Bounding the Porous Exponential Domination Number of Apollonian Networks *

Joshua Beverly Mariah Farley Christopher McClain Felicia Stover
Concord University
September 22, 2014

MSC: 05C12, 05C69
Key words: graph theory, domination, Apollonian network

Abstract

Given a graph G with vertex set V, a subset S of V is a dominating set if every vertex in V is either in S or adjacent to some vertex in S. The size of a smallest dominating set is called the domination number of G. We study a variant of domination called porous exponential domination in which each vertex v of V is assigned a weight by each vertex s of S that decreases exponentially as the distance between v and s increases. S is a porous exponential dominating set for G if all vertices in S distribute to vertices in G a total weight of at least 1. The porous exponential domination number of G is the size of a smallest porous exponential dominating set. In this paper we compute bounds for the porous exponential domination number of special graphs known as Apollonian networks.

1 Introduction

Exponential domination was first introduced in [3] and further studied in [1]. Apollonian networks and their applications were independently introduced in [2] and [4], and further studied in [8] and [9]. We refer the reader to [5] and [6] for a comprehensive treatment of the topic of domination in graphs and its many variants. General graph theoretic notation and terminology may be found in [7]. Given a graph G, we denote its set of vertices by $V(G)$ and its set of edges by $E(G)$. The degree of a vertex v in G is denoted by $d_G(v)$. The distance in G between vertices x and y, denoted by $d_G(x,y)$, is defined to be the length of a shortest path in G that joins x and y, if such a path exists, and infinity otherwise. The diameter of G, denoted $diam(G)$, is the largest such distance: $diam(G) = \max\{d_G(x,y) \mid x, y \in V(G)\}$.

Let G be a graph, $S \subseteq V(G)$, and $v \in V(G)$. The porous exponential domination weight of S at v is

$$w^*_S(v) = \sum_{u \in S} \frac{1}{2^{d_G(u,v)-1}}$$

and S is a porous exponential dominating set for G if $w^*_S(v) \geq 1$ for all $v \in V(G)$. The size of a smallest porous exponential dominating set for G is the porous exponential domination number of G, and is denoted by $\gamma^*_e(G)$. These definitions were first introduced in [3], although that paper is primarily concerned with another variant, $\gamma_e(G)$, called the nonporous exponential domination number of G. The key difference between porous exponential domination and nonporous exponential domination is whether the distribution of weights from S may “pass through” other vertices in S, as is evidenced by the slightly different definition of nonporous weight:

$$w_S(v) = \begin{cases}
\sum_{u \in S} \frac{1}{2^{d_G(u,v)-1}} & \text{if } v \notin S \\
2 & \text{if } v \in S
\end{cases}$$

*Research partially funded by CURM, the Center for Undergraduate Research, and NSF grant DMS-1148695
where \(f(u, v) \) is defined to be the length of a shortest path joining \(u \) and \(v \) in the subgraph induced by \(V(G) \setminus (S \setminus \{u\}) \) if such a path exists, and infinity otherwise. It is clear that \(\gamma^*_e(G) \leq \gamma_e(G) \).

Having defined porous exponential domination, we now define Apollonian networks. Let \(G_1 \) be a complete graph on three vertices and let \(U_1 = V(G_1) \). Let \(G_2 \) be a complete graph on four vertices such that \(U_1 \subseteq V(G_2) \), and let \(U_2 = V(G_2) \setminus V(G_1) \). For \(k > 2 \) we define \(G_k \) and \(U_k \) recursively by extending \(G_{k-1} \) and \(U_{k-1} \) as follows: for each \(u \in U_{k-1} \), and for each adjacent pair \(\{x, y\} \) of neighbors of \(u \) in \(G_{k-1} \), we create a new vertex \(v \in U_k \) that is adjacent to each of \(u, x, y \) in \(G_k \). (Consequently, \(u, v, x, \) and \(y \) are all pairwise adjacent in \(G_k \).) We call \(G_k \) the \(k \)th Apollonian network, and for \(1 \leq j \leq k \), we call \(U_j \) the \(j \)th generation of vertices in \(G_k \). Note that \(V(G_k) = \bigcup_{j=1}^{k} U_j \) and \(U_k = V(G_k) \setminus V(G_{k-1}) \). This recursive process is more easily visualized by starting with a particular planar embedding of \(G_1 \) and obtaining \(G_k \) from \(G_{k-1} \) by adding a new vertex to each interior face and triangulating, as shown in Figures 1 through 4. We note, however, that our formal definition above does not depend upon the planar embedding.

Before stating our main results, we record a few elementary facts based upon our construction of \(G_k \) and observation of small cases:

Remark 1.1. \(|U_1| = 3, |U_k| = 3^{k-2} \) for \(k > 1 \), and \(|V(G_k)| = \sum_{j=1}^{k} U_j = 3 + \sum_{j=0}^{k-2} 3^j = \frac{3^{k-1} + 5}{2} \).

Remark 1.2. \(|E(G_k)| = 3 + \sum_{j=2}^{k} 3|U_j| = 3 + \sum_{j=2}^{k} 3^{j-1} = \frac{3^k + 3}{2} \).

Remark 1.3. Since every vertex in \(V(G_3) \) is adjacent to the single vertex in \(U_2 \), we know that \(\gamma^*_e(G_3) = 1 \).

Remark 1.4. Let \(S \) be any pair of vertices from \(V(G_2) \). Since every vertex in \(V(G_5) \) is adjacent to at least one of the vertices in \(V(G_2) \) and every pair of vertices in \(V(G_2) \) is adjacent, we know that every vertex of \(V(G_5) \) is within distance 2 of both vertices in \(S \) and therefore \(\gamma^*_e(G_5) = 2 \). (See Figure 5.)

We further invite the reader to verify our observations and computations for the order, diameter, and porous exponential domination number of \(G_k \) for \(k \leq 7 \), as presented in Table 1 below.
Figure 5: G_5

Table 1: Observations for G_k, $k \leq 7$

| k | $|V(G_k)|$ | $|E(G_k)|$ | $diam(G_k)$ | $\gamma'_e(G_k)$ |
|-----|------------|------------|-------------|-----------------|
| 1 | 3 | 3 | 1 | 1 |
| 2 | 4 | 6 | 1 | 1 |
| 3 | 7 | 15 | 2 | 1 |
| 4 | 16 | 42 | 3 | 2 |
| 5 | 43 | 123 | 3 | 2 |
| 6 | 124 | 366 | 4 | 3 |
| 7 | 367 | 1095 | 5 | 3 |
2 Main Results

In Remark 1.4 we compute \(\gamma_\text{e}(G_5) = 2 \) by observation, but as \(k \) increases, the number of vertices increases exponentially and \(\gamma_\text{e} \) becomes increasingly difficult to compute by brute force. Thus, our main results in this paper are upper and lower bounds for \(\gamma_\text{e}(G_k) \). For all \(k \geq 6 \) we show that \(U_{k-3} \) is a porous exponential dominating set for \(G_k \), which proves the following:

Theorem 2.1. For \(k \geq 6 \), \(\gamma_\text{e}(G_k) \leq 3^{k-5} \).

We can improve upon this bound for \(k \geq 11 \) by constructing a porous exponential dominating set using all of the vertices of a smaller Apollonian network rather than just a generation. In particular, we dominate \(G_k \) with \(V(G_{k-7}) \) and prove the following:

Theorem 2.2. For \(k \geq 10 \), \(\gamma_\text{e}(G_k) \leq \frac{3^{k-5}+5}{2} \).

To establish a lower bound, we apply a theorem from [3] that bounds \(\gamma_\text{e}(G) \) from below in terms of \(\text{diam}(G) \). In order to do this, we compute \(\text{diam}(G_k) \) for all \(k \). This establishes the following:

Theorem 2.3. For all \(k \in \mathbb{N} \), \(\gamma_\text{e}(G_k) \geq \left\lceil \frac{2k+5}{12} \right\rceil \).

Before we can prove these theorems, we need some basic results about Apollonian networks.

3 Apollonian Networks

All of the vertices in \(G_2 \) are adjacent to each other, but for larger values of \(k \), the adjacencies are more restrictive. Recall that \(x \) is a neighbor of \(y \) in \(G \) if \(x \) is adjacent to \(y \) in \(G \), and the set of \(y \)’s neighbors in \(G \) is the neighborhood of \(y \) in \(G \), denoted \(N_G(y) \).

Lemma 3.1. For all \(k \geq 2 \), and for every vertex \(v \) in \(U_k \),

(i) \(v \) has no neighbor in \(U_k \)

(ii) \(v \) has a neighbor in \(U_{k-1} \)

(iii) \(v \) has exactly 3 distinct neighbors in \(V(G_{k-1}) \) and these vertices are also pairwise adjacent.

(iv) For all \(r < k \) and for all \(u \in U_r \), if \(u \) is adjacent to \(v \) then \(|N_{G_k}(u) \cap N_{G_k}(v)| = 2 \).

(v) if \(r < k \) and \(v \) has more than one neighbor in \(U_r \), then \(r = 1 \)

Proof. Parts (i), (ii), and (iii) follow directly from the construction of \(G_k \) because when a new vertex \(v \) is added to \(U_k \), it is made adjacent to a vertex \(u \) of \(U_{k-1} \) and two of \(u \)’s neighbors in \(V(G_{k-1}) \), say \(n_1 \) and \(n_2 \). By part (iii), if one of \(v \)’s neighbors is \(u \), then the other two are neighbors of both \(u \) and \(v \), and (iv) follows. We prove (v) by contradiction. Suppose that \(1 < r < k \) and two of \(u \), \(n_1 \), and \(n_2 \) are in \(U_r \). We know that \(u \in U_{k-1} \), so if \(k-1 - r > 1 \) then \(n_1, n_2 \notin U_r \) by part (i). If \(1 < r < k-1 \) then it must be that \(n_1 \) and \(n_2 \) are the two vertices in \(U_r \). But by the construction of \(G_{k-1} \), all three of \(u \)'s neighbors in \(G_{k-2} \) (including \(n_1 \) and \(n_2 \)) must be adjacent. This contradicts (i) for \(n_1 \in U_r \) since \(r > 1 \).

Corollary 3.2. For all \(k \geq 4 \) and for every vertex \(v \in U_k \), \(v \) has at least one neighbor in \(V(G_{k-3}) \).

Proof. By Lemma 3.1 part (iii), \(v \) has exactly 3 distinct neighbors in \(V(G_{k-1}) \), and these vertices are also pairwise adjacent. Denote these vertices by \(n_1 \), \(n_2 \), and \(n_3 \), and suppose that \(n_1 \in U_r \), \(n_2 \in U_s \), and \(n_3 \in U_t \), where \(r \leq s \leq t \leq k-3 \). Since \(k \geq 4 \), then \(k-3 \geq 1 \) and if \(r > k-3 \) then by pigeonhole principle, two of \(r \), \(s \), and \(t \) must be equal which contradicts Lemma 3.1 part (i). Therefore \(r \leq k-3 \) and \(n_1 \in V(G_{k-3}) \).

Given \(k \in \mathbb{N}, r < k, \) and \(v \in U_r \), define \(P_k(v) = \{ \{x, y\} \mid x \in U_k \text{ and } v, x, \text{ and } y \text{ are pairwise adjacent}\} \). This is the set of pairs of vertices, at least one of which is from the \(k \)th generation, that form triangles with \(v \) in \(G_k \), the very same triangles that will anchor the \((k+1)\)st generation of vertices. By the construction of \(G_{k+1} \), there is a one-to-one correspondence between \(P_k(v) \) and the \((k+1)\)st generation neighbors of \(v \). It follows that \(|P_k(v)| = |N_{G_{k+1}}(V) \cap U_{k+1}| \), in other words the number of \((k+1)\)st generation neighbors of \(v \). The next lemma states that the number of such neighbors doubles with every generation.

Lemma 3.3. For all \(k \in \mathbb{N}, \) for all \(r \leq k, \) and for all \(v \in U_r, \) \(|P_{k+1}(v)| = 2|P_k(v)| \).
Proof. By the construction of G_{k+1}, there is a one-to-one correspondence between $P_k(v)$ and the $(k + 1)$st generation neighbors of v. It follows that the members of $P_{k+1}(v)$ are precisely the pairs $\{z, x\}$ and $\{z, y\}$ where $z \in U_{k+1} \cap N_{G_{k+1}}(v)$ and $\{x, y\} \in P_k(v)$.

Corollary 3.4. For all $k \in \mathbb{N}$, for all $r \leq k$, and for all $v \in U_r$,

$$|P_k(v)| = \begin{cases} 3(2^{k-r}) & \text{when } r > 1 \\ 2^{k-1} & \text{when } r = 1 \end{cases}$$

Proof. We proceed by induction on k. If $k = 1$ then $r = 1$, then indeed for all $v \in U_1$, $|P_1(v)| = 1 = 2^{1-1}$. If $k > 1$ and $r = 1$ then, by Lemma 3.3, $|P_k(v)| = 2|P_{k-1}(v)| = 2(2^{k-2}) = 2^{k-1}$ by inductive hypothesis. If $k = 2$ and $r = 2$ then for the single vertex $v \in U_2$, $|P_2(v)| = 3 = 3(2^{1-1})$. If $k > 2$ and $r > 1$ then, by Lemma 3.3, $|P_k(v)| = 2|P_{k-1}(v)| = 2(3(2^{(k-1)-r})) = 3(2^{k-r})$ by inductive hypothesis.

Corollary 3.5. For all $k \geq 2$, and for all $v \in V(G_{k-1})$, v has a neighbor in U_k.

Proof. By the construction of G_k there is a one-to-one correspondence between $P_{k-1}(v)$ and the kth generation neighbors of v. By Corollary 3.4 $|P_{k-1}(v)|$ is nonnegative, and therefore v has a neighbor in U_k.

Corollary 3.6. For all $k \geq 2$, and for all $v \in V(G_k) \setminus U_{k-1}$, v has a neighbor in U_{k-1}.

Proof. If $v \in U_k$ then the result follows immediately from Lemma 3.1 part (ii). If $v \in U_r$, where $r \leq k - 2$ then the result follows from Corollary 3.5.

Lemma 3.7. For all $k \in \mathbb{N}$, for all $r \leq k$, and for all $v \in U_r$,

$$d_{G_k}(v) = \begin{cases} |P_k(v)| & \text{when } r > 1 \\ |P_k(v)| + 1 & \text{when } r = 1 \end{cases}$$

Proof. By the construction of G_{k+1}, there is a one-to-one correspondence between $P_k(v)$ and the $(k + 1)$st generation neighbors of v. It follows that for all $k \in \mathbb{N}$, for all $r \leq k$, and for all $v \in U_r$,

$$d_{G_{k+1}}(v) = d_{G_k}(v) + |P_k(v)|.$$

We now prove the lemma by induction on k. If $k = 1$ then $r = 1$ and $d_{G_1}(v) = 2 = 1 + 1 = |P_1(v)| + 1$. If $k > 1$ and $r = 1$ then $d_{G_k}(v) = d_{G_{k-1}}(v) + |P_{k-1}(v)| = |P_{k-1}(v)| + 1 + |P_{k-1}(v)| = 2|P_{k-1}(v)| + 1 = |P_k(v)| + 1$ by inductive hypothesis and Lemma 3.3. If $k = 2$ and $r = 2$ then for the single vertex $v \in U_2$, $d_{G_2}(v) = 3 = |P_1(v)|$. If $k > 2$ and $r > 1$ then $d_{G_k}(v) = d_{G_{k-1}}(v) + |P_{k-1}(v)| = |P_{k-1}(v)| + |P_{k-1}(v)| = 2|P_{k-1}(v)| = |P_k(v)|$ by inductive hypothesis and Lemma 3.3.

Corollary 3.8. For all $k \in \mathbb{N}$, for all $r \leq k$, and for all $v \in U_r$,

$$d_{G_k}(v) = \begin{cases} 3(2^{k-r}) & \text{when } r > 1 \\ 2^{k-1} + 1 & \text{when } r = 1 \end{cases}$$

Proof. This follows immediately from Corollary 3.4 and Lemma 3.7.

4 Upper Bounds for γ_e^*

In [3] the nonporous exponential dominating number of G, denoted $\gamma_e(G)$, is defined and the following theorem is proved:

Theorem 4.1. (Dankelmann, et al) If G is a connected graph of order n, then $\gamma_e(G) \leq \frac{2}{5}(n + 2)$.

This theorem, together with Remark 1.1 and the fact that $\gamma_e^*(G) \leq \gamma_e(G)$, immediately establishes the following corollary:

Corollary 4.2. For all $k \in \mathbb{N}$, $\gamma_e(G_k) \leq \frac{3^{k-1} + 9}{5}$.
The recursive nature of our construction of G_k makes it clear that for, $k > 1$, G_k can be conceived as a union of three copies of G_{k-1}. More precisely, if we consider the three triangles in G_2 that include the vertex in U_2, each could be the first generation of a copy of G_{k-1}. Together, these three copies of G_{k-1} comprise a copy of G_k. This perspective is also discussed in [9]. The following lemma follows immediately from this construction.

Lemma 4.3. For all $k \in \mathbb{N}$, $\gamma_\nu^*(G_{k+1}) \leq 3\gamma_\nu^*(G_k)$.

Corollary 4.4. For $k \geq 5$, $\gamma_\nu^*(G_k) \leq 2(3^{k-5})$.

Proof. By induction on k. If $k = 5$ then the result follows immediately from Remark [1.4]. If $k > 5$ then by Lemma 4.3, $\gamma_\nu^*(G_k) \leq 3\gamma_\nu^*(G_{k-1}) = 3(2(3^{(k-1)-5})) = 2(3^{k-5})$ by inductive hypothesis. □

We now establish a better upper bound by proving Theorem 2.1.

Theorem 2.1. Suppose $k \geq 10$. Let $S = U_{k-3}$ and compute $w^*_S(v)$ for all $v \in V(G_k)$.

1. **Case 1:** Suppose $v \in V(G_{k-4})$. By Corollary 3.5, v has a neighbor in S and $w^*_S(v) \geq 1$.

2. **Case 2:** Suppose $v \in U_{k-3}$. Then $v \in S$ and $w^*_S(v) \geq 2$.

3. **Case 3:** Suppose $v \in U_{k-2}$. By Corollary 3.6, v has a neighbor in S and $w^*_S(v) \geq 1$.

Proof. Suppose $k \geq 10$. Let $S = V(G_{k-7})$ and compute $w^*_S(v)$ for all $v \in V(G_k)$.

1. **Case 1:** Suppose $v \in U_j$, $j \leq k - 4$. Then by Corollary 3.2, either $v \in S$ or v has a neighbor in S. In both cases, $w^*_S(v) \geq 1$.

2. **Case 2:** Suppose $v \in U_j$, $k - 3 \leq j \leq k - 2$. If v has a neighbor in S, then $w^*_S(v) \geq 1$. Otherwise, by Corollary 3.2, v has a neighbor in S. By Corollary 3.2, n has at least two neighbors in S. Therefore, $v \in S$ is within distance 2 of at least two distinct vertices of S, and $w^*_S(v) \geq 1$.

3. **Case 3:** Suppose $v \in U_{k-1}$. If v has a neighbor in S, then $w^*_S(v) \geq 1$. Otherwise, by Corollary 3.2, v has a neighbor in S. By Corollary 3.2, n has at least two neighbors in S. Therefore, $v \in S$ is within distance 2 of at least two distinct vertices of S, and $w^*_S(v) \geq 1$.

4. **Case 4:** Suppose $v \in U_k$. If v has a neighbor in S, then $w^*_S(v) \geq 1$. Otherwise, by Corollary 3.2, v has a neighbor in S. By Corollary 3.2, n has at least two neighbors in S. Therefore, $v \in S$ is within distance 2 of at least two distinct vertices of S, and $w^*_S(v) \geq 1$.

We have shown that S is a porous exponential dominating set for G_k. By Remark 1.1, $|S| = 3^{k-5}$, and therefore $\gamma_\nu^*(G_k) \leq 3^{k-5}$.
5 Lower Bound for γ_e^*

Recall that for a connected graph G, the diameter of G, denoted $\text{diam}(G)$, is the largest possible distance between a pair of vertices in G. In [3], the nonporous exponential domination number of G, denoted $\gamma_e(G)$, is defined and the following theorem is proven:

Theorem 5.1. (Danelkamm, et al) If G is a connected graph, then $\gamma_e(G) \geq \left\lceil \frac{\text{diam}(G)+2}{3} \right\rceil$.

In fact, the proof of this result in [3] is sufficient to establish the following lemma:

Lemma 5.2. If G is a connected graph, then $\gamma_e^*(G) \geq \left\lceil \frac{\text{diam}(G)+2}{3} \right\rceil$.

We now compute $\text{diam}(G_k)$ for every Apollonian network G_k.

Lemma 5.3. For all $k \in \mathbb{N}$, $\text{diam}(G_{k+3}) \leq \text{diam}(G_k) + 2$.

Proof. Suppose $x,y \in V(G_{k+3})$ and $d_{G_{k+3}}(x,y) = \text{diam}(G_{k+3})$. By Lemma 3.1 and Corollary 3.2, we know that x and y have neighbors u and v, respectively, in $V(G_k)$. It follows that

$$\text{diam}(G_{k+3}) = d_{G_{k+3}}(x,y) \leq d_{G_k}(u,v) + 2 \leq \text{diam}(G_k) + 2.$$

\[\square \]

Corollary 5.4. For all $k \in \mathbb{N}$, $\text{diam}(G_k) \leq \left\lceil \frac{4k+1}{3} \right\rceil$.

Proof. We proceed by induction on k and show that $\text{diam}(G_k) \leq \frac{4k+1}{3}$. For $k = 1, 2, 3$, it is easy to verify that $\text{diam}(G_k) = 1, 1, 2$, respectively, and establish the desired result. For $k > 3$, by Lemma 5.3 $\text{diam}(G_k) \leq \text{diam}(G_{k-3}) + 2 \leq \frac{4(k-3)+1}{3} + 2 = \frac{4k+1}{3}$, by inductive hypothesis. Since $\text{diam}(G_k)$ is an integer, the result follows.

\[\square \]

Lemma 5.5. For all $k \in \mathbb{N}$ there exists $x, y \in U_k$ such that $d_{G_k}(x,y) = \text{diam}(G_k)$.

Proof. First, observe that the statement is true for $k = 1$, so we may assume $k \geq 2$. Let $u, v \in V(G_k)$ such that $d_{G_k}(u,v) = \text{diam}(G_k)$. If $u \in U_k$ then let $x = u$. Otherwise, by Corollary 3.3, there exists $x \in U_k$ such that x is adjacent to u. If $v \in U_k$ then let $y = v$. Otherwise, by Corollary 3.3, there exists $y \in U_k$ such that y is adjacent to v. Let P be a shortest path joining x and y. Let w_1 be the vertex adjacent to x in P, and w_2 be the vertex adjacent to y in P. By Lemma 3.1 part (iii), u is adjacent to w_1 and v is adjacent to w_2. Define Q to be the path formed by replacing x and y in P with u and v. Then the length of Q is the same as the length of P. Since $d_{G_k}(u,v) = \text{diam}(G_k)$, this shows that the length of P is at least $\text{diam}(G_k)$. Since P is a shortest path joining x and y, $d_{G_k}(x,y) = \text{diam}(G_k)$.

\[\square \]

Lemma 5.6. For all $k \in \mathbb{N}$, $\text{diam}(G_{k+3}) \geq \text{diam}(G_k) + 2$.

Proof. The result is easily seen to be true for $k = 1$, so we may assume that $k \geq 2$. (See Figure 4 and Table 1) By Lemma 5.5 let $u, v \in V(G_k)$ such that $d_{G_k}(u,v) = \text{diam}(G_k)$. By Lemma 3.1 any path joining u and v must include vertices from $V(G_{k-1})$. By Corollary 3.3, u has a neighbor in U_{k+1}, and by the construction of G_{k+2}, u and v have a common neighbor in U_{k+2}. By the construction of G_{k+3}, u, w_1, and w_2 have a common neighbor in U_{k+3}. By Lemma 3.1, u, w_1, and w_2 are the only neighbors of x in G_{k+3}. Therefore, u has a neighbor $y \in U_{k+3}$ such that $N_{G_{k+3}}(x) \cap V(G_{k-1}) = \emptyset$. An analogous argument shows that v has a neighbor $z \in U_{k+3}$ such that $N_{G_{k+3}}(y) \cap V(G_{k-1}) = \emptyset$. Note that any path joining x and y must include vertices from $V(G_{k-1})$ because otherwise we could construct a path joining x and v without such vertices, which contradicts our earlier claim to the contrary.

Let P be a shortest path $x, w_1, w_2, \ldots, w_m, y$ joining x and y. Choose i as small as possible and j as large as possible such that $w_i, w_j \in V(G_{k-1}) \cap V(P)$. Since the only neighbors of x are u, w_1, and w_2 then w_i is adjacent to at least one of these. By the construction of G_{k+1} and G_{k+2}, u is adjacent to all of the neighbors of u_1 and u_2 in $V(G_{k-1})$, and therefore u is adjacent to w_i. Analogously, v is adjacent to w_j. Let Q be the path $u, w_i, w_{i+1}, \ldots, w_{j-1}, w_j, v$ joining u and v. Since $N_{G_{k+3}}(x) \cap V(G_{k-1}) = \emptyset$ and $N_{G_{k+3}}(y) \cap V(G_{k-1}) = \emptyset$, the length of P is at least 2 more than the length of Q. It follows that the length of P is at least $\text{diam}(G_k) + 2$. Since P is a shortest length path joining x and y, $\text{diam}(G_{k+3}) \geq \text{diam}(G_k) + 2$.

\[\square \]
Together, Lemma 5.3 and Lemma 5.6 imply the following result which was stated in [8] with greater generality but without a complete proof.

Corollary 5.7. For all \(k \in \mathbb{N} \), \(\text{diam}(G_{k+3}) = \text{diam}(G_k) + 2 \).

Corollary 5.8. For all \(k \in \mathbb{N} \), \(\text{diam}(G_k) \geq \lceil \frac{2k-1}{3} \rceil \).

Proof. We proceed by induction on \(k \) and show that \(\text{diam}(G_k) \geq \frac{2k-1}{3} \). For \(k = 1, 2, 3 \), it is easy to verify that \(\text{diam}(G_k) = 1, 1, 2 \), respectively, and establish the desired result. For \(k > 3 \), by Lemma 5.6, \(\text{diam}(G_k) \geq \text{diam}(G_{k-3}) + 2 \geq \frac{2(k-3)-1}{3} + 2 = \frac{2k-1}{3} \), by inductive hypothesis. Since \(\text{diam}(G_k) \) is an integer, the result follows.

Corollary 5.9. For all \(k \in \mathbb{N} \), \(\text{diam}(G_k) = \lceil \frac{2k-1}{3} \rceil \).

Proof. This result follows easily from Corollary 5.4, Corollary 5.8, and the fact that \(\lfloor \frac{2k+1}{3} \rfloor = \lceil \frac{2k+1}{3} \rceil \), which the reader can easily check by cases \(k \equiv 0, 1, 2 \pmod{3} \).

We can now prove Theorem 2.3:

Proof. By Corollary 5.9, \(\text{diam}(G_k) = \lceil \frac{2k-1}{3} \rceil \geq \frac{2k-1}{3} \), and therefore \(\text{diam}(G_k)+2 \geq \frac{2k+5}{12} \). By Lemma 5.2, \(\gamma^*_e(G_k) \geq \left\lfloor \frac{\text{diam}(G_k)+2}{4} \right\rfloor \geq \left\lfloor \frac{2k+5}{12} \right\rfloor \).

6 Acknowledgements

The authors would like to thank CURM, the Center for Undergraduate Research, for facilitating a wonderful undergraduate research experience and funding our research through NSF grant DMS-1148695. We would also like to thank Concord University for their encouragement and financial support.

References

[1] M. Anderson, R. Brigham, J. Carrington, R. Vitray, J. Yellen, On Exponential Domination of \(C_m \times C_n \), *J. Graphs. Combin.* 6 No. 3 (2009) 341-351.

[2] J. Andrade, H. Herrmann, R. Andrade, L. Silva, Simultaneously Scale-Free, Small World, Euclidean, Space Filling, and with Matching Graphs, *Phys. Rev. Lett.* 94(1) (2005) 18702.

[3] P. Dankelmann, D. Day, D. Erwin, S. Mukwembi, H. Swart, Domination with Exponential Decay, *Discrete Math* 309(19) (2009) 5877-5883.

[4] J.P.K. Doye and C. Massen, Characterizing the network topology of the energy landscapes of atomic clusters *J. Chem. Phys.* 122 (2005) 84105.

[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, 1998.

[6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker, New York, 1998.

[7] D. B. West, *Introduction to Graph Theory, 2nd ed.*, Prentice Hall, 2000.

[8] Z. Zhang, F. Comellas, G. Fertin, L. Rong, High Dimensional Apollonian Networks, *J. Phys. A: Math. Gen.* 39 (2006) 1811.

[9] Z. Zhang, B. Wu, and F. Comellas, The Number of Spanning Trees in Apollonian Networks, *Discrete Applied Mathematics*. (to appear)