A Comparative Study of N-glycolylneuraminic Acid (Neu5Gc) and Cytotoxic T Cell (CT) Carbohydrate Expression in Normal and Dystrophin-Deficient Dog and Human Skeletal Muscle

Paul T. Martin¹,²,³*, Bethannie Golden¹, Jonathan Okerblom⁴, Marybeth Camboni¹, Kumaran Chandrasekharan¹, Rui Xu¹, Ajit Varki⁴, Kevin M. Flanigan¹,², Joe N. Kornegay⁵

¹ Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America, ² Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America, ³ Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America, ⁴ Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States of America, ⁵ Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America

Abstract

The expression of N-glycolylneuraminic acid (Neu5Gc) and the cytotoxic T cell (CT) carbohydrate can impact the severity of muscular dystrophy arising from the loss of dystrophin in mdx mice. Here, we describe the expression of these two glycans in skeletal muscles of dogs and humans with or without dystrophin-deficiency. Neu5Gc expression was highly reduced (>95%) in muscle from normal golden retriever crosses (GR, n = 3) and from golden retriever with muscular dystrophy (GRMD, n = 5) dogs at multiple ages (3, 6 and 13 months) when compared to mouse muscle, however, overall sialic acid expression in GR and GRMD muscles remained high at all ages. Neu5Gc was expressed on only a minority of GRMD satellite cells, CD8⁺ T lymphocytes and macrophages. Human muscle from normal (no evident disease, n = 3), Becker (BMD, n = 3) and Duchenne (DMD, n = 3) muscular dystrophy individuals had absent to very low Neu5Gc staining, but some punctate intracellular muscle staining was present in BMD and DMD muscles. The CT carbohydrate was localized to the neuromuscular junction in GR muscle, while GRMD muscles had increased expression on a subset of myofibers and macrophages. In humans, the CT carbohydrate was ectopically expressed on the sarcolemmal membrane of some BMD muscles, but not normal human or DMD muscles. These data are consistent with the notion that altered Neu5Gc and CT carbohydrate expression may modify disease severity resulting from dystrophin deficiency in dogs and humans.

Introduction

Duchenne muscular dystrophy (DMD) is a severe X-linked myopathy of childhood that arises from the loss of dystrophin protein expression in cardiac and skeletal muscles[1,2]. Becker muscular dystrophy (BMD) also results from mutations or deletions in the dystrophin gene, but BMD mutations allow for expression of partially functional dystrophin protein and are typically associated with phenotypically milder muscle disease than is seen in DMD. A number of animal models have been used to better define disease pathophysiology and treatments that might ameliorate DMD and BMD[3]. The model used to test most MD therapies is the mdx mouse, which lacks dystrophin in cardiac and skeletal muscles due to a nonsense point mutation in exon 23 of the dystrophin gene[4,5]. Spontaneous mutations and deletions in the dystrophin gene also occur in dogs[6–8] and cats[9–11]. The Golden Retriever Muscular Dystrophy (GRMD) dog is one such DMD model that has been bred for research purposes[6,12]. GRMD dogs harbor a single base pair change in the 3‘ consensus splice site of intron 6, resulting in the skipping of exon 7 and an out-of-frame transcript with a stop codon immediately downstream[6,13]. GRMD dogs model a number of features of muscle pathophysiology found in DMD, including increased muscle membrane fragility, weakened muscle force, increased force decrement in response to eccentric contractions, altered pelvic and limb joint angles arising from combined muscle hypertrophy and atrophy, increased muscle inflammation, cardiomyopathy, loss of ambulation and premature death[6,12,14–20]. In addition, treatment of GRMD dogs with corticosteroids, which can prolong ambulation in DMD[21], yields improvement in muscle outcome...
measures[22]. Thus, while each animal model has its own advantages, GRMD dogs are generally thought to be a very good model of the more severe aspects of DMD pathophysiology and therefore potentially more appropriate for testing DMD therapies.

It is clear from a number of recent studies that glycosylation of the sarcolemmal membrane with particular carbohydrate structures can impact muscle membrane integrity and disease[23–27]. One such modifier of disease severity in the mdx mouse model is the Cmah gene[28]. Cmah encodes the CMP-Neu5Ac hydroxylase, the only enzyme known to hydroxylate the sugar nucleotide precursor for sialic acids at the 5-N-acyl position, converting CMP-Neu5Ac to CMP-Neu5Gc[29,30]. Deletion of mouse Cmah to reiterate this event in human evolution does not grossly impact muscle function, but loss of Cmah in mdx mice leads to more severe disease pathology, resulting in additional reductions in the strength of diaphragm and cardiac muscles as well as reduced lifespan[28]. While many other modifiers of disease severity occur in mdx mice, for example integrin α7[35], utrophin[36,37], MyoD[38], sarcospan[39,40] and telomerase[41], this is the first example of a disease modifier where the genetic change actually reiterates a human-specific genetic event.

As Cmah−/− mdx mice show more severe disease severity than mdx animals, the question arises as to how Neu5Gc may impact disease in other animal models, such as dogs and cats. One comparative study of muscle glycolipids has shown that dog muscle has very low Neu5Gc levels, with Neu5Gc comprising 2% of total sialic acid as compared to much higher levels in the mouse, cow and monkey[42]. This raises the possibility that dog muscles are hypomorphic for Neu5Gc, even though they appear to express a functional canine Cmah gene.

Another carbohydrate structure that can modify muscular dystrophy is the Cytotoxic T cell (CT) carbohydrate (GalNAcβ1-4[Neu5Ac/Galβ1-4GlcNAc]-[43–45]. The CT carbohydrate is normally confined to the neuromuscular junction in adult mouse and human skeletal muscle, with additional expression in intramuscular capillaries[46,47]. The enzyme that defines the synaptic expression of the CT carbohydrate is encoded by the Galgt2 gene (also called b4Galnt2). Galgt2 encodes a β1-4GalNAc glycosyltransferase that creates the terminal β1-4GalNAc linkage on the CT carbohydrate[48–50]. Overexpression of Galgt2 in mouse skeletal myofibers stimulates the glycosylation of α dystroglycan with the CT carbohydrate and induces the ectopic overexpression of normally synaptic dystroglycan-binding proteins, including utrophin, laminin α4, laminin α5 and agrin[48,51–56]. Such overexpression of Galgt2 can ameliorate muscular dystrophy in three different mouse models of muscular dystrophy, the mdx model for DMD[53], the Sgca−/− model for LGMD2D[53] and the dyN model for MDC1A[52]. Galgt2 overexpression correlates with increased laminin and agrin binding to α dystroglycan[54] and with increased resistance of skeletal muscles to injury resulting from eccentric contractions[24].

Despite the demonstrated functional effects of these carbohydrat-es on muscle disease, there is no published information on CT carbohydrate expression and little to no information on Neu5Gc expression in BMD or DMD muscles or in golden retriever (GR) or GRMD muscles. As low levels of Neu5Gc and CT carbohydrate correlate with more severe disease in mice, we asked here whether a similar relative deficit might potentially contribute to worsened disease severity in dystrophin-deficient dog and human muscles.

Materials and Methods

Ethics Statement

mdx and wild type (both in a C57Bl/10 genetic background) mice were bred at Nationwide Children’s Hospital in accordance with protocols approved by the Institutional Animal Care and Use Committee and specifically approved for use in this study (Permit AR07–00033). The full name of this committee is the “Institutional Animal Care and Use Committee at Nationwide Children’s Hospital”.

GR crosses and GRMD dogs were bred at University of North Carolina, Chapel Hill, in accordance with protocols approved by their Institutional Animal Care and Use Committee under a protocol that included the experiments described in this study (Permit 06–338). The full name of this committee is the “Institutional Animal Care and Use Committee at the University of North Carolina”.

Blinded sections from human muscle biopsies were obtained from clinical specimens archived as part of the United Dystrophinopathy project in accordance with approval from the Institutional Review Board (IRB) at Nationwide Children’s Hospital. The full name of this committee is the “Institutional Review Board at Nationwide Children’s Hospital”. All samples were obtained with patient’s written informed consent. As part of the consent process approved by the IRB, we received written consent from guardians on behalf of children/minors. Dated and signed consent forms were archived.

Mice

mdx and wild type (both in a C57Bl/10 genetic background) mice were bred at Nationwide Children’s Hospital in accordance with protocols approved by the Institutional Animal Care and Use Committee. mdx mice were originally obtained from Jackson Laboratory and Cmah−/− mice and Cmah−/− mdx mice were generated previously[28,57]. Muscles from mdx mice treated with Adeno associated virus (AAV) vector to overexpress the human GALGT2 gene (also termed B4GALNT2), using rAAV(rh.74).MCK.GALGT2, were utilized from a previous study[24].

Dogs

GR crosses and GRMD dogs were bred at University of North Carolina, Chapel Hill, in accordance with protocols approved by their Institutional Animal Care and Use Committee. Assessment of severity of muscle disease was measured by observation of gait and ambulation as well as measures of titotarsal joint (TTJ) angle and maximal titibitals flexion and extension, per previous studies[14,16,19]. For sake of defining disease severity in these GRMD dogs, we characterized several phenotypic features. Ringo and Napoleon were characterized as “severe” based on TTJ extension tetanic force and TTG angles below 1 N/kg and 145°, respectively, while values above these levels were associated with a “mild” phenotype in Tico, Jane and Summer (Table S1). Biopsy or necropsy samples of cranial sartorius (CS) and vastus lateralis (VL) muscles were serially obtained at 3, 6 and 13 months of age. Methods to measure muscle physiology and other measures...
describing dystrophic changes have been described in previous studies[16,19].

Human muscle biopsies
Blinded sections from human muscle biopsies were obtained from clinical specimens archived as part of the United Dystrophinopathy project in accordance with approval from the Institutional Review Board. Normal human muscles were from a 53 year-old (yo) male, a 3yo male and a 6yo female; DMD muscles were taken from 6 and 5yo males and BMD muscles from 11yo, 35yo and 67yo males. Biopsies were taken from the quadriceps muscle in most instances. “Normal” human samples were defined as biopsies where no myopathy or evidence of inflammation was present. For all normal cases, dystrophin protein expression was verified as being positive, and for all DMD cases, dystrophin protein expression was verified as being negative. DMD cases arose from a duplication of exons 29-43, c.3603+2T>C splice site mutation, or a duplication of exons 3-6. The three BMD cases arose from an intron 11 c.1331+17770C>G pseudoexon mutation (leading to mutant RNA c.1331_1332ins1331+17691_1331+17769 (case BZ), with loss of ambulation at age 23, an exon 2 c.40_41delGA frameshift mutation, with ambulation until at least 36 (case KG), and an intron 25 c.3432+3739G>T pseudoexon mutation, leading to mutant RNA r.3432_3433ins3432+3663_3432+3728, with ambulation until at least 67 (case RS). None of the cases were treated with steroids prior to biopsy.

Immunostaining
Human muscle biopsies and mouse skeletal muscles were snap frozen in liquid nitrogen-cooled isopentane; dog muscle biopsies were frozen in liquid nitrogen-cooled SUVA34A (Freon analogue). 8 μm cross-sections of all skeletal muscles were cut on a cryostat. For staining with antibody to glycans bearing N-acetylgalactosaminic acid (Neu5Gc, affinity purified chick IgY; Sialix) or non-immune chick IgY control (Sialix), sections were blocked in phosphobuffered saline (PBS) with 10% human serum that was confirmed to be Neu5Gc-free. Sections were incubated with anti-Neu5Gc or control antibody (1:500 or 1:1000) in blocking solution (10% human serum) overnight at 4°C, followed by incubation with donkey anti-chicken IgY secondary antibody conjugated to (10% human serum) overnight at 4°C. After blocking in 10% human serum, sections were then incubated overnight mouse-anti Pax7 (clone PSU1, Developmental Studies Hybridoma Bank), followed by species- and isotype-specific fluorophore-conjugated secondary antibodies for one hour. Pax7 antibody was a generous gift from Michael Rudnicki (Ottawa Health Research Institute). For all other anti-Neu5Gc or anti-CT co-stains, sections were incubated overnight with both primary antibodies without fixation, washed for one hour and incubated with the appropriate secondary antibodies as above. All sections were washed and placed in mounting medium containing with DAPI. Co-staining antibodies used in dog were mouse anti-chicken Pax7 (Developmental Studies Hybridoma Bank, clone P3U1), mouse anti-dog CD4 (AbD Serotec, MCA1998S), rat anti-dog CD8 (AbD Serotec, MCA1039GA), mouse anti-dog CD11b (AbD Serotec, MCA1777S), mouse anti-dog CD21 (AbD Serotec, MCA1781R), mouse anti-human β spectrin (Novus, NB300-574) or mouse anti-rat embryonic myosin (NovaCastra, NCL-MHCd). Co-staining antibodies used in human were mouse anti-chicken Pax7 (Developmental Studies Hybridoma Bank, clone P3U1), FITC-conjugated rabbit anti-human CD4 (BD Bioscience, 550628), FITC-conjugated mouse anti-human CD8 (AbD Serotec, MCA1039GA), rabbit anti-human CD11b (Abcam, ab52748), mouse anti-human β spectrin (Abcam, ab28008), mouse anti-rat embryonic myosin (eMyosin; NCL-MHCd, NovaCastra), rabbit anti-human calnexin (Sigma, C4731), rabbit anti-human clathrin (Cell Signaling, P1663), rabbit anti-human LAMP1 (Sigma, L1418) or mouse anti-human 58K Golgi protein (Novus, NB600-412). Other sections were co-stained with WFA-FITC and mouse anti-rat embryonic myosin (eMyosin; NCL-MHCd, NovaCastra). Appropriate fluorophore-conjugated species or species- and isotype-specific secondary antibodies were obtained from Jackson ImmunoResearch. Imaging was done on a Zeiss Axiohot epifluorescence microscope using AxioVision LE 4.1 imaging software (Zeiss; Jena, Germany) with fluorescein-, DAPI-, and mouse anti-rat embryonic myosin (eMyosin; NCL-MHCd, NovaCastra), rabbit anti-human clathrin (Sigma, C4731), rabbit anti-human clathrin (Cell Signaling, P1663), rabbit anti-human LAMP1 (Sigma, L1418) or mouse anti-human 58K Golgi protein (Novus, NB600-412). Other sections were co-stained with WFA-FITC and mouse anti-rat embryonic myosin (eMyosin; NCL-MHCd, NovaCastra). Appropriate fluorophore-conjugated species or species- and isotype-specific secondary antibodies were obtained from Jackson ImmunoResearch. Imaging was done on a Zeiss Axiohot epifluorescence microscope using AxioVision LE 4.1 imaging software (Zeiss; Jena, Germany) with fluorescein-, DAPI-, or rhodamine-specific optics. AAV(rh.74).MCK. for double immunostaining, sections were first stained overnight at 4°C with anti-Neu5Gc or control-specific IgY antibody after blocking in 10% (Neu5Gc-free) human serum, or with CT1 or CT2 after blocking in 5 mg/mL BSA, as described above. For Pax7 co-staining, sections were fixed in 2% paraformaldehyde. After blocking in 10% human serum, sections were then incubated overnight mouse-anti Pax7 (clone PSU1, Developmental Studies Hybridoma Bank, followed by species- and isotype-specific fluorophore-conjugated secondary antibodies for one hour. Pax7 antibody was a generous gift from Michael Rudnicki (Ottawa Health Research Institute). For all other anti-Neu5Gc or anti-CT co-stains, sections were incubated overnight with both primary antibodies without fixation, washed for one hour and incubated with the appropriate secondary antibodies as above. All sections were washed and placed in mounting medium containing with DAPI. Co-staining antibodies used in dog were mouse anti-chicken Pax7 (Developmental Studies Hybridoma Bank, clone P3U1), mouse anti-dog CD4 (AbD Serotec, MCA1998S), rat anti-dog CD8 (AbD Serotec, MCA1039GA), mouse anti-dog CD11b (AbD Serotec, MCA1777S), mouse anti-dog CD21 (AbD Serotec, MCA1781R), mouse anti-human β spectrin (Novus, NB300-574) or mouse anti-rat embryonic myosin (NovaCastra, NCL-MHCd). Co-staining antibodies used in human were mouse anti-chicken Pax7 (Developmental Studies Hybridoma Bank, clone P3U1), FITC-conjugated rabbit anti-human CD4 (BD Bioscience, 550628), FITC-conjugated mouse anti-human CD8 (AbD Serotec, MCA1039GA), rabbit anti-human CD11b (Abcam, ab52748), mouse anti-human β spectrin (Abcam, ab28008), mouse anti-rat embryonic myosin (eMyosin; NCL-MHCd, NovaCastra), rabbit anti-human clathrin (Sigma, C4731), rabbit anti-human clathrin (Cell Signaling, P1663), rabbit anti-human LAMP1 (Sigma, L1418) or mouse anti-human 58K Golgi protein (Novus, NB600-412). Other sections were co-stained with WFA-FITC and mouse anti-rat embryonic myosin (eMyosin; NCL-MHCd, NovaCastra). Appropriate fluorophore-conjugated species or species- and isotype-specific secondary antibodies were obtained from Jackson ImmunoResearch. Imaging was done on a Zeiss Axiohot epifluorescence microscope using AxioVision LE 4.1 imaging software (Zeiss; Jena, Germany) with fluorescein-, DAPI-, or rhodamine-specific optics. AAV(rh.74).MCK. GALGT2(human)-treated mdx muscles were infected for 12 weeks, as previously described[24]. All images shown in a figure use time-matched exposures for comparison and were representative of commonly seen staining patterns. For quantification of cell staining, 5 random 10x images per muscle were taken and counted as previously described[59].

Western blotting
Western blots for Neu5Gc and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were done and quantified as previously described using 15 or 30 μg per lane of NP40-extracted skeletal muscle protein separated on by SDS-PAGE on a 4–12% gradient gel[60].

Quantification of sialic acids
Quantification of total sialic acid and sialic acid species (relative Neu5Gc and Neu5Ac levels) was performed with modification from previously described methods of DMB (1,2-diamino-4,5-methylenediobenzene dihydrochloride) derivatization[61]. Briefly, 20-60 mg muscle tissue was homogenized in 10% PBS, base treated with 100 mM NaOH at 37°C for 30 minutes, then neutralized with 100 mM HCl. Small aliquots were taken for protein concentration determination using a Bradford assay. Sialic acids were then hydrolyzed with 2 M acetic acid at 80°C

Neu5Gc Expression in Human and Canine Muscle
for 3 hours and passed through a 10 K molecular weight filter. Flow-through was concentrated and subjected to DMB derivatization at 50°C for 2.5 hours. Samples were then resolved using high performance liquid chromatography (HPLC) and Neu5Ac and Neu5Gc peaks quantified, as before[47].

Results

We chose to study two dog muscles, the vastus lateralis (VL) and the cranial sartorius (CS), because these muscles have been well documented to undergo differential changes relevant to muscular dystrophy in GRMD animals[17]. In particular, the CS shows more muscle necrosis during the neonatal period and subsequent hypertrophy by 6 months of age, while the VL has a more delayed pattern of muscle necrosis and regeneration that leads to atrophy (Figure S1). Muscle biopsies or necropsies from three GR and five GRMD dogs were used for this study. Of the five GRMD dogs, two (Ringo and Napoleon) showed severe muscular dystrophy by 6 months of age, as evidenced by decreased tibiotarsal joint angle and decreased force of tibiotarsal joint extension, two well-described measures of GRMD disease severity[16–18,62], while three others (Tico, Jane and Summer) were mildly affected, having measures for these parameters that neared or equaled wild type dogs despite having the same GRMD genetic defect (Table S1).

We first compared Neu5Gc staining in muscles from 6 month-old GR (Swiper), mildly affected GRMD (Tico) and severely affected GRMD (Ringo) dogs (Figure 1A). As expected from the previously documented low level of Neu5Gc in dog muscle gangliosides[42], we found very little Neu5Gc staining in GR or...
levels did not exceed 2% of total sialic acids for any GR and GRMD muscles (tibialis anterior, soleus and gastrocnemius). Neu5Gc mice (Figure S2). In both instances, both GR and GRMD

背景免疫染色。因此，GR 和 GRMD

1B, control) or secondary antibody alone (not shown) showed no

Staining of muscles with pre-immune chicken IgY (Figure 1A and

nemius muscle showed very high and uniform staining of skeletal

contrast, anti-Neu5Gc immunostaining of normal mouse gastroc-

all sections stained from all GRMD animals (not shown). By

GRMD dog, this was not found to be significant when comparing

of muscles from the severely affected GRMD dog appeared to be

lower numbers of Pax7

CD11b

myofibers as well as intramuscular connective tissue (Figure 1B).

GRMD muscle membranes. In addition, there was no Neu5Gc

immunostaining of intramuscular connective tissue in any dog

muscle (Figure 1A). There was some difference in fiber type

between different GR and GRMD muscles, with CS showing a

bias towards more slow fibers than the VL, as has been previously

described[62]. Positively stained GR myofibers showed an uneven

pattern of membrane staining, with some myofibers showing no

staining, while GRMD muscles appeared to have even lower levels

of staining than GR muscles (Figure 1A). While Neu5Gc staining

of muscles from the severely affected GRMD dog appeared to be

reduced relative to staining of the muscles from the mildly affected

GRMD dog, this was not found to be significant when comparing

all sections stained from all GRMD animals (not shown). By

contrast, anti-Neu5Gc immunostaining of normal mouse gastroc-

nemius muscle showed very high and uniform staining of skeletal

myofibers as well as intramuscular connective tissue (Figure 1B).

Staining of muscles with pre-immune chicken IgY (Figure 1A and

1B, control) or secondary antibody alone (not shown) showed no

background immunostaining. Thus, both GR and GRMD

muscles showed very little Neu5Gc expression.

To investigate this further, we determined Neu5Gc levels, as a

fraction of total sialic acids, in skeletal muscles from wild type and

musk dystrophy (GRMD) dogs. Average Neu5Gc as a

percentage of total sialic acid is shown. Errors are standard deviation

(SD). ***P<0.001, for all dog vs. mouse muscle comparisons.

doi:10.1371/journal.pone.0088226.g002

GRMD muscle

muscles were analyzed from 11

wild type (WT) mice, TA and gastrocnemius (GS) muscles were analyzed

from 8 mdx mice, and vastus lateralis (VL) and cranial sartorius (CS)

muscles were analyzed from 2 golden retriever (GR) and 5 golden

retriever muscular dystrophy (GRMD) dogs. Average Neu5Gc as a

percentage of total sialic acid was 2% of mouse

b2-3-linkage[63](Figure S3). GR and GRMD muscles,

from both CS and VL, showed high levels of MAA staining along

skeletal myofiber membranes and within intramuscular connective

tissue. Increased fibrosis was evident from MAA staining of

GRMD CS in a severely affected dog, as was the presence of

hypertrophic skeletal myofibers. Thus, the low expression of

Neu5Gc in GR and GRMD muscle was not due to a reduction in

overall sialic acid levels.

We next performed a longitudinal study of anti-Neu5Gc

staining for three different GRMD dogs, imaged at higher

magnification, to assess expression at 3, 6 and 13 months of age

(Figure 3). Muscles in all three GRMD dogs (GRMD1-3, Napoleon, Jane and Summer, respectively) showed higher

Neu5Gc staining in mononuclear cells within the muscle than

was seen on GRMD myofibers. There was faint Neu5Gc

expression in some GRMD skeletal myofibers at 6 and 13 months

of age compared to 3 months, however, this staining was not

uniformly present. We stained the same GRMD dog muscles with

MAA to assess relative total b2-3-linked sialic acid levels (Figure

S4); MAA staining was high and relatively constant in both CS

and VL muscles of GRMD dogs at 3, 6 and 13 months of age.

MAA staining showed evidence of increased hypertrophic

myofibers in the CS versus VL at 6 and 13 months, consistent

with previous studies[17].

To further delineate which mononuclear cells expressed

Neu5Gc in GRMD muscles, we triple stained muscle sections

for Neu5Gc, DAPI (to stain nuclei) and markers for Pax7

(Figure 4A), to identify satellite cells, CD11b (Figure 4B), to

identify macrophages, CD4 (Figure 4C), to identify helper T

lymphocytes, or CD8 (Figure 4D), to identify cytotoxic T

lymphocytes. We utilized mouse hybridoma clone P3U1 for

Pax7 staining. A subset of cells that stained for Neu5Gc could be

co-stained with each cell-specific marker used (except CD21, not

shown, which did not stain muscle). Because each of these cell

types co-expressed Neu5Gc, we quantified both the total number

of each cell type per unit area (Figure 5A) as well as the percentage

of each cell type that co-expressed Neu5Gc (Figure 5B). GRMD

muscles showed higher numbers of Pax7+, CD4+, CD8- and

CD11b- stained cells compared to GR muscles. Aside from CD14+

cells, however, all cell types showed a low percentage of co-

expression with Neu5Gc in GRMD muscles, with only a quarter

to half of Pax7+, CD8+ or CD11b+ cells co-expressing Neu5Gc

(Figure 5B). For CD8 and Pax7, the percentage of cells expressing

Neu5Gc in GRMD muscle was also significantly lower than it was in

GR muscle (not shown).
We next analyzed Neu5Gc staining of muscle sections from biopsies of patients with Becker muscular dystrophy (BMD) or Duchenne muscular dystrophy (DMD) (Figure 6 Figure S5). These were compared to muscle sections from patients with an initial complaint that warranted muscle biopsy but where no muscle pathology could be identified (otherwise “normal” human muscle). We identified no Neu5Gc staining in normal human muscle, consistent with previous studies[28]. Unlike previously published Neu5Gc staining[28], however, we also identified some punctate intracellular Neu5Gc staining in BMD and DMD muscles. This was the case in all three DMD and all three BMD biopsies analyzed (Figure S5). Co-staining of Neu5Gc and β spectrin, a sarcolemmal membrane marker, showed that most Neu5Gc staining was localized within skeletal myofibers or near the sarcolemmal membrane, with greater concentrations being found within smaller myofibers (Figure 6A). By contrast, there was minimal to no co-staining of Neu5Gc with CD11b, CD8 or Pax7 in DMD muscle (Figure 6B). The intracellular aggregates of Neu5Gc within skeletal myofibers often co-stained with clathrin, a marker for endosomes (Figure 7A). In addition, some co-staining was evident with 58K Golgi protein, a marker for the Golgi apparatus (Figure 7B). There was minimal co-staining with LAMP1, a marker for lysosomes, or with calnexin, a marker for the endoplasmic reticulum (Figure 7B). Thus, the majority of Neu5Gc-stained puncta found within skeletal myofibers were co-stained with a marker for endosomes (Figure 7), suggesting that Neu5Gc is internalized by endocytosis into dystrophin-deficient human muscles and concentrated in distinct intramuscular and perimembranous regions of skeletal myofibers.

Figure 3. Neu5Gc expression in GRMD muscle at different ages. Three different GRMD cases (GRMD1, 2, and 3) were biopsied and muscles stained for Neu5Gc at 3, 6 and 13 months of age. Time-matched images of staining of the cranial sartorius (A) and vastus lateralis (B) muscles are shown. Bar is 50 μm for all panels in A and B.
doi:10.1371/journal.pone.0088226.g003
We next surveyed CT carbohydrate and overall βGalNAc expression in GR and GRMD muscles, using the CT2 monoclonal antibody and Wisteria floribunda agglutinin (WFA), respectively (Figure 8 and Figure S6). In GR muscle, most WFA and CT2 staining was present at the neuromuscular junction (NMJ) (Figure S5). NMJs were identified by costaining with rhodamine-α-bungarotoxin, which labels nicotinic acetylcholine receptors (AChRs). In GRMD muscle, we also identified increased WFA staining on extrasynaptic regions of the muscle sarcolemmal membrane, as described previously in mdx mice[64]. WFA staining was not as abundant in eMyosin-positive myofibers as in eMyosin-negative myofibers (Figure 8C). In addition, we identified intense CT2 staining in mononuclear cell infiltrates in GRMD muscle. Here, CT2 co-stained with CD11b, suggesting that much of this CT expression was present on macrophages (Figure 8A). While CT2 co-stained large aggregates of macrophages in some muscle regions, an example with only a few macrophages present is shown here for clarity. CT2 co-stained with Pax7 far less frequently than with CD11b (Figure 8B). These data are similar to immunostaining results in mdx muscle[55] and show that CT carbohydrate expression can be increased in GRMD muscle relative to GR.

Last, we determined CT carbohydrate expression in DMD and BMD muscles, compared to normal human muscle (Figures 9, 10 and S7). We had previously demonstrated that CT2 shows a binding preference for the CT carbohydrate when Neu5Gc is the sialic acid present, while CT1 shows a binding preference for CT carbohydrates containing Neu5Ac[47]. We first compared CT1 and CT2 staining in DMD (Figure 9A) and normal human (Figure 9B) muscle to determine if CT1 would stain more strongly, as humans do not make Neu5Gc[32] (Figure 9). We also stained mdx muscles (Figure 9C) that had been infected with AAV(rh.74).MCK.GALGT2[24] to overexpress the CT carbohydrate. As expected, CT1 stained human muscle, but CT2 did not, while both antibodies stained AAV-GALGT2-infected mouse muscle (Figure 9). Normal human and DMD muscles did not show CT1 staining along the sarcolemmal membranes of myofibers, which were co-labeled with β spectrin, but some staining was evident in mononuclear cells (co-stained with DAPI) and also in peripheral nerve (Figure 10). All three BMD muscle biopsies, by contrast, showed increased CT1 staining along the sarcolemmal membranes of myofibers, which were co-labeled with β spectrin, but some staining was evident in mononuclear cells (co-stained with DAPI) and also in peripheral nerve (Figure 10). While it is impossible to generalize with only three cases, we observed at least some CT1-stained positive fibers in all three BMD cases used, and these cases ranged from relatively severe (loss of ambulation at 23) to relatively mild (ambulant at 67). In Figure S7, each BMD case is presented, respectively, with severity ranging from severe on the left to mild on the right.

![Figure 4. Neu5Gc immunostaining of satellite cells, T lymphocytes and macrophages in GRMD skeletal muscle.](doi:10.1371/journal.pone.0088226.g004)
Discussion

Both N-glycolylneuraminic acid (Neu5Gc), which requires the Cmah gene for its synthesis, and the Cytotoxic T cell (CT) carbohydrate, which requires the Galgt2 gene for its synthesis, can, when altered, affect the severity of muscular dystrophy in mdx mice; Deletion of Cmah [28] or Galgt2 (Xu et al., in preparation) increases severity of muscular dystrophy in the mdx mouse, decreasing lifespan and sometimes also muscle strength, while increasing Galgt2 can ameliorate muscular dystrophy, increasing resistance of muscles to injury [24,55]. Here we have analyzed the expression of these two carbohydrates in patients with DMD and BMD and in GR and GRMD dogs. Both humans and dogs with dystrophin deficiency can show a range of disease severity, however, these phenotypes are generally more severe than those exhibited by the mdx mouse. All human cells lack a functional CMAH gene and therefore cannot synthesize Neu5Gc [32,65]. The data presented here demonstrate that Golden Retriever dog muscles also show little to no Neu5Gc expression (Figs. 1–3), despite lacking a human-like inactivating mutation in the canine CMAH gene. The low level of Neu5Gc found in skeletal muscle is consistent with a recent study showing little to no canine CMAH gene expression in cell lines made from Western dog breeds [66]. These data support the possibility that reduced Neu5Gc levels in GRMD dog muscles may contribute to their worsened disease severity relative to mdx mice. All humans possess serum antibodies that react with Neu5Gc [59]. Neu5Gc levels, for example, are particularly high in red meat [70], and Neu5Gc can be incorporated into cells from ingested glycoproteins in humans [70] and in Cmah-deficient mice [57,69]. Here we have shown that intracellular Neu5Gc co-stains with clathrin and Golgi 58K protein, and to a lesser extent with LAMP1 (Figure 7). This presumably reflects the uptake of Neu5Gc by a salvage pathway from the diet [68,69]. Neu5Gc levels, for example, are particularly high in red meat [70], and Neu5Gc can be incorporated into cells from ingested glycoproteins in humans [70] and in Cmah-deficient mice [57,69]. Here we have shown that intracellular Neu5Gc co-stains with clathrin and Golgi 58K protein, and to a lesser extent with LAMP1 (Figure 7).

This study is also the first to describe the cellular and subcellular distribution of Neu5Gc in normal and dystrophin-deficient dog and human skeletal muscles (Figure 7). In addition to low to absent Neu5Gc expression on skeletal myofibers, GRMD muscles expressed Neu5Gc only on a minority of intramuscular satellite cells, CD11b+ T lymphocytes and macrophages (Figure 4 and 5). Further, almost no such cells were stained for Neu5Gc in DMD muscles, consistent with loss of CMAH function in humans [32]. By contrast, we did identify intracellular accumulations of Neu5Gc in DMD and BMD skeletal myofibers (Figure 6). This presumably reflects the uptake of Neu5Gc by a salvage pathway from the diet [68,69]. Neu5Gc levels, for example, are particularly high in red meat [70], and Neu5Gc can be incorporated into cells from ingested glycoproteins in humans [70] and in Cmah-deficient mice [57,69]. Here we have shown that intracellular Neu5Gc co-stains with clathrin and Golgi 58K protein, and to a lesser extent with LAMP1 (Figure 7). This suggests a possible mechanism, much of which has been described previously [68], where internalization of Neu5Gc-containing glycoproteins via endosomes leads to their transport to the lysosome via the sialin transporter. There, Neu5Gc present on glycoproteins could be liberated by lysosomal sialidase. Such a mechanism would ultimately allow recycling of Neu5Gc into CMP-Neu5Gc, transport into the Golgi, and reintegration of Neu5Gc into proteins and lipids by sialyltransferases. The uptake and reincorporation of Neu5Gc into muscle cell proteins may affect muscle disease by altering muscle physiology or by increasing Neu5Gc-driven immune reactions.
containing glycans, and these antibodies could increase damage to Neu5Gc-containing muscle cells [33, 71]. Future work will be required to delineate Neu5Gc’s roles and the possible mechanisms controlling its functions.

Our findings in dog skeletal muscle suggest that reduced or absent Neu5Gc in dog muscles may be analogous to Cmah-deficient mdx mice, which, like GRMD dogs, have relatively severe muscle disease [28]. GRMD dogs should have no autoimmune response to Neu5Gc, as Cmah−/−mdx mice [28] and humans can [33], but they may share the loss of function effects of lack of Neu5Gc expression found in Cmah−/−mdx mice and in DMD patients. The percentage of sialic acid comprising Neu5Gc was reduced in both GR and GRMD muscles by at least 95% relative to mouse muscles (Figure 2). Only 1–2% of total sialic acid was Neu5Gc in any dog muscle studied. Further, Neu5Gc levels in GRMD muscles were reduced relative to GR. This was evident in Neu5Gc measurements of total muscle sialic acid (Figure 2), Neu5Gc immunoblots of muscle glycoproteins (Figure S2) and Neu5Gc immunostaining of muscle sections (Figure 1).

We also wished to determine if Neu5Gc expression plays a role in disease severity of individual dogs and the associated dramatic phenotypic variation. A range of phenotypic features have been used to allow a general definition of disease severity in GRMD dogs [62]. In particular, they have lower tibiotarsal joint (TTJ) tetanic force extension and a plantigrade posture exemplified by more acute tibiotarsal joint angles [16, 19]. Paradoxically, some muscles (especially flexors) undergo early necrosis and then may recover or even hypertrophy. Accordingly, TTJ flexor tetanic force is typically increased in dogs with more severe postural abnormalities [62]. In keeping with this paradoxical functional muscle hypertrophy, the cranial sartorius muscle may become larger as disease progresses (represented by circumference [mm] divided by body weight [kg]) [17]. While TTJ flexion does not involve the cranial sartorius muscle, force values tend to track with those of cranial sartorius hypertrophy. Interestingly, muscle membranes of hypertrophied muscle fibers appear to be partially protected against eccentric contraction-induced injury. As a result, the degree of decrement may actually be reduced in dogs with an otherwise severe phenotype (Kornegay JN, unpublished data). If Neu5Gc were playing a role in protecting dystrophic muscles, increased levels might therefore be expected in the VL of mildly affected dogs, which might prevent their subsequent atrophy, or the CS of dogs with a more severe phenotype, which might contribute to increased hypertrophy. With a small number of

Figure 6. Neu5Gc co-staining with β spectrin, CD11b, CD8 or Pax7 in normal, BMD or DMD human muscle. (A) Otherwise normal, Becker muscular dystrophy (BMD) and Duchenne muscular dystrophy (DMD) muscle biopsy sections were stained for Neu5Gc (green), β spectrin (red) and DAPI (blue). Arrows indicate Neu5Gc puncta in cytoplasmic or perimembranous regions of BMD and DMD skeletal myofibers. (B) DMD muscle was co-stained for Neu5Gc and CD11b, CD8 or Pax7 (and DAPI). Bar is 50 μm for all panels in A and B.

doi:10.1371/journal.pone.0088226.g006
Figure 7. Co-localization of Neu5Gc staining with markers for endosomes and Golgi in BMD and DMD muscle. (A) BMD muscle co-stained for Neu5Gc (green) and clathrin (red), a marker of endosomes. Merged image on right shows overlap of Neu5Gc and clathrin expression in yellow. Arrow marks several examples of co-staining. (B) DMD muscle co-stained for Neu5Gc (green) with LAMP1, a lysosomal marker, 58K Golgi, a Golgi marker, or calnexin, and endoplasmic reticulum marker, all in red, and DAPI (blue). Arrow marks region of coincident staining (yellow) for Neu5Gc and 58K Golgi. Bar is 50 μm for all panels in A and B.

doi:10.1371/journal.pone.0088226.g007

Figure 8. Co-staining of CT carbohydrate with macrophages in GRMD muscle. (A) Single and merged staining for CT2 (green) with CD11b (red, to mark macrophages) and DAPI (blue). Arrow shows co-incident staining for CT2 and CD11b. (B) Single and merged staining for CT2 (green) with Pax7 (red, to mark satellite cells) and DAPI (blue). Arrow shows lack of coincident staining for CT2 and Pax7. (C) Examples of WFA staining (green) with embryonic myosin (red) and DAPI (blue) (two left panels). Examples of control staining for staining shown in A and B using only secondary antibodies with DAPI (two right panels). Bar is 50 μm for all panels in A, B and C.

doi:10.1371/journal.pone.0088226.g008
GRMD dogs in this study, we were unable to draw definitive conclusions regarding the role of Neu5Gc expression in the individual phenotypes.

Similar to our Neu5Gc studies, we have shown that most DMD myofibers have very low to absent CT carbohydrate expression (Figure 9 and 10). By contrast, CT carbohydrate expression was increased in BMD muscles (Figure 10 and S7). Although these observations do not establish a causal relationship, they suggest an association between increased CT carbohydrate and BMD. CT carbohydrate was also increased in some myofibers and

Figure 9. Comparison of CT1 and CT2 immunostaining in DMD and normal human muscle. CT1 and CT2 were used to immunostain two different DMD (A) and two different normal human (B) muscle biopsies, compared to secondary antibody control. These were compared to time-matched images taken from mdx muscles (C), diaphragm (left panel) or tibialis anterior (right panel), that had been infected with rAAV(rh.74).MCK.GALGT2 for 12 weeks. Bar is 200 µm for all panels in A, B and C.

doi:10.1371/journal.pone.0088226.g009
macrophages in GRMD muscles (Figure 8), where it may play additional roles. Further work will be required to understand if there is a direct relationship between CT carbohydrate expression and human or canine disease. However, the low expression of Neu5Gc and CT glycans in DMD and GRMD muscles suggests that they do not normally have the potential to ameliorate disease severity in dogs and humans lacking dystrophin protein.

Supporting Information

Table S1 GRMD Dog Functional Data (6 Mos). GRMD dogs have a range of phenotypic features that allow general definition of disease severity.1 In particular, they have lower tibiotarsal joint (TTJ) tetanic extension force2 and a plantigrade posture exemplified by more acute tibiotarsal joint angles.3 Paradoxically, some muscles (especially flexors) undergo early necrosis and then may recover or even hypertrophy. Accordingly, TTJ flexor tetanic force may be increased in dogs with more severe postural abnormalities.1 In keeping with this paradoxical functional muscle hypertrophy, the cranial sartorius muscle may be larger (represented by circumference [mm] divided by body weight [kg]).1,3 While TTJ flexion does not involve the cranial sartorius muscle, force values tend to track with those of cranial sartorius hypertrophy. Interestingly, muscle membranes of hypertrophied muscle fibers appear to be partially protected against eccentric contraction injury. As a result, the degree of decrement may actually be reduced in dogs with an otherwise severe phenotype (Kornegay JN, unpublished data). For sake of defining disease severity in these GRMD dogs, we characterized several of these features. Ringo and Napoleon were characterized as “moderate/severe”, while Tico, Summer, and Jane were “mild/moderate,” based on TTJ extension tetanic force and TTJ angles below or above (1 N/kg and 145°), respectively. 1. Kornegay JN, Bogan DJ, Bogan JR, Childers MK, Cundiff DD, Petrooki GF, Schueler RO: Contraction torque generated by tarsal joint flexion and extension in dogs with golden retriever muscular dystrophy. J Neurol Sci 166:115–121, 1999. 3. Kornegay JN, Sharp NJH, Schueler RO, Betts CW: Tarsal joint contracture in dogs with golden retriever muscular dystrophy. Lab Anim Sci 44:331–333, 1994. 4. Kornegay JN, Cundiff DD, Bogan DJ, Bogan JR, Okamura CS: The cranial sartorius muscle undergoes true hypertrophy in dogs with golden retriever muscular dystrophy. Neuromuscul Disord 13:493–500, 2003. 5. Kornegay JN, Bogan JR, Bogan DJ, Childers MK, Grange RW: Golden retriever muscular dystrophy (GRMD): Developing and maintaining a colony and physiological functional measurements. In: Duan D (ed). Muscle Gene Therapy: Methods and Protocols. Methods in Molecular Biology, vol. 709, Humana Press, New York, 2011, 105–123.

Figure S1 Muscle damage in mild and severely affected GRMD muscles at 6 months of age. Hematoxylin and eosin staining of muscle cross-sections from GR and GRMD muscles. Cranial sartorius (A-C) and vastus lateralis (D-F) muscles from one normal dog (Heisenberg, A,D), one mildly affected GRMD dog (Summer, B, E) and one severely affected GRMD dog (Napoleon, C, F) are shown. Overall, histopathologic lesions in these GRMD dogs were in keeping with those we and others have described. There was small group muscle necrosis and regeneration in both the cranial sartorius and vastus lateralis. Each muscle had features of necrosis, including hyaline fibers and myophagocytosis (examples are circled). Myofiber mineralization was only seen in the cranial sartorius. Evidence of regeneration, with small basophilic myofibers and numerous central nuclei, was more pronounced in the vastus lateralis. The regenerative response was more mature in the cranial sartorius, with an increase in larger myofibers. Bar is 150 μm for all panels.
Figure S2 Neu5Gc expression on GR and GRMD glycoproteins relative to mouse. Western blots of NP-40 extracted muscle protein with anti-Neu5Gc antibody and anti-GAPDH control. Mouse Cmah+/− and Cmah+/−/− skeletal muscle lysates were compared to cranial sartorius (CS) and vastus lateralis (VL) muscles from GR and GRMD dogs that were either mildly or severely affected. Half the amount of mouse protein as dog protein is loaded per lane. (TIF)

Figure S3 High expression of sialic acid in GR and GRMD muscle. Maackia amurensis agglutinin (MAA), a lectin that stains α2,3-linked sialic acid, both Neu5Ac and Neu5Gc, was used to stain skeletal muscles from 6 month-old Golden Retriever cross (GR) and Golden Retriever Muscular Dystrophy (GRMD) dogs. Time-matched images are shown. Bar is 200 μm for all panels. (TIF)

Figure S4 High sialic acid expression in GRMD muscles at different ages. Three different GRMD cases (GRMD1, 2, and 3-Napoleon, Jane and Summer respectively) were biopsied and muscles stained for sialic acid using Maackia amurensis agglutinin (MAA) at 3, 6 and 13 months of age. Time-matched images of staining of the cranial sartorius and vastus lateralis muscles are shown. Bar is 50 μm for all panels. (TIF)

Figure S5 Neu5Gc expression in DMD, BMD and normal human muscle. Muscle biopsies from Duchenne muscular dystrophy (DMD), Becker Muscular Dystrophy (BMD), or otherwise normal human muscle were immunostained with CT1 and compared to normal human muscle. 3 DMD, 3 BMD, and 2 normal human biopsies were immunostained with CT1 and compared to secondary antibody control alone. BMD cases range in severity from severe (loss of ambulation at 23) to milder (ambulant at 36 and ambulant at 67), respectively, from left to right. Bar is 200 μm for all panels. (TIF)

Acknowledgments

The authors would like to thank Daniel Bogan (UNC) for technical assistance and Michael Rudnicki (Ottawa Health Research Institute) for Pax7 antibody.

Author Contributions

Conceived and designed the experiments: PTM AV KMF JNK. Performed the experiments: PTM BG JO MC KC RX AV KMF JNK. Analyzed the data: PTM BG JO MC KC RX AV KMF JNK. Wrote the paper: PTM BG JO MC KC RX AV KMF JNK.

References

1. Hoffman EP, Brown RH Jr., Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51: 919–929.
2. Koeng M, Hoffman EP, Bertelson CJ, Monaco AP, Fener C, et al. (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50: 509–517.
3. Willmann R, Possel S, Dubach-Powell J, Meier T, Ruegg MA (2009) Mammalian model animals for Duchenne muscular dystrophy. Neuromuscular Disord.
4. Scicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Davison MG, et al. (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244: 1578–1580.
5. Builfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 81: 1189–1192.
6. Kornegay JN, Tuler SM, Miller DM, Levesque DG (1988) Muscular dystrophy in a litter of golden retriever dogs. Muscle & nerve 11: 1056–1064.
7. Cooper BJ, Winand NJ, Steedman H, Valentine BA, Hoffman EP, et al. (1998) The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 334: 154–156.
8. Smith BF, Yue Y, Woods PR, Kornegay JN, Shin JH, et al. (2011) An intronic LNE-1 element insertion in the dystrophin gene abolts dystrophin expression and results in Duchenne-like muscular dystrophy in the corgi breed. Laboratory investigation; a journal of technical methods and pathology 91: 216–231.
9. Gaschen FP, Hoffman EP, Georose JR, Uhl EW, Senior DF, et al. (1992) Dystrophin deficiency causes muscle hypertrophy in cats. J Neurol Sci 110: 149–159.
10. Winand NJ, Edwards M, Pradhan D, Berian CA, Cooper BJ (1994) Deletion of the dystrophin muscle promoter in feline muscular dystrophy. Neuromuscular disorders : NMD 4: 435–445.
11. Sheltun GD, Engwall E (2005) Canine and feline models of human inherited muscle diseases. Neuromuscular Disorders 15: 127–138.
12. Kornegay JN, Bogar JR, Bogar DJ, Childers MK, Li J, et al. (2012) Canine muscle dystrophy in golden retriever muscular dystrophy. Journal of the neurological sciences 166: 115–121.
13. Sharp NJ, Kornegay JN, Van Camp SD, Herbstreith MH, Secore SL, et al. (1992) An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics 13: 115–121.
14. Childers MK, Okamura CS, Bogar DJ, Bogar JR, Petroksi GF, et al. (2002) Eccentric contraction injury in dystrophic canine muscle. Archives of physical medicine and rehabilitation 83: 1572–1578.
15. Childers MK, Okamura CS, Bogar DJ, Bogar JR, Sullivan MJ, et al. (2001) Myosin injury and regeneration in a canine homologue of Duchenne muscular dystrophy. American journal of physical medicine & rehabilitation/Association of Academic Physiatrists 80: 175–181.
16. Kornegay JN, Bogar DJ, Bogar JR, Childers MK, Candiff DD, et al. (1999) Contraction force generated by tarsal joint flexion and extension in dogs with golden retriever muscular dystrophy. Journal of the neurological sciences 166: 331–333.
17. Kornegay JN, Candiff DD, Bogar DJ, Bogar JR, Okamura CS (2003) The cranial sartorius muscle undergoes true hypertrophy in dogs with golden retriever muscular dystrophy. Neuromuscular disorders : NMD 13: 493–500.
18. Kornegay JN, Sharp NJ, Bogar DJ, Van Camp SD, Mcrcaff JF, et al. (1994) Contraction tension and kinetics of the peroneus longus muscle in golden retriever muscular dystrophy. Journal of the neurological sciences 123: 100–107.
19. Kornegay JN, Sharp NJ, Schuler RO, Bets CW (1994) Tarsal joint contracture in dogs with golden retriever muscular dystrophy. Laboratory animal science 44: 331–333.
20. Valentine BA, Kornegay JN, Cooper BJ (1989) Clinical electromyographic studies of canine X-linked muscular dystrophy. American journal of veterinary research 50: 2145–2147.
21. Mendell JR, Moxey RT, Griggs RC, Brooke MH, Fanichel GM, et al. (1989) Randomized, double-blind six-month trial of prednisone in Duchenne’s muscular dystrophy. N Engl J Med 320: 1592–1597.
22. Liu JM, Okamura CS, Bogar DJ, Bogar JR, Childers MK, et al. (2004) Effects of prednisone in canine muscular dystrophy. Muscle & nerve 30: 767–773.
23. Martin PT (2006) Mechanisms of Disease: congenital muscular dystrophies-glycosylation takes center stage. Nat Clin Pract Neurol 2: 222–230.
24. Martin PT, Xu R, Rodino-Klapac LR, Ojghevab E, Camomii M, et al. (2009) Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice. Am J Physiol Cell Physiol 296: C476–480.
25. Barres R, Michele DE, Kanagawa M, Harper HA, Devico SA, et al. (2004) LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med 10: 696-703.

26. Godfrey C, Foley AR, Clement E, Manton F (2011) Dystroglycanopathies: coming into focus. Current opinion in genetics & development 21: 278-293.

27. Michele DE, Barres R, Kanagawa M, Saito F, Colin RD, et al. (2002) Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418: 417-422.

28. Chandrasekharan K, Yoon JH, Xu Y, de Vries S, Camboni M, et al. (2010) A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci Transl Med 2: 42ra54.

29. Shao L, Schneckenburger P, Carlen J, Christiansen K, Schauer R (1992) Mouse liver cytidine-5'-monophosphate-N-acetylneuraminic acid hydroxylase. Catalytic function and regulation. Eur J Biochem 206: 269-277.

30. Kawano T, Koyama S, Takezumi H, Koutsuji Y, Kawasaki H, et al. (1995) Molecular cloning of cytidine monophospho-N-acetylneuraminic acid hydroxylase. Regulation of species- and tissue-specific expression of N-glycolylneuraminic acid. J Biol Chem 270: 16438-16463.

31. Varki NM, Varki A (2007) Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 87: 854-857.

32. Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, et al. (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci U S A 95: 11715-11716.

33. Padler-Karavani V, Yu H, Cao H, Chokhahwala H, Karp F, et al. (2008) Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 18: 818-830.

34. Varki A (2001) Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution. Am J Phys Anthropology Suppl 33: 54-69.

35. Rooney JE, Welser JV, Dechert MA, Flintoff-Dye NL, Kaufman SJ, et al. (2006) Neu5Gc expression in normal humans: potential implications for disease. Glycobiology 16: 449-452.

36. Godfrey C, Foley AR, Clement E, Muntoni F (2011) Dystroglycanopathies: Neu5Gc Expression in Human and Canine Muscle.