Background and Purpose Patients with moyamoya vasculopathy (MMV) may experience cognitive impairment, but its reported frequency, severity, and nature vary. In a systematic review and meta-analysis, we aimed to assess the presence, severity, and nature of cognitive impairments in children and adults with MMV.

Methods We followed the MOOSE guidelines for meta-analysis and systematic reviews of observational studies. We searched Ovid Medline and Embase for studies published between January 1, 1969 and October 4, 2016. Independent reviewers extracted data for mean intelligence quotient (IQ) and standardized z-scores for cognitive tests, and determined percentages of children and adults with cognitive deficits, before and after conservative or surgical treatment. We explored associations between summary measures of study characteristics and cognitive impairments by linear regression analysis.

Results We included 17 studies (11 studies reporting on 281 children, six on 153 adults). In children, the median percentage with impaired cognition was 30% (range, 13% to 67%); median IQ was 98 (range, 71 to 107). Median z-score was −0.39 for memory, and −0.43 for processing speed. In adults, the median percentage with impaired cognition was 31% (range, 0% to 69%); median IQ was 95 (range, 94 to 99). Median z-scores of cognitive domains were between −0.9 and −0.4, with multiple domains being affected. We could not identify determinants of cognitive impairment.

Conclusions A large proportion of children and adults with MMV have cognitive impairment, with modest to large deficits across various cognitive domains. Further studies should investigate determinants of cognitive deficits and deterioration, and the influence of revascularization treatment on cognitive functioning.

Keywords Moyamoya disease; Intelligence; Child; Adult; Neuropsychological tests; Review
Introduction

Moyamoya vasculopathy (MMV) is a cerebrovascular disorder of largely unknown etiology characterized by progressive stenosis or occlusion of the supraclinoid internal carotid arteries and their proximal branches. Patients may present with transient ischemic attacks (TIAs) and ischemic stroke but also with headache, movement disorders, and seizures. MMV can also lead to cognitive impairment. Cognitive functions may not only be affected by overt or silent brain infarcts or hemorrhages but also by chronic hypoperfusion, as cognitive impairment has been diagnosed in adults with MMV without stroke. Early age of onset and longer disease duration have been associated with the occurrence of cognitive impairment. Many patients with MMV undergo surgical revascularization to improve cerebral blood flow (CBF) and prevent future ischemic stroke, but prospective studies on the effect of surgical treatment on cognition are lacking. A previously published descriptive review has provided an overview on cognition in moyamoya disease (MMD) suggesting that the impact of MMV on cognition is more pronounced in children than in adults. In the present study we suggest that the occurrence of cognitive impairment is more pronounced in children than in adults. In the present study we systematically collected and meta-analyzed available quantitative information on the presence, severity and nature of cognitive impairment in children and adults with MMV and its determinants, in particular cerebral perfusion. Furthermore, we aimed to determine the effect of surgical intervention on cognition.

Methods

For the conduction of this systematic review we followed the meta-analysis of observational studies in epidemiology (MOOSE) guidelines.

Search strategy and selection criteria

We searched Ovid Medline and Embase for publications of studies describing cognitive function in patients with MMV published between January 1, 1969 (the year the disorder was given its name) and October 4, 2016 (see online Supplementary for Syntax). No limits were set for languages; native speakers translated papers that were written in other languages than English, German, or French. Titles and abstracts were scanned and papers were included on the basis of full text by two authors independently (A.K. and C.J.M.K.); disagreement was resolved by consensus. Additional studies were included from the reference lists of included studies. We included studies reporting cognitive or intellectual functioning in children and adults that allowed analysis of quantitative data on group level (i.e., intelligence quotient [IQ] scores) of at least five patients. If authors reported neuropsychological assessment without providing raw neuropsychological data, we contacted them for additional data. In case of (suspected) overlap between study cohorts, we included the study with the largest sample size with information on the proportion of patients with impaired cognition. In case individual patient data were provided, we excluded patients without quantitative cognitive data.

Data extraction

Three authors (A.K. all papers; C.J.M.K. and E.B. half of the studies each) independently extracted data from selected papers. Disagreements were solved by consensus. Of the authors from 13 publications who were approached for additional data, one provided baseline characteristics and scores of neuropsychological tests, five could not provide additional information, and seven authors did not respond. The risk of bias was evaluated by one author (A.K.) using the Newcastle-Ottawa scale adapted for cross-sectional studies (see online Supplementary for the Risk Assessment).

We collected the following study characteristics: study design; midyear of study; inclusion and exclusion criteria; number of patients with MMD or moyamoya syndrome (MMS, known associated disease); mean age and duration of symptoms (at time of diagnosis; presentation; neuropsychological assessment; operation, inclusion or not specified); proportion of females; ethnicity (Asian, Caucasian, Hispanic, African, and Afro-American, according to the definition provided by the authors, or—if not provided—by country of publication); site of clinical stroke or TIA (uni- or bilateral); application of diagnostic criteria for MMV; site of vasculopathy; and site of (silent) stroke on imaging; and results of CBF and cerebrovascular reserve (CVR) studies. We divided presenting symptoms into four categories depending on the information provided by the authors: (1) ischemic stroke only; (2) TIA(s) only; (3) hemorrhage; or (4) other symptoms. We collected information on the level of education and occupation. In studies that provided longitudinal assessment of cognitive functioning, data were also collected for the second time-point, including the type of revascularization in surgically treated patients.

From the neuropsychological assessments we extracted the following data: mean full-scale intelligent quotient (FSIQ), developmental quotient (DQ) (pooled with FSIQ as IQ); verbal intelligent quotient (VIQ); performance intelligent quotient (PIQ); raw or standardized z-scores of cognitive tests; and the proportion of patients with cognitive impairment overall and per cognitive domain (Supplementary Table 1 summarizes the specific neuropsychological tests applied by each study). For studies that did not provide the proportion of patients with cognitive impairment, we
calculated the proportion based on published normative data if possible. For DQ (a ratio calculated by dividing the mental development age with the chronological age) we appointed to have the same norm sample as (FS)IQ, unless otherwise specified. Cognitive test results derived from neuropsychological evaluation were grouped into six predefined cognitive domains according to standard neuropsychological practice specified in Lezak: intelligence, memory, processing speed, attention and executive functions, visual perception and construction, and language (Supplementary Table 2). In studies that provided results of multiple cognitive tests investigating the same domain, we determined the mean score and, if possible, calculated the mean z-scores and standard deviations (SDs) for the domain. A z-score is a standardized score which entails the number of SDs that an individual test result differs from the mean score in healthy controls, thereby indicating the relative location of a measurement within its distribution.

Data analysis
To assess the presence of cognitive impairment, we determined the median proportion of patients with cognitive impairment. Cognitive impairment was defined according to the authors’ criteria, or as a cognitive score (overall, or on a specific domain, or on at least two tests) deviating more than 1.5 SD from the population mean, or IQ <85. To assess the severity of the impairment, we calculated the median cognitive scores of the various cognitive tests. To determine whether mean age, ethnicity, sex, mean duration of symptoms, and presenting symptoms were determinants of cognitive impairment, we performed linear regression analysis weighted by the inverse standard error of the proportion of patients with impaired cognition. Due to lack of data, this could not be performed for other patients’ characteristics. We qualitatively determined the reported association between frontal CBF and CVR and cognitive impairment as reported by the authors.

In studies that provided longitudinal assessment of cognitive function, we determined whether cognitive functions improved, deteriorated or remained stable over time. For intelligence, we used a cut-off point of more than 10 points differences of IQ scores at follow-up. For cognitive domains, change over time was categorized according to the criteria provided by the authors.

Results

After screening 299 studies (66 studies were screened on full text), we included 17 studies reporting cognitive function in a total of 434 patients (Figure 1). Eleven studies reported on 281 children and six studies on 153 adults. Tables 1 and 2 and Supplementary Tables 3 and 4 summarize study and disease characteristics and neuropsychological test results. Four studies reported on cerebral hemodynamic measures in relation to cognitive functions. Nine studies reported longitudinal assessment of cognitive function over time, eight of which provided data after surgical treatment in children; one after conservative treatment in adults (Table 2 and Supplementary Table 5). Study quality varied between three and six out of seven: three studies had a total score of 3, five studies a score of 4, five studies a score of 5, and four studies a score of 6. The most important reasons for studies having a risk of bias were: sample size <30 patients (65%) and no information on whether patients were included consecutively (87%) (Supplementary Table 6).

Children

In the 11 studies reporting on children, median age of the study cohorts was 9.4 years (range, 5.9 to 13.9); the median percentage females 55% (range, 33% to 75%; 10 studies, 268 patients). All studies except one described Asian cohorts of which nine were Japanese. Two studies described the criteria they used for the diagnosis of MMV: confirmation by angio-
Study	No.	Age (yr)	Presenting symptoms (%)	Duration (mo)	Cognitive impairment overall (%)	FSIQ impaired (%)	VIQ impaired (%)	PIQ impaired (%)	Memory impaired (%)	Procspeed impaired (%)	Att/EF impaired (%)	Visper/const impaired (%)	Language impaired (%)
Hsu et al. (2014)	13	13.9±6.3	TIA 100		17±15.9	39	0	17	0	15	8	8	-
Williams et al. (2012)	30	10.1±4	Infarction 50		35±4.9	-	-	-	-	-	-	-	-
Lee et al. (2011)	65	9.1	-		-	-	-	-	-	-	-	-	-
Imaizumi et al. (1999)	38	6.5±3.3	Infarction 26		16.2±16.1	-	-	-	-	-	-	-	-
Ohtaki et al. (1998)	8	7.1±2.0	Minor completed stroke		18.9±19.7	13	13	-	-	-	-	-	-
Matsushima et al. (1997)	20	9.6±3.4	Infarction 30		-	15	-	-	-	-	-	-	-
Matsushima et al. (1991)	50	9.4±4.3	Movement disorder 80		55.8±50.7	-	-	-	-	-	-	-	-
Sato et al. (1990)	12	5.9±2.3	Ischemia 50		12.6±10.6	67	57	56	-	-	-	-	-
Tagawa et al. (1989)	10	10.2±3.2	Infarction 10		57.8±50.5	30	30	-	-	-	-	-	-
Ibayashi et al. (1985)	15	9.2±3.3	Completed stroke 53		48.3±44.3	-	-	-	-	-	-	-	-
Ishii et al. (1984)	20	9.9±3.1	Completed stroke 60		-	22	22	21	26	-	-	-	-
Lei et al. (2017)	26	40.2±9.4	Minor stroke 27		-	-	-	-	-	-	-	-	-
Kazumata et al. (2015)	23	40.9±9.5	TIA 43		-	30	8	4	17	35	33	30	22
Su et al. (2013)	26	43.7±8.6	Hemorrhage 100		1.2	0	-	-	-	-	-	-	-
Calviere et al. (2012)	13	36.6±12.9	Ischemic stroke 62		36.1†	54	-	-	54	23	54	23	31
graphic evidence of moyamoya collaterals and stenosis in one study14 and according to Sato et al.,20 in the other. One paper reported the inclusion of patients with MMS (n=20).14 Presenting symptoms were reported in 10 studies (216 children). The median proportion of children presenting with ischemic stroke was 31\% (range, 0\% to 60\%; nine studies, 166 patients), and with TIA only 69\% (range, 40\% to 100\%; nine studies, 166 patients).4,6,14,16-18,20-22 Presentation with hemorrhage was rare (one patient in 166 children in nine studies). One study (50 patients) did not report symptoms that could be classified according to our predefined categories.19

The median duration of symptoms was 27.0 months (range, 12.6 to 57.8). We found no information on school performance or the presence of depression among the pediatric studies.

Cognitive impairment

The median proportion of children with cognitive impairment overall was 30\% (range, 13\% to 67\%; seven studies, 133 patients) (Figure 2) with a median IQ score of 101 (range, 71 to 107).4,6,17-21 In the included 11 studies, the median IQ score was 98 (range, 71 to 107).4,6,14-22 median VIQ score was 97 (range, 77 to 108; seven studies, 170 children),4,6,14,15,18,20,22 and median PIQ score was 100 (range, 89 to 109; six studies, 163 children).4,6,14,15,18,22 Three studies reported on specific cognitive domains.6,14,15 Memory was affected in 15\% of patients (one study, 13 patients).6 Eight percent of the patients had impairment in processing speed and attention and executive functions, and 18\% in the visual perception and construction domain (one study, 13 patients).6 The median z-score for memory was –0.39 (range, –0.85 to 0.45; three studies, 108 children)6,14,15 and for processing speed –0.43 (range, –0.86 to 0.00; two studies, 43 children).6 One study (13 patients) assessed additional domains with mean z-scores of 0.50 for attention and executive function; and –0.53 for visual perception and construction.6

We found no association between mean age (B=–0.014; 95\% confidence interval [CI], –0.112 to 0.083; P=0.723); type of presenting symptom (for infarction [B=–0.002; 95\% CI, –0.017 to 0.013; P=0.672] and for TIA [B=–0.002; 95\% CI, –0.013 to 0.017; P=0.672]); mean duration of symptoms (B=0.000; 95\% CI, –0.016 to 0.016; P=0.945); and proportion of females (B=–0.005; 95\% CI, –0.025 to 0.014; P=0.508), and the proportion of patients with cognitive impairment (Supplementary Table 7).4,6,18,20,21

Cerebral blood flow

Three studies investigated the relation between CBF (xenon-enhanced computed tomography [CT])4 or single photon emission CT (SPECT))11 and IQ scores.21 In one study, patients with a lower

Study	Age (yr)	Presenting symptoms (%)	Duration (mo)	Cognitive impairment overall (%)	FSIQ impaired (%)	PIQ impaired (%)	Language impaired (%)				
Festa et al. (2010)25§§	29±11.2	72 ischemic stroke, 17 TIA, 3 Hemorrhage	39.9±11.2	69	31	19	25	7	39	23	40
Karzmark et al. (2008)24§§	36±6.9	Ischemic stroke 72	36.6±9.6	69	31	19	25	7	39	23	40

Values are presented as mean±standard deviation (range) or mean±standard deviation. FSIQ, full-scale intelligent quotient; PIQ, performal intelligence quotient; Procspeed, processing speed; Att, attention; EF, executive function; Visper/const, visual perception/construction; TIA, transient ischemic attack. *Studies reporting results in children; †At neuropsychological assessment; ‡At diagnosis; §Excluding 2 patients (1 scaled out, 1 not investigated); ¶At operation; §§Studies reporting results in adults.
IQ showed a tendency for a more marked depression of mean CBF than those with a normal IQ (quantitative analysis not provided).4 Another study reported a marked depression of CBF (qualitatively determined) in the frontal lobes in seven out of nine patients, all having normal IQ scores.17 The third study reported no relation between abnormal patterns of CBF and IQ.21

Longitudinal results

Eight studies (199 patients) evaluated the effect of revascularization surgery on cognitive performances after a median follow-up period of 35.3 months (range, 6.5 to 113).4,15-20,22 All eight studies reported IQ and one also assessed memory. Indirect revascularization was performed in 90.5% of the patients, direct in 0.5% and combined in 9%. The median proportion of children with impaired intelligence pre-operatively was 33% (range, 13% to 67%; four studies, 88 children) and at follow-up after revascularization 35% (range, 13% to 58%; four studies, 81 children).17-20 In the other four studies proportions of children with impaired IQs were not reported post-operatively.

Median scores at follow-up were: for IQ 97 (range, 68 to 108; six studies, 161 children) with a pre-operative median IQ score in these studies of 101 (range, 71 to 107; 170 children); for VIQ 97 (range, 82 to 106; four studies, 107 children) with a pre-operative median VIQ score of 101 (range, 77 to 108; 107 children); and for PIQ 112 (range, 100 to 119; three studies, 100 children) with a pre-operative median PIQ score of 100 (range, 97 to 109; 100 children).

Based on available individual patient data, improvement in IQ (≥10 points) was observed in a median proportion of 27% of patients (range, 5.5% to 53%; five studies, 91 children), no change in 56% (range, 40% to 89%; four studies, 76 children) and deterioration in 15% (range, 5.5% to 25%; four studies, 76 children). Improvement in VIQ was seen in 20% (range, 13% to 29%; three studies, 37 children), no change in 65% (range, 57% to 73%; two studies, 22 children) and deterioration in 13.5% (range, 13% to 14%; two studies, 22 children). PIQ scores improved in 63.5% (range, 60% to 67%; two studies, 22 children) and remained stable in 20% (one study, 15 patients) and deteriorated in 13% (one study, 15 patients).4,22 Memory function improved after surgery (pre-operative z-score 0.45; after surgery 0.77).15 One study in which 18 out of the 38 patients were operated on (five combined, 13 indirect) reported no improvement of IQ after revascularization (no quantitative data available).16

Adults

In the six studies reporting on adults, median age was 40.1 years (range, 36.6 to 43.7) and the median percentage of females 63% (range, 46% to 74%).23-27 Of a total of 153 pa-

Table 2. Longitudinal neuropsychological test performances

Study	FU period (mo)	Impairment overall (A/B)%*	Improved (%)	Stable (%)	Deteriorated (%)
Lee et al. (2011)15†	19† (5–46)	-	-	-	-
Imaizumi et al. (1999)†	>120†	-	-	-	-
Ohtaki et al. (1998)17†	85.2±32.59† (23–110)	13/13	12	63	25
Matsushima et al. (1997)18†	113†	15/20	-	-	-
Matsushima et al. (1991)19†	26.2±14.7† (7–58)	50/49	27	49	24
Sato et al. (1990)20†	44.4±26.3† (4–99)	67/58	PIQ 11	VIQ 29	DQ 0
Ibayashi et al. (1985)21†	6.5±4.9† (1–17)	-	FSIQ 47	VIQ 20	PIQ 60
Ishii et al. (1984)22*	6–68†	22/-	FSIQ 53	VIQ 13	PIQ 67
Su et al. (2013)23**	24†	0/100	0	0	100

Values are presented as median (range), mean±standard deviation (range), or range.
FU, follow-up; PIQ, performal intelligence quotient; VIQ, verbal intelligence quotient; DQ, developmental quotient; FSIQ, full-scale intelligent quotient.
*A/B, prior neuropsychological test result/longitudinal neuropsychological test result; †Studies reporting results in children; ‡FU period defined as time of operation to NPA; §FU period defined as time from onset of disease to neuropsychological assessment; ‖FU period defined as time of NPA to NPA; ¶FU period unspecified; **Studies reporting results in adults.
patients, 87 were Asian (57%), 56 Caucasian (37%), and 10 had another ethnicity (7%). The median proportion of adults presenting with ischemic stroke was 27% (range, 0% to 72%; five studies, 117 patients), TIA only 17% (range, 0% to 54%; five studies, 117 patients), hemorrhage 3% (range, 0% to 100%; five studies, 117 patients), and 19% (range, 0% to 57%; five studies, 117 patients) had other symptoms. The median duration of symptoms at assessment or inclusion was 18.6 months (1.2 and 36.1 months; two studies).

Cognitive impairment

The median proportion of patients with cognitive impairment was 31% (range, 0% to 69%; five studies, 127 patients). In the four studies investigating cognition by means of a neuropsychological test battery, the median proportion with impaired cognition on one or more of the reported domains was 42.5% (range, 30% to 69%). The median IQ score was 95 (range, 94 to 99; three studies, 88 patients); median VIQ score was 94 and median PIQ score 93 (two studies, 59 patients).

Four studies (101 patients) reported on specific cognitive domains. The median proportion of patients with impaired memory was 37% (range, 7% to 54%), impaired processing speed 28% (range, 21% to 39%), impaired attention and executive functions 37% (range, 19% to 54%), impaired visual perception and construction 23% (range, 22% to 29%), and impaired language 35% (range, 20% to 40%). The median z-scores (three studies, 78 patients) were: for memory –0.4 (range, –1.1 to –0.2), for processing speed –0.9 (range, –1.7 to –0.8), for attention and executive function –0.9 (range, –0.95 to –0.4), for visual perception and construction –0.4 (range, –0.5 to –0.2), and for language –0.6 (range, –0.8 to –0.15). One study of patients with an intraventricular hemorrhage (IVH) showed a mean score within the normal range (27.4±1.2 [range, 26 to 29]) on the Montreal Cognitive Assessment (MoCA).

We found no association between mean age (B=–0.044; 95% CI, –0.184 to 0.096; P=0.387) or proportion of females (B=0.011; 95% CI, –0.031 to 0.053; P=0.460) and cognitive impairment (Supplementary Table 7). Analysis of the association of type of presenting symptom and cognitive impairment was not possible, because of lack of data categorized according to our predefined classification.

The mean duration of education was 12.1±3.1 years (three studies, 91 patients). In a series of 26 patients from one study, nine finished college or a higher-level education, five primary school or less, and 12 middle school. Another study of 36 patients reported that 25 participated in a full-time job.

Figure 2. Mean intelligence quotient (IQ) with 95% confidence interval (CI) in children (11 studies, 281 children) ordered by mean age (mean summary IQ, 95.5; 95% CI, 86.7 to 104.2). The blue vertical line represents the mean IQ in the average population.
five were unemployed and five were homemakers; one patient had retired.24

Cerebral blood flow studies
One study reported a correlation of the apparent diffusion coefficient (ADC) in normal appearing frontal white matter on diffusion weighted imaging with CVR on perfusion magnetic resonance imaging and executive functions (Spearman coefficient, \(-0.46; P=0.01\)). Elevation of ADC was significantly correlated with executive dysfunction (area under the curve for cognitive impairment, 0.85; 95% CI, 0.59 to 1.16; \(P=0.032\)).

Longitudinal results
In the study assessing cognitive impairment in patients with solely IVH, all patients had normal MoCA scores at baseline (mean MoCA score 27.4±1.2 [range, 26 to 39]) and mild cognitive impairments after a mean follow-up of 24 months (mean MoCA score 18.7±1.3 [range, 16 to 21]) without treatment.23

Discussion
Our systematic review shows that around 30% of children and of adults have cognitive impairment. When assessed on a group level, median IQ scores are within the normal range in both children and adults. Information on specific domains of cognitive function is limited, with relatively modest impairments in memory and processing speed observed in children, and modest to large impairments across various cognitive domains in adults.

Since there was not a large discrepancy between VIQ and PIQ, total IQ scores provide a reliable insight in cognitive functioning in children. Longitudinal results in children showed that IQ scores on a group level remained within normal limits over time. In adults, longitudinal studies of neuropsychological assessments other than with a screening test have not been performed.

In a previous review, the authors concluded that cognition is affected more frequently in children than in adults, reporting intelligence to be impaired in children, and executive functions in adults.7 However, our systematic review and meta-analysis show that in adults the proportion of patients with impairment of cognitive function is as large as in children. In comparison with this aforementioned review, we included five additional studies on children6,14,15,21,22 and four recent studies on adults,23,26,27 and excluded studies without quantitative data. Although the highest median percentage of impaired function was found in the domain attention and executive functions, we found similar proportions of patients with impairment for the other cognitive domains. In children, other domains than intelligence were investigated in only three studies. Patients with a normal intelligence may show selective cognitive impairment in other cognitive domains. Therefore, extensive neuropsychological evaluation is of great importance, also in children who generally show a diffusely impaired cognitive profile in case of cognitive deterioration because their brain is still developing.

It remains uncertain if the neurocognitive profile of patients with MMS differs from that in patients with MMD, since the presence of associated diseases was reported in only one study, which did not demonstrate a difference between these groups.14

We did not find an association between the predefined determinants and the proportion of patients with cognitive impairment, probably due to the limited data available. Some of the included studies suggested that age at onset6,22 and longer duration of disease were6 associated with cognitive dysfunction, however we could not confirm these associations in our meta-analysis. Previous studies were small including 13 to 20 patients and observed associations may have been due to chance. Information on the determinants of cognitive impairment and its course is scarce. The relation between cerebral perfusion and cognition in children remains unclear, whereas in adults, a single study suggested a relation between diminished perfusion in the frontal matter and executive dysfunction. Several studies have suggested that (frontal) hypoperfusion, white matter disease and infarction are associated with cognitive disturbances.28-31 It remains unclear whether MMV directly affects cognition by chronic hypoperfusion, or that cognitive impairment is mainly the result of stroke. The observed impaired cognition in patients without stroke supports the hypothesis that chronic hypoperfusion is a contributing factor to cognitive impairment in patients with MMV.5,6 One study reported that executive dysfunction was associated with stroke and white matter lesions and not with CVR; however, patients with higher baseline CBF had better cognitive functioning.32 Improvement in intelligence and cerebral perfusion in children has been observed after revascularization surgery6,37 and for this reason frontal revascularization procedures are performed more often.2,17,33 Whether prevention of cognitive decline should be an indication for revascularization surgery in patients with MMV remains unclear. Although our review shows that a fair number of patients improved or remained stable after revascularization, the quantity of the included data is too limited to draw final conclusions.

Although we were able to collect a reasonable amount of data on cognitive function in patients with MMV, the review was limited by the relatively low number of patients described in the individual studies. Information bias could not be avoided, given the large heterogeneity of the reported cognitive tests. Since little information on patients’ characteristics was avail-
able, results could be influenced by selection bias and we could not control for confounding factors like the presence of silent infarction on imaging. Finally, we were not able to perform meta-analysis of the relation between CBF and cognition and of the effect of revascularization due to the low number and heterogeneity of studies. Our review also has strengths. We were able to quantify cognitive impairments in MMV. In addition, we were able to eliminate the risk of selection bias due to language since we did not include language restrictions. Despite these methodological shortcomings, our results give valuable insight in the presence, severity and nature of cognitive functions in MMV before and after revascularization, since we quantified cognitive impairments in MMV.

Conclusions

Large prospective studies with a standardized neuropsychological test battery are needed to determine the severity of cognitive impairment and the domains affected. Information on school level and performance, and on work status is also of importance, since it reflects function rather than deficits. It remains to be established whether cognitive outcome can be improved by revascularization surgery.

Supplementary materials

Supplementary materials related to this article can be found online at https://doi.org/10.5853/jos.2018.01550.

Disclosure

The authors have no financial conflicts of interest.

Acknowledgments

We thank Dr. M. Poon (Buckinghamshire, England), S. Diederen and R. Hendriks (Utrecht, the Netherlands) for supporting the translation of the Chinese and Japanese papers.

This work was supported by the Dutch Brain Foundation (2012(1)-179); the Christine Bader Fund Irene Children’s Hospital; the Tutein Nolthenius Oldenhof Fund, the Johanna Children Fund and Friends of the Wilhelmina Children’s Hospital.

Dr. Catharina J. M. Klijn is supported by a Clinical Established Investigator grant from the Dutch Heart Foundation (grant number 2012T077) and an Aspasia grant from ZonMw (grant number 015008048).

References

1. Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med 2009;360:1226-1237.
2. Kronenburg A, Braun KP, van der Zwan A, Klijn CJ. Recent advances in moyamoya disease: pathophysiology and treatment. Curr Neural Neurosci Rep 2014;14:423.
3. Kleiñoog R, Regli L, Rinkel GJ, Klijn CJ. Regional differences in incidence and patient characteristics of moyamoya disease: a systematic review. J Neurol Neurosurg Psychiatry 2012;83:531-536.
4. Ishii R, Takeuchi S, Ibayashi K, Tanaka R. Intelligence in children with moyamoya disease: evaluation after surgical treatments with special reference to changes in cerebral blood flow. Stroke 1984;15:873-877.
5. Karzmark P, Zefert PD, Bell-Stephens TE, Steinberg GK, Dorfman LJ. Neurocognitive impairment in adults with moyamoya disease without stroke. Neurosurgery 2012;70:634-638.
6. Hsu YH, Kuo MF, Hua MS, Yang CC. Selective neuropsychological impairments and related clinical factors in children with moyamoya disease of the transient ischemic attack type. Childs Nerv Syst 2014;30:441-447.
7. Weinberg DG, Rahme RJ, Aoun SG, Batjer HH, Bendok BR. Moyamoya disease: functional and neurocognitive outcomes in the pediatric and adult populations. Neurosurg Focus 2011;30:E21.
8. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283:2008-2012.
9. Calvière L, Sai Yan Kai G, Catalaa I, Marlatis F, Bonneville F, Lar rue V. Executive dysfunction in adults with moyamoya disease is associated with increased diffusion in frontal white matter. J Neurol Neurosurg Psychiatry 2012;83:591-593.
10. Herzog R, Álvarez-Pasquin MJ, Díaz C, Del Barrio JL, Estrada JM, Gil A. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health 2013;13:154.
11. Kurita H, Osada H, Shimizu K, Tachimori H. Validity of DQ as an estimate of IQ in children with autistic disorder. Psychiatry Clin Neurosci 2003;57:231-233.
12. Lézak M, Howieson D, Bigler E, Tranel D. Neuropsychological Assessment. 5th ed. New York, NY: Oxford University Press, 2012.
13. Bowerman BL, O’Connell RT, Hand ML. Business Statistics in Practice. 2nd ed. New York, NY: McGraw Hill Higher Education, 2001.
14. Williams TS, Westmacott R, Dlamini N, Granite L, Dirks P,
Askalan R, et al. Intellectual ability and executive function in pediatric moyamoya vasculopathy. Dev Med Child Neurol 2012;54:30-37.
15. Lee JY, Phi JH, Wang KC, Cho BK, Shin MS, Kim SK. Neurocognitive profiles of children with moyamoya disease before and after surgical intervention. Cerebrovasc Dis 2011;31:230-237.
16. Imaizumi C, Imaizumi T, Osawa M, Fukuyama Y, Takeshita M. Serial intelligence test scores in pediatric moyamoya disease. Neuropediatrics 1999;30:294-299.
17. Ohtaki M, Uede T, Morimoto S, Nonaka T, Tanabe S, Hashi K. Intellectual functions and regional cerebral haemodynamics after extensive omental transplantation spread over both frontal lobes in childhood moyamoya disease. Acta Neurochir (Wien) 1998;140:1043-1053.
18. Matsushima Y, Aoyagi M, Nariai T, Takada Y, Hirakawa K. Long-term intelligence outcome of post-encephalo-duro-arterio-synangiosis childhood moyamoya patients. Clin Neurol Neurosurg 1997;99 Suppl 2:S147-S150.
19. Matsushima Y, Aoyagi M, Koumo Y, Takasato Y, Yamaguchi T, Masaoka H, et al. Effects of encephalo-duro-arterio-synangiosis on childhood moyamoya patients: swift disappearance of ischemic attacks and maintenance of mental capacity. Neurol Med Chir (Tokyo) 1991;31:708-714.
20. Sato H, Sato N, Tamaki N, Matsumoto S. Chronic low-perfusion state in children with moyamoya disease following revascularization. Childs Nerv Syst 1990;6:166-171.
21. Tagawa T, Itagaki Y, Mimaki T, Tanaka J, Ito N, Suzuki Y, et al. Intelligence and regional cerebral blood flow in children with Moyamoya disease. No To Hattatsu 1989;21:9-13.
22. Ibayashi K, Takeuchi S, Ishii R, Tanaka R, Tsuruoka H. Intelligence and memory function of juvenile patients with moyamoya disease. With reference to the effect of surgical treatment. Nerv Syst Child 1985;10:155-161.
23. Su SH, Hai J, Zhang L, Yu F, Wu YF. Assessment of cognitive function in adult patients with hemorrhagic moyamoya disease who received no surgical revascularization. Eur J Neurol 2013;20:1081-1087.
24. Karzmark P, Zeifert PD, Tan S, Dorfman LJ, Bell-Stephens TE, Steinberg GK. Effect of moyamoya disease on neuropsychological functioning in adults. Neurosurgery 2008;62:1048-1051.
25. Festa JR, Schwarz LR, Pliskin N, Cullum CM, Lacritz L, Charbel FT, et al. Neurocognitive dysfunction in adult moyamoya disease. J Neurol 2010;257:806-815.
26. Lei Y, Su J, Jiang H, Guo Q, Ni W, Yang H, et al. Aberrant regional homogeneity of resting-state executive control, default mode, and salience networks in adult patients with moyamoya disease. Brain Imaging Behav 2017;11:176-184.
27. Kazumata K, Tha KK, Narita H, Kusumi I, Shichinohe H, Ito M, et al. Chronic ischemia alters brain microstructural integrity and cognitive performance in adult moyamoya disease. Stroke 2015;46:354-360.
28. Karasawa J, Touho H, Ohnishi H, Miyamoto S, Kikuchi H. Long-term follow-up study after extracranial-intracranial bypass surgery for anterior circulation ischemia in childhood moyamoya disease. J Neurosurg 1992;77:84-89.
29. Kuroda S, Houkin K, Ishikawa T, Nakayama N, Ikeda J, Ishii N, et al. Determinants of intellectual outcome after surgical revascularization in pediatric moyamoya disease: a multivariate analysis. Childs Nerv Syst 2004;20:302-308.
30. Calviere L, Catalaa I, Marlats F, Viguier A, Bonneville F, Cognard C, et al. Correlation between cognitive impairment and cerebral hemodynamic disturbances on perfusion magnetic resonance imaging in European adults with moyamoya disease. Clinical article. J Neurosurg 2010;113:753-759.
31. Hosoda C, Nariai T, Ishiwata K, Ishii K, Matsushima Y, Ohno K. Correlation between focal brain metabolism and higher brain function in patients with moyamoya disease. Int J Stroke 2010;5:367-373.
32. Mogensen MA, Karzmark P, Zeifert PD, Rosenberg J, Marks M, Steinberg GK, et al. Neuroradiologic correlates of cognitive impairment in adult moyamoya disease. AJNR Am J Neuroradiol 2012;33:721-725.
33. Kronenburg A, Esposito G, Fierstra J, Braun KP, Regli L. Combined bypass technique for contemporary revascularization of unilateral MCA and bilateral frontal territories in moyamoya vasculopathy. Acta Neurochir Suppl 2014;119:65-70.
34. Bulder MM, Hellmann PM, van Nieuwenhuizen O, Kappelle LJ, Klijn CJ, Braun KP. Measuring outcome after arterial ischemic stroke in childhood with two different instruments. Cerebrovasc Dis 2011;32:463-470.
Supplementary for Syntax

OVID Medline (PubMed) syntax
(moyamoya OR moya OR moyamoya [Title/Abstract]) AND (cognition OR neurocognitive OR intelligence OR psycho OR executive OR cognitive OR mental OR retardation OR memory OR language OR dementia [Title/Abstract])

Embase syntax
(moyamoya:ab,ti OR moya:ab,ti OR moyamoya:ab,ti) AND (cognition:ab,ti OR neurocognitive:ab,ti OR intelligence:ab,ti OR psycho:ab,ti OR executive:ab,ti OR cognitive:ab,ti OR mental:ab,ti OR retardation:ab,ti OR memory:ab,ti OR language:ab,ti OR dementia:ab,ti)
Supplementary for the Risk Assessment

Newcastle–Ottawa Scale adapted† for cross-sectional studies

Selection: (Maximum 4 stars)

1) Representativeness of the sample‡
 a) Truly representative of the average in the target population*
 b) Somewhat representative of the average in the target population*
 c) No description of the derivation of the cohort

2) Sample size§
 a) Justified and satisfactory*
 b) Not justified

3) Selection criteria
 a) Selection criteria were clearly described and consecutive patients were included*
 b) Selection criteria were not clearly described and it was unclear whether consecutive patients were included

4) Ascertainment of the exposure| |
 a) Validated measurement tool*
 b) Non-validated diagnostic measures (but the tool is available or described), or not all patients were DSA proven*
 c) No description of the diagnostic tool

Outcome: (Maximum 3 stars)

1) Assessment of the outcome (description of cognitive tests applied)¶
 a) Extensive neuropsychological evaluation**
 b) IQ*
 c) Screening test*
 d) No description

2) Quantitative data:
 a) The study reported cognitive or intellectual functioning in children and adults that allowed analysis of quantitative data.*
 b) The study did not report cognitive or intellectual functioning in children and adults that allowed analysis of quantitative data.

DSA, digital subtraction angiography; IQ, intelligence quotient.
The asterisk refers to the number of stars (" or ") that can be assigned. It's a scoring method but not an actual footnote; "This scale has been adapted by the authors from the Newcastle-Ottawa Quality Assessment Scale for cohort studies and the scale developed by Herzog et al. (2013) to perform a quality assessment of cross-sectional studies for the systematic review: 'Cognitive functions in children and adults with moyamoya vasculopathy: a systematic review and meta-analysis'. Since there were no groups to compare (only patients with moyamoya (no control groups) were reviewed for this systematic review), we could not include the section 'Comparability'; †Patients with moyamoya disease or syndrome: 1 star; §Sample size of n≥30: 1 star; | DSA or magnetic resonance angiography: 1 star; ¶Neuropsychological test battery applied: 2 stars, IQ or screening test: 1 star.
Supplementary Table 1. Applied cognitive instruments/tests for each study

Study	Applied instruments/tests*
Hsu et al. (2014)†	WISC-III or WISC-IV; WAIS-III
	POI: Perceptual Organization Index
	WM: Working Memory Index
	PSI: Processing Speed Index
	WL1: Immediate Recall of the Word List
	WL2: Delayed Recall of the Word List
	WL-recog: Recognition of the Word List
	CFT: Category Fluency Test
	JLO: Judgment of Line Orientation
Williams et al. (2012)†	WISC-III or WISC-IV; WAIS-III; WPPSI-III
	VCI: Verbal Comprehension Index
	PRI: Perceptual Reasoning Index
	PSI
	WMI
Lee et al. (2011)†	KEDI-WISC-R
	BGT recall: Bender Gestalt Test
Imaizumi et al. (1999)†	WPPSI; WISC-R; WAIS-R; Tanaka-Bonet Intelligence Test
	Tumori-Inage Mental Development Test
Ohtaki et al. (1998)†	WAIS-R; WISC-R
Matsushima et al. (1997)†	WISC
Matsushima et al. (1991)†	WISC; development questionnaires of Tsumori et al.
Sato et al. (1990)†	WISC-R; WPPSI; Developmental test
	BGT
Tagawa et al. (1989)†	WISC
Ishii et al. (1984)†	WAIS; Benton’s Visual Memory Test
Lei et al. (2017)†	TMT-B (s): Time consumed in the Trail Making Test part B
	MES-EX: executive subtests of Memory and Executive Screening
Kazumata et al. (2015)†	WAIS-III
	WSCT: Wisconsin Sorting Test
	TMT-A/B: Trail Making Test part A and B
	CPT: Continuous Performance Test
	Stroop test
	RST: Reading Span Test
Su et al. (2013)†	MoCA: Montreal Cognitive Assessment
Calviere et al. (2012)†	Letter R
	Category (animals) fluency test
	TMT-A/B
	Stroop interference condition
	Brixton test
	WCST-C/-P: Wisconsin Card Sorting Test number of categories and number of perseverations
	Colored dots and word sections of the Stroop test
	Verbal fluency tests
	Naming and Recognition Test of 80 common objects
	Rey figure copy test
	Hooper test
	Immediate and delayed 16 free and cued recalls
	Rey figure recall
Supplementary Table 1. Continued

Study	Applied instruments/tests*
Festa et al. (2010)	WAIS-III; WASI
	Hopkins Verbal Learning Test
	California Verbal Learning Test
	TMT-A/B
	Boston Naming Test
	Animal Fluency
	COWAT: Controlled Oral Word Association Test
	WCST: Wisconsin Card Sorting Test
	Grooved Pegboard Test
	Hand Dynometer
Karzmark et al. (2008)	WAIS-R; WAIS-III
	California Verbal Learning Test-II
	Memory Test–Revised Visual Reproduction subtest
	Delis-Kaplan Executive Function System Design Fluency Test
	FAS/AN: Letter and Category Fluency Tests
	TMT-A/B
	Grooved Pegboard
	Tactile Form Recognition Test
	Boston Naming Test

This table represents the cognitive instruments/tests used in each study separately.

WISC (-R or -III or -IV), Wechsler Intelligence Scale (revised or third or fourth edition); WAIS (-R or -III), Wechsler Adult Intelligence Scale (revised or third edition); WPPSI (-III), Wechsler Preschool and Primary Scale of Intelligence (third edition); KEDI-WISC-R, Korean Educational Development Institute Wechsler Intelligence Scale for Children-Revised; WASI, Wechsler Abbreviated Intelligence Scale.

*As reported by the authors; †Studies reporting results in children; ‡Studies reporting results in adults.
Supplementary Table 2. Predefined cognitive domains according to standard neuropsychological practice specified in Lezak\(^2\)

Cognitive domain	Included test	
General intelligence		
Crystallised intelligence		
Verbal IQ		
Similarities (WAIS)		
Vocabulary (WAIS)		
Information (WAIS)		
Comprehension (WAIS)		
National Adult Reading Test		
Synonyms		
Fluid intelligence		
Perusal IQ		
Raven Progressive Matrices		
Picture Completion (WAIS)		
Picture Arrangement (WAIS)		
Arithmetic		
Category Test		
Memory		
Working memory		
Digit Span Forward & Backward		
Block Span Forward & Backward		
Memory Scanning Test		
Brown-Peterson task		
Logical Memory Immediate Recall		
Visual Reproductions Immediate Recall		
Paired Associate Learning Immediate Recall (verbal & nonverbal)		
Serial Digit Learning		
Word List Immediate Recall		
(Buschke) Selective Reminding Test Immediate Recall		
Visual Retention Test Immediate Recall		
Object Memory Immediate Recall		
Rey Complex Figure Immediate Recall		
Auditory Verbal Learning Test Immediate Recall		
Serial Learning Test		
Word/Picture Recognition Immediate Recall		
Spatial Memory Test		
California Verbal Learning Test Immediate Recall		
Claeson-Dahl Test Immediate Recall		
Seashore Tonal Memory Test		
Figural Memory Immediate Recall		
Iconic Memory		
Maze Learning Immediate Recall		
Tactual Performance Test Immediate		
Prose Recall Immediate Recall		
Symbol-Digit Learning Test		
Learning & Immediate memory		
Babcock paragraph Immediate Recall		
East Boston Memory Test Immediate Recall		
Delayed memory		
Logical Memory Delayed Recall		
Visual Reproductions Delayed Recall		
Word List Delayed Recall		
(Buschke) Selective Reminding Test Delayed Recall		
Visual Retention Test Delayed Recall		
Object Memory Delayed Recall		
Cognitive domain		
Supplementary Table 2. Continued

Cognitive domain	Included test
Processing speed	Digit Symbol Substitution
	Symbol Digit Modalities Test
	Trailmaking Test A
	Grooved Pegboard
	Purdue Pegboard
	Graded Reaction Time Task
	Perceptual Speed
Motor speed	Simple reaction time
	Fingertapping Test
	Finger Oscillation Test
Attention	
Visual attention	Stroop Color Word Test Part I & II
	Facial Recognition Test
	Target finding task
Sustained attention	Digit Vigilance Test
	Quatember & Maly’s Vigilance Test
Divided attention	PASAT
Selective attention	Stroop Color Word Test Part III
Cognitive domain	Included test
Cognitive flexibility	Lexical Fluency Task
	Category Fluency Task
	Trailmaking Test B (also C, D and Color)
	Category Test
	Concept Shifting Task
	Wisconsin Card Sorting Task
	Serial subtraction (3s of 7s)
	Card Sorting
Perception & Construction	Visual Retention Test Copy
	Visual Reproductions Copy
	Block Design
	Clock Drawing
	Rey Complex Figure Copy
	Tactual Performance Test Part I
	Object Assembly (WAIS)
	Embedded Figures
	De Renzi Rods
	Flicker Fusion
	Perception of spaced stimuli
	Time judgement
	Visual Recognition Threshold
	Street Completion
	Rosen figure drawing test

IQ, intelligence quotient; WAIS, Wechsler Adult Intelligence Scale.
Supplementary Table 3. Characteristics of studies assessing cognitive functions in children and adults with moyamoya vasculopathy

Study	Mid-year	Design	Inclusion criteria	Exclusion criteria	No.	Age (yr)	Female (%)	Ethnicity (%)	Presenting symptoms (%)	Duration (mo)	MMV site (%)	Site of stroke clinically (%)	Site of stroke imaging (%)	
Hsu et al. (2014)	2010	-	Pediatric MMD >6 yr old; TIA as initial symptom	Cortical hemorrhage; prior revascularization; uncooperation; underlying systemic diseases	13	13.9±6.3 (6–17)	-	Chinese	TIA 100	17±15.9 (1–48)	-	-	-	
Williams et al. (2012)	2004	Retro	MMD or MMS; <18 yr; NPA pre-surgery; English language skills	Whole brain radiation; severe developmental delay associated with genetic comorbidities; revascularization surgery; lack of parent/child agreement to NPA	30	10.1±4.7	60	Caucasian 40	Infarction 50	35±49 (2–204)	Bi 47	Uni 53	No stroke 30 Stroke 70 Bi 33 Uni 67 Cortical 57 WM 43	
Lee et al. (2011)	2007	-	MMD with pre- and postoperative NPA	-	65	9.1 (4–17)	43	Korean	-	-	Bi 82	Uni 18	No stroke 60 Stroke 40 MS 15 BZ 25	
Imaizumi et al. (1999)	1984	-	MMD and IQ tested >once during course disease	-	38	6.5±3.3 (1–13)	63	Japanese	Infarction 26 TIA 63 Other 11	16.2±16.1 (1–60)	-	-	-	-
Ohtaki et al. (1998)	1990	Retro	Omental transplantation frontal lobes	-	8	7.1±2.0 (5–11)	75	Japanese	Minor completed stroke 12.5 Hemorrhage 12.5 TIA 75	18.9±19.7 (2–60)	Bi 87	Uni 13	Bi 25	-
Matsushima et al. (1997)	1984	Retro	IQ >70; EDAS performed <95 yr	-	20	9.6±3.4	40	Japanese	Infarction 30 TIA 70	-	-	-	-	
Matsushima et al. (1991)	1984	-	MMD	-	50	9.4±4.3 (2–21)	56	Japanese	Movement disorder 80 Seizures 6 Headache 10 Involuntary movements 4	55.8±50.7 (0–188)	-	-	-	
Sato et al. (1990)	1990	-	Revascularization and CBF evaluation	-	12‡	5.9±2.3 (1–10)	33	Japanese	Ischemia 50 TIA 50	12.6±10.6 (1–31)	Bi 92	Uni 8	Bi 66 Uni 33	No stroke 50 Stroke 50 Bi 50 Uni 50
Tagawa et al. (1989)	1991	-	Children with MMD	-	10‡	10.2±3.2 (6–15)	60	Japanese	Infarction 10 TIA 90	57±50.5 (13–155)	-	-	-	
Ibayashi et al. (1985)	1991	-	Juvenile MMD patients	-	15	9.2±3.3 (5–16)	53	Japanese	Completed stroke 53 TIA 47	48.3±44.3 (19–138)	-	Bi 73%	Uni 27%	-
Ishii et al. (1984)	1984	-		-	20	9.9±3.1 (5–16)	50	Japanese	Completed stroke 60 TIA 40	-	-	-		

Notes:

- MMV: MMD-related moyamoya vessels
- TIA: Transient ischemic attack
- CBF: Cerebral blood flow
- EDAS: Endovascular arterial surgery
- Unilateral: Bilateral
- *: Data not available

Abbreviations:

- MMD: Moyamoya disease
- NPA: Non-Parental Agreement
Supplementary Table 3. Continued

Study	Mid-year	Design	Inclusion criteria	Exclusion criteria	No.	Age (yr)	Female (%)	Ethnicity (%)	Presenting symptoms (%)	Duration (mo)	MMV site (%)	Site of stroke clinically (%)	Site of stroke imaging (%)
Lei et al. (2017)†	2013 Pro	18–80 yr; handed; MMD on DSA; no abnormalities/ICH several brain locations; no surgery; physically able NPA	Significant neurological diseases; psychiatric disorders; other cerebrovascular diseases; systemic diseases; specific medication	26 40.2±9.4** 54 Chinese	Minor stroke 27 TIA 54 Headache 19	-	-	-	-	No hyperintense signals >8 mm in maximum dimension			
Kazumata et al. (2015)§§	2013 Pro	>20 yr; idiopathic MMD	Quasi MMD; cortical infarction/subcortical lesion >8 mm; intracranial hemorrhage; revascularization surgery; neurological deficit because of stroke; comorbid illness affecting cognition	23 40.9±9.5 [21–58]** 74 Japanese	TIA 43 Asymptomatic L7	-	Bi 100	-	-	No stroke 57 Stroke 43 Bi 50 Uni 50			
Su et al. (2013)§§	2008 Pro	MMD with IVH; 18–60 yr; no revascularization surgery; BI >60/mRS <4; no mental disability	Other cerebrovascular diseases; AED; recurrent stroke during FU	26 43.7±8.6 [26–59]** 46 Chinese	Hemorrhage 100 1.2†	-	-	-	-	IVH 100			
Calviere et al. (2012)§§	2002 Pro	MMD; >3 mo after stroke; no revascularization surgery	<18 yr; any associated disease potentially responsible for the arterial lesions	13 36.6±12.9** 64 Caucasian	Ischemic stroke 62 Hemorrhage 8 Other 30 36.1†	Bi 64 Uni 36	Bi 12 Uni 88	-	-	No stroke 29 Stroke 71 Bi 60 Uni 40 Cortical 70 SC 60 BZ 90 WM10			
Festa et al. (2010)§§	2002 Pro-and retro	MMD with complete NPA	(neurological) Disorders affecting cognition	29 399±11.2 [20–65]ı 62 Caucasian	Ischemic stroke 72 TIA 17 Hemorrhage 3 Other 8	-	Bi 86 Uni 14	-	-	No stroke 17 Stroke 83 Bi 75 Uni 25			
Karzmark et al. (2008)§§	2005 –	MMD	–	36 36.6±9.8 67 Caucasian	–	-	-	-	-	-			

Values are presented as mean±standard deviation (range), mean±standard deviation, or mean (range). This table represents the study and patients’ characteristics separated for children and adults. MMV, moyamoya vasculopathy; MMD, moyamoya disease; TIA, transient ischemic attack; Retro, retrospective; MMS, moyamoya syndrome; NPA, neuropsychological assessment; BI, bilateral; Uni, unilateral; WM, white matter; M5, major stroke; BZ, borderzone; IQ, intelligence quotient; EDAS, encephaloduroarteriosynangiosis; CBF, cerebral blood flow; Pro, prospective; DSA, digital subtraction angiography; ICH, intracerebral hemorrhage; IVH, intraventricular hemorrhage; BI, Barthel Index; mRS, modified Rankin Score; AED, anti-epileptic drug; FU, follow-up; SC, subcortical; R, right.

*Studies reporting results in children; †At NPA; ‡At diagnosis; Excluding 2 patients (1 scaled out, 1 not investigated); ††At operation; †§Study included 65 patients with preoperative data in 50 patients; **Study included 13 patients from which 12 had preoperative data; †‖Study included 21 patients from which 10 had preoperative data; †¶Not specified; †§§Studies reporting results in adults; | || |At presentation.
Supplementary Table 4. Neuropsychological test performances

Study	Authors criteria cognitive impairment	Cognitive impairment overall (%)	Conclusion authors	Cognition screener score	% Impaired																			
Hsu et al. (2014)*	IQ: >80 normal 70−79 borderline <70 defective NPA: <1.5 SD borderline <2 SD defective	39 Normal intellectual development with specific impairments in some	- -	- -	102±13 (82−124)	0	99±15 (77−117)	17	103±13 (81−123)	0	-	-	(z=−0.39)	15	(z=0.00)	8	(z=0.50)	8	(z=−0.53)	18	-	-		
Williams et al. (2012)*	1 SD from the mean (IQ, 85−110)	-	Significant lower than test sample	- -	-	-	87±18	-	91±14	-	88±22	-	-	-	(z=−0.85)	87.2±15.8	-	(z=−0.86)	-	-	-	-		
Lee et al. (2011)*	Compared with population averages	-	Age appropriate IQ	- -	-	-	101±14	-	108±13	-	105±16	-	-	-	(z=0.46)	3.8±19	-	-	-	-	-			
Imazumi et al. (1999)*	- -	-	-	-	99±23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Ono et al. (1998)*	IQ: >90 normal 80−70 borderline <60 retraction	13 Normal intellectual range	- -	-	103±20 (58−128)	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
Matsushima et al. (1997)*	Normal IQ >86	15	-	-	-	-	-	103±18	-	105±21	-	109±13	-	-	-	-	-	-	-	-	-			
Matsushima et al. (1999)*	Normal IQ >86	50	-	-	-	-	-	106±19	-	108±22	-	106±13	-	-	-	-	-	-	-	-	-			
Sato et al. (1990)*	IQ: normal ≥1SD borderline ≥2SD to <50 mild ≥3SD to <250 moderate ≥3SD to <50	67	-	-	-	-	-	77±12* (98−86)	57	81±19* (42−104)	56	81±17* (42−72)	100	-	-	-	-	-	-	-	-	-		
Tagawa et al. (1989)*	-	30	Poor mental prognosis was correlated with early onset MMD	- -	-	-	101±22 (71−134)	30	-	-	-	-	-	-	-	-	-	-	-	-				
Rayashet al. (1987)*	-	-	IQ was reduced with advancing age	-	-	-	98±19	-	97±16	-	97±17	-	-	-	-	-	-	-	-	-	-			
Ishii et al. (1984)*	-	22	-	-	-	-	97±20	-	95±18	-	97±21	-	97±21	26	-	-	-	-	-	-	-	-		
Lei et al. (2017)*	-	-	MMD patients performed worse than healthy controls	-	-	-	-	94±13	8	95±13	4	93±11	17	-	-	-	-	-	-	-	-			
Kazumata et al. (2015)*	-	30	MMD impairs executive function, working memory and attention	-	-	-	-	94±13	8	95±13	4	93±11	17	-	-	-	-	-	-	-	-	-	-	-

* indicates the presence of MMD.
| Study | Authors/criteria | Cognitive impairment overall (%) | Conclusion authors | Cognition screener score % Impaired (FS) IQ score | % Impaired VIQ score | % Impaired PIQ score | % Impaired DQ score | % Impaired Memory score | % Impaired Procspeed score | % Impaired Att/EF score | % Impaired Visper/const score | % Impaired Language score | % Impaired Visper/const score | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Su et al. (2013) | Abnormal: MoCA <25; MD: MoCA <25±14 | 0 No impairment | | 274±1.2 | - | - | - | - | - | - | - | - | - |
| Calvarese et al. (2012) | Impairment; z-score ≥1.75D below normative mean EDS: impairment ≥3 tests | 54 - | - | - | - | - | - | - | - | - | 54 (z=−0.4) | 23 (z=−1.7) | 54 (z=−0.85) | 23 (z=−0.15) | 31 |
| Festa et al. (2010) | Z-score ≥2 domains >1.5SD or ≥1 domain >2SD below normative mean | 68 Disruption in a broad range of functions | - | - | 99±17 | - | - | - | - | - | - | 39 (z=−1.1±1.4) | 21 | 21 | 21 | 20 |
| Karzmark et al. (2008) | >50% of the scores ≥1-2SDs below the mean | 31 MMD can affect cognition (mostly EF) | - | - | 95±9 (z=−0.9) | 19 | 93±8 (z=−0.3) | 25 | 93±8 (z=−0.3) | 25 | - | - | 7 (z=−0.2) | 39 | 39 | 43 | 23 | 20 |

Values are presented as mean±standard deviation (range) or mean±standard deviation. This table is divided into overall cognitive results of the studies separated for children and adults, followed by the test results for the cognitive screener test and all the six cognitive domains.

(FS) IQ, (full-scale) intelligent quotient; VIQ, verbal intelligence quotient; PIQ, performal intelligence quotient; DQ, developmental quotient; Procspeed, processing speed; Att, attention; EF, executive function; Visper/ const, visual perception/construction; IQ, intelligence quotient; NPA, neuropsychological assessment; SD, standard deviation; MMD, moyamoya disease; MoCA, Montreal Cognitive Assessment; MCI, mild cognitive impairment; EDS, executive dysfunction syndrome.

*Studies reporting results in children; †n=7; ‡n=9; §n=3; ¶Studies reporting results in adults; †n=19; **n=16.
Supplementary Table 5. Longitudinal neuropsychological test performances

Study	FU period (mo)	Surgery type	Impairment overall (%), A/B	Conclusion authors, A/B	% Improved	% Stable	% Deteriorated	Cognition screener score, A/B	% Impaired A/B										
Lee et al. (2011)*	19† (5–46)	ID 65	Bifr 42	Functions are maintained well before and after surgery	-	-	-	107±14/108±13	-	108±13/106±13	-	105±16/109±31	-	-	-	(z=0.45) 3.8±1.9/2.9±1.9			
Imaizumi et al. (1999)**	>120†	C 5	ID 13	No improvement	-	-	-	93±23/ -	-	-	-	-	-	-	-	-			
Ohtaki et al. (1998)*	85.2±32.59† (23–110)	C+Bifr 8	13/13	Stable	12	63	25	-	-	103±20 (58–128)/96±25 (48–138)	-	-	-	-	-	-	-	-	
Matsushima et al. (1997)*	113†	ID 20	15/20	-	-	-	-	107±18/100±16	-	105±21/100±16	-	109±13/100±16	-	-	-	-			
Matsushima et al. (1991)*	26.2±14.7† (7–58)	ID 41	50/49	Stable	27	49	24	-	-	-	-	-	-	84±30 (20–138)/83±32 (35–140)	-	50/49-			
Sato et al. (1990)*	44.4±26.3† (4–99)	D 1	C 1	ID 10	67/58	-	-	PIQ 11	VIQ 29	98±19/99±20	-	97±16/94±16	-	97±17/102±18	-	-	-	-	-
Ibayashi et al. (1985)*	6.5±4.9† (1–17)	C 2	ID 13	Surgery is considered to be effective	-	-	-	57±12 (58–88)/82±25 (43–112)	57±29	81±19 (42–104)/79±24 (41–113)	56±56	61±17 (42–72)/56±10 (45–62)	100/100	-	-	-	-	-	
Ishii et al. (1984)*	6–68†	C 2	ID 18**	Improved	-	-	-	75±8/64±6	-	95±18/-	-	97±21/-	-	-	-	-	-		
Su et al. (2013)***	24‡	-	0'/100	Deteriorated	0	0	100	27.4±1.2/18.7±1.3	0'/100	-	-	-	-	-	-	-	-		

Values are presented as median (range), mean±standard deviation, mean±standard deviation (range), mean±standard deviation, or range. This table is divided into overall cognitive results at follow-up of the studies separated for children and adults, followed by the test results for the cognitive screener test and the available cognitive domains.

FU, follow-up; A, prior neuropsychological test result; B, longitudinal neuropsychological test result; (FSI)Q, (full-scale) intelligent quotient; VIQ, verbal intelligence quotient; PIQ, performal intelligence quotient; DQ, developmental quotient; ID, indirect; Bifr, bifrontal; C, combined; D, direct.

*Studies reporting results in children; †FU period defined as time of operation to NPA; ‡FU period defined time from onset of disease to NPA; ††FU period defined as time of NPA to NPA; | |41 out of the 50 patients investigated postoperatively; †FU period unspecified; **15 out of the 20 patients investigated postoperatively; ††Studies reporting results in adults.
Supplementary Table 6. Critical appraisal of the included studies

Study	Study design	Selection Representativeness of the sample	Sample size	Selection criteria	Ascertainment of exposure	Assessment outcome	Quantitative data
Hsu et al. (2014)**	Cross-sectional	+	+	+	+	++	+
Williams et al. (2012)**	Cross-sectional	+	+	+	+	++	+
Lee et al. (2011)**	Cross-sectional	+	+	+	+	++	+
Imaizumi et al. (1999)**	Cross-sectional	+	+	+	*	+	+
Ohtaki et al. (1998)**	Cross-sectional	+	+	+	+	+	+
Matsushima et al. (1997)**	Cross-sectional	+	+	+	+	+	+
Matsushima et al. (1991)**	Cross-sectional	+	+	+	+	+	+
Sato et al. (1990)**	Cross-sectional	+	+	+	+	+	+
Tagawa et al. (1989)**	Cross-sectional	+	?†	?†	+	+	+
Ibayashi et al. (1985)**	Cross-sectional	+	?†	?†	+	+	+
Ishii et al. (1984)**	Cross-sectional	+	+	+	+	+	+
Lei et al. (2017)**	Cross-sectional	+	+	+	+	+	+
Kazumata et al. (2015)**	Cross-sectional	+	+	+	+	++	+
Su et al. (2013)**	Cross-sectional	+	+	+	+	+	+
Calviere et al. (2012)**	Cross-sectional	+	+	+	+	++	+
Festa et al. (2010)**	Cross-sectional	+	+	+	++	+	+
Karzmark et al. (2008)**	Cross-sectional	+	+	+	++	+	+

*Studies reporting results in children; †This information could not be extracted by our translators; ‡Studies reporting results in adults.
Supplementary Table 7. Linear regression analysis

Authors	Cognitive impairment overall (%)	Mean age	Duration symptoms (mo)	% Female	% Infarction	% TIA(s)
Hsu et al. (2014)	−0.014 (−0.112 to 0.083; 0.723)	13.9±6.3 (6−17)	17±15.9 (1−48)	−	0	100
Ohtaki et al. (1998)	−0.002 (−0.016 to 0.016; 0.945)	7±2 (5−11)	18.9±19.7 (2−60)	75	−	−
Matsushima et al. (1997)	−0.002 (−0.025 to 0.014; 0.508)	9.6±3.4 (6−11)	−	40	30	70
Matsushima et al. (1991)	−0.002 (−0.017 to 0.013; 0.672)	9.6±3.4 (6−11)	55.8±50.7 (0−188.4)	56	−	−
Sato et al. (1990)	−0.044 (−0.184 to 0.096; 0.387)	5.9±2.3 (1−10)	12.6±10.6 (1−31)	33	31	69
Tagawa et al. (1989)	−0.011 (−0.031 to 0.053; 0.460)	10.2±3.2 (6−16)	57.8±50.5 (13−155)	60	10	90
Ishii et al. (1984)	−0.001 (−0.001 to 0.001; 0.001)	9.9±3.1 (6−16)	−	50	60	40

B (95 CI; P)

Authors	Cognitive impairment overall (%)	Mean age	Duration symptoms (mo)	% Female	% Infarction	% TIA(s)
Kazumata et al. (2015)	−0.044 (−0.184 to 0.096; 0.387)	40.9±9.5 (21−58)	−	74	−	−
Su et al. (2013)	−0.044 (−0.184 to 0.096; 0.387)	43.7±8.6 (26−59)	−	46	−	−
Calviere et al. (2012)	−0.044 (−0.184 to 0.096; 0.387)	36.6±12.9	−	64	−	−
Festa et al. (2010)	−0.044 (−0.184 to 0.096; 0.387)	39.9±11.2 (20−65)	−	62	−	−
Karzmark et al. (2008)	−0.044 (−0.184 to 0.096; 0.387)	36.6±9.9	−	67	−	−

Values are presented as mean±standard deviation (range) or mean±standard deviation. This table represents the results of the linear regression analysis weighed by the inverse standard error of the proportion of patients with impaired cognition for the available patients’ characteristics. TIA, transient ischemic attack; CI, confidence interval.

*Studies reporting results in children; †Studies reporting results in adults.

https://doi.org/10.5853/jos.2018.01550
Supplementary references

1. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed September 3, 2018.

2. Herzog R, Álvarez-Pasquin MJ, Díaz C, Del Barrio JL, Estrada JM, Gil Á. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health 2013;13:154.

3. Hsu YH, Kuo MF, Hua MS, Yang CC. Selective neuropsychological impairments and related clinical factors in children with moyamoya disease of the transient ischemic attack type. Childs Nerv Syst 2014;30:441–447.

4. Williams TS, Westmacott R, Diamini N, Granite L, Dirks P, Askaian R, et al. Intellectual ability and executive function in pediatric moyamoya vasculopathy. Dev Med Child Neurol 2012;54:30-37.

5. Lee JY, Phi JH, Wang KC, Cho BK, Shin MS, Kim SK. Neurocognitive profiles of children with moyamoya disease before and after surgical intervention. Cerebrovasc Dis 2011;31:230-237.

6. Imaiizumi C, Imaiizumi T, Osawa M, Fukuyama Y, Takeshita M. Serial intelligence test scores in pediatric moyamoya disease. Neuropediatrics 1999;30:294–299.

7. Ohtaki M, Uede T, Morimoto S, Nonaka T, Tanabe S, Hashi K. Intellectual functions and regional cerebral haemodynamics after extensive omental transplantation spread over both frontal lobes in childhood moyamoya disease. Acta Neurochir (Wien) 1998;140:1043–1053.

8. Matsushima Y, Aoyagi M, Nariai T, Takada Y, Hirakawa K. Long-term intelligence outcome of post-encephalo-duro-arterio-synangiosis childhood moyamoya patients. Clin Neural Neurosurg 1997;99 Suppl 2:S147–S150.

9. Matsushima Y, Aoyagi M, Koumo Y, Takasato Y, Yamaguchi T, Masaoka H, et al. Effects of encephalo-duro-arterio-synangiosis on childhood moyamoya patients: swift disappearance of ischemic attacks and maintenance of mental capacity. Neurol Med Chir (Tokyo) 1991;31:708–714.

10. Sato H, Sato N, Tamaki N, Matsumoto S. Chronic low-perfusion state in children with moyamoya disease following revascularization. Childs Nerv Syst 1990;6:166–171.

11. Tagawa T, Itagaki Y, Mimaki T, Tanaka J, Ito N, Suzuki Y, et al. Intelligence and regional cerebral blood flow in children with Moyamoya disease. No To Hattatsu 1989;21:9–13.

12. Ibayashi K, Takeuchi S, Ishii R, Tanaka R, Tsuruoka H. Intelligence and memory function of juvenile patients with moyamoya disease. With reference to the effect of surgical treatment. Nerv Syst Child 1985;10:155–161.

13. Ishii R, Takeuchi S, Ibayashi K, Tanaka R. Intelligence in children with moyamoya disease: evaluation after surgical treatments with special reference to changes in cerebral blood flow. Stroke 1984;15:873–877.

14. Lei Y, Su J, Jiang H, Guo Q, Ni W, Yang H, et al. aberrant regional homogeneity of resting-state executive control, default mode, and salience networks in adult patients with moyamoya disease. Brain Imaging Behav 2017;11:176–184.

15. Kazumata K, Tha KK, Narita H, Kusumi I, Shichinohe H, Ito M, et al. Chronic ischemia alters brain microstructural integrity and cognitive performance in adult moyamoya disease. Stroke 2015;46:354–360.

16. Su SH, Hai J, Zhang L, Yu F, Wu YF. Assessment of cognitive function in adult patients with hemorrhagic moyamoya disease who received no surgical revascularization. Eur J Neurol 2013;20:1081–1087.

17. Calviere L, Ssi Yan Kai G, Catalaa I, Marlats F, Bonneville F, Lar rue V. Executive dysfunction in adults with moyamoya disease is associated with increased diffusion in frontal white matter. J Neurol Neurosurg Psychiatry 2012;83:591–593.

18. Festa JR, Schwarz LR, Pliskin N, Cullum CM, Lacritz L, Charbel FT, et al. Neurocognitive dysfunction in adult moyamoya disease. J Neurol 2010;257:806–815.

19. Karzmark P, Zeifert PD, Tan S, Dorfman LJ, Bell-Stephens TE, Steinberg GK. Effect of moyamoya disease on neuropsychological functioning in adults. Neurosurgery 2008;62:1048–1051.

20. Lezak M, Howieson D, Bigler E, Tranel D. Neuropsychological Assessment. 5th ed. New York, NY: Oxford University Press, 2012.