Characterization of simultaneous uptake of xylose and glucose in *Caldicellulosiruptor kronotskyensis* for optimal hydrogen production

Thitiwut Vongkampang\(^a\), Krishnan Sreenivas\(^a\), Jonathan Engvall\(^a\), Carl Grey\(^b\) and Ed W.J. van Niel\(^a\)

*Corresponding author: Thitiwut Vongkampang (Email: thitiwut.vongkampang@tmb.lth.se)

Abstract

Background: *Caldicellulosiruptor kronotskyensis* has gained interest for its ability to grow on various lignocellulosic biomass. The aim of this study was to investigate the growth profiles of *C. kronotskyensis* in the presence of mixtures of glucose-xylose. Recently, we characterized a diauxic-like pattern for *C. saccharolyticus* on lignocellulosic sugar mixtures. In this study we aimed to investigated further whether *C. kronotskyensis* has adapted to uptake glucose in the disaccharide form (cellobiose) rather than the monosaccharide (glucose).

Results: Interestingly, growth of *C. kronotskyensis* on glucose and xylose mixtures did not display diauxic-like growth patterns. Closer investigation revealed that, in contrast to *C. saccharolyticus*, *C. kronotskyensis* does not possess a second uptake system for glucose. Both *C. saccharolyticus* and *C. kronotskyensis* share the characteristics of preferring xylose over glucose. Growth on xylose was twice as fast (\(\mu_{\text{max}} = 0.57 \, \text{h}^{-1}\)) as on glucose (\(\mu_{\text{max}} = 0.28 \, \text{h}^{-1}\)). It was found that *C. kronotskyensis* takes up glucose and xylose simultaneously with the same transporter. A study of the sugar uptake was made with different glucose-xylose ratios to find a kinetic relationship between the two sugars for transport into the cell. High concentrations of glucose inhibited xylose uptake and vice versa.
The inhibition constants were estimated to be $K_{I,\text{glu}} = 0.01 \text{ cmol} \cdot \text{L}^{-1}$ and $K_{I,\text{xyl}} = 0.001 \text{ cmol} \cdot \text{L}^{-1}$, hence glucose uptake was more severely inhibited by xylose uptake. Bioinformatic analysis indicated the lack of another sugar uptake system in *C. kronotskyensis* as compared to *C. saccharolyticus*. Therefore, it was investigated whether glucose uptake by *C. kronotskyensis* was in the form of cellobiose. Indeed, cellobiose is taken up faster than glucose, nevertheless, the growth rate on each sugar remained similar.

Conclusions: *C. kronotskyensis* possesses a xylose transporter that might take up glucose at an inferior rate even in the absence of xylose. Alternatively, glucose can be taken up in the form of cellobiose, but growth performance is still inferior to growth on xylose. Therefore, we propose that the catabolism of *C. kronotskyensis* has adapted more strongly to pentose rather than hexose thereby having obtained a specific survival edge in thermophilic lignocellulosic degradation communities.

Key words: *Caldicellulosiruptor kronotskyensis*, non-diauxic, Xylose uptake, Glucose uptake, Cellobiose uptake
1. Background

Our reliance on fossil fuels resulted in massive greenhouse gases (GHGs) being released into the atmosphere. Biofuels, as an alternative, may contribute to the reduction of CO$_2$ emissions, helping to keep the Paris Agreement that was determined to keep the global temperature below 2°C above the pre-industrial level [1]. Of the biofuels, biohydrogen is an interesting energy carrier due to that it does not emit carbon dioxide during combustion. In addition, hydrogen has a gravimetric energy content approximately 122kJ/g, which is three-fold higher than carbon-based fuels [2].

Strictly anaerobic thermophilic bacteria of the genus of *Caldicellulosiruptor* are promising for biohydrogen production [3]. These gram-positive bacteria grow optimally at a temperature of 70-75°C. The most interesting feature is their ability to grow on a broad-spectrum of substrates, including poly-, oligo-, di- and, monosaccharides [4]. Among these *Caldicellulosiruptor* species, *C. saccharolyticus* is the most studied so far, including its physiology related to the sugar transporters [5]. *C. saccharolyticus* was isolated from thermal springs in New Zealand [6] and its completed genomic sequence has been annotated for its metabolism and transporter systems [7]. More recently, the whole genome of *C. saccharolyticus* was reannotated to improve the prediction of coding sequences [8]. *C. saccharolyticus* has been especially studied for its performance on sugar mixtures in lignocellulosic hydrolysates [9-11]. Interestingly, a recent study revealed that *C. saccharolyticus* displayed diauxic-like growth patterns on xylose-glucose mixtures [11].

In the last decade, *Caldicellulosiruptor kronotskyensis* was isolated from thermal springs in Kamchatka, Russia. This species was considered akin to *C. saccharolyticus* and other species in the genus of *Caldicellulosiruptor*, with genome similarity levels between 94.8-97.7% [12], but the physiology of *C. kronotskyensis* has hardly been studied. During recent years, *C. kronotskyensis* has gained more interest due to its tāpirin proteins that attach to lignocellulosic materials [13] and
it is well equipped for the breakdown of lignocellulosic biomass [14]. In addition, *C. kronotskyensis* was studied for its xylanase [15, 16], pectate lyase for the deconstruction of plant biomass [17] and has been used to enhance polyhydroxybutyrate (PHB) formation in a sequential fermentation [18]. Therefore, *C. kronotskyensis* is a potential platform for the production of biofuels and valuable chemicals.

Cellulose and hemicellulose are the major constituents of lignocellulosic biomass. Cellulose is a linear polymer consisting of glucose units linked by β-1,4-glycosidic bonds [19]. The hydrolysis of cellulose typically produces cellobiose and other oligomers. Hemicellulose is a heteropolymer with a side chain that comprises of pentoses and hexoses, i.e., xylose, glucose, mannose, and other derivatives [20].

The current study focused on the physiology of *C. kronotskyensis* growing on mixtures of xylose and glucose such as in lignocellulosic hydrolysates. The growth profiles of *C. kronotskyensis* were evaluated against those of *C. saccharolyticus* in a former study (Björkmalm et al 2018). Due to a difference in the growth pattern between these two species, the uptake of xylose and glucose in *C. kronotskyensis* was studied in further detail, which included also cellobiose as an alternative source of glucose. The generated data revealed that *C. kronotskyensis* might have adapted to xylose-based metabolism and takes up glucose preferentially, in the form of cellobiose and possibly other oligosaccharides, which may pinpoint its micro-niche in lignocellulosic degradation in its natural environment.
2. Materials and methods

2.1 Microorganism and cultivation medium

Caldicellulosiruptor kronotskyensis DSM 18902 was purchased from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, Germany). The inoculum was prepared by subculturing routinely in 250 mL serum flasks containing 50 mL of modified DSM medium 640. The medium composition used in this study was previously described by [21]. The cultivation medium (DSM medium 640) without yeast extract, 1000X vitamin solution, and modified SL-10 solution were prepared according to [21, 22].

2.2 Experimental design

The batch cultivations were performed with different sugar ratios (Table 1). Briefly, the control conditions were cases A, B, and C, which were single-sugar cultivation on xylose, cellobiose, and glucose, respectively. Uptake kinetics on different sugar ratios were performed in cases D, E, F, and G. The sugar mixtures in case G was based on the ratio seen in wheat straw hydrolysate [11]. In addition, each of these sugars was combined with cellobiose to determine the preference of sugar uptake (Case H & I). All cultivations were done in biological duplicate.

2.3 Fermentation set up

Batch fermentations were performed in a 3-L bioreactor provided with ADI 1025 Bio-console and ADI 1010 Bio-Controller (Applikon, Schiedam, The Netherlands) at a working volume
of 1 L. The medium was stirred at 250 rpm and kept at pH 6.9 ± 0.1 with automatic titration with 4 M NaOH. The medium was continuously stripped with N₂ gas containing less than 5 ppm O₂ (AGA Gas AB, Sweden) at a rate of 100 mL/min. For xylose, sparging gas was turned off after inoculation for 4 hours to allow accumulation of CO₂ as previously reported [22], which is necessary to promote initial growth. Then, N₂ gas was continuously sparged again throughout cultivation. 5 mL of each culture was taken at specific intervals and spun down to collect supernatant and stored at -20°C until further analysis.

2.4 Analytical methods

Gas samples were taken from the bioreactor’s headspace to quantify hydrogen gas and carbon dioxide with Gas Chromatography using an Agilent 7890B (Santa Clara, CA, USA) equipped with a TCD and a ShinCarbon ST 50/80 UM (2m x 1/16 x 1 mm) column. Helium gas was fed through the system with a flow rate of 10 mL·min⁻¹ at 80 °C for 1 min. The temperature was increased to 100 °C and held for 4 min followed by a temperature ramp to 160 °C for 2 min. The built-in software obtained from Agilent was used for analysis and calculating the percentages of H₂ and CO₂. The calibration curve of H₂ and CO₂ were validated after setting up of the GC and used for analysis afterwards.

Glucose, xylose, and cellobiose were detected on a Shodex SP-0810 column (8x300 mm, Shodex, Japan) using Milli-Q water as a mobile phase at a flow rate of 0.6 mL·min⁻¹ at 60 °C. Acetate, lactate, propionate, and ethanol were quantified by high-performance liquid chromatography (HPLC; Waters, Milford, MA, USA) equipped with an Aminex HPX-87H ion-
exchange column (7.8×300 mm, Bio-Rad, Hercules, USA). The column was operated at 60 °C with 5 mM H$_2$SO$_4$ as a mobile phase at a flow rate of 0.6 mL·min$^{-1}$.

2.5 Biomass concentration

An Ultospec 2100 pro UV/visible spectrophotometer (Amersham Biosciences, UK) was used to determine the optical density (OD) of the culture at 620 nm. A culture volume of 10 mL was filtrated through a pre-weight Supor-200, 0.2 µm filter (PALL Life Sciences, Mexico) to estimate cell dry weight (CDW). The filters were rinsed thrice with 5 mL of Milli-Q water and dried in a desiccator overnight. The dry filters were measured on an analytical balance (AG204 DeltaRange, Mettler Toledo, Ohio, USA). The CDW samples were done in duplicate. The correlation between CDW and OD$_{620}$ was calculated to estimate CDW of each sample according to:

$$CDW = a[OD] + b$$ \(1\)

Where CDW and b are cell dry weight and linear regression constant (g·L$^{-1}$), respectively. a is a slope of the linear regression. The value for a and b varied with the sugar (combinations) used in the cultures.

2.6 Mathematical modelling to predict μ_{max}

The modified Gompertz equation as per Zwietering et al, (1990) and optical density (OD) obtained from each Case were used for the estimation of μ_{max}:
\[y = A \exp\left(- \exp\left[\frac{\mu_m \exp}{A} (\lambda - t) + 1\right]\right) \]

(2)

Where \(A \) is a term of the asymptotic value, \(\mu_m \) is the specific growth rate (\(\mu_{\text{max}} \), \(h^{-1} \)) and \(\lambda \) is the length of the lag phase (h).

2.7 Inhibition constant (\(K_I \)) of glucose and xylose

The inhibition of glucose uptake by xylose and vice versa are assumed to be based on competitive inhibition of the substrate binding protein of the ABC transporter. The two equations that can be derived are:

\[V_{\text{xyl}} = \frac{V_{m,\text{xyl}} \cdot \frac{X}{K_{S,\text{xyl}}} \cdot \frac{G}{1 + \frac{X}{K_{S,\text{xyl}}} + \frac{G}{K_{I,\text{glu}}}}}{K_{S,\text{xyl}}} \]

(3)

And:

\[V_{\text{glu}} = \frac{V_{m,\text{glu}} \cdot \frac{G}{K_{S,\text{glu}}} \cdot \frac{X}{1 + \frac{X}{K_{S,\text{glu}}} + \frac{G}{K_{I,\text{xyl}}}}}{K_{S,\text{glu}}} \]

(4)

Where \(V_{\text{xyl}} \) and \(V_{\text{glu}} \) are xylose uptake rate and glucose uptake rate (cmol⋅L\(^{-1} \)), respectively, \(V_{m,\text{xyl}} \) and \(V_{m,\text{glu}} \) are the maximum substrate uptake rate (cmol⋅L\(^{-1} \)). The parameters \(X \) and \(G \) are the concentration of xylose and glucose (cmol⋅L\(^{-1} \)), respectively.

The aim was to obtain a good appraisal of the inhibition constants for the uptake of xylose (\(K_{I,\text{glu}} \)) and glucose (\(K_{I,\text{xyl}} \)) in the cultures of sugar mixtures (Case D-E). To minimize the number of unknown parameter values, we assumed that the \(K_S \) value of glucose (\(K_{S,\text{glu}} \)) and xylose (\(K_{S,\text{xyl}} \))...
obtained for *C. saccharolyticus* from the previous study [11] was similar to those of *C. kronotskyensis*: the $K_{S,\text{glu}}$ and $K_{S,\text{xyI}}$ being 0.01 and 0.0002 cmol·L$^{-1}$, respectively.

2.8 Bioinformatics study related on sugar transporter

The sugar transporters of *C. kronotskyensis* related in this study were investigated and compared with those sugar transporters identified in *C. saccharolyticus* in a previously study [24]. The completed DNA sequences and gene encoding for transporters of *C. kronotskyensis* (https://www.ncbi.nlm.nih.gov/nuccore/NC014720) and, *C. saccharolyticus* (https://www.ncbi.nlm.nih.gov/nuccore/ CP000679) were available at the National Center for Biotechnology Information (NCBI; Bethesda, MD, USA). The completed genome sequences of these two species were compared by using Mauve program (Darling lab, University of Technology Sydney).

3. Results

3.1 Growth profiles on the single sugar

Batch cultivations of *C. kronotskyensis* on 10 g·L$^{-1}$ of xylose (Case A), 10 g·L$^{-1}$ of glucose (Case B), and 10 g·L$^{-1}$ of cellobiose (Case C) were performed in a CSTR to monitor substrate utilization, biomass, and products formation. *C. kronotskyensis* assimilated xylose and cellobiose faster than glucose (Fig. 1, A). However, there was no difference in biomass and acetate production during the fermentation of each sugar. For the fermentation on xylose, lactate production was twice and thrice higher than for the fermentation on cellobiose and glucose, respectively (Fig. 1, B-D).

3.2 Xylose - glucose uptake competition
C. kronotskyensis was cultivated in media containing xylose and glucose mixtures with different ratios (Table 1, Cases D-F). The results of Case D and Case E revealed that xylose was consumed from the early logarithmic phase until the stationary phase. On the other hand, C. kronotskyensis did hardly take up glucose when the amount of xylose was higher than 0.1 cmol·L⁻¹ (Fig. 2, A&B). Moreover, the uptake of glucose (Case E) began only after the level of xylose became below 0.05 cmol·L⁻¹ (Fig. 2, B). This phenomenon was also observed in Case F (Fig. 2, C) and Case G (Fig. 3, A). Cultures containing higher concentrations of xylose in the sugar mixtures produced more lactate, i.e., lactate formation in Case D and Case E were approximately thrice and a half higher, respectively, than in Case F (Fig. 2). However, there was no difference in acetate production and biomass formation among these three cases.

3.3 Growth profiles on the mixed sugars

In Case G, xylose depleted earlier than glucose. Subsequently, glucose was not taken up faster as was expected but continued at a constant speed (Fig. 3, A). For Case H, glucose was substituted by cellobiose, which resulted in that both sugars were concurrently consumed (Fig. 3, B). Surprisingly, the total fermentation period (Case H) was approximately half the time shorter comparing to the other two cases where glucose was presented (Case G & I). For Case I (Fig. 3, C), the uptake profile of cellobiose was similar to that of the xylose uptake profile in Case G and Case H, but the uptake profile of glucose was quite similar to the glucose profile in Case G.

Acetate was the main soluble by-product obtained from the growth profiles during the fermentation of mixed sugars. Acetate formation in Case G was approximately 1.5-fold higher than the acetate level in both Case H and Case I. Lactate in Case H was approximately one and a half
time higher than in Case I and just about five-fold higher than in Case G. Biomass observed in Case I was 0.035 cmol·L⁻¹, which was one and a half fold greater than Case H (0.026 cmol·L⁻¹) and almost twice higher for Case G (0.018 cmol·L⁻¹) (Fig. 3, A-C). Neither of the monitored profiles of QH₂ and QCO₂ during the fermentation of mixed sugars displayed any diauxic-like growth patterns (Fig. 4, A&B), as it has been observed for C. saccharolyticus [11].

3.4 Estimation of \(\mu_{\text{max}} \) from the fermentations on single sugar

The \(\mu_{\text{max}} \) of the culture of C. kronotskyensis on xylose (Case A) was 0.57 h⁻¹, which was nearly twice higher than the \(\mu_{\text{max}} \) of the culture on cellobiose (Case B) and glucose (Case C) (Table 2). For the xylose-glucose competition, the \(\mu_{\text{max}} \) was higher at higher xylose/glucose ratio (Case D&E) than at a lower ratio. With a mixture of cellobiose and xylose (Case H), the culture reached a \(\mu_{\text{max}} \) between the \(\mu_{\text{max}} \) of each sugar alone and was significantly higher than for the mixture of xylose-glucose (Case G) and cellobiose-glucose (Case I).

3.5 Determination of yields, carbon balance and redox balance

In this study, the carbon balance indicated good carbon recovery, and, all redox balance represented above 95%, denoting reliable H₂ measurements. Yields were calculated by using the overall product formed divided by the total substrate converted. For single sugar, the yield of hydrogen (\(Y_{\text{SH}} \)), carbon dioxide (\(Y_{\text{SC}} \)), and acetate (\(Y_{\text{SA}} \)) for glucose alone (Case C) were higher than for xylose (Case A) and cellobiose (Case B). In contrast, the yield of lactate (\(Y_{\text{SL}} \)) for Case A was greater than Case B and Case C. Moreover, the yield of biomass (\(Y_{\text{SX}} \)) of these cases (Case A-C) were at a similar level (Table 2).
The yield of hydrogen (Y_{SH}), carbon dioxide (Y_{SC}), and acetate (Y_{SA}) for the different xylose-glucose ratios (Case D-F) were overall quite similar. Except for the yield of lactate (Y_{SL}) for Case F was slightly lower than for Case D and Case E. The highest yield of biomass (Y_{SX}) was in Case E, followed by the Y_{SX} in Case F, which was similar to the Y_{SX} in Case D (Table 2).

For the cultivation of the mixed sugars, the yield of hydrogen (Y_{SH}), carbon dioxide (Y_{SC}), and acetate (Y_{SA}) in Case H and Case I were similar, but both were significantly higher than Case G. However, the yield of lactate (Y_{SL}) in Case H was lower than Case G and Case I. Furthermore, Case I showed a higher yield of biomass (Y_{SH}) than Case G and Case H.

3.6 Specific substrate consumption rate (qS) and specific H$_2$ production rate (qH_2)

The specific substrate consumption (qS) on single sugar and mixed sugars were calculated based on substrate in cmol·L$^{-1}$·h$^{-1}$ divided by cell dry weight (gCDW·L$^{-1}$). The specific H$_2$ production (qH_2) of each fermentation was calculated from the volumetric hydrogen productivity (Q_{H_2}, mmol·L$^{-1}$·h$^{-1}$) divided by cell dry weight (gCDW·L$^{-1}$). For Case A, the specific xylose consumption ($qXyl$) was approximately 0.67 cmol·gCDW$^{-1}$·h$^{-1}$, whereas the specific glucose consumption ($qGlu$) in Case C was 0.44 cmol·gCDW$^{-1}$·h$^{-1}$ (Fig. 5, A). During the fermentation with different xylose-glucose mixtures, $qXyl$ decreased with decreasing xylose/glucose ratios. A similar phenomenon also occurred in case of $qGlu$, which decreased with increasing xylose/glucose ratios. It is worth noting that the qH_2 of culture fermenting xylose was significantly decreased from 13 mmol·gCDW$^{-1}$·h$^{-1}$ to 6.8 mmol·gCDW$^{-1}$·h$^{-1}$ when glucose was present. For the mixture of xylose and cellobiose (Case H), the specific cellobiose consumption ($qCel$) was lower than both $qXyl$ and $qGlu$ (Fig. 5, B). Interestingly, $qCel$ increased dramatically from 0.25
cmol·gCDW⁻¹·h⁻¹ to 0.7 cmol·gCDW⁻¹·h⁻¹ in the case of xylose-cellobiose mixture (Case H) while qXyl showed no significant decrease. The qH₂ of Case H improved somewhat when compared with qH₂ of Case B. For Case I, only qGlu considerably decreased from 0.44 cmol·gCDW⁻¹·h⁻¹ to 0.15 cmol·gCDW⁻¹·h⁻¹, whereas qCel did not show any remarkably change (Fig. 5, C). Moreover, there were no differences between the qH₂ obtained in Case B, Case C, and Case I.

3.7 Inhibition kinetics of xylose and glucose uptake

As Fig. 5A depicts, the specific consumption rate of both xylose and glucose declined in the sugar mixture when more of the other sugar was present. This indicated competitive inhibition and, therefore, the inhibition constant (Kᵢ) for xylose (Kᵢ,xyl) and glucose (Kᵢ,glu) were estimated (Eqs. 3,4) focusing only on the cases of the xylose-glucose mixture (Case D-G). It was found that the Kᵢ,glu was 0.01 cmol·L⁻¹, being ten times higher than Kᵢ,xyl (0.001 cmol·L⁻¹), or glucose uptake was more severely inhibited by xylose than vice versa.

3.8 Competitive of sugar uptake in C. kronotskyensis

The sugars in Case G, Case H, and Case I were plotted to exhibit the relative stoichiometry of each sugar uptake during the exponential phase. As depicted in Fig. 6A, the uptake of xylose and glucose (Case G) was non-linearly and thus non-stoichiometry related, supporting the view of competition. In contrast, sugar uptake of the other two cases (Case H&I) was linearly related throughout the cultivation, depicting a stable stoichiometry (Fig. 6B&C) and was related to the use of two separate sugar transporters.
3.9 Bioinformatics related on sugar transporters

Carbohydrate transporters play a crucial role in sugar uptake during the growth of bacteria. The completed genome sequence of *C. kronotskyensis* was compared with the known transporters of *C. saccharolyticus* using the Mauve program. The results obtained in a previous study [24] revealed the presence of three groups of ABC transporters belonging to carbohydrate uptake 1 family (CUT1), carbohydrate uptake 2 family (CUT2), and di/oligopeptide (Dpp/Opp). As aforementioned, there is an approximately 96% similarity of the whole genome sequence among the members of the genus *Caldicellulosiruptor*. The results showed that most of the ABC transporters in *C. kronotskyensis* were similar to those present in *C. saccharolyticus*, except one group of Dpp/Opp for fructose and sucrose uptake, and one group of CUT1 for the uptake of xyloglucan (Table 3). Furthermore, cellobiose might be taken up through the transporters labelled as Calkro_0108-0110, as being predicted for glucooligosaccharides.

4. Discussion

This study was performed after the observation that *C. kronotskyensis* did not possess a diauxic-like growth pattern on xylose-glucose fermentations (Fig.4) as has been described for *C. saccharolyticus* in a previous study [11]. Both volumetric productivity profiles of hydrogen (Q$_{H2}$) and carbon dioxide (Q$_{CO2}$) consist of only one peak corresponding with the exponential growth phase. In contrast to *C. saccharolyticus*, there is no second peak after xylose has been consumed. Instead, Q$_{H2}$ and Q$_{CO2}$ continued to decline even though plenty of glucose was still present. In the presence of xylose in both species a transporter is expressed that take up both xylose and glucose. The mechanism behind the diauxic-like growth pattern in *C. saccharolyticus* was
based on a second transporter for glucose being expressed after depletion of xylose [11].

C. kronotskyensis has a genetic similarity of approximately 94% with *C. saccharolyticus* [12], and one of the differences is a lower number of ABC transporters for sugar uptake in *C. kronotskyensis* (Table 3). The results obtained in this study indicated that *C. kronotskyensis* might be missing a second transporter for glucose. Based on this evidence, we studied the simultaneous uptake of glucose and xylose in *C. kronotskyensis* by means of one transporter using different concentration ratios of xylose and glucose. Like for *C. saccharolyticus* [11, 24], this transporter has a preference for xylose and at high concentrations of this sugar, whereas glucose is hardly taken up. For obvious reasons, a competitive inhibition was assumed, and the kinetic analysis demonstrated that xylose inhibited glucose uptake more severely than the other way around. The uptake of both sugars simultaneously affected the overall growth rate, but there is no clear indication that it affected the biomass yield and hydrogen yield (Table 2).

Due to a low preference for glucose, it could be expected that *C. kronotskyensis* is taking up this hexose preferably in the form of oligosaccharides. Several oligosaccharide transporters can be assigned in the genome of this species (Table 3), and indeed cellobiose was taken up via a separate transporter in the presence of xylose according to the concentration profiles of the two sugars in Fig. 3B. Both sugars were taken up simultaneously with a stable stoichiometry as demonstrated in Fig. 6B. A similar relationship was observed for the glucose and cellobiose mixture (Fig. 6C). However, the non-linear correlation between simultaneous uptake of xylose and glucose connected to the competition taking place at the xylose transporter (Fig. 6A). Curiously, after depletion of cellobiose in Case I, glucose uptake did not increase. Instead it continued the same slow uptake through the remainder of the fermentation. The fact that uptake of glucose was linear probably due to that was no further increase of cell mass, which might indicate either
limitation of another nutrient or is caused by a yet unknown mechanism. *C. saccharolyticus, C. owensensis,* and *C. kristjanssonii* have in common that they prefer xylose over other sugars in mixed substrate cultures. Nonetheless when these three species were cultivated together, the uptake of glucose and xylose occurred concurrently [25]. This sugar preference pinpoints to an adaptation to a specific niche within the thermophilic lignocellulosic degradation community. Other such specialization within lignocellulosic degradation communities has been indicated before [26].

With xylose, the μ_{max} was 0.57 h$^{-1}$ which is significantly higher than the μ_{max} observed for *C. saccharolyticus* (0.25 h$^{-1}$) [27] and *C. owensensis* (0.20 h$^{-1}$) [21]. In the current study, cellobiose uptake was also superior to that of glucose even though the μ_{max} on each of these sugars was quite similar. The μ_{max} on glucose obtained by *C. kronotskyensis* (0.28 h$^{-1}$) was slightly higher than the μ_{max} obtained in *C. saccharolyticus* (0.23 h$^{-1}$) [11, 25]. In the case of glucose and xylose mixtures, the μ_{max} increased with the xylose/glucose ratio as the growth rate was mainly determined by xylose but inhibited by glucose. Glucose and xylose mutually inhibited each other’s uptake. A competitive kinetic model indicated that glucose was more severely inhibited by xylose than vice versa. Interestingly, the μ_{max} of cultures on xylose and cellobiose mixtures was halfway between the maximum specific growth rates for each case on single sugar (Table 2), which is correlated with a certain conversion stoichiometry between cellobiose and xylose (Fig. 6B).

The qXyl was not significantly different in the presence of cellobiose in the medium. As aforementioned, xylose and cellobiose were consumed concurrently. Interestingly, qCel obtained in Case H considerably improved almost three-fold compared to qCel in Case B (Fig. 5, B). Therefore, both qXyl and qCel were also confirmed that the assimilation of xylose and cellobiose in *C. kronotskyensis* occurred with different sugar transporters.
5. Conclusion

The current study highlighted the lack of a diauxic-like growth pattern in *C. kronotskyensis* during fermentation of the xylose-glucose mixture. *C. kronotskyensis* has the highest preference for xylose and cellobiose compared to glucose. This is exemplified by the lack of a specific glucose transporter and the highest growth rate observed with xylose in single sugar cultures. Nevertheless, the highest Q_H has been observed in the presence of glucose and/or cellobiose. This study further supports that members of the genus *Caldicellulosiruptor* have adapted to xylose and gluco-oligosaccharides rather than glucose as primary substrates, which may give them a competitive edge in thermophilic lignocellulosic degradation. It further shows that *C. kronotskyensis* is a promising candidate for biohydrogen production from lignocellulosic material.

Authors’ contributions

TV wrote the article, planned and performed the experiments. EvN was involved in planning the experiments and writing the article. KS and JE assisted TV in batch fermentations and HPLC analysis. CG coordinated the calculations for kinetic modelling. EvN and CG participated in discussing of all the results. EvN also critically reviewed the text. All authors have read and approved the manuscript.

Author details

aDivision of Applied Microbiology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden

bDivision of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
Acknowledgment

We acknowledge the financial support from the Ministry of Higher Education, Science, Research and Innovation (Thai Government) and the Swedish Research Council FORMAS to Thitiwut Vongkampang (project no. 2017-00795). We also thank Karin Willquist for discussion insight the kinetic study.

Competing interests

The authors declare that they have no competing interests.

Available of data and materials

The datasets during and/or analyzed during the current study available from the corresponding author on reasonable request.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.
Funding

This work was supported by the Ministry of Higher Education, Science, Research and Innovation (Thai Government) and the Swedish Research Council FORMAS whom did not participate in the execution of the study or in the manuscript writing.

References

[1] United Nations. Adoption of the Paris Agreement. 2015, http://unfccc.int/resource/docs/2015/cop21/eng/09r01.pdf. Accessed 18 Nov 2020.

[2] Savla N, Shinde A, Sonawane K, Mekuto L, Chowdhary P, and Pandit S. 17 - Microbial hydrogen production: fundamentals to application, in Microorganisms for Sustainable Environment and Health, Chowdhary P, et al., Editors. 2020, Elsevier. p. 343-365. DOI: https://doi.org/10.1016/B978-0-12-819001-2.00017-6.

[3] Pawar SS and van Niel EWJ. Thermophilic biohydrogen production: how far are we? Appl. Microbiol. Biotechnol., 2013. 97(18): p. 7999-8009. DOI: https://doi.org/10.1007/s00253-013-5141-1.

[4] Vanfossen AL, Lewis DL, Nichols JD, and Kelly RM. Polysaccharide degradation and synthesis by extremely thermophilic anaerobes. Ann. N. Y. Acad. Sci., 2008. 1125: p. 322-37. DOI: https://doi.org/10.1196/annals.1419.017.

[5] Willquist K, Zeidan AA, and van Niel EWJ. Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory. Microb Cell Fact, 2010. 9: p. 89. DOI: https://doi.org/10.1186/1475-2859-9-89.

[6] Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, et al. Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov.: An obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol. Lett., 1994. 120. DOI: https://doi.org/10.1111/j.1574-6968.1994.tb07043.x.

[7] van de Werken HJ, Verhaart MR, VanFossen AL, Willquist K, Lewis DL, Nichols JD, et al. Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl. Environ. Microbiol., 2008. 74(21): p. 6720-9. DOI: https://doi.org/10.1128/AEM.00968-08.

[8] Chowdhary N, Selvaraj A, KrishnaKumaar L, and Kumar GR. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production. PLoS One, 2015. 10(7): p. e0133183. DOI: https://doi.org/10.1371/journal.pone.0133183.

[9] Panagiotopoulos IA, Bakker RR, de Vrije T, Koukios EG, and Claassen PAM. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int. J. Hydrog. Energy, 2010. 35(15): p. 7738-7747. DOI: https://doi.org/10.1016/j.ijhydene.2010.05.075.

[10] Pawar SS, Nkemka VN, Zeidan AA, Murto M, and van Niel EWJ. Biohydrogen production from wheat straw hydrolysate using Caldicellulosiruptor saccharolyticus followed by biogas production in a two-step uncoupled process. Int. J. Hydrog. Energy, 2013. 38(22): p. 9121-9130. DOI: https://doi.org/10.1016/j.ijhydene.2013.05.075.
[11] Bjorkmalm J, Byrne E, van Niel EWJ, and Willquist K. A non-linear model of hydrogen production by *Caldicellulosiruptor saccharolyticus* for diauxic-like consumption of lignocellulosic sugar mixtures. Biotechnol Biofuels, 2018. 11: p. 175. DOI: https://doi.org/10.1186/s13068-018-1171-3.

[12] Miroshnichenko ML, Kublanov IV, Kostrikina NA, Tourova TP, Kolganova TV, Birkeland NK, and Bonch-Osmolovskaya EA. *Caldicellulosiruptor kronotskyensis* sp. nov. and *Caldicellulosiruptor hydrothermalis* sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Int. J. Syst. Evol. Microbiol., 2008. 58(Pr 6): p. 1492-6. DOI: https://doi.org/10.1007/s10528-007-9483-0.

[13] Blumer-Schuette SE, Alahuhta M, Conway JM, Lee LL, Zurawski JV, Giannone RJ, et al. Discrete and structurally unique proteins (tåpirins) mediate attachment of extremely thermophilic *Caldicellulosiruptor* species to cellulose. J. Biol. Chem., 2015. 290(17): p. 10645-56. DOI: https://doi.org/10.1074/jbc.M115.641480.

[14] Lee LL, Hart WS, Lunin VV, Alahuhta M, Bomble YJ, Himmel ME, et al. Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tåpirins) from Extremely Thermophilic *Caldicellulosiruptor* Species. Appl. Environ. Microbiol., 2019. 85(3). DOI: https://doi.org/10.1128/AEM.01983-18.

[15] Qiao W, Tang S, Mi S, Jia X, Peng X, and Han Y. Biochemical characterization of a novel thermostable GH11 xylanase with CBM6 domain from *Caldicellulosiruptor kronotskyensis*. Journal of Molecular Catalysis B: Enzymatic, 2014. 107: p. 8-16. DOI: https://doi.org/10.1016/j.molcatb.2014.05.009.

[16] Jia X, Qiao W, Tian W, Peng X, Mi S, Su H, and Han Y. Biochemical characterization of extra-and intracellular endoxylanase from thermophilic bacterium *Caldicellulosiruptor kronotskyensis*. Sci Rep, 2016. 6: p. 21672. DOI: https://doi.org/10.1038/srep21672.

[17] Su H, Qiu W, Kong Q, Mi S, and Han Y. Thermostable pectate lyase from *Caldicellulosiruptor kronotskyensis* provides an efficient addition for plant biomass deconstruction. Journal of Molecular Catalysis B: Enzymatic, 2015. 121: p. 104-112. DOI: https://doi.org/10.1016/j.molcatb.2015.08.013.

[18] Peng X, Kelly RM, and Han Y. Sequential processing with fermentative *Caldicellulosiruptor kronotskyensis* and chemolithoautotrophic Cupriavidus necator for converting rice straw and CO2 to polyhydroxybutyrate. Biotechnol. Bioeng., 2018. 115(6): p. 1624-1629. DOI: https://doi.org/10.1002/bit.26578.

[19] Chen H, Chemical Composition and Structure of Natural Lignocellulose, in Biotechnology of Lignocellulose: Theory and Practice, Chen H, Editor. 2014, Springer Netherlands: Dordrecht. p. 25-71. DOI: https://doi.org/10.1007/978-94-007-6898-7_2.

[20] Chen H, Brief Introduction to the Biotechnology of Lignocellulose, in Biotechnology of Lignocellulose: Theory and Practice, Chen H, Editor. 2014, Springer Netherlands: Dordrecht. p. 1-24. DOI: https://doi.org/10.1007/978-94-007-6898-7_1.

[21] Zeidan AA and van Niel EWJ. A quantitative analysis of hydrogen production efficiency of the extreme thermophile *Caldicellulosiruptor owensensis* OL*. Int. J. Hydrog. Energy, 2010. 35(3): p. 1128-1137. DOI: https://doi.org/10.1016/j.ijhydene.2009.11.082.

[22] Willquist K and van Niel EWJ. Growth and hydrogen production characteristics of *Caldicellulosiruptor saccharolyticus* on chemically defined minimal media. Int. J. Hydrog. Energy, 2012. 37(6): p. 4925-4929. DOI: https://doi.org/10.1016/j.ijhydene.2011.12.055.

[23] Zwietering MH, Jongenburger I, Rombouts FM, and van ’t Riet K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol., 1990. 56(6): p. 1875-1881. DOI: https://doi.org/10.1128/AEM.56.6.1875-1881.1990.

[24] Vanfossen AL, Verhaart MR, Kengen SM, and Kelly RM. Carbohydrate utilization patterns for the extremely thermophilic bacterium *Caldicellulosiruptor saccharolyticus* reveal broad growth substrate preferences. Appl. Environ. Microbiol., 2009. 75(24): p. 7718-24. DOI: https://doi.org/10.1128/AEM.01959-09.
[25] Zeidan AA and Van Niel EWJ. Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars. Int. J. Hydrog. Energy, 2009. 34(10): p. 4524-4528. DOI: https://doi.org/10.1016/j.ijhydene.2008.07.092.

[26] Blumer-Schuette SE. Insights into Thermophilic Plant Biomass Hydrolysis from *Caldicellulosiruptor* Systems Biology. Microorganisms, 2020. 8(3): p. 385. DOI: https://doi.org/10.3390/microorganisms8030385.

[27] Ljunggren M, Willquist K, Zacchi G, and van Niel EWJ. A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by *Caldicellulosiruptor saccharolyticus*. Biotechnol Biofuels, 2011. 4(1): p. 31. DOI: https://doi.org/10.1186/1754-6834-4-31.
Fig. 1 Growth pattern, sugar consumption and products formation on single sugar.

(A) summary of sugar uptake profiles (B) growth of *C. kronotskyensis* on 10 g·L⁻¹ xylose (case A)
(C) growth of *C. kronotskyensis* on 10 g·L⁻¹ cellobiose (case B) (D) growth of *C. kronotskyensis* on 10 g·L⁻¹ glucose (case C).
(Δ) Xylose (Xyl); (□) cellobiose (Cel); (O) glucose (Glu); (×) biomass; (◊) lactate (Lac); (+) acetate (Ac).

Fig. 2 Growth pattern, sugar consumption and products formation for xylose-glucose competition.

(A) growth of *C. kronotskyensis* on 12 g·L⁻¹ xylose and 2 g·L⁻¹ glucose (case D) (B) growth of *C. kronotskyensis* on 9 g·L⁻¹ xylose and 3 g·L⁻¹ glucose (case E) (C) growth of *C. kronotskyensis* on 3 g·L⁻¹ xylose and 9 g·L⁻¹ glucose (case F).
(Δ) Xylose (Xyl); (O) glucose (Glu); (×) biomass; (◊) lactate (Lac); (+) acetate (Ac).

Fig. 3 Growth pattern, sugar consumption and products formation on mixed sugars.

(A) growth of *C. kronotskyensis* on 3.4 g·L⁻¹ xylose and 7.3 g·L⁻¹ glucose (case D) (B) growth of *C. kronotskyensis* on 3.4 g·L⁻¹ xylose and 7.3 g·L⁻¹ cellobiose (case E) (C) growth of *C. kronotskyensis* on 5 g·L⁻¹ glucose and 5 g·L⁻¹ cellobiose (case F).
(Δ) Xylose (Xyl); (O) glucose (Glu); (□) cellobiose (Cel); (×) biomass; (◊) lactate (Lac); (+) acetate (Ac).

Fig. 4 Volumetric hydrogen productivity (*Q*_{H2}) and volumetric carbon dioxide productivity (*Q*_{CO2}). (A) *Q*_{H2} obtained in case G (□), case H (O), and case I (Δ) *Q*_{CO2} obtained in case G (×), case H (◊), and case I (+).
Fig. 5 Specific substrate consumption (qS) and specific hydrogen production (qH₂). (A) Specific xylose consumption (qXyl), specific glucose consumption (qGlu), and specific hydrogen production (qH₂) for case D, case E, case G, and case F comparing with case A and case C (B). Specific xylose consumption (qXyl), specific cellobiose consumption (qCel), and specific hydrogen production (qH₂) for case H comparing with case A and case B (C). Specific xylose consumption (qXyl), specific cellobiose consumption (qCel), and specific hydrogen production (qH₂) for case I comparing with case B and case C. (Δ) qXyl; (□) qCel; (O) qGlu; (◊) qH₂.

Fig. 6 Stoichiometry of substrate uptake in the cultures on mixed sugars during the logarithmic phase. (A) Relation between xylose and glucose uptake (B) Relation between xylose and cellobiose uptake (C) Relation between cellobiose and glucose uptake. (O) case G; (□) case H; (Δ) case I.
Table 1 Fermentation conditions performed in this study.

Name	Cultivation conditions
Case A	10 g·L⁻¹ xylose
Case B	10 g·L⁻¹ cellobiose
Case C	10 g·L⁻¹ glucose
Case D	2 g·L⁻¹ glucose and 12 g·L⁻¹ xylose
Case E	3 g·L⁻¹ glucose and 9 g·L⁻¹ xylose
Case F	9 g·L⁻¹ glucose and 3 g·L⁻¹ xylose
Case G	7.3 g·L⁻¹ glucose and 3.4 g·L⁻¹ xylose
Case H	7.3 g·L⁻¹ cellobiose and 3.4 g·L⁻¹ xylose
Case I	5 g·L⁻¹ cellobiose and 5 g·L⁻¹ glucose
Table 2 Calculated yields, carbon balance, redox balance and, μ_{max} of the fermentations in this study.

Sugar	Yield	Carbon Balance	Redox Balance	μ_{max} (h$^{-1}$)					
	Y$_{SH}$	Y$_{SC}$	Y$_{SA}$	Y$_{SL}$	Y$_{SX}$	[mol-cmol$^{-1}$]	[cmol-cmol$^{-1}$]		
Case A	0.36±0.02	0.14±0.01	0.46±0.02	0.26±0.04	0.19±0.02	1.03±0.03	1.05±0.04	0.57	
Case B	0.35±0.05	0.14±0.02	0.45±0.05	0.14±0.01	0.15±0.01	1.08±0	1.09±0	0.30	
Case C	0.50±0.02	0.20±0.01	0.61±0.02	0.09±0.04	0.17±0.01	1.04±0.02	1.06±0.03	0.28	
Case D	0.42±0.08	0.16±0.03	0.52±0.10	0.22±0.11	0.09±0.06	1.07±0.02	1.03±0.02	0.43	
Case E	0.50±0.01	0.19±0.01	0.57±0.08	0.18±0.06	0.25±0.08	1.04±0.07	0.97±0.04	0.43	
Case F	0.54±0.03	0.20±0.01	0.67±0.13	0.05±0.05	0.15±0.07	1.04±0.06	1.01±0.03	0.21	
Case G	0.38±0.03	0.15±0.01	0.48±0.04	0.14±0.05	0.14±0.01	1.12±0.05	1.06±0.04	0.25	
Case H	0.54±0.01	0.21±0.01	0.70±0.02	0.02±0	0.11±0	1.11±0.02	1.08±0.01	0.41	
Case I	0.50±0.06	0.20±0.02	0.69±0.08	0.16±0.12	0.26±0.04	0.99±0.01	0.95±0.01	0.31	
Table 3 Comparison of carbohydrate transporters between C. kronotskyensis (the current study) and C. saccharolyticus. The ABC transporters (Csac_), group and features of C. saccharolyticus were taken from a previous study [24].

ABC transporter (Csac_)	Group	ABC transporter (Calkro_)	Features
0238,0240-0242	CUT2	0382,0384-0386	Arabinose, galactose, xylose
0261-0265	Dpp/Opp	None	Fructose, sucrose
0427-0428,0431	CUT1	0283-0284,0287	Maltodextrin
0440-0442	CUT1	2234-2236	Galactose
0692-0694	CUT1	2010-2012	Monosaccharides
1028-1032	Dpp/Opp	0798-0802	Monosaccharides
1557-1559	CUT1	None	Xyloglucan
2321-2322,2324,2326	CUT1	0930,0932,0933-0934	Glucose, xylose, fructose
2412-2414	CUT1	2389-2391	Xylooligosaccharides
2417-2419	CUT1	2394-2396	Xylooligosaccharides
2491-2493	CUT1	0321-0323	Xylose, glucose, fructose
2504-2506	CUT2	0128-0130	Xylose, glucose, fructose
2514-2516	CUT1	0108-0110	Glucoooligosaccharides
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
