A note on a Cayley graph of S_n.

Guillaume Chapuy,
CNRS - LIAFA, Université Paris 7,
Paris, France.

Valentin Féray,
CNRS - LaBRI, Université Bordeaux 1,
Talence, France.

February 14, 2012

Abstract

Recently in graph theory several authors have studied the spectrum of the Cayley graph of the symmetric group S_n generated by the transpositions $(1, i)$ for $2 \leq i \leq n$. Several conjectures were made and partial results were obtained.

The purpose of this note is to point out that, as mentioned also by P. Renteln, this problem is actually already solved in another context. Indeed it is equivalent to studying the spectrum of so-called Jucys-Murphy elements in the algebra of the symmetric group, which is well understood. The aforementioned conjectures are direct consequences of the existing theory. We also present a related result from P. Biane, giving an asymptotic description of this spectrum.

We insist on the fact that this note does not contain any new results, but has only been written to convey the information from the algebraic combinatorics community to graph theorists.

1 Jucys-Murphy elements.

We let $n \geq 1$ be an integer and S_n be the symmetric group on $\{1, 2, \ldots, n\}$. We let $\mathcal{P}(n)$ be the set of partitions of n and we note $\lambda \vdash n$ if $\lambda \in \mathcal{P}(n)$. The irreducible representations of S_n are canonically indexed by elements of $\mathcal{P}(n)$, and we denote by V_λ the irreducible module associated with the partition λ. The regular representation of S_n is decomposed into irreducible submodules as follows [14, Proposition 1.10.1]:

$$C[S_n] = \bigoplus_{\lambda \in \mathcal{P}(n)} V_\lambda^{f_\lambda},$$

where $f_\lambda := \dim V_\lambda$.

A partition $\lambda \vdash n$ is represented by its Ferrers diagram as on Figure 1(a). A standard Young tableau (SYT) of shape λ is a filling of the Ferrers diagram of λ with the elements $\{1, 2, \ldots, n\}$ in such a way that elements increase along rows and columns (in particular all elements are distinct, and each element appears exactly once). See Figure 1(b). We let $T(\lambda)$ we the set of SYT of shape λ. A well known result asserts [14, Theorem 2.6.5] that $f_\lambda = \card T(\lambda)$.

Let λ be a partition, and let \Box be a box of the Ferrers diagram of T. Let $x(\Box)$ and $y(\Box)$ be its abscissa and ordinate, respectively, and define the content of the box as $c(\Box) = y(\Box) - x(\Box)$. If $T \in T(\lambda)$ is a SYT, and if i is an element of $\{1, 2, \ldots, n\}$, we define $c_T(i)$ as the content of the box in which the label i appears in the tableau T. For example on Figure 1(b) one has $c_T(2) = 1$, $c_T(5) = 0$ and $c_T(6) = -2$.

The Jucys-Murphy elements J_2, \ldots, J_n are elements of the group algebra $C[S_n]$ introduced separately by A. Jucys [8] and G. Murphy [11]. In recent years they have proved to be very
efficient tools in the study of the representations of the symmetric group [12] (see also [4]). They are defined by:

\[
J_i = (1, i) + (2, i) + \cdots + (i - 1, i).
\]

As shown by the following theorem [9, equation (12)], the action of the \(J_i\)’s on the irreducible modules \(V_\lambda\) is diagonal, and the eigenvalues have a combinatorial description in terms of contents (see also [5, Theorem 3.7], where the Cayley graph of \(S_n\) is explicitly mentioned):

Theorem 1.1 ([9]) Let \(\lambda \in \mathcal{P}(n)\). Then there exists a basis \((v_T)_{T \in T(\lambda)}\) of the irreducible module \(V_\lambda\), indexed by SYT’s of shape \(\lambda\), such that for all \(i \in \{2, \ldots, n\}\), one has:

\[
J_i v_T = c_T(i) v_T.
\]

2 A Cayley Graph

As in [7, 1, 10], we consider the Cayley graph \(G_n\) on \(S_n\) generated by the transpositions \((1, i)\) for \(2 \leq i \leq n\). The spectrum of this graph is defined as the spectrum of its adjacency matrix. It (evidently) coincides with the spectrum of the left multiplication by the Jucys-Murphy element \(J_n\) on the group algebra \(\mathbb{C}[S_n]\) (this link and the fact that it implies that the aforementioned spectrum is integral are written explicitly in the introduction of paper [13]). From (1) and Theorem 1.1 we immediately obtain:

Corollary 2.1 The spectrum of \(G_n\) contains only integers. The multiplicity \(\text{mul}(k)\) of an integer \(k \in \mathbb{Z}\) is given by:

\[
\text{mul}(k) = \sum_{\lambda \in \mathcal{P}(n)} f_\lambda I_\lambda(k)
\]

where \(I_\lambda(k) = \text{card}\{T \in T(\lambda), c_T(n) = k\}\) is the number of standard Young tableaux of shape \(\lambda\) in which the integer \(n\) appears in a box of content \(k\), and \(f_\lambda\) is the number of SYT of shape \(\lambda\).

We list some direct remarks and consequences:

1. All eigenvalues are integers, as conjectured in [1, Conjecture 2.14].
2. The spectrum of \(G_n\) is contained in \(\{-n+1, \ldots, n-1\}\). Moreover one has \(\text{mul}(-n+1) = \text{mul}(n-1) = 1\).
3. Unless \(n = 2\) or \(n = 3\), one has \(\text{mul}(0) \neq 0\) (as proved in [10]). Indeed unless \(n = 2\) or \(n = 3\), there exists a SYT of size \(n\) in which \(n\) appears on the main diagonal. More generally, the spectrum is given by:

\[
\{k, \text{mul}(k) \neq 0\} = \{-n+1, \ldots, n-1\} \setminus \{0\} \text{ if } n \in \{2, 3\},
\]

\[
\{-n+1, \ldots, n-1\} \text{ if } n > 3.
\]
4. Let \(1 \leq l \leq n\), and consider the “hook-shaped” partition \(\lambda(l) = (n-l, 1, 1, \ldots, 1)\) of \(n\). The dimension of this partition is \(f_{\lambda(l)} = \binom{n-l}{l}\), as can be seen directly or via the hook-length formula ([6] or [14, Theorem 3.10.2]). Moreover, the number of standard Young tableaux \(T\) of shape \(\lambda(l)\) such that \(c_T(n) = l\) (i.e., such that \(n\) appears in the topmost box) equals \(\binom{n-2}{l-1}\), since such a tableau is determined by the choice of the \(l-1\) elements appearing between 1 and \(n\) on the left row of the tableau. Hence by Corollary 2.1 one has:

\[
\text{mul}(l) \geq \binom{n-2}{l-1} \binom{n-1}{l}.
\]

This improves the bound \(\text{mul}(l) \geq \binom{n-2}{l-1}\) proved in [10]. Similar arguments (transpose tableaux) show that the same bound holds for \(\text{mul}(-l)\).

5. The bound given in point 4 could possibly be refined by taking more complicated tableaux than hook-shapes into account. Rather than pursuing in this direction, we will show in the next section that almost all the eigenvalues are of order \(O(\sqrt{n})\), and we will give a very precise description of the spectrum of \(G_n\) in this range of values.

3 Semi-circle law

To be comprehensive on what is known about the spectrum of \(J_n\), we present here an asymptotic result of P. Biane [2, Theorem 1]: the spectral measure converges in distribution to the semi-circle law. This provides a good description of the spectrum in the range \(k = \Theta(\sqrt{n})\).

The proof technique is standard and goes back to the beginning of random matrix theory.

As it is quite short and elegant, we repeat it here.

For \(x \in \mathbb{R}\) we denote by \(\delta_x\) the Dirac measure at \(x\).

Proposition 3.1 The measure

\[
sp_n := \frac{1}{n!} \sum_{k \in \mathbb{Z}} \text{mul}(k) \delta_{\frac{k}{\sqrt{n}}}
\]

converges in distribution to the semi-circle law, i.e. for all \(a < b\) we have the convergence:

\[
\frac{1}{n!} \sum_{k \in [2a\sqrt{n}, 2b\sqrt{n}] \cap \mathbb{Z}} \text{mul}(k) \to \frac{2}{\pi} \int_a^b \sqrt{1 - \alpha^2} \, d\alpha
\]

when \(n\) tends to infinity.

Proof. [sketch] It is enough to prove (see, e.g., [3, Theorem 30.2]) the convergence of moments, i.e. to prove that for any fixed \(k \in \mathbb{Z}\) one has when \(n\) tends to infinity:

\[
\frac{1}{n!} \sum_{l \in \mathbb{Z}} \text{mul}(l) \left(\frac{l}{2\sqrt{n}}\right)^k = \frac{n^{-k/2}}{2^{k!} n!} \text{Tr} J_n^k \to \frac{2}{\pi} \int \alpha^k \sqrt{1 - \alpha^2} \, d\alpha = \begin{cases} 0, & k \text{ odd} \\ \frac{1}{2^p \text{Cat}(p)} & k = 2p \end{cases}
\]

where \(\text{Cat}(p) := \frac{(2p)!}{(p+1)p!} \) is the \(p\)-th Catalan number. Let \(\sigma \in S_n\). The multiplication by \(\sigma\) acts by permutation on the canonical basis of the group algebra \(\mathbb{C}[S_n]\). Therefore \(\text{Tr} \sigma\) equals the number of fixed points under this action, i.e.:

\[
\text{Tr} \sigma = \text{card}\{\mu \in S_n, \sigma \mu = \mu\} = \begin{cases} n!, & \sigma = \text{id} \\ 0, & \sigma \neq \text{id}. \end{cases}
\]
By developing the product $J_n^k = ((1 \ n) + \cdots + (n - 1 \ n))^k$, this implies that $\frac{1}{n!} \text{Tr} J_n^k$ equals the number of k-uples $(i_1, \ldots, i_k) \in [1, n - 1]^k$ such that $(i_1 n)(i_2 n) \cdots (i_k n) = id$. This number is 0 if k is odd (signature), so we assume that $k = 2p$. Since k is fixed and we are interested in large n asymptotics, we only need to consider the cases where the set of values $I := \{i_l, l = 1, 2, \ldots, k\}$ has the largest cardinality. It is easily seen that each transposition $(i \ n)$ must appear an even number of times in the product, so the maximal case is $\text{card } I = p$. In this case, we consider the pairing of elements of $\{1, 2, \ldots, k\}$ defined by pairing l and m if and only if $i_l = i_m$. It is convenient to represent this pairing by a diagram. For example, here is a drawing of this diagram in the case when $k = 8$ and the product has the form $(i_1 n)(i_2 n)(i_4 n)(i_7 n)(i_7 n)(i_8 n) = id$:

In general it is easily seen that this pairing is necessarily non-crossing. Conversely, there are exactly $(n - 1)(n - 2) \cdots (n - p)$ ways to reconstruct a factorisation $(i_1 n)(i_2 n) \cdots (i_k n) = id$ from one of the $\text{Cat}(p)$ non-crossing pairings of the set $\{1, 2, \ldots, 2p\}$. Therefore one has:

$$\frac{1}{n!} \text{Tr} J_n^k = (n - 1)(n - 2) \cdots (n - p)\text{Cat}(p) + O(n^{p-1})$$

$$\sim n^p\text{Cat}(p),$$

and the convergence of moments (2) is proved. \qed

Acknowledgements

We thank P. Renteln for pointing out references [5] and [13].

References

[1] A. Abdollahi and E. Vatandoost. Which Cayley graphs are integral? Elec. J. Comb., 16(1):1–17, 2009.
[2] P. Biane. Permutation model for semi-circular systems and quantum random walks. Pacific J. Math., 171(2):373–387, 1995.
[3] P. Billingsley. Probability and measure. Wiley, 1995. 3rd edition.
[4] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli. Representation theory of the symmetric groups: The Okounkov-Vershik approach, character formulas, and partition algebras, volume 121 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
[5] L. Flatto, A. Odlyzko, and D. Wales. Random shuffles and group representations. Ann. Prob., 13(1):154–178, 1985.
[6] J. S. Frame, G. d. B. Robinson, and R. M. Thrall. The hook graphs of the symmetric group. Canadian Journal of Mathematics, 6:316–324, 1954.
[7] J. Friedman. On Cayley graphs on the symmetric group generated by transpositions. Combinatorica, 20(4):505–519, 2000.
[8] A. Jucys. On the Young operators of the symmetric groups. Lithuanian Journal of Physics, VI(2):180–189, 1966.
[9] A. Jucys. Symmetric polynomials and the center of the symmetric group ring. *Reports Math. Phys.*, 5:107–112, 1974.

[10] R. Krakovski and B. Mohar. Spectrum of Cayley graphs on the symmetric group generated by transpositions. arXiv:1201.2167, 2012.

[11] G. Murphy. A new construction of Young’s seminormal representation of the symmetric group. *J. Algebra*, 69:287–291, 1981.

[12] A. Okounkov and A. Vershik. A new approach to representation theory of symmetric groups. *Selecta Math.*, 2(4):1–15, 1996.

[13] P. Renteln. The distance spectra of Cayley graphs of Coxeter groups. *Disc. Math.*, 311(8-9):738–755, 2011.

[14] B. Sagan. *The symmetric group : representations, combinatorial algorithms, and symmetric functions*. Springer, New York, second edition, 2001.