Space-Efficient Karatsuba Multiplication for Multi-Precision Integers

Yiping Cheng
School of Electronic and Information Engineering
Beijing Jiaotong University, Beijing 100044
ypcheng@bjtu.edu.cn

Abstract
The traditional Karatsuba algorithm for the multiplication of polynomials and multi-precision integers has a time complexity of $O(n^{1.59})$ and a space complexity of $O(n)$. Roche proposed an improved algorithm with the same $O(n^{1.59})$ time complexity but with a much reduced $O(\log n)$ space complexity. In Roche’s paper details were provided for multiplication of polynomials, but not for multi-precision integers. Multi-precision integers differ from polynomials by the presence of carries, which poses difficulties in implementing Roche’s scheme in multi-precision integers. This paper provides a detailed solution to these difficulties. Finally, numerical comparisons between the schoolbook, traditional Karatsuba, and space-efficient Karatsuba algorithms are provided.

1 Introduction

In primary schools pupils are taught how to multiply two integers. This algorithm has been implemented in the multiplication of multi-precision integers (or called long integers), known as the schoolbook algorithm. It requires $O(n^2)$ time and $O(1)$ space. Here $n$ is the length, i.e., the number of limbs in the representation of the two equal-length integers for multiplication. Karatsuba and Ofman in [1] noticed that using a divide-and-conquer technique, an $O(n^{1.59})$ sub-quadratic time complexity can be achieved, with the price being an additional $O(n)$ memory space. Aiming to remove the need of extra space, Roche proposed in [2] a space-efficient variant of the Karatsuba algorithm. However, the description of the algorithm was mainly addressed to the multiplication of polynomials. The implementation of space-efficient Karatsuba in multi-precision integers is not straightforward, as there are carries when adding or subtracting integers, even when we use a subtractive version of Karatsuba. Tricky issues resulting from the presence of carries need to be resolved.

This paper will give a detailed implementation of space-efficient Karatsuba for multiplication of multi-precision integers. We follow the basic scheme of [2], but a few changes have been made, as listed below:

- A subtractive version is adopted instead of the additive version.
- Four separate variables for storing the carries are introduced, because the results of additions and subtractions may fall beyond the original representation.
- For even length square multiplication, three cases are identified and are processed for obtaining correct results in all possible cases. This subdivision is not needed in polynomial multiplication but is unavoidable in long integer multiplication.
- A different treatment for odd length is used, which is chosen for more efficient carry processing.

The rest of the paper is organized as follows. Section 2 gives the mathematical foundation for the space-efficient Karatsuba for long integers. Section 3 describes our C implementation of this algorithm. Section 4 provides numerical results for performance comparison. We conclude the paper with Section 5.
2 Mathematical Formulation

2.1 Representation of Long Integers

Long integers are represented by limbs. Let $\rho$ be the radix. Then any integer $A \in \{0..\rho^n - 1\}$ can be represented uniquely with $n$ ordered limbs, each limb $a_i$ being an integer within $\{0..\rho - 1\}$. That is,

$$A = \sum_{i=0}^{n-1} a_i \rho^{n-1-i}. \quad (1)$$

For intermediate values in the algorithm, it is sometimes useful to store it with a carry. If $A$ falls (not very far) beyond the range $\{0..\rho^n - 1\}$, then we can represent it with $n$ limbs and a carry $\kappa$, which can be positive, zero, or negative. That is

$$A = \kappa \rho^n + \sum_{i=0}^{n-1} a_i \rho^{n-1-i}. \quad (2)$$

In computers we can use an int variable to store the carry, and as the range of a 32-bit int variable is $\{-2^{31}..2^{31} - 1\}$, it will be more than sufficient for our purposes here.

2.2 Even Equal Length Additive Multiplication

As in [2], we consider the following problem, which we call equal length additive multiplication problem here. Given four multi-precision integers $A^{(0)}, A^{(1)}, B, C \in \{0..\rho^n - 1\}$, to compute

$$D = (A^{(0)} - A^{(1)})B + C\rho^n. \quad (3)$$

In this subsection we deal with the case when $n$ is even, i.e., $n = 2k$.

Let

$$A^{(0)} = A_0^{(0)} \rho^k + A_1^{(0)}, \quad (4)$$
$$A^{(1)} = A_0^{(1)} \rho^k + A_1^{(1)}, \quad (5)$$
$$B = B_0\rho^k + B_1, \quad (6)$$
$$C = C_0\rho^k + C_1, \quad (7)$$

where $A_0^{(0)}, A_1^{(0)}, A_0^{(1)}, A_1^{(1)}, B_0, B_1, C_0, C_1 \in \{0..\rho^k - 1\}$.

We then have

$$(A^{(0)} - A^{(1)})B = (A_0^{(0)} - A_0^{(1)})B_0 \rho^{2k} + [(A_0^{(0)} - A_0^{(1)})B_1 + (A_1^{(0)} - A_1^{(1)})B_0] \rho^k + (A_1^{(0)} - A_1^{(1)})B_1. \quad (8)$$

Now define the following intermediate multi-precision integers:

$$P_0 = (A_0^{(0)} - A_0^{(1)})B_0, \quad (9)$$
$$P_1 = (A_1^{(0)} - A_1^{(1)})B_1, \quad (10)$$
$$E = A_0^{(0)} - A_0^{(1)} + A_1^{(1)}, \quad (11)$$
$$P_2 = (B_1 - B_0)E. \quad (12)$$

It is easy to see that

$$-2(\rho^k - 1) \leq E \leq 2(\rho^k - 1).$$

For $E$ we divide three cases:
2.2.1 Case 1: \(-(p^k - 1) \leq E \leq p^k - 1\)

This case can be decided when the internal \(k\) limbs and one carry representation of \(E\) has a carry 0 or -1, but \(E \neq -p^k\). How do we know whether \(E = -p^k\)? We note that \(E = -p^k\) if and only if it has carry -1 and all 0 limbs.

In this case, if \(E \geq 0\), we can use the original equation (12) to compute \(P_2\), otherwise, use the mathematically equivalent equation

\[
P_2 = (B_0 - B_1)(-E).
\]

By (8), we have

\[
(A^{(0)} - A^{(1)})B = P_0\rho^{2k} + (P_0 + P_1 + P_2)\rho^k + P_1.
\]

Now suppose

\[
P_0 = P_{00}\rho^k + P_{01},
\]

\[
P_1 = P_{10}\rho^k + P_{11},
\]

\[
P_2 = P_{20}\rho^k + P_{21}.
\]

where \(P_{01}, P_{11}, P_{21} \in \{0..\rho^k - 1\}\).

Then

\[
(A^{(0)} - A^{(1)})B = P_{00}\rho^{2k} + (P_{01} + P_{10} + P_{00} + P_{20})\rho^{2k} + (P_{01} + P_{10} + P_{11} + P_{21})\rho^k + P_{11}.
\]

The above four subsequences of limbs can be computed using a procedure very similar to [2 Section 2.2], except that

- As here we use a subtractive version, we need to be careful about the signs.
- Four int variables \(\kappa_{00}, \kappa_{01}, \kappa_{10}, \kappa_{11}\) are introduced, to store the carries resulting from addition and subtraction.

The computation steps should be clear from Table 1. Note that recursive calls take place in steps 3,5,8.

| \(\kappa_{00}\rho^k + D_{00}\) | \(\kappa_{01}\rho^k + D_{01}\) | \(\kappa_{10}\rho^k + D_{10}\) | \(\kappa_{11}\rho^k + D_{11}\) |
|---|---|---|---|
| 0 | \(C_0\) | \(C_1\) | \(|E|\) |
| 1 | \(C_0\) | \(C_1 - C_0\) | \(P_{21}\) |
| 2 | \(C_0\) | \(C_1 - C_0\) | \(P_{21}\) |
| 3 | \(C_0\) | \(C_1 - C_0 + P_{20}\) | \(C_1 - C_0 + P_{20} - P_{21}\) |
| 4 | \(C_0\) | \(C_1 - C_0 + P_{20}\) | \(C_1 - C_0 + P_{20} - P_{21}\) |
| 5 | \(C_0 + P_{00}\) | \(P_{01}\) | \(P_{01} + P_{21}\) |
| 6 | \(C_0 + P_{00}\) | \(P_{01}\) | \(C_1 - C_0 + P_{20} - P_{21}\) |
| 7 | \(C_0 + P_{00}\) | \(P_{01} + P_{00} - P_{21} + P_{20}\) | \(P_{01} + P_{21} + P_{10}\) |
| 8 | \(C_0 + P_{00}\) | \(P_{01} + P_{00} - P_{21} + P_{20}\) | \(P_{01} + P_{21} + P_{10}\) |
| 9 | \(C_0 + P_{00}\) | \(C_1 + P_{01} + P_{00} + P_{20}\) | \(P_{01} + P_{21} + P_{10}\) |
| 10 | \(C_0 + P_{00}\) | \(C_1 + P_{01} + P_{00} + P_{20}\) | \(P_{01} + P_{21} + P_{10} + P_{11}\) |

2.2.2 Case 2: \(\rho^k \leq E \leq 2(\rho^k - 1)\)

In this case, \(P_2\) falls beyond the range \(\{0..\rho^k - 1\}\), and the number corresponding to the pure limbs representation of \(E\) is \(E - \rho^k\). So we compute

\[
Q_2 = (B_1 - B_0)(E - \rho^k).
\]

Thus

\[
P_2 = Q_2 + (B_1 - B_0)\rho^k.
\]
And we have

\begin{align*}
P_{20} &= Q_{20} + B_1 - B_0, \quad \text{(20)} \\
P_{21} &= Q_{21}. \quad \text{(21)}
\end{align*}

And

\begin{align*}
(A^{(0)} - A^{(1)})B &= P_{00} \rho^{3k} + (P_{01} + P_{10} + P_{00} + Q_{20} + B_1 - B_0) \rho^{2k} + (P_{01} + P_{10} + P_{11} + Q_{21}) \rho^k + P_{11}. \quad \text{(22)}
\end{align*}

In this case the computation steps should be clear from Table 2.

| $\kappa_0 \rho^k + D_{00}$ | $\kappa_0 \rho^k + D_{01}$ | $\kappa_1 \rho^k + D_{10}$ | $\kappa_{11} \rho^k + D_{11}$ |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 0                           | $C_0$                       | $C_1$                       | $E - \rho^k$                |
| 1                           | $C_0$                       | $C_1 - C_0$                 | $P_{21}$                    |
| 2                           | $C_0$                       | $C_1 - C_0 + Q_{20}$        | $P_{21}$                    |
| 3                           | $C_0$                       | $C_1 - C_0 + Q_{20} + B_1 - B_0$ | $P_{21}$                    |
| 4                           | $C_0$                       | $C_1 - C_0 + Q_{20} - B_0$  | $P_{21}$                    |
| 5                           | $C_0$                       | $C_1 - C_0 + P_{20}$        | $P_{21}$                    |
| 6                           | $C_0 + P_{00}$              | $P_{21}$                    | $P_{21}$                    |
| 7                           | $C_0 + P_{00}$              | $P_{21}$                    | $P_{21}$                    |
| 8                           | $C_0 + P_{00}$              | $P_{21}$                    | $P_{21}$                    |
| 9                           | $C_0 + P_{00}$              | $P_{21}$                    | $P_{21}$                    |
| 10                          | $C_0 + P_{00}$              | $P_{21}$                    | $P_{21}$                    |
| 11                          | $C_0 + P_{00}$              | $P_{21}$                    | $P_{21}$                    |

\subsection*{2.2.3 Case 3: $-2(\rho^k - 1) \leq E \leq -\rho^k$}

In this case, we compute

$$Q_2 = (B_0 - B_1)(-E - \rho^k). \quad \text{(23)}$$

Then

$$P_2 = Q_2 + (B_0 - B_1)\rho^k.$$

\begin{align*}
P_{20} &= Q_{20} + B_0 - B_1, \quad \text{(24)} \\
P_{21} &= Q_{21}. \quad \text{(25)}
\end{align*}

The corresponding equation and table are similar to case 2, with $E$ replaced with $-E$ and $B_1 - B_0$ replaced with $B_0 - B_1$. So they will not be reproduced here.

\subsection*{2.2.4 Final Carry Processing}

It should be noted that when the steps in Tables 1 and 2 are completed, $\kappa_{11} = 0$ is automatically ensured, and then we have

$$D = \kappa_0 \rho^{4k} + D_{00} \rho^{3k} + \kappa_0 \rho^{3k} + D_{01} \rho^{2k} + \kappa_{10} \rho^{2k} + D_{10} \rho^k + D_{11}.$$

We then need to do a final step of carry processing, so that finally $\kappa_{01} = \kappa_{10} = 0$, and

$$D = \kappa_0 \rho^{4k} + D_{00} \rho^{3k} + D_{01} \rho^{2k} + D_{10} \rho^k + D_{11}. $$
2.3 Odd Equal Length Additive Multiplication

Now consider the same problem as given in the previous subsection, but now with \( n = 2k + 1 \).

There are a number of possible expansions that can reduce this case to the even case. But we found the following expansion most convenient:

Let
\[
A^{(0)} - A^{(1)} = \rho(\bar{A}^{(0)} - \bar{A}^{(1)}) + a^{(0)} - a^{(1)} \tag{26}
\]
\[
B = \rho^2 b + \bar{B} \tag{27}
\]
\[
C = \rho^{2k} c + \bar{C} \tag{28}
\]

where \( \bar{A}^{(0)}, \bar{A}^{(1)}, \bar{B}, \bar{C} \in \{0..\rho^{2k} - 1\} \) and \( a^{(0)}, a^{(1)}, b, c \in \{0..\rho - 1\} \).

We have
\[
(A^{(0)} - A^{(1)})B + C\rho^{2k+1} = \rho^2 (a^{(0)} - a^{(1)})b + (a^{(0)} - a^{(1)})\bar{B} + \rho^{2k+1}(\bar{A}^{(0)} - \bar{A}^{(1)})b + \rho(\bar{A}^{(0)} - \bar{A}^{(1)})\bar{B} + \rho^{4k+1}c + \rho^{2k+1}\bar{C}. \tag{29}
\]

We then have
\[
(A^{(0)} - A^{(1)})B + C\rho^{2k+1} = \rho[(\bar{A}^{(0)} - \bar{A}^{(1)})B + \rho^{2k}\bar{C}] + \rho^{4k+1}c + \rho^{2k}(A^{(0)} - A^{(1)})b + (a^{(0)} - a^{(1)})\bar{B}. \tag{30}
\]

On the right-hand side of (30), the first term has already been computed using the algorithm of the previous section, and the second term is already present in the buffer to store the product, and only the latter two terms need to be computed and added to the product now. The advantage of this expansion is that the two remaining terms involve nonintersecting subsequences of the entire limbs sequence of the product, and therefore the carries can thus be processed most efficiently.

2.4 General Length Multiplication

We now come back to our original problem: Suppose \( A \) is a long integer of length \( n \), and \( B \) is a long integer of length \( m \). We are to compute
\[
AB.
\]

Let \( n \geq m \geq 1 \), and suppose
\[
n = qm + r, \text{ where } 0 \leq r < m. \tag{31}
\]

Then we let
\[
A = A_0\rho^m + A_1\rho^{(q-1)m} + \cdots + A_{q-1}\rho^m + A_q, \tag{32}
\]

where \( A_0 \in \{0..\rho^r - 1\} \), and \( A_1, \ldots, A_q \in \{0..\rho^m - 1\} \).

This general length multiplication is done by a recursive routine. If \( r = 0 \), then no recursive call of itself is needed, but we need to fill the first \( m \) limbs of the product buffer to zero. Otherwise, the routine first calls itself to compute \( A_0B \), which is stored in the leading \( m + r \) limbs of the product buffer. Let
\[
A_0B = (A_0B)_0\rho^m + (A_0B)_1
\]
where \( (A_0B)_0 \in \{0..\rho^r - 1\} \), and \( (A_0B)_1 \in \{0..\rho^m - 1\} \).

Then, we call the equal length additive routine to compute
\[
A_1B + (A_0B)_1\rho^m,
\]
and process the carry, so that
\[
A_0B\rho^m + A_1B
\]
is computed and stored in the buffer.

Go on with these steps repeatedly until the entire \( AB \) is computed. This requires \( q \) calls of the equal length additive routine, and no heap memory allocation is needed here.
3 Implementation of Algorithm in C

The algorithm mathematically described above has been implemented in C. The implementation consists of two groups of functions: the primitive group, and the upper level group.

3.1 The Primitive Group

The primitive group of functions include the following functions:

- `int MpiAdd(uint ρ, LIMB* A, const LIMB* B, int n);`
- `int MpiSub(uint ρ, LIMB* A, const LIMB* B, int n);`
- `int MpiNeg(uint ρ, LIMB* A, int n);`
- `int MpiAddC(uint ρ, LIMB* A, int n, int κ);`

Here the type `uint` has been defined as `unsigned int`, and `LIMB` has been defined as `unsigned short int`.

The `MpiAdd` function adds long integer `B` to long integer `A`, and returns the carry. Both `A` and `B` are of length `n`, that is, `A, B ∈ {0..ρ^n−1}`, and the carry can thus be `0` or `1`.

The `MpiSub` function subtracts long integer `B` from long integer `A`, and returns the carry. Both `A` and `B` are of length `n`, that is, `A, B ∈ {0..ρ^n−1}`, and the carry can thus be `0` or `-1`.

If `A = 0`, then `MpiNeg` does nothing but return `0` to indicate `A` is zero. If `A ≠ 0`, then `MpiNeg` replaces `A` with `ρ^n−A`, and returns `1`.

The `MpiAddC` function adds input carry `κ` to long integer `A`, and returns its output carry. This function is used in carry processing.

3.2 The Upper Level Group

The upper level group of functions include the following functions:

- `void MpiMulKR(uint ρ, LIMB* D, const LIMB* A, int n, const LIMB* B, int m);`
- `void KRMpiMul(uint ρ, LIMB* D, const LIMB* A, int n, const LIMB* B, int m);`
- `int KRMulTop(uint ρ, LIMB* D, const LIMB* A, const LIMB* B, int n);`
- `int KRMul(uint ρ, LIMB* D, const LIMB* A0, const LIMB* A1, const LIMB* B, int n);`
- `int KRMulB1(uint ρ, LIMB* D, const LIMB* A, const LIMB* B, int n);`
- `int KRMulB2(uint ρ, LIMB* D, const LIMB* A0, const LIMB* A1, const LIMB* B, int n);`

The `MpiMulKR` function is the highest level function. “KR” stands for “Karatsuba and Roché”. It computes the product of length-`n` integer `A` and length-`m` integer `B`, and stores it in the `n + m` limbs buffer starting at `D`. It calls `KRMpiMul` to do the actual work. The only thing that `MpiMulKR` does itself is to ensure that `n ≥ m` when calling `KRMpiMul(ρ, D, A, A, B, B, m)`. `KRMpiMul` actually computes the product of length-`n` integer `A` and length-`m` integer `B`, and stores it in the `n + m` limbs buffer starting at `D`. It assumes `n ≥ m`. When `m` is smaller than a threshold for using Karatsuba multiplication, it calls the schoolbook multiplication algorithm. Otherwise, it computes the product using the algorithm described in Section 2.4. It calls `KRMulTop` to do equal length additive multiplication.

`KRMulTop` computes `AB + Cρ^n`, stores the result in the `2n` limbs buffer starting at `D` and returns the carry, where the long integer `C` is stored beforehand in the first `n` limbs of `D`. It is a recursive function, and may call itself, `KRMul`, `KRMulB1`, and `KRMulB2`. `KRMulTop` is based on a simplified version of the algorithm described in Sections 2.2 and 2.3.

`KRMul` computes `(A0 - A1)B + Cρ^n` and stores the result in the `2n` limbs buffer starting at `D` and returns the carry, where the long integer `C` is stored beforehand in the first `n` limbs of `D`. It is a recursive function, and may call itself and `KRMulB2`. `KRMul` is based on the full algorithm described in Sections 2.2 and 2.3.

`KRMulB1` serves the same purpose as `KRMulTop`, using a schoolbook algorithm. It is called when the length is less than the Karatsuba threshold.

`KRMulB2` serves the same purpose as `KRMul`, using a schoolbook algorithm. It is called when the length is less than the Karatsuba threshold.
4 Numerical Results

The \texttt{MpiMulKR} code has been thoroughly tested by the present author. It was found to produce exactly the same results as the schoolbook and the standard Karatsuba algorithms. To show how efficient it is relative to the traditional algorithms, we also made a numerical experiment. The experimental setting was as follows:

- Average time per multiplication for lengths 100, 200, \ldots, 10000 were measured for the three algorithms: Schoolbook (SB), Karatsuba Standard (KS), space-efficient Karatsuba or Karatsuba and Roche (KR). Only square multiplications were considered in the experiment.

- Before the experiment was done, we found that the Karatsuba divide-and-conquer technique begins to gain benefit when \( n \approx 100 \), so we have made the Karatsuba threshold 128. This number was chosen simply because it is a power of 2. There will be no significant consequence if we choose a near but different threshold.

- The pairs of long integers for multiplication were generated randomly. The number of pairs generated decreases as \( n \) increases, since we wanted to finish the experiment in hours.

- In coding Karatsuba standard, we incorporated some speeding-up and memory saving techniques proposed in [3, 4], so it is not purely conventional Karatsuba. In our code each call of Karatsuba recursive function consumes \( 2[n/2] \) limbs of heap memory.

- Technical specifications of the computer running the experiment were as follows: Windows 7 32-bit operating system, Intel i3-2120 @3.30GHz CPU, and 4GB memory.

The results are visualized in Figure 1. From the results data and the figure we observe the following:

![Figure 1: Results of the numerical experiment comparing the performances of SB, KS, and KR algorithms](image-url)
• The results seem to confirm the theoretical complexity results. From $n = 100$ to $n = 10000$, for SB, the average execution time grows 8678 times, close to the theoretical number 10000; for KS, the average execution time grows 1382 times, and for KR, average execution time grows 1622 times, both close to the theoretical number $100^{\log_3 3} \approx 1479$.

• The second chart shows KR takes roughly 20% more time than KS. Therefore, in terms of time efficiency, KR is roughly 20% less efficient than KS. This might be seen as a small price for KR’s avoiding of heap memory.

5 Conclusion

We have described in detail how to implement the space-efficient Karatsuba algorithm for multiplication of long integers. Issues resulting from carries, and other special issues for integers are resolved. Numerical results show that the space-efficient Karatsuba, while totally avoiding heap memory allocation, is slightly less time efficient than the standard Karatsuba.

References

[1] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. *Soviet Physics Doklady*, 7(7):595–596, 1963.

[2] D.S. Roche. Space- and time-efficient polynomial multiplication. In *Proceedings of 2009 International Symposium on Symbolic and Algebraic Computation (ISSAC’09)*, Seoul, Korea, 2009.

[3] R. Brent and P. Zimmermann. *Modern Computer Arithmetic*. Cambridge University Press. Online: [http://www.loria.fr/~zimmerma/mca/mca-cup-0.5.9.pdf](http://www.loria.fr/~zimmerma/mca/mca-cup-0.5.9.pdf)

[4] E. Thomé. Karatsuba multiplication of polynomials with temporary space of size $\leq n$. INRIA, 2002.