$$(\lambda \Phi^4)_4$$ theory on the lattice: evidence for a non-trivial rescaling of the scalar condensate.

P. Ceaa, M. Consolib, and L. Cosmaia

aINFN - Sezione di Bari - Via Amendola 173 - 70126 Bari - Italy

bINFN - Sezione di Catania - Corso Italia 57 - 95129 Catania - Italy

A lattice simulation in the broken phase of $(\lambda \Phi^4)_4$ theory in the Ising limit suggests that, in the continuum limit, the scalar condensate rescales by a factor different from the conventional wavefunction renormalization. Possible effects on the present bounds of the Higgs mass are discussed.

1. INTRODUCTION

It is widely believed that $[1-7]$ $(\lambda \Phi^4)_4$ theories are “trivial”. The conventional interpretation is based on leading-order Renormalization-Group-Improved-Perturbation-Theory (RG1PT). However, a quite different interpretation is advocated in Refs. $[8]$. A key feature of the alternative picture is the presence of a non-trivial rescaling of the “renormalized” vacuum field:

$$v_R \equiv v_B / \sqrt{Z_\varphi}.$$ (1)

The role of Z_φ is essential. It provides the key ingredient to get a non-trivial effective potential in a “trivial” theory. In the continuum limit ($\Lambda \to \infty$)

$$Z_\varphi \sim \ln \frac{\Lambda}{M_h} \to \infty,$$ (2)

so that, although $M_h^2/v_B^2 \to 0$, one finds

$$\frac{M_h^2}{v_R^2} = \Lambda - \text{independent}.$$ (3)

On the other hand in the continuum limit $Z_{\text{prop}} \to 1$ consistently with the trivial nature of the shifted field.

In order to directly test the prediction that Z_φ differs from Z_{prop}, we present the results of a lattice simulation of the theory (in the Ising limit) where we compute the mass and the residue Z_{prop} from a 2-parameter fit to the lattice data for the shifted-field propagator. We then compute the zero-momentum susceptibility

$$\frac{1}{\chi} = \left. \frac{d^2 V_{\text{eff}}}{d \varphi_B^2} \right|_{\varphi_B = \pm v_B}$$ (4)

and hence obtain the dimensionless quantity

$$Z_\varphi \equiv M_h^2 \chi.$$ (5)

Finally, we compare Z_φ with Z_{prop}.

2. NUMERICAL SIMULATIONS

The one-component $(\lambda \Phi^4)_4$ theory

$$S = \sum_x \left\{ \frac{1}{2} \sum_{\mu} [\Phi(x + \hat{e}_\mu) - \Phi(x)]^2 + \frac{r_0}{2} \Phi^2(x) + \frac{\lambda_0}{4} \Phi^4(x) - J \Phi(x) \right\}$$ (6)

becomes in the Ising limit

$$S_{\text{Ising}} = -\kappa \sum_x \sum_{\mu} [\phi(x + \hat{e}_\mu)\phi(x) + \phi(x - \hat{e}_\mu)\phi(x)]$$ (7)

with $\Phi(x) = \sqrt{2\kappa} \phi(x)$ and $|\phi(x)| = 1$.

The shifted field propagator, defined at $p_\mu \neq 0$, can be computed as

$$G(p) = \sum_x \exp(ipx)h(x)h(0)$$ (8)

for the values $p_\mu = \frac{2\pi}{L} n_\mu$ with $n_\mu \neq 0$. An excellent fit to the lattice data is obtained by using the 2-parameter formula

$$G(p) = \frac{Z_{\text{prop}}}{p^2 + m_{\text{latt}}^2}.$$ (9)
where m_{lat} is the dimensionless lattice mass and
\[\hat{p}_\mu = 2 \sin \frac{p_\mu}{2} \] (see Fig. 1).

The susceptibility χ is measured directly as
\[\chi_{\text{lat}} = L^4 \left[\langle \Phi^2 \rangle - \langle \Phi \rangle^2 \right] \] (10)
with Φ the average field for each lattice configuration. Moreover we define
\[Z_\varphi \equiv m_{\text{lat}}^2 \chi_{\text{lat}}. \] (11)

To update our field configurations we used the Swendsen-Wang [13] cluster algorithm on 20^4, 24^4 and 32^4 lattices. After discarding 10K sweeps for thermalization, we have performed 50K sweeps, measuring our observables every 5 sweeps. We have computed at different values of the hopping parameter κ in order to obtain a correlation length $\xi_{\text{lat}} = 1/m_{\text{lat}}$ in the range 2 to $L/4$. The upper limit of the correlation length is required in order to avoid finite-size effects [14][15].

Our results for Z_φ and Z_{prop}, in the broken phase are reported in Fig. 2, and show a sizeable difference for $m_{\text{lat}} < 0.3$.

We have performed a consistency check that no such effect is present in the symmetric phase (Fig. 3).

As an additional check, we have compared with available data in the literature [14][15] both in the symmetric and broken phase and found good agreement.

3. CONCLUSIONS

Our numerical simulation of $(\lambda \Phi^4)_4$, in the Ising limit, shows a clear difference between two measured quantities: the rescaling of the “condensate” Z_φ and the more conventional quantity Z_{prop}, associated with the residue of the shifted field propagator. The effect shows up when increasing the correlation length and should become more and more important by approaching the continuum limit of quantum field theory $m_{\text{lat}} \to 0$. Therefore, the relation of the lattice vacuum field $\langle \Phi \rangle$ to the Fermi constant and the same limits on the Higgs mass can sizeably be affected. Indeed, these have been based on the quantity [16]
\[R_{\text{prop}} = \frac{m_{\text{lat}}}{\langle \Phi \rangle} \sqrt{Z_{\text{prop}}} \] (12)
rather than
\[R_\varphi = \frac{m_{\text{lat}}}{\langle \Phi \rangle} \sqrt{Z_\varphi}. \] (13)

The discovery of Z_φ requires a “second generation” of lattice simulations to re-check the scaling behaviour of the various quantities and compare with all available theoretical descriptions of the continuum limit.
REFERENCES

1. M. Aizenman, Phys. Rev. Lett. 47 (1981) 1.
2. J. Fröhlich, Nucl. Phys. B200(FS4) (1982) 281.
3. A. Sokal, Ann. Inst. H. Poincaré, 37 (1982) 317.
4. K. G. Wilson and J. Kogut, Phys. Rep. C12 (1974) 75; G. A. Baker and J. M. Kincaid, Phys. Rev. Lett. 42 (1979) 1431; B. Freedman, P. Smolensky and D. Weingarten, Phys. Lett. B113 (1982) 481; D. J. E. Callaway and R. Petronzio, Nucl. Phys. B240 (1984) 577; I. A. Fox and I. G. Halliday, Phys. Lett. B 159 (1985) 148; C. B. Lang, Nucl. Phys. B 265 (1986) 630.
5. M. Lüscher and P. Weisz, Nucl. Phys. B 290 (1987) 25; ibidem B295 (1988) 65.
6. J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of View (Springer, New York, 1981, 2nd Ed. 1987).
7. R. Fernández, J. Fröhlich, and A. D. Sokal, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Springer-Verlag, Berlin, 1992).
8. M. Consoli and P. M. Stevenson, Zeit. Phys. C63 (1994) 427; Mod. Phys. Lett. A11 (1996) 2511; Phys. Lett. B391 (1997) 144.
9. A. Agodi, G. Andronico and M. Consoli, Zeit. Phys. C66 (1995) 439.
10. A. Agodi, G. Andronico, P. Cea, M. Consoli, L. Cosmai, R. Fiore and P. M. Stevenson, Mod. Phys. Lett. A12 (1997) 1011.
11. U. Ritschel, Zeit. Phys. C63 345 (1994).
12. M. Consoli, in Gauge Theories Past and Future - in Commemoration of the 60th Birthday of M. Veltman, R. Akhoury et al. Eds., World Scientific 1992; R. Ibáñez-Meier and P. M. Stevenson, Phys. Lett. B297 (1992) 144; M. Consoli, Phys. Lett. B 305 (1993) 78; V. Branchina, M. Consoli and N. M. Stivala, Zeit. Phys. C57 (1993) 251; M. Consoli and P. M. Stevenson, $\lambda \Phi^4$ Theory From a Particle-Gas Viewpoint, hep-ph/9711449
13. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58 (1987) 86.
14. I. Montvay and P. Weisz, Nucl. Phys. B290 (1987) 327.
15. K. Jansen, I. Montvay, G. Münster, T. Trappeenberg and U. Wolff, Nucl. Phys. B322 (1989) 698.
16. For a complete review see, for instance, C. B. Lang, Computer Stochastics in Scalar Quantum Field Theory, in Stochastic Analysis and Application in Physics, Proc. of the NATO ASI, Funchal, Madeira, Aug. 1993, ed. L. Streit, Kluwer Acad. Publishers, Dordrecht 1994.