Application of new Rényi uncertainty relations to wave packet revivals

Francisco de los Santos a,c,1, Clara Guglieria and Elvira Romerab,c

aDepartamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
bDepartamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
cInstituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain

Abstract
Wave packet revivals and fractional revivals are studied by means of newly derived uncertainty relations that involve Rényi entropies and position and momentum dispersions.

Key words: Quantum information, wave packet dynamics, dephasing and revivals
PACS: 42.50.Md, 03.67.-a, 3.65.Ge

1. Introduction
The time evolution of quantum wave packets may lead to interesting collapse and revival phenomena. Propagating wave packets initially evolve quasiclassically and oscillate with a classical period T_{cl}, but eventually spread and collapse. At later times, multiples of the 'revival time' T_{rev}, wave packets regain their initial wave form and behave quasiclassically again. Additionally, at times that are rational fractions of T_{rev}, the wave packet temporarily splits into a number of scaled copies called fractional revivals [1–3]. Revivals and fractional revivals have attracted a great interest during the past decades. They have been investigated theoretically in nonlinear quantum systems, atoms and molecules [4], and observed experimentally in, among others, Rydberg atoms, molecular vibrational states or Bose-Einstein condensates [5]. Recently, methods for isotope separation [6], number factorization [7] as well as for wave packet control [8] have been put forward that are based on revival phenomena.

It can be shown [1,9] that the classical period and the revival time of wave packet evolution are given by the first coefficients of the Taylor series of the energy spectrum E_n around the energy E_{n_0} corresponding to the peak of the initial wave packet,

$$E_n \approx E_{n_0} + E_{n_0}' (n - n_0) + \frac{E_{n_0}''}{2} (n - n_0)^2 + \cdots. \quad (1)$$

In fact the second-, third- and fourth-order terms in the expansion provide the classical period of motion $T_{cl} = 2\pi \hbar |E_{n_0}'|$, the quantum revival scale time $T_{rev} = 4\pi \hbar |E_{n_0}''|$, and the so-called super-revival time, respectively. Fractional revival times are given in terms of the quantum revival scale time [1] by $t = pT_{rev}/q$ with p and q mutually prime.

The study of the time development of wave packet solutions of the Schrödinger equation often makes use of the autocorrelation function $A(t)$. Within this approach, the occurrence of revivals and fractional revivals corresponds to, respectively, the return of $A(t)$
to its initial value of unity and the appearance of relative maxima in $A(t)$. This method, however, misses to detect some fractional revivals because, $A(t)$ being the overlap between the initial wave packet and the evolved one at a given time, the wave packet does not generally regenerate in the same position it started from. Other methods to study revival phenomena include the time evolution of the expectation values of some quantities [3,10,11], and an approach based on a finite difference eigenvalue method that allows to predict the revival times directly [12].

Recently, an information entropy approach has been proposed [13], complementary to the conventional autocorrelation function. Information entropies measure the spread of the probability density of the wave packet, and therefore can be used with advantage to identify the collapse and the regenerating of initially well localized wave packets. Moreover, this approach overcomes the difficulty that wave packets reform themselves at locations that do not coincide with their original ones. More fully, in terms of the probability densities in position and momentum spaces, $\rho(x) = |\psi(x)|^2$ and $\gamma(p) = |\phi(p)|^2$, respectively, the sum of Rényi entropies in conjugate spaces reads

$$R^{(\alpha)}_{\rho} + R^{(\beta)}_{\gamma} = \frac{1}{1-\alpha} \ln \int_{-\infty}^{\infty} [\rho(x)]^\alpha dx + \frac{1}{1-\beta} \ln \int_{-\infty}^{\infty} [\gamma(x)]^\beta dx,$$

and the Rényi uncertainty relation is given by [14]

$$R^{(\alpha)}_{\rho} + R^{(\beta)}_{\gamma} \geq \frac{1}{2(1-\alpha)} \ln \frac{\alpha}{\pi} - \frac{1}{2(1-\beta)} \ln \frac{\beta}{\pi},$$

where $1/\alpha + 1/\beta = 2$. In the limits $\alpha \to 1$ and $\beta \to 1$ the Rényi uncertainty relation (3) reduces to that of Shannon’s [15], $S_\rho + S_\gamma \geq 1 + \ln(\pi)$, which can thus be considered a particular case of the former. Within this context, and due to the fact that the uncertainty relation (3) is saturated only for Gaussian wave packets, the temporary formation of fractional revivals corresponds to the relative minima of $R^{(\alpha)}_{\rho}(t) + R^{(\beta)}_{\gamma}(t)$.

Although this technique was also shown to be superior to an analysis based on the standard variance uncertainty product [16],

$$\sigma_\rho \sigma_\gamma \geq h/4,$$

with $\sigma_\rho^2 = \langle x^2 \rangle - \langle x \rangle^2$ and $\sigma_\gamma^2 = \langle p^2 \rangle - \langle p \rangle^2$, time dependent expectation values and dispersions provide a more direct connection to the classical description. It would therefore be of interest if both methods could be combined to achieve a better description of the phenomenon. In this paper we show that the analysis of wave packet revivals can be carried out using new uncertainty relations involving Rényi entropies and momentum and position dispersions. To be more concrete, we apply the three newly derived relations [17,18]

$$N^{(\alpha)}_{\rho} \sigma_\rho^2 \geq D/4, \quad N^{(\beta)}_{\gamma} \sigma_\gamma^2 \geq D/4, \quad N^{(\alpha)}_{\rho} N^{(\beta)}_{\gamma} \geq 1/4,$$

where $\alpha \in (1/2, 1]$, D is the system dimensionality, and $N^{(\alpha)}_{\phi}$ is the so-called Rényi entropy power of index α, defined as

$$N^{(\alpha)}_{\phi} \equiv \left(\frac{\alpha}{2\alpha - 1} \right)^{\frac{2\alpha - 1}{\alpha}} \frac{1}{2\alpha} 2^{R^{(\alpha)}_{\phi}/D}.$$"
where the eigenfunctions and eigenvalues are given by
\[
E_n' = z_n; \quad \varphi_n(z') = N_n \text{Ai}(z' - z_n); \quad n = 1, 2, 3, \ldots
\]
(9)
Primed symbols denote rescaled position and energy variables \(z' = z/L_g \), \(E' = E/mgL_g \), with \(L_g = (\hbar/2mg)^{1/3} \) being a characteristic gravitational length. \(\text{Ai}(z) \) is the Airy function, \(-z_n\) denotes its zeros, and \(N_n \) is the \(\varphi_n(z') \) normalization factor. In what follows, the primes on the variables are dropped and we assume initial conditions that correspond to Gaussian wave packets localized at a height \(z_0 \) above the surface, with a width \(\sigma \) and an initial momentum \(p_0 = 0 \),
\[
\Psi(z, 0) = \left(\frac{2}{\pi \sigma^2} \right)^{1/4} e^{-(z-z_0)^2/\sigma^2}.
\]
(10)
The corresponding coefficients of the wave function can be obtained analytically as [22],
\[
\Psi(z, t) = \sum_{n=1}^{\infty} C_ne^{-iE_nt/\hbar} \varphi_n(z),
\]
(8)
where the eigenfunctions and eigenvalues are given by [21]
\[
E_n' = z_n; \quad \varphi_n(z') = N_n \text{Ai}(z' - z_n); \quad n = 1, 2, 3, \ldots
\]
Fig. 1. Time dependence of \(N_n^{(\rho)} \sigma_r^2 \) and main fractional revivals for an initial Gaussian wave packet with \(z_0 = 100 \), \(p_0 = 0 \), and \(\sigma = 1 \) in a quantum bouncer. Panel (a) corresponds to \(\alpha = 2/3 \) and (b) to \(\alpha = 4/5 \).

Fig. 2. Time dependence of \(N_n^{(\gamma)} \sigma_r^2 \) and main fractional revivals for a quantum bouncer. Parameters as in Fig. 1
\[
C_n = N_n \left(2\pi \sigma^2 \right)^{1/4} \exp \left[\frac{\sigma^4}{4} \left(z_0 - \frac{\alpha^4}{24} \right) \right] \times \text{Ai} \left(z_0 - z_n + \frac{\sigma^4}{16} \right)
\]
(11)
with \(N_n = |\text{Ai}'(-z_n)| \). Although accurate analytic approximations can be found for \(z_n, C_n, \) and \(N_n \) [21], these were determined numerically by using scientific subroutine libraries for the Airy function. The classical period and the revival time can be calculated to obtain \(T_{cl} = 2\sqrt{z_0} \) and \(T_{rev} = 4z_0^2/\pi \), respectively, and the temporal evolution of the wave packet in momentum-space is obtained numerically by the fast Fourier transform method.

We have computed the temporal evolution of the uncertainty products Eq. (5) and \(\sigma_r \sigma_\gamma \) for the initial conditions \(z_0 = 100 \) and \(\sigma = 1 \). Figure 1 displays \(N_n^{(\rho)} \sigma_r^2 \) and the location of the main fractional revivals for \(\alpha = 2/3 \) (panel (a)) and \(\alpha = 4/5 \) (panel (b)). Figures 2 and 3 show, respectively, \(N_n^{(\rho)} \sigma_r^2 \) and \(N_n^{(\gamma)} \sigma_r^2 \) for the same values of \(\alpha \) as in Fig. 1. For comparison, we also show in Fig. 4 the computed time evolution of \(\sigma_r \sigma_\gamma \) for the same initial wave packet. In every case it can be observed that the uncertainty products decrease and reach a minimum at most of the fractional revivals, al-

\[
E_n' = z_n; \quad \varphi_n(z') = N_n \text{Ai}(z' - z_n); \quad n = 1, 2, 3, \ldots
\]
though the description provided by the products of entropies and of entropy and variance is more clear than that of the standard uncertainty product $\sigma_\rho\sigma_\gamma$.

3. Summary

To summarize, we have studied the revivals and fractional revivals of a quantum bouncer by means of new uncertainty relations that combine time dependent dispersions and Rényi entropies. As it is also the case of other entropic approaches, it is found that they successfully account for the wave packet regeneration. A comparison is made with the description provided by the standard variance-based uncertainty product, to conclude that the entropic approach is generally superior.

This work was supported in part by the Spanish projects FIS2005-00973 (Ministerio de Ciencia y Tecnología), FQM-2725 and FQM-165 (Junta de Andalucía).

References

[1] I. Sh. Averbukh and J. F. Perelman, Phys. Lett. A 139 (1989) 449–453; Acta Phys. Pol. A 78 (1990) 33–40.
[2] D. L. Aronstein and C. R. Stroud, Jr., Phys. Rev. A 55 (1997) 4526–4537.
[3] R. W. Robinett, Phys. Rep. 392 (2004) 1–119.
[4] J. H. Eberly, N. B. Narozhny, and J. J. Sánchez-Mondragón, Phys. Rev. Lett. 44 (1980) 1323–1326.
[5] G. Rempe, H. Walther, and N. Klein, Phys. Rev. Lett. 58 (1987) 353; J. A. Yeazell, M. Mallalieu, and C. R. Stroud, Jr., Phys. Rev. Lett. 64 (1990) 2007-2010; T. Baumert et al., Chem. Phys. Lett. 191 (1992) 639–644; M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, Phys. Rev. A 54 (1996) R37-R40; A. Rudenko et al., Chem. Phys. 329 (2006) 193–202.
[6] I. Sh. Averbukh, M. J. J. Vrakking, D. M. Villeneuve, and A. Stolow, Phys. Rev. Lett. 77 (1996) 3518–3521.
[7] M. Mehring, K. Müller, I. Sh. Averbukh, W. Merkel, and W. P. Schleich, Phys. Rev. Lett. 98 (2007) 120502; M. Gilowski et al., Phys. Rev. Lett. 100 (2008) 030201; D. Bigourd, B. Chatel, W. P. Schleich, and B. Girard, Phys. Rev. Lett. 100 (2008) 030202.
[8] E. A. Shapiro, M. Spanner, and M. Y. Ivanov, Phys. Rev. Lett. 91 (2003) 237901; M. Spanner, E. A. Shapiro, and M. Y. Ivanov, Phys. Rev. Lett. 92 (2004) 093001; K. F. Lee, D. M. Villeneuve, P. B. Corkum, and E. A. Shapiro, Phys. Rev. Lett. 93 (2004) 233601.
[9] J. Parker and C. R. Stroud, Jr., Phys. Rev. Lett. 56 (1986) 716–719.
[10] C. Sudheesh, S. Lakshmibala, and V. Balakrishnan, Phys. Lett. A 329 (2004) 14–21.
[11] M. A. Donchesk and R. W. Robinett, Am. J. Phys. 69 (2001) 1084–1090.
[12] D. L. Aronstein and C. R. Stroud, Jr., Laser Phys. 15 (2005) 1496–1507.
[13] E. Romera and F. de los Santos, Phys. Rev. Lett. 99 (2007) 263601.
[14] I. Bialynicki-Birula, Phys. Rev. A 74 (2006) 052101.
[15] I. Bialynicki-Birula and J. Mycielski, Comm. Math. Phys. 44 (1975) 129–132; W. Beckner, Ann. Math. 102 (1975) 159–182.
[16] E. Romera and F. de los Santos, Phys. Rev. A 78 (2008) 013837.
[17] E. Romera and A. Nagy, Phys. Lett. A 372 (2008) 6823–6825.
[18] S. Zozor, M. Portesi, and C. Vignat, arXiv:0709.3011.
[19] V. V. Nesvizhevsky et al. Nature (London) 415 (2002) 297–299; V. V. Nesvizhevsky, A. K. Petukhov, K. V. Protasov, and A. Y. Voronin, Phys. Rev. A 78 (2008) 033616.
[20] K. Bongs et al., Phys. Rev. Lett. 83 (1999) 3577–3580.
[21] J. Gea-Banacloche, Am. J. Phys. 67 (1999) 776–782.
[22] O, Vallée, Am. J. Phys. 68 (2000) 672–673.