GENERALIZATION OF RESULTS ABOUT THE BOHR RADIUS FOR POWER SERIES.

LEV AIZENBERG

Abstract. The Bohr radius for power series of holomorphic functions mapping Reinhardt domains $\mathcal{D} \subset \mathbb{C}^n$ into the convex domain $G \subset \mathbb{C}$ is independent of the domain G.

1. Preliminaries

Let us recall the theorem of H. Bohr [13] in 1914.

Theorem 1.1. If a power series

$$f(z_1) = \sum_{k=0}^{\infty} c_k z_1^k \quad (1.1)$$

converges in the unit disk U_1 and its sum has modulus less than 1, then

$$\sum_{k=0}^{\infty} |c_k z_1^k| < 1, \quad (1.2)$$

if $|z_1| < \frac{1}{3}$. Moreover, the constant $\frac{1}{3}$ cannot be improved.

For convenience we write the inequality (1.2) in the following equivalent form

$$\sum_{k=1}^{\infty} |c_k z_1^k| < 1 - |c_0|. \quad (1.3)$$

Later, certain generalizations of this result were obtained.

1°. ([24]) If the sum of the series (1.1) is such that $|\Re f(z_1)| < 1$ in U_1 and $c_0 > 0$, then for $|z_1| < \frac{1}{3}$ the inequality (1.3) holds.

2°. (23, 22) If $\Re f(z_1) < 1$ in U_1 and $c_0 > 0$, then for $|z_1| < \frac{1}{3}$ the inequality (1.3) holds.

3°. (24) If $\Re \{[\exp(-i\arg f(0))] f(z_1)\} < 1$ in U_1 (here we assume that $\arg f(0) > 0$, if $f(0) = 0$), then for $|z_1| < \frac{1}{3}$ the inequality (1.3) is valid.

AMS classification number: 32A05.

Keywords: Bohr radius, Reinhardt domains, power series.
Formulations of Bohr’s theorem in several complex variables appeared very recently. We recall some of them.

Given a complete Reinhardt domain D, we denote by $R_1(D)$ (or by $R_2(D)$) the largest nonnegative number r with the property that if the power series

$$f(z) = \sum_{|\alpha|\geq 0} c_\alpha z^\alpha, \ z \in D,$$

where $\alpha = (\alpha_1, \ldots, \alpha_n)$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $z^\alpha = z_1^{\alpha_1} \cdots z_n^{\alpha_n}$ and all α_i are nonnegative integers, converges in D and the modulus of its sum is less than 1, then

$$\sum_{|\alpha|\geq 1} |c_\alpha z^\alpha| < 1 - |c_0|$$

in the homothetic domain $D_r = rD$. Here $c_0 = c_{0,0,\ldots,0}$. Correspondingly, if we consider a bounded domain D for $R_2(D)$ we have

$$\sum_{|\alpha|\geq 1} \sup_{D_r} |c_\alpha z^\alpha| < 1 - |c_0|.$$

Let

$$D^n_p = \{ z \in \mathbb{C}^n : |z_1|^p + \cdots + |z_n|^p < 1 \},$$

where $0 < p \leq \infty$. The domain D^n_∞ is the poly-disk $\{ z \in \mathbb{C}^n : |z_j| < 1, j = 1, \ldots, n \}$.

Theorem 1.2. ([12], see also [18]) For $n > 1$ one has

$$\frac{1}{3\sqrt{n}} < R_1(D^n_\infty) < \frac{2\sqrt{\log n}}{\sqrt{n}}. \tag{1.5}$$

Theorem 1.3. ([1]) For $n > 1$ one has

$$\frac{1}{3\sqrt{e}} < R_1(D^n_1) \leq \frac{1}{3}. \tag{1.6}$$

The estimates (1.5) and (1.6) were generalized for $R_1(D^n_p)$, for $1 \leq p < \infty$ in [11] and for $0 < p \leq 1$ in [3]. We point out the next new remarkable result which improves the lower estimate in (1.5).

Theorem 1.4. ([15]) For $n > 1$ one has

$$C \sqrt{\frac{\log n}{n \log \log n}} < R_1(D^n_\infty),$$

where the constant C is independent of n.
Both Bohr radii coincide in the case the domain is a polydisk, and in the case $n = 1$ they do coincide with the classical Bohr radius $\frac{1}{3}$. If the domain \mathcal{D} is not a polydisk, then naturally $R_2(\mathcal{D})$ is smaller than $R_1(\mathcal{D})$.

Theorem 1.5. (\[1\]) The inequality

$$1 - \sqrt[3]{\frac{2}{3}} < R_2(\mathcal{D})$$

is true for every complete bounded Reinhardt domain \mathcal{D}.

Theorem 1.6. (\[1\]) There holds the inequality

$$R_2(\mathcal{D}_1^n) < \frac{0.44663}{n}.$$

The radius $R_2(\mathcal{D})$ was a subject of investigation in \[11, 17\]. Other results about the Bohr radius for holomorphic functions can be found in \[2, 5, 6, 8, 9, 10, 16\].

2. **Generalized Bohr radii**

One of the proofs of Bohr’s theorem (Theorem 1.1) is based on the Landau inequality [21]: if the function $f(z_1)$ satisfies in U_1 the inequality $|f(z_1)| < 1$, then $|c_k| \leq 2(1 - |c_0|)$ holds for every $k \geq 1$. This inequality can be obtained as a simple consequence of the Caratheodory inequality [14]: if the function $f(z_1)$ satisfies in U_1 the inequality $\Re f(z_1) > 0$, then $|c_k| \leq 2\Re c_0$ is true for every $k \geq 1$. Both inequalities are particular cases of a more general assertion.

Let \bar{G} be the convex hull of G.

Proposition 2.1. (\[3\]) If $f(U_1) \subset G$, then

$$|c_k| \leq 2\text{dist}(c_0, \partial \bar{G}),$$

for all $k \geq 1$.

Now it is not difficult to prove a generalization of Theorem 1.1. Let $G \subset \mathbb{C}$ be any domain. A point $p \in \partial G$ is called a point of convexity if $p \in \partial \bar{G}$. A point of convexity p is called regular if there exists a disk $U \subset G$ so that $p \in \partial U$.

Theorem 2.1. If the function $f(z_1)$ is such that $f(U_1) \subset G$, with $\bar{G} \neq \mathbb{C}$, then for $|z_1| < \frac{1}{3}$ the inequality

$$\sum_{k=1}^{\infty} |c_k z_1^k| < \text{dist}(c_0, \partial \bar{G})$$

(2.2)
is valid. The constant $\frac{1}{3}$ cannot be improved if ∂G contains at least one regular point of convexity.

Proof: 1) If $|z_1| < \frac{1}{3}$ then (2.1) yields
\[
\sum_{k=1}^{\infty} |c_kz_1^k| < 2\text{dist}(c_0, \partial G) \sum_{k=1}^{\infty} \frac{1}{3^k} = \text{dist}(c_0, \partial \tilde{G}).
\]

2) We will prove the exactness of the constant $\frac{1}{3}$ in the case the boundary contains at least one regular point of convexity. In the classical case of Bohr’s Theorem 1.1 this is obtained by considering the family of functions (21)
\[
f(z_1) = \frac{\alpha - z_1}{1 - \alpha z_1}, \ 0 < \alpha < 1.
\]

Here
\[
\sum_{k=1}^{\infty} |c_kz_1^k| = 1
\]
if and only if $|z_1| = \frac{1}{1+2\alpha}$. Furthermore, taking $\alpha \rightarrow 1$, we obtain the desired result. Note that instead of the family (2.3) one can use the family $e^{i\phi}f(z_1)$, where $f(z_1)$ is taken from (2.3). In this case it follows that $c_0 = e^{i\phi} \alpha$, and when $\alpha \rightarrow 1$ we get that c_0 tends to ∂U_1 along the radius of argument ϕ. If G is an arbitrary disk U, then, remarking that (2.2) does not change under homotheties and translations, we deduce the exactness of $\frac{1}{3}$ in the case of any disk. Let ζ be a regular point of convexity, then there exists a disk $U \subset G$ such that $\zeta \in (\partial U) \cap (\partial G)$. Consider the functions f in (1.1) such that $f(U_1) \subset U$. For suitable c_0 (see above) we will have $\text{dist}(c_0, \partial U) = \text{dist}(c_0, \partial G) = \text{dist}(c_0, \partial \tilde{G})$. Therefore, in the inequality (2.2) one cannot take $|z_1| < r$, where $r > \frac{1}{3}$. ♦

We remark that Theorem 1.1, the assertion 3^0, as well as the generalized assertions 1^0 and 2^0 are contained in Theorem 2.1. For example, in 1^0 no need in assuming $c_0 > 0$, and instead of (1.3) one gets
\[
\sum_{k=1}^{\infty} |c_kz_1^k| < 1 - |\Re c_0|.
\]

Similarly in 2^0 no need in assuming $c_0 > 0$, and instead of (1.3) one gets
\[
\sum_{k=1}^{\infty} |c_kz_1^k| < 1 - |\Re c_0|.
\]
Let us recall another fact, known earlier:

4^0. ([4]) If $\Re f(z_1) > 0$ in U_1 and $c_0 > 0$, then for $|z_1| < \frac{1}{3}$ the inequality

$$\sum_{k=1}^{\infty} |c_k z_1^k| < c_0$$

holds, and the constant $\frac{1}{3}$ cannot be improved. I thought before that Theorem 1.1. and 4^0 are two different facts, having the same Bohr radius. In the light of Theorem 2.1, I know now that both results are particular cases of this theorem. Now, in the case of 4^0 without the assumption $c_0 > 0$, we get

$$\sum_{k=1}^{\infty} |c_k z_1^k| < \Re c_0$$

instead of (2.4).

Theorem 2.1 motivates the following generalization of the first and second Bohr radii. Denote by $R_1(\mathcal{D}, G)$ (or by $R_2(\mathcal{D}, G)$), where $G \subset \mathbb{C}$, $\tilde{G} \neq \mathbb{C}$, and \mathcal{D} is a complete Reinhardt domain (bounded complete Reinhardt domain) in \mathbb{C}^n the largest $r \geq 0$ such that if the function (1.4) is holomorphic in \mathcal{D} and $f(\mathcal{D}) \subset G$ then

$$\sum_{|\alpha| \geq 1} \sup_{\mathcal{D}_r} |c_\alpha z^\alpha| < \text{dist}(c_0, \partial \tilde{G})$$

in a homothety \mathcal{D}_r (or correspondingly

$$\sum_{|\alpha| \geq 1} \sup_{\mathcal{D}_r} |c_\alpha z^\alpha| < \text{dist}(c_0, \partial \tilde{G})$$

Theorem 2.1 and the result from [7] about the Rogosinski radius allow one to hope that the two Bohr radii $R_1(\mathcal{D}, G)$ and $R_2(\mathcal{D}, G)$ are independent of the convex domain G. The main result of the present paper is the proof of the validity of this more general assertion.

3. THE MAIN RESULT

Let M be a complex manifold, $\mathcal{H}(M)$ be the space of holomorphic on M functions equipped with the natural topology of uniform convergence over compact subsets of M. Let $\| \cdot \|_r$, $r \in (0, 1)$, be a one-parameter family of semi-norms in $\mathcal{H}(M)$ that are continuous with respect to the topology of $\mathcal{H}(M)$. In what
follows we always assume that
\[a) \|f\|_r \leq \|f\|_{r_2} \text{ if } r_1 \leq r_2. \]
\[b) \|f \cdot g\|_r \leq \|f\|_r \cdot \|g\|_r \ \forall r \in (0,1). \]

There exists a point \(z_0 \in M \) such that
\[c) \|f\|_r \rightarrow |f(z_0)| \text{ as } r \rightarrow 0, \ \forall f \in \mathcal{H}(M). \]
\[d) \|f\|_r = |f(z_0)| + \|f - f(z_0)\|_r, \ \forall f \in \mathcal{H}(M). \]

Denote by \(B(\| \cdot \|_r, G) \) the largest \(r \geq 0 \) such that for \(f \in \mathcal{H}(M) \) and \(f(M) \subset G \) one has
\[\|f - f(z_0)\|_r < \text{dist}(f(z_0), \partial \tilde{G}), \tag{3.1} \]
where \(\tilde{G} \) is the convex hull of the domain \(G \subset \mathbb{C} \).

Proposition 3.1. If \(U \) is any disk and \(\Pi \) is any half-plane, then
\[B(\| \cdot \|_r, \Pi) = B(\| \cdot \|_r, U). \tag{3.2} \]

Proof: Let \(\Pi_1 = \{z_1 : \Re z_1 > 0\} \), then (\[\Pi\], Theorem 7)
\[B(\| \cdot \|_r, U_1) = B'(\| \cdot \|_r, \Pi_1), \]
where \(B' \) is defined in the same way as \(B \) but with the additional assumption \(f(z_0) > 0 \). This assumption can be removed as follows. If \(\Re f(z_0) > 0 \) in \(M \) then \(\Re f_1(z_0) > 0 \), where \(f_1(z) = f(z) - \Re f(z_0) \). But \(f_1(z_0) > 0 \), hence
\[B(\| \cdot \|_r, U_1) = B(\| \cdot \|_r, \Pi_1). \]

We remark that (3.1) does not change under homotheties, translations and rotations of the domain \(G \). Therefore (3.2) holds. \(\diamond \)

Theorem 3.1. If \(\tilde{G} \neq \mathbb{C} \), then \(B(\| \cdot \|_r, G) \) is not smaller than (3.2). If \(\partial G \) contains at least one regular point of convexity, then \(B(\| \cdot \|_r, G) \) is equal to (3.2).

Proof: Let \(\tilde{G} \neq \mathbb{C} \) and \(f(M) \subset G \). Fix any \(f(z_0) \in G \). On the boundary \(\partial \tilde{G} \) there exists a point \(\zeta \) so that \(\text{dist}(f(z_0), \partial \tilde{G}) = \text{dist}(f(z_0), \zeta) \). Through the point \(\zeta \) the line of support of \(\tilde{G} \) passes which defines the half-plane \(\Pi_0 \supseteq G \). Then
\[\text{dist}(f(z_0), \partial \tilde{G}) = \text{dist}(f(z_0), \partial \Pi_0). \]
Therefore \(B(\| \cdot \|_r, G) \geq B(\| \cdot \|_r, \Pi_0) \), since \(\{f : f \in \mathcal{H}(M), f(M) \subset G\} \subset \{f : f \in \mathcal{H}(M), f(M) \subset \Pi_0\} \).
Assume now that there is a regular point of convexity in \(\partial G \). Then the proof repeats the proof of part 2) of the Theorem 2.1. Note that there
we did not use the concrete form of the family (2.3), but rather the fact that c_0 can lie on any radius emanating from the center of the disk U to its boundary. So, let us assume that $U \subset G$, $\zeta \in (\partial U) \cap (\partial G) \cap (\partial \tilde{G})$. Then consider $f(z_0)$ lying on the radius from the center of the disk U to the point ζ. Now $\text{dist}(f(z_0), \zeta) = \text{dist}(f(z_0), \partial U) = \text{dist}(f(z_0), \partial \tilde{G})$, hence $B(\| \cdot \|_r, G) \leq B(\| \cdot \|_r, U)$, since \{ $f : f \in \mathcal{H}(M), f(M) \subset U$ \} \subset \{ $f : f \in \mathcal{H}(M), f(M) \subset G$ \}. \diamondsuit.

Corollary 3.1. If the domain G is convex and $G \neq C$, then $B(\| \cdot \|_r, G)$ is independent of the choice of the domain G.

Proof: There exists disk $U \subset G$ such that $\partial U \cap \partial G \neq \emptyset$. Therefore there exist regular points of convexity on ∂G. \diamondsuit.

Corollary 3.2. The first Bohr radius $R_1(D, G)$ and the second Bohr radius $R_2(D, G)$ are independent of the choice of the convex domain G, $G \neq C$.

In particular, the assertions of Theorems 1.2, 1.3 and 1.4 are valid for $R_1(D, G)$ while those of Theorem 1.5 and 1.6 are valid for $R_2(D, G)$ for every convex domain $G \neq C$.

Some concluding remarks. If the family of semi-norms $\| \cdot \|_r$ does not satisfy some of the conditions $a) - d)$, then the assertion of Theorem 3.1 is not valid anymore. Examples can be found in [4]. If $\tilde{G} = C$, then the right-hand side of (3.1) is equal to ∞, therefore in this case

$$B(\| \cdot \|_r, G) = 1.$$

One can also consider different realizations of $B(\| \cdot \|_r, G)$ than the first and second Bohr radii $R_1(D, G)$ and $R_2(D, G)$.

We conclude the present article with formulating an open problem: if $\tilde{G} \neq C$, is it always true that $B(\| \cdot \|_r, G)$ is equal to (3.2)? The same question makes sense for the first and second Bohr radii $R_1(D, G)$ and $R_2(D, G)$.

4. **Acknowledgements**

The author is deeply grateful to E. Liflyand and A. Vidras for their help in preparing the paper and improving the presentation.

References

[1] L.Aizenberg, *Multidimensional analogues of Bohr's theorem on power series*, Proc. Amer. Math. Soc. 128 (2000), 1147-1155.
[2] L. Aizenberg, *Bohr Theorem*, Encyclopedia of Mathematics, Supplement II (ed. M. Hezewinkel), Kluwer, Dordrecht, 2000, 76-78.

[3] L. Aizenberg, *A generalization of Caratheodory inequality and the Bohr radius for multidimensional power series*, Operator Theory, Advances and Applications 158 (2005), 87-94.

[4] L. Aizenberg, A. Aytuna, P. Djakov, *An abstract approach to Bohr’s phenomenon*, Proc. Amer. Math. Soc. 128 (2000), 2611-2619.

[5] L. Aizenberg, A. Aytuna, P. Djakov *Generalization of Bohr’s theorem for bases in spaces of holomorphic functions of several complex variables*, J. of Math. Anal. Appl. 258 (2001), 428-447.

[6] L. Aizenberg, I. B. Grossman, Yu. F. Korobeinik, *Some remarks on Bohr radius for power series*, Isv. Vyssh. Ucheb. Zav. Mat. 2002, no. 10, 3-10.

[7] L. Aizenberg, M. Elin, D. Shoikhet, *On the Rogosinski radius for holomorphic mappings and some of its applications*, Stud. Math. 128(2)(2005), 147-158.

[8] L. Aizenberg, E. Liflyand, A. Vidras, *Multidimensional analogue of the van der Corput-Visser inequality and its application to the estimation of the Bohr radius*, Anal. Pol. Math. 80 (2003), 47-54.

[9] L. Aizenberg, A. Vidras, *On the Bohr radius of two classes of holomorphic functions*, Siberian Math. J. 45 (2004), no. 4, 606-617.

[10] C. Béneteau, A. Dahlner, D. Khavinson, *Remarks on the Bohr phenomenon*, Comput. Method. Funct. Theory 4 (2004), 1-19.

[11] H. P. Boas *Majorant series*, J. Korean Math. Soc. 37 (2000), 321-337.

[12] H. P. Boas, D. Khavinson, *Bohr’s power series theorem in several variables*, Proc. Amer. Math. Soc. 125 (1997), 2975-2979.

[13] H. Bohr, *A theorem concerning power series*, Proc. London Math. Soc. 13 (1914), 1-5.

[14] C. Carathéodory, *Über den Variabilitätsbereich der Koeffizienten den Potenzreihen, die gegebene Werte nicht annemen*, Math. Ann. 64 (1907), 95-115.

[15] A. Defant, L. Frerick, *A logarithmic lower bound for multi-dimensional Bohr radii*, Israel J. of Math. 152 (2006), 17-28.

[16] A. Defant, D. Garcia, and M. Maestre, *Bohr’s power series theorem and local Banach space theory*, J. reine und angew. Math. 557 (2003), 173-197.

[17] A. Defant, D. Garcia, and M. Maestre, *Estimates for the first and second Bohr radii of Reinhardt domains*, J. Approx. Theory 128 (2004), 53-68.

[18] S. Dineen, R. Timoney, *Absolute bases, tensor products, and a theorem of Bohr*, Stud. Math. 94 (1989), 227-234.

[19] P. B. Djakov, M. S. Ramanujan, *A remark on Bohr’s theorem and its generalizations*, J. Analysis, 8 (2000), 65-77.

[20] G. Kresin, V. Maz’ya, *Sharp Bohr’s type real part estimates*, preprint, 2006, 1-16.

[21] E. Landau, D. Gaier, *Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie*, Springer-Verlag, 1986.

[22] V. I. Paulsen, G. Popescu, D. Singh, *On Bohr inequality*, Proc. Lond. Math. Soc. 85 (2002), 493-515.

[23] S. Sidon, *Über einen Satz von Herrn Bohr*, Math. Zeit. 26 (1927), 731-732.

[24] M. Tomić, *Sur une théorème de H. Bohr*, Math. Scandin. 11 (1963), 103-106.
GENERALIZATION OF RESULTS ABOUT THE BOHR RADIUS FOR POWER SERIES

Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel

E-mail address: aizenbrg@math.biu.ac.il