Sleep disturbance subtypes in Parkinson’s disease based on the cross-culturally validated Korean version of the Parkinson’s Disease Sleep Scale-2

CURRENT STATUS: POSTED

Hui-Jun Yang
Ulsan University Hospital

Han-Joon Kim
Seoul National University College of Medicine

Seong-Beom Koh
Korea University Guro Hospital

Joong-Seok Kim
Catholic University of Korea School of Medicine

Tae-Beom Ahn
Kyung Hee University School of Medicine

Sang-Myung Cheon
Dong-A University Medical Center

Jin Whan Cho
Samsung Medical Center

Yoon-Joong Kim
Hallym University College of Medicine

Hyeo-Il Ma
Hallym University College of Medicine

Mee-Young Park
Yeungnam University Medical Center

Jong Sam Baik
Inje University College of Medicine

Phil Hyu Lee
Yonsei University College of Medicine

Sun Ju Chung
Asan Medical Center
Jong-Min Kim
Seoul National University College of Medicine

In-Uk Song
Catholic University of Korea School of Medicine

Ji-Young Kim
Inje University College of Medicine

Young-Hee Sung
Gachon University Gil Medical Center

Do Young Kwon
Korea University Ansan Hospital

Jae-Hyeok Lee
Pusan National University Yangsan Hospital

Jee-Young Lee
Seoul National University College of Medicine

Ji Sun Kim
Chungbuk National University College of Medicine

Ji Young Yun
Ewha Women's University Mokdong Hospital

Hee Jin Kim
Konkuk University Medical Center

Jin Young Hong
Yonsei University College of Medicine

Mi-Jung Kim
Korea University Guro Hospital

Jinyoung Youn
Samsung Medical Center

Ji Seon Kim
Samsung Medical Center

Eung Seok Oh
Chungnam National University School of Medicine

Won Tae Yoon
Kangbuk Samsung Medical Center

Sooyeoun You
Keimyung University School of Medicine

Kyum-Yil Kwon
Soonchunhyang University College of Medicine

Hyung-Eun Park
Catholic University of Korea School of Medicine

Su-Yun Lee
Dong-A University Medical Center

Yoonsoo Kim
Samsung Changwon Hospital

Hee-Tae Kim
Hanyang University College of Medicine

Sang Jin Kim
Inje University College of Medicine
Corresponding Author

DOI:
10.21203/rs.2.299/v1

SUBJECT AREAS
Internal Medicine Specialties

KEYWORDS
Parkinson’s disease; sleep; PDSS-2; validity; reliability; Korean version; latent class analysis
Abstract

Background: Sleep-related problems in Parkinson’s disease (PD) have received greater attention in recent years due to their clinical influence on morbidity, disability, and the health-related quality of life (HRQoL) of patients. This study aimed to evaluate the clinimetric properties of the Korean version of the Parkinson’s Disease Sleep Scale-2 (K-PDSS-2), and to analyze whether distinct sleep disturbance subtypes could be empirically identified in patients with PD based on the cross-culturally validated K-PDSS-2.

Methods: The internal consistency, test-retest reliability, scale precision, and convergent validity of the K-PDSS-2 were assessed in a nationwide, multicenter study of 122 patients with PD. Latent class analysis (LCA) was used to derive subgroups of patients who experienced similar patterns of sleep-related problems and nocturnal disabilities.

Results: The mean total K-PDSS-2 scores were 11.67 ± 9.87 (mean \pm standard deviation) at baseline, and 12.61 ± 11.17 upon follow up testing. The Cronbach’s α coefficients of the total K-PDSS-2 score at baseline and at follow up testing were 0.851 and 0.880 respectively. Intraclass correlation coefficient over the 2-week period ranged from 0.672 to 0.848. The total K-PDSS-2 score was strongly correlated to HRQoL measures and other corresponding nonmotor scales. LCA indicated three distinct sleep disturbance classes in the study patients, namely “less troubled sleepers”, “PD-related nocturnal difficulties”, and “disturbed sleepers”.

Conclusions: The K-PDSS-2 showed good clinimetric attributes in accordance with prior studies that were using the original version of the PDSS-2, therefore confirming the cross-cultural usefulness of the scale. Further, this study documents the first application of an LCA approach for identifying sleep disturbance subtypes in patients with PD.

Keywords: Parkinson’s disease; sleep; PDSS-2; validity; reliability; Korean version; latent class analysis.
Background

Sleep-related problems in Parkinson’s disease (PD) have received greater attention in recent years due to their occurrence in early stages of disease, as well as their clinical influence on morbidity, disability, and the health-related quality of life (HRQoL) of patients with advanced disease [1-4]. The Parkinson’s Disease Sleep Scale (PDSS), a patient-reported instrument recommended by the Movement Disorder Society task force, is designed to rate overall sleep problems in the PD population [5, 6]. A revision of the PDSS (PDSS-2) was recently published that places particular emphasis on improving scale properties and encompassing nocturnal symptoms that were not previously included (e.g. restless leg syndrome, sleep apnea, akinesia, and nocturnal pain) [7]. The PDSS-2 has been successfully applied in several clinical trials as a reliable patient-reported outcome measure [7-11]. Thus, we planned to translate and adapt the PDSS-2 to Korean individuals and evaluate its clinimetric properties for the assessment of sleep disturbances among Korean-speaking patients with PD.

This study also sought to investigate the discriminatory capacity of the new Korean version of the PDSS-2 (K-PDSS-2) by conducting latent class analysis (LCA) to characterize sleep disturbance subtypes in PD. Several studies have applied LCA in PD populations to address depression-anxiety subtypes [12, 13] or neurocognitive subtypes [14]. The potential causes of sleep disturbances are highly variable in nature, and have been suggested to range from primary insomnia, depression, restless leg syndrome, nocturnal motor symptoms, parkinsonian drug side effects, nocturia and sleep-related breathing disorders, which all frequently co-occur [1, 3, 4]. However, few studies have tried to empirically outline the clinical heterogeneity of sleep-related problems in patients with PD. LCA has been previously used to identify sleep disturbance subtypes in patients with Alzheimer’s disease [15]. The empirical search to detect latent homogenous subgroups of
patients who experience similar patterns in sleep-related problems and nocturnal disabilities can help elucidate the pathophysiology and lead to the development of more targeted management strategies. To our knowledge, this study documents the first application of an LCA approach for identifying sleep disturbance subtypes in patients with PD.

Methods

Study patients

In this test-retest design study, patients who met the United Kingdom Parkinson’s Disease Society Brain Bank criteria for PD were recruited between August 2014 and September 2015 from 31 different movement disorder centers in Korea. All study patients were required to be on a known and stable anti-parkinsonian medication for the 4 weeks prior to the study. Patients with secondary parkinsonism, atypical parkinsonian syndrome, concomitant treatment with hypnotics and/or antipsychotics, a score of < 20 on the Korean version of Mini-Mental State Examination (K-MMSE) or aged 40 years or younger at the onset of disease were excluded. Written informed consent was obtained from all patients participating in the present study, and the study protocol was approved by the institutional review boards at the participating centers. This investigation was performed as part of a larger nationwide program studying the cultural adaptation and clinimetric validation of the different scales for non-motor manifestations of PD in Korea [2, 16].

Translation and cross-cultural adaptation of the K-PDSS-2 instrument

The original questionnaire was translated from English to Korean by two independent bilingual translators. A translation committee consisting of movement disorder experts reviewed both translated versions and reconciled a single forward translation. The reconciled translated version was backward translated from Korean to English by another independent bilingual translator who was blinded to the previous steps. The back-
translation was compared to the original English questionnaire, and forward-backward amendments were made by the consensus of the translation committee. The amended translation was pre-tested on four patients with PD who were not a part of this study to assess the interpretation of items, ease of comprehension, and cross-cultural relevance. The final harmonized version of the K-PDSS-2 instrument was developed after these processes [5, 9, 11].

Study procedure

Both demographics and clinical data were collected for all study patients. The overall severity of disease was evaluated using Hoehn and Yahr (H-Y) staging and part I-III of the Unified Parkinson’s Disease Rating Scale (UPDRS). Motor phenotype was classified based on the ratio of UPDRS items proposed by Jankovic et al. [17]. We administered the Korean version of the Non-motor Symptoms Scale (K-NMSS), consisting of nine domains (cardiovascular, sleep/fatigue, mood, perceptual problems, attention/memory, gastrointestinal, urinary, sexual function, and miscellaneous) to quantify a range of non-motor manifestations of disease [18]. Disease-specific HRQoL was investigated using the Korean version of the 39-item Parkinson's Disease Questionnaire (K-PDQ-39) [19]. The Korean version of the Montgomery-Åsberg Depression Rating Scale (K-MADRS) was used to assess depressive symptoms, while the K-MMSE and Montreal Cognitive Assessment-Korean version (MoCA-K) was administered to evaluate cognitive function [20, 21]. Sleep-related problems and nocturnal disabilities among study patients were globally addressed using the K-PDSS-2 instrument obtained from the cross-cultural adaptation described above. To measure the test-retest reliability, the K-PDSS-2 questionnaire was applied twice over a 10 to 14-day interval.

Statistical analysis

Clinimetric properties were statistically evaluated using IBM SPSS version 19 (IBM
corporation, Somers, NY, USA) for internal consistency, test-retest reliability, convergent validity, and scale precision for measurement error. Cronbach’s α coefficients for total score and item-total correlations for individual items were calculated to assess internal consistency [5]. Cronbach’s α coefficients > 0.70 and item-total correlations > 0.30 for items were used to tentatively define an acceptable level of consistency [9, 11, 16]. Test-retest reliability was measured by intraclass correlation coefficient (ICC) using a two-way random model and a threshold value > 0.60 [7, 22]. The scale precision for measurement error was tested through standard error of measurement (SEM) using the ICC as the reliability coefficient. Measurement error of the K-PDSS-2 was considered sufficiently low if the SEM was less than half of the standard deviation (SD) [7, 9]. Convergent validity with the K-NMSS sleep-fatigue domain score and other non-motor measures of PD was evaluated by Spearman correlation coefficient (r_S). Rank-order correlation coefficient of $r_S > 0.40$ was considered to support a moderate or greater correlation [11, 16]. The Jonckheere-Terpstra test for trend detection was used to evaluate the relationship between K-PDSS-2 total scores and the H-Y stages of the study patients, and p-values < 0.05 were considered reflective of statistical significance.

The discriminatory capacity of the K-PDSS-2 instrument was statistically assessed by LCA, which identifies classes of patients with similar patterns of sleep disturbances. A polytomous variable LCA was conducted with the open-source statistical software R version 3.4.1 (R Foundation for Statistical Computing, Vienna, Austria) using the R package depmixS4 version 1.3-3 [23]. The discrete model fit was assessed based on interpretability, parsimony of latent classes, Akaike information criterion (AIC), and Bayesian information criterion (BIC) statistics [12, 14]. For comparisons of the demographic and clinical differences among identified latent sleep disturbance subtypes, we used the chi-square test or the Kruskal-Wallis test followed by post-hoc comparisons.
with Bonferroni-corrected Mann-Whitney U tests as appropriate.

Results

Demographic and clinical data of the 122 patients enrolled in this study are described in Table 1. At the baseline evaluation, the mean K-PDSS-2 score was 11.67 ± 9.87 (mean ± SD). The median score of the baseline K-PDSS-2 was 9, and the lower and upper quartile range (Q1–Q3) was 4–16. Among the 122 study patients that completed the baseline evaluation, 119 patients (97.5%) carried out the retest evaluation of the K-PDSS-2. The mean score of the retest evaluation was 12.61 ± 11.67 and the median was 10 (Q1–Q3: 4–17). In terms of internal consistency, the item-total correlation ranged from 0.169 to 0.739 at baseline and 0.138 to 0.746 upon retesting. All items except for item 8 (nocturia) satisfied the threshold value of the item-total correlation (> 0.30; Table 2). The Cronbach’s α coefficients which corresponded to the K-PDSS-2 total score at baseline and upon retesting were 0.851 and 0.880, meeting the standards established for internal consistency (Cronbach’s α > 0.70; Table 3). With regards to the test-retest reliability over the 10 to 14-day interval, ICCs ranged from 0.672 (item 4) to 0.848 (item 7), with ICCs > 0.60 for all items (Table 2). The ICC of the K-PDSS-2 total score was 0.867, exceeding the 0.60 threshold value. The scale precision determined by the SEM was 3.60, therefore meeting the criterion value (<½ SD = 4.94).

Table 3 shows correlations between K-PDSS-2 and the range of clinical rating scales of PD used to assess convergent validity. The total K-PDSS-2 score showed a significant correlation with the K-PDQ-39 summary index ($r_S = 0.496$) and K-MADRS score ($r_S = 0.523$). The total score of the K-PDSS-2 was strongly correlated with the total K-NMSS score ($r_S = 0.552$) and some of the corresponding K-NMSS domains. As expected, the highest correlation among K-NMSS domains was observed for the K-NMSS sleep/fatigue
domain ($r_S = 0.544$; Table 3). There was also a significant relationship between total K-PDSS-2 score and H-Y stage (standardized Jonckheere-Terpstra statistic = 2.091, $p = 0.037$).

LCAs with K-PDSS-2 items were conducted to uncover latent sleep disturbance subtypes, trialing from one to seven latent class solutions. A three-class solution was found to be the most parsimonious model based on interpretability and fit indices (Table 4). Symptom profiles of the three sleep disturbance subtypes are presented graphically in Fig. 1 as the predicted responses of the study patients in each class on a range of 15 items of the K-PDSS-2. Across all study participants ($n = 122$), seventy-eight patients (63.9%) were assigned to class 1, the largest latent class. The symptom profiles of class 1 were characterized by overall low predicted responses on items of the K-PDSS-2 (Fig. 1); therefore, individuals in class 1 were labeled as “less troubled sleepers”. Twenty-two patients (18.0%) were classified into class 2, with high predicted responses in restlessness of legs and arms at night (item 4), urge to move legs and arms (item 5), distressing dreams at night (item 6), distressing hallucinations at night (item 7), pain in arms and legs (item 10), muscle cramps in arms and legs (item 11), and tremors on waking (item 13). Since most of these items have been described as PD symptoms at night and motor symptoms at night in previous factor analyses [7, 9], class 2 was labeled “PD-related nocturnal difficulties”. Finally, 22 patients (18.0%) were assigned to class 3, which was profiled by marked predicted responses in sleep quality (item 1), difficulty falling asleep (item 2), difficulty staying asleep (item 3), and nocturia (item 8). Since most of these items indicate disturbed sleep or fragmented sleep in prior factor analysis studies [7, 9, 11], individuals in class 3 were labeled as “disturbed sleepers” (Fig. 1).

A comparison of demographic and clinical variables among the three classes is shown in Table 5. Group differences based on a Kruskal-Wallis test were found across age, total K-
PDSS-2 score (both at baseline and upon retesting), K-PDQ-39 summary index, UPDRS part I, K-MADRS score, total K-NMSS score, and four K-NMSS domains (sleep/fatigue, mood, attention/memory, and urinary domains). Post-hoc analysis of between-group differences indicated that the patients in class 3 tended to be younger and have higher total K-NMSS scores, K-NMSS sleep/fatigue domain scores, K-NMSS attention/memory domain scores, and K-PDQ-39 summary indexes than those in class 1. Class 3 patients also showed increased NMSS urinary domain scores than those in classes 1 or 2. Classes 2 and 3 showed markedly increased levels of the UPDRS part I, K-MADRS scores, and K-NMSS mood domain scores than class 1. There were no significant differences in sex, disease duration, motor phenotype, levodopa equivalent daily dosage, use of parkinsonian medication, UPDRS part II or III between the three classes.

Discussion

In conclusion, the Korean version of the PDSS-2 demonstrated clinimetric reliability and validity. As such, the scale can be a suitable tool for measuring either nocturnal disturbance or disordered sleep in Korean patients with PD. In addition, using a data-driven approach, we were able to identify latent sleep disturbance subgroups in patients with PD. The validity of our LCA-derived subtypes was supported by distinct demographic and clinical features between groups. We expect our findings to provide further information on the evaluation of sleep disturbances in PD for both research and clinical purposes.

Abbreviations

AIC: Akaike information criterion; BIC: Bayesian information criterion; HRQoL: Health-related quality of life; H-Y: Hoehn and Yahr; ICC: Intraclass correlation coefficient; K-MADRS: The Korean version of the Montgomery-Asberg Depression Rating Scale; K-MMSE:...
Declarations

Ethics approval and consent to participate

Written informed consent was obtained from all patients participating in the present study. The study protocol was approved by the institutional review boards at the participating centers: 1- Ulsan University Hospital, 2- Seoul National University Hospital, 3- Korea University Guro Hospital, 4- College of Medicine, The Catholic University of Korea, 5- Kyung Hee University College of Medicine, 6- Dong-A University College of Medicine, 7- Samsung Medical Center, 8- Hallym University College of Medicine, 9- Yeungnam University College of Medicine, 10- Sanggye Paik Hospital, 11- Severance Hospital, 12- Asan Medical Center, 13- Seoul National University Bundang Hospital, 14- Seoul Paik Hospital, 15- Gachon University Gil Hospital, 16- Korea University Ansan Hospital, 17- Pusan National University Yangsan Hospital, 18- Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 19- Chungbuk National University Hospital, 20- Ewha Womans University Mokdong Hospital, 21- Konkuk University Medical Center, 22- Yonsei University Wonju College of Medicine, 23- Chungnam National University Hospital, 24- Kangbuk Samsung Hospital, 25- Keimyung University School of Medicine, 26- Soonchunhyang University Seoul Hospital, 27- Samsung Changwon Hospital, 28- Hanyang University College of Medicine, 29- Busan Paik Hospital

Acknowledgements
The authors wish to thank the patients and all who were involved in the present study.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare no commercial or other conflicts of interest.

Funding

This work was supported by a grant from Samil Pharmacy Company. The funder had no role in study design, data collection, data analysis, data interpretation or writing of the manuscript.

Authors’ contributions

Designed and coordinated the study: H-JY, H-JK, S-BK, J-SK, T-BA, H-TK, and SJK. Clinical analysis: H-JY, H-JK, S-BK, J-SK, T-BA, S-MC, JWC, Y-JK, H-IM, M-YP, JSB, PHL, SJ, J-MK, I-US, J-YK, Y-HS, DYK, J-HL, J-YL, JSK(Ji Sun Kim), JYY, HJK, JYH, M-JK, JY, JSK(Ji Seon Kim), ESO, WTY, SY, K-YK, H-EP, S-YL, YK, H-TK, and SJK. Laboratory workup, acquisition and interpretation of data: H-JY, H-JK, S-BK, J-SK, T-BA, S-MC, JWC, Y-JK, H-IM, M-YP, JSB, PHL, SJ, J-MK, I-US, J-YK, Y-HS, DYK, J-HL, J-YL, JSK(Ji Sun Kim), JYY, HJK, JYH, M-JK, JY, JSK(Ji Seon Kim), ESO, WTY, SY, K-YK, H-EP, S-YL, YK, H-TK, and SJK. Manuscript writing: H-JY, H-JK, and SJK. Critical revisions and approval of revised manuscript: S-BK, J-SK, T-BA, S-MC, JWC, Y-JK, H-IM, M-YP, JSB, PHL, SJ, J-MK, I-US, J-YK, Y-HS, DYK, J-HL, J-YL, JSK(Ji Sun Kim), JYY, HJK, JYH, M-JK, JY, JSK(Ji Seon Kim), ESO, WTY, SY, K-YK, H-EP, S-YL, YK, and H-TK. All authors reviewed and approved the final manuscript.

References
[1] Louter M, Aarden WC, Lion J, Bloem BR, Overeem S. Recognition and diagnosis of sleep disorders in Parkinson’s disease. J Neurol. 2012;259(10):2031–40.

[2] Kwon DY, Koh SB, Lee JH, Park HK, Kim HJ, Shin HW, et al. The KMDS-NATION Study: Korean Movement Disorders Society Multicenter Assessment of Non-Motor Symptoms and Quality of Life in Parkinson’s Disease NATION Study Group. J Clin Neurol. 2016;12(4):393–402.

[3] Diederich NJ, McIntyre DJ. Sleep disorders in Parkinson’s disease: Many causes, few therapeutic options. J Neurol Sci. 2012;314(1-2):12–9.

[4] Sixel-Doring F, Trautmann E, Mollenhauer B, Trenkwalder C. Age, drugs, or disease: What alters the macrostructure of sleep in Parkinson’s disease? Sleep Med. 2012;13(9):1178–83.

[5] Pellecchia MT, Antonini A, Bonuccelli U, Fabbrini G, Ferini Strambi L, Stocchi F, et al. Observational study of sleep-related disorders in Italian patients with Parkinson's disease: usefulness of the Italian version of Parkinson's disease sleep scale. Neurol Sci. 2012;33(3):689–94.

[6] Hogl B, Arnulf I, Comella C, Ferreira J, Iranzo A, Tilley B, et al. Scales to assess sleep impairment in Parkinson’s disease: critique and recommendations. Mov Disord. 2010;25(16):2704–16.

[7] Trenkwalder C, Kohnen R, Hogl B, Metta V, Sixel-Doring F, Frauscher B, et al. Parkinson’s disease sleep scale—Validation of the revised version PDSS-2. Mov Disord. 2011;26(4):644–52.

[8] Suzuki K, Miyamoto M, Miyamoto T, Tatsumoto M, Watanabe Y, Suzuki S, et al. Nocturnal disturbances and restlessness in Parkinson’s disease: Using the Japanese version of the Parkinson’s disease sleep scale-2. J Neurol Sci. 2012;318(1-2):76–81.

[9] Kovács N, Horváth K, Aschermann Z, Ács P, Bosnyák E, Deli G, et al. Independent
validation of Parkinson’s disease Sleep Scale 2nd version (PDSS-2). Sleep Biol Rhythms. 2016;14(1):63–73.

[10] Muntean ML, Benes H, Sixel-Doring F, Chaudhuri KR, Suzuki K, Hirata K, et al. Clinically relevant cut-off values for the Parkinson’s Disease Sleep Scale-2 (PDSS-2): A validation study. Sleep Med. 2016;24:87–92.

[11] Arnaldi D, Cordano C, De Carli F, Accardo J, Ferrara M, Picco A, et al. Parkinson’s Disease Sleep Scale 2: Application in an Italian population. Neurol Sci. 2016;37(2):283–8.

[12] Brown RG, Landau S, Hindle JV, Playfer J, Samuel M, Wilson KC, et al. Depression and anxiety related subtypes in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2011;82(7):803–9.

[13] Starkstein S, Dragovic M, Jorge R, Brockman S, Merello M, Robinson RG, et al. Diagnostic criteria for depression in Parkinson’s disease: A study of symptom patterns using latent class analysis. Mov Disord. 2011;26(12):2239–45.

[14] Brennan L, Devlin KM, Xie SX, Mechanic-Hamilton D, Tran B, Hurtig HH, et al. Neuropsychological subgroups in non-demented Parkinson’s disease: A latent class analysis. J Parkinsons Dis. 2017;7(2):385–95.

[15] Ownby RL, Peruyera G, Acevedo A, Loewenstein D, Sevush S. Subtypes of sleep problems in patients with Alzheimer disease. Am J Geriatr Psychiatry. 2014;22(2):148–56.

[16] Kim JY, Song IU, Koh SB, Ahn TB, Kim SJ, Cheon SM, et al. Validation of the Korean version of the scale for outcomes in Parkinson’s disease-autonomic. J Mov Disord. 2017;10(1):29–34.

[17] Jankovic J, McDermott M, Carter J, Gauthier S, Goetz C, Golbe L, et al. Variable expression of Parkinson’s disease: A baseline analysis of the DATATOP cohort. The Parkinson Study Group. Neurology. 1990;40(10):1529–34.

[18] Koh SB, Kim JW, Ma HI, Ahn TB, Cho JW, Lee PH, et al. Validation of the Korean-version
of the nonmotor symptoms scale for Parkinson’s disease. J Clin Neurol. 2012;8(4):276-83.

[19] Kwon DY, Kim JW, Ma HI, Ahn TB, Cho J, Lee PH, et al. Translation and validation of the Korean version of the 39-item Parkinson’s disease questionnaire. J Clin Neurol. 2013;9(1):26-31.

[20] Kang YW, Na DL, Hahn SH. A validity study on the Korean mini-mental state examination (K-MMSE) in dementia patients. J Korean Neurol Assoc. 1997;15(2):300-8.

[21] Lee JY, Dong Woo L, Cho SJ, Na DL, Hong Jin J, Kim SK, et al. Brief screening for mild cognitive impairment in elderly outpatient clinic: Validation of the Korean version of the Montreal Cognitive Assessment. J Geriatr Psychiatry Neurol. 2008;21(2):104-10.

[22] Horváth K, Aschermann Z, Ács P, Deli G, Janszky J, Karádi K, et al. Test-retest validity of Parkinson’s disease sleep scale 2nd version (PDSS-2). J Parkinsons Dis. 2014;4(4):687-91.

[23] Visser I, Speekenbrink M. depmixS4: An R Package for Hidden Markov Models. J Stat Softw. 2010;36(7):1-21.

[24] Suzuki K, Miyamoto T, Miyamoto M, Suzuki S, Numao A, Watanabe Y, et al. Evaluation of cutoff scores for the Parkinson’s disease sleep scale-2. Acta Neurol Scand. 2015;131(6):426-30.

[25] Duncan GW, Khoo TK, Yarnall AJ, O’Brien JT, Coleman SY, Brooks DJ, et al. Health-related quality of life in early Parkinson’s disease: The impact of nonmotor symptoms. Mov Disord. 2014;29(2):195-202.

[26] van Rooden SM, Heiser WJ, Yarnall AJ, Verbaan D, van Hilten JJ, Marinus J. The identification of Parkinson’s disease subtypes using cluster analysis: A systematic review. Mov Disord. 2010;25(8):969-78.

[27] Erro R, Vitale C, Amboni M, Picillo M, Moccia M, Longo K, et al. The heterogeneity of early Parkinson’s disease: A cluster analysis on newly diagnosed untreated patients. PLoS
[28] Landau S, Harris V, Burn DJ, Hindle JV, Hurt CS, Samuel M, et al. Anxiety and anxious-depression in Parkinson’s disease over a 4-year period: A latent transition analysis. Psychol Med. 2016;46(3):657–67.

[29] van Rooden SM, Colas F, Martinez-Martin P, Visser M, Verbaan D, Marinus J, et al. Clinical subtypes of Parkinson’s disease. Mov Disord. 2011;26(1):51–8.

[30] Uemura Y, Nomura T, Inoue Y, Yamawaki M, Yasui K, Nakashima K. Validation of the Parkinson’s disease sleep scale in Japanese patients: A comparison study using the Pittsburgh Sleep Quality Index, the Epworth Sleepiness Scale and Polysomnography. J Neurol Sci. 2009;287(1-2):36–40.

[31] Stavitsky K, Cronin-Golomb A. Sleep quality in Parkinson disease: An examination of clinical variables. Cogn Behav Neurol. 2011;24(2):43–9.

Tables

Table 1. Demographic and clinical characteristics of 122 patients with Parkinson’s disease
Characteristics	Number (%)	Mean (SD)	Median (Q1–Q3)
Age, years		66.55 (8.64)	68 (60–73)
Sex			
Male, n	62 (50.8)		
Female, n	60 (49.2)		
Disease duration, months		45.82 (46.51)	30 (30–72)
Motor subtype			
Tremor-dominant, n	32 (26.2)		
Intermediate, n	13 (10.7)		
PIGD, n	77 (63.1)		
Present medication use			
LEDD, mg/day		371.92 (401.95)	300 (0–600)
Levodopa, n	99 (81.2)		
Dopamine agonists, n	61 (50.0)		
COMT inhibitors, n	3 (2.5)		
MAO inhibitors, n	23 (18.9)		
Amantadine, n	31 (25.4)		
Anticholinergics, n	14 (11.5)		
Acetylcholinesterase inhibitors, n	5 (4.1)		
Antidepressants, n	16 (13.1)		
Hoehn and Yahr stage		2.16 (0.67)	2 (2–2.5)
Stage 1, n	16 (13.1)		
Stage 2, n	57 (46.7)		
Stage 3, n	47 (38.5)		
Stage 4-5, n	2 (1.6)		

SD, standard deviation; Q1, lower quartile; Q3, upper quartile; PIGD, postural instability and gait difficulty; LEDD, levodopa equivalent daily dosage; COMT, catechol-O-
Table 2. Clinimetric validation-related statistics

K-PDSS-2 item	Baseline	Retest	ICC			
	Mean	Median (Q1-Q3)	Mean	Median (Q1-Q3)		
Bed sleep quality (item 1)	1.15	1 (0-2)	1.08	1 (0-2)	0.34 0.800	
Difficulties falling asleep (item 2)	0.88	0 (0-2)	0.94	0 (0-2)	0.45 0.806	
Difficulties staying asleep (item 3)	1.34	1 (0-3)	1.40	1 (0-2)	0.46 0.839	
Restlessness of legs and arms at night (item 4)	0.49	0 (0-1)	0.70	0 (0-1)	0.60 0.672	
Urge to move legs and arms (item 5)	0.44	0 (0-0)	0.68	0 (0-0)	0.68 0.750	
Distressing dreams at night (item 6)	0.61	0 (0-1)	0.62	0 (0-1)	0.47 0.694	
Distressing hallucinations at night (item 7)	0.34	0 (0-0)	0.37	0 (0-0)	0.51 0.848	
Nocturia (item 8)	1.99	2 (1-3)	2.07	2 (1-3)	1.38 0.804	
Uncomfortable and immobility at night (item 9)	0.51	0 (0-0)	0.55	0 (0-0)	0.72 0.685	
Pain in arms and legs (item 10)	0.70	0 (0-1)	0.76	0 (0-1)	0.74 0.746	
Muscle cramps in arms and legs (item 11)	0.75	0 (0-1)	0.82	0 (0-1)	0.66 0.753	
Painful posturing in the morning (item 12)	0.32	0 (0-0)	0.35	0 (0-0)	0.64 0.755	
Tremor on waking (item 13)	0.61	0 (0-1)	0.58	0 (0-0)	0.56 0.696	
Tired and sleepy after waking in the morning (item 14)	1.17	0 (0-2)	1.20	1 (0-2)	0.60 0.765	
Snoring or difficulties in breathing (item 15)	0.39	0 (0-0)	0.48	0 (0-0)	0.54 0.717	
Total score	11.67	9 (4-16)	12.61	10 (4-17)	0.86 0.867	

K-PDSS-2, Korean version of Parkinson’s Disease Sleep Scale-2; Q1, lower quartile; Q3, upper quartile; ICC, intraclass correlation coefficient.

Table 3. Convergent validity of K-PDSS-2 with other motor and nonmotor measurements and patient-perceived quality of life
Nonmotor measurements

	Mean	SD	rS	p
UPDRS part I	2.00	1.99	0.377	<0.001*
UPDRS part II	7.77	6.00	0.405	<0.001*
UPDRS part III	20.34	10.94	0.211	0.020*
K-MMSE score	27.43	2.26	-0.145	0.111
MoCA-K score	23.03	4.26	-0.123	0.182
K-MADRS score	9.46	8.26	0.523	<0.001*
K-NMSS total score	34.17	25.12	0.552	<0.001*
Cardiovascular (including falls)	1.00	1.58	0.204	0.024*
Sleep/Fatigue	5.84	6.13	0.544	<0.001*
Mood	7.43	8.28	0.416	<0.001*
Perceptual problems	0.59	2.00	0.175	0.054
Attention/Memory	3.67	4.36	0.405	<0.001*
Gastrointestinal	2.68	4.47	0.094	0.303
Urinary	8.05	8.25	0.422	<0.001*
Sexual function	2.41	5.02	0.169	0.062
Miscellaneous	2.58	3.41	0.113	0.216
K-PDQ-39 summary index	31.17	26.23	0.496	<0.001*

*Significance level: p < 0.05. p-values are from Spearman correlation test. SD, standard deviation; rS, Spearman rank-order correlation coefficients; UPDRS, Unified Parkinson’s Disease Rating Scale; K-MMSE, Korean version of Mini-Mental Status Examination; MoCA-K, Montreal Cognitive Assessment-Korean version; K-MADRS, Korean version of Montgomery-Åsberg Depression Rating Scale; K-NMSS, Korean version of Nonmotor Symptoms Scale; K-PDQ-39, Korean version of 39-item Parkinson's Disease Questionnaire.

Table 4. Model-fit indices for latent class analysis with 1-7 derived classes

Number of classes	AIC	BIC	Log-likelihood	Smallest class size (%)
1	3873.52	4041.77	-1876.76	122 (100.00%)
2	3706.43	4045.71	-1732.21	34 (24.59%)
3	3659.52	4169.86	-1647.76	22 (17.19%)
4	3727.88	4409.25	-1620.94	12 (8.2%)
5	3792.90	4645.33	-1592.45	11 (6.6%)
6	3892.84	4916.31	-1581.42	8 (3.3%)
7	3943.22	5137.73	-1545.61	9 (4.9%)

AIC, Akaike information criterion; BIC, Bayesian information criterion.

Table 5. Demographic and clinical characteristics of study patients assigned to sleep disturbance-related latent classes
Variable	Class 1: Less-troubled sleepers	Class 2: PD-related nocturnal difficulties	Class 3: Disturbed sleepers	χ^2	p
Number of patients, n	78(63.9%)	22(18.0%)	22(18.0%)	6.879	0.032a
Age, years	68.06(8.07)	65.41(8.68)	62.32(9.35)		
Sex, male, n	40(51.3%)	10(45.5%)	12(54.6%)	0.382	0.826
Disease duration, months	41.71(40.57)	49.36(42.03)	56.86(66.79)	0.922	0.631
Hoehn and Yahr stage	2.14(0.68)	2.182(0.61)	2.182(0.68)	0.652	0.722
LEDD, mg/day	352.33(379.97)	441.23(440.88)	372.08(448.01)	0.817	0.665
UPDRS part I	1.37(1.58)	2.93(2.08)	2.55(1.65)	17.210	<0.001a,b
UPDRS part II	6.73(5.34)	8.82(6.09)	8.82(6.52)	4.591	0.101
UPDRS part III	18.90(9.71)	22.52(13.38)	20.43(12.39)	0.806	0.668
K-MMSE score	27.45(2.37)	26.91(2.60)	27.91(1.27)	1.283	0.527
MoCA-K score	23.09(4.46)	22.30(4.00)	23.45(3.86)	0.925	0.630
K-MADRS score	7.03(8.05)	13.91(7.52)	13.64(6.16)	27.408	<0.001a,b
K-NMSS total score	29.33(26.23)	36.77(17.39)	48.73(22.23)	16.448	<0.001a
Cardiovascular (including falls)	1.01(1.61)	0.86(1.42)	1.09(1.69)	0.115	0.944
Sleep/Fatigue	4.67(6.11)	6.32(5.90)	9.50(5.06)	19.196	<0.001a
Mood	5.62(7.02)	10.36(7.08)	10.95(11.37)	15.647	<0.001a,b
Perceptual problems	0.49(1.86)	1.41(3.02)	0.14(0.47)	4.959	0.084
Attention/Memory	2.86(3.64)	3.95(4.79)	6.23(5.34)	11.696	0.003a
Gastrointestinal	3.06(5.16)	1.27(1.80)	2.73(3.47)	1.581	0.454
Urinary	7.10(8.49)	6.64(5.39)	12.82(8.34)	8.986	0.011a,c
Sexual function	2.18(5.05)	3.50(6.44)	2.14(3.00)	1.855	0.396
Miscellaneous	2.45(3.47)	2.45(3.64)	3.14(3.04)	1.096	0.578
K-PDQ-39 summary index	24.92(23.03)	39.10(30.44)	45.73(25.98)	15.216	<0.001a
K-PDSS-2 total score (baseline)	6.03(4.44)	20.50(10.61)	22.86(6.74)	74.514	<0.001a,b
K-PDSS-2 total score (retest)	7.78(7.41)	19.57(13.06)	22.64(10.19)	40.858	<0.001a,b
Data are shown as means (standard deviation) unless otherwise indicated. \(p \)-values are from the chi-square test or the Kruskal–Wallis test followed by post-hoc comparisons with Bonferroni-corrected Mann-Whitney tests. \(^a\)Significant difference between class 1 and class 3. \(^b\)Significant difference between class 1 and class 2. \(^c\)Significant difference between class 2 and class 3. PD, Parkinson’s disease; LEDD, levodopa equivalent daily dosage; UPDRS, Unified Parkinson’s Disease Rating Scale; K-MMSE, Korean version of Mini-Mental Status Examination; MoCA-K, Montreal Cognitive Assessment-Korean version; K-MADS, Korean version of Montgomery-Åsberg Depression Rating Scale; K-NMSS, Korean version of Nonmotor Symptoms Scale; K-PDQ-39, Korean version of 39-item Parkinson's Disease Questionnaire; K-PDSS-2, Korean version of Parkinson’s Disease Sleep Scale-2.

Figures
Predicted symptom profiles of K-PDSS-2 item responses for the latent class analysis-derived sleep disturbance subtypes.