Collaboration of G₁ cyclins in the functional inactivation of the retinoblastoma protein

Masanori Hatakeyama, Julie A. Brill, Gerald R. Fink, and Robert A. Weinberg

The Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 USA

The retinoblastoma gene product (pRB) constrains cell proliferation by preventing cell-cycle progression from the G₁ to S phase. Its growth-inhibitory effects appear to be reversed by hyperphosphorylation occurring during G₁. This process is thought to involve G₁ cyclins and cyclin-dependent kinases (cdks). Here we report that the cell cycle-dependent phosphorylation of mammalian pRB is faithfully reproduced when it is expressed in Saccharomyces cerevisiae. As is the case in mammalian cells, this phosphorylation requires an intact oncoprotein-binding domain and is inhibited by a negative growth factor, in this case a mating pheromone. Expression of pRB in cln (−) mutants indicates that specific combinations of endogenous G₁ cyclins, Cln3 and either Cln1 or Cln2 are required for pRB hyperphosphorylation in yeast. Moreover, expression of mammalian G₁ cyclins in cln (−) yeast cells indicates that the functions of Cln2 and Cln3 in pRB hyperphosphorylation can be complemented by human cyclin E and cyclin D1, respectively. These observations suggest a functional heterogeneity among G₁ cyclin–cdk complexes and indicate a need for the involvement of multiple G₁ cyclins in promoting pRB hyperphosphorylation and resulting cell-cycle progression.

[Key Words: Cell-cycle, G₁ cyclins, cyclin-dependent kinases, Saccharomyces cerevisiae, retinoblastoma protein, phosphorylation]

Received March 11, 1994; revised version accepted June 21, 1994.

Genetic inactivation of the retinoblastoma gene (RB) is suspected to play an important role in the development of a variety of human malignancies [for review, see Weinberg 1991; Hollingsworth et al. 1993; Zacksenhaus et al. 1993]. RB encodes a nuclear phosphoprotein [pRB] that functions as a critical negative regulator of mammalian cell cycle progression [Friend et al. 1987; Lee et al. 1987]. The finding that the transforming powers of DNA tumor virus oncoproteins such as adenovirus E1A, simian virus 40 large T antigen, and papilloma virus E7 are dependent, at least on their ability to bind and sequester pRB provides further evidence that pRB acts in normal cells to constrain cell proliferation [DeCaprio et al. 1988; Whyte et al. 1988; Dyson et al. 1989].

The function of pRB appears to be controlled physiologically by cell cycle-dependent phosphorylation [Buchkovich et al. 1989; Chen et al. 1989; DeCaprio et al. 1989, 1992; Mihara et al. 1989]. Thus, pRB is found in a hypophosphorylated state in the G₀ and early to mid-G₁ phases of cell cycle but undergoes rapid hyperphosphorylation in late G₁. It remains in this hyperphosphorylated state until the end of mitosis. The finding that viral oncoproteins bind preferentially to the hypophosphorylated form of pRB suggests that this form is biologically active in growth regulation [Ludlow et al. 1989; Imai et al. 1991; Templeton et al. 1991]. Because the hypophosphorylated form of pRB is observed only during the G₀/G₁ phase, it is assumed that pRB acts primarily in this part of the cell cycle to regulate proliferation, its functional inactivation in mid/late G₁, associated with hyperphosphorylation, is thought to permit progress of the cell into the later phases of the cell cycle.

The cell cycle-dependent phosphorylation of pRB suggests that this process may depend on the actions of cyclin-dependent kinases [cdks] [for review, see Reed 1992]. Most of the sites of phosphorylation detected in pRB isolated from cells can be modified in vitro by incubation of pRB with a cdk, cdc2, and appropriate cyclins [Lee et al. 1991; Lin et al. 1991]. However, the details of the phosphorylation mechanism are obscured by the existence of a number of cdks and their regulatory subunits, the cyclins. At present, five different cdks [cdc2, cdk2, cdk3, cdk4, and cdk5] [Lee and Nurse 1987; Elledge and Spottswood 1991; Ninomiya-Tsuji et al. 1991; Rosenblatt et al. 1992; Tsai et al. 1991; Meyerson et al. 1992] and eight different cyclins [A, B1, B2, C, D1, D2, D3, and

1Present address: Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5427 USA.
pressed and potentially active in the mid/late portion of the G1 phase when critical pRB hyperphosphorylation occurs.

Cyclin E seems to be a primary regulator of cdk2 (Dulic et al. 1992; Koff et al. 1991), whereas D-type cyclins interact with cdk2, cdk4, and cdk5 (Matsushima et al. 1992; Xiong et al. 1992b). Direct evidence for the involvement of cyclin–cdk complexes in the functional inactivation of pRB was provided by the demonstration of the hyperphosphorylation effects of cyclins D and E, to rescue triple cln1 cln2 cln3 mutants (Koff et al. 1991; Lew et al. 1991; Xiong et al. 1991) indicates a functional conservation of cyclins between yeast and mammalian cells.

To analyze the cell cycle-dependent regulation of pRB, we established a pRB expression system in yeast and have exploited it to demonstrate that pRB phosphorylation mechanisms operating in mammalian cells can be reconstituted in yeast cells. We provide evidence that particular combinations of endogenous G1 cyclins are required for pRB hyperphosphorylation in yeast. Mammalian G1 cyclins expressed in yeast can complement the function of yeast G1 cyclins in pRB hyperphosphorylation. These results imply that multiple G1 cyclins are involved in the pRB inactivation process in the mammalian cell.

Results
Expression of mammalian retinoblastoma protein in yeast
To express mammalian RB in S. cerevisiae, we constructed a high-copy expression vector in which wild-type human RB cDNA or mutant derivatives thereof were placed under the control of the galactose-induced GAL1,10 promoter. The mutant RB alleles used here, the residue 706 cysteine-to-phenylalanine point mutant (706C-F) and the exon 22 deletion mutant (Δ22), were isolated originally from human tumors and are known to be functionally inactive in cell growth suppression (Templeton et al. 1991). These various expression plasmids were transformed into the yeast strain L4852 (Leu+), and stable transformants (Leu+) were selected.

Expression of pRB was induced in the transformants by culturing them in medium containing galactose and was analyzed by immunoprecipitation or immunoblotting with anti-human pRB monoclonal antibodies. In the absence of galactose, no pRB was detected from lysate. However, on galactose induction, pRB was readily detected in the lysates (Fig. 1A, B).

The pRB protein expressed in mammalian cells is known to migrate heterogeneously during gel electrophoresis because of variable levels of phosphorylation (Buchkovich et al. 1989; Chen et al. 1989; DeCaprio et al. 1989). The pRB wild-type protein expressed in yeast also exhibited similar heterogeneity in migration rate during standard 7.5% SDS-PAGE. As anticipated, phosphatase treatment of the pRB protein abolished the slow-migrating species almost completely (Fig. 1A, lane 5), indicating that its retarded mobility was attributable to phosphorylation as is known to be the case in mamma-
Cyclin-regulated pRB phosphorylation

Figure 1. Expression of human pRB protein in S. cerevisiae. (A) L4852 cells (lanes 1, 2) or transformants containing the human pRB expression vector p2202TRB (lanes 3–6) were labeled with [35S]methionine in synthetic minimal medium containing 2% glucose (lanes 1, 3) or 2% galactose (lanes 2, 4–6). Lysates were prepared from the labeled cells and immunoprecipitated with the anti-human pRB mAb NM2-21C9 (lanes 2, 4–6) or normal mouse serum (lanes 1, 3). The pRB immunoprecipitates were treated with potato–acid phosphatase in 0.1 M MES (lane 5) or 0.1 M sodium phosphate (lane 6) at 37°C for 30 min. Proteins were resolved on an SDS–7.5% polyacrylamide gel and visualized by autoradiography. Numbers at left represent the mobility of molecular mass markers.

(B) L4852 cells (lane 1) or transformants containing p2202TRB (lanes 2, 3) were grown in synthetic minimal medium containing 2% glucose (lane 2) or 2% galactose (lanes 1, 3). Whole-cell lysates were prepared from the cells, and proteins were resolved on an SDS–7.5% polyacrylamide gel and blotted on a PVDF membrane. The membrane was probed with the anti-human pRB monoclonal antibody G3-245. The bands were visualized by the enhanced chemiluminescence immunodetection system. Numbers at left represent the mobility of molecular mass markers.

(C) L4852 cells containing p2202TRB were labeled with [32P]orthophosphate (32Pi) in phosphate-depleted medium containing 2% galactose. Lysates prepared from the labeled cells were immunoprecipitated with the anti-human pRB NM2-21C9 (lane 2) or normal mouse serum (lane 1). Proteins were resolved on an SDS–7.5% polyacrylamide gel and visualized by autoradiography. Numbers at left represent the mobility of molecular mass markers.

Figure 2. Expression of mutant pRB proteins in S. cerevisiae. (A) L4852 cells containing the expression vectors for wild-type (WT) (p2202TRB) or mutant forms of human pRB (p2202TRBA22, p2202TRB706C-F) were labeled with [35S]methionine in synthetic minimal medium containing 2% galactose for 3 hr. Lysates from the labeled cells were immunoprecipitated with the anti-human pRB mAb NM2-21C9 (mRB) or normal mouse serum (NMS). Proteins were resolved on an SDS–7.5% polyacrylamide gel and visualized by autoradiography. Because of the small deletion (exon 22 deletion), the molecular size of A22 is slightly smaller than that of wild-type pRB or the 706C-F mutant. Numbers at left represent the mobility of molecular mass markers.

(B) Whole-cell extracts were prepared from L4852 cells containing expression vectors for wild-type (WT) (p2202TRB) or mutant forms of human pRB (p2202TRBA22, p2202TRB706C-F) labeled with [35S]methionine in synthetic minimal medium containing 2% galactose for 3 hr. Lysates from the labeled cells were immunoprecipitated with the anti-human pRB NM2-21C9 (mRB) or normal mouse serum (NMS). Proteins were resolved on an SDS–7.5% polyacrylamide gel and visualized by autoradiography. Numbers at left represent the mobility of molecular mass markers.

(C) Lysates of [32P]orthophosphate-labeled L4852 transformant cells containing expression vectors for wild-type (WT) or mutant pRB were immunoprecipitated with the anti-human pRB NM2-21C9. The lysates were prepared from cells grown in phosphate-depleted medium containing 2% galactose. Proteins were resolved on an SDS–7.5% polyacrylamide gel and visualized by autoradiography. Numbers at left represent the mobility of molecular mass markers.

The two mutant pRB forms (A22 and 706C-F) expressed in yeast cells migrated as relatively discrete, rapidly moving species (Fig. 2). Immunoblot analysis showed that the expression level of the wild-type pRB was approximately four- to fivefold higher than those of the mutants on the basis of densitometric analysis. In contrast, incorporation in wild-type pRB of [32P]orthophosphate was >15-fold higher than by the mutants (Fig. 2C). This clearly indicates that nonfunctional, mutated forms of pRB receive less phosphorylation than wild-type pRB in yeast. The difference precisely parallels their behavior in mammalian cells (Templeton et al. 1991). In mammalian cells, virtually all of the functionally defec-
tive forms of pRB are known to escape hyperphosphorylation. This includes mutant pRBs that differ from wild type by only a single amino acid, such as the 706C-F mutant shown here. Thus, the mechanisms governing the specificity of pRB phosphorylation in mammalian cells appear to be operative in yeast cells as well.

In mammalian cells, pRB is known to localize in the nucleus. Upon cell lysis in low salt conditions, the hypophosphorylated form of pRB remains in the nuclear fraction, bound to certain structures that serve to anchor it to the nucleus; the hyperphosphorylated forms, poorly tethered to this anchor, leak out of nuclei under these conditions (Mittnacht and Weinberg 1991). Moreover, functionally defective forms of pRB also have lost the ability to bind tightly to the nucleus. Thus, in mammalian cells there is parallelism between nuclear binding and the growth-suppressing abilities of pRB.

pRB expressed in yeast also localizes in the nucleus as determined by indirect immunofluorescence staining (data not shown). To address whether yeast cells also possess a structure that functions analogously to the nuclear anchor bound by pRB in mammalian cells, we disrupted yeast cells with glass beads in a low salt buffer and extracted pRB protein from their nuclei with buffers containing progressively increasing salt concentrations. In yeast cells expressing wild-type pRB, the hyperphosphorylated forms of pRB were almost completely released from the cell by the low salt buffer, whereas the hypophosphorylated form was retained (Fig. 3A). A significant proportion of the hypophosphorylated form of pRB remained in the nonextractable fraction even after addition of 400 mM NaCl. This observation supports the idea that both yeast and mammalian cells possess analogously functioning nuclear structures that serve to anchor pRB.

Work on pRB mutants in mammalian cells indicates that the wild-type protein associates with its nuclear anchor via its oncoprotein-binding domain, sometimes termed the pRB pocket (Mittnacht and Weinberg 1991). This pocket is also used by a variety of other proteins, including the E2F transcription factor and the D cyclins to bind pRB (Hu et al. 1990; Huang et al. 1990; Kaelin et al. 1990, 1991; Bandara and LaThangue 1991; Chellappan et al. 1991; Chittenden et al. 1991; Dowdy et al. 1993; Ewen et al. 1993; Kato et al. 1993). As is the case in mammalian cells, the two functionally defective pRB mutants that are mutated in the pocket domain fail to tether tightly to nuclear structures in yeast (Fig. 3B). Accordingly, we suggest that the yeast cell nucleus also contains one or more proteins that act in a specific fashion to bind pRB via its pocket domain.

The growth phenotype of yeast cells expressing human pRB was compared with those of the parental line or transformants expressing mutant pRB. No significant differences in growth rate, cell shape, cell size, or mating pheromone sensitivity were observed among them (data not shown). These observations meant that we could study mechanisms regulating pRB phosphorylation in yeast cells without the confounding effects derived from pRB-mediated suppression of cell growth.

Effects of mating pheromone on pRB phosphorylation

We wished to determine whether pRB phosphorylation in yeast, as in mammalian cells, is regulated in a cell cycle-dependent fashion. In mammalian cells, pRB hyperphosphorylation is strongly inhibited by the arrest of cells at late G1, with negative growth factors such as transforming growth factor-β (TGF-β, Laiho et al. 1990). We therefore examined the effect on pRB hyperphosphorylation of a yeast negative growth factor, the α mating pheromone (α-factor), which also blocks growth in G1. Treatment of a MATα strain expressing pRB with α-factor caused arrest of cells in late G1 and inhibited pRB hyperphosphorylation (Fig. 4A). This inhibitory effect
was readily detectable within 1 hr of treatment of cells with α-factor and was almost complete by 3 hr of treatment.

Next, we examined the timing of pRB hyperphosphorylation in yeast. To produce a synchronized population, cells were first treated with mating pheromone to arrest them in late G₁ [Tyers et al. 1993]. Following release from mating pheromone arrest, cell lysates were prepared at various time points and pRB hyperphosphorylation was determined by immunoblotting [Fig. 4B]. pRB hyperphosphorylation, as monitored by shifts in electrophoretic migration, could be seen within 40 min after release and peaked at the 140-min incubation point. In contrast, morphological analysis showed that small budded (those entering into S phase) began to appear 60–80 min after the release. These observations indicated that pRB hyperphosphorylation in yeast cells occurs in late G₁ prior to the G₁/S transition. In mammalian cells, this modification occurs at a comparable point in the cell cycle, several hours before S-phase entrance [Buchkovich et al. 1989; Chen et al. 1989; DeCaprio et al. 1989]. We note that the amount of total pRB detectable by immunoblotting increased significantly after the release from α-factor arrest. This was likely attributable to an increase of protein synthesis rate in growth-stimulated cells.

Comparison of hypo- and hyperphosphorylated forms of pRB in yeast

The results described above indicated strong similarities in the control of pRB phosphorylation in mammalian and yeast cells. To extend these parallels, we thought it important to ascertain whether the sites of phosphorylation on pRB in yeast cells are similar or identical to those modified in mammalian cells. We therefore performed phosphopeptide mapping of pRB expressed in yeast. Cells expressing pRB were labeled with 32P, and the labeled proteins were immunoprecipitated with anti-pRB antibody. The pRB polypeptides consisting of hypo- and hyperphosphorylated species were excised, and the eluted proteins were subjected to tryptic phosphopeptide mapping. As seen in Figure 5, the pattern of phosphopeptides closely resembled that seen on analysis of pRB prepared from mammalian cells [Fig. 5A; Lees et al. 1991; Mittnacht et al. 1994]. Of the 25 phosphopeptide spots reproducibly associated with pRB isolated from mammalian cells [Lees et al. 1991], 23 comparable spots could be identified in yeast cells [Fig. 5B].

We also analyzed the rapidly migrating, hypophosphorylated pRB obtained by treating yeast cells with α-factor [Fig. 5C]. We note the striking observation, also made recently in mammalian cells, that almost all of the phosphopeptides present in hyperphosphorylated pRB were also present in its hypophosphorylated form [Mittnacht et al. 1994]. However, it was clear that two spots present in hyperphosphorylated pRB are missing in its hypophosphorylated form, that is, spots 9 and 14 according to the nomenclature of Lees et al. [1991]. Two phosphopeptide spots with the same coordinates have also been shown to be missing from hypophosphorylated pRB expressed in mammalian cells [Mittnacht et al. 1994].

As mentioned earlier, we were not able to detect spots 3 and 10 in the hyperphosphorylated form of pRB in...
yeast cells (Fig. 5B). Of these, phosphopeptide spot 3 of pRB has been reported to increase in intensity on hyperphosphorylation in mammalian cells [DeCaprio et al. 1992]. These subtle differences may distinguish the biochemistry of pRB modification in yeast and mammalian cells; all other details of phosphorylation appear to be identical. In addition, we conclude that modification of spot 3 is not essential for the mobility shift seen in SDS-PAGE associated with hyperphosphorylation of pRB.

Involvement of CDC28 in pRB hyperphosphorylation

To address further whether pRB hyperphosphorylation is regulated by the cell-cycle clocking machinery, we examined pRB phosphorylation in yeast strains with mutant forms of CDC28, the only cdk known to be present in these cells. The cdc28-4 mutation arrests cells at the Start point when shifted to the nonpermissive temperature [Reed and Wittenberg 1990]. A second cdc28 mutation, termed cdc28-1N, causes growth arrest at the G2-M transition at the nonpermissive temperature [Piggott et al. 1982; Surana et al. 1991].

Cells carrying these cdc28 mutations were transformed with the pRB expression vector as described previously and were induced to express pRB in galactose media. Cultures of the cdc284-mutant cells were then shifted to their nonpermissive temperatures and incubated for an additional 3 hr. At the nonpermissive temperatures, >90% of cells arrested at the expected point in the cell cycle as determined by cell morphology (cdc28-4, unbudded cells; cdc28-1N, cells with large buds).

The pRB protein expressed in late G1-arrested cdc28-4 cells exhibited exclusively the hypophosphorylated [i.e., rapidly migrating] form, whereas that from cdc28-1N cells arrested in G2-M was predominantly composed of the slowly migrating hyperphosphorylated form (Fig. 6A). To exclude the possibility that the lack of pRB hyperphosphorylation in cdc28-4 mutant at 36°C was attributable simply to the temperature shift rather than inactivation of CDC28 function, we expressed the wild-type CDC28 gene in these temperature-sensitive mutant strains. As shown in Figure 6A, CDC28 expression in cdc28-4 strain induced pRB hyperphosphorylation at 36°C. These observations reinforce the previous conclusion that pRB hyperphosphorylation is entrained with progression through the cell cycle and that it occurs in association with transit through the Start point. Moreover, they indicate that this phosphorylation depends directly or indirectly on the function of the Cdc28 kinase.

To explore further the involvement of Cdc28 kinase in pRB phosphorylation, we expressed a mutant form of mouse pRB in which eight cdc2/Cdc28 consensus phosphorylation sites have been replaced by site-directed mutagenesis [Hamel et al. 1992]. In mammalian cells, this mutant pRB, termed Δp34-HA, is potent in its ability to repress E2F-dependent transcription, an effect that can be explained by its resistance to functional inactivation by cdks and associated cyclins. As is the case in mammalian cells, this pRB mutant did not undergo hyperphosphorylation in yeast as determined by its migration on SDS-PAGE (Fig. 6B). Taken together, these various lines of evidence indicate that in yeast, as in mammalian cells, pRB is phosphorylated in mid/late G1. Moreover, they support the notion that this phosphorylation is mediated by cdk, in particular Cdc28.
Involvement of multiple yeast G1 cyclins in pRB hyperphosphorylation

The observation that pRB hyperphosphorylation is inhibited by a mating pheromone was most easily explained by the known effects of pheromone on the activities of the yeast G1 cyclins regulating Cdc28 kinase. To address the possible role of yeast G1 cyclins in causing pRB hyperphosphorylation, we expressed pRB in mutant yeast cells lacking one or more of the complement of the three G1 cyclin genes [Fig. 7]. Cells with genotypes of cln1 cln2 cln3 or CLN1 cln2 CLN3 phosphorylated their pRB as efficiently as CLN1 CLN2 CLN3 cells [Fig. 7A]. However, CLN1 CLN2 cln3 cells showed little, if any, pRB hyperphosphorylation and instead exhibited a massive accumulation of the hypophosphorylated form. This indicates that CLN3 plays an essential role for pRB hyperphosphorylation. However, cells expressing only a single CLN, including cln1 cln2 CLN3 cells, also cannot induce pRB hyperphosphorylation [Fig. 7B]. We therefore concluded tentatively that a combination of CLN3 and either CLN1 or CLN2 is required for pRB hyperphosphorylation.

It should be noted, however, that the pRB protein expressed in cln1 cln2 CLN3 cells is seen as a doublet consisting of the fast-migrating hypophosphorylated form and a second form that migrates a bit more slowly. Such a doublet cannot be seen in CLN1 cln2 cln3 or cln1 isoegenic mutant strains lacking a single endogenous CLN gene. Two independent clones were analyzed for each cln (−) mutant. (B) The pRB protein was detected from wild-type and isogenic mutant strains lacking two endogenous CLN genes.

Figure 6. Involvement of CDC28 on pRB hyperphosphorylation in yeast. (A) The effect of cdc28 mutations on pRB hyperphosphorylation. Cells containing either cdc28-4 or cdc28-1N temperature sensitive mutation were transformed with the pRB expression vector p2202TRB. The transformants were grown to mid-log phase in synthetic minimal medium supplemented with 2% galactose at 25°C and then shifted to nonpermissive temperatures. After 3 hr of culture, whole-cell lysates were prepared from cells and were subject to immunoblotting with anti-pRB mAb G3-245. The bands were visualized by enhanced chemiluminescence immunodetection method. To confirm that the temperature-dependent inhibition of pRB hyperphosphorylation in cdc28-4 strain is attributable to the temperature-sensitive mutation of CDC28, wild-type CDC28 expression vector pRS314-CDC28 (a centromeric vector containing the genomic CDC28 gene and TRP1 marker; kindly provided by Steve Kron) was introduced into the temperature-sensitive mutant strains. Cultures with wild-type expression transformants were used for the control of the experiments (right four lanes). Numbers at left represent the mobility of molecular mass markers. (B) A phosphorylation-resistant pRB mutant expressed in yeast. An artificial mutant of mouse pRB (Δp34-HA) (Hamel et al. 1992) that lacks eight potential cdc2/Cdc28 phosphorylation sites was inserted into p2202T and was expressed in S. cerevisiae by use of the GAL1,10 promoter for expression. Cultures were grown to mid-log phase in synthetic minimal medium containing 2% galactose at 30°C and labeled with [35S]methionine for 3 hr in the presence or absence of α-factor. The mutant pRB was immunoprecipitated by anti-human pRB, NM2-21C9, that cross-reacts with mouse pRB. Because G3-245 anti-human pRB does not work on mouse pRB, immunoblot analysis was not done in this experiment.
CLN2 cln3 cells. This indicates that cln1 cln2 CLN3 cells have an ability to phosphorylate pRB to a very limited extent, although they are not able to induce the pRB hyperphosphorylation seen in the wild-type as well as the CLN1 cln2 CLN3, and cln1 CLN2 cln3 cells.

These observed behaviors might have been attributable simply to differences in the doubling times of the various yeast strains. However, strains lacking single cln genes doubled at comparable rates. Thus, whereas wild-type cells (CLN1 CLN2 CLN3) expressing pRB had a doubling time of 2.38 hr, the doubling times of cln1 CLN2 CLN3, CLN1 cln2 CLN3, and CLN1 CLN2 cln3 cells containing pRB were 3.24, 2.43, and 2.60 hr, respectively, in synthetic minimal medium containing 2% galactose.

These results provide strong support for the idea that a combination of at least two different endogenous G1 cyclins is required for efficient induction of pRB phosphorylation. A combination of either Cln1 + Cln3 or Cln2 + Cln3 sufficed, whereas Cln1 + Cln2 failed to drive pRB hyperphosphorylation.

Complementation of Cln function with mammalian G1 cyclins

Because these data indicated that certain pairs of cyclins may collaborate to promote pRB hyperphosphorylation, we examined whether such a collaboration could also be achieved following introduction of certain mammalian cyclin genes into yeast cells. The fact that mammalian cyclins can rescue triple cln1 cln2 cln3 cells indicates that these cyclins can productively interact with yeast Cdc28 to effect transit through Start (Koff et al. 1991; Lew et al. 1991; Xiong et al. 1991). On the basis of the similarities of the mammalian and yeast cyclin expression patterns mentioned earlier, we chose to express human cyclin D1 or cyclin E under control of the GAL1,10 promoter in strains containing only one active endogenous G1 cyclin, specifically either the cln1 CLN2 cln3 or the cln1 cln2 CLN3 mutant strains.

As seen in Figure 8A, cyclin E was much more efficient than cyclin D1 in inducing pRB hyperphosphorylation in the cln1 cln2 CLN3 strain. In contrast, cyclin D1 worked better than cyclin E to induce pRB hyperphosphorylation in the cln1 CLN2 cln3 background. These transformants expressed comparable amounts of the respective human cyclins as determined by immunoblotting (Fig. 8B,C). It should be also noted that heterologous expressions of the human cyclins in these strains did not induce growth stimulation as measured by FACS (data not shown). Rather, cyclin E expression seemed to have negative effect on their growth.

Taken together, these results provide evidence that at least two distinct G1 cyclins collaborate in the process of pRB hyperphosphorylation in yeast cells. Moreover, the patterns of complementation between mammalian and yeast cyclins suggests that a similar pattern of collaboration may exist in mammalian cells as well. More spe-
specifically, the complementation pattern of pRB hyperphosphorylation in yeast suggests that G₁ cyclins can be subclassified into two groups: one consisting of Cln1, Cln2, and cyclin E and the other consisting of Cln3 and cyclin D1. At least one member of each group appears to be required to participate in the processes leading to pRB hyperphosphorylation.

Discussion

The present work indicates that the mechanisms governing pRB phosphorylation are surprisingly similar in mammalian and yeast cells. Human pRB undergoes a hyperphosphorylation in these evolutionary distant organisms that is almost indistinguishable in its biochemical details. As is the case in mammalian cells (Buchkovich et al. 1989; Chen et al. 1989; DeCaprio et al. 1989, 1992; Mihara et al. 1989), hyperphosphorylation of pRB in yeast cells causes a substantial change in its electrophoretic mobility. Moreover, these events occur at similar times in the cell cycle. In mammalian cells, this modification occurs close to or concomitant with passage through a mid/late G₁ gate termed the restriction point; in yeast cells, this modification occurs around a point in G₁ termed Start. These milestones in G₁ are both thought to represent critical events in the commitment of the cell to transit into late G₁, S, and G₂. In addition, soluble factors that prevent G₁ passage, TGF-β in the case of mammalian cells and mating pheromone in the case of yeast, work identically to block this modification of pRB.

Subtle differences in pRB structure affect the hyperphosphorylation process identically in mammalian and yeast cells. Thus, alterations of the pRB pocket domain as small as single amino acid substitutions, although they do not affect the cdk-consensus phosphorylation sites, eliminate pRB hyperphosphorylation in both organisms. This indicates the critical involvement of the pocket domain in promoting pRB phosphorylation in both mammalian and yeast cells. Moreover, it suggests a conservation between yeast and mammalian cells of one or more proteins that recognize and associate with the pocket domain.

Although hyperphosphorylation has profound functional effects on pRB in mammalian cells and results in a readily detectable shift in its electrophoretic mobility during SDS-PAGE, this change is achieved in yeast cells through the modification of only a small subset of pRB phosphorylation sites. Similar conclusions have been drawn from the detailed biochemical analysis of the various pRB forms isolated from mammalian cells (Templeton et al. 1991; DeCaprio et al. 1992; Mittnacht et al. 1994). Among the consequences of hyperphosphorylation in mammalian cells is the loss of binding by pRB to other proteins that we have termed operationally as nuclear anchor [Mittnacht and Weinberg 1991]. This loss of tight binding and the resulting leaching from the nucleus during cell lysis is also observed in yeast cells.

In sum, these data indicate close parallels in the behavior of pRB in two distantly related eukaryotic cell types. This similarity in behavior was hardly expected, because neither yeast cells nor those from other non-chordate phyla have been reported to express proteins that are closely related to mammalian pRB. The results suggest the possible existence of one or more proteins in yeast with structural similarities to pRB itself. Moreover, they indicate a cohort of other proteins, including cdks, that interact with pRB in a very similar fashion in both cell types.

A second conclusion from this work is the indication that multiple cyclins are required to effect pRB hyperphosphorylation in yeast cells. Our results obtained by expressing pRB in mutant yeast cells provide strong indication that the activity of a single endogenous yeast G₁ cyclin (Cln1, Cln2, or Cln3) is not sufficient for the induction of pRB hyperphosphorylation. Significantly, any one of these cyclins is able to promote cell cycle progression in yeast (Richardson et al. 1989; Tyers et al. 1993). Thus, pRB phosphorylation can be readily uncoupled from cell-cycle progression in these cells and studied in isolation.

These conditions have allowed us to conclude that combinations of endogenous cyclins are required to drive pRB hyperphosphorylation in yeast cells. We find that Cln1 and Cln3 or Cln2 and Cln3 can collaborate to promote pRB hyperphosphorylation, whereas Cln1 and Cln2 cannot do so. The observation that Cln3 can collaborate with either Cln1 or Cln2 to promote pRB hyperphosphorylation implies a functional heterogeneity among these G₁ cyclins in the activation of Cdc28 kinase. Moreover, it suggests that Cln1 and Cln2, which are structurally very similar [Hadwiger et al. 1989], may function analogously to one another when contributing to pRB modification.

In principle, high levels of G₁ cyclin/Cdc28 kinase activity might be required for pRB hyperphosphorylation simply to compensate for the counteracting effects of yeast phosphatases. Hence, any reduction in kinase activity through loss of one or another G₁ cyclins might lead, in turn, to loss of pRB hyperphosphorylation. Such a model does not fit with our presented observations. Thus, Cln1 and Cln2 are far more potent in activating Cdc28 than is Cln3, as gauged by their respective abilities to cause histone H1 phosphorylation in vitro [Tyers et al. 1993]. This finding contrasts with the fact that the endogenous expression levels of neither Cln1 nor Cln2 or a combination of the two suffice to cause pRB phosphorylation in cells lacking Cln3 function.

This and other works suggest similarities between various mammalian and yeast cyclins. Although the D cyclins show only distant structural relatedness to Cln3, these two cyclins both show weak histone-modifying activity in vitro [Matsushima et al. 1992; Kato et al. 1993; Tyers et al. 1993]. On the other hand, the structural similarity of Cln1 and Cln2 has parallels in the structural similarity shared by cyclins A and E of mammalian cells. Like mammalian D cyclins [Lew et al. 1991; Motokura et al. 1991], Cln3 is expressed constantly throughout the cell cycle [Tyers et al. 1993]. Cln1 and 2, like cyclins A and E, are expressed in well-defined windows of time as
the cell transits G1 and S [Richardson et al. 1989; Lew et al. 1991].

Our complementation experiments underscore these analogies further. In yeast cells lacking Cln3, pRB hyperphosphorylation is best restored by cyclin D1; in contrast, Cln2 (and probably Cln1) finds a potent substitute in cyclin E. Although these yeast and mammalian cyclins may not be fully interchangeable, we propose that a similar physiology governs pRB phosphorylation in mammalian cells. More specifically, we suggest that in mammalian cells, D cyclins such as cyclin D1 collaborate with cyclin E in the hyperphosphorylation of pRB in the G1 phase of the cell cycle.

Cyclin D1 is expressed throughout G1 in many types of mammalian cells, and therefore cannot be the event that precipitates the hyperphosphorylation of pRB in mid/late G1. Instead, this role would seem to be played by cyclin E, expression of which is induced at a time when pRB hyperphosphorylation occurs [Lew et al. 1991]. Accordingly, we suggest that cyclin D1 (or its surrogates, cyclins D2 or D3) prepares pRB for subsequent hyperphosphorylation by cyclin E in mid/late G1.

Of additional relevance is the fact these D cyclins are able to form physical complexes with pRB and the fact that the formation of these complexes is dependent on an intact pRB pocket domain [Dowdy et al. 1993; Ewen et al. 1993]. Mutations that alter this domain prevent cyclin D binding and, at the same time, prevent pRB hyperphosphorylation. For this reason, we suggest that physical complex formation between a D cyclin and the pRB pocket is important for subsequent hyperphosphorylation. Such complex formation, although perhaps necessary, is not sufficient for hyperphosphorylation, as mammalian cells overexpressing cyclin D1 or D3 show little hyperphosphorylated pRB [Hinds et al. 1992].

Our data do not inform us how mammalian D cyclins or yeast Cln3 set the stage for pRB hyperphosphorylation. By forming physical complexes with pRB, the mammalian D cyclins may create a substrate for the subsequent activity of cyclin E/cdk2 complexes. Alternatively, Cln3/cyclin D may cause some type of initial phosphorylation of pRB that is prerequisite for the subsequent changes that we term hyperphosphorylation. The observation of limited, Cln3-specific pRB phosphorylation, as demonstrated in Cln3 single-positive cells, is consistent with such preparatory phosphorylation. It is also possible that Cln1/Cln2/cyclin E are the only cyclins directly involved in the pRB hyperphosphorylation and Cln3/cyclin D1 regulate the activity of Cln1/Cln2/cyclin E, potentially through the known transcriptional mechanisms [Cross and Tinkelenberg 1991; Dirick and Nasmyth 1991].

In either event, these mechanistic models suggest that the physiologic signals regulating multiple G1 cyclins converge on the important cell cycle decision that leads to functional inactivation of pRB and the attendant commitment by the cell to pass into the subsequent portions of its life cycle.

Materials and methods

Strain

All strains except L5191 and L5193 used in this experiment are isogenic derivatives of L4852, a MATa Gal+ haploid strain (Elion et al. 1991). L5191 and L5193 are ascospores derived from cdc28-1N and cdc28-4 strains provided by A. Surana and K. Nasmyth (Research Institute of Molecular Pathology, Vienna, Austria). The relevant genotypes of strains used in this study are listed in Table 1. Yeast cells were grown at 30°C in YEP media [1% yeast extract, 2% peptone] or synthetic minimal media lacking appropriate amino acids for plasmid selection as described [Guthrie and Fink 1991]. Either 2% glucose or 2% galactose was added to the culture media. DNA transformations in yeast were performed by the lithium acetate method [Itt et al. 1983].

Vector construction

The expression plasmid p2202T is a 2µ-based vector that uses the GAL1.10 promoter to drive expression of the cDNA and contains the LEU2 gene as a selective marker. The vectors p2206T and p2208T are derived from p2202T, and each contains selectable markers, URA3 and HIS3, respectively. To construct p2202TRB or p2206TRB, an inducible expression vector of human pRB in yeast, a 2.8-kb cDNA fragment that contains the entire human pRB coding sequences was inserted into BglII-HindIII-digested p2202T or p2206T. To construct expression vectors for human cyclins D1 and E, we changed the EcoRI site of p2208T to an EcoRV site by linker insertion. The cDNAs for human cyclin E (1.5 kb) and human cyclin D1 (1.0 kb) were filled in by T4 DNA polymerase and then ligated into EcoRV-cut p2208T.

Strain	Genotype	Source
L4852	MATa ura3-1 leu2-3,112 trp1-1 his3-11,15 ade2-1 can1-100	Elion et al. (1991)
L4874	L4852 cln1::TRP1	Elion et al. (1991)
L4861	L4852 cln2::LEU2	Elion et al. (1991)
L4862	L4852 cln3::URA3	Elion et al. (1991)
L4868	L4852 cln1::TRP1 cln2::LEU2	Elion et al. (1991)
L4869	L4852 cln2::LEU2 cln3::URA3	Elion et al. (1991)
L4873	L4852 cln1::TRP1 cln3::URA3	Elion et al. (1991)
L5191	MATa cdc28-1N ura3 leu2-3,112 trp1-1 his3-11,15 ade2 can1-100	this work
L5193	MATa cdc28-4 ura3 leu2-3,112 trp1-1 his3-11,15 ade2 can1-100	this work
Immunoprecipitation

Overnight cultures grown in synthetic minimal medium containing 2% galactose were diluted to an OD600 of 0.75 in methionine-free synthetic minimal medium supplemented with 2% galactose. Cells were cultured for 30 min at 30°C, and [32P]orthophosphate [TransLabel, ICN] was added to 5 μl of cells at a final concentration of 50 μCi/ml. After additional culture for 3 hr at 30°C, the cells were collected and washed once with phosphate-buffered saline. After washing, 1.5 × 10^6 cells were resuspended in 500 μl of ELB lysis buffer [0.5% NP-40, 250 mM NaCl, 50 mM HEPES at pH 7.0, 5 mM EDTA, 50 mM NaF, 200 μM Na3VO4, 2 mM benzamidine, 50 mM β-glycerophosphate, 1 mM PMSF, 10 μg/ml of aprotonin, 10 μg/ml of leupeptin, 10 μg/ml of soybean trypsin inhibitor], glass beads (0.4 mm) were added to the cell suspension, and the mixture was vortexed for 30 sec and put on ice. The vortex mixing was repeated four times, and then lysates were separated from the beads by centrifugation. The lysates were incubated with 1 μl of the ascitic form of anti-human pRB monoclonal antibody NM2-21C9 on ice for 1 hr. Anti-mouse IgG(H + L) donkey antiserum (Jackson ImmunoResearch) was added to the lysate and incubated on ice for 30 min. Protein A–agarose beads [10 μl] were then added to the lysate, and the mixture was rotated at 4°C for 90 min. Suspensions were pelleted and washed four times with 1 ml of lysis buffer. The immunoprecipitates were extracted in 200 μl of 1× SDS sample buffer, and 50 μl of the sample was loaded on the each lane of the gel. Proteins were separated by 7.5% SDS-PAGE and subjected to fluorography following treatment with 15% PPO/acetic acid. For phosphate labeling, cells were cultured overnight in a phosphate-depleted medium (Guthrie and Fink 1991) containing 2% galactose, pelleted, washed, and resuspended in the same medium at a concentration at OD600 of 0.75. Cells were then labeled with [32P]orthophosphate [1 mCi/ml] for 90 min. Proteins were extracted as described above. For phosphatase treatment, anti-pRB immunoprecipitates prepared as described above were resuspended in 40 μl of 0.1 M MES [pH 6.0]/1 mM PMSF or 0.1 M sodium phosphate [pH 6.0]/1 mM PMSF. Potato acid phosphatase [0.3 units] (Boehringer Mannheim) was then added to the reaction. After 30 min of incubation at 37°C, 40 μl of 2× SDS sample buffer was added, and the sample was boiled for 5 min before being loaded on the gel.

Immunoblotting

Cells [1.5 × 10^6] were broken in 500 μl of ELB buffer by use of glass beads as described before. The cell suspensions were then mixed with 166.7 μl of 4× SDS sample buffer, vortexed twice for 30 sec, and boiled for 5 min. The boiled samples were then centrifuged at 15,000g for 10 min to prepare the whole-cell lysates. One hundred microliters of the whole-cell lysate [corresponding to 2.25 × 10^7 cells] was loaded on the 7.5% SDS-PAGE gel. Following electrophoresis, proteins were transferred to an Immobilon-P PVDF membrane filter (Millipore). Blots were blocked by incubation with Tris-buffered saline containing 0.1% Tween-20 and 3% bovine serum albumin [TBS-T-BSA] for 1 hr at room temperature. The filter was then incubated with anti-human pRB mAb G3-245 [PharMingen] overnight at 4°C with rotation. After primary antibody treatment, blots were washed three times with TBS-T-BSA and were then incubated with goat anti-mouse IgG conjugated to alkaline phosphatase for 1.5 hr. Blots were then developed by the enhanced chemiluminescent detection [ECL] system (Amersham). For the detection of human cyclin D1 or E expressed in yeast, 100 μl of the whole-cell lysates was run on an SDS–10% acrylamide gel, and separated proteins were blotted onto a PVDF membrane. Cyclin D1 and E proteins were detected by use of rabbit anti-human cyclin D1 [PharMingen] and anti-human cyclin E monoclonal antibody HE2 [PharMingen] as probes, respectively.

Tryptic phosphopeptide mapping

Tryptic peptide mapping was performed according to the method described previously (Lees et al. 1991). Briefly, anti-pRB immunoprecipitates obtained from 32P-labeled yeast cell lysates were separated by SDS-PAGE. The pRB band was excised, and the labeled protein was eluted from gel after boiling in 50 mM ammonium bicarbonate/0.2% SDS/1% 2-mercaptoethanol. The protein was lyophilized and resuspended in 1 μl of 50 mM ammonium bicarbonate [pH 8.0] with 50 μg of trypsin [Sigma] treated with tosylamide-phenylethyl-chloromethyl ketone [TPCK]. After overnight incubation, the supernatant was lyophilized and resuspended in 10 μl of electrophoresis buffer [88% formic acid, glacial acetic acid, H2O [1:3:16]]. Peptides were then separated on a cellulose TLC plate by use of electrophoresis in formic acid, glacial acetic acid, and deionized water [50:56:1794] as the first dimension and chromatography in butanol, pyridine, glacial acetic acid, and deionized water [75:50:15:60] as the second dimension.

Cell-cycle arrest and synchronization

Cells were grown to an OD600 of 0.75 and treated with synthetic α-factor at a final concentration of 5 μM for 3 hr at 30°C. Cell synchronization by release from α-factor was carried out by washing α-factor-treated cells and resuspending cells in synthetic minimal medium containing 2% galactose without α-factor as described by Tyers et al. [1993]. At 20-min intervals 5 ml of the aliquots was removed, and the lysates were prepared as described above. Percentage budding was assayed by light microscopy of at least 200 cells per time point.

Acknowledgments

We thank Paul Hammel for Δp34-HA cDNA, Phil Hinds for human cyclin cDNAs, Steve Kron for pRS314-CDC28, and Sibylle Mittnacht and Shizuo Mukai for NM2-21C9 anti-pRB monoclonal antibody. We also thank Kim Nasmyth, David Co-brink, Steve Dowdy, Sean Egan, Bart Giddings, Riki Perlman, Cora Styles, and Andrew Sizeland for helpful comments and discussions. This work was supported by National Institute of Health/National Cancer Institute/Outstanding Investigator Grant 5 R35 CA39826 awarded to R.A.W.M.H was supported by postdoctoral fellowships from the Human Frontier Science Program Organization and the Leukemia Research Foundation. R.A.W. is a Research Professor of the American Cancer Society.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Bandara, L.R. and N.B. La Thangue. 1991. Adenovirus Ela prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature 351: 494–497.

Buchkovich, K., L.A. Duffy, and E. Harlow. 1989. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58: 1097–1105.

Chellappan, S.P., S. Hiebert, M. Mudryj, J.M. Horowitz, and J.R. Nevins. 1991. The E2F transcription factor is a cellular
target for the RB protein. *Cell* 65: 1053–1061.

Chen, P.-L., P. Scully, J.-Y. Shew, J.Y.J. Wang, and W.-H. Lee. 1989. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. *Cell* 58: 1193–1198.

Chittenden, T., D.M. Livingston, and W.G. Kaclin, Jr. 1991. The T/E1A-binding domain of the retinoblastoma protein product can interact selectively with a sequence-specific DNA-binding protein. *Cell* 65: 1073–1082.

Cross, F.R. 1988. *DAF-1*, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* 8: 4675–4684.

Cross, F.R. and A.H. Tinkelenberg. 1991. A potential positive feedback loop controlling *CLN1* and *CLN2* gene expression at the Start of the yeast cell cycle. *Cell* 65: 875–883.

DeCaprio, J.A., J.W. Ludlow, J. Figge, J.-Y. Shew, C.-M. Huang, W.-H. Lee, E. Marsilio, E. Paucha, and D.M. Livingston. 1988. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. *Cell* 54: 275–283.

DeCaprio, J.A., J.W. Ludlow, D. Lynch, Y. Furukawa, J. Griffin, H. Piwinka-Worms, C.-M. Huang, and D.M. Livingston. 1989. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. *Cell* 58: 1085–1095.

DeCaprio, J.A., Y. Furukawa, F. Achenbaum, J.D. Griffin, and D.M. Livingston. 1992. The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression. *Proc. Natl. Acad. Sci.* 89: 1795–1798.

Dirick, L. and K. Nasmyth. 1991. Positive feedback in the activation of G1 cyclins in yeast. *Nature* 351: 754–757.

Dowdy, S.F., P.W. Hinds, K. Louie, S.I. Reed, A. Arnold, and R.A. Weinberg. 1993. Physical interaction of the retinoblastoma protein with human D cyclins. *Cell* 73: 499–511.

Dulic, V., E. Lees, and S.I. Reed. 1992. Association of human cyclin E with a periodic G1-S phase protein kinase. *Science* 257: 1958–1961.

Dyson, N., P.M. Howley, C. Wittenberg, H.E. Richardson, M. de Barros Lopes, and S.I. Reed. 1989. A family of cyclin homologs that controls the G1 phase in yeast. *Proc. Natl. Acad. Sci.* 86: 6255–6259.

Hambur, P.A., R.M. Gill, R.A. Phillips, and B.L. Gallie. 1992. Regions controlling hyperphosphorylation and conformation of the retinoblastoma gene product are independent of domains required for transcriptional repression. *Oncogene* 7: 693–701.

Hinds, P.W., S. Mittnacht, V. Dulic, A. Arnold, S.I. Reed, and R.A. Weinberg. 1992. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. *Cell* 70: 993–1006.

Hollingsworth, R.E., Jr., C.E. Hensley, and W.-H. Lee. 1993. Retinoblastoma protein and the cell cycle. *Curr. Opin. Genet. Dev.* 3: 55–62.

Hu, Q., N. Dyson, and E. Harlow. 1990. The regions of the retinoblastoma protein needed for binding to adenovirus E1A or SV40 large T antigen are common sites for mutations. *EMBO* J. 9: 1147–1155.

Huang, S., N.-P. Wang, B.Y. Tseng, W.-H. Lee, and E.Y.-H.P. Lee. 1990. Two distinct and frequently mutated regions of retinoblastoma protein are required for binding to SV40 T antigen. *EMBO* J. 9: 1815–1822.

Imai, Y., Y. Matsushima, T. Sugimura, and M. Terada. 1991. Purification and characterization of human papillomavirus type 16 E7 protein with preferential binding capacity to the underphosphorylated form of retinoblastoma gene product. *J. Virol.* 65: 4966–4972.

Inaba, T., Y. Matsushima, M. Valentine, M.F. Roussel, C.J. Sherr, and A.T. Look. 1992. Genomic organization, chromosomal localization, and independent expression of human cyclin D genes. *Genomics* 13: 565–574.

Ito, H., H. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. *J. Bacteriol.* 153: 163–168.

Kaelin, W.G., Jr., M.E. Ewen, and D.M. Livingston. 1990. Definition of the minimal simian virus 40 large T antigen- and adenovirus E1A-binding domain in the retinoblastoma gene product. *Mol. Cell. Biol.* 10: 3761–3769.

Kaelin, W.G., Jr., D.C. Pallas, J.A. DeCaprio, F.J. Kaye, and D.M. Livingston. 1991. Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. *Cell* 64: 531–532.

Kato, J.-Y., H. Hiebert, M.E. Ewen, and C.J. Sherr. 1993. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. *Genes & Dev.* 7: 331–342.

Kiyokawa, H., X. Busquets, C.T. Powell, L. Ngo, R.A. Refkind, and P.A. Marks. 1992. Cloning of a D-type cyclin from murine erythroleukemia cells. *Proc. Natl. Acad. Sci.* 89: 2444–2447.

Koff, A., F. Crooss, A. Fisher, J. Schumacher, K. Leguillec, M. Philippe, and J.M. Roberts. 1991. Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. *Cell* 66: 1217–1228.

Koff, A., A. Giordano, D. Desai, K. Yamashita, J.W. Harper, S. Elledge, T. Nishimoto, D.O. Morgan, B.R. Franza, and J.M. Roberts. 1992. Formation and activation of a cyclin E-CDK2 complex during the G1 phase of the human cell cycle. *Science* 257: 1689–1694.

Laiho, M., J.A. DeCaprio, J.W. Ludlow, D.M. Livingston, and J. Massague. 1990. Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. *Cell* 62: 175–185.
Lee, M.G. and P. Nurse. 1987. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327: 31–35.

Lee, W.-H., J.-Y. Shew, F.D. Hong, T.W. Sery, L.A. Donoso, L.-J. Young, R. Bookstein, and E.Y.-H.P. Lee. 1987. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 329: 642–645.

Lees, J.A., K.J. Buchkovich, D.R. Marshak, C.W. Anderson, and E. Harlow. 1991. The retinoblastoma protein is phosphorylated on multiple sites by human cdc2. EMBO J. 10: 4279–4290.

Lew, D.J., V. Dulic, and S.I. Reed. 1991. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66: 1197–1206.

Lin, B.T.-Y., S. Gruenwald, A.O. Morla, W.-H. Lee, and J.Y.J. Wang. 1991. Retinoblastoma cancer suppressor gene product is a substrate of the cell cycle regulator cdc2 kinase. EMBO J. 10: 857–864.

Ludlow, L.W., J.A. DeCaprio, C.M. Huang, W.-H. Lee, E. Paucha, Motokura, T., T. Bloom, H.G. Kim, H. Juppner, I.V. Ruderman, Mihara, K., X.R. Cao, A. Yen, S. Chandler, B. Driscoll, A.L. Matsushime, H., M.E. Ewen, D.K. Strom, I.-Y. Kato, S.K. Hanks, Meyerson, M., G.H. Enders, C.-L. Wu, L.-K. Su, C. Gorka, C. Mittnacht, S., J.A. Lees, D. Desai, E. Harlow, D.O. Morgan, and N. Ninomiya-Tsuji. 1992. Animal cell cycles and their Piggott, J.R., R. Rai, and B.L.A. Carter. 1982. A bifunctional gene product involved in two phases of the yeast cell cycle. Nature 298: 391–393.

Pines, J. 1992. Cell proliferation and control. Curr. Opin. Cell Biol. 4: 144–148.

Pines, J. 1989. Isolation of a human cyclin cDNA: Evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34^cdk2. Cell 58: 833–846.

Reed, S.I. 1992. The role of p34^kinases in the G1 to S-phase transition. Annu. Rev. Cell Biol. 8: 529–561.

Reed, S.I. and C. Wittenberg. 1990. Mitotic role for the Cdc28 protein kinase of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 87: 5697–5701.

Richardson, H.E., C. Wittenberg, F. Cross, and S.I. Reed. 1989. An essential G1 function for cyclin-like proteins in yeast. Cell 59: 1127–1133.

Richardson, H., D.J. Lew, M. Henze, K. Sugimoto, and S.I. Reed. 1992. Cyclin-B homologs in Saccharomyces cerevisiae function in S phase and in G2. Genes & Dev. 6: 2021–2034.

Rosenblatt, J., Y. Gu, and D.O. Morgan. 1992. Human cyclin-dependent kinase 2 is activated during the S and G2 phases of the cell cycle and associates with cyclin A. Proc. Natl. Acad. Sci. 89: 2824–2828.

Surana, U., H. Robitsch, C. Price, T. Schuster, I. Fitch, B. Fletcher, and K. Nasmyth. 1991. The role of Cdc28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65: 145–161.

Templeton, D.J., S.-H. Park, L. Lanier, and R.A. Weinberg. 1991. Nonfunctional mutants of the retinoblastoma protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc. Natl. Acad. Sci. 88: 3033–3037.

Tsai, L.-H., E. Harlow, and M. Meyerson. 1991. Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature 353: 174–177.

Tyers, M., G. Tokiwa, and B. Futcher. 1993. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12: 1955–1968.

Wang, J., X. Chenivesse, B. Henglein, and C. Brechot. 1990. Hepatitis B virus infection in a cyclin A gene in a hepatocellular carcinoma. Nature 343: 555–557.

Weinberg, R.A. 1991. Tumor suppressor genes. Science 254: 1138–1146.

Whyte, P., K.J. Buchkovich, J.M. Horowitz, S.H. Friend, M. Raybuck, R.A. Weinberg, and E. Harlow. 1988. Association between an oncogene and an anti-oncogene: The adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334: 124–129.

Wittenberg, C., K. Sugimoto, and S.I. Reed. 1990. G1-specific cyclins of S. cerevisiae: Cell cycle periodicity, regulation by mating pheromone and association with the p34^cdg28 protein kinase. Cell 62: 225–237.

Xiong, Y., T. Connolly, B. Fletcher, and D. Beach. 1991. Human D-type cyclin. Cell 65: 691–699.

Xiong, Y., J. Menninger, D. Beach, and D.C. Ward. 1992a. Molecular cloning and chromosomal mapping of CCND genes encoding human D-type cyclins. Genomics 13: 575–584.

Xiong, Y., H. Zhang, and D. Beach. 1992b. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71: 505–514.

Zacksenhaus, E., R. Bremner, Z. Jiang, R.M. Gill, M. Muncaster, M. Sopita, R.A. Phillips, and B.L. Gallic. 1993. Unraveling the function of the retinoblastoma gene. Adv. Cancer Res. 61: 115–141.
Collaboration of G1 cyclins in the functional inactivation of the retinoblastoma protein.

M Hatakeyama, J A Brill, G R Fink, et al.

Genes Dev. 1994, 8:

Access the most recent version at doi:10.1101/gad.8.15.1759