Cliques in the Union of C_4-Free Graphs

Abeer Othman · Eli Berger

Received: 18 July 2016 / Revised: 13 March 2018 / Published online: 6 June 2018
© Springer Japan KK, part of Springer Nature 2018

Abstract Let B and R be two simple C_4-free graphs with the same vertex set V, and let $B \vee R$ be the simple graph with vertex set V and edge set $E(B) \cup E(R)$. We prove that if $B \vee R$ is a complete graph, then there exists a B-clique X, an R-clique Y and a set Z which is a clique both in B and in R, such that $V = X \cup Y \cup Z$. For general B and R, not necessarily forming together a complete graph, we obtain that

$$\omega(B \vee R) \leq \omega(B) + \omega(R) + \frac{1}{2} \min(\omega(B), \omega(R))$$

and

$$\omega(B \vee R) \leq \omega(B) + \omega(R) + \omega(B \wedge R)$$

where $B \wedge R$ is the simple graph with vertex set V and edge set $E(B) \cap E(R)$.

Keywords C_4-free graphs · Cliques · Obedient sets

This research is partially supported by the United States—Israel Binational Science Foundation Grants 2012031 and 2016077 and by Israel Science Foundation Grants 1581/12 and 936/16.

Eli Berger
berger@math.haifa.ac.il

Abeer Othman
abeer.othman@gmail.com

1 Department of Mathematics, University of Haifa, Mount Carmel, 31905 Haifa, Israel
1 Introduction

Let B (for “Blue”) and R (for “Red”) be two simple graphs on the same vertex set V. Denote by $B \lor R$ the simple graph with vertex set V, in which two vertices are adjacent if they are adjacent in B or in R. Similarly, we denote by $B \land R$ the simple graph with vertex set V, in which two vertices are adjacent if they are adjacent in B and in R. Recall that a clique in a graph G is a set of pairwise adjacent vertices and $\omega(G)$ denotes the maximum size of a clique. A natural question arising from Ramsey theory is the relation between $\omega(B \lor R)$, $\omega(B)$ and $\omega(R)$. In particular, we want to ask for sufficient conditions for $\omega(B \lor R)$ to be a linear function of $\omega(B)$ and $\omega(R)$. Some case that got special attention is the case where $\omega(B \lor R) \leq \omega(B) + \omega(R)$, in the strong sense that every clique of $B \lor R$ is the union of a clique in B and a clique in R. The following definition appeared in [1].

Definition 1.1 We say that a subset $U \subseteq V$ is obedient if there exist an R-clique X and a B-clique Y such that $U = X \cup Y$.

So in fact we look for sufficient conditions for every clique of $B \lor R$ to be obedient. By restricting our attention to one clique of $B \lor R$, we may in fact assume that $B \lor R$ is a complete graph.

In [2], Gyárfás and Lehel, proved the following theorem.

Theorem 1.2 (Theorem 3 of [2]) Assume that $B \lor R$ is a complete graph. If B and R are C_k-free for $k = 4$ and $k = 5$, then V is obedient.

(By H-free we means not having an induced copy of the graph H.) The methods used in [2] are combinatorial. Using topological methods, Berger [3] proved the following theorem.

Theorem 1.3 [3] Assume that $B \lor R$ is a complete graph. If B is chordal and R is C_4-free, then V is obedient.

Recently, Aharoni, Berger, Chudnovsky and Ziani [1] generalized Theorems 1.2 and 1.3 as follows.

Theorem 1.4 (Theorem 1.7 of [1]) Let B and R be C_4-free graphs with vertex set V and suppose that R is also C_5-free. If $B \lor R$ is a complete graph, then V is obedient.

Definition 1.5 For B and R as above, a double C_5 is a pair of complementary C_5’s, one in B and one in R, on the same 5 vertices.

Theorem 1.6 (Theorem 3 of [4]) Let B and R be C_4-free graphs with vertex set V, and suppose that $B \lor R$ does not contains a double C_5. If $B \lor R$ is a complete graph, then V is obedient.

In this paper we use this result to prove

Theorem 1.7 Let B and R be two C_4-free graphs on the same vertex set V and assume that $B \lor R$ is a complete graph. Then there exist a B-clique X, an R-clique Y and an $B \land R$-clique Z such that $V = X \cup Y \cup Z$. Furthermore, if $Z \neq \emptyset$ then every $x \in Z$ is one of the vertices of some double C_5 in $B \lor R$.

Springer
We now recall some basic definitions. Let $G = (V, E)$ be a simple graph, i.e., an undirected graph containing no graph loops or multiple edges. A clique in G (or a G-clique) is a subset $C \subseteq V$, such that for every two vertices in C, there exists an edge connecting the two. The clique number $\omega(G)$ of G is the number of vertices in a maximum clique in G, where a maximum clique is a clique of the largest possible size. We say that $G = (V, E)$ is a complete graph if there is an edge between every two distinct vertices. We denote by K_n the complete graph with n vertices. An induced subgraph on a subset S of V, denoted by $G[S]$, is a graph whose vertex set is S and whose edge set is $\{uv \mid u, v \in S \text{ and } uv \in E\}$.

2 Pairs of Graphs with Double C_5

In this section, we prove Theorem 1.7.

Lemma 2.1 Let B and R be two C_4-free graphs and let $C : v_1-v_2-v_3-v_4-v_5-v_1$ be a double C_5 in $B \lor R$ with blue edges and red diagonals. Assume that $B \lor R$ is a complete graph and $x \in V \setminus \{v_1, \ldots, v_5\}$. Then one of the following holds:

(1) x is connected in B to all the vertices of C.
(2) x is connected in R to all the vertices of C.
(3) there exists i such that
 - xv_i is an edge in B and R.
 - In $B \setminus R$: x is connected to the two neighbors of v_i in C.
 - In $R \setminus B$: x is connected to the two neighbors of v_i in C.

In this case we say that xv_i is the shared edge of x.

Proof Let $T = \{v_1, \ldots, v_5, x\}$. If $\deg_{B \lor T}(x) = 0$, then condition (2) holds. Assume that $\deg_{B \lor T}(x) = 1$. Without loss of generality, assume that $xv_1 \in E(B)$. Since $B \lor R$ is a complete graph, it follows that $xv_2, \ldots, xv_5 \in E(R)$. Since R is C_4-free, it follows that $xv_1 \in E(R)$. For otherwise we have that $x - v_3 - v_1 - v_4 - x$ is an induced C_4 in R. So $\deg_{B \lor T}(x) = 5$ and condition (2) holds. Assume that $\deg_{B \lor T}(x) = 2$. If $xv_i, xv_j \in E(B)$, where $v_i, v_j \in E(R \lor B)$, then $x - v_i - v_m - v_j - x$ is an induced C_4 in B, where v_m is the common neighbor of v_i and v_j in the cycle $v_1 - v_2 - v_3 - v_4 - v_5 - v_1$, a contradiction. It follows that x is connected to two successive vertices of the cycle $v_1 - v_2 - v_3 - v_4 - v_5 - v_1$. Without loss of generality, assume that $xv_1, xv_2 \in E(B)$. It follows that $xv_3, xv_4, xv_5 \in E(R)$. Since R is C_4-free, it follows that $xv_1 \in E(R)$. For otherwise we have that $x - v_3 - v_1 - v_4 - x$ is an induced C_4 in R. Since R is C_4-free, it follows that $xv_2 \in E(R)$. For otherwise we have that $x - v_4 - v_2 - v_5 - x$ is an induced C_4 in R. So $\deg_{B \lor T}(x) = 5$ and condition (2) holds. Assume that $\deg_{B \lor T}(x) = 3$. A similar argument shows that x is connected to three successive vertices of the cycle. Without loss of generality, assume that $xv_1, xv_2, xv_3 \in E(B)$. It follows that $xv_4, xv_5 \in E(R)$. Since R is C_4-free, it follows that $xv_2 \in E(R)$. For otherwise we have that $x - v_4 - v_2 - v_5 - x$ is an induced C_4 in R. If $xv_1 \notin E(R)$ and $xv_3 \notin E(R)$, then condition (3) holds. If $xv_1 \in E(R)$, then $xv_3 \in E(R)$. For otherwise, we have that $x - v_1 - v_3 - v_5 - x$ is an induced C_4 in R. So condition (2) holds. Similarly, if $xv_3 \in E(R)$, then condition (2) holds. Assume that $\deg_{B \lor T}(x) = 4$. Without loss of generality, assume that $xv_1, xv_2, xv_3, xv_4 \in E(R)$.
$E(B)$. Since B is C_4-free, it follows that $xv_5 \in E(B)$. For otherwise we have that $x - v_1 - v_5 - v_4 - x$ is an induced C_4 in B, a contradiction. So $\deg_{B|T}(x) = 5$ and condition (1) holds.

\textbf{Lemma 2.2} Let H be a C_4-free graph and $v_1 - v_2 - v_3 - v_4 - v_5 - v_1$ be an induced C_5 cycle in H. If x and y are two distinct vertices not belonging to $\{v_1, \ldots, v_5\}$ and connected to the same three successive vertices of the cycle, then $xy \in E(H)$.

\textit{Proof} Without loss of generality, assume that $\{x, y\}$ is H-complete to $\{v_1, v_2, v_3\}$.

If $xy \notin E(H)$, then $v_1 - y - v_3 - x - v_1$ is an induced C_4 in H, a contradiction. It follows that $xy \in E(H)$.

Now, we prove the main result.

\textit{Proof of Theorem 1.6} If $B \lor R$ does not contain a double C_5, then by Theorem 1.6 there exists a B-clique X, and an R-clique Y such that $V = X \cup Y$. By choosing $Z = \emptyset$, we are done. So assume that $B \lor R$ contains a double C_5 say $v_1 - v_2 - v_3 - v_4 - v_5 - v_1$ with blue edges and red diagonals. If $V = \{v_1, \ldots, v_5\}$, then choosing $X = \{v_1, v_2\}$, $Y = \{v_3, v_5\}$ and $Z = \{v_4\}$, satisfies the requirements of the theorem. So assume that $V \setminus \{v_1, \ldots, v_5\} \neq \emptyset$. We define the following sets:

\begin{align*}
M &= \{p \mid p \notin \{v_1, \ldots, v_5\} \text{ and } pv_i \in E(B) \text{ for all } 1 \leq i \leq 5\}, \\
N &= \{p \mid p \notin \{v_1, \ldots, v_5\} \text{ and } pv_i \in E(R) \text{ for all } 1 \leq i \leq 5\}, \\
A_j &= \{p \mid p \notin \{v_1, \ldots, v_5\} \text{ and } pv_j \text{ is the shared edge of } p \} \text{ for all } 1 \leq j \leq 5.
\end{align*}

By Lemma 2.1, we have $V \setminus \{v_1, \ldots, v_5\} = M \cup N \cup A_1 \cdots \cup A_5$.

If $p_1, p_2 \in M$, then $p_1v_i \in E(B)$ and $p_2v_i \in E(B)$ for all $1 \leq i \leq 5$. In particular, p_1 and p_2 are connected in B to the same three successive vertices of the induced cycle $v_1 - v_2 - v_3 - v_4 - v_5 - v_1$. Since B is C_4-free, by Lemma 2.2 we conclude...
that $p_1p_2 \in E(B)$. It follows that M is an B-clique. Similarly, if $p_1, p_2 \in N$, then p_1 and p_2 are connected in R to the same three successive vertices of the induced cycle $v_1 - v_3 - v_5 - v_2 - v_4 - v_1$. By Lemma 2.2, we obtain that N is an R-clique.

Let $p_1, p_2 \in A_1$. Note that $\{p_1, p_2\}$ is B-complete to $\{v_1, v_2, v_5\}$ and v_1, v_2, v_5 are successive vertices in the induced cycle $v_1 - v_2 - v_3 - v_4 - v_5 - v_1$ in B. By Lemma 2.2, we obtain that $p_1p_2 \in E(B)$. Note also that $\{p_1, p_2\}$ is R-complete to $\{v_1, v_3, v_4\}$ and v_1, v_3, v_4 are successive vertices in the induced cycle $v_1 - v_3 - v_5 - v_2 - v_4 - v_1$ in R. By Lemma 2.2, we obtain that $p_1p_2 \in E(R)$. It follows that A_1 is a clique both in B and in R. Similarly, A_j is a clique both in B and in R for all $2 \leq j \leq 5$.

A similar argument shows that $M \cup A_j$ is an B-clique for all $1 \leq j \leq 5$ and that $N \cup A_j$ is an R-clique for all $1 \leq j \leq 5$.

Claim 1 $M \cup A_1 \cup A_2 \cup \{v_1, v_2\}$ is a clique in B.

Proof of the claim If $x \in M \cup A_1$, then by the definition of M and A_1, we obtain that $xv_1 \in E(B)$. If $x \in A_2$, then xv_2 is the shared edge of x. Since v_1 is a neighbour (in $B \setminus R$) of v_2 in the induced cycle $v_1 - v_2 - v_3 - v_4 - v_5 - v_1$, it follows that $xv_1 \in E(B)$. So $\{v_1\}$ is B-complete to $M \cup A_1 \cup A_2$. Similarly, $\{v_2\}$ is B-complete to $M \cup A_1 \cup A_2$. We finish the proof of the claim if we show that A_1 is B-complete to A_2. Let $x_1 \in A_1$ and $x_2 \in A_2$. If $x_1x_2 \in E(R)$, then $x_1 - x_2 - v_5 - v_3 - x_1$ is an induced C_4 in R, a contradiction. Since $B \cup R$ is a complete graph it follows that $x_1x_2 \in E(B)$. This proves the claim. \square

Claim 2 $N \cup A_3 \cup A_5 \cup \{v_3, v_5\}$ is a clique in R.

Proof of the claim If $x \in N \cup A_3$, then by the definition of N and A_3, we obtain that $xv_3 \in E(R)$. If $x \in A_5$, then xv_5 is the shared edge of x. Since, v_3 is a neighbour (in $R \setminus B$) of v_5 in the induced cycle $v_1 - v_3 - v_5 - v_2 - v_4 - v_1$, it follows that $xv_3 \in E(R)$. So $\{v_3\}$ is R-complete to $N \cup A_3 \cup A_5$. Similarly, $\{v_5\}$ is R-complete to $N \cup A_3 \cup A_5$. We finish the proof of the claim if we show that A_3 is R-complete to A_5. Let $x_3 \in A_3$ and $x_5 \in A_5$. If $x_3x_5 \in E(B)$, then $x_3 - v_2 - v_1 - x_5 - x_3$ is an induced C_4 in B, a contradiction. Since $B \cup R$ is a complete graph it follows that $x_3x_5 \in E(R)$. This proves the claim. \square

Claim 3 $A_4 \cup \{v_4\}$ is a clique both in B and in R.

Proof of the claim If $x \in A_4$, then xv_4 is the shared edge to x. So xv_4 is an edge both in B and in R. Thus, the claim follows from the definition of A_4.

Let $X = M \cup A_1 \cup A_2 \cup \{v_1, v_2\}$, $Y = N \cup A_3 \cup A_5 \cup \{v_3, v_5\}$, $Z = A_4 \cup \{v_4\}$.

By the above claims and Lemma 2.1, we obtain that X is a clique in B, Y is a clique in R and Z is a clique both in B and in R, with $V = X \cup Y \cup Z$.

Let $x \in Z$. If $x = v_4$, then $v_1 - v_2 - v_3 - v_4 - v_5 - v_1$ is a double C_5 that contains v_4 as a vertex. If $x \neq v_4$, then $x - v_5 - v_1 - v_2 - v_3 - x$ is a double C_5 in $B \cup R$. Hence, if $x \in Z$ then x is one of the vertices of some double C_5 in $B \cup R$. \square
3 Two Corollaries

As a corollary of Theorem 1.7, we obtain the following.

Corollary 3.1 If B and R are two C_4-free graphs on the same vertex set V then

$$\omega(B \lor R) \leq \omega(B) + \omega(R) + \omega(B \land R).$$

Proof Let T be a maximum clique in $B \lor R$. So $B|T$ and $R|T$ are two C_4-free graphs on the same vertex set T such that $G(B|T, R|T)$ is a complete graph. By Theorem 1.7, there exists a $B|T$-clique X, an $R|T$-clique Y and a clique Z in both $B|T$ and $R|T$, such that $T = X \cup Y \cup Z$. So

$$\omega(B \lor R) = |T| \leq |X| + |Y| + |Z| \leq \omega(B) + \omega(R) + \omega(B \land R).$$

\square

Also, we have the following additional corollary of Theorem 1.7.

Corollary 3.2 If B and R are two C_4-free graphs on the same vertex set V then

$$\omega(B \lor R) \leq \omega(B) + \omega(R) + \frac{1}{2} \min(\omega(B), \omega(R)).$$

Proof Let T be a maximum clique in $B \lor R$. So $B|T$ and $R|T$ are two C_4-free graphs on the same vertex set T such that $G(B|T, R|T)$ does not contain a double C_5, then by Theorem 1.6, T is the union of a clique in $B|T$ and a clique in $R|T$. It follows that $\omega(B \lor R) \leq \omega(B) + \omega(R)$ and the theorem holds. Assume that $G(B|T, R|T)$ contains a double C_5. Following the proof of Theorem 1.7, we may assume that A_4 is minimal so that $|A_4| \leq |A_i|$ for all $1 \leq i \leq 5$. We obtain that $2|Z| = 2|A_4| + 2 \leq |A_1| + |A_2| + |\{v_1, v_2\}| = |A_1 \cup A_2 \cup \{v_1, v_2\}| \leq \omega(B|T) \leq \omega(B)$. So $|Z| \leq \frac{1}{2} \omega(B)$. Similarly, $|Z| \leq \frac{1}{2} \omega(R)$. It follows that

$$\omega(B \lor R) \leq \omega(B) + \omega(R) + \frac{1}{2} \min(\omega(B), \omega(R)).$$

\square

References

1. Aharoni, R., Berger, E., Chudnovsky, M., Ziani, J.: Cliques in the union of graphs. J. Combin. Theory B 114, 170–186 (2015)
2. Gyárfás, A., Lehel, J.: A Helly-type problem in trees. In: Combinatorial Theory and Its Applications. II (Proc. Colloq., Balatonfüred, 1969). North-Holland, Amsterdam, pp 571–584 (1970)
3. Berger, E.: KKM—a topological approach for trees. Combinatorica 25, 1–18 (2005)
4. Gyárfás, A., Lehel, J.: Red-blue clique partitions and $(1 - 1)$-transversals (2015). arXiv:1509.03408 (arXiv preprint)