THE LOGARITHMIC SOBOLEV INEQUALITY FOR A SUBMANIFOLD IN MANIFOLD WITH NONNEGATIVE SECTIONAL CURVATURE

Chengyang Yi ∗ Yu Zheng †

Abstract

We prove a sharp logarithmic Sobolev inequality which holds for compact submanifolds without boundary in Riemannian manifold with nonnegative sectional curvature of arbitrary dimension and codimension, while the ambient manifold needs to have a specific Euclid-like property. Like the Michael-Simon Sobolev inequality, this inequality includes a term involving the mean curvature. This extends a recent result of S. Brendle with Euclidean setting.

1 Introduction

In 2019, S. Brendle [1] proved a Sobolev inequality which holds on submanifolds in Euclidean space of arbitrary dimension and codimension. The inequality is sharp if the codimension is at most 2. Soon, he [2] proved a sharp logarithmic Sobolev inequality which holds on submanifolds in Euclidean space of arbitrary dimension and codimension at the same year. In 2020, he [3] extended the result of the Sobolev inequality to Riemannian manifolds with nonnegative curvature which gives the asymptotic volume ratio due to the Bishop-Gromov volume comparison theorem. Inspired by [3], we extend the result of the logarithmic Sobolev inequality to ambient Riemannian manifolds with nonnegative sectional curvature under an assumption.

Let M be a complete noncompact Riemannian manifold of dimension k. We say M satisfies the condition (P), if there is a point $p \in M$ such that the following limit exists and is positive.

$$\lim_{r \to \infty} \left((4\pi)^{-\frac{k}{2}} r^{-k} \int_M e^{-\frac{4\pi r^2}{4\pi} dvol(x)} \right).$$

We denote the limit by θ. Note that the limit is equal to 1 when $M = \mathbb{R}^k$. So we call it a specific Euclid-like property. We have the following result

Theorem 1.1. Let M be a complete noncompact Riemannian manifold of dimension $n+m$ with nonnegative sectional curvature and satisfies the condition (P). Let Σ be a compact n-dimension submanifold of M without boundary, and let f be a positive smooth function on Σ. Then

$$\int_{\Sigma} f \left(\log f + \frac{n}{2} \log(4\pi) + \log \theta \right) dvol - \int_{\Sigma} \left| \nabla^\Sigma f \right|^2 dvol - \int_{\Sigma} f |H|^2 dvol \leq \int_{\Sigma} \log \left(\int_{\Sigma} f dvol \right).$$

∗School of Mathematical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. of China E-mail address: 52195500013@stu.ecnu.edu.cn.
†School of Mathematical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. of China E-mail address: zhyu@math.ecnu.edu.cn.
where H denotes the mean curvature vector of Σ.

Recall the paraboloid of revolution $\Gamma : \mathbb{R}^2 (u, v) = (u \cos v, u \sin v, \frac{1}{2}au^2)$ with $u \in [0, \infty)$ and $v \in [0, 2\pi)$, where a is a positive constant. We find that it also satisfies the condition (P). Moreover $\theta = 2$ which is independent on a. It’s amazing! And we have the result

Corollary 1.2. Let γ be a smooth closed curve on Γ, and let f be a positive smooth function on γ. Then

$$
\int_{\gamma} f \left(\log f + 1 + \frac{1}{2} \log(4\pi) + \log 2 \right) d\text{vol} - \int_{\gamma} \frac{|\nabla f|^2}{f} d\text{vol} - \int_{\gamma} f |\kappa_n|^2 d\text{vol}
$$

where κ_n denotes the geodesic normal curvature of γ with respect to Γ.

However, cylinder $S^1 \times \mathbb{R}$ doesn’t satisfy the condition (P) in spite of $\theta = 0$.

The logarithmic Sobolev inequality has been studied by numerous authors (see e.g. [6–10]). Our proof of theorem 1.1 is in the spirit of ABP-techniques in [2]. ABP-techniques have been applied to various classes of linear and nonlinear elliptic equations in the Euclidean space for a long time. Due to some difficulties, it was not until 1997 that Cabré [4] developed them to Riemannian manifolds.

2 Preliminaries

Let’s talk about the condition (P) first.

Proposition 2.1. Let M be a complete noncompact Riemannian manifold of dimension k, then the following are equivalent:

(a) There exists a point $p \in M$ such that the limit

$$
\lim_{r \to \infty} \left(4\pi \right)^{-\frac{k}{2}} r^{-k} \int_M e^{-\frac{d(x,p)^2}{4r^2}} d\text{vol}(x)
$$

exists.

(b) The limit

$$
\lim_{r \to \infty} \left(4\pi \right)^{-\frac{k}{2}} r^{-k} \int_M e^{-\frac{d(x,p)^2}{4r^2}} d\text{vol}(x)
$$

exists for every $p \in M$.

(c) For any compact subset $K \subset M$ and for any Borel map $p : M \to K$, the limit

$$
\lim_{r \to \infty} \left(4\pi \right)^{-\frac{k}{2}} r^{-k} \int_M e^{-\frac{d(x,p(x))^2}{4r^2}} d\text{vol}(x)
$$

exists.

Moreover, both of these limits are the same one if exist.

Proof. Clearly, (b) \Rightarrow (a) and (c) \Rightarrow (b) are trivial. It remains to show (a) \Rightarrow (c). We assume that there exists a point $p_0 \in M$ such that the limit

$$
\lim_{r \to \infty} \left(4\pi \right)^{-\frac{k}{2}} r^{-k} \int_M e^{-\frac{d(x,p_0)^2}{4r^2}} d\text{vol}(x)
$$
exists and equals to \(\theta \). Given a compact subset \(K \subset M \) and a Borel map \(p : M \to K \). We define a positive constant

\[
C := \sup \{ d(p_0, p(x)) : x \in M \}.
\]

For any fixed \(\varepsilon > 0 \) sufficiently small, note that

\[
\frac{d(x, p(x))^2}{4\pi^2} = -\frac{d(x, p_0)^2}{4\pi^2} + \frac{d(x, p(x))^2}{4\pi^2} \geq \frac{d(x, p_0)^2}{4\pi^2} \left(1 + \frac{d(p_0, p(x))}{d(x, p_0)} \right)^2 \geq \frac{d(x, p_0)^2}{4\pi^2} (1 + C\varepsilon)^2
\]

for all \(x \in M \setminus B_{\varepsilon^{-1}}(p_0) \). Similarly, we have

\[
\frac{d(x, p(x))^2}{4\pi^2} \leq \frac{d(x, p_0)^2}{4\pi^2} (1 - C\varepsilon)^2
\]

for all \(x \in M \setminus B_{\varepsilon^{-1}}(p_0) \). Thus,

\[
\frac{1}{r^k} \int_{M \setminus B_{\varepsilon^{-1}}(p_0)} e^{-\frac{d(x, p_0)^2}{4\pi^2}} (1 + C\varepsilon)^2 \, d\text{vol}(x) \leq \frac{1}{r^k} \int_{M \setminus B_{\varepsilon^{-1}}(p_0)} e^{-\frac{d(x, p_0)^2}{4\pi^2}} \, d\text{vol}(x) \leq \frac{1}{r^k} \int_{M \setminus B_{\varepsilon^{-1}}(p_0)} e^{-\frac{d(x, p_0)^2}{4\pi^2} (1 - C\varepsilon)^2} \, d\text{vol}(x).
\]

It’s easy to see that

\[
\lim_{r \to \infty} \left(4\pi \right)^{-\frac{k}{2}} r^{-k} \int_{B_{\varepsilon^{-1}}(p_0)} e^{-\frac{d(x, p_0)^2}{4\pi^2}} \, d\text{vol}(x) = 0
\]

and

\[
\lim_{r \to \infty} \left(4\pi \right)^{-\frac{k}{2}} r^{-k} \int_{M \setminus B_{\varepsilon^{-1}}(p_0)} e^{-\frac{d(x, p_0)^2}{4\pi^2} (1 - C\varepsilon)^2} \, d\text{vol}(x) = 0.
\]

From the assumption, we have

\[
\lim_{r \to \infty} \left(4\pi \right)^{-\frac{k}{2}} r^{-k} \int_{M \setminus B_{\varepsilon^{-1}}(p_0)} e^{-\frac{d(x, p_0)^2}{4\pi^2} (1 + C\varepsilon)^2} \, d\text{vol}(x) = (1 + C\varepsilon)^{-k} \theta
\]

and

\[
\lim_{r \to \infty} \left(4\pi \right)^{-\frac{k}{2}} r^{-k} \int_{M \setminus B_{\varepsilon^{-1}}(p_0)} e^{-\frac{d(x, p_0)^2}{4\pi^2} (1 - C\varepsilon)^2} \, d\text{vol}(x) = (1 - C\varepsilon)^{-k} \theta.
\]

Combining with

\[
(4\pi)^{-\frac{k}{2}} r^{-k} \int_{M \setminus B_{\varepsilon^{-1}}(p_0)} e^{-\frac{d(x, p_0)^2}{4\pi^2} (1 + C\varepsilon)^2} \, d\text{vol}(x) + (4\pi)^{-\frac{k}{2}} r^{-k} \int_{B_{\varepsilon^{-1}}(p_0)} e^{-\frac{d(x, p_0)^2}{4\pi^2} (1 - C\varepsilon)^2} \, d\text{vol}(x)
\]

\[
\leq (4\pi)^{-\frac{k}{2}} r^{-k} \int_{M \setminus B_{\varepsilon^{-1}}(p_0)} e^{-\frac{d(x, p_0)^2}{4\pi^2}} \, d\text{vol}(x)
\]

\[
\leq (4\pi)^{-\frac{k}{2}} r^{-k} \int_{M \setminus B_{\varepsilon^{-1}}(p_0)} e^{-\frac{d(x, p_0)^2}{4\pi^2}} \, d\text{vol}(x) + (4\pi)^{-\frac{k}{2}} r^{-k} \int_{B_{\varepsilon^{-1}}(p_0)} e^{-\frac{d(x, p_0)^2}{4\pi^2} (1 - C\varepsilon)^2} \, d\text{vol}(x),
\]

(c) follows from a standard \(\varepsilon - \delta \) discussion. \(\Box \)
3 Proof of Theorem 1.1

Recall the definition of the second fundamental form II of Σ with respect to M:

$$\langle II(X,Y), V \rangle = \langle \bar{D} X Y, V \rangle = -\langle \bar{D} X V, Y \rangle,$$

where X,Y are tangent vector fields, V is a normal vector field and \bar{D} denotes the connection on M. Moreover, the mean curvature vector H is defined as the trace of the second fundamental form II.

We now give the proof of Theorem 1.1. We first consider the special case that Σ is connected. By scaling, we may assume that

$$\int_\Sigma f \log f \, d\text{vol} - \int_\Sigma |\nabla \Sigma f|^2 \, f \, d\text{vol} - \int_\Sigma f |H|^2 \, d\text{vol} = 0.$$

From functional analysis and standard elliptic theory, we can find a smooth function $u : \Sigma \to \mathbb{R}$ such that

$$\text{div}_\Sigma (f \nabla^\Sigma u) = f \log f - |\nabla \Sigma f|^2 - |H|^2.$$

In the following, we fix a positive number r. We denote the contact set

$$A = \{(\bar{x}, \bar{y}) \in T^\perp \Sigma : ru(\bar{x}) + \frac{1}{2} d(\bar{x}, \exp_{\bar{x}}(r \nabla^\Sigma u(\bar{x}) + r \bar{y}))^2 \geq ru(\bar{x}) + \frac{1}{2} r^2 (|\nabla^\Sigma u(\bar{x})|^2 + |\bar{y}|^2), \forall x \in \Sigma\}.$$

Moreover, we define a map $\Phi : T^\perp \Sigma \to M$ by

$$\Phi(x, y) = \exp_x (r \nabla^\Sigma u(x) + ry)$$

for all $(x, y) \in T^\perp \Sigma$.

Lemma 3.1. Suppose that $(\bar{x}, \bar{y}) \in A$, then

$$d(\bar{x}, \Phi(\bar{x}, \bar{y}))^2 = r^2 (|\nabla^\Sigma u(\bar{x})|^2 + |\bar{y}|^2).$$

Proof. Let $\bar{\gamma}(t) := \exp_x (rt \nabla^\Sigma u(\bar{x}) + r\bar{y})$ for $t \in [0, 1]$. From the definition of A, we have

$$ru(\bar{x}) + \frac{1}{2} d(\bar{x}, \exp_x (r \nabla^\Sigma u(\bar{x}) + r\bar{y}))^2 \geq ru(\bar{x}) + \frac{1}{2} r^2 (|\nabla^\Sigma u(\bar{x})|^2 + |\bar{y}|^2).$$

Thus, $d(\bar{x}, \Phi(\bar{x}, \bar{y}))^2 \geq r^2 (|\nabla^\Sigma u(\bar{x})|^2 + |\bar{y}|^2)$. On the other hand,

$$r^2 (|\nabla^\Sigma u(\bar{x})|^2 + |\bar{y}|^2) = |\bar{\gamma}'(0)|^2 = \left(\int_0^1 |\bar{\gamma}'(t)| \, dt\right)^2 \geq d(\bar{x}, \Phi(\bar{x}, \bar{y}))^2.$$

Then, the lemma follows.

Lemma 3.2. $\Phi(A) = M$.

Proof. Fix a point $p \in M$. Since Σ is compact without boundary, the function $x \mapsto ru(x) + \frac{1}{2} d(x, p)^2$ must attain its minimum at some point denoted by \bar{x} on Σ. Moreover, we can find
a minimizing geodesic \(\tilde{\gamma} : [0, 1] \to M \) such that \(\tilde{\gamma}(0) = \bar{x} \) and \(\tilde{\gamma}(1) = p \). For every path \(\gamma : [0, 1] \to M \) satisfying \(\gamma(0) \in \Sigma \) and \(\gamma(1) = p \), we obtain

\[
\begin{align*}
ru(\gamma(0)) + E(\gamma) & \geq ru(\gamma(0)) + \frac{1}{2}d(\gamma(0), p)^2 \\
& \geq ru(\bar{x}) + \frac{1}{2}d(\bar{x}, p)^2 \\
& = ru(\bar{\gamma}(0)) + \frac{1}{2}|\gamma'(0)|^2 \\
& = ru(\bar{\gamma}(0)) + E(\bar{\gamma}),
\end{align*}
\]

where \(E(\gamma) \) denotes the energy of \(\gamma \). In other words, the path \(\gamma \) minimizes the functional \(ru(\gamma(0)) + E(\gamma) \) among all paths \(\bar{\gamma} : [0, 1] \to M \) satisfying \(\bar{\gamma}(0) \in \Sigma \) and \(\bar{\gamma}(1) = p \). Hence, the formula for the first variation implies

\[
\bar{\gamma}'(0) - r\nabla^\Sigma u(\bar{x}) \in T_x^\perp \Sigma.
\]

Consequently, we can find a vector \(\bar{y} \in T_x^\perp \Sigma \) such that

\[
\bar{\gamma}'(0) = r\nabla^\Sigma u(\bar{x}) + r\bar{y}.
\]

It remains to show \((\bar{x}, \bar{y}) \in A \). For each point \(x \in \Sigma \), we have

\[
ru(x) + \frac{1}{2}d\left(x, \exp_x\left(r\nabla^\Sigma u(\bar{x}) + r\bar{y}\right)\right)^2 = ru(x) + \frac{1}{2}d(x, p)^2
\]

\[
\geq ru(\bar{x}) + \frac{1}{2}d(\bar{x}, p)^2
\]

\[
= ru(\bar{\gamma}(0)) + \frac{1}{2}|\gamma'(0)|^2
\]

\[
= ru(\bar{\gamma}(0)) + E(\bar{\gamma}),
\]

\[
\Box
\]

Lemma 3.3. Suppose that \((\bar{x}, \bar{y}) \in A \), and let \(\tilde{\gamma}(t) := \exp_x\left(rt\nabla^\Sigma u(\bar{x}) + rt\bar{y}\right) \) for \(t \in [0, 1] \). If \(Z \) is a vector field along \(\tilde{\gamma} \) satisfying \(Z(0) \in T_{A} \Sigma \) and \(Z(1) = 0 \), then

\[
\begin{align*}
ru(D_2^2 u(Z(0), Z(0))) - r\langle \nabla^\Sigma u(\bar{x}), \bar{y}\rangle
+ \int_0^1 \left(|D_t Z(t)|^2 - R(\tilde{\gamma}'(t), Z(t), \tilde{\gamma}'(t), Z(t)) \right) dt & \geq 0.
\end{align*}
\]

Lemma 3.4. Suppose that \((\bar{x}, \bar{y}) \in A \). Then \(g + rD_2^2 u(\bar{x}) - r\langle \nabla^\Sigma u(\bar{x}), \bar{y}\rangle \geq 0 \).

Lemma 3.5. Suppose that \((\bar{x}, \bar{y}) \in A \), and let \(\tilde{\gamma}(t) := \exp_x\left(rt\nabla^\Sigma u(\bar{x}) + rt\bar{y}\right) \) for \(t \in [0, 1] \). Moreover, let \(\{e_1, \ldots, e_n\} \) be an orthonormal basis of \(T_{A} \Sigma \). Suppose that \(W \) is a Jacobi field along \(\tilde{\gamma} \) satisfying \(W(0) \in T_{A} \Sigma \) and \(\langle D_t W(0), e_j\rangle = r\langle D_2^2 u(W(0), e_j) - r\langle \nabla^\Sigma u(\bar{x}), \bar{y}\rangle \rangle \) for each \(1 \leq j \leq n \). If \(W(\tau) = 0 \) for some \(0 < \tau < 1 \), then \(W \) vanishes identically.

Lemma 3.6. The Jacobian determinant of \(\Phi \) satisfies

\[
|\det \Phi (x, y)| \leq r^m \det (g + rD_2^2 u(x) - r\langle \nabla^\Sigma u(\bar{x}), \bar{y}\rangle)
\]

for all \((x, y) \in A \).

The proofs of Lemma 3.3-3.6 are identical to Lemma 2.1-2.3 and Lemma 2.5 in [3] respectively. We omit them.

Lemma 3.7. The Jacobian determinant of \(\Phi \) satisfies

\[
e^{-\frac{(x-x_0)(y-y_0)^2}{4r^2}}|\det \Phi (x, y)| \leq r^{n+m} f(x) e^{-n - \frac{(x-x_0)^2 + (y-y_0)^2}{4}}
\]

for all \((x, y) \in A \).
Proof. Given a point \((x, y) \in A\). Using the identity \(\div \big(f\nabla^\Sigma u \big) = f \log f - \frac{\| \nabla^\Sigma u \|^2}{f} - |H|^2 \), we have
\[
\Delta^\Sigma u(x) - \langle H(x), y \rangle = E \log f(x) - E \frac{\| \nabla^\Sigma u(x) \|^2}{f(x)} - |H(x)|^2
- \frac{\| \nabla^\Sigma u(x) \|^2}{2f(x)} - \langle H(x), y \rangle
\]
\[
= \log f(x) + \frac{\| \nabla^\Sigma u(x) \|^2}{4f(x)} - \frac{\| \nabla^\Sigma u(x) \|^2}{4f(x)} - |2H(x)+y|^2.
\]
Using Lemma 3.4, Lemma 3.6 and the elementary inequality \(\lambda \leq e^{\lambda - 1} \), we have
\[
|\det D\Phi(x, y)| \leq r^{n} \log (g + r D^2 \Phi(x) - rH(x, y))
\]
\[
= r^{n+m} \det (\frac{\partial}{\partial y} + D^2 \Phi(x) - (n+1)(x, y))
\]
\[
\leq r^{n+m} e^{\log f(x) + \| \nabla^\Sigma u(x) \|^2/2} - |2H(x)+y|^2
\]
\[
= r^{n+m} f(x) e^{-n} e^{-|2H(x)+y|^2/4} e^{\log f(x)}.
\]
The lemma follows. \(\square\)

By Lemma 3.2, for any fixed \(p \in M \), we choose some point \((x(p), y(p)) \in A\) arbitrarily such that \(\Phi(x(p), y(p)) = p \). Using Lemma 3.2, Lemma 3.7 and area formula [5], we have
\[
\int_M e^{-\frac{d(x, y)^2}{4f}} d\vol(p) \leq \int_M \left(\int_{\Phi^{-1}(p)} e^{-\frac{d(x, y)^2}{4f}} d\mathcal{H}^0 \right) d\vol(p)
\]
\[
= \int_{\Sigma} \left(\int_{\Sigma_1} e^{-\frac{d(x, y)^2}{4f}} |\det D\Phi(x, y)| d\vol(x, y) dy \right) d\vol(x)
\]
\[
\leq \int_{\Sigma} \left(\int_{\Sigma_1} r^{n+m} f(x) e^{-n} e^{-|2H(x)+y|^2/4} d\vol(x, y) dy \right) d\vol(x)
\]
\[
= \int_{\Sigma} \left(\int_{\Sigma_1} r^{n+m} f(x) e^{-n} e^{-|2H(x)+y|^2/4} dy \right) d\vol(x)
\]
where \(\mathcal{H}^0 \) denotes the counting measure. Using Proposition 2.1, we can divide by \(r^{n+m} \) and send \(r \to \infty \) since \(M \) satisfies the condition (P). This gives
\[
(4\pi)^{n+m} \theta \leq e^{-n} \int_{\Sigma} f(x) d\vol(x).
\]
Consequently,
\[
n + \frac{n}{2} \log (4\pi) + \log \theta \leq \log \left(\int_{\Sigma} f d\vol \right).
\]
Combining this inequality with the normalization
\[
\int_{\Sigma} f \log f d\vol - \int_{\Sigma} \frac{\| \nabla^\Sigma f \|^2}{f} d\vol - \int_{\Sigma} f |H|^2 d\vol = 0
\]
gives
\[
\int_{\Sigma} \left(f \log f + \frac{n}{2} \log(4\pi) + \log \theta \right) d\vol - \int_{\Sigma} \frac{\| \nabla^\Sigma f \|^2}{f} d\vol - \int_{\Sigma} f |H|^2 d\vol
\]
\[
= \left(\int_{\Sigma} f d\vol \right) \log \left(\int_{\Sigma} f d\vol \right).
\]
It remains to consider the case when Σ is disconnected. For completeness, we list Brendle’s proof. In that case, we apply the inequality to each individual connected component of Σ, and sum over all connected components. Since
\[
a \log a + b \log b < a \log (a+b) + b \log (a+b) = (a+b) \log (a+b)
\]
for $a, b > 0$, we conclude that
\[
\int_{\Sigma} f \left(\log f + n + \frac{n}{2} \log(4\pi) + \log \theta \right) d\text{vol} - \int_{\Sigma} |\nabla f|^2 d\text{vol} - \int_{\Sigma} f |H|^2 d\text{vol}
\]
for Σ disconnected. This completes the proof of Theorem 1.1.

4 Proof of Corollary 1.2

By computing, the volume form $d\text{vol}(u,v)$ is equal to $u \sqrt{1 + a^2 u^2} du dv$, and the intrinsic distance from the Origin to the point $p(u,v)$ satisfies
\[
d(O, p(u,v)) = \int_0^u \sqrt{1 + a^2 t^2} dt = \frac{u}{2} \sqrt{1 + a^2 u^2} + \frac{1}{2a} \ln (au + \sqrt{1 + a^2 u^2}).
\]
So we have
\[
\int_{\Gamma} e^{-\frac{d(O, p(u,v))^2}{4r^2}} d\text{vol}(u,v) = 2\pi \int_0^\infty e^{-\frac{A(u)^2}{4r^2}} u \sqrt{1 + a^2 u^2} du,
\]
where $A(u) = d(O, p(u,v))$. Since $u \leq 2A(u)$ for all $u \geq 0$, we have
\[
\int_0^\infty e^{-\frac{A(u)^2}{4r^2}} u \sqrt{1 + a^2 u^2} du \leq \int_0^\infty e^{-\frac{A(u)^2}{4r^2}} 2A(u) \sqrt{1 + a^2 u^2} du = \int_0^\infty e^{-\frac{A(u)}{r}} du = 4r^2.
\]
Note that $\lim_{u \to 0^+} A(u) = \frac{1}{2} u$. Thus, for any $\varepsilon > 0$, we can find a positive number $\delta = \delta(\varepsilon)$ such that $u \geq \frac{2}{1+\varepsilon} A(u)$ for all $u \in [0, \delta]$. So we have
\[
\int_0^\infty e^{-\frac{A(u)^2}{4r^2}} u \sqrt{1 + a^2 u^2} du \geq \int_0^{\delta} e^{-\frac{A(u)^2}{4r^2}} u \sqrt{1 + a^2 u^2} du \geq \frac{2}{1+\varepsilon} \int_0^{\delta} e^{-\frac{A(u)^2}{4r^2}} A(u) \sqrt{1 + a^2 u^2} du = \frac{4r^2}{1+\varepsilon} \int_0^{\delta} e^{-t} dt = \frac{4r^2}{1+\varepsilon} (1 - e^{-\frac{\delta}{r}}).
\]
And we can find a positive number $N = N(\varepsilon)$ such that $e^{-\frac{A(u)^2}{4r^2}} < \varepsilon$ for all $r > N$. From standard $\varepsilon - \delta$ language, we can conclude that $\theta = 2$. Using Theorem 1.1, the corollary follows.

5 Acknowledgement

The first named author thanks Professor Yu Zheng and his classmate Yukai Sun for helpful discussions.
References

[1] S. Brendle, *The isoperimetric inequality for a minimal submanifold in Euclidean space*, Preprint, available at arXiv:1907.09446.

[2] S. Brendle, *The Logarithmic Sobolev Inequality for a Submanifold in Euclidean Space*, [J]. Communications on Pure and Applied Mathematics, 2020.

[3] S. Brendle, *Sobolev inequalities in manifolds with nonnegative curvature*, Preprint, available at arXiv:2009.13717v4.

[4] X. Cabré, *Nondivergent elliptic equations on manifolds with nonnegative curvature*, [J]. Communications on Pure and Applied Mathematics, 1997, 50(7):623-665.

[5] F. Morgan, *Geometric Measure Theory*, [M]. Springer, 1969.

[6] L. Gross, *Logarithmic Sobolev Inequalities*, [J]. American Journal of Mathematics, 1976, 97(4):1061.

[7] M. Ledoux, *Concentration of measure and logarithmic Sobolev inequalities*, [J]. Lecture Notes in Mathematics -Springer-verlag-, 1999, 1709:120-216.

[8] M. Fathi, E. Indrei, M. Ledoux, *Quantitative logarithmic Sobolev inequalities and stability estimates*, [J]. Discrete and Continuous Dynamical Systems - Series A (DCDS-A), 2017, 36(12):6835-6853.

[9] M. Chen, *Logarithmic Sobolev inequality for symmetric forms*, [J]. Science in China Ser A, 2000, 43(006):601-608.

[10] F. Wang, *Logarithmic Sobolev inequalities for diffusion Processes with application to path space*, [J]. Chinese Journal of Applied Probability and Statistics, 1996, 12(3).