Effective Microstrip Feed Line Length in Ultra-Wideband Responses and Wireless Applications

Mohan K N¹, Himaja Reddy K¹
¹KLEF Deemed to be University, Green Fields, Vaddeswaram, Guntur District, 520002, AP, India

Abstract: In this article, an effective feed line technique is used instead of DGS (Defected Ground Structure) and CSRR (Complimentary Split Ring Resonator) which are commonly used for achieving UWB (Ultra-Wideband Applications) responses. A classical antenna is designed for 2.4GHz frequency with a feedline of 180° electrical length. The resonance of proposed antenna responses as UWB and it has interesting current distributions through the patch antenna. This paper avoided all aspects of existing techniques which are proposed to achieve UWB.

1. Introduction

Microstrip patch antennas are widely used for wireless communication in MM wave applications [1]. The design theory of antenna is studied by various researchers and different types of geometry models are invented with respect to their knowledge and applications [2] [3] [4]. Among them, widely used is the rectangular patch antenna, which is having impressive characteristics like narrow bandwidth, basic positive radiation pattern in terms of dB, horizontal polarization with respect to design axis, etc. It is being appreciated for its design aspects that include easy sketch, feeding techniques, fabrication, etc [5].

There are different types of feeding techniques used for exciting the rectangular patch antenna [6] [7] [8]. One of the most used feeding methods is microstrip feed line, whereas the other feeding techniques like coaxial feed and aperture coupled feed have design challenge aspects [5]. The feed line is a conducting strip to the patch antenna with smaller width (fW) when compared to patch (pw), i.e. fW <<pw. This feeding technique is easy to position to the proposed model of patch. This type of feed line is easy to fabricate by controlling impedance matching with the patch [9] [10] [11].

The patch antenna naturally has narrow bandwidth. The conditions to design these types of patches are substrate thickness (H) which varies from 2.2 to 12, Thickness of the patch (t≤λo). λo is free space wavelength with respect to design frequency. The proposed antenna has a design frequency of 2.4GHz which is used for well-known wireless devices. Further, the antenna is optimized to generate dual and multiband responses. To achieve multiband responses, different techniques are proposed [12] [13] [14] [15] [16]. This paper proposed changes in the electrical length of feed line to match with antenna load. We used 180° electrical length (fω) to provide maximum matched feed line to antenna as per transmission line theory.
concept, i.e. the load (antenna) is matched with input impedance (excitation) and transmission line (feed line) [5][10][11].

So, this paper proposes effective feed line length (FL) which gives Ultra-Wide Band (UWB) responses, and the parameters of antenna are compared with previous works which are useful to study about UWB technology design aspects.

2. Design of effective electrical length antenna
The rectangular patch antenna is designed for f_0=2.4GHz, with the following design equations. The geometry design of the patch depends on dielectric constant. The patch and feedline are placed on the dielectric material consisting electrical characteristics.

$$
\varepsilon_{\text{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[1 + 12 \frac{h}{W} \right]^{-\frac{1}{2}}
$$

where:

- ε_{eff} = Effective Dielectric constant.
- ε_r = Relative permittivity of the substrate.
- h = Substrate height.
- W = Width of the microstrip.

The normalized extension of patch length (ΔL) is calculated by,

$$
\frac{\Delta L}{h} = 0.412 \frac{(\varepsilon_{\text{eff}} + 0.3)(\frac{W}{h} + 0.264)}{(\varepsilon_{\text{eff}} - 0.258)(\frac{W}{h} + 0.8)}
$$

Here,

- $\frac{W}{h} < 1$ gives narrow strip line
- $\frac{W}{h} >> 1$ & $\varepsilon_r > 1$ gives wider transmission line.

Electrically, the microstrip patch antenna looks greater than its physical dimension due to fringing effect. Figure 1 shows the top view dimension of microstrip patch antenna with geometrical calculations for ε_r=4.4 and substrate thickness 0.5mm.
The resonant frequency of this model is defined by TM010. The length of the patch can be calculated by

\[
\frac{1}{f_0} = \frac{1}{2L\sqrt{\varepsilon_r\mu_0\varepsilon_0}} = \frac{c_0}{2L\sqrt{\varepsilon_r}}
\]

(2.3)

Where,
- \(f_0\) = Resonant frequency.
- \(\varepsilon_r\) = Relative permittivity of the substrate.
- \(\mu_0\) = Permeability of free space in vacuum.
- \(\varepsilon_0\) = Permittivity of free space.
- \(c_0\) = Free space velocity of light.
- \(L\) = Length of patch.

Eq. (2.3) is done for the cavity model of rectangular patch. If the fringing effects are present in the same patch, then Eq. (2.3) can be modified as,

\[
\frac{1}{f_{rc}} = \frac{1}{2L\sqrt{\varepsilon_r\mu_0\varepsilon_0}} = \frac{1}{2(L + 2\Delta L)\sqrt{\varepsilon_r\mu_0\varepsilon_0}}
\]

(2.4)

The width of the patch for same resonant mode,

\[
\frac{1}{f_{rc}} = \frac{1}{2L\sqrt{\varepsilon_r\mu_0\varepsilon_0}} = \frac{1}{2(L + 2\Delta L)\sqrt{\varepsilon_r\mu_0\varepsilon_0}}
\]

(2.5)

By using Eq. (2.4) and Eq. (2.5), the patch dimensions are calculated. So, the length and width of the patch are \(L= 27.9\)mm and \(W=38\)mm.

The return loss of 2.4GHz patch antenna is as shown in Figure 1.
Figure 2. Return loss of inset feed for 2.4GHz

Figure 3 shows the corresponding radiation pattern of the antenna with normal edge excitation near boundary radiation in HFSS (High Frequency Structure Simulator tool).

The return loss responses are observed with 90° electrical length of inset feed line, width as per resonant frequency and same phase.

Figure 3. Polar plot of inset feed radiation pattern

Figure 4. Corresponding 3D pattern
The electrical length of antenna is increased from 90° to 180° for exciting the antenna to obtain the response in wide band frequency range. The inset feed method is removed for better bandwidth. So, the following figure 5 shows the physical dimension of patch antenna

![Physical Dimension of Patch Antenna](image)

Figure 5. Effective electrical length of 180° feed line with same properties of microstrip patch antenna for 2.4GHz.

3. Results and Discussion for Effective Feedline Technique.

Figure 6 shows the return loss of effective length introduced in the patch antenna and inset feed technique is removed without disturbing the dimensions of the patch with respect to 2.4GHz.

![Return Loss Graph](image)

Figure 6. Return loss of Effective electrical length of 180° feed line with same properties of microstrip patch antenna for 2.4GHz

The proposed design explored in Figure 5 achieved UWB frequency responses. The bandwidth of an antenna depends on SWR (Standing Wave Ratio) where 2:1 is the lossless transmission line.

So, the antenna is fed with lossless transmission line of 180° electrical length feed line. Basically, microstrip patches respond with narrow bandwidth. In this proposed design, the antenna dimension is not optimized and is designed at a frequency of 2.4GHz. The feeding techniques are studied very deeply with mode analysis. TM010 mode analysis is used achieve this response.
The current distribution of UWB antenna voltage of 0.697V is noted. Most of the voltage/current is distributed through the antenna due to lossless transmission line called feed line. Typically, 2% to 5% of bandwidth is achieved by increasing substrate thickness. If the thickness increases, surface wave and spurious feed radiation increase.

These are the works proposed by various authors in recent years [14]-[21] with different technologies to achieve UWB.

This article proposes the novel work of electrical length. It also decides the reflection loss of antenna to get UWB.

4. Achieving UWB with DGS

Employing defects on the ground plane to enhance antenna parameters like Input Impedance, Radiation Pattern, Gain, Efficiency, return loss is proved to be a complex yet useful technique to obtain the desired characteristics. This method of sliding defects such as slots, stubs on the ground plane along with periodic and aperiodic structures is called DGS (Defected Ground Structures) [26]-[30]. Compared to other techniques like EBG (Electromagnetic Band Gap), PBG (Photonic Band Gap), FSS (Frequency Selective Structures), DGS is proven to be most effective. In this paper, we will be comparing the results obtained by the proposed work with the results generated by employing DGS in the antenna design. [21]-[25]

For this evaluation, we designed a concentric circular patch antenna at 2.4GHz (Figure 7) This is further extended to UWB frequency range by using partial ground plane method followed by dimensional optimization of the design parameters. Defects are later introduced on the ground plane in form of small slots across the edge and directly under the feedline.

![Figure 7. Concentric Circular patch antenna with DGS.](image)

The DGS on the ground plane increases fringing field which introduces parasitic capacitance. This parasitic capacitance increases the coupling between the conducting patch and the ground plane which is responsible for the enhancement of the bandwidth. The performance of the antenna depends on the physical dimension of the antenna as well as location and shape of the DGS. The parameters that effect the operating band characteristics of the antenna such as the position of DGS slots and horizontal slot are parametrically analysed.[21]-[25].

The working of the antenna is analysed by varying the radius of the concentric circular patch, along with length and width of the slots on the ground plane.
This design achieved return loss less than -10dB at application frequencies as proposed in the paper and exhibits good gain and radiation properties.

Figure 8. Return loss of Concentric Circular Patch Antenna

Figure 9. Radiation Pattern of DGS based designed Geometry.

Figure 10. Obtained 3D Pattern
5. Result

While comparing the gain, return loss and radiation pattern parameters of both feedline simulated and DGS simulated designs, we can observe that the effective feedline technique resonates at desired application frequencies with dual and multiband operations thus building high gain and return loss values. Whereas DGS outputs do obtain the desired characteristics, but for optimum results, design modifications are to be done which results in complexity. Here, the term design modifications highlight the fact of introducing more defects on the ground plane.

6. Conclusion

The direct feeding method gives more affable response when compared to inset feed technique due to the changes in electrical length of antenna. The proposed antenna responded at the given application frequency ranges.

1. Wireless Local Area Networks (WLAN) operating at 2.45 GHz (2.4–2.484 GHz), 5.25 GHz (5.15–5.35 GHz), 5.75 GHz (5.725–5.825 GHz) bands.
2. Wi-MAX operating at 3.3–3.7 GHz band.
3. C-band satellite communication
 Downlink band (3.9–4.2 GHz)
 Uplink band (5.9–6.2 GHz).
4. X-band satellite communication
 Uplink band (7.92–8.395 GHz)
 Downlink band (7.252–7.75 GHz).

7. References

[1] Agrawal P and Bailey M C 1977 An analysis technique for microstrip antennas Antennas and Propagation, IEEE Transactions 25 756-759.

[2] Wood C, August 1980 Improved bandwidth of microstrip antennas using parasitic elements IEE Proceedings H - Microwaves Optics and Antennas 127 231-234

[3] Blischke M A, Rothwell E J, Chen K.M, et.al 1988 Receiving and Scattering Characteristics of Circular Patch Antenna Array Journal of Electromagnetic Waves and Applications 2 353-378

[4] Hazila O, Aljunid S.A, Malek F, et.al, 2010 Performance comparison between rectangular and circular patch antenna array Research and Development (SCORed) IEEE Student Conference 10 47-51

[5] Constantine A Balanis 2005 Antenna Theory: Analysis and Design.pdf (Hoboken, NJ: John Willey).

[6] Lee R Q and Simons R N, 1992 Slot-coupled patch antenna with coplanar waveguide feed IEEE Antennas and Propagation Society International Symposium Digest (Chicago IL USA) 10 1048-1051

[7] Yang X H and Shafai L, 1993 Wideband techniques for the aperture coupled microstrip antennas Proceedings of IEEE Antennas and Propagation Society International Symposium (Ann Arbor MI-USA) 2 952-955.
[8] Haddad P R and Pozar D M, 1994 Analysis of an aperture coupled microstrip patch antenna with a thick ground plane Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting 2932-935

[9] Nirod K. Das and David M Pozar, 1991 A generalized {CAD} model for printed antennas and arrays with arbitrary multilayer geometries Computer Physics Communications 68 393-440.

[10] Pozar D M, Schaubert D.H, 1995 IEEE Antennas, and Propagation Society Microstrip Antennas: The Analysis and Design of Microstrip Antennas and Arrays (Wiley). 52

[11] Pozar D M, 1997, Microwave Engineering (Wiley).

[12] Yahya R, Nakamura A, Itami M and Denidni T.A, 2017 A Novel UWB FSS-Based Polarization Diversity Antenna in IEEE Antennas and Wireless Propagation Letters 16 2525-2528.

[13] Shah X and Shen Z 2017 Miniaturized UHF/UWB Tag Antenna for Indoor Positioning systems IEEE Antennas and Wireless Propagation Letters 18 2453-2457.

[14] Srivastava G, Mohan A and Chakrabarty A, 2017 Compact Reconfigurable UWB Slot Antenna for Cognitive Radio Applications in IEEE Antennas and Wireless Propagation Letters 16 1139-1142.

[15] Nie L Y, Lin X Q, Yang Z Q, et.al, 2019 Structure-Shared Planar UWB MIMO Antenna with High Isolation for Mobile Platform in IEEE Transactions on Antennas and Propagation, 67 2735-2738.

[16] Jetti C R., Nandanavanam V R. 2018 A very compact MIMO antenna with triple band-notch function for portable UWB systems Progress In Electromagnetics Research C 82 13-27

[17] Allam v, Madhav B T P 2018 Defected Ground structure switchable notch band antenna for UWB applications Smart Innovation Systems and Technologies 77 139-145

[18] Ajay Babu M, Madhav B T P., Bhargavi G, et.al 2018 Design and analysis of stepped reconfigurable Rectangular patch antenna for LTE vehicular and ultra wideband applications International Journal of Engineering and Technology(UAE) 7 548-553

[19] Anusha T, Ramakrishna T V., Madhav B.T.P, et.al 2018 Dual-Band-Notched CPW-Fed Antenna with WiMAX/WLAN Rejection for UWB Communication Lecture Notes in Electrical Engineering 471 559- 570

[20] Madhav B T P., Sai Dheeraj G., Raghavarapu S.S 2018 Design of a CPW-fed monopole antenna for ultrawide band based iot and medical applications International Journal of Pharmaceutical Research 13 74-79
[21] Sandeep, Prabakaran D R, Madhav N, et.al 2020 Semicircular shape hybrid reconfigurable antenna on Jute textile for ISM, Wi-Fi, Wi-MAX, and W-LAN applications, *International Journal of RF and Microwave Computer-Aided Engineering*. 30

[22] Sharma M M, Ashok Kumar, Sanjeev Yadav et. al 2012 An Ultra-Wideband Printed Monopole Antenna with Dual Band-Notched Characteristics Using DGS and SRR 2nd *International Conference on Communication Computing & Security (ICCCS)* 6 778-783

[23] Arashpreet Kaur, Amanpreet Kaur, 2019 A Compact Rectangular Microstrip Patch Antenna Loaded with Stubs and Defected Ground Structure for UWB Systems *International Journal of Innovative and Exploring Engineering (IJITEE)* 8 155-160

[24] Rahul Sharma, Mishara A N, 2016 Analysis and Design of Microstrip antenna with Defected Ground Structure for UWB Application *International Journal of Engineering Research & Technology (IJRET)*. 5 810-812

[25] Elajoumi S, Tajmouati A, Errkik A, et.al 2017 Microstrip Rectangular Monopole Antennas with Defected Ground for UWB Application *International journal of Electrical and Computer Engineering (IJECE)* 7 2027-2033

[26] Prasanth.K V, Pradeep Hadalgi M, Hunagund P V 2020 Investigation on DGS tuned Multiband-UWB antenna for wireless applications *Journal of Critical Reviews* 7 2142-2150

[27] Shobit Agarwal 2017 A newly proposed Multi-band Rectangular Patch antenna using Defected Ground Structures *Progress in Electromagnetics Research Symposium-Fall (PIERS – FALL)* 11 31-36

[28] Pragya Singh, Raghuvir Tomar 2013 The use of defected ground structures in designing the microstrip filters with enhanced performance characteristics, Conference on Electronics, Telecommunications and Computers, Science Direct 17 58-64

[29] Mehri, Borhani, Kakaki, 2017 Reconfigurable microstrip slot antenna with DGS for UWB applications *International Journal of Microwave and Wireless Technologies* 9 1517- 1522

[30] Vijaya Kumar G, Praveen Reddy I, Satyanarayana JSV, et.al 2020 DGS based Ultrawideband antenna for wireless applications *International Conference on Advance Research and Innovation (ICARI)* 21 313-316