A HOPF ALGEBRA ASSOCIATED TO A LIE PAIR

ZHOU CHEN, MATHIEU STIÉNON, AND PING XU

In tribute to Alan Weinstein on the occasion of his seventieth birthday

Abstract. The quotient $L/A[-1]$ of a pair $A \hookrightarrow L$ of Lie algebroids is a Lie algebra object in the derived category $D^b(A)$ of the category A of left $\mathcal{U}(A)$-modules, the Atiyah class $\alpha_{L/A}$ being its Lie bracket. In this note, we describe the universal enveloping algebra of the Lie algebra object $L/A[-1]$ and we prove that it is a Hopf algebra object in $D^b(A)$.

1. Introduction

Let A be a Lie algebroid over a manifold M. Its space of smooth sections $\Gamma(A)$ is a Lie-Rinehart algebra over the commutative ring $R = \mathcal{C}^\infty(M)$. By an A-module, we mean a module over the Lie-Rinehart algebra corresponding to the Lie algebroid A, i.e. a module over the associative algebra $\mathcal{U}(A)$.

Recall that the universal enveloping algebra $\mathcal{U}(A)$ of a Lie algebroid A over M is simultaneously an associative algebra and an R-bimodule. In case the Lie algebroid A is real, $\mathcal{U}(A)$ is canonically identified to the algebra of left-invariant s-fiberwise differential operators on the local Lie groupoid \mathcal{A} integrating A. Let us recall its construction.

The vector space $g = R \oplus \Gamma(A)$ admits a natural Lie algebra structure given by the Lie bracket

$$[f + X, g + Y] = \rho(X)g - \rho(Y)f + [X, Y],$$

where $f, g \in R$ and $X, Y \in \Gamma(A)$. Here ρ denotes the anchor map. Let i denote the natural inclusion of g into its universal enveloping algebra $\mathcal{U}(g)$. The universal enveloping algebra $\mathcal{U}(A)$ of the Lie algebroid A is the quotient of the subalgebra of $\mathcal{U}(g)$ generated by $i(g)$ by the two-sided ideal generated by the elements of the form $i(f) \otimes i(g + Y) - i(fg + fY)$ with $f, g \in R$ and $Y \in \Gamma(A)$.

When A is a Lie algebra, $\mathcal{U}(A)$ is indeed the usual universal enveloping algebra. On the other hand, when A is the tangent bundle TM, $\mathcal{U}(A)$ is the algebra of differential operators on M.

We use the symbol A to denote the abelian category of A-modules. Abusing terminology, we say that a vector bundle E over M is an A-module if $\Gamma(E) \in A$.

Given a Lie pair (L, A) of algebroids, i.e. a Lie algebroid L with a Lie subalgebroid A, the Atiyah class α_E of an A-module E relative to the pair (L, A) is defined as the obstruction to the existence of an A-compatible L-connection on the vector bundle E. An L-connection ∇ on an A-module E is said to be A-compatible if it extends the given flat A-connection on E and satisfies $\nabla_a \nabla_l - \nabla_l \nabla_a = \nabla_{[a, l]}$ for all $a \in \Gamma(A)$ and $l \in \Gamma(L)$. This fairly recently defined class (see [1]) has as double

Research partially supported by NSF grant DMS1101827, NSA grant H98230-12-1-0234, and NSFC grants 11001146 and 11471179.
The quotient L/A of any Lie pair (L, A) is an A-module \cite{1}. Its Atiyah class $\alpha_{L/A}$ can be described as follows. Choose an L-connection ∇ on L/A extending the A-action. Its curvature is the vector bundle map $R^\nabla : \wedge^2 L \to \text{End}(E)$ defined by $R^\nabla(l_1, l_2) = \nabla_{l_2} \nabla_{l_1} - \nabla_{l_1} \nabla_{l_2} - \nabla_{[l_1, l_2]}$, for all $l_1, l_2 \in \Gamma(L)$. Since L/A is an A-module, R^∇ vanishes on $\wedge^2 A$ and, therefore, determines a section $R^\nabla_{L/A}$ of $A^* \otimes (L/A)^* \otimes \text{End}(L/A)$. It was proved in \cite{1} that $R^\nabla_{L/A}$ is a 1-cocycle for the Lie algebroid A with values in the A-module $(L/A)^* \otimes \text{End}(L/A)$ and that its cohomology class $\alpha_{L/A} \in H^1(A; (L/A)^* \otimes \text{End}(L/A))$ is independent of the choice of the connection.

Let $\text{Ch}^b(A)$ denote the category of bounded complexes in A and let $D^b(A)$ denote the corresponding derived category. We write $L/A[-1]$ to denote the quotient L/A regarded as a complex in A concentrated in degree 1.

The following was proved in \cite{1}.

Proposition 1.1 (\cite{1}). Let (L, A) be a Lie algebroid pair. The Atiyah class $\alpha_{L/A}$ of the quotient L/A relative to the pair (L, A) determines a morphism

$$L/A[-1] \otimes L/A[-1] \to L/A[-1]$$

in the derived category $D^b(A)$ making $L/A[-1]$ a Lie algebra object in $D^b(A)$.

It is well known that every ordinary Lie algebra \mathfrak{g} admits a universal enveloping algebra $\mathcal{U}(\mathfrak{g})$, which is a Hopf algebra. We are thus led to the following natural questions: does there exist a universal enveloping algebra for $L/A[-1]$ in $D^b(A)$ and, if so, is it a Hopf algebra object?

In this Note, we give a positive answer to the questions above. For a complex manifold X, the Atiyah class of the Lie pair $(T_X \otimes \mathbb{C}, T_X^{1, 1})$ is simply the usual Atiyah class of the holomorphic tangent bundle T_X recently exploited by Kapranov \cite{2}. It was proved that the universal enveloping algebra of the Lie algebra object $T_X[-1]$ in $D^b(X)$ is the Hochschild cochain complex $(\mathcal{D}^*_{\text{poly}}(X), d)$ \cite{5, 6, 7}. This result played an important role in the study of several aspects of complex geometry including the Riemann-Roch theorem \cite{5}, the Chern character \cite{6} and the Rozansky-Witten invariants \cite{7, 8}. Applications of our result will be developed elsewhere.

2. Hochschild-Kostant-Rosenberg map

It is known \cite{9} that the universal enveloping algebra $\mathcal{U}(L)$ of a Lie algebroid L admits a cocommutative coassociative coproduct $\Delta : \mathcal{U}(L) \to \mathcal{U}(L) \otimes \mathcal{U}(L)$, which is defined on generators as follows: $\Delta(f) = f \otimes 1 = 1 \otimes f, \forall f \in R$ and $\Delta(l) = l \otimes 1 + 1 \otimes l$, $\forall l \in \Gamma(L)$. Here, and in the sequel, \otimes stands for the tensor product of left R-modules. Moreover, $\mathcal{U}(L)$ is an L-module since each section l of L acts on $\mathcal{U}(L)$ by left multiplication: $\nabla_i u = l \cdot u$, $\forall u \in \mathcal{U}(L)$.

Now, given a Lie pair (L, A), consider the quotient $\mathcal{D}^1_{\text{poly}}$ of $\mathcal{U}(L)$ by the left ideal generated by $\Gamma(A)$. It is straightforward to see that the comultiplication on $\mathcal{U}(L)$ induces a comultiplication $\Delta : \mathcal{D}^1_{\text{poly}} \to \mathcal{D}^1_{\text{poly}} \otimes \mathcal{D}^1_{\text{poly}}$ on $\mathcal{D}^1_{\text{poly}}$ and the action of L on $\mathcal{U}(L)$ determines an action of A on $\mathcal{D}^1_{\text{poly}}$.

Lemma 2.1. The quotient \(D^1_{\text{poly}} = \frac{\mathcal{W}(L)}{\mathcal{W}(L)[1]} \) is simultaneously a cocommutative coassociative \(R \)-coalgebra and an \(A \)-module. Moreover, its comultiplication is compatible with its \(A \)-action:

\[\nabla_X(\Delta p) = \Delta(\nabla_X p), \quad \forall X \in \Gamma(A), p \in D^1_{\text{poly}}. \]

Let \(D^n_{\text{poly}} \) denote the \(n \)-th tensorial power \(D^1_{\text{poly}} \otimes \cdots \otimes D^1_{\text{poly}} \) of \(D^1_{\text{poly}} \) and, for \(n = 0 \), set \(D^0_{\text{poly}} = R \). We define a coboundary operator \(d : D^\bullet_{\text{poly}} \to D^\bullet+1_{\text{poly}} \) on \(D^\bullet_{\text{poly}} = \bigoplus_{n=0}^{\infty} D^n_{\text{poly}} \) by

\[d(p_1 \otimes \cdots \otimes p_n) = 1 \otimes p_1 \otimes \cdots \otimes p_n - (\Delta p_1) \otimes \cdots \otimes p_n + p_1 \otimes (\Delta p_2) \otimes \cdots \otimes p_n - \cdots + (-1)^n p_1 \otimes \cdots \otimes p_{n-1} \otimes (\Delta p_n) + (-1)^{n+1} p_1 \otimes \cdots \otimes p_n \otimes 1, \quad (1) \]

for any \(p_1, p_2, \ldots, p_n \in D^n_{\text{poly}} \). Since the comultiplication \(\Delta \) is compatible with the action of \(A \), the operator \(d \) is a morphism of \(A \)-modules. Moreover, \(\Delta \) being coassociative, \(d \) satisfies \(d^2 = 0 \). Thus \((D^\bullet_{\text{poly}}, d) \) is an object of \(\text{Ch}^b(A) \).

When endowed with the trivial coboundary operator, the space of sections of

\[S^\bullet(L/A[-1]) = \bigoplus_{k=0}^{\infty} S^k(L/A)[-1] = \bigoplus_{k=0}^{\infty} \left(\wedge^k L/A \right)[-k] \]

is a complex of \(A \)-modules:

\[0 \to R \xrightarrow{0} \Gamma(L/A) \xrightarrow{0} \Gamma(\wedge^2(L/A)) \xrightarrow{0} \Gamma(\wedge^3(L/A)) \xrightarrow{0} \cdots \]

The natural inclusion \(\Gamma(L/A) \hookrightarrow D^1_{\text{poly}} \) extends naturally to the Hochschild-Kostant-Rosenberg map

\[\text{HKR} : \Gamma(S^\bullet(L/A[-1])) \to D^\bullet_{\text{poly}} \]

by skew-symmetrization:

\[\text{HKR}(b_1 \wedge \cdots \wedge b_n) = \frac{1}{n!} \sum_{\sigma \in S_n} \text{sgn}(\sigma) b_{\sigma(1)} \otimes b_{\sigma(2)} \otimes \cdots \otimes b_{\sigma(n)}, \quad \forall b_1, \cdots, b_n \in \Gamma(L/A). \quad (2) \]

Proposition 2.2. In \(\text{Ch}^b(A) \), the Hochschild-Kostant-Rosenberg map is a quasi-isomorphism from \((\Gamma(S^\bullet(L/A[-1]))), 0) \) to \((D^\bullet_{\text{poly}}, d) \).

Sketch of proof. Assuming \(L \) and \(A \) are real Lie algebroids, let \(\mathcal{L} \) and \(\mathcal{A} \) be local Lie groupoids integrating \(L \) and \(A \) respectively. The source map \(s : \mathcal{L} \to M \) induces a surjective submersion \(J : \mathcal{L}/\mathcal{A} \to M \). The right quotient \(\mathcal{L}/\mathcal{A} \) is a left \(\mathcal{L} \)-homogeneous space with momentum map \(J^3 \). Therefore, it admits an infinitesimal \(L \)-action, and hence an infinitesimal \(A \)-action. The coalgebra \(D^1_{\text{poly}} \) may be regarded as the space of distributions on the \(J \)-fibers of \(\mathcal{L}/\mathcal{A} \) supported on \(M \). Its \(A \)-module structure then stems from the infinitesimal \(A \)-action on \(\mathcal{L}/\mathcal{A} \). The \(n \)-th tensorial power \(D^n_{\text{poly}} \) may be viewed as the space of \(n \)-differential operators on the \(J \)-fibers of \(\mathcal{L}/\mathcal{A} \) evaluated along \(M \) and the differential \(d \) as the Hochschild coboundary. The conclusion follows from the classical Hochschild-Kostant-Rosenberg theorem. To prove the proposition for complex Lie algebroids, it suffices to consider formal groupoids instead of local Lie groupoids [3].
3. Universal enveloping algebra of $L/A[-1]$ in $D^b(A)$

Following Markarian [5], Ramadoss [6], and Roberts-Willerton [7], we introduce the following:

Definition 3.1. If it exists, the universal enveloping algebra of a Lie algebra object G in $D^b(A)$ is an associative algebra object H in $D^b(A)$ together with a morphism of Lie algebras $i : G \rightarrow H$ satisfying the following universal property: given any associative algebra object K and any morphism of Lie algebras $f : G \rightarrow K$ in $D^b(A)$, there exists a unique morphism of associative algebras $f' : H \rightarrow K$ in $D^b(A)$ such that $f = f' \circ i$.

In view of the similarity between $(D^\bullet_{\text{poly}}, d)$ and the Hochschild cochain complex, we define a cup product \cup on D^\bullet_{poly} by setting $P \cup Q = P \otimes Q$, for all $P, Q \in D^\bullet_{\text{poly}}$. Is is simple to check that

$$d(P \cup Q) = dP \cup Q + (-1)^{|P|}P \cup dQ,$$

for all homogeneous $P, Q \in D^\bullet_{\text{poly}}$.

Proposition 3.2. For any Lie pair (L, A) of algebroids, $(D^\bullet_{\text{poly}}, d, \cup)$ is an associative algebra object in $D^b(A)$, which is in fact the universal enveloping algebra of the Lie algebra $L/A[-1]$ in $D^b(A)$.

Consider the inclusion $\eta : R \hookrightarrow D^n_{\text{poly}}$, the projection $\varepsilon : D^n_{\text{poly}} \rightarrow R$, and the maps $t : D^\bullet_{\text{poly}} \rightarrow D^\bullet_{\text{poly}}$ and $\hat{\Delta} : D^\bullet_{\text{poly}} \rightarrow D^\bullet_{\text{poly}} \otimes D^\bullet_{\text{poly}}$ defined, respectively, by

$$t(p_1 \otimes p_2 \otimes \cdots \otimes p_n) = (-1)^{\frac{n(n+1)}{2}} p_n \otimes p_{n-1} \otimes \cdots \otimes p_1$$

and

$$\hat{\Delta}(p_1 \otimes p_2 \otimes \cdots \otimes p_n) = \sum_{i+j=n} \sum_{\sigma \in \mathfrak{S}_i^j} \text{sgn}(\sigma) (p_{\sigma(1)} \otimes \cdots \otimes p_{\sigma(i)}) \otimes (p_{\sigma(i+1)} \otimes \cdots \otimes p_{\sigma(n)}),$$

where \mathfrak{S}_i^j denotes the set of (i, j)-shuffles.\footnote{An (i, j)-shuffle is a permutation σ of the set $\{1, 2, \cdots, i+j\}$ such that $\sigma(1) \leq \sigma(2) \leq \cdots \leq \sigma(i)$ and $\sigma(i+1) \leq \sigma(i+2) \leq \cdots \leq \sigma(i+j)$.}

Theorem 3.3. For any Lie pair (L, A) of algebroids, $(D^\bullet_{\text{poly}}, d)$ with the multiplication \cup, the comultiplication Δ, the unit ε, and the antipode t, is a Hopf algebra object in $D^b(A)$.

4. Ramadoss’s approach: $L(D^1_{\text{poly}})$

To prove Proposition 3.2 and Theorem 3.3, we essentially follow Ramadoss’s approach [6]. Let $L(D^1_{\text{poly}})$ be the (graded) free Lie algebra generated over R by D^1_{poly} concentrated in degree 1. In other words, $L(D^1_{\text{poly}})$ is the smallest Lie subalgebra of D^1_{poly} containing D^1_{poly}. The Lie bracket of two vectors $u \in D^i_{\text{poly}}$ and $v \in D^j_{\text{poly}}$ is the vector $[u, v] = u \otimes v - (-1)^{ij} v \otimes u \in D^{i+j}_{\text{poly}}$. Actually, $L(D^1_{\text{poly}})$ is made of all linear combinations of elements of the form $[p_1, [p_2, \cdots, [p_{n-1}, p_n]]]$. One checks that $L(D^1_{\text{poly}})$ is a d-stable A-submodule of D^1_{poly} and that its Lie bracket is a chain map with respect to thecoboundary operator d. Therefore $(L(D^1_{\text{poly}}), d)$ is a Lie algebra object in $\text{Ch}^b(A)$.
Let $S^\bullet(L(D^1_{\text{poly}}))$ be the symmetric algebra of $L(D^1_{\text{poly}})$ and let

$$I : S^\bullet(L(D^1_{\text{poly}})) \to D^\bullet_{\text{poly}}$$

be the symmetrization map:

$$I(z_1 \odot \cdots \odot z_n) = \frac{1}{n!} \sum_{\sigma \in S_n} \text{sgn}(\sigma; z_1, \cdots, z_n) z_{\sigma(1)} \tilde{\otimes} z_{\sigma(2)} \tilde{\otimes} \cdots \tilde{\otimes} z_{\sigma(n)}.$$

The Koszul sign $\text{sgn}(\sigma; z_1, \cdots, z_n)$ of a permutation σ of the (homogeneous) vectors $z_1, z_2, \ldots, z_n \in S^\bullet(L(D^1_{\text{poly}}))$ is determined by the relation

$$z_{\sigma(1)} \odot z_{\sigma(2)} \odot \cdots \odot z_{\sigma(n)} = \text{sgn}(\sigma; z_1, \cdots, z_n) z_1 \odot z_2 \odot \cdots \odot z_n.$$

Lemma 4.1. The symmetrization $I : S^\bullet(L(D^1_{\text{poly}})) \to D^\bullet_{\text{poly}}$ is an isomorphism in $\text{Ch}^b(\mathcal{A})$.

Using Lemma 4.1 and the HKR quasi-isomorphism, one can prove that the composition $\beta : \Gamma(L/A[-1]) \to L(D^1_{\text{poly}})$ of the inclusions

$$\Gamma(L/A[-1]) \subset D^1_{\text{poly}} \subset L(D^1_{\text{poly}})$$

is a quasi-isomorphism in $\text{Ch}^b(\mathcal{A})$, which intertwines the Lie brackets on $\Gamma(L/A[-1])$ and $L(D^1_{\text{poly}})$.

Proposition 4.2.

1. The inclusion $\beta : \Gamma(L/A[-1]) \to L(D^1_{\text{poly}})$ is a quasi-isomorphism in $\text{Ch}^b(\mathcal{A})$.
2. The inclusion $\beta : \Gamma(L/A[-1]) \to L(D^1_{\text{poly}})$ is an isomorphism of Lie algebra objects in $D^b(\mathcal{A})$ as the diagram

$$
\begin{array}{ccc}
\Gamma(L/A[-1]) \otimes \Gamma(L/A[-1]) & \xrightarrow{\beta \otimes \beta} & L(D^1_{\text{poly}}) \otimes L(D^1_{\text{poly}}) \\
\big/ \alpha_{L/A} & & \big/ [\cdot] \big/ \\
\Gamma(L/A[-1]) & \xrightarrow{\beta} & L(D^1_{\text{poly}})
\end{array}
$$

commutes in $D^b(\mathcal{A})$.

Proposition 3.2 and Theorem 3.3 now follow immediately.

References

1. Zhuo Chen, Mathieu Stiénon, and Ping Xu, *From Atiyah Classes to Homotopy Leibniz Algebras*, arXiv:1204.1075 (2012).
2. M. Kapranov, *Rozansky-Witten invariants via Atiyah classes*, Compositio Math. 115 (1999), no. 1, 71–113. MR 1671737 (2000h:57056)
3. Niels Kowalzig and Hessel Posthuma, *The cyclic theory of Hopf algebroids*, J. Noncommut. Geom. 5 (2011), no. 3, 423–476. MR 2817646 (2012f:16081)
4. Zhang-Ju Liu, Alan Weinstein, and Ping Xu, *Dirac structures and Poisson homogeneous spaces*, Comm. Math. Phys. 192 (1998), no. 1, 121–144. MR 1612164 (99g:58053)
5. Nikita Markarian, *The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem*, J. Lond. Math. Soc. (2) 79 (2009), no. 1, 129–143. MR 2472377 (2010d:14020)
6. Ajay C. Ramadoss, *The big Chern classes and the Chern character*, Internat. J. Math. 19 (2008), no. 6, 699–746. MR 2431634 (2010h:14028)
7. Justin Roberts and Simon Willerton, *On the Rozansky-Witten weight systems*, Algebr. Geom. Topol. 10 (2010), no. 3, 1455–1519. MR 2661534
8. L. Rozansky and E. Witten, *Hyper-Kähler geometry and invariants of three-manifolds*, Selecta Math. (N.S.) 3 (1997), no. 3, 401–458. MR 1481135 (98m:57041)
9. Ping Xu, *Quantum groupoids*, Comm. Math. Phys. **216** (2001), no. 3, 539–581. MR 1815717 (2002f:17033)

Department of Mathematics, Tsinghua University, China

E-mail address: zchen@math.tsinghua.edu.cn

Department of Mathematics, Penn State University, United States

E-mail address: stienon@psu.edu

Department of Mathematics, Penn State University, United States

E-mail address: ping@math.psu.edu