Development and Sliding Wear Response of Epoxy Composites Filled with Coal Mine Overburden Material

Prithika Das*1, Alok Satapathy2, M. K. Mishra1
1 Department of Mining Engineering, 2Department of Mechanical Engineering National Institute of Technology, Rourkela, Orissa, India
Corresponding author Email: das.prithikarkl@gmail.com

Abstract: The paper reports on development and characterization of epoxy based composites filled with micro-sized mine overburden material. Coal mine overburden material is typically highly heterogeneous and is considered as waste material. For excavating each ton of coal, roughly 5 tons of overburden materials are removed and is dumped nearby occupying large space. Gainful utilization of this waste is a major challenge. In the present work, this material is used as filler materials in making a new class of epoxy matrix composites. Composites with different weight proportions of fillers (0, 10, 20, 30 and 40) wt. % are prepared by hand layup technique. Compression tests are performed as per corresponding ASTM standards to assess the compressive strength of these composites. Further, dry sliding tests are performed following ASTM G99 standards using a pin on disk machine. A design of experiment approach based on Taguchi’s L16 orthogonal arrays is adopted. Tests are performed at different sliding velocities for multiple sliding distances under varying normal loads. Specific wear rates of the composites under different test conditions are obtained. The analysis of the test results revealed that the filler content and the sliding velocity are the most predominant control factors affecting the wear rate. This work thus, opens up a new avenue for the value added utilization of coal mine overburden material.

Keywords: Epoxy, taguchi method, coal mine overburden, polymer composites

1. Introduction

India produces ample amount of coal every year. Maximum number of thermal plants as well as household activities depends upon coal. So, through opencast mining process, coal is extracted from the environment. For excavating each ton of coal, near about five to six tons of overburden material are excavated. After digging the coal, these mine overburden materials are left over lands. These soils are occupying useful lands and destroying its fertility. Overburden materials are combined with both coarse and fine grains with equal amounts. Since, it is having fine grains and is typically loose, so due to wind they are highly prone to flow and damages the surrounding which leads to health issues. So, utilization, recycle and reuse of mine overburden material are necessary. Earlier some trials had been made to discover reuse techniques for a huge range of waste substances along with blast furnace and steel slag, construction waste, fly ash, red mud and so forth.

Polymers are found in numerous applications including aerospace, vehicles, household appliances, constructing materials and many others. Due to weight sensitiveness, polymers are used, but their high cost is a drawback. Therefore, to reduce the cost, industrial wastes are used. Proper mixing of matrix and reinforcement will provide a better composite material. The addition of filler material to polymer matrix increases its resistance to moisture and improves its mechanical characteristics.
Although many works have been focused on polymer composites filled with particulates in the past, reports on the use of industrial solid wastes as particulate fillers have been rare. Only a few studies on use of industrial wastes like red mud, fly ash, copper slag etc. in polymer composites have been reported so far. Mechanical properties of epoxy and fly ash composites are studied by Chaowasakoo and Sombatsompop [1]. Compressive strength of fly ash epoxy composites are reported by Srivastava and Pawar [2]. Patnaik et al. [3, 4] explained the fabrication of the glass-fibre reinforced fly ash filled polyester composites and showed the erosion wear using Taguchi’s orthogonal array. Incorporation of solid waste and E-glass fiber with polyester has been showed by Mahapatra [5]. Gangilet al. [6] produced homogenous and functionally graded vinyl ester composites by mixing the particulate-filled CBPD and short Kevlar fibre. The physio-mechanical polypropylene composites filled with red mud studied by Zhang et al. [7].

Similarly, from copper extraction industries copper slag are generated during matter smelting and refining of copper [8]. Biswas and Satapathy [9] reported the use copper slag in polymers. Reports are also available on characterization and sliding wear behaviour of epoxy composites filled with steel industry wastes like blast furnace slag [10] and LD sludge [11].

Although a number of studies have been reported on the use of various solid wastes as fillers in polymer composites, till date there has not been any work reported on composites using overburden material produced from coal mines as filler. This work explores the possibility of developing such a composite and studies the effect of mine overburden material on the sliding wear behaviour.

2. Materials and methods

2.1 Material used

The overburden material is collected from the Bharatpur Mines, Talcher, Odisha. This coal belongs to Gondwana Series. Freshly dumped overburden materials in the dumping yard were collected in the gunny bag, then; the mouth is sealed and was packed into another poly bag and sealed. Couples of overburden material in multiple gunny bags are approximately transported to the laboratory. The sealing was to preserve the original moisture content. At the time of experimentation, gunny bags were opened and material was taken out. It was crushed and sieved to 0-2 microns grain sizes.

2.2 Composite fabrication

These overburden materials are collected and crushed properly. Then, these particles are sieved to get a size of range 70-100 micrometer. The epoxy (LY 556) and hardener (HY 951) is blended within the ratio of 10:1 by using weight. The overburden material and epoxy are then mixed together in numerous proportions to prepare the composites. The combination is very well combined until uniform dough is formed. Before pouring the dough inside the test tube, it is coated with wax. After that, dough is poured inside the test tube and then kept at room temperature for 24 hours for curing. When the composites are prepared, the test tubes are broken and the composites came out in easy manner. Likewise four samples are made with different compositions (0, 10, 20, 30, 40 wt. %) of overburden material.

2.3 Compressive test

The cylindrical shaped composite samples of required dimension of length 3 cm and diameter 1.2 cm are used for compressive test as per ASTM D695, ISO 604 so as to get the aspect ratio from 2-2.5. The specimen is kept in between two platens of the compression testing machine. A compressive load is applied to the sample slowly till the failure takes place.

2.4 Sliding wear test

In dry sliding test, by using the pin on disc machine, the wear test was done by ASTM G99 standard. The disc which is made up of hardened steel was rotating while the sample was kept constant. Samples are fitted to the holder and sliding rpm is set, track radius and normal load are set before starting the test. In a pin-on disc test, the sample is stationary and the disc is rotating with a certain
speed and a lever mechanism is used to apply load. A series of tests using Taguchi’s L$_{16}$ orthogonal array are conducted with four sliding velocities of 32, 63, 94 and 126 cm/sec under four different normal loadings of 20, 30, 40 and 50 N, respectively. After each trial, both the specimen and the disc are cleaned with acetone so as to get perfect readings. The sample is tested before and after wearing every time.

$$W_s = \frac{\Delta m}{\rho \times t \times V_s \times f_n}$$

Where, Δm the mass loss in the test (g), ρ is the density (g/mm3), t is the test duration (s), V_s is the sliding velocity (m/s), f_n is the normal load (N) and W_s is the specific wear rate (mm3/Nm).

2.5 Taguchi experimental design

Design of Experiment (DOE) is an effective device used for interpreting and modeling the influence of control factors on overall performance output. In design of experiment, selection of control factors is very much essential. Numerous parameters like sliding velocity, normal load, sliding distance and filler content are there to study the L$_{16}$ orthogonal array. The use of Taguchi L$_{16}$ reduced the number of experiments from 4^4=256 conventional runs to simply 16 runs. It saves the cost as well as time. The Signal to Noise (S/N) ratio for minimum wear rate can be expressed as “smaller is better” and can be calculated in logarithmic transformation as shown below.

$$\frac{S}{N} = -10 \log \frac{1}{n} \sum y^2$$

Where, y is the observed data and n is the number of observations.

Control Factors	1	2	3	4	Units
Sliding Velocity	32	63	94	126	cm/sec
Normal Load	20	30	40	50	N
Sliding Distance	500	1000	1500	2000	m
Filler Content	10	20	30	40	wt. (%)

3. Results and Discussion

3.1 Compressive strength

For applications like automobile, designing of hauled roads and ceramic parts, the unconfined compression test is generally used. It is often used as an index to measure the strength enhancement of materials due to treatment. After performing the compression test, the tested sample is shown in figure 1. Similarly in figure 2, the stress-strain diagram of 30 wt. % and 40 wt. % of epoxy-overburden material composites are shown. Table 2 and table 3 as shows the test results for composites filled with epoxy and overburden material of 30 wt. % and 40 wt. %, respectively. These tables also present the values of Young’s modulus, Poisson’s ratio, Modulus of rigidity and Bulk modulus of the composites. It is observed that the compressive strength of the epoxy-overburden material composite increases with increase in overburden material is mixed with epoxy resin. All the samples in unconfined compressive loading situations exhibited shear type failure. Except some samples, all samples failed by means of shear which reflects the mixed impact of sample and system traits.
Table 2: Mechanical properties of epoxy composites filled with 30 wt. % OB

P(N)	A(mm²)	dL(mm)	L(mm)	dD(mm)	D(mm)	σ (MPa)	dL/L (strain)	dD/D	E	μ	G	K
2000	113.04	0.81	30	0.11	12	17.69285	0.027	0.009167	655.2908	0.339506	244.6016	680.4943
5000	113.04	1.21	30	0.17	12	44.23213	0.040333	0.014167	1096.664	0.35124	405.7994	1228.67
6000	113.04	1.67	30	0.25	12	53.07856	0.055667	0.025833	953.507	0.374251	346.9187	1263.775
7000	113.04	1.88	30	0.33	12	61.92498	0.062667	0.0275	988.1646	0.43883	343.3918	2692.391
9000	113.04	2.55	30	0.36	12	79.61783	0.085	0.03	936.6804	0.352941	346.1645	1061.571
10000	113.04	2.9	30	0.42	12	88.46426	0.096667	0.035	915.1475	0.362069	335.9402	1105.803
13000	113.04	3.49	30	0.48	12	115.0035	0.116333	0.04	988.5691	0.34384	367.8152	1055.078
15000	113.04	3.88	30	0.57	12	132.6964	0.129333	0.0475	1026.003	0.36768	375.2019	1288.314
18000	113.04	4.32	30	0.66	12	159.2357	0.144	0.055	1105.803	0.381944	408.0896	1561.134
19000	113.04	4.86	30	0.73	12	168.0821	0.162	0.068833	1037.544	0.375514	377.1476	1389.108
21000	113.04	5.23	30	0.84	12	185.749	0.174333	0.07	1065.631	0.40153	380.167	1803.64
17000	113.04	6.01	30	0.9	12	150.3892	0.200333	0.075	750.6951	0.374767	273.104	995.9552

Table 3: Mechanical properties of epoxy composites filled with 40 wt. % OB

P(N)	A(mm²)	dL(mm)	L(mm)	dD(mm)	D(mm)	σ (MPa)	dL/L (strain)	dD/D	E	μ	G	K
3000	113.04	0.77	30	0.14	12	26.53928	0.025667	0.011661	1033.998	0.454545	355.4368	3791.325
6000	113.04	1.03	30	0.18	12	53.07856	0.034333	0.015	1545.977	0.436893	537.9583	4082.966
9000	113.04	1.49	30	0.29	12	61.92498	0.049667	0.024167	1246.812	0.486577	419.3565	15481.25
12000	113.04	1.82	30	0.35	12	79.61783	0.060667	0.029167	1312.382	0.480769	441.1419	11313.98
11000	113.04	2.36	30	0.39	12	97.31069	0.078667	0.0325	1237	0.413136	437.6792	2373.431
12000	113.04	2.7	30	0.45	12	106.1571	0.09	0.0375	1179.523	0.416067	416.0294	2389.047
13000	113.04	3.12	30	0.52	12	132.6964	0.104	0.043333	1275.927	0.416667	450.3271	2551.834
17000	113.04	3.77	30	0.59	12	150.3892	0.125667	0.049167	1196.731	0.391247	430.0932	1834.015
18000	113.04	4.08	30	0.68	12	159.2357	0.136	0.056667	1170.851	0.416667	413.2144	2341.701
21000	113.04	4.79	30	0.72	12	185.7749	0.159667	0.06	1163.517	0.375783	422.8565	1561.134
3.2 Sliding wear results

The specific wear rates are determined on the basis of test results and the corresponding S/N ratios for all the 16 test runs are presented in table 4. By using the MINITAB 14 software, the graphs are drawn in figure 3 and from there, the lowest specific wear is observed. From this experiment, it is discovered that the specific wear rate is influenced more due to filler content as compared to all other 3 factors like sliding velocity, sliding distance and normal load.

Table 4: Taguchi experimental design for sliding wear test

Test Run	Sliding Velocity (cm/sec)	Load (N)	Sliding Distance (m)	Filler Content (wt %)	Specific Wear Rate (mm3/Nm)	S/N Ratio
1	32	20	500	10	9.739	-19.7703
2	32	30	1000	20	7.807	-17.8497
3	32	40	1500	30	5.761	-15.2100
4	32	50	2000	40	4.576	-13.2097
5	63	20	1000	30	7.023	-16.9305
6	63	30	500	40	5.424	-14.6864
7	63	40	2000	10	10.304	-20.2601
8	63	50	1500	20	6.661	-16.4708
9	94	20	1500	40	4.674	-13.3938
10	94	30	2000	30	6.276	-15.9337
11	94	40	500	20	8.753	-18.8431
12	94	50	1000	10	13.736	-22.7572
13	126	20	2000	20	10.130	-20.1122
14	126	30	1500	10	14.158	-23.0200
15	126	40	1000	40	5.521	-14.8404
16	126	50	500	30	6.509	-16.2703

Figure 3: Effects of control factors on sliding wear rate of epoxy-OB composites
4. Conclusions

- The work establishes the use of overburden material, a solid waste in the coal mining sites as a potential filler material in the making of polymer composites.
- It shows that with the enhancement of filler content of coal mine overburden material compressive strength also increases.
- Using of overburden material has resulted in substantial improvement in the wear resistance of epoxy resin.
- Through Taguchi experimental design, dry sliding wear can be measured successfully.
- The analysis reveals that overburden material content and the sliding velocity are the most predominant control factors affecting the wear rates of the composites.
- In future, this study can be extended by mixing this waste with other industrial waste to produce better strength and to fabricate new composites.

References

1. Chaowasakoo T and SombatsompopN 2007 Compos. Sci. Technol. 672282.
2. Srivastava V K and Pawar A G Compos. Sci. Technol. 663021.
3. Patnaik A Satapathy A Mahaputra S S and Dash R R 2009 J. Reinf. Plast. Compos. 28 513.
4. Patnaik A Satapathy A Mahaputra S S and Dash R R 2008 Int. Polym. Proc. 13192.
5. Mahaputra S S 2010 J. Eng. Tribol. 224 157.
6. Gangil B Patnaik A Kumar A and Biswas S J. Eng. Tribol. DOI: 1350650112460363.
7. Zhang Y Zhang A Zhen Z Lv F Chu P K and Ji J 2011 J. Compos. Mater. DOI: 10.1177/0021998311401937.
8. Biswas S and Satapathy A 2010 Waste Manage. Res. 28 615.
9. Biswas S and Satapathy A 2009 Mater. Des. 30 2841.
10. Padhi P K and Satapathy A 2014 Int. Polym. Proc. 29 233.
11. Purohit A and Satapathy A 2016 J. Compo. Mat. 51 899.