The Focal-plane Detector Package at the TUNL Split-pole Spectrograph

Richard Longland
NC State University
Triangle Universities Nuclear Laboratory
Outline

1. Triangle Universities Nuclear Laboratory
2. The TUNL Enge Splitpole Spectrograph
3. Focal-plane Detector
4. Results
5. Future Upgrades
The Triangle Universities Nuclear Laboratory

- Four-university consortium
 - Duke University
 - The University of North Carolina at Chapel Hill
 - North Carolina State University
 - North Carolina Central University

- Three accelerator facilities
 - The Tandam accelerator laboratory
 - The Laboratory for Experimental Nuclear Astrophysics
 - The High Intensity γ-ray Source

- Nuclear astrophysics groups form a tight collaboration between UNC and NC State
- Revolves around a general research pipeline
Triangle Universities Nuclear Laboratory

- Beam capabilities
 - p, d
 - $^3\text{He}, ^4\text{He}$
 - Heavier species with SNICS
 - Chopping/Bunching capabilities
 - Polarized ion source
- 10 MV Tandam accelerator

- Scientific programs
 - General purpose scattering chambers
 - Neutron time-of-flight
 - Shielded source area
 - Detector characterization for neutrino physics
 - Nuclear astrophysics with the Enge Split-pole Spectrograph
The TUNL Enge Split-pole Spectrograph

- First installed at NSCL
- Moved to TUNL in 1990s
- Now one of two/three such spectrometers for astrophysics in North America
- Only one currently in operation
- Acceptance 2 – 5 msr
- Maximum field 1.5 T
- Zero and 180 degree capabilities with mid-pole faraday cup

Previous flagship experiments:

- $^{22}\text{Ne}(^3\text{He},d)^{23}\text{Na}$ - Hale, S. et al., PRC 65 (2002) 015801
- $^{40}\text{Ca}(^3\text{He},t)^{40}\text{Sc}$ - Hansper, V. Y., et al., PRC 61 (2000) 028801
- $^{14}\text{N}(^3\text{He},d)^{15}\text{O}$ - Bertone, P. et al., PRC 66 (2002) 055804
The TUNL POE-SPS

- First installed at NSCL
- Moved to TUNL in 1990s
- Now one of two/three such spectrometers for astrophysics in North America
- Only one currently in operation
- Acceptance 2 – 5 msr
- Maximum field 1.5 T
- Zero and 180 degree capabilities with mid-pole faraday cup

Previous flagship experiments:
- $^{22}\text{Ne}(^{3}\text{He},d)^{23}\text{Na}$ - Hale, S. et al., PRC 65 (2002) 015801
- $^{40}\text{Ca}(^{3}\text{He},t)^{40}\text{Sc}$ - Hansper, V. Y., et al., PRC 61 (2000) 028801
- $^{14}\text{N}(^{3}\text{He},d)^{15}\text{O}$ - Bertone, P. et al., PRC 66 (2002) 055804
Timeline

Aug. 2014
R. Longland hired at NCSU

Jan. 2015
First beam on target

2015
Rebuilding focal-plane detector

Build DAQ

Vacuum systems

Pressure systems

Apr. 2016
Reliable beam-on-target

Calibration runs

Nov. 2016
First science run

Spring 2017
Focal-plane detector upgrades

Science runs!

2018
First $\gamma\gamma$-coincidence runs

DAQ upgrades

...
Focal-plane Requirements

- 1 mm beam spot and magnification $\sim 0.34 \rightarrow 0.34$ mm resolution
- Particle identification
- Focusing corrections

- Assume:
 - 12 MeV deuteron beam
 - 40 μg/cm2 target
 - TRIM calculation says:
 - 3 keV energy resolution
 (0.1 mm at 0°)
 (1 mm at 40°)
The Focal-Plane Detector Package on the TUNL Split-Pole Spectrograph

Caleb Marshall, Kiana Setoodehnia, Katie Kowal, Federico Portillo, Arthur E. Champagne, Stephen Hale, Andrew Dummer, and Richard Longland
Focal-plane Detector

PhD Student: Caleb Marshall
Postdoc: Kiana Setoodehnia
REU: Katie Kowel

• Four independent sections
 ▶ Two Position sections
 ▶ ΔE Energy loss section for particle ID
 ▶ Total energy scintillator for further particle ID

• Anodes in plane of particle trajectories

• 200-tap delay line
• Time difference between signals provides position
• Electric discharge etching re-developed!
• Position resolution: ~ 0.5 mm
• Traditional TFA + CFD for timing information

• Position sections function independently of ΔE
• Maximum resolution corresponds to $\Delta(\rho) \sim 0.2$ mm (2 in $10,000$)
• Proportional counter
• Cremat preamplifiers
• In-house, carefully engineered preamplifier circuits

• Well separated ΔE spectra
• Can also be used in conjunction with full-energy scintillator
• Detector subsystems operate independently
Focal-plane Detector Performance - Delta-E

- Proportional counter
- Cremat preamplifiers
- In-house, carefully engineered preamplifier circuits

- Well separated ΔE spectra
- Can also be used in conjunction with full-energy scintillator
- Detector subsystems operate independently
• Proportional counter
• Cremat preamplifiers
• In-house, carefully engineered preamplifier circuits

• Well separated ΔE spectra
• Can also be used in conjunction with full-energy scintillator
• Detector subsystems operate independently
- Proportional counter
- Cremat preamplifiers
- In-house, carefully engineered preamplifier circuits

- Well separated ΔE spectra
- Can also be used in conjunction with full-energy scintillator
- Detector subsystems operate independently
- Added scintillating fiber readout to the total-energy scintillator.
- More compact design
- More sturdy design
- Performance still being optimized
Focal-plane Detector Performance - E

PhD Student: Federico Portillo

- Added scintillating fiber readout to the total-energy scintillator.
- More compact design
- More sturdy design
- Performance still being optimized
Focal-plane Detector

PhD Student: Caleb Marshall
Postdoc: Kiana Setoodehnia
REU: Katie Kowel

- Four independent sections
 - Two Position sections
 - ΔE Energy loss section for particle ID
 - Total energy scintillator for further particle ID
- Anodes in plane of particle trajectories

- 200-tap delay line
- Time difference between signals provides position
- Electric discharge etching re-developed!
Can this be used for heavy ions?
Can this be used for heavy ions?

Probably not (but it’s pretty good up to alphas)
• $^{27}\text{Al}(d,p)^{28}\text{Al}$
• Commissioning Run
Results

- $^{40}\text{Ca}(^{3}\text{He},\alpha)^{39}\text{Ca}$
- Important for identifying states relevant for nova nucleosynthesis
- K. Setoodehnia et al., Excited states of ^{39}Ca and their significance in nova nucleosynthesis, PRC 98 (2018) 055804
Results

- $^{32}\text{S}(\alpha,p)^{35}\text{Cl}$
- Important for identifying states relevant for nova nucleosynthesis
- K. Setoodehnia et al., Submitted for publication in PRC
• How does this compare?
 ▶ Unnamed experiment to supplement some data from the Q3D in Munich
• DAQ Upgrades
 ▶ MIDAS Data acquisition
 ▶ Custom Python data viewer

• Digitizer upgrades
 ▶ CAEN V1730 500 GHz digitizer
 ▶ Couple with MIDAS
 ▶ Use firmware for energy and times
Thank you!
DOE Award Number DE-SC0017799
Contract No. DE-FG02-97ER41041
Position Reconstruction

Target

Beam

q
Shapira et al. NIM 129 (1975) 123

\[x' = \frac{H + S \cos(\alpha) P_2 / (P_1 - P_2)}{S \cos(\alpha) / (P_1 - P_2) - \sin(\alpha)} \]
\[\chi' = \frac{H + S \cos(\alpha) P_2/(P_1 - P_2)}{S \cos(\alpha)/(P_1 - P_2) - \sin(\alpha)} \]
Position Reconstruction

Shapira et al. NIM 129 (1975) 123

\[x' = \frac{H + S \cos(\alpha)P_2}{P_1 - P_2} \]

\[= \frac{S \cos(\alpha)}{(P_1 - P_2)} - \sin(\alpha) \]
$x' = \frac{H + S \cos(\alpha) P_2 / (P_1 - P_2)}{S \cos(\alpha) / (P_1 - P_2) - \sin(\alpha)}$
\[x' = \frac{H + S \cos(\alpha)P_2/(P_1 - P_2)}{S \cos(\alpha)/(P_1 - P_2) - \sin(\alpha)} \]
Position Reconstruction
Comparisons

- How does this compare?
 - Top secret target tests
 - Compare with photographic plate data from the 1970s