Comparison of categorical characteristic classes of transitive Lie algebroid with Chern-Weil homomorphism

Mishchenko, A.S.
(Harbin Institute of Technology, China, Moscow State University, Russia),
Li Xiaoyu
(Harbin Institute of Technology, China)

September 3, 2012

Abstract

Transitive Lie algebroids have specific properties that allow to look at the transitive Lie algebroid as an element of the object of a homotopy functor. Roughly speaking each transitive Lie algebroids can be described as a vector bundle over the tangent bundle of the manifold which is endowed with additional structures. Therefore transitive Lie algebroids admits a construction of inverse image generated by a smooth mapping of smooth manifolds.

Due to K.Mackenzie ([1]) the construction can be managed as a homotopy functor $\mathcal{T}LA_{g}$ from category of smooth manifolds to the transitive Lie algebroids. The functor $\mathcal{T}LA_{g}$ associates with each smooth manifold M the set $\mathcal{T}LA_{g}(M)$ of all transitive algebroids with fixed structural finite dimensional Lie algebra g. Hence one can construct ([2],[4]) a classifying space B_{g} such that the family of all transitive Lie algebroids with fixed Lie algebra g over the manifold M has one-to-one correspondence with the family of homotopy classes of continuous maps $[M,B_{g}]$: $\mathcal{T}LA_{g}(M) \approx [M,B_{g}]$.

It allows to describe characteristic classes of transitive Lie algebroids from the point of view a natural transformation of functors similar to the classical abstract characteristic classes for vector bundles and to compare them with that derived from the Chern-Weil homomorphism by J.Kubarski([3]). As a matter of fact we show that the Chern-Weil homomorphism does not cover all characteristic classes from categorical point of view.
1 Basic definitions and functor $\mathcal{T}LA_\g(\bullet)$

1.1 Definitions

Definition 1.1.1. (See [1], Definition 3.1.1) A Lie algebroid A over a smooth manifold M is a vector bundle $p : A \rightarrow M$ together with a Lie algebra structure $\{\bullet\}$ on the space of $\Gamma^\infty(A; M)$ and a bundle map $a : A \rightarrow TM$ called the anchor, such that

(i) the induced map $a : \Gamma(A; M) \rightarrow \Gamma(TM; M) = \mathfrak{X}^1(M)$ is a Lie algebra homomorphism

(ii) for any sections $\alpha, \beta \in \Gamma(A; M)$ and smooth function $f \in C^\infty(M)$ we have

\[
\{\alpha, f \cdot \beta\} = f \cdot \{\alpha, \beta\} + a(\alpha)(f) \cdot \beta
\]

We call A a regular Lie algebroid if the rank of a is locally constant and A a transitive Lie algebroid if a is surjective. The Lie algebroid homomorphism and isomorphism is defined in [1]. And we often use the Atiyah exact sequence $0 \rightarrow L \xrightarrow{j} A \xrightarrow{a} TM \rightarrow 0$ to denote a transitive Lie algebroid. Here $L = \text{Ker} a$ is called the adjoint bundle. Sometimes we use $(A, M, \{\text{bullet}\}, a)$ to note Lie algebroid in order to highlight the bracket. All transitive Lie algebroids (isomorphic class) and homomorphisms between them form a category that is fundamental in our considerations.

Example 1.1.2. (See [1]) The followings are important examples of transitive Lie algebroid.

1. Let M be a manifold and let \g be a Lie algebra. On $TM \bigoplus (M \times \g)$ define $a : TM \bigoplus (M \times \g) \rightarrow TM$ by $a : (X, \mu) \mapsto X$. And a bracket

\[
\{(X, \mu), (Y, \nu)\} = ([X, Y], X(\nu) - Y(\nu) + [\mu, \nu]).
\]

for $(X, \mu), (Y, \nu) \in \Gamma(TM \bigoplus (M \times \g); M)$.

Then $TM \bigoplus (M \times \g)$ is a transitive Lie algebroid on M, called the trivial Lie algebroid on M with structural Lie algebra \g.

2. Let L be a Lie algebra bundle on smooth manifold M. The Lie algebroid $\mathcal{D}_{\text{Der}}(L)$ of covariant derivatives on $\Gamma^\infty(L)$ is a transitive Lie algebroid on M.

3. The Lie algebroid $\mathcal{D}(E)$ of covariant differential operators on the space of sections of vector bundle E.

As vector space is commutative Lie algebra, vector bundle E is also commutative Lie algebra bundle. Thus $\mathcal{D}(E)$ and $\mathcal{D}_{\text{Der}}(E)$ are identical in this case. In the following part of this article we use \g to note Lie algebra and \h to note commutative Lie algebra. All the Lie algebras we consider in this article are finite dimensional.
1.2 Functor $\mathcal{TA}_g(\bullet)$

In [1], K. Mackenzie defines pullback of transitive Lie algebroid over smooth map $f : M' \rightarrow M$. It means that given a Lie algebra g there is the functor $\mathcal{TA}_g(\bullet)$ such that with any manifold M it assigns the family $\mathcal{TA}_g(M)$ of all transitive Lie algebroid with structural Lie algebra g.

Lemma 1.2.1. (See [1], page 248) Let $0 \rightarrow L \xrightarrow{\beta} A \xrightarrow{\alpha} TM \rightarrow 0$ be a transitive Lie algebroid on smooth manifold M. Then L is a Lie algebra bundle with respect to the braces structure on $\Gamma(L;M)$ induced from the braces on $\Gamma(A;M)$.

Lemma 1.2.2. (See [1], page 100) Let A be a transitive Lie algebroid on M and let $U \subset M$ be an open subset. Then the braces $\{,\} : \Gamma(A;M) \times \Gamma(A;M) \rightarrow \Gamma(A;M)$ restricted to $\Gamma(A_U;U) \times \Gamma(A_U;U) \rightarrow \Gamma(A_U;U)$ make A_U be a Lie algebroid on U called the restriction of A to U.

Lemma 1.2.3. (See [1], page 317) Consider a transitive Lie algebroid $0 \rightarrow L \xrightarrow{\beta} A \xrightarrow{\alpha} TM \rightarrow 0$ on M with fixed structural Lie algebra g. Given any open covering $\{U_\alpha\}$ of M by contractible sets, for arbitrary α, there is an Lie algebroid isomorphism

$$S_\alpha : TU_\alpha \bigoplus (U_\alpha \times g) \rightarrow A_{U_\alpha}$$

where $TU_\alpha \bigoplus (U_\alpha \times g)$ is trivial Lie algebroid on U_α.

By using Lemma 1.2.1, Lemma 1.2.2, Lemma 1.2.3 and the method used in [2], we get the following theorem.

Theorem 1.2.4. Let M and N be smooth manifolds. Given an arbitrary transitive Lie algebroid A on N. Let $f,g : M \rightarrow N$ are homotopic smooth maps. Then the pullback of A over f and g are Lie algebroid isomorphic, that is $f^!A \approx g^!A$.

Hence the functor $\mathcal{TA}_g(\bullet)$ is homotopy functor for fixed structural Lie algebra g. There exists a classifying space \mathcal{B}_g such that $\mathcal{TA}_g(M)$ has one to one correspondence with the family of homotopy classes of continuous maps $[M;\mathcal{B}_g]$. Here \mathcal{B}_g is abstract and can be described in more or less understandable way (see [3]).
2 Obstruction

2.1 Cohomology

Definition 2.1.1. (see [1], page 107) Let A be an arbitrary Lie algebroid on a smooth manifold M and E is a vector bundle on M. Let $\mathcal{D}(E)$ be the Lie algebroid of covariant derivative on $\Gamma^\infty(E)$. A representation of A on E is a Lie algebroid homomorphism

$$\rho : A \to \mathcal{D}(E).$$

The cohomology space $\mathcal{H}^n(A, \rho, E), n \geq 0$ can be defined when the representation ρ is given (see [1], page 260). When A is TM, we denote the representation by $\nabla : TM \to E$. Then there is $\mathcal{H}^n(M, \nabla, E), n \geq 0$. The representation $\nabla : TM \to E$ can be regard as a flat connection on E (see [1], page 109, page 186.). Due to Lemma 1.1.6 and Lemma 1.2.2 in [3], the following theorem holds.

Theorem 2.1.2. Let E be a vector bundle on smooth manifold M and $\nabla : TM \to E$ be a representation of TM on E. Let $f : M' \to M$ be a smooth map between smooth manifold M' and M. Let $E' = f^*E$ be the pullback of vector bundle over f. Then

(i) the representation ∇ induces a representation of TM' on E' noted by $\nabla' : TM' \to \mathcal{D}(E')$.

(ii) the map f induces a homomorphism between cohomologies

$$f^* : \mathcal{H}^*(M, \nabla, E) \to \mathcal{H}^*(M', \nabla', E'),$$

where

$$\mathcal{H}^*(M, \nabla, E) = \bigoplus_{n=0}^\infty \mathcal{H}^n(M, \nabla, E), \quad \mathcal{H}^*(M', \nabla', E') = \bigoplus_{n=0}^\infty \mathcal{H}^n(M', \nabla', E').$$

From fundamental differential geometry, the following theorem holds.

Theorem 2.1.3. Let E be a commutative Lie algebra bundle with fiber \mathfrak{h}. Let ∇ be a flat connection on it. Then ∇ induces the system of transition functions $\{\varphi_{\alpha\beta}\}$ for E that are locally constant. Then E can be seen as vector bundle with discrete structural group $\text{Aut}(\mathfrak{h})_d$, and denoted by $E^\nabla \to M$. Here $\text{Aut}(\mathfrak{h})_d$ is the group of all automorphisms of \mathfrak{h}, that is $\text{Aut}(\mathfrak{h})$, with discrete topology.
2.2 Obstruction class

Let L be a Lie algebra bundle on smooth manifold M with fiber \mathfrak{g}. There is a commutative diagram (see [1]).

\[
\begin{array}{cccccccc}
0 & 0 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & 0 \\
ZL & = & ZL & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & 0 \\
L & = & L & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & 0 \\
\text{Der}(L) & \rightarrow & \text{Der}(L) & \rightarrow & TM & \rightarrow & 0 \\
\alpha & \rightarrow & \alpha & \rightarrow & \alpha & \rightarrow & \alpha & \rightarrow \\
\text{Out}_{\text{Der}}(L) & \rightarrow & \text{Out}_{\text{Der}}(L) & \rightarrow & TM & \rightarrow & 0 \\
\end{array}
\]

in which both rows and columns are exact.

Consider a coupling $\Xi : TM \rightarrow \text{Out}_{\text{Der}}(L)$, that is the curvature tensor

\[R^\Xi : \Lambda^2(TM) \rightarrow \text{Out}_{\text{Der}}(L) \]

defined by

\[R^\Xi(X,Y) = [\Xi(X), \Xi(Y)] - \Xi([X,Y]) \]

for $X,Y \in \mathfrak{X}(M)$ is zero.

There is a lifting $\nabla_\Xi : TM \rightarrow \text{Der}(L)$ of the coupling Ξ:

\[
\begin{array}{cccccccc}
L & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & 0 \\
0 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & 0 \\
\end{array}
\]

in which ∇ is vector bundle map.
Then for curvature tensor $R^\nabla : \Lambda^2(TM) \to \text{Der}(L)$ defined by $R^\nabla(X, Y) = [\nabla_X(Y), \nabla_Y(X)] - \nabla_{[X, Y]}$, the following diagram is commutative.

\[
\begin{array}{ccc}
L & \xrightarrow{\text{ad}} & \text{Der}(L) \\
\downarrow & & \downarrow \\
\Lambda^2(TM) & \xrightarrow{R^\nabla} & \Lambda^2(TM) \\
\downarrow & & \downarrow \\
\text{Out}_{\text{Der}}(L) & \xleftarrow{\phi^0} & \text{Out}_{\text{Der}}(L)
\end{array}
\]

Since vertical column is exact there is a lifting of R^∇ that is a bundle map $\Omega : \Lambda^2(TM) \to L$ such that the diagram

\[
\begin{array}{ccc}
L & \xrightarrow{\text{ad}} & \text{Der}(L) \\
\downarrow & & \downarrow \\
\Lambda^2(TM) & \xrightarrow{R^\nabla} & \Lambda^2(TM) \\
\downarrow & & \downarrow \\
\text{Out}_{\text{Der}}(L) & \xleftarrow{\phi^0} & \text{Out}_{\text{Der}}(L)
\end{array}
\]

is commutative.

Define $d^\nabla : \Gamma(\Omega^n(M, L); M) \to \Gamma(\Omega^{n+1}(M, L); M)$ by

\[
d^\nabla f(X_1, X_2, ..., X_{n+1}) = \sum_{i=1}^{n+1} (-1)^{i+1} \nabla(X_i)(f(X_1, X_2, ..., \hat{X}_i, ..., X_{n+1})) + \sum_{i<j} (-1)^{i+j} f([X_i, X_j], X_1, ..., \hat{X}_i, ..., \hat{X}_j, ..., X_{n+1})
\]

here $f \in \Gamma(\Omega^n(M, L); M)$ and $X_1, X_2, ..., X_{n+1} \in \mathfrak{x}^1$.

For Ω in diagram (1), $d^\nabla = 0 \in \Omega^3(M, ZL)$ and $d^\nabla \circ (d^\nabla) = 0$ where $\nabla^\nabla L$ is induced by ∇_Ξ (see [1]). Then define $\text{Obs}(\nabla_\Xi) = [d^\nabla(\Omega)] \in H^3(M, \nabla^\nabla L, ZL)$. The connection $\nabla^\nabla L$ and cohomology class $\text{Obs}(\nabla_\Xi)$ depend only on Ξ (see [1], page 273 and Theorem 7.2.12). Then the class $\text{Obs}(\nabla_\Xi)$ is called the \textit{obstruction class} of the coupling Ξ, and is denoted by $\text{Obs}(\Xi)$.

Theorem 2.2.1. (The functorial property) Let L be a finite dimensional Lie algebra bundle on a smooth manifold M. Let M' be a smooth manifold and $f : M' \to M$ is smooth map. Let $L' = f^*L$ be the pullback of Lie algebra bundle
over f. Consider a coupling $\Xi : TM \to \text{Out}_{\mathcal{D}_{\text{Der}}} L$. Then Ξ induces a coupling $\Xi' : TM' \to \text{Out}_{\mathcal{D}_{\text{Der}}} L'$ and f induces a homomorphism

$$f^* : H^*(M, \Xi, ZL) \to H^*(M', \Xi', ZL').$$

Further more the obstruction class $\text{Obs}(\Xi') \in H^3(M', \Xi', ZL')$ satisfies the condition

$$f^*(\text{Obs}(\Xi)) = \text{Obs}(\Xi').$$

Definition 2.2.2. An extension of TM by Lie algebra bundle L is an exact sequence of Lie algebroid over M

$$0 \to L \xrightarrow{j} A \xrightarrow{\alpha} TM \to 0.$$

Theorem 2.2.3. (see [1], corollary 7.3.9) Let L be a Lie algebra bundle on M. Let $\Xi : TM \to \text{Out}_{\mathcal{D}_{\text{Der}}} (L)$ be a coupling. Then, if $\text{Obs}(\Xi) = 0$, there is a Lie algebroid extension

$$0 \to L \xrightarrow{j} A \xrightarrow{\alpha} TM \to 0$$

of TM by L inducing the coupling Ξ.

Corollary 2.2.4. Let E be a vector bundle over M (that is the Lie algebra bundle with commutative Lie algebra). There is a Lie algebroid extension

$$0 \to E \xrightarrow{j} A \xrightarrow{\alpha} TM \to 0$$

if and only if the bundle E is flat.

Proof. Suppose that the extension exists

$$0 \to E \xrightarrow{j} A \xrightarrow{\alpha} TM \to 0$$

Let $\lambda : TM \to A$ be a splitting. Define

$$\nabla^\lambda : \mathfrak{X}^1(M) \times \Gamma^\infty(E; M) \to \Gamma^\infty(E; M)$$

by the formula

$$\nabla^\lambda_X(\mu) = \{\lambda(X), \mu\}.$$

Then

$$R^\nabla_X(\nabla^\lambda, \nabla^\lambda_Y)(\mu) = [\nabla^\lambda_X, \nabla^\lambda_Y](\mu) - \nabla^\lambda_{[X,Y]}(\mu) =$$

$$= \{[\lambda(X), \lambda(Y)] - \lambda([X,Y]), \mu\} = 0$$

for arbitrary $X, Y \in \mathfrak{X}^1(M), \mu \in \Gamma(E; M)$ since $a([\lambda(X), \lambda(Y)] - \lambda([X,Y])) = 0$ that is $[\lambda(X), \lambda(Y)] - \lambda([X,Y]) \in \Gamma(E; M)$ and the structural Lie algebra is commutative.

Conversely. If E is flat, there is a flat connection ∇ on E which also is a representation of the Lie algebroids

$$\nabla : TM \to \mathcal{D}(E),$$

that is $R^\nabla(X,Y) = 0$.

By definition of obstruction class this means that $\text{Obs}(\nabla) = 0 \in H^3(M, \nabla, E)$. Then there exist Lie algebroid extensions. \qed
3 Characteristic Classes

In this section a system of characteristic classes of transitive Lie algebroid with commutative adjoint bundle will be described. Then they will be compared with characteristic classes derived from Chern-Weil homomorphism by J. Kubarski ([3]). As a matter of fact we show that the Chern-Weil homomorphism does not cover all characteristic classes from categorical point of view.

3.1 A system of characteristic classes for commutative case

Let \mathfrak{h} be a finite dimensional commutative Lie algebra. Let $\text{Aut}(\mathfrak{h})_d$ be the group $\text{Aut}(\mathfrak{h})$ with discrete topology. The functor $\text{Vector}_d^b(\bullet)$ associates with each paracompact topology space X the set $\text{Vector}_d^b(X)$ of all vector bundle with structural group $\text{Aut}(\mathfrak{h})_d$. Let $E^\infty \to B\text{Aut}(\mathfrak{h})_d$ be universal bundle with group $\text{Aut}(\mathfrak{h})_d$ and let $B\text{Aut}(\mathfrak{h})_d$ be the classifying space.

Lemma 3.1.1. (See [6], Definition 11.1, Theorem 11.2, Theorem 12.2) There is a bijection between $\text{Vector}_d^b(X)$ and the homotopy classes of continuous maps $[X; B\text{Aut}(\mathfrak{h})_d]$.

Let M be a smooth manifold and

$$0 \to E \xrightarrow{j} A \xrightarrow{\alpha} TM \to 0$$

(2)

be a transitive Lie algebroid with fixed structural commutative Lie algebra $\mathfrak{h} = \mathbb{R}^n$. Let $\lambda : TM \to A$ be a splitting. Define $\nabla = \nabla^\lambda$ by a formula $\nabla^\lambda_\mu(\nu) = \{\lambda(\nu), \mu\}$. The bundle E possesses a flat structure $E^\nabla \in \text{Vector}_d^b(M)$. Let $f : M' \to M$ be a smooth map and $f^!A$ be the pullback of Lie algebroid A over f, that is

$$0 \to f^*E \xrightarrow{j'} f^!A \xrightarrow{\alpha'} TM' \to 0.$$

(3)

Let $\lambda' : TM' \to f^!A$ be a splitting. Define $\nabla' = \nabla^\lambda'$ on f^*E and f^*E is corresponding to $(f^*E)^{\nabla'}$.

Lemma 3.1.2. (i) ∇ and ∇' are independent of the choice of λ and λ',

(ii) The bundle $(f^*E)^{\nabla'}$ is the pullback of E^∇ over $f : M' \to M$ in the category of vector bundle with discrete structural group $\text{Aut}(\mathfrak{h})_d$.

Proof. Statement (i) is obvious.

(ii) : Consider the splitting of transitive Lie algebroid $[3]$

$$\lambda' : TM' \to f^!A$$

by the formula

$$\lambda'(X') = (X', \lambda(Tf(X'))),$$

$X' \in TM'$.
Let \(\sum_i h_i \cdot (\mu_i \circ f) \in \Gamma(f^* E; M) \), here \(h_i \in C^\infty(M'), \mu_i \in \Gamma(E; M) \). Then

\[
\nabla^X_{\lambda_i} \left(\sum_i h_i \cdot (\mu_i \circ f) \right) = \sum_i X' \left(\nabla^X_{\lambda_i} \right) \cdot (\mu_i \circ f) + \sum_i h_i \cdot (\nabla^Y_{f(X')}(\mu_i) \circ f)
\]

(4)

As \(\nabla^X \) is flat connection, there exist chart \(\{ \varphi_{\alpha} : E_U \to U \times h \}_{\alpha \in \Delta} \) which satisfies the condition

\[
\varphi_{\alpha} (\nabla^X_{\lambda}(\mu_{\alpha})) = X(\varphi_{\alpha}(\mu_{\alpha}))
\]

(5)

for arbitrary \(\mu_{\alpha} \in \Gamma(E_{U_{\alpha}}; U_{\alpha}), X \in \mathfrak{X}(M) \).

Consider \(\mu \in \Gamma(E_{U_{\alpha}} \cap U_{\beta}; U_{\alpha} \cap U_{\beta}) \). Then

\[
X(\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \circ \varphi_{\alpha}(\mu)) = X(\varphi_{\beta}(\mu)) = \varphi_{\beta}(\nabla^X_{\lambda}(\mu)) = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}(\varphi_{\alpha}(\nabla^X_{\lambda}(\mu))).
\]

Then

\[
X(\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \circ \varphi_{\alpha}(\mu)) = \varphi_{\beta} \circ \varphi_{\alpha}^{-1} \circ X(\varphi_{\alpha}(\mu))
\]

(6)

Thus the transition functions \(\{ \varphi_{\alpha\beta} \}_{\alpha, \beta \in \Delta} \) are all locally constant.

Let \(\{ V'_{\alpha} = f^{-1}(U_{\alpha}) \}_{\alpha \in \Delta} \) be atlas of charts on \(M' \). Define the homomorphism of \(C^\infty(V'_{\alpha}) \)-modules

\[
\psi_{\alpha} : \Gamma(f^* E|_{V'_{\alpha}}; V'_{\alpha}) \to \Gamma(V'_{\alpha} \times h; V'_{\alpha})
\]

defined by the formula

\[
\psi_{\alpha}(h_{\alpha, i} \cdot (\mu_{\alpha} \circ f)) = h_{\alpha, i} \cdot \varphi_{\alpha}(\mu_{\alpha}) \circ f
\]

for \(h_{\alpha, i} \cdot (\mu_{\alpha} \circ f) \in \Gamma(f^* E|_{V'_{\alpha}}; V'_{\alpha}) \), where \(h_{\alpha, i} \in C^\infty(V'_{\alpha}), \mu_{\alpha} \in \Gamma(E_{U_{\alpha}}; U_{\alpha}) \).

As \(\varphi_{\alpha} \) is vector bundle isomorphism, \(\psi_{\alpha} \) induces a vector bundle isomorphism. Then \(\{ V'_{\alpha}, \psi_{\alpha} : f^* E|_{V'_{\alpha}} \to V'_{\alpha} \times h \}_{\alpha \in \Delta} \) is a chart for \(f^* E \). Consider a vector field \(X' \in \mathfrak{X}(M') \). Then

\[
\psi_{\alpha}(h_{\alpha, i} \cdot (\mu_{\alpha} \circ f)) = \psi_{\alpha}(X'(h_{\alpha, i}) \cdot (\mu_{\alpha} \circ f) + h_{\alpha, i} \cdot (T f(X'))(\varphi_{\alpha}(\mu_{\alpha})) \circ f) = X'(h_{\alpha, i} \cdot (\varphi_{\alpha}(\mu_{\alpha})) \circ f) = \psi_{\alpha}(h_{\alpha, i} \cdot (\mu_{\alpha} \circ f))
\]

The transition functions

\[
\psi_{\alpha\beta} : V'_{\alpha} \cap V'_{\beta} \to \text{Aut}(h)_d
\]

are defined by

\[
\psi_{\alpha\beta}(x') = \varphi_{\alpha\beta}(f(x'))
\]

for \(x' \in V'_{\alpha} \cap V'_{\beta} \).

So \((f^* E)' \) is the pullback of \(E' \) over \(f : M' \to M \) in the category of vector bundle with discrete structural group \(\text{Aut}(h)_d \). \qed
The Lemma 3.1.2 shows that the following definition is corrected.

Definition 3.1.3. Let \(\mathfrak{h} \) be a commutative Lie algebra and \(M \) be a smooth manifold. Let \(A \in \mathcal{T}LA(h)(M) \), with splitting \(\lambda \). Let \(E^{\boxtimes \lambda} \) be the correspondent Lie algebra bundle with flat structure. Let \(\theta : \text{Vector}_h^M(M) \rightarrow [M; B\text{Aut}_h] \) be the bijection defined in Lemma 3.1.1. Then \(\theta(E^{\boxtimes \lambda}) = [f] \in [M; B\text{Aut}_h] \) induces a homomorphism

\[
f^* : H^*(B\text{Aut}_h; R) \rightarrow H^*(M; R).
\]

The class \(f^*(c) \in H^*(M; R) \) is characteristic class of \(A \), for arbitrary \(c \in H^*(B\text{Aut}_h; R) \).

3.2 Chern-Weil Homomorphism

Definition 3.2.1. (see [3], page17) Given a transitive Lie algebroid \((A,q,M,\{\},a) \) with adjoint bundle \(L \). The adjoint representation of a transitive Lie algebroid \(A \) is

\[
ad : A \rightarrow \mathcal{D}(L)
\]

defined by

\[
ad(\xi)(\nu) = \{\xi,\nu\}
\]

for \(\xi \in \Gamma(A; M), \nu \in \Gamma(L; M) \). Let \(L^* \) be dual bundle of \(L \) and \(\bigvee^k L^* \) is \(k \)-th symmetric power of \(L^* \) (see [7], page 191). The adjoint representation \(ad \) can rise to

\[
\bigvee^k ad^\delta : A \rightarrow \mathcal{D}(\bigvee^k L^*)
\]

such that

\[
< \bigvee^k ad^\delta(\xi)(\varphi), \nu^1 \vee \nu^2 \vee ... \vee \nu^k > = \sum_{i=1}^k < \varphi, \nu^i \vee ... \vee \{\xi,\nu^1\} \vee ... \vee \nu^k >
\]

for \(\xi \in \Gamma(A; M), \varphi \in \Gamma(\bigvee^k L^*; M), \nu^i \in \Gamma(L; M) \).

Remark 3.2.2. Here we only consider the vector bundle structure of \(L \) that is commutative Lie algebra structure. Hence we use notation \(\mathcal{D}(L) \) and \(\mathcal{D}(\bigvee^k L^*) \).

Definition 3.2.3. (see [3], Definition 2.3.1) Given an arbitrary transitive Lie algebroid \(0 \rightarrow L \rightarrow A \xrightarrow{\pi} TM \rightarrow 0 \). Let \(L^* \) be dual bundle of \(L \). A section \(\varphi \in \Gamma(\bigvee^k L^*; M) \) is called \(\bigvee^k ad^\delta \)-invariant if \(\bigvee^k ad^\delta(\xi)(\varphi) = 0 \) for all \(\xi \in \Gamma(A; M) \). The space of all \(\bigvee^k ad^\delta \)-invariant sections of \(\bigvee^k L^* \) is denoted by \(\Gamma^{\text{inv}}(\bigvee^k L^*; M) \).

Definition 3.2.4 (Chern-Weil homomorphism). (see [3], page 29) Given a transitive Lie algebroid \((A,q,M,\{\},a) \) with adjoint bundle \(L \). Let \(\lambda : TM \rightarrow \)
A be a splitting and $R^\lambda \in \Omega^2(M; L)$ be the curvature tensor, $R^\lambda(X, Y) = \{\lambda(X), \lambda(Y)\} - \lambda([X, Y])$.

Define a homomorphism of $C^\infty(M)$–modules

$$\chi_{(A, \lambda), I} : \Gamma^I(\bigwedge^k L^*; M) \to \Omega^{2k}(M)$$

by the formula

$$\chi_{(A, \lambda), I} = \frac{1}{k!} <\varphi, R_\lambda \vee R_\lambda \vee ... R_\lambda >$$

for $\varphi \in \Gamma(\bigwedge^k L^*; M)$. Here

$$<\varphi, R_\lambda \vee ... \vee R_\lambda > (X_1, X_2, ..., X_{2k}) =
= <\varphi, \frac{1}{k!} \sum_{\sigma}^{} (-1)^{\sigma} R_\lambda(X_{\sigma(1)}, X_{\sigma(2)}) \vee R_\lambda(X_{\sigma(3)}, X_{\sigma(4)}) \vee ... \vee R_\lambda(X_{\sigma(2k-1)}, X_{\sigma(2k)}) >$$

The forms from the image of $\chi_{(A, \lambda), I}$ is closed (see [3], proposition 4.1.2). Then Chern-Weil homomorphism is defined by the composition

$$h_{(A, \lambda)} : \bigoplus_{k \geq 0}^{} \Gamma^I(\bigwedge^k L^*; M) \xrightarrow{\chi_{(A, \lambda), I}} \text{Ker } d^\nabla^\lambda \xrightarrow{i} H^*_{D\text{-Ram}}(M; R).$$

The Chern-Weil homomorphism has functorial property and is independent of the choice of splitting (see [3], theorem 4.2.2, theorem 4.3.7). Then $h_{(A, \lambda)}$ can be denoted as

$$h_A : \bigoplus_{k \geq 0}^{} \Gamma^I(\bigwedge^k L^*; M) \to H^*_{D\text{-Ram}}(M; R).$$

3.3 Example

The following example shows that the Chern-Weil homomorphism does not cover all categorical characteristic classes.

Consider a flat 1–dimensional vector bundle E over a torus $T^2 = S^1 \times S^1$. We will consider E as a Lie algebra bundle with commutative Lie algebra $\mathfrak{h} \approx \mathbb{R}^1$. The structural group of the bundle E is the group $R^* = R \setminus \{0\}$ with discrete topology. The flat structure on E is defined by an atlas of charts $\{U_\alpha\}$ with trivialization of the bundle E on each chart U_α such that all transition function are locally constant. Transition functions are fully defined by a representation of the fundamental $\pi_1(T^2)$ in the structural group $\text{Aut} (\mathfrak{h})_d$, $\rho : \pi_1(T^2) \to \text{Aut} (\mathfrak{h})_d$.

There is a flat connection ∇ on $E \to T^2$ which corresponds to the flat structure on E. This means that the connection on each chart U_α (after trivialization of the bundle E) coincides with usual derivative ($\nabla_X = \frac{\partial}{\partial X}$).

Construct a Lie algebroid $\mathcal{A} :$

$$0 \to E \to T(T^2) \bigoplus E \to T(T^2) \to 0$$
with bracket

\[
\{(X, \mu), (Y, \nu)\} = ([X, Y], \nabla_X (\nu) - \nabla_Y (\mu) + \Omega(X, Y))
\]

for \((X, \mu), (Y, \nu) \in \Gamma(T(T^2) \bigoplus E; T^2)\). Here \(\Omega \in \text{Ker} \ d^\nabla \subset \Omega^2(T^2, E)\). Let \(E^*\) be the bundle dual to \(E\). Let \(f \in \Gamma^\prime(E^*; T^2)\). Then

\[
ad^\nabla((X, \nu))(f)(\mu) = X(f(\mu)) - f([X \oplus \nu, 0 \oplus \mu]) = X(f(\mu)) - f(\nabla_X (\mu)) = 0 \tag{7}
\]

for arbitrary \(\mu \in \Gamma(E; T^2)\), \((X, \nu) \in \Gamma(T(T^2) \bigoplus E; T^2)\). Hence locally on the chart \(U_\alpha\) the function \(f\) is constant.

This means that in the case of nontrivial representation the space \(\Gamma^\prime(E^*; T^2)\) has only trivial element. Thus the characteristic class for \(A\) defined by Chern-Weil homomorphism by J.Kubarski is trivial.

On the other hand the characteristic classes due to definition 3.1.3 are not trivial. Namely the structural group \(\text{Aut}(\mathfrak{h})_d\) is isomorphic to \(\mathbb{Z}_2 \times \mathbb{R}\). Hence the classifying space \(B_\mathbb{Z}_2 \times B_\mathbb{R}\) can be represent as a direct limits \(B_\mathbb{R} = \lim_{\leftarrow \mathbb{R}}(b \subset B; b)\), where each \(b \in B\) is a finite collection of indexes

\[
b = \{ \alpha_1, n_1, \alpha_2, n_2, \ldots, \alpha_k, n_k \}, \alpha_j \in A, n_j \in \mathbb{Z}
\]

that are ordered in the natural way, \(T_b = \prod_{j=1}^{k} S_{\alpha_j, n_j} \approx \mathbb{T}^k\).

The cohomology group \(H^*(B_{\text{Aut}(\mathfrak{h})_d}; R)\) can be describe in the following way:

\[
H^*(B_{\mathbb{Z}_2}; R) \approx \mathbb{R}; \quad H^*(B_{\mathbb{R}}; R) \approx \lim_{\leftarrow \mathbb{R}} H^*(\mathbb{T}_b; R).
\]

The representation \(\rho : \pi_1(T^2) \rightarrow \text{Aut}(\mathfrak{h})_d\) induces the map

\[
B_\rho : \mathbb{T}_2 \rightarrow B_{\mathbb{Z}_2} \times B_{\mathbb{R}},
\]

and the homomorphism in cohomology

\[
B_\rho^* : H^*(B_{\mathbb{Z}_2} \times B_{\mathbb{R}}; R) \rightarrow H^*(\mathbb{T}_2; R).
\]

Lemma 3.3.1 (Key lemma). The homomorphism \(B_\rho^*\) is surjective.
The example show that Chern-Weil homomorphism cannot define all characteristic classes for transitive Lie algebroid.

Remark 3.3.2. This example show that there is a natural problem to generalize the Chern-Weil homomorphism for non trivial flat bundle ZL of local coefficients for cohomologies that contain characteristic classes.

This work is partly supported by scientific program for the Chief International Academic Adviser of the Harbin institute of technology (2011-2014)(China) and Russian foundation of Basic research grant No.11-01-00057-a.

References

[1] Mackenzie, K.C.H., *General Theory of Lie Groupoids and Lie Algebroids*, Cambridge University Press,(2005)

[2] Allen Hatcher *Vector bundles and K-theory*,(2005)

[3] Kubarski, J., *The Chern-Weil homomorphism of regular Lie algebroids*, Publications du Department de Mathematiques, Universite Claude Bernard - Lyon-1, (1991) pp.4–63

[4] Mishchenko, A.S., *Transitive Lie algebroids - categorical point of view*, arXiv:1006.4839v1 [math.AT], 2010

[5] Mishchenko, A.S., *Characteristic classes of transitive Lie algebroids. Categorical point of view*, arXiv:1111.6823v1 [math.AT], 2011.

[6] Dale Husemoller, *Fiber Bundle*, Springer-Verlag, (1993).

[7] W. H. Greub, *Multilinear Algebra*, Springer-Verlag Berlin Heidelberg New York, (1967)