Enhanced Superconductivity up to 43 K by
P/Sb Doping of Ca$_{1-x}$La$_x$FeAs$_2$

Kazutaka Kudo1,2, Tsukato Mizukami1, Yutaka Kitahama1, Daisuke Mitsuka4, Keita Iba^1, Kazunori Fujimura1, Naoki Nishimoto1, Yuji Hiraoka1,2, and Minoru Nohara1,2

1Department of Physics, Okayama University, Okayama 700-8530, Japan
2Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530, Japan

A number of iron-based superconductors have been discovered,$^{1-3}$ which include LaFeAsO (1111-type structure),4 BaFe$_2$As$_2$ (122-type),5 LiFeAs (111-type),6 and FeSe (11-type),7 as well as compounds with complex oxide spacer layers$^{8-11}$ and arsenide spacer layers such as Ca$_{10}$(Pt$_4$As$_8$)(Fe$_2$As$_2$)$_2$. The maximum superconducting transition temperature T_c is 55 K of the 1111-type structure.18 In order to further increase T_c, an exploration of novel structure types should be performed.

Very recently, Katayama et al.19 and Yakita et al.20 have reported superconductivity in Ca$_{1-x}$La$_x$FeAs$_2$ and Ca$_{1-x}$Pr$_x$FeAs$_2$, respectively, with a novel 112-type structure. Ca$_{1-x}$La$_x$FeAs$_2$ crystallizes in a monoclinic structure with the space group $P2_1$ (No. 4) and consists of alternately stacked Fe$_2$As$_2$ and arsenic zigzag bond layers.19 Although pure CaFeAs$_2$ was not obtained, Katayama et al. found that the substitution of a small amount of La for Ca stabilizes the 112 phase and induces superconductivity at $T_c = 34$ K for $x = 0.16$. Interestingly, Katayama et al.19 suggested that the trace superconductivity of Ca$_{1-x}$La$_x$FeAs$_2$ could exhibit $T_c = 45$ K.

In this paper, we report that a large increase in T_c occurs with the phosphorus or antimony doping of Ca$_{1-x}$La$_x$FeAs$_2$. P-doped Ca$_{0.84}$La$_{0.16}$FeAs$_2$ and Sb-doped Ca$_{0.85}$La$_{0.15}$FeAs$_2$ exhibited T_c values of 41 and 43 K, respectively, while P/Sb-free Ca$_{0.85}$La$_{0.15}$FeAs$_2$ exhibited $T_c = 35$ K.

Single crystals of Ca$_{1-x}$La$_x$(Fe(As$_{1-y}$P$_y$)$_2$ (P$_n$ = P and Sb) were grown by heating a mixture of Ca, La, FeAs, As, P, and Sb powders. A stoichiometric amount of the mixture was placed in an aluminum crucible and sealed in an evacuated quartz tube. The preparation was carried out in a glove box filled with argon gas. Ampules were heated at 700 °C for 3 h, heated to 1100 °C at a rate of 46 °C/h, and cooled to 1050 °C at a rate of 1.25 °C/h, followed by furnace cooling. The obtained samples were characterized by powder X-ray diffraction (XRD) analysis, performed using a Rigaku RINT-TTR III X-ray diffractometer with CuKa$_2$ radiation. The Ca$_{1-x}$La$_x$(Fe(As$_{1-y}$P$_y$)$_2$ was obtained together with a powder mixture of LaAs, FeAs, FeAs$_2$, and CaFe$_2$As$_2$. We separated platelike single crystals of the present system with typical dimensions of $0.4 \times 0.4 \times 0.02$ mm3 from the mixture. The La content x was analyzed by energy-dispersive X-ray spectrometry (EDS). The synthesis for nominal $x = 0.07-0.50$ yielded samples with $x = 0.15-0.25$. On the other hand, the P and Sb contents could not be determined because the nominal amounts of P ($y = 0.005$) and Sb ($y = 0.01$) were very small. In the rest of this paper, we assume the nominal values of y. Electrical resistivity ρ_{ab} (parallel to the ab-plane) measurements were carried out by a standard DC four-terminal method in a Quantum Design PPMS. The magnetization M was measured using a Quantum Design PPMS.

We demonstrate the bulk superconductivity at 35 K and the trace superconductivity at 45 K in Ca$_{1-x}$La$_x$FeAs$_2$ using the temperature dependences of the electrical resistivity ρ_{ab} and magnetization M shown in Figs. 1(a) and 1(d), respectively. The electrical resistivity ρ_{ab} of Ca$_{1-x}$La$_x$FeAs$_2$ with $x = 0.15$ exhibits a sharp drop below 40 K, and zero resistivity is observed at 35 K. The diamagnetic behavior below $T_c = 35$ K clearly supports the emergence of bulk superconductivity. On the other hand, the ρ_{ab} of Ca$_{1-x}$La$_x$FeAs$_2$ with $x = 0.19$ exhibits the onset of superconductivity at 45 K, as shown in Fig.
diamagnetic behavior below superconductivity and zero resistivity at high temperatures. The shielding volume fraction exhibits a high value of 77%. The inset shows the x dependence of the lattice parameters.

Figure 2 shows the x dependence of the superconducting transition temperature T_c, below which the magnetization shows a diamagnetic signal and the resistivity starts to drop in Ca$_{1-x}$La$_x$Fe$_2$P$_{0.995}$Sb$_{0.005}$ (Pn = P and Sb). The inset shows the x dependences of the lattice parameters.

1(a), but no diamagnetic signal is observed at ~45 K, as shown in Fig. 1(d).

We found that a small amount of isovalent doping converts this trace superconductivity into bulk superconductivity. As shown in Fig. 1(b), the P-doped Ca$_{1-x}$La$_x$Fe$_2$(As$_{0.995}$P$_{0.005}$)$_2$ shows the onset of superconductivity at 44 K and zero resistivity at 40 K for x = 0.16. Evidence for bulk superconductivity is found in the magnetization M, which clearly shows diamagnetic behavior below T_c = 41 K, as shown in Fig. 1(e). The shielding volume fraction at 5 K corresponds to 44% for perfect diamagnetism, supporting the emergence of bulk superconductivity. In a composition with x = 0.18, although the T_c of 39 K is somewhat lower than that with x = 0.16, the shielding volume fraction exhibits a high value of 77%. The Sb-doped Ca$_{1-x}$La$_x$Fe$_2$(As$_{0.995}$Sb$_{0.005}$)$_2$ also exhibits the onset of superconductivity and zero resistivity at high temperatures such as 44 and 35 K, respectively, for x = 0.15 [Fig. 1(c)]. In this case, the bulk superconductivity is further supported by diamagnetic behavior below T_c = 43 K, as shown in Fig. 1(f). The shielding volume fraction at 1.8 K corresponds to 78% for perfect diamagnetism.

Figure 2 shows the x dependences of T_c derived from the magnetization and the onset T_c derived from the electrical resistivity. The resistive-onset T_c determines the upper limit of the superconducting transition. In Ca$_{1-x}$La$_x$FeAs$_2$ not subjected to P/Sb doping, the T_c determined from the magnetization is considerably lower than the resistive-onset T_c. On the other hand, in the case of additional P or Sb doping, these T_c values almost coincide with each other. Moreover, the magnetic T_c almost reaches the maximum resistive T_c (45 K) observed in Ca$_{1-x}$La$_x$Fe$_2$As$_2$ (x = 0.19), suggesting that the small amount of isovalent doping has induced the potential high T_c phase in this x range.

The enhancement of bulk superconductivity by isovalent P doping has been reported for the 122-type iron-based superconductor. The electrical resistivity of the La-doped Ca$_{1-x}$La$_x$Fe$_2$As$_2$ exhibited a superconducting transition at high temperatures such as ~40–43 K, but no visible diamagnetic signal was observed. In contrast, additional P doping induced bulk superconductivity at 45 K in Ca$_{1-x}$La$_x$Fe$_2$(As$_{1-y}$P$_y$)$_2$. In the case of La-and-P-codoped CaFe$_2$As$_2$, it has been suggested that independent tunings of the concentration of charge carriers by La doping and the cell volume by P doping optimize the superconductivity. Detailed studies of the crystal structure, which include the crystallographic sites of doped P/Sb, will provide useful information on the factors causing the enhancement of T_c in the present 112 system.

In summary, we report bulk superconductivity at 43 K induced by the isovalent doping of Ca$_{1-x}$La$_x$FeAs$_2$. We found that a small amount of isovalent P or Sb doping markedly enhances T_c: P-doped Ca$_{0.034}$La$_{0.165}$FeAs$_2$ and Sb-doped Ca$_{0.35}$La$_{0.15}$FeAs$_2$ exhibit T_c values of 41 and 43 K, respectively. Note that if we can reduce x to below 0.15, T_c will increase because the T_c of Ca$_{1-x}$La$_x$FeAs$_2$ tends to increase with decreasing x. We should develop chemical methods for doing so.

Acknowledgments We are grateful to N. Katayama and H. Sawa for valuable discussions. Part of this work was performed at the Advanced Science Research Center at Okayama University. This work was partially supported by a Grant-in-Aid for Scientific Research (C) (25400372) from Japan Society for the Promotion of Science (JSPS), the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program) from JSPS, and the program for promoting the enhancement of research universities from MEXT, Japan.

1) K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).
2) J. Paglione and R. L. Greene, Nat. Phys. 6, 645 (2010).
3) D. C. Johnston, Adv. Phys. 59, 803 (2010).
4) Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
5) M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).
6) J. H. Tapp, Z. Tang, B. Lv, K. Sasnal, B. Lorenz, P. C. W. Chu, and A. M. Guloy, Phys. Rev. B 78, 060505(R) (2008).
7) F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu, Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008).
8) N. Kawaguchi, H. Oginu, Y. Shimizu, K. Kashio, and J. Shimoyama, Appl. Phys. Express 3, 063102 (2010).
9) X. Zhu, F. Han, G. Mu, P. Cheng, B. Shen, B. Zeng, and H.-H. Wen, Phys. Rev. B 79, 220512(R) (2009).
10) H. Oginu, K. Machida, A. Yamamoto, K. Kashio, J. Shimoyama, T. Tohe, and Y. Ikahura, Supercond. Sci. Technol. 23, 115005 (2010).
11) P. M. Shirage, K. Hirose, C.-H. Lee, K. Ito, H. Eisaki, and A. Iyo, Appl. Phys. Lett. 97, 172506 (2010).
12) S. Kakiya, K. Kudo, Y. Nishikubo, K. Oku, E. Nishibori, H. Sawa, T. Yamamoto, T. Nozaka, and M. Nohara, J. Phys. Soc. Jpn. 80, 093704 (2011).
13) N. Ni, J. M. Allred, B. C. Chan, and R. J. Cava, Proc. Natl. Acad. Sci. U.S.A. 108, E1019 (2011).
14) C. Löhntert, T. Stürmer, M. Tegel, R. Frankovsky, G. Friederichs, and D.
Johrendt, Angew. Chem. Int. Ed. 50, 9195 (2011).
15) M. Nohara, S. Kakiya, K. Kudo, Y. Oshiro, S. Araki, T. C. Kobayashi, K. Oku, E. Nishibori, and H. Sawa, Solid State Commun. 152, 635 (2012).
16) C. Hieke, J. Lippmann, T. Stürzer, G. Friederichs, F. Nitsche, F. Winter, R. Pöttgen, and D. Johrendt, Phil. Mag. 93, 3680 (2013).
17) K. Kudo, D. Mitsuoka, M. Takasuga, Y. Sugiyama, K. Sugawara, N. Katayama, H. Sawa, H. S. Kubo, K. Takamori, M. Ichiooka, T. Fujii, T. Mizokawa, and M. Nohara, Sci. Rep. 3, 3101 (2013).
18) Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, and Z.-X. Zhao, Chin. Phys. Lett. 25, 2215 (2008).
19) N. Katayama, K. Kudo, S. Onari, T. Mizukami, K. Sugawara, Y. Sugiyma, Y. Kitahama, K. Iba, K. Fujimura, N. Nishimoto, M. Nohara, and H. Sawa, J. Phys. Soc. Jpn. 82, 123702 (2013).
20) H. Yakita, H. Ogino, T. Okada, A. Yamamoto, K. Kishio, T. Tohei, Y. Ikuhara, Y. Gotoh, H. Fujihisa, K. Kataoka, H. Eisaki, and J. Shimoyama, J. Am. Chem. Soc. (in press) [DOI: 10.1021/ja410845b].
21) K. Kudo, K. Iba, M. Takasuga, Y. Kitahama, I. Matsumura, M. Dahan, Y. Nogami, and M. Nohara, Sci. Rep. 3, 1478 (2013).
22) S. R. Saha, N. P. Butch, T. Drye, J. Magill, S. Ziemak, K. Kirshenbaum, P. Y. Zavali, J. W. Lynn, and J. Paglione, Phys. Rev. B 85, 024525 (2012).
23) Z. Gao, Y. Qi, L. Wang, D. Wang, X. Zhang, C. Yao, C. Wang, and Y. Ma, Europhys. Lett. 95, 67002 (2011).