Prostaglandin reductase-3 negatively modulates adipogenesis through regulation of PPARγ activity

Y-H. Yu, Yi-C. Chang, T-S. Su, J-Y. Nong, C-C. Li, and L-M. Chuang

Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Genomics Research Center and Animal Core Facility, Academia Sinica, Taipei 115, Taiwan

Abstract Adipocyte differentiation is a multistep program under regulation by several factors. Peroxisome proliferator-activated receptor γ (PPARγ) serves as a master regulator of adipogenesis. However, the endogenous ligand for PPARγ remained elusive until 15-keto-PGE2 was identified recently as an endogenous PPARγ ligand. In this study, we demonstrate that zinc-containing alcohol dehydrogenase 2 (ZADH2; here termed prostaglandin reductase-3, PTGR-3) is a new member of prostaglandin reductase family that converts 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. Adipogenesis is accelerated when endogenous PTGR-3 is silenced in 3T3-L1 preadipocytes, whereas forced expression of PTGR-3 significantly decreases adipogenesis. PTGR-3 expression decreased during adipocyte differentiation, accompanied by an increased level of 15-keto-PGE2. 15-keto-PGE2 exerts a potent proadipogenic effect by enhancing PPARγ activity, whereas overexpression of PTGR-3 in 3T3-L1 preadipocytes markedly suppressed the proadipogenic effect of 15-keto-PGE2 by repressing PPARγ activity. Taken together, these findings demonstrate for the first time that PTGR-3 is a novel 15-oxoprostaglandin-Δ13-reductase and plays a critical role in modulation of normal adipocyte differentiation via regulation of PPARγ activity. Thus, modulation of PTGR-3 might provide a novel avenue for treating obesity and related metabolic disorders.

Supplementary key words adipocyte differentiation • nuclear receptor • ligand • eicosanoid

The conversion of preadipocytes to adipocytes is regulated by several transcription factors. These factors promote cell morphologic conversion, lipogenic gene expression, and triacylglycerol accumulation. Peroxisome proliferator-activated receptor γ (PPARγ) has been clearly demonstrated to be a master regulator in adipogenesis. To activate PPARγ, a ligand is needed for binding its ligand-binding domain. Thiazolidinedione, an anti-diabetic drug, has been known as a potent ligand for PPARγ. However, the natural ligands for PPARγ need to be elucidated.

Prostaglandins are eicosanoid lipid mediators derived from arachidonic acid that are involved in a variety of physiological functions. It has been demonstrated that prostaglandins are potential endogenous ligands for PPARγ that modulate adipocyte differentiation. Several candidates have been identified as potent endogenous ligands for PPARγ, including 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) (1) and 15-keto-prostaglandin E2 (15-keto-PGE2) (2). We previously reported that the prostaglandin reductase-2 (PTGR-2; previously known as zinc-binding alcohol dehydrogenase domain containing 1, ZADH1) is a 15-oxoprostaglandin-Δ13-reductase that converts 15-keto-PGE2 to inactive 13,14-dihydro-15-keto-PGE2, thereby suppressing PPARγ transcriptional activity and inhibiting adipogenesis (2). PTGR-2 belongs to the zinc-binding alcohol dehydrogenase (ZADH) gene family. In mammal, the ZADH family consists of three members: PTGR-1 (ZADH3), PTGR-2, and PTGR-3 (ZADH2). PTGR-2 is expressed at high levels in white adipose tissue with known 15-oxoprostaglandin-Δ13-reductase activity (2). PTGR-1 is expressed at high levels in kidney and plays a role in preventing cancer growth in vitro and in vivo (3, 4). It has been demonstrated that PTGR-1 is a bifunctional enzyme capable of utilizing leukotriene B4 and 15-keto-prostaglandins as substrates (5).

Abbreviations: aP2, adipocyte fatty acid-binding protein; COX, cyclooxygenase; DLK1, delta-like homologue 1; ERK, extracellular signal-regulated kinase; HFD, high-fat diet; LC, liquid chromatography; LTDQ, linear trap quadrupole; MEK, mitogen-activated protein kinase; PPARγ, peroxisome proliferator-activated receptor γ; PPRE, PPAR response element; PPRE1, preadipocyte factor 1; PTGR-3, prostaglandin reductase-3; SVF, stromal vesicular fraction; UHPLC, ultra high pressure liquid chromatography; UPLC, ultra performance liquid chromatography.

© 2013 by the American Society for Biochemistry and Molecular Biology, Inc.

This article is available online at http://www.jlr.org

Published, JLR Papers in Press, July 2, 2013
DOI 10.1194/jlr.M037556

Volume 54, 2013 2391
The protein structure of PTGR-3 is computationally predicted to contain an oxido-reductase catalytic site located between amino acids 184 and 320 based on sequence homology and shares 23% amino acid homology to PTGR-2. However, the function of PTGR-3 has not yet been investigated.

In this study, we demonstrate for the first time that PTGR-3 is a 15-oxoprostaglandin-Δ 13 -reductase that converts 15-keto-PGE 2 to inactive 13,14-dihydro-15-keto-PGE 2 , thereby decreasing adipogenesis through regulation of PPARγ transcriptional activity. PTGR-3 was highly expressed in 3T3-L1 adipocytes. Furthermore, PTGR-3 expression was reduced by PTGR-3 knockdown, confluent 3T3-L1 preadipocytes were infected with lentivirus carrying empty vector or PTGR-3, respectively. After lentiviral infection, cells were selected by antibiotic selection. The selection was continued for at least 1 month. Individual colonies were isolated to culture cells for further propagation. Detailed protocols for lentivirus production and infection of cells were performed following the procedures of the National RNAi Core Facility of Academia Sinica in Taiwan.

In vitro enzymatic reaction

All reagents were purchased from Sigma-Aldrich (St. Louis, MO). Colorimetric method was used to determine PTGR-3 enzyme activity as described previously (2). Briefly, PTGR-3 recombinant protein (Origene, Rockville, MD) was incubated with 0.5 mM NADPH and 0.6 mM prostaglandins (13,14-dihydro-15-keto-PGE 2 , 15-keto-PGE 2 , 15-keto-PGF 2 , 15-keto-PGF 3 , or 15-keto-PGE 4) in 0.1 M Tris-HCl (pH 7.4) at 37°C for 30 min. After enzymatic reaction, color reagent (790 μM indomethacin chloride, 60 μM phenazene methosulfate, and 1% Tween 20) was added and incubated at 37°C in the dark for 10 min. To stop the reaction, phthalate buffer (pH 3.0) was added. PTGR-3 activity was determined by measuring the absorbance of formazans, an indicator of remaining NADPH, at 490 nm with a spectrophotometer. One unit of the enzyme was defined as the amount of enzyme catalyzing the production of 1 μmol NADP + /min. The apparent K m and V max values were determined using the Michaelis-Menten equation and calculated by nonlinear regression.

LC-MS/MS analysis of prostaglandins

Details for the prostaglandin extraction and derivation were described by Chou et al. (2). Deuterated 13,14-dihydro-15-keto-PGE 2 standard (Cayman Chemical, Ann Arbor, MI) was added to homogenized samples as an internal control. Chromatographic analyses were performed using Accela UHPLC (Thermo Scientific, Hemel Hempstead, UK) and Acquity UPLC systems (Waters, Hertfordshire, UK). The samples were separated on a C18 reversed-phase LC column (Phenomenex Luna, 150 mm × 2 mm × 3 μm) using a linear mobile phase gradient (A) water and (B) 5% methanol/95% acetonitrile. Mass spectrometry analyses were performed on LTQ Velos (Thermo Scientific) linear ion trap (LIT)-orbitrap and QTRAP 4000 (AB Sciex, Concord, ON, Canada) quadrupole-linear ion trap (QqLIT) mass spectrometers.

Transient transfection and reporter assay

For 3T3-L1 preadipocyte transfection, confluent cells were cotransfected with the PPARE3-TK-LUC plasmid and phRG-TK plasmid (an internal control) by lipofection (Lipofectamine 2000, Invitrogen, Carlsbad, CA). 3T3-L1 preadipocytes, which were transfected with the TK-LUC reporter plasmid (without the PPARE3 promoter), were the control group. One day after transfection, media were changed to adipogenic medium without or with chemicals (1 μM troglitazone, 10 μM 15-keto-PGE 2 , 10 μM 13,14-dihydro-15-keto-PGE 2 , and 1 μM GW9662). Twenty-four hours after treatment, cells were harvested and luciferase was assayed (Dual-Glo luciferase assay system; Promega, Madison, WI). For 293T cell transfection, confluent cells were incubated with plasmids (GAL4-PPARγ, UAS×4-TK-LUC, and Flag-PTGR-3) and lipofection. After 6 h of transient transfection, media were changed to growth medium without or with chemicals (1 μM troglitazone, 10 μM 15-keto-PGE 2 , 10 μM 13,14-dihydro-15-keto-PGE 2 , and 1 μM GW9662). Twenty-four hours after treatment, cells were harvested for determination of luciferase activity.

Western blot

Total protein from tissue or cells was extracted by radioimmunoprecipitation assay buffer with protease inhibitors. The sample was centrifuged at 12,000 rpm for 10 min, and the supernatant was discarded.
was subjected to Western blot. For Western blot, 20 µg of protein lysate was separated by SDS-PAGE and then transblotted onto a polyvinylidene fluoride membrane (Perkin Elmer, Norwalk, CT). The PTGR-3 and PTGR-2 primary antibodies were purchased from Abcam (Cambridge, MA). Adiponectin antibody, αP2 antibody, and PPARy were purchased from Cell Signaling (Boston, MA). α-Tubulin and GAPDH antibodies (Cell Signaling, Boston, MA) were used for the loading control in the lysates of total protein. The secondary antibody coupled to horseradish peroxidase was used in the chemiluminescence procedure (Immobilon Western; Millipore, Billerica, MA). The Western blotting procedure was performed according to the manufacturer’s instruction.

Approvals for usage of animals

All animal experiments were performed in accordance with protocols approved by the National Taiwan University Institutional Animal Care and Use Committee (IACUC Approval No. 20100329).

Statistical analysis

Results are expressed as means ± SE. Comparison between two groups were performed using unpaired t-test. P < 0.05 was considered statistically significant. A two-way ANOVA (ANOVA) procedure was used to determine the main effects of PPAR ligands, PTGR-3, and their interaction on intracellular triacylglycerol content and luciferase activity. Multiple comparisons between groups were performed using post-hoc Tukey test (SAS Institute Inc., Cary, NC). A significant difference indicated P ≤ 0.05.

RESULTS

PTGR-3 is a negative regulator of adipocyte differentiation

To explore the physiological function of PTGR-3, we first assayed the tissue expression pattern of PTGR-3. PTGR-3 protein and mRNA are ubiquitously expressed in several tissues, including heart, brown adipose tissue, and white adipose tissue (Fig. 1A and supplementary Fig. I-A). We also examined whether PTGR-3 levels were altered in murine models of obesity. We found that PTGR-3 levels were decreased in white adipose tissue of high-fat-diet (HFD) fed mice (Fig. 1B) and ob/ob mice (Fig. 1C and supplementary Fig. I-B). Furthermore, PTGR-3 is specifically expressed in stromal vascular fractions (SVF) rather than mature adipocytes (Fig. 1D), and PTGR-3 levels remarkably decreased during induced adipogenesis of 3T3-L1 cells (Fig. 1E). These results suggest that PTGR-3 may be involved in adipocyte differentiation.

To investigate whether PTGR-3 affects adipocyte differentiation, 3T3-L1 preadipocytes were infected with lentivirus carrying PTGR-3 shRNA and were then induced for adipocyte differentiation. shRNAs targeting PTGR-3 efficiently attenuated PTGR-3 protein levels but not PTGR-2 levels (Fig. 2A). After 8 days of adipogenic induction, adipocyte differentiation was accelerated in PTGR-3-knockdown cells compared with shRNA control cells (shLuc) (Fig. 2B), accompanied by increased intracellular triglyceride levels (Fig. 2C). Consistently, adiponectin and αP2, two markers for adipocyte differentiation, were increased in PTGR-3-knockdown cells compared with shRNA control cells after hormonal induction (Fig. 2D). Quantitative PCR with reverse transcription showed increased expression of PPARγ-targeted genes, including Lpl and Cd36, in PTGR-3-knockdown 3T3-L1 cells after induction (supplementary Fig. II-A). By contrast, adipocyte differentiation was remarkably decreased when we ectopically expressed PTGR-3 protein in 3T3-L1 preadipocytes (Fig. 2E, F), which was accompanied by a decrease in intracellular triglyceride content (Fig. 2G) and in expression of adipocyte differentiation markers (Fig. 2H and supplementary Fig. II-B). Taken together, these results demonstrate PTGR-3 negatively regulates adipocyte differentiation.

PTGR-3 is a 15-oxoprostaglandin-Δ13-reductase

It has been demonstrated that 15-keto-PGE2 can be metabolized to 13,14-dihydro-15-keto-PGE2 by PTGR-2 (2). Therefore, we asked whether PTGR-3 is also an enzyme that catalyzes the same reaction. We first tested various concentrations of PTGR-3 recombinant protein on 15-keto-PGE2 catabolism in vitro. The results showed that PTGR-3 metabolizes 15-keto-PGE2 in a NADPH-dependent reaction and that this reaction was linearly accelerated with increased concentration of PTGR-3 recombinant protein (Fig. 3A), prolonged reaction time, and increased 15-keto-PGE2 concentration (Fig. 3B, C). In addition, we found that PTGR-3 is able to catalyze the metabolism of other prostaglandins, including 15-keto-PGF2α, 15-keto-PGFα, and 15-keto-PGE1 (Table 1). Enzyme kinetic studies revealed that PTGR-3 had the highest efficiency for 15-keto-PGF2α catabolic reaction (Kcat/Km = 271.76 ± 8.82 mM⁻¹ min⁻¹) compared with 15-keto-PGFα (214.41 ± 12.92 mM⁻¹ min⁻¹), 15-keto-PGE2 (157.24 ± 14.00 mM⁻¹ min⁻¹) and 15-keto-PGE1 (58.45 ± 4.59 mM⁻¹ min⁻¹) (Table 2). We next asked whether PTGR-3 is a 15-oxoprostaglandin-Δ13-reductase converting 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. We analyzed the mass spectrum of reaction product obtained from the incubation of 15-keto-PGE2 with PTGR-3 recombinant protein by LC-MS/MS. A specific peak (Fig. 3D) was detected with mass spectrum identical to standard 13,14-dihydro-15-keto-PGE2 (supplementary Fig. III-A) and...
adipogenic marker genes expression (Fig. 4E) was observed in 3T3-L1 preadipocytes treated with 15-keto-PGE₂.

However, the product of PTGR-3, 13,14-dihydro-15-keto-PGE₂, did not cause a significant effect on adipocyte differentiation. The effect of 15-keto-PGE₂ on adipocyte differentiation was similar to PPAR/Δ9Δ11 agonist troglitazone. Furthermore, adipocyte differentiation was not further accelerated when 3T3-L1 preadipocytes were simultaneously treated with 15-keto-PGE₂ and troglitazone, suggesting that 15-keto-PGE₂ and troglitazone positively regulated adipogenesis through similar mechanisms.

It has been demonstrated that troglitazone enhances adipogenesis by direct activation of PPAR/Δ9Δ11 via binding to the ligand-binding domain. We tested whether 15-keto-PGE₂ promotes adipocyte differentiation by enhancing PPAR/Δ9Δ11 transcriptional activity. We transfected a PPRE-driven luciferase plasmid into 3T3-L1 preadipocytes and then treated these cells with 15-keto-PGE₂. The results showed that 15-keto-PGE₂ significantly activated the PPRE-driven luciferase activity (Fig. 4F). However, PGE₂, the precursor of 15-keto-PGE₂, and 13,14-dihydro-15-keto-PGE₂, the metabolite of 15-keto-PGE₂, do not have any effect on PPRE-driven luciferase activity (supplementary Fig. IV). 15-keto-PGE₂ also does not affect the activity of PPAR/Δ9Δ11’s obligate heterodimer partner, retinoid X receptor (RXR) (supplementary Fig. V).

We further asked whether 15-keto-PGE₂ directly activates PPAR/Δ9Δ11 via its ligand-binding domain. As expected, 15-keto-PGE₂ increased PPAR/Δ9Δ11 activity by direct interaction with activation of PPAR/Δ9Δ11 ligand-binding domain (Fig. 4G). Taken together, these results demonstrate that 15-keto-PGE₂, a PTGR-3 substrate, promotes adipogenesis through activation of PPAR/Δ9Δ11-dependent pathway.
Prostaglandin reductase-3 regulates adipogenesis

PTGR-3 decreases proadipogenic effect of 15-keto-PGE₂ through regulation of PPARγ activity

To assess whether PTGR-3 has a direct effect on 15-keto-PGE₂-mediated adipogenesis, we treated vector-only and PTGR-3-overexpressing 3T3-L1 cells with or without 15-keto-PGE₂. Similar to previous results, 15-keto-PGE₂ significantly promoted adipocyte differentiation (Fig. 5A, two-way ANOVA, \(P < 0.05 \)). Conversely, overexpression of PTGR-3 suppressed adipocyte differentiation in 3T3-L1 cells (Fig. 5A, two-way ANOVA, \(P < 0.05 \)). However, the proadipogenic effect of 15-keto-PGE₂ was remarkably abolished when PTGR-3 protein was overexpressed in 3T3-L1 preadipocytes (Fig. 5A, \(P < 0.05 \) for interaction). Similar results were found for intracellular triglyceride content, expression of adipogenic marker genes, and PPRE-driven luciferase activity (Fig. 5B–D).

We further tested whether GW9662, an irreversible competitive PPARγ antagonist that covalently binds to a cysteine residue in the PPARγ ligand-binding domain, can erase the enhanced adipocyte differentiation in PTGR-3-knockdown 3T3-L1 preadipocytes. After GW9662 treatment, adipocyte differentiation, triglyceride content, adipogenic marker genes, and PPRE-driven luciferase activity were significantly decreased in PTGR-3-knockdown cells compared

![Graphs and images related to PTGR-3 activity](image-url)
with absence of GW9662 treatment (Fig. 5E–H, two-way ANOVA, P< 0.05 for interaction).

To confirm our hypothesis that PTGR-3 directly suppresses 15-keto-PGE₂-mediated transactivation of PPARγ, we cotransfected 293 cells with Flag-PTGR-3, CMX-GAL4-PPARγ, and UAS₅×₄-TK-LUC plasmids (Fig. 5I), and then treated these cells with or without 15-keto-PGE₂. Similar to previous results, 15-keto-PGE₂ significantly activated luciferase activity, but this effect was remarkably reduced by PTGR-3 overexpression in a dose-dependent manner (Fig. 5J, one-way ANOVA, P<0.05). Taken together, these results clearly demonstrate that PTGR-3 is involved in 15-keto-PGE₂-mediated adipogenesis and plays a negative regulatory role in this process.

DISCUSSION

The major finding of this study is PTGR-3, a novel 15-oxoprostaglandin-Δ¹₅-reductase that catalyzes the reaction in converting 15-keto-PGE₂ to 13,14-dihydro-15-keto-PGE₂. We found that PTGR-3 expression in white adipose tissue was reduced in genetic ob/ob and HFD-induced obese mice models. PTGR-3 expression decreased drastically during adipocyte differentiation. Ectopic expression of PTGR-3 in 3T3-L1 preadipocytes decreased PPARγ-dependent transcriptional activity, thereby attenuating adipogenesis. In contrast, suppression of PTGR-3 expression in cells accelerated adipogenesis by increasing PPARγ transcriptional activity. These results reveal that PTGR-3 negatively modulates adipocyte differentiation by regulation of PPARγ transcriptional activity.

It has been demonstrated that several prostaglandins act as bioactive modulators for regulating adipocyte differentiation through either direct binding on the PPARγ ligand-binding domain or indirect mechanisms mediated by signaling transduction. For the past decade, 15-deoxy-D₁₂,1₄-prostaglandin J₂ (15d-PGJ₂) has been considered a potent natural ligand for PPARγ (1). 15d-PGJ₂ is derived from prostaglandin H₂ (PGH₂), which is converted by PGD synthase to prostaglandin D₂ and further chemically dehydrated to form 15d-PGJ₂. Several lines of evidence have demonstrated that inhibition of the COX pathway or dysregulation of genes involved in this series of reactions in 3T3-L1 preadipocytes affects adipocyte differentiation (6–9). The highest level of 15d-PGJ₂ was detected in 3T3-L1 cells during the maturation phase of adipocytes (10). In contrast, other groups have demonstrated that no differences in formation of 15d-PGJ₂ are observed during adipocyte differentiation (11). Thus, it remains uncertain whether 15d-PGJ₂ is truly an endogenous ligand for PPARγ that modulates adipocyte differentiation. Prostaglandin F₂α (PGF₂α) is generated from PGH₂ by PGF₂α synthase (PGFS), and PGF₂α is reported to be an inhibitory modulator of adipocyte differentiation (12). The level of PGF₂α rapidly increased to a peak 3 h after initiation of differentiation and then declined, indicating that PGF₂α suppresses in the early phase of adipogenesis (13). Knockdown of aldo-keto reductase 1B3 (AKR1B3), a PGFS, decreased de novo PGF₂α biosynthesis in 3T3-L1 cells and then further promoted lipid accumulation (13). It has been shown that PGF₂α suppressed adipogenesis by enhancing phosphorylation of PPARγ via prostaglandin F receptor-activated MEK/ERK cascade (14). On the other hand, PGE₂, a precursor of 15-keto-PGE₂, is the most abundant prostaglandin produced in 3T3-L1 preadipocytes, and the highest level of PGE₂ was detected during the early phase of adipogenesis (15, 16). The activity of 15-hydroxy prostaglandin dehydrogenase, an enzyme catalyzing the conversion of PGE₂ to 15-keto-PGE₂, was also detected in adipose tissue (16), implying that PGE₂ metabolites or its catabolizing enzymes may play a potential role in modulating adipocyte differentiation. However, the role of PGE₂ metabolites in lipid metabolism has not been widely studied.

In our previous study, we found that 15-keto-PGE₂ is a PPARγ ligand and that 15-keto-PGE₂ is reduced to 13,14-dihydro-15-keto-PGE₂ by PTGR-2 (2). Here, we identified that PTGR-3 is a new member of prostaglandin reductase family. Similar to PTGR-2, PTGR-3 converts 15-keto-PGE₂ to 13,14-dihydro-15-keto-PGE₂ by a similar reductive mechanism, thereby influencing intracellular contents of bioactive 15-keto-PGE₂ in cells, which may modulate the process of adipogenesis in 3T3-L1 preadipocytes. Enzyme kinetics studies showed relatively higher efficiency of PTGR-2 in converting 15-keto-PGE₂ to 13,14-dihydro-15-keto-PGE₂.

TABLE 1. Specific activities of PTGR-3 on various compounds

Substrate	Specific Activity (nmol/min·mg protein)
15-Keto-PGE₂	215.04 ± 1.78
15-Keto-PGE₁	109.61 ± 4.40
15-Keto-PGF₂α	303.34 ± 2.39
15-Keto-PGF₁α	286.20 ± 5.46
13,14-Dihydro-15-keto-PGE₂	ND
13,14-Dihydro-15-keto-PGF₂α	ND
Leukotriene B₄	ND

ND, nondetectable.

TABLE 2. Enzymatic substrates and kinetic parameters for PTGR-3

Substrate	Vₘ₅₀ (mM)	Vₘ₅₀ (milliunits/mg²)	Kₘ₅₀ (M)	Kₘ₅₀/Kₐ₅₀
15-Keto-PGE₂	55.03 ± 5.45	215.04 ± 1.78	8.60 ± 0.07	157.24 ± 14.00
15-Keto-PGE₁	75.11 ± 7.78	109.61 ± 4.40	4.37 ± 0.15	58.45 ± 4.59
15-Keto-PGF₂α	42.49 ± 1.00	303.34 ± 2.39	11.55 ± 0.57	217.76 ± 8.82
15-Keto-PGF₁α	53.54 ± 3.70	286.20 ± 3.46	11.45 ± 0.14	214.41 ± 12.92

¹1 unit = 1 μmol NADP⁺/min.
Prostaglandin reductase-3 regulates adipogenesis from preadipocytes, such as DLK1/PREF1 and Wnt proteins, play an important role in maintaining the undifferentiated state in preadipocytes by extracellular signaling transduction. It has been demonstrated that dysregulation of these genes promotes adipocyte differentiation by influencing C/EBP and PPAR expression in vivo or in vitro (17, 18). These results suggest that maintenance of preadipocytes in an undifferentiated state requires the activity of extracellular signaling molecules. However, little is known about whether intracellular proteins, such as enzymes involved in proadipogenic molecule metabolism, also modulate maintenance of the preadipose state. Here, we demonstrate that expression of PTGR-3, similar to DLK1/PREF1 and Wnt proteins, is predominantly expressed in preadipocytes and decreases remarkably during adipocyte differentiation. In addition, PTGR-3 protein is abundantly expressed in adipose tissue of lean mice, which contains a relatively high percentage of undifferentiated preadipocytes compared with adipose tissue of obese mice, implying that PTGR-3 may play a role in maintaining the undifferentiated state in preadipocytes. Forced PTGR-3 expression attenuates adipocyte differentiation, whereas knocking down PTGR-3 in 3T3-L1 preadipocytes accelerates adipocyte differentiation. Overall, these observations suggest that PTGR-3 protein may facilitate maintaining the undifferentiated state compared with PTGR-3. Both PTGR-2 and PTGR-3 were expressed abundantly in white adipose tissue (supplementary Fig. I-A) and were downregulated in white adipose tissue of ob/ob mice (supplementary Fig. I-B). Interestingly, expression of PTGR in 3T3-L1 preadipocytes decreased rapidly within 48 h during the course of induced adipocyte differentiation, accompanied by a rise of 15-keto-PGE level and PPAR expression, implying that PTGR-3 may modulate PPAR activity by regulation of 15-keto-PGE production in an early stage of adipocyte differentiation. After 2 days of induction, PTGR-2 expression started to increase and endogenous 15-keto-PGE level gradually decreased, indicating PTGR-2 may play a more dominant role in the late stage of adipocyte differentiation than PTGR-3. Cumulatively, these findings demonstrate that these enzymes display different kinetic parameters and different expression patterns during adipogenesis. Whether and how PTGR-2 and PTGR-3 coordinately regulate 15-keto-PGE homeostasis and regulate adipogenesis remains to be investigated.

Conversion of preadipocytes to adipocytes is a complicated process, which is regulated by several factors, including hormonal and nutrient stimulation. Preadipocytes have to integrate these signals from the environment for initiation of adipocyte differentiation. Several factors secreted from preadipocytes, such as DLK1/PREF1 and Wnt proteins, play an important role in maintaining the undifferentiated state in preadipocytes by extracellular signaling transduction. It has been demonstrated that dysregulation of these genes promotes adipocyte differentiation by influencing C/EBP and PPAR expression in vivo or in vitro (17, 18). These results suggest that maintenance of preadipocytes in an undifferentiated state requires the activity of extracellular signaling molecules. However, little is known about whether intracellular proteins, such as enzymes involved in proadipogenic molecule metabolism, also modulate maintenance of the preadipose state. Here, we demonstrate that expression of PTGR-3, similar to DLK1/PREF1 and Wnt proteins, is predominantly expressed in white adipose tissue (supplementary Fig. I-A) and were downregulated in white adipose tissue of ob/ob mice (supplementary Fig. I-B). Interestingly, expression of PTGR-3 in 3T3-L1 preadipocytes decreased rapidly within 48 h during the course of induced adipocyte differentiation, accompanied by a rise of 15-keto-PGE level and PPAR expression, implying that PTGR-3 may modulate PPAR activity by regulation of 15-keto-PGE production in an early stage of adipocyte differentiation. After 2 days of induction, PTGR-2 expression started to increase and endogenous 15-keto-PGE level gradually decreased, indicating PTGR-2 may play a more dominant role in the late stage of adipocyte differentiation than PTGR-3. Cumulatively, these findings demonstrate that these enzymes display different kinetic parameters and different expression patterns during adipogenesis. Whether and how PTGR-2 and PTGR-3 coordinately regulate 15-keto-PGE homeostasis and regulate adipogenesis remains to be investigated.
Fig. 5. PTGR-3 decreases proadipogenic effect of 15-keto-PGE₂ on PPARγ activity. Vector-only and PTGR-3 overexpressing preadipocytes were maintained in induction medium with or without 10 μM 15-keto-PGE₂ treatment for 2 days. After 8 days of adipogenic stimulation, cells on the plates were stained with Oil Red O (A) and quantified (B) and adipogenic gene (adiponectin and aP2) expression was determined (C). The bars indicate the means ± SE for three independent replicates (n = 3). Different superscripts indicate significant difference between groups (two-way ANOVA, P ≤ 0.05 with post-hoc Tukey test). The expression of adipogenic markers (adiponectin and aP2) was determined and normalized to α-tubulin. (D) PPRE-driven luciferase activity of vector-only and PTGR-3-overexpressing cells after 15-keto-PGE₂ treatment. Vector-only and PTGR-3-overexpressing preadipocytes were transiently transfected with reporter vectors (TK-LUC and PPRLUC) for 24 h, and then cells were incubated in induction medium with or without 10 μM 15-keto-PGE₂ treatment. The activity of firefly luciferase was determined and normalized to the activity of renilla luciferase. The bars indicate the means ± SE for three independent replicates (n = 3). Different superscripts indicate significant difference between groups (two-way ANOVA, P ≤ 0.05 with post-hoc Tukey test). shRNA control and PTGR-3-knockdown cells were maintained in induction medium with or without 1 μM GW9662 treatment for 2 days. After 8 days of adipogenic stimulation, cells on the plates were stained with Oil Red O (E) and quantified (F) and adipogenic gene (adiponectin and aP2) expression was determined (G). The bars indicate the means ± SE for three independent replicates (n = 3). Different superscripts indicate significant difference between groups (two-way ANOVA, P ≤ 0.05 with post-hoc Tukey test). Expression of adipogenic genes (adiponectin and aP2) in GW9662-treated control and PTGR-3-knockdown cells. The expression of adipogenic markers (adiponectin and aP2) was determined and normalized to α-tubulin. (H) PPRE-driven luciferase activity of shRNA control and PTGR-3-knockdown cells after GW9662 treatment. shRNA control and PTGR-3-knockdown cells were transiently transfected with reporter vectors (TK-LUC and PPRLUC) for 24 h and then cells were incubated in induction medium with or without 1 μM GW9662 treatment. The activity of firefly luciferase was determined and normalized to the activity of renilla luciferase. The bars indicate the means ± SE for three independent replicates (n = 3). Different superscripts indicate significant difference between groups (two-way ANOVA, P ≤ 0.05 with post-hoc Tukey test). (I) Efficiency of ectopic expression of UAS G ×4-TK-LUC, CMX-GAL4-PPARγ, and Flag-PTGR-3 protein in 293 cells. The expression of PTGR-3 and Gal/PPARγ was determined and normalized to α-tubulin. (J) Transactivation of 15-keto-PGE₂ on PPARγ ligand-binding domain in Flag-PTGR-3-overexpressing 293 cells. 293 cells were transiently transfected with expression vectors (CMX-GAL4, CMX-GAL4-PPARγ, and Flag-PTGR-3) and UAS G ×4-TK-LUC reporter plasmid for 2 days. The activity of firefly luciferase was determined and normalized to the activity of renilla luciferase. The bars indicate the means ± SE for three independent replicates (n = 3). Different superscripts indicate significant difference between groups (one-way ANOVA, P ≤ 0.05 with post-hoc Tukey test).

In conclusion, we provide evidence that PTGR-3 is a novel 15-oxoprostaglandin-Δ₁₃-reductase that affects adipocyte differentiation by regulation of PPARγ activity. PTGR-3 expression is reduced in adipose tissue from murine models in preadipocytes by inhibiting endogenous 15-keto-PGE₂ production and that suppression of PTGR-3 expression is required for normal adipocyte differentiation by regulating PPARγ transcriptional activity.
of obesity. Modulation of PTGR-3 expression or activity might provide a novel avenue in treating obesity and related metabolic disorders.

The authors thank the National RNAi Core Facility for providing the RNAi reagents.

REFERENCES

1. Forman, B. M., P. Tontonoz, J. Chen, R. P. Brun, B. M. Spiegelman, and R. M. Evans. 1995. 15-deoxy-Δ12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell. 83: 803–812.

2. Chou, W. L., L. M. Chuang, C. C. Chou, A. H. Wang, J. A. Lawson, G. A. FitzGerald, and Z. F. Chang. 2007. Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor gamma activation. J. Biol. Chem. 282: 18162–18172.

3. Yokomizo, T., Y. Ogawa, N. Uozumi, K. Kume, T. Izumi, and T. Shimizu. 1996. cDNA cloning, expression, and mutagenesis study of leukotriene B4 12-hydroxydehydrogenase. J. Biol. Chem. 271: 2844–2850.

4. Zhao, Y., C. C. Weng, M. Tong, J. Wei, and H. H. Tai. 2010. Restoration of leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase (LTBDH/PGR) expression inhibits lung cancer growth in vitro and in vivo. Lung Cancer. 68: 161–169.

5. Tai, H. H., C. M. Ensor, M. Tong, H. Zhou, and F. Yan. 2002. Prostaglandin catabolizing enzymes. Prostaglandins Other Lipid Mediat. 68-69: 483–495.

6. Fajas, L., S. Miard, M. R. Briggs, and J. Auwerx. 2003. Selective cyclooxygenase-2 inhibitors impair adipocyte differentiation through inhibition of the clonal expansion phase. J. Lipid Res. 44: 1652–1659.

7. Ghoshal, S., D. B. Trivedi, G. A. Graf, and C. D. Loftin. 2011. Cyclooxygenase-2 deficiency attenuates adipose tissue differentiation and inflammation in mice. J. Biol. Chem. 286: 889–898.

8. Fujimori, K., K. Aritake, and Y. Urade. 2007. A novel pathway to enhance adipocyte differentiation of 3T3-L1 cells by up-regulation of lipocalin-type prostaglandin D synthase mediated by liver X receptor-activated sterol regulatory element-binding protein-1c. J. Biol. Chem. 282: 18458–18466.

9. Ragolia, L., T. Palha, C. E. Hall, J. K. Maesaka, N. Eguchi, and Y. Urade. 2005. Accelerated glucose intolerance, nephropathy, and atherosclerosis in prostaglandin D2 synthase knock-out mice. J. Biol. Chem. 280: 29946–29955.

10. Mazid, M. A., A. A. Chowdhury, K. Nagao, K. Nishimura, M. Jisaka, T. Nagaya, and K. Yokota. 2006. Endogenous 15-deoxy-Δ12,14-prostaglandin J2 synthesized by adipocytes during maturation phase contributes to upregulation of fat storage. FEBS Lett. 580: 6865–6890.

11. Bell-Parikh, L. C., T. Ide, J. A. Lawson, P. McNamara, M. Reilly, and G. A. FitzGerald. 2003. Biosynthesis of 15-deoxy-Δ12,14-PGF2α and the ligation of PPARγ. J. Clin. Invest. 112: 945–955.

12. Liu, L., and N. A. Clipstone. 2007. Prostaglandin F2α inhibits adipocyte differentiation via a Gaq-calcium-calcineurin-dependent signaling pathway. J. Cell. Biochem. 100: 161–173.

13. Fujimori, K., T. Ueno, N. Nagata, K. Kashiwagi, K. Aritake, F. Amano, and Y. Urade. 2010. Suppression of adipocyte differentiation by aldo-keto reductase 1B3 acting as prostaglandin F2α synthase. J. Biol. Chem. 285: 8880–8886.

14. Ueno, T., and K. Fujimori. 2011. Novel suppression mechanism operating in early phase of adipogenesis by positive feedback loop for enhancement of cyclooxygenase-2 expression through prostaglandin F2α receptor mediated activation of MEK/ERK-CREB cascade. FEBS J. 278: 2901–2912.

15. Hyman, B. T., L. L. Stoll, and A. A. Spector. 1982. Prostaglandin production by 3T3-L1 cells in culture. Biochim. Biophys. Acta. 713: 375–385.

16. Anggard, E., C. Larsson, and B. Samuelsson. 1971. The distribution of 15-hydroxy prostaglandin dehydrogenase and prostaglandin delta 13-reductase in tissues of the swine. Acta Physiol. Scand. 81: 396–404.

17. Moon, Y. S., C. M. Smas, K. Lee, J. A. Villena, K. H. Kim, E. J. Yun, and H. S. Sul. 2002. Mice lacking paternally expressed Pref-1/Dlk1 contribute to upregulation of fat storage. J. Biol. Chem. 277: 5385–5392.

18. Ross, S. E., N. Hemati, C. N. Bennett, P. C. Lucas, R. L. Erickson, and O. A. MacDougall. 2000. Inhibition of adipogenesis by Wnt signaling. Science. 289: 950–953.