Description of a new member of the family *Erysipelotrichaceae: Dakotella fusiforme* gen. nov., sp. nov., isolated from healthy human feces

Sudeep Ghimire ¹, Supapit Wongkuna ¹, Joy Scaria ¹

¹ Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, United States

Corresponding Author: Joy Scaria
Email address: joy.scaria@sdstate.edu

A Gram-positive, non-motile, rod-shaped facultative anaerobic bacterial strain SG502^T was isolated from healthy human fecal samples in Brookings, SD, USA. The comparison of the 16S rRNA gene placed the strain within the family *Erysipelotrichaceae*. Within this family, *Clostridium innocuum* ATCC 14501^T, *Longicatena caecimuris* strain PG-426-CC-2, *Eubacterium dolichum* DSM 3991^T and *E. tortuosum* DSM 3987^T (=ATCC 25548^T) were its closest taxa with 95.28%, 94.17%, 93.25%, and 92.75% 16S rRNA sequence identities respectively. The strain SG502^T placed itself close to *C. innocuum* in the 16S rRNA phylogeny. The members of genus *Clostridium* within family *Erysipelotrichaceae* was proposed to be reassigned to genus *Erysipelatoclostridium* to resolve the misclassification of genus *Clostridium*. Therefore, *C. innocuum* was also classified into this genus temporarily with the need to reclassify it in the future because of its difference in genomic properties. Similarly, genome sequencing of the strain and comparison with its 16S phylogenetic members and proposed members of the genus *Erysipelatoclostridium*, SG502^T warranted a separate genus even though its 16S rRNA similarity was >95% when compared to *C. innocuum*. The strain was 71.8% similar at ANI, 19.8% [17.4-22.2%] at dDDH and 69.65% similar at AAI to its closest neighbor *C. innocuum*. The genome size was nearly 2,683,792 bp with 32.88 mol% G+C content, which is about half the size of *C. innocuum* genome and the G+C content revealed 10 mol% difference. Phenotypically, the optimal growth temperature and pH for the strain SG502^T were 37 °C and 7.0 respectively. Acetate was the major short-chain fatty acid product of the strain when grown in BHI-M medium. The major cellular fatty acids produced were C_{18:1} ω9c, C_{18:0} and C_{16:0}. Thus, based on the polyphasic analysis, for the type strain SG502^T (=DSM 107282^T= CCOS 1889^T), the name *Dakotella fusiforme* gen. nov., sp. nov., is proposed.
Description of a new member of the family *Erysipelotrichaceae: Dakotella fusiforme* gen. nov., sp. nov., isolated from healthy human feces

Sudeep Ghimire¹, Supapit Wongkuna¹, and Joy Scaria¹*

¹Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.

*Address correspondence to: Joy Scaria
Email: joyscaria@gmail.com
ABSTRACT

A Gram-positive, non-motile, rod-shaped facultative anaerobic bacterial strain SG502T was isolated from healthy human fecal samples in Brookings, SD, USA. The comparison of the 16S rRNA gene placed the strain within the family Erysipelotrichaceae. Within this family, Clostridium innocuum ATCC 14501T, Longicatena caecimuris strain PG-426-CC-2, Eubacterium dolichum DSM 3991T and E. tortuosum DSM 3987T (=ATCC 25548T) were its closest taxa with 95.28%, 94.17%, 93.25%, and 92.75% 16S rRNA sequence identities respectively. The strain SG502T placed itself close to C. innocuum in the 16S rRNA phylogeny. The members of genus Clostridium within family Erysipelotrichaceae was proposed to be reassigned to genus Erysipelatoclostridium to resolve the misclassification of genus Clostridium. Therefore, C. innocuum was also classified into this genus temporarily with the need to reclassify it in the future because of its difference in genomic properties. Similarly, genome sequencing of the strain and comparison with its 16S phylogenetic members and proposed members of the genus Erysipelatoclostridium, SG502T warranted a separate genus even though its 16S rRNA similarity was >95% when compared to C. innocuum. The strain was 71.8% similar at ANI, 19.8% [17.4-22.2%] at dDDH and 69.65% similar at AAI to its closest neighbor C. innocuum. The draft genome size of SG502T was 2,683,792 bp with 32.88 mol% G+C content, which is about half the size of C. innocuum genome and the G+C content revealed 10 mol% difference. Phenotypically, the optimal growth temperature and pH for the strain SG502T were 37\degree C and 7.0 respectively. Acetate was the major short-chain fatty acid product of the strain when grown in BHI-M medium. The major cellular fatty acids produced were C\textsubscript{18:1} \textomega9c, C\textsubscript{18:0} and C\textsubscript{16:0}. Thus,
based on the polyphasic analysis, for the type strain SG502^T (=DSM 107282^T= CCOS 1889^T),
the name *Dakotella fusiforme* gen. nov., sp. nov., is proposed.

Key words: *Dakotella fusiforme*, new genus, new species, gut microbiota, taxonomy, microbiome, culturomics

1. INTRODUCTION

The members of family *Erysipelotrichaceae* have been isolated from the intestinal tracts of mammals (Alcaide et al. 2012; Greiner & Backhed 2011; Han et al. 2011) and insects (Egert et al. 2003) and are associated with host metabolism and inflammatory diseases (Cox et al. 2014; Kaakoush 2015). Although metagenome analysis of gut microbiome have revealed the composition and function of the microbiome in the intestine, only a few cultured species available from this family and their function in the gut ecosystem is not yet well understood (Kaakoush 2015).

The family *Erysipelotrichaceae* was originally described by Verbarg et al (Verbarg et al. 2004). The members of this family includes Gram-positive, filamentous rods and were originally described as facultative anaerobes but later amended by Tegtmeier *et al.* (Tegtmeier et al. 2016) to include obligate anaerobes. The members of this family belonged to *Clostridial* Cluster XVI that consists of three major species; *Clostridium innocuum*, *Eubacterium biforme* and *Streptococcus pleomorphus* (Collins et al. 1994). According to the updated LPSN list of valid bacteria (http://www.bacterio.net), current members of this family includes the following genera: *Allobaculum*, *Breznakia*, *Bulleidia*, *Catenibacterium*, *Canteisphaera*, *Coprobacillus*, *Dielma*, *Dubosiella*, *Eggerthia*, *Erysipelothrix*, *Faecalibaculum*, *Faecalicoccus*, *Faecalitalea*, *Holdemania*, *Kandleria*, *Longibacculum*, *Longicatena*, *Solobacterium*, and *Turicibacter*.
Members of this family have low-G+C content and were previously recognized as the “walled relatives” of mycoplasma (Weisburg et al. 1989) and later classified under Clostridial cluster XVI (Collins et al. 1994). With major changes in the taxonomy of Erysipelotrichaceae, recently some members have been reclassified into new families Coprobacillaceae (Collins et al. 1994) and Turicibacteraceae (Verbarg et al. 2014) but the placement of cluster XVI is still debated. A few species related to Clostridium and Eubacterium are also included within Erysipelotrichaceae based on the 16S rRNA gene sequence similarity and are considered as misclassified (Verbarg et al. 2014). For the proper classification of these misclassified members of genus Clostridium, different genus names were proposed by Yutin and Galperin in 2013 where C. innocuum along with C. cocleatum, C. saccharogumia and C. spiroforme were proposed to be reassigned to a new genus Erysipelatoclostridium. As, C. innocuum was found to be more distantly related to other members inside Erysipelatoclostridium genus, they also highlighted the need of future reclassification of C. innocuum (Yutin & Galperin 2013).

The present study describes the isolation, physiology, and genomic characterization of a new member of the family Erysipelotrichaceae isolated from healthy human feces. Within the family Erysipelotrichaceae, strain SG502T clustered within clostridial cluster XVI. Also, the strain SG502T showed less than 97% 16S rRNA gene sequence similarity towards its nearest phylogenetic neighbor C. innocuum ATCC 14501T. Therefore, we performed in vitro phenotypic characterization and sequenced the genome for comparative analysis with its neighbors. We found major differences in the genomic and phenotypic characteristics of the strain even though its 16S rRNA gene was >95% similar to nearest neighbor C. innocuum. Thus, we propose a novel genus
and species for this strain and propose designating SG502T as Dakotella fusiforme gen. nov., sp. nov within the family Erysipelotrichaceae.

2. MATERIALS AND METHODS

2.1 Bacterial isolation and culture condition

The strain was isolated from healthy human fecal sample as part of a culturomics study. The collection of the human fecal samples were done with the approval of the Institutional review board (approval #IRB-1709018-EXP) at South Dakota State University, Brookings SD. After transferring the fresh fecal samples into the anaerobic chamber (85% nitrogen, 10% hydrogen and 5% carbon dioxide) within 10 minutes of voiding, the sample was diluted 10 times with anaerobic PBS and stored with 18% DMSO in -80\textdegree C. The sample was cultured in modified BHI medium (BHI-M) containing 37g/L of BHI, 5 g/L of yeast extract, 1 ml of 1 mg/mL menadione, 0.3 g of L-cysteine, 1 mL of 0.25 mg/L of resazurin, 1 mL of 0.5 mg/mL hemin, 10 mL of vitamin and mineral mixture, 1.7 mL of 30 mM acetic acid, 2 mL of 8 mM propionic acid, 2 mL of 4 mM butyric acid, 100 μl of 1 mM isovaleric acid, and 1% pectin and inulin. After isolation, the strain was subjected to MALDI-ToF (Bruker, Germany). Since MALDI-ToF did not identify a species, 16S rRNA gene sequencing was performed for species identification.

2.2 Phenotypic and chemotaxonomic characterization

For morphological, physiological and biochemical characterization, the strain was cultivated in BHI-M medium in anaerobic conditions at 37\textdegree C at pH 6.8±0.2. Colony characteristics were determined after streaking the strain on BHI-M agar plates followed by 48 hours of anaerobic
incubation. Gram staining was performed using a Gram staining kit (BD Difco) according to the manufacturer’s protocol. During the exponential growth of the bacterium, cell morphology and flagellation was examined under scanning electron microscopy (SEM). SG502T was grown separately in aerobic and anaerobic conditions to determine the aerotolerance. Further, the strain was grown at 4, 20, 30, 40 and 55°C to determine the range of growth under anaerobic conditions. The BHI-M media was adjusted to pH levels between 4 and 9 with 0.1N HCl and 0.1N NaOH to determine the growth of the strain at different pH levels. BHI-M medium was supplemented with triphenyltetrazolium chloride (TTC) (Shields & Cathcart 2011) to determine the motility of the strain.

The phenotypic and biochemical characterizations were performed using AN MicroPlate (Biolog) and API ZYM (bioMerieux) according to the manufacturer’s instructions. Also, after growing the strain SG502T and ATCC 14501T in BHI-M medium at 37°C for 24 hours, cells were harvested for cellular fatty acid analysis. Fatty acids were extracted, purified, methylated, identified and analyzed using GC (Agilent 7890A) according to manufacturer’s instructions (MIDI) (Sasser 1990). Further, short-chain fatty acid (SCFA) production was determined using gas chromatography after cells were grown in BHI-M medium. For SCFA estimation, 800 µl of the bacterial culture was collected and 160 µl of freshly prepared 25% meta-phosphoric acid (w/v) was added before freezing to -80°C. The sample were thawed and centrifuged at >20,000×g for 30 min before injecting 600 µl of the supernatant into the TRACE1310 GC system (ThermoScientific, USA).
2.3 Phylogenetic analysis

Genomics DNA from the strain was isolated using E.Z.N.A bacterial DNA isolation kit (Omega Biotek) following the manufacturer’s instructions. The 16S rRNA gene was amplified using universal primer set 27F (5’- AGAGTTTGATCMTGGCTCAG-3’) and 1492R (5’- ACCTTGTACGACTT- 3’) and sequenced using a Sanger sequencing chemistry (ABI 3730XL; Applied Biosystems). The sequences were assembled using Genious 10.2.3. The nearly complete 16S rRNA gene sequence obtained was used for a similarity search in EzTaxon-e program (http://www.ezbiocloud.net/) for the valid taxonomic names. The bacterial species that closely resembled the query sequences were then used for alignment and phylogenetic analysis in MEGAX software (Kumar et al. 2016). Initially, the sequences were aligned using MUSCLE (Edgar 2004) and the Neighbor Joining method (Saitou & Nei 1987) was used to reconstruct the phylogenetic tree employing Kimura 2-parameter model (Kimura 1980) with 1000 bootstraps. Phylogenetic trees were also constructed using maximum-likelihood (Felsenstein 1981) and minimum evolution methods (Rzhetsky. A. & M. 1992). *Clostridium butyricum* ATCC 19398\(^T\) was used as an out-group.

2.4 Genomic features and comparison

For the whole genome sequencing of SG502\(^T\), we used 0.3ng of the genomic DNA for library preparation. Library was sequenced on an Illumina MiSeq using 2x 250 paired-end V2 chemistry. Genome was assembled from raw fastq files using Unicycler which builds an initial assembly graph from short reads using the de novo assembler SPAdes3.11.1 (Bankevich et al. 2012). Quality assessment for the assemblies was performed using QUAST (Gurevich et al. 2013). Genome
annotation was performed using Prokka 1.13 (Seemann 2014). The genome of SG502T was visualized using DNAplotter (Carver et al. 2009).

We compared the genome of SG502T to that of 16S-phylogeny of closely related species \textit{C. innocuum} DSM 1286T, \textit{Longicatena caecimuris} DSM 29481T, \textit{Eubacterium dolichum} DSM 3991T, \textit{Faecalicoccus pleomorphus} DSM 20574T, \textit{Faecalitalea cylindroides} ATCC 27803T, \textit{Holdemanella biformis} DSM 3989T and \textit{Dielma fastidiosa} DSM 26099T. In addition, we compared SG502T with the proposed members of the genus \textit{Erysipelatoclostridium}, \textit{C. clocleatum} DSM 1551T, \textit{C. ramosum} DSM 1402T, \textit{C. saccharogumia} DSM 17460T and \textit{C. spiroforme} DSM 1552T. We used the average nucleotide identity (OrthoANI) (Lee et al. 2016) and digital DDH (Meier-Kolthoff & Goker 2019) for calculating phylogenomic similarity. We also performed average amino acid identity (AAI) using AAI calculator (Konstantinidis & Tiedje 2005) to determine protein level genome differences.

3. RESULTS
The SG502T strain was isolated from the healthy human fecal sample during the culturomics study of the human gut microbiota. The colonies of the strain appeared white, smooth and convex with entire edges. The cells were initially subjected to MALDI-ToF MS (Figure 1A) which revealed the score <1.70 suggesting no identification. Thus, further phenotypic characterization and genetic based methods were employed for identification of the strain.
Morphologically, individual cells of the strain appeared to be gram-positive rods. The cell was observed to be slender with tapering ends with 1.5×0.35µm in dimensions (Figure 1B and Table 1) under SEM. No flagella were observed under SEM suggesting its non-motile nature which was also validated by TTC assay. The strain also lacked endospores, similar to what has been previously reported for the members of *Erysipelotrichaceae* (Verbag et al. 2004). The strain grew in a pH range of 6.0-7.5 with optimal growth at pH 7.0. It could grow anaerobically over the temperature range of 25-45°C with optimal growth at 37°C. The strain grew well in BHI-M under anaerobic conditions but under aerobic conditions, the growth was comparatively lower and slow confirming that the strain was a facultative anaerobe. Based on the results obtained from a carbon source utilization test (Biolog AN plate), the strain utilizes glucose, sorbitol, maltose, arbutin, D-fructose, L-fucose, palatinose, dextrin, turanose, D-trehalose, L-rhamnose, uridine, pyruvic acid methyl ester, pyruvic acid, 3-methyl-D-glucose, gentiobiose, maltotriose, ducitol, L-phenylalanine, α-ketovaleric acid, N-acetyl-D-glucosamine, N-acetyl-β-D-mannosamine, cellobiose, α-ketobutyric acid, D-galacturonic acid and N-acetyl-D-glucosamine. Also, SG502^T assimilated sorbitol and maltose which were not utilized by its closest neighbor *C. innocuum* ATCC 14501^T. Furthermore, SG502^T was unable to utilize sucrose, salicin, mannitol, lactose, and raffinose when compared to *C. innocuum*. Positive enzymatic activities for leucine arylamidase, cystine arylamidase, α-chymotripsin and acid phosphates were observed for *C. innocuum* differentiating it from SG502^T. Detailed phenotypic and biochemical characteristics of the strain are presented in Table 1. Also, the major fatty acids content identified were C_{18:1} ω9c (29.82%), C_{18:0} (22.55%) and C16:0 (14.7%) compared to *C. innocuum* ATCC 14501^T with C_{18:1} ω9c (14.64%), C_{18:0} (10.56%) and C16:0 (23.7%) (Table 2). The detailed comparison of the fatty acids in SG502^T along with *C. innocuum* 14501^T and *E. dolichum* DSM 3991^T is given in Table 2.
Additionally, the major SCFAs metabolite identified for SG502T was acetate in BHI-M medium. Low but detectable amounts of propionate and butyrate were produced by the strain SG502T. The utilization of such broad substrates and production of SCFAs can be ecologically effective trait against pathogen colonization in the gut.

As the strain was not identified using MALDI-ToF, 16S rRNA sequence was amplified to obtain a continuous stretch of 1338 bp gene which was searched against the Eztaxon 16S rRNA gene database for identification. The closest species identified were all from the \textit{Erysipelotrichaceae} family that included \textit{C. innocuum} ATCC 14501T, \textit{L. caecimuris} strain PG-426-CC-2, \textit{E. dolichum} DSM 3991T and \textit{E. tortuosum} ATCC 25548T with 95.28\%, 94.17\%, 93.25\%, and 92.75\% sequence identities respectively. Currently, the cut off for the species and genus level classification of the bacteria based on 16S rRNA gene is <98.7 \% (E. & J. 2006) and <94.5\% identity (Yarza et al. 2014) respectively. Thus, the strain SG502T and \textit{C. innocuum} were suggested to fall within same genus but different species. The phylogenetic analysis also revealed that the isolate belonged to \textit{Erysipelotrichaceae} family where the strain SG502T was closely associated to \textit{C. innocuum} ATCC 14501T but further from \textit{L. caecimuris} strain PG-426-CC-2, \textit{E. dolichum} DSM 3991T and \textit{E. tortuosum} ATCC 25548T which altogether formed a larger clade (Figure 2). The separation of these four species from the strain SG502T did not depend on the phylogenetic algorithm and was supported by an 100\% bootstrap value. To further differentiate the strain, we sequenced the whole genome of the strain and is visualized in Figure 3. The draft genome of the strain SG502T was 2,683,792 bp with 32.88 mol\% G+C content. The largest contig was of 154,144 bp and N\textsubscript{50} was 52,214. The total number of predicted coding sequences, tRNAs, rRNAs, and tmRNAs was 2654, 49, 2 and 1 respectively.
C. innocuum was the nearest neighbor of SG502T based on 16S rRNA phylogeny. C. innocuum along with C. cocleatum, C. saccharogumia, C. ramosum, and C. spiroforme were suggested to be reclassified previously into genus Erysipelatoclostridium with C. innocuum needing further reclassification (Yutin & Galperin 2013). Therefore, we checked for the 16S identity of SG502T with the other members of this proposed genera C. cocleatum, C. saccharogumia, C. ramosum, and C. spiroforme in NCBI. These species were found to be 84.45\%, 84.49\%, 85.10\% and 85.014\% identical respectively which demonstrated that SG502T should not be placed into same genera with these species. We also compared the genomic properties of the strain with its 16S rRNA based phylogenetic neighbors along with C. innocuum and the members of formerly proposed genus Erysipelatoclostridium, C. cocleatum, C. saccharogumia, C. ramosum, and C. spiroforme. The genomic sizes and G+C content of the members of the neighbors of the strain were found to vary as shown in Table 3. C. innocuum was 4,772,018 bp in length with 43.4 mol\% G+C content, while for SG502T, genome length was 2,683,792 bp with 32.88 mol\% G+C content. The genome sizes and G+C content of the neighboring species were highly variable compared to SG502T (Table 3). Because of such high differences in the genome properties of SG502T, we performed further comparison for classifying SG502T as a novel genus. Hence, the genome of the strain was compared to its neighbors using OrthoANI as shown in Figure 4. The strain SG502T was 71.8\% similar to its nearest neighbor C. innocuum and had lower similarities with other neighbors. (Figure 4A, 4B). The proposed cut-off for OrthoANI for a new species is 95-96\% (Kim et al. 2014) (Lee et al. 2016). The dDDH was only 19.8\% between SG502T and C. innocuum (Table 4). One of the major methods to demarcate the genus is to calculate average amino acid identity (AAI) between the genomes with the possibility of
novel genus if the AAI values are in the range of 65-72% (Konstantinidis & Tiedje 2007). The strain SG502T showed highest AAI with *C. innocuum* (69.65%) followed by *L. caecimuris* (63.45%) and *E. dolichum* (63.02%) (Figure 5) supporting the designation of strain SG502T in a novel genus.

4. DISCUSSION

Recently, next generation sequencing and high-throughput culturing methods has been employed for large scale culture of the unknown gut microbiota. This new approach termed as “culturomics” has evolved as a tool to culture previously uncultured bacteria (Browne et al. 2016; Lagier et al. 2016). However, such culture independent studies have also highlighted that the diverse population of gut bacteria are yet to be cultivated (Almeida et al. 2019; Lagier et al. 2012). The pure culture of the bacteria is essential to elucidate the role of these organisms in health and diseases for both experimental model and therapeutics purposes (Daillere et al. 2016; Kobyliak et al. 2016; Vetizou et al. 2015). In this study, we report the culturing and characterization of a previously uncultured bacterium SG502T from the healthy human fecal samples that belongs to a new genus and species. Also, we employed taxono-genomics approach (Fournier & Drancourt 2015) to determine the phenotypic and genetic properties of the taxon.

16S rRNA based gene sequence homology is the widely used method to determine the novelty of the prokaryotic organism with varying threshold values at distinct taxonomic levels (Clarridge 2004; Kim et al. 2014). Therefore, we performed the 16SrRNA based phylogenetic analysis of the strain SG502T which showed it as a member of *Erysipelotrichaceae* family. Under this
family, it clustered together with *Clostridium innocuum*, *Longicatena caecimuris*, *Eubacterium dolichum* and *Eubacterium tortuosum* with *C. innocuum* as a closest member. *C. innocuum* along with other members of misclassified *Clostridia* under *Erysipelotrichaceae* family were proposed to be reclassified into gen. nov. *Erysipeloclostridium*. The members of this proposed genus *Erysipelatoclostridium* are gram positive, nonmotile, obligately anaerobic straight or helically curved rods which rarely forms spores. The G+C content is lower and varies from 27-33 mol% (Yutin & Galperin 2013). However, *C. innocuum* was identified to be a distantly related member of *Erysipelatoclostridium* with higher G+C content of 43-44% with need of reclassification (Yutin & Galperin 2013). In this context, we also searched for the 16S based identity of the strain SG502\(^T\) with the proposed members of genus *Erysipelatoclostridium*. Nevertheless, the proposed members of genus *Erysipelatoclostridium* were < 86% similar at 16S sequence level, suggesting the uniqueness of SG502\(^T\).

Phenotypically, SG502\(^T\) revealed several differences in carbon sources utilization, enzymatic activity and fatty acid when compared to its phylogenetic neighbors (Table 1 and Table 2). In addition, whole genome sequence comparison revealed its distinctiveness with respect to 16S phylogenetic members and the proposed members of *Erysipelatoclostridium* genus (Table 3 and 4). Furthermore, OrthoANI based genomic comparison with 16S phylogenetic neighbors showed as high as 71.54% similarity with *L. caecimuris* DSM 29481\(^T\). Also, the genome of SG502\(^T\) was only 82.21% similar with *C. cocleatum* DSM 1551\(^T\) which is a member of *Erysipelatoclostridium* genus (Figure 4). Major differences were evident in dDDH and amino acid composition comparison as well (Table 4, Figure 5). Finally, the genome size of the nearest neighbor *C. innocuum* was nearly twice that of SG502\(^T\) and the difference of G+C content was
comparatively high (>10 mol%) suggesting that the strain is not close to C. innocuum genetically which means that SG502ᵀ require the placement in a separate genus.

5. CONCLUSION

Despite 95.15% 16S rRNA similarity of SG502ᵀ with its nearest neighbor C. innocuum, the differences in its physiological, biochemical, and whole genome sequence suggest its placement in a novel genus. Hence, we propose creation of a novel genus Dakotella under family Erysipelotrichaceae and classification of SG502ᵀ under new genus Dakotella as Dakotella fusiforme SG502ᵀ.

6. DESCRIPTION OF Dakotella gen. nov.

Dakotella (Da.ko.tel’la. M.L. dimin. ending -ella; N.L. fem. n. Dakotella, from the place of isolation, State of South Dakota, USA).

The type strain is elongated spindle shaped. The closest phylogenetic neighbor is C. innocuum ATCC 14501ᵀ with corresponding dDDH of 19.8%. The relative genomic G+C difference with C. innocuum is 10.48 mol %. The OrthoANI of the isolate and the type species C. innocuum is 71.8%. E. dolichum DSM 3991ᵀ and Longicatena caecimuris DSM 20574ᵀ are distantly related with OrthoANI of 70.85% and 71.84% and dDDH of only 20.6% and 20.5% respectively. The corresponding difference in the G+C content is 5.22 % and 4.86% with E. dolichum DSM 3991ᵀ and Longicatena caecimuris DSM 20574ᵀ respectively. Such differences support the creation of
novel genus to accommodate SG502\(^T\). The G+C content of the genomic DNA of the type strain is 32.88 mol%. The type species is *Dakotella fusiforme*.

7. DESCRIPTION OF *Dakotella fusiforme* sp. nov. SG502\(^T\) sp. nov.

Dakotella fusiforme (fu.si.for'me. L. masc. *fusus* spindle): referring to shape

The cells of the bacterium are anaerobic, gram-positive non-motile rods. The average size of the cell is 1.5×0.35 μm. Bacterial colonies on BHI-M agar are white, convex and entire approximately 0.1 cm in diameter. The optimum temperature and pH for the anaerobic growth are 37\(^0\)C and 7.0 respectively. The strain SG502\(^T\) utilizes glucose, sorbitol, maltose, arbutin, D-fructose, L-fucose, palatinose, dextrin, turanose, D-trehalose, L-rhamnose, uridine, pyruvic acid methyl ester, pyruvic acid, 3-methyl-D-glucose, gentiobiose, maltotriose, ducitol, L-phenylalanine, α-ketovaleric acid, N-acetyl-D-glucosamine, N-acetyl-b-D-mannosamine, cellobiose, α-ketobutyric acid, D-galacturonic acid and N-acetyl-D-glucosamine. Positive enzymatic reactions were observed for alkaline phosphatase only. The primary short-chain fatty acid produced by the strain is acetate while small amounts of propionate and butyrate were also noted. The major cellular fatty acids of the strain SG502\(^T\) are C\(_{18:1}\) ω9c, C\(_{18:0}\) and C\(_{16:0}\). The type strain, SG502\(^T\) (=DSM 107282\(^T\)=CCOS 1889\(^T\)), was isolated from a healthy human fecal sample. The genomic size of the strain is 2,683,792 bp and G+C content of the strain SG502\(^T\) is 32.88mol%.

5. PROTOLOGUE
The GenBank accession number for the 16S rRNA gene sequence of the strain SG502T is MN266902. The GenBank BioProject ID number for the draft genome sequence of the strain SG502T is PRJNA494608.

AUTHOR STATEMENTS

Funding information

This work was supported by the USDA National Institute of Food and Agriculture, Hatch projects SD00H702-20 and SD00R540-15, and a grant from the South Dakota Governor’s Office of Economic Development awarded to Joy Scaria. No additional external funding was received for this study.

Acknowledgments

The authors would like to thank Electron Microscopy Core Facility at the Bowling Green State University, Ohio, USA for assistance with scanning electron microscopy.

Conflicts of interest

The authors declare no conflicts of interest.

ABBREVIATIONS

MALDI-ToF: Matrix Assisted Laser Desorption/Ionization-Time of Flight

ANI: Average Nucleotide Identity
REFERENCES

Alcaide M, Messina E, Richter M, Bargiela R, Peplies J, Huws SA, Newbold CJ, Golyshin PN, Simon MA, Lopez G, Yakimov MM, and Ferrer M. 2012. Gene sets for utilization of primary and secondary nutrition supplies in the distal gut of endangered Iberian lynx. *PLoS One* 7:e51521. 10.1371/journal.pone.0051521

Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, Lawley TD, and Finn RD. 2019. A new genomic blueprint of the human gut microbiota. *Nature* 568:499-504. 10.1038/s41586-019-0965-1

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, and Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol* 19:455-477. 10.1089/cmb.2012.0021

Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, and Lawley TD. 2016. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. *Nature* 533:543-546. 10.1038/nature17645

Carver T, Thomson N, Bleasby A, Berriman M, and Parkhill J. 2009. DNAPlotter: circular and linear interactive genome visualization. *Bioinformatics* 25:119-120. 10.1093/bioinformatics/btn578

Clarridge JE, 3rd. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. *Clin Microbiol Rev* 17:840-862, table of contents. 10.1128/CMR.17.4.840-862.2004

Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, and Farrow JA. 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. *Int J Syst Bacteriol* 44:812-826.

Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li H, Gao Z, Mahana D, Zarate Rodriguez JG, Rogers AB, Robine N, Loke P, and Blaser MJ. 2014. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. *Cell* 158:705-721. 10.1016/j.cell.2014.05.052

Daillere R, Vetzou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, Duong CPM, Flament C, Lepage P, Roberti MP, Routy B, Jacquelet N, Apetoh L, Becharef S, Rusakiewicz S, Langella P, Sokol H, Kroemer G, Enot D, Roux A, Eggermont A, Tartour E, Johannes L, Woerther PL, Chachaty E, Golden E, Formenti S, Plebanski M, Madondo M, Rosenstiel P, Raoul D, Cattoir V, Boneca IG, Chamaillard M, and Zitvogel L. 2016. Enterococcus hirae and Barnesiella intestinohominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. *Immunity* 45:931-943. 10.1016/j.immuni.2016.09.009

E. S, and J. E. 2006. Taxonomic parameters revisited: tarnished gold standards. *Microbiology Today* 33:152-155.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* 32:1792-1797. 10.1093/nar/gkh340

Egert M, Wagner B, Lemke T, Brune A, and Friedrich MW. 2003. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). *Appl Environ Microbiol* 69:6659-6668. 10.1128/aem.69.11.6659-6668.2003

Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. *J Mol Evol* 17:368-376.
Fournier PE, and Drancourt M. 2015. New Microbes New Infections promotes modern prokaryotic taxonomy: a new section "TaxonoGenomics: new genomes of microorganisms in humans". New Microbes New Infect 7:48-49. 10.1016/j.nmni.2015.06.001

Greiner T, and Backhed F. 2011. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab 22:117-123. 10.1016/j.tem.2011.01.002

Gurevich A, Saveliev V, Vyahhi N, and Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072-1075.

Han I, Congeevaram S, Ki DW, Oh BT, and Park J. 2011. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion. Appl Microbiol Biotechnol 89:835-842. 10.1007/s00253-010-2893-8

Kaakoush NO. 2015. Insights into the Role of Erysipelotrichaceae in the Human Host. Front Cell Infect Microbiol 5:84. 10.3389/fcimb.2015.00084

Kim M, Oh HS, Park SC, and Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346-351. 10.1099/ijs.0.059774-0

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111-120.

Konstantinidis KT, and Tiedje JM. 2005. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258-6264. 10.1128/JB.187.18.6258-6264.2005

Konstantinidis KT, and Tiedje JM. 2007. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10:504-509.

Kumar S, Stecher G, and Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870-1874. 10.1093/molbev/msw054

Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A, Cadoret F, Traore SI, Seck EH, Dubourg G, Durand G, Mourembou G, Guilhot E, Togo A, Bellali S, Bachar D, Cassir N, Bittar F, Delerce J, Mailhe M, Ricabona D, Bilen M, Dangui Nieko NP, Dia Badiane NM, Valles C, Mouelhi D, Diop K, Million M, Musso D, Abrahao J, Azhar EI, Bibi F, Yasir M, Diallo A, Sokhna C, Djossou F, Vitton V, Robert C, Rolain JM, La Scola B, Fournier PE, Levasseur A, and Raoult D. 2016. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1:16203. 10.1038/nmicrobiol.2016.203

Lagier JC, Million M, Hugon P, Armougom F, and Raoult D. 2012. Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol 2:136. 10.3389/fcimb.2012.00136

Lee I, Ouk Kim Y, Park SC, and Chun J. 2016. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100-1103.

Meier-Kolthoff JP, and Goker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. 10.1038/s41467-019-10210-3

Rzhetsky A., and M. N. 1992. A Simple Method for Estimating and Testing Minimum Evolution Trees Mol Biol Evol 9:945-967.

Saitou N, and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425. 10.1093/oxfordjournals.molbev.a040454

Sasser M. 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101.
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30:2068-2069. 10.1093/bioinformatics/btu153

Shields P, and Cathcart L. 2011

Motility Test Medium Protocol. *American Society for Microbiology*.

Tegtmeier D, Riese C, Geissinger O, Radek R, and Brune A. 2016. Breznakia blatticola gen. nov. sp. nov. and Breznakia pachnodae sp. nov., two fermenting bacteria isolated from insect guts, and emended description of the family Erysipelotrichaceae. *Syst Appl Microbiol* 39:319-329. 10.1016/j.syapm.2016.05.003

Verbarg S, Göker M, Scheuner C, Schumann P, and Stackebrandt E. 2014. The Families Erysipelotrichaceae emend., Coprobacillaceae fam. nov., and Turicibacteraceae fam. nov. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, and Thompson F, eds. *The Prokaryotes: Firmicutes and Tenericutes*. Berlin, Heidelberg: Springer Berlin Heidelberg, 79-105.

Verbarg S, Rheims H, Emus S, Fruhling A, Kroppenstedt RM, Stackebrandt E, and Schumann P. 2004. Erysipelothrix inopinata sp. nov., isolated in the course of sterile filtration of vegetable peptone broth, and description of Erysipelotrichaceae fam. nov. *Int J Syst Evol Microbiol* 54:221-225. 10.1099/ijs.0.02898-0

Verbarg S, Rheims H, Emus S, Fruhling A, Kroppenstedt RM, Stackebrandt E, and Schumann P. 2004. Erysipelothrix inopinata sp. nov., isolated in the course of sterile filtration of vegetable peptone broth, and description of Erysipelotrichaceae fam. nov. *Int J Syst Evol Microbiol* 54:221-225. 10.1099/ijs.0.02898-0

Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Yang D, Mandelco L, Sechrest J, Lawrence TG, Van Etten J, Maniloff J, and Woese CR. 1989. A phylogenetic analysis of the Mycoplasmas: Basis for their classification. *Journal of Bacteriology* 171:6455-6467.

Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, Whitman WB, Euzéby J, Amann R, and Rosselló-Móra R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. *Nature Reviews Microbiology* 12:635. 10.1038/nrmicro3330

https://www.nature.com/articles/nrmicro3330#supplementary-information

Yutin N, and Galperin MY. 2013. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. *Environ Microbiol* 15:2631-2641. 10.1111/1462-2920.12173
Table 1

Table 1

Differential phenotypic features of the strain SG502T and its closest phylogenetic neighbor \textit{C. innocuum} ATCC 14501T and \textit{E. dolichum} DSM 3991T identified using API ZYM (bioMerieux, France).
Table 1: Differential phenotypic features of the strain SG502^T and its closest phylogenetic neighbor *C. innocuum* ATCC 14501^T and *E. dolichum* DSM 3991^T identified using API ZYM (bioMerieux, France).

Characteristics	SG502^T	ATCC 14501^T	DSM 3991^T
Cell shape	Spindle	Rods	Rods
Gram stain	+	+	+
Growth at 37°C (an.)	+	+	+
Optimal pH	7	7	7
Motility	-	-	-
Size (µ)	1.5×0.35	2.0-4.0 × 0.4-1.0	1.6-6.0 × 0.4-0.6
Carbon sources utilization			
Glucose	+	+	+
Sucrose	-	+	-
Salicin	-	+	-
Mannitol	-	+	-
Lactose	-	-	-
Sorbitol	+	-	-
Maltose	+	±	+
D-Trehalose	+	+	+
Raffinose	-	+	-
Cellobiose	+	+	-
Enzyme activity (API ZYM)			
Alkaline phosphatase	+	+	ND
Esterase (C4)	-	-	ND
Esterase Lipase (C8)	-	-	ND
Lipase (C14)	-	-	ND
Leucine arylamidase	-	+	ND
Valine arylamidase	-	-	ND
Cystine arylamidase	-	+	ND
Trypsin	-	-	ND
α-chymotrypsin	-	+	ND
Acid phosphatase	-	+	ND
Naphthol-As-Bi-phosphorydrolase	-	-	ND
α-galactosidase	-	-	ND
β-galactosidase	-	-	ND
β-glucuronidase	-	-	ND
α-glucosidase	-	-	ND
β-glucosidase	-	-	ND
N-acetyl-β-glucosaminidase	-	-	ND
α-mannosidase	-	-	ND
GC content (%)	32.88	44.5	39
----------------	-------	------	----

- Data obtained from Moore et al (1976).
- “ND” not determined.
Table 2 (on next page)

Table 2

Cellular fatty acid contents percentages (%) of strain SG502T compared to its phylogenetic neighbors \textit{C. innocuum} ATCC 14501T and \textit{E. dolichum} DSM 3991T. Those fatty acids which were not separated using MIDI system were considered as summed features. Summed feature 5 contains \(C_{15:0}\) DMA or \(C_{14:0}\) 3-OH; summed feature 8 contains \(C_{17:1\text{ cis }9}\) or \(C_{17:2}\) and summed feature contains \(C_{18:1\text{ c11/t9/t6}}\) or UN17.83Q.
Table 2: Cellular fatty acid contents percentages (%) of strain SG502^T compared to its phylogenetic neighbors *C. innocuum* ATCC 14501^T and *E. dolichum* DSM 3991^T. Those fatty acids which were not separated using MIDI system were considered as summed features. Summed feature 5 contains C_{15:0} DMA or C_{14:0} 3-OH; summed feature 8 contains C_{17:1 cis 9} or C_{17:2} and summed feature contains C_{18:1 c11/t9/t6} or UN17.83Q.

Characteristics	SG502^T	ATCC 14501^T	DSM 3991^T (‡)
Straight chain			
C_{10:0}	0.31	0.32	1
C_{12:0}	1.74	3.28	-
C_{14:0}	3.54	8.85	1.6
C_{16:0}	**14.7**	**23.7**	**22.8**
C_{16:0} aldehyde	0.42	2.78	-
C_{17:0}	1.41	-	1.8
C_{18:0}	**22.55**	**10.56**	**17.1**
Dimethyl acetal (DMA)			
C_{16:0} DMA	1.46	9.95	-
C_{18:0} DMA	3.62	2.83	-
Unsaturated			
C_{16:1} ω9c	0.99	6.51	-
C_{16:1} ω7c	**6.47**	**10.59**	-
C_{18:1} ω9c	**29.82**	**14.64**	**33.9**
C_{18:1} ω7c	**10.77**	**3.08**	-
Summed Feature 8	0.54	-	-
Summed Feature 10	10.77	3.08	-

(‡) Data from Paek et al. 2017 (Paek et al. 2017)
Table 3

Table 3

Genomic comparison of the strain SG502T with its neighbors
Table 3: Genomic comparison of the strain SG502T with its neighbors.

Bacteria	Contigs	Size (bp)	G+C (%)	rRNA	tRNA	tmRNAs	CDSs	Accession
SG502T	119	2,683,792	32.9	2	49	1	2,654	
Clostridium innocuum DSM 1286T	18	4,772,018	43.4	13	48	1	4,653	AGYV
Longicatena caecimuris DSM 29481T	45	2,945,084	37.8	1	43	1	2,708	SMBP
Eubacterium dolichum DSM 3991T	25	2,190,453	38.1	6	41	1	2,144	ABAW
Faecalilaceae pleomorphus DSM 20574T	47	1,992,636	39	5	44	0	1,961	ATUT
Faealitalea cylindroides ATCC 27803T	143	1,944,726	34.7	0	23	1	1,904	AWVI
Holdemanella biformis DSM 3989T	161	2,415,920	33.8	4	45	0	2,347	ABYT
Diemla fastidiosa DSM 26099T	145	3,575,363	40	3	50	1	3,447	CAEN
Clostridium cocleatum DSM 1551T	88	2,957,106	28.5	8	42	1	2,670	FOIN
Clostridium saccharogumia DSM 17460T	135	3,141,523	30.2	5	56	1	2,751	JMLH
Clostridium spiroforme DSM 1552T	16	2,507,485	28.6	13	58	1	2,330	ABIK
Clostridium ramosum DSM 1402T	16	3,234,795	31.4	9	41	1	3,056	ABFX
Table 4(on next page)

Table 4

Genomic comparison of the strain SG502T with its neighbors 16S rRNA phylogenetic neighbors and proposed *Erysipelatoclostridium* members using TYGS
Table 4: Genomic comparison of the strain SG502^T with its neighbors 16S rRNA phylogenetic neighbors and proposed *Erysipelatoclostridium* members using TYGS.

Bacteria	dDDH (d4, %)	C.I. (d4, %)	G+C difference (%)
Clostridium innocuum DSM 1286^T	19.8	[17.6 - 22.2]	10.48
Longicatena caecimuris DSM 29481^T	20.5	[18.3 - 22.9]	4.86
Eubacterium dolichum DSM 3991^T	20.6	[18.4 - 23.0]	5.22
Faecalicoccus pleomorphus DSM 20574^T	19.6	[17.4 - 22.0]	6.14
Faecalitalea cylindroides ATCC 27803^T	18.9	[16.7 - 21.3]	1.79
Holdemanella biformis DSM 3989^T	19	[16.8 - 21.4]	0.9
Dielma fastidiosa DSM 26099^T	20.1	[17.9 - 22.5]	7.08
Clostridium cocleatum DSM 1551^T	23.5	[21.2 - 26.0]	4.37
Clostridium saccharogumia DSM 17460^T	18.6	[16.4 - 21.0]	2.72
Clostridium spiroforme DSM 1552^T	19.8	[17.6 - 22.2]	4.31
Clostridium ramosum DSM 1402^T	22.4	[20.1 - 24.8]	1.5
Figure 1

A. MALDI-ToF reference spectrum obtained for SG502^T. **B.** Scanning electron micrograph of strain SG502^T. Cells were imaged after culturing in anaerobic conditions for 24 hours at 37 °C in BHI-M medium. Bar, 200 nm.
Figure 2

Neighbor Joining tree of 16S rRNA gene sequences of SG502\(^T\) with related species under Erysipelotrichaceae family. GenBank accession numbers of the 16S rRNA gene sequences are given in parentheses. The sequences were aligned using MUSCLE (Edgar 2004) and the evolutionary distances were computed using Kimura 2-parameter method to obtain the phylogenetic tree in MEGAX (Kumar et al. 2018) after 1000 bootstrap tests (shown as percentages with associated taxa clustered together next to the branches. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Bar, 0.05 substitutions per nucleotide position. *Clostridium butyricum* ATCC 19398\(^T\) was used as an outgroup.
Figure 3

Circular visualization of genome of SG502. From outside to inside, “green” circle represents total number of CDS, “blue” represents number of CDS in positive strand, “bluish green” represents number of CDS in negative strand and “red” represents tRNAs position in the genome. The innermost circle represents GC skewness and circle inside to tRNAs represent average GC content. “Magenta” color represents GC at lower level while “Olive green” color represents GC at higher level.
Genomic comparison of SG502^T genome with its neighbors using OrthoANI in OAT software. A. Comparison with 16S phylogenetic neighbors B. Comparison with formerly proposed members of genus *Erysipelatoclostridium*. Color scale indicates % identity between the genomes.
Figure 5

Average Amino acid composition comparison of the strain SG502T with its neighbors 16S rRNA phylogenetic neighbors and proposed *Erysipelatoclostridium* members using AAI calculator
