Research Article

Study of Fractional Integral Operators Containing Mittag-Leffler Functions via Strongly \((\alpha, m)\)-Convex Functions

Yanliang Dong 1, Maryam Saddiqa, 2 Saleem Ullah, 2 and Ghulam Farid 1,3

1 Mechanical and Electrical Engineering College, Rizhao Polytechnic, Rizhao 276826, Shandong Province, China
2 Department of Mathematics, Air University Islamabad, Islamabad, Pakistan
3 Department of Mathematics, COMSATS University Islamabad, Attock Campus, Islamabad, Pakistan

Correspondence should be addressed to Yanliang Dong: raptdong@126.com and Ghulam Farid: faridphdsms@hotmail.com

Received 8 October 2020; Revised 12 December 2020; Accepted 15 December 2020; Published 12 January 2021

Academic Editor: José Francisco Gómez Aguilar

Copyright © 2021 Yanliang Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The main aim of this paper is to give refinement of bounds of fractional integral operators involving extended generalized Mittag-Leffler functions. A new definition, namely, strongly \((\alpha, m)\)-convex function is introduced to obtain improvements of bounds of fractional integral operators for convex, \(m\)-convex, and \((\alpha, m)\)-convex functions. The results of this paper will provide simultaneous generalizations as well as refinements of various published results.

1. Introduction

Convexity is one of the most important and key concept in mathematics, and many researchers have extended, generalized, and refined it in different ways. Numerous generalizations and extensions have been produced in recent past, for example, in generalization and extension point of views, \(m\)-convexity, \((\alpha, m)\)-convexity, \(s\)-convexity, \((s, m)\)-convexity, \(h\)-convexity, and \((h, m)\)-convexity are remarkable, and in refinement point of view, the strongly convexity is the tremendous notion. In this paper, we have introduced the notion of strongly \((\alpha, m)\)-convex function. By utilizing this refined form of convex function, we obtain refinements of the bounds of fractional integral operators involving Mittag-Leffler functions in their kernels. Therefore, the results of this paper are refinements of all the results proved in [1]. First, we give definitions of convex, strongly convex, and \((\alpha, m)\)-convex functions.

Definition 1 (see [2]). Let \(I\) be an interval on real line. A function \(f: I \rightarrow \mathbb{R}\) is said to be convex function if the following inequality holds:

\[
f(tu_1 + (1-t)u_2) \leq tf(u_1) + (1-t)f(u_2),
\]

for all \(u_1, u_2 \in I\) and \(t \in [0,1]\).

Definition 2 (see [3]). Let \(I\) be an interval on real line. A real-valued function \(f\) is said to be strongly convex with modulus \(\lambda \geq 0\) on \(I\) if, for each \(u_1, u_2 \in I\) and \(t \in [0,1]\), we have

\[
f(tu_1 + (1-t)u_2) \leq tf(u_1) + (1-t)f(u_2) - \lambda t(1-t)|u_2 - u_1|^2.
\]

Definition 3 (see [4]). A function \(f: [0,b] \subseteq \mathbb{R} \rightarrow \mathbb{R}\) is said to be \((\alpha, m)\)-convex function, where \((\alpha, m) \in [0,1]^2\) and \(b > 0\) if, for every \(u_1, u_2 \in [0,b]\) and \(t \in [0,1]\), we have

\[
f(tu_1 + m(1-t)u_2) \leq t^\alpha f(u_1) + m(1-t)^\alpha f(u_2).
\]

The well-known Mittag-Leffler function is denoted by \(E_\xi(.)\) and defined as follows (see [5]):

\[
E_\xi(t) = \sum_{n=0}^{\infty} \frac{t^n}{\Gamma(\xi(n+1))}.
\]

where \(t, \xi \in \mathbb{C}\), \(\Re(\xi) > 0\), and \(\Gamma(.)\) is the gamma function. It is a natural extension of exponential, hyperbolic, and trigonometric functions. This function and its extensions appear...
as solution of fractional integral equations and fractional differential equations. For a detailed study of Mittag-Leffler function and its extensions, see [6–10]. The following extended generalized Mittag-Leffler function is introduced by Andrić et al.

Definition 4 (see [11]). Let \(\mu, \xi, l, y, c \in \mathbb{C} \), \(\Re(\mu), \Re(\xi), \Re(l) > 0 \), and \(\Re(c) > \Re(y) > 0 \) with \(p \geq 0 \), \(\delta > 0 \), and \(0 < k \leq \delta + \Re(\mu) \). Then, the Mittag-Leffler function \(E^\mu_{\mu,\xi,l} (t; p) \) is defined by

\[
E^\mu_{\mu,\xi,l} (t; p) = \sum_{n=0}^{\infty} \frac{\beta_p(y + nk, c - y)}{\beta(y, c - y)} \frac{(c)_n}{(l)_n} \frac{t^n}{n!},
\]

(5)

where \(\beta_p \) is defined by

\[
\beta_p = \int_0^1 t^{-x}(1-t)^{y-1} e^{-pt(1-t)} dt ,
\]

(6)

and \((c)_n = \Gamma(c + nk)/\Gamma(c)\).

A derivative formula of the extended generalized Mittag-Leffler function is given in the following lemma.

Lemma 1 (see [11]). If \(m \in \mathbb{N}, \omega, \mu, \xi, l, y, c \in \mathbb{C} \), \(\Re(\mu), \Re(\xi), \Re(l) > 0 \), and \(\Re(c) > \Re(y) > 0 \) with \(p \geq 0 \), \(\delta > 0 \), and \(0 < k \leq \delta + \Re(\mu) \), then

\[
\left(\frac{d}{dt} \right)^m \left[t^{\xi-1} E^\mu_{\mu,\xi,l} (\omega t^\mu; p) \right] = t^{\xi-1-m} E^\mu_{\mu,\xi-l-m} (\omega t^\mu; p), \quad \Re(\xi) > m.
\]

(7)

Remark 1. The extended generalized Mittag-Leffler function (5) produces the related functions defined in [8–10, 12, 13], see Remark 1.3 in [14].

Next, we have the definition of the generalized fractional integral operator containing the extended generalized Mittag-Leffler function (5).

Definition 5 (see [11]). Let \(\omega, \mu, \xi, l, y, c \in \mathbb{C} \), \(\Re(\mu), \Re(\xi), \Re(l) > 0 \), and \(\Re(c) > \Re(y) > 0 \) with \(p \geq 0 \), \(\delta > 0 \), and \(0 < k \leq \delta + \Re(\mu) \). Let \(f \in L_1[a,b] \) and \(x \in [a,b] \). Then, the generalized fractional integral operators containing Mittag-Leffler function are defined by

\[
\left(e^\mu_{\mu,\xi,l;w^\mu} f \right)(x; p) = \int_a^x (x-t)^{\xi-1} E^\mu_{\mu,\xi,l} (\omega (x-t)^\mu; p) f(t) dt.
\]

(8)

and

\[
\left(e^\mu_{\mu,\xi,l;w^\mu} f \right)(x; p) = \int_a^b (t-x)^{\xi-1} E^\mu_{\mu,\xi,l} (\omega (t-x)^\mu; p) f(t) dt.
\]

(9)

Remark 2. The operators defined in (8) and (9) produce several kinds of known fractional integral operators, see Remark 1.4 in [14].

The classical Riemann–Liouville fractional integral operator is defined as follows.

Definition 6 (see [13]). Let \(f \in L_1[a,b] \). Then, Riemann–Liouville fractional integral operators of order \(\xi > 0 \) are defined by

\[
\begin{align*}
I^\xi_a f(x) &= \frac{1}{\Gamma(\xi)} \int_a^b (x-t)^{\xi-1} f(t) dt, \quad x > a, \\
I^\xi_b f(x) &= \frac{1}{\Gamma(\xi)} \int_a^x (x-t)^{\xi-1} f(t) dt, \quad x < b.
\end{align*}
\]

(10)

(11)

It can be noted that \((e^\mu_{\mu,\xi,l;\omega^\mu} f) (x; 0) = I^\xi_a f(x) \) and \((e^\mu_{\mu,\xi,l;\omega^\mu} f) (x; 0) = I^\xi_b f(x) \). From fractional integral operators (8) and (9), we can have

\[
\begin{align*}
J^\xi_a f(x) &= \left(e^\mu_{\mu,\xi,l;\omega^\mu} 1 \right)(x; p) \\
&= (x-a)^{\xi-1} E^\mu_{\mu,\xi+1,l} (\omega (x-a)^\mu; p), \\
J^\xi_b f(x) &= \left(e^\mu_{\mu,\xi,l;\omega^\mu} 1 \right)(x; p) \\
&= (b-x)^{\xi-1} E^\mu_{\mu,\xi+1,l} (\omega (b-x)^\mu; p).
\end{align*}
\]

(12)

(13)

In view of wide applications of Riemann–Liouville fractional integrals and derivatives, the problems which involve this integral operator are studied extensively by many authors. The aim of this paper is to provide fractional integral inequalities which are generalizations of Riemann–Liouville fractional integral inequalities. These inequalities also give associated inequalities for fractional integral operators containing Mittag-Leffler functions with different parameters.

The bounds of fractional integrals (8) and (9) for \((a,m) \)-convex functions are given in the following theorems.

Theorem 1 (see [1]). Let \(f : [a,b] \rightarrow \mathbb{R} \) be a real-valued function. If \(f \) is positive \((a,m) \)-convex, then for \(\xi, \eta \geq 1 \), the following fractional integral inequality for generalized integral operators (8) and (9) holds:
\[
\left(\epsilon^{\gamma,\delta,k,c}_{\mu,\eta+1,w,\alpha} f\right)(x_0; p) + \left(\epsilon^{\gamma,\delta,k,c}_{\mu,\eta+1,w,\alpha} f\right)(x_0; p) \\
\leq \left(\frac{f(a) + ma f(x_0/m)}{a + 1}\right) (x_0 - a) f_{\eta-1,\alpha'} (x_0; p) + \left(\frac{f(b) + ma f(x_0/m)}{a + 1}\right) (b - x_0) f_{\eta-1,\alpha'} (x_0; p), \quad x_0 \in [a,b].
\]

Theorem 2 (see [1]). Let \(f: [a,b] \to \mathbb{R} \) be a real-valued function. If \(f \) is differentiable and \(|f'| \) is \((a,m)\)-convex, then, for \(\xi, \eta \geq 1 \), the following fractional integral inequality for generalized integral operators (8) and (9) holds:

\[
\frac{1}{1/2^a + m(1 - 1/2^a)} \left(f\left(\frac{a + mb}{2}\right) f_{\eta+1,\alpha'} (a; p) + f_{\eta+1,\alpha'} (b; p) \right) \\
\leq \left(\epsilon^{\gamma,\delta,k,c}_{\mu,\eta+1,w,\alpha} f\right)(a; p) + \left(\epsilon^{\gamma,\delta,k,c}_{\mu,\eta+1,w,\alpha} f\right)(b; p) \\
\leq (f_{\eta-1,\alpha'} (a; p) + f_{\eta-1,\alpha'} (b; p))(b - a)^2 \left(\frac{f(b) + ma f(a/m)}{a + 1}\right).
\]

Remark 3

(i) By setting \(\alpha = 1 \) in (17), strongly \(m \)-convex function can be obtained [15]

(ii) By setting \(\lambda = 0 \) in (17), \((a,m)\)-convex function can be obtained

(iii) By setting \(\alpha = m = 1 \) and \(\lambda = 0 \) in (17), convex function can be obtained

(iv) By setting \(\alpha = 1 \) and \(\lambda = 0 \) in (17), \(m \)-convex function can be obtained

(v) By setting \(\alpha = m = 1 \) in (17), strongly convex function can be obtained

In the following, by using strongly \((a,m)\)-convex functions the refinement of already proved results are given.

Theorem 4. Let \(f: [a,b] \to \mathbb{R} \) be a real-valued function. If \(f \) is positive and strongly \((a,m)\)-convex, then, for \(\xi, \eta \geq 1 \), the
The following fractional integral inequality for generalized integral operators (8) and (9) holds:

\[
\left(e^{\mu,k}_{\mu,j, \alpha, \omega, a} f \right) (x_0; p) + \left(e^{\mu,k}_{\mu,j, \alpha, \omega, b} f \right) (x_0; p) \\
\leq \left(\frac{f(a) + m \alpha (x_0 - ma)^2}{\alpha + 1} - \frac{\lambda \alpha (x_0 - ma)^2}{m(a + 1)(2a + 1)} \right) (x_0 - a) \int_{t-1} \int_{a}^{x_0} f(t) dt
\]

(18)

\[x_0 \in [a, b]. \]

Proof. Let \(x_0 \in [a, b] \). Then, for \(t \in [a, x_0) \) and \(\xi \geq 1 \), one can have the following inequality:

\[
(x_0 - t)^{\xi-1} E_{\mu, \xi}^{\mu, \kappa, \xi} (\omega (x_0 - t)^\eta; p) \leq (x_0 - a)^{\xi-1} E_{\mu, \xi}^{\mu, \kappa, \xi} (\omega (x_0 - a)^\eta; p).
\]

(19)

The function \(f \) is strongly \((\alpha, m)\)-convex; therefore, one can obtain

\[
f(t) \leq \left(\frac{x_0 - t}{x_0 - a} \right)^a f(a) + m \left(1 - \left(\frac{x_0 - t}{x_0 - a} \right)^a \right) f(x_0) m
\]

\[
- \lambda m \left(\frac{x_0 - t}{x_0 - a} \right)^a \left(1 - \left(\frac{x_0 - t}{x_0 - a} \right)^a \right) \left(\frac{x_0 - ma}{m} \right)^2.
\]

(20)

By multiplying (19) and (20) and then integrating over \([a, x_0]\), we obtain

\[
\int_a^{x_0} (x_0 - t)^{\xi-1} E_{\mu, \xi}^{\mu, \kappa, \xi} (\omega (x_0 - t)^\eta; p) f(t) dt
\]

\[
\leq (x_0 - a)^{\xi-1} E_{\mu, \xi}^{\mu, \kappa, \xi} (\omega (x_0 - a)^\eta; p) \left(\frac{f(a)}{a + 1} - \frac{\lambda \alpha (x_0 - ma)^2}{m(a + 1)(2a + 1)} \right) (x_0 - a).
\]

(21)

From which we have that the left integral operator satisfies the following inequality:

\[
\left(e^{\mu,k}_{\mu,j, \alpha, \omega, a} f \right) (x_0; p) \\
\leq (x_0 - a) \int_{t-1} \int_{a}^{x_0} f(t) dt
\]

(22)

\[
\leq \int_a^{b} (t - x_0)^{\eta-1} E_{\mu, \xi}^{\mu, \kappa, \xi} (\omega (t - x_0)^\eta; p) f(t) dt
\]

(23)

Again from strongly \((\alpha, m)\)-convexity of \(f \), we have

\[
f(t) \leq \left(\frac{t - x_0}{b - x_0} \right)^a f(b) + m \left(1 - \left(\frac{t - x_0}{b - x_0} \right)^a \right) f(x_0) m
\]

\[
- \lambda m \left(\frac{t - x_0}{b - x_0} \right)^a \left(1 - \left(\frac{t - x_0}{b - x_0} \right)^a \right) \left(\frac{mb - x_0}{m} \right)^2.
\]

(24)

By multiplying (23) and (24) and then integrating over \([x_0, b]\), we have

\[
\int_a^{b} \left(\frac{t - x_0}{b - x_0} \right)^a f(t) dt
\]

(25)

The right integral operator satisfies the following inequality:
\[\left(e^{\gamma,\delta,k_c}_{\mu,\lambda,\omega} f \right)(x_0; p) \]
\[\leq (b - x_0)I_{\eta-1,b^r} (x_0; p) \left(f(b) + maf(x_0/m) \alpha + 1 \right) - \frac{\lambda \alpha (mb - x_0)^2}{m(\alpha + 1)(2\alpha + 1)}. \]

By adding (22) and (26), the required inequality (18) is established.

Remark 4

(i) Inequality (18) provides the refinement of Theorem 2.1 in [1].

(ii) If \(\alpha = 1 \) in (18), then result for strongly \(m \)-convex will be obtained

\[\left(e^{\gamma,\delta,k_c}_{\mu,\lambda,\omega} f \right)(x_0; p) + \left(e^{\gamma,\delta,k_c}_{\mu,\lambda,\omega} f \right)(x_0; p) \]
\[\leq \left(f(a) + maf(x_0/m) \alpha + 1 \right) \left(x_0 - a \right) I_{\xi-1,a^r} (x_0; p) \]
\[+ \left(f(b) + maf(x_0/m) \alpha + 1 \right) \left(b - x_0 \right) I_{\xi-1,b^r} (x_0; p). \]

Corollary 1. If we set \(\xi = \eta \) in (18), then the following inequality is obtained:

Corollary 2. Along with assumptions of Theorem 1, if \(f \in L_\infty [a, b] \), then the following inequality is obtained:

Corollary 3. For \(\xi = \eta \) in (28), we get the following result:

Theorem 5. Let \(f: [a, b] \rightarrow \mathbb{R} \) be a real-valued function. If \(f \) is differentiable and \(|f'| \) is strongly \((a, m) \)-convex, then for \(\xi, \eta \geq 1 \), the following fractional integral inequality for generalized integral operators (8) and (9) holds:
\[
\left[e^{\tau, k, c}_{\mu, \xi, l} f \left(x_0; p \right) + e^{\tau, k, c}_{\mu, \eta, l, \omega, \mu} f \left(x_0; p \right) - f \left(x_0; p \right) \right] - \left(f \left(x_0; p \right) + f \left(b; p \right) \right)
\]
\[
\leq \left(\frac{\left| f^\prime \left(a \right) \right| + ma | f^\prime \left(x_0/m \right) |}{\alpha + 1} \right) \frac{\lambda \alpha (x_0 - ma)^2}{m (a + 1) (2a + 1)} \left(x_0 - a \right) f \left(x_0; p \right)
\]
\[
+ \left(\frac{\left| f^\prime \left(b \right) \right| + ma | f^\prime \left(x_0/m \right) |}{\alpha + 1} \right) \frac{\lambda \alpha \left(mb - x_0 \right)^2}{m (a + 1) (2a + 1)} \left(b - x_0 \right) f \left(x_0; p \right)
\]
\[
x_0 \in [a, b].
\]

Proof. As \(x_0 \in [a, b] \) and \(t \in [a, x_0] \), by using strongly \((a, m)\)-convexity of \(| f^\prime | \), we have
\[
| f^\prime \left(t \right) | \leq \left(\frac{x_0 - t}{x_0 - a} \right)^{\alpha} \left| f^\prime \left(a \right) \right| + m \left(1 - \left(\frac{x_0 - t}{x_0 - a} \right)^{\alpha} \right) f \left(\frac{x_0}{m} \right) - \lambda m \left(\frac{x_0 - t}{x_0 - a} \right)^{\alpha} \left(1 - \left(\frac{x_0 - t}{x_0 - a} \right)^{\alpha} \right) \left(\frac{x_0 - ma}{m} \right)^2.
\]
(31)

From (31), one can have
\[
\left(x_0 - t \right)^{\xi - 1} E^{\tau, k, c}_{\mu, \xi, l} \left(\omega \left(x_0 - t \right)^{\mu}; p \right) f^\prime \left(t \right) dt
\]
\[
\leq \left(x_0 - a \right)^{\xi - 1} E^{\tau, k, c}_{\mu, \xi, l} \left(\omega \left(x_0 - a \right)^{\mu}; p \right)\left(\left(\frac{x_0 - t}{x_0 - a} \right)^{\alpha} \left| f^\prime \left(a \right) \right| + \frac{\lambda}{m} \left(\frac{x_0 - t}{x_0 - a} \right)^{\alpha} \left(1 - \left(\frac{x_0 - t}{x_0 - a} \right)^{\alpha} \right) \left(\frac{x_0 - ma}{m} \right)^2 \right).
\]
(33)

After integrating above inequality over \([a, x_0] \), we obtain
\[
\int_a^{x_0} \left(x_0 - t \right)^{\xi - 1} E^{\tau, k, c}_{\mu, \xi, l} \left(\omega \left(x_0 - t \right)^{\mu}; p \right) f^\prime \left(t \right) dt
\]
\[
\leq \left(x_0 - ta \right)^{\xi - 1} E^{\tau, k, c}_{\mu, \xi, l} \left(\omega \left(x_0 - a \right)^{\mu}; p \right) \left(\left| f^\prime \left(a \right) \right| \int_a^{x_0} \left(\frac{x_0 - t}{x_0 - a} \right)^{\alpha} dt + \frac{\lambda}{m} \left(\frac{x_0 - t}{x_0 - a} \right)^{\alpha} \left(1 - \left(\frac{x_0 - t}{x_0 - a} \right)^{\alpha} \right) \left(\frac{x_0 - ma}{m} \right)^2 \right) \int_a^{x_0} \left(\frac{x_0 - t}{x_0 - a} \right)^{\alpha} dt
\]
\[
\leq \left(x_0 - a \right)^{\xi - 1} E^{\tau, k, c}_{\mu, \xi, l} \left(\omega \left(x_0 - a \right)^{\mu}; p \right) \frac{\lambda \alpha \left(x_0 - ma \right)^2}{m (a + 1)} \left(\frac{\left| f^\prime \left(a \right) \right| + ma \left| f^\prime \left(\frac{x_0}{m} \right) \right|}{\alpha + 1} \right).
\]
(34)

The left-hand side of (34) is calculated as follows:
\[
\int_a^{x_0} \left(x_0 - t \right)^{\xi - 1} E^{\tau, k, c}_{\mu, \xi, l} \left(\omega \left(x_0 - t \right)^{\mu}; p \right) f^\prime \left(t \right) dt.
\]
(35)
Now, put $x_0 - z = t$ in the second term of the right-hand side of the above equation, and then using (8), we obtain

$$
\int_0^{x_0-a} z^{t-1} E_{\mu,\ell,J}^{\nu,\delta,k,c} (\omega z^\mu; p) f'(x_0 - z) dz
= (x_0 - a)^{t-1} E_{\mu,\ell,J}^{\nu,\delta,k,c} (\omega (x_0 - a)^\mu; p) f(a) - \int_0^{x_0-a} z^{t-2} E_{\mu,\ell,J}^{\nu,\delta,k,c} (\omega z^\mu; p) f(x_0 - z) dz.
$$

(36)

Therefore, (34) takes the following form:

$$
(I_{\ell-1,a} (x_0; p)) f(a) - (e_{\mu,\ell+1,J;\omega,a}^{\nu,\delta,k,c} f)(x_0; p)
\leq (x_0 - a) I_{\ell-1,a} (x_0; p) \left(\frac{|f'(a)| + ma f'(x_0/m)}{a + 1} - \frac{\lambda x_0 (x_0 - ma)^2}{m(a + 1)(2a + 1)} \right).
$$

(38)

Also, from (31), one can have

$$
f'(t) \geq - \left(\left(\frac{x_0 - t}{x_0 - a} \right)^a |f'(a)| + m \left(1 - \left(\frac{x_0 - t}{x_0 - a} \right)^a \right) f'(x_0/m) \right)
- \lambda m \left(\frac{x_0 - t}{x_0 - a} \right)^a \left(1 - \left(\frac{x_0 - t}{x_0 - a} \right)^a \right) \left(\frac{x_0 - ma}{m} \right)^2.
$$

(39)

Following the same procedure as we did for (32), one can obtain

$$
(e_{\mu,\ell+1,J;\omega,a}^{\nu,\delta,k,c} f)(x_0; p) - I_{\ell-1,a} (x_0; p) f(a)
\leq (x_0 - a) I_{\ell-1,a} (x_0; p) \left(\frac{|f'(a)| + ma f'(x_0/m)}{a + 1} - \frac{\lambda x_0 (x_0 - ma)^2}{m(a + 1)(2a + 1)} \right).
$$

(40)

From (38) and (40), we obtain

$$
\left| e_{\mu,\ell+1,J;\omega,a}^{\nu,\delta,k,c} f \right| (x_0; p) - I_{\ell-1,a} (x_0; p) f(a)
\leq (x_0 - a) I_{\ell-1,a} (x_0; p) \left(\frac{|f'(a)| + ma f'(x_0/m)}{a + 1} - \frac{\lambda x_0 (x_0 - ma)^2}{m(a + 1)(2a + 1)} \right).
$$

(41)
Now, we let \(x_0 \in [a, b] \) and \(t \in (x_0, b) \). Then, by using strongly \((a, m)\)-convexity of \(f' \), we have

\[
|f'(t)| \leq \left(\frac{t-x_0}{b-x_0} \right)^a |f'(b)| + m \left(1 - \left(\frac{t-x_0}{b-x_0} \right)^a \right) \left| f'(x_0) \right| + \lambda m \left(\frac{t-x_0}{b-x_0} \right)^a \left(1 - \left(\frac{t-x_0}{b-x_0} \right)^a \right) \left(\frac{mb-x_0}{m} \right)^2.
\]

(42)

On the same lines as we have done for (19), (32), and (39), one can get, from (23) and (12), the following inequality:

(43)

From inequalities (41) and (43), (30) is obtained. □

Remark 6

(i) Inequality (30) provides the refinement of Theorem 2.2 [1]

(ii) If \(\alpha = 1 \) in (30), then result for strongly \(m \)-convex will be obtained

(iii) If \(\alpha = m = 1 \) and \(\lambda = 0 \) in (30), then Corollary 2 [16] is obtained

(44)

Remark 7. Inequality (44) provides the refinement of Corollary 2.2 in [8].

To prove our next result, we consider following lemma.

Lemma 2. Let \(f: [a, b] \to \mathbb{R}, a < mb \), be strongly \((a, m)\)-convex function. If \(f(a + mb - x_0/m) = f(x_0), m \neq 0 \) and \((a, m) \in [0, 1]^2\); then, the following inequality holds:

\[
f \left(\frac{a + mb}{2} \right) \leq f \left(\frac{(1-t)a + mb}{2} \right) + m \left(\frac{1}{2} - \frac{1}{2^a} \right) f \left(\frac{t + m(1-t)b}{m} \right) - \lambda m \left(\frac{2^a-1}{2^{2a}} \right) \left(\frac{ta + m(1-t)b}{m} - (1-t)a + mb \right)^2.
\]

(46)

Proof. As \(f \) is strongly \((a, m)\)-convex function, we have

(45)
Let \(x_0 = a(1-t) + m t b, \) and we have
\[
f \left(\frac{a + mb}{2} \right) \leq \frac{f(x_0)}{2^a} + m \left(1 - \frac{1}{2^a} \right) f \left(\frac{a + mb - x_0}{m} \right) - \frac{\lambda}{m} \left(\frac{2^a - 1}{2^{2a}} \right) (a + mb - mx_0)^2.
\]
(47)

Hence, by using \(f(a + mb - x_0/m) = f(x_0), m \neq 0, \) inequality (45) can be obtained.

Theorem 6. Let \(f: [a,b] \rightarrow \mathbb{R}, a \leq b, \) be a real-valued function. If \(f \) is positive, strongly \((a,m)\)-convex, and \(f(a + mb - x_0/m) = f(x_0), m \neq 0, \) then, for \(\xi, \eta > 0, \) the following fractional integral inequality for generalized integral operators (8) and (9) holds:
\[
\frac{1}{1/2^a + m(1-1/2^a)} \left(f \left(\frac{a + mb}{2} \right) \left(J_{\eta,1,b}^\alpha (a; p) + J_{\xi,1,a}^\lambda (b; p) \right) + \frac{\lambda}{m} \left(\frac{2^a - 1}{2^{2a}} \right) (M1 + M2) \right)
\leq \left(e^{\gamma \lambda \delta \xi} f \right) (a; p) + \left(e^{\gamma \lambda \delta \xi} f \right) (b; p)
\leq \left(J_{\eta,1,b}^\alpha (a; p) + J_{\xi,1,a}^\lambda (b; p) \right) (b-a)^2 \left(\frac{f(b) + m a f(a/m)}{\alpha + 1} - \frac{\lambda a (a - mb)^2}{m(\alpha+1)(2\alpha+1)} \right),
\]
(48)

where
\[
M1 = (b-a)^{\eta+1} J_{\eta,1,b}^\alpha (a; p) + 2(1+m)(b-a)^{\eta+1} J_{\eta,1,2,b}^\alpha (a; p) + 2(1+m)^2 J_{\eta,1,b}^\alpha (a; p),
M2 = (b-a)^{\xi+2} J_{\xi,1,a}^\lambda (b; p) + 2(1+m)(b-a)^{\xi+2} J_{\xi,1,2,a}^\lambda (b; p) + 2(1+m)^2 J_{\xi,1,a}^\lambda (b; p).
\]
(49)

Proof. For \(x_0 \in [a,b], \) we have
\[
(x_0 - a)^{\eta} E_{\eta,1,b}^\gamma \omega(x_0 - a)^{\eta}; p \leq (b-a)^{\eta} E_{\eta,1,b}^\gamma \omega(b-a)^{\eta}; p, \eta > 0.
\]
(50)

As \(f \) is strongly \((a,m)\)-convex, so, for \(x_0 \in [a,b], \) we have
\[
f(x_0) \leq \left(x_0 - a \right)^a f(b) + m \left(1 - \left(x_0 - a \right)^a \right) f \left(\frac{a}{m} \right)
- \lambda m \left(x_0 - a \right)^a \left(1 - \left(x_0 - a \right)^a \right) \left(\frac{a - mb}{m} \right)^2.
\]
(51)

By multiplying (50) and (51) and then integrating over \([a,b], \) we obtain
\[
\int_a^b \left(x_0 - a \right)^a E_{\eta,1,b}^\gamma \omega(x_0 - a)^{\eta}; p f(x_0) dx_0
\leq (b-a)^{\eta} E_{\eta,1,b}^\gamma \omega(b-a)^{\eta}; p \int_a^b (x_0 - a)^a dx_0 + m \int_a^b \left(1 - \left(x_0 - a \right)^a \right) dx_0
\times \left(x_0 - a \right)^a \left(1 - \left(x_0 - a \right)^a \right) dx_0.
\]
(52)

From which we have
\[
\left(e^{\gamma \lambda \delta \xi} f \right) (a; p) \leq (b-a)^{\eta+1} E_{\eta,1,b}^\gamma \omega(b-a)^{\eta}; p
\times \left(f(b) + m a f(a/m) \right) \frac{\lambda a (a - mb)^2}{m(\alpha+1)(2\alpha+1)},
\]
(53)

that is,
\((e_{\mu,\xi,\omega}^{\lambda,\delta,k,c} f)(a; p) \leq (b-a)^2 J_{\eta-\beta} (a; p) \)
\[
\times \left(f(b) + m\alpha f(a/m) - \frac{\lambda \alpha (a - mb)^2}{\alpha + 1 - \frac{\lambda \alpha (a - mb)^2}{m(\alpha + 2)} (a - mb)^2} \right)
\]

Now, on the contrary, for \(x_0 \in [a, b] \), we have
\[
(b-x_0)^2 E_{\mu,\xi,\omega}^{\lambda,\delta,k,c} (\omega (b-x_0)^\mu; p) \leq (b-a)^2 E_{\mu,\xi,\omega}^{\lambda,\delta,k,c} (\omega (b-a)^\mu; p), \xi > 0.
\] (55)

By multiplying (51) and (55) and then integrating over \([a, b]\), we obtain
\[
\int_a^b (b-x_0)^2 E_{\mu,\xi,\omega}^{\lambda,\delta,k,c} (\omega (b-x_0)^\mu; p) f(x_0) dx_0
\]
\[
\leq (b-a)^2 E_{\mu,\xi,\omega}^{\lambda,\delta,k,c} (\omega (b-a)^\mu; p) \int_a^b \left(\frac{x_0-a}{b-a} \right)^a dx_0
\]
\[
+ mf \left(\frac{a}{m} \right) \left[1 - \left(\frac{x_0-a}{b-a} \right)^a \right] dx_0
\]
\[
- \frac{\lambda}{m} (a - mb)^2 \int_a^b \left(\frac{x_0-a}{b-a} \right)^a \left(1 - \left(\frac{x_0-a}{b-a} \right)^a \right) dx_0.
\] (56)

From which we have
\[
\left(e_{\mu,\xi,\omega}^{\lambda,\delta,k,c} f \right) (b; p) \leq (b-a)^2 J_{\eta-\beta} (b; p)
\]
\[
\times \left(f(b) + m\alpha f(a/m) - \frac{\lambda \alpha (a - mb)^2}{\alpha + 1 - \frac{\lambda \alpha (a - mb)^2}{m(\alpha + 2)} (a - mb)^2} \right)
\] (57)

Adding (54) and (58), we get the second inequality of (48). Multiplying (45) with \((x_0-a)^\mu E_{\mu,\xi,\omega}^{\lambda,\delta,k,c} (\omega (x_0-a)^\mu; p)\) and integrating over \([a, b]\), we obtain
\[
f \left(\frac{a + mb}{2} \right) \int_a^b (x_0-a)^\mu E_{\mu,\xi,\omega}^{\lambda,\delta,k,c} (\omega (x_0-a)^\mu; p) dx_0 \leq \left(\frac{1}{2^2} + m \left(1 - \frac{1}{2^2} \right) \right)
\]
\[
\int_a^b (x_0-a)^\mu E_{\mu,\xi,\omega}^{\lambda,\delta,k,c} (\omega (x_0-a)^\mu; p) f(x_0) dx_0 - \frac{\lambda}{m} \left(\frac{2^2 - 1}{2^{2^2}} \right)
\]
\[
\times \int_a^b (x_0-a)^\mu E_{\mu,\xi,\omega}^{\lambda,\delta,k,c} (\omega (x_0-a)^\mu; p) (a + mb - x_0 - mx_0)^2 dx_0.
\] (59)
By using (9) and (12), we obtain

\[
f\left(\frac{a + mb}{2}\right) J_{\eta+1,b^{-}}(a; p) \leq \left(\frac{1}{2^a} + m\left(1 - \frac{1}{2^a}\right)\right) \\
\times \left(e^{\gamma_{\eta+1,\lambda, a^{-}}} f(a; p) - \frac{\lambda}{m} \left(\frac{2^a - 1}{2^{2a}}\right)\right) \\
+ \left(e^{\gamma_{\eta+1,\lambda, a^{-}}} (a + mb - x_0 - mx_0)^2\right)(a; p).
\]

The integral operator appearing in the last term is computed as follows:

\[
\left(e^{\gamma_{\eta+1,\lambda, a^{-}}} (a + mb - x_0 - mx_0)^2\right)(a; p) = \sum_{n=0}^{\infty} \beta_p (\eta, c; \gamma) \\
\times \frac{(c)_n}{\Gamma(\mu + \alpha)} \frac{1}{(l)_n} \int_{a}^{b} (x_0 - a)^{\eta+\mu+1} (a + mb - x_0 - mx_0)^2 dx_0
\]

\[
= \sum_{n=0}^{\infty} \beta_p (\eta, c; \gamma) \frac{(c)_n}{\Gamma(\mu + \alpha)} \frac{1}{(l)_n} \left(\frac{(b-a)^{\eta+\mu+3}}{(\eta+\mu+1)(\eta+\mu+2)(\eta+\mu+3)} \right) \\
+ 2(1+m)(b-a)^{\eta+\mu+3} \left(\frac{2(1+m)(b-a)^{\eta+\mu+3}}{(\eta+\mu+1)(\eta+\mu+2)(\eta+\mu+3)} \right)
\]

\[
= (b-a)^{\eta+2} J_{\eta+1,b^{-}}(a; p) + 2(1+m)(b-a)^{\eta+1} J_{\eta+2,b^{-}}(a; p) \\
+ 2(1+m)^2 J_{\eta+3,b^{-}}(a; p).
\]

Now, inequality (43) becomes

\[
f\left(\frac{a + mb}{2}\right) J_{\eta+1,b^{-}}(a; p) \leq \left(\frac{1}{2^a} + m\left(1 - \frac{1}{2^a}\right)\right) \\
\times \left(e^{\gamma_{\eta+1,\lambda, a^{-}}} f(a; p) - \frac{\lambda}{m} \left(\frac{2^a - 1}{2^{2a}}\right)\right) \\
+ 2(1+m)(b-a)^{\eta+1} J_{\eta+2,b^{-}}(a; p) + 2(1+m)^2 J_{\eta+3,b^{-}}(a; p).
\]

By multiplying (45) with \((b - x_0)^{\mu} E_{\mu, \xi, \lambda}^\alpha (a; b - x_0)^\mu; p\) and integrating over \([a, b]\), also using (8) and (12), we obtain

\[
f\left(\frac{a + mb}{2}\right) J_{\eta+1,a^{+}}(b; p) \leq \left(\frac{1}{2^a} + m\left(1 - \frac{1}{2^a}\right)\right) \\
\times \left(e^{\gamma_{\eta+1,\lambda, a^{+}}} f(b; p) - \frac{\lambda}{m} \left(\frac{2^a - 1}{2^{2a}}\right)\right) \\
+ \left(e^{\gamma_{\eta+1,\lambda, a^{+}}} (a + mb - x_0 - mx_0)^2\right)(b; p).
\]
The integral operator appearing in the last term is computed as follows:
\[
\left(e^{\lambda \frac{\partial}{\partial z} (a + mb - x_0 - mx_0)} \right)(b; p)
= (b - a)^{\frac{\lambda}{2} + 2} f_{\lambda+1,a} (b; p) + 2(1 + m)(b - a)^{\frac{\lambda}{2} + 1} f_{\lambda+2,a} (b; p)
+ 2(1 + m)^2 f_{\lambda+3,a} (b; p).
\]

Now, inequality (63) becomes
\[
f(\frac{a + mb}{2}) f_{\lambda+1,a} (b; p) \leq \left(\frac{1}{2^\alpha} + m \left(1 - \frac{1}{2^\alpha} \right) \right) f(\frac{a + mb}{2}) f_{\lambda+1,a} (b; p)
- \frac{\lambda}{m} \left(2^\alpha - 1 \right) (b - a)^{\frac{\lambda}{2} + 2} f_{\lambda+1,a} (b; p)
+ 2(1 + m)(b - a)^{\frac{\lambda}{2} + 1} f_{\lambda+2,a} (b; p) + 2(1 + m)^2 f_{\lambda+3,a} (b; p).
\]

By adding (62) and (65), first inequality of (48) can be obtained.

Remark 8

(i) Inequality (48) provides the refinement of Theorem 2.3 in [1].

(ii) If \(\alpha = 1 \) in (48), then result for strongly \(m \)-convex will be obtained.

\[
\frac{1}{2^\alpha + m \left(1 - 1/2^\alpha \right)} \left(f \left(\frac{a + mb}{2} \right) f_{\lambda+1,a} (a; p) + f_{\lambda+1,a} (b; p) \right)
+ \left(\frac{\lambda}{m} \left(2^\alpha - 1 \right) (M1 + M2) \right) \leq \left(e^{\lambda \frac{\partial}{\partial z} (a + mb)} \right) (a; p) + \left(e^{\lambda \frac{\partial}{\partial z} (a + mb)} \right) (b; p)
\leq \left(f_{\lambda+1,a} (a; p) + f_{\lambda+1,a} (b; p) \right) \left(\frac{f(b) + m f(a/m)}{\alpha + 1} - \frac{\lambda (a - mb)^2}{m (\alpha + 1) (2\alpha + 1)} \right).
\]

Remark 9. Inequality (66) provides the refinement of Corollary 2.3 in [1].

3. Concluding Remarks

The presented results are the refinements of the bounds of generalized fractional integral operators given in (8) and (9) for strongly \((a, m)\)-convex functions. From the presented results, one can obtain already proved results for convex, \(m \)-convex, and \((a, m)\)-convex functions. Moreover, the refinements of some known fractional versions of the Hadamard inequality are also given.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] G. Farid, “Bounds of fractional integral operators containing Mittag-Leffler function,” *Scientific Bulletin-University Politehnica of Bucharest*, vol. 81, pp. 133–142, 2019.

[2] A. W. Roberts and D. E. Varberg, *Convex Functions*, Academic Press, Cambridge, MA, USA, 1973.

[3] B. T. Polyak, “Existence theorems and convergence of minimizing sequences in extremum problems with restrictions,” *Soviet Mathematics Doklady*, vol. 7, pp. 72–75, 1966.

[4] V. Miheșan, “A generalization of the convexity seminar on functional equations,” *Approximate Convex Functions*, vol. 2, 1993.
[5] G. Mittag-Leffler, “Sur la nouvelle fonction E_{α},” *Comptes rendus de l’Académie des Sciences*, vol. 137, pp. 554–558, 1903.

[6] M. Arshad, J. Choi, S. Mubeen et al., “A new extension of mittag-leffler function,” *Communications of the Korean Mathematical Society*, vol. 33, pp. 549–560, 2018.

[7] H. J. Haubold, A. M. Mathai, and R. K. Saxena, “Mittag-Leffler functions and their applications,” *Journal of Applied Mathematics*, vol. 2011, Article ID 298628, 51 pages, 2011.

[8] G. Rahman, D. Baleanu, M. A. Qurashi et al., “The extended Mittag-Leffler function via fractional calculus,” *Journal of Nonlinear Sciences and Applications*, vol. 10, pp. 4244–4253, 2017.

[9] T. O. Salim and A. W. Faraj, “A Generalization of Mittag-Leffler function and integral operator associated with integral calculus,” *Journal of Fractional Calculus and Applications*, vol. 3, pp. 1–13, 2012.

[10] A. K. Shukla and J. C. Prajapati, “On a generalization of Mittag-Leffler function and its properties,” *Journal of Mathematical Analysis and Applications*, vol. 336, pp. 797–811, 2007.

[11] M. Andrić, G. Farid, and J. Pečarić, “A further extension of Mittag-Leffler function,” *Fractional Calculus and Applied Analysis*, vol. 21, pp. 1377–1395, 2018.

[12] T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel,” *Yokohama Mathematical Journal*, vol. 19, pp. 7–15, 1971.

[13] H. M. Srivastava and Z. Tomovski, “Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel,” *Applied Mathematics and Computation*, vol. 211, pp. 198–210, 2009.

[14] S. Ullah, G. Farid, K. A. Khan et al., “Generalized fractional inequalities for quasi-convex functions,” *Advances in Difference Equations*, vol. 2019, p. 15, 2019.

[15] T. Lara, N. Merentes, R. Quintero, and E. Rosales, “On strongly m convex functions,” *Mathematica Aeterna*, vol. 5, pp. 521–535, 2015.

[16] Z. Chen, G. Farid, A. U. Rehman, and N. Latif, “Estimations of fractional integral operators for convex functions and related results,” *Advances in Difference Equations*, vol. 2020, p. 163, 2020.

[17] G. Farid, “Some Riemann-Liouville fractional integral inequalities for convex functions,” *The Journal of Analysis*, vol. 27, no. 4, pp. 1095–1102, 2018.

[18] G. Farid, M. Andrić, M. Saddıq, J. Pečarić, and C. Y. Jung, “Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions,” *AIMS Mathematics*, vol. 5, no. 6, pp. 7332–7349, 2020.