On Some Types of αrps-Closed Maps

Hameed DM*, Mushit IZ and Abdulqader AJ
Department of Mathematics, College of Education, Al-Mustansiriyah University, Baghdad, Iraq

Abstract
This paper is continues to study of a new type of closed maps which is called αrps-closed map. As well as, we give and study other types of αrps-closed maps which are (αrps-closed maps, strongly αrps-closed maps and almost αrps-closed maps) in topological spaces. Also, we will study the relation between these mappings and discussion some properties of these maps.

Keywords: αrps-closed; Topology; Mappings; Subset

Introduction
Mappings play as important role, in the study of modern mathematics, especially in topology and functional analysis [1-5]. Different types of closed and open mappings were studied by various researchers [6]. Generalized closed mappings were introduce and studied. After him different mathematicians worked and studied on different versions of generalized maps [7].

Hamed introduced and studied αrps-closed sets and also introduce the notion (αrps-continuous, αrps-irresolute and strongly αrps-continuous) functions [8].

In this paper, we introduce and study new types of closed maps namely αrps-closed map in topological spaces and we use this maps to give other types of αrps-closed map which are (αrps-closed maps [9-13], strongly αrps-closed maps and almost αrps-closed maps) and we discuss the properties of these maps as well as, shows the relationships between some types of these maps [14-18].

Throughout this paper (X,τ), (Y,σ) and (Z,μ) (or simply X, Y and Z) represent non-empty topological spaces [19-22]. For a sub set A of a space X,$cl(A)$, $int(A)$ and A^c denoted the closure of A, the interior of A and the complement of A in X respectively [23].

Preliminaries
Some definition and basic concepts have been given in this section.

Definition
A sub set A of a space X is said to be a:

1. Semi-open [9] If $A \subseteq cl(int(A))$ and semi-closed set if $int(cl(A)) \subseteq A$.
2. α-Open set [16] If $A \subseteq int(cl(int(A)))$ and α-closed set if $cl(int(cl(A))) \subseteq A$.
3. Preopen set [15] If $A \subseteq int(cl(A))$ and preclosed if $cl(int(A)) \subseteq A$.
4. Semi-preopen set [1] If $A \subseteq cl(int(cl(A)))$ and semi-preclosed if $int(Cl(int(A))) \subseteq A$.
5. Regular open [20] If $A=cl(int(A))$ and regular closed if $A=cl(cl(int(A)))$.
6. Regular α-open [21] if there is a regular open set U such that $U \subseteq A \subseteq acl(U)$.

The semi-closure (resp. α-closure, semi-pre closure), of a sub set A of X is the intersection of all semi-closed (resp. α-closed, semi-pre closed) sets containing A and denoted by $spcl(A)$ (resp. $acl(A)$, resp. $spcl(A)$).

Remark: It has been proved that:
1. Every regular closed set and closed set in a space X is an αrps-closed set.
2. Every αrps-closed set is (sg-closed, gs-closed, ag-closed, ga-closed, rg-closed, rga-closed) set.

Definition
A sub set A of a space X is said to be a:

1. Generalized closed set (briefly, g-closed) [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an open set in X.
2. Generalized semi-closed set (briefly, gs-closed) [3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an open set in X.
3. Generalized α-closed set (briefly, αg-closed) [12] if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is a semi-open set in X.
4. Generalized α-closed set (briefly, ga-closed) [13] if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is an α-open set in X.
5. Generalized α-closed set (briefly, g-α-closed) [12] if $acl(A) \subseteq U$ whenever $A \subseteq U$ and U is a regular open set.
6. Generalized α-closed set (briefly, rg-α-closed) [18] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a regular open set.
7. Regular generalized α-closed set (briefly, rga-α-closed) [21] if $Cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is a regular open set.
8. Pre-semi closed if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is a g-open.
9. Regular pre-semi closed (briefly, rps-α-closed) [19] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is an rg-open set in X.

*Corresponding author: Hameed DM, Department of Mathematics, College of Education, Al-Mustansiriyah University, Baghdad, Iraq.
E-mail: alanjalal515@yahoo.com

Received May 21, 2018; Accepted May 29, 2018; Published June 09, 2018

Citation: Hameed DM, Mushit IZ, Abdulqader AJ (2018) On Some Types of αrps-Closed Maps. J Appl Computat Math 7: 405. doi: 10.4172/2168-9679.1000405

Copyright: © 2018 Hameed DM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The concepts of g-closed map and almost closed map are independent to αrps-closed map. As show in the following examples.

Example: Let X={a, b, c} with the topology τ={X, θ, {a}, {a, c}}, where αRPSC(X, τ)={X, θ, {b}, {b, c}} and define f: (X, τ)→(Y, τ) by f(a)=a, f(b)=c and f(c)=b, then f is αrps-closed map. Since for the closed set A={b} in (X, τ), but f(A)=f({b})={c} is closed set in (X, τ). Hence, f is not αrps-closed map. As shown in the following example.

Example: Let X={a, b, c} with the topology τ={X, θ, {a}, {a, c}}, where αRPSC(X, τ)={X, θ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}, where αRPSC(X, τ)={X, θ, {a}, {b, c}}, where αRPSC(X, τ)={X, θ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}, and define f: (X, τ)→(Y, τ) by f(a)=a, f(b)=c and f(c)=b, then f is αrps-closed map, since for the closed set A={b} in (X, τ), but f(A)=f({b})={c} is closed set in (X, τ). Hence, f is αrps-closed map.

In this section, we introduce a new type of closed sets namely arps-closed maps in topological spaces and study some of their properties.

Definition: A map f: (X, τ)→(Y, σ) is called arps-closed map if f(A) is arps-closed set in (Y, σ), for every closed set A in (X, τ).

Proposition: Every arps-closed map is arps-closed map.

Proof: It follows from definition of closed map and fact that every closed set is arps-closed map.

Remark: The converse of above proposition need not be true as seen from the following example.

Example: Let X={a, b, c} with the topology τ={X, θ, [a], [a, c]}, where αRPSC(X, τ)={X, θ, [b], [c], [b, c]} and define f: (X, τ)→(Y, τ) by f(a)=a, f(b)=c and f(c)=b, then f is arps-closed map, but f is not closed map, since for the closed set A={b} in (X, τ), but f(A)=f({b})={c} is closed set in (X, τ). Hence, f is not closed map.

The proof of steps 3, 4, 5, and 6 are similar to step 1 and 2. The following example show the converse of proposition need not be true in general.

Example: Let X={a, b, c} with the topology τ={X, θ, [a], [b, c]}, where αRPSC(X, τ)={X, θ, [a], [b, c]}, where αRPSC(X, τ)={X, θ, [b], [c], [b, c]} and define f: (X, τ)→(Y, τ) by f(a)=a, f(b)=c and f(c)=b, then it is clear that f is gα-closed map. Since for the closed set A={b} in (X, τ), but f(A)=f({b})={c} is closed set in (X, τ). Hence, f is not arps-closed map.

Remark: The concepts of g-closed map and almost closed map are independent to arps-closed map. As shown in the following examples.

Example: Let X={a, b, c} with the topology τ={X, θ, [a], [a, c]}, where
Proposition: A map \(f : (X, \tau) \to (Y, \sigma) \) is \(\alpha rps \)-closed map, if for every closed set \(A \subset X \), \(f(A) \) is \(\alpha rps \)-closed set in \(Y \).

Proof: Let \(A \) be a closed set in \((X, \tau) \). Then, \(f(A) \) is a closed set in \((Y, \sigma) \), since \(f \) is a closed map. Therefore, \(f(A) \) is \(\alpha rps \)-closed set in \(Y \). Hence, \(f \) is \(\alpha rps \)-closed map.

Example

Let \(X = \{a, b, c\} \) with the topology \(\tau = \{\emptyset, \{a\}, \{b, c\}\} \), where \(\alpha rps(X, \tau) = \{\emptyset, \{a\}, \{b\}, \{c\}\} \) and \(\alpha a rps(X, \tau) = \{\emptyset, \{a\}, \{b\}, \{c\}\} \). Thus, \(\alpha rps(X, \tau) \) is \(\alpha rps \)-closed map.

Proposition

If \(f : (X, \tau) \to (Y, \sigma) \) is \(\alpha rps \)-closed map and \(Y \) is a \(T^{1/2} \)-space, then \(f \) is closed map.

Proof: Let \(A \) be a closed set in \((X, \tau) \). Then, \(f(A) \) is a closed set in \((Y, \sigma) \), since \(f \) is \(\alpha rps \)-closed map. Hence, \(f \) is closed map.

Example

Let \(X = \{a, b, c\} \) with the topology \(\tau = \{\emptyset, \{a\}, \{b\}, \{c\}\} \), where \(\alpha rps(X, \tau) = \{\emptyset, \{a\}, \{b\}, \{c\}\} \) and \(\alpha a rps(X, \tau) = \{\emptyset, \{a\}, \{b\}, \{c\}\} \). Thus \(\alpha rps(X, \tau) \) is \(\alpha rps \)-closed map.
Remark

If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is \(\alpha rps \)-closed map and \(g: (Y, \sigma) \rightarrow (Z, \mu) \) is a closed map, then \(g \circ f: (X, \tau) \rightarrow (Z, \mu) \) need not be \(rps \)-closed map, and this is shown by the following example:

Example

Let \(X=Y=Z=\{a, b, c\} \) with the topologies \(\tau=\{X, \emptyset, \{a\}, \{a, c\}\}, \sigma=\{Y, \emptyset, \{a\}, \{b, c\}\} \) and \(\alpha rps C(Y, \sigma)=\{Y, \emptyset, \{b\}, \{c\}\} \) and \(\alpha rps C(Z, \mu)=\{Z, \emptyset, \{a\}, \{b, c\}\} \). Let \(f: (X, \tau) \rightarrow (Y, \sigma) \), and \(g: (Y, \sigma) \rightarrow (Z, \mu) \) be two the identity maps then it is easy to see that \(f \) is a \(rps \)-closed map and \(g \) is a closed map, but \(g \circ f: (X, \tau) \rightarrow (Z, \mu) \) is not \(rps \)-closed map, since for the closed set \(A=\{b\} \) in \(X, \tau \), then \(g \circ f \) \((\{b\})=g \circ f \) \((\{b\})=\{b\} \), which is not \(rps \)-closed set in \((Z, \mu) \). Therefore, \(g \circ f: (X, \tau) \rightarrow (Z, \mu) \) is not \(rps \)-closed map.

The following propositions give the condition to make remark true:

Proposition

If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is an \(\alpha rps \)-closed map and \(g: (Y, \sigma) \rightarrow (Z, \mu) \) is a closed map and let \(Y \) be \(T^{1/2} \)-space, then \(g \circ f: (X, \tau) \rightarrow (Z, \mu) \) is \(\alpha rps \)-closed map.

Proof

Let \(A \) be a closed set in \((X, \tau) \), Thus \(f(A) \) is \(\alpha rps \)-closed set in \((Y, \sigma) \), since \(Y \) is a \(T^{1/2} \)-space, then by proposition. we get \(f \) is a closed map. Now, \(g \circ f(A) = g \circ f \circ f^{-1}(A) \) is a closed set in \((Z, \mu) \). Therefore, \(g \circ f: (X, \tau) \rightarrow (Z, \mu) \) is \(\alpha rps \)-closed map.

Proposition

Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) and \(g: (Y, \sigma) \rightarrow (Z, \mu) \) be two maps, such that their composition \(g \circ f: (X, \tau) \rightarrow (Z, \mu) \) is \(\alpha rps \)-closed map.

1. If \(f \) is a continuous and subjective, then \(g \) is \(rps \)-closed map.
2. If \(g \) is \(\alpha rps \)-continuous and injective, then \(f \) is \(\alpha rps \)-closed map.

Proof (i):

Let \(A \) be a closed set in \((Y, \sigma) \), thus \(f^{-1}(A) \) is a \(\alpha rps \)-closed set in \((X, \tau) \). Also, since \(f \) is a \(\alpha rps \)-closed map, then \(g \circ f \) \((f^{-1}(A)) = g \circ f \) \((A) \) is a \(\alpha rps \)-closed set in \((Z, \mu) \). Therefore, \(f \) is \(\alpha rps \)-closed map.

Proof (ii):

Let \(E \) be a closed set in \((X, \tau) \). Since \(g \circ f \) \((E) \) is a \(\alpha rps \)-closed set in \((Z, \mu) \), thus \(g \circ f \) \((E) \) is an \(\alpha rps \)-closed map in \((Z, \mu) \). Therefore, \(f \) is \(\alpha rps \)-closed map.

Some Types of \textit{rps-Closed Maps}

Some other types of \textit{rps-closed} maps are given in this section such as \(\alpha rps \)-closed maps, \(rps \)-closed maps and almost \(rps \)-closed maps) with study the relations between these types of maps.

Definition

A map \(f: (X, \tau) \rightarrow (Y, \sigma) \) is called \(\alpha rps \)-closed map if \(f(A) \) is \(\alpha rps \)-closed set in \((Y, \sigma) \), for every \(\alpha rps \)-closed set \(A \) in \((X, \tau) \).

Proposition

Every \(\alpha rps \)-closed map is \(rps \)-closed map.

Proof

Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be \(\alpha rps \)-closed map and let \(A \) be a closed set in \((X, \tau) \), by remark \(\forall \) closed set is a \(\alpha rps \)-closed set. Thus, \(A \) is \(\alpha rps \)-closed set in \((X, \tau) \). Since \(f(A) \) is \(\alpha rps \)-closed map, then \(f(A) \) is a \(\alpha rps \)-closed set in \((Y, \sigma) \). Therefore, \(f \) is \(\alpha rps \)-closed map.

Corollary

\[\text{Every} \alpha rps \text{-closed map is} \]

1. \(\text{ag-Closed map.} \)
2. \(\text{ga-Closed map.} \)
3. \(\text{sg-Closed map.} \)
4. \(\text{gs-Closed map.} \)
5. \(\text{rg-Closed map.} \)
6. \(\text{rga-Closed map.} \)

Proof

It is follows from proposition.

Remark: The converse of proposition are not true in general. It is easy to see that in example, \(f \) is \(\alpha rps \)-closed map, but is not \(\alpha rps \)-closed, and in example it is clear that \(f \) is \(\alpha rps \)-closed map, \(gc \)-closed map, \(sg \)-closed map, \(rg \)-closed map and \(rga \)-closed map), but is not \(\alpha rps \)-closed map.

The following propositions give the condition to make the proposition, corollary and Remark are true:

Proposition

Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be an \(\alpha rps \)-closed map and \(Y \) is \(T^{1/2} \)-space then \(f \) is a

1. \(\text{Closed map.} \)
2. \(\text{Almost-closed map.} \)

Proof (i):- It is follows from proposition, we get \(f \) is a closed map.

Proof (ii): It is follows from the fact (\(\forall \) closed map is almost-closed map [17]).

Proposition

Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be any map, then \(f \) is \(\alpha rps \)-closed map, if \(X \) is \(T^{1/2} \)-space and \(f \) is a

1. \(\text{ag-closed map and Y is a } \alpha T_s \text{-space.} \)
2. \(\text{ga-closed map and Y is a } \alpha T_s \text{-space.} \)

Proof (i)

Let \(A \) be an \(\alpha rps \)-closed set in \((X, \tau) \), since \(X \) is a \(T^{1/2} \)-space, then by proposition. we get \(f \) is \(\alpha rps \)-closed map, \(\alpha T_s \)-closed map and \(Y \) is a \(\alpha T_s \)-space.

Proposition

Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be any map, then \(f \) is \(\alpha rps \)-closed map, if \(X \) is \(T^{1/2} \)-space and \(f \) is a

1. \(\text{ag-closed map and Y is a } \alpha T_s \text{-space.} \)
2. \(\text{ga-closed map and Y is a } \alpha T_s \text{-space.} \)

Proof (ii)

It is follows from the fact (\(\forall \) \(\alpha T_s \)-closed map is \(\alpha rps \)-closed map [6]), and Similarly, we proof the following proposition.
2. sg-Closed map and Y is a T_i-space.
3. rg-Closed map and Y is a $T^{1/2}$-space.
4. rga-closed map and Y is $T^{1/2}$-space
5. Closed map.
6. arps-Closed map.
7. g-Closed map.

Proposition

If $f: (X, \tau) \rightarrow (Y, \sigma)$ is a closed map and X is a $T^{1/2}$-space and locally indiscrete, then f is $\alpha*rps$-closed map.

Proof

Let A be a closed set in (X, τ). Since X is a $T^{1/2}$-space, then by using proposition. We get A is a closed set in X. Also, since X is a locally indiscrete, then by definition of locally indiscrete we have, A is a regular closed set in X, since f is a almost-closed map. Thus, $f(A)$ is an almost-closed set in (Y, σ). Also, since g is an $\alpha*rps$-closed map.

Thus, $g(f(A))$ is $\alpha*rps$-closed set in (Z, μ). That is $g(f(A))=g$ of (A) is a $\alpha*rps$-closed set in (Z, μ).

Therefore, g of $(X, \tau) \rightarrow (Z, \mu)$ is $\alpha*rps$-closed map.

Proposition

The composition of two $\alpha*rps$-closed maps is also $\alpha*rps$-closed map.

Proof

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \mu)$ be two $\alpha*rps$-closed map, and A be $\alpha*rps$-closed set in X, since f is $\alpha*rps$-closed, then $f(A)$ is an $\alpha*rps$-closed set in (Y, σ). Also, since g is an $\alpha*rps$-closed map.

Thus, $g(f(A))$ is $\alpha*rps$-closed set in (Z, μ). That is, $g(f(A))=g$ of (A) is a $\alpha*rps$-closed set in (Z, μ).

Therefore, g of $(X, \tau) \rightarrow (Z, \mu)$ is a $\alpha*rps$-closed map.

Proposition

If $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \mu)$ be two $\alpha*rps$-closed map, and then g of $(X, \tau) \rightarrow (Z, \mu)$ is $\alpha*rps$-closed map.

Proof

Let A be a closed set in (X, τ), then $f(A)$ is $\alpha*rps$-closed set in (Y, σ). Also, since g is $\alpha*rps$-closed map.

Thus, $g(f(A))$ is $\alpha*rps$-closed set in (Z, μ). That is, $g(f(A))=g$ of (A) is a $\alpha*rps$-closed set in (Z, μ).

Therefore, g of $(X, \tau) \rightarrow (Z, \mu)$ is $\alpha*rps$-closed map.

Similarly, we proof the following corollary.

Corollary

If $f: (X, \tau) \rightarrow (Y, \sigma)$ is a closed map and $g: (Y, \sigma) \rightarrow (Z, \mu)$ is a $\alpha*rps$-closed map, then g of $(X, \tau) \rightarrow (Z, \mu)$ is $\alpha*rps$-closed map.

Now, we give another type of $\alpha*rps$-closed map is called strongly $\alpha*rps$-closed map.

Definition

A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called strongly $\alpha*rps$-closed map if $f(A)$ is closed set in (Y, σ), for every $\alpha*rps$-closed set A in (X, τ).

Proposition

Every strongly $\alpha*rps$-closed map $f: (X, \tau) \rightarrow (Y, \sigma)$ is

i. Closed map.

ii. Almost-closed map.

iii. g-Closed map.

iv. arps-Closed map.

v. $\alpha*rps$-Closed map.

Proof

i. Let A be a closed set in (X, τ), by using remark, step \forall closed set is an $\alpha*rps$-closed we get, A is an $\alpha*rps$-closed set in (X, τ).

Since f is strongly $\alpha*rps$-closed map. Thus, $f(A)$ is a closed set in (Y, σ). Therefore, f is a closed map.

ii. It is clear that from step \forall strongly $\alpha*rps$-closed map is a closed and the fact (closed map is almost closed, [17]).

iii. It is clear that from step \forall strongly $\alpha*rps$-closed map is a closed and the fact (closed map is g-closed, [4])

iv. It is clear that from step and the proposition.

v. Let A be an $\alpha*rps$-closed set in (X, τ). Since f is strongly $\alpha*rps$-closed map.

Thus, $f(A)$ is a closed set in (Y, σ), by using remark, \forall closed set is an $\alpha*rps$-closed set, then A is an $\alpha*rps$-closed set in (Y, σ). Therefore f is a $\alpha*rps$-closed map

Corollary

Every strongly $\alpha*rps$-closed map $f: (X, \tau) \rightarrow (Y, \sigma)$ is

1. $\alpha*g$-Closed map.
2. g-Closed map.
3. sg-Closed map.
4. gs-Closed map.
5. rg-Closed map.
6. $rg\alpha$-Closed map.

Proof

It is clear that from proposition. The following examples show the converse of above proposition and corollary need not be true in general.

Example

Let $X=[a, b, c]$ with the topology $\tau=[X, \emptyset, \{a\}]$ and let $f: (X, \tau) \rightarrow (X, \tau)$ be an identity map. Then, it is clear that f is a closed map, almost-closed map and g-closed map] but is not strongly $\alpha*rps$-closed, since for closed set $A=[b], f(A)=f([b])=[b]$ is not closed set in (X, τ).

Example

Let $X=Y=[a, b, c]$ with the topologies $\tau=[X, \emptyset, \{a\}]$, and $\sigma=[X, \emptyset, \{a\}, \{a, c\}]$, where $\alpha\text{RPS}C(X, \tau)=[X, \emptyset, \{b\}, \{c\}, \{b, c\}]$ and let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an identity map. Then, it is clear that f is $\alpha*rps$-closed map $\alpha*rps$-closed map but is not strongly $\alpha*rps$-closed map. Since for closed set $A=[c], f(A)=f([c])=[c]$ is not closed set in (Y, σ).

Example

Let $X=Y=[a, b, c]$ with the topologies $\tau=[X, \emptyset, \{a\}]$, and $\sigma=[X, \emptyset, \{a, b\}, \{b, c\}]$. Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by $f(a)=b, f(b)=a$ and $f(c)=c$. Then, it is clear that f is $\alpha*g$-closed map (ga-closed map, sg-closed map, gc-closed map, rg-closed map and rga-closed map), but is not strongly $\alpha*rps$-closed map, since for closed set $A=[c], f(A)=f([c])=[c]$ is not closed set in (Y, σ).

The following condition to make proposition and corollary are true
Proposition

Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be any map, then \(f \) is a strongly \(\alpha rps \)-closed map if \(X \) is a \(T^{1/2} \)-space and

1. Closed map
2. Almost- closed map.
3. \(g \)-Closed map.
4. \(ga \)-Closed map.
5. \(rg \)-Closed map.
6. \(rga \)-Closed map.
7. \(\alpha rps \)-Closed map.

Proof

It follows from proposition and step and proposition.

Proposition

If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is an \(\alpha rps \)-closed map and \(Y \) is a \(T^{1/2} \)-space, then \(f \) is a strongly \(\alpha rps \)-closed map.

Proof

Let \(A \) be an \(\alpha rps \)-closed set in \((X, \tau) \). Since \(f \) is \(\alpha rps \)-closed map. Thus \(f(A) \) is \(\alpha rps \)-closed set in \((Y, \sigma) \). Also, since \(Y \) is a \(T^{1/2} \)-space, then \(f(A) \) is a closed set in \((Y, \sigma) \). Therefore, \(f \) is strongly \(\alpha rps \)-closed map.

Proposition

If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is almost-closed map and \(X \) is a locally - indiscrete and \(T^{1/2} \)-space, then \(f \) is a strongly \(\alpha rps \)-closed map.

Proof

Let \(A \) be an \(\alpha rps \) - closed set in \((X, \tau) \). Since \(X \) is a \(T^{1/2} \)-space. Then, \(A \) is a closed set in \((X, \tau) \), hence \(f(A) \) is a \(\alpha rps \)-closed set in \((Y, \sigma) \). Therefore, \(f \) is a strongly \(\alpha rps \)-closed map.

Next, we give some proposition and results about the composition of strongly \(\alpha rps \)-closed map.

Proposition

The composition of two strongly \(\alpha rps \)-closed maps is also strongly \(\alpha rps \)-closed map.

Proof

Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) and \(g: (Y, \sigma) \rightarrow (Z, \mu) \) be two strongly \(\alpha rps \)-closed maps, and \(A \) be \(\alpha rps \)-closed set in \((X, \tau) \), since \(f \) is strongly \(\alpha rps \)-closed map, then \(f(A) \) is a closed set in \((Y, \sigma) \), by remark \(\forall \) closed set is \(\alpha rps \)-closed set, so we get \(f(A) \) is \(\alpha rps \)-closed set in \((Y, \sigma) \). Also, since \(g \) is an \(\alpha rps \)-closed map. Thus, \(g(f(A)) \) is a closed set in \((Z, \mu) \). That is \(g(f(A)) = g(A) \) is \(\alpha rps \)-closed set in \((Z, \mu) \). Therefore, \(g \) of \((X, \tau) \rightarrow (Z, \mu) \) is strongly \(\alpha rps \)-closed map.

Similarly, we proof the following proposition.

Proposition

1. If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is a strongly \(\alpha rps \)-closed map and \(g: (Y, \sigma) \rightarrow (Z, \mu) \) is closed map, then \(g \) of \((X, \tau) \rightarrow (Z, \mu) \) is a strongly \(\alpha rps \)-closed map.
2. If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is a \(\alpha rps \) - closed map and \(g: (Y, \sigma) \rightarrow (Z, \mu) \) is strongly \(\alpha rps \)-closed map, then \(g \) of \((X, \tau) \rightarrow (Z, \mu) \) is a strongly \(\alpha rps \)-closed map.

Proposition

Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) and \(g: (Y, \sigma) \rightarrow (Z, \mu) \) be two maps, then \(g \) of \((X, \tau) \rightarrow (Z, \mu) \) is a \(\alpha rps \)-closed map, if \(f \) is strongly \(\alpha rps \)-closed map and

i. \(g \) is \(\alpha rps \)-closed map.
ii. \(g \) is \(\alpha rps \)-closed map.

Proof

(i) Let \(A \) be \(\alpha rps \)-closed set in \(X \), since \(f \) is strongly \(\alpha rps \)-closed map, then \(f(A) \) is a closed set in \(Y \). Also, since \(g \) is \(\alpha rps \)-closed map. Thus, \(g(f(A)) \) is a \(\alpha rps \)-closed set in \(Z \). That is \(g(f(A)) = g(A) \) is a \(\alpha rps \)-closed set in \(Z \), Therefore, \(g \) of \((X, \tau) \rightarrow (Z, \mu) \) is a \(\alpha rps \)-closed map.

The proof of steps.

Remark

In the proposition the composition \(g \) of \((X, \tau) \rightarrow (Z, \mu) \) need not be in general strongly \(\alpha rps \)-closed map. As shows in the following example:

Example

Let \(X=Y=Z=\{a, b, c\} \) with the topologies \(\tau=\{X, \emptyset, \{a\}, \{b, c\}\} \), \(\sigma=\{Y, \emptyset, \{a\}, \{a, c\}\} \), \(\mu=\{Z, \emptyset, \{a\}, \{a, c\}\} \) and let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be an identity map and \(g: (Y, \sigma) \rightarrow (Z, \mu) \) be a mapping defined by \(g(a)=g(b)=c \) and \(g(c)=b \), then it is easy to see that \(f \) is strongly \(\alpha rps \)-closed map and \(g \) is \(\alpha rps \)-closed map.

Proposition

Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) and \(g: (Y, \sigma) \rightarrow (Z, \mu) \) be two any maps then \(g \) of \((X, \tau) \rightarrow (Z, \mu) \) is \(\alpha rps \)-closed map, if \(g \) is strongly \(\alpha rps \)-closed and

i. \(f \) is a closed map.
ii. \(f \) is a \(\alpha rps \)-closed map.

Proof

(i) Let \(A \) be a closed set in \(X \), since \(f \) is closed map, then \(f(A) \) is a \(\alpha rps \)-closed map. Thus, \(g(f(A)) \) is a \(\alpha rps \)-closed set in \(Z \). That is \(g(f(A)) = g(A) \) is a \(\alpha rps \)-closed set in \(Z \), Therefore, \(g \) of \((X, \tau) \rightarrow (Z, \mu) \) is \(\alpha rps \)-closed map.

The proof of steps.

Remark

In the proposition the composition \(g \) of \((X, \tau) \rightarrow (Z, \mu) \) need not be in general strongly \(\alpha rps \)-closed map. As shows in the following example:

Example

Let \(X=Y=Z=\{a, b, c\} \) with the topologies \(\tau=\{X, \emptyset, \{a\}, \emptyset, \{b, c\}\} \), \(\sigma=\{Y, \emptyset, \{a\}, \{a, c\}\} \), \(\mu=\{Z, \emptyset, \{a\}, \{a, c\}\} \) and let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a mapping defined by \(g(a)=g(b)=c \) and \(g(c)=b \), then it is easy to see that \(f \) is a closed map and \(g \) is \(\alpha rps \)-closed map.
strongly αrps-closed map, but g of: \((X, \tau) \rightarrow (Z, \mu)\) is not strongly αrps-closed map, since for the closed set \(A=\{b\}\) in \((X, \tau)\), then g of \((A)=g of \((A)=g of \((\{b\} \rightarrow g of \((\{b\}))=g of \((\{c\})\), which is not closed set in \((Z, \mu)\).

The following proposition give the condition to make Remark true:

Proposition

Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be any two any maps, then g of \((X, \tau) \rightarrow (Z, \mu)\) is a strongly αrps-closed map, if f is a strongly αrps-closed map and \((Z, \mu)\) is a \(T^{\alpha rps}\)-space

1. g is αrps-closed map.
2. g is α*rps-closed map.

Proof

Let \(A\) be a αrps-closed set in \(X\), then \(f(A)\) is a closed set in \((Y, \sigma)\), by Remark \((\forall \) closed set is an αrps-closed set), since \(g\) is αrps-closed map. Thus \(g(f(A))\) is αrps-closed set in \((Z, \mu)\). That is \(g(f(A))=g of \((A)\) is an αrps-closed set in \((Z, \mu)\). Also, since \(Z\) is \(T^{\alpha rps}\)-space, so we get g of \((A)\) is a closed set in \((Z, \mu)\). Therefore, \(g of: (X, \tau) \rightarrow (Z, \mu)\) is strongly αrps-closed map.

Proposition

Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be any two any maps, then g of \((X, \tau) \rightarrow (Z, \mu)\) is strongly αrps-closed map, if f is strongly αrps-closed map and \((X, \tau)\) is a \(T^{\alpha rps}\)-space and

1. \(f\) is a closed map
2. \(f\) is a αrps-closed map.

Proof

(i) Let \(A\) be αrps-closed set in \(X\), since \(X\) is a \(T^{\alpha rps}\)-space, then by using proposition we get \(A\) is a closed set in \(X\). Thus, \(f(A)\) is a closed set in \(Y\), by remark, if \((A)\) is an αrps-closed set in \(Y\). Also, since \(Z\) is \(T^{\alpha rps}\)-space, so we get g of \((A)\) is a closed set in \((Z, \mu)\). Therefore, \(g of: (X, \tau) \rightarrow (Z, \mu)\) is strongly αrps-closed map.

(ii) \(f\) is a αrps-closed map.

\(g of: (X, \tau) \rightarrow (Z, \mu)\) is strongly αrps-closed map, since, \(f\) is subjective. Therefore, \(g\) is αrps-closed map. Thus, \(g(f(A))\) is a closed set in \((Z, \mu)\). That is \(g(f(A))=g of \((f(A))=g of \((A)\) is a closed set in \((Z, \mu)\). Hence, \(g of: (X, \tau) \rightarrow (Z, \mu)\) is strongly αrps-closed map.

Definition

A map \(f: (X, \tau) \rightarrow (Y, \sigma)\) is called almost αrps-closed map if \(f(A)\) is αrps-closed set in \((Y, \sigma)\), for every regular closed set \(A in (X, \tau)\).

Proposition

Every almost closed map is almost αrps-closed map.

Proof

Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be a almost closed map and \(A\) be a regular closed set in \((X, \tau)\). Then, \(f(A)\) is a closed set in \((Y, \sigma)\) and by using remark we get \(f(A)\) is a αrps-closed set in \((Y, \sigma)\). Hence, \(f\) is almost αrps-closed map.

Corollary

1. Every closed map is almost αrps-closed map.
2. Every α*rps-closed map is almost αrps-closed map.
3. Every strongly αrps-closed map is almost αrps-closed map.

Proof

The converse of proposition and corollary need not be true in general.

Example

Let \(X=\{a, b, c\}\) with the topologies \(\tau=\{X, \emptyset, \{a\}\}\) and \(\sigma=\{Y, \emptyset, \{a, b\}\}\), where αRPSC(\(X, \tau\)=\(X, \emptyset, \{a\}, \{b\}, \{a, b\}\)) and αRPSC(\(Y, \sigma\)=\(Y, \emptyset, \{a, b\}\)). Define \(f(X, \tau) \rightarrow (Y, \sigma)\) by \(f(a)=c\), \(f(b)=a\) and \(f(c)=b\). Then, it is clear that \(f\) is almost αrps-closed map but is not closed map (αrps-closed, α*rps-closed and strongly αrps-closed map), since for closed set \(A=\{b, c\}\) in \((X, \tau)\), \(f(A)=\{f(b), c\}=\{a, c\}\) is not closed and \((\alpha rps-powered closed \) set in \(Y)\).

Example

Let \(X=\{a, b, c\}\) with the topologies \(\tau=\{X, \emptyset, \{a\}\}\) and \(\sigma=\{Y, \emptyset, \{a, b\}\}\), where RC(\(X, \tau\)=\(X, \emptyset, \{b\}, \{c\}\)) and αRPSC(\(Y, \sigma\)=\(Y, \emptyset, \{b\}\)). Define \(f(X, \tau) \rightarrow (Y, \sigma)\) by \(f(a)=b\), \(f(b)=c\) and \(f(c)=c\). Then, it is clear that \(f\) is almost closed map but is not almost closed map, since for regular closed set \(A=\{b, c\}\) in \((X, \tau)\), \(f(A)=\{f(b), c\}=\{c\}\) is not closed in \((Y, \sigma)\).

The following proposition give the condition to make, proposition and corollary are true:

Proposition

If \(f: (X, \tau) \rightarrow (Y, \sigma)\) is almost αrps-closed map and \((Y, \sigma)\) is a \(T^{\alpha rps}\)-space, then \(f\) is an almost-closed set.
Proposition

If f: (X,τ)→(Y, σ) is almost arps-closed map and X is a locally indiscrete space, then f is arps-closed set.

Proof

Let A be a regular closed set in (X, τ), since X is a locally indiscrete, then by definition. We get, A is a regular closed set in X. Also, since f is a almost arps-closed map, then f(A) is an arps-closed set in (Y, σ). Therefore, f is an arps-closed map.

Proposition: Let f: (X, τ)→(Y, σ) be almost arps-closed map and X be a locally indiscrete space and Y be a T*1/2-space, then f is a closed set.

Proof: Let A be a closed set in (X, τ), since X is a locally indiscrete, then by definition. We get, A is a regular closed set in X. Also, since f is a almost arps-closed map. Then, f(A) is an arps-closed set in (Y, σ). Therefore, f is an arps-closed map.

Proposition: Let f: (X, τ)→(Y, σ) be almost arps-closed map and X be a locally indiscrete space and Y be a T*1/2-space, then f is a closed set.

Proof: Let A be a closed set in (X, τ), since X is a locally indiscrete, then by definition. We get, A is a regular closed set in X. Also, since f is a almost arps-closed map. Then, f(A) is an arps-closed set in (Y, σ) and since Y is a T*1/2-space, then by proposition we get f(A) is a closed set in Y.

Proposition

Let f: (X, τ)→(Y, σ) be almost arps-closed map and X be a locally indiscrete space and T*1/2-space, then

1. f is an α*arps-closed set.
2. f is a strongly arps-closed set if Y is a T*1/2-space.

Proof: (i) Let A be a arps-closed set in (X, τ), since X is a T*1/2-space, then by proposition. we have, A is a closed set in X and since X is a locally indiscrete, then by definition. We get, A is a regular closed set in X. Also, since f is a almost arps-closed map. Then, f(A) is an arps-closed set in (Y, σ). Therefore, f is an α*arps-closed set.

Proof: (ii) Let A be a arps-closed set in (X, τ), since X is a T*1/2-space, then by proposition. we have, A is a closed set in X and since X is a locally indiscrete, then by definition. We get, A is a regular closed set in X. Also, Thus, f(A) is an arps-closed set in (Y, σ). Also, since Y is a T*1/2-space Hence, f(A) is a closed set in Y. Therefore, f is a strongly arps-closed set.

Remark: The composition of two strongly arps-closed maps need not be strongly arps-closed map in general, the following example to show that.

Example: Let X=[a, b, c, d], Y=Z=[a, b, c] with the topologies τ=X, θ=[X, θ], {a, b, c}, {a, b, d}, θ, RC(X, τ)=RC(τ,X), RC(Y, σ)=RC(σ,Y), RC(Z, ρ)=RC(ρ,Z), where RC(X, τ)=RC(τ,X), RC(Y, σ)=RC(σ,Y), RC(Z, ρ)=RC(ρ,Z), and ARPCSC(Y, σ)={Y, θ}, ARPCSC(X, τ)={X, θ}, ARPCSC(Z, ρ)={Z, θ, [a, b, c]} Define f(X, τ)→(Y, σ) by f(a)=f(d)=b, f(b)=f(c)=c and g: (Y, σ)→(Z, μ) be an identity map, then it is easy to see that f and g are almost arps-closed maps, but g of: (X, τ)→(Z, μ) is not almost arps-closed map, since for the regular closed set A=[a, d] in [X, τ] g of (A)=g of (a,d)=g of ([a, d])=g of (b)=g of ([b], which is not arps-closed set in (Z, μ). Hence, g of is not almost arps-closed map the following proposition give the condition to make remark is true:

Proposition

If f(X, τ)→(Y, σ) and g: (Y, σ)→(Z, μ) are two almost arps-closed maps and Y is locally indiscrete and T*1/2-space, then g of: (X, τ)→(Z, μ) is α*arps-closed map.

Proof: Let A be a regular closed set in X, then f(A) is an arps-closed set in Y. Also, since Y is a T*1/2-space, then by proposition. we get f(A) is a closed set in Y. Also, since Y is a locally indiscrete, hence f(A) is a regular closed set in Y, since g is almost arps-closed map. then g(f(A)) is a arps-closed set in Z. But g of (f(A))=g of (A). Therefore, g of: (X, τ)→(Z, μ) is α*arps-closed map. The proof of the following proposition it is easy.

Proposition

Let f(X, τ)→(Y, σ) and g: (Y, σ)→(Z, μ) be two maps, then g of: (X, τ)→(Z, μ) is α*arps-closed map, if f is almost arps-closed and g is Figure 1.

1. α*rps-closed map.
2. Strongly arps-closed map.

Remark: Here in the following diagram illustrates the relation between the arps-closed mapping types (without using condition), where the converse is not necessarily true.

Figure 1: Illustrates the relation between the arps-closed mapping types.

References

1. Andrijevic D (1986) Semi-preopen sets. Mat Vesnik 38: 24-32.
2. Andrijevic D (1996) On b-open sets. Matematicki Vesnik 205: 59-64.
3. Arya SP (1990) Characterizations of s-normal spaces. Indian J Pure Appl Math 21: 717-719.
4. Arockiarani I (1997) Studies on generalizations of generalized closed sets and maps in topological spaces.
5. Bhattacharyya P (1987) Semi-generalized closed sets in topology. Indian J Math 29: 375-382.
6. Devi R, Balachandran K, Maki H (1998) Generalized α-continuous maps and α-centralized closed maps. Indian J Pure Appl Math 29: 37-49.
7. Devi R (1993) Semi-generalized closed maps and generalized semi-closed maps. Mem Fac Sci Kochi Univ Ser A Math 14:41-54.
8. Hammed DM (2014) On Arps–Closed Sets in Topological Spaces. Engineering and Technology Journal 32: 271-286.
9. Levine N (1963) Semi-generalized closed sets. Indian J Pure Appl Math 21: 717-719.
10. Levine N (1964) Generalized homeomorphisms in topological spaces. Proc Math Phys Soc Egypt 53: 47-53.
11. Maki H, Devi R, Balanchandran K (1993) Generalized α-closed sets in topology. Proc Math Phys Soc Egypt 53: 47-53.
12. Maki H, Devi R, Balanchandran K (1993) Generalized α-closed sets in topology. Proc Math Phys Soc Egypt 53: 47-53.
13. Maki H (1994) Associated topologies of generalized α-closed sets and α-generalized closed sets. Mem Fac Sci Kochi Univ 15: 51-63.
14. Mashhour AS (1982) On precontinuous and weak precontinuous mappings. In Proc Math Phys Soc Egypt 53: 47-53.
15. Nagaveni N (1999) Studies on generalizations of homeomorphisms in topological spaces. Ph.D Thesis.
Citation: Hameed DM, Musht IZ, Abdulqader AJ (2018) On Some Types of \(\alpha_{rps}\)-Closed Maps. J Appl Computat Math 7: 405. doi: 10.4172/2168-9679.1000405

16. Njastad O (1965) On some classes of nearly open sets. Pacific Journal of Mathematics 15: 961-970.

17. Noiri T (1999) Almost \(\alpha_g\)-closed functions and separation axioms. Acta Mathematica Hungarica 82: 193-205.

18. Palaniappan N (1995) Regular generalized closed sets.

19. Mary TSI, Thangavelu P (2010) On regular pre-semi-closed sets in topological spaces. J Math Sci Comput Appl 1: 9-17.

20. Stone MH (1937) Applications of the theory of Boolean rings to general topology. Trans Am Math Soc 41: 375-481.

21. Vadivel A, Vairamanickam K (2009) rgo-closed sets and rgo-open sets in topological spaces. Int J Math Analysis 3: 1803-1819.

22. Vadivel A, Vairamanickam K (2010) rgo-Closed and rgo-open maps in topological spaces. J Math 10: 453-468.

23. Kumar MV (2002) Pre-semi-closed sets. Indian J Math 44: 165-181.