Rpp1, an essential protein subunit of nuclear RNase P required for processing of precursor tRNA and 35S precursor rRNA in Saccharomyces cerevisiae

Viktor Stolc and Sidney Altman

1Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510 USA; 2Department of Biology, Yale University, New Haven, Connecticut 06520 USA

The gene for an essential protein subunit of nuclear RNase P from Saccharomyces cerevisiae has been cloned. The gene for this protein, RPP1, was identified by virtue of its homology with a human scleroderma autoimmune antigen, Rpp30, which copurifies with human RNase P. Epitope-tagged Rpp1 can be found in association with both RNase P RNA and a related endoribonuclease, RNase MRP RNA, in immunoprecipitates from crude extracts of cells. Depletion of Rpp1 in vivo leads to the accumulation of precursor tRNAs with unprocessed 5' and 3' termini and reveals rRNA processing defects that have not been described previously for proteins associated with RNase P or RNase MRP. Immunoprecipitated complexes cleave both yeast precursor tRNAs and precursor rRNAs.

[Key Words: Rpp1; essential protein subunit; nuclear RNase P; S. cerevisiae; precursor tRNA; precursor rRNA]

Received June 5, 1997; revised version accepted July 25, 1997.

Ribonuclease P (RNase P) is a ubiquitous endoribonuclease that consists of protein and RNA subunits. It cleaves 5'-terminal leader sequences of precursor tRNAs (Darr et al. 1992; Altman et al. 1993). Escherichia coli RNase P is also known to process precursors of other small, metabolically stable RNAs in vivo, such as 4.5S RNA (Bothwell et al. 1976), 10Sa RNA (Komine et al. 1994), the polycistronic mRPA from the histidine operon (Ali-fano et al. 1994), and some small RNAs encoded by bacteriophage (Bothwell et al. 1974; Hartmann et al. 1995). In eubacteria, the RNA component alone of RNase P is catalytic in vitro (Guerrier-Takada et al. 1983). The eubacterial protein subunit is a basic protein of ~14 kD and serves as an essential cofactor in vivo by enhancing the catalytic efficiency and substrate range of the holoenzyme (Liu and Altman 1994; Gopalan et al. 1997). In contrast, the RNA components of archaeal and eukaryotic RNase P are not catalytically active in vitro in the absence of their respective protein subunits, despite their structural homology to the eubacterial RNAs (Altman et al. 1995; Haas et al. 1996).

Although the RNA subunit of nuclear RNase P has been characterized from a variety of eukaryotic organisms (Altman et al. 1993; Tranguch and Engelke 1993; Chamberlain et al. 1996a; Eder et al. 1996), information regarding the protein subunits of eukaryotic RNase P is limited. RNase P isolated from human cells copurifies with an RNA (H1; 340), and at least six proteins—Rpp14, Rpp20, Rpp25, Rpp30, Rpp38, and Rpp40 (Eder et al. 1997). Genetic approaches in Saccharomyces cerevisiae have identified three essential proteins, Pop1, Pop3, and Pop4, which associate with RNase P RNA (RPR1); these proteins also associate with the RNA (NME1) of a related endoribonuclease, RNase mitochondrial RNA processing (MRP) (Schmitt and Clayton 1992; Lygerou et al. 1994; Dichtl and Tollervey 1997; Chu et al. 1997). Analysis of temperature-sensitive alleles of these proteins or depletion of these proteins in yeast cells has shown that all three have a role in tRNA processing as well as rRNA processing. It has been suggested that tRNA and rRNA processing are coordinated (Pace and Burgin 1990; Clayton 1994; Morrissey and Tollervey 1995; Lee et al. 1996).

In eukaryotes, coordination of tRNA and rRNA processing may be mediated by the activity of two related enzymes, RNase P and RNase MRP (Morrissey and Tollervey 1995; Chamberlain et al. 1996b). RNase P is essential for biosynthesis of tRNAs (Lee et al. 1991) and also appears to have a role in rRNA processing in yeast (Chamberlain et al. 1996b). RNase MRP is related to RNase P by structural similarities found in its RNA component (Forster and Altman 1990; Schmitt et al. 1996). It has been suggested that RNase P is an ancestor of RNase MRP (Morrissey and Tollervey 1995). RNase MRP was described originally as an endonuclease that cleaves RNA primers for mitochondrial DNA replication.
RNase P and RNase MRP RNAs coprecipitate with the 3 x myc–Rpp1 fusion protein

Whether or not Rpp1 is associated with RNase P RNA was determined by immunoprecipitation experiments (Fig. 3). Extracts from 3 x myc–Rpp1 and RPP1 strains were incubated with anti-myc monoclonal antibody (9E10) and RNA was extracted from the immunoprecipitates (see Materials and Methods). The RNA was 3’ end-labeled with \(^\text{[\text{32P}]}\text{P}_{\text{CP}}\) and analyzed by denaturing gel electrophoresis (Fig. 3A,B). Immunoprecipitated RNA was also analyzed by Northern hybridization to confirm the identity of the labeled RNAs (Fig. 3C,D). Mature RNase P RNA is the major RNA species found in the 3 x myc–Rpp1 precipitate from 3 x myc–RPP1 cells but not from the control cell lysates. Two putative precursors of RNase P RNA (Lee et al. 1991) and RNase MRP RNA are also found in immunoprecipitates from 3 x myc–RPP1 but not in control immunoprecipitates. Approximately equal levels of RNase P RNA and RNase MRP RNAs (RPR1 and NME1, respectively) were found in end-labeled RNA derived from immunoprecipitates that were washed withbuffer that contained 150 mM KCl (Fig. 3A). However, RNase P RNA is the major RNA species detected

Results

An essential yeast gene encodes a homolog of the human scleroderma autoimmune antigen, Rpp30

We used a combination of biochemical and genetic studies in human and S. cerevisiae cells to characterize a protein subunit of eukaryotic RNase P. We employed a computational sequence search of yeast genes that have amino acid sequence similarity to biochemically identified human RNase P protein subunits (Eder et al. 1997). To determine which of the proteins associated with human RNase P might be essential components required for catalytic function (Eder et al. 1997), we searched for homologs of Rpp14, Rpp20, Rpp25, Rpp30, Rpp38, and Rpp40 in the genome of S. cerevisiae (Goffeau et al. 1996) by performing a BLAST search (alastp and tblastn algorithms; Altschul et al. 1990) of the S. cerevisiae genome database (Cherry et al. 1996). The human scleroderma autoimmune antigen, Rpp30, has the highest amino acid sequence similarity to a predicted sequence. A previously uncharacterized open reading frame (ORF), YHR062c, on the right arm of chromosome VIII has the potential to encode a protein of 32.2 kD and shares 23% amino acid sequence identity with human Rpp 30 (Fig. 1A). This yeast gene is now named RPP1 for RNase P Protein 1.

To address whether the putative protein encoded by RPP1 is an essential gene, we disrupted this gene by replacing it with the LEU2 gene (see Materials and Methods). The heterozygous RPP1/rpp1::LEU2 strain (VS161) was sporulated and subsequent tetrad analysis showed a 2:2 segregation for cell viability (Fig. 1B). All viable spores were Leu”, indicating that they had the wild-type RPP1 allele. Therefore, RPP1 is an essential gene in S. cerevisiae.

Construction of an epitope-tagged allele of RPP1

Epitope-tagged proteins are useful in the study of subunit function and interactions in large holoenzyme complexes. To determine whether or not Rpp1 associates with RNase P RNA and RNase P activity, an epitope-tagged RPP1 strain of S. cerevisiae (VS162) was constructed (Table 1). A DNA fragment that encodes three copies of a c-myc epitope (3 x myc; TerBush and Novick 1996) was fused in-frame 3’ to the initiator ATG codon of RPP1 in a low-copy-number plasmid (pRS316), pRS316:3 x myc–RPP1. The resulting strain grew at identical rates to the wild-type cells suggesting that the 3 x myc-RPP1 allele is fully functional (Fig. 2A, lanes 2,4). Immunoblots of protein extracts from 3 x myc–RPP1 cells using an anti-myc antibody (9E10) detected a polypeptide of 36 kD—the size is consistent with that predicted for the 3 xmyc–Rpp1 fusion protein (Fig. 2B, lanes 2,4). Wild-type haploids (VS162A and VS162C) lacking the c-myc tag do not contain the 36-kD protein. These results show that the myc epitope-tagged Rpp1 protein migrates as a 36-kD polypeptide and is fully functional.
end-labeling of RNA in 3 × myc–Rpp1 immunoprecipitates that were washed with buffer that contained 600 mM KCl (Fig. 3B). Therefore, it is possible to achieve a significant separation of the two enzymes, both physically and functionally (Lygerou et al. 1996a; and see below).

The association of Rpp1 with RNase P activity was also demonstrated by immunoprecipitation. Immunoprecipitated (and resuspended) 3 × myc–Rpp1 pellets accurately cleaved radiolabeled ptRNA_{Ser} (Fig. 4) and ptRNA_{Tyr} (data not shown) in vitro. We conclude that Rpp1 protein is a component of, or is tightly associated by 3′ end-labeling of RNA in 3 × myc–Rpp1 immunoprecipitates that were washed with buffer that contained 600 mM KCl (Fig. 3B). Therefore, it is possible to achieve a significant separation of the two enzymes, both physically and functionally (Lygerou et al. 1996a; and see below).

Table 1. Strains of S. cerevisiae used in this study

Strain	Genotype
JN161	MAT\textalpha ade2-1/ade2-1 leu2-3,112/leu2-3,112 ura3-1/ura3-1 his4-260/his4-260 thr1-4/thr1-4 lys2△Nhe1/lys2△Nhe1
VS161	MAT\textalpha ade2-1/ade2-1 leu2-3,112/leu2-3,112 ura3-1/ura3-1 his4-260/his4-260 thr1-4/thr1-4 lys2△Nhe1/lys2△Nhe1 RPP1/rpp1::LEU2/RPP1
VS162	MAT\textalpha ade2-1/ade2-1 leu2-3,112/leu2-3,112 ura3-1/ura3-1 his4-260/his4-260 thr1-4/thr1-4 lys2△Nhe1/lys2△Nhe1 RPP1/rpp1::LEU2/RPP1 + pRS316–3xmyc::RPP1
VS162A	MAT\textalpha ade2-1 leu2-3,112 ura3-1 his4-260 thr1-4 lys2△Nhe1 RPP1 + pRS316–3xmyc::RPP1
VS162B	MAT\textalpha ade2-1 leu2-3,112 ura3-1 his4-260 thr1-4 lys2△Nhe1 rpp1::LEU2 + pRS316–3xmyc::RPP1
VS162C	MAT\textalpha ade2-1 leu2-3,112 ura3-1 his4-260 thr1-4 lys2△Nhe1 rpp1::LEU2 + pRS316–3xmyc::RPP1
VS162A’	MAT\textalpha ade2-1 leu2-3,112 ura3-1 his4-260 thr1-4 lys2△Nhe1 RPP1
VS162C’	MAT\textalpha ade2-1 leu2-3,112 ura3-1 his4-260 thr1-4 lys2△Nhe1 RPP1
NY1060	MAT\textalpha GAL1/GAL1 leu2-3,112/leu2-3,112 ura3-1/ura3-1
VS163	MAT\textalpha GAL1/GAL1 leu2-3,112/leu2-3,112 ura3-1/ura3-1 RPP1/rpp1::LEU2
VS164	MAT\textalpha GAL1 leu2-3,112 ura3-1 /pYCpGAL::rpp1 (URA3)
VS165	MAT\textalpha GAL1 leu2-3,112 ura3-1 /pYCpGAL (URA3)
with, catalytically active RNase P holoenzyme. Indirect supporting evidence for this conclusion comes from experiments in which the human homolog of Rpp1, Rpp30, was shown not to be separable from the active holoenzyme after extensive biochemical purification (Eder et al. 1997).

Construction of a conditional lethal allele of RPP1

RPP1 was placed under the control of the GAL10 promoter, which allows expression of the gene in culture medium that contains galactose but suppresses expression in culture medium that contains glucose. The resulting strain, rpp1::LEU2-pGAL::rpp1 (VS164), was compared in phenotype to the control strain RPP1-pGAL (VS165). In liquid culture that contained galactose, there was no difference in growth rate between the GAL::rpp1 strain and the wild-type RPP1 strain. After the cultures were transferred to medium that contained glucose, cell growth continued initially with a doubling time of 2 hr. After 12–16 hr, the growth rate of the

Figure 2. 3×myc-Rpp1 is functional and recognized by 9E10 antibody. (A) The four spores (VS162 A–D; lanes 1–4, respectively) derived from the diploid strain VS162, were dissected on rich medium plates (YPAD), and then replica-plate onto plates that contained synthetic complete medium that lacked either leucine (leu) or uracil (ura), or that contained 5-FOA. (B) Immuno-н blot of protein extracts prepared from the four spores VS162A', VS162B, VS162C', and VS162D, derived from the diploid strain VS162. All four spores are isogenic except the VS162A' and VS162C' spores do not have the pRS316-3×myc-Rpp1 plasmid. (Lanes 1-4) VS162A', VS162B, VS162C', and VS162D, respectively. The arrowhead points to the 36-kD 3×myc-Rpp1 fusion protein. The upper band is a nonspecifically reacting protein.

Figure 3. The RNA subunits of RNase P (RPR1) and RNase MRP (NME1) coprecipitate with 3×myc-Rpp1. (A) Immuno-precipitated RNAs extracted from the 9E10 Ab-IgG-agarose beads that were incubated with protein extracts from the four spores (VS162A', VS162B, VS162C', and VS162D; lanes 1-4, respectively). RNA was extracted from the immunoprecipitated beads that were washed with 150 mM KCl (see Materials and Methods). The RNA was 3' end-labeled with [5'32P]PpCp, and fractionated on a 8% polyacrylamide/7 M urea gel. (B) Immunoprecipitated RNAs derived from the same immunoprecipitated beads as in A (lanes 1-4, respectively) except that the immunoprecipitated beads were washed with 600 mM KCl prior to 3' end-labeling of the RNA. (C) Immunoprecipitated RNAs derived from the same immunoprecipitated beads as in A were transferred to a positively charged nylon membrane (Boehringer Mannheim) by electroblotting and hybridized with a uniformly labeled DNA probe complementary to the RPR1 gene (see Materials and Methods). (Lanes 1-4) Immunoprecipitated RNA from spores VS162A', VS162B, VS162C', and VS162D, respectively; (lane 5) RNA from supernatant of the immunoprecipitated extract derived from spore VS162A' after centrifugation of beads; (lane 6) RNA from supernatant of the immunoprecipitated extract derived from spore VS162B after centrifugation of beads; (lane 7) RNase P (RPR1) and RNase MRP (NME1) RNAs (0.001 pmoles each) transcribed in vitro. Two small arrows point to larger species, which may be precursors to mature RNase P RNA, RPR1 (Lee et al. 1991). The larger arrows indicate RNase P (RPR1) and RNase MRP (NME1) RNAs. (D) Same as in C, except the membrane was hybridized with a uniformly labeled DNA probe complementary to the NME1 gene (Schmitt and Clayton 1992).
GAL::rpp1 strain declined rapidly and there was little growth after 16 hr (Fig. 5A).

Rpp1 is required for processing of ptRNA

To determine the effects of Rpp1 depletion on the biosynthesis of metabolically stable RNAs, total RNA was isolated from the GAL::rpp1 strain (VS164) and the RPP1 strain (VS165) at various times during growth in glucose-containing medium. RNA samples from VS164 were compared with those from VS165 on a denaturing gel stained with ethidium bromide and by Northern hybridization.

The effect of Rpp1 depletion on the accumulation of precursor tRNAs is shown in Figure 5B. Several RNAs began to accumulate at 7 hr after transfer to glucose-containing medium. At this time, the culture growth slowed. The abundance of these RNAs increased with time and their sizes were appropriate for ptRNAs. The abundance of mature tRNAs decreased accordingly.

Analysis by Northern hybridization using probes complementary to tRNA\(^{\text{Leu}}\) (Fig. 5C), the intervening sequence (IVS) (data not shown) and 5\(\text{S}\) leader sequence (Fig. 5D) indicate ptRNA, accurately processed mature tRNA, and 5′ leader sequence.
of the pre-tRNA \textsuperscript{A\textsubscript{eu3}} (data not shown), showed an accumulation of tRNA that was unprocessed at both termini. After growth of the GAL::rpp1 strain in glucose for 12 hr, 5' and 3' unprocessed prRNA \textsuperscript{A\textsubscript{eu3}} accumulated to approximately the same level as that of mature tRNA. The level of pre-tRNA \textsuperscript{A\textsubscript{eu3}} that was unspliced but processed at both ends was reduced correspondingly. These results showed that the sequentially ordered removal of the 5' leader sequence, the 3' trailing sequence, and finally the intron of prRNA \textsuperscript{A\textsubscript{eu3}}, is impaired in Rpp1-depleted cells. As this phenotype is observed in the RNase P RNA mutants, rpr1 and rpr1 (T315\Delta T307) (Lee et al. 1991; Chamberlain et al. 1996b), we conclude that Rpp1 is an essential protein subunit of the catalytically active RNase P complex in vivo.

Rpp1 is required for accumulation of RNase P and RNase MRP RNAs

We investigated further the effect of Rpp1 depletion on the steady-state levels of RNase P and RNase MRP RNAs to ascertain if cells lacking Rpp1 shared phenotypic traits with previously described conditional lethal mutants of Pop1, Pop3 and Pop4, proteins that associate with both RNPs. Depletion of Rpp1 results in a decrease of the steady-state levels of RNase P and RNase MRP RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNAs (Fig. 5D). However, the RPR1 RNA precursor does not appear to decrease to the same extent as mature RNas may be found with a large RNP complex, or alternatively, Rpp1 may be shared between the two RNP particles in vivo.

Rpp1 is required for processing of the 35S prRNA

In S. cerevisiae and other eukaryotes, rRNA is transcribed as a 35S precursor RNA that contains within it the sequences for three of the four rRNA molecules (18S, 5.8S, and 25–28S). Subsequent processing and nucleotide modifications involving endonucleolytic and exonucleolytic cleavages and methylation generate mature rRNA (for review, see Eichler and Craig 1994; Venema and Tollervey 1995; Tollervey 1996). We examined the fidelity of rRNA processing in Rpp1-depleted cells to determine if defects in this pathway were similar to those described previously for mutants that affect RNase P and RNase MRP (Shuai and Warner 1991; Lindahl et al. 1992; Schmitt and Clayton 1993; Chamberlain et al. 1996b; Lygerou et al. 1996a; Chu et al. 1997; Dichtl and Tollervey 1997). rRNAs were analyzed by gels stained with etidium bromide and by Northern analysis with oligonucleotide probes (Table 2) to detect various prRNA species (see Figs. 5B and 6). On depletion of the Rpp1 protein, we observed multiple defects in rRNA processing at the A0 and A1 sites in the 5' external transcribed sequence (5' ETS), at the A2 and A3 sites within the internal transcribed sequence

Table 2. Oligonucleotides used in this study

Oligo 1	5'-CAGACAGAGACCCCAA-3'
Oligo 2	5'-ACTATCTTAAAGGAAGGC-3'
Oligo 3	5'-GAATACCGGTTATACC-3'
Oligo 4	5'-GCACAGAAACTCTCACC-3'
Oligo 5	5'-ATGAAATTCCACAGTG-3'
Oligo 6	5'-CCAGTTACGAAAAATTCTTG-3'
Oligo 7	5'-CGCATTTCGCTGTTCTTCACTCG-3'
Oligo 8	5'-ACAGAATGTTTAGAGGAAGATG-3'
Oligo U6	5'-TCATCTTTATGCAAGG-3'
Oligo mtRNA	5'-GCATCTTACGATACCTG-3'
Oligo lRNA	5'-CCAAAACACCTATTGTGTA-3'
Oligo iRNA	5'-CACAGATCTGGGAAC-3'
Oligo T7MRP	5'-GGGAATTCTGAAATTACGACTCAGTCTAGAATCCATGACCCAAGAATCTCA-3'
Oligo T3 MR	5'-TCCCTCCGGGTTGGAATCCATCGACCAAGA-3'
Oligo T7ITS14	5'-GGGATCTGGAATAATCATAGCTACTATAGACACACTGTTGGAGATTTTCATATC-3'
Oligo T3 ITS14	5'-GGGATCTGGAATAATCATAGCTACTATAGACACACTGTTGGAGATTTTCATATC-3'
Oligo T7ITS16	5'-GGGATCTGGAATAATCATAGCTACTATAGACACACTGTTGGAGATTTTCATATC-3'
Oligo T3 ITS16	5'-GGGATCTGGAATAATCATAGCTACTATAGACACACTGTTGGAGATTTTCATATC-3'
Oligo MYC5	5'-CCAGATCTGGGAAC-3'
Oligo T7ITS16	5'-GGGATCTGGAATAATCATAGCTACTATAGACACACTGTTGGAGATTTTCATATC-3'
Oligo T3 ITS16	5'-GGGATCTGGAATAATCATAGCTACTATAGACACACTGTTGGAGATTTTCATATC-3'
Oligo GAL30	5'-GGGATCTGGAATAATCATAGCTACTATAGACACACTGTTGGAGATTTTCATATC-3'
Oligo T3 GAL30	5'-GGGATCTGGAATAATCATAGCTACTATAGACACACTGTTGGAGATTTTCATATC-3'
ITS1), and at the E and/or C2 sites within the internal transcribed sequence 2 (ITS2) (Fig. 6). Analysis of low-molecular-weight RNA showed that synthesis of 5.8S(S) rRNA was reduced in an Rpp1-depleted strain, whereas 5.8S(L) rRNA increased (Fig. 5B). The altered ratio between 5.8S(L) and 5.8S(S) suggests a defect in cleavage at the A3 site in the ITS1 and/or other processing sites required for maturation of 5.8S rRNA in vivo (Schmitt

Figure 6. (See facing page for legend.)
and Clayton 1993; Henry et al. 1994). Figure 6D shows an accumulation of a 7S precursor to 5.8S rRNA after 7 hr of Rpp1 depletion. This precursor is predicted to have its 5' end at the A2 site of ITS1 and its 3' end at the 3' end of 5.8S rRNA. If this prediction is proven correct, then we will be able to conclude that there is a defect in cleavage at the A3 site under the conditions we used.

In addition, two large precursors of the 18S rRNA accumulated at later times in Rpp1-depleted cells (Fig. 6C,D). The 24S rRNA precursor that contains both 5' ETS and ITS1 sequences shows defects in cleavage at the A0, A1, A2, and A3 processing sites, and the 27S rRNA precursor shows defects in cleavage and processing at the A2 and A3 processing sites in ITS1 and at the E site in ITS2 (Fig. 6C,D). The 17S and 12S rRNA degradation intermediates represent sequences with fragmented 5' ends within the 18S rRNA (Fig. 6C,D; Allmang et al. 1996a). Figure 6E shows depletion of the 7S5 and 7S3(L) precursors to 5.8S rRNA, depletion of the 27S5A and 27S5B precursors to 25S rRNA, and accumulation of an 8S rRNA precursor of the 5.8S rRNA, which contains 5' extended sequences from ITS1 and 3' extended sequences from ITS2. These intermediates indicate defects in cleavage at the A3, and E and/or C2 processing sites of the ITS1 and ITS2, respectively. All probes also detected a moderate accumulation of the 35S rRNA primary transcript and probes 2–7 also detect the 32S precursor rRNA (Fig. 6C–E; data not shown). Despite these defects the steady-state levels of the 18S rRNA and 25S rRNA remained unchanged (Fig. 6B), suggesting delayed processing of 35S rRNA in the absence of Rpp1.

Our results show that Rpp1 is required for processing of 35S rRNA in the 5' ETS, ITS1, and ITS2. Interestingly, some of the same processing reactions have been shown to be dependent on snoRNPs, RNase MRP, and RNase P, and the same stable RNA degradation intermediates accumulate in cells deficient in snoRNP components (Shuai and Warner 1991; Lindahl et al. 1992; Chamberlain et al. 1996b; Venema and Tollervey 1996). However, none of the known proteins that associate with these RNP particles exhibit the same global defects in prRNA and pRNA processing found in Rpp1-depleted cells. Interestingly, depletion of the snoRNP protein, Rrp5, results in striking similarities to Rpp1-depleted cells with...
respect to defects of prRNA processing (Venema and Tollervey 1996; see Discussion). Therefore, we suggest that RNase P interacts functionally with RNase MRP and perhaps other snoRNPs in the processing of rRNA in yeast.

Processing of precursor rRNA by Rpp1 immunoprecipitates

We tested whether Rpp1 is associated directly with prRNA processing activity by in vitro cleavage assay of two fragments of the 35S rRNA. We assayed cleavage in vitro by resuspending 3 x myc–Rpp1-containing immunoprecipitates with two fragments of the 35S precursor rRNA, ITS1.603 (Chamberlain et al. 1996b) and ITS1.141 (similar to Lygerou et al. 1996a). Both prRNA substrates overlap the ITS1 (see Fig. 7A, and Materials and Methods). Rpp1 immunoprecipitates, which contained both RNase P and RNase MRP RNAs, cleaved ITS1.141 (Fig. 7B) and ITS1.603 (data not shown) in the region of the A3 processing site. This result is consistent with, but does not rigorously prove, the observed defects in processing the 35S rRNA on depletion of the Rpp1 protein in vivo. However, 3 x myc–Rpp1 immunoprecipitates that were washed extensively with high ionic buffer (see Material and Methods) failed to cleave the prRNA substrates but cleaved prRNAs in vitro (data not shown). These results suggest that in addition to RNase MRP, there is a direct role for an RNase P-containing complex in rRNA processing in vivo.

Discussion

We have cloned a gene encoding a protein subunit of nuclear RNase P from S. cerevisiae based on its homology to human Rpp30. Yeast Rpp1 is homologous to the human scleroderma autoantigen, Rpp30, which was described previously as an autoantigen that copurifies with at least six other Rpp protein subunits of human RNase P—Rpp14, Rpp20, Rpp25, Rpp30, Rpp38, and Rpp40 (Eder et al. 1997). Using computer database searches (blastp and tblastn algorithms), we compared the predicted amino acid sequences of human Rpp proteins with the S. cerevisiae genome database. This analysis revealed that Rpp1 is one of three yeast proteins with amino acid sequence similarity to the human Rpp proteins. A second such yeast protein is Pop4, a subunit of yeast RNase P and RNase MRP (Chu et al. 1997), which is related in amino acid sequence to a previously uncharacterized human Rpp protein, Rpp29 (P. Eder, N. Jarrous, and S. Altman, unpubl.). The third yeast protein, Rpp2, shares amino acid similarity with Rpp20 (V. Stolc and S. Altman, unpubl.)

Rpp1 is a small basic protein with a predicted molecular mass of 32.2 kD and pI 9.76. It does not have any previously identified RNA-binding domains. In vitro, Rpp1 remains associated with the mature RNase P RNA and RNase P activity, even in buffers of high ionic strength. Rpp1 also associates with RNase MRP RNA and an rRNA processing activity (cleavage at the A3 site), ascribed previously to RNase MRP (Lygerou et al. 1996a). However, in contrast to RNase P, RNase MRP RNA and the rRNA processing activity can be separated from Rpp1 after high-salt washes. Furthermore, the human Rpp30 does not associate with RNase MRP (N. Jarrous and S. Altman, unpubl.). Whether yeast RNase P cleaves the prRNA substrates directly in vivo is unknown. Proposals for the secondary structure of ITS1 are based on phylogenetic analysis and chemical mapping of ITS1 (Van Nues et al. 1994; Allmang et al. 1996b) and computational folding of the ITS1.141 prRNA substrate, do not show a common structural feature of an RNase P substrate (a helical segment at the junction of a single-stranded region; Altman et al. 1995). Moreover, prRNA substrates used in this study are not cleaved at the A3 site in vitro by reconstituted E. coli RNase P (V. Stolc and S. Altman, unpubl.), which has a broader substrate specificity than eukaryotic RNase P (Yuan and Altman 1994). Therefore, in vivo, yeast Rpp1 may be a shared subunit of a large RNP complex containing both RNase P and RNase MRP, and perhaps other snoRNPs.

On depletion of Rpp1 in vivo, we found a defect in prRNA processing, an indication that Rpp1 is associated with RNase P activity. Surprisingly, we also found an rRNA processing defect characterized by the absence of cleavage at the A0 and A1 sites in the 5' ETS, and at the A2 and A3 sites in ITS1, and at the E and/or C2 sites in ITS2 of the primary 35S rRNA transcript. To our knowledge, Rpp1 is the only RNase P or RNase MRP protein, that on depletion simultaneously inhibits cleavages at all of these major processing sites of 35S rRNA and is required for prRNA processing. Moreover, processing of prRNA at sites A0, A1, A2, A3, E, and/or C2 may be coordinated by RNase P, as depletion of RNase MRP RNA alone results only in defects at the A3 site (Schmitt and Clayton 1993).

Apart from RNase MRP, other essential snoRNPs may be involved directly in the mechanism of rRNA processing (for recent reviews, see Eichler and Craig 1994; Venema and Tollervey 1995; Tollervey 1996). In contrast to the Rpp1 phenotype, depletion- or temperature-sensitive alleles of these snoRNAs or their associated proteins show no defect in prRNA processing and, with the exception of snoRP5 protein Rrp5, no single component is defective in prRNA processing at all of the processing sites in the 5' ETS, ITS1, and ITS2. For example, Gar1p, Nop1p, Sot1p, as well as snoRNA U3, U14, and snR30-depleted cells, and strains lacking snR10 are defective at A0, A1, and A2 sites without detectable inhibition of the A3 site (Tollervey 1987; Li et al. 1990; Hughes and Ares 1991; Tollervey et al. 1991; Girard et al. 1992; Jansen et al. 1993; Morrissey and Tollervey 1993). The prRNA processing phenotype of Rrp5-depleted strains differs from that of Rpp1 in that it is defective in maintaining accumulation of 25S rRNA, 18S rRNA, and relative levels of rRNA intermediates (Venema and Tollervey 1996). Interestingly, as in Rpp1-depleted cells, cleavage at the A3 site is also defective in Pop1, Pop3, Pop4, and RNase MRP (NME1) conditional mutants (Shaui and Warner...
1981; Lindahl et al. 1992; Schmitt and Clayton 1993; Lygerou et al. 1996a; Chu et al. 1997; Dichtl and Tollervey 1997). Therefore, although Rpp1 shares rRNA processing defects with known RNase P, RNase M RP, and snoRNPs, it is the only described protein that has both rRNA processing defects as well as rRNA processing defects at the A0, A1, A2, A3, and E, and/or C2 processing sites.

Materials and methods

Strains, media, and general procedures

S. cerevisiae strains used in this work are listed in Table 1. The composition of the media with appropriate nutrients for plasmid maintenance and S. cerevisiae growth and handling techniques were used as described (Guthrie and Fink 1991). Unless stated otherwise, all techniques for manipulating DNA, RNA, and oligonucleotides were performed according to standard procedures (Sambrook et al. 1989). The identities of all constructs were verified by sequence analysis. Oligonucleotides used in this study are listed in Table 2.

Gene disruption

A genomic clone spanning the RPP1 locus was identified using the S. cerevisiae Genome Database (SGD) and obtained from the American Tissue Culture Collection (ATCC) as cosmid 8025. Clone 8025 was sequenced previously (Johnston et al. 1994). A 1.4-kb BamHI–Xbal fragment encoding the RPP1 gene was subcloned from cosmide 8025 into pBluescript (SK) vector (Stratagene). The locus was disrupted by replacing a 0.6-kb NcoI fragment from S. cerevisiae 1.4-kb Clone 8025 was sequenced previously (Johnston et al. 1994). A 0.8-kb BamHI–XbaI fragment from S. cerevisiae 1.4-kb Clone 8025 was sequenced previously (Johnston et al. 1994). The plasmid-encoded rRNA ITS1 substrate(pRS316–3 × myc–RPP1) was transformed with pRS316::3 × myc–Rpp1 plasmid and sporulated. After sporulation and dissection, spores disrupted for RPP1, but harboring the plasmid encoded 3 × myc–Rpp1 fusion protein, were viable. Only two haploid cells (VS162A and VS162C), derived from sporulation of a single tetrad, were viable after the loss of the pRS316–3 × myc–RPP1 plasmid during selection on plates that contain 5-fluoro-orotic acid (5-FOA). These haploids were Leu−, showing that they had lost the pRS316–3 ×–RPP1 plasmid and had the wild-type RPP1 allele. The other two haploids (VS162B and VS162D) were not viable without the pRS316–3 ×myc–RPP1 plasmid during selection on 5-FOA plates and were Leu+, showing that they had the 3 × myc-tagged RPP1 allele. The same results were obtained after dissection of five additional tetrads. The growth rate of two haploid rpp1:LEU2 cells (VS162B and VS162D), which depend on a low-copy-number epimosomal plasmid encoding the 3 ×myc–RPP1 (pRS316–3 ×–myc–RPP1) for viability, was identical to that of the wild-type haploid cells (VS162A and VS162C).

rRNA ITS1 substrate(pRS316–3 × myc–RPP1) for viability, was identical to that of the wild-type haploid cells (VS162A and VS162C).

Immunoprecipitation

Extracts were prepared by lysis of yeast cells (25 ml, OD 600 = 0.5) with glass beads (Guthrie and Fink 1991). Extracts were clarified by centrifugation three times at 15,000 g for 10 min. The final supernatants were used in immunoprecipitations by adding 4 µg of 9E10 antibody to the protein extract derived from spores VS162A−, VS162B, VS162C−, and VS162D, and incubated for 2.5 hr, followed by addition of 50 µl of 100 mg/ml of anti-mouse IgG (whole molecule) agarose (Sigma) in IP150 buffer (150 mM KCl, 10 mM Tris-Cl (pH 7.5), 100 mM EDTA, 0.1% NP-40, and 0.1% NaN3). Pellets were washed five times with IP150 or IP600 (same composition as IP150, except 600 mM KCl). RNA was extracted from the immunoprecipitated beads by adding 100 µl of IPR buffer (100 mM Tris-Cl at pH 7.5, 100 mM EDTA at pH 8.0, 150 mM NaCl, 1% SDS), followed by two extractions with phenol and one extraction with phenol/chloroform/iso-amylalcohol solution (25:24:1). RNA was precipitated with ethanol.

Assays for RNase P activity and rRNA processing activity

IgG-agarose pellets, to which are bound immunoprecipitated RNAase P and RNAase MRP RNAs, were washed with IP150 and incubated with labeled ptRNA 80mer (Drainas et al. 1989) for 30 min at 37°C in 1x BB (10 mM HEPES at pH 8.0, 400 mM NaH2OAc, 10 mM Mg2OAc, 5% glycerol). rRNA transcripts ITS1.141 and ITS603 (Chamberlain et al. 1996a) were incubated with IgG pellets to which are bound immunoprecipitated

rRNA ITS1 substrate, ITS1.603 (Chamberlain et al. 1996b), oligonucleotides T7ITS16 and 3′ ITS16 were used to PCR amplify yeast genomic DNA and the amplified fragment was subsequently cloned into pUC19 the same way as for the ITS1.141 fragment. The NME-coding sequence was amplified by PCR from yeast genomic DNA using TMRP and 3′ MRP oligonucleotides, and subcloned into EcoRI and Smal sites of pUC19 to generate pUC7TMR.

Strain construction

To generate myc-epitope-tagged RPP1, three myc epitope domains (3 × myc) were PCR-amplified from the 3′ myc-SEC8 construct (TerBush and Novick 1996) using oligonucleotides MYC5 and MYC3, and then cut with BsmI. The PCR fragment was subcloned into the BsmI site of pRRP1SK plasmid to generate p3 × myc–RRP1SK. A 1.5-kb BamHI–Xbal fragment from p3 × myc–RRP1SK was subcloned into pRS316 plasmid to generate pRS316–3 × myc–RPP1. The coding sequence of RPP1 was PCR-amplified from pRRP1SK using oligonucleotides SGAL30 and 3GAL30, cut with BamHI and Xhol, and subcloned into modified pYCP33 vector that contained the GAL1–10 promoter to generate pYCP–GAL::rpp1. To generate rRNA ITS1 substrate, ITS1.141 (similar to Lygerou et al. 1996a), oligonucleotides T7ITS14 and 3′ ITS14 were used to PCR-amplify yeast genomic DNA and then the 141-bp fragment was cloned into EcoRI and BamHI sites in pUC19 (New England Biolabs). To generate

rRNA ITS1 substrate, ITS1.603 (Chamberlain et al. 1996b), oligonucleotides T7ITS16 and 3′ ITS16 were used to PCR amplify yeast genomic DNA and the amplified fragment was subsequently cloned into pUC19 the same way as for the ITS1.141 fragment. The NME-coding sequence was amplified by PCR from yeast genomic DNA using TMRP and 3′ MRP oligonucleotides, and subcloned into EcoRI and Smal sites of pUC19 to generate pUC7TMR.

Strain construction

To generate myc-epitope-tagged RPP1, three myc epitope domains (3 × myc) were PCR-amplified from the 3′ myc-SEC8 construct (TerBush and Novick 1996) using oligonucleotides MYC5 and MYC3, and then cut with BsmI. The PCR fragment was subcloned into the BsmI site of pRRP1SK plasmid to generate p3 × myc–RRP1SK. A 1.5-kb BamHI–Xbal fragment from p3 × myc–RRP1SK was subcloned into pRS316 plasmid to generate pRS316–3 × myc–RPP1. The coding sequence of RPP1 was PCR-amplified from pRRP1SK using oligonucleotides SGAL30 and 3GAL30, cut with BamHI and Xhol, and subcloned into modified pYCP33 vector that contained the GAL1–10 promoter to generate pYCP–GAL::rpp1. To generate rRNA ITS1 substrate, ITS1.141 (similar to Lygerou et al. 1996a), oligonucleotides T7ITS14 and 3′ ITS14 were used to PCR-amplify yeast genomic DNA and then the 141-bp fragment was cloned into EcoRI and BamHI sites in pUC19 (New England Biolabs). To generate
RNase P and RNase MRP RNAs (washed with IP150) for 2 hr at 37°C in 1x PMSF (20 mM Tris-HCl at pH 8.0, 10 mM MgCl2, 1 mM EDTA, 50 mM KCl, 2 units of RNasein, and 50 mg/ml of BSA). IgG pellets, to which is bound RNase P RNA, were washed with IP600 and incubated with ether-prtRNA−, ITS141, or ITS603 as above. The tRNA substrate, ITS141, and ITS603 rRNA substrates were labeled uniformly with [32P]dCTP (3000 mCi/mmol, Amersham) and purified on an 8% polyacrylamide/7 M urea gel. The assays were performed with 0.5 nM prtRNA, 3.2 nM ITS141 RNA, or 0.5 nM ITS603 RNA. The RNA products were fractionated on an 8% polyacrylamide/7 M urea gel.

RNA analysis
Total RNA was isolated by disruption of cell pellets (25 ml, OD600 = 0.5), resuspended in AE buffer (50 mM NaAc at pH 5.3, 10 mM EDTA), and 10 mM RNase inhibitor, vanadyl ribonucleoside complex (GIBCO BRL) and equal volume of phenol and chloroform, with glass beads at 65°C for 15 min. Phenol/chloroform extractions were repeated four times at 65°C for 15 min, followed by an extraction with chloroform at 25°C and ethanol precipitation. Northern hybridization was performed as described previously (Guerrier-Takada et al. 1995). All oligonucleotides were end-labeled with T4 polynucleotide kinase described previously (Guerrier-Takada et al. 1995). All oligonucleotides were end-labeled with T4 polynucleotide kinase (New England Biolabs) and [γ-32P]ATP (Amersham). NME1 EcoRI–Smal DNA fragment from pUCT7MRP and EcoRI–Smal DNA fragment from pSCRNP (Lee et al. 1991) were labeled uniformly with [32P]dCTP (Amersham).

Acknowledgments
We thank Y. Barral, J. Noverak, S. Reck-Peterson, B. Rockmill, S. Roeder, and A. Smith for yeast strains and helpful advice, D.R. TerBush and P. Novick for yeast strains and 9E10 antibody, K. Ross for the GAL plasmid, and P.S. Eder, M.C. Fishman, and S. Altman for yeast strains and helpful advice. D.R. Ross for the GAL plasmid, and P.S. Eder, N. Jarrous, V. Gopalan, V., A.D. Baxevanis, D. Landsman, and S. Altman. 1996. Ribonuclease P provides subunit mutation affects ribosomal RNA processing. Nucleic Acids Res. 24: 3158–3166.

Chang, B.D. and D.A. Clayton. 1987. Mouse RNase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate. Cell 56: 131–139.

Cherry, J.M., C. Adler, C. Ball, S. Dwight, S. Chervitz, Y. Jia, G. Juvik, S. Weng, and D. Botstein. 1996. Saccharomyces Genome Database. http://genome-www.stanford.edu/Saccharomyces/1996.

Chu, S., J.M. Zengel, and L. Lindahl. 1997. A novel protein shared by RNase MRP and RNase P RNA. J. Biol. Chem. 272: 382–391.

Clayon, D. 1994. A nuclear function for RNase MRP. Proc. Natl. Acad. Sci. 91: 4615–4617.

Darr, S.C., J.W. Brown, and N.R. Pace. 1992. The varieties of ribonuclease P. Trends Biochem. Sci. 17: 178–182.

Dichti, B. and D. Tollervey. 1999. POP3p is essential for the POP3p RNA subunit. Nucleic Acids Res. 24: 491–492.

Drainas, D., S. Zimmerly, I. Willis, and D. Soll. 1989. Substrate structural requirements of Schizosaccharomyces pombe RNase P. FEBS Lett. 251: 84–88.

Eder, P.S., A. Srinivasan, M.C. Fishman, and S. Altman. 1996. The RNA subunit of ribonuclease P from the zebrafish, Danio rerio. J. Biol. Chem. 271: 21031–21036.

Eder, P.S., R. Keukda, V. Stolc, and S. Altman. 1997. Characterization of two scleroderma autoimmune antigens that copurify with human ribonuclease P. Proc. Natl. Acad. Sci. 94: 1101–1106.

Eichler, D.C. and N. Craig. 1994. Processing of eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 49: 197–239.

Filipowicz, W. and T. Kiss. 1993. Structure and function of nucleolar snRNPs. Mol. Biol. Reports 18: 149–156.

Forster, A.C. and S. Altman. 1990. Similar cage-shaped structure for the RNA components of all ribonuclease P and ribonuclease MRP enzymes. Cell 62: 407–409.

Fournier, M.J. and E.S. Maxwell. 1993. The nucleolar snRNAs: Matching up with the spliceosomal snRNAs. Trends Biochem. Sci. 18: 131–135.

Girard, J.P., H. Lehtonen, M. Cazéruges-Ferrer, F. Amaliac, D. Tollervey, and B. Lapeyre. 1992. GAR1 is an essential small nuclear RNP protein required for pre-rRNA processing in yeast. EMBO J. 11: 673–682.

Goffea, B.A., B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F. Galibert, J.D. Hohiesel, C. Jacc, M. Johnston, E.J. Louis, H.W. Mews, Y. Murakami, P. Philippsen, H. Tettelin, and S.G. Oliver. 1996. Life with 6000 genes. Science 274: 563–567.

Gopalani, V., A.D. Baxevanis, D. Landsman, and S. Altman.
An essential protein subunit of RNase P from yeast

1997. A study of the functional role of conserved residues in the protein subunit of ribonuclease P from Escherichia coli. J. Mol. Biol. 267: 818–829.

Guerrier-Takada, C., K. Gardiner, T. Marsh, N. Pace, and S. Altman. 1993. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 52: 849–857.

Guerrier-Takada, C., Y. Li, and S. Altman. 1995. Artificial regulation of gene expression in Escherichia coli by RNase P. Proc. Natl. Acad. Sci. 92: 11115–11121.

Guthrie, C. and G.R. Fink. 1991. Guide to yeast genetics and molecular biology. Methods Enzymol. 194: 1–539.

Hartmann, R.K., J. Heinrich, J. Schlegl, and H. Schuster. 1995. Precursor of C4 antisense RNA of bacteriophages P1 and P7 in a substrate for RNase P of Escherichia coli. Proc. Natl. Acad. Sci. 92: 5822–5826.

Haas, E.S., D.W Armbruster, B.M. Vucson, C.J. Daniels, and J.W. Brown. 1996. Comparative analysis of ribonuclease P RNA structure in Archaea. Nucleic Acids Res. 24: 1252–1259.

Henry, Y., H. Wood, J.P. Morrissey, E. Petfalski, S. Kearsey, and J.P. Morrissey. 1993. Yeast snR30 is a small nuclear RNA required for normal processing of pre-ribosomal RNA. EMBO J. 12: 4231–4239.

Jansen, R., D. Tollervey, and E.C. Hurt. 1993. A U3 snoRNA protein with homology to splicing factor PRP4 and B box is required for ribosomal RNA processing. EMBO J. 12: 2549–2558.

Johnston, M., S. Andrews, R. Brinkman, J. Cooper, H. Ding, J. Dover, Z. Du, A. Favello, L. Fulton, S. Guttung et al. 1994. Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science 265: 2077–2082.

Komine, Y., M. Kitabatake, T. Yokogawa, K. Nishikawa, and H. Inokuchi. 1994. A tRNA-like structure is present in 10Sa RNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 11471–11476.

Lee, J.Y., C.E. Rohlim, L.A. Molony, and D.R. Engelke. 1991. Characterization of RPR1, an essential gene encoding the RNA component of Saccharomyces cerevisiae nuclear RNase P. Mol. Cell. Biol. 11: 721–730.

Li, H.J., J. Zagorski, and M.J. Fournier. 1990. Depletion of U14 small nuclear RNA (snR128) disrupts production of 18S rRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 1145–1152.

Lindahl, L., R.H. Archer, and J.M. Zengel. 1992. A new RNA processing mutant of Saccharomyces cerevisiae. Nucleic Acids Res. 20: 295–301.

Liu, F. and S. Altman. 1994. Differential evolution of substrates for an RNA enzyme in the presence and absence of its protein cofactor. Cell 77: 1093–1100.

Lygerou, Z., P. Mitchell, E. Petfalski, B. Seraphin, and D. Tollervey. 1994. The POP1 gene encodes protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes & Dev. 8: 1423–1433.

Lygerou, Z., C. Allmang, and B. Seraphin. 1996a. Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclelease MRP in vitro. Science 272: 268–270.

Maxwell, E.S. and M.J. Fournier. 1995. The small nuclear RNAs. Annu. Rev. Biochem. 64: 897–934.