A biosynthetic model of cytochrome c oxidase as an electrocatalyst for oxygen reduction

Sohini Mukherjee1, Arnab Mukherjee2, Ambika Bhagi-Damodaran2, Manjistha Mukherjee1, Yi Lu2 & Abhishek Dey1

Creating an artificial functional mimic of the mitochondrial enzyme cytochrome c oxidase (CcO) has been a long-term goal of the scientific community as such a mimic will not only add to our fundamental understanding of how CcO works but may also pave the way for efficient electrocatalysts for oxygen reduction in hydrogen/oxygen fuel cells. Here we develop an electrocatalyst for reducing oxygen to water under ambient conditions. We use site-directed mutants of myoglobin, where both the distal Cu and the redox-active tyrosine residue present in CcO are modelled. In situ Raman spectroscopy shows that this catalyst features very fast electron transfer rates, facile oxygen binding and O–O bond lysis. An electron transfer shunt from the electrode circumvents the slow dissociation of a ferric hydroxide species, which slows down native CcO (bovine 500 s⁻¹), allowing electrocatalytic oxygen reduction rates of 5,000 s⁻¹ for these biosynthetic models.
Mimicking the sophistication of naturally occurring enzymes has been a long-term goal of the scientific community. An artificial analogue that can perform equally well as its natural predecessor will not only provide deeper understanding of the native enzymes, but also enable the development of efficient artificial catalysts. For several decades now, chemists have embarked on this daunting pursuit of emulating the efficiency and selectivity of naturally occurring enzymes and several important milestones have been achieved. Efforts from synthetic inorganic chemists have resulted in synthetic models of myoglobin (Mb), galactose oxidase, tyrosinase, cytochrome P450 and cytochrome c oxidase (CcO)1–5. Alternatively, there has been fervent pursuit of biochemical constructs inspired by natural metalloenzymes. A series of binuclear non-haem iron, cytochrome c, haem oxidases and iron–sulfur enzyme models have resulted from such efforts6–12. While none of the synthetic or biochemical models reported so far could match the reactivity exhibited by their natural counterparts, fundamental insights regarding the structure–function correlations of several metalloenzymes have been gained in the process7,13–15. In addition, key information about the secondary coordination sphere interactions present in the protein-active site, which play a dominating role in determining the electronic structure and reactivity of these metalloenzymes, have been identified16,17.

In a biosynthetic approach, stable naturally occurring proteins have been used as scaffolds for creating mimics of several metalloenzymes, such as hydrogenases which are involved in the reversible generation of H\(_2\) from water, haem proteins participating in electron transfer and O\(_2\)-binding, non-haem iron and copper enzymes active in small molecule activation, and even novel enzymes containing non-native cofactors18–24. For example, using this approach, biosynthetic models that structurally and functionally mimic CcO and nitric oxide reductase have been reported7,25. Despite decades of focused effort, however, biosynthetic models with catalytic efficiencies approaching those of the naturally occurring metalloenzymes have remained elusive26–28. In this report, we communicate a biosynthetic model of CcO bearing the distal Cu\(_B\) and a tyrosine residue in the distal site and a variant where a tyrosine residue was crosslinked to the active site histidines were also created (Fig. 1)29.

Herein we report the electrocatalytic properties of the G65YC\(_{u_B}\)Mb (higher synthetic yields than the tyrosine cross-linked variant) immobilized on an Au electrode using the method developed for WT Mb29.

Results

Electrode characterization by SERRS. Surface-enhanced resonance Raman spectroscopy (SERRS) data (Fig. 3a) of the electrodes bearing the G65YC\(_{u_B}\)Mb protein with and without Cu\(_B\) show the oxidation and spin state marker \(v_4\), \(v_5\), \(v_2\) and \(v_{10}\) bands at 1,375 cm\(^{-1}\), 1,493 cm\(^{-1}\), 1,585 cm\(^{-1}\) and 1,641 cm\(^{-1}\), respectively. The \(v_4\), \(v_5\) and \(v_2\) values are consistent with the presence of a five-coordinated high spin haem in the active site on these electrodes bearing the biochemical constructs of CcO32. Also the bands at 1,504 cm\(^{-1}\) and \(v_4\) at 1,641 cm\(^{-1}\) suggest the presence of a mixture of six-coordinate low spin species, which likely has H\(_2\)O as the axial ligand. The positions of these bands in the G65YC\(_{u_B}\)Mb and their relative intensities are different from Hemin-yne (Supplementary Fig. 1)29.

Electrode characterization by X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopic (XPS) data of a G65YC\(_{u_B}\)Mb-bound Au electrode clearly indicate the presence of Fe, Cu, C, N and O elements (Supplementary Fig. 2, Supplementary Table 1). The 3p\(_{3/2}\), 2p\(_{3/2}\) and 2p\(_{1/2}\) binding energy peak for the Fe\(_{III}\) of haem group appear at 56.5 eV, 709.4 eV and 722.4 eV, respectively33,34. The 2p\(_{3/2}\) and 2p\(_{1/2}\) binding energy peak for Cu\(_{II}\) in the distal site appear at 931.7 eV and 951.8 eV, respectively35. The N\(_1s\) peak is observed at 406.2 eV (Supplementary Table 1).

Figure 1 | Crystal structure. Crystal structure of a Mb-based biosynthetic model of CcO, F33Y-Cu\(_{B}\)Mb; pdb id: 4FWY. (a) The haem cofactor is in a cleft on the molecule protein surface, (colour coded according to the charge of the residues), with the propionate groups exposed to the solvent. (b) The computer model of G65YC\(_{u_B}\)Mb showing its catalytic centre containing the distal Cu\(_B\) bound to histidines and a tyrosine 65.
peak is broad (Supplementary Fig. 2), as it contains several components due to the presence of amide, haem pyrroles and the triazole groups (resulting from the covalent attachment of Hemin-yne) on the surface. Similarly, the CuB peak (Supplementary Fig. 2) contains contributions from different types of C atoms (aromatic, aliphatic, haem and so on) on these protein-modified surfaces.

Electrode characterization by CV. Cyclic voltammetry (CV) of G65YCubMb with and without the distal CuB immobilized onto the electrodes in degassed buffer show the haem Fe$^{3+}/2^+$ midpoint reduction potential ($E^{1/2}$) at -97 mV and -57.5 mV, respectively (Fig. 3b). The peak separation between the cathodic and the anodic peak for both the cases is ~70 mV (ref. 37). Hemin-yne displays the Fe$^{3+}/2^+$ reduction potential at -70.0 mV in the absence of a protein and -135.0 mV when bound to wild-type apo Mb29. In the case of the G65YCubMb protein-bound electrodes, the Cu$^{2+}/2^+$ process overlaps with the Hemin-yne Fe$^{3+}/2^+$ process, resulting in approximately twice the area under these CV peaks relative to the G65YCubMb-functionalized electrode36.

Figure 3 | SERRS and CV data for the electrode fabricated with G65YCubMb mutant. (a) SERRS spectra of G65YCubMb with (green) and without (red) the distal Cu$^{2+}$ in air-saturated 100 mM phosphate buffer (pH 7) solution. (b) Anaerobic CV of G65YCubMb without CuB (red) and after CuB binding (green). 2 V s$^{-1}$ scan rate, in degassed, pH 7, 100 mM phosphate buffer using a Pt counter electrode.

O₂ reduction reactivity of the electrode. In linear sweep voltammetry experiments performed in aerated buffers, large
electrocatalytic O₂ reduction currents are observed by the G65YCu₅Mb (with and without Cu²⁺) bearing bio-electrodes at pH 7 at room temperature, as the applied potential is lowered below +100 mV versus NHE (Fig. 4a, Supplementary Fig. 5). Thus as the potential of the electrode is lowered such that the iron in these proteins is reduced to Fe²⁺, an electrocatalytic O₂ reduction current is observed. It is important to note that the potential of O₂ reduction reaction (ORR) (E_{ORR}) is −263 mV, which is more negative than the E_{1/2} (−97 mV), suggesting that the potential determining step of ORR is not the reduction of resting Fe³⁺ to Fe²⁺ but the reduction of a different species with −166 mV more negative potential (Fig. 4a inset). A more negative E_{ORR} relative to E_{1/2} is mechanistically significant (vide infra).

In these active sites, O₂ may be reduced by 4e⁻ and 4H⁺ to H₂O, or by fewer electrons to produce partially reduced oxygen species (PROS) like O₂⁻ and H₂O₂. The extent of 4e⁻ reduction and the second order rate constant (k_{ORR}) of the ORR can be determined using rotating disc electrochemistry (RDE) where the catalytic O₂ reduction current increases with increasing rotation rates (Fig. 4a,b) following the Koutecky–Levich (K–L) equation (equation (1))

\[i_{\text{cat}}^{-1} = i_K(E)^{-1} + i_L^{-1} \]

where, \(i_K(E) \) is the potential-dependent kinetic current and \(i_L \) is the Levich current. \(i_L \) is expressed as

\[i_L = 0.62nFA[O_2]^{1/2}/D_{O_2}^{1/2}v^{-1/6} \]

where \(n \) is the number of electrons transferred to the substrate, \(A \) is the macroscopic area of the disc (0.096 cm²), \([O_2]\) is the concentration of O₂ in an air-saturated buffer (0.26 mM) at 25 °C.

Table 1 | E_{1/2} and coverage.

Protein	Metal-binding sites	E_{1/2} (mV)	Integrated coverage (mol cm⁻²)
Hemin-yne reconstituted myoglobin²⁹	Fe	−135.0 ± 5.0	2.15 ± 0.05 × 10⁻¹²
Hemin-yne reconstituted G65YCu₅Mb	Fe	−57.5 ± 5.0	2.55 ± 0.05 × 10⁻¹²
	Cu₅, Fe	−97.0 ± 5.0	4.65 ± 0.05 × 10⁻¹²

![Figure 4](image-url) | RDE data for electrode modified with G65YCu₅Mb with Cu²⁺. (a) Linear sweep voltammogram of G65YCu₅Mb with Cu²⁺ in air-saturated pH 7, 100 mM phosphate buffer solution at 100 mV s⁻¹ scan rate, potentials are scaled relative to NHE and a Pt counter electrode is used. Data are collected at different rotation speeds (200 r.p.m.—red, 400 r.p.m.—purple, 600 r.p.m.—green, 800 r.p.m.—blue). (b) Plot of \(i_{\text{cat}}^{-1} \) for G65YCu₅Mb-bearing bioelectrode at −300 mV potential and at multiple rotation rates, with the inverse square root of the angular rotation rate (\(1/\omega^{1/2} \)) (c) Difference between the potential for O₂ reduction (E_{ORR}) and the midpoint reduction potential of Fe³⁺/²⁺ redox couple (E_{1/2}).

© 2015 Macmillan Publishers Limited. All rights reserved.
D_O_2 is the diffusion coefficient of O_2 ($1.8 \times 10^{-5} \text{ cm}^2 \text{s}^{-1}$) at 25°C, ω is the angular velocity of the disc and v is the kinematic viscosity of the solution (0.009 cm2 s$^{-1}$) at 25°C (ref. 40).

Plot of i_{cat} at multiple rotation rates with the inverse square root of the angular rotation rate (i_{cat}) for G65YCuMb (with Cu$^{2+}$) (Fig. 4b) is linear. The slope of K–L plot is expressed as $1/\sqrt{n[6.62FA(D/O_2)^2/kT]}$, which can be used to experimentally estimate the value of n where n is the number of electrons donated to the substrate, that is, O_2. The slope obtained from the experimental data for G65YCumMb (Fig. 4b) is close to the theoretical slope (Fig. 4b, dotted purple line) expected for a $4e^−$ process and very different from the slope for a $2e^−$ process (Fig. 4b, dotted green line). Thus the G65YCumMb bioelectrode predominantly catalyses a $4e^−/4H^+$ reduction of O_2 to H_2O at pH 7.

The intercept of the K–L plot is the inverse of the kinetic current ($i_{ORR}(E)^{-1}$), where $i_{ORR}(E)$ is expressed as

$$i_{ORR}(E) = k_{ORR}nFA/O_2[I_{cat}]$$

where, n is the number of electrons, A is the geometric surface area, [O$_2$] is the bulk concentration of O_2, I_{cat} is the surface coverage of the catalyst (obtained from the integration of the anaerobic CV data) and k_{ORR} is the second order rate constant for O_2 reduction estimated at -300 mV. At this potential, in an oxygenated buffer, the G65YCumMb catalyst is involved in substrate diffusion-limited ORR. Using this equation (equation (3)) and the experimentally obtained $i_{ORR}(E)$ at -300 mV, the second order rate constant for O_2 reduction G65YCumMb is evaluated to be $1.98 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$ (Table 2). The pseudo first order rate can be determined (Table 2) from the second order rate by taking into account the substrate, O_2 concentration under these experimental conditions to be 0.26 mM (Supplementary Fig. 6). The catalytic ORR rate by G65YCumMb surpasses those reported for the best artificial synthetic analogues (Table 2).

The G65YCumMb biosynthetic Mb scaffold-based bio-electrode for O_2 reduction is remarkably stable. Monolayers bearing covalently attached O_2-reducing electrocatalysts reported so far have never been stable enough to allow these dynamic electrochemical experiments to determine the kinetic parameters (k_{ORR}, number of electrons and so on). Enzymes like laccases, directly attached to chemically modified graphite electrodes, were found to be stable enough to be investigated with these hydrodynamic techniques25. The failure to perform these experiments has been attributed to degradation of the catalyst during RDE experiment, that is, very small turnover numbers presumably due to the production of PROS during RDE. Rotating ring disc electrochemistry (RRDE) shows formation of only ~6% PROS by the G65YCumMb (Supplementary Fig. 7) during ORR, indicating that it reduces 96% of O_2 to H_2O consistent with the RDE data. During the RDE experiments (Fig. 4a), the G65YCumMb-functionalized electrodes bearing 10^{-12} mol of the catalyst reduced $1.8 \pm 0.3 \times 10^{-8}$ mol of O_2 ($7 \pm 1 \times 10^{-3}$ C total charge and $4e^−$ per O_2 molecule) yielding a turnover number of at least 10^4. The role of PROS in degrading the catalyst is established by the fact that the electrolytic current (at -0.3 V) remains stable in the presence of 50 μM catalase in solution (Supplementary Fig. 8).

Discussion

To understand the facile and selective O_2 reduction catalysed by the G65YCumMb biochemical model, the recently developed SERRS-RDE technique is employed42. In this technique, the rR spectra of the catalyst (that is, G65YCumMb) bearing electrode is collected while the system is involved in steady state O_2 reduction and the species accumulated in the steady state can be identified. For any species to accumulate in steady state, its rate of formation has to be greater than its rate of decay. Thus, while the species preceding the rate-determining step (rds) will accumulate at steady state, the accumulation of a species in steady state does not immediately imply its decay as the rds. In the absence of O_2, a high spin ferrous species is formed, characterized by a v_3 and v_5 vibrations at $1,357 \text{ cm}^{-1}$ and $1,473 \text{ cm}^{-1}$ (Fig. 5a, cyan), respectively, when a cathodic potential of -0.4 V is applied signifying reduction of the resting ferric state (Fig. 5a, red) to the active ferrous state at these potentials. However, when the same reducing potential is applied in an oxygenated buffer the SERRS-RDE data (Supplementary Fig. 9) clearly show the presence of different species during electrocatalytic ORR, which leads to broadening of the v_4, v_5 and v_3 regions (Fig. 5a, green) relative to the oxidized and reduced states (Fig. 5a, red and cyan). In particular, the v_5 and v_3 vibrations discernibly shift to higher energies as indicated by clear increase in intensities at $1,508 \text{ cm}^{-1}$ and $1,591 \text{ cm}^{-1}$ (Fig. 4b), suggesting the accumulation of $Fe^{IV}=O$ species during steady state ORR43. Signals from high spin ferrous, resting high spin ferric, low spin ferric and ferryl species with v_3 at $1,473 \text{ cm}^{-1}$ (Fig. 5a, cyan; and Fig. 5b, brown), $1,493 \text{ cm}^{-1}$ (Fig. 5a, red and Fig. 5b, dashed green), $1,504 \text{ cm}^{-1}$ (Fig. 5a, cyan and Fig. 5b, cyan) and $1,508 \text{ cm}^{-1}$ (Fig. 5a, green and Fig. 5b, green), respectively, could be convoluted by fitting the v_5 region of the spectrum. The lack of significant signal from the high spin ferrous species (weak v_3 at $1,473 \text{ cm}^{-1}$) suggests that O_2 binding to these species is facile in the steady state. These mutants use the basic design of Mb which has a very fast O_2-binding rate ($10^{-7} \text{ M}^{-1} \text{s}^{-1}$) (refs 44,45). This rate is indeed ≈ 10 times faster than O_2 binding to the haem a$_3$ site of Cyt c (ref. 46). Similarly, the very weak intensity of the high spin (HS) Fe^{III} species indicates that the ET to Fe^{III} resting state is very facile at these potentials as may be expected due to direct attachment of the Hemin-yne to the electrode. The significant intensity of ferryl species (v_3 at $1,591 \text{ cm}^{-1}$ and v_5 at $1,508 \text{ cm}^{-1}$) entails the O–O bond cleavage leading to its formation to be faster than its decay via reduction under steady state. Thus the reduction of the resting Fe^{III} state, O_2 binding to Fe^{IV} are facile in G65YCumMb under the reaction conditions. The low spin ferric species accumulated during steady state ORR could be a dioxygen adduct or peroxide adduct similar to those observed in native Cyt c and its model systems$^{46-51}$. The low frequency region shows $^{18}O_2$-sensitive bands suggestive of the formation of a low spin ferric peroxide and $Fe^{IV}=O$ (Supplementary Fig. 10).

If one were to conceive of a Gedanken steady state turnover experiment with Cyt c where the electron transfer to the active site is very fast (that is, in the hypothetical situation where ET from Cyt c to Cyt c is not the rds) as the ET from the electrode to the active site is very fast due to direct attachment of the later to the former, the species that would accumulate during turnover, based on the Babcock–Wikström mechanism (Fig. 6, the parameters of native Cyt c are indicated in purple and G65YCumMb are

Table 2 | k_{ORR} of different ORR catalysts.

ORR catalysts	Metals	k_{ORR}	PROS (%)
G65YCumMb	CuB	1,98 \times 107 M$^{-1}$s$^{-1}$ or	$\approx 6 \pm 1$
Synthetic	Haem	5,148 s^{-1}	
model60	CuB	1.2 \times 105 M$^{-1}$s$^{-1}$	$\approx 10 \pm 1$
	Haem		

ORR, O_2 reduction reaction; PROS, partially reduced oxygen species. k_{ORR} determined at -0.4 V versus NHE; PROS determined at -0.12 V versus NHE in both cases.
Figure 5 | SERRS-RDE data of G65YCubMb-bearing electrode. (a) SERRS-RDE data of G65YCubMb-bearing electrode at oxidized (applied potential was 0 V with respect to Ag/AgCl reference electrode), reduced (applied potential was −0.4 V with respect to Ag/AgCl reference electrode) state and in the presence of O₂ (O16) saturated 100 mM pH 7 phosphate buffer and (b) Components of the rR spectrum determined by simulating the spectra of G65YCubMb-bearing electrode in the presence of O₂ (O16) saturated 100 mM pH 7 phosphate buffer indicated in green in a.

Figure 6 | Mechanisms. Comparison between the mechanism of native CcO (ref. 46) in solution and the biosynthetic G65YCubMb model on electrode.

indicated in green⁵² and the arrows in black indicate general route for O₂ reduction by CcO followed in both the native system, as well as in the G65YCubMb-immobilized electrode) are the FeII,FeII-O₂, FeIII,O₂−, FeIII-OOH, FeIV=O and FeIII-OH species as the rates of formation of these species are greater than their rates of decay³³,³⁴. Out of these, the FeII-O₂, FeIII,O₂− and FeIII-OOH species will have Raman signatures of low spin haem (Fig 6), FeIII-OH will have rR signature of high spin haem and the FeIV=O will have signatures unique to haem ferryl species⁴⁶,⁵⁴,⁵⁵. The SERRS-RDE data show the presence of species having signatures of low spin FeII and FeIV=O. While the later can originate from only a single species, the former can indicate the presence of any of the three species or a combination of them. The lack of significant high spin signal indicates that the biosynthetic model circumvents accumulation of FeIII-OH and resting FeIII species in the steady state by facile ET. The overall rate-limiting step of native CcO in solution is the dissociation of hydroxide of the FeIII-OH end product of O₂ reduction from haem to generate the active ferric resting form and has a first order rate constant of 500 s⁻¹ (refs 46,54–56). This dissociation is required during turnover as the potential of this hydroxide-bound form is likely to be more negative that the five-coordinate resting oxidized site (which will be regenerated after hydroxide dissociation) and will not be reduced by haem a. While the E¹/² of a haem a,FeIII-OH species cannot be determined with confidence due to strong interaction potential and co-operativity between the haem a and haem a₃ sites, the potential of formate and azide-bound high spin haem a₃ site (analogous to hydroxide) is ~130 to 200 mV more negative than the resting ferric site⁵⁷,⁵⁸. The potential determining step of ORR (defined as the electron transfer (ET) step in catalysis having lowest potential) by the G65YCubMb is 166 mV more negative than the E¹/² for the resting high spin ferric state and is likely to be the reduction of the FeIII-OH species. Thus the bioelectrode can circumvent the kinetic barrier associated with the dissociation of the hydroxide by directly reducing it to ferrous at 166 mV lower potential. This direct electron transfer to the ferric hydroxide species, which is an intermediate in the catalytic cycle of CcO, circumventing a slow step in catalysis, is an electron transfer shunt analogous to peroxide shunt in cytochrome P450, which overcomes the rate-determining O₂ activation step of the native enzyme⁵⁹. In the mass transfer controlled region of the catalytic current, all ET steps are facile and steps like O₂ binding, protonation and O–O bond cleavage can be rds at these potential. The lack of HS FeII accumulation in the SERRS-RDE indicates that O₂ binding to FeII is very fast and not the rds. The O–O bond cleavage in the Babcock–Wikström mechanism involves ET to the active site and not the rds as well. Thus rds of ORR by these biosynthetic models is likely to be the protonation of the FeIII-O₂⁻ species with a first order rate constant of 5,000 s⁻¹ (Fig. 6).

In an air-saturated buffer (0.26 mM O₂), the pseudo first order rate constant of ORR by G65YCubMb is determined to be ~5–6 × 10⁵ s⁻¹ (kORR [O₂]). The highest second order O₂ reduction rate reported for any synthetic mimic of CcO is 1.2 × 10⁸ M⁻¹ s⁻¹; that too on a multilayer having 1,000 times more catalyst than the G65YCubMb electrodes⁶⁰. The second order rate
constant of G65YCuMb is \(10^7 \text{M}^{-1} \text{s}^{-1}\) which is, thus, 2 orders of magnitude higher than best synthetic haem/Cu-based \(\text{O}_2\) reduction electrocatalyst. Thus the selectivity and kinetic rate of the G65YCuMb-bearing electrode surpasses those reported for smaller synthetic analogues and illustrates the advantages of using a biochemical scaffold over a synthetic scaffold. Although the pseudo first order rate constant of the G65YCuMb is 10 times faster than the rate of native \(\text{Gt}\) in solution, such a comparison is vulnerable to differences in reaction conditions (for example, G65YCuMb is water soluble but \(\text{Gt}\) exists in membranes). Alternatively, erstwhile efforts resulting in electrodes bearing native \(\text{Gt}\) in a manner similar to these bio-electrodes show extremely sluggish \(\text{O}_2\) reduction. This is due to improper alignment of this membrane-bound protein on the electrode, which precludes efficient electron transfer to the active site. However, the direct attachment of haem to the electrode utilizing its solvent-exposed propionate groups (that is, a short circuit) enables fast electron transfer to the active site. This is further supported by the fact that ethynylferrocene (Fc) is attached to the same surface \(\sim 25 \text{mV} \text{ peak separation} \) even at \(5 \text{ V s}^{-1}\) (Supplementary Fig. 13), suggesting that the ET is indeed fast. As a result when a CuO-functionalized SAM-covered Au electrode produces \(<1 \mu\text{A} \text{electrochemical} \text{O}_2 \text{ reduction current at} \sim 300 \text{mV}, \) this bio-electrode produces \(\sim 100 \mu\text{A} \text{ current at similar potentials}\).

Finally, the G65YCuMb mutant has residues in the distal pocket that can help both electron and proton transfer during \(\text{O}_2\) reduction (Y65 in G65YCuMb). In \(\text{Gt}\), the involvement of Tyr 244 residues in proton/electron transfer during \(\text{O}_2\) reduction is now widely accepted. Previous biochemical and structural studies on these mutants had indeed indicated the close proximity of this residue to the distal site. An analogous biochemical model without the Y65 residue, CuBpMb, is not as stable as the G65YCuMb as the former degrades rapidly during the RDE experiments (Supplementary Fig. 12). In summary, a electron transfer shunt which circumvents the rate-determining dissociation of a ferric hydroxide species by directly reducing it at slightly negative potential, fast \(\text{O}_2\) binding, fast electron transfer to the active site and the presence of a protective Y65 residue in a biochemical model of \(\text{Ct}\) results in \(\text{O}_2\) reduction activity 100 times faster than the best synthetic models, order of magnitude faster than \(\text{Ct}\) immobilized on electrode and follows a mechanism comparable to that of native \(\text{Gt}\) in solution.

Methods

Materials. Azidoundecane-11-thiol and Hemin-yne were synthesized following the reported procedure. 6-Mercaptohexanoic acid was purchased from Sigma Aldrich. Di-sodium hydrogenophosphate dihydrate (Na\(_2\)HPO\(_4\), 2H\(_2\)O) was purchased from Merck. 2, 6-lutidine was purchased from Avra Synthesis Pvt. Ltd. These chemicals were used without further purification. Au wafers were purchased from Platypus Technologies (1000 Å of Au on 50 Å of Ti adhesion layer on top of a Si(III) surface). Transparent Au wafers (100 Å of Au on 10 Å of Ti) were purchased from Phaxis, Switzerland. Au and Ag discs for the RRDE and SERRS experiments, respectively, were purchased from Pine Instruments, USA. The Mb mutants were prepared as reported in the literature. Analysis of the components of the RR spectrum was done by using Lorenzian line shape of peak fit software.

Instrumentation. All electrochemical experiments were performed using a CH Instruments (model CHI760D Electrochemical Analyzer). Bipotentiostat, reference electrode and Teflon plate material evaluating cell (ALS, Japan; http://www.als-japan.com/1398.html) were purchased from CH Instruments. The RRDE set-up from Pine Research Instrumentation (EE series ChangeDisk tips with AFE6M rotor) was used to obtain the RRDE data. The mutant Mb-functionalized or SAM-covered Au surface (disc of 0.1 cm\(^2\) area for RRDE, RRDE and wafer of 0.45 cm\(^2\) area for CV) was always used as the working electrode. The XPS data were collected in a Omicron (model: 1712-62-11) spectrometer using a high-resolution monochromatic Al-K\(_x\) source at 1.4867 eV under 15 kV voltage and 10 mA current maintaining a base pressure of 5 \(\times\) 10\(^{-10}\) mbar. The binding energies were calibrated to the Ag 3d\(_{5/2}\) peak at 368.2 eV. The resonance Raman experiments were performed on the Kr\(^+\) Laser (model—S800, Jobin Yvon) and the data was collected using the Spectrograph (model—Trivista 555) from Princeton Instruments.

Formation of mixed SAM and covalent attachment of Hemin-yne to it. Mixed self-assembled monolayer of 1-azidoundecane-11-thiol and 6-mercaptobenzoic acid was formed on immersing the properly cleaned Au wafers or disks into the solution containing the Plateau-side monolayer solution containing 11-thiol and 6-mercaptobenzoic acid in 10 ml of ethanol in a desired ratio (typically 1:49). The total thiol concentration of these deposition solutions were always maintained at 1 mM. On this SAM Hemin-yne was covalently attached using ‘Click’ reaction.

Reconstitution of Apo-G65YCuMb mutants to G65YCuMb. For all the experiments on heterogeneous SAM surfaces, the Hemin-yne modified \(-\text{COOH}\) SAM surfaces were incubated with a 20 \(\mu\text{M}\) apoprotein (Apo-G65YCuMb) solution for 2 h. The supernatant solution was drained and the surfaces were cleaned with water. The presence of \(\text{Cu}^{2+}\) in the non-haem-binding site is confirmed by electron paramagnetic resonance (EPR) spectroscopy (Supplementary Fig. 13). The immobilization of the mutant is further confirmed by the absorption spectra and SERRS of the surface fabricated with those mutants (Supplementary Fig. 14, Supplementary Fig. 15).

Cyclic voltammetry. The CV was performed using Au wafers sandwiched between two Teflon blocks of the Platypus material evaluation cell. All electrochemical experiments were done in pH 7 phosphate buffer containing potassium hexafluorophosphate. Anaerobic cyclic voltammetric experiments were done by using degassed buffer (three cycles of freeze–pump–thaw). Ag/AgCl reference electrode and Pt counter electrode were used throughout all the electrochemical experiments except the case of anaerobic experiments where only Ag wire was used as the reference electrode. The peak areas were estimated by integrating the anodic/cathodic peak of the anaerobic CV of the mutant Mb-functionalized SAM-covered Au surface, using the data acquisition software itself. A line collinear with the background is used to subtract the background. The estimated area has been further confirmed by subtracting the background current of a SAM-functionalized electrode (Supplementary Fig. 11) bearing ferrocene. Both these approaches provide the same estimate.

To ensure that the SAM surface is stable during the electrocatalytic investigations, disc bearing just the SAM was used for several electrocatalytic experiments (200–1000 p.p.m.) and its capacitive current was found not to change, indicating that the SAM is retained on the electrode during these dynamic electrochemistry experiments (Supplementary Fig. 16). SAM can also be damaged when the protein stop the SAM degrades during ORR due to the reactive oxygen species produced. When an unstable electrocatalyst (Hemin-yne) decayed there was a steady loss of ORR current, indicating degradation of the active site but the capacitive currents of the SAM were unaltered (Supplementary Fig. 17).

SERRS and SERRS-RDE. The excitation wavelength used in the Resonance Raman experiments was 406.7 nm and the power applied to the sample was 10–15 mW. The spectrometer was calibrated against naphthalene. The Ag surfaces were roughened before SERRS experiments following literature protocols. The SERRS-RDE set-up is described in ref. 42. The data for the oxidized state was obtained by holding the potential of the disc at 0 mV versus NHE, and the data during steady state ORR was obtained by holding the disc at \(-400 \text{mV versus NHE}\) and the disc was rotated at 3000 r.p.m. Normally data were acquired over a period of 300 s.

References

1. Collman, J. P. et al. A cytochrome c oxidase model catalyst oxidizes oxygen to water reduction under rate-limiting electron flux. Science 315, 1565–1568 (2007).
2. Mirica, L. M. et al. Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism. Science 308, 1890–1892 (2005).
3. Wang, Y., DuBois, J. L., Hedman, B., Hodgson, K. O. & Stack, T. D. Catalytic galactose oxidase models: biomimetic Cu(II)-phenoxyl-radical reactivity. Science 279, 537–540 (1998).
4. Beinert, H., Holm, R. H. & Måjdnck, E. Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277, 653–669 (1997).
5. Cole, A. P., Root, D. E., Mukherjee, P., Solomon, E. I. & Stack, T. D. \(4nck, E\). Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277, 653–669 (1997).
6. Robertson, D. E. et al. Design and synthesis of multi-heme proteins. Nature (London) 368, 425–432 (1994).
7. Wan, D. et al. Rational design of a structural and functional nitric oxide reductase. Nature 462, 1079–1082 (2009).
8. Tard, C. et al. Synthesis of the H-cluster framework of iron-only hydrogenase. Nature 433, 610–613 (2005).
9. Abeo bella, N. W. et al. Effects of thioredoxin subunits on the O2 reactivity of β-
diketiminate-Cu(II) complexes: probing the role of the methionine ligand in
copper monooxygenases. J. Am. Chem. Soc. 128, 3445–3458 (2006).
10. Shin, H., Lee, H., Kang, C. & Karlin, K. D. Electrochemical four-electron
reductions of O2 to H2O2 with cytochrome c oxidase model compounds.

Electrochem. Acta 48, 4077–4082 (2003).

11. Kim, E. et al. Superoxido, μ-peroxo, and μ-oxo complexes from heme/O2 and
heme-Cu₂O₂ reactivity: Copper ligand influences in cytochrome c oxidase models.
Proc. Natl Acad. Sci. USA 100, 3623–3628 (2003).

12. Tomin, W. B. & Que, J. L. Sterically hindered benzoates: a synthetic strategy
for modeling dioxygen activation at diiron active sites in proteins. J. Chem. Soc.
Dalton Trans. 31, 653–660 (2002).

13. Osyczka, A., Moser, C. C., Dalldal, F. & Dutton, P. L. Reversible redox energy
coupling in electron transfer chains. Nature 427, 607–612 (2004).

14. Koder, R. L. et al. Design and engineering of an O2 transport protein. Nature
458, 385–399 (2009).

15. Page, C. C., Moser, C. C., Chen, X. & Dutton, P. L. Natural engineering
principles of electron tunneling in biological oxidation-reduction. Nature 402,
47–52 (1999).

16. Tani, F., Matsu-ura, M., Nakayama, S. & Naruta, Y. Synthetic models for the
active site of cytochrome P450. Coord. Chem. Rev. 226, 219–226 (2002).

17. Dey, A. et al. Solution tuning of electrophysically potent heme centers in the active sites of
PiPiP versus ferrodoxin. Science 318, 1644–1648 (2007).

18. Astrow, M. L., Peacock, A. F. A., Stucky, J. A. & Pecoraro, V. L. Hydrolytic
catalysis and structural stabilization in a designed metalloprotein. Nat. Chem.
4, 118–123 (2012).

19. Kojima, N. & Palmer, G. Further characterization of the potentiometric
 roles of glutamates and metal ions in a rationally designed nitric oxide
reductase based on myoglobin. Proc. Natl Acad. Sci. USA 107, 8581–8586 (2010).

20. Esselborn, J. et al. Spontaneous activation of [FeFe]-hydrogenases by an
inorganic [2Fe] active site mimic. Nat. Chem. Biol. 9, 607–609 (2013).

21. Fontecave, M. & Artiero, V. Bioinspired catalysis at the crossroads between
biology and chemistry: A remarkable example of an electrocatalytic material
mimicking hydrogenases. C. R. Chim. 14, 362–371 (2011).

22. Lu, Y. & Valentine, J. I. Engineering metal-binding sites in proteins. Curr.
Opin. Struct. Biol. 7, 495–500 (1997).

23. Cracknell, J. & Blanford, C. F. Developing the mechanism of dioxygen
reduction catalyzed by multicopper oxidases using protein film
coupling in electron transfer chains. Faraday Discuss. 140, 3445–3458 (2016).

24. Bandyopadhyay, S., Mukherjee, S. & Dey, A. Modular synthesis, spectroscopic
tuning of low-spin heme-peroxo-Cu complexes. J. Am. Chem. Soc. 135,
1567–1581 (2013).

25. Denisov, I. G., Makris, T. M., Sligar, S. G. & Schlichting, I. Structure and
catalytic and structural stabilization in a designed metalloprotein. Nat.
Chem. 4, 118–123 (2012).

26. Sigman, J. A., Kim, H. K., Zhao, X., Carey, J. R. & Lu, Y. The role of copper and
protons in heme-copper oxides: kinetic study of an engineered heme-copper
center in myoglobin. Proc. Natl Acad. Sci. USA 100, 3623–3634 (2003).

27. Bhagi-Damodaran, A., Petrik, I. D., Marshall, N. M., Robinson, H. & Lu, Y.

28. Dynamical tuning of heme redox potentials and its effects on O2 reduction
rates in a designed oxidase in myoglobin. Proc. Natl Acad. Sci. USA 107,
11882–11885 (2014).

29. Blanford, C. F., Foster, C. E., Heath, R. S. & Armstrong, F. A. Efficient
electrochemical oxygen reduction by the blue copper oxidase, laccase, directly
attached to chemically modified carbons. Faraday Discuss. 140, 319–335 (2009).

30. Blanford, C. F., Heath, R. S. & Armstrong, F. A. A stable electrode for high-
potential, electrocatalytic O2 reduction based on rational attachment of a blue
copper oxide to a graphite surface. Chem. Commun. 43, 1710–1712 (2007).

31. Mubamba, K. D. & Que, J. L. Oxidases: Functional metalloenzyme that reduces O2
to H2O with cytochrome c oxidase model compounds. Biochemistry 44,
10498–10503 (2005).

32. Gadgil, S. K., Murphy, W. L. & Gopalan, P. Crosslinked PEG mats for peptide
coupling in protein immobilization. J. Mater. Chem. B 1, 1717–17187 (2013).

33. Bandyopadhyay, S., Mukherjee, S. & Dey, A. Synthesis, spectroscopic
characterization and in situ functionalization using 'click' chemistry of azide
terminated amine containing self-assembled monolayers. RSC Adv. 3,
17174–17187 (2013).

34. Guo, L.-H., McLendon, G., Razafrifino, H. & Gao, Y. Photo-active and electro-
active protein films prepared by reconstitution with metalloporphyrins self-
assembly on gold. J. Mater. Chem. 16, 6258–6264 (2006).

35. Ghodselahi, T., Vesaghi, M. A., Shafiekhani, A., Baghizadeh, A. & Lamei, M. XPS study of the Cu2O2Cu core-shell nanoparticles. Appl. Surf. Sci. 255,
2730–2734 (2008).

36. Schmitt, S. K., Murphy, W. L. & Gopalan, P. Crosslinked PEG mats for peptide
immobilization and stem cell adhesion. J. Mater. Biol. 1, 1349–1360 (2013).

37. Burgess, J. D., Rhoten, M. C. & Hawkrige, F. M. Cytochrome c oxidase
immobilized in stable supported lipid bilayer membranes. Langmuir 14,
2467–2475 (1998).

38. Naumann, R. et al. The peptide-tethered lipid membrane as a biomimetic system to incorporate cytochrome c oxidase in a functionally active form.

J. Am. Chem. Soc. 134, 11351–11362 (2002).

39. Buffett, J. D., Jones, V. W., Porter, M. D., Rhoten, M. C. & Hawkrige, F. M.
Scanning force microscopy images of cytochrome c oxidase immobilized in an
electrode-supported lipid bilayer membrane. Langmuir 14, 6628–6631 (1998).

40. Naumann, R. et al. The peptide-tethered lipid membrane as a biomimetic system to incorporate cytochrome c oxidase in a functionally active form.

J. Am. Chem. Soc. 134, 11351–11362 (2002).

41. Buffett, J. D., Jones, V. W., Porter, M. D., Rhoten, M. C. & Hawkrige, F. M.
Scanning force microscopy images of cytochrome c oxidase immobilized in an
electrode-supported lipid bilayer membrane. Langmuir 14, 6628–6631 (1998).
Acknowledgements
This research is sponsored by Department of Science and Technology, India and US National Institute of Health (GM062211).

Author contributions
S.M. acquired all the data, analysed the data and wrote the paper. A.M. and A.B. purified and provided the mutant proteins and helped write the paper. M.M. helped S.M. in acquiring some data. Y.L. provided the proteins, helped write the paper and developed the science. A.D. conceived the study, analysed the data, developed the science and wrote the paper.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Mukherjee, S. et al. A biosynthetic model of cytochrome c oxidase as an electrocatalyst for oxygen reduction. Nat. Commun. 6:8467 doi: 10.1038/ncomms9467 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/