Notes on roundleaf bats (Hipposideridae) at selected forest reserves of Central Forest Spine (CFS) landscapes in Peninsular Malaysia

A R Nor Hazwani1*, M A Shahfiz1, N M F Faradiana1, M Kaviarasu12, N Z Alwani1 and M S Farhan3

1Zoology Branch, Forest Biodiversity Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, Malaysia
2Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), 84000, Muar, Johor Darul Ta’zim, Malaysia
3Central Forest Spine Section, Forest Management Division, Forestry Department of Peninsular Malaysia, Jalan Sultan Salahuddin, 50660 Kuala Lumpur, Malaysia

*Corresponding author: norhazwani@frim.gov.my

Abstract. Surveys on Roundleaf bats (Hipposideridae) were conducted at 18 forest reserves in nine CFS ecological corridor networks namely Pedu, Bukit Saiong, Kenderong, Bintang Hijau, Sungai Betis, Sungai Brok, Tembat, Tanum, Sungai Yu, Ulu Jelai, Bukit Bujang, Angsi, Berembun, Labis Timur, Mersing, Lenggor Tengah, Panti and Ulu Sedili FRs. This study mainly aims to record the presence of Hipposideridae at the selected forest reserves. The surveys started from February 2018 until August 2020. A total of three harp traps were set up in each forest reserve, except for Ulu Jelai, Tembat and Berembun FRs with six harp traps. Overall, 67 individuals comprising seven species from genus Hipposideros were recorded in this study. Hipposideros bicolore was the most widely distributed species recorded in nine forest reserves whereas, Hipposideros larvatus is the most abundance species recorded in this study with 25 individuals. Kenderong and Bintang Hijau FRs recorded the highest number of Hipposideridae species in this study, both with four species. The presence of Hipposiderids in this study might be associated with their suitable roosting and foraging areas as well as availability of food sources. Therefore, this information gives an early insight on Hipposideridae distribution and habitat requirement at the forest reserves in CFS ecological corridor landscapes that stakeholders need to consider in establishing the corridors. More sampling efforts need to put in this study, covering more areas in the forest reserves with longer sampling periods and more number of traps used in order to really identify critical corridors for bat conservations.

1. Introduction
There are 21 species of Roundleaf bat (Hipposideridae) in Peninsular Malaysia that consists of three genera namely Hipposideros (18 spp.), Aselliscus (1 sp.) and Coelops (2 spp.) [1-3]. This family varies in size from small (forearm length 34mm and 4g weight) to moderately large species (forearm length over 100mm and 60-70g weight) [4]. Generally, insectivorous bats are essential biological control agent for some of the significant insect pest populations not only in the forest but also in the agriculture habitats [5]. Hipposideridae mainly consumes insects such as moths and beetles [6].
Besides, insectivorous bats populations are also important indicators of biodiversity and ecosystem health and respond to a range of stressors related to environmental change [7]. For instance, their sensitivity toward accumulations of pesticides and other toxins, and changes in their abundance or activity may reflect differences in arthropod prey species populations as well as the loss of forests [7].

However, habitat loss is known to be significant threats to Malaysian bats [2]. The forest-interior insectivorous bats like Hipposideridae are particularly vulnerable to forest loss and degradation [8]. Therefore, Central Forest Spine (CFS) initiative was introduced to safeguard fauna and flora by restoring connectivity of the fragmented forests through the establishment of 37 identified ecological corridors across eight states in Peninsular Malaysia [9].

Currently, there are lacks of information on Hipposideridae that have been documented from the forest reserves, especially in CFS ecological corridor networks. Thus, this study mainly aims to record the presence of Hipposideridae at selected forest reserves in CFS ecological corridor networks. It is very crucial to document this information to support stakeholders with the right information on Hipposideridae species, including their distribution and habitat requirement that needs to be considered in establishing corridors at CFS landscapes. Proper forested or stream corridors are crucial for bats as the landscapes provide suitable areas for bats to commute and forage [10].

2. Methodology

2.1 Sampling sites

This study was conducted at 18 forest reserves across nine CFS ecological corridors (Figure 1). The active trapping has been conducted in 21 sampling sites. A brief description of the sampling sites, coordinates, sampling periods and habitat type are listed in Table 1 and Table 2.

Figure 1. Location of sampling sites at selected forest reserves in CFS ecological corridors landscapes.
Table 1. List of sampling sites and coordinates.

No.	State	CFS Linkage	Sampling sites	Coordinate
1	Kedah	CFSI SL7	Pedu FR	06'10'52.9" N
				100'50'37.3" E
			Bukit Saiong FR	06'06'09.2" N
				100'51'29.1" E
2	Perak	CFSI PL8	Kenderong FR	05'29'52.7" N
				101'02'45.1" E
			Bintang Hijau FR	05'29'42.4" N
				101'02'15.4" E
3	Kelantan	CFSI PL3	Sungai Betis FR	04'44'41.8" N
				101'39'23.5" E
			Sungai Brok FR	04'40'26.5" N
				101'38'34.7" E
4	Terengganu	CFSI PL7	Tembat FR (1)	05'01'19.8" N
				102'32'00.1" E
			Tembat FR (2)	05'00'51.9" N
				102'32'09.0" E
5	Pahang	CFSI PL1	Tanum FR	04'34'21.0" N
				101'59'01.8" E
			Sungai Yu FR	04'33'31.3" N
				101'58'36.3" E
			Ulu Jelai FR (1)	04'33'31.7" N
				101'59'09.1" E
6		CFSI PL6	Ulu Jelai FR (2)	04'25'10.4" N
				101'36'29.8" E
			Bukit Bujang FR	04'24'46.9" N
				101'36'16.4" E
7	Negeri Sembilan	CFSII SL7	Angsi FR	02'43'24.7" N
				102'04'13.4" E
			Berembun FR (1)	02'44'03.8" N
				102'02'44.3" E
			Berembun FR (2)	02'43'31.1" N
				102'02'38.3" E
8	Johor	CFSII PL1	Labis Timur FR	02'26'44.3" N
				103'32'18.6" E
			Mersing FR	02'16'58.3" N
				103'37'36.6" E
			Lenggor Tengah FR	02'16'22.0" N
				103'37'33.8" E
9		CFSII PL3	Panti FR	01'52'37.0" N
				103'48'11.4" E
			Ulu Sedili FR	1'52'38.7" N
				103'48'10.8" E

Table 2. Brief description of the habitat types for each sampling sites.

No.	Sampling sites	Habitat Type
1	Pedu FR	LDF, SF, FWR, FWCCC, FWFA
2	Bukit Saiong FR	LDF, SF, FWR, FWS, FWCCC, FWHA, FWRC
3	Kenderong FR	LDF, SF, FWS, FWCO, FWHA, FWBP
4	Bintang Hijau FR	LDF, SF, FWR, FWCCC, FWHA, FWRC
5	Sungai Betis FR	LDF, SF, FWHA, FWCCC, FWDV
6	Sungai Brok FR	LDF, SF, FW, FWCCC, FWHA
7	Tembat FR (1)	LDF, SF, FWS, FWCO, FWHA,
8	Tembat FR (2)	LDF, SF, FWS, FWCCC, FWHA, FWFDL
9	Tanum FR	LDF, SF, FWS, FWCCC, FWHA, FWLA
10	Sungai Yu FR	LDF, SF, FWR, FWCCC, FWHA, FWLA
11	Ulu Jelai FR (1)	LDF, SF, FWCCC, FWHA, FWDV
12	Ulu Jelai FR (2)	LDF, SF, FWCCC, FWHA, FWFDL, FWRC
13	Bukit Bujang FR	LDF, SF, FWCCC, FWCO, FWHA, FWDV
14	Angsi FR	LDF, SF, FWCCC, FWCO, FWHA, FWDL
15	Berembun FR (1)	LDF, SF, FWCCC, FWCO, FWHA
However, through the compilation with previous publications, Labis Timur FR and Panti FR shown the highest number of species recorded with seven species respectively [14-22].

During this study, there is no Hipposiderids has been caught at respective forest reserves namely Angsi FR, Mersing FR, Labis Timur FR and Panti FR. However, previous studies had recorded the presence of these insectivorous bats from these forest reserves [14,16-19,21,22]. This is probably due to differences in trap placements, sampling periods, sampling coverage and season.

Hipposideros bicolor

This species was the most widely distributed in nine forest reserves namely Kenderong FR, Bintang Hijau FR, Tembat FR, Tanum FR, Sungai Yu FR, Ulu Jelai FR, Berembun FR, Lenggor Tengah FR and Ulu Sedili FR with 12 individuals cumulatively (Table 3). Among the forest reserves, these species were mostly captured in Tembat FR, Sungai Yu FR and Lenggor Tengah FR, each of which had two individuals. The presence of this species in the forest reserves might be associated with the hilly areas and limestone karst or river with rock crevices which provide suitable roosting sites for this

16	Berembun FR (2)	LDF, SF, FWS, FWCC, FWHA, FWRC, FWDV
17	Labis Timur FR	LDF, SF, FWR, FWCC, FWFA
18	Mersing FR	LDF, SF, FWCC, FWCO, FWHA
19	Lenggor Tengah FR	LDF, SF, FWCC, FWCO, FWFA, FWFDL
20	Panti FR	LDF, SF, FWR, FWCC, FWHA
21	Ulu Sedili FR	LDF, SF, FWR, FWCC, FWHA, FWFDL

Notes: LDF – Lowland dipterocarp forest; SF – Secondary forest; FWR – Forest with river; FWS – Forest with stream; FWCC – Forest with closed canopy closure; FWCO – Forest with canopy opening; FWHA – Forest with hill area; FWFA – Forest with flat area; FWDV – Forest with dense vegetation; FWFDL – Forest with fallen dead log; FWLA – Forest with limestone area; FWRC – Forest with rock crevices; FWBP – Forest with bertam tree patches.

2.2 Field methods

Sampling was carried out in 1ha plots respectively from February 2018 until August 2020. Each plot was sampled twice. All forest reserves have one plot and three sets of four-bank harp traps were deployed within the plot. However, there are three forest reserves namely Tembat FR, Ulu Jelai FR and Berembun FR that have two plots. Therefore, six sets of four-bank harp traps were deployed respectively. Harp traps were randomly set up at the areas that have the potential to be the bats’ flyway and also nearby river or stream. The harp traps were opened for five consecutive nights during each sampling session. The traps were checked at least five times a day at 0630 hours, 1930 hours, 2030 hours, 2130 hours and 2230 hours. Captured individuals were identified following identification keys by Francis [4], Francis [11], Kingston et al. [2] and Phillipps & Phillipps [3]. Standard measurements were taken from each individual, namely forearm length (FA), tail length (T), ear length (E), and live weight (g).

3. Results and Discussions

A total of 67 individuals comprising seven species from genus Hipposideros were recorded in 14 forest reserves. Harp trap shown to be the most effective method to trap insectivorous bats because it return less echoes and harder to be detected [12]. Occasionally, there are some incidents that insectivorous bats were caught by mist net such as Rhinolophus trifoliatus [13]. Besides, placement of harp trap is important since Hipposideridae is the most common bats that forage in the forest understory [3]. Thus, a study using harp traps is the best to capture Hipposideridae.

Kenderong FR and Bintang Hijau FR recorded the highest number of species captured, both with four species respectively namely *Hipposideros bicolor*, *H. larvatus*, *H. pomona*, *H. armiger* (only at Kenderong FR) and *H. galeritus* (only at Bintang Hijau FR). However, through the compilation with previous publications, Labis Timur FR and Panti FR showed the highest number of species recorded with seven species respectively [14-22].

This species was the most widely distributed in nine forest reserves namely Kenderong FR, Bintang Hijau FR, Tembat FR, Tanum FR, Sungai Yu FR, Ulu Jelai FR, Berembun FR, Lenggor Tengah FR and Ulu Sedili FR with 12 individuals cumulatively (Table 3). Among the forest reserves, these species were mostly captured in Tembat FR, Sungai Yu FR and Lenggor Tengah FR, each of which had two individuals. The presence of this species in the forest reserves might be associated with the hilly areas and limestone karst or river with rock crevices which provide suitable roosting sites for this
species [2]. At the same time, the abundance of insects in the forest reserves especially on the fallen dead logs might also be the contributing factors to this finding as this species feed on insects [6,23]. This species is also known to be widely distributed in all states of Peninsular Malaysia [24]. Also, to date, there are some records on *H. bicolor* in Bintang Hijau FR [20], Gunung Angsi FR [14,16,21], Labis FR [16] and Panti FR [16,17,22]. Thus, this species is the first record for Kenderong FR, Tembat FR, Tanum FR, Sungai Yu FR, Ulu Jelai FR, Berembun FR, Lenggor Tengah FR and Ulu Sedili FR.

Hipposideros diadema

A total of 10 individuals for this species was captured namely at Sungai Betis FR, Sungai Brok FR, Pedu FR, Bukit Saiong FR, Ulu Sedili FR, Tembat FR, Tanum FR and Sungai Yu FR (Table 3). It was mostly captured in Bukit Saiong FR and Sungai Brok FR, both with two individuals respectively. The occurrence of this species in the forest reserves might be due to the presence of rock crevices along the river or limestone karst located nearby the study plots, providing roosting areas for this species [2]. It is also common in both primary and secondary forests in all elevations [2]. To date, this species has been found in Bintang Hijau FR [20], Endau Kluang Wildlife Reserve; Labis FR and Mersing FR [19], Labis FR [16] and Panti FR [16-18,22]. Therefore, this species is considered as the first record for Sungai Betis FR, Sungai Brok FR, Pedu FR, Bukit Saiong FR, Ulu Sedili FR, Tembat FR, Tanum FR and Sungai Yu FR.

Hipposideros cervinus

Thirteen individuals captured in six forest reserves namely Bukit Saiong FR, Ulu Jelai FR, Bukit Bujang FR, Berembun FR, Lenggor Tengah FR and Ulu Sedili FR (Table 3). This species were mostly trapped in Ulu Jelai FR with six individuals. The abundance of this species in the Ulu Jelai FR might be due to the hilly and dense forest, providing suitable foraging areas for this species. Previous studies had also captured *H. cervinus* in the sites with hilly and dense forest with relative humid conditions [25]. Apart from that, the presence of large rock crevices in the plot also contributes to this finding as it serves as roosting areas for this species [2]. This species usually can be found in both primary lowland and hill forests [2,26]. However, this species is also recorded at the regenerated forest in Peninsular Malaysia [27]. Up until now, this species has been recorded in Tembat FR [15], Gunung Angsi FR [14,16,21], Berembun FR [14,21], Labis FR [16], Endau Kluang Wildlife Reserve; Labis and Mersing FRs [19] and Panti FR [16,17,22]. Hence, this species is the first record for Bukit Saiong FR, Ulu Jelai FR, Bukit Bujang FR, Lenggor Tengah FR and Ulu Sedili FR.

Hipposideros larvatus

This species is the most abundant species recorded in this study with 25 individuals cumulatively. This species was recorded in four forest reserves that are Kenderong FR, Bintang Hijau FR, Tanum FR and Sungai Yu FR (Table 3). This species was mostly caught in Kenderong FR with 11 individuals that might be associated with the high abundance of insects such as Orthoptera, Coleoptera and Lepidoptera found at the stream and open areas with shrubs located nearby the study plot, providing food sources for this species [5]. Apart from that, many studies also found this species in the forests with boulders, limestone caves, streams and waterfall [25]. Currently, this species has been documented in Bintang Hijau FR [20], Gunung Angsi FR [14,16,21], Labis FR [16] and Panti FR [16,17,22]. Therefore, this species is the first record for Kenderong FR, Tanum FR and Sungai Yu FR.

Hipposideros pomona

This species was recorded in two forest reserves, namely Kenderong FR (4 inds) and Bintang Hijau FR (1 ind) (Table 3). The presence of this species might be related to the high abundance of insects at the stream located nearby the study plots which provides food sources for this species. This is also
supported by previous studies that had captured this species in the forest with stream or small waterfall [25]. It was also known to be found in the northern region of Peninsular Malaysia, including Kelantan [4,25,28]. This study is the first record of this species in Kenderong FR and Bintang Hijau FR.

Hipposideros armiger

This species was only recorded in Kenderong FR with one individual (Table 3). This finding might be associated with the presence of bertam tree patches in the plot and rock crevices at the nearby stream that provide roosting areas for this species [2]. Apart from that, the presence of this species might be related to the high abundance of insects such as Coleoptera in the forest reserve [29]. Currently, no record on this species at Kenderong FR, except for Bintang Hijau FR based on the previous record by Department of Wildlife and National Parks, DWNP (1992) [20]. Therefore, this species can be considered as the first record for Kenderong FR.

Hipposideros galeritus

This species was recorded in only one forest reserve, namely Bintang Hijau FR with one individual (Table 3). The species was recorded in the forest reserve might be associated with the presence of rock crevices nearby the study plot, providing a roosting area for this species [2,25]. Based on the previous study, this species was recorded in Gunung Angsi FR [14,16], Berembun FR [14], Labis FR [16] and Gunung Panti FR [16]. Thus, this is the first record of this species in Bintang Hijau FR.

Table 3. List of Hipposideridae species recorded in this study for each sampling sites.

No.	Scientific Name	Common Name	Forest Reserves (No. of Individual)	Total
1	*Hipposideros armiger*	Great Roundleaf Bat	A 1 B 1 C 1 D 1 E 1 F 1 G 1 H 1 I 1 J 1 K 1 L 1 M 1 N 1 O 1 P 1 Q 1 R 1 S 1 T 1 U 1	1
2	*Hipposideros bicolor*	Bicolored Roundleaf Bat	A 1 B 2 C 1 D 1 E 2 F 1 G 1 H 1 I 1 J 1 K 1 L 1 M 2 N 1 O 1 P 1 Q 1 R 1 S 2 T 1 U 1	12
3	*Hipposideros cervinus*	Fawn Roundleaf Bat	A 1 B 2 C 1 D 1 E 1 F 1 G 1 H 1 I 1 J 1 K 1 L 1 M 1 N 1 O 1 P 1 Q 1 R 1 S 1 T 1 U 1	13
4	*Hipposideros diadema*	Diadem Roundleaf Bat	A 1 B 1 C 1 D 1 E 1 F 1 G 1 H 1 I 1 J 1 K 1 L 1 M 1 N 1 O 1 P 1 Q 1 R 1 S 1 T 1 U 1	10
5	*Hipposideros galeritus*	Cantor's Roundleaf Bat	A 1 B 1 C 1 D 1 E 1 F 1 G 1 H 1 I 1 J 1 K 1 L 1 M 1 N 1 O 1 P 1 Q 1 R 1 S 1 T 1 U 1	1
6	*Hipposideros larvatus*	Intermediate Roundleaf Bat	A 1 B 4 C 9 D 4 E 1 F 1 G 1 H 1 I 1 J 1 K 1 L 1 M 1 N 1 O 1 P 1 Q 1 R 1 S 1 T 1 U 1	25
7	*Hipposideros pomona*	Pomona Roundleaf Bat	A 1 B 4 C 1 D 1 E 1 F 1 G 1 H 1 I 1 J 1 K 1 L 1 M 1 N 1 O 1 P 1 Q 1 R 1 S 1 T 1 U 1	5

Total No. of Species: 1 2 4 4 1 1 0 2 3 3 0 2 1 0 1 1 2 0 0 0 3 7

Total No. of Individual (Captured only): 1 3 17 12 1 2 0 3 3 7 0 7 2 0 1 1 4 0 0 0 3 67

Notes: A – Pedu FR; B – Bukit Saiong FR; C – Kenderong FR; D – Bintang Hijau FR; E – Sungai Betis FR; F – Sungai Brok FR; G – Tembat FR (1); H – Tembat FR(2); I – Tanum FR; J – Sungai Yu FR; K – Ulu Jelai FR(1); L – Ulu Jelai FR(2); M – Bukit Bujang FR; N – Angsi FR; O – Berembun FR(1); P – Berembun FR(2); Q – Lenggor Tengah FR; R – Mersing FR; S – Labis Timur FR; T – Panti FR; U – Ulu Sedili FR
4. Conclusion
In conclusion, a total of 67 individuals consisting of seven species from genus Hipposideros were recorded in 14 forest reserves. Kenderong FR and Bintang Hijau FR recorded the highest species richness of Hipposideridae in this study. *H. bicolor* is the most widely distributed species, whereas *H. larvatus* is the most abundant species recorded in this study. The presence of Hipposideridae in this study might be depending on the roosting and foraging areas as well as food availability. There are also first records of roundleaf bat species for the forest reserves in this study. Therefore, more efforts need to be put in this study by using more sampling efforts, more number of traps, different trap placements and covering more areas of the forest reserves in order to document Hipposideridae that can truly represent the forest reserves in CFS ecological corridor networks. At the same time, the information gathered can be used to identify critical or essential corridors for Hipposideridae and also other bat species conservations in CFS ecological corridor landscapes.

5. Acknowledgements
We would like to extend our greatest gratitude to the Forest Research Institute Malaysia (FRIM) and Forestry Department Peninsular Malaysia for allowing us to carry out this study. We would also like to thank Forestry Department from state of Kedah, Perak, Kelantan, Terengganu, Pahang, Negeri Sembilan and Johor for allowing and assisting us throughout this study. Apart from that, we also like to thank all Zoology Branch, FRIM staff that had involved directly or indirectly during the surveys and Miss Wendy Yong Sze Yee for preparing this study map. These studies were supported by a research grant entitled Assessment of Small Vertebrates at Selected Ecological Corridors for Central Forest Spine (CFS) in Peninsular Malaysia (Vot no.: 23410209003).

References

[1] Davison G W H and Akbar Z 2007 The Status of Mammalian Biodiversity in Malaysia Proc. of the Seminar and Workshop on Status of Biological Diversity in Malaysia and Threat Assessment of Plant Species in Malaysia 28-30 June 2005 eds L S L Chua, L G Kirton and L G Saw (Kuala Lumpur: Am pang Press Sdn Bhd) pp 3–27

[2] Kingston T, Lim B L and Zubaid A 2006 Bats of Krau Wildlife Reserve (Bangi: University Kebangsaan Malaysia) p 145

[3] Phillipps Q and Phillipps K 2016 Phillipps’ Field Guide to the Mammals of Borneo and their Ecology; Sabah, Sarawak, Brunei and Kalimantan. (United Kingdom: John Beaufoy Publishing Ltd) p 400

[4] Francis C M 2019 A Field Guide to the Mammals of South-East Asia 2nd ed (London, United Kingdom: Bloomsbury Publishing Plc) p 416

[5] Zubaid A, Idris B C and Tan D 2004 Feeding Habits of Selected Insectivorous Bats in Perlis, Malaysia *Malays. Appl. Biol.* 33(1) 69–72

[6] Pavey C R and Burwell C J 2000 Foraging ecology of three species of hipposiderid bats in tropical rainforest in north-east Australia *Wildl. Res.* 27(3) 283–7

[7] Jones G, Jacobs D S, Kunz T H, Willig M R and Racey P A 2009 Carpe noctem: the importance of bats as bioindicators. *Endanger Species Res* 8(1) 93–115

[8] Kingston T 2013 Response of Bat Diversity to Forest Disturbance in Southeast Asia: Insights from Long-Term Research in Malaysia *Bat Evolution, Ecology, and Conservation* eds S C Pedersen and R A Adams (New York: Springer Science) pp 169-185

[9] Department of Town and Country Planning 2009 Final Report CFSI: Master Plan for Ecological Linkages (Kuala Lumpur)

[10] Hein C, Castleberry S and Miller K 2009 Site-occupancy of bats in relation to forest corridor *For. Ecol. Manag.* 257(4) 1200–07

[11] Francis C M 2008 A Guide to the Mammals of Southeast Asia (London, United Kingdom: New Holland Publishers (UK) Ltd)
[12] Berry N, Connor W O, Holderied M W and Jones G 2004 Detection and avoidance of harp traps by echolocating bats Acta Chiropt. 6(2) 335–346

[13] Shahfiz A Personal communication Head of Zoology Branch, Forest Research Institute Malaysia (FRIM)

[14] Joann Christine L, Fletcher C and Abd Rahman K 2013 Spatial effects of virgin jungle reserves (VJR) on the community of insectivorous bats in Peninsular Malaysia J. Trop. For. Sci. 25(1) 118–130

[15] Lee P-S, Gan H M, Clements G R and Wilson J J 2016 Field calibration of blowfly-derived DNA against traditional methods for assessing mammal diversity in tropical forests Genome 259(11) 1008–22

[16] Lim L S, Mohd-Adnan A, Zubaid A, Struebig M J and Rossiter S J 2014 Diversity of Malaysian insectivorous bat assemblages revisited J. Trop. Ecol. 30(02) 111–121

[17] Mariana A, Mohd Kulaimi B, Halimaton I, Suhaizli Z A, Ho T M, Shahrul Anuar M S and Nor Zalipah M 2009 Ektoparisit Akarin di Hutan Simpan Panti Hutan Simpan Panti, Johor: Pengurusan Hutan, Persekutuan Fizikal dan Kepelbagaian Biologi eds U Razani, H L Koh, A R Abd Rahman, M Yahaya, R Mohd Rahim, A Norhayati and A Latiff (Kuala Lumpur: Jabatan Perhutanan Semenanjung Malaysia) pp 174–180

[18] Mariana A, Kulaimi B M, Halimaton I, Suhaizli Z A, Shahrul-Anuar M S, Zalipah M N and Ho T M 2011 Acarine ectoparasites of Panti Forest Reserve in Johore, Malaysia Asian Pac J Trop Biomed 1(1) 1–5

[19] Mohd-Hanif R M D, Nur Aida M T, Wan Nurainie W I, Zahirunisa A R, Madinah A and Abdullah M T 2008 Survey on Small Mammals in Endau-Kluang Wildlife Reserve Proc. of National Biodiversity Seminar 2

[20] Nor Zalipah M, Shahrul Anuar M S, Yusof A, Mohd Yusof O, Mohd Abdul Muin M A, Mohd Shahril Idzman A M, Muhd Fadhil A R, Mohd Safariu S, Khairul Nasirudin A M, Syed Mohd Edzham S H, Rashid Y and Nordin A 2010 A Survey of Understorey Bats and Non-volant Small Mammals of the Bintang Hijau Forest Reserve Hutan Simpan Bintang Hijau, Perak: Pengurusan Hutan, Persekutuan Fizikal dan Kepelbagaian Biologi, Siri Kepelbagaiaan Biologi Hutan 12 eds U Razani, H L Koh, N M Nik Mohd Shah, A Damahrini and A Latiff (Kuala Lumpur: Jabatan Perhutanan Semenanjung Malaysia) pp 265–271

[21] Shahrul Anuar M S, Nor Zalipah M, Juliana S, Lim L S, Mohd Yusof O, Khairul Nasirudin A M, Syed Mohd Edzham S H, Saharuddin M N, Ganesan M and Nordin A 2010 A Surveys of Understorey Bats and Non-Volant Small Mammals at Gunung Angsi Forest Reserve Hutan Simpan Gunung Angsi Negeri Sembilan: Pengurusan Hutan, Persekutuan Fizikal dan Kepelbagaian Biologi eds U Razani, A R Abd Rahman, H L Koh, A Roslan, M F Nizam and A Latiff (Kuala Lumpur: Jabatan Perhutanan Semenanjung Malaysia) pp 240–245

[22] Shahrul Anuar M S, Nor Zalipah M, Yusof A, Mohd Yusof O, Razlina G, Mohd Shahril Idzman, A M, Khairul Nasirudin A M, Rashid A, Nik Fadzly N R, Mohd Sanusi M and Nordin A 2009 A Survey of Understorey Bats at Panti Forest Reserve Hutan Simpan Panti, Johor: Pengurusan Hutan, Persekutuan Fizikal dan Kepelbagaian Biologi eds U Razani, H L Koh, A R Abd Rahman, M Yahaya, R Mohd Rahim, A Norhayati and A Latiff (Kuala Lumpur: Jabatan Perhutanan Semenanjung Malaysia) pp 270–273

[23] Muda H 1991 Diet of small mammals in the secondary tropical forest in Malaysia The Journal of Wildlife and Parks 11 44–52

[24] Anwarali Khan F A, Swier V J, Larsen PA, Solari S, Ketol B, Abdullah M T, Ellagupillay S, Marklarin M and Baker RJ 2008 Using genetics and morphology to examine species diversity of old world bats: report of a recent collection from Malaysia. Occas. Pap., Mus., Tex. Tech Univ. 281 1–28
[25] Lim L S, Struebig M J, Nor Zalipah M, Mohd-Adnan A, Senawi J, Zubaid A, Mohd Sah S A and Rossiter S J 2019 Bats from the understorey of lowland tropical rainforests across Peninsular Malaysia Journal of Bat Research & Conservation 12(1) 68–82

[26] Kingston T, Francis C M, Akbar Z and Kunz T H 2003 Species richness in an insectivorous bat assemblage from Malaysia. J. Trop. Ecol. 19 67–79

[27] Mohd-Hanif R M, Nur-Aida M T, Zahirunisa A R, Mohd-Ridwan A R and Abdullah M T 2015 Contribution of regenerated forest in conservation of bats in Peninsular Malaysia J. Trop. For. Sci. 27(4) 506–516

[28] Srinivasulu B and Srinivasulu C 2019 Hipposideros pomona The IUCN Red List of Threatened Species. Retrieved from https://www.iucnredlist.org/species/10154/22101758

[29] Zubaid A 1988 Food Habits of Hipposideros armiger (Chiroptera: Rhinolophidae) from Peninsular Malaysia Mamalia 52(4) 585–588