Supporting Information for:

Towards discovery of new leishmanicidal scaffolds able to inhibit *Leishmania* GSK-3

Paula Martínez de Iturrate,a Victor Sebastián-Pérez,a Montserrat Nácher-Vázquez,a Catherine S. Tremper,a Despina Smirlis,b Julio Martín,c Ana Martínez,a Nuria E. Campillo,a Luis Rivasa,* and Carmen Gila,*

aCentro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain

bHellenic Pasteur Institute, Athens, Greece

cGlobal Health R&D, GlaxoSmithKline, Tres Cantos, Spain

Contents:

- Page S2: Figure S1
- Page S3: Figure S2
- Page S4: Table S1
- Page S9: Table S2
- Page S32: Table S3
- Page S35: Table S4
- Page S37: Table S5
- Page S38: References
Figure S1. Sequence alignment of the GSK-3 structures of *Leishmania major* (Q4QE15) and *Homo sapiens* (P49841).
Figure S2. Sequence alignment of Leishmania spp. GSK-3 sequences available in the Uniprot database. The identity index among the sequences is also included. *L. panamensis* (A0A088RMG0), *L. major* (Q4QE15), *L. donovani* (A6N857), *L. infantum* (A4HXQ3) and *L. mexicana* (Q0PKV3).
Table S1. *In vitro* enzymatic and antiparasitic activities of first selection of hGSK-3β inhibitors (1-24).\(^a\)

Compound	Chemical structure	hGSK-3β IC\(_{50}\) (µM)	LdGSK-3β IC\(_{50}\) (µM)	*L. infantum* promastigotes EC\(_{50}\) (µM)	*L. pifanoi* amast. ax EC\(_{50}\) (µM)	PMM\(^c\) EC\(_{50}\) (µM)	SI\(^d\)
1	![Chemical structure](image1)	2\(^1\)	1.1±0.2	10.9±0.4	2.0±1.9	32.9±3.5	16.5
2	![Chemical structure](image2)	0.005\(^2\)	0.32±0.05	17.6±2.3	7.1±1.8	>50	>7.0
3	![Chemical structure](image3)	0.9±0.1\(^3\)	0.24±0.00	>25	>50	-	-
4	![Chemical structure](image4)	2.0±0.4\(^3\)	0.17±0.00	>25	>50	-	-
5	![Chemical structure](image5)	0.5\(^4\)	1.8±0.3	4.6±0.2	2.2±0.6	6.3±1.2	2.9
	Structure						
---	-----------	-------	-------	-------	-------	-------	
6	![Structure 6](image)	10^4	12.5±2.4	0.9±0.1	1.7±0.1	6.8±0.4	4.0
7	![Structure 7](image)	2.54	7.5±1.4	6.6±0.5	0.5±0.1	7.3±1.0	14.6
8	![Structure 8](image)	54	10.3±2.0	4.4±0.1	2.4±0.4	3.6±0.5	1.5
9	![Structure 9](image)	1.05	74.3%@10 µM	>50	>50	-	-
10	![Structure 10](image)	14	3.0±0.4	8.6±0.3	1.2±0.2	7.9±0.6	6.6
11	![Structure 11](image)	3.01±0.146	<20%@10 µM	>50	3.6±1.3	9.9±0.9	2.8
12	![Structure 12](image)	8.7±0.47	<20%@10 µM	>50	20.8±0.0	-	-
13	![Chemical Structure](Image)	0.89±0.19^g	<20%@10 µM	>50	>25	-	-
14	![Chemical Structure](Image)	0.005±0.001^g	1.6±0.2 µM	>50	6.5±2.0	>25	>3.8
15	![Chemical Structure](Image)	0.047±0.007^g	17.7±2.7	>50	>50	-	-
16	![Chemical Structure](Image)	4.47±0.35^g	<20%@10 µM	>50	2.5±2.7	>50	>20.0
	Structure	IC₅₀ (µM)	S___ (µM)	Kᵣ (µM)	S₅₀ (µM)	S₁₀ (µM)	
---	-----------------	-----------	-----------	----------	----------	----------	
17	![Structure 17](image17.png)	0.58±0.07	35.5% @ 10 µM	3.4±0.5	4.5±0.2	>25	
18	![Structure 18](image18.png)	0.8%	<20% @ 10 µM	>50	>50	-	
19	![Structure 19](image19.png)	9.72±0.57	<20% @ 10 µM	>25	14.4±2.6	32.0±3.1	
20	![Structure 20](image20.png)	6.22±0.20	<20% @ 10 µM	>50	>50	-	
21	![Structure 21](image21.png)	7.23±0.26	<20% @ 10 µM	>50	>50	-	
	Chemical Structure	IC₅₀ (µM)	EC₅₀ (LdGSK-3)	SI	Reference		
---	-------------------	----------------------	------------------------	----	-----------		
22	![Compound 22](image)	7.04±0.27 <20%@10 µM >50 >50 - -					
23	![Compound 23](image)	9.75±0.26 <20%@10 µM >50 >50 - -					
24	![Compound 24](image)	7.33±0.15 <20%@10 µM >50 >50 - -					

^aIC₅₀: 50% inhibitory concentration; EC₅₀: 50% effective concentration.

^bIndirubin-3'-monoxime-5-sulphonic acid was used as reference of the assay: IC₅₀ (LdGSK-3)= 2.4±0.2 µM.

^cPMM: peritoneal murine macrophages.

^dSI: Specificity Index (EC₅₀ PMM/EC₅₀ amas. ax).

S8
Table S2. Chemical structure of the Leishbox compounds (25-210) and the initial screening on LdGSK3.

Compd.	Leishbox ID	Chemical structure	% inhibition @ 10µM
25	TCMDC-143347	![Chemical structure](image1)	-13.55±3.90
26	TCMDC-134026	![Chemical structure](image2)	4.75±1.20
27	TCMDC-143077	![Chemical structure](image3)	6.35±5.75
28	TCMDC-143512	![Chemical structure](image4)	1.15±1.75
29	TCMDC-143217	![Chemical structure](image5)	3.80±1.90
30	TCMDC-143442	![Chemical structure](image6)	5.20±1.90
---	---	---	
31	TCMDC-143180	8.20±1.70	
32	TCMDC-143621	8.80±4.10	
33	TCMDC-143600	-0.35±3.85	
34	TCMDC-143211	-2.00±2.70	
35	TCMDC-143078	2.90±4.05	
36	TCMDC-143136	7.10±1.90	
37	TCMDC-143459	5.90±4.55	
---	---	---	
38	TCMDC-143212	![Chemical Structure](image1)	7.10±1.40
39	TCMDC-143076	![Chemical Structure](image2)	9.00±3.05
40	TCMDC-143554	![Chemical Structure](image3)	13.50±3.10
41	TCMDC-143443	![Chemical Structure](image4)	7.05±1.35
42	TCMDC-143216	![Chemical Structure](image5)	5.30±2.55
43	TCMDC-143486	![Chemical Structure](image6)	15.30±1.60
44	TCMDC-143427	![Chemical Structure](image7)	-2.45±1.00
45	TCMDC-143213	![Chemical Structure](image8)	-2.50±5.50
	TCMDC-143260	![Molecule](image1)	4.95±4.45
---	--------------	---------------------	------------
46	TCMDC-143122	![Molecule](image2)	1.55±0.55
47	TCMDC-143215	![Molecule](image3)	3.25±2.75
48	TCMDC-143487	![Molecule](image4)	5.60±2.35
49	TCMDC-125826	![Molecule](image5)	4.70±2.30
50	TCMDC-143196	![Molecule](image6)	5.95±1.25
51	TCMDC-143630	![Molecule](image7)	5.05±2.35
52	TCMDC-143350	![Molecule](image8)	-1.60±1.50
53	TCMDC-143113	![Molecule](image9)	0.10±1.10
54			
	TCMDC-143397	![Chemical Structure](image)	0.55±3.00
---	---	---	---
56	TCMDC-143295	![Chemical Structure](image)	0.50±2.95
57	TCMDC-143607	![Chemical Structure](image)	6.10±3.15
58	TCMDC-143091	![Chemical Structure](image)	3.75±2.40
59	TCMDC-143169	![Chemical Structure](image)	16.15±4.10
60	TCMDC-143245	![Chemical Structure](image)	0.20±2.80
61	TCMDC-143404	![Chemical Structure](image)	-2.20±1.15
62	TCMDC-143296	![Chemical Structure](image)	12.10±2.40
63	TCMDC-143388	![Chemical Structure](image)	-3.20±0.80
64	TCMDC-143133	![Chemical Structure](image)	1.40±0.95
	Compound	Structure	Value
---	----------	-----------	---------
65	TCMDC-143501	![Structure Image]	-0.35±2.35
66	TCMDC-143633	![Structure Image]	0.90±0.90
67	TCMDC-143349	![Structure Image]	5.65±3.60
68	TCMDC-143094	![Structure Image]	6.80±1.95
69	TCMDC-143171	![Structure Image]	64.27±2.13
70	TCMDC-143277	![Structure Image]	3.80±1.25
71	TCMDC-143396	![Structure Image]	74.63±1.76
72	TCMDC-143238	![Structure Image]	7.40±4.30
73	TCMDC-143246	![Structure Image]	-3.05±0.35
	TCMDC-143451	![Chemical Structure](image1)	10.00±0.75
---	---------------	--------------------------------	-------------
75	TCMDC-143297	![Chemical Structure](image2)	10.05±1.10
76	TCMDC-143491	![Chemical Structure](image3)	5.70±0.50
77	TCMDC-143629	![Chemical Structure](image4)	4.60±0.95
78	TCMDC-143144	![Chemical Structure](image5)	4.90±1.45
79	TCMDC-143168	![Chemical Structure](image6)	6.40±1.30
80	TCMDC-143261	![Chemical Structure](image7)	7.95±1.65
81	TCMDC-143418	![Chemical Structure](image8)	6.35±3.00
82	TCMDC-143099	![Chemical Structure](image9)	1.90±2.60
83	TCMDC-143351	![Chemical Structure](image10)	-5.05±0.45
---	-----	----------	-----------
84	TCMDC-143285	![Chemical Structure](image1)	3.55±2.20
85	TCMDC-143503	![Chemical Structure](image2)	3.45±4.90
86	TCMDC-143072	![Chemical Structure](image3)	6.55±2.70
87	TCMDC-143145	![Chemical Structure](image4)	-0.05±0.95
88	TCMDC-143115	![Chemical Structure](image5)	2.00±1.95
89	TCMDC-143175	![Chemical Structure](image6)	4.80±2.05
90	TCMDC-143305	![Chemical Structure](image7)	6.40±2.45
	TCMDC-143524	![Chemical Structure](image)	12.65±6.10
---	--------------	-------------------------------	-------------
91	TCMDC-143509	![Chemical Structure](image)	-0.55±1.25
92	TCMDC-143375	![Chemical Structure](image)	-2.35±1.95
93	TCMDC-143406	![Chemical Structure](image)	10.45±0.55
94	TCMDC-143483	![Chemical Structure](image)	90.25±1.12
95	TCMDC-143431	![Chemical Structure](image)	1.65±2.40
96	TCMDC-143577	![Chemical Structure](image)	6.15±1.05
	TCMDC-143124	![Molecular Structure](image1)	8.50±1.10
---	-------------	---------------------------------	------------
98	TCMDC-143214	![Molecular Structure](image2)	0.60±0.60
99	TCMDC-143249	![Molecular Structure](image3)	37.05±1.50
100	TCMDC-143628	![Molecular Structure](image4)	16.40±2.40
101	TCMDC-143627	![Molecular Structure](image5)	4.05±3.10
102	TCMDC-143086	![Molecular Structure](image6)	25.85±1.25
103	TCMDC-143407	![Molecular Structure](image7)	-0.75±1.55
104	TCMDC-143398	![Molecular Structure](image8)	-0.45±1.10
105	TCMDC-143419	![Molecular Structure](image9)	-4.60±0.90
---	---	---	---
107	TCMDC-142900	![Molecule Image](image1)	-4.05±3.20
108	TCMDC-143141	![Molecule Image](image2)	5.15±1.90
109	TCMDC-125160	![Molecule Image](image3)	-4.55±1.90
110	TCMDC-143274	![Molecule Image](image4)	-0.10±5.35
111	TCMDC-143448	![Molecule Image](image5)	7.35±4.65
112	TCMDC-143603	![Molecule Image](image6)	7.50±0.65
---	---	---	
113	TCMDC-143447		1.40±0.50
114	TCMDC-143478		2.85±0.45
115	TCMDC-143473		3.20±0.80
116	TCMDC-143584		7.05±1.35
117	TCMDC-143571		6.20±1.15
118	TCMDC-143239		22.80±3.55
119	TCMDC-143281		100.29±1.24
120	TCMDC-143429		18.15±1.70
121	TCMDC-143647		14.80±1.70
122	TCMDC-143480	![Chemical Structure](image1.png)	3.95±2.45
123	TCMDC-143482	![Chemical Structure](image2.png)	12.15±3.90
124	TCMDC-143391	![Chemical Structure](image3.png)	70.59±3.12
125	TCMDC-143594	![Chemical Structure](image4.png)	10.60±1.00
126	TCMDC-143576	![Chemical Structure](image5.png)	17.10±1.10
127	TCMDC-143208	![Chemical Structure](image6.png)	9.65±3.70
128	TCMDC-143280	![Chemical Structure](image7.png)	99.46±0.78
129	TCMDC-143488	![Chemical Structure](image8.png)	8.90±6.75
130	TCMDC-143075	![Chemical Structure](image9.png)	12.85±2.80
131	TCMDC-143163	![Chemical Structure](image10.png)	19.75±3.70
	TCMDC-143521	![Chemical Structure](symbol.png)	8.15±0.95
---	-------------	-----------------------------------	---------
132	TCMDC-143563	![Chemical Structure](symbol.png)	15.75±4.25
133	TCMDC-143092	![Chemical Structure](symbol.png)	5.25±1.70
134	TCMDC-143106	![Chemical Structure](symbol.png)	6.85±1.55
135	TCMDC-143129	![Chemical Structure](symbol.png)	13.95±3.25
136	TCMDC-124508	![Chemical Structure](symbol.png)	9.35±1.30
137	TCMDC-143278	![Chemical Structure](symbol.png)	13.00±3.55
138	TCMDC-143269	![Chemical Structure](symbol.png)	15.95±1.70
139	TCMDC-143367	![Chemical Structure](symbol.png)	18.20±7.00
No.	Code	Chemical Structure	Value
-----	---------------	--------------------	-----------
141	TCMDC-143164	![Chemical Structure](image1.png)	8.55 ± 0.55
142	TCMDC-143534	![Chemical Structure](image2.png)	7.95 ± 2.05
143	TCMDC-143567	![Chemical Structure](image3.png)	2.25 ± 0.35
144	TCMDC-143095	![Chemical Structure](image4.png)	9.10 ± 1.75
145	TCMDC-143110	![Chemical Structure](image5.png)	9.25 ± 0.40
146	TCMDC-143147	![Chemical Structure](image6.png)	11.85 ± 0.55
147	TCMDC-143558	![Chemical Structure](image7.png)	13.40 ± 2.35
148	TCMDC-143223	![Chemical Structure](image8.png)	9.60 ± 3.10
149	TCMDC-143266	![Chemical Structure](image9.png)	8.90 ± 2.10
---	---	---	
150	TCMDC-143353	13.55 ± 4.65	
151	TCMDC-143197	61.89 ± 2.34	
152	TCMDC-143536	-2.95 ± 1.70	
153	TCMDC-143586	-5.50 ± 2.15	
154	TCMDC-143096	2.50 ± 1.45	
155	TCMDC-143119	7.50 ± 1.00	
156	TCMDC-143139	11.90 ± 1.75	
157	TCMDC-143557	4.50 ± 4.45	
---	---	---	
158	TCMDC-143170	7.85±3.95	
159	TCMDC-143306	8.80±2.70	
160	TCMDC-143345	12.60±3.50	
161	TCMDC-143315	3.00±3.05	
162	TCMDC-143532	9.20±3.30	
163	TCMDC-143591	3.10±0.70	
164	TCMDC-143573	1.15±1.40	
165	TCMDC-142704	4.70±0.85	
---	---	---	
166	TCMDC-143174	18.60±2.15	
167	TCMDC-143237	38.45±1.35	
168	TCMDC-143252	14.15±2.15	
169	TCMDC-143236	32.90±2.70	
170	TCMDC-143344	13.20±1.65	
171	TCMDC-143639	4.25±2.30	
172	TCMDC-143523	5.20±2.65	
173	TCMDC-143538	8.60±2.90	
---	---	---	---
174	TCMDC-143574	![Chemical Structure](image1.png)	6.00±1.50
175	TCMDC-143101	![Chemical Structure](image2.png)	16.65±1.70
176	TCMDC-143165	![Chemical Structure](image3.png)	8.55±1.75
177	TCMDC-143218	![Chemical Structure](image4.png)	17.70±1.20
178	TCMDC-143255	![Chemical Structure](image5.png)	28.65±1.95
179	TCMDC-143327	![Chemical Structure](image6.png)	29.35±2.80
180	TCMDC-143358	![Chemical Structure](image7.png)	17.50±3.45
181	TCMDC-143517	![Chemical Structure](image8.png)	5.90±2.90
---	---	---	---
182	TCMDC-143518	![Chemical Structure](image)	9.60±1.20
183	TCMDC-143514	![Chemical Structure](image)	14.80±2.25
184	TCMDC-143098	![Chemical Structure](image)	53.23±3.29
185	TCMDC-125387	![Chemical Structure](image)	1.70±0.75
186	TCMDC-143166	![Chemical Structure](image)	3.65±2.60
187	TCMDC-143181	![Chemical Structure](image)	67.81±1.17
188	TCMDC-143287	![Chemical Structure](image)	20.90±4.45
189	TCMDC-143348	![Chemical Structure](image)	12.20±0.75
	TCMDC-143508		8.15±3.40
----	--------------------------	-------------	-----------
190	TCMDC-143531		12.20±2.70
191	TCMDC-143568		-2.40±2.70
192	TCMDC-143093		2.65±4.15
193	TCMDC-143566		0.90±4.25
194	TCMDC-143140		16.55±4.05
195	TCMDC-143188		-2.80±6.35
196	TCMDC-143201		10.05±1.90
197	TCMDC-143256		7.15±1.10
---	-----	-----	-----
199	TCMDC-143355	![Chemical Structure](image)	8.70 ± 1.75
200	TCMDC-143383	![Chemical Structure](image)	20.95 ± 1.30
201	TCMDC-143522	![Chemical Structure](image)	18.65 ± 3.35
202	TCMDC-143570	![Chemical Structure](image)	6.50 ± 2.15
203	TCMDC-143090	![Chemical Structure](image)	4.90 ± 2.30
204	TCMDC-143117	![Chemical Structure](image)	8.00 ± 4.85
205	TCMDC-143184	![Chemical Structure](image)	14.00 ± 2.25
206	TCMDC-143202	![Chemical Structure](image)	10.00 ± 0.90
207	TCMDC-143271	![Chemical Structure](image)	8.90 ± 5.85
---	---	---	
208	TCMDC-143259	10.20±3.25	
209	TCMDC-143340	16.10±4.80	
210	TCMDC-143618	17.65±3.55	
Table S3. LdGSK-3 inhibition for N-phenylpyrimidine-2-amines from the Leishbox.

Compound	Leishbox ID	Chemical Structure	% inhibition @10µM
95	TCMDC-143483	![Chemical Structure](image1)	90.25±1.12
74	TCMDC-143451	![Chemical Structure](image2)	10.00±0.75
124	TCMDC-143391	![Chemical Structure](image3)	70.59±3.12
140	TCMDC-143367	![Chemical Structure](image4)	18.20±7.00
67	TCMDC-143349	![Chemical Structure](image5)	5.65±3.60
189	TCMDC-143348	![Chemical Structure](image6)	12.20±0.75
119	TCMDC-143281	![Chemical Structure](image7)	100.29±1.24
128	TCMDC-143280	![Chemical Structure](image8)	99.46±0.78
	TCMDC-143249	![Molecule](image1.png)	37.05±1.50
---	-------------	--------------------------	------------
	TCMDC-143246	![Molecule](image2.png)	-3.05±0.35
	TCMDC-143216	![Molecule](image3.png)	5.30±2.55
	TCMDC-143215	![Molecule](image4.png)	3.25±2.75
	TCMDC-143214	![Molecule](image5.png)	0.60±0.60
	TCMDC-143213	![Molecule](image6.png)	-2.50±5.50
	TCMDC-143212	![Molecule](image7.png)	7.10±1.40
---	---	---	---
34	TCMDC-143211	![Chemical Structure](image1.png)	-2.00±2.70
103	TCMDC-143086	![Chemical Structure](image2.png)	25.85±1.25
Table S4. LdGSK-3 inhibition for benzoimidazoles from the Leishbox

Compound	Leishbox ID	Chemical Structure	% inhibition @ 10µM
40	TCMDC-143554	![Chemical Structure](image1)	13.50±3.10
91	TCMDC-143524	![Chemical Structure](image2)	12.65±6.10
182	TCMDC-143518	![Chemical Structure](image3)	9.60±1.20
28	TCMDC-143512	![Chemical Structure](image4)	1.15±1.75
85	TCMDC-143503	![Chemical Structure](image5)	3.45±4.90
114	TCMDC-143478	![Chemical Structure](image6)	2.85±0.45
120	TCMDC-143429	![Chemical Structure](image7)	18.15±1.70
		![Chemical Structure](image1)	74.63±1.76
----	----	-----------------------------	------------
71	TCMDC-143396	![Chemical Structure](image2)	-1.60±1.50
53	TCMDC-143350	![Chemical Structure](image3)	13.0±3.55
138	TCMDC-143278	![Chemical Structure](image4)	3.80±1.25
70	TCMDC-143277	![Chemical Structure](image5)	7.95±1.65
80	TCMDC-143261	![Chemical Structure](image6)	67.81±1.17
187	TCMDC-143181	![Chemical Structure](image7)	6.40±1.30
79	TCMDC-143168	![Chemical Structure](image8)	7.50±1.00
155	TCMDC-143119	![Chemical Structure](image9)	
Compound	Leishbox ID	Chemical Structure	%inhibition @10µM
----------	--------------	--------------------	-------------------
125	TCMDC-143594	![Chemical Structure](image1)	10.60±1.00
167	TCMDC-143237	![Chemical Structure](image2)	38.45±1.35
206	TCMDC-143202	![Chemical Structure](image3)	10±0.90
197	TCMDC-143201	![Chemical Structure](image4)	10.05±1.90
184	TCMDC-143098	![Chemical Structure](image5)	53.23±3.29
151	TCMDC-143197	![Chemical Structure](image6)	61.89±2.34

Table S5. LdGSK-3 inhibition for oxadiazole from the Leishbox
References

1. Martinez A, Alonso M, Castro A, Perez C, Moreno FJ. First non-atp competitive glycogen synthase kinase 3 beta (gsk-3beta) inhibitors: Thiadiazolidinones (tdzd) as potential drugs for the treatment of alzheimer's disease. J Med Chem 2002;45: 1292-1299.

2. Dominguez JM, Fuertes A, Orozco L, del Monte-Millan M, Delgado E, Medina M. Evidence for irreversible inhibition of glycogen synthase kinase-3beta by tideglusib. J Biol Chem 2012;287: 893-904.

3. Palomo V, Perez DI, Perez C, Morales-Garcia JA, Soteras I, Alonso-Gil S, Encinas A, Castro A, Campillo NE, Perez-Castillo A et al. 5-imino-1,2,4-thiadiazoles: First small molecules as substrate competitive inhibitors of glycogen synthase kinase 3. J Med Chem 2012;55: 1645-1661.

4. Conde S, Perez DI, Martinez A, Perez C, Moreno FJ. Thienyl and phenyl alpha-halomethyl ketones: New inhibitors of glycogen synthase kinase (gsk-3beta) from a library of compound searching. J Med Chem 2003;46: 4631-4633.

5. Perez DI, Conde S, Perez C, Gil C, Simon D, Wandosell F, Moreno FJ, Gelpi JL, Luque FJ, Martinez A. Thienylhalomethylketones: Irreversible glycogen synthase kinase 3 inhibitors as useful pharmacological tools. Bioorg Med Chem 2009;17: 6914-6925.

6. Palomo V, Soteras I, Perez DI, Perez C, Gil C, Campillo NE, Martinez A. Exploring the binding sites of glycogen synthase kinase 3. Identification and characterization of allosteric modulation cavities. J Med Chem 2011;54: 8461-8470.

7. Palomo V, Perez DI, Roca C, Anderson C, Rodriguez-Muela N, Perez C, Morales-Garcia JA, Reyes JA, Campillo NE, Perez-Castillo AM et al. Subtly modulating glycogen synthase kinase 3 beta: Allosteric inhibitor development and their potential for the treatment of chronic diseases. J Med Chem 2017;60: 4983-5001.

8. Perez DI, Palomo V, Perez C, Gil C, Dans PD, Luque FJ, Conde S, Martinez A. Switching reversibility to irreversibility in glycogen synthase kinase 3 inhibitors: Clues for specific design of new compounds. J Med Chem 2011;54: 4042-4056.

9. Perez-Domper P, Palomo V, Gradari S, Gil C, de Ceballos ML, Martinez A, Trejo JL. The gsk-3-inhibitor vp2.51 produces antidepressant effects associated with adult hippocampal neurogenesis. Neuropharmacology 2017;116: 174-187.