Nuclear protein of the testis midline carcinoma masquerading as a primary mediastinal seminoma

Maria S. Sayapina,¹ Nikita A. Savelov,² Apollon I. Karseladze,¹ Anatoly A. Bulanov,¹ Alexey A. Tryakin,¹ Dmitry A. Nosov,¹ Avgust M. Garin,¹ Sergey A. Tjulandin¹
¹N.N. Blokhin Russian Cancer Research Center, Moscow; ²The Moscow City Oncology Hospital No. 62, Moscow, Russia

Abstract

Nuclear protein of the testis (NUT) midline carcinomas are rare aggressive carcinomas characterized by chromosomal rearrangements that involve the gene encoding the NUT. This article reviews the clinicopathologic features and the differential diagnosis of these malignancies.

Introduction

Germ cell tumors are classified as extragonadal, if there is no evidence of a primary tumor in the testis or ovaries.¹ Primary extragonadal germ cell tumors (EGGCT) constitute a small subset of 2-5% of all germ cell tumors; and primary mediastinal seminoma (PMS) include only 10% of EGGCT.² These tumors occur almost exclusively in males, and the age at presentation is generally 20-35 years.³ More than a third of all malignant germ cell tumors are pure seminomas.³ Seminoma is one of the most radio and chemosensitive tumors.⁴ When treated, the prognosis is good, with a mean survival of 90% at five years.³ Aggressive variant of PMS are rarely described in the literature.¹⁵

NUT midline carcinomas (NMCs) are rare aggressive carcinomas characterized by chromosomal rearrangements that involve the gene encoding the nuclear protein of the testis (NUT).⁴ NMC is named for its tendency to involve midline structures.⁵ The most common tumor localization at the time of diagnosis are the head and neck region and mediastinum. To date, at least 63 cases have been reported. It affects people of all ages (range 0-78 years), though a skew towards younger individuals may represent selection bias.³ The histological diagnosis is usually that of poorly differentiated or squamous cell carcinoma but occasional ly has been classified as other tumors, e.g. seminoma.⁶ Even with multimodality therapy the median survival from diagnosis is only 6.7 months.³ Herein we describe a case of an aggressive form of disease and discuss the differential diagnosis of this lesion.

Case Report

In February 2013, a 28-year-old male was presented with a history of progressive dyspnea, cough, hoarseness of voice, and unquantified weight loss during the last 3 months. Chest x-ray showed mediastinal widening and chest computed tomography (CT) imaging revealed a large mediastinal mass measuring 15.6x8.4x14.7 cm (Figure 1). Additionally, extensive mediastinal and left hilar lymphadenopathy was seen on chest CT. Clinical suspicion of pneumonia led to bone marrow biopsy. The laboratory report ruled out pneumonia. A thoracoscopic mediastinal biopsy was performed. This showed a poorly differentiated carcinoma most likely consistent with seminoma (histological features to be described). The patient was admitted to N.N. Blokhin Russian Cancer Research Center for further work-up and evaluation.

At admission, there were signs of superior vena cava syndrome. The serum lactate dehydrogenase (LDH) levels were raised to 840 U/L (normal range <450 U/L) while β-human chorionic gonadotropin (β-HCG<0.12 mIU/mL) and alpha fetoprotein (AFP 1.26 ng/mL) levels were normal. Considering the tumor morphology, the young age, clinical presentation, it was decided to treat the patient as extragonadal seminoma. The patient received chemotherapy comprising of bleomycin, etoposide, and cisplatin (BEP) 3 weekly for three cycles until August 2013. The patient tolerated chemotherapy well with no dose reductions. There was a serial reduction in serum LDH levels. The patient achieved a partial response. Neither surgery nor radiation therapy was performed because of the size and location of the lesion. Two months after the completion of chemotherapy, the patient presented with marked dyspnea at rest. Positron emission tomography-CT (PET-CT) confirmed tumor recurrence with raised serum LDH levels (1126 U/L). The serum β-HCG and AFP levels were normal. The patient was treated with paclitaxel, ifosfamide and cisplatin (TIP) until December 2013. A chest CT scan following three cycles of TIP regimen showed a mediastinal mass that had significantly increased in size, infiltrating superior vena cava and right atrium. Liver metastases were also detected (cytological findings – most likely seminoma). Salvage chemotherapy with gemcitabine and oxaliplatin (GEMOX) was started.

The patient received only two cycles before developing acute pulmonary embolism. The CT showed increase in size of liver metastases with raised serum LDH levels (2170 U/L). Given the non-standard clinical course of the disease (progression after three lines of chemotherapy), it was decided to perform a biopsy of cervical-supraclavicular lymph node.

Histologic findings from the cervical-supraclavicular lymph node

The tumor had mixed undifferentiated small cells with foci of squamous differentiation. The tumor cells demonstrated immunoreactivity for pan-cytokeratin, cytokeratin 18, CD117, cytokeratin 5, p63, whereas synaptophysin, CK7, TTF1, PLAP, Oct-3/4, CD5, CD34 and CD56 were negative. The diagnosis of NUT midline carcinoma (NMC) was made after demonstration of diffuse nuclear immunohistochemical staining with NUT protein using anti-NUT rabbit polyclonal antibody (clone CS2, 1:100) (Figure 2).

External consultation was pursued from the International NUT Midline Carcinoma Registry at the Brigham and Women’s Hospital. The optimal treatment for patients with NMC is unclear. Efforts have been made to develop targeted therapeutic approaches such as histone deacetylase inhibitors (HDACi). HDACi demonstrated promising clinical response in pediatric patients.⁸ Considering these data, treatment with quisinostat (HDACi) was initiated in February 2014. Following quisinostat treatment, Chest CT scan showed a mediasti-
NMC is a rare aggressive cancer of squa-
mos cell lineage arising in midline struc-
tures. NMC are not classified according to the
type of tissue and location of tumor origin in
majority of solid tumors, but it’s possible to
define them genetically. The specific cyto-
egenic abnormality is a reciprocal translocation
of the NUT (nuclear protein in testis, AKA
Chr15orf55) gene on the long arm of chromo-
some 15 with one of the BET family members,
most commonly BRD4 (also known as MCAP
and HUNK1) on chromosome 19p13.1
[1(15;19)(q14;p13.1)]. The translocation
results into a fusion oncogene (BRD4-NUT)
which arrests normal cellular differentiation.
In the remaining cases, it is either fused to
BRD3 (t(9;15)(q34.2;q14), BRD3-NUT), or it is
fused to uncharacterized gene(s) (NUT-
variant). In all of previously described vari-
ants, both NUT and BET genes are fused.
Moreover it was described a novel fusion gene
in NMC that does not include a BET protein,
but rather a BET-binding protein, NSD3. NSD3
is a histone methyl-transferase that belongs to
the mammalian Nuclear SET Domain-containing (NSD)
protein family of SET domain-containing
methyltransferases. NSD3-NUT fusion oncogene encodes a protein
that is both necessary and sufficient for the
blockade of differentiation in NMC. The NUT
translocation can be diagnosed using kary-
o-type, FISH or RT-PCR. A monoclonal antibody
has been developed for immunohistochem-
istry. The immunohistochemical assay can
detect the NUT protein in NMC, whose expres-
sion in normal mature adult tissue is restrict-
ed to the testis.
BRD4-NUT causes malignancy by blocking
the differentiation of NMC cells and maintain-
ing their proliferation, as evidenced by the
rapid squamous differentiation that occurs fol-

ding siRNA knockdown of the BRD4-NUT
oncoprotein. The NUT portion of BRD4-NUT
binds to and activates a histone acetyl-trans-
ferase, p300, which is hypothesized to acety-
late regional chromatin, recruiting more local
BRD4-NUT, and more local p300, leading to
more local acetylation, in a self-perpetuating
process that leads to the BRD4-NUT foci that
can be seen by immunohistochemistry. The
paradox is that these large aggregates of
hyperacetylated chromatin, BRD4-NUT, and
p300, rather than leading to increased tran-
scription, actually act as p300 sinks that glob-
ally decrease acetylation and transcription.
Thus, genes required for differentiation are
not expressed. Two therapies, which target
this mechanism have emerged, including bro-
modomain inhibitors (BETi) and HDACi, both
of which induce differentiation and growth
arrest of NMC cells, both in vitro and in vivo.
BETi is available to adults with NMC and other
solid tumors through a clinical trial. Histone
modifying enzymes, including the NSD family,
are often deregulated in cancer and aberrant
histone modification profiles are intimately
linked to carcinogenesis. The findings have
led to the recent treatment of pediatric patients
with NMC using HDACi-containing regimens. Results have been promising.7,10,16
But in our case we describe that, HDACi did
not satisfy expectations. The patient did not
respond to HDACi treatment. Others inhibitors
to histone methyltransferases, including the
NSD family, are under development, and this
approach still holds promise for NUT midline
carcinoma as well as other cancers.17,18
NMC is often widely metastatic and unre-
sectable when diagnosed. All known cases of
NMC have had a poor clinical course with a
mean survival of approximately seven
months.9 The differential diagnosis of NMCs,
particularly when dealing with small biopsies,
can be quite broad ranging from hematolym-
phoid malignancies, melanomas, Ewing sarco-
ma/primitive neuroectodermal tumors, rhab-
domyosarcoma, olfactory neuroblastoma, and
germ cell tumors to undifferentiated carcino-
mas.15,19 NMC should be considered in the dif-
ferential diagnosis of any poorly differentiated

Discussion

Figure 1. Coronal computed tomography
image of the chest and abdomen before
treatment.

Figure 2. Diagnosis of nuclear protein of the testis (NUT) midline carcinoma. A) Undifferentiated small cells with foci of squamous differentiation (Hematoxylin & Eosin, 200×). B) Immunohistochemistry of tumor cell nuclei showing speckled staining for NUT (250×) using anti-NUT rabbit polyclonal antibody (clone C52, 1:100).

Figure 3. A) Coronal computed tomography (CT) image of the chest after treatment with histone deacetylase inhibitors, indicating marked adverse change from the time of diagnosis. There is encasement of major vessels, right atrium and right ventricle. B) Coronal CT image of the abdomen. There are metastases in liver that had significantly increased in size.
epithelioid mediastinal tumor, regardless of age. As in our case these tumors are virtually refractory to chemotherapy. However, the knowledge about the underlying molecular alterations can serve as guide towards developing an effective treatment for this disease.

References

1. Droz JP, Horwich A. Extranodal germ cell tumors. In: Vogelzang NJ, Scardino PT, Shipley WU, Coffey DS (eds). Comprehensive textbook of genitourinary oncology. 2nd ed. Philadelphia: Lippincott Williams and Wilkins; 2000.
2. Bokemeyer C, Nichols CR, Droz JP, et al. Extranodal germ cell tumors of the mediastinum and retroperitoneum: results from an international analysis. J Clin Oncol 2002;20:1864-73.
3. Chaganti RS, Houldsworth J. Genetics and biology of adult human male germ cell tumors. Cancer Res 2000;60:1475-82.
4. Nachankar A, Krishnatry R, Joshi A, et al. Primary mediastinal seminoma; resistance and relapse: an aggressive entity. Indian J Med Paediatr Oncol 2013; 34:309-12.
5. Gândara F, Leitao A, Bernardo M, Celia F. Mediastinal seminoma: a case report. Internet J Intern Med 2011;9:1.
6. Edward B, Stelow A. Review of NUT midline carcinoma. Head Neck Pathol 2011;5:31-5.
7. French CA. The importance of diagnosing NUT midline carcinoma. Head Neck Pathol 2013;7:11-6.
8. Bauer DE, Mitchell CM, Strait KM, et al. Clinicopathologic features and long-term outcomes of NUT midline carcinoma. Clin Cancer Res 2012;18:5773-9.
9. Ball A, Bromley A, Glaze S, et al. A rare case of NUT midline carcinoma. Gynecol Oncol Case Rep 2013;3:1-3.
10. Schwartz BE, Hofer MD, Lemieux ME, et al. Differentiation of NUT midline carcinoma by epigenomic reprogramming. Cancer Res 2011;71:2686-96.
11. French CA, Ramirez CI, Kolmakova J, et al. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene 2008;27:2237-42.
12. French CA, Rahman S, Walsh EM, et al. NSD3-NUT fusion oncoprotein in NUT midline carcinoma: implications for a novel oncogenic mechanism. Cancer Discov 2014;4:928-41.
13. Haack H, Johnson LA, Fry CJ, et al. Diagnosis of NUT midline carcinoma using a NUT-specific monoclonal antibody. Am J Surg Pathol 2009;33:984-91.
14. French CA. Pathogenesis of NUT midline carcinoma. Annu Rev Pathol 2012;7:247-65.
15. French CA, Kukok JL, Faquin WC, et al. Midline carcinoma of children and young adults with NUT rearrangement. J Clin Oncol 2004;22:4135-9.
16. Reynoird N, Schwartz BE, Delvecchio M, et al. Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains. EMBO J 2010;29:2943-52.
17. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381-95.
18. Morishita M, di Luccio E. Cancers and the NSD family of histone lysine methyltransferases. Biochim Biophys Acta 2011;1816:158-63.
19. Stelow EB, French CA. Carcinomas of the upper aerodigestive tract with rearrangement of the nuclear protein of the testis (NUT) gene (NUT midline carcinomas). Adv Anat Pathol 2009;16:92-6.
20. Evans AG, French CA, Cameron MJ, et al. Pathologic characteristics of NUT midline carcinoma arising in the mediastinum. Am J Surg Pathol 2012;36:1222-7.