Importance of histological evaluation in endoscopic resection of early colorectal cancer

Naohisa Yoshida, Yuji Naito, Nobuaki Yagi, Akio Yanagisawa

Abstract
The diagnostic criteria for colonic intraepithelial tumors vary from country to country. While intramucosal adenocarcinoma is recognized in Japan, in Western countries adenocarcinoma is diagnosed only if the tumor invades to the submucosa and accesses the muscularis mucosae. However, endoscopic therapy, including endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD), is used worldwide to treat adenoma and early colorectal cancer. Precise histopathological evaluation is important for the curative-ness of these therapies as inappropriate endoscopic therapy causes local recurrence of the tumor that may develop into fatal metastasis. Therefore, colorectal ESD and EMR are not indicated for cancers with massive submucosal invasion. However, diagnosis of cancer with massive submucosal invasion by endoscopy is limited, even when magnifying endoscopy for pit pattern and narrow band imaging and flexible spectral imaging color of enhancement are performed. Therefore, occasional cancers with massive submucosal invasion will be treated by ESD and EMR. Precise histopathological evaluation of these lesions should be performed in order to determine the necessity of additional therapy, including surgical resection.
yond the muscularis mucosae\(^{[2,3]}\). One reason for this is that intramucosal epithelial tumors are clinically benign and do not metastasize to the lung, liver or lymph nodes. In this review, we compare the criteria for diagnosis of colorectal intraepithelial tumors in Japan and in Western countries and also describe the World Health Organization (WHO) classification and Vienna classification of these tumors\(^{[4,5]}\).

Despite these differences in diagnostic criteria, endoscopic therapy, including endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) of adenoma and early colorectal cancer, is performed worldwide\(^{[6,7]}\). Precise histopathological evaluation of these lesions is important for the long-term success of these therapies, as inappropriate endoscopic therapy causes local recurrence of the tumor that may develop into fatal metastasis. We describe the use and therapeutic limitations of EMR and ESD and also show the importance of detailed histopathological evaluation of specimens resected by EMR and ESD. Moreover, we reveal the proper endoscopic method for obtaining appropriate specimens for histopathological evaluation by EMR and ESD.

DIFFERENCES IN THE HISTOPATHOLOGICAL DIAGNOSIS OF COLORECTAL EPITHELIAL TUMORS BETWEEN JAPAN AND WESTERN COUNTRIES

The diagnostic criteria for colonic epithelial tumors vary from country to country. In Japan, the terms “low-grade adenoma,” “high-grade adenoma” and “intramucosal adenocarcinoma” are used to describe intraepithelial tumors based on their degrees of cytological or architectural atypia, according to the Japanese colorectal cancer criteria (Table 1)\(^{[8]}\). Intramucosal adenocarcinoma is characterized by malignant glandular epithelium exhibiting a tubular or papillary architecture or producing mucus. In contrast, in Western countries, including England and America, intraepithelial tumors are diagnosed only as dysplasia\(^{[2,3]}\) and the term “adenocarcinoma” is used only if the tumor invades the submucosa and accesses the muscularis mucosae. In detail, “mild dysplasia,” “moderate dysplasia” and “severe dysplasia” are used in England to classify intraepithelial tumors according to the states of their nuclei, glandular patterns and interglandular spaces (Table 1)\(^{[8]}\). Mild dysplasia and moderate dysplasia are almost similar to the Japanese definitions of low-grade and high-grade adenoma, and severe dysplasia is almost identical to the Japanese definition of adenocarcinoma. In America, “low-grade adenoma” and “high-grade adenoma” are used to describe intraepithelial tumors according to the states of their crypts and nuclei (Table 1)\(^{[8]}\). Low-grade adenoma is almost similar to the English categories of mild and moderate dysplasia, while high-grade adenoma is almost similar to the English category of severe dysplasia. However, the WHO classification, which was revised in 2010, defines dysplasia as histopathologically unequivocal neoplastic epithelium without evidence of invasive growth\(^{[9]}\). The term “dysplasia” is thus only appropriate when cytological and/or architectural features of neoplasia are present. The term “intramucosal adenocarcinoma” is applied to lesions that show histological evidence of invasion into the lamina propria or muscularis mucosa but not into the submucosa.

The Vienna classification of gastrointestinal epithelial neoplasia is represented as resolving the histopathological diagnostic differences among other countries\(^{[8]}\) and applies to the diagnosis of both biopsy specimens and resected specimens. Epithelial neoplastic lesions are classified as Categories 1 through 5. The detailed criteria are as follows: Category 1, negative for neoplasia/dysplasia; Category 2, indefinite for neoplasia/dysplasia; Category 3, non-invasive low-grade neoplasia; Category 4, non-invasive high-grade neoplasia; and Category 5, invasive neoplasia, including intramucosal carcinoma and submucosal carcinoma or beyond. The revised Vienna classification of gastrointestinal epithelial neoplasia was reported in 2002\(^{[10]}\). This revised classification includes the intramucosal carcinoma in category 4 instead of category 5, which fits better with the possibility of endoscopic therapy of this subtype of carcinoma. However, this Vienna classification system is seldom used clinically in Japan.

The diagnostic criteria for submucosally invasive cancer also vary among countries. As submucosally invasive cancer has a risk of metastasizing, it is generally treated by surgical resection worldwide. However, the risk of metastasis is reported to be about 10%\(^{[11]}\). In Japan, the depth of submucosal invasion is measured as part of the evaluation of submucosally invasive cancer because it affects the risk of metastasis to the lymph nodes\(^{[1]}\) (Figure 1). The depth of submucosal invasion is calculated as follows. When the muscularis mucosae can be identified, it is used as the baseline and the vertical distance from this line to the deepest extent of invasion represents the submucosal depth (Figure 2). When the muscularis mucosae cannot be identified due to carcinomatous invasion, the most superficial aspect of the submucosally invasive cancer is used as the baseline and the vertical distance from this line to the deepest portion is determined and defined as the depth of submucosal invasion (Figure 3)\(^{[9,10]}\).

Table 1 The differences in the histopathological diagnosis of colorectal intraepithelial tumors between Japan and Western countries

Intramucosal epithelial tumor	Japan	United Kingdom	United States	Intramucosal adenocarcinoma
Low grade adenoma	Mild dysplasia	Moderate dysplasia	High grade dysplasia	
High grade adenoma				
Intramucosal adenocarcinoma				
Low grade dysplasia				
High grade dysplasia				

April 15, 2012 | Volume 3 | Issue 2 |
lines for colorectal cancer report the following risk factors for lymph node metastasis of submucosally invasive colorectal cancer: (1) depth of submucosal invasion more than 1000 μm; (2) lymphatic or venous invasion; (3) poorly differentiated histology; (4) the vertical margin of the resected specimen positive for cancer; and (5) grade 2 or 3 tumor cell budding. Evaluation of these risk factors determines whether endoscopically resected submucosally invasive cancer is further treated by surgical resection. In Japan, submucosally invasive cancer in surgically resected specimens is also classified clinically as SM1, SM2 or SM3 according to the degree of invasion into the submucosa. The phrase “massive submucosal invaded cancer,” which is frequently used in clinical reports, is synonymous with tumor invasion of SM2 or SM3 or with depth of submucosal invasion of more than 1000 μm. For pedunculated submucosally invasive cancer that has disrupted the muscularis mucosae, the depth of submucosal invasion is the distance between the deepest extent of the invasion and a reference line defined as the boundary between the tumor head and the pedicle, according to Haggitt’s classification. When the cancer does not invade past the reference line, it is defined as “head invasion” and has no possibility of metastasis. When cancer has invaded above this baseline, it is defined as “stalk invasion” and additional surgery should be considered to reduce the risk of lymph node metastasis.

INDICATIONS FOR AND THERAPEUTIC LIMITATIONS AND HISTOPATHOLOGICAL EVALUATION OF EMR AND PIECEMEAL EMR

EMR is generally performed for early colorectal cancers worldwide. The saline injection-assisted method was first described by Rosenberg, who identified it as a safety factor for the removal of rectal and sigmoid polyps, and was reintroduced by Tada et al. in 1984. Most adenomas and intramucosal cancers can be resected by EMR; however, tumors greater than 20 mm in diameter are considered difficult candidates for en bloc resection. The rates of en bloc and complete resection have been reported to be 62.85% and 58.66%, respectively. The rate of en bloc resection by EMR of tumors greater than 20 mm in diameter is especially insufficient. Many additional injection solutions have been used to achieve sustained mucosal elevation, definitive en bloc resection and prevention of perforation during EMR. Hypertonic saline, glycerol, dextrose and fibrinogen in-
Table 2 The rates of en bloc resection and local recurrence of tumors larger than 20 mm in diameter treated by endoscopic mucosal resection

Author	Injection solution	No. of cases	Rate of en bloc resection (%)	Rate of local recurrence (%)
Saito et al[34]	HA	228	33.0	14
Tanaka et al[35]	Glycerol	178	39.3	7.9
Tajika et al[36]	NS	104	48.1	15.4
Iinbi et al[37]	NS	56	25.0	-
Kobayashi et al[38]	NS	56	37.5	21.4
Uraoka et al[39]	Glycerol	44	20.5	18.6
Our data	HA	35	42.8	10

HA: Hyaluronic acid; NS: Not significant.

Table 3 The rates of en bloc resection and complete resection by endoscopic submucosal dissection

Author	No. of cases	Rate of en bloc resection (%)	Perforation rate (%)	Post-operative bleeding rate (%)
Saito et al[34]	1111	88.0	4.9	1.5
Toyonaga et al[35]	468	98.9	1.5	1.5
Isomoto et al[36]	292	90.1	8.2	0.7
Yoshida et al[37]	250	86.8	6.0	2.4
Fujishiro et al[38]	200	91.5	10.4	1.0
Zhou et al[39]	74	93.2	8.1	1.3
Tanaka et al[32]	70	80.0	10.0	1.4
Our recent data	410	92.6	4.1	1.9

INDICATIONS FOR AND THERAPEUTIC LIMITATIONS AND COMPLICATIONS OF ESD

In Japan and some other Asian as well as Western countries, ESD is reported to be an efficient treatment with a high rate of en bloc resection for large colorectal tumors and it is less invasive than LAC.[34-39] ESD allows removal of large early colorectal cancer lesions but can be a time-consuming procedure and carries a risk of perforation higher than that of EMR.[36,40-41] A list of situations in which ESD is appropriate has been proposed by a Japanese ESD specialist group.[39] These are, firstly, lesions more than 20 mm in diameter for which endoscopic therapy is indicated but for which en bloc resection by snare EMR would be difficult and, secondly, lesions that are suspected to be submucosally invasive, which should be resected en bloc by ESD. Other lesions in addition to these categories can also be candidates for ESD, including mucosal lesions with fibrosis caused by prolapse due to biopsy or peristalsis, local residual early cancer after endoscopic resection, and sporadic localized tumors in cases of chronic inflammation such as ulcerative colitis. The rate of en bloc resection for large colorectal tumors has been reported to be 80.0%-98.9% (Table 3).[34-39] However, the procedure has not been standardized due to its associated technical difficulties. The colon is winding in nature and has many folds. Moreover, the colonic wall is thinner than the gastric wall. The main complications of submucosal invasion in submucosally invasive cancer is destroyed by burning, the tumor may be misdiagnosed as mucosal cancer, and when the positive vertical margin of submucosal or lymphatic-venous invasion is burned, the resection may be misclassified as complete. In these cases, the patient will not be advised to undergo additional surgical resection, allowing recurrence a few years later.[36] In some cases, recurrence may occur as lung, liver and/or lymph node metastasis and these patients are very difficult to cure. Therefore, laparoscopic-assisted colectomy (LAC) is regarded throughout the world as the standard therapy for large colorectal tumors.[38] However, as LAC is more invasive than endoscopic treatment, ESD is still performed in some areas, especially in Japan.

HA: Hyaluronic acid; NS: Not significant.
of ESD are postoperative perforation and hemorrhage, similar to those of EMR. In particular, the rate of perforation is higher for ESD than for EMR (1.5%-10.4%). Perforation of the colon can cause fatal peritonitis. Most cases of perforation are treated conservatively by endoscopic clipping, without urgent surgical intervention [40,41].

On the other hand, the rates of postoperative hemorrhage are similar for ESD and EMR. When hemorrhage occurs, endoscopic therapy, including endoscopic clipping, is performed and most cases can be managed conservatively without blood transfusion. A safe strategy, suitable knife, adoption of other equipment and animal training are necessary in order to minimize the complications, including perforation, of ESD[42].

IMPORTANCE OF THE HISTOPATHOLOGICAL EVALUATION OF SUBMUCOSALLY INVASIVE CANCER IN ESD SPECIMENS

Submucosally invasive cancer can be resected by colorectal ESD. A multicenter study of 1111 colorectal ESDs showed that 213 submucosally invasive cancers (19.1%, 213/1111) were treated clinically by ESD[43]. The rate of submucosally invasive cancer in our institution is 10.2% (42/410), which is similar to the rates reported in other studies on colorectal ESD (range: 9.2%-25.0%)[35-37,39]. Moreover, the proportion of massive submucosally invasive cancers in these studies was reported to be 30.0%-58.3%[35-37,39]. Massive submucosal invasion is not in fact an indication for colorectal ESD and EMR; however, endoscopic diagnosis of massive submucosally invasive cancer is limited even when magnifying endoscopy for pit pattern, narrow band imaging (NBI) and flexible spectral imaging color of enhancement (FICE) are performed. The sensitivity of detail-magnifying observation for massive submucosally invasive cancer is only 63.8%-84.8%[32,43-46]. Therefore, some number of massive submucosally invasive cancers may be diagnosed as mucosal cancer or shallow submucosally invasive cancer and scheduled for resection by ESD or EMR (Figure 4). The probability of curative resection of submucosally invasive cancer by ESD is influenced by various clinical features, including histopathological vertical margin, lateral margin and venous-lymphatic invasion. The characteristics of the submucosally invasive cancers treated at our institution are as shown (Table 4). The average tumor size was 26.5 mm in the SM (submucosally invasive cancer) group and 35.1 mm in the M group (P < 0.01). The ratio of the number of tumors in the colon to that in the rectum was 18:15 in the SM group, 87:57 in the M (intramucosal suction).
cancer) group and 124:33 in the A group. The proportion of tumors in the rectum was higher in the SM group than in the A (adenoma) group (P < 0.01). The ratio of protruding tumors to superficial tumors was significantly higher in the SM group (14:19) than in the M group (32:112) or the A group (12:145) (P < 0.01) (Figure 5). One cause of severe fibrosis is tumor invasion. However, mucosal cancers (5.5%) and adenomas (6.0%) also showed severe fibrosis in our study. Endoscopic biopsy sometimes leads to severe fibrosis. Matsumoto et al. showed that severe fibrosis complicated ESD and was associated with perforation. The median operation time for the 7 cases in the SM group with severe fibrosis was 147 min, which was longer than that for those in the M group or the A group. Severe fibrosis is difficult to dissect and it should be cautioned that perforation may occur during dissection of severe fibrosis. In our institution, a scissor-shaped knife called the “clutch cutter” (Fujifilm Medical Co., Tokyo, Japan) is used to dissect severe fibrosis with minimal risk of perforation, as it can grasp, coagulate and cut a piece of tissue without perioperative hemorrhage.[49]

Among the submucosally invasive cancers, the average depth of submucosal invasion was 449 μm (range: 120-950 μm) in the SM1 group and 5728 μm (range: 1100-8000 μm) in the SM2-3 group. In total, 7 cases of venous invasion (21.2%) and 6 of lymphatic invasion (18.1%) were detected in the SM1 and SM2-3 groups (Table 5). In detail, the rates of venous invasion were 7.6% in the SM1 group and 30.0% in the SM2-3 group, and the rates of lymphatic invasion were 15.3% in the SM1 group.

Table 4 Characteristics of colorectal tumors resected by endoscopic submucosal dissection

	SM	M	A	P value
Number of tumors	33	144	157	
Male/female	21/12	86/58	81/76	NS
Tumor size (mm) (range)	26.5 (10-60)	35.1 (10-130)	27.0 (10-80)	P < 0.01
Location (colon/rectum)	18:15	87:57	124:33	P < 0.01
Morphology (protruding/superficial)	14:19	32:112	12:145	P < 0.01
Operation time (min) (range)	109 (20-240)	118 (30-420)	92 (10-300)	NS
Severe Fibrosis (%)	18.1	5.5	6.3	P < 0.05
En bloc resection (%)	90.9	90.9	89.1	NS
Complete resection (%)	72.7	84	81.5	NS
Perforation (%)	6	7.6	1.9	NS
Postoperative hemorrhage (%)	0	6.2	1.2	NS

ESD: Endoscopic submucosal dissection; SM: Submucosally invasive cancer; M: Intramucosal cancer; A: Adenoma; NS: Not significant.

Figure 5 A submucosally invasive cancer with severe fibrosis. A: A tumor graded 0-IIa, measuring 35 mm, located in the descending colon. The surface of the tumor was slightly depressed. The tumor was diagnosed by magnifying endoscopy as shallow submucosally invasive cancer and endoscopic submucosal dissection (ESD) was performed; B: Severe fibrosis was detected during ESD and was dissected with a scissor-type knife; C: En bloc resection was performed. The ESD operation time was 160 min. There was no perforation or postoperative hemorrhage; D: Histopathological diagnosis of the specimen resected by ESD was shallow submucosally invasive cancer. The depth of submucosal invasion was 800 μm, and there was severe fibrosis in the submucosa. ESD: Endoscopic submucosal dissection.
and 20.0% in the SM2-3 group. Even in shallow submucosally invasive cancers, it was necessary to dissect to the appropriate submucosal depth for the precise detection of venous and lymphatic invasion (Figure 5). If the depth of dissection was too shallow, some cases of venous and lymphatic invasion could not be detected; moreover, the vertical margin could not be evaluated (Figure 6). Therefore, the depth of dissection of colorectal ESD should be carefully considered.

CONCLUSION

In this review, we describe the different diagnostic criteria for colonic epithelial tumors used around the world. In brief, intramuscular adenocarcinoma is recognized in Japan, while in Western countries adenocarcinoma is diagnosed only if the tumor invades the submucosa and accesses the muscularis mucosa.

Endoscopic treatment, including EMR and ESD, is performed for adenomas and early colorectal cancers worldwide. Precise histopathological evaluation is important for the long-term success of these therapies. Inappropriate endoscopic therapy can lead to local recurrence of the tumor, which sometimes progresses to fatal metastasis. Submucosally invasive cancer is sometimes treated by ESD or EMR. In these cases, very precise histopathological evaluation should be performed in order to determine the necessity of additional therapy, including surgical resection.

REFERENCES

1. Japanese Society for Cancer of the Colon and Rectum, editor. Japanese Classification of Colorectal Carcinoma. 2nd ed. Tokyo: Kanehara & Co., Ltd., 2009
2. Day DW, Jass JR, Price AB, Shepherd NA, Sloan JM, Talbot NJ, Williams GI, Warren BF. Morson and Dawson’s Gastrointestinal Pathology. 4th ed. Oxford: Willey-Blackwell, 2003
3. Fenoglio-Preiser CM, Noffsinger AE, Stemmerman GN, Lantz PE, Isaacson PG. Gastrointestinal pathology: An atlas and text. 3rd ed. Philadelphia: Wolters Kluwer, Lippincott, 2010
4. Hamilton SR, Aaltonen LA, editors. World Health Organization classification of tumors. Pathology and genetics of tumours of the digestive system. Lyon, France: IARC Press, 2010: 104-109
5. Schlemper RJ, Riddell RH, Kato Y, Borchard F, Cooper HS, Dawsey SM, Dixon MF, Fenoglio-Preiser CM, Fléjou JF, Geboes K, Hattori T, Hirota T, Itabashi M, Iwafuchi M, Iwashita A, Kim YJ, Kirchner T, Klimpfinger M, Koike M, Lauwers GY, Levin KJ, Oberhuber G, Offner F, Price AB, Rubio CA, Shimizu M, Shioda T, Sipponen P, Solcia E, Stolte M, Watanabe H, Yamabe H. The Vienna classification of gastrointestinal epithelial neoplasia. Gut 2000; 47: 251-255
6. Puli SR, Kakugawa Y, Gotoda T, Antillon D, Saito Y, Antillon MR. Meta-analysis and systematic review of colorectal endoscopic mucosal resection. World J Gastroenterol 2009; 15: 4273-4277
7. Saito Y, Uraoka T, Yamaguchi Y, Hotta K, Sakamoto N, Ikematsu H, Fukuzawa M, Kobayashi N, Nasu J, Michida T, Yoshida S, Ikehara H, Otake Y, Nakajima T, Matsuda T, Saito D. A prospective, multicenter study of 1111 colorectal endoscopic sub mucosal dissections (with video). Gastrointest Endosc 2010; 72: 1217-1225

Table 5 Characteristics of submucosally invasive cancer resected by endoscopic submucosal dissection

SM1	SM2-3	P value	
Number of tumors	13	20	NS
Tumor size (mm) (range)	30.7 (20-60)	23.7 (10-60)	NS
Location (colon/rectum)	8.5	10:10	NS
Morphology (Ⅰs, Ⅱa, Ⅱb, Ⅱa + Ⅱb)	4.9	10:10	NS
Operation time (min) (range)	121 (50-240)	98 (20-230)	NS
Severe fibrosis (%)	15.3	20	NS
En bloc resection (%)	90.9	89.1	NS
Venous invasion (%)	1 (7.6)	6 (30.0)	NS
Lymphatic invasion (%)	2 (15.3)	4 (20.0)	NS
Positive of horizontal margin (%)	3 (23.0)	3 (15.0)	NS
Positive of vertical margin (%)	1 (7.6)	4 (20.0)	NS
Perforation (%)	7.6	1.9	NS

SM: Submucosally invasive cancer.

Figure 6 The depth of submucosal dissection in resection of submucosally invasive cancer by endoscopic submucosal dissection. A: The dissection in this case was too shallow. Insufficient submucosa is seen in the resected specimen, which was dissected at the submucosa slightly below the muscularis mucosa. Submucosal invasion can be detected; however, the presence of venous-lymphatic invasion cannot be evaluated. B: This case was dissected appropriately. An adequate amount of submucosa is seen in the resected specimen, which was dissected at the middle-deep submucosa sufficiently below the muscularis mucosa. Both submucosal invasion and venous-lymphatic invasion can be detected.

Williams, 2008

4 Hamilton SR, Aaltonen LA, editors. World Health Organization classification of tumors. Pathology and genetics of tumours of the digestive system. Lyon, France: IARC Press, 2010: 104-109

5 Schlemper RJ, Riddell RH, Kato Y, Borchard F, Cooper HS, Dawsey SM, Dixon MF, Fenoglio-Preiser CM, Fléjou JF, Geboes K, Hattori T, Hirota T, Itabashi M, Iwafuchi M, Iwashita A, Kim YJ, Kirchner T, Klimpfinger M, Koike M, Lauwers GY, Levin KJ, Oberhuber G, Offner F, Price AB, Rubio CA, Shimizu M, Shioda T, Sipponen P, Solcia E, Stolte M, Watanabe H, Yamabe H. The Vienna classification of gastrointestinal epithelial neoplasia. Gut 2000; 47: 251-255

6 Puli SR, Kakugawa Y, Gotoda T, Antillon D, Saito Y, Antillon MR. Meta-analysis and systematic review of colorectal endoscopic mucosal resection. World J Gastroenterol 2009; 15: 4273-4277

7 Saito Y, Uraoka T, Yamaguchi Y, Hotta K, Sakamoto N, Ikematsu H, Fukuzawa M, Kobayashi N, Nasu J, Michida T, Yoshida S, Ikehara H, Otake Y, Nakajima T, Matsuda T, Saito D. A prospective, multicenter study of 1111 colorectal endoscopic submucosal dissections (with video). Gastrointest Endosc 2010; 72: 1217-1225

Table 5 Characteristics of submucosally invasive cancer resected by endoscopic submucosal dissection

SM1	SM2-3	P value	
Number of tumors	13	20	NS
Tumor size (mm) (range)	30.7 (20-60)	23.7 (10-60)	NS
Location (colon/rectum)	8.5	10:10	NS
Morphology (Ⅰs, Ⅱa, Ⅱb, Ⅱa + Ⅱb)	4.9	10:10	NS
Operation time (min) (range)	121 (50-240)	98 (20-230)	NS
Severe fibrosis (%)	15.3	20	NS
En bloc resection (%)	90.9	89.1	NS
Venous invasion (%)	1 (7.6)	6 (30.0)	NS
Lymphatic invasion (%)	2 (15.3)	4 (20.0)	NS
Positive of horizontal margin (%)	3 (23.0)	3 (15.0)	NS
Positive of vertical margin (%)	1 (7.6)	4 (20.0)	NS
Perforation (%)	7.6	1.9	NS

SM: Submucosally invasive cancer.
Yoshida N et al. Histological evaluation of early colorectal cancer

8 Dixon MF. Gastrointestinal epithelial neoplasia: Vienna revisited. Gut 2002; 51: 130-131
9 Yoshida N, Kanemasa K, Sakai K, Sumida Y, Morimoto Y, Kashiwara T, Hashigawa D, Wakabayashi N, Inaba S, Yanagisawa A. [Experience of endoscopic submucosal dissection (ESD)] to colorectal tumor-especially about clinical course of cases with perforation. Gastrointest Endosc 2008; 50: 1472-1483
10 Kitajima K, Fujimori T, Fujii S, Takeda J, Ohkura Y, Kawamata H, Kumamoto T, Ishiguro S, Kato Y, Shimoda T, Iwashita A, Ajioka Y, Watanabe H, Watanabe T, Muto T, Nagasako K. Correlations between lymph node metastasis and depth of submucosal invasion in submucosal invasive colorectal carcinoma: a Japanese collaborative study. J Gastroenterol 2004; 39: 534-543
11 Ueno H, Mohchizuki H, Hashiguchi Y, Shimazaki H, Aida S, Hase K, Matsukuma S, Kanai T, Kurihara H, Ooza K, Yoshimura K, Bekku S. Risk factors for an adverse outcome in early invasive colorectal carcinoma. Gastroenterology 2004; 127: 385-394
12 Kudo S. Endoscopic mucosal resection of flat and depressed types of early colorectal cancer. Endoscopy 1993; 25: 455-461
13 Oka S, Tanaka S, Kanao H, Ishikawa H, Watanabe T, Igarashi M, Saito Y, Ikematsu H, Kobayashi K, Inoue Y, Yahagi N, Tsuda S, Simizu S, Iishi H, Yamano H, Kudo SE, Tsuruta O, Tamura S, Saito Y, Cho E, Fujii T, Sano Y, Nakamura H, Sugihara K, Muto T. Mid-term prognosis after endoscopic resection for submucosal colorectal carcinoma: summary of a multicenter questionnaire survey conducted by the colorectal endoscopic resection standardization implementation working group in Japanese Society for Cancer of the Colon and Rectum. Dig Endosc 2011; 23: 190-194
14 Nascimbeni R, Burgart LJ, Nivatvongs S, Larson DR. Risk of lymph node metastasis in T1 carcinoma of the colon and rectum. Dis Colon Rectum 2002; 45: 200-206
15 Haggitt RC, Glotzbach RE, Soffer EE, Wruble LD. Prognostic factors in colorectal carcinomas arising in adenomas: implications for lesions removed by endoscopic polypectomy. Gastroenterology 1985; 89: 328-336
16 Rosenberg N. Submucosal saline wheal as safety factor in fulguration or rectal and sigmoidal polypi. AMA Arch Surg 1955; 70: 120-122
17 Tada M, Shimada M, Murakami F, Mizumachi M, Arima K, Yanai H. Development of the strip-off biopsy [In Japanese with English abstract]. Gastroenterol Endosc 1984; 26: 833-839
18 Karita M, Tada M, Okita K. The successive strip biopsy, partial resection technique for early gastric and colon cancers. Gastrointest Endosc 1992; 38: 174-178
19 Saito Y, Fukuzawa M, Matsuda T, Fukunaga S, Sakamoto T, Uraoka T, Nakajima T, Ikeha H, Fu Ki, Itoi T, Fujii T. Clinical outcome of endoscopic submucosal dissection versus endoscopic mucosal resection of large colorectal tumors as determined by curative resection. Surg Endosc 2010; 24: 343-352
20 Tanaka S, Haruma K, Oka S, Takahashi R, Kunihiro M, Kitadai Y, Yoshihara M, Shimamoto F, Chayama K. Clinicopathologic features and endoscopic treatment of superficially spreading colorectal neoplasms larger than 20 mm. Gastrointest Endosc 2001; 54: 62-66
21 Tajika M, Niwa Y, Bhatia V, Kondo S, Tanaka T, Mizuno N, Hara K, Hijjioaka S, Izumaki A, Ogrda H, Haba S, Yamao K. Comparison of endoscopic submucosal dissection and endoscopic mucosal resection for large gastric and colorectal cancers. Eur J Gastroenterol Hepatol 2011; 23: 1042-1049
22 Iishi H, Tatsuta M, Iseki K, Narahara H, Uedo N, Sakai N, Ishihara H, Otani T, Ishiguro S. Endoscopic piecemeal resection with submucosal saline injection of large sessile colorectal polyps. Gastrointest Endosc 2000; 51: 697-700
23 Kobayashi N, Yoshihake N, Hirahara Y, Konishi J, Saito Y, Matsuda T, Ishikawa T, Sekiguchi R, Fujimori T. Matched case-control study comparing endoscopic submucosal dissection and endoscopic mucosal resection for colorectal tumors. J Gastroenterol Hepatol 2012; 27: 728-733
24 Uraoka T, Fujii T, Saito Y, Sumiyoshi T, Emura F, Bhandari P, Matsuda T, Fu Ki, Saito D. Effectiveness of glycerol as a submucosal injection for EMR. Gastrointest Endosc 2005; 61: 736-740
25 Lee SH, Cho WY, Kim HJ, Kim HJ, Kim YH, Chung IK, Kim HS, Park SH, Kim SJ. A new method of EMR: submucosal injection of a fibrinogen mixture. Gastrointest Endosc 2004; 59: 220-224
26 Varadarajulu S, Tamhane A, Slaughter RL. Evaluation of dextrose 50% as a medium for injection-assisted polypectomy. Endoscopy 2006; 38: 907-912
27 Yamamoto H, Yube T, Isoda N, Sato Y, Sekine Y, Hashigizawa T, Ido K, Kimura K, Kanai N. A novel method of endoscopic mucosal resection using sodium hyaluronate. Gastrointest Endosc 1999; 50: 251-256
28 Yoshida N, Naito Y, Kugai M, Inoue K, Uchiyama K, Takagi T, Ishikawa T, Handa O, Konishi H, Wakabayashi N, Yagi N, Koura S, Morimoto Y, Kanemasa K, Yanagisawa A, Yoshikawa T. Efficacy of hyaluronic acid in endoscopic mucosal resection of colorectal tumors. J Gastroenterol Hepatol 2011; 26: 286-291
29 Matsu Y, Inomata M, Izumi K, Sonoda K, Shiraiishi N, Kitano S. Hyaluronic acid stimulates tumor-cell proliferation at wound sites. Gastrointest Endosc 2004; 60: 539-543
30 Terasaki M, Tanaka S, Oka S, Nakadoi K, Takata S, Kanao H, Yoshida S, Chayama K. Clinical outcomes of endoscopic submucosal dissection and endoscopic mucosal resection for laterally spreading tumors larger than 20 mm. J Gastroenterol Hepatol 2012; 27: 734-740
31 Kudo S, Hirota S, Nakajima T, Hosobe S, Kusaka H, Kobayashi T, Himori M, Yagyuu A. Colorectal tumors and pit pattern. J Clin Pathol 1994; 47: 880-885
32 Yoshida N, Naito Y, Kugai M, Inoue K, Uchiyama K, Takagi T, Ishikawa T, Handa O, Konishi H, Wakabayashi N, Koura S, Yagi N, Morimoto Y, Yanagisawa A, Yoshikawa T. Efficacy of magnifying endoscopy with flexible spectral imaging color enhancement in the diagnosis of colorectal tumors. J Gastroenterol 2011; 46: 65-72
33 Schwenk W, Haase O, Neudecker J, Müller JM. Short term benefits for laparoscopic colorectal resection. Cochrane Database Syst Rev 2005; CD003145
34 Toyonaga T, Man-I M, Morita Y, Sanuki T, Yoshida M, Kutsumi H, Inokuchi H, Azuma T. The new resources of treatment for early stage colorectal tumors: EMR with small incision and simplified endoscopic submucosal dissection. Dig Endosc 2009; 21 Suppl 1: S31-S37
35 Isomoto H, Nishiyama H, Yamaguchi N, Fukuda E, Ishii H, Ikeda K, Omata K, Nakao K, Kohno S, Shinakawa S. Clinicopathological factors associated with clinical outcomes of endoscopic submucosal dissection for colorectal epithelial neoplasms. Endoscopy 2009; 41: 679-683
36 Yoshida N, Naito Y, Sakai K, Sumida Y, Kanemasa K, Inoue K, Morimoto Y, Konishi H, Wakabayashi N, Koura S, Yagi N, Yanagisawa A, Yoshikawa T. Outcome of endoscopic submucosal dissection for colorectal tumors in elderly people. Int J Colorectal Dis 2010; 25: 455-461
37 Fujishiro M, Yahagi N, Kawakami N, Kodashima S, Muraki Y, Oso S, Yamamichi N, Tateishi A, Oka M, Ogrda K, Kawabe T, Ichinose M, Omata M. Outcomes of endoscopic submucosal dissection for colorectal epithelial neoplasms in 200 consecutive cases. Clin Gastroenterol Hepatol 2007; 5: 678-83; quiz 645
38 Zhou PH, Yao LQ, Qin XY. Endoscopic submucosal dissection for colorectal epithelial neoplasms. Surg Endosc 2009; 23: 1546-1551
39 Tanaka S, Oka S, Kaneko I, Hirata M, Mouri R, Kanao H, Yoshida S, Chayama K. Endoscopic submucosal dissection
for colorectal neoplasia: possibility of standardization. Gastrointest Endosc 2007; 66: 100-107

40 Yoshida N, Wakabayashi N, Kanemasa K, Sumida Y, Hasegawa D, Inoue K, Morimoto Y, Kashiwa A, Konishi H, Yagi N, Naito Y, Yanagisawa A, Yoshikawa T. Endoscopic submucosal dissection for colorectal tumors: technical difficulties and rate of perforation. Endoscopy 2009; 41: 758-761

41 Yoshida N, Yagi N, Naito Y, Yoshikawa T. Safe procedure in endoscopic submucosal dissection for colorectal tumors focused on preventing complications. World J Gastroenterol 2010; 16: 1688-1695

42 Parra-Blanco A, Arnau MR, Nicolás-Pérez D, Gimeno-García AZ, González N, Díaz-Acosta JA, Jiménez A, Quintero E. Endoscopic submucosal dissection training with pig models in a Western country. World J Gastroenterol 2010; 16: 2895-2900

43 Tobaru T, Mitsuyama K, Tsuruta O, Kawano H, Sata M. Sub-classification of type VI pit patterns in colorectal tumors: relation to the depth of tumor invasion. Int J Oncol 2008; 33: 503-508

44 Ikematsu H, Matsuda T, Emura F, Saito Y, Uraoka T, Fu KI, Kaneko K, Ochiai A, Fujimori T, Sano Y. Efficacy of capillary pattern type IIIA/IIIB by magnifying narrow band imaging for estimating depth of invasion of early colorectal neoplasms. BMC Gastroenterol 2010; 10: 33

45 Kanao H, Tanaka S, Oka S, Hirata M, Yoshida S, Chayama K. Narrow-band imaging magnification predicts the histology and invasion depth of colorectal tumors. Gastrointest Endosc 2009; 69: 631-636

46 Wada Y, Kashida H, Kudo SE, Misawa M, Ikehara N, Hamatani S. Diagnostic accuracy of pit pattern and vascular pattern analyses in colorectal lesions. Dig Endosc 2010; 22: 192-199

47 Matsumoto A, Tanaka S, Oba S, Kanao H, Oka S, Yoshihara M, Chayama K. Outcome of endoscopic submucosal dissection for colorectal tumors accompanied by fibrosis. Scand J Gastroenterol 2010; 45: 1329-1337

48 Akahoshi K, Motomura Y, Kubokawa M, Matsui N, Oda M, Okamoto R, Endo S, Higuchi N, Kashiwabara Y, Oya M, Akahane H, Akih H. Endoscopic submucosal dissection of a rectal carcinoid tumor using grasping type scissors forceps. World J Gastroenterol 2009; 15: 2162-2165

S-Editor Wu X L-Editor Roemmele A E-Editor Zhang DN