Google search behavior for meningitis and its vaccines: an infodemiological study

John Angelo Luigi S. Perez1, Adrian I. Espiritu2,3 and Roland Dominic G. Jamora1,3*

Abstract

Background: The internet has made significant contributions towards health education. Analyzing the pattern of online behavior regarding meningitis and vaccinations may be worthwhile. It is hypothesized that the online search patterns in meningitis are correlated with its number of cases and the search patterns of its related vaccines.

Methods: This was an infodemiological study that determined the relationship among online search interest in meningitis, its worldwide number of cases and its associated vaccines. Using Google Trends™ Search Volume Indices (SVIs), we evaluated the search queries “meningitis,” “pneumococcal vaccine,” “BCG vaccine,” “meningococcal vaccine” and “influenza vaccine” in January 2021, covering January 2008 to December 2020. Spearman rank correlation was used to determine correlations between these queries.

Results: The worldwide search interest in meningitis from 2008 to 2020 showed an average SVI of 46 ± 8.8. The most searched topics were symptoms, vaccines, and infectious agents with SVIs of 100, 52, and 39, respectively. The top three countries with the highest search interest were Ghana, Kazakhstan, and Kenya. There were weak, but statistically significant correlations between meningitis and the BCG (ρ = 0.369, p < 0.001) and meningococcal (ρ = 0.183, p < 0.05) vaccines. There were no statistically significant associations between the number of cases, influenza vaccine, and pneumococcal vaccine.

Conclusion: The relationships among the Google SVIs for meningitis and its related vaccines and number of cases data were inconsistent and remained unclear. Future infodemiological studies may expand their scopes to social media, semantics, and big data for more robust conclusions.

Keywords: Infodemiology, Meningitis, Vaccines, Google Trends™

Introduction

Meningitis is a neurologic emergency that is associated with significant morbidity and mortality. It is the inflammation of the meninges of the brain and spinal cord and may have various etiologies such as infectious, autoimmune, paraneoplastic and even drug-related [1]. It has several risk factors such as human immunodeficiency virus infection, malnutrition, overcrowding, and incomplete vaccinations. The majority of mortalities are from infectious meningitis and bacterial meningitis can become rapidly fatal and survivors become severely disabled [1].

Immunization is well-known to be one of the preventive measures against meningitis [1]. Vaccines targeting Hemophilus influenzae type b, Neisseria meningitidis, and Streptococcus pneumoniae have significantly decreased the number of cases of meningitis worldwide [1]. According to the World Health Organization (WHO), vaccinations have reduced the incidence of meningitis in Africa by as much as 58% and the risk of epidemics has decreased by 60% [2]. One of the pioneering vaccines developed in collaboration with the WHO, UNICEF, and the Bill & Melinda Gates Foundation have reduced the

*Correspondence: rgjamora@up.edu.ph
1 Institute for Neurosciences, St. Luke’s Medical Center, Quezon City & Global City, Philippines
Full list of author information is available at the end of the article

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
incidence of meningitis by 94% after six months in areas
with successful vaccination drives [3]. Despite vaccina-
tion efforts, meningitis remains a global problem, espe-
cially in developing countries and the contiguous African
Meningitis Belt [1].

The internet has made a significant contribution
towards health education and health-seeking behavior
with online news and social media being the most popu-
lar sources of information [4, 5]. In a systematic review,
publications utilizing information and communication
technologies including the internet generally fell into
five categories: a) evaluation of health-related content, b)
development and evaluation of health services, c) devel-
opment and evaluation of health literacy tools, d) inter-
ventions to improve health literacy, and e) to promote
online health information-seeking behavior [6].

In the case of vaccinations, the internet has signifi-
cantly affected the volume and quality of information
available and in some cases became either facilitator or
barrier of health information [7]. Since vaccinations
are one of the most important preventive measures against
meningitis, analyzing the pattern of online behavior
regarding meningitis and vaccinations may be worth-
while. It is hypothesized that the online search patterns
in meningitis are correlated with its number of cases and
the search patterns of its related vaccines.

This field of studying internet behavior in health is
a relatively new concept that may be covered by the
field of infodemiology [8]. It is defined as the science
of distribution and determinants of information in
an electronic medium, specifically the Internet, or in
a population, with the ultimate aim to inform public
health and public policy [8]. One of the most acces-
sible methods of studying online search patterns is the
use of Google Trends™ (https://trends.google.com). It is
a free and publicly available online portal that provides
data on Google search queries. It can provide geospatial
and temporal patterns on approximately 3 billion search
queries daily [9].

The purpose of this study was to determine the asso-
ciations among online search interest in meningitis, its
worldwide number of cases and its associated vaccines.
The scope of this study involved vaccine-preventable
etiologies of meningitis such as influenza, tuberculosis,
meningococcus, and streptococcus.

Methods

Online interest was measured as search volume index
(SVI) provided by the Google Trends™. SVI is a pro-
prietary index that estimates search activity by tak-
ing the proportion of searches of interest relative to the
most searched term within a specified geography and
timeframe [10]. The SVIs are normalized to geography and
time and are then assigned a value from 0 to 100.

Google Trends™ was accessed by visiting
http://trends.google.com and a combined worldwide search query
evaluation for “meningitis”, “pneumococcal vaccine”,
“BCG vaccine”, “meningococcal vaccine”, and “influenza
vaccine” in January 2021. The search was limited from
January 2008 to December 2020 and search queries as
topics were used instead of freehand keywords. SVI data
was then returned by Google Trends™ and downloaded
as Microsoft Excel spreadsheets, version 2101 (Redmond,
WA: Microsoft Corp.). The global case numbers of men-
ingitis cases worldwide as of 2019 was 7,683,539 (10%).
According to the GHDx Database, the number of men-
ingitis cases in the year 2008 was 2,099,361 (15%), Nigeria (n =
619,660, 21%), and Pakistan (n = 401,311, 19%). There was an overall decline
in the number of cases starting around 1997. However,
we should have a look at the global number of cases of meningitis.

Results

General search interest trends

Worldwide search interest in meningitis from 2008 to
2020 showed an average SVI of 46±8.8. The most related
topics searched were symptoms, vaccines, and infec-
tious agents with SVIs of 100, 52, and 39, respectively.
The top five countries with the highest search interest
were Ghana, Kazakhstan, Kenya, Paraguay, and Italy (see
Table 1). Overall, the trend in search interest for meningi-
tis increased over time with an abrupt drop in May 2020
(see Fig. 1). There were several spikes in SVI in November
2012, February 2016, January 2017, and March 2019.

A search query combining meningitis and its associ-
ated vaccines showed generally low search volumes for
pneumococcal, meningococcal, and BCG vaccines (see
Fig. 1). Search volumes for influenza vaccine were cycli-
cal due to the seasonal nature of the disease. A Durbin-
Watson test showed a coefficient of 0.598, indicating
positive autocorrelation [12].

The global number of cases of meningitis

According to the GHDx Database, the number of men-
ingitis cases worldwide as of 2019 was 7,683,539 (10%).
The top three countries with the highest cases were India
(n = 2,099,361, 15%), Nigeria (n = 619,660, 21%), and
Pakistan (n = 401,311, 19%). There was an overall decline
in the number of cases starting around 1997. However,
the cases increased again in 2016 (see Fig. 2).
Table 1 Top 50 countries with the highest search volume indices from 2008-2020 and their total cases up to 2019

Country	SVI	Number of cases	Country	SVI	Number of cases
Ghana	100	656,602	Costa Rica	44	1,193
Kazakhstan	88	148,066	Finland	44	1,625
Kenya	84	1,469,781	Ecuador	42	3,439
Paraguay	82	69,311	Netherlands	42	6,425
Italy	80	92,267	Australia	42	9,830
Chile	73	57,306	Dominican Republic	42	5,557
South Africa	73	571,477	Argentina	42	14,001
Slovenia	71	9,501	France	40	24,651
Ireland	68	18,993	Sweden	40	2,687
Brazil	66	160,512	Hungary	40	2,813
Norway	66	28,609	Colombia	40	11,644
United Kingdom	64	33,162	Algeria	40	21,625
New Zealand	60	1,717	Portugal	40	6,607
United States	57	26,781	Ukraine	40	32,485
Indonesia	57	150,591	Switzerland	40	2,142
Denmark	53	3,020	Romania	40	5,438
Bolivia	51	2,657	Austria	37	2,414
Jordan	51	9,454	Germany	37	20,571
Russia	51	76,676	Czech Republic	37	3,790
Philippines	51	85,124	Greece	35	3,537
Nigeria	48	619,661	Slovakia	35	2,244
Belarus	46	6,482	Venezuela	35	9,131
Belgium	44	3,780	Egypt	33	60,577
Spain	44	17,813	Saudi Arabia	33	10,756
Canada	44	4,510	Morocco	33	24,546

Note: Arrows correspond to peaks in search interest for meningitis.

Fig. 1 Search interests for combined queries on meningitis and its vaccines from 2008 to 2020
The top searches by country, queries, and rising queries each for meningitis and its vaccines are shown in Table 2. The majority of searches for “meningitis” came from developing countries while a mix of developed and developing countries was searching for its vaccines. The search queries for meningitis were mostly signs and symptoms, while vaccine queries were mostly direct searches. All searches were multi-lingual and had queries in English, Japanese, Italian, Russian, and Greek.

Associations among online search interest in meningitis, its worldwide number of cases and its associated vaccines

There were weak, but statistically significant correlations between meningitis and the BCG and meningococcal vaccines (see Table 3). There was no statistically significant correlation with the number of cases of meningitis.

Discussion

Our study shows that people who search for meningitis on Google looked for definitions of the disease and its symptoms. The majority of searches came from developing countries. This was consistent with the literature that affirms that the morbidity and mortality burden of meningitis are greater in resource-poor nations [11]. As for the vaccine keywords, the majority searched for general information on the vaccine, the nearest place to get them, and their frequency of administration. Interestingly, most of the searches came from developed countries. This may be due to the lower disease burden of meningitis as shown by their case numbers. Moreover, these nations are already working on prevention rather than acute infection. The pattern of keyword searching that certain countries employ may possibly give public health workers an indication on the current phase of a region in the epidemic stage spectrum. In our study, the countries battling ongoing epidemics are searching for definitions, signs and symptoms, while developed countries are inclined to focus on prevention and are searching for vaccine information, timing and location.

The number of cases of meningitis worldwide showed a generally decreasing trend (see Fig. 2). However, online search interest was slowly increasing (see Fig. 1). This can be due to multiple factors such as increasing awareness of the disease, expanding internet access, and the rising importance of prevention. An exception to this observation was a sudden drop in search interest in May 2020 and this may be due to the coronavirus disease (COVID-19) pandemic dominating search interest globally. The increase in search volumes for influenza, BCG, and pneumococcal vaccines beginning March 2020 were likewise likely related to vaccine interest amidst the COVID-19 pandemic. This underscores again the role of the internet in health-seeking behavior and health education: even if global prevalence decreases, the internet may be used to facilitate and sustain awareness, prevention, and treatment of meningitis. The internet becomes part of the armamentarium of public health both in prevention and management in developed and developing countries.

Google Trends™ not only provides baseline search data over time, but they also provide insight into sudden spikes in search volume. Several studies have similarly used Google Trends™ to establish baseline search data and look for changes over time. For example, epidemiological studies using Google Trends™ on multiple sclerosis [13], status epilepticus [14], and stroke [5] have been performed. In the case of meningitis, there were

![Fig. 2 Number of meningitis cases globally from 1990–2019 according to the global burden of disease database [6]](image-url)
four notable spikes in search volume throughout the past 12 years. On further investigation, these spikes coincided with news events at those times.

In October 2012, there was an outbreak of fungal meningitis associated with the New England Compounding Center (NECC) in the United States. It was found that the NECC has been compounding injections of steroids contaminated with \textit{Exserohilum rostratum} and \textit{Aspergillus fumigatus} [15].

February 2016 was an eventful month due to overlapping international events. First, there was a large outbreak of pneumococcal and meningococcal meningitis in Ghana [16]. Second, there was likewise a spike of cases in Tuscany, Italy during a meningitis epidemic that has been ongoing since 2015 [17]. At the same time in the United Kingdom, the daughter of Matt Dawson, a British professional football player, died of meningococcal meningitis [18]. This spurred a petition to make meningococcal vaccinations mandatory for children up to 11 years old. The petition gathered 823,349 signatures by its conclusion [19]. Meanwhile in the United States, there was an outbreak among students in Santa Clara University, California and likewise contributed to the interest in vaccination [20]. Unsurprisingly, the top three countries with the highest search interest in this period were Ghana, Italy, and the United Kingdom.

The peak in January 2017 was caused mainly by searches coming from Italy. While this interest was not due to increasing cases, there was a highly publicized shift in the policies of local health authorities that strengthened vaccine coverage and allowed substantial savings up to 50% with the assistance of insurance [21]. This announcement was made on December 29, 2016 and media coverage lasted up to May 2017.

Finally, the most recent spike occurred in March 2019. This was when former Brazilian president Luiz Inacio Lula da Silva, who was imprisoned for corruption allegations, was given temporary leave to attend his grandson’s funeral who died of meningitis [22]. Both the prison furlough and funeral garnered media attention.

Table 2
Results of search volume analysis and search queries for terms “meningitis,” “influenza vaccine,” “BCG vaccine,” “pneumococcal vaccine” and “meningococcal vaccine”

Search Term	Country	Top Queries	Rising Queries	
Meningitis	Ghana	Meningitis	Vacina meningite b	Breakout
	Kazakhstan	Meningite	Sunikt meningitis	
	Paraguay	Symptoms meningitis	Vaksin meningitis	
	Kenya	Viral meningitis	Gejala meningitis	
	Italy	Bacterial meningitis	meningitis esto	
Influenza Vaccine	Japan	Flu	Flu shot 2020	Breakout
	Canada	Flu shot	Flu shot near me	
	USA	Flu vaccine	Инфлюензa 予防 接種	
	Finland	Инфлюензa 予防 接種	Flu shot 2019	
	Taiwan	Дигист менингит	Flu vaccine 2020	
BCG Vaccine	Japan	BCG	コロナ BCG	Breakout
	Kazakhstan	BCG vaccine	BCG.COVID	
	Nepal	Дигист менингит	BCG Corona	
	Taiwan	BCG vacuna	Дигист менингит	
	Ukraine	Vacina BCG	Дигист менингит	
Pneumococcal Vaccine	Austria	Pneumonia	Prevenar 13	Breakout
	Portugal	Prevenar	Prevnar 13	
	Czechia	Pneumococcal	How often pneumonia shot	
	Taiwan	Pneumonia vaccine	Pneumо 13	
	Finland	Pneumococcal vaccine	Prevenar 13 vacuna	
Meningococcal Vaccine	Australia	Meningitis	Vacina meningite b	Breakout
	Brazil	Meningitis vaccine	Vacina acwy	
	Greece	Meningococcal	Meningo b	
	Portugal	Meningococcal vaccine	Vacina meningite acwy	
	USA	Vacina	Meningo b vacina	

Table 3
Spearman rank correlations between the SVI of meningitis, its related vaccinations, and worldwide number of cases

Variable	Spearman rank coefficient	P-value
Pneumococcal vaccine	0.011	0.895
Influenza vaccine	0.051	0.526
BCG vaccine	0.369	< 0.001*
Meningococcal vaccine	0.183	0.022*
Worldwide number of cases	0.354	0.179

SVI: Search volume index
These patterns show that traditional media such as television, radio, and newsprint still have a role in disseminating health information. These media can serve as gateways to information and spur further health-seeking behavior at the user’s own time and convenience. In order to have a successful public health information policy, both traditional media and the internet must be used together.

The present analysis showed that while there were statistically significant correlations between meningitis and the BCG and meningococcal vaccines; the relationships appeared weak. It was also unclear if these correlations correspond to the overall decrease in meningitis cases worldwide. There were no correlations seen with the other vaccines. There was clear seasonal interest in the influenza vaccine, but this was not observed in meningitis. Search interests in meningitis, therefore, do not appear to correlate with search interests on its vaccine or its number of cases.

Non-parametric Spearman correlation was chosen as case numbers of meningitis and search interest of the various keywords over the study period were hypothesized to be non-normally distributed. This was supported by this study’s results as shown in Figs. 1 and 2. Meningitis is a chronic global problem with multiple outbreaks and not a point epidemic hence an assumption of normality cannot be made. Similarly, search interest is expected to be non-normal as access to the internet is not uniform throughout the world and the global population is unlikely to be searching for the same topic within the same timeframe. As internet access varies throughout the world and different countries experience outbreaks at different times, the assumption of normality cannot likewise be made.

Testing for autocorrelation is also important since some of the vaccines of interest are seasonal in nature, such as with the influenza vaccine. Inspection of data showed a seasonal trend in the search interest for the influenza vaccine (see Fig. 1) and this is supported by the Durbin-Watson test which showed positive autocorrelation. The Durbin-Watson test is used in time-series analysis and helps differentiate if the seasonal trend is a natural sequential order or is due to some other external cause [12]. In the case of this analysis, the positively autocorrelated search interest in influenza vaccine is an inherent pattern and makes the overall correlation with meningitis more reliable.

Counterintuitively, these results are not entirely unexpected. As previously discussed, the internet may play a role in the sustenance of awareness and search interest in meningitis despite its decreasing numbers worldwide. As for the weak to absent correlations of meningitis with vaccines, it may be possible that the messaging of these vaccines is not clear as they relate to meningitis. Another possibility is that the other complications of tuberculosis and meningococcus such as disseminated TB or meningococcemia are emphasized. This means that meningitis alone may not be a sufficient surrogate measure for vaccine awareness and that other related illnesses must be investigated as well. Meningitis is not the only complication these vaccines prevent. For health workers who will undergo similar studies in the future, search terms must be selected holistically and should reflect the full spectrum of the disease to detect more nuanced correlations.

There were several limitations to this study. First, this study was confined to Google searches and did not measure search interest in social media. While there were spikes in search interest in meningitis, these were attributable to meningitis dominating news headlines. The extent of how specific social media platforms could have contributed to search interest is unknown. The study was also subject to the penetration of internet access as not all countries may have the same ability or extent to perform Google searches. In effect, this study was only able to measure the search behavior of those with internet access and may underrepresent resource-poor countries. Another limitation was that the Global Burden of Disease Database reports all-cause meningitis and does not differentiate among bacterial, viral, fungal, or tuberculous meningitis. Finally, there was a paucity of validated data on Google search behavior and other online behavior such as in social media. It is then difficult to establish true causality and relationships between search terms. The possible explanations discussed in this analysis are hypotheses that warrant further study.

While Google Trends™ results are increasingly being used to provide a general study of online search behavior, future infodemiological studies can focus on social media for a more precise and granular evaluation of internet behavior. Not only will these future studies use search data, but internet crawlers may be programmed to measure interactions and engagement, analyze semantics and even perform big data analytics for improvement of public health and policy.

Conclusion

The present study found weak correlations between Google SVIs for meningitis and the BCG and meningococcal vaccines without any correlations with worldwide meningitis cases. The majority of online search interest came from the developing countries with queries related to definitions, signs, and symptoms while developed countries searched for vaccine information. Worldwide search interest was increasing despite decreasing numbers of meningitis globally. Despite the weak correlations found, this study serves as a step towards more complex...
and robust infodemiological studies in the future. Given the relative youth of the field of infodemiology, its methods may still be further refined and its limitations overcome. The internet plays a significant role in medicine hence infodemiology will continue to grow as an emerging tool towards better public health and healthcare.

Abbreviations

COVID-19: Coronavirus disease; GHDx: Global Health Data Exchange Database; NECC: New England Compounding Center; SVI: Search volume index.

Acknowledgements

Not applicable.

Authors’ contributions

JALSP: Conceptualization, data curation, formal analysis, interpretation of data, writing-original draft, writing-review, and editing. AIE: Conceptualization, data curation, formal analysis, interpretation of data, writing-original draft, writing-review, and editing. The authors read and approved the final manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Institute for Neurosciences, St. Luke’s Medical Center, Quezon City & Global Author details 1 Institute for Neurosciences, St. Luke’s Medical Center, Quezon City & Global Author details 1 Institute for Neurosciences, St. Luke’s Medical Center, Quezon City & Global Author details 1 Institute for Neurosciences, St. Luke’s Medical Center, Quezon City & Global Author details 1 Institute for Neurosciences, St. Luke’s Medical Center, Quezon City & Global Author details 1 Institute for Neurosciences, St. Luke’s Medical Center, Quezon City & Global Author details 1 Institute for Neurosciences, St. Luke’s Medical Center, Quezon City & Global Author details 1 Institute for Neurosciences, St. Luke’s Medical Center, Quezon City & Global Author details 1 Institute for Neurosciences, St. Luke’s Medical Center, Quezon City & Global

Received: 12 February 2021 Accepted: 24 May 2021

Published online: 23 June 2021

References

1. GBD 2016 Meningitis Collaborators. Global, regional, and national burden of meningitis, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(12):1061–82. https://doi.org/10.1016/S1474-4422(18)30987-9.

2. World Health Organization. Meningococcal meningitis - Key Facts. 2018. https://www.who.int/en/news-room/factsheets/detail/meningococcal-meningitis. Accessed 11 Mar 2021.

3. Daugla DM, Gami JP, Gamougam K, Naibei N, Mbainadji L, Narbe M, et al. Effect of a serogroup A meningococcal conjugate vaccine (PsA – TT) on serogroup A meningococcal meningitis and carriage in Chad. a community study. Lancet. 2014;383(9911):40–7. https://doi.org/10.1016/S0140-6736(13)61612-8.

4. Mavragani A. Infodemiology and infoveillance: scoping review. J Med Internet Res. 2020;22(4):1–15. https://doi.org/10.2196/jmir.16206.

5. Ling R, Lee J. Disease monitoring and health campaign evaluation using Google search activities for HIV and AIDS, stroke, colorectal cancer, and marijuana use in Canada: a retrospective observational study. JMIR Public Heal Surveill. 2016;2(2):e156. https://doi.org/10.2196/jmir.6504.

6. Kim H, Xie B. Health literacy in the eHealth era: a systematic review of the literature. Patient Educ Couns. 2017;100(6):1073–82. https://doi.org/10.1016/j.pec.2017.01.015.

7. Handy LK, Maroudi S, Powell M, et al. The impact of access to immunization information on vaccine acceptance in three countries. PLoS ONE. 2017;12(8):1–16. https://doi.org/10.1371/journal.pone.0180759.

8. Eysenbach G. Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J Med Internet Res. 2009;11(1):1–10. https://doi.org/10.2196/jmir.1157.

9. Nuri SV, Wayda B, Ranasinghe I, Wang S, Dreyer RP, Chen SI, et al: The use of google trends in health care research: a systematic review. PLoS One. 2014;9(10):e109583. https://doi.org/10.1371/journal.pone.0109583.

10. Cervellin G, Comelli L, Lippi G. Is Google Trends a reliable tool for digital epidemiology? Insights from different clinical settings. J Epidemiol Glob Health. 2017;7(3):185–9. https://doi.org/10.1016/j.jegh.2017.06.001.

11. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Results. Institute for Health Metrics and Evaluation. 2020. http://ghdx.healthdata.org/gbd-results-tool. Accessed 25 Dec 2020.

12. Charterjee S, Simonoff JS. Handbook of Regression. Analysis. 2013. https://doi.org/10.1002/9781118532843.

13. Bragazzi NL. Infodemiology and infoveillance of multiple sclerosis in Italy. Mult Scler Int. 2013;2013:1–9. https://doi.org/10.1155/2013/924029.

14. Brigo F, Trinka E. Google search behavior for status epilepticus. Epilepsy Behav. 2015;49:146–9. https://doi.org/10.1016/j.yebeh.2015.02.029.

15. US CDC. Multistate Meningitis Outbreak. 2015. https://www.cdc.gov/hai/outbreaks/ meningitis.html. Accessed 25 Dec 2020.

16. Aku FY, Lessa FC, Asiedu-Bekoe F, Balagumyetime P, Ofosu W, Farrar J, et al. Meningitis outbreak caused by vaccine-preventable bacterial pathogens - Northern Ghana 2016. MMWR Mortal Wkly Rep. 2017;66(30):806–10. https://doi.org/10.15585/mmwrr.mm16630a2.

17. Stefanelli P, Miglietta A, Pezzotti P. Increased incidence of invasive meningococcal disease of serogroup C/clonal complex 11, Tuscany, Italy, 2015 to 2016. Eurosurveillance. 2016;21(12). https://doi.org/10.2807/1560-7917.ES.2016.21.30176.

18. BBC News. Matt Davson reveals “two weeks of hell” over son’s meningitis. Published 2016. https://www.bbc.com/news/uk-engo land-40798390. Accessed 26 Dec 2020.

19. UK Government and Parliament. Give the meningitis B vaccine to ALL children, not just newborn babies. 2016. Accessed 26 Dec 2020. https://petition.parliament.uk/archived/petitions/108072.

20. Veklerov K. Meningitis-linked bacteria hits 3rd Santa Clara University student. SFGate. 2016. https://www.sfgate.com/bayarea/article/Outb reak-of-meningitis-causing-bacteria-hits-3rd-6807744.php. Published 26 Dec 2020.

21. Covolo L, Croce E, Moneda M, Zanardini E, Balagumyetime P, Farrar J. et al. Meningococcal disease in Italy: public concern, media coverage and policy change. BMC Public Health. 2019;19:1061. https://doi.org/10.1186/s12889-019-7426-5.

22. BBC News. Lula back in Brazil prison after grandson’s funeral. 2019. https://www.bbc.com/news/world-latin-america-47342066. Accessed 25 Dec 2020.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.