Disrupting Hepatocyte Cyp51 from Cholesterol Synthesis Leads to Progressive Liver Injury in the Developing Mouse and Decreases RORC Signalling

Žiga Urlep1, Gregor Lorbek1, Martina Perše2, Jera Jeruc3, Peter Juvan1, Madlen Matz-Soja4, Rolf Gebhardt4, Ingemar Björkhem5, Jason A. Hall6, Richard Bonneau7, Dan R. Littman6,8 & Damjana Rozman1

Development of mice with hepatocyte knockout of lanosterol 14α-demethylase (Hcyp51−/−) from cholesterol synthesis is characterized by the progressive onset of liver injury with ductular reaction and fibrosis. These changes begin during puberty and are generally more aggravated in the knockout females. However, a subgroup of (pre)pubertal knockout mice (runt) exhibits a pronounced male prevalent liver dysfunction characterized by downregulated amino acid metabolism and elevated Casp12. RORC transcriptional activity is diminished in livers of all runt mice, in correlation with the depletion of potential RORC ligands subsequent to CYP51 disruption. Further evidence for this comes from the global analysis that identified a crucial overlap between hepatic Cyp51−/− and Rorc−/− expression profiles. Additionally, the reduction in RORA and RORC transcriptional activity was greater in adult Hcyp51−/− females than males, which correlates well with their downregulated amino and fatty acid metabolism. Overall, we identify a global and sex-dependent transcriptional de-regulation due to the block in cholesterol synthesis during development of the Cyp51 knockout mice and provide in vivo evidence that sterol intermediates downstream of lanosterol may regulate the hepatic RORC activity.

The liver is to date the best example of a non-reproductive tissue that shows major differences in gene expression between males and females. The majority of liver-related sex differences emerge during pubertal development1 with adult mice exhibiting well over 1,000 genes differentially expressed (DE) between females and males2.

The development of liver begins at embryonic (E) day 8.5–9, with hepatocyte differentiation3 and cholesterol production4 starting around day E13.5. At birth, 55–60% of cholesterol in the liver is produced endogenously, while in adults hepatic cholesterol production provides 10% and 40% of total cholesterol in humans and mice, respectively5. Consequently, mouse liver knockouts of cholesterol synthesis genes survive embryonic development in contrast to the lethal phenotypes of the full knockout mice6. Blocking earlier steps of the pathway produces a stronger phenotype in both cases. The hepatocyte Hmgcr−/− mice survive for up to 5 weeks7, while mice lacking the rate limiting step of the post-lanosterol pathway, the hepatocyte Cyp51−/− mice, survive for over 19 weeks although with marked changes in liver structure and function8. Cholesterol intermediates after lanosterol

1Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. 2Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. 3Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. 4Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany. 5Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden. 6The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA. 7New York University & Simons Foundation for Data Analysis, New York, NY 10010, USA. 8Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA. Correspondence and requests for materials should be addressed to D.R. (email: damjana.rozman@mf.uni-lj.si)
have long been thought of as dedicated exclusively to cholesterol in contrast to earlier metabolites⁹. However, meiosis-activating sterols (MAS) have been identified for their importance in gametogenesis¹⁰ and intermediates further downstream most recently as potential ligands for RORC isoform 2 (RORγt) in Th17 cells¹¹,¹². RORC is an orphan nuclear receptor expressed in several tissues, including the liver¹³. The two isoforms have distinct functions and distribution, but with the same ligand- and DNA-binding domains¹⁴. RORγt is the primary isoform in thymocytes and is required for normal lymph node development¹⁵, whereas the more common isoform 1 (RORγ or RORC) modulates the circadian clock, as well as glucose and fat metabolism and in the liver peaks at circadian time ZT16–20¹⁶–¹⁸.

Herein we examine the development of the hepatocyte Cyp51¹⁻/⁻ mice and show that normal liver function becomes impaired by the end of puberty, with earlier presentation and enhanced liver damage in females. A subgroup of male prevalent knockout mice exhibits augmented liver dysfunction combined with abnormal hepatic sterol profiles. Lastly, our work highlights the need for unperturbed cholesterol synthesis for normal RORC signalling in vivo.

Figure 1. Hepatocyte deletion of Cyp51 causes (pre)pubertal detrimental defects. (a) Growth curves of control (CTRL; n ≥ 6), H⁵⁰⁵¹⁻/⁻ (n ≥ 6) and runt mice (5–7 weeks; n ≥ 3) on a wild type or heterozygous Cyp51 background. Error bars represent SEM. (b) A representative picture of a male H⁵⁰⁵¹⁻/⁻ and a male runt mouse after autopsy. (c) A comparison of relative Cyp51 expression between control, H⁵⁰⁵¹⁻/⁻ and runt mice on a wild type or heterozygous Cyp51 background at different ages (n ≥ 8). Columns depict means and error bars represent SEM. (d) CYP51 protein expression as measured by western blot analysis. Mice were grouped based on age, sex and genotype (regardless of the Cyp51 background). **p < 0.01; ***p < 0.001; ****p < 0.0001.
Results

Characterization of Cyp51^{−/−} mice during postnatal development.

Hepatocyte Cyp51 knockout mice (H^{Cyp51^{−/−}}) on the wild type (Cyp51^{+/+}) or heterozygous (Cyp51^{+/−}) background were born in accordance with the Mendelian ratio (Supplementary Table 1) and were euthanized at 0, 3, 6, 9 and 19 weeks of age (Supplementary Fig. 1).

From 750 mice, 704 were weaned and a further 46 (6%) exhibited severe developmental abnormalities (runt-H^{Cyp51^{−/−}}; runts). Runts were exclusive to the H^{Cyp51^{−/−}} genotypes. They died or had to be euthanized at 4–10 weeks with a male to female ratio of 2:1 (Supplementary Table 1). Runts are characterized by growth arrest after the weaning period (Fig. 1a), hunched posture, bristled hair and frequent icterus (Fig. 1b). Figures 1c,d show successful Cyp51 disruption with a progressively increasing gap in Cyp51 gene and protein levels between H^{Cyp51^{−/−}} and control mice. Plasma parameters of these young mice showed mostly unperturbed cholesterol homeostasis, with total (Fig. 2a) and LDL (Fig. 2b) cholesterol remaining stable in H^{Cyp51^{−/−}} mice of all examined ages, except for the runts that show a 40% decrease in total cholesterol and a 60% drop in HDL cholesterol (Fig. 2c). Increased ALT but not AST was found in 9-week H^{Cyp51^{−/−}} mice and runts, which indicated hepatocellular damage, while elevated conjugated bilirubin in runts confirmed jaundice (Fig. 2d,e).

Haematoxylin and eosin (HE) and collagen staining (Sirius red) revealed initial signs of ductular reaction with mild inflammation (lymphocytes and granulocytes) surrounding the portal vein in all H^{Cyp51^{−/−}} females (7/7) and about half of males (4/7) at 6 weeks. Enhanced ductular proliferation, inflammation and mild-to-moderate portal fibrosis were seen in all H^{Cyp51^{−/−}} mice at 9 weeks (Fig. 3a–c) and were slightly more pronounced on the heterozygous background. Despite their youth, runts exhibited severe liver damage with widespread ductular reaction, immune cell infiltration and prominent fibrosis with portal bridging in the worst cases (Fig. 3b).

Gene expression profiling reveals progressive metabolic downregulation and a fall in RORC transcriptional potential resulting from Cyp51 disruption.

To evaluate the impact of Cyp51 excision on liver development, we performed gene expression profiling using Affymetrix microarrays on Cyp51^{+/+} and H^{Cyp51^{−/−}} mice, aged 3, 6 and 19 weeks, of both sexes, including runts. The number of DE genes between H^{Cyp51^{−/−}} and control mice increased progressively from 3 weeks onward (Fig. 4a; Supplementary Table 2). Runts exhibited a global de-regulation with roughly a quarter of their hepatic transcriptome differentially expressed compared to 6-week Cyp51^{+/+} mice (Fig. 4b). Gene set enrichment analysis (PGSEA) based on pathways from Kyoto Encyclopedia of Genes and Genomes (KEGG) exhibited significant enrichment in runts (235/287 pathways) (Table 1; Supplementary Table 3). Similarly to the 19-week mice (Lorbek et al. and this study), the runt phenotype also associated with downregulated metabolism of lipids, amino acids and bile acids as well as elevated inflammatory.

Figure 2. Plasma analyses reveal altered cholesterol homeostasis in runts. (a) Total plasma cholesterol, (b) LDL cholesterol, (c) HDL cholesterol and (d) ALT and AST concentrations in control, H^{Cyp51^{−/−}} and runt mice on a wild type or heterozygous Cyp51 background at different ages (n ≥ 9). Columns depict means and error bars represent SEM. (e) Direct bilirubin levels in 6-week control, H^{Cyp51^{−/−}} and runt mice on a wild type or heterozygous Cyp51 background (n > 10). **p < 0.01; ****p < 0.0001.
Figure 3. Progressive development of ductular reactions and fibrosis in response to Cyp51 block in the liver. (a) Shown are representative haematoxylin and eosin (top; HE) and Sirius red (bottom; SR) stained liver sections. CTRL – Cyp51+/+ mice. 100x magnification. (b) A representative close up shot of the portal (PP) and central (PC) veins in the 6-week Cyp51+/+ (CTRL) and the HCyp51−/− runt livers. Arrowheads indicate ductular reaction and arrows apoptotic cells. 200x magnification. (c) Shown are representative cytokeratin 19 stained liver sections for 6-week, 9-week and runt mice. Arrows indicate ductular reactions. 200x magnification. CTRL – Cyp51+/+ mice.
and cancer-related pathways, based on their transcriptional profiles (Supplementary Fig. 2). This points to a system-wide deregulation in gene expression possibly stemming from altered transcriptional landscape. To evaluate this hypothesis, we employed transcription factor (TF) enrichment analysis, which indeed showed significant enrichment in the runt (176/250 TFs) and the adult 19-week H\(^{\text{Cyp51}^{-/-}}\) mice (113/250 TFs) (Table 2; Supplementary Table 4). In both cases RORC and RORA transcriptional activities were among the most downregulated (Fig. 5a–c). Reduced HNF4A activity also indicated metabolic downregulation, while elevated NRF2 and NFY activities indicate that a block in cholesterol synthesis could lead to ROS production\(^{19}\) and protein misfolding\(^{20}\). The Interactome tool\(^{21}\) for visualizing interactions between selected enriched TFs in runts contained no known interactions of RORC with other TFs (Fig. 6), suggesting its diminished activity may stem from other sources, such as the decreased availability of endogenous sterol ligands.

Sterol imbalance as a major hallmark of Cyp51 ablation. To assess the availability of natural sterol RORC ligands we measured cholesterol and its biosynthesis intermediates by GC/MS. Total cholesterol was diminished in 6-week H\(^{\text{Cyp51}^{-/-}}\) mice, but remained unchanged in runts. This was true also for esterified and free cholesterol (Fig. 7a). CYP51 substrate lanosterol (LAN) was increased 12- and 35-fold and 24,25-dihydrolanosterol (DHL) 800- and 6000-fold in 6-week H\(^{\text{Cyp51}^{-/-}}\) mice and runts, respectively (Fig. 7b). Conversely, the direct product of CYP51 demethylation, follicular fluid meiosis-activating sterol (FF-MAS), was decreased 2.6- and 2.1-fold in 6-week H\(^{\text{Cyp51}^{-/-}}\) mice and runts, respectively. Further downstream the pathway, zymosterol was decreased by 2.4- and 4.3-fold (Fig. 7b). Sterols between MAS and zymosterol (Fig. 7c) were recently proposed as strong RORC agonists\(^{11}\). Elevated levels of lathosterol and 7-dehydrocholesterol might support the existence of a shunt pathway, as previously proposed by us\(^{22,23}\) and others\(^{24}\). An overlapping transcriptional network of the hepatocyte Cyp51 and Rorc knockout mice. We next set out to evaluate the contribution of diminished RORC activity on the phenotype of H\(^{\text{Cyp51}^{-/-}}\) mice. We
applied the hepatocyte Rorc (HRorc−/−) mice and compared the transcriptome data between the two models. We found 50 DE genes separating HRorc−/− and control (CTRL) mice (Supplementary Table 2), where 11 had the same response as in runts (Fig. 8a, Supplementary Table 5) and 5 as in 19-week HCyp51−/− mice. Due to the known circa- dian nature of RORC, hepatocytes from the HRorc−/− mice were isolated at ZT7 (daytime RORC nadir) and ZT19 (night-time RORC zenith). TF enrichment of the transcriptome data expectedly showed increased night-time RORC activity only in the control mice since its (circadian) expression is dampened in HRorc−/− livers. From 1264 diurnal DE genes in control mice, 791 lost their rhythm due to RORC abolishment in the HRorc−/− mice and may be considered as potential RORC targets. Moreover, 105 genes from this list were positive for RORC binding based on Chip-seq results by Takeda et al.17 and a further 49 differentially expressed (mostly downregulated) in runts (Fig. 8b, Supplementary Table 5). FIDEA25 showed that these genes are primarily involved amino acid metabolism (Supplementary Tables 6 and 7).

Figure 5. Cyp51 ablation results in dampened RORA and RORC activities in livers of runt and adult mice. (a) A heatmap of RORA target gene expression as measured by microarrays between HCyp51−/− and control (CTRL) mice on the wild type background at different ages. Runts were compared to 6-week controls. Decreased expression (blue); increased expression (orange). n = 4 (HCyp51−/−; CTRL); n = 6 (runts). (b) A heatmap of RORC target genes as measured by microarrays between HCyp51−/− and control mice on the wild type background at different ages. Runts were compared to 6-week controls. n = 4 (HCyp51−/−; CTRL); n = 6 (runts). (c) Relative gene expression of Rora, Rorc and RORC target genes – Avpr1a and Lipc – as measured by RT-qPCR in CTRL, HCyp51−/− and runt mice (n > 8), at different ages, on the wild type or heterozygous Cyp51 background. Columns depict means and error bars represent SEM. *p < 0.1; *p < 0.05; ***p < 0.001; ****p < 0.0001.

Age-dependent sexual dimorphism in Cyp51−/− mice. The progressive increase in the number of DE genes between males and females (Supplementary Table 2) is in agreement with the current understanding that sex differences emerge from 4 weeks onward.1 The number of DE genes in response to Cyp51 disruption was consistently higher in HCyp51−/− females compared to the males (61/1 at 6 weeks; 1821/941 at 19 weeks). The initial response in 6-week HCyp51−/− females favoured apoptosis and ErbB signalling, pointing to enhanced liver damage...
and regeneration. At 19 weeks, decreased fatty and amino acid metabolism and enhanced inflammatory and cancer-related pathways were also underlined (Supplementary Table 3). Male sex seems to confer a higher risk for development of the disease phenotype (M:F = 2:1) only in runts. Despite this, runt males and females differed in only 23 genes that showed little to no sex-variation at other ages. The elevation of Casp12 indicating ER stress and activated unfolded protein response (UPR) represents a hallmark of male runts. TF enrichment also showed elevated activity of NFYs (p = 0.06) and other damage response factors (e.g. JUN, FOS). KEGG pathway enrichment showed better preservation of metabolism and milder inflammation in runt females.

Expression of RORA and RORC is sexually dimorphic with RORC being generally higher in males and RORA in females. The fall in transcriptional activity of both receptors was significantly higher in 19-week HCyp51−/− females, which correlates well with their reduced amino and fatty acid metabolism. These data further implicate ROR signalling as one of the sex-dependent metabolic regulators.

Discussion

While a major part of cholesterol synthesis is carried out by the liver, other organs contribute to the whole-body cholesterol pool resulting in viable phenotypes of the liver conditional knockouts. Histological and transcriptional changes in HCyp51−/− mice became visible at 6 weeks of age (Supplementary Fig. 3) likely due to cholesterol compensation during the initial 3-week nursing period. The switch to standard laboratory chow lacking cholesterol raises the need for its endogenous synthesis. As this is disrupted in the knockout livers, the result is a fall in plasma and liver cholesterol at 6 weeks that is remedied at later ages, and alterations of sterol metabolites. Surprisingly, nursing was not always able to prevent liver failure, as indicated by the appearance of HCyp51−/− runts.
Runts exhibited the strongest fall in Cyp51 levels. While the stability of Cyp51 mRNA and protein is estimated to be in line with other members of the cytochrome P450 family\(^{28,29}\), the elevated UPR in runts could lead to CYP51 protein misfolding and degradation. Additionally, increased removal of damaged hepatocytes and higher numbers of inflammatory cells that do not express Cyp51 could have contributed to these measurements. Liver damage in runts most likely started prior to weaning, as witnessed by one 3-week runt-like female. The normal hepatic cholesterol in runts could be explained by the steep fall in plasma HDL. Also based on the sterol profile of DHL to HDL ratio in runts could be explained by the steep fall in plasma HDL. Also based on the sterol profile of liver damage (Supplementary Fig. 4).

An interesting question is why is there such a large increase in DHL in runts as opposed to the other H\(^{\text{Cyp51}}\)−/− knockouts. In cell cultures, blocking CYP51 resulted in comprehensive LAN and DHL build-up with an almost complete replacement of cellular cholesterol\(^{37,38}\). Hepatic cholesterol intermediates (including LAN) generally correlate with their plasma concentration, but not in the case of DHL\(^{24}\). This suggested that DHL might be metabolized in a shunt pathway as most recently confirmed by us\(^{39}\), or might be exported to the bile, which still awaits experimental confirmation. The former option is enticing as it offers an explanation as to why we found no decrease in sterol intermediates immediately before their conversion to cholesterol in H\(^{\text{Cyp51}}\)−/− mice (e.g. desmosterol, 7-dehydrocholesterol). Conversion of DHL to one of the downstream intermediates from the Kandutsch-Russell branch of cholesterol synthesis could also explain the paradoxically increased lathosterol and 7-dehydrocholesterol in runts. Recently, it was also discovered that cholesterol biosynthesis intermediates act as ROR-γ ligands in Th17 cells\(^{11,12}\). Based on the current available evidence LAN and DHL could not serve as RORC agonists since a marked increase in RORC activity was observed upon Cyp51 overexpression that metabolizes both sterols\(^{11}\). In contrast, sterols downstream of LAN and DHL in the canonical pathway, as well as non-canonical sterols, such as metabolites of 7-dehydrocholesterol, showed specific agonist activity for RORC.

Reduced availability of sterols after the CYP51 block in livers of 19-week H\(^{\text{Cyp51}}\)−/− and runt mice resulted in diminished RORC activity that could contribute to a fall in the overall metabolic capacity (Supplementary Fig. 4). However, the redundancy of binding to ROR response element (RORE) that enables RORA and REV-ERBs to regulate the overlapping set of target genes\(^{37,40}\), as well as the overlap in regulation potential of other TFs (PPARs, LXR etc.) make the prediction of RORC-specific effects difficult. By applying H\(^{\text{Rorc}}\)−/− mice and comparing genes that lost diurnality upon Rorc ablation with genes that bind RORC in their regulatory regions, we were able to overcome this hurdle and pinpointed to RORC transcriptional targets, half of which are de-regulated also in H\(^{\text{Cyp51}}\)−/− runs. These data show that RORC abolishment, after inactivation of Cyp51, exerts its effects either by acting directly on gene expression, or by disrupting the normal circadian rhythmicity of metabolic pathways.

With the exception of runts, female H\(^{\text{Cyp51}}\)−/− mice exhibited a more prominent liver phenotype compared to males throughout their development. This may attribute to the reduced production of oestrogens with antioxidant activity directly on gene expression, or by disrupting the normal circadian rhythmicity of metabolic pathways.
and anti-fibrotic properties41, as well as to the diminished amino acid and lipid metabolism, corresponding to a stronger fall in RORA and RORC activities in 19-week HCyp51\1/2-/- females. Conversely, higher prevalence of runt males with dampened metabolism and increased UPR points to pre-pubertal protection of females. Liver thus responds to cholesterol synthesis block in a sex- and age-dependent manner. This is exemplified also in the hepatocyte Hmgcr-/- mice3, that similarly to HCyp51\1/2-/- runts, died by 5 weeks, with minor changes in plasma and liver cholesterol and an activated ER stress response. While the hepatocyte Hmgcr-/- knockout was lethal in males, 30% of females survived for up to a year, reflecting a similar sexual dimorphism as observed in HCyp51\1/2-/- runts.

In summary, we provide evidence that cholesterol synthesis disruption reduces RORC activity \textit{in vivo}, likely due to the lack of endogenous sterol ligands. We also show that during development towards adulthood female and male livers differ in their susceptibility to the cholesterol synthesis block, where dampened ROR signalling and decreased metabolism likely contribute to this progressive liver disease.
Methods

Ethics Statement. Mice experiments were performed in compliance with the current guidelines and regulations. In the case of Cyp51 mice, they were approved by the Veterinary Administration of the Republic of Slovenia (license numbers 34401-31/2011/4 and 34401-52/2012/3) and were conducted in agreement with the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (ETS 123) as well as with the guidelines for work with laboratory animals by the National Institute of Health. In the case of Rorc mice, experiments were performed in accordance with protocols approved by the Institutional Animal Care and Use Committee of the NYU School of Medicine.

Animals. Hepatocyte Cyp51 knockout mice were prepared by crossbreeding Cyp51flox/flox or Cyp51flox with Alb-Cre mice to generate hepatocyte specific Cyp51−/− mice on a wild type (Cyp51flox/flox Alb-Cre; designated as Cyp51−/− H19p51−/−) and heterozygous (Cyp51−/− Alb-Cre; designated as Cyp51−/− H19p51−/−) background4,42, Cyp51flox/flox (Cyp51−/+) and heterozygous Cyp51−/−flox (Cyp51−/+) mice were used as controls27. Mice were euthanized at different time points during development – 0, 3, 6, 9 and 19 weeks. Blood and liver were collected for biochemical and histological analyses.
Hepatocyte Rorc knockout mice (HRorc−/−) were prepared by crossbreeding Rorclox/lox and Alb-Cre mice. Hepatocytes were isolated from 12–13 week old mice at ZT7 and ZT19 using the two-step collagenase perfusion method.

Histology. Formalin-fixed and paraffin-embedded liver sections were cut at 5 μm and stained with hematoxylin and eosin for general histological evaluation or with Sirius red to assess collagen deposition.

Biochemical analyses. Plasma parameters (cholesterol, ALT, AST, bilirubin) were measured using commercially available kits. Liver sterols were evaluated by coupled gas spectrometry/mass spectrometry as previously described25. Total proteins and RNA was isolated from frozen liver samples.

Microarray-based gene expression profiling. Affymetrix GeneChipR Mouse Gene 2.0 ST arrays were used to conduct gene expression profiling on Cyp51+/+ and Cyp51\textsuperscript{HapoE−/−} mice of both sexes, aged 3, 6, 19 weeks and runts (30 samples). Gene expression analysis was done in R using Bioconductor packages limma and PGSEA. Gene sets for enrichment analysis were taken from the KEGG and TRANSFAC databases.

RNA Sequencing. Libraries were prepared using the Illumina TruSeq Stranded Total RNA library prep, with Ribozero Gold, starting from 500 ng of total RNA and loaded on high output HiSeq 2500 flow cells. RNA alignments were performed using STAR and reads mapping to exons counted using featureCounts. Counts were normalized in R using the DESeq2 package.

Detailed protocols can be found in the supplementary information file.

References

1. Conforto, T. L. & Waxman, D. J. Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-natal period to young adulthood. *Biol Sex Differ* 3, 9 (2012).
2. Clodfelter, K. H. et al. Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. *Mol Endocrinol* 20, 1533–1551 (2006).
3. Gordillo, M., Evans, T. & Gouon-Evans, V. Orchestrating liver development. *Development* 142, 2094–2108 (2015).
4. Tint, G. S., Yu, H., Shang, Q., Xu, G. & Patel, S. B. The use of the Dicer7 knockout mouse to accurately determine the origin of fetal sterols. *J Lipid Res* 47, 1535–1541 (2006).
5. Dietschy, J. M. & Turley, S. D. Control of cholesterol turnover in the mouse. *J Biol Chem* 277, 3801–3804 (2002).
6. Horvat, S., McWhir, J. & Rozman, D. Defects in cholesterol synthesis genes in mouse and in humans: lessons for drug development and safer treatments. *Drug Metab Rev* 43, 69–90 (2011).
7. Nagashima, S. et al. Liver-specific deletion of 3-hydroxy-

8. Lorbek, G. et al. Identification of natural RORgamma ligands that regulate the development of lymphoid cells. *Cell Metab* 21, 286–297 (2015).
9. Santori, F. R. et al. Identification of natural RORgamma ligands that regulate the development of lymphoid cells. *Cell Metab* 21, 286–297 (2015).
10. Group, S. et al. Detailed protocols can be found in the supplementary information file.
Progressive Liver Injury in the Developing Mouse and Decreases RORC Signalling.

Disrupting Hepatocyte

Author Contributions

Acknowledgements

Additional Information

How to cite this article: Urlep, Z. et al. Disrupting Hepatocyte Cyp51 from Cholesterol Synthesis Leads to Progressive Liver Injury in the Developing Mouse and Decreases RORC Signalling. Sci. Rep. 7, 40775; doi: 10.1038/srep40775 (2017).
