Temporal decay of Néel order in the one-dimensional Fermi-Hubbard model

A. Bauer,$^1$ F. Dorfner,$^1$ and F. Heidrich-Meisner$^1$

$^1$Department of Physics and Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany

Motivated by recent experiments with ultra-cold quantum gases in optical lattices we study the decay of the staggered moment in the one-dimensional Fermi-Hubbard model starting from a perfect Néel state using exact diagonalization and the iTEBD method. This extends previous work in which the same problem has been addressed for pure spin Hamiltonians. As a main result, we show that the relaxation dynamics of the double occupancy and of the staggered moment are different. The former is controlled by the nearest-neighbor tunneling rate while the latter is much slower and strongly dependent on the interaction strength, indicating that spin excitations are important. This difference in characteristic energy scales for the fast charge dynamics and the much slower spin dynamics is also reflected in the real-time evolution of nearest-neighbor density and spin correlations. A very interesting time dependence emerges in the von Neumann entropy, which at short times increases linearly with a slope proportional to the tunneling matrix element while the long-time growth of entanglement is controlled by spin excitations. Our predictions for the different relaxation dynamics of the staggered moment and the double occupancy should be observable in state-of-the-art optical lattice experiments. We further compare time averages of the double occupancy to both the expectation values in the canonical and diagonal ensemble, which quantitatively disagree with each other on finite systems. We relate the question of thermalization to the eigenstate thermalization hypothesis.

PACS numbers: 03.75.-b 71.10.Pm 37.10.Jk

I. INTRODUCTION

The non-equilibrium dynamics of order parameters in quenches from ordered into disordered phases and vice versa has been the topic of many studies, including work on Bose-Einstein condensates [11, 2], bosons defined on lattice models [3] and systems with antiferromagnetic order [4, 5]. In quantum magnets, the dynamics of the staggered magnetization is a simple yet non-trivial example since the Néel state is never an eigenstate of antiferromagnetic Heisenberg models.

In one spatial dimension, since the spontaneous breaking of a continuous symmetry is prohibited, starting from a state with perfect Néel order, the staggered magnetization is expected to decay to zero under the unitary time evolution with a SU(2)-symmetric Hamiltonian. This problem has been intensely studied for the spin-1/2 XXZ chain [6, 12] and one observes a temporal power-law decay of the staggered magnetization to zero for the XX case and indications of an exponential decay to zero in the interacting case [6]. The quantum quench dynamics starting from the Néel state has attracted additional attention since an exact solution for the long-time asymptotic behavior could be obtained exploiting the integrability of the model [9, 11, 12]. Therefore, the question of whether or not the steady state in this quench problem can be described by the generalized Gibbs ensemble [13] could be addressed with rigor.

In the context of condensed-matter experiments, the decay of Néel order is related to time-resolved spectroscopy with Mott insulators in real materials [14–16]. In experiments with ultra-cold quantum gases, it is often particularly easy to prepare initial real-space product states with a high fidelity, which has been used as the starting point in several non-equilibrium studies of Hubbard- and Heisenberg-type of models [17–21]. The particular problem of the decay of Néel order has so far been addressed in the non-interacting case in one dimension [22] (where the initial state is an ideal charge density wave state of one spin component) and for a two-dimensional system [23]. Moreover, the decay of a spin spiral has been investigated in a two-component Bose gas in the strongly-interacting regime, where it can be described by the Heisenberg model, in one and two dimensions [24]. The reverse problem, namely the formation of antiferromagnetic order in time-dependent protocols is of equal relevance since this may provide a path for studying magnetic order in the quantum regime in ultra-cold atomic gas experiments [25–29], which has been the goal of a series of recent experiments [30–34]. For other non-equilibrium experiments with fermions in optical lattices, see [35–37].

In this work, we study the real-time decay of the Néel state in the one-dimensional Fermi-Hubbard model, which, first, extends previous studies [6] by incorporating charge dynamics and second, is motivated by two related recent experiments with fermions in one dimension [22] and bosons in two dimensions [23]. The Hamiltonian reads

$$H = -t_0 \sum_i (c_{i+1}^{\dagger} c_i + h.c.) + U \sum_i n_{i\uparrow} n_{i\downarrow}$$

(1)

where $t_0$ is the hopping matrix element, $U$ is the onsite repulsion, $c_{i\sigma}^{\dagger}$ creates a fermion with spin $\sigma = \uparrow, \downarrow$ on site $i$ and $n_{i\sigma} = c_{i\sigma}^{\dagger} c_{i\sigma}$. The initial state is given by

$$|\psi_0\rangle = |\ldots, \uparrow, \downarrow, \uparrow, \downarrow, \ldots\rangle.$$  

(2)
Consequently, we are at half filling. We use the infinite-system size time-evolving-block-decimation (iTEBD) algorithm [38] to compute the time dependence of several observables such as the staggered magnetization, the double occupancy, the nearest-neighbor correlations and the von Neumann entropy (we set \( \hbar = 1 \)). As a main result, we demonstrate that the relevant time scales for the relaxation of the double occupancy is set by the hopping matrix element \( 1/t_0 \) while for the staggered magnetization and nearest-neighbor spin correlations, the dynamics is the slower the larger \( U \) is. The difference in the relaxation dynamics can most clearly be discerned in the strongly-interacting regime \( U/t_0 > 4 \). This reflects the existence of two characteristic velocities in the low-energy, equilibrium physics of strongly interacting one-dimensional systems, namely the spin and charge velocity, related to spin-charge separation [39]. Furthermore, there are fingerprints in the time dependence of the entanglement entropy. In general, in global quantum quenches, one expects a linear increase of the entanglement entropy. In our case, we observe a short-time dynamics governed by charge excitations where \( S_{vN} \sim t_0 t \) while at longer times \( S_{vN} \propto t/4U \), suggesting that spin excitations are relevant for which the energy scale is the magnetic exchange constant \( J = 4t_0^2/4U \).

Furthermore, we analyze the dependency of the double occupancy on the post-quench values of \( U/t_0 \) and we investigate whether the steady-state values are thermal or not. The latter is a possible scenario for an integrable 1D model [13]. We observe that time averages are close to the expectation values in the diagonal ensemble, while on the system sizes accessible to exact diagonalization, the expectation values in the diagonal and canonical ensemble are clearly different. In this context, we also show that the distribution of eigenstate expectation values is in general broad, in contrast to systems that are expected to thermalize in the framework of the eigenstate thermalization hypothesis [43–45]. This observation is similar to those of Refs. [46, 47] made for integrable models of interacting spinless fermions. For other recent studies of interaction quantum quenches in the one-dimensional Fermi-Hubbard model, see [48, 52], and for studies of the time evolution starting from a perfect Néel state in higher dimensions, see [3, 53] [54]. The non-equilibrium dynamics starting from this particular state yet combined with a sudden expansion into a homogeneous empty lattice has been investigated in Ref. [55].

The plan of this paper is the following. We provide a brief overview over the numerical methods and definitions in Sec. [II] Section [III] contains our main results, discussing the time evolution of observables and von Neumann entropy, steady-state values, thermalization, and the dynamics in the strongly interacting regime. We conclude with a summary presented in Sec. [IV].

## II. NUMERICAL METHODS

In this work we use two wavefunction-based methods, exact diagonalization (ED) and iTEBD, to study non-equilibrium dynamics in the Fermi-Hubbard model. We further use a standard density matrix renormalization group code (DMRG) to compute ground-state expectation values [56, 57].

### A. iTEBD

We use Vidal’s iTEBD algorithm for infinite systems to calculate the time evolution of the observables of interest starting from the perfect Néel state. This method approximates the true wave-function by a matrix-product state ansatz [58] appropriate for the thermodynamic limit and is related to time-dependent density matrix renormalization group methods [59, 60] and TEBD for finite systems [61]. We use a Trotter-Suzuki break-up of the time-evolution operator with a time step that is chosen small enough to resolve high-frequency oscillations at large \( U/t_0 \). The maximum number of states is bounded by \( \chi_{\text{max}} = 1024 \). We compared runs with different \( \chi_{\text{max}} \) and show only data for which the results are indistinguishable on the scale of the figures.

### B. Exact diagonalization

Our second method is exact diagonalization. We perform the time evolution in a truncated Krylov space [62] for a review and references). To be able to treat larger systems we exploit symmetries of the Hamiltonian [1], namely conservation of total particle number \( N \), total spin \( S_z \), invariance under total particle number \( n_i \) and lattice translations (quasimomentum \( k \)), the parity and spin-flip symmetry. In ED simulations, we use periodic boundary conditions, the number of sites is denoted by \( L \).

### C. Observables

Key quantities in our analysis are the double occupancy

\[
d(t) = \frac{1}{L} \sum_{i=1}^{L} \langle n_{i\uparrow} n_{i\downarrow} \rangle ,
\]

where the associated operator is \( \hat{d} = \frac{1}{L} \sum_{i=1}^{L} n_{i\uparrow} n_{i\downarrow} \). The staggered magnetization is

\[
m_s(t) = \frac{1}{2L} \sum_{i=1}^{L} (-1)^i \langle n_{i\uparrow} - n_{i\downarrow} \rangle .
\]

We further study nearest-neighbor density and spin correlations defined as \( N_i = \langle n_{i\uparrow} n_{i+1\downarrow} \rangle \) and \( S_i = \langle S_{i\uparrow}^z S_{i+1\uparrow}^z \rangle \).
for large $U/t_0$. Both quantities further exhibit coherent oscillations that decay during the approach to a stationary value, with the frequency given by $\omega = U$ for large $U \gg t_0$ for the double occupancy. By contrast, the period of oscillations in $m_s(t)$ increases in the large $U/t_0$ limit. This is expected, since in the Heisenberg limit the period of oscillations is $1/(2J)$ with $J = 4U/t_0^2$ [6]. Note that the non-interacting case has recently been studied comprehensively in [63] and that our iTEBD results agree with the analytical solution for the $U = 0$ case [6] [64].

The short-time dynamics of both quantities ($\hat{O}$ representing an observable) can be obtained analytically by expanding the time-evolution operator:

$$\langle \hat{O}(t) \rangle \approx \langle \psi_0 | \hat{O} | \psi_0 \rangle + i \langle \psi_0 | [H, \hat{O}] | \psi_0 \rangle t - \frac{1}{2} \langle \psi_0 | [H, [H, \hat{O}]] | \psi_0 \rangle t^2 + \mathcal{O}(t^3).$$

(6)

For both double occupancy and staggered magnetization, the leading time dependence is $\sim t^2$ and comes from $\langle \psi_0 | H \hat{O} H | \psi_0 \rangle \propto t_0^2$, which is independent of $U$. Hence, the nontrivial $U$-dependence cannot be deduced from this short-time dynamics. Second-order time-dependent perturbation theory in $t_0/U$ gives

$$d(t) = \frac{8t_0^2}{U^2} \sin^2 \left( \frac{Ut}{2} \right),$$

(7)

$$m_s(t) = \frac{1}{2} - \frac{8t_0^2}{U^2} \sin^2 \left( \frac{Ut}{2} \right).$$

(8)

This agrees with our numerical data for $U/t_0 \gtrsim 16$.

2. Comparison to Heisenberg model

For completeness, we show that the time dependence of the staggered magnetization in the large $U/t_0$ limit approaches the one of the spin-1/2 Heisenberg model $H = J \sum_i \vec{S}_i \cdot \vec{S}_{i+1}$, where $J$ is the magnetic exchange coupling. This is shown in Fig. 2 where we present

FIG. 1. (Color online) (a) Double occupancy $d(t)$ and (b) staggered magnetization $m_s(t)$ as a function of time during the quench from the Néel state to $U/t_0 = 0.4, 8, 16$ (iTEBD data). Dashed lines in (a): expectation value $d_{\text{diag}}$ from the diagonal ensemble Eq. (10) from ED ($L = 10$). Inset in (b): $m_s(t)$ plotted versus $t/U$ for $U/t_0 = 4, 8, 16$.

FIG. 2. (Color online) Time dependence of the staggered moment for Heisenberg (solid line) and Hubbard model with a large $U/t_0 = 16, 32$ (iTEBD data), plotted versus time measured in inverse units of the magnetic exchange constant $J = 4t_0^2/U$. The arrow indicates the small-amplitude oscillations in the short-time dynamics for finite $U/t_0 < \infty$ whose frequency is given by $U$. 

III. RESULTS

A. Time evolution and characteristic time scales

1. Double occupancy and staggered moment

Figures 1(a) and (b) show the time evolution of the double occupancy $d(t)$ and of the staggered magnetization $m_s(t)$, respectively, obtained from iTEBD simulations. While the double occupancy rapidly approaches a time-independent regime for all values of $U/t_0$ considered here, the relaxation of the staggered magnetization towards $m_s = 0$ is much slower. It is very instructive to replot $m_s(t)$ versus $t/U$ [inset in Fig. 1(b)]. This results in a collapse of the data for $U > 4t_0$, which is the better the larger $U/t_0$ is. Therefore, the relaxation of double occupancy and staggered magnetization occur at different time scales $1/t_0$ and $U$, respectively. This suggests that the relaxation of spin-related quantities is set by the magnetic exchange matrix element given by $J = 4t_0^2/U$.
iTEBD results for $U/t_0 = 16, 32$ and the pure spin system. We see that the results for the two models become quantitatively similar for large $U/t_0$. Moreover, the short-time dynamics in $m_s(t)$, namely the small initial maxima (see the arrow in the figure), disappear as $U/t_0$ increases, indicating the complete suppression of short-time charge dynamics. This is accompanied by a shrinking of the time window in which the short-time dynamics is governed by $\delta m_s(t) = m_s(t) - m_s(t = 0) \propto (t_0 t)^2$ [see Eq. (6)] which gets replaced by $\delta m_s(t) \propto (J t)^2$ (the latter follows from considering the Heisenberg model).

3. Nearest-neighbor correlations

The time dependence of nearest-neighbor density correlations $N_i(t) [\text{Fig. 3(a)}]$ and spin correlations $S_i(t) [\text{Fig. 3(b)}]$, bears similarities with the one of the double occupancy and the staggered moment, respectively. The density correlator undergoes a rapid decrease towards a stationary state that happens during the first tunneling time and then exhibits oscillations with a $U$-dependent frequency. On the contrary, the relaxation dynamics of the spin correlator is much slower, and again controlled by $U$ (the data for $S_i(t)$ can be collapsed in the $U/t_0 > 4$ regime by plotting them versus $t_0/U$, analogous to the staggered moment).

4. Von Neumann entropy

The existence of two different time scales for the relaxation dynamics of the double occupancy and the staggered magnetization translates into an interesting time dependence of the von Neumann entropy (see Fig. 4). At short times $t \lesssim 0.5/t_0$, $S_{\text{vN}} \sim t$ with a prefactor that is independent of $U$, while for $t \gtrsim 0.5/t_0$, the time dependence crosses over to a linear increase with a strongly $U$-dependent slope. Plotting $S_{\text{vN}}$ versus $t/U$ results in a collapse of the data [see the inset in Fig. 3], comparable to the behavior of the staggered magnetization.

The prefactor $c_s$ of the linear increase of the von Neumann entropy is related to the existence of gapless modes and given by the characteristic velocities $v_{\text{BA}}$ known from the Bethe ansatz $\{65, 67\}$ (dashed line in Fig. 5):

$$v_{\text{BA}} = 2t_0 \frac{I_1(2\pi t_0/U)}{I_0(2\pi t_0/U)}$$ (9)

($I_0$ and $I_1$ are modified Bessel functions of the first kind). Both $c_s$ and $v_{\text{BA}}$ clearly have a very similar dependence on $U/t_0$, unambiguously showing that the long-time dynamics of the entanglement entropy are controlled by spin excitations.

B. Time averages of double occupancy

In the analysis of time averages, it is instructive to compare them to the expectation values in the diagonal and canonical ensemble. The diagonal ensemble is defined as $\{43\}$

$$O_{\text{diag}} = \sum_\alpha |c_\alpha|^2 \langle \alpha | \hat{O} | \alpha \rangle,$$ (10)

where $|\alpha\rangle$ are post-quench eigenstates ($H|\alpha\rangle = E_\alpha |\alpha\rangle$) and $c_\alpha = \langle \psi_0 |\alpha\rangle$ are the overlaps between the initial state and post-quench eigenstates. $O_{\text{diag}}$ is the long-time average of $\langle O \rangle$ $\{43\}$, given that degeneracies can be ignored.
We also find it instructive to include degeneracies

\[ O_{\text{diag}}^* = \sum_{\alpha,\beta; E_{\alpha}=E_{\beta}} c_{\beta}^* c_{\alpha}\langle \beta | \hat{O} | \alpha \rangle. \]  

(11)

Given that the double occupancy can routinely be measured in quantum gas experiments \(^{19,35}\), we concentrate the following discussion on this quantity. The values for \( d_{\text{diag}} \) computed for \( L = 10 \) using ED are included in Fig. 1(a) as dashed lines. Clearly, the time-dependent iTEBD data are very close to \( d_{\text{diag}} \) and seem to approach this value as the amplitude of oscillations decays. By contrast, time averages of the time-dependent data for \( L = 10 \) (that \( d'_{\text{diag}} \) and \( d_{\text{diag}} \) are computed for) are identical to \( d'_{\text{diag}} \), i.e., including degeneracies (the latter is only relevant for \( U = 0 \), though).

To get a feeling for the system-size dependence, we show \( d_{\text{diag}} \) versus \( 1/L \) for (a) \( U = 4t_0 \) and (b) \( U = 8t_0 \), together with \( \bar{d} \) extracted from iTEBD simulations plotted at \( 1/L = 0 \) in Figs. 6(a) and (b), respectively. The data for \( d_{\text{diag}} \) seem to converge towards \( \bar{d} \). We should stress, though, that the time average of the double occupancy itself could change if we were able to reach longer times with iTEBD.

The expectation value in the canonical ensemble is computed from

\[ O_{\text{can}} = \text{tr}[\rho \hat{O}], \]  

(12)

where \( \rho = \exp(-\beta H)/Z \) with \( Z \) the partition function, all evaluated at fixed \( N = L \) and vanishing total spin \( \sum_{i=1}^{L} \langle S_i^z \rangle = 0 \). The temperature \( T = 1/\beta \) is fixed by requiring that

\[ E = \langle \psi_0 | H | \psi_0 \rangle = \text{tr}[\rho H]. \]  

(13)

Note that in our problem \( E = 0 \), independently of the post-quench value of \( U \). \( T/U \), however, is a monotonously increasing function as \( U/t_0 \) is lowered (see also \(^{18}\)).

From the time-dependent data shown in Fig. 1(a), we extract the time averages \( \bar{d} \) of the double occupancy. These are displayed in Fig. 7(a) versus \( U/t_0 \) (circles) together with the expectation values \( d_{\text{gs}} \) in the ground state.
One popular framework to understand thermalization in closed many-body systems is the eigenstate thermalization hypothesis (ETH) \cite{Srednicki1994,Deutsch1991}. It states that in closed many-body systems is the eigenstate thermal ensemble, if the expectation values \(\langle \hat{O} \rangle\) in post-quench eigenstates only and canonical ensemble should agree with each other. For sufficiently large systems, expectation values in the micro-canonical ensemble should agree with each other. For sufficiently large systems, expectation values in the micro-canonical ensemble should agree with each other.

Second, the time averages are above the ground-state expectation values. This behavior is, in the large \(U/t_0\) limit, somewhat unexpected, given the known non-monotonic temperature dependence of \(d\). As a function of \(T\), the equilibrium double occupancy \(d(T)\) first decreases from its zero-temperature value and then increases for large \(T\) towards \(d(T = \infty) = 1/4\) (see \cite{morita2008,cohen2012}). The position of the minimum in \(d(T)\) can be interpreted as a scale for the separation of the spin- versus charge excitation dominated temperature regime. Since we do not observe \(d < d_{\text{gs}}\) up to \(U/t_0 = 64\), we conclude that the initial state always mixes in doublons from the upper Hubbard band and not just the virtual doublons present in the ground state. For the accessible system sizes, this is confirmed by the discussion presented in Sec. III C.

We further observe the known \(d_{\text{gs}} \propto 1/U^2\) behavior \cite{morita2008,cohen2012} in the large \(U/t_0\) regime (also obeyed by \(d\)). The value of \(d = 1/4\), which is the infinite-temperature expectation value at \(U = 0\), is approached by \(d\) and \(d_{\text{diag}}\) as \(U/t_0\) is lowered (see Fig. 7).

Since the system is integrable, it is not surprising that the expectation values in the canonical ensemble are different from the ones in the diagonal ensemble. The canonical ensemble has been computed for a small system using exact diagonalization, and therefore a quantitative comparison only makes sense by comparing to the diagonal ensemble. The relative difference is shown in Fig. 7(b) for \(L = 10\) and can be quite large. At least for the accessible system sizes (see Fig. 6), this difference does not seem to become smaller. Therefore, we do not observe thermalization in this model for the quench protocol studied here. Nonetheless, the qualitative dependence of \(d\), \(d_{\text{can}}\) and \(d_{\text{diag}}\) on \(U/t_0\) is quite similar.

C. Connection to eigenstate thermalization hypothesis

1. Eigenstate expectation values

One popular framework to understand thermalization in closed many-body systems is the eigenstate thermalization hypothesis (ETH) \cite{Srednicki1994,Deutsch1991}. It states that \(\hat{O}_{\text{diag}} = \hat{O}_{\text{can}}\), where \(\hat{O}_{\text{can}}\) is the expectation value in the micro-canonical ensemble, if the expectation values \(\langle \alpha | \hat{O} | \alpha \rangle\) of \(\hat{O}\) (a local observable) in post-quench eigenstates only depend on energy \(E\) in the thermodynamic limit (the latter also assuming a narrow initial state \cite{Srednicki1994,Deutsch1991}). In other words, expectation values computed in a typical many-body eigenstate (which should be the vast majority of all states) already yield thermal behavior. For sufficiently large systems, expectation values in the micro- and canonical ensemble should agree with each other.

On a finite system accessible to exact diagonalization, validity of the ETH manifests itself in a narrow width of \(\langle \alpha | \hat{O} | \alpha \rangle\) at a fixed energy \(E\) for a generic quantum system, while for a 1D integrable system, \(\langle \alpha | \hat{O} | \alpha \rangle\) can be very broad for a given energy, due to the existence of many non-trivial (local) conservation laws resulting in a
large fraction of degeneracies. The picture has been studied and often verified (see, e.g., [43] [17] [50] [73] [78]), the important question being how quickly the distributions of \( \langle \alpha | \hat{O} | \alpha \rangle \) become sufficiently narrow as system size increases. Recent work suggests that for a generic system, this is exponentially fast in \( L \) ([77], see also [68] [78]), while for an integrable system, the decay of the width of \( \langle \alpha | \hat{O} | \alpha \rangle \) at a given \( E \) is at most power-law ([77] [79] [80]) (see also [81]).

Here, we exclusively analyze the distribution of post-quench eigenstate expectation values of the double occupancy. These are presented in Figs. 8(a)-(d) for \( U/t_0 = 0, 4, 8, 16 \). These distributions have a very regular structure inherited from the \( U/t_0 = \infty \) limit, where the double occupancy is a conserved quantity. There is one band for each possible value of \( \langle \alpha | \hat{d} | \alpha \rangle \) (for the parameters of the figure, \( L = 10 \) these are \( L \langle \alpha | \hat{d} | \alpha \rangle = 0, 1, 2, 3, 4, 5 \)). For a nonzero and small \( t_0/U \), the exact degeneracy in these bands is lifted while the structure as such is preserved on these small systems. In the lowest band, the effect of \( t_0 \neq 0 \) is to lower the energy from the degenerate \( U/t_0 = \infty \) ground-state manifold at \( E = 0 \) towards the correlated ground state, resulting at the same time in an increase of \( \langle \alpha | \hat{d} | \alpha \rangle \) towards its nonzero ground-state expectation value. This lowest band is very sharp and its negative slope translates into the decrease of \( d = d(T) \) from its zero-temperature value as a function of temperature at low \( T \) ([69] [70]), which persists as long as the \( dL = 0 \) band remains well separated from the \( dL = 1 \) band.

At smaller \( U/t_0 \), the bands eventually start to overlap and they become very broad at a fixed energy. At \( U = 0 \), the distribution of \( \langle \alpha | \hat{d} | \alpha \rangle \) becomes flat, resulting in an essentially energy-independent mean value of \( \langle \alpha | \hat{d} | \alpha \rangle \approx 1/4 \).

2. Properties of the specific initial state

Our initial state has a mean energy of \( E = 0 \) and a width (in the diagonal ensemble) of \( \sigma_{\text{diag}} = \sqrt{\langle \psi_0 | \hat{H}^2 | \psi_0 \rangle} = t_0 \sqrt{2L} \), which is independent of \( U \). This is indicated by the shaded areas in Fig. 8. For large \( U/t_0 \), primarily the very narrow first band is sampled and \( E = 0 \) sits at the high-energy edge of the first, \( dL = 0 \) band (recall that for \( U/t_0 = \infty \), \( dL \) takes integer values). Therefore, the initial state asymmetrically mixes in eigenstates with too large values of \( \langle \alpha | \hat{d} | \alpha \rangle \) from both states in the \( dL = 0 \) band at \( E < 0 \) and from the band with \( dL = 1 \) (the latter follows from analyzing the distribution of \( |c_\alpha|^2 \)). Hence, the overall structure of the distribution of \( \langle \alpha | \hat{d} | \alpha \rangle \) combined with the distribution of \( |c_\alpha|^2 \) is consistent with the observation that \( d > d_{\text{can}} \) at large \( U/t_0 \) (compare Sec. III B).

At very small \( U/t_0 \), the initial state samples the bulk of the system where the density of states is large. At \( U = 0 \), the corresponding canonical temperature derived from the quench energy is infinite and since \( \langle \alpha | \hat{d} | \alpha \rangle \) does not depend much on energy, we must find \( d = d_{\text{diag}} = d_{\text{can}} \rightarrow 1/4 \) as \( L \) increases, consistent with the discussion in Sec. III B. At intermediate \( U/t_0 \), the initial state samples several overlapping and partially very broad bands of the \( \langle \alpha | \hat{d} | \alpha \rangle \) distribution [see, e.g., the case of \( U/t_0 = 4 \) shown in Fig. 8(b)]. Therefore, based on the structure of the eigenstate expectation value distributions at the quench energy, we expect deviations between thermal behavior at intermediate and large \( U/J \), consistent with our previous analysis. In conclusion, we stress that the quench energy alone is not a sufficient criterion for the analysis of finite-system size data, but that the actual distribution of overlaps \( |c_\alpha|^2 \) crucially determines which bands are involved (see also the discussion in [68]).

IV. SUMMARY AND CONCLUSION

In this work, we studied the relaxation dynamics in the one-dimensional Fermi-Hubbard model starting from a perfect Néel state as a function of the interaction strength \( U/t_0 \). As a main result, we reported evidence that the relaxation dynamics of the staggered moment, spin correlations and of the von Neumann entropy at long times is controlled by spin excitations, while the double occupancy undergoes a much faster dynamics controlled by charge excitations. The slope \( c_s \) of the increase of the von Neumann entropy \( S_{\text{VN}} = c_s t \) is very similar to the exact spinon velocity known from the Bethe ansatz. This separation of time scales for double occupancy versus staggered magnetization could be accessible in state-of-the-art quantum gas experiments. In fact, very similar observations have been reported on in a recent experiment with bosons in a two-dimensional lattice [23], where a crossover from charge to spin dynamics was observed starting from the Néel state.

We further demonstrated that the time averages of the double occupancy are different from the expectation values in the canonical ensemble. Nonetheless, both quantities exhibit the same qualitative dependence on \( U/t_0 \). Finally, we made a connection to the eigenstate thermalization hypothesis by showing that the eigenstate expectation values of the double occupancy are, in general, broadly distributed with no well-defined dependence on energy only, characteristic for an integrable one-dimensional system.

Acknowledgment. We thank F. Essler, U. Schneider, L. Vidmar and D. Schuricht for helpful discussions. F.D. and F.H.-M. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) via Research Unit FOR 1807 through grant no. HE 5242/3-1.
(2013).

[52] L. Riegger, G. Orso, and F. Heidrich-Meisner, , arXiv:1412.0507 (unpublished).

[53] P. Werner, N. Tsuji, and M. Eckstein, Phys. Rev. B 86, 205101 (2012).

[54] F. Queisser, K. V. Krutitsky, P. Navez, and R. Schützhold, Phys. Rev. A 89, 033616 (2014).

[55] L. Vidmar, S. Langer, I. P. McCulloch, U. Schneider, U. Schollwöck, and F. Heidrich-Meisner, Phys. Rev. B 88, 235117 (2013).

[56] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

[57] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

[58] U. Schollwöck, Ann. Phys. (NY) 326, 96 (2011).

[59] A. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat. Mech.: Theory Exp., P04005 (2004).

[60] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004).

[61] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).

[62] S. R. Manmana, A. Muramatsu, and R. M. Noack, AIP Conf. Proc. 789, 269 (2005).

[63] A. Sheikhan and C. Kollath, , arXiv:1502.01851 (unpublished).

[64] M. Cramer, A. Flesch, I. P. McCulloch, U. Schollwöck, and J. Eisert, Phys. Rev. Lett. 101, 063001 (2008).

[65] M. Takahashi, Prog. Theor. Phys. 43, 1619 (1970).

[66] R. Preuss, A. Muramatsu, W. von der Linden, P. Dieterich, F. F. Assaad, and W. Hanke, Phys. Rev. Lett. 73, 732 (1994).

[67] F. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Korepin, The one-dimensional Hubbard model (Cambridge University Press, 2005).

[68] S. Sorg, L. Vidmar, L. Pollet, and F. Heidrich-Meisner, Phys. Rev. A 90, 033606 (2014).

[69] E. V. Gorelik, I. Titvinidze, W. Hofstetter, M. Snoek, and N. Blümer, Phys. Rev. Lett. 105, 065301 (2010).

[70] E. V. Gorelik, D. Rost, T. Paiva, R. Scalettar, A. Klümper, and N. Blümer, Phys. Rev. A 85, 061602 (2012).

[71] H. Shiba and P. A. Pincus, Phys. Rev. B 5, 1966 (1972).

[72] A. Pelizzola, J. Phys. A 26, 2061 (1993).

[73] M. Rigol and L. F. Santos, Phys. Rev. A 82, 011604 (2010).

[74] G. Roux, Phys. Rev. A 81, 053604 (2010).

[75] R. Steinigeweg, J. Herbysch, and P. Prelovšek, Phys. Rev. E 87, 012118 (2013).

[76] H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90, 052105 (2014).

[77] W. Beugeling, R. Moessner, and M. Haque, Phys. Rev. E 89, 042112 (2014).

[78] R. Steinigeweg, A. Khodja, H. Niemeyer, C. Gogolin, and J. Gemmer, Phys. Rev. Lett. 112, 130403 (2014).

[79] T. N. Ikeda, Y. Watanabe, and M. Ueda, Phys. Rev. E 87, 012125 (2013).

[80] V. Alba, , arxiv:1409.6096 (unpublished).

[81] G. Birol, C. Kollath, and A. M. Läuchli, Phys. Rev. Lett. 105, 250401 (2010).