Mean Field Dynamics in Non-Abelian Plasmas from Classical Transport Theory

Daniel F. Litima and Cristina Manuelb

a Departament ECM, Facultat de Física & IFAE, Universitat de Barcelona
Diagonal 647, E 08028 Barcelona, Spain. E-Mail: Litim@ecm.ub.es

b Theory Division, CERN, CH-1211 Geneva 23, Switzerland. E-Mail: Cristina.Manuel@cern.ch

Based on classical transport theory, we present a general set of covariant equations describing the dynamics of mean fields and their statistical fluctuations in a non-Abelian plasma in or out-of-equilibrium. A procedure to obtain the collision integrals for the Boltzmann equation from the microscopic theory is described. As an application, we study a hot non-Abelian plasma close to equilibrium, where the fluctuations are integrated out explicitly. For soft fields, and at logarithmic accuracy, we obtain Bödeker’s effective theory.

PACS number: 12.38.Mh

The starting point is to consider gluons (or electrons, quarks) as charged point particles moving on a world line according to their classical equations of motion. They interact via a classical chromo-electromagnetic field. We consider a system of these particles carrying a non-Abelian color charge Q^a, where the color index runs from $a = 1$ to $N^2 - 1$ for a SU(N) gauge group.

Within a microscopic description, the trajectories in phase space, and therefore the one-particle phase space density $f(x,p,Q)$, are known exactly. The classical trajectories $x(\tau), p(\tau)$ and $Q(\tau)$ are solutions of the Wong equations

\[
\begin{align*}
 m \frac{dx^\mu}{d\tau} &= p^\mu, & m \frac{dp^\mu}{d\tau} &= g Q^a F^\mu_{\nu} p^\nu, \\
 m \frac{dQ^a}{d\tau} &= -g p^\mu f^{abc} A^b_\mu Q_c.
\end{align*}
\]

Here, A^a_μ denotes the microscopic vector gauge field, $F^\mu_{\nu}[A] = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + gf^{abc} A^b_\mu A^c_\nu$ the corresponding microscopic field strength, and f^{abc} are the structure constants of SU(N). We set $c = \hbar = k_B = 1$, and work in natural units. Effects of spin will be neglected.

The microscopic phase space density obeys Liouville’s theorem $df/d\tau = 0$. We can write it using (1) as

\[
 p^\mu \left[\partial_\mu \rho - g f^{abc} A^b_\mu Q_c \partial_a Q^c - g Q^a F^\mu_{\nu} Q^\nu \right] f = 0.
\]

with $\partial_\mu \equiv \partial/\partial p^\mu$ and $\partial_a \equiv \partial/\partial Q^a$. This equation is gauge invariant, with f transforming as a scalar, and is completed with the Yang-Mills equation,

\[
 D_\mu F^{\mu\nu}(x) = J^\nu(x). \tag{2b}
\]

In the adjoint, the covariant derivative is given by

\[
 D^a_{\mu}[A] = \partial_\mu \delta^{ac} + gf^{abc} A^b_\mu. \tag{2c}
\]

Throughout, we shall omit a species or helicity index on f, and the sum over species and helicities will, in
the sequel, not be given explicitly.) Physical constraints are enforced through the phase space volume element \(dP = d^3p\, 2\pi \delta(p^2 - m^2)/(2\pi)^3 \), while \(dQ \) contains \(\delta \)-functions imposing the group Casimirs (see \cite{feynman} for their definition). The covariant conservation of the current \(\mathcal{I}_\mu \) is shown using \(\mathcal{I}_\mu[A] \). In the formalism the collision integrals arise as correlators of statistical fluctuations. The fluctuations of the gauge fields cause random changes in the motion of particles, and thus, they can be viewed as having the same effects as collisions. This can be seen as a derivation of collision integrals from the microscopic theory. Note also that the current induced by the fluctuations of the gauge field \(J_{\text{fluc}} \) is a purely non-Abelian effect.

5. A general procedure for integrating-out the fluctuations amounts to first solve their dynamics \(\mathcal{I}_\mu[A] \) in the background of mean fields. In general, this is a difficult task, in particular due to the non-linear terms in \(\mathcal{I}_\mu[A] \). The (explicit) solution is then inserted into \(\mathcal{I}_\mu[A] \). The back-coupling of the fluctuations to the mean fields is finally obtained after taking the statistical average of the functions \(\mathcal{I}_\mu[A] \), and yields the effective collision integrals and the induced current in \(\mathcal{I}_\mu[A] \).

6. The set of equations \(\mathcal{I}_\mu[A] \) reproduces the known set of kinetic equations for Abelian plasmas in the corresponding limit \(\mathcal{I}_\mu[A] \), in which only the collision integral \(\langle \eta \rangle \) survives. The Abelian counterpart of \(\langle \eta \rangle \) can be expressed as the Balescu-Lenard collision integral \(\mathcal{I}_\mu[A] \). One can then proof in a rigorous way the correspondence between fluctuations and collisions in the Abelian plasmas mentioned above. (An analogous derivation of collision integrals for Wigner functions can be found in \cite{wigner}, see also \cite{wigner}.)

7. Neglecting all fluctuations reduces \(\mathcal{I}_\mu[A] \) to the well-known (non-Abelian) Vlasov equations.

This terminates the derivation and discussion of the basic set of equations.

To put the method to work we will specialize our analysis to hot non-Abelian plasmas close to equilibrium, with the gauge coupling \(g \ll 1 \). This allows us to perform several approximations. We will consider small fluctuations, neglecting in \(\mathcal{I}_\mu[A] \) and \(\mathcal{I}_\mu[A] \) the terms cubic in the fluctuations. This is interpreted as neglecting effective three body collisions versus binary ones. In the same spirit, we employ the second-moment approximation for the dynamics of the fluctuations \(\mathcal{I}_\mu[A] \), setting \(\eta = \langle \eta \rangle \), \(\xi = \langle \xi \rangle \) and \(J_{\text{fluc}} = \langle J_{\text{fluc}} \rangle \) in \(\mathcal{I}_\mu[A] \). This linearizes the dynamics of the fluctuations and can be interpreted as neglecting the influence of collisions on the dynamics of the fluctuations.

3. The microscopic current conservation implies

\[
(D_\mu J^\mu)_{\text{a}} + g f_{abc} \langle a^b_\mu \delta J^{c-\mu} \rangle = 0 .
\]
Finally, the term containing the mean field strength in \(\mathcal{J}_0 \) is negligible compared to the remaining terms and will be omitted, as long as \(g |\hat{F}_d^{\mu
u}|/m_D \ll T \), with \(m_D \) the Debye mass.

We study the mean distribution function \(f(x, p, Q) = f^{eq}(p_0) + gF^{(1)}(x, p, Q) \). In the strictly classical approach, the relativistic Maxwell distribution at equilibrium is used for any species of particles. Here, we consider only massless particles in the adjoint, with \(\int dQ Q_a Q_b = N_0 \delta_{ab} \). For particles in the fundamental one has \(\int dQ Q_a Q_b = 2 \delta_{ab} \) instead. Solving \(\mathcal{J}_0 \) for vanishing fluctuations in this approximation gives the infinite set of non-Abelian hard thermal loops \(\mathcal{J}_\infty \).

We now include small statistical fluctuations \(\delta f \) around \(f \) and re-write the approximations to \(\mathcal{J}_0 \) and \(\mathcal{J}_\infty \) in terms of current densities and their fluctuations. Consider the current densities

\[
J_{a_1 \cdots a_n}^\mu(x, p) = g \rho^a \int dQ Q_{a_1} \cdots Q_{a_n} f(x, p, Q), \tag{9a}
\]
\[
\mathcal{J}_{a_1 \cdots a_n}^\mu(x, v) = \int d\mathcal{P}^{\mu} J_{a_1 \cdots a_n}^\mu(x, p). \tag{9b}
\]

The measure \(d\mathcal{P} \) only integrates over the radial components, \(d\mathcal{P} = d\mathcal{P}_{Q}/4\pi \), and \(\nu^\mu = (1, v) \) with \(v^2 = 1 \). The current \(\mathcal{J}_0 \) is obtained performing the remaining angle integration \(J(x) = \int \frac{d\theta}{2\pi} J(x, v) \). From now on we will omit the arguments of the current density \(\mathcal{J} \), unless necessary to avoid confusion.

After multiplying \(\mathcal{J}_0 \) by \(gQ_a \rho^a / p_0 \), summing over the two helicities, and integrating over \(d\mathcal{P} Q_0 \), we obtain for the mean current density at leading order in \(g \)

\[
eu^\mu \mathcal{D}_a \mathcal{J}^\rho + m_D^2 \nu^\mu \nu^\rho \mathcal{F}_{\mu \rho}^{(0)} = \langle \eta^\mu \rangle + \langle \xi^\rho \rangle, \tag{10a}
\]
\[
\mathcal{D}_a \mathcal{J}^\rho = \nu^\rho \mathcal{J}_{\nu \delta}^\mu = \eta^\rho. \tag{10b}
\]

with the Debye mass \(m_D^2 = -2g^2 N \int d\mathcal{P} p_0 f^{eq}(p_0)/d\rho_0 \), and

\[
\eta_a = -g \int \frac{d\mathcal{P}}{p_0} \left\{ \left[\mathcal{D}_a \mathcal{D}^a - \mathcal{D}_a \mathcal{D}^a \right] \delta J_{ab}^\mu(x, p) \right\}, \tag{11a}
\]
\[
\xi_a = -g f_{abc} \nu^\mu a_b^c \delta \mathcal{J}^{\mu, \rho}, \tag{11b}
\]
\[
J_{\nu \delta}^\mu = g f_{abc} \delta J_{ab}^c. \tag{11c}
\]

For the fluctuations we find

\[
\left[\nu^\mu \mathcal{D}_a \delta \mathcal{J}^\rho \right]_a = -m_D^2 \nu^\rho \nu^\mu \left[\mathcal{D}_a \mathcal{D}^a - \mathcal{D}_a \mathcal{D}^a \right] \nonumber \tag{12a}
\]
\[
+ g f_{abc} \nu^\mu a_b^c \delta \mathcal{J}^{\mu, \rho}, \tag{12b}
\]
\[
\left[\nu^\mu \mathcal{D}_a \delta \mathcal{J}^\rho \right]_{ab} = g \nu^\mu a_b^c \delta J^{\mu, \rho}, \tag{12c}
\]
\[
\left[\mathcal{D}^2 \delta \mathcal{J}^\rho \right]_a = 2g f_{abc} \mathcal{F}^{\mu \nu}_{ab} \delta J^{\mu, \rho}. \tag{12d}
\]

We solve the equations for the fluctuations \(\delta f \) with an initial boundary condition for \(\delta J \), and \(a_\mu(t = 0) = 0 \). Exact solutions to \(\mathcal{J}_0 \) and \(\mathcal{J}_\infty \) can be obtained.

The current fluctuation \(\delta \mathcal{J}_a \) reads, for \(x_0 = t \geq 0 \),

\[
\delta \mathcal{J}_a(x, v) = \mathcal{U}_{ab}(x, x_1) \delta \mathcal{J}_b^\mu(x_1, v), \tag{13}
\]
\[
- \int_0^\infty d\tau \mathcal{U}_{ab}(x, x_\tau) \left\{ g f_{bcd} \nu^\mu a^b_c(x_\tau) \mathcal{J}_d^\rho(x_\tau, v) + m_D^2 \nu^\rho \mathcal{F}_{\mu \rho} \right\}. \tag{13}
\]

We introduced \(x_\tau = x - v \tau \) and the parallel transporter \(\mathcal{U}_{ab} \), obeying \(\nu^\mu \mathcal{D}_\mu \mathcal{U}_{ab}(x, y) \big|_{y = x_\tau} = 0 \). In order to solve \(\mathcal{U}_{ab} \) for \(a_\mu \), we make a double expansion in both \(\bar{A} \) and \(\mathcal{J} \), using \(\mathcal{U}_{ab} = \delta_{ab} + O(gA) \). We denote by \(a_\mu^{(n)} \) the term containing a total of \(n \) powers in the mean fields \(\bar{A} \) and/or \(\mathcal{J} \).

For our purposes, it will be sufficient to consider the zeroth order term in \(\bar{A} \), and the zeroth and first order terms in \(\mathcal{J} \). Using the one-sided Fourier transform \(\mathcal{B} \), we find

\[
a_\mu^{(0)}(k) = \frac{1}{-k^2 + \Pi_T} \int \frac{d\Omega_{\nu}}{4\pi} (\delta \mathcal{J}^{T, \nu}_a(t = 0, k, \nu) \mathcal{F}_{-\nu, a}(k) \big|_{y = x_\tau} = 0 \times \int \frac{d\Omega_{\nu}}{4\pi} \mathcal{F}_{\mu \nu} a_\mu^{(0)}(q) \mathcal{J}_\nu^\rho(k - q, \nu) \tag{14a}
\]

in the gauge \(k \cdot a = 0 \). The function \(\Pi_T(k) \) is the transverse polarization tensor of the plasma, \(P^{ij}_\nu(k) = \delta_{ij} - k_i k_j/k^2 \) the transverse projector, and \(a_\mu^{(0)} \equiv P^{ij}_\nu a_{ij} \). Retarded boundary conditions are assumed above, with the prescription \(k_0 \to k_0 + i0^+ \).

With the above, we can express all fluctuations in terms of initial conditions and the mean fields. Following \(\mathcal{B} \), the statistical average over initial conditions can be deduced \(\mathcal{B} \) and finally expressed (for each species or helicity index) as

\[
\langle \delta f_{\nu \delta}^{(3)} \delta f_{\nu' \delta'}^{(3)} \rangle = (2\pi)^6 \delta^{(3)}(k + k') \times \left[\delta^{(3)}(p - p') \delta(Q - Q') \int \frac{d\Omega_{\nu}}{4\pi} \mathcal{F}_{\mu \nu} a_\mu^{(0)}(q) \mathcal{J}_\nu^\rho(k - q, \nu) \right. \tag{15}
\]

The function \(\delta(Q - Q') \) is, apart from a (representation dependent) normalization constant, a \(N^2 - N \) dimensional \(\delta \)-function over the proper set of Darboux variables related to the color charges \(\mathcal{B} \). The second term in \(\mathcal{B} \) is the Fourier transform of a smooth function that vanishes at large distances. The above statistical average is all we need to evaluate the collision integrals.

For the remaining part we will concentrate on the dynamics of mean fields with typical momenta around \(gm_\rho \).

When computing the related collision integrals, we will find logarithmic divergences, cut-off in the infrared by the inverse collision time. We employ the leading logarithmic approximation, assuming ln(1/g) \(\gg 1 \) while neglecting all sub-leading (though finite) terms.

We find that the induced current \((J_\nu^{(0)}) \) vanishes, as do the fluctuation integrals \(\langle \eta^{(0)} \rangle \) and \(\langle \xi^{(0)} \rangle \). The vanishing of \(\langle \eta^{(0)} \rangle \) is consistent with the fact that in the Abelian limit the counterpart of \(\langle \eta \rangle \) vanishes at equilibrium \(\mathcal{B} \).
In the same spirit we evaluate the collision integrals containing one \bar{J} field. Consider
\[
\left\langle \epsilon^{(1)}_{\mu, a}(x, v) \right\rangle = g f_{abc} \epsilon^{\mu}_{a} \left\langle -\left(a^{(1)}_{\mu, b}(x) \delta \mathcal{J}^{(0)}_{\rho, c}(x, v) \right) \right\rangle
+ g f_{cde} v^\nu \int_0^\infty d\tau \mathcal{J}^{(0)}_{\rho, e}(\tau, v) \left\langle a^{(0)}_{\mu, b}(x) a^{(0)}_{\nu, d}(x, \tau) \right\rangle ,
\] (16)
which simplifies, at logarithmic accuracy, to
\[
\left\langle \epsilon^{(1)}_{\mu, a}(x, v) \right\rangle = -\frac{g^2}{4\pi} NT \ln (1/g) \times v^\nu \int d\Omega \mathcal{I}(v, v') \mathcal{J}^{(0)}_{\rho, c}(x, v'),
\] (17)
\[
\mathcal{I}(v, v') \equiv \delta^{(2)}(v - v') - \frac{4}{\pi} \frac{(v \cdot v')^2}{\sqrt{1 - (v \cdot v')^2}} .
\] (18)
The above expression has been obtained first in $\mathcal{[3]}$, and reproduces the collision integral considered in the Boltzmann equation of $\mathcal{[3]}$.

We verified that the leading logarithmic solution is consistent with gauge invariance. Evaluating the correlator in $\mathcal{[3]}$ yields $\bar{D}_\mu \bar{J}^\mu = 0$, in accordance with (10b) in the present approximation.

Following Bödeker, one can now estimate \bar{J}^i from (10a) to obtain for (10b)
\[
(D_{\mu} F^{\mu})_a = \sigma \bar{E}^{i}_a + \nu^i , \quad \sigma = \frac{4\pi m_D^2}{3Ng^2T \ln (1/g)} .
\] (19)
This is the result of $\mathcal{[3]}$. The coefficient σ represents the color conductivity and has been discussed in $\mathcal{[3,4]}$. The white noise ν has its origin in the fluctuations of the transverse part of $\epsilon^{(0)}$. We obtain to leading order
\[
\left\langle \nu^i_a(x) \nu^i_b(y) \right\rangle = 2T \sigma \delta^{ij} \delta_{ab} \delta^{(4)}(x - y) ,
\] (20)
in accordance with the fluctuation-dissipation theorem (FDT). Note also that the classical Debye mass differs from the quantum one.

In order to go beyond classical transport theory we expand about the bosonic (fermionic) quantum-statistical equilibrium distribution function $f_+ (\vec{f}_-)$ for gluons in the adjoint, the Debye mass obtains as $m_D^2 = g^2 NT^2/3$. The FDT is obeyed as well, if f in (15) is replaced by $\bar{f}_\pm (1 \pm f_\pm)$. This should however be derived in a similar way as (13) from the microscopic theory $\mathcal{[4]}$. Also, the quantum collision integrals are obtained with the correct statistical factors $\mathcal{[3]}$. It is interesting to note that all quantum modifications are contained in the implicit change of m_D.

This terminates the explicit derivation, in the leading logarithmic approximation, of the collision integral and the dynamical equations for the soft fields from classical transport theory.

Summarizing, we have given a prescription to derive mean gauge field equations from classical transport theory. This includes a recipe to obtain effective (classical or quantum) collision integrals from the microscopic theory. The approach is in accordance with gauge invariance. In a close-to-equilibrium plasma and for small gauge coupling, we reproduce Bödeker’s effective theory.

The last part of our analysis can straightforwardly be generalized in order to obtain explicit expressions for the collision integrals not only for the soft momentum region. Another interesting open problem is using the same methods for out-of-equilibrium situations. Based on the evaluation of collision integrals for Abelian plasmas out of equilibrium $\mathcal{[3]}$, we should find the Coulomb logarithm changing drastically the mean non-Abelian gauge field equations.

It remains remarkable that classical transport theory is efficient enough as to describe not only the non-Abelian dynamics of semi-hard modes with momenta around m_D, but as well the non-perturbative dynamics of soft gluons at leading logarithmic order. This establishes a link even beyond the one-loop level between our approach and a complete quantum field theoretical treatment, whose deeper structure is waiting for being uncovered $\mathcal{[3]}$.

[1] H.-Th. Elze and U. Heinz, Phys. Rep. 189, 81 (1989).
[2] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod. Phys. 53, 43 (1981).
[3] D. Bödeker, Phys. Lett. B426, 351 (1998).
[4] U. Heinz, Phys. Rev. Lett. 51, 351 (1983); Ann. Phys. 161, 48 (1985); ibid 168, 148 (1986).
[5] P.R. Kelly, Q. Liu, C. Lucchesi and C. Manuel, Phys. Rev. Lett 72, 3461 (1994); Phys. Rev. D 50, 4209 (1994).
[6] R. D. Pisarski, Phys. Rev. Lett 63, 1129 (1989); E. Braaten and R. D. Pisarski, Nucl. Phys. B337, 569 (1990); J. P. Blaizot and E. Iancu, Phys. Rev. Lett 70, 3376 (1993); Nucl. Phys. B417, 608 (1994).
[7] D.F. Litim and C. Manuel, hep-ph/9906219.
[8] Yu. L. Klimontovich, “*Statistical Physics*”, Harwood Academic Publishers, (1986); E. Lifshitz and L. Pitaevskii, “*Physical Kinetics*”, Pergamon Press, Oxford (1981).
[9] S. Wong, Nuovo Cim. 65A, 689 (1970).
[10] L.F. Abbott, Nucl. Phys. B185, 189 (1981); H.-Th. Elze, Z. Phys. C47, 647 (1990).
[11] A.V. Selikhov, Phys. Lett. B268, 263 (1991), Erratum Phys. Lett. B285, 398 (1992).
[12] A.V. Selikhov and M. Gyulassy, Phys. Rev. C 49, 1726 (1994).
[13] P. Arnold, D. T. Son, and L. G. Yaffe, hep-ph/9810216.
[14] A.V. Selikhov and M. Gyulassy, Phys. Lett. B316, 373 (1993); H. Heiselberg, Phys. Rev. Lett. 72, 3013 (1994).
[15] R. D. Pisarski, hep-ph/9710376.