We present exact results for the spectra of three fermionic atoms in a single well of an optical lattice. For the three lowest hyperfine states of ^6Li atoms, we find a Borromean state across the region of the distinct pairwise Feshbach resonances. For ^{40}K atoms, nearby Feshbach resonances are known for two of the pairs, and a bound three-body state develops towards the positive scattering-length side. In addition, we study the sensitivity of our results to atomic details. The predicted few-body phenomena can be realized in optical lattices in the limit of low tunneling.

PACS numbers: 03.65.Ge; 21.45.+v; 05.30.Fk
Keywords: Few-body systems, Feshbach resonances, optical lattices

Introduction.– Experiments with cold atomic gases make it possible to study strong-interaction physics in a controlled manner. When an atomic gas is loaded into an optical lattice, typically a few atoms reside in each well. Therefore, optical lattices can be used to investigate few-body phenomena when the tunneling barrier between potential wells is high [1]. In dilute gases, the interactions are governed by the S-wave scattering length a, which can be tuned across atomic Feshbach resonances. Consequently, three-fermion problems in optical lattices can access nearly the entire landscape of fascinating few-body phenomena. When all scattering lengths are large, the few-body physics of dilute gases exhibits universal properties because there are no length scales associated with the interaction. These universal aspects stretch across physics: For example, the large scattering-length physics predicts a linear correlation for ground-state energies of few-helium clusters or light nuclei [2].

The first step towards realizing isolated few-atom systems was the formation of molecules from fermionic atoms in an optical lattice [3]. In addition, the ground-state energy of two particles in a single well of an optical lattice was measured across a Feshbach resonance [4]. The predicted few-body phenomena can be realized in optical lattices in the limit of low tunneling.

Three-fermion problems.– Across a Feshbach resonance the dependence of the scattering length on the magnetic field B is given by $a(B) = a_{bg}(1 - \Delta(B - B_{tr}))$ where B_{tr} and Δ are the position and width of the resonance and a_{bg} denotes the background scattering length. For ^6Li, the three trapped hyperfine states are the lowest magnetic sub-states: $|1\rangle = |F, m_F \rangle = |1/2, 1/2\rangle$, $|2\rangle = |1/2, -1/2\rangle$ and $|3\rangle = |3/2, -3/2\rangle$, with distinct Feshbach resonances, as shown in Fig. 1. The measured ground-state energies for ^6Li atoms in optical lattices are very rich, and the Bloch-Horowitz method employed here is ideally suited to identify the angular momenta of the states. The predicted few-body phenomena can be realized in optical lattices in the limit of low tunneling.
As shown in Fig. 2, nearly Feshbach resonances are present between the states 12 and 13, with Feshbach parameters: $B_{12} = 202.10 \text{ G}$ [10], $\Delta_{12} = 7.8 \text{ G}$ [12], $B_{13} = 224.21 \text{ G}$, $\Delta_{13} = 9.7 \text{ G}$ [11] and background scattering length $a_{\text{bg}} \approx 174 a_0$ [11].

We work with effective field-theory contact interactions regulated by separable cutoff functions [13]

$$V(p', p) = \frac{4\pi \hbar^2}{m} g(B, \Lambda) e^{-(p'^2 + p^2)/\Lambda^2},$$

where p and p' denote incoming and outgoing relative momenta, and the coupling $g(B, \Lambda)$ is determined from the scattering length through $g(B, \Lambda) = a(B)/(1 - \Lambda a(B)/\sqrt{2\pi})$. If a is weak ($a \sim R$, where R is the range of the interaction), it is possible to choose the cutoff in a wide range with $|\Lambda a| \ll 1$, and one recovers the standard pseudo-potential for low momenta $V(0, 0) = 4\pi \hbar^2 a/m$. The cutoff generates an effective range $r_e \sim 1/\Lambda$ and higher-order terms, which we render small with large cutoffs. In addition we can vary Λ. This probes neglected effective range effects and sensitivity to atomic details.

For the separable interaction, Eq. (1), the two-body problem in a harmonic oscillator potential can be solved exactly. Following Busch et al. [14], the intrinsic energy $E = e\hbar \omega$ is given by

$$2F_1\left(\frac{3}{4}, -\frac{3}{4}, \frac{7}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) + x = \frac{\sqrt{2\pi}}{a/b},$$

where $2F_1$ is the hypergeometric function, $x = \Lambda b$ and $b = \sqrt{\hbar/m\omega}$ is the oscillator length. For large cutoffs $x \to \infty$, we recover the result of Busch et al.,

$$\sqrt{2\Gamma(\frac{1}{2} - \frac{1}{2})/\Gamma(\frac{1}{2} - \frac{1}{2})} = b/a [14].$$

The energy from Eq. (2) is within 3% (or 7%) of the latter for $\Lambda a = 100$ and all scattering lengths except the tight-binding region $0 < a/b < 1$ (or 0.5). Typical well frequencies in optical lattices are $\nu \sim 100 \text{ kHz}$. Consequently, the oscillator length $b \sim 1000 a_0$ (a_0 denotes the Bohr radius) is large compared to the range of atomic interactions $R \sim 10 a_0$. Finally, the measured ground-state energies of two particles in a single well of an optical lattice agree very well with this result [3] even down to $|a/b| \approx 1$.

Bloch-Horowitz method. The spectrum for the intrinsic energy of three hyperfine states in a harmonic Hamiltonian

$$H = H_0 + V = \sum_{i=1}^{3} H_0(r_i) - H_{0,\text{cm}}(\mathbf{R}) + V_{12}(r_1, r_2) + V_{13}(r_1, r_3) + V_{23}(r_2, r_3),$$

where the noninteracting part is given by $H_0(r) = -\hbar^2 \nabla_r^2/2m + m\omega^2 r^2/2$ and $R = (r_1 + r_2 + r_3)/3$ denotes the center-of-mass (cm) coordinate ($H_{0,\text{cm}}$ uses mass $3m$). Within Jacobi coordinates, the eigenstates of H_0 are characterized by

$$H_0 |12, 3\rangle = (N + 3) \hbar \omega |12, 3\rangle.$$

Here, $12 = n_{12}$, l_{12}, m_{12} are the radial, angular and magnetic quantum numbers of the pair 12, and $3 = n_3$, l_3, m_3 refer to the quantum numbers of the third particle with respect to the cm of pair 12. We classify these noninteracting states $|N_i\rangle$ according to their principal quantum number $N = 2n_{12} + l_{12} + 2n_3 + l_3$, where the subindex i denotes all possible states for fixed total N.

We solve the three-body problem $(H_0 + V)|\psi(E)\rangle = E|\psi(E)\rangle$ using the Bloch-Horowitz (BH) approach [15] [16]. The BH method diagonalizes an effective Hamiltonian in a truncated space of $P = \sum_{N_i \leq N_{\text{max}}} |N_i\rangle/N_i\rangle$ low-energy excitations, such that the low-lying spectrum is exactly reproduced. Inserting $1 = P + Q$, we obtain the projections of the three-body Schrödinger equation:

$$P(H_0 + V)(P + Q)|\psi(E)\rangle = E_P|\psi(E)\rangle,$$

$$Q(H_0 + V)(P + Q)|\psi(E)\rangle = E_Q|\psi(E)\rangle.$$

Since $[P, H_0] = [Q, H_0] = 0$ and $PQ = 0$, we can solve Eq. (5) for $Q|\psi(E)\rangle = (E - H_0)^{-1} QV |\psi(E)\rangle$ and insert the latter into Eq. (4). This leads to the equivalent prob-
where the effective Hamiltonian \(H_{\text{eff}}(E) \) (given by the operator in parentheses in Eq. (7)) depends self-consistently on the energy \(E \) and exactly reproduces the low-lying spectrum, as long as the eigenstate has overlap with the truncated space \(P|\psi(E)\rangle \neq 0 \). Finally, we use a Faddeev decomposition \(|\psi(E)\rangle = (1 + P_{12} P_{13} + P_{12} P_{23})|\psi(E)\rangle_{12} \) to construct \(H_{\text{eff}}(E) (P_{ij} \) is the permutation operator).

The good quantum numbers of the interacting eigenstates are parity \(P \), total angular momentum \(L \) and projection \(L_z \); \(|\psi(E)\rangle = |E; P, L, L_z\rangle \). Here we solve the BH Eq. (7) in an uncoupled basis for \(L_z = 0 \) \((m_{12} = m_3 = 0)\). Since \(|E; P, L, L_z\rangle = \sum_L C_L(E; P, L_z)|E; P, L, L_z\rangle \), the resulting spectra automatically contain states with all possible angular momentum quantum numbers. We will use the BH overlap condition to identify their angular momenta. The BH method has been used to calculate the ground-state properties of light nuclei \(^6\text{Li} \), and as a check, we have reproduced the results of Stoll and Köhler for three identical bosons \(^6\text{Li} \). For the separable interaction, Eq. (1), it is possible to calculate the necessary BH two-body matrix elements analytically. In addition, we have found it sufficient to keep \(l_{12}, l_3 \leq 3 \).

Results.—The magnetic field dependence of the spectrum for three \(^6\text{Li} \) atoms in an optical lattice with \(\nu = 270 \text{ kHz} \) is shown in Fig. 1. The BH results are independent of \(N_{\text{max}} \). In particular, all states are present in the lowest \(N_{\text{max}} = 0 \) calculation (with \(l_{12} = l_3 = 0 \), and thus all positive parity states shown have angular momentum \(L = 0 \). The lowest negative parity state has \(L = 1 \).

We find a deeply-bound Borromean state \(B \) that exists on the negative scattering length side and extends across the Feshbach resonances. Note that there are many very deeply-bound two-body states present. This state can be viewed as a collective state within a schematic model \(^6\text{Li} \). For \(B > 75 \text{ mT} \), the excited and negative parity states depend very weakly on the magnetic field in Fig. 1 since the Feshbach resonances of \(a_{12} \) and \(a_{23} \) are very close and here this two-body energy is subtracted. The first excited \(N = 0 \) state at high magnetic fields. Similarly, the states \(E_{20} \) and \(E_{30} \) connect to the two \(N = 2 \) states with \(l_{12} = l_3 = 0 \), where the other three states of the noninteracting \(N = 2 \) multiplet are higher in energy since they are less sensitive to S-wave interactions.

In Fig. 2 we show the spectrum for three \(^{40}\text{K} \) atoms in an optical lattice with \(\nu = 100 \text{ kHz} \) versus magnetic field. In this case, there are two Feshbach resonances between pairs 12 and 13, and we have taken the third pair to be noninteracting \(a_{23} = 0 \) in this calculation. We find that a bound three-body state only develops towards the positive scattering-length side of both resonances. The three-body state is bound by the doubly-interacting particle \(1 \). The qualitative features of the spectrum do not depend on \(a_{23} \), and as a check, we have reproduced the results of Stoll and Köhler for three identical bosons \(^{40}\text{K} \).
repulsive $a_{23} = a_{bg} \approx 174 a_0$, the spectrum is moved up and the ground state becomes bound only for lower magnetic fields (see Fig. 4, note that the precise value of a_{23} has not been calculated).

Two of the states of Fig. 2 (E$_2$ and E$_4$) are not present in a $N_{\text{max}} = 0$ calculation, but exist for all larger $N_{\text{max}} \geq 2$, and thus have angular momentum $L = 2$. At high magnetic fields, we recover the five states adiabatically connected to $N = 2$ (note $l_{E2} = l_2 = 1$ can couple to $L = 0$, and also the avoided level crossing for two of the $L = 0$ states). For $B_0 = 209.9$ G, we have $a_{12}(B_0) = 0$, and the only interaction is for pair 13. Therefore, the low-lying states are $E_3 = E_{2,13}/3 - 3/2\hbar\omega = 2n_2 + l_2$ for the positive parity state (the excitation of the cluster 13 comes higher in energy; and $2n_2 + l_2 - 1$ with $-5/2\hbar\omega$ for P=-1), in agreement with Fig. 2. The states E$_2$ ($l_2 = 2$) and P=-1 ($l_2 = 1$) follow only the two-body energy of the right Feshbach resonance. Finally for $B > B_0$, the interaction between 12 becomes weakly repulsive, which requires $\Lambda_{12a} < \sqrt{2\pi}$. Our 40K results are for $\Lambda_{ab} = 100$, except $\Lambda_{12a_{bg}} = 1$ for $B > B_0$. For $\Lambda_{12a} < \sqrt{2\pi}$, we find a very weak cutoff dependence from the repulsive part of the 12 interaction.

We can vary the cutoff and thus probe the dependence of our results to the effects of an effective range and many-body interactions [13]. In Figs. 3 and 4 we show the cutoff dependence of the Borromean and first excited states for 6Li, and the ground state of the 40K three-body problem. While this excited state (and all others) are well converged, the ground state energies converge slower and show a sizeable dependence on Λ_{ab}, as the binding energy increases. Therefore, these states become sensitive to further atomic details, such as the effective range. Our results also indicate that there is no limit cycle in a harmonic oscillator potential with $b/R \lesssim 100$, and thus the power-counting of three-body interactions in the corresponding effective field theory (EFT) must change compared to free space. This may be important for a pionless EFT [13] for nuclei in an oscillator basis.

Conclusions. – Optical lattices open a frontier to controlled strong-interaction few-body physics, in addition to simulating condensed matter models. In this Letter, we investigated three-fermion problems in optical lattices for 6Li and 40K atoms using the BH method. For 6Li atoms, we find a Borromean state on the negative scattering-length side that extends across the Feshbach resonances. In contrast, for 40K atoms, one of the pairs interacts non-resonantly at the relevant magnetic fields, and a three-body state, bound by the doubly-interacting particle, develops towards the positive scattering-length side. While the quantitative results of the ground states are somewhat sensitive to atomic details, these features are independent thereof and also independent of the precise oscillator frequency. The three-fermion spectra are very rich, and we have identified the nature and angular momenta of all low-lying states. We predict a Borromean state in optical lattices under the conditions of overlapping or close Feshbach resonances for all pairs and attractive background scattering lengths.

We especially thank M. Köhl for many discussions. We also thank A. Bulgac, M. Forbes, C. Forssén, R. Furnstahl, V. Gueorguiev and H.-W. Hammer. This work was performed under the auspices of the US DOE by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48, and supported by the US DOE under Grant No. DE-FG02-97ER41014.

* E-mail: tluu@llnl.gov
1 E-mail: schweng@u.washington.edu

[1] D. Jaksch, et al., Phys. Rev. Lett. 89, 040402 (2002).
[2] E. Braaten and H.-W. Hammer, Phys. Rep. 428, 259 (2006).
[3] T. Stöferle, et al., Phys. Rev. Lett. 96, 030401 (2006).
[4] V.N. Efimov, Phys. Lett. 33B, 563 (1970); V.N. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971).
[5] T. Kraemer, et al., Nature 440, 315 (2006).
[6] M. Stoll and T. Köhler, Phys. Rev. A72, 022714 (2005).
[7] S. Jonsell, H. Heiselberg and C.J. Pethick, Phys. Rev. Lett. 89, 250401 (2002).
[8] M.V. Zhukov, et al., Phys. Rep. 231, 151 (1991).
[9] M. Bartenstein, et al., Phys. Rev. Lett. 94, 103201 (2005).
[10] C.A. Regal, M. Greiner and D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004); Phys. Rev. Lett. 92, 083201 (2004).
[11] C.A. Regal and D.S. Jin, Phys. Rev. Lett. 90, 230404 (2003).
[12] C.A. Regal, et al., Phys. Rev. Lett. 90, 053201 (2003).
[13] P.F. Bedaque and U. van Kolck, Ann. Rev. Nucl. Part. Sci. 52 (2002) 339.
[14] T. Busch, et al., Found. Phys. 28, 549 (1998).
[15] C. Bloch and J. Horowitz, Nucl. Phys. 8, 91 (1958).
[16] W.C. Haxton and C.-L. Song, Phys. Rev. Lett. 84, 5484 (2000); W.C. Haxton and T. Luu, Phys. Rev. Lett. 89, 182503 (2002).
[17] G.E. Brown and M. Bolsterli, Phys. Rev. Lett. 3, 472 (1959).