NATURAL RESOURCES FROM PLANTS IN THE TREATMENT OF CANCER: AN UPDATE

PARUL TRIPATHI, ADITI SINGH*
Amity Institute of Biotechnology, Amity University, Lucknow Campus, Malhaur, Gomti Nagar Extension, Lucknow - 226 028, Uttar Pradesh, India. Email: Asingh3@lko.amity.edu

Received: 31 January 2017, Revised and Accepted: 04 March 2017

ABSTRACT
Cancer has become the second leading cause of death worldwide. The incidences of cancer are rising at an alarming rate but it can be reduced and controlled by evidence-based strategies for cancer prevention, early detection, and management of patients with cancer. Historically, it is proven that plants and their metabolites have great potential in the treatment of various acute diseases as well as chronic disorders. The novel bioactive compounds from many plants are being studied as potential therapeutic agents because of their high activity and low toxicity. This review gives a comprehensive description of such medicinal plants which have been studied as potentially effective against cancer.

Keywords: Ethnopharmacology, Cancer treatment, Drugs, Plants, Antitumor activity, Medicinal plants.

INTRODUCTION
Cancer is an abnormal malignant growth of body tissue or cell which can occur on any part of the body. According to the World Health Organization (WHO), cancer is among leading cause of morbidity and mortality worldwide with approximately 14 million new cases and more than 8 million cancer-related deaths in 2012, and an expected rise of new cases by 70% within two decades [1]. A correct cancer diagnosis is essential for adequate and effective treatment because every cancer type requires a specific treatment regimen [2]. And thus, cancer treatment and prevention becomes a major focus area for scientists worldwide. The most common types of the treatment for cancers include surgery, chemotherapy, radiotherapy, and targeted therapy. Most cancer patients have to undergo some form of surgery whether to diagnose, treat or prevent cancer and it has been found to be of great help if cancer has not spread to other parts of body. The use of medicines or drugs as cancer treatment is chemotherapy. There are more than 100 chemotherapy drugs for cancer in use these days which vary in composition and mode of action. Radiotherapy is when high energy particles destroy cancer cells. It is the most common treatment for cancer. A more recent method is targeted therapy where substances attack specific cancer cells, minimizing damage to normal cells. The priority now is to have new therapeutic alternatives. One such approach is iron depletion strategy based on metal chelation in tumoral environment [3].

The use of herbs as medicines is believed to have its presence from the ancient times [4]. The first record on the medicinal use of plants was written in about 2600 BC from the Akkadian and Sumerians [5]. Egyptian medicinal text, "Ebers Papyrus" from 1500 BC had consisted of over 700 drugs. Around 1100 BC, the Chinese *Materia Medica* came with the data of approximately 600 medicinal plants [6]. Medical methodologies of treatment as mentioned in Ayurveda are recorded in Susruta and Charaka dating from about 1000 BC [7]. The Greeks also contributed substantially to the rational development of herbal drugs. In 1950s, modern medicine began more systematically examining natural agents as a source of useful anticancer substances [8].

It has always been argued that "the use of natural products has been the single most successful strategy in the discovery of novel drugs" [9]. Traditional medical science is completely dedicated toward plants or animal based products in treatment or prevention of disease as well as the well-being of people. Commonly used plants in the treatment of various diseases are *Zingiber officinale*, *Camellia sinensis*, *Curcuma longa*, *Aloe vera*, etc. [10]. Molecules derived from natural sources such as plants, marine organisms, and microorganisms have played and are still playing a dominant role in the discovery of leads for the development of drugs for most human diseases.

According to the WHO (2008), about three quarters of the world's population currently uses herbs or other forms of traditional medicines to treat illness. Even in the USA, the use of plants and phytotherapies has increased dramatically [11]. It has been also reported [12] that more than 50% of all modern drugs have been derived from natural sources. The drugs which have the ability to induce apoptosis in various cancer cells have been found to be of great help if cancer has not spread to other parts of body. The use of medicines or drugs as cancer treatment is chemotherapy. There are more than 100 chemotherapy drugs in use these days which vary in composition and mode of action. Radiotherapy is when high energy particles destroy cancer cells. It is the most common treatment for cancer. A more recent method is targeted therapy where substances attack specific cancer cells, minimizing damage to normal cells. The priority now is to have new therapeutic alternatives. One such approach is iron depletion strategy based on metal chelation in tumoral environment [3].

The methodology for this review article has been an exhaustive literature survey of published work in research journals available in PubMed, Medline, Science Direct, and other such online libraries. The effort is to include all possible published work without going for time frame. The search was done with following keywords — drug therapy, alternative therapy for cancer, ethnopharmacology, plants in cancer treatment, natural sources for cancer treatment, complementary medicine, etc. All review, research articles and case reports were studied and included. A total of 1034 articles were identified, of which 496 were excluded at initial screening. Remaining papers were studied, and around 253 most relevant papers and studies are included, indexed, and described in this review. Table 1 elaborates on all such studied plants along with their common name, family, antitumor activity and other medicinal properties.

DISCUSSION
Cancer, like any other fatal disease, is a cause of concern to the medical community worldwide. It causes serious implications on the patient, and there are generally severe side effects also of the treatment which the patient suffers consequently. The use of natural substances obtained from the plants is the need of the hour. They may have potential to prevent and cure cancer with least side effects.

There are a number of plants which have given promising results against a particular condition. For example, several workers have seen...
Plant name	Family	Native place	Anticancer activity	Other medicinal properties
Aegle marmelos (L.)	Rutaceae	India	Activity against lymphomas, breast cancer [13], ascites melanomas, and leukemia [14] induction of apoptosis [15]	
Allium sativum L. (garlic)	Amaryllidaceae	Central Asia	Used against breast cancer, prostate cancer [16], leukemia [17] intestinal cancer [18], stomach cancer [19]	
Aloe barbadensis (aloë)	Xanthorrhoeaceae	Yemen, Sudan and Somalia	Inhibits growth and spread of liver cancer, stomach cancer and various sarcomas [20], chemoprevention [21]	
Alpinia galanga (Thai galangal)	Zingiberaceae	South Asia and Indonesia	Activity against lung cancer, breast cancer, stomach cancer, prostate cancer [23], colon cancer, leukemia and multiple myeloma [24,25]	
Amaranthus rohituka (pithraj tree)	Meliaceae	Asia (U.P. East)	Inhibits growth of pancreatic, breast and cervical cancers [26]	
Amorphophallus konjac (elephant yam)	Araceae	Subtropical to Tropical Eastern Asia	Activity against lung cancer [27]	
Andrographis paniculata (Maha tita)	Acanthaceae	Southern and Southeastern Asia	Activity against cancers of breast, kidney, colon, prostate, ovary, stomach, nasopharynx malignant melanoma and leukemia [28-30]	
Annona squamosa (pawpaw)	Annonaceae	United States, South to Northern Florida and Eastern Texas	Activity against human breast cancer, human colon adenocarcinoma human kidney carcinoma, tumors [41] renal cell carcinoma [42]	
Arachis hypogaea (groundnut)	Fabaceae	South America	Have general anticancer activity [34]	
Aralia spinosa (chokeberry)	Rosaceae	Eastern North America	Activity studied against Colorectal cancer [36], colon cancer [37]	
Artemisia annua (sweet wormwood)	Asteraceae	Temperate Asia	Studied for Leukemia treatment [39]	
Asparagus officinalis (garden asparagus)	Asparagaceae	Europe, Northern Africa and Western Asia	Potential inhibitory activity of saponins on tumor growth and metastasis [40]	
Asparagus racemosus (shatavari)	Asparagaceae	Sri Lanka, India and the Himalayas	Activity against human breast cancer, human colon adenocarcinoma human kidney carcinoma, tumors [41] renal cell carcinoma [42]	
Astragalus gummifer (milkvetch)	Fabaceae	Temperate regions of the Northern Hemisphere	Prevents cancer before it begins [45]	
Azadirachta indica (neem)	Meliaceae	India	Activity against cancers of breast, lung, stomach, prostate and skin [46,47], Antitumor activity [48]	
Bacopa monnieri (brahmi)	Plantaginaceae	Southern India, Australia, Europe, Africa, Asia, and America	Anticancer activity [49], Ascites Carcinoma [50]	
Berberis vulgaris (European barberry)	Berberidaceae	Europe, Africa and Asia	Anticancer activity against prostate cancer, liver cancer and leukemia [54] antitumor [55-57]	
Bleekeria vitensis (markgraf)	Apocynaceae	Tropics and Subtropics Coastal Southern and Western Europe	Treatment of breast cancer [8]	
Brassica oleracea (wild cabbage)	Brassicaceae		Reduces the risk of some cancers such as colorectal, breast [60], liver, lung, prostate, skin, stomach, and bladder cancers [61]	
Plant name	Family	Native place	Anticancer activity	Other medicinal properties
---------------------------------	--------------	-----------------------	--	---
Bupleurum scorzonera folium (Chai Hu)	Apiaceae	East Asia	Studied for Osteosarcoma [62]	
Camellia sinensis L. (tea tree)	Theaceae	East, South and South East Asia	Prevents colon, prostate and gastric cancers [63,64], blood vessel growth in tumors, skin cancer [22,65]	
Camptotheca acuminata (happy tree, cancer tree)	Nysseae	Southern China and Tibet	Used as drugs for cancer treatment [66]	
Carmona retusa (Fulden tea tree)	Boraginaceae	Eastern and South-Eastern Asia	Anticancer activity on HepG2 cell lines and significant activation of caspase-3 [67]	
Catharanthus roseus (Madagascar periwinkle)	Apocynaceae	India and Sri Lanka	Treatment of cancers such as leukemias, breast and lung cancers, lymphomas, Kaposi’s sarcoma and advanced testicular cancer [8,68,69]	Antidiabetic, antikker, antibacterial, antioxidant, antiinflammatory, antihelmintic, hypotensive property [70,71]
Codonopsis pilosula (poor man’s ginseng)	Campanulaceae	China and Korea	Immunological and hematopoietic effect for the patients undergoing chemotherapy or radiotherapy [72-74]	
Coleus forskohlii (coleus)	Lamiaceae	South America	Forskolin a diterpene produced by the roots, raises intracellular cAMP levels and thus may act as an effective anticancer agent [75]	
Combretum caffrum (bushwillow tree)	Combretaceae	South Africa	Active against lung, colon and leukemia cancers [76]	Having anticancer properties [77]
Crocos sativas (saffron crocus)	Iridaceae	Italy and Iran	Having anticancer properties [77]	
Curcuma longa (turmeric)	Zingiberaceae	South Asia	Studied in colorectal cancer, gastrointestinal discomfort, colon cancer and polyps [78], chemotherapy [79], potential clinical utility in colorectal cancer therapeutics [80]	Anticoagulant, antiseptic, antiallergy, Rheumatoid arthritis [81], anti-inflammatory activities, antitussive, antiviral, diuretic, antioxidant activity [82], antiperheres [83]
Daphne genkwa (Yuán Huā)	Thymelaeaceae	China	The withanolide, dinoxin B exhibited significant toxic effect against multiple human cancer cell lines, most sensitive being breast cancer cell lines [84]	
Datura inoxia (Devil’s trumpet)	Solanaceae	China	The withanolide, dinoxin B exhibited significant toxic effect against multiple human cancer cell lines, most sensitive being breast cancer cell lines [84]	
Dysoxylum binecariferum (rose mahogany)	Meliaceae	India	Studied as treatment of tumors, including leukemias, lymphomas, and solid tumors [8,85]	
Echinacea (purple coneflower)	Asteraceae	North America	In treatment of breast tumors and leukemias [86], cures side effects of cancer [87]	Antioxidant, antitussive, immunomodulator, cytoprotective, analgesic, antimicrobial, antipyretic and gastroprotective [91]
Emblica officinalis (amla, Indian gooseberry)	Phyllanthaceae	India	Inhibits growth and spread of various cancers including that of the breast, uterus, pancreas, stomach, liver and ascites [88,89], antitumor [90]	
Ginkgo biloba (maidenhair tree, Kew tree)	Ginkgoaceae	China	Activity against carcinoma and cancers of ovary, colon, prostate and liver [92,93]	
Gloriosa superba (glory lily)	Colchicaceae	Africa and Asia	Anticancer activity [94]	Antileptic, oxytocic, stomachic, antimalarial, purgative, antihelmintic, cholagogue, alternative, febrifuge [95]

(Contd..)
Plant name	Family	Native place	Anticancer activity	Other medicinal properties
Glycine max (soybean)	Fabaceae	East Asia	Inhibition of cancer cell proliferation, causes cell differentiation and initiation of apoptosis [96], colon cancer [97]	Antioxidant, antiviral immunomodulatory, anti-inflammatory, cardioprotective [101]
Glycyrrhiza glabra Linn. (mulethi)	Fabaceae	Southern Europe and Asia	Activity against cancers of breast, lung, stomach, colon [98], liver, kidney and leukemia [99,100]	
Gossypium hirsutum (upland cotton)	Malvaceae	Mexico, West Indies, and America	Inducing apoptosis and arresting cancer cell division in G0/G1 phase [102], breast cancer [103]	
Gynostemma pentaphyllum (miracle grass, fairy herb)	Cucurbitaceae	China, Vietnam, Korea and Japan	Anticancer [104], anticancer activity on prostate cancer [105]	Antioxidant, or detoxifying agent, anti-inflammatory agent [106]
Hibiscus sabdariffa (rose mallow)	Malvaceae	West Africa	Inductive effect on human leukemia cells [107]	
Hydrastis canadensis (goldenseal)	Ranunculaceae	USA	Berberine, isoquinoline alkaloid extracted from Hydrastis canadensis displays a number of beneficial roles in the treatment of various types of cancers [108]	Antimicrobial [109]
Kaempferia rotunda (bhumi champa)	Zingiberaceae	China, India, Nepal	Secondary metabolites as cytotoxic [110]	
Lagerstroemia speciosa (giant crape-myrtle)	Lythraceae	Southern Asia	Serves as anticancer [69]	Anti-diabetic [112]
Larrea divaricata (chaparral)	Zygophyllaceae	America	Acts as antimutagenic and anticarcinogenic agent [113]	
Linum usitatissimum (flax)	Linaceae	India	Works against breast cancer, lung cancer, prostate cancer and colon cancer [114-116]	Antidiabetic antiviral, bactericidal, anti-inflammatory and antiatherosclerotic [117-119]
Lavandula angustifolia (common lavender)	Lamiaceae	Western Mediterranean	Used to prevent multiplication of cancer cells [120]	
Morinda citrifolia (Indian mulberry)	Rubiaceae	Asia and Australasia	Activity against lung cancer and sarcomas [121]	
Momordica charantia (bitter melon)	Cucurbitaceae	Asia and Africa	Antitumor and antimutagenic effects [122]	
Nigella sativa (kalonji)	Ranunculaceae	South and Southwest Asia	Activity against various cancers such as cancers of the pancreas, colon, uterus, prostate, malignant ascites, malignant melanoma, malignant lymphoma, sarcomas, and leukemia [125-128]	
Ocimum sanctum (holy basil)	Lamiaceae	Indian Subcontinent	Inhibits growth and spread of various cancers such as breast cancer, liver cancer, and sarcomas [129-131]	
Oldenlandia diffusa (snake-needle grass)	Rubiaceae	China	Inhibits growth and spread of various cancers such as cancers of rectum, lung, ovary, stomach, uterus, colon, liver, brain, malignant melanoma, lymphosarcoma, malignant ascites, and leukemia [132,133]	
Olea europaea (olive tree)	Oleaceae	Africa and Southern Asia	Prevents breast cancer and colorectal cancer [34]	Treatment of diabetes, hypertension, cardiovascular disease [135]
Oryza sativa (Asian rice)	Poaceae	Asia	Activity against Bowel cancer [134]	
Oxycoccus acrocarpus (large cranberry)	Ericaceae	United States	Reduces the number of breast cancer tumors, delay tumor development, and slow metastasis of cancer to lungs and lymph nodes [136-138]	
Plant name	Family	Native place	Anticancer activity	Other medicinal properties
------------	--------	--------------	---------------------	---------------------------
Panax ginseng (ginseng)	Araliaceae	North America and Eastern Asia	Inhibits growth and spread of various cancers such as cancers of breast, lung, ovary, colon, prostate, renal cell carcinoma, malignant lymphoma, malignant melanoma, and leukemia [139,140]	
Plantago ovata (desert Indian wheat)	Plantaginaceae	Asia	Anticancer activity [141]	Treat hypercholesterolemia, hyperglycemia [142]
Podophyllum peltatum (mayapple)	Berberidaceae	USA	Have been used to treat oral hairy leukoplasia, comb skin cancers, ovarian cancer, lung cancer and prostate cancer, prostate cancer	
Polygonum tinctorium (Chinese indigo) L. (self-heal)	Polygonaceae	Europe and Asia	Studied in prevention of leukemia [145]	
Prunella vulgaris	Lamiaceae	Europe, Asia and North America	Inhibit growth and spread of various cancers such as cancers of the breast, lung, cervix, oral cavity, esophagus, colon, thyroid, stomach, lymphoma, intracranial tumors and leukemia [146-148]	
Raphanus sativus (cultivated radish)	Brassicaceae	Southeast Asia	Antitumor activity and anti-cancer activity. 4-Methylsulfinyl-3-butenyl isothiocyanate (MTBITC) found in *Raphanus sativus* L., is a well-known anticancer agent [149]	Antimicrobial activities [150]
Rhus succedanea (Japanese wax tree)	Anacardiaceae	Asia	Anticancer activity [149]	
Rubia cordifolia (Indian madder)	Rubiaceae	Asia, Europe, and Africa	Growth and spread in cancers of breast, colon, ovary, cervix, malignant ascites, malignant melanoma, sarcoma, malignant lymphoma and leukemia [151,152]	
Rumex acetosa (sheep’s sorrel)	Polygonaceae	Eurasia and British Isles	Studied in treatment for breast cancer [153]	Diarrhea, scurvy, fever, and inflammation [154,155]
Ruscus aculeatus (butcher’s broom)	Liliaceae	Iran to USA	Tumor-shrinking and anti-estrogenic abilities [156]	
Sanguinaria canadensis (bloodroot)	Papaveraceae	Eastern North America	Studied in cervical cancer and tumor treatments [157]	
Saussurea lappa (costus)	Asteraceae	Asia, Europe, and North America	Activity against cancers of the colon, ovary, gastric central nervous system, and lung [158,159]	
Scutellaria barbata (skullcap)	Lamiaceae	Asia	Works against many cancers such as stomach, lung, prostate and intestine [160,161]	
Silybum marianum (milk thistle)	Asteraceae	Mediterranean country	Inhibits growth of certain types of cancer, including skin cancer, breast cancer, ovarian cancer, and prostate cancer [162-164]	
Solanum nigrum (nightshade)	Solanaceae	Americas, Australasia and Africa	Inhibits growth and spread of stomach cancer, malignant ascites, cervical cancer, sarcomas, and leukemia [165,166]	
Spinacia oleracea (spinach)	Amaranthaceae	Ancient Persia	Prevents cancer [167]	Antiviral, anti-inflammatory, and antifungal [169]
Sutherlandia frutescens (cancer bush)	Fabaceae	Southern Africa	Anticancer activity [168]	
Tabebuia species (trumpet trees)	Bignoniaceae	Central and South America	Having anti-cancerous properties [170]	
Tabebuia impetiginosa (roble)	Bignoniaceae	America	Works against breast, leukemia and prostate lines [8]	
Tanacetum parthenium (feverfew)	Asteraceae	Europe, North America and Australia	Against cancer such as leukemia, breast cancer, secondary lung cancer, and secondary bone cancer [171-173]	
Taxus brevifolia (pacific yew)	Taxaceae	Northwest of North America	Useful in breast and lung cancer [174]	
Table 1: (Continued...)

Plant name	Family	Native place	Anticancer activity	Other medicinal properties
Terminalia belerica (kindal tree)	Combretaceae	Southwest India	Active fractions have shown inhibition in proliferation of breast (MCF-7), cervical (HeLa) and brain [175]	Reported against diabetes, ulcer, microbial problems and hepatotoxicity
Trifolium pratense (red clover)	Leguminaceae	USA, Europe, Australia and Asia	Used in the cure of prostate and endometrial cancer [176]	Prevention of breast cancer and colon cancer [177]
Triticum aestivum (common wheat)	Poaceae	Europe and USA		
Uncaria tormentosa (cat's claw)	Rubiaceae	South and Central America	Have anticancer activity [178]	Treatment of dengue, gastritis, arthritis [179]
Vaccinium angustifolium (lowbush blueberry)	Ericaceae	Eastern Central Canada	Anticancer activities [180]	
Vaccinium myrtillus (blue whorlberry)	Ericaceae	Europe, USA, Canada, Asia, Greenland		Lowered risk for several diseases, such as those of heart, cancer, eye and cardiovascular system [38,181]
Viscum album (European mistletoe)	Santalaceae	Europe and Asia	Bioactive ingredients modulated extrinsic and intrinsic pathways in cancer cells [182]	
Vitex negundo (chastetree)	Lamiaceae	Africa and Asia	Antitumor and cytotoxic activity against cancer cell [183]	
Yucca glauca (soapweed)	Asparagaceae	North America	Exhibits antitumor activity against B16 melanoma [177]	
Zingiber officinale (ginger)	Zingiberaceae	North America	Inhibits growth and spread of various cancers including that of the ovary [184], cervix, rectum, liver, colon [185], urinary bladder, neuroblastoma, oral cavity, skin cancer, leukemia [186,187], and breast cancer [188]	
Ziziphus mauritiana (ber)	Rhamnaceae	Indo-Malaysian region of South-East Asia	Inhibits growth of cancer cells [189]	

Effective results of Aegle marmelos, Alpinia galangal, Catharanthus roseus, Diospyros kaki, Nigella sativa, etc. against lymphomas. Similarly, studies have been done where leukemias have been significantly controlled by plants such as A. galangal, Andrographis paniculata, Artemisia annua, Berberis vulgaris, and C. roseus. Anticancer activity was also found in plants such as Allium sativum, A. galangal, Amoora rohituka, A. paniculata, and Annona triboa when studied against breast cancer. A. sativum, A. galangal, A. paniculata, Azadirachta indica, B. vulgaris, and Brassica oleracea have shown significantly promising results against prostate cancer whereas A. paniculata, Asparagus racemosus, C. sinensis, Combretum caffrum, Ginkgo biloba against colon cancer.

Some plants such as Astragalus gummifera, Carmona retusa, Crocus sativus, Daphne genkwa, Datura metel, and Gloriosa superba seem to be all-rounder as they inhibit any cancerous or malignant growth. It is a well-known fact treatment of cancer either through chemotherapy or radiotherapy also carries some side effects, but studies on Codonopsis pilosula and C. longa have shown that they help the patient to overcome those side effects. In a recent qualitative system review by Evans and coworkers [190], cancer patients’ experiences of using Viscum album (mistletoe) are reported, in which they have experienced demonstrable changes in their physical, emotional and psychological well-being as well as reduction in chemotherapy side effects after mistletoe treatment.

The shift toward natural healing is opening several doors to more patient-friendly treatment of cancer, and thus better options are generated to cure such a fatal disease. More research is required to isolate and purify active agents from these plants and thus bring out optimum potential of them.

CONCLUSION

There are many traditional systems of medicine around the globe, each with distinct style of treatment and cultural origins. Before the advent of modern medical treatments, people worldwide have utilized the natural resources to stay healthy and have claimed curing of various chronic and critical disorders [191-194]. This paper concentrated on highlighting the potential of vast plant resources as anticancer agents. Today, plant-derived active agents as well as chemically synthesized drugs are being studied, explored and undergoing clinical trial. Hence, the scientific study on the derivation of drugs through bioprospection and systematic conservation of the concerned medicinal plants are thus of great importance.

REFERENCES

1. World Cancer Report. International Agency for Research on Cancer; 2014. Available from: http://www.thehealthwell.info/node/725845.
2. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55(2):74-108.
3. Corcé V, Gouin SG, Renaud S, Gaboriau F, Deniaud D. Recent advances in cancer treatment by iron chelators. Bioorg Med Chem Lett 2016;26(2):251-6.
4. Soladoye MO, Amusa NA, Salmo O, Rais-Esan EC, Chukwuma TA. An ethnobotanical survey of anti-cancer plants in Ogun state, Nigeria.
5. Samuelsson G. Drugs of Natural Origin: A Textbook of Pharmacognosy. 4th ed. Stockholm: Swedish Pharmaceutical Press; 1999.

6. Seng GH, Biotechnol DJ, Sander KM. Natural products in drug discovery and development. J Nat Prod 1997;60(1):52-60.

7. Kapoor LD. CRC Handbook of Ayurvedic Medicinal Plants. 1st ed. Florida: CRC Press Boca Raton; 1990.

8. Cragg GM, Newman DJ. Plants as source of anticancer agents. J Ethnopharmacol 2005;100(1-2):72-9.

9. Tao P, Deka M. Determination of antioxidant property of Aloe marlowii. J Environ Sci Health C 2006;24:103-54.

10. Luo DY. Inhibitory effect of refined isoquinoline alkaloids from the roots of Turkish Berberis koreana on the anti-inflammatory, antinociceptive and antipyretic effects of Asparagus racemosus leaf extract. J Ethnopharmacol 2005;100(1-2):72-9.

11. Lambertini E, Piva R, Khan MT, Lampronti I, Bianchi N, Borgatti M, et al. Functional versus chemical diversity in plant species: a comprehensive review. Int J Plant Res 2015;5(4):80-6.

12. Tripathi P, Singh A. Indigenous Asian plants against cancer: A future perspective. Asian J Pharm Clin Res 2010;3(4):228-31.

13. Lambertini E, Piva R, Khan MT, Lampronti I, Bianchi N, Borgatti M, et al. Functional versus chemical diversity in plant species: a comprehensive review. Int J Plant Res 2015;5(4):80-6.

14. Kim HS, Kacew S, Lee BM. Effect of berberine on the anti-inflammatory, antinociceptive and antipyretic effects of Asparagus racemosus leaf extract. J Ethnopharmacol 2005;100(1-2):72-9.

15. Lambertini E, Piva R, Khan MT, Lampronti I, Bianchi N, Borgatti M, et al. Functional versus chemical diversity in plant species: a comprehensive review. Int J Plant Res 2015;5(4):80-6.

16. Kim HS, Kacew S, Lee BM. Effect of berberine on the anti-inflammatory, antinociceptive and antipyretic effects of Asparagus racemosus leaf extract. J Ethnopharmacol 2005;100(1-2):72-9.

17. Lambertini E, Piva R, Khan MT, Lampronti I, Bianchi N, Borgatti M, et al. Functional versus chemical diversity in plant species: a comprehensive review. Int J Plant Res 2015;5(4):80-6.

18. Kim HS, Kacew S, Lee BM. Effect of berberine on the anti-inflammatory, antinociceptive and antipyretic effects of Asparagus racemosus leaf extract. J Ethnopharmacol 2005;100(1-2):72-9.

19. Lambertini E, Piva R, Khan MT, Lampronti I, Bianchi N, Borgatti M, et al. Functional versus chemical diversity in plant species: a comprehensive review. Int J Plant Res 2015;5(4):80-6.

20. Lambertini E, Piva R, Khan MT, Lampronti I, Bianchi N, Borgatti M, et al. Functional versus chemical diversity in plant species: a comprehensive review. Int J Plant Res 2015;5(4):80-6.

21. Kim HS, Kacew S, Lee BM. Effect of berberine on the anti-inflammatory, antinociceptive and antipyretic effects of Asparagus racemosus leaf extract. J Ethnopharmacol 2005;100(1-2):72-9.
in mice. Evidence in vivo. Evid Based Complement Alternat Med 2005;23(3):309-14.

Huntley AL, Thompson Coo J, Ernst E. The safety of herbal medicinal products derived from Echinacea species: A systematic review. Drug Saf 2005;28(5):387-400.

Nagamitsukadechakul C, Jaiyuj K, Hansakul P, Soonthorncharoennon N, Sireeratawan S. Antitumour effects of Phyllanthus emblica L.: Induction of cancer cell apoptosis and inhibition of in vivo tumour promotion and in vitro invasion of human cancer cells. Phytother Res 2010;24(9):1405-13.

Zhang YJ, Ngagou T, Tanaka T, Yang CR, Okabe H, Kouno I. Antiproliferative activity of the main constituents from Phyllanthus emblica. Biol Pharm Bull 2004;27(2):251-5.

Jose JK, Kuttan G, Kuttan R. Antitumour activity of Emblica officinalis. J Ethnopharmacol 2001;75(2-3):135-41.

Madhuri S, Pandey G, Verma KS. Antioxidant, immunomodulatory and anticancer activities of Emblica officinalis: An overview. Int J Pharm Res 2011;3(8):471-5.

Clewer HW, Green SJ, Tutin F. Constituents of Gloriosa superba. J Chem Soc 1915;107:835-46.

Pawar BM, Walavhal VP, Pawar ND, Agawar MR, Shinde PB, Kamble VH. Antimicrobial activity of Gloriosa superba Linn (Gloriosaceae). Int J PharmTech Res 2011;3(1):298-308.

Grubbs CJ, Steele VE, Casebolt T, Juliana MM, Eto I, Whitaker LM, et al. Echinacea: Prevention of chemically-induced mammary carcinogenesis by indole-3-carbinol. Anticancer Res 1995;15(3):709-16.

Lee CH, Wang JD, Chen PC. Risk of liver injury associated with Chinese herbal products containing radix bupleuri in 639,779 patients with hepatitis B virus infection. PLoS One 2011;6(1):e16064.

Davalli P, Rizzi F, Caporali A, Pellaecanni D, Davoli S, Bettuzzi S, et al. Anticancer activity of green tea polyphenols in prostate gland. Oxid Med Cell Longev 2012;2012:984219.

Bhatt PR, Pandya KB, Sheth NR. Camellia sinesis (L.): The medicinal beverage: A review. Int J Pharm Sci Res 2010;3(2):2-3.

Katiyar SK, Ahmad N, Mukhtar H. Green tea and skin. Arch Dermatol 2002;138(8):984-9.

Yang C, Gou Y, Chen J, An J, Chen W, Hu F. Structural characterization of natural cAMP elevating compound forskolin in cancer therapy: Is it a killer cell activity. Immune Netw 2015;15(2):91-9.
Planta Med 2001;67(1):561-4.
Lallo S, Lee S, Dwib DE, Tetzuko Y, Morita H. A new polyoxynaturated cytochrome and other constituents from Kaempferia rotunda and their cytotoxic activity. Nat Prod Res 2012;26(20):1754-9.
Inam SA, Rout SK, Sutar N, Sharma US, Sutar R. Wound healing activity of Kaempferia rotunda Linn leaf extract. Int J Curr Microbiol App Sci 2013;2(12):74-8.
Saha BK, Bhuiyan NH, Mazumder K, Haque KM. Hypoglycemic activity of Lagerstroemia speciosa L. Extract on streptozotocin-induced diabetic rat: Underlying mechanism of action. Bangladesh J Pharmacol 2009;4:79-83.
McDonald RW, Bunjibon P, Liu T, Fessler S, Pardo OE, Freer IK, et al. Synthesis and anticancer activity of nortydroxyguaiaretic acid (NDGA) and analogues. Anticancer Drug Des 2013;28(4):261-70.
Chen J, Wang L, Thompson LU. Flaxseed and its components reduce metastasis after surgical excision of solid human breast tumor in nude mice. Cancer Lett 2006;234(2):168-75.
Zarwar AA, Hegde MV, Bodhankar SL. In vitro antioxidant activity of ethanolic extract of Linum usitatissimum. Pharmacol Online 2010;1:683-96.
Rajesh K, Murthy C, Kumar KM, Madhusudhan B, Ravishankar GA. Antioxidant potentials of flow seed by in vivo model. J Agric Food Chem 2000;48(1):122-6.
Prasad K. Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: Effect of secoisolariciresinol diglucoside (SDG). Mol Cell Biochem 2000;209(1-2):89-96.
Collins TF, Sprando RL, Black TN, Olejnik N, Wiesenfeld PW, Bubu US, et al. Effects of flaxseed meal and defatted flaxseed meal on reproduction and development in rats. Food Chem Toxicol 2003;41(6):819-34.
Kinniry P, Amrani Y, Vachani A, Solomides CC, Arguiri E, Workman A, et al. Dietary flaxseed supplementation ameliorates inflammation and oxidative tissue damage in experimental models of acute lung injury in mice. J Nutr 2008;138(10):1545-51.
Nelson NJ. Scents or nonsense - An incomplete picture. J Natl Cancer Inst 1996;88(13):857-9.
Haddadian K, Haddadian K, Zahnfalsch M. A review of Plantago plant. Indian J Tradit Knowl 2013;1(4):681-5.
O’Connor SE. Plant biochemistry. Fighting cancer while saving the mayapple. Science 2015;349(6253):1167-8.
Hu S, Zhou Q, Wu W, Zhang F, Xu Y, Li YW, et al. Anticancer effect of deoxyxyophyllotoxin induces apoptosis of human prostate cancer cells. Oncol Lett 2016;12(4):2918-23.
Koya-Miyata S, Kimito T, Micallef MJ, Hino K, Taniguchi M, Ushio S, et al. Prevention of azoxymethane-induced tumours by a crude ethyl acetate extract and triptanthrin extracted from Polygonum tinctorum Lour. Anticancer Res 2002;21(5):3293-300.
Collins NH, Lessey EC, DuSell CD, McDonnell DP, Fowler L. Characterization of antiestrogenic activity of the Chinese herb, Prunella vulgaris, using in vitro and in vivo (mouse xenograft) models. J Ethnopharmacol 2009;128(3-4):571-8.
Umadevi M, Kumar KP, Bhowmik D, Duravel S. Traditionally used antitumor herb in India. J Med Plants Stud 2013;1(3):56-74.
Hwang YJ, Lee EJ, Kim HR, Hwang KA. In vitro antioxidant and anticancer effects of solvent fractions from Prunella vulgaris var. Lacinica. BMC Complement Altern Med 2012;13:310.
Wang N, Wang W, Huo P, Liu CQ, Jin JC, Shen LQ. Mitochondria-mediated apoptosis in human lung cancer A549 cells by 4-methylsulfinyl-3-butenyl isothiocyanate from radish seeds. Asia Pac J Cancer Prev 2013;14(8):5342-7.
Badary OA, Al-Shabanah OA, Nagi MN, Al-Rikabi AC, Elmazar MM. Antimicrobial activity of some plants. Int J Recent Sci Res 2014;5(1):224-44.
Badory OA, Al-Shabanah OA, Naji MN, Al-Rikabi AC, Elzammar MM. Inhibition of benzoyl/azepine-induced forestomach carcinogenesis in mice by thymoquinone. Eur J Cancer Prev 1999;8(5):435-40.
Agbaria R, Gabarin A, Dahan A, Ben-Shabat S. Anticancer activity of Nigella sativa L. and its relationship with the terminal processing and quinone composition of the seed. Drug Des Devel Ther 2015;9:3119-24.
Salomi NJ, Nair SC, Jayawardhanan KK, Varghese CD, Panikkar KR. Antitumour principles from Nigella sativa seeds. Cancer Lett 1992;63(1):41-6.
Gali-Muhtashib H, Diab-Assaf M, Boltze C, Al-Hmairi J, Hartig R, Roessner A, et al. Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol 2004;25(4):857-66.
Sharma P, Prakash O, Shukla A, Rajpurshid CS, Vaseude PG, Luksan S, et al. Structure-activity relationship studies on holy basil. Anti-cancer activity and its mechanism in human breast cancer cells. Cancer Pharmaco 2016;12 Supp 3:S327-31.
Phung N, Verem N, Prasor B, Bhalla M. Therapeutic potential of Ocimum sanctum Linn. Triggers the apoptotic mechanism in human breast cancer cells. Anticancer Res 2012;32(2):971-9.
Gupta S, Zhang D, Yi J, Shao J. Anticancer activities of Oldenlandia diffusa. J Herb Pharmacother 2004;4(1):21-33.
Nadhuri S, Rashedi U, Naveda E. Some antitumor medicinal plants of foreign origin. Curr Sci 2009;96(6):779-83.
Immune Modulating and Anti-Viral Activities of Terminalia

Tripathi and Singh

Asian J Pharm Clin Res, Vol 10, Issue 7, 2017, 13-22

Biol Pharm Bull 2005;28(9):1612-4.

159. Ko SG, Kim HP, Jin DH, Bae HS, Kim SH, Park CH, et al. Saussurea

lappa induces G2-growth arrest and apoptosis in AGS gastric cancer

cells. Cancer Invest 2005;23(1):11-9.

160. Yin X, Zhou J, Jie C, Xing D, Zhang Y. Anticancer activity and

mechanism of Scutellaria barbata extract on human lung cancer cell

line A549. Life Sci 2004;75(18):2233-44.

161. Yu J, Liu H, Lei J, Tan W, Hu X, Zou G. Antitumor activity of

dichlororofraction of Scutellaria barbata and its active constituents.

Phytother Res 2007;21(9):817-22.

162. Zi X, Grasso AW, Kung HJ, Agarwal R. A flavonoid antioxidant,

silymarin, inhibits activation of eNOS signaling and induces cyclin-
dependent kinase inhibitors, G1 arrest, and anti-carcinogenic effects in

human prostate carcinoma DU145 cells. Cancer Res 1999;59:622-32.

163. Kalla PK, Chitti S, Aghanmirzaie ST, Sethilkkumar R, Arjunan S. Anti-
cancer activity of silymarin on MCF-7 and NCI-H23 cell lines. Adv

Biol Res 2014;8(2):57-61.

164. Ahmad N, Gali H, Javed S, Agarwal R. Skin cancer chemopreventive

effects of a flavonoid antioxidant silymarin are mediated via impairment

of receptor tyrosine kinase signaling and perturbation in cell cycle

progression. Biochem Biophys Res Commun 1998;247(2):294-301.

165. Juan L, Qingwang L, Tao F, Kun L. Aqueous extract of Solanum nigrum

inhibit growth of cervical carcinoma (U14) via modulating immune

response of tumor bearing mice and inducing apoptosis of tumor cells.

Fitoterapia 2008;79(7-8):548-56.

166. Li J, Li QW, Gao DW, Han ZS, Lu WZ. Antitumor and

immunomodulating effects of polysaccharides isolated from Solanum

nigrum Lam. Phytother Res 2009;23(11):1524-30.

167. Ahn YO Diet and stomach cancer in Korea. Int J Cancer 1997;Suppl

10:7-9.

168. Chinkwo KA. Sutherlandia frutescens extracts can induce apoptosis in
cultured carcinoma cells. J Ethnopharmacol 2005;98(1-2):163-70.

169. Ojewole IA. Analogic, antiinflammatory and hypoglycemic effects

of Sutherlandia frutescens R. BR. (variety Incana E. MEY.) [Fabaceae] shoot aqueous extract. Methods Find Exp Clin Pharmacol

2004;26(6):409-16.

170. Cassileth BR. Evaluating complementary and alternative therapies for

cancer patients. CA Cancer J Clin 1999;49(6):362-75.

171. Won YK, Ong CN, Shi X, Shen HM. Chemopreventive activity of

Vitex negundo extract on human monocytes infected with dengue virus-2. Int

Immunopharmacol 2008;8(3):468-76.

172. Bhatia A, Mishra T. Hypoglycemic activity of Ziziphus mauritiana

aqueous ethanol seed extract in alloxan-induced diabetic mice. Pharm

Biol 2010;48(6):604-10.

173. Evans M, Bryant S, Huntley AL, Feder G. Cancer patients’ experiences

of using mistletoe (Viscum album) as a treatment for cancer: A qualitative systematic review and

synthesis. J Altern Complement Med 2016;22(2):134-44.

174. Riva L, Coradini D, Di Fonzo G, De Feo V, De Tommasi N, De Simone F, et al. The antiproliferative effects of Uncaria tomentosa

extracts and fractions on the growth of breast cancer cell line. Anticancer

Res 2001;21(4A):2457-61.

175. Reis SR, Valente LM, Sampaio AL, Siani AC, Gandini M, Azeredo EL,
et al. Immunomodulating and antiviral activities of Uncaria tomentosa

on human monocytes infected with dengue virus-2. Int

Immunopharmacol 2008;8(3):468-76.

176. Jarred RA, Keikha M, Dowling C. Induction of apoptosis in low to

moderate-grade human prostate carcinoma by red clover-derived dietary

isoflavones. Cancer Epidemiol Biomarkers Prev 2002;11:1689-96.

177. Ortiz-Martinez M, Winkler R, Garcia-Lara S. Preventive and therapeutic potential of peptides from cereals against cancer. J

Proteomics 2014;111:165-83.

178. Riva L, Coradini D, Di Fonzo G, De Feo V, De Tommasi N, De Simone F, et al. The antiproliferative effects of Uncaria tomentosa

extracts and fractions on the growth of breast cancer cell line. Anticancer

Res 2001;21(4A):2457-61.

179. Reis SR, Valente LM, Sampaio AL, Siani AC, Gandini M, Azeredo EL,
et al. Immunomodulating and antiviral activities of Uncaria tomentosa

on human monocytes infected with dengue virus-2. Int

Immunopharmacol 2008;8(3):468-76.