Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections [version 2; peer review: 1 approved, 2 approved with reservations]

Philip M. Bath¹,², Christopher M. Coleman³, Adam L. Gordon⁴,⁵, Wei Shen Lim⁶, Andrew J. Webb⁷

¹Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
²Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
³Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
⁴Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
⁵NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
⁶Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
⁷Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas’ Hospital, London, SE1 7EH, UK

Abstract

Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity.
in viral, bacterial, protozoal and fungal infections.

Keywords
Bacteria, COVID-19, fungus, nitric oxide, nitrate, nitrite, protozoa, virus

This article is included in the Pathogens gateway.
Introduction

Nitric oxide (NO), an inorganic molecule, is generated endogenously by prokaryotes and eukaryotes from L-arginine and L-citrulline by a family of NO synthase enzymes (NOS; Table 1.1, Table 1.2). In higher animals, it is also generated by reduction of dietary and endogenous nitrate (NO$_3^-$) to nitrite (NO$_2^-$) and thence NO (Table 1.3). NO is a pleiotropic signalling molecule involved in vascular, neuronal and metabolic regulation and has multiple physiological effects including lowering blood pressure, increasing exercise performance, and reversing metabolic syndrome. Underlying these processes, NO modulates multiple cell types including leucocytes, platelets, endothelial cells and smooth muscle cells, and neuronal, cardiac and renal function. Three isoforms of NOS exist in eukaryotes: neuronal (nNOS, NOS1), inducible (iNOS, NOS2) and endothelial (eNOS, NOS3). In multicellular organisms, NOS1-3 produces NO that broadly mediates neurotransmission, cyto-toxicity and vascular regulation respectively. Within cells, NO interacts with mitochondrial respiration, activates metabolic regulatory pathways and reduces oxidative stress.

As people age, endothelial-derived vascular NO levels fall and so vascular function declines causing relative endothelial dysfunction, pro-platelet and pro-inflammatory effects, and increased smooth muscle proliferation. Vascular NO levels are even lower in people with established vascular disease, e.g. those with stroke. Numerous viruses (including adenovirus, Coxsackie, coronavirus, cytomegalovirus, echovirus, herpes simplex, human T-cell leukaemia virus type-1, human immunodeficiency virus, influenza, measles, mumps, polio) and bacteria (Leptospira spp.) can infect and damage endothelium and so further reduce vascular NO levels. This also appears to occur in SARS-CoV-2 infection.

Most physiological effects of NO are modulated by cyclic guanosine monophosphate (cGMP, second messenger), and terminated when cGMP is metabolised by phosphodiesterase-5 (PDE5). This combined L-arginine/nitrate-NO-cGMP-PDE5 system (or nitric oxide system) comprises one of two key vasculo-protective pathways, the other being the prostaglandin-cyclic adenosine monophosphate-phosphodiesterase-3 pathway (PG-cAMP-PDE3, or prostacyclin system, see below).

The NO system may be enhanced or stimulated exogenously with substrate (L-arginine, L-citrulline, organic nitrate, inorganic nitrite or nitrate), NO gas, and PDE5 inhibitors. These can be inhaled or administered via transdermal, sublingual, oral, intranasal or intravenous routes (see below). Since endogenous NO generated by inducible NOS plays a key role in defence against multiple microbial pathogens (including viruses, bacteria, protozoa and fungi/yeast), this raises the possibility that exogenous NO might have therapeutic potential as a broad-spectrum antimicrobial, and this is the topic of this review.

Methods for the review

There are numerous publications in this research area and our intention was not to perform a systematic review of these; rather we present exemplars from the research field. We identified publications relating to the effect of NO on viruses, bacteria, protozoa and fungi/yeasts from searches of our own reference libraries, PubMed and Google, and reference lists given in earlier reviews and commentaries.

The primary searches for relevant studies for inclusion were done through PubMed from inception to 4 May 2021, in English with the following disease terms: “microbe” or “virus” or “bacteria” or “protozoa” or “fungi” or “yeast”. The results of these searches were crossed with the drug terms “nitric oxide” or “nitrite” or “nitrate”, and the identified abstracts were screened by one or more researchers. Earlier studies, including published reviews, were also identified from the files of the senior author. Studies included in vitro, in vivo and clinical trials. Although other drug classes, such as statins and angiotensin-converting enzyme inhibitors, enhance endothelial production of nitric oxide, their main effects are mediated through other pathways, and we have not assessed them here even though they may attenuate microbial disease severity.
Chemistry and biology of nitric oxide

NO is a small diatomic hydrophobic colourless gas that diffuses easily and has a short half-life. With an unpaired electron (NO), it is a free radical and so is chemically reactive and unstable in the presence of oxygen and superoxide producing reactive nitrogen oxide species (RNOS). In reality, the chemistry of NO is more complex and it exists in several redox forms: nitrosonium cation (NO⁺), NO (NO) and nitroxyl anion NO/C0).23

As an inorganic molecule, its central role in biology as a signalling molecule was only discovered in the 1980s,24 the identification of which led to the Nobel Prize for Physiology and Medicine in 1998.25 Ironically, the medicinal use of NO in the form of glyceryl trinitrate (GTN) for angina prophylaxis antedates the modern understanding of the biological synthesis and role of NO by more than a century.26

Experimental studies demonstrating nitric oxide inhibition of ...

Vira

Numerous preclinical in vitro studies have demonstrated that NO sources (stimulated endogenous NO, inorganic and organic nitrates, L-arginine) and PDE5-inhibitors can reduce replication in all seven types of virus as defined in the Baltimore classification (Table 2);27 this includes Class IV viruses (positive-sense RNA viruses) incorporating several coronaviruses28–33 including SARS-CoV-2.34–36 Most studies showed efficacy although neutral studies were reported for porcine reproductive and respiratory virus (an arterivirus, which is closely related to coronaviruses) and rhinovirus.37,38

Bacteria

Multiple studies have assessed the effect of NO on bacteria and inhibitory effects have been seen across a wide range of gram negative, gram positive and acid-fast bacteria (Table 3). NO sources included L-arginine, NO, nitrite, organic nitrates, and endogenously-generated NO. Multiple mechanisms for efficacy have been reported, as discussed below.

Table 1. Chemical equations relevant to the nitric oxide system.

No.	Substrate	Product	Enzyme	Biochemical equation
1.	Dietary L-arginine	NO	Nitric oxide synthase	2 L-arginine + 3 NADPH + 3 H⁺ + 4 O₂ → 2 L-citrulline + 2 NO + 3 NADP⁺ + 4 H₂O
2.	Dietary L-citrulline	L-arginine	Argininosuccinate synthetase, argininosuccinate lyase	L-citrulline + L-aspartate → argininosuccinate → L-arginine + fumarate
3.	Dietary nitrate	NO		NO₃⁻ + e⁻ + 2 H⁺ → H₂O + NO₂⁻ + 2 NO₂⁻ + 2 H⁺ → 2 HNO₂ → N₂O₃ + H₂O
4.	NO	Peroxynitrite		NO⁺ + O₂⁻ → ONOO⁻
5.	Superoxide	Hydrogen peroxide	Superoxide dismutase	O₂⁻ → O₂ + H₂O
6.	Nitrite	Peroxynitrous acid		NO₂⁻ + H₂O₂ → ONOOH
7.	NO	Nitrogen dioxide		2 NO + O₂ → 2 NO₂; ONOOH → NO₂ + OH
8.	NO	Dinitrogen trioxide		NO + NO₂ → N₂O₃
9.	Nitrogen dioxide	Dinitrogen tetroxide (amyl)		2 NO₂ → N₂O₄
10.	Hydrogen peroxide	Hydroxyl radicals		H₂O₂ → OH⁻ + OH⁺ → DNA damage
11.	NO	Nitrous oxide	NO reductase	2 NO + NAD(P) H + H⁺ → N₂O + H₂O + NAD(P)⁺
12.	NO	Nitrate	NO dioxygenase	Fe³⁺(O₂⁻) + NO → Fe⁵⁺ + NO₄⁻

Note: Many of these reactions can occur in the opposite direction, e.g. inhaled NO₂, an environmental pollutant, is a source of bioactive intravascular nitrite.195

Chemistry and biology of nitric oxide

NO is a small diatomic hydrophobic colourless gas that diffuses easily and has a short half-life. With an unpaired electron (NO'), it is a free radical and so is chemically reactive and unstable in the presence of oxygen and superoxide producing reactive nitrogen oxide species (RNOS). In reality, the chemistry of NO is more complex and it exists in several redox forms: nitrosonium cation (NO'), NO (NO) and nitroxyl anion NO⁻.23

As an inorganic molecule, its central role in biology as a signalling molecule was only discovered in the 1980s,24 the identification of which led to the Nobel Prize for Physiology and Medicine in 1998.25 Ironically, the medicinal use of NO in the form of glyceryl trinitrate (GTN) for angina prophylaxis antedates the modern understanding of the biological synthesis and role of NO by more than a century.26

Experimental studies demonstrating nitric oxide inhibition of ...

Vira

Numerous preclinical in vitro studies have demonstrated that NO sources (stimulated endogenous NO, inorganic and organic nitrates, L-arginine) and PDE5-inhibitors can reduce replication in all seven types of virus as defined in the Baltimore classification (Table 2);27 this includes Class IV viruses (positive-sense RNA viruses) incorporating several coronaviruses28–33 including SARS-CoV-2.34–36 Most studies showed efficacy although neutral studies were reported for porcine reproductive and respiratory virus (an arterivirus, which is closely related to coronaviruses) and rhinovirus.37,38

Bacteria

Multiple studies have assessed the effect of NO on bacteria and inhibitory effects have been seen across a wide range of gram negative, gram positive and acid-fast bacteria (Table 3). NO sources included L-arginine, NO, nitrite, organic nitrates, and endogenously-generated NO. Multiple mechanisms for efficacy have been reported, as discussed below.
Year	Virus (Baltimore class)	Disease (human unless stated)	NO source	In vitro cell lines	In vivo	Results
2020	Cytomegalovirus	In compromised immune systems	DETA/NO	MRC-5, ARPE-19		Reduced replication
1993	Ectromelia	Mousepox	SNAP	293	C57BL/6NCR mice	Reduced replication
1994	Epstein-Barr	Infectious mononucleosis, Burkitt lymphoma	Constitutive lymphocyte	Human B-lymphocytes		Reduced reactivation
1993	Herpes simplex-1	Cold sores	SNAP	293	C57BL/6NCR mice	Reduced replication
2015	Human papilloma virus	Anogenital warts	Acidified NaNO₂		Human	Cure in 31% (active) vs 14% (control)
1999	Molluscipoxirus	Molluscum contagiosum	Acidified NaNO₂		Human	Cure in 75% (active) vs 21% (control)
1993	Vaccinia	Human “pox”	SNAP	293	C57BL/6NCR mice	Reduced replication
1995	Vaccinia	Human “pox”	L-arg	RAW 264.7		Reduced replication
1995	Vaccinia	Human “pox”	iNOS	BSC-40, HeLa G		Reduced replication
2017	Porcine circovirus-2	Swine multisystemic wasting syndrome	GSNO	PK-15	BALB/c mice	Reduced replication & infection
2009	Porcine parvovirus	Swine embryonic/foetal death	SNAP, L-arg	PK-15		Reduced replication
1996	Avian (ortho-) reovirus	Avian arthritis, tenosynovitis	LPS-stimulated macrophages	HD11		Reduced replication
1997	Coxsackievirus (B3)	Pleurodynia, myocarditis, pericarditis, and hepatitis	INOS transfection, SNAP	HeLa		Reduced replication, RNA and protein synthesis
2006	Dengue virus-2	Viral haemorrhagic fever	SNAP	LLC-MK2 monkey kidney		Reduced RNA and protein synthesis
1999	Human immunodeficiency virus	Acquired immune deficiency syndrome	SNAP	Human monocytes, U1 cells		Reduced replication in monocytes. Increased replication in U1 cells
Year	Virus (Baltimore class)	Disease (human unless stated)	NO source	In vitro cell lines	In vivo results	
------	-------------------------	-------------------------------	-----------	-------------------	----------------	
1997	Japanese encephalitis virus	Encephalitis	SNAP, IFN-γ, activated macrophages	Murine RAW 264.7 and N18 cells	Reduced replication	
2005	Mengovirus	Acute fever	Dipyridamole	HeLa or L cells	Reduced replication	
1997	Murine coronavirus	Acute respiratory distress syndrome (ARDS)	NO gas	N18 cells and Hela cells	Reduced replication	
1998	Poliovirus	Poliomyelitis	SNAP	HeLa, U937	Reduced replication	
2010	Porcine reproductive & respiratory virus	Swine respiratory, reproductive failure	SNAP, NAP	Marc-145 cells	Reduced replication	
2010	Porcine respiratory coronavirus	Swine respiratory, reproductive failure	SNAP, NAP	Marc-145 cells	Reduced replication	
2020	SARS-CoV-2	COVID-19	Dipyridamole	Human (n=31)	Reduced replication	
2020	SARS-CoV-2	COVID-19	SNAP, SNP, SIN-1	Vero E6	Reduced replication, recombinant protease activity	
2020	SARS-CoV-2	COVID-19	SNK	Vero E6	Reduced replication, recombinant protease activity	

Table 2. Continued
Year	Virus (Baltimore class)	Disease (human unless stated)	NO source	In vitro cell lines	In vivo	Results
2006	(Ortho)hantavirus	Haemorrhagic fever/pulmonary syndrome	SNAP, SIN-1	Vero E6	C57BL/6 (iNOS^{−/−}, +/+⁺) mice	Reduced replication
2006	Parainfluenza virus	'Cold'	DetaNONOate, SNAP, INOS overexpression	Cystic fibrosis epithelial cells		Reduced replication
2001	Rabies virus	Rabies	SNP + ascorbate	Neuroblastoma cells		Reduced replication
1995	Vesicular stomatitis	'Flu. Bovine oral ulcers	SNAP	NB41A3		Reduced replication
1995	Friend leukaemia + spleen focus-forming	Murine leukaemia	SIN-1, SNP, SNAP	Dunni		Reduced replication (but not with NaNO₂)
2000	Hepatitis B	Viral hepatitis	IFN-γ	HBV transgenic/INOS knockout mice	NO mediates antiviral activity of IFN-γ	

DETA/NONOate: diethylenetriamine NONOate; dsDNA: double-strand DNA (type I); dsDNA-RT: single-strand DNA-retro (type VII); dsRNA: double-strand RNA (type II); GSNO: S-nitrosoglutathione; IFN-γ: interferon-gamma; iNOS: inducible nitric oxide synthase; L-arg: L-arginine; Lϕ: lymphocyte; NaNO₂: sodium nitrite; NAP: N-acetylpenicillamine; NO: nitric oxide; SARS: severe acute respiratory syndrome; SIN-1: 3-morpholinosydnoneimine; SNAP: S-nitroso-L-acetylpenicillamine; SNP: sodium nitroprusside; ssDNA: single-strand DNA (type II); (-)ssRNA: negative-sense single-strand RNA (type V); (+)ssRNA: positive-sense single-strand RNA (type IV); ssRNA-RT: single-strand RNA-retro (type VI).
Year	Bacteria	Disease (human unless stated)	NO source	In vitro	In vivo	Results
2005	Acinetobacter baumanii	ICU organisms	NO gas (200 ppm)	Bacterial cfu	No viable bacteria by 4.8 (±1.3) hr	
2005	Enterobacter aerogenes	ICU organisms	NO gas (200 ppm)	Bacterial cfu	No viable bacteria by 4.8 (±1.3) hr	
1993	Brucella abortus	Brucellosis	Activated macrophages (IFN-γ)	Reduced cfu	Reduced cell viability	
1993	Burkholderia pseudomallei	Meningitis acute	Activated macrophages (IFN-γ)	Reduced cfu	Reduced cell viability	
1992	Chlamydia trachomatis	Trachoma, pelvic inflammatory disease	Activated McCoy cells (IFN-γ)	Reduced infectivity		
1995	Ehrlichia	Ehrlichiosis	Activated macrophages (IFN-γ)	Reduced cell viability		
1995	Salmonella enterica	Typhoid fever	Activated macrophages (IFN-γ)	Reduced infection		
1992	Francisella tularensis	Tularemia	Activated macrophages (IFN-γ)	Reduced cell viability		
1992	Helicobacter pylori	Gastritis, gastric duodenal ulcers	Activated macrophages (IFN-γ)	Reduced cell viability		
1992	Legionella	Legionnaires/ Pontiac fever	Activated macrophages (IFN-γ)	Reduced cell viability		
1992	Pseudomonas aeruginosa	Typhoid fever	Activated macrophages (IFN-γ)	Reduced cell viability		
1992	Rickettsia	Spotted fever, typhus	Activated macrophages (IFN-γ)	Reduced cell viability		
1995	Salmonella enterica	Typhoid fever	Activated macrophages (IFN-γ)	Reduced cell viability		
2005	Serratia marcescens	ICU organisms	NO gas (200 ppm)	Bacterial cfu	No viable bacteria by 4.8 (±1.3) hr	
Year	Bacteria	Disease (human unless stated)	NO source	In vitro	In vivo	
------	----------	--------------------------------	-----------	----------	---------	
2005	*Stenotrophomonas maltophilia*	ICU organisms	NO gas (200 ppm)	Bacterial cfu	No viable bacteria by 4.8 (±1.3) hr.	
1992	*Yersinia pestis*	Plague (bubonic, pneumonic, septicaemic)	NaNNO2, NaNNO3, KNO3	Pork meat	Reduced growth	
1976	*Bacillus cereus*	Gastroenteritis	Nitrosothiols (RSN=O)	Suspension of spores	Inhibition of spore germination	
1981	*Clostridium perfringens*	Gastroenteritis	Sodium nitrite	Sublethal inoculum	Reduction of cfu, G AP-DH and aldolase activity, and free sulfhydryl groups	
1994	*Listeria*	Listeriosis	L-NMMA	C57BL/6 mice	Reduced growth	
2005	*Staphylococcus aureus*	ICU organisms	NO gas (200 ppm)	Bacterial cfu	No viable bacteria by 4.8 (±1.3) hr.	
2012	*Staphylococcus aureus*	Wound infection	Probiotic NO gas patch	Ischaemic/injected S. aureus wounds in rabbits	Ischaemic/injected S. aureus wounds in rabbits	
2013	*Staphylococcus aureus*	Experimental biofilms	Biofilm	Isosorbide mononitrate	Increased dispersal (conversion of sessile to planktonic cells)	
2005	*Streptococci (group B)*	ICU organisms	NO gas (200 ppm)	Bacterial cfu	No viable bacteria by 4.8 (±1.3) hr.	
1991	*Mycobacterium avium*	Atypical respiratory TB	Activated macrophages (TNF)	Human macrophages	Smear positive TB	
1991	*Mycobacterium leprae*	Leprosy	Activated M. leprae metabolism	Activated macrophages (IFN-γ)	Reduced M. leprae metabolism	
2003	*Mycobacterium ulcerans*	Buruli skin ulcer	Acidified nitrite (40 mM)	Buruli skin ulcer	Smear positive TB	
2004	*Mycobacterium leprae*	Experimental biofilms	Activated macrophages (TNF)	Human macrophages	Smear positive TB	

cfu: colony forming units; GSNO: S-nitrosoglutathione; IFN-γ: interferon-gamma; MRA: methicillin resistant S. aureus; ppm: parts per million; SIN-1: 3-morpholinosydnonimine; TB: tuberculosis; TNF: tumour necrosis factor.
Year	Protozoa	Disease (human unless stated)	NO source	In vitro	In vivo
1992	Entamoeba histolytica	Amoebiasis	Activated macrophages (IFN-γ/LPS)	Reduced infection	Destruction of amoebae
1992	Naegleria fowleri	Meningitis	Activated macrophages (BCG)	Reduced infection, and improved outcome	Larval cytotoxicity
1994	Opisthorchis felineae	Schistosomiasis, intestinal	Activated macrophages (TNF)	Reduced amastigotes and promastigotes	Reduced granuloma formation
1989	Schistosoma mansoni	Schistosomiasis, intestinal	Endogenous from iNOS	Reduced amastigotes and promastigotes	Reduced intracellular parasites
2000	Leishmania major	Leishmaniasis	Activated macrophages (IFN-γ/LPS)	Reduced intracellular parasites	Reduced growth
2000	Leishmania major	Leishmaniasis	Activated macrophages (IFN-γ/LPS)	Reduced amastigotes and promastigotes	Reduced granuloma formation
1989	Trypanosoma brucei	African trypanosomiasis	Activated macrophages (IFN-γ/LPS)	Reduced amastigotes and promastigotes	Reduced granuloma formation

BGC: bacillus Calmette-Guerin; GTN: glyceryl trinitrate; IFN-γ: interferon-gamma; iNOS: inducible nitric oxide synthase; LPS: lipopolysaccharide; SNAP: S-nitroso-L-acetylpenicillamine; SNP: sodium nitroprusside; TD: transdermal; TNF: tumour necrosis factor.
Table 5. Studies assessing the effect of nitric oxide on a non-inclusive list of fungi and yeasts.

Year	Fungi/Yeasts	Disease (human unless stated)	NO source	In vitro	In vivo	Results	
1999	*Aspergillus fumigatus*	Aspergillosis	Activated macro-phages (IFN-γ)	Rat alveolar macrophages		Reduced infection	
1998	*Epidermophyton floccosum*	Tinea pedis	Acidified NaNO₂		Human (n=35)	Cure in 81% (active) vs 31% (control)	
1994	*Histoplasma capsulatum*	Histoplasmosis (‘flu-like)	IFN-γ/LPS activated macrophages	C57BL/6 mice		Reduced infection	
1999	*Pneumocystis carinii*	Pneumonia	IFN-γ activated macrophages via L-arginine	Sprague Dawley rats		Killed P. carinii	
1998	*Trichophyton rubrum, T. interdigitale*	Tinea pedis	Acidified NaNO₂	Human (n=35)		Cure in 81% (active) vs 31% (control)	
Yeasts	1993	*Candida albicans*	Candidiasis (oropharyngeal, vulvovaginal, candidaemia)	Murine macrophages	C. albicans infection	Mice	Reduced infection
1991	*Cryptococcus neoformans*	Cryptococcosis (pneumonia, meningitis, encephalitis)	Acidified NaNO₂	C. neoformans culture		Reduced replication	
1999	*Cryptococcus neoformans*	Cryptococcosis	Activated macro-phages (IFN-γ)	Rat alveolar macrophages		Reduced infection	
2018	Dermatophytes	Onychomycosis, tinea pedis	NVN1000		Macrodiution broth test	78-99% kill	

IFN-γ: interferon-gamma; LPS: lipopolysaccharide; NaNO₂: sodium nitrite.
Protozoa
NO sources have been tested on both intracellular and extracellular protozoa (Table 4) with sources involving activated macrophages, sodium nitrite, glyceryl trinitrate, sodium nitroprusside (SNP) and S-nitroso-L-acetylpenicillamine (SNAP).

Fungi and yeasts
The effects of NO on several fungi and yeasts have been studied (Table 5). NO was donated exogenously through stimulating macrophages or as acidified nitrite. In vitro experiments demonstrated reduced replication whilst in vivo experiments in mice showed reduced infection.

Derivatives of nitric oxide
Whilst endogenous NO derived from eNOS and nNOS is physiologically active via its second messenger (cGMP), the antimicrobial effects of NO relate to its toxic effects when present at higher concentrations. Although it is technically challenging to measure free NO concentrations, studies suggest that NO concentrations derived from iNOS are 10–100× higher than those resulting from eNOS/nNOS (Table 6). NO concentrations resulting from exogenous administration lie between those from eNOS/nNOS and iNOS but approximate more closely to those from iNOS than eNOS. Importantly, much antimicrobial NO activity is likely to reflect the effects of derivative molecules rather than NO itself:

- Nitric oxide (NO). In general, bacteria deficient in low molecular weight thiols such as glutathione (e.g. Staphylococci spp.) are sensitive to attack by NO whereas those with high thiol concentrations are resistant to NO.
- Peroxynitrite (OONO-, Table 1.4). The reaction between NO and superoxide means that NO synergises with the respiratory burst, another antimicrobial system present in phagocytic cells. Experimentally, this synergism can be inhibited with the addition of superoxide dismutase which converts superoxide into molecular oxygen and hydrogen peroxide (Table 1.5).
- Peroxynitrous acid (ONOOH, Table 1.6), e.g. toxic to Escherichia coli.
- Nitrogen dioxide (NO2, Table 1.7), e.g. toxic to E. coli.
- Dinitrogen trioxide (N2O3, Table 1.8).
- Dinitrogen tetroxide (N2O4, Table 1.9).
- S-nitrosothiols (RSNO, e.g. S-nitrosoglutathione), e.g. toxic to E. coli and Salmonella enterica serovar typhimurium.40 RSNO reacts with protein thiol groups changing their function. Thiol concentrations do not appear to determine sensitivity to peroxynitrite and S-nitrosothiols.

Table 6. Nitric oxide concentrations following endogenous synthesis by nitric oxide synthase, and exogenous NO donors.

NO	eNOS/nNOS	iNOS	Exogenous NO
Source	Endothelium, neurones	Intracellular, e.g. macrophages	Exogenous
Role	Cell signalling	Microbial killing	Vasodilation, antiplatelet
Synthesis	Constitutive, intermittent	Inducible, continuous (“fire hose”)15,	
	(“dripping tap”15), calcium-dependent, feedback controlled	calcium-independent/cytokine-microbial dependent, Part of innate immunity	
Concentration	0.1-5 nM248	>10 μM248	SNP, 52 nM249
Targets	sGC (CcOX)	Aconitase, NADH dehydrogenase, succinate dehydrogenase, metalloenzymes, ribonucleotide reductase, DNA	sGC
Effects	Reversible	Irreversible. Nitrosation, nitration, oxidation.	Reversible

CcOX: cytochrome c oxidase (Complex IV); sGC: soluble guanylate cyclase; SNP: sodium nitroprusside.
Dinitrosyl-iron ((2 RS)-Fe-(2 NO)). The reaction of NO with iron or iron–sulphur molecules can: inactivate enzymes such as aconitase (which converts citrate to isocitrate in the citric acid cycle), ribonucleotide reductase and ubiquinone reductase; increase free ferrous (Fe^{2+}) which causes oxidative damage; and deplete iron stores.

RNOS (especially auto-oxidised products of NO).

Since these molecules differ in their stability, reactivity, location and cellular diffusivity, the overall effect of NO will depend on the molecular species involved and its location.

Cellular and other targets of nitric oxide

The targets for NO and associated reactive nitrogen species are multitudinous:

- DNA, through deamination of adenine, cytosine and guanine; cross-linking; breakage of strands; inhibition of DNA repair enzymes such as DNA alkyl transferases (and so preventing transfer of the guanine alkyl group to protein); and disruption of DNA replication by inhibition of ribonucleotide reductase; as in *S. enterica* and vaccinia virus.

- RNA, through disruption of RNA replication by inhibition of viral ribonucleotide reductase.

- Inhibition of mitochondrial function, specifically through inactivation of iron-sulphur complexes within respiratory chain enzymes.

- Protein modification at cysteine, methionine, phenylalanine, tryptophan and tyrosine residues, *e.g.* by RNOS. Such protein effects will reduce enzyme activity, as seen for DNA, proteases and mitochondrial function, as in Coxsackievirus.

- Limit late protein synthesis, *e.g.* through posttranslational modification of viral proteases. (Early protein translation/synthesis is not typically affected.)

- Induction of lipid peroxidation.

- Limit glutaminolysis by shuttling glutamine to glutathione synthesis, as in cytomegalovirus.

- Interaction with sulphydryl-containing constituents of the bacterial cell.

- Disrupt zinc homeostasis, as in *S. enterica*.

- Limit virion assembly/particle formation.

- Reduce bacterial adhesion to NO-releasing surfaces.

Nitric oxide may also play an augmenting role as an antimicrobial agent. Examples include the adjuvant roles of NO when given with type I interferons in the treatment of DNA viruses and L-arginine when given with conventional chemotherapy in smear-positive TB.

In addition, NO’s vasculo-active effects are likely to be beneficial in preventing infection and its severity, with NO:

- Reversing endothelial dysfunction and so potentially reducing endotheliitis, as occurs in COVID-19.

- Reducing leucocyte function (*e.g.* adhesion, chemotaxis, phagocytosis); COVID-19 is associated with increased phagocyte counts.

- Reducing platelet activation and platelet–leucocyte conjugation and so reducing micro- and macro-thrombosis, as seen in COVID-19.

- Improving organ blood flow and perfusion through smooth muscle relaxation and vasodilatation and so likely reversing infection-related vasoconstriction as seen in COVID-19, including in the pulmonary circulation.
These actions of NO are all mediated via the second messenger cGMP.

Antimicrobial production of nitric oxide

NO is produced by some bacteria, archaea and yeasts via several pathways including denitrification of nitrate to nitrite and then to NO \(^{54}\) and oxidation of L-arginine to NO and L-citrulline as catalysed by a bacterial nitric oxide synthase (bNOS), a process that can be inhibited by NOS inhibitors.\(^{55}\) Whilst eukaryotic NOS contains both catalytic and reductase domains, prokaryotic bNOS lacks the latter relying instead on other cellular reductases to generate NO; the one exception to this is the bNOS present in *Sorangium cellulosum* which does include a reductase module.

In contrast to the signalling role of NO in mammals, NO synthesis in bacteria has multiple functions which vary between antimicrobial species: \(^{56-59}\)

- Protection against oxidative stress with NO limiting thiol reduction and so the formation of hydroxyl radicals (*Bacillus anthracis/subtilis, Staphylococcus aureus*) \(^{56}\). (Table 1.10).

- Protection against oxidative stress with NO activating catalase (*B. subtilis*). Such defence will limit damage from phagocytic respiratory bursts.\(^ {56}\)

- Protection against oxidative stress by reducing endogenous NO synthesis and increasing the expression of NO dioxygenase to detoxify NO (*Candida albicans*).\(^ {58}\)

- Biosynthesis of toxins, e.g. thaxtomin (a phytotoxin) interfere with potato plant wall synthesis (*Streptomyces turgidiscabies*).\(^ {56}\)

- Activation of aerobic and nitrate respiration to optimise growth (*S. aureus*).\(^ {59,60}\)

- Protection against antimicrobial agents including amoxycillin, cefuroxime, gentamicin and novobiocin (*B. anthracis/cereus/thuringiensis/weihenstephanensis, S. aureus*), \(^ {57,58}\) and azoles (*Candida albicans*).\(^ {58}\)

The production by some microbes of endogenous NO to protect against oxidative stress is ironic since hosts are using NO to try to destroy the microbe!

Resistance to nitric oxide

Microbial resistance to antibiotics is an increasingly common problem and has left some bacteria with few treatment options, e.g. drug-resistant *Neisseria gonorrhoeae*. Hence, it is vital to consider whether resistance to NO is innate in some microbes or can be acquired. As already highlighted, some microbes have an intrinsic ability to produce their own NO and so attenuate the effects of oxidative stress (e.g. *B. anthracis/subtilis, C. albicans, S. aureus*),\(^ {56,59}\) activate aerobic respiration (*S. aureus*\(^ {59}\)) or protect against antimicrobial agents (*B. anthracis/cereus/thuringiensis/weihenstephanensis, C. albicans, S. aureus*\(^ {57,58}\)).

Microbes may also have mechanisms for deactivating NO. One mechanism is via a NO reductase which reduces NO to nitrous oxide and then nitrogen, e.g. as occurs in fungi\(^ {61}\) (Table 1.11). Bacteria have different NO reductases but similarly produce nitrous oxide,\(^ {61}\) as seen in *Pseudomonas aeruginosa*.\(^ {54}\) Loss-of-function mutations in NO reductase may be lethal, possibly because intracellular NO concentrations rise to toxic levels.

A second mechanism for detoxifying NO is via NO dioxygenase oxidation to nitrate (Table 1.12). The pre-eminent NO dioxygenase is flavohaemoglobin,\(^ {62}\) as present in bacteria (e.g. *Salmonella enterica, S. aureus, Vibrio cholerae, Yersinia pestis*),\(^ {52,63,64}\) and yeasts. A related haemoglobin, truncated haemoglobin, detoxifies NO in mycobacteria. Of note, *Mycobacterium leprae* has undergone reductive genome evolution losing more than 2,000 genes, including some that protect against RNOS; as a result, *M. leprae* has fewer defences against NO than *Mycobacterium tuberculosis*.\(^ {65}\) Bacterial lactate dehydrogenase also detoxifies NO, as seen in *S. aureus*.\(^ {57,58}\) Importantly, these detoxifying enzymes only cope with low levels of NO and are not protective against high NO levels.

As a result, microbes show differing sensitivities to NO, as seen for common airways pathogens where sensitivity was ranked (sensitivity most to least): *P. aeruginosa* ~ *C. albicans* > *S. aureus* > *Klebsiella pneumoniae* ~ *Staphylococcus epidermis*.\(^ {66}\)
However, there is little evidence that bacteria can acquire de novo resistance to NO, as confirmed in experiments on strains of *E. coli*, *P. aeruginosa*, *S. aureus* and *Staphylococcus epidermidis*. This property is unsurprising since NO has multiple mechanisms for antimicrobial activity and these are likely to be invoked orders of magnitude faster than any microbe can process metabolically, especially if protein synthesis is required. Equally, the main mechanisms for antibiotic resistance (drug inactivation, altered binding sites or metabolism and reduced drug permeability) are unlikely to be relevant to many NO sources. Whether viruses, protozoa and fungi can develop resistance to NO remains unclear.

Administering nitric oxide, donors and related compounds

L-arginine and L-citrulline

In the presence of NOS, administration of L-arginine may enhance NO synthesis (Table 7) although intracellular L-arginine levels are not normally rate limiting and so administration may not have physiological effects. Although oral preparations of L-arginine are commercially available, consumption of high doses is associated with profuse diarrhoea (P Bath, personal observation). However, L-citrulline may be a more efficient method for delivering L-arginine since it has more efficient intestinal absorption, lower first pass metabolism and higher renal reabsorption, does not induce arginase and is safe and tolerable at high doses.

Inhaled nitric oxide

Gaseous NO may be inhaled with the aim of improving pulmonary haemodynamics and killing microbes. Multiple trials are underway for COVID-19 prevention and treatment (Table 9). NO may also be created in real time by combining sodium nitrite and citric acid and administering this either as a nasal spray (for local therapy) or via nebuliser (for combined nasal and bronchial therapy).

Organic nitrates

Organic nitrates such as GTN, isosorbide dinitrate (ISDN) and isosorbide mononitrate (ISMN) are widely used in vascular medicine for the prevention and treatment of angina, treatment of chest pain in unstable angina and myocardial infarction, treatment of severe heart failure, and blood pressure lowering after cardiac surgery and in acute stroke (Table 7). There is increasing concern that chronic use of organic nitrates may cause major adverse cardiac events and death, reduce daily activity, and not improve quality of life or exercise capacity. Potential explanations include the development of tolerance, and induction of endothelial dysfunction and cell damage through oxidative stress, *e.g.* production of free radicals/peroxynitrite. Importantly, organic nitrates only release NO in cells and tissues expressing mitochondrial aldehyde dehydrogenase-2. For example, SNP and SIN-1 inhibit monocyte chemotaxis whilst organic nitrates (ISDN, GTN and molsidomine) do not; this contrasts with smooth muscle cells which vasodilate with all five agents. Since aldehyde dehydrogenase-2 suffers from use-inactivation, nitrate tolerance (tachyphylaxis) and endothelial dysfunction develops and bioconversion only restarts following a nitrate-free period. Several *in vitro* studies have demonstrated the potential antimicrobial effects of organic nitrates (Table 7). Other non-organic nitrates include pentaerythritol tetranitrate and erythrityl tetranitrate.

Therapeutic inorganic nitrite and nitrate

Therapeutic use of inorganic nitrite is limited with intravenous administration used in cyanide poisoning (British National Formulary). Topical acidified sodium nitrite has been shown to reduce cutaneous infections secondary to a variety of viruses and bacteria although its general use is probably limited by skin irritation and erythema (Table 7). A recent study found that acidified nitrite improved wound healing in rats with diabetes.

Dietary inorganic nitrate

NO may also be produced from dietary inorganic nitrate, as is present in high concentrations in green leafy and some root vegetables, *e.g.* spinach, lettuce, rocket, beetroot, celery, fennel, radish and Chinese cabbage. Nitrate is absorbed from the proximal gastrointestinal tract, excreted by salivary glands, reduced to nitrite by oral bacteria and then absorbed in the gastrointestinal tract. A number of bacterial species situated on the dorsal surface of the tongue perform this conversion via nitrate reductases. In the absence of oxygen, nitrate and nitrite are commonly used by bacteria as terminal electron acceptors for respiration. Through this symbiotic relationship, the mammalian host provides the nutrients and the environment in return for nitrite production by bacteria.

Absorbed and circulating nitrite is then further reduced to NO, a process that is enhanced in hypoxic or acidic conditions and by multiple mechanisms including deoxyhaemoglobin, deoxymyoglobin, xanthine oxidoreductase and endothelial nitric oxide synthase. As such, most effects of dietary nitrate will be vascular and perivascular. The beneficial vascular protective effects of vegetable consumption are very clear epidemiologically, as present in the classical Japanese
Table 7. Nitric oxide sources.

Intervention	Example	Administration	Licensed for use in (BNF)	Antimicrobial effects: target (disease)
L-arginine	Dietary: meat	Oral	N/A	None reported
Powder				Mycobacteria tuberculosis (pulmonary tuberculosis)
Liquid		Intravenous	N/A	None reported
L-citrulline		Oral	N/A	None reported
Inorganic nitrite	Acidified sodium nitrite (NaNO₃) cream	Topical		Burkholderia cepacia, dermatophytes (tinea pedis), pox virus (molluscum contagiosum), Mycobacterium ulcerans (Buruli ulcer), human papilloma virus (anogenital warts), Propionibacterium acnes, P. aeruginosa, S. aureus (including MRSA)
		Oral	N/A	None reported
		Intravenous		Cyanide poisoning (given with sodium thiosulfate)
				Food preservation: Clostridium botulinum
Inorganic nitrate	Silver nitrate	Topical		Human papilloma virus (Common wart)
Organic nitrate	Glyceryl trinitrate (GTN)	Topical patch		Prophylaxis of angina and phlebitis
		Ointment		Malaria (murine cerebral malaria), Non-specific infections (presenting as stroke mimics)
		Sublingual		None reported
		Intravenous		Hypertension/myocardial ischaemia after cardiac surgery, Congestive heart failure, Unstable angina
				E.coli, P. Aeruginosa, S. aureus in solution, S. aureus, MRSE, P. aeruginosa, C. albicans in biofilms
		Oral		Prophylaxis/treatment of angina. Left ventricular failure
		Sublingual		None reported
		Intravenous		None reported
Isosorbide dinitrate (ISDN)		Oral		Prophylaxis/treatment of angina. Left ventricular failure
		Sublingual		None reported
		Intravenous		None reported
Isosorbide mononitrate (ISMN)		Oral		Prophylaxis of angina, Adjunct in congestive heart failure. S. aureus in biofilms

F1000Research 2021, 10:536 Last updated: 06 JUN 2022
Intervention	Example	Administration	Licensed for use in (BNF)	Antimicrobial effects: target (disease)
Spontaneous nitric oxide donors	Sodium nitroprusside (SNP)	Intravenous	Hypertensive emergencies. Controlled hypotension. Acute/chronic heart failure	*E. coli*, *P. Aeruginosa*, *S. aureus* in solution. *Bacillus licheniformis*, *Candida albicans*, *Escherichia coli* BW20767, *Fusobacterium nucleatum*, *Serratia marcescens* MG1, *S. epidermidis*, *Vibrio cholerae* 92A1552, *Leishmania* spp.
Nitric oxide	Nitric oxide (NO) gas	Gas	(Neonatal pulmonary hypertension)	*E. coli*, *P. aeruginosa*, *S. aureus*. SARS-CoV-2 (ongoing trials: NCT04290871, NCT04305457, NCT04312243).
		Probiotic patch	N/A	*E. coli*, *S. aureus*, MRSA, *P. aeruginosa*, *T. mentagrophytes*, *T. rubrum*.
		NO releasing solution	N/A (in development)	*Propionibacterium acnes*, *T. mentagrophytes*, *T. rubrum*. SARS-CoV-2 (ongoing trial: NCT04337918)
PDE5 inhibitor	Dipyridamole	Oral	Post-stroke prophylaxis.	Picornaviridae, Togaviridae, Orthomyxoviridae, Paramyxoviridae, Herpetoviridae and Poxviridae. Mengovirus, SARS-CoV-2 (COVID-19 clinical trial).
Sildenafil	Oral	Oral	Erectile dysfunction, pulmonary arterial hypertension	Adenovirus, Chikungunya, Cytomegalovirus, Dengue, Enterovirus 71, Influenza virus, Measles, Mumps, Rabies, Respiratory syncytial virus, Rubella, West Nile, Yellow Fever; Methicillin-resistant *Staphylococcus epidermidis*.

BNF: British National Formulary; N/A: not applicable.
diet, the Dietary Approaches to Stop Hypertension (DASH) diet, and the Mediterranean diet. Further, vegetable-derived nitrate may reduce the risk of gastrointestinal cancer. The benefit on cancer is at variance with oral consumption of nitrite. Although nitrite is not carcinogenic per se, the processing and cooking of nitrite-cured meat can form carcinogens such as N-nitroso compounds and heterocyclic aromatic amines. In contrast, carcinogens are not formed when eating raw vegetable-derived nitrate. A recent meta-analysis showed an increased risk gastric cancer with oral nitrite but reduced risk with oral nitrate. Dietary nitrate is known to modify the oral and gastric biome (Table 7).

High dietary intake of nitrate is associated with many mechanisms that may have beneficial vascular, and potentially, antimicrobial effects. Experimentally, beetroot juice is often used as a potent source of dietary nitrate since dosing can be controlled and a nitrate-free placebo version is available for use in randomised controlled trials. Studies have shown that beetroot juice increases plasma nitrate and nitrite concentrations, that most vascular effects are mediated via the second messenger cGMP, tolerance does not develop (unlike with organic nitrates) and inorganic nitrate does not lead to free radical formation. In clinical studies, beetroot juice has been given over weeks and months and has been shown to have multiple effects with improved exercise performance (hence use by elite athletes); improved cognitive performance in older people; vasodilation with reduced blood pressure; antiplatelet and anti-leucocyte effects and reduced platelet-leucocyte conjugation; improved endothelial function; reduced left ventricular volume; improved metabolic profile; and improved cardiac function. Beyond anti-inflammatory effects on blood cells, nitrite or nitrate reduce soluble pro-inflammatory factors including C-reactive protein, chemokine (C-X-C motif) ligand-1/2, endothelin-1, interleukins-1β/6/10/12p70, interferon-γ, monocyte chemoattractant protein and tissue necrosis factor-α. Dietary nitrate has profound metabolic effects and appears to have the potential for reversing the metabolic syndrome and have anti-diabetic effects through improving insulin sensitivity and lowering blood glucose levels. Overall, the pharmacological effects of beetroot juice have been demonstrated in younger and older people, and in people with cardiovascular disease, e.g. diabetes, obesity, hypertension, hypercholesterolaemia, heart failure and stroke. Importantly, inorganic nitrate (given as beetroot juice) may be taken by pregnant women. Experimentally, watermelon juice and chard gel may be used as an alternative source of dietary nitrate.

Phosphodiesterase-5 inhibitors
PDE5-inhibitors, such as dipyridamole and sildenafil, enhance the physiological effects of NO as mediated by cGMP. Whether these agents should have antimicrobial effects is unclear since they do not enhance NO levels per se; nevertheless, both drugs have exhibited antimicrobial activity (Table 7) and are being tested in COVID-19 trials (Table 9).

Stimulation of endogenous nitric oxide-dependent nitric oxide production
Endogenous NO production may also be stimulated externally. First, nasal breathing promotes the production of NO from the paranasal sinuses and this has bronchodilatory, vasodilatory and potential antimicrobial activities. This natural defence mechanism may be attenuated with mouth breathing, as occurs with increasing age and obesity. Second, ultraviolet radiation (UVA and UVB) stimulates the release of NO from both keratinocytes and melanocytes; NO has multiple effects including attenuation of free radical damage, melanogenesis, blood pressure lowering and potentially protection against skin infections.

Novel nitric oxide agents
Recent research has focussed on the development of new antimicrobial NO delivery systems and some examples are listed:

- NO microspheres, e.g. biodegradable poly (lactic-co-glycolic acid) spheres loaded with S-nitroso-N-acetyl-D- penicillamine.
- NO-releasing nanoparticles, with activity against Acinetobacter baumannii, C. albicans, Enterococcus faecalis, E. coli, K. pneumoniae, P. aeruginosa, S. aureus (MRSA), S. epidermidis, Trichophyton mentagrophytes.
- Modified chitosan, e.g. against Trypanosoma cruzi, E. coli, S. aureus, Streptococcus mutans.
- NO–metal complexes (zeolites), with activity against B. subtilis, Clostridium difficile, E. coli, P. aeruginosa, S. aureus (including MRSA).
- NONOates (diazeniumdiolates), e.g. with activity against C. albicans, E. coli.
NO coating of medical device surfaces and tubing,116,117 e.g. using S-nitroso-N-acetyl-D-penicillamine to kill \textit{Staphylococcus aureus} and \textit{P. aeruginosa}.

\textbullet{} RRx-001, a small molecule nitric oxide donor.118

NO sources can also be categorised by whether administration is local (e.g. cutaneous nitrite or intranasal preparations), systemic (e.g. dietary nitrate, L-arginine or L-citrulline, oral isosorbide or sildenafil, sublingual GTN, intravenous GTN or SNP) or mixed local and systemic (transdermal GTN). Local administration allows high and potentially cidal concentrations of NO to be achieved without unwanted systemic effects. Intravenous formulations might allow for systemic infections to be treated.

\textbf{Relevance of in vitro studies to preclinical and clinical studies}

Most microbial studies presented above and in Tables 2-5 were performed \textit{in vitro} and involved either inducing the L-arginine/NO pathway with cytokines (e.g. interferon gamma [IFN-\(\gamma\)] and/or lipopolysaccharide [LPS]) or with NO sources (such as NO gas, nitrite, 3-morpholinosydnonimine, S-nitroso-L-acyetylpenicillamine or sodium nitroprusside). However, the inhibitory effect of NO on microbes \textit{in vitro} does not represent the complex biochemical environment that they face \textit{in vivo} including the presence of NO derivatives such as peroxynitrite, microbial production of NO, microbial resistance to NO and excess NO synthesis. Nevertheless, there are many \textit{ex vivo} and clinical examples where NO has been effective. These issues are now discussed.

\textbf{Nitric oxide for clinical infections}

\textbf{Oral health and gastrointestinal infections}

As already highlighted, oral bacteria (e.g. \textit{Corynebacterium pseudodiphtheriticum}, \textit{Fusobacterium nucleatum}, \textit{Nocardia spp.}, \textit{Prevotella melaninogenica}, \textit{S. aureus}, \textit{S. epidermidis}, \textit{Veillonella spp.}) are vital for the reduction of salivary nitrate to nitrite as part of the entero-salivary circulation; nitrite is further reduced to NO.119 This represents a symbiotic relationship between bacteria and the mammalian host; the host provides the nutrients and the environment in return for nitrite production,29 as in the absence of oxygen, nitrate and nitrite are commonly used by such bacteria as terminal electron acceptors for respiration.8

Oral consumption of nitrate and the resulting increase in nitrite in the oro-pharynx leads to salivary alkalinisation (pH ~7.0 to 7.5)120 and so reduction in detrimental bacteria and caries.77 Similarly, nitrate supplementation was associated with increased oral \textit{Rothia} spp. and \textit{Neisseria} spp., and diminished oral \textit{Prevotella} spp. and \textit{Veillonella} spp.; in parallel, plasma nitrite levels rose and systemic blood pressure fell.121 Salivary nitrite production is related to the abundance of oral-nitrate-reducing bacteria.122 In contrast, bacteria and yeast, in particular \textit{Lactobacillus} spp., \textit{Streptococcus} spp. and \textit{C. albicans}, are key to the development of dental caries through the production of acid. Equally, antibiotics that kill nitrate-reductase-containing bacteria inhibit oral nitrite production and so increase the risk of oral thrush.123 Acidified nitrite has antibacterial activity against \textit{Helicobacter pylori in vitro},124 an experiment that likely mimics the scenario seen by these bacteria in the stomach after a nitrate/nitrite-rich meal.

\textbf{Cutaneous infections}

The skin is a potent source of nitric oxide and production is increased with exposure to sunlight (specifically ultraviolet radiation) sufficient to lower blood pressure.125,126 Hence, skin-derived NO may form a natural dermatological antimicrobial defence. Numerous studies have demonstrated that topical acidified sodium nitrite reduces cutaneous infections due to a variety of viruses and bacteria (Table 7) although prophylaxis had to be continued in some cases since NO suppressed replication without necessarily being viro-toxic.127–132 Inorganic nitrate has been used for the treatment of human papilloma virus.133 Phase II clinical trials have found that acidified nitrite in cream reduced \textit{Leishmania major/ tropica} amastigotes and promastigotes with a reduction in cutaneous leishmaniasis129 and increased cure rates in tinea pedis.127 Novel NO agents are in development to treat skin conditions (Table 8).

\textbf{Respiratory infections}

In animal and human experiments, NO substrate (L-arginine) and a NO donor (SNP) has been shown to improve the mucociliary activity of the upper respiratory tract134 suggesting a modulatory role for NO in nasal barrier function and clearance. Novel NO agents building on this observation are in development (Table 8).

Endogenous NO has potent pulmonary haemodynamic and bronchodilator effects physiologically. The importance of endogenous NO in preventing infection is apparent experimentally where inhibition of NO results in increased susceptibility to microbes including \textit{Leishmania} spp., \textit{Mycobacterium} spp. and \textit{Plasmodium} spp.135 Similarly, NO sources are used therapeutically, for example sildenafil in the management of pulmonary hypertension (Table 7).
In respect of airway epithelial cells, nitrite reduced *P. aeruginosa* biofilm growth.136 In infection, NO reduces pulmonary vascular resistance and intrapulmonary shunt, and improves oxygen partial pressure in patients with acute severe pneumonia.137 More specifically, inhaled NO improves arterial oxygenation enabling a reduction in inspired oxygen therapy and airway pressure support, and reduces lung infiltrates, in patients with severe acute respiratory syndrome (SARS).33 These findings continue after termination of NO therapy suggesting that NO has both pulmonary vasodilator and anti-SARS effects. Small uncontrolled clinical studies have suggested that iNO may be beneficial in COVID-19.138–142 iNO and novel NO agents are in development, primarily for COVID-19 at present (Tables 8, 9).

Dipyridamole, a phosphodiesterase 5 inhibitor, may also have similar beneficial effects in severe COVID-19.35 A phase II clinical trial found that L-arginine might have beneficial effects when given on top of conventional therapy for tuberculosis (Table 7).50

Urinary tract infections

There may also be a role for dietary nitrate/inorganic nitrite in the prevention and treatment of urinary tract infections. Many of the lower urinary tract opportunistic organisms (*e.g.* *E. coli*) possess nitrate reductases, this forming the basis of urine dipstick detection of nitrite. In acidic urine conditions, nitrite is reduced to NO with toxicity to bacteria; for example, transferring nitrite-rich urine containing *E. coli* to a more acidic environment (*e.g.* pH 5.5) dose-dependently inhibited bacterial growth,143 an effect potentiated by vitamin C. The antibacterial potency is comparable to conventional antibiotics such as trimethoprim and nitrofurantoin.

Table 8. Examples of commercial development of novel nitric oxide donors/agents with efficacy against target disease and microbes (where relevant, last searched 15 March 2021).

Target organism/disease	Commercial company
NO gas for inhalation	Beyond Air
NO gas for inhalation	INOmax
NO-releasing solution for nebulisation (sodium nitrite and citric acid)	COVID-19
NO released from acidified nitrite via a semi-permeable membrane	Cutaneous *S. aureus, E. coli*257
NO macromolecular scaffolds48,258, e.g. NO-releasing cyclodextrins259	*P. aeruginosa*
NO-releasing solution/gel (NORS2791)	Vast Therapeutics
NO-releasing solution (NORS6491)	SaNOtize
NO-releasing nasal spray (NORS1002)	Novan
NO-releasing nasal lavage (NORS4002)	GeneOne Life Science
NO-stimulating nasal spray (GLS-1200)	COVID-19
Nitric oxide generating lozenges (sodium nitrite)	Nitric Oxide innovations
NO-generating probiotic patches, *e.g.* based on Lactobacilli conversion of glucose to lactic acid, and acidification of sodium nitrite254,255	*S. aureus*
Nitroreductase-activated release of NO, *e.g.* by O2-(4-Nitrobenzyl) diazeniumdiolate261 or nitroaromatic-protected piperazine diazeniumdiolate262	*E. coli*
	McGill University, Canada
	Indian Institute of Science Education and research, Pune, India Colorado State University, Fort Collins, USA
Trial name	NO source
---	---
COVID-19 prevention	Nitrate juice, oral
NO gas, inhaled	USA
GLS-1200 nasal spray (NO stimulant)	USA
COVID-19 treatment	L-arginine, oral
L-citrulline, iv	USA
Fiorentino et al.	(NCT04637906)
L-citrulline, iv	USA
Covino & others	(NCT04570384)
NO gas, inhaled	China
Somberg et al.	(NCT04601077)
NO nasal spray/irrigation	Canada
NO inhaled	China
NO gas, inhaled	USA
NO inhaled	USA
Nebulised sodium nitrite and citric acid (RESP301)	UK
Sildenafil	China

ARDS: adult respiratory distress syndrome; C-19: COVID-19; CCS: case-controlled study; DBPC: double-blind placebo-controlled; iv: intravenous; RCT: randomised controlled trial; SOFA: sequential organ failure assessment; TBC: to be confirmed.
This approach has been tested by filling urinary catheter retention balloons with nitrite and ascorbic acid, resulting in measurable amounts of NO outside the membrane and effectively killing two strains of E. coli in the surrounding urine. A similar approach found decreased bacterial counts and prevented biofilm formation by P. aeruginosa, K. pneumoniae, and Enterobacter cloace (but not E. coli or S. aureus).

Last, instillation of bacillus Calmette-Guerin (BCG, an attenuated strain of Mycobacterium bovis) into the bladder is used for the treatment of superficial/non-muscle invasive bladder cancer and carcinoma in situ. BCG induces long-term increases in NOS activity in urothelial cells and the formed NO is toxic to the malignant cells. The use of BCG to provide non-specific protection against SARS-CoV-2 is to be tested although vaccination in infancy does not appear to protect against COVID-19 in adults.

Other infections
Nitrate (usually KNO3) and nitrite (NaNO3) have been used for millennia to preserve food, especially meat and fish. Food preparation leads to reduction of nitrate to nitrite, and nitrite inhibits bacterial growth, especially Clostridium botulinum, a key and severe cause of neurotoxin poisoning. Additionally, nitrite adds colour to food and flavour (in part by overcoming rancid tastes) and is an antioxidant.

NO donors have also been investigated for eradicating or dispersing biofilm organisms. For example, GTN synergises with citrate and ethanol in eradicating biofilms (related to S. aureus, MRSE, P. aeruginosa and C. albicans) in an experimental catheter lock model. Similarly, isosorbide mononitrate synergised with antibiotics to disperse then kill S. aureus. An NO-releasing contact lens has been developed to treat microbial keratitis due to P. aeruginosa and S. aureus.

GTN may have improved outcome after infection in participants enrolled into the RIGHT-2 trial, a study where paramedics recruited patients with suspected stroke and randomised them to GTN versus sham. Overall, the trial was neutral. However, in a planned subgroup analysis of those participants with a final diagnosis of a non-stroke mimic, functional outcome was better with GTN. In a post hoc analysis of participants in this subgroup, GTN was associated with a better outcome in those with a final diagnosis of infections of the respiratory and urinary tracts which raises the possibility that NO was treating the infectious cause underlying the stroke mimic diagnosis.

The prostaglandin-cyclic adenosine-phosphodiesterase-3 system
As with the NO system, the prostaglandin-cyclic adenosine monophosphate-phosphodiesterase-3 (PG-CAMP-PDE3) system has similar vasculo-protective roles with anti-leucocyte, antiplatelet and anti-smooth muscle, and pro-endothelial effects. It is therefore interesting to note that prostaglandins (PGA1, PGJ2), including prostacyclin (PGI2 and analogues), have been reported to have antiviral effects. Whether drugs based on these or the PDE3 inhibitor, cilostazol, have efficacy against SARS-CoV-2 remains to be investigated. Further, endogenous NO and PGI2 work together in the vascular tree, and it is conceivable that their potential antimicrobial effects will similarly synergise. Their combination, in the forms of ISMN and cilostazol, have been tested after stroke but not yet reported for the prevention or treatment of infection.

Interaction between nitric oxide and vaccine efficacy
The interaction between diet, nutrition state and vaccine effectiveness has been assessed in multiple studies, principally in low–middle income countries where vaccination is paramount, especially in children, and yet where malnutrition may be widespread. In a systematic review and meta-analysis of observational studies and randomised controlled trials, there was little suggestion that malnutrition had any effect on vaccine responses; similarly, supplementation with vitamins and D, and iron and zinc, did not appear to modify responses. In preclinical studies, protein-energy malnutrition had limited influence on vaccine efficacy in mice. The effect of dietary nitrate levels on vaccine efficacy is unstudied.

If nitric oxide derivatives attenuate microbial infections, then the efficacy of vaccines based on live attenuated viruses and bacteria (such as measles, polio virus, BCG) might be attenuated by treatment with NO. Although there are many factors known to alter vaccine effectiveness (e.g. age), the effect of NO has not been studied.

Post-infection morbidity
Many infections cause long-term morbidity with chronic fatigue syndrome (CFS) and symptoms including fatigue, tiredness, myalgia, cognitive impairment and depression. Example associated microbes include Borrelia burgdorferi (Lyme disease), Chlamydia pneumoniae (community acquired pneumonia), Epstein–Barr virus (infectious mononucleosis), human herpes virus 6 (exanthema subitum), human immunodeficiency virus (AIDS), polio virus, SARS-CoV-1 virus (SARS), SARS-CoV-2 (long-COVID) and West Nile virus (fever). Although CFS may represent chronic or latent infection, it is more likely to reflect the presence of post-infectious chronic inflammation. Hypothetically, these
patients might benefit from inorganic nitrates in view of their positive effects on exercise performance (elite athletes take beetroot juice for this purpose) and cognition, \(^7^6,^9^5\) and potentially antimicrobial effects, a question that needs addressing (Table 7). A phase II trial of L-citrulline is studying this approach in patients with post-polio syndrome. \(^6^8\)

Excess nitric oxide during infection

During severe infection, sepsis (defined as “life-threatening organ dysfunction caused by a dysregulated host response to infection”) often develops. Septic shock is a subset of sepsis and is a leading cause of death worldwide. \(^1^6^9\) It manifests as hyper- or hypo-thermia, altered mental state, hypotension, tachycardia, tachypnoea, hypoxia, anuria and/or lactataemia. This can occur with many infections due to:

- **Gram negative bacteria**: Bacteroides fragilis, C. pneumoniae, Enterobacter spp., E. coli, Haemophilus influenzae, Klebsiella spp., Legionella spp., Neisseria meningitidis, Proteus spp., P. aeruginosa, Yersinia pestis. \(^6^3\)

- **Gram positive bacteria**: Clostridium spp., Enterococcus spp., Listeria monocytogenes, Staphylococcus spp., Streptococcus agalactiae/pneumoniae/pyogenes

- **Viral**: Adenovirus, Coronaviruses, Dengue viruses, Ebola virus, Enteroviruses, human immunodeficiency virus, Influenza virus (A and B), haemorrhagic fever viruses, Parechoviruses. \(^1^7^0,^1^7^1\)

- **Fungi**: Candida spp. \(^1^7^2\)

- **Protozoa**: Plasmodium falciparum, Schistosoma mansoni. \(^1^7^3\)

Typically, autoamplification of circulating cytokines (so-called cytokine storm) leads to excess NO synthesis, mostly derived from inducible NOS, leading to high circulating NO levels and the development of septic shock. In these circumstances, treatment with exogenous NO might be inappropriate. Trials of inhibiting endogenous NO synthesis with NOS-inhibitors in critically ill patients with sepsis have been reported although, disappointingly, did not improve outcome; indeed, the non-selective NOS-inhibitor, NG-methyl-L-arginine hydrochloride (L-NMMA, 546C88), was associated with increased death. \(^1^7^4\) It is not clear why inhibiting NO synthesis was ineffective but non-selective NOS inhibitors were used meaning that both toxic (iNOS) and beneficial (eNOS) sources of NO were inhibited; pharmacologically, such inhibitors will have reduced cardiac output, organ perfusion and tissue oxygenation. In the absence of licensed selective iNOS inhibitors, perhaps the analogous approach used in the management of hyperthyroidism using block (with carbimazole) and replace (thyroxine) might be effective, i.e. block NOS activity and replace with a low dose of a NO donor. That excess NO is dangerous does not mean that pharmacological doses of NO cannot be effective (Figure 1, Tables 6, 11) since all effective interventions in medicine have an inverted “U” dose response.

Some infections have opposing *in vitro* and *in vivo* responses to NO. For example activated macrophage-derived NO or NO donors such as SNAP reduced Trypanosoma brucei proliferation *in vitro* \(^1^7^5,^1^7^6\) whereas endogenous iNOS-derived NO suppressed protozoa-antigen specific T-cell proliferative responses and so worsened infection, at least in infected mice. \(^1^7^8\) Intracellular protozoal infections are unlikely to be affected in this manner since macrophage-derived NO would be able to act directly on pathogens such as Leishmania major. \(^1^7^7\)

Other infections do not appear, at least *in vitro*, to induce iNOS. For example, Cryptococcus neoformans failed to induce iNOS in primed macrophages, \(^1^7^7\) apparently due to a lack of TNF-α secretion, probably because the polysaccharide capsule masked the signal for TNF-α secretion. Interestingly, non-encapsulated mutants of C. neoformans did induce endogenous NOS.

High levels of iNOS activation were antimicrobial in studies of malaria. Based on monocyte-derived mRNA levels in circulating blood, uncomplicated malaria was associated with increased levels of iNOS activation in contrast to patients with severe malaria who had lower levels. \(^1^7^9\) The dual effects of NO in malaria, i.e. both low and high levels appear to be hazardous, are further reviewed. \(^1^8^0,^1^8^1\)

Epidemics and pandemics

Over recorded history, most epidemics and pandemics have resulted from viral infections including Ebola (viral haemorrhagic fever), influenza (H1N1, H2N2, H3N2, H3N8), HIV-1 (AIDS), polio (poliomyelitis), smallpox, yellow fever, zika or corona (OC43, MERS-CoV, SARS-CoV-1/2) viruses. Bacterial pandemics have resulted from *Vibrio cholerae* (cholera), S. enterica (typhoid fever) and *Yersinia pestis* (plague). Studies *in vitro* have reported findings suggesting that NO can reduce infection for some of these pathogens (Tables 2, 3) but information appears to be lacking for smallpox, yellow fever, zika and cholera (Table 10).
With multiple pandemics over the last 100 years, it is only inevitable that further ones will occur and some, like COVID-19, will comprise a "global catastrophic biological risk". Global pandemics will most likely be caused by a respiratory-spread virus that crosses over from animals such that humans have no inherent immunity to it. Likely candidates include orthomyxoviruses (especially influenza A viruses such as H7N9), paramyxoviruses (e.g. measles, mumps, croup), pneumovirus (e.g. human metapneumovirus), coronaviruses and picornaviruses (especially rhinoviruses and enteroviruses). All of these have had strains that have crossed from animals to humans. This emphasis on RNA viruses is because DNA viruses tend to have lower mutation rates and, therefore, evolve more slowly and are less likely to escape the human immune system within the first rounds of infection. Nevertheless, DNA viruses, such as pox or herpes viruses from great apes or monkeys, do have the potential to jump species. Non-viral causes of pandemics are less likely since most bacteria will be treatable with broad-spectrum antibacterial agents, most fungi are thermally restricted, and prions would require massive food contamination (and only spread slowly). Protozoa are usually thermally restricted although global warming may allow malaria to spread more widely in temperate zones.

Unfortunately, pandemics/epidemics may co-exist as seen with SARS-CoV-2 and dengue in Brazil, and both with S. enterica in Pakistan; in part, this reflects increasing travel with aircraft providing a portal for numerous microbes. Of theoretical concern was the potential for COVID-19 and epidemic influenza to co-exist during winter in the Northern hemisphere, this possibly leading to a dramatic increase in deaths. Nevertheless, 'flu rates were very low in both southern and northern hemisphere 2020 winters, presumably due to hands, face, space, mask and fresh air measures. All-in-all, the absence of a true broad-spectrum of antiviral agents is a major concern and a potential agent such as NO with antimicrobial effects that extend beyond viruses would be most welcome.

Implications for SARS-CoV-2 and COVID-19
One possible explanation for the observation that COVID-19 outcomes are worse in older people, males, black or Asian ethnicity, and those with co-morbidities such as diabetes, hypertension, stroke and chronic lung disease, is that these groups have lower vascular NO activity and so mount a sub-optimal host response against infection. Increasing NO availability is therefore a potential therapeutic strategy. Several NO sources have potential relevance to preventing and treating COVID-19. L-arginine, sodium nitrite, GTN, SNP, NO and dipyridamole each have clinical antimicrobial activity and can be administered, variously, orally, intravenously or as NO gas in the intensive care unit. Transdermal

![Figure 1. Schematic of concentration response curve for antimicrobial effects of nitric oxide.](image-url)
GTN, and oral ISMN, dipyridamole and sildenafil may be administered in the community or hospital. Of these, NO gas, dipyridamole and sildenafil are already being tested for preventing or treating COVID-19 (Table 9). It remains to be determined if increasing dietary nitrate may be a cost effective and safe intervention of widespread health relevance for the prevention of COVID-19 and, indeed, other emerging, pandemic, epidemic or endemic infections. Recent trial evidence provides indirect supporting evidence for the potential anti-SARS-CoV-2 effect of NO. First, dexamethasone and tocilizumab reduced death in patients in intensive care units,190,191 and these agents and NO share anti-inflammatory effects. And second, interferon-ß reduced the need for intensive care in COVID-19 patients;192 type I interferons increase iNOS activity and so have antimicrobial effects, as seen with \textit{L. major} and \textit{Burkholderia pseudomallei}.193,194

Table 10. Future research questions relating to nitric oxide therapy for microbes.

Question	Microbe	In vitro	In vivo	Clinical trials
What effect does NO have on so-far unstudied pandemic microbes?	Viruses: smallpox, yellow fever, Zika. Bacteria: \textit{Vibrio cholerae}		+	
What effect does NO have on so-far unstudied other microbes?	Bacteria: Mycoplasma. Archaea.		+	
What effect does NO have on micro/macrotrombosis?	Viruses: Ebola. Influenza. MERS. SARS-CoV-1/2		+	
What is the effect of timing on outcome in prevention or treatment of mild and severe disease?	Any			
Could NO be used as a non-specific adjuvant to antimicrobial therapy (where septic shock is absent)?	Any		+	+
Is the strategy of block (NOS inhibitor) and replace (NO donor) effective in septic shock?	Intensive Care Unit infections		+	
Do NO sources, e.g. dietary nitrate or NO donors, prevent/treat/improve outcome after COVID-19?	SARS-CoV-2		+	
Do NO sources, e.g. dietary nitrate or NO donors, prevent and treat outcome after endemic \textit{flu}?	SARS-CoV-2		+	
Do combined NO and PG sources have agonistic antimicrobial effects?	Any		+	+
Do NO sources reduce the efficacy of live attenuated vaccines?	Measles virus, poliovirus, bacilli Calmette-Guerin		+	
Do NO sources reduce chronic symptoms and improve quality of life after infection?	Lyme disease			

NO: nitric oxide; PG: prostaglandin.

Table 11. Balance between potential beneficial and hazardous effects of NO sources in preventing and treating infections.

Benefit	Ineffective/Hazard
\textit{In vitro}	Considerable static/cidal data
	Limited neutral/negative data suggesting that there may be publication bias
\textit{In vivo}	Some static/cidal data
Clinical	Some positive phase II trials
Concentration	Moderate
	Low or very high (as in septic shock although NOS inhibitors ineffective)
	Microbial resistance to NO, e.g. synthesis of NO to resist oxidative stress
	Organic nitrates generate reactive NO species

GTN, and oral ISMN, dipyridamole and sildenafil may be administered in the community or hospital. Of these, NO gas, dipyridamole and sildenafil are already being tested for preventing or treating COVID-19 (Table 9). It remains to be determined if increasing dietary nitrate may be a cost effective and safe intervention of widespread health relevance for the prevention of COVID-19 and, indeed, other emerging, pandemic, epidemic or endemic infections. Recent trial evidence provides indirect supporting evidence for the potential anti-SARS-CoV-2 effect of NO. First, dexamethasone and tocilizumab reduced death in patients in intensive care units,190,191 and these agents and NO share anti-inflammatory effects. And second, interferon-ß reduced the need for intensive care in COVID-19 patients;192 type I interferons increase iNOS activity and so have antimicrobial effects, as seen with \textit{L. major} and \textit{Burkholderia pseudomallei}.193,194
Discussion and conclusions

Nitric oxide is a fundamental molecule with wide-ranging and potent vascular, anti-platelet, anti-inflammatory and tumoricidal effects. Further, there is a large volume of literature spanning the last 30+ years demonstrating that NO also has potent in vitro antimicrobial effects on a wide variety of viruses, bacteria, protozoa, fungi and yeasts; these are supported by a modest number of in vivo studies. Further, several positive clinical phase II trials of NO have been reported in viral, bacterial, protozoa and fungal infections, these relating particularly to skin and respiratory infections administered by cream and gas respectively. Although not from randomised trials, there is also evidence that dietary nitrate modifies the oral biome and so reduces dental caries.

However, these results cannot be considered persuasive on their own. First, few neutral or negative studies have been reported suggesting that there may be a risk of publication bias. Second, conflicting data in some dual-protocol studies with positive in vitro and neutral/negative in vivo data suggest that although NO is antimicrobial per se, the local tissue environment may overcome or reverse this effect. Third, organic nitrates can suffer from tolerance and may lead to the generation of reactive NO species such as peroxynitrite and S-nitrosothiols which might exacerbate rather than attenuate infection. Fourth, resistance may develop although this seems unlikely to be a generic issue, not least because NO levels can change, and be changed, much faster than any microbe can raise defensive mechanisms. Fifth, some microbes can produce their own NO and use this to resist the oxidative stress induced by external NO and its derivatives. Sixth, excess NO production is associated with the development of septic shock which might suggest that any NO is ineffective. Potentially, unsuccessful trials of non-selective NOS-inhibitors in severe sepsis may have confused the issue, perhaps by suggesting that treatment with NO is not important in infection. Seventh, positive clinical studies have been performed in environments where very high local concentrations of NO can be achieved and without the risk of reactive responses, in particular on the surface of tissues such as cream on the skin, dietary nitrate in the mouth, nitrite in the stomach, NO gas in the lungs and nitrite in the bladder; whether NO is effective as an antimicrobial within tissues and the vascular tree remains to be determined.

There are many sources of NO suitable for studying the prevention and treatment of milder infections in the community and hospital (e.g. topical sodium nitrite, oral NO donors such as ISMN, or oral PDE5 inhibitors such as dipyridamole or sildenafil), and treatment of serious infections in hospital (e.g. intravenous L-arginine, sodium nitrite or NO donors such as GTN or SNP, of NO gas). NO may also be delivered via a high nitrate diet, thus offering a widely available and inexpensive public health approach to potentially reducing and attenuating the severity of infections worldwide. This approach has the added advantage that such diets are already known to reduce vascular disease and some cancers, and possibly other inflammatory diseases and dementia.

In summary, the wealth of in vitro data suggest that NO has generic antimicrobial effects. However, some data suggest that NO may be ineffective or even hazardous and these reinforce our view for the need for large scale clinical trials of NO donors in the community and hospitals to prevent and treat infections. Although such studies need to focus urgently on the COVID-19 pandemic (especially with the lack of broad spectrum antiviral agents188), other pathogens also need to be targeted. However, patients with established septic shock should not be administered NO donors to avoid exacerbating vascular collapse. One utopian vision would be demonstration that high dietary nitrate intake produces pre- or post-exposure prophylaxis against infections and their severity in the community whilst NO donors are effective antimicrobial treatments for use by general practitioners and in hospitals.

Data availability
No data are associated with this article.

References

1. Palmer RMJ, Ashton DS, Moncada S: Vascular endothelial cells synthesise nitric oxide from L-arginine. Nature. 1988; 333(6174): 664-6. PubMed Abstract | Publisher Full Text
2. Flam BR, Eichler DC, Solomonson LP: Endothelial nitric oxide production is tightly coupled to the citrulline-NO cycle. Nitric Oxide. 2007; 17(3-4): 115-21. PubMed Abstract | Publisher Full Text
3. Bahadoran Z, Mirmiran P, Kashfi K, et al.: Endogenous flux of nitric oxide: Citrulline is preferred to Arginine. Acta Physiol (Oxf). 2021; 231(3): e13572. PubMed Abstract | Publisher Full Text
4. Bath PMW, Hassall DG, Gladwin A-M, et al.: Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb. 1991; 11: 254-60. PubMed Abstract | Publisher Full Text
5. Radomski MW, Palmer RMJ, Moncada S: Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987; ii: 1057-8. PubMed Abstract | Publisher Full Text
6. Ferlito S, Gallina M, Pitari GM, et al.: Nitric oxide plasma levels in patients with chronic and acute cerebrovascular disorders. Panminerva Med. 1998; 40: 51–4. PubMed Abstract
7. Rashid P, Bath P: Plasma nitric oxide (nitrate) in stroke by type, severity and outcome. Stroke. 2000; 31: 2835 (abstract). PubMed Abstract | Publisher Full Text
15. De Groote MA, Fang FC:

11. Green SJ:

Covid-19 accelerates endothelial dysfunction and nitric oxide deficiency. Microbes Infect. 2020; 22:4-5: 149-50. PubMed Abstract | Publisher Full Text | Free Full Text

10. Ahmed S, Zimba O, Gasparyan AY:

14. Lowenstein CJ, Dinerman JL, Snyder SH:

23. Stamler JS, Singel DJ, Loscalzo J:

31. Akerström S, Moussavi-Jazi M, Klingström J, et al.: Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J Virol. 2005; 79(3): 1966-9. PubMed Abstract | Publisher Full Text | Free Full Text

32. Goldsmith M, Lerner O, Kalaara R, et al.: Nitric oxide is a powerful anti-coronavirus-inhaled agent that acts within hours. Chest. 2020; 158(6): 2446A-7A. Publisher Full Text | Free Full Text

33. Chen L, Liu P, Gao H, et al.: Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome: a rescue trial in Beijing. Clin Infect Dis. 2004; 39(10): 1521-5. PubMed Abstract | Publisher Full Text | Free Full Text

34. Akabani D, Krambichl J, Ling, et al.: Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro. Redox Biol. 2020; 37: 101734. PubMed Abstract | Publisher Full Text | Free Full Text

35. Liu X, Li Z, Liu S, et al.: Potential therapeutic effects of dipiridamol in the severely ill patients with COVID-19. Acta Pharm Sin B. 2020. PubMed Abstract | Publisher Full Text | Free Full Text

36. Lisi F, Zelikin AN, Chandrawati R: Nitric Oxide to Fight Viral Infections. Adv Sci (Weinh). 2021; 8(7): 2003895. PubMed Abstract | Publisher Full Text | Free Full Text

37. Jiang Y, Feng L, Luo R, et al.: N-acetylpenicillamine inhibits the replication of porcine reproductive and respiratory syndrome virus in vitro. Vet Res Commun. 2010; 34(7): 607-17. PubMed Abstract | Publisher Full Text | Free Full Text

38. Kaul P, Singh I, Turner RB: Effect of nitric oxide on rhinovirus replication and virus-induced interleukin-8 elaboration. Am J Respir Crit Care Med. 1999; 159(4 Pt 1): 1193-8. PubMed Abstract | Publisher Full Text | Free Full Text

39. Kono Y, Shibata H, Adachi K, et al.: Lactate-dependent killing of Escherichia coli by nitrite plus hydrogen peroxide: a possible role of nitrogen dioxide. Arch Biochem Biophys. 1994; 311(1): 153-9. PubMed Abstract | Publisher Full Text

40. De Groote MA, Granger D, Xu Y, et al.: Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci U S A. 1995; 92(14): 6399-3. PubMed Abstract | Publisher Full Text | Free Full Text

41. Wink DA, Kasprzak KS, Maragos CM, et al.: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991; 254(5034): 1001-3. PubMed Abstract | Publisher Full Text

42. Fujikura Y, Kudlackova P, Vokurka M, et al.: The effect of nitric oxide on vaccinia virus-encoded ribonucleotide reductase. Nitric Oxide. 2009; 20(2): 114-21. PubMed Abstract | Publisher Full Text

43. Akerström S, Moussavi-Jazi M, Klingström J, et al.: Nitric Oxide Circumvents Virus-Mediated Metabolic Regulation during Human Cytomegalovirus Infection. mBio. 2020; 11(6). PubMed Abstract | Publisher Full Text | Free Full Text

44. O’Leary V, Solberg M: Effect of sodium nitrite inhibition on intracellular thiol groups and on the activity of certain glycolytic enzymes in Clostridium perfringens. Appl Environ Microbiol. 1976; 31(2): 208-12. PubMed Abstract | Publisher Full Text | Free Full Text

45. Fraser EL, Karlinsey JE, Singhal A, et al.: Nitric Oxide Disrupts Zinc Homeostasis in Salmonella enterica Serovar Typhimurium. mBio. 2018; 9(4). PubMed Abstract | Publisher Full Text | Free Full Text

46. Carpenter AW, Schoenfisch MH: Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev. 2012; 41(10): 3742-52. PubMed Abstract | Publisher Full Text | Free Full Text

47. Mehta DR, Ashkar AA, Mossman KL: The nitric oxide pathway provides innate antiviral protection in conjunction with the type I interferon pathway in fibroblasts. PLoS One. 2012; 7(2): e31688. PubMed Abstract | Publisher Full Text | Free Full Text

48. Schon T, Elias D, Moges F, et al.: Arginase as an adjuvant to chemotherapy improves clinical outcome in active tuberculosis. Eur Respir J. 2003; 21(3): 483-8. PubMed Abstract | Publisher Full Text | Free Full Text

49. Henry BM, de Oliveira MHS, Benoit S, et al.: Hematologic, biochemical and immune biomarker abnormalities associated with...
with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020; 58(7): 1021-8. PubMed Abstract | Publisher Full Text

52. Zumft WG: Flavohaemoglobin: the pre-eminent nitric oxide synthase (NOSNoc) from a Nocardia species. 177| they good for? PubMed Abstract

53. Pan Y, Wu Y, Chen Y, et al: COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020; 75(23): 2950-73. PubMed Abstract | Publisher Full Text | Free Full Text

54. Chait A, Avigdor A, Leibovitz A: Nitric Oxide Therapy, Nitrates, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress. Antioxid Redox Signal. 2015; 23(11): 899–42. PubMed Abstract | Publisher Full Text | Free Full Text

55. Chen Y, Rosazza JP: Purification and characterization of nitric oxide synthase from a Nocardia species. J Bacteriol. 1995; 177(1): 512-8. PubMed Abstract | Publisher Full Text | Free Full Text

56. Chen Z, Zhang J, Stamler JS: Long-term nitrate: nitrite and stomach cancer risk: an updated review. Nutr Cancer. 2020; 73(4): 596-606. PubMed Abstract | Publisher Full Text | Free Full Text

57. De Blasi R, Napiwotzki T, et al: Role of the nitrate-nitrite-NO pathway. Antioxid Redox Signal. 2009; 11(9): 1527-40. PubMed Abstract | Publisher Full Text | Free Full Text

58. De Blasi R, Napiwotzki T, et al: Relative susceptibility of the nitrate-nitrite-NO pathway. Antioxid Redox Signal. 2009; 11(9): 1527-40. PubMed Abstract | Publisher Full Text | Free Full Text

59. De Blasi R, Napiwotzki T, et al: Nitric oxide metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radic Biol Med. 2020; 151: 108-117. PubMed Abstract | Publisher Full Text | Free Full Text

60. De Blasi R, Napiwotzki T, et al: Enterosalivary nitrate and nitrite in the human oral cavity. Eur J Oral Sci. 2005; 113 (1): 14-9. PubMed Abstract | Publisher Full Text

61. De Blasi R, Napiwotzki T, et al: Dietary patterns and cardiovascular disease mortality in Japan: a prospective cohort study. Int J Epidemiol. 2007; 36(3): 600-9. PubMed Abstract | Publisher Full Text

62. De Blasi R, Napiwotzki T, et al: Acute blood pressure response to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008; 168(7): 713-20. PubMed Abstract | Publisher Full Text

63. De Blasi R, Napiwotzki T, et al: The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015; 128 (3): 229-38. PubMed Abstract | Publisher Full Text | Free Full Text

64. De Blasi R, Napiwotzki T, et al: Estruch R, Ros E, Salas-Salvadó J, et al: Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018; 378(25): e34. PubMed Abstract | Publisher Full Text

65. De Blasi R, Napiwotzki T, et al: Bryan NS, Alexander DD, Coughlin JR, et al: Ingested nitrate and nitrate and stomach cancer risk: an updated review. Food Chem Toxicol. 2012; 50(8): 1346-55. PubMed Abstract | Publisher Full Text | Free Full Text

66. De Blasi R, Napiwotzki T, et al: Butler A: Nitrites and nitrates in the human diet: Carcinogens or beneficial hypotensive agents? J Ethnopharmacol. 2015; 167: 105-7. PubMed Abstract | Publisher Full Text | Free Full Text

67. De Blasi R, Napiwotzki T, et al: Zhang FX, Miao Y, Ruan JG, et al: Association Between Nitrite and Nitrate Intake and Risk of Gastric Cancer: A Systematic Review and Meta-Analysis. Med Sci Monit. 2019; 25: 1705-9. PubMed Abstract | Publisher Full Text | Free Full Text

68. De Blasi R, Napiwotzki T, et al: Webb AJ, Patel N, Loukogeorgakis S, et al: Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrite via bioconversion to nitrate. Hypertension. 2008; 51(3): 784-90. PubMed Abstract | Publisher Full Text | Free Full Text

Page 28 of 43
90. Kapil V, Milson AB, Okorie M, et al.: Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrate-derived NO. Hypertension. 2010; 56(2): 274–81. PubMed Abstract | Publisher Full Text

91. Presley TD, Morgan AR, Bechtold E, et al.: Acute effect of a high nitrate diet on brain perfusion in young adults. Nitric Oxide. 2011; 24(1): 34–42. PubMed Abstract | Publisher Full Text | Free Full Text

92. Venugopalan S, Gan JM, Rathod KS, et al.: Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr. 2016; 103(1): 25–31. PubMed Abstract | Publisher Full Text | Free Full Text

93. Mills CE, Govoni V, Faconto L, et al.: Reducing Arterial Stiffness Independently of Blood Pressure. The VaSera Trial. J Am Coll Cardiol. 2017; 70(3): 1663–4. PubMed Abstract | Publisher Full Text

94. Faconto L, Mills CE, Govoni V, et al.: Cardiac effects of 6 months’ dietary nitrate and spironolactone in patients with hypertension and with/ at risk of type 2 diabetes, in the factorial design, double-blind, randomized controlled VaSera trial. Br J Clin Pharmacol. 2019; 85(1): 169–80. PubMed Abstract | Publisher Full Text | Free Full Text

95. Stanaway L, Rutherford-Markwick K, Page R, et al.: Performance and Health Benefits of Dietary Nitrate Supplementation in Older Adults: A Systematic Review. Nutrients. 2017; 9(11). PubMed Abstract | Publisher Full Text | Free Full Text

96. Omar SA, Fok H, Tilgren KD, et al.: Paradoxical normoxia-dependent selective actions of inorganic nitrite in human muscular conduit arteries and related selective actions on central blood pressures. Circulation. 2015; 131(4): 381–9; discussion 9. PubMed Abstract | Publisher Full Text

97. Vellor AW, Lara J, Servo M: Medium-term effects of dietary nitrate supplementation on systolic and diastolic blood pressure in adults: a systematic review and meta-analysis. J Hypertens. 2017; 35(7): 1353–9. PubMed Abstract | Publisher Full Text

98. Kapil V, Kambhata RS, Robertson A, et al.: Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study. Hypertension. 2015; 65(2): 320–7. PubMed Abstract | Publisher Full Text | Free Full Text

99. Raubenheimer K, Bondonno C, Bleckenhorst L, et al.: Effects of dietary nitrate on inflammation and immune function, and implications for cardiovascular health. Nutr Rev. 2019. PubMed Abstract | Publisher Full Text

100. Wooton-Beard PC, Brandt K, Fell D, et al.: Nitrate diet on brain perfusion in older adults. PubMed Abstract | Publisher Full Text | Free Full Text

101. Adler BL, Friedman AJ: Nitric oxide therapy for dermatologic disease. Future Sci OA. 2015; 1(1): FSO37. PubMed Abstract | Publisher Full Text | Free Full Text

102. Lanuza G, Meyerhoff ME, Schwendenman SP: Biodegradable poly(lactic-co-glycolic acid) microspheres loaded with 5-nitroso-N-acetyl-D-1-penicillamine for controlled nitric oxide delivery. J Control Release. 2016; 225: 133–139. PubMed Abstract | Publisher Full Text | Free Full Text

103. Pieretti JC, Rubilar O, Weller RB, et al.: Nitric oxide (NO) and nanoparticles - Potential small tools for the war against COVID-19 and other human coronaviruses. Virus Res. 2021; 291: 198202. PubMed Abstract | Publisher Full Text | Free Full Text

104. Contreras Lancheros CA, Pelegrino MT, Kian D, et al.: Selective Antiproteolysis Activity of Nitric Oxide-releasing Chitosan Nanoparticles Against Trypanosoma cruzi: Toxicity and Mechanisms of Action. Curr Pharm Des. 2018; 24(7): 830–9. PubMed Abstract | Publisher Full Text | Free Full Text

105. Pelegrino MT, Pieretti JC, Nakazato G, et al.: Chitosan chemically modified to deliver nitric oxide with high antibacterial activity. Nitric Oxide. 2021; 106: 24–34. PubMed Abstract | Publisher Full Text | Free Full Text

106.Sysel AM, Dunphy MJ, Bauer JA: Antimicrobial properties of diethyamine NONOate, a nitric oxide donor, against Escherichia coli: a pilot study. JAntibiot(Tokyo). 2021; 74(4): 260–5. PubMed Abstract | Publisher Full Text | Free Full Text

107. Goudie MJ, Pant J, Handa H: Liquid-infused nitric oxide-releasing (LINORe) silicone for decreased fouling, thrombosis, and infection of medical devices. Sci Rep. 2017; 7(1): 13623. PubMed Abstract | Publisher Full Text | Free Full Text

108. Pant J, Goudie MJ, Chai SM, et al.: Nitric oxide releasing vascular catheters for eradicating bacterial infection. J Biomater Res B Appl Biomater. 2018; 106(3): 2849–57. PubMed Abstract | Publisher Full Text | Free Full Text

109. Oronsky B, Knox S, Cabrales P, et al.: Desperate Times, Desperate Measures: The Case for RRx-001 in the Treatment of COVID-19. Semin Oncol. 2020; 47(5): 305–8. PubMed Abstract | Publisher Full Text | Free Full Text

110. Duncan C, Li H, Dykhuizen R, et al.: Protection against oral and gastrointestinal diseases: importance of dietary nitrate intake, oral nitrate reduction and enterosalivary nitrate circulation. Comp Biochem Physiol A Physiol. 1997; 118(4): 939–48. PubMed Abstract | Publisher Full Text

111. Hohmann B, Haselgruber R, Muller U, et al.: Sustaining elevated levels of nitrite in the oral cavity through consumption of nitrate-rich beetroot juice in young healthy adults reduces salivary pH. Nitric Oxide. 2016; 60: 10–15. Obese Res Clin Pract. PubMed Abstract | Publisher Full Text

112. Vanhatalo A, Blackwell JR, L’Heureux J, et al.: Nitrateresponsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radic Biol Med. 2018; 124: 21–30. PubMed Abstract | Publisher Full Text | Free Full Text

113. Burleigh MC, Liddle L, Monaghan C, et al.: Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria. Free Radic Biol Med. 2018; 120: 80–8. PubMed Abstract | Publisher Full Text | Free Full Text

114. Dougall HT, Smith L, Duncan C, et al.: The effect of amoxicillin on salivary nitrite concentrations: an important mechanism of adverse reactions? Br J Clin Pharmacol. 1995; 39(4): 460–2. PubMed Abstract | Publisher Full Text | Free Full Text

115. Dykhuizen RS, Fraser A, McKenzie H, et al.: Helicobacter pylori is killed by nitrite under acidic conditions. Gut. 1998; 42(3): 334–7. PubMed Abstract | Publisher Full Text | Free Full Text

116. Halliday GM, Byrne SN: An unexpected role: UVA-induced release of nitric oxide from skin may have unexpected health benefits. J Invest Dermatol. 2014; 134(1): 1791–4. PubMed Abstract | Publisher Full Text | Free Full Text

117. Weller RB: Sunlight Has Cardiovascular Benefits Independently of Vitamin D. Blood Purif. 2016; 41(1): 33–38. PubMed Abstract | Publisher Full Text | Free Full Text

118. Weller R, Ormerod AD, Hobson RP, et al.: A randomized trial of acidified nitrite cream in the treatment of tinea pedis. J Am Acad Dermatol. 1998; 38(4): 559–63. PubMed Abstract | Publisher Full Text | Free Full Text
128. Ormerod AD, White ML, Shah SA, et al.: Molluscum contagiosum effectively treated with a topical acidified nitrite liberating cream. Br J Dermatol. 1995; 114(1): 1051–3. PubMed Abstract | Publisher Full Text | Free Full Text

129. Davidson RN, Yardley V, Croft SL, et al.: A topical nitric oxide-generating therapy for cutaneous warts. J Hum Vaccin Immun. Trans R Soc Trop Med Hyg. 2000; 94(3): 319–22. PubMed Abstract | Publisher Full Text

130. Phillips R, Adjei O, Lucas S, et al.: Pilot randomized double-blind trial of Mycobacterium ulcerans disease (Buruli ulcer) with topical nitrogen oxides. Antimicrob Agents Chemother. 2004; 48(8): 2666–70. PubMed Abstract | Publisher Full Text | Free Full Text

131. Ormerod AD, Shah AA, Li H, et al.: A topical acidified nitrite for killing methicillin-resistant Staphylococcus aureus (MRSA) in contaminated wounds. BMC Res Notes. 2011; 4: 458. PubMed Abstract | Publisher Full Text | Free Full Text

132. Ormerod AD, van Voorst Vader PC, Majewski S, et al.: Evaluation of the efficacy, safety, and tolerability of 3 Dose Regimens of Topical Sodium Nitrite With Citric Acid in Patients With Anogenital Warts: A Randomized Clinical Trial. JAMA Dermatol. 2015; 151(9): 845–61. PubMed Abstract | Publisher Full Text

133. Concanon M, Keogh L, Stephenson J, et al.: A randomized comparative evaluation of clinical and home application to investigate the effectiveness of silver nitrate (AgNO). Int J Pharm Pract. 2017; 25(6): 421–8. PubMed Abstract | Publisher Full Text

134. Runer T, Cervin A, Lindberg S, et al.: Nitric oxide is a regulator of mucociliary activity in the upper respiratory tract. Otolaryngol Head Neck Surg. 1998; 119(3): 278–87. PubMed Abstract | Publisher Full Text

135. Ricciardolo FL: Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells. Free Radic Biol Med. 2014; 77: 307–16. PubMed Abstract | Publisher Full Text

136. Gomez FP, Amado VM, Roca J, et al.: Effect of nitrite oxide inhalation on gas exchange in acute severe pneumonia. Respir Physiol Neurobiol. 2013; 187(2): 157–63. PubMed Abstract | Publisher Full Text

137. Abou-Arab O, Huerre P, Debouves F, et al.: Inhaled nitric oxide for critically ill Covid-19 patients: a prospective study. Crit Care. 2020; 24(1): 645. PubMed Abstract | Publisher Full Text | Free Full Text

138. Lotz C, Mullenbach RM, Meybohm P, et al.: Effects of inhaled nitric oxide on COVID-19-induced ARDS - Is it worthwhile? Acta Anaesthesiol Scand. 2020. PubMed Abstract | Publisher Full Text

139. Zemke AC, Shiva S, Burns JL, et al.: Nitric oxide is a regulator of mucociliary activity in the upper respiratory tract. Otolaryngol Head Neck Surg. 1998; 119(3): 278–87. PubMed Abstract | Publisher Full Text

140. Phillips R, Adjei O, Lucas S, et al.: Pilot randomized double-blind trial of Mycobacterium ulcerans disease (Buruli ulcer) with topical nitrogen oxides. Antimicrob Agents Chemother. 2004; 48(8): 2666–70. PubMed Abstract | Publisher Full Text | Free Full Text

141. Ormerod AD, Shah AA, Li H, et al.: An observational prospective study of topical acidified nitrite for killing methicillin-resistant Staphylococcus aureus (MRSA) in contaminated wounds. BMC Res Notes. 2011; 4: 458. PubMed Abstract | Publisher Full Text | Free Full Text

142. Ormerod AD, van Voorst Vader PC, Majewski S, et al.: Evaluation of the efficacy, safety, and tolerability of 3 Dose Regimens of Topical Sodium Nitrite With Citric Acid in Patients With Anogenital Warts: A Randomized Clinical Trial. JAMA Dermatol. 2015; 151(9): 845–61. PubMed Abstract | Publisher Full Text

143. Concanon M, Keogh L, Stephenson J, et al.: A randomized comparative evaluation of clinical and home application to investigate the effectiveness of silver nitrate (AgNO). Int J Pharm Pract. 2017; 25(6): 421–8. PubMed Abstract | Publisher Full Text

144. Runer T, Cervin A, Lindberg S, et al.: Nitric oxide is a regulator of mucociliary activity in the upper respiratory tract. Otolaryngol Head Neck Surg. 1998; 119(3): 278–87. PubMed Abstract | Publisher Full Text

145. Ricciardolo FL: Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells. Free Radic Biol Med. 2014; 77: 307–16. PubMed Abstract | Publisher Full Text

146. Ormerod AD, van Voorst Vader PC, Majewski S, et al.: Evaluation of the efficacy, safety, and tolerability of 3 Dose Regimens of Topical Sodium Nitrite With Citric Acid in Patients With Anogenital Warts: A Randomized Clinical Trial. JAMA Dermatol. 2015; 151(9): 845–61. PubMed Abstract | Publisher Full Text
208. Fata-Hartley CL, Palmenberg AC, Tucker PC, Griffin DE, Choi S, Lin YL, Huang YL, Ma SH, Guidotti LG, McClary H, Loudis JM, Zheng S, De BP, Choudhary S, McMullin BB, Chittock DR, Roscoe DL, in vivo. PubMed Abstract

209. Antiviral action of dipyrindamole and its derivatives against influenza virus A. Acta Virol. 1982; 26(3): 125-9. PubMed Abstract

210. Synthesis increases mortality in Sindbis virus encephalitis. J Virol. 1999; 73(10): 8880-3. PubMed Abstract

211. Inhibition of influenza virus replication by nitric oxide. J Virol. 1999; 73(10): 8880-3. PubMed Abstract

212. Rheumatoid arthritis mediated by reactive nitrogen intermediates derived from L-arginine metabolism. J Immunol. (Baltimore, Md: 1950). 1993; 150(5): 1642-6. PubMed Abstract

213. The antimicrobial effect of nitric oxide on the bacteria that cause nosocomial pneumonia in mechanically ventilated patients in the intensive care unit. Respir Care. 2005; 50(1): 1451-6. PubMed Abstract

214. Effect of nitric oxide on synthesis of inorganic nitrogen oxides from L-arginine. Immunol. (Baltimore, Md: 1950). 1993; 150(5): 1642-6. PubMed Abstract

215. Production of nitric oxide by Hepatitis B virus replication in the livers of transgenic mice. J Exp Med. 2000; 191(7): 1247-52. PubMed Abstract

216. The arginine-dependent cytolytic mechanism plays a role in destruction of Naegleria fowleri amoebae by activated macrophages. J Immunol. (Baltimore, Md: 1950). 1993; 150(5): 1642-6. PubMed Abstract

217. Inactivation of Yersinia enterocolitica by nitric oxide. Infect Immun. 1992; 57(5): 1407-13. PubMed Abstract

218. Inhibition of hepatitis B virus replication in the livers of transgenic mice. J Exp Med. 2000; 191(7): 1247-52. PubMed Abstract

219. The microbicidal activity of nitric oxide against Mycobacterium avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J Immunol. 1993; 150(5): 1642-6. PubMed Abstract

220. The macrophage cytotoxicity against Entamoeba histolytica trophozoites is mediated by nitric oxide from L-arginine. J Immunol. (Baltimore, Md: 1950). 1992; 148(11): 3999-4005. PubMed Abstract

221. Reduced expression of nitric oxide synthase is associated with susceptibility to respiratory virus infections in cystic fibrosis. Immunol. 2000; 138(5): 619-30. PubMed Abstract

222. Inhibitory effect of nitric oxide on the replication of a murine retrovirus in vitro and in vivo. J Virol. 1995; 69(4): 2208-13. PubMed Abstract

223. Killing of Legionella pneumophila by nitric oxide in gamma-interferon-activated macrophages. J Leukoc Biol. 1992; 52(6): 625-9. PubMed Abstract

224. Focusing on the production of nitric oxide by rat alveolar macrophages stimulated by Cryptococcus.
neof ormans or Aspergillus fumigatus. Med Mycol. 1999; 37(3): 151–7.
PubMed Abstract

243. Lane TE, Wu-Hsieh BA, Howard DH: Antihistoplasma effect of activated mouse splenic macrophages involves production of reactive nitrogen intermediates. Infect Immun. 1994; 62(5): 1940–5.
PubMed Abstract | Publisher Full Text | Free Full Text

244. Downing JF, Kachel DL, Pasula R, et al.: Gamma interferon stimulates rat alveolar macrophages to kill Pneumocystis carinii by L-arginine- and tumor necrosis factor-dependent mechanisms. Infect Immun. 1999; 67(3): 1347–52.
PubMed Abstract | Publisher Full Text | Free Full Text

245. Cenci E, Romani L, Mencacci A, et al.: Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing of Candida albicans. Eur J Immunol. 1999; 29(5): 1034–8.
PubMed Abstract | Publisher Full Text

246. Alspaugh JA, Granger DL: Inhibition of Cryptococcus neoformans replication by nitrogen oxides supports the role of these molecules as effectors of macrophage-mediated cytostasis. Infect Immun. 1991; 59(7): 2291–6.
PubMed Abstract | Publisher Full Text | Free Full Text

247. Stasko N, McHale K, Hollenbach SJ, et al.: Nitric Oxide-Releasing Macromolecule Exhibits Broad-Spectrum Antifungal Activity and Utility as a Topical Treatment for Superficial Fungal Infections. Antimicrob Agents Chemother 2018; 62(7).
PubMed Abstract | Publisher Full Text | Free Full Text

248. Hall CN, Garthwaite J: What is the real physiological NO concentration in vivo? Nitric Oxide. 2009; 21(2): 92–103.
PubMed Abstract | Publisher Full Text | Free Full Text

249. Ohta K, Rosner G, Graf R: Nitric oxide generation from sodium nitroprusside and hydroxylamine in brain. Neuropeptide. 1997; 8(9-10): 2229–35.
PubMed Abstract | Publisher Full Text

250. Bátaí I, Kerényi M, Tekeres M: The growth of bacteria in intravenous glyceryl trinitrate and in sodium nitroprusside. Anesth Analg. 1999; 89(6): 1570–2.
PubMed Abstract | Publisher Full Text

251. Barraud N, Storey MV, Moore ZP, et al.: Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microbiotechnol. 2009; 2(3): 370–8.
PubMed Abstract | Publisher Full Text | Free Full Text

252. Miller C, McMullin B, Ghaffari A, et al.: Gaseous nitric oxide bactericidal activity retained during intermittent high-dose short duration exposure. Nitric Oxide. 2009; 20(1): 16–23.
PubMed Abstract | Publisher Full Text

253. Jones ML, Ganopolsky IG, Labbé A, et al.: A novel nitric oxide producing probiotic patch and its antimicrobial efficacy: preparation and in vitro analysis. Appl Microbiol Biotechnol. 2010; 87(2): 509–16.
PubMed Abstract | Publisher Full Text

254. Tonev M, Tonev E, Mentel R: The antiviral activity of dipyridamole. Acta Virol. 1977; 21(2): 146–50.
PubMed Abstract

255. Booth L, Roberts JL, Cash DR, et al.: GRP78/BIP/HSPS/Dna K is a universal therapeutic target for human disease. J Cell Physiol. 2015; 230(7): 1661–76.
PubMed Abstract | Publisher Full Text | Free Full Text

256. Roberts JL, Tavallali M, Nourbakhsh A, et al.: GRP78/Dna K Is a Target for Nexavar/Stivarga/Votrient in the Treatment of Human Malignancies, Viral Infections and Bacterial Diseases. J Cell Physiol. 2015; 230(10): 2552–78.
PubMed Abstract | Publisher Full Text | Free Full Text

257. Hardwick JB, Tucker AT, Wilks M, et al.: A novel method for the delivery of nitric oxide therapy to the skin of human subjects using a semi-permeable membrane. Clin Sci (Lond). 2001; 100(4): 395–400.
PubMed Abstract

258. Riccio DA, Schoenfisch MH: Nitric oxide release: part I. Macromolecular scaffolds. Chem Soc Rev. 2012; 41(10): 3731–41.
PubMed Abstract | Publisher Full Text | Free Full Text

259. Jin H, Yang L, Ahonen MJ, et al.: Nitric Oxide-Releasing Cyclodextrins. J Am Chem Soc. 2018; 140(43): 14178–84.
PubMed Abstract | Publisher Full Text | Free Full Text

260. Sadrearnahi Z, Nguyen TK, Namivandi-Zangeneh R, et al.: Recent advances in nitric oxide delivery for antimicrobial applications using polymer-based systems. J Mater Chem B. 2018; 6(19): 2945–59.
PubMed Abstract | Publisher Full Text

261. Sharma K, Sengupta K, Chakrapani H: Nitroreductase-activated nitric oxide (NO) prodrugs. Bioorg Med Chem Lett. 2013; 23(21): 5064–7.
PubMed Abstract | Publisher Full Text

262. Hibbard HA, Reynolds MM: Synthesis of novel nitroreductase enzyme-activated nitric oxide prodrugs to site-specifically kill bacteria. Bioorg Chem. 2015; 93: 103318.
PubMed Abstract | Publisher Full Text

263. Alvarez RA, Berra L, Gladwin MT: Home Nitric Oxide Therapy for COVID-19. Am J Respir Crit Care Med. 2020; 202(1): 16–20.
PubMed Abstract | Publisher Full Text | Free Full Text
Steffen B. Wiegand

1 Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
2 Department of Anesthesiology, Critical Care and Pain Medicine, University Hospital, LMU, Munich, Germany

Nitric oxide (NO) has been used in many different clinical settings over the years. The approval of inhaled NO for the treatment of pulmonary hypertension of the newborn has been a game changer and has since then saved many lives. NO has failed to prove a significant outcome improvement in patients suffering from Acute Respiratory Distress Syndrome (ARDS).

In this review, the authors have focused on the not-widely known broad antimicrobial role of NO. Although the antimicrobial effects are known for more than two decades, there has not been a systematic review of the topic. In addition to the well-written and compelling text, I have some suggestions, which I believe will add to the review.

Inhalation of NO is a main source of exogenous NO and has been used for almost three decades. For a long time, the administration of inhaled NO has been limited to mechanically ventilated patients in the ICU. However, in recent years the development of devices enabling pulsed generation of NO out of ambient air and devices developed during the surge of SARS-CoV2 allow the use in awake patients. A recently published review summarizes the different delivery methods of inhaled nitric oxide in intubated and non-intubated patients and should be added to this review 1.

Another important aspect worth mentioning in a separate paragraph is the use of inhaled nitric oxide in patients suffering from cystic fibrosis. These are a special patient group for studying new therapeutic approaches. The lungs of these patients are often colonized by multiresistant hard-to-treat gram negative bacteria such as burkholderia and pseudomonas species.2,3,4

In this context, it is worth mentioning that there seems to be some evidence that inhaled NO, in addition to its beneficial effect on mucociliary clearance, dispersal of biofilm, and bronchiolysis,
improves antibiotic susceptibility in resistant bacteria.5,6

One limitation of high dose NO treatment is the production of methemoglobin. However, there are different strategies to minimize methemoglobin levels. Intermittent delivery of inhaled NO helped to minimize metHb concentrations. In addition, in-vitro data suggest that intermittent delivery of high dose NO increases the overall antibacterial effect.7

Another approach is the co-administration of high dose NO and methylene blue, which reduces methemoglobin to hemoglobin and helps limit methemoglobin production, and allowed longer high dose NO administration.8

A very compelling clinical use might be the administration of inhaled NO as a prevention therapy for infections of the lung in explanted lungs in the context of a lung transplant. Ex-vivo perfusion and co-administration of high dose inhaled NO, similar to a high dose of Colistin e.g. during transportation might be a novel strategy to reduce complications after transplantation.9

\textbf{References}
1. Gianni S, Carroll RW, Kacmarek RM, Berra L: Inhaled Nitric Oxide Delivery Systems for Mechanically Ventilated and Nonintubated Patients: A Review.\textit{Respir Care}. 2021; \textbf{66} (6): 1021-1028 PubMed Abstract | Publisher Full Text
2. Deppisch C, Herrmann G, Graepel-Mainka U, Wirtz H, et al.: Gaseous nitric oxide to treat antibiotic resistant bacterial and fungal lung infections in patients with cystic fibrosis: a phase I clinical study.\textit{Infection}. 2016; \textbf{44} (4): 513-20 PubMed Abstract | Publisher Full Text
3. Yaacoby-Bianu K, Gur M, Toukan Y, Nir V, et al.: Compassionate Nitric Oxide Adjuvant Treatment of Persistent Mycobacterium Infection in Cystic Fibrosis Patients.\textit{Pediatr Infect Dis J}. \textbf{37} (4): 336-338 PubMed Abstract | Publisher Full Text
4. Bartley B, Gardner K, Spina S, Hurley B, et al.: High-Dose Inhaled Nitric Oxide as Adjunct Therapy in Cystic Fibrosis Targeting Burkholderia multivorans. \textit{Case Reports in Pediatrics}. 2020; \textbf{2020}: 1-6 Publisher Full Text
5. Rouillard K, Novak O, Pistorius A, Yang L, et al.: Exogenous Nitric Oxide Improves Antibiotic Susceptibility in Resistant Bacteria. \textit{ACS Infectious Diseases}. 2021; \textbf{7} (1): 23-33 Publisher Full Text
6. Deupree SM, Schoenfisch MH: Morphological analysis of the antimicrobial action of nitric oxide on gram-negative pathogens using atomic force microscopy.\textit{Acta Biomater}. 2009; \textbf{5} (5): 1405-15 PubMed Abstract | Publisher Full Text
7. Wiegand SB, Traeger L, Nguyen HK, Rouillard KR, et al.: Antimicrobial effects of nitric oxide in murine models of Klebsiella pneumonia.\textit{Redox Biol}. \textbf{39}: 101826 PubMed Abstract | Publisher Full Text
8. Michaelsen VS, Ribeiro RVP, Brambate E, Ali A, et al.: A novel pre-clinical strategy to deliver antimicrobial doses of inhaled nitric oxide.\textit{PLoS One}. 2021; \textbf{16} (10): e0258368 PubMed Abstract | Publisher Full Text
9. Michaelsen VS, Ribeiro RVP, Ali A, Wang A, et al.: Safety of continuous 12-hour delivery of antimicrobial doses of inhaled nitric oxide during ex vivo lung perfusion.\textit{J Thorac Cardiovasc Surg}. 2022; \textbf{163} (3): 841-849.e1 PubMed Abstract | Publisher Full Text

\textbf{Is the topic of the review discussed comprehensively in the context of the current literature?}
Yes
Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: ARDS, Immunology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 30 May 2022

https://doi.org/10.5256/f1000research.78470.r138631

© 2022 Mohammad Mir J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jan Mohammad Mir
Department of Chemistry, Islamic University of Science and Technology, Awantipora, India

The manuscript under review represents a study of potential interest. Though several review articles of similar themes have already been published. This article however introduces NO as a one-man army for broad-spectrum bioactivity. Therefore, I suggest the following modifications to make the article more interesting to the readership:

1. Introducing lines in the introduction must be about human physiological effects of NO, and later defense by microbes and defense against microbes using NO be highlighted.

2. NO is a pleiotropic signaling molecule: given in the introduction should be made more comprehensive, and distinctive by using "Gasotransmitter" concept as well (reference 1).

3. 2nd paragraph “As people age, endothelial-derived vascular NO levels fall and so vascular function declines causing relative endothelial dysfunction, pro-platelet, and pro-inflammatory effects, and increased smooth muscle proliferation." needs literature support.

4. NO is a small diatomic hydrophobic colourless gas that diffuses easily and has a short half-life. Specify this line...

5. "In reality, the chemistry of NO is more complex and it exists in several redox forms:
nitrosonium cation (NO\(^+\)), NO (NO\(^*\)), and nitroxyl anion NO\(^{--}\)……

Discuss metabolic or biological fate only.

6. This part is suitable for introduction “As an inorganic molecule, its central role in biology as a signalling molecule was only discovered in the 1980s,\(^{24}\) the identification of which led to the Nobel Prize for Physiology and Medicine in 1998.\(^{25}\) Ironically, the medicinal use of NO in the form of glyceryl trinitrate (GTN) for angina prophylaxis antedates the modern understanding of the biological synthesis and role of NO by more than a century.\(^{26}\)"

7. The chemistry and biology section needs updating.

8. The most important/major modifications: give the colourful schemes showing the mechanism of action of NO against the target diseases. Also, the introduction, main discussion, and conclusion must be redrawn to highlight "NO as a treatment option", the clinical trials discussion, the use of several NORMS (NORM-1, NORM-2, etc), the effect of NO-carriage system, Natural NO-sources, synthetic NO-sources with limitations, Inorganic versus organic forms, etc (eg., in the review publications as given\(^2,^3\).

References
1. Mir J, Maurya R: A gentle introduction to gasotransmitters with special reference to nitric oxide: biological and chemical implications. Reviews in Inorganic Chemistry. 2018; 38 (4): 193-220 Publisher Full Text
2. Mir JM, Maurya RC: Nitric oxide boosters as defensive agents against COVID-19 infection: an opinion. J Biomol Struct Dyn. 40 (9): 4285-4291 PubMed Abstract | Publisher Full Text
3. Mir J, Maurya R: Nitric oxide as a therapeutic option for COVID-19 treatment: a concise perspective. New Journal of Chemistry. 2021; 45 (4): 1774-1784 Publisher Full Text

Is the topic of the review discussed comprehensively in the context of the current literature?
No

Are all factual statements correct and adequately supported by citations?
Partly

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Coordination, Bioinorganic and Computational Chemistry.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Reviewer Report 25 October 2021
https://doi.org/10.5256/f1000research.78470.r97610

© 2021 Kashfi K. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Khosrow Kashfi
Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA

The authors have adequately addressed my original concerns. The revised submission is acceptable.

Is the topic of the review discussed comprehensively in the context of the current literature?
Partly

Are all factual statements correct and adequately supported by citations?
Partly

Is the review written in accessible language?
Partly

Are the conclusions drawn appropriate in the context of the current research literature?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Pharmacologist with a strong background in biochemistry and intermediary metabolism.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1
Reviewer Report 27 September 2021
https://doi.org/10.5256/f1000research.54420.r93464
Nitric oxide (NO) is one of the ten smallest molecules found in nature. It is released intracellularly when L-arginine is oxidized by the enzyme nitric oxide synthase (NOS), of which there are three isoforms. Neuronal (nNOS, NOS1) and endothelial (eNOS, NOS3) are constitutive calcium-dependent forms of the enzyme regulated by negative feedback and release low fluxes of NO over a short period regulating neural and vascular function, respectively. The third isoform (iNOS, NOS2) is calcium-independent, inducible, produces supra-physiological concentrations of NO, and is involved in immune surveillance. NO can also be produced through the reduction of nitrite/nitrate under low oxygen conditions.

NO has important roles in normal physiology, exemplified by regulation of vascular relaxation, control of inflammation by inhibiting NF-κB activation, and suppression of pro-inflammatory mediators in mast cells, macrophages, and vascular smooth muscles. In addition, NO regulates blood flow, modulates platelet and leukocyte activation, adhesion, and aggregation.

In this review, the authors have focused on NO's role in defense against multiple microbial pathogens [including viruses, bacteria, SARS-CoV (COVID-19), protozoa, and fungi/yeast]. In addition, they have highlighted the possibility that exogenous NO might have therapeutic potential as a broad-spectrum antimicrobial. Finally, they have also summarized various NO donating/releasing platforms.

In general, I do not think that there is a "right" or "wrong" way of presenting a review, as long as it is accurate, balanced, and gives adequate historical background. I found this review to be quite compelling and of interest to those starting in this field and an update for the seasoned investigators. In short, it is an authoritative review. For the novice, the review gives the directions for further in-depth reading. Finally, I would like to make some suggestions to the text for the authors to consider as I believe it would add to the overall body of this work.

- Throughout the text, when you talk about “NO may be taken as dietary substrate (inorganic nitrate, L-arginine)....", please also discuss L-citrulline as a source of NO. We recently reviewed this topic and you may want to use this review as a source to expand on this.

- In Table 1, please add L-citrulline as a substrate and give the appropriate biochemical equation.

- Under Therapeutic inorganic nitrite and nitrate, please consider adding the use of nitrite/nitrate in animal models of wound healing. Refer to Afzali et al. 2020 for an introduction to this.

- Under novel nitric oxide agents, please add RRx-001, which is a novel NO modulator.
As summarized in the review, dietary intake of foods such as beetroot that are rich as a source of nitrate have many health benefits. And as mentioned, "Dietary nitrate has profound metabolic effects and appears to have the potential for reversing the metabolic syndrome and have anti-diabetic effects.". However, although the beneficial metabolic effects of inorganic nitrate and nitrite in type 2 diabetes mellitus have been documented in animal experiments, this is not the case for humans. Perhaps this should be mentioned on page 18 of the review.

References
1. Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A: Endogenous flux of nitric oxide: Citrulline is preferred to Arginine. Acta Physiol (Oxf). 231 (3): e13572 PubMed Abstract | Publisher Full Text
2. Afzali H, Khaksari M, Norouzirad R, Jeddi S, et al.: Acidified nitrite improves wound healing in type 2 diabetic rats: Role of oxidative stress and inflammation. Nitric Oxide. 2020; 103: 20-28 Publisher Full Text
3. Yalcin O, Oronsky B, Carvalho Lj, Kuypers FA, et al.: From METS to malaria: RRx-001, a multifaceted anticancer agent with activity in cerebral malaria. Malar J. 2015; 14: 218 PubMed Abstract | Publisher Full Text
4. Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A: Lost-in-Translation of Metabolic Effects of Inorganic Nitrate in Type 2 Diabetes: Is Ascorbic Acid the Answer?. Int J Mol Sci. 2021; 22 (9). PubMed Abstract | Publisher Full Text

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Pharmacologist with a strong background in biochemistry and intermediary metabolism.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 14 Oct 2021
Philip Bath, University of Nottingham, Nottingham, UK

Reviewer 1 responses

We thank Dr. Kashfi for his most helpful and considered comments and respond to each as below.

In this review, the authors have focused on NO's role in defense against multiple microbial pathogens [including viruses, bacteria, SARS-CoV (COVID-19), protozoa, and fungi/yeast]. In addition, they have highlighted the possibility that exogenous NO might have therapeutic potential as a broad-spectrum antimicrobial. Finally, they have also summarized various NO donating/releasing platforms.

In general, I do not think that there is a "right" or "wrong" way of presenting a review, as long as it is accurate, balanced, and gives adequate historical background. I found this review to be quite compelling and of interest to those starting in this field and an update for the seasoned investigators. In short, it is an authoritative review. For the novice, the review gives the directions for further in-depth reading. Finally, I would like to make some suggestions to the text for the authors to consider as I believe it would add to the overall body of this work.

- Throughout the text, when you talk about “NO may be taken as dietary substrate (inorganic nitrate, L-arginine)...”, please also discuss L-citrulline as a source of NO. We recently reviewed this topic, and you may want to use this review as a source to expand on this.

 We have added L-citrulline wherever dietary L-arginine is mentioned (abstract, text and tables), and added two references: Flam et al. 2007, Bahadoran et al. 2021.

- In Table 1, please add L-citrulline as a substrate and give the appropriate biochemical equation.

 We have added L-citrulline as a substrate and the relevant equations.

- Under Therapeutic inorganic nitrite and nitrate, please consider adding the use of nitrite/nitrate in animal models of wound healing. Refer to Afzali et al. 2020 for an introduction to this.

 We have added a comment relating to the reference of Afzali et al. 2020, and the reference itself.

- Under novel nitric oxide agents, please add RRx-001, which is a novel NO modulator.

 We have added a comment relating to RRx-001 using a reference from Oronsky et al. 2020, and the reference itself.

- As summarized in the review, dietary intake of foods such as beetroot that are rich as a source of nitrate have many health benefits. And as mentioned, "Dietary nitrate has profound metabolic effects and appears to have the potential for reversing the metabolic syndrome and have anti-diabetic effects.". However, although the beneficial metabolic effects of inorganic nitrate and nitrite in type 2 diabetes mellitus have been documented in animal experiments, this is not the case for humans. Perhaps this should be mentioned on page 18 of the review.

 We have added two references relating to beetroot juice improving insulin sensitivity and reducing blood glucose (Wootton et al. 2014, Beals et al. 2017).
Comments on this article

Version 1

Author Response 19 Oct 2021

Philip Bath, University of Nottingham, Nottingham, UK

We thank Dr Taylor-Robinson for his comment reminding us of the importance of malaria and long history of research into the importance of nitric oxide with it having both protective and anti-immunological effects; we have added two references for this (Taylor-Robinson & Smith 1999, Shikani et al. 2012).

Competing Interests: Response from Philip Bath, lead/coordinating author.

Reader Comment 12 Jul 2021

Andrew Taylor-Robinson, Central Queensland University, Brisbane, Australia

While this is an otherwise authoritative review, an important oversight is the only one brief mention afforded to the role of nitric oxide (NO) and its various derivatives in host immunity to the malaria parasite, *Plasmodium*, a citation from as recent as 2013 (ref. 228).

Much is known of the protective - and pathological - effects triggered by NO metabolites in the mammalian immune response to asexual plasmodia, both during uncomplicated infection of the peripheral blood (PB) and cerebral malaria (CM) sequelae of parasitised erythrocyte sequestration.

Investigation of NO during malaria infection extends back to the late 1980s and throughout the 1990s, principally in murine models including *P. berghei* (mostly for CM) and *P. chabaudi* (mostly for PB). In many aspects, the pioneering research of the groups of Langhorne, Phillips, Stephenson, Clark and Hunt, among others, led the field for what was then known about the role of NO in immunity to protozoan infection, as well as more broadly.

The implications of this collective body of work have been extrapolated extensively to other intracellular pathogens as they were reached by exploiting a tractable system for dissecting the evidently subtle balance between immune protection and immunopathology. The main findings remain very relevant to a contemporary consideration of the part played by NO in prevention and treatment of infectious diseases.

Competing Interests: I declare no competing interests.
The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com