GAUSSIAN QUADRATURE OF $\int_0^1 f(x) \log^m(x) dx$ AND $\int_{-1}^1 f(x) \cos(\pi x/2) dx$

RICHARD J. MATHAR

ABSTRACT. We tabulate the abscissae and associated weights for numerical integration of integrals with either the singular weight function $(-\log x)^m$ for exponents $m = 1, 2$ or 3, or the symmetric weight function $\cos(\pi x/2)$. Standard brute force arithmetics generates explicit pairs of these values for up to 128 nodes.

1. Methodology

The paper provides abscissae x_i and weights w_i for Gaussian integration with a power of a logarithm in the integral kernel on one hand,

$$\int_0^1 f(x)(-\log x)^m dx \approx \sum_{i=1}^N w_i f(x_i),$$

or with a cosine in the integral kernel on the other,

$$\int_{-1}^1 f(x) \cos(\pi x/2) dx \approx \sum_{i=1}^N w_i f(x_i).$$

The w_i and x_i are computed with the standard theory from roots of a system of orthogonal polynomials p_n with norm [6, 12, 14]

$$\langle f, g \rangle \equiv \int_0^1 f(x)g(x)(-\log x)^m dx,$$

and

$$\langle f, g \rangle \equiv \int_{-1}^1 f(x)g(x) \cos \frac{\pi x}{2} dx,$$

respectively. A set of orthogonal (monic) polynomials $p_n(x)$ is bootstrapped from

$$p_{-1}(x) = 0; \quad p_0(x) = 1; \quad p_{n+1}(x) = (x - a_n)p_n(x) - b_n p_{n-1}(x).$$

[Dependence of polynomials and coefficients a and b on the parameter m in the case (1) is not written down explicitly here.] Multiplication of the recurrence with p_n or p_{n-1} and using the requirement of orthogonality proposes to calculate the coefficients and polynomials recursively with

$$a_n = \frac{\langle xp_n, p_n \rangle}{\langle p_n, p_n \rangle}.$$
\(b_0 = 0; \quad b_n = \frac{x p_n, p_{n-1}}{p_{n-1}, p_{n-1}} \quad (n > 0). \)

Remark 1. In cases like (2) where the weight in the integral is an even function and the integral limits are symmetric, all \(a_n \) are zero.

The standard further steps are

- normalization of the polynomials such that their norm is unity,

\[
\begin{align*}
 p^*_n(x) &\equiv \frac{p_n(x)}{\sqrt{\langle p_n, p_n \rangle}} \\
\end{align*}
\]

- computation of all zeros \(x_i \) of \(p_N(x) \) at some degree \(N \).

- computation of the weights \(w_i \) by

\[
 w_i = -\frac{[x^{N+1}] p^*_{N+1}}{[x^N] p^*_N} \frac{1}{p^*_{N+1}(x_i)p^*_N(x_i)},
\]

where \([x^{N+1}] p^*_{N+1}\) and \([x^N] p^*_N\) are the leading coefficients of the two polynomials after normalization, and where the prime at \(p' \) denotes the derivative with respect to \(x \).

We obviously add no new aspect to the established theory. The benefit is to those readers who need explicit abscissae-weight pairs and have no access to a multi-precision numeric library.

2. Logarithmic Kernel

The first part of the results extends tables that have been published in the literature for exponent \(m = 1 \), namely by Anderson for \(N \) up to 10 [2], by Danloy for \(N = 10 \) and \(N = 20 \) [5], and by King for \(N = 20 \) and \(N = 30 \) [9].

Remark 2. The variable substitution \(x = e^{-y} \) changes the format to

\[
 \int_0^1 f(x)(-\log x)^m dx = \int_0^\infty f(e^{-y})y^m e^{-y} dy
\]

which is alternatively evaluated with Gauss-Laguerre quadratures [1, (25.4.38)] [3, 13].

Integrals of the form (3) are calculated for the polynomials that appear in the recurrence (5) term-by-term with the aid of the moments \(\mu \) [7, 2.722],

\[
 \mu_{n,m} \equiv \int_0^1 x^n(-\log x)^m dx = \frac{m!}{(n+1)^{m+1}}.
\]
The first polynomials $p_{n,m}(x)$ look as follows:

(12) $p_{1,1} = x - 1/4$;

(13) $p_{2,1} = x^2 - 5/7x + \frac{17}{252}$;

(14) $p_{3,1} = x^3 - \frac{3105}{2588}x^2 + \frac{5751}{16175}x - \frac{4679}{258800}$;

(15) $p_{1,2} = x - 1/8$;

(16) $p_{2,2} = x^2 - \frac{19}{37}x + \frac{217}{7992}$;

(17) $p_{3,2} = x^3 - \frac{1632663}{1695176}x^2 + \frac{5619807}{26487125}x - \frac{1568083}{242168000}$;

(18) $p_{1,3} = x - 1/16$;

(19) $p_{2,3} = x^2 - \frac{13}{35}x + \frac{493}{45360}$;

(20) $p_{3,3} = x^3 - \frac{129197997}{166534960}x^2 + \frac{447011999}{32526359375}x - \frac{19126701359}{8326748000000}$.

$p_{2,1}$ in particular has been written down earlier [11]. Two generic values are

(21) $p_{1,m} = x - 2^{-1-m}$;

(22) $p_{2,m} = x^2 + \frac{-2^{m+1} + 3^{m+1}}{3^{m+1} - 4^{m+1}}x + \frac{-3^{m+2} - 1-m + 4^{m+3}-1-m}{3^{m+1} - 4^{m+1}}$.

The results are summarized in the ASCII files $\log N m$ in the ancillary directory, where N covers the range 3 to 128 and m covers powers from 1 to 3. Each line contains a pair (x_i, w_i). For improved readability, a blank line is inserted after each block of 5 nodes. The numbers have been stabilized to the 30 digits shown by cranking up the internal representation of numbers in a Maple program to 270 digits.

Remark 3. Related approximative cubatures where polynomials are not only multiplied by also added to the logarithm in the kernel have also been discussed [8, 4, 10].

3. Cosine kernel

The tools to assemble (2) start from repeated partial integration of [7, 3.761]

\[
\int_0^{x/2} x^m \cos x \, dx = \sum_{k=0}^{\lfloor m/2 \rfloor} (-1)^k \frac{m!}{(m-2k)!} \left(\frac{\pi}{2} \right)^{m-2k} + (-1)^{\lfloor m/2 \rfloor} m! (\frac{m}{2} - m),
\]

for non-negative integer m. The even moments are therefore

\[
\mu_{2m} = \int_{-1}^{1} x^{2m} \cos(x\pi/2) \, dx = 2(2m)! \sum_{k=0}^{m} (-1)^k \frac{1}{(2m-2k)!} \left(\frac{2}{\pi} \right)^{2k+1}
= \frac{4}{\pi} \, \text{F}_0 \left(-m + \frac{1}{2}, -m, 1 \mid -\frac{16}{\pi^2} \right).
\]
The odd moments are zero because the cosine is an even function. The monic orthogonal polynomials start
\begin{align*}
p_0 &= 1; \quad p_1 = x; \quad (25) \\
p_2 &= x^2 - 1 + \frac{8}{\pi^2}; \quad (26) \\
p_3 &= x^3 - \frac{\pi^4 - 48\pi^2 + 384}{(\pi^2 - 8)\pi^2} x; \quad (27) \\
p_4 &= x^4 - 2\frac{\pi^4 - 78\pi^2 + 672}{\pi^2(\pi^2 - 10)} x^2 + \frac{\pi^6 - 114\pi^4 + 1728\pi^2 - 6912}{\pi^4(\pi^2 - 10)} x; \quad (28)
\end{align*}
and have parities \(p_{-n}(x) = (-1)^n p_n(x) \).

The results are summarized in the ASCII files \(\text{cosine}_N \) in the ancillary directory, where \(N \) covers the range 3 to 128. The numbers have been stabilized to the 30 digits shown by an internal representation of numbers in a Maple program with 650 digits.

Only the values with positive \(x_i \) or \(x_i = 0 \) are tabulated; the duplicates of the nodes at the negative abscissae (with the same weights) are not added explicitly.

References

1. Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions, 9th ed., Dover Publications, New York, 1972. MR 0167642 (29 #4914)
2. Donald G. Anderson, Gaussian quadrature for \(\int_0^1 -\ln(x) f(x) dx \), Math. Comput. 19 (1965), 477–481. MR 0178569
3. J. S. R. Chisholm and A. Genz, Accelerated convergence of sequences of quadrature approximations, J. Comput. Phys. 10 (1972), no. 2, 284–307. MR 0326998
4. John A. Crow, Quadrature of integrands with a logarithmic singularity, Math. Comput. 60 (1993), no. 201, 297–301.
5. Bernard Danloy, Numerical construction of gaussian quadrature formulas for \(\int_0^1 (-\log x) x^\alpha f(x) dx \) and \(\int_0^\infty e^{-x} f(x) dx \), Math. Comp. 27 (1973), no. 124, 861–869. MR 0331730
6. Gene H. Golub and John H. Welsch, Calculation of Gauss Quadrature Rules, Math. Comp. 23 (1969), no. 106, 221–230. MR 0245201 (39 #6513)
7. I. Gradshteyn and I. Ryzhik, Summen-, Produkt- und Integraltafeln, 1st ed., Harri Deutsch, Thun, 1981. MR 0671418 (83i:00012)
8. C. G. Harris and W. A. B. Evans, Extension of numerical quadrature formulas to cater for end point singular behaviours over finite intervals, Int. J. Computer Math. B 6 (1977), 219–227.
9. Frederick W. King, Efficient numerical approach to the evaluation of Kramers-Kronig transforms, J. Opt. Soc. Am. B 19 (2002), no. 10, 2427–2436. MR 1945703
10. P. Kolm and V. Rokhlin, Numerical quadratures for singular and hypersingular integrals, Comp. Math. Appl. 41 (1941), no. 3–4, 327–352.
11. Meng H. Lean and A. Wexler, Accurate numerical integration of singular boundary element kernels over boundaries with curvature, Int. J. Num. Meth. Engin. 21 (1985), no. 2, 211–228. MR 0784707
12. Yudell L. Luke, Bing Yuan Ting, and Marilyn J. Kemp, On generalized Gaussian quadrature, Math. Comp. 29 (1975), no. 132, 1083–1093. MR 0388740 (52 #9574)
13. Herbert E. Salzer, Lagrangean interpolation at the Chebyshev points \(x_{n,\nu} = \cos(\nu\pi/n) \), \(\nu = 0(1)\); some unnoted advantages, Comp. J. 15 (1972), no. 2, 156–159. MR 0315865 (47 #4414)
14. P. Wynn, A general system of orthogonal polynomials, Quart. J. Math. Oxford 18 (1967), no. 1, 81–96. MR 0210963 (35 #1848)

E-mail address: mathar@mpia.de
URL: http://www.mpia.de/~mathar

HÖRSCHSTR. 7, 52372 KREUZAU, GERMANY