A facile preparation of MSS@FePt nanocomposites and their application for H_2O_2 detection

Zunfu Hu1,2, a, Yueqin Yu1, b, Xiuwen Zheng2, *

1College of chemistry and molecular engineering, Qingdao University of Science and Technology, China
2Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China

*Corresponding author e-mail: zhengxiuwen@lyu.edu.cn, alydxhzf@163.com, bqustyu@163.com

Abstract. In this report, Platinum iron nanoparticles (FePt NPs) were attached onto Mesoporous silicon spheres (MSS) by a facile polyol process. Based on the prepared nanoparticles, a novel colorimetric sensor for fast and sensitive determination of H_2O_2 was established. The established colorimetric sensing platform exhibited perfect peroxidase-like activities confirmed by oxidating 4, 4'-Bi-2, 6-xylidine (TMB) with H_2O_2. After optimizing the reaction conditions, the linearity of H_2O_2 determination ranged from 40 to 300 \(\mu \)M and the limit of detection (LOD) of 18.27 \(\mu \)M.

1. Introduction

Hydrogen peroxide (H_2O_2) has the pivotal positions in amounts of domains, for instance mineral industrial, agricultural and agrions, bioanalysis and clinical diagnosis [1-4]. Recently, series of analysis technics have been established to sensitive and rapid detect H_2O_2, for instance, electrochemical, fluorescence, chemiluminescence and colorimetric [5-7]. Among these established analysis technics, high attentions have been paid to colorimetric, due to its advantages of cost-effective, high-efficiency, high convenience, high-sensitivity and other superiority.

As a series of well-attended nanomaterials, nano-enzymes are utilized to imitate and substitute the traditional enzymes. In spite of the high-efficiency, the application of traditional enzymes are limited by their inherent defects, for instance instability, high manufacturing cost and harsh conditions of the application. To overcome these mentioned drawbacks, nano-enzymes are paid a lot of attentions. Up to now, amounts of nanomaterials were synthesized and applied in series of fields, for example Fe_3O_4 NPs [7], Co_3O_4 NPs [8], CeO_2 NPs [9], MnO_2 nanosheets [10], CuO NPs [11], V_2O_5 nanoparticles [12] and noble metals (Au, Pt) [13]. In order to further improve the peroxidase-like ability of platinum-based nanomaterials, more than two kinds of metallic elements or noble metals were brought into the horizon of researchers. Until now, few studies have been report to study the peroxidase-like activity of FePt NPs.

In this study, we obtained a peroxidase-like nano-enzyme MSS@FePt NPs by in-situ reduction Fe (acac)_3 and Pt (acac)_2 on the surface of mesoporous silicon spheres. Furthermore, the obtained nanoparticles were utilized as a colorimetric sensor for H_2O_2 determination.
2. Materials and methods

2.1. Materials and Characterization

4, 4’-Bi-2,6-xylidine (TMB), hydrogen peroxide (H₂O₂), Iron(III) acetylacetonate (Fe(acac)₃) and Acetylacetone Platinum(II) (Pt(acac)₂) were got from Aladdin. These TEM images were provided by the transmission electron microscopy (JEOL, JEM-2100, and Japan). These UV-vis spectras were performed on a Cary 4600 spectrometer (USA).

2.2. Preparation of MSS@FePt NPs

Mesoporous silicon spheres (MSS) were prepared according to the reported literature [15]. MSS@FePt NPs were prepared by a modified polyol process [16]. 0.1g MSS, 0.2 mmol Pt (acac)₂ and 0.4 mmol Fe (acac)₃ were introduced into three-neck flask. Then, the mixture were heating to a certain temperature under N₂ atmosphere and refluxed with constant stirring for 1 h. After cooled to room temperature, the obtained NPs were centrifuged at 10000 rpm for 10 min and washed with ethanol for three times.

2.3. Colorimetric Detection of H₂O₂

In the typical operation, 200 μL TMB (1mM), 200 μL MSS@FePt HNPs (30 μg/mL) and 200 μL H₂O₂ (0.2 M) were sequentially added into 1400 μL Citric acid buffer (pH 4.2). When the reaction solutions were incubated for 3 min, the absorption of the solution was performed on the UV-vis spectrometer.

3. Results and Discussion

3.1. Synthesis and Characterization of MSS@FePt NPs

In this study, MSS@FePt NPs were easily prepared by a facile polyol process. Firstly, MSS were simply synthesized by a hydrolysis method under alkaline conditions. The hybrid nanoparticles were uniformly well-formed spheres with an average diameter of 200 nm, shown in Figure 1A. The (110) plane of FePt NPs with a lattice spacing of 0.224 nm was also observed in Figure 1B.
Figure 1. The TEM image of MSS@FePt NPs (A), the HRTEM of MSS@FePt NPs (B), and the inset is the adjacent fringe spacing of FePt NPs.

To study the peroxidase-like properties of MSS@FePt NPs, these colorimetric reactions were carried out with TMB as chromogenic substrate. As shown in Figure 2A, the strongest absorbance at 652 nm was obtained in system a (TMB+MSS@FePt+H2O2, line a), compared to the other systems. This result indicated that, in the presence of H2O2, MSS@FePt NPs can catalyze the decomposition of H2O2 inducing the oxidation of TMB rapidly. However, without H2O2, MSS@FePt NPs can barely catalyze the oxidation of TMB, producing none color change in system b (TMB+MSS@FePt), shown in the inset of Figure 1(A). Similarly, the control experiments (system c and d) without MSS@FePt NPs or H2O2 show negligible color variation. These results clearly demonstrate that MSS@FePt NPs possess peroxidase-like activity. In addition, the UV absorbance changes at 652 nm of MSS@FePt NPs were further investigated.

Figure 2. (A) The UV-vis spectra of these obtained nano-enzymes. (B) Experiments to investigate the peroxidase-like activity.
Figure 3. The dose-response curve for H$_2$O$_2$ determination.

Based on the excellent peroxidase-like activity of MSS@FePt NPs, a colorimetric method was established for H$_2$O$_2$ detection. With increasing H$_2$O$_2$ from 1 µM to 1000 µM, displayed in Figure 3, the absorbance of the colorimetric system at 652 nm raised gradually. The typical H$_2$O$_2$ concentration-response curve was shown in Figure 3, as depicted in Figure 3, the linear range of the H$_2$O$_2$ determination was found to be 40 to 300 µM and the limit of detection (LOD) of 18.27 µM.

4. Conclusion

In summary, MSS@FePt NPs were synthesized in a facile way and applied as peroxidase-like enzyme to establish a sensitive and fast sensing platform for colorimetric determination of H$_2$O$_2$. Verified by series of experiments, MSS@FePt NPs exhibit excellent peroxidase-like activity. Under optimized conditions, the linearity of H$_2$O$_2$ detection ranged from 40 to 300 µM and the LOD was 18.27 µM. Compared to other methods, MSS@FePt NPs-based colorimetric sensor for detection H$_2$O$_2$ is a sensitive, simple and cheap assay.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos.: 21675073, 51872150), Primary Research, Development Plan of Shandong Province (2017GGX20115) and Shandong Province Natural Science Foundation (Nos.: ZR2017BB070, ZR2018MB034) are gratefully acknowledged.

References

[1] SHENG J, JIANG X, WANG L, et al. Biomimetic Mineralization Guided One-Pot Preparation of Gold Clusters Anchored Two-Dimensional MnO$_2$ Nanosheets for Fluorometric/Magnetic Bimodal Sensing, Anal Chem, 90 (2018) 2926 - 32.
[2] SINGH V K, YADAV P K, CHANDRA S, et al. Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and its application for colorimetric detection of H$_2$O$_2$ and glutathione in human blood serum, Journal of Materials Chemistry B. 42 (2018) 6803 - 9.
[3] PENG J, WENG J. Enhanced peroxidase-like activity of MoS$_2$/graphene oxide hybrid with light irradiation for glucose detection, Biosens Bioelectron. 89 (2017) 652 - 8.
[4] CAI S, JIA X, HAN Q, et al. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects, Nano Res. 10 (2017) 2056 - 69.
[5] LIU W, DING F, WANG Y, et al. Fluorometric and colorimetric sensor array for discrimination of glucose using enzymatic-triggered dual-signal system consisting of Au@Ag nanoparticles.
and carbon nanodots, Sensors and Actuators B: Chemical. 265 (2018) 310 - 317.

[6] ZHU J, NIE W, WANG Q, et al. In situ growth of copper oxide-graphite carbon nitride nanocomposites with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of hydrogen peroxide, Carbon. 129 (2018) 29 - 37.

[7] QIAN TANG X, DAN ZHANG Y, WEI JIANG Z, et al. Fe₃O₄ and metal-organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose, Talanta. 179 (2018) 43 - 50.

[8] FENG Y, YU X Y, PAIK U. Formation of Co₃O₄ microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation, Chem Commun (Camb). 52 (2016) 6269 - 72.

[9] WANG N, SUN J, CHEN L, et al. A Cu₂(OH)₃Cl-CeO₂ nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol, Microchim Acta. 182(2015) 1733 – 1741.

[10] HE L, WANG F, CHEN Y, et al. Rapid and sensitive colorimetric detection of ascorbic acid in food based on the intrinsic oxidase-like activity of MnO₂ nanosheets, Luminescence, 33 (2018). 145 - 152.

[11] AHMAD R, VASEEM M, TRIPATHY N, et al. Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes, Anal Chem, 85 (2013). 10448 - 10454.

[12] CHEN M, YANG B, ZHU J, et al. FePt nanoparticles-decorated graphene oxide nanosheets as enhanced peroxidase mimics for sensitive response to H₂O₂ [J]. Materials science & engineering C, Materials for biological applications, 2018, 90 (610 - 20.

[13] HAN L, LI C, ZHANG T, et al. Au@Ag Heterogeneous Nanorods as Nanozyme Interfaces with Peroxidase-Like Activity and Their Application for One-Pot Analysis of Glucose at Nearly Neutral pH, ACS Appl Mater Interfaces. 7 (2015) 14463 – 14470.

[14] HUANG P, QIAN X, CHEN Y, et al. Metalloporphyrin-Encapsulated Biodegradable Nanosystems for Highly Efficient Magnetic Resonance Imaging-Guided Sonodynamic Cancer Therapy, J Am Chem Soc. 139 (2017) 1275 - 84.

[15] WANG J, LOH K P, ZHONG Y L, et al. Bifunctional FePt Core-Shell and Hollow Spheres: Sonochemical Preparation and Self-Assembly, Chem Mater. 19 (2007) 2566 - 2572.