The First Robust Constraints on the Relationship between Dust-to-gas Ratio and Metallicity in Luminous Star-forming Galaxies at High Redshift*

Alice E. Shapley1, Fergus Cullen2, James S. Dunlop2, Ross J. McLure2, Mariska Kriek3, Naveen A. Reddy4, and Ryan L. Sanders5

1 Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095, USA; aes@astro.ucla.edu
2 Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK
3 Astronomy Department, University of California, Berkeley, Berkeley, CA 94720, USA
4 Department of Physics and Astronomy, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
5 Department of Physics, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA

Received 2020 September 19; revised 2020 October 9; accepted 2020 October 9; published 2020 October 29

Abstract

We present rest-optical spectroscopic properties of a sample of four galaxies in the Atacama Large Millimeter/submillimeter Array Hubble Ultra Deep Field (ALMA HUDF). These galaxies span the redshift range 1.41 ≤ z ≤ 2.54 and the stellar mass range 10.36 ≤ log(M* / M☉) ≤ 10.91. They have existing far-infrared and radio measurements of dust-continuum and molecular gas emission from which bolometric star formation rates (SFRs), dust masses, and molecular gas masses have been estimated. We use new Hα and K-band near-infrared spectra from the Keck Multi-object Spectrometer for Infrared Exploration (MOSFIRE) to estimate SFRs from dust-corrected Hα emission (SFR(Hα)) and gas-phase oxygen abundances from the ratio [N II]6584/Hα. We find that the dust-corrected SFR(Hα) is systematically lower than the bolometric SFR by a factor of several, and measure gas-phase oxygen abundances in a narrow range, 12 + log(O/H) = 8.59 − 8.69 (0.8−1.0 (O/H))).

Relative to a large z ~ 2 comparison sample from the MOSFIRE Deep Evolution Field (MOSDEF) survey, the ALMA HUDF galaxies scatter roughly symmetrically around the best-fit linear mass–metallicity relation, providing tentative evidence for a flattening in the SFR dependence of metallicity at high stellar mass. Combining oxygen abundances with estimates of dust and molecular gas masses, we show that there is no significant evolution in the normalization of the dust-to-gas ratio (DGR) versus metallicity relation from z ~ 0 to z ~ 2. This result is consistent with some semi-analytic models and cosmological simulations describing the evolution of dust in galaxies. Tracing the actual form of the DGR versus metallicity relation at high redshift now requires combined measurements of dust, gas, and metallicity over a significantly wider range in metallicity.

Unified Astronomy Thesaurus concepts: High-redshift galaxies (734); Galaxy evolution (594); Interstellar medium (847); Gas-to-dust ratio (638); Metallicity (1031)

1. Introduction

Dust is a key component of the interstellar medium (ISM), modulating interstellar chemistry and thermodynamics. Dust also plays an important role in the observed properties of galaxies over cosmic time, given that dust grains absorb ultraviolet and optical starlight and reradiate it at longer wavelengths. Indeed, our census of the star formation rate (SFR) density of the universe as a function of redshift is highly incomplete unless we include the fraction of star formation obscured by dust (e.g., Madau & Dickinson 2014). Of particular interest is the coevolution of the dust and metal content of galaxies, which constrains models of the formation and destruction of dust grains, and the overall chemical enrichment of galaxies (e.g., Feldmann 2015; McKinney et al. 2017; Popping et al. 2017; Li et al. 2019; Hou et al. 2019).

In particular, the dust-to-gas ratio (defined as dust mass divided by gas mass, hereafter DGR) has been shown to scale with gas-phase oxygen abundance in the local universe (Rémy-Ruyer et al. 2014; de Vis et al. 2019). Regardless of the specific form used to fit this relationship (broken or single power-law), it is shown that galaxies at lower metallicities (12 + log(O/H) < 8.0 − 8.2) have a lower ratio of dust to metals than more metal-rich galaxies. This scaling relationship can be interpreted in terms of dust grain growth in the ISM as galaxies evolve from lower to higher metallicity (Popping et al. 2017). Both semi-analytic models and numerical simulations have been used to describe the form and evolution of the DGR versus metallicity relationship over a wide range of redshift. While Popping et al. (2017), Li et al. (2019), and Triani et al. (2020) predict very little evolution in the DGR versus metallicity relationship out to z ~ 6, Hou et al. (2019) predict that the DGR should be detectably lower at fixed metallicity by z ~ 2 − 3. Although robust DGR and gas-phase metallicities have been assembled for hundreds of z ~ 0 galaxies, the corresponding measurements at z > 1 do not exist.

Sensitive Atacama Large Millimeter/submillimeter Array (ALMA) and Karl G. Jansky Very Large Array (VLA) observations of dust-continuum and molecular gas emission in the Hubble Ultra Deep Field (HUDF; Dunlop et al. 2017; Aravena et al. 2020; Riechers et al. 2020) enable DGR estimates for luminous star-forming galaxies out to z ~ 2–3. Here we present additional measurements of robust gas-phase metallicities based on rest-optical spectroscopy, and therefore provide the first constraints on the DGR versus metallicity relationship in luminous star-forming galaxies at z > 1. We also compare dust-corrected rest-optical and bolometric measurements of SFR, directly quantifying the importance of
obscured star formation in our sample. In Section 2, we present the ALMA HUDF sample, and both existing and new observations. Section 3 contains our results on SFR, metallicity, and the DGR versus metallicity relation. We conclude in Section 4 with a discussion of the implications of these results. Throughout, we assume a ΛCDM cosmology with $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.3$, and $\Omega_{\Lambda} = 0.7$.

2. Sample and Observations

2.1. ALMA HUDF Sample and Multiwavelength Observations

We analyze a sample of four objects drawn from the ALMA HUDF 1.3 mm survey of Dunlop et al. (2017), which used a 45-pointing mosaic to cover the 4.5 arcmin2 region of the HUDF also imaged by the Hubble Wide Field Camera 3/IR. A total of sixteen 1.3 mm detections were identified in the ALMA HUDF, ranging in redshift from $z = 0.67$ to $z = 5.00$. This region was subsequently observed by the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field (ASPECS; Walter et al. 2016), which obtained deeper continuum and higher-order CO emission-line observations at 1.2 mm (Aravena et al. 2020), and additional continuum and CO observations at 3.0 mm (González-López et al. 2019). Furthermore, Riechers et al. (2020) performed VLA CO(1−0) observations at ~9 mm in the ALMA HUDF.

The HUDF is covered by extensive multiwavelength observations ranging from radio to X-ray wavelengths. These include multiband photometry spanning from the visible through mid-IR (i.e., Spitzer/IRAC) range, which can be used to model galaxy stellar populations. To estimate stellar masses, we model photometry from the publicly available catalogs of the 3D-HST survey (Skelton et al. 2014; Momcheva et al. 2016), corrected for contamination by rest-optical emission-line fluxes (Section 2.2).

2.2. MOSFIRE Observations

We used the Multi-object Spectrometer for Infrared Exploration (MOSFIRE; McLean et al. 2012) on the Keck I telescope to obtain moderate-resolution H- and K-band rest-optical spectra for the subset of targets from Dunlop et al. (2017) at spectroscopic or photometric redshifts where the strongest rest-optical nebular emission lines fall within windows of atmospheric transmission ($1.4 \leq z \leq 1.7$, $2.0 \leq z \leq 2.6$, and $2.95 \leq z \leq 3.8$). There were 10 such targets, and we were able to fit 9 of them on a single multi-object slitmask centered at R.A. = 03:32:43.00 and decl. = $-27:46:25.8$ (J2000). We observed this mask on 2018 October 21 and 2019 January 13, for a total of 3.2 hr (64×180 s) in K and 2.0 hr (59×120 s) in H. The slitwidth was 0$''$7, yielding a spectral resolution of ~3650 in H and ~3600 in K. Conditions were partly cloudy on 2018 October 21 and clear on 2019 January 13. The average seeing in both the K- and H-band spectra was 0$''$6.

We reduced the raw data to produce two-dimensional science and error spectra using the pipeline described in Kriek et al. (2015), and optimally extracted one-dimensional science and error spectra from the two-dimensional spectra. Flux calibrations and slit-loss corrections for each filter were applied as described in Kriek et al. (2015) and Reddy et al. (2015). Of the nine sources targeted with MOSFIRE, we measured rest-optical spectroscopic redshifts for five (UDF3, UDF4, UDF6, UDF10, and UDF11), based on fitting Gaussian profiles to the strongest rest-optical emission lines. The remaining four sources, (UDF1, UDF7, UDF13, and UDF15) either have photometric redshifts at the edge of the accessible ranges, such that their unmeasured spectroscopic redshifts may fall just outside the reach of MOSFIRE observations, or CO redshifts (González-López et al. 2019; Aravena et al. 2020) disagreeing with their photometric redshifts such that rest-optical features fall outside windows of atmospheric transmission or in extremely noisy regions of the near-IR transmission windows. The source UDF10 is not recovered in the deeper 1.2 mm map from the ASPECS survey, and removed from further analysis, leaving a final sample of four sources. Spectra for these sources are shown in Figure 1, and their MOSFIRE spectroscopic redshifts and Hβ, [O III]λ5007, Hα, and [N II]λ6584 line fluxes are listed in Table 1.

3. Results

We combine our new MOSFIRE observations with the existing multiwavelength data in the ALMA HUDF to determine the relationships among stellar populations, gas, dust, and metals.

3.1. Stellar Masses and SFRs

We estimated stellar masses by fitting photometry obtained from the 3D-HST photometric catalogs (Skelton et al. 2014; Momcheva et al. 2016) with FAST++, an SED-fitting code written in C++ and closely based on the FAST code (Kriek et al. 2009). The Conroy et al. (2009) flexible stellar population synthesis models, a Chabrier (2003) initial mass function (IMF), delayed-r star formation histories, and the Calzetti et al. (2000) dust attenuation curve were assumed. We estimated dust-corrected Hα SFRs (SFR(Hα)) for UDF3 and UDF4, which have coverage of both Hα and Hβ. First we calculated $E(B-V)_{\text{neb}}$ using the stellar-absorption-corrected Hα/Hβ Balmer decrement, assuming an intrinsic Hα/Hβ emission-line ratio of 2.86 and the Cardelli et al. (1989) extinction law. We then used $E(B-V)_{\text{neb}}$ to dust-correct Hα line fluxes. SFR (Hα) was then estimated from dust-corrected and slit-loss-corrected Hα luminosities, based on the calibration of Hao et al. (2011) for a Chabrier (2003) IMF. Hβ falls in the J band for UDF6, and in a region of low atmospheric transmission for UDF11. Accordingly, we report uncorrected Hα SFRs as lower limits for these two galaxies.

An important question is how well dust-corrected Hα emission traces the bolometric SFR at high redshift. The answer likely depends on the bolometric SFR. While Shivaei et al. (2016) have shown good agreement between dust-corrected SFR(Hα) and bolometric SFR for a sample of 17 star-forming galaxies at $z \sim 2$ with SFR ranging from ~10 to 2500M_\odot yr$^{-1}$ (median 74M_\odot yr$^{-1}$), Chen et al. (2020) show that dust-corrected SFR(Hα) underpredicts the IR-based (i.e., bolometric) SFR by at least a factor of 3 for a sample of five submillimeter galaxies with a median IR-based SFR of $\sim500M_\odot$ yr$^{-1}$. We take “total” SFRs from Dunlop et al. (2017) (SFR$_{\text{tot}}$) as the sum of UV (uncorrected for dust) and far-IR SFRs, and compare them with dust-corrected SFR(Hα) for UDF3 and UDF4 (shown in Table 2). We find that dust-corrected SFR(Hα) is a factor of $3.7^{+3.0}_{-1.9}$ and $8.2^{+13.0}_{-4.5}$ lower than SFR$_{\text{tot}}$, respectively, for UDF3 and UDF4, although, because of

6 https://github.com/eschreib/fastpp
the large error bars on both sets of measurements, the difference is not highly significant. If confirmed with smaller error bars, such a difference may indicate the contribution of dusty star-forming regions that are opaque to Hα emission but contribute to the bolometric SFR in the far-IR. UDF3 and UDF4, with SFR$_{\text{tot}}$ values ranging from \sim100 to 200 M_\odot yr$^{-1}$, appear consistent with the results of Chen et al. (2020), although a larger sample of star-forming galaxies spanning a wide range in SFR is needed, covered by measurements of Hα, Hβ, and IR-based tracers of bolometric luminosity.

3.2. Metallicities

One of the key scaling relations probing the flow of baryons through galaxies is the mass–metallicity relation (MZR), between oxygen abundance and stellar mass. The MZR has been traced from the local universe out to $z \sim 3$ (e.g., Tremonti et al. 2004; Onodera et al. 2016). Since all four ALMA HUDF targets have measurements of the [N II] λ6584/Hα ratio, we use the N2 indicator $\text{N2} \equiv \log([\text{N II}]/\text{H}\alpha)$; Pettini & Pagel 2004) to estimate gas-phase oxygen abundance (Table 2). For the MZR analysis, we apply the linear form of the N2 calibration, $12 + \log(O/\text{H}) = 8.90 + 0.57 \times \text{N2}$. Our sample spans a narrow range of metallicity, from \sim0.8 to 1.0 solar (assuming $12 + \log(O/\text{H})_0 = 8.69$; Asplund et al. 2009).

For context, in Figure 2 we plot the masses and metallicities of the ALMA HUDF sample alongside those of the $z \sim 2$ star-forming galaxy sample of Sanders et al. (2018) from the MOSFIRE Deep Evolution Field (MOSDEF) survey. $z \sim 2$ MOSDEF galaxies ranging in mass from $\log(M_*/M_\odot) = 9.0$ to $\log(M_*/M_\odot) = 10.5$ are stacked in bins of M_*, with the points plotted as well as their best-fit linear regression (Sanders et al. 2018).

![Figure 1](image.png)

Figure 1. Flux-calibrated MOSFIRE spectra for the four targets in our sample. The spectra are shifted into the rest frame, key nebular emission lines are labeled, and the 1σ error spectra are plotted in red. The right panels cover Hα, [N II]λ6584, and [S II]λ6717, 6731 (K band for UDF3, UDF4, and UDF11 at $2.0 \leq z \leq 2.6$ and H band for UDF6 at $z = 1.4152$), while the left panels additionally cover Hβ and [O III]λ5007 in the H band for UDF3, UDF4, and UDF11.

The ALMA HUDF points lie at the massive end of the MOSDEF sample, with only UDF4 overlapping the most massive MOSDEF stack in M_*, and scatter around the best-fit linear MZR relation. Given the observed redshift evolution in the MZR, we restrict the comparison to UDF3, UDF4, and UDF11, all at $z \sim 2$. According to the “Fundamental Metallicity Relation” (FMR; Mannucci et al. 2010; Andrews & Martini 2013) discovered among $z \sim 0$ galaxies and describing the dependence of metallicity on both M_* and SFR, galaxies with higher-than-average SFR at fixed M_* lie at lower-than-average metallicity at fixed M_*. Sanders et al. (2018) demonstrated that the FMR holds in this sense for $z \sim 2$ MOSDEF galaxies. In Dunlop et al. (2017), UDF3, UDF4, and UDF11 are shown to have bolometric SFR$_{\text{tot}}$ that place them above the FMR versus M_* main sequence on average, yet we observe no corresponding average offset below the MZR.

At the same time, there is evidence that at the highest masses ($>10^{10.5}M_\odot$) in the local universe, the SFR dependence in the FMR reverses, such that galaxies with higher-than-average SFRs have higher-than-average metallicities (Yates et al. 2012). This high-mass regime, in which most of the ALMA HUDF targets lie, is currently poorly sampled in the $z \sim 2$ MOSDEF data set. A larger sample of high-mass $z \sim 2$ galaxies with metallicity measurements spanning a wide range in bolometric SFRs is therefore needed to place the masses, metallicities, and SFRs of the ALMA HUDF sample in context. We mention one final possibility, which is active galactic nucleus (AGN) contamination boosting the observed [N II]/Hα ratios. UDF3 is identified as a radio-loud AGN in Dunlop et al. (2017), yet its [O III]λ5007/Hβ and [N II]λ6584/Hα ratios (Table 1) place it well within the distribution of $z \sim 2$ MOSDEF star-forming galaxies in the [O III]λ5007/Hβ versus [N II]λ6584/Hα “BPT” diagram (Shapley et al. 2019). Spatially resolved integral-field
unit spectroscopic observations may address the question of AGN contamination.

3.3. The Relationship between DGR and Metallicity

The unique aspect of the data set analyzed here is the combination of both dust and gas masses drawn from the literature with new gas-phase oxygen abundance measurements. This combined data set enables us to investigate, for the first time, the relationship between DGR and metallicity at \(z > 1 \).

Given the greater depth of the ASPECS 1.2 mm observations, we use these measurements to infer dust masses instead of the original 1.3 mm measurements from Dunlop et al. (2017). For the two sources in our sample with ASPECS 3.0 mm measurements (UDF3 and UDF4), we also use these longer-wavelength continuum observations as independent proxies for dust mass. To translate 1.2 and 3.0 mm flux densities \((S_{1.2} \text{ and } S_{3.6})\) into dust masses, we assume an optically thin modified blackbody function \((\text{e.g., Hughes et al. 1997})\), which yields

\[
M_{\text{dust}} = \frac{S_{\nu}D_{L}(z)}{\kappa_{\nu}B_{\nu}(T)(1 + z)},
\]

where \(S_{\nu} \) is the observed-frame millimeter-wave flux density probing the Rayleigh–Jeans tail of a modified blackbody; \(\kappa_{\nu} \) is the dust mass absorption coefficient at frequency, \(\nu \), with a functional form \(\kappa_{\nu} = \kappa_{850}\left(\frac{\nu}{850}\right)^{\beta} \); and \(\kappa_{850} \) is the opacity at 850 \(\mu m \). Following recent work \(\text{by, e.g., Liang et al. (2019)} \), we adopt \(\kappa_{850} = 0.05 \text{ m}^{2}\text{kg}^{-1} \) and \(\beta = 2.0 \). \(B_{\nu}(T) \) is the Planck function, and \(D_{L}(z) \) is the luminosity distance to redshift, \(z \). For estimating dust mass, we also assume a dust temperature of \(T_{\text{dust}} = 35 \pm 5 \text{ K} \) (McLure et al. 2018).

We further assume that the gas mass is well approximated by the molecular gas mass, as is standard for \(z \sim 2 \) star-forming galaxies (Tacconi et al. 2018), and take \(M_{\text{mol}} \) from the literature. Riechers et al. (2020) present \(M_{\text{mol}} \) for UDF3 and UDF4 based on CO(1–0) measurements, while Aravena et al. (2020) present \(M_{\text{mol}} \) for UDF6 and UDF11 based on higher-order CO transitions, using the average CO excitation properties of the ASPECS sample (Boogaard et al. 2020) to convert to CO(1–0). In all cases, \(\alpha_{\text{CO}} = 3.6 \text{ (K km s}^{-1}\text{pc}^{2})^{-1} \) is assumed to convert CO(1–0) luminosity to \(M_{\text{mol}} \). To estimate DGR, we simply take the ratio of \(M_{\text{dust}} \) and \(M_{\text{mol}} \): \(S_{1.2} \) and \(S_{3.6} \) along with \(M_{\text{dust}}, M_{\text{mol}}, \) and DGR, are listed in Table 2.

We aim to compare the relationship between DGR and \(12 + \log(O/H) \) for the ALMA HUDF sample and the corresponding relationship in the local universe. Most recently, de Vis et al. (2019) compiled metallicity and DGR measurements for 466 galaxies drawn from the local Dustpedia sample (Davies et al. 2017). \(M_{\text{dust}} \) for Dustpedia galaxies was obtained from fitting multiwavelength photometry spanning from the UV through the microwave. \(M_{\text{gas}} \) was estimated as the sum of atomic \(M_{\text{HI}} \) and molecular gas \(M_{\text{H2}}, \) based on literature measurements of \(M_{\text{HI}} \) and an assumed relationship for \(M_{\text{H2}}/M_{\text{HI}} \) as a function of \(M_{\text{HI}}/M_{\text{S}} \). Using literature and VLT/MUSE optical emission-line spectra, de Vis et al. (2019) determined global galaxy metallicities for a number of different strong-line metallicity calibrations. These authors present best-fit linear regressions for DGR versus metallicity for each metallicity calibration, including N2 (PETTINI & PAGEL 2004). In detail, de Vis et al. (2019) used the cubic form of the

\[
M_{\text{dust}} \text{ for the ALMA HUDF sample and the corresponding relationship in the local universe.}
\]

Using literature and VLT/MUSE optical emission-line spectra, de Vis et al. (2019) determined global galaxy metallicities for a number of different strong-line metallicity calibrations. These authors present best-fit linear regressions for DGR versus metallicity for each metallicity calibration, including N2 (PETTINI & PAGEL 2004). In detail, de Vis et al. (2019) used the cubic form of the N2 calibration, \(12 + \log(O/H) = 9.37 + 2.03 \times N_{2} + 1.26 \times N_{2}^{2} + 0.32 \times N_{2}^{3} \), and fit a subsample of 368 late-type galaxies with \(M_{\text{dust}}, M_{\text{gas}}, \) and N2 measurements. For a consistent comparison, we apply the cubic N2 calibration here to the ALMA HUDF sample, which yields slightly higher \(12 + \log(O/H) \) values (on average 0.05 dex) than the linear calibration within the N2 range spanned by the ALMA HUDF sample. However, this comparison does not account for potential biases in the N2 metallicity calibration at high redshift due to evolving H II region physical conditions (Steidel et al. 2014; Sanders et al. 2015; Shapley et al. 2015).

As shown in Figure 3, we find that the DGRs for the ALMA HUDF sample based on \(S_{1.2} \) scatter around the local relation, with median DGR_{1.2} within 0.04 dex of the DGR predicted by de Vis et al. (2019) for the sample median metallicity. DGR_{3.0} values for UDF3 and UDF4 are systematically higher, though consistent with the corresponding DGR_{1.2} estimates. Unlike the local sample, the ALMA HUDF galaxies in the plot span only a very narrow range in \(12 + \log(O/H) \) (i.e., \(\sim 0.2 \text{ dex} \), at roughly solar metallicity). Accordingly, it is not possible to determine the slope of the DGR versus metallicity relation at \(z \sim 2 \). However, at solar metallicity, there is robust evidence that the relationship between DGR and \(12 + \log(O/H) \) remains constant from \(z \sim 0 \) to \(z \sim 2 \).

4. Discussion

We have shown that the normalization of the DGR versus metallicity relation at solar metallicity does not significantly evolve between \(z \sim 0 \) and \(z \sim 2 \). Such a lack of evolution is consistent with results at similar redshifts based on highly complementary measurements of the dust, gas, and metal

ID\(^a\)	3DHST-ID\(^b\)	R.A. (J2000)\(^c\)	Decl. (J2000)\(^c\)	z\(^\text{MOSFIRE}^d\)	\(F(\text{H}/\beta) \) \(\left(10^{-17} \text{ erg s}^{-1} \text{ cm}^{-2} \right) \)	\(F([\text{O} \text{ III}]\lambda5007) \) \(\left(10^{-17} \text{ erg s}^{-1} \text{ cm}^{-2} \right) \)	\(F(\text{H}/\alpha) \) \(\left(10^{-17} \text{ erg s}^{-1} \text{ cm}^{-2} \right) \)	\(F([\text{N} \text{ II}]\lambda6584) \) \(\left(10^{-17} \text{ erg s}^{-1} \text{ cm}^{-2} \right) \)
UDF3	29606	3:32:38.54	−27:46:34.04	2.5430	1.61 ± 0.34	2.92 ± 0.22	7.38 ± 0.40	2.55 ± 0.34
UDF4	29643	3:32:41.02	−27:46:31.38	2.4537	0.43 ± 0.13	<1.71	1.89 ± 0.39	0.79 ± 0.24
UDF6	27881	3:32:34.43	−27:46:59.55	1.4152	6.52 ± 1.38	2.84 ± 0.59
UDF11	24110	3:32:40.05	−27:47:55.44	1.9978	...	4.96 ± 0.30	18.60 ± 0.47	5.29 ± 0.50
Table 2
Derived Physical Properties

ID	log(M_dust) \(\text{M}_\odot\)	SFR(log) \(\text{M}_\odot \text{yr}^{-1}\)	SFR(H\alpha) \(\text{M}_\odot \text{yr}^{-1}\)	12 + log(O/H)	\(S_{1.2}\) \(\mu\text{Jy}\)	\(S_{2.4}\) \(\mu\text{Jy}\)	\(M_{\text{dust},1.2}\) \(10^{6} \text{M}_\odot\)	\(M_{\text{dust},3.0}\) \(10^{6} \text{M}_\odot\)	\(M_{\text{dust},3}\) \(10^{6} \text{M}_\odot\)	DGR_{1.2} \(\times 10^{-3}\)	DGR_{3.0} \(\times 10^{-3}\)
UDF3	10.52 ± 0.02	199.7 ± 69.0	54.0 ± 42.2	0.01	752 ± 38	32 ± 4	3.24 ± 0.44	3.61 ± 0.54	11.6 ± 2.4	2.8 ± 0.6	3.1 ± 0.7
UDF4	10.36 ± 0.09	94.4 ± 40	11.5 ± 22.3	0.09	316 ± 16	23 ± 4	1.39 ± 0.28	2.61 ± 0.52	2.4 ± 0.9	5.8 ± 1.7	10.9 ± 7.3
UDF6	10.88 ± 0.04	87.1 ± 11.0	>3.7	0.01	430 ± 23	...	2.39 ± 0.31	...	10.0 ± 0.8	2.4 ± 0.3	...
UDF11	10.91 ± 0.04	168.3 ± 94.0	>24.8	0.02	342 ± 34	≤20	1.69 ± 0.26	...	2.0 ± 0.3	8.4 ± 1.6	...

Notes:
- a “Total” SFR estimated from the sum of far-IR and UV emission, from Table 4 of Dunlop et al. (2017).
- b Dust-corrected H\alpha SFR. For UDF3 and UDF4, the Balmer decrement is inferred from H\beta and H\gamma. H\beta is not covered for UDF6 and UDF11, so the uncorrected H\alpha SFR is listed as a lower limit.
- c Gas-phase oxygen abundance based on the linear N2 indicator (Pettini & Pagel 2004).
- d ALMA 1.2 and 3.0 mm fluxes from the ASPECS survey (Aravena et al. 2020).
- e Dust mass in units of 10^{6} \text{M}_\odot based on either \(S_{1.2}\) or \(S_{2.4}\), assuming an optically thin modified blackbody function, and dust temperature, \(T_{\text{dust}} = 35 \pm 5\) K.
- f Molecular gas mass in units of 10^{6} \text{M}_\odot. \(M_{\text{dust}}\) for UDF3 and UDF4 are taken from Riechers et al. (2020), based on CO(1–0) luminosities, while those for UDF6 and UDF11 come from Aravena et al. (2020), based on higher-order CO transitions.
- g Dust-to-gas ratio in units of 10^{-3}, defined as the ratio between \(M_{\text{dust},1.2}\) or \(M_{\text{dust},3.0}\) and \(M_{\text{mol}}\).

Figure 2. Metallicity vs. stellar mass. Metallicity (12 + log(O/H)) is estimated from the N2 indicator. The ALMA HUDF targets are indicated with red squares, while galaxies in the \(z \sim 2\) MOSDEF comparison sample (Sanders et al. 2018) are indicated with blue circles (detections) or downward-pointing arrows (upper limits). Stacks of \(z \sim 2\) MOSDEF galaxies in bins of \(M_{\text{dust}}\) are shown with black pentagons. The fit to the MOSDEF stacks is indicated with a green dashed line.

Figure 3. Dust-to-gas ratio vs. 12 + log(O/H). ALMA HUDF sources are indicated with red symbols. Circles and triangles correspond to dust-to-gas ratios where \(M_{\text{dust}}\) was estimated, respectively, from the ALMA 1.2 mm continuum flux density (all four sources) and 3.0 mm continuum flux density (UDF3 and UDF4). Turquoise crosses indicate \(z \sim 0\) galaxies from de Vis et al. (2019), while the dashed line is the corresponding best-fit relation. For both local and high-redshift galaxies, plotted metallicities are estimated from the N2 indicator in its cubic form (Pettini & Pagel 2004).

content of damped Ly\alpha systems (Péroux & Howk 2020) and star-forming regions probed by gamma-ray-burst afterglow spectroscopy (Zafar et al. 2011). It is also consistent with the predictions of the semi-analytic models of Popping et al. (2017) and the SIMBA cosmological simulations (Li et al. 2019), in which galaxies evolve along the DGR versus metallicity relationship as a function of time. At the same time, the simulations of Hou et al. (2019) predict measurable evolution toward lower DGR at fixed metallicity, as redshift increases. Accordingly, along with measures of the coevolution of the dust and stellar mass content of galaxies (e.g., Donevski et al. 2020), evolutionary measures of the DGR versus metallicity relation have discriminating power among the descriptions of dust grain production and destruction over cosmic time in galaxy formation simulations. Given the narrow range in metallicity spanned by the ALMA HUDF sample, however, we have no information on the form of the DGR versus metallicity relation at \(z \sim 1–2\). Future observations extending down toward lower metallicities and stellar masses—and correspondingly fainter ALMA dust-continuum and CO flux levels—will be required to determine the slope and scatter of the high-redshift DGR versus metallicity relationship, and compare with model predictions.

Assuming that not only the normalization but also the form of the DGR versus metallicity relationship remains constant to \(z \sim 2\), we can infer the DGRs of high-redshift galaxies based...
on more easily obtained rest-optical spectroscopic measurements of gas-phase metallicity. Such DGR estimates can be used to explain the relative invariance out to $z \sim 2$ in both the dust attenuation at 1600 Å (A_{1600}) and fraction of star formation that is obscured (f_{obscured}) at fixed galaxy M_* (e.g., Whitaker et al. 2017; Cullen et al. 2018; McLure et al. 2018). The invariance of these relations is striking, given the strong redshift evolution in galaxy properties at fixed M_* such as gas fraction and metallicity (Sanders et al. 2018; Tacconi et al. 2020). These properties modulate dust attenuation, which depends on both dust column density and wavelength-dependent opacity. More quantitatively, we can express A_{1600} as a function of basic ISM properties as follows:

$$A_{1600} \propto \kappa_{1600} \times DGR \times \Sigma_{\text{gas}},$$

(2)

where κ_{1600} is the dust opacity at 1600 Å in units of $m^2\text{kg}^{-1}$, and Σ_{gas} is the gas surface density, which can be inferred from inverting the Kennicutt–Schmidt star formation law. In future work, we will investigate whether lower DGRs and higher Σ_{gas} at high redshift cancel out to keep A_{1600} and f_{obscured} roughly constant at fixed M_*—or whether κ_{1600}, which encodes the properties of dust grains themselves, must evolve as well to explain the observations.

We acknowledge support from a NASA contract supporting the “WFIRST Extragalactic Potential Observations (EXPO) Science Investigation Team” (15-WFIRST15-0004), administered by GSFC, and the support of the UK Science and Technologies Facilities Council. We benefited from useful conversations with Ian Smail, Desika Narayanan, and Qi Li. We warmly acknowledge Pieter de Vis, for sharing the Dustpedia dust-to-gas ratios and metallicity measurements. We finally wish to extend special thanks to those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests.

ORCID iDs

Alice E. Shapley https://orcid.org/0000-0003-3509-4855
Mariska Kriek https://orcid.org/0000-0002-7613-9872
Naveen A. Reddy https://orcid.org/0000-0001-9687-4973
Ryan L. Sanders https://orcid.org/0000-0003-4792-9119

References

Andrews, B. H., & Martini, P. 2013, ApJ, 765, 140
Aravena, M., Boogaard, L., González-López, J., et al. 2020, ApJ, 901, 79
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Boogaard, L. A., van der Werf, P., Weiß, A., et al. 2020, arXiv:2009.04348
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Chabrier, G. 2003, PASP, 115, 763
Chen, C.-C., Harrison, C. M., Smail, I., et al. 2020, A&A, 635, A119
Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 486
Cullen, F., McLure, R. J., Khochfar, S., et al. 2018, MNRAS, 476, 3218
Davies, J. I., Baes, M., Bianchi, S., et al. 2017, PASP, 129, 044102
de Vis, P., Jones, A., Viaene, S., et al. 2019, A&A, 623, A5
Donevski, D., Lapi, A., Malek, K., et al. 2020, arXiv:2008.09995
Dunlop, J. S., McLure, R. J., Biggs, A. D., et al. 2017, MNRAS, 466, 861
Feldmann, R. 2015, MNRAS, 449, 3274
González-López, J., Decarli, R., Pavesi, R., et al. 2019, ApJ, 882, 139
Hao, C.-N., Kennicutt, R. C., Johnson, B. D., et al. 2011, ApJ, 741, 124
Hou, K.-C., Aoyama, S., Hirashita, H., Nagamine, K., & Shimizu, I. 2019, MNRAS, 485, 1727
Hughes, D. H., Dunlop, J. S., & Rawlings, S. 1997, MNRAS, 289, 766
Kriek, M., van Dokkum, P. G., Labbé, I., et al. 2009, ApJ, 700, 221
Kriek, M., Shapley, A. E., Reddy, N. A., et al. 2015, ApJS, 218, 15
Li, Q., Narayanan, D., & Davé, R. 2019, MNRAS, 490, 1425
Liang, L., Feldmann, R., Kereš, D., et al. 2019, MNRAS, 489, 1397
Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415
Mannucci, F., Cresci, G., Maiolino, R., Marconi, A., & Gnerucci, A. 2010, MNRAS, 408, 2115
McKinnon, R., Torrey, P., Vogelsberger, M., Hayward, C. C., & Marinacci, F. 2017, MNRAS, 468, 1505
McLean, I. S., Steidel, C. C., Epps, H. W., et al. 2012, Proc. SPIE, 8446, 84460J
McLure, R. J., Dunlop, J. S., Cullen, F., et al. 2018, MNRAS, 476, 3991
Momcheva, I. G., Brammer, G. B., van Dokkum, P. G., et al. 2016, ApJS, 225, 27
Onodera, M., Carollo, C. M., Lilly, S., et al. 2016, ApJ, 822, 42
Péroux, C., & Howk, J. C. 2020, ARA&A, 58, 363
Pettini, M., & Pagel, B. E. 2004, MNRAS, 348, L59
Popping, G., Somerville, R. S., & Galametz, M. 2017, MNRAS, 471, 3152
Reddy, N. A., Kriek, M., Shapley, A. E., et al. 2015, ApJ, 806, 259
Rémy-Ruyer, A., Madden, S. C., Galliano, F., et al. 2014, A&A, 563, A31
Riechers, D. A., Boogaard, L. A., Decarli, R., et al. 2020, ApJL, 896, L21
Sanders, R. L., Shapley, A. E., Kriek, M., et al. 2015, ApJ, 799, 138
Sanders, R. L., Shapley, A. E., Kriek, M., et al. 2018, ApJ, 858, 99
Shapley, A. E., Reddy, N. A., Kriek, M., et al. 2015, ApJ, 801, 88
Shapley, A. E., Sanders, R. L., Shao, P., et al. 2019, ApJL, 881, L35
Shivaei, I., Kriek, M., Reddy, N. A., et al. 2016, ApJL, 820, L23
Skelton, R. E., Whitaker, K. E., Momcheva, I. G., et al. 2014, ApJS, 214, 24
Steidel, C. C., Rudie, G. C., Strom, A. L., et al. 2014, ApJ, 795, 165
Tacconi, L. J., Genzel, R., & Stempberg, A. 2020, arXiv:2003.06245
Tacconi, L. J., Genzel, R., Saintonge, A., et al. 2018, ApJ, 853, 179
Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, ApJ, 613, 898
Trians, D. P., Sinha, M., Croton, D. J., Pacifici, C., & Dwek, E. 2020, MNRAS, 493, 2490
Walter, F., Decarli, R., Aravena, M., et al. 2016, ApJ, 833, 67
Whitaker, K. E., Pope, A., Cybulski, R., et al. 2017, ApJ, 850, 208
Yates, R. M., Kauffmann, G., & Guo, Q. 2012, MNRAS, 422, 215
Zafar, T., Watson, D., Fynbo, J. P. U., et al. 2011, A&A, 532, A143