Monogenetic Forms of Parkinson’s Disease – Bridging the Gap Between Genetics and Biomarkers

Lars Tönges1,2, Eun Hae Kwon1 and Stephan Klebe3*

1 Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany, 2 Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany, 3 Department of Neurology, University Hospital Essen, Essen, Germany

The therapy of neurodegenerative diseases such as Parkinson’s disease (PD) is still limited to the treatment of symptoms and primarily aimed at compensating for dopaminergic hypofunction. Numerous disease-modifying therapies currently in the pipeline attempt to modify the underlying pathomechanisms. In recent decades, the results of molecular genetics and biomarker research have raised hopes of earlier diagnosis and new neuroprotective therapeutic approaches. As the disease-causing processes in monogenetic forms of PD are better understood than in sporadic PD, these disease subsets are likely to benefit first from disease-modifying therapies. Recent studies have suggested that disease-relevant changes found in genetically linked forms of PD (i.e., PARK-LRRK2, PARK-GBA) can also be reproduced in patients in whom no genetic cause can be found, i.e., those with sporadic PD. It can, therefore, be assumed that as soon as the first causal therapy for genetic forms of PD is approved, more patients with PD will undergo genetic testing and counseling. Regarding future neuroprotective trials in neurodegenerative diseases and objective parameters such as biomarkers with high sensitivity and specificity for the diagnosis and course of the disease are needed. These biomarkers will also serve to monitor treatment success in clinical trials. Promising examples in PD, such as alpha-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain, are under investigation in blood and CSF. This paper provides an overview of the opportunities and current limitations of monogenetic diagnostic and biomarker research in PD and aims to build a bridge between current knowledge and association with PD genetics and biomarkers.

Keywords: genetic, biomarkers, Parkinson’s disease, alpha-synuclein, LRRK2

INTRODUCTION

Parkinson’s disease (PD) [sporadic (sPD) and (mono)genetic forms of PD (gPD)] represents a heterogeneous group of disorders with the pathophysiological shared end of a dopaminergic deficit. Therapy of PD is still limited to the treatment of symptoms and is primarily aimed at compensating for dopaminergic hypofunction. Accurate diagnosis of PD according to the underlying pathophysiology is important because of current and future treatment options. In recent years, many efforts have been made to identify specific and sensitive biomarkers (Parnetti et al., 2019;
Because of its proximity to neuronal structures, cerebrospinal fluid (CSF) is, of course, the most promising liquid biomarker for neurodegenerative diseases. Nevertheless, blood, saliva, skin biopsies, and urine also appear to be good candidates as they are easily accessible and less invasive. Biomarkers from body fluids, skin biopsies, or imaging studies have the advantage of identifying the risk for future PD, diagnosing PD early, and monitoring disease progression, and can serve to monitor possible treatment success in clinical trials. Hence, biomarkers should also be able to distinguish between different entities of neurodegenerative diseases [e.g., sPD vs. gPD vs. atypical Parkinson’s syndromes (aPD)] to decrease the number of false-positive diagnosed patients. An unmet need for future neuroprotective trials in neurodegenerative diseases is an objective parameter such as biomarkers with high specificity and sensibility for the diagnosis and course of the disease. Promising examples in PD, such as alpha-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain, are under investigation in the blood and CSF (Parnetti et al., 2019). Unfortunately, it has not been possible to date to implement a robust biomarker in the early diagnosis or follow-up of PD. One reason is that biomarker profiles vary from patient to patient due to the great heterogeneity of the disease.

In contrast to sPD, in which the etiology remains elusive for most cases, gPD offer the possibility of better understanding the cause of the disease. Many autosomal dominant and recessive genes have been found since the first description of SNCA as a genetic cause of PD in 1997 (Polymeropoulos et al., 1997). The clinical symptoms between sPD and a monogenetic form are similar in most cases. However, since the course of PD can differ greatly from individual to individual, the question arises whether the etiological heterogeneity might have different causes. Examples include the tremor-dominant or akinetic rigid subtypes of sPD or the early cognitive involvement in some patients with PD. The results of molecular genetics and biomarker research have raised hopes of resolving these unanswered questions in PD and finding new neuroprotective therapeutic approaches. As the disease-causing processes in gPD are better understood than in sPD, patients with these subsets of the disease are likely to benefit first from disease-modifying therapies. A synergistic effect between research on monogenetic forms of the disease and sPD is also likely. Recent studies have suggested that disease-relevant changes found in genetically linked forms of PD (i.e., PARK-LRRK2, PARK-GBA) can also be reproduced in patients in whom no genetic cause can be found (Di Maio et al., 2018). Even if these patients with gPD currently represent only a small group (approximately 10%) (Cook et al., 2021), it is expected that availability of a causal therapy for genetic forms of PD will substantially increase demand for genetic testing and counseling. Therefore, we aim to provide an overview of the most common genetically linked forms of PD and the associated biomarker studies. Table 1 summarizes the genetic causes of PD with regard to the corresponding biomarker.

Genetics	Source	Biomarker	Findings (diagnostic/prognostic*)	Study	
SNCA	Blood	Oligomeric aSyn	↓sPD vs. HC (sensitivity 75%; specificity 100%)	Williams et al., 2016	
			CSF Total aSyn	↓sPD vs. HC	Mollenhauer et al., 2008
			Oligomeric aSyn	↑PARK-LRRK2/HC vs. sPD	Vilas et al., 2016
			Phosphorylated aSyn	↑PARK-GBA vs. HC	Eusebi et al., 2017
GBA	CSF	GCase activity	↓sPD vs. HC	Fairfoul et al., 2016; Sano et al., 2018; Shahnawaz et al., 2020	
				Xicoy et al., 2019	
	Blood	Positive correlation with disease duration*	Kim et al., 2016		
LRRK2	Blood	Total LRRK2	↓sPD vs. HC	Atashrazm et al., 2019; Padmanabhan et al., 2020	
		pS935-LRRK2	↑PARK-LRRK2 vs. sPD/HC	Padmanabhan et al., 2020	
		p Rab10	↑sPD vs. HC	Melachroinou et al., 2020	
	CSF	Total LRRK2	↑PARK-LRRK2 vs. sPD/HC	Atashrazm et al., 2019	
		pS1292-LRRK2	PARK-LRRK2 vs. sPD/HC	Mabrouk et al., 2020	
		pS1292-LRRK2	PARK-LRRK2 vs. sPD/HC	Wang et al., 2017	
Urine		pS1292/total LRRK2	↑PARK-LRRK2 vs. sPD/HC	Vilas et al., 2016	
Neuroimaging		PET multitracer	↓LRRK2 vs. controls	Nandhagopal et al., 2008	
		I-123 FP-CIT SPECT	LRRK2 PD conversion rate = 16%*	Sánchez-Rodríguez et al., 2021	

(Continued)
TABLE 1 | (Continued)

Genetics	Source	Biomarker	Findings (diagnostic/prognostic*)	Study
PARKN/PINK1	Blood	pS65-Ub	↓PARK-PINK1 vs. HC	Watzlawik et al., 2020
		Ccf-mtDNA	↑PARK-PINK1 vs. sPD/HC	Borsche et al., 2020
	IL6		↑sPD vs. HC	Qin et al., 2016
			Positive correlation with disease severity*	Green et al., 2019
		Ccf-mtDNA	↑PARK-PINK1 vs. sPD vs. HC	Borsche et al., 2020
CSF	PET		sPD = HC	Wilson et al., 2020
	18F-BCPP-EF tracer		sPD = HC	Wilson et al., 2020
	31P-MR spectroscopy		sPD = HC	Wilson et al., 2020
	CSF	DJ1	Conflicting results in sPD	Hilker et al., 2012
	Saliva		Conflicting results in sPD	Jang et al., 2018
Urine	Oxidized DJ1		↑sPD vs. controls	Jang et al., 2018

αSyn, alpha-synuclein; CSF, cerebrospinal fluid; GCase, activity of the lysosomal hydrolase β-glucocerebrosidase; HC, healthy controls; IL6, interleukin 6; PET, Positron emission tomography; RT-QuIC, real-time quaking-induced conversion; CSF, cerebrospinal fluid; GCase, activity of the lysosomal hydrolase β-glucocerebrosidase; HC, healthy controls; IL6, interleukin 6; PET, Positron emission tomography; RT-QuIC, real-time quaking-induced conversion; sPD, sporadic Parkinson’s disease; sPD, sporadic Parkinson’s disease; SPECT, single photon emission computed tomography; ↑, increased levels; ↓, decreased levels; *, prognostic.

ALPHA-SYNUCLEIN

Alpha-synuclein (αSyn) is a rather small protein (14 kDa) that is widely expressed in the brain (Braak et al., 2003). It seems to play a role in the stability of neuronal membranes, influencing presynaptic signaling and membrane trafficking through vesicular transport (Henderson et al., 2019). Several papers show that αSyn can be released from neurons and taken up by surrounding neurons or other cell types (Henderson et al., 2019). Therefore, it is not surprising that αSyn, despite constituting an intracellular protein, can be found in CSF, blood, and plasma (Atik et al., 2016; Maass et al., 2019). αSyn aggregates represent the main component of Lewy bodies (LB) (Spillantini et al., 1997). Therefore, PD, together with dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), is referred to as α-synucleinopathy. LB are found in various regions of the CNS, depending on the disease stage (for example, substantia nigra, the dorsal motor nucleus of the vagus, nucleus basalis of Meynert, the locus coeruleus, and diffusely in late stages of the disease) (Forno, 1996). However, LB are also found in the peripheral nervous system in early or prodromal stages of the disease (e.g., sympathetic ganglia, sympathetic cardiac nerves, cholinergic nerve endings of salivary glands, autonomic nerve fibers of the skin).

First described with point mutations, the gene for αSyn (SNCA) was the first gene to be associated with the development of PD with an autosomal-dominant transmission (Polymeropoulos et al., 1997). Over time, duplications and triplications of SNCA have also been shown to play a causal role in hereditary forms of PD. Regarding symptoms, SNCA point mutations are associated with an earlier age at the onset (Ibáñez et al., 2009). SNCA gene duplications are associated with a mean age of the onset and clinical phenotype that overlaps with sPD (Ibáñez et al., 2009). SNCA triplications are associated with the early age of the onset, more rapid progression, and memory impairment (Ibáñez et al., 2009). Nonetheless, mutations in SNCA as a disease cause in PD remain rare.

Total αSyn and isoforms of αSyn appear to play a major role in PD pathogenicity and, accordingly, are also available as a candidate biomarker. The concentration of total αSyn in CSF may discriminate between patients with PD and healthy controls (Wang et al., 2012), and has been found at a lower concentration in patients with PD (Mollenhauer et al., 2008). This was confirmed in early-diagnosed, treatment-naive patients (Stewart et al., 2014).

However, no uniform picture emerges regarding total αSyn. In patients with LRRK2 mutations, total αSyn CSF levels were increased in LRRK2-associated PD, non-manifesting carriers, and healthy controls compared to sPD (Vilas et al., 2016). In another study, lower but not statistically significant total αSyn CSF levels were recognized in LRRK2-associated PD, non-manifesting carriers, and sPD compared to healthy controls (Aasly et al., 2014). Follow-up data in patients with PD from the DATATOP study revealed an increase of total αSyn after 2 years (Majbour et al., 2016). An increase in total αSyn has also been reported over 2 years in another study with 63 patients with PD and 21 controls (Hall et al., 2016). In the latter study, higher total αSyn values were associated with longer disease duration (Hall et al., 2016). The authors hypothesized that total αSyn levels were bimodal, with a decrease in early disease stages followed by an increase with advanced neurodegeneration.

Unfortunately, unlike MSA or progressive supranuclear palsy (PSP), it is not possible to distinguish between sPD and aPD based on the αSyn concentration. Therefore, total αSyn is unable to distinguish between alpha-synucleinopathies (sPD, MSA) or between alpha-synucleinopathies and aPD such as PSP or corticobasal degeneration. Because of the cognitive impairment in SNCA triplication carriers, an association between total αSyn and patients with PD with dementia (PDD) could be considered. However, similar levels of total αSyn have been reported for patients with PD and PDD (Farotti et al., 2017).

The reason for the large heterogeneity of the results with respect to total αSyn is likely due to clinical heterogeneity, the number of included patients, and methodological differences that could compromise diagnostic accuracy. Another important confounding variable is hemolysis during the specimen collection, where contamination of blood or CSF leads to increased total αSyn levels (Barkovits et al., 2020).
Before αSyn aggregates into mature amyloid fibrils in LB, αSyn undergoes oligomerization. There is strong evidence that oligomeric αSyn is a key player in PD pathophysiology (Conway et al., 2000). It has been found at higher concentration in patients with PD compared to controls, but with poor diagnostic sensitivity and specificity (Parnetti et al., 2014b; Eusebi et al., 2017). However, there are conflicting results with respect to oligomeric αSyn reported over recent years. One example is the results in asymptomatic and symptomatic PARK-LRRK2 mutation carriers. Asymptomatic PARK-LRRK2 mutation carriers showed elevated oligomeric αSyn levels compared to healthy controls (Aaslý et al., 2014); that oligomeric αSyn reflects a presymptomatic precursor of the disease cannot be concluded with certainty because symptomatic PARK-LRRK2 mutation carriers in the same study showed no difference to healthy controls (Aaslý et al., 2014). Again, there is no evidence that oligomeric αSyn in the CSF might distinguish between sPD, gPD, and/or aPD. Among the isoforms of αSyn, phosphorylated 129 αSyn has been reported to enhance synuclein toxicity both in vivo and in vitro due to increasing formation of αSyn aggregates (Fujiwara et al., 2002; Smith et al., 2005), whereas a protective effect of phosphorylated 129 αSyn has also been described (Gorbatyuk et al., 2008; Da Azeredo Silveira et al., 2014). Moreover, aSyn aggregates (Fujiwara et al., 2002; Smith et al., 2005), whereas a protective effect of phosphorylated 129 αSyn has also been described (Gorbatyuk et al., 2008; Da Azeredo Silveira et al., 2014). Another biomarker could be the 129 αSyn/total αSyn ratio, which seems to be elevated in PD (Wang et al., 2012). Regarding αSyn aggregates, in vitro conversion methods such as real-time quaking-induced conversion (RT-QuIC) have been developed as promising new methods for measuring aggregated αSyn in the CSF of patients with PD. RT-QuIC was originally developed for the detection of the abnormal form of prion protein, e.g., in Creutzfeldt-Jakob disease. In alpha-synucleinopathies, RT-QuIC has been reported with a high sensitivity and specificity of 95-100% for alpha-synucleinopathies (Fairfoul et al., 2016; Sano et al., 2018; Shahnawaz et al., 2020) and a positive predictive value of > 90% (van Rumund et al., 2019), but only 75% sensitivity in patients with an unclear diagnosis of parkinsonism (van Rumund et al., 2019). In addition, RT-QuIC does not appear to be suitable for monitoring the disease course (Nakagaki et al., 2021). The method has also been used to distinguish between alpha-synucleinopathies and other neurodegenerative diseases (Grovenman et al., 2018). Due to an improved αSyn RT-QuIC test, a diagnostic sensitivity of 93% and 100% specificity has been achieved when comparing nine patients with synucleinopathy (12 PD; 17 DLB) and 31 non-synucleinopathy controls (including 16 patients with Alzheimer’s disease). A recent study has assumed that RT-QuIC of αSyn in the CSF could be a promising candidate for prodromal stages for PD and DLB. In patients with isolated REM sleep behavior disorder (RBD), a known risk factor in the development of PD and DLB, a sensitivity and specificity of 90% have been shown (Ianzo et al., 2021). In addition, these patients had a subsequent higher risk of developing PD or DLB. Nearly two-thirds of the patients with RBD were diagnosed with PD or DLB, a mean 3.4 years after the αSyn measurement, of whom 97% were αSyn positive at the baseline (Ianzo et al., 2021). This finding of αSyn in the CSF by RT-QuIC and its value in presymptomatic patients is important, but must be confirmed by further studies.

The different forms of αSyn (total αSyn, oligomeric αSyn, phosphorylated αSyn) also reveal different results in blood serum and plasma. For total αSyn, conflicting results of increased, decreased, or unchanged total αSyn levels have been reported (Parnetti et al., 2019). Oligomeric αSyn in blood serum or red blood cells seems valuable candidates, with a sensitivity of 75% and specificity of up to 100% (Williams et al., 2016). However, these results must be confirmed in larger studies.

5-GLUCOCEREBROSIDASE

Lysosomes are one of the key players for protein degradation in human cells, including α-Syn (Webb et al., 2003). It is obvious that lysosome malfunction leads to an accumulation of dysfunctional proteins and cell organelles. This pathway is shared by several monogenic forms of PD, including SNCA, ATP13A2, VPS35, DNAJC6, SYN11, LRRK2, RAB3B (Abelovich and Gitler, 2016). An association between αSyn and lysosomes has long been hypothesized. It is assumed that a disturbed autophagy-lysosomal pathway is directly related to αSyn aggregates (Sardi et al., 2011; Bae et al., 2015; Suzuki et al., 2015).

Mutations in the corresponding gene for β-glucocerebrosidase (GBA) are considered the most common genetic risk factor in PD, meaning that not every carrier of a GBA mutation will develop PD. Historically, the observation of an increased risk of PD in type I Gaucher disease (GD) and its families was first surmised from clinical findings (Neudorfer et al., 1996). GD type I represents an autosomal-recessive systemic disorder that can present with various degrees of systemic and neurological manifestations, usually manifesting in childhood. Since the first description, more than 300 different genetic alterations, such as point mutations, insertion, deletion, missense mutations, and splice junctions, have been described in the literature (Beutler et al., 2005; Hruska et al., 2008; Smith et al., 2017).

Among GBA mutation carriers, an increasing penetration of PD (PARK-GBA) with age has been reported (Anheim et al., 2012). Penetration ranges from 7.6% at age 50 years to 30% at age 80 (Anheim et al., 2012). If patients have two homozygous mutations and thus affected with GD, the risk of PD is higher and the age at the onset (AAO) is earlier (Thaler et al., 2017).

Depending on the origin of the patients, the frequency of GBA mutations varies. For example, GBA mutations can be found in 10–31% of patients with Ashkenazi background but only in 2.3% of Norwegian patients (Neumann et al., 2009). For the European non-Ashkenazi patients, the range is between 3 and 12% (Neumann et al., 2009).

Clinical differentiation between sPD and gPD caused by a heterozygous GBA mutation (PARK-GBA) is not possible. However, the AAO of PARK-GBA is 3–6 years earlier than in sPD (Ribolì and Di Fonzo, 2019). The progression of PARK-GBA is more often characterized by prominent cognitive impairment, hallucination, and RBD. Due to the phenotypic description, it is not surprising that GBA mutations have also been found in cases of DLB (Nalls et al., 2013). The frequency of patients with DLB with GBA mutations was up to 13% in pathologically proven patients with DLB (Gámex-Valero et al., 2016).
A few studies have focused on the activity of the lysosomal hydrolase β-glucocerebrosidase (GCase) in alpha-synucleinopathies, with a significant decrease of GCase activity in the CSF of patients with PD compared to controls (Parnetti et al., 2014a; Lerche et al., 2021). As a biomarker decreased, GCase activity was consistently found in PARK-GBA (see below) but also in other gPD (PARK-LRRK2, PARK-SNCA, PARK-RRKN) (Xicoy et al., 2019). The overall utility of GBA as biomarkers in peripheral biosamples of sPD is highly controversial because, as with the results in CSF, dried blood spots are conflicting (Balducci et al., 2007; Parnetti et al., 2017; Pchelina et al., 2017). In a very recently published work, the authors have hypothesized that low GCase activity was not responsible for the phenotype because low GCase activity has been found in patients with PARK-GBA and non-manifesting GBA carriers (Omer et al., 2022). However, patients with PARK-GBA were nearly 10 years older than non-manifesting GBA carriers (64.9 vs. 53.4 years, respectively). An additional role could be the respective GBA mutation, as there are indications that this causes different changes in GCase activity (Lerche et al., 2021). GCase activity could also be promising as a progression parameter in leukocytes, as a positive correlation between GCase levels in leukocytes and disease duration has been reported in sPD (Kim et al., 2016). Unfortunately, the treatments currently available for patients with GD do not reach the CNS. Hence, these treatment options do not play a role in PARK-GBA. However, there are several approaches to therapy development. One example is the capacity to increase GCase levels, currently being tested using the chaperone ambroxol in patients with PARK-GBA in an ongoing study (NCT02914366) (Mullin et al., 2020). The rationale behind this is that mutant GBA is unable to fold the endoplasmic reticulum correctly and thus promotes protein aggregation. Chaperone proteins able to facilitate the refolding of their substrates were tested. Another approach is gene replacement therapy via adeno-associated virus 9 to deliver a functional copy of the GBA gene to the CNS (Du et al., 2019; Abeliovich et al., 2021). In several animal models of PD or GBA-associated PD, direct application to the CNS was successful (Rocha et al., 2015; Jackson et al., 2019). Accordingly, a phase 1/2a study using these techniques has been recently started (NCT04127578).

LEUCINE-RICH REPEAT KINASE

Mutations in the leucine-rich repeat kinase (LRRK2) gene are the most common genetic cause of autosomal-dominant late-onset PD (Paisán-Ruiz et al., 2004; Zimprich et al., 2004). LRRK2 variants are also considered significant risk factors in sPD cases (Kluss et al., 2019). G2019S is the most frequent variant, accounting for 4% of gPD and 1% of sPD, with variable distribution among different ethnic populations and incomplete, age-related penetrance (26–84%) (Healy et al., 2008; Lee et al., 2017). LRRK2 encodes a multifunctional protein with a catalytic core of kinase and GTPase activity. Physiologically, LRRK2 is involved in various cellular processes, encompassing cytoskeletal maintenance, vesicular trafficking, mitochondrial function, autophagy, lysosomal degradation, and the inflammatory response (Jeong and Lee, 2020; Mancini et al., 2020). Most LRRK2 mutations cause a toxic gain of function with increased kinase activity. In viral and transgenic rodent models, overexpression of LRRK2 G2019S induced striatal neurodegeneration in a kinase-dependent manner (Lee et al., 2010; Tsika et al., 2015). There is also evidence that LRRK2 interacts with αSyn, mediating its aggregation and propagation (O’Hara et al., 2020).

The phenotype of PARK-LRRK2 resembles that of sPD in terms of cardinal motor features and good response to levodopa (Healy et al., 2008; Marras et al., 2011). PD symptoms manifest at a slightly younger age (57 years). Several studies have observed a more benign disease course in G2019S mutation carriers with a slower decline in motor scores, albeit a similar risk for motor complications (Healy et al., 2008; Marras et al., 2016; Ben Romdhane et al., 2018; Saunders-Pullman et al., 2018) that could not be confirmed by other studies that report no difference (Nabi et al., 2015) or even worse motor symptoms and a higher rate of dyskinesia (Nishioka et al., 2010; Shu et al., 2018). Various studies have indicated that PARK-LRRK2 is associated with less non-motor involvement. Hyposmia and RBD are less prevalent compared to sPD (Saunders-Pullman et al., 2015; Marras et al., 2016), and cognitive function seems to be more mildly impaired, even after many years of disease duration (Aasly et al., 2005; Alcalay et al., 2015).

Given the therapeutic advances of small molecule kinase inhibitors and antisense oligonucleotides to diminish LRRK2 activity, reliable and feasible biomarkers that reflect LRRK2-related pathways are mandatory. LRRK2 is highly expressed in peripheral tissues, such as lung, kidney, and blood cells (Fuji et al., 2015), and the latter serves as an easily accessible source [i.e., peripheral blood mononuclear cells (PBMCs)]. Indeed, by using flow cytometry, significantly elevated LRRK2 levels have been detected in B cells, T cells, CD16 + monocytes (Cook et al., 2017), and neutrophils of subjects with sPD compared to controls (Atashrazm et al., 2019), supporting the link to immune regulation. However, no difference in total LRRK2 levels could be detected in PBMCs among various sample groups, irrespective of PD or LRRK2 mutation status (Melachroinou et al., 2020; Padmanabhan et al., 2020). Alterations of total LRRK2 levels in PBMCs could be obscured by cellular heterogeneity. Considering cell-specific expression patterns of LRRK2, it seems important to purify and analyze different subcellular types separately in future investigations. A prominent site for heterologous LRRK2 phosphorylation is at serine 935 (pS935) that has been shown to be significantly reduced in PBMCs of affected G2019S carriers, distinguishing them from sPD, healthy G2019S carriers, and controls (Padmanabhan et al., 2020). Another study reported significantly elevated in vitro kinase activity of LRRK2 in PBMCs from G2019S mutation carriers in comparison to non-carriers, while the pS935-LRRK2 level was increased in sPD compared to controls (Melachroinou et al., 2020). The molecular mechanisms that alter the regulation of S935 phosphorylation are not fully understood and need further clarification. Moreover, LRRK2 is sensitized to dephosphorylation by LRRK2 kinase inhibitors, with reduced pS935-LRRK2 that could be used as a marker of pharmacological
LRRK2 inhibition (Dzamko et al., 2010). Whether the GTPase Rab10, the key substrate of LRRK2 that can be pharmacologically modified, could serve as a marker for target engagement is still inconclusive and needs further assessment (Steger et al., 2016; Thirstrup et al., 2017). At least, for discriminative purposes, Rab10 cannot be suggested since no difference could be found in blood cells between patients with PD and controls (Fan et al., 2018; Atashrazm et al., 2019). Although it has been challenging to directly measure LRRK2 in CSF, LRRK2 quantification in CSF could be obtained by an improved monoclonal antibody technique that has revealed significantly higher CSF LRRK2 levels in G2019S-PD compared to sPD, healthy controls, and non-manifesting G2019 carriers (Mabrouk et al., 2020). Auto-phosphorylation of LRRK2 at serine 1292 (pS1292) reflects kinase activity that is measurable in CSF, but possibly masked by saturation effects no changes in pS1292 levels could be detected in the CSF of G2019S carriers (Wang et al., 2017).

By saturation effects no changes in pS1292 levels could be detected in the CSF of G2019S carriers (Wang et al., 2017). As mentioned in the previous section, CSF protein analysis revealed the differential pha-synuclein profiles of individuals with LRRK2 mutation (Aasly et al., 2014; Vilas et al., 2016) that could result from the variable presence of LB pathology in PARK-LRRK2. No differences were found in terms of the AD-related proteins amyloid-β1-42, total-tau, or phospho-tau (Vilas et al., 2016). Fraser et al. (2013) demonstrated the presence of LRRK2 in urinary exosomes, small endosomal-derived vesicles released from cells to the periphery. Intriguingly, G2019S carriers with PD displayed higher pS1292 to the total LRRK2 ratio in urinary exosomes compared to non-carriers and even asymptomatic G2019S carriers, indicating the potential for risk prediction (Fraser et al., 2016). Further studies on LRRK2 exosomes will explore their biomarker potential in PD.

Regarding imaging biomarkers, positron emission tomography (PET) detected reduced tracer binding in presymptomatic LRRK2 mutation carriers compared to controls, with greater progression of dopaminergic dysfunction (Nandhagopal et al., 2008). In this PET study, multiple tracers were applied, including multitracer PET using 18F-6-fluoro-l-dopa, 11C-α-dihydrotetrabenazine and 11C-d-threo-methylphenidate. Dopamine transporter imaging with I-123 FP-CIT showed potential to monitor progression, although a certain degree of intraindividual variability limited its ability to predict phenoconversion (Sánchez-Rodriguez et al., 2021). Studies that investigate markers to discriminate LRRK2-PD from aPD are lacking.

PRKN/PINK1

Given the common biological pathways affecting mitochondrial function and biomarker studies, including both **PRKN** and **PINK1** mutations, these genes are discussed together.

The majority of early-onset parkinsonism with autosomal-recessive inheritance is linked to mutations of the **PRKN/PARK2** gene (Kitada et al., 1998; Lücking et al., 2000). More than 130 disease-causing mutations have been identified throughout all 12 exons, including point mutations, exon rearrangements, and small deletions (Kasten et al., 2018). Whereas biallelic **PRKN** mutation results in overt disease, the question whether heterozygous mutations predispose to disease risk still remains an issue of debate (Huttenlocher et al., 2015; Lubbe et al., 2021; Yu et al., 2021). The encoded Parkin protein is an E3-ubiquitin ligase that transfers ubiquitin to protein substrates, thus targeting them to proteosomal degradation (Shimura et al., 2000; Moore, 2006). Moreover, Parkin regulates mitochondrial quality control and clearance of damaged mitochondria through mitophagy in concert with the other PD-linked gene **PINK1** (Narendra et al., 2012). In the Drosophila model, mutant **PRKN** caused a degenerative phenotype with flight muscle defects, mitochondrial alterations, and abnormalities of dopaminergic neurons (Greene et al., 2003; Pickrell and Youle, 2015).

PARK-PRKN is characterized by a slowly progressive disease course at an early age of the onset (mean, 31 years) (Khan et al., 2003; Kasten et al., 2018). Beyond the typical clinical triad, hyperreflexia can be present, and dystonia, often affecting the lower limb, can be an initial sign (Khan et al., 2003; Grünewald et al., 2013). The marked and sustained response to levodopa is complicated by frequently associated levodopa-induced motor fluctuations and dyskinesias (Clarimon et al., 2005). With regard to non-motor aspects, olfactory function and cognition are mostly well preserved (Khan et al., 2004; Alcalay et al., 2015; Abeliovich and Gitler, 2016). However, a multicenter, case-control study reported an earlier occurrence and a higher frequency and severity of impulsive-compulsive behaviors in **PARK-PRKN** (Morgante et al., 2016).

Mutations in the **phosphatase and tensin homolog (PTEN)**-induced putative kinase 1 (**PINK1**) gene represent the second most frequent cause of autosomal-recessive inherited early-onset parkinsonism (Valente et al., 2004). The frequency of **PINK1** mutations ranges between 1 and 9%, with variations across different ethnic populations (Schulte and Gasser, 2011; Klein and Westenberger, 2012). Mutations are highly diverse and include missense, non-sense, frameshift mutations, and deletions. As with **PRKN**, the role of heterozygous **PINK1** mutation as a risk factor in PD has not yet been clarified (Krohn et al., 2020). **PINK1** encodes a serine/threonine kinase involved in the regulation of the mitophagy pathway by activating ubiquitin and Parkin through phosphorylation (Valente et al., 2004; Narendra et al., 2010; Kane et al., 2014). Drosophila-lacking **PINK1** exhibited mitochondrial abnormalities and muscle and neuronal degeneration that could be rescued by **PRKN** overexpression but not vice versa, suggesting that **PINK1** acts upstream of Parkin in the shared pathway (Clark et al., 2006; Park et al., 2006; Yang et al., 2006).

In general, **PARK-PINK1** shares similar features as **PARK-PRKN** regarding early AAO (mean, 32 years), slow disease progression, and excellent levodopa response, although associated with motor fluctuations and dyskinesias (Bonifati et al., 2005; Ibáñez et al., 2006; Kasten et al., 2018). Dystonia at the onset and hyperreflexia are also described in patients with **PINK1** mutation. However, non-motor symptoms are more pronounced. Hyposmia is commonly reported (Ferraris et al., 2009). Neuropsychiatric features are multifaceted, including mostly depression and anxiety but also traits of the schizophrenic spectrum and obsessive-compulsive personality.
disorder (Ephraty et al., 2007; Steinlechner et al., 2007; Ricciardi et al., 2014). Although cognitive function was thought to be less affected (Bonifati et al., 2005; Kasten et al., 2018), a recent study has observed a higher rate of cognitive dysfunction in PINK1 mutations (Piredda et al., 2020).

Biomarkers for mitochondrial integrity are not only required to prove target engagement and drug-induced effects but also to identify patients who will most likely benefit from mitophagy-targeted treatments. PINK1 phosphorylates ubiquitin at a serine residue (pS65-Ub), which could reflect PINK1 activity. Autopsy studies have revealed elevated pS65-Ub levels in brain tissues of patients with sPD, DLB, and normal elderly controls, suggesting that pS65-Ub accumulates upon mitochondrial stress during disease or aging (Fiesel et al., 2015; Hou et al., 2018). In contrast, PINK1/PRKN mutants lacked pS65-Ub signals, consistent with their loss of function to label damaged mitochondria. More intriguingly, pS65-Ub signals detected by sensitive enzyme-linked immunosorbent assay were significantly reduced in blood plasma of patients with homozygous PINK1-mutation carriers compared to controls with heterozygous mutation and non-carriers (Watzlawik et al., 2020). Whether pS65-Ub levels can be used as a diagnostic or prognostic disease marker in blood needs to be confirmed in further investigations. Mitochondrial DNA (mtDNA) is closely related to mitochondrial function. Whereas reduced mtDNA copy numbers were reported in the substantia nigra of PD postmortem brains (Pyle et al., 2016), the findings in peripheral blood are inconclusive (Gui et al., 2015; Pyle et al., 2016; Davis et al., 2020). Circulating cell-free mtDNA (ccf-mtDNA) is a fragment of mtDNA released from cells in response to stress. Reduced ccf-mtDNA levels were reported in the CSF of patients with sPD (Pyle et al., 2015), showing an inverse correlation with treatment (Lowes et al., 2020). Notably, a recent study has observed higher ccf-mtDNA levels in the sera of PRKN and PINK1 biallelic mutation carriers and affected heterozygotes compared to patients with sPD, possibly resulting from impaired mitophagy in PRKN/PINK1-associated PD (Borsche et al., 2020). As inflammation evidently contributes to PD pathogenesis and progression, peripheral inflammatory cytokines have been attributed biomarker potential. Among these, interleukin-6 (IL6) levels were elevated in blood samples from patients with PD (Qin et al., 2016), correlating with motor severity. A recent study has reported higher serum IL6 levels in patients with biallelic PRKN/PINK1 mutations compared to healthy controls, whereas heterozygous PRKN/PINK1 mutation carriers and sPD showed only a trend toward elevated IL6 levels, indicating a gene dosage effect (Borsche et al., 2020). Moreover, IL6 levels correlated only in affected PRKN/PINK1 mutation carriers with disease duration. Mitochondrial dysfunction is also implied in the pathophysiology of a PD such as MSA and PSP (Nicoletti et al., 2021). Comparative studies exploring discriminative biomarkers of PRKN/PINK1-associated PD vs. aPD have not yet been conducted.

Imaging methods can be useful to monitor mitochondrial energy metabolism. Mitochondrial complex I activity can be assessed in vivo by the PET radiotracer 18F-BCPP-EF, which is reduced in a non-human primate model for PD (Tsukada et al., 2016) but could not be translated to patients with PD (Wilson et al., 2020). Alternatively, phosphorus magnetic resonance spectroscopy (31P-MRS) can visualize cerebral mitochondrial metabolism by measuring phosphorous-containing energy metabolites (Henchcliffe et al., 2008). Increased putaminal levels of high-energy phosphates distinguished homozygous PINK1 mutation carriers from heterozygous mutation carriers and controls (Hilker et al., 2012). This finding was interpreted as compensatory mechanisms with respect to the impaired cellular stress resistance.

Two current trials testing vitamin K2 (Prasuhn et al., 2020) and coenzyme Q10 (Prasuhn et al., 2019) include Parkin/PINK1 mutation carriers and use 31P-MRS for patient stratification and as a secondary end point.

DJ1

DJ-1 is a widely expressed protein that participates in antioxidative stress mechanisms and mitochondrial regulation (Dolgacheva et al., 2019). Mutations in the corresponding gene DJ-1 are responsible for an autosomal-recessive form of gPD (PARK-DJ-1). The phenotype of patients with PARK-DJ-1 consists of an early onset and slow progression of the disease and is, therefore, comparable with other autosomal-recessive forms like PARK-PRKN or PARK-PINK1. However, mutations in DJ-1 are less frequent than PARK-PRKN or PARK-PINK1.

There are conflicting results regarding DJ-1 as a biomarker in the CSF and peripheral tissues, with increased and decreased DJ-1 levels in patients with sPD (Saito, 2014; Farotti et al., 2017). The same conflicting results were obtained when DJ-1 in the CSF was examined in the differential diagnosis of sPD vs. aPD (Farotti et al., 2017). A few studies with a low number of patients have investigated the concentration of DJ-1 in saliva in sPD with conflicting results. Therefore, DJ-1 in saliva does not play a role in daily routine (Farah et al., 2018). Another option is to determine the concentration of oxidized DJ-1 in blood or urine. Oxidized DJ-1 is induced by oxidative stress, which plays a major role in the pathophysiology of neurodegenerative diseases. Increased levels of oxidized DJ-1 have been described in patients with sPD compared to controls (Jang et al., 2018).

CONCLUSION

A biomarker with a high sensitivity and specificity that could be introduced into clinical routine is currently not available. Biomarker research for PD has made great progress in recent years. Nevertheless, there is still a lack of robust biomarkers with high sensitivity and specificity that would satisfy diagnostic requirements. This is also true for monitoring disease progression and differential diagnosis of sPD, gPD, and aPD. Even for the most common monogenetic forms described here, this has not yet been achieved. This is true for the different forms of PD, including sPD, gPD, and aPD. Further research activity will be necessary to improve or find new techniques (e.g., RT-QuIC) and find the most suitable liquid biomaterial. The key
to the diagnosis of PD, especially for future disease-modifying therapies, is likely to be a combination of different biomarkers with different modalities. In addition to peripheral biomarkers and CSF, imaging techniques (nuclear medicine, MRI, etc.) will play a crucial role.

AUTHOR CONTRIBUTIONS

LT and SK contributed to conception and design of the study. SK and EK wrote the first draft of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

REFERENCES

Aasly, J. O., Johansen, K. K., Brønstad, G., Ware, B. J., Majbour, N. K., Varghese, S., et al. (2014). Elevated levels of cerebrospinal fluid α-synuclein oligomers in healthy asymptomatic LRRK2 mutation carriers. *Front. Aging Neurosci.* 6:248. doi: 10.3389/fnagi.2014.00248

Aasly, J. O., Toft, M., Fernandez-Mata, I., Kachergus, J., Hulihan, M., White, L. R., et al. (2005). Clinical features of LRRK2-associated Parkinson's disease in central Norway. *Ann. Neurol.* 57, 762–765. doi: 10.1002/ana.20456

Abeliovich, A., and Gitler, A. D. (2016). Defects in trafficking bridge Parkinson's disease pathology and genetics. *Nature* 539, 207–216. doi: 10.1038/nature20414

Abeliovich, A., Hefti, F., and Sevigny, J. (2021). Gene therapy for Parkinson's disease associated with GBA1 mutations. *J. Parkinsons Dis.* 11, S183–S188. doi: 10.3233/JPD-212739

Alcalay, R. N., Mejia-Santana, H., Mirelman, A., Saunders-Pullman, R., Raymond, D., Palmsce, C., et al. (2015). Neuropsychological performance in LRRK2 G2019S carriers with Parkinson's disease. *Parkinsonism Relat. Disord.* 21, 106–110. doi: 10.1016/j.parkreldis.2014.09.033

Anheim, M., Elbaz, A., Lesage, S., Durr, A., Condroyer, C., Viallet, F., et al. (2012). Penetration of Parkinson disease in glucocerebrosidase gene mutation carriers. *Neurology* 78, 417–420. doi: 10.1212/21N0000000000007476

Atashrazm, F., Hammond, D., Perera, G., Bolliger, M. F., Matar, E., Halliday, G. M., et al. (2021). Hematologically important α-synuclein carriers with Parkinson's disease. *Parkinsonism Relat. Disord.* 21, 066–110. doi: 10.1016/j.parkreldis.2020.09.033

Braak, H., Del Tredici, K., Rüb, U., Vos, R. A. I., de, Jansen Steur, E. N. H., et al. (2003). Staging of brain pathology related to sporadic Parkinson's disease. *Neurobiol. Aging* 24, 197–211. doi: 10.1016/s0197-4580(02)00065-9

Clarimon, J., Johnson, J., Djadlett, R., Hernandez, D., Hattori, N., Sroka, H., et al. (2005). Mutation of the Parkin gene in a Persian family: clinical progression over a 40-year period. *Mov. Disord.* 20, 887–890. doi: 10.1002/mds.20495

Clark, I. E., Dodson, M. W., Jiang, C., Cao, J. H., Huh, J. R., Seol, J. H., et al. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. *Nature* 441, 1162–1166. doi: 10.1038/nature04779

Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Williamson, R. E., and Lansbury, P. T. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. *Proc. Natl. Acad. Sci. U.S.A.* 97, 571–576. doi: 10.1073/pnas.97.2.571

Cook, D. A., Kannarkat, G. T., Cintron, A. F., Butkovich, L. M., Fraser, K. B., Chang, J., et al. (2017). LRRK2 levels in immune cells are increased in Parkinson’s disease. *NPJ Parkinson’s Dis.* 3:11. doi: 10.1038/s41531-017-0010-8

Cook, L., Schulze, J., Naito, A., and Alcalay, R. N. (2021). The role of genetic testing for Parkinson's disease. *Curr. Neurol. Neurosci. Rep.* 21:17.

Du Azeredo, Silveira, S., Schneider, B. L., Cifuentes-Diaz, C., Sage, D., Abbas-Terki, T., et al. (2009). Phosphorylation does not prompt, nor prevent, the formation of alpha-synuclein toxic species in a rat model of Parkinson’s disease. *Hum. Mol. Genet.* 18, 872–887. doi: 10.1093/hmg/ddm417

Davis, R. L., Wong, S. L., Carling, P. J., Payne, T., Sue, C. M., and Bandmann, O. (2020). Serum FGF-21, GDF-15, and blood mtDNA copy number are not biomarkers of Parkinson disease. *Neurol. Clin. Pract.* 10, 40–46. doi: 10.1212/CPJ.0000000000000702

Di Maio, R., Hoffman, E. K., Rocha, E. M., Keeney, M. T., Sanders, L. H., Miranda, B. R., et al. (2018). LRRK2 activation in idiopathic Parkinson’s disease. *Sci. Transl. Med.* 10:eaar5429. doi: 10.1126/scitranslmed.aar5429

Dolgacheva, L. P., Berezhnoy, A. V., Fedotova, E. I., Zinchenko, V. P., and Abramov, A. Y. (2019). Role of DJ-1 in the mechanism of pathogenesis of Parkinson's disease. *J. Bioenerg. Biomembr.* 51, 175–188. doi: 10.1007/s10863-019-09798-4

Du, S., Ou, H., Cui, R., Jiang, N., Zhang, M., Li, X., et al. (2019). Delivery of glucocerebrosidase beta gene using AAV9 vector therapy as a treatment strategy in mouse models of gaucher disease. *Hum. Gene Ther.* 30, 155–167. doi: 10.1089/hum.2018.072

Dzamko, N., Deak, M., Hentati, F., Reith, A. D., Prescott, A. R., Alessi, D. R., et al. (2010). Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. *Biochem. J.* 430, 405–413. doi: 10.1042/Bj20100784

Ephraty, L., Porat, O., Israeli, D., Cohen, O. S., Tunkel, O., Yael, S., et al. (2007). Neuropsychiatric and cognitive features in autosomal-recessive early parkinsonism due to PINK1 mutations. *Mov. Disord.* 22, 566–569. doi: 10.1002/mds.21319

Eusebi, P., Giannandrea, D., Biscetti, L., Abbra, L., Chiaiserini, D., Orso, M., et al. (2017). Diagnostic utility of cerebrospinal fluid α-synuclein in Parkinson’s disease: a systematic review and meta-analysis. *Mov. Disord.* 32, 1389–1400. doi: 10.1002/mds.27110

Fairfoul, G., McGuire, L. I., Pal, S., Ironside, J. W., Neumann, J., Christie, S., et al. (2016). Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. *Ann. Clin. Transl. Neurol.* 3, 812–818. doi: 10.1002/acn3.338
Fan, Y., Howden, A. J., Sarhan, A. R., Lis, P., Ito, G., Martinez, T. N., et al. (2018). Interrogating Parkinson's disease LRRK2 kinase pathway activity by assessing Rab10 phosphorylation in human neuroprobes. Biochem. J. 475, 23–44. doi: 10.1042/BC20170803

Farah, R., Haraty, H., Salame, Z., Fares, Y., Ojcius, D. M., and Said Sadier, N. (2018). Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomedi. J. 41, 63–87. doi: 10.1016/j.bj.2018.03.004

Farotti, L., Paciotti, S., Tasegian, A., Eusebi, P., and Parnetti, L. (2017). Discovery, validation and optimization of cerebrospinal fluid biomarkers for use in Parkinson’s disease. Expert Rev. Mol. Diagn. 17, 771–780. doi: 10.1080/14737519.2017.1341312

Ferraris, A., Ialongo, T., Passali, G. C., Pellecchia, M., Brusa, L., Ialongo, M., et al. (2009). olfactory dysfunction in Parkinsonism caused by PINK1 mutations. Mov. Disord. 24, 2350–2357. doi: 10.1002/mds.22816

Fiesel, F. C., Ando, M., Hudec, R., Hill, A. R., Castanedes-Casey, M., Cailufild, T. R., et al. (2015). Pheno-jphysiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep. 16, 1114–1130. doi: 10.15252/embr.20145014

Forno, L. S. (1996). Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neuro. 55, 259–272. doi: 10.1097/00005072-199605000-00001

Fraser, K. B., Moehle, M. S., Alcalay, R. N., West, A. B., Bressman, S., Giladi, N., et al. (2016). Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S LRRK2 carriers. Neurology 86, 994–999. doi: 10.1212/WNL.0000000000002436

Fraser, K. B., Moehle, M. S., Daheer, J. P. L., Webber, P. J., Williams, J. Y., Stewart, C., A., et al. (2013). LRRK2 secretion in exosomes is regulated by 14-3-3. Hum. Mol. Genet. 22, 4988–5000. doi: 10.1093/hmg/ddd346

Fuji, R. N., Flagella, M., Baca, M., Baptista, M. A. S., Brodbeck, J., Chan, B. K., et al. (2017). Selective regulated LRRK2 kinase inhibition on nonhuman primate lung. Sci. Transl. Med. 7:273ra15. doi: 10.1126/scitranslmed.aai3643

Fujiwara, H., Hasegawa, M., Dohmaw, N., Kawashima, A., Masliah, E., Goldberg, M. S., et al. (2002). alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4, 160–164. doi: 10.1038/nbc7478

Gámez-Valero, A., Prada-Dacasa, P., Santos, C., Adame-Castillo, C., Gorbatyuk, O. S., Li, S., Sullivan, L. F., Chen, W., Kondrikova, G., Manfredsson, F. P., et al. (2008). The phosphorylation state of Ser-129 in human alpha-synuclein seeds in brain and cerebrospinal fluid by α-Syn RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal observational study. Lancet Neurol. 20, 203–212. doi: 10.1016/S1474-4422(20)30449-X

Jackson, K. L., Viel, C., Clarke, J., Bu, J., Chan, M., Wang, B., et al. (2019). Viral delivery of a microRNA to Gba to the mouse central nervous system models neuropathic Gaucher disease. Neurobiol. Dis. 130:104513. doi: 10.1016/j.nbd.2019.104513

Jang, J., Jeong, S., Lee, S. I., Seol, W., Seo, H., Son, I., et al. (2018). Oxidized DJ-1 levels in urine samples as a putative biomarker for Parkinson's disease. Parkinsonism Relat. Disord. 2018:1241757. doi: 10.1155/2018/1241757

Jeong, G. R., and Lee, B. D. (2020). Pathological functions of LRRK2 in Parkinson’s disease. Cells 9:2565. doi: 10.3390/cells9122565

Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 66568. doi: 10.1038/26507

Khan, N. L., Lazarou, M., Fogel, A. I., Li, Y., Yamano, K., Sarraf, S. A., et al. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143–153. doi: 10.1083/jcb.201421204

Kasten, M., Hartmann, C., Hampf, J., Schaeke, S., Westenberg, A., Volllstedt, E.-J., et al. (2016). Genotype-phenotype relations for the Parkinson’s disease genes parkin, PINK1, DJ1: MDSGene systematic review. Mov. Disord. 33, 730–741. doi: 10.1002/mds.27352

Khan, N. L., Graham, E., Critchley, P., Schrag, A. E., Wood, N. W., Lees, A. J., et al. (2003). Parkinson disease: a phenotypic study of a large case series. Brain 126, 1279–1292. doi: 10.1093/brain/awg142

Khan, N. L., Katzschlager, R., Watt, H., Bhatia, K. P., Wood, N. W., Quinn, N., et al. (2004). Olfaction differentiates parkin disease from early-onset parkinsonism and Parkinson disease. Neurology 62, 1224–1226. doi: 10.1212/01.WNL.0000118281.66802.81

Kim, H.-J., Jeon, B., Song, J., Lee, W.-W., Park, H., and Shin, C.-W. (2016). Leucocyte glucocerebrosidase and β-hexosaminidase activity in sporadic and genetic Parkinson disease. Parkinsonism Relat. Disord. 23, 99–101. doi: 10.1016/j.parkreldis.2015.12.002

Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 66568. doi: 10.1038/26507

Klein, C., and Westenberg, A. (2012). Genetics of Parkinson's disease. Cold Spring Harb. Perspect. Med. 2:a008888. doi: 10.1101/cshperspect.a008888

Klus, J. H., Mamais, A., and Cookson, M. R. (2019). LRRK2 links genetic and sporadic Parkinson’s disease. Biochem. Soc. Trans. 47, 651–661. doi: 10.1042/BST20180462
Shahnavaz, M., Mukherjee, A., Pritzkow, S., Mendez, N., Rabadia, P., Liu, X., et al. (2020). Discriminating α-synuclein strains in Parkinson's disease and multiple system atrophy. *Nature* 578, 273–277. doi: 10.1038/s41586-020-1984-7

Shimura, H., Hattori, N., Kubo, S. I., Mizuno, Y., Asakawa, S., Minoshima, S., et al. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. *Nat. Genet.* 25, 302–305. doi: 10.1038/77706

Shu, L., Zhang, Y., Pan, H., Xu, Q., Guo, J., Täng, B., et al. (2018). Clinical heterogeneity among LRRK2 variants in Parkinson's disease: a meta-analysis. *Front. Aging Neurosci.* 10:283. doi: 10.3389/finagi.2018.00283

Smith, L., Mullin, S., and Schapira, A. H. V. (2017). Insights into the structural biology of Gaucher disease. *Exp. Neurol.* 298, 180–190. doi: 10.1016/j.expneurol.2017.09.010

Smith, W. V., Margolis, R. L., Li, X., Troncoso, J. C., Lee, M. K., Dawson, V. L., et al. (2005). Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. *J. Neurosci.* 25, 5544–5552. doi: 10.1523/JNEUROSCI.0482-05.2005

Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., and Goedert, M. (1997). Alpha-synuclein in Lewy bodies. *Nature* 388, 839–840. doi: 10.1038/42166

Steger, M., Tonelli, F., Ito, G., Davies, P., Trost, M., Vetter, M., et al. (2016). Phospho-ubiquitiomes reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rap GTPases. *Elife* 5:12813. doi: 10.7554/Elife.12813

Steinlechner, S., Stahlberg, J., Voltel, B., Djarmati, A., Hagenah, J., Hiller, A., et al. (2007). Co-occurrence of affective and schizoaffective disorders with PINK1 mutations. *J. Neurol. Neurosurg. Psychiatry* 78, 532–535. doi: 10.1136/jnnp.2006.095767

Stewart, T., Liu, C., Genghina, C., Cain, K. C., Ausinger, P., Cholerton, B., et al. (2014). Cerebrospinal fluid α-synuclein predicts cognitive decline in Parkinson disease progression in the DATATOP cohort. *Am. J. Pathol.* 184, 966–975. doi: 10.1016/j.ajpath.2013.12.007

Suzuki, M., Fujikake, N., Takeuchi, T., Kohyama-Koganea, A., Nakajima, K., Hirabayashi, Y., et al. (2015). Glucocerebrosidase deficiency accelerates the accumulation of proteinase K-resistant α-synuclein and aggravates neurodegeneration in a Drosophila model of Parkinson's disease. *Hum. Mol. Genet.* 24, 6675–6686. doi: 10.1093/hmg/ddv372

Thaler, A., Gurevich, T., Bar Shira, A., Gana Weisz, M., Ash, E., Shiner, T., et al. (2017). A "dose" effect of mutations in the GBA gene on Parkinson's disease phenotype. *Parkinsonism Relat. Disord.* 36, 47–51. doi: 10.1016/j.parkreldis.2016.12.014

Thirstrup, K., Dächsel, J. C., Oppermann, F. S., Williamson, D. S., Smith, G. P., Fog, K., et al. (2017). Selective LRRK2 kinase inhibition reduces phosphorylation of endogenous Rab10 and Rab12 in human peripheral monocunuclear blood cells. *Sci. Rep.* 7:13000. doi: 10.1038/s41598-017-10501-z

Tuika, E., Nguyen, A. P. T., Dusonchet, J., Colin, P., Schneider, B. L., and Moore, D. J. (2015). Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson's disease. *Neurobiol. Dis.* 77, 49–61. doi: 10.1016/j.nbd.2015.02.019

Tsuchada, H., Kanazawa, M., Ohba, H., Nishiyama, S., Harada, N., and Kakiuchi, T. (2016). PET imaging of mitochondrial complex I with 18F-BCP-EF in the brains of MPTP-treated monkeys. *J. Nucl. Med.* 57, 950–953. doi: 10.2967/ jnumed.115.169615

Valente, M. E., Abou-Sleiman, P. M., Caputo, V., MQUIT, M. K., Harvey, K., Gispert, S., et al. (2004). Hereditary early-onset Parkinson's disease caused by mutations in PINK1. *Science* 304, 1158–1160. doi: 10.1126/science.1096284

van Rumund, A., Green, A. J. E., Fairfoul, G., Esselink, R. A. J., Bloem, B. R., and Vilas, D., Shaw, L. M., Taylor, P., Berg, D., Brockmann, K., Aasly, J., et al. (2016). REM sleep behavior disorder, as assessed by video PSG and actigraphy, in GBA-associated Parkinson's disease. *Neurology* 87, 2047–2053. doi: 10.1212/WNL.0000000000002594

Wang, S., Liu, Z., Yu, T., Mabrouk, O. S., Malbise, T., Aasly, J., et al. (2017). Elevated LRRK2 autophosphorylation in brain-derived and peripheral exosomes in LRRK2 mutation carriers. *Acta Neuropathol. Commun.* 5:86. doi: 10.1186/s40478-017-0492-y

Tönges et al. Biomarkers in Monogenetic Parkinson’s Disease
Wang, Y., Shi, M., Chung, K. A., Zabetian, C. P., Leverenz, J. B., Berg, D., et al. (2012). Phosphorylated α-synuclein in Parkinson’s disease. Sci. Transl. Med. 4:121ra20. doi: 10.1126/scitranslmed.3002566

Watzlawik, J. O., Hou, X., Fricova, D., Ramnarine, C., Barodia, S. K., Gendron, T. F., et al. (2020). Sensitive ELISA-based detection method for the mitophagy marker p-S65-Ub in human cells, autopsy brain, and blood samples. Autophagy 17, 2613–2628. doi: 10.1080/15548627.2020.1834712

Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N., and Rubinsztein, D. C. (2003). Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013. doi: 10.1074/jbc.M300227200

Williams, S. M., Schulz, P., and Sierks, M. R. (2016). Oligomeric α-synuclein and β-amyloid variants as potential biomarkers for Parkinson’s and Alzheimer’s diseases. Eur. J. Neurosci. 43, 3–16. doi: 10.1111/ejn.13056

Wilson, H., Pagano, G., Natale, E. R., de, Mansur, A., Caminiti, S. P., et al. (2020). Mitochondrial complex 1, sigma 1, and synaptic vesicle 2A in early drug-naïve Parkinson’s disease. Mov. Disord. 35, 1416–1427. doi: 10.1002/mds.28064

Xicoy, H., Peñuelas, N., Vila, M., and Laguna, A. (2019). Autophagic- and Lysosomal-Related Biomarkers for Parkinson’s disease: lights and shadows. Cells 8:1317. doi: 10.3390/cells8111317

Yang, Y., Gehrke, S., Imai, Y., Huang, Z., Ouyang, Y., Wang, J.-W., et al. (2006). Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. U.S.A. 103, 10793–10798. doi: 10.1073/pnas.0602493103

Yu, E., Rudakou, U., Krohn, L., Mufti, K., Ruskey, J. A., Asayesh, F., et al. (2021). Analysis of heterozygous PRKN variants and copy-number variations in Parkinson’s disease. Mov. Disord. 36, 178–187. doi: 10.1002/mds.28299

Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., et al. (2004). Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607. doi: 10.1016/j.neuron.2004.11.005

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Tönges, Kwon and Klebe. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.