Baryon Binding Energy in Sakai-Sugimoto Model

J. Sadeghi, M. R. Pahlavani, S. Heshmatian and R. Morad

a Sciences Faculty, Department of Physics, Mazandaran University,
P.O.Box 47415-416, Babolsar, Iran

October 20, 2009

Abstract

The binding energy of baryon has been studied in the dual AdS$_5 \times S^5$ string theory with a black hole interior. Here, we calculate the baryon binding energy in Sakai-Sugimoto model. Also we check the T dependence of the baryon binding energy. We believe that this model represents an accurate description of baryons due to the existence of Chern-Simones coupling with the gauge field on the brane. We obtain an analytical expression for the baryon binding energy. Next we plot the baryon binding energy in terms of radial coordinate. Then by using the binding energy diagram, we determine the stability range for baryon configuration. And also the position and energy of the stable equilibrium point is obtained by the corresponding diagram. Also we plot the baryon binding energy in terms of temperature and estimate a critical temperature in which the baryon would be dissociated.

Keywords: AdS/CFT correspondence; Baryon binding energy; Sakai-Sugimoto model
1 Introduction

The AdS/CFT correspondence demonstrates a relation between a conformal field theory in \(d \) dimension and a gravitational theory in \(d + 1 \) dimensional anti de-sitter space [1-7]. An example for this correspondence is the relation between type IIB string theory in \(AdS_5 \times S^5 \) space and \(\mathcal{N} = 4 \) supersymmetric Yang-Mills theory on four dimensional boundary of \(AdS_5 \). Using this correspondence to calculate the complicated problems of QCD is one of the more interesting issues nowadays. For example the dynamics of moving quark in a hot, strongly coupled plasma have been investigated in [8-17]. Also the jet-quenching parameter of quarks is one of the interesting properties of the strongly coupled plasma that there are many calculations to obtain this parameter [17-25]. In Additionally the motion of a quark-antiquark pair have been studied in [26-31].

In the other hand baryons in gauge theory have been studied in \(AdS_5 \times S^5 \) dual string theory by introducing the baryon vertex [2]. In this picture baryons are corresponded to the configurations which consist of a \(D_5 \)-brane wrapped on a \(S_5 \) and all external quarks are connected to it due to fundamental strings.

Baryons may also be studied in Sakai-Sugimoto (SS) model [32-35] with \(D_4/D_8/\overline{D}_8 \) configuration which presents a holographic dual of four dimensional QCD with large \(N_c \) and massless flavors. \(D_4 \)-brane is placed on a \(S^1 \) susy-breaking and the \(D_8/\overline{D}_8 \) pairs are transverse to \(S^1 \). The lower bound for the radial coordinate \(U \) which is transverse to the D4-branes is \(U = U_{kk} \) and the radius of \(S^1 \) diminishes to zero in this point. The spontaneously symmetry breaking in QCD is indicated as a smooth interpolation of the \(D_8/\overline{D}_8 \) pairs in super gravitational background. The SS model suggests that the solution called skyrmion demonstrations a baryon which is considered as a \(D_4 \)-brane wrapped on \(S^4 \). This \(D_4 \)-brane is the baryon vertex with \(N_c \) connected strings. The Chern-Simones coupling leads to the fact that baryon can be treated as a delta function source of the gauge field \(A_0 \) of brane [36].
The phenomenological quantities of baryon at finite temperature are interesting topics, but the calculations are so complicated even in lattice QCD. One can use the dual string theory to analyze most of these concepts. The baryon binding energy, baryon melting temperature and screening length are some of these examples which are investigated using the $AdS_5 \times S^5$ dual string [27,37]. Furthermore some baryon thermodynamical quantities such as the energy density and pressure have been studied in SS model. But the baryon binding energy in SS model have not considered yet and in this paper we plan to analyze it.

In section 2 we review the SS model briefly in which the baryon is considered as a D_4-brane wrapped on S^4. In section 3 we use the $U(1)_v$ field introduced by Ref. [32-35] to calculate the energy of baryon configuration in SS model. In section 4 we subtract the dissociated baryon energy and obtain an equation for the baryon binding energy in SS model. Next we plot the energy in terms of radial coordinate and then determine the stability range for baryon configuration in $U_{KK} = 1$ scale. We also obtained the position and energy of the stable equilibrium point by using this diagram. Then we depict the binding energy of baryon versus temperature and estimate the critical T for baryon melting.

2 SS model

In this section we review of Sakai-Sugimoto model with $D_4/D_8/D_8$ configuration [32]. The D_4-brane metric is given by the following equation,

\[
d s^2 = \left(\frac{U}{R} \right)^{3/2} \left(\eta_{\mu \nu} dx^\mu dx^\nu + f(U) d\tau^2 \right) + \left(\frac{R}{U} \right)^{3/2} \left(\frac{dU^2}{f(U)} + U^2 d\Omega_4^2 \right),
\]

\[
e^\phi = g_s \left(\frac{U}{R} \right)^{3/4}, \quad F_4 = dC_3 = \frac{2\pi N_c}{V_4} \epsilon_4, \quad f(U) = 1 - \frac{U_{KK}^3}{U^3}, \quad (1)
\]

where D_4-brane is extended along the $x^\mu (\mu = 0, 1, 2, 3)$ and τ directions. $U(U \geq U_{KK})$ is the radial coordinate and $d\Omega_4^2$, ϵ_4 and $V_4 = 8\pi^2/3$ are line element, volume form and the volume of S^4. R and U_{KK} are constant parameters.
Avoiding to have a singularity in $U = U_{KK}$, the τ coordinate should be considered periodic,

$$\tau \sim \tau + \delta \tau, \quad \delta \tau \equiv \frac{4\pi}{3} \frac{R^{3/2}}{U_{KK}^{1/2}}.$$ \hspace{1cm} (2)

The R and U_{KK} parameters are defined in terms of l_s and $\lambda(=g_{YM}^2 N_c)$ as follows,

$$R^3 = \frac{1}{2} \frac{\lambda l_s^2}{M_{KK}}, \quad U_{KK} = \frac{2}{9} \lambda M_{KK} l_s^2, \quad g_s = \frac{1}{2\pi} \frac{\lambda}{M_{KK} l_s N_c},$$ \hspace{1cm} (3)

and also the pion decay constant has the following expression,

$$f_\pi^2 = \frac{1}{54\pi^2} (g_{YM}^2 N_c) M_{KK}^2 N_c.$$ \hspace{1cm} (4)

according to equation (1) for N_f D_8-brane placed in D_4 background, equation (1), the action can be written by the follows,

$$S_{D8} = S_{D8}^{DBI} + S_{D8}^{CS},$$

$$S_{D8}^{DBI} = -T_8 \int d^9 x \, e^{-\phi} \text{tr} \sqrt{-\det(g_{MN} + 2\pi \alpha' F_{MN})},$$

$$S_{D8}^{CS} = \frac{1}{48\pi^3} \int_{D8} C_3 \text{tr} F^3,$$ \hspace{1cm} (5)

where $T_8 = \frac{1}{2\pi^2 g_s^2}$ is the D_8-brane tension, $F_{MN} = \partial_M A_N - \partial_N A_M - i [A_M, A_N], (M, N = 0, 1, \ldots, 8)$ is the field strength tensor and A_M is the $U(N_f)$ gauge field on D_8-brane. The induced metric on D_8-brane is given,

$$ds^2 = \left(\frac{U}{R} \right)^{3/2} \eta_{\mu\nu} dx^\mu dx^\nu + \left[\left(\frac{U}{R} \right)^{3/2} f(U)(\tau'(U))^2 + \left(\frac{R}{U} \right)^{3/2} \frac{1}{f(U)} \right] dU^2 + \left(\frac{R}{U} \right)^{3/2} U^2 d\Omega_4^2,$$ \hspace{1cm} (6)

where $U = U(\tau)$.

Baryon is a D_4-brane wrapped on S^4 in SS model. In the other hand, it is a soliton in Skyrme model and these two descriptions are related to each other. The topological charge carried by the gauge configuration on D_8-brane is related to the baryon number charge and the skyrmion constructed on D_8-brane relates to the wrapping D_4-brane. The relation between instanton number and D_4-brane charge is [32],

$$\frac{1}{8\pi^2} \int_B \text{tr} F^2 = n,$$ \hspace{1cm} (7)
where \(B \simeq R^4 \) is the four dimensional space parameterized by \((x^1, x^2, x^3, z)\).

Inserting the appropriate gauge field in Chern-Simones action, one can write,

\[
S_{CS}^{D8} \simeq n N_c \int_R a, \tag{8}
\]

where \(a \) is the \(U(1)_v \) gauge field fluctuations on \(D_8 \)-brane.

3 The energy of baryon in SS model

In this section we calculate the energy of baryon configuration in SS model. The \(CS \) coupling in \(SS \) model leads to the fact that instanton configuration displays a particle with \(U(1)_v \) charge \(n N_c \) which is equivalent to a particle with baryon number \(n_B \). So we consider the baryon as a delta function source of the gauge field [36]. The baryon action can be regarded as sum of the \(DBI \) action and the source action. The \(DBI \) action for \(D_8 \)-brane in the absence of the source term is written by the following equation,

\[
S_{D8} = -\frac{N_f T_8 V_4}{g_s} \int d^4x \ dU U^4 \left[f (\tau')^2 + \left(\frac{R}{U} \right)^3 \left(f^{-1} - (2\pi\alpha' A'_0)^2 \right) \right]^{\frac{1}{2}}, \tag{9}
\]

where \(A'_0 = \frac{dA_0}{d\tau} \) and the \(CS \) term vanishes. From the equation of motion for \(\tau(U) \) only the \(\tau' = 0 \) case is considered [32]. It means that the existence of \(A_0 \) does not change the \(D_8 \)-brane configurations in \(\tau \) coordinate. And it corresponds to \(\tau = \frac{\delta \tau}{4} \) which is the maximum of asymptotic separation between \(D_8 \) and \(D_8 \).

In order to express our results according to the \(SS \) model we choose \(z \) instead of \(U \) as,

\[
U \equiv (U_{KK}^3 + U_{KK} z^2)^{1/3}, \tag{10}
\]

and then use the following dimensionless parameters,

\[
Z \equiv \frac{z}{U_{KK}}, \quad K(U) \equiv 1 + Z^2 = \left(\frac{U}{U_{KK}} \right)^3. \tag{11}
\]

Then, one can rewrite the action (9) in the following form,

\[
S_{D8} = -a \int d^4x \int dZ K^{2/3} \sqrt{1 - b K^{1/3}(\partial Z A_0)^2}, \tag{12}
\]
where
\[a \equiv \frac{N_cN_f l_s^3 M_{KK}^4}{3^9 \pi^5}, \quad b \equiv \frac{3^6 \pi^2}{4 l_s^2 M_{KK}^2}. \] (13)

In the other hand, the source action has the following form [36],
\[S_{\text{source}} = N_c n_B \int d^4x \int dZ \delta(Z) A_0(Z). \] (14)

where \(N_c n_b = n_q \) is the quark density.

Now by using the equations (12) and (14), we write the baryon action as follows,
\[S_{\text{Baryon}} = -a \int d^4x \int dZ K^{2/3} \sqrt{1 - bK^{1/3}(\partial_Z A_0)^2} \\
+ N_c n_B \int d^4x \int dZ \delta(Z) A_0(Z). \] (15)

At first, we should solve the equation of motion for the gauge field to reach the baryon hamiltonian,
\[\frac{d}{dZ} \frac{\partial L}{\partial (\partial_Z A_0)} = n_q \delta(Z), \] (16)

By the definition \(D = \frac{\partial L}{\partial (\partial_Z A_0)} \) and integrating over \(z \), the equation of motion takes the following form,
\[D = \frac{1}{2} n_q \text{sgn}(Z). \] (17)

In that case the equation (18) helps us to obtain the corresponding baryon action and energy. We utilize the definition of \(D \) to eliminate \(\partial_Z A_0 \) as following,
\[(\partial_Z A_0)^2 = \frac{D^2}{a^2 b^2 K^2 + bD^2 K^{1/3}}. \] (18)

Inserting this equation into the baryon action (16) yields to,
\[S_{\text{Baryon}} = -2a^2 b \int d^4x \int dZ K^{5/3} \left(4a^2 b^2 K^2 + n_q^2 bK^{1/3} \right)^{-1/2} \\
+ n_q \int d^4x \int dZ \delta(Z) A_0(Z), \] (19)
which is independent of $\partial Z A_0$.

Then to obtain the baryon energy we should transform the original lagrangian to eliminate the gauge field in favor of D as follows,

$$\mathcal{L}_{\text{Baryon}} \rightarrow n_q \delta(Z)A_0(Z) - \mathcal{L}_{\text{Baryon}}.$$ \hspace{1cm} (20)

After this transformation, the baryon lagrangian will be following,

$$\mathcal{L}_{\text{Baryon}} = 2a^2bK^{5/3} \left(4a^2b^2K^2 + n_q^2bK^{1/3} \right)^{-1/2}.$$ \hspace{1cm} (21)

Substituting this equation into the baryon action (19) we find the energy of baryon configuration as following,

$$E_{\text{Baryon}} = 2a^2bV_3 \int dZ K^{5/3} \left(4a^2b^2K^2 + n_q^2bK^{1/3} \right)^{-1/2},$$ \hspace{1cm} (22)

where V_3 is the spatial integral. Here we attain an equation for the baryon energy assuming the baryon as a delta function in terms of the SS model parameters.

4 Baryon binding energy

In this section we obtain the baryon binding energy with a good approximation. For this purpose we should subtract the energy of dissociated baryon from the total energy of baryon configuration (equation (21)).

By using the following relation the energy of dissociated baryon is considered as the mass of N_c deconfined quarks at the black hole horizon,

$$E_{\text{diss}} = \frac{N_c}{2\pi\alpha'} \int dU.$$ \hspace{1cm} (23)

where we assumed $\phi = 0$ for the dilaton.

Then we have applied the equations (10) and (11) and rewrite the equation (24) in terms of new dimensionless variable Z as follows,

$$E_{\text{diss}} = c \int dZ Z K^{-2/3},$$ \hspace{1cm} (24)
where

\[c = \frac{N_c U KK}{3\pi\alpha'}. \]

(25)

Subtracting this equation from the baryon energy (equation (22)), one can obtain the following equation for the baryon binding energy,

\[E_I = 2a^2 b V_3 \int dZ K^{5/3} \left(4a^2 b^2 K^2 + n_q^2 b K^{1/3} \right)^{-1/2} - c \int dZ Z K^{-2/3}. \]

(26)

The first integrate can not be solved analytically but we have to consider the following condition which is obtained by numerical values for the parameters,

\[n_B < \frac{N_f \lambda^2 M^3_{KK}}{3^6 \pi^4}. \]

(27)

which implies that \(n_q < 2a b^{1/2} \) and simplifies the integrand. Thus the baryon binding energy is approximated up to the second order of the power expansion,

\[E_I = aV_3 \int dZ K^{2/3} \left\{ 1 - \frac{1}{2} \frac{n_q^2}{2a^2 b K^{5/3}} + \ldots \right\} - c \int dZ Z K^{-2/3}, \]

(28)

which has analytical solution in terms of the hypergeometric functions as follows,

\[E_I = a V_3 Z F\left(\begin{array}{c} -\frac{2}{3}, \frac{1}{2}, \frac{3}{2} \end{array}; \frac{3}{2}, -Z^2 \right) - \frac{1}{2} c Z^2 F\left(\begin{array}{c} \frac{2}{3}, 1, 2 \end{array}; Z^2 - 1 \right) - \frac{1}{8} \frac{V_3 n_q^2}{ab \tan^{-1}(Z)}. \]

(29)

This is the baryon binding energy in terms of the dimensionless parameter \(Z \) introduced in \(SS \) model.

Finally we change \(Z \) into \(U \), the radial coordinate in \(SS \) model, and plot the baryon binding energy in terms of this coordinate. Then, we use this plot to determine the range of \(U \) in which the baryon is stable in \(SS \) model. We also appraise the position and energy of the stable equilibrium point. The equation (27) is applied for baryon density and the numerical value of \(\lambda \) is obtained from equation (4) with \(f_\pi = 0.093 \text{ GeV} \) for the experimental value of the pion decay constant. Also we choose \(N_f = 2 \) and \(N_c = 3 \) values and insert
these values with $M_{kk} = 0.950 \text{GeV}$ in equation (29). Then we plot the baryon binding energy with respect to the U coordinate in $U_{kk} = 1$ scale (figure 1-a). As U increases, the binding energy of baryon configuration gets smaller and at $U = U_b$ we have an stable equilibrium point with the minimum energy of $E_I = -2.36 \text{GeV}$. At $U = U_m$ the binding energy is zero and for $U > U_m$ the baryon would be dissociated. So we obtain an stable range for the baryon configuration.

Furthermore, in equation (29) we use the relation between the horizon coordinate U_{KK} and the temperature to depict the baryon binding energy in terms of T at $U = U_m$ (figure 1-b). As T increases, the baryon binding energy becomes larger and for $T > T_c$ we have no stable configuration. Note that we obtained a similar behavior for the binding energy versus T compared to Ref.[37] with the $AdS_5 \times S^5$ configuration.

Figure 1: a) The baryon binding energy vs. U coordinate in SS model. The baryon is stable in $U_{kk} < U < U_m$ range and $U = U_b$ is the stable equilibrium point. b) The baryon binding energy vs. T. T_c is the temperature in which the binding energy becomes zero and for $T > T_c$ no stable configuration exists.
5 Conclusion

We calculated the binding energy of baryon in the gauge/gravity dual description with a $D_4/D_8/D_8$ introduced in SS model. Here we considered the baryon action as the sum of the DBI action and a delta function source of the gauge field as in [36]. We obtained the total energy of baryon and the energy of N_c fundamental quarks in section 3. Then in order to obtain the baryon binding energy, we subtracted the energy of dissociated baryon from the total energy of baryon. Finally we depicted the baryon binding energy versus the radial coordinate and determined the stability range for baryon configuration by using this diagram. Also we plotted the baryon binding energy versus the temperature. Then the critical temperature T_c can be realized clearly.

According to the binding energy graph we can easily find that the baryon binding energy is zero at $U = U_{kk}$ which is the lower bound for U coordinate in SS model where the radius of S^1 diminishes to zero and no stable baryon configuration exists. As U increases, the binding energy of baryon configuration gets smaller and at $U = U_b$ we have an stable equilibrium point. For $U > U_b$ the energy increases and at $U = U_m$ the binding energy vanishes again. It reveals the fact that for $U > U_m$ there is no stable baryon configuration and the baryon would be dissociated. Furthermore we obtained a similar behavior for the binding energy versus T compared to Ref.[37] which proposes an $AdS_5 \times S^5$ configuration.

References

[1] Maldacena J M 1998 The large N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231.

[2] Witten E 1998 Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253.

[3] Schwartz J H 1999 Introduction to M Theory and AdS/CFT Duality (Lecture Notes in Physics vol 525) (Berlin: Springer) pp 121 (arXiv:hep-th/9812037).
11

[4] Douglas M R and Randjbar-Daemi S 1999 Two lectures on AdS/CFT correspondence arXiv:hep-th/9902022.

[5] Petersen J L 1999 Introduction to the Maldacena conjecture on AdS/CFT Int. J. Mod. Phys. A 14 3597.

[6] Nastase Horatiu 2007 Introduction to AdS-CFT arXiv:0712.0689v2 [hep-th].

[7] Klebanov Igor R 2000 TASI lectures: introduction to the AdS/CFT correspondence arXiv:hep-th/0009139.

[8] Sadeghi J, Setare M R, Pourhassan B 2009 Drag force with different charges in STU background and AdS/CFT J. Phys. G: Nucl. Part. Phys. 36 (2009) 115005 (19pp).

[9] Sadeghi J, Setare M R, Pourhassan B and Hashmatian S 2009 Drag force of moving quark in STU background Eur. Phys. J. C 61 527 (arXiv:0901.0217 [hep-th]).

[10] Sadeghi J and Pourhassan B 2008 Drag force of moving quark at the N = 2 supergravity J. High Energy Phys. JHEP12(2008)026 (arXiv:0809.2668 [hep-th]).

[11] Herzog CP, Karch A, Kovtun P, Kozcaz C and Yaffe L G 2006 Energy loss of a heavy quark moving through N = 4 supersymmetric YangMills plasma J. High Energy Phys. JHEP07(2006)013 (arXiv:hep-th/0605158).

[12] Herzog C P 2006 Energy loss of heavy quarks from asymptotically AdS geometries J. High Energy Phys. JHEP09(2006)032 (arXiv:hep-th/0605191).

[13] Gubser S S 2006 Drag force in AdS/CFT Phys. Rev. D 74 126005.

[14] Vazquez-Poritz J F 2008 Drag force at finite t Hooft coupling from AdS/CFT arXiv:hep-th/0803.2890.

[15] Caceres E and Guijosa A Drag force in charged N = 4 SYM plasma J. High Energy Phys. JHEP11(2006)077.
[16] Matsuo T, Tomino D and Wen W Y 2006 Drag force in SYM plasma with B field from AdS/CFT J. High Energy Phys. JHEP10(2006)055.

[17] Nakano E, Teraguchi S and Wen W Y 2007 Drag force, jet quenching and AdS/QCD Phys. Rev. D 75 085016.

[18] Liu H, Rajagopal K and Wiedemann U A 2006 Calculating the jet quenching parameter from AdS/CFT Phys. Rev. Lett. 97 182301.

[19] Vazquez-Poritz J F 2006 Enhancing the jet quenching parameter from marginal deformations arXiv: [hep-th/0605296]

[20] Caceres E and Guijosa A 2006 On drag forces and jet quenching in strongly coupled plasmas J. High Energy Phys. JHEP12(2006)068.

[21] Lin F L and Matsuo T 2006 Jet quenching parameter in medium with chemical potential from AdS/CFT Phys. Lett. B 641 45.

[22] Avramis S D and Sfetsos K 2007 Supergravity and the jet quenching parameter in the presence of R-charge densities J. High Energy Phys. JHEP01(2007)065.

[23] Armesto N, Edelstein J D and Mas J 2006 Jet quenching at finite t Hooft coupling and chemical potential from AdS/CFT J. High Energy Phys. JHEP09(2006)039.

[24] Edelstein J D and Salgado C A 2008 Jet quenching in heavy ion collisions from AdS/CFT AIP Conf. Proc. 1031 207 (arXiv:0805.4515).

[25] Fadafan K B 2008 Medium effect and finite tHooft coupling correction on drag force and jet quenching parameter arXiv:0809.1336.

[26] Peeters K, Sonnenschein J and Zamaklar M 2006 Holographic melting and related properties of mesons in a quark gluon plasma Phys. Rev. D 74 106008.
[27] Liu H, Rajagopal K and Wiedemann U A 2007 An AdS/CFT calculation of screening in a hot wind Phys. Rev. Lett. 98 182301 [arXiv:hep-ph/0607062].

[28] Chernicoff M, Garcia J A and Guijosa A 2006 The energy of a moving quark-antiquark pair in an N = 4 SYM plasma J. High Energy Phys. JHEP09(2006)068.

[29] Erdmenger J, Evans N, Kirsch I and Threlfall E J 2008 Mesons in gauge/gravity duals Eur. Phys. J. A 35 81.

[30] Sadeghi J, Pourhassan B and Heshmatian S 2008 Rotating heavy meson in an N = 4 SYM plasma and AdS/CFT [arXiv:0812.4816] [hep-th]; Ali-Akbari M and B. Fadafan K 2009 Rotating mesons in the presence of higher derivative corrections from gauge-string duality [arXiv:0908.3921v1] [hep-th].

[31] Chernicoff M, Garcia J A and Guijosa A 2006 The energy of a moving quark-antiquark pair in an N = 4 SYM plasma J. High Energy Phys. JHEP09(2006)068.

[32] Sakai T and Sugimoto S 2004 Low Energy Hadron Physics in Holographic QCD arXiv:0412141v5 [hep-th].

[33] Sakai T and Sugimoto S 2005 More on a Holographic Dual of QCD arXiv:0507073v4 [hep-th].

[34] Hashimoto K Sakai T and Sugimoto S 2008 Holographic Baryons [arXiv:0806.3122v3] [hep-th].

[35] Hata H Sakai T Sugimoto S and Yamato S 2007 Baryons from instantons in holographic QCD arXiv:0701280 [hep-th].

[36] Kim K Y, Sin S J and Zahed I 2007 The Chiral Model of Sakai-Sugimoto at Finite Baryon Density [arXiv:0708.1469v3] [hep-th].

[37] Sin S J, Yang S and Zhou Y 2009 Comments on Baryon Melting in Quark Gluon Plasma with gluon condensation [arXiv:0907.1732v1] [hep-th].