Magnon magic angles in 2D twisted ferromagnetic bilayers

Doried Ghader
College of Engineering and Technology, American University of the Middle East, Eqaila, Kuwait

Abstract. Twisted 2D magnetic bilayers currently constitute an active research field parallel to their fermionic counterparts. The single-particle theory applied to excitations in honeycomb monolayers and AA/AB stacked bilayers yields similar properties in bosonic and fermionic materials. Despite the extensive experimental and theoretical studies on the band structure of twisted bilayer electronic systems, the spin wave (or magnon) theory have not yet been developed for their magnetic counterpart. We here present the first formalism of the linear spin wave theory for weakly coupled twisted ferromagnetic honeycomb bilayers (tFBL), including exchange and Dzyaloshinskii-Moriya interactions (DMI). We highlight the similarities and differences between the magnon spectrum in tFBL and the electronic structure of twisted bilayer graphene (tBLG). Unlike the tBLG case, we demonstrate that the spin wave dispersion in tFBL depends on the relative translation between the layers. tFBL hence presents energy dispersion profiles that are not possible in tBLG. We further demonstrate the existence of magnon magic angles, at which the spin wave spectrum presents flat moiré superlattice minibands, in analogy with twisted bilayer graphene (tBLG). We additionally analyze the consequences of the DMI, known to be present in 2D magnetic material. This DMI is found to induce a band gap while increasing the number of flat bands. We hope the present study will motivate further the field of twisted 2D magnetic materials, which might open new horizons in the field of 2D magnetic materials.

Introduction. Magnetism in two-dimensional (2D) materials has recently been realized [1, 2] which fueled the field of 2D magnetism [3-32]. In these bosonic Dirac materials, magnetic anisotropy is found to overcome thermal fluctuations and hence stabilize the magnetically ordered ground state at finite temperatures. To a large extent, the theoretical investigation and experimental realization of bosonic Dirac materials was motivated by their fermionic counterpart. The first experimental observation of fermionic Dirac energy dispersion was realized in graphene [33], prior to bosonic 2D material realization. Research studies in graphene demonstrated that the electronic properties change drastically in bilayers compared to single layers [34 - 38]. A particularly interesting class of bilayer graphene is the twisted bilayer graphene (tBLG), presenting moiré patterns and bands as a result of the twist angle. The tBLG was found to present fascinating electronic and optical properties, giving rise to novel physics that is completely absent in single graphene sheets or graphene bilayers in AA/AB configurations [39-59].
Very recently, a rapidly increasing interest in the exotic physics of twisted 2D magnetic bilayers emerged [60-64]. The current studies focus on the ability to control the interlayer exchange coupling via the relative twist angle, offering the opportunity to manipulate the magnetic ground states in these bilayers.

In the exchange interaction limit, the linear spin wave theory for a single layer honeycomb ferromagnet is mathematically identical to the linear electronic tight-binding theory in graphene. The analogy was also demonstrated in 2D bilayer magnetic materials, where the existing spin wave studies are restricted to AB or AA stacking [8, 10, 16, 28]. The topic of spin wave excitations in twisted 2D magnetic bilayers, to our knowledge, has not yet been initiated. In view of the groundbreaking physics present in tBLG, its magnonic analogue should be of interest for the rapidly developing field of 2D magnetic Dirac materials. This motivated the present work to develop the spin wave theory on weakly coupled 2D twisted honeycomb ferromagnetic bilayers (tFBL). These systems should be easy to realize in the family of chromium trihalides CrX₃ (X = F, Cl, Br and I). Our formalism focusses on the region near the corners of the moiré superlattice Brillouin zone (BZ) where most of the exotic physics takes place. We predict the existence of magnon magic angles and flat spin wave bands in the spin wave spectrum of tFBL. Beyond the moiré physics in tBLG, we demonstrate the possibility to manipulate the spin wave spectrum in tFBL via the intralayer DMI and the relative translation between the layers. For example, the magnon spectrum for rotated AA ferromagnetic bilayers, with zero DMI, is qualitatively identical to the electronic structure of tBLG. Those obtained by rotating AB stacked bilayers, however, a significantly different gapped band structure. tFBL hence present spin wave dispersion profiles absent in their fermionic counterparts.

Heisenberg Hamiltonian. Consider first a single ferromagnetic honeycomb sheet. The coordinate system (Fig. 1) is chosen such that the zigzag and armchair directions are along the x-axis and the y-axis respectively. The spins on the A and B sublattices are aligned parallel to the z-axis. Each unit cell contains two spins that belong to different sublattices. The lattice basis vectors are \(\vec{a}_1 = \alpha (1/2, \sqrt{3}/2) \) and \(\vec{a}_2 = \alpha (-1/2, \sqrt{3}/2). \) with the distance between two neighboring sites \(d = \alpha/\sqrt{3}. \) The reciprocal lattice basis vector are \(\vec{b}_1 = \frac{2\pi}{3d} (\sqrt{3}, 1) \) and \(\vec{b}_2 = \frac{2\pi}{3d} (-\sqrt{3}, 1). \) The three nearest neighbors for an A-site are at relative positions \(\vec{\delta}_1^A, \) with \(\vec{\delta}_1^A = \alpha (0,1/\sqrt{3}) \), \(\vec{\delta}_2^A = \alpha (1/2,-\sqrt{3}/6) \) and \(\vec{\delta}_3^A = \alpha (-1/2,-\sqrt{3}/6). \) For a B-site, \(\vec{\delta}_i^B = -\vec{\delta}_i^A. \)
We add another layer to form a ferromagnetic bilayer in AB configuration (Bernal stacking). Sites in layer $l = 1, 2$ are denoted A_l and B_l. The B_2-sublattice is placed exactly above the A_1-sublattice, with a constant ferromagnetic interlayer exchange J_\perp between them. The interlayer exchange for A_2 and B_1 are neglected.

To form the tFBL, we translate layer 2 by a vector $\vec{\tau}_0$ followed by opposite rotations of layer 1 and layer 2 by $\theta/2$ (clockwise for 1 and anti-clockwise for 2). With R_θ representing a 2D anticlockwise rotation, the lattice vectors $\vec{a}_{l,1}$ and $\vec{a}_{l,2}$ are given as $\vec{a}_{l,\alpha} = R_{\theta/2}(\vec{a}_\alpha + \vec{\tau}_0)$, $\vec{a}_{1,\alpha} = R_{-\theta/2} \vec{a}_\alpha$, whereas the reciprocal vectors read $\vec{b}_{l,\alpha} = R_{\theta/2} \vec{b}_\alpha$ and $\vec{b}_{1,\alpha} = R_{-\theta/2} \vec{b}_\alpha$.

The positions of the atoms on the four different sublattices can then be expressed as

\begin{align}
\vec{R}_{A_1} &= \vec{R}_1 + \vec{\tau}_{1,A} \\
\vec{R}_{B_1} &= \vec{R}_1 + \vec{\tau}_{1,B} \\
\vec{R}_{A_2} &= \vec{R}_2 + \vec{\tau}_{2,A} \\
\vec{R}_{B_2} &= \vec{R}_2 + \vec{\tau}_{2,B}
\end{align}

With $\vec{R}_l = n_1 \vec{a}_{l,1} + n_2 \vec{a}_{l,2}$ ($n_1, n_2 \in \mathbb{Z}$), $\vec{\tau}_{1,A} = (0,0)$, $\vec{\tau}_{1,B} = R_{-\theta/2}(0,d)$, $\vec{\tau}_{2,A} = R_{\theta/2}[(0,-d) + \vec{\tau}_0]$, and $\vec{\tau}_{2,B} = R_{\theta/2} \vec{\tau}_0$.

The twist gives rise to a moiré superlattice with reciprocal basis vectors.
The semi-classical Heisenberg Hamiltonian, including only nearest neighbors exchange interaction, can be expressed as

\[
\mathcal{H} = -J \sum_{\vec{R}_{A_1}\delta_i^A} \vec{S}^{A_1}(\vec{R}_{A_1}, t) \cdot \vec{S}^{B_1}(\vec{R}_{A_1} + \delta_i^A, t) - J \sum_{\vec{R}_{A_2}\delta_i^A} \vec{S}^{A_2}(\vec{R}_{A_2}, t) \cdot \vec{S}^{B_2}(\vec{R}_{A_2} + \delta_i^A, t)
\]

\[
- \sum_{\vec{R}_{A_1}\vec{R}_{A_2}} J_\perp(\vec{R}_{A_1}, \vec{R}_{A_2}) \vec{S}^{A_1}(\vec{R}_{A_1}, t) \cdot \vec{S}^{A_2}(\vec{R}_{A_2}, t)
\]

\[
- \sum_{\vec{R}_{A_1}\vec{R}_{B_2}} J_\perp(\vec{R}_{A_1}, \vec{R}_{B_2}) \vec{S}^{A_1}(\vec{R}_{A_1}, t) \cdot \vec{S}^{B_2}(\vec{R}_{B_2}, t)
\]

\[
- \sum_{\vec{R}_{B_1}\vec{R}_{A_2}} J_\perp(\vec{R}_{B_1}, \vec{R}_{A_2}) \vec{S}^{B_1}(\vec{R}_{B_1}, t) \cdot \vec{S}^{A_2}(\vec{R}_{A_2}, t)
\]

\[
- \sum_{\vec{R}_{B_1}\vec{R}_{B_2}} J_\perp(\vec{R}_{B_1}, \vec{R}_{B_2}) \vec{S}^{B_1}(\vec{R}_{B_1}, t) \cdot \vec{S}^{B_2}(\vec{R}_{B_2}, t)
\]

(3)

\(J > 0 \) is the in-plane exchange interaction coefficient and \(\vec{S}(\vec{R}, t) \) denotes the spin at site \(\vec{R} \) and time \(t \). The coefficient \(J_\perp(\vec{R}, \vec{R}') \) denotes the inter-layer exchange interaction coefficient.

Landau-Lifshitz equations. We first derive the Landau-Lifshitz (LL) equations for the sublattice \(A_1 \). In the semi-classical treatment of spin waves [11, 29-32, 64-70], the effective exchange fields \(\vec{H}^{A_1} \) acting on the magnetic moment \(\vec{M}^{A_1} \) is deduced from the Heisenberg Hamiltonian as

\[
\vec{H}^{A_1}(\vec{R}_{A_1}, t) = -J \sum_{\delta_i^A} \vec{M}^{B_1}(\vec{R}_{A_1} + \delta_i^A, t) - \sum_{\vec{R}_{A_2}} J_\perp(\vec{R}_{A_1}, \vec{R}_{A_2}) \vec{M}^{A_2}(\vec{R}_{A_2}, t)
\]

\[
- \sum_{\vec{R}_{B_2}} J_\perp(\vec{R}_{A_1}, \vec{R}_{B_2}) \vec{M}^{B_2}(\vec{R}_{B_2}, t)
\]

(4)
The LL equations of motion are given by $\partial_t \vec{M}^{A_1} = \vec{M}^{A_1} \times \vec{H}^{A_1}$ (for simplicity, we have suppressed the gyromagnetic ratio from the equation). The x-component yields

$$\partial_t M^{A_1}_x (\vec{R}_{A_1}, t) = - \left[3JM + M \sum_{\vec{R}_{A_2}} J_\perp (\vec{R}_{A_1}, \vec{R}_{A_2}) + M \sum_{\vec{R}_{B_2}} J_\perp (\vec{R}_{A_1}, \vec{R}_{B_2}) \right] M^{A_1}_y (\vec{R}_{A_1}, t)$$

$$+ JM \sum_{\vec{R}_{A_2}} M^{B_1}_y (\vec{R}_{A_1} + \vec{\delta}^{A_1}_i, t) + M \sum_{\vec{R}_{A_2}} J_\perp (\vec{R}_{A_1}, \vec{R}_{A_2}) M^{A_2}_y (\vec{R}_{A_2}, t)$$

$$+ M \sum_{\vec{R}_{B_2}} J_\perp (\vec{R}_{A_1}, \vec{R}_{B_2}) M^{B_2}_y (\vec{R}_{B_2}, t)$$

while the y-component gives

$$\partial_t M^{A_1}_y (\vec{R}_{A_1}, t) = \left[3JM + M \sum_{\vec{R}_{A_2}} J_\perp (\vec{R}_{A_1}, \vec{R}_{A_2}) + M \sum_{\vec{R}_{B_2}} J_\perp (\vec{R}_{A_1}, \vec{R}_{B_2}) \right] M^{A_1}_x (\vec{R}_{A_1}, t)$$

$$- JM \sum_{\vec{R}_{A_2}} M^{B_1}_x (\vec{R}_{A_1} + \vec{\delta}^{A_1}_i, t) - M \sum_{\vec{R}_{A_2}} J_\perp (\vec{R}_{A_1}, \vec{R}_{A_2}) M^{A_2}_x (\vec{R}_{A_2}, t)$$

$$- M \sum_{\vec{R}_{B_2}} J_\perp (\vec{R}_{A_1}, \vec{R}_{B_2}) M^{B_2}_x (\vec{R}_{B_2}, t)$$

We assume harmonic time dependence of the magnetizations, with frequency ω. Defining $M^{\alpha_i} = M^{\alpha_i}_x + i M^{\alpha_i}_y$ we can combine the x and y components of the LL equation to get

$$\omega M^{A_1}(\vec{R}_{A_1}) = \left[3JM + M \sum_{\vec{R}_{A_2}} J_\perp (\vec{R}_{A_1}, \vec{R}_{A_2}) + M \sum_{\vec{R}_{B_2}} J_\perp (\vec{R}_{A_1}, \vec{R}_{B_2}) \right] M^{A_1}(\vec{R}_{A_1})$$

$$- JM \sum_{\vec{R}_{A_2}} M^{B_1}(\vec{R}_{A_1} + \vec{\delta}^{A_1}_i) - M \sum_{\vec{R}_{A_2}} J_\perp (\vec{R}_{A_1}, \vec{R}_{A_2}) M^{A_2}(\vec{R}_{A_2})$$

$$- M \sum_{\vec{R}_{B_2}} J_\perp (\vec{R}_{A_1}, \vec{R}_{B_2}) M^{B_2}(\vec{R}_{B_2})$$

(5)
Similar equations hold for M^B_1, M^A_2, and M^B_2. It is now possible to write a general equation which yields the four LL equations as follows

$$\omega M^\alpha_l(\vec{R}_\alpha) = \left[3JM + M \sum_{\vec{R}_{\alpha_i}} J_\perp(\vec{R}_{\alpha_i}, \vec{R}_\alpha) + M \sum_{\vec{R}_{\alpha_i}} J_\perp(\vec{R}_{\alpha_i}, \vec{R}_{\alpha_i}) \right] M^\alpha_l(\vec{R}_\alpha)$$

$$-JM \sum_{\delta^\alpha_i} M^{\bar{\alpha}_l}(\vec{R}_\alpha + \delta^\alpha_i) - M \sum_{\vec{R}_{\alpha_i}} J_\perp(\vec{R}_{\alpha_i}, \vec{R}_{\alpha_i}) M^{\bar{\alpha}_l}(\vec{R}_{\alpha_i})$$

$$-M \sum_{\vec{R}_{\alpha_i}} J_\perp(\vec{R}_{\alpha_i}, \vec{R}_{\alpha_i}) M^{\bar{\alpha}_l}(\vec{R}_{\alpha_i})$$

(6)

where α stands for A or B. If $\alpha = A$ then $\bar{\alpha} = B$ and vice versa. Same relation holds for l and \bar{l}.

We next expand the amplitudes in equation 6 in terms of Bloch waves

$$\frac{\omega}{\sqrt{N_l}} \sum_{k'_{\bar{l}}} e^{-ik'_{\bar{l}} \cdot \vec{R}_{\bar{l}} u_{\bar{l}}(k'_{\bar{l}})} =$$

$$\frac{1}{\sqrt{N_l}} \left[3JM + M \sum_{\vec{R}_{\alpha_i}} J_\perp(\vec{R}_{\alpha_i}, \vec{R}_\alpha) + M \sum_{\vec{R}_{\alpha_i}} J_\perp(\vec{R}_{\alpha_i}, \vec{R}_{\alpha_i}) \right] \sum_{k'_{\bar{l}}} e^{-ik'_{\bar{l}} \cdot \vec{R}_{\bar{l}} u_{\bar{l}}(k'_{\bar{l}})}$$

$$-\frac{JM}{\sqrt{N_l}} \sum_{k'_{\bar{l}}} f(k'_{\bar{l}}) e^{-ik'_{\bar{l}} \cdot \vec{R}_{\bar{l}} u_{\bar{l}}(k'_{\bar{l}})}$$

$$-\frac{M}{\sqrt{N_l}} \sum_{\vec{R}_{\alpha_i}, \vec{k}_{\bar{l}}} J_\perp(\vec{R}_{\alpha_i}, \vec{R}_{\alpha_i}) e^{-ik_{\bar{l}} \cdot \vec{R}_{\bar{l}} u_{\bar{l}}(k_{\bar{l}})}$$

$$-\frac{M}{\sqrt{N_l}} \sum_{\vec{R}_{\alpha_i}, \vec{k}_{\bar{l}}} J_\perp(\vec{R}_{\alpha_i}, \vec{R}_{\alpha_i}) e^{-ik_{\bar{l}} \cdot \vec{R}_{\bar{l}} u_{\bar{l}}(k_{\bar{l}})}$$

(7)
where \(N_l \) and \(N_{\bar{l}} \) are the number of unit cells in layer \(l \) and \(\bar{l} \). The vectors \(\vec{k}_l' \) and \(\vec{k}_{\bar{l}}' \) are wave vectors in layers \(l \) and \(\bar{l} \). We have also used the fact that

\[
\sum_{\vec{\delta}_l} e^{-ik_l' \cdot \vec{\delta}_l} = e^{-ik_{l'}} \frac{a}{\sqrt{2}} + 2e^{i\frac{\sqrt{3}a}{3}k_{l'y}} \cos\left(\frac{a}{2}k_{lx}\right) = f(\vec{k}_l')
\]

Next, we multiply equation 7 by \(e^{i\vec{k}_l \cdot \vec{R}_{al}} \) and sum the whole equation over \(\vec{R}_{al} \). Substituting \(\sum_{\vec{k}_l', \vec{R}_{al}} e^{i(\vec{k}_l - \vec{k}_l') \cdot \vec{R}_{al}} = \sum_{\vec{k}_l', \vec{a}_l} \delta_{\vec{k}_l - \vec{k}_l'} \cdot \vec{a}_l \cdot \vec{R}_{al} \), where \(\vec{G}_l \) being a lattice vector of layer \(l \), we arrive at

\[
\omega \sum_{\vec{k}_l', \vec{a}_l} \delta_{\vec{k}_l - \vec{k}_l'} \cdot \vec{a}_l \ u_{\alpha_l}(\vec{k}_l') = 3J\sum_{\vec{k}_l', \vec{a}_l} \delta_{\vec{k}_l - \vec{k}_l'} \cdot \vec{a}_l \ u_{\alpha_l}(\vec{k}_l') - J\sum_{\vec{k}_l', \vec{a}_l} f(\vec{k}_l') \delta_{\vec{k}_l - \vec{k}_l'} \cdot \vec{a}_l \ u_{\alpha_l}(\vec{k}_l') \\
+ M \sum_{\vec{k}_l'} \mathcal{J}^{\alpha_l, \alpha_l}_l(\vec{k}_l, \vec{k}_l') u_{\alpha_l}(\vec{k}_l') + M \sum_{\vec{k}_l'} \mathcal{J}^{\alpha_l, \bar{\alpha}_l}_l(\vec{k}_l, \vec{k}_l') u_{\alpha_l}(\vec{k}_l') \\
- M \sum_{\vec{k}_l} \mathcal{J}^{\alpha_l, \alpha_l}_l(\vec{k}_l, \vec{k}_l) u_{\alpha_l}(\vec{k}_l) - M \sum_{\vec{k}_l} \mathcal{J}^{\alpha_l, \bar{\alpha}_l}_l(\vec{k}_l, \vec{k}_l) u_{\alpha_l}(\vec{k}_l)
\]

(8)

with the interlayer coefficients defined as

\[
\mathcal{J}^{\alpha_l, \alpha_l}_l(\vec{k}_l, \vec{k}_l') = \frac{1}{\sqrt{N_l N_{\bar{l}}}} \sum_{\vec{R}_{al}, \vec{R}_{\bar{a}l}} e^{i\vec{k}_l \cdot \vec{R}_{al}} f_{\perp}(\vec{R}_{al}, \vec{R}_{\bar{a}l}) e^{-i\vec{k}_{l'} \cdot \vec{R}_{al}}
\]

(9a)

\[
\mathcal{J}^{\alpha_l, \bar{\alpha}_l}_l(\vec{k}_l, \vec{k}_l') = \frac{1}{\sqrt{N_l N_{\bar{l}}}} \sum_{\vec{R}_{al}, \vec{R}_{\bar{a}l}} e^{i\vec{k}_l \cdot \vec{R}_{al}} f_{\perp}(\vec{R}_{al}, \vec{R}_{\bar{a}l}) e^{-i\vec{k}_{l'} \cdot \vec{R}_{\bar{a}l}}
\]

(9b)

while the intralayer coefficients read

\[
\mathcal{J}^{\alpha_l, \alpha_l}_l(\vec{k}_l, \vec{k}_l') = \frac{1}{N_l} \sum_{\vec{R}_{al}, \vec{R}_{\bar{a}l}} e^{i(\vec{k}_l - \vec{k}_l') \cdot \vec{R}_{al}} f_{\perp}(\vec{R}_{al}, \vec{R}_{\bar{a}l})
\]

(9c)
\[J^{\alpha_l \bar{\alpha}_l}(\vec{k}_l, \vec{k}'_l) = \frac{1}{N_l} \sum_{\vec{R}_{\alpha_l}, \vec{\alpha}_l} e^{i(\vec{k}_l - \vec{k}'_l) \cdot \vec{R}_{\alpha_l}} J_{\perp}(\vec{R}_{\alpha_l}, \vec{\alpha}_l) \]

(9d)

For small twist angles, \(|\vec{k}_l - \vec{k}'_l|\) is very small near the Dirac points and \(\vec{k}_l - \vec{k}'_l\) does not match any of the non-zero \(\vec{G}_l\), hence

\[
\sum_{\vec{k}'_l, \vec{\alpha}_l} \delta_{\vec{k}_l - \vec{k}'_l, \vec{\alpha}_l} = \sum_{\vec{k}'_l} \delta_{\vec{k}_l - \vec{k}'_l, \vec{\alpha}_l}
\]

Equation 8 then reduces to

\[
\omega u_{\alpha_l}(\vec{k}_l) = 3JM u_{\alpha_l}(\vec{k}_l) - Jmf(\vec{k}_l) u_{\bar{\alpha}_l}(\vec{k}_l)
\]

\[
+ M \sum_{\vec{k}'_l} \left[J^{\alpha_l, \bar{\alpha}_l}(\vec{k}_l, \vec{k}'_l) + J^{\alpha_l, \bar{\alpha}_l}(\vec{k}_l, \vec{k}'_l) \right] u_{\alpha_l}(\vec{k}_l)
\]

\[
- M \sum_{\vec{k}_l, \vec{\alpha}_l} J^{\alpha_l, \bar{\alpha}_l}(\vec{k}_l, \vec{k}_l) u_{\alpha_l}(\vec{k}_l) - M \sum_{\vec{k}_l, \vec{\alpha}_l} J^{\alpha_l, \bar{\alpha}_l}(\vec{k}_l, \vec{k}_l) u_{\alpha_l}(\vec{k}_l)
\]

(10)

The interlayer coefficients in 10 are qualitatively identical to those encountered in the tight-binding electronic theory for twisted bilayer graphene. We can hence benefit from the approaches developed in the tight binding theory to evaluate \(J^{\alpha_l, \bar{\alpha}_l}_{\perp}\) and \(J^{\alpha_l, \bar{\alpha}_l}_{\perp}\). In particular, we follow the approach by Bistritzer and MacDonald [44], valid for commensurate and incommensurate structures at small twist angles.

To start, the interlayer coefficients \(J_{\perp}(\vec{R}_{\alpha_l}, \vec{R}_{\alpha_l})\) is assumed function of \(\vec{R}_{\alpha_l} - \vec{R}_{\alpha_l}\). With the help of equations 1, the Fourier transform of \(J_{\perp}(\vec{R}_{\alpha_l}, \vec{R}_{\alpha_l})\) can then be written as

\[
J_{\perp}(\vec{R}_{\alpha_l}, \vec{R}_{\alpha_l}) = \int_{\mathbb{R}^2} \frac{d^2 \vec{p}}{(2\pi)^2} e^{-i\vec{p} \cdot (\vec{R}_{\alpha_l} - \vec{R}_{\alpha_l})} J_{\perp}(\vec{p})
\]

which when substituted in equation 9a yields
\[J_{\perp}^{\alpha_l \alpha_l}(\tilde{k}_l, \tilde{k}_l) = \frac{1}{\sqrt{N_l N_l}} \int_{\mathbb{R}^2} \frac{d^2 \tilde{p}}{(2\pi)^2} J_{\perp}(\tilde{p}) \sum_{\tilde{R}_l} e^{i(\tilde{k}_l - \tilde{p}) \cdot (\tilde{R}_l - \tilde{R}_l)} \sum_{\tilde{R}_l} e^{-i(\tilde{k}_l - \tilde{p}) \cdot (\tilde{R}_l + \tilde{R}_l)} = \sqrt{N_l N_l} \int_{\mathbb{R}^2} \frac{d^2 \tilde{p}}{(2\pi)^2} J_{\perp}(\tilde{p}) \sum_{\tilde{G}_l, \tilde{G}_l} e^{i\tilde{G}_l \cdot \tilde{R}_l} e^{-i\tilde{G}_l \cdot \tilde{R}_l} \delta_{\tilde{k}_l - \tilde{p}, \tilde{G}_l} \delta_{\tilde{k}_l - \tilde{p}, -\tilde{G}_l} \]

Replacing the \(\delta - \)Kronecker with \(\delta - \)Dirac and performing the integral yields

\[J_{\perp}^{\alpha_l \alpha_l}(\tilde{k}_l, \tilde{k}_l) = \frac{1}{A} \sum_{\tilde{G}_l, \tilde{G}_l} e^{-i\tilde{G}_l \cdot \tilde{R}_l} e^{i\tilde{G}_l \cdot \tilde{R}_l} \delta_{\tilde{k}_l + \tilde{G}_l, \tilde{k}_l + \tilde{G}_l} \]

(11)

with the unit cell area \(A = |\tilde{a}_1 \times \tilde{a}_2| = \sqrt{3}a^2/2 \). In equation 11, we replaced \(\tilde{G}_l \) and \(\tilde{G}_l \) with \(-\tilde{G}_l \) and \(-\tilde{G}_l \). The equation hence imposes the generalized umklapp condition [71], namely \(\tilde{k}_l + \tilde{G}_l = \tilde{k}_l + \tilde{G}_l \).

Close to the Dirac points \(K_{l/l} \), we write \(\tilde{k}_{l/l} = \tilde{K}_{l/l} + \tilde{q}_{l/l} \) with \(|\tilde{q}_{l/l}| \ll |\tilde{K}_l| = 4\pi/3a \). Therefore, \(J_{\perp}(\tilde{k}_l + \tilde{G}_l) \approx J_{\perp}(\tilde{K}_l + \tilde{G}_l) \). In addition, \(J_{\perp}(\tilde{K}_l + \tilde{G}_l) \) is expected to be isotropic in the \(\tilde{k} \)-space and hence \(J_{\perp}(\tilde{K}_l + \tilde{G}_l) = J_{\perp}(|\tilde{K}_l + \tilde{G}_l|) \).

Equation 11 then yields

\[J_{\perp}^{\alpha_l \alpha_l}(\tilde{q}_b, \tilde{q}_l) = \frac{1}{A} \sum_{\tilde{G}_l, \tilde{G}_l} e^{-i\tilde{G}_l \cdot \tilde{R}_l} e^{i\tilde{G}_l \cdot \tilde{R}_l} \delta_{\tilde{q}_l - \tilde{q}_l, -(\tilde{k}_l - \tilde{K}_l + \tilde{G}_l - \tilde{G}_l)} \]

(12)

For the weakly coupled ferromagnetic planes, the interlayer coefficient \(J_{\perp}(|\tilde{K}_l|) \) is expected to decay rapidly with \(|\tilde{K}_l| \) and the most relevant contributions to \(J_{\perp}^{\alpha_l \alpha_l}(\tilde{q}_l, \tilde{q}_l) \) correspond to \(\tilde{g}_{l/l} = \tilde{b}_{l/l, 2}, \) and \(-\tilde{b}_{l/l, 1} \). For these values of \(\tilde{G}_l \), it is easy to prove that \(|\tilde{k}_l + \tilde{G}_l| = |\tilde{K}_l| \). Consequently, equation 12 yields

\[J_{\perp}^{\alpha_l \alpha_l}(\tilde{q}_l, \tilde{q}_l) = \frac{J_{\perp}(|\tilde{K}_l|)}{A} \left[\delta_{\tilde{q}_l - \tilde{q}_l, -(\tilde{k}_l - \tilde{K}_l)} + e^{-i\tilde{b}_{l/l, 2} \cdot \tilde{R}_l} e^{i\tilde{b}_{l/l, 2} \cdot \tilde{R}_l} \delta_{\tilde{q}_l - \tilde{q}_l, -(\tilde{k}_l - \tilde{K}_l + \tilde{b}_{l/l, 2} - \tilde{b}_{l/l, 2})} + e^{i\tilde{b}_{l/l, 2} \cdot \tilde{R}_l} e^{-i\tilde{b}_{l/l, 2} \cdot \tilde{R}_l} \delta_{\tilde{q}_l - \tilde{q}_l, -(\tilde{k}_l - \tilde{K}_l + \tilde{b}_{l/l, 1} + \tilde{b}_{l/l, 1})} \right] \]

(13a)
We can now readily deduce

\[
\mathcal{J}_{\perp}^{a_l, \tilde{a}_l}(\tilde{q}_b, \tilde{q}_l) = \frac{J_\perp(|\tilde{K}_l|)}{A} \left[\delta_{\tilde{q}_l - \tilde{q}_l, -(\tilde{K}_l - \tilde{K}_l)} + e^{-i\tilde{b}_{l2}} e^{i\tilde{b}_{l2}} \delta_{\tilde{q}_l - \tilde{q}_l, -(\tilde{K}_l - \tilde{K}_l + \tilde{b}_{l2})}
+ e^{i\tilde{b}_{l2}} e^{-i\tilde{b}_{l2}} \delta_{\tilde{q}_l - \tilde{q}_l, -(\tilde{K}_l - \tilde{K}_l - \tilde{b}_{l2})} \right]
\]

(13b)

Equations (13) determine the interlayer coefficients in the LL equations (equation 10). We see that the three transferred momenta in 13 include reciprocal lattice vectors of the moiré pattern. Moreover, the Bernal stacking can be retrieved from 13 by setting \(\theta = 0 \), which allows us to deduce \(\frac{J_\perp(|\tilde{K}_l|)}{A} = \frac{J_\perp}{3} \).

We next consider the intralayer coefficients \(\mathcal{J}^{a_l, a_l}(\tilde{k}_l, \tilde{k}'_l) \), which can be treated similar to the interlayer coefficients. For the present case, \(\tilde{k}_l \) and \(\tilde{k}'_l \) are expanded near \(\tilde{K}_l \). Following the previous steps, we arrive at

\[
\mathcal{J}^{a_l, a_l}(\tilde{q}_l, \tilde{q}'_l) = \frac{1}{A} \sum_{\tilde{g}_l, \tilde{g}'_l} e^{-i\tilde{g}_l} e^{i\tilde{g}'_l} J_{\|}(|\tilde{q}_l - \tilde{q}'_l + \tilde{g}_l|) e^{i\tilde{g}_l} \delta_{\tilde{q}_l - \tilde{q}'_l, -(\tilde{g}_l - \tilde{g}_l)}
\]

(14a)

while

\[
\mathcal{J}^{a_l, \bar{a}_l}(\tilde{q}_b, \tilde{q}_l) = \frac{1}{A} \sum_{\tilde{g}_l, \tilde{g}_l} e^{-i\tilde{g}_l} e^{i\tilde{g}_l} J_{\|}(|\tilde{q}_l - \tilde{q}_l + \tilde{g}_l|) e^{i\tilde{g}_l} \delta_{\tilde{q}_l - \tilde{q}_l, -(\tilde{g}_l - \tilde{g}_l)}
\]

(14b)

Equations 14 pose the condition \(\tilde{q}_l - \tilde{q}'_l = \tilde{g}_l - \tilde{g}_l \). Since \(|\tilde{q}_l - \tilde{q}'_l| \) is small, the last condition is satisfied only if \(\tilde{g}_l - \tilde{g}_l \) represents a moiré reciprocal lattice vector. Any deviation from the moiré reciprocal lattice vectors will yield a large vector \(\tilde{g}_l - \tilde{g}_l \) which can’t match \(\tilde{q}_l - \tilde{q}'_l \). Consequently, \(u_{a_l}(\tilde{q}'_l) \) reduces to \(u_{a_l}(\tilde{q}_l) \). The intralayer coefficients are, as expected, independent of the twist angle.

We can now substitute equations 13 in 10 to express the LL equations in details. We note that near \(\tilde{K}_l, f(\tilde{K}_l + \tilde{q}) \approx -\sqrt{2} (q_x + i q_y) e^{-i\theta/2} = -\sqrt{2} |\tilde{q}| e^{i\theta} e^{-i\theta/2}. \) Moreover, the in-plane DMI can be
easily included in the LL equations, contributing only to the diagonal terms by $\pm 3\sqrt{3} D$ for A and B sublattices respectively (D is the DMI coefficient).

The LL equations for the two sites in layer 1 then reads

$$\Omega \ u_{A_1}(\vec{K}_1 + \bar{q}) = \frac{\sqrt{3} a}{2} |\bar{q}| e^{i(\theta_q - \theta/2)} u_{B_1}(\vec{K}_1 + \bar{q}) +$$

$$\left[3 + 3 \sqrt{3} D + \frac{J_1}{3} \left(2 + e^{-i\varphi} e^{i\vec{b}_{1,2} \vec{\tau}_0} + e^{i\varphi} e^{-i\vec{b}_{1,1} \vec{\tau}_0} + e^{i\vec{b}_{1,2} \vec{\tau}_0} + e^{-i\vec{b}_{1,1} \vec{\tau}_0} \right) \right] u_{A_1}(\vec{K}_1 + \bar{q})$$

$$- \frac{J_1}{3} \left[u_{A_2}(\vec{K}_2 + \bar{q} + \bar{q}_b) + e^{-i\varphi} e^{i\vec{b}_{1,2} \vec{\tau}_0} u_{A_2}(\vec{K}_2 + \bar{q} + \bar{q}_{\theta}) + e^{i\varphi} e^{-i\vec{b}_{1,1} \vec{\tau}_0} u_{A_2}(\vec{K}_2 + \bar{q} + \bar{q}_{\theta}) \right]$$

$$- \frac{J_1}{3} \left[u_{B_2}(\vec{K}_2 + \bar{q} + \bar{q}_b) + e^{i\vec{b}_{1,2} \vec{\tau}_0} u_{B_2}(\vec{K}_2 + \bar{q} + \bar{q}_{\theta}) + e^{-i\vec{b}_{1,1} \vec{\tau}_0} u_{B_2}(\vec{K}_2 + \bar{q} + \bar{q}_{\theta}) \right]$$

(15a)

$$\Omega \ u_{B_1}(\vec{K}_1 + \bar{q}) = \frac{\sqrt{3} a}{2} |\bar{q}| e^{-i(\theta_q - \theta/2)} u_{A_1}(\vec{K}_1 + \bar{q})$$

$$\left[3 - 3 \sqrt{3} D + \frac{J_1}{3} \left(2 + e^{i\varphi} e^{i\vec{b}_{1,2} \vec{\tau}_0} + e^{-i\varphi} e^{-i\vec{b}_{1,1} \vec{\tau}_0} + e^{i\varphi} e^{i\vec{b}_{1,2} \vec{\tau}_0} + e^{-i\varphi} e^{-i\vec{b}_{1,1} \vec{\tau}_0} \right) \right] u_{B_1}(\vec{K}_1 + \bar{q})$$

$$- \frac{J_1}{3} \left[u_{A_2}(\vec{K}_2 + \bar{q} + \bar{q}_b) + e^{i\varphi} e^{i\vec{b}_{1,2} \vec{\tau}_0} u_{A_2}(\vec{K}_2 + \bar{q} + \bar{q}_{\theta}) + e^{-i\varphi} e^{-i\vec{b}_{1,1} \vec{\tau}_0} u_{A_2}(\vec{K}_2 + \bar{q} + \bar{q}_{\theta}) \right]$$

$$- \frac{J_1}{3} \left[u_{B_2}(\vec{K}_2 + \bar{q} + \bar{q}_b) + e^{-i\varphi} e^{i\vec{b}_{1,2} \vec{\tau}_0} u_{B_2}(\vec{K}_2 + \bar{q} + \bar{q}_{\theta}) + e^{i\varphi} e^{-i\vec{b}_{1,1} \vec{\tau}_0} u_{B_2}(\vec{K}_2 + \bar{q} + \bar{q}_{\theta}) \right]$$

(15b)

with $\varphi = 2\pi/3$ and $\Omega = \frac{\omega}{jM}$. We have also defined the momenta

$$\bar{q}_b = \frac{4\pi \sin(\theta/2)}{3\sqrt{3}d} (0,-1)$$

$$\bar{q}_{\theta} = \frac{4\pi \sin(\theta/2)}{3\sqrt{3}d} (\sqrt{3}/2,1/2)$$

$$\bar{q}_{\theta} = \frac{4\pi \sin(\theta/2)}{3\sqrt{3}d} (-\sqrt{3}/2,1/2)$$

11
Each amplitude in layer 1 is hence coupled to 6 amplitudes in layer 2. Writing the LL equations for these 6 amplitudes, however, will not yield a close system of equations. In other words, there is no closed set of coupled amplitudes from layers 1 and 2 that can describe the spin dynamics in the tFBL. It is hence necessary to truncate the set of amplitudes involved in the formalism in order to form the system’s Hamiltonian and perform numerical calculations. For completeness, we present the LL equations for the two sites in layer 2

\[
\frac{ω}{JM} u_{A2}(\vec{K}_2 + \vec{q}) = \frac{\sqrt{3}a}{2} |\vec{q}| e^{i(\theta_q/2)} u_{B2}(\vec{K}_2 + \vec{q}) \\
[3 + 3\sqrt{3} D + \frac{I_1}{3J} \left(2 + e^{i\varphi} e^{-i\vec{b}_{1.2} \cdot \vec{r}_0} + e^{-i\varphi} e^{i\vec{b}_{1.1} \cdot \vec{r}_0} + e^{-i\varphi} e^{i\vec{b}_{1.2} \cdot \vec{r}_0} + e^{i\varphi} e^{-i\vec{b}_{1.1} \cdot \vec{r}_0} \right)] u_{A2}(\vec{K}_2 + \vec{q}) \\
- \frac{I_1}{3J} \left[u_{A2}(\vec{K}_1 + \vec{q} + \vec{q}_b) + e^{i\varphi} e^{-i\vec{b}_{1.2} \cdot \vec{r}_0} u_{A1}(\vec{K}_1 + \vec{q} + \vec{q}_f) + e^{-i\varphi} e^{i\vec{b}_{1.1} \cdot \vec{r}_0} u_{A1}(\vec{K}_1 + \vec{q} + \vec{q}_f) \right] \\
- \frac{I_1}{3J} \left[u_{B2}(\vec{K}_1 + \vec{q} + \vec{q}_b) + e^{-i\varphi} e^{i\vec{b}_{1.2} \cdot \vec{r}_0} u_{B1}(\vec{K}_1 + \vec{q} + \vec{q}_f) + e^{i\varphi} e^{-i\vec{b}_{1.1} \cdot \vec{r}_0} u_{B1}(\vec{K}_1 + \vec{q} + \vec{q}_f) \right]
\]

(15c)

\[
\frac{ω}{JM} u_{B2}(\vec{K}_2 + \vec{q}) = \frac{\sqrt{3}a}{2} |\vec{q}| e^{-i(\theta_q/2)} u_{A2}(\vec{K}_2 + \vec{q}) \\
[3 - 3\sqrt{3} D + \frac{I_1}{3J} \left(2 + e^{-i\vec{b}_{1.2} \cdot \vec{r}_0} + e^{i\varphi} e^{i\vec{b}_{1.1} \cdot \vec{r}_0} + e^{-i\varphi} e^{-i\vec{b}_{1.1} \cdot \vec{r}_0} \right)] u_{B2}(\vec{K}_2 + \vec{q}) \\
- \frac{I_1}{3J} \left[u_{A2}(\vec{K}_1 + \vec{q} + \vec{q}_b) + e^{-i\vec{b}_{1.2} \cdot \vec{r}_0} u_{A1}(\vec{K}_1 + \vec{q} + \vec{q}_f) + e^{i\varphi} e^{i\vec{b}_{1.1} \cdot \vec{r}_0} u_{A1}(\vec{K}_1 + \vec{q} + \vec{q}_f) \right] \\
- \frac{I_1}{3J} \left[u_{B2}(\vec{K}_1 + \vec{q} + \vec{q}_b) + e^{i\varphi} e^{-i\vec{b}_{1.2} \cdot \vec{r}_0} u_{B1}(\vec{K}_1 + \vec{q} + \vec{q}_f) + e^{-i\varphi} e^{-i\vec{b}_{1.1} \cdot \vec{r}_0} u_{B1}(\vec{K}_1 + \vec{q} + \vec{q}_f) \right]
\]

(15d)

Numerical results. In figure 2 left, we present the magnon spectrum along the high symmetry axes in the moiré superlattice for a weakly coupled tFBL with \(\vec{r}_0 = (0, d) \), \(\frac{I_1}{J} = 0.05 \), \(\theta = 5^\circ \) and \(D = 0 \). The present case corresponds to a rotated AA configuration. The spectrum is found to be qualitatively identical to the electronic structure of tBLG, with Dirac dispersion at \(K_m \) and \(K'_m \). In
figure 2 right, the spectrum is plotted at the first magic angle, found to be around $\theta = 0.91^\circ$. Again, the spectrum is very similar to that of tBLG.

![Figure 2: The numerically calculated magnon spectra for tFBL with $\bar{\tau}_0 = (0, d), \frac{\mu}{J} = 0.05$, and zero DMI. The left figure corresponds to $\theta = 5^\circ$ whereas the right figure corresponds to the magic angle $\theta = 0.91^\circ$.](image)

We next demonstrate the effect of the relative translation on the spin wave spectrum. In figure 3 left, we plot the magnon spectrum for $\bar{\tau}_0 = (0,0)$ and $\theta = 5^\circ$. The rest of the parameters are kept the same. The present case corresponds to a rotated AB configuration. The spectrum shows a band gap throughout the region. The translation is also found to alter the value of the magic angle in tFBL. The right figure shows the spectrum at the magic angle $\theta \approx 0.79^\circ$ in the present case. Interestingly, the rotated AB configuration presents 2 perfectly flat and gapped bands at the magic angle. These exotic dispersion profiles are indeed absent in the tBLG case.

![Figure 3: Gapped magnon spectra for tFBL with $\bar{\tau}_0 = (0,0), \frac{\mu}{J} = 0.05$, and zero DMI. The left and right figures respectively correspond to $\theta = 5^\circ$ and the magic angle $\theta = 0.79^\circ$.](image)
We next analyze the drastic effect induced by weak in-plane DMI. Figure 4 presents the magnon spectrum for $J_z = 0.05$, $\theta = 5^\circ$ and $D = 0.05$, with $\vec{r}_0 = (0, d)$ (left) and $\vec{r}_0 = (0, 0)$ (right). As expected, the weak DMI induces a relatively large band gap in the spin wave spectrum. The magic angles, however, are found to be robust against the DMI as illustrated in figure 5. The left and right figures respectively correspond to $[\vec{r}_0 = (0, d), \theta = 0.91^\circ]$ and $[\vec{r}_0 = (0, 0), \theta = 0.79^\circ]$. The DMI is found to induce additional flat bands in the spectra.

Figure 4: Gapped magnon spectra for $J_z = 0.05$, $\theta = 5^\circ$ and $D = 0.05$, with $\vec{r}_0 = (0, d)$ (left) and $\vec{r}_0 = (0, 0)$ (right)

Figure 5: Gapped magnon spectra for $J_z = 0.05$ and $D = 0.05$, with $[\vec{r}_0 = (0, d), \theta = 0.91^\circ]$ (left) and $[\vec{r}_0 = (0, 0), \theta = 0.79^\circ]$ (right)
Conclusion. We developed the first theoretical formalism of spin dynamics in weakly coupled honeycomb tFBL, including exchange and Dzyaloshinskii-Moriya interactions (DMI). The theory is based on a semi-classical Heisenberg Hamiltonian, LL equations of motion and the reciprocal moiré superlattice techniques. We demonstrate the existence of magnon magic angles and flat spin wave bands. tFBL is found to host spin wave dispersion profiles absent in magnetic monolayers, AB/AA stacked magnetic bilayers and in twisted fermionic counterparts. Weakly coupled tFBL hence presents novel moiré physics and important potentials for technological applications.

References
[1] Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional Van der Waals crystals, Nature 546, 265 (2017).
[2] Huang B. et al. Layer-dependent ferromagnetism in a Van der Waals crystal down to the monolayer limit, Nature 546, 270 (2017).
[3] You, J.-S., Huang, W.-M. & Lin, H.-H. Relativistic ferromagnetic magnon at the zigzag edge of graphene, Phys. Rev. B 78, 161404(R) (2008)
[4] Sanghyun, L. et al. Antiferromagnetic ordering in Li$_2$MnO$_3$ single crystals with a two-dimensional honeycomb lattice, J. Phys.: Condens. Matter 24, 456004 (2012)
[5] Tao, H.-S., Chen, Y.-H., Lin, H.-F., Liu, H.-D. & Liu, W.-M. Layer Anti-Ferromagnetism on Bilayer Honeycomb Lattice, Scientific Reports 4, 5367 (2014)
[6] Lee, J.-U. et al. Ising-Type Magnetic Ordering in Atomically Thin FePS$_3$, Nano Letters 16, 7433 (2016)
[7] Cheng, R., Okamoto, S. & Xiao, D. Spin Nernst effect of magnons in collinear antiferromagnets, Phys. Rev. Lett. 117, 217202 (2016)
[8] Zyuzin, V. A. & Kovalev, A. A. Magnon Spin Nernst Effect in Antiferromagnets, Phys. Rev. Lett. 117, 217203 (2016)
[9] Owerre, S. A. A first theoretical realization of honeycomb topological magnon insulator, J. Phys.: Condens. Matter 28, 386001 (2016)
[10] Owerre, S. A. Magnon Hall effect in AB-stacked bilayer honeycomb quantum magnets, Phys. Rev. B 94, 094405 (2016)
[11] Wang, X. S., Su, Y. & Wang, X. R. Topologically protected unidirectional edge spin waves and beam splitter, Phys. Rev. B 95, 014435 (2017)
[12] Nakata, K., Klinovaja, J. & Loss, D. Magnonic quantum Hall effect and Wiedemann-Franz law, Phys. Rev. B 95, 125429 (2017)
[13] Shiomi, Y., Takashima, R. and Saitoh, E. Experimental evidence consistent with a magnon Nernst effect in the antiferromagnetic insulator MnPS_3, Phys. Rev. B 96, 134425 (2017)

[14] Huang, W.-M., Hikihara, T., Lee, Y.-C. & Linb, H.-H. Edge magnetism of Heisenberg model on honeycomb lattice, Sci Rep., 7, 43678 (2017)

[15] Pantaleón, P.A. & Xian, Y. Edge states in a ferromagnetic honeycomb lattice with armchair boundaries, Physica B: Cond. Matt., 530, 191 (2017)

[16] Owerre, S. A. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets, Scientific Reports, 7, 6931 (2017)

[17] Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI_3, 2D Materials 4, 035002 (2017).

[18] Wang, X. S. & Wang, X. R. Anomalous magnon Nernst effect of topological magnonic materials, J. Phys. D: Appl. Phys., 51 (2018)

[19] Rückriegel, A., Brataas, A. & Duine, R. A. Bulk and edge spin transport in topological magnon insulators, Phys. Rev. B 97, 081106(R) (2018)

[20] Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe_2 monolayers on Van der Waals substrates, Nat. Nanotechnol. 13, 289 (2018).

[21] Pershoguba, S. S., Banerjee, S., Lashley, J. C., Park, J., Ågren, H., Aeppli, G. & Balatsky, A.V. Dirac magnons in honeycomb ferromagnets, Phys. Rev. X 8, 011010 (2018)

[22] Lee, K. H., Chung, S. B. Park, K. & Park, J.-G. Magnonic quantum spin Hall state in the zigzag and stripe phases of the antiferromagnetic honeycomb lattice, Phys. Rev. B 97, 180401(R) (2018)

[23] Jin, W. et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet, Nat. Comm. 9, 5122 (2018)

[24] Chen, L. et al. Topological spin excitations in honeycomb ferromagnet CrI_3, Phys. Rev. X 8, 041028 (2018)

[25] Tuček, J. et al. Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications, Chem. Soc. Rev. 47, 3899 (2018)

[26] Xing, X. W. et al. Magnon Transport in Quasi-Two-Dimensional van der Waals Antiferromagnets, Phys. Rev. X 9, 011026 (2019)

[27] Owerre, S. A. Topological magnon nodal lines and absence of magnon spin Nernst effect in layered collinear antiferromagnets, EPL 125, 3 (2019)

[28] Owerre, S. A. Magnonic Floquet Quantum Spin Hall Insulator in Bilayer Collinear Antiferromagnets, Sci. Rep. 9, 7197 (2019)
[29] Ghader, D. & Khater, A. A new class of nonreciprocal spin waves on the edges of 2D antiferromagnetic honeycomb nanoribbons, Sci. Rep. 9, 15220 (2019)

[30] Ghader, D. & Khater, A. Asymmetric dynamics of edge exchange spin waves in honeycomb nanoribbons with zigzag and bearded edge boundaries, Sci. Rep. 9, 6290 (2019)

[31] Ghader, D. & Khater, A. Discretized dynamics of exchange spin wave bulk and edge modes in honeycomb nanoribbons with armchair edge boundaries, J. Phys.: Condens. Matter 31, 315801 (2019)

[32] Ghader, D. & Khater, A. Theory for the spin dynamics in ultrathin disordered binary magnetic alloy films: application to cobalt-gadolinium, JMMM 482, 88-98 (2019)

[33] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. and Geim, A. K. The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009)

[34] Edward, M. & Mikito, K. The electronic properties of bilayer graphene, Rep. Prog. Phys. 76, 056503 (2013)

[35] Eduardo, V.C., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., Lopes dos Santos, J. M. B., Johan, N., Guinea, F., Geim, A.K., Neto, A.H.C. Electronic properties of a biased graphene bilayer, J. Phys. Condens. Matter 22, 175503 (2010)

[36] Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., Lopes dos Santos, J. M. B., Nilsson, J., Guinea, F., Geim, A.K., Neto, A.H.C. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect, Phys. Rev. Lett. 99, 216802 (2007)

[37] Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E. Controlling the electronic structure of bilayer graphene, Science 313, 951-954 (2006)

[38] Novoselov, K.S., McCann, E., Morozov, S.V., Fal’ko, V.I., Katsnelson, M.I., Zeitler, U., Jiang, D., Schedin, F., Geim, A.K. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene, Nat. Phys. 2, 177 (2006)

[39] Lopes dos Santos, J. M. B., Peres, N. M. R. and Castro Neto, A. H. Graphene bilayer with a twist: Electronic structure, Phys. Rev. Lett. 99, 256802 (2007).

[40] Geim, A. K., MacDonald, A. H. Graphene: exploring carbon flatland. Phys. Today 60, 35–41 (2007)

[41] Trambly de Laissardièrè, G., Mayou, D. and Magaud, L. Localization of Dirac electrons in rotated graphene bilayers, Nano Lett. 10, 804 (2010).

[42] Shallcross, S. et al. Electronic structure of turbostratic graphene, Phys. Rev. B 81, 165105 (2010).
[43] Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. and Barticevic, Z. Flat bands in slightly twisted bilayer graphene: Tight-binding calculations, Phys. Rev. B 82, 121407 (2010).

[44] Bistritzer, R. and MacDonald, A. H. Moiré bands in twisted double-layer graphene, Proc. Natl. Acad. Sci. U.S.A. 108, 12233 (2011).

[45] Moon, P., and Koshino, M., Energy spectrum and quantum Hall effect in twisted bilayer graphene, Physical Review B 85, 195458 (2012).

[46] Lopes dos Santos, J. M. B., Peres, N. M. R. and Castro Neto, A. H. Continuum model of the twisted graphene bilayer, Phys. Rev. B 86, 155449 (2012).

[47] Cao, Y. et al., Unconventional superconductivity in magic-angle graphene superlattices, Nature 556, 43 (2018).

[48] Cao, Y. et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556, 80 (2018).

[49] Li, G., Luican, A., Lopes dos Santos, J. M. B., Castro Neto, A. H., Reina, A., Kong, J. and Andrei, E. Y. Observation of Van Hove singularities in twisted graphene layers, Nat. Phys. 6, 109 (2009).

[50] Luican, A., Li, G., Reina, A., Kong, J., Nair, R. R., Novoselov, K. S., Geim, A. K. and Andrei, E. Y. Single-layer behavior and its breakdown in twisted graphene layers, Phys. Rev. Lett. 106, 126802 (2011).

[51] Brihuega, I., Mallet, P., González-Herrero, H., Trambly de Laissardière, G., Ugeda, M. M., Magaud, L., Gómez-Rodríguez, J. M., Ynduráin, F. and Veuillin, J.-Y. Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis, Phys. Rev. Lett. 109, 19 (2012).

[52] Kim, Y., Herlinger, P., Moon, P., Koshino, M., Taniguchi, T., Watanabe, K. and Smet, J. H. Charge inversion and topological phase transition at a twist angle induced van Hove singularity of bilayer graphene, Nano Lett. 16, 5053 (2016).

[53] Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices, Nature 497, 594 (2013).

[54] Dean, C. R. et al., Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices, Nature 497, 598 (2013).

[55] Hunt, B. et al., Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure, Science 340, 1427 (2013).

[56] Kim, K. et al. “Van der Waals heterostructures with high accuracy rotational alignment,” Nano Lett. 16, 1989 (2016).
[57] Frisenda, R., Navarro-Moratalla, E., Gant, P., Pérez De Lara, D., Jarillo-Herrero, P., Gorbachev, R. V., and Castellanos-Gomez, A., Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials, Chem. Soc. Rev. 47, 53 (2018).

[58] Ribeiro-Palau, R., Zhang, C., Watanabe, K., Taniguchi, T., Hone, J. and Dean, C. R. Twistable electronics with dynamically rotatable heterostructures, Science 361, 690 (2018).

[59] Kim, K., DaSilva, A., Huang, S., Fallahazad, B., Larentis, S., Taniguchi, T., Watanabe, K., LeRoy, B. J., MacDonald, A. H. and Tutuc, E. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene, Proc. Natl. Acad. Sci. U.S.A. 114, 3364 (2017).

[60] Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI₃, Nano Lett. 18, 7658–7664 (2018).

[61] Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

[62] Mak, K.F., Shan, J. & Ralph, D.C. Probing and controlling magnetic states in 2D layered magnetic materials, Nat Rev Phys 1, 646–661 (2019)

[63] Chen, W., Sun, Z., Wang, Z., Gu, L., Xu, X., Wu, S., Gao, & C., Direct observation of van der Waals stacking–dependent interlayer magnetism, Science, 366, 6468, 983–987 (2019)

[64] Stamps, R. L. & Camley, R. E. Dipole-exchange spin wave modes in very-thin-film antiferromagnets, Phys. Rev. B 35, 1919 (1987)

[65] Stamps, R. L. & Hillebrands, B. Dipole-exchange modes in thin ferromagnetic films with strong out-of-plane anisotropies, Phys. Rev. B 43, 3532, (1991)

[66] Ghader, D., Ashokan, V., Ghantous, M. A. & Khater, A. Spin waves transport across a ferrimagnetically ordered nanojunction of cobalt-gadolinium alloy between cobalt leads, Eur. Phys. J. B 86, 180 (2013)

[67] Ghantous, M. A., Khater, A., Ashokan, V. & Ghader, D. Sublattice magnetizations of ultrathin alloy [Co₁₋ₓGdₓ]ₙ nanojunctions between Co leads using the combined effective field theory and mean field theory methods, J. Appl. Phys. 113, 9, 094303 (2013)

[68] Khater, A., Saim, L., Tigrine, R. & Ghader, D. Fabry–Perot magnonic ballistic coherent transport across ultrathin ferromagnetic lamellar bcc Ni nanostructures between Fe leads, Surf. Sci. 672, 47 (2018)

[69] Ashokan, V., Khater, A., Ghantous, M. A. & Ghader, D. Spin wave ballistic transport properties of [Co₁₋ₓGdₓ]ₙ [Co]ₙ' [Co₁₋ₓGdₓ]ₙ' nanojunctions between Co leads, JMMM 384, 18-26 (2015)
[70] Ashokan, V., Ghantous, M. A., Ghader, D. & Khater, A. Computation of magnons ballistic transport across an ordered magnetic iron-cobalt alloy nanojunction between iron leads, Thin Solid Films 616, 6-16 (2016)

[71] Koshino, M. Interlayer interaction in general incommensurate atomic layers, New Journal of Physics, 17, 1, 015014 (2015)