Estimates for $X(4350)$ Decays from the Effective Lagrangian Approach

Yong-Liang Ma
Department of Physics, Nagoya University, Nagoya, 464-8602, Japan.
Theoretical Physics Center for Science Facilities, CAS, Beijing 100049, China.
(Dated: June 8, 2010)

The strong and electromagnetic decays of $X(4350)$ with quantum numbers $J^P = 0^{++}$ and $2^{++}$ have been studied by using the effective Lagrangian approach. The coupling constant between $X(4350)$ and $D_s^*D_{s0}^*$ is determined with the help of the compositeness condition which means that $X(4350)$ is a bound state of $D_s^*D_{s0}^*$. Other coupling constants applied in the calculation are determined phenomenologically. Our numerical results show that, using the present data within the present model, the possibility that $X(4350)$ is a $D_s^*D_{s0}^*$ molecule can not be ruled out.

PACS numbers: 12.60.Rc, 13.20.Gd, 13.25.Gv, 14.40.Lb, 14.40.Rt.

I. INTRODUCTION

Recently, a hidden charm resonance named $X(4350)$ was observed by Belle collaboration in the analysis of the $\gamma\gamma \rightarrow \phi J/\psi$ process [1]. The mass and natural width of this resonance are measured to be $(4350.6^{+4.6}_{-5.1}(\text{stat}) \pm 0.7(\text{syst}))$ MeV/c$^2$ and $(13.3^{+17.9}_{-9.1}(\text{stat}) \pm 4.1(\text{syst}))$ MeV, respectively. The product of its two-photon decay width and branching fraction to $\phi J/\psi$ is $(6.7^{+3.2}_{-2.4}(\text{stat}) \pm 1.1(\text{syst}))$ eV for $J^{PC} = 0^{++}$, or $(1.5^{+0.7}_{-0.6}(\text{stat}) \pm 0.3(\text{syst}))$ eV for $J^{PC} = 2^{++}$. In literature, the structure of $X(4350)$ has been proposed to be $c\bar{c}s\bar{s}$ teraquark state with $J^{PC} = 2^{++}$ [2], $D_s^*D_{s0}^*$ molecular state [3] and $P$-wave charmonium state $\chi_{c2}^+$ [4]. And concerning the quantum numbers of the final states $J/\psi\phi$, $X(4350)$ can also have quantum numbers $J^{PC} = 1^{-+}$. In Ref. [5], it was shown that $X(4350)$ cannot be a $1^{-+}$ exotic $D_s^*D_{s0}^*$ molecular state. In this paper, we will accept it as a bound state of $D_s^*D_{s0}^*$ to study its strong and electromagnetic decays in the effective Lagrangian approach in case of $J^{PC} = 0^{++}$ and $2^{++}$.

Since the mass of $X(4350)$ is about 80 MeV below the threshold of $D_s^*D_{s0}^*$ ($m_{D_{s0}^*} = 2317.8 \pm 0.6$ MeV and $m_{D_s^*} = 2112.3 \pm 0.5$ MeV [6]), it is reasonable to regard $X(4350)$ as a bound state of $D_{s0}^*D_s^*$. And because the quantum numbers of $D_{s0}^*$ and $D_s^*$ are $J^P = 0^+$ and $J^P = 1^-$ respectively, to form a bound state with quantum numbers $J^{PC} = 0^{++}$ or $2^{++}$, the coupling between $X(4350)$ and its constituents should be $P$-wave. To determine the effective coupling constant between $X(4350)$ and its constituents $D_s^*D_{s0}^*$, as in our previous work (for example Ref. [7]), we resort to the
compositeness condition $Z_X = 0 (Z_X$ as the wave function renormalization constant of $X(4350)$) which was early used by nuclear physicists \cite{8,9} and is being widely used by particle physicists \cite{see the references in 7}. Recently, this method has been applied to study the properties of some “exotic” hadrons \cite{7,10–18} and some conclusions were yielded comparing with data. For other interactions, we write down the general effective Lagrangian and determine the coupling constants with help of data, theoretical calculation, $SU(4)$ relation or the vector meson dominance (VMD).

As in our previous work \cite{7,10–18}, we introduce a correlation function including a scale parameter $\Lambda_X$ to illustrate the distribution of the constituents in the bound state $X(4350)$. The parameter $\Lambda_X$ is varied to find the physical region where the data can be understood. In the physical region of $\Lambda_X$, the partial widths for strong and electromagnetic decays are yielded.

This paper is organized as the following: In section II we will provide the theoretical framework used in this paper. We will present the analytic forms for the radiative and strong decay matrix elements and partial widths of $X(4350)$ in section III. And, the last section is our numerical results and discussions.

II. THEORETICAL FRAMEWORK

In this section, we will propose the theoretical framework for the calculation of the strong and electromagnetic decays of $X(4350)$.

A. The Molecular Structure of $X(4350)$

As was mentioned above, we regard $X(4350)$ as a $D^*_sD^*_{s0}$ bound state. And concerning the experimental status, we accept the quantum numbers of $X(4350)$ as $J^P = 0^{++}$ and $2^{++}$. For scalar case, one can write the free lagrangian of $X(4350)$ as

\[ \mathcal{L}_{\text{free}}^S = \frac{1}{2} \partial_\mu X \partial_\mu X - \frac{1}{2} m_X^2 X^2, \tag{1} \]

with $m_X$ as the mass of $X(4350)$. The propagator of $X(4350)$ can be easily written as

\[ G_F(x) = \int \frac{d^4p}{(2\pi)^4} \frac{i}{p^2 - m_X^2 - i\epsilon} e^{-ip\cdot x}, \tag{2} \]

which satisfies

\[ (\partial^2 + m^2)G_F(x) = -i\delta^{(4)}(x). \tag{3} \]
While for tensor resonance we have the free Lagrangian as (4)

\[ \mathcal{L}^T_{\text{free}} = -\frac{1}{2} X_{\mu\nu} D^{\mu\nu;\lambda\sigma} X_{\lambda\sigma}, \]

where the symmetric tensor \( X_{\mu\nu} = X_{\nu\mu} \) denotes the \( J^{PC} = 2^{++} \) field for \( X(4350) \) and

\[
D^{\mu\nu;\lambda\sigma} = (\Box + m_X^2) \left\{ \frac{1}{2} \left( g^{\mu\lambda} g^{\nu\sigma} + g^{\nu\lambda} g^{\mu\sigma} \right) - g^{\mu\nu} g^{\lambda\sigma} \right\} \\
+ g^\lambda \partial^\nu \partial^\sigma + g^\mu \partial^\nu \partial^\lambda + \frac{1}{2} (g^{\nu\lambda} \partial^\mu + g^{\mu\lambda} \partial^\nu + g^{\mu\nu} \partial^\lambda + g^{\nu\sigma} \partial^\lambda + g^{\lambda\sigma} \partial^\nu) \right\}. \quad (5)
\]

The propagator for \( X_{\mu\nu}(4350) \) is obtained as

\[
G_{\mu\nu;\lambda\sigma}(x) = \int \frac{d^4 p}{(2\pi)^4} \frac{i}{p^2 - m_X^2 - i\epsilon} P_{\mu\nu;\lambda\sigma} e^{-ip \cdot x}, \\
P_{\mu\nu;\lambda\sigma} = \frac{1}{2} (P_{\mu\lambda} P_{\nu\sigma} + P_{\nu\lambda} P_{\mu\sigma}) - \frac{1}{3} P_{\mu\nu} P_{\lambda\sigma}, \quad P_{\mu\nu} = -g_{\mu\nu} + \frac{p_\mu p_\nu}{m_X^2}, \\
D^{\mu\nu;\lambda\sigma} G_{\lambda\sigma} = -i \frac{1}{2} (g^{\mu\alpha} g^{\nu\beta} + g^{\nu\alpha} g^{\mu\beta}) \delta^{(4)}(x). \quad (6)
\]

With respect to the discussions given in first section, one can write the effective Lagrangian describing the interaction between \( X(4350) \) and \( D_s^* D_s^{*0} \) as

\[
\mathcal{L}_{\text{int}}^S = \frac{i}{\sqrt{2}} g_s X(x) \int dx_1 dx_2 C_{\mu\nu}(x_1, x_2) \Phi_X((x_1 - x_2)^2) \delta(x - \omega_v x_1 - \omega_s x_2), \\
\mathcal{L}_{\text{int}}^T = \frac{i}{\sqrt{2}} g_T X^{\mu\nu}(x) \int dx_1 dx_2 \left[ C_{\mu\nu}(x_1, x_2) + C_{\nu\mu}(x_1, x_2) - \frac{1}{4} g_{\mu\nu} C_{\alpha\alpha}(x_1, x_2) \right] \\
\quad \times \Phi_X((x_1 - x_2)^2) \delta(x - \omega_v x_1 - \omega_s x_2), \quad (7)
\]

where \( \mathcal{L}_{\text{int}}^S \) is for scalar resonance case while \( \mathcal{L}_{\text{int}}^T \) is for tensor resonance case. \( g_s \) and \( g_T \) are the effective coupling constants for the interaction between \( X(4350) \) and \( D_s^* D_s^{*0} \) in scalar and tensor resonance cases, respectively. \( \omega_v \) and \( \omega_s \) are mass ratios which are defined as

\[
\omega_v = \frac{m_{D_s^*}}{m_{D_s^*} + m_{D_s^{*0}}}, \quad \omega_s = \frac{m_{D_s^{*0}}}{m_{D_s^*} + m_{D_s^{*0}}}. \quad (8)
\]

\( \Phi_X((x_1 - x_2)^2) \) is a correlation function which illustrates the distribution of the constituents in the bound state. Fourier transform of the correlation function reads

\[
\Phi_X(p^2) = \int \frac{d^4 p}{(2\pi)^4} \Phi_X(p^2) e^{-ip \cdot y}. \quad (9)
\]

To write down Lagrangian (7), for simplicity, we have defined the tensor \( C_{\mu\nu} \) as a function of the constituents with the explicit form

\[
C_{\mu\nu}(x_1, x_2) = D_{s;\mu}(x_1) \partial_\nu D_{s;0}^{*0}(x_2) + D_{s;\nu}(x_1) \partial_\mu D_{s;0}^{*0}(x_2). \quad (10)
\]
The coupling constants \( g_s \) and \( g_T \) can be determined with help of the compositeness condition \( Z_X = 0 \) with \( Z_X \) as the wave function renormalization constant of \( X(4350) \) which is defined as the residual of \( X(4350) \) propagator, i.e.,

\[
Z_X = 1 - g_X^2 \frac{d}{dp^2} \Sigma_X(p^2) \bigg|_{p^2=m_X^2},
\]

where \( g_X = g_S \) for scalar case while \( g_X = g_T \) for tensor case. For scalar resonance \( X(4350) \), \( g_S^2 \Sigma_S(p^2) = \Pi_S(p^2) \) is its mass operator. But for tensor resonance \( X(4350) \), \( g_T^2 \Sigma_T(p^2) \) relates to its mass operator via relation

\[
\Pi_{\mu\nu;\alpha\beta}^T(p^2) = \frac{1}{2} (g_{\mu\alpha} g_{\nu\beta} + g_{\mu\beta} g_{\nu\alpha}) g_T^2 \Sigma_T(p^2) + \cdots,
\]

where “\( \cdots \)” denotes terms do not contribute to the mass renormalization of \( X(4350) \). The mass operator of \( X(4350) \) is illustrated by Fig. 1.

Concerning the Feynman diagram depicted Fig. 1, one can calculate the mass operator explicitly. To get the numerical result of the coupling constant \( g_X \), an explicit form of \( \tilde{\Phi}_X(p^2) \) is necessary. Throughout this paper, we take the Gaussian form

\[
\tilde{\Phi}_X(p^2) = \exp\left(p^2/\Lambda_X^2\right),
\]

where the size parameter \( \Lambda_X \) parametrizes the distribution of the constituents inside the molecule. In the following calculation, we will find the physical value of \( \Lambda_X \) by comparing our calculation of the product of \( X(4350) \) to two-photon partial width and the branching fraction to \( J/\psi \phi \). It should be noted that choice (13) is not unique. In principle any choice of \( \tilde{\Phi}_X(p^2) \), as long as it renders the integral convergent sufficiently fast in the ultraviolet region, is reasonable. In this sense, \( \tilde{\Phi}_X(p^2) \) can be regarded as a regulator which makes the ultraviolet divergent integral well defined.

With these discussions, we can calculate the effective coupling constant \( g_X \) numerically. In the typical nonperturbative region \( \Lambda_X = 1.0 \sim 2.0 \) GeV, using the central value of \( X(4350) \) mass, our
In Fig. [2] we plot the $\Lambda_X$ dependence of the coupling constants. One can see that both coupling constants decrease against $\Lambda_X$. This can be understood from the momentum integral of the mass operator. For scalar $X(4350)$, the loop integral is quadratically divergent so the derivative of the mass operator which proportional to the inverse of $g_S^2$ increases against $\Lambda_X$ which means the coupling constant $g_S$ decreases against $\Lambda_X$. Similar argument can be given for $g_T$.

B. Effective Lagrangian for Strong and Electromagnetic Decays of $X(4350)$

The effective Lagrangian for the study of strong and electromagnetic decays of $X(4350)$ consists of two parts: the electromagnetic part $\mathcal{L}_{\text{em}}$ and the strong part $\mathcal{L}_{\text{str}}$.

The electromagnetic interaction Lagrangian $\mathcal{L}_{\text{em}}$ includes five parts: $\mathcal{L}_{\text{em}}^{\text{NL}}$ from the gauge of the nonlocal and derivative coupling of Eq. (7), $\mathcal{L}_{\text{em}}^{\text{gauge}}$ from the gauge of the kinetic term of the charged constituents $D^*_0$ and $D^*_s$, the electromagnetic interaction Lagrangian $\mathcal{L}_{\text{em}}^{\text{SV}}$ including $D^*_0$ and $D^*_s$, $\mathcal{L}_{\text{em}}^{\text{AV}}$ for electromagnetic interaction including $D_{s1}$ and $D^*_s$ and $\mathcal{L}_{\text{em}}^{\text{AS}}$ for electromagnetic interaction including $D_{s1}$ and $D^*_0$.

One can write $\mathcal{L}_{\text{em}}^{\text{NL}}$ by substituting $C_{\mu\nu}$ with $C_{\mu\nu}^{\text{gauge}}$ in Eq. (7) with

$$C_{\mu\nu}^{\text{gauge}}(x_1, x_2) = e^{-ie\Pi(x_1, x_2; P)D^*_{\mu\nu}(x_1)(\partial_0 + i e A_\nu(x_2))D^*_{\mu\nu}(x_2)}$$
Similar as the definition of \( \tilde{\text{Experimental status}, one cannot fix the definition \( \tilde{\text{photon from Wilson's line, one may use the path-independent prescription suggested in [20, 21].} \]

In our following calculation, the nonlocal vertex with one-photon is necessary. The nonlocal vertex with one-photon comes from two sources: One is from covariant derivative and another one is from the expansion of the Wilson’s line. One can easily derive the Feynman rule for the nonlocal vertex with one-photon which comes from the covariant derivative. But to derive the Feynman rule for photon from Wilson’s line, one may use the path-independent prescription suggested in [20, 21].

The electromagnetic vertex \( \mathcal{L}^{\text{gauge}} \) from the gauge of the kinetic terms of the charged constituents can be easily written as

\[
\mathcal{L}^{\text{gauge}} = ieA_\mu(D^{s-}_s \partial_\mu D^{s+}_s) + ieA_\mu[-D^{s-}_s \partial_\mu D^{s+}_s + \frac{1}{2} D^{s-}_s \partial_\mu D^{s+}_s + \frac{1}{2} D^{s+}_s \partial_\mu D^{s-}_s].
\]  

One can generally write the effective Lagrangian \( \mathcal{L}^{\text{SV}} \) for electromagnetic interaction including \( D^{s*}_s \) and \( D^{s}_s \) as

\[
\mathcal{L}^{\text{SV}} = eg_{D^{s*}_s D^{s*}_s}[\tilde{V}^+_\mu \partial_\mu D^{s+}_s - \tilde{V}^+_{\mu \nu} D^{s+}_s]F_{\mu \nu}.
\]

where \( \tilde{V}^\pm_{\mu \nu} \) is the gauged field strength tensor for \( D^{s \pm}_s \) with definition \( \tilde{V}^\pm_{\mu \nu} = (\partial_\mu \mp ieA_\mu)D^{s \pm}_s - (\partial_\nu \pm ieA_\nu)D^{s \pm}_s. \) And similarly, the general effective Lagrangian \( \mathcal{L}^{\text{AV}} \) and \( \mathcal{L}^{\text{AS}} \) can be written as

\[
\mathcal{L}^{\text{AV}} = eg_{D^{s*}_{s1} D^{s*}_{s1}}[\tilde{F}^\pm_{\mu \nu} D^{s \pm}_{s1} D^{s \pm}_{s1}]F_{\alpha \beta},
\]

\[
\mathcal{L}^{\text{AS}} = -ieg_{D^{s*}_{s1} D^{s*}_{s1}}[\tilde{D}^\pm_{s0} D^{s \pm}_{s1} - D^{s-}_{s0} \tilde{D}^+_{s1} - D^{s+}_{s0} \tilde{D}^-_{s1} \tilde{D}^+_{s1} \tilde{D}^-_{s1}]F_{\alpha \beta}.
\]

Similar as the definition of \( \tilde{V}^\pm_{\mu \nu} \), we have defined the gauged field strength tensor for \( D^{s \pm}_{s1} \) with definition \( \tilde{D}^\pm_{s1; \mu \nu} = (\partial_\mu \mp ieA_\mu)D^{s \pm}_{s1; \mu \nu} - (\partial_\nu \pm ieA_\nu)D^{s \pm}_{s1; \mu \nu}. \)

The relevant coupling constants can be determined phenomenologically. Confined by the experimental status, one cannot fix \( g_{D^{s*}_{s0} D^{s*}_{s1}} \) from data, so we turn to the theoretical calculations (for example Ref. [3] and references therein). From literature, one can see that the minimal result of the theoretical calculation of \( D^{s*}_{s0} \to D^{s \gamma}_s \) decay width is 0.2 KeV. From this decay width, we get \( g_{D^{s*}_{s0} D^{s*}_{s1} D^{s \gamma}} \geq 3.02 \times 10^{-2} \text{ GeV}^{-1}. \)

The coupling constants \( g_{D^{s*}_{s1} D^{s*}_{s1} D^{s \gamma}} \) and \( g_{D^{s*}_{s0} D^{s*}_{s1} D^{s \gamma}} \) can be determined by using the HQET and branching ratio for relevant processes. First, consider the decay of \( D^{s1} \to D^{s \gamma}_s \), the effective Lagrangian can be written as

\[
\mathcal{L}^{D^{s1} D^{s \gamma}} = ie g_{D^{s1} D^{s1}}[D^{s+}_s \partial_{s1; \mu \nu} D^{s-}_{s1; \mu \nu} - D^{s-}_s \tilde{D}^+_{s1; \mu \nu} - D^{s+}_s \tilde{D}^-_{s1; \mu \nu}]F_{\mu \nu}.
\]
where $D_{s1; \mu \nu} = \partial_\mu D_{s1; \nu} - \partial_\nu D_{s1; \mu}$ and $F_{\mu \nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$. From this Lagrangian, one can express the decay width as

$$\Gamma(D_{s1} \rightarrow D_s \gamma) = \frac{\alpha_{em} g_{D_{s1}D_s \gamma}^2}{6m_{D_{s1}}^3} (m_{D_{s1}}^2 - m_{D_s}^2)^3.$$  \hspace{1cm} (21)

The numerical result of the decay width has been evaluated by several groups. From the references given in Ref. [10], we see all the results are larger than 0.6 KeV. So that we have $g_{D_{s1}D_s \gamma} \geq 2.67 \times 10^{-2}$ GeV$^{-1}$. The coupling constant $g_{D_{s1}D_s \gamma}$ relates to $g_{D_{s1}D_s \gamma}$ via HQET as

$$\frac{g_{D_{s1}D_s \gamma}}{g_{D_{s1}D_s \gamma}^2} = \frac{1}{m_{D_{s1}}} \frac{\sqrt{m_{D_s}}}{\sqrt{m_{D_s}^2}} = 3.92 \times 10^{-1} \text{ GeV}^{-1},$$  \hspace{1cm} (22)

so that we have $g_{D_{s1}D_s \gamma} = 6.81 \times 10^{-2}$. The coupling constant $g_{D_{s1}D_s \gamma}$ can be determined by using the relevant branching ratio given in PDG [9]. From (19) we have

$$\Gamma(D_{s1} \rightarrow D_{s0} \gamma) = \frac{2\alpha_{em} g_{D_{s1}D_{s0} \gamma}^2}{3m_{D_{s1}}^3} (m_{D_{s1}}^2 - m_{D_{s0}}^2)^3.$$  \hspace{1cm} (23)

Using the central value of the branching ratio we have $\Gamma(D_{s1} \rightarrow D_{s0} \gamma)/\Gamma(D_{s1} \rightarrow D_s \gamma) \simeq 0.21$ which leads to $g_{D_{s1}D_{s0} \gamma} = 3.53 \times 10^{-2}$ GeV$^{-1}$.

In addition to the Lagrangian (7), the strong part $\mathcal{L}_{str}$ involves VVV-type Lagrangian describing the interaction of three vector mesons, the SVV-type Lagrangian describing the interaction of one scalar meson with two vector mesons, SSV-type Lagrangian describing the interaction of two scalar mesons with one vector meson, AVV-type Lagrangian for the interaction of axial-vector with two vector mesons and ASV-type Lagrangian for axial-vector-scalar-vector meson interaction, i.e.,

$$\mathcal{L}^{VVV}_{str} = ig_{\psi D_{s0}^* D_{s0}^*}[D_{s0}^{-}(D_{s0}^{*} D_{s0}^{*}) D_{s0}^{-}] + g_{D_{s0}^* D_{s0}^*}[D_{s0}^{-}(D_{s0}^{*} D_{s0}^{*}) + (D_{s0}^{-})^{-}] + g_{D_{s0}^* D_{s0}^*}[D_{s0}^{-}(D_{s0}^{*} D_{s0}^{*}) + (D_{s0}^{-})^{-}].$$  \hspace{1cm} (24)

$$\mathcal{L}^{SVV}_{str} = ig_{\psi D_{s0}^* D_{s0}^*}[D_{s0}^{*}(D_{s0}^{-} D_{s0}^{*}) D_{s0}^{-}] + g_{D_{s0}^* D_{s0}^*}[D_{s0}^{*}(D_{s0}^{-} D_{s0}^{*}) + (D_{s0}^{-})^{-}].$$  \hspace{1cm} (25)

$$\mathcal{L}^{SSS}_{str} = ig_{\psi D_{s0}^* D_{s0}^*}[D_{s0}^{-}(D_{s0}^{*} D_{s0}^{*}) D_{s0}^{-}] + g_{D_{s0}^* D_{s0}^*}[D_{s0}^{*}(D_{s0}^{-} D_{s0}^{*}) + (D_{s0}^{-})^{-}].$$  \hspace{1cm} (26)

$$\mathcal{L}^{AVV}_{str} = -ig_{\psi D_{s0}^* D_{s0}^*}[D_{s0}^{-}(D_{s0}^{*} D_{s0}^{*}) D_{s0}^{-}] + g_{D_{s0}^* D_{s0}^*}[D_{s0}^{*}(D_{s0}^{-} D_{s0}^{*}) + (D_{s0}^{-})^{-}].$$  \hspace{1cm} (27)

$$\mathcal{L}^{ASV}_{str} = -ig_{\psi D_{s0}^* D_{s0}^*}[D_{s0}^{-}(D_{s0}^{*} D_{s0}^{*}) D_{s0}^{-}] + g_{D_{s0}^* D_{s0}^*}[D_{s0}^{*}(D_{s0}^{-} D_{s0}^{*}) + (D_{s0}^{-})^{-}].$$  \hspace{1cm} (28)

Because of our less knowledge, we can not determine these coupling constants from data. Here, we resort to the vector meson dominance (VMD) model [22]. In the VMD model, the virtual
photon in the process $e^-D_{s0}^{*+} \rightarrow e^-D_{s0}^{*+}$ is coupled to vector mesons $\phi$ and $J/\psi$, which are then coupled to $D_{s0}^{*+}$. For zero momentum transfer, one has relation

$$\sum_{V=\phi,\psi} \frac{\gamma_V g_{V D_{s0}^{*+} D_{s0}^{*+}}}{m_V^2} = e , \quad (29)$$

where $\gamma_V$ is the photon-vector-meson mixing amplitude

$$L_{V-\gamma-mixing} = \gamma_V V_{\mu} A_{\mu} , \quad (30)$$

which can be determined from $V \rightarrow e^+e^-$ decay width, i.e.,

$$\Gamma_{V ee} = \frac{\alpha_{em} \gamma_V^2}{3m_V^2} , \quad (31)$$

where we did not include electron mass since it is much smaller than vector meson mass. For $\phi$ meson, using $\Gamma(\phi \rightarrow e^+e^-) = 2.97 \times 10^{-4} \times 4.26$ MeV $[6]$ we have $\gamma_\phi = 23472.3$ MeV$^2$, while $\gamma_\psi = 259965.8$ MeV$^2$ when $\Gamma(\psi \rightarrow e^+e^-) = 5.94% \times 93.2$ KeV $[6]$ is applied. Concerning that the virtual photon sees the charge of charm quark in $D_{s0}^{*+}$ meson through $\psi D_{s0}^{*+}$ coupling and the charge of anti-strange quark in $D_{s0}^{*+}$ meson through $\phi D_{s0}^{*+}$ coupling, we have relations

$$\frac{2\gamma_\psi g_{\psi D_{s0}^{*+} D_{s0}^{*+}}}{m_\psi^2} = \frac{2}{3} e , \quad \frac{\gamma_\phi g_{\phi D_{s0}^{*+} D_{s0}^{*+}}}{m_\phi^2} = \frac{1}{3} e . \quad (32)$$

From these relations we have $g_{\psi D_{s0}^{*+} D_{s0}^{*+}} = 7.45$ and $g_{\phi D_{s0}^{*+} D_{s0}^{*+}} = 4.47$. To determine coupling constants $g_{V D_{s0}^{*+} D_{s0}^{*+}}$, we make extension to the VMD model used above, i.e., substituting Eq. (29) with

$$\sum_{V=\phi,\psi} \frac{\gamma_V g_{V D_{i} D_{j}}}{m_V^2} = e g_{D_{i} D_{j} \gamma} , \quad (33)$$

where $D_{i}$ and $D_{j}$ denote the relevant charmed-strange mesons. Similarly, Eqs. (32) should also be extended to

$$\frac{2\gamma_\psi g_{\psi D_{i} D_{j}}}{m_\psi^2} = \frac{2}{3} eg_{D_{i} D_{j} \gamma} , \quad \frac{\gamma_\phi g_{\phi D_{i} D_{j}}}{m_\phi^2} = \frac{1}{3} eg_{D_{i} D_{j} \gamma} . \quad (34)$$

From which we yield the relevant coupling constants as

$$g_{\psi D_{i} D_{j}} = 7.45 \times g_{D_{i} D_{j} \gamma} , \quad g_{\phi D_{i} D_{j}} = 4.47 \times g_{D_{i} D_{j} \gamma} . \quad (35)$$

To fix the magnitude of coupling constant $g_{V D_{s}^{*} D_{s}^{*}}$, we resort to the $SU(4)$ relation as was used in Ref. [23] from which we have relations

$$g_{\psi D_{s}^{*} D_{s}^{*}} = \frac{2}{\sqrt{3}} g_{\phi D_{s}^{*} D_{s}^{*}} = g_{\psi D_{s}^{*} D_{s}^{*}} = 7.64 . \quad (36)$$
To fix the relative signs for the relevant effective Lagrangian, one can use HHChPT including $D_{s0}^*$ and $D_{s1}$ mesons \[24\]. But even with this consideration, the relative signs of $L_{em}^{AS}$ and $L_{str}^{ASV}$ to the other terms cannot be determined. We leave this as an ambiguity and discuss different cases in the following calculation. In summary, our framework of the interaction Lagrangian is

$$L_{int} = L_{em}^{NL} + L_{em}^{gauge} + L_{em}^{SV} + L_{str}^{AV} + L_{str}^{VVV} + L_{str}^{SSV} + L_{str}^{AVV} + L_{int}^{ASV},$$  \quad (37)

$$L_{int}^{ASV} = \pm [L_{em}^{AS} + L_{str}^{ASV}].$$  \quad (38)

Up to now, we have fixed all the coupling constants that are necessary for our following calculation of the electromagnetic and strong decays of $X(4350)$.

### III. ELECTROMAGNETIC AND STRONG DECAYS OF $X(4350)$

In this section, we will present the general forms of the matrix elements and partial widths for the electromagnetic and strong decays of $X(4350)$ and the Feynman diagrams included in our calculation.

#### A. Electromagnetic decay of $X(4350)$

The four kinds of diagrams depicted in Fig. 3 and their corresponding crossing ones should be taken into account to study $X(4350) \rightarrow 2\gamma$ decay. Diagrams (A) and (B) are from the final state interaction due to the exchange of $D_{s0}^*$, $D_{s1}$ and $D_{s0}^*$, diagram (C) arises from the gauge of the nonlocal and derivative coupling between $X(4350)$ and its constituents $D_{s}^*D_{s0}^*$ but diagram (D) is from the Lagrangian $[18]$.

![Feynman diagrams for decay $X(4350) \rightarrow \gamma\gamma$ (cross diagrams should be included).](image)

For $X(4350)$ with quantum numbers $J^{PC} = 0^{++}$, concerning the $U(1)_{em}$ gauge invariance and the transverseness of the photon polarization vector, one can write down the matrix element for
the decay of $X \to 2\gamma$ as

$$iM_{S}^{em} = ie^{2}F_{X_{s} \to 2\gamma}\left[g_{\alpha\beta} - \frac{q_{2}\alpha q_{1}\beta}{q_{1} \cdot q_{2}}\right] \epsilon_{\alpha}(q_{1})\epsilon_{\beta}(q_{2}) .$$  \hspace{1cm} (39)$$

While for tensor meson $X(4350)$ with quantum numbers $J^{PC} = 2^{++}$, its polarization vector satisfies $\epsilon_{\mu\nu} = \epsilon^{\nu\mu}$ and $\epsilon^{\mu}_{\mu} = 0$, so that the matrix element for electromagnetic decay can be written as 

$$iM_{T}^{em} = ie^{2}\left\{F_{T_{s} \to 2\gamma}^{(0)}\left[g_{\alpha\beta} - \frac{q_{2}\alpha q_{1}\beta}{q_{1} \cdot q_{2}}\right] \epsilon_{\alpha}(q_{1})\epsilon_{\beta}(q_{2}) + F_{T_{s} \to 2\gamma}^{(2)}\left[(g_{\mu\alpha} - \frac{q_{\mu} q_{\alpha}}{q^{2}})(g_{\nu\beta} - \frac{q_{\nu} q_{\beta}}{q^{2}}) + (g_{\mu\beta} - \frac{q_{\mu} q_{\beta}}{q^{2}})(g_{\nu\alpha} - \frac{q_{\nu} q_{\alpha}}{q^{2}})\right]\right\} \epsilon_{\mu\nu}(p)\epsilon_{\alpha}(q_{1})\epsilon_{\beta}(q_{2}) .$$  \hspace{1cm} (40)

where $q = q_{1} - q_{2}$. From Eqs. (39,40) we express the decay width for $X(4350)$ as

$$\Gamma_{S}(X \to 2\gamma) = \frac{2\pi}{m_{X}}\alpha_{em}^{2}F_{X_{s} \to 2\gamma}^{2} ;$$

$$\Gamma_{T}(X \to 2\gamma) = \frac{\pi}{15m_{X}}\alpha_{em}^{2}\left(5F_{X_{t} \to 2\gamma}^{(0)2} - 4F_{X_{t} \to 2\gamma}^{(0)}F_{X_{t} \to 2\gamma}^{(2)} + 32F_{X_{t} \to 2\gamma}^{(2)2}\right) ,$$  \hspace{1cm} (41)

where the subscribes “$S$” and “$T$” denote the scalar and tensor resonance $X(4350)$, respectively.

To get the last equation, we have applied the sum of the polarization vector for tensor meson 

$$\sum_{\text{polar}}\epsilon_{\mu_{1}\nu_{1}}(p)\epsilon^{*}_{\mu_{2}\nu_{2}}(p) = \frac{1}{2}\left(\theta_{\mu_{1}\mu_{2}}\theta_{\nu_{1}\nu_{2}} + \theta_{\mu_{1}\nu_{2}}\theta_{\mu_{2}\nu_{1}}\right) - \frac{1}{3}\theta_{\mu_{1}\nu_{1}}\theta_{\mu_{2}\nu_{2}} ,$$  \hspace{1cm} (42)

where $\theta_{\mu\nu} = -g_{\mu\nu} + \frac{p_{\mu} p_{\nu}}{m_{X}}$.

**B. Strong decay of $X(4350)$**

We should take into account the Feynman diagrams illustrated in Fig. 4 in the study of the strong decay of $X(4350) \to J/\psi\phi$. Furthermore, in addition to these diagrams, their crossing ones should also be included.

**FIG. 4: Feynman diagrams for decay $X(4350) \to J/\psi\phi$(crossing diagrams should be included).**

Compared to the electromagnetic case, the expression for the matrix element of strong decay is more complicated because the constraint from the gauge invariance is released. When $X(4350)$ is
regarded as a scalar resonance, the matrix element for the strong decay of \(X \to V_\alpha(q_1) V_\beta(q_2)\) can be written as

\[
iM_{\text{str}}^S = i \left[ G_{Xs \to V_1 V_2} g_{\alpha \beta} + F_{Xs \to V_1 V_2} \frac{q_2 \alpha q_1 \beta}{q_1 \cdot q_2} \right] \epsilon_\alpha(q_1) \epsilon_\beta(q_2). \tag{43}\]

One can show that, when the gauge invariance is imposed, \(G_{Xs \to V_1 V_2} = -F_{Xs \to V_1 V_2}\) so expression (43) becomes (39). Similarly, without the constraint from the gauge invariance, in the tensor case, one can write the matrix element for the strong decay of \(X_{\mu \nu} \to V_\alpha(q_1) V_\beta(q_2)\) as

\[
iM_{\text{str}}^T = i \left[ F_{X\tau \to V_1 V_2}^{(1)} g_{\alpha \beta} q_\mu q_\nu + F_{X\tau \to V_1 V_2}^{(2)} (g_{\mu \alpha} g_{\nu \beta} + g_{\nu \alpha} g_{\mu \beta}) + F_{X\tau \to V_1 V_2}^{(3)} (g_{\mu \alpha} q_\nu q_1 \beta + g_{\nu \alpha} q_\mu q_1 \beta) \right. \\
+ \left. F_{X\tau \to V_1 V_2}^{(4)} (g_{\nu \beta} q_\mu q_2 \alpha + g_{\mu \beta} q_\nu q_2 \alpha) + F_{X\tau \to V_1 V_2}^{(5)} q_\mu q_\nu q_2 \alpha q_1 \beta \right] \epsilon_{\mu \nu}(p) \epsilon_\alpha(q_1) \epsilon_\beta(q_2). \tag{44}\]

One can prove that when the final vector mesons are both massless particles and the gauge invariance is imposed the following relations can be reduced

\[
F_{X\tau \to V_1 V_2}^{(3)} = -F_{X\tau \to V_1 V_2}^{(4)} = \frac{1}{2 q_1 \cdot q_2} F_{X\tau \to V_1 V_2}^{(2)}, \quad F_{X\tau \to V_1 V_2}^{(5)} = -\frac{1}{q_1 \cdot q_2} F_{X\tau \to V_1 V_2}^{(3)} - \frac{1}{2(q_1 \cdot q_2)^2} F_{X\tau \to V_1 V_2}^{(2)}. \tag{45}\]

So expression (40) for electromagnetic decay matrix element can be yielded.

With the help of (42) one can get the analytic forms for the strong decay as

\[
\Gamma_S(X \to J/\psi \phi) = \frac{1}{16 \pi m_X^3} \lambda^{1/2}(m_X^2, m_\psi^2, m_\phi^2) \times \left\{ \frac{G_{Xs \to V_1 V_2}^2}{2 + \omega^2} \right. \\
- \left. 2 G_{Xs \to V_1 V_2} F_{Xs \to V_1 V_2} \left[ 1 - \omega^2 \right] + F_{Xs \to V_1 V_2}^2 \left[ \omega - \frac{1}{\omega} \right]^2 \right\},
\]

\[
\Gamma_T(X \to J/\psi \phi) = \frac{1}{80 \pi m_X^3} \lambda^{1/2}(m_X^2, m_\psi^2, m_\phi^2) \sum_{i \geq j = 1}^5 \left\{ C_{ij} F_{X\tau \to V_1 V_2}^{(i)} F_{X\tau \to V_1 V_2}^{(j)} \right\}, \tag{46}\]

where \(\omega = q_1 \cdot q_2/(m_\psi m_\phi) = (m_X^2 - m_\psi^2 - m_\phi^2)/(2m_\psi m_\phi)\). \(\lambda\) is the Källen function and \(C_{ij}\) are functions of the relevant masses of initial and final states which will be given in Appendix.

**IV. NUMERICAL RESULTS AND DISCUSSIONS**

With these discussions, the numerical calculation can be performed via standard loop derivation. Since the magnitude of \(\Lambda_X\) is unknown, we vary its magnitude from 0.5 GeV to 4.0 GeV to find its physical region where the data can be understood. In our estimate, we use the central value of the total width, i.e., \(\Gamma_X = 13.3\) MeV. And, because it is difficult to determine the relative signs between \(\mathcal{L}_{\text{em}}^{\text{AS}}\) and \(\mathcal{L}_{\text{str}}^{\text{ASV}}\) and other terms, we will consider two cases when we do our numerical
TABLE I: Our numerical results in case of positive sign of Eq. (38).

| $J^P C$ | $\Lambda_X$(GeV) | Branch product(eV) | $\Gamma_{str}$(KeV) | $\Gamma_{em}$(KeV) |
|---------|------------------|--------------------|--------------------|--------------------|
| 0$^{++}$ | 0.5 $\sim$ 0.7   | 2.19 $\sim$ 10.26  | 100.9 $\sim$ 174.5 | 0.29 $\sim$ 0.78   |
| 2$^{++}$ | 1.1 $\sim$ 1.8   | 1.24 $\sim$ 2.28   | 285.3 $\sim$ 973.5 | 0.03 $\sim$ 0.09   |

TABLE II: Our numerical results in case of negative sign of Eq. (38).

| $J^P C$ | $\Lambda_X$(GeV) | Branch product(eV) | $\Gamma_{str}$(KeV) | $\Gamma_{em}$(KeV) |
|---------|------------------|--------------------|--------------------|--------------------|
| 0$^{++}$ | 0.5 $\sim$ 0.6   | 7.21 $\sim$ 12.74  | 373.6 $\sim$ 391.0 | 0.26 $\sim$ 0.43   |
| 2$^{++}$ | 1.0 $\sim$ 1.9   | 0.66 $\sim$ 2.42   | 166.0 $\sim$ 915.1 | 0.02 $\sim$ 0.19   |

calculation, i.e., the last two terms of Eq. (38) give positive and negative contributions to the total Lagrangian. Our results are summarized in Tables I and II.

From the numerical results, one can see that the possibility that $X(4350)$ is a molecular state of $D_{s0}^*D_s^*$ can not be ruled out in our model. In the case that $X(4350)$ has quantum numbers $J^{PC} = 0^{++}$, the physical region of $\Lambda_X$ is smaller than the tensor resonance case which means the size of scalar $X(4350)$ is bigger than the tensor one.

We would like to point out that, because we used the minimal values of the theoretical calculation of coupling constants $g_{D_{s0}^*D_s^*\gamma}$ and $g_{D_sD_s\gamma}$, our final results about the partial widths can be regarded as lower limit. This is an ambiguity of the present calculation. In fact, the best way to determine these coupling constants is from data, but because of the precision of the data, we cannot along this way. When the magnitudes of coupling constants $g_{D_{s0}^*D_s^*\gamma}$ and $g_{D_{s1}D_{s}\gamma}$ are improved, the theoretical results of the product of the two-photon decay width and branch fraction to $J/\psi\phi$ should be larger than the present conclusion. In this case, compared to the tensor $X(4350)$, the typical region of $\Lambda_X$ for scalar resonance can be reduced to an unphysically small region so one can first rule out the possibility of a scalar molecule.

Another ambiguity in our calculation of the product of the two-photon decay width and branch fraction to $J/\psi\phi$ is from the total width of $X(4350)$. Here we apply the central value, i.e., $\Gamma_X = 13.3$ MeV. When a larger total width is applied, the physical region of $\Lambda_X$ can be enlarged. But this does not effect the partial widths for strong and electromagnetic decays we predict in the corresponding region of $\Lambda_X$.

Finally, we conclude that, with the present data and in the framework our model, $X(4350)$ can be interpreted as $D_{s0}^*D_s^*$ molecule.
Appendix A: Explicit forms for the Functions $C_{ij}$

In this appendix, I will present the coefficients $C_{ij}$ in formula (16).

$$
C_{11} = \frac{1}{24m^4m_1^2m_2^2}\left[5\lambda^2(\lambda + 12m^2m_2^2)\right], \\
C_{12} = \frac{-1}{12m^4m_1^2m_2^2}\left[\lambda\left(5\lambda(m^2 + m_1^2 + m_2^2) + 24m^2m_1^2m_2^2\right)\right], \\
C_{13} = \frac{1}{12m^4m_1^2m_2^2}\left[5\lambda^2\left((m^2 - m_2^2)^2 - m_1^4\right)\right], \\
C_{14} = \frac{-1}{12m^4m_1^2m_2^2}\left[5\lambda^2\left((m^2 - m_1^2)^2 - m_2^4\right)\right], \\
C_{15} = \frac{1}{24m^4m_1^2m_2^2}\left[5\lambda^3(m^2 - m_1^2 - m_2^2)\right], \\
C_{22} = \frac{1}{24m^4m_1^2m_2^2}\left[5\lambda^2 + 44m^2(m_1^2 + m_2^2)\lambda + 528m_1^2m_2^2m_4^4\right], \\
C_{23} = \frac{-1}{12m^4m_1^2m_2^2}\left[\lambda(5\lambda + 44m^2m_2^2)(m^2 - m_1^2 + m_2^2)\right], \\
C_{24} = \frac{1}{12m^4m_1^2m_2^2}\left[\lambda(5\lambda + 44m^2m_2^2)(m^2 - m_2^2 + m_1^2)\right], \\
C_{25} = \frac{-1}{24m^4m_1^2m_2^2}\left[5\lambda^2\left(m^4 - (m_1^2 - m_2^2)^2\right)\right], \\
C_{33} = \frac{1}{24m^4m_1^2m_2^2}\left[\lambda^2(5\lambda + 44m^2m_1^2)\right], \\
C_{34} = \frac{-1}{12m^4m_1^2m_2^2}\left[5\lambda^2\left(m^4 - (m_1^2 - m_2^2)^2\right)\right], \\
C_{35} = \frac{1}{24m^4m_1^2m_2^2}\left[5\lambda^3(m^2 - m_2^2 + m_1^2)\right], \\
C_{44} = \frac{1}{24m^4m_1^2m_2^2}\left[\lambda^2(5\lambda + 44m^2m_2^2)\right], \\
C_{45} = \frac{-1}{24m^4m_1^2m_2^2}\left[5\lambda^3(m^2 - m_1^2 + m_2^2)\right], \\
C_{55} = \frac{1}{96m^4m_1^2m_2^2}\left[5\lambda^4\right],
$$

(A1)

where $\lambda = \lambda(m^2, m_1^2, m_2^2)$ is the Källen function and $m = m_\chi, m_1 = m_\psi, m_2 = m_\phi$.

Acknowledgments

I would like to thank Prof. Yu-Bing Dong from IHEP in Beijing and Prof. M.Harada in Nagoya University for their valuable discussions and comments. This work is supported in part by the National Science Foundation of China (NNSFC) under grant No. 10905060 and Grant-in-Aid for Scientific Research on Innovative Areas (No. 2104) “Quest on New Hadrons with Variety of
Flavors” from MEXT.

[1] C. P. Shen et al. [Belle Collaboration], Phys. Rev. Lett. 104, 112004 (2010) [arXiv:0912.2383 [hep-ex]].
[2] F. Stancu, arXiv:0906.2485 [hep-ph].
[3] J. R. Zhang and M. Q. Huang, arXiv:0905.4672 [hep-ph].
[4] X. Liu, Z. G. Luo and Z. F. Sun, Phys. Rev. Lett. 104, 122001 (2010) [arXiv:0911.3694 [hep-ph]].
[5] R. M. Albuquerque, J. M. Dias and M. Nielsen, arXiv:1001.3092 [hep-ph].
[6] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008).
[7] A. Faessler, T. Gutsche, V. E. Lyubovitskij and Y. L. Ma, Phys. Rev. D 76, 014005 (2007) [arXiv:0705.0254 [hep-ph]].
[8] S. Weinberg, Phys. Rev. 130, 776 (1963);
[9] A. Salam, Nuovo Cim. 25, 224 (1962);
[10] A. Faessler, T. Gutsche, V. E. Lyubovitskij and Y. L. Ma, Phys. Rev. D 76, 114008 (2007) [arXiv:0709.3946 [hep-ph]].
[11] Y. b. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Phys. Rev. D 77, 094013 (2008) [arXiv:0802.3610 [hep-ph]].
[12] F. Giacosa, T. Gutsche and V. E. Lyubovitskij, Phys. Rev. D 77, 034007 (2008) [arXiv:0710.3403 [hep-ph]].
[13] T. Branz, T. Gutsche and V. E. Lyubovitskij, Eur. Phys. J. A 37, 303 (2008) [arXiv:0712.0354 [hep-ph]].
[14] T. Branz, T. Gutsche and V. E. Lyubovitskij, Phys. Rev. D 78, 114004 (2008) [arXiv:0808.0705 [hep-ph]].
[15] T. Branz, T. Gutsche and V. E. Lyubovitskij, AIP Conf. Proc. 1030, 118 (2008) [arXiv:0805.1647 [hep-ph]].
[16] T. Branz, T. Gutsche and V. E. Lyubovitskij, arXiv:0812.0942 [hep-ph].
[17] A. Faessler, T. Gutsche, V. E. Lyubovitskij and Y. L. Ma, arXiv:0801.2232 [hep-ph].
[18] Y. L. Ma, J. Phys. G 36, 055004 (2009) [arXiv:0808.3764 [hep-ph]].
[19] S. Bellucci, J. Gasser and M. E. Sainio, Nucl. Phys. B 423, 80 (1994) [Erratum-ibid. B 431, 413 (1994)] arXiv:hep-ph/9401206.
[20] J. Terning, Phys. Rev. D 44, 887 (1991).
[21] S. Mandelstam, Annals Phys. 19, 25 (1962).
[22] F. Klingl, N. Kaiser and W. Weise, Z. Phys. A 356 (1996) 193 [arXiv:hep-ph/9607431].
[23] Z. w. Lin and C. M. Ko, Phys. Rev. C 62, 034903 (2000) [arXiv:nucl-th/9912046].
[24] R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio and G. Nardulli, Phys. Rept. 281, 145 (1997) [arXiv:hep-ph/9605342].
[25] A. V. Anisovich, V. V. Anisovich and V. A. Nikonov, Eur. Phys. J. A 12, 103 (2001)
[26] A. V. Anisovich, V. V. Anisovich, M. A. Matveev and V. A. Nikonov, Phys. Atom. Nucl. 66, 914 (2003) [Yad. Fiz. 66, 946 (2003)] arXiv:hep-ph/0204330.

[27] G. Lopez Castro and J. H. Munoz, Phys. Rev. D 55, 5581 (1997) arXiv:hep-ph/9702238.