Mites (Acari: Mesostigmata, Sarcoptiformes and Trombidiformes) Associated to Soybean in Brazil, Including New Records from the Cerrado Areas

Authors: Rezende, José Marcos, Lofego, Antonio Carlos, Návia, Denise, and Roggia, Samuel

Source: Florida Entomologist, 95(3) : 683-693

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.095.0319
Mites (Acari: Mesostigmata, Sarcoptiformes and Trombiformes) Associated to Soybean in Brazil, Including New Records from the Cerrado Areas

José Marcos Rezende1,*, Antonio Carlos Lofego2, Denise Návia3 and Samuel Roggia4

1UNESP – Programa de Pós-Graduação em Biologia Animal, Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, SP, Brazil

2UNESP – Departamento de Zoologia e Botânica – Rua Cristóvão Colombo, 2265 – Jardim Nazareth – 15054-000 – São José do Rio Preto, SP – Brazil

3Embrapa, Recursos Genéticos e Biotecnologia – Parque Estação Biológica, final W5 Norte, Cx. Postal 02372 – 70.770-900 – Brasília, DF – Brazil

4Embrapa, Soja – Rodovia Carlos João Strass, Cx. Postal 231 – 86001-970 – Londrina, PR – Brazil

*Corresponding author; E-mail: jmrezende@live.com

ABSTRACT

In Brazil, soybean Glycine max (L.) Merril crops are subjected to incidence of several pests, which are mainly insect species. However, the occurrences of other pest species are growing. In this context, outbreaks of phytophagous mites are becoming more frequent. Nevertheless, records of mites in such crop are available only for Maranhão, Mato Grosso, Minas Gerais and Rio Grande do Sul states. Thus, this work gathers all information published about the diversity of mites found in soybean in Brazil, and also new records of mite species made on samplings taken from the central Cerrado area. In the whole, occurrence of 44 species of plant mites in soybean has been recorded in Brazil. Data from prior studies and the results of this work present the tetranychid Mononychellus planki (McGregor) as the mite species most frequently occurring in the Brazilian soybean crops. A large portion of Phytoseiidae species has occurred in crops from Rio Grande do Sul state. In addition, spontaneous soybean has hosted almost half of the phytoseiid species sampled in Cerrado region. High diversity of Tarsonemidae has been found in the cultivated soybean. More studies about soybean mites are needed to clarify the damage potential of phytophagous mites and the biological role of predatory mites in this crop.

Key Words: Acari, Glycine max, Brazilian savannah, survey

RESUMO

No Brasil, lavouras de soja Glycine max (L.) Merril estão sujeitas a incidência de várias pragas, as quais são principalmente espécies de insetos. No entanto, a ocorrência de outras espécies-praga tem aumentado. Neste contexto, surtos populacionais de ácaros fitófagos têm se tornado mais frequentes. Apesar disso, os registros de ácaros para esta cultura estão disponíveis apenas para os estados de Maranhão, Mato Grosso, Minas Gerais e Rio Grande do Sul. Assim, este trabalho agrega toda a informação publicada sobre a diversidade de ácaros encontrados em soja no Brasil, além de novos registros feitos através de amostragens na região central do Cerrado. No total, 44 espécies de ácaros foram registradas em soja no Brasil. Dados de estudos anteriores, somados aos resultados deste trabalho, apresentam o tetraniquídeo Mononychellus planki (McGregor) como a espécie de ácaro mais frequente em lavouras de soja brasileiras. Considerável número de espécies de Phytoseiidae tem ocorrido nas lavouras amostradas do Rio Grande do Sul. Além disso, a soja espontânea abrigou quase metade das espécies de fitoseídeos amostrados na região central do Cerrado. Por sua vez, uma elevada diversidade de Tarsonemidae foi encontrada na soja cultivada. Mais estudos sobre ácaros em soja são necessários para esclarecer o potencial de dano dos ácaros fitófagos e o papel biológico dos ácaros predadores nesta cultura.

Palavras-chave: Acari, Glycine max, savana brasileira, levantamento faunístico

Soybean Glycine max (L.) Merril (Fabaceae) is one of the most important agricultural crops, and Brazil is ranked as one of the top producers with approximately 75 million tonnes during the 2010/2011 harvest (Conab 2011). In addition, soybean is grown in most states, and is economically...
significant in the Brazilian economy (Corrêa-Ferreira et al. 2000). The soybean crop is especially important in the Cerrado region, which provides the largest portion of domestic production (Embrapa 2000). The Cerrado occupies almost one-fourth of Brazilian territory, or about 200 million ha (Rezende et al. 2005). However, this biome has been severely degraded by agricultural practices, and agriculture, especially soybean production, is responsible for much of the fragmentation (Duran et al. 2007).

Many pests associated with soybean in Brazil (Embrapa 2008), but arthropods are responsible for most of the yield loss. In recent years, population outbreaks of phytophagous mites have been observed in soybean (Guedes et al. 2007) and some authors believe that such outbreaks result from the improper use of pesticides (Corrêa-Ferreira et al. 2010; Salvadori et al. 2007). In any case, mites (especially phytophagous species) have become important soybean pests because of the lack of basic knowledge about them. There is a need to know the mite species associated with soybean, in order to appropriately manage their populations on this crop. Thus, in this work we have attempted to gather the already published data on mites found in soybean cultivated in Brazil, and also to include new records from cultivated and spontaneous soybean plants from the central region of the Brazilian Cerrado.

Material and Methods

Records of mites associated with soybean in Brazil were obtained from reports in the literature (Guedes et al. 2007; Leite et al. 2003; Návia & Flechtmann 2004; Neto et al. 2008; Oliveira et al. 2007; Roggia et al. 2008, 2009; Oliveira 2010; Vivan et al. 2011) (Fig. 1, Table 1), and also by new samplings carried out in the Cerrado region (Fig. 1, Table 2). The new records were obtained by 2 samplings carried out in 10 fields during part of the rainy season in Brazil (Nov and Dec/2009, and Jan/2010). In these areas, the surrounding landscape consisted of a Cerrado fragment and others soybean fields. Also, samplings dates coincided with the inflorescence (sampling #1-40 d after sowing) and ended at the pod formation (sampling #2-80 d later) (Table 3). One additional sampling was made in June/2010 (during the dry season), along highway margins in 3 other areas of spontaneous soybean.

The mites were extracted in the field by washing the soybean leaves with 30% ethyl alcohol. The washing was done in plastic buckets with 5 L of the same alcohol. The collected leaves were immersed and stirred for some seconds to dislodge the mites. The washed leaves were withdrawn from the bucket and the alcohol was filtered through nylon micro-sieves with 25 μm porosity. Subsequently, both sides of the mesh were sprayed with 67% ethyl alcohol to dislodge the retained material. Such material was transferred into flasks each containing 80 mL of the same alcohol for temporary preservation and transportation.

In the laboratory, the preserved material was examined under stereoscopic microscopes. The mites were assembled on microscopic slides, using Hoyser's medium (Moraes & Flechtmann 2008). Subsequently, the slide borders were sealed with transparent nail polish. Identification of the specimens was done under an optical microscope with phase contrast in accordance with Lindquist et al. (2009a).

In the species listing, the following data have been presented for the new records: collection site, date of collection (month in Roman numerals, and year in Arabic numerals) and the number of individuals in parenthese. In case of former records, the presented data are: collection site, year in Arabian numerals, and the number of individuals in parentheses. The voucher material of the samplings is deposited with the Acari collection (DZSJRP) - http://www.splink.cria.org.br, of the Zoology and Botany Department, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo.

Results

The samplings yielded 2,732 mites, belonging to 29 species. Phytoseiidae and Tarsonemidae presented the largest species richness (8 species each). The tetranychid, *Mononychellus planki* (McGregor), was the species most frequently collected in all sampled areas (Table 3). Such data, added to the prior records, result into 44 species found in soybean in Brazil, according to the list subsequently presented.

Order Mesostigmata

Asca sp. 1

Origin: Goiás: Cristalina: XII-09 (1); Minas Gerais: Tupaciguara: XII-09 (8), I-10 (1). Diet: Mites of this genus are known as predators (Krantz 2009), but they might also be saprophages (Moutia 1958; De Leon 1967).

Asca sp. 2

Origin: Goiás: Chapadão do Céu: I-10 (1), Cristalina: XII-09 (1), Jataí (area 1): I-10 (1). Diet: Same as *Asca* sp. 1.

Blattisociidae

Lasioseius sp.

Origin: Mato Grosso do Sul: Chapadão do Sul: I-10 (2); Goiás: Jataí (2): XI-09 (1), XII-09 (2), Rio Verde (1): XII-09 (3). Diet: Individuals of this family are known to be predators (Lindquist et
al. 2009b), but no information is available specifically about the diet of *Lasioseius* sp.

Incertae sedis

* Africoseius* sp.

Origin: Goiás: Jataí (1): I-10 (1). Diet: Unknown.

Melicharidae

* Proctolaelaps* sp.

Origin: Goiás: Rio Verde (1): XII-09 (1). Diet: Basically they are predators, but they may be facultatively pollenophagous or saprophagous (Krantz 2009).

Phytoseiidae

* Euseius alatus* De Leon, 1966

Origin: Minas Gerais: Araporã: VI-10 (21). Diet: Generalist predator that also feeds on pollen (McMurtry & Croft 1997).

* Galendromus (Galendromus) annectens* (De Leon, 1958)

Origin: Minas Gerais: Araporã: VI-10 (1). Previous records in Brazil: Rio Grande do Sul: Santa Maria (Roggia et al. 2009). Diet: Selective preda-
tor of tetranychid mites (Luh & Croft 2001; McMurtry & Croft 1997).

Iphiseiodes zuluagai Denmark & Muma, 1973.

Origin: Minas Gerais; Tupaciguara: XII-09 (1). Diet: Predator, but also feeds on pollen (Reis & Alves 1997).

Neoseiulus anonymus Chant & Baker, 1965

Previous records in Brazil: Rio Grande do Sul: Nonoai (Roggia et al. 2009). Diet: Selective predator of tetranychid mites (Ferla & Moraes 2003; McMurtry & Croft 1997).

Neoseiulus benjamini (Schicha, 1981)

Origin: Minas Gerais: Tupaciguara (1): XII-09 (1). Diet: Unknown for the species. Mites of this genus are considered selective or generalist predators (McMurtry & Croft 1997).

Neoseiulus californicus McGregor, 1954

Previous records in Brazil: Rio Grande do Sul: Cruz Alta, Nonoai, Santa Maria, Victor Graeff

Table 1. Locations sampled for mites on soybean, as reported in publications before the current study.

STATE	MUNICIPALITY	COORDINATES	CULTIVAR
Maranhão			
Mato Grosso	Cláudia	11° 30' S 54° 52' W	
Mato Grosso	Sorriso	12° 33' S 55° 42' W	
Minas Gerais	Montes Claros	16° 44' S 43° 51' W	‘BRM 94-52273’
Minas Gerais	Una	16° 21' S 46° 54' W	‘Monsoy 8001’
Rio Grande do Sul	Alegrete	29° 47' S 55° 46' W	
Rio Grande do Sul	Barra Funda	27° 55' S 53° 03' W	
Rio Grande do Sul	Caçapava	30° 30' S 53° 29' W	
Rio Grande do Sul	Cacequi	29° 52' S 54° 49' W	
Rio Grande do Sul	Cachoeira	30° 01' S 52° 55' W	
Rio Grande do Sul	Caicara	27° 19' S 53° 25' W	
Rio Grande do Sul	Campos Borges	28° 53' S 53° 00' W	
Rio Grande do Sul	Candelária	29° 40' S 52° 47' W	
Rio Grande do Sul	Canguçu	31° 24' S 52° 40' W	‘A 7001 RG’
Rio Grande do Sul	Condor	28° 12' S 53° 29' W	
Rio Grande do Sul	Cruz Alta	28° 38' S 53° 36' W	
Rio Grande do Sul	Espumoso	28° 43' S 52° 50' W	
Rio Grande do Sul	Faxinal	29° 34' S 53° 26' W	‘A 6001 RG’
Rio Grande do Sul	Formigueiro	29° 59' S 53° 29' W	
Rio Grande do Sul	Itaara	29° 36' S 53° 45' W	‘A 7001 RG’
Rio Grande do Sul	Jari	29° 17' S 54° 13' W	
Rio Grande do Sul	Júlio de	29° 13' S 53° 41' W	
Rio Grande do Sul	Castilhos	29° 35' S 55° 28' W	‘A 8100 RG’
Rio Grande do Sul	Náo-me-Toque	28° 28' S 52° 48' W	
Rio Grande do Sul	Nonoai	27° 21' S 52° 46' W	
Rio Grande do Sul	Nova Palma	29° 28' S 53° 28' W	‘A 8100 RG’
Rio Grande do Sul	Palmeira das Missões	27° 53' S 18° 24' W	‘ANTA 82**
Rio Grande do Sul	Panambi	28° 17' S 53° 29' W	
Rio Grande do Sul	Piratini	31° 26' S 06° 18' W	‘A 8100 RG’
Rio Grande do Sul	Restinga	28° 13' S 54° 20' W	‘A 8100 RG’
Rio Grande do Sul	Rosário	30° 14' S 54° 55' W	
Rio Grande do Sul	Santa Maria	29° 41' S 53° 48' W	‘A 8100 RG’, —
Rio Grande do Sul	São Pedro	29° 38' S 54° 11' W	‘A 8001 RG’
Rio Grande do Sul	São Sepé	30° 10' S 54° 34' W	
Rio Grande do Sul	Selbach	28° 37' S 52° 57' W	
Rio Grande do Sul	Silveira	29° 38' S 53° 34' W	
Rio Grande do Sul	Victor Graeff	28° 33' S 52° 44' W	
Rio Grande do Sul	Vila Nova	30° 20' S 53° 52' W	

1Leite et al. (2003), 2Oliveira et al. (2007), 3Roggia et al. (2008), 4Guedes et al. (2007), 5Návia & Flechtmann (2004), 6Roggia et al. (2009), 7Oliveira (2010), 8Vivan et al. (2011).
Roggia et al. 2009). Diet: Predator used in several control managements of pest mites (McMurtry & Croft 1997).

Neoseiulus idaeus Denmark & Muma, 1973

Origin: Goiás: Jataí (2): XI-09 (1). Diet: Predator used in the management of the cassava green mite Mononychellus tanajoa (McMurtry & Croft 1997).

Neoseiulus tunus (De Leon, 1967)

Origin: Goiás: Edealina: XII-09 (1), I-10 (1). Diet: As N. benjamini.

Phytoseiulus fragariae Denmark & Schicha, 1983

Previous records in Brazil: Rio Grande do Sul: Canguçu (Guedes et al. 2007); Cruz Alta, Santa Maria, Nonoai, Victor Graeff (Roggia et al. 2009). Diet: Predator and promising control agent of Tetranychus urticae (Vasconcelos et al. 2008).

Phytoseiulus macropilis Banks, 1905

Previous records in Brazil: Rio Grande do Sul: Victor Graeff (Roggia et al. 2009). Diet: It is considered to be a specialized predator of Tetranychus species (McMurtry & Croft 1997).

Proprioseiopsis cannaensis Muma, 1962

Previous records in Brazil: Rio Grande do Sul: Santa Maria (Roggia et al. 2009). Diet: This species has been observed feeding on pollen and Tetranychidae, Tenuipalpidae and Eriophyidae mites. However, the data obtained didn’t allow asserting that P. cannaensis utilizes these items as principal sources of food in nature (Bellini et al. 2010).

Proprioseiopsis ovatus (Garman, 1958)

Origin: Minas Gerais: Unai: I-10 (1). Diet: Same as P. cannaensis.

Typhlodromalus aripo De Leon, 1967

Origin: Goiás: Rio Verde (2): VI-10 (1). Previous records in Brazil: Rio Grande do Sul: Canguçu (Guedes et al. 2007). Diet: This species can feed on a variety of food items, including mites, pollen, fungal spores and tetranychid mites (Gnanvossou et al. 2003).

ORDER SARCOPHORMES

Acaridae

Typhagus putrescentiae (Schrank, 1781)

Previous records in Brazil: Minas Gerais: Unai (Oliveira et al. 2007). Diet: Species of this genus are considered to be basically fungivorous or graminivorous. But T. putrescentiae has also been found feeding on eggs of the southern corn rootworm Diabrotica undecimpunctata howardi Barber (Coleoptera: Chrysomelidae) (Krantz 2009).

Galumnidae

Galumna glabra Pérez-Iñigo & Baggio, 1991

Previous records in Brazil: Mato Grosso (Oliveira 2010). Diet: Unknown, but commonly mites of this family are mycophagous and saprophagous (Norton & Behan-Pelletier 2009).

![Table 2. Locations Sampled for Mite Fauna on Soybean, in the Central Area of the Cerrado.](https://bioone.org/journals/Florida-Entomologist)

CODE	STATE	MUNICIPALITY	COORDINATES	CULTIVAR
A	Distrito Federal	Brasília	15° 38' S 47° 44' W	'BRS Baliza RR'
B	Goiás	Chapadão do Céu	18° 15' S 52° 44' W	'M-Soy 8001'
C	Goiás	Cristalina	16° 17’ S 47° 27’ W	‘AN 8843’
D	Goiás	Edealina	17° 24’ S 49° 45’ W	‘M-Soy 8200’
E	Goiás	Jataí (1)¹	17° 51’ S 51° 45’ W	‘ANTA 82*’
F	Goiás	Jataí (2)¹	17° 49’ S 51° 41’ W	‘P 98Y11*’
G	Goiás	Rio Verde (1)¹	17° 40’ S 51° 02’ W	‘M-Soy 6101’
H	Goiás	Rio Verde (2)¹	18° 01’ S 52° 35’ W	‘ANTA 82*’
I	Mato Grosso do Sul	Chapadão do Sul	18° 26’ S 49° 11’ W	‘M-Soy 82*’
J	Minas Gerais	Araporã	18° 31’ S 48° 54’ W	‘BRS Valiosa RR’
K	Minas Gerais	Tupaciguara (1)¹	18° 31’ S 48° 54’ W	‘BRS Valiosa RR’
L	Minas Gerais	Tupaciguara (2)¹	15° 59’ S 46° 41’ W	‘BRS Valiosa RR’

¹Areas 1 and 2 are in different localities of the municipality.
²Spontaneous soybean.
Table 3. Mite species found on soybean crops located in the Cerrado region. The numbers refer to the date of sampling (1: sampling 40 days after sowing; 2: sampling 80 days later; and 3: sampling on spontaneous soybean). Area codes are defined in Table 2.

Mite Species	Area												
	A	B	C	D	E	F	G	H	I	J	K	L	M
Asca sp. 1	—	—	2	—	—	—	—	—	—	—	—	2	—
Asca sp. 2	—	2	1	—	—	—	—	—	—	—	—	—	—
Africoseius sp.	—	—	—	—	—	—	—	—	—	—	—	—	—
Proctolaelaps sp.	—	—	—	—	—	—	1	—	—	—	—	—	—
E. alatus	—	—	—	—	—	—	—	—	—	—	—	3	—
G. annectens	—	—	—	—	—	—	—	—	—	—	—	3	—
I. zuluagai	—	—	—	—	—	—	—	—	3	—	—	—	—
N. benjamini	—	—	—	—	—	—	—	—	1	—	—	—	—
N. idaeus	—	—	—	—	—	—	—	—	—	—	—	—	—
N. tunus	—	—	1	2	—	—	—	—	—	—	—	—	—
P. ovatus	—	—	—	—	—	—	—	—	—	—	—	2	—
T. aripo	—	—	—	—	—	—	—	—	—	3	—	—	—
Czensuspiska sp.	—	—	—	1	—	—	—	—	—	—	—	—	—
Neocunaxoides sp.	—	—	—	—	1	—	—	—	—	—	—	—	—
C. tricholaenae	—	—	2	—	—	—	—	—	—	1	—	2	—
Metapronematus sp.	—	—	—	—	—	2	—	—	—	—	—	—	—
Pronematus sp.	—	—	—	2	—	1	2	—	—	2	—	—	—
aff. Tarsonemus sp.	—	—	2	—	—	—	—	—	—	—	—	—	—
Neotarsonemoides sp.	—	—	—	—	—	—	—	—	—	—	—	—	—
P. latus	—	—	2	—	—	—	—	—	—	—	—	—	—
T. bilobatus	—	1	2	2	—	2	—	—	—	—	—	—	2
T. confusus	—	—	2	2	1	—	—	—	—	—	—	—	2
Tarsonemus sp.	1	—	—	2	2	1	—	—	—	—	—	—	—
Tarsonemus waitei	—	—	—	—	—	—	—	—	—	2	—	—	—
Xenotarsonemus sp.	—	—	—	—	—	—	—	—	—	—	1	—	2
M. planki	2	2	1	2	1	2	1	2	1	2	3	1	2
L. formosa	—	2	—	—	—	—	—	—	—	—	1	—	—

Oribatulidae

Galumna sp.

Previous records in Brazil: Mato Grosso (Oliveira 2010). Diet: Same as *G. glabra*.

Czensuspiska sp.

Origin: Goiás: Jataí (1): XII-09 (4). Diet: This genus is considered to be fungivorous (Krantz 2009).

Winterschmidtiiidae

Czensuspiska sp.

Origin: Goiás: Jataí (1): XII-09 (4). Diet: This genus is considered to be fungivorous (Krantz 2009).

Order Trombidiiformes

Cunaxidae

Neocunaxoides sp.

Origin: Goiás: Jataí (2): XI-09 (2); Minas Gerais: Tupaciguara (1): XII-09 (2). Diet: Cunaxidae is comprised of predatory species (Walter et al. 2009).

Diptilomiopidae

Catarhinus tricholaenae Keifer, 1959

Origin: Goiás: Cristalina: I-10 (1); Minas Gerais: Tupaciguara (1): XII-09 (2), Unai: I-10 (3).
Diet: All species included in Diptilomiopidae are considered phytophagous (Walter et al. 2009).

Iolinidae

Metapronematus sp.

Origin: Goiás: Jataí (2): XII-09 (2). Diet: This genus consists of fungivores and predators of eriophyoid and tetranychid mites (O’Dowd & Wilson 1997).

Pronematus sp.

Origin: Mato Grosso do Sul: Chapadão do Sul: I-10 (1); Goiás: Edealina: I-10 (1), Rio Verde (1): XII-09 (4); Minas Gerais: Unai: I-10 (1). Diet: One species of this genus (*Pronematus ubiquitus* (McGregor)) is omnivorous, feeding on honeydew, fungi and eriophyoid mites (Walter et al. 2009).

Tarsonemidae

aff. *Tarsonemus* sp.

Origin: Goiás: Cristalina: I-10 (1).

Neotarsonemoides sp.

Origin: Minas Gerais: Unai: I-10 (2). Diet: Unknown.

Polyphagotarsonemus latus Banks, 1904

Origin: Goiás: Cristalina: I-10 (17); Minas Gerais: Unai: I-10 (4). Previous records in Brazil: Minas Gerais: Montes Claros (Leite et al. 2003); Rio Grande do Sul: Santa Maria (Guedes et al. 2007), Itaara (Roggia et al. 2009). Diet: Phytophagous, and it has great economic importance in agriculture (Lindquist 1986).

Tarsonemus bilobatus Suski, 1965

Origin: Goiás: Chapadão do Céu: XII-09 (1), Cristalina: I-10 (5), Edealina: I-10 (9), Jataí (2): XII-09 (3); Minas Gerais: Unai: I-10 (1). Diet: According to Lindquist (1986), this genus consists of fungivorous species.

Tarsonemus confusus Ewing, 1939

Origin: Goiás: Edealina: I-10 (3), Jataí (1): I-10 (1), Rio Verde (1): XII-09 (1); Minas Gerais: Unai: I-10 (4). Diet: Same as *T. bilobatus*.

Tarsonemus sp.

Origin: Distrito Federal: Brasília: XII-09 (1). Diet: Same as *T. bilobatus*.

Tetranychidae

Mononychellus planki (McGregor, 1950)

Origin: Distrito Federal: Brasília: I-10 (47); Goiás: Chapadão do Céu: I-10 (43), Cristalina: XII-09 (3), I-10 (38); Edealina: XII-09 (2), I-10 (113), Jataí (1): XII-09 (6), I-10 (972), Jataí (2): XII-09 (13), Rio Verde (1): XII-09 (32), I-10 (165), Rio Verde (2): VI-10 (18); Mato Grosso do Sul: Chapadão do Sul: XII-09 (75), I-10 (721); Minas Gerais: Araporã: VI-10 (32), Tupaciguara (1): XII-09 (32), I-10 (242), Tupaciguara (2): VI-10 (14), Unai: XII-09 (5), I-10 (3). Previous records in Brazil: Rio Grande do Sul: Faxinal do Soturno, Manuel Viana, Nova Palma, Santa Maria, São Pedro do Sul (Guedes et al. 2007), Barra Funda, Cacequi, Cachoeira do Sul, Caiçara, Candelária, Condor, Cruz Alta, Espumoso, Formigueiro, Itaara, Jari, Júlio de Castilhos, Nonoi, Panambi, Restinga Seca, Rosário do Sul, Santa Maria, São Pedro do Sul, Silveira Martins, Victor Graeff, Vila Nova do Sul (Roggia et al. 2008). Diet: All Tetranychidae species are phytophagous. *Mononychellus planki* causes considerable economic damage to some crops (Moraes & Flechtmann 2008).

Tetranychus desertorum Banks, 1900

Previous records in Brazil: Rio Grande do Sul: Canguçu, Manuel Viana, Santa Maria (Guedes et al. 2007); Caçapava do Sul, Caicara, Campos Borges, Cruz Alta, Formigueiro, Jari, Nonoi, Santa Maria, São Pedro do Sul, São Sepé, Silveira Martins, Vila Nova do Sul (Roggia et al. 2008). Diet: Same as *M. planki*.

Tetranychus gigas Pritchard & Baker, 1955

Previous records in Brazil: Rio Grande do Sul: Canguçu, Santa Maria (Návia & Flechtmann 2004, Guedes et al. 2007), Alegrete, Nonoi, Santa Maria, São Pedro do Sul, Victor Graeff (Roggia et al. 2008). Diet: Same as *M. planki*.
lendromus unclear. Therefore, its feeding habit remains unseen causing evident damage (Hernandes & Fe-
Lorryia formosa Minas Gerais: Tupaciguara (1):
Selbach, Silveira Martins, Victor Graeff
Não-me-Toque, Nonoai, Santa Maria, São Sepé,
Borges, Cruz Alta, Espumoso, Júlio de Castilhos,
Não-me-Toque, Nonoai, Santa Maria, São Sepé,
Selbach, Silveira Martins, Victor Graeff (Roggia et
al. 2008). Diet: Phytophagous (Moraes & Flechtmann 2008).

Tetranychus urticae Koch, 1836
Previous records in Brazil: Rio Grande do Sul:
Barra Funda, Cacequi, Cachoeira do Sul, Campos
Borges, Cruz Alta, Espumoso, Júlio de Castilhos,
Náo-me-Toque, Nonoai, Santa Maria, São Sepé,
Selbach, Silveira Martins, Victor Graeff (Roggia et
al. 2008). Diet: Phytophagous and pest on sev-
eral crops (Moraes & Flechtmann 2008).

Tyetidae

Lorryia formosa Cooreman, 1958
Origin: Goiás: Chapadão do Céu: I-10 (2);
Minas Gerais: Tupaciguara (1): XII-09 (1). Diet:
Lorryia formosa can be found on some cultivated
plants, e.g., rubber trees. However, they were not
seen causing evident damage (Hernandes & Fe-
ers 2006). Therefore, its feeding habit remains
unclear.

DISCUSSION

Of the 31 species found in this study, only Ga-
lendromus (G.) annectens, M. planki, P. latus and
T. aripo had been reported in previous studies.
The other collected species are new records of the
fauna found in soybean, in Brazil. Furthermore,
the 4 above-mentioned species are the only ones,
until the present date, commonly registered in
the soybean crops of Rio Grande do Sul and in the
country’s central region.
The prior data from Montes Claros (Leite et al.
2003) and Unai (Oliveira et al. 2007), when added
to the species recorded in the samplings carried
out in this work, show that the species richness of
mites associated with soybean in the Cerrado re-
gion (31 species) is much higher than observed in
the surveys carried out in Rio Grande do Sul (14
species). Twenty seven species of mites have been
found exclusively on soybean plants in the Cer-
rado biome. The lower number of species found
thus far in Rio Grande do Sul probably results
from the close proximity of the fields analyzed in
that state, compared with the samplings carried
out more widely in the Cerrado biome. It is known
that increased distances between certain sites re-
results in increased β diversity, i.e., the sum of
the various species observed in the respective areas
(Nekola & White 1999).

Besides the surveys made in Rio Grande do Sul
and Minas Gerais, other studies showed that
oribatid mites have been found on soybean (G. gla-
bra, Galumna sp., Z. b maize nensis e Z. translineata) in Maranhão and Mato Grosso
states (Oliveira 2010; Vivan et al. 2011). There is
a suspicion that these species would be related to
a recent plant disorder observed in crops in these
states and commonly known as “crazy soybean
II”, which is marked by malformation of flowers
and pods, resulting in significant reductions of
production, in some cases. Up to now, there are
records of this disease only in Brazil (Saraiva
et al. 2010). None of the studies conducted have
confirmed a connection between this disorder and
these mites. It is known that most of oribatid
species exhibit mycophagous and saprophagous
feeding, i.e., they can ingest dead plant material,
spores or fungal fragments (Schneider et al. 2005;
Norton & Behan-Pelletier 2009; Oliveira 2010).
This characteristic, at least, suggests that a direct
connection between oribatid mites and the new
disorder would be improbable. Although there are
some references to oribatid mites feeding on culti-
vated plants, these reports are isolated and rare.
Thus, no oribatid species has reached pest status
(A. R. Oliveira, Departamento de Ciências Biól-
gicas, Universidade Estadual de Santa Cruz, per-
sonal communication).

Considering only the data attained from the
samplings under this study, Phytoseidiae and
Taronemidiae presented the largest richness.
However, almost 50 % of the Phytoseidiae were
found exclusively in spontaneous soybean. Ac-
cording to the farmers’ statements, their crops
were treated with several pesticides. Some chemi-
cal defensives can suppress populations of non-
target species present in the field, i.e., predatory
mites (Degrande et al. 2002; Guedes et al. 2007).
So, it is possible that the lower diversity of Phy-
toseidiae, recorded in cultivated soybean, might
be related to pesticide application. Anyway, the
occurrence of certain phytoseid species in the
field, i.e. E. alatus, G. annectens, I. zuluagai,
N. anonymus, P. fragariae and T. aripo must be
highlighted because these mites can contribute
effectively to the pest mite control (De Vis et al.
2006; Gerson et al 2003; Ferla & Moraes 2003;
McMurtry & Croft 1997; Melo et al. 2009; Reis
et al. 2003; Vasconcelos et al. 2003). As for the
Taronemidiae, in contrast to the results of Phyto-
seidiae, all the species have been recorded exclu-
sively in cultivated soybean. Most of them belong
to Taronemus genus, which is comprised of fun-
givors species (Lindquist 1986).
The results attained from several surveys car-
rried out indicate that M. planki was the mite spe-

Downloaded From: https://bioone.org/journals/Florida-Entomologist on 06 May 2020
Terms of Use: https://bioone.org/terms-of-use
cies most frequently found on soybean in Brazil, until the present date, considering the numbers of crops on which it has been recorded. Bolland et al. (1998) mentioned that *M. planki* is broadly distributed, extended throughout the American continent. In addition, this mite has been recorded on 64 other host plants species (Migeon & Dorkeld 2011). Some works report populations of *M. planki* as harmful to several crops in Brazil, e.g., cotton, peanut, beans and okra (Flechtmann 1981; Moraes & Flechtmann 2008). Thus, there is no doubt that this mite has relevance for Brazil’s national agriculture. Therefore studies about control and biological aspects of *M. planki* are needed in Brazil.

Polyphagotarsonemus latus (Tarsonemidae) can be considered as another species with potential of being a pest for soybean production in Brazil. This mite species was recorded both in the Cerrado areas and in the surveys carried out by Guedes et al. (2007) and Leite et al. (2003). It is known that this species is present on a large number of host crops (Lindquist 1986). Other potential pests species included in the presented list are mites of the *Tetranychus* genus. It should be highlighted that none of these species were recorded in the samplings carried out in crops from the country’s central region, and that they have been found only in prior surveys carried out in Rio Grande do Sul. According to Moraes & Flechtman (2008), all such species are seen as pest mites in certain crops. Guedes et al. (2007) asserted that some of these species were recorded in localized infestations in Rio Grande do Sul state. Furthermore, *T. urticae* is cited as an important pest mite in soybean in several parts of the world (Abraham 2000; Carlson 1969; Hoda et al. 1986; Shabalta et al. 1992; Singh 1988). Such facts certainly add to the importance of *T. urticae* as an agricultural pest.

Finally, although the mite densities observed in the samplings did not indicate risks of economic damage, it is necessary to take into account the potential these species to cause economic damage. Hence, the mere occurrence of their populations should be periodically monitored so that infestation of those mites can be properly handled in the future, without great losses in the soybean production chain.

ACKNOWLEDGMENTS

To Fapesp (Fundação de Amparo a Pesquisa do Estado de São Paulo) (Procs. n° 06/57868-9 e n° 08/07835-2) and Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for financial support. To the farmers who kindly made their crops to be used in the study. To Prof. Dr. Aníbal R. Oliveira (UESC), who elucidated the doubts about the relation between oribatid mites and the soybean disease “crazy soybean II”. To Dr. Edson Hirose (Embrapa Soja), Dr. Márcio F. Peixoto (IFET - Rio Verde-GO) and Dr. Luis Adriano Maia Cordeiro (Embrapa Sede), for helping on the selection of the studied areas. To the colleagues Bárbara M. Oliveira, Fábio de S. Tavares, Fernanda M. Silva, Felipe M. Nuvoloni, José César de Souza, Pêrola M. Paulon, Peterson R. Demite and Tarciso V. Martins for helping on the samplings and the examination of the sampled material.

REFERENCES CITED

Abraham, R. 2000. Mite and thrips populations of soybean varieties of different ripening groups. Nove-invedeemia 36: 583-589.

Bellini, M. R., Araújo, R. V. de, Silva, E. S., Moraes, G. J. de, and Beritli Filho, E. 2010. Ciclo de Vida de *Proprosioeiosis cannaeensis* (Muma) (Acarii: Phytoseiidae) com Diferentes Tipos de Alimentos. Neotropical Entomology 39: 360-364.

Bolland, H. H., Gutiérrez, J., and Flechtman, C. W. H. 1998. World catalogue of spider mite family (Acarii: *Tetranychidae*). Brill Academic Publishers, Leiden, Zui-Holland, Netherlands. 392 pp.

Carlson, E. C. 1969. Spider mites on soybeans: injury and control. California Agric. 23: 18-18.

Conab. 2010. Series históricas das safras 1976/77 a 2009/2010 de área plantada e produtividade. www.conab.gov.br/conteudos.php?aa=1252&t=&Pagina_objmcyconteudos=&AA_objmcyconteudos=3#A_objmcyconteudos/ accessed 10th October, 2010.

Corrêa-Ferreira, B. S., Domit, L. A., Moraes, L., and Guimarães, R. C. 2000. Integrated soybean pest management in micro river basins in Brazil. Integ. Pest Manag. Rev. 5: 75-80.

Corrêa-Ferreira, B. S., Alexandre, T. M., Pellizzarro, E. C., Moscardi, F., and Freitas Bueno, A. 2010. Circular Técnica 78: Práticas do manejo de pragas usada em soja e seus impactos na agricultura. Embrapa Soja, Londrina, Paraná, Brazil.

Degrande, P. E., Reis, P. R., Carvalho, G. A., and Belladino, L. E. 2002. Metodologia para avaliar o impacto de pesticidas sobre inimigos naturais, pp. 71-93 In J. P. R. Parra, P. S. M. Botelho, B. S. C. Ferreira and J. M. S. Bento [eds.], Controle biológico no Brasil: parasitóides e predadores. Editora Manole, São Paulo, São Paulo, Brazil.

De Leon, D. 1967. Some Mites of the Caribbean Area. Part I. Acarina on Plants in Trinidad, West Indies. Allen Press Inc., Lawrence, Kansas, USA. 66 pp.

De Vis, R. M. J., Moraes, G. J. de, and Bellini, M. R. 2006. Initial screening of little known predatory mites in Brazil as potential pest control agents. Exp. Appl. Acarol. 39: 115-125.

Durigan, G., Siqueira, M. F. de, and Franco, G. A. D. C. 2007. Threats to the Cerrado remnants of the state of São Paulo, Brazil. Sci. Agric. 64: 355-363.

Embrapa. 2000. Recomendações técnicas para lavouras de soja no estado do Paraná 2000/2001. Embrapa Soja, Londrina, Paraná, Brazil. 225 pp.

Embrapa. 2008. Tecnologias da produção de soja: região central do Brasil 2009 e 2010. Embrapa Soja, Londrina, Paraná, Brazil. 263 pp.

Ferla, N. J., and Moraes, G. J. de. 2003. Oviposition rates of the predatory mites *Agistemus floridanus* Gonzalez, *Euseius concordis* (Chant) and *Neoseiulus anonyumus* (Chant & Baker) (Acarii) with different types of food. Rev. Brasileira de Zool. 20: 153-155.
seiidae, Tetranychidae) at five temperatures. Exp. Appl. Acarol. 44: 27-36.

VIVAN, L, FRANCISCO, E. A. B., MAGRI, J., AND OLIVEIRA, A. R. 2011. Searching for answers. Revista Cultivar 13: 20-21.

WALTER, D. E., LINDQUIST, E. E., SMITH, I. M., COOK, D. R., AND KRANTZ, G. W. 2009. Order Trombidiformes, pp. 233-420 In Krantz, G. W. and D. E. Walter [eds.], A manual of Acarology. 3rd edition. Texas Tech University Press, Lubbock, Texas, USA.