Research on Position Optimization of Badminton Doubles Based on Wireless Sensor and Human-computer Interactive Training

Bo Yao*, Na Liang

1Physical Education Department, Dalian Maritime University, Dalian, 116026, China
2Public Administration and Humanities Faculty, Dalian Maritime University, Dalian, 116026, China
Email: huangzheng529sjp@163.com

Abstract: In the continuous development process, robot technology based on multimedia interactions has been widely used in aerospace, medical, education and service industries, and the relationship between robots and humans is getting closer. The improvement of robot intelligence is a process of continuously learning the outside world. Since the introduction of multimedia human-computer interaction technology in 1959, it has provided more and more technical support for human research robots. This paper studies the characteristics of badminton competition, the characteristics of technical and tactics and the collection requirements of on-site training, and completes the technical description of the badminton doubles station. Through the digitalization of the gait-based sensation, the automated acquisition of the gait technology, the simultaneously with the video, the high-speed imaging system, the system implement information integration. Subsequently, the statistical analysis of badminton multimedia techniques and tactics was designed. The skills and tactics of athletes were expressed in the form of video, graphics and text. The operators can carry out the technical and tactical analysis implementation process through good human-computer interaction, and increase the end user's game information. Attention and understanding strengthen the strength and depth of technical and tactical ability analysis. Finally, the station optimization plan for badminton doubles is proposed.

Keywords: Multimedia human-computer interaction; Badminton doubles; Station optimization; Wireless Network Sensor

1. Introduction

In the continuous development process, robot technology has been widely used in aerospace, medical, education, service industries and other fields. In this process, the robot is accessible to ordinary people. Airports, restaurants and other local service robots are getting closer to people, and people are indispensable for the control of robots. In this process, people are more concerned about the robot's understanding of human intentions, so the intelligence and safety of the robots etc. put forward higher requirements, so that robots can serve humans more humanely. Human-computer interaction has always been the focus of robotics research. A successful interaction often relies on more factors, such as whether the interaction is acceptable or not; in a restricted environment, interaction can work better. Therefore, in order to improve the recognition of human-computer interaction by the society, the primary problem to be solved is the adaptation of the robot to the characteristics of the human body [1].

Robots participate in human activities and coexist with people called human-computer interaction. The purpose of human-computer interaction exists in a knowledge channel that opens up the interaction between humans and robots. After decades of development, human-computer interaction technology is mainly divided into the following aspects [2]. TTS (text to speech) technology allows the machine to speak. Its success is based on the foundations of linguistics and psychology, with the help of a speech processor that converts text into speech output through a hidden Markov model. TTS is widely used in computer-human-computer interaction. It can help people with perceptual disabilities to read information on the computer, or simply to increase the readability of text documents [3]. STT (speech to text) technology can convert speech into text output. It is based on engineering acoustic models and language models, and converts speech into text through hidden Markov algorithm. It is used in many fields, such as voice control in in-vehicle systems, and voice recognition technology in the medical field can play a role in both medical front-end systems and terminal systems. Introducing speech recognition technology into robot embedded speech recognition system [4], designed a local speech recognition system and an online Google speech recognition system, which successfully demonstrated the role and advantages of speech in human-computer interaction.

Image as a medium for human-computer interaction is a recognition technology based on robot vision. Image interaction replaces the visual function of the human eye with hardware such as a camera, enabling the robot to complete the processing and cognition of the surrounding environment. Machine vision technology mainly includes image acquisition and acquisition, image transmission and post processing [5]. The acquisition of images actually transforms the image visible to the human eye into a matrix store, and the process is reversible. Image transmission and post-processing techniques mainly include image segmentation, image sharpening, image encoding and decoding, and image feature extraction. Image processing technology is widely used in the field of robots, such as target positioning based on image processing and recognition, face recognition based on image processing, and the like [6]. Data interaction is the most traditional but also the most important form of human-computer interaction. It completes the human-computer interaction task by inputting
interactive commands to the machine to the computer to complete the instructions, and continuous data interaction. The input data is not limited to any one format, and the input content is also diverse. It can be either a control command or a voice or image [7]. In addition to the three ways of human-computer interaction mentioned above, sometimes people use their own body movements to interact with the robot to achieve more effective interaction. The action interaction is usually obtained by first acquiring the human body posture (joint coordinates, etc.) through the sensor and then completing the interaction pre-defined task [8]. Motion interaction requires the robot to have a strong sensory ability to capture human motion. The interaction of the action is relatively high for the robot, because the number of joints is generally large, and the amount of data processing is relatively large. The interaction between motion and speech is the focus of this paper. The Kinect sensor is used to acquire human joint data, which is sent to the robot for human-computer interaction [9].

2. Methods

Robotic motion simulation learning is divided into basic behavioural imitation and control strategy-based imitation learning [10]. The imitation of the basic behaviour is firstly to establish a basic library of motion behaviours. The robot gradually enriches the basic behavioural library through action simulation, and then proposes more complex control strategies to achieve complex motion learning based on the scenarios, and obtains complex based on the basic behavioural library. The movement library achieves the purpose of robotic simulation learning. In order to build a robotic action library, this chapter studies the robot’s motion simulation [11].

2.1 Robot motion simulation steps

Remote control of robots has always been an interesting research topic, and motion is the most intuitive way to remotely control robots. For humanoid robots, copying the movements of the human body has always attracted the attention of robot researchers. The programming of humanoid robots is not an easy task for most people. For example, drag and drop actions can be programmed to make a reliable program interface, but still require an experienced controller to make a stable and reliable action to give Robot imitation. Therefore, the somatosensory device is introduced to obtain the joint parameters of the human body, and then converted into joint parameters, which are sent to the robot to realize the copying of the action [12].

2.1.1 Virtual coordinate system establishment and coordinate conversion

Since the joint space of the human body is to be converted into the joint space of the robot, this test is selected. The coordinates of Kinect are the original coordinates, and the coordinate space of the robot is the destination coordinates. As can be seen from the foregoing, the torso plane of the robot is the you coordinate plane, and the right shoulder to the left shoulder direction of the robot is the positive direction of the Y axis. According to the Cartesian coordinate system criterion, the x axis is perpendicular to the you plane, and the orientation of the robot is defined as the positive direction of the x axis [13].

Assume that the three points A, B, and C represent the torso (Spine), the middle point of the shoulder (Shoulder centre), and the head (Head). Its spatial coordinates are A(x1, y1, z1), B(x2, y2, z2) and C(x3, y3, z3). Therefore, according to the vector operation, the direction vector of the torso to the middle point of the shoulder can be obtained as:

\[AB = (x2 - x1, y2 - y1, z2 - z1) \] (1)

Therefore, for the human joint acquired by Kinect, the direction vector between every two joints can be marked with their respective coordinates. The vector \(\overrightarrow{dv1} \) represents the shoulder left to elbow left vector, and the vector \(\overrightarrow{dv2} \) represents the shoulder left to shoulder centre vector [14]. When any two direction vectors \(\overrightarrow{dv1} \), \(\overrightarrow{dv2} \) are determined, the angle of the direction vector can be found according to Equation 2.

\[\cos \theta = \frac{\overrightarrow{dv1} \cdot \overrightarrow{dv2}}{|\overrightarrow{dv1}| \cdot |\overrightarrow{dv2}|} \] (2)

The value \(\cos \theta \) range is [1,1]. When \(\cos \theta \) taking a certain value. If the angle \(\theta \) between them is, the value \(\theta \) range is [180, 180]. Thus, it leads \(\theta \) to the angular quadrant to be two values [15-16]. To solve this problem, we calculate elbow left (z2) and shoulder_ left (z 1). The difference in depth values between the two joints (z3) determines the direction of the arm. When this algorithm is used, the demonstrator must stand upright in front of the Kinect and in the direction of Kinect [17]. The direction vector for any two joints can be determined by the following method.
z3 ← z2 − z1

if
z3 < 0
then
−θ ← θ /θchoosepositive
end if

Using the above method, the direction vector of any two joints can be determined, and the angle between any two joints can be determined according to the difference between the depth values of the joints [18].

2. 1.2 Programming implementation

The Kinect sensor is used to obtain the spatial coordinates of the 20 joints of the human body, and then the coordinate system is converted to the target coordinate system. Since the unit of data acquired by Kinect is the angle, the unit of the robot motion control is radian, and the angle to radian needs to be made before being sent to brain. As mentioned above, human joints and robot joints do not form a one-to-one correspondence, so some joints are not involved in this test [19]. The overall program flow framework shown in Figure 1. Robot motion simulation involves 5 steps, which are explained below [20]:

(1) Set Kinect human bone tracking to passive mode, when the relevant bones are tracked to obtain their position data and save, and use HashMap to quickly find joint data;
(2) establishing a virtual coordinate system, converting the Kinect coordinate system data to the robot coordinate system;
(3) Establish a joint chain that divides the human joint into individual joint chains. Calculate the angle data of each degree of freedom of the robot separately;
(4) Compare the K coordinate values of each joint with Kinect and determine the robot motion angle quadrant. When the value is negative, assign the negative of the angle to the true value of the angle;
(5) Create a robot AL Motion module and send the data to the robot to simulate the robot motion on the simulation platform.

Figure 1 Robot simulation process
2.2 Kalman filtering based robot motion simulation optimization

Kalman filtering is a filtering algorithm invented by Rudolf E. Kalman [21]. The Kalman filter is a highly efficient recursive filter based on linear functions and hidden Markov models. The true state of the prediction system in a series of incomplete or noisy systems. The state of the system is represented by a Markov chain, and the noise of the system conforms to the distribution characteristics of Gaussian white noise. When the system changes, a new state is generated by the Markov chain and new noise is added [22]. For systems with control states, their control state equations are also added. A discrete control system is introduced into the description of Kalman filtering, which can be described by a linear stochastic differential equation as in Equation 4 [23].

\[X(k) = AX(k-1) + BU(k) + W(k) \]

(4)

Plus, the system variable as in Equation 5:

\[Z(k) = HX(k) + V(k) \]

(5)

In which, \(X(k) \) represents the current state of the system, \(X(k-1) \) represents the state at the previous moment of the system, and \(U \) (persuades the control of the system at the current time. System state and system control). The parameters are \(A \) and \(B \) respectively. For simple systems, the values are constant. For complex systems, the values are a matrix. In Equation 3, the noise \(W \) and measurement \(V(k) \) represents the process noise and measurement noise of the system respectively [24]. In general, they are assumed to be Gaussian white noise, which mimics the system, and its values are \(Q \) and \(R \) respectively [25].

When the system is linear and is a stochastic differential system, Kalman filtering is an ideal signal processor when measuring noise and white noise are Gaussian. The optimal solution process obtained by the Kalman filter includes the following 5 steps [26]. Double-player action recognition structure diagram is shown in Figure 2.

(1) Use the process model of the system to predict the state of the system at the next moment. Assuming that the current system state is \(X(k) \), the state in which the system is predicted based on the previous state of the system is predicted, as shown in Equation 6.

\[X(k | k-1) = AX(k-1 | k-1) + BU(k) \]

(6)

In which, the result of predicting \(k \) time using \(k-1 \) time is represented.

The optimal result of the system at time \(k-1 \), \(U(k) \) represents the current control of the system. In the robot motion simulation system, since there is no additional control, its value is \(O \) [27].

(2) After the first step of calculation, the results of the system have been updated. The principle of Kalman filtering is based on the recursion of covariance. It can be seen that the relative covariance \(X(k | k-1) \) has not been updated. Using \(X(k | k-1) \) for the corresponding covariance can be expressed as shown in Equation 7 [28].

\[P(k | k-1) = AP((k-1 | k-1)A' + Q \]

(7)

In which, \(P(k | k-1) \) is the corresponding covariance, \(P((k-1 | k-1) \) is the corresponding covariance \(X(k-1 | k-1) \), and the transposed matrix of \(A \) is \(A' \). The \(Q \) described above represents the process variance of the system. Equations 5 and 6 above are the formulas for Kalman filtering to predict the system [29].
(3) Collect the measured values of the current state. The Kalman filter can derive the current system’s optimal estimate $X(k|k)$ based on the predicted values and measurements of the system, as shown in Equation 8.

$$X(k | k) = X(k | k - 1) + Kg(k)(Z(k) - HX(k | k - 1))$$

(8)

In which, $Kg(k)$ is the Kalman gain, as shown in Equation 9.

$$Kg(k) = \frac{P(k | k - 1)H'}{HP(k | k - 1)H' + R}$$

(9)

After the first three steps, the optimal solution of the system has been obtained. Kalman filtering is based on the recursion of covariance, in order to let the system. The system continues to run continuously, and the covariance of the system is constantly updated, as shown in Equation 10.

$$P(k | k) = (I - Kg(k)H)P(k | k - 1)$$

(10)

In order to complete the recursion of the algorithm $P(k | k)$, when the system enters the next moment, it represents $P(k | k - 1)$. After accepting the data acquired by Kinect, the robot obtains new data by Kalman filtering according to the state equation of the system itself, which is more accurate than the data sent directly by Kinect. In addition, Kinect has been sending data to the robot. Uses Kalman filter to bring the predicted value closer to the true value is shown in Figure 3. After Kalman filtering, the data transmission will not be shaken, keeping the motion imitation smooth [30].

![Figure 3](image)

Figure 3 Uses Kalman filter to bring the predicted value closer to the true value

3. Experiment

The system design must be based on the scientific guidance and scientific training requirements of the coaches and athletes must meet the characteristics of the badminton sport. Therefore, in the analysis system of sports special technical and tactical ability based on gait tactile information recognition, the analysis of badminton skill and tactics information collection technology through badminton game technique and tactics description method is the analysis of sports special technical and tactical ability based on gait tactile information recognition. The key link of the system. According to the classification characteristics of badminton skills and tactics, design a comprehensive, accurate, convenient and efficient badminton technique and tactics description method, and then design a fast, high-precision acquisition method, and finally through a good human-computer interaction interface, thus ensuring gait-based The special technical and tactical ability analysis system for tactile information recognition is more suitable for the practical application of badminton training.

3.1 badminton skills and tactics collection method

In the research background and status of the subject, a variety of technical and tactical statistical software are mentioned. At present, there are three main methods of collecting technical and tactical methods:

3.1.1 Manual collection

It is mainly through the scientific research personnel to watch the live game and statistics on the technical and tactical information based on certain indicators. Whenever the technical action occurs at the game site, the paper carrier or form prepared in advance is recorded. The most primitive technical and tactical statistics are
completed in this way. The accuracy of statistical analysis mainly depends on the scientific research personnel who operate. Therefore, when using this method to collect technical and tactical information, they need to concentrate on it, otherwise it is easy to miss or misremember some important information.

3.1.2 Semi-manual collection

With the advancement and development of computer technology, the computer replaces some of the manually collected work content, which improves the work efficiency to a certain extent, but also inherits all the shortcomings of manual collection. At present, there are two main methods for semi-manual collection and recording techniques: the first is to use some shortcut keys designed in advance, the operator can click to enter and enter the shortcut; the other is to use the keyboard or mouse to collect input technical and tactical information. And then through some of the system’s functional modules to information conversion of these technical and tactical information.

3.1.3 Automated acquisition

Automated acquisition is a completely real replacement for manual collection. The game is collected on-site through digital electronic automated acquisition equipment. The acquisition can be simultaneously analysed simultaneously and statistical analysis results are obtained at the end of the game. Combined with the research needs of this project, the choice of acquisition method is the combination of semi-manual acquisition and automatic acquisition, that is, on the basis of semi-manual collection of technical and tactical information, synchronous use of large-area foot pressure plate footprints to capture badminton athletes’ footwork technical information. And use the synchronous video information to correct the data, although there are certain problems, the semi-automatic acquisition is basically realized. A variety of collection methods complement each other, so that the technical and tactical information collection required for this project can be better realized.

3.2 Digital venue based on gait touch

The Institute's automated collection of footstep information mainly utilizes the world's first developed flexible array sensor-based digital site in Hefei Intellige the Chinese Academy of Sciences. It can detect and acquire the shape, time and shape of the contact between the foot and the ground during human motion in real time. Information such as ground force and supporting force, so as to obtain the step size, stride frequency and action sequence of the human body, according to which the speed, acceleration and other information of the human body at the corresponding moment can be accurately obtained, and the kinematics and dynamics information can be synchronously acquired. The real-time nature of the system and project adaptability are also guaranteed. The overall technical level of the product is high. The data communication method adopts high-speed industrial Ethernet bus (multi-unit connection, 400 m interconnection has been realized), and the communication rate reaches 100 Mbps or more. The modular unit combination can realize large-area site laying requirements, and the single-point sampling speed reaches 1000 Hz. Comparison of various gait tactile pressure technical parameters is shown in Table 1.

| Table 1 Comparison of various gait tactile pressure technical parameters |
|-----------------------------|----------------|----------------|----------------|
| | Digital Site | Texan Walkway | Rescan | SPI TACTILUS |
| Comprehensive precision (%) | 5 | 10 | 5 | 10 |
| Time resolution (Hz) | 500 | 100 | 500 | 250 |
| Space resolution (point / cm) | 9 | 4 | 2.6 | 2.5 |
| Unit sensitive (points) | 90,000 | 50,688 | 16,384 | 4,096 |
| Combination measurement area (m²) | Configurable to any shape and face | 1.39 | 0.62 | 0.62 |

The badminton court is a length of 13.40 meters, doubles width 6.10 meters, singles width 5.18 meters, doubles stadium diagonal length = 14.723 meters, singles stadium diagonal length = 14.366 meters. The badminton centre is divided by the average net of the ball net, the height of the site is 9 meters, 2 meters around, the height of the poles on both sides is 1.55 meters, and the height of the middle net is 1.524 meters. There is no obstacle in the badminton court. Theoretically, it is divided into the front field, the middle field and the back field, but it is divided into the front field and the back field. The middle field is geometrically divided into the front field and the back field. In order to distinguish the inner boundary, the outer boundary area is also needed. Schematic diagram of badminton court is shown in Figure 4. Marked by the athlete facing the net, the course area is divided into the right front field 1, the left front field 2, the back field 3, the left back field 4, and the outer 0. At the same time, the system can also add a new effective area according to actual needs.
3.3 Badminton technique and tactics analysis method

The ultimate goal of collecting technical and tactical information is the effective implementation of technical and tactical analysis. In training and competition, coaches, athletes and researchers can judge the athlete's game state according to the scores of gains and losses, offensive rate, defensive rate, tactical execution rate and mistakes. By adjusting the training methods, the athletes' ability can be fully exerted, and finally the training is provided. The quality of the game. Coaches and researchers should also be able to better analyse the training through the footwork movement line, the area where the technical action takes place, and the video record of the round during the athlete's game.

In the research of this project, technical and tactical analysis is mainly carried out from two aspects, namely technical and tactical data analysis and video analysis. Firstly, according to the collection of technical and tactical information, the statistics and analysis of the team's scores, techniques, regions, footwork, movement, attack and defence and other technical and tactical data, and can output these data in the form of a chart, such as the score of a single section in the statistical game. The situation, the whole game scores, etc. At the same time, it is also possible to analyse the route of the footwork movement according to the corresponding query conditions. Users can view the corresponding video clips and perform corresponding operations through rounds, sessions, technical actions and tactics.

4. Results

As shown in Table 2, the world's best badminton top men's doubles competition, the highest number of serve is the No. 1 area, accounting for 42.7% of the total number of shots, followed by the No. 5 area, the proportion is 27.6%. The proportions of Zone 3 and Zone 4 are 10% and 9.2% respectively. The proportion of District 2 and Zone 6 is 5%, 5.8%, and the area of Zone 1, 2, and 5 in the front field is 0.75 2%, the rear field area 3, 4, 6 area accounted for 24.8%, indicating that the tee area of today's high-level badminton men's doubles competition is mainly concentrated in the front field area, and the back-field area is suitable for the serve when combining the front field. Make changes, especially in the top three areas, attacking them, and disrupting the opponent’s pace of receiving the ball.

Table 2. The situation of the teeing area

Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	
Number of shots	700	83	160	150	450	95
Percentage	42.7	5.0	10.0	9.2	27.5	5.8
Average	16.1	1.9	3.7	3.4	10.4	2.1
It can be clearly seen from Table 3 that in today's world's best badminton men's doubles players, mainly in the push and serve, mainly based on push and release technology, supplemented by other technologies, combined with changes, increase the change of receiving and landing points, hit Chaos opponents back to the ball preparation strategy. Pushing the use of 45% of the tee-off technology, 30% of the game, the ball and the ball accounted for 12.7% and 5.6% respectively, the high ball, the ball, the ball and the ball took the lowest proportion.

Table 3 statistics on the use of receiving technology

Number of beats	Push	Open	Smash	High ball	Pounce the ball	Drop ball	Pick the ball
757	501	207	20	9	27	107	
Percentage	45	30	13	1.3	0.6	1.5	6.6

Analysis of the characteristics of the five pairs of combined full-field tactics is shown in Table 3. In today's badminton five single-level competition, the closest strength and the widest distribution is the male pair. At present, the top 7 men's doubles in the world are from Indonesia, Denmark, Japan, South Korea, Chinese Taipei, China and Malaysia. They play different ways, but their strengths are close and they have won each other. With the continuous improvement of the level of competition, the offensive and defensive imbalance in the men's doubles method is more and more prominent. The party with more offensive opportunities always has a higher probability of winning. Therefore, the focus of the men's doubles competition gradually moves from the middle and back field. Contest, turn to the contest of the mid-field control. The so-called air superiority is to see who can first grab the "high hitting point" initiative in the middle and front field, and then continue to pressure, forcing the opponent to pull the high ball, thus creating an offensive opportunity for themselves.

Table 4 Analysis of the characteristics of the five pairs of combined full-field tactics

	Average	Usage rate	Scoring rate	Loss rate	Fall rate
Frontcourt	135.6	24.7	22.8	23.7	24.5
Midfielder	288.5	52.1	46.7	65.3	49.2
Backcourt	128.3	23.2	30.5	10.9	26.3
Total	552.4	100	100	100	100

In today's badminton doubles players, in the proportion of the total hitting technique, the proportion of the midfield hitting technique is the highest, accounting for 52% of the total hitting skills. 1%, the middle and front players are very aggressive, and in the five pairs, at least one person in each pair is very fierce. Men's doubles outstanding players through the flat-swing technology, fast sealing and other technologies to make the ball through the net has a downward trend, in order to seal the opponent, increase the difficulty of the opponent's backlash, create the opportunity to attack the ball. The usage rate of the front and back field hitting skills is similar, accounting for 24.7, 23.2% respectively. The frontcourt mainly uses push, slap and netting techniques to create a favorable offensive opportunity for the next shot. The backcourt use technology is mainly offensive technology killing.

The backcourt's killing chance has a lot to do with the use of the frontcourt technology, so the ratio of the two is similar. In terms of scoring rate, the midfileder hitting technique scored the highest in the three regions, accounting for 46.7%. Relative to the front and back fields, the midfileder's hitting technique has the highest usage rate. The midfileder's pumping speed is fast, the ball's arc is relatively flat, and the drop point is far. The difficulty of returning the ball to both players is very large. The highest, at the same time, the midfileder's shot loss rate is also the highest, accounting for 65.3%. The backcourt scoring rate is higher than the frontcourt scoring rate, the backcourt is 30.5%, and the frontcourt is 22.8%. The backcourt scoring technique is mainly based on killing the ball, killing and hanging, supplemented by the hanging ball, and the frontcourt scores. The batting technique is mainly based on netting and bashing. By watching the video, you can find that most of the offensive scores, the backcourt and the frontcourt are coherent, and it is an offensive chain. On the "post-attack before the seal" tactics.
Figure 5 shows a comparison schematic diagram of badminton position optimization errors based on wireless sensors. Figure 6 shows the comparison of response errors of badminton based on wireless sensors. Using the "post-attack before the seal" tactical score is relatively easier to rely on the absolute attack ability score than the simple backcourt, the physical energy consumption is not so large, the scoring probability is high, and there is no easy to be countered by the opponent to implement the "defensive counterattack" tactics. From the point of view of the loss rate of the whole game, the midfielder has the highest score, and the loss rate of the frontcourt is higher than that of the backcourt. The frontcourt is 23.7% and the backcourt is 10.9%. The frontcourt is the "big battalion" of the world's best badminton men's doubles players. The front of the net is an important area for creating offensive opportunities. Through the techniques of front-end and light-shifting, the opponents are forced to passively play high-ball and create for the backcourt teammates. The chance to attack the ball. The backcourt is mainly to kill and sling.

Figure 6 shows a comparison chart of response errors of badminton based on wireless sensors. The intensity of the fight between the two players is obviously not as good as that of the frontcourt. Therefore, the loss rate of the backcourt is better than the backcourt. From the analysis of the audience's drop rate, the midfielder's drop rate is the highest, accounting for 49.2%. The drop points of the front and backcourts are not much different, accounting for 24.5% and 26.39% respectively. In the badminton men's doubles competition, because of the tacit action of the two people on the field, the tactical cooperation between them is
crucial. The double-playing tactical DeMarcus is like the "two people walking on three legs". The midfield area is often in the course of the game. It is the combination or overlap of the two. Therefore, the drop rate of the midfield is the highest. The world's top athletes are more used to hit the middle. When the two are slightly uncomfortable on the court, the opponent will seize the loophole and attack. Therefore, the drop rate of the midfield area is the highest.

It can be clearly seen from Figure 7 that the hitting technique usage rate, the score of winning and losing points and the drop rate of the midfield area are significantly higher than those of the front field and the back field. From the analysis of the scoring rate, the middle and front field is the battleground for the high-level men's doubles competition. The scoring rate of the mid-field field is higher than that of the back field. The mid-field attack distance is short and the rebound speed is fast.

![Figure 7 Analysis of the characteristics of the whole game](image)

The degree is fast, the opponent's returning ball is more difficult, the score is more, the backcourt is longer than the middle distance, and the return speed reaches the opponent's field. The speed is relatively slow, the threat to the opponent is small, and the opponent's return difficulty is relatively the frontcourt is low. From the analysis of the loss rate, the midfield area hitting technique has the highest loss rate, followed by the front field and the back field. The midfield is flat and flat, the speed is fast, the arc is flat, the reaction time of hitting the ball is short, and the line changes. The midfield passive ball transition is not willing to give the opponent a high ball, often resulting in the highest turnover rate. The frontcourt area is an important area for creating offensive opportunities in the backcourt. The technical requirements for handling the ball are more delicate and quality requirements, otherwise the opponents will be blocked, so the turnover rate is relatively high. In the backcourt area, the hitting technique has the lowest turnover rate, and the backcourt mistakes are mainly to actively smother the offense or the outbound boundary, and the forced mistakes are less. Analysis of the drop rate from the whole game, the midfield. The drop rate is higher than the front and back field, and the drop rate of the front and back field is not much different. The receiving ball pushes the middle road, the flat pumping technique and the active attacking ball. These techniques are the main hitting techniques in the double’s competition. Midfield, so the midfielder's placement rate is the highest. Judging from the usage rate of the whole shot technique, the use rate of the hitting technique in the midfield area is higher than that of the front and back fields.

5. Discussion

The double-player combination sends and receives more efficiently, all of which are about 90%; the direct score rate of hair extension and reception is low; the service area of the service is mainly in the 1st and 5th areas, combined with the other four regional changes: Serving technology is mainly based on pushing and smashing; among the nine receiving areas, the area of No. 2 and No. 5 in the midfield is the highest. The analysis of the usage rate of the double-player combination of the whole game is: the front field is dominated by the push ball, the midfield is dominated by the block, and the backcourt is mainly the killing ball. The double-player combination has a rich active scoring method. The frontcourt scores are mainly based on the ball and the net. The midfield scores are mainly blocked and blocked. The backcourt scores are mainly based on killing the ball and slamming. The double-scoring combination of the whole field is characterized by the fact that the midfield loss rate is much higher than that of the front and back fields; the score of the whole field hitting
technique is: the front field hitting technique has the highest score, the midfield pumping. The two techniques have the highest rate of loss, and the highest score in the back court. The distribution of the drop rate of the double-player full-court hitting technique is: the midfield is higher than the back court, and the back court is higher than the front court. The middle and front field is the place where today's top men's doubles compete. Whoever has mastered the initiative in the middle and front court will win the game. The doubles combination has common technical and tactical characteristics: strong offensive and defensive ability; through the rapid coherence of the middle and the front field, the tactical guiding ideology for creating offensive scoring opportunities for the middle and back court is clear.

List of abbreviations
(TTS) Target Tracking System

Declarations
Availability of data and material
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests
declares that he has no conflict of interest.

* Research involving human participants and/or animals

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

* Informed consent

All authors agree to submit this version and claim that no part of this manuscript has been published or submitted elsewhere.

Funding
None

Authors' contributions
Bo Yao was responsible for the experimental simulation, and Na Liang was responsible for the writing of the paper.

Acknowledgements
None

References
[1] A. Mark, F. Mark, A. Serva, J. Baroudi, Clarifying the integration of trust and tam in e-commerce environments: implications for systems design and management. IEEE Transactions on Engineering Management 57(3), 380-393 (2010).

[2] F. Pawel, K. Adam, Information systems integration in the supply chains. e-mentor 4(3), 6-15 (2018).

[3] Q. Duan, J. Li, Y. Wang, The application of fuzzy association rule mining in e-commerce information system mining 6(7), 631-635 (2012).

[4] Y. Baghdadi, A business model for B2B integration through Web services. e-Commerce Technology, 2004. CEC 2004. Proceedings. IEEE International Conference 3(2), 187-194 (2015).

[5] A. K. Stock, K. Gohil, R. J. Huster, C. Beste, On the effects of multimodal information integration in multitasking. Sci Rep 7(1), 19-27 (2017).

[6] W. Jiang, C. Miao, L. Su, Q. Li, S. Hu, S. G. Wang, Towards quality aware information integration in distributed sensing systems. IEEE Transactions on Parallel & Distributed Systems 1(1), 99-112 (2018).

[7] V. S. Verba, V. I. Merkulov, D. A. Milyakov, The features of the information integration and complex processing in the airborne situational awareness systems. Procedia Computer Science 10(3), 273-279 (2017).

[8] G. Hiebel, K. Hanke, G. Goldenberg, M. Staudt, C. Grutsch, Information integration in a mining landscape 1(2), 692-702 (2017).

[9] X. Suo, Information integration models in a dream of red mansions 1(1), 309-314 (2017).

[10] Y. G. Zhong, L. Wen, T. Feng, Badminton training analysis system based on physiological computing. Computer Engineering & Applications 1(7), 428-431 (2014).

[11] M. I. Rusydi, M. Sasaki, M. H. Sucipto, N. Windsasari, Local euler angle pattern recognition for smash and backhand in badminton based on arm position. Procedia Manufacturing 3(5), 898-903 (2015).

[12] B. Depraetere, M. Liu, G. Pinte, I. Grondman, R. Babuška, Comparison of model-free and model-based methods for time optimal hit control of a badminton robot. Mechatronics 24(8), 1021-1030 (2014).

[13] S. Li, Z. Zhang, B. Wan, B. Wilde, G. Shan, The relevance of body positioning and its training effect on badminton smash. J Sports Sci 35(4), 1-7 (2016).

[14] T. Liu, M. Shao, D. Yin, Y. Li, N. Yang, R. Yin, The effect of badminton training on the ability of same-domain action anticipation for adult novices: evidence from behavior and erps. Neuroscience Letters, 660-669 (2017).

[15] G. Cimen, H. Ilhan, T. Capin, H. Gurcay, Classification of human motion based on affective state descriptors. Computer Animation & Virtual Worlds 24(34), 355-363 (2013).

[16] R. Winder, C. Haimson, J. Goldsteinstewart, J. Grossman, A model-based analysis of semi-automated data discovery and entry using automated content extraction. International Journal of Human-Computer Interaction 29(10), 629-646 (2013).

[17] S. Bauer, R. Wiest, L. P. Nolte, M. Reyes, A survey of mri-based medical image analysis for brain tumor studies. Physics in Medicine & Biology 58(13), 15-26 (2013).

[18] X. Shi, Z. G. Zheng, Y. L. Zhou, H. Jin, L. G. He, B. Liu, Q. S. Hua, Graph Processing on GPUs: A Survey. ACM Comput. Surv 50(6), 35-49 (2018).

[19] Y. H. Ho, S. Y. Lee, D. W. Jeong, E. J. Choi, K. J. Nam, Y. J. Kim, The association between a low urine ph and the components of metabolic syndrome in the korean population: findings based on the 2010 korea national health and nutrition examination survey. Journal of Research in Medical Sciences 19(7), 599-604 (2014).

[20] M. Goran, P. Lidija, K. Miran, Structural analysis of technical-tactical elements in table tennis and their role in different playing zones. Journal of Human Kinetics 47(1), 197-214 (2015).

[21] Phomsoupha, G. Laffaye, The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics. Sports Medicine 45(4), 473-495 (2015).

[22] M. I. Rusydi, M. Sasaki, M. H. Sucipto, N. Windsasari, Local euler angle pattern recognition for smash and backhand in badminton based on arm position. Procedia Manufacturing 3(8), 898-903 (2015).

[23] T. Liu, M. Shao, D. Yin, Y. Li, N. Yang, R. Yin, The effect of badminton training on the ability of same-domain action anticipation for adult novices: evidence from behavior and erps. Neuroscience Letters, 3(4),660-669 (2017).

[24] J. Ebrahim, M. Ali, H. Maryam, M. Razieh, A. Ebrahim, Comparison of blue-yellow opponent color contrast sensitivity function between female badminton players and non-athletes. Asian Journal of Sports Medicine 4(2), 107-113 (2013).

[25] W. Gawin, C. Beyer, M. Seidler, A competition analysis of the single and double disciplines in world-class badminton. International Journal of Performance Analysis in Sport 15(3), 997-1006 (2017).

[26] S. Li, Z. Zhang, B. Wan, B. Wilde, G. Shan, The relevance of body positioning and its training effect on badminton smash. J Sports Sci 35(4), 1-7 (2016).

[27] D. J. Hancock, D. M. Stemware, Gaze behaviors and decision-making accuracy of higher- and lower-level ice hockey referees. Psychology of Sport & Exercise 14(1), 66-71 (2013).
Figure 1:
Title: Robot simulation process
Legend: Figure 1 show Robot simulation process

Figure 2:
Title: Double-player action recognition structure diagram
Legend: Figure 2 show Double-player action recognition structure diagram
Figure 3:

Title: Usees Kalman filter to bring the predicted value closer to the true value

Legend: Figure 3 show Uses Kalman filter to bring the predicted value closer to the true value

Figure 4:

Title: Schematic diagram of badminton court

Legend: Figure 4 show Schematic diagram of badminton court
Figure 5:

Title: Comparison diagram of badminton position optimization errors based on wireless sensors

Legend: Figure 5 show Comparison diagram of badminton position optimization errors based on wireless sensors

Figure 6:

Title: Comparison chart of response errors of badminton based on wireless sensors

Legend: Figure 6 show Comparison chart of response errors of badminton based on wireless sensors
Figure 7:

Title: Analysis of the characteristics of the whole game

Legend: Figure 7 show Analysis of the characteristics of the whole game