UNIVERSAL DEFORMATION RINGS OF STRINGS MODULES OVER A CERTAIN SYMMETRIC TAME ALGEBRA

JOSÉ A. VÉLEZ-MARULANDA

Abstract. Let \(k \) be an algebraically closed field, let \(\Lambda \) be a finite dimensional \(k \)-algebra and let \(V \) be a \(\Lambda \)-module with stable endomorphism ring isomorphic to \(k \). If \(\Lambda \) is self-injective then \(V \) has a universal deformation ring \(R(\Lambda, V) \), which is a complete local commutative Noetherian \(k \)-algebra with residue field \(k \). Moreover, if \(\Lambda \) is also a Frobenius \(k \)-algebra then \(R(\Lambda, V) \) is stable under syzygies. We use these facts to determine the universal deformation rings of string \(\Lambda_{r} \)-modules whose stable endomorphism ring isomorphic to \(k \), where \(\Lambda_{r} \) is a symmetric special biserial \(k \)-algebra that has quiver with relations depending on the four parameters \(r = (r_{0}, r_{1}, r_{2}, k) \) with \(r_{0}, r_{1}, r_{2} \geq 2 \) and \(k \geq 1 \). Universal deformation rings and Frobenius algebras and Stable endomorphism rings and Special biserial algebras [2000]16G10 and 16G20 and 20C20

1. Introduction

Let \(k \) be a field of arbitrary characteristic, and let denote by \(\hat{\mathcal{C}} \) the category of all complete local commutative Noetherian \(k \)-algebras with residue field \(k \). Suppose that \(\Lambda \) is a fixed finite dimensional \(k \)-algebra and let \(V \) be a finitely generated \(\Lambda \)-module. Let \(R \) be an arbitrary object in \(\hat{\mathcal{C}} \). A lift \((M, \phi)\) of \(V \) over \(R \) is a finitely generated \(R \otimes_k \Lambda \)-module \(M \) that is free over \(R \) together with an isomorphism of \(\Lambda \)-modules \(\phi : k \otimes_R M \to V \). If \(\Lambda \) is self-injective and the stable endomorphism ring of \(V \) is isomorphic to \(k \), then there exists a particular object \(R(\Lambda, V) \) in \(\hat{\mathcal{C}} \) and a lift \((U(\Lambda, V), \phi_{U(\Lambda, V)})\) of \(V \) over \(R(\Lambda, V) \), which is universal with respect to all isomorphism classes of lifts of \(V \) over such \(k \)-algebras \(R \) (see [10] and §2). The ring \(R(\Lambda, V) \) and the isomorphism class of the lift \((U(\Lambda, V), \phi_{U(\Lambda, V)})\) are respectively called the universal deformation ring and the universal deformation of \(V \). Traditionally, universal deformations rings are studied when \(\Lambda \) is equal to a group algebra \(kG \), where \(G \) is a finite group and \(k \) has positive characteristic \(p \) (see e.g., [3, 4, 5, 6, 7, 8, 9]). In particular, it was proved by F. M. BLEHER and T. CHINBURG in [4] that if \(V \) is a finitely generated \(kG \)-module whose stable endomorphism ring is isomorphic to \(k \), then \(V \) has a universal deformation ring \(R(G, V) \). Observe that \(kG \) is an example of a self-injective \(k \)-algebra (see e.g., [2, Prop. 3.1.2]). This approach has recently led to the solution of various open problems, e.g., the construction of representations whose universal deformation rings are not local complete intersections (see [3, 5, 6]). Universal deformation rings of modules over more general finite dimensional algebras have been studied by many authors in different contexts (see e.g., [14, 18] and their references). The main motivation of this article is that sophisticated results from representation theory of finite dimensional algebras, such as Auslander-Reiten quivers, stable equivalences, and combinatorial description of modules can be used to arrive at a deeper understanding of universal deformation rings.

In this article, we assume that \(k \) is algebraically closed and consider the basic \(k \)-algebra

\[
(1) \quad \Lambda_{\bar{r}} = kQ/I_{\bar{r}}
\]

Key words and phrases. Universal deformation rings and Frobenius algebras and Stable endomorphism rings.

The author was supported by the Release Time for Research Scholarship of the Office of Academic Affairs and the Faculty Research Seed Grant of the Office of Sponsored Programs & Research Administration at the Valdosta State University.
where \(\bar{r} = (r_0, r_1, r_2, k) \) with \(r_0, r_1, r_2 \geq 2, k \geq 1 \), \(Q \) is the quiver

\[
Q = \begin{array}{ccc}
0 & \tau_0 & 1 \\
\tau_2 & 1 & \tau_1 \\
& \tau_1 & \tau_2 \\
\end{array}
\]

and \(I_r \) is the ideal of the path algebra \(kQ \) generated by the relations

\[
\{ \tau_0 \zeta_0, \zeta_1 \tau_1, \tau_1 \zeta_1, \tau_2 \zeta_2, \zeta_0 \tau_2, \zeta_0 \tau_0 - (\tau_2 \tau_1 \tau_0)^k, \zeta_1^3 - (\tau_2 \tau_2 \tau_1)^k, \zeta_2^2 - (\tau_1 \tau_2 \tau_1)^k \}.
\]

The algebra \(\Lambda_\bar{r} \) is among the class of algebras of dihedral type, which were introduced by K. Erdmann in [13] to classify all tame blocks of group algebras of finite groups with dihedral defect groups up to Morita equivalence. However, \(\Lambda_\bar{r} \) is not Morita equivalent to a block of a group algebra (see [13, Lemma IX.5.4]). Since \(\Lambda_\bar{r} \) is a special biserial algebra, all the non-projective indecomposable \(\Lambda_\bar{r} \)-modules can be described combinatorially as so-called strings and bands modules as introduced in [11] (see also §3.1). We denote by \(\Gamma_\bar{r}(\Lambda_\bar{r}) \) the stable Auslander-Reiten quiver of \(\Lambda_\bar{r} \). The components of \(\Gamma_\bar{r}(\Lambda_\bar{r}) \) consisting in string modules are two 3-tubes and infinitely many components of type \(\mathbb{Z} \mathbb{A}_\infty^\infty \). The components consisting of band modules are infinitely many 1-tubes.

In [10], the particular case \(\bar{r} = (2, 2, 2, 1) \) has been considered. In particular, there are exactly three components \(\mathcal{C} \) of \(\Gamma_\bar{r}(\Lambda_\bar{r}) \) of type \(\mathbb{Z} \mathbb{A}_\infty^\infty \), each contain a simple \(\Lambda_\bar{r} \)-module. If \(\mathcal{C} \) is such a component then \(\Omega(\mathcal{C}) = \mathcal{C} \) and there are exactly three \(\Omega \)-orbits of \(\Lambda(2,2,2,1) \)-modules in \(\mathcal{C} \) whose stable endomorphism ring is isomorphic to \(k \); the universal deformation rings are either isomorphic to \(k \), or to \(k[[t]]/(t^2) \), or to \(k[[t]] \) (see [10, Prop. 3.9]). Moreover, if \(\mathcal{T} \) is one 3-tubes of \(\Gamma_\bar{r}(\Lambda(2,2,2,1)) \) then \(\Omega(\mathcal{T}) \) is the other 3-tube and there are exactly three \(\Omega \)-orbits of \(\Lambda(2,2,2,1) \)-modules in \(\mathcal{T} \) whose stable endomorphism ring is isomorphic to \(k \); the universal deformation rings are either isomorphic to \(k \) or to \(k[[t]] \) (see [10, Prop. 3.11]).

In this article, we let \(\bar{r} = (r_0, r_1, r_2, k) \) with \(r_0, r_1, r_2 \geq 2 \) and \(k \geq 1 \) be arbitrary. We study the two 3-tubes and the components \(\mathcal{C} \) of \(\Gamma_r(\Lambda_r) \) of type \(\mathbb{Z} \mathbb{A}_\infty^\infty \) containing a module whose endomorphism ring is isomorphic to \(k \). Our goal is to investigate how universal deformation rings change when inflating modules from \(\Lambda_{(r_0, r_1, r_2, k)} \) to \(\Lambda_{(r_0', r_1', r_2', k') \in } \), where \(\Lambda_{(r_0', r_1', r_2', k') \in } \) surjects onto \(\Lambda_{(r_0, r_1, r_2, k)} \) when \(r_0' \geq r_0, r_1' \geq r_1, r_2' \geq r_2, k' \geq k \).

If \(M \) and \(N \) are two indecomposable \(\Lambda_r \)-modules belonging to the same component of \(\Gamma_r(\Lambda_r) \), we say that \(N \) is a successor of \(M \) provided that there exists an irreducible homomorphism \(M \rightarrow N \). Throughout this article, we identify the vertices of the quiver \(Q \) with elements of the cyclic group with three elements \(\mathbb{Z}/3 \).

A summary of the main results concerning \(\Lambda_r = kQ/I_r \) is as follows (cf. [10, Prop. 3.9, Prop. 3.11]); for more precise statements, see Propositions 4.1, 4.4, 4.5 and 4.6.

Theorem 1.1. Let \(\Lambda_r \) be as in (1) where \(\bar{r} = (r_0, r_1, r_2, k) \) with \(r_0, r_1, r_2 \geq 2 \) and \(k \geq 1 \), and let \(\Gamma_r(\Lambda_r) \) denote the stable Auslander- Reiten quiver of \(\Lambda_r \).

(i) If \(\mathcal{T} \) is one of two the 3-tubes then \(\Omega(\mathcal{T}) \) is the other 3-tube. There are exactly three \(\Omega \)-orbits of modules in \(\mathcal{T} \cup \Omega(\mathcal{T}) \) whose stable endomorphism ring is isomorphic to \(k \). If \(X_0 \) is a module that belongs to the boundary of \(\mathcal{T} \), then these three \(\Omega \)-orbits are represented by \(X_0 \), by a successor \(X_1 \) of \(X_0 \), and by a successor \(X_2 \) of \(X_1 \) that does not lie in the \(\Omega \)-orbit of \(X_0 \). The universal deformation rings are

\[
R(\Lambda_r, X_0) \cong k, \quad R(\Lambda_r, X_1) \cong k, \quad R(\Lambda_r, X_2) \cong k[[t]].
\]

(ii) There are exactly three distinct components \(\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2 \) of \(\Gamma_r(\Lambda_r) \) of type \(\mathbb{Z} \mathbb{A}_\infty^\infty \), which each contain exactly one simple \(\Lambda_r \)-module. For all \(i \in \{0, 1, 2\} \mod 3 \), the component \(\mathfrak{A}_i \) is \(\Omega \)-stable if and only if \(r_i = 2 \) and there are exactly three \(\Omega \)-orbits of modules in \(\mathfrak{A}_i \cup \Omega(\mathfrak{A}_i) \) whose stable endomorphism ring is isomorphic to \(k \). If for all \(i \in \{0, 1, 2\} \mod 3 \), \(U_{i,0} \) denotes the unique simple module lying in \(\mathfrak{A}_i \), then these three \(\Omega \)-orbits are represented by \(U_{i,0} \), by a successor \(U_{i,1} \)
of $U_{i,0}$, and by a successor $U_{i,2}$ of $U_{i,1}$ that does not lie in the Ω-orbit of $U_{i,0}$. The universal deformation rings are

$$R(\Lambda, U_i, 0) \cong k[[t]]/(t^i), \quad R(\Lambda, U_i, 1) \cong k, \quad R(\Lambda, U_i, 2) \cong k[[t]].$$

(iii) There are three distinct components $\mathcal{B}_0, \mathcal{B}_1$ and \mathcal{B}_2 of $\Gamma_s(\Lambda_\infty)$ of type $\mathcal{Z}A_{\infty}$ that contain exactly a module of length 1 whose endomorphism ring is isomorphic to k. Let $i \in \{0, 1, 2\} \mod 3$ and let $V_i, 0$ be a module of minimal length in \mathcal{B}_i. If $k = 1$ then $\mathcal{B}_i = \Omega(\mathcal{A}_{i+2})$, where \mathcal{A}_{i+2} is as in (ii). In particular, \mathcal{B}_i is Ω-stable if and only if $k = 1$ and $i + 2 = 2$. There are exactly three Ω-orbits of modules in $\mathcal{B}_i \cup \Omega(\mathcal{B}_i)$ whose stable endomorphism ring is isomorphic to k. These three Ω-orbits are represented by $V_i, 0$, by a successor $V_{i, 1}$ of $V_i, 0$, and by a successor $V_{i, -1}$ of $V_i, 0$ that does not lie in the Ω-orbit of $V_{i, 1}$. If $k = 1$ then the universal deformation rings are

$$R(\Lambda, V_i, 0) \cong k, \quad R(\Lambda, V_i, 1) \cong k[[t]]/(t^{i+2}), \quad R(\Lambda, V_i, -1) \cong k[[t]].$$

If $k \geq 2$ then the universal deformation rings are

$$R(\Lambda, V_i, 0) \cong k, \quad R(\Lambda, V_i, 1) \cong k[[t]], \quad R(\Lambda, V_i, -1) \cong k[[t]].$$

(iv) If $k \geq 2$ then there are three distinct components $\mathcal{C}_0, \mathcal{C}_1$ and \mathcal{C}_2 of $\Gamma_s(\Lambda_\infty)$ of type $\mathcal{Z}A_{\infty}$, which each contain a module of length 2 whose endomorphism rings is isomorphic to k. Let $i \in \{0, 1, 2\} \mod 3$ and let $W_i, 0$ be a module of minimal length in \mathcal{B}_i. For all $i \in \{0, 1, 2\} \mod 3$, the component \mathcal{C}_i is Ω-stable if and only if $k = 2$, and there are exactly three Ω-orbits of modules in \mathcal{C}_i whose stable endomorphism ring is isomorphic to k. These three Ω-orbits are represented by $W_i, 0$, by a successor $W_{i, -1}$ of $W_i, 0$, and by a successor $W_{i, -2}$ of $W_{i, -1}$ that does not lie in the Ω-orbit of $W_{i, 0}$. The universal deformation rings are

$$R(\Lambda, W_i, 0) \cong k[[t]]/(t^i), \quad R(\Lambda, W_i, -1) \cong k, \quad R(\Lambda, W_i, -2) \cong k[[t]].$$

This article is organized as follows. In §2, we recall the definitions of deformations and universal deformation rings and summarize some of their properties. In §3, we give a precise description of string modules for Λ, describe the components of $\Gamma_s(\Lambda_\infty)$ that contain string modules using hooks and co-hooks (see [11]), and give a description of the homomorphisms between string modules as determined in [15]. Moreover, we describe the indecomposable projective modules for Λ and classify all Λ_∞-modules with endomorphism ring isomorphic to k (see Proposition 3.1). In §4, we prove Theorem 1.1.

See e.g., [1, 2, 13] for further information about basic concepts from representation theory of finite dimensional algebras, such as the definition and properties of the syzygy functor Ω and the definition of the Auslander-Reiten quiver of an arbitrary Artinian algebra Λ.

2. Universal Deformation Rings

Let k be a field of arbitrary characteristic and denote by \hat{C} the category of all complete local commutative Noetherian k-algebras with residue field k. Note that the morphisms in \hat{C} are continuous k-algebra homomorphisms that induce the identity map on k. Suppose that Λ is a finite dimensional k-algebra and V is a fixed finitely generated Λ-module. We denote by $\text{End}_\Lambda(V)$ (respectively, by $\text{End}_\Lambda(V)$) the endomorphism ring (respectively, the stable endomorphism ring) of V. Let R be an arbitrary object in \hat{C}. A lift (M, ϕ) of V over R is a finitely generated $R \otimes_k \Lambda$-module M that is free over R together with an isomorphism of Λ-modules $\phi : k \otimes_R M \to V$. Two lifts (M, ϕ) and (M', ϕ') over R are isomorphic if there exists an $R \otimes_k \Lambda$-module isomorphism $f : M \to M'$ such that $\phi' \circ (\text{id}_k \otimes f) = \phi$, where id_k denotes the identity map on k. If (M, ϕ) is a lift of V over R we denote by $[M, \phi]$ its isomorphism class and say that $[M, \phi]$ is a deformation of V over R. Let us define $\text{Def}_\Lambda(V, R)$ the set of all deformations of V over R. The deformation functor over V is the covariant functor $\hat{F}_V : \hat{C} \to \text{Sets}$ defined as follows: for all objects R in \hat{C} define $\hat{F}_V(R) = \text{Def}_\Lambda(V, R)$ and for all morphisms $\alpha : R \to R'$ in \hat{C} let $\hat{F}_V(\alpha) : \text{Def}_\Lambda(V, R) \to \text{Def}_\Lambda(V, R')$ be defined as $\hat{F}_V(\alpha)([M, \phi]) = [R' \otimes_{R, \alpha} M, \phi_\alpha]$, where $\phi_\alpha : k \otimes_{R'} (R' \otimes_{R, \alpha} M) \to V$ is the composition of Λ-module isomorphisms

$$k \otimes_{R'} (R' \otimes_{R, \alpha} M) \cong k \otimes_R M \overset{\phi}{\to} V.$$
Suppose there exists an object $R(\Lambda, V)$ in \mathcal{C} and a deformation $[U(\Lambda, V), \phi_{U(\Lambda, V)}]$ of V over $R(\Lambda, V)$ with the following property. For each R in \mathcal{C} and for all lifts M of V over R there exists a morphism $v : R(\Lambda, V) \to R$ in \mathcal{C} such that
\[
\hat{F}_V(v)[U(\Lambda, V), \phi_{U(\Lambda, V)}] = [M, \phi],
\]
and moreover v is unique if R is the ring of dual numbers $k[[t]]/(t^2)$. Then $R(\Lambda, V)$ and $[U(\Lambda, V), \phi_{U(\Lambda, V)}]$ are respectively called the \textit{versal deformation ring} and \textit{versal deformation} of V. If the morphism v is unique for all R in \mathcal{C} and lifts (Λ, ϕ) of V over R, then $R(\Lambda, V)$ and $[U(\Lambda, V), \phi_{U(\Lambda, V)}]$ are respectively called the \textit{universal deformation ring} and the \textit{universal deformation} of V. In other words, the universal deformation ring $R(\Lambda, V)$ represents the deformation functor \hat{F}_V in the sense that \hat{F}_V is naturally isomorphic to the Hom functor $\text{Hom}_{\Lambda}(R(\Lambda, V), -)$. Using Schlessinger’s criteria [17, Thm. 2.11] and using methods similar to those in [16], it is straightforward to prove that the deformation functor \hat{F}_V is continuous, that every finitely generated Λ-module V has a versal deformation ring and that this versal deformation is universal provided that the endomorphism ring $\text{End}_{\Lambda}(V)$ is isomorphic to k (see [10, Prop. 2.1]).

Recall that the k-algebra Λ is said to be self-injective if the regular left Λ-module Λ is injective and that Λ is called a Frobenius algebra provided that the right Λ-modules $\Lambda^\ast = \text{Hom}_k(\Lambda, k)$ are isomorphic. Recall also that Λ is said to be a symmetric algebra provided that Λ is a Frobenius algebra and there exists a non-degenerate associative bilinear form $\theta : \Lambda \times \Lambda \to k$ with $\theta(ab, c) = \theta(b, ac)$ for all $a, b, c \in \Lambda$. By [12, Prop. 9.9], every Frobenius algebra is self-injective.

Remark 2.1. If Λ is self-injective and (Λ, ϕ) is a lift of Λ over an object R in \mathcal{C} with $\text{End}_\Lambda(V) \cong k$, then the deformation $[M, \phi]$ does not depend on the particular choice of the Λ-module isomorphism. More precisely, if $f : M \to M'$ is an $R \otimes_k \Lambda$-module isomorphism with (M', ϕ') a lift of V over R, then there exists an $R \otimes_k \Lambda$-module isomorphism $\hat{f} : M \to M'$ such that $\phi' \circ (\text{id}_k \otimes R \hat{f}) = \phi$. In other words, $[M, \phi] = [M', \phi']$ in $\hat{F}_V(R) = \text{Def}_\Lambda(V, R)$ (see [10, Thm. 2.6]).

We denote the first syzygy of V by ΩV, i.e., ΩV is the kernel of a projective cover $P_V \to V$, (see e.g., [1, pp. 124-126]).

Example 2.2. Let G be a finite group and consider the group algebra kG, which is a self-injective k-algebra (see e.g., [2, Prop. 3.1.2] and [12, Prop. 9.6]). It was proved in [4] that if V is a finitely generated kG-module whose stable endomorphism ring is isomorphic to k then V has a universal deformation ring $R(kG, V)$. Moreover, the stable endomorphism ring of ΩV is also isomorphic to k and the universal deformation rings $R(kG, V)$ and $R(kG, \Omega V)$ of V and ΩV, respectively, are isomorphic.

The following result generalizes the properties of universal deformation rings mentioned in Example 2.2 to arbitrary Frobenius k-algebras (see [10, Thm. 2.6]).

Theorem 2.3. Let Λ be a finite dimensional self-injective k-algebra, and suppose that V is a finitely generated Λ-module whose stable endomorphism ring $\text{End}_\Lambda(V)$ is isomorphic to k.

(i) The module V has a universal deformation ring $R(\Lambda, V)$.

(ii) If P is a finitely generated projective Λ-module, then $\text{End}_\Lambda(V \oplus P) \cong k$ and $R(\Lambda, V) \cong R(\Lambda, V \oplus P)$.

(iii) If Λ is also a Frobenius algebra, then $\text{End}_\Lambda(\Omega V) \cong k$ and $R(\Lambda, V) \cong R(\Lambda, \Omega V)$.

3. Some Remarks about the Representation Theory of Λ_φ and Classification of Λ_φ-modules whose Endomorphism Ring is Isomorphic to k

For the remainder of this article, let k be an algebraically closed field of arbitrary characteristic and let $\Lambda_\varphi = k Q / I_\varphi$ as in (1). We identify the vertices of Q with elements of $\mathbb{Z} / 3$ (the cyclic group of three elements).

The algebra Λ_φ is one of the algebras of dihedral type studied by K. Erdmann in [13]. In particular, Λ_φ is a symmetric k-algebra. However, by [13, Lemma IX.5.4], Λ_φ is not Morita equivalent to a block of a group algebra. Since Λ_φ is a special biserial algebra, all the non-projective indecomposable Λ_φ-modules can be described combinatorially as so-called strings and bands modules (see [11]). In this article, we are only concerned about these string modules, which are described as follows.
3.1. String modules for Λ_f. Given each arrow $\zeta_0, \zeta_1, \tau_1, \zeta_2, \tau_2$ of Q, we define a formal inverse by $\zeta_0^{-1}, \zeta_1^{-1}, \tau_1^{-1}, \zeta_2^{-1}, \tau_2^{-1}$, respectively. Let $s(\zeta_0) = 0 = s(\zeta_1^{-1}), s(\tau_0) = 0 = s(\tau_2^{-1}), s(\zeta_1) = 1 = s(\zeta_2^{-1}), s(\tau_1) = 1 = s(\zeta_0^{-1}), s(\zeta_2) = 2 = s(\zeta_1^{-1})$ and $s(\tau_2) = 2 = s(\tau_1^{-1})$. Let $e(\zeta_0) = 0 = e(\zeta_1^{-1}), e(\tau_0) = 1 = e(\zeta_2^{-1}), e(\zeta_1) = 1 = e(\zeta_1^{-1}), e(\tau_1) = 2 = e(\tau_2^{-1}), e(\zeta_2) = 2 = e(\zeta_2^{-1})$ and $e(\tau_2) = 0 = e(\tau_1^{-1})$. By a word of length $n \geq 1$ we mean a sequence $w_n \cdots w_1$, where the w_j is either an arrow or a formal inverse of an arrow and where $s(w_j+1) = e(w_j)$ for $1 \leq j \leq n - 1$. We define $(w_n \cdots w_1)^{-1} = w_1^{-1} \cdots w_n^{-1}, s(w_n \cdots w_1) = s(w_1)$ and $e(w_n \cdots w_1) = e(w_n)$. If $i \in \{0, 1, 2\}$ mod 3 is a vertex of Q, we define an empty word 1_i of length zero with $e(1_i) = i = s(1_i)$ and $(1_i)^{-1} = 1_i$. For all $i \in \{0, 1, 2\}$ mod 3 there exists a path in Q of length 3 starting and ending at i, namely

$$L_i = \tau_i + 2\tau_{i+1}\tau_i.$$

Denote by W the set of all words and let

$$J = \{\zeta_0^0, \zeta_1^2, \zeta_2^3, \tau_0\zeta_0, \zeta_1\tau_0, \tau_1\zeta_1, \tau_2\zeta_2, \zeta_0\tau_2, \zeta_2^k, \zeta_1^k, \tau_2^k\}.$$

Let \sim be the equivalence relation on W defined by $w \sim w'$ if and only if $w = w'$ or $w^{-1} = w'$. A string is a representative C of an equivalence class under the relation \sim where either $C = 1_i$ for some vertex i of Q, or $C = w_n \cdots w_1$ with $n \geq 1$ and $w_j \neq w_{j+1}^{-1}$ for $1 \leq j \leq n - 1$ and no sub-word of C or its formal inverse belong to J. If C is a string such that $s(C) = e(C)$, then we let $C^0 = 1_{s(C)}$. If $C = w_n \cdots w_1$ and $D = v_m \cdots v_1$ are strings of length $n, m \geq 1$, respectively, we say that the composition of C and D is defined provided $w_n \cdots w_1v_m \cdots v_1$ is a string, and write $CD = w_n \cdots w_1v_m \cdots v_1$; we say that the composition of C with 1_i is defined provided $s(C) = i$ (respectively, $e(C) = i$), and in this case we have $C1_i \sim C$ (respectively, $1_iC \sim C$). In particular, if $C = w_n \cdots w_1$ is a string of length $n \geq 1$ then $C \sim w_n \cdots w_{j+1}1_{e(w_j)}w_j^{-1} \cdots w_1$ for all $1 \leq j \leq n - 1$. If $C = w_n \cdots w_1$ is a string of length $n \geq 1$ then there exists and indecomposable Λ_f-module $M[C]$, called the string module corresponding to the string representative C, which can be described as follows. There is an ordered k-basis $\{z_0, z_1, \ldots, z_n\}$ of $M[C]$ such that the action of Λ_f on $M[C]$ is given by the following representation $\varphi_C : \Lambda_f \to \text{Mat}(n + 1, k)$. Let $v(j) = e(w_j)$ for $0 \leq j \leq n - 1$ and $v(n) = s(w_n)$. Then for each vertex $i \in \{0, 1, 2\}$ mod 3 and for each arrow $\zeta \in \{\zeta_0, \zeta_1, \tau_1, \zeta_2, \tau_2\}$ in Q and for all $0 \leq j \leq n$ define

$$(3) \quad \varphi_C(i)(z_j) = \begin{cases} z_j, & \text{if } v(j) = i \\ 0, & \text{otherwise} \end{cases} \quad \text{and} \quad \varphi_C(\zeta)(z_j) = \begin{cases} z_{j-1}, & \text{if } w_j = \zeta \\ z_{j+1}, & \text{if } w_{j+1} = \zeta^{-1} \\ 0, & \text{otherwise} \end{cases}$$

We call φ_C the canonical representation and $\{z_0, z_1, \ldots, z_n\}$ a canonical k-basis for $M[C]$ relative to the string representative C. Note that $M[C] \cong M[C^{-1}]$. If $C = 1_i$ with $i \in \{0, 1, 2\}$ mod 3 then $M[C]$ is the simple Λ_f-module corresponding to vertex i. We denote the simple Λ_f-modules corresponding to the vertices 0, 1 and 2 of Q by $M[1_0], M[1_1]$ and $M[1_2]$, respectively.

3.2. The stable Auslander-Reiten quiver of Λ_f. We denote by $\Gamma_s(\Lambda_f)$ the stable Auslander-Reiten quiver of Λ_f (see [1, VII]). For all $i \in \{0, 1, 2\}$ mod 3 there exists a path in Q of length 3 starting and ending at i, namely

$$L_i = \tau_i + 2\tau_{i+1}\tau_i.$$

The components \mathfrak{C} of $\Gamma_s(\Lambda_f)$ consisting of string Λ_f-modules are two 3-tubes and infinitely many non-periodic components of type \mathbb{ZA}_∞. In the following, we describe the irreducible morphism between string Λ_f-modules.

Assume $C = w_nw_{n-1}\cdots w_1$ with $n \geq 1$ is a string. We say that C is directed if all w_j are arrows and we say that C is a maximal directed string if C is directed and if for any arrow ζ in Q, $\zeta C \in J$. Let \mathcal{M} be the set of all maximal directed strings, i.e.,

$$\mathcal{M} = \{\zeta_0^{-1}, \zeta_1^{-1}, \zeta_2^{-1}, \tau_2^{-1}\tau_1, \zeta_0^{-1}, \zeta_2^{-1}\tau_1, \zeta_0^{-1}\tau_0\tau_2, \zeta_2^{-1}\tau_1\tau_0\}.$$

Let C be a string. We say that C starts on a peak (respectively, starts in a deep) provided that there is no arrow ζ in Q such that $C\zeta$ (respectively, $C\zeta^{-1}$) is a string; we also say that C ends in a peak (respectively,
ends in a deep) provided that there is no arrow γ in Q such that $\gamma^{-1}C$ (respectively, γC) is a string. If C is a string not starting on a peak (respectively, not starting in a deep), say $C\zeta$ (respectively, $C\zeta^{-1}$) is a string for some arrow ζ then there is a unique directed string $D \in \mathcal{M}$ such that $C_b = C\zeta D^{-1}$ (respectively, $C_c = C\zeta^{-1} D$) is a string. We say C_b (respectively, C_c) is obtained from C by adding a hook (respectively, a co-hook) on the right side. Dually, if C is a string not ending on a peak (respectively, not ending in a deep), say $\gamma^{-1}C$ (respectively, γC) is a string for some arrow γ in Q then there is a unique directed string $E \in \mathcal{M}$ such that $h C = E\gamma^{-1}C$ (respectively, $c C = E^{-1}\gamma D$) is a string. We say $h C$ (respectively, $c C$) is obtained from C by adding a hook (respectively, a co-hook) on the right side. By [11], all irreducible morphisms between string modules are either canonical injections $M[C] \to M[C_b]$, $M[C] \to M[h C]$, or canonical projections $M[C_c] \to M[C]$, $M[c C] \to M[C]$. Suppose $M[C]$ is a string module of minimal length such that $M[C]$ belongs to a component \mathcal{E} of $\Gamma_s(\Lambda_F)$ of type \mathbb{Z}_3^∞. Since none of the projective Λ_F-modules is uniserial then

![Figure 1. The stable Auslander-Reiten component near $M[C]$.](image)

near $M[C]$ the component \mathcal{E} looks as in Figure 1.

3.3. Homomorphisms between string modules for Λ_F

Let S and T be strings for Λ_F. Suppose C is a substring of both S and T such that the following conditions (i) and (ii) are satisfied.

(i) $S \sim BCD$, where B is a substring which is either of length zero or $B = B'\zeta$ for an arrow ζ, and D is a substring which is either of length zero or $D = \gamma^{-1}D'$ for an arrow γ, i.e., $S \sim B' \xleftarrow{\zeta} C \xrightarrow{\gamma} D'$.

(ii) $T \sim ECF$, where E is a substring which is either of length zero or $E = E'\epsilon^{-1}$ for an arrow ϵ, and F is a substring which is either of length zero or $F = \mu F'$ for an arrow μ, i.e., $T \sim E' \xrightarrow{\epsilon} C \xleftarrow{\mu} F'$.

Then by [15] there exists a composition of Λ_F-module homomorphisms

\[(5) \quad \sigma_C : M[S] \to M[C] \to M[T].\]

We call σ_C a canonical homomorphism from $M[S]$ to $M[T]$ that factors through $M[C]$. It follows from [15] that each Λ_F-module homomorphism from $M[S]$ to $M[T]$ can be written uniquely as a k-linear combination of canonical Λ_F-module homomorphisms as in (5). In particular, if $M[S] = M[T]$ then the canonical endomorphisms generate $\text{End}_{\Lambda_F}(M[S])$.

3.4. Projective Indecomposable Λ_F-modules and modules whose endomorphism ring is isomorphic to k

For all $i \in \{0, 1, 2\}$ mod 3 vertex of Q, the radical series of the projective indecomposable
\(\Lambda_\ell\)-module \(P_i\) can be described as in the following figure.

\[
\begin{array}{c}
P_i = \begin{array}{c}
\mathcal{L}^{k-1} \\
\varepsilon \rightarrow \\
M[\mathbb{I}_i] \\
\downarrow \\
M[\mathbb{I}_{i+2}] \\
\downarrow \\
M[\mathbb{I}_{i+1}] \\
\downarrow \\
M[\mathbb{I}_i] \\
\end{array}
\end{array}
\begin{array}{c}
\tau_i \\
\tau_{i+1} \\
\tau_{i+2} \\
\tau_i \\
\varepsilon \\
\end{array}
\begin{array}{c}
\mathcal{L}^{k-1} = \\
\varepsilon \rightarrow \\
M[\mathbb{I}_i] \\
\downarrow \\
M[\mathbb{I}_{i+2}] \\
\downarrow \\
M[\mathbb{I}_{i+1}] \\
\downarrow \\
M[\mathbb{I}_i] \\
\end{array}
\begin{array}{c}
\zeta_i \rightarrow \\
\end{array}
\begin{array}{c}
\zeta_i \\
\zeta_i \\
\zeta_i \\
\zeta_i \\
\zeta_i \\
\end{array}
\end{array}
\]

The following result provides a classification of all \(\Lambda_\ell\)-modules whose endomorphism ring is isomorphic to \(k\).

Proposition 3.1. Let \(M[S]\) be a string \(\Lambda_\ell\)-module, where \(\bar{r} = (r_0, r_1, r_2, k)\) and \(r_0, r_1, r_2 \geq 2, k \geq 1\). Then \(M[S]\) has endomorphism ring isomorphic to \(k\) if and only if for some \(i \in \{0, 1, 2\} \mod 3\) the string representative \(S\) is equivalent either to \(\mathbb{I}_i\), or to \(\tau_i\), or to \(\tau_{i+1}\).

Proof. If \(S\) is equivalent either to one of the strings \(\mathbb{I}_0, \mathbb{I}_1\), or to \(\mathbb{I}_2\), then it follows from Schur’s Lemma that \(\text{End}_{\Lambda_\ell}(M[S]) \cong k\). If \(S\) is equivalent to one of the strings \(\tau_0, \tau_1, \tau_2, \tau_1\tau_0, \tau_2\tau_1, \text{ or } \tau_0\tau_2\) then the only canonical endomorphism in \(\text{End}_{\Lambda_\ell}(M[S])\) is the identity homomorphism, which implies that \(\text{End}_{\Lambda_\ell}(M[S])\) is one-dimensional over \(k\). Next assume that \(M[S]\) is a string \(\Lambda_\ell\)-module with endomorphism ring isomorphic to \(k\). Let denote by \(n\) the length of \(S\). If \(n = 0\) then \(S\) is equivalent either to \(\mathbb{I}_0\), or to \(\mathbb{I}_1\), or to \(\mathbb{I}_2\). If \(n = 1\) then \(S\) is equivalent to an arrow. By hypothesis, \(S\) is equivalent neither to \(\zeta_0\), nor to \(\zeta_1\), nor to \(\zeta_2\), for otherwise \(\text{dim}_k \text{End}_{\Lambda_\ell}(M[S]) \geq 2\). This implies that \(S\) is equivalent either to \(\tau_0\), or to \(\tau_1\), or to \(\tau_2\). For the remainder of the proof, assume that \(n \geq 2\) and let \(m\) be maximal such that the string representative \(S\) contains a substring equivalent to \(\zeta_i^{-m}\) for some \(i \in \{0, 1, 2\} \mod 3\), and put \(m = 0\) provided that \(S\) does not contain as substring any of the strings \(\zeta_0, \zeta_1, \zeta_2\) or any of their formal inverses. If \(m > 0\) then there exist suitable strings \(D\) and \(D'\) such that \(S \sim D\zeta_i^{-m}D'\). It follows from the maximality of \(m\) that the string \(\zeta_i^{-m}\) starts in a deep and ends on a peak. Therefore, there exists a non-trivial canonical endomorphism of \(M[S]\) factoring through \(M[\mathbb{I}_i]\) implying that \(\text{dim}_k \text{End}_{\Lambda_\ell}(M[S]) \geq 2\), which contradicts our hypothesis. Thus \(m = 0\), implying that \(S\) does not contain as substrings the arrows \(\zeta_0, \zeta_1, \text{ or } \zeta_2\) or any of their formal inverses. Thus, there exist \(i \in \{0, 1, 2\}\) mod 3 and an integer \(l \in \{0, \ldots, k-1\}\) such that either \(S \sim \mathcal{L}^{l\tau_i} \zeta_i^{-1}\) or \(S \sim \mathcal{L}^{l\tau_i+2}\). If \(l = 0\) then \(S\) is equivalent either to \(\tau_1\tau_0\), or to \(\tau_2\tau_1\), or to \(\tau_0\tau_2\). Assume then that \(l > 0\). If \(S \sim \mathcal{L}^{l\tau_i+2}\) (respectively, \(S \sim \mathcal{L}^{l\tau_i+2}\tau_i\tau_i+1\)) then there exists a non-trivial canonical endomorphism of \(M[S]\) factoring through \(M[\tau_{i+2}]\) (respectively, through \(M[\tau_{i+2}\tau_i+1]\)) implying that \(\text{dim}_k \text{End}_{\Lambda_\ell}(M[S]) \geq 2\), contradicting again our hypothesis. This finishes the proof of Proposition 3.1. \(\square\)

4. COMPONENTS OF \(\Gamma_s(\Lambda_\ell)\) OF TYPE \(\mathbb{Z}A^\infty\) CONTAINING A MODULE WHOSE ENDOMORPHISM RING IS ISOMORPHIC TO \(k\) AND 3-TUBES

For all \(i \in \{0, 1, 2\} \mod 3\) we define:

\[
\zeta_i = \tau_i \zeta_i^{-r_i+1} \\
\bar{\zeta}_i = \mathcal{L}^{l_i+2} \tau_i + \tau_i \zeta_i^{-1}
\]

4.1. Components of \(\Gamma_s(\Lambda_\ell)\) of type \(\mathbb{Z}A^\infty\) containing a module whose endomorphism ring is isomorphic to \(k\).
Proposition 4.1. For \(i \in \{0, 1, 2\} \) mod 3, let \(\mathfrak{A}_i \) be the component of the stable Auslander-Reiten quiver of \(\Lambda_r \) containing the simple \(\Lambda_r \)-module \(M[\mathfrak{1}_i] \), where \(\mathfrak{1}_i = (r_0, r_1, r_2, k) \) and \(r_0, r_1, r_2 \geq 2, k \geq 1 \). Define
\[
(1_i)_h = a_i + 2 \\
(1_i)hh = a_i + 2a_i + 1.
\]
The component \(\mathfrak{A}_i \) is \(\Omega \)-stable if and only if for \(r_i = 2 \). If \(k = 1 \) then the module \(M[r_{i+1}] \) lies in \(\Omega(\mathfrak{A}_i) \). The modules in \(\mathfrak{A}_i \cup \Omega(\mathfrak{A}_i) \) whose stable endomorphism rings are isomorphic to \(k \) are precisely the modules in \(\Omega \)-orbits of the modules \(U_0 = M[\mathfrak{1}_i] \), \(U_1 = M[(1_i)_h] \) and \(U_2 = M[(1_i)hh] \). Their universal deformation rings are
\[
R(\Lambda_r, U_0) \cong k[[t]]/(t^{r_i}), \\
R(\Lambda_r, U_1) \cong k, \\
R(\Lambda_r, U_2) \cong k[[t]].
\]

Proof. Let \(i \in \{0, 1, 2\} \) mod 3 be fixed. Using hooks and co-hooks (see §3.2), we see that all \(\Lambda_r \)-modules in \(\mathfrak{A}_i \cup \Omega(\mathfrak{A}_i) \) lie in the \(\Omega \)-orbit of either
\[
A_{0,0} = M[(a_i + 2a_i + 1)^q], \\
A_{0,1} = M[(a_i + 2a_i + 2)^q], \\
A_{0,2} = M[(a_i + 2a_i + 2)^q]^2, \\
B_{0,0} = M[(b_i + 1)^q], \\
B_{0,1} = M[(b_i + 1)^q]^2, \\
B_{0,2} = M[(b_i + 1)^q]^2.
\]
for some \(q \geq 0 \). Note for example that \(A_{0,0} = M[\mathfrak{1}_i] = B_{0,0}, A_{0,1} = M[(1_i)_h], A_{0,2} = M[(1_i)hh], B_{0,1} = M[(\mathfrak{1}_i)] \) and \(B_{0,2} = M[\mathfrak{1}_i] \). Since \(\Omega M[\mathfrak{1}_i] = M[\zeta^{-r_i} \mathfrak{1}_i^{k-1} r_i + 1] \) then \(\mathfrak{A}_i = \Omega(\mathfrak{A}_i) \).

Using §3.3 and the description of the projective indecomposable \(\Lambda_r \)-module \(P_i \) in (6), it is straightforward to show that the stable endomorphism ring of \(A_{0,j} \) is isomorphic to \(k \) for \(j \in \{0, 1, 2\} \) and that \(\text{Ext}^1_{\Lambda_r}(A_{0,j}, A_{0,j}) \) is isomorphic to \(k \) for \(j \in \{0, 2\} \) and zero for \(j = 1 \). On the other hand, for \(q \geq 1 \) and for \(j \in \{0, 1, 2\} \), the \(\Lambda_r \)-module \(A_{0,j} \) has a non-zero endomorphism which factors through \(M[\mathfrak{1}_i] \) and which does not factor through a projective \(\Lambda_r \)-module. Assume that \(r_i = 2 \). Since in this case \(\mathfrak{A}_i \) is \(\Omega \)-stable, then for all \(j \in \{0, 1, 2\} \) mod 3 and for all \(q \geq 0 \), the \(\Lambda_r \)-module \(B_{0,j} \) lies in the \(\Omega \)-orbit of \(A_{0,j} \) for some \(j' \in \{0, 1, 2\} \) and \(q' \geq 0 \). In particular, \(B_{0,1} = \Omega^{-1} A_{0,0}, B_{0,2} = \Omega^{-1} A_{0,1} \) and \(B_{1,0} = \Omega^{-1} A_{0,2} \). If \(r_i \geq 3 \) then each of the modules \(B_{0,1}, B_{0,2} \) and \(B_{0,0} \) with \(j \in \{0, 1, 2\} \) and \(q \geq 1 \) have a non-zero endomorphism factoring through \(M[\mathfrak{1}_i] \) and which does not factor through a projective \(\Lambda_r \)-module. Therefore, for all \(r_i \geq 2 \), the modules in \(\mathfrak{A}_i \cup \Omega(\mathfrak{A}_i) \) whose stable endomorphism rings are isomorphic to \(k \) are precisely the modules in \(\Omega \)-orbits of the modules \(A_{0,0}, A_{0,1} \) and \(A_{0,2} \).

Since \(\text{Ext}^1_{\Lambda_r}(A_{0,1}, A_{0,0}) = 0 \), it follows that \(R(\Lambda_r, A_{0,1}) \cong k \). Since \(\text{Ext}^1_{\Lambda_r}(A_{0,2}, A_{0,0}) \) is isomorphic to \(k \) for \(j \in \{0, 2\} \), it follows that \(R(\Lambda_r, A_{0,j}) \) is a quotient of \(k[[t]] \) for \(j \in \{0, 2\} \).

Let the \(\Lambda_r \)-module \(A_{0,0} = M[\mathfrak{1}_i] \).

Claim 4.2. The universal deformation ring \(R(\Lambda_r, A_{0,0}) \) of \(A_{0,0} \) is isomorphic to \(k[[t]]/(t^{r_i}) \).

Proof of Claim. For all \(l \in \{0, \ldots, r_i - 1\} \) let \(S_l = \zeta^{-l} \). Then for all \(l \in \{1, \ldots, r_i - 1\} \) there exists a non-trivial canonical endomorphism \(\sigma_l \) of the \(\Lambda_r \)-module \(M[S_l] \) which factors through \(M[S_{l-1}] \), namely
\[
\sigma_l : M[S_l] \to M[S_{l-1}] \to M[S_l].
\]
Observe that the kernel of \(\sigma_l \) and the image of \(\sigma_l^{-1} \) are isomorphic to \(A_{0,0} \), and that \(\sigma_l \) is a quotient of \(M[S_l] \) and \(M[S_{l-1}] \). Thus, for all \(l \in \{0, \ldots, r_i - 1\} \), the \(\Lambda_r \)-module \(M[S_l] \) is naturally a \(k[[t]]/(t^{l+1}) \otimes_k \Lambda_r \)-module where the action of \(t \) over \(m \in M[S_l] \) is given as \(t \cdot m = \sigma_l(m) \). In particular, \(t M[S_l] \cong M[S_{l-1}] \) for all \(l \in \{1, \ldots, r_i - 1\} \).

Let \(l \in \{1, \ldots, r_i - 1\} \) be fixed and let \(\{b_l\} \) be a \(k \)-basis of \(A_{0,0} \). Using the isomorphism \(M[S_l]/t M[S_l] \cong A_{0,0}, \) we can lift \(b_l \) to an element \(b_l \in M[S_l] \). It follows that \(\{b_1\} \) is linearly independent over \(k \) and that \(\{t^a b_1 \mid 0 \leq a \leq l\} \) is a \(k \)-basis of \(t M[S_l] \cong M[S_{l-1}] \). Therefore, \(\{b_l\} \) is a \(k[[t]]/(t^{l+1}) \)-basis of \(M[S_l] \), which means that \(M[S_l] \) is free over \(k[[t]]/(t^{l+1}) \). Moreover, \(M[S_l] \) lies in a short exact sequences of \(\Lambda_r \)-modules
\[
0 \to t M[S_l] \to M[S_l] \to k \otimes k[[t]]/(t^{l+1}) M[S_l] \to 0.
\]
Consequently, there exists an isomorphism of Λ-modules $\phi_\ell : \k[t]\otimes_{\k[[t]]}(t^{\ell+1})M[S_1] \to A_{0,0}$, which implies that $(M[S_1], \phi_\ell)$ is a lift of $A_{0,0}$ over $\k[t]/(t^{\ell+1})$. Consider the lift $(M[S_{r,-1}], \phi_{r,-1})$ of $A_{0,0}$ over $\k[t]/(t^{r})$. Since $\text{End}_{\Lambda}(A_{0,0}) \cong \k$ then by Theorem 2.3(i), there exists a unique morphism $\alpha : R(\Lambda, A_{0,0}) \to \k[t]/(t^{r})$ in \hat{C} such that $M[S_{r,-1}] \cong \k[t]/(t^{r}) \otimes _{R(\Lambda, A_{0,0}),\alpha} U(\Lambda, A_{0,0})$, where $R(\Lambda, A_{0,0})$ and $U(\Lambda, A_{0,0})$ are respectively the universal deformation ring and the universal deformation of the Λ-module $A_{0,0}$. Since $(M[S_1], \phi_1)$ is not the trivial lift of $A_{0,0}$ over $\k[t]/(t^2)$, it follows that there exists a unique surjective morphism $\alpha' : R(\Lambda, A_{0,0}) \to \k[t]/(t^{2})$ in \hat{C} such that $M[S_1] \cong \k[t]/(t^{2}) \otimes _{R(\Lambda, A_{0,0}),\alpha'} U(\Lambda, A_{0,0})$. By considering the natural projection $\pi_{r,-2} : \k[t]/(t^{2}) \to \k[t]/(t)$ and the lift $(U', \phi_{U'})$ of $A_{0,0}$ over $\k[t]/(t^2)$ corresponding to the morphism $\pi_{r,-2} \circ \alpha$, we obtain

\[
U' \cong \k[t]/(t^2) \otimes _{R(\Lambda, A_{0,0}),\pi_{r,-2} \circ \alpha} U(\Lambda, A_{0,0}) \\
\cong \k[t]/(t^{2}) \otimes _{\k\Lambda_{\alpha}} \k[t]/(t^{r}) \otimes _{R(\Lambda, A_{0,0}),\alpha} U(\Lambda, A_{0,0}) \\
\cong \k[t]/(t^{2}) \otimes _{\k\Lambda_{\alpha}} \k[t]/(t^{r}) \otimes _{R(\Lambda, A_{0,0}),\alpha} U(\Lambda, A_{0,0}) \\
\cong M[S_{r,-1}] \otimes _{\k} \Lambda_{\alpha} \cong M[S_1].
\]

It follows from Remark 2.1 that $[U', \phi_{U'}] = [M[S_1], \phi_1]$ in $\hat{F}_{A_{0,0}}(\k[t]/(t^2))$. The uniqueness of α' implies $\alpha' = \pi_{r,-2} \circ \alpha$. Since α' is surjective, it follows that α is also surjective. We want to prove that α is an isomorphism. Suppose this is false. Then there exists a surjective \k- algebra homomorphism $\alpha_0 : R(\Lambda, A_{0,0}) \to \k[t]/(t^{r+1})$ in \hat{C} such that $\pi_{r+1,-1} \circ \alpha_0 = \alpha$, where $\pi_{r+1,-1} : \k[t]/(t^{r+1}) \to \k[t]/(t^{r})$ is the natural projection. Let M_0 be a $\k[t]/(t^{r+1}) \otimes _{\k\Lambda_{\alpha}} \Lambda_{\alpha}$-module which defines a lift of $A_{0,0}$ over $\k[t]/(t^{r+1})$ corresponding to α_0. Since the kernel of $\pi_{r+1,-1}$ is $(t^{r})/(t^{r+1})$, then $M_0/t^r M_0 \cong M[S_{r,-1}, 1]$. Consider the $\k[t]/(t^{r+1}) \otimes _{\k\Lambda_{\alpha}} \Lambda_{\alpha}$-module homomorphism $g : M_0 \to t^r M_0$ defined by $g(m) = t^r m$ for all $m \in M_0$. Since M_0 is free over $\k[t]/(t^{r+1})$, if follows that the kernel of g is isomorphic to tM_0. Since g is a surjection, it follows that $M_0/tM_0 \cong t^r M_0$, which implies that $t^r M_0 \cong A_{0,0}$. Hence, there exists a non-split short exact sequence of $\k[t]/(t^{r+1}) \otimes _{\k} \Lambda_{\alpha}$-modules

\[
0 \to A_{0,0} \to M_0 \to M[S_{r,-1}, 1] \to 0.
\]

Since $\Omega M[S_{r,-1}, 1] = \Omega M[S_{r,-1}] \cong M[S_{r,-1}] = M[k^{-1}r+2r_{r+1}]$, then

\[
\text{Ext}^1_{\Lambda}(M[S_{r,-1}], A_{0,0}) = \text{Hom}_{\Lambda}(M[S_{r,-1}], A_{0,0}) = 0.
\]

It follows that the sequence (9) splits as a sequence of Λ-modules. Hence $M_0 = A_{0,0} \oplus M[S_{r,-1}]$ as Λ-modules. Identifying the elements of M_0 as (a, m) with $a \in A_{0,0}$ and $m \in M[S_{r,-1}]$ we see that the t acts on $(a, m) \in M_0$ at $t \cdot (a, m) = (\mu(m), \sigma_{r,-1}(m))$, where $\mu : M[S_{r,-1}] \to A_{0,0}$ is a surjective Λ-module homomorphism and $\sigma_{r,-1}$ is as in (8). Since the canonical homomorphism $e : M[S_{r,-1}] \to M[1]$, $M[1]$ generates $\text{Hom}_{\Lambda}(M[S_{r,-1}], A_{0,0})$, then there exists $c \in \k$ such that $\mu = ec$, which implies that the kernel of μ is $tM[S_{r,-1}]$. Therefore $t^r(a, m) = (e(t^{r-1}m), \sigma_{r,-1}(m)) = (0, 0)$ for all $a \in A_{0,0}$ and $m \in M[S_{r,-1}]$, which contradicts the fact that $t^r M_0 \cong A_{0,0}$. Thus $\alpha : R(\Lambda, A_{0,0}) \to \k[t]/(t^{r+1})$ is an isomorphism and $R(\Lambda, A_{0,0}) \cong \k[t]/(t^{r+1})$. This finishes the proof of Claim 4.2.

Next consider the string Λ-module $A_{0,2} = M[(1_1)_{h k}]$

\[\text{Claim 4.3.} \text{ The universal deformation ring } R(\Lambda, A_{0,2}) \text{ of } A_{0,2} \text{ is isomorphic to } \k[t].\]

\[\text{Proof of Claim.} \text{ Let } T_0 = (1_1)_{h k} \text{ and for all } l \geq 1, \text{ let } T_l = T_{l-1}r_1(1_1)_{h k}. \text{ Thus, for all } l \geq 1 \text{ and by using similar arguments as those in the proof of Claim 4.2, we get lifts } (M[T_i], \varphi_i) \text{ of } A_{0,2} \text{ over } \k[t]/(t^{l+1}), \text{ where for each } l \geq 1, \text{ t acts on } m \in M[T_1] \text{ at } t \cdot m = \delta_l(m), \text{ where } \delta_l \text{ is the non-trivial canonical endomorphism of } M[T_l] \text{ that factors through } M[T_{l-1}], \text{ namely}\]

\[\delta_l : M[T_1] \to M[T_{l-1}] \to M[T_l].\]

\[\text{Note that for all } l \geq 1, \text{ we have natural projections } \pi_{l,-1} : M[T_l] \to M[T_{l-1}]. \text{ Let } N_0 = \lim_{l \to \infty} M[T_l] \text{ and let } t \text{ act on } N_0 \text{ as } \lim_{l \to \infty} \pi_{l,-1}. \text{ In particular, } \k[t]/(t^{l+1}) N_0 \cong N_0/t N_0 \cong A_{0,2}, \text{ which implies that there exists an isomorphism of } \Lambda \text{-modules } \varphi_0 : \k[t]/(t^{l+1}) N_0 \to A_{0,2}. \text{ Let } n = \dim_k A_{0,2} \text{ and let } \{B_j\}_{1 \leq j \leq n} \text{ be a } k\text{-basis of} \]

For all $1 \leq j \leq n$, we are able to lift these elements \bar{B}_j in N_0/tN_0 to elements B_j of N_0 such that $\{B_j\}_{1 \leq j \leq n}$ is a generating set of the $k[[t]] \otimes_k \Lambda_1$-module N_0. It follows that $\{B_j\}_{1 \leq j \leq n}$ is a $k[[t]]$-basis of N_0, which implies that N_0 is free over $k[[t]]$. Therefore, (N_0, φ_0) is a lift of $A_{0,2}$ over $k[[t]]$ and there exists a unique k-algebra homomorphism $\beta : R(\Lambda_r, A_{0,2}) \to k[[t]]$ in \mathcal{C} corresponding to the deformation defined by (N_0, φ_0), where $R(\Lambda_r, A_{0,2})$ is the universal deformation ring of $A_{0,2}$. Since $N_0/t^2N_0 \cong M[T_1]$ as Λ_r-modules, we can see as in the proof of Claim 4.2 that since N_0/t^2N_0 defines a non-trivial lift of $A_{0,2}$ over $k[[t]]/(t^2)$, then β is a surjection. Since $R(\Lambda_r, A_{0,2})$ is a quotient of $k[[t]]$, it follows that β is an isomorphism. Hence $R(\Lambda_r, A_{0,2}) \cong k[[t]]$. This finishes the proof of Claim 4.3, which finishes the proof of Proposition 4.1.

\[\square \]

Proposition 4.4. For $i \in \{0, 1, 2\}$ mod 3, let \mathfrak{B}_i be the component of $\Gamma_s(\Lambda_r)$ containing the Λ_r-module $M[\tau_i]$, where $\bar{r} = (r_0, r_1, r_2, k)$ and $r_0, r_1, r_2 \geq 3$, $k \geq 1$. Define

\[(\tau_i)_h = \tau_i \mathcal{W}_{i+2} \quad \text{and} \quad h(\tau_i) = \mathcal{W}_{i+1} \tau_i.\]

If $k = 1$ then $\mathfrak{B}_i = \Omega(\mathfrak{A}_{i+2})$, where \mathfrak{A}_{i+2} is as in Proposition 4.1. Thus, $\mathfrak{B}_i = \Omega(\mathfrak{B}_i)$ if and only if $k = 1$ and $r_{i+2} = 2$. The modules in $\mathfrak{B}_i \cup \Omega(\mathfrak{B}_i)$ whose stable endomorphism rings are isomorphic to k are precisely the modules in the Ω-orbits of the modules $V_0 = M[\tau_i]$, $V_1 = M[(\tau_i)_h]$ and $V_{-1} = M[h(\tau_i)]$. If $k = 1$ then the universal deformation rings are

\[R(\Lambda_r, V_0) \cong k, \quad R(\Lambda_r, V_1) \cong k[[t]]/(t^{r_{i+2}}), \quad \text{and} \quad R(\Lambda_r, V_{-1}) \cong k[[t]].\]

If $k \geq 2$ then the universal deformation rings are

\[R(\Lambda_r, V_0) \cong k, \quad R(\Lambda_r, V_1) \cong k[[t]], \quad \text{and} \quad R(\Lambda_r, V_{-1}) \cong k[[t]].\]

Proof. Let $i \in \{0, 1, 2\}$ mod 3 be fixed. Using hooks and co-hooks (see §3.2) we see that all Λ_r-modules in \mathfrak{B}_i lie in the Ω-orbit of either

\[C_{q,0} = M[\tau_i (a_{i+2} b_{i+2} + a_{i+1})^q], \quad \text{or} \quad C_{q,1} = M[\tau_i (a_{i+2} b_{i+1} + a_{i+1})^q a_{i+2}], \quad \text{or} \quad C_{q,2} = M[\tau_i (a_{i+2} b_{i+1} + a_{i+1})^q a_{i+2} a_{i+1}], \quad \text{or} \quad D_{q,0} = M[(b_{i+2} b_{i+1})^q \tau_i], \quad \text{or} \quad D_{q,1} = M[b_{i+2} b_{i+1} (b_{i+2} b_{i+1})^q \tau_i], \quad \text{or} \quad D_{q,2} = M[b_{i+2} (b_{i+2} b_{i+1})^q \tau_i], \]

for some $q \geq 0$.

Note that $C_{0,0} = M[\tau_i] = D_{0,0}$, $C_{0,1} = M[(\tau_i)_h]$, $C_{0,2} = M[h(\tau_i)]$, $D_{0,1} = M[h(\tau_i)]$ and $D_{0,2} = M[\tau_i]$. By Proposition 4.1, it follows that if $k = 1$ then $M[\tau_i]$ lies in $\Omega(\mathfrak{A}_{i+2})$, which implies that \mathfrak{B}_i is Ω-stable if and only if $r_{i+2} = 2$ and $k = 1$.

Using §3.3 and the description of the projective indecomposable Λ_r-module P_i in (6), it is straightforward to show that the stable endomorphism rings of $C_{0,j}$ and $D_{0,j}$ are isomorphic to k for $j \in \{0, 1\}$, that $\text{Ext}_{}^1_{\Lambda_r}(C_{0,1}, C_{0,1})$ and $\text{Ext}_{}^1_{\Lambda_r}(D_{0,1}, D_{0,1})$ are isomorphic to k, and that $\text{Ext}_{}^1_{\Lambda_r}(C_{0,0}, C_{0,0}) = 0$. Moreover, $D_{q,0}$ and $D_{q,j}$ with $q \geq 1$ and $j \in \{0, 1, 2\}$ have a non-zero canonical endomorphism factoring through $M[\tau_i]$ that does not factor through a projective Λ_r-module. If $k \geq 2$ or $r_{i+2} \geq 3$ then $C_{0,2}$ and $C_{q,j}$ with $q \geq 1$ and $j \in \{0, 1, 2\}$ have a non-zero canonical endomorphism which factors through $M[\mathbb{A}_{i+1}]$ and which does not factor through a projective Λ_r-module. If $k = 1$ and $r_{i+2} = 2$ then $C_{0,2} = \Omega^{-1} C_{0,1}$, $C_{1,0} = \Omega^{-3} C_{0,0}$, $C_{1,1} = \Omega^{-3} D_{0,1}$, and the modules $C_{1,2}$ and $C_{q,j}$ with $q \geq 2$, $j \in \{0, 1, 2\}$ have a non-trivial canonical endomorphism factoring through $M[\mathbb{A}_{i+1}]$ that does not factor through a projective Λ_r-module. Therefore, for all $r_0, r_1, r_2 \geq 2$ or $k \geq 1$, the modules in $\mathfrak{B}_i \cup \Omega(\mathfrak{B}_i)$ whose stable endomorphism rings are isomorphic to k are precisely the modules in the Ω-orbits of $C_{0,0}, C_{0,1}$ and $D_{0,1}$.

Since $\text{Ext}_{}^1_{\Lambda_r}(C_{0,0}, C_{0,0}) = 0$, it follows that $R(\Lambda_r, C_{0,0}) \cong k$. Since $\text{Ext}_{}^1_{\Lambda_r}(C_{0,1}, C_{0,1})$ and $\text{Ext}_{}^1_{\Lambda_r}(D_{0,1}, D_{0,1})$ are both isomorphic to k then $R(\Lambda_r, C_{0,1})$ and $R(\Lambda_r, C_{0,1})$ are quotients of $k[[t]]$. Assume that $k = 1$. Then
by Theorem 2.3 and Proposition 4.1, it follows that
\[R(\Lambda_r, C_0, 1) \cong R(\Lambda_r, M^2 \mathbb{Z}_{i+2}) \cong k[[t]]/(t^{r+2}), \]
and
\[R(\Lambda_r, D_0, 1) \cong R(\Lambda_r, \Omega M([\mathbb{Z}_{i+2}]_{hh})) \cong k[[t]]. \]

Next assume that \(k \geq 2 \). Let \(S_0 = (\tau_i)_h \), \(T_0 = h(\tau_i) \) and for all \(l \geq 1 \), let \(S_l = S_{l-1} \tau_{i+1}(\tau_i)_h \) and \(T_l = T_{l-1} \zeta_i^{-1} h(\tau_i) \). Then by using similar arguments as in proof of Claim 4.3 within the proof of Proposition 4.1, we obtain that \(R(\Lambda_r, C_0, 1) \cong k[[t]] \cong R(\Lambda_r, D_0, 1) \). This finishes the proof of Proposition 4.4. \(\square \)

Let \(\xi_i \) be the component of \(\Gamma_s(\Lambda_r) \) containing the string module \(M[\tau_{i+1} \tau_i] \) for some \(i \in \{0, 1, 2\} \mod 3 \). Observe that if \(k = 1 \) then \(\xi_i \) is one of the 3-tubes, otherwise \(\xi_i \) is a component of type \(ZA_{\infty} \). In Proposition 4.6, we determine the universal deformation rings of modules whose stable endomorphism ring is isomorphic to \(k \) lying in the 3-tubes (see Proposition 4.6). In the following result, we assume that \(k \geq 2 \).

Proposition 4.5. For \(i \in \{0, 1, 2\} \mod 3 \), let \(\xi_i \) be the component of \(\Gamma_s(\Lambda_r) \) containing the \(\Lambda_r \)-module \(M[\tau_{i+1} \tau_i] \), where \(\vec{r} = (r_0, r_1, r_2, k) \) and \(r_0, r_1, r_2 \geq 2, k \geq 2 \). Define
\[h(\tau_{i+1} \tau_i) = b_{i+2} \tau_{i+1} \tau_i \quad \text{and} \quad hh(\tau_{i+1} \tau_i) = b_{i+2} b_{i+2} \tau_{i+1} \tau_i. \]
The component \(\xi_i \) is \(\Omega \)-stable if and only if \(k = 2 \). The modules in \(\xi_i \) whose stable endomorphism ring is isomorphic to \(k \) are precisely the modules in the \(\Omega \)-orbits of the modules \(W_0 = M[\tau_{i+1} \tau_i], W_{-1} = M[h(\tau_{i+1} \tau_i)] \) and \(W_{-2} = M[h_h(\tau_{i+1} \tau_i)] \). Their universal deformation rings are
\[R(\Lambda_r, W_0) \cong k[[t]]/(t^k), \quad R(\Lambda_r, W_{-1}) \cong k, \quad R(\Lambda_r, W_{-2}) \cong k[[t]]. \]

Proof. Let \(i \in \{0, 1, 2\} \mod 3 \) be fixed. Using hooks and co-hooks (see §3.2) we see that all \(\Lambda_r \)-modules in \(\xi_i \) lie in the \(\Omega \)-orbit of either
\[E_{q,0} = M[\tau_{i+1} \tau_i(t_{i+2}^{q} \tau_{i+1}^{q})], \quad \text{or} \]
\[E_{q,1} = M[\tau_{i+1} \tau_i(t_{i+2}^{q} \tau_{i+1}^{q})^{q} \tau_{i+1}^{q+2}], \quad \text{or} \]
\[E_{q,2} = M[\tau_{i+1} \tau_i(t_{i+2}^{q} \tau_{i+1}^{q})^{q} \tau_{i+1}^{q+2}], \quad \text{or} \]
\[F_{q,0} = M[b_{i+2} b_{i+2}^{q} \tau_{i+1}^{q+1}], \quad \text{or} \]
\[F_{q,1} = M[b_{i+2} b_{i+2}^{q} \tau_{i+1}^{q+1}], \quad \text{or} \]
\[F_{q,2} = M[b_{i+2} b_{i+2}^{q} \tau_{i+1}^{q+1}], \]
for some \(q \geq 0 \). Note that \(E_{0,0} = M[\tau_{i+1} \tau_i] = F_{0,0}, E_{0,1} = M[(\tau_{i+1} \tau_i)_h], E_{0,2} = M[(\tau_{i+1} \tau_i)_{hh}], F_{0,1} = M[h(\tau_{i+1} \tau_i)] \) and \(F_{0,2} = M[h_h(\tau_{i+1} \tau_i)] \). Since \(\Omega F_{0,0} = M[k(\tau_{i+1} \tau_i)^{k-2}] \), then \(\xi_i \) is \(\Omega \)-stable if and only if \(k = 2 \).

By using §3.3 and the description of the projective indecomposable \(\Lambda_r \)-module \(P_i \) in (6), it is straightforward to show that for all \(j \in \{0, 1, 2\} \), the stable endomorphism ring of \(F_{0,j} \) is isomorphic to \(k \) and for \(q \geq 1 \), the module \(F_{q,j} \) has a non-trivial canonical endomorphism which factors through \(M[\tau_{i+1} \tau_i] \) and which does not factor through a projective \(\Lambda_r \)-module.

Assume first that \(k = 2 \). Since in this case \(\xi_i \) is \(\Omega \)-stable, then for all \(j \in \{0, 1, 2\} \mod 3 \) and for all \(q \geq 0 \) the \(\Lambda_r \)-module \(E_{q,j} \) lies in the \(\Omega \)-orbit of \(F_{q,j} \) for some \(j' \in \{0, 1, 2\} \) and \(q' \geq 0 \). In particular, \(E_{0,0} = \Omega^{-1} F_{0,0}, E_{0,2} = \Omega^{-1} F_{0,1} \) and \(E_{1,0} = \Omega^{-1} F_{0,2} \). Next assume that \(k \geq 3 \). Then for all \(q \geq 0 \) and \(j \in \{0, 1, 2\} \) the module \(E_{q,j} \) has a non-trivial canonical endomorphism, which factors through \(M[\mathbb{Z}_{i+2}] \) and which does not factor through a projective \(\Lambda_r \)-module. Therefore for all \(k \geq 2 \), the modules in \(\xi_i \) whose stable endomorphism ring is isomorphic to \(k \) are precisely the modules in the \(\Omega \)-orbits of the modules \(F_{0,0}, F_{0,1} \) and \(F_{0,2} \).

Since \(\operatorname{Ext}^1_{\Lambda_r}(F_{0,1}, F_{0,1}) = 0 \), it follows that \(R(\Lambda_r, F_{0,1}) \cong k \). Since \(\operatorname{Ext}^1_{\Lambda_r}(F_{0,0}, F_{0,0}) \) and \(\operatorname{Ext}^1_{\Lambda_r}(F_{0,2}, F_{0,2}) \) are isomorphic to \(k \) then \(R(\Lambda_r, F_{0,0}) \) and \(R(\Lambda_r, F_{0,2}) \) are quotients of \(k[[t]] \). Let \(T_0 = h(\tau_{i+1} \tau_i) \) and for all \(0 \leq j \leq k-1 \) and \(l \geq 1 \), let \(S_j = t_{i+2}^{l-1} \tau_{i+1} \) and \(T_j = h(\tau_{i+1} \tau_i) t_{i+1}^{-1} T_{j-1} \). By using similar arguments as those in the proof of Proposition 4.1, we obtain that \(R(\Lambda_r, F_{0,0}) \cong k[[t]]/(t^k) \) and \(R(\Lambda_r, F_{0,2}) \cong k[[t]] \). This finishes the proof of Proposition 4.5. \(\square \)
4.2. 3-tubes.

Proposition 4.6. Let \mathfrak{T}_1 and \mathfrak{T}_2 be the two 3-tubes of $\Gamma_s(\Lambda_r)$, with $\vec{r} = (r_0, r_1, r_2, k)$ and $r_0, r_1, r_2 \geq 2$ and $k \geq 1$. Then $\Omega(\mathfrak{T}_1) = \mathfrak{T}_2$. Let $T = \zeta_0^{-r_0+1}$ and define

$$T_h = \zeta_0^{-r_0+1} r_2 \zeta_2^{r_0+1} \quad \text{and} \quad T_{hh} = \zeta_0^{-r_h+1} r_1 \zeta_1^{r_1+1}.$$

The modules in $\mathfrak{T}_1 \cup \mathfrak{T}_2$ whose stable endomorphism rings are isomorphic to k are precisely the modules in the Ω-orbit of $X_0 = M[T]$, $X_1 = M[T_h]$ and $X_2 = M[T_{hh}]$. Their universal deformation rings are

$$R(\Lambda_r, X_0) \cong k, \quad R(\Lambda_r, X_1) \cong k, \quad R(\Lambda_r, X_2) \cong k[[t]].$$

Proof. Using the description of the projective indecomposable Λ_r-modules in (6), we see that $\Omega(\mathfrak{T}_1) = \mathfrak{T}_2$. Using §3.3 and the description of the projective indecomposable Λ_r-module P_h in (6), it is straightforward to show that the only Λ_r-modules in $\mathfrak{T}_1 \cup \mathfrak{T}_2$ whose stable endomorphism rings are isomorphic to k lie in the Ω-orbit of either $X_0 = M[T]$, $X_1 = M[T_h]$ or $X_2 = M[T_{hh}]$. Since $\text{Ext}^1_{\Lambda_r}(X_j, X_j) = 0$ for $j \in \{0, 1\}$, we have that $R(\Lambda_r, X_j) \cong k$ for $j \in \{0, 1\}$. Since $\text{Ext}^1_{\Lambda_r}(X_2, X_2)$ is isomorphic to k, it follows that $R(\Lambda_r, X_2)$ is a quotient of $k[[t]]$. Let $S_0 = T_{hh}$ and for all $l \geq 1$, let $S_l = S_{l-1} \tau_l T_{hh}$. By using similar arguments as those in the proof of Claim 4.3 within the proof of Proposition 4.1, we obtain that $R(\Lambda_r, X_2) \cong k[[t]]$, which proves Proposition 4.6.

References

1. M. Auslander, I. Reiten, and S. Smalø, *Representation theory of Artin algebras*, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, 1995.

2. D. J. Benson, *Representations and cohomology I: Basic representation theory of groups and associative algebras*, Cambridge Studies in Advanced Mathematics 30, Cambridge University Press, 1991.

3. F. M. Bleher, *Universal deformation rings of dihedral defect groups*, Trans. Amer. Math. Soc. 361 (2009), 3661–3705.

4. F. M. Bleher and T. Chinburg, *Universal deformation rings and cyclic blocks*, Math. Ann. 318 (2000), 805–836.

5. **F. M. Bleher**, *Universal deformation rings need not be complete intersections*, Math. Ann. 337 (2007), 739–767.

6. F. M. Bleher, T. Chinburg, and B. de Smith, *Inverse problems for deformation rings*, Trans. Amer. Math. Soc. (2012), in press.

7. F. M. Bleher and J. B. Froelich, *Universal deformation rings for the symmetric group S_5 and one of its double covers*, J. Pure Appl. Algebra 215 (2011), 523–530.

8. F. M. Bleher and G. Llosent, *Universal deformation rings for the symmetric group S_4*, Algebr. Represent. Theory 13 (2010), 255–270.

9. F. M. Bleher, G. Llosent, and J. B. Schaefer, *Universal deformation rings and dihedral blocks with two simple modules*, J. Algebra 345 (2011), 49–71.

10. F. M. Bleher and J. A. Vélez-Marulanda, *Universal deformation rings of modules over Frobenius algebras*, J. Algebra 367 (2012), 176–202.

11. M. C. R. Butler and C. M. Ringel, *Auslander-Reiten sequences with few middle terms and applications to string algebras*, Comm. Algebra 15 (1987), 145–179.

12. C. W. Curtis and I. Reiner, *Methods of representation theory with applications to finite groups and orders*, vol. I, John Wiley and Sons, New York, 1981.

13. K. Erdmann, *Blocks of tame representation type and related algebras*, Lectures Notes in Mathematics 1428, Springer-Verlag, 1990.

14. R. Ile, *Change of rings in deformation theory of modules*, Trans. Amer. Math. Soc. 356 (2004), 4873–4896.

15. H. Krause, *Maps between tree and band modules*, J. Algebra 137 (1991), 186–194.

16. B. Mazur, *An introduction to the deformation theory of Galois representations*, Modular Forms and Fermat’s Last Theorem, Springer-Verlag, Boston, MA, 1997, pp. 243–311.

17. M. Schlessinger, *Functors of Artin rings*, Trans. Amer. Math. Soc. 130 (1968), 208–222.

18. D. Yau, *Deformation theory of modules*, Comm. Algebra 33 (2005), 2351–2359.

Department of Mathematics & Computer Science, Valdosta State University, 2072 Nevins Hall, 1500 N. Patterson St. Valdosta, GA, 31698-0040

E-mail address: javelezmarulanda@valdosta.edu