Abstract. Background/Aim: The outcome of patients with advanced hepatocellular carcinoma (HCC) remains poor and therapeutic options, including sorafenib, the first anticancer drug proved to prolong survival in patients with advanced HCC, are limited. However, no clinically useful predictive biomarker for sorafenib has been reported.

Materials and Methods: We exploited two-dimensional gel electrophoresis coupled with mass spectrometry to find deregulated proteins by using conditioning of a sorafenib-resistant HCC cell line, Huh7. Tumor samples from 60 patients with HCC treated with sorafenib were analyzed and correlated with survival outcome. Results: Comparative proteomics indicated three proteins including, 78 kDa glucose related protein (GRP78), 14-3-3 ε, and heat shock protein 90 β (HSP90 β). The three proteins were overexpressed in sorafenib-resistant Huh7 cells. In HCC tumor samples from patients treated with sorafenib, 73% of tumor samples had a high expression of GRP78, 18% had high 14-3-3ε expression and 85% had high HSP90β expression. Among these, GRP78 was associated with the shortest progression-free survival of HCC patients treated with sorafenib. Conclusion: GRP78 can be a predictive biomarker in HCC patients treated with sorafenib. Strategies designed to inhibit the GRP78-related pathway may overcome sorafenib resistance.

Hepatocellular carcinoma (HCC) contributed to almost 80% of all liver cancers and was the second leading cause of cancer-related deaths in Taiwan in 2014 (1). More than half of HCC cases are diagnosed late and patients with advanced HCC have a median survival of less than one year (2). Patients with vascular invasion or extrahepatic spread are categorized as having advanced disease and are not suitable candidates for radical therapies. Systemic chemotherapy has not been proven to be consistently efficacious in treating hepatocellular carcinoma (3). Sorefanib, a dual-action Raf kinase and vascular endothelial growth factor (VEGF) inhibitor, prevents tumor growth by two anticancer activities: inhibition of tumor cell proliferation and tumor angiogenesis. This drug has been demonstrated to be well tolerated and clinical benefits have been observed in advanced refractory solid tumors (4). It has been associated with a 37% increase in overall survival (equivalent to a gain of nearly 3 months) as compared with placebo in patients with advanced hepatocellular carcinoma and compensated cirrhosis (5).

The response of sorafenib in HCC treatment is relatively inconsistent and acquired resistance is an emerging issue nowadays. To investigate the acquired resistance to sorafenib, several mechanisms have been proposed such as cross-interaction between PI3K/Akt and JAK-STAT pathways, the
activation of hypoxia-induced factor and epithelial-mesenchymal transition and so on (6). Two-dimensional gel electrophoresis (2DE) is a proteomic approach used to detect differences in protein expression in cells. Previous studies have developed a sorafenib-resistant HCC cell line from Huh7, a human HCC cell line, by long-term exposure of cells to sorafenib treatment (7). Herein, we analyzed the differences in protein expression between the parental cells and sorafenib resistant cells by using 2DE assay. Therefore, potential targets related to sorafenib resistance could be evaluated in human subjects.

Materials and Methods

Cell lines and reagents. The human HCC cell line Huh7 was cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum. The sorafenib-resistant Huh7 cell line (Huh7-R) which was routinely maintained under constant culture conditions containing sorafenib was established in the laboratory of Dr. Kuen-Feng Chen (7). Sorafenib tosilate was kindly provided by Bayer (Leverkusen, Germany). Anti-GRP78 antibody (Cat: 50B12) was purchased from Cell Signaling Technology (Danvers, MA, USA), anti-14-3-3ε antibody (Cat: 2395S) from Santa Cruz Biotechnology (Santa Cruz, CA, USA), and anti-heat shock protein 90β (Cat: HSP90β) (ab53497) from Abcam (Cambridge, UK).

Isoelectric focusing and SDS-polyacrylamide gel electrophoresis (SDS-PAGE). We performed 2DE as described before with some modifications (8). The 18 cm immobiline dry strips (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) with a pH range between 4–7 were rehydrated for 16 h at 20˚C with 300 μl rehydration buffer and loaded with 100 μg protein lysates prepared from Huh7 or Huh7-R cells using BioRad Protean IEF Cell. The proteins were isoelectrically focused at 20˚C 50V, 100V, 200V, 500V, 1,000V, 2,000V, 5,000V, and 8,000V. The total voltage-hours were 81434. The equilibrated gel was loaded onto the top of a 12.5% w/v polyacrylamide gel. Then, using the Biorad Protein IIxi, proteins were separated at 420 V after equilibrated in equilibration buffer containing 2% w/v DTT and 5% w/v iodoacetamide.

Image analysis and statistical analysis. 2DE gels were stained with LavaPurple™ followed by the image capture of 2DE gel map. Then the image scan was obtained by using Typhoon 9400 fluorescence scanner (GE healthcare) with green laser (green laser PMT: 600 volt and emission filter: 580 BP). A total of 7 pairs of well-focused gel maps collected from control Huh7 cells and Huh7-R cells were grouped as well differentiated, moderate and poorly differentiated. Twenty-two patients were used to establish a two-step protocol (Novolink Polymer Detection System, Novocastra) according to the manufacturer’s instructions. Briefly, paraffin sections were deparaffinized first and then hydrated. After microwave antigen retrieval, as required, slides were washed for 5 min in phosphate buffered saline (PBS). We used peroxidase block for 5 min to neutralize endogenous peroxidase. Following incubation, the sections were washed in PBS (2x5 min washes). Sections were incubated with protein block for 5 min and washed again in PBS (2x5 min washes). Primary rabbit polyclonal
antibodies used were anti-human-14-3-3ε (3570, Cell Signaling Technology), HSP90βab (MA5-14057, Thermo Fisher Scientific, Cheshire, UK) and GRP78 (ab12158, Abcam, Cambridge, UK). After serial incubation with primary antibodies overnight at 4˚C, the sections were washed in PBS (2×5 min washes) and incubated with post-primary for 10 min. In the next steps, slides were washed in PBS (2×5 min washes), incubated with Novolink polymer for 10 min and then washed in PBS (2×5 min with gentle rocking on an orbital shaker). 3,3-diaminobenzidine working solution was applied to the slides for 3 min. Slides were washed in PBS, counterstained with hematoxylin for 1 min and washed in di-H2O for 5 min before dehydration, clearing and mounting. To evaluate the expression of indicated proteins, slide scorings were based on intensity of stain (0-3). The intensities of expression 0 and 1 were categorized as low expression. On the other hand, 2 and 3 were defined as high expression.

Immunoblotting. Immunoblotting analysis was performed according to a standard method. The primary antibodies used for immunoblotting analysis included anti-human-14-3-3ε (3570, Cell Signaling Technology), HSP90βab (MA5-14057, Thermo Fisher Scientific, Cheshire, UK), GRP78 (ab12158, Abcam) and β-actin (Sigma-Aldrich). Following incubation with the secondary antibodies for 2 h, protein-antibody complexes were detected using the ECL system (Millipore) and visualized with a Biospectrum AC imaging system (UVP, Cambridge, UK).

Statistical analysis. Survival was statistically analyzed by the Kaplan–Meier survival curve and a log-rank test performed with SigmaPlot 12.0 software (Systat Software Inc., San Jose, CA, USA).

Results

Two-dimensional gel electrophoresis of Huh7-R cells and parental Huh7 cells. Previously, we have established Huh7-R HCC cells by long-term exposure to sorafenib at low doses escalating to higher doses for a long period of time. Furthermore, parental Huh7 cells showed apoptosis in the presence of sorafenib in a dose-dependent manner. In contrast, Huh7-R cells revealed resistance to sorafenib-induced apoptosis, even at 10 μM (the highest clinical achievable concentration) (7). To analyze the mechanism of acquired resistance to sorafenib, the protein expression profile of parental Huh7 and Huh7-R cell lines was analysed by 2DE coupled LC-MS/MS. To prevent the gel-gel variation, seven replicate gel pairs were collected from different protein harvests. The representative 2D maps of parental Huh7 cells and Huh7-R cells are depicted in Figure 1.

Identification of differential expressed proteins between parental Huh7 cells and Huh7-R cells. After the proteomic comparison, over-expressed proteins and under-expressed proteins were identified. Among these, 13 proteins were differentially expressed with a magnitude near or higher than two-fold between Huh7 and Huh7-R cells, in at least 4/7 gel pairs. The protein spots of interest were picked up for in-gel digestion using silver staining. The protein spots
of interest were identified by mass spectrometric protein identification and the results are listed in Table I. Among these deregulated proteins, three proteins were targeted based on their high-fold alterations, including GRP78, 14-3-3ε protein, and HSP90β.

Immunohistochemical staining of indicated proteins in HCC tissues. Tumor samples from sixty advanced HCC patients treated with sorafenib were collected for immunohistochemical analysis of GRP78, 14-3-3ε, and HSP90β. The clinical characteristics of patients are listed in Table II. First, expression of HSP90β, GRP78 and 14-3-3ε in parental Huh7 and Huh7-R cells was examined by immunoblotting. Stronger expression of HSP90β, GRP78 and 14-3-3ε were detected in Huh7-R cells compared with parental Huh7 cells (Figure 2A). Second, expression of HSP90β, GRP78 and 14-3-3ε in patient samples was examined by immunocytochemistry. The expression of indicated proteins was categorized as high expression or low expression based on intensity (Figure 2B). 73% of tumor samples had high expression of GRP78, 18% had high 14-3-3ε expression and 85% high HSP90β expression.

High expression of GRP78 correlated with shorter progression free survival in HCC patients treated with sorafenib. Patients with high expression of GRP78 HCC had shorter progression free survival (PFS) following sorafenib treatment. The median PFS in the high GRP78 expression group was 2.20 months (95% confidence interval=2.42-5.10) significantly shorter compared with 4.73 months (95%CI=4.45-14.27) in the low GRP78 expression group (p=0.008). Furthermore, low expression of 14-3-3ε tended to associate with poor progression-free survival, but it did not reach statistical significance. Regarding HSP90β, the expression intensity did not correlate with survival (Figure 3).

Discussion

Sorafenib had been demonstrated to involve several targets in inhibiting cancer cell growth: Serine-threonine kinase Raf-1 and B-Raf in RAF/MEK/ERK pathway, RET, FLT-3, the receptor tyrosine kinase activity of vascular endothelial...
growth factor receptors (VEGFRs) 1, 2, 3 and platelet-derived growth factor receptor-β (PDGFR-β)(10). The clinical efficacy of sorafenib in treating patients with Child-Pugh A stage C HCC has been documented by two phase III randomized, placebo-controlled trials: the SHARP study and the Asia-Pacific study (ORIENTAL) in terms of benefit on overall survival, time to radiologic progression and disease control rate (5, 11). Sorafenib seems to be effective to prolong the median survival time with limited side effects in patients with advanced HCC, but the primary resistance and acquired resistance to sorafenib has become an obstacle to extend the clinical efficacy of sorafenib.

More than half of HCC patients have epidermal growth factor receptor (EGFR) over-expression and abnormal activation. Abnormal activation of EGFR/human epidermal receptor type 3 (HER3) as well as overexpression of both EGFR and its ligand can inhibit the effect of sorafenib on suppressing tumor growth. Overexpression of EGFR or its ligand in HCC cells may relate to primary resistance of sorafenib (12). In addition to EGFR and its ligand, downstream signaling molecules also contributed to sorafenib resistance. Down-regulation of pERK and expression of c-Jun N-terminal kinase can predict the sensitivity to sorafenib (13, 14).

Figure 2. A. Immunoblotting of the expression of GRP78, 14-3-3ε and HSP90β in parental Huh7 and Huh7-R cells. B. Immunohistochemistry stainings of GRP78, 14-3-3ε and HSP90β in human HCC tumors. The indicated protein expression was categorized as low or high.

Figure 3. Progression-free survival categorized by the expressions of indicated proteins. A: GRP78, B: 14-3-3ε, C: HSP90β.
In regards to the acquire resistance to sorafenib, many mechanisms have been extensively studied, including PI3K/Akt pathway, autophagy, epithelial-mesenchymal transition, tumor microenvironment, and epigenetic regulation. An emerging theory focuses on the angiogenic strategy to acquire resistance to cancer treatment, including sorafenib. It proposes vessel co-option, where the tumor hijacks the existing vasculature in organs such as the lung and liver, limiting the tumor’s need for angiogenesis. An orthotopic human HCC model revealed that up to 75% of total vessels were provided by vessel co-option in resistant tumors relative to 23% in untreated control (15).

GRP78 is a molecular chaperone involved in endoplasmic reticulum stress response and can be regulated by the transcription factors ATF6 and XBP1 which play important role in regulation of tumor proliferation, invasion and metastasis (16, 17). GRP78 was up-regulated in HCC tumors and correlated with Granulin-epithelin precursor expression (18). The development of acquired resistance to systemic treatment limits the extension of survival of patients with advanced HCC. Treatment human leukemia cells (U937) with sorafenib can induce endoplasmic reticulum stress by immediate cytosolic calcium mobilization, GADD34 protein induction, PKR-like ER kinase and eukaryotic initiation factor 2α phosphorylation, XBP1 splicing, and a general reduction in protein synthesis as assessed by [35 S]methionine incorporation. It was accompanied with pronounced generation of reactive oxygen species through a mechanism dependent on cytosolic calcium mobilization and a significant decline in GRP78/Bip protein levels (19). In agreement, the expression of GRP78 has been associated with a wide range of therapies, including chemotoxic, anti-hormonal, DNA damaging and anti-angiogenesis agents in several cancers (20). The contribution of GRP78 in acquired resistance to sorafenib has been studied in HCC cells. Another study used HepJ5 (a GRP78-overexpressing HCC cells) and HepG2 cells as a paired matched control to determine the acquired resistance to sorafenib in HCC cells (21). Further studies suggested that GRP78 can be detected in serum samples of HCC patients. Also, secreted GRP78 facilitated proliferation and inhibited apoptosis induced by sorafenib both in HCC cell lines and xenografts. GRP78 can interact with EGFR, activate EGFR-SRC-STAT3 pathway, conferring the resistance of sorafenib (22). Questioycin, a suppressor of GRP78 by promoting its degradation, enhanced the anti-tumor effect of sorafenib in HCC xenograft models (23). Importantly, high expression of GRP78 was associated with inferior survival of HCC patients in our study. It substantially supported the role of GRP78 in acquired resistance to sorafenib therapy of HCC.

14-3-3 proteins comprise seven isoforms and share highly conserved homology among all eukaryotic cells. The biological functions of 14-3-3 proteins influence cell development, cell cycle regulation, DNA repair, cell proliferation, apoptosis, adhesion, motility, and tissue response to injury (24). Several studies have demonstrated that 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3σ and 14-3-3ζ isoforms are overexpressed in HCC and expression of 14-3-3ε is associated with inferior overall and progression free survival (25). Among these 14-3-3 proteins, 14-3-3ζ is conjugated with αB-Crystallin to promote HCC progression and has been demonstrated to be involved in sorafenib resistance in vitro and patients with HCC (26). In our study, 14-3-3ε was overexpressed in Huh7-R cells but it failed to contribute to sorafenib resistance in patients with HCC. The effect of 14-3-3ε on sorafenib resistance remains uncertain based on our analysis and previous studies (25). HSP is normally maintained at low levels but it is induced under protein-damage conditions. HSP70, not HSP90, is downstream of heat shock factor-1α which is activated by 14-3-3σ and β-catenin. The biological functions of HSP70 include enhancement of cell migration and endothelial-mesenchymal transition (27, 28). Up to date, only clusterin, an ATP-independent molecular chaperone with HSPs-like properties, has been reported to confer resistance to sorafenib from an unpublished data (28).

The overall treatment for advanced HCC remains unsatisfied and novel agents targeting sorafenib resistance or other pathways are strongly desired. Recently clinical trials have indicated that selective c-Met inhibitors have anti-tumor activity in HCC with acceptable safety and tolerability in patients with Pugh A liver reserve. It is required to continue the exploration of the clinical benefit of c-Met inhibition in HCC treatment. Before this achievement, it is mandatory to conquer sorafenib resistance by targeting GRP78 and further research focused on this strategy should be encouraged.

Conclusion

In conclusion, we enforced the evidence that GRP78 contributes to the resistance to sorafenib in HCC by *in vivo* and clinical analysis. The results are consistent with other preliminary studies and present a primary target for overcoming sorafenib resistance.

Conflicts of Interest

All Authors have no potential conflicts of interest to declare regarding this study.

Authors’ Contributions

YHF, CJT and TFW wrote the manuscript. YHF and CLT conducted the process of experiments. YHF, YCS, CJT and TFW designed the study and data interpretation. YHF, YCS and CLT prepared the organization of figures and statistical analysis. All Authors verified the content of the manuscript.
Acknowledgements

The Authors appreciate the generous donation of the cell lines, HuH7-R from Dr. Kuen-Feng Chen (National Taiwan University).

References

1. Leung HWC and Chan ALF: Cost-utility of stereotactic radiation therapy versus proton beam therapy for inoperable advanced hepatocellular carcinoma. Oncotarget 8(43): 75568-75576, 2017. PMID: 2908891. DOI: 10.18632/oncotarget.17369
2. Llovet JM, Burroughs A and Bruix J: Hepatocellular carcinoma. Lancet 362(9399): 1907-1917, 2003. PMID: 14667750. DOI: 10.1016/S0140-6736(03)14964-1
3. El-Serag HB: Hepatocellular carcinoma. N Engl J Med 365(12): 1118-1127, 2011. PMID: 21992124. DOI: 10.1056/NEJMra1010683
4. Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Haddad J, Faghih M, Baudhuin A, Gane E, Hilgard P, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D and Bruijx J: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 365(28): 2365-2375, 2011. PMID: 21992124. DOI: 10.1056/NEJMoa1111071
5. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D and Bruijx J: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 365(12): 1118-1127, 2011. PMID: 21992124. DOI: 10.1056/NEJMra1010683
6. Zhu YJ, Zheng B, Wang HY and Chen L: New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin 38(5): 614-622, 2017. PMID: 28343232. DOI: 10.1038/aps.2017.5
7. Chen KE, Chen HL, Tai WT, Feng WC, Hsu CH, Chen PJ and Cheng AL: Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther 337(1): 155-161, 2011. PMID: 21205925. DOI: 10.1124/jpet.110.175786
8. Wu TF, Hsu LT, Tsang BX, Huang LC, Shih WY and Chen LY: Clarification of the molecular pathway of taiwan local pomegranate fruit juice underlining the inhibition of urinary bladder urothelial carcinoma cell by proteomics strategy. BMC Complement Altern Med 16: 96, 2016. PMID: 26955879. DOI: 10.1186/s12906-016-1071-7
9. Liao KA, Tsay YG, Huang LC, Huang HY, Li CF and Wu TF: Search for the tumor-associated proteins of oral squamous cell carcinoma collected in taiwan using proteomics strategy. J Proteome Res 10(5): 2347-2358, 2011. PMID: 21322651. DOI: 10.1021/pr101146w
10. Le Grazie M, Biagini MR, Tarocchi M, Polvani S and Galli A: Chemotherapy for hepatocellular carcinoma: The present and the future. World J Hepatol 9(21): 907-920, 2017. PMID: 28824742. DOI: 10.4254/wjh.v9.i21.907
11. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burock K, Zou J, Voliotis D and Guan Z: Efficacy and safety of sorafenib in patients in the asia-pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10(1): 25-34, 2009. PMID: 19095497. DOI: 10.1016/S1470-2045(08)70285-7
12. Ezzoukhy Z, Louandre C, Trechere E, Godin C, Chauffert B, Dupont S, Diouf M, Barbare JC, Maziere JC and Galmiche A: EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer 133(12): 2961-2969, 2012. PMID: 22514082. DOI: 10.1002/ijc.27604
13. Zhang Z, Zhou X, Shen H, Wang D and Wang Y: Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: Evidence from an in vitro study. BMC Med 7(4), 2009. PMID: 19698189. DOI: 10.1186/1741-7015-7-41
14. Hagiwara S, Kudo M, Nagai T, Inoue T, Ueshima K, Nishida N, Watanabe T and Sakurai T: Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. Br J Cancer 106(12): 1997-2003, 2012. PMID: 22596232. DOI: 10.1038/bjc.2012.145
15. Kuczyński EA, Yin M, Bar-Zion A, Lee CR, Butz H, Man S, Daley F, Vermeulen PB, Yousef GM, Foster FS, Reynolds AR and Kerbel RS: Co-option of liver vessels and not sprouting angiogenesis drives acquired sorafenib resistance in hepatocellular carcinoma. J Natl Cancer Inst 108(8): djw030, 2016. PMID: 27059374. DOI: 10.1093/jnci/djw030
16. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, Arai M, Wakatsuki T, Matsubara O, Yamamoto N and Yamamoto M: Activation of the atf6, xbp1 and grp78 genes in human hepatocellular carcinoma: A possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 38(5): 605-614, 2003. PMID: 12713871. DOI: 10.1016/S0168-8278(03)0029-1
17. Su R, Li Z, Li, Song H, Bao C, Wei J and Cheng L: Grp78 promotes the invasion of hepatocellular carcinoma. BMC Cancer 10: 20, 2010. PMID: 20082722. DOI: 10.1186/1471-2407-10-20
18. Pip CW, Lam CY, Poon TCW, Cheung TT, Cheung PFY, Fung SW, Wang XQ, Leung ICY, Lo CM, Tsao GSW and Cheung ST: Granulin-epithelin precursor interacts with 78-kda glucose-regulated protein in hepatocellular carcinoma. BMC Cancer 17(1): 409, 2017. PMID: 28601093. DOI: 10.1186/s12885-017-3399-x
19. Rahman I, Davis EM, Crabbtree TR, Habibi JR, Nguyen TK, Dent P and Grant S: The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol 27(15): 5499-5513, 2007. PMID: 17548474. DOI: 10.1128/MCB.01080-06
20. Luo B and Lee AS: The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 32(7): 805-818, 2013. PMID: 22580478. DOI: 10.1038/onc.2012.130
21. Chiu JF, Tai CJ, Huang MT, Wei PL, Wang YH, An J, Wu CH, Liu TZ and Chang YJ: Glucose-regulated protein 78 is a novel contributor to acquisition of resistance to sorafenib in hepatocellular carcinoma. Ann Surg Oncol 17(2): 603-612, 2010. PMID: 19830497. DOI: 10.1245/s10434-009-0718-8
22. Li R, Yanjiao G, Wubin H, Yue W, Jianhua H, Huachuan Z, Luo B and Lee AS: The critical roles of endoplasmic reticulum stress pathway in hepatocarcinogenesis. J Hepatol 57(12): 2549-2557, 2012. PMID: 23147364. DOI: 10.1016/j.bjoc.2012.11.008
23. Qi JS, Wu W, Bi B, Liao Y, Wang S, Liu Q, Yin Z, Liu SY, Tang Y, Yang J, Hu Q, Xu J, Zhang H and Li Y: The role of GRP78 in the acquired resistance to sorafenib in hepatocellular carcinoma. Int J Oncol 46(4): 1447-1454, 2015. DOI: 10.3892/ijo.2014.3125
24. Chen W, Cheng AL, Zheng J, Wang X, Chen Z, Su R, Li Z, Liu YZ, Liu J, Xie Y, Li H, Song H, Bao C, Wei J, Cheng L and Li R: Secreted grp78 activates egfr-src-stat3 signaling and confers the resistance to sorafenib in hcc cells. Oncotarget 8(12): 19354-19364, 2017. PMID: 28423613. DOI: 10.18632/oncotarget.15223
23 Machihara K, Tanaka H, Hayashi Y, Murakami I and Namba T: Questiomycin a stimulates sorafenib-induced cell death via suppression of glucose-regulated protein 78. Biochem Biophys Res Commun 492(1): 33-40, 2017. PMID: 28811106., DOI: 10.1016/j.bbrc.2017.08.042

24 Wu YJ, Jan YJ, Ko BS, Liang SM and Liou JY: Involvement of 14-3-3 proteins in regulating tumor progression of hepatocellular carcinoma. Cancers (Basel) 7(2): 1022-1036, 2015. PMID: 26083935. DOI: 10.3390/cancers7020822

25 Ko BS, Chang TC, Hsu C, Chen YC, Shen TL, Shen SC, Wang J, Wu KK, Jan YJ and Liou JY: Overexpression of 14-3-3epsilon predicts tumour metastasis and poor survival in hepatocellular carcinoma. Histopathology 58(5): 705-711, 2011. PMID: 21401702. DOI: 10.1111/j.1365-2559.2011.03789.x

26 Huang XY, Ke AW, Shi GM, Zhang X, Zhang C, Shi YH, Wang XY, Ding ZB, Xiao YS, Yan J, Qiu SJ, Fan J and Zhou J: Alphab-crystallin complexes with 14-3-3zeta to induce epithelial-mesenchymal transition and resistance to sorafenib in hepatocellular carcinoma. Hepatology 57(6): 2235-2247, 2013. PMID: 23316005. DOI: 10.1002/hep.26255

27 Shiba-Ishii A, Kano J, Morishita Y, Sato Y, Minami Y and Noguchi M: High expression of stratifin is a universal abnormality during the course of malignant progression of early-stage lung adenocarcinoma. Int J Cancer 129(10): 2445-2453, 2011. PMID: 21207417. DOI: 10.1002/ijc.25907

28 Wang C, Zhang Y, Guo K, Wang N, Jin H, Liu Y and Qin W: Heat shock proteins in hepatocellular carcinoma: Molecular mechanism and therapeutic potential. Int J Cancer 138(8): 1824-1834, 2015. PMID: 26853533. DOI: 10.1002/ijc.29723

Received June 18, 2019
Revised July 24, 2019
Accepted July 25, 2019