Evaluation of the PANBIO Brucella Immunoglobulin G (IgG) and IgM Enzyme-Linked Immunosorbent Assays for Diagnosis of Human Brucellosis

George F. Araj,* Mireille M. Kattar, Layla G. Fattouh, Kayane O. Bajakian, and Sara A. Kobeissi

Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon

Received 7 July 2005/Returned for modification 18 July 2005/Accepted 28 July 2005

PANBIO Brucella immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assays (ELISAs) were assessed against Brucella standard agglutination tube and Coombs tests. The sensitivities of ELISA IgG and IgM were 91% and 100%, respectively, while the specificity was 100% for both. These ELISAs are simple, rapid, and reliable for the diagnosis of human brucellosis.

Brucellosis remains a prevalent disease in humans and animals in many countries around the world, especially those in the Middle East and the Arabian Gulf (2, 7). The clinical features and presentation of human brucellosis overlap with many other infectious and noninfectious diseases (13). Therefore, its accurate diagnosis necessitates the use of specific tests, mainly culture and serologic tests (1).

Several serologic tests have been developed for the diagnosis of human brucellosis, including the standard agglutination tube (SAT) test, anti-human globulin (Coombs) test, indirect fluorescence antibody (IFA) test, and enzyme-linked immunosorbent assay (ELISA) (3, 12, 16). SAT is the primary test used in many clinical laboratories. Although tests such as IFA and ELISA are simple and reliable for the detection of immunoglobulin (Ig) classes especially in complicated cases (3, 9, 14, 16), many laboratories still use the classical Coombs test, as an extension of SAT, to detect “incomplete,” “blocking,” or “nonagglutinating” antimicrobial antibodies, such as IgG (8, 10, 12).

Comparative studies among tests have shown the superiority of ELISA in detecting chronic and complicated cases of brucellosis. However, most of the previously reported ELISA techniques used were developed in-house (4, 6, 15).

This study was undertaken to evaluate commercial Brucella IgG and IgM ELISA kits (PANBIO, Windsor, Brisbane, Australia) in comparison with SAT and Coombs by using sera from patients with brucellosis and controls.

(This study was presented at the 104th Annual Meeting of the American Society of Microbiology, New Orleans, La., 23 to 27 May 2004 [abstr. no. V028].)

Sixty-five consecutive sera submitted for Brucella serodiagnosis, each from one patient, showing positive titers by the Brucella SAT test and/or the anti-human globulin test (Coombs), were included in this study. In addition, 68 sera from apparently healthy individuals, showing negative SAT and Coombs tests, and from patients with positive findings for autoimmune markers and for several bacterial and viral diseases were included as controls.

The SAT test was performed on serum dilutions of 1:20 to 1:1,280 by using Brucella abortus antigen (Immunostics, Inc., N.J.), as previously described (12). The anti-human globulin (Coombs) test was performed, as an extension of SAT, for detection of “incomplete,” “blocking,” or “nonagglutinating” IgG antibodies, as previously described (12), by using anti-human globulin reagent (anti-IgG; Ortho Diagnostic Systems, N.J.). Positive results were defined as any sample showing agglutination with SAT and/or Coombs at any level. The results were available after 24 and 48 h for SAT and Coombs testing, respectively.

The PANBIO Brucella IgG and IgM ELISAs were performed and interpreted according to the manufacturer’s instructions (PANBIO, Windsor, Brisbane, Australia). Each run included positive, negative, and cutoff calibrator controls. An index value (PANBIO units) was calculated to generate the results for either IgG or IgM as follows: negative, <9; equivocal, 9 to 11; and positive, >11. The ELISAs could be completed in around 2.5 h.

The assay results for the 65 sera from patients with suspected brucellosis tested by the different methods were divided into four groups (I to IV) based on serological profiles, as shown in Table 1.

Overall concordant results between ELISA IgG and ELISA IgM titers, and between SAT and Coombs titers, were found among 91% of the Brucella patient sera (groups I to IV). Six samples yielded discrepant results: these were positive by SAT, Coombs, and Brucella ELISA IgM titers but showed negative Brucella ELISA IgG (group IV). This could either indicate a false-negative ELISA IgM or a false-positive Coombs. Alternatively, these results may represent ELISA IgM false positives and ELISA IgG false negatives. All control sera showed negative results in all tests. The sensitivities of Brucella ELISA IgG and IgM were 91% and 100%, respectively, while the specificity was 100% for both.

The SAT and Coombs serologic tests used in this study are relied upon most frequently for the diagnosis of brucellosis. In this comparative study, the PANBIO ELISA kits showed con-
cordant results with the SAT and Coombs assays and can thus be reliably used for the diagnosis of human brucellosis. A discussion on the advantages and drawbacks of each of these tests is briefly warranted, as they were detailed in an earlier discussion on the advantages and drawbacks of each of these tests. In conclusion, the PANBIO Brucella ELISA showed concordant results with SAT and Coombs tests and can be reliably used for the diagnosis of human brucellosis. As noted in the literature, ELISA also provides all the advantages of Coombs in a simpler and more reliable way and bears a better relation to clinical findings. Thus, ELISA in general is considered and recognized as the test of choice in case of clinical suspicion of brucellosis, even when the Coombs test is negative.

REFERENCES

1. Araj, G. F. 1999. Human brucellosis: a classical infectious disease with persistent diagnostic challenges. Clin. Lab. Sci. 12:207–212.

2. Araj, G. F. 2000. Human brucellosis revisited: a persistent saga in the Middle East. BMJ 316:15.

3. Araj, G. F., A. R. Lulu, M. Y. Mustafa, and M. I. Khateeb. 1986. Evaluation of ELISA in the diagnosis of acute and chronic brucellosis in human beings. J. Hyg. Camb. 97:457–469.

4. Araj, G. F., A. R. Lulu, M. A. Saadah, A. M. Mousa, and I. L. Strannegard. 1986. Rapid diagnosis of central nervous system brucellosis by ELISA. J. Neuroimmunol. 12:173–182.

5. Araj, G. F., A. R. Lulu, M. I. Khateeb, M. A. Saadah, and R. A. Shakir. 1988. ELISA versus routine tests in the diagnosis of patients with systemic and neurobrucellosis. Acta Pathol. Microbiol. Immunol. Scand. 96:171–176.

6. Araj, G. F., and G. N. Awar. 1997. The value of ELISA versus negative Coombs findings in the serodiagnosis of human brucellosis. Serodig. Immunother. Infect. Dis. 8:169–172.

7. Baldi, P. C., G. F. Araj, G. C. Racaro, J. C. Wallach, and C. A. Fossati. 1999. Detection of antibodies to Brucella cytoplasmic proteins in the cerebrospinal fluid of patients with neurobrucellosis. Clin. Diag. Lab. Immunol. 6:756–759.

8. Colak, H., G. Usluer, I. Orgunes, B. Karaguven, and S. Barlas. 1992. Comparison of the Wright, indirect Coombs and enzyme-immunoassay IgG methods for the diagnosis of chronic brucellosis. Mikrobiyol. Bul. 26:56–60. (In Turkish.)

9. Edwards, J. M. B., A. J. Tannahill, and C. M. P. Bradstreet. 1970. Comparison of the indirect fluorescent antibody test with agglutination, complement-fixation and Coombs test for Brucella antibody. J. Clin. Pathol. 23:153–165.

10. Heidemann, W., K. Botzenhart, G. Droller, D. Schanz, G. Hermann, and K. Fleischmann. 1985. Brucellosis: serological methods compared. J. Hyg. Camb. 95:639–653.

11. Henderson, R. J., D. M. Hill, A. A. Cickers, J. M. Edwards, and H. Tillet. 1976. Correlation between serological and immunofluorescence results in the investigation of brucellosis in veterinary surgeons. J. Clin. Pathol. 29:35–38.

12. Kerr, W. R., W. J. Mcaughey, J. D. Coghlan, D. J. H. Payne, R. A. Quaife, L. Robertson, and I. D. Farrell. 1968. Techniques and interpretation in the serological diagnosis of brucellosis in man. J. Med. Microbiol. 1:181–193.

13. Lulu, A. R., G. F. Araj, M. I. Khateeb, M. Y. Mustafa, A. R. Yusuf, and F. F. Fenech. 1988. Human brucellosis in Kuwait: a prospective study of 400 cases. Q. J. Med. 66:539–54.

14. Magee, J. T. 1980. An enzyme-labelled immunosorbent assay for Brucella abortus antibodies. J. Med. Microbiol. 13:167–172.

15. Shakir, R. A., A. S. N. Al-Din, G. F. Araj, A. R. Lulu, A. R. Mousa, and M. A. Saadah. 1987. Clinical categories of neurobrucellosis: a report on 19 cases. Brain 110:213–223.

16. Young, E. J. 1991. Serological diagnosis of human brucellosis: analysis of 214 cases by agglutination tests and review of the literature. Rev. Infect. Dis. 13:359–372.