Evaluating Bone Mineral Density in Pediatric Acute Lymphoblastic Leukemia Survivors: A Tertiary Care Hospital Experience

Ersin Toret1*, Burcu Dural1, Yeter Duzenli Kar1, Zeynep Canan Ozdemir1, Ilknur Ak Sivrikoz2 and Ozcan Bor1

1Department of Pediatric Hematology-Oncology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
2Department of Nuclear Medicine, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey

*Corresponding author: Ersin Toret, MD, Department of Pediatric Hematology-Oncology, Faculty of Medicine, Eskisehir Osmangazi University, 26100, Eskisehir, Turkey, Tel: +90-505-799-4234

Abstract
Acute leukaemias are the most common malignancies seen in children and they account for one third of childhood cancers. Children who survived ALL, experience reduced bone mineral density (BMD) due to the disease, long-lasting glucocorticoid usage, chemotherapy toxicities, nutritional deficiencies and physical immobility. The decreased BMD have determined at all stages of disease. This retrospective cross-sectional study purposes to analyse the results of BMD in children who have completed their ALL treatment. Data of 58 pediatric ALL survivors whose z-scores were calculated by DEXA, were reviewed from their medical records. Twenty-one (38%) patients had normal BMD. Low bone mineral density was detected in 29 (50%) and osteoporosis was detected in 8 (12%) patients. There was no statistically significant difference between BMD and sex, immunophenotype, leukemia risk group or age at diagnosis \(p > 0.05 \). Only, a significant difference was found between BMD and vitamin D supplementation received or not received during chemotherapy \(p < 0.05 \). Also There was no statistically significant difference between mean levels of Ca, P, ALP, vitamin D and result of DEXA \(p > 0.05 \). Children with cancers such as ALL are malnourished and have limited physical activity during under chemotherapy. Nutrition and physical activity supporting a growing healthy bone should be provided for all children with cancer from the start of chemotherapy until bone growth is complete.

Keywords
Acute lymphoblastic leukemia, Bone mineral density, Children, Osteoporosis, Survivors

Introduction
Acute leukaemias are the most common malignancies seen in children and they account for one third of childhood cancers. They are occurred abnormal proliferation of hematopoietic stem cells leading to interruption of normal healthy cells production. The survival rate for acute leukaemia has risen as a result of more intensive chemotherapy, advanced supportive care and better followed-up conditions. Acute lymphoblastic leukemia (ALL) is the most common group with the best results achieved \([1,2]\). However, children who survived ALL, experience reduced bone mineral density (BMD) due to the disease, long-lasting glucocorticoid usage, chemotherapy toxicities, nutritional deficiencies and physical immobility. The decreased BMD have determined at all stages of disease. Also avascular necrosis is an another annoying musculoskeletal complication of pediatric leukemia survivors. Particularly both osteoporosis and osteonecrosis are occured as a result of glucocorticoid treatment \([3-5]\). Dual-energy X-ray absorptiometry (DEXA) is an one of a conventional method for evaluating BMD \([4]\). In this study, we decided to analyse the results of BMD in children who have completed their ALL treatment.

Materials and Methods
This retrospective cross-sectional study was performed at a tertiary care hospital in Turkey. The study...
was approved by the locale ethics committee. Throughout 2013 to 2020, data of 58 pediatric ALL survivors whose z-scores were calculated by DEXA, were reviewed from their medical records. Demographic features of patients were enrolled. Z-score values above -1 were accepted as normal, between -1 to -2 as low bone density and below -2 as osteoporosis according to the definition of International Society of Clinical Densitometry [6]. DEXA results were assessed from the lumbar-spine (L1 to L4).

All patients were classified to risk groups and treated with the ALL intercontinental berlin-frankfurt-münster (ALL-IC BFM) 2009 protocol. The risk group of patients were defined as standart (SRG), intermediate (IRG) or high (HRG) according to age, white blood cell (WBC) count at diagnosis, day eight response to prednisone, immunophenotype and some prognostically precisely proven genetic markers such as t(9;22), t(4;11) and/or their molecular equivalents BCR/ABL and MLL/AF4, respectively. The ALL-IC BFM 2009 protocol includes high dose prednisone for a month during the induction therapy, in addition, there induction phase consists of high dose dexamethasone for three weeks for all risk groups. The treatment lasts two years in the ALL-IC BFM 2009 protocol. Evaluations including DEXA are made at the latest 27th month of leukemia diagnosis or within the first three months after cessation of treatment. Patients who were underwent hematopoietic stem cell transplantation, were treated with radiotherapy or had other disease or non-leukemic predisposing factors for low bone densty, were excluded. Collected data were analyse using descriptive statistics; frequency, mean and standard deviation were calculated. Mann Whitney U test and Krukal Wallis test were used to analyse BMD and features of patients. One Way Anova test was used to compare mean level of calcium, phosphorus, alkaline phosphatase and vitamin D according to result of DEXA. A p-value < 0.05 was considered significant.

Results

Fifty-eight patients (26 males, 32 females) were participated to this study. Table 1 shows the patients’ demographic characteristics. The mean age was 5.5 ± 3.8, the median age was 4.2 year (interquartile range 4.3). Patients were 17 (30%) in SRG, 36 (61%) in IRG and 5 (9%) in HRG. The immunophenotype distribution was determined as pre-B ALL in 50 (86%) and pro-B ALL in eight (14%) patients. Twenty-three (40%) patients received vitamin D supplementation under chemotherapy due to their vitamin D levels were determined lower than 20 ng/ml. The mean and median BMD were determined as 0.52 ± 0.13 and 0.48 g/cm² (interquartile range 0.11), respectively. Additionally, the mean and median Z-score were calculated as -1.82 ± 3.75 and -1.5 (interquartile range -1.4). Twenty-one (38%) patients had normal BMD. Low bone mineral density was detected in 29 (50%) and osteoporosis was detected in 8 (12%) patients. With regard to Table 2; there was no statistically significant difference between BMD and sex, immunophenotype, leukemia risk group or age at diagnosis. Only, a significant difference was found between BMD and vitamin D supplementation received or not received during chemotherapy. In patients who received vitamin D during chemotherapy, the BMD was normal in 17, low bone density in 15 and osteoporosis in two patients. Further more in patients who did not receive vitamin D during chemotherapy, the BMD was normal in four, low bone density in 14 and osteoporosis in six patients. The means of vitamin D, calcium (Ca), phosphorus (P) and alkaline-phosphatase (ALP) levels at similar times to DEXA are shown in Table 3. There was no statistically significant difference between mean levels of Ca, P, ALP, vitamin D and result of DEXA.

Discussion

The overall survival of children with ALL has been
A diet rich or supplemented with calcium and vitamin D intake have recommended for patients during chemotherapy [3,4]. Gunes, et al. [9] recommended vitamin D prophylactic treatment to patients in the first two years of treatment which was found the most critical period for BMD decrease [9]. In contrast with this study, Diaz, et al. [10] and Demirsoy, et al. [11] reports found that there was no significant difference between the calcium-vitamin D supplementation and BMD.

Skeletal abnormalities such as low BMD, osteoporosis and osteonecrosis are common seen in pediatric ALL survivors. While BMD is progressively decreased in children who survived from leukemia, anthropometric parameters recover in the long-term [12]. Donmez, et al. [13] found osteopenia in 23.1% and osteoporosis in 7.7% of patients in their survey. In another study from Turkey, reported low BMD in 32%, osteoporosis in 24% and osteonecrosis in 16% of patients [14]. We found low BMD in 50% and osteoporosis in 12% of patients in our study. Considering that race, climate and dietary habits also affect BMD, we found similar results when we compared similar studies from our country. When the factors affecting to BMD are reviewed, Inaba, et al. [15] found that the overall difference in BMD after six years from cessation of chemotherapy among three age groups patients defined as ages under five years group 1, ages five to 10 years group 2 and ages above 10 years group 3. Similar to Vitanza, et al. [15] study, Erdem, et al. [14] found that the rate of osteonecrosis and bone changes were significantly higher in patients aged above 10 years. As summarized above, varying results were obtained on factors affecting to BMD in different studies. In our study, among factors affecting to BMD, only vitamin D supplementation was found statistically significant while chemotherapy was ongoing. However, we supported patients who were diagnosed with vitamin D deficiency. In another respect, bone mineral abnormality was detected in 17 (50%) patients who received vitamin D and two of them were compatible with osteoporosis.

Gunes, et al. [9] recommended vitamin D prophylaxis to pediatric ALL patients as long as chemotherapy continues. Additionally, physical activity in addition to

Table 2: Comparison of factors that affect the BMD.

Sex (n)	Immunophenotype (n)	ALL Risk Group (n)	Age at diagnosis (n)	Vitamin D supp.*							
Male	Female	Pro-B	Pre-B	SRG	IRG	HRG	< 7 years	≥ 7 years	Received	Not received	
Normal	6	15	3	18	9	10	3	15	6	17	4
Low bone density	15	14	3	26	8	19	2	22	7	15	14
Osteoporosis	5	3	2	6	1	6	0	5	3	2	6
P value	0.055'	0.728'	0.149''	0.856'	0.004'						

ALL: Acute lymphoblastic leukemia; SRG: Standard risk group; IRG: Intermediate risk group; HRG: High risk group;
Mann-whitney U test; Kruskal wallis test; Vitamin D supplementation while under chemotherapy, p of significance if < 0.05.

Table 3: Serum mean level of calcium, phosphorus, alkaline phosphatase and vitamin D at similar times to DEXA according to BMD.

BMD	Calcium (± SD)	Phosphorus (± SD)	Alkaline phosphatase (± SD)	Vitamin D (± SD)
Normal	9.8 ± 0.3	4.7 ± 0.5	317 ± 188	21.8 ± 8.5
Low bone mineral density	9.7 ± 0.5	4.8 ± 0.5	311 ± 201	24.2 ± 9.8
Osteoporosis	9.7 ± 0.4	5.1 ± 0.4	280 ± 168	27.2 ± 6.4
P value	0.787	0.167	0.920	0.434

BMD: Bone mineral density; DEXA: Dual-energy X-ray absorptiometry; SD: Standard deviation; One way Anova test; ** Mann-whitney U test; *** Kruskal wallis test; *** Vitamin D supplementation while under chemotherapy, p of significance if < 0.05.
calcium and vitamin D supplementation are important to preventing insufficient bone mineralization in pediatric ALL survivors [8,16]. The bone biomarkers such as serum Ca, P, ALP and vitamin D levels were not different among patients and there was no significant difference between bone biomarkers and BMD [9,12]. Also the mean levels vitamin D and insulin-like growth factor (IGF-1) were lower in patients than controls, there was no correlation between BMD and lower levels of those. In our study, there was no significant difference between bone biomarkers and bone changes.

In conclusion, now the goal is to prevent pediatric ALL survivors from long-term side effects which may adversely affect quality of life. The bone changes can cause skeletal morbidities, life-long pain and disabilities. A growing skeleton needs nutritional Ca, P, magnesium, vitamin D and of course physical activity. Children with cancers such as ALL are malnourished and have limited physical activity during under chemotherapy.

Nutrition and physical activity supporting a growing healthy bone should be provided for all children with cancer from the start of chemotherapy until bone growth is complete. Vitamin D levels and bone biomarkers should be checked intermitently in children with acute leukemia or other cancers during chemotherapy. Vitamin D or mineral supplementation should be given to patients who were shown deficiencies.

Compliance and Ethical Stsndards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the National Cancer Institute research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

1. Ward E, De Santis C, Robbins A, Kohler B, Jemal A (2014) Childhood and adolescent cancer statistics. CA Cancer J Clin 64: 83-103.
2. Seth R, Singh A (2015) Leukemias in children. Indian J Pediatr 82: 817-824.
3. Inaba H, Cao X, Han AQ, Panetta CJ, Ness KK, et al. (2018) Bone mineral density in children with acute lymphoblastic leukemia. Cancer 124: 1025-1035.
4. Ghassemi A, Banihashem A, Ghaemi N, Elmi S, Sayyari RE, et al. (2016) Evaluation of bone mineral density in children with acute lymphoblastic leukemia (ALL) and Non-hodgkin’s lymphoma (NHL); Chemotherapy with/without Radiotherapy. Int J Hematol Oncol Stem Cell Res 10: 153-160.
5. Rohani F, Arjmandi RafsanjaniKh, Bahoush G, Sabzehparvar M, Ahmadi M (2017) Bone mineral density in survivors of childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev 18: 535-540.
6. Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, International society for clinical densitometry (2014) Dual-energy x-ray absorptiometry interpretation and reporting in children and adolescents: The revised 2013 ISCD Pediatric Official Positions. J Clin Densitom 17: 225-242.
7. Pizzo PA, Poplack DG (2011) Principles of multimodal therapy” in Principles and practice of pediatric oncology, Lipincott, Philadelphia, USA.
8. Mostoufi-Moab S, Halton J (2014) Bone morbidity in childhood leukemia: Epidemiology, mechanisms, diagnosis, and treatment. Curr Osteoporos Rep 12: 300-312.
9. Gunes AM, Can E, Saglam H, Ilcol YO, Baytan B (2010) Assessment of bone mineral density and risk factors in children completing treatment for acute lymphoblastic leukemia. J Pediatr Hematol Oncol 32: e102-e107.
10. Diaz PR, Neira LC, Fischer SG, Teresa Torres MC, Miliarsky AT, et al. (2008) Effect of 1,25(OH)2-vitamin D on bone mass in children with acute lymphoblastic leukemia. J Pediatr Hematol Oncol 30: 15-19.
11. Demirsoy U, Sarper N, Aylan Gelen S, Zengin E, Kum T, et al. (2017) The association of oral vitamin d and calcium supplementation with bone mineral density in pediatric acute lymphoblastic leukemia patients. J Pediatr Hematol Oncol 30: 287-292.
12. Demirkaya M, Sevinir B, Saglam H (2011) Time-dependent alterations in growth and bone health parameters evaluated at different post treatment periods in pediatric oncology patients. Pediatr Hematol Oncol 28: 588-599.
13. Donmez AD, Isik P, Cetinkaya S, Yarali N (2019) Bone loss in pediatric survivors of acute lymphoblastic leukemia. Eurasian J Med 51: 38-41.
14. Erdem M, Tufekci O, Kızildag S, Yılmaz S, Kizmazoglu D, et al. (2019) Investigation of the relationship between Fok1 and Col1A1 gene polymorphisms and development of treatment-related bone complications in children with acute lymphoblastic leukemia. Turk J Haematol 36: 12-18.
15. Vitanza NA, Hogan LE, Zhang G, Parker RI (2015) The progression of bone mineral density abnormalities after chemotherapy for childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 37: 356-361.
16. Ahn MB, Suh BK (2020) Bone morbidity in pediatric acute lymphoblastic leukemia. Ann Pediatr Endocrinol Metab 25: 1-9.