Protecting infrastructure networks from cost-based attacks

Xingang Wang,1,2,3∗ Shuguang Guan,2,3 and Choy Heng Lai4,3

1Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China 310027
2Temasek Laboratories, National University of Singapore, 117508, Singapore
3Beijing-Hong Kong-Singapore Joint Centre for Nonlinear & Complex Systems (Singapore),
 National University of Singapore, Kent Ridge, 119260, Singapore
4Department of Physics, National University of Singapore, Singapore 117542

(Dated: January 5, 2009)

PACS numbers: 89.75.-k, 89.20.Hh, 05.10.-a

It has been known that heterogeneous networks are vulnerable to the intentional removal of a small fraction of highly connected or loaded nodes, which implies that, to protect a network effectively, a few important nodes should be allocated with more defense resources than the others. However, if too many resources are allocated to the few important nodes, the numerous less-important nodes will be less protected, which, when attacked all together, still capable of causing a devastating damage. A natural question therefore is how to efficiently distribute the limited defense resources among the network nodes such that the network damage is minimized whatever attack strategy the attacker may take. In this paper, taking into account the factor of attack cost, we will revisit the problem of network security and search for efficient network defense against the cost-based attacks. The study shows that, for a general complex network, there will exist an optimal distribution of the defense resources, with which the network is well protected from cost-based attacks. Furthermore, it is found that the configuration of the optimal defense is dependent on the network parameters. Specifically, network that has a larger size, sparser connection and more heterogeneous structure will be more benefited from the defense optimization.

PACS numbers: 89.75.-k, 89.20.Hh, 05.10.-a

Introduction. – Modern human societies very much depend on the efficient functioning and stable operation of complex infrastructure networks.1 Typical examples are electrical power grids, telecommunication networks, the Internet, and many transportation systems such as road, railway, and airline networks. A significant and common feature of these networks is that they all possess the heterogeneous degree distribution, i.e. they are scale-free networks (SFN)2. While the adoption of SFN structure could improve the network performance significantly, e.g. a shorter average network diameter, it also cause some problems to the network security. For instance, it has been shown that the connectivity of a SFN could be largely damaged if a small fraction of the large-degree nodes are intentionally removed; in contrast, if the removal is made to the small-degree nodes, the network damage will be very limited3. The robust-yet-fragile property of SFN is more evident when the intrinsic dynamics of the network flow is taken into account4. This has been shown by a model of cascade network in Ref.5, where it is found that, due to the existence of the flow dynamics, the removal of even a single node could trigger such a large-scale avalanche that only a small portion of the nodes survive from the cascading failures. Since practical networks typically carry flows, their securities against cascading failures thus are of great importance, and have drawn many attentions in the past years. The topics had been touched include: Model design6, damage estimation7, dynamics characterization8, capacity allocation9, topology dependence10, and cascade control and defense strategies11.

Problem formulation. – While the fragility of SFN to intentional node removal has been well addressed, so far the studies have been concentrating on only the case of “technical” failures, instead of the real attacks. More specifically, the previous studies are interested in comparing the extents of the network damage caused by different implementations of attacks, while neglecting the cost required in doing so. In a practical situation of network security, the attacker and the defender are just the two sides of the game. Their purposes are the same in a sense, i.e., to maximize the gains with the limited resources. The defender, knowing the important roles of the large-degree nodes, of course will allocate more defense resources to them; and the attacker, while desiring to attack the large-degree nodes, has to sculpule about the higher cost in doing so. Thus in a real attack, the attacker will balance between the network damage and the attack cost, and search for an effective attack. For example, by the cost of attacking an important and well-protected node, the attacker may turn to attacking a number of non-important and less-protected nodes all together, while the latter may generate the larger damage. So, before taking an action, the attacker will do some analysis to the network security, so as to find the security weak point.

To analyze the network security, the attack usually will design a series of virtual attacks based on some of the network information, e.g. the network structure and the defense configuration, and then evaluate the possible damages caused by the attacks. After a comparison of the damages, the attack will figure out the most damaging attack and put it into action. Generally, the virtual attacks are designed according to two strategies: (1) Concentrating all the effort to attack a few important and well-protected nodes; and (2) distributing the effort to a number of non-important and less-protected nodes. We call the former concentrated attack (CA) strategy, and the
latter distributed attack (DA) strategy. It is straightforward to see that, if the nodes are equally protected, the network will be vulnerable to CA; in contrast, if too many defense resources are allocated to the important nodes, the network will be vulnerable to DA. Now a challenge faced by the defender is: How to optimize the network defense so that the network damage is minimized whatever attack strategy the attacker may take?

The problem of cost-based attacks can be formulated as follows. Let \(P = \{p_i, i = 1, ..., N\} \) be the existing defense of an infrastructure network consisting of \(N \) nodes. The defense resources allocated to node \(i \) is \(p_i \). So the total amount of the network defense is \(R = \sum_{i=1}^{N} p_i \). In the current study, we assume that the attacker has the full knowledge of the network, including the network topology, the flow dynamics, and the defense distribution (the general case will be discussed later).

Based on these information, the attacker will scheme out a series of virtual attacks, \(A_n = \{a_{n,j}, j = 1, ..., N'\} \), based on either the CA or DA strategy. In the attack \(A_n \), \(N' \) out of \(N \) nodes in the network will be selected as the targets, and the cost for removing target \(j \) is denoted by \(a_{n,j} \). The total attack cost of \(A_n \) therefore is \(E_n = \sum_{j=1}^{N'} a_{n,j} = E \), which is identical for all the attacks pointing to the defense \(P \). In general, we have \(E \ll R \). The network damage caused by \(A_n \) is denoted by \(D_n = \{b_{n,l}, l = 1, ..., M\} \), where \(\{l\} \) is the set of the failed nodes due to the attack \(A_n \), and \(b_{n,l} \) is the amount of network damage due to the failure of \(l \). Then the total network damage caused by \(A_n \) can be quantified: \(B_n = \sum_{l=1}^{M} b_{n,l} \). Evaluating the damage of each of the virtual attacks, finally the attacker will identify the most devastating attack.

The optimal defense is defined as follows. If the defense resources are distributed in such a way that all the virtual attacks generate the same amount of network damage, then this distribution of defense resources is called the optimal defense, and the network is regarded as secure to cost-based attacks. Otherwise, if there is difference between the network damages, the distribution will be considered as not optimal and the network is regarded as vulnerable to cost-based attacks. Putting alternatively, if by changing the attack strategy the attacker can increase the network damage, the network is considered as not securely protected.

The model. We implement the above idea of network security by a model of cascade network \(^5\) (the generalization to the other models is straightforward \(^3\)). Let \(L_i(0) \) be the transmission load (betweenness centrality) of node \(i \), which accounts for the total number of shortest paths passing though \(i \) in the original network \(^12\). Define the node capacity as \(C_i = (1 + \alpha) L_i(0) \), which stipulates the maximum load that node \(i \) can handle. \(\alpha > 0 \) is the tolerance parameter. Once a node is attacked, it will be removed out from the network, together with the links that associate to it. Because of node removal, the shortest paths of the network will be redistributed and, consequently, the load of the remaining nodes will be updated. In this process, any node which is overloaded, i.e. \(L_i(t) > C_i \), will be removed out from the network. The new removal will cause a new distribution of the shortest paths, thus generating another wave of node failures, and so on and so forth, till no node is overloaded in the remaining network. To fit this model into our problem of cost-based attacks, it is necessary to make a few assumptions. Firstly, it is assumed that the defense resources have the following power-law distribution,

\[
p_i = R \times C_i^\beta / C(\beta),
\]

where \(R \) is the total defense of the network, and \(C(\beta) = \sum_i C_i^\beta \) is a normalizing factor which is dependent of the parameter \(\beta \). Without loss of generality, here we set \(R = C(\beta = 1) \), i.e. the network defense equals the network capacity. Second, it is assumed that the cost for removing a node is equivalent to the node defense, i.e., \(a_i = p_i \). Finally, it is assumed that the network damage relies on only the removed nodes. In the current study, the network damage is measured by two quantities: (1) The size of the largest component in the remaining network, \(G \), and (2) the total capacity of the removed nodes, \(B = \sum_{l=1}^{M} b_l \). It is emphasized that these assumptions are made for only the purpose of illustration. In real applications, they should be redefined accordingly to the real problems. The key parameter in this model therefore is \(\beta \), which gives the distribution of the defense resources. When \(\beta \ll 0 \), the important (high-load) nodes will be not allocated with the sufficient resources, making the network vulnerable to CA. In contrast, if \(\beta \gg 0 \), the important nodes will be overprotected, making the network vulnerable to DA. So, to protect the network from cost-based attacks efficiently, the value of \(\beta \) should be properly set.

We next describe the method used in our analysis of the network security. Noticing the fact that the virtual attacks are divided into two classes, CA and DA, the network security thus can be evaluated by considering the two representative attacks. For CA, we will choose to attack the single node of the largest capacity (highest protection) in the network; while for DA, with the same amount of attack cost, we will choose to attack a group of nodes of the smallest capacity (lowest protection). Specifically, if nodes are ranked by an ascending order of the node capacity, i.e. \(C_1 < C_2 < \ldots < C_N \), then in CA only node \(N \) is attacked, while in DA nodes from 1 to \(N' \) will be attacked all together. Here \(N' \) is a number to be determined by the relation \(\sum_{i=1}^{N'} a_i \leq a_N \). Please note that in a real situation it is possible that the most devastating attack is neither of the above representative attacks. However, such a devastating attack, if exists, will be very dependent on the network particulars, and should be always treated case by case \(^13\).

Numerical results. To simulate the cost-based attacks, firstly we generate a SFN by the model proposed in Ref. \(^2\). The network consists of \(N = 3000 \) nodes and has average degree \(\langle k \rangle = 4 \). The degree distribution follows a power-law \(P(k) \sim k^{-\gamma} \), with \(\gamma = -3 \). Secondly, we calculate the transmission load of each node and, according to the value of \(\alpha \), calculate the node capacity. For illustration, here we set \(\alpha = 0.3 \). Then we can obtain the total defense of the network \(R \), which in our model is set to be the total network capacity, i.e. \(R = \sum_i C_i \). Thirdly, we choose a value for \(\beta \) and, according to Eq. \(^1\), distribute the defense resources among the nodes. Fourthly, we analyze the network security by the above mentioned two representative attacks, and record
their damages $G_{1,2}$ and $B_{1,2}$, with the subscripts 1 and 2 stand for CA and DA, respectively. Finally, by scanning β, we are able to figure out the location of the optimal defense, i.e., the value of β where the two attacks generate the same network damage.

The variations of G and B as a function of β are plotted in Figs. 1. For the measurement G, the optimal defense is found at about $\beta_g \approx 1.25$ [Fig. 1(a)]; while for the measurement B, the optimal defense is found at about $\beta_b \approx 1.28$ [Fig. 1(b)]. Please note that the optimal defense is only meaningful to the defender, as it tells how to configure the defense resources against the cost-based attacks. While for the attacker, by knowing the specific network defense (the value of β), the only task is to figure out which attack is more damaging, DA or CA. For instance, if the attacker is interested in a larger damage of network capacity and have learned that the network defense parameter is $\beta = 0.5$, after a comparison of the virtual attacks, the attacker will find that using CA will cause a larger damage than DA [Fig. 1(b)].

It is important to note that, in our design of numerical simulations, CA is always implemented by removing the single node of the largest capacity. That is the reason why the network damage caused by CA is constant in Fig. 1. However, as β increases, the cost for removing the largest-capacity node is monotonically increased, i.e., $E = a_N \sim C_N^0$. This arises the problem of attack efficiency, which is defined as the amount of network damage per unit of the attack cost. For measurement G, it is defined as $\rho_g = (N - G_M)/E$, with $G_M = \min(G_1, G_2)$; for measurement B, it is defined as $\rho_b = B_M/E$, with $B_M = \max(B_1, B_2)$. Interestingly, it is found that, at the optimal defense, the attack efficiency is also minimized (the insets of Fig. 1). Now we see that, with the optimal defense, the network is protected from not only the attack strategy, but also the attack efficiency.

Physically, the meaning of the optimal defense can be understood as follows. When β is small, say for example $\beta \approx 0$, the network nodes are equally protected regardless of their importance level. To generate a large damage, the attacker will certainly choose to attack the important nodes, i.e., adopting CA. As β increases, more defense resources will be shifted to the important nodes and, correspondingly, the defense of the non-important nodes will be weakened. However, as long as $\beta < \beta_{g,b}$, the damage caused by CA will be still larger to that of DA. So in this range CA will be always the choice for the attacker. Nevertheless, as β increases, the damage difference between CA and DA will be gradually narrowed. Then, at the optimal defense $\beta_{g,b}$, both attacks will generate the same amount of network damage. Since at this point the attacker can not benefit from changing between the attacks, the cost-based attacks are considered as failed. After that, as β increases from $\beta_{g,b}$, the minority important nodes will be overprotected, and the majority non-important nodes will be less protected. Noticed of this, the attacker will switch the attack from CA to DA, so as to achieve a larger damage. In the extreme situation of $\beta \approx \infty$, all the defense resources will be allocated to the single node of the largest capacity, while the other nodes of the network can be easily attacked all together.

As realistic networks have various structures, it is neces-
The power-grid network of the western United States \cite{14}; and (2) the Internet at the autonomous level \cite{15}. The power-grid network consists of $N = 4941$ nodes and has average degree $\langle k \rangle \approx 2.67$, which has been widely used in literature as an example of cascade network \cite{5}. The variations of $G_{1,2}$ as a function of β is plotted in Fig. 3(a), where the optimal defense is found at about $\beta_g \approx 1.45$. In Fig. 3(b) we plot the dependence of $B_{1,2}$ on β, where the optimal defense is found at about $\beta_b \approx 1.75$. Like we did in Fig. 1, we have also calculated the dependence of the attack efficiency, ρ_b, on the defense parameter β, where ρ_b is found to be minimized at β_b. The Internet we have employed consists of $N = 6474$ nodes and has average degree $\langle k \rangle \approx 3.88$. The variations of $G_{1,2}$ and $B_{1,2}$ as a function of β are plotted in Fig. 4(a) and (b), respectively. For measurement G, the optimal defense is found at about $\beta_g \approx 0.8$; while for measurement B, the optimal defense is found at about $\beta_b \approx 1.1$. Still, ρ_b is minimized at β_b. It is interesting to see that, comparing to the standard SFN model [Fig. 1] and the power-grid network [Fig. 3], the Internet is less vulnerable to CA when $\beta < \beta_g$ in terms of measurement G [Fig. 4(a)]. We attribute this strange behavior to the unique topology of the Internet, e.g., the modular structure, the degree correlation, and the hierarchical property. This also verifies our previous finding of the dependence of optimal defense on network parameters [Fig. 2].

Discussion and conclusion. – The main purpose of the present study is to highlight the variability and flexibility of...
the network attacks in the real situation, so as to bring a caution to the defense of complex networks. Our main finding is that, if the defense resources of a network are not well distributed, the attacker could be benefited from choosing between the attack strategies. In showing this, we had employed the simple model of cascade network and made a few assumptions on the network defense and attack, which, when used to model the real situations, should be (carefully) modified and redefined. For instance, it has been shown recently that, as a balance of network robustness and frangibility, the relationship between node capacity and load could be nonlinear [16]. This indicates that, to analyze the security of such a network, the constant tolerance parameter used in the current model should be modified. This kind of modifications, however, will not change the general picture of optimal defense. The fact is that, as long as the cost factor of network attack is counted, optimal defense will exist and be an important issue in network security.

A point which should be specially addressed is that the current model requires a full knowledge of the network, including the detail information about the network structure and flow dynamics. These information, while is available for some public systems such as the power-grid [17] and the Internet, is difficult to obtain for the secret networks, say, for example, the terror and Mafia networks. In a secret network, the important nodes, which possess the larger degree and have higher ranks in the hierarchy, are usually well covered and difficult to identify. This arouses the problem of attacking probability, a question investigated by Gallos et al. very recently [18]. In that study, the probability of removing a node is determined by three factors: The node degree \(k \), the intrinsic network vulnerability \(\alpha' \), and the node knowledge \(\alpha'' \). There a key finding is that, as the information of the important nodes be gradually exposed (increasing the value of \(\alpha'' \)), the fraction of nodes needed to break the network will be quickly decreased. Here, an interesting thing is that, if we regard the cover of the network information as an approach of network defense, the study of Ref. [18] and the present work have essentially the same basis. In particular, if we replace the parameter \(\beta \) in Eq. (1) by a new parameter \((\alpha' + \alpha'')/\kappa (\kappa \approx 1.6) \) is the exponent that characterizes the relationship between the node capacity and degree [19]), then the node defense defined in Eq. (1) is just the reciprocal of the node vulnerability defined in Ref. [18]. For this reason, we may say that the study in Ref. [18] is a special case of the cost-based attacks proposed in the present work. Despite of this point of similarity, the two studies are actually dealing with very different problems. Simply speaking, the study of Ref. [18] is focusing on the scale of network damage, in which the attack cost (information discovery) is variable and the attack strategy is always fixed to CA; in contrast, the current study is dealing with the situation of variable attack strategy and fixed attack cost, i.e., it is a question about network optimization [20].

Summarizing up, we have proposed the idea of cost-based attacks on complex networks and investigated the problem of optimal network defense. Different from previous studies, here we emphasize the initiative and flexibility of the attacker in implementing the attacks, which is a solid step forward to the realistic situations. We hope this study could stimulate new thinking to the security of complex networks, and give indications to the design and defense of infrastructure networks.

XGW is supported by the National Natural Science Foundation of China under Grant No. 10805038.

[1] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002); M.E.J. Newman, SIAM Rev. 45, 167 (2003).
[2] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[3] R. Albert, H. Jeong, and A.-L. Barabási, Nature 406, 378 (2000); R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev. Lett. 85, 4626 (2000); ibid, 86, 3682 (2001); D.S. Callaway, M.E.J. Newman, S.H. Strogatz, and D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000).
[4] D.J. Watts, Proc. Natl. Acad. Sci. 99, 5766 (2002); P. Holme and B.J. Kim, Phys. Rev. E 65, 066109 (2002); Y. Moreno, J.B. Gómez, and A.F. Pacheco, Europhys. Lett. 58, 630 (2002); P. Holme, Phys. Rev. E 66, 036119 (2002).
[5] A.E. Motter and Y.-C. Lai, Phys. Rev. E 66, 065102(R) (2002).
[6] B. Wang and B.J. Kim, Europhys. Lett. 78, 48001 (2007); W.-X. Wang and G. Chen, Phys. Rev. E 77, 026101 (2008).
[7] P. Crucitti, V. Latora, and M. Marchiori, Phys. Rev. E 69, 045104(R) (2004).
[8] X.G. Wang, Y.-C. Lai, and C.-H. Lai, Phys. Rev. E 74, 066104 (2006); I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, and D. Helbing, Phys. Rev. Lett. 100, 218701 (2008).
[9] D. Heide, M. Schäfer, and M. Greiner, Phys. Rev. E 77, 056103 (2008); P. Li, B.-H. Wang, H. Sun, P. Gao, and T. Zhou, Eur. Phys. J. B 62, 101 (2008); X. Gong, K. Li, and C.-H. Lai, Europhys. Lett. 83, 28001 (2008).
[10] J.-J. Wu, Z.-Y. Gao, and H.-J. Sun, Phys. Rev. E 74, 066111 (2006); J.P. Gleeson, Phys. Rev. E 77, 046117 (2008).
[11] A.E. Motter, Phys. Rev. Lett. 93, 098701 (2004); L. Buzna, K. Peters, H. Ammoser, C. Kühnert, and D. Helbing, Phys. Rev. E 75, 056107 (2007).
[12] M.E.J. Newman, Phys. Rev. E 64, 016132 (2001); Proc. Natl. Acad. Sci. U.S.A. 98, 404 (2001).
[13] L. Zhao, K. Park, and Y.-C. Lai, Phys. Rev. E 70, 035101(R) (2004); V. Latora and M. Marchiori, Pphys. Rev. E 71, 015103 (2005).
[14] http://ftp.santafe.edu/pub/duncan/power_unweighted.
[15] http://moat.nlanr.net/AS/Data/ASconnlist.20000102.946809601
[16] L.K. Gallos, R. Cohen, P. Argyrakis, A. Bunde, and S. Havlin, Phys. Rev. Lett. 99, 188701 (2007).
[17] M.L. Sachtjen, B.A. Carreras, and V.E. Lynch, Phys. Rev. E 69, 4877 (2004); I. Dobson, B.A. Carreras, V.E. Lynch, and D.E. Newman, Chaos 17, 026103 (2007); R.V. Solé, M. Rosas-Casals, B. Corominas-Murtra, and S. Valverde, Phys. Rev. E 77, 026102 (2008).
[18] L.K. Gallos, R. Cohen, P. Argyrakis, A. Bunde, and S. Havlin, Phys. Rev. Lett. 94, 188701 (2005).
[19] J.-H. Kim, K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 91, 058701 (2003); K. Park, Y.-C. Lai, and N. Ye, Phys. Rev. E 70, 026109 (2004).
[20] A.E. Motter and Z. Toroczkai, Chaos 17, 026101 (2007).