Number	Species	Family	Genus	Accession Number
1	*Ulmus parvifolia*	Ulmaceae	*Ulmus*	This study
2	*Ulmus lamellosa*	Ulmaceae	*Ulmus*	This study
3	*Ulmus pumila* ‘zhonghuajinye’	Ulmaceae	*Ulmus*	This study
4	*Ulmus castaneifolia*	Ulmaceae	*Ulmus*	This study
5	*Hemiptelea davidii*	Ulmaceae	*Hemiptelea*	This study
6	*Ulmus glabra*	Ulmaceae	*Ulmus*	Unpublished
7	*Ulmus bergmanniana*	Ulmaceae	*Ulmus*	NC_032721
8	*Ulmus americana*	Ulmaceae	*Ulmus*	NC_044473
9	*Ulmus elongate*	Ulmaceae	*Ulmus*	NC_046061
10	*Ulmus gaussenii*	Ulmaceae	*Ulmus*	NC_037840
11	*Ulmus lacinia*	Ulmaceae	*Ulmus*	NC_032719
12	*Ulmus macrocarpa*	Ulmaceae	*Ulmus*	NC_032720
13	*Ulmus crennou*	Ulmaceae	*Ulmus*	NC_037758
14	*Ulmus davidiana*	Ulmaceae	*Ulmus*	NC_032718
15	*Ulmus lanceaefolia*	Ulmaceae	*Ulmus*	NC_058620
16	*Aphananthe aspera*	Ulmaceae	*Aphananthe*	NC_039726
17	*Celtis biondii*	Ulmaceae	*Celtis*	NC_039727
18	*Gironniera subaequalis*	Ulmaceae	*Gironniera*	NC_039729
19	*Pteroceltis tatarinowii*	Ulmaceae	*Pteroceltis*	NC_039733
20	*Trema orientalis*	Ulmaceae	*Trema*	NC_039734
21	*Zelkova schneideriana*	Ulmaceae	*Zelkova*	NC_041074
22	*Zelkova serrata*	Ulmaceae	*Zelkova*	NC_040958
Table S2 The potential positive selection test based on the branch-site model

No.	Genes	Null hypothesis	Alternative hypothesis	Significance test					
		lnL	df	omega (w = 1)	lnL	df	omega (w > 1)	BEB	LRT_P-value
1	accD	-3874.117971	48	1	-3874.117952	49	1		0.99508154
2	atpA	-3044.791429	48	1	-3044.724017	49	1		0.713481864
3	atpB	-2864.816249	48	1	-2864.816262	49	2.46714	1	
4	atpE	-844.361015	48	1	-844.361015	49	1.98765	1	
5	atpF	-1356.634249	48	1	-1356.634251	49	1.69819	1	
6	atpH	-475.6739	48	1	-475.673884	49	1		0.995486507
7	atpI	-1473.108736	48	1	-1473.108743	49	1.60162	1	
8	ccsA	-2544.054903	48	1	-2544.054909	49	1		
9	cemA	-1686.140457	48	1	-1686.140477	49	2.37918	1	
10	clpP	-1252.029962	48	1	-1252.029962	49	1		
11	matK	-4483.327829	48	1	-4483.327747	49	1		0.989782371
12	ndhA	-2387.920139	48	1	-2387.920145	49	2.34564	1	
13	ndhB	-2137.375866	48	1	-2137.37587	49	2.04795	1	
14	ndhD	-4236.652012	48	1	-4236.65216	49	5.60728	1	
15	ndhE	-586.649861	48	1	-586.649861	49	1		
16	ndhF	-6427.359057	48	1	-6427.359057	49	1		
17	ndhG	-1336.095405	48	1	-1336.095396	49	1		0.996614873
18	ndhH	-2575.267307	48	1	-2575.267323	49	1.51179	1	
19	ndhI	-1074.541696	48	1	-1074.541697	49	1.97447	1	
20	ndhJ	-983.505982	48	1	-983.505986	49	1.63901	1	
21	ndhK	-1502.513198	48	1	-1502.513198	49	1		
22	petA	-2255.731352	48	1	-2255.731342	49	1		0.996431764
23	petB	-1233.618713	48	1	-1233.61869	49	1		0.994588525
24	petD	-943.679775	48	1	-943.679775	49	5.21947	1	
25	petG	-198.330603	48	1	-198.330603	49	2.42736	1	
26	petL	-198.375811	48	1	-198.375811	49	1		
27	petN	-168.959407	48	1	-168.959407	49	1		
28	psaA	-4169.025102	48	1	-4169.025137	49	2.29811	1	
29	psaB	-4010.413208	48	1	-4010.413285	49	1.09444	1	
30	psaC	-423.002257	48	1	-423.002257	49	2.02226	1	
31	psaI	-211.093876	48	1	-211.093876	49	1		
32	psaJ	-277.698808	48	1	-277.698808	49	1.6791	1	
33	psbA	-2282.33528	48	1	-2282.335271	49	1		0.996614873
34	psbB	-2997.91126	48	1	-2997.911283	49	1		
	Gene	Value	Seq	Value	Seq	Value	Seq	Value	
----	------	---------	-----	-------	-----	--------	-----	--------	
35	rps19	-412.644098	48	1	-412.644099	49	1	1	
36	rps2	-1432.587016	48	1	-1432.587046	49	1.80093	1	
37	rps3	-1643.233959	48	1	-1643.233967	49	2.26806	1	
38	rps4	-1316.585727	48	1	-1316.585723	49	1.09787	0.997743245	
39	rps7	-682.658149	48	1	-682.658149	49	2.21764	1	
40	rps8	-1022.087003	48	1	-1022.087003	49	1.8015	1	
41	rps18	-597.085368	48	1	-597.085367	49	2.264	0.998871621	
42	ycf1	-19016.8542	48	1	-19016.85486	49	1	1	
43	ycf2	-11470.53597	48	1	-11470.536	49	1.75119	1	
44	ycf3	-1013.486751	48	1	-1013.486754	49	2.08366	1	
45	ycf4	-1296.721459	48	1	-1295.122438	49	1	0.073726488	
Figure S1. Analysis of repeats in 21 Ulmaceae species chloroplast genomes, (A) Number of Palindromic repeat, Direct repeat, Reverse repeat, Complement repeat; (B) Number of tandem repeats in different lengths.