On the “scattering law” for Kasner parameters in the model with one-component anisotropic fluid

V.D. Ivashchuk1 and V.N. Melnikov2

Center for Gravitation and Fundamental Metrology, VNIIMS, 46 Ozyornaya ul., Moscow 119361, Russia
Institute of Gravitation and Cosmology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya ul., Moscow 117198, Russia

Abstract

A multidimensional cosmological type model with 1-component anisotropic fluid is considered. An exact solution is obtained. This solution is defined on a product manifold containing n Ricci-flat factor spaces. We singled out a special solution governed by the function \cosh. It is shown that this special solution has Kasner-like asymptotics in the limits $\tau \to +0$ and $\tau \to +\infty$, where τ is a synchronous time variable. A relation between two sets of Kasner parameters α_∞ and α_0 is found. This formula (of “scattering law”) is coinciding with that obtained earlier for the S-brane solution (when scalar fields are absent).

1ivashchuk@mail.ru
2melnikov@vniims.ru
1 Introduction

In this paper we continue our investigations (started in [1]) of multidimensional solutions defined on product of several Ricci-flat factor spaces which have two Kasner-like asymptotical regions.

Here we recall that Kasner-like solutions with a chain of n Ricci-flat factor-spaces ($M_i, g^{(i)}$) have the following form [2]

$$g = w d\tau \otimes d\tau + \sum_{i=1}^{n} A_i^2 \tau^{2\alpha_i} g^{(i)}, \quad (1.1)$$

where $w = \pm 1$, $\tau > 0$,

$$\sum_{i=1}^{n} d_i \alpha_i = 1, \quad (1.2)$$

$$\sum_{i=1}^{n} d_i (\alpha_i)^2 = 1, \quad (1.3)$$

and for any $i = 1, \ldots, n$ ($n \geq 2$): $A_i > 0$ is constant, $g^{(i)}$ is a Ricci-flat metric defined on the manifold M_i (for $w = -1$ see [2]).

These solutions with non-Milne-type sets of Kasner parameters are singular since the Riemann tensor squared is divergent as $\tau \to +0$ [3]. For Milne-type sets of parameters, i.e. when $d_i = 1$ and $\alpha_i = 1$ for some i ($\alpha_j = 0$ for all $j \neq i$) the metric is regular as $\tau \to +0$, when either i) $g^{(i)} = -wdy^i \otimes dy^i$, $M_i = \mathbb{R} \ (-\infty < y^i < +\infty)$, or ii) $g^{(i)} = wdy^i \otimes dy^i$, M_i is circle of length L_i ($0 < y^i < L_i$) and $A_i L_i = 2\pi$ (i.e. when the cone singularity is absent).

In this paper we consider an exact cosmological type solution with 1-component “perfect” fluid (Section 2). (For earlier publications on multidimensional cosmological models with perfect fluid see [4]-[14] and references therein.) This solution is defined on a product manifold containing n Ricci-flat factor spaces. It is derived in the Appendix. For $w = -1$ it was found in [11, 12, 13] and generalized in [14] for the case when a scalar field was added. A special case of this solution with a Λ-term component was obtained in [15] (see also [16] for scalar field generalization).

We write the solution in a so-called “minisuperspace-covariant” form that significantly simplifies the forthcoming analysis. In Section 3 we single out a special solution governed by the $cosh$ function. We show that this solution
has a Kasner-like asymptotics in both limits $\tau \to +0$ and $\tau \to +\infty$, where τ is the synchronous time variable. We also find a relation between two sets of Kasner parameters $\alpha_\infty = (\alpha^i_\infty) \in \mathbb{R}^n$ and $\alpha_0 = (\alpha^i_0) \in \mathbb{R}^n$:

$$\alpha^i_\infty = \frac{\alpha^i_0 - 2U(\alpha_0)U^i(U,U)^{-1}}{1 - 2U(\alpha_0)(U,U^\Lambda)(U,U)^{-1}}, \quad (1.4)$$

$i = 1, \ldots, n$. Here $U = (U^i)$ is a co-vector corresponding to the fluid component, $\bar{U} = (U^i)$ is dual vector and U^Λ is a co-vector, corresponding to the Λ-term. All these vectors and the scalar product $(.,.)$ are defined below (see Section 2). Here $U(\alpha_0) = U_i\alpha^i_0 > 0$ and $U(\alpha_\infty) = U_i\alpha^i_\infty < 0$.

A relation analogous to (1.4) (“scattering law” formula) was obtained earlier for S-brane solution with one brane in [1]. We note that in [1] the geometrical sense of the scattering law was clarified for $n > 2$. Namely, the scattering law transformation for a brane U-vector (obeying $(U,U^\Lambda) < 0$) was expressed in terms of a function mapping a “shadow” part of the Kasner sphere S^{n-2} onto “illuminated” one. The shadow and illuminated parts of the Kasner sphere were defined w.r.t. a point-like source of light located outside the Kasner sphere S^{n-2}. (For details of this geometrical construction see [1]).

The relation (1.4) appears also when the billiard approach to multicomponent anisotropic fluid is considered [18, 19, 20, 21]. It may be shown (as it was done in [23, 24] for S-brane solutions) that after the collision with a billiard wall (corresponding to the fluid component) the set of Kasner parameters, is defined by the Kasner set before the collision through the formula analogous to (1.4), see [26]. For the billiard approach in models with scalar field and fields of forms see [22, 23, 25, 26] and refs. therein.

2 Model with anisotropic fluid and its exact solution

2.1 The set-up

Now, we consider a cosmological type solution to Einstein equations with an anisotropic (perfect) fluid matter source

$$R^M_N - \frac{1}{2}g^M_N R = k^2T^M_N \quad (2.1)$$
defined on D-dimensional manifold
\[M = \mathbb{R} \times M_1 \times M_2 \times \ldots \times M_n, \] (2.2)

with block-diagonal metric
\[g = we^{2\gamma(u)} du \otimes du + \sum_{i=1}^{n} e^{2\beta_i(u)} g^{(i)}. \] (2.3)

Here $\mathbb{R} = (u_-, u_+)$ is an interval, $w = \pm 1$ and $n \geq 2$. Manifold M_i with the metric $g^{(i)}$ is a Ricci-flat space of dimension d_i: $R_{m,n}[g^{(i)}] = 0$, $i = 1, 2, \ldots, n$, and κ^2 is a multidimensional gravitational constant.

Energy-momentum tensor of anisotropic fluid is adopted in the following form:
\[(T^M_{MN}) = \text{diag}(-\hat{\rho}, \hat{p}_1 \delta^m_{k_1}, \ldots, \hat{p}_n \delta^m_{k_n}), \] (2.4)

where $\hat{\rho}$ and \hat{p}_i are “density” and “pressures”, respectively, depending upon radial variable u.

In the cosmological case when $w = -1$ and all metrics $g^{(i)}$ have Euclidean signatures, $\hat{\rho} = \rho$ is a density and $\hat{p}_i = p_i$ is a pressure in i-th space. For static configurations with $w = 1$, $g^{(1)} = -dt \otimes dt$ and all metrics $g^{(i)}$, $i > 1$, having Euclidean signatures, the physical density and pressures are related to the effective (“hat”) ones by formulas: $\rho = -\hat{p}_1$, $p_u = -\hat{\rho}$, $p_i = \hat{p}_i$, $(i \neq 1)$, where p_u is the pressure in u-th direction.

We also impose the following equation of state
\[\hat{p}_i = \left(1 - \frac{2U_i}{d_i}\right) \hat{\rho}, \] (2.5)

where U_i are constants, $i = 1, 2, \ldots, n$.

In what follows we use a scalar product
\[(U, U') = G^{ij} U_i U'_j = \sum_{i=1}^{n} \frac{U_i U'_i}{d_i} + \frac{1}{2 - D} \left(\sum_{i=1}^{n} U_i \left(\sum_{j=1}^{n} U'_j\right)\right), \] (2.6)

for $U = (U_i), U' = (U'_i) \in \mathbb{R}^n$, where
\[G^{ij} = \delta^{ij} \frac{1}{d_i} + \frac{1}{2 - D} \] (2.7)
are components of dual minisuperspace metric. Recall that \((G^{ij}) = (G_{ij})^{-1}\), where
\[
G_{ij} = d_i \delta_{ij} - d_i d_j,
\]
are components of minisuperspace metric \([17]\).

We also define a co-vector
\[
U^\Lambda = (d_i),
\]
(2.9)
corresponding to the \(\Lambda\) -term and the vector \(\bar{U} = (U^i)\)
\[
U^i = G^{ij} U_j = \frac{U_i}{d_i} + \frac{1}{2-D} \sum_{j=1}^{n} U_j,
\]
(2.10)
which is dual to \(U\).

2.2 Exact solution

Here we consider an exact cosmological solution to Hilbert-Einstein equations (2.1) defined on the manifold (2.2). We impose the following restriction on the \(U\)-vector in (2.5)
\[
K = (U, U) = \sum_{i=1}^{n} \frac{U_i^2}{d_i} + \frac{1}{2-D} \left(\sum_{i=1}^{n} U_i \right)^2 \neq 0.
\]
(2.11)
(The case \(K = 0\) will be considered in a separate publication.)

The solution has the following form (see Appendix C)
\[
g = |f(u)|^{-2h(U^\Lambda)} \exp(2c^0 u + 2\bar{c}^0) w d u \otimes d u + \sum_{i=1}^{n} |f(u)|^{-2hU^i} \exp(2c^i u + 2\bar{c}^i) g^{(i)},
\]
\[
k^2 \dot{\rho} = -w A |f(u)|^{2h(U^\Lambda)^{-2}} \exp(-2c^0 u - 2\bar{c}^0),
\]
(2.13)
where \(w = \pm 1\), \(h = K^{-1}\), \(g^{(i)}\) is a Ricci-flat metric on \(M_i\), and
\[
(U, U^\Lambda) = \sum_{i=1}^{n} \frac{U_i}{2-D},
\]
(2.14)
i = 1, \ldots, n.
The moduli function f reads

$$f(u) = R \sinh(\sqrt{C}(u - u_0)), \ C > 0, \ KA < 0; \tag{2.15}$$

$$R \sin(\sqrt{|C|}(u - u_0)), \ C < 0, \ KA < 0; \tag{2.16}$$

$$R \cosh(\sqrt{C}(u - u_0)), \ C > 0, \ KA > 0; \tag{2.17}$$

$$|2AK|^{1/2}(u - u_0), \ C = 0, \ KA < 0, \tag{2.18}$$

where $R = |2AK/C|^{1/2}$, and C, u_0 are constants. (In (2.12) and (2.13) $f(u) \neq 0$ is assumed for all $u \in (u_-, u_+).$)

Vectors $c = (c^i)$ and $\bar{c} = (\bar{c}^i)$ obey the following constraints:

$$U(c) = U_i c^i = 0, \quad U(\bar{c}) = U_i \bar{c}^i = 0 \tag{2.19}$$

$$CK^{-1} + G_{ij} c^i \bar{c}^j = 0, \tag{2.20}$$

where $G_{ij} c^i \bar{c}^j = \sum_{i=1}^n d_i(c^i)^2 - (\sum_{i=1}^n d_i(c^i)^2)^2.$

In (2.12) and (2.13) we also denote

$$c^0 = U^\Lambda(c) = \sum_{i=1}^n d_i c^i, \quad \bar{c}^0 = U^\Lambda(\bar{c}) = \sum_{i=1}^n d_i \bar{c}^i. \tag{2.21}$$

The special solution with $C = c_i = 0$ (for all i) and $w = -1$ was considered in detail in [28, 29]. For $U = U^\Lambda$ and $A > 0$ it contains a special solution with $d_i = 1$, $g^i = dy^i \otimes dy^i$ ($i = 1, \ldots, n$), describing either (a part of) de-Sitter space (for $w = -1$) or (a part of) anti-de-Sitter space (for $w = 1$).

Minisuperspace-covariant form of solution.

This solution is derived in Appendix C in terms of “minisuperspace-covariant” notations for functions $\gamma(u)$, $\beta^i(u)$ appearing in metric (2.3).

Solution for $\beta = (\beta^i(u))$ reads as follows:

$$\beta^i(u) = -\frac{U^i}{(U,U)} \ln |f(u)| + c^i u + \bar{c}^i, \tag{2.22}$$

where $f(u)$ was defined in (2.15)-(2.18) and

$$\gamma = \gamma_0 \equiv \sum_{i=1}^n d_i \beta^i = U^\Lambda \beta^i \tag{2.23}$$

and u is the harmonic variable.
3 Scattering law for Kasner parameters

Now we restrict our consideration by a special solution with \(C > 0 \), \(K = (U, U) > 0 \) and \(A > 0 \). In this case the solution is governed by moduli function \(f(u) = R \cosh(\sqrt{C}(u-u_0)) \), \(u \in (-\infty, +\infty) \), and has two Kasner-like asymptotics in the limits \(\tau \to +0 \) and \(\tau \to +\infty \), where \(\tau \) is a synchronous time variable (see below).

Another case, when there are two Kasner-like asymptotical regions, takes place when \(C > 0 \), \(K = (U, U) < 0 \) and \(A < 0 \) (this will be a subject of a separate paper).

3.1 Kasner-like behaviour

Let us consider our solution in a synchronous time:

\[
\tau = \varepsilon \int_{u_0}^{u} d\bar{u} e^{\gamma_{0}(\bar{u})},
\]

where \(\varepsilon = \pm 1 \), and

\[
e^{\gamma_{0}(u)} = |f(u)|^{-h(U^\Lambda, U)} \exp(e^0 u + e^0) \tag{3.2}
\]

is a lapse function.

Due to

\[
f \sim \frac{R}{2} \exp(\pm \sqrt{C}(u-u_0)),
\]

for \(u \to \pm \infty \), we get asymptotical relations for the lapse function

\[
e^{\gamma_{0}} \sim \text{const} \exp(b_{\pm} \sqrt{C} u),
\]

as \(u \to \pm \infty \), with

\[
b_{\pm} = \mp h(U^\Lambda, U) + \frac{e^0}{\sqrt{C}}. \tag{3.5}
\]

Using relations (2.21) and \(h = (U, U)^{-1} \), we could rewrite parameters \(b_{\pm} \) in a minisuperspace-covariant form:

\[
b_{\pm} = \mp \frac{(U^\Lambda, U)}{(U, U)} + (s, U^\Lambda), \tag{3.6}
\]

where

\[
s = (s_i) = (G_{ij}e^j/\sqrt{C}) \tag{3.7}
\]
is a co-vector, obeying relations

\[(s, U) = 0,\]
\[\frac{1}{(U, U)} + (s, s) = 0,\]
(3.8)
(3.9)

following just from (2.19) and (2.20). In derivation of (3.6) we used the relation

\[c^0 = (s, U^\Lambda)\sqrt{C},\]
(3.10)

following from (2.21) and (3.7).

In what follows we will use the inequality

\[|(s, U^\Lambda)| > \frac{|(U^\Lambda, U)|}{(U, U)},\]
(3.11)

proved in Appendix C. The proof used relations (3.8), (3.9) and \((U, U) > 0\).

The parameter \(c^0\) is a non-zero one (otherwise the relation (2.20) would be incompatible with the conditions \(C > 0, K > 0\)).

It follows from (3.11) that \(b_\pm\) are also non-zero and

\[\text{sign}(b_\pm) = \text{sign}((s, U^\Lambda)) = \text{sign}(c^0).\]
(3.12)

It may be verified that due to (3.11) the lapse function \(e^{\gamma_0(u)}\) is monotonically increasing from \(+0\) to \(+\infty\) for \(c^0 > 0\) and monotonically decreasing from \(+\infty\) to \(+0\) for \(c^0 < 0\).

We define a synchronous-like variable to be

\[\tau = \int_{-\infty}^{u} d\bar{u}e^{\gamma_0(\bar{u})}\]
(3.13)

for \(c^0 > 0\) and

\[\tau = \int_{u}^{+\infty} d\bar{u}e^{\gamma_0(\bar{u})}\]
(3.14)

for \(c^0 < 0\). Then, \(\tau = \tau(u)\) is monotonically increasing from \(+0\) to \(+\infty\) for \(c^0 > 0\) and monotonically decreasing from \(+\infty\) to \(+0\) for \(c^0 < 0\).

We have the following asymptotical relations for \(\tau = \tau(u)\)

\[\tau \sim \text{const} \, b_\pm^{-1} \exp(b_\pm \sqrt{C}u),\]
(3.15)

as \(u \to \pm\infty\).
For $\beta = (\beta^i)$ from (2.22) we get (see (3.3))

$$
\beta^i(u) \sim \mp \frac{U^i \sqrt{Cu}}{(U, U)} + c^i u + \hat{c}^i
$$

(3.16)
as $u \to \pm \infty$, where \hat{c}^i are constants. Hence, due to (3.15), we are led to Kasner-like asymptotics

$$
\beta^i \sim \alpha^i_{\pm} \ln \tau + \beta^i_{\pm}
$$

(3.17)
for $u \to \pm \infty$, where β^i_{\pm} are constants and

$$
\alpha^i_{\pm} = \left[\mp \frac{U^i}{(U, U)} + s^i \right] / b^i_{\pm}
$$

(3.18)
are Kasner-like parameters corresponding to $u \to \pm \infty$.

Asymptotical relations (3.17) could be also rewritten in the form of proper time asymptotics, i.e.

$$
\beta^i \sim \alpha^i_0 \ln \tau + \beta^i_0, \quad \text{as } \tau \to +0,
$$

(3.19)

$$
\beta^i \sim \alpha^i_\infty \ln \tau + \beta^i_\infty, \quad \text{as } \tau \to +\infty.
$$

(3.20)
Here

$$
\alpha^i_0 = \alpha^i_-, \quad \alpha^i_\infty = \alpha^i_+ \quad (3.21)
$$

for $c^0 > 0$ and

$$
\alpha^i_0 = \alpha^i_+, \quad \alpha^i_\infty = \alpha^i_- \quad (3.22)
$$

for $c^0 < 0$ and β^i_0, β^i_∞ are constants.

It follows from definitions of Kasner parameters (3.18) that

$$
G_{ij} \alpha^i_{\pm} \alpha^j_{\pm} = 0, \quad (3.23)
$$

$$
U(\alpha_{\pm}) = U_i \alpha^i_{\pm} = \mp \frac{1}{b^i_{\pm}}, \quad (3.24)
$$

$$
U^\Lambda(\alpha_{\pm}) = 1, \quad (3.25)
$$
see (3.6), (3.8) and (3.9).

In components relations (3.23) and (3.25) read as

$$
\sum_{i=1}^n d_i \alpha^i_{\pm} = \sum_{i=1}^n d_i (\alpha^i_{\pm})^2 = 1. \quad (3.26)
$$
Thus, we are led to Kasner-like relations (1.2) and (1.3) for $\alpha_\pm = (\alpha_i^\pm)$. Hence, $\alpha_0 = (\alpha_0^i)$ and $\alpha_\infty = (\alpha_\infty^i)$ also obey relations (1.2) and (1.3).

So, we obtained a Kasner-like asymptotical behaviour of our special solution (with $C > 0$, $K > 0$ and $A > 0$) for i) $\tau \rightarrow +0$ and for ii) $\tau \rightarrow +\infty$, as well. The Kasner-like behaviour in the case i) is in agreement with the general result of the billiard approach from [22]. The the case ii) was considered in [26].

Using (3.12) and (3.24) we get

$$U(\alpha_0) = U_i \alpha_0^i > 0, \quad (3.27)$$

$$U(\alpha_\infty) < 0. \quad (3.28)$$

3.2 Scattering law

Now, we derive a relation between Kasner sets α_0 and α_∞.

We start with formulae:

$$b_+\alpha_+ - b_-\alpha_- = -\frac{2\bar{U}}{(U,U)} \quad (3.29)$$

and

$$b_+ - b_- = -\frac{2(U^\Lambda,U)}{(U,U)}, \quad (3.30)$$

following from (3.18) and (3.6), respectively. (Recall that $\bar{U} = (U^i)$.) Using these relations and (3.24) we get

$$\alpha_\pm^i = \frac{\alpha_\mp^i - 2U^jU(\alpha_\mp^i)\frac{1}{(U,U)^{-1}}}{1 - 2U(\alpha_\mp^i)(U,U^\Lambda)(U,U)^{-1}}. \quad (3.31)$$

This formula gives a scattering law formula for Kasner parameters in our case (see definitions (2.10), (3.21) and (3.22)) or

$$\alpha_\infty = \frac{\alpha_0 - 2\bar{U}U(\alpha_0)(U,U)^{-1}}{1 - 2\bar{U}(\alpha_0)(U,U^\Lambda)(U,U)^{-1}} = S(\alpha_0). \quad (3.32)$$

coinciding with the scattering law formula (1.4) derived in [1] for another S-brane solution when scalar fields are absent and U is coinciding with the brane U-vector.

Due to (3.31) the inverse function S^{-1} is given by just the same relation

$$\alpha_0 = \frac{\alpha_\infty - 2\bar{U}U(\alpha_\infty)(U,U)^{-1}}{1 - 2\bar{U}(\alpha_\infty)(U,U^\Lambda)(U,U)^{-1}} = S^{-1}(\alpha_\infty). \quad (3.33)$$
3.3 Geometric meaning of the scattering law

Here we analyze the geometric meaning of the scattering for \(n > 2 \) as it was done in [1] for the S-brane solution.

The Kasner-like relations (1.2) and (1.3) describe an ellipsoid isomorphic to a unit \((n-2) \)-dimensional sphere \(S^{n-2} \) belonging to \(\mathbb{R}^{n-1} \). The sets of Kasner parameters \(\alpha \) may be parametrized by vectors \(\vec{n} \in S^{n-2} \), i.e. \(\alpha = \alpha(\vec{n}) \).

For \((U, U^\Lambda) \neq 0 \) (or, equivalently, when \(\sum_{i=1}^{n} U_i \neq 0 \), see (2.14)) the scattering law formula (1.4) in terms of \(\vec{n} \)-vectors reads as in [1]

\[
\vec{n}_\infty = \frac{(\vec{v}^2 - 1)\vec{n}_0 + 2(1 - \vec{v}\vec{n}_0)\vec{v}}{\vec{v} - \vec{n}_0}^2
\]

(3.34)

where \(\vec{v} \) is a vector belonging to \(\mathbb{R}^{n-1} \) with \(|\vec{v}| > 1 \).

Here

\[
\vec{v}\vec{n}_0 < 1 \quad \vec{v}\vec{n}_\infty > 1,
\]

(3.35)

for \((U, U^\Lambda) < 0 \) (or, equivalently, when \(\sum_{i=1}^{n} U_i > 0 \)) and

\[
\vec{v}\vec{n}_0 > 1 \quad \vec{v}\vec{n}_\infty < 1,
\]

(3.36)

for \((U, U^\Lambda) > 0 \) (or, equivalently, when \(\sum_{i=1}^{n} U_i < 0 \)).

The vector \(\vec{v} = (v_i) \in \mathbb{R}^{n-1} \) is defined by the formula

\[
v_i = -\dot{U}_i/\dot{U}_0,
\]

(3.37)

i = 1, \ldots, n - 1, \text{ where}

\[
\dot{U}_a = e^a_i U_i,
\]

(3.38)

and the invertible matrix \((e^a_i) \) satisfies the relations

\[
\eta^{ab} = e^a_i G^{ij} e^b_j,
\]

(3.39)

\(a, b = 0, \ldots, n - 1 \), with

\[
e^0_i = q^{-1}U^\Lambda_i,
\]

(3.40)

and

\[
q = \left[- (U^\Lambda, U^\Lambda) \right]^{1/2} = \left[(D - 1)/(D - 2) \right]^{1/2}.
\]

(3.41)

(Here \((\eta_{ab}) = (\eta^{ab}) = diag(-1, +1, \ldots, +1) \).)

This implies

\[
\dot{U}_0 = -q^{-1}(U, U^\Lambda)
\]

(3.42)
and hence $\hat{U}_0 \neq 0$ when $(U, U^\Lambda) \neq 0$.

Relations (3.34), (3.35) and (3.36) could be readily proved from (3.31), (3.27) and (3.28) if the following “frame” Kasner-like parameters

$$\hat{\alpha}^a = \epsilon^a_i \alpha^i, \hspace{1cm} (3.43)$$

with

$$\hat{\alpha}^0 = q^{-1}, \hspace{1cm} \hat{\alpha}^i = q^{-1} n^i, \hspace{1cm} (3.44)$$

$i = 1, \ldots, n-1$, are used (see [1]). An important relation here is the following one

$$U(\alpha) = U_A \alpha^A = \hat{U}_a \hat{\alpha}^a = q^{-1} \hat{U}_0 (1 - \vec{v} \vec{n}). \hspace{1cm} (3.45)$$

Thus, for $(U, U^\Lambda) \neq 0$ we get just a modified inversion with respect to a point v located outside the Kasner sphere S^{n-2} (see Fig. 1). For $(U, U^\Lambda) < 0$ the function (3.34) maps a shadow part of the Kasner sphere S^{n-2} onto illuminated one, while for $(U, U^\Lambda) > 0$ this function maps an illuminated part of the Kasner sphere S^{n-2} onto shadow one. Here the shadow and illuminated parts of the Kasner sphere are defined w.r.t. a point-like source of light located at v.

For $(U, U^\Lambda) = 0$ (or, equivalently, when $\sum_{i=1}^{n} U_i = 0$) the main formula (1.4) in terms of \vec{n}-vectors reads

$$\vec{n}_\infty = \vec{n}_0 - 2 (\vec{b} \vec{n}_0) \vec{b}, \hspace{1cm} (3.46)$$

where $\vec{b} = (b_i)$ is a unit vector belonging to \mathbb{R}^{n-1} ($|\vec{b}| = 1$) with components

$$b_i = \hat{U}_i / (\sum_{j=1}^{n-1} \hat{U}_j)^{1/2}, \hspace{1cm} (3.47)$$

Figure 1: The graphical representation of the modified inversion S w.r.t. a point V for $n = 3$, and $(U, U^\Lambda) < 0$: $N^i = S(N)$.

The inequalities on Kasner-like parameters (3.27) and (3.28) in this case reads as follows

$$b\vec{m}_0 > 0, \hspace{1cm} b\vec{m}_\infty < 0. \hspace{1cm} (3.48)$$

Thus, for $(U, U^\Lambda) = 0$ the function (3.34) is just a reflection with respect to a hyperplane $\{\vec{y} : \vec{b} \vec{y} = 0\}$, which contains a center of the Kasner sphere.
Relations (3.47) and (3.48) may be obtained from (3.34), (3.35) and (3.36) by means of the limiting procedure: \(\hat{U}_0 \to \pm 0 \) \((|\vec{v}| \to +\infty) \).

It should be noted that all formulas presented above are also valid for \(n = 2 \). In this case the zero-dimensional Kasner sphere \(S^0 = \{ -1, 1 \} \) should be considered.

4 Example: \(n = 2 \)

Here we consider the simplest case of the solution with \(C > 0 \), \(K > 0 \), when \(n = 2 \). We put \(U_1 \neq 0 \) and \(U_2 = 0 \), i.e. \(\hat{p}_1 = w_1 \hat{\rho} \) with \(w_1 \neq 1 \) and \(\hat{p}_2 = \hat{\rho} \).

For Kasner set \(\alpha = (\alpha^1, \alpha^2) \) we get from (1.2) and (1.3) \(\alpha^\pm = (\alpha^1 \pm \alpha^2) = \frac{1}{d_1 + d_2} \left(1 \pm \frac{r}{d_1}, 1 \mp \frac{r}{d_2} \right) \), (4.1)

where \(r = \sqrt{d_1 d_2 (d_1 + d_2 - 1)} \). (The number \(r > 0 \) is integer one when \(d_1 = 1 \) or \(d_2 = 1 \) and also for \((d_1, d_2) = (3, 6), (5, 5), (2, 8), (13, 13) \) etc \([30] \).

Let \(d_2 > 1 \). Then \(\alpha^+_1 > 0 \) and \(\alpha^+_2 < 0 \). Due to \(U_2 = 0 \): \(U(\alpha) = U_1 \alpha^1 \) and hence \(U(\alpha^+) > 0 \) and \(U(\alpha^-) < 0 \) for \(U_1 > 0 \) \((w_1 < 1) \) and \(U(\alpha^+) < 0 \) and \(U(\alpha^-) > 0 \) for \(U_1 < 0 \) \((w_1 < 1) \).

It follows from (3.27) and (3.28) that

\[
\alpha_0 = \alpha_+ , \quad \alpha_\infty = \alpha_- .
\]

(4.2)

for \(U_1 > 0 \) and

\[
\alpha_0 = \alpha_- , \quad \alpha_\infty = \alpha_+ .
\]

(4.3)

for \(U_1 < 0 \).

Relation \(U_i c^i = U_1 c^1 = 0 \) implies \(c^1 = 0 \). Here \(c^0 = d_2 c^2 \). Due to (3.21) and (3.22) we should put \(c^2 < 0 \) for \(U_1 > 0 \) and \(c^2 > 0 \) for \(U_1 < 0 \). In this case the sets \(\alpha_\pm \) given by (3.18) are coinciding with those given by (4.1). This may be also verified by straightforward calculations using the following relations

\[
U^1 = \frac{(d_2 - 1)U_1}{d_1(D - 2)} , \quad U^2 = \frac{U_1}{(2 - D)} = (U, U^\Lambda) , \quad K = U^1 U_1 , \quad C = K d_2 (d_2 - 1) c^2_2 , \quad (4.4)
\]
where $D = d_1 + d_2 + 1 > 3$.

Accelerated expansion of 3-dimensional factor-space. After replacing $\tau \to \tau_0 - 0$, where τ_0 is constant, we get for $w = -1$ two asymptotical Kasner type metrics

$$g_{as} = -d\tau \otimes d\tau + \sum_{i=1}^{2} A_i^2 (\tau_0 - \tau)^{2\alpha^i} g^{(i)},$$

where either $\alpha^i = \alpha_0^i$ ($A_i = A_i,0 > 0$) as $\tau \to \tau_0 - 0$, or $\alpha^i = \alpha_\infty^i$ ($A_i = A_i,\infty > 0$) as $\tau \to -\infty$.

Let M_1 be a flat 3-dimensional factor space ($d_1 = 3$), with the metric $g^{(1)} = dy^1 \otimes dy^1 + dy^2 \otimes dy^2 + dy^3 \otimes dy^3$. Then, due to relations (4.2), (4.3) and $\alpha_\infty < 0$ for $d_2 > 1$, we get an asymptotical accelerated expansion of our 3-dimensional factor space M_1 either as $\tau \to \tau_0 - 0$ for $U_1 < 0$, $c_2 > 0$ or as $\tau \to -\infty$ for $U_1 > 0$ and $c_2 < 0$.

Milne-type asymptotics. Now we put $d_1 = 1$. We get

$$\alpha_+ = (1,0), \quad \alpha_- = \frac{1}{1 + d_2} (1 - d_2, 2).$$

For $M_1 = \mathbb{R}$, $g^{(1)} = -w dy^1 \otimes dy^1$, $-\infty < y^i < +\infty$, we get a Milne-type (flat) asymptotic:

i) as $\tau \to +0$ for $U_1 > 0$ and $c^2 < 0$;

ii) as $\tau \to +\infty$ for $U_1 < 0$ and $c^2 > 0$.

Both cases correspond to $u \to +\infty$.

For $M_1 = S^3$, $g^{(1)} = w dy^1 \otimes dy^1$, $0 < y^i < +2\pi$, we may get either non-singular (static) solution in the case i) ($\tau = \rho$) or asymptotically flat (static) solution in the case ii).

5 Conclusions and discussions

In this paper we have considered the exact cosmological type solution with 1-component anisotropic fluid. This solution is defined on the product manifold (2.2) containing n Ricci-flat factor spaces $M_1,...,M_n$.

We have singled out a special solution governed by the \cosh moduli function and shown that this solution has Kasner-like asymptotics in the limits $u \to \pm \infty$, where u is the harmonic variable, or, equivalently, in the limits $\tau \to +0$ and $\tau \to +\infty$, where τ is the synchronous type variable.
We have found a relation between two sets of Kasner parameters α_∞ and α_0. The relation between them $\alpha_\infty = S(\alpha_0)$ is coinciding with the “scattering law” formula obtained for the S-brane solution from [1] when scalar fields are absent and the fluid U-vector is equal to the brane one.

The function S (defined on the set of Kasner vectors obeying $U(\alpha) > 0$) is bijective. The inverse function S^{-1} (defined on the set of Kasner vectors obeying $U(\alpha) < 0$) is given by the same formula as the function S. The function S depends upon the co-vector $U = (U_i)$. It is invariant upon the replacement: $U \mapsto \lambda U$, where $\lambda > 0$ (see [26]). The transformation $U \mapsto -U$ implies the replacement $S \mapsto S^{-1}$.

We have also analyzed the geometric meaning of the scattering law formula in terms of transformation of the Kasner sphere S^{n-2}, $n \geq 2$. For $(U, U^\Lambda) \neq 0$ (or, equivalently, when $\sum_{i=1}^n U_i \neq 0$) we get just a modified inversion with respect to a point v located outside the Kasner sphere S^{n-2}, while for $(U, U^\Lambda) = 0$ (or, equivalently, when $\sum_{i=1}^n U_i \neq 0$) we are led to a reflection with respect to a hyperplane which contains a center of the Kasner sphere.

The scattering law formula may be applied for the solutions with Kasner-like asymptotical behaviours (written in a slightly different form)

$$g_{as} = -d\tau \otimes d\tau + \sum_{i=1}^n A_i^2(\tau_0 - \tau)^{2\alpha_i} g^{(i)}, \quad (5.1)$$

where either $\tau \to \tau_0 - 0$, or $\tau \to -\infty$. In this case the metric (5.1) may describe an asymptotical accelerated expansion of flat 3-dimensional factor space M_1 if $d_1 = 3$, $g^{(i)} = dy^i \otimes dy^i + dy^2 \otimes dy^2 + dy^3 \otimes dy^3$ and $\alpha^1 < 0$.

Another application of the scattering law formula appears when $d_1 = 1$ and one of the asymptotical Kasner set of parameters in (1.1) is of Milne type: $\alpha = (1, 0, \ldots, 0)$, e.g. when static non-singular solutions ($w = +1$, $M_1 = S^1$) or cosmological solutions ($w = -1$, $M_1 = \mathbb{R}$) with a horizon (for $\tau \to +0$) are considered. (Compare with flux-brane and S-brane solutions [31, 32]). These topics (mentioned above) may be a subject of separate publications.
Appendix

A Solution for Liouville system

Let
\[L = \frac{1}{2} \langle \dot{x}, \dot{x} \rangle - A \exp[2 \langle b, x \rangle] \]
(A.1)
be a Lagrangian, defined on \(V \times V \), where \(V = \mathbb{R}^n \), \(A \neq 0 \), and \(\langle \cdot, \cdot \rangle \) is non-degenerate real-valued quadratic form on \(V \). (Here \(\dot{x} = \frac{dx}{dt} \) etc.)

Let \(\langle b, b \rangle \neq 0 \). Then, the Euler-Lagrange equations for the Lagrangian (A.1) have the following solution \(^{[13]}\)
\[\ddot{x} + 2A \dot{b} \exp[2 \langle b, x \rangle] = 0 \]
(A.2)

have the following solution \(^{[13]}\)
\[x(t) = -\frac{b}{\langle b, b \rangle} \ln |f(t - t_0)| + t\alpha + \beta, \]
(A.3)
where \(\alpha, \beta \in V \),
\[\langle \alpha, b \rangle = \langle \beta, b \rangle = 0, \]
(A.4)
and
\[f(\tau) = \begin{cases} R \sinh(\sqrt{C}\tau), & C > 0, \ < b, b > A < 0, \\ R \sin(\sqrt{|C|}\tau), & C < 0, \ < b, b > A < 0, \\ R \cosh(\sqrt{C}\tau), & C > 0, \ < b, b > A > 0, \\ |2A < b, b > |^{1/2}\tau, & C = 0, \ < b, b > A < 0, \end{cases} \]
(A.5)

where \(R = |\frac{2A\langle b, b \rangle}{C}|^{1/2} \) and \(C, t_0 \) are constants.

The energy
\[E = \frac{1}{2} \langle \dot{x}, \dot{x} \rangle + A \exp[2 \langle b, x \rangle] \]
(A.6)
calculated for the solution (A.2) reads
\[E = \frac{C}{2 \langle b, b \rangle} + \frac{1}{2} \langle \alpha, \alpha \rangle. \]
(A.7)
B Lagrange representation

The Einstein equations (2.1) imply the conservation law

\[\nabla_M T^M_N = 0. \]

(B.8)

that due to relations (2.3) and (2.4) may be written in the following form

\[\dot{\rho} + \sum_{i=1}^{n} d_i \dot{\beta}^i (\dot{\rho} + \dot{\beta}^i) = 0. \]

(B.9)

Using the equation of state (2.5) we get

\[\kappa^2 \dot{\rho} = -w Ae^{2U_i \beta^i - 2\gamma_0}, \]

(B.10)

where \(\gamma_0(\beta) = \sum_{i=1}^{n} d_i \beta^i \), and \(A \) is constant.

The Einstein equations (2.1) with the relations (2.5) and (B.10) imposed are equivalent to the Lagrange equations for the Lagrangian (for \(w = -1 \) see [14])

\[L = \frac{1}{2} e^{-\gamma + \gamma_0(\beta)} G_{ij} \dot{\beta}^i \dot{\beta}^j - e^{\gamma - \gamma_0(\beta)} V, \]

(B.11)

where

\[V = Ae^{2U_i \beta^i}, \]

(B.12)

is the potential and the components of the minisupermetric \(G_{ij} \) are defined in (2.8).

For \(\gamma = \gamma_0(\beta) \), i.e. when the harmonic time gauge is considered, we get the set of Lagrange equations for the Lagrangian

\[L = \frac{1}{2} G_{ij} \dot{\beta}^i \dot{\beta}^j - V, \]

(B.13)

with the zero-energy constraint imposed

\[E = \frac{1}{2} G_{ij} \dot{\beta}^i \dot{\beta}^i + V = 0. \]

(B.14)
The exact solutions for the Lagrangian (B.13) with the potential (B.12) could be readily obtained using the relations from Appendices A and B.

The solutions read:

\[\beta^i(u) = -\frac{U^i}{(U, U)} \ln |f(u)| + c^i u + \bar{c}^i, \]

(C.15)

where \(u_0 \) is constant. Function \(f(u) \) in (C.15) is the following:

\[f(u) = R \sinh(\sqrt{C}(u - u_0)), \quad C > 0, \quad KA < 0; \]

(C.16)

\[R \sin(\sqrt{|C|}(u - u_0)), \quad C < 0, \quad KA < 0; \]

(C.17)

\[R \cosh(\sqrt{C}(u - u_0)), \quad C > 0, \quad KA > 0; \]

(C.18)

\[|2AK|^{1/2}(u - u_0), \quad C = 0, \quad KA < 0, \]

(C.19)

where \(K = (U, U), \ R = |2AK/C|^{1/2} \) and \(C, \ u_0 \) are constants.

Vectors \(c = (c^i) \) and \(\bar{c} = (\bar{c}^i) \) satisfy the linear constraint relations (see (A.4) in Appendix A)

\[U(c) = U_i c^i = 0, \]

(C.20)

\[U(\bar{c}) = U_i \bar{c}^i = 0. \]

(C.21)

The zero-energy constraint reads (see (A.6) in Appendix A)

\[E = \frac{C}{2(U, U)} + \frac{1}{2} G_{ij} c^i c^j = 0. \]

(C.22)

D Proof of the inequality (3.11)

Let us prove the inequality (3.11)

\[|(s, U^\Lambda)| > \frac{|(U^\Lambda, U)|}{(U, U)} > 0, \]

for a vector \(s = (s^A) \in \mathbb{R}^n \) obeying relations \((s, U) = 0, \ (s, s) = -1/(U, U) \). Here the scalar-product \((U, U') = G^{ij} U_i U'_j \), where \(G^{ij} = \delta^{ij} d_i^{-1} + (2 - D)^{-1} \). We also use here the following relations \((U, U) > 0, \ U^\Lambda = (d_i) \) and \((U^\Lambda, U^\Lambda) < 0 \).
Proof. Let us define the vector
\[U_1 = U - \frac{(U, U^\Lambda)}{(U^\Lambda, U^\Lambda)} U^\Lambda. \]
(D.23)
It is clear that \((U_1, U^\Lambda) = 0\) and
\[(U_1, U_1) = (U, U) - \frac{(U, U^\Lambda)^2}{(U^\Lambda, U^\Lambda)} > 0. \]
(D.24)
since \((U, U) > 0\) and \((U^\Lambda, U^\Lambda) < 0\). Let us define vectors:
\[s_0 = \frac{(s, U^\Lambda)}{(U^\Lambda, U^\Lambda)} U^\Lambda, \]
(D.25)
\[s_1 = \frac{(s, U_1)}{(U_1, U_1)} U_1, \]
(D.26)
\[s = s - s_0 - s_1. \]
(D.27)
s_0, s_1 and s_2 are mutually orthogonal and hence
\[(s, s) = (s_0, s_0) + (s_1, s_1) + (s_2, s_2). \]
(D.28)
For the first two terms in r.h.s. of (D.28) we get
\[(s_0, s_0) = \frac{(s, U^\Lambda)^2}{(U^\Lambda, U^\Lambda)}, \]
(D.29)
\[(s_1, s_1) = \frac{(s, U_1)^2}{(U_1, U_1)} = \frac{(s, U^\Lambda)^2}{(U^\Lambda, U^\Lambda)} \frac{(U, U^\Lambda)^2}{[(U, U)(U^\Lambda, U^\Lambda) - (U, U^\Lambda)^2]} \]
(D.30)
that implies
\[(s, s) = \frac{(s, U^\Lambda)^2(U, U)}{(U, U)(U^\Lambda, U^\Lambda) - (U, U^\Lambda)^2} + (s_2, s_2). \]
(D.31)
For the third term in r.h.s. of (D.28) the following inequality is valid
\[(s_2, s_2) \geq 0, \]
(D.32)
Indeed, due to \((s_2, U^\Lambda) = 0\), or, equivalently, \(\sum_{i=1}^n s_i^2 d_i = 0\), we obtain
\[(s_2, s_2) = G_{ij} s_i^2 s_j^2 = \sum_{i=1}^n (s_i^2)^2 d_i \geq 0. \]
(D.33)
Using this inequality, \((D.31)\), \((U^\Lambda, U^\Lambda) < 0\) and \((s, s) = -1/(U, U)\) we get

\[
(s, U^\Lambda)^2 = \left[\frac{(U, U^\Lambda)^2}{(U, U)} - (U^\Lambda, U^\Lambda) \right] [(U, U)^{-1} + (s_2, s_2)] > \frac{(U, U^\Lambda)^2}{(U, U)^2} > 0, \quad (D.34)
\]

that is equivalent to the inequality \((3.11)\). Thus, \((3.11)\) is proved.

Acknowledgments

This work was supported in part by the Russian Foundation for Basic Research grants Nr. 09-02-00677-a.

References

[1] V.D. Ivashchuk and V.N. Melnikov, On the “scattering law” for Kasner parameters appearing in asymptotics of an exact S-brane solution, *Grav. Cosmol.* 14, No. 2 (54), 154-162 (2008); [arXiv:0712.4238](http://arxiv.org/abs/0712.4238).

[2] V.D. Ivashchuk, Multidimensional Cosmology and Toda-like Systems, *Phys. Lett.*, A 170, 16-20 (1992).

[3] V.D. Ivashchuk and V.N. Melnikov, On Singular Solutions in Multidimensional Gravity. *Grav. Cosmol.*, 1, No 3, 204-210 (1995); [gr-qc/9507056](http://arxiv.org/abs/gr-qc/9507056).

[4] D. Sahdev, Perfect fluid higher dimensional cosmologies, *Phys. Rev.* D 30, 2495-2507 (1984).

[5] D. Lorentz-Petzold, Higher-dimensional cosmologies, *Phys. Lett.* B 148, 1-3, 43-47 (1984).

[6] R. Bergamini and C.A. Orzalesi, Towards a cosmology for multidimensional unified theories, *Phys. Lett.* B 135, 1-3, 38-42 (1984).

[7] M. Gleiser, S. Rajpoot and J.G. Taylor, Higher-dimensional cosmologies, *Ann. Phys.* (NY) 160, 299-322 (1985).

[8] U. Bleyer and D.-E. Liebscher, Kaluza-Klein cosmology: phenomenology and exact solutions with three component matter, *Gen. Rel. Gravit.* 17, 989-999 (1985).

[9] U. Bleyer and D.-E. Liebscher, Kaluza-Klein cosmology: Friedmann models with phenomenological matter, *Annalen d. Physik (Lpz)* 44, 7, 81-88 (1987).
[10] U. Bleyer and D.-E. Liebscher, Multifactor cosmological models, *Grav. Cosmol.* **1**, 31-36 (1995).

[11] V.D. Ivashchuk and V.N. Melnikov. Perfect-fluid Type Solution in Multidimensional Cosmology, *Phys. Lett.*, **A 136**, No 9, p. 465-467 (1989).

[12] V.D. Ivashchuk and V.N. Melnikov, Multidimensional Cosmology with m-component Perfect Fluid, *Int. J. Mod. Phys.* **D 3**, No 4, 795-811 (1994); [gr-qc/9403063](https://arxiv.org/abs/gr-qc/9403063).

[13] V.R. Gavrilov, V.D. Ivashchuk and V.N. Melnikov, Integrable Pseudo-Euclidean Toda-like Systems in Multidimensional Cosmology with Multicomponent Perfect Fluid., *J. Math. Phys.*, **36**, No 10, 5829-5847 (1995) (see also [gr-qc/9407019](https://arxiv.org/abs/gr-qc/9407019)).

[14] V.D. Ivashchuk and V.N.Melnikov, Multidimensional Classical and Quantum Cosmology with Perfect Fluid, *Grav. Cosmol.*, **1**, No 2, 133-148 (1995); [hep-th/9503223](https://arxiv.org/abs/hep-th/9503223).

[15] V.D. Ivashchuk and V.N. Melnikov, Exact Solutions in Multidimensional Cosmology with Cosmological Constant, *Teor. Mat. Fiz.* **98**, No 2, 312-319 (1994) (in Russian). *Theoretical and Mathematical Physics*, **98**, No 2, 212-217 (1994).

[16] U. Bleyer, V.D. Ivashchuk, V.N. Melnikov and A.I. Zhuk, Multidimensional Classical and Quantum Wormholes in Models with Cosmological Constant, *Nucl. Phys.*, **B 429**, 177-204 (1994); [gr-qc/9405020](https://arxiv.org/abs/gr-qc/9405020).

[17] V.D. Ivashchuk, V.N. Melnikov and A.I. Zhuk, On Wheeler-DeWitt Equation in Multidimensional Cosmology, *Nuovo Cimento, B* **104**, No 5, 575-581 (1989).

[18] V.D. Ivashchuk, A.A. Kirillov and V.N. Melnikov, On Stochastic Behaviour of Multidimensional Cosmological Models near the Singularity, *Izv. Vuzov. Fizika*, **37**, **11** (1994), 107-111 (in Russian).

[19] V.D. Ivashchuk, A.A. Kirillov and V.N. Melnikov, On Stochastic Properties of Multidimensional Cosmological Models near the Singular Point, *Pis’ma ZhETF* **60**, No 4, (1994) 225 (in Russian).

[20] V.D. Ivashchuk and V.N. Melnikov, Billiard Representation for Multidimensional Cosmology with Multicomponent Perfect Fluid near the Singularity. *Clas. Quantum Grav.*, **12**, No 3, (1995), 809-826; [gr-qc/9407028](https://arxiv.org/abs/gr-qc/9407028).
[21] V.D. Ivashchuk and V.N. Melnikov, Billiard Representation for Pseudo-Euclidean Toda-like Systems of Cosmological Origin, Regular and Chaotic Dynamics 1, No. 2, 23-35 (1996); arXiv: 0811.0283.

[22] V.D. Ivashchuk and V.N. Melnikov, Billiard representation for multidimensional cosmology with intersecting p-branes near the singularity, J. Math. Phys., 41, No 8, 6341-6363 (2000); hep-th/9904077.

[23] T. Damour and M. Henneaux, Chaos in Superstring Cosmology, Phys. Rev. Lett. 85, 920-923 (2000); hep-th/000313.

[24] V.D. Ivashchuk, On exact solutions in multidimensional gravity with antisymmetric forms, In: Proceedings of the 18th Course of the School on Cosmology and Gravitation: The Gravitational Constant. Generalized Gravitational Theories and Experiments (30 April-10 May 2003, Erice). Ed. by G.T. Gillies, V.N. Melnikov and V. de Sabbata, (Kluwer Academic Publishers, Dordrecht, 2004), pp. 39-64; gr-qc/0310114.

[25] T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, topical review, Class. Quantum Grav. 20, R145–R200 (2003); hep-th/0212256.

[26] V.D. Ivashchuk and V.N. Melnikov, On billiard approach in multidimensional cosmological models, Grav. Cosmol. 15, No. 1, 49–58 (2009); arXiv: 0811.2786.

[27] V.D. Ivashchuk and V.N. Melnikov, Exact solutions in multidimensional gravity with antisymmetric forms, topical review, Class. Quantum Grav. 18, R82-R157 (2001); hep-th/0110274.

[28] J.-M. Alimi, V.D. Ivashchuk, S.A. Kononogov and V.N. Melnikov, Multidimensional cosmology with anisotropic fluid: acceleration and variation of G, Grav. Cosmol. 12, No. 2-3 (46-47), 173-178 (2006); gr-qc/0611015.

[29] V.D. Ivashchuk, S.A. Kononogov, V.N. Melnikov and M. Novello, Non-singular solutions in multidimensional cosmology with perfect fluid: acceleration and variation of G, Grav. Cosmol. 12, No. 4 (48), 273-278 (2006); hep-th/0610167.

[30] V.R. Gavrilov, V.D. Ivashchuk and V.N. Melnikov, Multidimensional Integrable Vacuum Cosmology with Two Curvatures, Class. Quantum Grav., 13, No 11, 3039-3056 (1996).

[31] V.D. Ivashchuk, Composite fluxbranes with general intersections, Class. Quantum Grav., 19, 3033-3048 (2002); hep-th/0202022.
[32] I.S. Goncharenko, V. D. Ivashchuk and V.N. Melnikov, Fluxbrane and S-brane solutions with polynomials related to rank-2 Lie algebras, *Grav. Cosmol.* 13, No. 4 (52), 262-266 (2007); [math-ph/0612079](http://arxiv.org/abs/math-ph/0612079).