Krüppel-like factor 3 (KLF3) suppresses NF-κB–driven inflammation in mice

Alexander J. Knights¹, Lu Yang¹, Manan Shah¹, Laura J. Norton¹, Gamran S. Green¹, Elizabeth S. Stout¹, Emily J. Vohralik¹, Merlin Crossley¹, Kate G. R. Quinlan¹*

From the ¹School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia

Running Title: KLF3 suppresses NF-κB–driven inflammation

*To whom correspondence should be addressed: Kate Quinlan, School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; kate.quinlan@unsw.edu.au Tel: + 61 (0)2 9385 8586.

Keywords: Inflammation, endotoxin, NF-kappa B (NF-κB), gene regulation, macrophage, Krüppel-like factor 3 (KLF3), transcription, lipopolysaccharide (LPS)

ABSTRACT

Bacterial products such as lipopolysaccharides (or endotoxin) cause systemic inflammation, resulting in a substantial global health burden. The onset, progression, and resolution of the inflammatory response to endotoxin are usually tightly controlled to avoid chronic inflammation. Members of the NF-κB family of transcription factors are key drivers of inflammation that activate sets of genes in response to inflammatory signals. Such responses are typically short-lived and can be suppressed by proteins that act post-translationally, such as the suppressor of cytokine signaling (SOCS) family. Less is known about direct transcriptional regulation of these responses, however. Here, using a combination of in vitro approaches and in vivo animal models, we show that endotoxin treatment induced expression of the well-characterized transcriptional repressor Krüppel-like factor 3 (KLF3), which, in turn, directly repressed the expression of the NF-κB family member RelA/p65. We also observed that KLF3-deficient mice were hypersensitive to endotoxin and exhibited elevated levels of circulating Ly6C⁺ monocytes and macrophage-derived inflammatory cytokines. These findings reveal that KLF3 is a fundamental suppressor that operates as a feedback inhibitor of RelA/p65 and may be important in facilitating the resolution of inflammation.

Inflammation is usually a tightly regulated physiological process that ensures appropriate onset, progression and resolution. However, dysregulation of inflammation can lead to a host of inflammatory diseases, including macular degeneration, rheumatoid arthritis, inflammatory bowel disease and multiple sclerosis (1-5). Understanding the checkpoints that control the activation and suppression of inflammation will inform the development of improved therapies for inflammatory disorders.

The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) family of transcription factors are central inflammatory mediators (6-8). Mammals have five NF-κB family proteins: RelA (p65), RelB and c-Rel, as well as NF-κB1 (p105; processed into p50) and NF-κB2 (p100; processed into p52). NF-κB functions in both innate and adaptive immune cells to direct pro-inflammatory gene expression programs, including activation of archetypal inflammatory cytokines such as tumor necrosis factor (TNF) (9), interleukin (IL) 1α (10), IL-1β (11) and IL-6 (12). NF-κB signaling has also been reported to perform anti-inflammatory roles (13-15). NF-κB function can be activated by bacterial products such as lipopolysaccharides (LPS) that underlie the substantial global health burden represented by sepsis and endotoxemia (16,17). Activation of NF-κB in response to stimuli such as LPS is well-characterized: prior to stimulation, inactive NF-κB dimers are retained in the cytosol by IκB proteins. Following stimulation, IκB kinase (IKK) complexes disrupt this retention, allowing nuclear translocation of NF-κB which can carry out induction of target genes. However, less is
known about regulation of NF-κB family members at the transcriptional level.

Several members of the Krüppel-like factor (KLF) family of transcription factors have been implicated in immune cell function and inflammation, including KLF2 (18), 4 (19) and 6 (20). KLF3 has been well-established as a key transcription factor in red blood cell development (21-23), however, the Klf3−/− mouse lacks a severe erythropoietic phenotype. It has recently been shown that KLF3 regulates expression of the inflammatory modulator galectin-3 (24) and is also involved in B cell maturation (25), suggesting a possible link between KLF3, immune cell function and inflammation.

Here we report that the well-characterized transcriptional repressor KLF3 (21,24,26-29) suppresses NF-κB-mediated inflammation through direct regulation of the p65-encoding gene Rela/RELA. In the absence of KLF3, mice exhibit pronounced systemic inflammation with elevated circulating inflammatory monocytes, constitutive pro-inflammatory cytokine production and a heightened response to endotoxin treatment. KLF3 is induced in macrophages following LPS exposure and directly binds and represses the expression of the NF-κB subunit Rela in a simple feedback inhibition mechanism. These findings identify KLF3 as a fundamental suppressor of NF-κB-driven inflammation, and importantly, identify a novel repressor of RelA/p65 that acts at the transcriptional level.

Results

Pronounced systemic inflammation in the absence of KLF3. Given early findings that KLF3 is important for erythroid development, we performed blood counts to determine whether mice lacking KLF3 have altered numbers of circulating hematopoietic cells. Peripheral blood counts on samples from WT and Klf3−/− mice revealed that Klf3−/− mice have 3-fold more white blood cells (Fig 1A), and specifically, 2-fold more circulating monocytes (Fig 1B). This result was confirmed by flow cytometry, where we observed twice as many circulating CD115+ monocytes in Klf3−/− mice (Fig 1C). More detailed analysis showed that Klf3−/− mice had a significantly higher proportion of Ly6C+ pro-inflammatory monocytes, and a lower proportion of Ly6C anti-inflammatory monocytes (Figs 1D and S1A). This profile shift was also evident in spleen monocytes to a lesser extent. Interestingly however, we did not observe increased abundances of monocyte precursors including macrophage/dendritic cell progenitors, common monocyte progenitors or Ly6C+ monocytes in the bone marrow of Klf3−/− mice (Fig S1B). This suggests that circulating monocyte proliferation occurs downstream of myelopoiesis in response to endogenous and external cues.

Given that Klf3−/− mice have more inflammatory monocytes in circulation, we hypothesized that they might also over-express pro-inflammatory cytokines. We cultured WT and Klf3−/− bone marrow-derived macrophages (BMDMs; Fig S1C) and treated them with LPS (100 ng/mL) or vehicle for 24 h, then harvested the supernatant. We measured secreted levels of several pro-inflammatory factors and found that upon LPS treatment, BMDMs lacking KLF3 produced significantly greater amounts of TNF, MCP-1/CCL2 and IL-6 (Fig 1E, Fig S1D). Interestingly however, in vivo we only observed increased levels of TNF in Klf3−/− plasma, with no apparent difference in plasma levels of MCP-1, IL-6 or other cytokines between WT and Klf3−/− animals (Fig 1F, Fig S1E). Together these results demonstrate that in the absence of the transcriptional repressor KLF3, mice exhibit systemic inflammation, and that circulating monocytes are implicated in this phenotype.

Mice lacking KLF3 show a heightened and prolonged inflammatory response to endotoxin treatment. Given that Klf3−/− mice display increased Ly6C+ monocytes in circulation and higher levels of plasma TNF, both of which are symptoms of endotoxicemia (30,31), we tested to see if they displayed a heightened sensitivity to inflammatory stimulants. We injected mice intraperitoneally with a low dose of the archetypal bacterial endotoxin LPS (0.167 mg/kg). Vehicle-treated mice maintained their body temperature over the 24 h period following injection, whereas LPS-treated mice experienced a drop in body temperature by up to 4°C over the initial 2 h period post-injection, as expected following LPS treatment (32) (Fig 2A). WT mice gradually recovered their body temperature, whereas Klf3−/− mice sustained a low body temperature for a further 4 h. This delayed recovery of body temperature was most evident at the 12 h post-injection time point, demonstrating the
increased sensitivity of Klf3−/− mice to LPS. This observation also held, to a lesser extent, for mice given a very low dose of LPS (0.05 mg/kg), with LPS-treated Klf3−/− mice experiencing a delayed recovery of body temperature (Fig S2A).

Peripheral blood was taken from mice given 0.167 mg/kg LPS (or vehicle) for total blood cell counts. Following LPS treatment, both WT and Klf3−/− mice displayed reduced circulating numbers of total white blood cells, monocytes and lymphocytes (Fig 2B-D), but unchanged neutrophil abundance (Fig 2E). We observed that vehicle-treated Klf3−/− mice had a higher abundance of total white blood cells, monocytes and lymphocytes than vehicle-treated WT mice, as expected. Following LPS treatment, all white blood cell counts trended higher in Klf3−/− mice compared to WT mice, with monocyte abundance showing significant comparative elevation in KLF3-deficient mice. Alongside these findings, we confirmed that circulating TNF levels in vehicle-treated Klf3−/− mice were higher than in WT counterparts, and likewise upon LPS treatment but with greater absolute amounts of TNF (Fig 2F). Spleens of both WT and Klf3−/− were larger in mice treated with LPS for 24 h (Fig S2B). We found an increased proportion of CD115+ Ly6C+ monocytes in vehicle-treated Klf3−/− blood when compared to WT, as expected, and this increase was retained in both the blood and spleen of LPS-treated Klf3−/− mice (with higher proportional abundance of Ly6C+ cells in Klf3−/− LPS-treated mice than WT LPS-treated mice) (Figs 2G-H and S2C-D). These results demonstrate that KLF3-deficient mice display an elevated sensitivity in response to treatment with endotoxin.

Macrophages lacking KLF3 exhibit enhanced inflammatory function. As a first step to exploring the molecular mechanism underlying these findings we moved to experiments on cultured primary macrophages. We treated BMDMs with 100 ng/mL LPS for 0, 4, 8 and 24 h and immunoblotted for KLF3 protein (Fig 3A). KLF3 levels increased by the 8 h mark, with very clear expression seen 24 h following LPS treatment. As expected, no KLF3 was detected in Klf3−/− samples. We also performed electrophoretic mobility shift assays (EMSA) and found that KLF3-DNA-binding activity is most evident 24 h following LPS treatment (Fig 3B). Klf3 is the third most highly expressed member of the Klf gene family in BMDMs, with levels only superseded by well-characterized macrophage transcription factors Klf2 and Klf6 (18,20,33,34) (Fig S3A). Given this, we sought to further characterize the effects of KLF3 on macrophage function. Phagocytosis of E. coli bioparticles is enhanced two-fold in Klf3−/− BMDMs compared to WT following 8 h LPS treatment (Fig 3C), while KLF3-deficient BMDMs treated with LPS for 24 h produce marginally, but significantly, more nitrate than LPS-induced WT cells (Fig 3D). Using the reduction of resazurin blue as an indicator of cellular reduction environment, we found modest differences between WT and Klf3−/− BMDMs over a 24 h period of exposure, with the only significant difference observed at 2 h (Fig S3B). BrdU incorporation assays on WT and Klf3−/− BMDMs demonstrated no significant differences in actively replicating cells (Fig S3C), nor were any differences seen in BMDM cell counts over 8 days (Fig S3D), suggesting no discernible proliferative differences between WT and Klf3−/− macrophages in vitro.

Together these results demonstrate that KLF3 protein levels increase in response to endotoxin, and that macrophage inflammatory activity, including phagocytic capacity, nitrate production and cellular reduction levels, are all enhanced in the absence of KLF3.

Widespread gene deregulation in KLF3-deficient macrophages following endotoxin treatment. To study the role of KLF3 in genome-wide gene regulation in macrophages, we performed microarrays on BMDMs treated with LPS (100 ng/mL) or vehicle. We chose to compare WT and Klf3−/− cells treated for 8 h given that this time point coincides with optimal up-regulation of important pro-inflammatory cytokines and also with increases in KLF3 protein levels. The profiles of untreated WT and Klf3−/− BMDMs were broadly similar (Fig 4A), in line with our finding that KLF3 expression levels are modest in unstimulated BMDMs. In contrast, Klf3−/− BMDMs treated with LPS for 8 h showed striking differences to WT cells. Motif discovery and enrichment analysis found that the promoters of the differentially expressed genes were enriched for motifs matching the binding sites for Sp/KLF transcription factor family members, suggesting that many of these are bona fide KLF3 target genes (Fig S4). Cytokine-receptor interactions, JAK-STAT signaling and chemokine
pathways were the three most dysregulated biological pathways in Klf3−/− BMDMs (Fig 4B), suggesting that in the absence of KLF3, macrophages undergo an enhanced inflammatory response. Using quantitative PCR, we validated deregulation of key cytokine genes (Fig 4C). Pro-inflammatory genes such as Tnf, Il6 and Il1b are all activated in BMDMs following LPS treatment, with expression peaking between 4 and 8 h, before resolution of the inflammatory response. In the absence of KLF3, however, these genes are superactivated and their up-regulation is prolonged. This suggests that KLF3 is directly or indirectly involved in the suppression of pro-inflammatory gene expression during the resolution of inflammation. We also observed elevated induction of Il1a and Il1b in Klf3−/− BMDMs treated with the synthetic dsRNA analog, poly I:C, which activates signaling through TLR3 and NF-κB (Fig S5A). Likewise, Il1a but not Stat1 was more highly induced in IFNγ-treated Klf3−/− cells (Fig S5B). Upon treatment with IFNα (Fig S5C) and IL-6 (Fig S5D), which signal independently of NF-κB, no gene deregulation was observed in Klf3−/− BMDMs. These data implicate NF-κB signaling in the inflammatory effects mediated by KLF3.

KLF3 suppresses activation of NF-κB genes. With the aim of identifying candidate genes that KLF3 binds and regulates directly, we consulted an existing KLF3 ChIP-Seq dataset obtained from the analysis of murine embryonic fibroblasts (MEFs) (35). No significant KLF3 enrichment was observed at the promoter regions of Csf2, Tnf, Il6, Il1a, Il1b or Ptgs2 (Fig S6A), providing no evidence for direct regulation of these cytokine genes by KLF3 in this cell type. Instead, we hypothesized that KLF3 acts upon an upstream intermediary factor controlling expression of these genes during the inflammatory response. Interrogation of deregulated transcription factors from our BMDM microarray data revealed that genes encoding the NF-κB family, important regulators of the inflammatory response, are increased in the absence of KLF3 (Fig 5A). In the MEF ChIP-Seq data, strong KLF3 binding was evident at the proximal promoter of Rela, encoding the NF-κB subunit RELA/p65 (Fig 5B).

Closer inspection of the DNA sequence corresponding to the KLF3 binding peak revealed a consensus KLF3 binding site, or CACCC box, in the Rela promoter: 5’-NCN CNC CCN-3’ (Fig S7A). Using EMSA, we showed that KLF3 can bind the mouse Rela CACCC box but binding is greatly reduced when this site is mutated (ΔCACCC) (Fig 5C). Having shown that KLF3 binds the Rela promoter in vitro by EMSA, and in vivo in MEFs by ChIP-Seq, we next investigated binding in a biologically-relevant setting – primary BMDMs. KLF3 binding was evident at the Rela promoter following LPS stimulation, with negligible enrichment seen at a Klf8 negative control region where KLF3 is known to not bind (Fig 5D). No binding was observed in Klf3−/− samples. This KLF3 enrichment at the Rela promoter in LPS stimulated BMDMs correlates with that seen in unstimulated MEFs (Fig 5B). We subsequently showed that KLF3 also binds the CACCC box in the human RELA promoter by EMSA (Fig S6B), and using CRISPR/Cas9 gene editing, generated human K562 cells lacking KLF3 (Fig S7B-D) to show that binding to RELA is equally evident in vivo (Fig S6C). To confirm that KLF3 biologically binds and regulates transcription of Rela, we treated WT and Klf3−/− BMDMs with LPS in a 24 h time course, and found that Rela expression levels were significantly more highly upregulated in the absence of KLF3 at 4 and 8 h (Fig 5E). Likewise, Klf3−/− BMDMs upregulated Rela more highly than WT cells in response to poly I:C treatment, but not with IL-6 treatment (Fig S6D-E). We next measured p65 levels by western blotting in WT and Klf3−/− BMDMs treated with LPS for 0, 4, 8 or 24 h (Fig 5F). Levels of nuclear p65 are significantly increased in the absence of KLF3 at 8 h and 24 h, suggesting that KLF3 not only binds but also directly regulates the expression of the NF-κB subunit p65. The increased nuclear p65 levels were not due to genotype differences in mRNA (Fig S6F) or protein (Fig S6G) expression of total cellular IκB-α, which is responsible for sequestering inactive p65 in the cytoplasm. Additionally, we did not observe any differences in total cellular p65 levels between LPS-treated WT and Klf3−/− BMDMs (Fig S6G). Together these results demonstrate that NF-κB family genes are deregulated in the absence of KLF3, and that KLF3 directly binds and regulates expression of the gene encoding RELA/p65. This suggests that p65 acts as an intermediary factor that, in the absence of KLF3, is insufficiently repressed, permitting enhanced and prolonged activation of pro-inflammatory cytokines. These findings identify KLF3 as a
potentially important regulator of endotoxin-induced inflammation through its suppression the NF-κB subunit Rela/p65 (Fig 6).

Discussion

NF-κB signaling plays a key role in driving the inflammatory response under both physiological and pathophysiological conditions. A diverse array of signals can elicit NF-κB activity, and the post-translational network governing NF-κB localization through the function of IκB and IKK proteins is well-characterized. NF-κB can regulate its own activity through auto-regulatory feedback loops (36), and it was recognized early on that IκB subunits have the capacity to bind and auto-regulate family members at the transcriptional level (37). Similarly, BCL3 has been shown to activate NF-κB expression, forming another auto-regulatory loop (38). Beyond this auto-regulation, however, remarkably little is known of how NF-κB gene expression is controlled at the level of transcription. Interestingly, it has been reported that KLF11 is able to physically inhibit the binding of NF-κB subunit p65 to its target genes, effectively suppressing NF-κB-induced pro-inflammatory signaling in endothelial cells (39).

In this study, using a combination of in vitro approaches and in vivo animal models, we have demonstrated that KLF3 is an important suppressor of inflammation, responsible for directly repressing RelA/p65 activity and thereby downstream cytokine expression. We showed that Klf3−/− mice display systemic inflammation and a distinct white blood cell phenotype, with increased sensitivity to endotoxin. Mice lacking another DNA-binding protein, NUPR1, also show increased sensitivity to endotoxin treatment, owing to an aberrant gene expression response (40), much like the widespread deregulation seen in the absence of KLF3. We propose that the physiological manifestations seen in LPS-treated Klf3−/− mice, including inflammatory monocyte abundance and over-expression of pro-inflammatory cytokines, are the result of a reduced capacity to suppress NF-κB signaling. It will be interesting to further pursue the downstream consequences of the absence of KLF3 on LPS tolerance and innate immune memory in future studies, given the clinical significance of these processes (41).

Directly targeting transcription factors to therapeutically modulate cellular processes remains difficult, and this is no different with inflammation. Given that other KLF family members are involved in orchestrating the inflammatory response in various cell types, it has been proposed that targeting upstream mediators of KLFs may be the most viable option (42, 43).

Together our findings identify KLF3 as a novel and direct suppressor of NF-κB signaling through regulation of Rela/RELA transcription. This advance fills a longstanding gap in our knowledge of the transcriptional regulation of the NF-κB family, and provides a starting point for further studies into transcriptional control during the inflammatory response.

Experimental Procedures

Animal husbandry. All animal work was carried out in accordance with approval from the UNSW Animal Care and Ethics Committee (Approval Nos. 12/150A, 16/5B and 18/34B). Animals were housed in a specific pathogen-free environment, at a constant ambient temperature of 22°C, on a 12 h light-dark cycle and with ad libitum access to standard chow food and water. Generation of global Klf3−/− mice on an FVB/NJ background has been previously described (29). Age-matched WT and Klf3−/− littermate mice from Klf3+/- x Klf3−/− crosses were used for all animal studies.

Animal procedures. For short-term endotoxin exposure experiments, WT and Klf3−/− mice were treated with 0.167 mg/kg or 0.05 mg/kg lipopolysaccharide (LPS, Sigma) from E. coli or vehicle (0.1% saline) via intraperitoneal injection. Body temperature was measured over the first 6 h by rectal probing with a BAT-12 microprobe thermometer, then again at 12 h and 24 h. After 24 h, mice were euthanized and blood and spleens were harvested for downstream analysis.

Blood analysis. Peripheral blood was obtained by cardiac bleed prior to euthanasia and stored in K2EDTA collection tubes (BD Biosciences). Whole blood was sent for blood count analysis at the University of Sydney Veterinary Pathology Diagnostic Services. Plasma was isolated by centrifugation of whole blood at 2,000 x g for 15 min (4°C) then stored for further analysis.

Cell culture and transfection. Bone marrow-derived macrophages were harvested from femora
and tibiae as previously described (24). Equal numbers of WT and Klf3−/− BMDMs were seeded for all experiments. COS-7 cells were a gift from Stuart Orkin (Harvard) and were cultured in DMEM supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin-glutamine (PSG). During passaging, adherent cells were lifted after a five-minute incubation at 37°C with 2 mM PBS-EDTA. COS-7 cells were transfected with pMT3-Klf3 using FuGENE6 (Promega) and harvested 48 h later for nuclear extraction. K562 cells were grown in RPMI 1640 medium supplemented with 10% FBS and 1% PSG. Expression construct information can be found in Table S1.

Gene editing. For CRISPR/Cas9 genome editing, a plasmid encoding both the Cas9 protein and the sgRNA was used to delete KLF3 in K562 cells via double-strand breakage and non-homologous end joining. pSpCas9(BB)-2A-GFP (PX458) was a gift from Feng Zhang (Addgene 48138) (44). We designed sgRNA sequences targeting KLF3 exon 3 using the optimized CRISPR/Cas9 design online tool provided by the Zhang laboratory from the Massachusetts Institute of Technology. All sgRNA and PCR primer sequences can be found in Table S2. K562 cells were transfected by nucleofection using a Neon™ Transfection System (Life Technologies). Cells (5 x 10^5) were resuspended in nucleofection buffer R (Neon Transfection Kit) and given one pulse of 1,400-1,600 V for 20-30 ms. Cells were cultured for 72 h in RPMI 1640 with 10% FBS without antibiotics, then enriched by FACS, and clonal populations were established by sorting cells into 96-well culture plates. To screen clones for the desired KLF3 disruption, PCR was carried out on genomic DNA using Q5 polymerase (New England BioLabs), before confirmation using Sanger sequencing of PCR products and anti-KLF3 western blotting. SnapGene v4.2.6 was used to visualize sequencing traces.

Flow cytometry. Flow cytometry was performed using a BD LSRFortessa and BD LSRFortessa X-20. Sorting by FACS was performed using a BD Influx or BD FACSAria III. All cells were pre-blocked with anti-CD16/32 Fc block to reduce non-specific binding. For identifying Ly6C+ monocytes in blood and spleen, red blood cell lysis was performed using ddH2O prior to staining with the following antibodies: CD45-PE (BD Pharmingen), CD115-biotin (eBioscience), Streptavidin-BV711 (BD Horizon), CD11b-FITC (BD Pharmingen), Ly6C-BV421 (BD Horizon), Ly6G-APC (BD Pharmingen), CD19-APC (eBioscience) and CD3-APC (BD Pharmingen). ZombieNIR (Biolegend) was used as a viability dye. To analyze monocyte precursors in bone marrow, bone marrow was harvested and flushed then cells were stained with the following antibodies: CD11b-FITC (BD Pharmingen), Ly6C-BV421 (BD Horizon), Ly6G-BV421 (BD Pharmingen), CD115-APC (BD Biosciences), CD115-BUV395 (BD OptiBuild), Streptavidin-PE/CF594 (BD Biosciences) and a lineage cocktail comprised of biotin-conjugated Ter119 (BD Biosciences), CD19 (BD Pharmingen), CD3 (eBioscience), NK1.1 (eBioscience), Ly6G (BD Pharmingen) and TCRγδ (eBioscience). DAPI was used as a viability dye. For identifying BMDMs, cells were stained with the following antibodies: CD11b-FITC (BD Pharmingen) and F4/80-PE/Cy5 (eBioscience) (gating strategy in Fig S1C). Flow cytometry analysis was performed using FlowJo software v10. Detailed antibody information is available in Table S5.

Cytokine quantification. To measure the levels of inflammatory cytokines in mouse plasma and BMDM supernatant we employed the LEGENDplex™ kit (Biologend), according to the manufacturer’s instructions. The assay was run using the BD LSRFortessa and output analyzed with LEGENDplex v8.0 software. To assess the levels of TNF in plasma from mice treated with LPS or vehicle, the Mouse TNF Quantikine™ ELISA Kit (R&D Systems) was used according to the manufacturer’s instructions. A volume of 50 µL of undiluted plasma was run in duplicate for each sample for ELISA, and 25 µL of undiluted plasma or BMDM supernatant for LEGENDplex assays.

BMDM stimulations. BMDMs were differentiated in culture for 7-10 days then treated with 100 ng/mL LPS (Sigma), 10 ng/mL IFNγ (Sigma), 10 µg/mL poly I:C (Sigma), 10 ng/mL IL-6 (Sigma) or 10 ng/mL IFNα (Thermo Fisher) for stated lengths of time.

BMDM functional assays. To assess the phagocytic capacity of BMDMs, Vybrant™
Phagocytosis assays (Thermo Fisher) were performed according to manufacturer’s instructions. Briefly, cells were seeded into 96-well plates at 5 x 10^4 cells/well and incubated at 37°C for 6 h with 100 ng/mL LPS. After 6 h, supernatant was replaced with 100 µL E. coli (K-12 strain) fluorescein-labelled bioparticles for 2 h in the presence of 100 ng/mL LPS. Bioparticles were removed entirely and trypan blue was added for 1 min, prior to reading at an excitation of 480 nm and emission of 520 nm, to assess the fluorescence produced by phagocytosed bioparticles. To measure nitrate production, BMDMs were treated with 100 ng/mL LPS or vehicle for 24 h before collection of supernatant. The Nitrate/Nitrite Colorimetric Assay Kit (Cayman Chemical) was employed to measure nitrate concentration in the supernatant and absorbance read at 540 nm, according to manufacturer’s instructions. To assess the cellular reduction environment in BMDMs, alamarBlue™ (Life Technologies) assays were performed according to the manufacturer’s instructions. Briefly, cells were seeded into 96-well plates at 5 x 10^4 cells/well overnight then treated with 100 ng/mL LPS or vehicle the following day, in addition to a 0.1X volume of alamarBlue reagent. Fluorescence was read after 0, 2, 4, 6, 8, 10, 12 and 24 h with a peak excitation of 570 nm and peak emission at 585 nm.

Cell growth and proliferation assays. For cell growth assays, BMDMs were grown for 7 days before seeding at 5 x 10^4 cells/mL. Cell counts were taken at days 0, 2, 4 and 6. Cell proliferation assays were performed using a BrdU cell proliferation assay kit, according to the manufacturer’s instructions (Cell Signaling Technology). BMDMs were cultured for 7 days then 5 x 10^4 cells were plated into wells of a 96-well plate. Cells were then assayed at day 0, 2, 4 and 6. Briefly, 1xBrdU was added into each well and incubated for 4 h, then cells were fixed and denatured for 30 min and detection antibody solution was added for 1 h at room temperature. Next HRP-conjugated secondary antibody solution was added and incubated at room temperature for 30 min. TMB substrate was then added and incubated for 30 min before adding stopping buffer, then absorbance was read at 450 nm to detect BrdU incorporation.

Gene expression analysis. To assess mRNA expression, cells were lysed and homogenized in TRI reagent™ (Sigma) then subjected to RNA extraction and cDNA synthesis as previously described (24). Quantitative real-time PCR (qPCR) reactions were set up with Power SYBR™ Green PCR Master Mix and run with default cycle parameters on the Applied Biosystems 7500 Fast Real-Time PCR System (for 96-well plate format) or the Applied Biosystems ViiA7 Real-Time PCR System (for 384-well plate format). Gene expression was quantified using the 2^(-ΔΔCT) method and relative mRNA expression was normalized to 18S rRNA levels which have been shown to display stable expression across the cells and conditions studied. All qPCR primers were designed using primer3 (http://primer3.ut.ee/) and can be found in Table S4. For microarrays on BMDMs treated with 100 ng/mL LPS or vehicle, RNA was isolated using the RNeasy™ Mini Kit (Qiagen) then subjected to quality control using the Agilent 2100 Bioanalyzer, following preparation with an Agilent RNA 6000 Nano Kit. An Affymetrix 3' IVT PLUS Kit was used for in vitro transcription prior to performing microarrays on an Affymetrix GeneChip HT MG-430PM Array Plate. Raw CEL files from the Affymetrix arrays were processed using the R package affy (45) (using ReadAffy) and the RMA method (46) (using rma also from the same package) was used to normalize the data and produce expression values. Differential expression analysis was done using the limma (47) R package. Heatmaps were generated after hierarchical clustering and scaling of the row values using the RNA normalized expression values with R package heatmap. KEGG pathway analysis was done using the enrichKEGG function from clusterProfiler (48) with the dotplot function used to generate graphs. Microarray datasets are available from GEO (Accession No. GSE121646).

Motif discovery and enrichment analysis. To perform de novo motif discovery and known motif enrichment analysis, the transcription starts sites of all differentially expressed genes when comparing WT and Klf3−/− BMDMs treated with LPS for 8 h were first obtained from the GENCODE vM22 gtf file. Promoters were then defined as 1000 bp upstream or downstream from the TSS (± 1000 bp TSS) and obtained using bedtools flank and slop functions (49) and HOMER findMotifsGenome.pl
(to get sequences) (50). De novo motif analysis and known motif enrichment analysis using the JASPAR (51) and HOCOMOCO TF (52) databases was then performed using MEME-ChIP (53) (only the centred 500 bp region was considered for de novo motif discovery [using -ccut 500] with a maximum motif site of 25 bp [-meme-maxw 25]).

Protein extraction and western blottting. Cytoplasmic, nuclear and whole cell protein extractions were performed as previously described (24,27). For detection of KLF3 by western blotting, 20 μg of nuclear extract was loaded onto Novex NuPAGE™ 10% Bis-Tris gels, following denaturation and boiling. After blocking with 3.5% w/v skim milk, nitrocellulose membranes were incubated with anti-KLF3 antibody (Thermo Fisher). Membranes were then probed with HRP-linked anti-goat antibody (Santa Cruz Biotechnology) prior to imaging on the GE ImageQuant LAS 500 in the presence of Immobilon Western Chemiluminescent HRP Substrate (Millipore). To detect RELA/p65 and IκB-α, 20 μg of protein was loaded per lane onto 10% Bis-Tris gels, following denaturation and boiling. After blocking with 5% w/v skim milk, nitrocellulose membranes were incubated overnight with anti-p65 antibody (Cell Signaling) or anti-IκB-α antibody (Abcam). Membranes were then probed with HRP-linked anti-rabbit antibody (GE Healthcare) prior to imaging. All membranes were stripped with 0.5 M NaOH then re-blocked with skim milk before probing with an anti-β-actin antibody (Sigma). Following this, HRP-linked anti-mouse antibody (GE Healthcare) was incubated on membranes prior to imaging. Detailed antibody information can be found in Table S5.

Electrophoretic mobility shift assays (EMSA). EMSAs were performed as described previously (27). To assess KLF3 levels following LPS treatment, BMDMs were stimulated with 100 ng/mL LPS for 0, 4, 8 and 24 h then nuclear extracts obtained. Extracts were loaded onto 8% polyacrylamide gels along with pre-bleed immune serum or polyclonal anti-KLF3 antibody (raised in rabbit) and 32P-radiolabelled DNA probe. Nuclear extracts from untransfected COS-7 cells and COS-7 cells expressing pMT3-Klf3 were included as negative and positive controls respectively. To assess binding of KLF3 to mouse and human RELA, probes were designed corresponding to the mouse and human CACCC boxes in the RELA promoter region, and mutated versions of these sites (ΔCACCC). Gels were run for 1 h 45 min at 250 V then imaged using a Typhoon FLA 9500 (GE Life Sciences). Probe sequences can be found in Table S3 and visual depiction of probes can be found in Fig S7A.

Chromatin immunoprecipitation (ChIP). ChIP experiments were performed as previously described (54). Briefly, 5-7 x 10^7 BMDM or K562 cells were used per immunoprecipitation (IP). Prior to crosslinking, BMDMs were treated with 100 ng/mL LPS for 4 h. Cells were crosslinked with 1% formaldehyde for 10 min at room temperature, and the reaction was quenched with glycin e at a final concentration of 125 mM. Crosslinked cells were then lysed and sonicated to obtain ~200–400 bp fragments of chromatin. DNA bound to the protein of interest was pulled down at 4 °C overnight using anti-KLF3 antibody (Thermo Fisher) or normal goat IgG (Santa Cruz Biotechnology). qPCR was performed on ChIP material using an Applied Biosystems ViiA7 Real-Time PCR System. For analysis, IPs were first normalized to the relative amount of input DNA, then to IgG controls. All qPCR primers for ChIP were designed using primer3 (http://primer3.ut.ee/) and can be found in Table S4. Detailed antibody information can be found in Table S5. The KLF3-V5 ChIP-Seq dataset in MEFs is accessible at from GEO (Accession No. GSE44748). Datasets were visualized using Integrative Genomics Viewer (IGV) software (Broad Institute).
Data Availability Statement
Microarray datasets are available from GEO (Accession No. GSE121646). All other data, materials and software are available to be shared upon request by contacting Kate G. R. Quinlan (kate.quinlan@unsw.edu.au).

Acknowledgements
We would like to thank Chris Brownlee and Emma Johansson at the UNSW BRIL Flow Cytometry Facility for their assistance with flow cytometry and sorting experiments. We would also like to acknowledge the assistance of the Ramaciotti Centre for Genomics (UNSW) for their Sanger sequencing and microarray services.

Author contributions
AJK, KGRQ and MC wrote the manuscript. AJK performed most of the experiments; LY performed the EMSA experiments, BMDM assays and monocyte precursor flow cytometry; MS performed the microarray analysis and motif discovery; LJN performed preliminary blood count experiments; GSG generated and validated K562 KLF3-/- cell lines; ESS performed western blots and real time qPCR and EJV provided technical assistance with animal experiments. AJK, KGRQ and MC designed the study. All authors reviewed the results and approved the final version of the manuscript.

Funding
This work was supported by funding from the Australian National Health and Medical Research Council to MC (APP1025873 and APP1025877). AJK, LJN, MS and ESS were supported by Australian Postgraduate Awards. KGRQ and EJV were supported by a UNSW Sydney Scientia Fellowship and Scholarship respectively.

Conflict of Interest
The authors declare that they have no conflicts of interest with the contents of this article.

References
1. Kauppinen, A., Paterno, J. J., Blasiak, J., Salminen, A., and Kaarniranta, K. (2016) Inflammation and its role in age-related macular degeneration. Cellular and molecular life sciences : CMLS 73, 1765-1786
2. Pérez-Cerdá, F., Sánchez-Gómez, M. V., and Matute, C. (2016) The link of inflammation and neurodegeneration in progressive multiple sclerosis. Multiple Sclerosis and Demyelinating Disorders 1, 9
3. Smolen, J. S., Aletaha, D., and McInnes, I. B. (2016) Rheumatoid arthritis. The Lancet 388, 2023-2038
4. Gajendran, M., Loganathan, P., Catinella, A. P., and Hashash, J. G. (2018) A comprehensive review and update on Crohn's disease. Disease-a-month : DM 64, 20-57
5. Straub, R. H., and Schradin, C. (2016) Chronic inflammatory systemic diseases: An evolutionary trade-off between acutely beneficial but chronically harmful programs. Evolution, medicine, and public health 2016, 37-51
6. Tak, P. P., and Firestein, G. S. (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107, 7-11
7. Mao, L., Nie, B., Nie, T., Hui, X., Gao, X., Lin, X., Liu, X., Xu, Y., Tang, X., Yuan, R., Li, K., Li, P., Ding, K., Wang, Y., Xu, A., Fei, J., Han, W., Liu, P., Madsen, L., Kristiansen, K., Zhou, Z., Ding, S., and Wu, D. (2017) Visualization and Quantification of Browning Using a Ucp1-2A-Luciferase Knock-in Mouse Model. Diabetes 66, 407-417
8. Bonizzi, G., and Karin, M. (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25, 280-288
9. Shakhov, A. N., Collart, M. A., Vassalli, P., Nedospasov, S. A., and Jongeneel, C. V. (1990) Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages. *J Exp Med* **171**, 35-47
10. Mori, N., and Prager, D. (1996) Transactivation of the interleukin-1alpha promoter by human T-cell leukemia virus type I and type II Tax proteins. *Blood* **87**, 3410-3417
11. Hiscott, J., Marois, J., Garoufalias, J., D'Addario, M., Roulston, A., Kwan, I., Pepin, N., Lacoste, J., Nguyen, H., Bensi, G., and et al. (1993) Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. *Mol Cell Biol* **13**, 6231-6240
12. Libermann, T. A., and Baltimore, D. (1990) Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. *Molecular and cellular biology* **10**, 2327-2334
13. Gadjeva, M., Tomczak, M. F., Zhang, M., Wang, Y. Y., Dull, K., Rogers, A. B., Erdman, S. E., Fox, J. G., Carroll, M., and Horwitz, B. H. (2004) A Role for NF-kB Subunits p50 and p65 in the Inhibition of Lipopolysaccharide-Induced Shock. *The Journal of Immunology* **173**, 5786-5793
14. Saccani, A., Schioppa, T., Porta, C., Biswas, S. K., Nebuloni, M., Vago, L., Bottazzi, B., Colombo, M. P., Mantovani, A., and Sica, A. (2006) p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. *Cancer Res* **66**, 11432-11440
15. Lawrence, T., Gilroy, D. W., Colville-Nash, P. R., and Willoughby, D. A. (2001) Possible new role for NF-kappaB in the resolution of inflammation. *Nat Med* **7**, 1291-1297
16. Martin, G. S., Mannino, D. M., Eaton, S., and Moss, M. (2003) The epidemiology of sepsis in the United States from 1979 through 2000. *N Engl J Med* **348**, 1546-1554
17. Andreakos, E., Sacre, S. M., Smith, C., Lundberg, A., Kiriakidis, S., Stonehouse, T., Monaco, C., Feldmann, M., and Foxwell, B. M. (2004) Distinct pathways of LPS-induced NF-kappa B activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of MyD88 and Mal/TIRAP. *Blood* **103**, 2229-2237
18. Das, H., Kumar, A., Lin, Z., Patino, W. D., Hwang, P. M., Feinberg, M. W., Majumder, P. K., and Jain, M. K. (2006) Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. *Proc Natl Acad Sci U S A* **103**, 6653-6658
19. Alder, J. K., Georgantas, R. W., 3rd, Hildreth, R. L., Kaplan, I. M., Morisot, S., Yu, X., McDevitt, M., and Civin, C. I. (2008) Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. *Journal of immunology (Baltimore, Md. : 1950)* **180**, 5645-5652
20. Date, D., Das, R., Narla, G., Simon, D. I., Jain, M. K., and Mahabeleshwar, G. H. (2014) Kruppel-like transcription factor 6 regulates inflammatory macrophage polarization. *J Biol Chem* **289**, 10318-10329
21. Eaton, S. A., Funnell, A. P., Sue, N., Nicholas, H., Pearson, R. C., and Crossley, M. (2008) A network of Kruppel-like Factors (Klf)s. Klf8 is repressed by Klf3 and activated by Klf1 in vivo. *J Biol Chem* **283**, 26937-26947
22. Funnell, A. P., Norton, L. J., Mak, K. S., Burdach, J., Artuz, C. M., Twine, N. A., Wilkins, M. R., Power, C. A., Hung, T. T., Perdomo, J., Koh, P., Bell-Anderson, K. S., Orkin, S. H., Fraser, S. T., Perkins, A. C., Pearson, R. C., and Crossley, M. (2012) The CACCC-binding protein KLF3/BKLF represses a subset of KLF1/EKLF target genes and is required for proper erythroid maturation in vivo. *Molecular and cellular biology* **32**, 3281-3292
23. Funnell, A. P., Mak, K. S., Twine, N. A., Pelka, G. J., Norton, L. J., Radziewic, T., Power, M., Wilkins, M. R., Bell-Anderson, K. S., Fraser, S. T., Perkins, A. C., Tam, P. P., Pearson, R. C., and Crossley, M. (2013) Generation of mice deficient in both KLF3/BKLF and KLF8 reveals a genetic interaction and a role for these factors in embryonic globin gene silencing. *Molecular and cellular biology* **33**, 2976-2987
24. Knights, A. J., Yik, J. J., Mat Jusoh, H., Norton, L. J., Funnell, A. P., Pearson, R. C., Bell-Anderson, K. S., Crossley, M., and Quinlan, K. G. (2016) Kruppel-like Factor 3 (KLF3/BKLF) Is
Required for Widespread Repression of the Inflammatory Modulator Galectin-3 (Lgals3). *J Biol Chem* **291**, 16048-16058

25. Vu, T. T., Gatto, D., Turner, V., Funnell, A. P., Mak, K. S., Norton, L. J., Kaplan, W., Cowley, M. J., Agenes, F., Kirberg, J., Brink, R., Pearson, R. C., and Crossley, M. (2011) Impaired B cell development in the absence of Kruppel-like factor 3. *J Immunol* **187**, 5032-5042

26. Bell-Anderson, K. S., Funnell, A. P., Williams, H., Mat Jusoh, H., Scully, T., Lim, W. F., Burdach, J. G., Mak, K. S., Knights, A. J., Hoy, A. J., Nicholas, H. R., Sainsbury, A., Turner, N., Pearson, R. C., and Crossley, M. (2013) Loss of Kruppel-like factor 3 (KLF3/BKLF) leads to upregulation of the insulin-sensitizing factor adipolin (FAM132A/CTRP12/C1qdc2). *Diabetes* **62**, 2728-2737

27. Crossley, M., Whitelaw, E., Perkins, A., Williams, G., Fujiwara, Y., and Orkin, S. H. (1996) Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells. *Mol Cell Biol* **16**, 1695-1705

28. Dewi, V., Kwok, A., Lee, S., Lee, M. M., Tan, Y. M., Nicholas, H. R., Isono, K., Wienert, G., Bao, S., Molero-Navajas, J. C., Perkins, A., Fujiwara, Y., Orkin, S. H., Bell-Anderson, K., and Crossley, M. (2015) Phosphorylation of Kruppel-like factor 3 (KLF3/BKLF) and C-terminal binding protein 2 (CtBP2) by homeodomain-interacting protein kinase 2 (HIPK2) modulates KLF3 DNA binding and activity. *The Journal of biological chemistry* **290**, 8591-8605

29. Sue, N., Jack, B. H., Eaton, S. A., Pearson, R. C., Funnell, A. P., Turner, J., Czolij, R., Denyer, G., Bao, S., Molero-Navajas, J. C., Perkins, A., Fujiwara, Y., Orkin, S. H., Bell-Anderson, K., and Crossley, M. (2008) Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis. *Mol Cell Biol* **28**, 3967-3978

30. Oettgen, H. F., Carswell, E. A., Kassel, R. L., Fiore, N., Williamson, B., Hoffmann, M. K., Haranaka, K., and Old, L. J. (1980) Endotoxin-induced tumor necrosis factor. *Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer* **75**, 207-212

31. Geng, S., Chen, K., Yuan, R., Peng, L., Maitra, U., Diao, N., Chen, C., Zhang, Y., Hu, Y., Qi, C.-F., Pierce, S., Ling, W., Xiong, H., and Li, L. (2016) The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. *Nature Communications* **7**, 13436

32. Steiner, A. A., Molchanova, A. Y., Dogan, M. D., Patel, S., Pétervári, E., Balaskó, M., Wanner, S. P., Eales, J., Oliveira, D. L., Gavva, N. R., Almeida, M. C., Székely, M., and Romanovsky, A. A. (2011) The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors. *The Journal of physiology* **589**, 2415-2431

33. Lingrel, J. B., Pilcher-Roberts, R., Basford, J. E., Manoharan, P., Neumann, J., Konaniah, E. S., Srinivasan, R., Bogdanov, V. Y., and Hui, D. Y. (2012) Myeloid-specific Kruppel-like factor 2 inactivation increases macrophage and neutrophil adhesion and promotes atherosclerosis. *Circ Res* **110**, 1294-1302

34. Kim, G. D., Das, R., Goduni, L., McClellan, S., Hazlett, L. D., and Mahabeleshwar, G. H. (2016) Kruppel-like Factor 6 Promotes Macrophage-mediated Inflammation by Suppressing B Cell Leukemia/Lymphoma 6 Expression. *J Biol Chem* **291**, 21271-21282

35. Burdach, J., Funnell, A. P., Mak, K. S., Artuz, C. M., Wienert, B., Lim, W. F., Tan, L. Y., Pearson, R. C., and Crossley, M. (2014) Regions outside the DNA-binding domain are critical for proper in vivo specificity of an archetypal zinc finger transcription factor. *Nucleic Acids Res* **42**, 276-289

36. Renner, F., and Schmitz, M. L. (2009) Autoregulatory feedback loops terminating the NF-kappaB response. *Trends Biochem Sci* **34**, 128-135

37. Liptay, S., Schmid, R. M., Nabel, E. G., and Nabel, G. J. (1994) Transcriptional regulation of NF-kappa B2: evidence for kappa B-mediated positive and negative autoregulation. *Molecular and Cellular Biology* **14**, 7695-7703
38. Fujita, T., Nolan, G. P., Liou, H. C., Scott, M. L., and Baltimore, D. (1993) The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers. *Genes Dev* 7, 1354-1363

39. Fan, Y., Guo, Y., Zhang, J., Subramaniam, M., Song, C. Z., Urrutia, R., and Chen, Y. E. (2012) Kruppel-like factor-11, a transcription factor involved in diabetes mellitus, suppresses endothelial cell activation via the nuclear factor-kappaB signaling pathway. *Arterioscler Thromb Vasc Biol* 32, 2981-2988

40. Vasseur, S., Hoffmeister, A., Garcia-Montero, A., Barthat, M., Saint-Michel, L., Berthezene, P., Fiedler, F., Closa, D., Dagorn, J. C., and Iovanna, J. L. (2003) Mice with targeted disruption of p8 gene show increased sensitivity to lipopolysaccharide and DNA microarray analysis of livers reveals an aberrant gene expression response. *BMC Gastroenterol* 3, 25

41. Biswas, S. K., and Lopez-Collazo, E. (2009) Endotoxin tolerance: new mechanisms, molecules and clinical significance. *Trends Immunol* 30, 475-487

42. Jain, M. K., Sangwung, P., and Hamik, A. (2014) Regulation of an inflammatory disease: Krüppel-like factors and atherosclerosis. *Arteriosclerosis, thrombosis, and vascular biology* 34, 499-508

43. Sweet, D. R., Fan, L., Hsieh, P. N., and Jain, M. K. (2018) Krüppel-Like Factors in Vascular Inflammation: Mechanistic Insights and Therapeutic Potential. *Frontiers in cardiovascular medicine* 5, 6-6

44. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR-Cas9 system. *Nature protocols* 8, 2281-2308

45. Gautier, L., Cope, L., Bolstad, B. M., and Irizarry, R. A. (2004) affy--analysis of Affymetrix GeneChip data at the probe level. *Bioinformatics* 20, 307-315

46. Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B., and Speed, T. P. (2003) Summaries of Affymetrix GeneChip probe level data. *Nucleic Acids Research* 31, e15-e15

47. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., and Smyth, G. K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res* 43, e47

48. Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. *OMICS* 16, 284-287

49. Quinlan, A. R., and Hall, I. M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* 26, 841-842

50. Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C., Singh, H., and Glass, C. K. (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Molecular cell* 38, 576-589

51. Fornes, O., Castro-Mondragon, J. A., Khan, A., van der Lee, R., Zhang, X., Richmond, P. A., Modi, B. P., Correard, S., Gheorghe, M., Baranašić, D., Santana-Garcia, W., Tan, G., Chèneby, J., Ballester, B., Parcy, F., Sandelin, A., Lenhard, B., Wasserman, W. W., and Mathelier, A. (2019) JASPAR 2020: update of the open-access database of transcription factor binding profiles. *Nucleic Acids Research* 48, D87-D92

52. Kulakovskiy, I. V., Vorontsov, I. E., Yevshin, I. S., Sharipov, R. N., Fedorova, A. D., Rumynskiy, E. I., Medvedeva, Y. A., Magana-Mora, A., Bajic, V. B., Papatsenko, D. A., Kolpakov, F. A., and Makeev, V. J. (2017) HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. *Nucleic Acids Research* 46, D252-D259

53. Machanick, P., and Bailey, T. L. (2011) MEME-ChIP: motif analysis of large DNA datasets. *Bioinformatics (Oxford, England)* 27, 1696-1697

54. Schmidt, D., Wilson, M. D., Spyrou, C., Brown, G. D., Hadfield, J., and Odom, D. T. (2009) ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. *Methods* 48, 240-248
Figure 1. Pronounced systemic inflammation in the absence of KLF3. Full peripheral blood counts were performed to assess the number of circulating (A) white blood cells (WBCs) and (B) monocytes in WT (n=42) and Klf3−/− (n=45) mice. (C) Flow cytometry was used to measure the proportion of CD115+ monocytes in WT and Klf3−/− blood as a percentage of live cells, following red blood cell lysis (n=3). For (A-C), bars are representative of the mean and for (C), error bars are means±SEM. (D) CD115+ Ly6C+ inflammatory monocytes were assessed in WT and Klf3−/− blood and spleen by flow cytometry. The means±SEM of four independent experiments is shown for the red-gated Ly6C+ population, with accompanying histograms showing the shift in Ly6C surface expression profile. Levels of inflammatory cytokines TNF, MCP-1 and IL-6 were assessed in supernatant from WT and Klf3−/− (E) BMDMs treated with vehicle (veh) or 100 ng/mL LPS for 24 h (n=3 per genotype/treatment group) and (F) plasma (WT: n=5 and Klf3−/−: n=7) with error bars representative of the mean ± SEM. Non-parametric Mann-Whitney U
tests were performed to assess statistical significance where *$P<0.05$, **$P<0.01$ and ***$P<0.001$. FSC-A: forward scatter-area.
Figure 2. Mice lacking KLF3 show a heightened and prolonged inflammatory response to endotoxin treatment. (A) WT and *Klf3*−/− mice were intraperitoneally administered with vehicle (veh) or 0.167 mg/kg LPS and their body temperature tracked by rectal probing over 24 h (veh: n=4 per genotype and LPS: n=5 per genotype). After 24 h, full blood counts were performed to assess the number of circulating (B) WBCs, (C) monocytes, (D) lymphocytes and (E) neutrophils. (F) TNF levels in plasma of WT and *Klf3*−/− mice treated with LPS (0.167 mg/kg) or vehicle were measured using ELISA. The proportion of CD115+ monocytes expressing Ly6C in the (G) blood and (H) spleen of WT and *Klf3*−/− mice treated for 24 h with vehicle or 0.167 mg/kg LPS was assessed by flow cytometry, with the mean values shown for each condition ± SEM. For (G-H), representative median plots are shown from 4-5 mice per group (see Figure S2C-D for all plots. For (A-F), error bars are means±SEM and non-parametric Mann-Whitney U tests were performed to assess statistical significance where *P<0.05, **P<0.01 between genotypes and #P<0.05, ##P<0.01 between conditions within the same genotype. FSC-A: forward scatter-area.
Figure 3. Macrophages lacking KLF3 exhibit enhanced inflammatory function. (A) KLF3 protein levels in BMDMs following stimulation with 100 ng/mL LPS for 0 to 24 h were measured by western blotting. 20 μg of nuclear extract was loaded per lane alongside a Rainbow Molecular Weight Marker (GE Healthcare). Membranes were probed with a polyclonal anti-KLF3 antibody (raised in rabbit) followed by reprobing of the membrane with an anti-β-actin antibody (raised in mouse; A1978). A positive control (nuclear extract was from COS-7 cells over-expressing pMT3-Klf3) and negative control (nuclear extract from untransfected COS-7 cells) were included, in addition to nuclear extracts from BMDMs lacking KLF3 to ensure antibody specificity. (B) EMSA was used to detect functional KLF3 bound to a radiolabeled DNA probe in nuclear extracts from BMDMs stimulated with 100 ng/mL LPS for 0 to 24 h. Nuclear extracts from COS-7 cells over-expressing pMT3-Klf3 and untransfected COS-7 cells were used as positive and negative controls respectively. Polyclonal anti-KLF3 antibody (α-KLF3) raised in rabbit was added to confirm the identity of bound protein as KLF3, labeled as a supershift band. Unbound radiolabeled DNA probe can be seen as an intense dark band at the bottom of the gel. (C) Phagocytosis assays were performed to compare the uptake of fluorescein-labelled K-12 E. coli bioparticles in WT and Klf3⁻/⁻ BMDMs (n=4), with the inclusion of COS-7 cells as a negative control (n=2). Cells were stimulated with 100 ng/mL LPS for 8 h and bioparticle uptake was read using 480 nm excitation/520 nm emission settings, represented as mean fluorescence intensity (MFI). (D) Production of nitrate was measured in the supernatant of BMDMs following exposure to 100 ng/mL LPS or vehicle for 24 h, with the inclusion of COS-7 cells as a reference point (n=8). For (C-D), error bars represent means±SEM and non-parametric Mann-Whitney U tests were carried out where *P<0.05.
Figure 4. Widespread gene deregulation in macrophages lacking KLF3 following endotoxin treatment. (A) Heat map of significantly \((P<0.05)\) deregulated genes in \(Klf3^{-/-}\) BMDMs following 8 h treatment with 100 ng/mL LPS or vehicle \((n=3\) per condition and genotype). (B) KEGG analysis of the most highly deregulated pathways in LPS-treated \(Klf3^{-/-}\) BMDMs. (C) Inflammatory cytokine genes showing deregulation in microarrays were validated using qPCR, with error bars representative of means±SEM of three independent biological replicates. Expression was normalized to 18S rRNA levels and the 0 h time point for each gene was set to 1. Non-parametric Mann-Whitney U tests were carried out where \(*P<0.05.\)
Figure 5. KLF3 suppresses activation of NF-κB genes. (A) A heat map was generated showing relative expression of genes encoding NF-κB subunits in WT and Klf3−/− BMDMs after 0 h and 8 h of 100 ng/mL LPS or vehicle treatment (n=3 per condition and genotype). (B) KLF3 enrichment at the proximal promoter regions of genes encoding NF-κB from a KLF3-V5 ChIP-Seq in murine embryonic fibroblasts, with scale (0-500) provided on the right-hand side of each panel. (C) EMSA was used to detect KLF3 binding to a radiolabeled DNA probe comprised of the wild type (CACCC) or mutated (ΔCACCC) mouse Rela promoter consensus sequence. Nuclear extracts from COS-7 cells over-expressing pMT3-Klf3 and untransfected COS-7 cells were used as positive and negative controls respectively. Polyclonal anti-KLF3 antibody raised in rabbit was added to confirm the identity of bound protein as KLF3, labeled as a supershift band. Unbound radiolabeled DNA probe can be seen as an intense dark band at the bottom of the gel. (D) In vivo KLF3 binding at the Rela promoter in WT and Klf3−/− BMDMs treated with 100 ng/mL LPS for 4 h was performed using ChIP-qPCR (n=2 mice per genotype). Lgals3 serves as a positive control region (+) where KLF3 is known to bind, and an unbound negative control locus -4.5 kb upstream of Klf8 (-) was also used (24). Error bars represent means±SEM. (E) Expression of Rela was analyzed in WT and Klf3−/− BMDMs following treatment with LPS (100 ng/mL) or vehicle (veh) by qPCR, and mRNA levels were normalized to 18S. The 0 h WT vehicle treatment was set to 1, error bars represent the means±SEM and non-parametric Mann-Whitney U tests were performed where *P<0.05. (F) Protein levels of the NF-κB p65 subunit (RELA) were measured in BMDMs following stimulation with 100 ng/mL LPS for 0 to 24 h. 20 μg of nuclear extract was loaded per lane alongside a Rainbow Molecular Weight Marker (GE Healthcare). Membranes were probed with a monoclonal anti-p65 antibody (raised in rabbit, 65 kDa) followed by reprobing of the membrane with an anti-β-actin antibody (raised in mouse; A1978). A control lane (nuclear extract from COS-7 cells, Ctrl) was also included, and the presence of a non-specific background band at ~102 kDa demarcated by an asterisk (*). kDa: kilodaltons.
Figure 6. Proposed model of KLF3-mediated suppression of inflammation following endotoxin exposure. Following the onset of an LPS-induced inflammatory response, KLF3 is responsible for regulating NF-κB signalling via repression of Rela/RELA (encoding the NF-κB subunit RELA/p65), suppressing the expression of inflammatory cytokines.
Krüppel-like factor 3 (KLF3) suppresses NF-kB–driven inflammation in mice
Alexander J. Knights, Lu Yang, Manan Shah, Laura J. Norton, Gamran S. Green, Elizabeth S. Stout, Emily J. Vohralik, Merlin Crossley and Kate G.R. Quinlan

J. Biol. Chem. published online March 25, 2020

Access the most updated version of this article at doi: 10.1074/jbc.RA120.013114

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts