In the mid-19th century, pathologists observed that some malignant tumors have features that are similar to those of the embryonic tissues (extensive proliferation and differentiation). This led pathologists to suggest that activation of quiescent, undifferentiated embryonic cells may be the root cause of cancer [1,2]. However, it was not until 1961 that Till and McCulloch [3] were able to provide the definitive proof that adult tissues are maintained by stem cells. Later, Bonnet and Dick [4] were able to show that, similarly to the normal adult tissues, malignant tumors can be initiated and maintained by a rare-cell population with stem cell properties (cancer stem cells). These observations suggest that a lack of knowledge about the unique biology of these cancer stem cells is the reason for the failure of the current cancer therapies. Moreover, they suggest that understanding the mechanisms that regulate the biology and function of the normal primitive cells will provide a framework to determine how alterations to these mechanisms can confer a cancer stem cell phenotype on these rare-cell populations.

Recent research efforts have led to the isolation and molecular characterization of the normal human and mouse breast stem cells and progenitors [5-8]. These studies revealed that breast stem cells are estrogen receptor-negative (ER−) and therefore were thought to be the origin of the ER− basal-like breast tumors [9]. Currently, however, the nature of the cancer-initiating cells remains elusive. Cancer-initiating cells are referred to the normal cells in the adult tissues, including the stem cells and progenitors as well as the differentiated cells that can acquire enough mutations to transform into cancer stem cells. Therefore, cancer stem cells arise from cancer-initiating cells and are responsible for tumor recurrence (that is, proliferation and self-renewal potentials) and the tumor heterogeneity (that is, multilineage differentiation potential).

To ascertain the nature of the cancer-initiating cells, Molyneux and colleagues [10] used a mouse model of breast cancer in which inactivating Brca1 mutation in p53 heterozygote mutant animals causes basal-like breast carcinoma. To identify the cancer-initiating cell population, the authors induced an inactivating Brca1 mutation under the expression of Cre enzyme either in the ER− luminal progenitors using beta-lactoglobulin promoter (Blg-Cre Brca1f/f p53+/−) or in the stem cells and basal cells using the cytokeratin 14 promoter (K14-Cre Brca1f/f p53+/−).

Interestingly, the authors found that inactivation of Brca1 gene in the luminal progenitors, and not in the basal and stem cells, produced tumors that closely resembled the human BRCA1 mutant (basal-like) breast carcinomas. To identify the cancer-initiating cell population, the authors induced an inactivating Brca1 mutation under the expression of Cre enzyme either in the ER− luminal progenitors using beta-lactoglobulin promoter (Blg-Cre Brca1f/f p53+/−) or in the stem cells and basal cells using the cytokeratin 14 promoter (K14-Cre Brca1f/f p53+/−). Interestingly, the authors found that inactivation of Brca1 gene in the luminal progenitors, and not in the basal and stem cells, produced tumors that closely resembled the human BRCA1 mutant (basal-like) breast carcinomas as determined by immunohistopathological studies. Despite this, the molecular characterization of 18 Blg-Cre Brca1f/f p53+/− and 3 K14-Cre Brca1f/f p53+/− tumors revealed that 16 out of the 21 tumors closely resembled the normal ER− luminal cells. However, when human breast cancer subtype classifier gene sets (PAM50 and Hu306) were used as predictors [11,12] to classify
late the proliferation, differentiation, and self-renewal approaches. Such therapeutic measures will depend on enabling the development of novel cancer preventative initiating cell phenotype.

The data described by Molyneux and colleagues [10] explore the relationship between the cancer-initiating cells, cancer stem cells, and the tumor phenotype. Their data suggest that luminal progenitors, and not the breast stem cells, are the more likely sources of the cancer-initiating cells that can lead to the generation of basal-like tumors. This conclusion implicates the plasticity of the cancer-initiating cells as the most likely determinant of the tumor type, which may be different than the cancer-initiating cell phenotype.

Knowledge about the origin of cancer-initiating cells will enable the development of novel cancer preventative approaches. Such therapeutic measures will depend on the elucidation of the molecular mechanisms that regulate the proliferation, differentiation, and self-renewal capacities of the normal stem and progenitors cells. For example, it would be interesting to determine the precise role of Brca1 in the normal biology and functions of the ER-luminal progenitors and how its inactivation can cause these cells to develop basal-like cancers. Such knowledge can lead to the development of therapies not based on the Brca1 gene itself but on the affected signaling pathways. In addition, characterization of the basal-like cancer-initiating cells can lead to the identification of new diagnostic markers that will enable the detection of the breast tumors at a premalignant stage.

Abbreviations
Bkg, beta-lactoglobulin; ER, estrogen receptor-negative.

Competing interests
The author declares that he has no competing interests.

Published: 16 December 2010

References
1. Grundmann E: The concept of Julius Cohnheim on tumor formation and metastasis from the viewpoint of new research results [in German]. Zentralbl Allg Pathol 1985, 130:523-31.
2. Virchow R: Editorial. Virchows arch. Pathol Anat Physiol Klin Med 1855, 3:23.
3. Till JE, McCulloch EA: A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961, 14:213-222.
4. Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3:730-737.
5. Ginestier C, Hur MH, Charafte-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007, 1:555-567.
6. Raouf A, Zhao Y, To K, Stjngl J, Delaney A, Barbara M, Iscove N, Jones S, McKinney S, Emerman J, Aparicio S, Marra M, Eaves C: Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 2008, 3:109-118.
7. Shackleton M, Vaillant F, Simpson KJ, Stjngl J, Smyth Gk, Asselin-Ltabat ML, Wu L, Lindeman GJ, Visvader JE: Generation of a functional mammary gland from a single stem cell. Nature 2006, 439:84-88.
8. Stjngl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ: Purification and unique properties of mammary epithelial stem cells. Nature 2006, 439:999-1007.
9. Dontu G, El-Ashry D, Wicha MS: Breast cancer stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 2004, 15:193-197.
10. Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R, Mackay A, Grigoriadis A, Tutt A, Ashworth A, Reis-Filho JS, Smalley MJ: BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 2010, 7:403-417.
11. Hu Z, Fan C, Oh DS, Mannor JS, He X, Oqsh B, Livsxy C, Carey LA, Reynolds E, Dressler L, Nobcl A, Parker J, Evnd MG, Sawyer LR, Wu J, Liu Y, Nanda R, Tredaikova M, Ruiz Orico A, Drehcr D, Palazojo JP, Perreaud L, Nelson E, More M, Hanssen H, Mullins M, Quackenbusch JF, Ellis MJ, Olopade OI, Bernard PS, Perou CM: The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 2006, 7:96.
12. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Daves S, Fauxon C, He X, Hu Z, Quackenbush JF, Stjlemann IU, Palazojo J, Mannor JS, Nobcl A8, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS: Supervised risk predictor of breast cancer risk based on intrinsic subtypes. J Clin Oncol 2009, 27:1160-1167.
13. Natrajan R, Weigelt B, Mackay A, Geyer FC, Grigoriadis A, Tan DS, Jones C, Lord CJ, Vatcheva R, Rodriguez-Pinilla SM, Palacio J, Ashworth A, Reis-Filho JS: An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res Treat 2010, 121:575-589.
14. van de Vijver MJ, He YD, van’t Veer LI, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Pesterse JL, Roberts C, Marston MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Veldt T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347:1990-1999.
15. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Ltabat ML, Gyorky DE, Ward T, Partanen A, Feleppa F, Huschtmcha LI, Tomhce HJ, KConFab, Fox SB, Yan M, French JD, Brown MA, Smyth Gk, Visvader JE, Lindeman GJ: Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009, 15:907-913.

doi:10.1186/bcr2764
Cite this article as: Raouf A: Basal-like breast cancers: the phenotypic disparity between the cancer-initiating cells and tumor histology. Breast Cancer Research 2010, 12:316.