CD4 T Follicular Helper and Regulatory Cell Dynamics and Function in HIV Infection

Brodie Miles¹, Shannon M. Miller² and Elizabeth Connick³*

¹Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, USA, ²Department of Immunology, University of Colorado Denver, Aurora, CO, USA, ³Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, AZ, USA

T follicular helper cells (T_{FH}) are a specialized subset of CD4 T cells that reside in B cell follicles and promote B cell maturation into plasma cells and long-lived memory B cells. During chronic infection prior to the development of AIDS, HIV-1 (HIV) replication is largely concentrated in T_{FH}. Paradoxically, T_{FH} numbers are increased in early and midstages of disease, thereby promoting HIV replication and disease progression. Despite increased T_{FH} numbers, numerous defects in humoral immunity are detected in HIV-infected individuals, including dysregulation of B cell maturation, impaired somatic hypermutation, and low quality of antibody production despite hypergammaglobulinemia. Clinically, these defects are manifested by increased vulnerability to bacterial infections and impaired vaccine responses, neither of which is fully reversed by antiretroviral therapy (ART). Deficits in T_{FH} function, including reduced HIV-specific IL-21 production and low levels of co-stimulatory receptor expression, have been linked to these immune impairments. Impairments in T_{FH} likely contribute as well to the ability of HIV to persist and evade humoral immunity, particularly the inability to develop broadly neutralizing antibodies. In addition to direct infection of T_{FH}, other mechanisms that have been linked to T_{FH} deficits in HIV infection include upregulation of PD-L1 on germinal center B cells and augmented follicular regulatory T cell responses. Challenges to development of strategies to enhance T_{FH} function in HIV infection include lack of an established phenotype for memory T_{FH} as well as limited understanding of the relationship between peripheral T_{FH} and lymphoid tissue T_{FH}. Interventions to augment T_{FH} function in HIV-infected individuals could enhance immune reconstitution during ART and potentially augment cure strategies.

Keywords: follicular T helper cells, follicular T regulatory cells, germinal center, broadly neutralizing antibodies, HIV

THE NATURAL HISTORY AND FUNCTION OF T FOLLICULAR HELPER CELLS (T_{FH}) AND T FOLLICULAR REGULATORY CELLS (T_{FR})

T follicular helper cells were identified 16 years ago when CD4 T cells with a unique phenotype, notably abundant CXCR5 expression, were identified in the follicles and germinal centers (GCs) of secondary lymphoid tissues (1–3). T_{FH} express a unique transcriptional profile compared to extrafollicular and peripheral CD4 T cell subsets; they are a distinct population of CD4 T cells under the control of the master transcription regulator BCL-6 (4–6). T_{FH} rely on signaling through inducible T cell co-stimulator (ICOS), IL-21, IL-6, and STAT3 to develop and promote the GC
response (7–9). Further, interactions with GC B cells support the development of CXCR5^{hi}PD1^{hi} GC T_{FH} via sustained ICOS–ICOSL and CD40–CD40L binding (10). T_{FH} fail to accumulate in lymphoid tissues after immunization in the absence of B cells (11). T_{FH} provide help for maturation of B cells into plasma and memory subsets, as well as drive class switch recombination and expression of enzymes, such as activation-induced deaminase (AID) that promote somatic hypermutation (SHM) to generate highly mutated antibodies (1–3). T_{FH} are one of the main sources of IL-21, a key cytokine that promotes GC formation and maintenance, T_{FH} and B cell proliferation, SHM, and memory B cell/plasma cell differentiation (12–15). IL-21 is primarily produced by CD4 T cells and is particularly critical to generation of antigen-specific IgG antibodies and expansion of class-switched B cells and plasma cells in vivo [reviewed in Ref. (16)]. T_{FH} produce a variety of other cytokines including IL-4 (17), IL-17 (18), and IFNγ (19). In addition, they express increased levels of IL-10, ICOS, and CD40L compared to other T helper subsets, which allows them to positively regulate B cell differentiation and function (3, 20). Due to constraints of studying T_{FH} from lymphoid tissues, recent studies have attempted to establish a marker for T_{FH} in blood (21). While several markers have been used to define peripheral T_{FH} (pT_{FH}), several groups have used CXCR5 and PD1 co-expression (22–24). In rhesus macaques receiving a modified CD28 and ICOS, to differentiate (27). TFR are a crucial component of the TFR-mediated GC regulation and skewing of the GC reaction to impaired humoral immunity (30–33). Thus, an imbalance of TFR permissivity and factors in the follicular microenvironment play a role in promoting HIV replication within T_{FH}. Tonsillar T_{FH} and GC T_{FH} are highly permissive to both X4- and R5-tropic HIV compared to other tonsillar T cell subsets ex vivo (38, 40). Heightened permissivity of T_{FH} is not fully explained by differences in memory subsets (as determined by CD95 expression), cellular activation (as measured by HLA-DR and CD38 expression), or chemokine HIV co-receptor expression (38). Within the microenvironment of the B cell follicle, specifically in the GC, follicular dendritic cells (FDC) bind HIV–antibody complexes via Fc and complement receptors (41). Although FDC are not productively infected, the virions bound to their surface are adjacent to T_{FH} within GCs (41–43), and these virions are highly infectious to T_{FH} (42), likely contributing to the high viral burden found in T_{FH}. FDC further upregulate HIV replication in CD4 T cells through release of TNFα (40). A relative lack of cytotoxic T lymphocytes (CTL) in the follicle both in HIV (36) and SIV infection (39, 44), likely promotes replication at those sites. Most SIV-specific CTL lack a follicular homing phenotype (CXCR5⁺CXCR7[−]), which may explain their failure to home to sites of virus replication in B cell follicles (39). Depletion of CD8 cells from SIV-infected macaques leads to increases in virus replication primarily in the extrafollicular zone, further supporting the notion that CTL are primarily active in the extrafollicular compartment and exert little antiviral activity within the follicle (45). Thus, T_{FH} are naturally highly susceptible to HIV, and their location within the immune privileged B cell follicle adjacent to FDC-bound virions further promotes high levels of HIV infection and replication. Despite being highly permissive to HIV ex vivo and being the major virus-producing T cell subset in chronic HIV infection, the percentages of T_{FH} increase in early- and mid-stage chronic HIV (37, 46) and SIV infection (47). One of the hallmarks of HIV infection prior to AIDS is follicular hyperplasia. The follicles and GCs in HIV-seropositive lymph nodes are substantially larger in size than those in HIV-seronegative lymph nodes (48), suggesting that there are likely numerically more T_{FH} in HIV-seropositive compared to -seronegative lymph nodes in early and midstages of disease as well. Part of this expansion is likely antigen driven. In acute SIV infection, rapid formation of GC and accumulation of T_{FH} along with high p27 expression, in the follicle has been observed (49). In chronic HIV infection, virus-specific T_{FH} are expanded (46). It has been shown in mice that sustained antigenic stimulation from GC B cells is required to maintain the T_{FH} phenotype (50), further supporting the notion that antigen stimulation is key to T_{FH} expansion. It is likely that other factors besides antigen contribute to T_{FH} expansion. Cytokines known to promote T_{FH} survival, such as IL-6 (47, 51), and interferon-γ...
TFH FUNCTIONAL IMPAIRMENTS AND THEIR IMPACT ON HUMORAL IMMUNITY DURING HIV INFECTION

TFH follicular helper cells provide B cell help via IL-21, IL-4, CD40L, and ICOS to drive antibody production by GC B cells (55). It was shown that TFH and CXCR5+PD1+ CD4+ T cell populations from viremic subjects can support IgG1, IgM, and IgA production ex vivo (37), but numerous examples of TFH deficiencies have been demonstrated in HIV infection (Table 1). B cell dysfunction has been well characterized during HIV infection, including the loss of memory B cell function, decreased numbers of GC B cells and plasma cells, hypergammaglobulinemia and spontaneous antibody production, and loss of T-dependent responses (37, 56, 57). Clinically, these deficits are manifested by increased vulnerability to bacterial infections as well as impaired responses to routine vaccinations. Increasing evidence has linked many of these deficits in humoral immunity to impaired TFH function.

In chronic SIV infection, a marked increase of proliferation and turnover of GC B cells was seen as TFH accumulated (49). TFH from lymph nodes of HIV-infected subjects did not produce IL-21 upon HIV antigen stimulation, but were able to after PMA/ionomycin stimulation (37). TFH have high levels of Ki-67 expression but low rates of proliferation in uninfected tonsils (55) and HIV-infected lymph nodes (37). However, IL-21 levels have been reported as deficient in HIV-infected subjects (62), and a longitudinal study demonstrated that HIV-specific IL-21+ CD4+ T cells are decreased in viremic subjects (63). In this study, only elite controllers maintained high levels of IL-21 production, and antiretroviral therapy (ART) only partially restored IL-21 levels (63). Interestingly, IL-21+ CD4+ T cells from HIV-infected patients have low levels of CD40L expression (64). The loss of CD40–CD40L interactions could lead to impaired stimulation of B cells by CD4+ T cells from viremic HIV-infected subjects (65). In another study, splenic TFH from HIV-infected subjects demonstrated impairments in IL-4 production, along with reductions in CD40L and ICOS gene expression (59). Recently, it was demonstrated that chronically SIV-infected rhesus macaques have an expansion of Th1-biased GC Tfh, phenotypically distinct from conventional GC Tfh, which express CXCR3, produce high levels of IFNγ, and contain higher levels of SIV RNA (66).

IMPACT OF ALTERED TFH FUNCTION ON ANTI-HIV ANTIBODY RESPONSE

Deficits in TFH likely contribute to the failure to develop effective antibody responses to HIV. A recent study of acute HIV seroconverters demonstrated the onset of impairments in the ability of circulating TFH to stimulate HIV-specific antibody production by B cells are associated with peak viremia, suggesting that TFH

TABLE 1 | TF follicular helper cells (Tfh) functional impairments during HIV infection.

CD4+CXCR5+PD1+	Lymph node	Y/N	Lower Env-specific responses than Gag-specific responses; decreased Bcl-6 expression after antiretroviral therapy (ART); increased transitional B cells; hypergammaglobulinemia
CD4+CD45RA−CXCR5−PD1−Bcl-6+	Lymph node	Y/N	Higher Gag- and Pol-specific than Env-specific responses; harbor high levels of HIV DNA
CD4+CD45RA−CXCR5+	Lymph node	N	Lower of proliferation, ICOS expression, IL-21, IL-10, and IL-4 production after PD-1 ligation
CD4+CD45RA−CCR7−CXCR5+	Spleen	N	Expansion coinciding with increased transitional B cells and lower memory B cells; disrupted transcriptional profiles in HIV-infected subjects; high levels of DNA integration
CD4+CXCR5+CCR6+CCR7+PD1+	Blood	Y/N	Tfh decrease in treatment-naïve subjects; increase with ART but not to healthy control levels; low IL-4 production; weak supporters of IgG production
HIV-specific, IL-21+CD4+	Blood	N	Lower breadth and magnitude of HIV-specific responses compared to IFNγ+CD4 T cells; no HIV-specific peripheral TFH responses in patients with higher viral loads
CD4+CXCR5−CXCR5+PD-1+	Blood	N	Not all CXCR5+ cells promote B cell help, only CXCR5− subsets; high TFH frequency led to higher antibody neutralization scores but not decreased viral loads
CD3+CD4+CD45RA−CXCR5+CXCR3+	Blood	Y/N	Diminished B cell help during acute infection progression; increased TNFα and decreased IL-10 production that both correlate to decreased HIV-specific IgG production and increased viral load

A summary of studies from individuals with HIV infection, including the definition of Tfh, the location of Tfh, and a brief description of their key functional impairments.
defects occur very early following infection (61). Most antibodies generated during infection that neutralize across clades of HIV, i.e., broadly neutralizing antibodies (bnAb), are generated after several years and show high levels of SHM resulting from extensive affinity maturation in the GC. These responses are only generated in a small fraction of infected individuals (67), and the critical components of bnAb generation are unknown (68).

In both untreated and treated HIV-infected subjects, TFH from lymph nodes were shown to be on average five times more sensitive to Gag than Env, with overall low TFH cytokine production after Env stimulation (46). This could be due to the increased presence of Gag antigen compared to Env antigen in the lymph node of HIV-infected subjects (69) and the persistence of p24 antigen in lymph nodes after long-term ART (70). While it is not surprising there are more Gag-specific TFH than Env-specific TFH, a lack of specificity to the HIV envelope by TFH is likely one of the contributing factors to a lack of bnAb development. A loss of Gag-specific antibody response occurs during disease progression, but there is no simultaneous increase of high affinity Env-specific response (71). Thus, an early and sustained lack of Env-specific TFH response could contribute to the slow development of HIV-neutralizing antibody responses and with the failure of many individuals to generate bnAbs.

While protective neutralizing antibodies and bnAbs have been structurally and genetically well characterized in HIV-infected individuals, it remains unclear how these antibodies are generated and whether or not TFH can promote bnAb development. The development of bnAbs is relatively slow and shown to not strongly correlate with CD4 T cell counts, MHC II alleles, or typical patient demographics (72). However, some evidence suggests that TFH function plays a role in HIV neutralization. Circulating CD4 T cells from HIV controllers and ART-treated individuals produced IL-21 when stimulated with an HIV peptide pool, but not those from HIV progressors (73). In a longitudinal assessment of acute HIV infection (12 months), treated individuals had consistently higher IL-21 production than untreated individuals, and IL-21 contributed to viral control in CD4 and CD8 T cell co-cultures ex vivo (73). In a cohort of chronic aviremic subjects, IL-21 production was reduced in circulating TFH and supplementation of IL-21 or replacement of these subjects’ TFH with TFH from healthy controls led to increased production of HIV-specific antibodies by B cells ex vivo (74). In a cohort of HIV-infected individuals a limited proportion of patients developed bnAbs, but these patients had the highest levels of circulating, functional memory TFH (23). However, their viral loads did not decline after 4 weeks, but began to decline in a few individuals at 40 weeks (23). TFH frequency correlated strongly with bnAb development, thus indicating that TFH are important for generating bnAbs. In HIV-infected children receiving ART, circulating memory TFH declined, expressed low levels of ICOS, and had a diminished capacity to produce IL-4 (75). Thus, impairments of TFH function can persist in the absence of viremia. Further, in SHIV-infected rhesus macaques, the quality of TFH response was correlated with the degree of SHM in virus-specific B cells and bnAb production (60). As virus-specific IL-4+ TFH increased (IL-21 was not measured in this study), the amount of IgG+ virus-specific B cells and neutralizing response against HIV increased (60). Specifically, the frequency of IL-4+ and CD40L+ TFH correlated strongly with the frequency of Env-specific IgG + B cells (60). This study also identified a population of IFNγ+ Env-specific TFH, which are less likely to provide B cell help, and these did not correlate to Env-specific IgG+ B cells. In another study, IL-21+ CD4 T cells in the periphery of HIV-infected individuals were shown to be functionally and transcriptionally equivalent to TFH, and Env-specific IL-21+ CD4 T cells provided higher quality B cell help than the Gag-specific subset. Env-specific IL-21+ CD4 T cells also positively correlated to protective responses of subjects who responded to vaccination in the RV144 study (76). Thus, eliciting the right type of TFH help, rather than broad TFH activation, is crucial to bnAb generation. Augmentation and promotion of TFH function to boost this Env-specific IL-21+ CD4 T cell response could benefit future preventive vaccine trials and lead to broader specificity of anti-HIV antibodies and perhaps promote more rapid development of bnAbs in vaccinated individuals.

TFH IMPAIRMENT AND THEIR RELATIONSHIP TO VACCINE RESPONSES IN HIV-INFECTED INDIVIDUALS

Individuals with chronic HIV infection typically produce poor antibody responses to immunization (77) and specifically had a high failure rate after a dose of the H1N1/09 influenza vaccine (78). In HIV seronegative individuals, the emergence of blood ICOS+CXCR5+CXC3+ TFH that are able to produce IL-21 correlated with influenza-specific B cell responses (79) and blood ICOS+IL-21+ influenza-specific TFH expand after immunization and correlate to antibody responses (80). TFH function in HIV-infected individuals could be important to respond to vaccinations, but research in this area is limited. In ART-treated HIV-infected individuals, responders to the H1N1/09 influenza vaccine had upregulated IL-21 production and increased IL-21 receptor expression on B cells (81). Further, B cells from HIV-infected influenza responders secreted high levels of IgG after stimulation with IL-21 and H1N1 antigen, whereas HIV-infected non-responders did not (81). Expression of AID was positively correlated to influenza neutralizing antibody responses in HIV-infected individuals, and those with the highest levels of AID expression carried protective antibodies for the longest amount of time (82).

Recently, the quality of TFH responses to influenza vaccination was characterized in HIV-infected individuals. Of 16 HIV-infected subjects on ART receiving the H1N1/09 influenza vaccine, 8 subjects responded. Antibody responses were linked to the ability of pTFH to proliferate, to the ability of pTFH in responders to proliferate, produce IL-21, and stimulate IgG production (22). In this study, pTFH were not significantly altered in HIV-infected subjects and healthy controls at the time of vaccination, and the HIV-infected group had significantly higher frequencies of central memory pTFH (22). These data indicate that although pTFH were phenotypically similar in HIV-infected subjects compared to healthy controls, recall response and function of pTFH is significantly impaired in HIV-infected subjects even after potent ART regimens. As B cell/pTFH cocultures were performed with
sorted cells it remains to be determined if T_{FR} in the periphery play a role in the dichotomy of HIV-infected responders and non-responders.

MECHANISMS THAT UNDERLIE T_{FH} DYSFUNCTION

One of the obvious causes of T_{FH} dysfunction is direct HIV infection of the T_{FH} themselves. Nevertheless, only a minority of T_{FH} are producing virus at any single time point (36), and thus this is unlikely to be the principal cause of their dysfunction. T_{FH} are characterized by high levels of PD-1 expression. Ligation of PD-1 on T_{FH} by lymph node B cells that express PD-L1, which are elevated in HIV-infected individuals, leads to decreases in IL-21 production and ICOS expression (58). Blockade of this interaction, with PD-L1 neutralizing antibodies, restores T_{FH} help to B cells and promotes IgG production (58). One report has shown that HIV infection leads to an expansion of PD-L1 expressing regulatory B cells in peripheral blood that positively correlate with increased viral load and T cell exhaustion (83), however, T_{FH} function was not examined.

Another likely cause of T_{FH} dysfunction in HIV infection is regulation by T_{FR}. In mice, the magnitude of the GC reaction increased and autoimmune responses were generated when T_{FR} were unable to migrate into the follicle (84). Also in mice, it was demonstrated that excessive numbers of T_{FH} are correlated with impaired affinity maturation, and restoring a balanced ratio of T_{FH} to T_{FR} allows for generation of highly mutated, high avidity antibodies (85). Recent studies in rhesus macaques have shown that T_{FR} frequencies in secondary lymphoid tissues are increased in chronically SIV-infected animals (48, 86), while another study found decreases in T_{FR} during chronic infection (87). Reasons for discrepancies among these studies are not clear. In chronic HIV infection, T_{FR} are increased in lymph nodes (48) and spleen (59). They are also increased during acute ex vivo HIV infection of tonsil cells (48). In ex vivo HIV infection of human tonsil cells, our group found that T_{FR} inhibited ICOS expression, IL-21 production, and IL-4 production by T_{FH} (48). In another study of treatment-naïve, chronically HIV-infected subjects, the frequency of memory (CD45RA-CCR7-) T_{FR} and T_{FH} were shown to increase (39). These increases were associated with increased GC B cells; however, these cells were mostly naïve, pre-GC, and transitional B cells as opposed to memory B cells (59). Increases in T_{FH} and T_{FR} from spleen cells of HIV-infected subjects were associated with defects in the memory B cell compartment and reduced B cell help factors such as IL-4 (59). In addition, higher quality of Env-specific (gp120) antibodies in SIV-infected rhesus macaques was correlated with a lower frequency of T_{FR} (87). Neutralizing antibodies to HIV were negatively correlated to Foxp3+ Env-specific T_{FH} (T_{FR} were not excluded from T_{FH} in this work) in SHIV-infected rhesus macaques (60). Collectively, these data suggest that human T_{FR} increase during chronic HIV infection and impair T_{FH} function resulting in disruption of proper B cell differentiation and SHM. It has been shown in mouse models that the loss of T_{FR} function allows for higher levels of antibody production, but the resulting antibody is much lower affinity than if T_{FR} function is not impaired (32). Whether T_{FR} are able to control B cell responses directly, through T_{FH} impairment, or both remains to be shown.

MEMORY T_{FH} IN HIV-INFECTED INDIVIDUALS

One clear area requiring more research is the development and fate of memory T_{FH} subsets. It is currently unknown if T_{FH} memory forms and is sustained inside or outside of the GC, or whether effector T_{FH} persist in chronic infections due to prolonged antigen exposure and GC maintenance (88, 89). This is especially difficult to distinguish in HIV-infected subjects, as high levels of antigens persist in the lymph nodes well after ART initiation. Effector T_{FH} are present as long as the GC persists, but if these cells become memory T_{FH} or influence the response to vaccinations in HIV-infected subjects remains to be determined. One challenge in defining memory T_{FH} and effector T_{FH} is the plasticity of phenotype of these cells. Studies in LCMV-infected mice have demonstrated that CXCR5+ memory T_{FH} downregulate PD-1, Bcl-6, IL-21, and ICOS compared to effector populations, but are able to recall effector T_{FH} phenotype upon antigen challenge, suggesting a T_{FH} lineage commitment of these memory cells (90, 91). CXCR5 has been used to distinguish memory T_{FH} but not all CXCR5+ CD4 T cells possess T_{FH} function after activation (23). Furthermore, in a mouse model, T_{FH} lost expression of Bcl-6, CXCR5, and PD-1 and acquired a memory phenotype when transferred into a mouse that did not express the cognate antigen (92). Thus, lack of a reliable phenotype for effector and memory T_{FH} populations remains a barrier to studying memory T_{FH} development and assessing memory responses (93).

Another important question is the location of the memory T_{FH} pool and whether there is crosstalk between blood and lymphatic tissues. It has been shown that circulating and lymph node-resident memory populations may develop independently and both are antigen specific with potent effector functions (94, 95). In mice, it was demonstrated that effector T_{FH} can circulate to various GCs within the same lymph node, but rarely escape to the periphery (94). Further, pT_{FH} with memory function were shown to develop independent of the GC in mice (96). As sampling pT_{FH} in the blood is more feasible than lymph node T_{FH} and circulating T_{FH} are shown to have memory and migrate to lymph nodes to stimulate B cell effector responses (95), most studies to date have focused on the function of pT_{FH} in vaccine responses of HIV-infected subjects. Highly functional pT_{FH} are reduced in viremic HIV-infected subjects, but rebound after the administration of ART (24). In this study, abundance of IgG+ memory B cells and neutralizing antibody did not strongly correlate with pT_{FH} frequency, however, pT_{FH} from HIV-infected subjects had relatively low IL-21 production in response to either SEB or Gag peptide pool stimulations and had low levels of IL-21 and IL-4 gene expression (24). This suggests that humoral responses and vaccine responses not only need to boost pT_{FH}/T_{FH} numbers, but also elicit highly functional B cell help responses.

The extent to which HIV directly influences T_{FH} function, or whether HIV-driven enhancements in T_{FR} regulatory
activity influences T_{FH} dysfunction, leading to poor memory and vaccine response, remains to be fully understood. In mice, circulating T_{FH} were shown to be expanded after viral infection and could potently suppress pT_{FH} function without requiring specific antigens (95). Whether T_{FR} prevent memory T_{FH} function, or prevent memory T_{FH} from reacquiring effector T_{FH} function, is an important area of future research. As T_{FR} frequency has been found to negatively correlate with bnAb generation (60, 87), it will be necessary to determine if they disrupt the formation or activation of memory T_{FH}. T_{FR} could prevent memory T_{FH} from having high quality effector responses and thus represent a barrier to generating effective vaccine responses. T_{FR} regulatory function could impair the activity of memory T_{FH} and be one of the contributing factors to failure of preventative HIV vaccinations. Further, as T_{FR} act non-specifically on target cells, they could also contribute to the relatively low efficacy of non-HIV vaccine responses in HIV-infected individuals.

CONCLUSION

T follicular helper cells have a critical role in HIV immunopathogenesis. They proportionately expand compared to total CD4 T cells during chronic disease and are the major virus-producing cells during asymptomatic disease, thereby driving disease progression. They also exhibit multiple functional deficits that impair development of robust humoral immunity to pathogens, including HIV itself. Mechanisms underlying T_{FR} impairment likely include direct infection of T_{FH}, suppressive factors in the GC milieu such as PD-L1 expression on B cells, and T_{FR}. Strategies to augment T_{FH} immunity remain to be developed, but potential interventions include administration of IL-21 as well as inhibition of T_{FR} responses. Such strategies need to be developed cautiously as unintended consequences of these interventions, such as development of autoimmunity due to excessive inhibition of T_{FR}, could be deleterious. A better understanding of the nature of memory T_{FH} populations is also essential in order to develop and test interventions. Knowledge of factors that influence T_{FH} function in HIV infection could lead to improved immune reconstitution in ART-treated individuals and potentially augment strategies to cure HIV infection.

AUTHOR CONTRIBUTIONS

All the authors listed have made substantial, direct, and intellectual contribution to the work and approved it for publication.

FUNDING

Funding was provided by NIH/NIAID grants R01 AI096966 to and UM1 AI26617 to EC, T32 AI007447 to BM, and T32 AI007405 to SM.

REFERENCES

1. Breitfeld D, Ohl I, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med (2009) 192(11):1545–52. doi:10.1084/jem.192.11.1545
2. Schaerli P, Willmann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med (2000) 192(11):1553–62. doi:10.1084/jem.192.11.1553
3. Kim CH, Rott LS, Clark-Lewis I, Campbell DJ, Wu L, Butcher EC. Subspecialization of Cxcr5+ T cells B helper activity is focused in a germinal center–localized subset of Cxcr5+ T cells. J Exp Med (2001) 193(12):1373–82. doi:10.1084/jem.193.12.1373
4. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell activity. Science (2000) 292(5529):1006–10. doi:10.1126/science.1175870
5. Nurieva RI, Chung Y, Martinez GI, Yang XO, Tanaka S, Matskevitch TD, et al. Bcl6 mediates the development of T follicular helper cells. Science (2009) 325(5943):1001–5. doi:10.1126/science.1176677
6. Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity (2009) 31(3):457–68. doi:10.1016/j.immuni.2009.07.002
7. Rasheder AU, Rahn HP, Sallusto F, Lipp M, Muller G. Follicular B helper T cell activity is confined to CXCR5hiICOShi CD4 T cells and is independent of CD35+ expression. Eur J Immunol (2006) 36(7):1892–903. doi:10.1002/eji.200631636
8. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity (2008) 29(1):139–49. doi:10.1016/j.immuni.2008.05.009
9. Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ, Monticelli L, et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity (2011) 34(6):932–46. doi:10.1016/j.immuni.2011.03.023
10. Akiba H, Takeda K, Kojima Y, Usui Y, Harada N, Yamazaki T, et al. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol (2005) 175(4):2340–8. doi:10.4049/jimmunol.175.4.2340
11. Haynes NM, Allen CD, Lesley R, Ansel KM, Killeen N, Cyster JG. Role of CXCR5 and CCR7 in follicular T cell positioning and appearance of a programmed cell death gene–high germinal center–associated subpopulation. J Immunol (2007) 179(8):5099–108. doi:10.4049/jimmunol.179.8.5099
12. Pène J, Gauchat J-F, Lécart S, Drouet E, Guiglielmi P, Boulay V, et al. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol (2004) 172(9):5154–7. doi:10.4049/jimmunol.172.9.5154
13. Good KL, Bryant VL, Tangye SG. Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J Immunol (2006) 177(8):5236–47. doi:10.4049/jimmunol.177.8.5236
14. Bryant VL, Ma CS, Avery DT, Li Y, Good KL, Corcoran LM, et al. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J Immunol (2007) 179(12):8180–90. doi:10.4049/jimmunol.179.12.8180
15. Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG. Follicular helper T cells: lineage and location. Immunity (2009) 30(3):324–35. doi:10.1016/j.immuni.2009.03.003
16. Leonard WJ, Spolski R. Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nat Rev Immunol (2005) 5(9):688–98. doi:10.1038/nri1688
17. Yusuf I, Kageyama R, Monticelli L, Johnston RJ, DiToro D, Hansen K, et al. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). J Immunol (2010) 185(1):190–202. doi:10.4049/jimmunol.0903505
18. Huang H-C, Yang P, Wang J, Wu Q, Myers R, Chen J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive
germinal center development in autoimmune BKD2 mice. *Nat Immunol* (2008) 9(2):166–75. doi:10.1038/ni1552

19. Sarra M, Monteleone I, Stolz C, Fantini MC, Sileri P, Sica G, et al. Interferon-gamma-expressing cells are a major source of interleukin-21 in inflammatory bowel diseases. *Inflamm Bowel Dis* (2010) 16(8):1332–9. doi:10.1002/ibd.21238

20. Lim HW, Kim CH. Loss of IL-7 receptor α on CD4+ T cells defines terminally differentiated B helping effector T cells in a B cell-rich lymphoid tissue. *J Immunol* (2007) 179(11):7448–56. doi:10.4049/jimmunol.179.11.7448

21. Morita R, Schmitt N, Bentebehl S-E, Ranganathan R, Bourderly L, Zurawski G, et al. Human blood CXCR5+ CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. *Immunity* (2011) 34(1):108–21. doi:10.1016/j.immuni.2011.01.009

22. Pallikuth S, Parmigiani A, Silva SY, George VK, Fischl M, Pahwa R, et al. Impaired peripheral blood T-follicular helper cell function in HIV-infected nonresponders to the 2009 H1N1/09 vaccine. *Blood* (2012) 120(5):985–93. doi:10.1182/blood-2011-12-396648

23. Locci M, Havenar-Daughton C, Landais E, Wu J, Kroenke MA, Arlehamn CL, et al. Human circulating PD-1+ CXCR3+ CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. *Immunity* (2013) 39(4):758–69. doi:10.1016/j.immuni.2013.08.031

24. Boswell KL, Paris R, Boritz E, Ambrozak D, Yamamoto T, Darko S, et al. Loss of circulating CD4 T cells with B cell helper function during chronic HIV infection. *PLoS Pathog* (2014) 10(1):e1003853. doi:10.1371/journal.ppat.1003853

25. Iyer SS, Gangadhara S, Victor B, Gomez R, Basu R, Hong JJ, et al. Codelivery of Foxp3 and Bcl-6 suppress germinal center T follicular cells and contain specific subsets that differentially support T cell responses in Rhesus macaques. *J Immunol* (2013) 191(9):4690–7. doi:10.7554/eiz.2013.08.031

26. Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ, Rawal S, et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center T follicular helper, and CXCR5+ CD4+ T cells define α on CD4 T cell responses in Rhesus macaques. *J Immunol* (2014) 193(11):5613–25. doi:10.7554/eiz.2014.010161

27. Pierrou M, Savoye A-L, De Cirignis E, Corpatux J-M, Cubas R, Haddad EK, et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. *J Exp Med* (2013) 210(1):143–56. doi:10.1084/jem.20121932

28. Kohler SL, Pham MN, Folkvord JM, Arends T, Miller SM, Miles B, et al. Germinal center T follicular helper cells are highly permissive to HIV-1 and alter their phenotype during virus replication. *J Immunol* (2016) 196(6):2711–22. doi:10.4049/jimmunol.1502174

29. Connick E, Folkvord JM, Lind KT, Rakasz EG, Miles B, Wilson NA, et al. Compartmentalization of simian immunodeficiency virus replication within secondary lymphoid tissues of rhesus macaques is linked to disease stage and inversely related to localization of virus-specific CTL. *J Immunol* (2014) 193(11):5613–25. doi:10.7554/eiz.2014.010161

30. Thacker TC, Zhou X, Estes JD, Jiang Y, Keele BF, Elton TS, et al. Follicular dendritic cells and human immunodeficiency virus type 1 transcription in CD4+ T cells. *J Virol* (2009) 83(1):150–8. doi:10.1128/JVI.01652-08

31. Spiegel H, Herbst H, Niedobitek G, Foss H-D, Stein H. Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4+ T-helper cells. *Am J Pathol* (1992) 140(1):15.

32. Heath SL, Tew JW, Tew JG, Szakal AK, Burton GF. Follicular dendritic cells and human immunodeficiency virus infectivity. *Nature* (1995) 377(6551):740–4. doi:10.1038/377740a0

33. Haase AT, Henry K, Zupancic M, Sedgewick G, Faust RA, Melroe H, et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. *Science* (1996) 274(5289):985–9. doi:10.1126/science.274.5289.985

34. Tjernlund A, Zhu J, Laing K, Diem K, McDonald D, Vazquez J, et al. In situ detection of Gag-specific CD8+ cells in the GI tract of SIV infected Rhesus macaques. *Retrovirology* (2010) 7(1):12. doi:10.1186/1742-4690-7-12

35. Li S, Folkvord JM, Rakasz EG, Abdelaziz HM, Wagstaff RK, Kovacs J, et al. SIV-producing cells in follicles are partially suppressed by CD8+ cells in vivo. *J Virol* (2016) 1332–1316. doi:10.1128/JVI.01332-16

36. Lindqvist M, van Lunzen J, Soghoian DZ, Kuhl BD, Ranasinghe S, Kranias G, et al. Expansion of HIV-specific T follicular helper cells in chronic HIV infection. *J Clin Invest* (2012) 122(9):3271–80. doi:10.1172/JCI63414

37. Petrovas C, Yamamoto T, Gerney MY, Boswell KL, Wloka K, Smith EC, et al. CD4 T follicular helper cell dynamics during SIV infection. *J Clin Invest* (2012) 122(9):3281–94. doi:10.1172/JCI63039

38. Miles B, Miller SM, Folkvord JM, Kinball A, Chamanian M, Meditz AL, et al. Follicular regulatory T cells impair follicular helper T cells in HIV and SIV infection. *Nat Commun* (2015) 6:8608. doi:10.1038/ncomms8608

39. Hong JJ, Amanca PK, Rogers K, Ansari AA, Villinger F. Spatial alterations between CD4+ T follicular helper, B, and CD8+ T cells during simian immunodeficiency virus infection: T/B cell homeostasis, activation, and potential mechanism for viral escape. *J Immunol* (2012) 188(7):3247–56. doi:10.4049/jimmunol.1103138

40. Baumannhorn D, Preite S, Reboldi A, Ronchi F, Amsel KM, Lanzavecchia A, et al. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. *Immunity* (2013) 38(3):596–605. doi:10.1016/j.immuni.2012.11.020

41. Nakajima K, Martinez-Maza O, Hirano T, Breen E, Nishanian P, Salazar-Gonzalez J, et al. Induction of IL-6 (B cell stimulatory factor-2/IFN-beta 2) production by HIV. *J Immunol* (1989) 142(2):531–6.

42. Fan J, Bass H, Fahey J. Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV infection. *J Immunol* (1993) 151(9):5031–40.

43. Harari A, Rizzardi GP, Ellefsen K, Ciuffreda D, Champagne P, Bart P-A, et al. Analysis of HIV-1- and CMV-specific memory CD4 T-cell responses during primary and chronic infection. *Blood* (2002) 100(4):1381–7. doi:10.1182/blood-2001-11-0808

44. Haas MK, Levy DN, Folkvord JM, Connick E. Distinct patterns of Bcl-2 transcription occur in R5 and X4-tropic HIV-1-producing lymphoid tissue cells infected ex vivo. *AIDS Res Hum Retroviruses* (2015) 31(3):298–304. doi:10.1089/aid.2014.0155
55. Wang C, Hillsamer P, Kim CH. Phenotype, effector function, and tissue localization of PD-1-expressing human follicular helper T cell subsets. BMC Immunol (2011) 12(1):53. doi:10.1186/1471-2172-12-53

56. Lane HC, Masur H, Edgar LC, Whalen G, Rook AH, Fauci AS. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med (1983) 309(8):453–8. doi:10.1056/NEJM198308303090803

57. De Milito A, Morch C, Sonnerborg A, Chiiodi F. Loss of memory (CD27) B lymphocytes in HIV-1 infection. AIDS (2001) 15(8):957–64. doi:10.1097/00002030-200105250-00003

58. Cubas RA, Mudd JC, Savoye AL, Perreau M, van Grevenynghe J, Metcalf T, et al. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat Med (2013) 19(4):694–9. doi:10.1038/nm.3109

59. Colomeau L, Rouers A, Yamamoto T, Xu Y, Urrutia A, Pham HP, et al. HIV-infected spleens present altered follicular helper T cell (Tfh) subsets and skewed B cell maturation. PLoS One (2015) 10(10):e0140978. doi:10.1371/journal.pone.0140978

60. Yamamoto T, Lynch RM, Gautam R, Matus-Nicodemos R, Schmidt SD, Boswell KL, et al. Quality and quantity of Tfh cells are critical for broad control of HIV in SHIVAD8 infection. Sci Transl Med (2015) 7(298):ra120–298. doi:10.1126/scitransmed.aab3964

61. Murir M, Metcalf T, Tardif V, Takata H, Phanuphak N, Kroon E, et al. Altered memory circulating T follicular helper-B cell interaction in early acute HIV infection. PLoS Pathog (2016) 12(7):e1005777. doi:10.1371/journal.ppat.1005777

62. Iannello A, Tremblay C, Routy JP, Boulassel MR, Toma E, Ahmad A. Decreased circulating favor the in vivo development of granzyme B–expressing regulatory T cells. J Immunol (2015) 194(8):3768–77. doi:10.4049/jimmunol.1402568

63. Iannello A, Bouallou MR, Samarani S, Dedeche O, Tremblay C, Toma E, et al. Dynamics and consequences of IL-21 production in HIV-infected individuals: a longitudinal and cross-sectional study. J Immunol (2010) 184(1):114–26. doi:10.4049/jimmunol.0901967

64. Kaltenmeier C, Gawanbacht A, Beyer T, Lindner S, Trzaska T, van der Merwe JA, et al. Perturbations in B cell responsiveness to CD4+ T cells expand after vaccination, exert helper function, and predict antibody responses. Proc Natl Acad Sci U S A (2013) 110(35):14330–5. doi:10.1073/pnas.1311988110

65. Schultz BT, Teigler JE, Puusani F, Oster AF, Kranias G, Alter G, et al. Circulating HIV-specific interleukin-21+CD4+ T cells represent peripheral Tfh cells with antigen-dependent helper functions. Immunity (2016) 44(1):167–78. doi:10.1016/j.immuni.2015.12.011

66. Kroon FP, van Dessel JT, de Jong JC, van Furth R. Antibody response to influenza, tetanus and pneumococcal vaccines in HIV-seropositive individuals in relation to the number of CD4+ lymphocytes. AIDS (1994) 8(4):469–76. doi:10.1097/00002030-199404000-00008

67. Wrin T, Julig B, Peng A, Flanders M, Ranasinghe S, Sogoian DZ, et al. HIV-1-specific interleukin-21+ CD4+ T cells contribute to durable viral control through the modulation of HIV-specific CD4+ T cell function. J Virol (2011) 85(2):733–41. doi:10.1128/JVI.02030-10

68. Cubas R, van Grevenynghe J, Wills S, Kardava L, Santich BH, Buckner CM, et al. Reversible reprogramming of circulating memory T follicular helper cell function during chronic HIV infection. J Immunol (2015) 195(12):5625–36. doi:10.4049/jimmunol.1501524

69. Bekele Y, Amau S, Boboska K, Lantto R, Nilsson A, Endale B, et al. Impaired phenotype and function of T follicular helper cells in HIV-infected children receiving ART. Medicine (2015) 94(27):1125. doi:10.1097/MD.0000000000001125

70. Miles et al. TFH Function in HIV. Frontiers in Immunology | www.frontiersin.org December 2016 Volume 7 Article 659
89. Fazilleau N, Eisenbraun MD, Malherbe L, Ebright JN, Pogue-Caley RR, McHeyzer-Williams LJ, et al. Lymphoid reservoirs of antigen-specific memory T helper cells. Nat Immunol (2007) 8(7):753–61. doi:10.1038/ni1472

90. Hale JS, Youngblood B, Latner DR, Mohammed AUR, Ye L, Akondy RS, et al. Distinct memory CD4+ T cells with commitment to T follicular helper and T helper 1-cell lineages are generated after acute viral infection. Immunity (2013) 38(4):805–17. doi:10.1016/j.immuni.2013.02.020

91. Iyer SS, Latner DR, Zilliox MJ, McCausland M, Akondy RS, Penaloza-MacMaster P, et al. Identification of novel markers for mouse CD4+ T follicular helper cells. Eur J Immunol (2013) 43(12):3219–32. doi:10.1002/eji.201343469

92. Weber JP, Fuhrmann F, Hutloff A. T-follicular helper cells survive as long-term memory cells. Eur J Immunol (2012) 42(8):1981–8. doi:10.1002/eji.201242540

93. Hale JS, Ahmed R. Memory T follicular helper CD4 T cells. Front Immunol (2015) 6:16. doi:10.3389/fimmu.2015.00016

94. Shulman Z, Gitlin AD, Targ S, Jankovic M, Pasqual G, Nussenzweig MC, et al. T follicular helper cell dynamics in germinal centers. Science (2013) 341(6146):673–7. doi:10.1126/science.1241680

95. Sage PT, Alvarez D, Godec J, von Andrian UH, Sharpe AH. Circulating T follicular regulatory and helper cells have memory-like properties. J Clin Invest (2014) 124(12):5191–204. doi:10.1172/JCI76861

96. He J, Tsai LM, Leong YA, Hu X, Ma CS, Chevalier N, et al. Circulating precursor CCR7 lo PD-1 hi CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity (2013) 39(4):770–81. doi:10.1016/j.immuni.2013.09.007

Conflict of Interest Statement: The authors claim no financial conflicts of interest, and no outside parties influenced the writing of this manuscript.

Copyright © 2016 Miles, Miller and Connick. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.