Control of atom-photon interactions with shaped quantum electron wavepackets

Jeremy Lim,1 Yee Sin Ang,1 Lay Kee Ang,1 and Liang Jie Wong2

1Science, Mathematics and Technology, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
2School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Abstract Photon emission from atoms and free electrons underlie a wealth of fundamental science and technological innovations. We present a regime where atom-photon and electron-photon interactions interfere with each other, resulting in substantial changes in the spontaneous emission rate compared to the sum of each interaction considered in isolation. We highlight the critical role played by quantum electron wavepackets, and how the emission can be tailored via the electron wave shape, as well as the atomic population and coherence. Our findings reveal that atom-photon and electron-photon interactions cannot be considered in isolation even when higher-order contributions involving all three bodies (atom, photon and free electron) are negligible. Our findings pave the way to more precise control over photon emission processes and related diagnostics.

Introduction Atom-photon interactions encompass many fundamental phenomena including stimulated and spontaneous emission [113], Rabi oscillations [4] [5], Dicke superradiance [6,9], and high-harmonic generation [10–12]. Such effects form the basis of many fields including quantum metrology [13–17], quantum information technologies [18–20], quantum integrated circuits [21–31], optical switching [32–35], and photon generation and manipulation [28–39] [45]. Innovative platforms for atom-photon interactions continue to arise in the form of quantum dots [46–51], 2D materials [52–55], superconducting qubits [56], crystal vacancy centers and defects [57–60], and cathodoluminescence [61]. These effects have fueled the development of light-matter interactions.

At the same time, electron-photon interactions comprise many intriguing effects including the Kapitza-Dirac effect [65–68], Smith-Purcell radiation [69–71], Cerenkov radiation [72–75], transition radiation [76–77], Bremsstrahlung [78–80], and Compton scattering [81,82]. These effects have fueled the development of light sources [83–88], particle accelerators [89–93] and detectors [94–99], and medical devices. Electron-photon interactions form the basis of innovative diagnostic tools including electron energy-loss spectroscopy (EELS) [100–109] and its variants [101–109], cathodoluminescence (CL) [101–109,110], and photon-induced near-field electron microscopy (PINEM) [107–109,112–120]. These tools have enabled the study of the most fleeting and minute excitations in both light and matter. Recent works have shown that photons can shape quantum electron wavefunctions [111–114,116–117,121–135], and that shaped electrons can in turn tailor free electron stimulated and spontaneous emission [111,136,147].

While atom-photon and electron-photon interactions are individually well studied, they are typically treated as independent processes whose cross-sections can be added incoherently.

Contrary to this notion, we present here a regime where electron-photon and atom-photon interactions interfere significantly with each other, resulting in strong modulation of the total spontaneous emission (SE) rate with interaction length (Figs. 1(a),(b)). We show that this interference is facilitated, and can be engineered, by shaped quantum electron wavepackets (QEWs). The SE rate can be significantly enhanced or suppressed compared to the sum of atomic SE and free electron SE considered in isolation – an effect absent when unshaped (Gaussian) QEWs are used (Fig. 1(c),(d)). Importantly, the shape of the QEW can be used to control the total SE rate. Our results show that maximum SE enhancement or suppression can be achieved over a wide range of electron kinetic energies (e.g., 100 eV to 1 MeV) and emission frequencies (e.g., optical to terahertz), within interaction lengths of ~10^{-7} m to ~10^{-4} m. Our findings pave the way to more precise control over photon emission processes, and motivate the development of advanced QEW shaping techniques for on-demand tailoring of light-matter interactions.

Results Consider a QEW of velocity \(\mathbf{v} = v_0 \hat{z} \), modulation frequency \(\omega_{\text{mod}} \), and bunching factor \(\langle b \rangle = \langle |b| e^{i\phi_b} \rangle \) passing through an electromagnetic (EM) environment (e.g., cavity, waveguide) of length \(L \), which is also the interaction length. The EM environment contains an atom, modeled as a two-level system. To first order in perturbation theory (i.e., weak coupling regime), we find that the single-photon SE rate arising from the interference between the atom-photon and electron-photon interactions is given by (details in Supplemental Material (SM) Section I)

\[
\Gamma_{\text{al/el}} = \frac{\tau}{\hbar} \frac{e \epsilon_0 \hbar V}{\epsilon_0} |d| \rho_{\text{eg}} \langle b \rangle |\cos(\xi)\sin\left(\frac{\omega_{\text{cav}} - \omega_a}{2}\right) \times \left[\sin\left(\frac{\delta \omega_{\text{cav}} - \omega_{\text{mod}}}{2}\right) \sin\left(\frac{\omega_{\text{cav}} - \omega_{\text{mod}}}{2}\right)\right]\right],
\]

where the atom located at \(\mathbf{r} = (0, 0, z_a) \) with a bandgap corresponding to angular frequency \(\omega_a \). The EM environment supports a single dominant longitudinal field
mode of angular frequency \(\omega_{\text{cav}} \) and wavevector \(q = (0,0,\omega_{\text{cav}}/c) \), where \(c \) is the free-space speed of light. Such a mode is realizable, for instance, using a racetrack system within an electromagnetic (EM) environment separately emit photons at rates of \(\Gamma_{\text{al}} \) and \(\Gamma_{\text{el}} \) respectively. Interference between these distinct quantum processes (dotted line) results in a third emission process at rate \(\Gamma_{\text{al/el}} \), which can significantly enhance or suppress the total SE rate. (b) For a 30 keV modulated QEW of bunching factor \(b = 0.99 \), the total SE rate is strongly modulated as a function of interaction length \(L \). In contrast, for an unmodulated Gaussian QEW (c), quantum interference is absent, resulting in the unmodulated emission rate profile (d). The two-level system here (Sn-N vacancy) has emission angular frequency \(\omega_a = 2\pi c/(620 \text{ nm}) \approx 3 \times 10^{15} \text{ rad/s} \) and transition dipole moment of \(d = (4.33 \times 10^{-29}) \hat{z} \text{ Cm} \) aligned parallel to the field, with equal population initially in the excited and ground states. Here, \(\Psi_b = 0 \), \(z_a = 0 \), and \(\phi_{ea} = (\pi/2) + (\omega_{\text{cav}} z_a/c) \).

Figure 1(b) shows that a modulated QEW can lead to significant enhancement or suppression of SE, depending on interaction length \(L \) and cavity frequency \(\omega_{\text{cav}} \), compared to the incoherent sum of isolated SE events \(\Gamma_{\text{al}} + \Gamma_{\text{el}} \). The latter scenario is shown in Fig. 1(d), which also corresponds to the total SE for an incoming unmodulated Gaussian QEW. In Fig. 1(b) we consider a modulated QEW of central kinetic energy \(E_K = 30 \text{ keV} \) and bunching factor \(b \approx 0.99 \), which was recently shown to be feasible using multiple electron-lensing stages [122]. The two-level system we consider is a tin-vacancy (SnV) center [148] of emission frequency \(\omega_b \approx 3 \times 10^{15} \text{ rad/s} \) (corresponding to wavelength 620 nm) and transition dipole moment \(d = 2.33 \times 10^{-29} \text{ Cm} \) (aligned parallel to the field). The initial excited and ground state populations are equal, corresponding to atomic coherence magnitude \(|\rho_{eg}^a| = 1/2 \). We set \(\phi_a = (\omega_{\text{cav}} z_a/c) \) as a result of the sinc term in the first line of Eq. 1, which approaches a delta function (when multiplied by \(\tau \)) that enforces energy conservation at long interaction times. We consider the resonant case for the rest of this work.

![FIG. 1. Tailoring the spontaneous emission (SE) rate through quantum interference between atom-photon and electron-photon interactions, facilitated by shaped quantum electron wavepackets (QEW). (a) Modulated QEWs and two-level systems within an electromagnetic (EM) environment separately emit photons at rates of \(\Gamma_{\text{al}} \) and \(\Gamma_{\text{el}} \) respectively. Interference between these distinct quantum processes (dotted line) results in a third emission process at rate \(\Gamma_{\text{al/el}} \), which can significantly enhance or suppress the total SE rate. (b) For a 30 keV modulated QEW of bunching factor \(b = 0.99 \), the total SE rate is strongly modulated as a function of interaction length \(L \). In contrast, for an unmodulated Gaussian QEW (c), quantum interference is absent, resulting in the unmodulated emission rate profile (d). The two-level system here (Sn-N vacancy) has emission angular frequency \(\omega_a = 2\pi c/(620 \text{ nm}) \approx 3 \times 10^{15} \text{ rad/s} \) and transition dipole moment of \(d = (4.33 \times 10^{-29}) \hat{z} \text{ Cm} \) aligned parallel to the field, with equal population initially in the excited and ground states. Here, \(\Psi_b = 0 \), \(z_a = 0 \), and \(\phi_{ea} = (\pi/2) + (\omega_{\text{cav}} z_a/c) \).](image)

To quantify the relative contribution of the interference term \(\Gamma_{\text{al/el}} \), we define the modulation factor

\[
\gamma = \frac{\Gamma_{\text{al/el}}}{\Gamma_{\text{al}} + \Gamma_{\text{el}}} = \frac{2|\rho_{eg}^a||\langle b\rangle|\cos(\xi)\text{sinc}(\delta\beta\omega_a\tau/2)}{4\Lambda \frac{1-\text{sinc}(\delta\beta\omega_a\tau)}{(\delta\beta\omega_a\tau)^2} + (\rho_{ee}^a/\Lambda)},
\]

where \(\delta_\beta = |1 - \beta_0| \), \(\Lambda = e\nu_0/(\omega_0 |d|) \) measures the strength of the electron-photon interaction relative to that of the atom-photon interaction, and \(\rho_{ee}^a \) is the initial excited atomic state population. Figure 2 presents the dependence of \(|\gamma_{\text{max}}| = \text{the maximum possible } \gamma \text{ across all } \tau \) – on the QEW shape as determined by the bunching factor \(b \). We see that \(|\gamma_{\text{max}}| \) grows linearly with \(|\langle b\rangle|\).
Our results also indicate that strong SE enhancement and suppression can be attained for atomic emission frequencies from the optical to the terahertz regime. Figure 3(a) shows that the corresponding L_{opt} ranging from tens of nm to hundreds of μm, which correspond to experimentally realizable waveguide/cavity dimensions in the optical to terahertz regimes [149-152]. An approximate analytical expression for L_{opt} is presented in SM Section III. As we see in Figs. 3(a),(b), the modulation factor varies in an oscillatory pattern with L, with a central spatial period of $\lambda_{\text{SE}} = 4\pi\nu_0/\delta_3\omega_a$. The white region in Fig. 3(a) denotes combinations of QEW E_K and ω_a that lie within the strong coupling regime, which is outside the scope of this work. Although we have focused on SnV as an example, our conclusions remain qualitatively unchanged even when we consider other systems (SM Section IV), as long as the transition dipole moment falls within the range $\sim 10^{-31}$ Cm to $\sim 10^{-29}$ Cm.

The modulation factor γ can also be controlled via the initial excited state population and coherence of the atomic system. As Fig. 3 shows, a larger L generally favors a smaller initial excited state population for maximal $|\gamma|$. This is more clearly depicted when we plot the SE modulation strength $|\gamma|$ using the Bloch sphere representation (polar colormaps, inset). Here, θ_a (radial coordinate) and ϕ_a (angular coordinate) are related to the excited state population ρ_{ee} and coherence ρ_{eg} through the relations $\rho_{ee} = \cos^2(\theta_a/2)$ and $\rho_{eg} = (1/2)e^{i\phi_a} \sin \theta_a$ respectively. For longer L, the peaks corresponding to $\max(|\gamma|)$ shift towards $\theta_a = \pi$, which corresponds to the ground state. As can also be seen from Eq. (2), the bunching phase Ψ_b can be used to azimuthally rotate the profile of γ on the atomic Bloch sphere.

Discussion Our work shows that atom-photon and electron-photon interactions cannot always be treated as separate processes and summed incoherently, even when we can ignore higher-order processes involving all three bodies (atom, electron and photon). Instead, our results reveal that first-order atom-photon and electron-photon interactions can interfere with each other, resulting in a total SE rate substantially different from sum of SE rates due to each interaction alone. It is noteworthy that the interference can be significant even when the atom and QEW are arbitrarily far apart, so long as they are each interacting with the same photon mode. This is in sharp contrast to the Coulomb interaction between the atomic system and the QEW, which relies on the proximity between the atom and the QEW, and which has been leveraged in recent works [155,157] to encode information on atomic coherence and dephasing in electron spectra. In this regard, our work could provide a route towards free-electron quantum metrology without the requirement of the atomic system and QEW being physically near each other.

Our results also indicate that strong SE enhancement and suppression can be attained for atomic emission frequencies from the optical to the terahertz regime. This can potentially be used to tailor and probe emitters...
FIG. 4. Dependence of quantum interference contribution on initial excited atomic state population. The optimal excited state population decreases with increasing interaction length L (solid red curve), revealing that smaller initial excited state populations favor larger $|\gamma|$ at longer interaction lengths L. The polar colormaps show the value of $|\gamma|$ on the Bloch sphere representing the initial atomic state, at various values of L. As illustrated for the case of $L = 68.66 \mu m$, the location of the maximal $|\gamma|$ on the Bloch sphere can be manipulated by varying the bunching factor phase Ψ_b. For the polar plots, the azimuthal angle ϕ_a is the phase of the coherent state and the polar angle θ_a (radial coordinate) is such that cos $^2 (\theta_a/2)$ is the excited state population. Here, we use the same parameters for the atomic state as Figs. 1 and 2 and consider a 30 keV modulated QEW with $\langle b \rangle = 0.58$.

in a wide variety of systems, such as superconducting qubits [162], quantum dots [46–54], and crystal and vacancy centers and defects in crystals [52, 53, 60–64] – capabilities that are increasingly sought-after in the development of quantum information technologies [18–45]. Additionally, the electron energy can be used as a degree of freedom to simultaneously tune L_{opt} and λ_{SE} for a given emission frequency, granting a degree of flexibility in cavity/waveguide designs.

Our findings are highly complementary to recent works exploring the use of shaped QEWs to tailor quantum mechanical and radiative processes. These include the use of shaped QEWs to shape spontaneous and stimulated emission from free electrons [138, 140–142, 147] and to realize free-electron-bound-electron-resonant interaction (FEBERI) [158, 159]. The combination of modulated electron wavepackets and synchronized external light was recently shown to suppress the resulting cathodoluminescence in a way that can be useful for ultrafast electron microscopy [111]. The physics we study here is completely different from all the above, as this work concerns interference between atomic and electron SE processes, where the total emission can be either enhanced or suppressed compared to the incoherent sum of the individual SE processes. Our theory can be readily extended to alternative configurations such as one where the QEW travels at an angle (instead of parallel, as in this work) to the photon mode of the EM environment. Additionally, our framework supports the study of stimulated emission and the possibility of entanglement among the input states, opening up a rich field of exploration. Our findings also suggest exciting prospects for applying QEWs that go beyond controlling photon emission, such as interference between electron-photon and electron-atom interactions for manipulation of electron wavepackets, and interference between electron-atom and atom-photon interactions for manipulation of atomic population and coherence.

Conclusion In summary, we present a regime of light-matter interaction where interference between electron-photon and atom-photon interactions can lead to strong enhancement or suppression of the total SE rate. This interference is facilitated by modulated QEWs, which provide a means of tailoring the total SE through their shape – specifically, the magnitude and phase of bunching factor $\langle b \rangle$. The sensitivity of the total SE to the coherence and population of the initial atom also makes this a promising way of measuring the atomic state using first-order processes. Furthermore, unlike electron-atom interactions, the interference can be strong even if the electron and atom are not physically near each other. Thanks to the interference, the magnitude of the total SE varies significantly with a relatively small change in the interaction length. With rapid advances in electron waveshaping techniques, our findings open the doors to unprecedented control over photon emission processes and related diagnostics.

Acknowledgements L.J.W. acknowledges the support of the National Research Foundation (Project ID NRF2020-NRF-ISF004-3525) and the Nanyang Assistant Professorship Start-up Grant. J.L. and L.K.A. acknowledge funding from Singapore MOE Tier 2 Grant (2018-T2-1-007), MOE PhD Research Scholarship, and USA Office of Naval Research (Global) grant (N62909-19-1-2047). Y.S.A. acknowledges funding from SUTD Startup Research Grant (ID SRT3CI21163).
D. R. Góngora, L. Seravalli, G. Trevisi, P. Frigeri, T. Volz, and M. Gurioli, “All optical switching of a single photon stream by excitonic depletion,” Commun. Phys. 3, 29 (2020).

[39] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. H., and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).

[40] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4, 859–863 (2008).

[41] J.-H. Wu, M. Artoni, and G. C. La Rocca, “Near-field manipulation of individual solid-state spins using optical fields,” Nat. Photonics 6, 93–96 (2012).

[42] A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Strongly correlated photons on a chip,” Nat. Photonics 6, 93–96 (2012).

[43] XL. Chu, S. Götzinger, and V. Sandoghdar, “A single molecule as a high-fidelity photon gun for producing intensity-squeezed light,” Nat. Photonics 11, 58–62 (2017).

[44] A. S. Prasad, J. Hinney, S. Mahmoodian, K. Hammerer, S. Rind, P. Schneeweiss, A. S. Sorensen, J. Volz, and A. Rauschenbeutel, “Correlating photons using the collective nonlinear response of atoms weakly coupled to an optical mode,” Nat. Photonics 14, 719–722 (2020).

[45] N. Stiesdal, H. Busche, K. Kleinbeek, J. Kumlin, M. G. Hansen, H. P. Büchler, and S. Hofferberth, “Controlled multi-photon subtraction with cascaded rydberg superatoms as single-photon absorbers,” Nat. Commun. 12, 4328 (2021).

[46] R. Patel, A. J. Bennett, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Two-photon interference of the emission from electrically tunable remote quantum dots,” Nat. Photonics 4, 632–635 (2010).

[47] E. B. Flagg, A. Muller, S. V. Polyakov, A. Ling, A. Migdall, and G. S. Solomon, “Interference of single photons from two separate semiconductor quantum dots,” Phys. Rev. Lett. 104, 137401 (2010).

[48] J. C. Loredo, N. A. Zakaria, N. Somaschi, et al., “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016).

[49] N. Somaschi, V. Giesz, L. De Santis, et al., “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).

[50] X. Ding, Y. He, Z.-C. Duan, et al., “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).

[51] Y. J. Wei, Y.-M. He, M.-C. Chen, et al., “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14, 6515–6519 (2014).

[52] A. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).

[53] W. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nat. Photonics 9, 363–373 (2015).

[54] M. Veldhorst, C. H. Yang, and J. C. C. Hwang, “A two-qubit logic gate in silicon,” Nature 526, 410–414 (2015).

[55] T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotech. 11, 37–41 (2016).

[56] Y.-M. He, G. Clark, J. R. Schaubley, et al., “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).

[57] S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, “Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer wse2,” Nano Lett. 15, 7567–7573 (2015).

[58] J. Kern, I. Niehues, and P. Tonndorf, “Nanofabrication of single-photon emitters in atomically thin wse2,” Adv. Mater. 28, 7101–7105 (2016).

[59] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, “Circuit quantum electrodynamics,” Rev. Mod. Phys. 93, 025005 (2021).

[60] I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).

[61] A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).

[62] V. M. Acosta, C. Santori, A. Faraon, et al., “Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 108, 206401 (2012).

[63] V. G. Ralphenko, V. S. Sedov, A. A. Khomich, V. S. Krivobok, S. N. Nikolaev, S. S. Savin, I. I. Vlasov, and V. I. Konov, “Observation of the ge-vacancy color center in microcrystalline diamond films,” Bull. Lebedev Phys. Inst. 42, 165–168 (2015).

[64] S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, “A silicon carbide room-temperature single-photon source,” Nat. Mater. 13, 151–156 (2014).

[65] P. L. Kapitza and P. A. M. Dirac, “The reflection of electrons from standing light waves,” Proc. Camb. Phil. Soc. 29(2), 297–300 (1933).

[66] D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the kapitza–dirac effect,” Nature 413, 142–143 (2001).

[67] X. Li, J. Zhang, Z. Xu, P. Fu, D.-S. Guo, and R. R. Freeman, “Theory of the kapitza-dirac diffraction effect,” Phys. Rev. Lett. 92, 233603 (2004).

[68] H. Batelaan, “Colloquium: Illuminating the kapitza–dirac effect with electron matter optics,” Rev. Mod. Phys. 79, 929–941 (2007).

[69] S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1069 (1953).

[70] K. Mizuno, J. Pae, T. Nozokido, and K. Furuya, “Experimental evidence of the inverse smith–purcell effect,” Nature 328, 45–47 (1987).

[71] A. Friedman, A. Gover, G. Kurizki, S. Ruschin, and V. I. Konov, “Observation of the ge-vacancy color center in microcrystalline diamond films,” Bull. Lebedev Phys. Inst. 29(2), 297–300 (1933).

[72] A. Yariv, “Spontaneous and stimulated emission from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1069 (1953).

[73] A. Friedman, A. Gover, G. Kurizki, S. Ruschin, and V. I. Konov, “Observation of the ge-vacancy color center in microcrystalline diamond films,” Bull. Lebedev Phys. Inst. 29(2), 297–300 (1933).

[74] A. Yariv, “Spontaneous and stimulated emission from localized surface charges moving across a grating,” Phys. Rev. 92, 1069–1069 (1953).

[75] A. Friedman, A. Gover, G. Kurizki, S. Ruschin, and V. I. Konov, “Observation of the ge-vacancy color center in microcrystalline diamond films,” Bull. Lebedev Phys. Inst. 29(2), 297–300 (1933).
[73] C. Luo, M. Ibanescu, S. G. Johnson, and J. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).

[74] G. Adamo, K. F. MacDonald, Y. H. Fu, C-M. Wang, D. P. Tsai, F. J. García de Abajo, and N. I. Zheludev, “Light well: A tunable free-electron light source on a chip,” Phys. Rev. Lett. 103, 113901 (2009).

[75] I. Kaminer, M. Mutzafi, A. Levy, G. Harari, H. Herzig Sheinfux, S. Skirlo, J. Nemirovsky, J. D. Joannopoulos, M. Segev, and M. Soljačić, “Quantum Cerenkov radiation: Spectral cutoffs and the role of spin and orbital angular momentum,” Phys. Rev. X 6, 011006 (2016).

[76] V. Ginsburg and I. Frank, “Radiation of a uniformly moving electron due to its transition from one medium into another,” Zh. Eksp. Teor. Fiz. 16, 15–28 (1946).

[77] V. L. Ginzberg, “Transition radiation and transition scattering,” Physica Scripta 1982, 182 (1982).

[78] P. J. Brussaard and H. C. van de Hulst, “Approximation formulas for nonrelativistic bremsstrahlung and average gaunt factors for a maxwellian electron gas,” Rev. Mod. Phys. 34, 507–520 (1962).

[79] J. Joseph and F. Rohrlich, “Pair production and bremsstrahlung in the field of free and bound electrons,” Rev. Mod. Phys. 30, 354–368 (1958).

[80] H. W. Koch and J. W. Motz, “Bremsstrahlung cross-section formulas and related data,” Rev. Mod. Phys. 31, 920–955 (1959).

[81] A. H. Compton, “A quantum theory of the scattering of x-rays by light elements,” Phys. Rev. 21, 483–502 (1923).

[82] A. Hall, “Stimulated compton scattering of electrons by standing waves of light,” Nature 199, 683 (1963).

[83] J. M. J. Madey, “Stimulated emission of bremsstrahlung in a periodic magnetic field,” J. Appl. Phys. 42, 1906–1913 (1971).

[84] W. Ackermann, G. Asova, V. Ayvazyan, et al., “Operation of a free-electron laser from the extreme ultraviolet to the water window,” Nat. Photonics 1, 336–342 (2007).

[85] P. Emma, R. Akre, and J. Arthur, “First lasing and operation of an angstrom-wavelength free-electron laser,” Nat. Photonics 4, 641–647 (2010).

[86] T. Ishikawa, H. Aoyagi, T. Asaka, et al., “A compact x-ray free-electron laser emitter in the sub-angstrom region,” Nat. Photonics 6, 540–544 (2012).

[87] C. Bostedt, S. Boutet, D. M. Fritz, Z. Huang, J. H. Lee, H. T. Lemke, A. Robert, W. F. Schlotter, J. J. Turner, and G. J. Williams, “Linac coherent light source: The first five years,” Rev. Mod. Phys. 88, 015007 (2016).

[88] I. Nam, CK. Min, B. Oh, et al., “High-brightness self-seeded x-ray free-electron laser covering the 3.5 kev to 14.6 kev range,” Nat. Photonics 15, 435–441 (2021).

[89] S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016).

[90] L. J. Wong, A. Fallahi, and F. X. Kärtner, “Compact electron acceleration and bunch compression in the waveguides,” Opt. Express 21, 9792–9806 (2013).

[91] L.J. Wong, KH. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljačić, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).

[92] R. J. England, R. J. Noble, K. Bane, et al., “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).

[93] E. Ferarri, R. Ischebeck, M. Bednartzik, et al., “The chip experimental chambers at the paul scherrer institut,” Nucl. Instrum. Methods. Phys. Res. A 907, 244 (2018).

[94] B. Dolgoshein, “Transition radiation detectors,” Nucl. Instrum. Methods. Phys. Res. A 326, 434–469 (1993).

[95] P. Lecoq, “Development of new scintillators for medical applications,” Nucl. Instrum. Methods. Phys. Res. A 809, 130–139 (2016).

[96] C. P. Wong, M. Alford, L. Allison, et al., “Modular focusing ring imaging cherenkov detector for electron-ion collider experiments,” Nucl. Instrum. Methods. Phys. Res. A 871, 13–19 (2017).

[97] X. Lin, S. Easo, Y. Shen, H. Chen, B. Zhang, J. D. Joannopoulos, M. Soljačić, and I. Kaminer, “Controlling cherenkov angles with resonance transition radiation,” Nature Phys 14, 816–821 (2018).

[98] L.J. Xu, X. Lin, Q. He, M. Worku, and B. Ma, “Highly efficient eco-friendly x-ray scintillators based on an organic manganese halide,” Nat. Commun. 11, 4329 (2020).

[99] X. Lin, H. Hu, S. Easo, et al., “A brewster route to cherenkov detectors.” Nat. Commun. 12, 5554 (2021).

[100] J. Verbeeck and S. Van Aert, “Model based quantification of eels spectra,” Ultramicroscopy 101, 207–224 (2004).

[101] F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).

[102] J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467, 301–304 (2010).

[103] G. Van Tendeloo, S. Bals, S. Van Aert, J. Verbeeck, and D. Van Dyck, “Advanced electron microscopy for advanced materials.” Adv. Mater. 24, 5655–5675 (2012). https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201202107.

[104] R. Egoavil, N. Gauquelin, G.T. Martínez, S. Van Aert, G. Van Tendeloo, and J. Verbeeck, “Atomic resolution mapping of phonon excitations in stem-eels experiments,” Ultramicroscopy 147, 1–7 (2014).

[105] J. Kreih, G. Guzzinati, J. Schultz, P. Potapov, D. Pohl, J. Martin, J. Verbeeck, A. Fery, B. Büchner, and A. Lübke, “Spectral field mapping in plasmonic nanostructures with nanometer resolution,” Nat. Commun. 9, 4207 (2018).

[106] A. Polman, M. Kociak, and F. J. García de Abajo, “Electron-beam spectroscopy for nanophotonics,” Nat. Mater. 18, 1158–1171 (2019).

[107] C. Z. Liu, Y. Wu, Z. Hu, et al., “Continuous wave resonant photon stimulated electron energy-gain and electron energy-loss spectroscopy of individual plasmonic nanoparticles,” ACS Photonics 6, 2499–2508 (2019).

[108] M. Liebtrau, M. Sivis, A. Feist, H. Lourenço-Martins, N. Pazos-Pérez, R. A. Alvarez-Puebla, F. J. García de Abajo, A. Polman, and C. Ropers, “Spontaneous and stimulated electron–photon interactions in nanoscale plasmonic near fields,” Light Sci. Appl. 10, 82 (2021).

[109] F. J. García de Abajo and V. Di Giulio, “Optical excitations with electron beams: Challenges and opportunities,” ACS Photonics 8, 945–974 (2021).

[110] E. A. López, V. Di Giulio, and F. J. García de Abajo,
“Atomic floquet physics revealed by free electrons,” (2021), arXiv:2111.08675 [quant-ph]

[111] Y. Di Giulio, O. Kfir, C. Ropers, and F. J. García de Abajo, “Modulation of cathodoluminescence microscopy by interference with external light,” ACS Nano 15, 7290–7304 (2021)

[112] B. Barwick, D. J. Flannigan, and A. H. Zewail, “Photon-induced near-field electron microscopy,” Nature 462, 902–906 (2009)

[113] T. S. Park, M. Lin, and A. H. Zewail, “Photon-induced near-field electron microscopy (pinem): theoretical and experimental,” New J. Phys. 12, 123028 (2010)

[114] A. Feist, K. Echterkamp, J. Schaus, S. V. Yalunin, S. Schäfer, and C. Ropers, “Quantum coherent optical phase modulation in an ultrafast transmission electron microscope,” Nature 521, 200–203 (2015)

[115] L. Piazza, T. Lumen, E. Quíñonez, Y. Murooka, B. W. Reed, B. Barwick, and F. Carbone, “Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field,” Nat. Commun. 6, 6407 (2015)

[116] K.E. Priebe, C. Rathje, S.V. Yalunin, T. Hohage, A. Feist, S. Schäfer, and C. Ropers, “Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy,” Nat. Photonics 11, 793–797 (2017)

[117] G. M. Vanacore, I. Madan, G. Berruto, et al., “Attosecond coherent control of free-electron wave functions using semi-infinite light fields,” Nat. Commun. 9, 2694 (2018)

[118] K. P. Wang, R. Dahan, M. Shentcis, Y. Kauffmann, A. Ben Hayun, S. Reinhardt, O. Tsesses, and I. Kaminer, “Coherent interaction between free electrons and a photonic cavity,” Nature 582, 50–54 (2020)

[119] T. R. Harvey, J.-W. Henke, O. Kfir, H. Lourenço-Martins, A. Feist, F. J. García de Abajo, and C. Ropers, “Probing chirality with inelastic electron-light scattering,” Nano Lett. 20, 4377–4383 (2020)

[120] R. Dahan, S. Nehemia, M. Shentcis, et al., “Resonant phase-matching between a light wave and a free-electron wavefunction,” Nat. Phys. 16, 1123–1131 (2020)

[121] G. M. Vanacore, I. Madan, and F. Carbone, “Spatiotemporal shaping of a free-electron wave function via coherent light–electron interaction,” Riv. del Nuovo Cim. 43, 567–597 (2020)

[122] S. V. Yalunin, A. Feist, and C. Ropers, “Tailored high-contrast attosecond electron pulses for coherent excitation and scattering,” Phys. Rev. Research 3, L032036 (2021)

[123] Z. Zhao, K. J. Leedle, D. S. Black, O. Solgaard, R. L. Byer, and S. Fan, “Electron pulse compression with optical beat note,” Phys. Rev. Lett. 127, 164802 (2021)

[124] Y. Morimoto and P. Baum, “Diffraction and microscopy with attosecond electron pulse trains,” Nat. Phys. 14, 252–256 (2018)

[125] L. J. Wong, B. Freelton, T. Rohwer, N Gedik, and S. G. Johnson, “All-optical three-dimensional electron pulse compression,” New J. Phys. 17, 013051 (2015)

[126] M. Kozák, T. Eckstein, N. Schönenberger, and P. Hommelhoff, “Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum,” Nat. Phys. 14, 121–125 (2018)

[127] M. Kozák, N. Schönenberger, and P. Hommelhoff, “Ponderomotive generation and detection of attosecond free-electron pulse trains,” Phys. Rev. Lett. 120, 103203 (2018)

[128] J. Lim, Y. D. Ching, and L. J. Wong, “Terahertz-optical intensity grating for creating high-charged, attosecond electron bunches,” New J. Phys. 21, 033020 (2019)

[129] J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni, R. W. Boyd, and E. Karimi, “Structured quantum waves,” Nat. Phys. 11, 629–634 (2015)

[130] I. Kaminer, J. Nemirovsky, M. Rechtsman, R. Bekenstein, and M. Segev, “Self-accelerating dirac particles and prolonging the lifetime of relativistic fermions,” Nat. Phys. 11, 261–267 (2015)

[131] V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R. Dennis, and R. W. Boyd, “Generation of nondiffracting electron bessel beams,” Phys. Rev. X 4, 011013 (2014)

[132] V. Di Giulio, M. Kociak, and F. J. García de Abajo, “Probing quantum optical excitations with fast electrons,” Optica 6, 1524 (2019)

[133] G. M. Vanacore, G. Berruto, and I. Madan, “Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields,” Nat. Mater. 18, 573–579 (2019)

[134] O. Kfir, “Entanglements of electrons and cavity photons in the strong-coupling regime,” Phys. Rev. Lett. 123, 103602 (2019)

[135] O. Kfir, H. Lourenço-Martins, G. Storeck, M. Sivis, T. R. Harvey, T. J. Kippenberg, A. Feist, and C. Ropers, “Controlling free electrons with optical whispering-gallery modes,” Nature 582, 46–49 (2020)

[136] G. Guzzinati, A. Béché, H. Lourenço-Martins, J. Martin, M. Kociak, and J. Verbeeck, “Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams,” Nat. Commun. 8, 14999 (2017)

[137] C. Roques-Carmes, N. Rivera, J. D. Joannopoulos, M. Soljačić, and I. Kaminer, “Nonperturbative quantum electrodynamics in the cherenkov effect,” Phys. Rev. X 8, 041013 (2018)

[138] A. Karmieli, N. Rivera, A. Arie, and I. Kaminer, “Superradiance and subradiance due to quantum interference of entangled free electrons,” Phys. Rev. Lett. 127, 060403 (2021)

[139] A. Karmieli, N. Rivera, A. Arie, and I. Kaminer, “The coherence of light is fundamentally tied to the quantum coherence of the emitting particle,” Sci. Adv. 7, eabc8096 (2021)

[140] A. Gover and Y. Pan, “Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket,” Phys. Lett. A 382 (2018), https://doi.org/10.1016/j.physleta.2018.03.049

[141] Y. Pan and A. Gover, “Spontaneous and stimulated radiative emission of modulated free-electron quantum wavepackets—semiclassical analysis,” J. Phys. Commun. 2, 115026 (2018)

[142] Y. Pan and A. Gover, “Spontaneous and stimulated emissions of a preformed quantum free-electron wave function,” Phys. Rev. A 99, 052107 (2019)

[143] A. Gover, R. Ianconescu, A. Friedman, C. Emma, N. Sudar, P. Musumeci, and C. Pellegrini, “Superradiant and stimulated-superradiant emission of bunched electron beams,” Rev. Mod. Phys. 91, 035003 (2019)

[144] H. Faresab and M. Yamada, “A quantum mechanical analysis of smith–purcell free-electron lasers,” Nucl. Instrum. Methods. Phys. Res. B. 785, 143–152 (2015)
[145] N. Talebi, “Schrödinger electrons interacting with optical gratings: quantum mechanical study of the inverse smith–purcell effect,” New J. Phys. 18, 123006 (2016).

[146] O. Kfir, V. Di Giulio, F. J. García de Abajo, and C. Ropers, “Optical coherence transfer mediated by free electrons,” Sci. Adv. 7, 18 (2021).

[147] L. J. Wong, N. Rivera, C. Murdia, T. Christensen, J. D. Joannopoulos, M. Soljačić, and I. Kaminer, “Control of quantum electrodynamic processes by shaping electron wavepackets,” Nat. Commun. 12, 1700 (2021).

[148] M. E. Trusheim, B. Pingault, N. H. Wan, et al., “Transform-limited photons from a coherent tin-vacancy spin in diamond,” Phys. Rev. Lett. 124, 023602 (2020).

[149] K. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).

[150] V. D. Vaidya, Y. Guo, R. M. Kroeze, K. E. Ballantine, A. J. Kollár, J. Keeling, and B. L. Lev, “Tunable-range, photon-mediated atomic interactions in multimode cavity qed,” Phys. Rev. X 8, 011002 (2018).

[151] E. J. Davis, G. Bentsen, L. Homeier, T. Li, and M. H. Schleier-Smith, “Photon-mediated spin-exchange dynamics of spin-1 atoms,” Phys. Rev. Lett. 122, 010405 (2019).

[152] J. A. Muniz, D. Barberena, R. J. Lewis-Swan, D. J. Young, J. R. K. Cline, A. M. Rey, and J. K. Thompson, “Exploring dynamical phase transitions with cold atoms in an optical cavity,” Nature 580, 602–607 (2020).

[153] Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102, 186402 (2009).

[154] C. G. Derntl, D. Bachmann, K. Unterrainer, and J. Darmo, “Disk patch resonators for cavity quantum electrodynamics at the terahertz frequency,” Opt. Express 25, 12311–12324 (2017).

[155] Q. Lu, X. Chen, C.-L. Zou, and S. Xie, “Extreme terahertz electric-field enhancement in high-q photonic crystal slab cavity with nanoholes,” Opt. Express 26, 30851 (2018).

[156] A. Liu, L. Wang, M. Hua, X. Liu, F. Qian, G. Xie, Y. Ning, Y. Shi, X. Wang, and F. Yang, “High-q metamaterials based on cavity mode resonance for thz sensing applications,” AIP Adv. 10, 075014 (2020).

[157] S. Messelot, C. Symonds, J. Bellessa, J. Tignon, S. Dhillon, J.-B. Brubach, P. Roy, and J. Mangeney, “Tamm cavity in the terahertz spectral range,” ACS Photonics 7, 2906–2914 (2020).

[158] A. Gover and A. Yariv, “Free-electron-bound-electron resonant interaction,” Phys. Rev. Lett. 124, 064801 (2020).

[159] R. Ruimy, A. Gorlach, C. Mechel, N. Rivera, and I. Kaminer, “Toward atomic-resolution quantum measurements with coherently shaped free electrons,” Phys. Rev. Lett. 126, 233403 (2021).

[160] Z. Zhao, X.-Q. Sun, and S. Fan, “Quantum entanglement and modulation enhancement of free-electron–bound-electron interaction,” Phys. Rev. Lett. 126, 233402 (2021).

[161] B. Zhang, D. Ran, R. Ianconescu, A. Friedman, J. Scheuer, A. Yariv, and A. Gover, “Quantum wave-particle duality in free-electron-bound-electron interaction,” Phys. Rev. Lett. 126, 244801 (2021).

[162] M. Kjaergaard et al., “Superconducting qubits: Current state of play,” Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).