Irvingia gabonensis fat: nutritional properties and effect of increasing amounts on the growth and lipid metabolism of young rats *wistar* sp

Nangue *et al.*
Irvingia gabonensis fat: nutritional properties and effect of increasing amounts on the growth and lipid metabolism of young rats wistar sp

Thierry Joël Nangue1*, Hilaire Macaire Womeni1, Felicite Tchouanguep Mbiapo1, Jacques Fanni2, Linder Michel2

Abstract

Background: Dietary saturated fatty acids (SFAs) are generally considered to increase plasma cholesterol. It has also been claimed that they increase cardio-vascular disease, although the claim that some of SFAs can increase HDL-cholesterol is poorly documented. Irvingia gabonensis kernels after being dried and crushed they are generally used to prepare a sticky and aromatic soup very much consumed in Cameroun and West Africa countries. This study was therefore aimed at evaluating the effects of dika nut fat on the growing and lipids metabolism of young rats.

Method: For The nutritional evaluation related to the performances of growth and the analysis of increasing amounts of dika nut fat (0; 5.1; 7.34 and 13.48%) in young rats of wistar sp. The animals were taken individually out of metabolic cage for each ration 5 repetitions per sex (males and females) were carried out.

Results: The results obtained during the 3 weeks of treatment shows that the performances of consumption were positive. A highly significant increase (P < 0,01) of serum cholesterol and triglycerides in the high dose fat groups (13,48%) of dika fat were observed compared to control groups. However, this rise of cholesterol is due to that of HDL-cholesterol without any change in the quantity of LDL-Receptor. In parallel, the weight of the vital organ did not vary much compared to control, except for males where we observed a significantly reduction (P < 0,01) in the weight of the liver for the three diet tests.

Conclusion: This study shows that the increasing amount of dika nut fat alter significantly cholesterol and triglyceride at high dose diet, but also increase HDL-cholesterol.

1 - Background

For a long time the populations of the forest were dea-denied on the fact the forest is a layer of wild fruit, but also a fish pond of many tropical produce edible fruits and nuts with potential as new crop plants, which can be easily domesticated and exploited. A large variety of oilsseeds and pulses, including groundnuts, melon and Irvingia gabonensis seeds respectively grown well in Cameroun, forming part of the traditional diets of many people.

Irvingia gabonensis (Aubry Lecomte ex O’Rorket) is a commercially and indigenous fruit tree of West and Central Africa, which has been identified as the most important tree for domestication. The kernels of Irvingia gabonensis are widely marketed domestically, nationally and between these countries [1]. In Cameroon the kernels are used as condiment and are highly valued for their food thickening properties to prepare “ndo’o” or “draw soup” as well as groundnut or njansang (Ricinodendron heudelotii) [2]. The chemical properties of the kernels have been the subject of earlier studies [3]. But the majority of studies are base on the ethno-botanic character of Irvingia gabonensis tree. Works available shown that, seeds contain protein and fat [4]. Fat is the most abundant component of kernels (70%) particularly two saturated fatty acids: 51.87% of myristic acid (C14:0) and 38.44% of lauric acid (C12:0)[5].

The role of dietary saturated fatty acids on the plasma level and low-density lipoprotein (LDL) metabolism,
have been investigated mainly in animals and humans [6,7]. Saturated fatty acids, like myristic acid is generally considered to induce the increase in plasma cholesterol, especially in the LDL-cholesterol concentration [8]. In most study which lead to this conclusion lauric, myristic and palmitic acids such as dairy fat and tropical oils, were considered the most noxious of fats. It is well known that this various fatty acids in the diet exert different affects on serum lipid and lipoprotein concentrations. Saturated fatty acids are thought to increase cardiovascular disease risk because they elevate serum total and LDL-cholesterol concentrations relative to monounsaturated and polyunsaturated [9]. More recently, several studies on a variety of N-myristoylated protein suggest that myristic acid may have different roles when attached to different acceptor proteins [10]. It’s most obvious and simple function is contributing to the association of modified cytosolic protein face of membranes. Moreover, Loison [11] reported that, myristic acid seems to be also an important cell component since numerous proteins need to be myristoylated and structural positioning. Dika nut fat has recently become popular in the West and central African sub-region due to their high fat and protein content. Despite, the fact that kernels are rich in oil they are not exploited yet on a large scale beside the high-output. Conventional sources such as the palm tree oil or leguminous plant seeds. Moreover, the oil of *Irvingia gabonensis* is 90% made up of saturated fatty acid and knowing that saturated fat increases the cholesterol concentration, in particular LDL-cholesterol and expose us to the risks of the cardiovascular diseases [9]. The aim of this study was to test the hypothesis that dika nut fat (5.14 and 13.48%) has no undesirable effects on the plasma cholesterol of rats.

2 - Materials and methods

2.1. Chemicals

Kits for cholesterol, triglyceride, HDL-Cholesterol and transaminase assays were purchased from Boehringer-Manheim (Meylan, France) (CHOD-PAP and GPO-PAP methods) and from Teco diagnostics, Anhein (USA). LDL-cholesterol was calculated by methods of Friedewald and Fredrickson. Whereas serum and hepatic proteins was determined used the Biuret method [12].

2.2. Oil extraction and fatty acid analysis

Wild mango kernels were bought at Mfoundi market in the city of Yaoundé (Cameroon). Once at the laboratory of nutrition and food security of the University of Dschang, the teguments and the impurities on kernel was removed using hands, then crushed and the flour was macerated in hexane during 48 hours and filtered with Wathman paper. The hexane was eliminated with the rotary evaporator and oil collected and preserved at the refrigerator until use.

The extracted oil was hydrolysed and the fatty acids converted to their fatty acid methyl esters derivatives (FAME) using the BF₃ (Boron Trifluoride) methanol method [13]. The FAMEs were analyzed on a PERICHROM (Périm 2000 Model) gas chromatograph with a flame ionization detector (FID). The esters were separated on a WCOT fused silica 50 m × 0.25 mm ID coating select FAME.

2.3. Experimental design

To prepare rats for the experiment, there were nourished and watered ad libitum with diet in table 1 proposed hereafter by Telefo [14], for the nutrition of the rats at the University of Dschang. They were fed a standard diet (which contains 0.1% lipids) for 1 week in order to homogenize their body weight before the start of the experiment.

At 3 weeks of age, they were randomly assigned to one of the following four semi-synthetic groups (table 2). The basic composition of these diets (g/kg) of total weight diet was as follows (table 2). The four diet groups differ only in their natural fat component in order to vary the percentage of dika nut fat (5.1 to 13.48%), lauric acid (0.00 to 48.84%) and myristic acid (0.06 to 58.86%) in the diet (table 3). 4 groups of 10 rats were fed with four different diets for 3 weeks for both study, animals received the appropriate amount of test material in the diet ad libidum. Fresh diets were provided every day during the experiment period and tap water was provided in water bottles.

2.4. Animal care

The rats were individually caged in elevated stainless-steel wire-mesh cages except during the acclimation period and had free access to food and water. The temperature was maintained at 25°C. At the end of the experiment, the animals have been let 12 h overnight fast, before being sacrificed with the help of the steams of chloroform, their blood collected by cardiac puncture stored in test tubes. Serum was isolated and preserved

Ingredients	Quantity of ration/kg
Cornstarch	678
Flour of soya	200
Fish meal	100
Flour of bone	10
Soya oil	1
Cooking salt	10
Vitamin & mineral	1

Table 1 Composition of rats diets during adaptation period Telefo, [14]
at -20°C for clinical pathology parameters. Thereafter, the abdomen of every animal was opened by a midline incision and the following tissues were taken: liver, heart, spleen, lungs, and the kidneys. After being excised, they were washed in a solution of NaCl (0.9%), wrung, and then weighed respectively. With the help of a mortar, 2 g of liver have been ground in 10 ml of NaCl 0.9%. The ground material has been centrifuged for 10 min at 3000 g and the supernatant was recovered in sterile test tubes and preserved in a freezer at -20°C. The collected blood was led during 6 hours to the temperature of the laboratory (about 25°C) in a bassinet containing ice, to increase the formation of the blood clot with liberation of the serum. This mixture has been centrifuged for 10 min at 3000 g to separate the two phases. Then, remaining phase also called supernatant (serum) have been recovered in sterile test tubes, and preserved at the freezers to (-20°C). These samples have served for the clinical parameter chosen as: total cholesterol, HDL-Cholesterol, triglycerides, the LDL-Cholesterol, serum proteins, hepatic proteins, and the transaminase.

2.5. Mortality and sign of toxicity
All animals were observed for mortality and gross signs of toxicity twice daily (morning 7 am and afternoon 7 pm). Detailed physical examinations of each animal were made prior to the study and weekly during the study period. Observation included general condition, skin, fur, eyes, nose, oral cavity, abdomen, external genitalia, evaluation of respiration, and palpation for masses.

2.6. Body weight and food consumption
Body weight and food consumption were measured over successive periods of 5 days, as the treatment started and every 3 days during the experiment period. Weight and food consumption were measured from rats on days 0, 1, 2, 3, 4, 8, 11, 14, 17, 20, and 23 at the same time until sacrifice. The quantity of food consumed was measured per cage. The intake of test substance per kg body weight was calculated from the nominal dietary concentration.

2.7. Statistical analysis
The hypothesis groups were determined by ANOVA analysis, using the statistical software Graphpad Instat 3.5 for Windows. Data were analysed between fat control and the three treatment groups and between the three test diets respectively. Dunnett’s test was performed to determine mean which were significantly different from fat control and Bonferroni test was used to determine whether there is difference between Irvingia gabonensis test diets respectively.

3. Results
3.1. Dika nut oil fatty acid profile
The fatty acids composition of the Irvingia gabonensis oil test material is shown in the table 4. This composition shows that dika nut oil is primarily consists of two saturated fatty acids: lauric acid (40.70%) and myristic acid (49.05%). These two fatty acids, associated to capric (1.54%), palmitic (5.06%) and stearic (2.38%) acids account for 98.86% saturated fatty acids. Oleic acid is the single unsaturated fatty acid identified.

3.2. Physiological status
No adverse effect of treatment was indicated from physical observations. All the animals were in good health.
after the 3 weeks experimental diet period. Weight gains during the experimental period were different whatever the diet. Consumption during the experimental period was also different in each group.

3.2. Food intake
Data relative to the food intake in the different groups of animals during the 3 weeks of treatment are regrouped in the table 5. It follows from this Data, that there is no significant difference, in the food consumption of the rats during the 3 weeks of experience in comparison to control, the IG1 diet in male groups increases significantly (P < 0,01) than fat control groups during the first week of experiment. Weals observe that the experimental diets in male groups were consumed slightly more than fat control group, whereas in the female groups it’s less consumed. Between the treated animals, we have notice a significantly rise of food consumption (P < 0,05): the first week of experiment in female and male groups rats for the IG2 diets respectively; the second week in the male groups rats for the IG3 diet and the third week for IG2 and in female groups for the IG3 diet respectively. The mean food intake between fat control and treated animals were comparable for all diets. Treated groups with high fat contain is above the other diets for male and female groups respectively.

3.3. Food consumption
Data relative to indices food consumption are represented in table 6. We noticed from this data, that the indices decrease with age. The added of dika nut fat in the diet of the rats decreases this parameter. The decrease is significantly different (P < 0.05), for IG3 diet than control in male groups during the first week of the treatment. During the period treatment, this indices increase with the test diets and it’s significantly higher (P < 0.01) for IG2 diet than controls in female groups. While, between the test diets this parameter was not significantly different during the whole period of treatment.

3.4. Body weights
The weight gain (%) is positive and comparable in the IG0 and IG1 diets of males. However, the body weight gain of rat increases with age for both sexes (Figures 1 and 2). The weight of the rats feeding high dose fat is superior to those of controls. This increase of weight is significantly higher (P < 0.01) than controls for IG3; IG1

Table 4 Fatty acids profile of dika nut fat

Symbols	Fatty acid level (%)
C10:0	1.54
C12:0	40.70
C14:0	49.05
C16:0	5.06
C18:0	2.38
C18:1n9	0.49
UI	0.78
SFA	98.73
UFA	0.49

UI: Unidentified.

Table 5 Food intake data (g) during experimentation period for male and female rats

Diets	S1	S2	S3	M ± SEM
Male (n = 5)				
IG0	7.39 ± 3.49	26.89 ± 4.52	40.57 ± 7.24	19.88 ± 14.26
IG1	10.28 ± 5.48**	24.82 ± 8.69	30.14 ± 9.36a	18.81 ± 11.09a
IG2	7.60 ± 5.01b	27.71 ± 6.69a,b	42.36 ± 9.80b	20.59 ± 15.53a
IG3	9.19 ± 3.38ab	30.05 ± 6.32b	32.79 ± 10.91a,b	21.15 ± 13.87a
Female (n = 5)				
IG0	9.91 ± 4.13	26.88 ± 6.42	44.95 ± 10.96	22.01 ± 15.21
IG1	7.72 ± 3.26a	28.71 ± 5.44a	30.14 ± 9.36a	22.97 ± 20.02a
IG2	11.03 ± 7.29ab	24.91 ± 5.07a	42.36 ± 9.80b	20.87 ± 13.65a
IG3	10.18 ± 3.60ab	27.43 ± 7.34a	32.79 ± 10.91a,b	20.92 ± 12.86a

S1, S2 and S3 (week 1, week 2 and week 3 respectively.
IG0: control diet with 80 g of soya fat; IG1: test 1 diet with 50 g of dika nut fat.
IG2: test 2 diet with 70 g of dika nut fat; IG3: test 3 diet with 120 g of dika nut fat.

In the columns, the values affected of the same letter are not significantly different (P > 0.05) and the value with different letter are significantly different (P < 0.05). (Bonferroni between treated animals).

*Significantly different from fat control in the same sex (P < 0.05). (Dunnett’s).
**significantly different from fat control in the same sex (p < 0.01). (Dunnett’s).

Table 6 Food indices consumption data (g) during treated period for male and female rats

Diets	Weeks	S1	S2	S3	M ± SEM
Male (n = 5)					
IG0	1.11 ± 0.65	1.00 ± 0.34	0.72 ± 0.10	1.00 ± 0.52	
IG1	1.32 ± 0.80a	0.89 ± 0.23a	0.56 ± 0.23a	1.04 ± 0.60a	
IG2	1.44 ± 1.15a	0.93 ± 0.31a	0.69 ± 0.13a	1.14 ± 0.88a	
IG3	1.82 ± 1.71**	0.95 ± 0.38a	0.61 ± 0.19a	1.32 ± 1.33a	
Female (n = 5)					
IG0	1.25 ± 0.61	0.83 ± 0.16	0.77 ± 0.22	1.02 ± 0.50	
IG1	1.58 ± 1.49a	0.94 ± 0.24a	0.87 ± 0.27a	1.26 ± 0.92a	
IG2	1.83 ± 1.14**	1.04 ± 0.54a	0.77 ± 0.17a	1.38 ± 0.97***	
IG3	1.49 ± 1.01a	0.87 ± 0.25a	0.70 ± 0.13a	1.15 ± 0.80a	

In the columns, the values affected of the same letter are not significantly different (P > 0.05) and the value with different letter are significantly different (P < 0.05). (Bonferroni between treated animals).

* Significantly different from fat control in the same sex (P < 0.05). (Dunnett’s).
**significantly different from fat control in the same sex (p < 0.01). (Dunnett’s).
and IG3 in male and female diet groups respectively. The weight gain (%) for the IG2 diet for female is significantly higher (P < 0.05) than fat controls, while between the test diets this increase of weight is significantly different (P < 0.05) for IG3 than IG1 diets respectively. The body weight gain of rats is increasing and regular, with high fat treated rats above the other groups.

3.5. Organ weights and macroscopic pathology
The results of the table 7, showed a higher significant reduction (P < 0.01) of the weight of the liver in treated male rats compare to fat control. Reversely this reduction was not significantly different for females who consume the same oil. In general, the vital organ weight doesn’t vary much from fat control for both sexes, except for the spleen in diet IG1 for female that was significantly higher (P < 0.05) than fat control, while between the test diets we don’t notice any significant difference from vital organ weight.

Table 7 Weight gain (%) during the three weeks treatment for males and females

Diets	Weeks	Male (n = 5)	Female (n = 5)	
	S1	S2	S3	M ± SEM
Female	27.12 ± 18.11	95.28 ± 38.75	181.85 ± 49.95	78.52 ± 68.27
IG1	29.8 ± 18.01	95.15 ± 35.30	180.08 ± 57.01	79.43 ± 67.19
IG2	24.62 ± 19.04	112.15 ± 47.67	215.08 ± 61.56	90.17 ± 83.77
IG3	29.5 ± 20.47	141.65 ± 48.22	253.96 ± 49.11	108.03 ± 95.67

In the columns, the values affected of the same letter are not significantly different (P > 0.05) and the value with different letter are significantly different (P < 0.05). (Bonferroni between treated animals).

*Significantly different from fat control in the same sex (P < 0.05). (Dunnett’s).
**significantly different from fat control in the same sex (p < 0.01). (Dunnett’s).

Macroscopic observation showed differences in caecal contents and intra-abdominal fat deposition. Although there was considerable individual variation within groups, male and female treated with Irvingia gabonensis diet also showed lower mean scores (data not shown) for the degree of fat deposition within the abdominal cavity compared to the fat diets control.

3.6. Clinical laboratory studies
The data relative to hepatic, serum proteins respectively and the concentration of ALT and AST according to the dika nut fat managed during the three weeks of treatment are consigned in table 8. These results showed us that the concentration of ALT and AST don’t significantly change in male groups. However, the decrease of AST was significantly higher (P < 0.05) in female groups than fat control for all diets and between the test diets there weren’t any significantly changes observed for both sexes. In the groups of treated animals the decrease was significantly greater (P < 0.001) for IG3 than IG1, IG2 and for IG2 and IG3 compare to IG1 for males and the females diet respectively. This data also showed, a significantly reduction (P < 0.01 and P < 0.05) of serum proteins level for male compare to fat control for IG1 and IG3 diets respectively. Although, the reduction of serum proteins was significantly higher (P < 0.01) for female in IG3 diet, this decrease was also significantly higher (P < 0.01) for IG2 than IG1 diet respectively. Whereas, in female treated groups no statistical difference were observe. In the case of hepatic
proteins, it concentration was significantly higher (P < 0.01) than fat control for IG 1 and IG 3 diets males groups respectively. Whereas, in female groups the decrease was significantly higher (P < 0.01 and P < 0.05) than fat control for IG2, IG3 and IG1 diet respectively.

From data in table 9, we can see that the concentration of total cholesterol in IG2, IG3 and IG3 diets increase was significantly higher (P < 0.01) for male and female in comparison to control groups respectively. However, the concentration of triglycerides increases for all test diets compare to control groups. This increase were significantly higher (P < 0.01) in IG1, IG2 and IG3 diets for female rats. Whereas, in male groups this increase was also significantly higher for IG2 and IG3 than fat control (P < 0.01 and P < 0.05). Concerning LDL-cholesterol concentrations, there were no differences between treated animals in comparison to control and between treated animals, it rise was significantly higher (P < 0.01) for IG1 than IG2 and IG3 diets respectively for male and it decrease was significantly different (P < 0.05) for IG2 in comparison to IG1; this increase was also significantly higher (P < 0.05) for IG3 in comparison to IG2 diets for female respectively. These results also show us a comparable rate of LDL-cholesterol concentrations for both sexes. The mean number of total HDL-Cholesterol concentrations showed an increase respectively in the IG1, IG2, IG3 and IG2, IG3 diets for female and male groups respectively. This increase was significantly higher (P < 0.01) in female treated groups in comparison to control. The concentration of HDL-Cholesterol doesn’t also significantly change between treated males, whereas, in female groups this value increase was significantly different (P < 0.01 and P < 0.05) for IG3 diet in comparison to

Table 8 Influence of the incorporation of *Irvingia gabonensis* fat on the relative weight of some vital organs for male and female rats

Diets	Organs (g)				
	liver	lungs	kidney	spleen	heart
Male (n = 5)					
IG0	5.93 ± 0.79	1.00 ± 0.34	1.20 ± 0.26	0.35 ± 0.08	0.57 ± 0.14
IG1	4.75 ± 0.50**	0.84 ± 0.05a	1.49 ± 0.36a	0.36 ± 0.08a	0.52 ± 0.03a
IG2	4.75 ± 0.16***	0.82 ± 0.11a	1.09 ± 0.28a	0.28 ± 0.04a	0.47 ± 0.04a
IG3	4.85 ± 0.18***	1.28 ± 0.80a	1.17 ± 0.30a	0.40 ± 0.21a	0.54 ± 0.05a
Female (n = 5)					
IG0	0.50 ± 0.22	1.01 ± 0.26	1.33 ± 0.19	0.31 ± 0.07	0.51 ± 0.08
IG1	4.98 ± 0.35a	1.07 ± 0.23a	1.27 ± 0.17a	0.42 ± 0.08**	0.54 ± 0.05a
IG2	4.93 ± 0.32a	0.91 ± 0.05a	1.34 ± 0.12a	0.32 ± 0.06a	0.55 ± 0.04a
IG3	5.07 ± 0.46a*	0.88 ± 0.13a	1.40 ± 0.51a	0.32 ± 0.05a	0.55 ± 0.07a

In the columns, the values affected of the same letter are not significantly different (P > 0.05) and the value with different letter are significantly different (P < 0.05). (Bonferroni between treated animals).

* Significantly different from fat control in the same sex (P < 0.05). (Dunnett’s).
**significantly different from fat control in the same sex (p < 0.01). (Dunnett’s).

Table 9 Influence of the incorporation fat *Irvingia gabonensis* on some toxicology parameter for male and female rats

Diets	ALT (U/L)	AST (U/L)	Serum protein (mg/ml)	Hepatic protein (mg/g)
Male (n = 5)				
IG0	16.36 ± 8.83	26.81 ± 8.02	134.18 ± 18.17	123.04 ± 6.84
IG1	17.98 ± 4.36a	21.81 ± 0.51a	82.03 ± 11.12**	255.70 ± 11.32***
IG2	14.44 ± 3.35**	17.97 ± 3.35a	128.10 ± 21.15^b	238.99 ± 8.51**
IG3	16.29 ± 4.16a	33.29 ± 17.24a	100.25 ± 9.23ab*	138.23 ± 11.55^b
Female (n = 5)				
IG0	10.02 ± 5.89	109.62 ± 43.91	97.72 ± 17.77	333.16 ± 21.08
IG1	22.10 ± 10.04*	22.68 ± 12.07**	117.47 ± 16.85a	293.67 ± 15.50**
IG2	7.37 ± 1.02a	44.79 ± 34.29**	113.92 ± 10.89^b	174.69 ± 14.09***
IG3	15.32 ± 3.68a	38.83 ± 6.27**	141.77 ± 19.53***	206.58 ± 19.40***

AST, aspartate aminotransferase, ALT, alanine aminotransferase.

In the columns, the values affected of the same letter are not significantly different (P > 0.05) and the value with different letter are significantly different (P < 0.05). (Bonferroni between treated animals).

* Significantly different from fat control in the same sex (P < 0.05). (Dunnett’s).
**significantly different from fat control in the same sex (p < 0.01). (Dunnett’s).
IG1 and IG2 diets respectively. Along the period of treatment we also observed between the animals treated, that the concentrations of total cholesterol was significantly greater (P < 0.001) in IG2, IG3 diets in comparison to IG1 for male and also significantly higher (P < 0.05) for IG3 in comparison to IG2 diet for female. Statistical mean also showed significantly increase level (P < 0.001) of triglycerides for IG3 compare to IG1 and IG2 for male diets respectively, whereas, in female groups no significantly differences were observed between treated animals. In a general manner, the serum fat contains triglycerides.

The significantly decrease (P < 0.01) of protein rate, (P < 0.05) for male in test diets, and the significantly increase (P < 0.05) of the hepatic protein rate of these same animals deal respectively with the IG1 and IG2 diet during 21 days, this also let a doubt on the mechanism action of the fatty acids in dika nut fat. This assertion could be verified with the female rats, despite the absence of modification on the weight liver we also have a decrease of hepatic protein rate in comparison to fat control, while between the animals tested we don’t observe any variation on weight of vital organs.

The significantly decrease of the weight liver (P < 0.05) for male in test diets, and the significantly increase (P < 0.05) of the hepatic protein rate of these same animals deal respectively with the IG1 and IG2 diet during 21 days, this also let a doubt on the mechanism action of the fatty acids in dika nut fat. This assertion could be verified with the female rats, despite the absence of modification on the weight liver we also have a decrease of hepatic protein rate in comparison to fat control, while between the animals tested we don’t observe any variation on weight of vital organs.

The increase of this parameter with the IG1, IG2, and IG3 diets for male in comparison to control could be explain by an increase secretion of regulation hormones allowing them to resist poisonous effect of dika nut fat. The significantly decrease (P < 0.01) of protein rate, observed in female groups for IG2 and IG3 diets could be due to the fact that, at this dose dika nut fat act either by inhibiting protein synthesis, following the brusque modification of food habit by the administration of *Irvingia gabonensis* fat in diets that was not consumed previously by the animals. The increase rate of serum proteins observed with in IG1; IG2 and IG3, in female groups justify itself: either by the absence of cellular membrane deterioration following the non exhibition of this membrane to the poisonous substances or fatty acids present in the wild mango kernels [24]. On the other hand in male groups the decrease of this parameter in IG1, IG2 and IG3 diets are in correlation to the increase of the hepatic protein concentrations of these same animals. But, the mechanism by which the rate of proteins decrease remains unknown in the limits of this work.

The slight decrease concentrations of ALT in serum for IG2 and IG3 diets for male groups indicate that the

Discussion

Dika nut is a vegetable oil rich in myristic acid. The lauric acid proportion (40.70%) would also classify it among lauric oils which are oils of coconut (45-48%) and palm kernels (54%) [15]. The lauric and myristic acids contents are different from the 58.6% and 33.5% of kernels from Sierra Leone. They are close to 38.44 and 38.80% of lauric acid and 51.87 and 50.60% of myristic acid respectively found in Cameroon sample [5] and Nigeria sample [16].

This composition of dika nut oil justify the fact that this study was conducted to assess the safety of single cell oil rich of saturated fatty acids, when fed by rats during their growing. This way of period treatment in this work is similar to those of Burns [17]. The irregular curve of the food consumption in rats development, justifies itself by the appetizer regulation, that has an effect on adjusting the food hold in order to maintain a balance between the caloric gain and the energy lose for the immediate needs and growth function respectively [18]. This food consumption increases during treated period, despite the augmentation of fat level in the IG2 diet. What makes us think that although, at strong level dika nut fat remain appetizing. This increase of appetite could result from an augmentation of the hunger sensation associated with an increase of metabolism. These results came closer to those of Bellis and Magnen [19]. Indeed, the sensory qualities of the food (appearance, flavour, texture) could also have an influence on the intake of food by rats.

The decrease of the food consumption indices during the weeks S1, S2, and S3 of the period of treatment is due to efficient use of foods by rats during their growing. These results are similar to those of Okine and Basarabs [20], on the use of fenugreek on cattle. These same authors also noted that an increase of the food consumption indices decreases the beneficial effects of the food and vice versa.

Body weight gains are near to those obtained by Boozer [21], who found that a diet rich of fat generates an important weight body gain than those with carbohydrates. Likewise, in agreement with the data obtain by Schemmel [22], on rats and mice; a diet rich with fat misleads an elevation of mass adipose which depends on the level of lipids and treatment duration. This effect also depends on the age of the animal, and the species.

The significantly decrease of the weight liver (P < 0.05) for male in test diets, and the significantly increase (P < 0.05) of the hepatic protein rate of these same animals deal respectively with the IG1 and IG2 diet during 21 days, this also let a doubt on the mechanism action of the fatty acids in dika nut fat. This assertion could be verified with the female rats, despite the absence of modification on the weight liver we also have a decrease of hepatic protein rate in comparison to fat control, while between the animals tested we don’t observe any variation on weight of vital organs.

The significant decrease of the weight liver (P < 0.05) for male in test diets, and the significantly increase (P < 0.05) of the hepatic protein rate of these same animals deal respectively with the IG1 and IG2 diet during 21 days, this also let a doubt on the mechanism action of the fatty acids in dika nut fat. This assertion could be verified with the female rats, despite the absence of modification on the weight liver we also have a decrease of hepatic protein rate in comparison to fat control, while between the animals tested we don’t observe any variation on weight of vital organs.

The significant decrease of the weight liver (P < 0.05) for male in test diets, and the significantly increase (P < 0.05) of the hepatic protein rate of these same animals deal respectively with the IG1 and IG2 diet during 21 days, this also let a doubt on the mechanism action of the fatty acids in dika nut fat. This assertion could be verified with the female rats, despite the absence of modification on the weight liver we also have a decrease of hepatic protein rate in comparison to fat control, while between the animals tested we don’t observe any variation on weight of vital organs.

The significant decrease of the weight liver (P < 0.05) for male in test diets, and the significantly increase (P < 0.05) of the hepatic protein rate of these same animals deal respectively with the IG1 and IG2 diet during 21 days, this also let a doubt on the mechanism action of the fatty acids in dika nut fat. This assertion could be verified with the female rats, despite the absence of modification on the weight liver we also have a decrease of hepatic protein rate in comparison to fat control, while between the animals tested we don’t observe any variation on weight of vital organs.

The significant decrease of the weight liver (P < 0.05) for male in test diets, and the significantly increase (P < 0.05) of the hepatic protein rate of these same animals deal respectively with the IG1 and IG2 diet during 21 days, this also let a doubt on the mechanism action of the fatty acids in dika nut fat. This assertion could be verified with the female rats, despite the absence of modification on the weight liver we also have a decrease of hepatic protein rate in comparison to fat control, while between the animals tested we don’t observe any variation on weight of vital organs.

The significant decrease of the weight liver (P < 0.05) for male in test diets, and the significantly increase (P < 0.05) of the hepatic protein rate of these same animals deal respectively with the IG1 and IG2 diet during 21 days, this also let a doubt on the mechanism action of the fatty acids in dika nut fat. This assertion could be verified with the female rats, despite the absence of modification on the weight liver we also have a decrease of hepatic protein rate in comparison to fat control, while between the animals tested we don’t observe any variation on weight of vital organs.
liver has not been clinically affected during the treatment. This assertion is justified by the increase of the hepatic protein concentrations. On the other side, we observed an increase of this parameter in female groups for the treated diet in comparison to control. The significantly decrease (P < 0.05) of AST concentrations in IG1, IG2 and IG3 for male and female could be respectively due to the non necrosis of hepatic membrane and the absence of modification of the permeability membrane which doesn’t cause an elevation of the rate of this enzyme in blood [25,26].

The obvious increase of AST concentrations observed for IG3 diet in male groups, could be due to hepatic cell lyses at high-fat contain (120 g) during the whole treatment period (21 days).

It’s widely reported that saturated fatty acid can significantly alter plasma cholesterol. Dika nut fat is mostly rich of saturated fatty acid in particular myristic (C14:0 49%) and lauric acid (C12:0 41%) respectively. It’s incorporation in the diet of young rats of 28 days showed an increase of AST concentrations in different manner serum lipids. This increase of total cholesterol concentrations in the treated animals in comparison to controls is in relation to the presence in the fat of short chain fatty acids as myristic and lauric acid respectively; also known to generally induce the important increase in plasma cholesterol level specially the LDL-cholesterol concentrations. Nevertheless, a previous study of Loison [11] has shown that when feeding hamster with increasing amount of myristic acid it is interesting to note that the observed modifications in plasma total cholesterol concentrations only reflect variation in the HDL-cholesterol concentration. Even Ngondi [27] study also shown that feeding obese patients with *Irvingia gabonensis* seeds also lead to an increase of HDL-cholesterol. Moreover, in the present study, the significant increase of HDL-cholesterol obtain suggest that in rats, myristic acid although present in high quantities in the diet, is one of saturated fatty acids most responsible for increasing the total plasma concentration. However and contrary to previous studies in human [28,29], or animals [30,31]. It’s fascinating to note that the observed modifications in plasma total cholesterol doesn’t only reflect an increase of the total cholesterol concentration, but also an HDL - Cholesterol concentration (table 10) known like being receptor of good cholesterol [32]. This rise is significantly greater (P < 0.01) just in the female group rats for IG3 diets in comparison to control. While between the animals treated increasing amount of *Irvingia gabonensis* fat lead to a significantly increase (P < 0.01 and P < 0.05) on the concentration of HDL-Cholesterol of female rats group for IG3 in comparison to IG1 and IG2 diets respectively. This effect is obviously noteworthy in the light of the known relationship of fatty saturated acid on blood concentration. Salter and Loison [11,33] had both already shown that in hamster increasing amounts of myristic acid in the diet increased the plasma HDL-cholesterol. This is what we observed according to results obtain in this study, that feeding of dika nut fat involves an increase of the HDL - Cholesterol concentration. In this study, it can be suggested that the increase of HDL-C concentration could implicate an inhibition of cholesteryl ester transfer protein activity (CETP) by myristic acid. However, the regulation of CETP activity by fatty acids is probably species-dependent since in man, saturated fatty acids (palmitic acid) increased the activity and the mass of CETP [6].

Table 10 Influence of the incorporation of dika nut fat on some clinical parameter for males and females rats

Diets	Total Cholesterol Mg/dl	HDL-cholesterol Mg/dl	Triglycerides	LDL-cholesterol Mg/dl
Male (n = 5)				
IG0	147.56 ± 7.02	82.08 ± 5.68	120.98 ± 9.56	58.232 ± 10.35
IG1	151.67 ± 6.47a	67.10 ± 10.66a	137.40 ± 7.61a**	65.72 ± 6.39a
IG2	151.67 ± 6.47a	67.10 ± 10.66a	137.40 ± 7.61a**	65.72 ± 6.39a
IG3	176.25 ± 21.8b**	92.94 ± 5.65b**	156.49 ± 11.40a**	54.01 ± 6.96a
Female (n = 5)				
IG0	138.10 ± 10.52	65.79 ± 12.67	104.00 ± 16.98	58.71 ± 12.99
IG1	160.31 ± 10.18a,b	67.10 ± 10.66a	137.40 ± 7.61a**	65.72 ± 6.39a
IG2	151.67 ± 6.47a	67.10 ± 10.66a	137.40 ± 7.61a**	65.72 ± 6.39a
IG3	186.32 ± 7.851**	92.94 ± 5.65b**	156.49 ± 11.40a**	54.01 ± 6.96a

*In the columns, the values affected of the same letter are not significantly different (P > 0.05) and the value with different letter are significantly different (P < 0.05). (Bonferroni between treated animals).

*Significantly higher in comparison to IG1 group for male between treated animals (P < 0.001) (Bonferroni).

Significantly higher in comparison to IG1, IG2 and IG3 group for male between treated animals (P < 0.001) (Bonferroni).

**Significantly different from fat control in the same sex (P < 0.01). (Dunnett’s).
Consequently, the possible inhibitory effect of myristic acid on the activity or mass of CETP in rats still requires confirmation. Studies on a variety of N-myristoylated protein suggest that myristic acid may have different roles when attached to different acceptor proteins [34]. It’s translational modification involve in protein-protein interaction as well as in anchoring polypeptides to phospholipid bilayers; The more sophisticated roles for myristic acid include: (a) participation in a “switch” mechanism permitting the protein to cycle in a regulated manner between membranes and cytosol [35-37]; (b) influencing protein conformation, with consequences for protein stability or ligand binding [35]; Thus, the results demonstrated that myristic acid present in Irvingia gabonensis oil could be beneficial for the reactions of cellular metabolism, but it action on the increase of HDL-Cholesterol concentration still to be verified. Serum triglyceride metabolism is modulated by changes in the type dietary fatty acids. All the test diets (IG1, IG2 and IG3) containing Irvingia gabonensis increased triglyceride concentrations compared to control groups. This increase was significantly higher (P < 0.01) for the IG2 and IG3 diets and significantly greater (P < 0.001) between the treated animals IG3 diets. According to Nicolosi, there exist a linear interrelationship between the increase of myristic acid and the increase of triglycerides concentration. However, the mechanism by which the lauric acid influences the increase of the triglycerides still unknown. In addition and base on previous work of Piot [38], the elongation of lauric acid after its partial oxidation can explain the possible accumulation of the triglycerides in the serum. An eventual inhibitory effect of lauric acid on hepatic triglyceride secretion via the VLDL pathway could also be responsible for TG accumulation [39]. The mechanism by which lauric acid modifies hepatic lipid metabolism is presently unclear. Previous metabolic data have demonstrated that medium chain fatty acids (lauric acid) are preferentially oxidized via the β oxidation pathway and long chain fatty acids are preferentially incorporated into the triglyceride molecule [40].

Conclusion
In conclusion, this study shows that increasing amounts of dietary Irvingia gabonensis fat (5.10 to 13.48%) in correlation with the rising of myristic acid (23.53 to 58.86%), modify cholesterol metabolism and increase significantly the concentration of HDL-Cholesterol. these data obtained also show that dietary fat lauric acid present in dika nut fat also rising triglyceride accumulation. However, the analysis of the AST and ALT concentration don’t show a poisonous effect on behalf of the dika nut fat.

Acknowledgements
The authors thank Dr. Bikay Bikay and Pr Thchomboue J. for scientific discussion, Njiouendou Abdel Jelil, Tany L. Ayang, Fondoup Chegain S. P. for technical assistance, Yemele Mefokou. D. And Chidaok. J. D. for animal care.

Authors’ contributions
1. Laboratory of Food Sciences Nutrition and Medicinal Plant, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. BOX: 67 Cameroon. 2. Laboratory of Biomolecular Engineering (Ibbo), National School of Agronomy and Food Industries ENSAAI - INPL, 2 Avenue de la Forêt de Haye BP 172 F-54505 Vandoeuvre-lès-Nancy, France.

Competing interests
This work was supported by the “University Agency for Francophonie” (AUF) through its “Network of Researchers in Process Engineering Applied to Agro-Food” (GP3A) by a grant to Hilaire WOMENI.

Received: 11 December 2010 Accepted: 4 March 2011
Published: 4 March 2011

References
1. Ndoye O, Ruiz PM, Eyeye A: The markets of non-timber forest products in the humid forest zone of Cameroon. Rural Development Forestry Network Paper OD, London, UK, 1998, 22c.
2. Support Service for Local Initiatives Development (SALLD): Conservation of kernels of “wild mango” (Irvingia gabonensis). Agridoc, 2004, 4.
3. Giani SY, Okonkwo VL, Akusu MD: Chemical composition and functional properties of raw, heat-treated and partially proteolysed wild mango (Irvingia gabonensis) seed flour, Food Chemistry 1994, 49:237-243.
4. Shio T, Blyoky S, Heron S, Tchapla A, Makumbi MG: Physicochemical characteristics and technological potential of Irvingia gabonensis kernels. Rivista italiana delle Sostanze Grasse 2004, LXXX:49-58.
5. Womensi HM, Ndouenku R, Kapseu C, Tchaouengue MP, Parmentier M, Fanni J: Aqueous enzymatic oil extraction from Irvingia gabonensis seed kernels. 4th Euro Fed Lipid Congress - Fats, Oils and Lipids for a Healthier Future. Madrid, 01-04 October 2006.
6. Lagrost L, Mensink RP, Guyard-Dangemont V, Temme EHM, Desrumaux C, Athias A, Homstra G, Gambert P: Variations in serum cholesteryl ester transfer and phospholipids transfer activities in healthy women and men consuming diets enriched in Lauric, Palmitic or oleic acid. Atherosclerosis 1999, 142:395-402.
7. Nicolosi RJ: Dietary fat saturation effects on low-density lipoprotein concentrations and metabolism in various animal models. Am J Clin Nutr 1997, 65:1617S-1627S.
8. Woollett LA, Spady DK, Dietzchy JM: Regulatory effects of the saturated fatty acids 6:0 trough 18:0 on hepatic low density lipoprotein receptor activity in the hamster. J Clin Invest 1992, 89:1133-1141.
9. Ginsberg HN, Kris-Etherton P, Dennis B, Elmer PJ, Ershov A, Lefevre M, Pearson T, Roheim P, Ramakrishnan R, Reed R, Kent S, Katherine P, Anderson N: Effects of reducing dietary fatty acids on plasma lipids and lipoproteins in healthy subjects. Antecesoris Tromb Vasc Biol 1996, 18:441-449.
10. Nica B, Diego A, Paola C, Grazia P, Monique B; 1. Ndoye O, Ruiz PM, Eyebe A: The markets of non-timber forest products in the humid forest zone of Cameroon. Rural Development Forestry Network Paper OD, London, UK, 1998, 22c. 2. Support Service for Local Initiatives Development (SALLD): Conservation of kernels of “wild mango” (Irvingia gabonensis). Agridoc, 2004, 4. 3. Giani SY, Okonkwo VL, Akusu MD: Chemical composition and functional properties of raw, heat-treated and partially proteolysed wild mango (Irvingia gabonensis) seed flour, Food Chemistry 1994, 49:237-243. 4. Shio T, Blyoky S, Heron S, Tchapla A, Makumbi MG: Physicochemical characteristics and technological potential of Irvingia gabonensis kernels. Rivista italiana delle Sostanze Grasse 2004, LXXX:49-58. 5. Womensi HM, Ndouenku R, Kapseu C, Tchaouengue MP, Parmentier M, Fanni J: Aqueous enzymatic oil extraction from Irvingia gabonensis seed kernels. 4th Euro Fed Lipid Congress - Fats, Oils and Lipids for a Healthier Future. Madrid, 01-04 October 2006. 6. Lagrost L, Mensink RP, Guyard-Dangemont V, Temme EHM, Desrumaux C, Athias A, Homstra G, Gambert P: Variations in serum cholesteryl ester transfer and phospholipids transfer activities in healthy women and men consuming diets enriched in Lauric, Palmitic or oleic acid. Atherosclerosis 1999, 142:395-402. 7. Nicolosi RJ: Dietary fat saturation effects on low-density lipoprotein concentrations and metabolism in various animal models. Am J Clin Nutr 1997, 65:1617S-1627S. 8. Woollett LA, Spady DK, Dietzchy JM: Regulatory effects of the saturated fatty acids 6:0 trough 18:0 on hepatic low density lipoprotein receptor activity in the hamster. J Clin Invest 1992, 89:1133-1141. 9. Ginsberg HN, Kris-Etherton P, Dennis B, Elmer PJ, Ershov A, Lefevre M, Pearson T, Roheim P, Ramakrishnan R, Reed R, Kent S, Katherine P, Anderson N: Effects of reducing dietary fatty acids on plasma lipids and lipoproteins in healthy subjects. Antecesoris Tromb Vasc Biol 1996, 18:441-449. 10. Nica B, Diego A, Paola C, Grazia P, Monique B: A role for N-myristoylation in protein targeting: NADH-Cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes. J cell Biol 1996, 135:1501-1513. 11. Loison C, Mendl F, Serouge C, Lutton CL: Increasing amounts of dietary myristic acid modify the plasma cholesterol level and hepatic mass of Scavenger receptor BI without affecting bile acid biosynthesis in hamsters. Reprod Nutr Dev 2002, 42:101-114.
12. Gornal AG, Bardwel G, David MW: Determination of serum proteins by mean of Biuret reactions. Biochemistry 1949, 177: 751-756.

13. AFNOR (Association Française pour la Normalisation): Recueil des normes françaises, Corps gras graines oléagineuses, produits dérivés. AFNOR, Paris, 1993, 136-140.

14. Telefo PB: Contribution to the study of medicinal plant from Cameroon: Influence of aqueous extract of the mixture of leaves of Aloe buettneri A. Berger (Liliaceae), Dicliptera verticillata Amshoff GJH (Acanthaceae), Hibiscus macranthus Hochst ex A-Rich (Malvacaeae), Justicia insularis T. Anders (Acanthaceae), on some physiological and biochemical parameters of reproduction in rats. 3rd cycle doctoral thesis in biochemistry University of Yaounde I, 1998, 154.

15. Kapseu C, Tchagliang C, Dellacherie J, Dinard M: Oils of coconut and palm kernel Cameroon, Sources of fatty acid lauric. La Rivista Italiana Delle Sostanze Grasse 1997, LXXIV:205-207, 8.

16. Okafor J, Okolo HC: Potentials of some indigenous fruit trees of Nigeria. Paper presented at the 5th Annual Conference of the Forestry Association of Nigeria Jos 1974, 60-71.

17. Burns RA, Wibert JE, Diersen-Schade DA, Kelly CM: Evaluation of Single-cell Sources of Docosahexaenoic Acid and Arachidonic Acid: 3 Month Rat Oral Safety Study with an in Utero Toxicology 1999, 37,23-38.

18. Gancron IF: Physiologie Médicale. De Boeck Université, 19 2001, 150-161.

19. Bellisle F, Magnen J: The analyses of human feeding pattern. the edogram appetite 1980, i:141-150.

20. Okine E, Basanab: Nutritional aspect of residual feed intake and feed efficiency. Seminar, National Animal on beef, Lacombe Research Centre; 2002.

21. Boozer C, Brasseur A, Arkinson R: Dietary fat reflects weight loss and adiposity during energy restriction in rats. Am J Clin Nutr 1993, 58:846-852.

22. Schemmel R, Mickelton O, Gill JL: Dietary obesity in rats: body weight and fat accretion in seven strains of rats. J Nutr 1970, 100:1041-1048.

23. Brady LJ, Hopple CL: Hepatic mitochondrial function in lean and obese Zucker rats. Am J Physiol 1983, 245:C239-C245.

24. Zozulya S, Stryer L: Phospholipid and GTP-sensitive switch. Proc Natl Acad Sci USA 1992, 89:11569-11573.

25. Randazzo PA, Terui T, Sturch S, Fales HM, Ferrige AG, Kahn RA: The myristylated amino terminus of ADP-ribosylation factor 1 is a phospholipid and GTP-sensitive switch. J Biol Chem 1995, 270:14805-14813.

26. Randazzo PA, Term 1, Sturch S, Fales HM, Ferrige AG, Kahn RA: The myristylated amino terminus of ADP-ribosylation factor 1 is a phospholipid and GTP-sensitive switch. J Biol Chem 1995, 270:14805-14813.

27. Zozulya S, Stryer L: Calcium-myristoyl protein switch. Proc Natl Acad Sci USA 1992, 89:11569-11573.

28. Temme EHM, Mensink RP, Hornstra G: Effects of dietary coconut oil on fatty acid oxidation capacity of the liver, the heart and skeletal muscles in the prerningant calf. Br J Nutr 1999, 82:299-308.

29. 270

30. Wang S, Koo IS: Plasma clearance and hepatic utilization of stearic, myristic and linoleic acids introduced via chylomicrons in rats. Lipids 1993, 28:697-703.

31. Randazzo PA, Terui T, Sturch S, Fales HM, Ferrige AG, Kahn RA: The myristylated amino terminus of ADP-ribosylation factor 1 is a phospholipid and GTP-sensitive switch. J Biol Chem 1995, 270:14805-14813.

32. Randazzo PA, Terui T, Sturch S, Fales HM, Ferrige AG, Kahn RA: The myristylated amino terminus of ADP-ribosylation factor 1 is a phospholipid and GTP-sensitive switch. J Biol Chem 1995, 270:14805-14813.

33. Randazzo PA, Terui T, Sturch S, Fales HM, Ferrige AG, Kahn RA: The myristylated amino terminus of ADP-ribosylation factor 1 is a phospholipid and GTP-sensitive switch. J Biol Chem 1995, 270:14805-14813.

34. Randazzo PA, Terui T, Sturch S, Fales HM, Ferrige AG, Kahn RA: The myristylated amino terminus of ADP-ribosylation factor 1 is a phospholipid and GTP-sensitive switch. J Biol Chem 1995, 270:14805-14813.

35. Randazzo PA, Terui T, Sturch S, Fales HM, Ferrige AG, Kahn RA: The myristylated amino terminus of ADP-ribosylation factor 1 is a phospholipid and GTP-sensitive switch. J Biol Chem 1995, 270:14805-14813.

36. Randazzo PA, Terui T, Sturch S, Fales HM, Ferrige AG, Kahn RA: The myristylated amino terminus of ADP-ribosylation factor 1 is a phospholipid and GTP-sensitive switch. J Biol Chem 1995, 270:14805-14813.

37. Randazzo PA, Terui T, Sturch S, Fales HM, Ferrige AG, Kahn RA: The myristylated amino terminus of ADP-ribosylation factor 1 is a phospholipid and GTP-sensitive switch. J Biol Chem 1995, 270:14805-14813.

38. Randazzo PA, Terui T, Sturch S, Fales HM, Ferrige AG, Kahn RA: The myristylated amino terminus of ADP-ribosylation factor 1 is a phospholipid and GTP-sensitive switch. J Biol Chem 1995, 270:14805-14813.