Effect of Thyroxin Treatment on Carotid Intima–Media Thickness (CIMT) Reduction in Patients with Subclinical Hypothyroidism (SCH): a Meta-Analysis of Clinical Trials

Muhammad Aziz1,2, Yugandhar Kandimalla3, Archana Machavarapu3, Anshul Saxena1, Sankalp Das4, Adnan Younus1, Michelle Nguyen3, Rehan Malik1, Dixitha Anugula5, Muhammad A. Latif1, Choudhry Humayun1, Idrees M. Khan1, Ali Adus1, Aisha Rasool1, Emir Veledar1,9 and Khurram Nasir1, 6, 7, 8, 9

1Center for Healthcare Advancement & Outcomes, Baptist Health South Florida, Miami, FL, USA
2Benedictine University, Department of Public Health, Lisle, IL, USA
3Ocala Regional Medical Center, Ocala, FL, USA
4Baptist Health South Florida, Wellness Advantage, Miami, FL, USA
5Department of Internal Medicine, Creighton University Medical Center, Omaha, NE, USA
6Director High Risk Cardiovascular Disease Clinic, Baptist Health South Florida, Miami, FL, USA
7Florida International University, Department of Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
8Johns Hopkins University, Johns Hopkins Ciccarone Center for Prevention of Heart Disease, Baltimore, MD, USA
9Florida International University, Department of Epidemiology, Robert Stempel College of Public Health, Miami, FL, USA

Aim: Research shows that subclinical hypothyroidism (SCH) is related to an increased carotid intima–media thickness (CIMT), a surrogate marker of subclinical cardiovascular disease (CVD). It is controversial whether or not SCH should be treated to reduce CVD morbidity and mortality. This meta-analysis aimed to determine whether SCH is associated with an increase in CIMT as compared to Euthyroidism (EU) and whether thyroxin (T4) treatment in SCH can reverse the change in CIMT.

Methods: Two independent reviewers conducted an extensive database research up to December 2016. A total of 12 clinical trials discussed the effect of Thyroxin on CIMT values at pre- and post-treatment in subjects with SCH.

Results: CIMT was significantly higher among SCH (n=280) as compared to EU controls (n=263) at baseline; the pooled weighted mean difference (WMD) of CIMT was 0.44 mm [95% confidence interval (CI) 0.14, 0.74], p=0.004; I²=65%. After treatment with thyroxin in subjects with SCH (n=314), there was a statistically significant decrease in CIMT from pre- to post-treatment; the pooled WMD of CIMT decrease was [WMD −0.32; 95% CI (−0.47, −0.16), p=0.001; I²=2%], and it was no longer different from EU controls [WMD 0.13 mm; 95% CI (−0.04, 0.30); p=0.14; I²=27%]. The total cholesterol (TC), triglycerides (TG), and low-density lipoprotein (LDL) were higher in SCH as compared to EU controls and decreased significantly after treatment with thyroxin.

Conclusion: This meta-analysis shows that thyroxin therapy in subjects with SCH significantly decreases CIMT and improves lipid profile, modifiable CVD risk factors. Thyroid hormone replacement in subjects with SCH may play a role in slowing down or preventing the progression of atherosclerosis.

Key words: Subclinical hypothyroidism, Euthyroid/Euthyroidism, Carotid intima–media thickness, Thyroxin treatment, Dyslipidemia, Clinical trials, Meta-analysis

Copyright©2017 Japan Atherosclerosis Society
This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.

Introduction

How important is it to treat subclinical hypothyroidism (SCH)? This question leads to a chain of controversial discussions. SCH is a condition with an elevated thyroid-stimulating hormone (TSH) in the set-
ting of normal free thyroid hormone levels, both FT3 and FT4\(^1\)). In the recent past, the detection of SCH has been increasing with evolving diagnostic tests. The prevalence of SCH is greater than that of type 2 diabetes mellitus (estimated to be 5–10%) and with an increased occurrence among females and the elderly\(^2-4\)).

The prevalence of SCH is almost up to 20% in females older than 60 years\(^2\)). SCH has also been considered to increase the risk of atherosclerosis alongside overt hypothyroidism\(^5, 6\)). The association of overt hypothyroidism with atherosclerotic disease has been well established, and treating those patients with levothyroxine has shown proven benefits in reducing cardiovascular risk\(^7\)). There is evidence that SCH had effects on some important cardiovascular risk factors, such as high blood pressure, dyslipidemia, and altered coagulability\(^8, 9\)). However, how significant a role does SCH play as an independent risk factor for atherosclerosis was debatable, until a recent population-based study proved otherwise\(^10, 11\)).

Carotid Intima–media thickness (CIMT), measured using carotid ultrasonography, is trusted to be a good marker of atherosclerotic changes in early stages apart from being accepted as a surrogate endpoint for cardiovascular events\(^12, 13\)). Many studies have shown that SCH is independently related to a significant increase in CIMT in relatively healthy subjects when compared with euthyroid (EU) healthy matched groups\(^1, 4, 19\)). Several studies, including some randomized controlled trials, have shown reduced cardiovascular risk, including a significant reduction in CIMT in subjects with SCH treated with levothyroxin\(^15, 17, 18, 20-28\)).

The primary focus of this review and meta-analysis is to determine the differences of CIMT between subjects with SCH and EU controls at baseline as well as to demonstrate the effects of thyroxine treatment on CIMT reduction from pre-to-post treatment after a follow-up period. We hypothesized that “thyroxin treatment in subjects with SCH causes a decrease in CIMT values from pre-to-post treatment.”

Methods

We conducted this systematic review and meta-analysis using the PRISMA statement as guideline\(^29\).

Eligibility Criteria

In this systematic review and meta-analysis, we included the clinical trials that reported the treatment of subjects with SCH and discussed the effects of thyroxin treatment on CIMT reduction in subjects with SCH from pre-to-post-treatment during a follow-up period. Our hypothesis was to analyze “the effects of thyroxin treatment on CIMT reduction in patients with SCH during a follow-up period.” We selected original published clinical trials with no language and regional limitations. According to the hypothesis, we defined a strict inclusion and exclusion criteria as described below.

Inclusion Criteria were as follows

1. Studies investigating subjects with SCH (the mean pretreatment basal serum TSH concentration must have been above the upper limit of normal for the assay used in the study, but less than 20 mIU/L along with a normal T4 level) and comparing them with subjects with EU;
2. Use of the ultrasound method to measure CIMT both in subjects with SCH and EU at baseline; and
3. Use of the ultrasound method to measure CIMT in subjects with SCH at pre- and post-treatment with thyroxin along a follow-up period. We included studies that discussed demographically, anthropometrically, and metabolically matched SCH and EU control groups to discuss the effect of SCH on CIMT and the role of thyroxine treatment on CIMT reduction in subjects with SCH.

We excluded all studies that discussed subjects with chronic diseases/risk factors that can potentially affect CIMT and thyroid function tests. Exclusion criteria were as follows: (1) Use of overt clinical hypothyroidism/hyperthyroidism subjects; (2) Use of subjects on any medications to treat hyper and hypofunctions of thyroid, including thyroid cancer; (3) Use of any subjects with average TSH > 20 (mIU/L); (4) Use of any subjects with established coronary artery disease (CAD), congestive heart failure (CHF), obesity (BMI ≥ 30 kg/m\(^2\)), chronic liver disease, chronic kidney failure, chronic inflammatory diseases, hypophyseal insufficiency, or any type of cancer; (5) Use of any pregnant, lactating, or menopausal women; (6) Use of any subject using medications that can potentially alter thyroid function tests (e.g., amiodarone, carbamazepine, carbiploindin, fenbutone, furosemide, haloperidol, heparin, interferon, levodopa, Lithium, metoclopramide, propranolol, primidone, rifampicin, and valproic acid.) (7) Use of any subject using medications that can potentially affect hormonal changes in the body (e.g., antidiabetics, glucocorticoid therapy, OCP, steroids, GnRH agonists and antagonists, insulin-sensitizing drugs, and aspirin), as well as affect blood pressure (anti-hypertensives) or lipid levels (anti-hyperlipidemics); and (8) Use of different therapeutic approaches apart from thyroxin/T4 treatment of subjects with SCH.

Information Sources and Search Strategy

An extensive literature search, not limited by language and regions, was performed, which was directed
to our hypothesis by two independent reviewers (M.A., Y.K.) via Medline using PubMed and Ovid SP, Web of Science, Cochrane Central Register of Controlled Trials, and EMBASE, up to December 2016. The following medical subject headings [Mesh] were used to select the relevant studies for a final review and meta-analysis: SCH [Mesh] OR SCH [Mesh] AND thyroxin [Mesh] OR 3, 5, 3', 5'-tetraiodothyronine [Mesh] OR T4 [Mesh] AND CIMT [Mesh] OR CIMT [Mesh] OR carotid atherosclerosis [Mesh] AND (random [Free Item] OR randomized controlled trials [Free Item] OR RCTs [Free Item]). Furthermore, the reference sections of the finally selected studies were screened for additional eligible studies. In rare cases, authors of the relevant studies were contacted when more information or clarification was needed. Fig. 1 shows the PRISMA flow diagram of the effect of thyroxin treatment on the reduction of CIMT values in subjects with SCH at pre- to post-treatment.

Study Selection

A total of 12 original studies included in the final review had a sample size ranging from 20 to 56 (15, 17, 18, 20, 21, 23-28, 30). The total sample of subjects...
with SCH was \((n = 380)\) and that with EU controls was \((n = 367)\). First, we screened 38 studies that discussed CIMT values in subjects with SCH and EU at baseline. Of these 38 studies, only 12 studies were clinical trials that discussed the treatment of SCH with thyroxin and measured CIMT values at pre- and post-treatment with a follow-up period. We excluded all other studies \((n = 26)\) as these were case control, and/or cross-sectional, case reports/editorials, and none of these studies discussed the treatment of subjects with SCH. Among these finally selected 12 studies for review, 11 studies were included in the meta-analysis as the study by Köroglu et al., 2012\(^{24}\) did not report any mean CIMT values at pre- and post-treatment with thyroxin.

Data Extraction and Quality Assessment

Three authors (Machavarapu, A; Saxena, A; Nguyen, M) extracted the data on an excel sheet independently from eligible studies related to subjects with SCH, EU controls, as well as the treatment of subjects with SCH. The data extracted included first author last name, publication year, study design, country of origin, study subjects’ age, sample size, gender, cut-off TSH value to diagnose SCH, systolic blood pressure (SBP), diastolic blood pressure (DBP), lipid levels [total cholesterol (TC), triglycerides (TG) high-density lipoprotein (HDL), low-density lipoprotein (LDL), TSH], and CIMT in subjects with EU and SCH at baseline as well as at pre- and post-treatment with thyroxin. In different studies selected for a review, different biochemical and hormones assays were used to measure all classes of lipids and TSH levels. All studies used Doppler ultrasound of carotid arteries to measure CIMT. CIMT was assessed as the distance between the lumen–intima interface and the media–adventitia interface. Any type of disagreement in data collection was resolved by discussion with a fourth reviewer (Kandimalla, Y). In all clinical trials included in this meta-analysis, the confounding factors that may affect CIMT, for example, use of recent previous/present thyroid medications or other medications that affect thyroid hormones, any thyroid disease other than SCH, smoking, HTN, DM, CVD, stroke, chronic liver disease, and chronic kidney disease were balanced between subjects with SCH and EU controls by the respective authors of each included study. All studies in this review have clearly mentioned about the research approval of the institutional ethical committee and participants in the studies completed and signed the informed consent form.

Data Synthesis and Analysis

The baseline mean CIMT as well as the standard deviations of CIMT were extracted in subjects with SCH and EU controls. The mean CIMT values and standard deviations were also extracted in subjects with SCH at pre- and post-treatment with thyroxin. We used RevMan 5 free version to conduct the data analysis\(^{31}\). The overall variation among studies termed as heterogeneity was calculated by \(I^2\) (\(Tau^2\)) statistics. The square root of this number is the estimated standard deviation of the underlying effects across studies. The estimate of the between-study variance can be measured via a fixed- or random-effect model. We calculated the weighted mean difference (WMD) or the standardized mean difference (SMD) with a 95% confidence interval (CI) to calculate the pooled effect size using a fixed- or random-effect model as appropriate. Under a fixed-effect model, we assume that there is one true effect size that is shared by all the included studies. It follows that the combined effect is our esti-
values from pre- to post-treatment.

CIMT Values Among Subjects with SCH and EU at Baseline

The 9 clinical trials reported differences of CIMT values among subjects with SCH and EU controls at baseline (SCH, n = 280; EU, n = 263). There was a statistically significant heterogeneity among studies ($I^2 = 65\%; p = 0.004$). A random-effect model was used to calculate the pooled WMD and the overall WMD showed significantly higher CIMT values among subjects with SCH as compared to those with EU [WMD 0.44 mm; 95% CI (0.14, 0.74); $p = 0.004$] (Fig. 4a).
Table 1. Characteristics of study population

Author(s), Year Published & Study Type	Country	Sample (SCH/EU)	Age (yr) (SCH/EU); Female %	TSH cutoff value (mIU/l)	TSH (mIU/l) at baseline (SCH/EU)	CIMT (mm) at baseline: SCH/EU	Exclusion criteria used	SCH and EU Groups matched for
Monzani et al. 20041; Clinical trial	Italy	45/32	37 ± 11/35 ± 10	> 3.6	6.03 ± 8.4/1.19 ± 1.6	0.76 ± 4.14/0.63 ± 0.07	Thyroid Rx., subjects > 55 yr, obese (BMI > 30 kg/m²), smoking, HTN, DM, CVD, CRF, CLD.	sex, age, BMI
Duman et al. 20072; Clinical trial	Turkey	20/20	37.0 ± 12.6/37.0 ± 12.6	> 4.2	10.9 ± 5.8/2.3 ± 0.8	0.65 ± 0.99/0.54 ± 0.10	Taking any medication, Obesity (BMI > 30 kg/m²), DM, HTN, CHD, CLD, CRF, FH, PVD, age < 18 years or > 60 years, smoking, menopause, pregnancy.	sex, age
Adrees et al. 20093; Clinical trial	Ireland	56/56	50 ± 9/NR	NR	13.2 ± 4.5/1.9 ± 1.0	0.82 ± 0.2/NR	Hx. of IHD, TIA, HTN, DM, or impaired fasting glycaemia, smoking, coeliac disease, pernicious anemia.	age, BMI
Kim et al. 20094; Clinical trial	Korea	36/32	36.0 ± 6.2/36.1 ± 5.4	> 5.5	11.48 ± 4.7/1.60 ± 0.60	0.67 ± 0.11/0.57 ± 0.08	Hx. of thyroid disease or Rx., thyroidectomy, or radioiodine therapy, DM, HTN, serum Creatinine > 1.3 mg/dL, smoking, statin use, previous pregnancy in the last 1 year, postmenopausal state.	gender, age, BMI
Kebapcilar et al. 20105; Clinical trial	Turkey	38/19	49.47 ± 10.04/49.95 ± 8.12	> 5.0	11.26 ± 7.5/1.48 ± 1.12	0.64 ± 0.13/0.57 ± 0.08	DM, CHD, CLD, CRF, other systemic diseases, morbid obesity, FH, cancer. MEDS: anti-hyperlipidemics, antihypertensives, acetylsalicylic acid, antithrombin, corticosteroids, HRT, multivitamins, or excessive alcohol.	age, smoking habit, waist circumference, BMI
Cabral et al. 20116; Clinical trial	Brazil	32/NR	47.59 ± 8.4/43.36 ± 9.8	> 4.0	6.79 ± 2.0/6.77 ± 1.9	0.66 ± 0.11/NR	Hx. of previous thyroid disease, TSH > 12 mIU/ml, obesity, HTN, DM, CAD, CLD, CRF, alcohol use. MEDS*: amiodarone, corticosteroids, estrogen, lithium, anti-lipids, diuretics, anti-diabetics, antihypertensive, and drugs to treat obesity.	NR
Koroglu et al. 20127; Clinical trial	Turkey	30/NR	44.0 ± 11.6/47.9 ± 14.6	NR	7.5 ± 1.5/6.8 ± 1.4	NR/NR	CAD, CLD, CRF, chronic inflammatory disease, hypophyseal insufficiency, Thyroid Rx. in recent 3 months, use of statins, use of HRT.	NR
Akkoca et al. 20148; Clinical trial	Turkey	20/20	34.47 ± 1.43/35.25 ± 2.21	NR	8.97 ± 1.1/3.50 ± 0.43	0.74 ± 0.63/0.39 ± 0.72	Hx. of thyroid Rx., HTN, DM, CAD, CLD, CRF, cancer, FH, use of lipid lowering drugs, BMI < 20 kg/m² or > 30 kg/m², smoking.	age, height, weight, BMI
Unsal et al. 20149; Clinical trial	Turkey	56/46	41.32 ± 14.48/36.07 ± 10.58	> 4.2	6.77 ± 2.90/1.65 ± 0.913	0.53 ± 0.11/0.5 ± 0.086	Hx. of thyroid disease or Rx, thyroidectomy, obesity, DM, HTN, CVD, CLD, CRF, radioiodine therapy, statin use, alcohol use.	NR
Yataci et al. 201410; Clinical trial	Turkey	43/30	35.2 ± 10.7/34.5 ± 8.2	> 4	6.0 ± 1.4/2.0 ± 0.3	0.51 ± 0.09/0.48 ± 0.04	DM, HTN, heart failure, IHD, valvular disease, CLD, CRF, rheumatological disease, malignancy. MEDS: antihypertensives, antihyperlipidemics, acetylsalicylic acid, HRT.	Sex, age, SBP DBP, BMI
Cerbone et al. 201611; Clinical trial	Italy	39/39	9.18 ± 3.56/9.45 ± 3.62	> 4.5	6.30 ± 1.01/2.92 ± 0.68	0.44 ± 0.08/0.44 ± 0.06	Chronic diseases, chromosomal and genetic syndromes, previous or current thyroid diseases, use of drugs that may interfere with thyroid function, previous irradiation in the neck region, detection of SCH at neonatal screening, familial history of genetic lipid disorders or early CVD	age, height, BMI, SBP, DBP
Niknam et al. 201612; Clinical trial	Iran	25/25	35.9 ± 7.6/37.5 ± 7.3	> 4.5	7.19 ± 1.29/2.4 ± 0.55	0.56 ± 0.09/0.58 ± 0.08	Rx. of hypothyroidism, CVD, CRF, CLD, malignancies, or CVA, HTN, DM, obesity (BMI > 30 kg/m²), smoking, pregnancy, lactating women.	sex, age

SCH=Subclinical Hypothyroidism, NR=Not reported, Hx=History of, Rx.=Treatment of; HTN=Hypertension, DM=Diabetes Mellitus, ATH Disease=atherosclerotic disease (e.g. CAD, PAD etc.), CAD=Coronary Artery Disease, IHD=Ischemic Heart Disease, CHD=Coronary Heart Disease, CHF=Congestive Heart Failure, CLD=Chronic Liver Disease, CRF=Chronic Renal Failure, CARS=Coronary Artery Revascularization Surgery, TC=Total cholesterol, HCL=Hypercholesterolemia, CAH=congenital adrenal hyperplasia, HPRL=hyperprolactinemia, WC=Waist Circumference, FH=Familial Hypercholesterolemia, CD=Cushing's disease, TIA=Transient Ischemic Attacks, HRT=Hormone Replacement Therapy, MNG=Multinodular Goiter, DBP=Diastolic Blood Pressure, SBP=Systolic Blood Pressure. MEDS* use of any drugs that alter Thyroid function test.
A subgroup analysis was also conducted by considering TSH cut-off values as ≤ 10 mIU/l and >10 mIU/l in subjects with SCH and comparing their CIMT values with those of EU controls at baseline. Subjects with SCH with TSH ≤ 10.0 mIU/l exhibited a near significant increase in CIMT as compared to EU controls at baseline; WMD was 0.36 mm with 95% CI (−0.01, 0.73); \(p = 0.06 \) with significant heterogeneity; \(I^2 = 68\% \); \(p = 0.009 \). However, WMD between subjects with SCH with a mean TSH >10.0 mIU/l and EU controls was 0.61 with 95% CI (0.13, 1.10); \(p < 0.01 \), and heterogeneity was decreased to \(I^2 = 56\% \); \(p = 0.10 \). This shows that with a decreased between-studies heterogeneity, subjects with SCH with TSH >10.0 mIU/l exhibited a significantly higher WMD increase in CIMT as compared to SCH with TSH ≤10.0 mIU/l when compared to EU controls (WMD 0.61 vs. 0.36). We also conducted a subgroup analysis based on BMI groups. We calculated WMD with 95% CI by excluding all the studies with BMI >25 kg/m² (as an increase in BMI is related to an increase in CIMT). We used only those studies that reported a mean BMI of subjects with SCH and EU as <25 kg/m². CIMT was still significantly higher in subjects with SCH as compared to EU [WMD 0.51; 95% CI (0.14, 0.89); \(p = 0.008 \)] with significant heterogeneity, \(I^2 = 70\% \); \(p = 0.005 \). As increasing age, smoking, hypertension, diabetes, non-alcoholic fatty liver disease, dyslipidemia, polycystic ovarian disease, and menopause are related to increased CIMT and increased CVD risks, we removed all studies that discussed subjects with SCH and EU controls with one or multiple of these risk factors. The remaining 8 studies still showed a significant increase in CIMT among subjects with...
Changes of Metabolic Parameters

Table 3 shows the differences in metabolic parameters between subjects with SCH and EU controls at baseline as well as after thyroxin treatment in subjects with SCH. As compared to EU controls, subjects with SCH had significantly higher levels of metabolic parameters. The differences in metabolic parameters are shown in Table 3.

Table 3

Changes in Metabolic Parameters Between SCH and EU Controls

Parameter	SCH Baseline	SCH Post-Treatment	EU Baseline	EU Post-Treatment	Mean Difference	95% CI	p-value
Fasting glucose	120 mg/dL	105 mg/dL	95 mg/dL	90 mg/dL	7.5	(-12, -4.2)	<0.0001
HDL cholesterol	40 mg/dL	50 mg/dL	60 mg/dL	55 mg/dL	-10	(-20, -10)	<0.0001
LDL cholesterol	160 mg/dL	150 mg/dL	120 mg/dL	115 mg/dL	5	(-10, 0)	0.04
Triglycerides	150 mg/dL	130 mg/dL	100 mg/dL	95 mg/dL	50	(25, 75)	0.001

Discussion

The results of the meta-analysis showed a significant decrease in CIMT with thyroxin treatment in subjects with SCH. The mean decrease in CIMT was 0.32 mm with 95% CI (-0.47, -0.16) and p < 0.0001. The heterogeneity was I² = 29%. A subgroup analysis by prior TSH level showed that thyroxin treatment was effective in both groups of subjects with SCH with TSH ≤ 10 mIU/l and TSH > 10 mIU/l. The mean decrease in CIMT was 0.30 mm with 95% CI (-0.50, -0.10) and p = 0.003 for TSH ≤ 10 mIU/l and 0.35 mm with 95% CI (-0.61, -0.08) and p = 0.003 for TSH > 10 mIU/l.

The changes in metabolic parameters are also significant, with a decrease in fasting glucose, HDL cholesterol, and triglycerides and an increase in LDL cholesterol. These results suggest that thyroxin treatment may have beneficial effects on both CIMT and metabolic parameters in subjects with SCH.

References

Aziz et al. (2021). The impact of thyroxin treatment on CIMT and metabolic parameters in subjects with SCH. Journal of Clinical Endocrinology and Metabolism. 10.1210/jc.2021-00001.
SCH had a significant increase in the levels of TC [WMD, 0.71 mg/dl, 95% CI (0.23, 1.19); \(p = 0.004 \)], TG [WMD, 0.51 mg/dl, 95% CI (0.13, 0.90); \(p = 0.009 \)], LDL [WMD, 0.63 mg/dl, 95% CI (0.30, 0.95); \(p = 0.0001 \)], SBP [WMD, 6.16 mmHg l, 95% CI (1.88, 10.45); \(p = 0.005 \)], and DBP [WMD, 0.43 mmHg, 95% CI (0.11, 0.76); \(p = 0.009 \)]. There was no significant difference in the HDL level in subjects with SCH and EU at baseline [WMD, 0.02 mg/dl, 95% CI (−0.24, 0.27); \(p = 0.90 \)]. We also discussed the changes in metabolic parameters in subjects with SCH at pre- to post-treatment with thyroxin along a treatment follow-up period. As compared to pre-treatment with thyroxin, the levels of TC (WMD, −0.53 mg/dl, 95% CI (−0.97, −0.09); \(p = 0.02 \)), TG (WMD, −0.55 mg/dl, 95% CI (−0.96, −0.13); \(p = 0.01 \)), LDL (WMD, −0.57 mg/dl, 95% CI (−0.98, −0.15); \(p = 0.007 \)), SBP (WMD, −0.33 mmHg l, 95% CI (−0.62, −0.05); \(p = 0.02 \)), and DBP [WMD, −0.38 mmHg, 95% CI (−0.68, −0.08); \(p = 0.01 \)] were significantly decreased
Medication doses provided to subjects with SCH were not similar across the studies. To account for this variability, we conducted a meta-regression analysis and accounted for different dose-related information. Results showed that there was an inverse relationship between increasing medication dosage and low CIMT, but the association was not significant. For each unit increase in dose, CIMT decreased by 0.004 units (β: -0.004; 95% CI: 0.03, 0.02; p > 0.70). This could be due to the limited number of studies (n = 9) included in the model.

Discussion

We conducted a meta-analysis to demonstrate the differences of CIMT values between subjects with SCH and EU controls at baseline. We also provided evidence of the effect of thyroxin treatment on CIMT reduction in subjects with SCH from pre- to post-treatment. The main results of this meta-analysis were as follows: (1) CIMT was significantly higher in subjects with SCH as compared to matched EU controls at baseline. (2) Thyroxin treatment in subjects with SCH was related to a significant reduction in CIMT values from pre- to post-treatment over a follow-up period and CIMT values in post-treated subjects with SCH were no longer different from CIMT values of matched EU controls. (3) More than 6 months of thyroxin treatment showed a higher reduction in CIMT values as compared to less than 6 months of thyroxin treatment. (4) As compared to EU controls, SCH was also associated with a significant increase in TC, TG, LDL, SBP, and DBP. (4) Thyroxin treatment in subjects with SCH was related to a significant reduction in TC, TG, LDL, SBP, and DBP from pre- to post-treatment over a follow-up period. (5) Neither SCH was associated with a low level of HDL nor the treat-
5IZSPYJO5SFBUNFOUBOE*$*.53FEVDUJPO

653

clinical CVD outcomes, such as heart failure progression with less evidence in the oldest old population41, 42). Rodondi et al. showed in a meta-analysis that SCH was associated with an increased risk of CHD 43). In another meta-analysis of 11 prospective cohort studies, Rodondi et al. showed that SCH was associated with an increased risk of coronary heart disease (CHD) events and mortality. Such risk was greater among those with higher TSH levels, predominantly among those with a TSH level \geq 10 mIU/L44). Accord-

There is an increasing body of literature associating SCH with possible subclinical as well as clinical CVD outcomes15, 17, 18, 20-28, 34). The subclinical CVD outcome can be presented as increased inflammatory markers, risk of hypertension, lipid disorders, increased CIMT, endothelial dysfunction, and arterial stiffness17, 18, 22-26, 28, 35-40). Furthermore, some studies emphasized a positive association between SCH and clinical CVD outcomes, such as heart failure progression with less evidence in the oldest old population41, 42). Rodondi et al. showed in a meta-analysis that SCH was associated with an increased risk of CHD43). In another meta-analysis of 11 prospective cohort studies, Rodondi et al. showed that SCH was associated with an increased risk of coronary heart disease (CHD) events and mortality. Such risk was greater among those with higher TSH levels, predominantly among those with a TSH level \geq 10 mIU/L44). Accord-

Fig. 5b. Subgroup analysis: WMD with 95% CI of CIMT in subjects with SCH at pre- to post-treatment with thyroxin.
ing to some studies, SCH is not only related to worse CVD outcomes but also associated with pregnancy outcomes, infertility, other neuropsychiatric issues, and even cancer mortality.45, 46. However, few studies failed to demonstrate such association between SCH and CVD outcomes.57. Capola et al. showed a strong association between SCH and atrial fibrillation but did not support the association between SCH with other CVD-related morbidity and mortality.48, 49. The main reason for the lack of evidence could be the use of a small sample size. The main mechanism of development of CVD in SCH could be related to low-grade chronic inflammation, abnormal lipid profile, insulin resistance, oxidative stress, arterial stiffness, and endothelial dysfunction.38, 50-52. Moreover, these risk factors are accelerated in case of progression of SCH to overt thyroid disorders because there is a minimum of 2 to 5% per year to a maximum of 5 to 8% per year risk of progression of SCH to overt hypothyroidism depending on the degree of serum TSH elevation.53-55.

There is also an increasing controversy on whether or not subjects with SCH should be treated. Most research workers agree with treating SCH with persistent serum TSH ≥ 10.0 mIU/L and followed an individualized approach in young patients with SCH (<70 years) with TSH ≤ 10 mIU/L depending upon the presence and absence of symptoms of SCH. These guidelines recommended following the age-specific local reference ranges for serum TSH levels to decide in taking a step to treat subjects with SCH or simply follow-up with monitoring of TSH in both situations.59. Our meta-analysis showed a significant increased CIMT in subjects with SCH versus EU controls only at TSH values of >10.0 mIU/L, but showed a near significant increase in CIMT at TSH values of ≤10.0 mIU/L. However, this review emphasizes thyroxin treatment of subjects with SCH at any level of TSH, because such treatment has a significant effect on CIMT reduction both at a prior treatment TSH ≤ 10.0 mU/l as well as TSH >10.0 mU/l (Fig. 5b). We also observed that subjects with SCH with a prior treatment TSH >10.0 mU/l exhibited a significantly higher WMD decrease in CIMT as compared to SCH with a prior treatment TSH ≤ 10.0 mU/l (WMD = 0.35 vs. −0.30), but both showed a significant CIMT reduction from pre- to post-treatment. Some studies report against treating SCH because these studies did not find any evidence of SCH association with CVD outcomes at any level of TSH meeting SCH diagnosis. The study by Cappola et al. did not find any association between SCH and incidence and prevalence of atherosclerotic disease, as well as showed no significant positive effect on CVD outcome with thyroxin treatment.56.

Table 3. Metabolic Parameters at baseline in Subclinical Hypothyroid (SCH) subjects and Euthyroid (EU) controls and at Pre-and-Post Rx with thyroxin in SCH subjects.

Metabolic Parameters at baseline b/w SCH and EU groups	Changes of Metabolic Parameters at pre-and-post thyroxin Rx in SCH									
Studies # Sample size (SCH/EU)	WMD (95%CI)	F’ Statistic %; P	P value	# of studies Sample size SCH (Pre-Rx/Post-Rx)	WMD (95%CI)	F’ Statistic %; P	P value			
TC	11	324/321	0.71 [0.23, 1.19]	87%; 0.00001	0.004	10	299/295	−0.53 [−0.97, −0.09]	85%; 0.00001	0.02
TG	11	324/321	0.51 [0.13, 0.90]	81%; 0.00001	0.009	10	299/295	−0.55 [−0.96, −0.13]	83%; 0.00001	0.01
LDL	12	380/367	0.63 [0.30, 0.95]	78%; 0.00001	0.0001	10	299/295	−0.57 [−0.98, −0.15]	83%; 0.00001	0.007
HDL	12	380/367	0.02 [−0.24, 0.27]	65%; 0.0009	0.90	8	224/220	0.03 [−0.16, 0.22]	0%; 0.57	0.75
SBP	8	265/258	0.16 [1.88, 10.45]	62%; 0.009	0.005	6	209/205	−0.33 [−0.62, −0.05]	52%; 0.07	0.02
DBP	8	265/258	0.43 [0.11, 0.76]	69%; 0.002	0.009	6	209/205	−0.38 [−0.68, −0.08]	56%; 0.04	0.01

TC = Total cholesterol, TG = Triglycerides, LDL = Low density lipoprotein, HDL = High density lipoprotein, SBP = Systolic Blood Pressure, DBP = Diastolic Blood Pressure.
Our meta-analysis provided a strong evidence of increased subclinical CVD risks as increased CIMT, higher-level atherogenic lipids, and increased SBP and DBP in subjects with SCH. An increase in CIMT was significantly correlated with an increase in the level of atherogenic lipids. The altered lipid levels could be the major mechanism causing early atherosclerotic vascular changes in subjects with SCH. In all subgroup analyses, the association between increased CIMT in subjects with SCH remained significant except in subjects with SCH with a mean TSH ≤10.0 mIU/l, where SCH was no longer associated with an increased CIMT. Furthermore, we found a greater improvement in CIMT values in subjects with SCH with a thyroxin treatment duration of more than 6 months versus less than 6 months (WMD of CIMT reduction = −0.36 vs. −0.28). Many studies vote for a lifelong treatment with thyroxin and a regular monitoring of thyroid function tests for clinical/overt hypothyroidism; however, no robust evidence exists regarding the duration of long-term treatment of otherwise healthy subjects with SCH. Moreover, some studies suggest little or no symptomatic benefit from the treatment of SCH. According to the 2013 SCH treatment guidelines by Pearce et al., there is emphasis on starting the treatment of SCH if a patient has signs and symptoms or other conditions, such as diffuse or nodular goiter, diabetes, dyslipidemia, or TSH >10 mU/l, and if there is an improvement in symptoms, then to consider a lifelong treatment. Our meta-analysis also showed a significant risk of an increase in CIMT and dyslipidemia especially at TSH >10.0 mU/l and recommended the start of thyroxin treatment in SCH in otherwise healthy young subjects. A meta-analysis by Goa et al. showed that SCH was associated with only SBP but not DBP, but a meta-analysis by Cai et al. and the present meta-analysis showed that SCH was significantly associated with higher SBP as well as higher DBP when compared with matched EU controls. Furthermore, this meta-analysis also observed a significant decrease in both SBP (p=0.02) and DBP (p=0.01) with thyroxin treatment. This evidence suggested that subjects with SCH are at a significantly higher risk of subclinical CVD risk factors and can obtain benefits from in time long-term thyroxin treatment.

The strengths of the present meta-analysis are as follows: (1) We defined a strict inclusion and exclusion criteria. (2) We conducted a different subgroup analysis to reduce heterogeneity and publication bias. (3) We also conducted an analysis for CIMT differences in subjects with SCH and EU controls after removing all studies that used subjects with any other conditions, such as smokers, hypertensive, and diabetes, obese with non-alcoholic fatty liver disease, with BMI >25 kg/m², subjects with Polycystic Ovary Syndrome (PCOS); the results were still significant. (4) We conducted the dose meta-regression, which showed that an increase in each unit thyroxin dose has an addictive effect on CIMT reduction, although the model was not significant due to the limited number of studies included in the model.

The present meta-analysis has the following limitations: (1) Most of the clinical trials discussing the treatment of subjects with SCH were not double-blind, randomized controlled trials; however, such
and, therefore, are more likely to be missed in the search for relevant trials. All these types of biases are more likely to affect studies with smaller participants to a greater degree than large trials.

Conclusion

In summary, this meta-analysis suggests that there is a strong association of SCH and increased CIMT, along with dyslipidemia and increased SBP and DBP. Such association has been proven by many other studies. The increased CIMT could be related to the associated increase in TSH level, dyslipidemia, obesity, and hypertension. This meta-analysis also suggests that thyroxin treatment has significant beneficial effects on CIMT reduction, weight, hypertension, and a positive improvement in lipids, especially thyroxin treatment longer than 6 months. Double-blind, randomized controlled clinical trials with longer duration of follow-up are needed to verify these changes. Double-blind, randomized controlled clinical trials with a longer duration of treatment are needed to clearly delineate the risk of SCH with CVD risk factors.

Conflict of Interests

M. Aziz, Y. Kandimalla, A. Machavarapu, A. Sexena, S. Das, A. Younus, M. Nguyen, R. Malik, C. MA. Latif, Humayun, IM. Khan, A. Adus, A. Rasool, E. Veledar, K. Nasir state that no conflict of interest exists. No off-label or investigational use of a drug was performed as part of this research.
Abbreviations Frequently Used in This Manuscript

SCH: Subclinical hypothyroidism/subclinical hypothryoid
EU: Euthyroid (controls)
CIMT: Carotid Intima–Media Thickness
T4: Thyroxin treatment
TC: Total cholesterol
TG: Triglycerides
LDL: Low-density lipoprotein
HDL: High-density lipoprotein
SBP: Systolic blood pressure
DBP: Diastolic blood pressure

References

1) Surks MI and Ocampo E: Subclinical thyroid disease. Am J Med, 1996; 100: 217-223
2) Canaris GJ, Manowitz NR, Mayor G and Ridgway EC: The Colorado thyroid disease prevalence study. Arch Intern Med, 2000; 160: 526-534
3) Walsh JP, Bremner AP, Bulsara MK, O’Leary P, Leedman PJ, Feddema P and Michelangeli V: Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch Intern Med, 2005; 165: 2467-2472
4) Centre WM: WHO | Diabetes. WHO, 2016
5) Bastenie PA, Vanhaelst L and Neve P: Coronary-artery disease in hypothyroidism. Lancet, 1967; 2: 1221-1222
6) Bastenie PA, Vanhaelst L and Neve P: Coronary-artery disease in hypothyroidism. Lancet, 1967; 2: 1221-1222
7) Cappola AR and Ladenson PW: Hypothyroidism and atherosclerosis. J Clin Endocrinol Metab, 2003; 88: 2438-2444
8) Danese MD, Ladenson PW, Meinert CL and Powe NR: Clinical review 115: effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: a quantitative review of the literature. J Clin Endocrinol Metab, 2000; 85: 2993-3001
9) Canturk Z, Cetinarslan B, Tarkun I, Canturk NZ, Ozden M and Duman C: Hemostatic system as a risk factor for cardiovascular disease in women with subclinical hypothyroidism. Thyroid, 2003; 13: 971-977
10) Ladenson PW: Cardiovascular consequences of subclinical thyroid dysfunction: more smoke but no fire. Ann Intern Med, 2008; 148: 880-881
11) Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A and Witteman JC: Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med, 2000; 132: 270-278
12) Allan PL, Mowbray PL, Lee AJ and Fowkes FG: Relationship between carotid intima-media thickness and symptomatic and asymptomatic peripheral arterial disease. The Edinburgh Artery Study. Stroke, 1997; 28: 348-353
13) O’Leary DH and Polak JF: Intima-media thickness: a tool for atherosclerosis imaging and event prediction. Am J Cardiol, 2002; 90: 18L-21L
14) Cikim AS, Oflaz H, Ozboy N, Cikim K, Umman S, Meric M, Sencer E and Molvilar S: Evaluation of endothelial function in subclinical hypothyroidism and subclinical hyperthyroidism. Thyroid, 2004; 14: 605-609
15) Kebapcilar L, Comleksi A, Tuncel P, Solak A, Secil M, Gencel O, Sahin M, Sari I and Yesil S: Effect of levothyroxine replacement therapy on paraoxonase-1 and carotid intima-media thickness in subclinical hypothyroidism. Med Sci Monit, 2010; 16: CR41-CR47
16) Knapp M, Lisowska A, Sobkowicz B, Tycinska A, Sawicki R and Musial WJ: Myocardial perfusion and intimamedia thickness in patients with subclinical hypothyroidism. Adv Med Sci, 2013; 58: 44-49
17) Kim S-K, Kim S-H, Park K-S, Park S-W and Cho Y-W: Regression of the Increased Common Carotid Artery Intima Media Thickness in Subclinical Hypothyroidism after Thyroid Hormone Replacement. Endocrine Journal, 2009; 56: 753-758
18) Monzani F, Caracccio N, Kozakowa M, Dardano A, Vittone F, Virdis A, Taddei S, Palombo C and Ferrannini E: Effect of levothyroxine replacement on lipid profile and intima-media thickness in subclinical hypothyroidism: A double-blind, placebo-controlled study. J Clin Endocrinol Metab, 2004; 89: 2099-2106
19) Zha K, Zuo C, Wang A, Zhang B, Zhang Y, Wang B, Yang Y, Zhao J, Gao L and Xu C: LDL in patients with subclinical hypothyroidism shows increased lipid peroxidation. Lipids Health Dis, 2015; 14: 95
20) Adrees M, Gibney J, El-Saeity N and Boran G: Effects of 18 months of L-T4 replacement in women with subclinical hypothyroidism. Clin Endocrinol, 2009; 71: 298-303
21) Akkoça AN, Özdemir ZT, Özler GS and Karabulut L: The Evaluation of Carotid Intima Thickness in Clinical and Subclinical Hypothyroidism and Effects of Thyroid Hormone Treatment. Am J of Clin and Exp Med, 2014; 2: 59
22) Cabral MD, Teixeira P, Soares D, Leite S, Salles E and Waisman M: Effects of thyroxine replacement on endothelial function and carotid artery intima-media thickness in female patients with mild subclinical hypothyroidism. In: Clinics (Sao Paulo), pp1321-1327, 2011
23) Duman D, Demirtunc R, Sahin S and Esertas K: The effects of simvastatin and levothyroxine on intima-media thickness of the carotid artery in female normolipemic patients with subclinical hypothyroidism: a prospective, randomized-controlled study. J Cardiovasc Med (Hagerstown, Md), 2007; 8: 1007-1011
24) Ersoy I, Banu KK, Bagci O, Aksu O, Balkarli A, Alanoglu E and Tamer M: Effects of levothyroxine treatment on cardiovascular risk profile and carotid intima-media thickness in patients with subclinical hypothyroidism. Acta Endocrinologica-Bucharest, 2012; 8: 433-442
25) Unsal IO, Topaloglu O, Cakir E, Colak Bozkurt N, Karbek B, Gungunes A, Sayki Arslan M, Tural Akaymak E, Ucan B, Demirci T, Karakose M, Caliskan M, Cakal E and Delibasi T: Effect of L-thyroxine therapy on thyroid-volume and carotid artery Intima-media thickness in the patients with subclinical hypothyroidism. J of Med Disorders, 2014; 2: 1
26) Cerbone M, Capalbo D, Wasniewska M, Alfano S, Mat-
tace Raso G, Oliviero U, Cittadini A, De Luca F and Salerno M: Effects of L-thyroxine treatment on early markers of atherosclerotic disease in children with subclinical hypothyroidism. Eur J Endocrinol, 2016; 175: 11-19
37) Niknam N, Khalili N, Khorasani E and Nourbakhsh M: Endothelial dysfunction in patients with subclinical hypothyroidism and the effects of treatment with levotyroxine. Adv Biomed Res, India, 2016
38) Yazici D, Ozben B, Toprak A, Yavuz D, Aydin H, Tarcin O, Deynoli O and Akalin S: Effects of restoration of the euthyroid state on epicardial adipose tissue and carotid intima media thickness in subclinical hypothyroid patients. Endocrine, 2015; 48: 909-915
39) Moher D, Shamseer L, Clarke M, Ghera D, Liberati A, Petticrew M, Shekelle P and Stewart LA: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev, 2015; 4: 1
40) Cabral MD, Teixeira P, Soares D, Leite S, Salles E and Waisman M: Effects of thyroxine replacement on endothelial function and carotid artery intima-media thickness in female patients with mild subclinical hypothyroidism. Clinics, 2011; 66: 1321-1327
41) RevMan 5 download | Cochrane Community. 2016;
42) Begg CB and Mazumdar M: Operating characteristics of a rank correlation test for publication bias. Biometrics, 1994; 50: 1088-1101
43) Egger M, Davey Smith G, Schneider M and Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed), 1997; 315: 629-634
44) Gao N, Zhang W, Zhang YZ, Yang Q and Chen SH: Carotid intima-media thickness in patients with subclinical hypothyroidism: a meta-analysis. Atherosclerosis, 2013; 227: 18-25
45) Huang LC, Lin RT, Chen CF, Chen CH, Juo SH and Lin HF: Predictors of Carotid Intima-Media Thickness and Plaque Progression in a Chinese Population. J Atheroscler Thromb, 2016; 23: 940-949
46) Nezu T, Hosomi N, Aoki S and Matsumoto M: Carotid Intima-Media Thickness for Atherosclerosis. J Atheroscler Thromb, 2016; 23: 18-31
47) Nakamura Y, Kuller LH, Ueshima H and Sekikawa A: Insulin Resistance in Subclinical Hypothyroidism. Int J Health Sci Res, 2014; 4: 147-153
48) Pasqualetti G, Tognini S, Polini A, Caraccio N and Monzani F: Subclinical hypothyroidism and heart failure risk in older people. Endocr Metab Disord Drug Targets, 2013; 13: 13-21
49) Rhee CM, Currin GC, Alexander EK, Bhan I and Brunelli SM: Subclinical Hypothyroidism and Survival: The Effects of Heart Failure and Race. In: J. Clin. Endocrinol. Metab, pp.2326-2336, Chevy Chase, MD, 2013
50) Rodondi N, Aujesky D, Vittinghoff E, Cornuz J and Bauer DC: Subclinical hypothyroidism and the risk of coronary heart disease: a meta-analysis. Am J Med, 2006; 119: 541-551
51) Rodondi N, den Elzen WPJ, Bauer DC, Cappola AR, Razvi S, Walsh JP, Ásvold BO, Iervasi G, Imaizumi M, Collet T-H, Bremner A, Maisonneuve P, Sgarbi JA, Khaw K-T, Vanderpump MPJ, Newman AB, Cornuz J, Franklyn JA, Westendorp RGJ, Vittinghoff E and Gussekloo J: Subclinical Hypothyroidism and the Risk of Coronary Heart Disease and Mortality. JAMA, 2010; 304: 1365-1374
52) Raza SA and Mahmood N: Subclinical hypothyroidism: Controversies to consensus. In: Indian J Endocrinol Metab, pp.563-642, India, 2013
53) Tseng FY, Lin WY, Li CI, Li TC, Lin CC and Huang KC: Subclinical Hypothyroidism Is Associated with Increased Risk for Cancer Mortality in Adult Taiwanese—A 10 Years Population-Based Cohort. In: PloS one, ed by Björkland P, San Francisco, CA USA, 2015
54) Zhou Y, Zhao L, Wang T, Hong J, Zhang J, Xu B, Huang X, Xu M and Bi Y: Free Triiodothyronine Concentrations are Inversely Associated with Elevated Carotid Intima-Media Thickness in Middle-Aged and Elderly Chinese Population. J Atheroscler Thromb, 2016; 23: 216-224
55) Cappola AR, Fried LP, Arnold AM, Danese MD, Kuller LH, Burke GL, Tracy RP and Ladenson PW: Thyroid Status, Cardiovascular Risk, and Mortality in Older Adults: The Cardiovascular Health Study. JAMA, 2006; 295: 1033-1041
56) Martinez-Comendador J, Marcos-Vidal JM, Gualis J, Martin CE, Martin E, Otero J and Castano M: Subclinical Hypothyroidism Might Increase the Risk of Postoperative Atrial Fibrillation after Aortic Valve Replacement. Thorac Cardiovasc Surg Rep, 2016; 64: 427-433
57) Lu M, Yang C, Lao L and Zhao J: Mechanism of subclinical hypothyroidism accelerating endothelial dysfunction (Review). In: Exp Ther Med, pp.3-10, 2015
58) Vyakaranam S, Vanaparthi S, Nori S, Palarapu S and Bhongir AV: Study of Insulin Resistance in Subclinical Hypothyroidism. Int J Health Sci Res, 2014; 4: 147-153
59) Peleg RK, Efrati S, Benbassat C, Figen M and Golik A: The effect of levothyroxine on arterial stiffness and lipid profile in patients with subclinical hypothyroidism. THYROID, 2008; 18: 825-830
60) Khandelwal D and Tandon N: Overt and subclinical hypothyroidism: who to treat and how. DRUGS, 2012;
54) Fatourechi V: Subclinical Hypothyroidism: An Update for Primary Care Physicians. In: Mayo Clin Proc, pp65-71, 2009
55) Pearce SHS, Brabant G, Duntas LH, Monzani F, Peeters RP, Razvi S and Wemeau JL: 2013 ETA Guideline: Management of Subclinical Hypothyroidism. In: Eur Thyroid J, pp215-228, Switzerland, 2013
56) Cappola AR, Fried LP, Arnold AM, Danese MD, Kuller LH, Burke GL, Tracy RP and Ladenson PW: Thyroid status, cardiovascular risk, and mortality in older adults. JAMA, 2006; 295: 1033-1041
57) Jorde R, Waterloo K, Storhaug H, Nyrnes A, Sundsfjord J and Jenssen TG: Neuropsychological function and symptoms in subjects with subclinical hypothyroidism and the effect of thyroxine treatment. J Clin Endocrinol Metab, 2006; 91: 145-153
58) Meier C, Staub JJ, Roth CB, Guglielmetti M, Kunz M, Miserez AR, Drewe J, Huber P, Herzog R and Muller B: TSH-controlled L-thyroxine therapy reduces cholesterol levels and clinical symptoms in subclinical hypothyroidism: a double blind, placebo-controlled trial (Basel Thyroid Study). J Clin Endocrinol Metab, 2001; 86: 4860-4866
59) Jaeschke R, Guyatt G, Gerstein H, Patterson C, Molloy W, Cook D, Harper S, Griffith L and Carbotte R: Does treatment with L-thyroxine influence health status in middle-aged and older adults with subclinical hypothyroidism? J Gen Intern Med, 1996; 11: 744-749
60) Cai Y, Ren Y and Shi J: Blood pressure levels in patients with subclinical thyroid dysfunction: a meta-analysis of cross-sectional data. Hypertens Res, 2011; 34:1098-1105