Auditory Verbal Hallucination-Specific Functional Brain Networks in Schizophrenia: A Study Based on Graph Theory

Weiliang Yang
Institute of Mental Health, Tianjin Medical University

Yan li
Institute of Mental Health, Tianjin Medical University

Haiyan Cao
Institute of Mental Health, Tianjin Medical University

Wen Qin
Tianjin Medical University General Hospital

Yongying Cheng
Institute of Mental Health, Tianjin Medical University

Shuli Xu
Institute of Mental Health, Tianjin Medical University

Jiayue Chen
Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital

Jie Li (✉ jieli@tjmhc.com)
Institute of Mental Health, Tianjin Medical University

Research Article

Keywords: schizophrenia, auditory verbal hallucinations, graph theory, dorsolateral prefrontal cortex

DOI: https://doi.org/10.21203/rs.3.rs-400444/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Although mounting previous studies have characterized auditory verbal hallucinations (AVH) related brain network abnormalities in the patients with schizophrenia, AVH related brain network alterations based on graph theory was rarely reported. In addition, the relationship between the features of AVH related brain networks based on graph theory and clinical features of schizophrenia patients with AVH is unclear. Our study to explore associations among network metrics, and clinical features in schizophrenia patients with AVH.

Method

Thirty-one schizophrenia patients without AVH, 17 patients with AVH, and 31 healthy controls were examined by functional magnetic resonance imaging. Graph theory method was performed to analyze the topological properties of functional network in three groups.

Results

Our results showed that schizophrenia patients with AVH displayed decreased local network efficiency, clustering coefficients, and nodal efficiency of the right dorsolateral prefrontal cortex. Local network efficiency was positively correlated with AVH characteristics.

Conclusion

The topological properties of brain functional networks are disrupted in schizophrenia patients with AVH, suggesting a role of functional brain networks in the pathogenesis of AVH.

Introduction

Auditory verbal hallucinations (AVH) are the perceptions of voice without corresponding external stimuli, are one of typical symptoms of schizophrenia (SZ)[1], affect about 60%-90% patients with SZ[2]. AVH can also occur in other mental disorders including bipolar and major depression disorders, as well as in the general population[3, 4]. At present, the neural basis of AVH is not fully clear. Neuroimaging studies have suggested abnormal brain structure and function in patients with AVH[5].

In recent years, functional Magnetic Resonance Imaging (fMRI) is commonly used to investigate the features of brain activity in schizophrenia patients with AVH. Extensive studies have shown that brain function of schizophrenia patients with AVH differ from those of without AVH and healthy controls[4, 6–8]. For example, a previous meta-analysis indicated that schizophrenia patients experiencing AVH showed
increased activity in Broca’s area, anterior insula, precentral gyrus, frontal operculum, middle and superior temporal gyri, inferior parietal lobule, and hippocampus/parahippocampus region[8]. Another literature reported that altered brain resting-state networks between default mode network and cognitive control, salience network[9]. In addition, the abnormal functional connectivity of thalamic is correlated with hallucinations, delusions, and bizarre behavior[10]. Meanwhile, Zhuo et al. found that AVH-specific cerebral blood flow was increased in the auditory and striatal areas and decreased in visual and parietal cortices[11]. Structural neuroimaging studies have indicated grey matter volume reductions in the superior temporal gyrus, middle temporal gyrus, left postcentral gyrus, and posterior cingulate gyrus in SZ patients with AVH[5, 12]. Previous study found that AVH-related critical brain regions are mainly located in prefrontal cortex, auditory cortex, superior temporal gyri, insula cortex and anterior cingulate cortex. However, the current study focuses on the interaction of several brain regions, and there are still few studies on the characteristics of the whole brain network in schizophrenia patient with AVH.

Graph theoretical analyses is a powerful tool that can be used to analyze the topological properties of complex brain networks. This method describes brain networks as graphs composed of nodes and edges[13]. Previous studies have indicated that topological properties of brain networks are disrupted in schizophrenia[14]. For example, Zhu et al. reported the “small-worldization” and network efficiency of functional networks is decreased in patients with schizophrenia[15].

In this study, to systematically investigate associations among network metrics, and clinical features, we applied the graph theory method to quantitatively analyze functional brain connectivity. Herein, we hypothesized that global and local topological properties of functional network of schizophrenia patients with AVH would be abnormal, and the features of AVH based on graph theory in the patients with schizophrenia would be related to the clinical other features of schizophrenia.

Methods

Participants

Forty-eight patients with schizophrenia (17 with AVH, 31 without AVH) and 31 age and gender matched healthy controls were included. All patients were diagnosed using the Structured Clinical Interview for DSM-IV (SCID). Healthy controls were screened using the non-patient version of the SCID to rule out lifetime psychosis. Symptoms of psychosis were assessed using the Positive and Negative Syndrome Scale (PANSS).[16] The Auditory Hallucination Rating Scale (AHRS) was used to evaluate the severity and characteristics of AVH.[17] Exclusion criteria consisted of: (1) a history of alcohol or substance abuse; (2) MRI contraindications; (3) pregnancy; and (4) a history of brain injury, epilepsy, glaucoma, or diabetes. Our study was approved by the Ethics Committee of Tianjin Anding Hospital, and written informed consent was obtained from all subjects.

MRI data acquisition and preprocessing
Subjects were scanned using a 3T Magnetom Skyra scanner (Siemens, Erlangen, Germany). During the scans, participants were required to relax and to close their eyes and without falling asleep. In addition, sponge pads were used to limit head motion. Resting-state functional magnetic resonance imaging (fMRI) was conducted using an echo-planar imaging sequence (repeat time = 750 ms, echo time = 30 ms, slice thickness = 3, flip angle = 54°, field of view = 222×222 mm, voxel size = 3×3×3 mm³; 480 volumes). All images were visually examined by an experienced radiologist to exclude visible artifacts.

fMRI data preprocessing was performed by Statistical Parametric Mapping software (SPM12, https://www.fil.ion.ucl.ac.uk/spm) and GRETRA.[18] Preprocessing included removal of the initial ten images; slice timing correction; realignment to the middle image; spatial normalization of the image to the Montreal Neurological Institute template; re-sampling to 3×3×3 mm³; spatial smoothing with 6 mm³ Gaussian kernel; and band-pass filtration (0.01–0.08 Hz). Finally, white matter, cerebrospinal fluid, and 24-parameters of head motion were regressed out. To minimize the effect of head motion, subjects with a maximum head motion > 2 mm or > 2° were excluded.

Network construction

Construction of functional brain networks and graph theoretical analyses were performed using GRETRA[18]. We utilized the atlas of Dosenbach to parcel the brain into 160 cortical and sub-cortical regions of interest (ROI)[19] that act as network nodes. The atlas has been widely used in the study of brain networks[20, 21]. Averaging time series were extracted from each ROI. Pearson correlation coefficients between each pair of ROI time courses were considered as the edges of functional networks, and represented inter-ROI functional connectivity strengths. This process produced a 160×160 correlation matrix for each participant (Fig. 1).

Brain networks of different subjects differ in the number of significant edges[22]. To ensure that each graph had the same number of edges, we defined a wide range of network cost thresholds. Sparsity is the actual number of edges divided by the maximum possible number of edges in the network[23]. The selection of sparsity is based on the following criteria: (1) the average degree (the degree of a node is the number of edges linked to the node) of overall nodes in each threshold network was larger than 2 × log(N), where N is the number of nodes; and (2) the small-worldness of the threshold networks was larger than 1.1 for each subject[24]. According to these criteria, cost thresholds ranged from 0.03 to 0.30, with step = 0.01.

Network metrics

We calculated both global and local characteristics of functional networks at each sparsity threshold. The network metrics included: (1) small-world characteristics involving small-worldness (σ), clustering coefficient (C_p), characteristic shortest path length (L_p), normalized clustering coefficient (γ), normalized characteristic pathlength (λ), (2) network efficiency related global efficiency (E_gloabl), and local efficiency (E_local). The local characteristics included node efficiency (E_i), nodal clustering coefficient (C_i), and node degree (S_i)[25, 26]. C_p measures the local cliquishness of network, and quantified the local
interconnectivity of a network. \(L_p \) represents the overall routing efficiency of a network. \(\gamma \) is \(C_p \) of real network divided by \(C_p \) of random network; \(\lambda \) is \(L_p \) of real network divided by \(L_p \) of random network. The global efficiency measures the ability of parallel information transmission over the network. The local efficiency indicated the network fault tolerance, reflecting the communication efficiency between the first adjacent nodes when it is eliminated. \(E_i \) characterizes the efficiency of parallel information transfer of that node in the network. \(C_i \) measures the likelihood its neighborhoods are connected to each other. \(S_i \) reflects its information communication ability in the functional network. Finally, we calculated the area under the curve (AUC) for all network metrics at each cost threshold, providing an overall value for the topological characterization of functional brain networks independent of the selected sparsity threshold.

Statistical analysis

One-way analysis of variance was used to examine significant AUC differences between the three groups, and to regress out gender and age. *Post hoc* analyses were performed to test inter-group differences. Multiple comparison correction was used by false discovery rate (FDR, \(p = 0.05 \)). We further evaluated the association between network metrics and AVH by using Spearman’s correlation analysis. The above steps were completed with GRETNA[18] and SPSS 23.

Results

Demographic and clinical features

Demographic and clinical features of the three groups are summarized in Table 1. There were no significant differences in age (\(F = 2.903, p = 0.061 \)) and gender (\(\chi^2 = 0.407, p = 0.816 \)) between the three groups. The AVH and non-AVH (nAVH) groups did not differ significantly in duration of illness (\(t = -1.161, p = 0.252 \)) and PANSS total scores (\(t = -0.366, p = 0.716 \)).
Table 1
Demographic and clinical characteristics of schizophrenia patients with AVH, schizophrenia patients with nAVH, and healthy controls.

Characteristics	AVH(n = 31)	nAVH(n = 17)	HC(n = 31)	p value
	Mean ± SD	Mean ± SD	Mean ± SD	
Gender(male/female)	15/16	7/10	12/19	0.82
Age	33 ± 4.76	35.67 ± 6.25	32.19 ± 5.83	0.06
Duration of illness (years)	12.06 ± 5.24	9.83 ± 6.83	-	0.25
PANSS total score	52.88 ± 14.38	51.03 ± 17.76	-	0.72
Positive symptoms score	14.88 ± 5.93	10.22 ± 4.50		0.01
Negative symptoms score	14.88 ± 4.69	15.44 ± 8.18		0.75
AHRS total score	29.59 ± 6.33	-	-	-

nAVH, no auditory verbal hallucinations; HC, healthy controls; SD, standard deviation; PANSS, positive and negative syndrome scale; AHRS, auditory hallucination rating scale

Intergroup differences in network metrics

Significant alterations of functional network metrics occurred primarily in E_{local}, C_{net}, and in the nodal efficiency of the right dorsolateral prefrontal cortex (DLPFC) (FDR corrected, $p < 0.05$) (Fig. 2). Furthermore, the AVH group showed lower E_{local} and nodal efficiency of the right DLPFC compared to nAVH groups. Compared with healthy controls, the AVH group displayed decreased E_{local}, C_{net}, and efficiency of the right DLPFC. In addition, decreased E_{local} and nodal efficiency of the right DLPFC was a common abnormality in patients with and without AVH. Reduced C_{net} was the only specific change in patients with AVH. Other network metrics were not significantly different among the three groups.

Relationship between network metrics and AVH severity in AVH group

There were no statistical associations between network metrics and AVH total scores. We further examined the correlation between network metrics and the AHRS checklist, and found that low nodal efficiencies of the right DLPFC correlated with increased amount of distress ($r = -0.743$, $p = 0.001$) and intensity of distress ($r = -0.571$, $p = 0.017$) (Fig. 2).

Discussion

Our study explored the topological organization of whole-brain level functional networks of schizophrenia patients with AVH. Our results indicated that: (1) network metrics including E_{local}, C_{net}, and nodal efficiency of the right DLPFC were decreased in the AVH group; and (2) local network efficiency is negatively correlated with the severity of distress caused by AVH.
Graph theory provides a powerful paradigm for the analysis of the topological organization of complex brain networks in health and in psychiatric diseases[13]. We computed Pearson correlations between different brain regions to act as undirected and unweighted binary graphs for each participant, and compared the network metrics of functional brain networks between the three groups. Schizophrenia patients with AVH had lower C_P and E_{local} than healthy controls. C_P was used to measure the extent of the local connection or cliquishness in a network, thus representing network segregation[27]. The E_{local} indicated the network fault tolerance, reflecting the communication efficiency between the first adjacent nodes when it is eliminated[28]. Our results are consistent with a previous study that showed that schizophrenia patients with and without AVH displayed disruption of “small-world” characteristics and lower network efficiencies relative to healthy controls[15]. A task-related EEG study demonstrated decreased clustering coefficients in patients with schizophrenia, which correlated with increased negative and cognitive symptom scores[29]. Similarly, Liu et al. reported decreased C_{net} and E_{local} of functional networks in schizophrenia patients[30]. In contrast, Yu et al. found that C_{net} and E_{local} are increased in patients with schizophrenia[31]. In this study, group-independent component analyses were used to deconstruct the brain into independent components and to treat the components as network nodes. The partial correlation coefficients between different components were considered as network edges. Different methods of constructing functional networks may lead to the opposite result. In addition, our study showed that E_{local} is correlated with AVH characteristics. This study further proved that schizophrenia is a disorder of brain connectivity[14, 32].

Our results revealed that schizophrenia patients with AVH exhibited decreased nodal efficiency of the right DLPFC. These findings support previous reports that the functional connectivity of the DLPFC is impaired in schizophrenia[33, 34]. DLPFC is an important part of PFC and plays a role in monitoring speech production in language processing, especially in schizophrenia patients with AVH[35]. Numerous neuroimaging literature demonstrated that the resting-state brain function abnormalities of DLPFC is observed in schizophrenia patients with AVH[36–38]. Cui et al. reported that schizophrenia patients with AVH showed increased regional homogeneity in the right DLPFC, and increased in functional connectivity (FC) between left DLPFC and right putamen [39]. Moreover, a previous study indicated that reduced FC between left DLPFC and superior temporal cortex in schizophrenia patients with AVH[36]. Consequently, our results revealed that DLPFC abnormalities might be the underlying neural mechanism of AVH.

Conclusions

Graph theory analysis were performed to examine abnormalities of functional networks in schizophrenia patients with AVH. Schizophrenia patients with AVH exhibited reductions of “small-worldization,” local network efficiency, and nodal efficiency of the right DLPFC. Importantly, the nodal efficiency of the right DLPFC was positively correlated with C_{net} only in schizophrenia patients with AVH. These findings suggest that abnormal functional brain networks constitute the neural basis of AVH in schizophrenia patients.
Limitations

Several limitations of this study should be considered. First, because most patients were medicated, the potential effects of antipsychotic medications on functional brain networks have not been ruled out. Second, because we conducted a cross-sectional study, the evolution of functional network abnormalities over time is unclear. Third, because the duration of illness of all patients was more than two years, some patients may have had AVH that had resolved before study enrollment. Finally, in the sub-group analysis, the number of patients with AVH was small. The sample size should be increased in future studies to improve statistical power.

Abbreviations

SZ: schizophrenia; AVH: Auditory verbal hallucinations; fMRI: functional Magnetic Resonance Imaging; PANSS: Positive and Negative Syndrome Scale; AHRS: Auditory Hallucination Rating Scale; ROI: regions of interest; AUC: under the curve; DLPFC: dorsolateral prefrontal cortex

 Declarations

Acknowledgments

We are grateful for the support of all researchers and subjects.

Data availability statement

The datasets generated and analyzed during the present study are available from the corresponding author on reasonable request.

Funding

This work was supported by National Key R&D Program of China (2016YFC1306800), Tianjin Science and Technology Plan Projects (2017ZXMFSY00070), and Key Discipline Project for Psychiatry of Tianjin.

Author contributions

Weiliang Yang designed the study, writing of the manuscript. Yongying Cheng, Jiayue Chen and Haiyan Cao: recruitment of patients. Yan Li and Shuli Xu: processed the fMRI data, performed the analysis. Wen Qin and Jie Li: reviewed and revised the article.

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. And the study was approved by the Ethics
Committee of Tianjin Anding Hospital. All subjects provided written informed consent prior to inclusion in the study.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author details

1Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, 300222, China.
2Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China. 3Key Laboratory of Real Time Tracing Brian Circuit of Neurology and Psychiatry (RTNBP_Lab), Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, 300140, China

References

1. Upthegrove R, Broome MR, Caldwell K, Ives J, Oyebode F, Wood SJ: Understanding auditory verbal hallucinations: a systematic review of current evidence. Acta Psychiatr Scand 2016, 133(5):352-367.
2. Alderson-Day B, McCarthy-Jones S, Fernyhough C: Hearing voices in the resting brain: A review of intrinsic functional connectivity research on auditory verbal hallucinations. Neurosci Biobehav Rev 2015, 55:78-87.
3. Toh WL, Thomas N, Rossell SL: Auditory verbal hallucinations in bipolar disorder (BD) and major depressive disorder (MDD): A systematic review. J Affect Disord 2015, 184:18-28.
4. Choong C, Hunter MD, Woodruff PW: Auditory hallucinations in those populations that do not suffer from schizophrenia. Curr Psychiatry Rep 2007, 9(3):206-212.
5. Bohlken MM, Hugdahl K, Sommer IE: Auditory verbal hallucinations: neuroimaging and treatment. Psychiatr Mol 2017, 47(2):199-208.
6. Mwansisya TE, Hu A, Li Y, Chen X, Wu G, Huang X, Lv D, Li Z, Liu C, Xue Z et al: Task and resting-state fMRI studies in first-episode schizophrenia: A systematic review. Schizophr Res 2017, 189:9-18.
7. Chang X, Collin G, Xi Y, Cui L, Scholtens LH, Sommer IE, Wang H, Yin H, Kahn RS, van den Heuvel MP: Resting-state functional connectivity in medication-naive schizophrenia patients with and without auditory verbal hallucinations: A preliminary report. Schizophr Res 2017, 188:75-81.
8. Jardri R, Pouchet A, Pins D, Thomas P: Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry 2011, 168(1):73-81.
9. Alderson-Day B, Diederen K, Fernyhough C, Ford JM, Horga G, Margulies DS, McCarthy-Jones S, Northoff G, Shine JM, Turner J et al: Auditory Hallucinations and the Brain’s Resting-State Networks:
Findings and Methodological Observations. Schizophr Bull 2016, 42(5):1110-1123.

10. Ferri J, Ford JM, Roach BJ, Turner JA, van Erp TG, Voyvodic J, Preda A, Belger A, Bustillo J, O'Leary D et al: Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms. Psychol Med 2018, 48(15):2492-2499.

11. Zhuo C, Zhu J, Qin W, Qu H, Ma X, Yu C: Cerebral blood flow alterations specific to auditory verbal hallucinations in schizophrenia. Br J Psychiatry 2017, 210(3):209-215.

12. Allen P, Modinos G, Hubl D, Shields G, Cachia A, Jardri R, Thomas P, Woodward T, Shotbolt P, Plaze M et al: Neuroimaging auditory hallucinations in schizophrenia: from neuroanatomy to neurochemistry and beyond. Schizophr Bull 2012, 38(4):695-703.

13. Filippi M, van den Heuvel MP, Fornito A, He Y, Hulshoff Pol HE, Agosta F, Comi G, Rocca MA: Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurol 2013, 12(12):1189-1199.

14. Narr KL, Leaver AM: Connectome and schizophrenia. Curr Opin Psychiatry 2015, 28(3):229-235.

15. Zhu J, Wang C, Liu F, Qin W, Li J, Zhuo C: Alterations of Functional and Structural Networks in Schizophrenia Patients with Auditory Verbal Hallucinations. Front Hum Neurosci 2016, 10:114.

16. Kay SR, Fiszbein A, Opler LA: The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987, 13(2):261-276.

17. Hoffman RE, Hawkins KA, Gueorguieva R, Boutros NN, Rachid F, Carroll K, Krystal JH: Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Arch Gen Psychiatry 2003, 60(1):49-56.

18. Wang J, Wang X, Xia M, Liao X, Evans A, He Y: GRETRA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 2015, 9:386.

19. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN et al: Prediction of individual brain maturity using fMRI. Science 2010, 329(5997):1358-1361.

20. Liu H, Li H, Wang Y, Lei X: Enhanced brain small-worldness after sleep deprivation: a compensatory effect. J Sleep Res 2014, 23(5):554-563.

21. Geisler D, Borchardt V, Lord AR, Boehm I, Ritschel F, Zwipp J, Clas S, King JA, Wolff-Stephan S, Roessner V et al: Abnormal functional global and local brain connectivity in female patients with anorexia nervosa. J Psychiatry Neurosci 2016, 41(1):6-15.

22. Bennett CM, Miller MB: How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 2010, 1191:133-155.

23. He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, Evans A: Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 2009, 132(Pt 12):3366-3379.

24. Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q: Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 2011, 70(4):334-342.
25. Bassett DS, Bullmore E: Small-world brain networks. *Neuroscientist* 2006, **12**(6):512-523.
26. Shu N, Li X, Ma C, Zhang J, Chen K, Liang Y, Chen Y, Zhang Z: Effects of APOE promoter polymorphism on the topological organization of brain structural connectome in nondemented elderly. *Hum Brain Mapp* 2015, **36**(12):4847-4858.
27. Watts DJ, Strogatz SH: Collective dynamics of 'small-world' networks. *Nature* 1998, **393**(6684):440-442.
28. Latora V, Marchiori M: Efficient behavior of small-world networks. *Phys Rev Lett* 2001, **87**(19):198701.
29. Shim M, Kim DW, Lee SH, Im CH: Disruptions in small-world cortical functional connectivity network during an auditory oddball paradigm task in patients with schizophrenia. *Schizophr Res* 2014, **156**(2-3):197-203.
30. Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T: Disrupted small-world networks in schizophrenia. *Brain* 2008, **131**(Pt 4):945-961.
31. Yu Q, Sui J, Rachakonda S, He H, Gruner W, Pearson G, Kiehl KA, Calhoun VD: Altered topological properties of functional network connectivity in schizophrenia during resting state: a small-world brain network study. *PLoS One* 2011, **6**(9):e25423.
32. van den Heuvel MP, Fornito A: Brain networks in schizophrenia. *Neuropsychol Rev* 2014, **24**(1):32-48.
33. Hill K, Mann L, Laws KR, Stephenson CM, Nimmo-Smith I, McKenna PJ: Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. *Acta Psychiatr Scand* 2004, **110**(4):243-256.
34. Meyer-Lindenberg A: From maps to mechanisms through neuroimaging of schizophrenia. *Nature* 2010, **468**(7321):194-202.
35. Mondino M, Jardri R, Suaud-Chagny MF, Saoud M, Poulet E, Brunelin J: Effects of Fronto-Temporal Transcranial Direct Current Stimulation on Auditory Verbal Hallucinations and Resting-State Functional Connectivity of the Left Temporo-Parietal Junction in Patients With Schizophrenia. *Schizophr Bull* 2016, **42**(2):318-326.
36. Lawrie SM, Buechel C, Whalley HC, Frith CD, Friston KJ, Johnstone EC: Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. *Biol Psychiatry* 2002, **51**(12):1008-1011.
37. Cui LB, Liu L, Guo F, Chen YC, Chen G, Xi M, Qin W, Sun JB, Li C, Xi YB et al: Disturbed Brain Activity in Resting-State Networks of Patients with First-Episode Schizophrenia with Auditory Verbal Hallucinations: A Cross-sectional Functional MR Imaging Study. *Radiology* 2017, **283**(3):810-819.
38. Sommer IE, Clos M, Meijering AL, Diederen KM, Eickhoff SB: Resting state functional connectivity in patients with chronic hallucinations. *PLoS One* 2012, **7**(9):e43516.
39. Cui LB, Liu K, Li C, Wang LX, Guo F, Tian P, Wu YJ, Guo L, Liu WM, Xi YB et al: Putamen-related regional and network functional deficits in first-episode schizophrenia with auditory verbal hallucinations. *Schizophr Res* 2016, **173**(1-2):13-22.
Figures

Figure 1

Design flow chart. First, whole brain was divided into 160 ROIs, and each ROI was considered as a node. Second, we computed the Pearson correlation coefficients between each pair of ROIs, resulting in 160×160 correlation matrices. Finally, the binarization of the correlation matrix was used for graph theoretical analysis.

Figure 2
First row: Clustering coefficients, normalized characteristic pathlengths, and local network efficiencies of functional networks in schizophrenia patients with AVH, schizophrenia patients without AVH, and healthy controls at different cost thresholds. Second row: Comparison of local network efficiencies among the three groups. Third row: Correlation between local network efficiency and AVH characteristics. The red, green, and gray lines represent healthy controls, schizophrenia patients without AVH, and schizophrenia patients with AVH, respectively. AVH, auditory verbal hallucinations. AUC, area under the curve. * represent p < 0.05 after false discovery rate correction.