methodology is inappropriate (Box & Jenkins, 1976; Kantz & Schreider, 1997; Melard & Pasteels, 2000; babu et al. 2014). For accurate forecasting of non-linear data, wavelet analysis is a magnificent tool that is capable of diagnosing high-frequency components in time series data (Mallat 1989; Daubechies 1992; Meyer and Coifman 1997; Percival and Walden 2000; Freire et al. 2019). Discreet wavelet transformation involves decomposition of time series at different scales, and each component series can be treated for forecasting purpose (Torrence and Compo 1998; Ramsey 2002; Parmar et al. 2014, 2015; Soni et al. 2014, 2015, 2016;
Kumar et al. 2015). The use of wavelets for forecasting purposes includes the extent of refinement and flexibility, which the traditional methods cannot afford (Diebold 1998; Yousefi et al. 2005; Huang et al. 2011; Yeap et al. 2017; Jeddi 2020).

The present study deals with developing a hybrid model for making the prediction of death cases due to COVID-19 by understanding the dynamic nature of the transmission of the virus. Hybrid modeling in such a situation can prove to be a vital tool to deal with it by studying its potential of transmission and growth of the virus in the long run (Ma et al. 2004, Wu et al. 2020, Zhao et al. 2020b). For this, we have considered the dataset of daily deaths due to the COVID-19 in most affected five countries of the world, namely Italy, Spain, France, the United Kingdom (UK), and the United States of America (USA) (Data Source: World Health Organization).

2 Methodology

2.1 Wavelet Analysis

Wavelets are localized functions with zero mean and compact support, which are capable of analyzing non-periodic and transient signals (Saadaoui et al. 2014; Davidson et al. 1998).

A function \(\psi(x) \in L^2(R) \) is a wavelet if it satisfies the admissibility condition (1).

\[
\int_{-\infty}^{\infty} \hat{\psi}(\omega) \frac{d\omega}{|\omega|} < \infty
\]

(1)

where \(\hat{\psi}(\omega) \) denotes Fourier Transform of \(\psi(\omega) \). A family of functions generated by translation and dilation of a single function \(\psi(t) \) is known as the ‘Mother Wavelet.’ A mother wavelet constitutes a family of functions of the form

\[
\psi_{a,b}(t) = \frac{1}{\sqrt{|a|}} \psi \left(\frac{t-b}{a} \right); a, b \in \mathbb{R} \text{ with } a \neq 0
\]

(2)
where ‘a’ is a scaling parameter which determines the expansion or compactness of a signal, and ‘b’ is a translation or shifting parameter which determines the location of wavelet.

For discrete wavelet decomposition of time series \(\{f(t): t = 1,2,3,\ldots\} \), the mother wavelet function \(\psi_{j,k} \) and the father wavelet function \(\varphi_{j,k} \) are defined respectively by equations (3) and (4).

\[
\psi_{j,k}(x) = \sqrt{2^j} \psi(2^j x - x) \tag{3}
\]

\[
\varphi_{j,k}(x) = \sqrt{2^j} \varphi(2^j x - x) \tag{4}
\]

The approximation coefficients \(\alpha_{j,k} \) are obtained by convoluting the scaling coefficients \(\varphi_{j,k} \) with \(f(t) \) and the convolution with \(f(t) \) of the wavelet function \(\psi_{j,k} \) gives the detailed coefficients which are given by equations (5) and (6).

\[
\alpha_{j,k} = \int_{-\infty}^{\infty} f(t) \varphi_{j,k} dt \tag{5}
\]

\[
\beta_{j,k} = \int_{-\infty}^{\infty} f(t) \psi_{j,k} dt ; j = 1,2,3,\ldots \tag{6}
\]

Using integrals (5) and (6), decomposed series applicable to continuous time series \(f(t) \) is given by (7).

\[
f(t) = \sum_{k \in \mathbb{Z}} \alpha_{j,k} \varphi_{j,k}(t) + \sum_{j=1}^{l} \sum_{k \in \mathbb{Z}} \beta_{j,k} \psi_{j,k}(t) \tag{7}
\]

Since the time series data under study is discreet and is of finite length, so the discretized time series \(y(t) \) of length \(K = 2^l \) is given by (8).

\[
f(t) = \sum_{k=-\infty}^{2^l-k-1} \alpha_{j,k} \varphi_{j,k}(t) + \sum_{j=1}^{l} \sum_{k=-\infty}^{2^l-k-1} \beta_{j,k} \psi_{j,k}(t) \tag{8}
\]

The decomposition of \(f(t) \) into approximation and detail components is also classified in figure 1 (Soni et al. 2017).
2.3 Econometric Forecasting Models

Autoregressive Integrated Moving Average (ARIMA) model is best among various econometric models such as ARMA (Autoregressive Moving Average), MA (Moving Average), and AR (Autoregressive) models. ARIMA model is based on the Box-Jenkins Model (1960), which makes use of past values to predict future values of time series. ARIMA modeling approach basically has three phases: model identification, parameter estimation, and diagnostic checking of the model. The model identification stage determines the time series for stationarity and seasonality, which needs to be modeled before parameter estimation. The stationarity of time series can be judged from an autocorrelation function (ACF) plot, and in case of non-stationary time series, differencing transformation can be applied to obtain stationary data. Seasonality can be modeled by taking seasonal differencing and regenerating autocorrelation function (ACF) and partial autocorrelation function (PACF) plots. These plots are also helpful in identifying the values of parameters p and q (Chatfield 1996; Brockwell and Davis 2002). Parameter estimation of the appropriately selected model is made by maximum likelihood, which is a commonly used method for evaluation. Finally,
the overall adequacy of the model is checked with the help of the Ljung and Box test so that no further modeling of time series is required (McNeil et al. 2006; Peng et al. 2014).

An ARIMA \((p, d, q)\) model using lag polynomial \(L\) is expressed as

\[
(1 - \sum_{i=1}^{p} \varphi_i L^i)(1 - L)^d = (1 + \sum_{j=1}^{q} \theta_j L^j) \epsilon_j
\]

where the non-negative integers \(p\) and \(q\) are the orders of autoregressive and moving average polynomials respectively; \(d\) is the non-seasonal differencing required to make data stationary; \(f(t)\) is the value of observations and \(\epsilon_t\) is a random error at time \(t\); \(\varphi_i\) and \(\theta_j\) are the coefficients.

2.4 Hybrid Prediction Model

Both the ARIMA model and the Wavelet decomposition methods have different tendencies to deal with linear and non-linear features of data, so the coupled models proposed in this study consists of forecasting by ARIMA models on the time series data refined by wavelet decomposition methods. Thus, the coupled models can improve forecasting performance by modeling linear and non-linear components of data (Salazar et al. 2019).

In the wavelet decomposition method, time-series data \(f(t)\) is first decomposed into approximations \((A_j)\) and detail \((D_j)\) coefficients (Section 2.1), which can be used as separate series for prediction purposes; then, each of these series is modeled and forecasted by using an appropriate ARIMA model. The predicted approximations \((\hat{A}_j)\) and detail \((\hat{D}_j)\) coefficients so obtained are summed to obtain forecasted data \((\hat{f}(t))\), expressed as

\[
\hat{f}(t) = \hat{A}_j + \hat{D}_j; \ j = 1,2,3,\ldots
\]

3 Application and Results
In this paper, the dataset consisting of death cases by COVID-19 in five countries of the world, namely Italy, Spain, France, the United Kingdom, and the United States of America is used as input to a hybrid model and prediction results so obtained are compared with that of the ARIMA model. The dataset consists of 82 daily observations ranging from 21 January 2020 to 11 April 2020, out of which 66 data points (80% of data) are used for modeling purpose and rest 16 (20% of data) are kept for testing purpose of validating the model.

3.1 Time Series Analysis

The first step in many time series methods is to check the stationarity of data. Quick changes in time series data indicate non-stationarity, which can be checked by an autocorrelation function (ACF) and partial autocorrelation function (PACF) plots. A slow decaying ACF plot indicates that the time series is non-stationary, and it is removed by differencing transformation to get stationary data (Chatfield 1996). After checking stationarity, the next step is to determine the order of the ARIMA model parameter, which can be determined by the ACF plot of differenced time series. Then, an appropriate ARIMA model is fitted to data that generates future values of time series data.

3.2 Wavelet Decomposition

Wavelet decomposition is an excellent method of extracting different frequency components from a signal and explores important features of the signal. For applying wavelet decomposition to time series, the choice of mother wavelet, its order, and level of decomposition is very important. There are several families of wavelets for wavelet decomposition, but Daubechies wavelet is one of the important types of wavelets which has its own advantages. An accurate forecasting system is developed on the basis of appropriate order and level of decomposition of the input signal. COVID-19 death cases data is decomposed by using the Daubechies wavelet of order 8 and level 3, which are shown in
The approximation parts are low-frequency parts showing a trend and detailed parts representing high-frequency parts. The approximation A3 and details D1, D2, D3 are separately modeled with an appropriate ARIMA model to obtain predicted components. The predicted outputs $\hat{A}_3, \hat{D}_1, \hat{D}_2$ and \hat{D}_3 are finally summed to obtain the forecasts of death cases data given in equation (11).

$$\hat{f}(t) = \hat{A}_3 + \hat{D}_1 + \hat{D}_2 + \hat{D}_3$$ \hspace{1cm} (11)

where capped (') symbol is used to denote predicted values.
Figure 2: Time series plot and Wavelet decomposition of the dataset of five countries in the order, namely France, Italy, Spain, UK, and USA.

3.3 Hybrid Model

In this section, Wavelet decomposition, together with an ARIMA model, is applied to COVID-19 death cases dataset for obtaining accurate prediction results. Autoregressive Integrated Moving Average (ARIMA) is an appropriate econometric model used to generate future values independently as well as jointly with Wavelet decomposition (Guerrero et al. 1991; Bianchi et al. 1998; Akrami et al. 2014). In the case of a hybrid model, the data is decomposed first into constituent series by using the Daubechies Wavelet of order 8 (Db8) at level 3, and then the ARIMA model is applied to each of constituent series to generate a forecast. Finally, the predicted values of the constituent series are summed to obtain the output of the hybrid model. The predictive performance hybrid and ARIMA models are compared finally to find the best model among them with least forecasting errors. Model outputs are compared with testing data using a statistical measure of errors such as root mean square error (RMSE), mean absolute error (MAE) mean absolute percentage error (MAPE), and coefficient of determination (R^2). MAE, RMSE, and MAPE are defined by
where \(f(t) \) denotes the predicted value of \(f(t) \).

3.4 Discussion of Results

The hybrid model of discreet Wavelet decomposition combined with an ARIMA model is developed and applied to COVID-19 death cases dataset to predict future death cases. The performance of the developed hybrid model is compared with the econometric, ARIMA model to find accurate prediction results with the least errors. Table 1 shows the accuracy of the prediction of a hybrid model over an ARIMA model when 20% observed data is compared with the prediction data. Computational results reveal that the hybrid model minimizes forecasting errors as compared to the ARIMA model. The prediction errors by the ARIMA model are just 7.726% and 5.653% for Italy and Spain, which are reduced by approximately 85% by application of the hybrid Wavelet-ARIMA model. For other countries like France, UK, and USA, the decrease in error is approximately 50% for the hybrid model.

A comparison of model forecasts has been shown in fig. 3, which reveals that the outputs generated by a hybrid model are fairly close to observed data values. One-month ahead prediction of death cases by ARIMA and hybrid Wavelet-ARIMA models are shown in figure 4 and figure 5.

Country	MAE (x10^3)	MSE(x10^6)	RMSE(x10^3)	MAPE	R-square
ARIMA Model					
Country	Feature 1	Feature 2	Feature 3	Feature 4	Feature 5
---------	-----------	-----------	-----------	-----------	-----------
Italy	1.243	2.565	1.601	7.726	0.9944
Spain	0.693	0.782	0.884	5.653	0.9989
France	24.640	11.006	3.317	29.696	0.9826
USA	2.822	16.540	4.103	29.768	0.9806
UK	1.316	29.742	1.724	28.285	0.9980

Hybrid Wavelet-ARIMA Model

Country	Feature 1	Feature 2	Feature 3	Feature 4	Feature 5
Italy	0.464	0.398	0.630	2.804	0.9985
Spain	0.136	0.028	0.170	1.248	0.9996
France	1.627	5.245	2.290	18.533	0.9861
USA	1.341	3.900	1.974	15.625	0.9888
UK	0.193	0.064	0.253	5.623	0.9974

(a) ARIMA Model
(b) Wavelet-ARIMA Model
Figure 3: Comparison of forecasts of ARIMA and hybrid Wavelet-ARIMA model of five countries in the order namely France, Italy, Spain, UK and USA.
4 CONCLUSIONS

In this paper, hybrid Wavelet-ARIMA model is developed and the accuracy of proposed model is investigated using past 66 days data of death cases by COVID-19 and a
prediction of 16 days ahead death cases was made within sample which was then used to predict one-month ahead out of sample death cases in most affected five countries of world namely France, Italy, Spain, UK and USA. Discreet Wavelet decomposition of dataset was combined with an econometric model in order to develop a better hybrid model to forecast future death cases accurately. The forecast obtained by hybrid Wavelet-ARIMA model reduced errors approximately by 50% as compared to ARIMA model. The performance of hybrid model is nearly 80% better than ARIMA model for the countries Italy, Spain and UK whereas it is approximately 50% better for the countries France and USA. Thus, the results showed better performance of hybrid model as compared with ARIMA model and can be used as forecasting technique. The prediction of death cases by this technique can help governments to take preventive measures before any disastrous situation.

Conflict of Interest: There is no conflict of interest between the authors.

Availability of Data and Materials: All data are publicly available with WHO.

References

Abdirizak, F., Lewis, R. and Chowell, G. (2019). “Evaluating the potential impact of targeted vaccination strategies against severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks in the healthcare setting”, *Theoretical Biology and Medical Modelling*, 16(1), p.16.

Akrami, S. A., El-Shafie, A., Naseri, M., Santos, C. A. G. (2014). “Rainfall data analyzing using moving average (MA) model and wavelet multi-resolution intelligent model for noise evaluation to improve the forecasting accuracy”. *Neural Computing and Applications*. 25, 1853–1861.

Babu, C. N., & Reddy, B. E. (2014). “A moving-average filter-based hybrid ARIMA–ANN model for forecasting time series data”. *Applied Soft Computing*, 23, 27-38.

Baldwin R and di Mauro BW (2020). “Mitigating the COVID Economic Crisis: Act Fast and Do Whatever It Takes”. *CEPR Press London, UK*.

Bianchi, L., Jarrett, J., Hanumara, R. C. (1998). “Improving forecasting for centers by ARIMA modeling with intervention”. *International Journal of Forecasting*. 14(4), 497-504.

Binti Hamzah F.A., Lau, C., Nazri, H., Ligot, D.V., Lee, G., Tan, C.L., et al. (2020). “CoronaTracker: Worldwide COVID-19 Outbreak Data Analysis and Prediction”
Box, G. E. P., & Jenkins, G. M. (1976). “Time series analysis, forecasting and control”. San Francisco, CA: Holden Day.

Brockwell, P. J. and Davis R. A. (2002). “Introduction to Time Series and Forecasting. Springer Texts in Statistics.

Chatfield, C. (1996). “The Analysis of Time Series: An Introduction”. 5th edition, Chapman and Hall, CRC, London.

Chen, T.M., Rui, J., Wang, Q.P., Zhao, Z.Y., Cui, J.A. and Yin, L. (2020). “A mathematical model for simulating the phase-based transmissibility of a novel coronavirus”. Infectious Diseases of Poverty, 9(1), pp.1-8.

Choi, S.C. and Ki, M. (2020). “Estimating the reproductive number and the outbreak size of Novel Coronavirus disease (COVID-19) using mathematical model in Republic of Korea”. Epidemiology and Health, p.e2020011.

Daniels, J.P. (2020). “Venezuelan migrants “struggling to survive” amid COVID-19”. 395(10229), 1023. https://doi.org/10.1016/S0140-6736(20)30718-2.

Davidson, R., Labys W. C., Lesourd J. B. (1998). “Wavelet analysis of commodity price behaviour”. Computational Economics. 11(1–2), 103-128.

Daubechies, I. (1988). “Orthonormal bases of compactly supported wavelets”. Communications on Pure and Applied Math. 909-996.

Daubechies, I. (1992). “Ten lectures on wavelets”. Philadelphia, SIAM.

Diebold, F. V. (1998). “Elements of forecasting”. South-Western College, Cincinnati.

Freire, P. K. D. M. M., Santos, C. A. G., & da Silva, G. B. L. (2019). “Analysis of the use of discrete wavelet transforms coupled with ANN for short-term streamflow forecasting”. Applied Soft Computing, 80, 494-505.

Guerrero, V. M. (1991). “ARIMA forecasts with restrictions derived from a structural change”. International Journal of Forecasting. 7(3), 339-347.

Hellewell, J., Abbott, S., Gimma, A., Bosse, N.I., Jarvis, C.I., Russell, T.W., Munday, J.D., Kucharski, A.J., Edmunds, W.J., Sun, F. and Flasche, S. (2020). “Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts”. The Lancet Global Health. 8, e488-e496.

Huang C, Wang Y, Li X, Rem L, Zhao J, Hu Y, et al. (2020). “Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China”. The Lancet. https://doi.org/10.1016/S0140-6736(20)30183-5.

Huang, S. C. (2011). “Forecasting stock indices with wavelet domain kernel partial least square regressions”. Applied Soft Computing, 11(8), 5433-5443.

Jeddi, S., & Sharifian, S. (2020). “A hybrid wavelet decomposer and GMDH-ELM ensemble model for Network function virtualization workload forecasting in cloud computing”. Applied Soft Computing, 88, 105940.

Kantz, H., & Schreider, T. (1997). “Nonlinear time series analysis”. Cambridge University Press.
Kucharski, A.J., Russell, T.W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R.M., Sun, F., Jit, M., Munday, J.D. and Davies, N. (2020). “Early dynamics of transmission and control of COVID-19: a mathematical modelling study”. The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(20)30144-4

Kumar, J., Kaur, A., and Manchanda, P. (2015). “Forecasting the Time Series Data Using ARIMA with Wavelet”. Journal of Computer and Mathematical Sciences. 6(8), 430-438.

Lai, C.C., Shih, T.P., Ko, W.C., Tang, H.J. and Hsueh, P.R. (2020). “Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges”. International Journal of antimicrobial agents, p.105924.

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K.S., Lau, E.H., Wong, J.Y. and Xing, X. (2020). “Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia”. New England Journal of Medicine, 382, 1199-1207.

Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., Musa, S.S., Wang, M.H., Cai, Y., Wang, W., Yang, L. and He, D. (2020). “A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action”. International journal of infectious diseases. 93, 211-216.

Lohani, A.K., Goel, N.K., Bhatia, K.K.S. (2014). “Improving real time flood forecasting using Fuzzy Inference system”. Journal of Hydrology. 509, 25-41.

Ma, Z. (2020). “Spatiotemporal fluctuation scaling law and metapopulation modeling of the novel coronavirus (COVID-19) and SARS outbreaks”. arXiv. 2003.03714

Ma, Z.E., Zhou, Y.C., Wang, W.D (2004). “Mathematical modeling and research of infectious disease dynamics.”

Mandal, S., Bhatnagar, T., Arinaminpathy, N., Agarwal, A., Chowdhury, A., Murhekar, M., Gangakhedkar, R.R. and Sarkar, S. (2020). “Prudent public health intervention strategies to control the coronavirus disease 2019 transmission in India: A mathematical model-based approach”. Indian Journal of Medical Research. https://doi:10.4103/ijmr.IJMR_504_20

Melard, G., & Paseels, J. M. (2000). “Automatic ARIMA modeling including interventions, using time series expert software”. International Journal of Forecasting. 16(4), 497–508.

Mallat, S. (1989). “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation”. IEEE Transactions on Pattern Analysis and Machine Intelligence. 11(7), 674–93.

McNeil, A.J., Frey, R, Embrechts, P. (2005). “Quantitative risk management: concepts, techniques, and tools”. Princeton University Press, Princeton.

Meyer, Y., Coifman, R. (1997). “Wavelets”. Cambridge University Press.

Ming W, Huang J. Zhang CJP. (2020). “Breaking down of healthcare system Mathematical modeling for controlling the novel coronavirus (COVID-19) outbreak in Wuhan, China”. bioRxiv.

Parmar, KS., Bhardwaj, R. (2014). “Water quality management using statistical and time series prediction model”. Applied Water Science. 4(4), 425-434.
Parmar, K.S., Bhardwaj, R. (2013). “Wavelet and statistical analysis of river water quality parameters”. *Applied Mathematics and Computation*. 219 (20). 10172-10182.

Parmar, K.S., Bhardwaj, R. (2015). “Statistical, Time Series and Fractal Analysis of Full Stretch of River Yamuna (India) for Water Quality Management”. *Environmental Science and Pollution Research*. 22 (1). 397-414.

Peng, Y., Lei, M., Li, J-B., Peng, X-Y. (2014). “A novel hybridization of echo state networks and multiplicative seasonal ARIMA model for mobile communication traffic series forecasting”. *Neural Computing and Applications*. 24, 883–890.

Percival, D.B., Walden A.T. (2000). “Wavelet methods for time series analysis”. *Cambridge, MA: Cambridge University Press.*

Prem, K., Liu, Y., Russell, T.W., Kucharski, A.J., Eggo, R.M., Davies, N., Flasche, S., Clifford, S., Pearson, C.A., Munday, J.D. and Abbott, S. (2020). “The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study”. *The Lancet Public Health*. https://doi.org/10.1016/S2468-2667(20)30073-6.

Ramsey, J. B. (2002). “Wavelets in Economics and Finance: Past and Future”. *Studies in Nonlinear Dynamics and Econometrics*. 6(3), 1–27.

Salzberger, B., Glück, T. and Ehrenstein, B. (2020). “Successful containment of COVID-19: the WHO-Report on the COVID-19 outbreak in China”. *Infection*. 48, 151–153 https://doi.org/10.1007/s15010-020-01409-4.

Shen M, Peng Z, Xiao Y. (2020). “Modeling the epidemic trend of the 2019 novel coronavirus outbreak in China”. *bioRxiv*.

Saadaoui, F., Rabbouch, H. (2014). “A wavelet-based multiscale vector-ANN model to predict co-movement of econophysical systems”. *Expert System with Applications*. 41, 6017-6028.

Salazar, L., Nicolis, O., Ruggeri, F., Kisel’ák, J., Stehlík, M. (2019). “Predicting hourly ozone concentrations using wavelets and ARIMA models”. *Neural Computing and Applications*. 31, 4331–4340.

Soni, K., Parmar, K. S., Kapoor, S., Kumar, N. (2016). “Statistical Variability Comparison in MODIS and AERONET Derived Aerosol Optical Depth Over Indo-Gangetic Plains Using Time Series”. *Science of total environment*. 553, 258-65.

Soni, K., Parmar, K. S., Kapoor, S. (2015). “Time series model prediction and trend variability of aerosol optical depth over coal mines in India”. *Environmental Science and Pollution Research*. 22(5), 3652-3671.

Soni, K., Kapoor, S., Parmar, K. S., Kaskaoutis, Dimitris G. (2014). “Statistical Analysis of Aerosols over the Gangetic-Himalayan region using ARIMA model based on long-term MODIS observations”. *Atmospheric Research*. 149,174-192.

Soni, K., Parmar, K. S., Agrawal, S. (2017). “Modeling of Air Pollution in Residential and Industrial Sites by Integrating Statistical and Daubechies Wavelet (Level 5) Analysis”. *Modeling Earth System and Environment*. 3, 1187-1198

Torrence, C., Compo, G. P. (1998). “A practical guide to wavelet analysis”. *Bulletin of the American Meteorological Society*. 79(1), 61–78.
Valenzuela, O., Rojas, I., Rojas, F., Pomares, H., Herrera, L. J., Guillen, A., et al. (2008). “Hybridization of intelligent techniques and ARIMA models for time series prediction”. *Fuzzy Sets and Systems*. 159(7), 821–845.

Wang, L.S., Wang, Y.R., Ye, D.W. and Liu, Q.Q. (2020). “A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence”. *International Journal of Antimicrobial Agents*, p.105948.

World Health Organization (WHO) (2020). “Coronavirus disease 2019 (COVID-19) Situation Report – 70”. WHO.

World Health Organization. Coronavirus. World Health Organization, cited January 19, 2020. Available: https://www.who.int/health-topics/coronavirus.

Wu, J.T., Leung, K. and Leung, G.M. (2020). “Nowcasting and forecasting the potential domestic and international spread of the 2019–nCoV outbreak originating in Wuhan, China: a modelling study”. *The Lancet*, 395(10225), pp.689-697. https://doi.org/10.1016/S0140-6736(20)30260-9.

Wu P, Hao X, Lau EHY, Wong JY, Leung KSM, Wu JT, et al. (2020). “Real time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020”. *Euro Surveill*. 2020;25(3):2000044.

Yang, P., Wang, X. (2020). “COVID-19: a new challenge for human beings”. *Cellular & Molecular Immunology*. https://doi.org/10.1038/s41423-020-0407-x.

Yeap, Y. M., Geddada, N., & Ukil, A. (2017). “Analysis and validation of wavelet transform based DC fault detection in HVDC system”. *Applied Soft Computing*, 61, 17-29.

Yuan Z, Xiao Y, Dai Z, Huang J & Chen Y. (Submitted). Bull World Health Organ. E-pub: 02 March 2020. doi: http://dx.doi.org/10.2471/BLT.20.254045

Yousefi, S., Weinreich, I. and Reinarz, D. (2005). “Wavelet-based prediction of oil prices”. *Chaos, Solitons and Fractals*. 25(2), 265-275.

Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. (2020a). “Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak”. *Int J Infect Dis*. https://doi.org/10.1016/j.ijid.2020.01.050.

Zhao S, Musa SS, Lin Q, Ran J, Yang G, Wang W, et al. (2020b). “Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: a data-driven Modelling analysis of the early outbreak”. *J Clin Med*. https://doi.org/10.3390/jcm9020388.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. (2020). “A pneumonia outbreak associated with a new coronavirus of probable bat origin”. *Nature*. https://doi.org/10.1038/s41586-020-2012-7.
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. (2020). “A novel coronavirus from patients with pneumonia in China, 2019”.
N Engl J Med.
https://doi.org/10.1056/NEJMoa2001017.

Conflict of Interest

No conflict of interest exists.