Subcellular daunorubicin distribution and its relation to multidrug resistance phenotype in drug-resistant cell line SMMC-7721/R

Jia-Yin Yang, Hua-You Luo, Qi-Yuan Lin, Zi-Ming Liu, Lu-Nan Yan, Ping Lin, Jie Zhang, Shong Lei

AIM: To investigate the correlation between subcellular daunorubicin distribution and the multidrug resistance phenotype in drug-resistant cell line SMMC-7721/R.

METHODS: The multidrug resistant cell line SMMC-7721/R, a human hepatocellular carcinoma cell line, was established. Antisense oligonucleotides (AS-ODN) were used to obtain different multidrug resistance phenotypes by inhibiting the expression of mdr1 gene and/or multidrug resistance-related protein gene(mrp) using Lipofectamine as delivery agent. Expression of mdr1 and mrp genes was evaluated by RT-PCR and Western blotting. Intracellular daunorubicin (DNR) concentration was measured by flow cytometry. Subcellular DNR distribution was analyzed by confocal laser scanning microscopy. Adriamycin (ADM) and DNR sensitivity was examined by MTT method.

RESULTS: Low level expression of mdr1 and mrp mRNAs and no expression of P-Glycoprotein(P-gp) and multidrug resistance-related protein (P190) were detected in parental sensitive cell SMMC-7721/S, but over-expression of these two genes was observed in drug-resistant cell SMMC-7721/R. The expression of mdr1 and mrp genes in SMMC-7721/R cells was down-regulated to the level in the SMMC-7721/S cells by AS-ODN. Intracellular DNR concentration in SMMC-7721/S cells was 10 times higher than that in SMMC-7721/R cells. In SMMC7721/S cells intracellular DNR distributed evenly in the nucleus and cytoplasm, while in SMMC-7721/R cells DNR distributed in a punctate pattern in the cytoplasm and was reduced in the nucleus. DNR concentration in SMMC-7721/R cells co-transfected with AS-ODNs targeting to mdr1 and mrp mRNAs recovered to 25 percent of that in SMMC7721/Scells. Intracellular DNR distribution pattern in drug-resistant cells treated by AS-ODN was similar to drug-sensitive cell, and the cells resistance index (RI) to DNR and ADM decreased at most from 88.0 and 116.0 to 4.0 and 2.3, respectively. Co-Transfection of two AS-ODNs showed a stronger synergistic effect than separate transfection.

CONCLUSIONS: P-gp and P190 are two members mediating MDR in cell line SMMC7721/R. Intracellular drug concentration increase and subcellular distribution change are two important factors in multidrug resistance (MDR) formation. The second factor, drugs transport by P-gp and P190 from cell nucleus to organelle in cytoplasm, may play a more important role.

INTRODUCTION
Multidrug resistance (MDR) remains a significant obstacle for cancer chemotherapy. The MDR observed in many cell lines is most commonly accompanied with overexpression of one or both of the members of the ATP-binding cassette superfamily of transport proteins, P-glycoprotein (P-gp) and multidrug resistance-related protein(Mrp, P190)[1-7]. P-gp or P190 acts as an energy-dependent outward transport pump, removing drugs from the cytoplasm and from the plasma membrane, thereby decreasing intracellular drug accumulation[8-12].

Human hepatocellular carcinoma drug-resistant cell line SMMC7721/R showed a strong multidrug resistance to DNR and other anthracycline, and overexpression of P-gp and P190 was observed in this cell line. Previous studies suggested that subcellular drug distribution contributing to cells drug resistance may be mostly mediated by P-gp and/or P190 in many other cell lines[13-20]. But there is no direct evidence suggesting the role of these two pump proteins in MDR of SMMC7721/R. In order to understand MDR phenotype and mechanism in SMMC7721/R, based on previous studies of antisense technology related to mdr1 gene and mrp gene, we used laser scanning confocal microscopy to evaluate the intracellular distribution of DNR and then explored the correlation of intracellular drug(DNR) transportation and distribution with multidrug resistance phenotype.

MATERIALS AND METHODS
Cell lines and culture conditions
Human hepatocellular carcinoma cell line SMMC-7721 was provided by Cancer Research Institution, West China Hospital of Sichuan University. Drug-resistance cell line was established by the stepwise selection with increasing concentration of ADM as previously described[21]. The ADM gradually increased from 0.005 µg/ml to 0.1 µg/ml.
Cells were grown in RPMI 1640 medium supplemented with 10% fetal calf serum in a 5% CO₂ atmosphere at 37°C.

Materials
Phosphorothioate antisense oligonucleotides (AS-ODN): targeting to mdr1 start codon region (AS-ODN/mdr1): 5’-CCA TCC CGA CTT GGC CCG CG-3’ [22], targeting to mdr1 coding region (AS-ODN/mrdr1): 5’-TGC TGT TCG TGC CCC CGG CG-3’ [22]. Control oligonucleotide (AS-ODN/nononsense) was a 20-mer nonsense phosphorothioate oligonucleotide. All oligonucleotides were synthesized by Life Technologies Inc., USA. Lipofectamine, TRIzol, RT-PCR kit, and primers were also purchased from Life Technologies Inc. The Western Blotting Kit was purchased from Boehringer Mannheim, Germany. Antibodies against mdr1/P-gp and mrp/P-gp were from Santa Cruz, USA. DNR was purchased from Daunorubicin distribution and multidrug resistance

Treatment of cells with AS-ODNs
The experimental protocols were similar to those previously described [22,24]. Briefly, cells (5 × 10⁵) were seeded in a 25 ml flask at 1 × 10⁵ cells/ml and grown to 75% confluence. Cells were transfected with 1.5 nmol of AS-ODN with 50 µl of Lipofectamine. Cells were harvested at different times after transfection for analysis.

Detection of drug sensitivity of cells by MTT [25,26]
Cells were exposed to drug at 37°C for 2 h, then were washed and seeded (50 000 cells/ml) in 96-well microplates for 72 h. MTT (20 µl, 2.5 mg/ml) was added to each well for 3 h. Medium was discarded and 150 µl of DMSO were added to each well. Optical densities were measured at 490 nm (A490). The tumor cells living ratio (TCL) was determined according to the formula: TCL= A490_experiment/A490_control × 100%. The 50% inhibitory concentration (IC₅₀) was calculated according to concentration-TCL curve. Resistance index (RI) was calculated using the formula: RI=IC₅₀drug resistant cells/IC₅₀parent cells.

Measurement of mdr1 and mrp mRNAs by RT-PCR
Primers Mrp: 5’-TGA AGG ACT TCG TGT CAG CC-3’, 5’-GTC CATGAT GGT GTT GAG CC-3’; mdr1: 5’-GGG TCC GAT ACA TGG TTT TCC-3’, 3’-TTC AGT GCG ATC TTC CCA GC-5’, 5’-microglobulin/βM: 5’-ACC CCC ACT GAA βM RNA transcripts were used as control for the amount of mRNA used. Total RNA from cells was extracted using TRIzol. The effect of AS-ODN was studied after 72 h pre-incubation with AS-ODN and Lipofectamine. Mrp, mdr1, and βM expression was used as control for the amount of RNA transcripts. An aliquot of each reaction mixture was then analyzed by electrophoresis on 2% agarose gel. Densitometry was performed using UVP gel image analysis system (BIO-RAD, USA). Results were expressed as the ratio of fluorescence intensity values between each experimental sample and control sample of SMMC7721/R cells without treatment.

Results

Cells	ICD (mg/L)	RI		
DNR	ADM	DNR	ADM	
SMMC7721/S	0.003±0.0006	0.004±0.0008	1.0	
SMMC7721/R	0.264±0.0094	0.463±0.0254	88.0	116.0
AS-ODN/mdr1	0.094±0.0065	0.079±0.0034	31.4	19.8
AS-ODN/mrp	0.072±0.0002	0.097±0.0009	24.0	24.3
SMMC7721/R+	0.012±0.0001	0.099±0.0007	4.00	2.3
AS-ODN/mdr1+mrp	0.245±0.0110	0.451±0.0187	81.7	112.8
AS-ODN/nononsense	0.245±0.0110	0.451±0.0187	81.7	112.8

Values (IC₅₀) represent the mean ± standard deviation of at least three experiments and value (RI) represent the mean of three experiments. All values were calculated as described in MATERIALS AND METHODS. The concentration of each AS-ODN is 0.5 µmol/L and the treatment time is 72 hours.

Observation of intracellular DNR distribution by confocal laser scanning microscopy (CLSM)

The experimental procedures were similar to those previously described [22-24]. Cells (1 × 10⁵) were seeded to 960 mm² petri dish with a slide inside and incubated in a 5% CO₂ atmosphere at 37°C. After cells had reached 75% confluence, normal medium was replaced with serum-free RPMI 1640 medium and cells were incubated with DNR at 2 µg/ml for 1 h. The effect of AS-ODN was studied after 72 h pre-incubation with AS-ODN and Lipofectamine. After two washes with PBS and addition of drug free medium cells grown on slides were examined with CLSM (MRC-1024ES, BIO-RAD Inc., USA). Observation of intracellular drug distribution was observed using the 488 nm laser line for excitation and the filter that allows measurement of emitted light above 515 nm.

Detection of intracellular DNR concentration by flow cytometry (FCM)

Cells (1 × 10⁵) were seeded into 25 ml flask and grown to 95% confluence. They were then dissociated with pancreatin and suspended in serum-free medium. DNR was added to a final concentration of 2 µg/ml and incubated for 1 h at 37°C. After two washes with PBS each sample was divided into 3 tubes to be analyzed by FCM [22] (Elite ESP, Coulter Inc., USA). Results were expressed as the ratio of fluorescence intensity values between each experimental sample and control sample of SMMC7721/R cells without treatment.

Table 1

Cells	ICD (mg/L)	RI		
DNR	ADM	DNR	ADM	
SMMC7721/S	0.003±0.0006	0.004±0.0008	1.0	
SMMC7721/R	0.264±0.0094	0.463±0.0254	88.0	116.0
AS-ODN/mdr1	0.094±0.0065	0.079±0.0034	31.4	19.8
AS-ODN/mrp	0.072±0.0002	0.097±0.0009	24.0	24.3
SMMC7721/R+	0.012±0.0001	0.099±0.0007	4.00	2.3
AS-ODN/mdr1+mrp	0.245±0.0110	0.451±0.0187	81.7	112.8
AS-ODN/nononsense	0.245±0.0110	0.451±0.0187	81.7	112.8
Expression of mdr1 and mrp gene

As shown by RT-PCR, the amplification products of mrp, mdr1, and β2M were 256bp, 168bp, and 120 bp, respectively. Overexpression of mrp and mdr1 mRNAs were detected in SMMC7721/R, but low level mRNA expression in SMMC7721/S was observed. The mRNA expression in SMMC7721/R cells treated with AS-ODN decreased to the level of SMMC7721/S (Figure 1).

No P-gp and P190 were detected in parental cells SMMC7721/S. Over-expression of P-gp and P190 was observed in drug resistant cells SMMC7721/R. Treatment of SMMC7721/R with AS-ODNs inhibited the expression of P-gp and P190 (Figure 2).

Figure 1 Quantification of PCR. The ratio between the mdr1 or mrp and β2M gene is expressed as described in MATERIALS AND METHODS. (a. parental cell-SMMC7721/S; b. SMMC7721/R; c. SMMC7721/R incubated with 0.5 µmol/L AS-ODN for 24 hours)

Figure 2 Expression of P-gp and P190 analyzed with Western blot. (a) immunoblotted with anit-P-gp antibody; (b) immunoblotted with anti-P190 antibody. 1. parental cell-SMMC7721/S; 2. SMMC7721/R treated by AS-ODN(0.5 µmol/L, 72 hours); 3. SMMC7721/R.

Figure 3 Intracellular DNR concentrations in cells treated with antisense oligonucleotids. The concentration of each AS-ODN is 0.5 mmol/L and the treatment time is 72 hours. Data are the mean±standard deviation of three independent experiments. (1. SMMC7721/R; 2. SMMC7721/S; 3. SMMC7721/R treated with AS-ODN/ mdr1+mrp; 4. SMMC7721/R treated with AS-ODN/ mdr1; 5. SMMC7721/R treated by AS-ODN/ mrp; 6. SMMC7721/R treated with AS-ODN/ nonsense.)

Figure 4 Intracellular DNR distribution in parental sensitive cells SMMC7721/S.

Figure 5 Intracellular DNR distribution in drug-resistant cells SMMC7721/R.
Intracellular drug concentration results in increase of drug resistance in cells. Intracellular DNR concentration in SMMC7721/R decreased to 10 percent of that in SMMC7721/S and meanwhile resistance to ADM and DNR increased by 116 times and 88 times respectively than that of SMMC7721/S. Co-transfection of AS-ODN/mdr1 and AS-ODN/mrp only restored intracellular DNR concentration to 40 percent of that of SMMC7721/S. Inconsistently, the drug resistance to DNR was reduced from 88-fold to 4-fold and to ADM from 116-fold to 2.3-fold when compared with SMMC7721/S. These data indicate that some other factors must play a more important role in MDR mechanism besides the reduction of intracellular drug accumulation. The mechanism focused in recently is modified drug localization\(^{33-34}\). We used CSLM technology to explore this interesting point.

In our studies, we observed that in cell line SMMC7721/S DNR fluorescence distributed evenly in the nucleus and cytoplasm, while in cell line SMMC7721/R DNR distributed in a punctate pattern in the cytoplasm and was reduced in the nucleus. Transfection of AS-ODN changed the subcellular DNR distribution pattern in SMMC7721/S cells to that in SMMC7721/R cells. This observation indicates that P-gp or P\(^{\text{mrp}}\) not only pumps DNR out of cells, but also transports DNR from nuclear to cytoplasm and into some organelles such as Golgi apparatus. As P-gp or P\(^{\text{mrp}}\) probably locates in cell membrane, nuclear membrane, Golgi apparatus, or endoplasmic reticulum\(^{13,54-59}\), the actions of these two proteins may cause reduction of intracellular and intranuclear drug concentration and drug accumulation in some organelles. The combined effect may prevent the targeting of the drugs to nucleus, which reduces cell death even if the total amount of drugs inside the cells was not dropped significantly. Golgi apparatus is widely believed to be the organelle which holds the drugs\(^{54,59}\). Previous studies found that there were some differences in subcellular drug distribution pattern between different cell lines in which MDR phenotype was mediated by P-gp and by P\(^{\text{mrp}}\)\(^{49}\). However, we did not observe such phenomenon in the present study.

Our studies suggest that after the potent inhibition of P-gp or P\(^{\text{mrp}}\) expression by AS-ODN intracellular drug concentration was increased and subcellular drug distribution changed, which leads to the reversal of multidrug resistance in cell line SMMC7721/R. Therefore, we believe that over-expression of P-gp and/or P\(^{\text{mrp}}\) is an important mechanism in mediating MDR in cell line SMMC7721/R.

Although co-transfection of AS-ODNs targeting the two genes didn’t enhance the inhibitory effect on expression of P-gp or P\(^{\text{mrp}}\) when compared with separate transfection of either AS-ODN, the synergistic effects of the two AS-ODNs on reduction of intracellular or intranuclear drugs and on recovery of cell drug sensitivity were much more prominent than separate transfection. This finding indicates that MDR in SMMC7721/R is mediated at least by both P-gp and P\(^{\text{mrp}}\). The combination of MDR reversal methods against these proteins is effective in drug-resistant cells.

REFERENCES

1. van Brussel JP, van Steenbrugge GJ, Romijn JC, Schroder FH, Mickisch GH. Chemosensitivity of prostate cancer cell lines and expression of multidrug resistance-related proteins. Eur J Cancer 1999;35:664-671
2. Liu ZM, Shou NH. Expression significance of mdr1 gene in gastric carcinoma tissue. Shijie Huan Shijie 1999;7:145-146
3. Ning XX, Wu KC, Shi YQ, Wang X, Zhao YQ, Fan DM.
Construction and expression of gastric cancer MG7 mimic epitope fused to heat shock protein 70. Shijie Huaren Xiaohua Zazhi 2001;9:892-896

Leith CP, Kopkepy KJ, Chen IM, Eijdems L, Slovak ML, McConell TS, Head DR, Weick J, Grever MR, Appelbaum FR, Willman CL. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1, P-glycoprotein, MRP1 and LRP in acute myeloid leukemia: A Southwest Oncology Group Study. Blood 1999;94:1086-1099

Zhang LJ, Chen KN, Xu GW, Xing HP, Shi XT. Congenital expression of mdr-1 gene in tissues of carcinoma and its relation with pathomorphology and prognosis. World J Gastroenterol 1999;5:53-56

Yin F, Shi YQ, Zhao WP, Xiao B, Mao JY, Fan DM. Suppression of P-gp induced multiple drug resistance in a drug resistant gastric cancer cell line by overexpression of Fas. World J Gastroenterol 2000;6:664-670

Liu B, Staren E, Iwamura T, Appert H, Howard J. Effects of Taxotere on invasive potential and multidrug resistance phenotype in pancreatic carcinoma cell line SUIT-2. World J Gastroenterol 2001;7:143-148

Ferlini C, Distefano M, Pignatelli F, Lin S, Riva A, Bombardelli E, Mancuso S, Ojima I, Scambia G. Antitumour activity of novel taxanes that act at the same time as cytotoxic agents and P-glycoprotein inhibitors. Br J Cancer 2000;83:1762-1768

Wada H, Sakawa Y, Niida Y, Nishimura R, Noguchi T, Matsukawa H, Ichihara T, Koizumi S. Selectively induced high MRP gene expression in multidrug-resistant human HL60 leukemia cells. Exp Hematol 1999;27:99-109

Bendera Z, Morjanj H, Trussardi A, Manifal M. Characterization of H+ + ATPase-dependent activity of multidrug resistance-associated protein in homoharringtonine-resistant human leukemic K562 cells. Leukemia 1998;12:1539-1544

Tkaczyk-Gobis K, Tarasiuk J, Sekse O, Stefanska B, Borowski E, Garnier-Suillerot A. Transfer of new non-cross-resistant antitumor compounds of the benzopiperidine family in multidrug resistant cells. Eur J Pharmacol 2003;413:131-144

Heijm M, Hooijberg JH, Schepfer GL, Szabo G, Westerhoff HV, Lanxelma J. Anthracyclines modulate multidrug resistance protein (MRP) mediated organic anion transport. Biochim Biophys Acta 1997;1326:12-22

Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther 2000;85:217-229

Borg AG, Burgess R, Green LM, Scheper RJ, Liu Yin JA, P-glycoprotein and multidrug resistance-related protein, but not lung resistance protein, lower the intracellular distribution of anticancer agents. J Pharmacol Exp Ther 1999;286:33-44

Okumura H, Chen ZS, Sakou M, Sumizawa T, Furukawa T, Komatsu M, Ikeda R, Suzuki H, Hirato K, Akou T, Akiyama SI. Reversal of MDR1 and multidrug resistance-associated protein, but not lung resistance protein, lower the intracellular distribution of anticancer agents. J Pharmacol Exp Ther 1999;286:33-44

Manciu L, Chang X, Riordan JR, Buyse F, Ruysschaert JM. Nucleotide-induced conformational changes in the human multidrug resistance protein P1 are related to the capacity of chemotherapeutic drugs to accumulate or not in the human resistant cells. FEBS Lett 2001;493:31-35

Gong Y, Wang Y, Chen F, Han J, Miao J, Shao N, Fang Z, Qu Y, Zhang Y. Identification of the subcellular localization of daunorubicin in multidrug-resistant K562 cell line. Leuk Res 2000;24:769-774

Chou KM, Paul Krapcho A, Hacker MP. Impact of the basic amine on the biological activity and intracellular distribution of an aza-anthrapyrazole: BBR 3422. Biochem Pharmacol 2001;62:1337-1343

Mankhetkorn S, Teoderi E, Garnier-Suillerot A. Partial inhibition of the P-glycoprotein-mediated transport of anthracyclines in viable resistant K562 cells after irradiation in the presence of a verapamil analogue. Chem Biol Interact 1999;121:125-140

Hirsch-Ernst KI, Ziemann C, Rustenbeck I, Kahl GF. Inhibitors of mdr-1 dependent transport activity delay accumulation of the mdr-1 substrate rhodamine 123 in primary rat hepatocyte cultures. Toxicology 2001;167:47-57

Yu LF, Zhang YP, Qiao MM, Wu YL. Establishment and characterization of vincristine-resistant MKN28/VCR, MKN45/VCR of human gastric cancer cell lines. Shijie Huaren Xiaohua Zazhi 2001;9:297-301

Alahari SK, DeLong R, Fisher MH, Dean NM, Villet P, Juliano RL. Novel chemically modified oligonucleotides provide potent inhibition of P-glycoprotein expression. J Pharmacol Exp Ther 1998;286:419-428

Stewart AJ, Canotrot Y, Barachini E, Dean NM, Deeley RG, Cole SP. Reduction of expression of the multidrug resistance protein (MRP) in human tumor cells by antisense phosphorothioate oligonucleotides. Biochem Pharmacol 1996;51:461-469

Motomura S, Motoj T, Takashaki M, Wang YH, Shiozaki H, Sugawara A, Aikawa E, Tomida A, Tsuru T, Kanda N, Morita K. Inhibition of P-glycoprotein and recovery of drug sensitivity of human acute leukemic blast cells by multidrug resistance gene (mdr1) antisense oligonucleotides. Blood 1998;91:3163-3171

Cao WX, Ou JM, Fei XF, Zhu ZG, Yin HR, Yan M, Lin YZ. Methionine-dependence and combination chemotherapy on human gastric cancer cells in vitro. World J Gastroenterol 2002;8:230-232

Liu B, Staren E, Iwamura T, Appert H, Howard J, Taxotere resistance in SUIT Taxo tese resistance in pancreatic carcinoma cell line SUIT2 and its sublines. World J Gastroenterol 2000;7:855-859

Chen WX, Li YM, Yu CH, Cai WM, Zheng M, Chen F. Quantitative analysis of transforming growth factor beta 1 mRNA in patients with alcoholic liver disease. World J Gastroenterol 2002;8:379-381

Gao F, Wu CX, Liu CA, Li SW, Shi YJ, Li XH, Peng Y. Liver sinusoidal endothelial cell injury by neutrophils in rats with acute obstructive cholangitis. World J Gastroenterol 2002;8:342-345

Shen ZY, Shen WY, Chen MH, Shen J, Cai WJ, Yi Z. Nitric oxide and calcium ions in apoptotic esophageal carcinoma cells induced by arsenite. World J Gastroenterol 2002;8:40-43

Wang JP, Duan GR, Zhao YL, Du DW. Effect of P.16 gene expression in growth of human hepatic carcinoma cell line 7721 with confocal microscopic analysis. Shijie Huaren Xiaohua Zazhi 2000;8:767-770

Cheng SD, Wu YL, Zhang YP, Qiao MM, Guo QS. Abnormal drug accumulation in multidrug resistant gastric carcinoma cells. Shijie Huaren Xiaohua Zazhi 2001;9:131-134

Gao F, Yi J, Shi YG, Li H, Shi XG, Tang XM. The sensitivity of digestive tract tumor cells to As2O3 is associated with the inherent cellular level of reactive oxygen species. World J Gastroenterol 2002;8:36-39

Agrawal S, Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Biochim Biophys Acta 1999;1489:53-68

Gleewe ME, Miyake H, Zellweger T, Chi K, July L, Nelson C, Rennie P. Use of antisense oligonucleotides targeting the antiapoptotic gene, cunriner/testosterone-repressed prostate message 2, to enhance androgen sensitivity and hormone insensitivity in prostate cancer. J Urolology 2001;158:39-49

Wang L, Chen L, Walker V, Jacob TJ. Antisense to MDRI mRNA reduces P-glycoprotein expression, swelling-activated C1- current and volume regulation in bovine ciliary epithelial cells. J Physiol 1998;515:33-44

Nie QH, Cheng YQ, Xie YN, Zhou YX, Cao YZ. Inhibiting
effect of antisense oligonucleotides phosphorothioate on gene expression of TIMP-1 in rat liver fibrosis. World J Gastroenterol 2001;4:363-369

37 Agarwal N, Gewirtz AM. Oligonucleotide therapeutics for hematologic disorders. Biochim Biophys Acta 1999; 1489: 85-96

38 Giraud-Panis M, Leng M. Transplant-modified oligonucleotides as modulators of gene expression. Pharmacol Ther 2000;85:175-181

39 Wang XW, Yuan JH, Zhang RG, Guo LX, Xie Y, Xie H. Anthistaxisoma effect of alpha fetoprotein antisense phosphorothioate oligodeoxyribonucleotides in vitro and in mice. World J Gastroenterol 2001;7:345-351

40 Tang YC, Li Y, Qian GX. Reduction of tumorigenicity of SMMC7721 hepatoma cells by vascular endothelial growth factor antisense gene therapy. World J Gastroenterol 2001;7:22-27

41 He Y, Zhou J, Wu JS, Dou KF. Inhibitory effects of EGFR antisense oligodeoxyribonucleotide in human colorectal cancer cell line. World J Gastroenterol 2000;6:747-749

42 Zhang L, Li SN, Wang XN. CEA and AFP expression in human hepatoma cells transfected with antisense IGF-I gene. World J Gastroenterol 1998;4:30-32

43 Zhong S, Wen SM, Zhang DF, Wang QL, Wang SQ, Ren H. Sequencing of PCR amplified HBV DNA pre-c and c regions in the 2.2.15 cells and antiviral action by targeted antisense oligodeoxyribonucleotide directed against sequence. World J Gastroenterol 1998;4:434-436

44 Zhang FX, Zhang XY, Fan DM, Deng ZY, Yan Y, Wu HP, Fan J. Antisense telomerase RNA induced human gastric cancer cell apoptosis. World J Gastroenterol 2000;6:430-432

45 Liu DH, Zhang XY, Fan DM, Huang YX, Zhang JS, Huang WQ, Zhang YQ, Huang QS, Ma WY, Chai YB, Jin M. Expression of vascular endothelial growth factor and its role in oncogenesis of human gastric carcinoma. World J Gastroenterol 2001;7:500-505

46 Gu ZP, Wang YJ, Li GJ, Zhou YA. VEGF antisense RNA suppresses oncogenic properties of human esophageal squamous cell carcinoma. World J Gastroenterol 2002;8:44-48

47 Xiao B, Shi YQ, Zhao YQ, You H, Wang ZY, Liu XL, Yin F, Qiao TD, Fan DM. Transduction of Fas gene or Bcl-2 antisense RNA sensitizes cultured drug resistant gastric cancer cells to chemotherapeutic drugs. World J Gastroenterol 1998;4:421-425

48 Ferraro P, Sincok P, Cole S, Ashman L. Intracellular P-gp contributes to functional drug efflux and resistance in acute myeloid leukaemia. Leuk Res 2001;25:395-405

49 Gong YP, Liu T, Jia YQ, Qin L, Deng CQ, Yang CY. Comparison of Pgp- and MRP-mediated multidrug resistance in leukemia cell lines. Int J Hematol 2002;75:154-160

50 Benderra Z, Trussardi A, Morjani H, Villa AM, Doglia SM, Manfait M. Regulation of cellular glutathione modulates nuclear accumulation of daunorubicin in human MCF7 cells overexpressing multidrug resistance associated protein. Eur J Cancer 2000;36:429-434

51 Hayes JH, Soroka CJ, Rios-Velez L, Boyer JL. Hepatic sequestration and modulation of the canalicular transport of the organic cation, daunorubicin, in the Rat. H epatology 1999;29:483-493

52 Chou TC, Depew KM, Zheng YH, Safer ML, Chan D, Helfrich H, Zatorska D, Zatorski A, Bornmann W, Danishefsky SJ. Reversal of anticancer multidrug resistance by the ardeemins. Proc Natl Acad Sci U S A 1998;95: 8369-8374

53 Courtos A, Payen L, Vernhet L, de Vries EG, Guillouzo A, Fardel O. Inhibition of multidrug resistance-associated protein (MRP) activity by rifampicin in human multidrug-resistant lung tumor cells. Cancer Lett 1999;139:97-104

54 Belhoussine R, Morjani H, Millot JM, Sharonov S, Manfait M. Confocal scanning microscopy reveals specific anthracycline accumulation in cytoplasmic organelles of multidrug-resistant cancer cells. J Histochem Cytochem 1998;46:1369-1376

55 Zhang JT. Determinant of the extracellular location of the N-terminus of human multidrug-resistance-associated protein. Biochem J 2000;348:597-606

56 Laupéze B, Amiot L, Bertho N, Grosset JM, Lehne G, Fauchet R, Fardel O. Differential expression of the efflux pumps P-glycoprotein and multidrug resistance-associated protein (MRP) activity by rifampicin in human multidrug-resistant lung tumor cells. Cancer Lett 1999;139:97-104

57 Meschini S, Calcabrini A, Monti E, Del Bufalo D, Stringaro A, Dolfini E, Arancio G. Intracellular P-glycoprotein expression is associated with the intrinsic multidrug resistance phenotype in human colon adenocarcinoma cells. Int J Cancer 2000;87:615-628

58 Demeule M, Jodoin J, Gingras D, Beliveau R. P-glycoprotein is localized in caveolae in resistant cells and in brain capillaries. FEBS Lett 2000;466:219-224

59 Kipp H, Arias IM. Newly synthesized canalicular ABC transporters are directly targeted from the Golgi to the hepatocyte apical domain in rat liver. J Biol Chem 2000; 275:15917-15925

Edited by Bo XN

www.wjgnet.com