Simultaneous Tests for Homogeneity of Two Zero-inflated (Beta) Populations

Supplemental file

Luna Sun and Alix I. Gitelman

Department of Statistics, Oregon State University

Result 1 (Partition of multivariate normal distribution (Seely’s Notes, unpublished)). Suppose $Y \sim N_p(\mu,V)$ where V is nonsingular. Let Y, μ and V be similarly partitioned in the form $Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$, $\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$, and $V = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix}$. Assume Y_1 is $q \times 1$ and that $s = p - q$ so that Y_2 is $s \times 1$. Set $V_{11} = V_{11} - V_{12}V_{22}^{-1}V_{21}$ and let $T = Y_1 - V_{12}V_{22}^{-1}Y_2$. Then

1. $T \sim N_q(\mu_1 - V_{12}V_{22}^{-1}\mu_2, V_{11})$ and V_{11} is nonsingular.

2. T and Y_2 are independent random vectors.

Theorem 1 (Asymptotic Independence among Score Tests). \hat{S}_1, \hat{S}_2 and \hat{S}_3 (and also \tilde{S}_1, \tilde{S}_2 and \tilde{S}_3) are asymptotically independent.

Proof. Consider \hat{S}_1, \hat{S}_2 and \hat{S}_3 first: Denote

$$\omega = (p, \mu, \phi)\, \zeta = (\delta, p, \mu, \phi) = (\delta, \omega)' \quad \eta = (\gamma, \delta, p, \mu, \phi) = (\gamma, \zeta)' = (\gamma, \delta, \omega)'$$

$$\theta = (\beta, \gamma, \delta, p, \mu, \phi)' = (\beta, \eta)' = (\beta, \gamma, \zeta)' = (\beta, \gamma, \delta, \omega)'$$

Recall that

$$\hat{S}_1 = \hat{s}_1'(\hat{A}_1 - \hat{C}_1\hat{D}_1^{-1}\hat{C}_1')^{-1}\hat{s}_1,$$

$$\hat{S}_2 = \hat{s}_2'(\hat{A}_2 - \hat{C}_2\hat{D}_2^{-1}\hat{C}_2')^{-1}\hat{s}_2$$

and

$$\hat{S}_3 = \hat{s}_3'(\hat{A}_3 - \hat{C}_3\hat{D}_3^{-1}\hat{C}_3')^{-1}\hat{s}_3.$$

Under H_0,

$$s_1 = \frac{\partial l_f}{\partial \delta} = \frac{\partial l_f}{\partial \delta}, \quad s_2 = \frac{\partial l_f}{\partial \gamma} = \frac{\partial l_f}{\partial \gamma}, \quad \text{and} \quad s_3 = \frac{\partial l_f}{\partial \beta} = \frac{\partial l_f}{\partial \beta}.$$
And
\[\hat{s}_1 = s_1(\omega), \hat{s}_2 = s_2(\zeta), \hat{s}_3 = s_3(\eta), \]
where \(\hat{\omega}, \hat{\zeta} \) and \(\hat{\eta} \) are maximum likelihood estimates of \(\omega \) under \(H'_0 \), \(\zeta \) under \(H'_0 \) and \(\eta \) under \(H''_0 \), respectively (i.e., \(\hat{s}_1 = \frac{\partial l}{\partial \delta} \bigg|_{\omega=\hat{\omega}}, \hat{s}_2 = \frac{\partial l}{\partial \gamma} \bigg|_{\zeta=\hat{\zeta}} \) and \(\hat{s}_3 = \frac{\partial l}{\partial \beta} \bigg|_{\eta=\hat{\eta}} \)). Notice that when \(H_0 \) is true, \(H'_0, H''_0 \) and \(H'''_0 \) are all true. Expanding \(\hat{s}_1, \hat{s}_2 \) and \(\hat{s}_3 \) around the true parameters \(\theta_0 \) via Taylor expansion with \(l_f = l \):
\[
\hat{s}_1 = \frac{\partial l}{\partial \delta} - I_{\delta \omega_0} I_{\omega_0 \omega_0}^{-1} \frac{\partial l}{\partial \omega_0} + O_p(1),
\]
\[
\hat{s}_2 = \frac{\partial l}{\partial \gamma} - I_{\gamma \zeta_0} I_{\zeta_0 \zeta_0}^{-1} \frac{\partial l}{\partial \zeta_0} + O_p(1),
\]
and
\[
\hat{s}_3 = \frac{\partial l}{\partial \beta} - I_{\beta \eta_0} I_{\eta_0 \eta_0}^{-1} \frac{\partial l}{\partial \eta_0} + O_p(1),
\]
where
\[
I_{\delta \omega_0} = E \left(-\frac{\partial^2 l}{\partial \delta \partial \omega^T} \bigg| H_0 \right), \quad I_{\omega_0 \omega_0} = E \left(-\frac{\partial^2 l}{\partial \omega \partial \omega^T} \bigg| H_0 \right), \quad I_{\gamma \zeta_0} = E \left(-\frac{\partial^2 l}{\partial \gamma \partial \zeta^T} \bigg| H_0 \right), \quad I_{\zeta_0 \zeta_0} = E \left(-\frac{\partial^2 l}{\partial \zeta \partial \zeta^T} \bigg| H_0 \right),
\]
\[
I_{\gamma \eta_0} = E \left(-\frac{\partial^2 l}{\partial \gamma \partial \eta^T} \bigg| H_0 \right), \quad I_{\eta_0 \eta_0} = E \left(-\frac{\partial^2 l}{\partial \eta \partial \eta^T} \bigg| H_0 \right),
\]
and
\[
\left. \frac{\partial l}{\partial \omega_0} \right|_{\omega=\hat{\omega}}, \quad \left. \frac{\partial l}{\partial \zeta_0} \right|_{\zeta=\hat{\zeta}}, \quad \left. \frac{\partial l}{\partial \eta_0} \right|_{\eta=\hat{\eta}}.
\]
Let
\[
s_{01} = \frac{\partial l}{\partial \delta} - I_{\delta \omega_0} I_{\omega_0 \omega_0}^{-1} \frac{\partial l}{\partial \omega_0}, \quad s_{02} = \frac{\partial l}{\partial \gamma} - I_{\gamma \zeta_0} I_{\zeta_0 \zeta_0}^{-1} \frac{\partial l}{\partial \zeta_0} \quad \text{and} \quad s_{03} = \frac{\partial l}{\partial \beta} - I_{\beta \eta_0} I_{\eta_0 \eta_0}^{-1} \frac{\partial l}{\partial \eta_0}.
\]
Since the score function can be written as
\[
\frac{\partial l}{\partial \theta} = \left(\begin{array}{c}
\frac{\partial l}{\partial \beta} \\
\frac{\partial l}{\partial \gamma} \\
\frac{\partial l}{\partial \delta} \\
\frac{\partial l}{\partial \eta} \\
\frac{\partial l}{\partial \mu} \\
\frac{\partial l}{\partial \phi} \\
\end{array} \right) = \left(\begin{array}{c}
\frac{\partial s_{01}}{\partial \beta} \\
\frac{\partial s_{02}}{\partial \gamma} \\
\frac{\partial s_{03}}{\partial \delta} \\
\frac{\partial s_{04}}{\partial \eta} \\
\frac{\partial s_{05}}{\partial \mu} \\
\frac{\partial s_{06}}{\partial \phi} \\
\end{array} \right) = \left(\begin{array}{c}
\frac{\partial l}{\partial \beta} \\
\frac{\partial l}{\partial \gamma} \\
\frac{\partial l}{\partial \delta} \\
\frac{\partial l}{\partial \eta} \\
\frac{\partial l}{\partial \mu} \\
\frac{\partial l}{\partial \phi} \\
\end{array} \right),
\]
we have $\frac{\partial l}{\partial \theta} \xrightarrow{d} N(0, I(\theta_0))$. Or
\[
\left(\begin{array}{c}
\frac{\partial l}{\partial \beta} \\
\frac{\partial l}{\partial \eta}
\end{array} \right) \xrightarrow{d} N\left(\begin{array}{c}0 \\
0
\end{array} \right), -E \left(\begin{array}{cc}
\frac{\partial^2 l}{\partial \beta^2} & \frac{\partial^2 l}{\partial \beta \eta} \\
\frac{\partial^2 l}{\partial \eta \beta} & \frac{\partial^2 l}{\partial \eta^2}
\end{array} \right) \left| H_0 \right|.
\]

As the sample size going to $+\infty$, using the result from partition of multivariate normal distribution, under H_0, s_{03} is independent of $\frac{\partial l}{\partial \eta} = \left(\begin{array}{c}
\frac{\partial l}{\partial \gamma} \\
\frac{\partial l}{\partial \delta}
\end{array} \right) = \left(\begin{array}{c}
\frac{\partial l}{\partial \gamma} \\
\frac{\partial l}{\partial \delta}
\end{array} \right)$. Since s_{01} and s_{02} are only functions of $(\frac{\partial l}{\partial \gamma}, \frac{\partial l}{\partial \delta})$ and $(\frac{\partial l}{\partial \gamma}, \frac{\partial l}{\partial \delta})$, s_{03} is independent of s_{01} and s_{02}. Similarly, it is easy to show s_{01} and s_{02} are independent as well.

For the independence among \tilde{S}_1, \tilde{S}_2 and \tilde{S}_3, similar arguments can be made.

Theorem 2 (Size of Hybrid test). The hypothesis in (8) is

$\text{H}_0 : p_1 = p_2$ and $h_{Y_1} = h_{Y_2}$ vs $\text{H}_1 : \text{Either equality fails.}$

Here, p_1 and p_2 are the population zero proportions for populations 1 and 2, and h_{Y_1} and h_{Y_2} are the pdf for the non-zero components of populations 1 and 2. To test these hypotheses at the level α, the Hybrid procedure involves the following steps:

1. **Test** $H_{01} : p_1 = p_2$ versus $H_{11} : p_1 \neq p_2$.

2. H_{01} is rejected if the p-value is $p < \alpha_1$. In this case, reject H_0 in (8); otherwise, test $H_{02} : h_{Y_1} = h_{Y_2}$ versus $H_{12} : h_{Y_1} \neq h_{Y_2}$.

3. H_{02} is rejected if the p-value is $p < \alpha_2$. In this case, reject H_0 in (8); otherwise, do not reject H_0.

The size of Hybrid is less than or equal to $\alpha_1 + \alpha_2$.

Proof. Define
\[
A = \{(p_1, p_2) \in (0, 1)^2 : p_1 = p_2\} \quad \text{and} \quad B = \{h_{Y_1}, h_{Y_2} \in \mathcal{F} : h_{Y_1} = h_{Y_2}\}
\]
where \mathcal{F} is the space of a particular family of pdf. Under the set notation, $H_0, H_1, H_{01}, H_{11}, H_{02}$ and H_{12} can be expressed as $H_0 : A \cap B, H_1 : A^c \cup B^c, H_{01} : A, H_{11} : A^c, H_{02} : A \cap B$ and $H_{12} : A \cap B^c$.

Further define $\mathcal{R}_1, \mathcal{R}_2$ and \mathcal{R} as rejection region for H_{01}, H_{02} and H_0, then
\[
C = \{x : x \in \mathcal{R}_1\} \quad \text{and} \quad D = \{x : x \in \mathcal{R}_2\},
\]

3
then we have
\[C \cup (C^c \cap D) = \{ x : x \in \mathbb{R} \}. \]

It is reasonable to assume \(A \) and \(B \) are independent because the form of \(h_y \) does not depend on \(p \), neither the other way around. Also, it is reasonable to assume \(B \) and \(C \) are independent because \(C \) only concerns the \(p \)'s.

Let \(\alpha_0, \alpha_1 \) and \(\alpha_2 \) denote the type I error rates of \(H_0 \) vs \(H_1 \), \(H_{01} \) vs \(H_{11} \) and \(H_{02} \) vs \(H_{12} \), respectively.

Then
\[\alpha_0 = P(\text{Reject } H_0 | H_0 \text{ is true}) = P(C \cup (C^c \cap D) | A \cap B), \]
\[\alpha_1 = P(C | A) \text{ and } \alpha_2 = P(D | A \cap B). \]

Since \(C \cap (C^c \cap D) = \emptyset \), we have \((C | A \cap B) \cap (C^c \cap D | A \cap B) = \emptyset \). Therefore,
\[P(C \cup (C^c \cap D) | A \cap B) = P(C | A \cap B) + P((C^c \cap D) | A \cap B). \]

Since \(C^c \cap D \subset D \), there is \(C^c \cap D | A \cap B \subset D | A \cap B \). Therefore,
\[P((C^c \cap D) | A \cap B) \leq P(D | A \cap B) = \alpha_2. \]

\[P(C | A \cap B) = \frac{P(C \cap A \cap B)}{P(A \cap B)} = \frac{P(B | A \cap C) \cdot P(A \cap C)}{P(B | A) \cdot P(A)} = P(C | A) \cdot \frac{P(B | A \cap C)}{P(B | A)}. \]

Because we assume \(A \) and \(B \) are independent and \(B \) and \(C \) are independent, \(P(B | A) = P(B) \) and \(P(B | A \cap C) = P(B) \). Hence,
\[P(C | A \cap B) = P(C | A) = \alpha_1 \]

As a result,
\[\alpha_0 = P(C \cup (C^c \cap D) | A \cap B) = P(C | A \cap B) + P((C^c \cap D) | A \cap B) \leq \alpha_1 + \alpha_2. \]

Under the Bonferroni correction, \(\alpha_1 = \alpha_2 = \alpha / 2. \)

\[\square \]

Reference

Justus Seely. Linear Model Theory Notes, unpublished. *Department of Statistics, Oregon State University.*