Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis

Xiao Chen,*† Xin Zhi,*† Panpan Pan,*† Jin Cui,‡ Liehu Cao,*† Weizong Weng,*† Qirong Zhou,*† Lin Wang,*† Xiao Zhai,* Qingjie Zhao,*‡ Honggang Hu,*‡ Biaotong Huang,§ and Jiakan Su*†,2

*Department of Orthopedics Trauma and †Graduate Management Unit, Shanghai Changhai Hospital, and ‡School of Pharmacy, Second Military Medical University, Shanghai, China; and §China–South Korea Bioengineering Center, Shanghai, China

ABSTRACT: Osteoporosis is a metabolic bone disease characterized by decreased bone density and strength due to excessive loss of bone protein and mineral content. The imbalance between osteogenesis by osteoblasts and osteoclastogenesis by osteoclasts contributes to the pathogenesis of postmenopausal osteoporosis. Estrogen withdrawal leads to increased levels of proinflammatory cytokines. Overactivated osteoclasts by inflammation play a vital role in the imbalance. Matrine is an alkloid found in plants from the Sophora genus with various pharmacological effects, including anti-inflammatory activity. Here we demonstrate that matrine significantly prevented osteocytectomy-induced bone loss and inhibited osteoclastogenesis in vivo with decreased serum levels of TRACP5b, TNF-α, and IL-6. In vitro matrine significantly inhibited osteoclast differentiation induced by receptor activator for NF-κB ligand (RANKL) and M-CSF in bone marrow monocytes and RAW264.7 cells as demonstrated by tartrate-resistant acid phosphatase (TRAP) staining and actin-ring formation as well as bone resorption through pit formation assays. For molecular mechanisms, matrine abrogated RANKL-induced activation of NF-κB, AKT, and MAPK pathways and suppressed osteoclastogenesis-related marker expression, including matrix metalloproteinase 9, NFATc1, TRAP, C-Src, and cathepsin K. Our study demonstrates that matrine inhibits osteoclastogenesis through modulation of multiple pathways and that matrine is a promising agent in the treatment of osteoclast-related diseases such as osteoporosis.—Chen, X., Zhi, X., Pan, P., Cui, J., Cao, L., Weng, W., Zhou, Q., Wang, L., Zhai, X., Zhao, Q., Hu, H., Huang, B., Su, J. Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis. FASEB J. 31, 4855–4865 (2017). www.fasebj.org

KEY WORDS: postmenopausal osteoporosis · NFATc1 · osteoclasts

Osteoporosis is a metabolic bone disease characterized by decreased bone density and strength due to excessive loss of bone protein and mineral content (1). Postmenopausal osteoporosis (PMOP) is the most common form of primary osteoporosis, and the incidence of PMOP has been increasing rapidly (2). PMOP leads to increased risk of osteoporotic fractures.

The imbalance between osteogenesis by osteoblasts and osteoclastogenesis by osteoclasts contributes to the pathogenesis of PMOP (3). Estrogen is osteoprotective. On one hand, it targets osteoblasts and stimulates osteoblasts to secrete OPG, which could rival with receptor activator for NF-κB ligand (RANKL) and inhibit osteoclastogenesis (4, 5). On the other hand, estrogen directly inhibits preosteoclast differentiation and osteoclast formation and function (6) and induces apoptosis of osteoclasts and preosteoclasts to reduce the number of osteoclasts (7). After menopause, withdrawal of estrogen leads to an increase of osteoclastogenesis and a decrease of osteogenesis. Thus, postmenopausal osteoporosis occurs. Osteoclasts are bone-resorbing multinucleated giant cells differentiated from hematopoietic precursor cells of monocyte–macrophage lineage (8). Osteoclasts overactivated by inflammation play a vital role in the imbalance (9). Thus, inhibiting osteoclastogenesis through suppressing inflammation is an important strategy for preventing and treating PMOP (10–12). RANKL is an essential factor for osteoclast differentiation and function. The conjunct of RANKL

ABBREVIATIONS: BMD, bone mineral density; BMM, bone marrow monocyte; BS/TV, bone surface area/total value; BV/TV, bone value/total value; H&E, hematoxylin and eosin; MMP-9, matrix metalloproteinase 9; OCN, osteocalcin; OVX, ovariectomized; PMOP, postmenopausal osteoporosis; RANKL, receptor activator for NF-κB ligand; TRAF, TNF receptor-associated factor; TRAP, tartrate-resistant acid phosphatase

1 These authors contributed equally to this work.

2 Correspondence: Department of Orthopedics, Changhai Hospital Affiliated with the Second Military Medical University, Changhai Rd., Shanghai, 200433, China. E-mail: drsujiacan@163.com

This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

doi: 10.1096/fj.201700316R
and RANK recruits TNF receptor–associated factors (TRAFs), typically TRAF6 (13), which activates multiple downstream signaling pathways, mainly NF-κB, MAPKs, and AKT, and thereby initiates osteoclast differentiation and bone resorption by inducing transcription and expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase (TRAP), cathepsin K, matrix metalloproteinase 9 (MMP-9), and C-Src (14).

Matrine is the major component of the traditional Chinese herb *Sophora flavescens* Ait. Studies have demonstrated a number of pharmacological effects of matrine, such as its anti-tumor and anti-inflammation effects (15–17), and it has been widely used clinically against hepatitis because of its anti-inflammatory effects (18). Because inflammation is closely related to PMOP, we hypothesized that matrine could possess antiosteoporotic effects and serve as a promising candidate for anti-osteoporosis drug development. We carried out this study to investigate the effects of matrine on osteoclast-induced bone loss and to explore the possible underlying molecular mechanisms.

MATERIALS AND METHODS

Reagents and antibodies

Matrine (Fig. 1A) was provided by H.H. It was dissolved in PBS (vehicle) for further use. RAW 264.7 cells were obtained from Prof. J. Hou (Second Military Medical University). Penicillin, streptomycin, and fetal bovine serum were obtained from Puhe Biotechnology Co. (Wu, China).

Animals and experimental design

All experiments were performed in the Specific Pathogen Free laboratory of Shanghai Changzheng Hospital. Female, 8-wk-old, C57BL/6 mice were purchased from Shanghai Slack Co. (Shanghai, China) and kept under standard conditions with free access to clean water and food. All procedures were in accordance with the guidelines of the Ethics Committee on Animal Experiment of the Second Military Medical University. Animals were randomly assigned to 3 groups (n = 6/group): a sham-treated group, ovariectomized (OVX) mice treated with normal saline, and OVX mice treated with matrine dissolved in normal saline. The mice in the OVX group were anesthetized with 5% chloral hydrate. Then, small incisions were made on the dorsal skin and peritoneum. Two ovaries and part of the oviduct were removed by frequent medium changes and arterial blood was obtained. No significant adverse effects were observed after matrine was administered.

In vitro osteoclastogenesis assay

Bone marrow monocytes (BMMs) were obtained from the femoral bone marrow of C57BL/6 mice at 8 wk of age. BMMs and RAW264.7 cells were seeded (8 × 10^3 cells/well) onto 24-well plates with DMEM low-glucose medium with 10% heat-inactivated fetal bovine serum and a penicillin (100 U/ml)/streptomycin (100 mg/ml) mixture and incubated. Cells were cultured in cell culture medium at 37°C and 5% CO2. Non-adherent cells were removed by frequent medium changes over 72 h. The remaining adherent colonies were cultured for 14 d until confluent and passaged after digestion with 0.25% trypsin for 3 min and subcultured. The third-generation BMMs (2.5 × 10^5 cells/well) and RAW264.7 cells (1.5 × 10^5 cells/well) were cultured on 96-well plates and divided into a control group and 4 groups treated with matrine (0, 1, 2, or 4 μM). The matrine-treated cells were induced into osteoclasts by M-CSF (20 ng/ml) and RANKL (50 ng/ml). On d 7, the BMMs of the control group and the matrine-treated groups were stained by tartrate-resistant acid phosphatase (TRAP) using a TRAP staining kit (Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s protocol. More than 3 nuclease cells were regarded as osteoclasts and counted.

Cells were cultured for 24 h and fixed with 4% paraformaldehyde in PBS for 10 min. The cells were permeabilized with 0.1% Triton-X 100 in PBS for 5 min and incubated with rhodamine-conjugated phalloidin (Biotechnique, Fremont, CA, USA) to visualize F-actin. All experiments were carried out 3 times, and the average was calculated.

Pit-formation assays

RAW264.7 cells (1.5 × 10^3 cells/well) were seeded on bone biomimetic synthetic surface (Osteo Assay Surface 24-Well Multiple Well Plates; Corning, Corning, NY, USA) in the absence or presence of 100 ng/ml RANKL with or without varying concentrations of matrine (1, 2, or 4 μM) and incubated. Medium was changed on d 3 as reported previously (11). After 7 d, the plates were washed with PBS and air dried for 3–5 h. The osteoclast-resorbing area was captured using a light microscope (BX53; Olympus, Tokyo, Japan). The resorbed area was quantified using Image-Pro Plus software.

Immunofluorescence staining

The effects of matrine on the nuclear translocation of P65 were determined by immunofluorescence as previously described (19, 20). The BMMs of the control group and BMMs treated with matrine (0 or 4 μM) were fixed with 4% paraformaldehyde for 15 min, washed with 0.2% Triton-X 100 in PBS for 10 min, blocked with 1% BSA in PBS, and incubated with monoclonal anti-P65 antibody (Abcam, Cambridge, MA, USA) followed by biotinylated goat anti-mouse IgG antibody (Abcam) and fluorescein-conjugated streptavidin (Vector Laboratories, Burlingame, CA, USA). Cells were counterstained with propidium iodide (Vector Laboratories).

Western blotting

The effects of matrine on NF-κB, MAPKs, and AKT pathways in RAW264.7 cells were evaluated by Western blotting. The RAW264.7 cells were seeded (2 × 10^6 cells/well) into 6-well plates and divided into 2 groups: cells treated with RANKL and cells treated with matrine (0 or 4 μM). Cells were evaluated by Western blotting at 0, 15, 30, 45, and 60 min to observe phosphorylation of IκB, P65, P90, ERK, JNK, P38, C-fos, and AKT. The 3 groups of RAW264.7 cells (control, treated with RANKL and matrine 0 or 4 μM) were cultured in 6-well plates (2 × 10^6 cells/well) for 7 d and measured by Western blotting. At d 7, the expression levels of osteoclastogenesis-related markers MMP-9, TRAP, cathepsin K, C-Src, and NFATc1 were determined. The primary antibodies included mouse anti-GAPDH
and mouse anti-β-actin. Antibodies specific to P-ERK, ERK, P-JNK, JNK, P-P38, P38, P-C-fos, C-fos, P-AKT, AKT, P-IkB, IkB, P-P65, P65, P-P50, P50, MMP-9, cathepsin K, C-Src, TRAP, NFATc1, and β-actin were supplied by Abcam. Secondary antibodies included goat anti-rabbit IgG–horseradish peroxidase (Abcam) and donkey anti-goat horseradish peroxidase–HRP (Abcam).

Figure 1. Matrine inhibits osteoclastogenesis in vitro. A) Chemical structure of matrine. B) Formation of TRAP-positive cells from BMMCs and quantification of osteoclasts. C) Formation of TRAP-positive cells from RAW264.7 cells and quantification of osteoclasts. *P < 0.05, **P < 0.01.
Bone histomorphometric analysis

Femurs were fixed in 4% formalin for 4 d and decalcified for 2 wk using 10% tetrasodium-EDTA aqueous solution. Sections (4 μm thick) were prepared with a microtome (Jung, Heidelberg, Germany) and stained with hematoxylin and eosin (H&E). Osteoclasts were visualized by TRAP staining. Standard bone histomorphometric measures were analyzed by a microscope (original magnification, ×40) (BX53; Olympus). Trabecular bone was revealed in H&E-stained sections, and the red box area (0.498 mm²) was monitored by Image-Pro Plus.

Microcomputed tomography analysis

The femur was analyzed by micro-computed tomography (Skyscan, Antwerp, Belgium). The following acquisition parameters were used: 80 kV, 124 μA, voxel size in reconstructed image, 8 μm. Images were analyzed using a plug-in programmed with the following histomorphometric parameters at the metaphysis of the proximal tibiae: bone volume/total volume (BV/TV), bone surface area/total volume (BS/TV), bone mineral density (BMD), and trabecular number. Two-dimensional and 3-dimensional bone structure images were published by the built-in software.

Serum biochemistry

Blood was collected via heart puncture, and sera were collected after centrifugation at 3000 rpm for 15 min at 25°C. Serum levels of IL-6, TNF-α, TRACP5b, and osteocalcin (OCN) were measured with an ELISA kit (Anogen, Mississauga, ON, Canada) according to the manufacturer’s instructions.

Statistical analysis

All results are expressed as means ± SD. Statistical analysis was performed by 2-tailed, unpaired Student’s t test to compare 2 groups, and by 1-way ANOVA to compare 3 or more groups using SPSS Statistics 21.0 (IBM, Armonk, NY, USA). Values of P < 0.05 were considered statistically significant.

RESULTS

Matrine inhibits osteoclastogenesis and functions in vitro

To examine the effects of matrine on osteoclastogenesis, BMMs were treated with RANKL and M-CSF in the presence of 1-, 2-, and 4-μm concentrations of matrine. The results indicated that osteoclast formation was compromised by matrine in a concentration-dependent manner (Fig. 1B, C). The total number of TRAP-positive cells was significantly lower as matrine concentration increased from 1 to 4 μm matrine compared with the control group (P < 0.05). Among different matrine-treated groups, the number of TRAP-positive cells in the 1-μm group was significantly less than that in 2- and 4-μm groups (P < 0.05). These results suggest that matrine dose-dependently inhibits RANKL-induced osteoclastogenesis in BMMs and RAW264.7 cells.

To determine the functions of osteoclasts, we examined whether matrine affected RANKL-induced osteoclast actin ring formation, which is the most obvious feature of mature osteoclasts during osteoclastogenesis. When incubated with RANKL, RAW264.7 cells differentiated into mature osteoclasts and formed actin rings. However, the size and number of actin ring structures were significantly reduced when the cells were treated with matrine, suggesting that matrine suppressed the formation of actin rings in mature osteoclasts (Fig. 2A). We next examined the effects of matrine on the pit-forming activity on bone biomimetic synthetic surface. Osteoclast activity was impaired severely by matrine treatment, as demonstrated by diminished resorption pits formed by osteoclasts. When the osteoclast preparation was cultured on dentine plates for 24 h, many resorption pits formed on the plates. Matrine added at 1, 2, and 4 μm significantly inhibited the pit-forming activity of osteoclasts (Fig. 2B).

Matrine inhibits RANKL-induced activation of the NF-κB pathway

RANKL-induced NF-κB activation is necessary for osteoclast differentiation and function. To determine whether matrine inhibits NF-κB–mediated osteoclastogenesis, we performed immunofluorescence staining of P65 with or without matrine in RAW264.7 cells. In RAW264.7 cells, immunofluorescence staining showed that most P65 was located in the cytoplasm. After induction with RANKL and M-CSF in RAW264.7 cells, P65 was phosphorylated and active and translocated to the nucleus. However, the nuclear translocation of P65 was blocked when treated with matrine despite induction with RANKL and M-CSF (P < 0.05) (Fig. 3A, B). To confirm the results of immunofluorescence staining, assays we demonstrated using Western blot assays that matrine could inhibit RANKL-induced phosphorylation and degradation of the inhibitory subunit of NF-κB (IκB) as well as the phosphorylation of P65 and P50 (Fig. 3C). The results indicate that matrine can inhibit the NF-κB pathway.

Matrine inhibits RANKL-induced activation of MAPks and the AKT pathway

In addition to the NF-κB signaling pathway, activation of MAPks and the AKT pathway plays an important role in osteoclastogenesis. To evaluate the effects of matrine on MAPks and the AKT pathway after incubation with RANKL and RAW264.7 cells, we examined the phosphorylation of 3 major subfamilies of MAPks [P38 (p-p38), JNK (p-JNK), and ERK (p-ERK)] (Fig. 4A) as well as C-fos (p-c-fos) (Fig. 4B) and AKT (p-Akt) (Fig. 4C) by Western blot analysis. Among the 3 major subfamilies of MAPks, phosphorylated p38 (p-p38) levels did not change significantly, but phosphorylated ERK (p-ERK) and phosphorylated JNK (p-JNK) demonstrated a significant increase upon RANKL stimulation, and matrine treatment largely inhibited their phosphorylation upon RANKL stimulation. These results indicate that matrine can inhibit RANKL-induced activation of MAPks and the AKT pathway in osteoclasts.

Matrine suppresses osteoclastogenesis-related genes expression

Osteoclast differentiation is completed by the expression of a large number of related marker genes, such as MMP-9,
NFATc1, TRAP, C-Src, and cathepsin K, most of which are target genes of NFATc1 (21). NFATc1 is a well-known master regulator of osteoclastogenesis and function. In this experiment, RAW264.7 cells were divided into 3 groups: a control group, RAW264.7 cells induced with RANKL, and RAW264.7 cells induced with RANKL and treated with matrine. The results suggest that matrine can suppress the NF-κB, MAPK, and AKT pathways and NFATc1 expression. We also investigated whether matrine regulates osteoclastogenesis-related marker gene expression. Our results indicate that matrine can inhibit RANKL-induced protein levels of MMP-9, cathepsin K, C-Src, TRAP, and NFATc1 (Fig. 5).

Figure 2. Matrine inhibits osteoclast function *in vitro*. A) Actin ring structures of osteoclasts and quantification of the actin ring. B) RAW264.7 cells seeded on hydroxyapatite-coated plates. Surfaces were treated similarly and incubated for 7 d, and resorption area was quantified by image analysis. ***P < 0.001.

Effects of matrine on bone loss and osteoclast activity in OVX mice

We evaluated the effects of matrine on bone loss using an OVX mouse model. The result showed that at 6 wk after the operation, OVX mice exhibited a significant loss of trabecular bone, represented by decreased BMD, trabecular BV/TV, trabecular BS/TV, and trabecular number, compared with sham-treated mice. Treatment with matrine in OVX mice markedly inhibited trabecular bone loss, as shown by H&E stain, compared with OVX mice treated with normal saline (Fig. 6A). These findings were further
corroborated by microcomputed tomography. The 2- and 3-dimensional structure as measured by trabecular BV/TV, BS/TV, trabecular number, and BMD are shown in Fig. 6B, C.

We examined whether matrine prevented ovariectomy-induced bone loss by inhibiting osteoclast differentiation. Matrine significantly increased the TRAP-positive cells in femur (Fig. 6D). Compared with OVX mice, matrine-treated OVX mice displayed decreased serum IL-6, TNF-α, and TRACP5B (P < 0.05), but OCN was not altered significantly (P > 0.05), which suggested that matrine inhibited the bone loss in OVX mice through inhibiting osteoclastogenesis rather than by promoting osteogenesis in vivo (Fig. 6E).

DISCUSSION

In this study, we showed that matrine significantly prevented bone loss and inhibited osteoclastogenesis in vitro and in vivo. This is the first study to demonstrate the effects of matrine on ovariectomy-induced osteoporosis and bone metabolism. As for the molecular mechanisms, multiple pathways, including NF-κB, MAPKs, and AKT, the downstream pathways of RANKL activated during osteoclastogenesis, were significantly inhibited by matrine (Fig. 7). Matrine has a very good effect on decreased bone loss, and, based on the matrine structure, we can further design various ramifications for better antiosteoporotic activities.

Figure 3. Matrine inhibits RANKL-induced NF-κB activation. A) Matrine inhibits RANKL-induced P65 nuclear translocation. B) Phosphorylation of P65, P50, and IκB protein, which were associated with the NF-κB pathway. C) Ratio of the fluorescence intensity at the nuclear site with whole-cell fluorescence intensity. **P < 0.01.
PMOP is the most common form of primary osteopo-
rosis. PMOP leads to increased risk of osteoporotic frac-
tures (22) and poses a great threat to older women
(23). During the pathogenesis of PMOP, overactivated
osteoclastogenesis with excessive bone resorption is one
important factor (24). Thus, inhibiting osteoclast
differentiation remains an important strategy for PMOP
treatment (25). Regarding osteoclastogenesis, a growing
understanding of bone remodeling indicates that in-
flammation significantly contributes to the pathogenesis
of osteoporosis (26). After the withdrawal of estrogen, a
potent inflammation inhibitor (27–29), the elevated
proinflammatory cytokines (mainly TNF-α and IL-6)
serve as primary mediators of the accelerated bone loss
at menopause (30–33). These proinflammatory cytokines
increased RANK expression in osteoclast precursor cells
and increased RANKL expression in lymphocytes,
mesenchymal stem cells, and osteoblasts (34). Thus,
inhibiting inflammation provides an option for PMOP
prevention and treatment (35).

Many active drug monomers show inhibitory effects on
osteoclastogenesis (11, 36–40). Matrine is an alkaloid
found in plants of the Sophora genus. It has a variety of
pharmacological effects, including anti-inflammation ef-
fects, and has been widely used clinically with good effects
in the treatment of liver fibrosis (41). It has been demon-
strated that matrine exhibited protective effects on LPS-
induced acute lung injury (42) and focal cerebral ischemia
(43) by inhibiting the inflammatory response. It mainly
inhibited NF-κB activation, which shares the pathway for
osteoclastogenesis (44). Thus, theoretically, matrine is a
 possible osteoprotective agent.

We carried out this study to explore the effects of
matrine on PMOP as well as the molecular mechanisms. In
vitro, we found that matrine significantly prevented bone
loss at 6 wk after ovariectomy in mice, as shown by H&E
staining of the distal femur and microcomputed
ography. For TRAP staining, we found that matrine signifi-
cantly reduced the number of activated osteoclasts around
the trabecula. The serum level of TRACP5B was also sig-
ificantly reduced. In vitro, matrine significantly inhibited
osteoclast differentiation in RAW 264.7 cells and BMMs
induced by RANKL and M-CSF demonstrated by TRAP
staining. F-actin ring formation was also significantly
inhibited by matrine. Therefore, we speculated that
matrine prevented ovariectomy-induced bone loss
through inhibiting osteoclastogenesis.

RANKL is essential for osteoclastogenesis (45). After
RANKL combines with RANK on osteoclast precursor

![Figure 4](image-url) Matrine suppresses MAPKs and PI3K/AKT pathways in osteoclastogenesis. A) Phosphorylation of ERK, JNK, and P38, which was associated with the MAPK pathway. B) Phosphorylation of C-fos, which was an important downstream transcription factor of the MAPK pathway. C) Phosphorylation of AKT, which was associated with the PI3K/AKT pathways.

![Figure 5](image-url) Matrine suppresses osteoclastogenesis-related marker gene expression. Matrine-inhibited protein expression levels of MMP-9, cathepsin K, C-Src, TRAP, and NFATc1 in RAW264.7 cells.

MATRINE PREVENTS OSTEOCLASTOGENESIS IN POMP
cells, the downstream pathways are activated, during which NF-κB, MAPKs, and AKT play a major role in signal transduction. The NF-κB family includes p105 (NF-κB1), p100 (NF-κB2), RelA (P65), RelB, and Relc (46). After RANK is activated by RANKL, p105 is processed to P50 constitutively and forms dimers usually with RelA. P50/P65 dimers are translocated to the nucleus for gene transcription. Previous studies have demonstrated that epoxyeicosanoids inhibited osteoclastogenesis through modulation of multiple pathways both upstream and downstream of RANKL signaling (11). Caffeic acid suppresses osteoclastogenesis and bone loss through inhibiting RANKL-induced MAPKs and Ca2+-NFATc1 signaling pathways (38). In this study, we found that
Matrine prevented translocation of P65 from cytoplasm to nucleus showed by confocal fluorescence in RAW264.7 cells after RANKL/M-CSF induction. Western blot showed that matrine significantly reduced P65 and P50 phosphorylation in a time-dependent manner compared with the vehicle group. Matrine could block the canonical NF-κB pathway.

MAPKs and PI3/AKT are also involved in RANK downstream cell signaling transduction and osteoclastogenesis (45). In response to RANKL, RANK interacts with TRAFs, among which TRAF6 is crucial for activating MAPKs (47). TRAF6 activates the TAB1/TAB2/TAK1 complex, which leads to the activation of IKK-β and MAPKs (48). RANK also activates Src family kinase signaling, which leads to AKT activation through interactions between TRAF6 and Cbl scaffolding proteins (49). In this study, matrine inhibited phosphorylation of ERK, JNK, P38, and C-fos in the MAPK pathway and inhibited AKT activation, which led to decreased expression of osteoclastogenesis-related markers, including MMP-9, TRAP, C-Src, and cathepsin K.

Limitations within our study that indicate the need for future work. First, in vivo studies proved that matrine could significantly prevent bone loss and inhibit osteoclast activation. However, it raises the question of what effects matrine has on osteogenesis and bone formation. Because there was no statistically significant difference in serum OCN levels between groups, we speculated that matrine had no significant effects on osteogenesis, and mainly inhibited osteoclastogenesis. Second, the cellular signaling mechanisms involving modulation of signal transduction pathways have yet to be elucidated. Matrine could inhibit MAPKs, NF-κB, and AKT pathways, indicating that matrine could probably influence the upstream of intracellular signal transduction during osteoclastogenesis. Third, the interaction target of matrine has not been clarified and will be addressed in future studies. Matrine has many problems, such as poor bioavailability, high toxicity, and poor solubility in water. Thus, based on matrine chemical structure, various derivatives could be synthesized to search for more effective drugs. Because matrine shows a significant inhibitory effect on osteoclastogenesis, it probably has therapeutic effects on various osteoclast-related diseases (e.g., rheumatoid arthritis and bone-metastasized tumors); this needs further verification.

In summary, our findings demonstrate that matrine could serve as a novel inhibitor of osteoclastogenesis by suppressing multiple signaling pathways. It is of great significance to determine whether matrine can be used as a beneficial alternative preventive and therapeutic option for osteoclast-related disorders.

ACKNOWLEDGMENTS

The authors thank the Clear-Med-Trans Studio (Shanghai, China) for language polishing, Shanghai GeekBiotech (Shanghai,
China) for technical support, Dr. J. Wang (Fudan University, Shanghai, China) for technical guidance, and Sir C. Liu for providing matrine. This work was supported by Shanghai Municipal Science and Technology Commission Key Program (15411950600). The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

X. Chen, X. Zhi, and J. Su designed this study; X. Zhi finished the animal studies and BMMCs isolation; P. Pan, W. Weng, L. Cao, J. Cui, Q. Zhou, B. Huang, and X. Zhai performed Western blotting; and H. Hu, Q. Zhao, and L. Wang produced matrine.

REFERENCES

1. Jakob, F., Genest, F., Baron, G., Stumpf, U., Rudert, M., and Seefried, U. (2015) Osteoclast cell differentiation and function through suppression of the ERK signaling pathway. Osteol. Lett. 36, 517–520

2. Del Fattore, A., Teti, A., and Rucci, N. (2008) Osteoclast receptors and differentiative effects of estrogen on osteoprotegerin, RANKL, and estrogen deficiency-induced osteoporosis. Nat. Med. 14, 192

3. Warren, J. T., Zou, W., Decker, C. E., Rohatgi, N., Nelson, C. A., Gentile, M., and Riggs, B. L. (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest. 111, 1221–1230

4. Lee, E. J., Kim, J. L., Kim, Y. H., Kang, M. K., Gong, J. H., and Kang, G. H. (2009) Reciprocal roles between caffeine and estrogen on bone via differently regulating cAMP/PAK pathway: the possible mechanism for caffeine-induced osteoporosis in women and estrogen’s antagonistic effects. Mol. Med. 15, 83–85

5. Moriwaki, S., Kunsawat, K., Mansoori, M. N., Trivedi, R., Chattopadhyay, N., and Singh, D. (2012) Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS One 7, e41552

6. Del Fattore, A., Teti, A., and Rucci, N. (2008) Osteoclast receptors and signalling. Adv. Drug. Res. 43, 167–181

7. Lee, E. J., Kim, J. L., Kim, Y. H., Kang, M. K., Gong, J. H., and Kang, Y. H. (2014) Flhorein promotes osteoclast apoptosis in murine macrophages and inhibits estrogen deficiency-induced osteoporosis in mice. PLoS One 9, e97177

8. Zhang, P. P., Wang, P. Q., Qiao, C. P., Zhang, Q., Zhang, J. P., Chen, F., Zhang, X., Xie, W. F., Yuan, Z. L., Li, Z. S., and Chen, Y. X. (2016) Matrine suppresses the activity of AKT/GSK-3β and Udagawa, N. (2009) Diphenylhydantoin inhibits osteoclast differentiation and function through suppression of NFATc1 signaling. J. Bone Miner. Res. 24, 1490–1490

9. Moriwaki, S., Kunsawat, K., Mansoori, M. N., Trivedi, R., Chattopadhyay, N., and Singh, D. (2012) Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS One 7, e41552

10. Sun, D., Wang, J., Yang, N., and Ma, H. (2016) Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. Biochem. Biophys. Res. Commun. 477, 83–90

11. Shao, H., Yang, B., Hu, R., and Wang, Y. (2013) Matrine effectively inhibits the proliferation of breast cancer cells through a mechanism related to the NF-κB signaling pathway. Oncol. Lett. 6, 517–520

12. Ma, J., Ma, S.Y., and Ding, C.H. (2015) GW261523 matte prevents atrial fibrillation and atrial fibrillation in postmenopausal infarction rats. J. Am. Coll. Cardiol. 66, 239–243

13. Bharti, A. C., Takada, Y., Shishodia, S., and Aggarwal, B. B. (2004) Restoration of estrogen deficiency-induced osteoclastogenesis in osteoporosis model mice. J. Bone Miner. Res. 19, 223–235

14. Nakashima, T., Hayashi, M., Fukunaga, T., Kurata, K., Oh-Hora, M., Feng, J. Q., Bonewald, L. F., Kodama, T., Wutz, A., Wagner, E. F., Penninger, J. M., and Takayanagi, H. (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234

15. Sun, D., Wang, J., Yang, N., and Ma, H. (2016) Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. Biochem. Biophys. Res. Commun. 477, 83–90

16. Shao, H., Yang, B., Hu, R., and Wang, Y. (2013) Matrine effectively inhibits the proliferation of breast cancer cells through a mechanism related to the NF-κB signaling pathway. Oncol. Lett. 6, 517–520

17. Ma, J., Ma, S.Y., and Ding, C.H. (2015) GW261523 matrine prevents atrial fibrillation and atrial fibrillation in postmenopausal infarction rats. J. Am. Coll. Cardiol. 66, C23

18. Xie, W. F., Yuan, Z. L., Li, Z. S., and Chen, Y. X. (2016) Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. Biochem. Biophys. Res. Commun. 477, 83–90

19. Ma, J., Ma, S.Y., and Ding, C.H. (2015) GW261523 matrine prevents atrial fibrillation and atrial fibrillation in postmenopausal infarction rats. J. Am. Coll. Cardiol. 66, C23

20. Li, M., Wang, W., Geng, L., Qin, Y., Dong, W., Zhang, X., Qin, A., and Zhang, M. (2015) Inhibition of estrogen on osteoprotegerin, RANKL, and estrogen deficiency-induced osteoporosis in women and estrogen’s antagonistic effects. Mol. Med. 15, 83–85

21. Lee, E. J., Kim, J. L., Kim, Y. H., Kang, M. K., Gong, J. H., and Kang, Y. H. (2014) Flhorein promotes osteoclast apoptosis in murine macrophages and inhibits estrogen deficiency-induced osteoporosis in mice. PLoS One 9, e97177

22. Andreopoulou, P., and Bockman, R. S. (2015) Management of Myelosuppressive therapies significantly increase pro-inflammatory cytokines and directly cause bone loss. J Bone Miner. Res. 30, 886–897

23. Kearns, A. E., Khosla, S., and Kostenuik, P. J. (2008) Receptor activator of nuclear factor-κB ligand (RANKL) expressed by osteoclasts in bone homeostasis and disease. Endocr. Rev. 29, 153–192

24. Li, C., Yang, Z., Qin, W., Wu, X., Wang, X., Li, H., Tang, J., Qian, M., Li, D., Wang, P., Luo, J., and Liu, M. (2011) Maslinic acid suppresses osteoclastogenesis and prevents osteoclast-induced bone loss by regulating RANKL-mediated NF-κB and MAPK signaling pathways. J. Bone Miner. Res. 26, 644–656
37. Dou, C., Ding, N., Xing, J., Zhao, C., Kang, F., Hou, T., Quan, H., Chen, Y., Dai, Q., Luo, F., Xu, J., and Dong, S. (2016) Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway. *Cell Death Dis.* 7, e2162

38. Wu, X., Li, Z., Yang, Z., Zheng, C., Jing, J., Chen, Y., Ye, X., Lian, X., Qiu, W., Yang, F., Tang, J., Xiao, J., Liu, M., and Luo, J. (2012) Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-kappaB ligand-induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+-nuclear factor of activated T-cells cytoplasmic 1 signaling pathways. *J. Bone Miner. Res.* 27, 1298–1308

39. Zeng, X., Zhang, Y., Wang, S., Wang, K., Tao, L., Zou, M., Chen, N., Xu, J., Liu, S., and Li, X. (2017) Artesunate suppresses RANKL-induced osteoclastogenesis through inhibition of PLCγ1-Ca(2+)-NFATc1 signaling pathway and prevents ovariectomy-induced bone loss. *Biochem. Pharmacol.* 124, 57–68

40. Yuan, F. L., Xu, R. S., Jiang, D. L., He, X. L., Su, Q., Jin, C., and Li, X. (2015) Leonurine hydrochloride inhibits osteoclastogenesis and prevents osteoporosis associated with estrogen deficiency by inhibiting the NF-κB and PI3K/Akt signaling pathways. *Bone* 75, 128–137

41. Xu, W. H., Hu, H. G., Tian, Y., Wang, S. Z., Li, J., Li, J. Z., Deng, X., Qian, H., Qiu, L., Hu, Z. L., Wu, Q. Y., Chai, Y. F., Guo, C., Xie, W. F., and Zhang, J. P. (2014) Bioactive compound reveals a novel function for ribosomal protein S5 in hepatic stellate cell activation and hepatic fibrosis. *Hepatology* 60, 648–660

42. Zhang, B., Liu, Z. Y., Li, Y. Y., Luo, Y., Liu, M. L., Dong, H. Y., Wang, Y. X., Liu, Y., Zhao, P. T., Jin, F. G., and Li, Z. C. (2011) Anti-inflammatory effects of matrine in LPS-induced acute lung injury in mice. *Eur. J. Pharmacol.* 44, 573–579

43. Xu, M., Yang, L., Hong, L. Z., Zhao, X. Y., and Zhang, H. L. (2012) Direct protection of neurons and astrocytes by matrine via inhibition of the NF-κB signaling pathway contributes to neuroprotection against focal cerebral ischemia. *Brain Res.* 1454, 48–64

44. Abu-Amer, Y. (2013) NF-kappaB signaling and bone resorption. *Osteoporosis Int.* 24, 2377–2386

45. Walsh, M. C., and Choi, Y. (2014) Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. *Front. Immunol.* 5, 511

46. Yao, Z., Xing, L., and Boyce, B. F. (2009) NF-kappaB p100 limits TNF-induced bone resorption in mice by a TRAF3-dependent mechanism. *J. Clin. Invest.* 119, 3024–3034

47. Kadono, Y., Okada, F., Perchonock, C., Jang, H. D., Lee, S. Y., Kim, N., and Choi, Y. (2005) Strength of TRAF6 signalling determines osteoclastogenesis. *EMBO Rep.* 6, 171–176

48. Mizukami, J., Takaesu, G., Akatsuka, H., Sakurai, H., Ninomiya-Tsuji, J., Matsumoto, K., and Sakurai, N. (2002) Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. *Mol. Cell. Biol.* 22, 992–1000

49. Kameda, Y., Takahata, M., Komatsu, M., Mikuni, S., Hatakeyama, S., Shimizu, T., Angata, T., Kinjo, M., Minami, A., and Iwasaki, N. (2013) Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositols-3-kinase/Akt and Erk pathways in association with signaling adaptor DAP12. *J. Bone Miner. Res.* 28, 2463–2475

Received for publication April 9, 2017. Accepted for publication July 5, 2017.