The relationship between serum uric acid and colorectal cancer: a prospective cohort study

Wenqiang Li1,6, Tong Liu2,6, Sarah Tan Siyin3,6, Qingsong Zhang4, Yiming Wang5, Liying Cao5* & Jun Qu1*

Serum uric acid (SUA) may play an important role in the occurrence of colorectal cancer (CRC). This study aims to explore the association of SUA with the risk of CRC incidence by drawing data from the Kailuan Study. We prospectively examined the association between SUA and risk of CRC incidence among 93,356 Chinese. Eligible participants were divided into three groups based on their tertiles of SUA. Cox proportional hazards regression was used to calculate the hazard ratios (HRs) and 95% confidence intervals (95% CIs) of CRC. During a median follow-up of 13.02 years, 583 new-onset CRC cases were identified. After adjustments were made for confounders, participants in the highest tertiles of SUA exhibited a 1.55-fold increased risk of CRC compared with patients with the lowest SUA levels (HR T3 vs. T1 = 1.55, 95% CI: 1.09–2.30). The associations of SUA with the risk of CRC were slightly reduced but remained substantial in the competing risk analyses when treating CRC unrelated death as the competing risk event. This study found a positive association of SUA with CRC incidence. Specific prevention efforts could be focused on the population with higher levels of SUA.

Colorectal cancer (CRC) ranks as abdominal wall is a rare disease. We aim to elucidate the clinical and prognostic characteristics of this disease. Medical records of ten patients diagnosed with CCC of the abdominal wall at Fudan University Shanghai Cancer Center were reviewed. We illustrate the clinical characteristics, treatment modality, and development of local recurrence or distant metastasis, as well as the survival outcome. The median (range) age of patients was 47 (39–61) years old. All patients had a history of cesarean section and abdominal wall endometriosis. All patients had primary surgery before referred to our center. Seven patients had only tumor resection, while two patients had lymph node metastasis at primary diagnosis. Four patients underwent supplementary surgery, and all postoperative pathology were third in terms of global cancer incidence and represents 10% of all cancer cases1,2. It is the second leading cause of cancer-related deaths in the world. In 2020, there was an estimated 1.9 million new cases and 935,000 CRC-related death3. Despite CRC incidence and death rates stabilizing and even decreasing in developed countries in recent decades, low- and middle-income countries continue to struggle with the rapid growth of CRC4–6. China, the world's fastest-growing developing country for the past four decades, has faced the impact of an aging population, urbanization, and a shift in lifestyle and diet changes which are both independently associated with CRC risk4. CRC incidence and its accompanying disease burden has rapidly increased in China and CRC is currently the country's third most common cancer7,8.

Serum uric acid (SUA), a potent antioxidant, acts as a free radical scavenger9. The causative role of SUA in the development and progression of gout and metabolic syndrome is well recognized, and its associations with cardiovascular disease, acute ischemic stroke, and nonalcoholic fatty liver disease have been revealed recently10,11. However, evidence of a link between SUA and cancer risk has been heterogeneous, despite its antioxidant property12. Results from a Meta-analysis suggested that high SUA levels increased the risk of total cancer incidence and mortality13. Whereas, other studies failed to find such a relationship14,15. Metabolic factors such as SUA may play an important role in the occurrence of CRC. However, this association has not been explored in the prospective studies previously. This study aims to explore the association between SUA and the
risk of CRC incidence by drawing data from the Kailuan Study (Trial identification: ChiCTR-TNRC-11001489; Registration number:11001489).

Methods

Study populations. The Kailuan Study, a prospective, ongoing cohort study in the Kailuan community of Tangshan, China, was designed to explore the risk factors for chronic diseases, such as cancer. The study’s details have been discussed previously16. In summary, 101,510 Kailuan Group employees (81,110 males and 20,400 women, ages 18 to 98) were invited to participate in the baseline health assessment between July 2006 and October 2007 and biannual follow-ups. At the baseline examination (2006–2007) and during each follow-up, each participant received standardized questionnaire evaluations, clinical assessments, and laboratory testing.

We excluded 377 participants because they had a history of cancer at the time of the baseline assessment. We also excluded 1284 subjects who did not have SUA values. In addition, we excluded 6493 participants who did not have information on other potential confounders such as age, sex, body mass index (BMI, in kg/m²), systolic blood pressure (SBP, in mmHg), diastolic blood pressure (DBP, in mmHg), total cholesterol (TC, in mmol/L), triglyceride (TG, in mmol/L), high-sensitivity C-reactive protein (CRP, mg/L), socio-economic factors, and lifestyle behaviors. A total of 93,356 participants were finally enrolled in this study, including 18,826 women and 74,530 men (Fig. 1).

The protocol for this study was in accordance with the guidelines of the Helsinki Declaration and was approved by the Ethics Committee of Kailuan General Hospital and Aerospace Center Hospital. All the participants provided written informed consent.

Assessment of serum uric acid. Blood samples were taken overnight (8–12 h) using vacuum tubes containing EDTA, then separated and kept at −80 °C for further analysis. The SUA concentrations were determined using an auto-analyzer (Hitachi 747; Hitachi, Tokyo, Japan) at Kailuan General Hospital’s central laboratory using the oxidase technique. Males and females have different UA levels, and different cut-offs of tertiles were calculated for men (262.00, and 329.00 μmol/L) and women (211.00, and 267.00 μmol/L). Men and women were first separated into three groups based on sex-specific SUA tertiles and then pooled into: T1 group (n = 31,353), T2 group (n = 31,187), and T3 group (n = 30,816).

Outcome ascertainment. The following methods were used to identify incident CRC cases: (1) reviewing clinical examinations participants underwent every two years until December 31, 2019, (2) checking medical records from the Tangshan medical insurance system and the Kailuan Social Security Information System yearly, and (3) reviewing death certificates from the Provincial Vital Statistics Offices (PVSO) once a year to obtain additional missing information. According to the International Classification of Diseases, Tenth Revision, clinical experts assessed the diagnosis and categorized CRC patients as C18-21 (ICD-10).

Potential confounders. A standard questionnaire was used to collect information on each participant’s age, sex, socioeconomic situation, educational background, living habits, and personal and family members’ medical staff. The drinking and smoking status of participants was divided into four groups based on the information they provided in answer to the questions: never, past, moderate, and severe (having 100 ml/day of alcoholic beverages or smoked ≥ 1 cigarette/day)17. Physical activity was categorized as never, occasionally, or consistently (≥ 3 times/week, ≥ 30 min/time). The amount of time spent sedentary was divided into three categories: < 4 h/day, 4–8 h/day, and > 8 h/day. Tea consumption was divided into four categories: never, < 1 time/month, 1–3
Family history of cancer was defined as at least one first-degree family member with cancer of any site. Blood pressure (BP), height, and body weight were measured in standard methods by trained medical staff. BMI was calculated as the ratio of body weight (kg) divided by the square of height (m²) and classified into three groups: normal weight (< 24 kg/m²), overweight (24.00–27.99 kg/m²), or obese (≥ 28 kg/m²) based on the guideline of China Working Group on Obesity (WGOC). Hypertension was defined as having an SBP ≥ 140 mmHg or a DBP ≥ 90 mmHg, or a previous diagnosis.

The concentrations of TC, TG, and ALT were measured by the colorimetric enzymatic method (Mind Bioengineering Co. Ltd, Shanghai, China). Serum CRP was measured using a high-sensitivity nephelometry assay (Cias Latex CRP-H, Kanto Chemical Co. Inc, Tokyo, Japan). In accordance with the guidelines from the Centers for Disease Control and Prevention and the American Heart Association, CRP was divided into three groups: < 1 mg/L, 1–3 mg/L, and > 3 mg/L. The levels of serum TG, TC, ALT, and TBIL were divided into three groups by the tertiles of each variable. Diabetes mellitus was defined as follows: an FBG level ≥ 7.0 mmol/L, taking oral hypoglycemic agents or insulin, or a validated physician diagnosis.

Statistical analysis. Continuous variables were described as means ± standard deviations (SD) and comparisons were done with the one-way analysis of variance (ANOVA). The Chi-square test was used to compare categorical variables that were represented as absolute values with percentages. The person-year was determined from the date of the baseline examination through the date of the CRC diagnosis, death, or December 31, 2019, whichever came first. Restricted cubic spline regression (RCS) was used to calculate the dose–response relationship between SUA and CRC risks. The hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of SUA with the risk of incident CRC were calculated using Cox proportional hazards models. Multivariate models were adjusted for the traditional risk factors of CRC including continuous variable (age) and categorical variables (sex, family income, educational background, marital status, BMI (< 24.00 kg/m² vs. 24.00–27.99 kg/m² and ≥ 28 kg/m²), tertiles of TG, TC, TBIL and ALT, CRP (< 1 mg/L vs. 1–3 mg/L, and > 3 mg/L), tobacco consumption, alcohol consumption, physical activity, sedentary lifestyle, tea consumption, high-fat diets, hypertension, chronic kidney disease, and family history of cancer). The rationale for the selection of the confounders was based on the results from previous studies.

During follow-up, cancer-unrelated death may occur before the occurrence of incident cancer, preventing us from identifying the presence of CRC. Because individuals with competitive events (and censored) are thought likely to develop cancer in the future, standard predictions such as Cox regression may overstate cancer risk in this competing risk setting. We further conducted the competing risk analyses including cause-specific hazards (CS) and sub-distribution hazard function (SD) models by fitting into the COX regression with a different definition of the event as follows: 0 = alive participants without CRC at the end of the study; 1 = participants diagnosed with CRC during follow-up; 2 = participants censored due to CRC unrelated death). Subgroup analyses were conducted by stratifying participants according to sex, age (≤ 45 years, 45–65 years, > 65 years), and BMI (≤ 24 kg/m², 24–27.9 kg/m², ≥ 28 kg/m²). Cancer patients were found to have higher SUA than healthy individuals. Patients with occult malignancy or undiagnosed precancerous lesions at baseline sampling may cause reverse causation; we further excluded CRC cases that occurred within the first year or the first 5 years of follow-up in the sensitivity analysis.

A P-value (two-sided) < 0.05 was considered statistically significant. Statistical analyses were performed using a commercially available software program (SAS software, version 9.4).

Ethics approval and consent to participate. This study was approved by the ethics committee of Kaifuan General Hospital and Aerospace center hospital followed the Declaration of Helsinki. Informed consent forms were signed by the participants.

Results

Table 1 summarizes the baseline characteristics of participants stratified by the tertiles of SUA. The mean age of the study population was 51.69 ± 12.48 years. Significant differences were found in age, levels of TC, TG, ALT, TBIL, hs-CRP and BMI, the percentages of educational background, marital status, reported income, physical exercise, sedentary lifestyle, tobacco consumption, alcohol consumption, tea consumption, high-fat diets, hypertension, diabetes mellitus, and family history of cancer among three prespecified SUA groups.

The median (IQR) follow-up time was 13.02 (12.69, 13.20) years. A total of 583 new-onset CRC cases were diagnosed among 93,356 participants at the end of the study. The RCS model showed a positive dose–response and linear association between SUA levels and the risk of CRC (p-overall = 0.004, p-nonlinear = 0.055; Fig. 2). Table 2 presents the crude and adjusted HRs (95%CI) for the association between SUA and the risk of CRC incidence. Compared with patients with the lowest SUA levels (T1 group), participants in T2, and T3 groups had a 1.47-fold and 2.30-fold increased risk of CRC in the crude models (HR_{T2 vs. T1} = 1.47, 95% CI: 1.02–2.01; HR_{T3 vs. T1} = 2.30, 95% CI: 1.53–3.40). After adjusting for the confounders, participants with the highest levels of SUA exhibited an elevated risk of CRC incidence (HR_{T3 vs. T1} = 1.55, 95% CI: 1.09–2.30).

During the follow-up period, a total of 8,182 individuals died before the occurrence of CRC. Compared with the lowest SUA level group (T1), the adjusted HRs (95%CI) for the association of high levels of SUA group (T3) with CRC risk was 1.50 (1.05, 2.25) in the SD models. Similar results were also observed in the CS models with minor differences. A positive trend was observed in all analyses (all p for trend < 0.05).

https://doi.org/10.1038/s41598-022-20357-7
Variables	T1 group	T2 group	T3 group	P-value
n (%)	31,353	31,187	30,816	
Age (year)	50.79 ± 10.17	51.51 ± 12.33	52.78 ± 13.13	< 0.001
Male (%)	25,083 (80.00)	24,830 (79.62)	24,617 (79.88)	0.327
Reported income (¥)				< 0.001
< 600	8633 (27.53)	9267 (29.71)	9034 (29.32)	
600–800	19,361 (61.75)	18,250 (58.52)	15,501 (50.30)	
800–1000	2143 (6.83)	2507 (8.03)	2487 (8.07)	
> 1000	1216 (3.87)	1163 (3.75)	3794 (12.31)	
Marital status (%)				< 0.001
Never	511 (1.62)	530 (1.70)	521 (1.69)	
Married	29,721 (94.79)	29,665 (95.12)	28,708 (93.16)	
Divorced	284 (0.91)	259 (0.83)	255 (0.83)	
Widowed	636 (2.03)	607 (1.95)	684 (2.22)	
Remarried	201 (0.68)	126 (0.41)	648 (2.10)	
Educational background (%)				< 0.001
Never	334 (1.07)	383 (1.23)	433 (1.41)	
Primary school	2963 (9.45)	2782 (8.92)	3237 (10.50)	
Middle school	22,478 (71.69)	22,463 (72.03)	19,811 (64.29)	
High school	3947 (12.59)	3782 (12.13)	4418 (14.34)	
College graduate or above	1631 (5.20)	1777 (5.70)	2917 (9.47)	
TC (%)				< 0.001
< 4.51 mmol/L	10,370 (33.07)	10,458 (33.53)	10,372 (33.66)	
4.51–5.34 mmol/L	10,694 (34.11)	10,622 (34.06)	9920 (32.19)	
> 5.34 mmol/L	10,289 (32.82)	10,107 (32.41)	10,524 (34.15)	
TG (%)				< 0.001
< 1.02 mmol/L	11,814 (37.68)	10,981 (35.21)	8574 (27.82)	
1.02–1.64 mmol/L	10,881 (34.70)	10,734 (34.42)	9322 (30.25)	
> 1.64 mmol/L	8658 (27.61)	9472 (30.37)	12,920 (41.93)	
ALT (%)				< 0.001
< 14.80 μ/L	10,570 (33.71)	10,366 (33.24)	10,188 (33.06)	
14.80–22.00 μ/L	11,581 (36.94)	9805 (31.44)	11,232 (36.45)	
> 22.00 μ/L	9202 (29.35)	11,016 (35.32)	9396 (30.49)	
TBIL (%)				< 0.001
< 10.70 μmol/L	11,795 (37.62)	9805 (31.44)	10,066 (32.66)	
10.70–13.90 μmol/L	10,695 (34.11)	11,182 (35.85)	8766 (28.45)	
> 13.90 μmol/L	8863 (28.27)	10,200 (32.71)	11,984 (38.89)	
CRP (%)				< 0.001
< 1 mg/L	18,993 (60.58)	17,921 (57.46)	15,505 (50.31)	
1–3 mg/L	6653 (21.22)	7690 (24.66)	9641 (31.29)	
> 3 mg/L	5707 (18.20)	5576 (17.88)	5670 (18.40)	
BMI (%)				< 0.001
< 24 kg/m²	17,224 (54.94)	14,655 (46.99)	10,717 (34.77)	
24–28 kg/m²	9993 (31.87)	11,016 (35.32)	12,270 (39.82)	
> 28 kg/m²	4136 (13.19)	5516 (17.69)	7829 (25.41)	
Physical exercise (%)				< 0.001
Never	2829 (9.02)	2745 (8.80)	2547 (8.27)	
Occasionally	24,916 (79.47)	24,129 (77.37)	21,557 (69.93)	
Regularly	3608 (11.51)	4313 (13.83)	6712 (21.78)	
Smoking status (%)				< 0.001
Never	20,311 (64.78)	19,668 (63.06)	15,913 (51.64)	
Past	1783 (5.69)	1902 (6.10)	1631 (5.29)	
Moderate	987 (3.15)	1478 (4.74)	827 (2.68)	
Severe	8272 (26.38)	8139 (26.10)	12,445 (40.38)	
Drinking status (%)				< 0.001
Never	20,477 (65.31)	19,473 (62.44)	15,205 (49.34)	
Past	1022 (3.26)	1150 (3.69)	1444 (4.69)	
Continued				
Variables	T1 group	T2 group	T3 group	P-value
-----------------------------------	--------------	--------------	--------------	---------
Moderate	5388 (17.18)	5939 (19.04)	6551 (21.26)	
Severe	4466 (14.24)	4625 (14.83)	7616 (24.71)	
Sedentary lifestyle (%)				< 0.001
< 4 h/day	24,672 (78.69)	22,398 (71.82)	22,784 (73.94)	
4–8 h/day	5812 (18.54)	7299 (23.40)	7369 (23.91)	
> 8 h/day	869 (2.77)	1490 (4.78)	663 (2.15)	
Tea consumption (%)				< 0.001
Never	24,952 (79.58)	23,877 (76.56)	21,314 (69.17)	
< 1 time/month	1312 (4.18)	1367 (4.38)	1500 (4.87)	
1–3 times/month	1633 (5.20)	2003 (6.42)	2019 (6.55)	
1–3 times/week	1313 (4.19)	1597 (5.12)	1690 (5.48)	
> 4 times/week	2143 (6.84)	2343 (7.51)	4293 (13.93)	
High-fat diets (%)				< 0.001
Seldom	2511 (8.00)	2689 (8.62)	2681 (8.70)	
Occasionally	25,991 (82.90)	26,001 (83.37)	24,873 (80.71)	
Regularly	2851 (9.09)	2497 (8.01)	3262 (10.59)	
Chronic kidney disease (%)	1785 (5.69)	1692 (5.43)	1537 (4.99)	< 0.001
Family history of cancer (%)	1028 (3.28)	1133 (3.65)	1251 (4.06)	< 0.001
Diabetes mellitus (%)	2901 (9.25)	2711 (8.69)	2169 (7.04)	< 0.001
Hypertension (%)	12,341 (39.36)	12,999 (41.68)	13,090 (42.48)	

Table 1. Baseline characteristics of the participants stratified the tertiles of SUA. BMI body mass index, WC waist circumference, TC total cholesterol, CRP C-reactive protein, TG triglyceride, ALT alanine aminotransferase, TBIL total bilirubin, BMI body mass index.

Figure 2. Association between SUA and CRC risk using RCS with 3 knots. Cubic spline graph of the adjusted HR (represented by solid line) and 95%CI (represented by the dotted lines).
Table 3 displays the effect of serum SUA on the occurrence of CRC after stratifying the participants by sex, age, and BMI. Significant associations between SUA and CRC risk were observed among male, young, middle-aged, and normal-weight participants after adjusting for the aforementioned confounders. However, no significant association was found in women, the elderly, and participants who were overweight (including obese).

In the sensitivity analysis, after excluding 28 and 285 CRC cases that had occurred within the first or the first five years of follow-up, the association remained significant after adjusting for potential confounders (Table 4).
Scientific Reports

www.nature.com/scientificreports/

In a study comparing different levels of SUA in CRC patients, Yan and Zhu risk of overall and specific cancers. Another study observed that high SUA levels increase the risk of both total radicals. At higher levels, SUA is independently correlated with increased cancer mortality. As a prooxidant due to chemical structure, rendering it unlikely to play a crucial protective part in quenching oxygen radicals, SUA assists tumorigenesis by entering normal cells and encouraging tumor cell proliferation, migration, and survival. A prooxidant environment is advantageous for tumor cell growth, and oxidative stress is involved in the pathogenesis of CRC.

In the normal range, SUA acts as a chelator of transitional metal ions and scavenges free radicals, which contributes to the total antioxidative aptitude of plasma. It has been hypothesized that the fundamental scavenging action of circulating SUA limits neoplastic change and ultimately reduces the risk of cancer. However, recent studies have found antioxidant properties of SUA inferior to that of hydrophilic vitamin C or hydrophobic vitamin E due to chemical structure, rendering it unlikely to play a crucial protective part in quenching oxygen radicals.

At higher levels, SUA is independently correlated with increased cancer mortality. As a prooxidant, SUA assists tumorigenesis by entering normal cells and encouraging tumor cell proliferation, migration, and survival. A prooxidant environment is advantageous for tumor cell growth, and oxidative stress is involved in the pathogenesis of CRC.

There are ethnic differences in oxidative stress between the Chinese and Caucasian populations due to genotypic variations. Using a high-fat meal, Chumjit et al. were able to show that Asians respond more sensitively, thus leading to greater levels of radical damage. The genetic polymorphisms between DNA repair enzymes linked to the pathogenesis and development of CRC vary among ethnic populations. Diet and genetics are crucial factors related to the development and prognosis of CRC, but there have been limited studies focused on the Chinese population in this regard. Our study offers a better understanding of how SUA acts as a risk factor for CRC among Chinese populations.

Similar to our study, Yan et al. found that high SUA levels elevated the risk of total cancer mortality for males but not females. As it is known that males and older populations tend to have higher levels of SUA than their respective counterparts, they rationalized that the risk discrepancy might be due to varying saturation of SUA within different populations. In CRC, SUA is recognized as both an antioxidant and a prooxidant, both of which may play a part in carcinogenesis. In the normal range, SUA acts as a chelator of transitional metal ions and scavenges free radicals, which contributes to the total antioxidative aptitude of plasma.

Table 4. Sensitivity analysis after excluding participants who occurred cancer within the first year and the first five years of follow-up. Models were adjusted for age (every 10 years), sex, family income, educational background, marital status, BMI, TG, TC, TBIL, ALT, CRP, smoking status, drinking status, physical activity, sedentary lifestyle, tea consumption, high-fat diet, diabetes, hypertension, chronic kidney disease, and family history of cancer.

Groups	Cases/person-years	Adjusted models	HR (95%CI)	p-value
T1 group	153/385,550	Ref		
T2 group	178/383,401	1.09 (0.88, 1.68)	0.655	
T3 group	224/373,103	1.57 (1.11, 2.31)	0.014	
P for trend				0.001
T1 group	68/385,252	Ref		
T2 group	90/383,063	1.22 (0.92, 2.59)	0.351	
T3 group	140/372,806	2.01 (1.58, 2.89)	<0.001	
P for trend				<0.001

Discussion

This is the first prospective cohort study that investigated the association of SUA levels with the risk of CRC incidence among 93,356 Chinese participants. Overall, participants with elevated levels of SUA exhibited a higher risk of CRC incidence. Significant associations were also observed among men, young (<45 years), middle-aged (45 < age ≤ 65), and normal-weight (BMI < 24) participants after adjusting for confounders. Competing risk analysis and sensitivity analysis further validated the robustness of the main findings.

Results from previous studies partly supported the findings in the current study. Kim HJ et al. found that SUA was significantly associated with BMI, waist circumference, SBP, DBP, TC, TG, and HDL, all of which were CRC risk factors. A large prospective cohort study found a positive association between SUA levels and the risk of overall and specific cancers. Another study observed that high SUA levels increase the risk of both total cancer incidence and mortality. In a study comparing different levels of SUA in CRC patients, Yan and Zhu found that CRC patients with hyperuricemia had poorer overall survival rates compared to those without high SUA.

Cetin et al. suggested that metastases developed in a shorter time in CRC patients with higher SUA. When comparing metastatic and nonmetastatic CRC, Cheng Yuan et al. have observed that SUA might be a novel marker in assessing metastasis and have recommended its use to help determine prognosis. Mao et al. measured SUA levels at the time of CRC diagnosis and concluded that it was particularly useful as a prognostic factor in stage II and III patients.

SUA is recognized as both an antioxidant and a prooxidant, both of which may play a part in carcinogenesis. In the normal range, SUA acts as a chelator of transitional metal ions and scavenges free radicals, which contributes to the total antioxidative aptitude of plasma. It has been hypothesized that the fundamental scavenging action of circulating SUA limits neoplastic change and ultimately reduces the risk of cancer. However, recent studies have found antioxidant properties of SUA inferior to that of hydrophilic vitamin C or hydrophobic vitamin E due to chemical structure, rendering it unlikely to play a crucial protective part in quenching oxygen radicals. At higher levels, SUA is independently correlated with increased cancer mortality. As a prooxidant, SUA assists tumorigenesis by entering normal cells and encouraging tumor cell proliferation, migration, and survival. A prooxidant environment is advantageous for tumor cell growth, and oxidative stress is involved in the pathogenesis of CRC.

There are ethnic differences in oxidative stress between the Chinese and Caucasian populations due to genotypic variations. Using a high-fat meal, Chumjit et al. were able to show that Asians respond more sensitively, thus leading to greater levels of radical damage. The genetic polymorphisms between DNA repair enzymes linked to the pathogenesis and development of CRC vary among ethnic populations. Diet and genetics are crucial factors related to the development and prognosis of CRC, but there have been limited studies focused on the Chinese population in this regard. Our study offers a better understanding of how SUA acts as a risk factor for CRC among Chinese populations.

Table 4. Sensitivity analysis after excluding participants who occurred cancer within the first year and the first five years of follow-up. Models were adjusted for age (every 10 years), sex, family income, educational background, marital status, BMI, TG, TC, TBIL, ALT, CRP, smoking status, drinking status, physical activity, sedentary lifestyle, tea consumption, high-fat diet, diabetes, hypertension, chronic kidney disease, and family history of cancer.

Groups	Cases/person-years	Adjusted models	HR (95%CI)	p-value
T1 group	153/385,550	Ref		
T2 group	178/383,401	1.09 (0.88, 1.68)	0.655	
T3 group	224/373,103	1.57 (1.11, 2.31)	0.014	
P for trend				0.001
T1 group	68/385,252	Ref		
T2 group	90/383,063	1.22 (0.92, 2.59)	0.351	
T3 group	140/372,806	2.01 (1.58, 2.89)	<0.001	
P for trend				<0.001
disease that is often linked with increased SUA) showed no significant association with an increased risk of CRC occurrence\(^8\). However, the former study used data from a Caucasian population and the latter did not adjust for other confounders.

Our study has several strengths. First, the prospective design of the Kailuan study and our large sample size (93,356 participants) add to the reliability of our findings. Second, the long-term follow-up allowed us to track the outcomes of participants for a longer period, thus limiting inaccuracy when estimating risk in the existence of competing events. Third, competing risks are frequent in epidemiologic research. The use of competing risk models (CS and SD models) allowed us to estimate individual risk as precisely as possible. This is especially evident in the presence of multiple competing events.

Limitations in the current study should also be noticed. First, SUA could to a certain extent, vary during the follow-up period due to the single measurement, causing misclassification of participants. Second, our data was only collected from the Northern Chinese population, extrapolation to other populations would not be accurate. Third, participants who receive treatment for gout or hyperuricemia may have low SUA levels. The results may yield to the misclassification of the study population due to the limited data on the treatment.

Conclusions
In this large-scale cohort, we found a positive association of SUA with the risk of incident CRC, especially among male, young- and middle-aged (≤ 65 years), and normal-weight (BMI < 24) participants. Future research should better elucidate the potential mechanisms of elevated levels of SUA for carcinogenesis. Importantly, specific prevention efforts could be focused on populations with higher levels of SUA.

Data availability
Data will be made available upon reasonable request (Jun Qu, E-mail: qujunchief@163.com).

Received: 2 February 2022; Accepted: 12 September 2022
Published online: 06 October 2022

References
1. Arnold, M. et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 66 (4), 683–691 (2017).
2. Haydahdl, O. et al. Long-term trends in colorectal cancer: Incidence, localization, and presentation. BMC Cancer 20 (1), 1077 (2020).
3. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71 (3), 209–249 (2021).
4. Yin, J. et al. Burden of colorectal cancer in China, 1990–2017: Findings from the Global Burden of Disease Study 2017. Chin. J. Cancer Res. 31 (3), 489–498 (2019).
5. Siegel, L. et al. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 67 (3), 177–193 (2017).
6. Siegel, L. et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut 68 (12), 2179–2185 (2019).
7. Zhang, L. et al. Trends in and predictions of colorectal cancer incidence and mortality in China from 1990 to 2025. Front. Oncol. 9, 98 (2019).
8. Xu, R. et al. Disease characteristics and treatment patterns of Chinese patients with metastatic colorectal cancer: A retrospective study using medical records from China. BMC Cancer 20 (1), 131 (2020).
9. Kang, D. H. & Ha, S. K. Uric acid puzzle: Dual role as anti-oxidant and pro-oxidant. Electrolyte Blood Press. 12 (1), 1–6 (2014).
10. Yuan, C. et al. Relationship between serum uric acid and metastatic and nonmetastatic rectal cancer patients with undergoing no chemotherapy. Medicine (Baltimore) 95 (47), e5463 (2016).
11. Zhang, Q. et al. Serum uric acid is a mediator of the association between obesity and incident nonalcoholic fatty liver disease: A prospective cohort study. Front. Endocrinol. (Lausanne) 12, 657856 (2021).
12. Ames, B. N. et al. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA 78 (11), 6858–6862 (1981).
13. Yan, S. et al. Serum uric acid increases risk of cancer incidence and mortality: A systematic review and meta-analysis. Mediators Inflamm. 2015, 764250 (2015).
14. Jiang, M. et al. Serum uric acid levels and risk of eight site-specific cancers: A Mendelian randomization study. Front. Genet. 12, 608311 (2021).
15. Kühn, T. et al. Albumin, bilirubin, uric acid and cancer risk: Results from a prospective population-based study. Br. J. Cancer 117 (10), 1572–1579 (2017).
16. Liu, T. et al. C-reactive protein trajectories and the risk of all cancer types: A prospective cohort study. Int. J. Cancer (2022).
17. Liu, T. et al. High salt intake combined with hypertension elevated the risk of primary liver cancer: A prospective cohort study. Front. Oncol. 12, 916583 (2022).
18. Huang, S. et al. Tea consumption and longitudinal change in high-density lipoprotein cholesterol concentration in Chinese adults. J. Am. Heart Assoc. 7 (13), 008814 (2018).
19. Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150 (9), 604–612 (2009).
20. Zhou, B. Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population. Zhonghua Liu Xing Bing Xue Za Zhi 23 (1), 5–10 (2002).
21. Keum, N. & Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 16 (12), 713–732 (2019).
22. Dik, V. K. et al. Coffee and tea consumption, genotype-based CYP1A2 and NAT2 activity and colorectal cancer risk—results from the EPIC cohort study. Int. J. Cancer 135 (2), 401–412 (2014).
23. He, M. M. et al. Circulating liver function markers and colorectal cancer risk: A prospective cohort study in the UK Biobank. Int. J. Cancer 148 (8), 1867–1876 (2021).
24. Yang, S. et al. Prognostic significance of serum uric acid and gamma-glutamyltransferase in patients with advanced gastric cancer. Dis. Mark. 2019, 1415421 (2019).
25. Kim, H. J. et al. Uric acid is a risk indicator for metabolic syndrome-related colorectal adenoma: Results in a Korean population receiving screening colonoscopy. Korean J. Gastroenterol. 66 (4), 202–208 (2015).
26. Yu, A. et al. Circulating uric acid levels and subsequent development of cancer in 493,281 individuals: Findings from the AMORIS study. Oncotarget 8 (26), 42332–42342 (2017).
27. Yan, J. & Zhu, C. Hyperuricemia is a adverse prognostic factor for colon cancer patients. Int. J. Gen. Med. 14, 3001–3006 (2021).
28. Cetin, A. O. et al. Hyperuricemia at the time of diagnosis is a factor for poor prognosis in patients with stage II and III colorectal cancer (uric acid and colorectal cancer). Asian Pac. J. Cancer Prevent. 18 (2), 485–490 (2017).
29. Mao, L., Guo, C. & Zheng, S. Elevated urinary 8-oxo-7,8-dihydro-2’-deoxyguanosine and serum uric acid are associated with progression and are prognostic factors of colorectal cancer. Onco Targets Ther. 11, 5895–5902 (2018).
30. Mi, S., Gong, L. & Sui, Z. Friend or foe? An unrecognized role of uric acid in cancer development and the potential anticancer effects of uric acid-lowering drugs. J. Cancer 11 (17), 5236–5244 (2020).
31. Liu, D. et al. What is the biological function of uric acid? An antioxidant for neural protection or a biomarker for cell death. Dis. Mark. 2019, 4081962 (2019).
32. El Ridi, R. & Tallima, H. Physiological functions and pathogenic potential of uric acid: A review. J. Adv. Res. 8 (5), 487–493 (2017).
33. Fini, M. A. et al. Contribution of uric acid to cancer risk, recurrence, and mortality. Clin. Transl. Med. 1 (1), 16 (2012).
34. Bui, C. et al. Acute effect of a single high-fat meal on forearm blood flow, blood pressure and heart rate in healthy male Asians and Caucasians: A pilot study. Southeast Asian J. Trop. Med. Public Health 41 (2), 490–500 (2010).
35. Yim, J. et al. Protective effect of anti-oxidants on endothelial function in young Korean-Asians compared to Caucasians. Med. Sci. Monit. 18 (8), 467–479 (2012).
36. Kohno, T. et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene 16 (25), 3219–3225 (1998).
37. Kuzuya, M. et al. Effect of aging on serum uric acid levels: Longitudinal changes in a large Japanese population group. J. Gerontol. A Biol. Sci. Med. Sci. 57 (10), M660–M664 (2002).
38. Chuang, J. P. et al. Association of gout and colorectal cancer in Taiwan: A nationwide population-based cohort study. BMJ Open 9 (10), e028892 (2019).

Acknowledgements
We thank all the staff and participants of the Kailuan study for their important contributions.

Author contributions
All authors have read and approved the manuscript. W.Q.L.: Methodology, Software, Writing-Original draft preparation, T.L. Writing-Reviewing and Editing. S.T.S. Writing-Reviewing and Editing. S.Q.Z.: Supervision, Validation. Y.M.W.: Software. L.Y.C.: Conceptualization, Supervision. J.Q.: Conceptualization, Supervision, Validation, Resources. Obtained.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L.C. or J.Q.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022