Optical and X-ray Properties of the Swift BAT-detected AGN

Lisa M. Winter1,2
Richard Mushotzky3,5, Karen Lewis4, Sylvain Veilleux3, Mike Koss3, Brian Keeney2, Wayne Baumgartner5

1Hubble Fellow
2CASA/University of Colorado, Boulder, CO
3University of Maryland, College Park, MD
4Dickinson College, Carlisle, PA
5NASA GSFC, Greenbelt, MD

X-ray Astronomy 2009
The Swift BAT is an ‘all sky’ instrument – covering \(\approx 20\% \) of the sky at any one time and \(\approx 50\% \) of the sky each day when not triggering on GRBs.

- Sensitive from 14–195 keV
- Extensive follow-up of sources by the two other telescopes on SWIFT (UVOT and XRT) with relatively short exposures
‘Unbiased’ Survey

- All previous AGN surveys were biased (wrt obscuration)
- Much larger sample than HEAO-1 (and Integral) – 1st sensitive all sky hard x-ray survey in 28 years!
- BAT data provides first large unbiased sample of host galaxy properties
- Direct comparison with \(z \approx 1 \) Chandra and XMM surveys
 - Distribution of \(n_H \) values
 - Luminosity function
 - \(\log N - \log S \)
 - necessary for modeling x-ray background
9-month BAT Survey

- 153 AGN detected at $\geq 4.8\sigma$
- $F_{14-195\text{keV}} > \text{few} \times 10^{-11} \text{erg s}^{-1} \text{cm}^{-2}$
- $\langle z \rangle \approx 0.03$
- See Tueller et al. (2008)
- The Survey is continuing, with the completed 22 month (262 sources, ApJS, accepted) and on-going 36 month catalogs.
- Sensitivity is still scaling as \sqrt{t}
Collected X-ray properties from Swift XRT, ASCA, XMM-Newton, and Chandra

Sources selected:
- Detected with BAT as a 5σ or higher detection
- Optical counterpart clearly seen in DSS/2MASS images

See Winter et al. (2009)

(Left) XMM-Newton contours on DSS images.
Among Our Results ...

- Higher fraction of absorbed sources at low luminosity/accretion rate
- The average X-ray spectrum (0.6–10 keV) replicates the CXB slope of 1.4
- Very few Compton thick sources
Optical Study

- Covered 80% of the ‘Northern’ BAT sources (see Koss poster 7.35 for images)
- Spectra from archived SDSS observations (27), our own KPNO 2.1-m observations (40), and the literature (5)
- Half of the spectra show broad H-Balmer lines
Reddening Estimates

- No correlation between optical reddening and host inclination.
- No correlation between optical and X-ray extinction for narrow line sources.
- Unlike the results of Alonso-Herrero et al. (1997), most Sy 1s have more extinction in the optical than X-ray band.
Comparisons of Mass Determination Methods

- Reverberation mapping/H-β derived masses are well-correlated.
- 2MASS-derived/H-β derived masses are also well-correlated.
- Average mass of the Swift BAT-detected AGN:
 \(< M/M_\odot > = 10^{7.87 \pm 0.66}\), consistent with previous studies (Woo & Urry, 2002)
Luminosity Distributions

Broad Line: \(\log L_{14-195\text{keV}} = 43.74, \log L_{\text{[OIII]}} = 41.79 \)

Narrow Line: Seyferts: \(\log L_{14-195\text{keV}} = 43.87, \log L_{\text{[OIII]}} = 41.55 \)
LINERs: \(\log L_{14-195\text{keV}} = 43.50, \log L_{\text{[OIII]}} = 40.73 \)
Others: \(\log L_{14-195\text{keV}} = 42.69, \log L_{\text{[OIII]}} = 40.33 \)
Slight correlations ($R^2 < 0.4$) are seen between \([\text{O III}]\) and BAT luminosities: $L_{\text{[O III]} (\text{corr})} \propto L_{\text{BAT}}^{1.16 \pm 0.24}$. There is a lot of scatter.

Agrees with Meléndez et al. (2008), in contrast to Heckman et al. (2005).
Best correlation ($R^2 = 0.6$) between the [O III] and soft X-ray flux for narrow line sources

Same seen in the XMM sample presented by Terashima (2009)
Host Galaxy Properties

- $D_n(4000)$: Old stars through the Ca II break
- $H\delta_A$: Young stars through Hδ absorption
- Narrow Line sources are consistent with intermediate/old populations
- Broad Line sources have lower $H\delta$ EWs
- Low EWs (< 0) associated with very young populations of < 0.1 Gyr (Leitherer et al., 1999)
- But, see M. Koss’s poster (7.35)
Summary

- We have completed analyses of the X-ray (0.3–10 keV) and optical spectra of the Swift BAT-detected AGN in the 9-month catalog.
- Optical extinction is not from the host galaxy and is correlated with X-ray extinction for Sy 1s but not Sy 2s.
- Optically identified Seyferts have the same distributions of both [O III] λ5007Å and 14-195 keV luminosities for narrow and broad line sources. This is in agreement with the Unified Model.
- Correlations between [O III] λ5007Å and 14-195 keV luminosities are weak with much scatter. $L_{[[OIII]]}$ is not the best indicator of L_{bol}.
- Broad Line sources appear to have much younger stellar host populations than narrow line sources (based on Lick indices). This conflicts with the Unified Model?
Future and On-going Work

- Complete optical spectral properties from the 22-month catalog with coverage in the North (Koss) and South (Ueda)
- NIR imaging and spectroscopy (Koss)
- Fellowship program: A study of the Sy 1 warm absorber/outflow properties using X-ray, UV, and optical data
COS and GHRS spectra of an AGN outflow

COS observations achieved comparable S/N to the GHRS observations in about 1/10th the time with 10 times more spectral coverage! (credit: Brian Keeney, CASA)
COS and STIS

PKS0405−123

credit: Charles Danforth, CASA
References

Alonso-Herrero, A., Ward, M. J., & Kotilainen, J. K. 1997, MNRAS, 288, 977
Heckman, T. M., Ptak, A., Hornschemeier, A., & Kauffmann, G. 2005, ApJ, 634, 161
Leitherer, C. et al. 1999, ApJS, 123, 3
Meléndez, M. et al. 2008, ApJ, 682, 94
Tueller, J., Mushotzky, R. F., Barthelmy, S., Cannizzo, J. K., Gehrels, N., Markwardt, C. B., Skinner, G. K., & Winter, L. M. 2008, ApJ, 681, 113
Winter, L. M., Mushotzky, R. F., Reynolds, C. S., & Tueller, J. 2009, ApJ, 690, 1322
Woo, J.-H., & Urry, C. M. 2002, ApJ, 579, 530