Trends, variability and predictive skill of the ocean heat content in North Atlantic: An analysis with the EC-Earth3 model

Teresa Carmo-Costa · Roberto Bilbao · Pablo Ortega · Ana Teles-Machado · Emanuel Dutra

Abstract This study investigates trends, variability and predictive skill of the upper ocean heat content (OHC) in the North Atlantic basin. This is a region where strong decadal variability superimposes the externally forced trends, introducing important differences in the local warming rates, and leading in the case of the Central Subpolar North Atlantic to an overall long-term cooling. Our analysis aims to better understand these regional differences, by investigating how internal and forced variability contribute to local trends, exploring also their role on the local prediction skill. The analysis combines the study of three ocean reanalyses to document the uncertainties related to observations, with two sets of CMIP6 experiments performed with the global coupled climate model EC-Earth3: a historical ensemble to characterise the forced signals; and a retrospective decadal prediction system, to additionally characterise the contributions from internal climate variability. Our results show that internal variability is essential to understand the spatial pattern of North Atlantic OHC trends, contributing decisively to the local trends and providing high levels of predictive skill in the Eastern Subpolar North Atlantic and the Irminger and Iceland Seas, and to a lesser extent in the Labrador Sea. Skill and trends in other areas like the Subtropical North Atlantic, or the Gulf Stream Extension are mostly externally forced. Large observational and modelling uncertainties affect the trends and interannual variability in the Central

We would like to acknowledge the financial support from FCT through projects FCT-UIDB/50019/2020 and PD/BD/142785/2018.

Teresa Carmo-Costa
Instituto Dom Luiz - Faculdade de Ciências da Universidade de Lisboa, Edificio C8, Campo Grande, 1749-016 Lisbon, Portugal
E-mail: tmcosta@fc.ul.pt

Roberto Bilbao, Pablo Ortega,
Barcelona Supercomputing Center

Ana Teles-Machado, Emanuel Dutra,
Instituto Dom Luiz, Instituto Português do Mar e da Atmósfera
Subpolar North Atlantic, the only region exhibiting a cooling during the study period, uncertainties that might explain the very poor local predictive skill.

Keywords Ocean Heat Content · Long-term Trends · North Atlantic Ocean · Decadal Prediction · Climate Modelling

1 Introduction

Observations show that approximately 93% of the energy entering the climate system since the 1950s has been stored by the oceans (Levitus et al. 2012; Lyman et al. 2010; Johnson and Lyman 2020; Schuckmann et al. 2020). As a result, the upper layers of the ocean have warmed with distinct spatio-temporal features, shaped by the different warming rates that the ocean basins of the world have experienced. Several studies (e.g. Chen and Tung 2014; Wang et al. 2018; Zanna et al. 2019) have shown that the ocean heat content (OHC) in the Indian basin has remained approximately constant from 1950 until the early 2000s, when a warming trend started to develop, while the Pacific and Atlantic ocean basins exhibited notable multi-decadal variability during the whole period, with a superimposed long-term warming trend. Regional differences have also emerged in some of the basins, like in the Atlantic ocean, where in recent decades the central Subpolar North Atlantic (CSPNA) region has cooled while the rest of the basin has warmed, a feature that has been labeled in recent literature as the "cold blob" when referring to the most recent decadal trends (e.g. Yeager et al. 2016), and as the "warming hole" when referring to externally forced centennial-scale changes (e.g. Drijfhout et al. 2012; Rahmstorf et al. 2015; Keil et al. 2020).

While, at the global scale, the observed long-term warming trend can be largely explained by the increasing greenhouse gas concentrations in the atmosphere and the counterbalancing effect of anthropogenic and volcanic aerosols (e.g. Bilbao et al. 2019), other contributions can dominate the regional trends. On decadal time-scales, the ocean’s internal variability plays an important role in shaping these regional trends (Chen and Tung 2014). Several mechanisms have been proposed to explain the recent cooling trend in the CSPNA, including the influence of anthropogenic factors (Chemke et al. 2020). The oceanic processes proposed to explain the cooling include (i) a slowdown in the meridional heat transport, triggered by a weakening of the Atlantic Meridional Overturning Circulation (AMOC; Drijfhout et al. 2012; Robson et al. 2016), (ii) a change in heat advection by the horizontal gyre circulation (Piecuch et al. 2017), and (iii) a shift in the Gulf Stream current (Ruiz-Barradas et al. 2018). More generally, changes in the ocean circulation, and in particular the AMOC, have been related in many modeling studies to intrinsic basin-scale decadal variability in the North Atlantic ocean (Knight et al. 2005; Buckley and Marshall 2016; Ortega et al. 2015; Gastineau et al. 2018), usually referred to as Atlantic Multidecadal Variability (AMV; Schlesinger and Ramankutty 1994). This implies that the recent OHC trends in the basin could
be internally-driven. But there is also modeling (Cheng et al., 2013) and indirect paleoclimatic evidence (i.e. proxies; Rammstorf et al., 2015; Thorne et al., 2018) supporting that the AMOC might have been weakening since the beginning of the industrial era following the increase in greenhouse gas (GHG) concentrations, which would support an externally-forced origin of the OHC cooling trends.

Both externally forced and internally-generated climate variability can be jointly exploited in climate models to produce skillful near-term predictions of the upper ocean temperatures (Meehl et al., 2009). In these predictions, typically know as decadal predictions because they extend for up to 10 years, radiative forcing changes are prescribed as boundary conditions and internal climate variability is initialised by bringing the model close to the observed state. The predictive skill is not geographically nor temporally uniform, as some regions are naturally more predictable than others, either because they are more sensitive to the external radiative forcings or because they are under the influence of more predictable modes of climate variability. Two prominent examples of predictable regions are the Tropical Pacific, where El Niño-Southern Oscillation (ENSO) dominates the seasonal to interannual ocean variability and prediction skill (e.g. Barnston, 1994; Ham et al., 2019), and the North Atlantic, where the aforementioned AMV and slow changes in both gyre and ocean circulations provide high levels of decadal prediction skill for the OHC (e.g. Doblas-Reyes et al., 2013; Yang et al., 2013; Yeager and Robson, 2017a; Frajka-Williams et al., 2017). In the particular case of the North Atlantic, not all areas are equally predictable. Most decadal prediction systems show high levels of skill for the upper ocean temperatures at Subpolar Gyre latitudes (Matei et al., 2012; Robson et al., 2018; Mignot et al., 2016; Yeager et al., 2012, 2018; Bilbao et al., 2020). On these regions slowly-varying ocean dynamics exerts a prominent influence, but observations also suggest long predictive capacity due to long thermal memory, and therefore persistence (Buckley et al., 2019). Another North Atlantic region also linked to the large-scale ocean circulation is the Gulf Stream Extension (GSE), but it shows comparatively less persistence for the upper ocean temperatures than the Subpolar Gyre (Buckley et al., 2019). Furthermore, the GSE exhibits lower skill in many prediction systems (e.g. Matei et al., 2012; Mignot et al., 2016; Yeager et al., 2018; Bilbao et al., 2020), which suggest that the region might be inherently less predictable. However, the Gulf Stream region is also known to suffer from important systematic biases in the typical non-eddying model resolutions used for climate prediction (i.e., 1° x 1°), which might hamper predictive skill (Hewitt et al., 2017). It is also unclear if higher prediction skill is achievable in other regions like the Subtropical North Atlantic, in which decadal variability is less prominent but the external forcings might exert a stronger influence (Frankignoul et al., 2017).

This study focuses on the upper OHC variations in the North Atlantic basin in recent decades, addressing some of the factors behind the different local OHC variability and predictability. We also explore the observational
uncertainties, since many regions of the North Atlantic Ocean are still unmonitored or have remained undersampled until recently (Abraham et al. 2013).

The following questions will be addressed in the study:

– Are past upper OHC changes consistent in ocean reanalyses, both at the basin-scale and regionally? If not, which are the regions where the recent OHC changes are more uncertain?

– Can climate models skilfully predict the robust upper OHC changes from reanalyses? And how much of the skill derives from the long-term trends?

– Which aspects of the regional trends, variability and predictability are driven by external forcings, and which ones are due to internal climate variability?

To answer these questions we examine the outputs of three ocean reanalyses as well as two sets of experiments with the EC-Earth3 atmosphere-ocean general circulation model (AOGCM) contributing to the CMIP6 exercise (Eyring et al. 2016). The first set is an ensemble of historical simulations, forced with CMIP6 external radiative forcing conditions from the last century to the present, with no initialisation from observations. The second set is an ensemble of decadal climate predictions, initialised every year over the period 1960-2014 and driven by the same historical radiative forcing conditions.

The paper is structured as follows: Section 2 describes the data, the model and all methodological aspects considered in the analysis. Section 3 presents the results and is subdivided in three parts: (i) a description of upper OHC trends and variability in reanalyses, (ii) an evaluation of the forecast skill for the upper OHC in the North Atlantic, and (iii) an assessment of the forecast upper OHC trends and their contribution to the total skill. Finally, the fifth section summarizes the main results and discusses them in light of previous studies.

2 Data and methods

2.1 Model and Experimental Setup Description

EC-Earth is the European community Earth-System Model. The simulations analysed in this study were performed with the coupled AOGCM configuration of EC-Earth, using the version 3.3, the same one contributing to CMIP6. Its atmospheric component is the Integrated Forecast System (IFS; Hazeleger et al. 2010) from the European Centre for Medium-Range Weather Forecasts (ECMWF), cycle cy36r4, and has a T255 horizontal resolution (grid size approximately 80km) and 91 vertical levels. The ocean component is the version 3.6 of the Nucleus for European Modelling of the Ocean (NEMO; Madec and the NEMO Team 2016), which is itself composed of the ocean model OPA (Ocean PArallelise) and the Louvain-La-Neuve sea ice model (LIM3; Rousset et al. 2015), both run with an ORCA1 horizontal resolution (ca. 1° nominal resolution) and 75 vertical levels. The atmospheric and oceanic components
are coupled through OASIS [Craig et al, 2017]. The vegetation fields are pre-
scribed and have been derived from an EC-Earth historical simulation coupled
with the LPJ-GUESS dynamic vegetation model [Smith et al, 2014].

In this study we analyse the historical and the Decadal Climate Prediction
Project (DCPP; Boer et al, 2016) hindcast simulations performed with EC-
Earth3 at the Barcelona Supercomputing Center (BSC), all contributing to
CMIP6 [Bilbao et al, 2020].

The historical simulations follow the CMIP6 protocol [Eyring et al, 2016]
and are driven with prescribed historical forcings of GHG concentrations, vol-
canic and anthropogenic aerosol concentrations, and solar variability. For this
study an ensemble of 10 historical simulations is used covering the period
1960 to 2014. The historical ensemble corresponds to the members r(2,7,12,17-
22,24)i1p1f1. These members were chosen because they exhibit active Labrador
Sea convection during the study period, and are therefore deemed to be more
realistic than the members with suppressed convection [Bilbao et al, 2020].
This set of simulations will be referred to as HIST hereinafter.

The EC-Earth3 DCPP hindcast is described in detail in [Bilbao et al,
2020]. This experiment consists of an ensemble of retrospective forecasts ini-
tialised every year on the first of November from 1960 to 2018, each composed
of 10 members and following a full field initialisation method. The atmospheric
initial conditions use ERA-40 reanalysis [Uppala et al, 2005] for the period
1960-1978 and ERA-Interim reanalysis [Dee et al, 2011] for the period 1979-
2018. The ocean and sea ice initial conditions come from a forced ocean-sea
ice reconstruction with NEMO-LIM, where the model is nudged towards 3-
dimensional ocean temperature and salinity from the ORAS4 reanalysis [Mo-
gensen et al, 2012] and driven by surface fluxes from the Drakkar Forcing
Set (DFS5.2; Brodeau et al, 2010). This set of simulations corresponds to the
DCPP members r1i1p1f1 - r10i1p1f1 and will be referred to as PRED hence-
forth.

All simulations are available at the CMIP6-Earth System Grid Federation
(ESGF) portal (https://esgf-data.dkrz.de/search/cmip6-dkrz/) and can also
be downloaded from the corresponding BSC-node:
(https://esgf.bsc.es/thredds/catalog/esgcet/catalog.html).

2.2 Reference Observation-based Datasets

Since ocean temperature observations, especially in the deep ocean, are tem-
porally and spatially sparse, ocean reanalyses provide a physically consistent
representation of the past OHC variability by assimilating temperature ob-
servations to models (among other variables). However, the sparsity of deep
ocean temperature observations, the model uncertainties in the representation
of sub-scale processes and the limitations of data assimilation, make these
reanalysis inherently uncertain.
Table 1 Summary of features of the reanalyses used as benchmark here

Dataset Name	ECDA3.1	ORAS4	ORAS5
Period Covered	1961-2016	1959-2017	1958-2020
Horizontal Resolution	1°	1°	1/4°
Vertical Layers	50	42	75
Ocean Model	MOM4	NEMO 3.0	NEMO 3.4
Sea Ice Model	Sea Ice Simulator	Prescribed	LIM2
Atmospheric Data	Temperature, U, V (NCEP)	-	-
Forcing Fluxes	-	ERA40, ERA-Interim	ERA-Interim
Ocean/Sea Ice Data	SSTs	SSTs,	SSTs,
	TS profiles,	TS profiles,	TS Profiles,
	Sea Level Anomalies	Sea Level Anomalies	Sea Ice Concentrations
Reference	Chang et al (2013)	Balmaseda et al (2013)	Zuo et al (2019)

To take into account and quantify this uncertainty when evaluating the forecast skill of the EC-Earth3 simulations, we use monthly averaged ocean temperatures from three different reanalyses:

1. The Ensemble Coupled Data Assimilation experiment v3.1 (ECDA; Chang et al, 2013) from the Geophysical Fluid Dynamics Laboratory (GFDL).
2. The European Centre for Medium-Range Weather Forecasts (ECMWF) Ocean Reanalysis System 4 (ORAS4; Balmaseda et al, 2013).
3. The latest ocean reanalysis product from ECMWF (ORAS5; Zuo et al, 2019) and its respective backward extension.

These three products are combined to produce a multi-reanalysis ensemble, which will be hereafter our observational-based reference. Additionally, the differences between the products will provide an indirect measure of the observational uncertainty, which obey, among other things, differences in model resolution, the model components, the forcing employed, the assimilation schemes and the assimilated observations. For further details on these datasets, please refer to Table 1.

2.3 Data pre-processing and diagnostics

The upper ocean heat content for the reanalyses and EC-Earth3 simulations was computed for each individual grid-cell from the three-dimensional ocean
temperature field \(T \) (K) following the equation:

\[
OHC(t) = \sum_{i=0}^{h} T(t)_i \ c_p \ \rho_0 \ \Delta x \ \Delta y \ \Delta z_i
\]

where \(c_p \ (JKg^{-1}K^{-1}) \) is the specific heat capacity of seawater, \(\rho_0 \ (Kgm^{-3}) \) is the reference seawater density and \(\Delta x, \Delta y, \Delta z \) (m) are the individual cell dimensions. Vertically, the ocean temperature was integrated from the surface to 700 m or to the ocean floor, whichever came first. The upper 700m ocean heat content will be referred to hereinafter as OHC700.

All datasets (reanalyses and model simulations) were interpolated to a common regular \(1^\circ \times 1^\circ \) resolution grid. The interpolation was performed using the Climate Data Operators package (from the Max-Planck Institute for Meteorology, https://code.zmaw.de/projects/cdo, version 1.7.2).

2.4 Trend analysis

The trends in OHC700 were computed by linear least-squares regression against time. OHC700 trend maps were produced in order to depict the OHC700 change patterns in the North Atlantic basin. To determine whether the trends are significantly different from zero, we use a two-sided t-test at the 95% confidence level.

The trends were computed for the period 1970-2014. This choice responds to two reasons. First, the decision to start in 1970 is motivated by constrains in the analysis of the predictions. Because we want to elucidate whether and how trends contribute to predictive skill at different forecast times, we need to define a fixed common period that is adequate to compute the skill for lead times from 1 to 10 years. Since the first start year in PRED is 1960, the first year in which we can evaluate the skill for its longest lead time is 1970. Second, HIST experiments finish in year 2014, and even if they could be concatenated with their corresponding SSP2-4.5 scenario simulations, that would introduce uncertainty in the externally forced signals, and in particular in those of natural origin, which are not accounted for in the scenarios. To illustrate the consistency of the trends across the reanalyses, and also within the ensemble members of each experiment, we use stippling to highlight the grid points where the trends for all members or reanalyses have the same sign.

2.5 Forecast Drift Correction and Skill Evaluation

Since the initialisation method used in PRED is full-field, as the forecasts progress they experience a spurious drift from the observed initial state towards the model attractor (e.g. [Meehl et al. 2014]). To correct for this drift, the anomalies are computed using the “mean drift correction” method, which consists of computing the anomalies relative to the forecast-time-dependent climatology (e.g. [Goddard et al. 2013]).
Table 2 Regions of interest of this study and their boundaries.

Acronym	Name	boundary coordinates
NA	North Atlantic	[15-65] °N [80-2] °W
IIS	Irminger-Iceland Seas	[58-65] °N [40-10] °W
ESPNA	Eastern Subpolar North Atlantic	[36-58] °N [25-10] °W
CSPNA	Central Subpolar North Atlantic	[45-57] °N [40-25] °W
LS	Labrador Sea	[50-65] °N [65-45] °W
GSE	Gulf Stream Extension	[36-45] °N [75-42] °W
STNA	Subtropical North Atlantic	[22-36] °N [79-10] °W

In the case of the HIST experiment the anomalies are computed by producing an average of all years in the period of interest 1970-2014, for each ensemble member. The same procedure was done for the reanalyses.

To evaluate the forecast quality of the EC-Earth3 experiments we use the temporal anomaly correlation coefficient (ACC) as our skill metric. The statistical significance of ACC differences is assessed following the methodology proposed by Siegert et al. (2017). Additionally, to evaluate the agreement of OHC700 patterns we use the area-weighted spatial correlation, and the statistical significance is determined by a t-test at the 95% confidence level and taking into account the temporal autocorrelation.

3 Results

3.1 Ocean Heat Content Trends and Variability in Reanalyses

The geographical pattern of OHC700 trends in the multi-reanalysis mean (Figure 1a) shows that the North Atlantic has warmed throughout most of the basin in the past decades (1970-2014), with the main exception of the central Subpolar North Atlantic (CSPNA), which experienced a long-term cooling. While the large-scale warming is consistent in the three reanalyses, as indicated by the stippling, the cooling trends are only consistent in a few grid points of the CSPNA, with the whole region showing a general lack of agreement in the sign of the trends. This calls for caution when interpreting the CSPNA cooling and its exact location, which is represented differently in the three reanalyses (Supp. Figure 1). While ORAS5 supports a widespread cooling, negative trends are very localised (and non-significant) in ECDA.

Other regions also show noteworthy discrepancies across reanalyses. These differences are highlighted in Figure 1b by the standard deviation of the OHC700 trends among the reanalyses. Apart from the CSPNA, where the largest values are found, the neighboring areas of the wider SPNA region, as well as the Gulf Stream also show considerable standard deviation values (over 0.25 x 10^8 J/m^2 per year). In the Gulf Stream, these are mostly associated to inter-reanalysis discrepancies in the magnitude of the warming trend, as the sign appears to be robust in most of the region.
Fig. 1 a) Map of the multi-reanalysis OHC700 mean trends over the period 1970-2014. Black boxes delimit the regions of interest specifically addressed in this study (See Table 2). Stippling is used to indicate the grid-points where the sign of the trend is the same in all the individual reanalysis. All trend values for which the trend is not significant are masked out in white. The full contour lines represent the zero trend and dashed lines show the subsequent trends in increments of $0.5 \times 10^8 \text{ J/m}^2 \text{ per year}$ (grey/black lines indicate positive/negative trends). b) Map of the standard deviation in the OHC700 trends across the reanalyses. The same stippling as in panel a) is included.

Based on the spatial trends, we have selected several regions of interest to investigate how variability (beyond trends) is reproduced in the reanalyses (defined in Table 2). The selection of these regions was inspired by the study of Maze et al. (2017), that classified local Argo floats temperature profiles into different clusters with coherent vertical heat distribution (Fig. 11; Maze et al., 2017). These regions represent areas in which key ocean processes occur (e.g. the deep open ocean mixing in the Labrador and Irminger Seas, or the subtropical and subpolar gyre circulations), important currents are present (i.e. the Gulf Stream) or unique recent trends have developed (i.e. the CSPNA). The horizontal boundaries were adjusted from Maze et al. (2017) to match the main features of the multi-reanalysis mean trends for the time period studied (boxes in Figure 1).

Figure 2 depicts the time-series of the OHC700 averaged in the North Atlantic (NA) and in the selected regions (See Table 2 for details on the exact boundaries considered). The whole NA basin displays a clear and significant warming trend that is consistent among the reanalyses (Figure 2a and Table 3). In particular, OHC700 remains rather flat from the 1970s until the early 1990’s, when it develops a strong positive trend that peaks at about year 2005. Since then, it has a slightly negative trend. Year to year OHC700 variations are generally small throughout the whole period.

At the regional level, interannual and decadal variability are generally more prominent than for the NA, as well as the range of the OHC700 variability (note the different y-axes in the panels). The Irminger-Iceland Seas (IIS) and the Eastern Subpolar North Atlantic (ESPNA) show similar variability, marked by decadal oscillations (i.e. a cooling during the 80s followed by a warming until 2005 and a subsequent cooling until present) superimposed on
the long-term warming trend. Even if in both cases the trends are stronger
than for NA (Table 3), they explain a smaller percentage of the total OHC700
variability (as indicated by the R^2 values in brackets). These are therefore
regions in which the trend could be largely explained by internal decadal vari-
ability. No major differences across the reanalyses are found for the OHC700
in these two regions.

The Labrador Sea (LS), and in particular the CSPNA, are the regions
where the largest discrepancies between reanalyses are found. These differences
are quantified by the temporal mean of the inter-reanalysis spread (indicated
in the bottom-right corners of Figure 2). The major differences come from
ORAS5 for which the sign and/or the magnitude of the long-term trends is
substantially different than in the other reanalyses. In the CSPNA, ORAS5 is
the only reanalysis showing a (remarkably strong) cooling trend, while ECDA
exhibits a significant warming trend, and the trend in ORAS4 is not statisti-
cally significant. These are relevant differences that lead to a multi-reanalysis
mean that is negative and not significant (Table 3). It is important to remark
that the three reanalyses show negative trends over the region, although they
differ in the exact location, extension and strength, as already seen in Supp.
Figure 1. The variance explained by the regional trend also varies substantially
across the reanalyses, from above 50% in ORAS5 to virtually zero in ORAS4.
In the LS the three reanalyses support a statistically significant warming trend
(Table 3), accounting overall for a 44% of the total variance, although with a
lower value in ORAS5 (i.e. 11%).

In the two remaining regions, the Gulf Stream Extension (GSE) and the
Subtropical North Atlantic (STNA), the trends present a good degree of agree-
ment across reanalyses. These are also the two regions in which the trends ex-
plain the largest fractions of variability, associated with reduced decadal-scale
oscillations. While GSE exhibits the strongest trends, it also presents some
interannual variations, not so evident in STNA, for which the trend explains
on average about 80% of the total OHC700 variability, the largest value of all
the regions. In both regions trends are rather linear, and could therefore be
dominated by the changes in the external radiative forcings.

3.2 Forecast Quality and Added Value of Initialisation in North Atlantic

Even though the broad North Atlantic displays clear signs of warming in all re-
analyses, the previous section has also revealed important regional differences
regarding the magnitude and significance of the trends, and the presence of
decadal variability in the upper OHC. This raises the questions of (i) whether
and for which regions these upper OHC changes are predictable, (ii) whether
trends contribute to predictability, and (iii) to what extent initialising internal
variability matters.

The first column of Figure 3 shows the ACC for the EC-Earth3 PRED
computed against the multi-reanalysis mean for various forecast years (FY: 1,
4, 7 and 10), revealing values that are generally high throughout the basin,
Fig. 2 Time-series of the spatially averaged OHC700 across the NA and the selected sub-regions, computed from the reanalyses ORAS4, ORAS5 and ECDA, expressed as an anomaly per volume unit. The multi-reanalysis ensemble mean is also included (dashed grey line). Sub-regions are described in Figure 1 and Table 2. Note that y-scale is different for panel a).

The degree of agreement in OHC700 variability across the reanalyses is illustrated for each region by the temporal mean of the inter-reanalysis spread (defined by the range between the maximum and the minimum OHC700 values), indicated at the bottom corner of the panel.

Table 3 Spatially averaged OHC700 trends for several North Atlantic regions in the reanalyses, expressed in 10^7 J/m² per year. Trends refer to the period 1970-2014. The respective time-series can be seen in Fig. 2. All trend values are statistically significant at the 0.95 level, unless followed by an asterisk (*). The percentage of the total variance explained by the trends (characterised by R^2, between the linear trend and the original time-series) is given between brackets.

Region	ECDA	ORAS5	ORAS4	Multi Reanalysis Mean
NA	3.82 (0.77)	2.27 (0.67)	3.10 (0.85)	3.06 (0.79)
IIS	5.46 (0.39)	4.70 (0.31)	4.08 (0.36)	4.74 (0.37)
ESPNA	3.03 (0.51)	4.24 (0.64)	3.71 (0.57)	3.66 (0.59)
CSPNA	3.82 (0.28)	-7.26 (0.54)	0.19* (<0.01)	-1.08* (0.04)
LS	4.97 (0.49)	1.30 (0.11)	4.37 (0.52)	3.55 (0.44)
GSE	5.13 (0.59)	5.06 (0.67)	6.56 (0.67)	5.58 (0.68)
STNA	3.66 (0.81)	3.26 (0.72)	3.04 (0.81)	3.32 (0.82)
especially in the first forecast year. In subsequent forecast years there is a rapid loss of skill in the vicinity of the CSPNA, the region with the largest differences across reanalyses. This rapid loss of skill could reflect that EC-Earth represents differently the dynamical processes that give rise to the local negative trends. Another region that exhibits a significant loss in skill with forecast time is the western STNA. Other regions, such as LS and IIS, also experience an initial moderate loss in skill, but it is recovered at the longest forecast years, which suggests that the temporary loss in skill could be related to the effect of initial shocks reported in (Bilbao et al, 2020).

The second column of Figure 3 shows the ACC difference between the predictions and the historical simulations, which allows us to determine the added value of initialisation on skill. In the first FY, initialisation is largely beneficial, except for some parts of the eastern STNA and the sea North of Scotland, where it leads to skill degradation. In the subsequent FYs, only the ESPNA shows a consistent added value of initialisation on the predictive skill. Interestingly, the latest FYs show again improved skill with initialisation in the IIS and LS regions, which would be consistent with the recovery from the initial shock effects previously mentioned. This recovery of skill could be linked to the skillfully predicted ESPNA OHC700 anomalies from earlier FYs, which are advected westward by the mean subpolar gyre circulation. By contrast, skill in the southwestern side of the basin is substantially hindered by initialisation, in particular over the Gulf Stream area, where the initialisation shock might have a longer-lasting effect.

The third column of Figure 3 shows the contribution of the linear long-term trends to ACC skill for the same forecast years. This is done by subtracting the ACC values of the detrended anomalies to the ACC values of the undetrended anomalies. In the first FY, for which we have shown that the influence of initialisation is notably higher, trends play a significant role in skill mainly south of the Subpolar latitudes, including over the GSE and the STNA. At subsequent FYs, as the added value of initialisation on forecast skill gets confined to the ESPNA, stronger and more significant contributions from trends are seen all across the basin, except in the CSPNA. This higher influence of the trend on the predictive skill with forecast time suggests that some local trends might be better constrained as the forecast progresses, which might in turn reflect that in the subpolar latitudes (and in particular in the LS, IIS and ESPNA regions) the initial model state might be incompatible with the reanalised trends. The realism of these trends along the forecast is further explored in Section 3.3.

We now evaluate the skill of the mean OHC700 in the North Atlantic and in the individual regions and how it evolves for forecast years 1 to 10 in PRED in comparison to HIST (Figure 4). We include two indicators of statistical significance: (i) all the individual ACC values are represented with cyan dots when they are significantly different from zero at the 95% confidence level; and (ii) ACC values for HIST are additionally highlighted with a red cross when their value is significantly different from the PRED one. The role of the trend is also tested by recomputing the skill after both the reanalyses and
Fig. 3 a) Anomaly Correlation Coefficient (ACC) maps of OHC700 in the initialised EC-Earth predictions for the forecast years 1, 4, 7 and 10. Stippling indicates where the correlation is statistically significant at the 95% confidence level. Stippling is only applied in every 4th grid cell for the sake of visibility. b) Difference in the ACC values for the initialised and uninitialised predictions (PRED and HIST, respectively). c) Difference in the ACC values in PRED for the undetrended and the detrended OHC700 anomalies. In b-c) stippling highlights correlations that are significantly different at the 95% confidence level. All ACC values are evaluated against the multi-reanalysis ensemble mean for the period 1970-2014.

PRED anomalies have been detrended (dashed line in Figure 4). For these ACC values, the same significance indicators as for the historical ensemble are included.

Figure 4a shows that the whole NA is highly predictable at all forecast years, a result that is largely but not exclusively due to the external forcing influence. HIST exhibits high ACC values, although they are significantly higher in PRED at almost all FYs, supporting a small but beneficial effect of initialisation on skill. We also show that most of the skill comes from the linear trend, given the very low ACC values obtained for the detrended series.

The individual regions show contrasting results. In the IIS, PRED has also significant skill at all FYs, although with an initial drop and a subsequent
recovery during the 2nd to 7th FYs, which is likely related to the initialisation
shock (figure 4b). Unlike for PRED, the ACC values for the HIST ensemble
in those regions are not significant, suggesting that internal variability con-
tributes decisively to the local predictive skill. This is a region that clearly
benefits from initialisation. The trends explain part but not all of the PRED
skill, given the significantly lower values for the detrended timeseries. Similar
results are obtained over the ESPNA (figure 4c), although with no apparent
signal of initialisation shock effects, as it experiences a lower and more gradual
decline in skill, with no recovery at the longest FYs.

The CSPNA exhibits poor skill (only significant in the first FY of PRED)
in both the HIST and PRED experiments (figure 4d). This is also the region
in which the trends seem to play the smallest role in the predictive skill (given
that solid and dashed lines are virtually identical), which is not surprising
given that its multi-reanalysis mean trend was not significant (Table 3). The
lack of skill might derive from limitations in the prediction system to represent
realistically the local variability, but might also respond, at least in part, to the
large observational uncertainties already shown when comparing the different
reanalyses.

The LS (figure 4e), the region where the initial shock is triggered, shows
clear evidence of its effects, with a longer-lasting decrease in skill than in the
IIS (the minimum occurs in FY6, compared to FY4 in IIS). Another important
difference with respect to IIS is that LS skill is largely arising from the
external forcings (as indicated by the high ACC values in HIST), which might
be affecting vertical mixing through buoyancy-induced changes in local stratifi-
cation. Interestingly, after the skill recovery in FYs 9-10, PRED skill becomes
significantly higher than for HIST, something that only occurred in the first
FY. This would be consistent with the aforementioned advection of OHC700
anomalies from the ESPNA, a region in which initialisation matters decisively
on the skill.

The two remaining regions, the GSE and STNA, show similar ACC features
(figures 4f and g respectively). In both cases the predictive skill seems to
come almost exclusively from the external forcings. Indeed, PRED skill is only
significantly higher than in HIST in the first FY. Both are also regions with
important long-term trends (as previously seen in Table 3) that are critical to
achieve high levels of skill.

In summary, this analysis reveals that the regions in which the external
forcings play a dominant role on the prediction skill are the GSE, the STNA
and to a lesser extent, the LS. This latter, together with the IIS and ESPNA,
show the largest benefits of initialisation, which are still significant at the
longest FYs. In all these five regions, trends contribute substantially to the
final prediction skill. In the following section we evaluate the realism of these
trends in the predictions and historical ensemble, assessing to what extent they
are externally forced, and whether and how they change with forecast time.
Fig. 4 ACC skill assessment of the spatially averaged OHC700 in a) the North Atlantic, and b-g) all the selected individual regions. Skill values are shown for the PRED (blue lines) and HIST ensembles (grey lines) and are evaluated against the multi-reanalyses mean. In PRED, skill is also computed after detrending both the forecast anomalies and the reanalysed anomalies (detrended PRED; dashed blue lines). Cyan dots indicate ACC values that are significantly different from zero at the 95% confidence level. Red crosses indicate that the HIST or the detrended PRED ACC values are significantly different from the PRED ones.

3.3 Representation of upper OHC long-term trends in the EC-Earth3 predictions and historical simulations.

We have shown that, at the regional level, trends can contribute substantially to the skill, with different weights from both external radiative forcing changes and internal variability. We now explore how the long-term OHC700 linear trends are represented in the predictions as a function of forecast lead time and also in the HIST ensemble (both in shaded colors), and how they compare with the multi-reanalysis mean trends (left column of Figure 5). Large areas of consistency between the predicted and reanalysis trends are evident, especially in the earliest forecast years, in which initialisation corrects spurious trends in the mean HIST ensemble (shown in the bottom row of Figure 5), that will be discussed further ahead. In FY 1 of PRED, the region of negative trends is well collocated within the multi-reanalysis mean pattern. This region is flanked at the east by an area of strong positive trends, also present in ORAS4 (Supp.
Figure 1, the reanalysis that was used to generate the initial conditions of PRED. These locally large trends are, however, not supported by the other two reanalyses, leading to an initial disagreement between PRED and the multi-reanalysis mean trends. This disagreement is reduced at subsequent FYs in which the positive trends are smoothed.

The trend pattern evolves with forecast time as climate noise grows, eroding the signal from initialisation, which makes different members diverge. Interestingly, the trends in PRED show similar spatial features to the multi-reanalysis throughout the forecast, with some local differences. For example, along the Gulf Stream Extension, warming trends that are initially strong seem to fade away at the latest FYs. Likewise, the initial cooling region over the CSPNA expands northwestwards towards the Labrador and Irminger Seas. This region of cooling trends is also the one exhibiting the largest intra-ensemble spread (right column of Figure 5), not only in the forecasts but also, much more importantly, in the historical experiments.

The larger intra-ensemble spread in HIST than in PRED trends can explain the discrepancies between the mean trends in the HIST ensemble and in the multi-reanalysis mean. Even though the HIST ensemble mean also exhibits a cooling, it happens over a wider area, located within the IIS and ESPNA regions. All individual HIST experiments agree (as indicated by the stippling) in representing a cooling trend over a small band North of CSPNA. This suggests that the misplacement of the location with respect to the reanalyses corresponds to a structural model bias. The same happens along the Gulf Stream Extension in which the HIST trend is overly warm compared to the multi-reanalysis mean, and appears to extend too far eastward into the CSPNA, a feature for which all historical members also systematically agree.

We note that in HIST there is little to no intra-ensemble agreement regarding the sign of the trends in regions like the Labrador Sea, the IIS and the ESPNA. This suggests a larger role of low-frequency internal variability in the model, contributing to the long-term trends and their sign.

By forecast year 10 of the PRED, the spread in the representation of the trends remains small compared to the HIST ensemble spread (right column of Figure 5). This suggests that initialisation has a long-lasting beneficial effect on the representation of the long-term trends, both in time and space. Nevertheless, the trend patterns are similar in HIST, PRED and the multi-reanalysis mean, characterised by a large-scale warming and a regional cooling in the northern NA. These findings suggest that the overall pattern is mostly driven by external forcing, and initialisation is essential to represent the trends in the correct location.

An alternative and more synthesised way to evaluate the impact of initialisation in the representation of the trends is to directly compare the spatial patterns from PRED and HIST ensemble with the reanalyses patterns. Figure 6a shows the area-weighted spatial correlation for the North Atlantic region between the multi-reanalysis mean OHC700 trends and those in individual members and the ensemble-mean of PRED (thin and thick red lines, respectively), as a function of FY. The corresponding correlations for the HIST are...
Fig. 5 The same as in Figure 1 but for the EC-Earth hindcasts in forecast years 1, 4, 7, 10, and the historical simulations (final row). The ensemble mean OHC700 trend is shown on the left, and the standard deviation across the ensemble on the right. On both columns stippling is used to indicate the grid-points where the sign of the trend is the same in all individual members. Thick contour lines show the same multi-reanalysis mean trends as in Figure 1a.
also shown (in grey). The spatial correlations for PRED show systematically higher values than for HIST at all forecast times and for all ensemble members. Also note that the inter-member spread in PRED (red envelop in Figure 6a) remains substantially smaller than for HIST (grey envelop), indicating that the initialisation of internal variability helps constraining the long-term trends for more than a decade. The low spatial correlation values in HIST can be explained by a combination of two key factors already discussed in light of Figure 5: (i) that internal variability plays an important role in some local trends that cannot be properly represented in the forced uninitialised experiments; and (ii) that systematic model biases are fully developed in some areas, preventing the model to represent the forced response in the right location. To guarantee that the previous results are not conditioned by areas with large observational uncertainty, the spatial correlations were recomputed in Figure 6b after masking out the regions where the reanalyses do not agree in the sign of the trend (based on stippled areas of the multi-reanalysis ensemble mean). These results support the previous conclusions, although the differences between PRED and HIST are partly reduced.

To further assess the contributions of internal and external sources of variability to the representation of the local trends, we compare the regionally averaged trends in the reanalyses with the corresponding trends in PRED (as a function of forecast time) and HIST (Figure 7). In the broad North Atlantic, the long-term trends are systematically underestimated in both DCPP and HIST experiments, although with important differences among them. The mean HIST trend is half of the multi-reanalysis mean, and its ensemble spread does not overlap with any of the individual reanalysis trends. The trends in PRED start close to the multi-reanalysis mean trend, and are fully included in the multi-reanalysis spread for the first forecast year (Figure 7a). However, for subsequent forecast years NA trends rapidly weaken, dropping down by
half by FY 4 to similar values than in HIST. This quick reduction could be due to the initialisation shock, because in later forecast years the NA trend steadily increases, overlapping again with the reanalysis spread.

At the individual regions other differences between the trends in PRED and HIST emerge. In both the IIS and the ESPNA the trends in PRED remain rather close to the reanalysed trends, agreeing particularly well for the latter region (Figures 7a and c). In the ESPNA, the prediction and multi-reanalyses ensemble spreads overlap at all forecast years and are narrow, indicating a reduction in observational and model uncertainty (Figure 7b), compared to the IIS region. In both IIS and ESPNA HIST shows a mean negative trend that is very close to zero, with individual members supporting both positive and negative trend values. The large spread in HIST trends, which overlaps with the much narrower multi-reanalysis and PRED spreads in IIS (Figure 7a), and is very close to the corresponding spreads in ESPNA (Figure 7b), suggests that trends in both regions are largely controlled by internal variability. PRED results indicate that internal variability can be correctly initialised and that it contributes substantially to the local predictive skill, as shown in Figure 4 and also identified in other decadal prediction systems (Meehl et al, 2014; Yeager et al, 2018).

The large differences between the individual reanalysis trends hamper the interpretation of the CSPNA results (Figure 7d), as it is unclear whether HIST and PRED represent them realistically. From the wide spread in HIST trends, together with their mean value close to zero, we can at least conclude that simulated trends in this region are largely influenced by internal variability. Different representations of internal variability processes in response to the assimilated observations might cause the differences across reanalyses. The trends in PRED are consistently negative for all forecast years, although they exhibit an abrupt change in the second year, when they reach their maximum absolute value. This change could indicate a regional manifestation of the initialisation shock.

In the LS, GSE, and STNA regions (Figure 7e-g), the reanalyses, PRED and HIST show consistently positive trend values for all their individual members, thus supporting an important contribution of the external forcing to the trends, and through it, on the predictive skill for the OHC700 (Figure 4). Yet, some differences among the regions can also be seen. The LS is the second region with the largest discrepancies across the reanalyses (Figure 2) but unlike for CSPNA, all reanalyses support a positive OHC700 trend. The PRED ensemble mean starts and ends very close to the multi-reanalysis mean, showing considerably lower trends from forecast years 2-6, the same years in which the initialisation shock manifests locally (Bilbao et al 2020). In the GSE, the trends in PRED also starts close to the reanalysis ones, overlapping with them up to FY 6, but after that they decrease quickly and show no final sign of recovery. Another difference with respect to the LS is that in the GSE, PRED trends do not converge towards the HIST mean trend, as they reach considerably lower trends by FY 10. This might be related to a longer-term effect of the initialisation shock, which has been shown in (Bilbao et al 2020).
Fig. 7 a) Spatially averaged North Atlantic OHC700 trends in the multi-reanalysis, PRED and HIST ensembles evaluated over the period 1970-2014, as a function of forecast time. The ensemble mean trends are represented by the dashed thick lines, and the trends for the individual members by the thin lines. Grid cells with non-significant trends are masked out before the regional averages are computed. Note that the y-axis is not the same for all panels, to improve the comparability of the different ensembles. b-g) The same as in panel a but for the selected NA regions: IIS, ESPNA, CSPNA, GSE and STNA.

4 Discussion and Final Remarks

This study has explored the trends in upper 700m ocean heat content (OHC700) for the period 1970-2014 in a set of decadal climate predictions and an ensemble of historical experiments performed with the EC-Earth3 model, using reanalyses as benchmarks to evaluate the skill of the model. The main findings of the paper are described as follows:

to bring the model to a different equilibrium state. Finally, the STNA trends start slightly weaker than in the reanalyses and by FY 2 they stabilize around the mean HIST value. Unlike in the two other regions, it shows no sign of initial shock effects.
A comparison of OHC700 variability and trends in different reanalyses has revealed that the North Atlantic (NA) ocean, for its most part, has been progressively warming since the 70’s, albeit with regional differences. Changes in two major regions stand out: the Central Subpolar North Atlantic (CSPNA), where the multi-reanalysis ensemble reveals indeed a cooling trend, although its extent, location and intensity varies substantially across the reanalyses; and the Gulf Stream Extension (GSE), in which reanalyses exhibit the strongest warming, but with differences in terms of the magnitude.

A skill assessment of OHC700 in the two EC-Earth3 experiments has shown a high level of predictive skill at all forecast ranges in the North Atlantic, with higher values in the Eastern Subpolar North Atlantic (ES-PNA) and the Subtropical North Atlantic (STNA). Other regions like the Labrador Sea (LS), the Irminger-Iceland Seas (IIS) and the GSE also show high initial levels of skill, which degrade after some forecast years due to an initialisation shock affecting the decadal predictions.

An important part of the skill comes from initialisation, specially in the ESPNA and in the IIS regions, in line with previous studies documenting a positive impact on skill of ocean initialisation (e.g. Doblas-Reyes et al. 2013). By contrast, predictive skill in regions like the LS, GSE and the STNA are found to be dominated, although not explained exclusively, by the influence of the external radiative forcings.

Very limited skill has been found to predict the CSPNA OHC700 variability, only skilful for the first forecast year. The limited skill might be related to the large uncertainties across reanalyses (and observations), potentially hampering its correct initialisation. It is also possible that EC-Earth3 mis-represents the underlying mechanisms giving rise to the CSPNA cooling, which are still under debate (e.g. Robson et al. 2016, Piecuch et al. 2017, Ruiz-Barradas et al. 2018).

Initialisation has been found to be key to represent the long-term trends in the right location, with predicted trends largely outperforming the realism of the historical ones, even after ten forecast years. The historical simulations misplace the regions of the maximum warming and cooling trends, which could be due to structural model biases. OHC700 trends, which depending on the region are mostly forced or arise from internal decadal variability, have been found to contribute decisively to the final OHC700 prediction skill in the whole North Atlantic.

Despite the high levels of skill identified in EC-Earth3 and other forecast systems to predict OHC700 changes in the North Atlantic a decade in advance, and the numerous studies linking North Atlantic variability with numerous climate signals over North America, Northern Africa and Europe (e.g. Hodson and Sutton 2005, Folland et al. 1986, Zhang and Delworth 2006, Kushnir et al. 2010), there is very little evidence of multi-year predictive skill over these continents (Yeager and Robson 2017b). This might indicate that the key atmospheric teleconnection mechanisms enabling these impacts are not...
well represented in models. It could also be related to the fact that state-of-the-art models used for climate prediction tend to substantially underestimate the amplitude of the predictable signal, a problem that is particularly important in the North Atlantic sector (Scaife and Smith, 2018). A recent study (Smith et al., 2020) has shown that this problem can be partly circumvented through the exploitation of large ensembles of decadal climate predictions, which led to skilful predictive capacity for the North Atlantic Oscillation and its climate fingerprints over the continents on decadal timescales, and also enhanced predictive skill for the AMV. Such large ensembles of predictions can also be exploited to better disentangle the forced and internal sources of predictability for the North Atlantic OHC, and to ascertain to what extent the results illustrated in this study are model-dependent. This will be the task of a follow-up study, that will also investigate the regional skill differences across models, and if these can be traced back to specific mean state model properties like the strength of the meridional and barotropic circulations, the western boundary currents, or the Labrador Sea stratification. These are critical aspects to consider in the tuning of the future model versions used for climate prediction purposes.

5 Declarations

Funding: Teresa Carmo-Costa, Ana Teles-Machado and Emanuel Dutra would like to acknowledge the financial support from FCT through projects FCT-UIDB/50019/2020 and PD/BD/142785/2018. Furthermore, Ana Teles-Machado acknowledges SARDINHA2020 (MAR2020) and ROADMAP (JPIOCEANS/0001/2019). Roberto Bilbao was supported by the European Commission H2020 projects EUCP (grant no. 776613). Pablo Ortega was supported by the Spanish Ministry of Economy, Industry and Competitiveness through the Ramón y Cajal grant RYC-2017-22772.

Conflicts of interest/Competing interests: The authors have no conflicts of interest to declare that are relevant to the content of this article.

Availability of data and material: The EC-Earth3 CMIP6 simulations are available through the Earth System Grid Federation (https://esgf-data.dkrz.de/projects/esgf-dkrz/) ESGF, 2021); dcppA-hindcast (https://doi.org/10.22033/ESGF/CMIP6.4553) EC-Earth-Consortium, 2019a) and historical (https://doi.org/10.22033/ESGF/CMIP6.4700) EC-Earth-Consortium, 2019b).

The reanalyses are also available online. ECDA data was downloaded from ftp://ftp.gfdl.noaa.gov/perm/wga/ECDA_v3.1 on September 2019. ORAS4 and ORAS5 data was downloaded from https://icdc.cen.uni-hamburg.de/thredds/catalog/ftpthredds/EASYInit/catalog.html on September 2018. The ORAS5 backward extension was downloaded later, on October 2019.
Code availability: All code developed for this study was based on cdo or python. Scripts can be made available by the main author upon reasonable request.

References

Abraham JP, Baringer M, Bindoff NL, Boyer T, Cheng LJ, Church JA, Conroy JL, Domingues CM, Fasullo JT, Gilson J, Goni G, Good SA, Gorman JM, Gouretski V, Ishii M, Johnson GC, Kizu S, Lyman JM, Macdonald AM, Minkowycz WJ, Moffitt SE, Palmer MD, Piola AR, Reseghetti F, Schuckmann K, Trenberth KE, Velicogna I, Willis JK (2013) A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Reviews of Geophysics 51(3):450–483, DOI https://doi.org/10.1002/rog.20022, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/rog.20022

Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological Society 139:1132–1161, DOI 10.1002/qj.2063

Barnston AG (1994) Linear statistical short-term climate predictive skill in the northern hemisphere. Journal of Climate 7(10):1513 –1564, DOI 10.1175/1520-0442(1994)007(1513:LSSTCP)2.0.CO;2, URL https://journals.ametsoc.org/view/journals/clim/7/10/1520-0442_1994_007_1513_lsstcp_2_0_co_2.xml

Bilbao RAF, Gregory JM, Bouttes N, Palmer MD, Stott P (2019) Attribution of ocean temperature change to anthropogenic and natural forcings using the temporal, vertical and geographical structure. Climate Dynamics 53(9):5389–5413, DOI 10.1007/s00382-019-04910-1, URL https://doi.org/10.1007/s00382-019-04910-1

Boer GJ, Smith DM, Cassou C, Doblas-Reyes F, Danabasoglu G, Kirtman B, Kushnir Y, Kimoto M, Meehl GA, Msadek R, Mueller WA, Taylor KE, Zwiers F, Rixen M, Ruprich-Robert Y, Eade R (2016) The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geoscientific Model Development 9(10):3751–3777, DOI 10.5194/gmd-9-3751-2016
Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modelling 31(3-4):88–104, DOI 10.1016/j.ocemod.2009.10.005, URL http://dx.doi.org/10.1016/j.ocemod.2009.10.005

Buckley MW, Marshall J (2016) Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Reviews of Geophysics 54:4–63, DOI 10.1002/2015RG000493

Buckley MW, DelSole T, Susan Lozier M, Li L (2019) Predictability of North Atlantic Sea surface temperature and upper-ocean heat content. Journal of Climate 32(10):3005–3023, DOI 10.1175/JCLI-D-18-0509.1

Chang YS, Zhang S, Rosati A, Delworth TL, Stern WF (2013) An assessment of oceanic variability for 1960-2010 from the GFDL ensemble coupled data assimilation. Climate Dynamics 40(3-4):775–803, DOI 10.1007/s00382-012-1412-2

Chemke R, Zanna L, Polvani LM (2020) Identifying a human signal in the North Atlantic warming hole. Nature Communications 11(1):1–7, DOI 10.1038/s41467-020-15285-x, URL http://dx.doi.org/10.1038/s41467-020-15285-x

Chen X, Tung KK (2014) Supplementary Materials for Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345, DOI 10.1126/science.1254937, arXiv:1201.1852v1

Cheng W, Chiang JC, Zhang D (2013) Atlantic meridional overturning circulation (AMOC) in CMIP5 Models: RCP and historical simulations. Journal of Climate 26(18):7187–7197, DOI 10.1175/JCLI-D-12-00496.1

Craig A, Valcke S, Coquart L (2017) Development and performance of a new version of the OASIS coupler, OASIS3-MCT-3.0. Geoscientific Model Development 10(9):3297–3308, DOI 10.5194/gmd-10-3297-2017

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balsam MA, Balsamo G, Bauer P, Bechtold P, Beljaars AC, van de Berg L, Bidlot J, Bornmann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Källberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137(656):553–597, DOI 10.1002/qj.828

Doblas-Reyes FJ, Anduea-Burillo I, Chikamoto Y, García-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues LRL, van Oldenborgh GJ (2013) Initialized near-term regional climate change prediction. Nature Communications 4(1):1–9, DOI 10.1038/ncomms2704

Drijfhout S, van Oldenborgh GJ, Cimatoribus A (2012) Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? Journal of Climate 25(24):8373–8379, DOI 10.1175/JCLI-D-12-00490.1

Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6
(CMIP6) experimental design and organization. Geoscientific Model Development 9(5):1937–1958, DOI 10.5194/gmd-9-1937-2016
Folland CK, Palmer TN, Parker DE (1986) Sahel rainfall and worldwide sea temperatures, 1901-85. Nature 320(6063):602–607, DOI 10.1038/320602a0
Frajka-Williams E, Beaulieu C, Duchez A (2017) Emerging negative Atlantic Multidecadal Oscillation index in spite of warm subtropics. Nature: Scientific Reports 7(11224), DOI 10.1038/s41598-017-11046-x
Frankignoul C, Gastineau G, Kwon YO (2017) Estimation of the sst response to anthropogenic and external forcing and its impact on the atlantic multidecadal oscillation and the pacific decadal oscillation. Journal of Climate 30(24):9871 – 9895, DOI 10.1175/JCLI-D-17-0009.1, URL https://journals.ametsoc.org/view/journals/clim/30/24/jcli-d-17-0009.1.xml
Gastineau G, Mignot J, Arzel O, Huck T (2018) North Atlantic Ocean Internal Decadal Variability: Role of the Mean State and Ocean-Atmosphere Coupling. Journal of Geophysical Research: Oceans 123:1–22, DOI 10.1029/2018JC014074
Goddard L, Kumar A, Solomon A, Smith D, Boer G, Gonzalez P, Kharin V, Merryfield W, Deser C, Mason SJ, Kirtman BP, Msadek R, Sutton R, Hawkins E, Fricker T, Hegerl G, Ferro CA, Stephenson DB, Meehl GA, Stockdale T, Burgman R, Greene AM, Kushner Y, Newman M, Carton J, Fukumori I, Delworth T (2013) A verification framework for interannual-to-decadal predictions experiments. Climate Dynamics 40(1-2):245–272, DOI 10.1007/s00382-012-1481-2
Ham YG, Kim JH, Luo JJ (2019) Deep learning for multi-year enso forecasts. Nature 573(7775):568–572, DOI 10.1038/s41586-019-1559-7, URL https://doi.org/10.1038/s41586-019-1559-7
Hazeleger W, Severijns C, Semmler T, Ștefănescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, van den Hurk B, Jimenez P, Jones C, Källberg P, Koenigk T, McGrath R, Miranda P, van Noije T, Palmer T, Parodi JA, Schmith T, Selten F, Storelamo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willén U (2010) EC-Earth. Bulletin of the American Meteorological Society 91(10):1357–1364, DOI 10.1175/2010BAMS2877.1, URL http://journals.ametsoc.org/doi/10.1175/2010BAMS2877.1
Hewitt HT, Bell MJ, Chassignet EP, Czaja A, Ferreira D, Griffies SM, Hyder P, McClean JL, New AL, Roberts MJ (2017) Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales? Ocean Modelling 120:120 – 136, DOI https://doi.org/10.1016/j.ocemod.2017.11.002, URL http://www.sciencedirect.com/science/article/pii/S1463500317301774
Hodson DLR, Sutton RT (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309(5731):115, URL http://www.sciencemag.org/cgi/content/abstract/sci;309/5731/115
Johnson GC, Lyman JM (2020) Warming trends increasingly dominate global ocean. Nature Climate Change 10(8):757–761, DOI 10.1038/s41558-020-
Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophysical Research Letters 32(20):1–4, DOI 10.1029/2005GL024233
Kushnir Y, Seager R, Ting M, Naik N, Nakamura J (2010) Mechanisms of tropical Atlantic SST influence on North American precipitation variability. Journal of Climate 23(21):5610–5628, DOI 10.1175/2010JCLI3172.1
Levitus S, Antonov JI, Boyer TP, Baranova OK, Garcia HE, Locarnini RA, Mishonov AV, Reagan JR, Seidov D, Yarosh ES, Zweng MM (2012) World ocean heat content and thermosteric sea level change (0-2000m), 1955-2010. Geophysical Research Letters 39(10):1–5, DOI 10.1029/2012GL051106
Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465(7296):334–337, DOI 10.1038/nature09043
Madec G, the NEMO Team (2016) NEMO ocean engine. Note du Pôle de modélisation (27):1–386, DOI 10.1016/j.joms.2014.06.438
Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012) Two tales of initializing decadal climate prediction experiments with the echam5/mpi-om model. Journal of Climate 25(24):8502 – 8523, DOI 10.1175/JCLI-D-11-00633.1, URL https://journals.ametsoc.org/view/journals/clim/25/24/jcli-d-11-00633.1.xml
Maze G, Mercier H, Fablet R, Tandeo P, Radcenco ML, Lenca P, Feucher C, Goff CL (2017) Coherent heat patterns revealed by unsupervised classification of Argo temperature profiles in the North Atlantic Ocean. Progress in Oceanography 151:275–292, DOI 10.1016/j.pocean.2016.12.008, URL http://dx.doi.org/10.1016/j.pocean.2016.12.008
Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer GJ, Danabasoglu G, Dixon K, Giorgieta MA, Greene AM, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal Prediction: Can It Be Skillful? Bulletin of the American Meteorological Society 90(10):1467–1486, DOI 10.1175/2009BAMS2778.1
Meehl GA, Moss R, Taylor KE, Eyring V, Stouffer RJ, Bony S, Stevens B (2014) Climate model intercomparisons: Preparing for the next phase. Eos 95(9):77–78, DOI 10.1029/2014EO090001
Mignot J, García-Serrano J, Swingedouw D, Germe A, Nguyen S, Ortega P, Guilyardi E, Ray S (2016) Decadal prediction skill in the ocean with surface nudging in the ipsl-cm5a-lr climate model. Climate Dynamics 47(3):1225–1246, DOI 10.1007/s00382-015-2898-1, URL https://doi.org/10.1007/s00382-015-2898-1
Mogensen K, Alonso Balmaseda M, Weaver A (2012) The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for
Ortega P, Mignot J, Swingedouw D, Sévellec F, Guilyardi E (2015) Reconciling two alternative mechanisms behind bi-decadal variability in the North Atlantic. Progress in Oceanography 137:237–249, DOI 10.1016/j.pocean.2015.06.009, URL http://dx.doi.org/10.1016/j.pocean.2015.06.009

Piecuch CG, Ponte RM, Little CM, Buckley MW, Fukumori I (2017) Mechanisms underlying recent decad al changes in subpolar North Atlantic Ocean heat content. Journal of Geophysical Research: Oceans 122:7181–7197, DOI 10.1002/2017JC012845

Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change 5(5):475–480, DOI 10.1038/nclimate2554

Robson J, Ortega P, Sutton R (2016) A reversal of climatic trends in the North Atlantic since 2005. Nature Geoscience DOI 10.1038/ngeo2727

Robson J, Polo I, Hodson DLR, Stevens DP, Shaffrey LC (2018) Decadal prediction of the north atlantic subpolar gyre in the hicem high-resolution climate model. Climate Dynamics 50(3):921–937, DOI 10.1007/s00382-017-3649-2, URL https://doi.org/10.1007/s00382-017-3649-2

Rousett C, Vancoppenolle M, Madec G, Fichefet T, Flavoni S, Barthélémy A, Benshila R, Chanut J, Levy C, Masson S, Vivier F (2015) The Louvain-La-Neuve sea ice model LIM3.6: Global and regional capabilities. Geoscientific Model Development 8(10):2991–3005, DOI 10.5194/gmd-8-2991-2015

Ruiz-Barradas A, Chafil K, Nigam S, Håkkinen S (2018) Recent subsurface North Atlantic cooling trend in context of Atlantic decadal-to-multidecadal variability. Tellus, Series A: Dynamic Meteorology and Oceanography 70(1):1–19, DOI 10.1080/16000870.2018.1481688, URL https://doi.org/10.1080/16000870.2018.1481688

Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65-70 years. Nature 367(6465):723–726, DOI 10.1038/367723a0

Schaaf C, Smith D (2018) A signal-to-noise paradox in climate science. npj Climate and Atmospheric Science 1(1):28, DOI 10.1038/s41612-018-0038-4, URL https://doi.org/10.1038/s41612-018-0038-4

Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65-70 years. Nature 367(6465):723–726, DOI 10.1038/367723a0

Schoenau MM, Cheng L, Palmer MD, Hansen J, Tassone C, Aich V, Adusumilli S, Beltrami H, Boyer T, Cuesta-Valero FJ, Desbruyères D, Domínguez C, García-García A, Gentine P, Gilson J, Gorfer M, Haimberger L, Ishii M, Johnson GC, Killick R, King BA, Kirchengast G, Kolodziejczyk N, Lyman J, Marzeion B, Mayer M, Monier M, Monselesan DP, Purkey S, Roeimmel D, Schweiger A, Seneviratne SI, Shepherd A, Slater DA, Steiner AK, Straneo F, Timmermans ML, Wijffels SE (2020) Heat stored in the Earth system: where does the energy go? Earth System Science Data (12):2013–2041, DOI 10.5194/essd-12-2013-2020

Siebert S, Bellprat O, Menégoz M, Stephenson DB, Doblas-Reyes FJ (2017) Detecting improvements in forecast correlation skill: Statistical testing and
power analysis. Monthly Weather Review 145(2):437–450, DOI 10.1175/MWR-D-16-0037.1.

Smith B, Wärnild D, Arneth A, Hickler T, Leadley P, Siltberg J, Zaehle S (2014) Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11(7):2027–2054, DOI 10.5194/bg-11-2027-2014.

Smith DM, Scaife AA, Eade R, Athanasiadis P, Bellucci A, Bethke I, Bilbao R, Borchert LF, Caron LP, Coumillon F, Danabasoglu G, Delworth T, Doblas-Reyes FJ, Dunstone NJ, Estrella-Perez V, Flavoni S, Hermanson L, Keenlyside N, Kharin V, Kimoto M, Merryfield WJ, Mignot J, Mochizuki T, Modali K, Monerie PA, Müller WA, Nicoli D, Ortega P, Pankatz K, Polhamm H, Robson J, Ruggieri P, Sospeada-Alfonso R, Swingedouw D, Wang Y, Wild S, Yeager S, Yang X, Zhang L (2020) North Atlantic climate far more predictable than models imply. Nature 583(7818):796–800, DOI 10.1038/s41586-020-2525-0, URL http://dx.doi.org/10.1038/s41586-020-2525-0.

Thornalley DJ, Oppo DW, Ortega P, Robson JI, Brierley CM, Davis R, Hall IR, Moffa-Sanchez P, Rose NL, Spooner PT, Yashayaev I, Keigwin LD (2018) Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556(7700):227–230, DOI 10.1038/s41586-018-0007-4.

Uppala SM, Källberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars AC, van de Berg L, Bidlot J, Bomman N, Cairns S, Chevallier F, Dethof A, Dracosavac M, Fisher M, Fuentes M, Hageman S, Hólm E, Hoskins BJ, Isaksen L, Janssen PA, Jenne RE, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society 131(612):2961–3012, DOI 10.1256/qj.04.176.

Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A decadal prediction case study: Late twentieth-century north atlantic ocean heat content. Journal of Climate 25(15):5173 – 5189, DOI 10.1175/JCLI-D-11-00595.1, URL https://journals.ametsoc.org/view/journals/clim/25/15/jcli-d-11-00595.1.xml.
Yeager S, Kim W, Robson J (2016) What caused the Atlantic Cold Blob of 2015? US CLIVAR Var 14(2):24–31

Yeager SG, Robson JI (2017a) Recent Progress in Understanding and Predicting Atlantic Decadal Climate Variability. Current Climate Change Reports 3(2):112–127, DOI 10.1007/s40641-017-0064-z

Yeager SG, Robson JI (2017b) Recent progress in understanding and predicting atlantic decadal climate variability. Current Climate Change Reports 3(2):112–127, DOI 10.1007/s40641-017-0064-z, URL https://doi.org/10.1007/s40641-017-0064-z

Yeager SG, Danabasoglu G, Rosenbloom NA, Strand W, Bates SC, Meehl GA, Karspeck AR, Lindsay K, Long MC, Teng H, Lovenduski NS (2018) Predicting near-term changes in the earth system: A large ensemble of initialized decadal prediction simulations using the community earth system model. Bulletin of the American Meteorological Society 99(9):1867–1886, DOI 10.1175/BAMS-D-17-0098.1

Zanna L, Khatiwala S, Gregory JM, Ison J, Heimbach P (2019) Global reconstruction of historical ocean heat storage and transport. Proceedings of the National Academy of Sciences of the United States of America 116(4):1126–1131, DOI 10.1073/pnas.1808838115

Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters 33(17):1–5, DOI 10.1029/2006GL026267

Zuo H, Balmaseda MA, Tietsche S, Mogensen K, Mayer M (2019) The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: A description of the system and assessment. Ocean Science 15(3):779–808, DOI 10.5194/os-15-779-2019

6 Supplementary Figures
Supp. Fig. 1 The same as in Fig. 1 a), but for the individual reanalyses. To allow for the identification of negative trends, cells with non significant values were also plotted (in contrast with Fig. 1a, where they were masked). Hence, in this figure, grid point with significant trends are stippled.