Results for a critical threshold, the correction-to-scaling exponent and susceptibility amplitude ratio for 2d percolation

Robert M. Ziff

Center for the Study of Complex Systems and Department of Chemical Engineering,
University of Michigan, Ann Arbor, MI 48109-2136 USA

Abstract

We summarize several decades of work in finding values for the percolation threshold p_c, the universal correction-to-scaling exponent Ω, and the susceptibility amplitude ratio C^+/C^- in two dimensions. Recent studies have yielded the precise values $p_c = 0.59274602(4)$, $\Omega = 72/91 \approx 0.791$, and $C^+/C^- = 161.5(2.0)$, resolving long-standing controversies about the last two quantities and verifying the widely used value $p_c = 0.592746$ for the first.

1. Introduction

Percolation concerns the formation of long-range connectivity in a system. When the site or bond occupancy reaches a critical threshold p_c, infinite connectivity first forms. For some systems (e.g., bond percolation on the square lattice, or site percolation on the triangular lattice—all in two dimensions (2d)), p_c is known exactly, while for others, it must be determined numerically. A notable example of the latter is site percolation on the square lattice, whose threshold has been estimated in dozens of studies, many quite extensive, since 1960. In this paper we list some of the methods that have been used in making those estimates, and summarize the values that have been found. We also summarize results for two related quantities—the correction-to-scaling exponents, and the susceptibility amplitude ratio, which have also been the subject of numerous studies over the last several decades.

2. The determination of p_c for site percolation on the square lattice

Many methods have been developed to estimate percolation thresholds numerically. Some of the more popular ones include:

- Series analysis methods, which involve finding exact statistics for smaller clusters, and were especially important in the earlier years of study [30][31].

- The transfer-matrix method [12][17], which involves finding exact solutions in finite-width strips, and has been recently revived to find very accurate values of p_c [29].

- Finding the value of p where the crossing probability (open system) or wrapping probability (on a torus) equals a known amount or becomes independent of the size of the system [22][23]. When using the wrapping probability on a torus, the convergence of the estimate $p_c(L)$ is particularly fast: for a square system of size L, one has $p_c(L) - p_c \sim L^{-11/4}$ [32].

- Using various real-space renormalization-group theory ideas [33][34].
| year | author | method | p_c |
|------|--------|--------|------|
| 1960 | Elliott, Heap, Morgan & Rushbrooke | series | 0.48 |
| 1961 | Domb & Sykes | series | 0.55 |
| 1961 | Frisch, Sonnenblick, Vyssotsky, Hammersley | MC | 0.581(15) |
| 1963 | Dean | MC | 0.580(18) |
| 1964 | Sykes & Essam | series | 0.59(1) |
| 1967 | Dean & Bird | MC | 0.59(15) |
| 1972 | Neal | MC | 0.59(3) |
| 1976 | Sykes, Gaunt & Glen | series | 0.59(2) |
| 1976 | Stauffer | series | 0.59(1) |
| 1976 | Leath | MC | 0.587(14) |
| 1978 | Hoshen, Kopelman & Monberg | MC | 0.5927(3) |
| 1980 | Reynolds, Stanley & Klein | MC | 0.5931(6) |
| 1982 | Derrida & de Seze | TM | 0.5927(2) |
| 1982 | Djordjevic, Stanley & Margolina | series | 0.5923(7) |
| 1984 | Gebele | MC | 0.59277(5) |
| 1985 | Rapaport | MC | 0.5927(1) |
| 1985 | Rosso, Gouyet & Sapoval | MC | 0.59280(1) |
| 1985 | Derrida & Stauffer | TM | 0.59274(10) |
| 1986 | Ziff | MC | 0.59275(3) |
| 1986 | Kertész | TM | 0.59273(6) |
| 1986 | Ziff & Sapoval | MC | 0.592745(2) |
| 1988 | Ziff & Stell | MC | 0.592746(5) |
| 1989 | Yonezawa, Sakamoto & Hori | MC | 0.5930(1) |
| 1992 | Ziff | MC | 0.592746(5) |
| 2000 | Newman & Ziff | MC | 0.59274621(13) |
| 2003 | de Oliveira, Nóbrega & Stauffer | MC | 0.59274621(33) |
| 2005 | Deng & Blöte | MC | 0.5927465(4) |
| 2007 | M. J. Lee | MC | 0.59274603(9) |
| 2008 | M. J. Lee | MC | 0.59274598(4) |
| 2008 | Feng, Deng & Blöte | TM/MC | 0.59274605(3) |

- Iterative searching for the value of p where crossing first occurs. The average of that value is used as an estimate for p_c [35].
- Adding bonds to a system one at a time until crossing or wrapping first occurs. Here one must convolve with the binomial distribution to find the usual fixed-p ("grand canonical") ensemble [24, 36, 37].
- Frontiers or hull-walks in a gradient [16, 20, 38, 39], in which the estimate comes from simulations carried out in single runs for a given gradient. Valid in 2d only.
- Statistics of individual cluster growth with a maximum size cutoff, which eliminates boundary effects. Valid in all dimensions, but requires separate runs at different values of p [40, 41].

In Table 1 we list the values that have been found for p_c. On the average, the precision has improved about one digit per decade. Each new digit generally requires about 1000 times more work, both for statistical purposes (a factor of 100) and for quantifying finite-size corrections (about another factor of 10); this rate roughly corresponds to the rate of increase of computer power (speed and memory) over the years. Two very precise recent works [28, 29] confirm that the value $p_c = 0.592746$, which was proposed more than 20 years ago [21, 23] and became a standard after its
Table 2: Determinations of Ω, $\omega = D\Omega = (91/48)\Omega$, and $\Delta_1 = \Omega/\sigma = (91/36)\Omega$. Numbers in parentheses represent errors in last digit(s).

year	author	method	Ω	ω	Δ_1
1976	Gaunt & Sykes [30]	series	0.75(5)	1.42	1.90
1978	Houghton, Reeve & Wallace [42]	field theory	0.54–0.68	0.989–1.28	1.32–1.71
1979	Hoshen et al. [43]	MC	0.67(10)	1.27	1.69
1980	Pearson [44]	conjecture	64/91≈0.703	1.333	1.778
1980	Nakanishi & Stanley [45]	MC	0.6 $\leq \Omega \leq$ 1		
1982	Pearson [44]	conjecture	64/91≈0.703	1.333	1.778
1982	Nienhuis [46]	field theory	96/91≈1.055	2	2.667
1982	Adler, Moše & Privman [47]	series	0.5	0.95	1.26
1983	Aharony & Fisher [48, 49]	analytic correction	0.49 $< p < p_c$	0.93	1.24
1984	Margolina et al. [50, 51]	theory, based on [58]	55/91≈0.604	55/48≈1.15	55/36≈1.53
1985	Adler [49]	series	0.63	1.19	1.59
1986	Rapaport [52]	series	0.71–0.74		
1998	MacLeod & Jan [53]	series	0.65(5)	1.23	1.64
1999	Ziff & Babalievski [54]	theory, based on [58]	0.77(2)	1.46	1.95
2001	Tiggemann [55]	theory, based on [58]	0.70(2)	1.33	1.77
2003	Aharony & Asikainen [56, 57]	theory, based on [58]	72/91	3/2	2
2007	Tiggemann [59]	theory, based on [62]	0.73(2)	1.38	1.85
2008	Kammerer, Höfling, Franosch [60]	theory, based on [62]	0.77(4)	1.46	1.95
2011	Ziff [61]	theory, based on [62]	72/91≈0.791	3/2	2

inclusion in [35], is accurate to all significant figures—and in fact, the next digit is most likely a zero. The average of the results of [28, 29] give $p_c = 0.59274602(4)$.

The square lattice site threshold is just one example; thresholds have been studied for scores of systems in various dimensions, and many of these results are summarized in the web-page:

http://en.wikipedia.org/wiki/Percolation_threshold.

Examples of other systems that have been studied extensively include bond percolation on the kagomé lattice [29, 22, 63, 64, 65, 66] and both site and bond percolation on 3d cubic lattices [21, 34, 40, 41, 67, 68, 69, 70, 71].

3. Corrections to scaling

Many of the methods mentioned above depend upon knowing the behavior of the corrections to the size distribution (number of clusters of size s) $n_s(p_c)$ at p_c, which are expected to be of the form:

$$n_s(p_c) \sim A s^{-\tau}(1 + B s^{-\Omega} \ldots)$$

where $\tau = 91/48$ is universal and is known exactly in 2d. Ω is also expected to be universal and has been studied in numerous works, usually in the context of determining another quantity such as p_c. The resulting values are summarized in Table 2. The methods used include series analysis and Monte Carlo simulation on various systems, as well as predictions from theory. There have been two recent conjectures that the value of Ω is exactly $72/91$, the first [56] based upon den Nijs’ early result on the corrections to the correlation function [58], and the second [61] based upon Cardy’s more recent result for the crossing probability on an annulus [62]. Recent numerical results [61] support this value, as reproduced here in Fig. 1. As seen in Table 2, previous estimates and predictions have ranged from 0.49 to 1.055, but more recent measurements have been closer to the predicted $72/91 \approx 0.791$. The exponents Ω, $\omega = D\Omega$, and $\Delta_1 = \Omega/\sigma$ (where $D = 91/48$ and $\sigma = 36/91$) figure in many problems in percolation.
Figure 1: Plot of $\Omega_{\text{est}} \equiv -\log \frac{\{C_s - C_{s/2}\}}{\{C_{s/2} - C_{s/4}\}}$ where $C_s = s^{t-2}P_\geq s$ and $P_\geq s = \sum_{s'} s' n_{s'}$ is the probability of growing a cluster of size $\geq s$. Data from refs [54,61]. “Theory” refers to Eq. (12) of [61]. The non-universal metric factor s_0 equals 0.25 (site-square), 0.13 (site-triangular), 0.25 (bond-square) and 0.5 (bond-triangular). For large s, we see good evidence for the prediction $\Omega = 72/91$ [56,61].

4. Amplitude ratio

Universality of the scaling function in percolation leads to the prediction that the ratio of the second-moment (or the “susceptibility”) for equal intervals below and above the threshold is a universal constant, written as C^+ / C^- (where “below” is + because of the mapping to the Potts model and corresponds to being above the transition temperature), also written as Γ/Γ' and Γ''/Γ'''. Finding this ratio has been a notoriously difficult problem in percolation [93], as can be seen in the summary in Table 3. Recently, three fundamental approaches—series analysis [91], Monte Carlo [91], and theory [92] have all converged to a remarkably consistent value of about 161.5(2.0). Note that in some earlier work it was speculated that models of continuum percolation may have a different value for this ratio [75,80,83], but more recent work gave results consistent with this value [88], confirming the expected universality. Likewise, it appears that some kinetic percolation-like models, such as kinetic gelation, also have a similar susceptibility amplitude ratio.

5. Conclusions

We have seen that it has taken decades of work to find consistent values of Ω and C^+ / C^- for 2d percolation, and to find a very precise value of p_c for site percolation on the square lattice. Many other thresholds in various dimensionalities are known to relatively low accuracy, and Ω and C^+ / C^- are not known to high accuracy in three and higher dimensions, leaving much work for future studies. Other amplitude ratios, such as those relating to the correlation length, have not been studied to high accuracy, and controversies remain [23]. Another area for future work is precise measurements and characterization of the scaling function in all dimensionalities, not just of the amplitude ratios that follow from it.

6. Acknowledgments

This work was supported in part by the National Science Foundation Grant No. DMS-0553487.
Table 3: Determinations of the amplitude ratio C^+ / C^- for 2d percolation.

year	author	system, method	C^+ / C^-
1976	Sykes, Gaunt, Glen [8]	lattice, series (12-20 order)	1.3-2.0
1976	Stauffer [9]	lattice, series analysis	≈ 100
1978	Nakanishi & Stanley [72]	lattice, MC	25(10)
1978	Wolff & Stauffer [73]	lattice, series, fit $f(z)$ to Gaussian	180(36)
1979	Hoshen, Stauffer, Bishop, Harrison, Quinn [43]	lattice, MC (reanalyze)	196(40)
1980	Nakanishi & Stanley [45]	lattice, MC	219(25)
1980	Aharony [74]	$\epsilon = 6 - d$ expansion	3.617
1981	Gawlinski & Stanley [75]	overlapping disks, MC	50(26)
1985	Rushton, Family & Herrmann [76]	additive polymerization, MC	140(45)
1987	Meir [77]	lattice, series	210(10)
1987	Kim, Herrmann, Landau [78]	continuum model, MC	14(10)
1988	Nakanishi [79]	AB percolation, MC	139(24)
1988	Balberg [80]	widthless sticks, MC	≈ 3
1988	Ottavi [81]	approx. theory (Gaussian fit)	193.9
1989	Corsten, Jan & Jerrard [82]	lattice, MC	75(+40, -25)
1990	S. B. Lee & Torquato [83]	penetrable conc. shell	1050(32)
1990	S. B. Lee [84]	disks, MC	192(20)
1991	Hund [85]	random contour model, MC	200
1995	Conway & Guttmann [87]	Penrose quasi-lattice, series	310(60)
1996	S. B. Lee [88]	lattice, series (26-33 order)	45(+20, -10)
1997	S. B. Lee & Jeon [89]	penetrable conc. shell, disks	175(50)
1998	Delfino & Cardy [90]	kinetic gelation, MC	170(20)
2006	Jensen & Ziff [91]	theory, extrapolate Potts to $q = 1$	74.2
2006	Jensen & Ziff [91]	lattice, MC	163(2)
2010	Delfino, Viti & Cardy [92]	lattice, series	162(3)

References
[1] R. J. Elliott, B. R. Heap, D. J. Morgan, G. S. Rushbrooke, Equivalence of the critical concentrations in the Ising and Heisenberg models of ferromagnetism, Phys. Rev. Lett. 5 (8) (1960) 366–367.
[2] C. Domb, M. F. Sykes, Cluster size in random mixtures and percolation processes, Phys. Rev. 122 (1) (1961) 77–78.
[3] H. L. Frisch, E. Sonnenblick, V. A. Vysotsky, J. M. Hammersley, Critical percolation probabilities (site problem), Phys. Rev. 124 (4) (1961) 1021–1022.
[4] P. Dean, A new Monte Carlo method for percolation problems on a lattice, Math. Proc. Camb. Phil. Soc. 59 (02) (1963) 397–410.
[5] M. F. Sykes, J. W. Essam, Exact critical percolation probabilities for site and bond problems in two dimensions, J. Math. Phys. 5 (8) (1964) 1117–1127.
[6] P. Dean, N. F. Bird, Monte Carlo estimates of critical percolation probabilities, Math. Proc. Camb. Phil. Soc. 63 (02) (1967) 477–479.
[7] D. G. Neal, Estimates of critical percolation probabilities for a set of two-dimensional lattices, Math. Proc. Camb. Phil. Soc. 71 (01) (1972) 97–106.
[8] M. F. Sykes, D. S. Gaunt, M. Glen, Percolation processes in two dimensions IV. Percolation probability, J. Phys. A: Math. Gen. 9 (5) (1976) 725–730.
[9] D. Stauffer, Exact distribution of cluster size and perimeter for two-dimensional percolation, Z. Physik B 25 (4) (1976) 391–399.
[10] P. L. Leath, Cluster size and boundary distribution near percolation threshold, Phys. Rev. B 14 (11) (1976) 5046–5055.
[11] J. Hoshen, R. Kopelman, E. M. Monberg, Percolation and cluster distribution. II. Layers, variable-range interactions, and excision cluster model, J. Stat. Phys. 19 (1978) 219–242.
[12] B. Derrida, L. De Seze, Application of the phenomenological renormalization to percolation and lattice animals in dimension 2, J. Phys. France 43 (1982) 475–483.
[13] Z. V. Djordjevic, H. E. Stanley, A. Margolina, Site percolation threshold for honeycomb and square lattices, J. Phys. A: Math. Gen. 15 (1982) L405–L412.
[14] T. Gebele, Site percolation threshold for square lattice, J. Phys. A: Math. Gen. 17 (2) (1984) L51–L54.
[15] D. C. Rapaport, Monte Carlo experiments on percolation: the influence of boundary conditions, J. Phys. A: Math. Gen. 18 (1985) L175.
[61] R. M. Ziff, Correction-to-scaling exponent for two-dimensional percolation, Phys. Rev. E 83 (2) (2011) 020107.

[62] J. Cardy, The $O(n)$ model on the annulus, J. Stat. Phys. 125 (2006) 1–21.

[63] S. C. van der Marck, Percolation thresholds and universal formulas, Phys. Rev. E 55 (2) (1997) 1514–1517.

[64] R. M. Ziff, P. N. Suding, Determination of the bond percolation threshold for the kagomé lattice, J. Phys. A: Math. Gen. 30 (15) (1997) 5351–5359.

[65] R. M. Ziff, H. Gu, Universal condition for critical percolation thresholds of kagomé-like lattices, Phys. Rev. E 79 (2) (2009) 020102.

[66] C. Ding, Z. Fu, W. Guo, F. Y. Wu, Critical frontier of the Potts and percolation models on triangular-type and kagome-type lattices. II. numerical analysis, Phys. Rev. E 81 (6) (2010) 061111.

[67] P. Grassberger, Numerical studies of critical percolation in three dimensions, J. Phys. A: Math. Gen. 25 (22) (1992) 5867.

[68] M. Acharyya, D. Stauffer, Influence of boundary conditions on the fraction of spanning clusters, Int. J. Mod. Phys. C 9 (1998) 643–647.

[69] N. Jan, D. Stauffer, Random site percolation in three dimensions, Int. J. Mod. Phys. C 9 (2) (1998) 341–348.

[70] J. Škvor, I. Nezbeda, Percolation threshold parameters of fluids, Phys. Rev. E 79 (4) (2009) 041141.

[71] S. M. Dammer, H. Hinrichsen, Spreading with immunization in high dimensions, J. Stat. Mech. 2004 (07) (2004) P07011.

[72] H. Nakashishi, H. E. Stanley, A test of scaling near the bond percolation threshold, J. Phys. A: Math. Gen. 11 (8) (1978) L189.

[73] W. F. Wolff, D. Stauffer, Scaling function for cluster size distribution in two-dimensional site percolation, Z. Physik B 29 (1978) 67–69.

[74] A. Aharony, Universal critical amplitude ratios for percolation, Phys. Rev. B 22 (1) (1980) 400–414.

[75] E. T. Gawinski, H. E. Stanley, Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for non-interacting discs, J. Phys. A: Math. Gen. 14 (8) (1981) L291–L299.

[76] A. F. Rush, F. Family, H. J. Herrmann, Gelation by additive polymerization in two dimensions, J. Polym. Sci: Polymer Symposia 73 (1) (1985) 1–5.

[77] Y. Meir, A novel method of calculating amplitude ratios by series expansions, J. Phys. A: Math. Gen. 20 (6) (1987) L349–L354.

[78] D. Y. Kim, H. J. Herrmann, D. P. Landau, Percolation on a random lattice, Phys. Rev. B 35 (7) (1987) 3661–3662.

[79] H. Nakashishi, Critical behaviour of AB percolation in two dimensions, J. Phys. A: Math. Gen. 20 (17) (1987) 6075–6083.

[80] I. Balberg, Nonuniversal behavior of the cluster properties in continuum systems, Phys. Rev. B 37 (4) (1988) 2391–2394.

[81] H. Ottavi, Amplitude ratio of the second moments of the cluster size distribution on both sides of the percolation threshold, J. Phys. A: Math. Gen. 20 (1987) 1015–1020.

[82] M. Corsten, N. Jan, R. Jerrard, Critical properties of random-site percolation in two and three dimensions: a Monte-Carlo study, Physica A 156 (1989) 781–794.

[83] S. B. Lee, S. Torquato, Monte Carlo study of correlated continuum percolation: Universality and percolation thresholds, Phys. Rev. A 41 (10) (1990) 5338–5344.

[84] S. B. Lee, Universality of continuum percolation, Phys. Rev. B 42 (7) (1990) 4877–4880.

[85] M. Hund, Percolation in a symmetric random potential, Physica A 175 (1991) 239–247.

[86] C. Zhang, K. De Bell, Reformulation of the percolation problem on a quasilattice: Estimates of the percolation threshold, chemical dimension, and amplitude ratio, Phys. Rev. B 47 (1) (1993) 8558–8564.

[87] A. R. Conway, A. J. Guttmann, On two-dimensional percolation, J. Phys. A: Math. Gen. 28 (1995) 891–904.

[88] S. B. Lee, On two-dimensional percolation susceptibility for off-lattice percolation models, Phys. Rev. E 53 (4) (1996) 3319–3329.

[89] S. B. Lee, H. J. Jeon, Universality of an irreversible kinetic gelation model, Phys. Rev. E 56 (3) (1997) 3274–3280.

[90] G. Delfino, J. L. Cardy, Universal amplitude ratios in the two-dimensional q-state Potts model and percolation from quantum field theory, Nucl. Phys. B 519 (1998) 551–578.

[91] I. Jensen, R. M. Ziff, Universal amplitude ratio Γ^-/Γ^+ for two-dimensional percolation, Phys. Rev. E 74 (2) (2006) 020101.

[92] G. Delfino, J. Viti, J. Cardy, Universal amplitude ratios of two-dimensional percolation from field theory, J. Phys. A: Math. Gen. 43 (15) (2010) 152001.

[93] V. Privman, P. C. Hohenberg, A. Aharony, Universal critical-point amplitude ratios, in: C. Domb, J. L. Lebowitz (Eds.), Phase Transitions and Critical Phenomena, Academic Press, New York, 1991, pp. 1–134, 364–367.