SUPPLEMENTAL INFORMATION

Table of Contents

Table S1. Mass cytometry antibody panel- list of targets and heavy metal conjugants 2
Table S2. Recipient KIR characteristics 3
Table S3. Donor KIR characteristics 4
Table S4. Characteristics of the NK-cell products of 12 patients treated in the phase II extension study 5
Table S5. Causes of death in treatment and CIBMTR control group. 5
Table S7. Multivariable analysis of relapse, NRM, DFS, and OS: RIC controls vs. cases 7
Table S8. Multivariable analysis of relapse, NRM, DFS, and OS of MAC controls vs. cases 7
Table S9. Multivariable analysis of NRM, DFS, and OS: RIC controls vs. cases without DSA 8
Table S10. Multivariable analysis of NRM, DFS, and OS: MAC controls vs cases without DSA 8
Figure S1. FC21-NK cell expansion and product characteristics 9
Figure S2. Mass cytometry stochastic clustering by NK cell markers by individual patients and timepoints. 10
Table S1. Mass cytometry antibody panel- list of targets and heavy metal conjugants

| 151Eu_CD107a | 153Eu_HLA_DR | 154Sm_CD69 | 156Gd_CXCR3 | 165Ho_LAG3 | 175Lu_PERFORIN | 142Ce_NKG2C | 148Nd_CD161 | 152Sm_KIR2DL1 | 167Er_KIR3DL1 | 143Nd_CPARP | 145Nd_CD137 | 149Sm_CD244 | 155Gd_CD27 | 158Gd_CXCR4 | 159Tb_NKP30 | 160Gd_CXCR6 | 164Dy_FAS | 166Er_NKG2D | 169Tm_NKG2A | 170Er_TIM3 | 172Yb_NKP80 | 174Yb_CD94 | 161Dy_Ki67 | 146Nd_NKP44 | 157Gd_TIGIT | 162Dy_NKP46 | 163Dy_CD56 | 171Yb_DNAM1 | 173Yb_KIR2DL2-DL3 | 176Yb_CD57 | 115In_CD45 | 113In_CD3 | 209Bi_CD16 |
Patient	KIR2DS2	KIR2DL2	KIR2DL3	KIR2DL5A/B	KIR2DS3	KIR2DS5	KIR2DP1	KIR2DL1	KIR3DL1	KIR3DS1	KIR2DS4	KIR2DS1
1	-	-	+	+	-	+	+	+	+	+	+	+
3	-	-	+	-	-	-	+	+	-	+	-	
4	+	+	+	-	-	-	+	+	-	-	+	-
5	-	-	+	-	-	-	+	+	-	-	+	-
6	+	+	+	+	+	+	+	+	+	+	+	+
7	+	+	+	+	+	+	+	+	+	+	+	+
8	-	-	+	-	-	-	+	+	+	-	+	-
9	-	-	+	-	-	-	+	+	-	-	+	-
10	-	-	+	+	+	-	+	+	-	+	+	-
11	-	-	+	-	-	-	+	+	+	-	+	-
12	-	-	+	-	-	-	+	+	-	+	+	+
13	-	+	+	+	+	-	+	+	-	+	-	+
14	+	+	+	+	+	+	+	+	+	-	-	+
15	+	+	+	+	-	+	+	+	+	+	-	+
16	+	+	+	+	-	+	+	+	-	+	-	+
17	-	-	+	-	-	-	+	+	+	-	+	-
18	-	-	+	-	-	-	+	+	+	-	+	-
19	+	+	+	+	+	-	+	+	-	+	+	+
20	+	+	+	-	-	-	+	+	+	-	+	-
21	+	+	+	+	+	+	+	+	+	-	+	+
22	+	+	+	+	-	+	+	+	+	+	-	+
23	+	+	+	+	+	-	+	+	+	+	+	+
24	-	-	+	-	-	-	+	+	+	-	+	+
25	+	+	+	+	-	+	+	+	-	+	-	+
Table S3. Donor KIR characteristics

Donor	KIR2DS2	KIR2DL2	KIR2DL3	KIR2DL5A/B	KIR2DS3	KIR2DS5	KIR2DP1	KIR2DL1	KIR3DL1	KIR3DS1	KIR2DS4	KIR2DS1
1	-	-	-	-	-	-	-	-	-	-	-	+
3	-	-	+	-	-	-	+	-	-	-	+	+
4	+	+	+	-	-	-	-	-	-	+	+	+
5	-	-	+	-	-	-	-	+	-	+	-	-
6	-	-	+	-	-	-	-	-	-	+	+	+
7	+	+	+	-	-	+	-	+	-	+	+	+
8	+	+	+	-	-	+	+	-	+	+	+	+
9	-	-	+	-	-	-	+	-	+	+	+	+
10	-	+	+	+	-	-	+	-	+	+	+	+
11	+	+	+	-	-	+	-	+	+	+	+	+
12	-	-	+	-	-	+	-	-	+	-	+	+
13	-	+	+	-	-	+	+	+	+	+	-	-
14	-	-	+	-	-	-	+	-	-	-	+	-
15	-	+	+	-	-	+	+	-	-	+	-	-
16	+	+	+	-	-	+	+	+	+	-	-	+
17	-	+	+	-	-	+	+	+	+	-	+	-
18	+	+	+	-	-	+	+	+	+	-	+	-
19	+	+	+	+	+	+	+	+	+	+	+	-
20	+	+	+	-	-	+	+	+	+	-	+	-
21	+	+	+	-	-	+	+	+	+	-	+	-
22	+	+	+	-	+	+	+	-	+	+	+	-
23	+	+	+	-	-	+	+	+	+	-	+	-
24	+	+	+	+	+	+	+	+	+	+	+	+
25	+	+	+	-	+	+	+	+	+	+	+	+
Table S4. Characteristics of the NK-cell products of 12 patients treated in the phase II extension study

Patient	Viability, %	Viable CD32+, APCs, %	CD3+ cells x 10^5/Kg	CD3-CD(16,56+), NK cells, %	CD19+, B cells, %	CD14+ cells, monocytes, %
1	95	0.13	0.02	0.2	97.08	not detected
2	95	not detected	0.01	0.1	97.92	not detected
3	94	not detected	0.02	0.2	98.76	not detected
4	95	0.33	0.02	0.06	99.06	not detected
5	87	0.38	0.02	0.063	95.88	not detected
6	96	not detected	0.04	0.4	98.70	0.03
7	94	0.05	0.04	0.4	99.09	0.01
8	96	0.08	0.05	0.5	99.32	not detected
9	97	not detected	0.01	0.1	99.27	0.06
10	95	not detected	0.01	0.1	99.39	0.01
11	93	0.08	0.02	0.2	97.13	not detected
12	88	0.01	0.01	0.1	98.28	not detected

Table S5. Causes of death in treatment and CIBMTR control group.

	CASES (N=7)	CONTROLS (N=67)	MAC controls (N=31)	RIC controls (N=36)
Primary disease	0	36 (54%)	14 (45%)	22 (61%)
Graft failure	1 (14%) (secondary graft failure)	1 (1%)	1 (3%)	0
GVHD	1 (14%)	5 (7%)	3 (10%)	2 (6%)
Infection	2 (28%)	3 (4%)	1 (3%)	2 (6%)
Interstitial pneumonia/ARDS	1 (14%)	4 (6%)	3 (10%)	1 (3%)
Organ failure	0	9 (13%)	2 (6%)	7 (19%)
Second malignancy	0	1 (1%)	0	1 (3%)
Other causes	2 (28%) (1 unidentified cause of death, 1 hemorrhage)	8 (12%)	7 (23%)	1 (3%)
Table S6. Immunologic cell recoveries after transplant stratified by NK cell dose

	Total (N=5)	Low dose (N=7)	Intermediate dose (N=12)	High dose (N=12)	P value
	Mean	SD	---------		
WBC	4263	2399	4950	2397	3833
Absolute lymphocytes	407	294	216	83	320
NK cells	636	964	122	136	284
CD3	91	145	89	22	40
CD4	47	81	23	1.4	24
CD8	41	77	66	24	15
CD19	2.8	2.7	1.5	0.7	3.1
CD25	12	13	6	7.1	11
CD45RO	67	130	14	7.8	23
CD45RA	2.7	3.1	0.5	0.7	3.8
Day 90					
WBC	3819	1694	3425	2410	4457
Absolute lymphocytes	757	495	780	744	638
NK cells	269	240	190	132	256
CD3	442	616	1022	1109	209
CD4	170	220	215	314	11
CD8	264	485	781	870	100
CD19	82	102	97	114	116
CD25	19	26	15	4.2	42
CD45RO	155	190	58	41	111
CD45RA	13	20	2.3	1.7	25
Day 180					
WBC	5877	2767	6175	3309	5871
Absolute lymphocytes	1649	1582	1926	804	1260
NK cells	342	191	391	162	313
CD3	1254	1545	1082	440	1181
CD4	401	297	326	50	378
CD8	794	1233	745	415	705
CD19	178	146	221	197	152
CD25	54	66	151	108	66
CD45RO	820	1327	415	213	630
CD45RA	39	20	30	18	57
Day 360					
WBC	6392	2667	3500	NA	5566
Absolute lymphocytes	2229	1142	1270	NA	1832
NK	334	174	164	46	338
CD3	1193	609	769	254	1194
CD4	608	319	365	149	537
CD8	514	357	370	152	559
CD19	496	341	383	171	609
CD25	35	19	24	NA	40
CD45RO	606	262	338	NA	526
CD45RA	NA	NA	NA	NA	NA

*Definitions: Low dose was <1 x10^6/Kg/dose; Intermediate dose was 1 x10^6-3x10^6/Kg/dose; High dose was 1 x10^7/Kg/dose

Abbreviations: SD: standard deviation, NA: not available
Table S7. Multivariable analysis of relapse, NRM, DFS, and OS: RIC controls vs. cases

	Number Events / Evaluable	Hazard Ratio (95% Confidence Interval)	P-value
DFS			
Cases	8/24	1.00^a	
RIC Controls	48/79	2.28 (1.08 - 4.82)	0.03
NRM			
Cases	7/24	1.00^a	
RIC Controls	12/79	0.60 (0.22 - 1.68)	0.33
Relapse			
Cases	1/24	1.00^a	
RIC Controls	36/79	14.18 (1.75 - 115.00)	0.013
OS			
Cases	7/24	1.00^a	
RIC Controls	36/79	1.66 (0.71 - 3.88)	0.24

^a Reference group

Variables considered for analysis: recipient age, recipient gender, recipient race and ethnicity, HCT-CI, performance score, CMV serostatus, graft type, year of transplant

There were no significant factors in the DFS, NRM, relapse, and OS models. The results shown are from the models with only the main effect.

Table S8. Multivariable analysis of relapse, NRM, DFS, and OS of MAC controls vs. cases

	Number Events / Evaluable	Hazard Ratio (95% Confidence Interval)	P-value
DFS			
Cases	8/24	1.00^a	
MAC Controls	39/81	1.55 (0.67 - 3.55)	0.30
NRM			
Cases	7/24	1.00^a	
MAC Controls	16/81	0.73 (0.29 - 1.85)	0.51
Relapse			
Cases	1/24	1.00^a	
MAC Controls	23/81	7.24 (0.95 - 55.16)	0.06
OS			
Cases	7/24	1.00^a	
MAC Controls	31/81	1.31 (0.56 - 3.04)	0.39

^a Reference group

Variables considered for analysis: recipient age, recipient gender, recipient race and ethnicity, HCT-CI, performance score, CMV serostatus, graft type, year of transplant

There were no significant factors in the DFS, NRM, relapse, and OS models. The results shown are from the models with only the main effect.
Table S9. Multivariable analysis of NRM, DFS, and OS: RIC controls vs. cases without DSA

	Number Events / Evaluable	Hazard Ratio (95% Confidence Interval)	P-value
DFS			
Cases	5/19	1.00^a	
RIC Controls	36/62	3.33 (1.30 - 8.52)	0.012
NRM			
Cases	5/19	1.00^a	
RIC Controls	8/62	0.63 (0.21 - 1.95)	0.43
OS			
Cases	5/19	1.00^a	
RIC Controls	28/62	1.84 (0.67 - 5.04)	0.24

^a Reference group

Variables considered for analysis: recipient age, recipient gender, recipient race and ethnicity, HCT-CI, performance score, cmv serostatus, graft type, year of transplant

There were no significant factors in the DFS, NRM, relapse, and OS models. The results shown are from the models with only the main effect.

Table S10. Multivariable analysis of NRM, DFS, and OS: MAC controls vs cases without DSA

	Number Events / Evaluable	Hazard Ratio (95% Confidence Interval)	P-value
DFS			
Cases	5/19	1.00^a	
MAC Controls	30/63	2.08 (0.87 - 4.95)	0.10
NRM			
Cases	5/19	1.00^a	
MAC Controls	13/63	0.90 (0.35 - 2.29)	0.83
OS			
Cases	5/19	1.00^a	
MAC Controls	23/63	1.44 (0.61 - 3.43)	0.41

^a Reference group

Variables considered for analysis: recipient age, recipient gender, recipient race and ethnicity, HCT-CI, performance score, cmv serostatus, graft type, year of transplant

There were no significant factors in the DFS, NRM, relapse, and OS models. The results shown are from the models with only the main effect.
Figure S1. FC21-NK cell expansion and product characteristics

Panel (A) shows fold expansion was calculated as the ratio of the NK cell content (CD3-CD56+) of the final product for infusion to the NK cell content of the starting MNC product after CD3 depletion and adjusted for occurrences in which only a portion of the product was processed, cultured, or carried forward in culture.

Panel (B) shows viability and NK cell content (CD3-CD56+) of the final fresh product prepared for infusion.

Panel (C) shows residual FC21 (CD19 or CD32+, and CD56-), FC21 or B cell (CD19+), and T cell (CD3+) content in the final NK cell product.

Panel (D) shows viability and recovery of 31 cryopreserved NK cell products assessed after thawing and preparing for infusion. Bars and whiskers represent median ± interquartile range.
Figure S2. Mass cytometry stochastic clustering by NK cell markers by individual patients and timepoints.

Peripheral blood was obtained at the indicated timepoints, and mononuclear cells (MNC) were isolated, processed, and assessed for 34 parameters (Supplemental Table S1) along with healthy subject MNC and expanded FC21-NK cell products as reference samples. Samples were gated on live cells, singlets, and cPARP-/CD45+ events. ViSNE plots were constructed by clustering on eight parameters. Shown are plots from all patients at all timepoints, healthy subjects, and NK cell products, showing expression of CD56 as a reference for each sample. Cluster 1 (bottom left) consists of CD3+ T cells, Cluster 2 (top middle) of CD3-CD56dimNKG2DdimCD57+ “standard” NK cells, Cluster 3 (top right) of CD56brNKG2DbrNKp46brCD57- NK cells corresponding to the phenotype of the infused FC21-NK cell product, and Cluster 4 (bottom middle) of all remaining cells. Cluster 3 identifies a unique phenotypic signature associated with the FC21-NK cells that is not present in healthy subjects and persists in patients after adoptive transfer.