Determination of the mechanical properties distribution of the sample by tomography data

O Gerasimov¹, N Kharin¹, O Vorob'yev¹, E Semenova¹ and O Sachenkov¹,²

¹Kazan Federal University, Russia, Tatarstan, Kazan, Kremlevskaya str., 18
²Kazan National Research Technical University, Russia, Tatarstan, Karl Marx str., 10

E-mail: 4works@bk.ru

Abstract. Structural characteristics of the material should be taken into account while the problems of determining the stress-strain state of porous structures are solved. Describing microstructure of porous media is important for inhomogeneous mechanics. Natural experiments are expensive, that’s why nowadays it is popular to use simulation with computer tomography data. These study presents methods to determine mechanical and microstructural properties distribution of the object. Methods were tested on porous samples. Two-phase liquid polyurethane plastics of cold curing Lasilcast was used in research. Produced porous samples was scanned by Vatech PaX-I 3D. Received data were mesh by subvolumes. For every subvolume porosity, fabric tensor and elasticity tensor were calculated. Results were analyzed and compared with natural experiments.

1. Introduction

Structural characteristics of the material should be taken into account while the problems of determining the stress-strain state of porous structures are solved. Describing microstructure of porous media is important for mechanics of inhomogeneous materials [1, 2], soils [3-5], especially for biomechanics [6-8]. Nowadays fabric tensor is well known object of such description [9, 10]. It was shown that eigenvalues of the tensor can be useful for determine orthotropic directions [11]. It was shown that physical activity generates changes in bone tissue. This changes can leads to decreasing of the stress capacity of media – decreasing of the critical stress [12-14]. Correlation between microstructure of bone tissue and macro mechanical parameters was noticed [15]. This study performs techinics to analyze microstructure of object by using computer tomography (CT) data. Natural experiments on human bones are expensive, that’s why it is popular to use plastic porous models (substitutes). But these models should have mechanical properties very similar to real bone tissue, including microstructure properties. In these study methods to determine mechanical and microstructural properties distribution of the plastic object are presents. Calculated parameters can be useful to compare some sample with bone tissue properties.

2. Materials and Methods

Two-phase liquid polyurethane plastics of cold curing Lasilcast (Lc-12) was used in research. This material is using to create bone models for experiments. Declared properties are: mixture viscosity 105 mPa, shore hardness – 75, density 1.05 gm/sm³, Young’s modulus 500 MPa (for compression). Solid
and porous samples were produced. For CT scan Vatech PaX-I 3D was used. The CT data of the object was meshed by regular subvolumes (see figures 1a and 1b).

Every subvolume of the mesh was analyze in terms of fabric tensor. For this purpose mean intercept length (MIL) distribution was built for every element and then MIL was approximated by quadratic form:

\[L^2(n) = \bar{n} \cdot \bar{M} \cdot \bar{n} \]

(1)

where \(L \) – is value of the MIL in direction described by vector \(n \).

Then the fabric tensor can be restored by equation:

\[H(n) = L^{-1/2}(n) \]

(2)

We used subvolume as representative volume element (RVE), so all subvolumes were meshed by regular hexahedral mesh in order to calculate orthotropic properties. We use binarization threshold to differ the material from pores. To determine mechanical properties of the RVE mechanical properties of the solid medium were applied for elements where material exist and zero stiffness applied for elements where pore was. (see figure 1c)

![Figure 1. CT data: a – whole object, b – subvolume of the meshed object; c – meshed sub volume](image)

Six digital experiments were carried out to quantify the orthotropic properties of the RVE: 3 of them were applying by normal strain and in the remaining experiments were applying by shift strain. In every experiment all components of stress was calculated. Equation for mechanical properties can be written:

\[\int_A \sigma_{ij} dA = C_{ijkl} \cdot \varepsilon_{ij}^0 \]

(3)

where \(\varepsilon^0 \) – is known strain which was used in simulations, \(\sigma \) – calculated stress, \(C \) – components of the elasticity tensor.

Equations (3) provide overdetermined system and can be solved by using least squares method. After the elasticity tensor recovered orthotropic axes can be found [16, 17].

3. Results and Discussion

These procedures were made for whole sample. The distribution of the basic microstructure parameters is presented on figure 2, distribution of the porosity is presented on figure 2a and eigenvectors of the fabric tensor are presented on figure 2b. Direction of the orthotropic axes and
eigenvectors of the fabric tensor was closed enough (about 10 degrees of difference). Average mechanical parameters in terms of isotropic material were calculated for the object: Young’s modulus were 210 MPa and Poisson’s ratio were 0.23. This result is close to experimental data [18]. Analyzing results it can be conclude that the object possesses the regular structure. Orthotropic directions is coaxial with geometrical directions (main direction in longitudinal axis and other two directions in transverse plane). Porosity distribution deflected by an angle of 45 degree.

![Microstructure properties distribution](image)

Figure 2. Microstructure properties distribution: a – porous distribution, b – distribution of eigenvectors of the fabric tensor (red – 1st eigenvector, yellow – 2nd eigenvector, green – 3d eigenvector).

4. Conclusion
Method for determining the microstructure properties of the porous media by CT data is presented in the article. For well-known samples it was performed. Distribution of the microstructural parameters and information about distribution of orthotropic axes and mechanical properties along these directions were obtained. Average properties of the object were compared with experimental results. Small differences between calculated and experimental results show quality of the method. An error 22% for Young’s modulus and 15% for Poisson’s ratio were got. These method is good for examine microstructure of bone plastic models in order to check their quality.

Acknowledgements
This work was supported be the grant of the President of the Russian Federation №MK-1717.2018.1 Special thanks to Independent X-ray diagnostic centers Picasso.

References
[1] Berezhnoi D V, Shamim R, Balafendieva I S 2017 Numerical modeling of mechanical behavior of clinch connections at breaking out and shearing *MATEC Web of Conferences* **129** 03023
[2] Davydov R L, Sultanov L U and Kharzhavina V S 2015 Elastoplastic Model of Deformation of
Three-Dimensional Bodies in Terms of Large Strains Global Journal of Pure and Applied Mathematics 11 5099–5108

[3] Berezhnoi D V, Gabasalikova N F and Miheev V V 2016 Application the particle method in problems of mechanics deformable media IOP Conference Series: Materials Science and Engineering 158 012016

[4] Berezhnoi D V, Balafendieva I S, Sachenkov A A and Sekaeva L R 2016 Modelling of deformation of underground tunnel lining, interacting with water- saturated soil IOP Conference Series: Materials Science and Engineering 158 012018

[5] Mokshin E V, Berezhnoi D V 2016 Localization of microseismic events and determination of source parameters IOP Conference Series: Materials Science and Engineering 158 012069

[6] Nekhlopochin A S, Nekhlopochin S N and Syrovoy G V 2017 The analysis of stress-strain state in the cortical screw-vertebral body system when modelling of fixation of implants for anterior cervical interbody fusion Russian Journal of Biomechanics 21(1) 88-101

[7] Vinogradova O B, Elovikova A N, Nyashin Y I and Dubinin A L 2017 The study of the influence of removing complete teeth on the face aesthetics in the process of orthodontic treatment of distal occlusion Russian Journal of Biomechanics 21(3) 247-261

[8] Tverier V M, Nikitin V N and Krotkikh A A 2017 Occlusion correction based on biomechanical modeling Russian Journal of Biomechanics 21(1) 41-50

[9] Kichenko A A , Tverier V M , Nyashin Y I , Osipenko M A and Lokhov V A 2012 On application of the theory of trabecular bone tissue remodeling Russian Journal of Biomechanics 16 46–64

[10] Rho J Y, Roy M E, Tsui T Y and Pharr G M 1999 Elastic properties of microstructural components of human bone tissue as measured by indentation J. Biomed. Mater. Res. 45 45–48

[11] Maquer G, Musy S N, Wandel J, Gross T and Zysset P K 2015 Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables Journal of Bone and Mineral Research 30(6) 1000–1008

[12] Baltina T, Ahmetov N, Sachenkov O, Fedyanin A and Lavrov I 2017 The Influence of hindlimb unloading on bone and muscle tissues in rat model Bionanoscience 7(1) 67–69

[13] Baltina T, Sachenkov O, Ahmetov N, Fedyanin A, Lavrov I, Koroleva E, Gerasimov O and Baltin M 2017 Mechanical properties and structure of bone tissue are changed after unloading handig Osteoporosis international 28 304

[14] Gerasimov O, Shigapova F, Konoplev Y and Sachenkov O 2016 The evolution of the bone in the half-plane under the influence of external pressure IOP Conference Series-Materials Science and Engineering 158 012037

[15] Gerasimov O, Shigapova F, Konoplev Y and Sachenkov O 2016 Evaluation of the stress-strain state of a one-dimensional heterogeneous porous structure IOP Conference Series-Materials Science and Engineering 158 012036

[16] Gross T, Pahr D H and Zysset P K 2013 Morphology-elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations Biomechanics and Modeling in Mechanobiology 12 (4) 793–800

[17] Pahr D H and Zysset P K 2009 A comparison of enhanced continuum FE with micro FE models of human vertebral bodies Journal of Biomechanics 42 (4) 455–462

[18] Gerasimov O, Koroleva E and Sachenkov O 2017 Experimental study of evaluation of mechanical parameters of heterogeneous porous structure IOP Conference Series-Materials Science and Engineering 208 012013