Chapter 1

Introduction and tectonic framework

Andreas Scharf1,*, Frank Mattern1, Mohammed Al-Wardi1, Gianluca Frijia2, Daniel Moraeitis3, Bernhard Pracejus1, Wilfried Bauer4 and Ivan Callegari4

1Department of Earth Sciences, College of Science, Sultan Qaboos University, PO Box 36, PC 123, Al-Khod, Muscat, Sultanate of Oman
2Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122, Ferrara, Italy
3Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
4Department of Applied Geosciences, German University of Technology GUtech, PO Box 1816, PC 130, Halban, Sultanate of Oman

*Correspondence: scharfa@squ.edu.om

Abstract: The extraordinary outcrop conditions provide a unique opportunity to study the geology and tectonics of the Oman Mountains, which record a geological history of more than 800 million years. We provide a summary of the geological evolution of the Oman Mountains with the emphasis on the Jabal Akhdar and Saih Hatat domes. This Memoir comprises seven chapters. This first chapter summarizes the former studies and the tectonic framework. This is followed by a comprehensive description of all geological formations/rock units (Scharf et al. 2021a, Chapter 2, this Memoir) including the famous Semail Ophiolite, the fault and fold pattern (Scharf et al. 2021b, Chapter 3, this Memoir) and the overall structure (Scharf et al. 2021c, Chapter 4, this Memoir). Chapter 5 (Scharf et al. 2021d) explains the varied tectonic evolution of the study area, ranging from the Neoproterozoic until present, while Chapter 6 (Scharf et al. 2021e) contains the conclusions and a catalogue of open questions. Finally, Chapter 7 (Scharf et al. 2021f) provides two over-sized geological maps (1 : 250 000 version available online) and a correlation chart, providing an overview of the geological units/formations. This volume is of interest for all geoscientists, geoscience students and professionals studying the Oman Mountains on the surface as well as in the subsurface because it represents a comprehensive and detailed reference.

The Oman Mountains at the northeastern margin of the Arabian Plate display an impressive geological record in terms of phenomenological diversity and significance since the Precambrian. This record includes (1) the ‘Snowball Earth’ glaciation (e.g. Leather et al. 2002; Kilner et al. 2005), (2) the Ediacaran ‘Shuram Excursion’ (e.g. Burns and Matter 1993; Le Guerrouët et al. 2006a, b), (3) the enigmatic Hercynian Unconformity ('Hercynian Orogeny'; e.g. Glennie et al. 1974; Beurrier et al. 1986b; Rabu et al. 1986; Faqira et al. 2009), (4) the Permo-Carboniferous glaciation (e.g. Heward and Penney 2014), (5) the Pangaea rifting and spreading of the Neo-Tethys Ocean during the Late Paleozoic (e.g. Blendinger et al. 1990; Béchennec et al. 1991), (6) the iconic obduction of the Semail Ophiolite (e.g. Glennie et al. 1974; Searle and Malpas 1980; Lippard et al. 1986; Goffé et al. 1988; Hacker and Mosenfelder 1996; Hacker et al. 1996; Cowan et al. 2014; Rioux et al. 2012, 2013, 2016), (7) high-pressure/low-temperature metamorphism of the continental margin (e.g. Lippard 1983; Le Météour et al. 1986b; Goffé et al. 1988; El-Shazly et al. 1990; Warren et al. 2003, 2005), (8) formation and exhumation of the large Jabal Akhdar Dome (JAD) and Saih Hatat Dome (SHD) which shape the Oman Mountains (e.g. Pouppeau et al. 1998; Saddiqi et al. 2006; Hansman et al. 2017; Grobe et al. 2019), (9) Upper Cretaceous rudist limestones (e.g. Skelton et al. 1990; Wyns et al. 1992; Philip et al. 1995) and organic-rich intrashelf basin environments (e.g. van Buchem et al. 2002), (10) surface analogues of subsurface petroleum source and reservoirs rocks (Grantham et al. 1988; Kocher et al. 2011; Pöppelbreiter et al. 2011; Bendihas et al. 2013; Heward and Penney 2014; Grobe et al. 2016), (11) Neogene to active tectonics (e.g. Pournier et al. 2006; Mattern et al. 2018; Moraeitis et al. 2018) and (12) a palaeoclimatic record for the past 325 ka based on speleothems from cave systems developed in Mesozoic carbonate formations (e.g. Burns et al. 1998, 2001). The Semail Ophiolite, as the world’s largest and best preserved ophiolite (e.g. Searle and Cox 1999), and the Oman Mountains, as the unique case of an obduction orogen, have been the focus of much research interest from the international geoscientific community during the past decades (e.g. Nicolas et al. 1996, 2000).

Due to the massive improvement of Oman’s road system during the last few decades and the excellent outcrops, the country became a field laboratory for tectonometamorphic, sedimentological and stratigraphic studies (e.g. Glennie et al. 1973, 1974; Robertson et al. 1990; Hacker et al. 1996; Saddiqi et al. 2006; Rollinson et al. 2014) with a research focus on ophiolites and ophiolite obduction (e.g. Lippard et al. 1986; Nicolas et al. 1996; Gregory et al. 1998; Searle and Cox 1999, 2002). We compiled these and many other studies to put forward an overview of the geology, tectonomagmatic and tectonic evolution of the Oman Mountains, as well as a description of their large-scale structures. We concentrate on the eastern part of the Oman Mountains as the western tip of the JAD to the eastern end of the SHD (fig. A.1 (Scharf et al. 2021f, Chapter 7, this Memoir)). To assist the international research community, we provide a newly compiled geological map of the eastern part of the Oman Mountains with the JAD and SHD in order to standardize the compiled tectonic units within a single map. This map is largely based on the geological maps of Oman at the scale of 1:250 000 (Béchennec et al. 1992a, b; Le Météour et al. 1992; Wyns et al. 1992). The map is accompanied by text which is an update on the geological knowledge of the Oman Mountains with some emphasis on the region’s geodynamic history. Moreover, we provide a detailed topographic map and several simplified geological cross-sections, as well as an extensive tectonostratigraphic chart (fig. A.2 (Scharf et al. 2021f, Chapter 7, this Memoir)).

The JAD consists of autochthonous rocks and is divided into the WNW-striking main dome (c. 85 km × 35 km) and NNE-oriented subdome attached to the NE of the main dome (25 km × 10 km; fig. A.1 (Scharf et al. 2021a,
Chapter 2, this Memoir)). This NNE-oriented subdome is parallel to the Semail Gap and is known as the Nakhl Subdome (fig. A.1 in Scharf et al. 2021f, Chapter 7, this Memoir). In the NE, the Nakhl Subdome sharply bends towards the ESE and extends for c. 8 km until Fanja. The overall shape of the JAD is not circular, as expected for a tectonic dome, and may be attributed to the reactivation of faults within the subsurface during doming (see ‘Post-obduction deformation’ in Chapter 5 (Scharf et al. 2021d)).

The SHD has an overall elongated shape and is aligned NW–SE from Fanja for c. 95 km towards the SE. The NE–SW extent ranges between 25 and 50 km. We define the SHD as the area consisting of (par-)autochthonous rocks that are surrounded by the Hawasina nappes and/or Semail Ophiolite to the NW and SW, as well as the ocean to the NE. Its southeastern margin is blanketed by Cenozoic shallow-marine sedimentary rocks near Tiwi (fig. A.1). The southeastern border or margin of the SHD is therefore not well defined. Between both domes near Fanja, a WNW–ESE-oriented structural and topographic depression is exposed (‘Fanjah Saddle’ of Cofffield 1990). The autochthonous rocks west and east of the saddle rise 1.3 km above the saddle surface, which consists of allochthonous rocks. The fold axes of the JAD and SHD plunge below the 10-km-wide Fanjah Saddle at an angle of 20°–40° (Coffield 1990). Roughly N–S-striking high-angle normal faults with dip directions towards the centre of the saddle cut the flanks of the JAD and SHD (Coffield 1990).

Lees (1928) introduced the Semail Nappe and recognized the allochthonous nature of the Hawasina nappes (see Heward 2016 for a summary of the pioneering expedition of Lees and others during the 1920s). The first descriptions of the Semail Ophiolite after the introduction of plate-tectonic theory were by Reinhardt (1969) and Allemann and Peters (1972).

The entire Oman Mountains were first mapped at a scale of 1:500 000 by Glennie et al. (1974). They introduced the main rock units of the Oman Mountains, the pre-Permian metasedimentary successions, the Arabian Platform sedimentaries, the Hawasina nappes, the Semail Ophiolite and the post-obduction sedimentary rocks. Further mapping was carried out by the United States Geological Survey (USGS) in the vicinity of the SHD (Bailey 1981). Geologists of the Open University (UK) mapped the Semail Ophiolite (Lippard et al. 1986). French workers of the Bureau de Recherches Géologiques et Minières (BRGM) mapped the Central and Southeastern Oman Mountains at a scale of 1:100 000 (Béchennec et al. 1986a, b; Beurrier et al. 1986a, b; de Gramont et al. 1986; Hutin et al. 1986; Janjou et al. 1986; Le Métour et al. 1986a, b; Rabu et al. 1986; Villey et al. 1986a, b; Roger et al. 1991; Wyns et al. 1992). This map series was extended by the sheet of Ibra (Southeastern Oman Mountains) at a scale of 1:100 000 (Peters et al. 2005). Detailed mapping of the entire Semail Ophiolite was carried out and summarized by Nicolas et al. (2000). Eight geological maps of the Muscat-Seeb area have been published at a scale of 1:25 000 (Kajima and Ishii 2012; Kajima and Onake 2012; Kajima et al. 2012a, b, c, d, e, f).

Two important compilations of the subsurface stratigraphy and nomenclature were produced by Hughes Clarke (1988) and Forbes et al. (2010). The latter provided a comprehensive chart showing the subsurface stratigraphy of Oman (Forbes et al. 2010, their enclosure 1). Two Special Publications of the Geological Society of London (Robertson et al. 1990; Rollinson et al. 2014) represent significant advancements to the understanding of the geology and tectonics of the Oman Mountains. A summary booklet describing the geology and origin of the Oman Mountains was published by Glennie (1995). His work was the first step in understanding the geology of northern Oman for geologists, non-geologist scientists and engineers from the oil industry. This booklet became so famous and in such demand that a second edition was released (Glennie 2005). Searle (2007) wrote a review article about the Permo-Mesozoic evolution of the eastern Arabian Platform and margin with the adjacent Hawasina Basin. This work also targets the obduction of the Semail Ophiolite as well as the post-obduction evolution of parts of the Oman Mountains.

Many informative popular science and geoguide books, including the most recent and well-illustrated work of Al-Kindi (2018) and Searle (2019), have been published during the past decades, outlining the unique and spectacular geology of the Sultanate. With its description of numerous fascinating outcrops, the geological field guide of Hoffmann et al. (2016) could be used as a companion document to this book.

The formations at the surface in our study area may have different names to coeval deposits in the subsurface. The latter are commonly used by researchers in the oil industry (e.g. Hughes Clarke 1988; Sharland et al. 2004; Forbes et al. 2010). We use the surface names in our manuscript, but will also provide the subsurface names for clarity (Chapter 2 and fig. A.2 (Scharf et al. 2021a,f, Chapter 2 and 7, this Memoir)).

We first describe in detail all major geological formations and tectonic units (Scharf et al. 2021a, Chapter 2, this Memoir), provide the regional fault and fold pattern (Scharf et al. 2021b, Chapter 3, this Memoir) and characterize the large-scale structure of the study area (Scharf et al. 2021c, Chapter 4, this Memoir). This is followed by a comprehensive description of the entire tectonic evolution of the Oman Mountains from the Neoproterozoic until present (Scharf et al. 2021d, Chapter 5, this Memoir). This chapter includes a lithospheric scale series of cross-sections, depicting the kinematics and dynamics of the different deformation events with a tectono-metamorphic synthesis. The conclusions and a catalogue of open questions, based on the available literature complete this memoir (Scharf et al. 2021e, Chapter 6, this Memoir). A compiled geological map at a scale of 1:250 000 and a tectonostratigraphic chart are enclosed in the appendix, providing a handy comprehensive overview (fig. A.1 and fig. A.2 (Scharf et al. 2021f, Chapter 7, this Memoir)). Note that in the literature the transcription of proper Arabic names into English commonly results in different spellings of the same feature; for example, the vowels in the name ‘Semail’ as in ‘Semail Ophiolite’ may be transcribed as ‘Simali’ or ‘Sama’il’.

Tectonic framework

The eastern part of the Arabian Peninsula (Fig. 1.1) was the site of several tectonic events. Recently, Callegari et al. (2020) documented the first evidence of the Cadomian Orogeny in northern Oman. This event is documented by tight to isoclinal folds with an amplitude of a few to tens of metres in the Hajir Formation of the JAD. The shortening direction during this event was NE–SW-aligned (in present coordinates). The age of deformation was at some time after deposition of the Fara Formation and before the Angudan event, that is, between c. 540 and 525 ± 5 Ma (Callegari et al. 2020; section ‘FI folds’ in Scharf et al. 2021b, Chapter 3, this Memoir). The Cadomian Orogeny was followed (and probably overlapped) by the Neoproterozoic–Early Cambrian East African Orogeny (sensu Stern 1994), resulting in the Angunadian unconformity that coincides with the final stage of the East African Orogeny (c. 550–510 Ma; Loosveld et al. 1996; Al-Husseini 2000; Immerz et al. 2000; Koopman et al. 2007; Forbes et al. 2010; Al-Kindi and Richard 2014; Droste 2014, fig. 6a). This orogeny is associated with the continent–continent collision of East and West Gondwana. Some authors use the
term ‘Malagasy Orogeny’ in Arabia as a synonym for the latest part of the East African Orogeny (e.g. Collins and Pisarevsky 2005). We use the phrase ‘East African Orogeny’. We also use the name ‘Angudan Unconformity’ throughout the text.

The Hercynian Orogeny in Europe was caused by the convergence of Gondwana and Laurasia. The ‘Hercynian Orogeny’ in the northwestern Arabian Plate is manifested in the regional pre-Carboniferous uplift and erosion as well as arch formation (see Faqira et al. 2009). Additionally, Abbo et al. (2018) concluded that the ‘Hercynian’ event in the Arabian Plate was not a significant deformation event, but rather a thermal event. The same authors suggested that the large-scale Paleozoic arches and basins across NE Africa and Arabia formed due to a mantle disturbance. Terminologically, we are following Faqira et al. (2009) and use the term ‘Hercynian’ (in quotes), but we are not suggesting that the Hercynian Orogeny (sensu lato) and related deformation and/or folding took place in Oman; rather, it seems to have been a thermal event (Abbo et al. 2018). In the subsurface of Oman, a significant truncation of Lower Paleozoic strata below the mid-Carboniferous exists. This truncation is related to salt movements and reactivation of basement trends (Droste 1997,
was coevally thrust (obducted) onto Arabian lithosphere. Thrusting lasted until c. 68 Ma (Lippard 1983; Goffé et al. 1988; Hacker et al. 1996; Searle and Cox 1999; El-Shazly et al. 2001; Warren et al. 2003, 2005; Rioux et al. 2016; section ‘Intraoceanic thrusting, formation and obduction of the Semail Ophiolite’ in Chapter 5 of this Memoir (Scharf et al. 2021d)). More than 400–450 km of obduction are considered for the extended part of the Arabian Crust (Cooper 1988; Searle 2007) and another 150 km for the Arabian Platform of more regular thickness as quantified by map analysis. The entire thrust range therefore amounts to > 550–600 km. Thrusting of the ophiolite ensued to the SW (Hacker et al. 1996). Today, the ophiolite covers an area of > 10 000 km2 and is c. 550 km long and c. 150 km wide (Searle and Cox 1999). The ophiolite measures several kilometres in thickness, which decreases towards the south (Al-Lazki et al. 2002; Aldège et al. 2017; Carminati et al. 2019). According to Reinhardt (1969), Glennie et al. (1974), Coleman (1981), Lippard et al. (1986), Nicolas et al. (1989) and Searle and Cox (1999), the Semail Ophiolite is composed of c. 8–12 km of upper mantle peridotites (mainly harzburgite) and c. 2.5–8 km of oceanic crustal rocks; according to Rabu et al. (1986) and Villey et al. (1986b, c), the entire ophiolite thickness measures 8–9 km. Hacker and Mosenfelder (1996) provided an inferred pre-emplacement thickness of the Semail Ophiolite of 15–20 km.

Obduction is linked to plate convergence between Arabia and Eurasia and the closing of the intervening oceanic lithosphere (Dercourt et al. 1993; Stampfl and Borel 2002; Stampfl and Kozur 2006). Conversion was not only expressed by the obduction of the Semail Ophiolite. While the mantle and crust of the future Semail Ophiolite still formed in a supra-subduction zone context, the easternmost part of the Arabian passive margin was subducted to the NE beneath the future ophiolite (e.g. Lippard et al. 1986; El-Shazly and Coleman 1990; Searle et al. 1994; Searle and Cox 1999; Searle et al. 2004; Saddiqi et al. 2006; Rioux et al. 2012, 2013, 2016; Cowan et al. 2014; for more details on the direction of obduction and rotation during thrusting see van Hinsbergen et al. 2019 and section on ‘Intraoceanic thrusting, formation and obduction of the Semail Ophiolite’ in Chapter 5 of this Memoir (Scharf et al. 2021d)). Eventually, the subducted plate segment was metamorphosed under high-pressure/low-temperature conditions (e.g. Lippard 1983; Le Métour et al. 1986b; Goffé et al. 1988; El-Shazly et al. 1996; Searle et al. 1994; Searle et al. 1996; Warren et al. 2003, 2005), and the Semail Ophiolite was thrust on the Arabian Plate (e.g. Searle et al. 2004). A slab break-off may have triggered rapid exhumation of the Arabian crustal slab with its blueschist and eclogite facies, exposed in the northeastern SHD (e.g. Searle et al. 2004).

A second ophiolite obduction affected the southeastern part of the Oman Mountains. The Masirah Ophiolite (or ‘Eastern Ophiolite Belt’ of Gnos et al. 1997; Immenhauser et al. 1998) is a fragment of oceanic lithosphere thrust onto the easternmost margin of Oman (e.g. Moseley and Abbots 1979; Mountain and Prell 1990; Ries and Shackleton 1990; Shackleton and Ries 1990; Marquer et al. 1995; Schreurs and Immenhauser 1999; Immenhauser et al. 2001; Fig. 1.1). The sole of the ophiolite is not exposed, which makes it difficult to tectonically interpret its history of thrusting, emplacement and uplift. The Masirah Ophiolite derived from oceanic lithosphere of the ‘Somalia-Mozambique-Madagascar (SoMoMa) Ocean’ with a formation age of latest Jurassic to earliest Cretaceous (e.g. Smewing et al. 1991; Immenhauser 1995; Peters et al. 1995; Gnos et al. 1997; Marquer et al. 1998; Schreurs and Immenhauser 1999), Latest Jurassic ages (c. 150 Ma) are concluded based on U–Pb zircon studies and Ar/Ar dating on plagioclase of gabbro dykes (Peters et al. 1995). K–Ar ages on gabbros (Smewing et al. 1991) and dating of radiolarian cherts
The Lower Permian to Upper Cretaceous sediments of the Batain Mélange derived from the Batain Basin, located east of Oman as part of the SoMoMa Ocean (Schreurs and Immenhauser 1999; Immenhauser et al. 2000). The Batain Basin is older (latest Carboniferous to Early Permian; Immenhauser et al. 2000) than the Hawasina Basin (Late Permian). Although the sediments of the Hawasina nappe and the Batain Mélange derived from different basins, the stratigraphy is similar (see Immenhauser et al. 1998, 2000).

The Semail and Masirah ophiolites differ in origin, tectonic setting, age of oceanic lithosphere formation (Neo-Tethys Ocean during the Cenomanian compared with SoMoMa Ocean during the latest Jurassic–earliest Cretaceous), time of obduction onto the Arabian Margin (late Cretaceous compared with latest Cretaceous–early Eocene) and direction of obduction (SW-ward compared with NWN-ward). Generation of the Semail Ophiolite is associated with a spreading centre in a supra-subduction zone setting with coeval formation and thrusting (e.g. Rioux et al. 2016), whereas the Masirah Ophiolite formed at a conventional mid-ocean ridge with its emplacement at c. 80 Ma after formation (see Rollinson 2017 for further comparison and discussion).

The Oligocene–Miocene to recent regional tectonic setting of the Arabian Plate is summarized in Figure 1.2. The north-eastern plate margin corresponds to the Arabia–Eurasia collision zone, forming the Zagros and Makran mountains (e.g. (Moseley 1990). The SoMoMa Ocean separated Gondwana into western (Africa and Arabia) and eastern (Madagascar and India) segments (fig. 5.18f). Formation of the ocean resulted in the gentle extension and uplift of the eastern Arabian margin and the Hawasina Basin (DS in fig. A.2; Rubi 1987; Béchennec et al. 1992a, b; section ‘Arabian Platform’ in Chapter 5 (Schaf et al. 2021d)). Geochemical analyses reveal that the ophiolite represents a young mid-ocean ridge that had formed during early drift between eastern and western Gondwana (Rollinson 2017). Later, the ocean basin underwent transpression as a result of convergence between India and Arabia, and was obducted and/or emplaced to the WNW for a few tens of kilometres as the ‘Masirah Ophiolite’ onto the easternmost tip of the Arabian Platform at the Cretaceous–Cenozoic boundary until the early Eocene (c. 65–55 Ma; Snewing et al. 1991; Peters et al. 1995; Gnos et al. 1997; Peters and Mercoll 1997; Marquer et al. 1998; Schreurs and Immenhauser 1999; Immenhauser et al. 2000; Gaina et al. 2015; fig. 5.18i). The Masirah Ophiolite therefore remained a part of the oceanic lithosphere for c. 80 Ma from its formation to its obduction (e.g. Rollinson 2017). The Hawasina and Haybi Complex were thrust along with the Semail Ophiolite during the Coniacian–Campanian from NE to SW. By contrast, the Masirah Ophiolite was thrust along with the Batain Mélange onto the eastern Oman margin during the Cretaceous–Cenozoic (Schreurs and Immenhauser 1999; Fig. 1.1).
Dextral motion along this fault ensues at a rate of 3 ± 1 mm a$^{-1}$ (Fournier et al. 2008).

Arabia is bounded in the west by the left-lateral Dead Sea Transform Fault that accommodated a displacement of 100–105 km (Valley 1998). The age of the fault is >14 Ma (Bayer et al. 1988; Makris and Rihm 1991). The southwestern and southern margins of the Arabian Plate are defined by the spreading axes of the Red Sea and Gulf of Aden, respectively. Continental extension in the southern Red Sea area started during c. 27.5–23.8 Ma (Bosworth et al. 2005; Reillinger and McClusky 2011). Seafloor spreading between the Arabian and African plates (i.e. the Gulf of Aden) commenced at 20 Ma (Fournier et al. 2010). The southeastern boundary of Arabia is marked by the 8-Ma-old Owen Transform Fault.

Author contributions AS: Conceptualization (lead), Writing original draft (lead), Visualization (lead), Supervision (lead), Investigation (lead); FM: Conceptualization (equal), Writing – review and editing (equal), Visualization (equal), Investigation (equal); MAW: Writing – review and editing (equal); GF: Writing – review and editing (equal); DM: Writing – review and editing (equal); BP: Writing – review and editing (equal); WB: Writing – review and editing (equal); IC: Writing – review and editing (equal).

Funding This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data availability Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

Abbo, A., Avigad, D. and Gerdes, A. 2018. The lower crust of the northern broken edge of Gondwana: evidence for sediment subduction and syn-Variscan anorogenic imprint from zircon U-Pb-Hf in granulite xenoliths. *Gondwana Research*, 14, 84–96, https://doi.org/10.1016/j.gr.2018.08.002

Agard, P., Omrani, J. et al. 2011, Zagros orogeny: a subduction-dominated process. *Geological Magazine*, 148, 692–725, https://doi.org/10.1017/S001675681100046X

Aldega, L., Carminati, E., Scharf, A., Mattern, F. and Al-Wardi, M. 2017. Estimating original thickness and extent of the Semail Ophiolite in the eastern Oman Mountains by paleothermal indicators. *Marine and Petroleum Geology*, 84, 18–33, https://doi.org/10.1016/j.marpetgeo.2017.03.024

Al-Hussein, M.I. 2000. Origin of the Arabian Plate Structures: Amar Collision and Najd Rиф. *Arabia*, 5, 527–542.

Al-Hussein, M.I. 2004. Pre-Unayzah unconformity, Saudi Arabia. Carboniferous, Permain and Early Triassic Arabian Stratigraphy. *Arabia Special Publication*, 3, 15–59.

Al-Kindi, M.H. 2018. *Evolution of Land and Life in Oman: An 800 Million Year Story*. Springer, https://doi.org/10.1007/978-3-319-72536-8

Al-Kindi, M.H. and Richard, P.D. 2014. The main structural styles of the hydrocarbon reservoirs in Oman. *Geological Society, London, Special Publications*, 392, 409–445, https://doi.org/10.1144/SP392.20

Al-Lazki, A.I., Seber, D., Sandvol, E. and Barazangi, M. 2002. A crustal transect across the Oman Mountains on the eastern margin of Arabia. *Arabia*, 7, 47–78.

Allemann, F. and Peters, T. 1972. The ophiolite-radiolarite belt of the North Oman Mountains. *Eclogae Geologicae Helvetiae*, 65, 657–697.

Ar-Rajehi, A., McClusky, S. et al. 2010. Geodetic constraints on present-day motion of the Arabian Plate: implications for Red Sea and Gulf of Aden rifting. *Tectonics*, 29, TC3011, https://doi.org/10.1029/2009TC002882

Bailey, E.H. 1981. Geological map of Muscat-Ibra area, Sultanate of Oman. *Journal of Geophysical Research*, 86, 2495–2782, https://doi.org/10.1029/JB086iB04p02495

Bayer, H.-J., Hötzl, H., Jado, A.R., Roscher, B. and Voggenreiter, W. 1988. Sedimentary and structural evolution of the northwest Arabian Sea Margin. *Tectonophysics*, 153, 137–152, https://doi.org/10.1016/0040-1951(88)90011-X

Béchencé, F., Beurrier, M. and Rabu, D. 1986a. Geological map of Barka, sheet NF 40-3B, scale 1:100,000. *Explanatory Notes*. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Béchencé, F., Beurrier, M., Rabu, D. and Hutin, G. 1986b. Geological map of Bahla, sheet NF 40-07A, scale 1:100,000, with *Explanatory Notes*. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Béchencé, F., Tegey, M., Le Métour, J., Lemière, B., Lescuyer, J.L., Rabu, D. and Miledi, J.P. 1991. Igneous rocks in the Hawasina Nappes and the Hajar Supergroup, Oman Mountains: Their significance in the birth and evolution of the composite extensional Margin of the eastern Tethys. In: Peters, T., Nicolas, A. and Coleman, R.J. (eds) *Ophiolite Genesis and Evolution of the Oceanic Lithosphere*, Proceedings of the Ophiolite Conference, Muscat, Oman. Klwer Academic Publishers, Dordrecht/Boston/London, 591–611.

Béchencé, F., Roger, J., Le Métour, J. and Wyns, R. 1992a. *Geological map of Seeb*, sheet NF 40-03, scale 1:250,000, with *Explanatory Notes*. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Béchencé, F., Wyns, R., Roger, J., Le Métour, J. and Chevrel, S. 1992b. Geological map of Nazwa, sheet NF 40-07, scale 1:250,000, with *Explanatory Notes*. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Béchencé, F., Le Métour, J., PlateJ., J.P. and Roger, J. 1993. Geological map of the Sultanate of Oman, scale 1:1,000,000, with *Explanatory Notes*. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Bendia, D., Koehler, B., Obermaier, M. and Aigner, T. 2013. Mid-Permian Khuff Sequence KS6: paleorelief-influenced facies and sequence patterns in the Lower Khuff time-equivalent strata, Oman Mountains, Sultanate of Oman. *Geology*, 41, 159–162, https://doi.org/10.1130/G33402.1

Beurrier, M., Béchencé, F., Hutin, G. and Rabu, D. 1986a. *Eclogae Geologicae Helvetiae*, 86, 595–607.

Burns, S.J., Matter, A., Frank, N. and Mangini, A. 1998. Speleothem-based palaeoclimate record from northern Oman. *Geological Society, London, Special Publications*, 49, 27–37.

Bosworth, W., Huchon, P. and McClay, K. 2005. The Red Sea and Gulf of Aden Basins. *Journal of African Earth Sciences*, 43, 334–378, https://doi.org/10.1016/j.jafrearsci.2005.07.020

British Geological Survey. 2006. *Geological Map of the Northern Emirates*, 1:250,000 Scale. British Geological Survey, Keyworth.

Burns, S.J. and Matter, A. 1993. Carbon isotopic record of the latest Proterozoic from Oman. *Eclogae Geologicae Helvetiae*, 86, 595–607.

Burns, S.J., Matter, A., Frank, N. and Mangini, A. 1998. Speleothem-based palaeoclimate record from northern Oman. *Geology*, 26, 499–502, https://doi.org/10.1130/0091-7613(1998)026<0499:SBPFRN>2.0.CO;2

Burns, S.J., Fließmann, D., Matter, A., Neff, U. and Mangini, A. 2001. Speleothem evidence from Oman for continental pluvial events during interglacial periods. *Geology*, 29, 623–626, https://doi.org/10.1130/0091-7613(2001)029<0623:SEFOFC>2.0.CO;2
Introduction and tectonic framework

7

Callegari, I., Scharf, A. et al. 2020. Gondwana accretion tectonics and implications for the geodynamic evolution of eastern Arabia: first structural evidence of the existence of the Cadomian Orogeny in Oman (Jabal Akhdar Dome, Central Oman Mountains). Journal of Asian Earth Sciences, 187, 104070, https://doi.org/10.1016/j.jseaes.2019.104070

Carminiati, E., Aldega, L., Smeraglia, L., Scharf, A. and Mattern, F. 2019. Obduction and collision tectonics in Oman: constraints from structural and thermal analyses. In: Rossetti, F., Blanc, A.C., Riguzzi, F., Leroux, E., Pavalopoulos, K., Bellier, O. and Kapsimalis, V. (eds) *The Structural Geology Contribution to the Africa-Eurasia Geology: Basement and Reservoir Structure, Ore Mineralisation and Tectonic Modelling*, Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018, IEREX Interdisciplinary Series for Sustainable Development, 319–321, https://doi.org/10.1007/978-3-030-01455-1_70

Chauvet, F., Dumont, T. and Basile, C. 2009. Structures and timing of Permian rifting in the central Oman Mountains (Sa'il Hatat). *Tectonophysics*, 475, 563–574, https://doi.org/10.1016/j.tecto.2009.07.008

Coffield, D.Q. 1990. Structures associated with nappe emplacement and culmination collapse in the Central Oman Mountains. *Geological Society, London, Special Publications*, 49, 447–458

Coleman, R.G. 1981. Tectonic setting for ophiolite obduction in Oman. *Journal of Geophysical Research*, 86, 2497–2508, https://doi.org/10.1029/JB086iB04p02497

Coleman, R.G. and Hepson, C.A. 1981. Introduction to the Oman Ophiolite Special Issue. *Journal of Geophysical Research*, 86, 2495–2496, https://doi.org/10.1029/JB086iB04p02495

Collins, A.S. and Pisarevsky, S.A. 2005. Analogizing eastern Gondwana: the evolution of the Circum-Indian Orogenes. *Earth Science Reviews*, 71, 229–270, https://doi.org/10.1016/j.earscirev.2005.02.004

Cooper, D.J.W. 1988. Structure and sequence of thrusting in deep-water sediments during ophiolite emplacement in the south-central Oman Mountains. *Journal of Structural Geology*, 10, 437–485, https://doi.org/10.1016/0191-8411(88)90031-4

Cowan, R.J., Searle, M.P. and Waters, D.J. 2014. Structure of the metamorphic sole to the Oman Ophiolite, Sumeini Window and Wadi Tayyin: implications for ophiolite obduction processes. *Geological Society, London, Special Publications*, 392, 155–175, https://doi.org/10.1144/SF392.8

de Gramont, X., Le Métour, J. and Villey, M. 1986. *Geological map of Samad, sheet NF 40-07C, scale 1:100,000, with Explanatory Notes*. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Dercourt, J., Ricou, L.E. and Vrielynck, B. 1993. *The Geology of the Oman Mountains: An Outcrop*–*Mapping of its Origin*, 1st ed. Science Press, Buckinghamshire.

El-Shazly, A.K., Coleman, R.G. and Liou, J.G. 1990. Eclogites and melange in Oman Mountains in relation to the Semail ophiolite emplacement. *Tectonophysics*, 1747-5457.1988.tb00801.x

Goffé, B., Michard, A., Kienast, J.R. and le Mer, O. 1988. A case of obduction related high P, low T metamorphism in upper crustal nappes, Arabian continental margin, Oman: P-T paths and kinematic interpretation. *Tectonophysics*, 151, 363–386, https://doi.org/10.1016/0040-1951(88)90253-3

Granath, P.J., Lijnебach, G.W.M., Posthuma, J., Clarke, M.W.H. and Willink, R.J. 1988. Origin of crude oils in Oman. *Journal of Petroleum Geology, 11*, 61–80, https://doi.org/10.1111/j.1747-5457.1988.tb00801.x

Gregory, R.T., Gray, D.R. and Miller, J.M. 1998. Tectonics of the Arabian margin associated with the emplacement of the Oman margin along the Ibura transect: new evidence from northeast Sa'il Hatat. *Tectonics*, 17, 657–670, https://doi.org/10.1029/98TC02206

Grobe, A., Urai, J.L., Littke, R. and Lünsdorf, N.K. 2016. Hydrocarbon generation and migration under a large overthrust: the carbonate platform under the Semail Ophiolite, Jebel Akhdar, Oman. *International Journal of Coal Geology*, 168, 3–19, https://doi.org/10.1016/j.coal.2016.02.007

Grobe, A., von Hagke, C., Littke, R., Dunkl, I., Wübeler, F., Machez, P. and Urai, J.L. 2019. *Tectono-tectonic evolution of Oman’s Mesoic passive continental margin under the obducting Semail Ophiolite: a case study of Jebel Akhdar, Oman*. Solid Earth, 10, 149–175, https://doi.org/10.5194/se-10-149-2019

Guilmette, C., Smit, M.A. et al. 2018. Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. *Nature Geoscience*, 11, 688–695, https://doi.org/10.1038/s41561-018-0209-2

Hacker, B.R. and Mosenfelder, J.L. 1996. Metamorphism and deformation along the emplacement thrust of the Semail ophiolite, Oman. *Earth and Planetary Science Letters*, 144, 435–451, https://doi.org/10.1016/S0012-821X(96)00186-0
Hacker, B.R., Mosenfelder, J.L. and Gnos, E. 1996. Rapid emplacement of the Oman orophytic: thermal and geochronological constraints. *Tectonics*, 15, 1230–1247, https://doi.org/10.1029/96TC00173.

Hansman, R.J., Ring, U., Thomson, S.N., den Brock, B. and Stübben, K. 2017. Late Eocene uplift of the Al Hajar Mountains, Oman, supported by stratigraphic and low-temperature thermochronology. *Tectonics*, 36, 3081–3109, https://doi.org/10.1002/2017TC004672.

Heward, A.P. 2016. G.M. Lees (Abu’l Jabal): a pioneering geologist in Oman. *Al Hajar*, 22, 15–27.

Heward, A.P. and Penney, R.A. 2014. Al Khlata glacial deposits in the Oman Mountains and their implications. *Geological Society, London, Special Publications*, 392, 279–301, https://doi.org/10.1144/SP392.15.

Hoffmann, G., Meschede, M., Zacke, A. and Al Kindi, M. 2016. *Field Guide to the Geology of Northeastern Oman*. Schweizerbart, Geological Field Guides, 110, 283.

Hughes Clarke, M.W. 1988. Stratigraphy and rock unit nomenclature in the oil-producing area of interior Oman. *Journal of Petroleum Geology*, 11, 5–60, https://doi.org/10.1111/j.1747-5457.1988.tb00800.x.

Hutin, G., Béchennec, F., Beurrier, M. and Rabu, D. 1986. *Geological map of Birkat Al Mawz, sheet NF 40-07B, scale 1:100,000, with Explanatory Notes*. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Immenhauser, A. 1995. The Autochthonous Mesozoic Sediment Hoffmann, G., Meschede, M., Zacke, A. and Al Kindi, M. 2016. *Field Guide to the Geology of Northeastern Oman*. Schweizerbart, Geological Field Guides, 110, 283.

Hughes Clarke, M.W. 1988. Stratigraphy and rock unit nomenclature in the oil-producing area of interior Oman. *Journal of Petroleum Geology*, 11, 5–60, https://doi.org/10.1111/j.1747-5457.1988.tb00800.x.

Hutin, G., Béchennec, F., Beurrier, M. and Rabu, D. 1986. *Geological map of Birkat Al Mawz, sheet NF 40-07B, scale 1:100,000, with Explanatory Notes*. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Immenhauser, A. 1995. The Autochthonous Mesozoic Sediment Record on the Masirah Island Ophiolite (Sultanate of Oman). PhD thesis, University of Bern, Bern, Switzerland.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.

Immenhauser, A., Schreurs, G., Peters, T., Matter, A., Hauser, M. and Dumitrica, P. 1998. Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batin Group, eastern Oman. *Eclogae Geologica Helvetica*, 91, 217–235.
Explanatory Notes. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Regard, V., Bellier, O. et al. 2005. Cumulative right-lateral fault slip rate across the Zagros-Arabian-African transfer zone: role of the Minab-Zendan fault system in accommodating Arabia-Eurasia convergence in southeast Iran. Geophysical Journal International, 162, 177–203, https://doi.org/10.1111/j.1365-246X.2005.02558.x

Reilinger, R., McClusky, S. et al. 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111, B05S11, https://doi.org/10.1029/2005JB004051

Reilinger, R. and McClusky, S. 2011. Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophysical Journal International, 186, 971–979, https://doi.org/10.1111/j.1365-246X.2011.05133.x

Reinhardt, B.M. 1969. On the genesis and emplacement of ophiolites in the Oman Mountains geosyncline. Schweizerische Mineralogische und Petrographische Mitteilungen, 49, 1–30.

Ries, A.C. and Shackleton, R.M. 1990. Structures in the Haif-Haushi uplift, east central Oman. Geological Society, London, Special Publications, 49, 653–665.

Rioux, M., Bowring, S.A., Kelemen, P.B., Gordon, S., Dudás, F. and Miller, R. 2012. Rapid crustal accretion and magma assimilation in the Oman-U.A.E. ophiolite: high precision U-Pb zircon geochronology of the gabbric crust. Journal of Geophysical Research, 117, B07201, https://doi.org/10.1029/2012JB009273

Rioux, M., Bowring, S., Kelemen, P., Gordon, S., Miller, R. and Dudás, F. 2013. Textural development of the Samail ophiolite: high-precision U-Pb zircon geochronology and Sm-Nd isotopic constraints on crustal growth and emplacement. Journal of Geophysical Research: Solid Earth, 118, 2085–2101, https://doi.org/10.1002/jgre.50139

Rioux, M., Garber, J., Bauer, A., Bowring, S., Searle, M.P., Kelemen, P. and Hacker, B. 2016. Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: new constraints on the tectonic evolution during ophiolite formation from high-precision U-Pb zircon geochronology. Earth and Planetary Science Letters, 451, 185–195, https://doi.org/10.1016/j.epsl.2016.06.051

Robertson, A.H.F. and Searle, M.P. 1990. The northern Oman Tethyan continental margin: stratigraphy, structure, concepts and controversies. Geological Society, London, Special Publications, 49, 3–25.

Robertson, A.H.F., Searle, M.P. and Ries, A.C. 1990. The Geology and Tectonics of the Oman Regions. Geological Society, London, Special Publications, 49.

Rodgers, D.W. and Gunatilaka, A. 2002. Bajada formation by monsoonal erosion of a subaerial forebulge, Sultanate of Oman. Sedimentary Geology, 148, 347–358, https://doi.org/10.1016/S0037-0738(02)00126-4

Rogers, D.W. and Gunatilaka, A. 2002. Bajada formation by monsoonal erosion of a subaerial forebulge, Sultanate of Oman. Sedimentary Geology, 148, 347–358, https://doi.org/10.1016/S0037-0738(02)00126-4

Rouvier, M., Béchennec, F., Janjou, D., Le Métour, J., Wyns, R. and Beurrier, M. 1991. Geological map of J'a'an, sheet NF 40-08E, scale:100,000, with Explanatory Notes. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Rollinson, H. 2017. Masirah – The other Oman ophiolite: a better analogue for mid-ocean ridge processes? Geoscience Frontiers, 8, 1253–1262, https://doi.org/10.1016/j.gsf.2017.04.009

Rollinson, H.R., Searle, M.P., Abassi, I.A., Al-Lazki, A.I. and Al Kindi, M.H. 2014. Tectonic Evolution of the Oman Mountains. Geological Society, London, Special Publications, 392.

Rouvier, M., Béchennec, F., Janjou, D., Le Métour, J., Wyns, R. and Beurrier, M. 1991. Geological map of J’aalan, sheet NF 40-08E, scale:100,000, with Explanatory Notes. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Rouvier, M., Béchennec, F., Janjou, D., Le Métour, J., Wyns, R. and Beurrier, M. 1991. Geological map of J’aalan, sheet NF 40-08E, scale:100,000, with Explanatory Notes. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.
Scharf, A., Mattern, F. et al. 2021c. Large-scale structure of the study area. Geological Society, London, Memoirs, 54, 61–66, https://doi.org/10.1144/M54.4

Scharf, A., Mattern, F. et al. 2021d. Tectonic evolution of the Oman Mountains. Geological Society, London, Memoirs, 54, 67–104, https://doi.org/10.1144/M54.5

Scharf, A., Mattern, F. et al. 2021e. Conclusions, differences between the Jabal Akhdar and Sahl Hatat domes and unanswered questions. Geological Society, London, Memoirs, 54, 105–111, https://doi.org/10.1144/M54.6

Scharf, A., Mattern, F. et al. 2021f. Appendices to: The Geology and Tectonics of the Jabal Akhdar and Sahl Hatat Domes, Oman Mountains. Geological Society, London, Memoirs, 54, 113–116, https://doi.org/10.1144/M54.7

Schreurs, G. and Immemhausen, A. 1999. West-northwest directed obduction of the Batin Group on the eastern Oman continental margin at the Cretaceous-Tertiary boundary. Tectonics, 18, 148–160, https://doi.org/10.1029/1998TC900020

Searle, M.P. 2007. Structural geometry, style and timing of deformation in the Hawasina Window, Al Jabal al Akhdar and Sahl Hatat culminations, Oman Mountains. GeoArabia, 12, 99–130.

Searle, M.P. 2019. Geology of the Oman Mountains, Eastern Arabia. Springer.

Searle, M.P. and Cox, J.S. 1999. Tectonic setting, origin and obduction of the Oman ophiolite. Geological Society of America Bulletin, 111, 104–122, https://doi.org/10.1130/0016-7606(1999)111<0104:TSEOAO>2.0.CO;2

Searle, M.P. and Cox, J.S. 2002. Subduction zone metamorphism during formation and emplacement of the Semail Ophiolite in the Oman Mountains. Geological Magazine, 139, 241–255, https://doi.org/10.1017/S0016673802006532

Searle, M.P. and Malpas, J. 1980. Structure and metamorphism of rocks beneath the Semail ophiolite of Oman and their significance in ophiolite obduction. Earth and Environmental Science, Transactions of the Royal Society of Edinburgh, 71, 247–262, https://doi.org/10.1017/S0263593393001361

Searle, M.P., Waters, D.J., Martin, H.N. and Rex, D.C. 1994. Structure and metamorphism of blueschist – eclogite facies rocks from the northeastern Oman Mountains. Journal of Geological Society, London, 151, 555–576, https://doi.org/10.1144/gsjgs.151.3.0555

Searle, M.P., Warren, C.J., Waters, D.J. and Parrish, R.R. 2004. Structural evolution, metamorphism and restoration of the Arabian continental margin, Sahl Hatat region, Oman Mountains. Journal of Structural Geology, 26, 451–473, https://doi.org/10.1016/j.jsg.2003.08.005

Sella, G.F., Dixon, T.H. and Mao, A. 2002. Revel: a model for Recent plate velocities from space geodesy. Journal of Geophysical Research, 107, 2018, https://doi.org/10.1029/2000JB000033

Shackleton, R.M. and Ries, A.C. 1990. Tectonics of the Masirah fault zone and eastern Oman. Geological Society, London, Special Publications, 49, 715–724.

Shackleton, R.M., Ries, A.C., Bird, P.R., Filbrandt, J.B., Lee, C.W. and Cunningham, C.C. 1990. The Batanean mélangé of NE Oman. Geological Society, London, Special Publications, 49, 673–696.

Sharland, P.R., Casey, D.M., Davies, R.B., Simmons, M.D. and Sutcliffe, O.E. 2004. Arabian Plate Sequence Stratigraphy – revisions to SP2. GeoArabia, 9, 199–214.

Skelton, P.W., Nolan, S.C. and Scott, R.W. 1990. The Maastrichtian transgression on the northwestern flank of the Proto-Oman Mountains: sequences of rudit-bearing beach to open shelf facies. Geological Society, London, Special Publications, 49, 521–547.

Smewing, J.D., Abbotts, I.L., Dunne, L.A. and Rex, D.C. 1991. Formation and emplacement ages of the Masirah ophiolite, Sultanate of Oman. Geology, 19, 453–456, https://doi.org/10.1130/0091-7613(1991)019<0453:FAEAOT>2.3.CO;2

Soret, M., Agard, P., Dubacq, B., Plunder, A. and Yamato, P. 2017. Petrological evidence for stepwise accretion of metamorphic sole during subduction infany (Semail ophiolite, Oman and UAE). Journal of Metamorphic Geology, 35, 1051–1080, https://doi.org/10.1111/jmg.12267

Stampfli, G.M. and Borel, G.D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196, 17–33, https://doi.org/10.1016/S0012-821X(01)00588-X

Stampfli, G.M. and Kozur, H.W. 2006. Europe from the Variscan to the Alpine cycles. Geological Society, London, Memoirs, 32, 57–82, https://doi.org/10.1144/GSL.MEM.2006.032.01.04

Stern, R.J. 1994. Arc assembly and continental collision in the Neo-protorezoic East African Orogen: implications for the consolidation of Gondwanaland. Annual Reviews Earth and Planetary Science, 22, 319–351, https://doi.org/10.1146/annurev.ea.22.050194.001535

Svensden, N.B. 2004. The Sahlah Formation of Oman: exploration implications for the Rub‘ Al-Khali Basin. GeoArabia, 9, 119–136.

van Buchem, F.S.P., Razin, P., Homewood, P.W., Oterdoom, W.H. and Philip, J. 2002. Stratigraphic organization of carbonate ramps and organic-rich intrashelf basins: Natin Formation (middle Cretaceous) of northern Oman. American Association of Petroleum Geologists Bulletin, 86, 21–53.

van Hinsbergen, D.J.J., Maffione, M., Koornneef, L.M.T. and Guilmette, C. 2019. Kinematic and paleomagnetic restoration of the Semail ophiolite (Oman) reveals subduction initiation along an ancient Neotethyan fracture zone. Earth and Planetary Science Letters, 518, 183–196, https://doi.org/10.1016/j.epsl.2019.04.038

Vernant, P., Nilforoushan, F. et al. 2004. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157, 381–398, https://doi.org/10.1111/j.1365-246X.2004.02222.x

Vigny, C., Huchon, P., Ruegg, J.-C., Khanbari, K. and Asfaw, L.M. 2006. Confirmation of Arabia plate slow motion by new GPS data in Yemen. Journal of Geophysical Research, 111, B02402, https://doi.org/10.1029/2004JB003229

Villey, M., Béchenecke, F., Beurrier, M., Le Métauor, J. and Rabu, D. 1986a. Geological map of Yanqul, sheet NF 40-2c, scale: 1:100,000, with Explanatory notes. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Villey, M., de Gramont, X. and Le Métauor, J. 1986b. Geological map of Seeb, sheet NF 40-3c, scale: 1:100,000, with Explanatory notes. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Villey, M., Le Métauor, J. and de Gramont, X. 1986c. Geological map of Fanjah, sheet NF 40-3f, scale: 1:100,000, with Explanatory notes. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.

Walley, C.D. 1998. Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region. Tectonophysics, 298, 37–62, https://doi.org/10.1016/S0040-1951(98)00177-2

Warren, C.J., Parrish, R.R., Searle, M.P. and Waters, D.J. 2003. Dating the subduction of the Arabian continental margin beneath the Semail Ophiolite. Geology, 31, 889–892, https://doi.org/10.1130/0199-6108(2003)31<889:DSOTSO>2.0.CO;2

Warren, C.J., Parrish, R.R., Waters, D.J. and Searle, M.P. 2005. Dating the geologic history of Oman’s Semail ophiolite: insight from U-Pb geochronology. Contributions to Mineralogy and Petrology, 150, 403–422, https://doi.org/10.1007/s00410-005-0028-5

Wyns, R., Béchenecke, F., Le Métauor, J. and Roger, J. 1992. Geological map of Tivi, sheet NF40-5B, scale 1:100,000, with Explanatory notes. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.