Pre-pregnancy underweight and obesity are positively associated with small-for-gestational-age infants in a Chinese population

Yuan Hua Chen1,2,6*, Li Li3,6, Wei Chen1, Zhi Bing Liu2, Li Ma2, Xing Xing Gao1, Jia Liu He2, Hua Wang2, Mei Zhao5, Yuan Yuan Yang3 & De Xiang Xu2*

The association between suboptimal pre-pregnancy body mass index (BMI) and small-for-gestational-age (SGA) infants is not well defined. We investigated the association between pre-pregnancy BMI and the risk of SGA infants in a Chinese population. We performed a cohort study among 12029 mothers with a pregnancy. This cohort consisted of pregnant women that were: normal-weight (62.02%), underweight (17.09%), overweight (17.77%) and obese (3.12%). Birth sizes were reduced in the underweight and obese groups compared with the normal-weight group. Linear regression analysis indicated that birth size was positively associated with BMI in both the underweight and normal-weight groups. Further analysis showed that 12.74% of neonates were SGA infants in the underweight group, higher than 7.43% of neonates reported in the normal-weight group (adjusted RR = 1.92; 95% CI: 1.61, 2.30). Unexpectedly, 17.60% of neonates were SGA infants in the obese group, much higher than the normal-weight group (adjusted RR = 2.17; 95% CI: 1.57, 3.00). Additionally, 18.40% of neonates were large-for-gestational-age (LGA) infants in the obese group, higher than 7.26% of neonates reported in the normal-weight group (adjusted RR = 3.00; 95% CI: 2.21, 4.06). These results suggest that pre-pregnancy underweight increases the risk of SGA infants, whereas obesity increases the risks of not only LGA infants, but also SGA infants.

Small-for-gestational-age (SGA) is one of the leading causes for stillbirth, neonatal deaths and perinatal morbidity1–3. A number of studies indicated that SGA was associated with diseases in childhood. An epidemiological study found that abnormal blood pressure in children born with SGA was more frequently observed than in children born with normal size4. Several studies demonstrated that children born with SGA had higher risks of developing diabetes mellitus, obesity and hyperlipidemia5,6. Moreover, a large retrospective cohort analysis showed that autism risk was increased in children born with preterm SGA7. On the other hand, SGA was associated with cardiovascular and metabolic diseases in adulthood. An earlier study found that serum IGF-I concentrations and the IGF-I/IGFBP-3 ratio were lower in adults that had SGA at birth, suggesting an association between SGA and an increased risk of metabolic diseases in adulthood8. Numerous epidemiological reports and animal experiments showed that adults from SGA pregnancy have higher blood pressure and cardio-metabolic risk than controls, suggesting an association between SGA and cardiovascular diseases in adulthood9–11.

The prevalence of suboptimal pre-pregnancy BMI has increased in recent years12,13. Previous studies investigating the association between pre-pregnancy BMI and the risk of SGA infants had inconsistent results. Several cohort studies showed that pre-pregnancy underweight increased the risk of SGA infants, whereas overweight and obesity were associated with a decreased risk of SGA infants14–16. Recently, a small sample of cohort study found that there was no significant association between pre-pregnancy BMI and the risk of SGA infants in a Chinese population17. Animal reports found that pre-pregnancy high fat diets-induced obesity decreased fetal

1School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China. 2School of Public Health, Anhui Medical University, Hefei, 230032, China. 3Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. 4Implantation and Placental Development Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia. 5School of Nursing, Anhui Medical University, Hefei, 230032, China. 6These authors contributed equally: Yuan Hua Chen and Li Li. *email: yuanhuach@126.com; xudex@126.com
weight and increased the incidence of SGA in mice18,19. Thus, whether suboptimal pre-pregnancy BMI influences the risk of SGA infants remains to be further determined in a large sample population.

In the present study, we performed a birth cohort study among 12029 mothers with a pregnancy. The aim of this study is to investigate the association between pre-pregnancy BMI and birth sizes. Additionally, we determine whether suboptimal pre-pregnancy BMI can influence the risk of SGA infants and large-for-gestational-age (LGA) infants.

Results

Demographic characteristics of study population.

The demographic characteristics of pregnant women were presented in Table 1. According to pre-pregnancy BMI, 7461 pregnant women (62.02%) were normal-weight, 2056 (17.09%) underweight, 2137 (17.77%) overweight, and 375 (3.12%) obese. No subjects were drinking or smoking throughout the pregnancy. There were significant differences on maternal age, education, parity, gestational weight gain (GWG) and mode of delivery among different groups (Table 1). The incidence of pregnancy-induced hypertension, gestational diabetes mellitus and preeclampsia was significantly higher in the overweight and obese groups than those in the underweight and the normal-weight groups (Table 1). Moreover, there was a significant difference on gestational ages at the delivery among different groups (Table 1).

Birth sizes among different groups.

The correlations between pre-pregnancy BMI and birth sizes were analyzed. There were no significant correlations between pre-pregnancy BMI and birth weight ($r = 0.059$), birth length ($r = 0.005$), head circumference ($r = 0.068$) and chest circumference ($r = 0.060$). Birth sizes were compared among four groups. Birth sizes, including birth weight, birth length, head circumference and chest

Characteristics	Pre-pregnancy BMI Category	P-values			
Pregnant women (n)	Underweight	Normal-weight	Overweight	Obesity	
Maternal age (years, M ± SD)	27.4 ± 3.9	28.7 ± 4.4	30.3 ± 5.0	30.6 ± 5.1	<0.001
<25 [n (%)]	430 (20.91)	1134 (15.20)	224 (10.48)	43 (11.47)	<0.001
25–34 [n (%)]	1518 (73.84)	5543 (74.29)	1505 (70.43)	244 (65.07)	<0.001
≥35 [n (%)]	108 (5.25)	784 (10.51)	408 (19.09)	88 (23.46)	<0.001

Table 1. Demographic characteristics of study population. Abbreviations: n, number; M, mean; SD, standard deviation. 1Low (junior school or less), medium (high school), high (College or above). 2Seventy-five pregnant women suffered from both pregnancy-induced hypertension and preeclampsia. The mean differences among different groups were analyzed using one-way ANOVA. Categorical variables were analyzed using χ^2 tests.
Parameter	Pre-pregnancy BMI Category	Normal-weight	Overweight	Obesity
Birth weight (g)	Underweight	3072.3 ± 558.4**	3181.7 ± 608.7	3245.5 ± 713.6**
Mean (SD)	3250 (2400, 3000, 3400, 3700)**	3350 (2200, 2950, 3700, 4000)**	3250 (1620, 2550, 3750, 4050)	
Birth length (cm)	Mean (SD)	49.4 ± 2.9**	49.8 ± 3.2	49.8 ± 3.5
Median (10th, 25th, 75th, 90th)	50.0 (46.0, 48.0, 51.0, 52.0)**	50.0 (46.0, 49.0, 52.0, 53.0)	50.0 (46.0, 49.0, 52.0, 53.0)	50.0 (42.0, 47.0, 52.0, 53.0)**
Head circumference (cm)	Mean (SD)	33.0 ± 2.0**	33.3 ± 2.2	33.6 ± 2.3**
Median (10th, 25th, 75th, 90th)	33.0 (31.0, 32.0, 34.0, 35.0)**	33.5 (31.0, 32.0, 35.0, 36.0)	34.0 (31.0, 32.0, 35.0, 36.0)**	34.0 (28.0, 32.0, 35.0, 37.0)
Chest circumference (cm)	Mean (SD)	32.6 ± 2.3**	33.0 ± 2.5	33.3 ± 2.8**
Median (10th, 25th, 75th, 90th)	33.0 (30.0, 32.0, 34.0, 36.0)**	34.0 (30.0, 32.0, 35.0, 36.0)**	33.0 (27.0, 31.0, 35.0, 36.0)	Table 2. Birth sizes among different groups. The mean differences between two groups were analyzed using least significant difference (LSD) post hoc test. The median differences were analyzed using non-parametric statistics. **P < 0.01 as compared with normal-weight.

Parameter	Pre-pregnancy BMI Category	Normal-weight	Overweight	Obesity	
SGA [n (%)]	Underweight	262 (12.74)	554 (7.43)	146 (6.83)	66 (17.60)
Crude RR (95% CI)**	1.82 (1.56, 2.13)**	1.00	0.91 (0.76, 1.10)	2.66 (2.01, 3.52)**	
Adjusted RR (95% CI)*	1.79 (1.53, 2.10)**	1.00	0.93 (0.77, 1.13)	2.73 (2.06, 3.61)**	
Adjusted RR (95% CI)**	1.83 (1.55, 2.16)**	1.00	0.84 (0.69, 1.03)	2.25 (1.67, 3.02)**	
Adjusted RR (95% CI)**	1.91 (1.61, 2.26)**	1.00	0.96 (0.78, 1.17)	2.51 (1.85, 3.41)**	
Adjusted RR (95% CI)**	1.92 (1.61, 2.30)**	1.00	0.92 (0.74, 1.14)	2.17 (1.57, 3.00)**	

Table 3. Crude and adjusted RR for the association between BMI and SGA. Abbreviations: BMI, body mass index; SGA, small-for-gestational-age. *Adjustment for maternal age. **Adjustment for parity and maternal education. Association between pre-pregnancy BMI as a categorical variable and the risks of SGA infants. The association between pre-pregnancy BMI and the risk of SGA infants was analyzed using multiple logistic regression analysis. As shown in Table 5, 4.09% of neonates were LGA infants from the overweight group, significantly lower than the normal-weight group (RR = 0.54). Additionally, 13.43% of neonates were LGA infants from the overweight group (RR = 1.91) and 18.40% from the obese group (RR = 2.88), significantly lower than the normal-weight group (RR = 2.88). After adjustment for different confounder, results showed that not only overweight but also obesity increased the risk of LGA infants (Table 5). Underweight was associated with a decreased risk of LGA infants (Table 5).
Table 4. Association between maternal pre-pregnancy BMI and birth sizes based on linear regression analyses. *Adjustment for maternal age, gestational weight gain, parity and maternal education. Linear regression was used to explore the association between pre-pregnancy BMI and birth sizes.

Parameter	Maternal pre-pregnancy BMI			
	Underweight	Normal-weight	Overweight	Obesity
LGA [n (%)]	84 (4.09)	542 (7.26)	287 (13.43)	69 (18.40)
Crude RR (95% CI)	0.54 (0.43, 0.69)**	1.00	1.91 (1.64, 2.23)**	2.88 (2.19, 3.79)**
Adjusted RR (95% CI)	0.55 (0.43, 0.69)**	1.00	1.89 (1.62, 2.21)**	2.85 (2.16, 3.76)**
Adjusted RR (95% CI)**	0.57 (0.45, 0.72)**	1.00	2.00 (1.70, 2.36)**	3.02 (2.24, 4.06)**
Adjusted RR (95% CI)**	0.64 (0.50, 0.82)**	1.00	1.43 (1.21, 1.68)**	2.15 (1.61, 2.87)**
Adjusted RR (95% CI)**	0.56 (0.43, 0.71)**	1.00	1.98 (1.67, 2.34)**	3.00 (2.21, 4.06)**

Table 5. Crude and adjusted RR s for the association between BMI and LGA. Abbreviations: BMI, body mass index; SGA, small-for-gestational-age. *Adjustment for maternal age. **Adjustment for parity and maternal education. ***Adjustment for gestational weight gain. ****Adjustment for maternal age, gestational weight gain, parity and maternal education. Multiple logistic regression models were used to calculate crude and adjusted RR with 95% CI. **P < 0.01 as compared with normal-weight.

Demographic characteristics between women who had SGA or LGA infants within the obese category. As shown in Table 6, no significant differences were observed on pre-pregnancy BMI, pregnancy-induced hypertension and preeclampsia between the SGA group and the LGA group within the obese category. However, there were significant differences on GWG, advanced maternal age and low education between the SGA group and the LGA group within the obese category. Maternal demographic characteristics, such as maternal age, GWG and maternal education, were important confounding variables for relationships to birth sizes and the risk of SGA infants. A number of epidemiological studies demonstrated that advanced maternal age increased the risk of SGA infants. A recent meta-analysis demonstrated that excessive GWG was associated with a decreased risk of SGA infants among underweight and normal-weight women, and an increased risk of LGA infants among normal-weight, overweight and obese women. In contrast, inadequate GWG was associated with an increased risk of SGA infants among underweight and normal-weight women but not among overweight and obese women. Low educational subjects had higher risk of SGA infants as compared with high educational subjects. Few studies have taken into account the effect of these confounders on the association between pre-pregnancy BMI and SGA infants. In the present study, there were significant differences on maternal age, education, GWG and mode of delivery among different groups.

Discussion

Lower birth size may have a major impact on the risk of adult diseases. Several cohort studies showed that people who had lower birth sizes were at increased risks of developing cardiovascular diseases including stroke, higher systolic blood pressure, and coronary heart disease. Evidence from animal experiments and epidemiological studies demonstrated that lower birth sizes were associated with metabolic disorders including higher BMI and diabetes in adulthood. The present study analyzed the association between pre-pregnancy BMI and birth sizes in a birth cohort study that included 12029 mothers with a pregnancy. Results showed positive correlations between pre-pregnancy BMI and birth sizes.
Thus, adjusted RRs with 95% CI were estimated in the present study. After adjustment for these confounders, our results showed that not only underweight but also obesity was associated with an increased risk of SGA infants.

The present study showed that maternal pre-pregnancy underweight was associated with an increased risk of SGA infants, consistent with previous research works. Moreover, the present study found that pre-pregnancy obesity increased the risks of not only LGA infants but also SGA infants. In contrast, several cohort studies showed that obesity was associated with an increased risk of LGA infants and a decreased risk of SGA infants. A recent cohort study showed that there was no association between pre-pregnancy BMI and the risk of SGA infants in a Chinese population. The inconsistency of early reports may be related to several reasons: firstly, most early reports were implemented in developed countries or Euro-American countries. There are significant differences on body structure, BMI classifications, race and ethnicity between these populations and Chinese population. Secondly, negative results came most frequently from small samples. Lastly, animal studies demonstrated that pre-pregnancy and/or gestational high fat diets (HFD)-induced obesity differentially disturbed fetal growth development. Pre-pregnancy HFD-induced obesity caused fetal SGA. By contrary, gestational HFD-induced obesity leaded to fetal overweight. To our knowledge, the present study demonstrates that obesity increases the risk of not only LGA infants but also SGA infants in a large sample of population.

The mechanism by which obesity increased the risk of SGA infants remains unclear. Other studies showed that the levels of pro-inflammatory cytokines and chemokines in placenta and maternal serum were significantly higher among obese pregnant women compared to controls. Animal studies demonstrated that HFD-induced obesity could induce low-grade systemic inflammation through activating nuclear factor (NF)-κB pathway and interferon regulatory factor (IRF)-3 signaling. Indeed, several epidemiological reports demonstrated that the levels of tumor necrosis factor (TNF)-α, C-reactive protein and interleukin (IL)-8 were significantly higher in maternal serum and umbilical cord serum of SGA infants than in controls. Furthermore, maternal inflammation during pregnancy impaired fetal development by disturbing placental spiral artery remodeling and nutrient transport capacity. These results suggest that placental inflammation may play a vital role in obesity-mediated SGA infants. Moreover, pre-pregnancy obesity was associated with elevation of placenta weight and up-regulation of placental nutrient transporters. Animal studies showed that placental transporters for glucose, fatty acids and amino acids were significantly up-regulated in obese mice. Therefore, we speculate that pre-pregnancy obesity-induced LGA infants may be attributing to placenta overgrowth and up-regulation of placental nutrient transporters.

Characteristics	SGA	LGA	P values
Pregnant women (n)	66	69	
Maternal age (years, M±SD)	31.8±5.4	29.8±5.0	0.022
<25 [n (%)]	4 (6.06)	8 (11.59)	
25–34 [n (%)]	37 (56.06)	48 (69.57)	0.039
≥35 [n (%)]	25 (37.88)	13 (18.84)	
Pre-pregnancy BMI (kg/m², M±SD)	30.58±2.80	30.67±3.53	0.873

Table 6. Maternal characteristics between women who had SGA and LGA infants within the obese category.

	SGA	LGA	P values
Maternal education (years)			
Low [n (%)]	46 (69.70)	30 (43.48)	0.005
Medium [n (%)]	13 (19.70)	19 (27.54)	
High [n (%)]	7 (10.61)	20 (28.99)	

	SGA	LGA	P values
Gestational weight gain			
Inadequate [n (%)]	11 (16.67)	0 (0.00)	<0.001
Adequate [n (%)]	24 (36.36)	3 (4.35)	
Excessive [n (%)]	31 (46.97)	66 (95.65)	

	SGA	LGA	P values
Pregnancy-induced hypertension			
Yes [n %]	2 (3.03)	8 (11.59)	0.097
No [n %]	64 (96.97)	61 (88.41)	

	SGA	LGA	P values
Gestational diabetes mellitus			
Yes [n %]	7 (10.61)	29 (42.03)	<0.001
No [n %]	59 (89.39)	40 (57.97)	

	SGA	LGA	P values
Preeclampsia			
Yes [n %]	11 (16.67)	10 (14.49)	0.814
No [n %]	55 (83.33)	59 (85.51)	
The current study also compared maternal demographic characteristics between women who had SGA vs LGA infants within the obese category. There were no significant differences on pre-pregnancy BMI, pregnancy-induced hypertension and preeclampsia between the SGA group and the LGA group within the obese category. However, there were significant differences on GWG, advanced maternal age, low education and gestational diabetes mellitus between the SGA group and the LGA group. These results suggest that inadequate GWG, advanced maternal age and low education might be associated with an increased risk of SGA infants among obese category. Therefore, gestational diabetes mellitus and excessive GWG may be associated with an increased risk of LGA infants within the obese category. Nevertheless, more tests are required to investigate the underlying mechanisms through which obesity can lead to the different birth outcomes.

In summary, our results showed that birth sizes were positively associated with pre-pregnancy BMI in both the underweight and normal-weight groups. We also found that pre-pregnancy underweight increased the risk of SGA infants, whereas obesity increased the risk of not only LGA infants, but also SGA infants.

Subjects and Methods

Cohort study. We performed a birth cohort study that included 13801 pregnant women between January 2011 and December 2014 attended The First Affiliated Hospital of Anhui Medical University for their antenatal care and delivery in Hefei, China. Eight hundred and ninety-seven pregnant women no detailed delivery records, 270 fetal deaths or stillbirths, 294 pregnant women giving birth to multiple births, 147 induced-abortions and 164 unavailable pre-pregnancy BMI data were excluded from this study. Finally, 12029 (87.2%) mothers with a pregnancy were recruited for this study. Pre-pregnancy BMI was categorized according to the WHO cut-points for Asian adults: BMI < 18.5 kg/m² for underweight, 18.5 kg/m² ≤ BMI < 23 kg/m² for normal-weight, 23 kg/m² ≤ BMI < 27.5 kg/m² for overweight and BMI ≥ 27.5 kg/m² for obesity44,45. According to the 2009 Institute of Medicine (IOM) recommendations, gestational weight gain (GWG) was categorized as follow46. Inadequate: GWG < 12.5 kg in underweight women, <11.5 kg in normal-weight women, <7 kg in overweight women, and <5 kg in obese women. Adequate: 12.5 ≤ GWG ≤ 18 kg in underweight women, 11.5 ≤ GWG ≤ 16 kg in normal-weight women, 7 ≤ GWG ≤ 11.5 kg in overweight women, and 5 ≤ GWG ≤ 9 kg in obese women. Excessive: GWG > 18 kg in underweight women, >16 kg in normal-weight women, >11.5 kg in overweight women, and >9 kg in obese women. The present study obtained ethics approval from the ethics committee of Anhui Medical University (No. 20160010). All participants signed the written informed consent form for this study. All methods were carried out in accordance with the approved ethic guidelines.

Definition of pregnancy-induced hypertension and preeclampsia. Pregnancy-induced hypertension was defined by a systolic blood pressure (BP) 140 mmHg and/or diastolic BP 90 mmHg, based on the average of at least two measurements, taken at least 15 min apart, using the same arm47. Preeclampsia was defined by new-onset proteinuria and potentially, other end-organ dysfunction.

Definition of small-for-gestational age and large-for-gestational age. Small-for-gestational age (SGA) and large-for-gestational age (LGA) were designed as birth weight of live-born infants < 10th percentile and ≥ 90th percentile based on gender and gestational age from a reference population for Chinese, respectively48.

Statistical analysis. SPSS 17.0 was used to analyse the data. The mean differences were analyzed using one-way ANOVA and least significant difference (LSD) post hoc test. Categorical variables were analyzed using χ² tests. The median differences were analyzed using non-parametric statistics (Mann-Whitney U test). Linear regression was used to explore the association between pre-pregnancy BMI and birth sizes. Multiple logistic regression models were used to calculate crude and adjusted relative risk (RR) with 95% confidence intervals. A p-value of < 0.05 (two-tailed) or a 95% CI not including 1 was considered statistically significant.

Received: 7 January 2019; Accepted: 10 October 2019;
Published online: 29 October 2019

References

1. Yao, F., Miao, H., Li, B., Wu, Y. & Zhao, Q. New birthweight percentiles by sex and gestational age in Southern China and its comparison with the INTERGROWTH-21st Standard. *Sci. Rep.* 8, 7567 (2018).
2. Chen, Y. H. *et al.* Maternal vitamin D deficiency during pregnancy elevates the risks of small for gestational age and low birth weight infants in Chinese population. *J. Clin. Endocrinol. Metab.* 100, 1912–1919 (2015).
3. Frappaz, D., Hughes, O. & Gardosi, J. Customized vs INTERGROWTH-21st standard for the assessment of birthweight and stillbirth risk at term. *Am. J. Obstet. Gynecol.* 218, S692–S699 (2018).
4. Wang, H. *et al.* The Joint Association of Small for Gestational Age and Nighttime Sleep with Blood Pressure in Childhood. *Sci. Rep.* 8, 9632 (2018).
5. Khashan, A. S. *et al.* Gestational Age and Birth Weight and the Risk of Childhood Type 1 Diabetes: A Population-Based Cohort and Sibling Design Study. *Diabetes Care* 38, 2308–2315 (2015).
6. Kramer, M. S. *et al.* Does Fetal Growth Restriction Cause Later Obesity? Pitfalls in Analyzing Causal Mediators as Confounders. *Am. J. Epidemiol.* 185, 585–590 (2017).
7. Moore, G. S., Knutel, A. W., Walker, C. K., Gilbert, W. M. & Xing, G. Autism risk in small- and large-for-gestational-age infants. *Am. J. Obstet. Gynecol.* 206, 314.e1–9 (2012).
8. Verkauskiene, R. *et al.* Smallness for gestational age is associated with persistent change in insulin-like growth factor I (IGF-I) and the ratio of IGF-I/IGF-binding protein-3 in adulthood. *J. Clin. Endocrinol. Metab.* 90, 5672–5676 (2005).
9. Rueda-Clausen, C. F., Morton, J. S. & Davidge, S. T. Effects of hypoxia-induced intrauterine growth restriction on cardiopulmonary structure and function during adulthood. *Cardiovasc. Res.* 81, 713–722 (2009).
10. Arends, N. J. et al. Reduced insulin sensitivity and the presence of cardiovascular risk factors in short prepubertal children born small for gestational age (SGA). *Clin. Endocrinol (Oxf)*. **62**, 44–50 (2005).
11. Horikoshi, M. et al. Genome-wide associations for birth weight and correlations with adult disease. *Nature* **538**, 248–252 (2016).
12. Davis, R. R., Hoffert, S. L. & Shenassa, E. D. Gestational weight gain and risk of infant death in the United States. *Am. J. Public Health* **104**, S90–S95 (2014).
13. Chen, Y. H., Tao, F. B. & Xu, D. X. The Association between Pre-pregnancy Body Mass Index and Risk of Preterm Delivery in Chinese Population. *Am. J. Epidemiol*. **187**, 1123–1124 (2018).
14. Tabet, M., Flick, L. H., Tuuli, M. G., Macones, G. A. & Chang, J. J. Prepregnancy body mass index in a first uncomplicated pregnancy and outcomes of a second pregnancy. *Am. J. Obstet. Gynecol*. **213**, 548.e1–7 (2015).
15. Kim, S. S. et al. Obstetric and Neonatal Risks Among Obese Women Without Chronic Disease. *Obstet. Gynecol*. **128**, 104–106 (2014).
16. Cosson, E. et al. Pregnancy adverse outcomes related to pregravid body mass index and gestational weight gain, according to the presence or not of gestational diabetes mellitus: A retrospective observational study. *Diabetes Metab*. **42**, 38–46 (2016).
17. Xiao, L. et al. Associations of maternal pre-pregnancy body mass index and gestational weight gain with birth outcomes in Shanghai, China. *Sci. Rep.* **7**, 41073 (2017).
18. Song, Y. P. et al. Differential effects of high-fat diets before pregnancy and/or during pregnancy on fetal growth development. *Life Sci*. **212**, 241–250 (2018).
19. Mayor, R. S. et al. Maternal high-fat diet is associated with impaired fetal lung development. *Am. J. Physiol. Lung Cell. Mol. Physiol*. **309**, L360–368 (2015).
20. Souza, L. V. et al. Detrimental Impact of Low Birth Weight on Circulating Number and Functional Capacity of Endothelial Progenitor Cells in Healthy Children: Role of Angiogenic Factors. *J. Pediatr.* **206**, 72–77.e1 (2019).
21. Eriksson, J. G., Forsén, T., Tuomilehto, J., Osmond, C. & Barker, D. J. Early growth and coronary heart disease in later life: longitudinal study. *BMJ* **322**, 949–953 (2001).
22. Tzoulaki, I. *LifeCycle Project-Maternal Obesity and Childhood Outcomes Study Group.*
23. Rosenberg, T. J., Garbers, S., Lipkind, H. & Chiasson, M. A. Maternal obesity and diabetes as risk factors for adverse pregnancy outcomes: differences among 4 racial/ethnic groups. *Am. J. Public Health*. **95**, 1545–1551 (2005).
24. Chen, Y. H. *IRF3 promotes adipose inflammation and insulin resistance and represses browning. J. Clin. Invest.* **126**, 2839–2854 (2016).
25. Teson, M. et al. Maternal and umbilical serum levels of interleukin-6, interleukin-8, and tumor necrosis factor-alpha in normal pregnancies and in pregnancies complicated by preeclampsia. *J. Matern. Fetal Neonatal Med.* **23**, 880–886 (2010).
26. Amariyo, G. et al. Increased cord serum inflammatory markers in small-for-gestational-age neonates. *J. Perinatol*. **31**, 30–32 (2011).
27. Shapiro, G. D. et al. Maternal education and adverse birth outcomes in Canada. *J. Epidemiol. Community Health*. **71**, 67–72 (2017).
28. Xiang, A. H. et al. Racial and ethnic disparities in extremes of fetal growth after gestational diabetes mellitus. *Diabetologia* **58**, 272–281 (2015).
29. Gillespie, S. L. & Christian, L. M. Body Mass Index as a Measure of Obesity: Racial Differences in Predictive Value for Health Parameters During Pregnancy. *J. Women's Health (Larchmt)*. **25**, 1210–1218 (2016).
30. Rosenberg, T. J., Garbers, S., Lipkind, H. & Chiasson, M. A. Maternal obesity and diabetes as risk factors for adverse pregnancy outcomes: differences among 4 racial/ethnic groups. *Am. J. Public Health*. **95**, 1545–1551 (2005).
31. Sasson, I. E., Vitins, A. P., Mainigi, M. A., Moley, K. H. & Simmons, R. A. Pre-gestational vs gestational exposure to maternal obesity and other weight gain factors in relation to placental failure in pregnancy and outcomes of a second pregnancy. *Am. J. Obstet. Gynecol*. **213**, 548.e1–7 (2015).
32. Rasmussen, K. M. & Yaktine, A. L. Weight Gain During Pregnancy: Reexamining the Guidelines. Washington, DC, National Academies Press (US) (2009).
33. Magee, L. A. et al. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy. *Pregnancy Hypertens*. **4**, 105–145 (2014).
34. Dai, L. et al. Birth weight reference percentiles for Chinese. *PLoS One*. **9**, e104779 (2014).

Acknowledgements

The authors thank Dr. Yao Wang (from Hudson Institute of Medical Research, Australia) for assistance in correcting grammatical errors. This study was partially supported by National Natural Science Foundation of China (81471467, 81630084, 81671471), National College Students’ Innovation and Entrepreneurship Training Program (201610360026), scientific research foundation of reserve candidates for Anhui provincial academic and technological leaders (20181H204), and Key projects of Anhui provincial natural science research in colleges and universities (KJ2019A0224).
Author contributions
Y.H.C. and D.X.X. designed research; Y.H.C., L.L., W.C., Z.B.L., L.M., X.X.G., J.L.H., H.W., M.Z. and Y.Y.Y. conducted research; Y.H.C. and W.C. analyzed data and performed statistical analysis; Y.H.C. wrote paper; Y.H.C. and D.X.X. had primary responsibility for final content.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.H.C. or D.X.X.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019