Data on dopant characteristics and band alignment of CdTe cells with and without a ZnO highly-resistive-transparent buffer layer

Citation for published version (APA):
Kartopu, G., Williams, B. L., Zardetto, V., Gürlek, A. K., Clayton, A. J., Jones, S., Kessels, W. M. M., Creatore, M., & Irvine, S. J. C. (2019). Data on dopant characteristics and band alignment of CdTe cells with and without a ZnO highly-resistive-transparent buffer layer. Data in Brief, 22, 218-221. https://doi.org/10.1016/j.dib.2018.12.002

Document license:
CC BY

DOI:
10.1016/j.dib.2018.12.002

Document status and date:
Published: 01/02/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 26. Oct. 2023
Data on dopant characteristics and band alignment of CdTe cells with and without a ZnO highly-resistive-transparent buffer layer

G. Kartopua,*, B.L. Williamsb, V. Zardettob, A.K. Gürleka, A.J. Claytona, S. Jonesa, W.M.M. Kesselsb, M. Creatoreb, S.J.C. Irvinea

a Centre for Solar Energy Research, OpTIC, Swansea University, St. Asaph Business Park, LL17 0JD, UK
b Department of Applied Physics, Eindhoven University of Technology, 5600 MB, The Netherlands

Article info

Article history:
Received 20 November 2018
Received in revised form 29 November 2018
Accepted 1 December 2018
Available online 06 December 2018

Abstract

Photovoltaic enhancement of cadmium telluride (CdTe) thin film solar cells using a 50 nm thick, atomic-layer-deposited zinc oxide (ZnO) buffer film was reported in “Enhancement of the photocurrent and efficiency of CdTe solar cells suppressing the front contact reflection using a highly-resistive ZnO buffer layer” (Kar-topu et al., 2019) [1].

Data presented here are the dopant profiles of two solar cells prepared side-by-side, one with and one without the ZnO highly resistive transparent (HRT) buffer, which displayed an open-circuit potential (V_{oc}) difference of 25 mV (in favor of the no-buffer device), as well as their simulated device data. The concentration of absorber dopant atoms (arsenic) was measured using the secondary ion mass spectroscopy (SIMS) method, while the density of active dopants was calculated from the capacitance-voltage (CV) measurements. The solar cell simulation data was obtained using the SCAPS software, a one-dimensional solar cell simulation programme. The presented data indicates a small loss (around 20 mV) of V_{oc} for the HRT buffered cells.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Value of the data

- The SIMS can provide arsenic density in CdTe:As at a detection limit of \(\sim 1 \times 10^{16} \text{ As/cm}^3 \)
- The C-V curves (\(1/C^2\) vs. \(V\)) can be analyzed to estimate the acceptor density in the absorber
- Ratio of the acceptor density (C-V result) to dopant atom density (SIMS result) provides an estimate of efficiency of dopant activation
- The good sensitivity of SIMS and C-V methods makes them powerful in investigating doping-related issues with CdTe thin film solar cells
- SCAPS helps to visualize the band-alignment, and to quickly assess influence of various material parameters on the cell performance, guiding experimental solar cell research.

1. **Data**

 Fig. 1a shows the distribution of As dopant atoms within the solar cells’ CdTe absorber layer. It shows that less As is incorporated for the sample containing the ZnO HRT buffer film. The net acceptor density (\(N_A\)), shown in Fig. 1b, tracks the As profiles in Fig. 1a in that the \(N_A\) for the cell with HRT buffer is lower (\(\sim 1.0 \times 10^{16} \text{ vs. } 1.7 \times 10^{16} \text{ cm}^{-3}\)).

 Device simulations by SCAPS was carried out to inspect the band-alignment and calculate device parameters. The band-alignment of device structures with and without a 50 nm ZnO buffer film is given in Fig. 2. Small energy spikes are seen to be introduced in the conduction band near the buffer layer did not change the device \(V_{oc}\). When experimental \(N_A\) values from Fig. 1b (i.e. \(1.0 \times 10^{16}\) and \(1.7 \times 10^{16} \text{ cm}^{-3}\) for the HRT and no HRT cases, respectively) are used instead, then a \(V_{oc}\) loss of \(\sim 22 \text{ mV}\) was calculated for the cell with the HRT layer.

2. **Experimental Design, Materials, And Methods**

 Arsenic profiling in the solar cells was collected with a Cameca IMS-4f secondary ion-mass spectrometer at LSA Ltd. Cs+ ions, at 10 keV energy obtained with 20 nA current, were used as the
primary ions. The specimen was 1×1 cm2 in size, cleaved from the main coupon, and etched in 0.2% Br$_2$ (in methanol) for 5 s to polish the sample surface and increase the depth resolution. A previously characterized CdTe:As layer (supplied by CSER to LSA Ltd.) was used for calibration.

CV data were collected from the solar cell structures in dark and at room temperature conditions using a Solartron Impedance Analyzer. An ac bias amplitude of 10 mV was applied at 300 kHz whilst the DC bias (V_{appl}) was swept from -3V to +1 V. Linear part of the $1/C^2$ vs. V plot (near $V_{\text{appl}} = 0$ V) was then analyzed using the procedure described in Ref. [2], to extract the net acceptor density N_A.

![Fig. 1](image1.png)

Fig. 1. (a) SIMS arsenic concentration [As] and (b) CV-derived acceptor density (N_A) for two solar cell structures, with and without the ZnO HRT layer. Less As is incorporated, and the corresponding N_A is lower for the CdTe cell with HRT buffer. Measured device V_{oc}’s are indicated in (b).

![Fig. 2](image2.png)

Fig. 2. The band alignment of CdTe solar cells (a) without and (b) with a 50 nm ZnO layer sandwiched between the window (CdZnS) and front contact (ITO) layers. Spikes are introduced in the conduction band (E_c) at the CdZnS/ZnO and ZnO/ITO interfaces.
The SCAPS programme, used to simulate solar cell characteristics, is a one-dimensional solar cell simulation programme and freely available online through its owner, Prof. Marc Burgelman, University of Gent, Belgium [3]. The layer parameters used in these simulations are given in Refs. [1,4].

Acknowledgments

The authors would like to acknowledge funding by the European Regional Development Fund through the Solar Photovoltaic Academic Research Consortium (SPARC II) operated by the Welsh Government.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.12.002.

References

[1] G. Kartopu, B.L. Williams, V. Zardetto, A.K. Gürlek, A.J. Clayton, S. Jones, W.M.M. Kessels, M. Creatore, S.J.C. Irvine, Enhancement of the photocurrent and efficiency of CdTe solar cells suppressing the front contact reflection using a highly-resistive ZnO buffer layer, Sol. Energy Mater. Sol. Cells 191 (2019) 78–82.
[2] M. Alturkestani, CdTe Solar Cells: Key Layers and Electrical Effects, Durham University (2010) 17–18 (Available at Durham E-Theses Online) (http://etheses.dur.ac.uk/370/).
[3] The download link for the SCAPS simulation tool: (https://users.elis.ugent.be/ELIGroups/solar/projects/scaps/SCAPSinstallation.html).
[4] G. Kartopu, L.J. Phillips, V. Barrioz, S.J.C. Irvine, S.D. Hodgson, E. Tejedor, D. Dupin, A.J. Clayton, S.L. Rugen-Hankey, K. Durose, Progression of metalorganic chemical vapour-deposited CdTe thin-film PV devices towards modules, Prog. Photovolt.: Res. Appl. 24 (2016) 283–291.