A new classification of post-sternotomy dehiscence
Uma nova classificação das deiscências após esternotomias

Jaime Anger¹, MD; Daniel Chagas Dantas¹, MD; Renato Tambellini Arnoni¹, MD, PhD; Pedro Silvio Farsky¹, MD, PhD

Abstract

The dehiscence after median transeptal sternotomy used as surgical access for cardiac surgery is one of its complications and it increases the patient’s morbidity and mortality. A variety of surgical techniques were recently described resulting to the need of a classification bringing a measure of objectivity to the management of these complex and dangerous wounds. The different related classifications are based in the primary causal infection, but recently the anatomical description of the wound including the deepness and the vertical extension showed to be more useful. We propose a new classification based only on the anatomical changes following sternotomy dehiscence and chronic wound formation separating it in four types according to the deepness and in two sub-groups according to the vertical extension based on the inferior insertion of the pectoralis major muscle.

Descriptors: Thoracotomy. Surgical wound infection. Sternum. Postoperative complications.

INTRODUCTION

The median transsternal thoracotomy was first described as an access route in cardiac surgery in 1957¹ and, since then, is widely used. One of the complications is the dehiscence of edges that usually occurs after infection, and is associated with high rates of morbidity and mortality².

In cases of infection, the first-line treatment in the acute phase is early debridement, use of antibiotics and, in some cases, the use of retail of the pectoralis major muscle or omentum to improve vascularization. However, some patients develop dehiscence of the sutures and the chronicity of wounds³,⁴.

Some of dehiscence can be corrected only with debridement of the edges and its approach after improvement of the conditions of the tissues involved. For the correction of more complex defects, various techniques were being described including muscle, musculocutaneous and skin flaps, also omentum flaps with subsequent skin graftting, and recently the fasciocutaneous flap including the pectoralis major muscle fascia³⁴.

¹Dante Pazzanese Institute of Cardiology of São Paulo (IDPC), São Paulo, SP, Brazil.

No financial support.
Due to the recent increase of surgical options, it became necessary to classify these wounds in order to assist the decision-making process of the surgeons as to the best technique to be used, and to facilitate the exchange of knowledge in scientific reports. The first classification was described by Pairolero & Arnold in 1984, based on the postoperative time of establishment of the infection (Table 1), subsequently, Oakley in 1996 used the same criteria, but added risk factors of the establishment and attempts of treatment of the initial infection (Table 2).

Infections following a sternotomy are generically termed in the literature as mediastinitis, although infection may be limited to a tissue or anatomical area, not necessarily involving the mediastinum. Other terms are used: sternites, mediastinitis, dehiscence of sternotomy and post-sternotomy infection.

According to the Center for Disease Control and Prevention (CDC), the infection in surgical wounds after sternotomy should be classified into three types: (A) surface when only the skin and subcutaneous are involved; (B) when the infection reaches the sternum, but not affecting it, and (C) of cavity or organ when there is sternum osteomyelitis and/or when there is involvement of the mediastinum. These definitions clarify the site of infection, but do not keep exact correlation with the existing real anatomical change.

Jones et al. in 1997, suggested for the first time a classification based on the affected anatomical site but still using as parameter the presence of infection (Table 3). Greig et al. in 2007 proposed a classification based on the affected anatomical site (Table 4). The author was the first to specify the vertical extent of the wound, because it is recognized the more difficult to reconstruct the lower portion when it extends below the insertion of the lower border of the pectoralis major muscle. However, the concept of emphasizing only the location of the wound was not widely used in scientific reports and classifications based on infection continued to be the most used.

The recent expansion of the variety of surgical techniques and the discussion of their indications proved to be fundamental the anatomical description of the raw area to facilitate understanding and discussion of the results.

Consequently, we created a uniquely classification based on the depth and anatomical extent of the wounds which seemed to us to be more complete and objective. Initially, we

Classification	Postoperative phase on which the infection occurs
Type I	In the first week
Type II	Between 2 to 6 weeks
Type III	After 6 weeks to years (in general are fistulas and chronic osteomyelitis)

Classification	Description
Type I	Mediastinitis present in up to two weeks after the operation in the absence of risk factors
Type II	Mediastinitis present in 2 to 6 weeks after surgery in the absence of risk factors
Type IIIA	Mediastinitis type I in the presence of one or more risk factors
Type IIIB	Mediastinitis type II in the presence of one or more risk factors
Type VAT	Mediastinitis type I, II or III after treatment failure
Type IVB	Mediastinitis type I, II or III after failure of one or more treatments
Type V	Mediastinitis present for the first time after 6 weeks postoperatively

Classification	Depth	Description
Type 1a	Superficial	Skin and subcutaneous
Type 1b	Superficial	Exposure of sutured deep fascia
Type 2a	Deep	Bone exposure, sternum with stable steel suture
Type 2b	Deep	Bone exposure, sternum with unstable steel suture
Type 3a	Deep	Necrotic bone exposure or fractured, unstable sternum, exposed heart Type 2 or 3 with septicemia
Type 3b	Deep	}
divided the surgical wound into four types, according to the depth affected: type I, when there is loss of skin and subcutaneous tissue; type II, when the bone is exposed; type III, when there is loss of bone tissue of sternum or ribs; type IV and when there is exposure of the mediastinum (Table 5). Next, we define whether it is partial or total in relation to its vertical extent and in the end whether it is of higher or lower position, considering as reference the inclusion of the lower margin of the pectoralis major muscle. To illustrate the use of this classification we present three examples of patients with chronic wounds in which different surgical techniques have been adopted based on anatomical changes of the surgical wound (Figures 1A, 1B, 2A, 2B, 3A, 3B). The result of the classification proposed in these cases was more precise and specific than if we used the classification methods previously used.

It should be noted that use the infectious process, related to the length of its establishment or its depth, as classification criteria seems to be inappropriate, since the infection is not the only cause of dehiscence of the edges in these patients, and surgical reconstruction is only performed when there is no infection at the site of dehiscence and possible donor sites.

Table 5. Classification proposed by the authors based on anatomical changes, considering the depth and location of the surgical wound. The limit that defines upper and lower region is the inclusion of the lower margin of the pectoralis major muscle.

Classification	Affected tissues	Wound location as the vertical extension	
Type I	Skin and subcutaneous tissue	Partial Upper	Total Lower
Type II	Exposure of the sternum or ribs	Partial Upper	Total Lower
Type III	Bone loss of sternum or ribs	Partial Upper	Total Lower
Type IV	Exposed mediastinum	Partial Upper	Total Lower

We therefore consider that this classification is objective and easy to understand, thereby facilitating the exchange of data. This favors the exchange of information between teams and systematises the evaluation of the success of the various existing surgical techniques.
Anger J, et al. - A new classification of post-sternotomy dehiscence

REFERENCES

1. Julian OC, Lopez-Belio M, Dye WS, Javid H, Grove WJ. The median sternal incision in intracardiac surgery with extracorporeal circulation; a general evaluation of its use in heart surgery. Surgery. 1957;42(4):753-61.

2. Farsky PS, Graner H, Duccini P, ZandonadiEda C, Amato VL, Anger J, et al. Risk factors for sternal wound infections and application of the STS score in coronary artery bypass graft surgery. Rev Bras Cir Cardiovasc. 2011;26(4):624-9.

3. Pairolero PC, Arnold PG. Management of recalcitrant median sternotomy wounds. J Thorac Cardiovasc Surg. 1984;88(3):357-64.

4. Jurkiewicz MJ, Arnold PG. The omentum: an account of its use in the reconstruction of the chest wall. Ann Surg. 1977;185(5):548-54.

5. Jones G, Jurkiewicz MJ, Bostwick J, Wood R, Bried JT, Culbertson J, et al. Management of the infected median sternotomy wound with muscle flaps. The Emory 20-year experience. Ann Surg. 1997;225(6):766-76.
6. Anger J, Farsky PS, Amato VL, Abboud CS, Almeida AF, Arnoni RT, et al. A utilização de retalho composto de pele e tecido mamário na reparação de área cruenta resultante da deiscência de esternotomia em cirurgia cardíaca. Arq Bras Cardiol. 2004;83(n.spe):43-5.

7. Ascherman JA, Patel SM, Malhotra SM, Smith CR. Management of sternal wounds with bilateral pectoralis major myocutaneous advancement flaps in 114 consecutively treated patients: refinements in technique and outcomes analysis. Plast Reconstr Surg. 2004;114(3):676-83.

8. Anger J, Farsky PS, Almeida AF, Arnoni RT, Dantas DC. Use of the pectoralis major fasciocutaneous flap in the treatment of post sternotomy dehiscence: a new approach. Einstein. 2012;10(4):449-54.

9. El Oakley RM, Wright JE. Postoperative mediastinitis: classification and management. Ann Thorac Surg. 1996;61(3):1030-6.

10. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16(3):128-40.

11. Greig AV, Geh JL, Khanduja V, Shibu M. Choice of flap for the management of deep sternal wound infection—an anatomical classification. J Plast Reconstr Aesthet Surg. 2007;60(4):372-8.

12. Brito Jde D, Assumpção CR, Murad H, Jazbik Ade P, Sá MP, Bastos ES, et al. One-stage management of infected sternotomy wounds using bilateral pectoralis major myocutaneous advancement flap. Rev Bras Cir Cardiovasc. 2009;24(1):58-63.