PSEUDO B-FREDHOLM OPERATORS AND SPECTRAL THEORY

A. TAJMOUATI, M. AMOUCH, M.KARMOUNI

Abstract. In this paper, we show that every pseudo B-Fredholm operator is a pseudo Fredholm operator. Afterwards, we prove that the pseudo B-Weyl spectrum is empty if and only if the pseudo B-Fredholm spectrum is empty. Also, we study a symmetric difference between some parts of the spectrum.

1. Introduction and Preliminaries

Throughout, X denotes a complex Banach space and $\mathcal{B}(X)$ denotes the Banach algebra of all bounded linear operators on X, we denote by T^*, $R(T)$, $R^\infty(T) = \bigcap_{n \geq 0} R(T^n)$, $K(T)$, $H_0(T)$, $\rho(T)$, $\sigma_{ap}(T)$, $\sigma_{su}(T)$, $\sigma(T)$, respectively the adjoint, the range, the hyper-range, the analytic core, the quasinilpotent part, the resolvent set, the approximate point spectrum, the surjectivity spectrum and the spectrum of T.

Next, let $T \in \mathcal{B}(X)$, T is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (SVEP) if for every open neighbourhood $U \subseteq \mathbb{C}$ of λ_0, the only analytic function $f : U \to X$ which satisfies the equation $(T - zI)f(z) = 0$ for all $z \in U$ is the function $f \equiv 0$. T is said to have the SVEP if T has the SVEP for every $\lambda \in \mathbb{C}$. Obviously, every operator $T \in \mathcal{B}(X)$ has the SVEP at every $\lambda \in \rho(T)$, hence T and T^* have the SVEP at every point of the boundary $\partial(\sigma(T))$ of the spectrum.

A bounded linear operator is called an upper semi-Fredholm (resp, lower semi-Fredholm) if $\dim N(T) < \infty$ and $R(T)$ closed (resp, $\text{codim} R(T) < \infty$). T is semi-Fredholm if it is a lower or upper. The index of a semi-Fredholm operator T is defined by $\text{ind}(T) = \dim N(T) - \text{codim} R(T)$.

T is a Fredholm operator if it is a lower and upper semi-Fredholm, and is called a Weyl operator if it is a Fredholm of index zero. The essential and Weyl spectrum of T are closed and defined by :

$\sigma_e(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not a Fredholm operator} \}$

$\sigma_W(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not a Weyl operator} \}$.

Recall that $T \in \mathcal{B}(X)$ is said to be Kato operator or semi-regular, if $R(T)$ is closed and $N(T) \subseteq R^\infty(T)$. Denote by $\rho_K(T) : \rho_K(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is Kato} \}$ the Kato resolvent and $\sigma_K(T) = \mathbb{C} \setminus \rho_K(T)$ the Kato spectrum of T. It is well known that $\rho_K(T)$ is an open subset of \mathbb{C}.

Let $T \in \mathcal{B}(X)$ such that $X = X_1 \oplus X_2$, $T = T_1 \oplus T_2$.

2000 Mathematics Subject Classification. 47A53, 47B10.
Key words and phrases. Fredholm operators, pseudo Fredholm operators, pseudo B-Fredholm operator, pseudo B-Weyl spectrum.
T is a B-Fredholm operator if T_1 is Fredholm and T_2 is nilpotent. The B-Fredholm spectrum defined by:

$$\sigma_{BF}(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not B-Fredholm} \}.$$

This class of operators, introduced and studied by Berkani et al. in a series of papers which extends the class of semi-Fredholm operators. In the beginning this class was defined by: An operator $T \in \mathcal{B}(X)$, is said to be B-Fredholm, if for some integer $n \geq 0$ the range $R(T^n)$ is closed and T_n, the restriction of T to $R(T^n)$ is a Fredholm operator. T is said to be a B-Weyl operator if T_n is a Fredholm operator of index zero which is also equivalent to the fact that T_1 is a Weyl operator and T_2 is nilpotent. The B-Weyl spectrum defined by

$$\sigma_{BW}(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not B-Weyl} \}.$$

Note that, Berkani gave the equivalence onto this two definitions of B-Fredholm operator, see [4, Theorem 2.7]. It is easily seen that every nilpotent operator, as well as any idempotent bounded operator, is B-Fredholm.

More recently, B-Fredholm and B-Weyl operators were generalized to pseudo B-Fredholm and pseudo B-Weyl [6], [24]. Precisely, T is a pseudo B-Fredholm operator if T_1 is a Fredholm operator and T_2 is a quasi-nilpotent operators. The pseudo B-Fredholm spectrum defined by

$$\sigma_{pBF}(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not pseudo B-Fredholm} \}.$$

An operator T is a pseudo B-Weyl operator if T_1 is a Weyl operator and T_2 is a quasi-nilpotent operator. The pseudo B-Weyl spectrum defined by

$$\sigma_{pBW}(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not pseudo B-Weyl} \}.$$

$\sigma_{pBW}(T)$ and $\sigma_{pBF}(T)$ is not necessarily non empty. For example, the quasi nilpotent operator has empty pseudo B-Weyl and pseudo B-Fredholm spectrum. Evidently $\sigma_{pBF}(T) \subset \sigma_{pBW}(T) \subset \sigma(T)$.

T is a pseudo-Fredholm operator (or admit generalized Kato decomposition) if T_1 is Kato operator and T_2 is quasi-nilpotent. The pseudo-Fredholm spectrum defined by

$$\sigma_{GK}(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not a pseudo-Fredholm} \}.$$

Denote by $\rho_{GK}(T) : \rho_{GK}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is pseudo-Fredholm} \}$. If we assume in the definition above that T_2 is nilpotent, T is said to be quasi-Fredholm (or admit a Kato decomposition or Kato type). The quasi-Fredholm spectrum defined by:

$$\sigma_{QK}(T) = \{ \lambda \in \mathbb{C} : T - \lambda \text{ is quasi-Fredholm} \}.$$

The Operators which admit a generalized Kato decomposition was originally introduced by M.Mbekhta [17] in the Hilbert spaces as a generalization of quasi-Fredholm operators have been introduced by J.P.Labrousse [14] and the semi-Fredholm operators.

In [4], Berkani showed that a B-Fredholm operator is a quasi-Fredholm, see [4 Proposition 4]. This result lead to ask the following question: If every pseudo B-Fredholm operator is a pseudo-Fredholm operator?
We organize our paper in the following way: In the next section we prove that every pseudo B-Fredholm operator is a pseudo-Fredholm operator. Also we study the relationships between the class of pseudo B-Fredholm and other class of operator. In section 3, we shall study the component of pseudo B-Fredholm resolvent \(\rho_{pBF}(T) \), to obtain a classification of the components by using the constancy of the subspaces quasi-nilpotent part and analytic core, some applications are also given. Finally, in section 4, we show that the symmetric difference \(\sigma_{K}(T) \Delta \sigma_{pBF}(T) \) is at most countable.

2. The class of Pseudo B-Fredholm Operators

In the following theorem we prove that every pseudo B-Fredholm operator is pseudo Fredholm.

Theorem 2.1. Let \(T \in B(X) \). If \(T \) is pseudo B-Fredholm, then \(T \) is pseudo Fredholm.

Proof. Let \(T \in B(X) \). If \(T \) is pseudo B-Fredholm operator, then there exists a subsets \(M \) and \(N \) of \(X \) such that \(X = M \oplus N \) and \(T = T_1 \oplus T_2 \) with \(T_1 = T|_M \) is a Fredholm operator and \(T_2 = T|_N \) is a quasi-nilpotent. Since \(T_1 \) is Fredholm then \(T \) admits a Kato decomposition, hence there exists \(M', M'' \) closed subsets of \(M \) such that \(M = M' \oplus M'' \), \(T_1 = T_1' \oplus T_1'' \) with \(T_1' = T|_{M'} \) is a Kato operator and \(T_1'' = T|_{M''} \) is nilpotent. Then \(X = M' \oplus M'' \oplus N \), and \(T = S \oplus R \) where \(S = T_1' \) is a Kato operator and \(R = T_1'' \oplus T_2 \) is a quasi-nilpotent operator, hence \(T \) is a pseudo Fredholm operator. \(\square \)

The following example shows that the class of pseudo B-Fredholm operator is a proper subclass of pseudo Fredholm operator.

Example 1. Consider the example given by Müller in [19]

Let \(H \) be the Hilbert space with an orthonormal basis \(\{e_{i,j}\} \), where \(i \) and \(j \) are integers such that \(ij \leq 0 \). Define operator \(T \in B(H) \) by:

\[
T e_{i,j} = \begin{cases}
0 & \text{if } i = 0, j > 0 \\
e_{i+1,j} & \text{Otherwise}
\end{cases}
\]

We have \(N(T) = \bigvee_{j>0} \{e_{0,j}\} \subset R^\infty(T) \) and \(R(T) \) is closed, then \(T \) is a Kato operator but \(T \) is not a Fredholm operator, since \(\dim N(T) = \infty \).

Let \(Q \) a quasinilpotent operator in \(H \) which is not nilpotent and no commute with \(T \), then \(S = T \oplus Q \) is a pseudo Fredholm operator but is not pseudo B-Fredholm operator, hence the class of pseudo B-Fredholm operator is a proper subclass of pseudo Fredholm operator.

Remark 1. In [24 Remark 2.5] and [7 Proposition 1.2], If \(T \) is a bilateral shift on \(l^2(\mathbb{N}) \), we have :

1. \(T \) is pseudo B-Weyl if and only if \(T \) is Weyl or \(T \) is quasi-nilpotent operator.
2. \(T \) is pseudo Fredholm if and only if \(T \) is semi-regular or \(T \) is quasi-nilpotent operator.

By the same argument we can prove :

1. \(T \) is pseudo B-Fredholm if and only if \(T \) is Fredholm or \(T \) is quasi-nilpotent operator.
(2) T is generalized Drazin if and only if T is invertible or T is quasi-nilpotent operator.

Corollary 2.1. Let $T \in B(X)$. Then
\[\sigma_{\text{GR}}(T) \subset \sigma_{pBF}(T) \subset \sigma_{pBW}(T) \]

Lemma 2.1. \([16]\) Let $T \in B(X)$ and let G a connected component of $\rho_K(T)$. Then
\[G \cap \rho(T) \neq \emptyset \implies G \subset \rho(T) \]

Lemma 2.2. \([7]\) Let $T \in B(X)$.
\[\rho_{\text{GR}}(T) \setminus \rho_K(T) \text{ is at most countable} \]

Since $\rho_{pBF}(T) \setminus \rho_K(T) \subset \rho_{\text{GR}}(T) \setminus \rho_K(T)$, we can easily obtain that:

Corollary 2.2. Let $T \in B(X)$.
\[\rho_{pBF}(T) \setminus \rho_K(T) \text{ is at most countable.} \]

Proposition 2.1. Let $T \in B(X)$. Then the following statements are equivalent:

1. $\sigma_{pBF}(T)$ is at most countable.
2. $\sigma_{pBW}(T)$ is at most countable.
3. $\sigma(T)$ is at most countable.

Proof. 1) \implies 3) Suppose that $\sigma_{pBF}(T)$ is at most countable then $\rho_{pBF}(T)$ is connexe, by corollary \([2.2]\) $\rho_{pBF}(T) \setminus \rho_K(T)$ is at most countable. Hence $\rho_K(T) = \rho_{pBF}(T) \setminus (\rho_{pBF}(T) \setminus \rho_K(T))$ is connexe. By lemma \([2.1]\) $\sigma(T) = \sigma_K(T)$. Therefore $\sigma(T) = \sigma_{pBF}(T) \cup (\rho_{pBF}(T) \setminus \rho_K(T))$ is at most countable.

3) \implies 1) Obvious.

2) \implies 3) If $\sigma_{pBW}(T)$ is at most countable then $\rho_{pBW}(T)$ is connexe, since every pseudo B-Weyl operator is a pseudo B-Fredholm operator by corollary \([2.2]\) $\rho_{pBW}(T) \setminus \rho_K(T)$ is at most countable. Hence $\rho_K(T) = \rho_{pBW}(T) \setminus (\rho_{pBW}(T) \setminus \rho_K(T))$ is connexe. By lemma \([2.1]\) $\sigma(T) = \sigma_K(T)$. Therefore $\sigma(T) = \sigma_{pBW}(T) \cup (\rho_{pBW}(T) \setminus \rho_K(T))$ is at most countable.

3) \implies 2) Obvious. \[\square\]

Corollary 2.3. Let $T \in B(X)$, if $\sigma_{GR}(T)$ is at most countable. Then:

1. T is a spectral operator if and only if T is similar to a paranormal operator.

Proof. See \([18]\) Theorem 2.4 and Corollary 2.5 \[\square\]

Let $T \in B(X)$. The operator range topology on $R(T)$ is the topology induced by the norm $\|\cdot\|_T$ defined by $\|y\|_T := \inf_{x \in X} \{\|x\| : y = Tx\}$.

For a detailed discussion of operator ranges and their topology we refer the reader to \([21]\).

T is said to have uniform descent for $n \geq d$ if $R(T^n) = R(T) + N(T^d)$ for $n \geq d$. If in addition, $R(T^n)$ is closed in the operator range topology of $R(T^d)$ for $n \geq d$, then T is said to have topological uniform descent (TUD for brevity) for $n \geq d$. The topological uniform descent spectrum:

\[\sigma_{\text{ud}}(T) = \{ \lambda \in \mathbb{C}, T - \lambda \text{ does not have TUD} \} \]

Let $T \in B(X)$, the ascent of T is defined by $a(T) = \min\{ p \in \mathbb{N} : N(T^p) = N(T^{p+1}) \}$, if such p does not exist we let $a(T) = \infty$. Analogously the descent of T is $d(T) = \min\{ q \in \mathbb{N} : R(T^q) = R(T^{q+1}) \}$, if such q does not exist we let $d(T) = \infty$ \([15]\). It is well known that if both $a(T)$ and $d(T)$ are finite then $a(T) = d(T)$ and we
Corollary 2.4. Let corollary 2.1, [7, Theorem 3.3] and [11, corollary 3.4], we have the following:

For a pseudo B-Fredholm operator, these properties do not necessarily hold. Indeed:

Let \(T \) be the Banach space of continuous functions on \([0,1]\), denoted by \(C([0,1])\), provided with the infinity norm. We define by \(V \), the Volterra operator, \(X \) by:

\[
V f(x) := \int_0^d f(x) \, dx
\]

\(V \) is injective and quasi-nilpotent. In addition, \(N^\infty(V) = \{0\}, K(V) = \{0\} \) and we have \(R^\infty(V) = \{ f \in C^\infty[0,1] : f^{(n)}(0) = 0, \, n \in \mathbb{N} \} \), thus \(R^\infty(V) \) is not closed. Hence:
(1) \(K(V) \neq R^\infty(V) \)
(2) \(H_0(V) \neq N^\infty(V) \)

Note that \(V \) is a compact operator, then \(R(V) \) is not closed.

Theorem 2.2. There exists a pseudo B-Fredholm operator \(T \) such that:

1. \(K(T) \neq R^\infty(T) \)
2. \(H_0(T) \neq N^\infty(T) \)
3. \(R(T) \) is not closed.

Proposition 2.2. Let \(T \in \mathcal{B}(X) \). Then the following statements are equivalent

1. \(\sigma_{pBF}(T) \) is empty
2. \(\sigma_{pBW}(T) \) is empty
3. \(\sigma_{GK}(T) \) is empty
4. \(\sigma(T) \) is finite

Proof. 3 \(\iff \) 4 see [7] Theorem 3.3.

1. \(\iff \) 4 If \(\sigma_{pBF}(T) \) is empty then \(\sigma(T) = \rho_{pBW}(T) \setminus \rho_K(T) \). By corollary 2.2 \(\rho_{pBW}(T) \setminus \rho_K(T) \) is at most countable and this set is bounded, hence it is finite.

4. \(\implies \) 1 Suppose that \(\sigma(T) \) is finite then for all \(\lambda \in \sigma(T) \) is isolated, then \(X = H_0(T - \lambda_0) \oplus K(T - \lambda_0) \), [24] Theorem 4 \((T - \lambda_0)_K(T - \lambda_0) \) is quasi-nilpotent and \((T - \lambda_0)_K(T - \lambda_0) \) is surjective, hence \((T - \lambda_0)_K(T - \lambda_0) \) is Fredholm. Indeed, \(\lambda_0 \) is an isolated point, then \(T \) has the SVEP at \(\lambda_0 \), hence \((T - \lambda_0)_K(T - \lambda_0) \) has the SVEP at 0 and it is surjective by [11] corollary 2.24 \((T - \lambda_0)_K(T - \lambda_0) \) has bijective

2. \(\iff \) 4) similar to 1) \(\iff \) 4).

A bounded operator \(T \in \mathcal{B}(X) \) is said to be a Riesz operator if \(T - \lambda I \) is a Fredholm operator for every \(\lambda \in \mathbb{C} \setminus \{0\} \).

Corollary 2.5. Let \(T \in \mathcal{B}(X) \) a Riesz operator, then the following statements are equivalent

1. \(\sigma_{pBF}(T) \) is empty
2. \(\sigma_{pBW}(T) \) is empty
3. \(\sigma_{GK}(T) \) is empty
4. \(\sigma(T) \) is finite,
5. \(K(T) \) is closed,
6. \(K(T^*) \) is closed,
7. \(K(T) \) is finite-dimensional,
8. \(K(T - \lambda) \) is closed for all \(\lambda \in \mathbb{C} \),
9. \(\text{codim} H_0(T) < \infty \),
10. \(\text{codim} H_0(T^*) < \infty \),
11. \(T = Q + F, \) with \(Q, F \in \mathcal{B}(X), \) \(QF = FQ = 0, \) \(\sigma(Q) = \{0\} \) and \(F \) is a finite rank operator.

Proof. Direct consequence of Proposition 2.2 and [8] Theorem 2.3 and [20] Corollary 9.

In the following, we will prove that if \(T \) is with finite descent, then \(T \) is pseudo B-Fredholm if and only if \(T \) is a B-Fredholm operator.

Proposition 2.3. Let \(T \in \mathcal{B}(X) \) with finite descent. Then \(T \) is a pseudo B-Fredholm if and only if \(T \) is a B-Fredholm.
Proof. Obviously if \(T \) is B-Fredholm then \(T \) is pseudo B-Fredholm. If \(T \) is a pseudo B-Fredholm then \(T = T_1 \oplus T_2 \) with \(T_1 \) is Fredholm operator and \(T_2 \) is quasinilpotent. Since \(T \) has finite descent then \(T_1 \) and \(T_2 \) have finite descent, we have \(T_2 \) is quasinilpotent with finite descent implies that is a nilpotent operator. Thus \(T \) is a B-Fredholm operator.

In the following, we show that an operator with dense range is pseudo Fredholm if and only if it is a semi regular.

Proposition 2.4. Let \(T \in \mathcal{B}(X) \). If \(T \) is with dense range, then :
\[
T \text{ is a pseudo Fredholm if and only if } T \text{ is semi regular.}
\]

Proof. Every semi regular operator is a pseudo Fredholm. Conversely, if \(T \) admits a GKD, there exists a pair of \(T \)-invariant closed subspaces \((M, N)\) such that \(X = M \oplus N \), the restriction \(T_M \) is semi-regular, and \(T_N \) is quasinilpotent. \(T \) has dense range give \(\overline{R(T)} = X \Rightarrow N(T^*) = \{0\} \) then \(T^* \) have the SVEP at 0. According to [1, Theorem 3.15], we have \(K(T) = M \). Since \(M \) is closed and \(T_M \) is semi-regular (then \(M = X \)), therefore \(T \) is semi-regular.

Corollary 2.6. Let \(T \in \mathcal{B}(X) \), with dense range. Then :
\[
T \text{ is a pseudo B-Fredholm } \Rightarrow T \text{ is semi regular.}
\]
In particular, \(T \) is a generalized Drasin invertible \(\Rightarrow T \) is semi regular.

3. Classification Of The Components Of Pseudo B-Fredholm Resolvent

Lemma 3.1. Let \(T \in \mathcal{B}(X) \) a pseudo B-Fredholm, then there exists \(\varepsilon > 0 \) such that for all \(|\lambda| < \varepsilon \), we have:
\[
\begin{align*}
(1) \quad & K(T - \lambda) + H_0(T - \lambda) = K(T) + H_0(T). \\
(2) \quad & K(T - \lambda) \cap \overline{H_0(T - \lambda)} = K(T) \cap \overline{H_0(T)}.
\end{align*}
\]

Proof. By Theorem 2.1, \(T \) is a pseudo Fredholm operator, hence we conclude by [7, Theorem 4.2] the result.

The pseudo B-Fredholm resolvent set is defined as \(\rho_{pBF}(T) = \mathbb{C} \setminus \sigma_{pBF}(T) \).

Corollary 3.1. Let \(T \in \mathcal{B}(X) \) a pseudo B-Fredholm operator, then the mappings
\[
\lambda \mapsto K(T - \lambda) + H_0(T - \lambda), \quad \lambda \mapsto K(T - \lambda) \cap \overline{H_0(T - \lambda)}
\]
are constant on the components of \(\rho_{pBF}(T) \).

Lemma 3.2. Let \(T \) a pseudo B-Fredholm operator. Then the following statements are equivalent:
\[
\begin{align*}
(1) & \text{ } T \text{ has the SVEP at } 0, \\
(2) & \text{ } \sigma_{sp}(T) \text{ does not a cluster at } 0.
\end{align*}
\]

Proof. Without loss of generality, we can assume that \(\lambda_0 = 0 \).

1) \(\Rightarrow \) 2) Suppose that \(T \) is a pseudo B-Fredholm operator, then there exists two closed \(T \)-invariant subspaces \(X_1, X_2 \subset X \) such that \(X = X_1 \oplus X_2 \), \(T_{X_1} \) is Fredholm, \(T_{X_2} \) is quasinilpotent and \(T = T_{X_1} \oplus T_{X_2} \). Since \(T_{X_1} \) is Fredholm, then \(T_{X_1} \) is of Kato type by [2, Theorem 2.2] there exists a constant \(\varepsilon > 0 \) such that for all \(\lambda \in D^*(0, \varepsilon) \), \(\lambda I - T \) is bounded below. Since \(T_{X_2} \) is quasinilpotent, \(\lambda I - T \) is
bounded below for all $\lambda \neq 0$. Hence $\lambda I - T$ is bounded below for all $\lambda \in D^*(0, \varepsilon)$. Therefore $\sigma_{ap}(T)$ does not cluster at λ_0.

By duality we have:

Lemma 3.3. Let T a pseudo B-Fredholm operator. Then the following statements are equivalent:

1) T^* has the SVEP at 0,
2) $\sigma_{su}(T)$ does not a cluster at 0.

Theorem 3.1. Let $T \in B(X)$ and Ω a component of $\rho_{BF}(T)$. Then the following alternative holds:

1) T has the SVEP for every point of Ω. In this case, $\sigma_{ap}(T)$ does not have limit points in Ω, every point of Ω is not an eigenvalue of T except a subset of Ω which consists of at most countably many isolated points.
2) T has the SVEP at no point of Ω. In this case, every point of Ω is an eigenvalue of T.

Proof. 1) Assume that T has the SVEP at $\lambda_0 \in \Omega$. By [1, Theorem 3.14] we have $K(T - \lambda_0) \cap H_0(T - \lambda_0) = K(T - \lambda_0) \cap H_0(T - \lambda_0) = \{0\}$. According to corollary 3.1 we have $K(T - \lambda_0) \cap H_0(T - \lambda_0) = \{0\} = K(T - \lambda) \cap H_0(T - \lambda) = \{0\}$ for all $\lambda \in \Omega$. Hence $K(T - \lambda) + H_0(T - \lambda) = \{0\}$ and therefore T has the SVEP at every $\lambda \in \Omega$. By Lemma 3.2 $\sigma_{ap}(T)$ does not cluster at any $\lambda \in \Omega$. Consequently every point of Ω is not an eigenvalue of T except a subset of Ω which consists of at most countably many isolated points.

2) Suppose that T has the SVEP at not point of Ω. From [1, Theorem 2.22], we have $N(T - \lambda) \neq \{0\}$, for all $\lambda \in \Omega$, hence every point of Ω is an eigenvalue of T.

Theorem 3.2. Let $T \in B(X)$ and Ω a component of $\rho_{BF}(T)$. Then the following alternative holds:

1) T^* has the SVEP for every point of Ω. In this case, $\sigma_{su}(T)$ does not have limit points in Ω, every point of Ω is not a deficiency value of T except a subset of Ω which consists of at most countably many isolated points.
2) T^* has the SVEP at no point of Ω. In this case, every point of Ω is a deficiency value of T.

Proof. 1) Assume that T^* has the SVEP at $\lambda_0 \in \Omega$, by [1, Theorem 3.15] we have $K(T - \lambda_0) + H_0(T - \lambda_0) = X$. According to corollary 3.1 we have $K(T - \lambda_0) + H_0(T - \lambda_0) = K(T - \lambda) + H_0(T - \lambda) = X$ for all $\lambda \in \Omega$. Hence $K(T - \lambda) + H_0(T - \lambda) = X$ and therefore T has the SVEP at every $\lambda \in \Omega$. By lemma 3.2 $\sigma_{su}(T)$ does not cluster at any $\lambda \in \Omega$. Consequently every point of Ω is not a deficiency value of T except a subset of Ω which consists of at most countably many isolated points.

2) Suppose that T^* has the SVEP at no point of Ω. Assume that there exists a $\lambda_0 \in \Omega$ such that $T - \lambda$ is surjective, then $T^* - \lambda_0$ is injective this implies that T^* has the SVEP at λ_0. Contraduction and hence every point of Ω is a deficiency value of T.

□
Remark 2. We have $\sigma_{pBF}(T) \subset \sigma_{gD}(T)$, this inclusion is proper. Indeed: Consider the operator T defined in $l^2(\mathbb{N})$ by

$$T(x_1, x_2, ...) = (0, x_1, x_2, ...), \quad T^*(x_1, x_2, ...) = (x_2, x_3, ...).$$

Let $B = T \oplus T^*$. Then $\sigma_{gD}(T) = \{ \lambda \in \mathbb{C}; |\lambda| \leq 1 \}$ and we have $0 \notin \sigma_{pBF}(T)$. This shows that the inclusion $\sigma_{pBF}(T) \subset \sigma_{gD}(T)$ is proper.

Next we obtain a condition on an operator such that its pseudo B-Fredholm spectrum coincide with the generalized Drazin spectrum.

Theorem 3.3. Suppose that $T \in B(X)$ and $\rho_{pBF}(T)$ has only one component. Then

$$\sigma_{pBF}(T) = \sigma_{gD}(T)$$

Proof. $\rho_{pBF}(T)$ has only one component, then $\rho_{pBF}(T)$ is the unique component. Since T has the SVEP on $\rho(T) \subset \rho_{pBF}(T)$. By Theorem 3.1, T has the SVEP on $\rho_{pBF}(T)$. Similar T^* also has the SVEP on $\rho_{pBF}(T)$ by Theorem 3.2. This since $\rho(T^*) = \rho(T) \subset \rho_{pBF}(T))$. From Lemma 3.2 and Lemma 3.3 $\sigma(T)$ does not cluster at any $\lambda \in \rho_{pBF}(T)$. Therefor $\rho_{pBF}(T) \subset isos(T) \cup \rho(T) = \rho_{gD}(T)$, hence $\rho_{pBF}(T) = \rho_{gD}(T)$.

4. Symmetric difference for pseudo B-Fredholm spectrum

Let in the following we give symmetric difference between $\sigma_{pBF}(T)$ and other parts of the spectrum. Denoted by $\rho_{fK}(T) = \{ \lambda \in \mathbb{C}; K(T - \lambda) \text{ is not closed} \}, \sigma_{fK}(T) = \mathbb{C} \setminus \rho_{fK}(T)$ and $\rho_{cr}(T) = \{ \lambda \in \mathbb{C}; R(T - \lambda) \text{ is closed} \}, \sigma_{cr}(T) = \mathbb{C} \setminus \rho_{cr}(T)$ the Goldberg spectrum. Most of the classes of operators, for example, in Fredholm theory, require that the operators have closed ranges. Thus, it is natural to consider the closed-range spectrum or Goldberg spectrum of an operator.

Proposition 4.1. If $\lambda \in \sigma_*(T)$ is non-isolated point then $\lambda \in \sigma_{pBF}(T)$, where $* \in \{fK, cr\}$.

Proof. Let $\lambda \in \sigma_*(T)$ an isolated point. Suppose that $T - \lambda$ is a pseudo B-Fredholm, by Lemma 2.4 there exists a constant $\varepsilon > 0$ such that for all $\lambda \in D^*(\lambda, \varepsilon)$, $\lambda - \lambda$ is semi regular. Then $R(T - \mu)$ and $K(T - \mu)$ are closed for all $\mu \in D^*(\lambda, \varepsilon)$, then λ is an isolated point of $\sigma_*(T)$, contradiction.

Corollary 4.1. $\sigma_*(T) \setminus \sigma_{pBF}(T)$ is at most countable, where $* \in \{fK, cr\}$.

Proposition 4.2. Let $T \in B(X)$ such that $\sigma_{cr}(T) = \sigma(T)$ and every λ is non-isolated in $\sigma(T)$. Then

$$\sigma(T) = \sigma_{cr}(T) = \sigma_{pBF}(T) = \sigma_{pBW}(T) = \sigma_*(T) = \sigma_{K}(T) = \sigma_{ap}(T)$$

Proof. Since every $\lambda \in \sigma(T) = \sigma_{cr}(T)$ is non-isolated then by Proposition 4.1 we have $\sigma(T) = \sigma_{cr}(T) \subseteq \sigma_{pBF}(T) \subseteq \sigma_{pBW}(T) \subseteq \sigma_*(T) \subseteq \sigma(T)$ and since $\sigma(T) = \sigma_{cr}(T) \subseteq \sigma_{K}(T) \subseteq \sigma_{ap}(T) \subseteq \sigma(T)$, we deduce the statement of the theorem.

Proposition 4.3. The symmetric difference $\sigma_{K}(T) \Delta \sigma_{pBF}(T)$ is at most countable.

Proof. By corollary 2.2 $\sigma_{K}(T) \setminus \sigma_{pBF}(T)$ is at most countable. We have $\sigma_*(T) \setminus \sigma_{K}(T)$ consists of at most countably many isolated points (see [1] Theorem 1.65) and $\sigma_{pBF}(T) \setminus \sigma_{K}(T) \subseteq \sigma_{cr}(T) \setminus \sigma_{K}(T)$, hence $\sigma_{pBF}(T) \setminus \sigma_{K}(T)$ is at most countable.
Since

\[\sigma_K(T) \Delta \sigma_{pBF}(T) = (\sigma_K(T) \setminus \sigma_{pBF}(T)) \bigcup (\sigma_{pBF}(T) \setminus \sigma_K(T)) \]

Therefore \(\sigma_K(T) \Delta \sigma_{pBF}(T) \) is at most countable. \[\square\]

References

[1] P. Aiena. *Fredholm and Local Spectral Theory with Applications to Multipliers* Kluwer Acad. Press, 2004.
[2] P. Aiena, E. Rosas, *Single-valued extension property at the points of the approximate point spectrum*, J. Math. Anal. Appl. 279 (1) (2003) 180-188.
[3] Albrecht E. *A characterization of spectral operators on Hilbert Spaces*, Glasgow Math. J. 23 (1982), 91-95.
[4] M. Berkani, *On a class of quasi-Fredholm operators*, Integral Equations Operator Theory 34 (1999) 244-249.
[5] M. Berkani, *Index of B-Fredholm operators and generalization of a Weyl theorem*, Proc. Amer. Math. Soc. 130 (2002), 1717-1723.
[6] E. Boasso. *Isolated spectral points and Koliha-Drazin invertible elements in quotient Banach algebras and homomorphism ranges*, Mathematical Proceedings of the Royal Irish Academy Vol. 115A, No. 2 (2015), pp. 1-15.
[7] W. Bouamama *Opérateurs Pseudo Fredholm dans les espaces de Banach*, Rend. Circ. Mat. Palermo (2), XXIX (1980) 161-258.
[8] W. Bouamama *Opérations de Riesz dont le noyau analytique est fermé*, Studia Mathematica 162 (1) (2004)
[9] Q. Jiang and H. Zhong *Components of generalized Kato resolvent set and single-valued extension property*, Frontiers of Mathematics in China August 2012, Volume 7, Issue 4, pp 695-702.
[10] Q. Jiang and H. Zhong *Topological uniform descent and localized SVEP*, J. Math. Anal. Appl. 390 (2012) 356-361.
[11] Q. Jiang, H. Zhong, S.Zhang *Components topological uniform descent resolvent set and local spectral theory*, linear algebra and its applications 438(2013), 1149-1158.
[12] Koliha JJ. *A generalized Drazin inverse*. Glasgow Math. J. 1996,38:367-81
[13] M. Mbekhta, Ouahab A *Opérateurs s-régulier dans un espace de Banach et Théorie spectrale*, Acta Sci, Math (Szeged). 59, (1994) 525-543
[14] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math J. 29 (1987) 159-175.
[15] V. Muller *On the regular spectrum*, J. Oper. Theory , 31(1994) 363-380.
[16] T. L. Miller, V.G. Miller, M. Neumann. *On Operators with Closed Analytic core*, Ren del Circ. Math. Palermo. S2. (2002), 495-502
[17] S. Grabiner, *Ranges of products of operators*, Canad. J. Math. 26, (1974), 1430-41.
[18] S. Grabiner, *Uniform ascent and descent of bounded operators*, J. Math. Soc. Japan 34, 2, (1982), 317-37.
[19] C. Schmoeger. *On isolated points of the spectrum of a bounded linear operator*, Proc. Amer. Math.Soc. 117 (1993), 715-719
[20] H. Zariouh, H. Zghitti. *On pseudo B-Weyl operators and generalized drazin invertible for operator matrices*, Linear and Multilinear Algebra, (2015). DOI:10.1080/03081087.2015.1082959.
A. TAJMOUATI and M. KARMOUNI
Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Al Mhraz, Laboratory of Mathematical Analysis and Applications Fez, Morocco.
E-mail address: abdelaziz.tajmouati@usmba.ac.ma
E-mail address: mohammed.karmouni@usmba.ac.ma

MOHAMED AMOUCH
Department of Mathematics University Chouaib Doukkali, Faculty of Sciences, El Jadida. 24000, El Jadida, Morocco.
E-mail address: mohamed.amouch@gmail.com