Parameter-free Sentence Embedding via Orthogonal Basis

Ziyi Yang1, Chenguang Zhu2 and Weizhu Chen3

1Stanford University
2Microsoft Speech and Dialogue Research Group
3Microsoft Dynamics 365 AI
Motivation

What is a sentence, in a mathematical sense?
Motivation

A man is dancing

Space of word vectors

Basis vectors
Motivation

A

"A"

Space of word vectors

$q_1 = \text{normalize}(w_A)$

Basis vectors
Motivation

A man

\[q_2 = \text{normalize}(w_{\text{man}} - (w_{\text{man}}^T q_1) q_1) \]

\[q_1 \perp q_2 \]
Motivation

A man

Space of word vectors

“A”

“man”

A man

$q_2 = \text{normalize}(w_{\text{man}} - (w_{\text{man}}^T q_1)q_1)$

$q_1 \perp q_2$

Basis vectors

q_1

q_2
Motivation

A man is "A" "is" "man"

Space of word vectors

\[q_3 = \text{normalize}(w_{is} - (w_{is}^T q_1)q_1 - (w_{is}^T q_2)q_2) \]
\[q_1 \perp q_2 \perp q_3 \]

Basis vectors
Motivation

• Sentence is a subspace spanned by its word vectors
• Each word may bring in a new direction (semantic meaning) q_i

\[
q_4 = \text{normalize} \left(\begin{pmatrix}
 w_{\text{dancing}} & - (w^T_{\text{dancing}} q_1)q_1 \\
 - (w^T_{\text{dancing}} q_2)q_2 \\
 - (w^T_{\text{dancing}} q_3)q_3
\end{pmatrix}
\right)
\]

$q_1 \perp q_2 \perp q_3 \perp q_4$
QR factorization/Gram Schmidt Process

- An algorithm to find basis vectors in the subspace
- \(S = [w_A, w_{man}, w_{is}, w_{dancing}] = QR, Q = [q_1, q_2, q_3, q_4] \)

A man is dancing

\[
q_4 = \text{normalize} \left(\begin{pmatrix} w_{dancing} - (w_{dancing}^T q_1)q_1 \\ - (w_{dancing}^T q_2)q_2 \\ - (w_{dancing}^T q_3)q_3 \end{pmatrix} \right)
\]

\(q_1 \perp q_2 \perp q_3 \perp q_4 \)
Quantify the new semantic meaning q_i
Quantify the new semantic meaning q_i

• Contextual window
• Look at both n preceding and n following words
Quantify the new semantic meaning q_i

$S^i \in \mathbb{R}^{d \times (2n+1)}$
Quantify the new semantic meaning q_i

\[q \]

\[w_1 \]

\[w_{i-n} \]

\[w_i \]

\[w_{i+n} \]

\[w_i \]

\[S^i \in \mathbb{R}^{d \times (2n+1)} \]

\[S^i = QR \]
Quantify the new semantic meaning q_i

$$S^i \in \mathbb{R}^{d \times (2n+1)}$$

$$S^i = QR$$
Three-level Weights

• In the *single word* w_i, is q_i dominant?

• In w_i’s *context*, is q_i important?

• In the *sentence corpus*, is q_i unique?
In the single word \boldsymbol{w}_i: Word-wise weight α_w

$$
\begin{align*}
\alpha_w &= \exp\left(\frac{0.1}{\|[0.2, -0.4, \ldots, 0.1]\|_2}\right) \\
S^i &= QR \\
S^i &\in R^{d \times (2n+1)}
\end{align*}
$$
Three-level Weights

• In the *single word* w_i, is q_i dominant?

• In w_i’s *context*, is q_i important?

• In the *sentence corpus*, is q_i unique?
In w_i’s context: Contextual-wise weight α_c

- Want to know if q_i is important in S^i
In w_i’s context: Contextual-wise weight α_c

- Want to know if q_i is important in S^i

- Need to decide which directions are important in S^i
In w_i’s context: Contextual-wise weight α_c

• Want to know if q_i is important in S^i

• Need to decide which directions are important in S^i

• Singular Value Decomposition (SVD) comes to help!
In \(w_i \)'s context: Contextual-wise weight \(\alpha_c \)

- Want to know if \(q_i \) is important in \(S^i \)

- Need to decide which directions are important in \(S^i \)

- Singular Value Decomposition (SVD) comes to help!

\[S^i = U^i \Sigma^i V^{iT} \]

\(U^i \) columns are basis vectors of \(S^i \), and singular values (diag \((\Sigma^i) \)) are importance scores
In w_i’s context: Contextual-wise weight α_c
In w_i’s context: Contextual-wise weight α_c

$$S^i = U^i \Sigma^i V^iT$$

$S^i \in \mathbb{R}^{d \times (2n+1)}$, $U^i \in \mathbb{R}^{d \times (2n+1)}$
In w_i’s context: Contextual-wise weight α_c
In w_i’s context: Contextual-wise weight α_c

\[\alpha_c = \frac{\| \left[0.1\sigma(S^i)_1, 0.2\sigma(S^i)_2, 0.1\sigma(S^i)_3, \ldots \right] \|_2}{2n + 1} \]
Three-level Weights

• In the *single word* w_i, is q_i dominant?

• In w_i’s context, is q_i important?

• In the *sentence corpus*, is q_i unique?
In the sentence corpus: Corpus-wise weight α_p

- Need to decide what directions are common in corpus (s_1, s_2, \ldots, s_n)
In the sentence corpus: Corpus-wise weight α_p

- Need to decide what directions are common in corpus $(s_1, s_2, ..., s_n)$

- Encode each sentence $s_k = [w_1, w_2, ..., w_l]$ into a coarse embedding c_k
In the sentence corpus: Corpus-wise weight α_p

- Need to decide what directions are common in corpus (s_1, s_2, \ldots, s_n)

- Encode each sentence $s_k = [w_1, w_2, \ldots, w_l]$ into a coarse embedding c_k

- $s_k = U\Sigma V^T$, $c_k = U\text{diag}(\Sigma^3)$
In the sentence corpus: Corpus-wise weight α_p

- Need to decide what directions are common in corpus (s_1, s_2, \ldots, s_n)

- Encode each sentence $s_k = [w_1, w_2, \ldots, w_l]$ into a coarse embedding c_k

- $s_k = U\Sigma V^T$, $c_k = U\text{diag}(\Sigma^3)$

- Build a corpus matrix $X = [c_1, c_2, \ldots, c_n]$, compute top M singular vectors $[d_1, d_2, \ldots, d_M]$
In the sentence corpus: Corpus-wise weight α_p

$[d_1, d_2, \ldots, d_M]$
In the sentence corpus: Corpus-wise weight α_p

For each sentence c_k, $[d_1, d_2, ..., d_M]$ are re-ranked by $\sigma_i \| c_k^T d_i \|_2$
In the sentence corpus: Corpus-wise weight α_p

For each sentence c_k, $[d_1, d_2, ..., d_M]$ are re-ranked by $\sigma_i \| c_k^T d_i \|_2$

$\alpha_p = \exp(-\| [0.5, 0.6, -0.1, ...] \|_2 / r)$
Geometric Embedding (GEM)
Geometric Embedding (GEM)

\[
\alpha_w = \exp\left(\frac{0.1}{\|\{0.2, -0.4, \ldots, 0.1\}\|_2}\right) = 0.2 - 0.4 \ldots + 0.1
\]

\[
S^i \in \mathbb{R}^{d \times (2n+1)}
\]

\[
U^i \in \mathbb{R}^{d \times (2n+1)}
\]

\[
q^i \in \mathbb{R}^d
\]

single word level
\[
\alpha_c = \frac{||\left[0.1σ(S^i)_1, 0.2σ(S^i)_2, 0.1σ(S^i)_3, \ldots\right]||_2}{2n + 1}
\]

\[
\alpha_w = \exp\left(\frac{0.1}{||[0.2, -0.4, \ldots, 0.1]||_2}\right)
\]

\[
U^i ∈ R^{d×(2n+1)} \quad (S^i = U^i Σ^i V_i^T)
\]

\[
q_t ∈ R^d
\]
Geometric Embedding (GEM)

\[
\alpha_c = \frac{||0.1\sigma(S^i)_1, 0.2\sigma(S^i)_2, 0.1\sigma(S^i)_3, \ldots||_2}{2n + 1}
\]

Context level

\[
\alpha_w = \exp\left(\frac{0.1}{||[0.2, -0.4, \ldots, 0.1]||_2}\right)
\]

single word level

\[
S^i \in \mathbb{R}^{d \times (2n + 1)}
\]

sentence corpus level

\[
U^P \in \mathbb{R}^{d \times N}
\]

\[
\alpha_p = \exp\left(-||[0.5, 0.6, -0.1, \ldots]||_2/r\right)
\]

\[
U^r \in \mathbb{R}^{d \times r}
\]

\[
U^i \in \mathbb{R}^{d \times (2n + 1)}
\]

\[
S^i = U^i \Sigma^i V^i^T
\]

\[
q_t \in \mathbb{R}^d
\]
\[v = \sum (\alpha_c + \alpha_w + \alpha_p)w_i \]
Experiments: Unsupervised Tasks

STS sentence similarity datasets

Non-parameterized models	dev	test
GEM + L.F.P (ours)	83.5	78.4
GEM + LexVec (ours)	81.9	76.5
SIF (Arora et al., 2017)	80.1	72.0
uSIF (Ethayarajh, 2018)	84.2	79.5
LexVec	58.78	50.43
L.F.P	62.4	52.0
word2vec skipgram	70.0	56.5
Glove	52.4	40.6
ELMo	64.6	55.9

Parameterized models		
PARANMT-50M (Wieting and Gimpel, 2017a)	-	79.9
Reddit + SNLI (Yang et al., 2018)	81.4	78.2
GRAN (Wieting and Gimpel, 2017b)	81.8	76.4
InferSent (Conneau et al., 2017)	80.1	75.8
Sent2Vec (Pagliardini et al., 2018)	78.7	75.5
Paragram-Phrase (Wieting et al., 2015a)	73.9	73.2

Table 1: Pearson’s $r \times 100$ on STSB. Best results are in bold.
Experiments: Supervised Tasks

Fix the sentence embeddings and train neural structures for downstream tasks.

Model	Dim	Training time (h)	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	SICK-R	SICK-E	
GEM + L.F.P	900	0	79.8	82.5	93.8	89.9	84.7	91.4	75.4	82.9	86.5	86.2
GEM + GloVe	300	0	78.8	81.1	93.1	89.4	83.6	88.6	73.4	82.3	86.3	85.3
SIF	300	0	77.3	78.6	90.5	87.0	82.2	78.0	-	-	86.0	84.6
uSIF	300	0	-	-	-	-	80.7	-	-	-	83.8	81.1
p-mean	3600	0	78.4	80.4	93.1	88.9	83.0	90.6	-	-	-	-
GloVe BOW	300	0	78.7	78.5	91.6	87.6	79.8	83.6	72.1	80.9	80.0	78.6

Non-parameterized models

Model	Dim	Training time (h)	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	SICK-R	SICK-E	
InferSent	4096	24	81.1	86.3	92.4	90.2	84.6	88.2	76.2	83.1	88.4	86.3
Sent2Vec	700	6.5	75.8	80.3	91.1	85.9	-	86.4	72.5	80.8	-	-
SkipThought-LN	4800	336	79.4	83.1	93.7	89.3	82.9	88.4	-	85.8	79.5	
FastSent	300	2	70.8	78.4	88.7	80.6	-	76.8	72.2	80.3	-	-
à la carte	4800	N/A	81.8	84.3	93.8	87.6	86.7	89.0	-	-	-	-
SDAE	2400	192	74.6	78.0	90.8	86.9	-	78.4	73.7	80.7	-	-
QT	4800	28	82.4	86.0	94.8	90.2	87.6	92.4	76.9	84.0	87.4	-
STN	4096	168	82.5	87.7	94.0	90.9	83.2	93.0	78.6	84.4	88.8	87.8
USE	512	N/A	81.36	86.08	93.66	87.14	86.24	96.60	-	-	-	-
Summary

• Identify the new semantic meaning q_i by QR factorization

• Measure the importance of a word from 3 levels based on q_i
Q&A

Thank you!