ISDM-Rosleskhoz operation and evolution experience

I V Balashov*, E A Loupian, S A Bartalev, M A Burtsev and A A Mazurov
Dep.56, Space Research Institute of the Russian Academy of Sciences, 84/32 Profsoyuznaya Street, Moscow 117997, Russian Federation

*Corresponding e-mail: smis@smis.iki.rssi.ru

Abstract. The paper marks the 15-th anniversary of the Wildfires Monitoring Information System of the Federal Forestry Agency (ISDM-Rosleskhoz). Creation and development of the system was partaken by many organizations, including the Aerial Forest Protection Central Base (Avialesookhrana), Space Research Institute of the Russian Academy of Sciences (IKI), Center for Forest Ecology and Productivity of the Russian Academy of Sciences (CEPF RAS), State Research Center “Planeta”, OOO Inkom, Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS), Saint Petersburg Forestry Research Institute (SPbNIIILH). The system provides uniform near real-time information necessary for forest fires and their impact monitoring all over the Russia territory and border areas. The paper highlights main trends and key stages of ISDM-Rosleskhoz development and evolution during the entire operation time span. This constant evolution has made and is keeping the system as the largest fires monitoring industrial system operated by Forest Protection Services both in Russia and in the world. The paper also briefly provides major development directions of the system for the nearest years.

1. Introduction
2020 marked the 15th anniversary of the commissioning of the Information System for Monitoring Forest Fires of the Federal Forestry Agency [1]. A large number of different organizations took part in the creation and development of the system, including FBU "Central Base of Aviation Forest Protection"), Space Research Institute of the Russian Academy of Sciences, Center for Ecology and Forest Productivity of the Russian Academy of Sciences), FGBU "Research Center" Planeta " , LLC "Inkom", Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences, St. Petersburg Scientific Research Institute of Forestry (SPbNIIILH) This system allows you to receive on the entire territory of the Russian Federation and border areas operational and homogeneous information necessary for maintaining monitoring of forest fires and their consequences. Different elements and methods that made it possible in 2003-2004 to create, and in 2005 to put ISDM-Rosleskhoz into commercial operation were carried out in fact from the beginning of the nineties of the last century remains the largest industrial system for monitoring wildfires and their consequences, which are used by forest protection services. The history of its creation, implementation and evolution is described in sufficient detail (see, in particular, [2]). The main tasks, capabilities and features of the system at various stages of its development, operation and modernization are described in sufficient details in various papers (including, [3-15]).
2. Results and Discussion

One of the main features of ISDM-Rosleskhoz is that the system is constantly evolving over the years of its operation. In it, in particular, new opportunities constantly appeared associated with the use of data from the most modern satellite systems as shown on figure 1. Point to note that nowadays mostly all of the satellite data is provided as service from TsKP “IKI-Monitoring, see [16, 17] for details.

A new functionality was constantly adding to ISDM-Rosleskhoz, in the creation of which both new technical capabilities that constantly appeared over 15 years of its operation and new ones were used approaches and methods of processing and analysis of remote sensing data, which have been developed to evaluate various characteristics of forest fires and their consequences. Some possibilities of these approaches and methods are presented in the papers [18-23]. Major improvements of ISDM-Rosleskhoz are shown in table 1.

![Figure 1. The number of different satellite systems used in ISDM-Rosleskhoz in different years.](image)

Table 1. Major improvements of ISDM-Rosleskhoz that were performed in the period from 2005 to 2020.

Year	Improvement of the ISDM	Comments
2008	Created a dynamic cartographic web-interface	Cartographic interfaces ISDM-Rosleskhoz for remote access has the functionality for data analysis almost like in traditional desktop GIS systems
2009	Daily automatic integration of ground and satellite information has been started (and the integration with services of «Yasem» system)	The level of automated control of reporting of regional services has been increased
2009	Started the annual calculation of forest damage areas for entire Russian coverage from the MODIS data	Objective express assessments of forest damage areas by fires appeared
2010 The creation of unified layers of the quarter network and forest fund has begun (creation of a specialized database) Completed in 2014. Now it is possible to automatically annotate all remotely detected fires to the forest fund, forestries and districts.

2010 A for refining the contours of burned-out areas based on the results of flyovers / bypasses / and tracing using high-resolution satellite data software has been created Now it is possible to carry out a selective refining of the areas burned by fire.

2011 A block for modelling the of a fire expansion has been created Now it is possible to calculate threats from fires to infrastructure facilities.

2012 Created a block for calculating various statistics on fires data Numerical spatial data have appeared, which is necessary, among other things, for assessing the expected losses from fires in various territories and zoning areas by levels of protection.

2013 A reporting system based on BI technology was created This way, among other things, the possibility of comparing the current forest fire situation with the situation observed in other years and analysis of data at various levels of integration became possible.

2014 The transfer of the central site of ISDM-Rosleskhoz to the "cloud" of FBI "Avialesokhrana" started The stability of the central site ISDM-Rosleskhoz has increased

2014 A block for automated mass refinement of areas covered by fire was created based on high-resolution data. Now it is possible to carry out a mass clarification of the forest fires burned areas.

2015 A new design of ISDM-Rosleskhoz web services has been introduced. The convenience of working with information provided by ISDM-Rosleskhoz has been improved, as well as the flexibility and controllability of the information provision subsystem.

2015 Hotspots from Himawari-8, Sentinel 2, Meteor satellites are integrated The frequency of observation has increased, and the amount of available information required to clarify the first burned areas increased more than twice.

2016 Transition to a service model in satellite data integration Service model allows to reduce an amount of maintenance efforts of regional nodes ISDM-Rosleskhoz at the centers for receiving and processing satellite data.

2016 New platform of the burned areas clarification system The level of automation has been fundamentally increased during the clarification of burned areas.

2017 VIIRS hotspots data (NPP satellite) included in the fire processing system The ability to detect small fires has increased.

2018 Commissioning of the ALO public data interfaces The possibilities of public data provisioning by ISDM-Rosleskhoz have increased.

2019 VIIRS hotspots data (NOAA 20 satellite) included in the fire accounting system The ability to detect small fires has increased. The number of detected fires compared to the situation before the use of VIIRS data has increased by more than 2.5 times.
2020 A system for the primary assessment of forest cover damage based on operative fire radiation power (FRP) information has been created and prepared for operation. The commissioning of the subsystem will make it possible to obtain the first estimates of the expected damage to the forest cover immediately after the completion of a particular fire.

The constant development of the system allows it to remain, all the years of operation, one of the most advanced specialized remote monitoring systems not only in our country, but also in the world. The system is constantly in demand. This, in particular, confirms the constant growth in the number of its active users, the graph of which is shown in figure 2.

![Figure 2. The number of active users in ISDM-Rosleskhoz in different years.](image)

3. Conclusion
Nowadays forest protection services face new challenges, including those related to a general increase in the activity of forest fires in recent years (see, for example, [24]), which, among other things, may be caused by processes associated with global climate change. Therefore, ISDM-Rosleskhoz also faces new development priorities, which, in our opinion, include the following:

- Development of objective methods for zoning areas by forest protection levels;
- Development of objective methods of deciding on extinguishing;
- Rapid estimation of the aftereffects from fires, both in terms of forest resource losses and in terms of assessing potential carbon emissions.

It should be noted that there is already a sufficiently large scientific and technological basis for solving these problems, developed within the framework of various scientific projects and programs carried out in organizations that have been providing support and development of ISDM-Rosleskhoz all these years.

This publication has been prepared with the support of the topic "Monitoring" of the Ministry of Education and Science (registration No. 01.20.0.2.00164).

References
[1] ISDM-Rosleskhoz, URL: https://nffc.aviales.ru
[2] Kotel’nikov R V, Lupyan E A, Bartalev S A and Ershov D V 2019 Kosmicheskii monitoring lesnykh pozharov: istoriya sozdaniya i razvitiya ISDM-Rosleskhoz (Space Monitoring of Forest Fires: History of Creation and Development of ISDM-Rosleskhoz), Lesovedenie, No 5, pp 399–409, DOI: 10.1134/S0024114819050048
[3] Loupian E A et al 2015 Organizatsiya raboty so sputnikovymi dannymi v informatsionnoi sisteme distantsionnogo monitoringa lesnykh pozharov Federal’nogo agentstva lesnogo khozayastva (ISDM-Rosleskhoz) (Satellite data processing management in Forest Fires Remote Monitoring Information System (ISDM-Rosleskhoz) of the Federal Agency for Forestry), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 12, No 5, pp 222–250

[4] Ershov D V, Korovin G N, Loupian E A, Mazurov A A and Tashchilin S A 2004 Rossiiskaya sistema sputnikovogo monitoringa lesnykh pozharov (Russian forest fires satellite monitoring system), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, Issue 1, vol 1, pp 47–57.

[5] Belyaev A I, Korovin G N and Loupian E A 2005 Ispol’zovanie sputnikovykh dannykh v sisteme distantsionnogo monitoringa lesnykh pozharov MPR RF (Using the satellite data in the systme of forest fires remote monitoring of Russian Agency for Forest Resources), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, Issue 2, vol 1, pp 20–29

[6] Belyaev A I, Korovin G N and Loupian E A 2006 Sostoyanie i perspektivy razvitiya Rossiiskoi sistemy distantsionnogo monitoringa lesnykh pozharov (Russian forest fires remote monitoring system development state and perspectives), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, Issue 3, vol 1, pp 341–350

[7] Bartalev S A, Ershov D V, Korovin G N, Kotel’nikov R V, Loupian E A and Shchetinskii V E 2008 Informatsionnaya sistema distantsionnogo monitoringa lesnykh pozharov Federal’nogo agentstva lesnogo khozayastva RF (sostoyanie i perspektivy razvitiya) (Forest fires remote monitoring information system of the Russian Federal Agency for Forestry (status and development prospects)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, Issue 5, vol 2, pp 419–429

[8] Bartalev S A, Stytsenko F V, Egorov V A and Loupian E A 2015 Sputnikovaya otsenka gibeli lesov Rossii ot pozharov (Russia’s forest fire damage estimation), Lesovedenie, No 2, pp 83-94

[9] Abushenko N A et al 1998 Opyt i perspektivy organizatsii operativnogo sputnikovogo monitoringa territorii Rossii v tselakh sluzhby pozharookhrany lesov (Experience and Perspectives of Near-Realtime Satellite Monitoring of Russia’s Territory for the Needs of Forest Fires Services), Issledovanie Zemli iz kosmosa, No 3, pp 89–95

[10] Abushenko N A et al 2000 Sistema sbora, obrabotki i dostavki sputnikovykh dannykh dlya resheniya operatyvnikh zadach sluzhby pozharookhrany lesov Rossii (The System for Satellite Data Collection, Processing and Distribution to Solve the Tasks of Forest Fire Protection Service of Russia), Naukoeamkie tekhnologii, vol 1, No. 2, pp 4–18

[11] Bartalev S A, Ershov D V, Korovin G N, Kotel’nikov R V, Lupyan E A and Tshetinskii V E 2010 Osnovanye vozmozhnosti i struktura informatsionnoi sistemy distantsionnogo monitoringa lesnykh pozharov Federal’nogo agentstva lesnogo khozayastva (ISDM Rosleskhoz) (The main functionalities and structure of the Forest Fire Satellite Monitoring Information System of Russian Federal Forestry Agency (SMISRosleshhoz)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, vol 7, No 2, pp 97–105

[12] Korovin G N and Bartalev S A 1998 Integriровannaya sistema monitoringa lesnykh pozharov (Forest fires monitoring integrated system), Lesne khozaystvo, No 4, pp 45–48

[13] Loupian E A et al 2003 Sputnikovyi monitoring lesnykh pozharov v Rossii. Itogi. Problemy. Perspektivy: analiticheskii obzor (Satellite Monitoring of Forrest Fires in Russia. Results. Problems. Perspectives: analytical review), Novosibirsk: IOA SO RAN, Ser. “Ekologiya”, Issue 68, p 134

[14] Shulyak P P, Ershov D V and Korovin G N 2014 Kontrol’ dinamiki krupnykh lesnykh pozharov i otsenka effektivnosti i svoevremennosti ikh obnaruzheniya i tusheniya (Control of large forest fires dynamics and estimating of efficiency and timeliness of the detection and
suppression), *Lesovedenie*, No 5, pp 30–41

[15] Abushenko N A *et al* 1999 Near Real-time Satellite Monitoring of Russia for Forest Fire Protection, *Mapping Science and Remote Sensing*, 36, No. 1, pp. 54–61

[16] Burtsev M A, Uspenskii S A, Kramareva L S, Antonov V N, Kalashnikov A V, Balashov I V, Kashnitskii A V, Loupian E A, Matveev A M and Proshin A A 2019 Sovremennye vozmozhnosti i perspektivy razvitiya Ob"edinennoi sistemy raspredelennoi roboty s dannymi NITs “Planeta” (Actual features and evolution prospects of the SRC “Planeta” distributed data operation united system), *Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa*, vol 16, No 3, pp 198–212, DOI: 10.21046/2070-7401-2019-16-3-198-212

[17] Loupian E A *et al* 2019 Opyt ekspluatatsii i razvitiya tsentra kollektivnogo pol’zovaniya sistemami archivatsii, obrabotki i analiza sputnikovykh dannykh (TsKP “IKI-Monitoring”) (Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data), *Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa*, vol 16, No 3, pp 151–170, DOI: 10.21046/2070-7401-2019-16-3-151-170

[18] Khvostikov S A, Balashov I V, Bartalev S A, Efremov V Yu and Loupian E A 2012 Regional’naia optimizatsiia parametrov prognoznoi modeli prirodnikh pozharov i operativnoe modelirovanie dinamiki ikh razvitiya s ispol’zovaniem dannykh sputnikovykh nablyudenii (Regional scale optimization of wildfire model parameters and modeling of wildfire dynamic using remote sensing data), *Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa*, vol 9, No 3, pp 91–100

[19] Stytsenko F V, Bartalev S A, Egorov V A and Loupian E A 2013 Metod otsenki stepeni povrezhdennykh lesov pozarami na osnove sputnikovykh dannykh MODIS (Post-fire forest tree mortality assessment method using MODIS satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, vol 10, No 1, pp 254–266

[20] Stytsenko F V, Bartalev S A, Ivanova A A, Loupian E A and Syughov I G 2016 Vozmozhnosti otsenki ploschadey lesnykh pozharov v regionakh Rossii na osnove dannykh sputnikovogo detektirovaniya aktivnogo goreniiya (Forest burnt area assessment possibilities in regions of Russia based on active fires detection by satellites), *Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa*, vol 13, No 6, pp 289–298, DOI: 10.21046/2070-7401-2016-13-6-289-298

[21] Kashnitskii A V, Loupian E A, Bartalev S A, Bartalev S S, Balashov I V, Efremov V Yu and Stytsenko F V 2015 Optimizatsiia interaktivnykh protsedur kartografirovanija garei v informatsionnykh sistemakh distantsionnogo monitoringa prirodnikh pozharov (Optimization of ‘burn mapping interactive procedures in remote fire monitoring information systems), *Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa*, vol 12, No 4, pp 7–16

[22] Bartalev S A, Egorov V A, Zharko V O, Loupian E A, Plotnikov D E, Khvostikov S A and Shabanov N V 2016 Sputnikovoe kartografirovanije rastitel'nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), (Moscow: IKI RAN), p 208

[23] Khvostikov S A, Bartalev S A and Loupian E A 2016 Veroyatnostnnoe prognozirovanije razvitiya prirodnikh pozharov metodom Monte-Karlo na osnove integratsii v imitatsionnyu model’ dannykh sputnikovogo detektirovaniya ochagov goreniiya (Stochastic wildfire model based on Monte-Carlo method and remote sensing data integration), *Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa*, vol 13, No 5, pp 145–156, DOI: 10.21046/2070-7401-2016-13-5-145-156

[24] Loupian E A, Balashov I V, Bartalev S A, Burtsev M A, Dmitriev V V, Senko K S and Krasheninnikova Yu S 2019 Lesnye pozhary na territorii Rossii: osobennosti pozharoopasnogo sezona 2019 g. (Forest fires in Russia: specifics of the 2019 fire season), *Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa*, vol 16, No 5, pp 356–363, DOI: 10.21046/2070-7401-2019-16-5-356-363