SPECTRAL RADIUS MINUS AVERAGE DEGREE: A BETTER Bound

FELIX GOLDBERG

Abstract. Collatz and Sinogowitz had proposed to measure the departure of a graph G from regularity by the difference of the (adjacency) spectral radius and the average degree: $\epsilon(G) = \rho(G) - \frac{2m}{n}$. We give here new lower bounds on this quantity, which improve upon the currently known ones.

1. Introduction

1.1. Motivation. Let G be a graph that has n vertices and m edges. The average degree is $\bar{d} = \frac{2m}{n}$. Suppose now that G has adjacency matrix A and let us denote its spectral radius (i.e. the largest modulus of an eigenvalue) by ρ. A classic 1957 result of Collatz and Sinogowitz is:

Theorem 1. [7] Let G be a graph with average degree \bar{d} and spectral radius ρ. Then

$$\rho \geq \bar{d}$$

and equality holds if and only if G is regular.

Theorem 1 has served as the departure point for several interesting inquiries. As one particularly impressive recent example we may mention the independent discovery by Babai and Guiduli [4] and by Nikiforov [17] of a spectral counterpart to the classic Kővari-Sós-Turán [13] bound for the Zarankiewicz problem.

Another point of view inspired by Theorem 1 is to consider the difference

$$\epsilon(G) = \rho - \bar{d}$$

as a measure for the irregularity of the graph G. This irregularity measure has been studied by various authors [3, 5, 6, 9, 15, 16].

Date: July 15, 2013.

1991 Mathematics Subject Classification. 05C07, 05C50, 15A42, 26D20, 26D15.

Key words and phrases. irregularity, adjacency matrix, average degree, spectral radius.

This research was supported by the Israel Science Foundation (grant number 862/10.)
1.2. A brief digression about irregularity measures. The simplest irregularity measure is that provided by the difference of the maximum and minimum degree (denoted, by Δ and δ, respectively):

$$\Delta - \delta.$$

Though very simply defined and thus perhaps considered by some as too crude to be of use, this measure is actually quite useful in some contexts (cf. [20] for an example).

Let us now introduce yet another irregularity measure, the variance of degrees:

$$\text{var}(G) = \frac{1}{n} \sum_{u \in V(G)} \left(d_u - \frac{2m}{n} \right)^2.$$

Bell [5] compares $\epsilon(G)$ and $\text{var}(G)$ for various classes of graphs.

We wish to remark that the following relationship between $\Delta - \delta$ and $\text{var}(G)$ is easily established by applying inequalities due to Popoviciu (cf. [18, (1.4)]) and Nagy (cf. [18, (1.5)]):

$$\frac{(\Delta - \delta)^2}{2n} \leq \text{var}(G) \leq \frac{(\Delta - \delta)^2}{4n}.$$

The upper bound in [1] has also been observed in [8, p. 62].

For more alternative notions of graph irregularity we refer the interested reader to [1, 2, 8].

1.3. Main result. Our purpose in this paper is to improve the extant lower bounds for $\epsilon(G)$, using rather elementary methods. The best bound to be found in the literature is due to Nikiforov [15]:

Theorem 2. [15] For every graph G,

$$\epsilon(G) \geq \frac{\text{var}(G)}{\sqrt{8m}}.$$

For example, as can be easily ascertained using [1], it implies the following bound obtained by Cioabă and Gregory in [6]:

Corollary 1. [6, Corollary 3] For every graph G,

$$\epsilon(G) \geq \frac{(\Delta - \delta)^2}{4n\Delta}.$$

We shall prove, using elementary methods, the following new bound:

Theorem 3. For every graph G,

$$\epsilon(G) \geq \frac{\text{var}(G)\sqrt{n}}{\sqrt{8m\Delta}}.$$

As $n > \Delta$, the new bound of [3] is always strictly better than [2].
2. Subregular graphs

There is one very special case which merits separate treatment.

Definition 1. [16] Let G be a graph with $\Delta - \delta = 1$. If there is either exactly one vertex of degree Δ or exactly one vertex of degree $\Delta - 1$, then G is called subregular.

Clearly, subregular graphs are very close to being regular. We will find it convenient to distinguish between their two varieties thus:

Definition 2. Let G be a subregular graph.

- If there is exactly one vertex of degree Δ, G is high subregular.
- If there is exactly one vertex of degree $\Delta - 1$, G is low subregular.

For subregular graphs the bounds discussed so far yield estimates which are far too pessimistic. However, there is another bound due to Cioabă and Gregory [6] which performs better in this case.

Theorem 4. [6]

\[
\epsilon(G) \geq \frac{1}{n(\Delta + 2)}.
\]

We will prove:

Theorem 5. Let G be a connected subregular graph on $n \geq 7$ vertices and with maximum degree Δ. Then:

- If G is high subregular, then:

\[
\epsilon(G) \geq \frac{n^2 - 2n + 3}{n^3 \Delta}.
\]

- If G is low subregular, then:

\[
\epsilon(G) \geq \frac{2n^2 - 4n - 3}{2n^3(\Delta - 1 + \frac{1}{\Delta})}.
\]

Example 1. Consider the high subregular graph G depicted in Figure 1. We have the following lower bounds for $\epsilon(G)$:

$\epsilon(G)$	(2)	(3)	(4)	(5)	
	0.0461	0.0137	0.0209	0.0286	0.0364

3. Proof of Theorem 3

We begin by collecting a number of lemmata.
Lemma 1 (Hofmeister [10]).

\[\rho \geq \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2}. \]

Lemma 2.

\[\sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2} \geq \frac{2m}{n}. \]

Proof. Cauchy-Shwarz. \qed

Lemma 3. [15, p. 352]

\[\frac{1}{n} \sum_{i=1}^{n} d_i^2 - \left(\frac{2m}{n} \right)^2 = \text{var}(G). \]

Let \(A(G) \) and \(D(G) \) be the adjacency matrix and the diagonal matrix of vertex degrees, respectively, of \(G \). Then \(Q(G) = A(G) + D(G) \) is called the \textit{signless Laplacian matrix}. The following claim is stated by Liu and Liu [14] only for connected graphs but in fact their proof does not use the connectedness assumption.

Lemma 4. [14, Theorem 2.1] Let \(G \) be a graph. If \(\rho \) is the spectral radius of \(Q(G) \), then

\[\sum_{i=1}^{n} d_i^2 \leq m \rho. \]
Lemma 5. [14, Lemma 2.4] Let G be a graph. If ρ is the spectral radius of $Q(G)$, then
\[\rho \leq 2\Delta. \]

We can now easily deduce:

Lemma 6. Let G be a graph. Then
\[\sum_{i=1}^{n} d_i^2 \leq 2m\Delta. \]

Proof of Theorem 3 First of all, in light of Lemma 1 and 2 we have:
\[\epsilon(G) = \rho(G) - \frac{2m}{n} \geq \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2 - \frac{2m}{n}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2 - \left(\frac{2m}{n}\right)^2} \]
\[\geq \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2 + \frac{2m}{n}}. \]

Now apply Lemma 3 and then Lemma 2 once more:
\[\epsilon(G) \geq \frac{1}{n} \sum_{i=1}^{n} d_i^2 - \left(\frac{2m}{n}\right)^2 \leq \frac{\text{var}(G)}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2 + \frac{2m}{n}}} \]
\[\geq \frac{\text{var}(G)}{2\sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2}}. \]

Finally, use Lemma 6
\[\epsilon(G) \geq \frac{\text{var}(G)}{2\sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2}} \geq \frac{\text{var}(G)}{2\sqrt{\frac{2m\Delta}{n}}} = \frac{\text{var}(G)\sqrt{n}}{\sqrt{8m\Delta}}. \]

\[\square \]

4. Proof of Theorem 5

Our approach will be similar to that taken in the proof of Theorem 3 but instead of Hofmeister’s bound for ρ we shall need a more powerful one, due to Yu, Lu, and Tian [19]. To state it, we define the 2-degree t_i of the vertex v_i as the sum of the degrees of the vertices adjacent to v_i. That is:
\[t_i = \sum_{j \sim i} d_j. \]

Lemma 7. [19] Let G be a connected graph. Then,
\[\rho \geq \sqrt{\frac{\sum_{i=1}^{n} t_i^2}{\sum_{i=1}^{n} d_i^2}} \geq d. \]

Lemma 8. Let G be a high subregular graph on n vertices and with maximum degree Δ. Then $\Delta \leq n - 2$.

Proof. Suppose that $\Delta = n - 1$. Then we have that all vertices but one are of degree $n - 1$. But this means that the remaining vertex has $n - 1$ neibours as well. This is a contradiction. \hfill \Box

Lemma 9. \cite{12} Let G be a connected graph on n vertices and m edges, with maximum degree Δ and minimum degree δ. Then,

$$\rho \leq \frac{\delta - 1 + \sqrt{(\delta + 1)^2 + 4(2m - \delta n)}}{2}.$$

Corollary 2. Let G be a connected low subregular graph with maximum degree Δ. Then

$$\rho \leq \Delta - 1 + \frac{1}{\Delta}.$$

Proof. By Lemma\cite{9} we have

$$\rho \leq \frac{\Delta - 2 + \sqrt{\Delta^2 + 4}}{2}.$$

Our conclusion follows by observing that $\Delta^2 + 4 \leq (\Delta + \frac{2}{\Delta})^2$. \hfill \Box

Proof of Theorem \cite{5}

Case: G is high subregular

Let v_1 be the single vertex of degree $\Delta - 1$ and let v_2, \ldots, v_Δ be its neighbours. Then we have:

$$t_1 = \Delta(\Delta - 1),$$

$$t_i = \Delta^2 - 1, \quad 2 \leq i \leq \Delta,$$

$$t_i = \Delta^2, \quad \Delta + 1 \leq i \leq n.$$

Applying Lemma\cite{7} we get:

$$\rho \geq \sqrt{\frac{\Delta^2(\Delta - 1)^2 + (\Delta - 1)(\Delta^2 - 1)^2 + (n - \Delta)\Delta^4}{(\Delta - 1)^2 + (n - 1)\Delta^2}} =$$

$$= \sqrt{\frac{n\Delta^4 - 4\Delta^3 + 3\Delta^2 + \Delta - 1}{n\Delta^2 - 2\Delta + 1}}.$$

The average degree in this case is:

$$d = \Delta - \frac{1}{n}.$$

Consider now the following quantity:

$$L(n, \Delta) = \frac{n\Delta^4 - 4\Delta^3 + 3\Delta^2 + \Delta - 1}{n\Delta^2 - 2\Delta + 1} - \left(\Delta - \frac{1}{n}\right)^2.$$
Algebraic manipulation yields:

\[L(n, \Delta) = \frac{(2\Delta^2 + \Delta - 1)n^2 + (2\Delta - 5\Delta^2)n + 2\Delta - 1}{n^2(n\Delta^2 - 2\Delta + 1)}. \]

This expression is hardly manageable, but it simplifies dramatically upon observing that \(L(n, \Delta) \) is a non-increasing function of \(\Delta \) (this is verified by taking the partial derivative with respect to \(\Delta \), we omit the simple but tedious details). Therefore, using Lemma 8 we have:

\[L(n, \Delta) \geq L(n, n-2) = \frac{2n^4 - 12n^3 + 27n^2 - 22n - 5}{n^5 - 4n^4 + 2n^3 + 5n^2} \geq \frac{1}{n^2}(2n-4+\frac{6}{n}). \]

Now we can complete the argument, using the well-known fact that \(\Delta \geq \rho \):

\[\epsilon(G) = \rho - \bar{d} = \frac{\rho^2 - \bar{d}^2}{\rho + \bar{d}} \geq \frac{L(n, \Delta)}{\rho + \bar{d}} \geq \frac{1}{n^2}(2n-4+\frac{6}{n}) = \frac{n^2 - 2n + 3}{n^3\Delta}. \]

Case: G is low subregular

As before, let \(v_1 \) be the single vertex of degree \(\Delta \). We have:

\[
\begin{align*}
t_1 &= \Delta(\Delta - 1), \\
t_i &= \Delta^2 - 2\Delta + 2, & 2 \leq i \leq \Delta + 1, \\
t_i &= (\Delta - 1)^2, & \Delta + 2 \leq i \leq n.
\end{align*}
\]

Thus

\[\rho \geq \sqrt{\frac{\Delta^2(\Delta - 1)^2 + \Delta(\Delta^2 - 2\Delta + 2)^2 + (n - \Delta - 1)(\Delta - 1)^4}{\Delta^2 + (\Delta - 1)^2(n - 1)}} = \]

\[= \sqrt{\frac{n\Delta^4 - (4n - 4)\Delta^3 + (6n - 9)\Delta^2 - (4n - 7)\Delta + n - 1}{n\Delta^2 - (2n - 2)\Delta + n - 1}}. \]

Keeping in mind that \(\bar{d} = \Delta - 1 + \frac{1}{n} \) we define \(L(n, \Delta) \) to be:

\[
L(n, \Delta) = \frac{n\Delta^4 - (4n - 4)\Delta^3 + (6n - 9)\Delta^2 - (4n - 7)\Delta + n - 1}{n\Delta^2 - (2n - 2)\Delta + n - 1} - \left(\Delta - 1 + \frac{1}{n}\right)^2.
\]

After simplification we get:

\[
L(n, \Delta) = \frac{(2\Delta^2 - 3\Delta + 2)n^2 - (5\Delta^2 - 8\Delta + 3)n - 2\Delta + 1}{(\Delta^2 - 2\Delta + 1)n^3 + (2\Delta - 1)n^2}.
\]
This function is also non-increasing with respect to Δ and thus we have:

$$L(n, \Delta) \geq L(n, n-1) = \frac{2n^3 - 10n^2 + 15n - 3}{n^2(n^2 - 3n + 3)} \geq \frac{1}{n^2}(2n - 4 - \frac{3}{n}).$$

To complete the argument we resort to Corollary 2:

$$\epsilon(G) = \rho - \delta = \frac{\rho^2 - \delta^2}{\rho + \delta} \geq \frac{L(n, \Delta)}{\rho + \delta} \geq \frac{1}{n^2}(2n - 4 - \frac{3}{n}) \geq \frac{2n^2 - 4n - 3}{2n^3(\Delta - 1 + \frac{1}{\Delta})}.$$

\[□ \]

5. ADDENDUM

Hong [11] raises the following problem (Problem 3 in his list):

Question 1. Let G be the graph with the smallest value of $\epsilon(G)$ among non-regular graphs with n vertices and m edges. Is it true that $\Delta(G) - \delta(G) = 1$?

We remark that Bell [5] has solved the problem of determining the graph with n vertices and m edges that has maximal $\epsilon(G)$.

References

[1] Y. Alavi, G. Chartrand, F. R. K. Chung, P. Erdős, R. L. Graham, and O. R. Oellermann. Highly irregular graphs. *J. Graph Theory*, 11(2):235–249, 1987.
[2] M. O. Albertson. The irregularity of a graph. *Ars Comb.*, 46:219–225, 1997.
[3] M. Aouchiche, F. K. Bell, D. Cvetković, P. Hansen, P. Rowlinson, S. K. Simić, and D. Stevanović. Variable neighborhood search for extremal graphs. XVI. Some conjectures related to the largest eigenvalue of a graph. *European J. Oper. Res.*, 191:661–676, 2008.
[4] L. Babai and B. Guiduli. Spectral extrema for graphs: the Zarankiewicz problem. *Electron. J. Comb.*, 16(1):R123, 2009.
[5] F. K. Bell. Eigenvalues and degree deviation in graphs. *Linear Algebra Appl.*, 161:45–54, 1992.
[6] S. M. Cioabă and D. A. Gregory. Large matchings from eigenvalues. *Linear Algebra Appl.*, 422(1):308–317, 2007.
[7] L. Collatz and U. Sinogowitz. Spekter endlicher Grafen. *Abh. Math. Sem. Univ. Hamburg*, 21:63–77, 1957.
[8] C. Elphick and P. Wocjan. New measures of graph irregularity. *Electron. J. Graph Theory Appl.*, 2(1):52–65, 2014.
[9] F. Goldberg. New results on eigenvalues and degree deviation. http://arxiv.org/abs/1403.2629, 2014.
[10] M. Hofmeister. Spectral radius and degree sequence. *Math. Nachr.*, 139:37–44, 1988.
[11] Y. Hong. Bounds of eigenvalues of graphs. *Discrete Math.*, 123(1–3):65–74, 1993.
Y. Hong, J.-L. Shu, and K. Fang. A sharp upper bound of the spectral radius of graphs. *J. Combin. Theory Ser. B*, 81(2):177–183, 2001.

T. Kővári, V. T. Sós, and P. Turán. On a problem of K. Zarankiewicz. *Colloq. Math.*, 3:50–57, 1954.

M. Liu and B. Liu. New sharp upper bounds for the first Zagreb index. *MATCH Commun. Math. Comput. Chem.*, 62(3):689–698, 2009.

V. Nikiforov. Eigenvalues and degree deviation in graphs. *Linear Algebra Appl.*, 414(1):347–360, 2006.

V. Nikiforov. Bounds on graph eigenvalues II. *Linear Algebra Appl.*, 427(2–3):183–189, 2007.

V. Nikiforov. A contribution to the Zarankiewicz problem. *Linear Algebra Appl.*, 432(6):1405–1411, 2010.

R. Sharma, M. Gupta, and G. Kapoor. Some better bounds on the variance with applications. *J. Math. Inequal.*, 4(3):355–363, 2010.

A. Yu, M. Lu, and F. Tian. On the spectral radius of graphs. *Linear Algebra Appl.*, 387:41–49, 2004.

R. Yuster. Maximum matching in regular and almost regular graphs. *Algorithmica*, 66(1):87–92, 2013.

Caesarea-Rothschild Institute, University of Haifa, Haifa, Israel

E-mail address: felix.goldberg@gmail.com