The experimental observation of a metal-insulator transition in two dimensions has been a subject of extensive investigation, since it is in disagreement with the predictions of single-parameter scaling theory for noninteracting electrons. Several theories, based on the treatment of disorder and electron-electron interactions by Finkelstein, have been put forward. Other approaches considered spin-orbit scattering, percolation of electron-hole liquid, or scattering by impurities. To date there is no acceptable microscopic theory that describe quantitatively the observed data.

Here we present a simple non-interacting electron model, combining local quantum tunneling and global classical percolation, to explain several features of the experimental observations. The main observations we want to understand are the following:

- As the system is cooled down the resistance of samples with density higher than some critical density extrapolates to a finite value at zero temperature, while that of samples with lower density diverges.
- The resistance of the sample with the critical density does not depend on temperature (at least for a limited range of low temperatures).
- The conductance of the critical-density sample is of the order of e^2/h.
- On the metallic side the functional dependence of the resistance is of the form $R(T) = R_0 + R_1 \exp(-A/T)$. The parameter A varies linearly with the density and vanishes at the transition.
- In perpendicular magnetic fields this transition is continuously connected with the quantum Hall–Insulator transition. The critical density varies nonmonotonically with magnetic field, with a minimum around $\nu = 1$.
- Parallel magnetic fields destroy the metallic phase, at least for densities near the transition.

Before introducing the model let us mention three other experimental observations - (a) The strong disorder is crucial to see the transition. In GaAs the transition is seen only at samples with low mobility (even with the same density). In fact, Ribeiro et al. have recently observed a zero-field metal-insulator transition in high-density n-type GaAs sample with strong enough disorder (which was introduced by a matrix of randomly distributed quantum dots). (b) There is additional experimental indications that the transition is not driven by interactions – Yaish and Sivan studied a system of two parallel gases, one of electrons and one of holes. The observed metal-insulator transition in the hole gas depended only slightly on the electron density, even though one expects that increasing electron density will screen the interactions between holes and suppress the metallic phase in the hole gas. On the contrary, increasing electron density led to increasing conductance in the hole gas, indicating that its main role is to screen the impurity potentials in the hole gas. (c) There is a growing experimental evidence that even at the lowest available temperatures, the dephasing length, L_ϕ, is finite.

Based on all these observations we now suggest the following scenario to explain the experimental observations – the potential fluctuations due to the disorder define density puddles of size L_ϕ or larger in which the electron wavefunction totally dephases. (Density separation into puddles in gated GaAs was indeed observed experimentally by Eytan et al., using near-field spectroscopy.) Locally, between these puddles, transport is via quantum tunneling through saddle points, or quantum point-contacts (QPCs). Since between such tunneling events dephasing takes place, the conductance of the system will be determined by adding classically these quantum resistors. A related model was introduced by Shimshoni et al. to describe successfully transport in the quantum Hall (QH) regime. In fact, it was later concluded that the observation of a finite, quantized Hall resistance in the Hall insulator phase can only occur when the dephasing length is smaller than the size of these puddles – otherwise the Hall resistance diverges. In addition, this model also accounted for the observed current-voltage duality around the transition, a duality which was also observed in the zero-field transition. The percolative nature of the system in the QH regime was indeed verified experimentally. Finite dephasing length can also explain the observed non-critical behavior of the resistance near the QH-insulator transition. We will return to the QH regime below.

We characterize each saddle point by its critical en-
energy ϵ_c, such that the transmission through it is given by $T(\epsilon) = \Theta(\epsilon - \epsilon_c)$. Thus the conductance through each QPC is given by the Landauer formula,

$$G(\mu, T) = \frac{2e^2}{h} \int d\epsilon \left(-\frac{\partial f_{FD}(\epsilon)}{\partial \epsilon} \right) T(\epsilon)$$

$$= \frac{2e^2}{h} \frac{1}{1 + \exp[(\epsilon_c - \mu)/kT]} , \quad (1)$$

where μ is the chemical potential, and f_{FD} is the Fermi-Dirac distribution function.

The system is now composed of classical resistors, where the resistance of each one of them is given by $\frac{\epsilon^2}{h}$, with random QPC energies. In the numerical data presented below, we solved a 20x20 system of QPCs (which, for simplicity, has the topology of a square lattice), each averaged over 1000 realizations of disorder, where the QPC energies were taken from a square distribution of width W. At zero temperature the conductors have either zero conductance or a conductance equal to $2e^2/h$ and one has the usual second-order percolation transition. The critical conductance exponent t is known at two dimensions and is equal to 1.3 [27]. In Fig. 1 we fit the experimental data of [4] and of [5] to the expected critical dependence. Clearly, the agreement with the classical percolation prediction is excellent. Moreover, the fact that while the density scale is so different between the two experiments, the conductance scale is identical, clearly demonstrates that e^2/h is the only conductance scale in the system.

As temperature increases, the Fermi-Dirac distribution is broadened. Consequently the conductance of the insulating QPCs ($\epsilon_c > \mu$) increases exponentially, while that of the transparent ones ($\epsilon_c < \mu$) decreases exponentially. Thus we expect to see rather dramatic effects as a function of temperature. This is indeed depicted in Fig. 2. As temperature is lowered systems with slightly different resistance at high temperatures will diverge exponentially with decreasing temperatures. The resistance of systems on the metallic side ($n > n_c$) will saturate at zero temperature, while that of insulating samples will diverge. Note that there is an upward turn even on the metallic side of the transition. We will come back to this point below. The high-temperature resistance of the critical density network is naturally around h/e^2, the only resistance scale in this model.

![Fig. 1. Comparison of the lowest temperature data of [4] (two sets of data, triangles and squares, 330mK, density given by the lower axis) and of [5] (circles, 57mK, density given by the upper axis) to the prediction of percolation theory (solid line). Inset: Logarithmic derivative of the data [5] which gives a line whose slope is the critical exponent. The percolation prediction ($t = 1.3$) is given by the solid line. For comparison a $t = 1$ slope is also shown (broken line).](image1)

![Fig. 2. Temperature dependence of the resistance for systems of different densities. Below the critical line (bold curve) all curves saturate at zero temperature, while above it the resistance diverges. The resistance of the more metallic samples decreases exponentially (inset).](image2)

For systems of exponentially distributed resistors the resistance of the whole circuit is determined by the critical resistor - the worse resistor in the minimal percolating network [28]. Then the resistance of the network would be equal to the inverse of the Fermi-Dirac function, $\{1 + \exp[(\epsilon_c - \mu)/kT]\}h/e^2$, where ϵ_c is its threshold energy. Then clearly the overall resistance will be of the form observed experimentally, $R = R_0 + R_1 \exp(-A/T)$, with A varying linearly with the density and vanishing at the transition. In our case, the resistors on the metallic side have a bound distribution, and accordingly there will be other resistors, in parallel and in series, that will contribute to the overall resistance of the circuit. This will not change the functional form, but will renormalize the parameters R_0, R_1 and A. Such a functional dependence on the metallic side is indeed found numerically and displayed in the inset. In fact, close to the transition, on the metallic side, as temperature increases, some QPCs that before had zero conductance, start to conduct and add to the overall conductance. Since the critical
percolation cluster is very ramified (in fact of fractal dimension), there will be many such resistors in parallel to the main conducting network, and the effect of improving these resistors will overcome the fact that resistors on the conducting network itself become worse. This leads to a downward turn of the resistance with increasing temperature even on the metallic side, the details of which may depend sensitively on the geometry. Only deeper into the metallic regime, as seen in Fig. 2, the overall resistance increases with increasing temperature. This also suggests that the density at which the resistance is approximately temperature independent is not the true critical point, but rather deeper on the metallic side. This is clearly seen in Fig. 3, where one can see a point where all the low-temperature curves nearly cross, well inside the metallic regime. The above discussion suggests that one should be cautious in associating the critical point with the “temperature-independent” point, as done routinely in the experiment interpretations.

![Conductance vs. density (Fermi energy)](image)

Fig. 3. Conductance vs. density (Fermi energy) for several temperatures. There is a density, well above the true critical point, where the curves seem to cross each other.

We turn next to the effects of a magnetic field. The effect of a parallel field is straightforward to understand, as there have been several studies of transport through a QPC in parallel fields [25]. These experimental and theoretical studies demonstrated that the threshold density where the QPC opens up increases parabolically with the in-plane magnetic field. This effect was attributed to coupling of the in-plane motion to the strong confinement in the vertical direction, leading to an increase in the energy levels. Since this increase occurs for all QPCs in the sample, such a field in our case will strongly inhibit the metallic behavior: QPCs which were conducting at zero field, will have exponentially small conductance with increasing field. Once the density of conducting QPCs falls below the critical density, the system becomes an insulator, in agreement with experimental observations.

The situation in perpendicular magnetic fields is more interesting, as QH states are formed. Transport through a single QPC in perpendicular field and the crossover between the zero field limit and the QH limit have been studied in detail [30]. As expected, one finds that the critical energy oscillates with magnetic field due to the depopulation of Landau levels. In our case, we expect the oscillations to be smoothed out by the disorder and by the averaging over many QPCs. Thus only the strongest oscillation, near \(\nu = 1 \), may survive, leading to a single dip in the critical density vs. magnetic field plot, as was observed experimentally. This is indeed in agreement with our numerical calculation. We studied the energy levels of one puddle of electrons, which we modeled by a circular disk, in the presence of disorder [31]. In Fig. 4 we plot the “critical density” – the number of electrons that need to occupy the puddle, so that the energy of the highest-energy electron will be enough to transverse the QPC, equivalent in the bulk system to the critical density – as a function of magnetic field. Indeed we see a dip near \(\nu = 1 \) with all other oscillations smoothed out by the disorder. This curve has a strong resemblance to the experimental data [12] (inset). In addition, we expect that as the magnetic field is lowered below the \(\nu = 1 \) minimum, more than one channel will transverse some QPCs, leading to an increase in the critical conductance, as indeed reported experimentally.

![Critical density vs. magnetic field](image)

Fig. 4. The critical density - the number of electrons in the puddle, so that the topmost energy will allow transport through the point contact - as a function of magnetic field, in the presence of a finite disorder. The continuous curve is an averaged fit through the (necessarily integer) data points. Inset: the corresponding experimental data [12].

All the above results and discussion demonstrated that many of the experimental observations can be explained in the context of the simple model introduced here. Nevertheless there are clearly other physical effects that need to be included in order to have a full picture of the experiments. In particular, electron-electron interactions are expected to play an important role in these low densities. As we can regard the metallic puddles described
above as quantum dots, one can use the abundant information about the role of interactions in such structures [33], to gain additional understanding of the characteristics of the puddles and the phase separation. Other effects, including the energy dependence of the transmission coefficient and the possibility of more than one channel through the QPCs, the temperature dependence of the dephasing length, the role of interband-scattering [6] and temperature-dependent impurities [11] may also be important to understand quantitative aspects of the data. Nevertheless, the fact that several important aspects of the experimental data can be explained in the context of a simple model is quite encouraging. We expect that the model presented here apply mostly to the GaAs samples.

The picture described above can be checked experimentally. The experiments verifying the percolative structure in the QH regime [24] can be extended to the zero-field systems. (An experimental evidence for phase separation was observed at zero field in [18].) An even more direct evidence of the percolative nature of the system will be local probes [14]. In fact, an enhancement in the fluctuations of the local chemical potential has already been observed [15] as the system enters the “insulating” phase, in a similar fashion to the enhancement of chemical potential fluctuations with closing of the barriers forming a quantum dot [37]. In fact, a “smoking gun” verification of the picture presented here, will be periodic oscillations of the local chemical potential on the insulating side, due to depopulation of the Landau levels, as was observed in quantum dots [36].

I thank many of my colleagues for fruitful discussions: A. Auerbach, Y. Gefen, Y. Hanein, D. Shahar, E. Shimshoni, U. Sivan, A. Stern, A. Yacoby and Y. Yaish. In particular, I would like to thank Y. Hanein & D. Shahar and U. Sivan & Y. Yaish for making their data available to me. This work was supported by THE ISRAEL SCIENCE FOUNDATION - Centers of Excellence Program, and by the German Ministry of Science.

[1] S. V. Kravchenko et al., Phys. Rev. B50, 8039 (1994); ibid. 51, 7038 (1995); Phys. Rev. Lett. 77, 4938 (1996); V. M. Pudalov et al., JETP Lett. 65, 932 (1997); D. Popović et al., Phys. Rev. Lett. 79, 1543 (1997); K. Ismail et al., cond-mat/9707061; J. Lam et al., Phys. Rev. B56 R12741 (1997).
[2] P. T. Coleridge et al., Phys. Rev. B56, R12764 (1997).
[3] M. Y. Simmons et al., Phys. Rev. Lett. 80, 1292 (1998).
[4] Y. Hanein et al., Phys. Rev. Lett. 80, 1288 (1998); Phys. Rev. B58, R7520 (1998); Phys. Rev. B58, R13338 (1998).
[5] Y. Yaish and el., cond-mat/9904324; unpublished.
[6] E. Abrahams et al., Phys. Rev. Lett. 42, 673 (1979).
[7] A. M. Finkelstein, Zh. Eksp. Teor. Fiz. 84, 168 (1983); Z. Phys. 56, 189 (1984); C. Castellani et al., Phys. Rev. 30, 527 (184; ibid 1596 (1984).
[8] V. Dobrosavljević et al., Phys. Rev. Lett. 79, 455 (1997); C. Castellani, C. Di Castro, and P. A. Lee, Phys. Rev. B57, R9381 (1998); D. Belitz and T. R. Kirkpatrick, Phys. Rev. B58, 8214 (1998); P. Phillips et al., Nature (London) 395, 253 (1998); F.-C. Zhang and T. M. Rice, cond-mat/9707050; S. Chakravarty et al., cond-mat/9805383.
[9] V. M. Pudalov, JETP Lett. 66, 175 (1997).
[10] Song He and X. C. Xie, Phys. Rev. Lett. 80, 3324 (1998).
[11] B. L. Altsheuler and D. L. Maslov, Phys. Rev. Lett. 82, 145 (1999).
[12] Y. Hanein et al., cond-mat/9901186.
[13] V. M. Pudalov et al., JETP Lett. 65, 932 (1997). D. Simonian et al., Phys. Rev. Lett. 79, 2304 (1997); V. M. Pudalov et al., Physica B 240-251, 697 (1998).
[14] E. Ribeiro et al., Phys. Rev. Lett. 82, 996 (1999).
[15] P. Mohanty, E.M. Jariwala and R.A. Webb, Phys. Rev. Lett. 77, 3366 (1997); Phys. Rev. B55, R13452 (1997).
[16] C. M. Marcus, unpublished.
[17] Explanations of the observed finite dephasing time were suggested by B. L. Altshuler, M. E. Gershenson and I. L. Aleiner, cond-mat/9803125 and by Y. Imry, H. Fukuyama and F. Schwab, cond-mat/9903017.
[18] G. Eytan et al., Phys. Rev. Lett. 81, 1666 (1998).
[19] E. Shimshoni and A. Auerbach, Phys. Rev. B55, 9817 (1997); E. Shimshoni, A. Auerbach and A. Kapitulnik, Phys. Rev. Lett. 80, 3352 (1998).
[20] L. P. Pryadko and A. Auerbach, Phys. Rev. Lett. 82, 1253 (1999).
[21] D. Shahar et al., Science 274, 589 (1996); E. Shimshoni et al., Phys. Rev. B 55, 13730 (1996).
[22] D. Shahar et al., Solid State. Phys. Rev. Lett. 102, 817 (1997); M. Hilke et al., Nature 395, 673 (1998).
[23] O. Entin-Wohlman et al., Phys. Rev. Lett. 75, 4094 (1995); D. N. Sheng and Z. Y. Weng, cond-mat/9809079.
[24] A. A. Shashkin et al., Phys. Rev. Lett. 73, 3141 (1994); V. T. Dolgopolov et al., JETP Lett. 62, 162 (1995); I. V. Kukuskin et al., Phys. Rev. B53, R13260 (1996).
[25] D. Simonian, S. V. Kravchenko and M. P. Sarachik, Phys. Rev. B55, R13421 (1997).
[26] D. Shahar et al., Solid State Comm. 107, 479 (1998); E. Shimshoni, cond-mat/9904143.
[27] For a review of pecolation theory and for values of the critical exponents, see, for example, D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1992).
[28] V. Ambegaokar, B. I. Halperin and J. L. Sanger, Phys. Rev. B 4, 2612 (1971).
[29] T. P. Smith et al., Phys. Rev. Lett. 61, 585 (1998); K. J. Thomas et al., Phys. Rev. Lett. 77, 135 (1996); Phys. Rev. B58, 4846 (1998).
[30] See, e.g., B. J. van Wees, Phys. Rev. B43, 12431 (1991).
[31] To simplify the numerics, we chose random potentials with azimuthal symmetry.
[32] H. A. Fertig and B. I. Halperin, Phys. Rev. B 36, 7969 (1987).
[33] For recent reviews on quantum dots see, e.g., M. A. Kastner, Comm. Cond. Matt. 17, 349 (1996); R. Ashoori, Nature 379, 413 (1996).
[34] See, e.g., S. H. Tessmer et al., Nature 392, 6671 (1998); H. F. Hess et al., Solid Stat. Comm. 107, 657 (1998).
[35] A. Yacoby, unpublished.
[36] C. Pasquier et al., Phys. Rev. Lett. 70, 69 (1993).
[37] P. L. McEuen et al., Phys. Rev. Lett. 66, 1926 (1991).