INTRODUCTION

Obsessive-compulsive disorder (OCD) is a psychiatric disorder characterized by recurrent, persistent and intrusive thoughts or images typically causing distress or anxiety (that is, obsessions), and repetitive behaviors aimed at reducing the feeling of anxiety (that is, compulsions).\(^1\) Traditionally, alterations in cortico-striato-thalamo-cortical (CSTC) circuitry have been associated with the pathophysiology of OCD.\(^2\) The CSTC model differentiates between affective and cognitive circuits, reflecting an impact of associated structures on emotional and cognitive functioning. However, it has recently been pointed out that the prevailing model does not specifically take into account the involvement of other structures such as amygdala and hippocampus and their interactions with fronto regions in mediating anxiety.\(^2\) Likewise, Menzies et al.\(^3\) concluded that several brain regions outside of the classical CSTC model may play a role in the pathophysiology. Based on a review of voxel-based morphometry (VBM) studies in OCD and in line with the aforementioned studies, Piras et al.\(^4\) similarly state an involvement of structural alterations in regions outside of the CSTC loops such as tempo-limbic regions to be relevant in OCD. Taken together, there is emerging evidence suggesting several brain regions other than fronto-thalamo-cortical areas to play a major role in the pathophysiology of OCD.

Progress has been made in identifying structural alterations in a broad range of psychiatric diseases using various methods such as VBM,\(^5\) and diffusion-weighted imaging.\(^6\) With the advent of connectomics, it is now feasible to shift the view from a regional perspective toward a network perspective based on the integration of various forms of anatomical data to assess connectivity of networks in brain disease,\(^7\) including psychiatric disorders.\(^8\)–\(^10\) The conceptualization of the brain as a complex network calls for different approaches in modeling and analysis to infer information from brain magnetic resonance (MR) images and the mathematical framework of graph theory has proven to be especially useful in the analysis of such data.\(^11\) A broad range of measures can be calculated to assess topological properties of underlying brain graphs.\(^12\) Assessing these measures, one can potentially derive information about fundamental organizational properties in a specific group or compute differences between groups\(^13\) (for example, healthy controls vs psychiatric populations).\(^14\)

To date, most studies addressing network alterations in OCD have focused on functional networks derived from resting-state functional magnetic resonance imaging (rs-fMRI).\(^15\)–\(^18\) Within a control network comprising frontal, parietal and cingulate cortex, as well as precuneus, thalamus and cerebellum, patients displayed alterations in small-world parameters.\(^15\) A recent study\(^19\) found decreased connectivity within the limbic system (amygdala and hippocampus) potentially related to problems with implicit learning and emotion processing observable in OCD patients. In addition, the same study reported an increase in connectivity within the executive/attention network in OCD possibly related to...
there is accumulating evidence for an involvement of regions further identify potential changes in topologic properties. Since the speci c topological features of areas implicated in anxiety and emotion processing. Thus far, no study to date has focused on structural network alterations in OCD using/adopting a network-based statistic (NBS) approach. The only study that has focused on structural network alterations in OCD is the one by Annett et al.21 The patients were recruited from the Windach Institute and Hospital of Neurobehavioural Research and Therapy specialized in the treatment of OCD. As a control group we included healthy controls with a history of psychiatric diagnosis. Healthy controls with a history of psychiatric diagnosis or more comorbid diagnoses were excluded due to comorbidities and head injuries, seizures or neurological diseases. There were no significant differences between healthy controls and OCD patients regarding age (t-test; P = 0.73) and gender (χ²-test; P = 0.42). At time of the study, n = 12 patients were drug-naive or medication-free for at least 3 weeks. No patients were excluded due to comorbidities and n = 22 patients had one or more comorbid diagnoses. Healthy controls with a history of psychiatric illness were excluded. All patients and controls were right-handed as assessed by Annett’s handedness inventory. The patients were recruited from the Windach Institute and Hospital of Neurobehavioural Research and Therapy, Germany. To assess clinical severity of obsessive-compulsive disorder, the speci c topological features of areas implicated in anxiety and emotion processing.

MATERIALS AND METHODS
Participants
A total of n = 41 patients with OCD as the primary diagnosis according to DSM-IV criteria were included in the study. All diagnoses were made by an experienced psychiatrist from the Windach Institute and Hospital of Neurobehavioural Research and Therapy specialized in the treatment of OCD. As a control group n = 42 age- and gender-matched healthy subjects were included (for demographic and clinical characteristics see Table 1). Exclusion criteria for both groups were a history of clinically important head injuries, seizures or neurological diseases. There were no significant differences between healthy controls and OCD patients regarding age (t-test; P = 0.73) and gender (χ²-test; P = 0.42). At time of the study, n = 12 patients were drug-naive or medication-free for at least 3 weeks. No patients were excluded due to comorbidities and n = 22 patients had one or more comorbid diagnoses. Healthy controls with a history of psychiatric illness were excluded. All patients and controls were right-handed as assessed by Annett’s handedness inventory. The patients were recruited from the Windach Institute and Hospital of Neurobehavioural Research and Therapy, Germany. To assess clinical severity of obsessive-compulsive disorder, the speci c topological features of areas implicated in anxiety and emotion processing.

Table 1. Demographic and clinical sample characteristics

Characteristics	OCD (n = 41)	HC (n = 42)	P-value
	n (%) or Mean ± s.d. (range)	n (%) or Mean ± s.d. (range)	
Female	27 (65.9%)	24 (57.1%)	P = 0.42
Age (Years)	32.5 ± 10.0 (20–63)	31.8 ± 8.3 (20–57)	P = 0.73
Age of onset	15.9 ± 6.40	—	
Disease duration	16.8 ± 10.6	—	
Y-BOCS total	22.0 ± 5.4 (15–36)	—	
Obsession	11.4 ± 3.2 (4–17)	—	
Compulsions	10.6 ± 3.5 (0–19)	—	
OCI-R total	25.2 ± 9.2 (9–47)	—	
Hoarding	2.6 ± 2.9 (0–11)	—	
Checking	5.9 ± 3.2 (1–12)	—	
Ordering	3.5 ± 3.7 (0–12)	—	
Neutralizing	1.9 ± 2.6 (0–10)	—	
Washing	4.6 ± 3.7 (0–11)	—	
Obsessing	6.8 ± 3.0 (1–12)	—	
BDI	18.1 ± 11.4 (0–53)	—	
Comorbidities	22 (53.7%)	—	
Depression	12 (29.3%)	—	
Anxiety	3 (7.3%)	—	
Depression and anxiety	3 (7.3%)	—	
Personality disorder	1 (2.4%)	—	
Eating disorder	1 (2.4%)	—	
Depression, anxiety, ADHD	1 (2.4%)	—	
Depression, eating disorder, personality disorder	1 (2.4%)	—	
Medication	29 (70.7%)	—	
SSRI	16 (55.2%)	—	
TCA	4 (13.8%)	—	
SSRI+antipsychotic	3 (10.3%)	—	
SSRI	2 (6.9%)	—	
SSRI+methylphenidate	1 (3.4%)	—	
SSRI+methylphenidate	1 (3.4%)	—	
NDRI+SSRI	1 (3.4%)	—	
Benzodiazepine+antipsychotic	1 (3.4%)	—	

Abbreviations: ADHD, attention de
cit hyperactivity disorder; BDI, Beck Depression Inventory; HC, healthy controls; NDRI, norepinephrine-dopamine reuptake inhibitor; OCD, obsessive-compulsive disorder; OCI-R, Obsession-Compulsion Inventory revisited; SSNRI, selective serotonin–norepinephrine reuptake inhibitor; SSRI, selective serotonin reuptake inhibitor; TCA, tricyclic antidepressant; Y-BOCS, Yale-Brown Obsessive-Compulsive Scale.
symptoms, patients were handed the self-rated version of the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) as well as the Obsession-Compulsion Inventory (OCI-R). In addition, the Beck Depression Inventory (BDI) was used to assess depressive symptoms. The study was approved by the local Ethics Committee of the Klinikum rechts der Isar, München.

Image acquisition
MRI was conducted on a 3 T Philips Ingenia (Philips Healthcare, Best, the Netherlands) using a 12-channel (SENSE) head coil. Structural imaging consisted of a T1-weighted 3D MPRAE sequence (170 slices, sagittal orientation, 240 × 240 matrix, 1 mm isotropic resolution, TR = 9 ms, TE = 4 ms, flip angle = 8°), and a diffusion-weighted imaging sequence (60 slices, 112 × 112 matrix, 2 mm isotropic resolution, TR = 9000 ms, TE = 57 ms, flip angle = 90°, 32 diffusion directions, b-value = 1000 s/mm², two b = 0 images).

Image processing
Based on the high-resolution T1-weighted structural image, the cortical and subcortical structures as well as the brain stem were parcellated using FreeSurfer (V5.1., http://surfer.nmr.mgh.harvard.edu/). Processing included automatic segmentation into gray and white matter tissue compartments followed by parcellation of the gray matter mask into distinct brain regions based on a normalized template. The resulting parcellation consisted of a total of 83 distinct brain regions of which 68 were cortical (34 per hemisphere), 14 subcortical (7 per hemisphere: thalamus, caudate, putamen, pallidum, hippocampus, amygdala, nucleus accumbens) and 1 represented the brainstem (see Supplementary Figure 1 for illustration of nodes). This parcellation scheme comprises several nodes that are thought to play an important role in the pathophysiology of OCD. Of special interest are several subcortical (for example, caudate, putamen, nucleus accumbens, amygdala, thalamus), as well as cortical regions (rostral middle frontal, medial orbital frontal, insula). In addition, this scheme is in line with studies examining other psychiatric diseases and may thus facilitate comparison of results across diagnostic categories.

Diffusion data were corrected for movement and eddy-current distortions by realigning all diffusion-weighted images to the diffusion unweighted (b = 0) scan. A tensor was fitted to each voxel’s individual diffusion profile by applying a robust fitting method. Based on the fitted tensors, FA values as well as the preferred direction of diffusion (represented by the principal eigenvector) were calculated for each voxel.

Tractography
Reconstruction of white matter tracts was based on Fiber Assignment by Continuous Tracking (FACT). To initiate tracking, eight seeds were placed in every voxel assigned to be white matter tissue based on the brain mask. Starting from each seed, tracking proceeded along the main diffusion direction propagating from voxel to voxel. Fiber tracking was terminated if the FA-value in a given voxel was < 0.1, the angle between the preferred diffusion direction of two subsequent voxels exceeded 45° or the streamline exceeded the brain mask.

Graph construction
A graph is the representation of a network in mathematical terms and is defined by a set of nodes, and a collection of edges describing the interactions between the nodes. To perform network analysis, a graph representing the structural connectivity network was constructed individually for each participant. Each node was assigned a specific brain region derived from the previous parcellation step. For every possible pair of nodes (Ni,Nj) it was determined whether a connection, that is a continuous streamline between Ni and Nj, was present or not. If present, the value of the connection was assigned the value of the number of streamlines (NOS) as indicated by the fiber tracking results. If a connection was absent, the connectivity value was set to zero. In this manner, for every participant, a single undirected, NOS-weighted graph was constructed. To avoid the influence of spurious connections, all edges with a streamline count of < 2 were set to zero. A group threshold was applied to balance the influences of false-positive and false-negative reconstructions of tracts. In a first step, for each group separately, edges that were present in at least 60% of all group members were retained while all other edges were set to zero. In a second step, all edges that were present in at least 60% of the entire sample were retained. All subsequent analyses were conducted using the output from applying the 60% threshold within the entire sample. To check the stability of results, we additionally thresholded all matrices with varying thresholds, ranging from 30 to 90% with 5% increments and repeated all analysis (see Supplementary Tables 7 and 8).

NBS analysis
Group differences between structural connectivity matrices were examined using the framework of the NBS introduced by Zalesky et al. NBS is a recently developed nonparametrical method to avoid the multiple comparison problem encountered when conducting mass univariate significance testing in graphs. Statistical significance is established for specific subsets of nodes that are mutually connected in topological rather than physical space. The first step in the analysis requires the calculation of a test statistic (here t-statistic) for each individual edge based on the differences in connectivity values (that is, NOS) between groups. Second, a primary component-forming threshold (here P < 0.01, uncorrected) is applied to identify all edges displaying potential differences in connectivity strength. Third, all subthreshold edges are assessed for mutual connections forming clusters in topological space that may point toward the existence of non-chance clusters. Permutation testing is then applied to compute P-values for every component previously identified. To this end, steps 1 through 3 are repeated for each of the 5000 random permutations of group assignments (that is, patient or control), with noting the maximum cluster sizes of components resulting in a null distribution for the largest component size. The final hypothesis test is then carried out for the empirically determined components by comparing their sizes with the proportion of permutations yielding a component with equal or greater size. The final result controls the family-wise error rate at cluster level with P < 0.05. Visualization of NBS networks was conducted using graphViz V2.3 (www.graphviz.org).

Graph theoretical analyses
All measures were calculated on the individual structural connectivity matrices using the Brain Connectivity Toolbox (http://www.brainconncovt-box.org) under Matlab (R2014a, http://mathworks.com) and subsequently compared between groups. The following graph metrics were calculated for global description of the networks: (1) normalized global weighted clustering (γ), (2) normalized characteristic weighted path length (λ), (3) global strength, (4) total fiber counts. To calculate γ and λ for every participant’s brain network a set of 1000 random networks with identical degree sequence was formed. Subsequently for each of these networks, the weighted clustering coefficient and characteristic weighted path length were calculated and used for normalization. For description of nodal properties, the following node-specific (that is, region specific) graph metrics were calculated: (1) weighted clustering coefficient, (2) shortest weighted path length, (3) nodal strength. All comparisons involving graph measures were tested using permutation-based testing (10 000 permutations) corrected for multiple comparisons using false discovery rate (FDR)-correction if applicable.

Analysis of nodal volumes
Volume differences on a nodal level can in principle lead to differences in the number of reconstructed streamlines and thus drive parts of the results. To check for such influences, a group comparison for the volumes of all nodes was conducted using permutation testing (10 000 permutations) and FDR-correction.

Correlations
Potential relationships between clinical scores (Y-BOCS, OCI-R, BDI) and network measures were assessed including the NOS of edges comprising a significantly different cluster in the NBS analysis, as well as graph measures, displaying significant differences on a local and global scale. All correlations were corrected for multiple comparisons using FDR-correction.

Influence of medication status
To assess the influence of medication status on results, we separately compared the subgroup of patients receiving medication with all healthy controls. This decision was based on the fact that the subsample of patients not receiving any medication (n = 12) was likely to cause a lack of power in the statistical analysis. Instead, using the above mentioned
approach, it was assessed whether the effects under consideration increased or decreased in magnitude, indicating a possible influence of medication status.

RESULTS

NBS of structural connectivity alterations in OCD

NBS analysis revealed a single network of decreased structural connectivity in OCD as compared with healthy controls ($P = 0.009$). The network comprised a total of seven nodes connected by seven edges. The entire network was confined to the left hemisphere and included the following nodes: medial orbitofrontal cortex (mOFC), putamen, pallidum, amygdala, entorhinal cortex, insula and temporal pole (see Figure 1 for a depiction of the entire network structure). All connections between nodes were impaired in patients, that is, for each edge within the cluster, the NOS was consistently reduced in patients (see Table 2). For illustration purposes see Figure 2 depicting the aggregated streamline trajectories comprising the edges within the significantly impaired cluster for patients and healthy controls.

The analyses results obtained by varying the initial thresholds are presented in Supplementary Table 7. Overall, the NBS results were stable with only minor differences in cluster size for the most extreme thresholds (80–90%).

Graph analysis

The overall topology of the networks was found to be in the small-world regime for both groups with the normalized global clustering coefficient $\gamma > 1$ (mean ± s.d.; patients: $\gamma = 3.0604 ± 0.2456$; controls: $\gamma = 3.0016 ± 0.1324$; $P = 0.183$) and the normalized characteristic global path length $\lambda < 1$ (patients: $\lambda = 1.2125 ± 0.0891$; controls: $\lambda = 1.2052 ± 0.1085$; $P = 0.748$). There was a trend for a reduced global degree strength in patients (mean ± s.d.; patients: 3986.2 ± 771.0; controls: 4281.0 ± 651.7; $P = 0.056$), as well as a trend for a reduced total fiber count in patients (mean ± s.d.; patients: 165 430 ± 31 996; controls: 177 660 ± 27 044; $P = 0.063$). For local topological measures, the following significant differences were found: (1) decreased weighted clustering coefficients of left amygdala ($P < 0.001$, FDR-corrected), left temporal pole ($P < 0.001$, FDR-corrected) and right temporal pole ($P = 0.002$, FDR-corrected); (2) increased shortest weighted path length of left amygdala ($P > 0.001$, FDR-corrected), (3) decreased nodal strength of left amygdala ($P < 0.001$, FDR-corrected). For nodes with significant differences based on uncorrected results see Supplementary Table 1. Regarding the stability of graph measure results, all results for amygdala are stable across the entire range of thresholds. There is some minor variation in significant differences for the weighted clustering coefficients and shortest weighted path lengths (see Supplementary Table 8). For a depiction of the global graph measures plotted as a function of connectivity matrix density see Supplementary Figure 2.

Analysis of nodal volumes

Analysis of nodal volumes yielded no significant differences ($P > 0.05$, FDR-corrected) for any of the nodes derived from cortical parcellation. See Supplementary Table 2 for details regarding the volume comparisons of all nodes comprising the NBS cluster.

Correlation between clinical scores and connectivity parameters

There were no significant correlations between clinical scores and connections found to be impaired in the NBS analysis or for global and local graph measures (see Supplementary Tables 4–6 for reports of trend correlations between clinical scores and graph measures).
Influence of medication status

The NBS results obtained from comparing healthy subjects with patients receiving medication yielded one significant cluster ($P = 0.047$, corrected). It comprised a total of five nodes connected by five edges. The entire network was confined to the left hemisphere and included the following nodes: putamen, pallidum, amygdala, insula, and temporal pole. All connections between nodes were impaired in patients, that is, for each edge within the cluster, the NOS was consistently reduced in patients (see Supplementary Table 3).

For local topological measures, the following significant differences were found: (1) decreased weighted clustering coefficients of left amygdala ($P < 0.002$) and left temporal pole ($P < 0.002$); (2) increased shortest weighted path length of left amygdala ($P < 0.001$), (3) decreased nodal strength of left amygdala ($P < 0.001$).

DISCUSSION

The current study reports on NBS-based structural connectome differences between OCD patients and healthy controls, as well as graph theoretical analysis parameters. The NBS analysis revealed a single network with decreased structural connectivity in OCD. The affected subnetwork was lateralized to the left side and consisted of connections between mOFC, putamen, pallidum, amygdala, entorhinal cortex, insula and temporal pole. Several of these nodes are commonly implicated in the classical CSTC model of OCD such as the mOFC, putamen and pallidum providing evidence of the involvement of altered structural connectivity between these areas in the pathophysiology of OCD.

Interestingly, the connections between several nodes within the NBS cluster resemble a fronto-temporal pattern connecting mOFC, insula, temporal pole, amygdala and entorhinal cortex. Widespread anatomical connectivity between the aforementioned areas has been described in the literature. A major connection between the orbital and temporal gyrus is provided through the uncinate fasciculus (UF) which is commonly regarded as forming part of the limbic system due to connectivity and topology. Fibers are originating in the parahippocampal area, including the entorhinal cortex and temporal pole, reaching the orbital cortex after passing the amygdala and the litem insula. Some authors also describe an extension of the UF to the amygdala. Using a diffusion tensor imaging fiber tracking approach in humans, the anterior insula has been demonstrated to contain fibers connecting orbital/inferior frontal areas and temporal areas with parts of the fibers overlapping with the UF.

Several studies using DWI measures and Tract-based Spatial Statistics (TBSS) have reported microstructural alterations within

Table 2. Number of streamlines of edges comprising the network displaying significant group differences based on NBS analysis

Network edges	NOS-value OCD mean ± s.d.	NOS-value HC mean ± s.d.	P-value/t-statistic
L putamen-L amygdala	414.1 ± 224.3	656.4 ± 249.6	$P < 0.001$, $t=4.13$
L pallidum-L amygdala	166.9 ± 151.2	317.6 ± 231.9	$P < 0.001$, $t=3.65$
L putamen-L temporal pole	239.7 ± 140.5	365.7 ± 212.6	$P = 0.002$, $t=3.18$
L amygdala-L temporal pole	393.0 ± 169.0	533.0 ± 246.7	$P = 0.003$, $t=3.01$
L temporal pole-L insula	110.4 ± 116.4	204.3 ± 168.8	$P = 0.004$, $t=2.99$
L mOFC-L insula	51.9 ± 62.2	126.8 ± 136.8	$P = 0.005$, $t=2.94$
L amygdala-L entorhinal cortex	138.6 ± 104.0	223.4 ± 162.3	$P = 0.006$, $t=2.83$

Abbreviations: HC, healthy controls; L, left; mOFC, medial orbitofrontal cortex; NBS, network-based statistic; NOS, number of streamlines; OCD, obsessive-compulsive disorder. Mean ± s.d. for the number of streamlines for each edge within the NBS cluster.
the UF in OCD, among others a decrease in FA values in left and right UF, as well as a reduced mean diffusivity in left UF in patients receiving medication" and an increase in axial diffusivity in left and right UF in a pediatric sample of OCD patients. Similar to left amygdala, both temporal poles also exhibited a decreased weighted clustering coefficient. The temporal pole has been implicated in various domains such as memory, as well as emotional processing, coupling sensory stimulation to emotional responses. There is first evidence of an involvement of altered temporal pole structure and function in OCD. Van den Heuvel et al. found a negative correlation between checking symptoms and gray matter and white matter volume. Furthermore, the level of functional activation in the anterior temporal pole and amygdala during symptom provocation is reported to be associated with better subsequent treatment response to cognitive behavioral therapy. Taken together, previous and current findings provide support for the notion of structural alterations in amygdala and temporal pole in OCD which may be clinically relevant and may go along with an increase in functional activation. The association between increased functional activation in these limbic core regions and subsequent responsibility to treatment is in line with the emotional processing theory by Foa, which assumes that activation of limbic (and predominantly amygdala) regions during the experience of clinical symptoms is a prerequisite for successful exposure-based treatments for anxiety disorders. Whether there is a direct association between functional and structural alterations, as well as an analog association in OCD between structural alterations in these regions and individual treatment responsibility remains to be elucidated. To date there is only one study examining structural white matter network characteristics in OCD from a network perspective reporting several alterations in global and local graph measures. Their main findings are a reduction in global efficiency, as well as an increase in shortest path length, as well as γ and Λ in patients. In addition, they report a significant correlation between λ and the Y-BOCS obsession score. There are, however, considerable methodological differences in comparison to our study that might have caused divergent findings. First and foremost, the composition of the sample differs regarding the number of patients (n=41 vs n=26), as well as other characteristics (with all patients being unmedicated with no comorbidities in the study by Zhong et al.). Second, several parameters directly influencing the number of reconstructed streamlines differed substantially, such as the parcellation scheme which affects the volume of nodes and thus influences the number of voxels within each ROI to initialize tracking from. Furthermore, the tracking was initialized from one seed within each voxel in the study by Zhong et al. compared with eight seeds in the current study. In addition, we applied a more liberal threshold (FA-value < 0.1 vs FA-value < 0.2 used by Zhong et al.) as termination criteria for fiber tracking. Finally, we applied a 60% threshold to all connectivity matrices to find a good balance between false-positive and false-negative connections (see Materials and methods section). Taken together, the combination of differences in sample composition and choices influencing the number of reconstructed streamlines might explain divergent findings.

Apart from examinations of structural connectivity, there is an increasing number of studies using functional MRI to further elucidate the neurobiological basis of OCD. Gottlich et al. report a decrease in connectivity between limbic (amygdala, hippocampus and parahippocampal gyrus) and basal ganglia, as well as the default mode and executive/attention network in patients. In addition, the connectivity within the limbic network was reported to be impaired. Similarly, Jung et al. found an increased functional connectivity between nucleus accumbens and lateral orbitofrontal cortex during rest and a decrease in functional...
connectivity between nucleus accumbens and amygdala during incentive processing in patients. These results were interpreted as evidence in favor of abnormalities in modulatory influence of affective/motivational states on functional network connections in patients. Keeping in mind that the concept of functional connectivity is based on statistical associations and that the relationship between alterations in function and structure is not a straight-forward one-to-one mapping but rather complicated,62 there still seems to be an overlap between regions implicated in structural networks displaying alterations as shown in this study (amygdala, mOFC, striatal and temporal regions) and findings from altered functional connectivity between fronto-striato-temporal networks. It seems plausible that the structural alterations especially of connections between limbic regions might contribute to the proposed abnormalities in modulatory influence of affective/motivational states.

The current study has several limitations. Despite being fairly large, the examined sample comprised a certain proportion of patients with comorbid disorders, as well as a mix of medicated and unmedicated patients. Previous reports indicate an influence of selective serotonin reuptake inhibitor treatment on brain structure and function.63,64 Nevertheless, the analysis of the subgroup of patients receiving medication is in good accordance with the primary analysis comparing healthy controls with all patients. The NBS analysis yielded one significant cluster that was only slightly varying in size. The magnitude of the differences in NOS-values increased for all edges in the NBS cluster of the medicated patients. This effect might be due to true differences in medication status. Alternatively, the connectivity differences could be related to differences in symptom severity. On average, the patient group receiving medication had a higher total Y-BOCS score than the unmedicated patients though formal statistical significance was not reached (medicated patients: 22.93 ± 5.16 vs unmedicated patients: 19.83 ± 3.16; P = 0.095). The results of the graph measures computed for the subgroup of medicated patients were also rather similar to the results obtained from the original analysis with only the local clustering for the right temporal pole not reaching statistical significance. This again could be related to the above mentioned differences. Regarding the fact that selective serotonin reuptake inhibitors are the first line of treatment in OCD, influences of medication should be more rigorously assessed in future studies preferably comparing non-medicated and medicated groups with healthy controls separately.

Due to various limitations inherent to the method of fiber tracking, the accuracy of retrieved streamlines poses an issue in terms of false-positive and negative connections. To account for this fact, we applied a group threshold previously shown to strike a balance between erroneously assigning tracts.37 In the present study, a parcellation scheme commonly used in the FreeSurfer suite was applied to increase comparability of results. Furthermore, the symptom heterogeneity typically found in OCD patients poses an issue. There is accumulating evidence that specific symptom dimensions in OCD can go along with specific alterations in neural processing, as well as structural alterations.48,58,65 Thus, it seems reasonable to explicitly consider the heterogeneity of symptom dimensions in future studies by trying to group patients according to symptom profile or predominant symptom dimension. Clearly, this approach would call for even bigger sample sizes to reach sufficient statistical power.

In summary, applying a network-based analysis strategy comparing structural brain networks of OCD patients and healthy controls we demonstrate impairments in a specific subnetwork in patients. Parts of the network overlap with regions commonly described in the CSTC model of the disease. However, several implicated regions and their connections are concentrated on a fronto-temporal axis indicating limbic structures to play a role in pathology.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
This study was supported by German Research Foundation (DFG) grants to KK (DFG KO 3744/2-1) and GW (DFG WA 3001/3-1). TR received a travel stipend from the Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, to conduct part of the research at the Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht. The funding agencies had no influence on the design and conduct of the study including collection, management, analysis and interpretation of the data, as well as preparation, review or approval of the manuscript.

REFERENCES
1 American Psychiatric A. Diagnostic and Statistical Manual of Mental Disorders. Text Revision (DSM-IV-TR). American Psychiatric Association: Washington, DC, 2000.
2 Milad MR, Rauch SL. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci 2012; 16: 43–51.
3 Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 2008; 32: 525–549.
4 Piras F, Piras F, Chiapponi C, Girardi P, Caltagirone C, Spalletta G. Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies. Cortex 2015; 62: 89–108.
5 Goodkind M, Eckhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 2015; 72: 305–315.
6 White T, Nelson M, Lim KO. Diffusion tensor imaging in psychiatric disorders. Top Magn Reson Imaging 2008; 19: 97–109.
7 Griffa A, Baumann PS, Thiran JP, Hagmann P. Structural connectomics in brain diseases. Neuroimage 2013; 80: 515–526.
8 Korgaonkar MS, Fornito A, Williams LM, Grieve SM. Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol Psychiatry 2015; 77: 567–574.
9 van den Heuvel MP, Mandl RC, Stam CJ, Kahn RS, Hulshoff Pol HE. Ablerrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci 2010; 30: 15915–15926.
10 Nall KL. Leaver AM. Connectome and schizophrenia. Curr Opin Psychiatry 2015; 28: 229–235.
11 Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 2011; 7: 113–140.
12 Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010; 52: 1059–1069.
13 Fornito A, Zalesky A, Breakspear M. Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 2013; 80: 426–444.
14 Zalesky A, Fornito A, Bullmore ET. Network-based statistical: identifying differences in brain networks. Neuroimage 2010; 53: 1197–1207.
15 Zhang T, Wang J, Yang Y, Wu Q, Li B, Chen L et al. Abnormal small-world architecture of top-down control networks in obsessive-compulsive disorder. J Psychiatry Neurosci 2011; 36: 23–31.
16 Shin DJ, Jung WH, He Y, Wang J, Shim G, Byun MS et al. The effects of pharmacological treatment on functional brain connectome in obsessive-compulsive disorder. Biol Psychiatry 2014; 75: 606–614.
17 Hou JM, Zhao M, Zhang W, Song LH, Wu WJ, Wang J et al. Resting-state functional connectivity abnormalities in patients with obsessive-compulsive disorder and their healthy first-degree relatives. J Psychiatry Neurosci 2014; 39: 304–311.
18 Gottlieb M, Kramer UM, Kordon A, Hohagen F, Zurowski B. Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder. Hum Brain Mapp 2014; 35: 5617–5632.
19 Kim SG, Jung WH, Kim SN, Jang JH, Kwon JS. Disparity between dorsal and ventral networks in patients with obsessive-compulsive disorder: evidence revealed by graph theoretical analysis based on cortical thickness from MRI. Front Hum Neurosci 2013; 7: 302.
20 Zhong Z, Zhao T, Luo J, Guo Z, Guo M, Li P et al. Abnormal topological organization in white matter structural networks revealed by diffusion tensor tractography in unmedicated patients with obsessive-compulsive disorder. Prog Neuropsycopharmacol Biol Psychiatry 2014; 51: 39–50.
21 Annett M. A classification of hand preference by association analysis. Br J Psychol 1970; 61: 303–321.
Supplementary information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)