Centronuclear myopathies (CNM) are rare congenital myopathies characterized by muscle weakness with facial and eye involvement and intracellular disorganisation of myofibers with centralized nuclei [5, 8]. Several forms and mode of inheritance have been described. The most severe form, also called X-linked myotubular myopathy, is due to MTM1 mutations and is associated with perinatal severe hypotonia and respiratory distress leading to death of most affected boys in infancy (MIM#310400) [7]. Dominant DNM2 mutations are linked to milder cases with either neonatal, childhood or adult onset and proximal or diffuse muscle weakness (MIM#160150) [2, 3]. Previously described neonatal DNM2 cases showed gradual improvement in motor function and survival into adulthood [1]. Unlike MTM1-CNMs, reported cases of DNM2-CNMs often show a radial distribution of sarcoplasmic strands on cross sections. Here we present three unrelated DNM2-CNMs resembling myotubular myopathy at the clinical and histopathological levels.

Two girls and one boy from unrelated families presented at birth with global and severe hypotonia with respiratory distress requiring invasive and permanent respiratory support (Additional file 1: Table S1). Patients 1 and 2 had multiple contractures. Patient 1 is a male born at 29 weeks of estimated gestational age (EGA), presenting with foetal akinesia and disturbance of cardiac rhythm. Hydramnios was detected. He had a congenital and bilateral chylothorax and died at 5 weeks from a bronchopulmonary dysplasia. Patient 2 is a girl delivered at term by cesarean section due to monotonic heart rate. No amniotic fluid was present. She presented with small intracerebral hemorrhages but no major brain malformations at 1.5 months, and developed 40 degrees convex scoliosis by 4 months. Extubation attempt at 5 months failed and she died at 8 months of age from pneumonia. Patient 3 is a girl born at 34 weeks of EGA. She had a bilateral ptosis and high-arched palate. Brain MRI uncovered a leukencephalopathy with enlarged ventricles and reduced white matter. She died at 4 months from respiratory failure.

Muscle biopsies were performed at 1 month from quadriceps for patients 1 and 3 and at autopsy at 8 months for patient 2. They showed fiber size variability and hypotrophic muscle fibers with prominent nuclear centralizations (Fig. 1a). No clusters of nuclei were observed (Additional file 1: Figure S1). NADH-TR staining revealed centrally located hyperintense reaction in the majority of fibers, without radial distribution of sarcoplasmic strands as the spokes of a wheel. Predominance of type 1 fiber was observed for patient 2 with more variability in fiber size and some increase in connective tissue. Electron microscopy ultrastructural analysis in patient 1 confirmed the presence of prominent nuclear centralizations. Of note centralized nuclei were surrounded by amorphous material and partially disorganized and misaligned sarcomeres. Satellite cells count appeared normal unlike neonates with myotubular myopathy in whom a decrease was noted [9](Fig. 1b).

MTM1 mutations were excluded in patients 1 and 3. All the patients were found with heterozygous de novo DNM2 mutations, NM_001005360.2: c.1831G > A -
p.Glu611Lys, c.1090C > T - p.Arg364Cys, and c.1856C > T - p.Ser619Leu for patient 1, 2 and 3 respectively, through direct Sanger sequencing or an arthrogryposis gene panel (CeGaT, Tübingen, Germany). The p.Ser619Leu mutation was reported in at least 11 CNM cases with neonatal onset and a milder course compared to the present cohort. Mutations p.Glu611Lys and p.Arg364Cys are novel and are not found in gnomAD (http://gnomad.broadinstitute.org/). They affect aminoacids conserved down to drosophila and are predicted pathogenic by SIFT and Polyphen-2. Furthermore, they cluster with most known mutations on the 3D structure (Fig. 1c).

Here we report the most severe CNM patients with heterozygous DNM2 mutations. Compared to previously reported DNM2-CNMs [3], they were fully dependent on invasive ventilation and all died within the first months of life. The very early lethal outcome in patient 1 may have been influenced by concomitant prematurity. Nevertheless, the three patients did not improve except for a slight muscle strength enhancement appearing after 6 months of age in patient 2. Furthermore, early developmental milestones were delayed (Additional file 1: Table S1), in contrast with some previously described neonatal onset DNM2 patients [4]. This study enlarges the clinical and genetic spectrum of DNM2-CNMs. Moreover, it underlines that DNM2 mutations can be associated with decreased survival.

In addition to a CNM phenotype, the 3 patients display similar features with the lethal congenital contracture syndrome (MIM#615368) due to a DNM2 homozygous mutation [6], especially multiple contractures, fetal hypokinesia, pulmonary hypertension, brain hemorrhages, and abnormal fetal heart rhythm.

The present DNM2-CNMs were highly similar to myotubular myopathy due to MTM1 mutations, although none of them presented with the association of facial hypotonia, ptosis, ophthalmoplegia and elongated face that is typical in MTM1-CNMs. In addition to the perinatal severity, they had very severe hypotonia, respiratory distress and the same histopathological findings, lacking the radial strands hallmark of most other DNM2 cases.

In conclusion, DNM2 should be investigated in congenital myopathies presenting as myotubular myopathy.
Additional file

Additional file 1: Clinical, molecular, histopathological and ultrastructural findings for the patients. Table S1 Clinical and molecular findings in the DNM2 severe cases. Figure S1 Histopathological and ultrastructural findings for the patients. Patients 1, 2 and 3: Hematoxylin-eosin (HE) staining of muscles showing fibers with centralized nuclei. Patient 1: ATPase at pH 9.4 showing type I (pale) and type II (dark) fibers. Patient 3: ATPase at pH 4.6 showing type I fibers dark and type 2 fibers less stained. Scale bars 20 μm. (ZIP 46909 kb)

Abbreviations
CNM: Centronuclear myopathies; DNM2: Dynamin 2; EGA: Estimated gestational age; HE: Hematoxylin-eosin; MRI: Magnetic resonance imaging; MTM1: Myotubularin 1; NADH-TR: Nicotinamide adenine dinucleotide tetrazolium reductase

Acknowledgements
We thank Carina Wallgren-Pettersson for suggestions and Nicolas Dondaine and Mai Thao Bui for technical assistance.

Funding
Supported by Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Association Française contre les Myopathies (AFM).

Availability of data and materials
All data generated or analysed during this study are included in this published article (and its Additional files).

Authors' contributions
VB, NBR, AO and JL directed the study; IJT, JK and DH performed clinical examinations; NBR, EM and AO performed histological examinations; VB and JL analyzed the data and wrote the manuscript with input from other authors. All authors read and approved the final manuscript.

Ethics approval and consent to participate
All procedures involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent for publication
Informed consent was obtained from all individual participants included in the study.

Competing interests
The authors declare that they have no competing interests.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

University Hospital and Institute of Biomedicine, Turku University, Turku, Finland. 13Service de Généétique clinique et Médicale, CHU Paris-GH La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.

Received: 14 August 2018 Accepted: 31 August 2018
Published online: 12 September 2018

References
1. Bitoun M, Bevilacqua JA, Prudhon B et al (2007) Dynamin 2 mutations cause sporadic . Centronuclear myopathy with neonatal onset. Ann Neurol 62:666–670
2. Bitoun M, Maugere S, Jeannet PY et al (2005) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 37:1207–1209
3. Bohm J, Biancalana V, Dechene ET et al (2012) Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy. Hum Mutat 33:949–959
4. Catteuccia M, Fattori F, Codemo V, Ruggiero L, Maggi L, Tasca G, Fiorillo C, Pane M, Berardiniello A, Verardo M et al (2013) Centronuclear myopathy related to dynamin 2 mutations: clinical, morphological, muscle imaging and genetic features of an Italian cohort. Neuromuscul Disord 23:229–238
5. Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26
6. Koutsopoulos OS, Kretz C, Wellar OM et al (2013) Dynamin 2 homoygous mutation in humans with a lethal congenital syndrome. Eur J Hum Genet 21:637–642
7. Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauk SM, Poustka A, Dahl N (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182
8. Romero NB (2010) Centronuclear myopathies: a widening concept. Neuromusc Res 20:223–228
9. Shichiji M, Biancalana V, Fardeau M et al (2013) Extensive morphological and immunohistochemical characterization in myotubular myopathy. Brain Behav 3:476–486