Discriminating the minimal 3-3-1 models

P. V. Dong and D. T. Sı

Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam

(Dated: November 18, 2014)

We show that due to the ρ parameter bound and the Landau pole limit, the reduced 3-3-1 model is unrealistic, while due to the ρ parameter and FCNCs bounds, the simple 3-3-1 model is experimentally unfavored. All such conditions strictly constrain the gauge symmetry breaking scales of the minimal 3-3-1 model with three scalar triplets.

PACS numbers: 12.60.-i

Introduction: It is well known that the unsolved questions of the standard model, namely the number of fermion generations, uncharacteristic heaviness of the top quark, strong CP problem, electric charge quantization, neutrino masses, and dark matter, can be addressed by the 3-3-1 models [1–7]. Moreover, the $B - L$ dynamics and resulting R-parity, leptogenesis, and inflaton can also be realized by this kind of the theories [8].

Recently, there have emerged three versions of the minimal 3-3-1 model, the reduced 3-3-1 model [9], the simple 3-3-1 model [10], and the minimal 3-3-1 model with three scalar triplets [11], which provide new theoretical and phenomenological aspects beyond the old ones. In this work, we will show experimentally favored degrees for such theories, simply replied on their ρ parameter, FCNCs and Landau pole. The Z and new Z' gauge boson mixing is also analyzed.

The minimal 3-3-1 models: The gauge symmetry is given by $SU(3)_C \otimes SU(3)_L \otimes U(1)_X$ (3-3-1), where the first factor is the color group while the last two are the extension of the electroweak symmetry. The electric charge operator takes the form $Q = T_3 - \sqrt{3}T_8 + X$, where $Y = -\sqrt{3}T_8 + X$ is the weak hypercharge. Here, $T_i (i = 1, 2, 3, ..., 8)$ and X are the $SU(3)_L$ and $U(1)_X$ charges, respectively (the color charges will be denoted by t_i). The fermions can be arranged as $\psi_{aL} = (\nu_{aL}, e_{aL}, e_{aR}^c) \sim (1, 3, 0)$, $Q_{aL} = (d_{aL}, -u_{aL}, J_{aL}) \sim (3, 3^*, -1/3)$, $Q_{3L} = (u_{3L}, d_{3L}, J_{3L}) \sim (3, 3, 2/3)$, $u_{aR} \sim (3, 1, 2/3), d_{aR} \sim (3, 1, -1/3), J_{aR} \sim (3, 1, -4/3)$, and $J_{3R} \sim (3, 1, 5/3)$, where $a = 1, 2, 3$ and $\alpha = 1, 2$ are generation indices. Note that the values in parentheses present quantum numbers based upon the 3-3-1 symmetries, respectively.

The minimal 3-3-1 model with three scalar triplets works with the following scalar fields $\eta = \ldots$

*Electronic address: pvdong@iop.vast.ac.vn
†Electronic address: dtsi@grad.iop.vast.ac.vn
Hence, we obtain two physical neutral gauge bosons (besides the photon), \((\eta_1^0, \eta_2^-, \eta_3^+) \sim (1, 3, 0), \rho = (\rho_1^+, \rho_2^0, \rho_3^{++}) \sim (1, 3, 1),\) and \(\chi = (\chi_1^-, \chi_2^-, \chi_3^0) \sim (1, 3, -1)\). The reduced 3-3-1 model works with \((\rho, \chi)\) by excluding \(\eta\), while the simple 3-3-1 model works with \((\eta, \chi)\) by excluding \(\rho\). The VEVs of the scalars are given by \(\langle \eta \rangle = (u/\sqrt{2}, 0, 0), \langle \rho \rangle = (0, v/\sqrt{2}, 0),\) and \(\langle \chi \rangle = (0, 0, w/\sqrt{2})\). The following calculations generally apply for all the models (for the reduced 3-3-1 model, \(u = 0\); for the simple 3-3-1 model, \(v = 0\)).

Gauge boson masses and mixing: We now derive the mass spectrum of the gauge bosons, which arises from the Lagrangian \(\sum_{\Phi = \eta, \rho, \chi} (D_\mu(\Phi))^\dagger (D^\mu(\Phi))\), where the covariant derivative takes the form \(D_\mu = \partial_\mu + ig_t t_i G_{i\mu} + ig_T A_{i\mu} + ig_X B_{\mu}\), with the gauge couplings \((g_t, g, g_X)\) and gauge bosons \((G_{i\mu}, A_{i\mu}, B_\mu)\), associated with the respective 3-3-1 groups. We have physical charged gauge bosons with respective masses,

\[
W^\pm = \frac{A_1 \mp iA_2}{\sqrt{2}}, \quad X^\pm = \frac{A_4 \pm iA_5}{\sqrt{2}}, \quad Y^{\pm\pm} = \frac{A_6 \pm iA_7}{\sqrt{2}},
\]

\[
m_W^2 = \frac{g^2}{8}(u^2 + v^2), \quad m_X^2 = \frac{g^2}{8}(u^2 + w^2), \quad m_Y^2 = \frac{g^2}{8}(v^2 + w^2).
\]

To keep consistency with the standard model, we impose \(u, v \ll w\). The field \(W\) is identical to the standard model charged gauge boson, which implies \(v_W^2 = u^2 + v^2 = (246 \text{ GeV})^2\), while \(X\) and \(Y\) are new gauge bosons with large masses in \(w\) scale.

For the neutral gauge bosons, the photon, \(Z\), and new \(Z'\) can be identified as

\[
A = s_W A_3 + c_W \left(-\sqrt{3} t_W A_8 + \sqrt{1 - 3 t_W^2} B\right),
\]

\[
Z = c_W A_3 - s_W \left(-\sqrt{3} t_W A_8 + \sqrt{1 - 3 t_W^2} B\right),
\]

\[
Z' = \sqrt{1 - 3 t_W^2} A_8 + \sqrt{3} t_W B,
\]

where \(s_W = e/g = t/\sqrt{1 + 4t^2}\), with \(t = g_X/g\), is the sine of the Weinberg angle \(\text{[12]}\). The photon field \(A\) is physical \((m_A = 0)\) and decoupled, whereas \(Z\) and \(Z'\) mix as given by the mass matrix,

\[
\begin{pmatrix}
m_Z^2 & m_{ZZ'}^2 \\
m_{ZZ'} & m_{Z'}^2
\end{pmatrix},
\]

where

\[
m_Z^2 = \frac{g^2}{4c_W^2}(u^2 + v^2), \quad m_{ZZ'}^2 = \frac{g^2 [2(1 - 2s_W^2)u^2 - 2s_W^2v^2]}{4\sqrt{3} c_W^2 \sqrt{1 - 4s_W^2}},
\]

\[
m_{Z'}^2 = \frac{g^2 [2(1 - 2s_W^2)^2u^2 + 2s_W^2v^2 + 4c_W^4w^2]}{12c_W^2 (1 - 4s_W^2)}.
\]

Hence, we obtain two physical neutral gauge bosons (besides the photon),

\[
Z_1 = c_\varphi Z - s_\varphi Z', \quad Z_2 = s_\varphi Z + c_\varphi Z',
\]
with the Z-Z' mixing angle,

$$t_{2\varphi} = \frac{2m_{ZZ'}^2}{m_{Z'}^2 - m_Z^2} \simeq \frac{\sqrt{3(1 - 4s_W^2)}}{2c_W^4} \frac{[(1 - 4s_W^2)u^2 - (1 + 2s_W^2)v^2]}{w^2},$$

and their masses,

$$m_{Z_1}^2 = \frac{1}{2}[m_Z^2 + m_{Z'}^2 - \sqrt{(m_Z^2 - m_{Z'}^2)^2 + 4m_{ZZ'}^4}] \simeq \frac{g_W^2}{4c_W^4}(u^2 + v^2),$$

$$m_{Z_2}^2 = \frac{1}{2}[m_Z^2 + m_{Z'}^2 + \sqrt{(m_Z^2 - m_{Z'}^2)^2 + 4m_{ZZ'}^4}] \simeq \frac{g_W^2c_W^2}{3(1 - 4s_W^2)}w^2.$$

The approximations for the masses are given at the leading order. Because the mixing angle φ is small, we have $Z_1 \simeq Z$ and $Z_2 \simeq Z'$, which imply that the Z_1 is like the standard model Z boson, while Z_2 is a new neutral gauge boson with a large mass in w scale.

ρ-parameter: The experimental ρ parameter (or $\Delta \rho \equiv \rho - 1$ used below) that is contributed (or induced) only by the new physics comes from the following sources. The first one is given at the tree-level due to the Z-Z' mixing, which can be evaluated as

$$\langle \Delta \rho \rangle_{\text{tree}} \equiv \frac{m_W^2}{c_W^2m_{Z_1}^2} - 1 \simeq \frac{m_{ZZ'}^4}{m_Z^2m_{Z'}^2} \simeq \frac{[(1 - 4s_W^2)u^2 - (1 + 2s_W^2)v^2]^2}{4c_W^4v_w^2w^2}. \quad (10)$$

The second one arises from the one-loop contributions of a heavy gauge boson doublet ($X^-, Y^-)$.

Note that the other new particles such as the exotic quarks, Z', and new Higgs bosons do not contribute [13]. Generalizing the results in [13] and using the X, Y masses in [1], we obtain

$$\langle \Delta \rho \rangle_{\text{rad}} = \frac{3\sqrt{2}G_F}{16\pi^2} \left(\frac{m_Y^2 + m_X^2 - 2m_Y^2m_X^2}{m_Y^2 - m_X^2} \ln \frac{m_Y^2}{m_X^2} \right)$$

$$+ \frac{\alpha}{4\pi s_W^4} \left(\frac{m_Y^2 + m_X^2}{m_Y^2 - m_X^2} \ln \frac{m_Y^2}{m_X^2} - 2 + 3t_W^2 \ln \frac{m_Y^2}{m_X^2} \right)$$

$$= \frac{3g^2}{64\pi^2v_w^2} \left(\frac{v_w^2 + 2w^2 - 2(u^2 + w^2)(u^2 + w^2)}{u^2 - u^2} \ln \frac{v^2 + w^2}{u^2 + w^2} \right)$$

$$+ \frac{g^2}{16\pi^2} \left(\frac{v_w^2 + 2w^2 - 2(u^2 + w^2)(u^2 + w^2)}{u^2 + w^2} \ln \frac{v^2 + w^2}{u^2 + w^2} - 2 + 3t_W^2 \ln \frac{v^2 + w^2}{u^2 + w^2} \right), \quad (11)$$

where $\sqrt{2}G_F = 1/v_w^2$ and $\alpha = g^2s_W^2/(4\pi)$. Summarizing the above results, we get the $\Delta \rho$ deviation due to the new physics contributions up to one-loop level,

$$\Delta \rho = \langle \Delta \rho \rangle_{\text{tree}} + \langle \Delta \rho \rangle_{\text{rad}}. \quad (12)$$

New physics constraints: Because Z' nonuniversally couples to the ordinary quarks, it gives rise to tree-level FCNCs. These processes can be evaluated that are completely identical to those in [10] and give a bound: $w > 3.6$ TeV (see also [14] for other discussions and constraints on the
3-3-1 breaking scale). On the other hand, since $s_W^2 = g_X^2/(g^2 + 4g_X^2) < 1/4$, the model encounters a low Landau pole (Λ), at which $s_W^2(\Lambda) = 1/4$ or $g_X(\Lambda) = \infty$, that is roundly $\Lambda = 4 - 5$ TeV, depending on the unfixed 3-3-1 breaking scale ($\mu_{331} < \Lambda$) [15]. Hereafter, $\Lambda = 5$ TeV will be taken into account. From the global fit, the ρ parameter is $\rho = 1.00040 \pm 0.00024$, which is 1.7 σ above the standard model expectation $\rho = 1$ [16].

Three remarks are in order

1. The reduced 3-3-1 model ($u = 0$, $v = v_w$): The deviation $\Delta \rho$ can be approximated as

$$\Delta \rho \simeq \left(\frac{1 + 2s_W^2}{2c_W^2} \right)^2 \frac{v_w^2}{w^2},$$

which yields $9.243 \text{ TeV} < w < 18.487 \text{ TeV}$, provided that $0.00016 < \Delta \rho < 0.00064$ and $s_W^2 = 0.231$ [16]. The model is invalid due to the limit of the Landau pole $w < 5$ TeV. In other words, due to the Landau pole limit $w < 5$ TeV (assumed the model works), we have $\Delta \rho > 0.0022$, which is too large to be consistent with the experimental data [16].

2. The simple 3-3-1 model ($v = 0$, $u = v_w$): The leading order for the $\Delta \rho$ deviation is

$$\Delta \rho \sim \left[\left(\frac{1 - 4s_W^2}{2c_W^2} \right)^2 + \frac{3\alpha}{4\pi s_W^2} \left(\frac{1}{4} - c_W^2 \right) \right] \frac{v_w^2}{w^2},$$

which yields $w \sim 555 \text{ GeV}$ (by using the central value $\Delta \rho = 0.0004$, $s_W^2 = 0.231$ and $\alpha = 1/128$ [16]). The new physics is well defined below the Landau pole. However, as mentioned the FCNCs constrain $w > 3.6$ TeV, which opposes the above regime. Thus, the model encounters an experimental discrepancy.

3. The minimal 3-3-1 model with three scalar triplets: Because of $u^2 + v^2 = v_w^2$, we can make a contour for $\Delta \rho$ (where $0.00016 < \Delta \rho < 0.00064$) as a function of only two variables (u, w). The Landau pole limit $w < 5$ TeV and the FCNCs bound $w > 3.6$ TeV are also imposed.

The result is shown in Fig. [1] For completeness, the mixing angle φ is shown in Fig. [2]

Conclusion: The reduced 3-3-1 model should be ruled out because it encounters either a large $\Delta \rho$ deviation or being mathematically inconsistent. The simple 3-3-1 model is experimentally unfavored due to the discrepancy between the FCNCs and ρ parameter bounds. The minimal 3-3-1 model with three scalar triplets is consistent when $3.6 \text{ TeV} < w < 4 - 5$ TeV and $162.5 \text{ GeV} < u < 215.6 \text{ GeV}$ (or $0.55 < v/u < 1.14$). In all cases, we can always obtain the corresponding (u, w) values so that the $Z-Z'$ mixing angle is small, consistent with the precision data.
FIG. 1: The (u, w) region that is bounded by $0.00016 < \rho < 0.00064$ and $3.6 \text{ TeV} < w < 5 \text{ TeV}$. Note that u runs from 0 to 246 GeV.

FIG. 2: The (u, w) region that is bounded by $-0.001 < \varphi < 0.001$ (the typical limits imposed by the electroweak measurements [16]) and $3.6 \text{ TeV} < w < 5 \text{ TeV}$. Note also that u runs from 0 to 246 GeV.

The class of 3-3-1 models with $\beta = \pm \sqrt{3}$ and basic scalar triplets (that particularly consists of the mentioned ones and the 3-3-1 model with exotic charged leptons [17]) could be the subject of these constraints.
Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2013.43.

[1] F. Pisano and V. Pleitez, Phys. Rev. D 46, 410 (1992); P. H. Frampton, Phys. Rev. Lett. 69, 2889 (1992); R. Foot, O. F. Hernandez, F. Pisano, and V. Pleitez, Phys. Rev. D 47, 4158 (1993).

[2] M. Singer, J. W. F. Valle, and J. Schechter, Phys. Rev. D 22, 738 (1980); J. C. Montero, F. Pisano, and V. Pleitez, Phys. Rev. D 47, 2918 (1993); R. Foot, H. N. Long, and Tuan A. Tran, Phys. Rev. D 50, R34 (1994).

[3] D. Ng, Phys. Rev. D 49, 4805 (1994); D. G. Dumm, F. Pisano, and V. Pleitez, Mod. Phys. Lett. A 09, 1600 (1994); H. N. Long and V. T. Van, J. Phys. G 25, 2319 (1999).

[4] P. B. Pal, Phys. Rev. D 52, 1659 (1995); P. V. Dong, H. T. Hung, and H. N. Long, Phys. Rev. D 86, 033002 (2012).

[5] F. Pisano, Mod. Phys. Lett A 11, 2639 (1996); A. Doff and F. Pisano, Mod. Phys. Lett. A 14, 1133 (1999); C. A. de S. Pires and O. P. Ravinez, Phys. Rev. D 58, 035008 (1998); C. A. de S. Pires, Phys. Rev. D 60, 075013 (1999); P. V. Dong and H. N. Long, Int. J. Mod. Phys. A 21, 6677 (2006).

[6] M. B. Tully and G. C. Joshi, Phys. Rev. D 64, 011301 (2001); Alex G. Dias, C. A. de S. Pires, and P. S. Rodrigues da Silva, Phys. Lett. B 628, 85 (2005); D. Chang and H. N. Long, Phys. Rev. D 73, 053006 (2006); P. V. Dong, H. N. Long, and D. V. Soa, Phys. Rev. D 75, 073006 (2007); P. V. Dong and H. N. Long, Phys. Rev. D 77, 057302 (2008); P. V. Dong, L. T. Hue, H. N. Long, and D. V. Soa, Phys. Rev. D 81, 053004 (2010); P. V. Dong, H. N. Long, D. V. Soa, and V. V. Vien, Eur. Phys. J. C 71, 1544 (2011); P. V. Dong, H. N. Long, C. H. Nam, and V. V. Vien, Phys. Rev. D 85, 053001 (2012); S. M. Boucenna, S. Morisi, and J. W. F. Valle, Phys. Rev. D 90, 013005 (2014).

[7] D. Fregolente and M. D. Tonasse, Phys. Lett. B 555, 7 (2003); H. N. Long and N. Q. Lan, Europhys. Lett. 64, 571 (2003); S. Filippi, W. A. Ponce, and L. A. Sanches, Europhys. Lett. 73, 142 (2006); C. A. de S. Pires and P. S. Rodrigues da Silva, JCAP 0712, 012 (2007); J. K. Mizukoshi, C. A. de S. Pires, F. S. Queiroz, and P. S. Rodrigues da Silva, Phys. Rev. D 83, 065024 (2011); J. D. Ruiz-Alvarez, C. A. de S. Pires, F. S. Queiroz, D. Restrepo, and P. S. Rodrigues da Silva, Phys. Rev. D 86, 075011 (2012); P. V. Dong, T. Phong Nguyen, and D. V. Soa, Phys. Rev. D 88, 095014 (2013); S. Profumo and F. S. Queiroz, Eur. Phys. J. C 74, 2960 (2014); C. Kelso, C. A. de S. Pires, S. Profumo, F. S. Queiroz, and P. S. Rodrigues da Silva, Eur. Phys. J. C 74, 2797 (2014).

[8] P. V. Dong, T. D. Tham, and H. T. Hung, Phys. Rev. D 87, 115003 (2013); P. V. Dong, D. T. Huong, F. S. Queiroz, and N. T. Thuy, Phys. Rev. D 90, 075021 (2014); D. T. Huong, P. V. Dong, C. S. Kim, and N. T. Thuy, “Inflation and leptogenesis in the 3-3-1-1 model”, in preparation.
[9] J. G. Ferreira Jr, P. R. D. Pinheiro, C. A. de S. Pires, and P. S. Rodrigues da Silva, Phys. Rev. D 84, 095019 (2011); D.T. Huong, L.T. Hue, M.C. Rodriguez, and H. N. Long, Nucl. Phys. B 870, 293 (2013); W. Caetano, C. A. de S. Pires, P. S. Rodrigues da Silva, D. Cogollo, and F. S. Queiroz, Eur. Phys. J. C 73, 2607 (2013); C.-X. Yue, Q.-Y. Shi, and T. Hua, Nucl. Phys. B 876, 747 (2013); J.G. Ferreira, C.A. de S.Pires, P.S. Rodrigues da Silva, and A. Sampieri, Phys. Rev. D 88, 105013 (2013); D. Cogollo, F. S. Queiroz, and P. Vasconcelos, Mod. Phys. Lett. A 29, 1450173 (2014); C. Kelso, P. R. D. Pinheiro, F. S. Queiroz, and W. Shepherd, Eur. Phys. J. C 74, 2808 (2014).

[10] P. V. Dong, N. T. K. Ngan, and D. V. Soa, Phys. Rev. D 90, 075019 (2014).

[11] C. A. de S. Pires, F. Queiroz, and P. S. Rodrigues da Silva, Phys. Rev. D 82, 065018 (2010).

[12] P. V. Dong and H. N. Long, Eur. Phys. J. C 42, 325 (2005).

[13] K. Sasaki, Phys. Lett. B 308, 297 (1993); P. H. Frampton and M. Harada, Phys. Rev. D 58, 095013 (1998); H. N. Long and T. Inami, Phys. Rev. D 61, 075002 (2000).

[14] See, for other constraints, D. Cogollo, A. V. de Andrade, F. S. Queiroz, and P. R. Teles, Eur. Phys. J. C 72, 2029 (2012); Y. A. Coutinho, V. S. Guimaraes, and A. A. Nepomuceno, Phys. Rev. D 87, 115014 (2013).

[15] Alex G. Dias, R. Martinez, and V. Pleitez, Eur. Phys. J. C 39, 101 (2005).

[16] K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).

[17] V. Pleitez and M. D. Tonasse, Phys. Rev. D 48, 2353 (1993).