Human Immunodeficiency Virus Type 1 Fitness Is a Determining Factor in Viral Rebound and Set Point in Chronic Infection

Alexandra Trkola,1* Herbert Kuster,1 Christine Leemann,1 Claudia Ruprecht,1† Beda Joos,1 Amalio Telenti,2 Bernhard Hirschel,3 Rainer Weber,1 Sebastian Bonhoeffer,4 Huldrych F. Günthard,1 and the Swiss HIV Cohort Study‡

Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich,1 Division of Infectious Diseases, University Hospital Lausanne, 1011 Lausanne,2 Division of Infectious Diseases, University Hospital Geneva, 1211 Geneva,3 and Institute for Ecology, ETH Zentrum Zurich, 8092 Zurich,4 Switzerland

Received 7 July 2003/Accepted 3 September 2003

Human immunodeficiency virus type 1 (HIV-1) isolates from 20 chronically infected patients who participated in a structured treatment interruption (STI) trial were studied to determine whether viral fitness influences reestablishment of viremia. Viruses derived from individuals who spontaneously controlled viremia had significantly lower in vitro replication capacities than viruses derived from individuals that did not control viremia after interruption of antiretroviral therapy (ART), and replication capacities correlated with pre-ART and post-STI viral set points. Of note, no clinically relevant improvement of viral loads upon STI occurred. Viral isolates from controlling and noncontrolling patients were indistinguishable in terms of coreceptor usage, genetic subtype, and sensitivity to neutralizing antibodies. In contrast, viruses from controlling patients exhibited increased sensitivity to inhibition by chemokines. Sensitivity to inhibition by RANTES correlated strongly with slower replication kinetics of the virus isolates, suggesting a marked dependency of these virus isolates on high coreceptor densities on the target cells. In summary, our data indicate that viral fitness is a driving factor in determining the magnitude of viral rebound and viral set point in chronic HIV-1 infection, and thus fitness should be considered as a parameter influencing the outcome of therapeutic intervention in chronic infection.

The level of human immunodeficiency virus type 1 (HIV-1) viremia that patients reach and maintain after the acute infection phase predicts disease progression (26). This steady-state level of plasma viral load (VL) is referred to as viral set point and can vary more than 1,000-fold between individuals (35). Viral set points are a consequence of the interplay of viral, immunological, and host genetic factors (8, 36), including maintenance and specificity of anti-HIV CD4 and CD8 T-cell responses (2), neutralizing antibodies (33), target cell availability (13), genetic polymorphisms of the viral coreceptors, and the HLA type (38).

Likewise, biological properties of HIV-1, namely, tropism, cytopathicity, and replication rate, are relevant parameters in AIDS pathogenesis. The switch in coreceptor usage from CCR5 to CXCR4, which occurs in approximately 50% of patients, is associated with more-vigorous viral replication and rapid disease progression (5, 6, 12, 20, 40). In recent years, investigations of viral features have shifted to evaluation of overall viral fitness (36). Viral fitness reflects the aptitude of a viral isolate to replicate in a given host system and is a consequence of the capacity of the virus to efficiently enter and infect target cells and to establish and spread the infection (8, 36).

The efficacy of this process is further influenced by the availability of target cells, adaptive and innate immune responses, genetic host factors, and antivirals. Estimation of viral fitness has gained particular interest in the investigation of viral strains with drug resistance mutations, since these mutations are frequently accompanied by a loss of replicative capacity (7, 14, 24, 36). The outcome of the Swiss-Spanish intermittent treatment trial (SSITT) with 133 chronically infected patients was previously reported (15, 29–31). No clinically relevant impact of structured treatment interruption (STI) on improvement of viremia control was found. A boost of cytotoxic T lymphocyte and T helper responses occurred in most patients but did not correlate with viremia control (15, 31). In total, 17% of the SSITT patients potently suppressed VLs to levels below 5,000 RNA copies/ml without treatment after completion of the trial. However, as observed in similar studies (18), these patients had significantly lower viral set points before the initial onset of antiretroviral therapy (ART). No further decrease in their VLs upon STI was found (15). This result indicates strongly that preexisting viral and immune properties determined the outcome of this STI trial. Here we investigate the impact of fitness and intrinsic biological properties of the patient viruses on the extent of viremia rebound and the manifestation of viral set point during STI in a subgroup of 20 patients participating in the SSITT.

MATERIALS AND METHODS

Patients. Twenty chronically infected patients (Table 1) participating in the SSITT (15) at the University Hospital Zurich, Zurich, Switzerland, were studied. Patients underwent four consecutive STI cycles (2 weeks off and 8 weeks on...
Patient	Age (yrs)	Gender	Characteristics before ART	Post-STI characteristics	ART	N° of RNA	No of CD4						
A	50	M	AZT, d4T, EFV	AZT, d4T, EFV	V	<24	F	<24	F	<24	F	<24	F
B	45	M	AZT, d4T, EFV	AZT, d4T, EFV	V	<24	F	<24	F	<24	F	<24	F
C	55	M	AZT, d4T, EFV	AZT, d4T, EFV	V	<24	F	<24	F	<24	F	<24	F
D	60	M	AZT, d4T, EFV	AZT, d4T, EFV	V	<24	F	<24	F	<24	F	<24	F
E	65	M	AZT, d4T, EFV	AZT, d4T, EFV	V	<24	F	<24	F	<24	F	<24	F
F	70	M	AZT, d4T, EFV	AZT, d4T, EFV	V	<24	F	<24	F	<24	F	<24	F
G	75	M	AZT, d4T, EFV	AZT, d4T, EFV	V	<24	F	<24	F	<24	F	<24	F

NOTE: No values determined; EFV, efavirenz; NVP, nevirapine; RTV, ritonavir; ddI, didanosine; d4T, stavudine; SQV, saquinavir.
treatment) followed by a fifth long treatment interruption (a minimum of 12 weeks off treatment if no adverse effects occurred). Patients had never experienced drug failure and had undetectable VLs (<50 RNA copies/ml) for ≥6 months. Detailed descriptions of the respective clinical trial and patient characteristics have been reported elsewhere (15, 30). Written informed consent was obtained from all patients according to the guidelines of the University Hospital Zurich.

Quantification of plasma VL. Plasma HIV RNA was quantified by using the Amplicor HIV-1 Monitor test, version 1.5 (Roche Diagnostics, Rotkreuz, Switzerland) with a detection limit of <50 copies/ml (30).

Genotypic analysis. Peripheral blood mononuclear cell (PBMC) DNA from participants was genotyped at CCR5 G-245A, CCR5 delta 32, RANTES G-303A, RANTES C-28G, macrophage inflammatory protein 1α (MIP-1α), T113C, and SDF-1 3' A genes by using TaqMan allelic discrimination techniques (Applied Biosystems). The contribution of the various alleles to HIV-1 susceptibility has been described elsewhere (41). Determination of HLA genotypes was performed as described previously (9).

Stimulated primary CD4+ T cells. Buffy coats obtained from three healthy blood donors were depleted of CD8+ T cells by using Rosette Set cocktail (StemCell Technologies Inc.), and PBMCs were isolated by Ficol-Hypaque centrifugation. Cell concentrations were adjusted to 4 × 10^6 ml in culture medium (RPMI 1640, 10% fetal calf serum, 100 U of interleukin-2/ml, gultamamine, and penicillin/streptomycin), and cell samples were divided into three parts and stimulated with either 5 μg of phytohemagglutinin/ml, 0.5 μg of phytohemagglutinin/ml, or anti-CD3 monoclonal antibody (MAb) OKT3. After 72 h, cells from all three stimulations were combined and used as the source of stimulated CD4+ T cells for infection and virus isolation experiments.

Autologous patient viruses. Autologous virus was isolated from patient PBMCs during the first interruption cycle (week 2 of the trial) and the beginning of the fifth interruption cycle (weeks 42 to 50) by coculturing patient CD4+ T cells with stimulated PBMCs (49). The 50% tissue culture infectious dose and coreceptor usage of the obtained virus stocks were determined as described previously (4, 43, 44).

In vitro replicative capacity. Virus inoculum (100% 10^6 tissue culture infectious doses in 50 μl) was added to 12 replicate wells of a 96-well culture plate containing 2 × 10^5 stimulated PBMCs in 150 μl of culture medium. Culture supernatant was assayed for p24 antigen on days 4, 6, 10, and 14 postinfection (p.i.) by using an in-house p24 antigen enzyme-linked immunosorbent assay as described previously (27, 46). As the virus inoculum was not washed out at any stage of the experiment, the residual input p24 concentration was measured and subtracted from all test results. Cultures were fed 100 μl of culture medium on days 6 to 8 postinfection.

Inhibition by chemokines. Inhibition of infection by chemokines was assessed on stimulated CD8-depleted PBMCs (45). The calculated inhibitory doses refer to the final concentrations of chemokines in the cultures on day 0. Virus production in the absence of chemokines was designated as 100%, and the ratios of p24 production in chemokine-containing cultures were calculated relative to this value. The chemokine concentrations (in nanograms per milliliter) causing 50, 70, and 90% reduction in p24 antigen production (50, 70, and 90% inhibitory doses) were determined by linear regression analysis. If the appropriate degree of inhibition was not achieved at the highest or lowest chemokine concentration, a value of more than or less than was recorded and these upper or lower limits were used for statistical analysis.

Neutralization assay. Neutralization activity was evaluated as described previously (4, 44). MAb 2F5 (28) and 2G12 (47) were gifts from H. Katinger, MAb IgG1b12 (3) was from D. Burton, and the CD4-immunoglobulin CD4-IgG 2 molecule was from P. Maddon (1). Briefly, virus inoculum was incubated with serial dilutions of antibodies for 1 h at 37°C. Then stimulated PBMCs were infected with aliquots of this preincubation mixture. Three days postinfection, cultures were washed three times and supplemented with fresh medium and fresh stimulated PBMCs. Cultures were incubated for 6 to 10 days and assessed for p24 antigen. Calculation of inhibitory doses was as described above.

Data analysis. For each patient, the following viral life history parameters were calculated:

(i) Pre-STI VL. The pretreatment VL corresponds to the last plasma HIV RNA value recorded before ART or, if two measurements within 6 months before initiation of ART were available, to the geometric mean of those levels.

(ii) Post-STI VL. The post-STI VL value reflects the viral set point, i.e., the plateau of viremia post-STI, and was determined as the geometric mean of plasma HIV RNA levels measured after week 40, when a steady state was reached (usually between weeks 46 and 64). Three patients (patients 102, 109, and 116) had plateau VLs calculated from the two or three time points just prior to the restart of therapy. For two patients (patients 107 and 130), the week 46 data point was part of a peak and was therefore omitted from the estimation of the plateau. For the 17 patients who remained off therapy for extended periods, an average of 9.06 data points (range, 6 to 12) was used to calculate the plateau VLs.

(iii) Control of viremia. Patients were classified into a controlling group and a noncontrolling group according to their abilities to control viremia in the absence of ART between weeks 40 and 76. Control of viremia was defined as maintenance of a VL of <5,000 RNA copies/ml for at least 8 weeks during this time period. The cutoff of 5,000 RNA copies/ml was set in the SSITI trial as a value above which patients had to reinitiate ART (15).

(iv) Improvement of viral set point. For differences between pre-ART VLs and post-STI VLs, positive values indicate decreases (improvement) in VLs and negative values indicate increases. A decrease in VL of 0.5 logs is considered to be a significant change.

(v) Cumulative VL. The total amount of virus produced during the individual cycles was estimated by calculating the area under the curve (AUC). The AUC between successive time points was calculated using the following formula:

\[AUC = \sum (\ln(VL_{wk2}) - \ln(VL_{wk1})) \]

where 1 and 2 indicate values at first and second time points and time T is measured in days after start of therapy. The total AUC is determined by adding the AUCs between successive time points. Since for some patients RNA levels at weeks 10, 20, 30, and 40 were not available, AUC values for all patients from these time points were derived from RNA levels at weeks 2, 9, 12, 19, 22, 29, 32, and 39 by extrapolation: e.g., VL at week 10 (VL_{wk10}) = VL_{wk9} × exp([-ln(VL_{wk9})/T] × T_{wk10} - T_{wk9})). When a given VL was undetectable, the limit of detection was used as the anchor for the extrapolation.

(vi) In vitro replication capacity (slope between values from days 0 and 6). Slopes were calculated by performing linear regression analysis using the natural logarithm of p24 antigen values obtained on days 0, 4, and 6 p.i.

Statistical analyses. Statistical analyses were performed using GraphPad Prism version 4.0 (GraphPad Software Inc., San Diego, Calif.). Patient groups were compared by using nonparametric (Mann-Whitney) tests unless stated otherwise.

RESULTS

Phenotypic and genotypic evaluation of autologous patient isolates. Twenty patients participating in the SSITI were studied to determine the impact of intrinsically patient virus characteristics and overall viral fitness on the level of viremia rebound and manifestation of viral set point upon STI. Patients were classified into controlling and noncontrolling groups according to their abilities to control viremia in the absence of drugs after STI (Table 1). The controlling and noncontrolling groups differed significantly in their pretreatment VLs (P = 0.016) and their post-STI VL plateaus (P = 0.0004), but no difference in the abilities to improve VLs upon STI was observed (see also reference 15). Thus, potent control of viremia upon STI was not a consequence of treatment interruptions but correlated strongly with pre-ART VLs.

Virus isolates from patient PBMCs were collected during the first interruption cycle (week 2 of the trial) and the fifth interruption cycle (weeks 42 to 50). Isolation of virus during the first cycle was not possible in all cases because some patients had no or extremely low viral rebound during this cycle. Altogether, 10 first-cycle and 20 fifth-cycle virus isolates were obtained (Table 1). With one exception (patient 116), all patients were infected with R5 virus isolates both during the first cycle and after completion of the STI (Table 1). The isolate from patient 116 utilized CCR5 and CXCR4 before and after the STI. Thus, viremia control in these patients was not determined by a specific viral tropism nor did we find evidence that STI provoked changes in coreceptor utilization patterns. Equally, the distribution of HIV subtypes among patients does not suggest that spontaneous control of plasma viremia was influenced by the genetic subtype (Table 1).
In vitro replicative capacity. To compare the efficacies of patient isolates in infection of target cells, we evaluated their in vitro replication capacities on stimulated primary CD4\(^+\)/H\(\text{11001}\) T cells. In order to allow interisolate comparisons, infection experiments for all isolates were performed on the same day by using the same target cells from healthy donors, which eliminates possible distortion of the results by donor cell variability. For the assessment of the viral replication capacity, the absolute amount of viral antigen generated was taken as a measure of viral productiveness. Therefore, this analysis relies on the assumption that the p24 antigens from all isolates were detected equally well by our p24 antigen enzyme-linked immunosorbent assay, irrespective of their genetic subtypes (data not shown). A range of methods have been developed with the aim of evaluating viral fitness or the contribution of specific viral genes to the overall replicative capacities of viral variants (36). The strength but also the limitations of the assay used in our studies lie in the use of replication-competent patient isolates and primary cells as target cells. This allowed us to investigate the influences of all viral genes on replication in the natural target cells in order to get an initial estimate of the relative fitness levels of the diverse patient isolates. Although useful for the analysis described here, exact measurements of the relative contributions of specific viral genes are not possible with this method.

We observed a striking difference between the cultures infected with virus isolates from the controlling and noncontrolling groups in both the amount of p24 antigen produced and the timing of production (Fig. 1a and b). The levels of p24 antigen generated by days 4 and 6 p.i. were significantly lower in the controlling group (\(P = 0.0216\) and 0.0175, respectively). In the majority of cultures in both groups, the peak of infection was reached by day 10 p.i. and virus production decreased thereafter.

To obtain a numerical measure of the in vitro replicative capacities, we calculated the slopes of viral antigen production between days 0 and 6 (slope \([d0-d6]\)) were calculated by performing linear regression analysis using the natural logarithm of p24 antigen values obtained on days 0, 4, and 6 p.i. Slopes for viruses from controlling (triangles) and noncontrolling (squares) patients were compared using the Mann-Whitney test. Data are means of results from two independent experiments. (d) The extent of viral replication of first-cycle and fifth-cycle virus pairs from eight patients of the noncontrolling group and two patients of the controlling group on CD8-depleted PBMCs is depicted as p24 antigen production on days 4, 6, 10, and 14 p.i. Antigen production levels of first-cycle (closed circles) and fifth-cycle (open circles) virus pairs were compared using the Wilcoxon signed-rank test. n.s., not significant. Bars indicate means.
isolation at pre-ART time points were not available, but it was recently shown that virus evolving early in STI represents pre-ART quasispecies (B. Joos, M. Fischer, A. Trkola, J. Böni, H. Kuster, A. Oxenius, J. Wong, B. Hirschel, R. Weber, and H. Günthard, 9th Conf. Retrovir. Opportunistic Infect., abstr. 531-M, 2002). We therefore probed whether or not STI induced changes in the replication potencies of individual strains by comparing the growth characteristics of first-cycle and fifth-cycle virus pairs from 10 patients (8 noncontrolling and 2 controlling patients) (Table 1 and Fig. 1d). We observed no tendency towards the evolution of more rapidly replicating or more slowly replicating strains. No significant differences between total levels of viral antigen produced by early and late isolate pairs were detected (Wilcoxon signed-rank test) (Fig. 1d), nor was a difference in replication slopes detectable (data not shown). This excludes the possibility that short-term STI induced changes in virulence and indicates a preexisting infection with these slow-replicating isolates before initiation of ART.

Relationship between viral replicative capacities and viremia levels. A central point of our investigation was to determine whether viral replication capacity in vitro substantially impacts viral replication in vivo. We observed that low replication capacities of the patient isolates correlated with both low pre-ART and low post-STI plateaus but not with the patients’ abilities to improve viral set points upon STI (Fig. 2a to c).

Our data provide further evidence that the in vitro replication capacity of a viral isolate influences the total amount of virus replication during the short-term treatment interruption. The in vitro replication capacities of patient virus isolates correlated with the cumulative viral production levels (AUC) during cycles 2, 3, and 4 but did not reach statistical significance for the first cycle (Fig. 2d to g). This suggests that viral rebound may be driven at least in part by viral properties.

Sensitivity to inhibition by chemokines. Viral fitness in vivo will not only be a consequence of the efficacy of virus-target cell interaction but will also be steered by the presence of and susceptibility to antiviral agents. Since the virus isolates investigated here were fully suppressed by the antiretroviral drugs prescribed, we focused our investigation on naturally occurring antiviral agents, namely chemokines and neutralizing antibodies. Differential susceptibilities to one or both of these classes of inhibitors could potentially affect viral replication in vivo.

We assessed the inhibitory effects of the chemokines RANTES/CCL5 and MIP-1α/CCL3 on viral replication in stimulated healthy donor CD4+ T cells. To rule out distortion of the results by donor cell influences, all isolates were analyzed on cells from the same donors. The R5X4 isolate from patient 116 was excluded from this analysis.

We observed in both the controlling and the noncontrolling patient groups chemokine-sensitive and -insensitive isolates. In agreement with previous observations (45), we found that isolates were overall more susceptible to inhibition by RANTES than by MIP-1α (median 70% inhibitory doses were 36 and 393 ng/ml, respectively). Isolates from the controlling group showed an increased sensitivity to inhibition by chemokines compared to isolates from the noncontrolling group (Table 2; Fig. 3a and b). The median inhibitory doses of RANTES differed significantly between the two patient groups. A difference in susceptibilities to inhibition by MIP-1α was also observed but was less pronounced. This is probably due to the lower intrinsic inhibitory activity of MIP-1α. Only 6 of the 19 isolates were inhibited to 90% at the highest concentration tested (500 ng/ml).

Most strikingly, a strong correlation between low replication capacities of viral isolates in vitro and high sensitivities to RANTES was found (Fig. 3c). In addition, sensitivities to inhibition by RANTES correlated with pre-ART VLs and post-STI viral set points (Fig. 3d and e). Increased sensitivity of
low-replicating isolates to inhibition by CCR5-targeting chemokines could indicate that these viruses require high coreceptor densities on target cells for entry. A low availability of cells expressing high levels of CCR5 together with the increased sensitivity to inhibition by endogenous chemokines could therefore contribute to reduced fitness and consequently lower replication of these viruses in vivo. Of note, no influence of genetic polymorphisms in the genes for CCR5, RANTES, and MIP-1α on viremia control was observed in our subset of patients (Table 3).

Sensitivity to inhibition by neutralizing antibodies. Given that high sensitivity to inhibition by chemokines was strongly associated with low in vitro replication capacity of a virus isolate, one could reason that the observed effect of chemokines may be simply a consequence of the decreased infectivity in vitro. This may potentially be the case, since efficacy of inhibition was assessed over multiple rounds of infection and, therefore, over time inhibitory agents will have to counter vastly different amounts of virus. In order to probe whether viruses with low replication capacities are in general more...

![Image of sensitivity to inhibition by chemokines](FIG. 3. Sensitivity to inhibition by chemokines. The 50, 70, and 90% inhibitory doses of RANTES (a) and MIP-1α (b) in CD8-depleted PBMC cultures are shown. Inhibitory doses for viruses from controlling (triangles) and noncontrolling (squares) patients were compared using the Mann-Whitney test. Data are means of results from two independent experiments. Results of the correlation analysis of the 90% inhibitory doses (ID₉₀) of RANTES with in vitro replication capacities (slopes of viral antigen production between days 0 and 6 [slope (d0-6)]) (c), pre-ART VLs (d), and post-STI VLs (e) are displayed. n.s., not significant. Bars indicate means.)

TABLE 2. Inhibitory doses (ID)* of chemokines, neutralizing antibodies, and tetrameric CD4-IgG2

Patient	RANTES	MIP-1α	2F5	G12	IgG1 b12	CD4-IgG2				
	ID₅₀ (ng/ml)									
Control group										
106	16	46	81	218	>343	>491	13.9	>25	5.4	19.2
107	<3	13	34	58	>458	>500	16.2	0.8	>10	24.3
117	9	24	101	65	341	>500	12.7	>25	7.9	14.1
118	<10	12	16	37	53	288	19.3	>25	>10	24.3
126	11	18	26	33	66	225	22.9	>25	>10	22.5
130	4	7	20	45	81	300	17.7	>25	9.6	22.4
Noncontrol group										
102	14	>98	>150	>500	>500	>500	20.5	1.4	8.5	22.3
109	27	91	>148	>500	>500	>500	21.3	>25	>10	9.5
110	30	57	83	164	>393	>500	17.4	16.9	9.5	15.4
113	48	107	>130	>273	>500	>500	>25	4.7	>10	24.1
114	32	60	89	95	>461	>500	>25	24.8	>10	17.5
116	ND	ND	ND	ND	ND	ND	21.3	7.0	5.9	18.1
119	18	25	81	235	>412	>500	19.8	>25	>10	>25
120	27	56	99	136	247	>500	7.9	22.4	>10	13.1
121	4	20	>125	>296	>500	>500	3.6	0.6	6.9	9.4
122	5	32	71	100	197	>488	11.8	8.1	5.2	7.4
126	19	36	>126	190	>307	>498	22.1	>25	>10	23.1
127	18	47	>149	303	>450	>500	19.8	17.0	9.6	10.3
128	59	87	>140	>500	>500	>500	16.3	10.0	9.5	11.1

* ID₅₀, ID₇₀, and ID₉₀ are 50, 70, and 90% inhibitory doses, respectively. ND, not determined.
susceptible to antivirals, we investigated their sensitivities to inhibition by the potent neutralizing anti-gp41 MAb 2F5 and the anti-gp120 MAbs 2G12 and IgG1b12 as well as the tetrameric CD4 molecule, CD4-IgG2. In contrast to results for inhibition by chemokines, we found no significant differences in sensitivities to these antibodies. Of note, virus isolates from the controlling group proved to be slightly more resistant to CD4-IgG2 (Table 2; Fig. 4). Therefore, the increased sensitivities of virus isolates with slow replication capacities to inhibition by chemokines is a distinct feature of these virus strains and does not reflect a general sensitivity to entry inhibitors. HLA genotypes and viremia control. Our analysis of virus isolates from chronically HIV-1-infected individuals thus far leaves open the question of whether virus isolates with low replication capacities were transmitted or emerged over time as a result of an active immune defense. In order to resolve the issue of whether low viral fitness is more a consequence of selection during transmission or a reflection of the impact of immune pressure, an extensive, longitudinal monitoring of patients from acute to chronic disease stages will be necessary. While this type of analysis could not be performed since natural history samples from the acute infection stage were not available for our patient cohort, we further investigated the potential influence of host genetic factors on viral replication and control. This is of particular interest since both transmission and emergence of viral isolates with low fitness will be influenced by genetic host factors, either directly as in the case of the chemokine and chemokine receptor polymorphisms described above or indirectly through control of immune responses. Several HLA genotypes been shown to influence disease progression and viremia control and are considered to drive immune defense and thus viral replication (10, 22, 42). We therefore determined HLA genotypes in our cohort (Table 4) and explored whether the distribution of HLA genotypes which are described to be associated with susceptibility (HLA-B*08, HLA-B*3501, HLA-B*53, and HLA-Cw*08) or protection (HLA-A2/*6802, HLA-A*11, HLA-B*27, HLA-B*51, HLA-B*57, HLA-B*58, HLA-Cw*08, and HLA DRB*01) may indicate why viral variants with low or high replication capacities were selected in our patient cohort. We found that neither genes considered to confer protection nor genes associated with increased viral replication and disease progression were present at higher frequencies in either the controlling or the noncontrolling group. However, it has to be taken into consideration that our cohort of patients is small, and given the vast polymorphism of HLA genes, it is not too surprising that no such associations were found. Although it does not appear that HLA genotypes were a driving force in the establishment of viral fitness in our patients, it nevertheless cannot be ruled out that these genes in concert with other immune and genetic parameters contributed to the selection of viral variants.

TABLE 3. Genotypic analysis

Patient	Characterization of genes for:						
	CCR5	CCR5 delta 32	CCR2	RANTES G-403A	RANTES C-28G	MIP-1α	SDF-1α
Controlling group							
106	1	1	1	1	2	1	
107	3	1	2	1	1	1	
112	3	2	1	1	1	2	
117	1	1	1	2	1	2	
118	3	2	1	1	1	1	
125	2	1	1	2	1	2	3
130	2	1	1	1	1	2	2
Noncontrolling group							
102	2	1	1	1	1	2	1
109	2	2	1	1	1	2	1
111	2	1	1	1	1	1	1
113	3	1	2	1	1	2	1
114	2	1	1	1	1	1	1
116	1	1	1	1	1	1	1
119	2	2	1	1	1	1	1
120	2	2	1	1	1	2	3
121	2	2	1	1	1	2	1
122	2	1	1	1	1	2	1
126	2	1	1	1	1	1	2
127	2	1	1	1	1	2	1
128	3	1	2	1	1	1	2

1 indicates wild-type genotypes, and 2 and 3 indicate heterozygosity and homozygosity, respectively, for the mutant gene.

DISCUSSION

In this study, we investigated the generic fitness of virus isolates derived from patients participating in the SSITT (15,
A fraction of patients (17%) participating in this trial potently suppressed viremia upon final cessation of ART. However, this control of viremia was not induced by STI but reflected pre-ART viral set points (15, 32). Thus far no parameter could be identified that provided insight into how and why these patients maintained low VLs in the absence of treatment (15, 29–32).

Observations made in long-term nonprogressing patients and analysis of drug-resistant strains of HIV-1 strongly suggest that low viral replication capacity in vitro may be directly associated with a decreased viral burden in vivo and predicts slower disease progression (5, 14, 16, 17, 19, 20, 36, 37, 40, 48). In agreement with the results of previous studies, we found a significant correlation between viral replication capacities in vitro and viral set points in our group of 20 chronically infected patients.

Previous reports have by and large focused on cross-sectional analyses of patients. The advantage of the present study lies in the nature of the STI, in which a coherent group of patients, fully sensitive to antiretroviral drugs, underwent sequential analyses of patients. The advantage of the present study was the observation that controlling pre-ART viral set points (15, 32). Thus far no parameter could be identified that provided insight into how and why these patients maintained low VLs in the absence of treatment (15, 29–32).

As noted is that the determination of the replicative capacity in vitro excludes several potential factors affecting viral replication in vivo. Thus, in vivo viral fitness will not be driven only by the virus's access to target cells and its aptitude to efficiently enter these cells and establish productive infection but also by its sensitivity to inhibitory agents such as drugs, neutralizing antibodies, and antiviral chemokines.

With one exception, all virus isolates tested utilized solely R5 for entry and should thus in principle be able to infect the same pool of target cells. HIV-1 isolates are known to differ greatly in their susceptibilities to inhibition by chemokines (45). Whether or not the antiviral potency of chemokines substantially contributes to viremia control in vivo has not yet been conclusively determined (11, 21, 25, 34). The efficacy of chemokine inhibition will be governed by the sensitivity of the individual virus strain to inhibition, by the magnitude of chemokine secretion, and also by the genetically and cell-type-dependent density of chemokine receptor expression.

A key finding of the present study was the observation that viruses from patients who control viremia at low levels are more susceptible to inhibition by CCR5-targeting chemokines. This correlation argues for a low affinity of the respective viral envelope proteins in the interaction with the receptor and/or a particular need of these viruses for high levels of CCR5 expression on their target cells. The restriction in replication could be to some extent due to the lack of appropriate target cells expressing the required high density of receptors. Taken together, our data suggest that the low replication capacities of these viruses are at least in part due to a limitation in viral entry. We are currently cloning the envelopes of these viruses to investigate whether the ensuing low replication capacity is mainly the result of a less efficient entry process or whether additional viral genes participate in manifesting the low-replication phenotype.

Due to their reduced virulence, viruses with low replication capacities will cause less destruction to the immune system and

Patient	Genotype of HLA-1	Genotype of HLA-II					
	A	B	Cw	DRB1	DRB3	DRB4	DRB5
Controlling group							
106	*31, *2601/02/08	*14, *40	*0304/06/08/05, *0802/04	*04, *1101/04	*02	*01	
107	*02, *3	*44, *5201	*0303, *0501	*1301/02, *0301	*0101		
112	*02, *03	*07, *51	*0702, *1203	*0101/03/04, *1301/02	*0301		
117	*02, *58	*4901, *57	*0602/02, *07	*1101/04, *07	*02, *01		
118	*0101-05N	*08, *57	*0602, *07	*1501/03, *0301/05	*0101		
125	*11, *33	*5801, *15	*1203, *0302/05	*12, *1301/02	*0301, *0301		
130	*02, *03	*15, *35	*0304/06/08/09, *0401/04/05	*0101/04, *04	*01		
Noncontrolling group							
102	*2301, *32	*35, *38	*0401/04/05, *1203	*1101/04, *1303	*0101		
109	*11, *25	*18, *--	*0202/02/24, *0701/05/06	*1101/04, *0701	*02, *01		
111	*02, *03	*07, *--	*07, *--	*1501/03, *07	*--	*--	
113	*03, *--	*15, *57	*0304/06/08/09, *0602/03	*04, *07	*01, *01		
114	*02, *31012/3102	*27, *51	*0102/03, *1502/05/06	*0101/04, *1101/04	*02		
116	*02, *03	*44, *4901	*02, *07	*1101/04, *04	*02, *01		
119	*24, *58	*15, *44	*0303, *0704	*04, *1101/04, *02, *01			
120	*02, *24	*27, *44	*0102/03, *1601	*0101/03, *07	*01		
121	*01, *--	*07, *27	*0702, *02	*1501/03, *0901	*01, *01		
122	*03, *24	*57, *15	*0303, *0602/03	*07, *01301/02	*02, *01		
126	*03, *33	*14, *18	*0701/05/06, *0802/04	*11, *13, *02, *0101			
127	*01, *11	*08, *15	*0701/05/06, *0102/03	*04, *1102/03, *02, *01			
128	*03, *24	*35, *57	*0602/03, *0401/02/04,05	*0101/04, *07	*01		

* Dashes indicate homozygosity.
thus might be more successful in inducing and maintaining immune responses (5, 17, 39). Likewise, at a reduced replication rate, mechanisms of escape from immune responses and antiretroviral drugs will appear less rapidly (8, 36). Whether or not low viral fitness was a cause or an effect of an improved anti-HIV immune response could not be determined conclusively in this cohort of patients. Despite significant increases in HIV-specific cytotoxic T-cell responses and T helper responses, no correlation between these cellular immune responses and control of viremia was found (32). However, autologous neutralization responses pre-STI were found to be higher among patients who suppressed viremia (A. Trkola and H. F. Günthard, unpublished data). Determining when and why these viruses with low replicating capacities evolved will require further investigations. At present it remains unclear whether viruses with decreased replication capacities were already present at the stage of transmission or were selected over time as a consequence of an active immune defense and/or genetic host factors. To fully unravel the dependencies of virus and immune responses, a longitudinal analysis of a larger set of patients from acute to chronic disease stages will be required.

Our data provide substantial evidence that viral fitness was a determining factor of low viral set points detected in a fraction of patients participating in the SSITT. Furthermore, our observations strongly suggest that low-replicating viruses were present before ART was initiated and therefore are not a consequence of STI. Thus, to fully understand the prospects of therapeutic interventions in chronic infection, it is pivotal to consider viral fitness and its consequences for activation and maintenance of immune responses or emergence of drug resistance.

ACKNOWLEDGMENTS

This study was financed within the framework of the Swiss HIV Cohort Study, supported by the Swiss National Science Foundation (grant no. 3345-062041). Support was provided by the Swiss National Science Foundation (grant no. 3345-65168 to H. F. Günthard and A. Trkola and Swiss grant no. 3100-b1030 to A. Trkola), the Swiss HIV Cohort Study project 290, and a subcontract to A. Trkola from NIH (grant no. 3345-062041). Support was provided by the Swiss National Science Foundation (grant no. 3345-65168 to H. F. Günthard and Erika Schlaepfer for laboratory support.

Members of the Swiss HIV Cohort Study are M. Battegay, E. BerNASDAQ, H. F. GuNDERS, A. Telenti, A. Trkola, P. Vernazza (chairman of the scientific board), T. Wagels, R. Weber, and S. Yerly.

REFERENCES

1. Allaway, G. P., K. L. Davis-Brungo, G. A. Beaupre, E. Garcia, E. L. Wong, A. M. Ryder, K. W. Hasel, M. C. Gaudreau, R. A. Koup, J. S. McDougal, et al. 1995. Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. AIDS Res. Hum. Retr.

2. Allen, T. M., and D. I. Watkins. 2001. New insights into evaluating effective T-cell responses to HIV. AIDS 15(Suppl. 3):S17–S126.

3. Barbas, C. F., III, D. Hsu, N. Dunlop, L. Sawyer, D. Cababa, R. M. Hendry, P. L. Nara, and D. R. Burton. 1994. In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strand cross-reactivity. Proc. Natl. Acad. Sci. USA 91:3809–3813.

4. Binley, J. M., A. Trkola, T. Ketans, D. Schiller, B. Clas, L. Little, D. Richman, A. Hurley, M. Markowitz, and J. P. Moore. 2000. The effect of highly active antiretroviral therapy on binding and neutralizing antibody responses to human immunodeficiency virus type 1 infection. J. Infect. Dis. 182:945–949.

5. Bloak, H., A. M. Brouwer, L. J. Fan, D. van Woude, and H. Schuitemaker. 1998. In vitro replication kinetics of human immunodeficiency virus type 1 (HIV-1) variants in relation to virus load in long-term survivors of HIV-1 infection. AIDS 12:677–680.

6. Bloak, H., A. van’t Wout, M. Brouwer, B. Hoolbrink, E. Hovenkamp, and H. Schuitemaker. 2000. In vivo HIV-1 infection of CD45RA+(CD45)(+) T cell is established primarily by syncytium-inducing variants and correlates with the rate of CD4(+)(−) T cell decline. Proc. Natl. Acad. Sci. USA 97:1269–1274.

7. Bleiber, G., M. Munoz, A. Ciufli, P. Meylan, and A. Telenti. 2001. Individual contributions of mutant protease and reverse transcriptase to viral infectivity, replication, and protein maturation of antiretroviral-resistant human immunodeficiency virus type 1. J. Virol. 75:S291–S300.

8. Bonhoeffer, S., A. D. Barbour, and R. J. De Boer. 2002. Procedures for reliable estimation of viral fitness from time-series data. Proc. R. Soc. Lond. B 269:1887–1893.

9. Bunce, M., C. M. O’Neill, M. C. Barnard, P. Krausa, M. J. Browning, P. J. Morris, and K. I. Welsh. 1995. Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens 46:355–367.

10. Carrington, M., and S. J. O’Brien. 2003. The influence of HLA genotype on AIDS. Annu. Rev. Med. 54:355–361.

11. Coceci, F., A. D. DeVico, A. Carzino-Derno, S. K. Arya, R. C. Gallo, and P. Lusso. 1995. Identification of RANTES, MIP-1 alpha and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815.

12. Connor, R. L., K. E. Sheridan, D. Ceradini, S. Cho, and N. R. Landau. 1997. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J. Exp. Med. 185:621–628.

13. De Boer, R. J., and A. S. Perelson. 1998. Target cell limited and immune control models of HIV infection: a comparison. J. Theor. Biol. 190:201–214.

14. Deeks, S. G., R. M. Grant, T. Winr, E. E. Paxinos, T. Liegler, R. Hoh, J. N. Martin, and C. J. Petropoulos. 2003. Persistence of drug-resistant HIV-1 after a structured treatment interruption and its impact on treatment response. AIDS 17:361–370.

15. Fagard, C. A., Oxenius, H. Günthard, F. Garcia, M. Le Braz, G. Mestre, M. Battegay, H. Furrer, P. Narva, E. BerNASDAQ, A. Telenti, R. Weber, D. Leduc, S. Yerly, D. Price, S. J. Dawson, T. Klimkait, T. V. Perneger, A. McLean, B. Cletot, J. M. Gatell, L. Perrin, M. Plana, R. Phillips, and B. Hirsch. 2003. A prospective trial of structured treatment interruptions in human immunodeficiency virus infection. Arch. Intern. Med. 163:1220–1226.

16. Fenyo, E. M., L. Morfeldt-Manson, F. Chioldi, R. Lind, A. von Gegerfelt, J. Albert, E. Olausson, and B. Asjo. 1988. Distinct replicative and cytotoxic characteristics of human immunodeficiency virus isolates. J. Virol. 62:4414–4419.

17. Grewit-Furbas, K., J. Ferbas, V. Gudeman, S. Sadeghi, M. B. Goetz, J. V. Giorgi, I. S. Chen, and W. A. O’Brien. 1997. Potential contributions of viral envelope and host genetic factors in a human immunodeficiency virus type 1 infected long-term survivor. J. Virol. 72:8650–8658.

18. Hatzian, H. L., S. Vogel, C. Yoder, J. A. McFell, R. Dewar, R. T. Davey, Jr., and A. M. Polis. 2000. Pre-HAART HIV burden approximates post-HAART viral levels following interruption of therapy in patients with sustained viral suppression. AIDS 14:1357–1367.

19. Kaufmann, D., M. Munoz, G. Bleiber, S. Fleury, B. Lotti, R. Martinez, W. Pichler, P. Meylan, and A. Telenti. 2000. Virological and immunological characteristics of HIV treatment failure. AIDS 14:1767–1774.

20. Kwa, D., J. Vingerhoed, B. Boerer, and H. Schuitemaker. 2003. Increased in vitro cytopathogenicity of CC chemokine receptor 5-restricted human immunodeficiency virus type 1 primary isolates correlates with a progressive clinical course of infection. J. Infect. Dis. 187:1397–1403.

21. Liu, H., D. Chao, E. E. Nakayama, H. Taguchi, M. Goto, X. Xin, J. K. Fukutake, Y. Maruyama, S. Yashiki, S. Sonoda, T. Nakamura, Y. Nagai, A. Iwamoto, and T. Shioda. 1999. Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc. Natl. Acad. Sci. USA 96:4581–4585.

22. McDonald, K. S., K. R. Rowke, J. Kimani, V. A. Dunan, N. J. Nagelkerke, T. B. Ball, J. Ouyang, E. Njagi, L. K. Gaur, R. C. Brunnham, J. Wade, M. A. Laschke, P. Krausa, S. Rowland-Jones, E. Ngugi, J. J. Bwayo, and F. A. Plummer. 2000. Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection. Infect. Dis. 181:1581–1589.

23. Martinez-Palido, J., K. Morales-Lopege, T. Winr, J. G. Prado, S. D. Frost, C. J. Petropoulos, B. Cletot, and L. Ruiz. 2002. Selection of drug-resistant virus
HIV-1 mutants in response to repeated structured treatment interruptions. AIDS 16:895–899.

24. Martines-Picado, J., A. V. Savara, L. Sutton, and R. T. D’Aquila. 1999. Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J. Virol. 73:3744–3752.

25. McDermott, D. H., M. J. Beecroft, C. A. Kleeberger, F. M. Al-Sharif, W. E. R. Oller, P. E. Zimmerman, B. A. Boatin, S. F. Leitman, R. Detels, A. H. Hajjear, and P. M. Murphy. 2000. Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. AIDS 14:2671–2678.

26. Mellors, J. W., C. R. Rinaldo, Jr., P. Gupta, R. M. White, J. A. Todd, and L. A. Kingsley. 1999. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272:1167–1170.

27. Moore, J. P., Y. Cao, D. D. Ho, and R. A. Koup. 1999. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J. Virol. 68:5142–5155.

28. Mustar, T., F. Steinidi, M. Purtcher, A. Trkola, A. Klima, G. Himmler, F. Raker, and H. Kattinger. 1993. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 67:6642–6647.

29. Oxenius, A., H. F. Günthard, B. Hirschel, S. Fidler, J. N. Weber, P. J. Easterbrook, J. I. Bell, R. E. Phillips, and D. A. Price. 2001. Direct ex vivo analysis reveals distinct phenotypic patterns of HIV-specific CD8(+) T lymphocyte activation in response to therapeutic manipulation of virus load. Eur. J. Immunol. 31:1115–1121.

30. Oxenius, A., A. R. McLean, M. Fischer, D. A. Price, S. J. Dawson, R. Hafner, C. Schneider, H. Joller, B. Hirsche1, R. E. Phillips, R. Weber, and H. F. Günthard. 2002. Human immunodeficiency virus-specific CD8(+) T-cell responses do not predict viral growth and clearance rates during structured intermittent antiretroviral therapy. J. Virol. 76:10169–10176.

31. Oxenius, A., D. A. Price, S. J. Dawson, H. F. Günthard, M. Fischer, L. Perrin, E. Ramírez, C. Fagard, B. Hirschel, G. Scallard, J. N. Weber, A. R. McLean, and R. E. Phillips. 2002. Residual HIV-specific CD4 and CD8 T cell frequencies after prolonged antiretroviral therapy reflect pretreatment plasma virus load. AIDS 16:2317–2322.

32. Oxenius, A., D. A. Price, H. F. Günthard, S. J. Dawson, C. Fagard, L. Perrin, M. Fischer, R. Weber, M. Plana, F. Garcia, B. Hirschel, A. McLean, and R. E. Phillips. 2002. Stimulation of HIV-specific T-cell responses after prolonged antiretroviral therapy reflect pretreatment plasma virus load. AIDS 16:2317–2322.

33. Piatak, M., Jr., M. S. Saag, L. C. Yang, S. J. Clark, J. C. Kappes, K. C. Luk, P. W., J. P. Moore, D. R. Burton, and Q. J. Sattentau. 1999. The anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J. Virol. 68:5142–5155.

37. Quinones-Mateu, M. E., S. C. Ball, A. J. Maroosan, V. S. Torre, J. L. Albright, G. Vanham, G. van der Groen, R. L. Colebunders, and E. J. Arts. 2000. A dual infection/competition assay shows a correlation between ex vivo human immunodeficiency virus type 1 fitness and disease progression. J. Virol. 74:9222–9233.

38. Rowland-Jones, S., S. Pinheiro, and R. Kaul. 2001. New insights into host factors in HIV-1 pathogenesis. Cell 104:473–476.

39. Scarlatti, G., T. Leitner, V. Hodara, M. Jansson, A. Karlsson, J. Wahlberg, P. Rossi, M. Uhlen, E. M. Fenyo, and J. Albert. 1996. Interplay of HIV-1 phenotype and neutralizing antibody response in pathogenesis of AIDS. Immunol. Lett. 51:23–28.

40. Schuitemaker, H., M. Koot, N. A. Kootstra, M. W. Dercksen, R. E. de Goede, R. P. van Steenwijk, J. M. Lange, J. K. Schaktenker, F. Miedema, and M. Tersmette. 1992. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytopotoxic to T-cell-tropic virus population. J. Virol. 66:1354–1360.

41. Teleni, A., V. Aubert, and F. Sperini. 2002. Individualising HIV treatment—pharmacogenetics and immunogenetics. Lancet 359:722–723.

42. Trachtenberg, E., B. Korber, C. Sollars, T. B. Kepler, P. T. Hraber, E. Hayes, R. Funkhouser, M. Fugate, J. Theiler, Y. S. Hou, K. Kanstman, S. Wu, J. Phair, H. Eri1ch, and S. Wolinsky. 2003. Advantage of rare HLA supertype in HIV disease progression. Nat. Med. 9:928–935.

43. Trkola, A., T. Ketas, V. N. Kewalramani, F. Endorf, J. M. Binley, H. Kattinger, J. Robinson, D. R. Littman, and J. P. Moore. 1998. Neutralization sensitivity of human immunodeficiency virus type 1 primary isolates to antibodies and CD4-based reagents is independent of coreceptor usage. J. Virol. 72:1876–1885.

44. Trkola, A., J. Matthews, C. Gordon, T. Ketas, and J. P. Moore. 1999. A cell line-based neutralization assay for primary human immunodeficiency virus type 1 isolates that use either the CCR5 or the CXCR4 coreceptor. J. Virol. 73:896–8974.

45. Trkola, A., W. A. Paxton, S. P. Monard, J. A. Hoxie, M. A. Siani, D. A. Thompson, L. Wu, C. R. Mackay, R. Horuk, and J. P. Moore. 1998. Genetic subtype-independent inhibition of human immunodeficiency virus type 1 replication by CC and CXC chemokines. J. Virol. 72:396–404.

46. Trkola, A., A. B. Pomales, H. Yuan, B. Korber, P. J. Maddon, G. P. Allaway, H. Kattinger, C. F. Barbas III, D. R. Burton, D. D. Ho, and J. P. Moore. 1995. Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetramer CD4-1G7. J. Virol. 69:6609–6617.

47. Trkola, A., M. Purtcher, T. Muster, C. Ballaun, A. Buchacher, N. Sullivan, K. Srinivasan, J. Sodroski, J. P. Moore, and H. Kattinger. 1996. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70:11090–11096.

48. van’t Wout, A. B., H. Blaak, L. J. Ran, M. Brouwer, C. Kuiken, and H. Schuitemaker. 1998. Evolution of syncytium-inducing and non-syncytium-inducing biological virus clones in relation to replication kinetics during the course of human immunodeficiency virus type 1 infection. J. Virol. 72:5099–5107.

49. Wong, J., K. M. Mezare, H. F. Günthard, D. V. Hlavir, C. C. Ignacio, C. A. Spina, and D. D. Richman. 1997. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278:1291–1295.