ON A CONJECTURE OF IIZUKA

AZIZUL HOQUE

Abstract. For a given odd positive integer n and an odd prime p, we construct an infinite family of quadruples of imaginary quadratic fields $\mathbb{Q}(\sqrt{d})$, $\mathbb{Q}(\sqrt{d+1})$, $\mathbb{Q}(\sqrt{d+4})$ and $\mathbb{Q}(\sqrt{d+4p^2})$ with $d \in \mathbb{Z}$ such that the class number of each of them is divisible by n. Subsequently, we show that there is an infinite family of quintuples of imaginary quadratic fields $\mathbb{Q}(\sqrt{d})$, $\mathbb{Q}(\sqrt{d+1})$, $\mathbb{Q}(\sqrt{d+4})$, $\mathbb{Q}(\sqrt{d+36})$ and $\mathbb{Q}(\sqrt{d+100})$ with $d \in \mathbb{Z}$ whose class numbers are all divisible by n. Our results provide a complete proof of Iizuka’s conjecture (in fact a generalization of it) for the case $m = 1$. Our results also affirmatively answer a weaker version of (a generalization of) Iizuka’s conjecture for $m \geq 4$.

1. Introduction

It has been proved that there are infinitely many real (resp. imaginary) quadratic fields with class numbers divisible by a given positive integer (see [1, 3, 21, 24]). An analogous problem for tuples of quadratic fields arises from Scholz’s Spiegelungssatz [19]. In [13], Komatsu studied this problem for a pair of quadratic fields and proved that there are infinitely many pairs of quadratic fields $\mathbb{Q}(\sqrt{d})$ and $\mathbb{Q}(\sqrt{md})$ with $m, d \in \mathbb{Z}$ whose class numbers are divisible by 3. Later, he generalized this result in [14] to n-divisibility of the class numbers of pairs of imaginary quadratic fields. On the other hand, Iizuka [11] studied a slight variant of this problem and construct an infinite family of pairs of imaginary quadratic fields $\mathbb{Q}(\sqrt{d})$ and $\mathbb{Q}(\sqrt{d+1})$ with $d \in \mathbb{Z}$ whose class numbers are divisible by 3. Further, he posed the following conjecture in the same paper.

Conjecture 1.1. For any prime number p and any positive integer m, there is an infinite family of $m+1$ successive real (or imaginary) quadratic fields $\mathbb{Q}(\sqrt{d}), \mathbb{Q}(\sqrt{d+1}), \cdots, \mathbb{Q}(\sqrt{d+m})$ with $d \in \mathbb{Z}$ whose class numbers are divisible by p.

Date: August 18, 2021.

2020 Mathematics Subject Classification. 11R11; 11R29.

Key words and phrases. Imaginary quadratic field, Class number, Iizuka’s conjecture, Exponent.
In [4], Chattopadhyay and Muthukrishnan extended Iizuka’s result from pairs to certain triples of imaginary quadratic fields following the methods used in [11]. In other words, they gave an affirmative answer of a weaker version of Conjecture 1.1 for \(p = 3 \). It follows from a recent result of Iizuka, Konomi and Nakano [12] that Conjecture 1.1 is true for \(m = 1 \) when \(p = 3, 5, 7 \).

Very recently, Krishnamoorthy and Pasupulati [15] cleverly used [16, Theorem 1] and an extended version of [9, Theorem 3.2] to settled Conjecture 1.1 for \(m = 1 \).

In this paper, for a given odd prime \(p \) we construct an infinite family of quadruples of imaginary quadratic fields \(\mathbb{Q}(\sqrt{d}), \mathbb{Q}(\sqrt{d+1}), \mathbb{Q}(\sqrt{d+4}) \) and \(\mathbb{Q}(\sqrt{d+4p^2}) \) with \(d \in \mathbb{Z} \) whose class numbers are all divisible by a given odd integer \(n \geq 3 \). This extends the results of [4, 12, 15] in both directions; from pairs to quadruples/quintuples of fields and from primes to odd integers. It also gives a proof of a weaker version of Conjecture 1.1 for any prime \(p \geq 3 \) (in fact for any odd integer \(n \geq 3 \)). The precise statement of our first result is the following:

Theorem 1.1. For any odd positive integer \(n \) and any odd prime \(p \), there are infinitely many quadruples of imaginary quadratic fields \(\mathbb{Q}(\sqrt{d}), \mathbb{Q}(\sqrt{d+1}), \mathbb{Q}(\sqrt{d+4}) \) and \(\mathbb{Q}(\sqrt{d+4p^2}) \) whose class numbers are all divisible by \(n \).

Note that we can construct an infinite family of quintuples or higher tuples of imaginary quadratic fields whose class numbers are all divisible by \(n \) by choosing different values for the prime \(p \). For instance, utilizing Corollary 3.1 and following the proof of Theorem 1.1, we get the following:

Theorem 1.2. For a given odd integer \(n \geq 1 \), there are infinitely many quintuples of imaginary quadratic fields

\[
\left(\mathbb{Q}(\sqrt{d}), \mathbb{Q}(\sqrt{d+1}), \mathbb{Q}(\sqrt{d+4}), \mathbb{Q}(\sqrt{d+36}), \mathbb{Q}(\sqrt{d+100})\right)
\]

with \(d \in \mathbb{Z} \) whose class numbers are all divisible by \(n \).

Our method relies on the prominent result of Bilu, Hanrot and Voutier [2] concerning the primitive divisors of Lehmer numbers as well as on the solvability of certain Lebesgue-Ramanujan-Nagell type equations considered in [8]. This method does not allow us to include an imaginary quadratic field of the form \(\mathbb{Q}(\sqrt{d+m}) \) in the tuple, when \(m \) is non-square integer.
2. \(n\)-divisibility of the class-numbers of \(\mathbb{Q}(\sqrt{1-4U^n})\) and \(\mathbb{Q}(\sqrt{1-V^n})\)

Here, we recall some results concerning the \(n\)-divisibility of class numbers of the imaginary quadratic fields \(\mathbb{Q}(\sqrt{1-4U^n})\) and \(\mathbb{Q}(\sqrt{1-V^n})\). These results will be used in the proof of Theorem \ref{theorem1}.1

Theorem A. If \(n \geq 3\) is an odd integer, then for any integer \(U \geq 2\) the ideal class groups of the imaginary quadratic fields \(\mathbb{Q}(\sqrt{1-4U^n})\) contain an element of order \(n\).

In 1978, Gross and Rohrlich gave the outline of a proof of this theorem (see \cite[Theorem 5.3 and Remark 2]{Gross}). Their method of proof was based upon the affine points on the Fermat curve \(x^p + y^p = 1\) over the imaginary quadratic field \(\mathbb{Q}(\sqrt{1-4U^n})\). Later, Louboutin \cite{Louboutin} gave a complete proof of this theorem using number theoretic technique. It follows from Siegel’s theorem (see \cite{Siegel}) that for each integer \(d > 1\) there are at most finitely many positive integers \(U\) such that \(1-4U^n = -dX^2\). This ensures the infinitude of the above family of imaginary quadratic fields.

The \(n\)-divisibility of the class numbers of the family of imaginary quadratic fields \(\mathbb{Q}(\sqrt{1-V^n})\) was studied by Nagell \cite[Theorem 25]{Nagell} for any odd integers \(V \geq 3\) and \(n \geq 3\). Later, Murty \cite[Theorems 1 and 2]{Murty} proved that the class group of the imaginary quadratic field \(\mathbb{Q}(\sqrt{1-V^n})\) has an element of order \(n\) when either \(V^n - 1\) is square-free or its square part is \(< V^{n/2}/8\) for any odd integers \(V \geq 5\) and \(n \geq 3\). However, it follows from the fact \(DX^2 + 1 = V^n\) has no integer solution when both \(V\) and \(n\) are odd, except for \((V, n) = (5, 3), (7, 3), (13, 3)\) (see \cite{Cohn}), that the above conditions are no longer required. This fact also confirms that there are infinitely many such imaginary quadratic fields. Finally, this was elucidated by Cohn in \cite[Corollary 1]{Cohn} as follows:

Theorem B. Assume that \(n \geq 3\) and \(V \geq 3\) are odd integers. Then the class number of the imaginary quadratic field \(\mathbb{Q}(\sqrt{1-V^n})\) is divisible by \(n\), except for \((n, V) = (5, 3)\).

3. The divisibility of the class number of \(\mathbb{Q}(\sqrt{p^2-\ell^n})\)

Many special cases of the divisibility of the class number of the imaginary quadratic field \(\mathbb{Q}(\sqrt{x^2-y^n})\) have been studied with some restrictions on \(x, y\) and \(n\). One of such restrictions is that \(y\) is an odd prime (see \cite{Goldfeld} and the references therein), and hence none of the known results can be used to complete the proof of Theorem \ref{theorem1}.1. Thus, we consider a family of imaginary quadratic fields of the above form where \(y\) is not a prime and it will be a useful ingredient in the proof of Theorem \ref{theorem1}.1. Here, we mainly prove:
Theorem 3.1. Let $\ell > 1$ and $n > 1$ be odd integers, and p an odd prime such that $\ell \equiv 3 \pmod{4}$, $\gcd(\ell, p) = 1$ and $p^2 < \ell^n$. Assume that $-d$ is the square-free part of $p^2 - \ell^n$. If $p \not\equiv \pm 1 \pmod{d}$, then the class number of $\mathbb{Q}(\sqrt{p^2 - \ell^n})$ is divisible by n.

Theorem 3.1 extends [3, Theorem 1.1], where the authors assumed that ℓ is an odd prime. This primality condition on ℓ restricts us to apply [3, Theorem 1.1] in the proof of Theorem 1.1. Further, following the proof of [3, Theorem 1.2], we make the following remark.

Remark 3.1. The family of imaginary quadratic fields discussed in Theorem 3.1 has infinitely many members.

Now for $p = 3, 5$, the condition ‘$p \not\equiv \pm 1 \pmod{d}$’ can be removed by applying 3.7 except for $(\ell, n) = (3, 3)$, and thus we have the following straightforward corollary.

Corollary 3.1. Let $\ell > 1$ and $n > 1$ be as in Theorem 3.1. For $x = 3, 5$ with $\gcd(\ell, x) = 1$, the class number of $\mathbb{Q}(\sqrt{x^2 - \ell^n})$ is divisible by n except the case $(\ell, n) = (3, 3)$.

The proof of Theorem 3.1 relies on the prominent result of Bilu, Hanrot and Voutier [2] on existence of primitive divisors of Lehmer numbers.

3.1. Lehmer numbers and their primitive divisors. A pair (α, β) of algebraic integers is said to be a Lehmer pair if $(\alpha + \beta)^2$ and $\alpha \beta$ are two non-zero coprime rational integers, and α/β is not a root of unity. For a given positive integer n, the Lehmer numbers correspond to the pair (α, β) are defined as

$$L_n(\alpha, \beta) = \begin{cases} \alpha^n - \beta^n, & \text{if } n \text{ is odd}, \\ \frac{\alpha^n - \beta^n}{\alpha - \beta}, & \text{if } n \text{ is even}. \end{cases}$$

It is known that all Lehmer numbers are non-zero rational integers. Two Lehmer pairs (α_1, β_1) and (α_2, β_2) are said to be equivalent if $\alpha_1/\alpha_2 = \beta_1/\beta_2 \in \{\pm 1, \pm \sqrt{-1}\}$. A prime divisor p of $L_n(\alpha, \beta)$ is said to be primitive if $p \nmid (\alpha^2 - \beta^2)^2 L_1(\alpha, \beta) L_2(\alpha, \beta) \cdots L_{n-1}(\alpha, \beta)$.

The following classical result was proved in [2, Theorem 1.4].

Theorem C. The Lehmer number $L_n(\alpha, \beta)$ has primitive divisors for any integer $n > 30$.

Given a Lehmer pair (α, β), let $a = (\alpha + \beta)^2$ and $b = (\alpha - \beta)^2$. Then $\alpha = (\sqrt{a} \pm \sqrt{b})/2$ and $\beta = (\sqrt{a} \mp \sqrt{b})/2$. The pair (a, b) is called the parameters corresponding to the Lehmer pair (α, β). The following lemma is extracted from [22, Theorem 1].
Lemma 3.1. Let t be an odd integer such that $7 \leq t \leq 29$. If the Lehmer numbers $L_t(\alpha, \beta)$ have no primitive divisor, then up to equivalence, the parameters (a, b) of the corresponding pair (α, β) are as follows:

(i) $(a, b) = (1, -7), (1, -19), (3, -5), (5, -7), (13, -3), (14, -22)$, when $t = 7$;
(ii) $(a, b) = (5, -3), (7, -1), (7, -5)$, when $t = 9$;
(iii) $(a, b) = (1, -7)$, when $t = 13$;
(iv) $(a, b) = (7, -1), (10, -2)$, when $t = 15$.

Let F_k (resp. L_k) denote the k-th term in the Fibonacci (resp. Lucas) sequence defined by $F_0 = 0, F_1 = 1$, and $F_{k+2} = F_k + F_{k+1}$ (resp. $L_0 = 2, L_1 = 1$, and $L_{k+2} = L_k + L_{k+1}$), where $k \geq 0$ is an integer. The following lemma is a part of [2] Theorem 1.3.

Lemma 3.2. For $p = 3, 5$, let the Lehmer numbers $L_p(\alpha, \beta)$ have no primitive divisor. Then up to equivalence, the parameters (a, b) of the corresponding pair (α, β) are:

(i) For $p = 3$, $(a, b) = \begin{cases} (1 + t, 1 - 3t) \text{ with } t \neq 1, \\ (3^k + t, 3^k - 3t) \text{ with } t \equiv 0 \pmod{3}, (k, t) \neq (1, 1); \end{cases}$

(ii) For $p = 5$, $(a, b) = \begin{cases} (F_{k-2}, F_{k-2} - 4F_k) \text{ with } k \geq 3, \\ (L_{k-2}, L_{k-2} - 4L_k) \text{ with } k \neq 1; \end{cases}$

where $t \neq 0$ and $k \geq 0$ are any integers and $\varepsilon = \pm 1$.

3.2. Two important lemmas. Given an integer $D \equiv 0, 1 \pmod{4}$, assume that $h^*(D)$ is the class number of binary quadratic primitive forms with discriminant D. Also for a square-free integer d, let $h(d)$ denote the class number of $\mathbb{Q}(\sqrt{d})$. Then we have (cf. [10, §16.13; p. 444]) the following:

Lemma 3.3. Let $d \equiv 2 \pmod{4}$ be a square-free positive integer. Then $h(-d) = h^*(-4d)$.

The following lemma is a special case of [8] Theorem 6.2 when $(D_1, D_2) = (1, -d)$.

Lemma 3.4. Let $d > 3$ and $\ell > 1$ be integers such that $\gcd(\ell, 2d) = 1$. If the equation $x^2 + dy^2 = \ell^e$, $x, y, z \in \mathbb{N}$, $\gcd(x, y) = 1$ has a solution, then all the solutions (x, y, z) of this equation can be expressed as $x + y\sqrt{-d} = \varepsilon(a + \mu b\sqrt{-d})^t$, $z = st$, where a, b, s, t are positive integers satisfying $a^2 + db^2 = \ell^e$, $\gcd(a, b) = 1$ and $s \mid h^*(-4d)$.
and \(\varepsilon, \mu \in \{-1, 1\} \).

3.3. **Proof of Theorem 3.1.** Let \(d \) be the square-free part of \(\ell^n - p^2 \). Then \(p^2 - \ell^n = -dr^2 \) for some \(r \in \mathbb{N} \), and thus \((x, y, z) = (p, r, n)\) is a positive integer solution of the equation
\[
x^2 + dy^2 = \ell^z, \quad \gcd(x, y) = 1.
\]

Thus by Lemma 3.4 we get
\[
p + r \sqrt{-d} = \varepsilon(a + \mu b \sqrt{-d})^t, \quad \varepsilon, \mu \in \{-1, 1\}
\]
with
\[
n = st, \quad s, t \in \mathbb{N},
\]
where \(a \) and \(b \) are positive integers satisfying
\[
a^2 + db^2 = \ell^s, \quad \gcd(a, b) = 1
\]
and
\[
s \mid h^{(4s)}(-4d).
\]

Since \(\ell \equiv 3 \pmod{4} \) and \(n \) is odd, so that \(p^2 - \ell^n = -dr^2 \) gives \(d \equiv 2 \pmod{4} \) and \(r \) is odd. Also both \(s \) and \(t \) are odd as \(n \) is odd. Further reading (3.3) modulo 4, we get \(a^2 + 2b^2 \equiv 3 \pmod{4} \) as \(\ell \equiv 3 \pmod{4} \) and \(s \) is odd, which ensures that both \(a \) and \(b \) are odd.

We now equate the real parts from both sides in (3.1) to get
\[
p = \varepsilon a \sum_{j=0}^{t-2j-1} \binom{t}{2j} (-db^2)^j.
\]

This implies \(a \mid p \) and thus \(a = 1, p \). If \(a = 1 \), then it becomes
\[
\sum_{j=0}^{t-2j-1} \binom{t}{2j} (-db^2)^j = p \varepsilon = \pm p.
\]

Reading (3.6) modulo \(d \), we get \(p \equiv \pm 1 \pmod{d} \), which contradicts to the assumption. Therefore \(a = p \) and thus (3.5) becomes
\[
\sum_{j=0}^{t-2j-1} \binom{t}{2j} p^{t-2j-1} (-db^2)^j = \varepsilon = \pm 1.
\]

As \(a = p \), so that (3.1) reduces to
\[
p + r \sqrt{-d} = \varepsilon(p + \mu b \sqrt{-d})^t, \quad \varepsilon, \mu \in \{-1, 1\}.
\]
We now assume that $\alpha = \mu b\sqrt{-d} + p$ and $\beta = \mu b\sqrt{-d} - p$. Then both α and β are algebraic integers. Clearly, $(\alpha + \beta)^2 = -4db^2$ and $\alpha\beta = -p^2 - db^2 = -\ell^s$ (by (3.3)) are coprime rational integers. Furthermore, it follows from the following identity

$$\frac{4db^2}{\ell^s} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2$$

that

$$\ell^s \left(\frac{\alpha}{\beta}\right)^2 + 2(\ell^s - 2db^2)\frac{\alpha}{\beta} + \ell^s = 0.$$

Since $\ell > 1$ and $\gcd(\ell^s, 2(\ell^s - 2db^2)) = \gcd(\ell^s, 4db^2) = \gcd(p^2 + db^2, 4db^2) = 1$, so that the last equation shows that $\frac{\alpha}{\beta}$ is not a root of unity. Therefore (α, β) is a Lehmer pair with parameters $(-4db^2, 4p^2)$ and thus the corresponding Lehmer number for t is

$$\mathcal{L}_t(\alpha, \beta) = \frac{\alpha^t - \beta^t}{\alpha - \beta}$$

as t is odd. Utilizing (3.8), we get

$$|\mathcal{L}_t(\alpha, \beta)| = 1.$$

This confirms that the Lehmer number $\mathcal{L}_t(\alpha, \beta)$ has no primitive divisor, and hence Theorem C and Lemma 3.1 (utilizing the fact that $(-4db^2, 4p^2)$ is the parameters) ensure that $t \in \{1, 3, 5\}$.

In case of $t = 5$, we get by Lemma 3.2 that $-4db^2 = F_{k-2e}$ or $-4db^2 = L_{k-2e}$. Clearly, none of these is possible.

Finally for $t = 3$, (3.7) implies that $p^2 - 3db^2 = \pm 1$. Reading it modulo 4, we see that ‘+’ sign is not possible, and thus $p^2 - 3db^2 = -1$. This is not possible by reading it modulo 3.

Therefore $t = 1$, and thus (3.2) and (3.4) together imply that $n \mid h^s(-4d)$. Thus, we complete the proof by Lemma 3.3.

4. PROOF OF THEOREM 1.1

We first fix an odd integer $n \geq 3$. We now define the set

$$\mathcal{N}_n = \{ k \in \mathbb{N} : n \mid h(1 - 4k^n) \}.$$

Then by Theorem A the set \mathcal{N}_n is infinite.

Now for any $k \in \mathcal{N}_n$, we set $d = 4(1 - 4k^n)^n$. Then $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}(\sqrt{1 - 4k^n})$ as n is odd. Thus, by Theorem A there are infinitely many such d satisfying $n \mid h(d)$. In other words, $\mathcal{F}(\mathcal{N}_n) = \{ \mathbb{Q}(\sqrt{1 - 4k^n}) : k \in \mathcal{N}_n \}$ is an infinite set.
Now we assume that \(U = 4k^n - 1 \) with \(k \in \mathcal{N}_n \). Then \(1 - 4U^n = 1 - 4(4k^n - 1)^n = 4(1 - 4k^n)^n + 1 = d + 1 \), and thus by Theorem [A] we have \(n \mid h(d+1) \).

Again for \(k \in \mathcal{N}_n \), let us assume that \(V = 4k^n - 1 \). Then \(V \geq 3 \) and is odd, and thus by Theorem [B] we get \(n \mid h(1-V^n) \). Since \(4(1-V^n) = 4 - 4(4k^n - 1)^n = 4 + 4(1 - 4k^n)^n = d+4 \) and \(\mathbb{Q}(\sqrt{4(1-V^n)}) = \mathbb{Q}(\sqrt{4(1-V^n)}) \), so that \(n \mid h(d+4) \).

Finally for any \(k \in \mathcal{N}_n \), let \(\ell = 4k^n - 1 \). Then \(\ell \equiv 3 \pmod{4} \) and hence by utilizing Theorem 3.1 we have \(n \mid h(p^2 - \ell^n) \) for any odd prime \(p \) satisfying \(p \not\equiv \pm 1 \pmod{d} \). Here, \(d \) is the square-free part of \(\ell^n - p^2 \). Now \(4(p^2 - \ell^n) = 4p^2 - 4\ell^n = 4p^2 - 4(4k^n - 1)^n = d + 4p^2 \), which implies that \(\mathbb{Q}(\sqrt{d + 4p^2}) = \mathbb{Q}(\sqrt{4(p^2 - \ell^n)}) \), and thus \(n \mid h(d+4p^2) \). This completes the proof of Theorem 1.1.

5. CONCLUDING REMARKS

In [23], Xie and Chao studied Conjecture 1.1 and proved the following result using Yamamoto’s [24] construction.

Theorem D. For any odd positive integer \(n \) and any positive integer \(m \), there are infinitely many pairs of imaginary fields \(\mathbb{Q}(\sqrt{d}) \) and \(\mathbb{Q}(\sqrt{d+m}) \) whose class groups have an element of order \(n \) respectively.

Theorem D can be viewed as a weaker variant of a generalization of Conjecture 1.1. For \(m = 1 \), it provides a generalization of the main result of [15] though [23] appeared before [15]. In other words, Theorem D gives a complete proof of the following generalization of Conjecture 1.1 for \(m = 1 \) and a proof of a weaker version of the same for \(m \geq 2 \).

Conjecture 5.1. For any odd integer \(n \geq 3 \) and any integer \(m \geq 1 \), there is an infinite family of \(m+1 \) successive imaginary (or real) quadratic fields

\[
\mathbb{Q}(\sqrt{d}), \mathbb{Q}(\sqrt{d+1}), \ldots, \mathbb{Q}(\sqrt{d+m})
\]

with \(d \in \mathbb{Z} \) whose class numbers are all divisible by \(n \).

Theorem 1.1 offers a constructive proof of Conjecture 5.1 for \(m = 1 \). This theorem also offers a proof of a weaker version of Conjecture 5.1 for \(m = 4 \), which has missed the families of imaginary quadratic fields \(\mathbb{Q}(\sqrt{d+2}) \) and \(\mathbb{Q}(\sqrt{d+3}) \) from the complete proof. When \(m = 4p^2 \) with \(p \) an odd prime, Theorem 1.1 presents a proof of a weaker version of Conjecture 5.1. We complete this paper by the following remark.

Remark 5.1. For a given positive integer \(m \), let \(p_m \) denote the largest prime less than or equal to \(m \) and \(\pi(m) \) the prime-counting function. Then for a given positive odd integer
n, our construction gives an infinite family of at least \((\pi(m) + 2)\)-tuples of imaginary quadratic fields,
\[
(Q(\sqrt{d}), Q(\sqrt{d + 1}), Q(\sqrt{d + 4}), Q(\sqrt{d + 36}), \ldots, Q(\sqrt{d + 4p_m^2}))
\]
with \(d \in \mathbb{Z}\) whose class numbers are all divisible by \(n\).

Acknowledgements

The author is grateful to Professor K. Chakraborty and Professor Yasuhiro Kishi for their valuable comments on the paper. The author is thankful to Professor Y. Iizuka for providing a copy of [12]. The author gratefully acknowledges the anonymous referee for his/her valuable remarks that immensely improved the results as well as the presentation of the paper. This work was supported by SERB-NPDF (PDF/2017/001958), Govt. of India.

References

[1] N. C. Ankeny and S. Chowla, *On the divisibility of the class number of quadratic fields*, Pacific J. Math. **5** (1955), 321–324.

[2] Y. Bilu, G. Hanrot and P. M. Voutier, *Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte)*, J. Reine Angew. Math. **539** (2001), 75–122.

[3] K. Chakraborty, A. Hoque, Y. Kishi and P. P. Pandey, *Divisibility of the class numbers of imaginary quadratic fields*, J. Number Theory **185** (2018), 339–348.

[4] J. Chattopadhyay and S. Muthukrishnan, *On the simultaneous 3-divisibility of class numbers of triples of imaginary quadratic fields*, Acta Arith. **197** (2021), no. 1, 105–110.

[5] J. H. E. Cohn, *On the Diophantine equation \(x^n = Dy^2 + 1\)*, Acta Arith. **106** (2003), no. 1, 73–83.

[6] B. H. Gross and D. E. Rohrlich, *Some results on the Mordell-Weil group of the Jacobian of the Fermat curve*, Invent. Math. **44** (1978), 201–224.

[7] E. Herrmann, I. Járás and A. Pethő, *Note on J. H. E. Cohn’s paper “The Diophantine equation \(x^n = Dy^2 + 1\)”*, Acta Arith. **113** (2004), no. 1, 69–76.

[8] C. Heuberger and M. Le, *On the generalized Ramanujan-Nagell equation \(x^2 + D = p^Z\)*, J. Number Theory **78** (1999), no. 2, 312–331.

[9] A. Hoque and K. Chakraborty, *Divisibility of class numbers of certain families of quadratic fields*, J. Ramanujan Math. Soc. **34** (2019), no. 3, 281–289.

[10] L. K. Hua, *Introduction to number theory*, Springer-Verlag, New York, 1982.

[11] Y. Iizuka, *On the class number divisibility of pairs of imaginary quadratic fields*, J. Number Theory **184** (2018), 122–127.

[12] Y. Iizuka, Y. Konomi and S. Nakano, *An application of the arithmetic of elliptic curves to the class number problem for quadratic fields*, Tokyo J. Math. (2021). doi: 10.3836/tjm/1502179314
[13] T. Komatsu, *An infinite family of pairs of quadratic fields* $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{mD})$ whose class numbers are both divisible by 3, Acta Arith. 104 (2002), 129–136.

[14] T. Komatsu, *An infinite family of pairs of imaginary quadratic fields with ideal classes of a given order*, Int. J. Number Theory 13 (2017), no. 2, 253–260.

[15] S. Krishnamoorthy and S. Pasupulati, *Note on the p-divisibility of class numbers of an infinite family of imaginary quadratic fields*, Glasgow Math. J. (2021). doi: [10.1017/S001708952100015X](https://doi.org/10.1017/S001708952100015X).

[16] S. R. Louboutin, *On the divisibility of the class number of imaginary quadratic number fields*, Proc. Amer. Math. Soc. 137 (2009), no. 12, 4025–4028.

[17] M. R. Murty, *The ABC conjecture and exponents of class groups of quadratic fields*, Contemp. Math. 210 (1998), 85–95.

[18] T. Nagell, *Über die Klassenzahl imaginär quadratischer Zahlenkörper*, Abh. Math. Sem. Univ. Hambg. 1 (1922), 140–150.

[19] A. Scholz, *Über die Beziehung der Klassenzahlen quadratischer Körper zueinander*, J. Reine Angew. Math. 166 (1932), 201–203.

[20] C. L. Siegel, *Über einige Anwendungen Diophantischer Approximationen*, Abh. Preuss. Akad. Wiss. Phys. Math. Kl. 1 (1929), 1-70; Ges. Abh., Band 1, 209–266.

[21] K. Soundararajan, *Divisibility of class numbers of imaginary quadratic fields*, J. London Math. Soc. 61 (2000), 681–690.

[22] P. M. Voutier, *Primitive divisors of Lucas and Lehmer sequences*, Math. Comp. 64 (1995), 869–888.

[23] C. F. Xie and C. F. Chao, *On the divisibility of class numbers of imaginary quadratic fields* $\left(\mathbb{Q}(\sqrt{D}), \mathbb{Q}(\sqrt{D+m})\right)$, Ramanujan J. 53 (2020), 517–528.

[24] Y. Yamamoto, *On unramified Galois extensions of quadratic number fields*, Osaka J. Math. 7 (1970), 57–76.

Email address: ahoque.ms@gmail.com