Crossover from directed percolation to compact directed percolation

J. F. F. Mendes1,(a), R. Dickman2,(b) and H. Hermann3,4,(c)

1Center for Polymer Studies and Physics Department, Boston University, Boston, MA 02215 and Department of Physics, University of Porto, Rua do Campo Alegre 687, 4150 Porto – Portugal

2Department of Physics and Astronomy, Herbert H. Lehman College, City University of New York, Bronx, New York 10468

3P.M.M.H. (U.R.A. 857), E.S.P.C.I. Paris, 10 rue Vauquelin, 75231 Paris, France

4ICA 1, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany

We study critical spreading in a surface-modified directed percolation model in which the left- and right-most sites have different occupation probabilities than in the bulk. As we vary the probability for growth at an edge, the critical exponents switch from the compact directed percolation class to ordinary directed percolation. We conclude that the nonuniversality observed in models with multiple absorbing configurations cannot be explained as a simple surface effect.

PACS numbers: 05.70.Jk, 05.50.+q, 64.60.-i, 02.50.-r

Recently, considerable effort has been devoted to understanding phase transitions in nonequilibrium systems. Many studies of models with a continuous transition to a unique absorbing state have established that such transitions belong generically to the class of directed percolation (DP) \cite{1}, as predicted by Janssen \cite{2}, Grassberger \cite{3}. DP has been of great interest since its introduction by Broadbent and Hammersley \cite{4}, and is relevant to a vast range of models in biology, chemistry and physics \cite{5,6,7}. Examples are catalytic reactions on surfaces \cite{8,4}, epidemics \cite{9}, transport in porous media \cite{10}, chemical reactions \cite{11,12}, self-organized criticality \cite{13,14}, electric current in a diluted diode network \cite{15}, Reggeon field theory \cite{16,17,18}, and more recently in damage spreading \cite{19,20}.

Unlike systems with a unique absorbing configuration, understanding of models with multiple absorbing configurations \cite{21,22,23} is far from complete. In such models the critical exponents that govern spreading from a seed vary continuously with the particle density in the initial configuration, and obey a generalized hyperscaling relation \cite{24}. The exponents assume the usual DP values only for initial configurations having the “natural” particle density — that of absorbing configurations generated by the system, running at the critical point. Nonuniversality in these models remains a puzzle. In searching for an explanation, and remarking that the exponents depend on the environment into which the population spreads, one is led to investigate whether nonuniversality is also produced by modifying the process at the surface of the active region. In this work we consider surface-modified DP in one spatial dimension, and find it does not show continuously-variable exponents, but rather a crossover between two different universality classes, compact and standard DP. Besides providing a simple example connecting the two classes, our study shows that the nonuniversality observed in systems with multiple absorbing states is not simply a surface effect.

In bond directed percolation on the square lattice, bonds connect each site \((x,t)\) with \((x,t-1)\) and \((x-1,t-1)\). Each bond is “wet” with probability \(p\); with probability \(1-p\) a bond is “dry”. Suppose the origin is the only wet site in the layer \(t=0\). One constructs the cluster \(C_0\) connected to the origin using the rule that \((x,t)\in C_0\) if it is connected, by a wet bond, to \((x,t-1)\) or \((x-1,t-1)\in C_0\). For \(p<p_c\) such clusters are finite with probability 1; for \(p>p_c\) there is a nonzero probability of a cluster growing indefinitely. The percolation threshold, \(p_c\), marks a continuous phase transition. The model is readily generalized by introducing conditional probabilities \(P(1|1,0)=P(1|0,1)=p_1\) and \(P(1|1,1)=p_2\) for site \((x,t)\) to be wet (\(=1\)), given the states of \((x,t-1)\) and \((x-1,t-1)\). \(P(1|0,0)=0\), naturally. The resulting Domany-Kinzel model exhibits a line of critical points in the DP class \cite{25}. The endpoint of this line, \((p_1=1/2, p_2=1)\), describes a transition outside the DP class; it corresponds instead to compact directed percolation (CDP) \cite{26}. The essential difference between DP and CDP is that in the latter, transitions from wet to dry cannot occur within a string of 1’s; the evolution of a string of 1’s is governed by a pair of random walks at its ends.

In the present work we study directed percolation on the centered square lattice, in which \((x,t)\) is connected to \((x-1,t-1)\), \((x,t-1)\), and \((x+1,t-1)\) by bonds.
that, as before, are wet with probability p (see Fig. 1). Earlier studies of this model\,[24–26], yielded a percolation threshold of $p_c = 0.5387 \pm 0.0003$. We now modify the probabilities for introducing wet sites at the surface of the active region. Suppose (x_R, t) is the rightmost wet site in layer t. We set the probability for $(x_R + 1, t + 1)$ to be wet at p' rather than p, and similarly for $(x_L - 1, t + 1)$, if (x_L, t) is the leftmost wet site in layer t. In Fig. 1, for example, the probabilities to introduce wet sites at A_1, A_2 and A_3, are p, p and p', respectively. (Similarly, we have probabilities p', p and p for introducing wet sites at B_1, B_2 and B_3.)

We used time-dependent simulations to study the critical behavior. The method involves starting with a single wet site at $t = 0$ and following the spread of wet sites in a large set of independent realizations. We measured the survival probability $P(t)$ (the probability that there is at least one wet site at time t), the average number of wet sites, $\bar{n}(t)$, and the average mean square distance of spreading from the origin, $\bar{R}^2(t)$. At criticality, these quantities follow power laws in the long-time limit, e.g., $P(t) \sim t^{-\delta}$, and similarly for the other quantities. In the subcritical phase ($p < p_c(p')$) the survival probability decays exponentially, while in the supercritical phase ($p > p_c(p')$) it approaches $P_\infty \equiv \lim_{t \to \infty} P(t) > 0$, the ultimate survival probability. If we allow the exponents to depend on the surface probability, p', the simplest generalization of the usual scaling hypothesis\,[22] is

$$P(t) \sim t^{-\delta(p')} \Phi(\Delta^{1/\nu}(p'))$$
$$\bar{n}(t) \sim t^{\delta(p')} \Theta(\Delta^{1/\nu}(p'))$$
$$\bar{R}^2(t) \sim t^{\gamma(p')} \Omega(\Delta^{1/\nu}(p'))$$

where $\Delta = |p - p_c(p')|$ measures the distance to the critical point and $\nu(p')$ is the critical exponent associated with the correlation length in the time direction ($\xi_t \sim \Delta^{-\nu(p')}$). Assuming that the scaling functions Φ, Θ and Ω are nonsingular at the critical point, it follows that $P(t)$, $\bar{n}(t)$, and $\bar{R}^2(t)$ follow pure power laws as $t \to \infty$. A log-log plot of P, \bar{n}, or \bar{R}^2 as a function of time should yield a straight line at $p = p_c(p')$, permitting one to determine $p_c(p')$ rather precisely. The exponents δ, η, and z are given by the asymptotic slopes of the corresponding plots. In addition, the exponent β' controlling the approach to the critical point of the survival probability, $P_\infty(p) \sim (p - p_c(p'))^z(p')$ may also depend on p'. Our results (see Fig. 2) show that the percolation threshold p_c increases with decreasing p' for $p' < p_c^{DP} = 0.53875$. This decrease in p' means that the percolating cone becomes narrow, and a larger value of p is needed for the cluster to survive.

Table 1 show how the exponents vary with p'. The mean number of wet sites in surviving trials is $N(t) = \bar{n}(t)/P(t)$, and the fractal dimension d_f of aggregates surviving to time t is defined through $N(t) \sim R^{d_f}$, yielding $d_f = 2(\delta + \eta)/z$. For DP $d_f = 0.752$. In the present study $d_f \approx 1$ for $p' < p_c^{DP}$, which means that for this range of p' the clusters are no longer fractal but compact.

![FIG. 2. Phase diagram in p-p' plane. The two regimes (CDP and DP) are shown.](image1.png)

![FIG. 3. The ultimate survival probability, P_∞, as a function of $p - p_c(p')$ in a log-log plot. The inset is a plot of P_∞ versus p. These results were obtained for $p' = 0.25$ and the slope of the line is $\beta = 1$.](image2.png)

p'	p_c	δ	η	$z/2$	β'
DP	0.1596(4)	0.312(2)	0.632(14)	0.2767(4)	
CDP	1/2	0	1	1	

The numbers in parentheses represent the uncertainty in the last digit(s).
mize the data collapse. For p = p' = 0.45, p = p' = 0.5387 and p = 0.9, p' = 0.1 respectively. Time increases downward.

Our numerical results indicate that the model exhibits a crossover from directed percolation to compact directed percolation as the surface growth rate, p', is varied. We can understand this by examining a surface-modified contact process (CP). The CP (in d space dimensions) is a sequentially-updated version of DP (in d + 1 dimensions). In the CP, each lattice site is either vacant or occupied by a particle. Particles die at unit rate, and give birth at rate λ. (In a birth event a new particle appears at one of the sites neighboring the parent, if that site is vacant.) The CP exhibits a phase transition in the DP class, as λ is increased through λc.

Now consider the one-dimensional CP, with xR and xL denoting the positions of the right- and left-most particles at any instant, and modify the rules so that the rate for a particle to appear at xR + 1, or at xL - 1, is λ'/2. If we let \(L = \langle x_R - x_L \rangle \), the mean being taken over all surviving trials at time t, starting from a single particle, then \(dL/dt = \lambda' - 2g \), where g is the mean distance from \(x_L \) to the next occupied site (and similarly at the right edge). If we set \(\lambda' = \lambda \), there is a critical point at \(\lambda_c \), in which case the interior density approaches zero as \(t \rightarrow \infty \). Since \(L \sim t^{z/2} \) at the critical point, \(dL/dt \rightarrow 0 \) as \(t \rightarrow \infty \) as well. (For \(\lambda < \lambda_c \), \(dL/dt < 0 \), and vice-versa.) Hence, for \(\lambda' = \lambda = \lambda_c \), g must tend to \(\lambda_c/2 \) at long times. The ultimate survival probability \(P_\infty \) can only be nonzero if \(dL/dt > 0 \) at any finite time. On the other hand, g is a decreasing function of \(\lambda' \) and \(\lambda' \). It follows that if \(\lambda' < \lambda = \lambda_c \), the process must die. We can compensate the reduced surface birth rate by increasing \(\lambda \), and should again have survival for \(g(\lambda, \lambda') \leq \lambda'/2 \).

Having forced \(\lambda > \lambda_c \), surviving trials are compact, i.e., have a nonzero particle density as \(t \rightarrow \infty \). The region between \(x_L \) and \(x_R \) is not simply a string of occupied sites, as it would be in CDP, but the scaling behavior should nonetheless be characteristic of compact growth. When the surface growth rate exceeds the bulk critical value, we expect a continuous (DP-like) transition at \(\lambda = \lambda_c \). For \(\lambda' > \lambda_c \), the advance of the edges may be enhanced at short times, but the process cannot survive for \(\lambda < \lambda_c \) because the interior approaches the vacuum. The density in surviving clusters is localized at the edges, so the number of particles remains \(O(1) \), and the process dies with probability 1. To summarize, our argument shows why surface-modified DP exhibits compact growth for \(p \geq p_c(p') \) when \(p' < p_c^{DP} \), and why there is a DP-like transition at \(p_c^{DP} \) for \(p' \geq p_c^{DP} \). As in CDP, the transition is first order for \(p' < p_c^{DP} \).

Clearly, the surface probability \(p' \) does not play the same role as the initial density in models with multiple absorbing configurations. Conversely, the continuously-variable exponents observed in the latter class of models cannot be explained as a simple surface effect. Finally,

From Fig. 3 we see that the exponent controlling the survival probability (\(\beta' = 0.97 \pm 0.04 \)) is very different from that of DP (\(\beta = \beta = 0.2767 \pm 0.0004 \)). For \(p' < p_c^{DP} \), we find \(\beta = 0 \), so that the generalized hyperscaling relation, \((1 + \beta'\beta')\delta + \eta = dz/2, \) becomes \(\delta + \eta = dz/2 \), which describes compact growth [3]. The data are indeed consistent with compact hyperscaling. (For the point nearest \(p_c \), \(p_\infty \) is obtained from data for \(t > 15000 \), averaged over \(10^5 \) independent runs.) Figure 4 shows the local slopes as a function of inverse time for \(p' = 0.25 \). Similar curves were obtained for the other values of \(p' \). (These results reflect averages over \(10^5 - 5 \times 10^5 \) independent trials, running to a maximum time of 2000 to 6000.) We also checked whether the scaling relations, Eqs (1) - (3), are obeyed, by varying \(\nu_\parallel \) to optimize the data collapse. For \(p' < p_c^{DP} \), we observe scaling for \(\nu_\parallel = 2 \), as expected for CDP.

\[\text{FIG. 5. Typical evolutions from a single wet site for } p = p' = 0.45, p = p' = 0.5387 	ext{ and } p = 0.9, p' = 0.1 \text{ respectively. Time increases downward.} \]

\[\text{FIG. 4. The local slopes } -\delta(t) \text{ (upper), } \eta(t) \text{ (middle), and } z(t)/2 \text{ (bottom), for the case } p' = 0.25. \text{ Each picture has five curves corresponding from bottom to top } p = 0.7506, 0.7508, 0.7510, 0.7514 \text{ and } 0.7516. \]
it is interesting to note that while the surface modification explored in the present work represents a nonlocal spatial interaction (x_R and x_L are defined globally), the dynamics of models with multiple absorbing configurations involves long memory effects [35].

Acknowledgments: JFFM gratefully acknowledges support from Fundação Luso Americana para o Desenvolvimento and PRAXIS XXI/BPD/6084/95. We thank S. Redner and J. A. M. Duarte for helpful discussions.

(a) Electronic address: jfmendes@sid3.bu.edu

(b) Electronic address: dickman@lcvax.lehman.cuny.edu

(c) Electronic address: hans@pmmh.espci.fr

[1] Various articles about directed percolation can be found in *Percolation Structures and Processes*, edited by G. Deutsher, R. Zallen and J. Adler, Annals of the Israel Physical Society, Vol. 5 (Hilger, Bristol, 1983).

[2] H. K. Janssen, Z. Phys. B 42, 151 (1981).

[3] P. Grassberger, Z. Phys. B 47, 365 (1982).

[4] G. Grinstein, Z-W. Lai and D. A. Browne, Phys. Rev. A 40, 4820 (1989).

[5] S. R. Broadbent and J. M. Hammersley, Proc. Camb. Philos. Soc. 53, 629 (1957).

[6] G. Nicolis and I. Prigogine, *Self-Organization in Nonequilibrium Systems* (Wiley-Interscience, New York, 1977).

[7] H. Haken, *Synergetics* (Springer-Verlag, New York, 1983).

[8] R. M. Ziff, E. Gullari and Y. Barshad, Phys. Rev. Lett. 56, 2553 (1986).

[9] T. E. Harris, Ann. Prob. 2, 969 (1974).

[10] K. De'Bell and J. W. Essam, J. Phys. A 16, 3145 (1983).

[11] F. Schlogl, Z. Phys. 252, 147 (1972).

[12] P. Grassberger and A. de La Torre, Ann. Phys. (New York) 122, 373 (1979).

[13] S. P. Obukov, Phys. Rev. Lett. 65, 1395 (1990).

[14] M. Paczuski, S. Maslov and P. Bak, Europhys. Lett. 27, 97 (1994).

[15] S. Redner and A. Brown, J. Phys. A 14, L285 (1981).

[16] V. N. Gribov, Zh. Eksp. Teor. Fiz. 53, 654 (1967) [Sov. Phys. JETP 26, 414 (1968)]; V. N. Gribov and A. A. Migdal, Zh. Eksp. Teor. Fiz. 55, 1498 (1968) [Sov. Phys. JETP 28, 784 (1969)].

[17] R. C. Brower, M. A. Furman and M. Moshe, Phys. Lett. 76B, 313 (1978).

[18] P. Grassberger and K. Sundemeyer, Phys. Lett. 77B, 220 (1978).

[19] P. Grassberger, J. Stat. Phys. 79, 13 (1995).

[20] U. Alon, M. R. Evans, H. Hinrichsen and D. Mukamel, cond-mat preprint 9512069.

[21] E. V. Albano, J. Phys. A: Math. Gen. 25, 2557 (1992).

[22] D. ben-Avraham and J. Köhler, J. Stat. Phys. 65, 839 (1992).

[23] I. Jensen, Phys. Rev. Lett. 70, 1465 (1993); I. Jensen and R. Dickman, Phys. Rev. E 48, 1710 (1993).

[24] J. F. F. Mendes, R. Dickman, M. Henkel and M. C. Marques, J. Phys. A 27, 3019 (1994).

[25] R. Dickman, Phys. Rev. E 53, 2223 (1996).

[26] E. Domany and W. Kinzel, Phys. Rev. Lett. 53, 311 (1984).

[27] J. W. Essam, J. Phys. A 22, 4927 (1989).

[28] Lei-Han Tang et al., Phys. Rev. A 45, R8309 (1992).

[29] J. A. M. Duarte et al., Physica A 189, 43 (1993).

[30] We denote this by β' instead of β, reserving the latter to denote the exponent controlling the density of wet sites: $\bar{\rho} \sim |p - p_c|^{\beta}$. Both exponents appear in the generalized hyperscaling relation.

[31] J. L. Cardy and R. L. Sugar, J. Phys. A 13, L423 (1980).

[32] I. Jensen and R. Dickman, J. Stat. Phys. 71, 89 (1993).

[33] R. J. Baxter and A. J. Guttmann, J. Phys. A 21, 3193 (1988).

[34] R. Dickman and A. Y. Tretyakov, Phys. Rev. E 52, 3218 (1995).

[35] M.A. Muñoz, G. Grinstein, R. Dickman, and R. Livi, Phys. Rev. Lett. 76, 451 (1996).