Ductal carcinoma in situ of the male breast: clinical radiological features and management in a cancer referral center

Luca Nicosia1 · Germana Lissidini2 · Manuela Sargenti2 · Anna Carla Bozzini1 · Gabriel Farante2 · José Vila3 · Chiara Oriecuia4,5 · Eleonora Pagan6 · Vincenzo Bagnardi7 · Matteo Lazzeroni7 · Filippo Pesapane1 · Claudia Sangalli8 · Viviana Galimberti2 · Enrico Cassano1 · Paolo Veronesi2,9

Received: 4 May 2022 / Accepted: 12 July 2022 / Published online: 17 September 2022 © The Author(s) 2022

Abstract
Purpose To present an overview of the management of male patients with Ductal Carcinoma In Situ of the breast (male DCIS).
Methods We retrospectively studied all male patients with a diagnosis of pure DCIS from January 1999 to December 2018: 20 patients were identified in our cancer referral center. We collected data regarding clinical presentation, age of onset, radiological features, receptor status of the neoplasm, histological type, and the follow-up of those patients.
Results The median age was 62 years (range 21–80). All patients underwent surgery, in 15/20 (75%) cases a mastectomy was carried out. Two patients (10%) underwent endocrine treatment and 1/20 (5%) underwent radiotherapy. The receptor status for 15/20 patients was documented: 13/15 patients were ER+/Pr+. In 3 cases the Ki 67% was positive (i.e., > 20%). All cases were negative for Her2. The median follow-up time was 9.0 years (IQR 4.0–13.7). Only one patient had an ipsilateral recurrence with the finding of an infiltrating carcinoma in the same breast after 14 years. The 5-year disease-free survival was 92.9%.
Conclusion Pure DCIS in men is an extremely rare disease: proper diagnosis and management allow an excellent prognosis.

Keywords Male DCIS · Breast · Disease-free survival · Surgery

Introduction
Breast cancer in women is still, nowadays, one of the most dangerous and frequent malignancies, accounting for 12% of all new annual cancer cases worldwide [1, 2]. Conversely, male breast cancer is a rare disease and comprises only about 1% of all male malignancies, with an annual incidence in Europe of around 1/100,000 men [3, 4].

Ductal carcinoma in situ (DCIS) of the breast is defined as a lesion confined to the breast ducts, without invasive features or metastatic potential [5, 6]. Pure DCIS represents...
approximately 10% of all male breast cancers and less than 0.1% of all types of cancers in men [7].

The early diagnosis of male carcinoma in situ and adequate clinical therapeutic management is essential to avoid the evolution to a worse type of disease (e.g., infiltrating carcinoma).

Considering the rarity of this disease, little data is available and very few case studies have been published [7, 8]: any work presenting diagnostic, clinical, and therapeutic options can be valuable for the adequate management of those patients.

The aim of this paper is to present an overview of our patient management: the most common clinical and radiological manifestations, the most common receptor status. We also want to present follow-up data over a long period of time. Greater awareness of this rare disease, with potentially important implications, can help in standardizing the proper management of this type of patient.

Methods

This retrospective study was registered with the Ethics Committee and was approved by the Institutional Review Board. We retrospectively studied all male patients with a diagnosis of pure DCIS from January 1999 to December 2018: 20 patients were identified in our cancer referral center (European Institute of Oncology Milano). We included in the study all male patients with a histological diagnosis (at surgery) of pure breast DCIS. We collected data regarding the clinical presentation, radiological presentation, age of onset, histological type, receptor status of the neoplasm, treatment and the follow-up of those patients. We excluded patients without a pure breast DCIS (for example with infiltrating components), and patients who were not operated or who did not have complete follow-up data. A flow chart of the study’s inclusion and exclusion criteria is shown in Fig. 1.

Statistical analysis

Continuous variables were shown as means or medians with interquartile ranges (IQR) or min–max ranges, dichotomous variables as counts and percentages.

Endpoints evaluated were disease-free survival (DFS) and overall survival (OS). DFS was defined as the time from surgery until local recurrence, metastasis, other primary carcinomas, or death, whichever occurred first. OS was defined as the time from surgery until death (from any cause). The OS and DFS functions were estimated with the Kaplan–Meier method.

Statistical analyses were performed using SAS statistical software version 9.4 (SAS Institute, Inc., Cary, NC, USA).

Results

On a series of 233 patients with male breast cancer operated in our institute, pure DCIS was observed in 21 cases (9.0%). One patient was excluded due to a lack of follow-up data (Fig. 1).

The median age was 62 years (range 21–80), and 2 (10%) were younger than 40 years.

Clinical presentation

Clinical gynecomastia was present in 5/20 (25%) cases. Bloody nipple discharge was present in 9/20 cases (45%). A clinically palpable mass was present in 11/20 (55%) cases (Table 1).

Radiological presentation

In 10/20 cases preoperative radiological examinations were available. In particular: 3/20 patients performed only mammography; 4/20 cases performed both mammography and breast ultrasound; 3/20 patients performed only breast ultrasound. In 3/10 cases the presentation was a well-defined nodule (all of them with a cystic component). In 5/10 cases the presentation was a poorly defined nodule (1 of them with a cystic component). In 2/10 cases, no mammographic findings were seen in the presence of bloody nipple discharge only.
Only two cases (5%) showed microcalcifications with a poorly defined nodule. Unfortunately, in 10 cases the preoperative diagnostic examinations were performed at another institution, and the type of examination or its diagnostic images could not be retrieved. Radiological features are summarized in Table 2. Some examples of typical radiological presentations are shown in Fig. 2a–c.

Type of preoperative diagnosis

In 12/20 cases a cytological examination was performed (or on nodule or on blood secretion). In the other cases with available documentation (5 cases), a direct breast diagnostic resection was performed following a doubtful clinical radiological finding (Table 1).

Surgical features and management

In 15/20 cases the patients were treated with mastectomy, in 5/20 cases with lumpectomy. Sentinel lymph node biopsy was performed in 13 of 20 cases. In no case were metastatic lymph nodes evident. None of the patients underwent axillary dissection. Surgical features and management are shown in Table 3.

Histological features

We have the receptor status for 15/20 patients. In 13/15 cases the patients were ER+/PR+; one patient was ER+/PR−; one patient was ER−/PR−. Ki 67 was considered positive if ≥ 20% [9]. Ki 67 was positive in only 3 cases.
In 14/15 cases Her2 was negative while for 1 patient the HER2 status was unknown. Most of the cases were papillary subtypes and all the cases were low/intermediate DCIS. Specifically, in 3/20 cases we had low-grade papillary and cribriform DCIS; in 1/20 cases we had low-grade pure papillary DCIS. In 1/20 cases we had low-grade pure cribriform DCIS. In 4/20 cases we had intermediate-grade papillary and cribriform DCIS. In 2/20 cases we had intermediate-grade pure papillary DCIS. In 4/20 cases, we had intermediate-grade pure cribriform DCIS. In 5/20 cases, we had intracystic papillary carcinoma. Histological features are shown in Table 4.

Table 3 Surgical features and management

Type of surgery	Overall N=20 N (%)
Mastectomy w/o SLNB	3 (15)
Mastectomy w SLNB	12 (60)
Lumpectomy w/o SLNB	4 (20)
Lumpectomy w SLNB	1 (5)
Number of SLN removed	(n=13)
Mean, min–max	1.8 (1–6)
Number of positive SLN	(n=13)
Mean, min–max	0
Axillary dissection	0
Systemic neoadjuvant treatment	
No	20 (100)
Yes	0
Endocrine therapy	
No	18 (90)
Yes	2 (10)
Radiotherapy	
No	19 (95)
Yes	1 (5)

w/o without, w with, SLNB sentinel lymph node biopsy

Discussion

Pure ductal carcinoma in situ (DCIS) of the male breast is a very rare disease with few cases described in the literature, mainly case series or case reports [4, 7, 8, 10, 11, 12, 13, 14, 15, 16]. In fact, research on this type of pathology and clinical evidence are limited. In this article, based on our experience, we aim to provide an appropriate diagnostic and therapeutic approach for this rare condition. Radiological, histological, and clinical features in male DCIS differ from DCIS in women, and for adequate management, the knowledge of two different forms of the same pathology appears extremely important [17, 18, 19, 20, 21]. In our series, pure DCIS was observed in 21/233 cases (9.0%). Data are in line with those from the Surveillance, Epidemiology, and End Results (SEER) database of the National Cancer Institute [22]: male in situ carcinoma was observed in 280 of 2984
male breast cancer cases (9.4%) diagnosed between 1973 and 2001. According to the SEER data [22], diagnosis of male DCIS occurs at an older age compared to women: 62 years compared to 58 years. Our research confirms this analysis with a median age at diagnosis of 62 (range 21–80 years). In 5 cases (25%), a family history of breast neoplasia was reported.

The presentation of this type of pathology is different from that of women: in particular, in women, DCIS is often clinically occult and occurs, mostly, in the form of microcalcifications [23, 24]. In our series of male DCIS, microcalcifications were evident in only two cases. In our experience, the carcinoma in situ presented itself as a palpable nodule (in 55% of cases). Most of our cases were low/intermediate-grade ductal carcinoma in situ and in the 25% of our cases, the main histological was the intracystic papillary carcinoma: the male breast is typically composed of a nipple with large central ducts, mostly of the papillary type [8]. Furthermore, in 10% of cases, the radiological manifestation was that of a predominantly cystic nodule. From our experience, nipple blood discharge should always be investigated with cyto/histological examination even without radiological findings. Considering the low breast thickness, cytology was often preferred to breast biopsy although it obviously provided less pre-operative information. Also, in our experience, cytological evaluation of male breast lesions provides excellent diagnostic performance [25].

In summary, based on our experience, we could make the following suggestions for the management of patients with male breast DCIS.

Patients with high familiarity for breast neoplasms and a BRCA mutation should undergo a breast examination and breast ultrasound once a year [26].

Nipple blood secretion should always be investigated by cytological examination of the secretion (even in the absence of associated suspicious breast radiological findings).

Gynecomastia should always be investigated with at least one ultrasound examination in order to decide a possible cyto-microhistological sampling.

Any breast lump, even with a predominantly cystic component, should always be investigated by micro histological examination.

The therapeutic treatment of choice (also to reduce the rate of recurrence) should be mastectomy with associated sentinel lymph node biopsy: it is estimated that up to 26% of patients with a preoperative diagnosis of DCIS are upgraded to invasive carcinoma on final postoperative histological examination [27].

Table 5 Disease-free survival and overall survival

	N=20
Median time of follow-up	9.0 (4.0–13.7)
Disease-free survival (DFS)	
Observed events, N (%)	4 (20%)
Loco-regional events, N	1a
Distant events, N	0
Other events, N	3b
5-year DFS (95% CI)	92.9 (59.1–99.0)
10-year DFS (95% CI)	85.7 (53.9–96.2)
Overall survival (OS)	
Observed deaths, N (%)	2 (10%)
Other/Unknown causes, N	2
5-year OS (95% CI)	93.3 (61.3–99.0)
10-year OS (95% CI)	86.2 (55.0–96.4)

*Patient with ipsilateral recurrence with the finding of infiltrating carcinoma diagnosed after 14.0 years

*One patient reported a second primary prostate cancer after 10.0 years and two patients died after 4.7 and 7.4 years, respectively

Fig. 3 Kaplan–Meier curves for disease-free survival and overall survival
lary evaluation, including SLNB, could be justified in male DCIS patients undergoing mastectomy because of the possibility of upstaging to invasive cancer at surgery: vacuum-assisted biopsy (especially with macroscopic removal of the lesion) is the best way to decrease biopsy underestimation in breast DCIS [17], anyway the poor of the breast thickness makes the vacuum-assisted breast biopsy scarcely used in males. If the decision is made not to use sentinel lymph node biopsy in the male with DCIS, an extemporaneous intraoperative diagnostic examination of the surgical piece is suggested to confirm the in situ nature of the neoplasm.

Endocrine and/or radiation treatment is not commonly suggested in male patients with DCIS, although it has already been explored in the literature [28]. However, according to our experience, it can be considered, after multidisciplinary discussion, in cases that might have a worse prognosis (such as cases with intraläsional necrosis or high ki 67 values).

In most of our cases, the patients were positive for estrogen and progesterone receptors and had low ki67 (< 20%). Prognosis of patients with carcinoma in situ of the male breast is excellent with 5-year overall survival of 93.3%. These data are quite similar to the survival data for DCIS in women [29]. A prompt diagnosis is crucial to avoid any evolution towards a more aggressive form of the disease.

The main limitation of this study is its retrospective nature so some data of interest in some of our patients could not be retrieved. It would be advisable a multicentric and prospective study based on common registration criteria and management to obtain additional critical information.

Conclusion

Pure DCIS in men is an extremely rare disease. Knowledge of appropriate management is therefore limited and not very standardized. In this article, we present the main features of our case series in a cancer referral center. Early recognition of this pathology and proper management will allow the best treatment options and an excellent prognosis for these patients.

Acknowledgements The authors would like to thank Dr. Cairns Linda Ann for language editing.

Author contributions LN, GL, and MS contributed to conceptualization and design. ACB, GF, and JV contributed to the review & editing. LN and GL contributed to writing the original draft. CS contributed to data collection/curation. CO, EP, and VB contributed to data analysis, visualization, writing—original draft, and review & editing. ML and FP contributed to reviewing & editing the draft. VG, EC, and PV contributed in the supervision of the entire project. All authors have read and agreed to the published version of the manuscript.

Funding Open access funding provided by Università degli Studi di Milano within the CRUI-CARE Agreement. This research did not receive any funds. All the authors declare to have no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Data availability The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committees of the local institution (European Institute of Oncology, 20141, Milano).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 71(3):209–249. https://doi.org/10.3322/caac.21660
2. Mangone L, Ferrari F, Mancuso P et al (2020) Epidemiology and biological characteristics of male breast cancer in Italy. Breast Cancer 27(4):724–731. https://doi.org/10.1007/s12282-020-01068-1
3. Agrawal A, Ayantunde AA, Rampaul R et al (2007) Male breast cancer: a review of clinical management. Breast Cancer Res Treat 103(1):11–21. https://doi.org/10.1007/s10549-006-9356-z
4. Tari DU, Morelli L, Guida A et al (2021) Male breast cancer review. A rare case of pure DCIS: imaging protocol, radiomics and management. Diagnostics 11(12):2199. https://doi.org/10.3390/diagnostics11122199
5. Parikh U, Chhor CM, Mercado CL (2018) Ductal carcinoma in situ: the whole truth. Am J Roentgenol 210(2):246–255. https://doi.org/10.2214/AJR.17.18778
6. Worai M, Akushevich I, Greerup R et al (2015) Trends in treatment patterns and outcomes for ductal carcinoma in situ. J Natl Cancer Inst 107(12):263. https://doi.org/10.1093/jnci/djv263
7. Cutuli B, Dilhuydy JM, De Lafontan B et al (1997) Ductal carcinoma in situ of the male breast. Analysis of 31 cases. Eur J Cancer 33(1):35–8. https://doi.org/10.1016/s0959-8049(96)00436-4

8. Hittmair AP, Lininger RA, Tavassoli FA (1998) Ductal carcinoma in situ (DCIS) in the male breast: a morphologic study of 84 cases of pure DCIS and 30 cases of DCIS associated with invasive carcinoma—a preliminary report. Cancer 83(10):2139–49

9. Lombardi A, Lazzeroni R, Bersigotti L, Vitale V, Amanti C (2021) The proper Ki-67 cut-off in hormone responsive breast cancer: a noninstitutional analysis with long-term follow-up. Breast Cancer 7(13):213–217. https://doi.org/10.2147/BCTT.S305440

10. Avau F, Chintinne M, Baudry S (2022) Literature review and case report of bilateral intracystic papillary carcinoma associated with an invasive ductal carcinoma in a male breast. Breast Dis 41(1):5–13. https://doi.org/10.3233/BD-210001

11. Ndumele A, Kerger A, Tozbikian G et al (2021) Ductal carcinoma in situ (DCIS) presenting as a cystic retroareolar lesion in an African American man. Clin Case Rep 9(6):e04166. https://doi.org/10.1002/ccr3.4194764

12. Brents M, Hancock J (2016) Ductal carcinoma in situ of the male breast. Breast Care 11(4):288–290. https://doi.org/10.1159/000447768

13. Zaesim A, Nguyen V, Scarborough CS (2018) Pure low-grade DCIS in a male patient: a case report. J Surg Case Rep. https://doi.org/10.1093/jscr/jry109

14. Chern J, Liao L, Baraldi R et al (2012) Case report: ductal carcinoma in situ in the male breast. Case Rep Radiol 2012:532527. https://doi.org/10.1155/2012/532527

15. Isley LM, Leddy RJ, Rumboldt T et al (2012) Asymptomatic incidental ductal carcinoma in situ in a male breast presenting with contralateral gynecomastia. J Clin Imaging Sci 2:9. https://doi.org/10.4103/2156-7514.94021

16. Pappo I, Wasserman I, Halevy A (2005) Ductal carcinoma in situ of the breast: a review. Clin Breast Cancer 6(4):310–314. https://doi.org/10.3816/CBC.2005.n.033

17. Nicosia L, Bozzini AC, Penco S et al (2022) A model to predict upstaging to invasive carcinoma in patients preoperatively diagnosed with low-grade ductal carcinoma in situ of the breast. Cancers 14(2):377. https://doi.org/10.3390/cancers14020370

18. Grimm LJ, Rahbar H, Abdelmalak M et al (2022) Ductal carcinoma in situ: state-of-the-art review. Radiology 302(2):246–255. https://doi.org/10.1148/radiol.2118389

19. Grimm LJ, Destounis SV, Rahbar H et al (2020) Ductal carcinoma in situ biology, language, and active surveillance: a survey of breast radiologists’ knowledge and opinions. J Am Coll Radiol 17(10):1252–1258

20. Cancer stat facts: female breast cancer. Surveillance, epidemiology, and end results program. Retrieved https://seer.cancer.gov/statfacts/html/breast.html. Accessed 12 July 2021

21. Erbas B, Provenzano E, Armes J et al (2006) The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res Treat 97(2):135–144

22. Anderson WF, Devesa SS (2005) In situ male breast carcinoma in the surveillance, epidemiology, and end results database of the national cancer institute. Cancer 104(8):1733–41. https://doi.org/10.1002/cncr.21353

23. Gica N, Mustata LM, Peltecu G et al (2021) Follow-up after ductal carcinoma in situ treatment. Chirurgia 116(5 Suppl):S143–S146. https://doi.org/10.21614/chirurgia.116.5.suppl.S143

24. Lesaru M, Lisencu C (2021) Imaging diagnosis of ductal carcinoma in situ. Chirurgia 116(5 Suppl):S44–S49. https://doi.org/10.21614/chirurgia.116.5.suppl.S44

25. Mondal K, Mandal R (2021) Cytological evaluation of pathological male breast lesions. Eur J Breast Health 17(2):103–111. https://doi.org/10.4274/ejbh.galenos.2020.6154

26. Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, Blair SL, Burstin HJ, Dang C, Elias AD, Giordano SH, Goetz MP, Goldstein LJ, Hurvitz SA, Isakov SJ, Jankowitz RC, Javid SH, Krishnamurthy J, Leitch M, Lyons J, Matro J, Mayer IA, Mortimer J, O’Regan RM, Patel SA, Pierce LJ, Rugo HS, Sitapati A, Smith KL, Smith ML, Soliman H, Stringer-Reasor EM, Telli ML, Ward JH, Wisinski KB, Young JS, Burns JL, Kumar R (2021) NCCN guidelines® insights: breast cancer, version 4.2021. J Natl Compr Canc Netw 19(5):484–493. https://doi.org/10.6004/jnccn.2021.0023

27. Brennan ME, Turner RM, Ciatto S, Marinovich ML, French JR, Macaskill P, Houssami N (2011) Ductal carcinoma in situ at core-needle biopsy: meta-analysis of underestimation and predictors of invasive breast cancer. Radiology 260(1):119–128. https://doi.org/10.1148/radiol.11102368

28. Aznan MS, Razrim R, Affirul CA, Rohaizak M (2015) Male ductal carcinoma in situ (DCIS): treatment strategies in this rare entity. Clin Ter 166(5):e327–e329. https://doi.org/10.7417/T.2015.1887

29. Sprague BL, McLaughlin V, Hampton JM, Newcomb PA, Trentham-Dietz A (2013) Disease-free survival by treatment after a DCIS diagnosis in a population-based cohort study. Breast Cancer Res Treat 141(1):145–154. https://doi.org/10.1007/s10549-013-2670-3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.