ESTIMATION OF GROWTH PARAMETERS OF FIVE FISH SPECIES (ACTINOPTERYGII) CAUGHT IN THE CENTRAL AMAZON

Ana GUERREIRO 1*, Sidineia AMADIO 2, Nídia FABRÉ 3, and Vandick BATISTA 3

1 Pós-graduação em Biologia de Água Doce e Pesca Interior, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
2 Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
3 Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Campus A. C. Simões, Tabuleiro dos Martins, Maceió, Alagoas, Brazil

Guerreiro A., Amadio S., Fabré N., Batista V. 2018. Estimation of growth parameters of five fish species (Actinopterygii) caught in the central Amazon. Acta Ichthyol. Piscat. 48 (3): 303–313.

Abstract. For some tropical fishes, the information on growth parameters is still scarce, and few or no records are available in FishBase. Therefore, the objective of this study was to estimate the growth curves for *Brycon amazonicus* (Spix et Agassiz, 1829), *Piaractus brachypomus* (Cuvier, 1818), *Prochilodus nigricans* Spix et Agassiz, 1829, *Semaprochilodus insignis* (Jardine, 1841), and *Semaprochilodus taeniurus* (Valenciennes, 1821), and to build the auximetric plots for each of the families to which these species belong: Characidae, Prochilodontidae, and Serrasalmidae. Samples were obtained from commercial catches landed in the Port of Manaus. Growth parameters were estimated using the Electronic Length Frequency Analysis (ELEFAN) routine of the Length Frequency Distribution Analysis (LFDA) program. Twenty-six sets of growth parameters were thus estimated, and 66 further sets were located in the literature and FishBase. Prochilodontidae and Serrasalmidae showed a strong inverse relation between the variables composing the auximetric plots.

Keywords: tropical fishes, commercial fishery, length frequency data, growth coefficient, asymptotic length

INTRODUCTION

Growth is one of the most critical measurable characteristics of individuals, stocks, and species, and it is fundamental to our understanding of the life histories, demographics, ecosystem dynamics, and sustainability of fisheries (Pardo et al. 2013). Fishes are the primary food source of the Amazon’s local inhabitants, with some areas showing the highest consumption rates in the world (with fish consumed six out of every seven days, at a mean rate of 169 kg per person per year) (Isaac et al. 2015). The dynamics of fish stocks may alter due to environmental changes (Barletta et al. 2010), overfishing, climate change, pollution, deforestation, etc. (Li et al. 2011, Freitas et al. 2013). However, growth parameters of fishes from the central Amazon—key indicators that will enable the assessment of the impact of such processes on fish populations—are still scarce for *Brycon amazonicus* (Spix et Agassiz, 1829), *Piaractus brachypomus* (Cuvier, 1818), *Prochilodus nigricans* Spix et Agassiz, 1829, *Semaprochilodus insignis* (Jardine, 1841), and *Semaprochilodus taeniurus* (Valenciennes, 1821). This study aimed to estimate the von Bertalanffy growth parameters for five fish species of significant commercial interest within six rivers in the Amazon region. In addition, the study built auximetric plots of each of the three families to which these species belong (Characidae, Prochilodontidae, and Serrasalmidae).

MATERIAL AND METHODS

The samples were obtained from the catches of commercial fisheries along the Amazon, Japurá, Juruá, Madeira, Negro, and Purus rivers that landed at the Port of Manaus, Brazil (03°08′47″S, 60°06′35″W). The sampling protocol was designed to measure the fish length of a total of 300 individuals per month. Thus, 30 individuals per species per night had their fork length (FL, cm) measured (as the caudal fin was often damaged) on 10 randomly selected days within a month-long period. To ensure a ‘knife-edge’ selection, only those fish captured with 20 mm mesh seine net were used in this analysis (see Batista and Freitas (2003) for technological fishing details). Five out of the 10 species with the highest catches in the
database were examined, namely *Prochilodus nigricanus*, *Semaprochilodus insignis*, *Semaprochilodus taeniurus*, *Brycon amazonicus*, and *Piaractus brachypomus*.

Growth parameters were estimated using the seasonal growth curve proposed by Hoenig and Hanumara (1990). The equation is:

\[
L(t) = L_\infty \left(1 - e^{-\left(\frac{K}{2(\pi C)^2} \sin \left(\frac{2\pi t}{s}\right) \sin \left(\frac{2\pi t}{s} - \frac{\pi}{2}\right)\right)}\right)
\]

where \(K \) is the growth coefficient, \(L_\infty \) the asymptotic size, \(t_0 \) the theoretical age at zero length, \(C \) the relative amplitude of seasonal oscillations, and the \(t_s \) describes the phase of seasonal oscillations.

Finally, the Winter Point (WP) (Garcia-Berthou et al. 2012) was determined using the following equation:

\[
WP = t_s + 0.5
\]

The ELEFAN routine of the LFDA program (Kirkwood et al. 2001) was used with sets of between two and six years, depending on data availability. A growth curve was fitted using any arbitrary ‘seed’ input values of \(L_\infty \) and \(K \) (Pauly and David 1981).

RESULTS

In some years, only juveniles were caught. Thus, the length at first maturity available in the literature, as well as the maximum length found here, were used to ensure that the data used—and, consequently, the estimates found—were reliable. Thus, we only used years in which data were available for both juveniles and adults. Moreover, we used the age at first maturity available in the literature to evaluate the reliability of the growth curve estimates for each species (Table 1).

Finally, as Pauly (1998) reported an inverse pattern between the asymptotic lengths and the growth coefficients of tropical fish, auximetric plots were built for each of the three families to which the species studied here belong: Characidae, Prochilodontidae, and Serrasalmidae. In addition, we utilised other growth parameters found in FishBase (Froese and Pauly 2018), and 21 other studies belonging to the Characidae (Froese and Pauly 2018). Thus, great effort is required to fill this research gap before it will be possible to build an auximetric plot for this family.

ACKNOWLEDGEMENTS

We thank all fishers that provided information about catches and the team that collected this information; Elsa Guerreiro for reviewing the English of this paper; and Victor Silva for editing figures in Adobe Illustrator. This study was funded by Coordination for the Improvement of Higher Education Personnel (CAPES) (AICG grant), the Brazilian Innovation Agency (FINEP), and the [Brazilian] Ministry of Fisheries and Aquaculture (MPA) (grant No. 01.10.0770.00).

REFERENCES

Ambrósio A.M., Balbi T.J., Francisco T.M., Gomes L.C., Zuliani M.S., Okada E.K. 2014. Aging and growth parameter from the *Piaractus mesopotamicus* (pacu) from the Cuiabá River, Mato Grosso, Brazil.

Vaz M. 2001. Problemas no ajuste da curva de crescimento do pacu, *Piaractus mesopotamicus* (Holmberg, 1887) (Pisces: Characidae), e seu manejo no Pantanal Mato-Grossense. [Problems in growth curve fitting of Pacu, *Piaractus mesopotamicus* (Holmberg, 1887) (Pisces: Characidae), and its management in Pantanal of Mato Grosso.] Doctoral thesis. São Paulo State University, Jaboticabal, Brazil. [In Portuguese.]

Villacorta-Corrêa M.A. 1997. Estudo de idade e crescimento do tambaqui *Colossoma macropomum* (Characiformes: Characidae) no Amazonas Central, pela análise de marcas sazonais nas estruturas mineralizadas e microestruturas nos otólitos. [Study of age and growth of *Colossoma macropomum* (Characiforms: Characidae) in Central Amazonas, through the seasonal marks analysed on the mineralized structure and microstructure of otoliths.] Doctoral thesis. INPA, Manaus, Brazil. [In Portuguese.]
Fig. 1. Growth curves of *Brycon amazonicus* caught in three Amazonian rivers: (A) Amazonas 2003–2004, (B) Japurá 1998–2000, (C) Juruá 1998–2000, and (D) Purus 2003–2004.

Fig. 2. Growth curves of *Piaractus brachypomus* caught in three Amazonian rivers: (A) Amazonas 2000–2004, (B) Japurá 1998–2004, and (C) Purus 1999–2004.
and mortality of *Oligosarcus herpsetus* (Cuvier, 1829) (Characiformes, Characidae) in Serra do Mar State Park, Santa Virginia Unit, São Paulo, Brazil.] Biota Neotropica **11** (2): 40–43. [In Portuguese.] DOI: 10.1590/S1676-06032011000200004

Fig. 3. Growth curves of *Prochilodus nigricans* caught in four Amazonian rivers: (A) Amazonas 1995–1996, (B) Japurá 1998–2000, (C) Madeira 1995–1996, and (D) Purus 1995–1996

Catarino M.F., Campos C.P., Souza R.G.C., Freitas C.E.C. 2014. Population dynamics of *Prochilodus nigricans* caught in Manacapuru Lake (Amazon basin, Brazil). Boletim do Instituto de Pesca **40** (4): 589–595.

Fig. 4. Growth curves of *Semaprochilodus insignis* caught in two Amazonian rivers: Negro (A) 1995–1996, (B) 1998–2000, and (C) 2001–2004; and (D) Purus 2002–2004
Growth parameters of fishes in the central Amazon

Cunha N.L., Catella A.C., Kinas M.A. 2007. Growth parameters estimates for small fish of the Pantanal, Brazil: *Moenkhausia dichroma* (Characiformes; Characidae). Brazilian Journal of Biology 67 (2): 293–7. DOI: 10.1590/S1519-69842007000200014

Escobar L.M.D., Andrade-López J., Farias I.P., Hrbek T. 2015. Delimiting evolutionarily significant units of the fish, *Piaractus brachypomus* (Characiformes: Serrasalmidae), from the Orinoco and Amazon river basins with insight on routes of historical connectivity. Journal of Heredity 106 (S1): 428–438. DOI: 10.1093/jhered/esv047

Freitas C.E.C., Siqueira-Souza F.K., Humston R., Hurd L.E. 2013. An initial assessment of drought sensitivity in Amazonian fish communities. Hydrobiologia 705 (1): 159–171. DOI: 10.1007/s10750-012-1394-4

Froese R., Pauly D. (eds.) 2018. FishBase. [Version 02/2018] www.fishbase.org

García-Berthou E., Carmona-Catot G., Merciai R., Ogle D.H. 2012. A technical note on seasonal growth models. Reviews in Fish Biology and Fisheries 22 (3): 635–640. DOI: 10.1007/s11160-012-9262-x

Gomiero L.M., Carmassi A.L., Braga F.M.S. 2007. Crescimento e mortalidade de *Brycon opalinus* (Characiformes, Characidae) no Parque Estadual da Serra do Mar, Mata Atlântica, Estado de São Paulo. [Growth and mortality of *Brycon opalinus* (Characiformes, Characidae) in Serra do Mar State Park, Atlantic Rainforest, São Paulo State.] Biota Neotropica 7 (1): 21–26. [In Portuguese.] DOI: 10.1590/S1676-06032007000100002

Guerreiro A. 2017. Influência de extremos de cheia e de seca nos recursos capturados pela pesca comercial desembarcados no porto de Manaus (Amazonas, Brasil). [Influence of drought and flood extremes on commercial fishery resources, landed at the Manaus harbour (AM, Brazil).] Doctoral thesis, INPA, BADPI, Manaus, AM, Brazil. [In Portuguese.]

Hoenig N.A., Hanumara R.C. 1990. An empirical comparison of seasonal growth models. Fishbyte 8 (1): 32–34.

Fig. 5. Growth curves of *Semaprochilodus insignis* caught in three Amazonian rivers: Amazonas (A) 1995–1996, (B) 1999–2000, and (C) 2002–2004; (D) Juruá 1995–1996; and Madeira (E) 1995–1996, and (F) 1999–2001
Fig. 6. Growth curves of *Semaprochilodus taeniurus* caught in the Amazonas river: (A) 1995–1996, and (B) 2001–2003

Fig. 7. Growth curves of *Semaprochilodus taeniurus* caught in three Amazonian rivers: (A) Madeira 1995–1996; (B) Negro 2001–2004; and (C) Purus 1998–2000

Fig. 8. Auximetric plots of (A) Characidae, (B) Prochilodontidae, and (C) Serrasalmidae; growth parameters: black circles, this study; grey circles, other studies

Isaac V.J., Almeida M.C., Giarrizzo M., Deus C.P., Vale R., Klein G., Begossi A. 2015. Food consumption as an indicator of the conservation of natural resources in riverine communities of the Brazilian Amazon. Anais da Academia Brasileira de Ciências 87 (4): 2229–2242. DOI: 10.1590/0001-3765201520140250

Isaac V.J., Fabré N.N., Silva C.O., Ruffino M.L., Saint-Paul U. 2012. Ecologia da Fauna Ictíica. [Ecology of ichthyofauna.] Pp. 207–249. In: Batista V.S., Isaac V.J., Fabré N.N., Gonzalez J.C.G., de Almeida O.T., Rivero S., de Oliveira Júnior J.N., Ruffino M.L., Silva C.O. Saint-Paul U. (eds.) Peixes e pesca Solimões-Amazonas: uma avaliação integrada. [Fishes and fishery in Solimões-Amazonas: An integrated evaluation.] IBAMA/ProVárzea, Brasília, Brazil. [In Portuguese.]

Isaac V.J., Ruffino M.L. 1996. Population dynamics of tambaqui, *Colossoma macropomum* Cuvier, in the lower Amazon, Brazil. Fisheries Management and Ecology 3 (4): 315–333. DOI: 10.1046/j.1365-2400.1996.d01-154.x
Table 1

Complementary information, for the estimation of growth parameters of five species from six Amazonian rivers

Species	First maturity	River	Year	Maximum size (FL) [cm]
Brycon amazonicus	37³ 2²	Amazonas	2003–2004	46
		Japurá	1998–2000	48
		Juruá	1998–2000	46
		Purus	2003–2004	46
Piaractus brachypomus	59³ 3⁴	Amazonas	2000–2004	68
		Japurá	1998–2004	76
		Purus	1999–2004	70
Prochilodus nigricans	27³ 2²	Amazonas	1995–1996	44
		Japurá	1998–2000	38
		Madeira	1995–1996	48
		Purus	1995–1996	50
Semaprochilodus insignis	23³ 2⁶	Amazonas	1995–1996	46
		1999–2000	35	
		2002–2004	34	
		Juruá	1995–1996	28
		Madeira	1995–1996	38
		Negro	1999–2001	31
		1995–1996	32	
		1998–2000	31	
		2001–2004	29	
Semaprochilodus taeniurus	22³ 2⁶	Amazonas	1995–1996	32
		Purus	2002–2004	31
		1995–1996	32	
		1998–2000	31	
		Madeira	2001–2004	32
		Negro	2001–2004	32
		Purus	1998–2000	31

Values of the length at first maturity, available in the literature, were converted into fork length (FL) using the species-specific, length–length equation, which is available in Froese and Pauly (2018); ¹Santos et al. 2006, ²Lopes et al. 2016, ³Froese and Pauly 2018, ⁴Escobar et al. 2015, ⁵Santana and Freitas 2013, ⁶Vieira unpublished.

¹Vieira E. 2003. Dinâmica sazonal e interanual da estrutura populacional e do impacto da exploração pesqueira do Jaraqui de escama fina (Semaprochilodus taeniurus) e Jaraqui escama grossa (S. insignis) (Schomburgk, 1841) em subsistemas hidrográficos da Amazônia Central. [Seasonal and interannual dynamics of the population structure and the impact of fisheries exploitation of silver prochilodus (Semaprochilodus taeniurus) and kissing prochilodus (S. insignis) (Schomburgk, 1841) on hydrographic subsystems of Central Amazonia.] Doctoral thesis, INPA/UFAM, Manaus, Brazil. [In Portuguese.]

²Junk W.J. 1983. 4. Aquatic habitats in Amazonia. The Environmentalist 3 (Suppl. 5): 24–34. DOI: 10.1016/S0251-1088(83)90199-7

³King M. 2007. Fisheries biology, assessment and management. Blackwell Publishing, Oxford, UK.

⁴Kirkwood G., Aukland R., Zara S. 2001. Length frequency distribution analysis (LFDA). MRAG Ltd., London, UK.

⁵Li W., Zhang P., Ye J., Li L., Baker P.A. 2011. Impact of two different types of El Niño events on the Amazon climate and ecosystem productivity. Journal of Plant Ecology 4 (1–2): 91–99. DOI: 10.1093/jpe/rtq039

⁶Lizama M.A.P., Ambrósio A.M. 2003. Crescimento, recrutamento e mortalidade do pequi *Moenkhausia intermédia* (Osteichthyes, Characidae) na planicie de inundação do alto rio Paraná, Brasil. [Growth, recruitment and mortality of pequi *Moenkhausia intermedia* (Osteichthyes, Characidae) in the floodplains of the upper Paraná river, Brazil.] Acta Scientiarum Biological Sciences 25 (2): 329–333. [In Portuguese.] DOI: 10.4025/actascibiolsci.v25i2.2020

⁷Lourenço L.S., Fernandes I.M., Suárez Y.R. 2012. Spatial and temporal variation in the population structure of *Hemigrammus marginatus* (Characiformes: Characidae) in streams of the Ivinhema River basin, Brazil. Zoologia (Curitiba) 29 (4): 300–307. DOI: 10.1590/S1984-46702012000400003

⁸Lopes G.C.S.L., Catarino M.F., Lima A.C., Freitas E.C. 2016. Small-scale fisheries in the Amazon basin: General patterns and diversity of fish landings in five sub-basins. Boletim do Instituto de Pesca 42 (4): 889–900. DOI: 10.20950/1678-2305.2016v42n4p889

⁹Pardo S.A., Cooper A.B., Dulvy N.K. 2013. Avoiding fishy growth curves. Methods in Ecology and Evolution 4 (4): 353–360. DOI: 10.1111/2041-210x.12020

¹⁰Pauly D. 1998. Tropical fishes: Patterns and propensities. Journal of Fish Biology 53 (Suppl. A): 1–17. DOI: 10.1111/j.1095-8649.1998.tb01014.x
Table 2

Growth parameters of Characidae, Prochilodontidae, and Serrasalmidae

Species	L_∞	K	Reference
Astyanax altiparanae Garutti et Britski, 2000	14.0	0.45	Froese and Pauly 2018
	15.0	0.39	
	15.0	0.66	
Brycon amazonicus (Spix et Agassiz, 1829)	43.3	0.96	This study
	40.6	0.96	
	39.4	0.81	
	46.1	0.98	
	51.0	0.57	Santos Filho and Batista 2009
	48.0	0.57	Isaac et al. 2012
Brycon opalinus (Cuvier, 1819)	29.8	0.54	Gomiero et al. 2007
	37.7	0.56	
Hemigrammus marginatus Ellis, 1911	3.7	0.66	Lourenço et al. 2012
Moenkhausia dichrous (Kner, 1858)	8.1	0.85	Cunha et al. 2007
Moenkhausia intermedia Eigenmann, 1908	10.0	0.30	Lizama and Ambrósio 2003
Odontostilbe pequiri (Steindachner, 1882)	4.0	0.93	Tondato et al. 2012
Oligosarcus hepsetus (Cuvier, 1829)	23.3	0.72	Carmassi et al. 2011
Prochilodus brevis Steindachner, 1875	47.0	0.57	Froese and Pauly 2018
Prochilodus lineatus (Valenciennes, 1837)	33.9	0.74	Froese and Pauly 2018
	34.0	0.68	
	39.5	0.41	
	44.5	0.43	
	45.9	0.43	
	47.5	0.19	
	49.2	0.40	
	51.2	0.45	
	52.3	0.23	
	53.5	0.40	
	76.5	0.22	
	55.7	0.46	Vicentin et al. 2012
Prochilodus magdenae Steindachner, 1879	39.4	0.54	Froese and Pauly 2018
	43.1	0.30	
	44.7	0.28	
	59.8	0.38	
	60.0	0.42	
Prochilodus mariae Eigenmann, 1922	46.9	0.40	Pérez-Lozano and Aniello 2013
Prochilodus nigricans Spix et Agassiz, 1829	39.5	0.68	This study
	32.1	0.96	
	43.9	0.77	
	57.7	0.60	
	68.0	0.50	Ruffino and Isaac 1995
	58.0	0.45	
	34.6	0.44	Catarino et al. 2014
	45.8	0.18	Silva and Stewart 2006
	39.8	0.28	
	63.0	0.47	Isaac et al. 2012
Prochilodus reticulatus Valenciennes, 1850	41.0	0.20	Froese and Pauly 2018
Semaprochilodus insignis (Jardine, 1841)	42.2	0.43	This study
	25.3	0.89	
	28.6	0.80	
	27.3	0.89	
	39.4	0.41	
	24.9	0.82	
	31.1	0.56	

* See footnote on page 309.

Table continues on next page.
Table 2 cont.

Species	L_∞	K	Reference
Semaprochilodus taeniurus (Valenciennes, 1821)	27.0	0.90	This study
	27.6	0.61	
	26.8	0.68	
Colossoma macropomum (Cuvier, 1816)	28.7	0.83	Isaac et al. 2012
	25.4	0.98	
	33.2	0.65	
	27.5	0.93	
	28.7	0.46	
	35.5	0.50	
Myloplus rhomboidalis (Cuvier, 1818)	121.0	0.23	Ruffino and Isaac 1995
	118.0	0.23	
	119.9	0.23	Isaac and Ruffino 1996
	107.0	0.23	Froese and Pauly 2018
	88.7	0.25	Pérez-Lozano and Aniello 2013
	119.0	0.22	Isaac et al. 2012
	85.1	0.23	Penna et al. 2005
	100.4	0.14	
	93.3	0.16	Villacorta-Corrêa unpublished*
Mylossoma duriventre (Cuvier, 1818)	33.5	0.49	Pérez-Lozano and Aniello 2013
	31.0	0.56	Isaac et al. 2012
Piaractus brachypomus (Cuvier, 1818)	56.6	0.94	This study
	93.4	0.28	
	64.3	0.60	
	45.6	1.59	
	102.9	0.23	
	88.0	0.35	
Piaractus mesopotamicus (Holmberg, 1887)	50.0	0.18	Ambrósio et al. 2014
	59.2	0.14	
	87.2	0.34	Peixer et al. 2007
	86.5	0.34	
	86.0	0.48	Vaz unpublished*
Pygocentrus cariba (von Humboldt, 1821)	37.6	0.46	Pérez-Lozano and Aniello 2013
Pygocentrus nattereri Kner, 1858	26.0	0.89	Froese and Pauly 2018
	29.4	0.63	Bevilaqua and Soares 2010
	35.0	0.70	Isaac et al. 2012
Serrasalmus spilopleura Kner, 1858	23.1	0.34	Sousa et al. 2013

$L_\infty =$ asymptotic length, $K =$ growth coefficient.

* See footnote on page 309.
| Species | River | Year | N | Results | | | | |
|---|---|---|---|---|---|---|---|---|
| | | | | L_∞ | K | t_0 | C | WP |
| *Brycon amazonicus* | Amazonas | 2003–2004 | 911 | 43.29 | 0.96 | −0.39 | 0.99 | Dec |
| | Japurá | 1998–2000 | 819 | 40.63 | 0.96 | −0.64 | 1.00 | Dec |
| | Juruá | 1998–2000 | 1942| 39.38 | 0.81 | −0.94 | 0.99 | Apr |
| | Purus | 2003–2004 | 736 | 46.07 | 0.98 | −0.23 | 0.93 | Jan |
| *Piaractus brachypomus* | Amazonas | 2000–2004 | 591 | 56.57 | 0.94 | −0.14 | 1.00 | May |
| | Japurá | 1998–2000 | 1147| 93.43 | 0.28 | −0.83 | 1.00 | Oct |
| | Purus | 1999–2004 | 1468| 64.29 | 0.60 | −0.61 | 1.00 | Sep |
| *Prochilodus nigricans* | Amazonas | 1995–1996 | 1643| 39.45 | 0.68 | −0.94 | 0.76 | Sep |
| | Japurá | 1998–2000 | 830 | 32.14 | 0.96 | −0.71 | 0.99 | Oct |
| | Madeira | 1995–1996 | 696 | 43.90 | 0.77 | −0.40 | 0.31 | Nov |
| | Purus | 1995–1996 | 1673| 57.65 | 0.60 | −0.87 | 0.96 | Jul |
| *Semaprochilodus insignis* | Amazonas | 1995–1996 | 2920| 42.21 | 0.43 | −0.24 | 1.00 | May |
| | | 1999–2000 | 6667| 25.29 | 0.89 | −0.83 | 0.83 | May |
| | | 2002–2004 | 4216| 28.57 | 0.80 | −0.38 | 0.83 | May |
| | Juruá | 1995–1996 | 423 | 27.29 | 0.89 | −0.30 | 0.83 | Mar |
| | Madeira | 1995–1996 | 1331| 39.39 | 0.41 | −0.64 | 0.75 | May |
| | | 1999–2001 | 3449| 24.86 | 0.82 | −0.08 | 1.00 | Mar |
| | | 1995–1996 | 544 | 31.09 | 0.56 | −0.56 | 0.94 | Nov |
| | Negro | 1998–2000 | 7109| 27.00 | 0.90 | −0.05 | 1.00 | Jun |
| | | 2001–2004 | 1241| 27.57 | 0.61 | −0.90 | 1.00 | May |
| | | 2002–2004 | 2927| 26.75 | 0.68 | −0.20 | 1.00 | Feb |
| *Semaprochilodus taeoniurus* | Amazonas | 1995–1996 | 1122| 28.69 | 0.83 | −0.08 | 0.82 | July |
| | | 2001–2003 | 1850| 25.36 | 0.98 | −0.53 | 1.00 | Jan |
| | Madeira | 1995–1996 | 563 | 33.17 | 0.65 | −0.77 | 1.00 | Oct |
| | Negro | 2001–2004 | 1310| 27.50 | 0.93 | −0.23 | 1.00 | Dec |
| | Purus | 1998–2000 | 4346| 28.73 | 0.46 | −0.87 | 1.00 | Oct |

L_∞ = asymptotic length, K = growth coefficient, t_0 = theoretical age at zero length, C = relative amplitude of seasonal oscillations, WP = winter point.

Pauly D., David N. 1981. ELEFAN I, a BASIC program for the objective extraction of growth parameters from length-frequency data. Berichte der Deutschen wissenschaftlichen Kommission für Meeresforschung 28 (4): 205–211.

Peixer J., Catella A.C., Petrere Júnior M. 2007. Yield per recruit of the pacu *Piaractus mesopotamicus* (Holmberg, 1887) in the pantanal of Mato Grosso do Sul, Brazil. Brazilian Journal of Biology 67 (3): 561–567. DOI: 10.1590/S1519-69842007000300023

Penna M.A.H., Villacorta-Corrêa M.A., Walter T., Petrere-Jr M. 2005. Growth of tambaqui *Colossoma macropomum* (Cuvier) (Characiformes: Characidae): Which is the best model? Brazilian Journal of Biology 65 (1): 129–139. DOI: 10.1590/S1519-6984200500100017

Pérez-Lozano A., Aniello B. 2013. Parámetros poblacionales de los principales recursos pesqueros de la cuenca del río Apure, Venezuela (2000–2003). Latin American Journal of Aquatic Research 41 (3): 447–458. DOI: 10.3856/vol41-issue3-fulltext-8

Ruffino M.L., Isaac V.J. 1995. Life cycle and biological parameters of several Brazilian Amazon fish species. Naga, the ICLARM Quarterly 18 (4): 41–45.

Santana I.F., Freitas C.E.C. 2013. A time series analysis of *Prochilodus nigricans* landings caught by small-scale fisheries in the lower stretch of the Amazon River. Brazilian Journal of Biology 73 (1): 53–59. DOI: 10.1590/S1519-69842013000100007

Santos G., Ferreira E., Zuanon J. 2006. Peixes comerciais de Manaus. [Commercial fishes of Manaus.] IBAMA, PROVÁRZEA, Manaus, Brazil. [In Portuguese.]
Santos Filho L.C., Batista V.S. 2009. Dinâmica populacional da matrinxã Brycon amazonicus (Characidae) na Amazônia central. [Population dynamics of matrinxã, Brycon amazonicus (Characidae) in central Amazon. Zoologia (Curitiba) 26: 195–203. [In Portuguese.] DOI: 10.1590/S1984-46702009000200001

Silva E.A., Stewart D.J. 2006. Age structure and survival rates of the commercial fish Prochilodus nigricans (bocachico) in north-eastern Ecuador. Environmental Biology of Fishes 77 (1): 63–77. DOI: 10.1007/s10641-006-9055-y

Sousa F.B., Soares M.G.M., Prestes L. 2013. Population dynamics of the yellow piranha Serrasalmus spilopleura Kner, 1858 (Characidae, Serrasalmidae) in the Amazonian floodplain lakes. Acta Scientiarum Biological Sciences 35 (3): 367–372. DOI: 10.4025/actascibiolsci.v35i3.15749

Tomasella J., Pinho P.F., Borma L.S., Marengo J.A., Nobre C.A., Bittencourt O.R.F.O., Prado M.C.R., Rodriguez D.A., Cuartas L.A. 2012. The droughts of 1997 and 2005 in Amazonia: Floodplain hydrology and its potential ecological and human impacts. Climatic Change 116 (3–4): 723–746. DOI: 10.1007/s10584-012-0508-3

Tondato K.K., Fialho C.B., Suárez Y.R. 2012. Life history traits of Odontostilbe pequira (Steindachner, 1882) in the pantanal of Porto Murtinho, Mato Grosso do Sul State, Brazil. Oecologia Australis 16 (4): 878–890. DOI: 10.4257/oeco.2012.1604.11

Vicentin W., Rocha A.S., Rondon P.L, Costa E.S.C., Suárez Y. 2012. Parâmetros populacionais, período reprodutivo e crescimento de Prochilodus lineatus (Characiformes, Prochilodontidae) na cabeceira do rio Miranda, alto rio Paraguai. [Populational parameters, reproductive period and growth of Prochilodus lineatus (Characiformes, Prochilodontidae) in the headwaters of Miranda River, Upper Paraguai River. Oecologia Australis 16 (4): 891–904. [In Portuguese.] DOI: 10.4257/oeco.2012.1604.12

Received: 20 November 2017
Accepted: 24 May 2018
Published electronically: 30 September 2018