Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches

Yuefei Jin, Wangquan Ji, Haiyan Yang, Shuaiyin Chen, Weiguo Zhang and Guangcai Duan

On 12 March 2020, the outbreak of coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization. As of 4 August 2020, more than 18 million confirmed infections had been reported globally. Most patients have mild symptoms, but some patients develop respiratory failure which is the leading cause of death among COVID-19 patients. Endothelial cells with high levels of angiotensin-converting enzyme 2 expression are major participants and regulators of inflammatory reactions and coagulation. Accumulating evidence suggests that endothelial activation and dysfunction participate in COVID-19 pathogenesis by altering the integrity of vessel barrier, promoting pro-coagulative state, inducing endothelial inflammation, and even mediating leukocyte infiltration. This review describes the proposed cellular and molecular mechanisms of endothelial activation and dysfunction during COVID-19 emphasizing the principal mediators and therapeutic implications.

INTRODUCTION
In late 2019, an emerging viral pneumonia caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), termed coronavirus disease 2019 (COVID-19), was first reported in Wuhan, Hubei Province, China. This disease has infected more than 18 million people and lead to more than 500,000 deaths worldwide. In general, COVID-19 is considered self-limited, and many of those infected have mild symptoms or appear to be asymptomatic; however, some patients develop respiratory failure which is the leading cause of death among infections with COVID-19. To date, no specific drugs and vaccines are yet available for COVID-19, and its pathogenesis remains largely unclear.

Endothelial cells (ECs) mostly exist in the inner layer of all blood vessels and are normally protected by pericytes. Pulmonary ECs function as the basic barrier between blood and interstitium, accounting for one-third of cells in the lung. The activation and dysfunction of pulmonary ECs are considered signs of ARDS and the primary pathological causes. Accumulating evidence indicates that SARS-CoV-2 infection exerts adverse effects on the endothelium of capillary, which may contribute to COVID-19 pathogenesis by altering the integrity of vessel barrier, promoting endothelial inflammation, and even mediating leukocyte infiltration. Patients with severe or critical COVID-19 admitted in intensive care units frequently present underlying conditions (old age, diabetes, hypertension, and cardiovascular diseases). These comorbidities are often accompanied by years of chronic endothelial dysfunction. Endothelial activation and dysfunction are suggested to be related to the coagulation cascade. Established evidence suggests that activation of the coagulation pathway with the possible development of disseminated intravascular coagulation (DIC) is a feature of severe COVID-19 that may further result in thrombus formation. Therefore, it was suggested to name severe pulmonary COVID-19 as the microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome or MicroCLOTS.

To date, the ongoing global pandemic of COVID-19 still poses a considerable threat to many people. An improved mechanistic understanding of endothelial activation and dysfunction is of utmost importance. This review describes the possible cellular and molecular mechanisms of endothelial activation and dysfunction in COVID-19, emphasizing the principal mediators and the therapeutic implications.

PATHOPHYSIOLOGY OF ECS
The primary histological characteristic of resting ECs is their cobblestone shape; however, they constitute more than static mechano-protective plates (Fig. 1). ECs mostly exist in the inner layer of blood vessels and are normally protected by pericytes that support the vessel structure. ECs have different functions and structures depending on the tissues and organs. For example, pulmonary vascular ECs are arranged in a dense monolayer, forming a protective barrier that is in direct contact with blood components. The commonly accepted functions of ECs in the homeostasis of body physiology are controlling vascular permeability and regulating vascular tone (Fig. 1). ECs can synthesize and release various endothelium-derived relaxation factors, such as nitric oxide (NO) and prostaglandin (PG), and contractile factors, including endothelin (ET), thromboxane A2 (TXA2), reactive oxygen species (ROS), and angiotensin II (Ang II), which play significant roles in the regulation of vascular tone (Fig. 1). When activated, ECs secrete chemoattractants, cytokines, and adhesion molecules, leading to augmented blood vessel permeability (Fig. 1). In resting ECs, the synthesis of these molecules can be suppressed by NO. In addition, ECs are also involved in adhesion and aggregation of platelets, activation, adhesion, and migration.
of leukocytes, and fibrin balance (Fig. 1).4,5 NO exerts direct effects on leukocytes, preventing their activation into motile forms that are capable of entering tissues.23 However, dysfunctional endothelial response to damage or infection cannot produce sufficient amounts of NO.23 Therefore, a decline in NO bioavailability always represents endothelial dysfunction.

ENDOTHELIAL ACTIVATION AND DYSFUNCTION ARE ASSOCIATED WITH COVID-19 SEVERITY

Epidemiological studies suggest that severe cases or deaths due to COVID-19 frequently present with underlying comorbidities, such as advanced age, hypertension, diabetes, and cardiovascular diseases.5 Chronic vascular endothelial injury often co-occurs in patients with such comorbidities.6 Most patients with critical COVID-19 die from ARDS, pulmonary edema, cytokine storm, multiple organ failure, and diffuse coagulopathy.6 Among the aforementioned causes, ARDS has been considered a result of pulmonary EC damage.12 The direct or indirect activation of ECs mediates the extensive production of inflammatory cytokines, adhesion molecules, and chemokines, which may result in cytokine storm, local inflammatory cell infiltration, and vascular leakage.12,21,22 The plasma levels of adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1), fractalkine, vascular cell adhesion molecule-1 (VCAM-1), vascular adhesion protein-1 (VAP-1), and vascular endothelial growth factor (VEGF), had been reported to be elevated among COVID-19 patients, especially in severe patients.25,26 Clinical findings also indicate an increased occurrence of Kawasaki disease, a form of vasculitis, in pediatric patients with COVID-19, implying acute vascular inflammation.27,28

The dysfunction of ECs fails to release sufficient amounts of NO, resulting in vessel constriction.23 NO deficiency has been observed among COVID-19 patients,29 and it may cause vascular smooth muscle contraction, reducing the ability to neutralize ROS and NO-mediated antiviral capability.30,31 ECs function as key regulators of coagulation and as counterbalance for thrombin.32 A dysfunctional endothelial response to viral infection can activate the coagulation pathway and lead to anticoagulation imbalance.7 Comprehensive coagulation analyzes of patients with COVID-19 indicate elevated levels of D-dimer, increased fibrinogen, enhanced platelet activation, and increased variables of viscoelastic in the plasma of severe cases.33,34 Elevated D-dimer levels in critical patients represent poor prognosis.35 In addition to venous thromboembolism, the association of microthrombus formation with multiple organ failure and acro-ischemic change has been proposed.36 The pathological manifestations leading to severe COVID-19 have been recently considered as vascular leakage, inflammatory reactions, anticoagulation imbalance, and endothelial dysfunction, which may play a central role in the aforementioned procedure.12 Therefore, understanding the mechanisms of endothelial activation and dysfunction during the course of COVID-19 infection will help in the early identification of individuals which are at risk of suffering from severe complications, and thus, provide appropriate therapeutic targets. The overview of endothelial activation and dysfunction in COVID-19 pathogenesis is shown in Fig. 2.

CRITICAL FUNCTIONS OF ECS IN COVID-19 INFLAMMATION

Innate immune receptor-mediated inflammatory responses in ECs function can be regarded from two aspects in the immunology of vascular homeostasis and pathology. First, ECs are a constitutive and integral part of the vascular system, and thus intrinsically cause vascular diseases once they are dysfunctional. Second, ECs actively mediate inflammatory or immune responses at infection or injury sites.21,22 Innate immunity serves as the first line of defense against microbial pathogens. It depends on a limited number of functional proteins or pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), or retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs).37 Inflammation is commonly triggered when PRRs detect tissue damage or microbial infection.37,38 To date, our knowledge of specific innate immune responses to SARS-CoV-2 in ECs remains unknown. However, the virus–host interactions involving SARS-CoV-2 are likely to recapitulate many of those involving other virus types or microbial infections given the conserved mechanisms of innate immunity. PRR-mediated detection of viral single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA), termed pathogen-associated molecular patterns (PAMPs), and further activation of antiviral innate immune response have been observed during SARS-CoV infection.39,40 Existing pharmacological modulators of PRRs mediated inflammatory responses are listed in Table 1.
TLRs. TLR1–6 and TLR9 have been detected in all types of tissue-specific ECs. Poly(I:C), a synthetic dsRNA analog, can directly activate TLR1/2, TLR3, and TLR4. Upon activation through TLR, nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling are initiated via myeloid differentiation factor 88 (MyD88) and/or TIR-domain-containing adapter-inducing interferon-β (TRIF). This process elicits a hyper-inflammatory response by promoting the production of interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, and IL-1β, and adhesion molecules (E-selectin, P-selectin, ICAM, and VCAM). Consequently, vascular permeability is elevated by disrupted junction protein claudin-5 and induction of procoagulant factors, such as tissue factors, plasminogen activator inhibitor type-1 (PAI-1), von Willebrand factor (vWF), and the urokinase plasminogen activator (uPa). While TLR7/8 is not detected in ECs, human umbilical vein endothelial cells (HUVECs) express TLR3. ECs also produce type I interferons, such as IFN-α. IFN-α is well known as a significant cytokine during antiviral responses. Moreover, TLR9 in ECs can be activated when DAMPs, such as DNA and proteins released outside the cell following tissue injury, are recognized. Once activated, rapid phosphorylation of NF-κB and adhesion molecules E-selectin and ICAM-1-independent MAPK signaling is detected. In addition, sepsis-related lung inflammation appears to be dependent on the activation of endothelial TLR4-regulating neutrophil sequestration into the lungs. Collectively, TLRs in ECs are not only important in host defense against infections but they also contribute to microvascular dysfunction and inflammation during systemic infections.

NLRs. The NOD proteins NOD1 and NOD2 are two members of NLR family, which function as cytoplasmic PRRs. Different types of ECs, such as HUVECs, microvascular ECs and human aortic endothelial cells, express NOD1 and NOD2. Upon microbial stimulation, ECs had been shown to produce IL-8 with a NOD1-dependent manner. The NLR proteins containing a PYD (NLRPs) are classified as another NLR subgroup. NLRPs interact with ASC and caspase-1, forming multiprotein complexes called inflammasomes. Inflammasomes (e.g., NLRP1 and NLRP3) regulate the proteolytic processing of proIL-1β and proIL-18 into mature forms, and an inflammatory cell death termed pyroptosis. The NLRP3 pathway has been recently considered as a novel target for treatment of COVID-19.
endothelial activation and dysfunction in COVID-19: from basic mechanisms...

Jin et al.

Table 1. Summary of existing pharmacological modulators that act directly or indirectly on innate immune receptors-mediated inflammatory responses in endothelial cells

Potential therapeutic	Formula	Targets	Mechanism of action	Refs
E6446	C_{27}H_{35}N_{3}O_{3}	TLR7, TLR9	Inhibit TLR7 and TLR9-mediated deleterious inflammatory responses	129
FR 167653	C_{24}H_{30}FN_{2}O_{8}	p38	A potent suppressor of TNF-α and IL-1β production via specific inhibition of p38	130
NOD-IN-1	C_{10}H_{15}NO_{5}S	NOD1, NOD2	Mixed inhibitor of NOD1 and NOD2	131
Nodinitib-1	C_{10}H_{15}NO_{5}S	NOD1	A NOD1 inhibitor	132
GSK717	C_{20}H_{10}N_{2}O_{2}	NOD2	Inhibit NOD2-mediated signaling	133
Muscone	C_{16}H_{13}O	NF-κB, NLRP3	Inhibit NF-κB and NLRP3 inflammasome activation and decrease the levels of inflammatory cytokines	134
CY-09	C_{10}H_{15}F_{2}NO_{5}S	NLRP3	A selective and direct NLRP3 inhibitor	135
INF39	C_{10}H_{15}ClO_{2}	NLRP3	An irreversible and noncytotoxic NLRP3 inhibitor	136
Ossirene	C_{20}H_{15}NO_{10}Te	IL-1β, IL-10, caspase-1	A potent IL-1β, IL-10 and caspase-1 inhibitor	132,137
Mulberroside A	C_{20}H_{15}O_{16}	NLRP3, caspase-1, NF-κB	Inhibit the activation of NLRP3, caspase-1, and NF-κB and the phosphorylation of MAPK exhibit anti-inflammatory and anti-apoptotic effects	138
Desethyl chloroquine	C_{10}H_{23}ClN_{3}	TLRs	An inhibitor of autophagy and TLRs	139
Schafoside	C_{20}H_{15}O_{16}	TLR4, MyD88	Inhibit the expression of TLR4 and MyD88	140
Resatorvid	C_{10}H_{15}ClFNO_{5}S	TLR4	Downregulate TLR4-mediated MyD88 or TRIF signaling	141

RLRs. RIG-I and melanoma differentiation-associated gene 5 (MDA5) are two important cytoplasmic sensors for viral RNA, which belong to the RLRs family of PRR.37,41,42 RIG-I and MDA5 have been detected ECs (e.g., HUVECs), and RIG-I expression is upregulated upon microbial stimulation. The CARD-containing adapter molecule mitochondrial antiviral-signaling protein (MAVS) is engaged by both RIG-I and MDA5, which in turn stimulate the signaling pathways resulting in IRF3/7-dependent IFN-α/β response and NF-κB-dependent inflammatory genes transcription.57

ECs in adaptive immune responses

Peptide-major histocompatibility complexes (MHCs) and costimulatory molecules are generally required for T cell activation.82 All blood vessels are lined by ECs forming a barrier between blood immune cells and parenchymal tissues, and the interaction between T cells and organ resident ECs has mostly remained elusive. Interestingly, a recent study using single-cell transcriptomics found that high levels of genes related to MHC class II-mediated antigen presentation were detected in a subtype of lung capillary ECs, suggesting a potential role as antigen-presenting cells (APCs) to function in immune surveillance against respiratory pathogens for this EC subtype. However, given the lack of CD80/CD86 costimulatory molecules on ECs in adaptive immune responses

ENDOTHELIAL ACTIVATION AND DYSFUNCTION ARE ASSOCIATED WITH THROMBOSIS FORMATION DURING COVID-19

Increasing evidence worldwide suggests that patients with severe COVID-19 frequently develop pulmonary embolism (PE), deep vein
thrombosis (DVT), stroke, and even thrombosis in the extracorporeal circuits and arterial thrombosis (Fig. 2). EC swelling with foamy degeneration and a few areas of segmental fibrin thrombus in glomerular capillary loops were found in patients who have died from COVID-19 likely due to excessive endothelial activation and dysfunction. The association of microthrombus formation with organ dysfunction and ARDS has been proposed recently. Coagulation pathway activation with the potential development of DIC is a general characteristic of severe infections with COVID-19, and one of the most common findings is the increase of fibrin degradation fragments (D-dimer). Coagulation is a highly well-organized procedure that involves the formation of fibrin network, which could eventually lead to the clotting of the vessel organoids. 68 Autopsy pathology shows the presence of the virus and rupture of the cell membrane of pulmonary ECs. Moreover, SARS-CoV-2 proliferation in ECs directly induces endothelial activation and production of IL-6 and ROS (Fig. 3). We reviewed several antiviral drugs in our previous publication. 4 At present, several monoclonal neutralizing antibodies against SARS-CoV-2 have been developed to treat COVID-19 patients. 69, 70 Loss of ACE2 leads to the imbalance of the renin–angiotensin–aldosterone system (RAAS) and the kallikrein–kinin system (KKS). ACE2 not only is the receptor for viral entry but also an important component of RAAS. ACE2 plays a significant role in self-repair of ECs 71 and the development of acute lung failure caused by SARS-CoV-2, and other viruses (e.g. avian influenza A strains) by modulating RAAS. 72 The amount of ACE2 in ECs is decreased as a result of competitive binding and shedding induced by TNF-α and metalloprotease 17 (ADAM17). 73, 74 Consequently, ACE2 fails to catalyze the conversion of Ang II to Ang (1–7), leading to accumulation of Ang II and pathological damage. 75 Clinical reports have suggested that the level of Ang II in COVID-19 patients is considerably higher than that in healthy individuals. 76 Ang II is an autocrine vasoconstrictor of ECs. 77 Excessive Ang II activation of PI3K-Akt signaling pathway through the AT1 receptor to regulate physiological processes, such as in inflammation, coagulation, vasodilation, and blood pressure. ECs are assumed to be a target of KKS. Endothelial activation and production of IL-6 and ROS (Fig. 3). In addition, high concentrations of Ang II cause EC death and vascular degeneration by destroying the connection between ECs and pericytes. KKS has been suggested to regulate many physiological processes, such as inflammation, coagulation, vasodilation, and blood pressure. ECs are assumed to be a target of KKS. Under inflammation or infection, the expression of the bradykinin receptors (B1R and B2R) of KKS is upregulated in ECs. However, a decrease in the quantity and activity of ACE2 fails to inactivate the ligands of B1R, Lys des-Arg9-BK, and des-Arg9-BK in the lungs, and in turn, activates KKS (Fig. 3). Activated KKS will cause endothelial dysfunction and further result in leukocyte adhesion, complementing activation. We have summarized

Table 2. Summary of existing pharmacological modulators that act directly or indirectly on endothelial activation-mediated leukocytes recruitment

Potential therapeutic	Formula	Targets	Mechanism of action
PSI-697	C21H18ClNO3	P-selectin	Inhibit the binding of a soluble human P-selectin to PSGL-1
Sialyl-Lewis X	31H52N2O23	E-selectin	A high-affinity ligand for selectins and inhibits E-selectin-mediated neutrophil recruitment
Birosimase (TBC-1269)	C46H54O16	E-selectin/ P-selectin	A nonoligosaccharide pan-selectin antagonist
Androgapholide	C21H20O2	NF-κB	Suppress the activation of NF-κB in stimulated endothelial cells
Sialyl-Levis X	C31H32N2O23	E-selectin	A high-affinity ligand for selectins and inhibits E-selectin-mediated neutrophil recruitment
PSI-697	C21H24ClO3	P-selectin	Inhibit the binding of a soluble human P-selectin to PSGL-1
Parmodulin 2	C19H14BrN2O2	PAR1	An allosteric inhibitor of protease-activated receptor 1 (PAR1)

PROPOSED MECHANISMS FOR ENDOTHELIAL ACTIVATION AND DYSFUNCTION IN COVID-19

SARS-CoV-2 infection directly induces EC apoptosis. Established evidence suggests that SARS-CoV-2 hijacks the cell membrane receptor ACE2 to invade host cells with involvement of transmembrane protease serine 2 (TMPRSS2). Human ECs express ACE2 and TMPRSS2 and are considered SARS-CoV-2 target cells. SARS-CoV-2 replication is detected in ECs from various organs of patients with COVID-19 or engineered human blood vessel organsoids. Autopsy pathology shows the presence of the virus and rupture of the cell membrane of pulmonary ECs. Moreover, SARS-CoV-2 proliferation in ECs directly induces damage and apoptosis (Fig. 3). We reviewed several antiviral drugs in our previous publication. At present, several monoclonal neutralizing antibodies against SARS-CoV-2 have been developed to treat COVID-19 patients.
potential therapeutic tools for suppressing RAAS and KKS activation (Table 4), except for RAAS inhibitors, including ACE inhibitors and angiotensin II receptor blockers (ARBs), which have been indicated no benefit for COVID-19 protection.86

HMGB1-RAGE/TLR4 signaling-mediated endothelial activation and dysfunction

The high mobility group box 1 (HMGB1), a ubiquitous nuclear protein has been demonstrated to cause endothelial activation and dysfunction.90,91 During the process of hypoxic cellular stress or necrosis, HMGB1 is released into the extracellular environment and becomes a lethal pro-inflammatory mediator due to engagement of the receptor for advanced glycation products (RAGE) and TLR4.92,93 Upon RAGE or TLR4 activation, adhesion molecules (e.g., ICAM-1, P-selectin, and VCAM-1) and pro-inflammatory cytokines (TNF-α, IL-1, and IL-6) are induced through activating Src kinase, MAPK, and NF-κB.92–95 HMGB1 can increase the permeability of endothelial cell monolayer via the RAGE-Src pathway (Fig. 3).95

HMGB1 has been considered a potential marker of acute lung injury complicated by ARDS, notably viral pneumonia, such as SARS.97–99 Therefore, an increase in HMGB1 is predicted during the progress of COVID-19. At present, HMGB1 has been declared as a therapeutic target for treatment of COVID-19.100 The agents that can inhibit HMGB1-RAGE/TLR4 signaling are listed in Table 5.

Oxidative stress- and ROS formation-mediated endothelial dysfunction

Oxidative stress is defined as a state of the excessive generation of oxidant compounds and/or the reduction in scavenging antioxidants.101 Its sequela include elevated levels of oxidized biomolecules and related tissue damage. Increasing evidence indicates that oxidative stress plays an important role in promoting endothelial dysfunction.102 A number of mechanisms may participate in oxidative stress-mediated endothelial dysfunction, but the predominant mechanism is likely to associate with reduced NO bioavailability.103 Decreased endothelial nitric oxide synthase (eNOS) expression, lack of substrates for eNOS, eNOS inactivation, and accelerated NO degradation have been considered to cause a decline in NO bioavailability.104 As mentioned earlier, the serum level of NO among patients with COVID-19 is decreased, implying oxidative stress.105 In general, another main source of oxidative stress is ROS derived from mitochondria.106 Physiological ROS generation is required for maintaining the regular vascular homeostasis.106 In the vasculature, some enzyme systems, such as NADPH oxidase (NOX) and differentially localized and expressed eNOS, participate in ROS formation. Among these systems, NOX apparently plays a crucial role in orchestrating the activation and dysfunction of other enzymes. This process is considered the major source of ROS in the vascular endothelium.107 Acute inflammation by multiple mechanisms contributes to COVID-19 pathogenesis.40 Under acute inflammation status, however, excess ROS production can cause oxidation of macromolecules, promoting cell apoptosis mediated by cytochrome-c release.101 ROS is also capable of activating calcium signaling and NF-κB signaling to induce adhesion molecules and pro-inflammatory cytokines, which can increase vascular permeability and promote leukocyte adhesion (Fig. 3).23,103,104 A recent study suggests that oxidative stress caused by NOX2 activation contributes to COVID-19 pathogenesis and is associated with thrombotic events in COVID-19 patients.105 Therefore, a beneficial effect of antioxidant drugs (Table 6) on endothelial function should be considered for the treatment of COVID-19 in the future.

IL-6/LR-6R-mediated endothelial activation and dysfunction

Clinical reports have suggested that an increasing level of circulating IL-6 is related to the pathogenesis of COVID-19.6,106 IL-6 is produced by multiple cell types that include monocytes/macrophages, adipocytes, and ECs and is elevated in circulation during inflammatory conditions.107 Through the engagement of IL-6 receptor (IL-6R), IL-6 initiates the JAK-STAT pathway80 and in turn upregulates adhesion molecules, (VCAM-1, ICAM-1, E-selectin), and MCP-1, enhancing leukocyte adherence and extravasation into the vascular wall.80 In addition to classical IL-6R signaling, IL-6 is known to reduce NO bioavailability and increase oxidative stress, leading to endothelial permeability, along with the recruitment and infiltration of the vascular wall by circulating leukocytes (Fig. 3).80 Potential therapeutic approaches for targeting IL-6/IL-6R signaling are listed in Table 7.

Complement activation contributes to endothelial activation and dysfunction

Complement (C) is an essential part of the innate immunity that serves as a first line of defense against microorganisms.108 Complement system comprises of over 30 components, containing membrane-bound regulators, receptors, and numerous plasma proteins. It is well known that complement can be activated through the classical, lectin, or alternative pathways.109The role of complement in the pathogenesis of COVID-19 is to attract more attention.110 The complement activation has been confirmed in the pathogenesis of COVID-19, and excessive complement activation leads to acute and chronic inflammation, endothelial dysfunction, and thrombus formation.111,112 Activation and amplification of complement generates various potent effectors. Among these effectors, C5a serves as the dominant effector in signaling danger, and the induction of immune modulatory responses.113 As the strongest anaphylatoxin, C5a can recruit neutrophils and other leukocytes to the site of activation and prime them through binding to C5a receptor 1 (C5aR1), promoting VE-cadherin degradation. VE-cadherin degradation further results in disruption of the endothelial

Table 3. Potential therapeutic tools for anticoagulant and antithrombotic treatment in COVID-19

Potential therapeutic	Formula	Targets	Mechanism of action	Refs
Heparin	No application	Endogenous metabolite	Exhibits anti-inflammatory effects and protects the endothelial cells by reducing the toxicity of histones, and decreases lung edema and vascular leakage.	160–162
Activated protein C	C91H130N22O23	Coagulation cascade	A peptide potently inhibits activated protein C anticoagulant activity	163,164
Soflatran	C24H44N10O5S	Active factor IIa	An orally active factor IIa (thrombin) inhibitor	165
Methyldopasolone	C22H32O6	Glucocorticoid Receptor	A synthetic corticosteroid with anti-inflammatory and immunomodulating properties	166
Clopidogrel	C16H18ClNO5S	P2Y12 receptor	A potent antiplatelet agent that inhibits blood clots	167
Ticagrelor	C23H18F9N4O5S	P2Y12 receptor	Inhibits platelet aggregation	168
Prasugrel	C20H16FNO5S	P2Y12 receptor	Inhibits platelet aggregation	169
Elinogrel	C20H15ClFN5O5S2	P2Y12 receptor	Inhibits platelet aggregation	170

Table 6. Endogenous metabolite therapeutics for addressing COVID-19 pathogenesis

Metabolite	Formula	Targets	Mechanism of action	Refs
Aspirin	C9H8O4	Platelets	Inhibits platelet aggregation	171
Warfarin	C21H22ClF2N2O4	Coagulation cascade	A non-steroidal anticoagulant	172
Rivaroxaban	C22H26ClF2N2O7	Coagulation cascade	A direct oral anticoagulant	173
Dabigatran	C22H20ClF2N2O5	Coagulation cascade	A direct oral anticoagulant	174

Table 7. Potential therapeutic approaches for targeting IL-6/IL-6R signaling

Therapeutic	Formula	Targets	Mechanism of action	Refs
Bevacizumab	C100H138F13N13O18S3	VEGF receptors	Inhibits angiogenesis	175
Beansafran	C20H26ClF2N2O4S	IL-6 receptors	Inhibits cytokine activity	176
Naproxen	C14H14O4S	Pro-inflammatory cytokines	Inhibits leukocyte infiltration	177
Indomethacin	C16H12O4S	Pro-inflammatory cytokines	Inhibits leukocyte infiltration	178
The membrane attack complex (MAC/C5b-9) of complement has also been reported to play an important role in endothelial dysfunction during immune complex vasculitis. In addition to C5a and MAC/C5b-9, C3a has been demonstrated to upregulate adhesion molecules (ICAM-1 and VCAM-1) in ECs through p38 MAPK and NF-κB activation (Fig. 3). A recent report indicates that the plasma levels of sC5b-9 and C5a are elevated in COVID-19 patients, and complement activation has been suggested as a novel therapeutic target. Relative agents that can suppress complement activation are listed in Table 8.

VEGFA/VEGFR2 signaling-mediated endothelial activation and dysfunction. VEGFs, secreted by a range of cells, are well known for their participation in orchestrating the development and maintenance of blood vascular systems. They bind to their cognate tyrosine...
kinase VEGF receptors (VEGFRs) in ECs to elicit various effects.116 A large body of evidence suggests that an increase in VEGF induces VEGFR2 activation through ERK1/2 and calcium signaling in ECs.116 VEGF-stimulated VEGFR2 activation is an important process for modulating multiple biological responses, such as proliferation, survival, migration, and permeability.116 VEGFA/VEGFR2 recruits the TSAd adapter protein complex, which regulates VEGFA-induced activation of Src tyrosine kinase and vascular permeability in blood vascular ECs (Fig. 3).116 Notably, VEGFA is upregulated in the lungs of infections who have died from COVID-19.63

Table 4. Summary of existing pharmacological modulators that act directly or indirectly on RAAS and KKS activation during COVID-19

Potential therapeutic	Formula	Targets	Mechanism of action	Refs
Resorcinolnaphthalein	C24H16O5	ACE2	A specific ACE2 enhancer	171
SL910102	C30H18N8O	AT1 receptor	A unlabeled nonpeptide AT1 receptor antagonist	172
BMS-248360	C36H24N8O8S	AT1 receptor	An antagonist of AT1 receptor	173
Losartan potassium	C22H22CN16O6	Ang II	An AT1 receptor antagonist	174
Telmisartan	C21H32N8O2	AT1 receptor	A long lasting antagonist of AT1 receptor	175
Methyldopridol	C22H33O3	Glucocorticoid receptor	Activate ACE2 and reduces IL-6	166
TAPI-1	C26H32N8O8	ADAM17	Block the shedding of several cell surface proteins	176
Noscapine hydrochloride	C22H34ClNO7	Bradykinin	A non-competitive Bradykinin inhibitor	177
SSR240612	C42H35N8O5S	B1R	A specific non-peptide bradykinin B1R antagonist	178
Icatibant acetate	C31H33N10O15S	B2R	A specific peptide antagonist of B2R	179
Fasitibant chloride	C36H46Cl2N4O8S	B2R	A specific peptide bradykinin B2R antagonist	180

Table 5. Potential therapeutic tools for inhibiting HMGB1-RAGE/TLR4 signaling during COVID-19

Potential therapeutic	Formula	Targets	Mechanism of action	Refs
Glycyrrhizic acid	C42H62O16	HMGB1	A direct HMGB1 antagonist	181
Ammonium glycyrrhizinate	C42H65NO16	HMGB1	A direct HMGB1 antagonist	182
FPS-ZM1	C30H23ClNO	RAGE	A high-affinity RAGE inhibitor	183
Azeliragon	C33H33ClNO4S	RAGE	An inhibitor of RAGE	184

Table 6. Potential therapeutic tools for antioxidant treatment during COVID-19

Potential therapeutic	Formula	Targets	Mechanism of action	Refs
Human recombinant IL-37	AMP-activated kinase	Increase NO bioavailability and reduces ROS formation	185	
DAQ B1	Act	An activator of Akt, and reduces oxidative stress	186	
BMVO	PTase	An inhibitor of PTase that activates eNOS and reduces oxidative stress	187	
N-Acetyl-L-cysteine	C6H11NO5S	Endogenous metabolite	A ROS inhibitor	188
VAS2870	C18H23NO8	NOX	A pan NOX inhibitor	189
APX-115	C17H15ClNO3O	NOX	An active pan NOX inhibitor	190
Setanaxib	C21H15ClNO5O	NOX1/4	A selective NOX1/4 inhibitor	191
gp91ds-tat	C98H190N50O22S	NOX	Reduce ROS formation and platelet activation	192
GLX351322	C43H33ClNO6S	NOX4	An inhibitor of NOX4	193
GSK2795039	C33H33ClNO4S	NOX2	A NOX2 inhibitor	194

Table 7. Potential therapeutic tools for targeting IL-6/IL-6R mediated signaling during COVID-19

Potential therapeutic	Formula	Targets	Mechanism of action	Refs
Sarilumab	IL-6	A human immunoglobulin G1 monoclonal antibody.	195	
Tocilizumab	IL-6R	IL-6R neutralizing antibody	196	
LMT-28	C17H20N6O	IL-6	A synthetic IL-6 inhibitor that functions through direct binding to gp130	197
Ruxolitinib	C17H15N6	JAK1/2	A potent and selective JAK1/2 inhibitor	198
JAK-IN-1	C20H20N6O2	JAK1/2/3	A JAK1/2/3 inhibitor	199
JAK-IN-3	C18H20N6O2	JAK1/3	A potent JAK inhibitor	200
STAT3-IN-1	C26H20N6O2	STAT3	An excellent, selective and orally active STAT3 inhibitor	201
STAT3-IN-3	C22H21BrN6O2S	STAT3	A potent and selective inhibitor of STAT3	202
Collectively, targeting the VEGFA/VEGFR2 pathway is a possible therapeutic strategy for treatment of COVID-19. Potential therapeutic approaches for targeting VEGFA/VEGFR2 signaling are listed in Table 8.

CRP promotes endothelial activation and dysfunction. CRP is a major acute-phase protein, and pentamer CRP (pCRP) and monomer CRP (mCRP) are two of its subunits. Its circulating concentration is dramatically elevated at the onset of inflammation and infection. An increase in CRP is correlated with a poor prognosis of COVID-19.115,118 Recent studies have suggested that CRP plays a significant role in vascular inflammation and injury, which can damage ECs in vivo and in vitro.119 mCRP can promote endothelial cell damage and apoptosis via the p38 pathway.120 CRP potently suppresses eNOS transcription in ECs and destabilizes eNOS mRNA, leading to endothelial dysfunction (Fig. 3).121 CRP has been demonstrated to upregulate adhesion molecules, facilitate EC apoptosis, and inhibit angiogenesis while augmenting CD14-induced endothelial activation.122,123 CRP also potently upregulates NF-κB, a key nuclear factor that can promote the transcription of inflammatory genes.123

Other pathways involved in endothelial activation and dysfunction. Endothelial activation and dysfunction are caused by the combined actions of inflammatory mediators, leukocyte adhesion, and oxidants. In addition to the aforementioned mechanisms, heat shock protein (HSP)90 and hypoxia-inducible factor-1 (HIF-1) have also been suggested recently. HSPs belong to a group of highly conserved families of proteins expressed by all organisms, and their expression may be constitutive or inducible. HSPs are commonly considered protective molecules against different types of stress, such as oxidants, toxins, heavy metals, free radicals, and viruses.125 As mentioned earlier, a decline in the bioavailability of NO can cause endothelial dysfunction.23 The availability of NO to the vasculature is regulated by eNOS activity, and the involvement of HSP90 in the regulation of eNOS activity has been confirmed.24,25 The inhibition of HSP90 can prevent endothelial dysfunction.126 Fatal ARDS represented as hypoxia is the leading cause of death among COVID-19 patients.26 Local lung hypoxia is predicted to increase the transcription of HIF-1α, and in turn, HIF-1α signaling causes endothelial dysfunction.127 HIF-1α has been considered a target for treatment of COVID-19.128 Existing pharmacological modulators that act directly or indirectly on HSP90 and HIF-1α are listed in Table 8.

CONCLUSIONS AND PERSPECTIVES

The COVID-19 pandemic has posed an unprecedented challenge to the healthcare community. As our understanding of COVID-19 pathogenesis, endothelial activation and dysfunction are widely proposed by the international medical community. In this review, we summarized possible mechanisms of endothelial activation and dysfunction-mediated inflammation and abnormal coagulation based on clinical findings, suggesting that immunological and physiological functions of ECs, and multiple cellular signaling-mediated endothelial activation and dysfunction should be given more attention. How this will inform specific anti-inflammatory treatments, thus far rather generically targeted, will be another field for proceeding investigation and innovation. Here, we have summarized the critical roles of ECs in the inflammatory process and detailed several mediators and signaling pathways in this cell type that contribute to inflammation. Recently, a lot of agents have been developed to control endothelial inflammation, usually with leukocytes and endothelial activation or dysfunction as the intended targets. The precise therapeutic mechanisms of the medications or monoclonal neutralizing antibodies recommended in this review should be confirmed in future clinical practice, and the efficacy of anticoagulants needs to be verified in well-designed clinical trials. At present, a bulk of clinical and research data cannot be roughly interpreted.

To date, the pathogenesis of COVID-19 mostly remains unclear. The knowledge of the mechanisms of endothelial activation and dysfunction can be used to understand the pathogenesis of COVID-19. Uncontrolled inflammation is the common feature of severe COVID-19. Meanwhile, more attention should be paid to non-traditional forms of inflammation, as therapeutic tools will likely be extremely different for these pathways. For instance, endothelial inflammation has been rarely reported in the pathogenesis of many infectious diseases, but may be much more significant than we know. At last, as we present and interpret this evolving knowledge base, we need to find out which approaches to prevention and treatment of COVID-19, in this context, are most practicable and cost-effective. A collaborative effort between clinicians and biomedical investigators is urgently needed to achieve our goal.
required to translate the present understanding of endothelium-promoted inflammation to COVID-19 treatment.

ACKNOWLEDGEMENTS

The authors are supported by the National Science and Technology Specific Projects (NO.2018ZX10301407); the National Natural Science Foundation of China (NO.62002147 and NO.62076318); the Project founded by China Postdoctoral Science Foundation (NO.2019M662543).

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

REFERENCES

1. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).
2. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).
3. World Health Organization. Coronavirus disease (COVID-2019) situation reports. Update on 24:00 of August 04.
4. Jin, Y. et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Virus 12, 372 (2020).
5. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua liu xing bing. xe za zhi. 41, 145–151 (2020).
6. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
7. Sturtzel, C. Endothelial cells. Adv. Exp. Med. Biol. 1003, 71–91 (2017).
8. Zeng, H. et al. Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection. J. Virol. 86, 667–678 (2012).
9. Aird, W. C. Phenotypic heterogeneity of the endothelium: IL Representative vascular beds. Circ. Res. 100, 174–190 (2007).
10. Maniatis, N. A. & Orfano, S. E. The endothelium in acute lung injury/acute respiratory distress syndrome. Curr. Opin. Crit. Care. 14, 22–30 (2008).
11. Madthay, M. A., McAuley, D. F. & Ware, L. B. Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir. Med. 5, 524–534 (2017).
12. Teuwen, L. A., Geldhof, V., Pasut, A. & Carmeliet, P. COVID-19: the vasculature unleashed. Nat. Rev. Immunol. 20, 389–391 (2020).
13. Bermejo-Martin, J. F., Almansa, R., Torres, A., Gonzalez-Rivera, M. & Kelvin, D. J. COVID-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. Cardiovasc. Res. 116, e112–e113 (2020).
14. Bermejo-Martin, J. F., Martin-Fernandez, M., Lopez-Mestanza, C., Duque, P. & Almansa, R. Shared features of endothelial dysfunction between sepsis and Its syndrome working hypothesis. Crit. Care Resusc. 22, 359–359 (2020).
15. Nachman, R. L. & Rafii, S. Platelets, petechiae, and preservation of the vascular wall. N. Engl. J. Med. 359, 1261–1270 (2008).
16. Iba, T. et al. The unique characteristics of COVID-19 coagulopathy. Crit. Care. 24, 360 (2020).
17. Levi, M. COVID-19 coagulopathy vs disseminated intravascular coagulation. Blood Adv. 4, 2850 (2020).
18. Mondo, F. A. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 191, 145–147 (2020).
19. Cicci, F. et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc. 22, 95–97 (2020).
20. Sinha, I. P. et al. Child poverty, food insecurity, and respiratory health during the COVID-19 pandemic. Lancet Respir. Med. 8, 762–763 (2020).
21. Sturtzel, C. In The Immunology of Cardiovascular Homeostasis and Pathology (eds Susanne Sattler & Teresa Kennedy-Lydon) 71–91 (Springer International Publishing, 2017).
22. Godo, S. & Shimokawa, H. Endothelial functions. Arterioscler. Thromb. Vasc. Biol. 37, e108–e114 (2017).
23. Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7, 803–813 (2007).
24. Kruger-Genge, A., Blocki, A., Franke, R. P. & Jung, F. Vascular endothelial cell biology: an update. Int. J. Mol. Sci. 20, 4411 (2019).
25. Tong, M. et al. Elevated serum endothelial cell adhesion molecules expression in COVID-19 patients. J. Infect. Dis. 222, 894–898 (2020).
26. Escher, R., Breakey, N. & Lammle, B. Severe COVID-19 infection associated with endothelial activation. Thromb. Res. 190, 62 (2020).
27. Regev, T. et al. Pediatric inflammatory multisystem syndrome with central nervous system involvement and hypocomplementemia following Sars-Cov-2 Infection. Pediatr. Infect. Dis. J. 39, e206–e207 (2020).
28. Ouldali, N. et al. Emergence of Kawasaki disease related to SARS-CoV-2 infection in an epicenter of the French COVID-19 epidemic: a time-series analysis. Lancet Child Adolesc. Health 4, 662–668 (2020).
29. Green, S. J. Covid-19 accelerates endothelial dysfunction and nitric oxide deficieny. Microbes Infect. 22, 149–150 (2020).
30. Akersstrom, S., Gunalan, V., Keng, C. T., Tan, Y. J. & Mirazimi, A. Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the S protein are affected. Virology 395, 1–9 (2009).
31. Andonegui, G. et al. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J. Clin. Med. 11, 1011–1020 (2003).
32. Opitz, B. et al. Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in human endothelial and epithelial cells by up-regulating TLR3 expression. J. Immunol. 174, 4289–4294 (2005).
33. El Kebir, D., Jozsef, L., Pan, W., Wang, L. & Filep, J. G. Bacterial DNA activates endothelial cells and promotes neutrophil adherence through TLR9 signaling. J. Immunol. 182, 4386–4394 (2009).
34. Chen, H. et al. Cadmium induces NLRP3 in endothelial cells and promotes neutrophil adherence with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).
35. Skov, G. et al. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J. Clin. Med. 11, 1011–1020 (2003).
36. Opitz, B. et al. Nod1-mediated endothelial cell activation by Chlamydia pneumoniae. Circ. Res. 96, 319–326 (2005).
37. Opitz, B. et al. Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in human endothelial cells. J. Immunol. 176, 484–490 (2006).
38. Agostini, L. et al. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).
39. Chen, H. et al. Cadmium induces NLRP3 inflammasome-dependent pyropiosis in vascular endothelial cells. Toxcol. Lett. 246, 7–16 (2016).
40. Xiang, M. et al. Hemorrhagic shock-activation of NLRP3 inflammasome in lung endothelial cells. J. Immunol. 187, 4809–4817 (2011).
41. Freeman, T. L. & Swartz, T. H. Targeting the NLRP3 Inflammasome in severe COVID-19. Front. Immunol. 11, 1518 (2020).
42. Huang, J., Meyer, C. & Zhu, C. T cell antigen recognition at the cell membrane. Mol. Immunol. 52, 155–164 (2012).
43. Covina, I. et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell. 37, 421 (2020).
44. Carman, C. V. & Martellini, R. in Encyclopedia of Cell Biology (eds Ralph A. Bradshaw & Philip D. Stahl) 632–649 (Academic Press, 2016).
45. Hancock, W. W., Kraft, N. & Atkins, R. C. The immunohistochemical demonstration of major histocompatibility antigens in the human kidney using monoclonal antibodies. Pathology 14, 409–414 (1982).
46. Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020).
47. Rao, R. M., Yang, L., Garcia-Cardena, G. & Luscinhas, F. W. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ. Res. 101, 234–247 (2007).

Signal Transduction and Targeted Therapy (2020) 5:293
83. Fagiani, E. & Christofori, G. Angiopoietins in angiogenesis.

81. De Mello, W. C. Chemical communication between heart cells is disrupted by

80. Didion, S. P. Cellular and oxidative mechanisms associated with interleukin-6

78. Akwii, R. G., Sajib, M. S., Zahra, F. T. & Mikelis, C. M. Role of angiopoietin-2 in

77. Lobov, I. B., Brooks, P. C. & Lang, R. A. Angiopoietin-2 displays VEGF-dependent

66. Monteil, V. et al. Inhibition of SARS-CoV-2 infections in engineered human tis-

65. Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B. & Wu, J. C. COVID-19 and cardi-

64. Grobler, C. et al. Covid-19: the rollercoaster of

75. Sriram, K. & Insel, P. A. A hypothesis for pathobiology and treatment of COVID-

69. Wang, C. et al. A human monoclonal antibody blocking SARS-CoV-2 infection.

71. Lovren, F. et al. Angiotensin converting enzyme-2 confers endothelial protection

73. Eguchi, S., Kawai, T., Scalia, R. & Rizzo, V. Understanding angiotensin II type 1

61. Merrill, J. T., Erkan, D., Winakur, J. & James, J. A. Emerging evidence of a COVID-

62. Divani, A. A. et al. Coronavirus disease 2019 and Stroke: clinical manifestations

51 (2015).

58. P-selectin. Rheumatology and Immunology Therapy. 735–736. (Springer Berlin

59. Smadja, D. M. et al. Angiopoietin-2 as a marker of endothelial activation is a good

57. de Mello, W. C. et al. Angiopoietins in angiogenesis. Annu Rev. Pathol. 10, 349–374

56. Monteil, V. et al. Inhibition of SARS-CoV-2 infections in engineered human tis-

55. Sriram, K. & Insel, P. A. A hypothesis for pathobiology and treatment of COVID-

54. Didion, S. P. Cellular and oxidative mechanisms associated with interleukin-6

53. Fagiani, E. & Christofori, G. Angiopoietins in angiogenesis. Angiogenesis 23, 611–620

52. de Mello, W. C. Chemical communication between heart cells is disrupted by

51. V. et al. Inhibition of SARS-CoV-2 infections in engineered human tis-

50. Didion, S. P. Cellular and oxidative mechanisms associated with interleukin-6

49. Sriram, K. & Insel, P. A. A hypothesis for pathobiology and treatment of COVID-

48. Didon, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

47. Lopato Fagerstrom, I. et al. Blockade of the kallikrein-kinin system reduces endothelial

46. Didion, S. P. Cellular and oxidative mechanisms associated with interleukin-6

45. De Mello, W. C. Chemical communication between heart cells is disrupted by

44. Didion, S. P. Cellular and oxidative mechanisms associated with interleukin-6

43. Didion, S. P. Cellular and oxidative mechanisms associated with interleukin-6

42. Didion, S. P. Cellular and oxidative mechanisms associated with interleukin-6

41. de Mello, W. C. Chemical communication between heart cells is disrupted by

40. Didon, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

39. Didion, S. P. Cellular and oxidative mechanisms associated with interleukin-6

38. Didon, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

37. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

36. Didon, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

35. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

34. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

33. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

32. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

31. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

30. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

29. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

28. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

27. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

26. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

25. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

24. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

23. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

22. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

21. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

20. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

19. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

18. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

17. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

16. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

15. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

14. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

13. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

12. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

11. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

10. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

9. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

8. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

7. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

6. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

5. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

4. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

3. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

2. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

1. Didion, D. S. et al. Blockade of the kallikrein-kinin system reduces endothelial

Signal Transduction and Targeted Therapy (2020)5:293

Endothelial activation and dysfunction in COVID-19: from basic mechanisms... Jia et al.
Endothelial activation and dysfunction in COVID-19: from basic mechanisms...
175. Torika, N., Asraf, K., Cohen, H. & Fleisher-Berkovich, S. Intranasal telmisartan ameliorates brain pathology in five familial Alzheimer’s disease mice. Brain Behav. Immun. 64, 80–90 (2017).

176. Moss, M. L. & Minond, D. Recent advances in ADAM17 research: a promising target for cancer and inflammation. Mediators Inflamm. 2017, 9673537 (2017).

177. Lukhorst, B., Rolles, L. & Jessurun, N. T. Interaction of OTC drug noscapine and acenocoumarol and phenprocoumon. Br. J. Clin. Pharmacol. 85, 1041–1043 (2019).

178. Dias, J. P. et al. The kinin B1 receptor antagonist SSR246062 reverses tactile and cold allodynia in an experimental rat model of insulin resistance. Br. J. Pharmacol. 152, 280–287 (2007).

179. Bawolak, M. T., Fortin, J. P., Vogel, L. K., Adam, A. & Marceau, F. The bradykinin B2 receptor antagonist icatibant (Hoe 140) blocks aminopeptidase N at micromolar concentrations: off-target alterations of signaling mediated by the bradykinin B1 and angiotensin receptors. Eur. J. Pharmacol. 551, 108–111 (2006).

180. Valenti, C., Giuliani, S., Cialdai, C., Tramontana, M. & Maggi, C. A. Fast affinity constant of the bradykinin B1 receptor antagonist, and dexamethasone interact to inhibit carrageenan-induced inflammatory arthritis in rats. Br. J. Pharmacol. 166, 1403–1410 (2012).

181. Wang, L. Y. et al. Glycyrrhizin acid increases glucagon like peptide-1 secretion via TGR5 activation in type 1 diabetic rats. Biomed. Pharmacother. 95, 599–604 (2017).

182. Li, C. et al. Glycyrrhizin, a direct HMGB1 antagonist, ameliorates inflammatory infiltration in a model of autoimmune thyroiditis via inhibition of TLR2-HMGB1 Signaling. Thyroid 27, 722–731 (2017).

183. Deane, R. et al. A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J. Clin. Invest. 122, 1377–1392 (2012).

184. Chen, Y. et al. RAGE ligation affects T cell activation and controls T cell differentiation. J. Immunol. 181, 4272–4278 (2008).

185. Ballak, D. B. et al. Short-term interleukin-37 treatment improves vascular endothelial function, endurance exercise capacity, and whole-body glucose metabolism in old mice. Aging Cell. 19, e13074 (2020).

186. Shah, D. I. & Singh, M. Effect of demethylasterriquinone b1 in hypertension associated vascular endothelial dysfunction. Int J. Cardiol. 120, 317–324 (2007).

187. Shah, D. I. & Singh, M. Inhibition of protein tyrosin phosphatase improves vascular endothelial dysfunction. Vasc. Pharmacol. 44, 177–182 (2006).

188. Halasi, M. et al. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteases inhibitors. Biochem. J. 454, 201–208 (2013).

189. Sancho, P. & Fabregat, I. The NADPH oxidase inhibitor VAS2870 impairs cell growth and enhances TGF-beta-induced apoptosis of liver tumor cells. Biochem Pharmacol. 81, 917–924 (2011).

190. Cha, J. J. et al. APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab Invest. 97, 419–431 (2017).

191. Green, D. E. et al. The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation. Am. J. Respir. Cell Mol. Biol. 47, 718–726 (2012).

192. Lopes, N. et al. Thrombospondin 2 regulates cell proliferation induced by Rac1 reductox-dependent signalling. Mol. Cell. Biol. 23, 5401–5408 (2003).

193. Anvari, E., Wikstrom, P., Walum, E. & Welsh, N. The novel NADPH oxidase 4 inhibitor GLX315322 counteracts glucose intolerance in high-fat-diet-treated C57BL/6 mice. Free Radic. Res. 49, 1308–1318 (2015).

194. Hirano, K. et al. Discovery of GSX2795039, a novel small molecule NADPH oxidase 2 inhibitor. Antioxid. Redox Signal. 23, 358–374 (2015).

195. Xu, C., Su, Y., Pacaly, A. & Kanamaluru, V. Population pharmacokinetics of salinumab in patients with rheumatoid arthritis. Clin. Pharmacokinet. 58, 1455–1467 (2019).

196. Zhang, C., Wu, Z., Li, J. W., Zhao, H. & Wang, G. Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents 55, 105954 (2020).

197. Hong, S. S. et al. A novel small-molecule inhibitor targeting the IL-6 receptor beta subunit, glycoprotein 130. J. Immunol. 195, 237–245 (2015).

198. Soth, M. et al. 3-Amino pyrrolopyrazine JAK kinase inhibitors: development of a JAK3 vs JAK1 selective inhibitor and evaluation in cellular and in vivo models. J. Med Chem. 56, 345–356 (2013).

199. Spiegel, S. H. et al. Discovery of a JAK1/3 inhibitor and use of a prodrug to demonstrate efficacy in a model of rheumatoid arthritis. ACS Med. Chem. Lett. 10, 306–311 (2019).

200. Li, S. et al. Discovery of oral-available resveratrol-coffee acid based hybrids inhibiting acetylated and phosphorylated STAT3 protein. Eur. J. Med. Chem. 124, 1006–1018 (2016).

201. Finch, A. M. et al. Low-molecular-weight peptidic and cyclic antagonists of the receptor for the complement factor C5a. J. Med. Chem. 42, 1965–1974 (1999).

202. Hutamaki, P. et al. Effect of the C3a-receptor antagonist SB 290157 on anti-OVA polyclonal antibody-induced arthritis. J. Pharm. Sci. 112, 56–63 (2010).

203. Woodruff, T. M. et al. The complement factor C5a contributes to pathology in a rat model of amyotrophic lateral sclerosis. J. Immunol. 181, 8727–8734 (2008).

204. Jendza, K. et al. A small-molecule inhibitor of C5 complement protein. Nat. Chem. Biol. 15, 666–668 (2019).

205. Sun, L. et al. Synthesis and biological evaluations of 3-substituted indolin-2-ones: a novel class of tyrosine kinase inhibitors that exhibit selectivity toward particular receptor tyrosine kinases. J. Med. Chem. 41, 2588–2603 (1998).

206. Elkins, J. M. et al. Comprehensive characterization of the Published Kinase Inhibitor Set. Nat. Biotechnol. 34, 95–103 (2016).

207. Di Mauro, C. et al. Hedgehog signalling pathway orchestrates angiogenesis in triple-negative breast cancers. Br. J. Cancer 116, 1425–1435 (2017).

208. Fala, L. Cyramza (Ramucirumab) Approved for the Treatment of Advanced Gastric Cancer and Metastatic Non-Small-Cell Lung Cancer. Am. Health Drug Benefits 8, 49–53 (2015).

209. Henke, A. et al. Reduced contractility and motility of prostatic cancer-associated fibroblasts after inhibition of heat shock protein 90. Cancers (Basel). 8, 77 (2016).

210. Salcitrri, M. et al. Antitumor activity of the Hsp90 inhibitor IPI-514 in HER2-positive trastuzumab-resistant breast cancer. Mol. Cancer Ther. 10, 817–824 (2011).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.