Data in Brief

Human pluripotent stem cell-derived cardiomyocytes: Genome-wide expression profiling of long-term in vitro maturation in comparison to human heart tissue

Ilaria Piccinia, Jyoti Rao, Guiscard Seebohm, Boris Greber

Abstract

Cardiomyocyte-like cells (CMs) derived from human pluripotent stem cells (hPSCs) present a valuable model for human disease modeling, studying early human development and, potentially, developing cell therapeutic approaches. However, the specification of early hPSC-derived CMs into defined cardiac subtypes such as atrial and ventricular cells is not well understood and, thus, poorly controlled. Moreover, the maturation status of hPSC-CMs is not well defined, yet it is known that these cells undergo at least some degree of maturation upon longer term in vitro culture. To gain insight into this process, and to assess their developmental status, we have recently generated a data set of hPSC-CMs monitoring global changes in gene expression upon long term maintenance in vitro, in comparison to human atrial and ventricular heart samples (GEO accession number GEO: GSE64189). These data present a rich resource for evaluating the maturation status of hPSC-CMs, for identifying suitable markers for subtype-specific gene expression, as well as for the generation of functional hypotheses. Here, we provide additional details and quality checks of this data set, and exemplify how it can be used to identify maturation-associated as well as cardiac subtype-specific markers.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Human heart samples. RNA samples from left and right atrial ap- pendages have been previously described [4]. RNA samples were pooled from six independent patients per tissue type. The human left and right ventricular RNA samples were from a commercial supplier (Biocat #R1234138‐50‐BC and #R1234139‐50‐BC, respectively).

500 ng of total RNA from each biological sample was used as input for the generation of biotin-labeled cRNA using an Illumina® TotalPrep™ RNA amplification kit (Life Technologies). Following the manufacturer’s instructions, in vitro transcription of double-stranded cDNA was performed for 14 h, in a PCR cycler. Purified biotin-labeled cRNA was eluted in a volume of 100 μl and quality-checked on a 2100 Bioanalyzer device (Agilent Technologies). cRNA samples were adjusted to 150 ng/μl in water, and hybridized onto Illumina HumanHT-12 v4 bead arrays following the manufacturer’s instructions throughout. Hybridization was carried out at 58 °C for 18 h. Staining with streptavidin-Cy3 (GE Healthcare #PA43001) was carried out as recommended, at a concentration 1 μg/ml in blocking buffer. Dried bead arrays were scanned on a HiScan SQ device (Illumina) using default settings.

Technical and biological data quality assessment

Scanned images were confirmed to show an overall clean fluorescence spot morphology with high signal-to-noise ratio, and array data were confirmed to display an average P95 intensity of > 800 (a.u.). Inspection of raw data in GenomeStudio suggested an overall high hybridization stringency, according to internal mismatch control probes, and no major hybridization artifacts. Following these routine checks, all separately hybridized samples were background-subtracted and normalized using the cubic spline algorithm in GenomeStudio. This revealed a high degree of similarity between the left/right human heart samples, suggesting that they could be combined in silico. To assess overall human heart-specific gene expression regardless of chamber-specific differences, data was additionally analyzed by combining all human atrial and ventricular samples using GenomeStudio software.

As a biological quality control step, known markers were used to assess differential gene expression between the distinct types of samples. In line with the expectations, hPSC-specific genes OCT4, NANOG and SOX2 were only expressed in the undifferentiated (0 week) cells. Conversely, structural cardiac markers (MYH6, MYL4, MYL7) were indeed only expressed in the differentiated samples and not in the undifferentiated cells (Fig. 1A, left). Focusing on gene expression changes upon long-term in vitro culture, maturation markers such as MYL2 and MYH7 were upregulated in the late (8 weeks) samples, whereas markers of immature hPSC-CMs were indeed overrepresented in the early (1 week) samples (Fig. 1A, middle). As supported by functional assays [3], however, there were only marginal differences between 4 weeks and 8 week-old hPSC-CMs, suggesting that the cells reach a rather stable transcriptomic state from approximately 4 weeks onwards (Fig. 1A, right). Furthermore, the expression pattern of the pan-cardiac marker ACTC1 (cardiac muscle alpha actin) served to indicate an overall stable cardiomyocyte signature in all differentiated samples (1 to 8 weeks, Fig. 1B).

Fig. 1. Biological quality assessment. (A) Scatter plot analysis (power scale) of early hPSC-CMs versus undifferentiated hPSCCs (left), late vs. early hPSC-CMs (middle), and 8 week vs. 4 week-old hPSC-CMs (right). Linear correlation coefficients are provided as a measure for global transcriptome similarity. Blue colored dots indicate data points of known marker genes. See text for discussion. (B) ACTC1 as a pan-cardiac marker is expressed at similar levels in all differentiated in vitro samples (from 1 week onwards). Error bars indicate standard deviation extracted from GenomeStudio.

Fig. 2. Comparison of adult human atrial and ventricular tissue (scatter plot of combined left/right samples). Selected marker genes are highlighted by colored dots. Note that MYL7 (MLC2v) is also highly expressed in ventricular tissue.
Basic data analysis

A comparison of human atrial and ventricular samples allowed for the identification of marker genes. Using stringent filtering criteria (>10-fold differences in gene expression), these included known structural genes, ion channels, as well as transcriptional regulators (Fig. 2, Table 1). For instance, myosin light chain 2 (MYL2, also known as MLC2v) presents a rather stringent ventricular marker. By contrast, the frequently used MYL7 (MLC2a) was only about 2-fold enriched in atrial tissue, suggesting that it does not well discriminate between human cardiac subtypes. Instead, the natriuretic peptide-encoding genes NPPA and NPPB are excellent atrial markers according to this analysis.

Analyzing the hPSC-based together with the in vivo data allows determination of shared and divergent gene expression between hPSC-CMs and human heart. In line with the expectations, scatter plot and clustering analyses between human heart versus (i) undifferentiated hPSCs, (ii) early (1 week) hPSC-CMs, and (iii) matured hPSC-CMs (combined 4–8 weeks samples) suggest that over time, hPSC-CMs tend to become more similar to the human adult heart reference (Fig. 3). This tendency is also supported by the fact that a set of known immature CM markers (NKX2.5, IRX4, and others) declines upon long-term in vitro culture, whereas a set of maturation marker genes (MYH7, MYL2, and others) reached human heart-like expression levels over time (blue and orange colored genes, respectively, in Fig. 3). However, even in late hPSC-CMs a number of human heart genes were not expressed, and the global similarity to the in vivo reference appears to be rather limited (red colored genes in Fig. 3, Table 2).

Discussion

Despite the fact that neither the in vitro-derived nor the in vivo samples consisted of pure populations of cardiomyocytes, this data set suggests that meaningful biological information can be extracted from it. The combined hPSC-CM/adult human heart data hence presents a useful resource for evaluating the maturation status of hPSC-CMs at the transcriptional level as well as for assessing cardiac subtype-specific gene expression. Notably, according to our analysis, the frequently used MYL7 (MLC2a) gene appears to be unsuited for discriminating between atrial and ventricular subtypes. Our data instead suggests alternative genes, such as NPPA and NPPB, as being well-suited markers for evaluating atrial subtype specification in hPSC-CMs.

Table 1
Marker genes discriminating between human atrial and ventricular tissue and corresponding expression levels in late (4–8 weeks) hPSC-CMs. P values for differential gene expression are below 0.01 in all cases.

Symbol	Atria signal	Ventricles signal	Fold change (V/A or A/V)	hPSC-CMs 4–8 weeks signal	Definition
DLK1	5	341	68	924	Delta-like 1 homologue (Drosophila)
IRX4	5	204	41	252	Iroquois homebox 4
MYL2	444	18,009	41	6769	Myosin, light polypeptide 2, regulatory, cardiac, slow
XDH	5	188	38	99	Xanthine dehydrogenase
TMEM190	7	255	37	46	Transmembrane protein 190
HYAL2	16	532	34	112	Hyaluronoglucosaminidase 2
CPNE4	20	650	32	Below detection	Copine IV
CYP1A1	5	158	32	Below detection	Cytochrome P450, family 1, subfamily A, Polypeptide 1
IRX5	14	387	27	42	Iroquois homebox protein 5
CldnD3	5	112	22	24	Chromosome 3 open reading frame 23
NPPA	15,780	19	824	2043	Natriuretic peptide precursor B
HAMP	1548	5	310	29	Hepcidin antimicrobial peptide
MYBPHL	922	5	184	Below detection	Myosin binding protein H-like
PLA2G2A	21,892	143	153	1615	Natriuretic peptide precursor A
COMP	396	5	79	Below detection	Phospholipase A2, group II (platelets, synovial fluid)
TCEAL2	761	12	63	19	Carilage oligomeric matrix protein
SLPI	274	5	55	Below detection	Secretory leukocyte peptidase inhibitor
DHR59	1441	28	52	2251	Dehydrogenase/reductase (SDR family) member 9
HP	1316	27	49	Below detection	Haptoglobin

Fig. 3. Comparison of hPSC-CMs and human heart tissue. (A) Global correlation-based dendrogram showing early (1 week-old) and late (combined 4–8 weeks-old) hPSC-CMs clustering closer to human heart (combined atrial and ventricular samples) than to undifferentiated hPSCs. (B) Scatter plots comparing the indicated samples. Examples of genes enriched in the four types of samples are highlighted by different colors (black: hPSCs, blue: early hPSC-CMs, orange: late hPSC-CMs and human heart, red: human heart).
Table 2
Selected genes enriched in early hPSC-CMs, late hPSC-CMs, and human heart. P values for differential gene expression are below 0.01 in all cases.

Symbol	hPSCs 0 week signal	hPSC-CMs 1 week signal	hPSC-CMs 4–8 weeks signal	Human heart atr. & ventr. signal	Definition
Genes upregulated in early hPSC-CMs					
NKX2-5	Below detection 3201	1549	583	NK2 transcription factor related, locus 5	
IRX4 67	1036	276	132	Iroquois homeobox 4	
TBX2	Below detection 1536	331	152	T-box 2	
COX2A1 20	694	39	Below detection	Collagen, type II, alpha 1	
ISL1 23	269	17	Below detection	ISL1 transcription factor, LIM/homeodomain	
HAND1	Below detection 4480	1231	632	heart and neural crest derivatives expressed 1	
ID2 110	1339	83	228	Inhibitor of DNA binding 2	
LEF1 15	501	47	Below detection	Lyphoid enhancer-binding factor 1	
IRS1 53	546	241	117	Insulin receptor substrate 1	
MDK 23	532	201	Below detection	Midkine (neurite growth-promoting factor 2)	
Genes upregulated in late hPSC-CMs and human heart					
MYH7	Below detection 938	11781	13101	Myosin, heavy chain 7, cardiac muscle, beta	
MYL2	Below detection 41	6838	7737	Myosin, light polypeptide 2, regulatory, cardiac, slow	
TNNI3K	Below detection 46	757	659	TNNT3 interacting kinase, transcript variant 2	
HSPB7	Below detection 3339	5428	5614	Heat shock 27 kDa protein family, member 7	
PLN	Below detection 1534	4645	4638	Phospholamban	
CSRP3	Below detection 540	1287	2317	Cysteine and glycine-rich protein 3	
ACTN2	Below detection 813	1130	1739	Actinin, alpha 2	
RBM20	Below detection 440	1121	1426	RNA binding motif protein 20	
TRIM63	Below detection 367	1116	1544	Tripartite motif-containing 63	
CORIN	Below detection 444	934	976	Corin, serine peptidase	
Genes upregulated in human heart					
CASQ2	Below detection 10	23	6699	Calsequestrin 2 (cardiac muscle)	
MB	Below detection 727	633	12450	Myoglobin, transcript variant 1	
MYOM2 14	41	180	8272	Myomesin (M-protein) 2	
TCAP	Below detection 264	922	8830	Titin-cap (telethonin)	
MYH11	Below detection 147	201	1835	Myosin, heavy chain 11	
TNNI3 34	331	401	9157	Troponin 1 type 3 (cardiac)	
S100A1	Below detection 10	10	1482	S100 calcium binding protein A1	
DES	Below detection 14	56	4555	Desmin	
HRC	24	1294	1105	4976	Histidine rich calcium binding protein
MYOM1	Below detection 4787	4668	10215	Myomesin 1, transcript variant	

Acknowledgments

This work was supported by the Chemical Genomic Centre of the Max Planck Society.

References

[1] B. Greber, et al., FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J. 30 (24) (2011) 4874–4884.

[2] S. Frank, M. Zhang, H.R. Scholer, B. Greber. Small molecule-assisted, line-independent maintenance of human pluripotent stem cells in defined conditions. PLoS One 7 (7) (2012) e41958.

[3] M. Zhang, et al., Universal cardiac induction of human pluripotent stem cells in 2D and 3D formats — implications for in-vitro maturation. Stem Cells (2015) http://dx.doi.org/10.1002/stem.1964.

[4] P.C. Kahr, et al., Systematic analysis of gene expression differences between left and right atria in different mouse strains and in human atrial tissue. PLoS One 6 (10) (2011) e26389.