Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins

David E. Nelson, Suzanne J. Randle and Heike Laman

Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK

1. Summary

F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases. To date, 69 FBPs have been identified in humans, but ubiquitinated substrates have only been identified for a few, with the majority of FBPs remaining 'orphans'. In recent years, a growing body of work has identified non-canonical, SCF-independent roles for about 12% of the human FBPs. These atypical FBPs affect processes as diverse as transcription, cell cycle regulation, mitochondrial dynamics and intracellular trafficking. Here, we provide a general review of FBPs, with a particular emphasis on these expanded functions. We review Fbxo7 as an exemplar of this special group as it has well-defined roles in both SCF and non-SCF complexes. We review its function as a cell cycle regulator, via its ability to stabilize p27 protein and Cdk6 complexes, and as a proteasome regulator, owing to its high affinity binding to PI31. We also highlight recent advances in our understanding of Fbxo7 function in Parkinson's disease, where it functions in the regulation of mitophagy with PINK1 and Parkin. We postulate that a few extraordinary FBPs act as platforms that seamlessly segue their canonical and non-canonical functions to integrate different cellular pathways and link their regulation.

2. Introduction

As with actors on a stage, the timely exit of cellular proteins is as important as their entrance; they must play their part at the appropriate moment and then depart on command. The ‘exit’ or destruction of proteins within the cell goes beyond the simple removal of proteins; it provides a means to achieve rapid activation, by the degradation of an inhibitor, or conversely, the inactivation of a given process faster than could be achieved by the synthesis of new inhibitor proteins. Furthermore, degradation is irreversible, imparting a unidirectionality that is absolutely fundamental to basic processes like the cell cycle, which requires the coordinated degradation of kinase inhibitors and activating cyclins, helping to ensure a single and complete round of replication of the genome [1,2].

The degradation of cellular proteins is not random but is directed by signalling pathways and carried out by the ubiquitin proteasome system (UPS) [3–5]. Proteins are marked for degradation by an initial post-translational modification or a series of modifications, such as phosphorylation, creating a ‘degron’ to which ubiquitin ligases are recruited to label targeted proteins with ubiquitin. These small, 8.5 kDa proteins, when attached as polymer chains, can direct proteins to proteasomes, large multi-subunit complexes with multiple proteolytic activities. Proteasomes essentially ‘recycle’ proteins by breaking them into short seven to eight amino acid polypeptides that are further broken down to their composite amino acids to be re-used or catabolized by the cell. The ubiquitination reaction itself is a well-defined process mediated by a cascade of ubiquitin-handling...
enzymes and has been reviewed in detail elsewhere [3,6–8]. The final step in this process is orchestrated by an E3 ubiquitin ligase. Its role is to recognize and bind degrons within a target protein and bring it into proximity with a ubiquitin-charged E2 protein, stimulating transfer of a ubiquitin moiety to recipient lysine residues within the target.

The array of targets regulated by E3 ubiquitin ligases is as broad as the proteome itself. One strategy the cell employs to handle the magnitude of this task is to express a large number of different E3 ligases. Indeed, the human genome encodes over 500 distinct E3s [9], roughly separated across two main families: the homologous to E6-associated protein (E6-AP) C-terminus (HECT) domain and the really interesting new gene (RING) finger domain E3s [3]. Another strategy that goes beyond merely increasing E3 numbers is to employ adaptor proteins that change the substrate specificity of the E3, which may enable a tailoring of substrate engagement with a ligase as per the changing needs of the cell. This strategy is typified by the Skp1-ubiquitin ligase (SCF)-type E3 ubiquitin ligases, the largest group of multi-subunit E3 ligases within the RING finger domain family [5,10,11]. The F-box protein (FBP) family is fundamental to this flexible substrate-recognition, as they act as interchangeable docking sites for the ligase. The SCF holoenzyme is formed around a central cullin (Cul1) backbone, which provides a rigid scaffold, holding the E2 binding subunit, Rbx1, at a distance of approximately 50 Å from the substrate docking site (figure 1a) [8]. Substrate recruitment is the role of the FBP, and its tethering to cullin is mediated by Skp1.

In this review, we present a brief outline of the function and diversity of the FBP family, describing how they operate within the UPS system as conventional components of SCF-type E3 ubiquitin ligases. We will then discuss an array of alternative functions displayed by FBP, as many are being reported to lead ‘double-lives’, operating outside the UPS system and independently of the SCF to regulate a diverse range of cellular processes. Lastly, we will focus on Fbxo7, an FBP implicated in cancer and neurodegenerative disease, whose atypical functions include regulating cell cycle, differentiation, proteosomal function and mitochondrial quality control. As illustrated by the exemplary case of Fbxo7, we propose that having both ubiquitination functions and non-canonical regulatory roles endows a subset of special FBP with the potential to act as hubs to link the UPS to other cellular signalling networks.

3. F-box proteins

FBPs are defined by a 40–50 amino acid F-box domain that binds Skp1 [12]. After the discovery of the first FBP, cyclin F (Fbxo1) [13], further family members were identified using a yeast-two-hybrid screen for Skp1-interacting proteins and bioinformatics analysis for homologous sequences [14,15]. Without taking into account the various isoforms that may be produced, there are 69 human FBP s [16], and the number is significantly higher in other organisms, such as Caenorhabditis elegans and plants. FBP s are subdivided into three separate classes, Fbxw, Fbxl and Fbxo, based on their individual complement of protein interaction domains: WD40, leucine-rich repeats (LRR) and ‘other’, respectively (figure 1b) [17]. These three classes did not diverge from a single common ancestral gene, as might be expected. Instead the F-box phylogenetic tree is made up of two main groups with FBP s from all classes found in both, suggesting frequent swapping of protein interaction domains during their evolution [17]. The WD40 and LRR domains of Fbxw and Fbxo family members fold to create large surface areas for protein–protein interaction. WD40 repeats form a circularized propeller-like structure [18], while the successive repeats of LRR domains stack in a horseshoe formation [19]. The Fbxo class, on the other hand, features a broad array of different interaction domains, including in between-ring domains (IBR), TRAF-domain like motifs and proline-rich regions (PRR), among others. Although these domains from all classes of FBP s directly recruit substrates, in
some cases an additional cofactor is essential or can change the substrate specificity of the FBP. For example, Fbxl1 (Skp2) requires Cks1 to bind the Cdk inhibitor p27 or the pRb-related protein, p130 for ubiquitination [20,21]. However, Cks1 is not needed for the recruitment of other Skp2 substrates.

Quite how the most appropriate FBPs are ‘selected’ and loaded onto a cullin scaffold is not fully understood, but it is thought to be regulated by two processes: availability and exchange. The pool of available FBPs is likely to be controlled by a combination of transcriptional regulation, targeted stabilization/degradation and auto-ubiquitination in the absence of their substrates [22,23]. For example, the muscle catabolism regulator, Atrogin-1 (Fbxo32) is controlled transcriptionally. Its expression is enhanced under starvation conditions, promoting muscle atrophy, but is suppressed by testosterone, stimulating increased muscle mass [24]. On the other hand, the putative tumour suppressor, Fbxo31, is regulated post-translationally. It is stabilized in response to DNA damage and targets ATM-phosphorylated cyclin D1 for UPS-dependent degradation, thus bringing about a G1 cell cycle arrest [25]. Auto-ubiquitination in the absence of a suitable substrate is a process thought to be very common among FBPs. It provides a means by which ‘idle’ FBPs target themselves for UPS-dependent degradation. This is typified by β-Trcp2 (Fbxw11), a regulator of the Wnt and NF-κB signalling pathways, which is intrinsically unstable under basal conditions but has been shown to be stabilized by the induction of one of its substrates, the phosphorylated form of inhibitor of NF-κB alpha (IκBa) [26]. The variety of these mechanisms provides the means to upregulate required FBPs in response to intrinsic and extrinsic signals, while continually clearing those that are no longer required, ensuring that the available pool addresses the needs of the cell at any given time. The mechanism by which one FBP is ‘switched-out’ and replaced by another has recently been reported and is controlled by the ‘exchange factor’ Cand1 [27,28]. By increasing the dissociation rate of Skp1: FBP complexes from the cullin scaffold, without affecting the kinetics of its reassembly, Cand1 keeps the spectrum of SCF activity within the cell dynamic and capable of responding to a changing cellular environment.

FBPs interact with and ubiquitinate their own particular panel of substrates, usually showing a preference for post-translationally modified (PTM), often phosphorylated, proteins. In this way, signal transduction networks that use protein kinases (e.g. GSK3β, Cdks, IKK) can engage a UPS response. Recognition by an FBP can be via a single PTM or cumulative PTMs of the substrate on multiple sites. This latter scenario, which creates a switch that senses and responds to a threshold of modifications, is used by the yeast Cdk inhibitor, Sic1. Phosphorylation on any of six of its nine phospho acceptor sites stimulates its ubiquitination by SCFCdc4 as part of the transition from G1 to S phase [29]. Thus as part of an SCF, FBPs ‘translate’ a PTM from upstream signalling pathways into a ubiquitination response, and that signal can be further acted upon and/or stratified. Ubiquitin can be conjugated as individual moieties to single or multiple sites within a protein (mono and multi-mono ubiquitination, respectively) or attached as a polyubiquitin chain (figure 2). Such chains can differ in both length and topology, which forms the basis of the ‘ubiquitin code’ (reviewed in [30]). Ubiquitin contains eight residues (Met1, Lys6, Lys11, Lys27, Lys29, Lys33, Lys48 and Lys63) that are capable of forming an isopeptide bond with the C-terminal glycine residue (Gly76) of the preceding ubiquitin molecule in a nascent chain. Chains can be constructed using either a single type of linkage (homogeneous), several types (mixed) or be branched. The ‘deciphering’ of this code is due to the fact that different ubiquitin chain topologies recruit distinct ubiquitin binding proteins (UBPs) with activities that bring about changes to protein activity, location and/or levels [30]. The two best understood types of polyubiquitin chain linkage are those assembled on Lys48 or Lys63. Lys48 polyubiquitination is the most common linkage used in mammalian cells and is almost exclusively associated with the targeting of proteins for proteasomal degradation. It is the only essential lysine residue in yeast ubiquitin [31]. By contrast, Lys63 chains are generally not associated with UPS-based proteolysis but do play a major role in regulating the destruction of proteins and organelles by the lysosomal/autophagy pathway [32]. They are also used in other signalling networks, including the DNA damage response and the NF-κB signal transduction pathway [33,34]. In these instances, they are used to build scaffolds or ‘platforms’ for protein recruitment via UBPs.

The ability of an E3 enzyme to conjugate one type of polyubiquitin chain or another on its substrate is largely dictated by the spectrum of E2 enzymes with which it interacts [30,35,36]. With few exceptions, this appears to limit SCF-type E3 complexes to participating almost exclusively in the production of Lys48 polyubiquitin chains, thus promoting degradation. However, in some cases F-box-dependent Lys48 modification does not lead to complete proteolysis. SCFβ-Trcp-induced poly-Lys48 ubiquitination can stimulate the 26S proteasome-dependent processing of the NF-κB transcription factors p100 and p105 to p52 and p50, respectively [37–39]. Interestingly, a growing number of reports have shown that FBPs are capable of participating in a broader range of ubiquitin–conjugation reactions. For example, Chen et al. [40] have shown that mono-ubiquitination of CTP:phosphocholine cytidylyltransferase (CCTo) by Fbxl2 targets it for endosome-lysosomal degradation. Another study has also suggested that β-Trcp has the capacity to direct Lys63 as well as Lys48 polyubiquitination of the interferon α/β receptor 1, when paired with an appropriate E2 enzyme in vitro [41].

In sum, through recognition of PTMs in its substrates, FBPs can use the SCP machinery to codify a ubiquitin-based response thus relaying and diversifying a signal into downstream cellular pathways.

4. SCF-independent functions of F-box proteins

The study of FBPs to date has focused on their SCF-dependent functions, even though the majority of FBPs in humans and other species remain ‘orphans’. The identification of substrates for these orphans remains a major endeavour for the field. However, an additional, perhaps under-appreciated consideration is that the many FBPs within a cell must compete for binding to the cullin scaffold and consequently may not be able to participate readily in ubiquitination reactions. It is therefore conceivable that these unengaged subunits may be free to participate in other reactions. In yeast, several FBPs have been found bound to Skp1, but not as part of an SCF complex. Instead FBP–Skp1 dimers participate in processes like centromere complexity assembly and the recycling of endosome components (reviewed in [42]). Although the first descriptions of SCF-independent functions were in yeast, such roles for mammalian
FBPs have also been reported [43]. For example, Emi1 (Fbxo5) functions as an SCF-independent suppressor of APC/C activity. Emi1 negatively regulates APC/C activity by binding to its activators, Cdc20 and Cdh1, which recruit APC/C substrates [44,45]. Thus, Emi1 prevents DNA re-replication and helps to link DNA replication to mitosis (reviewed in [44]).

The presence of an F-box domain itself is no guarantee that a protein will function as part of an SCF. Fbxo38 (MoKA) uses its F-box domain to interact with Kruppel-like transcription factor 7 (Klf7) [46]. Klf7 plays a key role in the development of the mammalian central nervous system by regulating differentiation, and maintaining cell cycle arrest, of post-mitotic neuro-progenitor cells [47]. Fbxo38 supports Klf7 in this role by acting as a transcriptional cofactor at the promoter of the cell cycle inhibitor p21WAF1/Cip1 [46]. Although it can bind to Skp1, to date an SCF-dependent role for Fbxo38 has yet to be identified. Moreover, this study raises the possibility that other FBPs might also use their F-box domains in transcriptional regulation.

Alternative functions for FBPs are not limited to simple binding interactions with other proteins, as they may also possess distinct and intrinsic enzymatic activities. hFbh1 (Fbxo18) has been shown to operate as a DNA helicase and is important for the maintenance of genomic stability through regulating homologous recombination [48,49]. The purified hFbh1 protein has DNA helicase activity, and strikingly this capacity is maintained when it is part of an SCF ligase [50]. However, as hFbh1 is an orphan FBP, the biological significance of linking ubiquitination activity to a helicase remains to be determined [49].

These examples illustrate that several FBPs, to date about 12% and usually of the Fbxo class, have activities beyond ubiquitination (table 1). We speculate that this class of special FBPs provides a means to link modification with ubiquitin to other enzymatic or functional interactions. Below, we will expand on Fbxo7 as a case in point for such FBPs, as it has well-defined SCF-dependent and independent activities; and furthermore, it is important in human health, having been linked to two diseases, cancer and Parkinson’s disease (PD), and to alterations in red blood cell parameters.

5. Fbxo7: gene and protein structure

Fbxo7 was first identified as an FBP in 1999 [14,15], and the first report on its function was its canonical ubiquitination of HURP in 2004 [70]. However, a facilitating role for Fbxo7 in promoting cell cycle progression (discussed in §7) was discovered a year later and was the first clue that it had expanded activities [51]. This study also reported the basic domain structure of isoform 1 of Fbxo7 (figure 3c). In addition to the signature F-box domain, it contains a
ubiquitin-like (Ubl) domain at its N-terminus and an unstructured PRR, used to recruit substrates, at its C-terminus [51]. While the F-box domain of Fbxo7 is most closely homologous to that of fellow FBPs, Fbxo9 and Fbxo11, its closest relative, proteasome inhibitor 31 (PI31), is in fact, not an FBP at all [71]. PI31 is a regulator of immunoproteasome maturation and an inhibitor of 20S proteasomes in vitro [72,73], and shares a common domain organization with Fbxo7 having a C-terminal PRR, containing a conserved R(Ar)DP motif, which is present in all orthologues of the two proteins [71]. Perhaps more significantly, both proteins share a core globular domain, designated the Fbxo7/PI31 (FP) domain that provides two distinct interaction surfaces that can mediate their homo- or heterodimerization [71]. Their relationship will be discussed in §8, but their common organization and shared domain structure raise the intriguing possibility that Fbxo7 was first a proteasome regulator that later gained the ability to ubiquitinate proteins.

The FBXO7 gene is located on chromosome 22q12-q13 in humans and is composed of nine exons spanning a region of approximately 24.15 kb (figure 3a). From this, 10 transcripts have been identified and annotated by Ensembl [74], as well as a further two non-coding transcripts, with differing nomenclature, suggested by Di Fonzo et al. [75]. The Ensembl annotated transcripts include three complete protein coding isoforms (figure 3b), and an additional seven transcripts, which are incomplete, non-coding or presumed to undergo nonsense-mediated decay. The three coding transcripts comprise of isoform 1, which is the most abundantly expressed form of the protein in most tissues and cultured cell lines, and two shorter transcripts, isoforms 2 and 3. Isoform 2 contains exons 3–9 of isoform 1, but has an alternative 5’ exon. This alternative exon, known as 1b, splices directly to exon 2b, skipping exon 2a, and produces a 443 amino acid protein with an entirely different N-terminal end, lacking the Ubl domain seen in isoform 1. This version of the protein is also detectable in mammalian tissues and cell lines. Although less well studied than isoform 1, isoform 2 interacts with some of the known Fbxo7 substrates [51,76,77]. Isoform 3 also contains exons 1b, 2a and 2b; however, protein translation starts from an alternate methionine distinct from that of isoform 2. Intriguingly, the initiating methionine of isoform 3 is located at amino acid 115 (according to isoform 1 numbering) and its coding is affected by a common single nucleotide polymorphism (SNP; rs11107; M115I) that changes the nucleotide sequence from ATG (methionine) to ATA (Isoleucine). This SNP, along with several others in FBXO7, is associated with changes to red blood cell volume in humans [78–80]. Although no evidence as yet has

Table 1. FBPs with SCF-independent functions (abbreviations are Saccharomyces cerevisiae, Caenorhabditis elegans, Schizosaccharomyces pombe and Fusarium oxysporum).

FBP	organism	function	references	additional SCF function	
cell cycle regulation	Fbxo7	mammals	cell cycle, proteasome and mitophagy regulator	[51,52]	yes
	Emi1 (Fbxo5)	mammals	suppressor of APC/C activity	[44,45,53]	possible
	Emi2 (Fbxo43)	mammals	suppressor of APC/C activity	[54]	unknown
	Cyclin F (Fbxo1)	mammals	promotes nuclear localization of cyclin B1	[55]	yes
	Ctf13p	S. cerevisiae	structural component of the CBF3 kinetochore complex	[56]	no
transcription/translation	MoKA (Fbxo38)	mammals	transcriptional cofactor for KLF7	[46,47]	unknown
	hFbh1 (Fbxo18)	mammals	DNA helicase	[48–50]	yes
	KDM2B (Fbxo10)	mammals	histone demethylase	[57]	unknown
	KDM2A (Fbxo11)	mammals	histone demethylase, inhibitor of NF-κB	[58]	unknown
	Elongin A	mammals	translation elongation activator	[59,60]	no, but E3 activity via Cul5
	FOG-2	C. elegans	translational repressor, binds GLD-1	[61]	no
intracellular trafficking	Roy1/Ymr258c	S. cerevisiae	inhibits Ypt52 and consequently intracellular trafficking	[62]	no
	Rc1	S. cerevisiae	v-SNARE recycling	[63]	no
	Pof6	S. pombe	endocytosis, cytokinesis and cell division (Roy1 homolog)	[64]	yes
other	Pof14	S. pombe	inhibits Erg9, a squalene synthase involved in ergosterol synthesis	[66]	unknown
	Mtfl	S. cerevisiae	mitochondrial morphogenesis - promotes fission	[66]	unknown
	Mdm30	S. cerevisiae	mitochondrial morphogenesis - prevents fission	[67]	yes
	Frp1	F. oxysporum	FBP required for pathogenicity in tomato wilt disease	[42,68,69]	yes
been published showing protein expression of isoform 3, this would suggest that people homozygous for the ATA allele would completely lack expression of this isoform.

6. Fbxo7 as an E3 ubiquitin ligase

Currently, the capacity of Fbxo7 to function as a canonical FBP has been described for three substrates: HURP, cIAP1 and TRAF2 (figure 3d) [70,76,81]. HURP is a cell cycle-regulated protein associated with the mitotic spindle, where it regulates chromosome congression [82,83]. HURP ubiquitination by SCF^Fbxo7^ is preceded by its multisite phosphorylation by cyclin B/Cdk1 [70]. HURP was originally identified as a putative oncogene in hepatocellular carcinoma (HCC) and mechanistically has been shown to be a negative regulator of the tumour suppressor, p53 [84]. This raises the possibility that Fbxo7 could function as a tumour suppressor in HCC by negatively regulating HURP thus bolstering p53 activity, although this has not yet been investigated.
clAP1 is a member of the IAP family, and it contains a C-terminal RING domain, enabling it to function as an E3 ubiquitin ligase [85]. It is this property of clAP1 that allows it to inhibit apoptosis, both by targeting pro-apoptotic proteins, such as SMAC/DIABLO, for proteasomal degradation, and by stimulating anti-apoptotic NF-κB activity [85,86]. clAP1 contributes to NF-κB signalling by forming part of the tumour necrosis factor-receptor signalling complex (TNF-RSC). Here, it interacts with TRAF2, another ubiquitin ligase and together they polyubiquitiniate receptor interacting protein 1 (RIP) with Lys63-chains [86,87], producing a platform for the recruitment and activation of the inhibitor kappa B kinase (IKK) signalosome. IKK phosphorylates IκBα, stimulating its degradation and the concomitant release of NF-κB transcription factors into the nucleus. Using an siRNA screen targeting ubiquitin conjugating and de-conjugating enzymes, Kuiken et al. [81] recently identified Fbxo7 as an inhibitor of NF-κB activity, an effect that was mediated by the ubiquitination of clAP1 and TRAF2. Thus, Fbxo7 has the potential to sever the link between the TNF-RSC core complex and the IKK signalosome, attenuating NF-κB activation. Dysregulation of NF-κB signalling has long been associated with cancer and oncogenesis and more recently has been linked to neurodegeneration and PD (reviewed in [88]). While it is tempting to speculate that the relationship between Fbxo7 and NF-κB signalling may be instrumental to its role in various pathologies, none of the currently known PD-associate Fbxo7 mutants (see §9) appear to affect NF-κB-dependent transcription ex vivo [81], and the ability of Fbxo7 to affect NF-κB signalling in a cancer context has yet to be probed.

A recent quantitative analysis of the Cul1 proteome revealed that SCFFbxo7 was the fifth most abundant SCF ligase in cultured colon adenocarcinoma but was virtually absent from tumour biopsies from lung squamous cell carcinoma and directly via a bipartite interaction with Cdk6 (figure 3d) [51]. Viral cyclins bypass normal cell cycle regulators and robustly activate G1 Cdns, promoting S phase entry [92]. Fbxo7 was found to associate specifically and directly via a bipartite interaction with Cdk6 (Fbxw1A), which has 10 verified substrates [91]. As evidenced by these three substrates, Fbxo7 has the potential to impact upon disease-associated signalling pathways, and given the association of Fbxo7 with human diseases, a more complete reckoning of Fbxo7 ubiquitination substrates is eagerly awaited. However, to truly comprehend Fbxo7 function and its role in disease, a full understanding of its alternative activities is also warranted.

7. Fbxo7 as a regulator of the cell cycle

The first SCF-independent function for Fbxo7 was uncovered when the protein was identified as interacting with an oncogenic viral cyclin [51]. Viral cyclins bypass normal cell cycle regulators and robustly activate G1 Cdns, promoting S phase entry [92]. Fbxo7 was found to associate specifically and directly via a bipartite interaction with Cdk6 (figure 3c). In this capacity, it functions as an assembly scaffold for the formation of cyclin D/Cdk6 complexes, rather than causing the ubiquitination of either subunit (figure 3d) [51]. As these G1/S regulators are themselves proto-oncogenes, as a direct positive regulator, it was thought that Fbxo7 could also be a putative oncogene. This was borne out in experiments showing that over-expression of Fbxo7 in mouse fibroblasts triggered changes associated with cellular transformation, including tumour formation in nude mice. In addition, Fbxo7 over-expression was observed in human tumour biopsies from lung squamous cell carcinoma and colon adenocarcinoma but was virtually absent from corresponding normal tissue, suggesting that Fbxo7 may be oncogenic in these tissue types [51].

In a stringent test of its effects on proliferation, differentiation and transformation in primary cells, exogenous Fbxo7 expression was introduced into murine haematopoietic stem and progenitor cells (HSPCs) [93]. Haematopoietic progenitors were tested because of the selectivity of Fbxo7 for Cdk6, and because of the critical roles for Cdk6 in haematopoiesis: Cdk6 KO mice have thymic and splenic hypoplasia and reduced numbers of erythroid cells [94,95]. In this setting, increased Fbxo7 expression reduced both colony formation and proliferation of WT HSPCs along the granulocyte/macrophage lineages. However, in p53 null HSPCs, Fbxo7 expression enhanced proliferation in a growth factor-dependent manner and was also able to induce the formation of T-cell lymphomas when these cells were used to reconstitute irradiated mice [93]. Although this study did not test for Cdk6 dependence of the transformation, it nonetheless suggested that Fbxo7 has oncogenic capacity, which is held in check by p53.

Surprisingly, Fbxo7 has also been found to bind directly and to stabilize the levels of a second cell cycle regulator that acts at the G1/S transition, the Cdk inhibitor, p27. Cip/Kip inhibitors (p21, p27 and p57) usually function as inhibitors of Cdns, but they can operate as assembly and nuclear import factors for Cdk4 and 6. These competing functions of p27, inhibitor versus assembly factor, were originally postulated to be dependent on the stoichiometry of the Cip/Kip proteins relative to cyclin D/Cdk4/6 complexes [96]. However, more recent data would suggest that tyrosine phosphorylation of p27 converts it from a ‘bound inhibitor’ into a ‘bound non-inhibitory’ assembly factor [97,98]. The ability of Fbxo7 to act as a scaffold for the assembly of cyclin D/Cdk6/p27 complexes raises the possibility that it may facilitate p27 phosphorylation. It was an interaction with p27 that was thought to prevail and ultimately drive the phenotypic effects of Fbxo7 expression in a different haematopoietic cell type. In a separate study, it was shown that reducing Fbxo7 expression increased the proliferation rate in B cells by shortening the duration of the G1 phase of the cell cycle [99]. In this cell type, decreased Fbxo7 appeared to have no effect on the assembly or activity of cyclin D/Cdk6 complexes. Instead, a reduction in p27 levels was observed, along with enhanced Cdk2 activity. This study also demonstrated the ability of Fbxo7 to influence differentiation as well as cell cycle, two processes that are thought to be closely coupled, but separable in lymphocytes [100–104]. Expressing Fbxo7 in Ba/F3 cells caused an apparent ‘de-differentiation’, as evidenced by a reversal in the expression of cell surface antigens from a more mature expression state to a less mature one. This effect was separable from the ability of Fbxo7 to regulate the cell cycle as over-expression of p27 alone, while altering cell cycle length, did not affect surface marker expression [99].

Together these studies illustrate how the activities of Fbxo7 are highly context-dependent: Fbxo7 can promote cell cycle entry by driving Cdk6 assembly or inhibit cell cycle progression by stabilizing p27. We speculate that this will be a consequence of the cell cycle regulatory circuitry in individual cell types or its stage of differentiation. As the outcome of Fbxo7 activity cannot be easily predicted by the mere abundance of its targets, we suggest that additional parameters, perhaps in the form of post-translational modifications of p27, Cdk6, Fbxo7 itself or other unknown factors, dictate the outcome of its participation at the G1/S boundary.
8. Fbxo7 as a regulator of proteasome activity

As with all FBPs, the link between Fbxo7 and the UPS could theoretically be limited to its ability to ubiquitinate proteins destined for proteasomal degradation. However, the presence of a Ubl domain in isoform 1 of Fbxo7, a motif commonly found in regulators of the proteasome, and its dimerization with PI31, a known proteasome regulator, suggest that Fbxo7 may itself act as a regulator of the proteasome (figure 3d). Nothing has been reported yet on the Ubl of Fbxo7 with regard to proteasome regulation; however, Fbxo7 binds with high affinity to PI31 [71], which was first characterized biochemically as a simple proteasome inhibitor [105]. PI31 binds the α-subunits of the 20S barrel via a conserved C-terminal HbYX motif, blocking access of substrates to the catalytic channel in vitro [72,106]. However, in intact cells, PI31 apparently does not inhibit proteasome activity but rather regulates maturation of the immunoproteasome, an inducible version of the proteasome with altered and enhanced proteolytic activity [73]. To date, the connection, if any, between PI31 and Fbxo7 in regulating mammalian proteasomal activity has not been published. This may be because in cultured cells, the localization of the two proteins is largely distinct. PI31 has been shown to localize almost entirely within the endoplasmic reticulum, while Fbxo7 is present throughout the cell, shuttling between the nucleus and cytoplasm in a cell cycle-dependent fashion [71,73,107]. At present, it is unclear what proportions of Fbxo7 and PI31 exist in heterodimeric complexes or if this changes in different cell types or culture conditions.

The clearest evidence for a relationship between PI31 and a partial Fbxo7 orthologue, Nutcracker, in the regulation of proteasomes comes from studies in Drosophila [52]. The effects of their loss are seen during ‘individualization’, the final stage of spermatogenesis, which is a process that uses components of the apoptotic system to purge organelles and excess cytoplasmic volume to produce mature sperm [108,109]. Bader et al. [52] found that DmPI31 stability was regulated by Nutcracker, and like their mammalian counterparts, the two proteins interact via their FP domains. This interaction inhibited DmPI31 cleavage, promoting proteasome activity and caspase activation. Intriguingly, the Nutcracker F-box domain was essential for DmPI31 stabilization, even though it did not mediate their interaction and DmPI31 was not found to be a substrate for Nutcracker-dependent ubiquitination.

Nutcracker may also have an additional role to play in maintaining the delicate balance of caspase activity that is required during individualization. In a further parallel with mammalian Fbxo7 biology, Nutcracker also interacts with dBruce, a known regulator of spermatogenesis and a member of the IAP family of apoptosis inhibitors to which the Fbxo7 substrate cIAP1 belongs [108]. dBruce is a giant protein (approx. 500 kDa), with two principal anti-apoptotic activities: its N-terminal BIR domain enables it to function as a caspase inhibitor and its C-terminal UBC domain provides E2 ubiquitin conjugation activity, which has been shown to promote ubiquitination of the pro-apoptotic factor, Reaper [109,110]. Currently, the functional consequences of the Nutcracker: dBruce interaction are not clear. dBruce may indeed be a substrate of SCF-Nutcracker, but on the other hand it may simply act as an E2 enzyme for the complex in this setting, interacting directly with Nutcracker during ubiquitin transfer. Alternatively, Nutcracker could instead use its interactions with DmPI31 and dBruce, positive and negative regulators of caspases, respectively, to fine-tune their activity during spermatogenesis.

Most recently, Cho-Park & Steller [111] have shown that DmPI31 also controls the constitutive proteasome by regulating the attachment of the 19S regulatory particle to the 20S core. They showed that PI31 binding activity for the proteasome is ‘switchable’ and is controlled by ADP-ribosylation, promoting assembly of active 26S proteasomes. It has been postulated that this mechanism might tie proteasome activity to cellular metabolism as NAD⁺ is used for ADP-ribosylation of PI31 [111,112]. As a strong binding partner for DmPI31, it is possible that PI31 might impact on this aspect of PI31 regulation.

In Drosophila, dramatic phenotypes for DmPI31 and nutcracker loss were reported only in the testes. The requirement for PI31 and Fbxo7 in mammalian systems may also be tissue specific, necessitated in cells that stringently require high levels of proteasome activity. As mutations in FBXO7 have now been linked with PD, a disease in which UPS dysfunction and protein aggregation are potential contributors to its aetiology, it is tempting to speculate that Fbxo7 regulation of proteasome activity might also play a part in this disease. It is possible that in PD, as misfolded proteins accumulate and UPS stress mounts, the demand to ramp up proteasomal activity cannot be met by cells that have substandard Fbxo7 activity. This would hint at an underlying lack of fitness in the UPS. An alternative hypothesis is that the dimerization of PI31 with Fbxo7 might prevent or alter its SCF-dependent functions or its other atypical roles; thus PI31 might act as an inhibitor or refiner of Fbxo7-dependent substrate ubiquitination or its cell cycle regulatory roles.

9. Fbxo7 mutations cause Parkinson’s disease

The identification of mutations within FBXO7 in patients presenting with an early-onset form of PD opened up new questions about the role of Fbxo7 in the preservation of neuronal function (75,113,114). Whole-genome SNP arrays were instrumental in the discovery of the first disease-associated variant of the FBXO7 gene, revealing a homozygous mutation (R378Q) in an Iranian family [114]. This was quickly followed by the identification of other mutations, including a homozygous truncating mutation (R498X) in an Italian family [107]. In addition, as the R498X mutation removes 24 amino acids from the substrate-binding domain, these mutants hint that loss of Fbxo7’s SCF-dependent E3 ligase activity will be an important aspect in the pathogenesis of the disease.
As a bona fide PD-associated gene, \textit{FBXO7} has been designated ‘\textit{PARK15}’ and joins a small family of ‘\textit{PARK}’ genes. These genes all have confirmed genetic association with PD and are classified as autosomal dominant or recessive. Dominant mutation of a single copy of \textit{PARK1}, which encodes \textit{\alpha}-synuclein, can produce a gain-of-function, whereby the protein becomes prone to aggregation. \textit{\alpha}-synuclein is the main constituent of Lewy bodies, the intracellular proteinaceous plaques observed in the brains of idiopathic PD patients at autopsy. Lewy bodies are thought to develop from aggregated, ubiquitinated proteins, which accumulate at the microtubule-organizing centre (MTOC) of the cell in structures known as aggresomes [116,117]. Whether these deposits are part of a pathological process or a protective means to sequester cytotoxic oligomers of misfolded proteins remains controversial. In any case, they represent a residual signature for the inefficient functioning of the proteasome and/or autophagy pathways in the neurons of patients [118–120]. One study has been published suggesting that \textit{FBXO7} may be involved in Lewy body formation [121]. Using immunohistochemistry, its expression was detected throughout ‘normal’ brain tissue, but was surprisingly more abundant in the neocortex, putamen and cerebellum than in the substantia nigra. \textit{FBXO7} was also found in \textit{\alpha}-synuclein-positive Lewy bodies in idiopathic brain tissue [121]. This study lacked experiments that addressed the mechanism of \textit{FBXO7} deposition in intracellular aggregates, so it is not known whether \textit{FBXO7} is actively involved in the aggregation and disposal of misfolded proteins or whether \textit{FBXO7} is merely a passenger that is itself prone to aggregation in stressed neurons. Answers to these questions await future molecular studies and analysis of \textit{PARK15} patient samples.

10. \textit{FBXO7} as a regulator of mitophagy

\textit{FBXO7} is mutated in an autosomal recessive fashion, like several other \textit{PARK} genes including \textit{Parkin} (\textit{PARK2}) and \textit{PTEN-induced kinase 1} (\textit{PINK1}; \textit{PARK6}), so it is thought that their normal functions are reduced or lost as a result of mutation. \textit{Parkin} is a single-subunit RING-type E3 ubiquitin ligase that contributes to neuronal health by initiating the bulk-disposal of misfolded or aggregated proteins, and by regulating the mitochondrial quality control process, known as ‘mitophagy’ [122–125]. Mitophagy is a form of selective macro-autophagy that enables the cell to constantly survey its mitochondrial network, identifying and removing damaged, depolarized mitochondria. This process runs continually, working alongside mitochondrial biogenesis to meet the energy requirements of the cell while minimizing its oxidative burden. Maintaining this balance is likely to be of particular importance for the long-lived dopaminergic neurons of the substantia nigra, which are lost during the progression of PD. These highly specialized neurons have massive, unmyelinated axonal arborizations that place extraordinary demands on their mitochondria [126,127]. The involvement of \textit{Parkin} and \textit{PINK1} in the mitophagy pathway was uncovered in a series of genetic studies in \textit{Drosophila} showing that loss of either gene resulted in identical mitochondrial defects in flight muscles and sperm. Their epistatic relationship was discovered when over-expression of \textit{Parkin} was shown to rescue \textit{PINK1} null flies but not \textit{vice versa} [128]. \textit{PINK1} acts as the sensor of mitochondrial membrane potential (\textit{\Delta}\textit{m}), and under healthy conditions it is a highly labile protein, constitutively cleaved and shed from mitochondria before being degraded in the cytosol. However, when \textit{\Delta}\textit{m} is lost, \textit{PINK1} accumulates and is integrated into the outer mitochondrial membrane. \textit{PINK1} recruits and activates cytosolic \textit{Parkin} by phosphorylation [129,130], which directly or indirectly stimulates the Lys48 and Lys63 polyubiquitination of a number of proteins. This leads to the degradation of mitofusin (Mfn) 1/2, Drp1 and voltage-dependent anion channel 1 (VDAC1) [131–134], initiating the fragmentation and isolation of depolarized regions of the mitochondrial network. The coating of Lys63 polyubiquitin enables the LC3-adaptor protein, p62/SQSTM1, to bind these mitochondrial fragments, and traffic them to the nuclear periphery where they form aggresome-like structures and are eventually engulfed into autophagosomes.

Burchell \textit{et al.} [77] have shown that \textit{FBXO7} is also a component of this pathway (figure 3d), with \textit{FBXO7} interacting directly with \textit{Parkin} via its Ubl domain, helping to recruit it to mitochondria to initiate mitophagy. The T22M mutation in the Ubl of \textit{FBXO7} ablates its interaction with \textit{Parkin}, and thus prevents its recruitment to depolarized mitochondria. \textit{FBXO7} was also required for the efficient ubiquitination of Mfn1 and the recruitment of p62. Importantly, the expression of human \textit{FBXO7} rescues the phenotypes of \textit{parkin} loss in a \textit{Drosophila} model of neurodegeneration [77]. These data strongly suggest that the \textit{Parkin}–\textit{FBXO7} interaction is important for neuronal health.

In addition to interacting with \textit{Parkin}, \textit{FBXO7} also directly interacts with \textit{PINK1}, via a domain that encompasses and extends beyond the \textit{Parkin} binding site in the \textit{FBXO7} Ubl domain (figure 3c). \textit{In vitro} binding studies showed neither a cooperative nor a competitive interaction among the three proteins, suggesting that \textit{FBXO7} may act as a scaffold to facilitate \textit{PINK1}-mediated phosphorylation and activation of \textit{Parkin}. \textit{Parkin} is clearly downstream of \textit{PINK1} loss in the \textit{Drosophila} model. However, the expression of human \textit{FBXO7} did not rescue the mitochondrial defects of \textit{PINK1} null flies. \textit{FBXO7} is not required for \textit{PINK1} accumulation at depolarized mitochondria, but these results might be explained by the requirement for \textit{PINK1} activity for rescue by \textit{FBXO7} to take place.

At present, it is not known whether \textit{FBXO7} solely acts as a recruitment factor for \textit{Parkin} during mitophagy or if it has a more elaborate role to play. However, as \textit{FBXO7} can compensate for all of the mitochondrial defects resulting from \textit{parkin} loss in \textit{Drosophila}, this would indicate that all the critical ubiquitination targets/functions for \textit{Parkin} are fulfilled in the fly model. Do \textit{FBXO7} and \textit{Parkin} have overlapping substrate profiles in mammalian cells or does \textit{FBXO7} have its own PD-relevant substrates? Certainly, the other pathogenic mutations within \textit{FBXO7} suggest that its E3 activity is important for neuronal health even in the presence of \textit{Parkin}, so discovering their identity is of great interest. Whichever substrate(s) are discovered to be the key targets, the finding that three \textit{PARK} genes are involved in a common function to regulate mitochondrial homeostasis firmly focuses the PD field on the pathways regulating mitochondrial health for investigating the possibilities of targeted therapeutics and diagnostics.

11. Concluding remarks

With such a multifunctional protein that is relevant to human disease, there are a myriad of questions regarding the function, regulation and specificity of \textit{FBXO7}. For example, the shear
aggregation, and eventually overburdening of the UPS. Sub-optimal Fbxo7 may contribute to the poor coping of proteasomes to this increased demand, directly or through its interactions with PI31. Additionally, Fbxo7’s other atypical roles may also conceivably contribute to the development of PD, like in cell cycle regulation, where inappropriate cell cycle entry has been linked to the death of neurons, or in the NF-kB pathway, which has been linked to inflammation in the brain. Perhaps, it is due to its multifunctional character of PARK genes, like Fbxo7 and Parkin, that when they are defective, they disable numerous pathways, causing disease.

Fbxo7 is certainly an extraordinary case for the cell getting many disparate functions from a single protein and possibly for linking cellular pathways to each other. If the other 68 FBPs in the cell are so intricately engineered, there will be much to functionally dissect for the future. The challenge will be to understand the tremendous complexity and interplay of all the different types of activities of FBPs in the context of both development and disease, and tease out which aspects of their functions we can influence to benefit patients.

Funding statement. This work is funded by the BBSRC (BB/J007846/1).

References

1. Reed SI. 2003 Ratchets and clocks: the cell clock, ubiquitylation and protein turnover. Nat. Rev. Mol. Cell Biol. 4, 855 – 864. (doi:10.1038/nrm1246)
2. Ang XL, Harper JW. 2004 Intervening ubiquitin oscillators and control of cell cycle transitions. Sci. STKE 2004, pe31. (doi:10.1126/stke.2422004pe31)
3. Pickart CM. 2001 Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503 – 533. (doi:10.1146/annurev.biochem.70.1.503)
4. Pickart CM. 2004 Back to the future with ubiquitin. Cell 116, 181 – 190. (doi:10.1016/S0092-8674(03)01074-2)
5. Dye BT, Schulman BA. 2007 Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu. Rev. Biophys. Biomol. Struct. 36, 131 – 150. (doi:10.1146/annurev.biophys.36.040306.132820)
6. Skaar JR, Pagan JK, Pagano M. 2013 Mechanisms and function of substrate recruitment by F-box proteins. Nat. Rev. Mol. Cell Biol. 14, 369 – 381. (doi:10.1038/nrm3582)
7. Komander D. 2009 The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37, 937 – 953. (doi:10.1042/BST0370937)
8. Deshaies RJ, Joazeiro CA. 2009 RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399 – 414. (doi:10.1146/annurev.biochem.78.101807.093809)
9. Chen C, Seth AK, Aglin AE. 2006 Genetic and expression aberrations of E3 ubiquitin ligases in human breast cancer. Mol. Cancer Res. 4, 695 – 707. (doi:10.1158/1541-7786.MCR-06-0182)
10. Petroski MD, Deshaies RJ. 2005 Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9 – 20. (doi:10.1038/nrm1547)
11. Cardozo T, Pagano M. 2004 The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5, 739 – 751. (doi:10.1038/nrm1471)
12. Schulman BA et al. 2000 Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408, 381 – 386. (doi:10.1038/35042620)
13. Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ. 1996 SKP1 links cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263 – 274. (doi:10.1016/S0092-8674(00)80099-7)
14. Cenciarelli C, Chiaru DS, Guardavaccaro D, Parks W, Vidal M, Pagano M. 1999 Identification of a family of human F-box proteins. Curr. Biol. 9, 1177 – 1179. (doi:10.1016/S0960-9822(00)80020-2)
15. Winston JT, Koepf DM, Zhu C, Elledge SJ, Harper JW. 1999 A family of mammalian F-box proteins. Curr. Biol. 9, 1180 – 1182. (doi:10.1016/S0960-9822(00)80021-4)
16. Skaar JR, D’Angiolillo V, Pagan JK, Pagano M. 2009 SnapShot: F box proteins II. Cell 137, 1358.e1 – 1358.e2. (doi:10.1016/j.cell.2009.05.040)
17. Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW. 2004 Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18, 2573 – 2580. (doi:10.1101/gad.1255304)
18. Xu C, Min J. 2011 Structure and function of WD40 domain proteins. Protein Cell 2, 202 – 214. (doi:10.1007/s13238-011-1200-8)
19. Kishi B, Kajava AV. 2001 The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725 – 732. (doi:10.1016/S0959-440X(01)00266-4)
20. Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, Herskho A. 2001 The cell-cycle regulatory protein Gsk3β is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat. Cell Biol. 3, 321 – 324. (doi:10.1038/35060126)
21. Tedesco D, Lukas J, Reed SI. 2002 The p62-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev. 16, 2946 – 2957. (doi:10.1101/gad.1011202)
22. Galan JM, Peter M. 1999 Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc. Natl Acad. Sci. USA 96, 9124 – 9129. (doi:10.1073/pnas.96.16.9124)
23. Zhou P, Howley PM. 1998 Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol. Cell 2, 571 – 580. (doi:10.1016/S1097-2765(00)80156-2)
24. Zhao W, Pan J, Wang X, Wu Y, Baumann WA, Cardozo CP. 2008 Expression of the muscle atrophy factor muscle atrophy F-box is suppressed by testosterone. Endocrinology 149, 5449 – 5460. (doi:10.1210/en.2008-0664)
25. Santra MK, Wajapeeyee N, Green MR. 2009 F-box protein FBX031 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature 459, 722 – 725. (doi:10.1038/nature08011)
26. Li Y, Gazdou S, Pan QD, Fuchs SY. 2004 Stability of homologue of Slimb F-box protein is regulated by availability of its substrate. J. Biol. Chem. 279, 11074 – 11080. (doi:10.1074/jbc.M312300200)
27. Pierce NW et al. 2013 Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 153, 206 – 215. (doi:10.1016/j.cell.2013.02.024)
28. Wu S, Zhu W, Nihan T, Toth JJ, Petroski MD, Wolf DA. 2013 CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire. Nat. Commun. 4, 1642. (doi:10.1038/ncomms12636)
40. Chen BB, Orlicky S, Chen Q, Gertler FB, Mendeshall MD, Sichiari F, Pavson T, Tyers M. 2001 Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521. (doi:10.1038/35107009)

41. Chau V, Tobias JW, Bachmair A, Marriot D, Ecker DJ, Marriott D, Ecker DJ. 2009 A multiubiquitin chain is confined to specific lysines in a targeted short-lived protein. Science 323, 1576 – 1583. (doi:10.1126/science.2538923)

42. Kirkin V, McEvans DG, Novak J, Dikic I. 2009 A role for ubiquitin in selective autophagy. Mol. Cell 34, 259 – 269. (doi:10.1016/j.molcel.2009.04.026)

43. Al-Hakim A, Escribano-Diaz C, Landry MC, O’Donnell EC. 2008 Defining the role of Emi1 in the DNA replication-segregation cycle. Chromosoma 117, 333 – 338. (doi:10.1007/s00412-008-0152-x)

44. Di Fiore B, Pines J. 2008 Defining the role of Emi1 in the DNA replication-segregation cycle. J. Cell Biol. 145, 933 – 950. (doi:10.1083/jcb.200715.5933)

45. Miller JJ, Summers MK, Hansen DV, Nachury MV, Lehman NL, Lokoite A, Jackson PK. 2006 Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes Dev. 20, 2410 – 2420. (doi:10.1101/gad.1454006)

46. Smaladone S, Laub F, Eise C, Dragomir C, Ramirez F. 2004 Identification of MoxA, a novel F-box protein that modulates Kn-up-like transcription factor 7 activity. Mol. Cell Biol. 24, 1058 – 1069. (doi:10.1128/MCB.24.10.1058-1069.2004)

47. Laub F, Alblade R, Friedel JR V, Olnshitz S, Yoshida T, Ramirez F. 2001 Developmental expression of mouse Kn-up-like transcription factor KL7 suggests a potential role in neurogenesis. Dev. Biol. 233, 305 – 318. (doi:10.1006/dbio.2001.0243)

48. Kim J, Kim J, Lee SH, Kim DH, Kang HY, Bae SH, Pan ZQ, Seo YS. 2002 The novel human DNA helicase hFHFI is an F-box protein. J. Biol. Chem. 277, 24 530 – 24 537. (doi:10.1074/jbc.M201612200)

49. Fugger K, Mistrik M, Danielsen JR, Dinant C, Falck J, Bartek J, Lukas J, Mailand N. 2009 Human Fbh1 helicase contributes to genome maintenance via pro- and anti-reombinase activities. J. Cell Biol. 186, 655 – 663. (doi:10.1083/jcb.200812138)

50. Kim JH, Kim J, Kim DH, Ryu GH, Bae SH, Seo YS. 2004 SCFhFHFI can act as helicase and E3 ubiquitin ligase. Nucleic Acids Res. 32, 2287 – 2297. (doi:10.1093/nar/gkh534)

51. Laman H, Funes JM, Ye H, Henderson S, Galanines-Garcia L, Hara E, Knowles P, McDonald N, Boshoff C. 2005 Transforming activity of Fbox7 is mediated specifically through regulation of cyclin D/cdk6. EMBO J. 24, 3104 – 3116. (doi:10.1002/emboj.7600775)

52. Bader M, Benjamin S, Wapinski OL, Smith DM, Goldberg AL, Steller H. 2011 A conserved F-box regulatory complex controls proteasome activity in Drosophila. Cell 145, 371 – 382. (doi:10.1016/j.cell.2011.03.021)

53. Reimann JD, Freed E, Kramer ER, Peters JM, Jackson PK. 2001 Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase-promoting complex. J. Cell Biol. 150, 655 – 665. (doi:10.1083/jcb.200103061-0)

54. Tung JJ, Hansen DV, Ban KH, Loktev AV, Summers MK. 2005 A role for the anaphase-promoting complex inhibitor Emi2/Kepl1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs. Proc. Natl Acad. Sci. USA 102, 4318 – 4323. (doi:10.1073/pnas.0511080102)

55. Kong M, Barnes EA, Ollendorff V, Donohue DJ. 2000 Cyclin F regulates the nuclear localization of cyclin B1 through a cyclin-cyclin interaction. EMBO J. 19, 1378 – 1388. (doi:10.1093/emboj/19.6.1378)

56. Russel JD, Granchell AS, Sorger PK. 1999 The unstable F-box protein p58-Ctfl3 forms the structural core of the CBF3 kinetochore complex. J. Cell Biol. 145, 933 – 950. (doi:10.1083/jcb.200715.5933)

57. Frescas D, Guardavaccaro D, Bassermann F, Koyama-Narui R, Pagano M. 2007 HDJ1/MBF110 is a nuclear protein that represses transcription of ribosomal RNA genes. Nature 450, 309 – 313. (doi:10.1038/nature06255)

58. Lu T, Jiang MW, Singh AD, Kandel ES, Yang M, Zhang Y, Gudkov AV, Stark GR. 2009 Validation-based insertional mutagenesis identifies lysine demethylase FBXL11 as a negative regulator of NkappaB. Proc. Natl Acad. Sci. USA 106, 16 339 – 16 344. (doi:10.1073/pnas.0908560106)

59. Aso T, Haque D, Barstead RJ, Conway WC, Conway JW. 1996 The inducible elongin A elongation activation domain: structure, function and interaction with the elongin BC complex. EMBO J. 15, 5557 – 5566.

60. Yasukawa T, Kamura T, Kitajima S, Conway WC, Conway JW, Aso T. 2008 Mammalian elongin A complex mediates DNA damage-induced ubiquitination and degradation of Rb1. EMBO J. 27, 3256 – 3266. (doi:10.1038/emboj.2008.249)

61. Clifford R, Lee MH, Nayak S, Ohmachi M, Giorgini F, Schied T. 2000 FOG-2, a novel F-box containing protein, associates with the GLD-1 RNA binding protein and directs male sex determination in the C. elegans hermaphrodite germline. Development 127, 5265 – 5276.

62. Liu Y, Nakatsuka K, Koteru M, Kanada A, Nishimura T, Kishi T, Mlima S, Kamura T. 2011 Non-SCF-type F-box protein Rpy1/Ymr258c interacts with a Rabs-like GTPase Ypt52 and inhibits Ypt52 function. Mol. Cell. Biol. 22, 1575 – 1584. (doi:10.1128/MCB.21.9.1575-1584.2001)

63. Galan JM, Wiederkehr A, Seol JH, Huguenauer-Tsapis R, Deshaies RJ, Riezman H, Peter M. 2001 Skp1p and the F-box protein Rskp1 form a non-SCF complex involved in recycling of the SNARE Snc1p in yeast. Mol. Cell. Biol. 21, 3105 – 3117. (doi:10.1128/MCB.21.9.3105-3117.2001)

64. Jourdain L, Spleeweyer N, Thompson J, Dhut S, Yates JR, Toda T. 2009 Identification of a conserved F-box protein 6 interactor essential for endocytosis and cytokinesis in fission yeast. Biochem. J. 420, 169 – 177. (doi:10.1042/B20081659)

65. Tafofore L, Le BLaster S, Bamps S, Devez M, Vandenhaute J, Hermand D. 2006 Repression of ergosterol level during oxidative stress by fission yeast F-box protein Pof14 independently of SCF. Mol. Cell. Biol. 26, 255 – 265. (doi:10.1128/MCB.26.1.255-265.2006)

66. Kondo Okamoto N, Ohkuni K, Kitagawa K, McCaffrey JM, Shaw JM, Okamoto K. 2006 The novel F-box protein Mlb1p regulates mitochondrial connectivity and exhibits asymmetric localization in yeast. Mol. Biol. Cell 17, 3756 – 3767. (doi:10.1091/mbc.E06-02-0145)

67. Durr M, Escobar-Henriques M, Merz S, Geimer S, Langer T, Westermann B. 2006 Nonredundant roles of mitochondrial-associated F-box proteins Mlb1p and Mdm30 in maintenance of mitochondrial...
morphology in yeast. Mol. Biol. Cell. 17, 3745 – 3755. (doi:10.1091/mbc.E06-01-0053)

68. Duyvesteyn RG, van Wijk R, Boer Y, Rep M, Cornelissen BJ, Haring MA. 2005 Fp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Mol. Microbiol. 57, 1051 – 1063. (doi:10.1111/j.1365-2958.2005.04753.x)

69. Jonkers W, Rodrigues CD, Rep M. 2009 Impaired colonization and infection of tomato roots by the Deltafp1 mutant of Fusarium oxysporum correlated with reduced CWDE gene expression. Mol. Plant Microbe Interact. 22, 507 – 518. (doi:10.1094/MPMI-22-5.0507)

70. Hsu JM, Lee YC, Chuang CY. 2004 Fbx7 functions in the SCF complex regulating Cdk1-cyclin B-phosphorylated hepatoma up-regulated protein (HURP) proteolysis by a proline-rich region. J. Biol. Chem. 279, 32 592 – 32 602. (doi:10.1074/jbc.M404950200)

71. Kirk R, Laman H, Knowles PP, Murray-Rust J, Lomonosov M, Meziane el K, McDonald NQ. 2008 Structure of a conserved dimerization domain within the F-box protein Fbox7 and the PI31 proteasome inhibitor. J. Biol. Chem. 283, 22 325 – 22 335. (doi:10.1074/jbc.M709900200)

72. Zais DM, Standera S, Holzhueter H, Kloetzel P, Sjuts AJ. 1999 The proteosome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett. 457, 333 – 338. (doi:10.1016/S0014-5793(99)01072-8)

73. Zais DM, Standera S, Kloetzel PM, Sjuts AJ. 2002 PI31 is a modulator of proteosome formation and antigen processing. Proc. Natl Acad. Sci. USA 99, 14 344 – 14 349. (doi:10.1073/pnas.212257299)

74. Flucke P et al. 2013 Ensembl 2013. Nucleic Acids Res. 41, D48 – D55. (doi:10.1093/nar/gks1236)

75. Di Fonzo A et al. 2009 FBx07 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72, 240 – 245. (doi:10.1212/01.wnl.0000338144.10967.2b)

76. Chang YF, Cheng CM, Chang LK, Jong YJ, Yuo CY. 2011 HURP regulates chromosome congresion by modulating kinesin Kif18A function. Curr. Biol. 21, 1584 – 1591. (doi:10.1016/j.cub.2011.08.024)

77. Tsou AP et al. 2003 Identification of a novel cell cycle regulated gene, HURP, overexpressed in human hepatocellular carcinoma. Oncogene 22, 298 – 307. (doi:10.1038/sj.onc.1206129)

78. Kuo TC, Chang PY, Huang SF, Chou CK, Chao CC. 2012 Knockdown of HURP inhibits the proliferation of hepatocellular carcinoma cells via downregulation of garkinyin and accumulation of p53. Biochem. Pharmacol. 83, 758 – 768. (doi:10.1016/j.bjcp.2011.12.034)

79. Hu S, Yang X. 2003 Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J. Biol. Chem. 278, 10 055 – 10 060. (doi:10.1074/jbc.M107197200)

80. Mahoney DI et al. 2008 Both clA1 and clA2 regulate TNFα-mediated NF-κB activation. Proc. Natl Acad. Sci. USA 105, 11 778 – 11 783. (doi:10.1073/pnas.0711122105)

81. Bertrand MJ et al. 2008 clA1 and clA2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689 – 700. (doi:10.1016/j.molcel.2008.05.014)

82. Flood PM, Qian L, Peterson LJ, Zhang F, Shi JS, Gao HM, Hong JS. 2011 Transcriptional Factor NF-κB as a Target for Therapy in Parkinson’s Disease. Parkinsons Dis. 2011, 216296. (doi:10.1155/2011/216296)

83. Lee JE, Sveredoski MJ, Graham RL, Kolawu NJ, Smith GJ, Hess S, Deshaies RJ. 2011 The steady-state repertoire of human SCF ubiquitin ligase complexes does not require ongoing Med8 degradation. Mol. Cell Proteomics 10, M110 006460. (doi:10.1074/mcp.M110.006460)

84. Frescas D, Pagano M. 2008 Deregulated proteolysis by the F-box proteins SKP2 and SCF regulates TNFα-mediated NF-κB activation. Cell Cycle 7, 1751 – 1762. (doi:10.4161/cc.7.7.5637)

85. Meziane el K, Randle SJ, Nelson DE, Lomonosov M, Laman H. 2011 Knockdown of Fbox7 reveals its regulatory role in proliferation and differentiation of hematopoietic precursor cells. J. Cell Sci. 124, 2175 – 2186. (doi:10.1242/jcs.080465)

86. Carroll M, Zhu Y, D’Andrea AD. 1995 Erythroprotein-induced cellular differentiation requires prolongation of the G1 phase of the cell cycle. Proc. Natl Acad. Sci. USA 92, 2869 – 2873. (doi:10.1073/pnas.92.7.2869)

87. Johnson P, Chung S, Benchimol S. 1993 Growth suppression of Friend virus-transformed erythroblasts in cytokine-deficient cultures as p53 protein is accompanied by hemoglobin production and is sensitive to erythropoietin. Mol. Cell. Biol. 13, 1456 – 1463.

88. Kato JY, Sherr CJ. 1993 Inhibition of granulocyte differentiation by G1 cyclins D2 and D3 but not D1. Proc. Natl Acad. Sci. USA 90, 11 513 – 11 517. (doi:10.1073/pnas.90.24.11513)

89. Lea NC, Orr SJ, Stoeber K, Williams GH, Lam EW, Ibrahim MA, Mufti GJ, Thomas NS. 2003 Commitment point during G0–G1 that controls entry into the cell cycle. Mol. Cell. Biol. 23, 2351 – 2361. (doi:10.1124/mcb.23.7.2351-2361.2003)

90. Rush JS, Hasbold J, Hodgkin PD. 2002 Cross-linking surface Ig delays CD40 ligand- and IL-4-induced B cell Ig class switching and reveals evidence for independent regulation of B cell proliferation and differentiation. J. Immunol. 168, 2676 – 2682.

91. Chi-Ping M, Slaughter CA, DeMartino GN. 1992 Purification and characterization of a protein inhibitor of the 20S proteasome (macropain). Biochim. Biophys. Acta 1119, 303 – 311. (doi:10.1016/0167-4832(92)90218-3)

92. McCutchen-Maloney SL, Matsuda K, Shimbara N, Innis BD, Tanaka K, Slaughter CA, DeMartino GN. 2000 cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J. Biol. Chem. 275, 18 557 – 18 565. (doi:10.1074/jbc.M001697200)

93. Nelson DE, Laman H. 2011 A Competitive binding mechanism between Skp1 and exportin 1 (CRM1) controls the localization of a subset of F-box proteins. J. Biol. Chem. 286, 19 804 – 19 815. (doi:10.1074/jbc.M111220079)
108. Bader M, Anama E, Steller H. 2010 A novel F-box protein is required for caspase activation during cellular remodeling in Drosophila. Development 137, 1679–1688. (doi:10.1242/dev.050088)

109. Arama E, Agapite J, Steller H. 2003 Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev. Cell 4, 687–697. (doi:10.1016/S1534-5807(03)00120-5)

110. Domingues C, Ryoo HD. 2012 Drosophila BRUCE inhibits apoptosis through non-lysine ubiquitination of the IAP-antagonist REAPER. Cell Death Differ. 19, 470–477. (doi:10.1038/cdd.2011.116)

111. Cho-Park PF, Steller H. 2013 Proteasome regulation of mitochondrial stepping stones. Trends Cell Biol. 23, 388–396. (doi:10.1016/j.tcb.2013.03.040)

112. Gibson BA, Kraus WL. 2012 New insights into the mechanism of mitofusin-mediated mitochondrial fusion. J. Cell Biol. 198, 255–265. (doi:10.1083/jcb.201007013)

113. Pissadaki EK, Bolam JP. 2013 The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front. Comput. Neurosci. 7, 13. (doi:10.3389/fncom.2013.00013)

114. Feng Z, Sheng Z, Li S. 2013 Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J. Neurochem. 125, 572–582. (doi:10.1111/j.1471-4159.2013.07944.x)

115. Shiga T, Kamei Y. 2013 Mitochondrial dysfunction in Parkinson’s disease. Biochem. Biophys. Res. Commun. 437, 733–739. (doi:10.1016/j.bbrc.2013.10.107)

116. Garcia-Mata R, Gao YS, Sztul E. 2002 Hassles with taking out the garbage: aggravating aggresomes. Traffic 3, 388–396. (doi:10.1111/j.1600-0854.2002.00602.x)

117. Garcia-Mata R, Gao YS, Sztul E. 2002 Hassles with taking out the garbage: aggravating aggresomes. Traffic 3, 388–396. (doi:10.1111/j.1600-0854.2002.00602.x)

118. Conway KA, Lee SJ, Roget JC, Ding TT, Williamson RE, Lambry Jr PT. 2000 Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA 97, 571–576. (doi:10.1073/pnas.97.2.571)

119. Kitada T, Shina T, Ueda T, Kimura Y, Ohnishi T, et al. 2001 A novel mutation in the Parkin gene causes autosomal recessive juvenile帕金森病. Nat. Genet. 28, 153–157. (doi:10.1038/ng732)

120. Funai M, Fujita M, Sugimoto H, Ohno H, Ohtani Y, et al. 2002 A novel mutation in the Parkin gene causes autosomal recessive juvenile帕金森病. Nat. Genet. 28, 153–157. (doi:10.1038/ng732)

121. Zhao T, Severijnen LA, van der Weiden M, Zheng PP, Gibbons PC, et al. 2008 Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by stepwise mapping. Am. J. Hum. Genet. 82, 1375–1384. (doi:10.1016/j.ajhg.2008.05.005)

122. Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, et al. 2008 Parkinsonian-pyramidal syndrome caused by homozygous mutation in a family with marked phenotype variability. Neurogenetics 9, 33–39. (doi:10.1007/s10977-007-9039-4)

123. Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, et al. 2008 Parkinsonian-pyramidal syndrome caused by homozygous mutation in a family with marked phenotype variability. Neurogenetics 9, 33–39. (doi:10.1007/s10977-007-9039-4)

124. Schneider L, Zhang J. 2010 Lysosomal function in animal models of Parkinson’s disease. Cell Death Differ. 17, 1371–1380. (doi:10.1038/cdd.2011.116)

125. Schneider L, Zhang J. 2010 Lysosomal function in animal models of Parkinson’s disease. Cell Death Differ. 17, 1371–1380. (doi:10.1038/cdd.2011.116)

126. Matsuda W, Furuta T, Kamura KC, Hikoni H, Fujiyama F, Asai R, Kaneko T. 2009 Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453. (doi:10.1523/JNEUROSCI.4029-08.2009)

127. Pissadaki EK, Bolam JP. 2013 The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front. Comput. Neurosci. 7, 13. (doi:10.3389/fncom.2013.00013)

128. Park J et al. 2006 Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161. (doi:10.1038/nature04788)

129. Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck L. 2011 The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front. Comput. Neurosci. 7, 13. (doi:10.3389/fncom.2013.00013)

130. Sha D, Chan LS, Li L. 2010 Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum. Mol. Genet. 19, 352–363. (doi:10.1093/hmg/ddp501)

131. Glauser L, Sonny S, Stafa K, Moore DJ. 2011 Parkinson promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J. Neurochem. 118, 636–645. (doi:10.1111/j.1471-4159.2011.07318.x)

132. Ziviani E, Tao RN, Whitworth AJ. 2010 Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinites mitofusin. Proc. Natl. Acad. Sci. USA 107, 5018–5023. (doi:10.1073/pnas.0913485107)

133. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbovski M, Youle RJ. 2010 Protease and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367–1380. (doi:10.1083/jcb.201007013)

134. Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck L. 2011 The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS ONE 6, e100054. (doi:10.1371/journal.pone.0010054)