TITLE:
On the Cohomology of the Moduli space of Parabolic Connections

AUTHOR(S):
Matsubara, Yuki

CITATION:
Matsubara, Yuki. On the Cohomology of the Moduli space of Parabolic Connections. 代数幾何学シンポジウム記録 2018, 2018: 147-147

ISSUE DATE:
2018

URL:
http://hdl.handle.net/2433/236415

RIGHT:
On the Cohomology of the Moduli space of Parabolic Connections

Yuki Matsubara (D2)

Department of Mathematics, Graduate School of Science, Kobe University

Introduction

In this paper, we study the moduli space of logarithmic connections of rank 2 on \(\mathbb{P}^1 \setminus \{ \theta_1, ..., \theta_n \} \) with fixed spectral data. We compute the cohomology of such moduli space, and the computation will be used to extend the results of parabolic Hitchin equations of [1] to the case where the parabolic connections have five simple poles in \(\mathbb{P}^1 \).

Proposition 4.1

\[\pm L_i \equiv f_i, O_{K,p}, q \]

Lemma 3.1

In this paper, we study the moduli space of logarithmic connections of rank 2 on \(\mathbb{P}^1 \setminus \{ \theta_1, ..., \theta_n \} \) with fixed spectral data. We compute the cohomology of such moduli space, and this computation will be used to extend the results of parabolic Hitchin equations of [1] to the case where the parabolic connections have five simple poles in \(\mathbb{P}^1 \).

Definition 2.1 A logarithmic connection is a triple \((E, \nabla, q)\), such that \(\nabla : E \to \mathcal{E}(\Omega^1) \) is a connection, where \(\mathcal{E} \) is a rank 1 vector bundle on \(\mathbb{P}^1 \), \(\nabla \) is a possible logarithmic connection, and \(\text{ord}_p \nabla(T) \leq 1 \) for the residue \(\text{ord}_p(T) \) at \(p \) has expression \(a_i = \sum_i b_i \).

Denote by \(\mathcal{M} \) the moduli stack of logarithmic connections on \(\mathbb{P}^1 \). We have the next proposition.

Proposition 3.2

We can extend the map (2) to \(M \to \mathbb{M}|_{\mathcal{M}} \) and this map is injective.

Cohomology of \(\mathcal{M} \)

Suppose \(n = 5 \). For computing the cohomology of \(\mathcal{M} \), we introduce some blowing-up of the Hilbert stack of objects \(\mathcal{O} \). Put \(L = \mathcal{O}(\mathcal{E}) \). Let \(\nu_i \) be the total space of the line bundle \(L \), then \(L_i \equiv L_i \). Fix \(\mathcal{O} \), the Hilbert stack of objects in \(\mathcal{O}(\mathcal{E}) \). Note that \(L_i \) is the Hilbert stack of \(\mathcal{O} \). Fix \(\mathcal{O} \), the moduli stack of \(\mathcal{O} \). Put \(\nu_i = \nu_i \). Let \(\mathcal{O} \), the moduli stack of \(\mathcal{O} \). Put \(\nu_i = \nu_i \).

References

[1] D. Arinkin, Orthogonality of natural families on moduli stacks of \(\mathcal{O}(t) \)-bundles with connections on \(\mathcal{O}(t) \) curves, Math. Nachr. 126 (2001), 139-155.

[2] D. Arinkin, E. Lomnitz, On the moduli of \(\mathcal{O}(t) \)-bundles with connections on \(\mathcal{O}(t) \) surfaces, Internat. Math. Res. Notices 2007, no. 18, 1051-1085.

[3] A. Beilinson, H. Saito, Explicit description of parahoric connections and Hitchin sections on points on surfaces, accepted in Kyoto Journal of Mathematics (arXiv:math/0311074).