Relations between obesity and asthma in young adult females

Alyssa L. Mueller, Bianca Muñoz, Rebecca L. Ranous, Isabel Laiseca-Ruiz and Jessica L. Hartos*

Department of Physician Assistant Studies, University of North Texas Health Science Center, Texas, USA

Abstract

Purpose: Previous research has linked obesity and asthma, but results have shown conflicting findings overall and do not focus solely on young adult females. Therefore, the purpose of this study is to assess the relationship between obesity and asthma among females ages 18-34 in the general population.

Methods: This cross-sectional analysis used 2017 BRFSS data for females ages 18-34 in Kansas (N = 1557), Kentucky (N = 615), Maine (N = 502), and Michigan (N = 847). Multiple logistic regression analysis by state was performed to determine the relationship between obesity and asthma after controlling for health-related, socioeconomic, and demographic factors.

Results: Across states, up to one-quarter of the participants reported having asthma (16-24%) and up to one-half reported obesity (29%-52%). Results of adjusted analysis indicated that asthma did not differ by weight status in any state. However, asthma was related to having two or more health conditions in three out of four states.

Conclusion: Overall, asthma was not related to obesity in young adult females ages 18-34 in the general population; however, asthma was highly related to having two or more health conditions. The results of this study may be generalizable to young adult females in primary care practice. Practitioners should always screen patients for obesity and educate on the causes of obesity, including genetics, metabolism, and lifestyle, and possible treatment options. Practitioners should also screen young adult females for asthma and chronic health conditions if they present with symptoms of either; educate about the management of comorbid conditions; and assess the treatment options for comorbid conditions.

Worldwide, over 300 million people of all ages, genders, and races suffer from asthma [1-3]. Of the 25 million people in the United States with asthma, 18.7 million, or around 7%, are adults, and the prevalence is increasing by about 0.5% every year [2,4-6]. Asthma is the chronic inflammation and constriction of airways accompanied by thick mucus secretion that can further impede air flow [5-8] with visible symptoms including coughing, wheezing, and shortness of breath. Unfortunately, a person’s inability to effectively manage their asthma symptoms can lead to excessive healthcare utilization and even mortality [10-11].

Obesity may be a major risk factor for asthma and increased asthma symptom severity [2,4,11]. Obesity is most commonly measured via Body Mass Index (BMI), with a BMI of 18.5-24.9 considered normal, 25-29.9 considered overweight, and 30 or higher considered obese [4,12,13]. Over 20% of the U.S. adult population are considered obese, or about 44.3 million people – 21.4 million men and 22.9 million women, and these numbers are only predicted to increase [4,11]. Worldwide, at least 2.8 million people die annually due to complications of overweight or obese with other diseases including diabetes, high blood pressure, high cholesterol level, arthritis, stroke incidence, cardiovascular disease, and even cancer [2,4,11,13]. Furthermore, women are more likely to be obese than men, and the prevalence of obesity is higher in older populations than in younger [11]. Finally, socioeconomic status, such as unemployment, has shown to be related to BMI in the general population [4,12].

Research reviews have found that about 10% of overweight and obese individuals also suffer from asthma, and that factors such as age, gender, activity level and diet influence the relationship between obesity and asthma [4,11]. However, many of these studies have included small sample sizes and inconsistent measurements for obesity [4,10]. Moreover, there are conflicting findings on asthma and gender with some evidence showing that being female increases your chance of having obesity and asthma concurrently, and others finding that gender plays no role in the relationship [4]. Furthermore, no studies focus solely on the obesity-asthma relationship for young adult females in the general population [4], and this may be important as asthma is the second leading health concern for use of health care services in young adults, and the average BMI for young adult females has increased over time at a much higher rate than BMI increases for young adult males [14]. Therefore, the purpose of this study is to explore whether obesity is related to asthma in young adult females in the general population.

Methods

Design

This cross-sectional analysis used data from the 2017 Behavior Risk Factor Surveillance System (BRFSS) conducted by the Center for Disease Control and Prevention [15]. The purpose of BRFSS is to collect data on health risks behaviors, chronic diseases, health conditions, and health prevention practices. More than 400,000 adults 18 and older are

*Correspondence to: Jessica L. Hartos, Department of Physician Assistant Studies, University of North Texas Health Science Center; 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA, Tel: (817)735-2454; Fax: (817)735-2529; E-mail: Jessica.Hartos@unthsc.edu

Key words: obesity, asthma, females, comorbid conditions, primary care

Received: March 07, 2019; Accepted: March 18, 2019; Published: March 21, 2019
interviewed annually using random digit dialing survey techniques across all 50 States and the District of Columbia. The CDC compiles all BRFSS data and makes de-identified data available to researchers for secondary data analysis. This study was given exempt status by the Institutional Review Board of the University of North Texas Health Science Center.

Sample

The samples for this study included females ages 18-34 in Kansas (N = 1557), Kentucky (N = 615), Maine (N = 502), and Michigan (N = 847) who had data for obesity and asthma. These states were selected because of higher prevalence of (a) obesity, (b) asthma, and (c) young adult females based on the BRFSS 2016 prevalence survey data maps [16].

Data

The outcome, asthma, was measured as “yes” or “no” to having ever been diagnosed with asthma. The factor of interest, obesity, was measured in BRFSS by calculating the participants’ BMI based on their reported height and weight, and “obese” was categorized as a BMI of 30.00 or higher. Control variables included general health status, health conditions, healthcare access, vegetable consumption, physical activity, alcohol use, tobacco use, age category, ethnicity/race, education level, employment status, and income level. All variables and categories are shown in table 1. Health conditions was calculated as the number of “yes” responses to ever being diagnosed with any of the following: heart

Table 1. Participant characteristics by state

Variable	Kansas n = 1557	Kentucky n = 615	Maine n = 502	Michigan n = 847
N %	N %	N %	N %	N %
Asthma	1557 100	615 100	502 100	847 100
Yes	299 19	99 16	122 24	190 22
No	1258 81	516 84	380 76	657 78
Weight Status	1557 100	615 100	502 100	847 100
Obese	457 29	196 32	262 52	221 26
Not obese	1100 71	419 68	240 48	626 74
General Health Status	1553 100	614 99	502 100	847 100
Good or better	1369 88	539 88	445 89	749 88
Fair or poor	184 12	75 12	57 11	98 12
Health Conditions	1206 77	505 82	375 75	588 69
0	668 43	223 44	184 49	297 51
1	325 21	168 33	133 35	188 32
2 or more	213 14	114 23	58 15	103 17
Vegetable Consumption	1402 90	564 92	469 93	787 92
Daily	1157 83	475 84	429 91	787 92
Not daily	245 17	89 16	40 9	152 19
Physical Activity	1395 90	550 89	457 91	780 92
Inactive or insufficient	689 44	294 53	226 49	404 52
Active or highly active	706 46	256 47	231 51	376 48
Healthcare Access	1555 100	615 100	502 100	847 100
Cost did not influence	1265 81	526 86	413 82	710 84
Cost did influence	290 19	89 14	89 18	137 16
Alcohol Use	1466 94	584 95	467 93	794 94
Use	171 11	277 47	316 68	506 64
No use	111 11	307 53	151 32	288 36
Tobacco Use	1515 97	606 99	490 98	827 98
Never smoker	1044 66	388 64	336 69	590 71
Former smoker	184 12	64 11	60 12	95 11
Current smoker	287 19	154 25	94 19	142 17
Age	1557 100	615 100	502 100	847 100
18-24	552 35	222 36	149 30	332 39
25-34	1002 65	393 64	353 70	515 61
Ethnicity/Race	1541 99	612 99	499 99	842 99
White	1161 75	541 88	465 93	582 84
Other	380 25	71 12	34 7	260 31
Education Level	1557 100	615 100	500 100	845 99
No college	467 30	166 27	146 29	243 29
Some college	588 38	264 43	151 30	313 37
Graduated college	502 32	185 30	203 41	289 34
Employment Status	1542 99	613 99	501 100	840 99
Work	1059 69	374 61	337 67	520 62
Student	221 14	116 19	68 14	168 20
Other	262 17	123 20	96 19	152 18
Income Level	1294 83	437 71	468 93	702 83
Less than $25,000	405 31	140 32	132 28	216 31
$25,000 to $49,999	379 29	110 25	158 32	181 26
$50,000 or more	510 39	187 43	178 38	305 43
attacked by myocardial infarction; angina or coronary heart disease; stroke; skin cancer; other types of cancer; chronic obstructive pulmonary disease, emphysema or chronic bronchitis; arthritis; depressive disorder; kidney disease; diabetes; high blood cholesterol; and high blood pressure. We then categorized values as "0 health conditions," "1 health condition," or "2 or more health conditions."

Analysis

Frequency distributions by state were used to describe the samples and identify any issues among the distribution of variables. We analyzed data separately by state to determine any patterns in relationships across similar samples. Multiple logistic regression by state was conducted to assess the relationship between obesity and asthma after controlling for health-related, demographic, and socioeconomic factors. Similar results in three or four out of four states were considered reliable evidence for relations. Any observations with missing data for any variables were excluded from adjusted analysis. All analyses were conducted in STATA 15.1 (Copyright 1985-2017 StataCorp LLC).

Results

Descriptive statistics

Table 1 lists participant characteristics for young adult females in Kansas, Kentucky, Maine, and Michigan. Up to one-quarter of the participants reported having asthma (16-24%) and up to one-half reported as obese (29-52%). For health-related factors, most participants reported good or better general health status (88-89%) and about half reported having one or more health conditions (45-56%). Most of participants reported consuming vegetables daily (83-92%), up to one-half reported being inactive or insufficiently active (26-53%), and most reported that cost did not influence their decision to see a doctor (81-86%). For substance use, up to two-thirds of the participants reported drinking in the last 30 days (25-68%) and never having smoked (64-71%). For socioeconomic factors, the participants were fairly divided amongst those who did not attend, attended, or graduated college; the majority of participants were employed (61-69%); and participants were fairly divided amongst annual income categories. Most of the participants were white (69-93%), and over two-thirds were ages 25-34 years (61-70%).

Adjusted statistics

As shown in table 2, the results of multiple logistic regression analysis for young adult females in Kansas, Kentucky, Maine, and Michigan indicated that after controlling for all other variables in the model, asthma did not differ by weight status in any state. However, across states, participants who reported two or more health conditions were about 3.2-4.2 times more likely to report asthma compared to those with zero health conditions.

Discussion

The purpose of this study was to explore whether obesity was related to asthma in young adult females when controlling for health-related, socioeconomic, and demographic factors. Across states, up to one-quarter of the participants reported having asthma and up to one-half reported as obese. The results of adjusted analysis indicated that obesity was not related to asthma in young adult females. Our findings are similar to a previous study whose research showed that there was no significant association between asthma and obesity among young adult Brazilian male and females ages 23-25 who were randomly selected [17]. However, other studies have shown significant relations, especially among women of all ages [18,19]. It may be that health consequences of obesity and asthma become more interlinked as women age.

Although our study found that obesity may not relate to asthma in young adult females, having multiple health conditions may. Our study indicated that participants with two or more health conditions were up to four times more likely to report asthma. These results are similar to prior research which suggests that asthma shares close relationships with a variety of obstructive diseases and depression [8,20]. Therefore, issues with comorbid health conditions may show earlier than issues complicated by obesity in this younger demographic.

Limitations

The use of 2017 BRFSS data allowed access to multiple large samples for determining the association between asthma and obesity in our target population, and the data was current. However, cross-sectional data only indicates relations and not direction of relations and our samples were not representative of different races, both of which could limit the generalizability of the results. Furthermore, BRFSS measured weight status by asking participants for their height and weight to calculate BMI, which may be inaccurately reported as well as inaccurate in estimating weight status. Utilizing a more appropriate measure such as an abdominal circumference may be beneficial to assess health status in future research [4]. In addition, we lacked information on symptom severity, management strategies, and medications related to asthma or other health conditions, all of which may impact the relationship between asthma and obesity.

Conclusions

Because this was a population-based study, the results may be generalizable to young adult females in primary care practice. In the clinic, up to one-half of this target population may be obese but obesity may not be related to asthma. Practitioners should screen for asthma if symptoms present, educate on ways to manage asthma symptoms, and refer to allergy or asthma specialists as needed. Although obesity may not be related to asthma in this target population, obesity can

Table 2. Adjusted results across states
Predicting Asthma (yes vs. no)
Weight Status (ref: not obese)
Obese
Health Conditions (ref: 0)
1-3
2 or more

AOR= adjusted odds ratio; 95 % CI=95 % confidence intervals; ref=referent group; boldface indicates significance (AOR with 95% CI that do not include 1.00 are significant); results shown are only for the factor of interest and any control variables that were significant in three or more states; model also included general health status, healthcare access, vegetable consumption, physical activity, alcohol use, tobacco use, age category, ethnicity/race, education level, employment status, and income level.
lead to other complications over time. Therefore, practitioners should always screen young adult females for obesity and educate patients on the causes of obesity, implementing lifestyle changes, testing that can inform the patient on the role genetics and metabolism play in their obesity, and surgical options. Referrals should be made to weight reduction specialists as needed. Additionally, up to one-fourth of the young adult females seen in primary care may have multiple health conditions, and having comorbidities may be highly related to asthma in this target population. Thus, practitioners should screen for comorbidities if asthma symptoms present and educate on preventative measures for chronic conditions and the importance of managing comorbid conditions. Practitioners should also assess the compatibility of treatments for multiple chronic conditions and make referrals to specialists as needed.

References

1. Hosseini B, Berthon BS, Wark P, Wood LG (2017) Effects of Fruit and Vegetable Consumption on Risk of Asthma, Wheezing and Immune Responses: A Systematic Review and Meta-Analysis. *Nutrients* 9: E341. [Crossref]

2. Novosad S, Khan S, Wolfe B, Khan A (2013) Role of obesity in asthma control, the obesity-asthma phenotype. *J Allergy (Cairo)* 2013: 538642. [Crossref]

3. Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, et al. (2011) Meta-analysis of genome wide association studies of asthma in ethnically diverse North American populations. *Nat Genet* 43: 887-892. [Crossref]

4. Beuther AD, Sutherland ER (2007) Overweight, obesity and incident asthma: A meta-analysis of prospective epidemiologic studies. *Am J Respir Crit Care Med* 175: 661-666. [Crossref]

5. Kim KH, Jahan SA, Kabir E (2013) A review on human health perspective of air pollution with respect to allergies and asthma. *Environ Int* 59: 41-52. [Crossref]

6. National Medical Association (2018) Asthma fact sheet. Available at: http://asthma.nmanet.org/docs/factsheet-asthma-print.pdf

7. Chest Foundation (2018) Asthma infographic. Available at: https://foundation.chestnet.org/wp-content/uploads/2017/01/asthma-infographic.pdf

8. Kasasbeh A, Kasasbeh E, Krishnaawamy G (2007) Potential mechanisms connecting asthma, esophageal reflux, and obesity/sleep apnea complex—a hypothetical review. *Sleep Med Rev* 11: 47-58. [Crossref]

9. Press VG, Pappalardo AA, Corwell WD, Pincavage AT, Prochaska MH, et al. (2012) Interventions to improve outcomes for minority adults with asthma: a systematic review. *J Gen Intern Med* 27: 1001-1015. [Crossref]

10. Weiser EB (2007) The prevalence of anxiety disorders among adults with asthma: A meta-analytic review. *J Clin Psychol Med Settings* 14: 297-307.

11. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, et al. (2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. *JAMA* 289: 76-79. [Crossref]

12. Ali Z, Ulrik CS (2013) Obesity and asthma: a coincidence or a causal relationship? A systematic review. *Respir Med* 107: 1287-1300. [Crossref]

13. World Health Organization (2018) Obesity and obesity in the western pacific region: An equity perspective. Available at: http://apps.who.int/mediacentre/factsheets/fs311/en/index.html

14. Park MJ, Paul Mulye T, Adams SH, Brindis CD, Irwin CE Jr (2006) The health status of young adults in the United States. *J Adolesc Health* 39: 305-317. [Crossref]

15. Centers for Disease Control and Prevention (2008) 2017 BRFSS survey data and documentation. CDC website. Available at: https://www.cdc.gov/brfss/annual_data/annual_2017.html

16. Fisher MA, Ma ZQ (2014) Multiple chronic conditions: diabetes associated with comorbidity and shared risk factors using CDC WEAT and SAS analytic tools. *J Prim Care Community Health* 5: 112-121. [Crossref]

17. Cetlin AA, Gutierrez MR, Bettiol H, Barbieri MA, Vianna EO (2012) Influence of asthma definition on the asthma-obesity relationship. *BMC Public Health* 12: 844. [Crossref]

18. Barros R, Moreira P, Padrão P, Teixeira VH, Carvalho P, et al. (2017) Obesity increases the prevalence and the incidence of asthma and worsens asthma severity. *Clin Nutr* 36: 1068-1074. [Crossref]

19. Wang L, Wang K, Gao X, Paul TK, Cai J, Wang Y (2015) Sex difference in the association between obesity and asthma in US adults: Findings from a national study. *Respir Med* 109: 955-962.

20. Opolski M, Wilson I (2005) Asthma and depression: a pragmatic review of the literature and recommendations for future research. *Clin Pract Epidemiol Ment Health* 1: 18. [Crossref]