A Comprehensive, Targeted NGS Approach to Assessing Molecular Diagnosis of Lysosomal Storage Diseases

Valentina La Cognata and Sebastiano Cavallaro *

Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 95126 Catania, Italy; valentina.lacognata@cnr.it
* Correspondence: sebastiano.cavallaro@cnr.it; Tel.: +39-0957338111

Abstract: With over 60 different disorders and a combined incidence occurring in 1:5000–7000 live births, lysosomal storage diseases (LSDs) represent a major public health problem and constitute an enormous burden for affected individuals and their families. Several reasons make the diagnosis of LSDs an arduous task for clinicians, including the phenotype and penetrance variability, the shared signs and symptoms, and the uncertainties related to biochemical enzymatic assay results. Developing a powerful diagnostic tool based on next generation sequencing (NGS) technology may help reduce the delayed diagnostic process for these families, leading to better outcomes for current therapies and providing the basis for more appropriate genetic counseling. Herein, we employed a targeted NGS-based panel to scan the coding regions of 65 LSD-causative genes. A reference group sample (n = 26) with previously known genetic mutations was used to test and validate the entire workflow. Our approach demonstrated elevated analytical accuracy, sensitivity, and specificity. We believe the adoption of comprehensive targeted sequencing strategies into a routine diagnostic route may accelerate both the identification and management of LSDs with overlapping clinical profiles, producing a significant reduction in delayed diagnostic response with beneficial results in the treatment outcome.

Keywords: lysosomal storage disease (LSDs); diagnosis; targeted next generation sequencing (tNGS)

1. Introduction

Lysosomal storage disorders (LSDs) are rare inherited diseases characterized by the accumulation of specific undegraded metabolites inside the lysosomes [1–3]. This over-storage is commonly caused by a deficiency or absent activity of lysosomal hydrolases or, in a few cases, by the deficit of further non-enzymatic lysosomal proteins (such as integral membrane proteins) [3]. With a combined incidence of 1 in 1500 to 7000 live births, this group of monogenic inborn errors of metabolism encompasses ~70 different entities, including sphingolipidoses, mucopolysaccharidoses, glycoproteinoses, lipid storage diseases, lipofuscinosis, lysosomal integral membrane proteins diseases, and post-translational modifications dysfunctions [4,5]. Clinical signs and symptoms may occur from the prenatal period to adulthood and may develop progressively over time, leading to a wide spectrum of disease phenotypes from mild to extremely severe forms that involve neuropathological effects, psychomotor development delay, cognitive decline, musculoskeletal abnormalities, dysmorphism, organomegaly, and seizures [6]. Both the considerable clinical variability within each disease phenotype and the overlapping symptomatology among single LSDs hamper the path for a precise diagnosis, which often involves a delay in treatment and severe consequences on patients’ quality of life and their families [4].

Current diagnostic workflows include an accurate evaluation of both medical history and clinical presentations, which lead to the formulation of suspicion of one or more LSDs, followed by biochemical analysis to quantify either the accumulated storage product or the enzymatic activity in leukocytes, fibroblasts, urine, or rehydrated dried blood spots (DBS)
for newborns [7,8]. Finally, if deficient enzyme activity is detected, second-tier confirmatory biomarker tests or Sanger sequencing are performed for the suspected gene. Although this diagnostic route represents the current gold standard, it presents several limitations. First, it requires deep clinical expertise to discriminate phenotypic overlapping manifestations and, thus, to reduce the number of biochemical tests used for each LSD-suspected patient. Second, the execution of multiple biochemical enzymatic assays may be expensive, time-consuming, and subject to high variability, and enzymatic tests may not be available for all diseases. Therefore, reaching a definitive molecular diagnosis for LSDs with traditional techniques is still challenging, can take several years, or may be unsuccessful.

In the past decade, the emergence of next generation sequencing (NGS) technologies has proven to be an effective alternative to conventional techniques, in both research and clinical settings, allowing for the simultaneous interrogation of several genes in one single reaction and reducing, considerably, the time and costs for Sanger sequencing of a single gene [9,10]. The introduction of ad hoc designed genetic tests (targeted NGS panels) into diagnostic workflows offers the opportunity for easier identification of LSDs, timely diagnosis, and optimized clinical management, reducing the psychological burden and providing appropriate genetic counseling to parents [4].

In this study, we aimed to design and evaluate both the diagnostic utility of a semi-automated and comprehensive sequencing assay based on a targeted NGS (tNGS) panel (hereafter referred to as LSDs_panel) developed to detect pathogenic variants in 65 LSD-related genes. We describe the panel performance, strengths, and limitations and propose it as a useful second-tier diagnostic test for specialists in everyday clinical management who might suspect an LSD, given its ability to provide accurate and timely information.

2. Materials and Methods

2.1. Sample Collection and Dosage

A reference group of DNA samples isolated from clinically diagnosed donor subjects ($n = 26$) were obtained from the NIGMS Human Genetic Cell Repository at the Coriell Institute for Medical Research (https://www.coriell.org/, accessed on 26 October 2021). The purchased samples were chosen for known variants localized in targeted genes and selected in order to ensure an adequate representation for most LSDs. Quantification of the genomic DNA was assessed by measuring the genomic copies of the human RNase P gene using the TaqMan® RNase P Detection Reagents Kit (Thermo Fisher Scientific, Waltham, MA, USA) and the Aria Dx Real-Time PCR System (Agilent Technologies, Santa Clara, CA, USA).

2.2. Panel Design and Library Preparation

For the selection of genes ($n = 65$) included in the panel, we relied on updated literature data [2] and a previous gene-set used for targeted strategies (Table 1). An on-demand panel (IAD199901) and a compatible made-to-order spike-in panel (IAD199905 including TPP1 and BLOC1S3 genes) were designed using the Ion AmpliSeq Designer software (https://ampliseq.com, accessed on 1 May 2020, Thermo Fisher Scientific, Waltham, MA, USA). The advantage of using Ion AmpliSeq on-demand panel customization is that primer pairs are pre-tested and optimized for high performance, whereas spike-ins are high concentrated made-to-order panels used to extend panels for genes not available on-demand.

The complete panel design (called LSDs_panel) covers 237.782 kb and includes 1241 amplicons with a size range of 125–275 bp distributed across two primer pools (625 primer pool 1 and 616 primer pool 2). The in silico coverage consisted of 99% for the on-demand panel and 99.18% for the spike-ins. The complete design of the LSDs_panel is available in Supplementary Table S1.

Library preparation was carried out using the Ion AmpliSeq™ Kit for Chef DL8 (DNA to Library, 8 samples/run) used for automated library preparation of the Ion AmpliSeq™ libraries on the Ion Chef™ System (Thermo Fisher Scientific, Waltham, MA, USA). According to the recommended number of amplification cycles in the standard protocol, the
amplification conditions were set out to 16 cycles and four minutes of annealing/extension time. The library quality and molarity were assessed using the Ion Library TaqMan® Quantitation Kit (Thermo Fisher Scientific, Waltham, MA, USA) on the Aria Dx Real-Time PCR System (Agilent Technologies, Santa Clara, CA, USA). Serial dilutions of the *E. coli DH10B* Control Library (Thermo Fisher Scientific, Waltham, MA, USA) were prepared and run in triplicate to generate a standard curve. The molar concentration of libraries was determined using the Delta R—baseline-corrected raw fluorescence calculated with Aria DX Real-Time PCR Software (Agilent Technologies, Santa Clara, CA, USA). Barcoded libraries (up to 4-Chef runs corresponding to 32 libraries) were super-pooled in equimolar concentration using the strategies suggested for combining libraries prepared with different panels for equal coverage in order to obtain a final molarity of 40 pM each.

2.3. Chip Loading and Sequencing

Loading of the Ion 510 and the 540 Chips was carried out using the Ion 510, 520, 530, and 540 Kit-Chef (Thermo Fisher Scientific, Waltham, MA, USA) following manufacturer instructions. High throughput sequencing runs were carried out on the Ion Gene Studio S5 system (Thermo Fisher Scientific, Waltham, MA, USA). A run planned in the S5 Torrent Suite (v. 5.12.2) had the following parameters: analysis parameters, default; reference library, hg19; target regions, LSDs_panel; read length, 200 bp; flows, 550; and base calibration mode, default. The plugins used were Coverage Analysis, Ion Reporter Uploader, and Variant Caller (default settings).

2.4. Variant Calling and Prioritization

Read mapping was performed automatically in Torrent Suite (v. 5.12.2, Thermo Fisher Scientific, Waltham, MA, USA) by using the variant Caller plugin (v5.12.0.4) with default settings (germline_low_stringency). The called variants were automatically uploaded on Ion Reporter (Thermo Fisher Scientific, Waltham, MA, USA). The Copy Number Variation (CNV) performance was not assessed. The pipeline analysis for variant filtering was based on multiple adjusted steps including coverage min 30×, Homopolymer length ≤ 3, p-value < 0.001, ClinVar \neq benign or likely benign, MAF < 0.001 or n.a., frequency 30–60% for heterozygous variants and $>70\%$ for homozygous variants, intronic variants included if the distance from exon is < 10 bp, SIFT score < 0.05/PolyPhen score > 0.85 or n.a., and variants effect \neq synonymous unless they are pathogenic/likely pathogenic or with conflicting interpretation of pathogenicity. A comparison of the Torrent Variant Caller (TVC) prioritized variants with their respective genetic information from Coriell biobank was performed post-analysis. True-positive (TP), true-negatives (TN), false-positive (FP), and false-negative (FN) variant calls were defined by considering available data from the single causative gene in the Coriell repository. True positives (TPs) were defined as variants both detected by our filtering pipeline as well as expected from the Coriell collected data. True negatives (TNs) were considered additional variants detected in the causative gene but excluded by our prioritization pipeline and not reported in the repository data. False positives (FPs) were considered variants detected by our pipeline but not expected from the data. False negatives (FNs) were considered variants expected from the Coriell data but missed by our pipeline. Accuracy was calculated as follows: (TP + TN)/(TP + TP + TN + FN); sensitivity was calculated as follows: TP/(TP + FN); and specificity was calculated as follows: TN/(TN + FP). The Matthews correlation coefficient (MCC) (which measures the correlation between the predicted and observed binary classification of a sample) was calculated as follows: $\text{MCC} = \frac{\sqrt{(TP \times TN) - (FP \times FN)}}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$.

3. Results

3.1. Panel Design and Performance

The LSDs_panel was designed to target the entire coding regions of 65 LSD-related genes (Table 1), which were previously reported to be a direct cause of an LSD when mutated in both alleles, in order to use it for diagnostic testing in patients with a high a priori
probability of LSD based on the clinical phenotype. The LSDs_panel included 1241 ampli-
cons (with a length of 125–275 bp) distributed between two primer pools (625 + 616 primer
pairs) and covering a size of 237,782 kb, with an in silico coverage of 99% (the complete
design of LSDs_panel is available in Supplementary Table S1). No additional intronic
regions were targeted to maximize the coverage of exonic regions and to facilitate rapid
and unambiguous interpretation in the context of diagnosis.

Table 1. LSD-related genes included in the panel and their associated disorders.

Gene	Cytogenetic Location	Pathology	Phenotype OMIM No.
AGA	4q34.3	Aspartylglucosaminuria	208400
AP3B1	5q14.1	Hermansky–Pudlak disease type 2	608233
ARSA	22q13.33	Metachromatic leukodystrophy	250100
ARSB	5q14.1	MPS VI, also known as Maroteaux–Lamy syndrome	253200
ASAHI	8p22	Faber lipogranulomatosis	228000
ATP13A2	1p36.13	CLN12b: Kufor–Rakeb syndrome or PARK9	606693
BLOC1S6	15q21.1	Hermansky–Pudlak disease type 9	614171
BLOC1S13	19q13.32	Hermansky–Pudlak disease type 8	614077
CLN3	16q12.1	CLN3: Batten–Spielmeier–Sjogren disease	204200
CLN5	13q22.3	CLN5: Finnish variant late infantile	256731
CLN6	15q23	CLN6: Lake–Cavanagh or Indian variant	601780
CLN8	8p23.3	CLN8: northern epilepsy, epilepsy mental retardation	600143
CTNS	17p13.2	Cystinosis	219800
CTSA	20q13.12	Galactosialidosis	256540
CTSD	11p15.5	CLN10	610127
CTSF	11q13.2	CLN13	615362
DNAJC5	20q13.33	CLN4: Parry disease and Kufs type A and B	162350
DTNB1P1	6p22.3	Hermansky–Pudlak disease type 7	614076
FIICA1	1p36.11	Fucosidosis	230000
GAA	17q25.3	Pompe disease	232300
GALC	14q31.3	Globoid cell leukodystrophy, Krabbe disease	245200
GALNS	16q24.3	MPS IVA, also known as Morquio syndrome A	253000
GBA	1q22	Gaucher disease	230800
GAI	Xq22.1	Fabry disease	301500
GLB1	3p22.3	GM1 gangliosidosis; MPS IVB, also known as Morquio syndrome B	253010
GM2A	5q33.1	GM2 gangliosidosis, GM2 activator deficiency	272750
GNPTAB	12q23.2	Mucolipidosis II α/β, I-cell disease; mucolipidosis III α/β, pseudo-Hurler polydystrophy	252500
GNPTG	16p13.3	Mucolipidosis III γ, variant pseudo-Hurler polydystrophy	252605
GNS	12q14.3	MPS IID, also known as Sanfilippo syndrome D	252940
GRN	17q21.31	CLN11	614706
GUSB	7q11.21	MPS VII, also known as Sly disease	253220
HEXA	15q23	GM2 gangliosidosis, Tay–Sachs disease	272800
HEBX	5q13.3	GM2 gangliosidosis, Sandhoff disease	268800
HGSNAT	8p11.2-p11.1	MPS IIC, also known as Sanfilippo syndrome C	252930
HPS1	10q24.2	Hermansky–Pudlak disease type 1	203300
HPS3	3q24	Hermansky–Pudlak disease type 3	614072
HPS4	22q12.1	Hermansky–Pudlak disease type 4	614073
HPS5	11p15.1	Hermansky–Pudlak disease type 5	614074
HPS6	10q24.32	Hermansky–Pudlak disease type 6	614075
HYAL1	3p21.31	MPS IX	601492
IDS	Xq28	MPS II, also known as Hunter syndrome	309900
KCTD7	7q11.21	CLN14	611726
Table 1. Cont.

Gene	Cytogenetic Location	Pathology	Phenotype OMIM No.
LAMP2	Xq24	Danon disease	300257
LIPA	10q23.31	Acid lipase deficiency: Wolman disease and cholesterol ester storage disease	278000
LYST	1q42.3	Chédiak–Higashi disease	214500
MAN2B1	19p13.13	α-Mannosidosis	248500
MANBA	4q24	β-Mannosidosis	248510
MCOLN1	19p13.2	Mucolipidosis IV	252650
MFSD8	4q28.2	CLN7: Turkish variant	610951
MYO5A	15q21.2	Schindler disease: type Ib, also known as Elejalde syndrome	214450
NAGA	22q13.2	Schindler disease: type Ib also known as Kanzaki disease, and type IIb, intermediate severity	609241
NAGLU	17q21.2	MPS IIIB, also known as Sanfilippo syndrome B	252920
NEU1	6p21.33	Sialidosis type I, Sialidosis type II	256550
NPC1	18q11.2	Niemann–Pick disease types C1	257220
NPC2	14q24.3	Niemann–Pick disease types C1 and C2	607625
PPT1	1p34.2	CLN1: Haltsia–Santavuori disease and INCL	256730
PSAP	10q22.1	Metachromatic leukodystrophy	249900
RAB27A	15q21.3	Griscelli syndrome 2	607624
SCARB2	4q21.1	Action myoclonus-renal failure syndrome	254900
SGSN	17q25.3	MPS IIIA, also known as Sanfilippo syndrome A	252900
SLC17A5	6q13	Sialic acid storage disease	269920
SMPD1	11p15.4	Niemann–Pick disease types A and B	257200
SLIMF1	3p26.1	Multiple sulfatase deficiency	272200
TPP1	11p15.4	CLN2, also known as Jansky–Bielschowsky disease	204500

Before investigating the clinical utility of the gene panel, we sought to determine the analytical performance of our method in terms of depth of coverage across all targeted genes. Therefore, we used a reference group of DNA samples (n = 26, Table 2), isolated from clinically diagnosed donors from the NIGMS Human Genetic Cell Repository at the Coriell Institute for Medical Research and previously Sanger-sequenced for the LSD-suspected genes.

Table 2. Detected and missed pathogenic variants in reference samples from Coriell repository.

ID Coriell Sample	Genes	Zygosity	Transcript	Coding Amino Acid Change	Variant Effect	dbSNP	ClinVar
NA03392	GNPTG	Hom	NM_032520.5	c.445delG p.Ala149ProfsTer13	frameshiftDeletion	rs1555451874	P
NA03461	HEXA	Het	NM_000520.6	c.1421+1G>C p.? unknown	rs147324677		
NA05093	GNS	Hom	NM_002076.4	c.1063C>T p.Arg355Ter nonsense	rs119461974		P
NA00654	GLB1	Het	NM_000404.4	c.1032T>C p.Thr344= synonymous	rs199927127		CIP
NA00654	MAN2B1	Het	NM_000528.4	c.2248C>T p.Arg750Trp missense	rs80338680		P
				c.1915C>T p.Gln639Ter nonsense	rs121434332		P
ID Coriell Sample	Genes	Zygosity	Transcript	Coding Amino Acid Change	Variant Effect	dbSNP	ClinVar
------------------	-------	----------	------------	--------------------------	----------------	-------	---------
NA02528	AP3B1	Het	NM_003664.5	c.1168-9C>T p.?	unknown	rs367648410	CIP
	MCOLN1	Hom	NM_020533.3	c.406-2A>G p.?	unknown	rs104886461	P
NA01675	MFS2D8	Hom	NM_152778.3	c.590G>A p.Gly197Asp	missense	rs28544073	CIP
	GM2A	Hom	NM_000405.5	c.412T>C p.Cys138Arg	missense	rs137852797	P
NA02455	GLBI	Het	NM_000404.4	c.1445G>A p.Arg482His	missense	rs7255391	P
	CLN6	Het	NM_017882.3	c.821C>T p.Ala274Val	missense	rs202012876	US
NA02013	GNPTAB	Het	NM_024312.5	c.3501_3502delTC p.Leu1168GlnfsTer5 frameshiftDeletion	rs34002892	P	
	GLNTG	Het	NM_032520.5	c.574G>C p.Glu192Gln	missense	rs749314645	US
	GLBI	Het	NM_000404.4	c.602G>A p.Arg201His	missense	rs189115557	P
	HPS1	Het	NM_000195.5	c.29G>T p.Gly10Val	missense	rs799539605	n.a.
	NAGLU	Het	NM_000263.4	c.899G>T p.Arg297Ter	nonsense	rs104894592	P/LP
	NAGLU	Het	NM_000263.4	c.1928G>A p.Arg643His	nonsense	rs104894593	US
NA17881	HPS6	Hom	NM_024747.6	c.1714_1717delCTGC p.Leu572AlafsTer40 frameshiftDeletion	rs281865113	P	
	LYST	Het	NM_000881.4	c.149G>A p.Arg50Gln	missense	rs368095341	n.a.
NA17890	AP3B1	Het	NM_003664.5	c.1975G>T p.Glu659Ter	nonsense	rs121908907	P
	AP3B1	Het	NM_003664.5	c.1525G>T p.Arg509Ter	nonsense	rs121908906	P
NA17721	SLC17A5	Hom	NM_012434.5	c.115G>T p.Arg39Cys	missense	rs80338794	P
NA16081	PPT1	Het	NM_000310.4	c.451G>T p.Arg151Ter	nonsense	rs137852700	P/LP
	DTNBPI	Het	NM_032122.5	c.489_490insT p.Lys164Ter nonsense	-	n.a.	
NA13204	HEXA	Het	NM_000520.6	c.1277_1278insTATGC p.Tyr427HeufsTer5 frameshiftInsertion	rs387906309	P	
	MANBA	Het	NM_005908.4	c.1442A>C p.Tyr481Ser	missense	rs764011854	n.a.
NA18455	NPC2	Het	NM_006432.5	c.58G>T p.Glu20Ter	nonsense	rs80338260	P
ID Coriell Sample	Genes	Zygosity	Transcript	Coding Amino Acid Change	Variant Effect	dbsNP	ClinVar
-------------------	-------	----------	------------	--------------------------	----------------	-------	---------
NA20387	TPP1	Het	NM_000391.4	c.622C>T p.Arg208Ter	nonsense	rs119455955	P
				c.509-1G>C p.?	unknown	rs56144125	P
	GALNS	Het	NM_000512.5	c.858G>A p.Thr286=	synonymous	rs140299014	CIP
NA20019	ASAHI	Het	NM_004315.6	c.1039G>A p.Asp347Asn	missense	rs1354060089	US
				c.460G>T p.Glu154Ter	nonsense	rs1588982399	LP
	GNPTAB	Het	NM_024312.5	c.2708_2710delTTTC p.Leu904del	nonframeshiftDeletion	rs774128798	US
NA10866	IDUA	Het	NM_000203.5	c.785A>G p.His262Arg	missense	rs1031451164	n.a.
	IDS	Hom	NM_000202.8	c.1403G>C p.Arg468Pro	missense	rs113993946	P
NA12928	HPS1	Hom	NM_000195.5	c.1484_1488insCCCCC-AGCAGGGGAGG p.His497GlnfsTer90	frameshiftInsertion	-	n.a.
	HPS6	Het	NM_024747.6	c.2250G>A p.Ser750=	synonymous	rs13961525	CIP
	MYO5A	Het	NM_000259.3	c.3567+4C>T p.?	unknown	rs186277072	n.a.
NA06110	SGSH	Het	NM_000199.5	c.734G>A p.Arg245His	missense	rs104894635	P
				c.629G>A p.Trp210Ter	nonsense	rs886041370	P/LP
NA20379	PPT1	Het	NM_000310.4	c.364A>T p.Arg122Trp	missense	rs137852695	P
				c.125G>A p.Gly42Glu	missense	rs386833631	LP
	GAA	Het	NM_001079804.3	c.525delT p.Glu176ArgfsTer45	frameshiftDeletion	rs386834235	P
	GUSB	Het	NM_000181.4	c.454G>A p.Asp152Asn	missense	rs149606212	US
NA03124	NPC1	Het	NM_000271.5	c.3182T>C p.Ile1061Thr	missense	rs80358259	P
				c.1947+5G>C p.?	unknown	rs770321568	CIP
	ARSA	Het	NM_001085425.3	c.698_699insC p.Gln234SerfsTer41	frameshiftInsertion	-	n.a.
NA03111	LIPA	Het	NM_001127605.3	c.967_968delAG p.Ser323LeufsTer44	frameshiftDeletion	rs917089035	n.a.
				c.894G>A p.Gln298=	synonymous	rs116928232	P/LP
	GALNS	Het	NM_000512.5	c.497G>T p.Phe167Val	missense	rs148565559	US
NA02057	AGA	Het	NM_000027.4	c.488G>C p.Cys163Ser	missense	rs121964904	P

Table 2. Cont.
Table 2. Cont.

ID Coriell Sample	Genes	Zygosity	Transcript	Coding Amino Acid Change	Variant Effect	dbSNP	ClinVar
NA00879	BLOC1S6	Het	NM_012388.4	c.225-2, 225-1insT p.?	unknown	-	n.a.
SGS6	SGS6	Het	NM_000199.5	c.1339G>A p.Glu447Lys	missense	rs104894639	P/LP
	SGS6						
	CTSA	Het	NM_000308.4	c.263_264insG p.Cys86TrpfsTer52	frameshiftInsertion	-	n.a.
NA01256	IDUA	Het	NM_000203.5	c.590-7G>A p.?	unknown	rs762411583	P

Second Variant excluded because of very low coverage c.1293TGG>TAG (Trp402Ter (W402X))

P = pathogenic; LP = likely pathogenic; US = uncertain significance; CIP = conflicting interpretation of pathogenicity; n.a. = not available. True-positive variants are reported in bold, and new observed findings are reported in non-bold text.

From the run metrics results, all samples were uniformly covered at depths that exceed the minimum coverage required (30x) for the accurate calling of variants. Coverage analysis shows that 1225/1241 of the amplicons (98.7%) had a sufficient amplification efficiency (mean assigned reads per amplicon Log10 ranging from 1.5 to 3.8), while 16 amplicons were suboptimal (Figure 1 and Supplementary Table S2).

Filtering the pipeline on the TVC (Torrent Variant Caller, Thermo Fisher Scientific, Waltham, MA, USA) was based on a stepwise-adjusted strategy to highlight relevant variants (i.e., coverage min 30×, homopolymer length ≤3, p-value < 0.001, ClinVar ≠ benign or likely benign, MAF < 0.001 or none, frequency 30–60% for heterozygous variants and >70% for homozygous variants, include intronic variants if the distance from exon is <10 bp, SIFT score < 0.05 or none, PolyPhen score > 0.85 or none, and variants effect ≠ synonymous unless they are pathogenic/likely pathogenic/uncertain significance or with conflicting interpretation of pathogenicity). A comparison with the previously known variants reported in Coriell biobank was performed by post-filtering analysis. True-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) variant calls were defined by considering the available data from a single causative gene in the Coriell repository (see Section 2).

The overall accuracy of the panel was 98.4%, analytical sensitivity was 95.2%, while specificity was 97.6%. There were 40 correctly called true-positive variants, 83 true-negative reference calls, and 2 false-negative (missed) calls when comparing our results with the
expected variants (Table 2). The MCC was 0.964 (MCC = +1 describes a perfect prediction, =0 means unable to return any valid information, and =−1 describes complete inconsistency between prediction and observation).

3.2. Control Samples Analysis

The majority of detected pathogenic mutations and polymorphisms are consistent with the data reported in the Coriell biobank. Interestingly, some additional observations in single causative genes emerged that are worthy to be mentioned in order to update data in the repository, as we describe below.

The NA06110 sample, acquired from Coriell biobank, derives from a female donor subject described as a compound heterozygote, with one allele carrying a G>A transition in the SGS\textit{H} gene causing the Arg245His (R245H) aminoacidic variation and “no changes detected in the other allele”. The LSDs_panel was able to successfully detect the R245H change, identifying a second heterozygous mutation (i.e., the c.629G>A, causing the nonsense aminoacidic change—p.Trp210Ter) reported as pathogenic/likely pathogenic in ClinVar (Table 2). Thus, in addition to confirming the previously detected variant, our analysis indicated the presence of another, extending the genotypic portrait of the sample.

An additional observation is with regard to the NA02057 DNA sample, which carries a pathogenic homozygous G-to-C transversion in the AGA gene, resulting in a substitution of serine for cysteine at codon 163 (Cys163Ser (C163S)). The Coriell biobank reports also a heterozygous G-to-A transition (Arg161Gln (R161Q)) in the same gene, which was detected by the LSDs_panel, but classified as benign in ClinVar.

The two false negative variants were detected in the NA00879 and NA01256 samples (Table 2). The first (c.746G>A (Arg245His [R245H])) was completely missed by sequencing, whereas the second (c.1293TGG>TAG (Trp402Ter [W402X])) was detected by the panel but excluded due to very low coverage (below the threshold of 30×). We cannot rule out that missed genetic modifications are the result of high culture passages.

The LSDs_panel detected additional non-pathogenic variants in the analyzed samples (Table 2, in non-bold text) that may reduce enzymatic activity and may contribute to phenotypic manifestations. Given the variability of symptom manifestations as well as the phenotypic overlapping between genetically different disorders, the presence of additional secondary variants or genetic modifiers involved in lysosomal regulation and metabolism should be considered and may help to refine genotype–phenotype correlations.

4. Discussion

As outlined earlier, there are many factors hampering the diagnosis of LSDs, including the phenotypic and penetrance variability, the common signs and symptoms between certain disease groups, the genetic heterogeneity, and the difficulties of biochemical diagnostics. Developing a powerful diagnostic tool could mitigate the delayed diagnostic process for affected families, leading to better outcomes for current therapies and providing the basis for more appropriate genetic counseling. Many recent reports have emphasized the high clinical utility of NGS technologies and targeted gene panels in the diagnosis of suspected LSDs and their potential to reduce diagnostic delay [11–17].

Herein, we proposed a tNGS panel (LSDs_panel) based on AmpliSeq technologies to simultaneously screen the coding regions of 65 genes responsible for a heterogeneous group of LSDs and aimed at evaluating its clinical utility in suspected patients. By using a set (n = 26) of standard samples from Coriell Institute biobank (https://www.coriell.org/, accessed on 26 October 2021), we assessed the overall accuracy of the panel (98.4%), the analytical sensitivity (95.2%), and the specificity (97.6%) of the NGS workflow. Known pathogenic mutations in the reference samples were identified with the correct homozygous/heterozygous state.

Several published papers have shown the possibility of carrying out successful NGS sequencing studies from DNA extracted from Guthrie card (DBS) fingerprints, thus taking advantage of the possibility of using the same non-invasive sampling from newborns for
both biochemical and sequencing tests [18,19]. Preliminary experiments in our lab starting from DBS-isolated DNA and sequenced with the LSD panel showed adequate amplicon coverage, revealing the feasibility of the NGS approach when starting from dried samples.

A second-tier application of the comprehensive LSDs panel may be in the field of modifier genes, complex disorders, and polygenic inheritance [15,20,21]. It is well known that patients who share the same mutations may have a different phenotypic spectrum. Thus, the effect of the primary molecular defects may be modified by the presence of additional cumulative mutations located in other genes that encode proteins involved in lysosomal pathways (Table 2). The possibility of detecting variants with uncertain significance and/or secondary findings should be, however, carefully considered in reporting the results, clearing the (probable) non-causality role of the mutation. The decision to report such mutations should always be in accordance with informed consent signed by patients.

A strong limitation of the panel is the poor ability to detect complex rearrangements and recombined genomic regions, which may all require other techniques for elucidation. CNVs, including both deletions and amplifications, may be visualized starting from NGS data by manually checking the coverage of the suspected gene: the degree of coverage of the examined region with respect to the same region in other samples of the same run could suggest the presence of a CNV in heterozygous or homozygous state. However, in both cases, different molecular techniques should be used to confirm the suspected alterations as well as to exclude potential allelic dropout events.

Taken together, we demonstrated here that an NGS-based approach for the detection of LSDs may be a valuable adjunct test along with the well-established biochemical assays. Indeed, while enzyme analysis is still the gold standard for many LSDs (characterized by enzymatic deficiency), it may not accurately identify all obligate carriers and cannot be applied to disorders caused by alterations in transport or transmembrane (non-catalytic) proteins. That a broader spectrum of diseases can be monitored in one single test significantly shortens the analysis time for complex phenotypes or when a biochemical test cannot be offered. Finally, genotype–phenotype correlations may be carefully analyzed since they may be discordant, and clinicians should be cautious when counseling families regarding prognosis.

5. Conclusions

NGS technology is currently offering the opportunity to improve the LSD diagnostic workflow, given its low cost, semi-automated pipeline, short processing time, and ability to simultaneously detect multiple nucleotide variants on several genes. A broader adoption of targeted NGS-based tests, such as the assessment described here, should be taken into consideration to optimize clinical management of LSDs characterized by high levels of clinical and biochemical heterogeneity.

The use of targeted NGS may represent a real and valuable strategy for providing timely and correct diagnoses, for detecting carrierrship status, and for ensuring genetic counseling for family planning. Moreover, molecular profiling and genomic sequencing information may prompt the design of novel therapeutic drugs targeting specific mutations, thus opening the possibility for personalized medicine. Efforts in this sense may prompt patient-oriented outcomes, may improve the quality of life of patients and their families, and may reduce both direct and indirect costs (e.g., caregivers’ services) to national health services and families.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/genes12111750/s1, Table S1: Design (bed file) of the LSD panel; Table S2: Mean reads per amplicon.

Author Contributions: Conceptualization, V.L.C. and S.C.; data curation, V.L.C.; formal analysis, V.L.C.; funding acquisition, S.C.; investigation, V.L.C.; methodology, V.L.C.; resources, S.C.; supervision, S.C.; writing—original draft, V.L.C.; writing—review and editing, V.L.C. and S.C. All authors have read and agreed to the published version of the manuscript.
Funding: This work was supported by the joint project between IRIB-CNR and SANOFI “Early diagnosis of some lysosomal diseases: analysis of the clinical utility and diagnostic validity of genomic techniques for their molecular diagnosis. Assessments of the implications of the inclusion of lysosomal diseases in the context of a national neonatal screening program” (project n. 2018/9848).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Details of the reference samples selected for the present validation can be found at https://www.coriell.org/ (accessed on 26 October 2021).

Acknowledgments: The authors gratefully acknowledge Cristina Cali, Alícia Corsino, Maria Patrizia D’Angelo, and Francesco Marino for administrative and technical support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study, in writing the manuscript, or in the decision to publish the results.

References
1. Platt, F.M. Emptying the stores: Lysosomal diseases and therapeutic strategies. Nat. Rev. Drug Discov. 2018, 17, 133–150. [CrossRef] [PubMed]
2. Platt, F.M.; d’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal storage diseases. Nat. Rev. Dis. Primers 2018, 4, 27. [CrossRef]
3. Ferreira, C.R.; Gahl, W.A. Lysosomal storage diseases. Transl. Sci. Rare Dis. 2017, 2, 1–71. [CrossRef]
4. La Cognata, V.; Guarnaccia, M.; Polizzi, A.; Ruggieri, M.; Cavallaro, S. Highlights on Genomics Applications for Lysosomal Storage Diseases. Cells 2020, 9, 1902. [CrossRef]
5. Kingma, S.D.; Bodamer, O.A.; Wijburg, F.A. Epidemiology and diagnosis of lysosomal storage disorders; challenges of screening. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 145–157. [CrossRef]
6. Pinto, E.V.F.; Rojas Malaga, D.; Kubaski, F.; Fischinger Moura de Souza, C.; de Oliveira Poswar, F.; Baldo, G.; Giugliani, R. Precision Medicine for Lysosomal Disorders. Biomolecules 2020, 10, 1110. [CrossRef] [PubMed]
7. Mokhtariye, A.; Hagh-Nazari, L.; Varasteh, A.R.; Keyfi, F. Diagnostic methods for Lysosomal Storage Disease. Rep. Biochem. Mol. Biol. 2019, 7, 119–128.
8. Waggoner, D.J.; Tan, C.A. Expanding newborn screening for lysosomal disorders: Opportunities and challenges. Dev. Disabil. Res. Rev. 2011, 17, 9–14. [CrossRef]
9. Komlosi, K.; Sólyom, A.; Beck, M. The Role of Next-Generation Sequencing in the Diagnosis of Lysosomal Storage Disorders. J. Inborn Errors Metab. Screen. 2016, 4, 4. [CrossRef]
10. Encarnação, M.; Coutinho, M.F.; Silva, L.; Ribeiro, D.; Ouesleti, S.; Campos, T.; Santos, H.; Martins, E.; Cardoso, M.T.; Vilarinho, L.; et al. Assessing Lysosomal Disorders in the NGS Era: Identification of Novel Rare Variants. Int. J. Mol. Sci. 2020, 21, 6355. [CrossRef]
11. Fernandez-Marmiesse, A.; Morey, M.; Pineda, M.; Eiris, J.; Couce, M.L.; Castro-Gago, M.; Fraga, J.M.; Lacerda, L.; Gouveia, S.; Perez-Poyato, M.S.; et al. Assessment of a targeted resequencing assay as a support tool in the diagnosis of lysosomal storage disorders. Orphanet J. Rare Dis. 2014, 9, 59. [CrossRef]
12. Zanetti, A.; D’Avanzo, F.; Bertoldi, L.; Zampieri, G.; Feltrin, E.; De Pascale, F.; Rampazzo, A.; Forzan, M.; Valle, G.; Tominan, R. Setup and Validation of a Targeted Next-Generation Sequencing Approach for the Diagnosis of Lysosomal Storage Disorders. J. Mol. Diagn. 2020, 22, 488–502. [CrossRef] [PubMed]
13. Gheldof, A.; Seneca, S.; Stouffs, K.; Lissens, W.; Jansen, A.; Laeremans, H.; Verloo, P.; Schoonjans, A.S.; Meuwissen, M.; Barca, D.; et al. Clinical implementation of gene panel testing for lysosomal storage diseases. Mol. Genet. Genom. Med. 2019, 7, e00527. [CrossRef]
14. Levesque, S.; Auray-Blais, C.; Gravel, E.; Boutin, M.; Dempsey-Nunez, L.; Jacques, P.E.; Chenier, S.; Larue, S.; Rioux, M.F.; Al-Hertani, W.; et al. Diagnosis of late-onset Pompe disease and other muscle disorders by next-generation sequencing. Orphanet J. Rare Dis. 2016, 11, 8. [CrossRef]
15. Di Fruscio, G.; Schulz, A.; De Cegli, R.; Savarese, M.; Mutarelli, M.; Parenti, G.; Banfi, S.; Braulke, T.; Nigro, V.; Ballabio, A. Lysoplex: An efficient toolkit to detect DNA sequence variations in the autophagy-lysosomal pathway. Autophagy 2015, 11, 928–938. [CrossRef] [PubMed]
16. Malaga, D.R.; Brusius-Facchin, A.C.; Siebert, M.; Pasqualim, G.; Saraiva-Pereira, M.L.; Souza, C.F.M.; Schwartz, I.V.D.; Matte, U.; Giugliani, R. Sensitivity, advantages, limitations, and clinical utility of targeted next-generation sequencing panels for the diagnosis of selected lysosomal storage disorders. Genet. Mol. Biol. 2019, 42, 197–206. [CrossRef] [PubMed]
17. La Cognata, V.; Guarnaccia, M.; Morello, G.; Ruggieri, M.; Polizzi, A.; Cavallaro, S. Design and Validation of a Custom NGS Panel Targeting a Set of Lysosomal Storage Diseases Candidate for NBS Applications. Int. J. Mol. Sci. 2021, 22, 64. [CrossRef] [PubMed]
18. Hendrix, M.M.; Cuthbert, C.D.; Cordovado, S.K. Assessing the Performance of Dried-Blood-Spot DNA Extraction Methods in Next Generation Sequencing. Int. J. Neonatal Screen. 2020, 6, 36. [CrossRef]
19. Boemer, F.; Fasquelle, C.; d’Otreppe, S.; Josse, C.; Dideberg, V.; Segers, K.; Guissard, V.; Capraro, V.; Debray, F.G.; Bours, V. A next-generation newborn screening pilot study: NGS on dried blood spots detects causal mutations in patients with inherited metabolic diseases. Sci. Rep. 2017, 7, 17641. [CrossRef]

20. Davidson, B.A.; Hassan, S.; Garcia, E.J.; Tayebi, N.; Sidransky, E. Exploring genetic modifiers of Gaucher disease: The next horizon. Hum. Mutat. 2018, 39, 1739–1751. [CrossRef]

21. Parenti, G.; Medina, D.L.; Ballabio, A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol. Med. 2021, 13, e12836. [CrossRef] [PubMed]