A systematic review of the case findings, testing and management of COVID-19 [version 3; peer review: 2 approved]

Dewi Susanna1, Dian Pratiwi2, Sang Gede Purnama3,4

1Department of Environmental Health, Faculty of Public Health, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia
2Alumni of Faculty of Public Health, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia
3Faculty of Medicine, Udayana University, Denpasar, Bali, 80234, Indonesia
4Doctoral Program in Faculty of Public Health, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia

Abstract

Background: Mass testing and adequate management are essential to terminate the spread of coronavirus disease 2019 (COVID-19). This testing is due to the possibility of unidentified cases, especially ones without COVID-19 related symptoms. This review aimed to examine the outcome of the existing studies on the ways of identifying COVID-19 cases, and determine the populations at risk, symptom and diagnostic test management of COVID-19.

Methods: The articles reviewed were scientific publications on the PubMed, Science Direct, ProQuest, and Scopus databases. The keywords used to obtain the data were COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and case detection, case management or diagnostic test. We applied the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Population, Intervention, Control and Outcomes (PICO) approaches.

Results: A total of 21 articles from 13 countries met the inclusion criteria and were further analyzed qualitatively. However, 62% of the articles used a rapid antibody test for screening rather than a rapid antigen test. According to the rapid antigen test, 51.3% were positive, with men aged above 50 years recording the highest number of cases. Furthermore, 57.1% of patients were symptomatic, while diagnostic tests' sensitivity and specificity increased to 100% in 14 days after the onset.

Conclusions: Real-time polymerase chain reaction (RT-PCR) is recommended by the World Health Organization for detection of COVID-19. Suppose it is unavailable, the rapid antigen test is used as an alternative rather than the rapid antibody test. Diagnosis is expected to be confirmed using the PCR and serological assay to achieve an early diagnosis of COVID-19, according to disease progression, gradual rapid tests can be used, such as rapid antigen in...
an earlier week and antibody tests confirmed by RT-PCR and serological assay in the second week of COVID-19.

Keywords
COVID-19, SARS-CoV-2, case detection mechanism, case finding, case management, diagnostic test

This article is included in the Health Services gateway.

This article is included in the Emerging Diseases and Outbreaks gateway.

This article is included in the Coronavirus collection.

Corresponding author: Dewi Susanna (dsusanna@ui.ac.id)

Author roles: Susanna D: Conceptualization, Funding Acquisition, Methodology, Supervision, Visualization, Writing – Review & Editing; Pratiwi D: Data Curation, Investigation, Resources, Visualization; Purnama SG: Data Curation, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The work was supported by the Directorate of Research and Development Universitas Indonesia through Grant No. NKB-2605/UN2.RST/HKP.05.00/2020. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2022 Susanna D et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Susanna D, Pratiwi D and Purnama SG. A systematic review of the case findings, testing and management of COVID-19 [version 3; peer review: 2 approved] F1000Research 2022, 10:377 https://doi.org/10.12688/f1000research.50929.3

First published: 12 May 2021, 10:377 https://doi.org/10.12688/f1000research.50929.1
Introduction
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known as coronavirus disease 2019 (COVID-19). This outbreak started in Wuhan Hubei, China, in early December 2019. Presently, an exponential increase in infection cases has been continuously reported in various countries, although vaccinations now accompany this.

Coronaviruses are a group of RNA viruses that cause various respiratory, gastrointestinal, and neurological diseases with mild and severe symptoms in humans and animals. There are at least two types with severe symptoms: Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS). COVID-19, which SARS-CoV-2 causes, is a new type of disease that humans have never identified before. Furthermore, it is regarded as a zoonotic disease (an animal disease transmitted to humans). SARS has been reported in several studies to be transferred from civets to humans while MERS is contacted from camels. Meanwhile, the particular animal source of COVID-19 transmission is still unknown.

The governments of various countries have created several services to handle and prevent the spread of COVID-19. Furthermore, several steps have been taken, such as the rapid purchase of test kits, additional health facilities to accommodate patients, laboratories capable of examining blood specimens, human resources, equipment, infrastructure, etc. It is presumed that these additions can suppress the number of positive cases. Patients with symptoms are immediately tested and treated or even monitored; however, the number of positive cases is still increasing.

The strategies for the prevention and control of COVID-19 include increasing epidemic surveillance, quarantining the infection source, speeding up the diagnosis of suspected cases, optimizing close contact management, constructing the prevention and control of outbreaks. The strategies also prevent possible epidemic rebounds by immediate quarantine of individuals in close contact of positive cases and strengthening community prevention and control measures. However, early and accurate case findings are necessary to maximize these efforts. Therefore, it is important to review the results of existing studies on finding cases, determine the population at risk, determine diagnostic tests, and provide facilities including human resources and tools to prevent Covid-19 transmission to ending this pandemic.

Due to the influence of COVID-19, several studies have recently been conducted because the pandemic is complex in many aspects of life. The complexity is attributed to the crises experienced in the national health, economic, education, cultural, sports, and social systems, apart from the drug and vaccine candidates. The occurrence and development of SARS-CoV-2 depend on the interaction between the virus and the individuals’ immune system. Therefore, its treatment requires special analyses for case findings and management of COVID-19 cases. Presently, there is a controversy over the use of rapid tests and screening for new cases. For instance, Indonesia’s government is yet to decide whether rapid tests need to be continued or stopped.

This review aimed to examine the variations in COVID-19 diagnostic testing and clinical characteristics across various studies.

Methods
A systematic review was conducted to identify articles that describe the diagnostic, identification, and management of SARS-CoV-2 and COVID-19 cases. The review is reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

Ethical approval
This review received ethical approval from the Research and Community Engagement Ethical Committee of Faculty of Public Health, Universitas Indonesia Number: Ket-198/UN2.F10. D11/PPM.00.02/2020.

Inclusion criteria and exclusion criteria
Original studies published in open-access journals before 1 August 2020 in English during the COVID-19 pandemic were included. Studies had to include rapid COVID-19 tests and screening. Closed access articles, audio, communication, reviews, reports, perspectives, case studies, surveys, clinical and molecular papers, mathematical modelling, and diagnostic procedures were excluded from this review.

Search strategy
A systematic search was conducted in four databases, specifically Scopus, Science Direct, ProQuest and PubMed. The keywords used to obtain data from Science Direct included COVID-19/COVID/coronavirus 2019 OR SARS-CoV-2 AND rapid test OR rapid diagnostic test AND screening.
For Scopus, the following search was used: ((TITLE-ABS-KEY (covid-19) OR TITL
E-ABS-KEY (covid)) OR TITLE-ABS-KEY (coronavirus 2019) OR TITLE-ABS-KEY (sars-cov-2) AND TITLE-ABS-KEY (rapid AND test) OR TITLE-ABS-KEY (covid AND diagnostic AND test) AND TITL
E-ABS-KEY (screening)).

The search used for Science Direct was “COVID-19” OR COVID OR “coronavirus 2019” OR “SARS-CoV-2” AND (“rapid test” OR “rapid diagnostic test”) screening. The ProQuest used covid-19 OR covid OR (coronavirus 2019) OR (sars-cov-2) AND (rapid test) OR (rapid diagnostic test) AND (screening).

The search used for PubMed was (((covid-19) OR (covid) OR (coronavirus 2019) OR (SARS-CoV-2)) AND (rapid test)) OR (rapid diagnostic test)) AND (screening))).

Study selection
The initial screening was conducted for articles between 1 December 2019 and 31 July 2020. All the authors recorded and reviewed the collected articles. Furthermore, DS determined the study design, time frame, and criteria for the included studies to retrieve the articles and process the data. Importantly, DS retrieved the data from Scopus and Science Direct databases, while DP from ProQuest and PubMed databases as SGP’s suggestion. The identified articles’ information was imported into Excel worksheets and Mendeley Desktop, where duplicates between databases were removed. DS, DP, and SGP separately reviewed the titles to eliminate analysis that does not meet the inclusion criteria before reviewing the title and the abstract. Moreover, DS and DP accessed the full-text articles for the eligibility criteria. In case there were differences in the number of articles obtained, the two authors re-checked the articles again using the same criteria until the same articles are selected. The final decision of articles included was after DS and DP. All authors discussed the variables to assess the full paper using PICOS to determine the study questions. The PICOS’s assessment used include 1) Population, 2) Intervention: The diagnostic tests for COVID-19, 3) Comparison: the method of the test and antigen or antibody results, and 4) Outcome: The antibody or antigen tests. Any discrepancies were resolved through consensus via a virtual meeting.

Quality assessment for the selected articles was performed using a modified checklist that consisted of seven questions. If the answer of the question is ‘yes’, the value will be ‘1’, while if the answer is ‘no’, the value will be ‘0’. Each article will have a total value, then scored (in %) by calculating the total value divided by the total number of question, then multiplied by 100.

The score grouped into three scoring (in %) = total score divided by the total number of question, then multiplied by 100; then categorized as ‘good’ (68–100%), satisfactory (34–67%), and bad (0–33%), as shown in Table 1 (as an attachment).

Data extraction
All authors designed the variables to be described in the matrix and the topics discussed. The differences in the case detection method of the articles could be a source of bias. To minimize the biases, this review determined and selected the same variables (screening, symptoms, and diagnostic tests; at least an article had one of the following epidemiological parameters regarding COVID-19 or SARS-CoV-2: (i) signs and symptoms, (ii) types of test, (iii) case findings, (iv) screening and testing for COVID-19, (v) procedures for managing positive cases, or (vi) interventions or treatments.). The diagnostic test of each article was different after-time onset. Therefore, the authors used the limit after onset both less and more than 14 days (after onset ≤ 14 days and > 14 days).

Data analysis
The outcome of the analysis was displayed in a matrix containing the author’s name, title, date of research, country of origin of the article, method, and results. Another table included the symptoms, incubation period, method of case finding, diagnostic tests, and type of examination in a more detailed manner. Management identification was based on the type of intervention, care, and treatment.

Descriptive synthesis conducted in the textual description of findings and presented in all tables. A narrative synthesis was undertaken for analysis based on the topics selected. The issues raised included high-risk group, case findings, symptoms of COVID-19 patients, diagnostic test, and the potential strengths and weaknesses of this review.

Results
Based on the four databases, 152 titles were obtained, with 21 studies included in the review. Figure 1 provides an overview of the articles included.

The assessment of articles selected showed that the average quality score was 87.1% and ranged from 71.4% to 100% (Table 1).

There were 21 eligible articles conducted between December 2019 and 31 July 2020 from 13 countries, including France, the United States of America, Italy, Singapore, Chile, Germany, Taiwan, South Korea, Austria, Bulgaria, Japan, Spanish, and Brazil (Table 2).

Each country has its reasons and policies for adopting the coronavirus screening method. Besides polymerase chain reaction (PCR), antigen and antibody tests, there are various tests for detecting the virus, such as the use of clinical immunoassays. An immunoassay is a biomedical test for measuring molecules’ presence in a solution through the use of antibodies or antigens. A rapid test is the screening method for detecting COVID-19 that shows the results quickly, specifically between a few minutes to a maximum of one hour. The methods in Table 3 are divided into two, namely the antigen and antibody rapid tests. The rapid antigen test is used to detect a viral protein (antigen) and is detected when the virus is actively replicating. Conversely, the rapid antibody test is used to detect antibodies or immunoglobulins produced by the body against the virus. According to Table 3, showing the screening tests used in the studies, 62% of the articles (13/21) adopted the rapid antibody tests for
Questions	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1. Are the aims/objectives clearly described?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2. Is the sampling process described?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
3. Is the research methods described?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
4. Is the data collection process described?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
5. Are the findings described and explained?	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
6. Is the symptom of COVID-19 compared?	0	0	0	0	1	0	0	1	1	1	1	1	1	1	0	1	1	1	1	0	1
7. Is the diagnostic test described? (immunology assay compared)	0	0	1	1	0	1	1	1	0	0	1	1	0	1	0	0	1	1	0	0	0
Total	5	5	6	6	6	6	6	7	6	6	7	7	5	7	7	6	6	6	6	6	
%	71.4	71.4	85.7	85.7	85.7	85.7	85.7	100.0	85.7	85.7	100.0	100.0	71.4	100.0	100.0	85.7	85.7	85.7	85.7	85.7	
Average	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	87.1	

Scoring (in %) = total score divided by the total number of question, then multiplied by 100; then categorized as good (68–100%), satisfactory (34–67%), and bad (0–33%).
screening rather than a rapid antigen test. According to the rapid antigen test, 51.3% were positive, with males aged above 50 years recording the highest number of cases. The rapid antigen test results showed that, as shown in Table 3.

The terms for COVID-19 patients are divided into several groups, namely patients under monitoring or confirmed cases without symptoms. The clinical manifestations of COVID-19 patients have a broad spectrum, ranging from lack of symptoms to mild illnesses, pneumonia, severe pneumonia, and septic shock. The characteristics of the symptoms shown are in accordance with the results of the journals reviewed. In Table 4, the symptoms were divided into two groups, namely typical and atypical. Typical symptoms are the most frequently reported clinical manifestations. The virus enters through the nose and mouth and attacks the respiratory tract with typical symptoms, namely fever > 38°C and cough. Conversely, atypical symptoms are clinical manifestations originating from organs other than the lungs.

The rapid test is verified through a diagnostic test to confirm the patients’ status, whether positive or negative. Real-time polymerase chain reaction (RT-PCR) testing of SARS-CoV-2 has become a standard method for direct diagnosis. Currently, RT-PCR is used to diagnose COVID-19 by detecting genetic material of the coronavirus. Serologic and immunological tests such as ELISA (enzyme linked immunosorbent assay), POC or LFA (point-of-care lateral flow assay), and CLIA (chemiluminescence immunoassay) complement RT-PCR examinations in screening and diagnosis of COVID-19.
Table 2. Clinical and demographic characteristics of studies included in the systematic review.

Author	Title	Research Time	Country	Methods - design	Number of samples
Kimbal A et al.	Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility King County, Washington, March 2020⁴	28 Feb-27 March 2020	United States of America	SARS-CoV-2 test	76
Lorenzo and Carrisi	COVID-19 exposure risk for family members of healthcare workers: An observational study⁵	2-31 May 2020	Italy	Observational study	38
Tuaillon et al.	Detection of SARS-CoV-2 antibodies using commercial assays and seroconversion patterns in hospitalized patients¹⁶	18 March 2020	France	SARS-CoV-2 antibodies using commercial assays	58
Demey et al.	Dynamic profile for the detection of anti-SARS-CoV-2 antibodies using four immunochromatographic assays¹⁷	2020	France	Immunochromatographic assays	22
Sun et al.	Epidemiological and Clinical Predictors of COVID-19¹⁸	26 Jan-16 Feb 2020	Singapore	Epidemiological and Clinical test	788
Margiotti et al.	Evaluation of A Rapid IgM-IgG Combined Antibody Test for SARS-CoV-2 Infection: Single Italian Center Study ⁹	2020	Italy	Antibody Test	194
Porte et al.	Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples¹⁵	2020	Chile	Antigen-based rapid detection test	127
Wu et al.	Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for assessing dynamics of antibody responses to SARS-CoV-2¹⁹	23 Jan-25 April 2020	Taiwan	Rapid lateral flow immunoassay	46
Cho et al.	Hemodialysis with Cohort Isolation to Prevent Secondary Transmission during a COVID-19 Outbreak in Korea²⁰	20 Jan-14 March 2020	Korea	Cohort study	302
Nepogodiev D et al.	Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study²¹	1 Jan-31 March 2020	24 countries	Cohort study	1128
Weidner et al.	Quantification of SARS-CoV-2 antibodies with eight commercially available immunoassays²²	2020	Austria	SARS-CoV-2 antibodies immunoassay	100
Döhla M et al.	Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity²³	2020	Germany	Rapid point-of-care testing for SARS-CoV-2	49
Azzi et al.	Saliva is a reliable tool to detect SARS-CoV-2²⁴	2020	Italy	SARS-CoV-2 test using saliva	25
Author	Title	Research Time	Country	Methods - design	Number of samples
------------------------	--	--------------------------------------	---------------	-----------------------------	-------------------
Tsaneva-damyanova	SARS-CoV-2: seroepidemiological pattern in northeastern Bulgaria	26 March-20 April 2020	Bulgaria	Seroepidemiological	586
Banerjee *et al.*	Use of Machine Learning and Artificial Intelligence to predict SARS-CoV-2 infection from Full Blood Counts in a population	28 March-30 April 2020	Brazil	Machine Learning and Artificial Intelligence	598
Liu *et al.*	Antibody responses against SARS-CoV-2 in COVID-19 patients	January 26 and 8 March, 2020	China	Retrospective study	42
Zhou *et al.*	The dynamic changes of serum IgM and IgG against SARS-CoV-2 in patients with COVID-19	January 26 to 5 March, 2020	China	Retrospective study	97
Kaneko *et al.*	Clinical validation of an immunochromatographic SARS-CoV-2 IgM/IgG antibody assay with Japanese cohort	March and May 2020	Japan	Cohort study	51
Yu *et al.*	Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients	2020	China	Immunoassay	37
de la Iglesia *et al.*	Concordance between two rapid diagnostic tests for the detection of antibodies against SARS-CoV-2	2020	Spanish	Cross-sectional study	110
Sotgiu *et al.*	SARS-CoV-2 specific serological pattern in healthcare workers of an Italian COVID-19 forefront hospital	April 2 to 16 April, 2020	Italy	Immunoassay	202

COVID-19: coronavirus disease 2019
ELISA: Enzyme linked immunosorbent assay
IgA: Immunoglobulin A
IgG: Immunoglobulin G
IgM: Immunoglobulin M
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2
Table 3. Screening tests used to detect COVID-19.

No	Author	Rapid antigen test (swab)	Rapid antibody test (blood-serum/plasma)	Average Age (years)	Gender (%)					
		n	Positive (n)	Positive (%)	n	Positive (n)	Positive (%)	Male	Female	
1	Kimball A et al.	76	23	30.3	-	-	-	80.7	0	100
2	Sun et al.	788	54	6.9	-	-	-	42	53.7	46.3
3	Porte et al.	127	82	64.6	-	-	-	38	53.7	46.3
4	Cho et al.	302	18	6.0	-	-	-	70	52.8	47.2
5	Nepogodiev D et al.	1128	1128	100.0	-	-	-	61.5	68	32
6	Azzi et al.	42	42	100.0	-	-	-	61	33.3	66.7
7	Liu et al.	-	-	-	-	-	-	45	34.7	65.3
8	Sotgiu et al.	-	-	-	-	-	-	45	34.7	65.3
9	Lorenzo and Carrisi	-	-	-	-	-	-	52	34.7	65.3
10	Tuaillon et al.	-	-	-	-	-	-	52	34.7	65.3
11	Demey et al.	-	-	-	-	-	-	52	34.7	65.3
12	Margiotti et al.	-	-	-	-	-	-	52	34.7	65.3
13	Wu et al.	-	-	-	-	-	-	52	34.7	65.3
14	Weidner et al.	-	-	-	-	-	-	52	34.7	65.3
15	Döhla M et al.	-	-	-	-	-	-	52	34.7	65.3
16	Tsaneva-damyanova	-	-	-	-	-	-	52	34.7	65.3
17	Banerjee et al.	-	-	-	-	-	-	52	34.7	65.3
18	Zhou et al.	-	-	-	-	-	-	65	NA	NA
19	Kaneko et al.	-	-	-	-	-	-	65	NA	NA
20	Yu et al.	-	-	-	-	-	-	65	NA	NA
21	de la Iglesia et al.	-	-	-	-	-	-	65	NA	NA
22	Total	2690	1379	51.3	1986	684	34.4			

Legend: NA= Not Available

Meanwhile, the POC or LFA is a type of rapid examination for diagnosing infectious diseases and the results are shown within minutes, permitting quick decisions regarding the patients’ care. POC also extends its testing to communities and populations that do not have easy access to health care.

ELISA is an analytical biochemical test that is used to evaluate the presence of an antigen or antibody in a sample. It is useful in the determination of serum antibody concentration. CLIA is the assay for detection antibodies against the SARS-CoV-2 nucleoprotein (Np) in serum or plasma.

Only 11 articles out of 21 titles provided sensitivity or specificity data (Table 5a and Table 5b). At 14 days after symptom onset, the test results were in IgG, IgM, and IgA (antibody) values, because at that particular time-point, antibodies have formed. Immunoglobulin M (IgM) tends to increase within 3–14 days after infection and is replaced by Immunoglobulin G (IgG) for 7 to 15 days, which tends to remain detectable for months. Meanwhile, immunoglobulin A (IgA) is usually used to diagnose disorders in the immune system and detect mucosal secretions such as saliva. The sensitivity indicates the ability of the test to show a positive result. Therefore, the higher the test sensitivity, the greater the positive test results, and the lesser the number of false negatives.

Specificity indicates a test’s ability to show a negative result for individuals who do not have the virus. Therefore, the higher it is, the more negative test results, or the fewer false positives. Overall, the sensitivity and specificity tend to be accurate or have high values after 14 days of onset with 100 for all immunoassay assays, as shown in Table 5a and Table 5b.

Discussion

Comorbidities

Indonesia’s government implemented a rapid test policy to accelerate the early detection of confirmed cases, both among health workers and other high-risk groups. However, this test has drawbacks because positive results are only obtainable among individuals with COVID-19 antibodies in their blood, which are generally formed on the seventh day after infection.
Table 4. Symptoms of the COVID-19 patients.

Author	Positive COVID-19 (n)	Proportion of patients with Asymptom (%)	Proportion of patients with Non Specific symptom (%)	Symptomatic
				Fever Cough Respiratory tract syndrome Loss of taste and smell Sore throat Pneumonia Malaise Nausea Gastrointestinal symptom Headache myalgia Fatigue
Kimball A et al.	23	56.5	8.8	4.3 30.4 NA NA NA NA NA NA NA NA NA
Lorenzo and Carrisi	2	58	42	NA NA
Tuaillon et al.	38	NA	NA	NA NA
Demey et al.	22	NA	NA	NA NA
Sun et al.	54	NA	37.5	66.7 13 NA 33.3 42.6 NA NA NA 37 NA NA
Margiotti et al.	132	NA	NA	NA NA
Porte et al.	82	NA	70.4	77.8 NA NA NA NA NA NA NA NA NA NA
Wu et al.	16	50	75	NA 62.5 NA NA 18.8 NA NA 31.3 NA NA NA
Cho et al.	18	NA	55.6	NA 16.7 NA NA NA NA NA NA NA NA NA
Nepogodiev D et al.	1128	NA	76.6	73 61.9 NA NA NA 79.4 77.5 79.4 70 NA NA NA
Weidner et al.	100	NA	63	40 NA 43 29 NA NA NA 23 48 NA NA NA
Döhla M et al.	22	NA	70.8	NA NA NA NA NA NA NA NA NA 64.6 NA NA NA
Azzi et al.	25	NA	NA	NA NA
Tsaneva-damyanova	28	78.6	21.4	NA NA
Banerjee et al.	81	NA	NA	NA NA
Liu et al.	42	NA	66.7	52.4 21.4 NA 11.9 NA NA NA NA NA NA NA NA
Zhou et al.	97	NA	59.8	86.6 NA NA NA NA NA NA 14.4 20.6 37.1 71.1 NA NA NA
Kaneko et al.	51	NA	NA	NA NA
Yu et al.	37	NA	NA	NA NA
de la Iglesia et al.	58	NA	35.5	NA NA 41.8 NA NA NA NA NA NA NA NA NA NA
Sotgiu et al.	7	NA	4.5	4.5 1.5 4 NA 1 NA 2 1 NA NA NA NA

Legend: NA= Not Available
Table 5a. Sensitivity and specificity of diagnostic tests used in the reviewed articles.

Author	≤14 days after onset (%)	>14 days after onset (%)						
	RT PCR	ELISA	POC LFA	CLIA	RT PCR	ELISA	POC LFA	CLIA
Porte et al.					se: 80-94,7	sp:100		
Tuaillon et al.		se: 43-86 (IgA)	se: 36-93 (IgG)		se: 80-100 (IgA)	se: 80-100 (IgG)		
		se: 36-93 (IgG)	se: 36-86 (IgM)		sp: 80 (IgA)	sp: 95-100 (IgG)		
			se: 73-100 (IgG)		se: 73-100 (IgM)			
Kaneko et al.	se: 81,6 (IgG)				sp: 85-100 (IgG)	sp: 65-100 (IgM)		
Demey et al.		se: 9,09-100 (IgG)			se: 81,82-100 (IgG)			
		se: 4,55-100 (IgM)			se: 100 (IgM)			
Wu et al.	se: 41,3-52,2 (NA)				se: 87-100 (NA)			
		sp: 100 (NA)			sp: 100 (NA)			
Yu et al.		se: 98,9 (IgA)			se: 100 (IgA)			
		se: 95,1 (IgG)			se: 100 (IgG)			
		se: 93,4 (IgM)			se: 100 (IgM)			

Table 5b. Sensitivity and specificity of diagnostic tests used in the reviewed articles.

Author	Not Available days after onset			
	RT PCR	ELISA	POC LFA	CLIA
Margioti et al.	se: 95,5 (NA)			
	sp: 96,8 (NA)			
Döhla M et al.	se: 36,4 (NA)			
	sp: 88,9 (NA)			
Banerjee et al.	se: 43-92 (NA)			
	sp: 58-94 (NA)			
Weidner et al.	se: 88,89-98 (NA)	se: 88,78-92,93 (NA)	se: 84,94-95 (NA)	
Tsaneva damyanova		se: 100 (IgG)		
		sp: 98 (IgG)		
		se: 85 (IgM)		
		sp: 96 (IgM)		

Se: sensitivity
Sp: specificity
RT-PCR: Real time-polymerase chain reaction
ELISA: Enzyme-linked immunosorbent assay
POC LFA: Point-of-care lateral flow assay
CLIA: Chemiluminescence immunoassay
NA = Not available
Consequently, there is a possibility of the result being negative but does not mean that the individual is not infected. This occurrence is since the antibodies are yet to be formed; therefore, repetition is needed. The implementation of the rapid test is intended for individuals that are at risk. However, in this current condition, mass testing could be carried out considering the number of infected people without symptoms that have not received treatment and monitoring, which are all sources of transmission.

The elderly and individuals with pre-existing medical conditions such as high blood pressure, heart and lung disorders, diabetes, and cancer are at greater risk of experiencing severe COVID-19 symptoms\(^9\). Furthermore, travellers and individuals who have had close contact with infected individuals and medical personnel\(^9\). Therefore, surveillance for this group needs to be carried out daily with active case finding through screening for signs and symptoms and checking body temperature. Based on gender distribution, males are presumed to be associated with a higher prevalence of active smoking\(^9\). It is suspected that there is an increase in ACE2 receptor expression in smokers, people with hypertension, and diabetes mellitus\(^9,40\).

COVID-19 patients with other comorbidities such as chronic obstructive pulmonary disease (COPD), cardiovascular disease (CVD), hypertension, cancer, diabetes, HIV, chronic kidney disease can cause a high risk of death. Comorbidities cause COVID-19 patients to be more at risk of increasing morbidity and mortality\(^11-14\). A cohort study in Jakarta also found a higher risk of death with comorbid patients than those without, the risk increasing sixfold among patients <50 years of age\(^15\). Therefore, comorbidities can exacerbate COVID-19 infection\(^15\).

Case findings

The COVID-19 pandemic has been driven by cross-border human mobility and region-specific COVID-19 susceptibility\(^6\). The diagnosis of new cases is inseparable from early precautions\(^2\). One method of how a diagnosis is carried out is via screening. During the COVID-19 pandemic, screening at airports has been a priority due to its spread in 113 countries globally, which allegedly started in Wuhan (China). Initially, it was only a thermal test developed into a quarantine system at airports or ports. While active screening at airports is still an effective method for detecting new diseases, it does not provide 100% efficacy in case detection\(^16\) because there are passive cases that are yet reported at health services.

Surveillance activities may be either passive or active. In passive surveillance, the health department passively receives reports of suspected injury or illness. Conversely, epidemiologists actively seek out cases of disease\(^17\). The detection of passive cases is triggered by patients seeking to be treated by doctors working in health facilities. Meanwhile, active screening detects 80% and 20% of imported and passive cases, respectively\(^17\).

The active case findings under rapid tests in the community, for instance, in Indonesia, are currently being carried out by inviting individuals to various designated places, such as the health office, stadium, village centers, markets, and schools. South Korea adopted a test kit from SD Biosensor to carry out mass testing in its country as a preventive. This test has proven to be a practical rapid screening step, consequently reducing the death rate. However, this rapid test is also supported by the PCR test with free drive-through service. The test kit’s performance is influenced by several factors, such as the period of emergence of symptoms, the concentration of virus in the specimen, quality and method of processing, and the reagent formulation in test kit\(^18\).

Symptoms of COVID-19 patients

The terms for COVID-19 patients are divided into several groups, namely patients under monitoring (ODP) or close contacts, patients under supervision (PDP) or suspected cases, and patients without symptoms (OTG) or confirmed cases without symptoms\(^11\). The clinical manifestations of COVID-19 have a broad spectrum, ranging from asymptomatic, mild symptoms, pneumonia, severe pneumonia, acute respiratory distress syndrome (ARDS), sepsis to septic shock. Approximately 80% of cases have been classified as mild or moderate, 13.8% as severe, and over 6.1% as under critical condition\(^19\). These manifestations usually appear within 2 to 14 days after exposure and common signs include acute respiratory symptoms such as fever, cough, and difficulty breathing. In severe cases, COVID-19 symptoms include pneumonia, ARDS, kidney failure, and even death. The severity of symptoms is influenced by the immune system, age, certain comorbidities such as hypertension, diabetes mellitus, asthma, heart disease, obesity, and some habits such as smoking, lack of exercise, and staying in poorly ventilated rooms\(^19\).

Diagnostic test

The incubation period from when the virus was initially contracted to manifesting the first symptoms is usually 5 to 7 days (or within the range of 4–14 days). Current infection diagnosis relies on tests to detect the virus in various bodily fluids. Previous infections are confirmed through blood tests, and negative tests presume immunity to re-infection, although the duration and effectiveness of this protection are still unknown\(^20\).

Laboratory-based molecular tests for detecting SARS-CoV-2 in the respiratory specimens are the current reference standard used to diagnose COVID-19, although serological immunoassays are rapidly being developed\(^21\). One example of detection used respiratory specimens was conducted in Independent and Assisted Living Community for Older Adults —Seattle, Washington\(^22\). The detection of SARS-CoV-2 using nasopharyngeal swabs was carried out twice, precisely day-one and seven, on the staff members. The positive cases in the first round were isolated immediately using personal protective equipment irrespective of whether they showed no symptoms. Furthermore, in the second round, positive cases were also discovered among the people who did not have symptoms initially. This analysis needs to be carried out because positive cases are bound to be found in the housing of a group of elderly or nursing homes. Therefore, this examination need not be carried out only once\(^22\). IgM detection and IgA detection were possible from days 3 to 6 after the onset of the symptoms, while IgG starts to emerge from days 10 to 18\(^22\). Consequently, rapid antibody test is not recommended by the World Health
Organisation (WHO) as the primary basis for diagnosis. Therefore, serologically negative patients still need to be observed and re-examined to be confirmed⁵.

Various screening methods are used to detect COVID-19, such as rapid antigen and antibody tests. Early diagnosis of COVID-19 requires gradual tests such as a screening test by conducting a rapid antigen test a week earlier and an antibody test that needs to be confirmed by RT-PCR and serological tests in the second week of COVID-19. Based on this study, the accuracy of most diagnostic tests such as RT-PCR, ELISA, POC LFA, CLIA, CEFA, and MIA the sensitivity and specificity increased in the late phase (>14 days) after the onset of symptoms. This accuracy helps identify individuals who have been exposed to COVID-19.

Strengths and weaknesses of this study
This study reported that all COVID-19 tests are effective when carried out in accordance with their purpose and objectives. However, not all studies reviewed have a similar pattern. Therefore only a few were compared. In this study, we do not discuss the cost of COVID-19 testing; However, this is a good idea for suggestions for future studies, considering that the discussion of the cost of the covid test is also quite important to study such as the varying costs of a PCR test at airports around the world⁶.

Conclusion
The accuracy of rapid antigen tests remains debatable; therefore, RT-PCR should be preferred unless not available as the first-line strategy. Finding new COVID-19 cases during this pandemic situation is extremely necessary to aid early detection with proper and mass surveillance. Therefore, treatments can be quickly administered and the source of transmission reduced. Tests for COVID-19 are generally divided into two, namely targeting the virus RNA and protein. The PCR method is targeted for RNA, while rapid tests for antigens and antibodies are targeted for proteins. The accuracy of these tests is supported by the sampling method from the incubation, emergence of symptoms, and healing period. Furthermore, the exposed individuals’ contact history or positive case is also a significant factor determining sampling time with the appropriate type of test. The WHO recommends a rapid antigen test as an alternative supposing PCR is not available, therefore interfering with the handling of COVID-19 patients and the pandemic response process⁷. Meanwhile, the rapid antigen test is effective when the number of cases is high because it detects virus material directly after symptoms. The result is known faster than the PCR test, compared to the rapid antibody test that increases in the second and third weeks after the onset of symptoms. Therefore, the order starts from the PCR test, then supposing it is unavailable, the rapid antigen test serves as an alternative when compared with the antibody test. However, the diagnosis should be confirmed using the PCR. Based on this study, the accuracy of most diagnostic tests such as RT-PCR, ELISA, POC LFA, CLIA, CEFA, and MIA sensitivity and specificity is increased in the late phase (>14 days) after the onset of symptoms. This accuracy is helpful in the identification of individuals that have been exposed to COVID-19. To achieve an early diagnosis of COVID-19, according to disease progression, gradual rapid tests can be used, such as rapid antigen in an earlier week and antibody tests confirmed by RT-PCR and serological assay in the second week of COVID-19.

Data availability
Underlying data
All data underlying the results are available as part of the article and no additional source data are required.

Reporting guidelines
Figshare: PRISMA checklist for ‘A systematic review on the case findings and management of COVID-19; in the link https://doi.org/10.6084/m9.figshare.13586081.v1⁸

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgments
The authors would like to thank to the Directorate of Research and Development Universitas Indonesia for supporting the financial through Grant No NKB-2605/UN2.RST/HKP.05.00/2020. The authors also gratefully acknowledge the Library of Universitas Indonesia for providing the databases used in this review.

References

1. Lim J, Jeon S, Shin HY, et al.: Case of the Index Patient Who Caused Tertiary Transmission of COVID-19 Infection in Korea: the Application of Lopinavir/ Ritonavir for the Treatment of COVID-19 Infected Pneumonia Monitored by Quantitative RT-PCR. J Korean Med Sci. 2020; 35(6): e79. PubMed Abstract | Publisher Full Text | Free Full Text
2. Kemenkes RI: PEDOMAN PENCEGAHAN DAN PENGENDALIAN CORONAVIRUS DISEASE (COVID-19), 2020; 1–214. Reference Source
3. Xu TL, Ao MY, Zhou X, et al.: China’s practice to prevent and control COVID-19 in the context of large population movement. Infect Dis Poverty. 2020; 9(1): 112. PubMed Abstract | Publisher Full Text | Free Full Text
4. El-Taliawi OG, Hartley K: The COVID-19 crisis and complexity: A soft systems approach. J Contingencies Cris Manag. 2021; 29(1): 104–107. Publisher Full Text
5. Shariarie MH, Farvez MAK, Karikas GA, et al.: The growing complexity of COVID-19 drug and vaccine candidates: challenges and critical transitions. J Infect Public Health. 2021; 14(2): 214–220. PubMed Abstract | Publisher Full Text | Free Full Text
6. Bratianu C: Toward understanding the complexity of the COVID-19 crisis: A grounded theory approach. Manag Mark. 2020; 15(s1): 410–423. Reference Source
7. Li X, Geng M, Peng Y, et al.: Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020; 10(2): 102–108. PubMed Abstract | Publisher Full Text | Free Full Text
8. Susanna D: A systematic review on the case findings and management of
COVID-19, figshare. Dataset. 2021.
http://www.doi.org/10.6084/m9.figshare.13586081.v1
9. Schenck, R. Blaschke, D.; Vilijoen, K. Enabling factors for the existence of waste pickers: A systematic review. Soc Work South Africa. 2016; 52(1): 35–53. Publisher Full Text
10. Yetisen AK, Akram MS, Lowe CR: Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 2013; 13(2): 2210–2251. PubMed Abstract | Publisher Full Text
11. Gugus Tugas Percepatan Penanganan COVID-19: Pedoman Penanganan Cepat Medis dan Kesehatan Masyarakat COVID-19 di Indonesia. 2020; 1–39. Reference Source
12. WHO: WHO COVID-19 Case definition. 2020. Reference Source
13. Jawerth N: How is the COVID-19 Virus Detected using Real Time RT-PCR? 2020; 1–6. Reference Source
14. Kimball A, Hatfield KM, Arons M, et al.: Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility—King County, Washington, March 2020. MMWR Mortal Wkly Rep. 2020; 69(13): 377–381. PubMed Abstract | Publisher Full Text | Free Full Text
15. Lorenzo D, Carrioli C. COVID-19 exposure risk for family members of healthcare workers: An observational study. Int J Infect Dis. 2020; 98: 287–289. PubMed Abstract | Publisher Full Text | Free Full Text
16. Tuatallon E, Bolloré K, Pisoni A, et al.: Detection of SARS-CoV-2 antibodies using commercial assays and seroconversion patterns in hospitalized patients. J Infect. 2020; 81(2): e69–e45. PubMed Abstract | Publisher Full Text | Free Full Text
17. Demy B, Daher N, François C, et al.: Dynamic profile for the detection of anti-SARS-CoV-2 antibodies using four immunochromatographic assays. J Infect. 2020; 81(2): e66–e110. PubMed Abstract | Publisher Full Text | Free Full Text
18. Sun Y, Koh Y, Marimuthu K, et al.: Epidemiological and Clinical Predictors of COVID-19. Clin Infect Dis. 2020; 71(15): 786–792. PubMed Abstract | Publisher Full Text | Free Full Text
19. Margiotti K, Cuparrollo M, Emili S, et al.: Evaluation of A Rapid IgM-IgG Combined Antibody Test for SARS-CoV-2 Infection: Single Italian Center Study. Am J Infect Dis. 2020; 16(2): 85–88. Publisher Full Text
20. Porte L, Legarraga P, Vorrath V, et al.: Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-COV-2 in respiratory samples. Int J Infect Dis. 2020; 99: 328–333. PubMed Abstract | Publisher Full Text | Free Full Text
21. Wu J, Tseng WP, Lin CH, et al.: Four point-of-care lateral flow immunoassays for diagnosis of COVID-19 and for assessing dynamics of antibody responses to SARS-CoV-2. J Infect. 2020; 81(3): 435–442. PubMed Abstract | Publisher Full Text | Free Full Text
22. Cho JH, Kang SH, Park HC, et al.: Hemodialysis with Cohort Isolation to Prevent Secondary Transmission during a COVID-19 Outbreak in Korea. J Am Soc Nephrol. 2020; 31(7): 1398–1408. PubMed Abstract | Publisher Full Text | Free Full Text
23. COVIDSurg Collaborative: Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. Lancet. 2020; 396(10243): 27–38. PubMed Abstract | Publisher Full Text | Free Full Text
24. Weidler L, Gansdorfer S, Unterweger S, et al.: Quantification of SARS-CoV-2 antibodies with eight commercially available immunoassays. J Clin Virol. 2020; 129: 104540. PubMed Abstract | Publisher Full Text | Free Full Text
25. Dhiba M, Boescheke C, Schulte B, et al.: Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity. Public Health. 2020; 182: 170–172. PubMed Abstract | Publisher Full Text | Free Full Text
26. Aziz L, Carrano G, Gianfagna F, et al.: Saliva is a reliable tool to detect SARS-CoV-2. J Infect. 2020; 81(1): e45–e50. PubMed Abstract | Publisher Full Text | Free Full Text
27. Tsaneva-Damyanova D: SARS-CoV-2: seroepidemiological pattern in northeastern Bulgaria. Biotechnol Bioenviron Equip. 2020; 34(1): 441–446. PubMed Abstract | Publisher Full Text | Free Full Text
28. Banerjee A, Ray S, Vorseelaars B, et al.: Use of Machine Learning and Artificial Intelligence to predict SARS-CoV-2 infection from Full Blood Counts in a population. Int Immunopharmacol. 2020; 86: 106705. PubMed Abstract | Publisher Full Text | Free Full Text
29. Liu A, Li Y, Feng J, et al.: Antibody responses against SARS-CoV-2 in COVID-19 patients. Med Virology. 2020; 9(1): 144–148. PubMed Abstract | Publisher Full Text | Free Full Text
30. Zhou W, Xu X, Chang Z, et al.: The dynamic changes of serum IgM and IgG against SARS-CoV-2 in patients with COVID-19. Med Virology. 2021; 93(2): 924–933. PubMed Abstract | Publisher Full Text | Free Full Text
31. Kaneko S, Nukui Y, Arashiro T, et al.: Clinical validation of an immunochromatographic SARS-CoV-2 IgM/IgG antibody assay with Japanese cohorts. J Med Virology. 2021; 93(5): 569–572. PubMed Abstract | Publisher Full Text | Free Full Text
32. Yu H, Sun B, Fang Z, et al.: Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur Respir J. 2020; 56(2): 2001526. PubMed Abstract | Publisher Full Text | Free Full Text
33. Gede IW, Eka A, Elyazar IR, et al.: COVID-19 and comorbidities: Deleterious impact on infected patients. J Infect Public Health. 2020; 13(12): 1833–9. PubMed Abstract | Publisher Full Text | Free Full Text
34. Surendra H, Elyazar IR, Djaafara BA, et al.: Clinical characteristics and mortality associated with COVID-19 in Jakarta, Indonesia: A hospital-based retrospective cohort study. Lancet Reg Health West Pac. 2021; 9: 100108. PubMed Abstract | Publisher Full Text | Free Full Text
35. Klein F: Risikofaktoren Komorbiditäten bei COVID-19-Erkrankung. Pneumologie. 2020; 74(10): 640. PubMed Abstract | Publisher Full Text | Free Full Text
36. Rasul S, Greninger AL, Hatfield KM, et al.: Detection of SARS-CoV-2 Among Residents and Staff Members of an Independent and Assisted Living Community for Older Adults — Seattle, Washington, 2020. MMWR Mortal Wkly Rep. 2020; 69(4): 416–419. PubMed Abstract | Publisher Full Text | Free Full Text
37. World Health Organization: Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza. Malta; 2011. Reference Source
38. World Health Organization: Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020; 16–24. Reference Source
39. Nadia: KESIAPAN KEMENKES DALAM MENGHANDAPE OUTBREAK NOVEL CORONAVIRUS 2019-nCov. 2020. PubMed Abstract | Publisher Full Text | Free Full Text
40. Jamison DT, Breman JG, Measham AR, et al.: Disease Control Priorities in Developing Countries 2nd Edition. 2nd ed. Washington DC: The International Bank for Reconstruction and Development / The World Bank; 2006; Accessed December 28, 2020. Reference Source
41. Nduka O, Kuchel H, Dixon J, et al.: COVID-19: A systematic review and meta-analysis study. PLoS One. 2021; 16(2): e0246190. PubMed Abstract | Publisher Full Text | Free Full Text
42. Wu Y, Zhang F, et al.: Diagnosis of SARS-CoV-2 by combining screening and nucleic acid detection in suspected COVID-19 patients. J Clin Virol. 2020; 128: 104450. PubMed Abstract | Publisher Full Text | Free Full Text
43. World Health Organization: World Health Organization: European Advice Warning Publics Against False Claims of COVID-19 Vaccines. 2021(1): 369. PubMed Abstract | Publisher Full Text | Free Full Text
44. Cheng MP, Papenburg J, Desjardins M, et al.: Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review. Am Intern Med. 2020; 172(11): 726–734. PubMed Abstract | Publisher Full Text | Free Full Text
45. Guo L, Ren L, Yang S, et al.: Efficiency of Humoral Response to SARS-CoV-2. Lab Chip. 2021; 21(15): 778–785. PubMed Abstract | Publisher Full Text | Free Full Text
46. World Health Organization: Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases. 2020; 2019. Reference Source
47. Centers for Disease Control and Prevention: The varying costs of a PCR test at airports around the world. (cited 2022 Jun 15). Reference Source
48. World Health Organization: Saran Penggunaan Tes Imunodiagnostik Di Fasillanes (Point of Care) Untuk COVID-19. 2020. Reference Source
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Version 2

Reviewer Report 13 June 2022

https://doi.org/10.5256/f1000research.79887.r125177

© 2022 Lubis R. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Rahayu Lubis
Faculty of Public Health, Universitas Sumatera Utara, Medan, Indonesia

I have read the paper entitled “A systematic review of the case findings, testing, and management of COVID-19”. This paper is good and clear and beneficial for public health. The literature search for journal articles and Systematic Review stages is in accordance with standards.

There are comments from me that do not affect the quality of this paper as written below:

1. At the end of the methods, it is written that the category of article quality assessment in percent is divided into bad (0-30%), satisfactory (34-67%), good (68-100%), there is a missing range, namely 31%, 32%, and 33% should be included in which category?

2. In the results section, it states that "The reactive results of patients examined by the rapid tests showed that 42.9% were asymptomatic or lacked available data". This needs attention because it is very dangerous for public health. COVID-19 patients are asymptomatic and can transmit COVID-19 to other people in their various activities.

3. "According to Table 3, showing the screening tests used in the study, 62% of the articles (13/21) adopted a rapid antibody and antigen test, for most of the men over 50 years of age" - what is the possible reason this test is less used at younger ages? This needs further research.

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Yes

Is the statistical analysis and its interpretation appropriate?
Yes

Are the conclusions drawn adequately supported by the results presented in the review?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Epidemiology and infectious disease

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 30 Jun 2022

Dewi Susanna, Universitas Indonesia, Depok, Indonesia

1. At the end of the methods, it is written that the category of article quality assessment in percent is divided into bad (0-30%), satisfactory (34-67%), good (68-100%), and there is a missing range, namely 31%, 32%, and 33% should be included in which category?

Response:
Thank you for the correction.
We are very sorry about the wrong classification. Now, it is corrected either in the methods and the note of Table 3: bad (0-33%)

2. In the results section, it states that "The reactive results of patients examined by the rapid tests showed that 42.9% were asymptomatic or lacked available data". This needs attention because it is very dangerous for public health. COVID-19 patients are asymptomatic and can transmit COVID-19 to other people in their various activities.

Responses:
Thank you for your attention:
In order to avoid misunderstanding among readers, we break down the data in table 4 and added a statement “that 14.3% were asymptomatic and 19% not available data”.

3. "According to Table 3, showing the screening tests used in the study, 62% of the articles (13/21) adopted a rapid antibody and antigen test, for most of the men over 50 years of age" - what is the possible reason this test is less used at younger ages? This needs further research.

Responses:
Thank you for your attention:
In order to avoid misunderstanding among readers, we deleted it. We added a statement that “62% of the articles used a rapid antibody test for screening rather than a rapid antigen test. According to the rapid antigen test, 51.3% were positive, with men aged above 50 years recording the highest number of cases”.

For the previous comment: Version 1
This article is useful and provides information about the COVID-19 early detection test but
does not discuss the cost of the test.

Responses:
Thank you for your concern.
Yes, you are right. It is a good idea to discuss the cost of the tests used since the costs vary.
Unfortunately, in this study, we do not discuss the cost of COVID-19 testing; However, this is a good idea for suggestions in future studies considering the cost of the covid tests around the world, such as in the airports. For this issue, we added one reference, no 56.

Thank you very much for your valuable comments and corrections.
Best regards.

Competing Interests: We declare we do not have any competing interests.
Reviewer Expertise: COVID-19, Public Health, Epidemiology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 04 October 2021

https://doi.org/10.5256/f1000research.54024.r94254

© 2021 Bhaskar S. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sonu Menachem Maimonides Bhaskar
1 Liverpool Hospital, Liverpool, NSW, Australia
2 Ingham Institute, Liverpool, NSW, Australia
3 Global Health Neurology Lab and NSW Brain Clot Bank, Sydney, NSW, Australia

This is an interesting review of the case findings, testing, and management of COVID-19. The article needs substantial revision for its content. Here are some general comments for the authors to consider:

1. In the Abstract, the authors state "This review aimed to examine the outcome of the existing studies on the ways of identifying COVID-19 cases...", please revise this to "...examine the variations in COVID-19 diagnostic testing and clinical characteristics across various studies.". The study doesn't provide data on management protocols or on the outcomes.

2. The Discussion lacks a concrete summary. Please summarise the findings relevant to this systematic review.

3. Table 1 should be provided as a part of the Results.

4. In Table 2, the data on clinical characteristics, such as risk factors, COVID-19 severity, etc., are not provided and could be included. Moreover, please change the legend of Table 2 to "Clinical and demographic characteristics of studies included in the systematic review".

5. In the Discussion, "High-risk group" section, the authors make statements that are not appropriately referenced and lacks context from the standpoint of the overall findings of this review.

6. The authors discuss the symptoms in Table 4; however, several studies have not reported on various symptoms or data is simply not available.
7. The authors conclude "The elderly and individuals with pre-existing medical conditions such as high blood pressure, heart and lung disorders, diabetes, and cancer are at greater risk of experiencing severe COVID-19 symptoms.". But this is not supported by the findings of this study. The authors didn't examine these associations in this systematic review.

8. The Conclusion and Discussion need substantial revision focusing on the findings of this systematic review only. The accuracy of rapid antigen tests remains debatable, therefore, unless not available, RT-PCR should be preferred as the first-line strategy.

9. The authors need to expand upon the statistical analysis, as in what descriptive statistics were used for subgroup analyses.

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Partly

Is the statistical analysis and its interpretation appropriate?
Partly

Are the conclusions drawn adequately supported by the results presented in the review?
No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: COVID-19, Public Health, Epidemiology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 28 Nov 2021
Dewi Susanna, Universitas Indonesia, Depok, Indonesia

Dear editor and reviewer,

Here are our responses to the reviewer comments and suggestions:

1. In the Abstract, the authors state, "This review aimed to examine the outcome of the existing studies on the ways of identifying COVID-19 cases...", please revise this to "..examine the variations in COVID-19 diagnostic testing and clinical characteristics across various studies.". The study doesn't provide data on management protocols or on the outcomes.

Author Responses:
The aim of this abstract and the last part of the introduction was revised as follows:

The review aimed to examine the variations in COVID-19 diagnostic testing and clinical characteristics across various studies

2. The Discussion lacks a concrete summary. Please summarise the findings relevant to this systematic review.

Author Responses:
The revision of the Discussion is as follows:

a. The section High-Risk Group was changed with Comorbidities and added for the new Discussion:

Comorbidities:

COVID-19 patients with other comorbidities such as chronic obstructive pulmonary disease (COPD), cardiovascular disease (CVD), hypertension, cancer, diabetes, HIV, chronic kidney disease can cause a high risk of death. Comorbidities cause COVID-19 patients to be more at risk of increased morbidity and mortality. 42-45. A cohort study in Jakarta also found a higher risk of death with comorbid patients than those without, the risk increasing sixfold among patients <50 years of age 46. Therefore, comorbidities can exacerbate COVID-19 infection 47.

Here are the added references, so the reference list must be reordered.

41. Ejaz H, Alsrhani A, Zafar A, Javed H, Junaid K, Abdalla AE, et al. COVID-19 and comorbidities: Deleterious impact on infected patients. J Infect Public Health [Internet]. 2020 Dec 1 [cited 2021 Nov 27];13(12):1833–9. Available from: https://pubmed.ncbi.nlm.nih.gov/32788073/

42. Sanyaolu A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P, et al. Comorbidity and its Impact on Patients with COVID-19. SN Compr Clin Med. 2020;2(8):1069–76.

43. Fathi M, Vakili K, Sayehmiri F, Mohamadkhani A, Hajiesmaeili M, Rezaei-Tavirani M, et al. The prognostic value of comorbidity for the severity of COVID-19: A systematic review and meta-analysis study. PLoS One [Internet]. 2021;16(2 February):1–25. Available from: http://dx.doi.org/10.1371/journal.pone.0246190

44. Surendra H, Elyazar IR, Djaafera BA, Ekawati LL, Saraswati K, Adrian V, et al. Clinical characteristics and mortality associated with COVID-19 in Jakarta, Indonesia: A hospital-based retrospective cohort study. Lancet Reg Heal - West Pacific [Internet]. 2021;9:100108. Available from: https://doi.org/10.1016/j.lanwpc.2021.100108

45. Klein F. Risikofaktor Komorbiditäten bei COVID-19- Erkrankung. Pneumologie. 2020;74(10):640.

b. The findings were summarised to relevant review:

The last part of the Discussion summarised the review as follows:

Various screening methods are used to detect COVID-19, such as rapid antigen and antibody tests. Early diagnosis of COVID-19 requires gradual tests such as a screening test by conducting a rapid antigen test a week earlier and an antibody test that needs to be confirmed by RT-PCR and serological tests in the second week of COVID-19. Based on this study, the accuracy of most...
diagnostic tests such as RT-PCR, ELISA, POC LFA, CLIA, CEFA, and MIA the sensitivity and specificity increased in the late phase (>14 days) after the onset of symptoms. This accuracy helps identify individuals who have been exposed to COVID-19.

3. Table 1 should be provided as a part of the Results.

Author Responses:

Table 1 moved to the results. It is put after Figure 1.

4. In Table 2, the data on clinical characteristics, such as risk factors, COVID-19 severity, etc., are not provided and could be included. Moreover, please change the legend of Table 2 to "Clinical and demographic characteristics of studies included in the systematic review".

Author Responses:

The legend of Table 2 is replaced with: “Clinical and demographic characteristics of studies included in the systematic review”

5. In the Discussion, "High-risk group" section, the authors make statements that are not appropriately referenced and lacks context from the standpoint of the overall findings of this review:

Author Responses:

The section **High-Risk Group** was changed with **Comorbidities** and the Discussion added information as shown in responses No. 2.b above.

6. The authors discuss the symptoms in Table 4; however, several studies have not reported on various symptoms or data is simply not available?

Author Responses:

The characteristics of the symptoms shown are following the results of the journals reviewed.

7. The authors conclude “The elderly and individuals with pre-existing medical conditions such as high blood pressure, heart and lung disorders, diabetes, and cancer are at greater risk of experiencing severe COVID-19 symptoms." But this is not supported by the findings of this study. The authors didn't examine these associations in this systematic review.

Author Responses:

The findings: "The elderly and individuals with pre-existing medical conditions such as high blood pressure, heart and lung disorders, diabetes, and cancer are at greater risk of experiencing severe COVID-19 symptoms" was deleted since it is not supported by the data and the authors did not measure the associations.
8. The Conclusion and Discussion need substantial revision focussing on the findings of this systematic review only. The accuracy of rapid antigen tests remains debatable; therefore, unless not available, RT-PCR should be preferred as the first-line strategy.

Author Responses:

The accuracy of rapid antigen tests remains debatable; therefore, RT-PCR should be preferred unless not available as the first-line strategy was put in the first line of the conclusion.

9. The authors need to expand upon the statistical analysis, as in what descriptive statistics were used for subgroup analyses:

Author Responses:

The authors did not use statistical analysis, for instance, a meta-analysis, because quantitative data such as Odds ratio, p-value, etc. were not supported in the articles selected.

Competing Interests: No competing interests were disclosed

Comments on this article

Version 1

Reader Comment 22 Jan 2022

Rahayu Lubis, Universitas Sumatera Utara, Medan, Indonesia

This article is useful and provides information about the COVID-19 early detection test but does not discuss the cost of the test.

Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com