Meson spectroscopy from lattice QCD

Mike Peardon

School of Mathematics, Trinity College Dublin, Ireland

Liverpool, 3rd February 2010
The Hadron Spectrum Collaboration:
Huey-Wen Lin (now U Washington), Saul Cohen, Jozef Dudek, Robert Edwards, Bálint Joó, David Richards and Christopher Thomas (JLab)
John Bulava (now DESY Zeuthen), Justin Foley and Colin Morningstar (CMU)
Eric Engelson and Stephen Wallace (U Maryland)
Jimmy Juge (U Pacific)
Nilmani Mathur (Tata Institute Mumbai)
Sínead Ryan and M.P. (TCD)
A short introduction to QCD on the lattice
The lattice vacuum with quark dynamics
Spectroscopy measurements
 - Excited states
 - Quark-field smearing
 - Spin
Isovector mesons
Isoscalar mesons
Scattering, resonances and decay widths
Conclusions
Regularising QCD on a lattice
Lattice regularisation

- Lattice provides a **non-perturbative, gauge-invariant** regulator for QCD
- Quarks live on sites
- Gluons live on links
- a - lattice spacing
- $a \sim 0.1$ fm

The Nielsen-Ninomiya theorem means chirally symmetric quarks are missing, but can discretise quarks by trading-off some symmetry. In a finite volume $V = L^4$, finite number of degrees of freedom and path-integral is an ordinary (but large) integral.
Lattice regularisation

- Lattice provides a **non-perturbative, gauge-invariant** regulator for QCD

- Quarks live on sites
- Gluons live on links
- a - lattice spacing
- $a \sim 0.1$ fm

- The Nielson-Ninomiya theorem means chirally symmetric quarks are missing, but can discretise quarks by trading-off some symmetry
• Lattice provides a **non-perturbative, gauge-invariant** regulator for QCD

• Quarks live on sites
• Gluons live on links
• \(a \) - lattice spacing
• \(a \sim 0.1 \text{ fm} \)

• The Nielson-Ninomiya theorem means chirally symmetric quarks are missing, but can discretise quarks by trading-off some symmetry

• In a finite volume \(V = L^4 \), finite number of degrees of freedom and path-integral is an ordinary (but large) integral.
Minkowski, Wick and Euclid

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

Analytic continuation:
\[t \rightarrow i \gamma, -i/\mathcal{S} \rightarrow 1/\mathcal{S}.\]

Enables Importance sampling Monte Carlo

Lose direct contact with dynamical properties of field theory, such as decay widths.
Minkowski, Wick and Euclid

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

- Analytic continuation: \(t \rightarrow i \tau, \quad \frac{-i}{\hbar} S \rightarrow \frac{1}{\hbar} S. \)
Minkowski, Wick and Euclid

Analytic continuation: $t \rightarrow i\tau$, $\frac{-i}{\hbar}S \rightarrow \frac{1}{\hbar}S$.

Enables Importance sampling Monte Carlo
Analytic continuation: $t \rightarrow i\tau$, $\frac{-i}{\hbar}S \rightarrow \frac{1}{\hbar}S$.

- Enables **Importance sampling Monte Carlo**
- Lose direct contact with **dynamical** properties of field theory, such as decay widths.
The lattice QCD vacuum
Monte Carlo sampling the QCD lattice vacuum

\[C_\pi(t_1, t_0) = \frac{\int DUD\bar{\psi}D\psi \; \bar{\psi}_u(t_1)\gamma_5\psi_d(t_1)\bar{\psi}_d(t_0)\gamma_5\psi_u(t_0) \; e^{-S_G - \bar{\psi}_uM\psi_u - \bar{\psi}_dM\psi_d}}{\int DUD\bar{\psi}D\psi \; e^{-S_G - \bar{\psi}_uM\psi_u - \bar{\psi}_dM\psi_d}} \]

- Too hard to deal with grassmann algebra directly
Monte Carlo sampling the QCD lattice vacuum

\[C_\pi(t_1, t_0) = \frac{\int DU \; \text{Tr} \; \gamma_5 M^{-1}(t_1, t_0) \gamma_5 M^{-1}(t_0, t_1) \; \det M[U]^2 \; e^{-S_G}}{\int DU \; \det M[U]^2 \; e^{-S_G}} \]

- Too hard to deal with grassmann algebra directly
- Integrate out quark fields
- Quenched approximation was: ignore \(\det M^2 \)
Monte Carlo sampling the QCD lattice vacuum

\[C_\pi(t_1, t_0) = \frac{\int DU \, \text{Tr} \, \gamma_5 M^{-1}(t_1, t_0) \gamma_5 M^{-1}(t_0, t_1) \, \det M[U]^2 \, e^{-S_G}}{\int DU \, \det M[U]^2 \, e^{-S_G}} \]

- Too hard to deal with grassmann algebra directly
- Integrate out quark fields
- Quenched approximation was: ignore \(\det M^2 \)
- \(N_f = 2 \) importance sampling
- Non-negative, thanks to Euclidean metric
Cost of vacuum sampling

- The “noughties” have seen a lot of progress:
 \[
 C_{\text{flops}} \propto \left(\frac{m_\pi}{m_\rho} \right)^{-6} \times L^5 \times a^{-7}
 \]

 [A. Ukawa, 2001 - the “Berlin Wall”]

The “noughties” have seen a lot of progress:

$$C_{\text{flops}} \propto \left(\frac{m_\pi}{m_\rho} \right)^{-6} \times L^5 \times a^{-7}$$

[A. Ukawa, 2001 - the “Berlin Wall”]

$$C_{\text{flops}} \propto \left(\frac{m_\pi}{m_\rho} \right)^{-2} \times L^5 \times a^{-6}$$

[L. Giusti, 2006]
Cost of vacuum sampling

- The “noughties” have seen a lot of progress:

\[C_{\text{flops}} \propto \left(\frac{m_\pi}{m_\rho} \right)^{-6} \times L^5 \times a^{-7} \]

[A. Ukawa, 2001 - the “Berlin Wall”]

\[C_{\text{flops}} \propto \left(\frac{m_\pi}{m_\rho} \right)^{-2} \times L^5 \times a^{-6} \]

[L. Giusti, 2006]

- Dramatic change in *scaling with quark mass* from algorithm improvements [Hasenbusch ’01, Lüscher ’03,’04]

- Coupled to continued fall in price of CPU cores, means simulations at the physical quark masses are possible [PACS-CS arXiv:0911.2561]
- $N_f = 2 \oplus 1$ quark dynamics
- Strange quark mass tuned (about) right
- Light quarks - from $SU(3)$ point to $m_\pi \approx 220$ MeV
- Spatial volumes $12^3 \rightarrow 32^3$
- Non-perturbatively tuned anisotropic lattice with $a_s/a_t = 3.5$
- Improved gauge and quark actions (SW, tadpole improved)
- Quark propagation on a stout-link background.
Spectroscopy measurements
Computing the spectrum (1)

- Energies of colourless QCD states extracted from \textbf{two-point functions} in Euclidean time

\[C(t) = \langle \Phi(t) | \Phi^\dagger(0) \rangle \]

- Euclidean time: \[\Phi(t) = e^{Ht} \Phi e^{-Ht} \] so \[C(t) = \langle \Phi | e^{-Ht} | \Phi \rangle \]
Computing the spectrum (1)

- Energies of colourless QCD states extracted from **two-point functions** in Euclidean time

\[C(t) = \langle \Phi(t) | \Phi^\dagger(0) \rangle \]

- Euclidean time: \(\Phi(t) = e^{Ht} \Phi e^{-Ht} \) so \(C(t) = \langle \Phi | e^{-Ht} | \Phi \rangle \)

- Insert a complete set of states then:

\[C(t) = \sum_{k=0}^{\infty} |\langle \Phi | k \rangle|^2 \ e^{-E_k t} \]
Computing the spectrum (1)

- Energies of colourless QCD states extracted from **two-point functions** in Euclidean time

\[
C(t) = \langle \Phi(t)|\Phi^+(0)\rangle
\]

- Euclidean time: \(\Phi(t) = e^{Ht}\Phi e^{-Ht} \) so \(C(t) = \langle \Phi|e^{-Ht}|\Phi\rangle \)
- Insert a complete set of states then:

\[
C(t) = \sum_{k=0}^{\infty} |\langle \Phi|k\rangle|^2 e^{-E_k t}
\]

- Then \(\lim_{t \to \infty} C(t) = Ze^{-E_0 t} \)
- If the large-\(t \) exponential fall-off of \(C(t) \) can be observed, the **energy** of a state can be measured
• **Excited-state** energies measured from matrix of correlators:

\[C_{ij}(t) = \langle \Phi_i(t) | \Phi_j^\dagger(0) \rangle \]
Computing the spectrum (2)

- **Excited-state** energies measured from matrix of correlators:
 \[C_{ij}(t) = \langle \Phi_i(t) | \Phi_j^\dagger(0) \rangle \]

- Solve generalised eigenvalue problem:
 \[C(t_1) \mathbf{v} = \lambda C(t_0) \mathbf{v} \]

for different \(t_0 \) and \(t_1 \)

[M. Lüscher & U Wolff, C. Michael]
Computing the spectrum (2)

- **Excited-state** energies measured from matrix of correlators:

 \[C_{ij}(t) = \langle \Phi_i(t) | \Phi_j^\dagger(0) \rangle \]

- Solve generalised eigenvalue problem:

 \[C(t_1) \ \nu = \lambda \ C(t_0) \ \nu \]

 for different \(t_0 \) and \(t_1 \)

 [M. Lüscher & U Wolff, C. Michael]

- Then \(\lim_{(t_1-t_0) \to \infty} \lambda_n = e^{-E_n(t_1-t_0)} \)
- **Excited-state** energies measured from matrix of correlators:
 \[C_{ij}(t) = \langle \Phi_i(t)|\Phi_j^\dagger(0) \rangle \]
- Solve generalised eigenvalue problem:
 \[C(t_1) \mathbf{v} = \lambda C(t_0) \mathbf{v} \]
 for different \(t_0 \) and \(t_1 \)
- Then \(\lim_{(t_1-t_0) \to \infty} \lambda_n = e^{-E_n(t_1-t_0)} \)
- Method constructs optimal ground-state creation operator, then orthogonal states
Isovector meson correlation functions

- To create a meson, we need to build functions that couple to quarks.
- Meson can be created by a quark bilinear. Appropriate gauge invariant creation operator (for isospin $I = 1$) would be
 \[\Phi_{\text{meson}}(t) = \sum_x \bar{u}(x, t) \Gamma U_C(x, y; t) d(y, t) \]
 where Γ is some appropriate Dirac structure, and U_C a product of (smeared) link variables.
- Operators that transform irreducibly under the lattice rotation group O_h are needed.
- Complication: we do not have direct access to the fermion integration variables in the computer.
- The quark action is bilinear so:
 \[\langle \psi^\alpha_a(x, t) \bar{\psi}^\beta_b(y, t') \rangle = [M^{-1}]_{ab}^{\alpha, \beta}(x, t; y, t') \]
Now the elementary component in the correlation function is

\[\langle 0 | \Phi(t) \Phi^\dagger(0) | 0 \rangle = \langle \text{Tr} \ M^{-1}(z, 0; x, t) \Gamma U_C(x, y, t) M^{-1}(y, t; w, 0) \Gamma^\dagger U_C'(w, z, 0) \rangle \]

In general, this is still expensive to compute, since it requires knowing many entries in the inverse of the fermion operator, \(M \).

If the choice of operator at the source is restricted and no momentum projection is made, only the bilinear at (eg) the origin on time-slice 0 is needed.

Quark propagation from a single site to any other site is computed by solving \(M \psi = e_0^{\alpha, \alpha} \) where \(e_0 \) are the 12 vectors that only have non-zero components at the origin.

Can we get away from this restriction?
Isovector meson correlation functions (3)

The most general operator.

A restricted correlation function accessible to one point-to-all computation.
If we are interested in measuring isoscalar meson masses, extra diagrams must be evaluated, since four-quark diagrams become relevant. The Wick contraction yields extra terms, since

\[
\langle \psi_i \bar{\psi}_j \psi_k \bar{\psi}_l \rangle = M_{ij}^{-1} M_{kl}^{-1} - M_{il}^{-1} M_{jk}^{-1}
\]

Now

\[
\langle 0 | \Phi_{l=0}(t) \Phi_{l=0}^\dagger(0) | 0 \rangle = \\
\langle 0 | \Phi_{l=1}(t) \Phi_{l=1}^\dagger(0) | 0 \rangle - \langle 0 | \text{Tr} \ M^{-1} \Gamma U_C(t) \text{Tr} \ M^{-1} \Gamma U_C(0) | 0 \rangle
\]
Smearing - an essential ingredient for precision

- To build an operator that projects effectively onto a low-lying hadronic state need to use smearing.
- Instead of the creation operator being a direct function applied to the fields in the lagrangian first smooth out the UV modes which contribute little to the IR dynamics directly.
- A popular gauge-covariant smearing algorithm; Jacobi/Wuppertal smearing: Apply the linear operator
 \[\Box_j = \exp(\sigma \Delta^2) \]

 \(\Delta^2 \) is a lattice representation of the 3-dimensional gauge-covariant laplace operator on the source time-slice

 \[\Delta^2_{x,y} = 6\delta_{x,y} - \sum_{i=1}^{3} U_i(x)\delta_{x+\hat{i},y} + U_i^\dagger(x - \hat{i})\delta_{x-\hat{i},y} \]

- Correlation functions look like \(\text{Tr} \ \Box_j M^{-1} \Box_j M^{-1} \Box_j \ldots \).
Redefine smearing

• After tuning the free parameter σ it turns out \Box_f is a very low rank operator.
• The choice of smearing operator is arbitrary, provided
 1. It is a scalar operator
 2. It is gauge covariant
 3. It is a function of only field on time-slice t (or perhaps a few nearest neighbours?)
• Redefine smearing to be a projection operator onto a low-dimensional space of fields:

$$\Box = \sum_{k=1}^{M} \nu^{(k)} \otimes \nu^{(k)*}$$

• This is distillation.
• How to choose ν? One simple choice is to use the lowest M eigenvectors of Δ^2
Distilled correlation functions

- Why is this helpful? Look at correlation functions such as an isovector meson two-point function

\[C_{AB}(t_1, t_0) = \text{Tr} \, \Box(t_1) \Gamma_1 \Box(t_1) M_u^{-1}(t_1, t_0) \Box(t_0) \Gamma_0 \Box(t_0) M_d^{-1}(t_0, t_1) \]

- \(\Gamma_{1,2} \) are creation operators that make mesons with appropriate quantum numbers

- Inserting the definition of the distillation operator, the correlation function becomes a trace over a product of rank-M matrices.

\[C_{AB}(t_1, t_0) = \text{tr} \, \Phi_1(t_1) \tau(t_1, t_0) \Phi_0(t_0) \tau(t_0, t_1) \]

with

\[\Phi_{a}^{(i,j)} = \nu^{(i)} \ast \Gamma_a \nu^{(j)} \quad \text{and} \quad \tau_{a}^{(i,j)} = \nu^{(i)} \ast (t_1) M^{-1}(t_1, t_0) \nu^{(j)}(t_0) \]
The lowest eigenvector of the laplace operator

- Localised mode - size is confinement scale
Distillation operator is rotationally symmetric and gaussian
A tale of two symmetries

- Continuum: states classified by J^P irreducible representations of $O(3)$.

- Lattice regulator breaks $O(3) \rightarrow O_h$
A tale of two symmetries

- Continuum: states classified by J^P irreducible representations of $O(3)$.

- Lattice regulator breaks $O(3) \to O_h$
- Lattice: states classified by R^p “quantum letter” labelling irrep of O_h
Spin on the lattice

- O_h has 10 irreps: $\{A_1^{g,u}, A_2^{g,u}, E^{g,u}, T_1^{g,u}, T_2^{g,u}\}$, where $\{g, u\}$ label even/odd parity.

- Search for degeneracy patterns in the spectrum
Spin on the lattice

- O_h has 10 irreps: $\{A_{1}^{g,u}, A_{2}^{g,u}, E^{g,u}, T_{1}^{g,u}, T_{2}^{g,u}, \}$, where $\{g, u\}$ label even/odd parity.
- Link to continuum: subduce representations of $O(3)$ into O_h

	A_1	A_2	E	T_1	T_2	
$J = 0$	1					
$J = 1$		1				
$J = 2$			1	1		
$J = 3$			1	1	1	
$J = 4$			1	1	1	1

...
Spin on the lattice

- \(O_h\) has 10 irreps: \(\{A_{1}^{g,u}, A_{2}^{g,u}, E^{g,u}, T_{1}^{g,u}, T_{2}^{g,u}\}\), where \(\{g, u\}\) label even/odd parity.

- Link to continuum: subduce representations of \(O(3)\) into \(O_h\)

	\(A_1\)	\(A_2\)	\(E\)	\(T_1\)	\(T_2\)
\(J = 0\)	1				
\(J = 1\)		1			
\(J = 2\)			1	1	
\(J = 3\)			1	1	1
\(J = 4\)			1	1	1
\(\vdots\)			\(\vdots\)	\(\vdots\)	\(\vdots\)

- Search for degeneracy patterns in the spectrum
Nature plays a trick...

Suppose we computed this spectrum:

\[\begin{array}{cccccc}
A_1 & T_1 & E & T_2 \\
3350 & 3400 & 3450 & 3500 & 3550 & 3600
\end{array} \]

Within errors, it could be the nine degrees of freedom of a spin-4 state. But degeneracy also consistent with 0 ⊕ 1 ⊕ 2. This is the near-degenerate quark-model P-wave triplet!
Nature plays a trick...

Suppose we computed this spectrum:

- Within errors, it could be the nine degrees of freedom of a spin-4 state.
Nature plays a trick...

Suppose we computed this spectrum:

- Within errors, it could be the nine degrees of freedom of a spin-4 state
- But O_h degeneracy also consistent with $0 \oplus 1 \oplus 2$
Nature plays a trick...

Suppose we computed this spectrum:

- Within errors, it could be the nine degrees of freedom of a spin-4 state
- But O_h degeneracy also consistent with $0 \oplus 1 \oplus 2$
- This is the near-degenerate quark-model P-wave triplet!
Example: $J^{PC} = 2^{++}$ meson creation operator

- Need more information to discriminate spins. Consider continuum operator that creates a 2^{++} meson:

$$\Phi_{ij} = \bar{\psi} \left(\gamma_i D_j + \gamma_j D_i - \frac{2}{3} \delta_{ij} \gamma \cdot D \right) \psi$$
Example: $J^{PC} = 2^{++}$ meson creation operator

- Need more information to discriminate spins. Consider continuum operator that creates a 2^{++} meson:

$$\Phi_{ij} = \bar{\psi} \left(\gamma_i D_j + \gamma_j D_i - \frac{2}{3} \delta_{ij} \gamma \cdot D \right) \psi$$

- Lattice: Substitute gauge-covariant lattice finite-difference D_{latt} for D
Example: $J^{PC} = 2^{++}$ meson creation operator

- Need more information to discriminate spins. Consider continuum operator that creates a 2^{++} meson:

$$\Phi_{ij} = \bar{\psi} \left(\gamma_i D_j + \gamma_j D_i - \frac{2}{3} \delta_{ij} \gamma \cdot D \right) \psi$$

- Lattice: Substitute gauge-covariant lattice finite-difference D_{latt} for D

- A reducible representation:

$$\Phi^{T2} = \{ \Phi_{12}, \Phi_{23}, \Phi_{31} \}$$

$$\Phi^{E} = \left\{ \frac{1}{\sqrt{2}} (\Phi_{11} - \Phi_{22}), \frac{1}{\sqrt{6}} (\Phi_{11} + \Phi_{22} - 2\Phi_{33}) \right\}$$
Example: $J^{PC} = 2^{++}$ meson creation operator

- Need more information to discriminate spins. Consider continuum operator that creates a 2^{++} meson:
 \[\Phi_{ij} = \bar{\psi} \left(\gamma_i D_j + \gamma_j D_i - \frac{2}{3} \delta_{ij} \gamma \cdot D \right) \psi \]

- Lattice: Substitute gauge-covariant lattice finite-difference D_{latt} for D

- A reducible representation:
 \[\Phi^{T_2} = \{ \Phi_{12}, \Phi_{23}, \Phi_{31} \} \]

 \[\Phi^E = \left\{ \frac{1}{\sqrt{2}}(\Phi_{11} - \Phi_{22}), \frac{1}{\sqrt{6}}(\Phi_{11} + \Phi_{22} - 2\Phi_{33}) \right\} \]

- Look for signature of continuum symmetry:
 \[\langle 0 | \Phi^{(T_2)} | 2^{++(T_2)} \rangle = \langle 0 | \Phi^{(E)} | 2^{++(E)} \rangle \]
Spin-3 identification: J. Dudek et. al., Hadron Spectrum Collab.

- $m_{A_2}/m_\Omega = 1.210(5)$
- $m_{A_2}/m_\Omega = 1.626(16)$
- $m_{T_1}/m_\Omega = 1.207(5)$
- $m_{T_1}/m_\Omega = 1.648(23)$
- $m_{T_2}/m_\Omega = 1.204(4)$
- $m_{T_2}/m_\Omega = 1.626(8)$
The continuum-based operator construction

Cross-correlation between operator sets in \(T_{1}^{-1} \)

- “Cross-talk” between sets of operators that should be distinct in the continuum is small
Light quarks still heavy - more analysis underway
The continuum spectrum - strange mesons

- Light quarks still heavy - more analysis underway
Exotic states - comparison vs other analyses

Comparison is with data from Graz group
Multi-hadron states make things very much more complicated!
Isoscalar A_{1}^{--} correlation function

- Small volume (12^3)
- Fit requires a constant: $C(t) = A_0 + A_1 e^{-A_2 t}$ - volume artefact?
- Precise result - $a_t E$ determined to 1% instead of 10%
• No-go: Maiani-Testa theorem tells us matrix elements measured in Euclidean field theory do not contain information about strong-decay widths.
• No-go: Maiani-Testa theorem tells us matrix elements measured in Euclidean field theory do not contain information about strong-decay widths.

• Changes to **Energy spectrum** in a finite-box as size of box changes gives information about widths [DeWitt ’56, Lüscher ’86].
• No-go: Maiani-Testa theorem tells us matrix elements measured in Euclidean field theory do not contain information about strong-decay widths

• Changes to **Energy spectrum** in a finite-box as size of box changes gives information about widths [DeWitt ’56, Lüscher ’86]

• New proposed analysis [Bernard et.al. JHEP0808:024,2008] uses binning algorithm to measure width

• Will need very high-precision - widths are inferred from shifts in energy levels as box-size changes
$\pi\pi_{l=0} - \pi\pi_{l=0}$ correlator (disconnected part)

Initial tests on small lattices

With Andrew Nolan
Glueball - $\pi \pi$ correlation function

Initial test on small lattices

With Andrew Nolan
Conclusions

- HadSpec collaboration have generated $2 \otimes 1$ dynamical anisotropic lattices
- New technology under testing and now in production (for isovector mesons)
- Precision is crucial to go further.
- New method show promise for more precision needed in the isoscalar meson sector.