Biomarkers and Algorithms for the Diagnosis of Vitamin B₁₂ Deficiency

Luciana Hannibal¹, Vegard Lysne⁵, Anne-Lise Bjørke-Monsen³, Sidney Behringer¹, Sarah C. Grünert¹, Ute Spiekerkoetter¹, Donald W. Jacobsen⁴ and Henk J. Blom¹

¹ Laboratory of Clinical Biochemistry and Metabolism, Department for Pediatrics, Medical Center, University of Freiburg, Freiburg, Germany, ² Department of Clinical Sciences, University of Bergen, Bergen, Norway, ³ Department of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway, ⁴ Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA

Vitamin B₁₂ (cobalamin, Cbl, B₁₂) is an indispensable water-soluble micronutrient that serves as a coenzyme for cytosolic methionine synthase (MS) and mitochondrial methylmalonyl-CoA mutase (MCM). Deficiency of Cbl, whether nutritional or due to inborn errors of Cbl metabolism, inactivate MS and MCM leading to the accumulation of homocysteine (Hcy) and methylmalonic acid (MMA), respectively. In conjunction with total B₁₂ and its bioactive protein-bound form, holo-transcobalamin (holo-TC), Hcy, and MMA are the preferred serum biomarkers utilized to determine B₁₂ status. Clinically, vitamin B₁₂ deficiency leads to neurological deterioration and megaloblastic anemia, and, if left untreated, to death. Subclinical vitamin B₁₂ deficiency (usually defined as a total serum B₁₂ of <200 pmol/L) presents asymptptomatically or with rather subtle generic symptoms that oftentimes are mistakenly ascribed to unrelated disorders. Numerous studies have now established that serum vitamin B₁₂ has limited diagnostic value as a stand-alone marker. Low serum levels of vitamin B₁₂ not always represent deficiency, and likewise, severe functional deficiency of the micronutrient has been documented in the presence of normal and even high levels of serum vitamin B₁₂. This review discusses the usefulness and limitations of current biomarkers of B₁₂ status in newborn screening, infant and adult diagnostics, the algorithms utilized to diagnose B₁₂ deficiency and unusual findings of vitamin B₁₂ status in various human disorders.

Keywords: vitamin B₁₂, cobalamin, homocysteine, methylmalonic acid, holo-transcobalamin, diagnostic algorithm, functional deficiency of B₁₂

VITAMIN B₁₂ DEFICIENCY

Vitamin B₁₂ (B₁₂ = Cbl, “cobalamín,” the chemical name) is an essential water-soluble micronutrient required by all cells in the body. Humans are unable to synthesize B₁₂ and thus rely on dietary intakes and a complex intracellular route for vitamin processing and delivery to its target destinations (Figure 1) (Hannibal et al., 2009). Vitamin B₁₂ deficiency due to malabsorption and inadequate intake is a public health issue worldwide. It is estimated that 15–20% of the elderly in the United States are B₁₂ deficient (Allen, 2009). In Germany, about 10% of the male elderly population...
and 26% of the female elderly population present with insufficient levels of vitamin B$_{12}$ (Hartmann, 2008; Grober et al., 2013). In India, ~75% of the population, i.e., over 650 million people, have B$_{12}$ deficiency (Antony, 2001; Refsum et al., 2001), which can only be partly ascribed to a vegetarian diet in a substantial portion of the population.

Vitamin B$_{12}$ deficiency is a multifactorial condition caused by insufficient intake (nutritional deficiency) as well as acquired or inherited defects that disrupt B$_{12}$ absorption, processing and trafficking pathways (functional deficiency). Methylcobalamin (MeCbl) serves as a coenzyme for the biosynthesis of methionine from homocysteine catalyzed by the cytosolic enzyme methionine synthase (MS). This reaction regenerates tetrahydrofolate (THF) from N$_5$-methyl-tetrahydrofolate (N$_5$-CH$_3$-THF), which is essential for the de novo biosynthesis of nucleic acids. Adenosylcobalamin (AdoCbl) is required for the conversion of methylmalonyl-CoA to succinyl-CoA catalyzed by mitochondrial methylmalonyl-CoA synthase (MCM), an anaplerotic reaction that furnishes increased demands for the Krebs cycle and heme biosynthesis precursor succinyl-CoA.

Insufficient supply of B$_{12}$ and genetic defects impairing its cellular processing and trafficking lead to the accumulation of homocysteine (Hcy) and methylmalonic acid (MMA), which enter circulation and give rise to hyperhomocystinemia and methylmalonic acidemia.

The recommended daily dose of B$_{12}$ for adults is 2.4 µg per day (Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline, 1998), which is equivalent to the daily intake in the normal western diet. Malabsorption due to aging, poor nutrition and acquired defects in vitamin B$_{12}$ metabolism are the leading causes of vitamin B$_{12}$ deficiency worldwide. Inborn errors of vitamin B$_{12}$ metabolism are rare.

Vitamin B$_{12}$ deficiency is frequently under-diagnosed in pregnancy and in infants from mothers having insufficient levels of the micronutrient (Wheeler, 2008; Sarafoglou et al., 2011). Ensuring sufficient intake of vitamin B$_{12}$ during pre-conception, pregnancy, and post-partum is strongly recommended (Bjørke Monsen et al., 2001; Rasmussen et al., 2001; Bjørke-Monsen et al., 2008; Hinton et al., 2010; Dayaldasani et al., 2014). Other populations at risk of developing vitamin B$_{12}$ deficiency include the elderly, vegetarians and vegans, recipients of bariatric surgery (Majumder et al., 2013; Kwon et al., 2014) as well as those suffering from gastrointestinal diseases featuring ileal resections >20 cm (Battat et al., 2014). Certain medications such as metformin (Greibe et al., 2013b; Aroda et al., 2016) and proton-pump inhibitors (Howden, 2000; Wilhelm et al., 2013) may also transiently induce a status of cobalamin deficiency, which may be reversible upon completion of treatment and/or with oral vitamin B$_{12}$ supplementation.

Herein, we discuss three aspects of the assessment of B$_{12}$ status: (1) The utility of metabolites used as biomarkers of vitamin B$_{12}$ deficiency in neonates and adults, (2) The algorithms employed to predict subclinical and clinical B$_{12}$ deficiency, and (3) Major challenges and diagnosis of vitamin B$_{12}$ deficiency in special populations.

SERUM BIOMARKERS OF VITAMIN B$_{12}$ DEFICIENCY: STRENGTHS AND LIMITATIONS

Total Serum Vitamin B$_{12}$

The most direct assessment and perhaps preferred first-assay to determine vitamin B$_{12}$ status is the measurement of total serum vitamin B$_{12}$. This assay is widely available in clinical chemistry laboratories. Ranges for normal (>250 pmol/L), low (150–249 pmol/L), and acute deficiency (<149 pmol/L) vitamin B$_{12}$ have been defined and are used in most clinical chemistry laboratories worldwide (Clarke et al., 2003; Selhub et al., 2008; Mirkazemi et al., 2012). One limitation of this biomarker is that it assesses total circulating vitamin B$_{12}$, of which ~80% is bound to haptocorrin, and therefore, not bioavailable for cellular uptake. Another limitation of this assay lies in its unreliability to reflect cellular vitamin B$_{12}$ status. Results from studies assessing serum and cellular vitamin B$_{12}$ have shown that the levels of serum B$_{12}$ do not always represent cellular B$_{12}$ status (Carmel, 2000; Solomon, 2005; Devalia et al., 2014; Lysne et al., 2016). In particular, patients with inborn errors of vitamin B$_{12}$ metabolism can present with normal or low serum values of the vitamin, while being deficient at the cellular level. Furthermore, functional vitamin B$_{12}$ deficiency due to oxidative stress has been identified in elders exhibiting normal values of serum vitamin B$_{12}$ (Solomon, 2015). Functional deficiency of vitamin B$_{12}$ was corrected upon supplementation with cyanocobalamin (CNClb), as judged by reduction in the serum levels of tHcy and MMA (Solomon, 2015). Thus, total serum B$_{12}$ is not a reliable biomarker of vitamin B$_{12}$ status when used alone. Nonetheless, this marker should not be considered obsolete as a number of studies show that total serum vitamin B$_{12}$ may be helpful to predict prognosis and status of diseases featuring abnormally high vitamin B$_{12}$ levels in serum (>650 pmol/L), such as cancer (Arendt et al., 2016) and autoimmune lymphoproliferative syndrome (ALPS) (Bowen et al., 2012).

Homocysteine

Homocysteine is a metabolite of one-carbon metabolism that is remethylated by MeCbl-dependent MS or betaine-homocysteine methyltransferase as part of the methionine cycle (Finkelstein and Martin, 1984) and degraded by cystathionine β-synthase (CBS) in the transsulfuration pathway (Figure 2). Conversion of Hcy to Met by MS depends on the availability of both vitamin B$_{12}$ and folate (as N$_5$-CH$_3$-THF), and therefore, nutritional deficiencies in either one of these micronutrients lead to the accumulation of Hcy in serum and urine. Likewise, inborn errors of metabolism that impair the upstream processing and trafficking of B$_{12}$ or folate lead to elevation of this metabolite, a condition collectively known as hyperhomocystinemia. The normal range of total plasma Hcy (tHcy) in human plasma is 5–15 µmol/L (Ueland et al., 1993) and values >13 µmol/L may be
considered elevated in adults (Jacques et al., 1999). Homocysteine levels are always higher in serum compared to plasma due to the release of Hcy bound to cellular components (Jacobsen et al., 1994). Hence, plasma and not serum should be used to determine the levels of tHcy. Although gender and age reference intervals have been established in some studies (Jacobsen et al., 1994; Rasmussen et al., 1996; van Beynum et al., 2005), they are usually ignored in the reporting of tHcy levels. Because of the dual biochemical origin of elevated Hcy, this biomarker is of limited value to assess vitamin B$_{12}$ status as a stand-alone measurement. This is also true for the newborn screening of inborn errors of vitamin B$_{12}$ metabolism found in the cblD, cblF, and cblJ (Huemer et al., 2015) disorders.

Methylnalonic Acid

MMA increases upon inactivation of AdoCbl-dependent MCM in the mitochondrion. Nutritional and functional deficiencies of vitamin B$_{12}$ result in the inactivation of MCM leading to buildup of its substrate methylmalonyl-CoA, which enters circulation as free MMA. The reaction catalyzed by MCM (Figure 2) is not affected by other vitamins of one-carbon metabolism, and therefore, MMA is considered a more specific marker of vitamin B$_{12}$ deficiency (Clarke et al., 2003). Serum values of MMA, ranging from >260 to 350 nmol/L indicate elevation of this metabolite (Clarke et al., 2003). Nonetheless, there are few pathologies such as renal insufficiency that lead to an increase in MMA (Iqbal et al., 2013). For example, one study showed that 15–30% of individuals with high vitamin B$_{12}$ concentrations in serum also had elevated MMA concentrations, which may reflect renal dysfunction instead of authentic vitamin B$_{12}$ deficiency (Clarke et al., 2003). Thus, the utility of this marker should be considered carefully in older patients and patients with suspected or established renal disease. Assessment of a second marker of vitamin B$_{12}$ status, such as holo-transcobalamin (holo-TC) (Iqbal et al., 2013) should be considered. Another study showed that the clearance of both Hcy and MMA may be compromised in patients with reduced kidney function (Lewerin et al., 2007).

Total Serum Holo-Transcobalamin

Dietary B$_{12}$ is transported in the digestive system via the use of three protein transporters that bind the micronutrient in a sequential fashion, following the order haptocorrin (HC),
FIGURE 2 | Pathways for Hcy and MMA metabolism in humans. (A) Homocysteine is a branch-point metabolite at the intersection of either the remethylation or the transsulfuration pathways. Thus, Hcy homeostasis relies on three different biochemical reactions [MS, cystathionine β-synthase (CBS) and S-adenosylhomocysteine hydrolase (SAHH)], two of which (CBS and SAHH) are independent of vitamin B₁₂. In addition to nutritional deficiency of vitamin B₁₂, elevation of Hcy in plasma may arise from reduced function of CBS and MTHFR, as well as nutritional deficiencies of folate. (B) MMA is produced during catabolism of odd-chain fatty acids and amino acids in the mitochondrion. Propionyl-CoA is the precursor of MMA in a reaction catalyzed by propionyl-CoA carboxylase (PCC). Inborn errors of PCC lead to propionic acidemia. Likewise, mutations in AdoCbl-dependent MCM lead to a buildup of MMA-CoA and inhibition of PCC that manifests as increased propionyl-CoA and so of propionic acid the circulation. Propionylcarnitine can also be transported out of the cell to reach systemic circulation. Propionylcarnitine is a first-line test in newborn screening.

intrinsic factor (IF), and transcobalammin (TC) (Fedosov et al., 2007; Fedosov, 2012). After absorption in the intestine, vitamin B₁₂ bound to TC (holo-TC) reaches circulation and it is distributed to every cell in the body. Cells take up holo-TC via receptor-mediated endocytosis, aided by the transcobalamin receptor (TCblR; CD320) (Quadros et al., 2009). Because the only fraction of dietary vitamin B₁₂ that is bioavailable for systemic distribution is in the form of holo-TC (Valente et al., 2011), the level of holo-TC in serum has been successfully utilized as a marker of bioactive vitamin B₁₂ (Nexo et al., 2000, 2002; Valente et al., 2011; Yetley et al., 2011). Holo-TC represents 6–20% of the total vitamin B₁₂ present in serum (Nexo et al., 2000, 2002; Valente et al., 2011; Yetley et al., 2011). This marker is more accurate in assessing the biologically active fraction of vitamin B₁₂ in circulation than serum B₁₂ itself, and its level correlates well with the concentration of vitamin B₁₂ in erythrocytes (Valente et al., 2011). The diagnostic value of holo-TC has proven superior to Hcy and MMA for the assessment of vitamin B₁₂ status in the elderly (Valente et al., 2011). The normal range of holo-TC in healthy subjects is 20–125 pmol/L (Valente et al., 2011). Additional research is needed to elucidate the mechanisms that control holo-TC homeostasis in the normal population and in pathologies that alter vitamin B₁₂ transport and utilization. For example, abnormally low levels of holo-TC have been documented in patients receiving chemotherapy, macrocytosis and in individuals carrying the TC polymorphism 67A>G, without vitamin B₁₂ deficiency (Vu et al., 1993; Wickramasinghe and Ratnayaka, 1996; Riedel et al., 2005, 2011). Insufficient sensitivity (44%) of holo-TC as a marker of vitamin B₁₂ status was noted in a cohort of 218 institutionalized elderly patients (Palacios et al., 2013). At present time, it is unknown whether and how holo-TC levels vary in patients harboring inborn errors affecting intracellular vitamin B₁₂ metabolism (cblA-cblJ). Thus, the diagnostic value of holo-TC as a first line test awaits further investigation.
Propionylcarnitine (C3) and its Ratios with Acetylcarnitine (C3/C2) and Palmitoylcarnitine (C3/C16)

In addition to the four canonical markers discussed above, vitamin B₁₂ deficiency leads to accumulation of propionylcarnitine (C3) (Sarafoglou et al., 2011), which is a marker of methylmalonic aciduria and propionic acidemia. While vitamin B₁₂ deficiency is not a primary test in newborn screening programs, a study showed that markers C3, C3/C2, and C3/C16 exhibit a negative correlation with maternal levels of vitamin B₁₂ in the first trimester of pregnancy, and thus may bear diagnostic value (Dayaldasani et al., 2014). Although this finding requires further investigation with respect to the functional biomarkers Hcy and MMA, the finding opens the possibility of early identification of vitamin B₁₂ insufficiency or deficiency during the first trimester of pregnancy and adequate treatment.

ALGORITHMS FOR THE DIAGNOSIS OF VITAMIN B₁₂ DEFICIENCY

According to the World Health Organization (WHO), vitamin B₁₂ status in adults is defined by the serum levels of the micronutrient with the following cut-offs and definitions: >221 pmol/L is vitamin “B₁₂ adequacy”; between 148 and 221 pmol/L is “low B₁₂,” and lower than 148 pmol/L is “B₁₂ deficiency” (de Benoist, 2008; Allen, 2009). However, stand-alone markers of B₁₂ status, such as serum B₁₂, have proven insufficient for the unequivocal diagnosis of vitamin B₁₂ deficiency (Fedosov et al., 2013; Palacios et al., 2013; Remacha et al., 2014; Fedosov et al., 2015). Further, the WHO criterion does not account for age effects. Algorithms that combine a minimum of two biomarkers have been employed worldwide, each exhibiting advantages and disadvantages (Palacios et al., 2013; Remacha et al., 2014).

A study performed on a Swedish population proposed that when physicians request testing for suspected vitamin B₁₂ or folate deficiency, the first-line test of choice should be tHcy, and only when tHcy > 9 µM, should additional markers be tested to discriminate between vitamin B₁₂ and folate deficiencies (Schedvin et al., 2005). This approach proved effective in reducing diagnostic costs by 30% (Schedvin et al., 2005).

Herrmann and Obeid proposed a two-step algorithm for the diagnosis of vitamin B₁₂ in adults that utilizes holo-TC and MMA as biomarkers (Herrmann and Obeid, 2013). Analysis of 1359 samples submitted to the laboratory for total vitamin B₁₂ assessment showed that patients exhibiting holo-TC values between 23 and 75 pmol/L and normal renal function should also be tested for MMA (Herrmann and Obeid, 2013). This guideline was widely recommended in Germany (Herrmann and Obeid, 2008) for the diagnosis of vitamin B₁₂ deficiency in risk groups including infants, unexplained anemia, unexplained neuropsychiatric symptoms, gastrointestinal conditions including stomatitis, anorexia and diarrhea, the elderly, vegetarians and individuals with gastrointestinal diseases such as ilium resection, chronic atrophic gastritis, Crohn's disease and Helicobacter pylori infection and individuals under treatment with proton-pump inhibitors (Herrmann and Obeid, 2008; Hartmann et al., 2009; Koch, 2009; Heinzl, 2014). A cutoff of holo-TC of 50 pmol/L was set to discriminate between individuals unlikely to have vitamin B₁₂ deficiency (holo-TC > 50 pmol/L) vs. those potentially deficient in the micronutrient (holo-TC < 50 pmol/L) (Herrmann and Obeid, 2008). Patients with potential vitamin B₁₂ deficiency were first stratified by holo-TC levels as very low (holo-TC < 35 pmol/L) and low (holo-TC 36–50 pmol/L), and a second-line testing of MMA follows thereafter. Results from MMA lead to a three-block classification of patients, where (a) MMA < 271 nmol/L with holo-TC < 35 pmol/L represents a negative vitamin B₁₂ balance (insufficiency), (b) MMA < 271 nmol/L with holo-TC 36–50 pmol/L suggests the patient is unlikely to be vitamin B₁₂ deficient, and (c) a range of possible vitamin B₁₂ deficient patients is characterized by MMA > 271 nmol/L with holo-TC being very low or low (Herrmann and Obeid, 2008).

Berg and Shaw presented a cascade-testing algorithm that stratified patients first by total serum vitamin B₁₂ levels and second by MMA levels, using cutoffs of 118 pmol/L and 0.80 µmol/L, respectively (Berg and Shaw, 2013). The authors encouraged the sequential measurement of these two biomarkers prior to the implementation of vitamin B₁₂ therapy in patients.

Guidelines from the British Committee for Standards in Hematology suggested the use of total serum vitamin B₁₂ as the first-line test, with MMA as the second-line test (Devalia et al., 2014). For the reasons presented in the sections above, this approach would exclude a significant fraction of patients for which serum vitamin B₁₂ does not reflect cellular, genetic, and pharmacological disturbances that lead to functional vitamin B₁₂ deficiency. It was also recommended that individuals classified as having “subclinical deficiency” be provided with empirical therapy with oral CNCbl 50 µg daily for 4 weeks, and have their serum B₁₂ levels re-checked after 3 months (Devalia et al., 2014). Immediate medical attention was recommended for patients with symptoms of neuropathy.

Studies conducted by Palacios et al. on a cohort of 218 institutionalized elderly patients with median age 80 years old showed that an algorithm that combined biochemical, hematological, and morphological data proved more effective for the diagnosis of vitamin B₁₂ than the isolated markers (Palacios et al., 2013). The proposed algorithm combines erythrocyte and serum folate, holo-TC, and MMA, and excludes serum vitamin B₁₂ and tHcy measurements. The biomarkers selected in this algorithm permit the discrimination between isolated folate and vitamin B₁₂ deficiencies as well as the combined deficiency of both vitamins (Palacios et al., 2013).

Fedosov and colleagues developed a series of equations that combine two, three, or four biomarkers of vitamin B₁₂ status in adults. Age effects and folate status, a modifier of vitamin B₁₂ metabolism, are also considered (Fedosov et al., 2015). The combined indicator of vitamin B₁₂ status, cB₁₂, is defined as: cB₁₂ = log10((holo-TC.B₁₂)/(MMA.tHcy))→(age factor) (Fedosov et al., 2015), and thus, it differs from the “if → then” structure of classic diagnostic algorithms. The combined indicator of vitamin B₁₂ status provides five distinct ranges of diagnostic value, which are summarized in Table 1.
This classification considers both extremes of vitamin B₁₂ diagnostics, i.e., very low and very high vitamin B₁₂ status. The pathophysiological implications of high vitamin B₁₂ status are poorly understood, but its occurrence has been reviewed in the literature (Arendt and Nexo, 2013). The cB₁₂ quotient has been successfully adopted to investigate the vitamin B₁₂ status of a cohort of healthy Swiss elders (Risch et al., 2015). Results from this study suggest that increased levels of MMA and Hcy in seniors are brought about by a reduced renal function due to aging rather than by an underlying vitamin B₁₂ insufficiency (Risch et al., 2015). Nonetheless, the study identified a clear trend of more prevalent metabolic vitamin B₁₂ deficiency (measured as cB₁₂) with increasing age (Risch et al., 2015). Another study showed that the cB₁₂ indicator was useful not only to identify vitamin B₁₂ deficiency, but also to find interactions with folate status (Brito et al., 2016). Further, the cB₁₂ indicator was effective in identifying vitamin B₁₂ in cancer patients who exhibit normal serum vitamin B₁₂, but increased levels of MMA and Hcy (Vashi et al., 2016). In this study, the cB₁₂ quotient helped to establish that MMA is the most sensitive marker of vitamin B₁₂ in cancer patients, and that total serum B₁₂ has very little diagnostic value (Vashi et al., 2016). None of the studies included a decrease in MMA or tHcy upon B₁₂ administration as a potential marker in the evaluation of potential B₁₂ deficiency.

VITAMIN B₁₂ DEFICIENCY IN INFANTS

Infant cobalamin status at birth depends on maternal cobalamin stores during pregnancy, placental function, gestational age, and birth weight. There is a complex cobalamin metabolism in the placental-fetal compartment, strictly regulating the cobalamin transfer to the fetus (Porck et al., 1983; Miller et al., 1993; Perez-D’gregorio and Miller, 1998; Obeid et al., 2006). Cobalamin and holo-TC levels in the placenta, cord blood, and newborn serum correlate with maternal levels, but are 2–3 fold higher (Luhby et al., 1958; Baker et al., 1975; Giugliani et al., 1985; Frery et al., 1992; Obeid et al., 2006), providing the newborn with a liver store of about 25 µg cobalamin assumed to be sufficient for the first year of life (McPhee et al., 1988).

A wide range of cobalamin levels, varying from 86 to 939 pmol/L (median of 264 pmol/L) (Minet et al., 2000), have been reported for neonates during the first month of life. Maternal cobalamin deficiency, prematurity, and low birth weight are all associated with lower fetal cobalamin stores and an increased risk of deficiency, particularly if the infant is exclusively breastfed for more than 4 months before animal food is introduced (Dror and Allen, 2008; Torsvik et al., 2015). In mainly breastfed infants, the cobalamin level remains at cord blood levels for 5–7 days, then drops sharply, followed by a slow decline, reaching nadir levels at 6–7 months (Minet et al., 2000; Fokkema et al., 2002; Monsen et al., 2003). The decrease in serum cobalamin is accompanied by an increase in the metabolic markers plasma tHcy and MMA (Minet et al., 2000; Bjerke Monsen et al., 2001). This metabolic profile, indicative of cobalamin deficiency (Schneede et al., 1994), is associated with functional motor impairment in infants (Torsvik et al., 2013, 2015). Randomized intervention studies with one-time injection of 400 µg hydroxycobalamin are reported to improve the metabolic pattern and gross motor

Table 1: Ranges of combined vitamin B₁₂ status, their equivalence to single cut-off values, and clinical interpretation.

Combined vitamin B₁₂ status	Equivalence to single cut-points	Interpretation
Elevated B₁₂ > 1.5	B₁₂ > 650	The biological effects of high vitamin B₁₂ are not fully understood
	Holo-TC > 190	
	tHcy < 8.0	
	MMA < 0.11	
Adequate B₁₂ −0.5 to 1.5	186 < B₁₂ < 650	Expected to support normal B₁₂-dependent functions
	37 < holo-TC < 190	
	13.6 < tHcy < 8.0	
	0.35 < MMA < 0.11	
Low B₁₂ −1.5 to −0.5	119 < B₁₂ < 186	Subclinical deficiency: No hematological changes, subtle neurological impairment
	20 < holo-TC < 87	
	19.2 < tHcy < 13.6	
	0.84 < MMA < 0.35	
Possible B₁₂ deficiency −2.5 to −1.5	116 < B₁₂ < 119	Potential manifestations of vitamin B₁₂ deficiency
	8.4 < holo-TC < 20	
	51 < tHcy < 19.2	
	1.7 < MMA < 0.84	
Probable B₁₂ deficiency < −2.5	B₁₂ < 116	Clinical manifestations of vitamin B₁₂ deficiency
	holo-TC < 8.4	
	tHcy > 51	
	MMA > 1.7	

Units: B₁₂ and holo-TC are expressed in pmol/L, and tHcy and MMA in µmol/L. Table adapted from Fedosov et al. (2015).
development compared with infants receiving placebo (Torsvik et al., 2013, 2015).

Reported cobalamin levels in human breast milk vary from 150 to 700 pmol/L (Specker et al., 1990a; Ford et al., 1996; Greibe et al., 2013a; Duggan et al., 2014), depending on the assay used (Black et al., 1994; Lildballe et al., 2009), maternal cobalamin levels and the stage of lactation, as cobalamin levels in breast milk falls progressively during the first months (Greibe et al., 2013a). The cobalamin content of breast milk appears to be lowest at 4 months after birth, and this coincides with a low cobalamin status in the infant (Greibe et al., 2013a). Gradually decreasing cobalamin status with increasing time of exclusively breastfeeding has also been reported in infants with a subnormal birthweight (2–3 kg) during the first 6 months of life (Torsvik et al., 2015). Most commercially prepared infant formulas are enriched with cobalamin up to concentrations of 800–1200 pmol/L, well above that of human milk (Ford et al., 1996), and higher cobalamin and lower tHcy and MMA levels are seen in formula-fed infants (Specker et al., 1990b; Minet et al., 2000; Fokkema et al., 2002; Hay et al., 2008).

After introduction of animal food, the cobalamin level increases and peaks at 3–7 years and then decreases, median plasma tHcy decreases and remains low until 7 years when it starts increasing, whereas median plasma MMA decreases after 12 months and remains low throughout childhood (Monsen et al., 2003). tHcy is considered the best metabolic marker of cobalamin status in infants and toddlers and a plasma tHcy cut-off level of 6.5 µmol/L has been suggested for defining cobalamin deficiency in this age-group (Bjørke-Monsen et al., 2008). This represents the 97.5 percentile in 4 months old infants given a single intramuscular dose of 400 µg hydroxocobalamin at 6 weeks, rendering them to be cobalamin optimized (Bjørke-Monsen et al., 2008). In addition, administration of folic acid in newborns did not reduce tHcy (Hogeveen et al., 2010). In older children and adults, tHcy is mainly a folate marker, while MMA is considered a good marker for cobalamin status (Bjørke Monsen and Ueland, 2003; Monsen et al., 2003).

CHALLENGES IN THE DIAGNOSIS OF VITAMIN B₁₂ DEFICIENCY

Subclinical B₁₂ Deficiency Is Asymptomatic

The diagnosis and management of subclinical vitamin B₁₂ deficiency, which is defined as a total serum B₁₂ concentration of 150–249 pmol/L (Carmel, 2012, 2013) is a matter of great interest, due to its much higher prevalence (up to 40% of the population in western countries) compared to clinical deficiency (Carmel, 2012, 2013). The etiology of subclinical vitamin B₁₂ is unknown (Carmel, 2013). The condition manifests without overt clinical findings, with marginal or no elevation in tHcy and MMA and is typically of non-malabsorptive causes (Carmel, 2013). Subclinical B₁₂ deficiency rarely evolves into clinical deficiency and the need for treatment with B₁₂ has not been fully established in spite of its much higher frequency compared to clinical B₁₂ deficiency (Carmel, 1996, 1998, 1999, 2011, 2013). A study with a population of asymptomatic B₁₂-deficient elderly Chileans showed that patients displayed improved function of myelinated peripheral nerves after vitamin B₁₂ treatment and a positive association with folate status (Brito et al., 2016).

Functional B₁₂ Deficiency: Serum Markers vs. Cellular Status of Vitamin B₁₂

A number of studies point to the lack of correlation between serum and cellular levels of vitamin B₁₂ (Carmel, 2000; Solomon, 2005; Devalia et al., 2014; Lysne et al., 2016), and this is particularly important in the case of inborn errors of cobalamin metabolism whereby serum levels of the micronutrient are within the normal range (Watkins and Rosenblatt, 2013). In this regard, serum vitamin B₁₂ and holo-TC should be avoided as sole markers of B₁₂ deficiency in neonatal screening. Time-consuming metabolic studies to uncover genetic complementation or lack of function continue to be utilized in a very limited number of metabolic centers worldwide (Figure 3). In newborn screenings where biochemical markers are indicative of vitamin B₁₂ deficiency, the diagnosis of inborn errors of vitamin B₁₂ metabolism is performed via functional studies on cultured fibroblasts isolated from skin biopsies (Watkins and Rosenblatt, 2013) or via molecular genetic analysis of putative genes. Functional studies include [¹⁴C]-propionate or [¹⁴C]-N⁵-methyl-tetrahydrofolate incorporation into cellular macromolecules, to assess the activities of MCM and MS, respectively, and biosynthesis of MeCbl and AdoCbl upon metabolic labeling with holo-TC made from apo-TC and commercially available [⁵⁷Co]-vitamin B₁₂ (Watkins and Rosenblatt, 2013). Decreased uptake of [⁵⁷Co]-vitamin B₁₂ is indicative of impaired receptor-mediated endocytosis of holo-TC by the transcobalamin receptor. Accumulation of [⁵⁷Co]-vitamin B₁₂ in the lysosome suggests a dysfunctional cbf or cbfl protein unable to mediate exit of B₁₂ from the organelle (Figure 1). Isolated or combined disruption of MeCbl and AdoCbl levels indicates failures in intracellular processing (cbflC, cbflX), trafficking (cbflD), and/or coenzyme biosynthesis and utilization (cbflA, cbflB, cbflG, cbflE, mut). When results from [¹⁴C]-propionate or [¹⁴C]-N⁵-methyl-tetrahydrofolate incorporation suggest abnormal vitamin B₁₂ metabolism, somatic cell complementation analysis usually follows (Watkins and Rosenblatt, 2013). Cells from patients are fused with cells from other patients with confirmed mutations using polyethylene glycol and the [¹⁴C]-propionate or [¹⁴C]-N⁵-methyl-tetrahydrofolate incorporation studies are repeated to interrogate complementation of function. If the incorporation is corrected with respect to control cell lines, then the two cell lines belong to different complementation groups. In contrast, lower than normal [¹⁴C]-propionate or [¹⁴C]-N⁵-methyl-tetrahydrofolate incorporation after fusion of cell lines with polyethylene glycol confirms that the two patients possess the same genetic defect (Watkins and Rosenblatt, 2013). Nowadays, the vast majority of genes whose mutation lead to functional vitamin B₁₂ deficiency have been identified, and therefore, sequencing of these genes or next generation sequencing permits unequivocal diagnosis (Pupavac et al., 2016).

Combined B₁₂ and Iron Deficiency

Iron deficiency is a condition that could lead to masking of megaloblastic anemia caused by vitamin B₁₂ and folate.
Hannibal et al. Biomarkers of Vitamin B\textsubscript{12} Status

FIGURE 3 | Algorithm for the diagnosis of vitamin B\textsubscript{12} deficiency in neonates: metabolomic and functional studies. Elevated propionylcarnitine (C3) prompts the analysis of nutritional history with examination of vitamin B\textsubscript{12} and its metabolites, tHcy, and MMA. Combined hyperhomocysteinemia and methylmalonic acidemia may be caused by insufficient B\textsubscript{12} intake, defective absorption (intrinsic factor, transcobalamin) and genetic mutations affecting uptake (transcobalamin receptor, TCblR), lysosomal exiting (cblF and cblJ), processing (cblC), and trafficking (cblD). Total or incomplete response to a high dose of HOCbl helps to elucidate the cause of the dysfunction. Importantly, mutations in the TCblR gene may present with either the combined phenotype or with isolated methylmalonic acidemia, which should be considered using flow charts (dotted lines). Classical isolated hyperhomocysteinemia and methylmalonic acidemia are typically confirmed by functional assays, except for CBS deficiency that presents with normal to high methionine levels. Mutations affecting methionine synthase (cblG) and its partner reductase (cblE) lead to isolated hyperhomocysteinemia, whereas mutations affecting MCM (mut) and its associated proteins (cblA, cblB) result in isolated methylmalonic acidemia. Final confirmation of the disease is carried out by gene sequencing. This figure was modified from Baumgartner and Fowler (2014).

deficiencies (Remacha et al., 2013). The combined deficiency of iron and vitamin B\textsubscript{12} deficiency is more prominent in individuals aged 60 and older. In general, albeit not always, iron deficiency leads to microcytosis whereas vitamin B\textsubscript{12} and folate deficiencies result in macrocytosis (Green, 2012). An algorithm to distinguish between these two large classes of anemia based on a decreased in RBC count, hematocrit and hemoglobin levels has been described (Green, 2012). In addition, an algorithm that introduces age and tHcy levels has been developed to discriminate iron deficiency anemia vs. iron and vitamin B\textsubscript{12} combined anemia (Remacha et al., 2013).

VITAMIN B\textsubscript{12} STATUS IN SPECIAL POPULATIONS

The Elderly

Despite an apparent sufficient intake, vitamin B\textsubscript{12} deficiency is common among the elderly, and the prevalence is shown to increase with age (Allen, 2009; Miles et al., 2015). This is most likely not a physiological change due to aging per se, but a consequence of the elderly being more prone to gastric dysfunction, with variable degrees of gastric atrophy and achlorhydria interfering with the absorption of vitamin B\textsubscript{12} from...
foods (Carmel, 1997). Most cases of low vitamin B\textsubscript{12} among the elderly are accompanied by metabolic changes related to deficiency (Carmel, 1997). However, there is limited evidence from observational research linking this to clinical symptoms of deficiency (Miles et al., 2015). Because these metabolic changes usually respond to treatment with oral vitamin B\textsubscript{12}, low serum concentrations of vitamin B\textsubscript{12} in the absence of clinical symptoms should be regarded as a state of subclinical deficiency. An increasing folate status due to folic acid fortification and/or folic acid supplementation has been demonstrated to accelerate and worsen both the metabolic and the clinical consequences of B\textsubscript{12} deficiency (Morris et al., 2007; Selhub et al., 2007). Low vitamin B\textsubscript{12} levels among the elderly should be considered grounds for concern in countries with mandatory folic acid fortification.

Bariatric Surgery and Gastrointestinal Disorders

The absorption of vitamin B\textsubscript{12} is largely dependent on a healthy gastrointestinal tract, including (i) the production of intrinsic factor by parietal cells in the stomach, (ii) the dissociation of B\textsubscript{12} from haptocorrin and binding to intrinsic factor in the neutral environment of the duodenum, and (iii) the uptake of vitamin B\textsubscript{12} in the ileum. Pernicious anemia, an autoimmune disorder against gastric parietal cells, and bariatric surgery put the patient at risk of developing vitamin B\textsubscript{12} deficiency by limiting intestinal absorption and/or by reduction of food intake. In addition to reducing intake of the vitamin itself, bariatric surgery may diminish the secretion of intrinsic factor in the stomach, which is normally produced and released in response to food intake (Marcuard et al., 1989). Finally, limited contact with the pancreatic juice due to a shorter common intestinal tract after surgery may hinder the release from haptocorrin, limiting the intestinal uptake. High prevalence of B\textsubscript{12} deficiency has frequently been reported in subjects undergoing bariatric surgery (Sumner et al., 1996; Shah et al., 2006), and low levels of serum cobalamin is reported to be more indicative of true deficiency in bariatric surgery patients compared to healthy controls (Sumner et al., 1996). The malabsorptive procedures have been shown to yield higher risk of B\textsubscript{12} deficiency compared to the restrictive procedures (Kwon et al., 2014). In studies where the patients received post-operative intramuscular supplementation of vitamin B\textsubscript{12}, however, no increased risk of becoming deficient is observed (Kwon et al., 2014). In a study of vitamin B\textsubscript{12} status 5 years after surgery, patients who received intramuscular injections of vitamin B\textsubscript{12} increased their serum concentration, while the concentration among those not receiving injections decreased (Aaseth et al., 2015). Patients who underwent bariatric surgery would benefit from life-long preventive and maintenance supplementation with vitamin B\textsubscript{12}. More broadly, gastrointestinal disorders that affect the small intestine (for example, ileal resection) could increase the risk of B\textsubscript{12} deficiency through malabsorption (Battat et al., 2014). High prevalence of vitamin B\textsubscript{12} deficiency has been reported among untreated celiac disease patients (Theethira et al., 2014). Hence, patients newly diagnosed with celiac disease should be screened for B\textsubscript{12} deficiency. Vitamin B\textsubscript{12} deficiency is also frequently associated with chronic gastritis, which is most often a consequence of \textit{H. pylori} infection (Varbanova et al., 2014).

Neurological Disorders

The consequences of vitamin B\textsubscript{12} deficiency at the onset and progression of neurological impairments are well established (Kumar, 2014). In contrast, the causative role of vitamin B\textsubscript{12} deficiency in neurological disorders such as Parkinson’s, Alzheimer’s, and others is controversial. A review of 43 studies worldwide showed that low serum vitamin B\textsubscript{12} levels correlate with increased neurodegenerative disease and cognitive impairment (Moore et al., 2012). While a small subset of dementia examined in some of these studies responded favorably to vitamin B\textsubscript{12} supplementation, no benefit was observed in patients with an established, pre-existing deficiency of vitamin B\textsubscript{12} (Moore et al., 2012). One explanation may be that at least some of the neurological consequences of vitamin B\textsubscript{12} deficiency are irreversible. Another possibility is that the relationship between B\textsubscript{12} status and neurological disorders is not causal. A comprehensive analysis of studies performed from 2002 to 2012 examined tHcy levels with respect to dementia and cognitive decline (Health Quality Ontario, 2013). The results were controversial based on sample size and study design. Although the authors described an association between elevated tHcy and the onset of dementia, treatment with vitamin B\textsubscript{12} did not improve cognitive function (Health Quality Ontario, 2013). On the other hand, a slower rate of brain atrophy was noted in patients with mild cognitive impairment who have received treatment with vitamin B\textsubscript{12} (effective with both oral and parenteral administration) and folate (Health Quality Ontario, 2013). Elevated tHcy and MMA were identified in a small cohort of patients with Parkinson’s disease, progressive supranuclear palsy and amyotrophic lateral sclerosis compared to healthy subjects (Levin et al., 2010). In all cases, patients with these neurological diseases presented serum vitamin B\textsubscript{12} and folate comparable to that of healthy controls (Levin et al., 2010), suggesting a functional vitamin deficiency. It is unclear whether increased tHcy and MMA contribute to the onset and progression of neurological disease and whether supplementation with cobalamin, in spite of normal serum levels of the micronutrient, may help to reduce these neurotoxic metabolites. It has also been suggested that treatment of Parkinson’s and other neurological diseases with levodopa results in elevation of tHcy through S-adenosylmethylionine-dependent methylation of levodopa by catechol O-methyl-transferase (Muller, 2009; Muller et al., 2013). The authors proposed that treatment of these diseases with a combination of levodopa and an inhibitor of O-methyl-transferase may prevent tHcy elevation and oxidative stress (Muller, 2009). Advanced-stage patients with Parkinson’s disease typically receive continuous intraduodenal infusion of levodopa or carbidopa intestinal gel (Muller et al., 2013). These patients develop peripheral neuropathies thought to arise from transient deficiency of vitamins B\textsubscript{6} and B\textsubscript{12} as judged by a favorable response to concomitant supplementation with these micronutrients (Muller et al., 2013). A study performed with 1354 elder Australian subjects showed an association between low vitamin B\textsubscript{12} levels and cognitive impairments that was enhanced in the presence of high folate intake (Moore et al., 2014). Furthermore, the study identified that subjects exhibiting normal serum vitamin B\textsubscript{12} levels in the presence of high erythrocyte folate were also more likely to develop cognitive
impairment (Moore et al., 2014). Unfortunately, this study did not determine metabolic markers of vitamin B_12 deficiency such as MMA or tHcy. Altogether, available data suggests that preventing a deficiency of vitamin B_12 may afford protection from neurological deterioration, and that some but not all cognitive impairments respond to therapy with vitamin B_12. In terms of causation, the contribution of insufficient vitamin B_12 metabolism to the onset and progression of unrelated disorders such as Parkinson's and Alzheimer's diseases and other dementias awaits the implementation of large population clinical trials.

Autoimmune Lymphoproliferative Syndrome

ALPS is a genetic disorder leading to defective lymphocyte apoptosis (Oliveira, 2013; Shah et al., 2014). This results in an accumulation of lymphocytes, splenomegaly, multilineage cytopenias, lymphadenopathy, hepatomegaly, and an increased risk of B-cell lymphoma. The disease is accompanied nearly always by autoimmune manifestations (Jackson et al., 1999; Oliveira et al., 2010). Most ALPS patients are affected by heterozygous germline mutations in the Fas cell surface death receptor gene (FAS) via autosomal dominant inheritance (Jackson et al., 1999; Holzelova et al., 2004; Oliveira et al., 2010). Somatic mutations in FAS have also been described albeit less frequently (Jackson et al., 1999; Holzelova et al., 2004; Oliveira et al., 2010). FAS is a member of the tumor necrosis factor receptor family (FAS/CD95/ADP-1/TNFRSF6) and it is highly expressed in activated B and T cells (Nagata and Golstein, 1995). FAS-FAS ligand recognition in activated T lymphocytes leads to the activation of the caspase cascade and cellular apoptosis (Nagata and Golstein, 1995). This apoptotic pathway is important for the down-regulation of the immune response, and its disturbance leads to buildup of proliferating lymphocytes resulting in lymphoid hyperplasia and autoimmunity (Rieux-Laucat et al., 2003). Revised diagnostic criteria and classification for the ALPS syndrome were established in 2009 at a US National Institutes of Health International Workshop. Required criteria for ALPS included the presence of lymphadenopathy and/or splenomegaly and elevated TCRαβ⁺-DNT cells. Accessory criteria for ALPS were subdivided into primary (abnormal lymphocyte apoptosis assay and presence of pathogenic mutations in genes of the FAS pathway) and secondary criteria, which included characteristic histopathology, the combined presence of autoimmune cytopenia, polyclonal hypergammaglobulinemia, an ALPS-compatible family history, and the presence of elevated biomarkers, such as interleukin-10, interleukin-18, soluble FAS ligand, and vitamin B_12 (Oliveira et al., 2010). These biomarkers are included in the diagnostic criteria because they can predict both germline and somatic FAS mutations with a post-test probability from 85 to 97% (87% for vitamin B_12) and because they are accessible to facilities without the ability to do genetic analysis or functional assays (Teachey et al., 2005; Magerus-Chatinet et al., 2009; Caminha et al., 2010; Seif et al., 2010). Very highly elevated median serum vitamin B_12 in ALPS Ia and Ia-s (1667 pmol/L; 1220 pmol/L) compared with mutation-negative relatives (350 pmol/L; P < 0.0001) and healthy mutation-positive relatives (421 pmol/L; P < 0.0001) have been reported (Caminha et al., 2010). In particular, serum vitamin B_12 median levels in ALPS III and ALPS-Phenotype were substantially elevated (560 and 696 pmol/L) (Caminha et al., 2010). Another group observed significantly higher mean serum vitamin B_12 concentrations (3900 pmol/L; controls: 274 pmol/L; p < 0.0001) and significantly higher mean holo-haptocorrin (holo-HC) concentrations (3810 pmol/L; controls: 194 pmol/L; p < 0.0001) in the presence of normal holo-TC concentrations (Bowen et al., 2012). The abnormally high levels of circulating vitamin B_12 found in ALPS patients has been ascribed to high expression of HC by lymphocytes isolated from ALPS patients, a characteristic not observed in lymphocytes isolated from healthy control subjects (Bowen et al., 2012). Thus, it would appear that HC expression is upregulated in ALPS. In the Bowen et al. study, the metabolic markers of vitamin B_12 status (tHcy and MMA) in ALPS patients were investigated and no differences with respect to healthy controls were found (Bowen et al., 2012). This is consistent with the fact that high serum holo-HC does not impair holo-TC uptake by the cellular TCRβ (Quadros et al., 2009, 2010; Jiang et al., 2013; Quadros and Sequeira, 2013) and the downstream intracellular utilization of the micronutrient (Hannibal et al., 2009, 2013). It remains to be determined whether excess serum vitamin B_12 found in ALPS patients derives from clearance of liver storages or simply by increased dietary assimilation.

Vegetarians and Vegans

Although a properly planned vegetarian diet is regarded as nutritionally adequate and healthy, unsupplemented populations who actively avoid food of animal origin are at high risk of insufficient dietary intake of vitamin B_12. The amount of B_12 in vegetarian diets depends on the extent of inclusion of animal products or the use of dietary supplements. Supplementation is recommended to those completely avoiding animal products (strict vegans). Compared to meat eaters, both vegetarians and particularly vegans have a lower intake of vitamin B_12 (Davey et al., 2003; Rizzo et al., 2013; Kristensen et al., 2015; Schupbach et al., 2015). This is also reflected by lower serum concentrations (Gilsing et al., 2010), and vitamin B_12 deficiency is shown to be common following all types of vegetarian diets (Pawlak et al., 2013, 2014). However, in a study comparing micronutrient status in omnivores, vegetarians and vegans from Switzerland, a low vitamin B_12 intake among vegans was not accompanied by low serum concentrations of the micronutrient (Schupbach et al., 2015). This was attributed to widespread use of B_12 supplements, which adheres to dietary recommendations for this subpopulation (Pawlak et al., 2014). Infants of vegan mothers not taking supplements are also at increased risk of becoming vitamin B_12 deficient, especially so when exclusively breastfed (Dror and Allen, 2008). This is due both to small hepatic stores and low intake through the breast milk, both a result of poor maternal vitamin B_12 status. In light of these findings, it is advised that vegetarians and vegans monitor their serum vitamin B_12 levels and at least one metabolic marker (tHcy or MMA), or consider taking a B_12 supplement as part of their dietary plan.

Medication Affecting Vitamin B_12 Status

Besides factors influencing the intake and absorption of vitamin B_12, some medications have been shown to interfere with vitamin
B12 absorption or metabolism, potentially putting certain patient groups at risk of developing vitamin B12 deficiency. Metformin (Glucophage) is regarded a first-line drug in the treatment of type 2 diabetes mellitus. However, it has been shown that treatment with metformin is associated with a decrease in serum vitamin B12 concentrations, which worsens with increasing dose and length of treatment (Ting et al., 2006; de Jager et al., 2010; Liu et al., 2014). The association has been suggested to be due to interference with the calcium dependent intestinal uptake of the vitamin B12-intrinsic factor complex (Bauman et al., 2000). However, although serum B12 is reduced, metformin treatment has been associated with reduction in plasma MMA and indications of improved intracellular B12 status in diabetics (Obeid et al., 2013). Hence, a vitamin B12 resistance phenomenon was suggested in diabetics, and metformin treatment seemed to improve the intracellular vitamin B12 metabolism, contrary to previous beliefs. Two studies found that patients treated with metformin had reduced levels of both serum vitamin B12 and haptocorrin, but treatment was without effect on the levels of holo-TC, the bioactive form of vitamin B12 that is distributed systemically to all cells in the body (Leung et al., 2010; Greibe et al., 2013c). Another study showed that treatment of rats with metformin increased hepatic accumulation of vitamin B12 (Greibe et al., 2013b). This suggests that metformin may alter the homeostasis and tissue distribution of vitamin B12, the consequences of which remain to be investigated. Because not all cases of low serum vitamin B12 imply deficiency, and normal and high serum levels of vitamin B12 are likewise observed in patients with severe functional vitamin B12 deficiency, concern has been raised regarding the interpretation of the effects of metformin on vitamin B12 status (Obeid, 2014). In terms of prevention, diabetics receiving metformin should be regarded at increased risk, and routine screening and supplementation if necessary, should be recommended (Valdes-Ramos et al., 2015).

Proton pump inhibitors or other medications that suppress acid production in the stomach are frequently associated with reduced serum vitamin B12 concentrations (Abraham, 2012). This is due to the acidic environment in the stomach being essential for the release of protein-bound vitamin B12, as well as initial binding to haptocorrin (Stabler, 2012). While serum vitamin B12 is reduced, it usually stays within the normal range (Sheen and Triadafilopoulos, 2011). Hence, the risk of developing overt deficiency due to use of proton pump inhibitors may be low, but it has been suggested that the risk is higher among elderly and malnourished patients receiving long-term treatment (Sheen and Triadafilopoulos, 2011).

Nitrous oxide, an inhalant used for surgical and dental anesthesia and also as a recreational drug (van Amsterdam et al., 2015), directly affects vitamin B12 metabolism by irreversibly oxidizing the cobalt atom in B12-dependent MS (Gutormsen et al., 1994; Torri, 2010). When subjects with borderline vitamin B12 deficiency are treated with nitrous oxide, rapid onset of neurological symptoms has been reported post treatment (Singer et al., 2008). Patients who are candidates for interventions with nitrous oxide anesthesia may benefit from pre-operative supplementation with vitamin B12.

GENETIC DETERMINANTS OF VITAMIN B12 STATUS

Aside from inborn errors of metabolism affecting the intracellular pathways of vitamin B12 trafficking and assimilation (for excellent reviews on the topic see Froese and Gravel, 2010; Watkins and Rosenblatt, 2011), mutations in the transcobalamin gene (TCN2) (Keller et al., 2016), high levels of the soluble transcobalamin receptor (sCD320) Hoffmann-Lucke et al., 2013, and polymorphisms in 3-hydroxybutyryl-CoA hydrolase (HIBCH) (Molloy et al., 2016) also affect the serum markers of vitamin B12 status. Mutations in the TCN2 gene can lead to false low levels of circulating holo-TC without effect on other biomarkers of vitamin B12 status (Keller et al., 2016). Increased levels of a heavier variant of the sCD320 led to elevated holo-TC and vitamin B12 in serum, though the reasons for such variations are currently unknown (Hoffmann-Lucke et al., 2013). The larger apparent molecular weight of sCD320 could be due to altered glycation or formation of higher order oligomers of the sCD320 (Hoffmann-Lucke et al., 2013). A genome-wide analysis in 2210 healthy Irish adults identified strong associations between plasma MMA with SNPs in acylCo-A synthetase (ACS3) and HIBCH, with these loci accounting for 12% of the variance in MMA concentration (Molloy et al., 2016). HIBCH catalyzes a unique step in the degradation of valine, converting 3-hydroxyisobutyric acid-CoA to 3-hydroxyisobutyric acid. The presence of polymorphisms in HIBCH represents an independent determinant of serum MMA concentrations. The molecular mechanism by which polymorphic variants of HIBCH lead to elevated MMA remain to be investigated (Molloy et al., 2016). Transient elevation of MMA has also been documented in patients with mutations in methylmalonate semialdehyde dehydrogenase (Marcadier et al., 2013), and in ACS3, which possesses malonyl-CoA and methylmalonyl-CoA activity (Alfares et al., 2011; Sloan et al., 2011). Mutations in mitochondrial succinate-CoA ligase (SUCLGI) also lead to elevated MMA (Valayannopoulos et al., 2010).

Mutations that impair the endocytic and lysosomal pathways independently of vitamin B12 metabolism also lead to transient deficiency of the micronutrient, with elevation of tHcy and MMA (Stockler et al., 2014; Dutchak et al., 2015; Zhao et al., 2015). These include abnormal lysosome acidification in a patient with Alzheimer’s disease (Zhao et al., 2015), impaired endocytosis due to a mutation in the rabenosyn-5 gene (Stockler et al., 2014; Zhao et al., 2015), and disrupted lysosomal acidification and gene expression in a knock-out mouse model of mTOR inhibitor NPYR2 (Dutchak et al., 2015). This pathway is thought to cause a defective processing of holo-TC in the lysosome (Dutchak et al., 2015).

Upregulation of the expression of hepatic peroxisome proliferator activated receptor alpha (PPAR alpha), has been shown to elevate plasma MMA in male Wistar rats fed a normal high fat diet in the presence of PPAR alpha agonist tetradecylthioacetic acid (TTA) (Lyse et al., 2016). Because the amount of receptor is a limiting factor for PPAR alpha activity,
and the amount of PPAR alpha protein strongly correlates with its level of mRNA expression (Lemberger et al., 1996), differential expression of PPAR alpha induced by diet, stress and other factors may represent another vitamin B\textsubscript{12}-independent determinant of plasma MMA.

Overall, the finding that mutations and polymorphisms in genes peripheral or unrelated to intracellular vitamin B\textsubscript{12} pathways affect its marker metabolites, substantiates the need for the combined analysis of at least two biomarkers for the accurate assessment of vitamin B\textsubscript{12} status.

CONCLUDING REMARKS

The diagnosis of vitamin B\textsubscript{12} deficiency both in children and adults requires the use of at least two biomarkers. Among the biomarkers currently available for diagnostic purposes, total serum vitamin B\textsubscript{12} is equivocal for the identification of functional deficiencies, such as those caused by inborn errors of metabolism. The use of holo-TC to determine vitamin B\textsubscript{12} status is advantageous in that it reflects the biologically active pool of vitamin B\textsubscript{12} in serum, but its homeostasis is poorly understood. This is illustrated by the abnormal levels of holo-TC observed under various unrelated disease states and in individuals possessing otherwise normal total serum vitamin B\textsubscript{12} status. tHcy is particularly useful as a marker of vitamin B\textsubscript{12} status in the neonate, but its reliability and specificity are equivocal in adulthood because it is influenced by many factors such as folate status. Methylmalonic acid continues to be the most sensitive and specific marker for vitamin B\textsubscript{12} status in individuals of all ages with normal renal function. The use of acylcarnitines can be considered ancillary to diagnosis, but certainly not a first-line test. One major challenge lies in identifying early markers of low vitamin B\textsubscript{12} status for the timely diagnosis of the clinically and biochemically silent subclinical vitamin B\textsubscript{12} deficiency. Likewise, the consequences of insufficient vitamin B\textsubscript{12} levels in special populations such as the elderly, vegetarians and vegans, infants, and pregnant women suffer from poor awareness by both patients and clinicians. The finding that low vitamin B\textsubscript{12} status is associated with more prominent metabolic markers of vitamin B\textsubscript{12} deficiency in the presence of high folic acid concentrations (Miller et al., 2009) points to the importance of nutrient-nutrient interactions, which have only been considered over the past decade and is of particular relevance to countries with ongoing folic acid fortification of foods.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual contribution to the work, and approved it for publication.

REFERENCES

Aaseth, E., Fagerland, M. W., Aas, A. M., Hewitt, S., Risstad, H., Kristinsson, J., et al. (2015). Vitamin concentrations 5 years after gastric bypass. *Eur. J. Clin. Nutr.* 69, 1249–1255. doi: 10.1038/ejcn.2015.82

Abraham, N. S. (2012). Proton pump inhibitors: potential adverse effects. *Curr. Opin. Gastroenterol.* 28, 615–620. doi: 10.1097/MOG.0b013e328358d5b9

Alfares, A., Nunez, L. D., Al-Thihli, K., Mitchell, J., Melancon, S., Anastasio, N., et al. (2011). Combined malonic and methylmalonic aciduria: exome sequencing reveals mutations in the ACSF3 gene in patients with a non-classic phenotype. *J. Med. Genet.* 48, 602–605. doi: 10.1136/jmedgenet-2011-100230

Allen, L. H. (2009). How common is vitamin B-12 deficiency? *Am. J. Clin. Nutr.* 89, 693S–696S. doi: 10.3945/ajcn.2008.26947A

Antony, A. C. (2001). Prevalence of cobalamin (vitamin B-12) and folate deficiency in India–audi alteram partem. *J. Am. J. Clin. Nutr.* 74, 157–159.

Arendt, J. F., and Nexo, E. (2013). Unexpected high plasma cobalamin: proposal for a diagnostic strategy. *Clin. Chem. Lab. Med.* 51, 489–496. doi: 10.1515/cclm-2012-0545

Arendt, J. F., Farkas, D. K., Pedersen, L., Nexo, E., and Sorenson, H. T. (2016). Elevated plasma vitamin B\textsubscript{12} levels and cancer prognosis: A population-based cohort study. *Cancer Epidemiol.* 40, 158–165. doi: 10.1016/j.canep.2015.12.007

Aroda, V. R., Edelstein, S. L., Goldberg, R. B., Knowler, W. C., Marcovina, S. M., Orchard, T. J., et al. (2016). Long-term metformin use and Vitamin B\textsubscript{12} deficiency in the diabetes prevention program outcomes study. *J. Clin. Endocrinol. Metab.* 101, 1754–1761. doi: 10.1210/jc.2015-0573

Baker, H., Frank, O., Thomson, A. D., Langer, A., Munves, E. D., De Angelis, B., et al. (1975). Vitamin profile of 174 mothers and newborns at parturition. *Am. J. Clin. Nutr.* 28, 59–65.

Battat, R., Kopylov, U., Szilagyi, A., Saxena, A., Rosenblatt, D. S., Warner, M., et al. (2014). Vitamin B\textsubscript{12} deficiency in inflammatory bowel disease: prevalence, factors, evaluation, and management. *Inflamm. Bowel Dis.* 20, 1120–1128. doi: 10.1097/mib.0000000000000024

Bauman, W. A., Shaw, S., Jayatilleke, E., Spungen, A. M., and Herbert, V. (2000). Increased intake of calcium reverses vitamin B\textsubscript{12} malabsorption induced by metformin. *Diabetes Care* 23, 1227–1231. doi: 10.2337/diabetescare.23.9.1227

Baumgartner, M. R., and Fowler, B. (2014). *Physician’s Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases.* Heidelberg: Springer-Verlag Berlin Heidelberg.

Berg, R. L., and Shaw, G. R. (2013). Laboratory evaluation for vitamin B\textsubscript{12} deficiency: the case for cascade testing. *Clin. Med. Res.* 11, 7–15. doi: 10.3121/cmrx.2012.1112

Bjerke Monsen, A. L., and Ueland, P. M. (2003). Homocysteine and methylmalonic acid in diagnosis and risk assessment from infancy to adolescence. *Am. J. Clin. Nutr.* 78, 7–21.

Bjerke Monsen, A. L., Ueland, P. M., Vollset, S. E., Guttmersen, A., Markestad, T., Solheim, E., et al. (2001). Determinants of cobalamin status in newborns. *Pediatrics* 108, 624–630. doi: 10.1542/peds.108.6.624

Bjerke-Monsen, A. L., Torsvik, I., Satran, H., Markestad, T., and Ueland, P. M. (2008). Common metabolic profile in infants indicating impaired cobalamin status responds to cobalamin supplementation. *Pediatrics* 122, 83–91. doi: 10.1542/peds.2007-2716

Black, A. K., Allen, L. H., Pelto, G. H., De Mata, M. P., and Chavez, A. (1994). Iron, vitamin B-12 and folate status in Mexico: associated factors in men and women and during pregnancy and lactation. *J. Nutr.* 124, 1179–1188.

Bowen, R. A., Dowdell, K. C., Dale, J. K., Drake, S. K., Fleisher, T. A., Horton, G. L., et al. (2012). Elevated vitamin B(12) levels in autimmune lymphoproliferative syndrome attributable to elevated haptocorrin in lymphocytes. *Clin. Biochem.* 45, 490–492. doi: 10.1016/j.clinbiochem.2012.01.016

Brito, A., Verdugo, R., Hertrampf, E., Miller, J. W., Green, R., Fedosov, S. N., et al. (2016). Vitamin B-12 treatment of asymptomatic, deficient, elderly Chileans improves conductivity in myelinated peripheral nerves, but high serum folate impairs vitamin B-12 status response assessed by the combined indicator of vitamin B-12 status. *Am. J. Clin. Nutr.* 103, 250–257. doi: 10.3945/ajcn.115.116509
Levin, J., Botzel, K., Giese, A., Vogeser, M., and Lorenzl, S. (2010). Elevated levels of methylmalonate and homocysteine in Parkinson’s disease, progressive supranuclear palsy and amyotrophic lateral sclerosis. *Dement. Geriatr. Cogn. Disord.* 29, 553–559. doi: 10.1159/000314841

Lewerin, C., Ljungman, S., and Nilsson-Ehle, H. (2007). Glomerular filtration rate as measured by serum cystatin C is an important determinant of plasma homocysteine and serum methionylaminic acid in the elderly. *J. Intern. Med.* 261, 65–73. doi: 10.1111/j.1365-2796.2006.01732.x

Lildballe, D. L., Hard lei, T. F., Allen, L. H., and Nexo, E. (2009). High concentrations of haptocorrin interfere with routine measurement of cobalamin in human serum and milk. A problem and its solution. *Clin. Chem. Lab. Med.* 47, 182–187. doi: 10.1515/CCLM.2009.047

Liu, Q., Li, S., Quan, H., and Li, J. (2014). Vitamin B12 status in metformin treated patients: systematic review. *PLoS ONE* 9:e1000379. doi: 10.1371/journal.pone.0100037

Luby, A. L., Cooperman, J. M., Stone, M. L., and Slobody, L. B. (1958). Physiology of vitamin B12 in pregnancy, the placenta, and the newborn. *Am. J. Dis. Child.* 96, 127–128.

Lynes, V., Strand, E., Svingen, G. F. T., Bjørndal, B., Pedersen, E. R., Midttun, Ø., et al. (2016). Peroxisome proliferator-activated receptor activation is associated with altered plasma one-carbon metabolites and B-vitamin status in rats. *Nutrients* 8:26. doi: 10.3978/j.issn.1991-319X

Magerus-Chatinet, A., Stolzenberg, M. C., Dichter, S. M., Neven, B., Solbach, C., Drocourt, N., et al. (2009). FAS-L IL-10, and double-negative CD4+CD8+ TCR alpha/beta+ T cells are reliable markers of autoimmune lymphoproliferative syndrome (ALPS) associated with FAS loss of function. *Blood* 113, 3027–3030. doi: 10.1182/blood-2008-09-179630

Majumder, S., Soriano, J., Louie Cruz, A., and Dasanu, C. A. (2013). Vitamin B12 deficiency in patients undergoing bariatric surgery: preventive strategies and key recommendations. *Surg. Obes. Relat. Dis.* 9, 1013–1019. doi: 10.1016/j.soard.2013.04.017

Marcadier, J. L., Smith, A. M., Pohl, D., Schwartztuber, J., Al-Dibashi, O. Y., Consortium, F. C., et al. (2013). Mutations in ALDHHA1 encoding methylnalanone semialdehyde dehydrogenase are associated with dysmelyinisation and transient methionylaminic aciduria. *Orphanet J. Rare Dis.* 8:98. doi: 10.1186/1749-8090-8-98

Marcuard, S. P., Sinar, D. R., Swanson, M. S., Silverman, J. F., and Levine, J. S. (1989). Absence of luminal intrinsic factor after gastric bypass surgery for morbid obesity. *Dig. Dis. Sci.* 34, 1238–1242. doi: 10.1002/bfs.2013233

McPhee, A. J., Davidson, G. P., Leaby, M., and Beare, T. (1988). Vitamin B12 deficiency in a breast fed infant. *Arch. Dis. Child.* 63, 921–923. doi: 10.1136/adc.63.6.921

McLennan, C. M., Mills, K., Wilson, P. W., and Rosenberg, I. H. (1999). The effect of fol acid fortification on plasma folate and total homocysteine concentrations. *N. Engl. J. Med.* 340, 1449–1454. doi: 10.1056/NEJM199901313400408

Kll, K. A., Bowers, J. M., and Berg, M. P. (2013). Mapping the functional domains of TCHS/CD320, the receptor for cellular uptake of transcobalamin-bound cobalamin. *FASEB J.* 27, 2988–2994. doi: 10.1096/fj.13-230185

Keller, P., Rufener, J., Schild, C., Fedosov, S. N., Nexo, P. H., and Nexo, E. (2016). False low holotranscobalamin levels in a patient with a novel TCN2 mutation. *Clin. Chem. Lab. Med.* doi: 10.1515/ccm-2016-0063. [Epub ahead of print]

Koch, C. A. (2009). Correspondence (letter to the editor): Gastrin levels in pernicious anemia. *Disch. Arztebl. Int.* 106:290. doi: 10.3238/arztebl.2009.0290

Kristensen, N. B., Madsen, M. L., Hansen, T. H., Allin, K. H., Hoppe, C., Fagt, S., et al. (2015). Intake of macro- and micronutrients in Danish vegans. *Natur. J.* 14, 115. doi: 10.1186/s12977-015-0103-3

Kumar, N. (2014). Neurologic aspects of cobalamin (B12) deficiency. *Handb. Clin. Neurof.* 120, 915–926. doi: 10.1016/B978-0-7020-4087-0.00060-7

Kwon, Y., Kim, H. J., Lo Menzo, E., Park, S., Szomstein, S., and Rosenthal, R. J. (2014). Anemia, iron and vitamin B12 deficiencies after sleeve gastrectomy compared to Roux-en-Y gastric bypass: a meta-analysis. *Surg. Obses. Relat. Dis.* 10, 589–597. doi: 10.1016/j.soard.2013.12.005

Lemberger, T., Saladin, R., Vazquez, M., Massicopoulos, F., Staels, B., Desvergne, B., et al. (1996). Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. *J. Biol. Chem.* 271, 1764–1769. doi: 10.1074/jbc.271.3.1764

Leung, S., Mattman, A., Snyder, F., Kassam, R., Menegly, C., and Nexo, E. (2010). Metformin induces reductions in plasma cobalamin and haptocorrin bound cobalamin levels in elderly diabetic patients. *Clin. Biochem.* 43, 759–760. doi: 10.1016/j.clinbiochem.2010.02.011

Moen, A. L., Refsum, H., Markested, T., and Ueland, P. M. (2003). Cobalamin status and its biochemical markers methylmalonic acid and homocysteine in
Hannibal et al. Biomarkers of Vitamin B12 Status

different age groups from 4 days to 19 years. Clin. Chem. 49, 2067–2075. doi: 10.1373/clchem.2003.019869
Moore, E. M., Ames, D., Mander, A. G., Carne, R. P., Brodaty, H., Woodward, M. C., et al. (2014). Among vitamin B12 deficient older people, high folate levels are associated with worse cognitive function: combined data from three cohorts. J. Alzheimers Dis. 39, 661–668. doi: 10.3233/JAD-131265
Moore, E., Mander, A., Ames, D., Carne, R., Sanders, K., and Watters, D. (2012). Cognitive impairment and vitamin B12: a review. Int. Psychogeriatr. 24, 541–556. doi: 10.1017/S1041610211002511
Morris, M. S., Jacobs, P. F., Rosenberg, I. H., and D’Agostino, R. B. (1998). The use of blood concentrations of vitamins and their respective functions. Eur. J. Clin. Nutr. 12, 123–117. doi: 10.1016/s0022-3476(98)70526-8
Remacha, A. F., Sarda, M. P., Canals, C., Queraltó, J. M., Zapico, E., Remacha, J., et al. (2013). Combined cobalamin and iron deficiency anemia: a diagnostic approach using a model based on age and homocysteine assessment. Ann. Hematol. 92, 527–531. doi: 10.1007/s00277-012-1634-8
Remacha, A. F., Sarda, M. P., Canals, C., Queraltó, J. M., Zapico, E., Remacha, J., et al. (2014). Role of serum holotranscobalamin (holoTC) in the diagnosis of patients with low serum cobalamin. Comparison with methylmalonic acid and homocysteine. Ann. Hematol. 93, 563–569. doi: 10.1007/s00277-013-1905-z
Riedel, B., Molloy, A. M., Meyer, K., Fredriksen, A., Ulvik, A., Schneede, J., et al. (2015). Vitamin B12 deficiency in children and adolescents. J. Pediatr. 138, 10–17. doi: 10.1016/yped.2011.112160
Rossen, H., Yajnik, C. S., Gadkari, M., Schneede, J., Vollset, S. E., Orning, L., et al. (2001). Hyperhomocysteinemia and elevated methylmalonic acid indicate a high prevalence of cobalamin deficiency in Asian Indians. Am. J. Clin. Nutr. 74, 233–241.
Remacha, A. F., Sarda, M. P., Canals, C., Queraltó, J. M., Zapico, E., Remacha, J., et al. (2013). Combined biomarkers of vitamin B12 and iron deficiency anemia: a diagnostic approach using a model based on age and homocysteine assessment. Ann. Hematol. 92, 527–531. doi: 10.1007/s00277-012-1634-8
Remacha, A. F., Sarda, M. P., Canals, C., Queraltó, J. M., Zapico, E., Remacha, J., et al. (2014). Role of serum holotranscobalamin (holoTC) in the diagnosis of patients with low serum cobalamin. Comparison with methylmalonic acid and homocysteine. Ann. Hematol. 93, 563–569. doi: 10.1007/s00277-013-1905-z
Riedel, B., Bjerke Monsen, A. L., Ueland, P. M., and Schneede, J. (2005). Effects of oral contraceptives and hormone replacement therapy on markers of cobalamin status. Clin. Chem. 51, 778–781. doi: 10.1373/clinchem.2004.003371
Rizzo, N. S., Jaceldo-Siegl, K., Sabate, J., and Fraser, G. E. (2013). Nutrient profiles as predictors of vegetarian and nonvegetarian dietary patterns. J. Acad. Nutr. Diet. 113, 1610–1619. doi: 10.1016/j.jand.2013.06.349
Sarafoglou, K., Rodgers, J., Hietala, A., Matern, D., and Bentler, K. (2011). How prevalent is vitamin B(12) deficiency among vegetarians? JAMA 305, 1198–1200. doi: 10.1001/jama.2011.310
Scheidvin, G., Jones, I., Huldin, J., and Nilsson, T. K. (2005). A laboratory algorithm with homocysteine as the primary parameter reduces the cost of investigation of folate and cobalamin deficiency. Clin. Chem. Lab. Med. 43, 1065–1068. doi: 10.1515/CCLM.2005.186
Schneede, J., Dagnelie, P. C., Van Staveren, W. A., Vollset, S. E., Refsum, H., and Ueland, P. M. (1994). Methylmalonic acid and homocysteine in plasma as indicators of functional cobalamin deficiency in infants on cow’s milk formula. Clin. Chem. 40, 527–531. doi: 10.1007/s00394-015-1079-7. [Epub ahead of print]
Seif, A. E., Manno, C. S., Sheen, C., Grupp, S. A., and Teachey, D. T. (2010). Identifying autoimmune lymphoproliferative syndrome in children with Evans syndrome: a multi-institutional study. Blood 115, 2142–2145. doi: 10.1182/blood-2009-08-239525
Sehub, J., Jacques, P. F., Dallal, G., Choumenkovitch, S., and Rogers, G. (2008). The use of blood concentrations of vitamins and their respective functional
indicators to define folate and vitamin B12 status. *Food Nutr. Bull.* 29, S67–S73. doi: 10.1177/156482650800925110

Selhub, J., Morris, M. S., and Jacques, P. F. (2007). In vitamin B12 deficiency, higher serum folate is associated with increased total homocysteine and methylmalonic acid concentrations. *Proc. Natl. Acad. Sci. U.S.A.* 104, 19995–20000. doi: 10.1073/pnas.0709487104

Shah, M., Simha, V., and Garg, A. (2006). Review: long-term impact of bariatric surgery on body weight, comorbidities, and nutritional status. *J. Clin. Endocrinol. Metab.* 91, 4223–4231. doi: 10.1210/jc.2006-0557

Shah, S., Wu, E., Rao, V. K., and Tarrant, T. K. (2014). Autoimmune lymphoproliferative syndrome: an update and review of the literature. *Curr. Allergy Asthma Rep.* 14, 462. doi: 10.1007/s11882-014-0462-4

Sheen, E., and Triadafilopoulos, G. (2011). Adverse effects of long-term proton pump inhibitor therapy. *Dig. Dis. Sci.* 56, 931–950. doi: 10.1007/s10601-010-1560-3

Singer, M. A., Lazaridis, C., Nations, S. P., and Wolfe, G. I. (2008). Reversible methylmalonic aciduria in infants fed formula or human milk. *Am. J. Clin. Nutr.* 87, 562–566. doi: 10.1093/ajcn/87.4.562

Specker, B. L., Black, A., Allen, L., and Morrow, F. (1990a). Vitamin-B12: low serum folate is associated with increased total homocysteine concentrations. *Am. J. Clin. Nutr.* 51, 209–211.

Specker, B. L., Stoughton, B. P., Sheen, J., Song, J., and Shi, J. (1990b). Vitamin B12 status and B vitamin deficiency, in “inborn errors of vitamin B12 metabolism.” Biochimie 62, 817–820. doi: 10.1016/0300-9125(90)90185-4

Specker, B. L., Grunert, S., van Amsterdam, J., Nabben, T., and Van Den Brink, W. (2015). Recreational nitrous oxide use: Prevalence and risks. *Regul. Toxicol. Pharmacol.* 73, 790–796. doi: 10.1016/j.yrtph.2015.10.017

Van Beynum, I. M., den Heijer, M., Thomas, C. A., Afnan, L., Oppers-Van Emmerzaal, D., and Blom, H. J. (2005). Total homocysteine and its predictors in Dutch children. *Am. J. Clin. Nutr.* 81, 1110–1116.

Varhano, M., Fraunenschlager, K., and Malfertheiner, P. (2014). Chronic gastritis – an update. *Best Pract. Res. Clin. Gastroenterol.* 28, 1031–1042. doi: 10.1016/j.bpg.2014.10.005

Vashi, P., Edwin, P., Popiel, B., Lammersfeld, C., and Gupta, D. (2016). Methylmalonic acid and homocysteine as indicators of vitamin B12 deficiency in cancer. *PLoS ONE* 11:e0147843. doi: 10.1371/journal.pone.0147843

Vu, T., Amin, J., Ramos, M., Flener, V., Vanyo, L., and Tisman, G. (1993). New roundtable summary. *Am. J. Clin. Nutr.* 57, 1233–1240. doi: 10.1093/ajcn.13.5.1233

Bock, J. L., et al. (2011). Biomarkers of vitamin B-12 status in NHANES: a roundtable summary. *Am. J. Clin. Nutr.* 95, 1019–1022. doi: 10.1093/ajcn/13.1.1019

Wheeler, S. (2008). Assessment and interpretation of micronutrient status during pregnancy. *Proc. Nutr. Soc.* 67, 437–450. doi: 10.1017/S0029665108008732

Wickramasinghe, S. N., and Ratnayaka, I. D. (1996). Limited value of serum holotranscobalamin II measurements in the differential diagnosis of macrocytosis. *J. Clin. Pathol.* 49, 755–758. doi: 10.1136/jcp.49.9.755

Wilhelm, S. M., Rjater, R. G., and Kale-Pradhan, P. B. (2013). Perils and pitfalls of long-term effects of proton pump inhibitors. *Expert Rev. Clin. Pharmacol.* 6, 443–451. doi: 10.1586/17512423.2013.811206

Yetley, E. A., Pfeiffer, C. M., Phinney, K. W., Bailey, R. L., Blackmore, S., Bock, J. L., et al. (2011). Biomarkers of vitamin B-12 status in NHANES: a roundtable summary. *Am. J. Clin. Nutr.* 94, 313S–321S. doi: 10.3945/ajcn.111.032432

Zha, H., Li, H., Ruberu, K., and Garner, B. (2015). Impaired lysosomal cobalamin transport in Alzheimer's disease. *J. Alzheimers Dis.* 43, 1017–1030. doi: 10.3233/JAD-140661

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.