Application of the laser diode with central wavelength 975 nm for the therapy of neurofibroma and hemangiomas

Jacek Szymańczyk
Mirosław Sawczak
Witold Cenian
Katarzyna Karpienko
Małgorzata Jędrzejewska-Szczerska
Adam Cenian

Jacek Szymańczyk, Mirosław Sawczak, Witold Cenian, Katarzyna Karpienko, Małgorzata Jędrzejewska-Szczerska, Adam Cenian, “Application of the laser diode with central wavelength 975 nm for the therapy of neurofibroma and hemangiomas,” J. Biomed. Opt. 22(1), 010502 (2017), doi: 10.1117/1.JBO.22.1.010502.
Application of the laser diode with central wavelength 975 nm for the therapy of neurofibroma and hemangiomas

Jacek Szymańczyk, a Miroslaw Sawczak, b Witold Cenian, b Katarzyna Karpienko, c Małgorzata Jędrzejewska-Szczerka, c, d and Adam Cenian a, *

a Medical University of Warsaw, Department of Dermatology, 82a Koszykowa Street, Warsaw 02-008, Poland
b Polish Academy of Sciences, Szewalski Institute of Fluid-flow Machinery, Department of Physical Aspects of Ecoinergy, 14 Fiszera Street, Gdańsk 80-952, Poland
c Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, 11/12 Narutowicza Street, Gdańsk 80-233, Poland

Abstract. This paper presents a newly developed dermopterological laser (with a central wavelength 975 nm) for application in therapies requiring deep penetration of tissue, e.g., cutaneous (dermal) neurofibroma (von Recklinghausen disease) and hemangiomas. This laser can work either in pulses or continues wave mode. Laser radiation is transmitted toward the application region by optical fiber with a diameter of 0.6 mm. The compact design of the laser facilitates its transport and increases the comfort of use.

© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.1.010502]

Keywords: laser diode; lasers; dermatology.

1 Introduction

The high number of dermatological disorders (such as von Recklinghausen disease, hemangiomas, etc.) is affecting the life expectancy and its quality of the aging population.

Von Recklinghausen disease (neurofibroma) is an autosomal dominant disorder characterized by multiple neurofibromas, café au lait spots, and Lisch nodules of the iris, which can change during a lifetime. In this disease, other disorders, from physical disfiguration and pain to cognitive disability, may occur.1 The prevalence of this tumor is 1 in 3000 live births in Western countries, making it a relatively common skin disorder. The disease is treated using drug and nondrug therapies. Usually, as a nondrug therapy, laser therapy is used, especially using a CO2 laser (10.6 μm) with continuous wave2 but also a Ho:YAG laser. According to previous studies,3 treatment with a

1083-3668/2017/$25.00 © 2017 SPIE
and pulse period \((T = 50 \text{ ms} \div 500 \text{ ms} \text{ with step } \Delta T = 10 \text{ ms})\), have been used in the experiment (see Fig. 1). Both pulse duration and pulse period could not be changed continuously but stepwise, with the steps described above.

The compact size of the laser enables its easy transportation to the locations where laser radiation is going to be applied. The laser was equipped with a dedicated optical head protecting the optical fiber end and allowing laser radiation transmission to the treated regions (Fig. 2). The flat, polished end of the quartz fiber is placed in a metal needle. The end can be polished again in the case of any damage. The core diameter of the optical fiber, applied to transmit diode radiation up to the SMA connector placed at laser chassis, is 110 \(\mu\text{m}\). To this SMA connector the optical head is connected using fiber with a wider core diameter of 600 \(\mu\text{m}\) [see Fig. 2(a)].

Preliminary studies were performed using developed optical tissue-mimicking phantoms, materials that simulate the optical properties of human skin. These studies were carried out to test the laser interaction with the skin. The temperature distribution in the phantom after laser radiation was examined to determine the optimal and safe laser parameters (power, pulse duration, and its repetition rate) during treatment. The interaction of the 975-nm laser radiation with tissue phantoms was studied as a preclinical trial of laser treatment effects.

3 Results

The dermatologic diode laser was applied for treatment of cutaneous human tissue due to dermal neurofibroma and hemangiomas. The selected patients had been already treated using standard Nd:YAG (with a central wavelength 1064 nm) laser therapy. This enabled the comparison of results and effectiveness of this new therapy using the diode laser (with a central wavelength 975 nm). To diminish the discomfort related to the laser therapy, it was preceded by local anesthesia with 1% of lignocaine.

3.1 Laser Therapy of Dermal Neurofibroma

In the case of the patient with dermal neurofibroma, different laser power levels were applied to determine the optimum power. In the first case, laser radiation with a continuous wave 10 and 12 W was applied (Fig. 3).

The cutaneous (dermal) neurofibroma manifests as single or multiple firm, rubbery bumps of varying sizes on a person’s skin. They are not malignant but progressive in number and size. They can result in a range of symptoms from physical disfiguration and pain to cognitive disability.

The symptoms mentioned above, i.e., rubbery bumps of various sizes at the right side of the patient neck region, were treated using continuous wave optical radiation 975 nm of the diode laser. Due to the tolerability of the therapy using both diode (975 nm) and Nd:YAG (1064 nm) lasers, the treatment was preceded by local anesthesia with 1% of lignocaine.

The interaction time of laser radiation with the bumps varied with their size and applied laser power. This must be properly determined to achieve good therapeutic and cosmetic results. The interaction time increases with the size of the bump and decrease of laser power. The inside of the bumps is filled with slimy tissue that must be evaporated. If the interaction time is too short then part of the bump survives. When it is too long, unnecessary deep scars result. In the case discussed, laser radiation was applied for at least 3 s for bumps of 1.8 mm in diameter and more than 5 s for bumps 3 mm in diameter.

The final effects of the diode-laser therapy on cutaneous (dermal) neurofibroma are very promising. It was found that the radiation power of 10 W is optimal for the neurofibroma therapy, i.e., 10 W was enough to get positive effects and have a good speed of laser therapy. The positive effects mean no bleeding during therapy and no scars after healing process, i.e., increased life comfort and good cosmetic effects even after one laser treatment. However, after some years the repetition of the treatment may be required if the cause for the pathological...
skin change is not removed completely. The speed of therapy is
determined by the time needed to remove rubbery bumps of
various sizes.

In the case of therapy with Ho:YAG laser, it was established7
that singular irradiation never achieves positive therapeutic and
cosmetic effects, i.e., it leaves a flat scar on the skin surface. So
usually, after the healing period, irradiation must be repeated, as
the previously treated neurofibroma again raises above skin
level in the central part. In the case of the applied diode laser,
this negative effect was not observed. Singular irradiation led to
flat scars on the skin surface, so the improved cosmetic effect of
the diode-laser therapy was gladly welcomed by patients. It was
also established that the treatment with the diode laser (975 nm)
is faster than with the Nd:YAG laser (1064 nm).

3.2 Laser Therapy of Hemangiomas

The second patient with a hemangioma located at the lower lip
was irradiated using the same diode laser with continuous wave
optical radiation at 10 W power (see Fig. 4). The laser radiation
was applied for 7.5 s. There was no sign of scarring observed
weeks after laser treatment. [see Fig. 4(c)].

4 Discussion

The preliminary investigations of laser diode therapies (gener-
ating radiation with a wavelength 975 nm) directed toward treat-
ment of cutaneous human tissue, both dermal neurofibroma
(von Recklinghausen disease) and hemangiomas, show very
positive and promising results (see Table 1).

The positive effects mean no bleeding during therapy and no
scars after the healing process, i.e., increased life comfort and
good cosmetic effects even after one laser treatment. However,
after some years, the repetition of the treatment may be required
as the reason for the pathological skin changes is not removed.

The results for treatment of neurofibroma with diode laser
radiation (975 nm) are better than in the case of Ho:YAG laser
(2100 nm) therapy; however, these results should be verified
by checking against a larger sample of patients.

In case of the hemangioma treatments, not every case was
successful in terms of cosmetic effects. However, in the case
of using the new laser in the curing process of patients with
neurofibroma, very good therapeutic and cosmetic effects were
achieved. Moreover, we could observe those positive effects not
only after 1 month but also after 1 year.

![Fig. 4 Laser therapy of a hemangioma located at lower lip; radiation wavelength 975 nm and continuous wave power 10 W, view: (a) before irradiation, (b) soon after irradiation (7.5 s), and (c) 7 weeks after laser treatment.](image)

Table 1 Results of treatment of cutaneous human tissue, both dermal neurofibroma (von Recklinghausen disease) and hemangiomas.

ID	Diagnosis	Laser parameters	Good therapeutic and cosmetic effecta
1	Hemangioma	10 W cw	+/-
2	Neurofibroma	10 W cw	+/
3	Neurofibroma	15 Pulsed, 50 ms	+/
4	Neurofibroma	10 W cw	+/-
5	Neurofibroma	10 W cw	+/
6	Neurofibroma	12 W cw	+/
7	Neurofibroma	5 W cw	+/
8	Neurofibroma	12 W cw	+/
9	Hemangioma	5 W cw	+/-
10	Hemangioma	5 W cw	+/-
11	Hemangioma	10 W cw	+/-

Note: +/+, Good therapeutic and cosmetic effect.
+/-, Good therapeutic and not completely satisfactory cosmetic
effects.
+/-+, Good therapeutic and medium cosmetic effect (some sort of scar
present).

aObservation based on clinical experience of the medical doctor J. Szymarczak and photographic documentation.

Disclosures

No conflicts of interest, financial or otherwise, are declared by the authors.

Acknowledgments

The authors acknowledge the financial support from the
National Science Centre (NCN—Poland), projects No. 2914/B/T02/2011/40
and No. 2011/03/D/ST7/03540. Malgorzata Jędrzejewska-Szczerłska
and Katarzyna Karpienko also acknowledge the support of COST Action BM1205, as well as
DS Programs of the Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University of Technology. The study
was approved by the Bioethics Committee at the Regional
Medical Chamber in Warsaw, Poland (Resolution No 4/14).

References

1. M. H. Shen et al., “Molecular genetics of neurofibromatosis type 1
(NF1),” *J. Med. Genet.*, 33, 2–17 (1996).
2. Y. Z. Chiang et al., “Carbon dioxide laser treatment of cutaneous neuro-
fibromas,” *Dermatol. Ther.*, 2(1), 7 (2012).
3. J. U. Ostertag et al., “Hypertrophic scars after therapy with CO2 laser for
treatment of multiple cutaneous neurofibromas,” *Clin. Orthop. Relat.
Res.*, 283(3), 296–298 (2002).
4. D. Goldberg, *Laser Dermatology*, 2nd ed., Springer-Verlag, Berlin,
Heidelberg (2013).
5. L. Thompson, *Head and Neck Pathology*, 2nd ed., Elsevier Saunders,
Philadelphia (2013).
6. A. V. Moyakine et al., “Propranolol treatment of infantile hemangioma (IH) is not associated with developmental risk or growth impairment at age 4 years,” *J. Am. Acad. Dermatol.* 75(1), 59–63 (2016).

7. J. Miquel et al., “Successful treatment of multifocal intracerebral and spinal hemangiomas with propranolol,” *J. Am. Acad. Dermatol.* 70(4), e83–e84 (2014).

8. C. Rizzo et al., “Outcomes of childhood hemangiomas treated with the pulsed dye laser with dynamic cooling: a retrospective chart analysis,” *Dermatol. Surg.* 35(12), 1947–1954 (2009).

9. R. W. Waynant, *Lasers in Medicine*, CRC Press, Boca Raton, Florida (2001).

10. J. Newman et al., “Applications of the diode laser in otolaryngology,” *Ear Nose Throat J.* 81(12), 850–851 (2002).

11. J. P. Reynaud et al., “Lipolysis using a 980-nm diode laser: a retrospective analysis of 534 procedures,” *Aesthetic Plast. Surg.* 33(1), 28–36 (2009).

12. R. A. Weiss et al., “Laser-assisted liposuction using a novel blend of lipid- and water-selective wavelengths,” *Lasers Surg. Med.* 41(10), 760–766 (2009).

13. L. Piechowski, W. Cenian, and A. Cenian, “Pulsed dermatologic 20 W diode-laser emitting at 975 nm,” *Proc. SPIE* 8703, 870304 (2012).

14. M. S. Wróbel et al., “Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering,” *Biomed. Opt. Express* 7(6), 2088–2094 (2016).

15. M. S. Wróbel et al., “Multi-layered tissue head phantoms for non-invasive optical diagnostics,” *J. Innov. Opt. Health Sci.* 8, 1541005 (2015).

16. M. S. Wróbel et al., “Measurements of fundamental properties of homogeneous tissue phantoms,” *J. Biomed. Opt.* 20(4), 045004 (2015).

17. M. Jędrzejewska-Szczerka et al., “Investigation of photothermolysis therapy of human skin diseases using optical phantoms,” *Proc. SPIE* 9447, 944715 (2015).

18. M. S. Wróbel et al., “Use of optical skin phantoms for pre-clinical evaluation of laser efficiency for skin lesion therapy,” *J. Biomed. Opt.* 20(8), 085003 (2015).