Characteristic properties for a generalized resolvent of a pair of commuting isometric operators.

S.M. Zagorodnyuk

1 Introduction.

Let \(V_1, V_2 \) be closed isometric operators in a Hilbert space \(H \). Suppose that
\[
V_1 V_2 h = V_2 V_1 h, \quad h \in D(V_1 V_2) \cap D(V_2 V_1).
\]
(1)
In general, it is not an easy question whether there exist a Hilbert space \(\tilde{H} \supseteq H \) and commuting unitary operators \(U_1, U_2 \) in \(\tilde{H} \), such that \(U_1 \supseteq V_1 \), \(U_2 \supseteq V_2 \). This problem was studied in a series of papers \cite{5}, \cite{6}, \cite{2}, \cite{8}, \cite{9}, see also references therein. If the answer on the above question is affirmative, then we may define the following operator-valued function of two complex variables:
\[
R_{z_1, z_2} = R_{z_1, z_2}(V_1, V_2) = \left. P_{\tilde{H}} (E_{\tilde{H}} + z_1 U_1)(E_{\tilde{H}} - z_1 U_1)^{-1}(E_{\tilde{H}} + z_2 U_2)(E_{\tilde{H}} - z_2 U_2)^{-1} \right|_H,
\]
(2)
where \(z_1, z_2 \in \mathbb{T} \).

The function \(R_{z_1, z_2}(V_1, V_2) \) is called a generalized resolvent of a pair of isometric operators \(V_1, V_2 \) (corresponding to extensions \(U_1, U_2 \)). Let \(\tilde{E}_{k,t} \), \(t \in [0, 2\pi] \), be the (right-continuous) spectral family \(\tilde{E} \) of \(U_k \), \(\tilde{E}_{k,0} = 0 \), \(k = 1, 2 \). The following operator-valued function of two real variables:
\[
E_{t_1, t_2} = \left. P_{\tilde{H}} \tilde{E}_{1, t_1} \tilde{E}_{2, t_2} \right|_H, \quad t_1, t_2 \in [0, 2\pi],
\]
(3)
is said to be a (strongly right-continuous) spectral function of a pair of isometric operators \(V_1, V_2 \) (corresponding to extensions \(U_1, U_2 \)). As it follows from their definitions, a generalized resolvent and a spectral function, which correspond to the same extensions \(U_1, U_2 \), are related by the following equality:
\[
(R_{z_1, z_2} h, h) = \int_{\mathbb{R}^2} \left(\frac{1 + z_1 e^{it_1}}{1 - z_1 e^{it_1}} \right) \left(\frac{1 + z_2 e^{it_2}}{1 - z_2 e^{it_2}} \right) d(E_{t_1, t_2} h, h),
\]
\footnote{We shall use the terminology from \cite{10}.}
Here the "distribution" function \((E_{t_1, t_2} h, h)_H\) defines a (non-negative) finite measure \(\sigma\) on \(B(\mathbb{R}^2)\). Moreover, we have \(\sigma((0, 2\pi] \times (0, 2\pi]) = \sigma(\mathbb{R}^2) = \|h\|_H^2\). (One may define \(\sigma\) on a semi-ring of rectangles of the form \(\delta = \{a < t_1 \leq b, c < t_2 \leq d\}\) and then extend by the standard procedure).

Let \(V\) be a closed isometric operator in a Hilbert space \(H\). Then there always exists a unitary extension \(U \supseteq V\) in a Hilbert space \(\tilde{H} \supseteq H\). Recall that the following operator-valued function:

\[
R_\zeta = R_\zeta(V) = P_{\tilde{H}} (E_{\tilde{H}} - \zeta U)^{-1}|_H, \quad \zeta \in \mathbb{T},
\]

is said to be a generalized resolvent of an isometric operator \(V\) (corresponding to the extension \(U\)). An arbitrary generalized resolvent \(R_\zeta\) has the following form (5):

\[
R_\zeta = [E_H - \zeta (V \oplus F_\zeta)]^{-1}, \quad \zeta \in \mathbb{D},
\]

where \(F_\zeta\) is a function from \(S(\mathbb{D}; N_0(V), N_\infty(V))\). Conversely, an arbitrary function \(F_\zeta \in S(\mathbb{D}; N_0(V), N_\infty(V))\) defines by relation (3) a generalized resolvent \(R_\zeta\) of the operator \(V\). Moreover, to different functions from \(S(\mathbb{D}; N_0(V), N_\infty(V))\) there correspond different generalized resolvents of the operator \(V\). Formula (3) is known as Chumakin’s formula for the generalized resolvents of an isometric operator. Moreover, Chumakin established the following characteristic properties of a generalized resolvent of a closed isometric operator (3):

Theorem 1 In order that a family of linear operators \(R_\zeta\), acting in a Hilbert space \(H\) \((D_{R_\zeta} = H)\) and depending on complex parameter \(\zeta (|\zeta| \neq 1)\), be a generalized resolvent of a closed isometric operator, it is necessary and sufficient that the following conditions hold:

1) There exists a number \(\zeta_0 \in \mathbb{D} \setminus \{0\}\) and a subspace \(L \subseteq H\) such that

\[
(\zeta R_\zeta - \zeta_0 R_{\zeta_0})f = (\zeta - \zeta_0) R_\zeta R_{\zeta_0} f,
\]

for arbitrary \(\zeta \in \mathbb{T}_e\) and \(f \in L\);

2) The operator \(R_{\zeta_0}\) is bounded and \(R_{\zeta_0} h = h\), for all \(h \in H \oplus \overline{R_{\zeta_0} L}\);

3) For an arbitrary \(h \in H\) the following inequality holds:

\[
\text{Re}(R_\zeta h, h)_H \geq \frac{1}{2}\|h\|_H^2, \quad \zeta \in \mathbb{D}.
\]
4) For an arbitrary $h \in H$ $R_\zeta h$ is an analytic vector-valued function of a parameter ζ in \mathbb{D};

5) For an arbitrary $\zeta \in \mathbb{D}\setminus\{0\}$ holds:

\[R^*_\zeta = E_H - R^\perp_{\zeta}. \]

Theorem 2 In order that a family of linear operators R_ζ ($D_{R_\zeta} = H$, $|\zeta| \neq 1$) in a Hilbert space H be a generalized resolvent of a given closed isometric operator V in H, it is necessary and sufficient that the following conditions hold:

1) For all $\zeta \in \mathbb{T}$ and for all $g \in D(V)$ the following equality holds:

\[R_\zeta(E_H - \zeta V)g = g; \]

2) The operator R_0 is bounded and $R_0h = h$, for all $h \in H \ominus D(V)$;

3) For an arbitrary $h \in H$ the following inequality holds:

\[\text{Re}(R_\zeta h, h)_H \geq \frac{1}{2}\|h\|^2_H, \quad \zeta \in \mathbb{D}; \]

4) For an arbitrary $h \in H$ $R_\zeta h$ is an analytic vector-valued function of a parameter ζ in \mathbb{D};

5) For an arbitrary $\zeta \in \mathbb{D}\setminus\{0\}$ the following equality is true:

\[R^*_\zeta = E_H - R^\perp_{\zeta}. \]

Our purpose is to obtain an analog of Theorem 1 for a generalized resolvent of a pair of commuting isometric operators. An important role will be played by the following class H_2 of analytic functions of two complex variables, which was introduced by Korányi in [5] (We use the original notation of Korányi for this class. Since the Hardy space will not appear in this paper, it will cause no confusion).

Definition 1 The class H_2 is the class of functions f of two complex variables z_1, z_2 defined and holomorphic for all $|z_1|, |z_2| \neq 1$ (including ∞) and satisfying the conditions

(a) $f(z_1^{-1}, z_2^{-1}) = \overline{f(z_1, z_2)}$ for all $|z_1|, |z_2| \neq 1$,
(b) \(f(z_1, z_2) - f(x^{-1}, z_2) + f(z_1, y^{-1}) \geq 0, \) for \(|z_1|, |z_2| < 1, \)

(c) \(f(z_1, 0) + f(z_1, \infty) = 0, \) \(f(0, z_2) + f(\infty, z_2) = 0 \) for all \(|z_1| \neq 1 \) and \(|z_2| \neq 1. \)

Every function \(g \in H_2 \) admits the following representation (see [3, formula (26)]) and considerations on page 532 in [5]):

\[
g(z_1, z_2) = \frac{1}{4} \left((E + z_1 \hat{U})(E - z_1 \hat{U})^{-1}(E + z_2 \hat{V})(E - z_2 \hat{V})^{-1} \varepsilon_{0,0,0} \right),
\]

where \(\hat{U}, \hat{V} \) are some commutative unitary operators in a Hilbert space \(\hat{\mathcal{B}}; \)

\(\varepsilon_{0,0} \in \hat{\mathcal{B}}. \) Let \(\hat{E}_{1,t}, t \in [0, 2\pi], \) be the (right-continuous) spectral family of \(\hat{U}, \hat{E}_{1,0} = 0. \) Let \(\hat{E}_{2,t}, t \in [0, 2\pi], \) be the (right-continuous) spectral family of \(\hat{V}, \hat{E}_{2,0} = 0. \) As in relation (11) we may write:

\[
g(z_1, z_2) = \int_{\mathbb{R}^2} \left(\frac{1 + z_1 e^{it_1}}{1 - z_1 e^{it_1}} \right) \left(\frac{1 + z_2 e^{it_2}}{1 - z_2 e^{it_2}} \right) \mu \left(\hat{E}_{1,t}, \hat{E}_{2,t} \frac{1}{2} \varepsilon_{0,0,0} \right),
\]

where \(\mu \) is a (non-negative) finite measure on \(\mathcal{B}(\mathbb{R}^2) \) generated by the distribution function \(\left(\hat{E}_{1,t}, \hat{E}_{2,t} \frac{1}{2} \varepsilon_{0,0,0} \right). \) Moreover, we have \(\mu((0, 2\pi] \times (0, 2\pi]) = \mu(\mathbb{R}^2). \)

Another important ingredient of our proof is generalized Neumark’s dilation theorem [10, p. 499] (while in the proof of Chumakin’s result the usual Neumark’s dilation theorem is used).

Notations. As usual, we denote by \(\mathbb{R}, \mathbb{C}, \mathbb{N}, \mathbb{Z}, \mathbb{Z}_+, \) the sets of real numbers, complex numbers, positive integers, integers and non-negative integers, respectively; \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}; \) \(\mathbb{D}_e = \{ z \in \mathbb{C} : |z| > 1 \}; \) \(\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \}; \) \(\mathbb{T}_e = \{ z \in \mathbb{C} : |z| \neq 1 \}. \) By \(k \in \overline{m,n} \) (or \(k = \overline{m,n} \)) we mean that \(k \in \mathbb{Z}_+ : m \leq k \leq n; \) for \(m, n \in \mathbb{Z}_+. \) By \(\mathbb{R}^2 \) we denote the two-dimensional real Euclidean space. By \(\mathcal{B}(\mathbb{R}^2) \) we mean the set of all Borel subsets of \(\mathbb{R}^2. \)

In this paper Hilbert spaces are not necessarily separable, operators in them are supposed to be linear.

If \(H \) is a Hilbert space then \(\langle \cdot, \cdot \rangle_H \) and \(\| \cdot \|_H \) mean the scalar product and the norm in \(H, \) respectively. Indices may be omitted in obvious cases. For a linear operator \(A \) in \(H, \) we denote by \(D(A) \) its domain, by \(\mathcal{R}(A) \) its range,
and \(A^* \) means the adjoint operator if it exists. If \(A \) is invertible then \(A^{-1} \) means its inverse. \(\overline{A} \) means the closure of the operator, if the operator is closable. If \(A \) is bounded then \(\|A\| \) denotes its norm. For a set \(M \subseteq H \) we denote by \(\overline{M} \) the closure of \(M \) in the norm of \(H \). By \(\text{Lin} M \) we mean the set of all linear combinations of elements from \(M \), and \(\text{span} M := \overline{\text{Lin} M} \). By \(E_H \) we denote the identity operator in \(H \), i.e. \(E_H x = x, x \in H \). In obvious cases we may omit the index \(H \). If \(H_1 \) is a subspace of \(H \), then \(P_{H_1} = P_{H_1}^H \) is an operator of the orthogonal projection on \(H_1 \) in \(H \). By \([H] \) we denote a set of all bounded operators on \(H \). For a closed isometric operator \(V \) in \(H \) we denote: \(M_\zeta(V) = (E_H - \zeta V)D(V), N_\zeta(V) = H \ominus M_\zeta(V), \zeta \in \mathbb{C}; M_\infty(V) = R(V), N_\infty(V) = H \ominus R(V) \). For a unitary operator \(U \) in \(H \) we denote: \(\mathcal{R}_z(U) := (E_H - zU)^{-1}, z \in \mathbb{T}_e \).

By \(\mathcal{S}(D; N, N') \) we denote a class of all analytic in a domain \(D \subseteq \mathbb{C} \) operator-valued functions \(F(z) \), which values are linear non-expanding operators mapping the whole \(N \) into \(N' \), where \(N \) and \(N' \) are some Hilbert spaces.

For a unitary operator \(U \) in a Hilbert space \(H \) we shall use the following notation:

\[
U(z) := (E_H + zU)(E_H - zU)^{-1} = -E_H + 2\mathcal{R}_z(U), \quad z \in \mathbb{T}_e.
\]

It is straightforward to check that \([5 \text{ p. 531}]\)

\[
U^*(z) = -U\left(\frac{1}{\bar{z}}\right), \quad z \in \mathbb{T}_e \setminus \{0\}; \tag{9}
\]

\[
U(z) - U\left(\frac{1}{\bar{z}}\right) = 2(1 - |z|^2)\mathcal{R}_z^*(U)\mathcal{R}_z(U) \geq 0, \quad z \in \mathbb{D} \setminus \{0\}. \tag{10}
\]

If we set \(U(\infty) := -E_H \), then relation (9) will be valid for all \(z \in \mathbb{T}_e \cup \{\infty\} \).

2 Preliminary results.

We shall need the following elementary lemma.

Lemma 1. Let \(\mu \) be a (non-negative) finite measure on \(\mathcal{B}(\mathbb{R}^2) \). Let \(\varphi_j(z; t) \) be an analytic of \(z \) in a domain \(D \subseteq \mathbb{C} \) complex-valued function depending on a parameter \(t \in \mathbb{R} \) with all derivatives \((\varphi_j(z; t))_z^{(k)} \), \(k \in \mathbb{Z}_+ \) being continuous and bounded as a function of \(t \) (with an arbitrary fixed \(z \in D \)); \(j = 1, 2 \). Suppose that for each \(z_0 \in D \) there exists a closed ball \(U(z_0) = \{z \in \mathbb{C} : |z - z_0| \leq R_{z_0}\} \subseteq D \) \((R_{z_0} > 0)\), such that

\[
|\varphi_j(z; t)|^{(k)} \leq M_{k,j}(z_0), \quad z \in U(z_0), \quad t \in \mathbb{R}, \quad k \in \mathbb{Z}_+, \tag{11}
\]
where $M_{k,j}(z_0)$ does not depend on t. Here $j = 1, 2$ is a fixed number. Then
\[
\left(\frac{g(z_1, z_2)}{z_1}\right)^{(k)}_{z_2} = \int_{\mathbb{R}^2} \varphi_1(z_1, t) \varphi_2(z_2, t_2) d\mu(t_1, t_2), \quad k, l \in \mathbb{Z}_+, \tag{12}
\]
where
\[
g(z_1, z_2) = \int_{\mathbb{R}^2} \varphi_1(z_1, t) \varphi_2(z_2, t_2) d\mu(t_1, t_2), \quad z_1, z_2 \in D, \tag{13}
\]
and all derivatives in (12) exist.

Proof. Firstly, we shall check relation (12) with $l = 0$ by the induction (for $k \in \mathbb{Z}_+$). We may use the definition of the derivative, Lagrange's theorem on a finite increment of a function (the mean value theorem), inequality (11) and the Lebesgue dominated convergence theorem to verify the induction step. Secondly, fix an arbitrary $k \in \mathbb{Z}_+$ and check relation (12) by the induction (for $l \in \mathbb{Z}_+$) in a similar manner. \(\square \)

By the induction argument we may write:
\[
\left(\frac{1 + e^{it}}{1 - e^{it}}\right)^{(k)}_z = 2k! \frac{e^{ikt}}{(1 - z e^{it})^{k+1}} - \delta_{k,0}, \quad z \in \mathbb{T}, \quad t \in \mathbb{R}, \quad k \in \mathbb{Z}_+; \tag{14}
\]
\[
\left(\frac{u + e^{it}}{u - e^{it}}\right)^{(l)}_u = (-1)^l 2l! \frac{e^{it}}{(u - e^{it})^{l+1}} + \delta_{l,0}, \quad u \in \mathbb{T}, \quad t \in \mathbb{R}, \quad l \in \mathbb{Z}_+. \tag{15}
\]

Let $g(z_1, z_2)$ be an arbitrary function which admits representation (8) where μ is a (non-negative) finite measure on $\mathfrak{B}(\mathbb{R}^2)$ with $\mu((0, 2\pi) \times (0, 2\pi]) = \mu(\mathbb{R}^2)$. By Lemma (1) and relations (14), (15) we obtain that
\[
\left(\frac{g(z_1, z_2)}{z_1}\right)^{(k)}_{z_2} = \begin{cases} s_{0,0}, & \text{if } k = l = 0 \\ 2l! s_{0,l}, & \text{if } k = 0, \ l \in \mathbb{N} \\ 2k! s_{k,0}, & \text{if } k \in \mathbb{N}, \ l = 0 \\ 4k!! s_{k,l}, & \text{if } k, l \in \mathbb{N} \end{cases}, \tag{16}
\]
\[
\left(\frac{g(u_1^{-1}, z_2)}{u_1}\right)^{(k)}_{z_2} = \begin{cases} -2k! s_{-k,0}, & \text{if } k \in \mathbb{N}, \ l = 0 \\ -4k!! s_{-k,l}, & \text{if } k, l \in \mathbb{N} \end{cases}, \tag{17}
\]
where $g(u_1^{-1}, z_2)|_{u_1=0} := \lim_{u_1 \to 0} g(u_1^{-1}, z_2)$, $z_2 \in \mathbb{D}$; and therefore $g(u_1^{-1}, z_2)$ is defined on $\mathbb{D} \times \mathbb{D}$;
\[
\left(\frac{g(z_1, u_2^{-1})}{z_1}\right)^{(k)}_{u_2} = \begin{cases} -2l! s_{0,-l}, & \text{if } k = 0, \ l \in \mathbb{N} \\ -4k!! s_{k,-l}, & \text{if } k, l \in \mathbb{N} \end{cases}, \tag{18}
\]
\[\]
where \(g(z_1, u_2^{-1})|_{u_2=0} := \lim_{u_2 \to 0} g(z_1, u_2^{-1}), \) \(z_1 \in \mathbb{D}; \) and therefore \(g(z_1, u_2^{-1}) \) is defined on \(\mathbb{D} \times \mathbb{D}; \)

\[
\left((g(u_1^{-1}, u_2^{-1}))^{(k)}_{u_1} \right)_{u_2} = \frac{4k!}{(k-l)!} s_{-k, -l}, \quad k, l \in \mathbb{N},
\]

where \(g(u_1^{-1}, u_2^{-1})|_{u_1=0} = \lim_{u_1 \to 0} g(u_1^{-1}, u_2^{-1}), \) \(u_2 \in \mathbb{D} \setminus \{0\}; \) \(g(u_1^{-1}, u_2^{-1})|_{u_2=0} = \lim_{u_2 \to 0} g(u_1^{-1}, u_2^{-1}), \) \(u_1 \in \mathbb{D} \setminus \{0\}; \) \(g(u_1^{-1}, u_2^{-1})|_{u_1=0} = \lim_{u_2 \to 0} g(u_1^{-1}, u_2^{-1}); \) and therefore \(g(u_1^{-1}, u_2^{-1}) \) is defined on \(\mathbb{D} \times \mathbb{D}. \) Here

\[
s_{k, l} := \int_{\mathbb{R}^2} e^{i k t_1} e^{i l t_2} d\mu, \quad k, l \in \mathbb{Z},
\]

are the trigonometric moments of \(\mu. \) Thus, all trigonometric moments of \(\mu \) are uniquely determined by the function \(g(z_1, z_2). \)

Consider the following function:

\[
f_{m, k}(t) = \left\{ \begin{array}{ll}
\left(\left(\frac{1}{t} \right)^m - (2\pi)^m \right) kt + (2\pi)^m, & 0 \leq t \leq \frac{1}{k} \\
\frac{1}{k} < t \leq 2\pi, & \end{array} \right.
\]

where \(m \in \mathbb{Z}_+, \) \(k \in \mathbb{N}. \) Extend \(f_{m, k}(t) \) to a continuous function on the real line with the period \(2\pi. \) By Weierstrass’s approximation theorem there exists a trigonometric polynomial \(T_{m, k}(t) \) such that

\[
|f_{m, k}(t) - T_{m, k}(t)| < \frac{1}{k}, \quad t \in \mathbb{R}.
\]

Observe that

\[
|f_{m, k}(t)| \leq (2\pi)^m, \quad t \in \mathbb{R}.
\]

By (22) it follows that

\[
|T_{m, k}(t)| \leq (2\pi)^m + 1, \quad t \in \mathbb{R}.
\]

For arbitrary \(m, n \in \mathbb{Z}_+ \) we may write

\[
\left| \int_{\mathbb{R}^2} t_1^m t_2^n d\mu - \int_{\mathbb{R}^2} T_{m, k}(t_1) T_{n, k}(t_2) d\mu \right| \\
\leq \left| \int_{\mathbb{R}^2} (t_1^m - T_{m, k}(t_1)) t_2^n d\mu \right| + \left| \int_{\mathbb{R}^2} T_{m, k}(t_1) (t_2^n - T_{n, k}(t_2)) d\mu \right| \\
\leq \left| \int_{\mathbb{R}^2} (t_1^m - f_{m, k}(t_1)) t_2^n d\mu \right| + \left| \int_{\mathbb{R}^2} (f_{m, k}(t_1) - T_{m, k}(t_1)) t_2^n d\mu \right| +
\]

\(7 \)
\[
+ \left| \int_{\mathbb{R}^2} T_{m,k}(t_1) (t_1^n - f_{n,k}(t_2)) \, d\mu \right| + \\
+ \left| \int_{\mathbb{R}^2} T_{m,k}(t_1) (f_{n,k}(t_2) - T_{n,k}(t_2)) \, d\mu \right| \to 0,
\]

as \(k \to \infty\). Therefore all power moments:

\[
r_{m,n} := \int_{\mathbb{R}^2} t_1^m t_2^n \, d\mu, \quad m, n \in \mathbb{Z}_+,
\]

are uniquely determined by the function \(g(z_1, z_2)\). Since the two-dimensional power moment problem which has a solution with a compact support is determinate (e.g. [7, Theorem B, p. 323]), then we conclude that the measure \(\mu\) in representation (8) is uniquely determined by the function \(g\).

Proposition 1 Let \(\sigma_j (j = 1, 4)\) be (non-negative) finite measures on \(\mathcal{B}(\mathbb{R}^2)\) with \(\sigma_j((0,2\pi]^2) = \sigma_j(\mathbb{R}^2)\). If

\[
s_{k,l}(\sigma_1) - s_{k,l}(\sigma_2) + is_{k,l}(\sigma_3) - is_{k,l}(\sigma_4) = 0, \quad k, l \in \mathbb{Z},
\]

then

\[
\sigma_1 - \sigma_2 + i\sigma_3 - i\sigma_4 = 0.
\]

Proof. Observe that the measures \(\sigma_j (j = 1, 4)\) satisfy the assumptions on the measure \(\mu\) introduced after (13). Therefore we may apply the above constructions to these measures. Notice that the function \(f_{m,k}(t)\) in (21) depends on \(m, k, t\) but do not depend on the measure \(\mu\). By (25) for arbitrary \(m, n \in \mathbb{Z}_+\) we may write

\[
\left| r_{m,n}(\sigma_1) - r_{m,n}(\sigma_2) + ir_{m,n}(\sigma_3) - ir_{m,n}(\sigma_4) - \left(\int_{\mathbb{R}^2} T_{m,k}(t_1) T_{n,k}(t_2) \, d\sigma_1 - \int_{\mathbb{R}^2} T_{m,k}(t_1) T_{n,k}(t_2) \, d\sigma_2 + i \int_{\mathbb{R}^2} T_{m,k}(t_1) T_{n,k}(t_2) \, d\sigma_3 \right. - \left. \int_{\mathbb{R}^2} T_{m,k}(t_1) T_{n,k}(t_2) \, d\sigma_4 \right| \to 0,
\]

as \(k \to \infty\). By (27) we conclude that the expression in the round brackets in (29) is equal to zero. Therefore

\[
r_{m,n}(\sigma_1) - r_{m,n}(\sigma_2) + ir_{m,n}(\sigma_3) - ir_{m,n}(\sigma_4) = 0, \quad m, n \in \mathbb{Z}_+.
\]
Extracting the real and the imaginary parts we get

\[r_{m,n}(\sigma_1) = r_{m,n}(\sigma_2), \quad m, n \in \mathbb{Z}_+; \tag{31} \]

\[r_{m,n}(\sigma_3) = r_{m,n}(\sigma_4), \quad m, n \in \mathbb{Z}_+. \tag{32} \]

Since the corresponding two-dimensional power moment problem is determinate, we conclude that \(\sigma_1 = \sigma_2 \) and \(\sigma_3 = \sigma_4 \). \(\square \)

Proposition 2 Let \(\sigma_j \,(j = 1, 4) \) be (non-negative) finite measures on \(\mathcal{B}(\mathbb{R}^2) \) with \(\sigma_j((0, 2\pi]^2) = \sigma_j(\mathbb{R}^2) \). Let \(g_j(z_1, z_2) \) be a function which admits representation (6) with \(\sigma_j \) instead of \(\mu \); \(j = 1, 4 \). If

\[g_1(z_1, z_2) - g_2(z_1, z_2) + ig_3(z_1, z_2) - ig_4(z_1, z_2) = 0, \quad z_1, z_2 \in \mathbb{T}_e, \tag{33} \]

then

\[\sigma_1 - \sigma_2 + i\sigma_3 - i\sigma_4 = 0. \tag{34} \]

Proof. The measures \(\sigma_j \,(j = 1, 4) \) satisfy the assumptions on the measure \(\mu \) introduced after (15). Moreover, the functions \(g_j(z_1, z_2) \) for \(\sigma_j \) are introduced in the same way as \(g(z_1, z_2) \) for \(\mu \). Calculating derivatives of \(g_1(z_1, z_2) - g_2(z_1, z_2) + ig_3(z_1, z_2) - ig_4(z_1, z_2) \) at various points and using relations (16)-(19) we obtain that

\[s_{k,l}(\sigma_1) - s_{k,l}(\sigma_2) + is_{k,l}(\sigma_3) - is_{k,l}(\sigma_4) = 0, \quad k, l \in \mathbb{Z}. \]

By Proposition 1 we conclude that relation (34) holds. \(\square \)

3 Properties of generalized resolvents.

The following theorem is an analog of Theorem 1.

Theorem 3 Let an operator-valued function \(R_{z_1, z_2} \) be given, which depends on complex parameters \(z_1, z_2 \in \mathbb{T}_e \) and which values are linear bounded operators defined on a (whole) Hilbert space \(H \). This function is a generalized resolvent of a pair of closed isometric operators in \(H \) (satisfying the commutativity relation (1)) if and only if the following conditions are satisfied:

1) \(R_{0,0} = E_H; \)

2) \(R_{z_1, z_2}^* = R_{-\frac{1}{z_1}, -\frac{1}{z_2}}, \quad z_1, z_2 \in \mathbb{T}_e \setminus \{0\}; \)

9
3) For all \(h \in H \), for the function \(f(z_1, z_2) := (R_{z_1, z_2} h, h) \), \(z_1, z_2 \in \mathbb{T}_e \), there exist limits:

\[
f(\infty, z_2) := \lim_{z_1 \to \infty} f(z_1, z_2), \quad f(z_1, \infty) := \lim_{z_2 \to \infty} f(z_1, z_2), \quad z_1, z_2 \in \mathbb{T}_e;
\]

\[
f(\infty, \infty) = \lim_{z_2 \to \infty} \lim_{z_1 \to \infty} f(z_1, z_2),
\]

and the extended by these relations function \(f(z_1, z_2), z_1, z_2 \in \mathbb{T}_e \cup \{\infty\} \) belongs to \(H_2 \).

Proof. Necessity. Let \(V_1, V_2 \) be closed isometric operators in a Hilbert space \(H \) satisfying relation (4). Suppose that there exist commuting unitary extensions \(U_k \supseteq V_k \), \(k = 1, 2 \), in a Hilbert space \(\tilde{H} \supseteq H \), and \(R_{z_1, z_2} = R_{z_1, z_2} \) be the corresponding generalized resolvent. By the definition of the generalized resolvent we see that condition 1) is satisfied. By (9) for arbitrary \(z_1, z_2 \in \mathbb{T}_e \setminus \{0\} \) and \(h, g \in H \) we may write

\[
(R_{z_1, z_2} h, g)_H = (P_{\tilde{H}} U_1(z_1) U_2(z_2) h, g)_H = (U_1(z_1) U_2(z_2) h, g)_{\tilde{H}} = (h, U_1(z_1) U_2(z_2) (\overline{z_2}^{-1})^{-1} g)_{\tilde{H}} = (h, R_{z_1, z_2} g)_H.
\]

Therefore condition 2) holds.

Choose an arbitrary \(h \in H \) and set

\[
f(z_1, z_2) = (U_1(z_1) U_2(z_2) h, h)_{\tilde{H}}, \quad z_1, z_2 \in \mathbb{T}_e \cup \{\infty\}. \quad (35)
\]

Here \(U_1(\infty) = U_2(\infty) := -E_{\tilde{H}} \). It is easy to check that this definition is consistent with the definition of \(f(z_1, z_2) \) from the statement of the theorem. Observe that the set \(\mathbb{T}_e \times \mathbb{T}_e \) is a union of four polycircular domains \(\mathbb{D} \times \mathbb{D}, \mathbb{D} \times \mathbb{D}_e, \mathbb{D}_e \times \mathbb{D}, \mathbb{D}_e \times \mathbb{D}_e \). In each of these domains the function \(f(z_1, z_2) \) is holomorphic with respect to each variable. By Hartogs’s theorem we conclude that \(f(z_1, z_2) \) is holomorphic at each point of \(\mathbb{T}_e \times \mathbb{T}_e \). For the infinite points we may use the change of variable \(u = \frac{1}{z} \) and proceed in the same manner. Conditions (a)-(c) in the definition of the class \(H_2 \) can be checked by relations (9), (10), as it was done in [5, p. 531]. Thus, \(f(z_1, z_2) \in H_2 \) and condition 3) holds.

Sufficiency. Suppose that an operator-valued function \(R_{z_1, z_2} \) satisfies the assumptions of the theorem and conditions 1), 2), 3). By condition 3) and relation (8) we may write:

\[
(R_{z_1, z_2} h, h)_H = \int_{\mathbb{R}^2} \left(\frac{1 + z_1 e^{it_1}}{1 - z_1 e^{it_1}} \right) \left(\frac{1 + z_2 e^{it_2}}{1 - z_2 e^{it_2}} \right) d\mu(\delta; h, h),
\]

10
\[z_1, z_2 \in T_e, \ h \in H, \]
where \(\mu(\delta; h, h) \) is a (non-negative) finite measure on \(\mathcal{B}(\mathbb{R}^2) \) such that \(\mu((0, 2\pi] \times (0, 2\pi]) = \mu(\mathbb{R}^2) \). Set

\[
\mu(\delta; h, g) = \frac{1}{4}(\mu(\delta; h + g, h + g) - \mu(\delta; h - g, h - g) + \mu(\delta; h + ig, h + ig) - \mu(\delta; h - ig, h - ig)),
\]

\[\delta \in \mathcal{B}(\mathbb{R}^2), \ h, g \in H. \]
Then

\[
(R_{z_1, z_2} h, g)_H = \int_{\mathbb{R}^2} \left(\frac{1 + z_1 e^{it_1}}{1 - z_1 e^{it_1}} \right) \left(\frac{1 + z_2 e^{it_2}}{1 - z_2 e^{it_2}} \right) d\mu(\delta; h, g),
\]

\[z_1, z_2 \in T_e, \ h, g \in H. \]
The integral of the form \(\int_{\mathbb{R}^2} u(t_1, t_2) d\mu(\delta) \) (where \(u(t_1, t_2) \) is a complex-valued function on \(\mathbb{R}^2 \) and \(\mu(\delta) \) is a complex-valued function on \(\mathcal{B}(\mathbb{R}^2) \)) may be understood as a limit of Riemann-Stieltjes type integral sums, if it exists. This means that we consider partitions of \(\mathbb{R}^2 \) by rectangles of the following form:

\[\delta_{n,k} := \{ t_{1,n-1} < t_1 \leq t_{1,n}, \ t_{2,k-1} < t_2 \leq t_{2,k} \}, \ n, k \in \mathbb{Z}, \]

and choose arbitrary points \((t_{1,n,k}, t_{2,n,k}) \in \delta_{n,k} \). The integral sum is defined by \(\sum_{n,k} u(t_{1,n,k}, t_{2,n,k}) \mu(\delta_{n,k}) \). The integral is a limit of integral sums as partitions become arbitrarily fine (i.e. the diameter of partitions tends to zero), if the limit exists, cf. [10] p. 307.

Fix arbitrary \(h, g \in H \). From the definition of \(\mu(\delta; h, g) \) it follows that \(\mu(\delta; g, h) - \mu(\delta; h, g) = \sum_{j=1}^{8} \alpha_j \mu_j(\delta), \ \delta \in \mathcal{B}(\mathbb{R}^2), \) where \(\alpha_j \in \mathbb{C} \) and \(\mu_j(\delta) \) are (non-negative) finite measures on \(\mathcal{B}(\mathbb{R}^2) \) such that \(\mu_j((0, 2\pi] \times (0, 2\pi]) = \mu_j(\mathbb{R}^2), j \in \{1, 8\} \). Namely, \(\alpha_j \delta_{j=1}^{8} = \{ \frac{1}{4}, -\frac{1}{4}, \frac{i}{4}, -\frac{i}{4}, -\frac{1}{4}, \frac{i}{4}, -\frac{i}{4}, -\frac{1}{4} \} \), \(\alpha_j \delta_{j=1}^{8} = \{ \mu(\delta; g + h, g + h), \mu(\delta; g - h, g - h), \mu(\delta; g + ih, g + ih), \mu(\delta; g - ih, g - ih), \mu(\delta; h + g, h + g), \mu(\delta; h - g, h - g), \mu(\delta; h + ig, h + ig), \mu(\delta; h - ig, h - ig) \} \).

Observe that \(\mu_1 = \mu_5, \ \alpha_1 = -\alpha_5; \ \mu_2 = \mu_6, \ \alpha_2 = -\alpha_6; \ \mu_3 = \mu_8, \ \alpha_3 = -\alpha_8; \ \mu_4 = \mu_7, \ \alpha_4 = -\alpha_7. \)

This follows from the representation (36) for each measure and the established in the previous section fact that the measure is uniquely determined from the representation of type (35). For example,

\[
(R_{z_1, z_2} (g - ih), g - ih) = (R_{z_1, z_2} (h + ig), h + ig), \quad z_1, z_2 \in T_e,
\]
and therefore $\mu_4 = \mu_7$. Consequently, we obtain the following relation:

$$
\mu(\delta; g, h) = \mu(\delta; h, g), \quad \delta \in \mathfrak{B}(\mathbb{R}^2), \ h, g \in H.
$$

(39)

Choose arbitrary $\alpha, \beta \in \mathbb{C}$ and $h_1, h_2, g \in H$. By (38) we may write

$$
\int_{\mathbb{R}^2} \left(\frac{1 + z_1 e^{it_1}}{1 - z_1 e^{it_1}} \right) \left(\frac{1 + z_2 e^{it_2}}{1 - z_2 e^{it_2}} \right) d\mu(\delta; \alpha h_1 + \beta h_2, g) =
$$

$$
(R_{z_1, z_2}(\alpha h_1 + \beta h_2), g)_H = \alpha (R_{z_1, z_2} h_1, g)_H + \beta (R_{z_1, z_2} h_2, g)_H =
$$

$$
= \alpha \int_{\mathbb{R}^2} \left(\frac{1 + z_1 e^{it_1}}{1 - z_1 e^{it_1}} \right) \left(\frac{1 + z_2 e^{it_2}}{1 - z_2 e^{it_2}} \right) d\mu(\delta; h_1, g) +
$$

$$
+ \beta \int_{\mathbb{R}^2} \left(\frac{1 + z_1 e^{it_1}}{1 - z_1 e^{it_1}} \right) \left(\frac{1 + z_2 e^{it_2}}{1 - z_2 e^{it_2}} \right) d\mu(\delta; h_2, g), \ z_1, z_2 \in \mathbb{T}_e.
$$

Therefore

$$
\int_{\mathbb{R}^2} \left(\frac{1 + z_1 e^{it_1}}{1 - z_1 e^{it_1}} \right) \left(\frac{1 + z_2 e^{it_2}}{1 - z_2 e^{it_2}} \right) d(\alpha \mu(\delta; h_1, g) + \beta \mu(\delta; h_2, g)) -
$$

$$
- \mu(\delta; \alpha h_1 + \beta h_2, g)) = 0, \ z_1, z_2 \in \mathbb{T}_e.
$$

By Proposition 2 we obtain that

$$
\mu(\delta; \alpha h_1 + \beta h_2, g) = \alpha \mu(\delta; h_1, g) + \beta \mu(\delta; h_2, g),
$$

$$
\delta \in \mathfrak{B}(\mathbb{R}^2), \ \alpha, \beta \in \mathbb{C}, \ h_1, h_2, g \in H.
$$

(40)

Observe that

$$
|\mu(\delta; h, h)| \leq \mu(\mathbb{R}^2; h, h) = \int_{\mathbb{R}^2} d\mu(\delta; h, h) = (R_{0, 0} h, h)_H = \|h\|_H^2.
$$

for all $\delta \in \mathfrak{B}(\mathbb{R}^2), \ h \in H$. Consequently, $\mu(\delta; h, g)$ is a sesquilinear (bilinear) functional with the norm less or equal to 1. In fact, we may apply Theorem from [1] p. 64 (the proof of this theorem is valid for finite-dimensional Hilbert spaces which are not ranked as Hilbert spaces in [1]). Therefore $\mu(\delta; h, g)$ admits the following representation:

$$
\mu(\delta; h, g) = (E(\delta) h, g)_H, \ \delta \in \mathfrak{B}(\mathbb{R}^2), \ h, g \in H,
$$

(41)

where $E(\delta)$ is a linear bounded operator on H: $\|E(\delta)\| \leq 1$. Observe that

$$
(E(\delta) h, h)_H = \mu(\delta; h, h) \geq 0, \ h \in H, \ \delta \in \mathfrak{B}(\mathbb{R}^2).$$
Therefore $E(\delta) \geq 0$, for all $\delta \in \mathcal{B}(\mathbb{R}^2)$. Thus, we have

$$0 \leq E(\delta) \leq E_H, \quad \delta \in \mathcal{B}(\mathbb{R}^2).$$

(42)

Notice that

$$(E(\emptyset)h, g)_H = \mu(\emptyset; h, g) = 0,$$

$$(E((0, 2\pi]^2)h, g)_H = \mu((0, 2\pi]^2; h, g) = \mu(\mathbb{R}^2; h, g) = (R_{0,0}h, g)_H =
= (h, g)_H, \quad h, g \in H.$$

(43)

Therefore

$$E(\emptyset) = 0, \quad E((0, 2\pi]^2) = E_H.$$

For arbitrary $\delta_1, \delta_2 \in \mathcal{B}(\mathbb{R}^2), \delta_1 \cap \delta_2 = \emptyset$, and $h, g \in H$, we may write:

$$(E(\delta_1 \cup \delta_2)h, g)_H = \mu(\delta_1 \cup \delta_2; h, g) = \mu(\delta_1; h, g) + \mu(\delta_2; h, g) =
= (E(\delta_1)h, g)_H + (E(\delta_2)h, g)_H = ((E(\delta_1) + E(\delta_2))h, g)_H,$$

and therefore

$$E(\delta_1 \cup \delta_2) = E(\delta_1) + E(\delta_2), \quad \delta_1, \delta_2 \in \mathcal{B}(\mathbb{R}^2): \delta_1 \cap \delta_2 = \emptyset.$$

(44)

Denote $K = \{\delta \in \mathcal{B}(\mathbb{R}^2): \delta \subseteq (0, 2\pi]^2\}$. By Neumark’s theorem [10, p. 499] we conclude that there exists a family $\{F(\delta)\}_{\delta \in K}$ of operators of the orthogonal projection in a Hilbert space $\tilde{H} \supseteq H$ such that

$$F(\emptyset) = 0, \quad F((0, 2\pi]^2) = E_H;$$

(45)

$$F(\delta_1 \cap \delta_2) = F(\delta_1)F(\delta_2), \quad \delta_1, \delta_2 \in K;$$

(46)

$$F(\delta \cup \tilde{\delta}) = F(\delta) + F(\tilde{\delta}), \quad \delta, \tilde{\delta} \in K: \delta \cap \tilde{\delta} = \emptyset;$$

(47)

$$E(\delta) = P_{\tilde{H}} F(\delta)|_H, \quad \delta \in K.$$

(48)

Moreover, elements of the form $F(\delta)h$, $h \in H$, $\delta \in \tilde{H}$ determine \tilde{H}.

Since μ is σ-additive, then by the latter property of F we conclude that F is weakly σ-additive. In fact, let $\delta = \bigcup_{k=1}^{\infty} \delta_k$, where $\delta, \delta_k \in K$ and $\delta_i \cap \delta_j = \emptyset$, $i, j \in \mathbb{N}, i \neq j$. For arbitrary $h, u \in H$ and $\tilde{\delta}, \tilde{\delta} \in K$ we may write:

$$\left(\sum_{k=1}^{N} F(\delta_k)F(\tilde{\delta})h, F(\tilde{\delta})u \right)_{\tilde{H}} = \left(\sum_{k=1}^{N} F(\delta_k \cap \tilde{\delta} \cap \tilde{\delta})h, u \right)_{\tilde{H}} =
= \sum_{k=1}^{N} \left(E(\delta_k \cap \tilde{\delta} \cap \tilde{\delta})h, u \right)_{H} \rightarrow_{N \rightarrow +\infty} \mu \left(\delta_k \cap \tilde{\delta} \cap \tilde{\delta}; h, u \right) \rightarrow_{N \rightarrow +\infty}$$

13
= \lim_{k \to \infty} \mu \left(\tilde{\delta} \cap \tilde{\delta} \cap (\cup_{k=1}^{\infty} \delta_k) ; h, u \right) = \left(E \left(\tilde{\delta} \cap \tilde{\delta} \cap (\cup_{k=1}^{\infty} \delta_k) \right) ; h, u \right)_{\tilde{H}} = \left(F \left(\tilde{\delta} \cap \tilde{\delta} \cap (\cup_{k=1}^{\infty} \delta_k) \right) ; h, u \right)_{\tilde{H}} = \left(F (\cup_{k=1}^{\infty} \delta_k) \tilde{\delta} h, F (\tilde{\delta}) u \right)_{\tilde{H}}.

By the linearity we conclude that

\[(S_N x, y)_{\tilde{H}} \to_{N \to \infty} (S x, y)_{\tilde{H}}, \quad x, y \in L,\]

where \(S_N := \sum_{k=1}^{N} F(\delta_k) = F \left(\cup_{k=1}^{N} \delta_k \right), S := F \left(\cup_{k=1}^{\infty} \delta_k \right) = F(\delta), L := \text{Lin}\{F(\delta) h : h \in \tilde{H}, \delta \in K\}\). Choose arbitrary elements \(h, g \in \tilde{H}\). Since \(L\) is dense in \(\tilde{H}\), there exist elements \(h_k, g_k \in L\) such that \(\|h - h_k\| < \frac{1}{k}\), \(\|g - g_k\| < \frac{1}{k}\), for all \(k \in \mathbb{N}\). Observe that

\[
\left| \left((S_N - S) h, g \right)_{\tilde{H}} - \left((S_N - S) h_k, g_k \right)_{\tilde{H}} \right| = \left| \left((S_N - S) h, g - g_k \right)_{\tilde{H}} + \left((S_N - S) (h - h_k), g_k \right)_{\tilde{H}} \right| \\
\leq 2 \|h\| \|g - g_k\| + 2 \|h - h_k\| (\|g_k - g\| + \|g\|) \to_{k \to \infty} 0, \quad (N \in \mathbb{N}).
\]

For arbitrary \(\varepsilon > 0\) we may choose \(k \in \mathbb{N}\) such that

\[
\left| \left((S_N - S) h, g \right)_{\tilde{H}} - \left((S_N - S) h_k, g_k \right)_{\tilde{H}} \right| < \frac{\varepsilon}{2}.
\]

There exists \(\tilde{N} \in \mathbb{N}\) such that \(N > \tilde{N}\) implies

\[
\left| \left((S_N - S) h_k, g_k \right)_{\tilde{H}} \right| < \frac{\varepsilon}{2}.
\]

Then \(\left| \left((S_N - S) h, g \right)_{\tilde{H}} \right| < \varepsilon\). Therefore

\[
(S_N h, g)_{\tilde{H}} \to_{N \to \infty} (S h, g)_{\tilde{H}}, \quad h, g \in \tilde{H}.
\]

(49)

Define the following operator-valued functions:

\[
F_{1,t} = F((0, t) \times (0, 2\pi]), \quad F_{2,t} = F((0, 2\pi] \times (0, t]), \quad t \in [0, 2\pi].
\]

(50)

For \(t < 0\) we set \(F_{1,t} = F_{2,t} = 0\), while for \(t > 2\pi\) we set \(F_{1,t} = F_{2,t} = E_{\tilde{H}}\).

Let us check that \(\{F_{2,j}\}_j\) is a spectral family on \([0, 2\pi]\) such that \(F_{j,0} = 0\), \(j = 1, 2\). By (45) we see that \(F_{j,0} = 0, F_{j,2\pi} = E_{\tilde{H}}, j = 1, 2\). If \(\lambda \leq \mu\), by (46) we may write

\[
F_{1,\lambda} F_{1,\mu} = F((0, \lambda] \times (0, 2\pi])F((0, \mu] \times (0, 2\pi]) = F((0, \lambda] \times (0, 2\pi]) = F_{1,\lambda},
\]

14
By (36) and (54) we conclude that
\[F_{2,\lambda}F_{2,\mu} = F((0, 2\pi] \times (0, \lambda])F((0, 2\pi] \times (0, \mu]) = F((0, 2\pi] \times (0, \lambda]) = F_{2,\lambda}. \]

It remains to check that \(F_{j,t} \) is right-continuous \((j = 1, 2)\). For points \(t \in (-\infty, 0) \cup [2\pi, +\infty) \) it is obvious. For arbitrary \(t \in [0, 2\pi) \); \(t_k \in [0, 2\pi) \): \(t_k > t \), \(k \in \mathbb{N}; \{ t_k \}_{k=1}^\infty \) is decreasing and \(t_k \to t \) as \(k \to \infty \); and arbitrary \(h, g \in \tilde{H} \) we may write:

\[
\begin{align*}
((F_{1,t_k} - F_{1,t})h, g)_{\tilde{H}} &= (F((t, t_k] \times (0, 2\pi])h, g)_{\tilde{H}} =
\left(F\left(\bigcup_{n=1}^{\infty}((t_{n+1}, t_n] \times (0, 2\pi]) \right)h, g \right)_{\tilde{H}} -
\left(F\left(\bigcup_{n=1}^{k-1}((t_{n+1}, t_n] \times (0, 2\pi]) \right)h, g \right)_{\tilde{H}} \to_{k \to \infty} 0.
\end{align*}
\]

(51)

Here we used the weak \(\sigma \)-additivity of \(F \). The monotone sequence of projections \(\{ F_{1,t_k} \}_{k=1}^\infty \) converges in the strong operator topology to a bounded operator. By (51) we conclude that this operator is \(F_{1,t} \). If we would have \(\lim_{u \to t+0} F_{1,u}h \neq F_{1,t}h \) for an element \(h \in H \), then we could easily construct a sequence \(\{ t_k \}_{k=1}^\infty \) with above properties and satisfying \(|F_{1,t_k}h - F_{1,t}h| > \varepsilon \) with some \(\varepsilon > 0 \). This contradiction shows that \(F_{1,t} \) is right-continuous. For \(F_{2,t} \) we may use similar arguments.

By (46) we may write

\[
F_{1,u}F_{2,v} = F((0, u] \times (0, 2\pi])F((0, 2\pi] \times (0, v]) = F((0, u] \times (0, v]) =
F((0, 2\pi] \times (0, v])F((0, u] \times (0, 2\pi]) = F_{2,v}F_{1,u}, \quad u, v \in [0, 2\pi].
\]

(52)

Thus, \(F_{1,u} \) and \(F_{2,v} \) commute for all \(u, v \in \mathbb{R} \). Set

\[
U_k = \int_0^{2\pi} e^{it}dF_{k,t}, \quad k = 1, 2.
\]

(53)

Observe that \(U_1, U_2 \) are commuting unitary operators in \(\tilde{H} \). By (11), (48), (52) we may write

\[
\mu((a, b] \times (c, d]; h, h) = (E((a, b] \times (c, d])h, h)_H = (F((a, b] \times (c, d])h, h)_H =
= ((F_{1,b} - F_{1,a})(F_{2,d} - F_{2,c})h, h)_{\tilde{H}}, \quad a, b, c, d \in [0, 2\pi] : a < b, c < d, h \in H.
\]

(54)

By (39) and (54) we conclude that

\[
\left(P_{H}^\tilde{H}(E_{\tilde{H}} + z_1U_1)(E_{\tilde{H}} - z_1U_1)^{-1}(E_{\tilde{H}} + z_2U_2)(E_{\tilde{H}} - z_2U_2)^{-1} \right)'_{H} h, h \right)_{H} = \]

15
\[R(z_1, z_2) = \left. \frac{1}{\pi} \int_{\mathbb{R}^2} \left(\frac{1}{1 - z_1 e^{it_1}} \right) \left(\frac{1}{1 - z_2 e^{it_2}} \right) d(F_{1,t_1} F_{2,t_2} h, h) \right|_{\tilde{H}} = \]
\[= \int_{\mathbb{R}^2} \left(\frac{1}{1 - z_1 e^{it_1}} \right) \left(\frac{1}{1 - z_2 e^{it_2}} \right) d\mu(\delta; h, h) = (R_{z_1, z_2} h, h)_H, \]
\[z_1, z_2 \in \mathbb{T}_e, \ h \in H. \quad (55) \]

Consequently, \(R_{z_1, z_2} \) is a generalized resolvent of a pair of isometric operators \(V_1 = V_2 = o_H \). Here \(D(o_H) = \{0\} \), \(o_H 0 = 0 \). \(\square \)

Proposition 3 Let an operator-valued function \(R_{z_1, z_2} \) be given, which depends on complex parameters \(z_1, z_2 \in \mathbb{T}_e \) and which values are linear bounded operators defined on a (whole) Hilbert space \(H \). Let \(V_1, V_2 \) be closed isometric operators in \(H \) which satisfy relation (1). Suppose that conditions 1)-3) of Theorem 3 are satisfied. Suppose that conditions 1)-5) of Theorem 2 are satisfied with the choices \(V = V_1, \ R_\zeta = \frac{1}{2}(E_H + R_{\zeta,0}), \) and \(V = V_2, \ R_\zeta = \frac{1}{2}(E_H + R_{0,\zeta}) \). Then \(R_{z_1, z_2} \) is a generalized resolvent of a pair of isometric operators \(V_1, V_2 \).

Proof. Since all conditions of Theorem 2 are satisfied, we can use the constructions from its proof. Thus, there exist commuting unitary operators \(U_1, U_2 \) in a Hilbert space \(\tilde{H} \supseteq H \) such that

\[R_{z_1, z_2} = \left. \frac{1}{\pi} P_{\tilde{H}}^\dagger (E_{\tilde{H}} + z_1 U_1) (E_{\tilde{H}} - z_1 U_1)^{-1} (E_{\tilde{H}} + z_2 U_2) (E_{\tilde{H}} - z_2 U_2)^{-1} \right|_H, \]
\[\text{for } z_1, z_2 \in \mathbb{T}_e. \quad (56) \]

Then

\[\frac{1}{2} (E_H + R_{\zeta,0}) = \left. \frac{1}{\pi} P_{\tilde{H}}^\dagger (E_{\tilde{H}} - \zeta U_1)^{-1} \right|_H, \quad \zeta \in \mathbb{T}_e; \quad (57) \]

\[\frac{1}{2} (E_H + R_{0,\zeta}) = \left. \frac{1}{\pi} P_{\tilde{H}}^\dagger (E_{\tilde{H}} - \zeta U_2)^{-1} \right|_H, \quad \zeta \in \mathbb{T}_e; \quad (58) \]

and

\[\left(\frac{1}{2} (E_H + R_{\zeta,0}) h, g \right)_H = \int_{\mathbb{R}} \frac{1}{1 - \zeta e^{it}} d(F_{1,t} h, g)_H, \quad \zeta \in \mathbb{T}_e, \ h, g \in H; \quad (59) \]

\[\left(\frac{1}{2} (E_H + R_{0,\zeta}) h, g \right)_H = \int_{\mathbb{R}} \frac{1}{1 - \zeta e^{it}} d(F_{2,t} h, g)_H, \quad \zeta \in \mathbb{T}_e, \ h, g \in H. \quad (60) \]

Let us check that \(U_1 \supseteq V_1 \). Since conditions 1)-5) of Theorem 2 are satisfied with the choice \(V = V_1, \ R_\zeta = \frac{1}{2}(E_H + R_{\zeta,0}), \) then choosing an arbitrary
$\zeta_0 \in \mathbb{D}\{0\}$ and $L := (E_H - \zeta_0 V)D(V)$, we conclude that conditions 1)-5) of Theorem 1 are satisfied, see the proof of Theorem 2 in [3]. Thus, R_ζ is a generalized resolvent of a closed isometric operator in a Hilbert space H and therefore R^{-1}_ζ exists and is a bounded operator on H. Moreover, we have $D(V) = R_{\zeta_0}L$ (see the last formula on page 887 in [3]). By condition 1) of Theorem 2 we have $Vg = \frac{1}{\zeta_0} \left(E_H - R^{-1}_{\zeta_0} \right) g$, $g \in D(V)$.

Thus, we can apply constructions from the proof of Theorem 1 in [3, p. 880]. Notice that the above operator $V(= V_1)$ coincides with the operator U defined by (30) in [3]. By formula (26) in [3] we may write:

$$\left(\frac{1}{2} (E_H + R_{\zeta,0}) h, g \right)_H = \int_0^{2\pi} \frac{1}{1 - \zeta e^{it}} d(E_t h, g)_H, \quad \zeta \in \mathbb{T}_e, \; h, g \in H.$$ \hspace{1cm} (61)

Comparing relations (59) and (61) we conclude that

$$\int_0^{2\pi} \frac{1}{1 - \zeta e^{it}} d \left((E_t h, g)_H - (F_{1,t} h, g)_{\tilde{H}} \right) = 0, \quad \zeta \in \mathbb{T}_e, \; h, g \in H. \quad (62)$$

Therefore (see considerations on page 882 in [3, p. 883])

$$\int_0^{2\pi} e^{it} d(E_t h, g)_H = \int_0^{2\pi} e^{it} d(F_{1,t} h, g)_{\tilde{H}}, \quad h, g \in H. \quad (63)$$

Then (cf. [3, p. 886])

$$(Vh, g)_H = \int_0^{2\pi} e^{it} d(E_t h, g)_H = \int_0^{2\pi} e^{it} d(F_{1,t} h, g)_{\tilde{H}} = (U_1 h, g)_{\tilde{H}}, \quad h \in D(V), \; g \in H. \quad (64)$$

Therefore $Vh = P_{\tilde{H}} U_1 h$, $h \in D(V)$. By $\|Vh\| = \|U_1 h\|$ we get $U_1 \supseteq V$. Relation $U_2 \supseteq V_2$ can be checked in the same manner. By [56] we see that R_{z_1,z_2} is a generalized resolvent of a pair V_1, V_2. \Box

Theorem 4 Let an operator-valued function R_{z_1,z_2} be given, which depends on complex parameters $z_1, z_2 \in \mathbb{T}_e$ and which values are linear bounded operators defined on a (whole) Hilbert space H. Let V_1, V_2 be closed isometric operators in H which satisfy relation (1). R_{z_1,z_2} is a generalized resolvent of a pair of isometric operators V_1, V_2 if an only if the following conditions are satisfied:

1) $R_{0,0} = E_H$;
2) \(R_{z_1, z_2}^* = R_{\frac{1}{z_1}, \frac{1}{z_2}}, z_1, z_2 \in \mathbb{T}_e \setminus \{0\} \);

3) For all \(h \in H \), for the function \(f(z_1, z_2) := (R_{z_1, z_2} h, h)_H, z_1, z_2 \in \mathbb{T}_e \), there exist limits:
\[
\begin{align*}
f(\infty, z_2) := \lim_{z_1 \to \infty} f(z_1, z_2), & \quad f(z_1, \infty) := \lim_{z_2 \to \infty} f(z_1, z_2), \quad z_1, z_2 \in \mathbb{T}_e; \\
f(\infty, \infty) = \lim_{z_2 \to \infty} \lim_{z_1 \to \infty} f(z_1, z_2),
\end{align*}
\]
and the extended by these relations function \(f(z_1, z_2), z_1, z_2 \in \mathbb{T}_e \cup \{\infty\} \) belongs to \(H \).

4) \(\frac{1}{2} (E_H + R_{\zeta, 0}) (E_H - \zeta V_1) g = g, \text{ for all } \zeta \in \mathbb{T}_e, g \in D(V_1); \)

5) \(\frac{1}{2} (E_H + R_{0, \zeta}) (E_H - \zeta V_2) g = g, \text{ for all } \zeta \in \mathbb{T}_e, g \in D(V_2). \)

Proof. Necessity. The necessity of conditions 1)-3) follows from Theorem 3.

Repeating the arguments from the beginning of the proof of Proposition 3 we conclude that relations (57), (58) hold. By condition 1) of Theorem 2 with \(V = V_1, R_\zeta = \frac{1}{2} (E_H + R_{\zeta, 0}), \) and \(V = V_2, R_\zeta = \frac{1}{2} (E_H + R_{0, \zeta}) \) it follows the validity of conditions 4), 5) of the present theorem, respectively.

Sufficiency. In order to apply Proposition 3 it is sufficient to check that conditions 1)-5) of Theorem 2 for the choices \(V = V_1, R_\zeta = \frac{1}{2} (E_H + R_{\zeta, 0}), \) and \(V = V_2, R_\zeta = \frac{1}{2} (E_H + R_{0, \zeta}) \) are satisfied. Condition 1) of Theorem 2 for these choices coincides with conditions 4), 5) of the present theorem. By Theorem 3 and considerations in its proof \(R_{z_1, z_2} \) is a generalized resolvent of \(V_1 = V_2 = o_H. \) Then relations (56), (57), (58) hold. By Theorem 2 for \(V = o_H \) and the above-mentioned choices of \(R_\zeta \) we obtain that conditions 3), 4), 5) of Theorem 2 are satisfied and they do not depend on \(V. \) The required condition 2) of Theorem 2 for \(V = V_1, R_\zeta = \frac{1}{2} (E_H + R_{\zeta, 0}), \) and \(V = V_2, R_\zeta = \frac{1}{2} (E_H + R_{0, \zeta}) \) follows directly from condition 1) of the present theorem. \(\square \)

4 The case of commuting isometric and unitary operators.

In this section we shall show how Theorem 4 allows to parametrize generalized resolvents in the case of commuting isometric and unitary operators.

Let \(V_1 = V \) be a closed isometric operator in a Hilbert space \(H, \) and \(V_2 = U \) be a unitary operator in \(H. \) Suppose that relation (11) holds. In our
case it takes the following form:

\[VUh = UVh, \quad h \in (U^{-1} D(V)) \cap D(V). \]

(65)

Suppose that there exist a Hilbert space \(\vec{H} \supseteq H \) and commuting unitary operators \(U_1, U_2 \) in \(\vec{H} \), such that \(U_1 \supseteq V, U_2 \supseteq U \). Consider the corresponding generalized resolvent of a pair \(V, U \):

\[R_{z_1, z_2} = P_{\vec{H}} U_1(z_1) U_2(z_2) \bigg|_H = P_{\vec{H}} U_1(z_1) U(z_2) = P_{\vec{H}} U_1(z_1) U(z_2) = \]

\[= P_{\vec{H}} U_1(z_1) H U(z_2) = (-E_H + 2R_{z_1}(V)) U(z_2), \quad z_1, z_2 \in \mathbb{T}_e, \]

(66)

where \(R_{z_1}(V) \) is a generalized resolvent of the closed isometric operator \(V \), which corresponds to the unitary extension \(U_1 \). On the other hand, we may write:

\[R_{z_1, z_2} = P_{\vec{H}} U_2(z_2) U_1(z_1) \bigg|_H = P_{\vec{H}} U_2(z_2) H P_{\vec{H}} U_1(z_1) \bigg|_H = \]

\[= U(z_2)(-E_H + 2R_{z_1}(V)), \quad z_1, z_2 \in \mathbb{T}_e. \]

(67)

Comparing relations (66), (67) and simplifying we obtain that

\[R_{z_1}(V)(E_H - z_2 U)^{-1} = (E_H - z_2 U)^{-1} R_{z_1}(V), \quad z_1, z_2 \in \mathbb{T}_e. \]

(68)

Therefore

\[U R_{z_1}(V) = R_{z_1}(V) U, \quad z_1 \in \mathbb{T}_e. \]

(69)

By Chumakin’s formula (6) we may write:

\[R_{z_1}(V) = [E_H - z_1(V \oplus \Phi_{z_1})]^{-1}, \quad z_1 \in \mathbb{D}, \]

(70)

where \(\Phi_{z_1} \in \mathcal{S}(\mathbb{D}; N_0(V), N_\infty(V)) \). By (69) and (70) we obtain that

\[(V \oplus \Phi_{z_1}) U = U(V \oplus \Phi_{z_1}), \quad z_1 \in \mathbb{D}. \]

(71)

Here the equality for the case \(z_1 = 0 \) follows by the analyticity of \(\Phi_{z_1} \).

Theorem 5 Let \(V \) be a closed isometric operator in a Hilbert space \(H \), and \(U \) be a unitary operator in \(H \). Suppose that relation (65) holds. Let \(\mathcal{S}_{V,U}(\mathbb{D}; N_0(V), N_\infty(V)) \) be a set of all functions from \(\mathcal{S}(\mathbb{D}; N_0(V), N_\infty(V)) \) which satisfy relation (71). Then the following statements hold:

(i) The set of all generalized resolvents of a pair \(V, U \) is non-empty if and only if \(\mathcal{S}_{V,U}(\mathbb{D}; N_0(V), N_\infty(V)) \neq \emptyset; \)
(ii) Suppose that $S_{V,U}(\mathbb{D}; N_0(V), N_{\infty}(V)) \neq \emptyset$. An arbitrary generalized resolvent of a pair V, U has the following form:

$$R_{z_1,z_2} = (-E_H + 2[E_H - z_1(V \oplus \Phi_{z_1})]^{-1})U(z_2), \quad z_1 \in \mathbb{D}, \quad z_2 \in \mathbb{T}_e,$$

(72)

where $\Phi_{z_1} \in S_{V,U}(\mathbb{D}; N_0(V), N_{\infty}(V))$, and

$$R_{z_1,z_2} = R^*_1 \frac{1}{\zeta - z_2}, \quad z_1 \in \mathbb{D}_e, \quad z_2 \in \mathbb{T}_e \setminus \{0\}. \quad (73)$$

On the other hand, an arbitrary function $\Phi_{z_1} \in S_{V,U}(\mathbb{D}; N_0(V), N_{\infty}(V))$ defines by relations (72), (73) a generalized resolvent of a pair V, U (for $z_1 \in \mathbb{D}_e$, $z_2 = 0$ we define R_{z_1,z_2} by the weak continuity: $R_{z_1,0} = w. \lim_{z_2 \to 0} R_{z_1,z_2}$). Moreover, for different operator-valued functions from $S_{V,U}(\mathbb{D}; N_0(V), N_{\infty}(V))$ there correspond different generalized resolvents of a pair V, U.

Proof. (i) : If the set of all generalized resolvents of a pair V, U is non-empty, then by our considerations before the present theorem we see that $S_{V,U}(\mathbb{D}; N_0(V), N_{\infty}(V)) \neq \emptyset$.

On the other hand, suppose that $S_{V,U}(\mathbb{D}; N_0(V), N_{\infty}(V)) \neq \emptyset$. Choose an arbitrary function $\Phi_{z_1} \in S_{V,U}(\mathbb{D}; N_0(V), N_{\infty}(V))$. Define a function R_{z_1,z_2} for $(z_1, z_2) \in (\mathbb{D} \times \mathbb{T}_e) \cup (\mathbb{D}_e \times (\mathbb{T}_e \setminus \{0\}))$ by relations (72), (73). Let $R_{z_1}(V)$ be the generalized resolvent of V corresponding to Φ_{z_1} by Chumakin’s formula. By (71) we obtain that relation (69) holds for $z_1 \in \mathbb{D}$. Therefore (69) holds for all $z_1 \in \mathbb{T}_e$, since the generalized resolvent $R_{\zeta}(V)$ has the following property (3):

$$R^*_1(V) = E_H - R^*_\zeta(V), \quad \zeta \in \mathbb{T}_e \setminus \{0\}. \quad (74)$$

Consequently, relation (68) holds and we may write:

$$(-E_H + 2R_{z_1}(V))U(z_2) = U(z_2)(-E_H + 2R_{z_1}(V)), \quad z_1, z_2 \in \mathbb{T}_e. \quad (75)$$

By (75) and our definition of R_{z_1,z_2}, for arbitrary $z_1 \in \mathbb{D}_e$, $z_2 \in \mathbb{T}_e \setminus \{0\}$ we may write:

$$R_{z_1,z_2} = R^*_1 \frac{1}{\zeta - z_2} = \left(U \left(\frac{1}{z_2}\right)\right)^* \left(-E_H + 2R_{\frac{1}{z_2}}(V)\right)^* =$$

$$= U(z_2)(-E_H + 2R_{z_1}(V)) = (-E_H + 2R_{z_1}(V))U(z_2). \quad (76)$$
Thus, for all \((z_1, z_2) \in (\mathbb{D} \times T_e) \cup (\mathbb{D}_e \times (T_e \setminus \{0\}))\) we have the following representation:

\[
\mathbf{R}_{z_1, z_2} = (-E_H + 2\mathbf{R}_{z_1}(V))U(z_2).
\]

(77)

For a fixed \(z_1 \in \mathbb{D}_e\) by analyticity of \(U(z_2)\) the following limit exists:

\[
w. \lim_{z_2 \to 0} \mathbf{R}_{z_1, z_2} = (-E_H + 2\mathbf{R}_{z_1}(V))U(0) =: \mathbf{R}_{z_1, 0}.
\]

(78)

By (77), (78), (75) we see that

\[
\mathbf{R}_{z_1, z_2} = (-E_H + 2\mathbf{R}_{z_1}(V))U(z_2) = U(z_2)(-E_H + 2\mathbf{R}_{z_1}(V)), \quad z_1, z_2 \in T_e.
\]

(79)

Let us check that \(\mathbf{R}_{z_1, z_2}\) is a generalized resolvent of a pair \(V, U\) by Theorem 4. The assumptions of Theorem 4 with \(V_1 = V, V_2 = U, \mathbf{R}_{z_1, z_2} = \mathbf{R}_{z_1, z_2}\) and \(H\) are satisfied. Condition 1) of Theorem 4 is satisfied, as well. By (79) for arbitrary \(z_1, z_2 \in T_e \setminus \{0\}\) we may write:

\[
\mathbf{R}^*_{z_1, z_2} = (-E_H + 2\mathbf{R}_{z_1}(V))^*(U(z_2))^* = \left((-E_H + 2\mathbf{R}_{z_1}(V))U\left(\frac{1}{z_2}\right)\right)^* = \mathbf{R}_{\frac{1}{z_2}}\frac{1}{z_2}.
\]

Thus, condition 2) of Theorem 4 is satisfied. By (79) we see that

\[
\frac{1}{2}(E_H + \mathbf{R}_{0, 0}) = \mathbf{R}_{\zeta}(V), \quad \frac{1}{2}(E_H + \mathbf{R}_{0, \zeta}) = (E_H - \zeta U)^{-1}, \quad \zeta \in T_e.
\]

Therefore condition 5) of Theorem 4 is trivial and condition 4) of Theorem 4 follows from the property 1) of Theorem 2.

It remains to check condition 3) of Theorem 4. Since \(\mathbf{R}_{\zeta}(V)\) is a generalized resolvent of \(V\), then there exists a unitary operator \(Q \supseteq V\) in a Hilbert space \(H \supseteq H\) such that

\[
\mathbf{R}_{\zeta}(V) = P^H_H(E_H - \zeta Q)^{-1}|_H, \quad \zeta \in T_e.
\]

Then

\[
-E_H + 2\mathbf{R}_{z_1}(V) = P^H_HQ(z_1)|_H, \quad z_1 \in T_e.
\]

Representation (79) takes the following form:

\[
\mathbf{R}_{z_1, z_2} = \left(P^H_HQ(z_1)|_H\right)U(z_2) = U(z_2) \left(P^H_HQ(z_1)|_H\right), \quad z_1, z_2 \in T_e.
\]

(80)

Choose an arbitrary element \(h \in H\). Set \(f(z_1, z_2) := (\mathbf{R}_{z_1, z_2} h, h)_H, z_1, z_2 \in T_e\). Then

\[
f(z_1, z_2) = (Q(z_1)(U(z_2)h), h)_H = (U(z_2) \left(P^H_H(Q(z_1)h)\right), h)_H,
\]

(81)
where \(z_1, z_2 \in \mathbb{T}_e \). Since operator-valued functions \(Q(z) \) and \(U(z) \) are analytic at \(\infty \), we conclude that the limits in condition 3) of Theorem 4 exist. Moreover, the limit values \(f(\infty, z_2) \), \(f(z_1, \infty) \), \(f(\infty, \infty) \) may be calculated by the formal substitution of \(\infty \) in representations in (81) using \(U(\infty) := -E_H \), \(Q(\infty) := -E_H \). Thus, we may use representation (81) for all values \(z_1, z_2 \in \mathbb{T}_e \cup \{\infty\} \).

Let us check that \(f(z_1, z_2) \) satisfies. By Theorem 4 we obtain that for all values \(z_1, z_2 \in \mathbb{T}_e \cup \{\infty\} \).

Let us check condition (b) in the definition of \(H \). Since the product of commuting bounded non-negative operators is non-negative, by (83) we conclude that condition (b) in the definition of \(H \) holds. Consequently, \(f(z_1, z_2) \in H \) holds.

We obtain that \(f(z_1, z_2) = (U(z_2)W(z_1)h, h)_H \), \(z_1, z_2 \in \mathbb{T}_e \cup \{\infty\} \).

Choose arbitrary \(z_1, z_2 \in \mathbb{D} \) and write (cf. [5, p. 531])

\[
W(z_1)U(z_2) = U(z_2)W(z_1), \quad z_1, z_2 \in \mathbb{T}_e \cup \{\infty\},
\]

where the equality for infinite values of \(z_1 \) or \(z_2 \) holds trivially. By (81) we obtain that \(f(z_1, z_2) = (U(z_2)W(z_1)h, h)_H \), \(z_1, z_2 \in \mathbb{T}_e \cup \{\infty\} \).

Choose arbitrary \(z_1, z_2 \in \mathbb{D} \) and write (cf. [5, p. 531])

\[
W(z_1)U(z_2) = (U(z_2) - U(z_1))W(z_1)h, h)_H.
\]

By (10) it follows that operators \(W(z_1) - W(z_1^{-1}), U(z_2) - U(z_2^{-1}) \) are non-negative bounded operators on \(H \) (for \(z_1, z_2 = 0 \) it is trivial). By (82) we see that operators \(W(z_1) - W(z_1^{-1}) \) and \(U(z_2) - U(z_2^{-1}) \) commute. Since the product of commuting bounded non-negative operators is non-negative, by (83) we conclude that condition (b) in the definition of \(H \) holds.

Consequently, \(f(z_1, z_2) \in H \) and all conditions of Theorem 4 are satisfied. By Theorem 4 we obtain that \(R_{z_1, z_2} \) is a generalized resolvent of the pair \(V, U \).

(ii) : If \(S_{V, U}(\mathbb{D}; N_0(V), N_\infty(V)) \neq \emptyset \), then by property (i) we see that the set of all generalized resolvents of a pair \(V, U \) is non-empty. Choose an arbitrary generalized resolvent \(R_{z_1, z_2} \) of a pair \(V, U \).

By our considerations before the present theorem we obtain that for \(R_{z_1, z_2} \) relation (72) holds. Relation (73) follows by property 2) in Theorem 4.

Choose an arbitrary function \(\Phi_{z_1} \in S_{V, U}(\mathbb{D}; N_0(V), N_\infty(V)) \). Repeating considerations in the proof of condition (i) we conclude that a function \(R_{z_1, z_2} \), defined by relations (72), (73), is a generalized resolvent of a pair \(V, U \).
For different operator-valued functions $\Phi_{z_1}, \tilde{\Phi}_{z_1}$ from $\mathcal{S}_{V,U}(\mathbb{D}; N_0(V), N_\infty(V))$ there correspond different generalized resolvents of a closed isometric operator V. Suppose that $\Phi_{z_1}, \tilde{\Phi}_{z_1}$ generate the same generalized resolvent R_{z_1, z_2} of a pair V, U. Writing relation (72) with Φ_{z_1} or $\tilde{\Phi}_{z_1}$ and $z_2 = 0$ we obtain a contradiction. □

In conditions of Theorem 5 we additionally suppose that

$$UD(V) = D(V).$$

(84)

In this case condition (65) implies $VU = UV$. Condition (71) is equivalent to

$$\Phi_{z_1} U g = U \Phi_{z_1} g, \quad g \in H \ominus D(V), \quad z_1 \in \mathbb{D}.$$

(85)

Observe that the function $\Phi_{z_1} = 0$ belongs to $\mathcal{S}(\mathbb{D}; N_0(V), N_\infty(V))$ and satisfies (85). Thus, $\Phi_{z_1} \in \mathcal{S}_{V,U}(\mathbb{D}; N_0(V), N_\infty(V))$ and therefore the set of generalized resolvents of V, U is non-empty.

Additionally suppose that H is separable and there exists a conjugation J on H such that

$$UJ = JU^{-1}, \quad JD(V) = R(V).$$

(86)

Then

$$J(H \ominus D(V)) = H \ominus R(V).$$

(87)

Denote

$$U_0 := U|_{H \ominus D(V)}.$$

By the Godič-Lucenko theorem ([4]) for the unitary operator U_0 there exists the following representation:

$$U_0 = KL,$$

(88)

where K, L are two conjugations on a Hilbert space $H \ominus D(V)$. Set

$$\Theta = JK : H \ominus D(V) \to H \ominus R(V).$$

The operator Θ maps $H \ominus D(V)$ on the whole $H \ominus R(V)$ and $\Theta^{-1} = KJ$.

By (86), (88) we obtain that

$$\Theta U g = U \Theta g, \quad g \in H \ominus D(V).$$

(89)

Then

$$U \Theta^{-1} f = \Theta^{-1} U f, \quad f \in H \ominus R(V).$$

(90)
Let Ψ_{z_1} be an arbitrary function from $\mathcal{S}(\mathbb{D}; H \ominus D(V), H \ominus D(V))$ such that
\[\Psi_{z_1} U_0 = U_0 \Psi_{z_1}, \quad z_1 \in \mathbb{D}. \] (91)

Set
\[\Phi_{z_1} = \Theta \Psi_{z_1}, \quad z_1 \in \mathbb{D}. \] (92)

Observe that Φ_{z_1} belongs to $\mathcal{S}(\mathbb{D}; N_0(V), N_\infty(V))$. By (89), (91) for arbitrary $g \in H \ominus D(V)$ and $z_1 \in \mathbb{D}$ we may write:
\[U \Phi_{z_1} g = U(\Theta(\Psi_{z_1} g)) = \Theta(U_0(\Psi_{z_1} g)) = \Theta(\Psi_{z_1}(U_0 g)) = \Phi_{z_1} U g. \]

Thus, Φ_{z_1} satisfies relation (85). Therefore $\Phi_{z_1} \in \mathcal{S}_{V,U}(\mathbb{D}; N_0(V), N_\infty(V))$.

On the other hand, choose an arbitrary $\Phi_{z_1} \in \mathcal{S}_{V,U}(\mathbb{D}; N_0(V), N_\infty(V))$. Then Φ_{z_1} belongs to $\mathcal{S}(\mathbb{D}; N_0(V), N_\infty(V))$ and satisfies relation (85). Set
\[\Psi_{z_1} = \Theta^{-1} \Phi_{z_1}, \quad z_1 \in \mathbb{D}. \] (93)

Then relation (92) holds. Observe that $\Psi_{z_1} \in \mathcal{S}(\mathbb{D}; H \ominus D(V), H \ominus D(V))$. Fix an arbitrary $z_1 \in \mathbb{D}$. By (85), (90) for arbitrary $g \in H \ominus D(V)$ we may write:
\[\Psi_{z_1} U_0 g = \Theta^{-1}(\Phi_{z_1}(U g)) = \Theta^{-1}(U(\Phi_{z_1} g)); \]
\[U_0 \Psi_{z_1} g = U(\Theta^{-1}(\Phi_{z_1} g)) = \Theta^{-1}(U(\Phi_{z_1} g)). \]

Therefore relation (91) holds.

References

[1] Akhiezer N. I, Glazman I. M., Theory of linear operators in a Hilbert space.— Gos. izdat. teh.-teor. liter., Moscow. – 1950. (Russian).

[2] Arocena R., On the extension problem for a class of translation invariant positive forms // J. Operator Theory – 1989. – 21. – P. 323–347.

[3] Chumakin M. E., Generalized resolvents of isometric operators. (Russian) // Sib. Mat. Zh. – 1967. – 8, no. 4. – P. 876–892.

[4] Godič V. I., Lucenko I. E., On the representation of a unitary operator as a product of two involutions // Uspehi Mat. Nauk. — 1965. — 20. — P. 64–65.

[5] Korányi A., On some classes of analytic functions of several variables // Trans. Am. Math. Soc. – 1961. – 101. – P. 520–554.
Characteristic properties for a generalized resolvent of a pair of commuting isometric operators.

S.M. Zagorodnyuk

In this paper we consider a notion of a generalized resolvent for a pair of commuting isometric operators in a Hilbert space H. Characteristic properties of the generalized resolvent are obtained.