Extraction of the Rare Element Vanadium from Vanadium-Containing Materials by Chlorination Method: A Critical Review

Shiyuan Liu, Weihua Xue and Lijun Wang *

Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China; shiyuanliu126@126.com (S.L.); 18435180612@163.com (W.X.)
* Correspondence: lijunwang@ustb.edu.cn

Abstract: Vanadium as a rare element has a wide range of applications in iron and steel production, vanadium flow batteries, catalysts, etc. In 2018, the world’s total vanadium output calculated in the form of metal vanadium was 91,844 t. The raw materials for the production of vanadium products mainly include vanadium-titanium magnetite, vanadium slag, stone coal, petroleum coke, fly ash, and spent catalysts, etc. Chlorinating metallurgy has a wide range of applications in the treatment of ore, slag, solid wastes, etc. Chlorinating agent plays an important role in chlorination metallurgy, which is divided into solid (NaCl, KCl, CaCl₂, AlCl₃, FeCl₂, FeCl₃, MgCl₂, NH₄Cl, NaClO, and NaClO₃) and gas (Cl₂, HCl, and CCl₄). The chlorination of vanadium oxides (V₂O₅ and V₂O₃) by different chlorinating agents was investigated from the thermodynamics. Meanwhile, this paper summarizes the research progress of chlorination in the treatment of vanadium-containing materials. This paper has important reference significance for further adopting the chlorination method to treat vanadium-containing raw materials.

Keywords: vanadium; chlorination metallurgy; chlorination agents; NaCl roasting; carbochlorination; thermodynamics; molten salt chlorination

1. Introduction

Vanadium is located in the fourth period and fifth (VB) group of the periodic table and which occupies the 23rd position in the periodic table of elements. The symbol of the vanadium element is V. The physical characteristics of vanadium are melting point of 1929 °C, boiling point of 3350 °C, relative atomic mass of 50.9415, and density of 5.96 (g/cm³), and it is a silver grey metal [1,2]. The valence of vanadium in compounds can be +2, +3, +4, and +5 [3]. At present, there are known vanadium oxides such as V₂O₃, VO₂, V₂O₅, V₃O₅, V₅O₇, V₄O₇, V₅O₉, V₆O₁₁, and V₆O₁₃, among which the pentavalent vanadium compounds are the most stable [4]. The main chlorides are VOCl₃, VOCl₂, VCl₄, VCl₅, VCl₆, VCl₇, and VCl₂, among which VOCl₃ are the most stable [5]. However, the toxicity of vanadium compounds increases with the increase of vanadium valence, and the pentavalent vanadium compounds are the most toxic. Thus, compounds containing pentavalent vanadium, such as NaVO₃, NH₄VO₃, V₂O₅, and VOCl₃, are the most toxic [6]. Toxic vanadium compounds can exist in both cationic and anionic forms [7].

Vanadium as a rare element has a wide range of applications in iron and steel production, vanadium flow batteries, catalysts, etc. [8,9]. The raw materials for the production of vanadium products mainly include vanadium-titanium magnetite, vanadium slag, stone coal, petroleum coke, fly ash, and spent catalysts, etc. [1,8,9]. Salt roasting (Na₂CO₃, NaCl, NaOH, CaO, etc.) was applied to extract vanadium from vanadium-containing materials [1,8,9]. However, the salt roasting method extraction of vanadium from vanadium slag is associated with the formation of a large amount of sludge and significant losses of vanadium [10]. Previous review articles on vanadium extraction from vanadium-containing...
materials mainly focused on the salt roasting process [1,8,9]. In this work, extraction of the rare element vanadium from vanadium-containing materials by chlorination method was summarized.

Table 1 shows melting temperature, boiling temperature, and sublimation temperature for vanadium compounds [11,12]. According to Table 1, the melting point and boiling point of chloride are lower than those of corresponding oxides. Thus, chloride is easier to separate and enrich than oxide [13–15]. Chlorinated metallurgy has a wide range of applications in the treatment of ore, slag, solid wastes, etc. [16–22]. In the last century, the extraction of Ti from titanium ore by chlorination method has been industrialized [23]. Chlorinating agent plays an important role in chlorination metallurgy, which is divided into solid (NaCl, KCl, CaCl$_2$, AlCl$_3$, FeCl$_2$, FeCl$_3$, MgCl$_2$, NH$_4$Cl, NaClO, NaClO$_3$) and gas (Cl$_2$, HCl, CCl$_4$) [24–29]. Compared with gaseous chlorinating agents, the solid chlorinating agents are easier to handle and more environmentally friendly.

V-O-Cl Substance	Transition Temperature (°C)
VCl$_2$	$T_m = 1347$
	$T_s = 1407$
	$T_b = 1530$
VCl$_3$	$T_s = 833$
VCl$_4$	$T_b = 151$
VOCl$_3$	$T_b = 127$
VO$_2$Cl	$T_b = 177$
VOCl$_2$	$T_s = 511$
VOCl	$T_s = 1120$
VO	$T_m = 1790$
V$_2$O$_3$	$T_m = 1970$
VO$_2$	$T_m = 1545$
V$_2$O$_5$	$T_m = 690$

T_m, melting temperature; T_b, boiling temperature; T_s, sublimation temperature.

The traditional chlorination method of extracting vanadium with NaCl as an additive will produce NaVO$_3$ and then ammonia nitrogen wastewater will be produced in the process of preparing V$_2$O$_5$. The carbochlorination method of extracting vanadium to prepare VOCl$_3$ will not produce ammonia nitrogen wastewater. Molten salt chlorination of extracting vanadium will obtain VCl$_3$, and metal V will be obtained by molten salt electrolysis. In this work, these two new processes will be introduced.

2. Vanadium Reserves and the Major Vanadium Producers

Table 2 shows the world’s vanadium ore reserves in 2018. More than 99% of the world’s vanadium ore reserves are concentrated in China, Russia, South Africa and Australia [30]. Meanwhile, China has the largest vanadium reserves. According to statistics, in 2018, about 16% of the world’s vanadium products directly came from vanadium-titanium magnetite, about 68% of the vanadium products came from the vanadium-rich steel slag (and a small amount of phosphorus-rich vanadium slag) obtained by vanadium-titanium magnetite after iron and steel metallurgical processing, and approximately 16% of vanadium products were produced from recovered vanadium-containing by-products (vanadium-containing fuel ash, waste chemical catalysts) and vanadium-containing stone coal [30]. Table 3 shows the overview of major vanadium producers in the world in 2018 [30]. In 2018, the world’s total vanadium output calculated in the form of metal vanadium was 91,844 t [30]. The global market share of vanadium products in 2018 was approximately 90.8% ferroalloy products (FeV, VN, ferrovanadium nitride, etc.), approximately 4.2% non-ferrous metals such as Ti, and about 5% of vanadium compounds (vanadium oxide, ammonium vanadate, VOSO$_4$, etc.) for the chemical industry, energy storage and other fields [30]. Like the consumption pattern of the global vanadium market, more than 90% of China’s vanadium is used in the steel industry in the form of vanadium alloys [30].
Table 2. Global vanadium ore reserve calculated by metallic vanadium in 2018 (10 kt) [30].

Country	Reserve (10 kt)
China	950
Russia	500
South Africa	350
Australia	210
United States	4.5
Brazil	13

Table 3. Overview of major vanadium producers in the world in 2018 [30].

Company Name	Production Capacity (V_2O_5)/t	Products	Raw Material
Ansteel Pangang Group Co., Ltd.	40,000	FeV, VN, vanadium oxide, V-Al alloy	Vanadium slag
Russian (Evraz) company	30,000	FeV, vanadium oxide, V-Al alloy, catalyst	Vanadium slag, fly ash, spent catalyst
HBIS Group Chengsteel company	25,000	FeV, VN, ferrovanadium nitride, vanadium oxide	Vanadium slag
Beijing Jianlong Heavy Industry Group Co., Ltd.	15,000	VN, vanadium oxide	Vanadium slag
Austria Treibacher Industrie AG	13,000	V_2O_3, V_2O_5, FeV	Vanadium slag
Glencore (Xstrata)	12,000	FeV, vanadium oxide	Vanadium-titanium magnetite
Sichuan Chuanwei Group	12,000	V_2O_5	Vanadium slag
Chengyu Vanadium Titanium Technology Co., Ltd.	12,000	Vanadium slag	Vanadium slag
Sichuan Desheng Group	12,000	Vanadium slag	Vanadium slag
Largo Resources Ltd. Brazil	11,000	V_2O_5	Vanadium-titanium magnetite
Maracas Menchen Mine, South Africa	6000	VN, vanadium oxide	Vanadium-titanium magnetite
Bushveld Vanametco, South Africa	12,000	FeV, vanadium oxide	Vanadium-titanium magnetite
Australia Atlantic Vanadium PTY Ltd.	12,000	FeV, vanadium oxide	Vanadium-titanium magnetite
Vanchem Vanadium Product Pty Ltd.	10,000	FeV, vanadium oxide, catalyst	Vanadium-titanium magnetite, vanadium slag
Czech Republic, Germany, Canada, Japan, India, Taiwan, Thailand, etc.	12,000	V_2O_5, V-Al alloy, FeV, etc.	Slag, waste catalyst, fuel ash, etc.
Other Chinese manufacturers	37,000	V_2O_5, V-Al alloy, VN, FeV, etc.	Vanadium slag, waste catalyst, stone coal

3. Chlorination Thermodynamics of Vanadium Oxides

Vanadium in vanadium-titanium magnetite, vanadium slag, and stone coal mainly exists in trivalent form. Meanwhile, the V^{5+} compounds are the very stable. Thus, V_2O_3 and V_2O_5 were selected as the reactants for thermodynamic calculation by HSC Chemistry 6.4. The possibilities of V_2O_3 reacting with different chlorinating agents are calculated from the thermodynamic viewpoint as shown in Equations (1)–(10). Figure 1 shows the standard Gibbs free energies of reactions between V_2O_3 and chlorination agents at 0–1300 °C. V_2O_3 can be chlorinated to VCl_3 by AlCl_3, CCl_4 and COCl_2. Gibbs free energies of reaction between V_2O_3 and AlCl_3 increases with increasing temperature. Thermodynamically, increasing temperature is not conducive to AlCl_3 chlorination. However, V_2O_3 cannot be chlorinated to VCl_3 by the NaCl, CaCl_2, FeCl_2, FeCl_3, MgCl_2, HCl or Cl_2 at 0–1300 °C.

\[
V_2O_3 + 6NaCl = 2VCl_3 + 3Na_2O \quad (1)
\]
\[
V_2O_3 + 3CaCl_2 = 2VCl_3 + 3CaO \quad (2)
\]
\[
V_2O_3 + 3FeCl_2 = 2VCl_3 + 3FeO \quad (3)
\]
\[V_2O_3 + 2FeCl_3 = 2VCl_3 + Fe_2O_3 \] (4)

\[V_2O_3 + 2AlCl_3 = 2VCl_3 + Al_2O_3 \] (5)

\[V_2O_3 + 3MgCl_2 = 2VCl_3 + 3MgO \] (6)

\[V_2O_3 + 6HCl (g) = 2VCl_3 + 3H_2O (g) \] (7)

\[V_2O_3 + 3Cl_2 (g) = 2VCl_3 + 1.5O_2 (g) \] (8)

\[V_2O_3 + 1.5CCl_4 (g) = 2VCl_3 + 1.5CO_2 (g) \] (9)

\[V_2O_3 + 3COCl_2 (g) = 2VCl_3 + 3CO_2 (g) \] (10)

The standard Gibbs free energies of reactions between \(V_2O_3 \) and chlorination agents (reactions 1–10).

The \(V_2O_3 \) reacting with different chlorinating agents are as follows: Equations (11)–(20).

Figure 1. The standard Gibbs free energies of reactions between \(V_2O_3 \) and chlorination agents (reactions 1–10).

Figure 2 shows the standard Gibbs free energies of reactions between \(V_2O_5 \) and chlorination agents. \(V_2O_5 \) can be chlorinated to VOCl_3 by FeCl_3, AlCl_3, CCl_4 and COCl_2 at 0–1300 °C. However, \(V_2O_3 \) cannot be chlorinated to VOCl_3 by the NaCl, CaCl_2, FeCl_2, MgCl_2, HCl and Cl_2 at 0–1300 °C.

\[V_2O_5 + 6NaCl = 2VOCl_3 (g) + 3Na_2O \] (11)

\[V_2O_5 + 3CaCl_2 = 2VOCl_3 + 3CaO \] (12)

\[V_2O_5 + 3MgCl_2 = 2VOCl_3 + 3MgO \] (13)

\[V_2O_5 + 3FeCl_2 = 2VOCl_3 + 3FeO \] (14)

\[V_2O_5 + 2FeCl_3 = 2VOCl_3 + Fe_2O_3 \] (15)

\[V_2O_5 + 2AlCl_3 = 2VOCl_3 + Al_2O_3 \] (16)

\[V_2O_5 + 6HCl (g) = 2VOCl_3 + 3H_2O (g) \] (17)

\[V_2O_5 + 3COCl_2 (g) = 2VOCl_3 + 3CO_2 (g) \] (18)

\[V_2O_5 + 1.5CCl_4 (g) = 2VOCl_3 + 1.5CO_2 (g) \] (19)

\[V_2O_5 + 3Cl_2 (g) = 2VOCl_3 + 1.5O_2 (g) \] (20)

The \(V_2O_5 \) and \(V_2O_3 \) reacting with C and Cl_2 in the temperature range from 0 °C to 1300 °C are expressed as follows in Equations (21) and (22). Figure 3 shows standard Gibbs free energies of reactions 21–22 at 0–1300 °C. Adding C realizes the chlorination of \(V_2O_3 \).
and V_2O_3 to VOCl$_3$ by Cl$_2$ at 0–1300 °C. However, the effect of increasing temperature on
the chlorination of V_2O_3 and V_2O_5 is opposite.

$$2\text{V}_2\text{O}_3 + 6\text{Cl}_2 (g) + \text{C} = 4\text{VOCl}_3 + \text{CO}_2 (g)$$
$$\text{V}_2\text{O}_5 + 3\text{Cl}_2 (g) + 1.5\text{C} = 2\text{VOCl}_3 + 1.5\text{CO}_2 (g)$$

![Figure 2](image)

Figure 2. The standard Gibbs free energies of reactions between V_2O_5 and chlorination agents (reactions 11–20).

Under an oxygen atmosphere, the equations for the NaCl roasting reaction of V_2O_3 and V_2O_5 are as shown in Equations (23) and (24). Figure 4 shows the variation of standard Gibbs free energy of reactions 23–24 with temperature. Under the same conditions, V_2O_3 is more easily chlorinated. Thermodynamically, increasing temperature is not conducive to NaCl chlorination of V_2O_3. The reaction of V_2O_3 and different chlorinating agents (FeCl$_2$ and FeCl$_3$) are as shown in Equations (25) and (26). It can be seen from Figure 4 that V_2O_3 can be chlorinated by FeCl$_2$ and FeCl$_3$ under an oxygen atmosphere.

$$\text{V}_2\text{O}_3 + 2\text{NaCl} + 1.5\text{O}_2 (g) = 2\text{NaVO}_3 + \text{Cl}_2 (g)$$
Figure 4. Variation of standard Gibbs free energy of reactions 23–26 with temperature.

According to the above thermodynamic analysis, the valence state of vanadium, reaction temperature, atmosphere and chlorinating agent play a very important role in the chlorination of vanadium. Thus, the chlorination of vanadium can be achieved by selecting appropriate conditions. The following will introduce the progress of chlorination of vanadium-containing materials.

4. Application of Chlorination Method
4.1. Chlorination Extraction of Vanadium from Vanadium Titanomagnetite

Vanadium-titanium magnetite is mainly composed of iron (Fe), vanadium (V) and titanium (Ti) elements, which is multi-element symbiotic iron ore containing a small amount of cobalt (Co), nickel (Ni), chromium (Cr), scandium (Sc) and gallium (Ga) [31,32]. The reserves of vanadium-titanium magnetite in the Panzhihua-Xichang regions in China amount to about 9.66 billion tons [33]. The content of vanadium pentoxide in vanadium-bearing titaniferrous magnetite is 0.1 wt%–2 wt% [34]. Jena et al. [23] proposed that under the action of oxygen and water, NaCl as an additive reacts with the vanadium in the vanadium bearing titaniferrous magnetite. The roasted samples were leached with hot water. More than 90% of V was extracted. The reaction Equations are as follows in Equations (27)–(31).

\[
\begin{align*}
2V_2O_3 + 4NaCl + O_2 (g) &= 4NaVO_3 + 2Cl_2 (g) \\
V_2O_3 + 2FeCl_3 + O_2 (g) &= 2VOCl_3 (g) + Fe_2O_3 \\
V_2O_3 + 3FeCl_2 + 1.75O_2 (g) &= 2VOCl_3 (g) + 1.5Fe_2O_3
\end{align*}
\] (24)

\[
\begin{align*}
2NaCl + 3/2O_2 + V_2O_3 &= 2NaVO_3 + Cl_2 \\
3Cl_2 + 3V_2O_3 &= 2VOCl_3 + 2V_2O_5 \\
4VOCl_3 + 3O_2 &= 2V_2O_5 + 6Cl_2
\end{align*}
\] (25)

To some extent, the presence of SiO₂ and the formation of HCl and Cl₂ can promote the extraction of vanadium [23,35,36]. Zheng et al. [37] first calculated the feasibility of extraction vanadium from vanadium-rich resources with FeCl₂ and FeCl₃. Thermodynamic calculations show that the higher the valence of vanadium in vanadium titanomagnetite,
the easier it is to extract vanadium. Therefore, the chlorinated atmosphere was selected as the oxygen atmosphere. The reaction Equations are as follows in Equations (32)–(36).

\[
\begin{align*}
V_2O_5 + 2FeCl_3 &= VOCl_3 + Fe_2O_3 \quad (32) \\
2V_2O_4 + 4FeCl_3 + O_2 &= 4VOCl_3 + 2FeO_3 \quad (33) \\
2V_2O_3 + 4FeCl_3 + (2x - 1)O_2 &= 4VOCl_3 + 4FeO_x \quad (34) \\
V_2O_4 + FeCl_3 + (x - 1)O_2 &= VOCl_3 + FeO_x \quad (35) \\
12FeCl_2 + 4V_2O_5 + 3O_2 &= 6Fe_2O_3 + 8VOCl_3 \quad (36)
\end{align*}
\]

Chloride extraction of vanadium from vanadium-titanium magnetite has long been used. However, the content of vanadium in vanadium-titanium magnetite is low, and the cost of directly extracting vanadium in vanadium slag using chlorination method is high. Thus, it is not recommended to extract vanadium directly from vanadium-titanium magnetite by chlorination method.

4.2. Chlorination Extraction of Vanadium from Vanadium Slag

Vanadium slag is produced from vanadium-titanium magnetite by blast furnace smelting and the vanadium extraction process in a converter [38,39]. Vanadium slags contain 30–40 wt% total Fe, 6.9–14.4 wt% TiO_2, 13.5–19.0 wt% V_2O_3, 0.9–4.6 wt% Cr_2O_3, and 7.4–10.7 wt% MnO. The main phases of vanadium slag consist of (Fe,Mn)(V,Cr)2O4, Fe2TiO4, and (Fe,Mn)2SiO4. According to the phases of vanadium slag, vanadium is present in the form of V^{3+}, from which it is difficult to extract vanadium by direct leaching [40,41].

In order to extract vanadium, the traditional method is to oxidize insoluble low-valent vanadium to soluble high-valent vanadium in aqueous solution [42,43]. Figure 5 shows a flow chart of extracting vanadium from vanadium slag by NaCl roasting. The roasting temperature is about 800 °C. After roasting, vanadium in the solid exists in the form of NaVO_3, and then dissolves to obtain NaVO_3 solution. Vanadium is precipitated in the form of ammonium vanadate by adding ammonium salt (NH_4Cl, NH_4HCO_3, (NH_4)_2SO_4, (NH_4)_2CO_3). Ammonium vanadate is calcined to obtain V_2O_5 at about 550 °C. Under the action of oxygen, NaCl as an additive reacts with the vanadium spinel in the vanadium slag. The reaction Equation is as follows in Equation (37). The conversion rate of vanadium can reach 85% [44,45].

\[
4FeV_2O_4 + 8NaCl + 7O_2 = 8NaVO_3 + 4Cl_2 + 2Fe_2O_3
\]
A total of 85.8% of V in vanadium slag was extracted by acidic sodium chlorate solution. V^{3+} in vanadium slag was oxidized by NaClO_3 as a chlorinating agent. The reaction Equation is as follows in Equation (38) [46].

$$6\text{FeV}_2\text{O}_4 + 5\text{NaClO}_3 + 15\text{H}_2\text{SO}_4 = 5\text{NaCl} + 6(\text{VO}_2)\text{SO}_4 + 3\text{Fe}_2(\text{SO}_4)_3 + 15\text{H}_2\text{O} \quad (38)$$

Sun et al. [47] proposed chlorination of vanadium slag by FeCl_3. Under the optimal experimental conditions ($827 \, ^\circ\text{C}$, reactant (vanadium slag)—chlorination agent (FeCl_3) molar ratio of 1:2, 2 h, oxygen atmosphere), the extraction ratio of vanadium in vanadium slag is 57%. Du [48] investigated carbochlorination of pre-oxidized vanadium slag. The flow chart of extracting vanadium from vanadium slag by chlorination is shown in Figure 6. The carbochlorination temperature is about 650 $^\circ\text{C}$. Vanadium is volatile in the form of VCl_3. VCl_3 was oxidized to V_2O_5 by O_2. The equations of the main reactions involved are (39)–(41). The effect of time, temperature, petroleum coke and chlorine pressure fraction were studied. Under optimal process conditions ($650 \, ^\circ\text{C}$, 120 min, $P(\text{Cl}_2)/P(\text{Cl}_2 + \text{N}_2) = 0.5$, 10% of petroleum coke mass fraction), 18.8% of Fe and 87.5% of V were extracted. Wastewater containing high Na^+ and NH_4^+ is scarcely produced in whole process.

$$(\text{Fe, Mn}) (\text{V, Cr, Ti})_2\text{O}_4 (s) + \text{O}_2 (g) \rightarrow \text{Fe}_2\text{O}_3 (s) + \text{MnO} (s) + \text{Cr}_2\text{O}_3 (s) + \text{V}_2\text{O}_5 (s) + \text{TiO}_2 (s) \quad (39)$$

$$1/3\text{V}_2\text{O}_3 (s/l) + 1/2\text{C} (s) + \text{Cl}_2 (g) \rightarrow 2/3\text{VCl}_3 (g) + 1/2\text{CO}_2 (g) \quad (40)$$

$$1/3\text{Fe}_2\text{O}_3 (s) + 1/2\text{C} (s) + \text{Cl}_2 (g) \rightarrow 2/3\text{FeCl}_3 (g) + 1/2\text{CO}_2 (g) \quad (41)$$

Figure 6. Flow chart of extracting vanadium from vanadium slag by carbochlorination.

In order to extract vanadium from vanadium slag, Liu et al. [49–55] proposed to use selective chlorination method to extract vanadium. Because to the existence form and value of valuable metal elements (Fe, Mn, V, Cr and Ti) in vanadium slag, NH_4Cl was selected to chlorinate Fe and Mn in vanadium slag. Thermodynamic calculations show that the iron and manganese in vanadium slag could be chlorinated by hydrogen chloride, but the V, Cr and Ti could not be chlorinated in the temperature range from 0 to 1000 $^\circ\text{C}$. Under optimal chlorination conditions, the chlorination ratio of iron and manganese were 72% and 95%, respectively. Meanwhile, the enrichment ratio of V, Cr and Ti was obtained as 48%. In addition, AlCl_3 was selected to chlorinate V, Cr and Ti in vanadium slag. Figure 7 shows a flow chart of extracting vanadium from vanadium slag by AlCl_3 chlorination. The chlorination temperature is about 900 $^\circ\text{C}$. Vanadium after chlorination exists in the form of VCl_3. Metal V was obtained by molten salt electrolysis at 900 $^\circ\text{C}$. The effects of reaction temperature, reaction time, mass ratio of AlCl_3/slag and mass ratio of salt/AlCl_3 on the chlorination ratio of valuable elements were investigated. Under optimal chlorination
conditions (AlCl$_3$—slag mass ratio of 1.5:1, (NaCl-KCl)-AlCl$_3$ mass ratio of 1.66:1, at 900 °C, 8 h.), the chlorination ratio of iron, vanadium, chromium and manganese were 90.3%, 76.5%, 81.9% and 97.3%. The volatilization ratio of titanium was 79.9%. The results of kinetic study indicate that the rate-control step of vanadium chlorination process was the surface chemical reaction. The vanadium and chromium in vanadium slag after AlCl$_3$ chlorination were present in the form of VCl$_3$ and CrCl$_3$ in molten salt. The main reaction was as follow (42):

$$8\text{AlCl}_3 + 3\text{FeV}_2\text{O}_4 = 3\text{FeCl}_2 + 4\text{Al}_2\text{O}_3 + 6\text{VCl}_3$$ \hspace{1cm} (42)

![Flow chart of extracting vanadium from vanadium slag by AlCl$_3$ chlorination.](image)

Figure 7. Flow chart of extracting vanadium from vanadium slag by AlCl$_3$ chlorination.

4.3. Chlorination Extraction of Vanadium from BOF-Slag

The basic oxygen furnace (BOF)-slags contains 31–56% CaO, 10–27% SiO$_2$, 1–4.5% Al$_2$O$_3$, 5–35% Fe compounds, and less than 1% of vanadium [56]. Seron et al. investigated the recovery of vanadium from BOF-slags by oxy-carbochlorination. Under specific conditions (900 °C, chlorine partial pressure 0.2, 90 min, 50% carbon content), the recovery ratio of vanadium in slag can reach 95% [57].

4.4. Chlorination Extraction of Vanadium from Stone Coal

Black shale is one of China’s most important vanadium resources, accounting for more than 87% of domestic vanadium reserves [58,59]. It is estimated that the reserves of vanadium in the form of V$_2$O$_5$ in stone coal are 118 million tons [60]. However, the ordinary grade of vanadium in black shale is usually below 2 wt% [58,59]. In China, vanadium in most of the stone coal replaces trivalent aluminum in mica minerals in a quasi-homogeneous form. The chemical formula of vanadium-containing illite is K(Al,V)$_2$(OH)$_2$[Si$_3$Al]O$_{10}$. The mica mineral structure is very stable. It is difficult to destroy the lattice structure by general concentration of acid and alkali. Thus, in order to extract vanadium from vanadium-containing mica, the lattice structure of vanadium containing mica first needs to be destroyed [61].

Under the action of oxygen and water, NaCl as an additive reacts with the pre-decarburized stone coal [62,63]. The reaction Equation is expressed as follow (43):

$$K(\text{Al}, \text{V})_2(\text{OH})_2[\text{Si}_3\text{Al}]\text{O}_{10} + 2\text{NaCl} + 3(2-m)\text{SiO}_2 + (m-1/2)\text{O}_2 = (3-m) (\text{K,Na})\text{AlSi}_3\text{O}_8 + \text{NaVO}_3 + 2\text{HCl} + \text{Cl}_2$$ \hspace{1cm} (43)

...
where m is the number of vanadium ions replacing aluminum ions in hydromica octahedron.

NaCl has a melting point of 801 °C, which tends to keep the structure stable and does not decompose at high temperature. However, due to the presence of V, Al, Fe, and other oxides in the stone coal, NaCl can be decomposed at lower temperature to generate Cl\(_2\) with high chemical reactivity. The reaction is described as follows in Equations (44)–(47). Cl\(_2\) can react with low-valent vanadium to form VOCl\(_3\), and VOCl\(_3\) is an intermediate product that can be further oxidized to V\(_2\)O\(_5\). The presence of Cl\(_2\) promotes the high temperature roasting to destroy the crystal structure of illite. The oxidation of the exposed trivalent vanadium changes to a higher valence state. Cl\(_2\) is more active than oxygen at high temperature and is more easily adsorbed on the surface of minerals. The promotion of Cl\(_2\) on the oxidation of low-cost vanadium cannot be ignored. Thus, NaCl as an additives agent was selected for extracting vanadium from stone coal [63–66].

\[
4\text{NaCl} + \text{O}_2 = 2\text{Na}_2\text{O} + 2\text{Cl}_2 \tag{44}
\]

\[
3\text{Cl}_2 + 3\text{V}_2\text{O}_3 = 2\text{VOCl}_3 + 2\text{V}_2\text{O}_5 \tag{45}
\]

\[
4\text{VOCl}_3 + 3\text{O}_2 = 2\text{V}_2\text{O}_5 + 6\text{Cl}_2 \tag{46}
\]

\[
x\text{Na}_2\text{O} + y\text{V}_2\text{O}_5 = x\text{Na}_2\text{O} \cdot y\text{V}_2\text{O}_5 \tag{47}
\]

The possible chemical reaction between vanadium oxide (V\(_2\)O\(_3\), VO\(_2\), and V\(_2\)O\(_5\)) and the solid chlorinating agent (NaCl, CaCl\(_2\) and FeCl\(_3\)) was calculated by FactSage 7.1 (Montreal, Canada) using the database of FactPS, FToxid and FT salt. The results show that vanadium oxide cannot be directly chlorinated thermodynamically by NaCl and CaCl\(_2\) as solid chlorinating agents. However, V\(_2\)O\(_4\) and V\(_2\)O\(_5\) can be chlorinated by FeCl\(_3\). Meanwhile, V can be separated from black shale by controlled roasting temperature of chlorination volatilization [67]. In the air, the structure of illite and muscovite in stone coal is hard to be destroyed by roasting without additives. Zhang et al. [68] studied that the vanadium-bearing stone coal was roasted in chlorine, and 90% of V in the form of VOCl\(_3\) was extracted at 1000 °C for 1 h. Li et al. [69] investigated extraction of vanadium by leaching. Under the optimal leaching conditions (liquid-to-solid ratio of 2, oxygen partial pressure of 1200 kPa, 90 °C, 6 h, 1.5 g/L NaClO, 15 g/L HF, 100 g/L H\(_2\)SO\(_4\)), 91% of V in vanadium slag was extracted by NaClO-H\(_2\)SO\(_4\)-HF system under atmospheric pressure. V\(^{3+}\) in stone was oxidized by NaClO as a chlorinating agent and oxidant.

4.5. Chlorination Extraction of Vanadium from Spent Catalysts

Catalysts are extensively used in sulfuric acid production and petroleum refining [70,71]. More than 100,000 tons of spent hydrodesulphurization catalysts are produced every year, which usually contain the valuable elements V, Mo, Ni, and Co [72]. Vanadium in spent catalyst is present in the form of sulfide (V\(_2\)S\(_3\) or V\(_3\)S\(_4\)) [73]. Oxidation roasting of spent catalyst and subsequent NaCl/H\(_2\)O roasting of oxide were proposed by Biswas et al. [74], and 81.9% of V was extracted. The reactions were as follows in Equations (48) and (49):

\[
4\text{V}_3\text{S}_4 + 31\text{O}_2 = 6\text{V}_2\text{O}_5 + 16\text{SO}_2 \tag{48}
\]

\[
\text{V}_2\text{O}_5 + 2\text{NaCl} + 2\text{H}_2\text{O} = 2\text{NaVO}_3 + 2\text{HCl} \tag{49}
\]

There are two processes (direct chlorination and roasting chlorination) for recovering vanadium from spent hydrodesulphurization catalysts by Cl\(_2\) chlorination.

In addition to metal elements such as vanadium and molybdenum, spent catalysts also contain elemental carbon and sulfur. Direct chlorination of spent catalysts was investigated by Gaballah et al. [75]. In order to recover Mo, V, Ni and Co, Cl\(_2\)/N\(_2\), Cl\(_2\)/air, and Cl\(_2\)/CO/N\(_2\), gas mixtures were used to chloride spent catalysts. Vanadium sulphide was chlorinated to vanadium chloride as expressed in the reaction Equations (50)–(52). A total
of 75% of V in the form of VCl$_4$ and/or VOCl$_3$ was recovered by Cl$_2$/air gas mixture at less than 600 °C.

\[
\frac{1}{7}V_2S_3 + Cl_2 = \frac{2}{7}VCl_4 (l,g) + \frac{3}{7}Cl_2
\]

\[
\frac{1}{4}V_2S_3 + \frac{3}{4}O_2 + Cl_2 = \frac{1}{2}VCl_4 (l,g) + \frac{3}{4}SO_2
\]

\[
\frac{1}{3}V_2S_3 + \frac{3}{4}O_2 + Cl_2 = 2/3VOCl_3 (l,g) + SO_2
\]

Vanadium sulfide in the spent catalyst is first oxidized to oxide at 300–500 °C. Vanadium oxide was chlorinated by Cl$_2$/N$_2$, Cl$_2$/O$_2$, or Cl$_2$/CO in the temperature range 300 °C to 600 °C. Finally, V was volatilized in the form of VCl$_4$ or VOCl$_3$ to achieve separation from other elements (Co, Ni). A total of 65% of V from oxidized V sulfide can be recovered by Cl$_2$/N$_2$ = 1 at 500 °C for 19 h. Meanwhile, V sulfide is directly chlorinated without roasting, and 80% of V can be recovered by Cl$_2$/N$_2$ = 1 at 500 °C for 0.5 h [76].

The affinity of metal to oxide is stronger than that of metal to sulfur. Under the same conditions, sulfides are easier to chlorinate than oxides. Thus, direct chlorination of vanadium sulfide is better than chlorination after oxidation of vanadium sulfide [77].

4.6. Chlorination of V$_2$O$_5$

Mink et al. [78] reported that CCl$_4$ reversibly dissociate and adsorbs on the two exposed vanadium atoms of the basic (001) plane of V$_2$O$_5$ before the chlorination reaction. The mechanism of chlorination of V$_2$O$_5$ by CCl$_4$ was analyzed by MS and XPS. Before the formation of the volatile final product VOCl$_3$, the surface vanadium atoms gradually acquire two chlorine atoms [79]. The kinetics of chlorination of V$_2$O$_5$ by CCl$_4$ was investigated by Jean et al. [80]. A total of 87% of V$_2$O$_5$ could be chlorinated by CCl$_4$ at 480 °C in 30min. Chlorination reaction conforms to topochemical reaction model. According to analysis of kinetics results, the following mechanisms, Equations (53)–(58), at different temperatures, were proposed.

a. 280–370 °C

\[
V_2O_5 + CCl_4 \xrightarrow{slow}\ VOCl_3 + VO_2Cl + CO_2
\]

\[
VO_2Cl + CCl_4 \xrightarrow{fast}\ VCl_5 + CO_2
\]

\[
VCl_5 \xrightarrow{fast}\ VCl_4 + 1/2Cl_2
\]

\[
VOCl_3 + CCl_4 + 1/2Cl_2 \xrightarrow{fast}\ VCl_4 + COCl_2 + Cl_2
\]

b. 410–515 °C

\[
CCl_4 \xrightarrow{fast}\ C + 4Cl
\]

\[
V_2O_5 + C + 4Cl \xrightarrow{slow}\ VOCl_3 + VO_2Cl + CO_2
\]

The whole reaction can be expressed by the following Formula (59)

\[
V_2O_5 + 3CCl_4 = 2VCl_4 + 2CO_2 + COCl_2 + Cl_2
\]

Gaballah et al. [81] studied kinetics of chlorination of V$_2$O$_5$ with Cl$_2$-CO-N$_2$, Cl$_2$-N$_2$, and Cl$_2$-air gas mixtures. Thermodynamic calculation showed that chlorinated product was mainly VOCl$_3$ during the Cl$_2$ chlorination of V$_2$O$_5$. However, VCl$_4$ may be formed during the carbochlorination of vanadium pentoxide. The results of kinetics indicated that the rate-control step of V$_2$O$_5$ chlorination process between 500 °C and 570 °C with Cl$_2$-N$_2$ was a chemical reaction. Pore diffusion and chemical reaction were the limiting
step for the V\textsubscript{2}O\textsubscript{5} chlorination in the temperature range of 570 °C to 650 °C. In Cl\textsubscript{2}-CO-N\textsubscript{2} atmosphere, the limiting step of carbochlorination of V\textsubscript{2}O\textsubscript{5} at 400–620 °C was the chemical reaction. Brocchi et al. \cite{6} systematically studied the carbon-chlorination of V\textsubscript{2}O\textsubscript{5} from thermodynamics between 627 °C and 1327 °C. In carbon-chlorination reaction of V\textsubscript{2}O\textsubscript{5}, the most stable vanadium oxychloride and vanadium chloride are VOCl\textsubscript{3} and VCl\textsubscript{4}, respectively. E. McCarley et al. \cite{82} reported a process for preparing high-purity V\textsubscript{2}O\textsubscript{5} (maximum of 100 ppm impurities) by carbon chlorination using V red cake (88 wt% of V) successfully achieved by the method of chlorination. The extraction ratio of vanadium can reach 60% by NaCl-roasting \cite{86}. The vanadium volatilizes in the form of AuCl\textsubscript{5}, and kinetics. The results showed that V\textsubscript{2}O\textsubscript{5} can be chlorinated thermodynamically by COCl\textsubscript{2} and CCl\textsubscript{4} at 127 °C, and the chlorinated products were VOCl\textsubscript{3} and O\textsubscript{2}. However, the reaction of V\textsubscript{2}O\textsubscript{5} with Cl\textsubscript{2} can occur obviously when the temperature exceeds 477 °C. The chlorinated product was VOCl\textsubscript{3} and O\textsubscript{2}. The chlorination ratio of vanadium can reach 83.4% at mole ratio of AlCl\textsubscript{3}:V\textsubscript{2}O\textsubscript{5} of 6:1 and mole fraction of NaCl of 0.6 in the NaCl-AlCl\textsubscript{3} system \cite{84,85}.

\begin{equation}
2\text{AlCl}_3 + \text{V}_2\text{O}_5 = \text{Al}_2\text{O}_3 + 2\text{VOCl}_3 \ (g) \tag{60}
\end{equation}

\begin{equation}
6\text{VOCl}_3 + 20\text{NH}_3\text{H}_2\text{O} = (\text{NH}_4)_2\text{V}_6\text{O}_{16} + 18\text{NH}_4\text{Cl} + 10\text{H}_2\text{O} \tag{61}
\end{equation}

\begin{equation}
\text{VOCl}_3 + 4\text{NH}_4\text{OH} = \text{NH}_4\text{VO}_3 + 3\text{NH}_4\text{Cl} + 2\text{H}_2\text{O} \tag{62}
\end{equation}

\begin{equation}
(\text{NH}_4)_2\text{V}_6\text{O}_{16} = 3\text{V}_2\text{O}_5 + 2\text{NH}_3 + \text{H}_2\text{O} \tag{63}
\end{equation}

\begin{equation}
\text{NH}_4\text{VO}_3 = \text{V}_2\text{O}_5 + 2\text{NH}_3 + \text{H}_2\text{O} \tag{64}
\end{equation}

4.7. Chlorination Extraction of Vanadium from Other Vanadium-Containing Materials

Petroleum coke, fly ash and carbonaceous gold ore also contain a certain amount of vanadium. 0.6 Mt/year of petroleum coke was produced from Syrian petroleum refineries. The extraction ratio of vanadium can reach 60% by NaCl-roasting \cite{86}. The vanadium content in fly ash is as low as 1–7%. The fly ash was treated by acid leaching, oxidation of NaClO\textsubscript{3}, and precipitation \cite{87}. Murase et al. \cite{88} investigated extraction and separation of vanadium from a fly ash of Orimulsion. Air-Cl\textsubscript{2} or N\textsubscript{2}-Cl\textsubscript{2} gas mixture were used to chlorinate valuable elements (V, Ni and Mg). The separation of V and Fe were achieved by controlled temperature of chlorination. V and Fe was selectively extracted by chlorination at 400 °C and 500 °C, respectively. Mg and Ni in residue were extracted by chlorination of N\textsubscript{2}-Cl\textsubscript{2}-Al\textsubscript{2}Cl\textsubscript{6} (g) at 600 °C. The extraction and separation of V, Ni and Mg were successfully achieved by the method of chlorination. The content of vanadium in refractory carbonaceous gold ore is 1.1 wt%. Wang et al. \cite{89} investigated extraction and separation of vanadium from carbonaceous gold ore by NaCl roasting. After NaCl roasting, Au volatilizes in the form of AuCl\textsubscript{3} and V in the form of NaVO\textsubscript{3} remains in the roasted solid. The reactions were as follows in Equations (65)–(69).

\begin{equation}
4\text{FeS}_2 + 11\text{O}_2 = \text{Fe}_2\text{O}_3 + 8\text{SO}_2 \tag{65}
\end{equation}

\begin{equation}
\text{SO}_2 + 2\text{NaCl} + \text{O}_2 = \text{Na}_2\text{SO}_4 + \text{Cl}_2 \tag{66}
\end{equation}

\begin{equation}
4\text{V}_x\text{O}_y + (5x-2y)\text{O}_2 = 2x\text{V}_2\text{O}_5 \ (1 \leq x \leq 2; \ 2 \leq y \leq 4) \tag{67}
\end{equation}

\begin{equation}
2\text{V}_2\text{O}_5 + 4\text{NaCl} + \text{O}_2 = 4\text{NaVO}_3 + 2\text{Cl}_2 \tag{68}
\end{equation}

\begin{equation}
2\text{Au} + 3\text{Cl}_2 = 2\text{AuCl}_3 \tag{69}
\end{equation}
The influences of experiment conditions including NaCl dosage, time and temperature were studied. Under optimal process conditions, (air gas flow rate 1 L/min, 4 h, 800 °C, NaCl 10%), the extraction ratios of V and Au are 85.3% and 92%.

4.8. Treatments of Chlor-Containing Compounds in Gas, Solid and Solution

Regarding the Cl₂ and HCl off-gas generated in the chlorination process, the first method is recycling, and the second method is the absorption of alkaline solution. The chloride in the solid can be washed to remove chloride ions. The chlor-containing wastewater can be treated by solvent extraction, the electrochemical method, separation interception method, the principle of precipitation, and ion exchange [90].

5. Conclusions and Outlook

The research progress on the treatment of vanadium-containing materials with various chlorinating agents (solid and gas) is summarized in terms of thermodynamics and kinetics. The NaCl roasting method is used to treat vanadium titanomagnetite, vanadium slag, stone, spent catalysts, petroleum coke, and carbonaceous gold ore. The NaCl roasting method has the characteristics of short process, less investment and less equipment, etc. In the 1970s, in China, the price of vanadium was very high and hundreds of small-scale vanadium extraction plants adopted the NaCl roasting method to extract vanadium from vanadium-containing materials (stone coal) [63]. However, Cl₂ and HCl generated during the NaCl roasting process makes it highly demanding for the equipment’s anti-corrosion performance. The environmental pollution caused by Cl₂ and HCl gas and the threat of Cl₂ and HCl gas to workers’ health are also fatal defects of NaCl roasting. Due to increasingly strict environmental protection policies, the NaCl roasting method has become outdated and has gradually been replaced by other roasting methods.

The demand for high-purity vanadium pentoxide is increasing in all-vanadium flow batteries and high-purity metal vanadium. Therefore, efficient preparation of high-purity vanadium pentoxide is urgently needed [91]. Due to the low melting point and boiling point of vanadium chloride, vanadium chloride has a greater advantage than vanadium oxide in separation and enrichment. The advantages of chlorination method in the preparation of high-purity vanadium are very obvious, and it has very good development prospects.

Trivalent vanadium oxide is difficult to leach. Thus, the traditional vanadium extraction method is to oxidize vanadium to pentavalent vanadium for extraction. However, the toxicity of vanadium compounds increases with the increase of vanadium valence, and the pentavalent vanadium compounds are the most toxic. More than 90% of vanadium produced in industry is added to steel in the form of vanadium alloys. Trivalent vanadium oxide can be chlorinated to VCl₃ by AlCl₃. Metal V can be obtained by reduction or electrolysis of VCl₃. Thus, the direct chlorination of low-valent vanadium is also a very promising process.

Author Contributions: Conceptualization, S.L. and L.W.; methodology, L.W.; validation, S.L., W.X., and L.W.; formal analysis, S.L.; investigation, S.L.; resources, W.X.; data curation, W.X.; writing—original draft preparation, S.L. and L.W.; writing—review and editing, L.W.; visualization, S.L. and W.X.; supervision, L.W.; funding acquisition, S.L. and L.W. All authors have read and agreed to the published version of the manuscript.

Funding: The authors are grateful for the financial support of this work from the National Natural Science Foundation of China (No. 51904286, 51922003, 51734002).

Data Availability Statement: The data presented in this study are available from the corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.
29. Xie, K.; Hu, H.; Xu, S.; Chen, T.; Huang, Y.; Yang, Y.; Yang, F.; Yao, H. Fate of heavy metals during molten salts thermal treatment of municipal solid waste incineration fly ashes. Waste Manag. 2020, 103, 334–341. [CrossRef]
30. Chen, D.H. Annual evaluation for vanadium industry in 2018. HeBei Metall. 2019, 284, 5–15. (In Chinese)
31. Fan, G.; Wang, M.; Dang, J.; Zhang, R.; Lv, Z.; He, W.; Lv, X. A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag. Waste Manag. 2021, 120, 626–634. [CrossRef] [PubMed]
32. Zhang, R.; Dang, J.; Liu, D.; Lv, Z.; Fan, G.; Hu, L. Reduction of perovskite-geikielite by methane–hydrogen gas mixture: Thermodynamic analysis and experimental results. Sci. Total Environ. 2020, 699, 134355. [CrossRef] [PubMed]
33. Zheng, F.; Chen, F.; Guo, Y.; Jiang, T.; Trayanov, A.Y.; Qiu, G. Kinetics of Hydrochloric Acid Leaching of Titanium from Titanium-Bearing Electric Furnace Slag. JOM 2016, 68, 1476–1484. [CrossRef]
34. Yang, S.L. Non-Blast Furnace Smelting Technology of Vanadium-Titanium Magnetite; Metallurgical Industry Press: Beijing, China, 2012. (In Chinese)
35. Bhaskarasarma, P.; Rao, P.; Jena, P. Extraction of vanadium from titaniferrous vanadium bearing magnetites by salt roasting. Trans. Ind. Inst. Met. 1980, 33, 166–169.
36. Jena, P.K.; Brocchi, E.A. Halide Metallurgy of Refractory Metals. Miner. Process. Extr. Met. Rev. 1992, 10, 29–40. [CrossRef]
37. Zheng, H.Y.; Sun, Y.; Lu, J.W.; Dong, J.H.; Zhang, W.L.; Shen, F.M. Vanadium extraction from vanadium-bearing titanomagnete by selective chlorination using chloride wastes (FeClx). J. Cent. South Univ. 2017, 24, 311–317. [CrossRef]
38. Lee, J.-C.; Kim, E.-Y.; Chung, K.W.; Kim, R.; Jeon, H.-S. A review on the metallurgical recycling of vanadium from slags: Towards a sustainable vanadium production. J. Mater. Res. Technol. 2021, 12, 343–364. [CrossRef]
39. Liu, S.Y. Fundamental Studies on Selective Chlorination of Valuable Elements (Fe, Mn, V, Cr and Ti) from Vanadium Slag and Technologies Towards High Value. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2019.
40. Xiang, J.; Huang, Q.; Lv, X.; Bai, C. Extraction of vanadium from converter slag by two-step sulfuric acid leaching process. J. Clean. Prod. 2018, 170, 1089–1101. [CrossRef]
41. Liu, S.Y.; Wang, L.J.; Chou, K.C. Viscosity measurement of FeO–SiO2–V2O3–TiO2 slags in the temperature range of 1644–1791 K and modelling by using ion-oxygen parameter. Ironmak. Steelmak. 2018, 45, 641–647. [CrossRef]
42. Ji, Y.; Shen, S.; Liu, J.; Xue, Y. Cleaner and effective process for extracting vanadium from vanadium slag by using an innovative three-phase roasting reaction. J. Clean. Prod. 2017, 149, 1068–1078. [CrossRef]
43. Zhang, G.Q.; Hu, T.; Liao, W.J.; Ma, X.D. An energy-efficient method for extracting vanadium from roasted tablet of ammonium sulfate, vanadium slag and silica. J. Environ. Chem. Eng. 2021, 9, 105332. [CrossRef]
44. Li, H.; Wang, X.H.; Zhou, R.Z. Experimental study on chloridizing volatilization of Ga during sodiumination roasting of V-slag. Iron Steel Vanadium Titan. 1993, 44, 44–50. (In Chinese)
45. Wang, H.G.; Wang, M.; Wang, X.W. Leaching behaviour of chromium during vanadium extraction from vanadium slag. Miner. Process. Extr. Met. 2015, 124, 127–131. [CrossRef]
46. Liu, S.; Shen, S.; Chou, K. An effective process for simultaneous extraction of valuable metals (V, Cr, Ti, Fe, Mn) from vanadium slag using acidic sodium chloride solution under water bath conditions. J. Min. Met. Sect. B Met. 2018, 54, 153–159. [CrossRef]
47. Sun, Y. Comprehensive Utilization of Vanadium-Bearing Titanomagneteite with Extracting Vanadium by Selective Chlorination technology. Ph.D. Thesis, Northeastern University, Shenyang, China, 2015. (In Chinese)
48. Du, G.; Fan, C.; Yang, H.; Zhu, Q. Selective extraction of vanadium from pre-oxidized vanadium slag by carboclorination in fluidized bed reactor. J. Clean. Prod. 2019, 217, 117765. [CrossRef]
49. Liu, S.-Y.; Li, S.-J.; Wu, S.; Wang, L.-J.; Chou, K.-C. A novel method for vanadium slag comprehensive utilization to synthesize Zn-Mn ferrite and Fe-V-Cr alloy. J. Hazard. Mater. 2018, 354, 99–106. [CrossRef] [PubMed]
50. Liu, S.; Wang, L.; Chou, K. Selective Chlorinated Extraction of Iron and Manganese from Vanadium Slag and Their Application to Hydrothermal Synthesis of MnFe2O4. ACS Sustain. Chem. Eng. 2017, 5, 10588–10596. [CrossRef]
51. Liu, S.; Wang, L.; Chou, K.-C.; Kumar, R.V. Electrolytic preparation and characterization of VCr alloys in molten salt from vanadium slag. J. Alloy. Compd. 2019, 803, 875–881. [CrossRef]
52. Liu, S.; Wang, L.; Chou, K. A Novel Process for Simultaneous Extraction of Iron, Vanadium, Manganese, Chromium, and Titanium from Vanadium Slag by Molten Salt Electrolysis. Ind. Eng. Chem. Res. 2016, 55, 12962–12969. [CrossRef]
53. Liu, S.; He, X.; Wang, Y.; Wang, L. Cleaner and effective extraction and separation of iron from vanadium slag by carbothermic reduction-chlorination-molten salt electrolysis. J. Clean. Prod. 2021, 284, 124674. [CrossRef]
54. Liu, S.Y.; Wang, L.J.; Chou, K.C. Innovative method for minimization of waste containing Fe, Mn and Ti during comprehensive utilization of vanadium slag. Waste Manag. 2021, 127, 179–188. [CrossRef]
55. Liu, S.-Y.; Zhen, Y.-L.; He, X.-B.; Wang, L.-J.; Chou, K.-C. Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis. Int. J. Miner. Met. Mater. 2020, 27, 1678–1686. [CrossRef]
56. Menad, N.-E.; Kanari, N.; Save, M. Recovery of high grade iron compounds from LD slag by enhanced magnetic separation techniques. Int. J. Miner. Process. 2014, 126, 1–9. [CrossRef]
57. Seron, A.; Menad, N.; Galle-Cavalloni, P.; Bru, K. Selective Recovery of Vanadium by Oxy-carbochlorination of Basic Oxygen Furnace Slag: Experimental Study. J. Sustain. Met. 2020, 6, 478–490. [CrossRef]
58. Bin, Z.Y. Progress of the research on extraction of vanadium pentoxide from black shale and the market of the V2O5. Hu-Nan Nonferr. Met. 2006, 22, 16–20. (In Chinese)
59. Xiao, W.D. Mineralogy of black shale from Shanglin of Guangxi and vanadium extraction with hydrometallurgical process. *Nonferr. Met.* **2007**, *59*, 85–90.

60. He, D.; Feng, Q.; Zhang, G.; Ou, L.; Lu, Y. An environmentally-friendly technology of vanadium extraction from stone coal. *Miner. Eng.* **2007**, *20*, 1184–1186. [CrossRef]

61. Hu, K.L.; Liu, X.H. Review of roasting processing of vanadium-bearing carbonaceous shale. *Rare Met. Cem. Carbides* **2015**, *43*, 1–7.

62. Lin, H.L.; Fan, B.W. Study on mechanism of phase transformation during roasting and extracting vanadium from Fangshankou bone coal. *Chin. J. Rare Met.* **2001**, *25*, 273–277. (In Chinese)

63. Zhang, Y.M.; Bao, S.X.; Liu, T.; Chen, T.J.; Huang, J. The technology of extracting vanadium from stone coal in China: History, current statues and future prospects. *Hydrometallurgy* **2011**, *109*, 116–124. [CrossRef]

64. Wang, M.; Huang, S.; Chen, B.; Wang, X. A review of processing technologies for vanadium extraction from stone coal. *Miner. Process. Extr. Met.* **2020**, *129*, 290–298. [CrossRef]

65. Bie, S.; Wang, Z.J.; Li, Q.H.; Zhang, Y.G. Review of vanadium extraction from stone coal by roasting technique with sodium chloride and calcium oxide. *Chin. J. Rare Met.* **2010**, *34*, 291–297. (In Chinese)

66. Wang, H.S. Extraction of vanadum from stone coal by roasting in the presence of sodium salts. *Min. Metall. Eng.* **1994**, *14*, 49–52.

67. Wan, J.Y.; Chen, T.J.; Han, J.; Feng, Y. Thermodynamics analysis of chlorination volatilization enrichment process of black shale. *Nonferr. Met. (Extr. Metall.)* **2018**, *5*, 50–55. (In Chinese)

68. Zhang, Y.; Hu, Y.; Bao, S. Vanadium emission during roasting of vanadium-bearing stone coal in chlorine. *Miner. Eng.* **2012**, *30*, 95–98. [CrossRef]

69. Li, C.-X.; Wei, C.; Deng, Z.-G.; Li, M.-T.; Li, X.-B.; Fan, G. Recovery of vanadium from black shale. *Trans. Nonferr. Met. Soc. China* **2010**, *20*, s127–s131. [CrossRef]

70. Erust, C.; Akcil, A.; Bedelova, Z.; Anarbekov, K.; Baikonurova, A.; Tuncuk, A. Recovery of vanadium from spent catalysts wastes. *Waste Manag.* **2015**, *46*, 445–461. [CrossRef]

71. Li, Z.; Chen, M.; Zhang, Q.; Liu, X.; Saito, F. Mechanochemical processing of molybdenum and vanadium sulfides for metal recovery from spent catalysts wastes. *Waste Manag.* **2017**, *60*, 734–738. [CrossRef] [PubMed]

72. Beolchini, F.; Fonti, V.; Dell’Anno, A.; Rocchetti, L.; Veglio, F. Assessment of biotechnological strategies for the valorization of metal bearing wastes. *Waste Manag.* **2012**, *32*, 949–956. [CrossRef]

73. Akcil, A.; Veglio, F.; Ferella, F.; Okudan, M.D.; Tuncuk, A. A review of metal recovery from spent petroleum catalysts and ash. *Waste Manag.* **2015**, *45*, 420–433. [CrossRef]

74. Biswas, R.; Wakhbara, M.; Taniguchi, M. Recovery of vanadium and molybdenum from heavy oil desulphurization waste catalyst. *Hydrometallurgy* **1985**, *14*, 219–230. [CrossRef]

75. Gaballah, I.; Djona, M. Recovery of Co, Ni, Mo and V from unroasted spent hydorefining catalysts by selective chlorination. *Metall. Mater. Trans. B* **1995**, *26*, 41–50. [CrossRef]

76. Gaballah, I.; Djona, M.; Mugica, J.; Solozobal, R. Valuable metals recovery from spent catalysts by selective chlorination. *Resour. Conserv. Recycl.* **1994**, *10*, 87–96. [CrossRef]

77. Zhang, J.Y. *Metallurgical Physical Chemistry*; Metallurgical Industry Press: Beijing, China, 2004. (In Chinese)

78. Mink, G.; Bertöti, I.; Székely, T. Chlorination of V₂O₅ by CCl₄. Adsorption and steady state reaction. *React. Kinet. Catal. Lett.* **1985**, *27*, 33–38. [CrossRef]

79. Mink, G.; Bertöti, I.; Székely, T. Chlorination of V₂O₅ by CCl₄, the proposed reaction mechanism. *React. Kinet. Catal. Lett.* **1985**, *27*, 39–49. [CrossRef]

80. Jena, P.; Brocchi, E.; Gonzalez, J. Kinetics of Low-Temperature Chlorination of Vanadium Pentoxide by Carbon Tetrachloride Vapor. *Metall. Mater. Trans. B* **2005**, *36*, 195–199. [CrossRef]

81. Gaballah, I.; Djona, M.; Allain, E. Kinetics of chlorination and carbochlorination of vanadium pentoxide. *Met. Mater. Trans. A* **1995**, *26*, 711–718. [CrossRef]

82. McCarley, R.E.; Roddy, J.W. The preparation of high purity vanadium pentoxide by a chlorination procedure. *J. Less Common Met.* **1960**, *2*, 29–35. [CrossRef]

83. Pap, I.S.; Mink, G.; Bertöti, I.; Székely, T.; Babievskaya, I.Z.; Karmazsin, E. Comparative kinetic and thermodynamic study on the chlorination of V₂O₅ with CCl₄, COCl₂ and Cl₂. *J. Therm. Anal. Calorim.* **1989**, *35*, 163–173. [CrossRef]

84. Jiang, D.D.; Zhang, H.L.; Xu, H.B.; Zhang, Y. A novel method to prepare high-purity vanadium pentoxide by chlorination with anhydrous aluminum chloride. *Chem. Lett.* **2017**, *46*, 669–671. [CrossRef]

85. Jiang, D.D.; Zhang, H.; Xu, H.B.; Zhang, Y. Chlorination and purification of vanadium pentoxide with anhydrous aluminum chloride. *J. Alloy. Compd.* **2017**, *709*, 505–510. [CrossRef]

86. Shleweit, H.; Alibrahim, M. Extraction of sulfur and vanadium from petroleum coke by means of salt-roasting treatment. *Fuel* **2006**, *85*, 878–880. [CrossRef]

87. Vitolo, S.; Seggiani, M.; Filippi, S.; Brocchi, C. Recovery of vanadium from heavy oil and Orimulsion fly ashes. *Hydrometallurgy* **2000**, *57*, 141–149. [CrossRef]

88. Murase, K.; Nishikawa, K.I.; Ozaki, T.; Machida, K.I.; Adachi, G.Y.; Suda, T. Recovery of vanadium, nickel and magnesium from a fly ash of bitumen-in-water emulsion by chlorination and chemical transport. *J. Alloy. Compd.* **1998**, *264*, 151–156. [CrossRef]
89. Wang, H.; Feng, Y.; Li, H.; Kang, J. The separation of gold and vanadium in carbonaceous gold ore by one-step roasting method. *Powder Technol.* **2019**, *355*, 191–200. [CrossRef]

90. Zhang, L.J.; Lv, P.; He, Y.; Li, S.W.; Chen, K.H.; Yin, S.H. Purification of chlorine-containing wastewater using solvent extraction. *J. Clean. Prod.* **2020**, *273*, 122863. [CrossRef]

91. Fan, C.; Yang, H.; Zhu, Q. Selective hydrolysis of trace TiCl$_4$ from VOCl$_3$ for preparation of high purity V$_2$O$_5$. *Sep. Purif. Technol.* **2017**, *185*, 196–201. [CrossRef]