Successional changes in the chicken cecal microbiome during 42 days of growth are independent of organic acid feed additives

Brian B Oakley1,2*, R Jeff Buhr1, Casey W Ritz3, Brian H Kiepper3, Mark E Berrang4, Bruce S Seal1 and Nelson A Cox1

Abstract

Background: Poultry remains a major source of foodborne bacterial infections. A variety of additives with presumed anti-microbial and/or growth-promoting effects are commonly added to poultry feed during commercial grow-out, yet the effects of these additives on the gastrointestinal microbial community (the GI microbiome) as the bird matures remain largely unknown. Here we compared temporal changes in the cecal microbiome to the effects of formic acid, propionic acid, and medium-chain fatty acids (MCFA) added to feed and/or drinking water.

Results: Cecal bacterial communities at day of hatch (n = 5 birds), 7d (n = 32), 21d (n = 27), and 42d (n = 36) post-hatch were surveyed using direct 454 sequencing of 16S rRNA gene amplicons from each bird in combination with cultivation-based recovery of a Salmonella Typhimurium marker strain and quantitative-PCR targeting Clostridium perfringens. Treatment effects on specific pathogens were generally non-significant. S. Typhimurium introduced by oral gavage at day of hatch was recovered by cultivation from nearly all birds sampled across treatments at 7d and 21d, but by 42d, S. Typhimurium was only recovered from ca. 25% of birds, regardless of treatment. Sequencing data also revealed non-significant treatment effects on genera containing known pathogens and on the cecal microbiome as a whole. In contrast, temporal changes in the cecal microbiome were dramatic, highly significant, and consistent across treatments. At 7d, the cecal community was dominated by three genera (Flavonifractor, Pseudoflavonifractor, and a Lachnospiracea sequence type) that accounted for more than half of sequences. By 21d post-hatch, a single genus (Faecalibacterium) accounted for 23-55% of sequences, and the number of Clostridium 16S rRNA gene copies detected by quantitative-PCR reached a maximum.

Conclusions: Over the 42 d experiment, the cecal bacterial community changed significantly as measured by a variety of ecological metrics and increases in the complexity of co-occurrence networks. Management of poultry to improve animal health, nutrition, or food safety may need to consider the interactive effects of any treatments with the dramatic temporal shifts in the taxonomic composition of the cecal microbiome as described here.

Background

Foodborne pathogens reportedly accounted for 47 million episodes of illness and over 100,000 hospitalizations at an estimated cost of $77 billion in the United States in 2011 [1,2]. Foodborne illnesses are commonly associated with consumption of mishandled or improperly cooked poultry despite several decades of basic and applied food safety research. Interventions designed to reduce the incidence of poultry-associated foodborne illness are generally targeted either to the later stages of poultry processing such as chlorinated chill tanks commonly used in the U.S [3,4], or on-farm interventions which seek to reduce pathogen loads at various stages of the production process prior to processing [5]. Feed additives that can modulate the gastrointestinal microbial community (the GI microbiome) have been the subject of intense and increasing interest following the 2006 European Union ban on prophylactic antibiotics added to feed as growth promoters [6] and calls for similar regulation in the U.S. [7-9].

To evaluate the efficacy and utility of alternative antimicrobial feed additives, two main parameters need to
be evaluated: 1) the effect of the additive on the pathogen(s) of interest, and 2) the effects of the additive on the GI microbiome of the host. The importance of GI microbial communities for the health and nutrition of the host organism is now well established [10-14], and removing antibiotics from feed (as proposed by recent FDA guidance for industry) has previously been shown to induce various changes within the chicken GI microbiome [15-18]. Developing acceptable alternatives to antibiotics will thus require assessing their effect on specific pathogens and the GI microbiome.

To date, a number of studies have examined the effects of various alternative antimicrobial feed additives on GI microbial communities of poultry [15,19-25], but only recently have a few studies [26-29] utilized the power of modern high-throughput sequencing (HTS) to provide a comprehensive taxonomic census and fully assess the effects of treatments on the GI microbiome. Methods commonly used in the past have some important shortcomings, including extreme taxonomic bias (cultivation-based approaches), low taxonomic resolution (DGGE, T-RFLP), or inadequate depth of sampling (Sanger-sequenced clone libraries). Another important aspect of any evaluation of a feed additive is determining how any treatment effects interact with natural successional changes in the GI microbiome. Dramatic changes in community composition and function have been shown to occur naturally as birds mature [18,30-33], although most of these previous studies share the same methodological limitations discussed above and thus are in need of revisiting with modern methods.

In this work we combine 454 pyrosequencing of broad-range 16S rRNA gene amplicons, quantitative-PCR, and cultivation-based recovery of a pathogenic marker strain to document the successional development and effects of feed additives on the cecal microbiome and specific pathogens. By sequencing a population of amplicons to exhaustion, HTS performs a comprehensive census free of cultivation bias; these taxonomic data are necessary to improve understanding of the community structure of the poultry cecal microbiome and how it changes as birds mature to market age. The work presented here had two main objectives: 1) determine the relative effects of organic acid feed additives and successional changes in the poultry cecal microbiome at the community level using HTS and on the pathogens Salmonella and Clostridium using cultivation and qPCR respectively, and 2) provide a comprehensive data set of the taxonomic composition of the cecal microbiome in broilers as they grow to market age.

Results and discussion

Effects of treatments versus time on cecal microbiome

Temporal changes in the cecal microbiome were dramatic, highly significant, and consistent across treatments. Clustering of the cecal microbiome from each bird at the OTU level using CCA as described in the methods showed clear groupings by time that were much stronger than any treatment effect (Figure 1). To explicitly test the relative effects of time versus experimental treatments on the cecal microbiome, permutational MANOVA was used as described in the methods. The effect of time was highly significant (p < 0.0001) whereas experimental treatment effects were non-significant (Table 1). Clustering and hypothesis testing using taxonomic classifications of sequences to the genus level gave with the RDP classifier or Silva database equivalent results.

To document the composition of the cecal microbiota and examine specific changes through time and by treatment, sequences were classified taxonomically. At 7d, the cecal community was dominated by three genera (Flavonifractor, Pseudoflavonifractor, and Lachnospiraceae incertae sedis); the latter sequences mostly classified as Blautia or Ruminococcus by search against the Silva database) that accounted for more than half of sequences (Figure 2). These three groups all belong to the Clostridiales with Flavonifractor and Pseudoflavonifractor quite closely related phylogenetically. Blautia has recently been identified as a ubiquitous (though low abundance) taxon present in humans and various animals [34], and members of the Clostridiales are well known for their conversions of complex polysaccharides to short chain fatty acids such as butyrate that have significant positive growth effects [35,36].

By 21d post-hatch, a single genus (Faecalibacterium) accounted for 23-55% of sequences (Figure 2). Faecalibacterium prausnitzii has been shown to have anti-inflammatory properties and an inverse correlation with severity and recurrence of colitis in humans and murine models [37]. Whether or not members of the genus Faecalibacterium have similar roles in chickens remains an interesting question. By 42d, Faecalibacterium sequences were recovered at approximately equal proportions to Roseburia, a saccharolytic, butyrate-producing bacterium [38]. Also relatively abundant at 42 d were sequences classified as Lachnospiraceae incertae sedis, and Oscillibacter, previously encountered in chickens [39] and with some members known to produce short chain fatty acids [40,41]. These data are consistent with previous results identifying various members of the poultry GI microbiome [15,19-25,42], but by exhaustive sequencing with modern methods from a fairly large number of birds, also provide important new information regarding the generic composition of the chicken cecal microbial community and how it changes through time. Proper understanding and management of temporal changes in the GI microbiome will be important for maintaining bird health and improving productivity.
Effects of treatments versus time on specific pathogens
Treatment effects on specific pathogens were generally non-significant. The marker strain of *S. typhimurium* was recovered from nearly all birds sampled at 7d and 21d, regardless of treatment, and by 42d, few differences were observed across the treatments with the marker strain recovered from ca. ¼ of treated and untreated birds (Table 2). Importantly, from 21 d to 42 d the proportion of birds from which *Salmonella* was recovered across all treatments decreased from a mean of 94% to 26% (Table 2).

Sequencing data also demonstrated small treatment effects on taxonomic groups containing known pathogens (Figure 3). Consistent with the cultivation data, *Salmonella* sequences decreased in relative abundance with time and were almost entirely absent by 21d (Figure 3A). Sequences classified as *Clostridium* increased to a maximum of 0.5% at 21d, subsequently decreasing in relative abundance at 42d. (Figure 3A). In general, taxa considered as putative pathogens (*Campylobacter, Clostridium, Escherichia/ Shigella, Klebsiella*, and *Salmonella*) were a minor component of the community (<1.5% total relative abundance). Quantitative-PCR for the *Clostridium* clade containing the *C. perfringens* subgroup was qualitatively consistent with the sequencing data and showed a significant increase in the abundance of this group from day of hatch to 21d post-hatch, followed by a significant decline by 42d to the same levels at 7d (Figure 3B).

Although the main purpose of the work presented here was to monitor the cecal microbial community as a

![Figure 1 Clustering of the cecal microbiome by treatment and time.](image)

Figure 1 Clustering of the cecal microbiome by treatment and time. Clustering was performed by canonical correspondence analysis as described in the text. Each point represents a single bird with sequences clustered independent of taxonomic assignments according to operational taxonomic units (OTUs) defined at a 97% similarity cutoff as described in the text. Data from day-of-hatch birds group off of the axes and are excluded for clarity. Clustering based on classification of sequences to the genus or species level gave equivalent results. Treatment designations are Ctl, control; FO, feed-only; WO, water-only; and FW, feed and water as described in the text.

| Table 1 Results of permutational MANOVA conducted with the adonis function in R |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
Degrees of freedom	Sum of squares	Mean squares	F. model	R²	Pr(>F)	
Time	1	3.457	3.457	8.986	0.0912	0.0001
Treatment	3	1.137	0.379	0.985	0.0300	0.4935
Time:Treatment	3	1.019	0.340	0.883	0.0269	0.8455
Residuals	84	32.310	0.385	0.8520		
Total	91	37.922	0.8520			

Comparisons were made using OTU-level classification of the sequencing reads for each bird and 10,000 permutations. Only the effect of time on community composition was significant (p < 0.0001). Taxonomic classifications of sequences against the RDP or Silva databases gave equivalent results.
whole, comparing the sequencing and qPCR data for Clostridium helps to validate the use of sequencing, even for relatively low abundance taxa. Assumptions of a mean genome size of 3.6 Mbp [43] and bacterial cell densities in the chicken cecum of 10^{10}-10^{11} cells g$^{-1}$ [44], gives approximately 4×10^4 ng bacterial DNA g$^{-1}$ of cecal contents. Further, applying an extraction efficiency assumption of 14% [45] to the qPCR data at 21d post-hatch where ca. 100 C. perfringens group rRNA gene copies were observed ng$^{-1}$ of DNA, gives 2.8×10^6 cells g$^{-1}$ of cecal contents, or 0.028% of a total bacterial community of 10^{10} cells. From the sequencing data, the proportion of Clostridium sequences at 21d post-hatch was approximately an order of magnitude greater (0.216%), which is roughly in line particularly as the sequencing data were classified at the genus level.

Clostridia are abundant numerically and proportionally in the chicken GI microbiome, particularly in the ceca [16,46]. Clostridium islandicum and other members of the Clostridium cluster XIV are associated with cellulytic activity [47] and feed conversion [48], while other Clostridia such as C. perfringens are veterinary pathogens causing enteric diseases in both domestic and wild animals, gas gangrene (clostridial myonecrosis), necrotic enteritis, and gastrointestinal infections in humans [49-51]. As the mechanisms for colonization of the avian intestinal tract and the factors involved in toxin production remain largely unknown, few tools and strategies are currently available for prevention and control of C. perfringens in poultry. Vaccination against this pathogen and the use of probiotic or prebiotic products has been suggested, but are not available for practical use in the field [51]. Although no disease was overtly observed during our experiment, low levels of C. perfringens were detected in the ceca of treated and untreated chickens.

Through the course of the experiment, the cecal community became more taxonomically rich and diverse. The number of genera more than doubled to >200 at 42 d and diversity increased similarly (Figure 4). Network analysis performed on the cecal microbiome at each time point also showed an increase in complexity with the number of nodes (taxa with significant co-occurrence patterns with other taxa), increasing through time (92, 122, and 147 nodes at 7 d, 21 d and 42 d respectively; Figure 4). Previously, increases in taxonomic richness as birds mature has been inferred from the number of bands on DGGE gels [30,32], TRFLP fingerprints, and sequencing [33]. Metagenomic approaches have provided important insights into the poultry cecal microbiome [52] and the effects of antimicrobials [18], but 16S rRNA-based taxonomic profiling provides the most relevant information for food-safety regulations and the development of probiotic or other alternatives to antibiotics, such as phage-lytic enzymes.

Conclusions

Although organic acids as feed additives have been proposed as a management strategy in various formulations to combat pathogens in poultry [53-58], we found little effect of the treatments tested here on specific pathogens or

Table 2 Proportion of birds with positive culture tests for marker strain of Salmonella Typhimurium recovered from cecal samples

Treatment	7d	21d	42d
Ctl	8/8	3/4	7/20
FO	8/8	4/4	5/20
WO	8/8	4/4	4/20
FW	8/8	4/4	5/20

Total 100% 94% 26%

Treatment designations are Ctl, control; FO, feed-only; WO, water-only; and FW, feed and water. Cultivation media and methods are described in detail in the text.
We did observe dramatic changes in the cecal microbiome through time, consistent with earlier work [33], and for the first time, detail these changes taxonomically using high-throughput sequencing.

During the 42 d of the experiment, the cecal microbiome became significantly more taxon-rich and diverse according to a variety of ecological metrics and increases in network complexity. The temporal dynamics of the poultry GI microbiome need to be considered in the proper management of poultry for productivity, animal health, and food safety.

Methods

Experimental procedures

A total of 480 male chicks (Ross × Cobb broilers) in a feeding trial were given one of four experimental feeding treatments beginning at day of hatch: 1) a solution of formic acid (CH₂O₂; 340 ppm final concentration), propionic acid (C₃H₆O₂; 250 ppm), ammonium formate (NH₄HCO₂; 200 ppm medium-chain fatty acids (MCFA; 100 ppm), an emulsifier (50 ppm), and propylene glycol (1 ppm) added to the drinking water (n = 120), 2) propionic acid (480 ppm) and MCFA (1520 ppm) added to the feed (n = 120), 3) a combination of treated feed and water at the same concentrations (n = 120), or 4) control birds receiving a standard nonmedicated corn-soybean diet (n = 120). These treatments are hereafter referred to...
according to the treated component as water-only (WO), feed-only (FO), feed and water (FW), or control (CTL). Day of hatch chicks were placed on clean pine shavings in ca. 1 m x 3 m floor pens with feed and water (via nipple drinker lines) provided ad libitum. Each of the four treatments included four replicate pens for a total of 16 pens, each containing 30 birds. Within each pen, two birds were orally inoculated as ‘seeder birds’ with 0.1 mL of a 10^7 cells ml^{-1} suspension of a nalidixic acid resistant strain of Salmonella Typhimurium. At each of four time points (0, 7, 21, and 42 d post-hatch), ceca were collected for cultivation and DNA extractions each of four time points (0, 7, 21, and 42 d post-hatch), ceca were collected for cultivation and DNA extractions as previously described [59]. Sample sizes and details are shown in Table 3. Ethical approval of animal work was granted under University of Georgia animal use permit A2012 02-002-Y2-A0.

Quantitative-PCR, 454 sequencing and data analysis

Quantitative-PCR assays for the C. perfringens group were performed as previously described [46] with forward (5’-ATGCAAGTCGAGCGAAGK-3’) and reverse (5’-TATGCGGTATTAAACTTYCCTTTT-3’) primers from [60] and SYBR Green chemistry (ABI, Carlsbad, CA).

PCR and 454 pyrosequencing of the V1-V3 regions of 16S rRNA genes were performed using tagged amplicon methods as previously described [46,61]. Briefly, sequences were de-multiplexed and preprocessed with the Galaxy toolkit [62] and our own custom tools [63]; additional quality controls per recent recommendations and standard protocols [64] were completed using Perl and Bioperl scripts to trim pyrosequencing tag sequences, screen for presence of the forward PCR primer sequence, and remove sequences with any ambiguous base calls. Based on expected amplicon sizes and frequency distributions of sequence lengths in v108 of the Silva reference database, sequences were further limited to a range of 325–425 bp. Putative chimeric sequences were identified with usearch [65] and ChimeraSlayer in mothur [66]. After these screening steps, the following number of sequences per treatment group were used for analysis: CTL 7d 31280; FO 7d 31174, FW 7d 33990, WO 7d 33844, CTL 21d 18902, FO 21d 25491, FW 21d 23114, WO 21d 32309, CTL 42d 38770, FO 42d 32167, FW 42d 25578, WO 42d 34168. Rarefaction curves are shown in Additional file 1: Figure S1.

Taxonomic classification of sequences was performed with the RDP naïve Bayesian classifier [67] v2.6 and the EMBL taxonomy from v115 of the Silva project curated seed database using usearch with the global alignment option [65]. To assess phylotype richness and diversity independent of taxonomic classifications, sequences which passed all the screens described above were grouped into similarity clusters (operational taxonomic units; OTUs), using similarity cutoffs of 90%, 95%, and 97% with uclust [65]. The output from usearch provided the inputs for our own customized analysis pipeline to parse the clustering results and produce graphical and statistical summaries of the data for the desired sampling units using perl and R [68] as previously described [61,63]. Clustering of communities was performed using the CCA function of the vegan package [69] in R based on OTU and taxonomic classifications. The relative effects of time (number of days post-hatch) versus experimental treatment (and their interactive effects) on cecal microbial communities was determined by a permutational multivariate analysis of variance (MANOVA) using the adonis function of the vegan package in R. Briefly, OTU or taxonomic classifications of sequences from each bird are used to partition sums of squared deviations from centroids in a distance matrix to determine how variation is explained by experimental treatments (feed additives and/or sampling time in our case), or uncontrolled covariates [70].

Network analysis was conducted as previously described [46] using normalized OTU tables at various levels of clustering and removing OTUs or taxa represented by fewer than five sequences or <0.5% total relative abundance across all samples. Spearman correlation coefficients of 0.7 and p-values of 0.001 were required to establish valid co-occurrence among OTUs. Network analysis was performed in R with the igraph package and visualized with the program Gephi.

Sequence data have been deposited in GenBank with accession numbers SAMN03161778-SAMN03161871 associated with BioProject ID 263495.

Table 3 Number of birds sampled for quantitative-PCR and 454 pyrosequencing by treatment and time

Treatment	0d	7d	21d	42d	Subtotal					
	qPCR	454	Subtotal							
Ctl	6	6	8	8	7	4	10	10	31	22
WO	n/a	n/a	8	8	8	8	11	9	27	26
FO	n/a	n/a	8	8	8	8	11	9	27	25
FW	n/a	n/a	8	8	8	7	9	7	25	22
Subtotal	6	6	32	32	31	27	41	36	110	95

Treatment designations are Ctl, control; FO, feed-only; WO, water-only; and FW, feed and water.
Additional file

Additional file 1: Figure S1. Rarefaction curves for genus (A), species (B) and 3 percent OTU (operational taxonomic unit) classifications (C). Note differences in Y axis scaling.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BO wrote the manuscript, analysed data, and collected samples. JB designed the study and contributed to the manuscript, CR and BK helped design the study and organized the feeding trial, MB contributed to the manuscript and feeding trial, BS performed quantitative-PCR and contributed to the manuscript, NC helped design the study, organized the feeding trial, and contributed to the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Funding was provided by the USDA Agricultural Research Service CRIS project 6612-32000-068 and Project #F053 funded by the U.S. Poultry & Egg Association. We thank Manju Amin, Dianna Bourassa, Johnna Garrish, and Jeremy Jackson, and LuAnne Rigby for excellent technical assistance. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture (USDA). USDA is an equal opportunity provider and employer. The views expressed in this chapter are those of the authors and do not necessarily represent the views or policies of the USDA.

Author details

1Poultry Microbiological Safety Research Unit, USDA Agricultural Research Service, 950 College Station Road, Athens, GA 30605, USA. 2Western University of Health Sciences, College of Veterinary Medicine, 109 E. 2nd St, Pomona, CA 91766, USA. 3Poultry Science Department, University of Georgia, Athens, GA 30602, USA. 4Bacterial Epidemiology and Antibiotic Resistance Research Unit, USDA Agricultural Research Service, Richard B. Russell Agricultural Research Center, 950 College Station Road, Athens, GA 30605, USA.

Received: 22 April 2014 Accepted: 17 November 2014

References

1. Scallen T, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM: Foodborne illness acquired in the United States-unspecified agents. Emerg Infect Dis 2011, 17:16–22.
2. Scharff RL: Economic burden from health losses due to foodborne illness in the United States. J Food Prot 2012, 75:123–131.
3. James WO, Brewer RL, Prucha JC, Williams WO Jr, Parham DR: Effects of chlorination of chill water on the bacteriologic profile of raw chicken carcasses and giblets. J Am Vet Med Assoc 1992, 200:50–63.
4. James C, Vincent C, De Andrade Lima TL, James SJ: The primary chilling of poultry carcasses-a review. Int J Refrigeration 2006, 29:847–862.
5. Doyle NP, Erickson MC: Opportunities for mitigating pathogen contamination during on-farm food production. J Food Microbiol 2012, 152:54–74.
6. European Commission: Regulation (EC) No. 1831/2003 of the European Parliament and of the Council on additives for use in animal nutrition. Official Journal of European Union 2003, L 265:26–43.
7. Weber JT, Counalain F: An emptying quiver: antimicrobial drugs and resistance. Emerg Infect Dis 2005, 11:791–793.
8. Love DC, Davis MF, Basset A, Gunther A, Nachman KE: Dose imprecision and resistance: Free-choice medicated feeds in industrial food animal production in the United States. Environ Health Perspect 2011, 119:279–283.
9. Seal BS, Lillehoj HS, Donovon DM, Gay CG: Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Anim Health Res Rev 2013, 14:78–87.
10. Tumbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardsen ER, Gordon JI: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444:1027–1031.
11. McKenna P, Hoffmann C, Minkah N, Aye PP, Lackner A, Liu ZZ, Lozupone CA, Hamady M, Knight R, Bushman FD: The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog 2008, 4:e20.
12. Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, Kelly C, Khorton A, Li TC, Martineau LL, Moore TA, Raksit G, Surawicz C, Fecal Microbiota T: Treating clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 2011, 9:1044–1049.
13. Greenblum S, Turnbaugh PJ, Borenstein E: Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 2012, 109:594–599.
14. Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C, Goulding D, Rad R, Schreiber F, Brandt C, Deakin LJ, Pickard DJ, Duncan SH, Flint HJ, Clark TG, Parkhill J, Dougan G: Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing clostridium difficile disease in mice. PLoS Pathog 2012, 8:e1002995.
15. Kraanenberg A, Simon MA, Engberg RM, Jensen BB, Tannock GvW: Effects of dietary fat source and subtherapeutic levels of antibiotics on the bacterial community in the ileum of broiler chickens at various ages. Appl Environ Microbiol 2002, 68:5918–5924.
16. Wise MG, Siragusa GR: Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets. J Appl Microbiol 2007, 102:1138–1149.
17. Fairchild AS, Smith JL, Lids JJ, Lu J, Sanchez S, Purvis LB, Hofacre C, Lee MD: Effects of orally administered tetracycline on the intestinal community structure of chickens and on tet determinant carriage by bacteria and Campylobacter jejuni. Appl Environ Microbiol 2005, 71:5865–5872.
18. Danzeisen JL, Kim HB, Isaacson RE, Tu ZJ, Johnson TJ: Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS One 2011, 6:e27999.
19. Gong J, Yu H, Liu T, Gill JJ, Chambers JR, Wheatcroft R, Sabour PM: Effects of zinc bacitracin, bird age and access to range on bacterial microbiota in the ileum and caeca of broiler chickens. J Appl Microbiol 2008, 104:1372–1382.
20. Torok VA, Allison GE, Percy NJ, Ophel-Keller K, Hughes RJ: Influence of antimicrobial feed additives on broiler posthatch gut microbiota development and performance. Appl Environ Microbiol 2011, 77:3380–3390.
21. Tillman GE, Haas GJ, Wise MG, Oakley B, Smith MA, Siragusa GR: Chicken intestine microbiota following the administration of lupinole, a hop-based antimicrobial, FEMS Microbiol Ecol 2011, 77:395–403.
22. Sun H, Tang JW, Fang CL, Yao AH, Wu YF, Wang X, Feng J: Molecular analysis of intestinal bacterial microbiota of broiler chickens fed diets containing fermented cowpea meal. Poult Sci 2013, 92:392–401.
23. Oivo-Pirondi EO, Humo ME, Barbosa NA, Sakomura NK, Weber G, Wilcke JW: Ileal and caecal microbial populations in broilers given specific essential oil blends and probiotics in two consecutive grow-outs. Avian Biodiversity Research 2010, 3:157–169.
24. Geyer MS, Torok VA, Allison GE, Ophel-Keller K, Gibson RA, Munday C, Hughes RJ: Dietary omega-3 polyunsaturated fatty acid does not influence the intestinal microbial communities of broiler chickens. Poult Sci 2009, 88:2399–2405.
25. Bjurnum L, Pedersen K, Engberg RW: The influence of whole wheat feeding on Salmonella infection and gut flora composition in broilers. Avian Dis 2005, 49:69–15.
26. Stanley D, Hughes RJ, Moore RJ: Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbiol Biotechnol 2014, 98:4301–4310.
27. Videnska P, Siak F, Havlikova H, Faldynova M, Rychlik I: Influence of Salmonella enterica serovar Enteritidis infection on the composition of chicken cecal microbiota. BMC Vet Res 2013, 9:69:article number 140.
28. Singh KM, Shah TM, Reddy B, Deshpande S, Rank DN, Joshi CG: Taxonomic and gene-centric metagenomics of the fecal microbiome of low and high feed conversion ratio (FCR) broilers. J Appl Genet 2014, 55:145–154.
29. Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ: Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 2014, 9:e91941.
30. van der Wielen PW, KreuzenKamp DA, Lipman LJ, Van Knape F, Biesterveld S: Spatial and temporal variation of the intestinal bacterial community in...
commercially raised broiler chickens during growth. Microb Ecol 2002, 44:286–293.
31. Sekelja M, Rud I, Knutsen SH, Demadali V, Westereng B, Naes T, Rudi K: A
btrupt temporal fluctuations in the chicken fecal microbiota are
explained by its gastrointestinal origin. Appl Environ Microbiol 2012,
78:2941–2948.
32. Hume ME, Kubena LF, Edington TS, Donkey CJ, Moore RW, Ricke SC,
Nisbet DJ: Poultry digestive microflora biodiversity as indicated by
mesuring gut end cell electrophoresis. Poult Sci 2003, 82:1100–1107.
33. Lu J, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD: Diversity and
succession of the intestinal bacterial community of the maturing broiler
chicken. Appl Environ Microbiol 2003, 69:6816–6824.
34. Eren AM, Sogin ML, Morrison H, Vineis JH, Fisher JC, Newton RJ, McLellan
SL: A single genus in the gut microbiome reflects host preference and
specificity. ISME J 2014. doi:10.1038/ismej.2014.97.
35. Biddle A, Stewart L, Blanchard J, Leschine S: Untangling the genetic basis
of fibrolytic specialization by lachnospiraceae and ruminococcaceae in
diverse gut communities. Diversity 2013, 5:62–70.
36. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman
SJ: The microbiome and butyrate regulate energy metabolism and
autophagy in the mammalian colon. Cell Metab 2011, 13:517–526.
37. Sokol H, Pigneur B, Waftert L, Lakhdari O, Bermudez-Humanan LM, Gratadou
JJ, Blugeon S, Brideonnn C, Furet JP, Cotterth HJ, Grangette C, Vasquez N,
Pochart P, Trugnan G, Thomas G, Biotke T, Dore J, Manteau P, Sekse P,
Langella F: Faecalibacterium prausnitzii is an anti-inflammatory commensal
bacterium identified by gut microbiota analysis of Crohn disease patients.
Proc Natl Acad Sci U S A 2008, 105:16731–16736.
38. Duncan SH, Sogin ML, Morrison HG, Vineis JH, Fisher JC, Newton RJ, McLellan
SL: Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from
human faeces. Int J Syst Evol Microbiol 2002, 52:1615–1620.
39. Luo YH, Peng HW, Wright AD, Bai SP, Deng XM, Zeng QF, Li H, Zheng P,
Su ZW, Cui RY, Zhang KY: Broilers fed dietary vitamins harbor higher
diversity of cecal bacteria and higher ratio of Clostridium,
Faecalibacterium, and Lactobacillus than broilers with no dietary vitamins
revealed by 16 rRNA gene clone libraries. Poult Sci 2013, 92:2358–2366.
40. Lee GH, Kumar S, Lee JH, Chang DH, Kim DS, Choi SH, Rhee MS, Lee DW,
Yoon MH, Kim BC: Genome sequence of Oscillo bacter ruminatium strain
GH1, isolated from rumen of Korean native cattle. J Bacteriol 2012,
194:3562.
41. Katano Y, Fujimani S, Kawakosha O, Nakazawa H, Oji S, Ino T, Oguchi A,
Ankai A, Fuku A, Teru Y, Kamata S, Harada T, Tanaka S, Suzuki K, Fujita N: Complete
gene sequence of Oscillo bacter ruminatium Sp19:18:20 T (=NBRIC 101213 T)
Stand Genomic Sci 2012, 6:406–414.
42. Rehman HU, Vahjen W, Awad WA, Zentek J: Diversity of bacteria and
bacterial metabolic products in the gastrointestinal tract of broiler
chickens. Arch Anim Nutr 2007, 61:133–335.
43. Fogel GB, Collins CR, Li J, Brunk CF: Acetate-utilizing and ethanol-utilizing
microorganisms in the intestinal bacteria of poultry. Microb Ecol 2003,
45:171–178.
44. Over KF, Hettiarachhy N, Johnson MG, Davis B: Development of an extensive
set of 16S rDNA-targeted primers for quantification of pathogenic and
indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 2007,
103:1166–1177.
45. Blankenberg D, Gordon A, Kojima M, De Rijk P, Schlueter J: Improved
readability of microbial community analysis using QIIME. Nature
Biotechnology 2010, 28:186–189.
46. Biddle A, Stewart L, Blanchard J, Leschine S: Untangling the genetic basis
of fibrolytic specialization by lachnospiraceae and ruminococcaceae in
diverse gut communities. Diversity 2013, 5:62–70.
47. Claassen S, Du Toit E, Kaba M, Moodley C, Zar HJ, Nicol MP: Diversity and
succession of the intestinal bacterial community of the maturing broiler
chicken. Applied Environ Microbiol 2003, 69:6816–6824.
48. Horan M: The microbiome and butyrate regulate energy metabolism and
autophagy in the mammalian colon. Cell Metab 2011, 13:517–526.
49. Sokol H, Pigneur B, Waftert L, Lakhdari O, Bermudez-Humanan LM, Gratadou
JJ, Blugeon S, Brideonnn C, Furet JP, Cotterth HJ, Grangette C, Vasquez N,
Pochart P, Trugnan G, Thomas G, Biotke T, Dore J, Manteau P, Sekse P,
Langella F: Faecalibacterium prausnitzii is an anti-inflammatory commensal
bacterium identified by gut microbiota analysis of Crohn disease patients.
Proc Natl Acad Sci U S A 2008, 105:16731–16736.
50. Sawires YS, Songer JG: Clostridium perfringens: insight into virulence
evolution and population structure. Anadore M 2006, 12:23–43.