The main technical and economic indicators of the introduction of new test equipment for the determination of toxic elements in food in the laboratory center

Yu S Kholopova, T Ross, V V Feshchenko, R V Pavlov and P S Burlankov

K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation

E-mail: unecha@mgutm.ru

Abstract. As a result of the analysis of the main technical and economic indicators of the introduction of new test equipment for the determination of toxic elements in food in the laboratory center, it was found that the replacement of the photoelectric concentration colorimeter "KFK-2MP" with the analyzer "Pan-arsenic" when analyzing samples of food products and food raw materials for the content arsenic will be effective. Replacement of the outdated and decommissioned model of the atomic absorption spectrometer "Kvant-AFA" for the atomic absorption spectrometer "Kvant-2AT" in the analysis of samples of food and food raw materials for lead and cadmium content will be effective. The option of replacing the Kvant-AFA spectrometer with a voltammetric analyzer "TA-4" when analyzing samples of food products and food raw materials for lead and cadmium content will be effective if the performance of the new equipment meets the laboratory's needs in the number of studies, and the purchase of atomic-absorption spectrometer will not be advisable due to the absence of the need for its performance for the implementation of measurements and insufficient solvency of the laboratory. The introduction of the PLP-01M microwave laboratory system introduces a limitation on the number of studies per year, which reduces the capabilities of the measuring device, in cases both for the simultaneously introduced spectrometer "Kvant-2AT" and for the already used "Kvant-AFA". The introduction of the PLP-01M system will be beneficial if the performance of the new equipment meets the laboratory's needs in the number of studies.

1. Introduction

Improving the quality of services provided by updating the laboratory base is considered as one of the most important ways to increase competitiveness, achieve competitive advantages, which, in turn, contributes to increasing the economic efficiency of the testing laboratory center (hereinafter referred to as the TLC).

The relationship between the introduction of new equipment and the economic efficiency of the ILC is shown in figure 1.

Ensuring food safety remains an urgent and priority task [1-7]. Assessment of the quality and safety of the developed food products is a prerequisite [8-18]. In the conditions of market relations at any enterprise, including testing laboratories, the relevance of quality management is determined by its focus on ensuring such a level of quality of services that can fully satisfy all consumer needs. The lack of updating of measuring instruments, test and auxiliary equipment makes it difficult to ensure a stable
quality of services. The processes of updating the laboratory base in modern conditions of the
development of scientific and technological progress are objectively necessary [19-25].

Introduction of new equipment

- Increasing the number of studies being conducted
- Improvement of internal laboratory control indicators
- Reducing the unit cost of one study
- Improving the competitiveness of TLC
- Increasing the economic efficiency of the TLC

Figure 1. The relationship between the introduction of new equipment and the economic efficiency of the TLC.

2. Materials and methods

Equipment:

- atomic absorption spectrometer "Kvant-2AT" (hereinafter referred to as "Kvant-2AT");
- voltammetric analyzer "TA-4" (hereinafter referred to as "TA-4");
- analyzer "Pan-arsenic" (hereinafter referred to as "Pan-arsenic");
- photoelectric concentration colorimeter "KFK-2MP" (hereinafter referred to as "KFK-2MP");
- atomic absorption spectrometer "Kvant-AFA" (hereinafter referred to as "Kvant-AFA");
- microwave laboratory system PLP-01M (hereinafter referred to as PLP-01M).

Profit (P_r) from the research were calculated using the formula:

$$P_r = Q \times P_{un},$$

where: P_{un} - price of 1 study according to the price list, rubles; Q is the number of studies per year, nat. units.

Profit from 1 study was calculated using the formula:

$$P = P_r - C_{tot},$$

where: C_{tot} is the total cost of 1 study, rubles.

The profitability of the introduction of new equipment was calculated using the formula:

$$P = \frac{P_r}{C_{tot}} \times 100\%,$$

where P - profitability, P_r - profit from research per year, rubles. C_{tot} - total cost of the study, rubles.

The payback period of capital investments was calculated using the formula:
where T is the payback period of capital investments; P_{an} - annual profit, rubles; C_{tot} - total costs, rub.

The break-even point was calculated using the formula:

$$Tb = T \times P,$$

where Tb is the break-even point; T is the payback period of capital investments; P is the number of studies per year.

3. Results and discussion

We have carried out calculations of the main technical and economic indicators of the introduction of new testing equipment for the determination of toxic elements in food products at the TLC.

1) Number of studies per year:

- Q "Kvant-2AT" = 32,960 studies;
- Q "TA-4" = 9,694 studies;
- Q "Pan-arsenic" = 8,078 studies;
- Q "KFK-2MP" = 6,463 studies;
- Q "Quantum-AFA" = 19,388 studies;
- Q "Kvant-2AT" / "Kvant-AFA" with PLP-01M = 16,055 studies.

The revenue from research per year, depending on the equipment used, is respectively equal to:

- for Kvant-2AT - RUB 10,382,400.0 rubles;
- for "TA-4" - 3,392,900.0 rubles;
- for "Pan-arsenic" - 2,827,300.0 rubles;
- for "KFK-2MP" - 2,520,570.0 rubles;
- for Kvant-AFA - 6,107,220.0 rubles;
- for "Kvant-2AT" taking into account the use of PLP-01M at a price in the price list of 315 rubles. for research - 5,057,325.0 rubles;
- for "Kvant-AFA" taking into account the use of PLP-01M at a price in the price list of 315 rubles. for research - 5,057,325.0 rubles;
- for "Kvant-2AT" taking into account the use of PLP-01M at a price in the price list of 260 rubles. for the study - 4,174,300 rubles;
- for "Kvant-AFA" taking into account the use of PLP-01M at a price in the price list of 260 rubles. for the study - 4,174,300.0 rubles.

2) The profit from 1 study, depending on the equipment used, will be:

- for Kvant-2AT - RUB 190.28;
- for TA-4 - 125.23 rubles;
- for "Pan-arsenic" - 32.36 rubles;
- for "KFK-2MP" - 12.38 rubles;
- for Kvant-AFA - 167.66 rubles;
- for "Kvant-2AT" taking into account the use of PLP-01M at a price in the price list of 315 rubles. for research - 156.86 rubles;
- for "Kvant-AFA" taking into account the use of PLP-01M at a price in the price list of 315 rubles. for the study - 176.18.95 rubles;
- for "Kvant-2AT" taking into account the use of PLP-01M at a price in the price list of 260 rubles. for the study - 101.86 rubles;
• for "Kvant-AFA" taking into account the use of PLP-01M at a price in the price list of 260 rubles. for research - 121.18 rubles.

The annual profit from research will be:

• for Kvant-2AT - 6,271,805.49 rubles;
• for "TA-4" - 1,214,858.76 rubles;
• for "Pan-arsenic" - 261,374.95 rubles;
• for "KFK-2MP" - 80,036.98 rubles;
• for Kvant-AFA - RUB 3,250,622.02;
• for "Kvant-2AT" taking into account the use of PLP-01M at a price in the price list of 315 rubles. for research - 2,518,401.47 rubles;
• for "Kvant-AFA" taking into account the use of PLP-01M at a price in the price list of 315 rubles. for the study - 2,828,529.64 rubles;
• for "Kvant-2AT" taking into account the use of PLP-01M at a price in the price list of 260 rubles. for research - 1,635,376.47 rubles;
• for "Kvant-AFA" taking into account the use of PLP-01M at a price in the price list of 260 rubles. for research - 1,945,504.64 rubles.

3) The profitability of the introduction of new equipment is reflected in the formation of the research price set by the ILC accounting department and is 25%.

4) Net profit:

The annual net profit from research will be:

• for Kvant-2AT - 3,633,390.60 rubles;
• for TA-4 - 701,476.86 rubles;
• for "Pan-arsenic" - 146,727.00 rubles;
• for KFK-2MP - 42,137.46 rubles;
• for Kvant-AFA - 1,881,541.04 rubles.

The annual net profit from research will be:

• for "Kvant-2AT" taking into account the use of PLP-01M at a price in the price list of 315 rubles. for research - 1,456,989.56 rubles;
• for "Kvant-AFA" taking into account the use of PLP-01M at a price in the price list of 315 rubles. for research - 1,637,794.28 rubles;
• for "Kvant-2AT" taking into account the use of PLP-01M at a price in the price list of 260 rubles. for research - 942,185.98 rubles;
• for "Kvant-AFA" taking into account the use of PLP-01M at a price in the price list of 260 rubles. for research - 1,122,990.70 rubles.

5) Capital investments for the introduction of new equipment are:

• for "Kvant-2AT" - 1,421,500 rubles;
• for TA-4 - 162,100 rubles;
• for Pan-arsenic - 108,900 rubles;
• for Kvant-2AT taking into account the use of PLP-01M (Kvant-2AT and PLP-01M are being introduced at the same time) - 1,917,790 rubles;
• for "Kvant-AFA" taking into account the use of PLP-01M (PLP-01M is being introduced) - 496,290 rubles.
The total costs of research, taking into account the capital costs of introducing new equipment, will be:

- for Kvant-2AT - RUB 5,532,094.51;
- for TA-4 - 2,340,141.24 rubles;
- for Pan-arsenic - 2 674 825.05 rubles;
- for Kvant-2AT, taking into account the use of PLP-01M (Kvant-2AT and PLP-01M are being introduced at the same time) - 4,456,713.53 rubles;
- for Kvant-AFA, taking into account the use of PLP-01M (PLP-01M is being introduced) - 2,725,085.36 rubles.

The annual profit from the research, depending on the equipment used.

\[
T_{\text{Kvant-2AT}} = \frac{5532094.51}{6271805.49} \approx 0.88
\]

\[
T_{\text{TA-4}} = \frac{2340141.24}{1214858.76} \approx 1.93
\]

\[
T_{\text{Pan-arsenic}} = \frac{2674825.05}{261374.95} \approx 10.23
\]

\[
T_{\text{Kvant-2AT at PLP-01M, Cun.} = 315 \text{ RUB}} = \frac{4456713.53}{2518401.47} \approx 1.77
\]

\[
T_{\text{Kvant-AFA at PLP-01M, Cun.} = 315 \text{ RUB}} = \frac{2725085.36}{2828529.64} \approx 0.96
\]

\[
T_{\text{Kvant-2AT at PLP-01M, Cun.} = 260 \text{ RUB}} = \frac{4456713.53}{1635376.47} \approx 2.73
\]

\[
T_{\text{Kvant-AFA at PLP-01M, Cun.} = 260 \text{ RUB}} = \frac{2725085.36}{1945504.64} \approx 1.40
\]

- T "Kvant-2AT" = 0.88 years = 0.87 × 12 = 10.56 months = 10 months and 16 days.
- T “TA-4” = 1.93 years = 1 + 0.93 × 12 = 1 year 11 months and 4 days.
- T "Pan-arsenic" = 10.23 years = 10 + 0.23 × 12 = 10 years 2 months and 22 days.
- T "Kvant-2AT" at PLP-01M, Cun. = 315 RUB = 1.77 years = 1 + 0.77 × 12 = 1 year 9 months and 7 days.
- T "Kvant-AFA" at PLP-01M, Cun. = 315 RUB = 0.96 years = 0.96 × 12 = 11 months and 15 days.
- T "Kvant-2AT" at PLP-01M, Cun. = 260 RUB = 2.73 years = 2 + 0.73 × 12 = 2 years 8 months and 22 days.
- T "Kvant-AFA" at PLP-01M, Cun. = 260 RUB = 1.40 years = 1 + 0.40 × 12 = 1 year 4 months and 24 days.

The payback period for capital investments will be:

- for "Kvant-2AT" - 10 months and 16 days;
- for "TA-4" - 1 year 11 months and 4 days;
- for "Pan-arsenic" - 10 years, 2 months and 22 days;
- for "Kvant-2AT" with PLP-01M, Tsed. = RUB 315 - 1 year 9 months and 7 days;
- for "Kvant-AFA" at PLP-01M, Tsed. = RUB 315 - 11 months and 15 days;
- for "Kvant-2AT" with PLP-01M, Tsed. = 260 rubles. - 2 years 8 months and 22 days;
- for "Kvant-AFA" at PLP-01M, Tsed. = 260 rubles. - 1 year 4 months and 24 days.
Break-even points for test equipment:

- \(Tb = 0.88 \times 32960 = 29.073 \) studies;
- \(Tb = 1.93 \times 9694 = 18.673 \) studies;
- \(Tb = 10.23 \times 8078 = 82.668 \) studies;
- \(Tb = 1.77 \times 16055 = 28.412 \) studies;
- \(Tb = 0.96 \times 16055 = 15.468 \) studies;
- \(Tb = 2.73 \times 16055 = 43.753 \) studies;
- \(Tb = 1.40 \times 16055 = 22.488 \) studies.

To cover the capital costs for the introduction of new ILC equipment, it is necessary to carry out:

- for "Kvant-2AT" – 29.073 studies;
- for "TA-4" – 18.673 studies;
- for "Pan-arsenic" – 82.668 studies;
- for "Kvant-2AT" with PLP-01M, Tsed. = RUB 315 – 28.412 studies;
- for "Kvant-AFA" at PLP-01M, Tsed. = RUB 315 - 15 468 studies;
- for "Kvant-2AT" with PLP-01M, Tsed. = 260 rubles. – 43.753 studies;
- for "Kvant-AFA" at PLP-01M, Tsed. = 260 rubles. – 22.488 studies.

4. Conclusion
As a result of the analysis of the main technical and economic indicators of the introduction of new testing equipment for the determination of toxic elements in food products, the TLC established:

- replacement of the photoelectric concentration colorimeter "KFK-2MP" with the analyzer "Pan-arsenic" in the analysis of samples of food products and food raw materials for arsenic content will be effective.
- replacement of the outdated and subject to write-off model of the atomic absorption spectrometer "Kvant-AFA" for the atomic absorption spectrometer "Kvant-2AT" in the analysis of samples of food and food raw materials for lead and cadmium content will be effective.
- the option of replacing the atomic absorption spectrometer "Kvant-AFA" with a voltammetric analyzer “TA-4” in the analysis of samples of food products and food raw materials for lead and cadmium content will be effective if the performance of the new equipment meets the needs of the laboratory; theory in the number of studies, and the acquisition of an atomic absorption spectrometer will not be advisable due to the absence of the need for its performance in carrying out measurements and the insufficient solvency of the laboratory.
- the introduction of the PLP-01M microwave laboratory system introduces a limitation on the number of studies per year, which reduces the capabilities of the measuring device, in cases both for the simultaneously introduced atomic absorption spectrometer "Kvant-2AT" and for the already used spectrometer "Kvant-AFA ". The introduction of the PLP-01M system will be beneficial if the performance of the new equipment meets the laboratory's needs in the number of studies.

The use of the PLP-01M microwave laboratory system will make it possible to implement one of two options for the price policy of the laboratory management: when the estimated price per unit of research is established, the competitiveness in the market for the services provided significantly increases; rub. additional income.
Acknowledgements
The authors express special gratitude for help in preparation to the engineer A M Chuprakova. The authors acknowledge the tremendous help received from scholars whose scientific articles are cited and included in the bibliography of this manuscript.

References
[1] Kuramshina N, Rebezov M, Kuramshin E, Krasnogorskaya N, Tretyak L, Somova Yu, Dolmatova I, Zaitseva T, Grigoryeva I and Bakirova L 2018 Heavy Metals Contamination of Soil in Urban Areas of Southern Ural Region of Russia International Journal of Engineering and Technology (UAE) 7(4.42) 14-8 DOI: 10.14419/ijet.v7i4.25536
[2] Kuramshina N, Rebezov M, Kuramshin E, Tretyak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okuskhanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia International Journal of Pharmaceutical Research 11(1) 1301-5 DOI: 10.21668/health.risk/2019.2.04.eng
[3] Akhmetova S, Suleimenova M and Rebezov M 2019 Mechanism of an improvement of business processes management system for food production: case of meat products enterprise Entrepreneurship and sustainability issues 7(2) 1015-35 Doi 10.9770/jesii.2019.7.2(16)
[4] Maksimuk N N, Rebezov M B and Guber N B 2018 Experience in auditing in the food safety management system Economics of Agriculture of Russia doi:10.32651/2070-0288-2018-9-15-21
[5] Imran M et al. 2020 Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders Antioxidants 9(8) 706 doi:10.3390/antiox9080706
[6] Rebezov M, Naumova N, Lukin A, Alkhamova G and Khayrullin M 2011 Food behavior of consumers (for example, Chelyabinsk) Voprosy Pitanii 80(6) 23-6
[7] Ahsan S et al. 2020 Safety assessment of milk and indigenous milk products from different areas of Faisalabad J Microbiol Biotech Food Sci 9(6) 1197-203 DOI: 10.15414/jmbfs.2020.9.6.1197-1203
[8] Temerbayeva M et al. 2018 Development of Yoghurt from Combination of Goat and Cow Milk Annual Research & Review in Biology 23(6) 1-7 DOI: 10.9734/arrb/2018/38800
[9] Temerbayeva M et al. 2018 Technology of Sour Milk Product For Elderly Nutrition Research Journal of Pharmaceutical Biological and Chemical Sciences 9(1) 291-5
[10] Serikova A, Smolnikova F, Rebezov M, Okuskanov A, Temerbayeva M, Gorelik O, Kharlap S, Baitukenova Sh, Baitukenova S and Tumbasova Y 2018 Development Of Technology Of Fermented Milk Drink With Immune Stimulating Properties Research Journal of Pharmaceutical Biological and Chemical Sciences 9(4) 495-500 WOS:000438848100062
[11] Smolnikova F, Rebezov M, Shaydullin R, Knysy I, Yudina O, Nikolaeva N, Sorokin A, Zubtsova Yu and Kozlov V 2020 Vegetable stabilizers used in the production of fermented milk drinks and yogurts International Journal of Psychosocial Rehabilitation 24(6) 7663-7 DOI: 10.37200/IJPR/V24I6/PR260775
[12] Kassymov S, Rebezov M, Ikonnikova A, Fedin I, Rodionov I, Rukhadze S and Bokuchava O 2020 Using of pumpkin and carrot powder in production of meat cutlets: effect on chemical and sensory properties International Journal of Psychosocial Rehabilitation 24(4) 1663-70 DOI: 10.37200/IJPR/V24I4/PR201274
[13] Gavriloa N, Chernopolskaya N, Rebezov M, Moisejkina D, Dolmatova I, Mironova I, Peshcherov G, Gorelik O and Derkho M 2019 Advanced Biotechnology of Specialized Fermented Milk Products International Journal of Recent Technology and Engineering 8(2) 2718-22 DOI: 10.35940/ijrte.B3158.078219
[14] Rozhnov E, Kazarskih A, Shkolnikova M, Tretyak L, Voytsekhovskiy V, Maksimiuk N, Khayrullin M, Rebezov M and Yessimbekov Zh 2019 Investigation of the conditions for the formation of 5-Hydroxymethylfurfural in the production of honey wines and sea-buckthorn wine drinks Research Journal of Pharmacy and Technology 12(7) 3501-6 DOI: 10.5958/0974-
[15] Chernopolskaya N, Gavrilova N, Rebezov M, Dolmatova I, Zaitseva T, Somova Y, Babaeva M, Ponomarev E and Voskanyan O 2019 Biotechnology of specialized product for sports nutrition *International Journal of Engineering and Advanced Technology* **8**(4) 40-5 DOI: 10.35940/ijjte.B3158.078219

[16] Chernopolskaya N, Gavrilova N, Rebezov M, Harlap S, Nigmatyanov A, Peshcherov G, Bychkova T, Vlasova K and Karapetyan I 2019 Biotechnology of specialized fermented product for elderly nutrition *International Journal of Pharmaceutical Research* **11**(1) 545-50 DOI: 10.35940/ijjte.B3158.078219

[17] Nesterenko A, Kenijz N, Rebezov M, Omarov R and Shlykov S 2020 Production technology for smoked sausages using protein-fat emulsion *International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies* **11**(12) 1-8 http://DOI.ORG/10.14456/ITJEMAST.2020.226

[18] Rebezov M *et al.* 2020 Improvement of Laboratory Services When using Sample Preparation in Microwave System *International Journal of Current Research and Review* **12**(16) 29-33 doi:10.31782/IJCCR.2020.12167

[19] Rebezov M, Belokamenskaya A, Zinina O, Naumova N, Maksimyuk N, Soloveva A and Solntseva A 2012 Quality control of food research for lead content *Izvestiya vuzov-prikladnaya khimiya i biotekhnologiya* **1** 157 WOS:000442743100030

[20] Chuprakova A M and Rebezov M B 2016 Analysis of the results of the samples of milk and dairy products, as well as bakery and confectionery products on the content of toxic elements *Bulletin of the South Ural State Series Food and Biotechnology* **4**(1) doi.org/10.14529/FOOD160106

[21] Zykova I, Maksimuk N, Rebezov M, Kuznetsova E, Derkho M, Sereda T, Kazhibayeva G, Somova Yu and Zaitseva T 2019 Interaction between heavy metals and microorganisms during wastewater treatment by activated sludge *Journal of Engineering and Applied Sciences* **14**(11) 2139-45

[22] Assenova B, Okuskhanova E, Rebezov M, Korzhikenova N, Yessimbekov Zh and Dragoev S 2016 Trace and toxic elements in meat of maral (red deer) grazing in Kazakhstan *Research Journal of Pharmaceutical, Biological and Chemical Sciences* **7**(1) 1425-33

[23] Duysssembaev S, Serikova A, Okuskhanova E, Ibragimov N, Bekturova N, Ikimbayeva N, Rebezov Y, Gorelik O and Baybalinova M 2017 Determination of Cs-137 Concentration in Some Environmental Samples around the Semipalatinsk Nuclear Test Site in the Republic of Kazakhstan *Annual Research & Review in Biology* **15**(4) 1-8 DOI: 10.9734/ARRB/2017/35239

[24] Konushkin S V *et al.* 2020 Study of the physicochemical and biological properties of the new promising Ti–20Nb–13Ta–5Zr alloy for biomedical applications *Materials Chemistry and Physics* 30 July 2020 123557 doi:10.1016/j.matchemphys.2020.123557

[25] Osintseva D *et al.* 2017 Ozonation and microwave treatments as new pest management methods for grain crop cleaning and Disinfection *Annual Research & Review in Biology* **20**(5) 1-6 DOI: 10.9734/ARRB/2017/37741