On the suitability of VMAF for quality assessment of medical videos: Medical ultrasound & wireless capsule endoscopy

Arslan Usman and Maria Martini

Presenter:
Prof Maria Martini
Wireless Multimedia and Networking Research Group
Kingston University, London, UK
What makes it more challenging?

- In medical images the diagnostic quality of the image is more important than the perceptual quality.
- However, typical objective image quality metrics do not measure the diagnostic quality.
Option 1: develop tailored metrics

Examples:

• A Raj, NA Shah, AK Tiwari, MG Martini, Multivariate Regression-Based Convolutional Neural Network Model for Fundus Image Quality Assessment, *IEEE Access* 8, 2020, 57810-57

• M Razaak and MG Martini, "CUQI: Cardiac Ultrasound Quality Index," *SPIE Journal of Medical Imaging*, 2016.
Option 2: study which of the existing metrics performs best

PSNR, SSIM, UQI, VQM, NQM, VIF, NIQE, BRISQUE were tested earlier for Ultrasound video, Wireless Capsule Endoscopy, ENT Endoscopic Video, Radiological images

- M. Razaak, M.G. Martini and K. Savino, "A Study on Quality Assessment for Medical Ultrasound Video Compressed via HEVC," *IEEE Journal of Biomedical and Health Informatics (J-BHI)*, vol. 18, no. 5, pp. 1552-1559, Sep 2014.

- Usman, M. A., Usman, M. R., & Shin, S. Y. (2017). Quality assessment for wireless capsule endoscopy videos compressed via HEVC: From diagnostic quality to visual perception. *Computers in biology and medicine, 91*, 112-134.

- Chaabouni, A., Gaudeau, Y., Lambert, J., Moureaux, J.M. and Gallet, P., 2014, October. Subjective and objective quality assessment for H264 compressed medical video sequences. In 2014 4th International Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1-5). IEEE.

- Kowalik-Urbaniak, Ilona, Dominique Brunet, Jiheng Wang, David Koff, Nadine Smolarski-Koff, Edward R. Vrscay, Bill Wallace, and Zhou Wang. "The quest for 'diagnostically lossless' medical image compression: a comparative study of objective quality metrics for compressed medical images." In *Medical Imaging 2014: Image Perception, Observer Performance, and Technology Assessment*, vol. 9037, p. 903717. International Society for Optics and Photonics, 2014.
Option 2: study which of the existing metrics performs best, ctd.

VMAF was developed for and trained on non-medical video, but has shown excellent performance for different types of video (e.g. gaming)

Challenge: what if we apply it to medical video?
Ultrasound video dataset

- Nine ultrasound video sequences provided by cardiologist in Perugia Hospital (Heart, Liver, Kidney, Lung), 640 x 416, 100 frames, 25fps
- Compressed with HEVC at eight different compression ratios

9 x 8 = 72 video sequences being evaluated with DSCQS (144 sequences evaluated by each specialist not including intra-subject controls)

[Razaak, Martini, Savino, IEEE JBHI 2014]

Extensive subjective tests run with medical doctors in Hospital of Perugia
Ten source video sequences provided by Intromedic Co. Ltd., South Korea, for research purposes.

3 fps (Native)
320 x 320 (Native)
10 s

HEVC compression with QP 27, 29, 31, 33, 35, 37, 39 & 41
Medical Image quality evaluation

Other Objective Quality Metrics considered

Quality metric	Abbreviation
Peak Signal to Noise Ratio	PSNR
Structural Similarity Index Metric [13]	SSIM
Multi Scale SSIM [14]	MS-SSIM
Visual Signal to Noise Ratio [15]	VSNR
Information Fidelity Criterion [16]	IPC
Visual Information Fidelity [17]	VIF
Pixel-based VIF [17]	VIFP
Universal Quality Index [18]	UQI
Noise Quality Measure [19]	NQM
Weighted Signal to Noise Ratio [19]	WSNR
Video Quality Metric [20]	VQA_{STD}
Video Multimethod Assessment Fusion [10]	VMAF
Results - 1

Accuracy comparison

Results for fitting the VMAF measurements to the subjective DMOS.

Dataset	Category	Exponential	Linear	Logistic						
		R²	Adj. R²	RMSE	R²	Adj. R²	RMSE	R²	Adj. R²	RMSE
Ultrasound Videos	Expert	0.8032	0.8004	11.1736	0.8620	0.8601	9.3587	0.8544	0.8502	9.680
	Non-Expert	0.8334	0.8310	8.7630	0.8862	0.8846	7.242	0.8791	0.8756	7.5199
WCE Videos	Expert	0.9214	0.9204	3.8859	0.9267	0.9258	4.9820	0.9268	0.9239	3.7994
	Non-Expert	0.9501	0.9494	3.0967	0.9433	0.9426	5.8556	0.9501	0.9481	3.1370

Comparison of VMAF with other FR-VQMs.

Dataset	Scores	CC	PSNR	SSIM	MS-SSIM	VSNR	WSNR	NQM	UQI	VIF	VIP	IFC	VQM NISTA	VMAF
Ultra-sound	Experts	PLCC	0.9109	0.9254	0.8579	0.8925	0.9123	0.8961	0.9292	0.9258	0.8887	0.8644	0.8080	0.9056
	Non-experts	PLCC	0.9331	0.9375	0.8907	0.9139	0.9251	0.9090	0.9251	0.9382	0.8997	0.8926	0.8368	0.8941
WCE	Experts	PLCC	0.9280	0.9383	0.8899	0.9277	0.9354	0.9464	0.9495	0.9668	0.9047	0.8906	0.8606	0.9186
	Non-experts	PLCC	0.8039	0.6840	0.8566	0.6055	0.8010	0.7158	0.8701	0.9016	0.8055	0.8844	0.7764	0.9627
	PLCC	0.8611	0.8653	0.9127	0.6571	0.8709	0.8257	0.8930	0.9424	0.9263	0.9482	0.8426	0.9763	
	SROCC	0.8257	0.7232	0.8696	0.6204	0.7963	0.7371	0.8909	0.9238	0.9227	0.9620	0.7578	0.9712	
	PLCC	0.8642	0.8129	0.9247	0.6474	0.8774	0.8311	0.9061	0.9533	0.9408	0.9525	0.8402	0.9796	
Results - 2

Scatter plots
Observations and proposed future steps

- Limited number of scores from experts in available datasets
- The level of expertise of the “experts” influences the quality scores (not all expert subjects are equal!)
- More datasets with videos assessed by a wide range of experts are required
References

A Raj, NA Shah, AK Tiwari, MG Martini, Multivariate Regression-Based Convolutional Neural Network Model for Fundus Image Quality Assessment, *IEEE Access* 8, 2020, 57810-57

Raj, A K Tiwari, MG Martini, Fundus image quality assessment: survey, challenges, and future scope, *IET Image Processing* 13 (8), 2019. 1211-1224

Usman, M. A., & Martini, M. G. (2019). On the suitability of VMAF for quality assessment of medical videos: Medical ultrasound & wireless capsule endoscopy. *Computers in biology and medicine*, 113, 103383.

Lévêque, L., Liu, H., Baraković, S., Husić, J. B., Martini, M., Outtas, M., ... & Pinheiro, A. (2018, May). On the subjective assessment of the perceived quality of medical images and videos. In *2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)* (pp. 1-6). IEEE.

Kara, P. A., Kovacs, P. T., Vagharshakyan, S., Martini, M. G., Imre, S., Barsi, A., ... & Balogh, T. (2017). Perceptual quality of reconstructed medical images on projection-based light field displays. In *eHealth 360°* (pp. 476-483). Springer, Cham.

Usman, M. A., Usman, M. R., & Shin, S. Y. (2017). Quality assessment for wireless capsule endoscopy videos compressed via HEVC: From diagnostic quality to visual perception. *Computers in biology and medicine*, 91, 112-134.

Nasr, K.M. and Martini, M.G., 2017. A visual quality evaluation method for telemedicine applications. *Signal Processing: Image Communication*, 57, pp.211-218.

M. Razaak and M.G. Martini, "CUQI: Cardiac Ultrasound Quality Index," *SPIE Journal of Medical Imaging*, 2016.

M. Razaak, M.G. Martini and K. Savino, "A Study on Quality Assessment for Medical Ultrasound Video Compressed via HEVC," *IEEE Journal of Biomedical and Health Informatics (J-BHI)*, vol. 18, no. 5, pp. 1552-1559, Sep 2014.
Thank you!

On the suitability of VMAF for quality assessment of medical videos: Medical ultrasound & wireless capsule endoscopy

Arslan Usman and Maria Martini

Presenter: Prof Maria Martini
Wireless Multimedia and Networking Research Group
Kingston University, London, UK