Evolutionary and Functional Analysis of Coagulase Positivity among the Staphylococci

Amy C. Pickering,* Gonzalo Yebra,* Xiangyu Gong,* Mariya I. Goncheva,* Bryan A. Wee,* Alison C. MacFadyen,* Lukas F. Muehlbauer,† Joana Alves,* Robyn A. Cartwright,* Gavin K. Paterson,* J. Ross Fitzgerald*

The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom.

ABSTRACT The bacterial genus Staphylococcus comprises a large group of pathogenic and nonpathogenic species associated with an array of host species. Staphylococci are differentiated into coagulase-positive or coagulase-negative groups based on the capacity to promote clotting of plasma, a phenotype historically associated with the ability to cause disease. However, the genetic basis of this important diagnostic and pathogenic trait across the genus has not been examined to date. Here, we selected 54 representative staphylococcal species and subspecies to examine coagulation of plasma derived from six representative host species. In total, 13 staphylococcal species mediated coagulation of plasma from at least one host species including one previously identified as coagulase negative (Staphylococcus condimenti). Comparative genomic analysis revealed that coagulase activity correlated with the presence of a gene (vwb) encoding the von Willebrand binding protein whereas only the Staphylococcus aureus complex contained a gene encoding staphylococoagulase (Coa), the classical mediator of coagulation. Importantly, S. aureus retained vwb-dependent coagulase activity in an S. aureus strain deleted for coa whereas deletion of vwb in Staphylococcus pseudintermedius resulted in loss of coagulase activity. Whole-genome-based phylogenetic reconstruction of the Staphylococcus genus revealed that the vwb gene has been acquired on at least four different occasions during the evolution of the Staphylococcus genus followed by allelic diversification via mutation and recombination. Allelic variants of vWbp from selected coagulase-positive staphylococci mediated coagulation in a host-dependent manner indicative of host-adaptive evolution. Taken together, we have determined the genetic and evolutionary basis of staphylococcal coagulation, revealing vWbp to be its archetypal determinant.

IMPORTANCE The ability of some species of staphylococci to promote coagulation of plasma is a key pathogenic and diagnostic trait. Here, we provide a comprehensive analysis of the coagulase positivity of the staphylococci and its evolutionary genetic basis. We demonstrate that the von Willebrand binding protein rather than staphylocoagulase is the archetypal coagulation factor of the staphylococci and that the vwb gene has been acquired several times independently during the evolution of the staphylococci. Subsequently, vwb has undergone adaptive diversification to facilitate host-specific functionality. Our findings provide important insights into the evolution of pathogenicity among the staphylococci and the genetic basis for a defining diagnostic phenotype.

KEYWORDS Staphylococcus, coagulase, coagulase-positive staphylococci, coagulation, diagnostics, evolution, host specificity, phylogeny, von Willebrand binding protein

Copyright © 2021 Pickering et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to J. Ross Fitzgerald, ross.fitzgerald@ed.ac.uk.

* Present address: Mariya I. Goncheva, Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Bryan A. Wee, Usher Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom; Alison C. MacFadyen, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom; Lukas F. Muehlbauer, University of Edinburgh, Edinburgh, Scotland, United Kingdom.

Evolutionary and Functional Analysis of Coagulase Positivity among the Staphylococci @rossfitz.

Received 23 April 2021; Accepted 30 June 2021; Published 4 August 2021.
eight described coagulase-positive staphylococci (CoPS) including *Staphylococcus argenteus*, *Staphylococcus cornubiensis*, *Staphylococcus delphini*, *Staphylococcus intermedius*, *Staphylococcus lutrae*, *Staphylococcus pseudintermedius*, *Staphylococcus coagulans*, and *Staphylococcus schweitzeri*, with *Staphylococcus agnetis*, *Staphylococcus chromogenes*, and *Staphylococcus hyicus* described as coagulase variable (2, 3). To date, the basis for the coagulation phenotype has been examined only for *S. aureus* with staphylocoagulase (Coa) considered to be the classical mediator of coagulation. However, the von Willebrand binding protein (vWbp) also exhibits coagulase activity (4, 5). Of note, a staphylococcal pathogenicity island (SaPI)-encoded vWbp associated with ruminant or equine strains of *S. aureus* confers the ability to coagulate plasma from their cognate host species, demonstrating a role for SaPI-encoded vWbp in host adaptation (6, 7).

For both *S. aureus* Coa and vWbp, which contain 26.3% amino acid identity in strain Newman, the N-terminal D1 and D2 domains are sufficient for the coagulation of plasma via the nonproteolytic activation of prothrombin, which in turn cleaves fibrinogen to form insoluble fibrin, thus promoting clot formation (Fig. 1) (8, 9). Allelic variation of the D1 and D2 domains in both Coa and vWbp is associated with attenuated binding efficiencies to prothrombin from different host species, underpinning the host species-dependent coagulation observed (5, 10–12). For *S. aureus*, mediators of coagulation promote bacterial survival in fibrin clots, allowing persistence in a murine subcutaneous infection model and bacterial dissemination in a murine bloodstream infection model (13–15). Both *coa* and *vwb* genes are also required for the development of kidney microabscesses during invasive disease (14, 16, 17). The key role of both Coa and vWbp in the pathogenesis of *S. aureus* disease suggests that the capacity for coagulation of plasma by other staphylococci is likely to be relevant to pathogenicity (8). A recent study used PCR to identify genes more similar to *vwb* than *coa* among four non-*aureus* CoPS (18). Furthermore, a recombinant form of a protein encoded by *S. pseudintermedius* orthologous to vWbp of *S. aureus* was demonstrated to have coagulase activity (19). However, the evolutionary genetic and functional basis of the coagulase phenotype for non-*aureus* staphylococci has not been examined to date.

Here, we perform a comprehensive analysis of the coagulation capacity of 54 representative staphylococcal species and subspecies in plasma from multiple host species. Combining comparative genomic, evolutionary, and functional analyses, we examined...
The molecular basis for coagulation among CoPS. Importantly, we demonstrate that vWbp is the archetypal coagulation factor of CoPS, whereas the classical Coa is limited to members of the \textit{S. aureus} complex only. Acquisition of the \textit{vwb} gene occurred on four independent occasions during the evolutionary history of the staphylococci and was followed by diversification via recombination and host-specific functional specialization. Taken together, these findings reveal the evolutionary history of a key diagnostic and pathogenic trait of staphylococci.

RESULTS

Comprehensive examination of CoPS and host species-associated coagulation. Of the 71 known staphylococcal species and subspecies that comprise the \textit{Staphylococcus} genus (1), 12 are reported to mediate coagulation of rabbit plasma (2). However, our previous findings indicate host-dependent variation in susceptibility to plasma coagulation (6, 7). Here, we investigated the capacity for 51 representative staphylococcal species and 3 subspecies to mediate coagulation of plasma from six host species including human, canine, equine, porcine, avian, and rabbit (see Table S1 in the supplemental material). We also included five \textit{Mammaliicoccus} species previously classified as members of the family \textit{Staphylococcaceae} (20). A coagulation phenotype was observed for 13 staphylococcal species in plasma from at least one host species (Table 1). Unexpectedly, \textit{Staphylococcus condimenti}, previously determined to be coagulase negative (21), exhibited coagulation of equine plasma. Considerable variation was observed in the capacity for different staphylococcal species to coagulate plasma from different host species, with coagulation of human plasma restricted to \textit{S. aureus}, \textit{S. chromogenes}, and \textit{S. schweitzeri} (Table 1). Of note, \textit{S. condimenti} and \textit{S. hyicus} did not coagulate rabbit plasma (traditionally used for identifying the coagulase phenotype in clinical diagnostic labs) but mediated coagulation of plasma from other host species. Furthermore, the time to coagulation mediated by CoPS varied from 2 to 24 h according to host species (Table 1). In summary, this genus-wide analysis of coagulation using plasma from multiple host species reveals considerable variation in the efficiency of plasma coagulation depending on the host species and suggests a revision of the group of CoPS to include \textit{S. condimenti}.

The capacity for coagulase activity was acquired on multiple occasions during the evolution of the staphylococci. To examine the distribution of CoPS species across the staphylococcal phylogeny, we constructed the most comprehensive species phylogeny to date based on 231 concatenated core genes present in 50 staphylococcal species (five of which included two subspecies each) for which the whole-genome sequences were available (Table S2). CoPS are distributed into three distinct clades including the \textit{S. aureus} complex (\textit{S. aureus}, \textit{S. argenteus}, and \textit{S. schweitzeri} [22]), the Hyicus group containing coagulase-
variable species (S. hyicus, S. agnetis, and S. chromogenes [3, 23, 24]), and the Intermedius group (S. intermedius, S. delphini, S. pseudintermedius, S. cornubiensis, Staphylococcus ursi, S. lutrae, S. schleiferi, and S. coagulans [25–28]), as previously described (Fig. 2) (28–30).

To investigate the genetic basis for the coagulase-positive phenotype, we examined the genus-wide distribution of genes known to encode proteins with coagulase activity (Fig. 2). Unexpectedly, we found that the coa gene (encoding the classical staphylocoagulase) was restricted to the S. aureus complex, but the vwb gene was identified among all CoPS in addition to coagulase-negative staphylococcus (CoNS) S. schleiferi (Fig. 2). The vwb genes were identified at distinct genomic locations in each coagulase-positive clade, suggesting that acquisition occurred independently via horizontal transfer on at least four occasions (Fig. 2). S. agnetis and S. hyicus each have two vwb copies.
in tandem, presumably as a result of a gene duplication event that occurred prior to divergence of these two closely related species. S. lutrae also carries two copies of vwb, one in the same genomic location as the other members of the Hyicus clade and the second copy in a unique genomic location (Fig. 2). Taken together, we infer that vwb was acquired on multiple occasions during the evolutionary history of the staphylococci, leading to the emergence of distinct groups of CoPS.

The presence of the vwb gene in S. condimenti (and the lack of a vwb gene in the closely related species Staphylococcus camosus) indicates an independent acquisition during the evolution of this species, which correlates with the capacity to coagulate equine plasma as identified in the current study (Table 1). The presence of the vwb gene in both the Hyicus and Intermedius coagulase-positive clades, and the absence of coa, suggested that vWbp may be the mediator of coagulation for these species.

vWbp diversification has occurred via mutation, recombination, and duplication. To investigate the diversity and relatedness of the vwb and coa genes among the CoPS, a phylogenetic tree was constructed based on sequences extracted from genomes representing 41 non-S. aureus species (Table S2), and 802 S. aureus, S. schweitzeri, and S. argenteus genomes (31). From those, we selected representative copies of each phylogenetic cluster within the S. aureus complex to avoid redundancy, leaving a total of 12 Coa and 129 vWbp protein sequences from 11 species across the three CoPS clades (Fig. 3). vWbp sequences form four distinct clusters that correspond to chromosomal genes from the Hyicus (n = 8) and Intermedius (n = 32) clades, the S. aureus complex (n = 51), and SaPI-associated genes from S. aureus (n = 37), respectively. The only vWbp copy from the only S. condimenti genome was most closely related to the Hyicus clade vWbp copies (Fig. 3). The vWbp clades are more closely related to each other (34.7% average pairwise protein similarity between the full-length vWbp alleles of the Hyicus and Intermedius clades) than to the S. aureus Coa protein (22.6% and 21.6% average pairwise protein similarity between the full-length Coa and vWbp alleles of the Hyicus and Intermedius clades, respectively), which forms a monophyletic clade indicating a distinct evolutionary history (Fig. 3; also see Table S3). The topology of the vWbp Hyicus and Intermedius clades correlates with the species distribution in the core genome-based Staphylococcus genus phylogeny (Fig. 2), consistent with an ancient independent acquisition by progenitors of the Hyicus and Intermedius clades, followed by evolution according to species and a low degree of interspecies gene exchange (Fig. 3). The exception to this were the paralogous vwb genes in S. agnetis and S. hyicus, which have distinct evolutionary histories compared to the ancestral chromosomal copy, whereas the S. lutrae vwb copies clustered together in the phylogeny, consistent with gene duplication since speciation (Fig. 3).

Previously, it was shown that recombination has contributed to the evolution of the coa genes among S. aureus isolates (12). In order to examine the impact of recombination on the evolutionary history of the vwb gene in the S. aureus complex, we employed both RDP4 and FastGEAR analysis using a 100-bp sliding window approach on 39 vwb gene sequences representing the breadth of sequence diversity. This analysis revealed high levels of recombination affecting the N-terminal D1 and D2 coagulation domains, explaining the lower pairwise protein similarity observed in the S. aureus complex for the D1 and D2 domains, in comparison to full-length vWbp (Fig. 4; Table S3). Of note, S. aureus complex chromosomal vwb copies exhibited extensive sequence admixture between S. aureus, S. argenteus, and S. schweitzeri consistent with a shared ecology providing opportunities for horizontal gene transfer and recombination (Fig. 4).

Taken together, we identified a complex evolutionary history of the vwb gene with evidence for diversification of vwb in a species-dependent manner in the Hyicus and Intermedius clades. In contrast, a high degree of recombination between the members of the S. aureus complex has generated extensive allelic diversity of vwb.

vWbp is the archetypal coagulation factor of the staphylococci. From our phylogenetic analysis of the distribution of genes encoding coagulase activity, and the correlation of the vwb gene with coagulase positivity, we hypothesized that vwb is the main...
mediator of coagulation in the *Staphylococcus* genus. To date, the capacity for vWbp from non-*aureus* CoPS to mediate coagulation has not been tested. Accordingly, we produced recombinant vWbp variants derived from CoPS species including human *S. aureus* Newman, canine *S. pseudintermedius* ED99, avian *S. intermedius* ATCC 29663, equine *S. delphini* 8086, and porcine *S. hyicus* ATCC 11249 in addition to Coa from...
S. aureus Newman and tested their capacity to promote coagulation of plasma from an array of different host species in dose-dependent assays (Fig. 5; Table 2; Fig. S1 to S3) (23, 32–35). Each variant had the capacity to mediate plasma coagulation from their cognate host species, though there was considerable variation in the capacity to coagulate plasma from other species (Fig. 5; Table 2). Overall, the activity was similar to that observed for the parent bacterial species (Table 1), consistent with vWbp being the key mediator of coagulation in non-aureus staphylococci.

To confirm this in a representative CoPS species of clinical relevance, we constructed a vwb deletion mutant in S. pseudintermedius ED99 (34), reintroduced the vwb gene to produce a repaired derivative strain, and also employed single and double mutants of vwb and coa in S. aureus strain Newman (16). Single deletions of the vwb and coa genes in S. aureus Newman did not ablate plasma coagulation, with deletion of both genes required for loss of the coagulation phenotype (Fig. 6A). In contrast, deletion of vwb in S. pseudintermedius (ED99Δvwb) resulted in loss of ability to coagulate plasma after 24 h whereas the isogenic wild-type and ED99Δvwb repaired strain produced complete clots.
after 2 h (Fig. 6A). Furthermore, antibodies specific for vWbp delayed coagulation in a dose-dependent manner, confirming that vWbp mediates plasma coagulation by S. pseudintermedius ED99 (Fig. 6B). These data demonstrate that vWbp is required for the coagulase positivity of S. pseudintermedius.

Taken together, these evolutionary and functional data support the hypothesis that vWbp is the major determinant of coagulase positivity among staphylococci. For the S. aureus complex species only, Coa provides redundancy in coagulase activity. In addition, allelic diversification has resulted in host-adaptive evolution supporting the capacity of CoPS to adapt to different host niches.

DISCUSSION

The ability to coagulate plasma is considered a defining phenotype for the identification of the major human pathogen S. aureus. Furthermore, the importance of
coagulases Coa and vWbp in S. aureus pathogenesis is well established for catheter-related biofilm formation and bacterial survival during bloodstream infections (13, 15, 36, 37). However, the evolutionary and genetic basis of coagulation for non-
aureus staphylococci or its role in pathogenesis had not been dissected previously. Here, we have performed a comprehensive phylogenetic and functional analysis of coagulase positivity among the staphylococci. The ability to coagulate plasma has evolved on multiple occasions across the genus via independent acquisitions of the vwb gene whereas the coa gene was likely acquired on a single occasion by an ancestor of the S. aureus complex (Fig. 2). Our functional analyses demonstrated that the vwb gene identified among CoPS mediates coagulation of plasma in a host-dependent manner and is solely responsible for the coagulase phenotype in a representative non-
aureus species, S. pseudintermedius (Fig. 5 and 6). Taken together, these data suggest that vWbp is the archetypal coagulation factor of the Staphylococcus genus.

We identified extensive allelic diversity and recombination of the vwb gene among members of the S. aureus complex (Fig. 3), consistent with an overlapping habitat for S. aureus, S. argenteus, and S. schweitzeri (Fig. 4). A previous study has demonstrated gene flow between S. aureus and S. argenteus via recombination, driven by a possible shared ecological niche in livestock (38). In spite of the evidence for horizontal transfer of vwb sequences, SaPI-encoded variants of vWbp were restricted to S. aureus, which may reflect its multihost ecology and the role of vWbp in host adaptation (Fig. 3) (6). However, whole-genome sequencing of other species is very limited compared to S. aureus, and expanded sequencing of S. pseudintermedius, S. sanguinis, and S. argenteus isolates may reveal novel variants. Of note, extensive variation and evidence for recombination have previously been reported for the coa gene of S. aureus and S. argenteus (12, 39, 40). In contrast, our vwb phylogenetic analysis for non-
aureus staphylococci supported a model of initial vwb gene acquisition followed by diversification according to species via mutation rather than interspecies recombination (Fig. 3).

In order to examine the possibility that the allelic variation of vwb between staphylococcal species in part reflected the independent evolution within distinct host ecologies, we examined the coagulase activity of recombinant vWbp from representative CoPS species in plasma from six different host species. In each case, recombinant vWbp variants exhibited coagulation of plasma from their cognate host species and various levels of coagulation from other host species (Table 2; Fig. 5). The host species-dependent activity of vWbp presumably reflects variation in the sequence of prothrombin, the main substrate for vWbp (10, 11). Overall, these data indicate that vwb has undergone adaptive evolution to facilitate functional activity in its preferred host species, highlighting an important role for vWbp in host-pathogen interactions.

The coagulase test has been used since the 1940s to distinguish the virulent S. aureus from less-virulent CoNS (41). Since the 1970s, additional CoPS have been identified, largely associated with infections of animals (33), and the coagulase test has been widely used in human and veterinary medicine. Although the coagulase test is still commonly used, particularly in resource-poor settings around the world, molecular

TABLE 2 Minimal concentration of recombinant vWbp or Coa protein required to coagulate plasma after 24 h

Protein	Minimal concn (µg ml⁻¹) for plasma type:					
	Human	Canine	Equine	Porcine	Avian	Rabbit
Coa aureus	25	50	25	25	25	
vWbp aureus	25	25	50	25	25	5
vWbp intermedium	25	5	25	25	5	
vWbp pseudintermedius	25	25	50	25	25	5
vWbp delphini	5	5	25	25	5	
vWbp phyicus	25	50				

*Values are the minimal concentration of recombinant protein required to induce coagulation after 24 h. Recombinant protein was applied to PBS-diluted plasma at 50, 25, 5, or 1 µg ml⁻¹.
genetic or proteomic approaches have largely supplanted biochemical testing (42). Our findings suggest that vwb sequence analysis to identify alleles associated with specific CoPS would offer a robust and simple diagnostic approach for the identification of CoPS to species level and should be performed when describing novel staphylococcal species. Of 14 species that contained a vwb gene, *S. schleiferi* was the only one which

Strain	Human	Canine
ED99	-	++++
ED99Δvwb	-	-
ED99Δvwb Rep	-	++++
Newman	++++	+
NewmanΔcoa	++++	+
NewmanΔvwb	++++	+
NewmanΔcoaΔvwb	-	-

Coagulating activity observed after 24 h (+) or 2 h (+++++) of incubation. No coagulating activity detected after 24 h (-).

FIG 6 vwb is required for the coagulase phenotype of *S. pseudintermedius* ED99. (A) Coagulation assay of wild-type and mutant strains of *S. pseudintermedius* ED99 and *S. aureus* Newman in human and canine plasma. Average data are provided from three biological replicates. (B) Antibody (Ab)-mediated inhibition of coagulation in canine plasma using ED99 wild type in the presence of increasing concentrations of anti-vWbp*<i>pseudintermedius</i>* antibody. The mean values are given from three experiments with error bars representing standard deviation (n = 3).
did not exhibit a coagulase phenotype. This may reflect lack of gene expression or a distinct host tropism that was not represented among the plasma samples included, and analysis of additional isolates would be required to address this. Similarly, an understanding of the genetic basis for the variation in coagulase positivity among some staphylococcal species would require genomic analysis of more isolates. Of note, we examined the genome sequences of the newly identified *Staphylococcus durrellii*, *Staphylococcus lloydii*, and *Staphylococcus pseudoxylous* type strains and did not identify a *vwb*-like gene, consistent with their characterization as CoNS (43, 44). Furthermore, the genome of the recently identified *Staphylococcus ursi* type strain MI 10-1553\(^7\), reported as a CoNS of the otherwise coagulase-positive Intermedius clade, contains a *vwb*-like remnant consistent with a deletion event that abrogated the ability to coagulate plasma (26).

In conclusion, the current study provides the first comprehensive genetic and functional analysis of the coagulation capacity of the *Staphylococcus* genus. We propose that vWbp, rather than Coa, is the archetypal coagulation factor of CoPS across the genus with the *vwb* gene acquired independently on multiple occasions, leading to distinct coagulase-positive clades within the *Staphylococcus* phylogeny. Diversification of the *vwb* gene has occurred via mutation or recombination generating allelic diversity, which in part reflects adaptive evolution to enable functionality of vWbp in the preferred host species, suggesting a key role in host-pathogen interactions. Taken together, our findings provide clarity into the evolutionary genetic and functional basis for a defining diagnostic and pathogenic phenotype of the *Staphylococcus* genus.

MATERIALS AND METHODS

Phylogenetic analysis. Whole-genome sequences of the staphylococcal and mammalicoccal type strains were obtained from NCBI (see Table S2 in the supplemental material). Each genome was annotated with Prokka v1.12 (45), and a core genome alignment was generated using Roary v3.12 (46), based on a minimum percent identity cutoff of 80. The core genome alignment was then used to build a maximum likelihood phylogenetic tree with FastTree v2.1.7 (47). Coagulase and vWbp amino acid sequences were extracted using Protein BLAST (blastp) from the reference whole-genome sequences from a genome sequence data set representative of the global *S. aureus* diversity (31). Sequences were aligned using the ProbCons algorithm (48) implemented in Jalview v2 (49). Phylogenetic trees were constructed using FastTree, and recombination analysis was performed using the programs Recombination Detection Program (RDP4) (50) and FastGEAR (51). Average pairwise protein similarities were calculated using MEGA X v10.1.8 (52) after classifying the D1 and D2 domains using the Conserved Domain Detection Program (RDP4) (50) and FastGEAR (51).

Coagulation assay. The bacterial strains used for coagulation assays are detailed in Table S1. All strains were cultured overnight in brain heart infusion (BHI) broth at 37°C with shaking. For bacterial coagulation assays, the cells were diluted in phosphate-buffered saline (PBS) to an optical density at 600 nm (OD\(_{600}\)) of 1.0. For recombinant protein coagulation assays, each recombinant protein was diluted in PBS to the required concentration using the Nanodrop ND-1000 spectrophotometer. Plasma from all hosts was sourced from SeraLab, Lampire, or BioIVT in sodium citrate and diluted 1:3 in PBS before use. Coagulation was tested by mixing 190 \(\mu\)l of diluted plasma with 10 \(\mu\)l of recombinant protein or bacterial cells in sterile borosilicate glass tubes. All coagulation assays were performed statically at 37°C in biological triplicate with the level of coagulation observed at 1, 2, 4, 6, and 24 h by tilting the tubes. Antibody blocking of coagulation was performed using IgY antibody generated against vWbp\(^{pseudointermedius}\) after lipopolysaccharide (LPS) removal (Gallus Immunotech) at a concentration of 5, 2, 1, 0.5, or 0.1 mg in the 200-\(\mu\)l reaction mixture with concentrated supernatant.

Allelic replacement of *S. pseudintermedius* ED99. Mutant and repaired strains of *S. pseudintermedius* ED99 were generated using the allele replacement plasmid pIMAY and the primers detailed in Table S4, as described previously (54, 55). Briefly, the upstream and downstream flanking regions of the *vwb* gene were amplified by PCR and annealed by splicing PCR to generate a deleted form of the gene. For the repaired mutant, primers were designed to amplify the full-length *vwb* gene in addition to upstream and downstream flanking regions with a synonymous mutation introduced into the *vwb* gene to allow identification of the repaired strain in comparison to the wild type. Restriction digestion with EcoRI (NEB) and T4 ligase (NEB) into pIMAY was carried out prior to transformation of the pIMAY::vwb and pIMAY::vwb Rep constructs into *Escherichia coli* DC108 cells, followed by transformation into *S. pseudintermedius* ED99 or ED99::vwb. Allele replacement was performed as previously described (53), and genetically manipulated strains were validated by whole-genome sequencing, growth analysis in BHI using a FLUOstar Optima microplate reader (600 nm), and Western blot analysis of vWbp expression using 5 \(\mu\)g ml\(^{-1}\) anti-vWbp\(^{pseudointermedius}\) IgY and 0.5 \(\mu\)g ml\(^{-1}\) Fab\(^1\), rabbit anti-chicken IgG-horseradish peroxidase (HRP) (Bethyl Laboratories).

Expression and purification of recombinant proteins. The N-terminal amino acids are important for the function of coagulase, with N-terminal modification of vWbp impairing coagulation efficiency
(56). In order to use the C-terminal His tag expression construct pET21b with the Nhel site, all additional plasmid N-terminal amino acids (Met-Ala-Ser-Met) were removed from the plasmid using pET21b-specific primers (Table S4). This modified plasmid was used to clone web^{pre}, vwb^{pre}, and coa^{pre}. All pET21b constructs were produced using standard restriction digestion and Nhel, NdeI, and XhoI (NEB) and T4 ligase (NEB) procedures. Expression constructs were expressed in BL21(DE3) E. coli cells (NEB) using 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) for 4 h at 37°C. Cell lysates were produced at 20 kpsi using a One Shot cell disruptor (Constant Systems). All recombinant proteins underwent two purification steps using the high-performance liquid chromatography (HPLC) Äkta system (GE Healthcare): first, immobilized metal affinity chromatography with 1 ml Ni-nitrilotriacetic acid (NTA) superflow columns (Qiagen) in either native or denaturing purification buffers, and second, ion-exchange chromatography using Q Sepharose (GE Healthcare) for positively charged proteins or SP Sepharose (GE Healthcare) for negatively charged proteins. All proteins were dialyzed to PBS using Float-A-Lyzers (Spectrum Laboratories) and analyzed by SDS-PAGE.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

Fig S1, DOCX file, 0.6 MB.

Fig S2, DOCX file, 0.6 MB.

Fig S3, DOCX file, 0.6 MB.

Table S1, DOCX file, 0.01 MB.

Table S2, DOCX file, 0.01 MB.

Table S3, DOCX file, 0.01 MB.

Table S4, DOCX file, 0.01 MB.

ACKNOWLEDGMENTS

J.R.F. was funded by institute strategic grant funding ISP2: BBS/E/D/2002173 and BBS/E/D/20002174 from the Biotechnology and Biological Sciences Research Council (United Kingdom), SHIELD grant MR/N02995X/1 from the Medical Research Council (United Kingdom), and a Wellcome Trust collaborative award 201531/Z/16/Z. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

We thank Anthony Chow for the provision of a number of staphylococcal species for this study.

These authors contributed to the design of the study: A.C.P., G.Y., R.A.C., J.R.F.; these authors contributed to the acquisition, analysis, or interpretation of the data: A.C.P., G.Y., X.G., M.I.G., B.A.W., A.C.M., L.F.M., J.A., R.A.C., G.K.P., J.R.F.; these authors contributed to the writing of the manuscript: A.C.P., G.Y., B.A.W., J.R.F.

REFERENCES

1. Parle AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. 2020. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607–5612. https://doi.org/10.1099/ijsem.0.004332.

2. González-Martín M, Corbera JA, Suárez-Bonnet A, Tejedor-Junco MT. 2020. Virulence factors in coagulase-positive staphylococci of veterinary interest other than *Staphylococcus aureus*. Vet Q 40:118–131. https://doi.org/10.1080/01652176.2020.1748253.

3. dos Santos DC, Lange CC, Avellar-Costa P, dos Santos KRN, Brito MAVP, Giambiagi-deMarval M. 2016. *Staphylococcus chromogenes*, a coagulase-negative *Staphylococcus* species that can clot plasma. J Clin Microbiol 54:1372–1375. https://doi.org/10.1128/JCM.03139-15.

4. Smith W, Hale JH. 1944. The nature and mode of action of *Staphylococcus* coagulase. Br J Exp Pathol 25:101–110.

5. Bjerketorp J, Jacobsson K, Frykberg L. 2004. The von Willebrand factor-binding protein (vWbp) of *Staphylococcus aureus* is a coagulase. FEMS Microbiol Lett 234:309–314. https://doi.org/10.1016/j.femsle.2004.03.040.

6. Viana D, Blanco J, Tormo-Más Má, Selva L, Guinnane CM, Baselga R, Corpa JM, Lasa I, Novick RP, Fitzgerald JR, Penadés JR. 2010. Adaptation of *Staphylococcus aureus* to ruminant to mediate host interactions involves SaPI-carried variants of the von Willebrand factor-binding protein. Mol Microbiol 77:1583–1594. https://doi.org/10.1111/j.1365-2958.2010.07312.x.

7. Guinnane CM, Ben Zakour NL, Tormo-Más MA, Weinert LA, Lowder BV, Cartwright RA, Smyth DS, Smyth CJ, Lindsay JA, Gould KA, Witney A, Hinds J, Bollback JP, Rambaut A, Fitzgerald JR. 2010. Evolutionary genomics of *Staphylococcus aureus* reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol Evol 2:454–466. https://doi.org/10.1093/gbe/evq031.

8. McAdow M, Missiakas DM, Schneewind O. 2012. *Staphylococcus aureus* secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. J Innate Immun 4:141–148. https://doi.org/10.1159/0003335447.

9. Kroh HK, Panizzi P, Bock PE. 2009. Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc Natl Acad Sci U S A 106:7786–7791. https://doi.org/10.1073/pnas.0811750106.

10. Raus J, Love DN. 1991. Comparison of the affinities to bovine and human prothrombin of the staphylocoagulas from *Staphylococcus intermedius* and *Staphylococcus aureus* of animal origin. J Clin Microbiol 29:570–572. https://doi.org/10.1128/jcm.29.3.570-572.1991.

11. Friedrich R, Panizzi P, Kawabata S-I, Bock PE, Missiakas DM. 2006. Structural basis for reduced staphylococcal-mediated bovine prothrombin activation. J Biol Chem 281:1188–1195. https://doi.org/10.1074/jbc.M507957200.

12. Watanabe S, Ito T, Sasaki T, Li S, Uchiyama I, Kishii K, Kikuchi K, Skov RL, Hiramatsu K. 2009. Genetic diversity of staphylocoagulase genes (*coa*⁺) in *Staphylococcus aureus*. PLoS One 4:e5714. https://doi.org/10.1371/journal.pone.0005714.
plasma is an immune evasion mechanism for persistence within the fibrin network. Microbiol. (Reading) 161:621–627. https://doi.org/10.1099/mic.0.000019.

14. McAdow M, Kim HK, DeDent AC, Hendrickz APA, Schneewind O, Missiakas DM. 2011. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog 7:e1002307. https://doi.org/10.1371/journal.ppat.1002307.

15. Thomsen A, Emoto C, Thammarongsa V, Kim HK, McAdow ME, Yu W, Kieffer M, Schneewind O, Missiakas D. 2016. Antibodies against a secreted product of Staphylococcus aureus trigger phagocytic killing. J Exp Med 213:293–301. https://doi.org/10.1084/jem.20150074.

16. Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. 2010. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 6:e1001036. https://doi.org/10.1371/journal.ppat.1001036.

17. Cheng AG, DeDent AC, Schneewind O, Missiakas D. 2011. A play in four acts: Staphylococcus aureus abscess formation. Trends Microbiol 19:225–232. https://doi.org/10.1016/j.tim.2011.01.007.

18. Chmaga AA, Abd Al-Albas MA. 2019. Comparison between the coagulase (Coe and wvb) genes in Staphylococcus aureus and other staphylococci. Gene Rep 16:100410. https://doi.org/10.1016/j.genrep.2019.100410.

19. Sewid AH, Hassan MN, Ammar AM, Bemis DA, Kania SA. 2018. Identification, cloning and characterization of Staphylococcus pseudintermedius coagulase. Infect Immun 86:e00027-18. https://doi.org/10.1128/IAI.00027-18.

20. McAdow M, Kim HK, DeDent AC, Hendrickz APA, Schneewind O, Missiakas DM, Schneewind O. 2011. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog 7:e1002307. https://doi.org/10.1371/journal.ppat.1002307.

21. Probst AJ, Hertel C, Richter L, Wassill L, Ludwig W, Hammes WP. 1998. Evolution of the Staphylococcus aureus arginine arylamidase. FEMS Microbiol Lett 161:75–82. https://doi.org/10.1111/j.1365-3164.2005.01506.x.

22. Taponen S, Supré K, Piessens V, Van Coillie E, De Vliegher S, Koort JMK. 2020. Phylogenomic analyses of Staphylococcus aureus clonal complexes (ST1223, ST2198, and ST2550) and a novel staphylocoagulase genotype-fi. Vet Dermatol 31:171. https://doi.org/10.1111/vde.12275.

23. Devriese LA, Hajek V, Oeding P, Meyer SA, Schleifer KH. 1978. Coagulase activity in Staphylococcus aureus: differential antigenicity. J Gen Microbiol 103:69–77. https://doi.org/10.1099/00221287-6-1-95.

24. Taponen S, Supré K, Piessens V, Van Coillie E, De Vliegher S, Koort JMK. 2020. Phylogenomic analyses of Staphylococcus aureus clonal complexes (ST1223, ST2198, and ST2550) and a novel staphylocoagulase genotype-fi. Vet Dermatol 31:171. https://doi.org/10.1111/vde.12275.

25. Váradi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, Groundwater PW. 2017. Methods for the detection and identification of Staphylococcus aureus: a review. J Med Microbiol 66:85–91. https://doi.org/10.1099/jmm.0.008699.

26. Madhaiyan M, Wirth JS, Saravanan VS. 2020. Phylogenetic relationships among Staphylococcus aureus and other staphylococci. Microbiol. (Reading) 161:621–627. https://doi.org/10.1099/mic.0.000019.

27. Irving F, Beale J, Bemis D, Kania S. 2016. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 6:e1001036. https://doi.org/10.1371/journal.ppat.1001036.

28. Becker K, Heilmann C, Peters G. 2014. Coagulase-negative staphylococci. Microbiol. (Reading) 161:621–627. https://doi.org/10.1099/mic.0.000019.

29. Probst AJ, Hertel C, Richter L, Wassill L, Ludwig W, Hammes WP. 1998. Evolution of the Staphylococcus aureus arginine arylamidase. FEMS Microbiol Lett 161:75–82. https://doi.org/10.1111/j.1365-3164.2005.01506.x.

30. Madhaiyan M, Wirth JS, Saravanan VS. 2020. Phylogenomic analyses of Staphylococcus aureus clonal complexes (ST1223, ST2198, and ST2550) and a novel staphylocoagulase genotype-fi. Vet Dermatol 31:171. https://doi.org/10.1111/vde.12275.
49. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. https://doi.org/10.1093/bioinformatics/btp033.

50. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. 2015. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:ev003. https://doi.org/10.1093/ve/evv003.

51. Mostowy R, Croucher NJ, Andam CP, Corander J, Hanage WP, Marttinen P. 2017. Efficient inference of recent and ancestral recombination within bacterial populations. Mol Biol Evol 34:1167–1182. https://doi.org/10.1093/molbev/msx066.

52. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096.

53. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GB, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ, Marchler-Bauer A. 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–D268. https://doi.org/10.1093/nar/gkaa291.

54. Monk IR, Tree JJ, Howden BP, Stinear TP, Foster TJ. 2015. Complete bypass of restriction systems for major Staphylococcus aureus lineages. mBio 6:e00308-15. https://doi.org/10.1128/mBio.00308-15.

55. Pietrocola G, Gianotti V, Richards A, Nobile G, Geoghegan JA, Rindi S, Monk IR, Bordt AS, Foster TJ, Fitzgerald JR, Speziale P. 2015. Fibronectin binding proteins SpsD and SpsL both support invasion of canine epithelial cells by Staphylococcus pseudintermedius. Infect Immun 83:4093–4102. https://doi.org/10.1128/IAI.00542-15.

56. Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, Kawabata S-I, Huber R, Bode W, Bock PE. 2003. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425:535–539. https://doi.org/10.1038/nature01962.