Constraining light sterile neutrino mass with the BICEP2/Keck Array 2014 B-mode polarization data

Shouvik Roy Choudhury, a,b,1 Sandhya Choubey a,b,c

a Harish-Chandra Research Institute
Chhatnag Road, Jhunsi, Allahabad 211019, India
b Homi Bhabha National Institute
Training School Complex, Anushaktinagar, Mumbai - 400094, India
E-mail: shouvikroychoudhury@hri.res.in, sandhya@hri.res.in

Abstract. We explore the thermal light sterile neutrino situation from cosmological perspective in the ΛCDM + $r_{0.05} + N_{\text{eff}} + m_{\text{eff},s}$ model using combinations of latest data sets available. Here, $r_{0.05}$ is the tensor-to-scalar ratio at the pivot scale of $k^* = 0.05 h \text{ Mpc}^{-1}$, N_{eff} is the effective number of relativistic species during recombination, and $m_{\text{eff},s}$ is the effective mass of the sterile neutrino assuming thermal distribution. Among Cosmic Microwave Background (CMB) datasets, we use Planck 2015 temperature and low-l ($l < 30$) polarization data and the latest data release on the B-mode polarization up to and including 2014 from the BICEP2/Keck collaboration (BK14). We also use the latest Baryon Acoustic Oscillations (BAO) data from SDSS-III BOSS DR12, MGS, and 6dFS; and a Gaussian prior (HST) on the Hubble constant ($H_0 = 73.24 \pm 1.74 \text{ km/sec/Mpc}$) from direct measurements by Hubble Space Telescope. We find that inclusion of BK14 data makes the constraints on the effective mass of sterile neutrino ($m_{\text{eff},s}$) slightly stronger by preferring higher σ_8 values. The bound of $m_{\text{eff},s} < 0.46 \text{ eV (95\% C.L.)}$ is found for the combination of Planck 2015, BAO and BK14 datasets, whereas the bound is $m_{\text{eff},s} < 0.53 \text{ eV (95\% C.L.)}$ without the BK14 data. Our most aggressive bound of $m_{\text{eff},s} < 0.28 \text{ eV (95\% C.L.)}$ is obtained with Planck 2015, HST and BK14. However, the HST prior also leads to very high N_{eff} which might be in conflict with bounds from Big Bang Nucleosynthesis. Our analysis indicates that fully thermalized sterile neutrinos with mass $\sim 1 \text{ eV}$ are slightly more disfavoured with the inclusion of BK14 data. It also seems to make the agreement between Planck 2015 and CFHTLenS (weak gravitational lensing data) worse due to the higher σ_8 values.

1 Corresponding author.
Sterile neutrinos still remain nothing short of an enigma in neutrino physics. Standard model predicts 3 massless neutrinos, while neutrino oscillation experiments have confirmed that neutrinos have mass, albeit very small. However, presence of anomalies in some short-baseline oscillation experiments [1–6] have been explained with an extra species of neutrino, namely a sterile neutrino, of mass \(\sim 1 \text{ eV} \), which amply mixes with the active neutrinos but is uncharged under the standard model gauge group. Again, there are analyses [7–15] which indicate that all the results cannot be explained comfortably with the sterile neutrino hypothesis. A recent result [16] from the MiniBooNE collaboration finds present electron neutrino and anti-neutrino appearance data still consistent with an extra sterile neutrino.

Apart from terrestrial oscillation experiments, in recent years, cosmology has become a very powerful probe of neutrino physics. In a situation where standard model of particle physics is augmented with only an extra sterile neutrino species, there are two parameters of utmost importance. One is the effective number of relativistic neutrino species, \(N_{\text{eff}} \), whose theoretically predicted value, considering only the standard model of particle physics with 3 massless active neutrinos is \(N_{\text{eff}}^{\text{SM}} = 3.046 \) [17, 18], but is supposed to increase when contribution from the sterile neutrino is counted. The other is the effective mass of the sterile neutrino, \(m_{s}^{\text{eff}} = \frac{\Delta N_{\text{eff}}}{N_{\text{eff}}^{3/4}} m_{s}^{\text{ph}} \), where \(\Delta N_{\text{eff}} = N_{\text{eff}} - 3.046 \) and \(m_{s}^{\text{ph}} \) is the physical mass of the sterile neutrino. Cosmology can provide strong constraints on these two parameters.

Provided we are only considering an extension to standard model with neutrino oscillations in a 3+1 scenario, as long as the sterile neutrino is of similar mass to an active neutrino and amply mixes with the active ones, its cosmological implications are identical to the active neutrino. Sufficient mixing will lead to almost complete thermalization [19, 20]. However, even if there is partial thermalization, it will, in general, increase \(N_{\text{eff}} \), leading to a delayed matter-radiation equality and a higher value of the Hubble parameter, \(H(z_{\text{dec}}) \), at the CMB decoupling (given other parameters are kept fixed). This has two main consequences [21] on the CMB anisotropy power spectrum, first being an increase of the first peak of the spectrum due to early Integrated Sachs Wolfe (ISW) effect, and the second being a horizontal shift of the peaks towards higher multipoles. Along with a horizontal shift, there will also be a vertical shift which will decrease the amplitude of the peaks at high multipoles, a phenomenon related to Silk damping. These effects of an additional relativistic sterile neutrino
can be partially compensated if other cosmological parameters are simultaneously varied. For example, if the total matter density ω_m is also increased without altering the baryon density, the redshift of matter-radiation equality can be kept fixed. These degeneracies tend to degrade the constraints on N_{eff}. However, the CMB spectrum won’t be exactly the same even after such adjustments with other parameters, especially because of the neutrino anisotropic stress arising from the quadrupole moment of the cosmic neutrino background temperature anisotropies which alters the gravitational potentials [22, 23]. Hence constraints can be put on N_{eff} from CMB data.

If a light sterile neutrino has a mass $\simeq 1$ eV, it only starts to become non-relativistic during CMB, and hence the effect of the mass is not strong on CMB. Sterile neutrinos with masses much smaller than 1 eV will have negligible effect on CMB. However, when CMB data is used with other cosmological observations like constraining the Hubble parameter from direct measurements via a Gaussian prior or using the Baryon Acoustic Oscillation (BAO) data or both, better bounds on the mass of the sterile neutrino can be obtained [24]. A plethora of papers [24–30] are available on the effects of neutrino masses on cosmology. Current bounds on sterile neutrinos from cosmological data imply that fully thermalized sterile neutrinos of mass $\simeq 1$ eV are disfavoured and can only be accommodated with partial thermalization. See previous analyses on constraining sterile neutrino properties with cosmological data [31–52].

In this paper, we have, for the first time, used the BK14 data, the latest data on the B-mode polarization of CMB from BICEP2/Keck collaboration, to constrain the parameters associated with sterile neutrinos in an extended ΛCDM model, which can be simply denoted with ΛCDM + $r_{0.05}$ + N_{eff} + m_{s}^eff. BK14 constrains the tensor-to-scalar ratio to $r_{0.05} < 0.07$ at 95% C.L, when combined with Planck 2015 and other datasets [53]; while exclusion of the BK14 data leads to a significantly less strong bound of $r_{0.05} < 0.12$ [54]. BK14 data also contains information on gravitational lensing. Thus we expect this data to affect the constraints on the sterile neutrino parameters. We also provide results with N_{eff} fixed at 4.046 and 3.5 separately, i.e., assuming full and partial thermalization of the sterile neutrinos respectively, and this model is denoted as ΛCDM + $r_{0.05}$ + m_{s}^eff.

This paper has the following structure: in Section 2 we provide details about our model parameters and other analysis details and briefly describe the datasets used, in Section 3 we provide the results of our analysis, and we conclude in Section 4.

2 Cosmological Analysis

2.1 Model

Below we list the vector of parameters we have varied in this work in two cosmological models.

For ΛCDM + $r_{0.05}$ + N_{eff} + m_{s}^eff model:

$$\theta \equiv [\omega_c, \omega_b, \Theta_s, \tau, n_s, \ln[10^{10} A_s], r_{0.05}, N_{\text{eff}}, m_{s}^\text{eff}].$$

(2.1)

For ΛCDM + $r_{0.05}$ + m_{s}^eff model:

$$\theta \equiv [\omega_c, \omega_b, \Theta_s, \tau, n_s, \ln[10^{10} A_s], r_{0.05}, m_{s}^\text{eff}].$$

(2.2)

with N_{eff} fixed to the value 4.046, which corresponds to full thermalization of the sterile neutrino with active neutrinos and to the value 3.5, which corresponds to partial thermalization.

The first six parameters correspond to the ΛCDM model. Here $\omega_c = \Omega_c h^2$ and $\omega_b = \Omega_b h^2$ are the physical cold dark matter and baryon densities at present, respectively. Θ_s is the
angular sound horizon, i.e., the ratio between sound horizon and the angular diameter distance at decoupling. \(\tau \) is the reionization optical depth. \(n_s \) and \(A_s \) are the power-law spectral index and power of the inflationary power spectrum, respectively, at the pivot scale of \(k_\ast = 0.05 h \) Mpc\(^{-1} \).

\(r_{0.05} \) is the tensor-to-scalar ratio, also defined at the pivot scale of \(k_\ast = 0.05 h \) Mpc\(^{-1} \).

\(N_{\text{eff}} \), effective number of species of neutrinos, is given by,

\[
N_{\text{eff}} = \frac{4 \pi^2}{15} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^2 N_{\text{eff}} \right] T_{\gamma}^4,
\]

where \(T_{\gamma} \) is the temperature of the photons and \(\rho_r \) is the radiation density. In our work, we have fixed the active neutrino sector to give a contribution of \(N_{\text{SM}}^{\text{eff}} = 3.046 \) to \(N_{\text{eff}} \), with two massless and one massive neutrino with mass of 0.06 eV. Thus the contribution to \(N_{\text{eff}} \) from the sterile species is simply \(\Delta N_{\text{eff}} = N_{\text{eff}} - 3.046 \). Note that while we use the value 3.046 which is predominant in literature, a recent study [55] had found \(N_{\text{SM}}^{\text{eff}} = 3.045 \).

When the sterile neutrino is relativistic at early times, assuming the only radiation species are photons and neutrinos, contribution of a light sterile neutrino to \(N_{\text{eff}} \) is given by [56],

\[
\Delta N_{\text{eff}} = \left[\frac{7 \pi^2}{8} T_{\nu} \right]^{-1} \frac{1}{\pi^2} \int dp \, p^3 \, f_s(p),
\]

where \(T_{\nu} \) is active neutrino temperature, \(p \) is the neutrino momentum, and \(f_s(p) \) is momentum distribution function of the sterile neutrino. At late times its energy density is parametrized as an effective mass [56, 57]:

\[
\omega_s \equiv \Omega_s h^2 = \frac{m_s^{\text{eff}}}{94.1 \text{eV}} = \frac{h^2 m_s^{\text{ph}}}{\pi^2 \rho_c} \int dp \, p^2 \, f_s(p),
\]

where \(\rho_c \) is the critical density, \(\Omega_s h^2 \) is the sterile neutrino energy density. Since sterile neutrinos don’t have electroweak interactions and they have mixing with the active neutrinos, they cannot decouple after the decoupling of active neutrinos. Active neutrinos decouple at a temperature \(T \sim 1 \) MeV, when all of them are relativistic. Hence \(f_s(p) \) doesn’t depend on the physical mass of the sterile neutrino, \(m_s^{\text{ph}} \). However \(f_s(p) \) depends on the production mechanism of the light sterile neutrino. If the production is through a thermal process, one can simply write \(f_s(p) = (e^{p/T_s} + 1)^{-1} \), the usual Fermi-Dirac distribution function, where \(T_s \) is the sterile neutrino temperature. In this case, it can be shown that,

\[
m_s^{\text{eff}} = \Delta N_{\text{eff}}^{3/4} m_s^{\text{ph}}, \quad \Delta N_{\text{eff}} = \left(\frac{T_s}{T_{\nu}} \right)^4.
\]

Non-thermal production, on the other hand, can lead to various possible scenarios. One of the popular scenarios is the Dodelson-Widrow (DW) mechanism [58], for which \(f_s(p) = \beta(e^{p/T_{\nu}} + 1)^{-1} \), where \(\beta \) is a normalization factor. In this case, one gets [56],

\[
m_s^{\text{eff}} = \Delta N_{\text{eff}} m_s^{\text{ph}}, \quad \Delta N_{\text{eff}} = \beta.
\]

So, the \(m_s^{\text{eff}} \) parametrization can accommodate two different scenarios of sterile neutrino production. Also notice that in the \(\Lambda \)CDM + \(r_{0.05} + m_s^{\text{eff}} \) model, fixing \(N_{\text{eff}} = 4.046 \) leads to \(m_s^{\text{eff}} \) being same as \(m_s^{\text{ph}} \).
In our work, we conduct a Bayesian analysis to derive constraints on the sterile neutrino parameters. For all the parameters listed in Eq. (2.1), and Eq. (2.2), we impose flat priors. We also limit the physical mass of the sterile neutrino to $m_{\nu_s}^{ph} \leq 10$ eV. The prior ranges are provided on the Table 1. We run chains using the November 2016 version of the Markov Chain Monte Carlo (MCMC) sampler CosmoMC [59] which incorporates CAMB [60] as the Boltzmann code and the Gelman and Rubin statistics [61] to estimate the convergence of chains.

Parameter	Prior
ω_c	[0.001, 0.99]
ω_b	[0.005, 0.1]
Θ_s	[0.5, 10]
τ	[0.01, 0.8]
n_s	[0.8, 1.2]
$\ln [10^{10} A_s]$	[2, 4]
$r_{0.05}$	[0.2]
N_{eff}	[3.046, 7]
$m_{\nu_s}^{\text{eff}}$	[0.3]

Table 1. Flat priors on cosmological parameters included in this work.

2.2 Datasets

We use separate combinations of the following datasets:

Cosmic Microwave Background: Planck 2015:

Measurements of the CMB temperature and low-l polarization from Planck 2015 [62] are used. We consider the high-l ($30 \leq l \leq 2508$) TT likelihood, and also the low-l ($2 \leq l \leq 29$) TT likelihood. We refer to this combination as TT. We also include the Planck polarization data in the low-l ($2 \leq l \leq 29$) likelihood, and denote this as lowP. We also use the Planck lensing potential measurements via reconstruction through the four-point correlation functions of the Planck CMB data [63]. We call this simply as lensing. Residual systematics may be present in the the Planck 2015 high-l polarization data [54], so we refrain from using it.

B Mode Polarization data of CMB:

Considering the B-mode polarization of CMB, we incorporate the most recent dataset publicly available from BICEP2/Keck collaboration which includes all data (multipole range: $20 < l < 330$) taken up to and including 2014 [53]. This dataset is referred to as BK14.

Baryon Acoustic Oscillations (BAO) Measurements and Related Galaxy Cluster data:

In this analysis, we include measurements of the BAO signal obtained from different galaxy surveys. We make use of the SDSS-III BOSS DR12 [64] LOWZ and CMASS galaxy samples at $z_{\text{eff}} = 0.38, 0.51$ and 0.61, the DR7 Main Galaxy Sample (MGS) at $z_{\text{eff}} = 0.15$ [65], and the 6dFGS survey at $z_{\text{eff}} = 0.106$ [66]. We call this complete combination as BAO. Here z_{eff} is the effective redshift of a survey.

Hubble Parameter Measurements:

We use a Gaussian prior of 73.24 ± 1.74 km/sec/Mpc on H_0, which is a recent 2.4% determination of the local value of the Hubble parameter by [67] which combines the anchor
In this section, we present the results for the ΛCDM model. The description of models and datasets are given at section 2.1 and section 2.2, respectively. We have presented the results, first in the ΛCDM + $r_{0.05}$ + N_{eff} + m_s^{eff} model, and then in the ΛCDM + $r_{0.05}$ + m_s^{eff} model. All the marginalized limits quoted in the text or tables are at 68% C.L. whereas upper limits are quoted at 95% C.L., unless otherwise specified.

3 Results

For convenience, we have separated the results in two subsections for the the two different models. The description of models and datasets are given at section 2.1 and section 2.2, respectively. We have presented the results, first in the ΛCDM + $r_{0.05}$ + N_{eff} + m_s^{eff} model, and then in the ΛCDM + $r_{0.05}$ + m_s^{eff} model. All the marginalized limits quoted in the text or tables are at 68% C.L. whereas upper limits are quoted at 95% C.L., unless otherwise specified.

3.1 Results for ΛCDM + $r_{0.05}$ + N_{eff} + m_s^{eff} model

In this section, we present the results for the ΛCDM + $r_{0.05}$ + N_{eff} + m_s^{eff} model. In Table 2 we have provided results without BK14 data, whereas, in Table 3, the results are with BK14, to compare. We have presented constraints on the three parameters $r_{0.05}$, N_{eff}, and m_s^{eff}, with which we have extended the ΛCDM model, and also two derived parameters H_0 and σ_8, which are important in constraining the sterile neutrino mass.

With only TT+lowP, we see that the bound on the sterile mass is relaxed at $m_s^{\text{eff}} < 0.78$ eV. The bound gets tightened with BAO data, which partially breaks the degeneracy between

Parameter	TT+lowP	TT+lowP	TT+lowP	TT+lowP	TT+lowP
m_s^{eff} (eV)	< 0.78	< 0.53	< 0.34	< 0.36	< 0.40
N_{eff}	< 3.78	< 3.75	3.63 ± 0.21	3.59 ± 0.22	3.60 ± 0.21
$r_{0.05}$	< 0.127	< 0.129	< 0.151	< 0.148	< 0.155
H_0 (km/sec/Mpc)	68.35±1.23	69.14±0.89	71.77±1.61	70.79±1.19	70.78 ± 1.21
σ_8	0.802±0.040	0.815±0.029	0.836±0.029	0.828±0.029	0.816±0.020

Table 2. Bounds on cosmological parameters in the ΛCDM + $r_{0.05}$ + N_{eff} + m_s^{eff} model without BK14 data. Marginalized limits are given at 68% C.L. whereas upper limits are given at 95% C.L. Note that H_0 and σ_8 are derived parameters.

Parameter	TT+lowP+BK14	TT+lowP+BK14	TT+lowP+BK14	TT+lowP+BK14	TT+lowP+BK14
m_s^{eff} (eV)	< 0.68	< 0.46	< 0.28	< 0.30	< 0.35
N_{eff}	< 3.76	< 3.74	3.63 ± 0.21	3.59 ± 0.21	3.59±0.21
$r_{0.05}$	< 0.068	< 0.070	< 0.073	< 0.072	< 0.078
H_0 (km/sec/Mpc)	68.31±1.25	69.16±0.95	71.73 ± 1.62	70.84 ± 1.20	70.75±1.17
σ_8	0.814±0.027	0.825±0.027	0.846±0.026	0.841±0.025	0.820±0.019

Table 3. Bounds on cosmological parameters in the ΛCDM + $r_{0.05}$ + N_{eff} + m_s^{eff} model with BK14 data. Marginalized limits are given at 68% C.L. whereas upper limits are given at 95% C.L. Note that H_0 and σ_8 are derived parameters.

NGC 4258, Milky Way and LMC Cepheids. We denote this prior as HST.
m_s^{eff} and H_0 present in the TT+lowP data, by rejecting lower values of H_0 [68, 69] and leads to a bound of $m_s^{\text{eff}} < 0.53$ eV. This effect can be seen pictorially in Figure 1 where addition of BAO data leads to a significantly smaller magnitude of anti-correlation between m_s^{eff} and H_0. The HST prior also breaks the degeneracy partially, as can be seen in Figure 1. However, the H_0 values preferred by the HST prior are larger than BAO, which leads to a preference to even smaller masses ($m_s^{\text{eff}} < 0.34$ eV) to keep the comoving distance to the surface of last scattering fixed [68]. Adding HST and BAO together with CMB however does not provide better bound than CMB+HST. Also, the lensing data degrades the bound on m_s^{eff}. We note that CMB and/or BAO data do not allow full thermalization of sterile neutrinos. However, at 95% C.L., with TT+lowP+HST, we obtained a $N_{\text{eff}} = 3.63^{+0.44}_{-0.42}$. Such high values of N_{eff} disallow the standard model prediction of $N_{\text{SM}}^{\text{eff}} = 3.046$ at 95% C.L. but allow $N_{\text{eff}} = 4.046$, i.e., full thermalization. On the other hand, it is also imperative to consider recent constraints on N_{eff} coming from Big Bang Nucleosynthesis (BBN). Planck 2018 results [70] have provided bound of $N_{\text{eff}} = 2.95^{+0.56}_{-0.52}$ (95% C.L.) (which is independent of the details of the CMB spectra at high multipoles) by combining the helium, deuterium, and BAO data with an almost model-independent prior on θ_s derived from Planck data. Another recent study on BBN [71] provide a tight bound of $N_{\text{eff}} = 2.90 \pm 0.22$ (68% C.L.), which means at at 95% C.L., there will be only a small overlap in the values of N_{eff} provided by [71] and TT+lowP+HST. Thus results with the HST prior have to be interpreted with care, especially since the results are mostly driven by the tension between Planck and local measurements of the value of H_0.

Since the main aim of this paper is to analyze the role of the BK14 data, Table 3 lists the bounds on the cosmological parameters, now with BK14 data included in each combination. The inclusion of the BK14 data seems to have almost no effect on the bounds of N_{eff} and H_0, as can be seen by comparing the results of Table 2 and Table 3. However, bounds on m_s^{eff} improve slightly across all data combinations. The 1-D marginalized posteriors for m_s^{eff} and $r_{0.05}$ for various datasets are shown in Figure 2. While for TT+lowP, we had $m_s^{\text{eff}} < 0.78$
eV, this bound improves to $m_8^{\text{eff}} < 0.68$ eV with TT+lowP+BK14. Addition of BAO data further improves this bound to $m_8^{\text{eff}} < 0.46$ eV. Our most aggressive bound in this paper comes with TT+lowP+BK14+HST: $m_8^{\text{eff}} < 0.28$ eV. BK14 data significantly constrains the tensor-to-scalar ratio, $r_{0.05}$. TT+lowP provides $r_{0.05} < 0.127$ whereas TT+lowP+BK14 gives a constraint of $r_{0.05} < 0.068$. However, we found only a very small correlation between $r_{0.05}$ and m_8^{eff}, and that does not explain the decrease in mass. In fact the correlation coefficient (defined as $R_{ij} \equiv C_{ij}/\sqrt{C_{ii}C_{jj}}$, where i and j are the two parameters being considered and C is the covariance matrix of cosmological parameters) between $r_{0.05}$ and m_8^{eff} to be $R_{r_{0.05},m_8^{\text{eff}}} = -0.08$ with TT+lowP and $R_{m_8^{\text{eff}},r_{0.05}} = +0.02$ with TT+lowP+BK14, i.e., there is no significant correlation before addition of BK14 and also no significant change after. However we also find slightly increased values of σ_8 across all data combinations when BK14 is included. For instance, for TT+lowP, we have $\sigma_8 = 0.802^{+0.049}_{-0.029}$, which increases to $\sigma_8 = 0.814^{+0.036}_{-0.027}$ with TT+lowP+BK14. Since σ_8 is the normalization of matter power spectrum on scales of $8h^{-1}$ Mpc, a higher σ_8 prefers lower sterile neutrino mass, as larger neutrino masses create larger suppressions in the matter power spectrum [24]. Thus σ_8 and m_8^{eff}, both are strongly anti-correlated. Indeed, we found $R_{\sigma_8,m_8^{\text{eff}}} = -0.84$ with TT+lowP and $R_{r_{0.05},m_8^{\text{eff}}} = -0.81$ with TT+lowP+BK14, and hence, even such small changes in σ_8 should also create small changes in m_8^{eff}, which we find is the case here. This has been depicted in Figure 3. Again, notice that the lensing data prefers a lower σ_8 value. As in Table 3, TT+lowP+BK14+HST+BAO yields $\sigma_8 = 0.841^{+0.025}_{-0.021}$, whereas adding the lensing data to this combination yields a lower $\sigma_8 = 0.820^{+0.019}_{-0.015}$. Due to the same anti-correlation between σ_8 and m_8^{eff}, we see that inclusion of lensing data degrades the m_8^{eff} bounds.

Overall, we can say that the BK14 data makes the case for fully thermalized eV scale sterile neutrinos slightly worse. Effect of BK14 data on sum of active neutrino masses ($\sum m_\nu$) was also studied by us recently in [68], in the ΛCDM+$r_{0.05}$+$\sum m_\nu$ model, where we had also found slightly increased σ_8. This is also indirectly confirmed by the recent Planck 2018 results, where they provide a bound of $\sum m_\nu < 0.12$ eV with Planck TT,TE,EE+lowE+lensing+BAO.
Figure 3. 1σ and 2σ marginalized contours for σ_8 vs. m_{eff} [eV] in the ΛCDM + $r_{0.05} + N_{\text{eff}} + m_{\text{eff}}$ model with the following combinations: TT+lowP and TT+lowP+BK14. Adding BK14 leads to slightly higher σ_8; and due to large anti-correlation present between σ_8 and m_{eff}, slightly stronger bound on m_{eff} is obtained.

data in ΛCDM + $\sum m_{\nu}$ model [70], whereas the bound is $\sum m_{\nu} < 0.11$ eV with Planck TT,TE,EE+lowE+lensing+BAO data in the ΛCDM + $r + \sum m_{\nu}$ model [72]. This similar effect was seen to persist even in a 12 parameter extended scenario in a recent study with non-phantom dynamical dark energy [73]. In this paper we have shown that such an effect is also present in an extended ΛCDM cosmology with light sterile neutrinos. CMB B-mode polarization has two known sources [74]. The first one is the inflationary gravitational waves (IGW), i.e., tensors (expected to produce a bump peaked around $l \simeq 80$, the so called ‘recombination bump’ in the BB-mode CMB spectra) as tensors induce quadrupole anisotropies in the CMB within the last scattering surface. The tensor signature cannot be reproduced by scalar perturbations, and the amplitude of the recombination bump depends on the tensor-to-scalar ratio. The second source is gravitational lensing by large scale structure. It leads to deflection of CMB photons at late times, which converts a small part of the E mode power into B mode. This lensing BB spectra is expected to have a peak around $l \simeq 1000$. The BICEP2/Keck experiment has a multipole range $20 < l < 330$ aiming to constrain the tensor-to-scalar ratio. However since $r_{0.05}$ and m_{eff} are only weakly correlated, the slightly stronger constraints on the neutrino masses is possibly coming from gravitational lensing information encoded in the BK14 data.

H_0 and σ_8 tensions:

It is also worth noting that in ΛCDM model, with TT+lowP, Planck collaboration [54] found that $H_0 = 67.31 \pm 0.96$ km/sec/Mpc, whereas in this ΛCDM + $r_{0.05} + N_{\text{eff}} + m_{\text{eff}}$ model we find $H_0 = 68.35^{+1.23}_{-2.50}$ km/sec/Mpc. This preference to larger values of H_0 decreases the more than 3σ tension present in the ΛCDM model, between Planck 2015 and HST. One of
the main reasons is that marginalizing over \(N_{\text{eff}} \), which allows for \(N_{\text{eff}} > 3.046 \) and higher \(N_{\text{eff}} \) values, prefer a higher \(H_0 \), to keep the acoustic scale parameter \(\theta_s \) fixed [54], which is very well constrained by Planck data. Thus \(H_0 \) and \(N_{\text{eff}} \) are strongly correlated.

The \(\Lambda \)CDM + \(r_{0.05} + N_{\text{eff}} + m_{s_{\text{eff}}} \) model also helps in reconciling the \(\sigma_8 \) tension present in the \(\sigma_8 - \Omega_m \) plane in \(\Lambda \)CDM model between Planck 2015 and weak lensing surveys, like CFHTLenS [75] and KiDS-450 [76]. For instance, the KiDS-450 survey constrains the quantity \(S_8 \equiv \sigma_8 \sqrt{\Omega_m/0.3} = 0.745 \pm 0.039 \) which has a 2.3\(\sigma \) tension with Planck TT+lowP, which prefers a much higher value of \(S_8 = 0.851 \pm 0.024 \) [54]. Planck data also prefers higher values of \(\sigma_8 \) compared to CFHTLenS. With TT+lowP in base \(\Lambda \)CDM model, one gets \(\sigma_8 = 0.829 \pm 0.014 \) [54]. However, in this \(\Lambda \)CDM + \(r_{0.05} + N_{\text{eff}} + m_{s_{\text{eff}}} \) model, with TT+lowP, we get \(\sigma_8 = 0.802^{+0.040}_{-0.029} \), which is much lower and thereby the conflict is decreased somewhat. We also get \(S_8 = 0.824^{+0.030}_{-0.027} \), which is better agreement with KiDS-450 than \(\Lambda \)CDM. However, the BK14 data prefers slightly higher \(\sigma_8 \) values and thereby increases the tension between Planck and these weak gravitational lensing surveys. This can be visualized in Figure 4, where we see that the inclusion of BK14 data drives the 2-D contours upwards to a small extent. We have used the CFHTLenS data with conservative cuts as described in [54].

Another important point is that while \(\Lambda \)CDM + \(r_{0.05} + N_{\text{eff}} + m_{s_{\text{eff}}} \) helps in relieving the \(H_0 \) and \(\sigma_8 \) tensions, the regions where these two reconciliations happen are different. In Figure 4, we can see that the regions where \(\sigma_8 \) has lower values, \(H_0 \) also has lower values, and similarly for their higher values. This in turn implies that the two conflicts are not resolved together in this model. And BK14 data worsens the conflicts even more. The HST prior also doesn’t help the issue here. As we can see from Tables 2 and 3, the inclusion of this Gaussian prior leads to a preference for much higher \(N_{\text{eff}} \) values, and higher \(\sigma_8 \) values as well, increasing the conflict.
Table 4. Bounds on a cosmological parameters in the ΛCDM + $r_{0.05} + m_s^{\text{eff}}$ model with $N_{\text{eff}} = 4.046$, assuming complete thermalization of sterile neutrinos. Marginalized limits are given at 68% C.L. whereas upper limits are given at 95% C.L. Note that H_0 and σ_8 are derived parameters.

Parameter	TT+lowP	TT+lowP+BK14
m_s^{eff} (eV)	< 0.66	< 0.50
$r_{0.05}$	< 0.175	< 0.076
H_0 (km/sec/Mpc)	$73.92^{+2.60}_{-1.37}$	$74.20^{+2.13}_{-1.28}$
σ_8	$0.840^{+0.049}_{-0.020}$	$0.857^{+0.039}_{-0.018}$

Table 5. Bounds on a cosmological parameters in the ΛCDM + $r_{0.05} + m_s^{\text{eff}}$ model with $N_{\text{eff}} = 3.5$, assuming partial thermalization of sterile neutrinos. Marginalized limits are given at 68% C.L. whereas upper limits are given at 95% C.L. Note that H_0 and σ_8 are derived parameters.

Parameter	TT+lowP	TT+lowP+BK14
m_s^{eff} (eV)	< 0.83	< 0.63
$r_{0.05}$	< 0.136	< 0.070
H_0 (km/sec/Mpc)	$69.04^{+2.15}_{-1.59}$	$69.25^{+1.94}_{-1.42}$
σ_8	$0.803^{+0.051}_{-0.025}$	$0.820^{+0.041}_{-0.021}$

3.2 Results for ΛCDM + $r_{0.05} + m_s^{\text{eff}}$ model

In this section we verify the stability of the results obtained in the previous section, by going to a smaller parameter space. We stop varying N_{eff} and fix its value to 4.046 and 3.5. The first one corresponds to complete thermalization of sterile neutrinos, while the later one corresponds to partial thermalization. We have restricted ourselves to CMB data only. For $N_{\text{eff}} = 4.046$ and $N_{\text{eff}} = 3.5$, the results are given in Tables 4 and 5 respectively.

We see that BK14 does help in obtaining better constraint on the sterile mass also in this reduced parameter space. For $N_{\text{eff}} = 4.046$, with TT+lowP, we get $m_s^{\text{eff}} < 0.66$ eV, whereas inclusion of BK14 leads to a tighter bound of $m_s^{\text{eff}} < 0.50$ eV. Similar case of strengthening of mass bound is seen with $N_{\text{eff}} = 3.5$, although these bounds are more relaxed compared to the case $N_{\text{eff}} = 4.046$, as a higher N_{eff} prefers a higher H_0. Again we see that the BK14 data itself does not affect the H_0 constraints much, but heavily constraints the tensor-to-scalar ratio, and also slightly increases the preferred σ_8 values. The main conclusions made in the previous section on the larger parameter space thus remains unchanged in this smaller parameter space.

It is imperative to note that for sterile neutrinos produced by a thermal process and obeying Eq. 2.6, for $N_{\text{eff}} = 4.046$, we have $m_s^{\text{ph}} = m_s^{\text{eff}}$, whereas for $N_{\text{eff}} = 3.5$, we have $m_s^{\text{ph}} = 1.8 m_s^{\text{eff}}$. Hence, for $N_{\text{eff}} = 3.5$ and with TT+lowP+BK14, we have a corresponding bound of $m_s^{\text{ph}} < 1.13$ eV. This implies that CMB data allows sterile neutrinos with mass $\simeq 1$ eV, but only with partial thermalization. We also find that, for TT+lowP+BK14, with $N_{\text{eff}} = 3.5$ we get an improved χ^2 fit: $\Delta \chi^2 = -7.25$, compared to $N_{\text{eff}} = 4.046$, which is not surprising as in the previous section we had seen that CMB data did not allow complete
4 Discussion

Short Baseline (SBL) Oscillation anomalies have hinted towards a fully thermalized sterile neutrino with mass around 1 eV. In this paper we have studied, for the first time, the light eV scale sterile neutrino situation in cosmology in light of the BICEP2/Keck array 2014 CMB B-mode polarization data, which is the latest data publicly available from the BICEP2/Keck collaboration. We call this dataset BK14. We first considered an extended-ΛCDM scenario with tensor perturbations and sterile neutrino parameters: ΛCDM + $r_{0.05} + N_{\text{eff}} + m_{s}^{\text{eff}}$ model. Apart from BK14, we have used Planck 2015 temperature and low-l polarization data (TT+lowP), latest BAO data and a Gaussian prior on the Hubble constant (HST) from local measurements. We find that inclusion of the BK14 data has almost no effect on the bounds of N_{eff} and H_0 but it strengthens the bounds on m_{s}^{eff} to a small extent by preferring slightly higher values of σ_8, with which m_{s}^{eff} is strongly anti-correlated. The BK14 data also tightly constraints the tensor-to-scalar ratio, $r_{0.05}$ but we find negligible correlation between $r_{0.05}$ and m_{s}^{eff}. This makes us think that the effect on mass is coming from the gravitational lensing information encoded in the B-mode polarization and not from the Inflationary Gravitational Waves. The bound of $m_{s}^{\text{eff}} < 0.46$ eV (95% C.L.) is found for the combination of Planck 2015, BAO and BK14 datasets, whereas the bound is $m_{s}^{\text{eff}} < 0.53$ eV (95% C.L.) without the BK14 data. Our most aggressive bound of $m_{s}^{\text{eff}} < 0.28$ eV (95% C.L.) is obtained with Planck 2015, HST and BK14. However, the HST prior also leads to high N_{eff} which allow full thermalization but are in conflict with bounds from Big Bang Nucleosynthesis and should be interpreted cautiously. Previous studies have indicated that fully thermalized sterile neutrinos with mass ~ 1 eV (as predicted by SBL experiments) are disfavoured by cosmological data. Our analysis indicates that it becomes slightly more disfavoured with the inclusion of BK14 data, due to tighter mass bounds. The BK14 data also seems to make the agreement between Planck 2015 and CFHTLenS (weak gravitational lensing data) worse due to the higher σ_8 values.

This tension between SBL and cosmological datasets has given rise to a number ideas to reconcile the eV-scale sterile neutrinos with cosmology. These include introduction of new "secret interactions" among sterile neutrinos which modifies the background potential and blocks thermalization [35, 48, 50, 77–83], modifications to the cosmic expansion rate at the time where sterile neutrinos are produced [84], large lepton asymmetry [85–87], time varying dark energy component [88], very low reheating temperature [89]. The recent results that have come from the MiniBooNE collaboration [16] have rekindled interest in the sterile neutrinos. Thus, there seems to be interesting and exciting times ahead in the realm of light sterile neutrinos in cosmology.

Acknowledgments

SRC thanks the cluster computing facility at HRI (http://cluster.hri.res.in). SRC also thanks Steen Hannestad for useful discussions. The authors would also like to thank the Department of Atomic Energy (DAE) Neutrino Project of HRI. This project has received funding from the European Union’s Horizon 2020 research and innovation programme InvisiblesPlus RISE under the Marie Sklodowska-Curie grant agreement No 690575. This project has received funding from the European Union’s Horizon 2020 research and innovation programme Elusives ITN under the Marie Sklodowska-Curie grant agreement No 674896.
References

[1] LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D64 (2001) 112007 [hep-ex/0104049].

[2] MINIBooNE collaboration, A. A. Aguilar-Arevalo et al., Improved Search for $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ Oscillations in the MINIBooNE Experiment, Phys. Rev. Lett. 110 (2013) 161801 [1303.2588].

[3] T. A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C83 (2011) 054615 [1101.2663].

[4] G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribier et al., The Reactor Antineutrino Anomaly, Phys. Rev. D83 (2011) 073006 [1101.2663].

[5] A. C. Hayes, J. L. Friar, G. T. Garvey, G. Jungman and G. Jonkmans, Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly, Phys. Rev. Lett. 112 (2014) 202501 [1309.4146].

[6] M. A. Acero, C. Giunti and M. Laveder, Limits on ν_e and anti-ν_e disappearance from Gallium and reactor experiments, Phys. Rev. D78 (2008) 073009 [0711.4222].

[7] J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett. 107 (2011) 091801 [1103.4570].

[8] J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, Sterile Neutrino Oscillations: The Global Picture, JHEP 05 (2013) 050 [1303.3011].

[9] J. M. Conrad, C. M. Ignarra, G. Karagiorgi, M. H. Shaevitz and J. Spitz, Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements, Adv. High Energy Phys. 2013 (2013) 163897 [1207.4765].

[10] J. R. Kristiansen, ø. Elgarøy, C. Giunti and M. Laveder, Cosmology with sterile neutrino masses from oscillation experiments, 1303.4654.

[11] C. Giunti, M. Laveder, Y. F. Li and H. W. Long, Pragmatic View of Short-Baseline Neutrino Oscillations, Phys. Rev. D88 (2013) 073008 [1308.5288].

[12] S. Gariazzo, C. Giunti, M. Laveder and Y. F. Li, Updated Global 3+1 Analysis of Short-Baseline Neutrino Oscillations, JHEP 06 (2017) 135 [1703.00860].

[13] F. Capozzi, C. Giunti, M. Laveder and A. Palazzo, Joint short- and long-baseline constraints on light sterile neutrinos, Phys. Rev. D95 (2017) 033006 [1612.07764].

[14] M. Dentler, Á. Hernández-Cabezudo, J. Kopp, M. Maltoni and T. Schwetz, Sterile neutrinos or flux uncertainties? – Status of the reactor anti-neutrino anomaly, JHEP 11 (2017) 099 [1709.04294].

[15] M. Dentler, Á. Hernández-Cabezudo, J. Kopp, P. Machado, M. Maltoni, I. Martinez-Soler et al., Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos, 1803.10661.

[16] MINIBooNE collaboration, A. A. Aguilar-Arevalo et al., Observation of a Significant Excess of Electron-Like Events in the MINIBooNE Short-Baseline Neutrino Experiment, 1805.12028.

[17] G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti and P. D. Serpico, Relic neutrino decoupling including flavour oscillations, Nuclear Physics B 729 (2005) 221 [arXiv:hep-ph/0506164].

[18] E. Grohs, G. M. Fuller, C. T. Kishimoto, M. W. Paris and A. Vlasenko, Neutrino energy transport in weak decoupling and big bang nucleosynthesis, Phys. Rev. D 93 (2016) 083522 [arXiv:1512.02205].
[19] S. Hannestad, I. Tamborra and T. Tram, Thermalisation of light sterile neutrinos in the early universe, JCAP 1207 (2012) 025 [1204.5861].

[20] A. Melchiorri, O. Mena, S. Palomares-Ruiz, S. Pascoli, A. Slosar and M. Sorel, Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: A Multi-Flavor Scheme Approach, JCAP 0901 (2009) 036 [0810.5133].

[21] M. Archidiacono, E. Giusarma, S. Hannestad and O. Mena, Cosmic dark radiation and neutrinos, Adv. High Energy Phys. 2013 (2013) 191047 [1307.0637].

[22] S. Bashinsky and U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering, Phys. Rev. D69 (2004) 083002 [astro-ph/0310198].

[23] J. Lesgourgues and S. Pastor, Neutrino cosmology and Planck, New J. Phys. 16 (2014) 065002 [1404.1740].

[24] J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, Phys. Rept. 429 (2006) 307 [astro-ph/0603494].

[25] Y. Y. Y. Wong, Neutrino mass in cosmology: status and prospects, Ann. Rev. Nucl. Part. Sci. 61 (2011) 69 [1111.1436].

[26] J. Lesgourgues and S. Pastor, Neutrino mass from Cosmology, Adv. High Energy Phys. 2012 (2012) 608515 [1212.6154].

[27] J. Hamann, S. Hannestad, G. G. Raffelt and Y. Y. Y. Wong, Sterile neutrinos with eV masses in cosmology: How disfavoured exactly?, JCAP 1109 (2011) 034 [1108.4136].

[28] P. Ko and Y. Tang, νAMDM: A model for sterile neutrino and dark matter reconciles cosmological and neutrino oscillation data after BICEP2, Phys. Lett. B739 (2014) 62 [1404.0236].

[29] M. Archidiacono, S. Hannestad, R. S. Hansen and T. Tram, Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model, Phys. Rev. D91 (2015) 065021 [1404.5915].

[30] M. Archidiacono, S. Hannestad, R. S. Hansen and T. Tram, Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model, Phys. Rev. D91 (2015) 065021 [1404.5915].

[31] Y.-H. Li, J.-F. Zhang and X. Zhang, Measuring growth index in a universe with sterile neutrinos, Phys. Lett. B739 (2014) 102 [1408.4603].
Y.-H. Li, J.-F. Zhang and X. Zhang, Probing $f(R)$ cosmology with sterile neutrinos via measurements of scale-dependent growth rate of structure, Phys. Lett. B744 (2015) 213 [1502.01136].

M. Archidiacono, N. Fornengo, C. Giunti and A. Melchiorri, Testing $3+1$ and $3+2$ neutrino mass models with cosmology and short baseline experiments, Phys. Rev. D86 (2012) 065028 [1207.6515].

M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri, Sterile neutrinos: Cosmology versus short-baseline experiments, Phys. Rev. D87 (2013) 125034 [1302.6720].

S. Gariazzo, C. Giunti and M. Laveder, Light Sterile Neutrinos in Cosmology and Short-Baseline Oscillation Experiments, JHEP 11 (2013) 211 [1309.3192].

C. Dvorkin, M. Wyman, D. H. Rudd and W. Hu, Neutrinos help reconcile Planck measurements with both the early and local Universe, Phys. Rev. D90 (2014) 083503 [1403.8049].

E. Giusarma, E. Di Valentino, M. Lattanzi, A. Melchiorri and O. Mena, Relic Neutrinos, thermal axions and cosmology in early 2014, Phys. Rev. D90 (2014) 043507 [1403.4852].

L. Feng, J.-F. Zhang and X. Zhang, A search for sterile neutrinos with the latest cosmological observations, Eur. Phys. J. C77 (2017) 418 [1703.04884].

L. Feng, J.-F. Zhang and X. Zhang, Searching for sterile neutrinos in dynamical dark energy cosmologies, Sci. China Phys. Mech. Astron. 61 (2018) 050411 [1706.06913].

L. Feng, J.-F. Zhang and X. Zhang, Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter, 1712.03418.

N. Song, M. C. Gonzalez-Garcia and J. Salvado, Cosmological constraints with self-interacting sterile neutrinos, 1805.08218.

A. Heavens, Y. Fantaye, E. Sellentin, H. Eggers, Z. Hosenie, S. Kroon et al., No evidence for extensions to the standard cosmological model, Phys. Rev. Lett. 119 (2017) 101301 [1704.03467].

F. Forastieri, M. Lattanzi, G. Mangano, A. Mirizzi, P. Natoli and N. Saviano, Cosmic microwave background constraints on secret interactions among sterile neutrinos, JCAP 1707 (2017) 038 [1704.00626].

M.-M. Zhao, D.-Z. He, J.-F. Zhang and X. Zhang, Search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of the Hubble constant, Phys. Rev. D96 (2017) 043520 [1703.08456].

S. Bridle, J. Elvin-Poole, J. Evans, S. Fernandez, P. Guzowski and S. Soldner-Rembold, A Combined View of Sterile-Neutrino Constraints from CMB and Neutrino Oscillation Measurements, Phys. Lett. B764 (2017) 322 [1607.00032].

BICEP2, Keck Array collaboration, P. A. R. Ade et al., Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band, Phys. Rev. Lett. 116 (2016) 031302 [1510.09217].

Planck collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [1502.01589].

P. F. de Salas and S. Pastor, Relic neutrino decoupling with flavour oscillations revisited, JCAP 1607 (2016) 051 [1606.06986].

M. A. Acero and J. Lesgourgues, Cosmological constraints on a light non-thermal sterile neutrino, Phys. Rev. D79 (2009) 045026 [0812.2249].

Planck collaboration, P. A. R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [1303.5076].
[58] S. Dodelson and L. M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287].

[59] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D66 (2002) 103511 [astro-ph/0205436].

[60] A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177].

[61] S. P. Brooks and A. Gelman, General Methods for Monitoring Convergence of Iterative Simulations, Journal of Computational and Graphical Statistics 7 (1998) 434.

[62] PLANCK collaboration, R. Adam et al., Planck 2015 results. I. Overview of products and scientific results, Astron. Astrophys. 594 (2016) A1 [1502.01582].

[63] PLANCK collaboration, P. A. R. Ade et al., Planck 2015 results. XV. Gravitational lensing, Astron. Astrophys. 594 (2016) A15 [1502.01591].

[64] BOSS collaboration, S. Alam et al., The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470 (2017) 2617 [1607.03155].

[65] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. Manera, The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449 (2015) 835 [1409.3242].

[66] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell et al., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017 [1006.3366].

[67] A. G. Riess et al., A 2.4% Determination of the Local Value of the Hubble Constant, Astrophys. J. 826 (2016) 56 [1604.01424].

[68] S. R. Choudhury and S. Choubey, Updated Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios, 1806.10832.

[69] Z. Hou et al., Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500 deg^2 SPT-SZ Survey, Astrophys. J. 782 (2014) 74 [1212.6267].

[70] PLANCK collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, 1807.06209.

[71] A. Peimbert, M. Peimbert and V. Luridiana, The primordial helium abundance and the number of neutrino families, Rev. Mex. Astron. Astrofis. 52 (2016) 419 [1608.02062].

[72] PLANCK collaboration, Y. Akrami et al., Planck 2018 results. X. Constraints on inflation, 1807.06211.

[73] S. R. Choudhury and A. Naskar, Bounds on Sum of Neutrino Masses in a 12 Parameter Extended Scenario with Non-Phantom Dynamical Dark Energy (w(z) ≥ -1), 1807.02860.

[74] BICEP2 collaboration, P. A. R. Ade et al., Detection of B-Mode Polarization at Degree Angular Scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [1403.3985].

[75] C. Heymans et al., CFHTLenS: The Canada-France-Hawaii Telescope Lensing Survey, Mon. Not. Roy. Astron. Soc. 427 (2012) 146 [1210.0032].

[76] H. Hildebrandt et al., KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing, Mon. Not. Roy. Astron. Soc. 465 (2017) 1454 [1606.05338].

[77] L. Bento and Z. Berezhiani, Blocking active sterile neutrino oscillations in the early universe with a Majoron field, Phys. Rev. D64 (2001) 115015 [hep-ph/0108064].

[78] B. Dasgupta and J. Kopp, Cosmologically Safe eV-Scale Sterile Neutrinos and Improved Dark Matter Structure, Phys. Rev. Lett. 112 (2014) 031803 [1310.6337].
[79] S. Hannestad, R. S. Hansen and T. Tram, How Self-Interactions can Reconcile Sterile Neutrinos with Cosmology, Phys. Rev. Lett. 112 (2014) 031802 [1310.5926].

[80] M. Archidiacono, S. Gariazzo, C. Giunti, S. Hannestad, R. Hansen, M. Laveder et al., Pseudoscalar–sterile neutrino interactions: reconciling the cosmos with neutrino oscillations, JCAP 1608 (2016) 067 [1606.07673].

[81] X. Chu, B. Dasgupta and J. Kopp, Sterile neutrinos with secret interactions–lasting friendship with cosmology, JCAP 1510 (2015) 011 [1505.02795].

[82] N. Saviano, O. Pisanti, G. Mangano and A. Mirizzi, Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis, Phys. Rev. D90 (2014) 113009 [1409.1680].

[83] Y. S. Jeong, S. Palomares-Ruiz, M. H. Reno and I. Sarcevic, Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background, JCAP 1806 (2018) 019 [1803.04541].

[84] T. Rehagen and G. B. Gelmini, Effects of kination and scalar-tensor cosmologies on sterile neutrinos, JCAP 1406 (2014) 044 [1402.0607].

[85] R. Foot and R. R. Volkas, Reconciling sterile neutrinos with big bang nucleosynthesis, Phys. Rev. Lett. 75 (1995) 4350 [hep-ph/9508275].

[86] Y.-Z. Chu and M. Cirelli, Sterile neutrinos, lepton asymmetries, primordial elements: How much of each?, Phys. Rev. D74 (2006) 085015 [astro-ph/0608206].

[87] N. Saviano, A. Mirizzi, O. Pisanti, P. D. Serpico, G. Mangano and G. Miele, Multi-momentum and multi-flavour active-sterile neutrino oscillations in the early universe: role of neutrino asymmetries and effects on nucleosynthesis, Phys. Rev. D87 (2013) 073006 [1302.1200].

[88] E. Giusarma, M. Archidiacono, R. de Putter, A. Melchiorri and O. Mena, Sterile neutrino models and nonminimal cosmologies, Phys. Rev. D85 (2012) 083522 [1112.4661].

[89] G. Gelmini, S. Palomares-Ruiz and S. Pascoli, Low reheating temperature and the visible sterile neutrino, Phys. Rev. Lett. 93 (2004) 081302 [astro-ph/0403323].