Assessment of heavy metal contamination in the drinking water of muzaffarabad, Azad Jammu and Kashmir, Pakistan

Abstract

Safe and good quality potable water is a basic requirement for human existence, but if polluted can become the source of substances dangerous to human health. Azad Jammu and Kashmir is facing the problem of low quality of drinking water like other neighboring regions. Present study aimed to evaluate the heavy metal status in the drinking water of Muzaffarabad and outlying areas. Fifty three water samples were collected randomly from taps and spring waters of the study area and analyzed for six heavy metals (Copper, chromium, manganese, lead, and zinc). Concentration of Cu, Fe, Mn and Zn were below the guideline values of WHO and GOP. Chromium and lead exceeded standard values of WHO and GOP in 21% (n=11) in each case. Overall 66% water samples were found potable, while in 33% samples heavy metal contamination surpassed permissible limit. The assessment shows quite a reasonable situation regarding heavy metal quality status of potable water.

Keywords: drinking water, heavy metal, muzaffarabad, AJ&K

Introduction

Water is one of the utmost and fundamental requirements to sustain life on the planet earth. Being a universal solvent, water dissolves toxic organic and inorganic compounds that deteriorate its quality and influence consumer’s health. Present day water sources, particularly surface waters are being polluted chiefly by domestic, agricultural, industrial, commercial wastes disposals in addition to natural contamination (e.g. trace metals) added due to the dissolution of natural substances and their subsequent transference in our flowing waters. Globally water contamination is major cause of diseases and deaths and the situation become worst in developing countries. Metal adulterations are mineral based which happen naturally or get permits unrestricted use, distribution, and build upon your work non-commercially.

Higher copper concentration is immunotoxic; may cause metabolic and gastrointestinal complications and disturbs the liver and brain specifically in patients of Wilson’s disease.

Higher chromium concentration is carcinogenic as well as genotoxic. Elevated levels of iron is connected with increasing risks for cancer, heart disease, and other illnesses like arthritis, endocrine problems, diabetes and also liver disease. Although manganese exists in water as a groundwater mineral yet may also enter through underground pollution sources. It may become obvious in tap water (at concentrations higher than 0.5mg/L) by imparting color, odor, or taste to the drinking water although health effects from Mn are not alarming until concentrations cross approximately 5mg/L.

Zinc concentration in tap water can be much higher as a consequence of its leaching through piping and fittings. In humans higher concentration of Zn may cause demyelinating disease. Provision of safe drinking water to the public is one of the major concerns in the water sector in Pakistan. According to Farooq et al. approximately 40% of the total population has no access to potable water. WHO recommends that drinking water must be treated in order to make it free from toxic chemicals and pathogens. In Azad Jammu and Kashmir, more than eighty percent of illnesses have been recognized as due to the consumption of poor quality of water, supplied from surface and ground water sources. Assessed drinking water quality of Bagh and Rawalkot has also shown elevated contamination of trace metals and organic pollutants in this region.
Materials and methods

Study area

Muzaffarabad (Lat:34.35°; Long:73.47°) is the capital of the Azad Jammu and Kashmir (Figure 1) situated at the convergence of the Neelum and Jhelum rivers, surrounded by mountains. District Muzaffarabad covers an area of 2496sq.km. (19% of the total area of the AJK state. The population of Muzaffarabad is 0.770million comprising 21% of the total population of AJK. Average rainfall is 1300mm with sub-tropical climate. The study area is bounded by Garri Dopatta in the East (24km away from city), Lohar Gali (2km) in West, Pattika (17km) in the North, and Kohala (32km) in the South.

Sample collection

Samples were collected randomly from different household taps and natural spring sources of Muzaffarabad. Water flow was allowed for two to three minutes to discharge the stagnant water prior to collection of tap sample. Collecting bottles were pre washed with distilled water before collection. Bottles were completely filled with water and caps were replaced instantaneously. After collection samples bottles were kept in a cooler having ice slurry and transported to the laboratory.

Analytical methods

Copper, chromium, manganese, lead and zinc concentration in collected water samples were detected using atomic absorption spectrophotometer (AAS) (GBC 932plus) following Bartram & Balance. The detection wavelength for Cr, Cu, Fe, Pb, Mn and Zn were 357.9nm, 324.7nm, 248.3nm, 217.0nm, 279.5nm and 213.9nm respectively. Standard solutions were prepared using commercially available Lab grad stock solutions of 1000mg/L (Merk) of respective metals (3111B, APHA).

Detection limit for each metal was calculated according to Fatoki and Awofolu and Javaid et al. Statistical analysis

Descriptive statistics was used for data analyses. T–test was used to compare findings of study with WHO and GoP guidelines value. MS Excel and Statistix (ver. 8.1) software were used to analyze data.

Results and discussion

The drinking water quality of Muzaffarabad was assessed by taking samples from tap and spring waters sources of Muzaffarabad. Total of fifty three drinking water samples were collected. People use surface water for variety of purposes including drinking water, cooking and basic hygiene, in addition to agricultural and industrial activities. The obtained results were compared with WHO and GOP standards established for drinking water. Result depicted that the drinking water of Muzaffarabad is tasteless, colorless and odorless meeting WHO and GOP limits and showing good aesthetic properties. Drinking water of other cities of Azad Jammu and Kashmir i.e. Rawalakot and Bagh was found to be colorless, tasteless and odorless.

Metal concentrations varied in different drinking water of Muzaffarabad ranged from 0.0 to 0.718 mg/L (Fe). Out of 6, maximum 5metals detected in only one sample (Lachraat), whereas three metals detected in the majority (43%) of the samples, followed by 2 (23%), 4 (15%) and 1 (11%). Three drinking water samples (6%) showed no detection of any metal (Appendix I).

Chromium

Chromium was detected in 16 drinking water samples whereas 8 samples showed no concentration of chromium. In 29 samples, the concentration remained below the detection limit (Figure 2). Detectable concentration ranged between 0.032 (±0.028)mg/L to 0.363 (0.064)mg/L with mean value of 0.111 (±0.0224) mg/L (Appendix II). Maximum value found in Garhi Dupatta 0.363 (±0.064)mg/L.
Assessment of heavy metal contamination in the drinking water of Muzaffarabad, Azad Jammu and Kashmir, Pakistan

Citation: Ali U, Batool A, Ghufran MA, et al. Assessment of heavy metal contamination in the drinking water of muzaffarabad, Azad Jammu and Kashmir, Pakistan. Int J Hydro. 2019;3(5):331–337. DOI: 10.15406/ijh.2019.03.00196

Followed by Kruli 0.207 (±0.017) mg/L and Dulai 0.194 (±0.020) mg/L, and minimum concentration detected in Pir Chinasi was 0.032 (±0.028) mg/L (Figure 3; Appendix I). Chromium showed equal distribution in tap and spring water. 30% spring water samples have shown Cr concentration as compared to 29% of tap water samples (Figure 4). Highly significant difference (p<0.01) was noted between the Cr concentration found in the collected samples and WHO and GOP allowable limits (Appendix III). Chromium concentration in drinking water may be due to natural and anthropogenic activities including painting, cooling tower water and chromate production. About 20% of the samples have raised concentration of Cr when compared with the standard value set by WHO (Figure 2). In other parts of the Pakistan e.g. KPK and Sindh, 75 percent and 25 percent drinking water samples had exceeded the guideline value of Cr respectively. Highly significant difference (p<0.05) was observed between WHO limit and samples’ chromium concentration. Non-point source pollution resulted in increased concentration of drinking water of Muzaffarabad. Its equal distribution in tap and spring waters of the study area showed equal environmental burden. Chromium concentration in spring water resulted from dissolution from parent rock strata, generally humans are exposed to an average of 0.2–2 μg chromium per liter in drinking water through this natural erosion.

Iron

Iron was equally distributed in 57% and 62% samples of tap and spring water. 30% spring water samples have concentration of iron below the detection limit (Appendix II). Maximum Fe concentration was found in Narool samples i.e. 0.718 (±0.065) mg/L followed by Malsi 0.661 (±0.059) mg/L and Barsala 0.625 (±0.028) mg/L. Minimum concentration was detected in Makri plant 0.096 (±0.048) mg/L (Appendix I). No significant difference (p>0.05) was observed between sample concentration of iron and WHO guideline, that showed the concentration of iron in drinking water falls within WHO and GOP permissible limits (Appendix III). Iron was equally distributed in 57% and 62% samples of tap and spring water of the study area respectively (Figure 4). Iron is abundantly found element in the earth’s crust, although present usually in minor concentrations in natural water. The formation of ferric precipitate makes drinking water objectionable. None of the water sample crossed WHO limit for iron in the collected samples which could be compared with surface water of KPK and Sindh where 25% and 100% samples had crossed the critical WHO level for Fe respectively.

The concentration of Fe fluctuated between 0.01–18.86 mg/L in Rift valley Ethiopia. The pitting of copper is usually linked with hard waters. Copper plumbing is a major source of increased copper in drinking water. The pitting of copper is usually linked with hard waters. Copper concentration ranged from 0.096 (±0.048) mg/L to 0.718 (±0.065) mg/L with mean concentration of 0.279 (±0.0315) mg/L (Appendix II). Maximum Cu concentration in tap water was reported to be 1.2 mg/L in Chile, 4.8 mg/L in USA, 1.9 mg/L in India, 0.01 mg/L in Nigeria and 4.6 mg/L in Hong Kong. In our study sixty two percent spring water samples and fifty seven percent tap water samples showed Cu concentration. This indicated the dissolution of metal in both types of water through common source.

Lead

Lead detected in 27 drinking water samples while in 15 samples remained below the detection limit and in 11 samples it was not detected (Figure 2). Detectable concentration ranged between 0.038 (±0.043) to 0.211 (±0.017) mg/L with mean value of 0.1307 (±8.52E−03) mg/L. Maximum Cu concentration observed in Pitika Park 0.211 (±0.017) mg/L followed by Mera Parsacha 0.205 (±0.010) mg/L and Narool 0.180 (±0.010) mg/L and the lowest concentration was noted at Makri Plant 0.038 (±0.043) mg/L. Fifty two percent samples of spring water and 43 percent samples of tap water were contaminated with copper (Figure 4). Non-significant difference was observed between the guideline values of WHO and GOP and copper concentration measured in the collected samples (Appendix III). Copper plumbing is a major source of increased copper in drinking water.

The mean concentration of Cu (0.130 mg/L) noted in collected samples of Muzaffarabad could be compared with average value of KPK (0.20 mg/L), Karachi (0.31 mg/L), Rawalakot (0.70 to 2.79 mg/L) and Bagh (1 to 4 mg/L). Maximum Cu concentration in tap water was reported to be 1.2 mg/L in Chile, 4.8 mg/L in USA, 1.9 mg/L in India, 0.01 mg/L in Nigeria and 4.6 mg/L in Hong Kong. In our study sixty two percent spring water samples and fifty seven percent tap water samples showed Cu concentration. This indicated the dissolution of metal in both types of water through common source.
Assessment of heavy metal contamination in the drinking water of muzaffarabad, Azad Jammu and Kashmir, Pakistan

18

4‒6,43

3‒5

27,43

6,41

6,18,44

38

35

Pakistan.

0.231 (±0.160)mg/L, whereas lowest Zn concentration was in Makri Plant 0.013 (±0.004)mg/L (Appendix I). There was no detection of Zn in 10 samples

19

20

2019;3(5):331‒337. DOI: 10.15406/ijh.2019.03.00196

2. Conventional treatment processes are often not sufficient to remove heavy metals from water.

3. Most studies have focused on heavy metal concentrations in water, but their impact on human health remains poorly understood.

4. A comprehensive understanding of the sources and human health impacts of heavy metals in drinking water is crucial for effective mitigation strategies.

5. This study aims to investigate the concentrations of heavy metals in drinking water from different locations in Muzaffarabad, Azad Jammu and Kashmir, Pakistan.

6. The study was conducted from October to December 2018.

7. Two hundred and fifty samples were collected from different locations in Muzaffarabad.

8. The analytical methods used for the study were atomic absorption spectrometry (AAS) for Pb, Cd, Cr, Cu, Zn, and Fe.

9. The guideline values for heavy metals in drinking water from WHO and GOP were used as benchmarks for comparison.

10. The concentrations of heavy metals in drinking water were measured, and the results were analyzed using statistical methods.

11. The results indicated that Pb, Cd, Cr, Cu, Zn, and Fe were present in the drinking water of Muzaffarabad.

12. The concentrations of Pb, Cd, Cr, Cu, Zn, and Fe in the drinking water of Muzaffarabad were significantly higher than the guideline values.

13. The highest concentration of Pb was detected in Dulai 0.665 (±0.178)mg/L, followed by Bandi Kareem 0.293 (±0.039)mg/L and Jalalabad 0.129 (±0.123)mg/L.

14. The highest concentration of Cd was detected in Rawalakot 0.56 (±0.269)mg/L, followed by Tali Mandi 0.265 (±0.239)mg/L and Dolet colony 0.089 (±0.021)mg/L.

15. The highest concentration of Cr was detected in Garhi Dupatta 0.246 (±0.065)mg/L, followed by Tali Mandi 0.224 (±0.037)mg/L and Majhoi 0.206 (±0.037)mg/L.

16. The highest concentration of Cu was detected in Police Line 0.265 (±0.239)mg/L, followed by Dolet colony 0.089 (±0.019)mg/L and Domel 0.089 (±0.020)mg/L.

17. The highest concentration of Zn was detected in Dulai 0.231 (±0.160)mg/L, whereas lowest Zn concentration was in Malsi 0.058 (±0.021)mg/L (Appendix I). There was no detection of Zn in fourteen samples of the study area (Figure 2).

18. Concentration of Zn showed non-significant difference when compared to the guideline value of WHO (Appendix III). Zinc is also among the most common elements in the earth’s crust.2 Zinc compounds are widely used in paints, ceramics, batteries, fabrics, sun block etc. and released in large quantities during production.26,27 The measured values for Zn (0.05–0.405mg/L) in drinking water could be compared with Bagh (1–3mg/L),28 Nigeria (0.3–0.49mg/L),29 Rawalakot (0.56 to 2.69mg/L)2 and Rift valley Ethiopia (0.01 to 5.14mg/L).30 Zinc was distributed more frequently in tap water than spring water. Forty three percent samples of tap water and 28 percent samples of spring water were contaminated with Zn. Its concentration in tap water was due to leaching from piping and fittings.1,6,10,44 No significant difference was observed between WHO guideline value and Zn concentration in the drinking water of Muzaffarabad.

Conclusion

On the bases of results, following conclusions are made, that the nature of parameters studied in which concentration exceeded from the WHO and GOP guideline values indicated the elevated concentration is attributed to natural as well as anthropogenic activities. Excess lead concentration in tap water indicated mostly corrosion of faucets or water utility pipes in distribution system. Levallois et al.14 supported the view that lead can be released into water from lead-containing service lines, leaded pipes, solders, and faucets in buildings. In spring water, it was due to environmental pollution such as automobiles and welding material. Chromium concentration ranged from below the detection limit to higher than permissible limit. In spring water, Cr concentration is added through sediments whereas tap water concentration showed environmental burden of this metal. Metals concentration like iron, zinc, copper and manganese observed within the range of WHO limits.

Acknowledgments

None.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Funding

None.

References

1. Zia Mohammadi A, Akhtar T, Akhtar, et al. Quality of drinking water in rural Peshawar. Pak J Med Res. 2003;42(3):85-89.

2. Beamonte E, Bermudez JD, Casion A, et al. A statistical study of the quality of surface water intended for human consumption near Valencia (Spain). J Env Manage. 2007;83(3):307–314.

3. Raimi Morufu Olalekan, Sabinus CE. An Assessment of Trace Elements in Surface and Ground Water Quality in the Ebocha-Obrikom Oil and Gas Producing Area of Rivers State, Nigeria. International Journal for Scientific and Engineering Research (IJSER). 2017;8(6).

4. Morufu Raimi, Clinton Ezekwe. Assessment of Trace Elements in Surface and Ground Water Quality (2017). Lambert Academic Publishing. 2017.

5. Olalekan RM, Adeoyin O, Odubo TV. Measures of harm from heavy metal content (Lead and Cadmium) in Women Lipstick and Lipgloss in Yenagoa Metropolis, Bayelsa state, Nigeria. International Journal of Petrochemistry and Research. 2018;2(3):236-242.

Citation: Ali U, Batool A, Ghurran MA, et al. Assessment of heavy metal contamination in the drinking water of muzaffarabad, Azad Jammu and Kashmir, Pakistan. Int J Hydro. 2019;3(5):331–337. DOI: 10.15406/ijh.2019.03.00196
Assessment of heavy metal contamination in the drinking water of Muzaffarabad, Azad Jammu and Kashmir, Pakistan

6. Javaid S, Shah SGS, Chaudhary AJ, et al. Assessment of trace metal contamination of drinking water in the Pearl Valley Azad Jammu and Kashmir. Clean. 2008;36(2):216-221.

7. Raimi MO, Pigha Tarilayun K, Ochayi EO. Water-Related Problems and Health Conditions in the Oil Producing Communities in Central Senatorial District of Bayelsa State. Imperial Journal of Interdisciplinary Research (IJIR). 2017;3(6).

8. Afzal BM. Drinking water and women’s health. J Midwifery & Women Health. 2006;51(1):12-18.

9. Paustenbach DJ, Finley BL, Mowat FS. Human health risk and exposure assessment of chromium (VI) in tap water. J Toxicol Environ Health A. 2003;66(14):1295-1339.

10. Cheung KC, Poon BHT, Lan CY, et al. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere. 2003;52(9):1431–1440.

11. Xu P, Huang S, Wang Z, et al. Daily intakes of copper, zinc and arsenic in drinking water by population of Shanghai, China. Sci Total Environ. 2005;362(1–3):50–55.

12. Olalekan RM, Omidiji AO, Nimsingha D, et al. Health Risk Assessment on Heavy Metals Ingestion through Groundwater Drinking Pathway for Residents in an Oil and Gas Producing Area of Rivers State, Nigeria. Open Journal of Yangtzee Gas and Oil. 2018;3:191-206.

13. Kavcar P, Sofouglu A, Sofouglu SC. A health risk assessment for exposure to trace metals via drinking water ingestion pathway. Inter J Hyg Environ Health. 2009;212(2):216–227.

14. Levallois P, Barn P, Valcke M, et al. Public Health Consequences of Lead in Drinking Water. Current Environmental Health Reports. 2018;5:255–262.

15. Pettersson R, Rasmussen F. Daily Intake of Copper from Drinking Water among Young Children in Sweden Author(s): Environ. Health Persp. 1999;107(6):441-446.

16. Reyes A, Letelier MV, De la Iglesia, et al. Microbiologically induced corrosion of copper pipes in low-pH water. Intern Biodeter Biodegrad. 2008;61(2):135–141.

17. Olalekan RM, Adeyoyin OO, Ayibatobirara A, et al. “Diggig deeper” evidence on water crisis and its solution in Nigeria for Bayelsa state: a study of current scenario. International Journal of Hydrology. 2019;3(4):244-257.

18. Sabir SM, Khan SW, Gardezi SS. Effect of environmental pollution on quality of water in district Bagh, Azad Kashmir. Pak J Biol Sci. 2003;6(9):831-835.

19. Raimi Morufu Olalekan, Adeolu Adedotun Timothy, Enabulele Chris E., et al. Assessment of Air Quality Indices and its Health Impacts in Ilorin Metropolis, Kwara State, Nigeria. Science Park Journals of Scientific Research and Impact. 2018;4(4):060-074.

20. WHO. Guideline for Drinking Water Quality. 3rd ed. (Electronic Source). 2006.

21. Elci L, Kartal AA, Soylak M. Solid phase extraction method for the determination of iron, lead and chromium by atomic absorption spectrometry using Amberite XAD-2000 column in various water samples. J Hazard Mater. 2008;153(1–2):454–461.

22. Bigazzi PE. Metals and Kidney Autoimmunity. Environ Health Persp. 1999;107(5):753-765.

23. Mora ACM, Queha MC, Sanchez I. Survey of trace metals in drinking water supplied to rural populations in the eastern Llanos of Venezuela. J Environ Manage. 2008;90(2):752–759.

24. Pereira LA, IG deAmarim, da Silva JB. Development of methodologies to determine aluminium, cadmium, chromium and lead in drinking water by ET AAS using permanent modifiers. Talanta. 2004;64(2):395–400.

25. De Flora S, D’Agostini F, Balansky R, et al. Lack of genotoxic effects in hematopoietic and gastrointestinal cells of mice receiving chromium (VI) with the drinking water. Mutat Res. 2008;659(1–2):60–67.

26. Moffat I, Martinova N, Seidel C, et al. Hexavalent Chromium in Drinking Water. Journal AWWA. 2018;110(5):E22–E35.

27. Dimirkou A, Doula MK. Use of clinoptilolite and an Fe overexchanged clinoptilolite in Zn2+ and Mn2+ removal from drinking water. Desalination. 2008;224(1–3):280–292.

28. Farooq S, Hashmi I, Qazi IA, et al. Monitoring of Coliforms and chlorine residual in water distribution network of Rawalpindi, Pakistan. Environ. Monit Ases. 2008;140(1–3):339–347.

29. AJK. Azad Jammu and Kashmir Guide Book. Tourism Department, AJK. 2019.

30. Muneer B, Latif Q, Ahmed K, et al. Microbiological assessment of drinking water supply in University of the Punjab. Pak J Zool. 2000;33(1):61-68.

31. Bartram J, Balance R. Water Quality Monitoring – A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Program. UNEP/WHO. 1996.

32. APHA, Standard Methods for the Examination of Water and Wastewater. 21st ed. APHA, Washington, 2005.

33. Fatoki O, Awofolu R. Levels of Cd, Hg and Zn in some surface waters from the Eastern Cape Province, South Africa. Water SA. 2003;29(4):375-380.

34. Rafael AJ, Almeida A, Santos P, et al. A role for transforming growth factor-β apoptotic signaling pathway in liver injury induced by ingestion of water contaminated with high levels of Cr(VI). Toxicol Applied Pharmacol. 2007;224(2):63–173.

35. Haq M, Khattak RA, Puno HK, et al. Surface and ground water contamination in NWFP and Sindh provinces with respect to trace elements. Inter J Agri and Bio. 2005;7(2):214-217.

36. Karavolouts S, Aikaterini S, Nikolaos M, et al. Evaluation of the quality of drinking water in region of Greece. Desalination. 2008;224(1–3):317-329.

37. Tiwary RK, Kumari B, Singh DB. Water Quality Assessment and Correlation Study of Physico-Chemical Parameters of Sukinda Chromite Mining Area, Odisha, India. Environmental Pollution. 2017;357-370.

38. Reimann C, Bjorvatn, Frengstad, et al. Drinking water quality in the Anthropogenic Mining Area, Odisha, India. Correlation Study of Physico-Chemical Parameters of Sukinda Chromite Mining Area, Odisha, India. Environmental Pollution. 2017;357-370.

39. Raimi MO, Pigha Tarilayun K, Ochayi EO. Water-Related Problems and Health Conditions in the Oil Producing Communities in Central Senatorial District of Bayelsa State. Imperial Journal of Interdisciplinary Research (IJIR). 2017;3(6).

40. Reimann C, Bjorvatn, Frengstad, et al. Drinking water quality in the Anthropogenic Mining Area, Odisha, India. Correlation Study of Physico-Chemical Parameters of Sukinda Chromite Mining Area, Odisha, India. Environmental Pollution. 2017;357-370.

41. Reimann C, Bjorvatn, Frengstad, et al. Drinking water quality in the Anthropogenic Mining Area, Odisha, India. Correlation Study of Physico-Chemical Parameters of Sukinda Chromite Mining Area, Odisha, India. Environmental Pollution. 2017;357-370.

42. Reimann C, Bjorvatn, Frengstad, et al. Drinking water quality in the Anthropogenic Mining Area, Odisha, India. Correlation Study of Physico-Chemical Parameters of Sukinda Chromite Mining Area, Odisha, India. Environmental Pollution. 2017;357-370.

43. Reimann C, Bjorvatn, Frengstad, et al. Drinking water quality in the Anthropogenic Mining Area, Odisha, India. Correlation Study of Physico-Chemical Parameters of Sukinda Chromite Mining Area, Odisha, India. Environmental Pollution. 2017;357-370.
Appendices

Appendix I Concentration of trace metals in drinking water samples in Muzaffarabad AJK.

WHO guideline value	Cu (3mg/L)	Cr (0.05mg/L)	Pb (0.01mg/L)	Fe (1-3mg/L)	Zn (3mg/L)	Mn (0.5mg/L)					
GoP guideline value	Cu (2mg/L)	Cr (0.05mg/L)	Pb (0.05mg/L)	Zn (5mg/L)	Mn (0.5mg/L)						
S. No.	Sampling Site										
1. Bandi Kareem Haider	ND	ND	0.293	-0.039	BDL	ND	BDL				
2. Bandway	0.133	-0.006	0.179	-0.066	ND	ND	ND	0.127	-0.023		
3. Bansara	ND	ND	ND	BDL	ND	ND	ND				
4. Barsala	0.043	-0.006	ND	ND	0.625	-0.028	BDL	BDL			
5. Chall Pani	0.082	-0.012	ND	ND	0.197	-0.026	BDL	0.084	-0.009		
6. Channal Bang	0.067	-0.031	BDL	ND	0.254	-0.014	0.098	-0.017	0.023	-0.008	
7. Chattar Klass	0.152	-0.009	ND	ND	0.504	-0.039	ND	0.09	-0.019		
8. Darbar	BDL	ND	ND	0.107	-0.04	0.19	-0.269	0.02	-0.024		
9. Dhanni Mai Sahiba	0.126	-0.007	ND	ND	0.342	-0.036	BDL	0.08	-0.015		
10. Doaba Sayedan	0.126	-0.004	ND	ND	0.382	-0.031	BDL	0.097	-0.021		
11. Dolet Colony (tap)	BDL	0.07	-0.014	0.089	-0.019	BDL	BDL	BDL			
12. Domail (tap)	ND	ND	0.089	-0.02	BDL	ND	0.03	-0.023			
13. Dulai	BDL	0.194	-0.02	0.665	-0.178	0.116	-0.099	BDL	0.014	-0.01	
14. Garhi Dupatta	0.17	-0.007	0.363	-0.064	ND	BDL	ND	0.246	-0.065		
15. Ghorri	ND	0.082	-0.034	0.12	-0.082	0.144	-0.058	ND	0.028	-0.028	
16. Gorri	0.113	-0.005	ND	ND	0.323	-0.033	0.172	-0.055	ND		
17. Hasan Abad	ND	BDL	ND	BDL	0.079	-0.098	0.018	-0.016			
18. Hassan Galian	ND	0.087	-0.055	ND	BDL	0.123	-0.109	0.029	-0.05		
19. Hundi Peran	0.12	-0.008	ND	ND	0.228	-0.017	BDL	ND			
20. Jalalabad	BDL	ND	0.129	-0.123	0.128	-0.038	0.095	-0.124	BDL		
21. Kaju	0.098	-0.01	BDL	ND	BDL	ND	0.047	-0.01			
22. Kal Panah	0.106	-0.016	0.035	-0.01	ND	0.397	-0.014	BDL	0.175	-0.042	
23. Khashkar	BDL	0.075	-0.001	ND	0.129	-0.017	0.09	-0.031	0.013	-0.011	
24. Kohala	ND	0.096	-0.007	0.148	-0.044	0.19	-0.043	0.022	-0.018		
25. Kruli	0.099	-0.012	0.207	-0.017	ND	0.516	-0.02	BDL	0.125	-0.018	
26. Lachraat	0.111	-0.012	0.062	-0.012	ND	0.465	-0.025	0.061	-0.026	0.015	-0.004
27. Langerpura	0.151	-0.017	ND	ND	ND	ND	ND	ND			
28. Lower Chatter	BDL	BDL	ND	BDL	ND	BDL	BDL				
29. Madina Market	0.112	-0.013	ND	0.114	-0.021	BDL	ND	0.019	-0.009		
30. Majhoi	0.178	-0.005	ND	ND	0.206	-0.018	ND	0.206	-0.037		
31. Makri Plant	0.038	-0.043	BDL	ND	0.096	-0.048	0.231	-0.16	0.013	-0.004	
32. Malsi	0.169	-0.006	ND	ND	0.661	-0.059	0.058	-0.021	ND		
33. Mera Parsacha	0.205	-0.01	ND	ND	0.102	-0.032	ND	0.112	-0.011		
34. Narool (tap)	0.18	-0.01	BDL	ND	0.718	-0.046	BDL	0.029	-0.006		
35. Paigan	ND	0.043	-0.018	ND	BDL	BDL	ND				
36. Patti Naka	ND	ND	ND	BDL	0.022	-0.028					
37. Pir Chini	ND	0.032	-0.028	ND	BDL	0.067	-0.011	BDL			
Assessment of heavy metal contamination in the drinking water of Muzaffarabad, Azad Jammu and Kashmir, Pakistan

Table continued

Sampling Site	Cu (3mg/L)	Cr (0.05mg/L)	Pb (0.01mg/L)	Fe (1-3mg/L)	Zn (3mg/L)	Mn (0.5mg/L)
Pittika Bazar	0.126	-0.01	BDL	ND	0.174	-0.039
Pittika Park	0.211	-0.017	BDL	ND	0.301	-0.014
Plate (tap)	BDL	0.103	-0.008	ND	0.119	-0.03
Police Line (tap)	BDL	BDL	ND	0.19	-0.055	0.265
Qadeemi Chisima	0.119	-0.017	ND	ND	0.415	-0.021
Rara	ND	ND	ND	ND	ND	ND
Rashid Abad	ND	0.037	-0.063	0.077	0.121	-0.021
Satpeysli	ND	ND	BDL	0.291	-0.057	BDL
Sethi Bagh	ND	0.042	-0.01	0.072	-0.018	BDL
Shawai Nala	BDL	ND	ND	0.11	-0.092	BDL
Subri	ND	0.177	-0.007	ND	0.29	-0.019
Sundh Gali	ND	ND	0.029	-0.008	BDL	ND
Talimandi	0.154	-0.01	ND	ND	BDL	ND
Thori (park)	BDL	ND	ND	0.131	-0.054	0.066
Thotha	ND	ND	ND	BDL	0.124	-0.027
Upper Chattar	0.162	-0.008	0.165	-0.051	ND	BDL
Detection Limit	0.03	0.01	0.01	0.09	0.05	0.01

ND, not detected; BDL, below detection limit

Appendix II Descriptive statistics for different study parameters.

Parameters	N	Mean	SD	SE	SE Mean	C.V.	Min.	Med.	Max.
Cr (mg/L)	16	0.111	0.0898	0.0224	80.876	0.032	0.0785	0.363	
Cu (mg/L)	27	0.1307	0.0443	8.52E-03	33.879	0.038	0.126	0.211	
Fe (mg/L)	32	0.2791	0.1784	0.0315	63.919	0.096	0.217	0.718	
Mn (mg/L)	34	0.0684	0.0656	0.0112	95.84	0.013	0.0315	0.246	
Pb (mg/L)	11	0.1612	0.1798	0.0542	111.56	0.029	0.096	0.665	
Zn (mg/L)	16	0.1448	0.0951	0.0238	65.683	0.058	0.096	0.408	

Appendix III One sample t-test comparing the means of the parameters with WHO parametric values.

Parameter	WHO guidelines	N	Mean	SE	95% Conf interval	Lower	Upper	t-value
Copper	2mg/L	27	0.1307	8.519E-03	0.1132	0.1482	-219.42	
Chromium	0.05mg/L	16	0.1110	0.0224	0.0632	1.588	2.72**	
Iron	10mg/L	32	0.2791	0.0315	0.2148	0.343	-86.29	
Manganese	0.5mg/L	34	0.0684	0.0112	0.0456	0.0913	-38.36	
Lead	0.01mg/L	11	0.1612	0.0542	0.404	0.2820	2.79**	
Zinc	2mg/L	16	0.1448	0.0238	0.0941	0.1955	-78.02	

SE, standard deviation; ** Highly significant

Citation: Ali U, Batool A, Ghufran MA, et al. Assessment of heavy metal contamination in the drinking water of Muzaffarabad, Azad Jammu and Kashmir, Pakistan. Int J Hydro. 2019;3(5):331–337. DOI: 10.15406/ijh.2019.03.00196