Clinical features, management and mortality in diabetic and non-diabetic patients with heart failure – observations from the COMMIT-HF registry

Łukasz Siedlecki1, Bożena Szygula-Jurkiewicz1, Łukasz Pyka2, Bogumiła Król3, Wioletta Szczurek4, Mariusz Gąsior5

13rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
23rd Department of Cardiology, Silesian Centre for Heart Diseases, Zabrze, Poland
3Department of Cardiosurgery, Transplantology, Vascular and Endovascular Surgery, Office of Transplant Coordination, Silesian Centre for Heart Diseases, Zabrze, Poland
4Student Scientific Society, 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland

Kardiochirurgia i Torakochirurgia Polska 2017; 14 (3): 170-174

Abstract

Introduction: Diabetes mellitus (DM) and heart failure (HF) are two common diseases that often co-exist.

Aim: To explore clinical characteristics, management strategies and rates of 3-year mortality among diabetic and non-diabetic patients hospitalised in a highly specialized interventional cardiology centre.

Material and methods: We used data from COMMIT-HF (Con-temporary Modalities In Treatment of Heart Failure), which is a single-centre, observational, prospective registry of patients with symptomatic chronic systolic HF (LVEF < 35%). Data collected included demographics, clinical characteristics, medical history, inpatient therapies and procedures. Follow-up was based on the information acquired from the national healthcare provider.

Results: We analysed 1397 patients out of the total of 1798 patients included in the COMMIT-HF registry between 2009 and 2013. We identified 595 (42.6%) diabetic and 802 (57.4%) non-diabetic patients. Compared to patients without DM, patients with type 2 DM had a higher rate of comorbidity. Frequency of death in patients with DM during the 3-year follow-up was significantly higher than in patients without DM (199 (33.4%) vs. 163 (20.3%), p < 0.0001, respectively).

Conclusions: In the analysed HF population representing patients receiving typical, everyday clinical care, the prevalence of DM is 42.6%. Diabetes mellitus has deleterious effects on renal function and symptoms as assessed by the New York Heart Association functional class. DM remains associated with increased frequency of death in patients with HF, in spite of recent pharmacological and device-based advances in HF management.

Key words: heart failure, diabetes mellitus, registry.

Streszczenie

Wstęp: Cukrzyca (DM) i niewydolność serca (NS) często ze sobą współistnieją.

Cel: Określenie charakterystyki klinicznej, postępowania i częstości występowania zgonów w ciągu 3 lat obserwacji u chorych z niewydolnością serca i współistniejącą cukrzycą oraz bez cukrzycy, którzy byli hospitalizowani w wysokośpécialistycznym ośrodku kardiologii interwencyjnej.

Materiał i metody: Do analizy włączono chorych z jednośródkowego, prospektywnego rejestru COMMIT-HF obejmującego chorych z objawową przewlekłą skurczową NS (LVEF < 35%). Analizowano dane demograficzne i kliniczne, przebieg choroby, stosowane leczenie oraz zabiegi. Dane dotyczące rokowania odsłonego uzyskiwano z Narodowego Funduszu Zdrowia.

 Wyniki: Retrospektywnej analizie poddano dane 1397 kolejnych chorych spośród 1798 osób włączonych do rejestru COMMIT-HF w latach 2009–2013 w specjalistycznym ośrodku kardiologii interwencyjnej. W badanej grupie było 595 (42,6%) chorych z cukrzycą i 802 (57,4%) bez towarzyszącej cukrzycy. U chorych z cukrzycą występowało istotnie więcej schorzeń współistniejących niż u chorych bez cukrzycy. Częstość występowania zgonów podczas 3 lat obserwacji była wyższa u chorych z cukrzycą (199 (33,4%) vs 163 (20,3%), p < 0,0001).

Wnioski: W badanej grupie chorych z NS z codzienniej praktyki klinicznej odszukać osób z cukrzycą wynosił 42,6%. Cukrzyca wpływała niekorzystnie na funkcję nerek oraz zaawansowanie NS oceniane wg klasyfikacji NYHA. Mimo postępów w leczeniu farmakologicznym i interwencyjnym NS cukrzycy była związana ze zwiększoną częstością występowania zgonów.

Słowa kluczowe: niewydolność serca, cukrzyca, rejestr.

Address for correspondence: Bożena Szygula-Jurkiewicz MD, PhD, 3rd Department of Cardiology, Silesian Centre for Heart Diseases, 2 Szpitalna St, 41-800 Zabrze, Poland, phone: +48 604 102 99, e-mail: centrala4@wp.pl

Received: 8.08.2017, accepted: 3.09.2017.
Introduction

Diabetes mellitus and heart failure (HF) are two common diseases that often co-exist. The prevalence of diabetes mellitus among patients with HF is high, and it has been estimated as between 30% and 50% [1, 2]. The Framingham Heart Study demonstrated that the risk of HF in diabetes is increased 2.4-fold in men and fivefold in women compared to the non-diabetic population [3]. Diabetes mellitus affects the heart in three ways: cardiac autonomic neuropathy, coronary artery disease due to accelerated atherosclerosis, and diabetic cardiomyopathy (DCM) [4]. Moreover, the HF complicates the treatment of diabetes mellitus by altering the pharmacokinetics of anti-diabetic medications. Thus, early detection and management of these patients is important, especially considering the worse prognosis of HF in diabetic patients. In order to improve the prognosis of patients with dangerous intersection of HF and diabetes it is necessary to optimise the treatment of both disorders. The observational registries and randomised clinical trials that have explored the prognostic impact of diabetes on survival outcomes in patients with HF have reported inconclusive or conflicting results [5–12].

Aim

The aim of the study was to explore clinical characteristics, management strategies and rates of 3-year mortality among diabetic and non-diabetic patients hospitalised in a highly specialised interventional cardiology centre.

Material and methods

We used data from COMMIT-HF (Contemporary Modalities In Treatment of Heart Failure), which is a single-centre, observational, prospective registry previously described [13]. Briefly, between January 2009 and December 2013, 1798 patients with symptomatic chronic systolic HF (LVEF < 35%) hospitalised in a highly specialised cardiology centre were included in COMMIT-HF. There were no specific exclusion criteria for patients included in the registry, except for age < 18 years and acute coronary syndrome as exclusion criteria for patients included in the COMMIT-HF registry between 2009 and 2013. We identified 595 (42.6%) diabetic and 802 (57.4%) non-diabetic patients. Compared to patients without diabetes, patients with type 2 diabetes were older, more often had ischaemic aetiology of heart failure and had a higher comorbidity rate. Diabetics did not differ from non-diabetics in terms of echocardiographic parameters (Tab. I).

Table II shows the baseline laboratory characteristics of the included 1397 patients, according to the presence or absence of diabetes mellitus.

Table III shows baseline pharmacotherapy according to the presence or absence of diabetes mellitus. In the patients with diabetes mellitus the most commonly prescribed treatments were insulin, followed by sulfonylureas, and biguanides (Tab. IV).

Figure 1 shows cumulative probability of all-cause mortality among diabetic and non-diabetic patients. Frequency of death in patients with diabetes during the 3-year follow-up was significantly higher than in patients without diabetes (199 (33.4%) vs. 163 (20.3%), p < 0.0001, respectively).

Discussion

There are some findings of major importance in this study of a large HF population representing patients re-
Clinical features, management and mortality in diabetic and non-diabetic patients with heart failure – observations from the COMMIT-HF registry

Receiving typical, everyday clinical care. Our analysis has shown that patients with HF and type 2 diabetes mellitus have significantly higher frequency of all-cause mortality during the 3-year follow-up than similar patients without diabetes, in spite of widespread administration of β-blockers and guideline-based application of angiotensin-converting-enzyme inhibitors, aldosterone receptor antagonists and device-based therapy. In our study we also examined the characteristics of patients with HF and diabetes mellitus and demonstrated that diabetes has deleterious effects on renal function, haemoglobin and symptoms as assessed by the New York Heart Association functional class. Moreover, we found that the frequency of obesity was significantly higher in diabetic than in non-diabetic patients.

Our study showed that HF was not managed differently in the field of basic HF medications such as β-blockers, angiotensin-converting-enzyme inhibitors, angiotensin II receptor blockers, aldosterone receptor antagonists or digoxin in patients with and without diabetes mellitus. A larger proportion of patients with diabetes mellitus was on diuretics, but in this group there was a larger proportion of advanced HF patients. More extensive use of statins in diabetic patients in our study is not clear. Statins did not prove to be beneficial in HF patients when prescribed in the absence of other indications [14].

Tab. I. Baseline patient characteristics
Parameter
Age [years]
Male (%)
Anaemia (%)
Chronic kidney disease (%)
NYHA I (%)
NYHA II (%)
NYHA III (%)
NYHA IV (%)
Ischaemic aetiology (%)
ICD/CRT-D (%)
Arterial hypertension (%)
Atrial fibrillation (%)
Peripheral vascular disease (%)
Obesity (%)
LVDD [mm]
RV [mm]
LA [mm]
LVEF (%)

NYHA – New York Heart Association, ICD/CRT-D – implantable cardioverter-defibrillator/cardiac resynchronisation therapy, LVDD – left ventricular diastolic diameter, RV – right ventricle, LA – left atrium, LVEF – left ventricular ejection fraction

Tab. II. Baseline laboratory characteristics
Parameter
Haemoglobin [mmol/l]
AST [U/l]
ALP [U/l]
Bilirubin [µmol/l]
Creatinine [µmol/l]
Uric acid [µmol/l]
HbA1c (%)
Sodium [mmol/l]
Platelets [10^{12}/mm3]
NT-proBNP [pg/ml]

AST – aspartate aminotransferase, ALP – alkaline phosphatase, HbA1c – glycated haemoglobin, NT-proBNP – N-terminal pro-B-type natriuretic peptide
antiplatelet drugs in diabetic patients, probably because of a larger proportion of ischemic etiology of HF in this group.

Our data support prior studies that have also found an association between diabetes mellitus and increased risk of all-cause mortality in HF [5–9]. Despite these data, the association between diabetes mellitus and HF remains under-recognised by clinicians [15]. Nonetheless, in an era in which there is increasing emphasis on chronic disease management as a strategy to contain healthcare costs, these findings highlight the significance of diabetes mellitus and the need for therapies that improve outcomes in this population. Multiple hypotheses have been proposed for the mechanism behind the association of diabetes mellitus and HF, including medical comorbidities associated with diabetes mellitus, medications used in the treatment of diabetes mellitus, and a direct metabolic effect of altered glucose regulation, but the exact mechanism remains poorly defined [16]. A subgroup analysis of the SOLVD (Studies of Left Ventricular Dysfunction) treatment trial suggested that diabetes was an independent predictor of all-cause mortality in chronic HF patients with reduced ejection fraction and ischaemic etiology [10]. Data from patients with reduced and preserved left ventricular ejection fraction recruited to the CHARM (Candesartan in Heart Failure) program supported our conclusion that diabetes has an impact on prognosis in HF [6]. This is in spite of our different study design (registry versus randomised trial), inclusion criteria and management strategies. Cubbon et al. found that patients with HF and type 2 diabetes have a risk of all-cause mortality double that of similar patients without diabetes [8]. In accordance with our study, in the Swedish Heart Failure Registry type 2 diabetes mellitus was associated with higher all-cause mortality [11]. In addition, the vast majority of diabetic patients with HF from the above registry had one or more manageable comorbidities. Moreover, the multicenter observational prospective cohort EPICAL STUDY which has included 499 hospitalised HF patients has shown that one of the prognostic factors of death during long-term follow-up was diabetes mellitus. Our results are in conflict with results of the Norwegian Heart Failure registry, which did not show an association between diabetes mellitus and mortality [12]. The Norwegian Heart Failure Registry differed from our study because it was a cohort of a real life population treated at outpatient HF clinics. In the above study compared to our analysis, patients were older, diabetic patients were on higher doses of diuretics and β-blockers, and a larger proportion of them were treated with aldosterone receptor antagonists and statins compared to non-diabetic patients. Moreover, Di Angelantonio et al. in a meta-analysis of observational studies observed similar mortality risk for diabetic subjects and patients who had experienced a stroke previously [17]. Analysis of the multicenter REACT REGISTRY which was conducted between 2010 and 2013 in Brazil showed that diabetes was not a cardiovascular risk equivalent [18].

The major strength of the present report is the size and unselected nature of the population, which reflects con-
the country. Additionally, the study results could have been affected by unmeasured confounding variables, such as socio-economic strata, patient preferences and post-hospital care. Information about duration of diabetes, the use of different classes of oral hypoglycaemic agents, and causes of mortality, as well as follow-up data on HbA1c measurements, was not available.

Conclusions
Among patients hospitalised with heart failure the prevalence of diabetes mellitus is 42.6%. In diabetic patients co-morbidities are more frequent than in non-diabetics. Diabetes mellitus has deleterious effects on renal function and symptoms as assessed by the New York Heart Association functional class. Diabetes mellitus remains associated with increased frequency of death in patients with HF, in spite of recent pharmacological and device-based advances in HF management. The three-year survival of our population with diabetes and HF suggests that there is scope to dramatically improve overall HF outcomes if effective diabetes-specific HF management can be defined. Our findings indicate that nationwide primary prevention programmes are greatly needed, in addition to the establishment of HF programmes to improve patient compliance and outcomes.

Disclosure
Authors report no conflict of interest.

References
1. Dei Cas A, Khan SS, Butler J, Mentz RJ, Bonow RO, Avogaro A, Tschoepe D, Doehner W, Greene SI, Senni M, Gheorghiade M, Fonarow GC. Impact of diabetes on epidemiology, treatment and outcomes of patients with heart failure. JACC Heart Fail 2015; 3: 136-145.
2. Thomas MC. Type 2 diabetes and heart failure challenges and solutions. Curr Cardiol Rev 2016; 12: 249-255.
3. Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, Le Winter M, Porte D, Semenkovich CF, Smith S, Young LH, Kahn R. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care 2004; 27: 256-263.
4. ACCORD Study Group, Gerstein HC, Miller ME, Genuth S, IShii-Beigi F, Buse JB, Goff DC Jr, Probstfield JL, Cushman WC, Ginsberg HN, Bigger JT, Grimm RH Jr, Byington RP, Rosenberg YD, Freedland WK. Long-term effects of Intensive glucose lowering on cardiovascular outcomes. N Engl J Med 2011; 364: 818-828.
5. Dries DL, Switzer NK, Drazner MH, Stevenson LW, Gersh BJ. Prognostic impact of diabetes mellitus in patients with heart failure according to the etiology of left ventricular systolic dysfunction. J Am Coll Cardiol 2001; 38: 421-428.
6. MacDonald MR, Petrie MC, Varyani F, Ostergren J, Michelson EL, Young JB, Solomon SD, Granger CB, Swedberg K, Yusuf S, Pfeffer MA, McMurray JJ; CHARM Investigators. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Can-desartan in Heart Failure Assessment of Reduction in Mortality and Morbidity (CHARM) programme. Eur Heart J 2008; 29: 1377-1385.
7. Domanski MJ, Krause-Steinrauf H, Deedwania P, Polland D, Ghali JK, Gilbert E, Haffner S, Katz R, Lindenfeld J, Lowers BD, Martin W, McGrew F, Bristow MR; BEST Investigators. The effect of diabetes on outcomes of patients with advanced heart failure in the BEST trial. Am J Cardiol 2003; 94: 912-922.
8. Cubbon RM, Adams B, Rajwani A, Mercer BN, Patel PA, Gherardi G, Gale CP, Batin PD, Ajjan R, Kearney L, Wheatcroft SB, Sapsford RJ, Witte KK, Kearney MT. Diabetes mellitus is associated with adverse prognosis in chronic heart failure of ischaemic and non-ischaemic aetiology. Diab Vasc Dis Res 2013; 10: 330-336.
9. Johansson I, Dahlström U, Edner M, Näslund P, Rydén L, Norhammar A. Prognostic implications of type 2 diabetes mellitus in ischemic and nonischemic heart failure. J Am Coll Cardiol 2016; 68: 1404-1415.
10. Dries DL, Switzer NK, Drazner MH, Stevenson LW, Gersh BJ. Prognostic impact of diabetes mellitus in patients with heart failure according to the etiology of left ventricular systolic dysfunction. J Am Coll Cardiol 2001; 38: 421-428.
11. Johansson I, Dahlström U, Edner M, Näsman P, Ryden L, Norhammar A. Prognostic implications of type 2 diabetes mellitus in ischemic and nonischemic heart failure. J Am Coll Cardiol 2016; 68: 1404-1415.
12. Stubnova V, Os I, Grundtvig M, Waldum-Grevbo B. Prevalent diabetes mel- litus: mortality and management in Norwegian Heart Failure outpatients. Cardiology 2016; 134: 413-422.
13. Gasior M, Pyka t, Gorol I, Hawranek M, Tajstra M, Storka G, Kurek A, Krawe- ski A, Rozenotyp P, Gierlotka M, Lekston A, Zembala M, Poloniński L. Contem- porary Modalities In Treatment of Heart Failure: a report from the COMMIT-HF registry. Kardiol Pol 2016; 74: 523-528.
14. Tavazzi I, Maggioni AP, Marchiol R, Barlera S, Franzosi MG, Latini R, Luc- ci D, Nicolosi GL, Porcu M, Tognoni G; Gissi-HF Investigators. Effect of ro- suvastatin in patients with chronic heart failure (the GISSI-HF trial): a ran- domised, double blind, placebo controlled trial. Lancet 2008; 372: 1231-1239.
15. McMurray JJ, Gerstein HC, Holman RR, Pfeffer MA. Heart failure: a cardiovas- cular outcome in diabetes that can no longer be ignored. Lancet Diabetes Endocrinol 2014; 2: 843-851.
16. Bhatt DL, Candever MA. Do dipeptidyl peptidase-4 inhibitors increase the risk of heart failure? JACC Heart Fail 2014; 2: 583-585.
17. Emerging Risk Factors Collaboration, Di Angelantonio E, Kaptoge S, Worm- ser D, Willett W, Butterworth AS, Bansal N, O’Keeffe LM, Gao P, Wood AM, Burgess S, Freitag DF, Pennells L, Peters SA, Hart CL, Häusli EL, Gillum RF, Nordestgaard BG, Psaty BM, Yeap BB, Krauss RM, Nietert PJ, Kauh- anen J, Salonen JT, Kuller LH, Simons LA, van der Schouw YT, Barrett-Con- nor E, Selmer R, Crespo CJ, Rodriguez B, Verschuren WM, Salomaa V, Svär- sudd K, van der Hart P, Björketrud C, Wilhelmsen L, Wallace RB, Bren- ner H, Amouyel P, Barr EL, Iso H, Onat A, Trevisan M, D’Agostino RB Sr Co, Coo- per C, Kavoussi M, Wen L, Rouxel R, Hu FB, Sato S, Davidson KW, How ard AV, Leenig MR, Rosengren A, Dörre M, Deeg DJ, Kiechl S, Stouheuer CD, Nis- sinen A, Giampaoli S, Donfrancesco C, Kromhout D, Price JF, Peters A, Meade TW, Casiglia E, Lawlor DA, Gallacher J, Nagel D, Franco OH, Assmann G, Dagenais GR, Jukema JW, Sundström J, Woodward MD, Brunner EJ, Khaw KT, Wareham NH, Whiting D, Haffner S, Malm- stand WD, Selvin E, Sattar N, Thompson SG, Danesh J. Association of cardio- metabolic multimorbidity with mortality. JAMA 2015; 314: 52-60.
18. Schaan BD, de Figueiredo Neto JA, Moreira LB, Ledur P, Mattis LAP, Magno- ni DT, Precorna DB, Machado CA, da Silva Brasilene AL, Pena FM, Harzheim E, Montenegro S, Bernardes-Pereira S, Damiani LP, Consolim-Colombo FM, de Paola AV, Andrade J, Guimarães J, Berwanger O, REACT Investigators. Dia- betes and cardiovascular events in high-risk patients: Insights from a mul- ticenter registry in a middle-income country. Diabetes Res Clin Pract 2017; 127: 275-284.
19. Bartnik M, Rydén L, Ferrari R, Malmberg K, Pyörälä K, Simoons M, Standl E, Soler-Soler J, Ohvik J, Euro Heart Survey Investigators. The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe: the Euro Heart Survey on diabetes and the heart. Eur Heart J 2004; 25: 1880-1890.
20. Norhammar A, Tenerz A, Nilsson G, Harsten A, Efridic S, Rydén L, Malm- berg K. Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: a prospective study. Lancet 2002; 359: 2140-2144.

Clinical features, management and mortality in diabetic and non-diabetic patients with heart failure – observations from the COMMIT-HF registry