TWISTED GROUP RINGS
WHOSE UNITS FORM AN FC-GROUP

VICTOR BOVDI

ABSTRACT. Let $U(K,G)$ be the group of units of the infinite twisted group algebra $K\cdot G$ over a field K. We describe the FC-centre ΔU of $U(K,G)$ and give a characterization of the groups G and fields K for which $U(K,G) = \Delta U$. In the case of group algebras we obtain the Cliff-Sehgal-Zassenhaus theorem.

1. Introduction. Let G be a group, K a field and $\lambda: G \times G \to U(K)$ a 2-cocycle of G with respect to the trivial action of G. Then the twisted group algebra $K\cdot G$ of G over the field K is an associative K-algebra with basis $\{u_g \mid g \in G\}$ and with multiplication defined for all $g,h \in G$ by

$$u_g u_h = \lambda_{g,h} u_{gh}, \quad (\lambda_{g,h} \in \lambda)$$

and using distributivity.

Let $U(K,G)$ be the group of units of $K\cdot G$ and let ΔU be its subgroup consisting of all elements with finitely many conjugates in $U(K,G)$. This subgroup ΔU is called the FC-centre of $U(K,G)$. Clearly, if $\Delta U = U(K,G)$, then $U(K,G)$ is an FC-group (group with finite conjugacy classes).

The problem to study the group of units of group rings with FC property was posed by S. K. Sehgal and H. J. Zassenhaus [1]. For a field K of characteristic 0 they described all groups G without subgroups of type p^∞ for which the group of units of the group algebra of G over K is an FC-group. This was spelling for arbitrary groups by H. Cliff and S. K. Sehgal [2].

In this paper we describe the subgroup ΔU when $K\cdot G$ is infinite. Let $t(\Delta U)$ be the group of all elements of finite order of ΔU. Then ΔU is a solvable group of length at most 3 and the subgroup $t(\Delta U)$ is nilpotent of class at most 2. This is new even for group algebras. We use this result for the characterization of those cases when $U(K,G)$ has FC property, and obtain a generalization of the Cliff-Sehgal-Zassenhaus theorem for twisted group algebras.
2. The FC-centre of $U(K_A)$. By a theorem of B. H. Neumann [3] the elements of finite order in ΔU form a normal subgroup which we denote by $t(\Delta U)$, and the factorgroup $\Delta U/t(\Delta U)$ is a torsion free abelian group. Evidently, $\tilde{G} = \{\kappa u_a \mid \kappa \in U(K), a \in G\}$ is a subgroup in $U(K_A(G))$, while $U(K)$ is a normal subgroup in \tilde{G}, with factorgroup $\tilde{G}/U(K)$ isomorphic to G.

If x is a nilpotent element of the ring $K_A(G)$ then the element $y = 1 + x$ is a unit in $K_A(G)$ and is referred to as a unipotent element of $U(K_A(G))$.

Let $\zeta(G)$ be the centre of the group G and $[g, h] = g^{-1}h^{-1}gh (g, h \in G)$.

Lemma 1. Let $K_A(G)$ be an infinite twisted group algebra. Then all unipotent elements of the subgroup ΔU are central in ΔU.

Proof. Let $y = 1 + x$ be a unipotent element of ΔU and $v \in \Delta U$. Then for a positive integer k we have $x^k = 0$ and by induction on k we will prove $vx = xv$.

The subgroup $\tilde{G} = \{\kappa u_a \mid \kappa \in U(K), a \in G\}$ is infinite and by Poincaré’s theorem the centralizer S of the subset $\{v, y\}$ of \tilde{G} is a subgroup of finite index in \tilde{G}. Since \tilde{G} is infinite, S is infinite and $fy = yf$ for all $f \in S$. Then xf is nilpotent and $1 + xf$ is a unit in $K_A(G)$. We can see easily that the set $\{(1 + xf)^{-1}v(1 + xf) \mid f \in S\}$ is finite. Let v_1, \ldots, v_t be the elements of this set and $W_i = \{f \in S \mid (1 + xf)^{-1}v(1 + xf) = v_i\}$. Then $S = \bigcup W_i$ and there exists an index j such that W_j is infinite. Fix an element $f \in W_j$. Any element $q \in W_j, q \neq f$ satisfies

$$(1 + xf)^{-1}v(1 + xf) = (1 + xq)^{-1}v(1 + xq)$$

and

$$v(1 + xf)(1 + xq)^{-1} = (1 + xf)(1 + xq)^{-1}v.$$

Then

$$v((1 + xq) + (xf - xq))(1 + xq)^{-1} = ((1 + xq) + (xf - xq))(1 + xq)^{-1}v,$$

$$v(1 + x(f - q)(1 + xq)^{-1}) = (1 + x(f - q)(1 + xq)^{-1})v$$

and

$$vx(f - q)(1 + xq)^{-1} = x(f - q)(1 + xq)^{-1}v.$$

Now we use the induction mentioned above. For $k = 1$ the statement is trivial; so we suppose it is true for all $1 \leq n < k$, where $k \geq 2$ is any given integer.

If $m \geq 2$, then by induction hypothesis $x^m v = vx^m$ for all $v \in \Delta U$. Clearly, if $i \geq 1$ then

$$x(f - q)x^i q^i v = (f - q)x^{i+1} q^i v = (f - q)v x^{i+1} q^i = vx(f - q)x^i q^i.$$

From (1) we have

$$vx(f - q)(1 - xq + x^2 q^2 + \cdots + (-1)^{k-1} x^{k-1} q^{k-1}) = x(f - q)(1 - xq + x^2 q^2 + \cdots + (-1)^{k-1} x^{k-1} q^{k-1})v.$$
So \((f - q)(v_x - x_v) = 0\).

Now suppose \(v_x \neq x_v\). The element \(q^{-1}f \in \tilde{G}\) can be written as \(\lambda u_h \ (\lambda \in U(K), h \in G)\). By \(v_x - x_v = \sum_{i=1}^{s} \alpha_i u_{g_i} \neq 0\) we have

\[
\sum_{i=1}^{s} \lambda \alpha_i u_{g_i} - \sum_{i=1}^{s} \alpha_i u_{g_i} = 0.
\]

If \(h \in G\) satisfies this equation, then \(g_1 = h g_i\) for some \(j\), and the number of such elements \(h\) is finite. Since \(W_j = \{\lambda u_h \mid \lambda \in U(K)\}\) is an infinite set, there exist \(h\) and different elements \(\lambda_1, \lambda_2 \in K\) such that \(\lambda_1 u_h, \lambda_2 u_h \in W_j\). Then \((\lambda_i u_h - 1)(v_x - x_v) = 0, \ (i = 1, 2)\) and we obtain \((\lambda_1 u_h - \lambda_2 u_h)(v_x - x_v) = 0\). This condition is satisfied only if \(v_x = x_v\) but does not hold.

Lemma 2. Let \(K, G\) be an infinite twisted group algebra, \(H\) a finite subgroup of \(\Delta U\) and \(L_H\) the subalgebra of \(K, G\) generated by \(H\). Then the group of units \(U(L_H)\) of the algebra \(L_H\) is contained in \(\Delta U\), and the factorgroup \(U(L_H)/(1 + J(L_H))\) is abelian.

Proof. If \(H\) is a finite subgroup of \(\Delta U\) and \(L_H\) is the subalgebra of \(K, G\) generated by \(H\), then \(L_H\) is an algebra of finite rank over \(K\) and its radical \(J(L_H)\) is nilpotent. Then \(U(L_H)\) is a subgroup of \(\Delta U\) and by Lemma 1 all unipotent elements of \(U(L_H)\) are central in \(\Delta U\). Therefore \(1 + J(L_H)\) is a central subgroup of \(\Delta U\) and \(J(L_H) \subset \zeta(L_H)\), where \(\zeta(L_H)\) is the centre of \(L_H\). Then by Theorem 48.3 in [4] (p. 209)

\[
L_H = L_H e_1 \oplus \cdots \oplus L_H e_n \oplus N,
\]

where \(L_H e_i\) is a semiprime algebra (i.e. \(L_H e_i / J(L_H e_i)\) is a division ring), \(N\) is a commutative artinian radical algebra, \(e_1, \ldots, e_n\) are pairwise orthogonal idempotents. By Lemma 13.2 in [4] (p. 57) any idempotent \(e_i\) is central in \(L_H\) and \(U(L_H e_i)\) is isomorphic to the subgroup \((1 - e_i + ze_i \mid z \in U(L_H))\) of \(U(L_H)\).

Since \(U(L_H e_i)\) is a subgroup of the FC-group \(\Delta U\) it is an FC-group, too. As \(J(L_H e_i)\) is nilpotent (see [5]),

\[
U(L_H e_i)/(1 + J(L_H e_i)) \cong U(L_H e_i / J(L_H e_i)).
\]

By Scott’s theorem [7], in the skewfield \(L_H e_i / J(L_H e_i)\) every nonzero element is either central or its conjugacy class is infinite. Thus the FC-group \(U(L_H e_i)/(1 + J(L_H e_i))\) is abelian.

Decomposition (2) implies

\[
L_H / J(L_H) \cong L_H e_1 / J(L_H e_1) \oplus \cdots \oplus L_H e_n / J(L_H e_n)
\]

and

\[
U(L_H) / (1 + J(L_H)) \cong U(L_H / J(L_H)) \cong U(L_H e_1 / J(L_H e_1)) \times \cdots \times U(L_H e_n / J(L_H e_n)).
\]

Therefore \(U(L_H) / (1 + J(L_H))\) is abelian.

\[\square\]
Theorem 1. Let $K\Lambda G$ be an infinite twisted group algebra and $t(\Delta U)$ the subgroup of ΔU consisting of all elements of finite order in ΔU. Then all elements of the commutator subgroup of $t(\Delta U)$ are unipotent and central in ΔU.

Proof. Let H be a finite subgroup of $t(\Delta U)$ and L_H the subalgebra of $K\Lambda G$, generated by H. Then the elements of the subgroup $H_1 = H \cap (1 + J(L_H))$ are unipotent and (by Lemma 1) central in ΔU. The subgroup $H(1 + J(L_H))$ is contained in $U(L_H)$ and

$$H / H_1 = H / \left(H \cap (1 + J(L_H)) \right) \cong \left(H(1 + J(L_H)) \right) / (1 + J(L_H)).$$

By Lemma 2 the factorgroup $U(L_H)/(1 + J(L_H))$ is abelian. So H / H_1 is abelian and the commutator subgroup of H is contained in H_1 and consists of unipotent elements.

Since the commutator subgroup of $t(\Delta U)$ is the union of the commutator subgroups of the finite subgroups of $t(\Delta U)$, all elements of the commutator subgroup of $t(\Delta U)$ are unipotent and central in ΔU.

Theorem 2. Let $K\Lambda G$ be an infinite twisted group algebra where $\text{char}(K)$ does not divide the order of any element of ΔG. Then $t(\Delta U)$ is abelian.

Proof. Let H be a finite subgroup of the commutator subgroup of $t(\Delta U)$. Then (by Theorem 1) H is contained in the centre of ΔU. The set $\{u_g^{-1}Hu_g \mid g \in \Delta G\}$ contains only a finite number of subgroups H_1, H_2, \ldots, H_r. The subgroup $L = H_1H_2 \cdots H_r$ is finite and is invariant under inner automorphism $f_g(x) = u_g^{-1}xu_g$ of the ring $K\Lambda \Delta G$, where $g \in \Delta G$. Let x_1, \ldots, x_r be all elements of L. Then $y_i = x_i - 1$ is a nilpotent element, and in the commutative ring L the elements y_1, \ldots, y_r commute. Therefore

$$J \cong \left\{ \sum_{i=1}^s \alpha_i y_i \mid \alpha_i \in K, x_i = y_i + 1 \in L \right\}$$

is a nilpotent subring. Let

$$F = \left\{ \sum_{i=1}^s \alpha_i y_i z_i \mid \alpha_i \in K, x_i = y_i + 1 \in L, z_i \in K\Lambda \Delta G \right\}.$$

Let us prove that F is a nilpotent right ideal of $K\Lambda \Delta G$. If $z = \sum_j \beta_j u_{g_j} \in K\Lambda \Delta G$ then $y_i z = \sum_j \beta_j u_{g_j} u_{g_j}^{-1} y_i u_{g_j}$, and $u_{g_j}^{-1} y_i u_{g_j}$ equals one of the elements y_1, \ldots, y_z. This and the nilpotency of the ring J imply that F is a nilpotent ring. By Passman’s theorem [6], if $\text{char}(K)$ does not divide the order of any element of ΔG then $K\Lambda \Delta G$ does not contain nilideals. Therefore $F = 0$, $L = 1$ and the commutator subgroup $t(\Delta U)$ is trivial so $t(\Delta U)$ is abelian.

Corollary. Let $K\Lambda \Delta G$ be an infinite twisted group algebra. Then ΔU is a solvable group of length at most 3, and the subgroup $t(\Delta U)$ is nilpotent of class at most 2.
3. The FC property of $U(K, G)$.

Lemma 3. Let L be a subfield of the twisted group algebra $K \times G$, where K is a subfield of L, $g \in G$ an element of order n and

$$
\lambda_g = u^n_g = \lambda_{rg}^2 \lambda_{rg}^2 \cdots \lambda_{rg}^n.
$$

If $\alpha^g \neq \lambda_g$ for some $\alpha \in L$ and $\alpha u_g = u_g \alpha$ then $u_g - \alpha$ is a unit in $K \times G$. Furthermore, if L is an infinite field then the number of such units is infinite.

Proof. Let $\alpha \in L$, $\alpha^g \neq \lambda_g$ and $u_g \alpha = \alpha u_g$. Then $\lambda_g - \alpha^g$ is a nonzero element of L and

$$(\alpha^{n-1} + \alpha^{n-2} u_g + \cdots + \alpha u_g^{n-2} + u_g^{n-1})(\lambda_g - \alpha^n)^{-1}$$

is the inverse of $u_g - \alpha$. We know that the number of solutions of the equation $x^n - \lambda_g = 0$ in L does not exceed n. Thus in an infinite field L there are infinitely many elements not satisfying the equation $x^n - \lambda_g = 0$.

Lemma 4. Let G be an infinite locally finite group where char(K) does not divide the order of any element of G. If $U(K, G)$ is an FC-group then G is abelian and $K \times G$ is commutative.

Proof. Let W be a finite subgroup of G. Then the subalgebra $K \times W$ is a semiprime artinian ring and by the Wedderburn-Artin theorem

$$K \times W = M(n_1, D_1) \oplus \cdots \oplus M(n_t, D_t),$$

where each D_k is a skewfield and $M(n_k, D_k)$ is a full matrix algebra. Let e_{ij}, e_{ji} be matrix units in $M(n_k, D_k)$ and $i \neq j$. Then the unipotent elements $1 + e_{ij}, 1 + e_{ji}$ are central in $K \times G$ (see Theorem 1) which is impossible if $i \neq j$. Thus $n_k = 1$ and $K \times W$ is a direct sum of skewfields, $K \times W = D_1 \oplus D_2 \oplus \cdots \oplus D_t$ and

$$U(K \times W) = U(D_1) \times U(D_2) \times \cdots \times U(D_t).$$

By Scott’s theorem [7] any nonzero element of a skewfield is either central or has an infinite number of conjugates. Therefore $K \times W$ is a direct sum of fields and W is abelian. Since G is a locally finite group, G is abelian and $K \times G$ is a commutative algebra.

Lemma 5. Let $K \times G$ be infinite and char(K) does not divide the order of any element of the normal torsion subgroup L of G. If $U(K \times G)$ is an FC-group then all idempotents of $K \times L$ are central in $K \times G$.

Proof. Let the idempotent $e \in K \times L$ be noncentral in $K \times G$. Then there exists $g \in G$ such that $e u_g \neq u_g e$. The subgroup $H = \langle g^{-1} \text{supp}(e) g | i \in \mathbb{Z} \rangle$ is finite and for any $a \in G$ the subalgebra $K \times H$ of $K \times L$ is invariant under the inner automorphism $\phi(x) = u_a^{-1} x u_a$. It is easy to see (by Lemma 4) that $K \times H$ is a commutative semisimple K-algebra of finite rank and the idempotent $e \in K \times H$ is a sum of primitive idempotents. Consequently, there exists a primitive idempotent f of $K \times H$ which does not commute with u_g. Then the idempotents f and $u_g^{-1} f u_g$ are orthogonal and $(u_g f)^2 = u_g f u_g f = u_g^2 u_g^{-1} f u_g f = 0$. By Theorem 1 the unipotent element $1 + u_g f$ commutes with u_g and $(1 + u_g f) u_g = u_g (1 + u_g f)$ implies $u_g f = f u_g$, which is impossible. Thus, all idempotents of $K \times L$ are central in $K \times G$.

LEMMA 6. Let $U(K,G)$ be an FC-group and $t(G)$ the set of all elements of finite order in G. Then
\begin{enumerate}
 \item G is an FC-group;
 \item if there exists an infinite subfield L in the centre of K,G such that $L \supseteq K$ then $t(G)$ is central in G and \(\lambda_{g,h} = \lambda_{h,g} \) \(h \in t(G), g \in G \).
\end{enumerate}

PROOF. If $U(K,G)$ is an FC-group then $G = \{ Xg \mid X \in U(K), g \in G \}$ is an FC-group. Clearly $U(K)$ is normal in G and $G \cong \tilde{G} / U(K)$. We conclude that G is an FC-group as it is a homomorphic image of the FC-group \tilde{G}.

Let L be an infinite field which satisfies condition 2 of the lemma. Then by Lemma 3 for any $h \in t(G)$ there exists a countable set $S = \{ \alpha_i \mid i \in \mathbb{Z} \}$ such that $u_h - \alpha_i$ is a unit for all $i \in \mathbb{Z}$. Suppose that $u_g u_h = u_h u_g$ for some $g \in G$. Next we observe that the equality
\[(u_h - \alpha_i)u_g(u_h - \alpha_i)^{-1} = (u_h - \alpha_j)u_g(u_h - \alpha_j)^{-1}\]
holds only in case $\alpha_i = \alpha_j$. Since
\[(u_h - \alpha_i)(u_h - \alpha_j)^{-1} = 1 + (\alpha_j - \alpha_i)(u_h - \alpha_j)^{-1},\]
we obtain $(\alpha_i - \alpha_j)(u_g u_h - u_h u_g) = 0$ and $\alpha_i = \alpha_j$. It follows that the set
\[\{(u_h - \alpha_j)u_g(u_h - \alpha_j)^{-1} \mid i \in \mathbb{Z}\}\]
is infinite which contradicts the condition that $U(K,G)$ is an FC-group. Then $u_g u_h = u_h u_g$, therefore $[g, h] = 1$, $t(G) \subseteq \z(\tilde{G})$ and $\lambda_{g,h} = \lambda_{h,g}$ \(h \in t(G), g \in G \).

LEMMA 7. Let G be an abelian torsion group, K,G a commutative semisimple algebra and v an idempotent of K,G. If K,Gv contains a finite number of idempotents then K,Gv is a direct sum of finitely many fields.

PROOF. If e_1, \ldots, e_s are all the idempotents of K,Gv, then
\[L = \langle \text{supp}(e_1), \ldots, \text{supp}(e_s) \rangle\]
is a finite subgroup in G and K,Lv is a direct sum of finitely many fields,
\[K,Lv = (K,Lv)f_1 \oplus \cdots \oplus (K,Lv)f_s,\]
where f_1, \ldots, f_s are orthogonal primitive idempotents of K,Lv. The corresponding direct sum in K,Gv is
\[K,Gv = (K,Gv)f_1 \oplus \cdots \oplus (K,Gv)f_s.\]

We show that the element $0 \neq x \in (K,Gv)f_i$ is a unit. $R = \langle L, \text{supp}(x) \rangle$ is a finite subgroup and K,Rv is a direct sum of finitely many fields,
\[K,Rv = (K,Rv)l_1 \oplus \cdots \oplus (K,Rv)l_s,\]
and each idempotent f_i is either equal to an idempotent l_j or is a sum of these idempotents. If $f_i = l_j$ then $x f_i \in (K,Rv)f_i$ and x is a unit in $(K,Lv)f_i$. If $f_i = l_{i_1} + l_{i_2}$ \((l_{i_1}, l_{i_2} \in K,Lv) \) then $(K,Lv)f_i = (K,Lv)l_{i_1} \oplus (K,Lv)l_{i_2}$, but this does not hold.
THEOREM 3. Let $K\gamma G$ be an infinite twisted group algebra of $\text{char}(K\gamma G) = p$, such that $t(G)$ contains a p-element and either the field K is perfect or for any element $g \in G$ of order p^k, the element u_g^p is algebraic over the prime subfield of K. Then $U(K\gamma G)$ is an FC-group if and only if G is an FC-group and satisfies the following conditions:

1. $p = 2$ and $|G'| = 2$;
2. $t(G)$ is central in G and $t(G) = G' \times H$, where H is abelian, and has no 2-elements;
3. $K\gamma H$ is a direct sum of a finite number of fields;
4. $\{\lambda^{-1}_{h, h^{-1}, g} \lambda_{h^{-1}, g, h} \mid h \in H\}$ is a finite set for all $g \in G$.

PROOF (NECESSITY). By Lemma 6 G is an FC-group. Let g be an element of order p^k. Then $u_g^p = \lambda_g \in U(K)$ and in the perfect field K we can take a p^k-th root of λ_g which we denote by μ. If K_0 is the prime subfield of K and λ_g is algebraic over K_0 then $K_0(\lambda_g)$ is a finite field and so it is perfect. Thus $u_g - \mu$ is nilpotent and $1 + \mu - u_g$ and (by Theorem 1) $1 - (u_g - \mu)u_a$ is central in $U(K\gamma G)$. Then for any $b \in G$ by

$$u_b(1 - (u_g - \mu)u_a) = (1 - (u_g - \mu)u_a)u_b$$

implies

(4) $$u_bu_gu_a - \mu u_bu_a - u_gu_a + \mu u_a u_b = 0.$$

Each u_g can be written in the form $\mu + (u_g - \mu)$ and so $\mu^{-1}u_g = 1 + \mu^{-1}(u_g - \mu)$. Thus $\mu^{-1}u_g$ is an unipotent element and it commutes with u_b and u_a. Then (4) can be written as

(5) $$u_gu_bu_a - u_gu_a u_b - \mu u_bu_a + \mu u_a u_b = 0.$$

If $[a, b] = 1$ then, by (5), we have $(\lambda_{a, b} - \lambda_{b, a})(u_g - \mu) = 0$. From this equation we get that the coefficient of u_g must be zero and $\lambda_{a, b} = \lambda_{b, a}$. Thus, $u_g u_b = u_a u_b$.

Let $[a, b] \neq 1$. Then by (5), $u_g u_b u_a = -\mu u_a u_b$ and $u_g u_a u_b = -\mu u_b u_a$. So

(6) $$\begin{cases} u_g = -\mu [u_a^{-1}, u_b^{-1}]^{-1}, \\ u_g = -\mu [u_a^{-1}, u_b^{-1}]. \end{cases}$$

Consequently $u_g^2 = \mu^2$ and $(u_g\mu^{-1})^2 = 1$. Note that in (6) g may be any p-element, further a and b may be any noncommuting elements of G. This is possible only if $p = 2$. Then the commutator subgroup \hat{G}' of group $\hat{G} = \{\kappa u_a \mid \kappa \in U(K), a \in G\}$ is of order 2 and coincides with the Sylow 2-subgroup of \hat{G}. Thus $\hat{G}' \subseteq \zeta(\hat{G})$ and \hat{G} is a nilpotent group of class at most 2. Let

$$L = \langle \mu u_h \mid \mu \in U(K), h \in t(G) \rangle.$$

Then $L / U(K)$ is nilpotent torsion group and its 2-Sylow subgroup is of order 2. Here L is abelian because \hat{G}' is of order 2 and it is a subgroup in L. Therefore $t(G)$ is abelian and

1 If K, H is a group ring then H is a finite abelian group.
$t(G) = S \times H$, where $S = \langle g \mid g^2 = 1 \rangle$ is the Sylow 2-subgroup of $t(G)$ and all elements of H are of odd order.

We show that $K_\lambda H$ is central in $K_\lambda G$. Let $h \in H, a \in G$ and $[u_a, u_h] \neq 1$. Then

\[[u_a, u_h] = \mu u_g \]

and

\[\lambda u_{a^{-1}h^{-1}ah} = \mu u_g. \]

It is clear that $[a, h] \in H$ and the order of $[a, h]$ is odd because H is normal in G. Since g is a 2-element, (7) does not hold. Thus $K_\lambda H$ is central in $K_\lambda G$ and $t(G) \subseteq \zeta(G)$.

Let us prove that $K_\lambda H$ contains only a finite number of idempotents. Suppose $K_\lambda H$ contains an infinite number of idempotents e_1, e_2, \ldots. If $d, b \in G$ and $[b, d] = g \neq 1$ then $g^2 = 1$ and (by Lemma 5) $1 - e_i + u_d e_i$ is a unit. Clearly,

\[(1 - e_i + u_d e_i)^{-1} u_b (1 - e_i + u_d e_i) = u_b (1 - e_i + \mu u_g e_i), \]

where $\mu = \lambda_{d, d}^{-1} \lambda_{b, b}^{-1} \lambda_{d^{-1}b, d^{-1}b}^{-1}$.

If $i \neq j$ then $1 - e_i + \mu u_g e_i \neq 1 - e_j + \mu u_g e_j$. Indeed, if $1 - e_i + \mu u_g e_i = 1 - e_j + \mu u_g e_j$, then $(e_i - e_j)(\mu u_g - 1) = 0$. Since $e_i, e_j \in K_\lambda H$ and $u_g \notin K_\lambda H$, the last equality is true only in case $i = j$. Therefore if $i \neq j$ then $1 - e_i + \mu u_g e_i \neq 1 - e_j + \mu u_g e_j$ and u_b has an infinite number of conjugates, which does not hold. Thus $K_\lambda H$ contains a finite number of idempotents e_1, e_2, \ldots, e_t, and (by Lemma 7) $K_\lambda H$ is a direct sum of a finite number of fields.

Since \(\{u_g^{-1} u_h u_g \mid g \in G\} \) is a finite set, we obtain condition 4 of the theorem.

Sufficiency. Let the conditions of the theorem be satisfied. We prove that $U(K_\lambda G)$ is an FC-group.

Let $G' = \langle a \mid a^2 = 1 \rangle$ be the commutator subgroup of G and $\mu^2 = \lambda_{a, a}$. Thus the ideal $\mathfrak{F} = K_\lambda G(u_a - \mu)$ is nilpotent.

In $K_\lambda G$ we choose a new basis $\{w_g \mid g \in G\}$,

\[w_g = \begin{cases} u_g, & \text{if } g \in G \setminus \langle a \rangle, \\ \mu^{-1} u_g, & \text{if } g \in \langle a \rangle. \end{cases} \]

Let $G = \cup b \langle a \rangle$ be the decomposition of the group G by the cosets of $\langle a \rangle$. Any element $x + \mathfrak{F} \in K_\lambda G / \mathfrak{F}$ can be written as

\[x + \mathfrak{F} = \sum_i \alpha_i w_{b_i} + \sum_i \beta_i w_{b_i} w_a + \mathfrak{F} \]

\[= \sum_i \alpha_i w_{b_i} + \sum_i \beta_i w_{b_i} (w_a - 1) + \sum_i \beta_i w_{b_i} + \mathfrak{F} = \sum_i (\alpha_i + \beta_i) w_{b_i} + \mathfrak{F}. \]

We show that $K_\lambda G / \mathfrak{F}$ is commutative. Indeed

\[(w_g + \mathfrak{F})(w_h + \mathfrak{F}) = w_g w_h + \mathfrak{F} = w_h w_g + \mathfrak{F} = w_h w_g + \mathfrak{F},\]

and the commutator $[w_g, w_h]$ is either 1 or w_a. If $[w_g, w_h] = w_a$ then

\[w_g w_h + \mathfrak{F} = w_h w_g w_a + \mathfrak{F} = w_h w_g (w_a - 1) + w_h w_g + \mathfrak{F} = w_h w_g + \mathfrak{F}. \]
We will construct the twisted group algebra $K_{\mu}H$ of the group $H = G/\langle a \rangle$ over the field K with the system of factors μ.

Let $R(H) = R(G/\langle a \rangle)$ be a fixed set of representatives of all left cosets of the subgroup $\langle a \rangle$ in G and $H = \langle h_i = b_i\langle a \rangle \mid b_i \in R(G/\langle a \rangle) \rangle$. Let t_h denote element $w_h \in \mathbb{Z}$ if $h_i, h_j = h_k$, then $b_i b_j = b_k a^s \ (s = \{0, 1\})$, and

\[t_i t_j = w_{b_i} w_{b_j} + \mathbb{Z} = \lambda_{b_i, b_j} w_{b_i a^w} + \mathbb{Z} = \lambda_{b_i, b_j} \lambda_{b_i, a}^{-1} w_{b_i a^w} + \mathbb{Z}. \]

Let $\mu_{b_i, b_j} = \lambda_{b_i, b_j} \lambda_{b_i, a}^{-1}$ and $\mu = \{\mu_{a, b} \mid a, b \in H\}$. Let $\{t_h \mid h \in H\}$ be a basis of the twisted group algebra $K_{\mu}H$ with the system of factors μ. Clearly $t_0 t_0 = \mu_{b_0, b_0} = I$. Let $t(H)$ be the set of elements of finite order of H and $H = \cup c_i t(H)$ the decomposition of the group H by the cosets of the subgroup $t(H)$. Then $x, x^{-1} \in U(K_{\mu}H)$ can be written as

\[x = \sum_{i=1}^{t} \alpha_i t_{c_i} \quad \text{and} \quad x^{-1} = \sum_{i=1}^{s} \beta_i t_{d_i}, \]

where α_i, β_j are nonzero elements of $K_{\mu}t(H)$. The subgroup

\[L = \langle \text{supp}(\alpha_1), \ldots, \text{supp}(\alpha_t), \text{supp}(\beta_1), \ldots, \text{supp}(\beta_s) \rangle \]

is finite and $K_{\mu}L$ is a direct sum of fields

\[(8) \quad K_{\mu}L = e_1 K_{\mu}L \oplus \cdots \oplus e_n K_{\mu}L. \]

Let $x e_k = \sum_{i=1}^{n} \gamma_i t_{c_i}$ and $x^{-1} e_k = \sum_{i=1}^{m} \delta_i t_{d_i}$, where γ_i, δ_j are nonzero elements of the field $K_{\mu}L e_k$.

We know [8], that a torsion free abelian group is orderable. Therefore we can assume that

\[c_i \ t(H) < c_{i+1} t(H) < \cdots < c_n t(H) \]

and

\[d_i \ t(H) < d_{i+1} t(H) < \cdots < d_m t(H). \]

Then $c_i, d_j t(H)$ is called the least and $c_i, d_j t(H)$ is called the greatest among the elements of the form $c_i, d_j t(H)$. It is easy to see that $c_i, d_j t(H) < c_i, d_j t(H)$ if $n > 1$ or $m > 1$. Therefore $\gamma_i d_{i+1} c_{i} t_{c_{i}} \neq \gamma_{m} d_{m} e_{l_{m}} t_{d_{m}}$. Since $x^{-1} e_k x e_k = e_k$, we have $n = m = 1$, $x e_k = \gamma t_{c_i}$ and $x^{-1} e_k = \gamma^{-1} t_{c_i}^{-1}$. Thus x and x^{-1} can be written as

\[x = \sum_{i=1}^{t} \gamma_i t_{c_i} \quad \text{and} \quad x^{-1} = \sum_{i=1}^{t} \gamma_i^{-1} t_{c_i}^{-1}, \]

where $\gamma_1, \ldots, \gamma_t$ are orthogonal elements.

Let $\phi: K_2 G/\langle a \rangle \rightarrow K_{\mu}H$ be an isomorphism of these algebras. If $x \in U(K_2 G)$ then $\phi(x + \mathbb{Z}) = \sum_{i=1}^{t} \gamma_i t_{c_i}$ where $\gamma_i \in K_{\mu}L e_i$. It is easy to see that there exists an abelian subgroup L of G such that $L = L/\langle a \rangle$. The algebra $K_2 L$ is commutative and its radical is a nilpotent ideal equal to $\mathbb{Z} \cap K_2 L$. Since $K_{\mu}L/\langle 3 \cap K_2 L \rangle \cong K_2 L$, the classical method
of lifting idempotents yields idempotents \(f_1, \ldots, f_t \) in \(K/L \) such that \(f_1 + \cdots + f_t = 1 \) and \(f_1 + 3 = e \). Then \(x = xf_1 + \cdots + xf_t \) and \(\phi(xf_1 + 3) = \gamma_i t_i \), where \(h_i = b_i(a), b_i \in G \). There exists an element \(v_i \in K/L \) such that \(\phi(v_i + 3) = \gamma_i t_i \). We can find an element \(r \in 3 \) such that \(xf_i = (v_i + rf_i)w_{g_i} \).

Clearly \(s_i = v_i + rf_i \) is a unit in \(K/L \) and is central in \(K/G \). So \(s_1, \ldots, s_t \) are orthogonal and \(x = \sum_{i=1}^t s_i w_{g_i} x^{-1} = \sum_{i=1}^t s_i x w_{g_i}^{-1} \). Since \(s_i \in \zeta(K/G), x^{-1} w_{g_i} x = \sum_{i=1}^t w_{g_i}^{-1} w_{g_i} w_{g_i} \) for any \(g \in G \). By condition 4 our theorem \(w_{g_i} \) has a finite number of conjugates, because \(G \) is an FC-group. Thus \(U(K/G) \) is an FC-group.

Lemma 8. Let \(K \) be a field such that \(\text{char}(K) \) does not divide the order of any element of \(t(G) \), \(K/t(G) \) a commutative algebra that does not contain a minimal idempotent. Then for any idempotent \(e \in K/t(G) \) there exists an infinite set of idempotents \(e_1 = e, e_2, \ldots \) such that

\[
(9) \quad e_k e_{k+1} = e_{k+1} \quad (k \in \mathbb{N}).
\]

Proof. Suppose \(K/t(G) \) does not contain a minimal idempotent. First we prove that for any idempotent there exists an infinite set of idempotents \(e_1, e_2, \ldots \) in \(K/t(G) \) satisfying condition (9).

Let \(e_1 \) be an idempotent of \(K/t(G) \) and \(H_1 = \langle \text{supp}(e_1) \rangle \). Then the ideal \(K/t(G)e_1 \) is not minimal and so contains a proper ideal \(\mathfrak{Z}_1 \) of \(K/t(G) \). Let \(0 \neq x_1 \in \mathfrak{Z}_1 \) and \(H_2 = \langle H_1, \text{supp}(x_1) \rangle \). Then \(\mathfrak{Z}_1 = \mathfrak{Z}_1 \cap K/t(G)H_2 \) is an ideal of \(K/t(G) \) and \(\mathfrak{Z}_1 \) is generated by the idempotent \(e_2 \) because \(H_2 \) is a finite subgroup of \(t(G) \) and the commutative algebra \(K/t(G)H_2 \) is semiprime. It is easy to see that \(e_1 = e_2 + f, f \neq 0 \) and \(e_1 e_2 = e_2 \). Indeed, if \(f = 0 \), then \(e_1 = e_2 \) and \(K/t(G)e_1 = K/t(G)e_2 \subset \mathfrak{Z}_1 \), which does not hold. The ideal \(K/t(G)e_2 \) contains a proper ideal \(\mathfrak{Z}_2 \) of \(K/t(G) \). We choose a nonzero element \(0 \neq x_2 \in \mathfrak{Z}_2 \) and consider the subgroup \(H_3 = \langle H_2, \text{supp}(x_2) \rangle \). The ideal \(\mathfrak{Z}_2 = \mathfrak{Z}_2 \cap K/t(G)H_3 \) is generated by the idempotent \(e_3 \) and \(e_2 e_3 = e_3 \neq e_2 \). This method enables us to construct an infinite number of idempotents \(e_1, e_2, \ldots \) satisfying condition (9), which completes the proof.

Lemma 9. Let \(K \) be a field such that \(\text{char}(K) \) does not divide the order of any element of \(t(G) \), and \(U(K/G) \) an FC-group. If the commutative algebra \(K/t(G) \) contains an infinite number of central idempotents \(f_i, f_2, \ldots \) and \(g = [a, b] (a, b \in G) \) is an element of order \(n \) then the commutators \([u_a, u_b] \) and \([a, b] \) have the same order and

\[
(10) \quad (f_i - f_j)(1 - [u_a, u_b]) = 0
\]

for some \(i \neq j \).

Proof. Let \(g = [a, b] \neq 1 \) where \(a, b \in G \). By B. H. Neumann's theorem \(G/t(G) \) is abelian, thus \(g \in t(G) \) and \(1 - f_i + u_b f_i \) is a unit in \(K/G \). The element \(u_a \) has a finite number of conjugates in \(U(K/G) \) and

\[
(1 - f_i + u_b^{-1} f_i)u_a (1 - f_i + u_b f_i) = u_a (1 - f_i + [u_a, u_b] f_i).
\]
Consequently there exist \(i \) and \(j \) \((i < j)\), such that
\[
1 - f_i + [u_a, u_b]f_i = 1 - f_j + [u_a, u_b]f_j
\]
and
\[
(f_i - f_j)(1 - [u_a, u_b]) = 0.
\]
If \(n \) is the order of \(g = [a, b] \) then
\[
[u_a, u_b]^n = \gamma \in U(K).
\]
Then by (11) we have \(\gamma(f_i - f_j) = f_i - f_j \). So \(\gamma = 1 \) and
\[
[u_a, u_b]^n = 1.
\]

Theorem 4. Let \(K_\lambda G \) be an infinite twisted group algebra, and \(\text{char}(K) \) does not divide the order of any element of \(t(G) \). If \(K_\lambda t(G) \) contains only a finite number of idempotents then \(U(K_\lambda G) \) is an FC-group if and only if \(G \) is an FC-group and the following conditions are satisfied:
1. all idempotents of \(K_\lambda t(G) \) are central in \(K_\lambda G \);
2. \(\{\lambda^{-1}_{h,h^{-1}g,h} \mid h \in H\} \) is a finite set for every \(g \in G \);
3. \(K_\lambda t(G) \) is a direct sum of a finite number of fields;
4. if \(K_\lambda t(G) \) is infinite then it is central in \(K_\lambda G \).

Proof (Necessity). By Lemmas 4, 6 and 7 \(K_\lambda t(G) \) is commutative, \(G \) is an FC-group and all idempotents of \(K_\lambda t(G) \) are central in \(K_\lambda G \). Since \(\{u_g^{-1} u_g \mid g \in G\} \) is a finite set, condition 2 of the theorem is satisfied.

Since \(K_\lambda t(G) \) contains only a finite number of idempotents (by Lemma 7) \(K_\lambda t(G) \) is a direct sum of a finite number of fields. Let \(K_\lambda t(G) \) be infinite and \(K_\lambda t(G) e_i \) a field in this direct decomposition of \(K_\lambda t(G) \). Lemma 5 implies that \(K_\lambda t(G) e_i \) is invariant under the inner automorphism \(\psi(x) = u_g^{-1} x u_g \) for any \(g \in G \). Since \(\langle u_g, K_\lambda t(G) e_i \setminus \{0\} \rangle \) is an FC-group there exists a finite subfield \(L_y \) of \(K_\lambda t(G) e_i \) such that \(y u_g = u_g y \) for every \(y \in L \). Let \(H = \langle g, t(G) \rangle \). Then \(K_\lambda H \) is subalgebra of \(K_\lambda G \) and (by Lemma 6) \(K_\lambda t(G) \) is central in \(K_\lambda H \).

Sufficiency. Let \(K_\lambda t(G) \) be a direct sum of fields,
\[
K_\lambda t(G) = F_1 \oplus F_2 \oplus \cdots \oplus F_l.
\]
Then \(F_i = K_\lambda t(G) e_i \), where \(e_i \) is a central idempotent in \(K_\lambda G \). It is easy to see that \(K_\lambda G \) is a direct sum of ideals
\[
K_\lambda G = K_\lambda G e_1 \oplus \cdots \oplus K_\lambda G e_l.
\]
Let us prove that \(K_\lambda G e_q \) is isomorphic to a crossed product \(F_q \ast H \) of the group \(H = G / t(G) \) and the field \(F_q \).
Let $R_1(G/t(G))$ be a fixed set of representatives of all left cosets of the subgroup $t(G)$ in G. Any element $x \in K \cdot Ge_q$ can be written as

$$x = e_q u_{c_i} \gamma_1 + \cdots + e_q u_{c_i} \gamma_s,$$

where $\gamma_k \in K \cdot t(G), c_k \in R_1(G/t(G))$. If $c_k c_j = c_k h$ ($h \in t(G)$) then

$$u_{c_i} u_{c_j} = u_{c_i} \gamma_{c_i, c_j} = u_{c_i} \lambda_{c_i, c_j} = u_{c_i} u_h \lambda_{c_i, c_j}.$$

We will construct the crossed product $F_q \ast H$, where

$$H = \{ h \in c_i t(G) \mid c_i \in R_1(G/t(G)) \}.$$

Let $\alpha \in F_q$ and σ be a map from H to the group of automorphism $\text{Aut}(F_q)$ of the field F_q such that $\sigma(h)(\alpha) = u_i^{-1} \alpha u_i$ and let $\mu h_h = u_h \lambda_{c_i, c_j}^{-1} \lambda_{c_i, c_j}$.

Clearly, the set $\mu = \{ \mu a, b \in U(F_q) \mid a, b \in H \}$ of nonzero elements of the field F_q satisfies

$$\mu_{a, b} \mu_{h, c} = \mu_{a, b} \mu_{h, c},$$

where $\alpha \in F_q$ and $a, b, c \in H$.

Then $F_q \ast H = \{ \sum_{h \in H} w_h \alpha_h \mid \alpha_h \in F_q \}$ is a crossed product of the group H and the field F_q and we have $w_d w_d = w_d \mu_{d, d}$ and $\alpha w_d = w_d \alpha^{\sigma(d)}$.

Clearly, $F_q \ast H$ and $K \cdot Ge_q$ are isomorphic because

$$u_{c_i} \alpha u_{c_j} = u_{c_i} u_{c_j} (u_i^{-1} \alpha u_i) = u_{c_i} u_{c_j} \alpha^{\sigma(c_i)}.$$

We know [5] that the group of units of the crossed product $K \ast H$ of the torsion free abelian group H and the field K consists of the elements $w_h \alpha$, where $\alpha \in U(K), h \in H$.

By (12), for every $y \in U(K \cdot G)$,

$$y = u_i \gamma_1 + \cdots + u_i \gamma_t$$

and

$$y^{-1} = u_i^{-1} \gamma_1^{-1} + \cdots + u_i^{-1} \gamma_t^{-1},$$

where $\gamma_1, \ldots, \gamma_t$ are orthogonal elements.

Let $x = \delta_1 u_{d_1} + \cdots + \delta_l u_{d_l} \in U(K \cdot G).$ Then

$$y x y^{-1} = u_i \gamma_1 \delta_1 u_{d_1} u_i^{-1} \gamma_1^{-1} + \cdots + u_i \gamma_l \delta_l u_{d_l} u_i^{-1} \gamma_l^{-1}.$$

If $K \cdot t(G)$ is infinite then $K \cdot t(G) \subseteq \zeta(K \cdot G)$ and

$$y x y^{-1} = \sum_{i=1}^l \delta_i u_{c_i} u_{d_i} u_i^{-1} = \sum_{i=1}^l \delta_i \lambda_{c_i, d_i}^{-1} \lambda_{c_i, d_i} \lambda_{c_i, d_i} u_{c_i, d_i}^{-1} u_{c_i, d_i}^{-1}.$$

Since G is an FC-group, by condition 2 of the theorem, x has a finite number of conjugates, so $U(K \cdot G)$ is an FC-group.

If $K \cdot t(G)$ is finite then F_q is a finite field and

$$y^{-1} x y = \sum_{i=1}^l \gamma_i^{-1} u_{c_i}^{-1} \delta_i u_{d_i} u_i \gamma_i = \sum_{i=1}^l \lambda_{c_i, c_i}^{-1} \lambda_{c_i, d_i} \lambda_{c_i, d_i}^{-1} \gamma_i^{-1} \delta_i \gamma_i \lambda_{c_i, c_i}^{-1} u_{c_i, d_i}^{-1} u_{c_i, d_i}.$$

Since G is an FC-group and F_q is a finite field, x has a finite number of conjugates, so $U(K \cdot G)$ is an FC-group.
THEOREM 5. Let KzG be infinite and $\text{char}(K)$ does not divide the order of any element of $t(G)$. If $K\lambda t(G)$ contains an infinite number of idempotents then $U(K\lambda G)$ is an FC-group if and only if G is an FC-group and the following conditions are satisfied:

1. $K\lambda t(G)$ is central in KzG and contains a minimal idempotent;
2. $\{\lambda_{h,1}^{-1}, \lambda_{h,2}^{-1}, g \lambda_{h,1}^{-1}, g \lambda_{h,2}^{-1}, h \mid h \in H\}$ is a finite set for any $g \in G$;
3. the commutator subgroups of G and of $\tilde{G} = \{\kappa u_a \mid \kappa \in U(K), a \in G\}$ are isomorphic and G' is either a finite group or isomorphic to the group $\mathbb{Z}(q^\infty)$ ($q \neq p$), and there exists an $n \in \mathbb{N}$, such that the field K does not contain the primitive q^n-th root of 1;
4. for every finite subgroup H of the commutator subgroup of G the element $e_H = \frac{1}{|H|} \sum_{h \in H} h$ is an idempotent of $K\lambda t(G)$, and $K\lambda t(G)(1 - e_H)$ is a direct sum of a finite number of fields.

PROOF (NECESSITY). By Lemmas 4, 6 and 7 $K\lambda t(G)$ is commutative, G is an FC-group and all idempotents of $K\lambda t(G)$ are central in KzG.

Let us prove that $K\lambda t(G)$ contains a minimal idempotent. Suppose the contrary. Let $a, b \in G$ and $1 \neq [a, b] = g$. Since g is an element of finite order n, by Lemma 9, $[u_a, u_b]^n = 1$ and

$$f = \frac{1}{n}(1 + [u_a, u_b] + [u_a, u_b]^2 + \cdots + [u_a, u_b]^{n-1})$$

is an idempotent. By Lemma 11, for $1 - f$ one can construct an infinite sequence of idempotents $e_1 = 1 - f, e_2, \ldots$, satisfying (9). By Lemma 9,

$$(1 - [u_a, u_b])(e_i - e_j) = 0,$$

where $i < j$. Consequently $([u_a, u_b])^k(e_i - e_j) = (e_i - e_j)$ for all k and $f(e_i - e_j) = e_i - e_j$. This implies $(1 - f)(e_i - e_j) = 0$. Since $e_1 = 1 - f$, $e_1(e_i - e_j) = 0$. If we multiply this equality from the right by the elements e_2, \ldots, e_{i-1}, by (9) we obtain $e_{i-1} - e_j = 0$. Now we arrived at a contradiction, which proves that $K\lambda t(G)$ contains a minimal idempotent.

It is easy to see that $t(G)$ is infinite, otherwise $K\lambda t(G)$ would contain a finite number of idempotents. $K\lambda t(G)$ contains a minimal idempotent e, and so there exist only a finite number of elements $g \in t(G)$, such that $eug = e$. Consequently $K\lambda t(G)e$ is an infinite field and contains K as a subfield. Then as in the proof of Theorem 4, $K\lambda t(G)$ is central in KzG.

Since $\{u_g^{-1}u_hu_g \mid g \in G\}$ is a finite set, we obtain condition 2 of the theorem.

Suppose $c \in G'$ and

$$c = [a_1, b_1][a_2, b_2] \cdots [a_n, b_n].$$

Since $K\lambda t(G)$ is central in KzG and $1 - e_i + e_iu_h \in U(K\lambda t(G))$ we have

$$\prod_{k=1}^n(1 - e_i + e_iu_h^{-1})u_{a_k}(1 - e_i + e_iu_h) = \prod_{k=1}^n(u_{a_k}(1 - e_i + e_i[u_{a_k}, u_h])) = \prod_{k=1}^n(u_{a_k})(\prod_{k=1}^n(1 - e_i + e_i[u_{a_k}, u_h]))$$

If KzG is a group ring, then 1 and 3 imply 4 (see [6] p. 690, Lemma 4.3, also [10]).
for all $i \in \mathbb{N}$. Since each $u_{a_1}, u_{a_2}, \ldots, u_{a_n}$ has a finite number of conjugates, there are only a finite number of different elements of the form $\prod_{k=1}^{n}(1 - e_t + e_l[u_{a_k}, u_{b_k}])$. These elements will be denoted by w_1, \ldots, w_t. Let

$$W_r(c) = \left\{ i \in \mathbb{N} \mid \prod_{k=1}^{n}(1 - e_t + e_l[u_{a_k}, u_{b_k}]) = w_r \right\}.$$

It is easy to see that the set of natural numbers \mathbb{N} is the union of the subsets $W_i(c)$ ($i = 1, \ldots, r$), of which at least one is infinite. If $W_i(c)$ is infinite and $i, j \in W_i(c)$ then

$$(e_i - e_j)\left(1 - \prod_{k=1}^{n}[u_{a_k}, u_{b_k}]\right) = 0.$$

This implies that if

$$\prod_{k=1}^{n}[u_{a_k}, u_{b_k}] = \gamma \in U(K)$$

then $\gamma = 1$.

Now we prove that the commutator subgroups of G and of $\tilde{G} = \{ \kappa u_a \mid \kappa \in U(K), a \in G \}$ are isomorphic. It is easy to see that the map $\tau(\lambda u_a) = g \left(\lambda \in U(K), g \in G \right)$ is a homomorphism from \tilde{G} to G. Every element $h \in \tilde{G}$ can be written as

$$h = [u_{a_1}, u_{b_1}][u_{a_2}, u_{b_2}] \cdots [u_{a_n}, u_{b_n}].$$

As we have shown above, if $h = \lambda \in U(K)$ then $\lambda = 1$. Thus, τ is an isomorphism from \tilde{G} to G'.

Let H be a finite subgroup of \tilde{G}'. Then $e_H = \frac{1}{|H|} \sum_{h \in H} h$ is an idempotent of $K \lambda(t(G))$. Suppose that $K \lambda(t(G))(1 - e_H)$ contains an infinite number of idempotents e_1, e_2, \ldots. If $H = \{h_1, h_2, \ldots, h_s\}$, then, as it is shown above, for every $h_j \in H$,

$$\mathbb{N} = W_{1}(h_1) \cup \cdots \cup W_{r_j}(h_j),$$

where $j = 1, 2, \ldots, s$, and for every $k \neq l$, $W_{k}(h_l)$ and $W_{l}(h_k)$ have empty intersection.

It is clear that there exists an infinite subset $M = W_{i_1}(h_1) \cap \cdots \cap W_{i_s}(h_s)$. If $i, j \in M$, then by (13), we have $(e_i - e_j)(1 - h_r) = 0$ for any r. Then

$$e_i - e_j = \frac{1}{|H|} \sum_{r=1}^{s}(h_r(e_i - e_j)) = e_H(e_i - e_j).$$

Since $e_i - e_j \in K \lambda(t(G))(1 - e_H)$, by (14),

$$(e_i - e_j)(1 - e_H) = (e_i - e_j) - e_H(e_i - e_j) = 0.$$

Thus, $K \lambda(t(G))(1 - e_H)$ contains a finite number of idempotents, and by Lemma 7, it can be given as a direct sum of a finite number of fields.

Let us prove that there exists only finitely many elements of prime order in G'.

Suppose the contrary. If $a, b \in G$ then $1 \neq [a, b] = g \in t(G)$. As we have seen above, if $h \in G'$, then there exists $\mu \in U(K)$ such that the order of the element μu_h equals the
order of h. Then there exists a countably infinite subgroup S, generated by elements of prime order, such that $\langle g \rangle \cap S = 1$. By Prüfer’s theorem [9] S is a direct product of cyclic subgroups $S = \prod_i \langle a_i \rangle$. If q_j is the order of the element a_j, then

$$e_j = \frac{1}{q_j} \left(1 + \mu a_j + (\mu a_j)^2 + \cdots + (\mu a_j)^{q_j-1} \right)$$

is a central idempotent and $x_i = 1 - e_i + e_i \mu a_i \in U(K, G)$. By Lemma 9, $(e_i - e_j)(1 - \mu a_i) = 0$. Since $g \notin S$, we have $i = j$, which does not hold. Consequently G' contains only a finite number of elements of prime order and satisfies the minimum condition for subgroups (see [8]). Then

$$G' \cong P_1 \times P_2 \times \cdots \times P_t \times H,$$

where $P_i = \mathbb{Z}(q^{\infty})$ and $|H| < \infty$. Let us prove that either $G' = \mathbb{Z}(q^{\infty})$ or $|G'|$ is finite.

Let $a, b \in G$ and $1 \neq [a, b] = g \in t(G)$. Suppose there exists l such that $g \notin P_l = \langle a_1, a_2, \ldots \mid a_l^q = 1, a_{j+1} = a_j \rangle$. Then

$$e_k = \frac{1}{q_l} \left(1 + \mu a_k + (\mu a_k)^2 + \cdots + (\mu a_k)^{q_l-1} \right)$$

is an idempotent, and $(e_i - e_j)(1 - \mu a_k) = 0$. This is true only for $i = j$, if $g \notin P_l$, which is impossible. Thus, $G' \cong \mathbb{Z}(q^{\infty})$ or G' is a finite subgroup.

Let K be a field which contains a primitive q^n-th root e of 1 for all n and

$$P_1 = \langle a_1, a_2, \ldots \mid a_l^q = 1, a_{j+1} = a_j \rangle.$$

Put

$$e_j = \frac{1}{q_j} \left(1 + e_j \mu a_j + (e_j \mu a_j)^2 + \cdots + (e_j \mu a_j)^{q_j-1} \right).$$

If $i \neq j$ then the element $(e_l - e_j)(1 - \mu a_k) \neq 0$ and by Lemma 9 this is impossible. Thus there exists $n \in \mathbb{N}$ such that K does not contain a primitive q^n-th root e_n of 1.

Sufficiency. Let us prove that any element $u_g (g \in G)$ has a finite number of conjugates in $U(K, G)$.

Let $G = \{ ku_a \mid k \in U(K), a \in G \}$. We prove that $H = \langle [u_g, \bar{G}] \rangle$ is a finite subgroup in G'. If G' is finite, it is obvious. If G' is infinite then it is isomorphic to a subgroup of the group $\mathbb{Z}(q^{\infty})$. Any element of \bar{G} is of the form μu_h ($\mu \in U(K), h \in G$) and

$$[u_g, \mu u_h] = \lambda_{g,h}^{-1} \lambda_{h,g}^{-1} \lambda g^{-1} h^{-1} \lambda g^{-1} h^{-1} g \lambda g^{-1} h^{-1} g h u_g^{-1} h^{-1} g h.$$

Since G is an FC-group, and for a fixed element g the set $\{ \lambda_{g,h}^{-1} \lambda g^{-1} h^{-1} \mid h \in H \}$ is finite, the number of commutators $[u_g, \mu u_h]$ is finite. These commutators generate a finite cyclic subgroup H of $\mathbb{Z}(q^{\infty})$. The element $e_H = \frac{1}{|H|} \sum_{h \in H} h$ is an idempotent in $K, t(G)$ and by condition 4 of the theorem, $K, t(G)(1 - e_H)$ is a direct sum of a finite number of fields $K, t(G)(1 - e_H) f_i (i = 1, \ldots, s)$.

In $K, t(G)$ we have the decomposition

$$K, t(G) = K, t(G) e_H \oplus K, t(G) f_1 \oplus \cdots \oplus K, t(G) f_s.$$
Then

\[K \times G = K \times G_f \oplus K \times G_f \oplus \cdots \oplus K \times G_f. \]

If \(x \in U(K \times G) \) then

\[x = x e_H + x f_1 + \cdots + x f_t \]

and

\[x^{-1} = x^{-1} e_H + x^{-1} f_1 + \cdots + x^{-1} f_t. \]

Consequently

\[x^{-1} u_g x = x^{-1} e_H u_g x e_H + x^{-1} f_1 u_g x f_1 + \cdots + x^{-1} f_t u_g x f_t. \]

We show that the element \(x e_H \) is central in \(U(K \times G) \). If \(x = \alpha_1 u_{h_1} + \cdots + \alpha_t u_{h_t} \), then

\[u_g x e_H = \alpha_1 u_{g h_1} e_H + \cdots + \alpha_t u_{g h_t} e_H = \alpha_1 u_{h_1} u_g [u_g, u_{h_1}] e_H + \cdots + \alpha_t u_{h_t} u_g [u_g, u_{h_t}] e_H \]

and \([u_g, u_{h_k}] \in H \). Clearly, \([u_g, u_{h_k}] e_H = e_H \) and

\[u_g x e_H = \alpha_1 u_{h_1} u_g e_H + \cdots + \alpha_t u_{h_t} e_H = x e_H u_g. \]

\(K \times G_f \) is a crossed product \(F \ast H \) of the group \(H = G / n(G) \) and the field \(F = K \times t G_f \).

We know (see [5]) that the group of units of the crossed product \(F \ast H \) of a torsion free abelian group \(H \) and a field \(F \) consists of the elements \(\alpha u_{h} \) (\(\alpha \in U(F), h \in H \)). The unit \(x f_i \) can be given as \(\alpha_i u_{h_i} \) (\(h_i \in G \)), where \(\alpha_i \) is central in \(U(K \times G_f) \). Thus

\[x^{-1} f_i u_g x f_i = u_{h_i}^{-1} \alpha_i^{-1} u_g \alpha_i u_{h_i} = u_{h_i}^{-1} u_g u_{h_i} = \lambda_{h_i^{-1} h_i, h_i}^{-1} \lambda_{h_i^{-1} g h_i, h_i}^{-1} \lambda_{h_i^{-1} g h_i, h_i}^{-1} u_{h_i}^{-1} g h_i. \]

Therefore

\[x^{-1} u_g x = u_g + \sum_{i=1}^{t} \lambda_{h_i^{-1} h_i, h_i}^{-1} \lambda_{h_i^{-1} g h_i, h_i}^{-1} \lambda_{h_i^{-1} g h_i, h_i}^{-1} u_{h_i}^{-1} g h_i. \]

Since \(G \) is an FC-group, by condition 2 of the theorem, \(u_g \) has a finite number of conjugates in \(U(K \times G) \). \(\blacksquare \)

REFERENCES

1. S. K. Sehgal and H. J. Zassenhaus, Group rings whose units form an FC-group, Math. Z. 153(1977), 29–35.
2. H. Cliff and S. K. Sehgal, Group rings whose units form an FC-group, Math. Z. 161(1978), 169–183.
3. B. H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. 1(1951), 178–187.
4. A. Kertész, Lectures on artinian rings, Akadémiai Kiadó, Budapest, 1987.
5. A. A. Bovdi, Group rings, Kiev, UMK VO, 1988.
6. D. S. Passman, The algebraic structure of group rings, John Wiley & Sons, New York, Sydney, Toronto, 1977.
7. W. R. Scott, On the multiplicative group of a division ring, Proc. Amer. Math. Soc. 8(1957), 303–305.
8. L. Fuchs, Abelian groups, Budapest, Publishing House of Hungar. Acad. Sci., 1959.
9. A. G. Kurosh, Theory of Groups, New York, Chelsea, 1955.
10. J. S. Richardson, Primitive idempotents and the socle in group rings of periodic abelian groups, Compositio Math. 32(1976), 203–223.

Department of Mathematics
Besseneyi Teachers’ Training College
Nyiregyháza
Hungary