RESEARCH ARTICLE

Morphologic and Genotypic Characterization of *Psoroptes* Mites from Water Buffaloes in Egypt

Said Amer\(^1,2\), Taher Abd El Wahab\(^3\), Abd El Naby Metwaly\(^3\), Yaoyu Feng\(^4\)*, Lihua Xiao\(^1\)*

\(^1\) Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, \(^2\) Department of Zoology, Faculty of Science, Kafr El sheikh University, Kafr El Sheikh, Egypt, \(^3\) Animal Health Research Institute, Kafr El Sheikh Provisional Laboratory, Kafr El Sheikh, Egypt, \(^4\) State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China

* yyfeng@ecust.edu.cn (YF); lxiao@cdc.gov (LX)

Abstract

Species delimitation of *Psoroptes* spp. and identity of the parasite in water buffaloes remain poorly defined. In this study, *Psoroptes* infestation on three water buffalo farms in Egypt was examined based on morphometric characteristics, especially the opisthosomal setae of adult male mites. Clinical investigations showed that 28% (196/700) of the sampled animals had mange infestation. Microscopic examinations of 80 skin scrapings indicated the occurrence of *Psoroptes* mites in 17 (21.3%) samples, *Sarcoptes* mites in 27 (33.7%) samples, and the concurrence of both in 36 (45.0%) samples. Morphologically, the *Psoroptes* parasite was identified as *Psoroptes natalensis*. DNA sequence analysis of the second internal transcribed spacer (ITS2) in 11 representative samples confirmed the diagnosis and suggested the presence of a distinct variety of *Psoroptes natalensis* in Egypt.

Introduction

The cosmopolitan *Psoroptes* mites (Acari: Psoroptidae) are important etiological agents of mange in domesticated and wild ungulates, resulting in significant economic losses and animal welfare concerns [1–3]. These astigmatid mites are obligatory ectoparasites on different body surfaces of the host, including the inner ears [4]. *Psoroptes* spp. are non-burrowing mites that feed superficially on lipid emulsion of the lymph, skin cells, and skin exudates by abrading the epidermis [5]. In addition, the presence of actively feeding mites may lead to inflammation, exudation of excess lymph, and crust formation on the skin [6–9]. Coproantigens of mites may cause hypersensitivities in affected hosts [10, 11]. These lead to hair loss, reduced weight gain and, in severe cases, death due to dehydration, pneumonia or bacterial septicaemia [12, 13].

Morphologically, *Psoroptes* mites have a relatively oval body that is slightly dorso-ventrally flattened. Morphometric characteristics form the basis of identification and classification of the
The genus *Psoroptes*, at least to the species level [14]. The genus is distinguished from others by the presence of a modified pretarsus consisting of a sucker-like ambulacral disk on a relatively long, 'segmented' ambulacral stalk [4, 15]. The outer opisthosomal setae of adult males have been commonly used to distinguish the five accepted species of the genus [16]. However, considerable variations in the length of outer opisthosomal setae have been observed within and between populations of mites, and these differences are not directly related to host species or geographical origins [16]. Thus, there is an ongoing debate on taxonomic validity of these species [17].

DNA sequence analysis has been used in the identification of *Psoroptes* spp. [3, 16, 18–20]. One of the molecular markers is the ribosomal internal transcribed spacer (ITS) of the rRNA gene unit [16]. This region appears to be well suited to studies of species groups [21, 22] as it is evolving at a higher rate than the coding regions of the rRNA genes [23].

Disease caused by *Psoroptes* mites is largely controlled or under control (mostly presented as subclinical infestations) in industrialized countries such as the United States and United Kingdom [8, 19, 24–26], although re-emergence in some areas is reported [11]. In developing countries, poor hygiene and husbandry practices have facilitated the spread of mange mites. A high infestation rate (83.2%) of mange mites (*Psoroptes* and *Sarcoptes*) has been reported in buffaloes (*Bubalus bubalis*) in Egypt [27].

Since its initial introduction into Egypt from India in the medieval, the water buffalo represents the main livestock asset of many Egyptians, especially smallholders, due to the high meat quality of the animal and high protein and fat contents of the milk. *Psoroptes* mange was detected as early as 1934 in Egyptian water buffaloes by Carpano [28], followed by several studies on the incidence and clinical manifestations of infestations [29–31]. Several previous studies reported the occurrence of *Psoroptes* sp. in buffaloes along with *Sarcoptes* sp. [27, 32] and *Chiropotes* sp. [33]. However, few studies have been conducted on molecular identification of mange mites in Egypt [34], especially *Psoroptes* spp. The present study was designed to determine the identity of *Psoroptes* mites in water buffaloes in Egypt using both morphological (light and scanning electron microscopy) and molecular (sequence analysis of the ITS2 region) tools.

Material and Methods

Ethics Statement

This study was carried out in compliance with the Guidelines of the Animal Health Research Institute, Egypt. The study protocol was approved by the Committee on the Ethics of Animal Health Research Institute, Egypt (Permit Number 32 approved on May 31, 2010). All scrapings were performed by licensed veterinarians from animals on private farms as part of routine clinical examinations and care, with written consents from the owners.

Collection of samples

A total of 700 water buffaloes on three farms (A, B and C) in the Kafr El Sheikh District (within area of 5 square Km), Kafr El Sheikh (130 Km northeast of Cairo), Egypt were examined for the presence of mange mites during April to August 2011. Eighty individual skin scrapings were collected from mange-affected areas of animals, placed in plastic bags labelled with animal ear tag numbers, and transferred at ambient temperature to the laboratory. Skin scrapings in Petri dishes were screened by microscopy for the presence of live mites. *Psoroptes*-positive specimens were divided into two parts; the first was used in light microscopy and the other was fixed in 75% ethanol and stored at 4°C for molecular biologic analysis.
Light microscopy

Mite specimens were cleared in Nesbitt’s fluid (40 g of chloral hydrate, 25 ml of distilled water 25 ml, and 2.5 ml of concentrate HCl) as described by Sanders et al. [4] for 3 days, and mounted in Hoyer’s medium (50 ml of distilled water, 30 g of gum Arabic, 200 g of chloral hydrate, and 20 ml of glycerin). Mounted specimens were examined under a light microscope equipped with an ocular micrometer and a camera Lucida. Morphometric determinations, based on measurements obtained from 10 samples, were made according to previous studies [35, 36]. The Grandjean system for the nomenclature (chaetotaxy) of setae was followed according to Bochkov [35] and Griffiths et al [37].

Scanning Electron Microscopy (SEM)

The preparation of mite specimens for SEM analysis was performed according to the method of Panyarachun et al. [38]. Briefly, mites were fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer solution (pH 7.2) at 4°C for 3 h. Specimens were washed three times with the buffer, and dehydrated at 4°C through a graded series of ethanol. Mites were dried using the critical point method, mounted using carbon paste on Al-stub, and coated with gold up to the 400 Å thickness in a sputter-coating unit (JFC-1100 E; JEOL Ltd, Tokyo, Japan). The specimen was examined in a JEOL JSM-5300 (JEOL Ltd, Tokyo, Japan) scanning electron microscope operating at 25 keV.

DNA extraction and PCR amplification

Eleven representative Psoroptes-positive skin scrapings were washed with distilled water by centrifugation. DNA was extracted from the specimens using the FastDNA SPIN Kit for Soil (MP Biomedicals, Colon, OH). PCR amplification of the ITS2 was done using primers RIB-4 and RIB-3 as described by Zahler et al. [18].

DNA sequence analyses

PCR products were sequenced in both directions using the Big Dye Æ Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA) and an ABI 3130 Genetic Analyzer (Applied Biosystems). The bi-directional sequences were assembled using the ChromasPro (version 1.5) software (http://www.technelysium.com.au/ChromasPro.html). The sequences obtained were aligned with each other and reference sequences from GenBank using ClustalX (http://www.clustal.org/). A neighbor-joining (NJ) analysis implemented in the MEGA5 (http://www.megasoftware.net) was used to assess the phylogenetic relationship among some of the Sarcoptoida mites (Psoroptes and Chorioptes), using Saitou and Nei distances and Otodectes cynotis (HQ728005) as the outgroup. Unique nucleotide sequences generated in this study were deposited in GenBank under accession numbers AB968081 to AB968091.

Results

Occurrence of Psoroptes sp.

Clinical examinations indicated that 196 of the 700 (28%) water buffaloes had mite infestations characterized by hair loss, crust formation and pruritic dermatitis. There were no obvious differences in the infestation rates among the three farms (A: 91/313; B: 41/157; C: 64/230). The infestation occurred mainly in the perineal region, back, shoulders, withers and neck of animals. Microscopic investigation of skin scrapings from of 80 specimens showed that 27 (33.75%) had Sarcoptes sp., 17 (21.25%) had Psoroptes sp., whereas 36 (45%) had mixed
infestations with both. Skin scrapings with mixed infestations were all collected from the perineal region at the base of the tail.

Morphometric description of *Psoroptes* mites

Dorsally, male mites showed a relatively oval body of ~336 μm (270–343 μm) in length and ~307 μm (270–335 μm) in width, including the gnathosoma and opisthosomal lobes (Fig 1A). The gnathosoma, measured ~80 μm (71–98 μm) in length and ~47 μm (43–59 μm) in width, was protruding anteriorly. The idiosoma measured ~257 μm (197–300 μm) and had well sclerotized propodonotal and hysteronotal shields (Figs 1B and 2A). Except for the propodonotal and hysteronotal plates, the dorsal surface was decked with fine transverse, nearly parallel striations. Legs I, II and III carried a modified pretarsus consisting of a sucker-like ambulacral disk on a relatively long, 'segmented' ambulacral stalk. A total of nine pairs of setae were seen on the dorsal surface (Fig 2A). Thus, two pairs of setae (*si* and *se*), could be seen in the propodosomal plate, whereas two pairs of metapodosomal setae (*c1* and *c2*) and five pairs of hysteronotal

*Fig 1. Scanning electron microscopy images of an adult male *Psoroptes natalensis* mite (A), showing the propodosomal and hysteronotal shields (B) as well as an adult female mite (C), showing the opisthosomal region (D).*

doi:10.1371/journal.pone.0141554.g001
setae (d_1, d_2, e_1, e_2 and ps_1) were seen in the idiosoma, with the last one situated on the opisthosomal lobe. Each opisthosomal lobe further had three long (h_2, ps_2, h_3) and two (ps_1 and f_2) short setae. The outer opisthosomal (h_2) and inner (h_3) setae were spatulated and of almost equal length; 231 (210–260) and 221 (198–270) μm, respectively.

Ventrally, the aedeagus of the adult male mite was located on the metapodosomal region, along with a pair of lateral cuticular pits, followed posteriorly with a pair of adanal suckers, propodosomal setae ($1a$), and metapodosomal setae ($c_3, cp, 4b, 3a$ and $4a$).
The adult female was larger than the adult male, measuring about 508 (465–600) μm in length and 381 (355–425) μm in width, including the gnathosoma [~ 113 μm (87–125) and ~ 72 μm (61–93) in length and width, respectively] and idiosoma [~ 398 μm (375 and ~417 μm)]. Whereas the propodonotal plate was well developed, the hysteronotal shield was absent (Figs 1C, 1D and 3A), compared with the adult male. Except for propodonotal plate, the dorsal surface was decked with fine transverse striations (Fig 1C). The opisthosoma had a blunt posterior margin (Fig 1C and 1D). Legs I, II and IV carried a modified pretarsus consisting of a sucker-like ambulacral disk on a relatively long, 'segmented' ambulacral stalk (Fig 1D). The adult female had 10 pairs of setae on its dorsal surface (Fig 3A), including two pairs in the propodosomal region (s1 and se), metapodosomal (c1, c2, cp, d1 and d2) and opisthosomal setae (e1, e2 and ps1). Ventrally, the adult female had a vulva along with two pairs of cuticular pits (genital suckers) in the propodosomal region, and a subterminal anus at the posterior margin of the body.
The ventral surface of the female was nearly flat and finely striated, with the striations forming a triangular area above the vulva (Fig 3B). The vulva had a transverse slit with two lateral limbs and was supported with three pairs of setae; two lateral pairs (4b and g) and one pair behind the vulvar flap (4a). In addition, there were one pair of the propodosomal setae (1a) between the coxa of the first and second pairs of legs, two pairs of idiosomal setae (3a and 3c) in the metapodosomal region and five pairs of perianal setae (ps2, ps3, h2, h3 and f2) around the anus.

Molecular characterization of *Psoroptes* sp.

Sequence analysis of 11 representative specimens from the three farms generated two types of ITS-2 sequences. The first type was represented by nine identical sequences and had considerable differences (4–9%) from those in GenBank, including nucleotide substitutions, insertions and deletions. The other sequence type was represented by two sequences (AB968084 from Farm A and AB968091 from Farm B) and had nucleotide substitutions of C to T at position 23, T to A at position 28, C to A at position 33, A to G at position 170, and G to A at position 248 compared to the first sequence type.

In a NJ analysis, all *Psoroptes* ITS2 sequences from this study formed a monophyletic group, and clustered with the only available sequence (EF025929) of *Psoroptes natalensis* isolated from buffaloes in China (Fig 4). The *P. natalensis* branch was clearly separated from other *Psoroptes* taxa with 92% bootstrap support. However, there was no clear separation among other *Psoroptes* populations referred to as *P. cuniculi*, *P. ovis*, and *P. cervinus* (Fig 4).

Discussion

A common occurrence of *Psoroptes* mites was seen in water buffaloes in this study. Although the 28% infestation rate of mange is much lower than that reported (~82%) by Yassin [27] in water buffaloes in the Giza Governorate, it is higher than that reported (16.66%) by El-Khodery et al. [39] in water buffaloes in the Nile Delta region. Elsewhere, Kazmi et al. [40] reported that ~11.0% of buffaloes in Lahore, Pakistan had mange infestation. Such differences might be attributed to differences in geographic locations, seasons of sample collection, breeds of the animals, and general hygiene and animal management. Results of the present study indicated that 45% of the infected animals had mixed infestations of both *Sarcoptes* and *Psoroptes* mites. These findings are in agreement with earlier observations in Egypt [27, 32]. Mixed *Sarcoptes* and *Psoroptes* infestations have also been reported in water buffaloes in India [41, 42]. In addition, El-Khodery et al. [33] reported mixed infestations of *Psoroptes* sp. and *Chrioptes* sp. in water buffaloes in Egypt. However, this is the first report on the occurrence of both *Sarcoptes* and *Psoroptes* mites at the same predilection site. Burrowing *Sarcoptes* spp. may provide nutrients to non-burrowing *Psoroptes* spp. by increasing the availability of lymph and tissue exudates. Nevertheless, a considerable fraction (21.3%) of the mange infestation was attributed to *Psoroptes* mites alone, although it is lower than that reported by El-Khodery et al. [33] in water buffaloes in the Nile Delta region, Egypt.

Morphologically, all *Psoroptes* mites showed the presence of a terminal sucker on a relatively long jointed pre-tarsus, which is a distinctive feature of the genus *Psoroptes* [4, 15, 31, 35]. The outer (h2) and inner (h3) opisthosomal setae were spatulated and of almost equal length, which are distinctive features of *P. natalensis* [15, 29, 31, 43]. The small morphometric differences reported in the present study compared to earlier ones [16, 17] may likely be the result of phenotypic adaptation to microenvironments [16].

Sequence and phylogenetic analysis based on the ITS2 locus supported the morphologic identification of *P. natalensis*. This is in agreement with the findings by Wang et al [44] who
reported that phylogenetic analysis of the 18S rRNA and COX1 genes could reliably differentiate *P. natalensis* from *P. cuniculi*. In contrast, we could not identify any monophyletic groups formed by other *Psoroptes* species based on sequence analysis of ITS2. Similarly, Pegler et al. [16], Zahler et al. [18], Ramey et al. [19] and Bates [45] could not find any genetic (based on
ITS1 and ITS2) support for the morphologically differentiated *P. cuniculi*, *P. ovis* and *P. cervinus*.

Notably, there are obvious sequence differences (4–9%) in ITS2 sequences between this and previous studies. It is not known whether this sequence heterogeneity is due to recent gene flow or genetic recombination [19]. Experimentally, cross mating between different nominal species of *Psoroptes* mites is possible, producing viable offspring [4, 46]. Although paralogous ITS sequences are common in the mite genome [19], this appears not likely to be the case in the present study, as all specimens from different farms except two produced identical sequences. It is possible that the rRNA repeat units may be homogenized through the process of concerted evolution or unequal crossing-over. In addition, host factors may play an important role in shaping the genetic structure of the parasitizing mites. Ochs et al. [47] reported that ITS2 sequences of *Chorioptes* isolates from sheep and a camel differed by 18% from the sequence of an isolate from a cow, suggesting the existence of epidemiologically segregated populations. Being the ancient land bridge between Africa and Asia, Egypt has extensive movement of livestock, pets and wild animals, which might facilitate the gene flow among divergent psoroptic mite populations. Further studies are needed to determine whether the *P. natalensis* variant identified in this study is unique to water buffaloes in Egypt.

Acknowledgments

We thank the Kafr El Sheikh University and Animal Health Research Institute, Kafr El Sheikh Branch for supporting the field work in Egypt, and Centers for Disease Control and Prevention for support the molecular analysis. We also thank the anonymous reviewers for their constructive and informative comments and suggestions.

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Author Contributions

Conceived and designed the experiments: SA YF LX. Performed the experiments: SA TA AE. Analyzed the data: SA TA AE LX. Contributed reagents/materials/analysis tools: YF. Wrote the paper: SA YF LX.

References

1. Van den Broek A, Huntley J. Sheep scab: the disease, pathogenesis and control. J Comp Pathol. 2003; 128:79–91.
2. Osman SA, Hanafy A, Amer S. Clinical and therapeutic studies on mange in horses. Vet Parasitol. 2006; 141:191–195. PMID: 16782277
3. Losson BJ. Sheep psoroptic mange: an update. Vet Parasitol. 2012; 189:39–43. doi: 10.1016/j.vetpar.2012.03.030 PMID: 22525584
4. Sanders A, Froggatt P, Wall R, Smith K. Life-cycle stage morphology of *Psoroptes* mite mites. Med Vet Entomol. 2000; 14:131–141. PMID: 10872857
5. Rafferty DE, Gray JS. The feeding behaviour of *Psoroptes* spp. mites on rabbits and sheep. J Parasitol. 1987; 73:901–906. PMID: 2443631
6. Corke M, Broom D. The behaviour of sheep with sheep scab, *Psoroptes ovis* infestation. Vet Parasitol. 1999; 83:291–300. PMID: 10423010
7. Bisdorff B, Milnes A, Wall R. Prevalence and regional distribution of scab, lice and blowfly strike in sheep in Great Britain. Vet Rec. 2006; 158:749–752. PMID: 16751308
8. Bisdorff B, Wall R. Control and management of sheep mange and pediculosis in Great Britain. Vet Parasitol. 2008; 155:120–126. doi: 10.1016/j.vetpar.2008.04.002 PMID: 18495347
9. Shang X, Wang D, Miao X, Wang X, Li J, Yang Z et al. The oxidative status and inflammatory level of the peripheral blood of rabbits infested with *Psoroptes cuniculi*. Parasite Vectors 2014; 7:124.
10. Mathieson BR, Lehane MJ. Isolation of the gram-negative bacterium, *Serratia marcescens*, from the sheep scab mite, *Psoroptes ovis*. Vet Rec. 1996; 138:210–211. PMID: 8686156

11. Jones A, Caldw G, Cameron N, McGregor M. *Psoroptic* mange in a Scottish beef herd. Vet Rec. 2014; 174:509–510. doi: 10.1136/vr.g3292 PMID: 24832888

12. Stromberg PC, Fisher WF, Guililot FS, Pruell JH, Price RE, Green RA. Systemic pathologic responses in experimental *Psoroptes ovis* infestation of Hereford calves. Am J Vet Res. 1986; 47:1326–1331. PMID: 3729135

13. Hallal-Calleros C, Morales-Montor J, Vazquez-Montiel JA, Hoffman KL, Nieto-Rodriguez A, Flores-Jones A, Caldow G, Cameron N, McGregor M. Variation in ribosomal DNA internal transcribed spacers 1 with *Psoroptes cuniculi* in the domestic rabbit *Oryctolagus cuniculus*. Parasite Vectors 2013; 6:361.

14. Wall R, Kolbe K. Taxonomic priority in *Psoroptes* mange mites: *P. ovis or P. equi*? Exp Appl Acarol. 2006; 39:159–162. PMID: 16733788

15. Sweatman G. On the life history and validity of the species in *Psoroptes*, a genus of mange mites. Can J Zool. 1958; 36:905–929.

16. Pegler KR, Evans L, Stevens JR, Wall R. Morphological and molecular comparison of host-derived populations of parasitic *Psoroptes* mites. Med Vet Entomol. 2005; 19:392–403. PMID: 16336304

17. Zahler M, Hendrikx WM, Essig A, Rinder H, Gothe R. Species of the genus *Psoroptes* (Acari: Psoroptidae): a taxonomic consideration. Exp Appl Acarol. 2000; 24:213–225. PMID: 11108387

18. Zahler M, Essig A, Gothe R, Rinder H. Genetic evidence suggests that *Psoroptes* isolates of different phenotypes, hosts and geographic origins are conspecific. Int J Parasitol. 1998; 28:1713–1719. PMID: 9846608

19. Ramey R, Kelley S, Boyce W, Farrell B. Phylogeny and host specificity of *Psoroptic* mange mites (Acarina: Psoroptidae) as indicated by ITS sequence data. J Med Entomol. 2000; 37:791–796. PMID: 11126531

20. Wells B, Burgess ST, McNeilly TN, Huntley JF, Nisbet AJ. Recent developments in the diagnosis of ectoparasite infections and disease through a better understanding of parasite biology and host responses. Mol Cell Probes. 2012; 26:47–53. doi: 10.1016/j.mcp.2011.07.002 PMID: 21982815

21. McLain D, Wesson D, Oliver J, Collins F. Variation in ribosomal DNA internal transcribed spacers 1 among eastern population of *Ixodes scapularis* (Acari: Ixodidae). J Med Entomol. 1995; 32:353–360. PMID: 7816527

22. Fukunaga M, Yabuki M, Hamase A, Oliver J Jr, Nakao M. Molecular phylogenetic analysis of ixodid ticks based on the ribosomal DNA spacer, internal transcribed spacer 2, sequences. J Parasitol. 2000; 86:38–43. PMID: 10701561

23. Cruickshank R. Molecular markers for the phylogenetics of mites and ticks. Syst Appl Acarol. 2002; 7:3–14.

24. Boyce WM, Weisenberger ME. The rise and fall of psoroptic scabies in bighorn sheep in the San Andreas Mountains, New Mexico. J Wildl Dis. 2005; 41:525–531. PMID: 16244062

25. Rose H, Learmont J, Taylor M, Wall R. Mapping risk foci for endemic sheep scab. Vet Parasitol. 2009; 165:112–118. doi: 10.1016/j.vetpar.2009.06.037 PMID: 19713045

26. Mitchell ES, Jones JR, Foster AP, Millar M, Milnes A, Williams J. Clinical features of psoroptic mange in cattle in England and Wales. Vet Rec. 2012; 170:359. doi: 10.1136/vr.100565 PMID: 22427386

27. Yassin M. Mange mites causing scabies in Egyptian buffaloes at Giza Governorate, Egypt. J Egypt Soc Parasitol. 2011; 41:55–64. PMID: 21634242

28. Carpano M. T.B. in buffaloes in Egypt. Technical Reprint of Ministry Agriculture of Egypt. 1934: 6.

29. Kotb S, Abdel-Rady A. Epidemiological studies of Egyptian buffaloes mange with special reference to *Psoroptes mites*. J Egypt Soc Parasitol. 2009; 39(1):15–20. PMID: 18929288

30. Ismail A, Amer A. Efficacy of dursban, diazinon, lindane and D.D.T for treatment of mange in camel and buffaloes. Assiut Vet Med J. 1976; 3:199–207.

31. Liebsch A, Rahman M, Hassan A. Contribution to the therapy for psoroptec and sarcopptic mange of various domestic animal species with the phosphoric acid Ester Sebacil. Vet Med Rev. 1980: 1:3–16.

32. Zayed A. Some morphobiological studies on mange of buffaloes. 1985: MVSc Thesis, Faculty of Veterinary Medicine, Cairo University, Egypt

33. El-Khodery SA, Ishii M, Osman SA, Al-Gaabary MH. Comparative therapeutic effect of moxidectin, doramectin and ivermectin on psoroptes mites infestation in buffalo (*Bubalus bubalis*). Trop Anim Health Prod. 2009; 41:1505–1511. doi: 10.1007/s11250-009-9340-9 PMID: 19347598
34. Amer S, El Wahab TA, Metwaly AE N, Ye J, Roellig D, Feng Y, et al. Preliminary molecular characterizations of Sarcoptes scabiei (Acari: Sarcoptidae) from farm animals in Egypt. PLoS One. 2014; 9: e94705. doi:10.1371/journal.pone.0094705 PMID: 24728386

35. Bochkov A. A review of mammal-associated Psoroptidia (Acariformes: Astigmata). Acarina 2010; 18:99–260.

36. Bochkov AV, Klimov PB, Hestvik G, Saveljev AP. Integrated Bayesian species delimitation and morphological diagnostics of chorioptic mange mites (Acariformes: Psoroptidae: Chorioptes). Parasitol Res. 2014; 113:2603–2627. doi:10.1007/s00436-014-3914-9 PMID: 24820039

37. Griffiths DA, Atyeo WT, Norton R, Lynch CA. The idiosomal chaetotaxy of astigmatid mites. J Zool. (lond.) 1990; 220:1–32.

38. Panyarachun B, Sobhon P, Yotsawan T, Chotwiwatthanakun C, Anupunpisit V, Anuracpreeda P. *Paraphistomum cervi*: surface topography of the tegument of adult fluke. Exp Parasitol. 2010; 125:95–99. doi: 10.1016/j.exppara.2009.12.020 PMID: 20045698

39. El-Khodery SA, Osman SA, Ishii M, Al-Gaabary MH. Risk factors of infestation by *Psoroptes* spp. mites in buffalo (*Bubalus bubalis*) at smallholder farms in the Nile Delta region, Egypt. Trop Anim Health Prod. 2010; 42:275–281. doi: 10.1007/s11250-009-9417-5 PMID: 19688306

40. Kazmi SA, Maqbool A, Tonio MT, Naureen A, Ajmal A, Anwar MT. Treatment of dairy buffaloes naturally infected with sarcoptic mange. J Parasitic Dis. 2009; 33:54–56.

41. Randhawa CS, Brar RS, Sharma DR, Randhawa SS. Biochemical responses in mixed chronic psoroptic and sarcoptic mange of buffaloes (*Bubalus bubalis*). Trop Anim Health Prod. 1997; 29:253–254. PMID: 9493304

42. Ramprabhu RA, Subramanian M, Nambi AP, Prathaban S, Dhanapalan P. Concurrent sarcoptic and psoroptic mange infestation in *Bubalus bubalis*—a case report. Veterinarski Arhiv. 2001; 71:53–56.

43. Shastri U, Ghafoor M. Asariasis in Buffaloes (*Bubalus Bubalis*) due to *Psoroptes* species in India. Indian J Vet Pathol. 1974; 51:274–281.

44. Wang S, Gu X, Fu Y, Lai S, Wang S, Peng X, et al. Molecular taxonomic relationships of *Psoroptes* and *Chorioptes* mites from China based on COI and 18S rDNA gene sequences. Vet Parasitol. 2012; 184:392–397. doi: 10.1016/j.vetpar.2011.09.011 PMID: 21974946

45. Bates PG. Inter- and intra-specific variation within the genus *Psoroptes* (Acari: Psoroptidae). Vet Parasitol. 1999; 83:201–217. PMID: 10423003

46. Wright FC, Riner JC, Guillot FS. Cross-mating studies with *Psoroptes ovis* (hering) and *Psoroptes cuniculi delafond* (Acariina: psoroptidae). J Parasitol. 1983; 69:696–700. PMID: 6631638

47. Ochs H, Mathis A, Deplaizes P. Single nucleotide variation in rDNA ITS-2 differentiates *Psoroptes* isolates from sheep and rabbits from the same geographical area. Parasitol. 1999; 119:419–424.