A generalized integral transform and an alternative technique for solving linear ordinary differential equations

Nese Dernek1 * and Fatih Aylikci2

1Department of Mathematics, Marmara University, Istanbul, Turkey
2Department of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey

March 11, 2014

Abstract

In the present paper authors introduce the \mathcal{L}_{n}-integral transform and the \mathcal{L}_{n}^{-1} inverse integral transform for $n = 2^k$, $k \in \mathbb{N}$, as a generalization of the classical Laplace transform and the \mathcal{L}^{-1} inverse Laplace transform, respectively. Applicability of this transforms in solving linear ordinary differential equations is analyzed. Some illustrative examples are also given.

Keywords: The Laplace transform, The \mathcal{L}_{2}-transform, The \mathcal{L}_{n}-transform, The \mathcal{L}_{n}^{-1}-transform and Linear ordinary differential equations.

1. Introduction, definitions and preliminaries

The following Laplace-type the \mathcal{L}_{2} transform

$$\mathcal{L}_{2}\{f(x); y\} = \int_{0}^{\infty} x \exp(-x^2 y^2) f(x) dx$$

was introduced by Yurekli and Sadek \cite{4}. After then Aghili, Ansari and Sedghi \cite{1} derived a complex inversion formula as follows

$$\mathcal{L}_{2}^{-1}\{\mathcal{L}_{2}\{f(x); y\}\} = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} 2\mathcal{L}_{2}\{f(x); \sqrt{y}\} \exp(y x^2) dy$$

*Correspondence: ndernek@marmara.edu.tr

2010 AMS Mathematics Subject Classification: 44A10, 44A15, 44A20, 34A30
where $L^2\{f(x); \sqrt{y}\}$ has a finite number of singularities in the left half plane $Re\ y \leq c$.

In this article, we introduce a new generalized integral transform as follows

$$L_n\{f(x); y\} = \int_0^\infty x^{n-1} \exp(-x^ny^n) f(x) \, dx$$

(1.3)

where $n = 2^k, \ k \in \mathbb{N}$.

The L_n-transform is related to the Laplace transform by means

$$L_n\{f(x); y\} = \frac{1}{n} L\{f(x^n); y^n\},$$

(1.4)

where the Laplace transform is defined by

$$L\{f(x); y\} = \int_0^\infty \exp(-xy) f(x) \, dx.$$

(1.5)

First we shall give several examples of the L_n-transforms of some elementary and special functions.

Example 1.1. We show that

$$L_n\{1; y\} = \int_0^\infty x^{n-1} \exp(-y^nx^n) \, dx = \frac{1}{ny^n}. \quad (1.6)$$

Example 1.2. We show that

$$L_n\{x^k; y\} = \frac{1}{ny^n+k} \Gamma\left(\frac{k}{n} + 1\right). \quad (1.7)$$

where $k, n \in \mathbb{N}$ and $k > -n$. Applying the definition of the L_n-transform, we have

$$L_n\{x^k; y\} = \int_0^\infty x^{k+n-1} \exp(-y^nx^n) \, dx, \quad (1.8)$$

where $k \in \mathbb{N}$.

The integral on the right hand side may be evaluated by changing the variable of the integration from x to u where $x^ny^n = u$, and using Gamma function’s relation in (1.8), we obtain

$$L_n\{x^k; y\} = \frac{1}{ny^n+k} \int_0^\infty u^{k+n-1} \exp(-u) \, du = \frac{1}{ny^n+k} \Gamma\left(\frac{k}{n} + 1\right). \quad (1.9)$$

Example 1.3. We show that

$$L_n\{\cos(ax^n); y\} = \frac{y^n}{n(y^{2n} + a^2)}. \quad (1.10)$$
Using the definition of the L_n-transform and calculating the Taylor expansion of the \cos function in (1.10) we get

$$L_n\{\cos(ax^n); y\} = \sum_{m=0}^{\infty} (-1)^m \frac{a^{2m}}{(2m)!} L_n\{x^{2mn}; y\},$$

(1.11)

where from (1.7) we have the following relation

$$L_n\{x^{2mn}; y\} = \frac{2m + 1}{ny^{n+2mn}}$$

(1.12)

and then we obtain (1.10)

$$L_n\{\cos(ax^n); y\} = \frac{1}{ny^n} \sum_{m=0}^{\infty} (-1)^m \frac{a^{2m}}{y^{2mn}} = \frac{y^n}{n(y^n + a^2)}.$$

(1.13)

Example 1.4. We show that

$$L_n\{\sin(ax^n); y\} = \frac{a}{n(y^n + a^2)}.$$

(1.14)

Using the linearity of the L_n-transform and calculating the Taylor expansion of the \sin function in (1.14) we get

$$L_n\{\sin(ax^n); y\} = \sum_{m=0}^{\infty} (-1)^m \frac{a^{2m+1}}{(2m + 1)!} L_n\{x^{(2m+1)n}; y\}.$$

(1.15)

Using the following relation in (1.7) of Example 1.2,

$$L_n\{x^{(2m+1)n}; y\} = \frac{\Gamma(2m + 2)}{ny^{2m+2n}},$$

(1.16)

we have

$$L_n\{\sin(ax^n); y\} = \frac{a}{ny^{2n}} \sum_{m=0}^{\infty} (-a^2)^m \frac{1}{y^{2mn}} = \frac{a}{n(y^n + a^2)}.$$

(1.17)

Example 1.5. We show that

$$L_n\{\exp(-a^nx^n); y\} = \frac{1}{n(y^n + a^n)}$$

(1.18)

where $0 < Re(a) < Re(y)$.

Using the definition of the L_n-transform and calculating the Taylor expansion of the exponential function we have

$$L_n\{\exp(-a^nx^n); y\} = \sum_{m=0}^{\infty} (-1)^m \frac{a^{mn}}{m!} L_n\{x^{mn}; y\}.$$

(1.19)

Using the value

$$L_n\{x^{mn}; y\} = \frac{\Gamma(m + 1)}{ny^{n+mn}}$$

(1.20)

on the right hand side of (1.19) we get

$$L_n\{\exp(-a^nx^n); y\} = \frac{1}{ny^n} \sum_{m=0}^{\infty} (-1)^m \frac{a^{mn}}{y^{mn}} = \frac{1}{n(y^n + a^n)}.$$

(1.21)
Example 1.6. We show that
\[
\mathcal{L}_n\{J_0(2a^n x^n); y\} = \frac{1}{ny^n} \exp\left(-\frac{a^n}{y^n}\right) \tag{1.22}
\]
where the function J_0 is the Bessel function of the first kind of order zero.

Using the following Taylor expansion of the function $J_0(x)$,
\[
J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{(m!)^2} \left(\frac{x}{2}\right)^{2m}, \tag{1.23}
\]
we obtain
\[
\mathcal{L}_n\{J_0(2a^n x^n); y\} = \sum_{m=0}^{\infty} \frac{(-1)^m a^{mn}}{m!\Gamma(m+1)} \mathcal{L}_n\{x^{mn}; y\}. \tag{1.24}
\]

We know the \mathcal{L}_n transform of $f(x) = x^{mn}$ as
\[
\mathcal{L}_n\{x^{mn}; y\} = \frac{\Gamma(m+1)}{ny^{m+mn}}. \tag{1.25}
\]

Substituting the relation (1.25) into (1.24) we obtain
\[
\mathcal{L}_n\{J_0(2a^n x^n); y\} = \sum_{m=0}^{\infty} \frac{(-1)^m a^{mn}}{m!\Gamma(m+1)} \mathcal{L}_n\{x^{mn}; y\} = \frac{1}{ny^n} \exp\left(-\frac{a^n}{y^n}\right). \tag{1.26}
\]

Example 1.7. We show that
\[
\mathcal{L}_n\{x^{n^v} J_v(2a^n x^n); y\} = \frac{1}{ny^n} \sum_{m=0}^{\infty} \frac{(-a^n)^m}{m!} \mathcal{L}_n\{x^{mn}; y\} = \frac{1}{ny^n} \exp\left(-\frac{a^n}{y^n}\right) \tag{1.27}
\]
where $\Re(a) > 0, \Re v > -1$.

Using the following Taylor expansion of $J_v(x)$, which is the Bessel function of the first kind of order v,
\[
J_v(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+v+1)} \left(\frac{x}{2}\right)^{2m+v}, \tag{1.28}
\]
we obtain
\[
\mathcal{L}_n\{x^{n^v} J_v(2a^n x^n); y\} = \sum_{m=0}^{\infty} \frac{(-1)^m a^{mn+n^v}}{m!\Gamma(m+v+1)} \mathcal{L}_n\{x^{mn+nv}; y\}. \tag{1.29}
\]

We can calculate the \mathcal{L}_n transform of $f(x) = x^{mn+nv}$ function as follows
\[
\mathcal{L}_n\{x^{mn+nv}; s\} = \frac{\Gamma(m+v+1)}{ny^{m+mn+nv}}. \tag{1.30}
\]

Substituting the relation (1.30) into equation (1.29) we obtain the assertion (1.27) of Example 1.7,
Example 1.8. We show that

$$\mathcal{L}_n\{\text{erfc}(\frac{1}{2} a x^{-\frac{n}{2}}); y\} = \frac{1}{n} y^{-n} \exp(-a^\frac{n}{2} y^\frac{n}{2})$$

(1.32)

where \(\text{Re}(a) > 0 \).

Using the definition of the complementary error function \(\text{erfc}(x) \),

$$\text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} \exp(-u^2) \, du,$$

(1.33)

we get

$$\mathcal{L}_n\{\text{erfc}(\frac{1}{2} a x^{-\frac{n}{2}}); y\} = \frac{2}{\sqrt{\pi}} y^{-n} \int_{\frac{a^{n/2}}{2x^{n/2}}}^{\infty} \exp(-y^n x^n) \int_{0}^{\infty} \exp(-u^2) \, du \, dx.$$ \hspace{1cm} (1.34)

Changing the order of integration, we obtain

$$\mathcal{L}_n\{\text{erfc}(\frac{1}{2} a x^{-\frac{n}{2}}); y\} = \frac{2}{\sqrt{\pi} y^n} \int_{0}^{\infty} \exp(-u^2) \int_{-\frac{a^{n/2}}{2x^{n/2}}}^{\infty} \exp(-y^n x^n) \, dx \, du.$$ \hspace{1cm} (1.35)

and using the relation \(\frac{d}{dx}(\exp(-y^n x^n)) = -n y^n x^{n-1} \exp(-y^n x^n) \) we have

$$\mathcal{L}_n\{\text{erfc}(\frac{1}{2} a x^{-\frac{n}{2}}); y\} = \frac{2}{\sqrt{\pi} y^n} \int_{0}^{\infty} \exp(-u^2) \exp(-\frac{y^n a^n}{4u^2}) \, du.$$ \hspace{1cm} (1.36)

Changing the variable from \(u \) to \(x \) according to the transformation \(u = \frac{a^{n/2}}{2x^{n/2}} \) we find that

$$\mathcal{L}_n\{\text{erfc}(\frac{1}{2} a x^{-\frac{n}{2}}); y\} = \frac{a^{n/2}}{2\sqrt{\pi} y^n} \mathcal{L}_n\{x^{-\frac{n}{2}} \exp(-\frac{a^n}{4x^n}); y\}.$$ \hspace{1cm} (1.37)

Using the Taylor expansion of exponential function and the \(\mathcal{L}_n \)-transform of \(f(x) = x^{-mn-\frac{3m}{2}} \) we obtain

$$\frac{a^{\frac{n}{2}}}{2\sqrt{\pi} y^n} \mathcal{L}_n\{x^{-\frac{n}{2}} \exp(-\frac{a^n}{4x^n}); y\} = \frac{a^{\frac{n}{2}}}{2\sqrt{\pi} y^n} \sum_{m=0}^{\infty} \frac{(-1)^m a^{mn}}{m!4^m} \mathcal{L}_n\{x^{-mn-\frac{n}{2}}; y\}$$

$$= \frac{a^{n/2}}{2n\sqrt{\pi} y^n} \sum_{m=0}^{\infty} \frac{(-1)^m a^{mn}}{m!4^m} \frac{\Gamma(-m - \frac{3}{2} + 1)}{y^{-mn-\frac{n}{2}}}.$$ \hspace{1cm} (1.38)

From the following Euler’s reflection formula,

$$\Gamma(z)\Gamma(1 - z) = \frac{\pi}{\sin(\pi z)},$$ \hspace{1cm} (1.39)
we get
\[
\frac{a^{\frac{n}{2}}}{2n\sqrt{\pi}y^n} \sum_{m=0}^{\infty} \frac{(-1)^m a^{mn} \Gamma(-m - \frac{1}{2})}{m!4^m} \frac{\Gamma(-m - \frac{3}{2})}{y^{mn-\frac{3}{2}}} = \frac{a^{\frac{n}{2}}\pi}{2n\sqrt{\pi}y^n} \sum_{m=0}^{\infty} \frac{(-1)^{2m+1}a^{mn}y^{mn+\frac{1}{2}}}{\Gamma(m+1)\Gamma(m+1+\frac{1}{2})4^m}
\]
and using the following duplication formula for Gamma function
\[
\Gamma(z)\Gamma(z + \frac{1}{2}) = 2^{1-2z}\sqrt{\pi} \Gamma(2z)
\]
we obtain
\[
\frac{a^{\frac{n}{2}}\pi}{2n\sqrt{\pi}y^n} \sum_{m=0}^{\infty} \frac{(-1)^{2m+1}a^{mn}y^{mn+\frac{1}{2}}}{\Gamma(m+1)\Gamma(m+1+\frac{1}{2})4^m} = \frac{1}{n}\frac{1}{y^n} \exp(-a^{\frac{n}{2}}\frac{y^{\frac{n}{2}}}{\pi}).
\]
Thus the assertion (1.32) follows from (1.42).

Example 1.9. We show that
\[
\mathcal{L}_n\{\text{erf}(a^{\frac{n}{2}}x^{\frac{n}{2}}); y\} = \frac{a^{\frac{n}{2}}}{n}y^{-n}(y^n + a^n)^{-\frac{1}{2}}
\]
where \(-\text{Re}(a) < y, \text{Re}(y) > 0\).

Using the definition of \(\mathcal{L}_n\)-transform and the error function we have
\[
\mathcal{L}_n\{\text{erf}(a^{\frac{n}{2}}x^{\frac{n}{2}}); y\} = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} x^{n-1} \exp(-y^n x^n) \int_{0}^{a^{n/2}x^{n/2}} \exp(-u^2)du dx.
\]
Changing the order of integration and evaluating the inner integral we get
\[
\mathcal{L}_n\{\text{erf}(a^{\frac{n}{2}}x^{\frac{n}{2}}); y\} = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \exp(-u^2) \int_{\frac{u^{2/n}}{\sqrt{y^n}}}^{\infty} x^{n-1} \exp(-y^n x^n)dx du
\]
\[
= \frac{2}{\sqrt{\pi}ny^n} \int_{0}^{\infty} \exp(-u^2(1 + \frac{y^n}{a^n}))du.
\]
Changing the variable from \(u\) to \(x\) according to transformation \(u\sqrt{1 + \frac{y^n}{a^n}} = x\), we obtain the assertion (1.43),
\[
\frac{2}{\sqrt{\pi}ny^n} \int_{0}^{\infty} \exp(-u^2(1 + \frac{y^n}{a^n}))du = \frac{a^{\frac{n}{2}}}{n}y^{-n}(y^n + a^n)^{-\frac{1}{2}}.
\]

Example 1.10. We show that
\[
\mathcal{L}_n\{\exp(-ax^{2n}); y\} = \frac{\sqrt{\pi}}{2n\sqrt{a}} \exp(\frac{y^{2n}}{4a}) \text{erfc}(\frac{y^{2n}}{2\sqrt{a}})
\]
(1.47)
provided that $Re\ a > 0$.

Using the definition of the \mathcal{L}_n-transform we get

$$\mathcal{L}_n\{\exp(-ax^{2n}); y\} = \int_0^\infty x^{n-1} \exp(-y^n x^n - ax^{2n}) \, dx.$$ \hfill (1.48)

Writing on the right hand side of (1.48)

$$-y^n x^n - ax^{2n} = -a(x^n + \frac{y^n}{2a})^2 + \frac{y^{2n}}{4a}$$ \hfill (1.49)

and changing the variable

$$a^{1/2}(x^n + \frac{y^n}{2a}) = u,$$ \hfill (1.50)

using the definition of the complementary error function as follows, we deduce the assertion (1.48),

$$\mathcal{L}_n\{\exp(-ax^{2n}); y\} = \sqrt{\pi} \frac{2n}{2n\sqrt{a}} \exp(\frac{y^{2n}}{4a}) \text{erfc}(\frac{y^n}{2\sqrt{a}}).$$ \hfill (1.51)

Corollary 1.1. From the definition of the \mathcal{L}_n-transform the following identity hold true:

$$\mathcal{L}_n\{\exp(-ax^n) f(x); y\} = \mathcal{L}_n\{f(x); (y^n + a)^{1/2}\}$$ \hfill (1.52)

where $Re\ a > 0$.

We now introduce a new derivative operator for the \mathcal{L}_n-transform and apply the operator to solve following ordinary differential equations:

$$xz'' - (2v + n - 3)z' + x^{n-1}z = 0, \quad n = 2^k, \ k \in \mathbb{N}, \ v > n, \ v = 2^m + 1, \ m \in \mathbb{N} \hfill (1.53)$$

$$xz'' - (n^2 - 1)z' + x^{n-1}z = 0, \quad n = 2^k, \ k = 0, 1, 2, ... \hfill (1.54)$$

2. Some properties of the \mathcal{L}_n-transform

In this section we will give some properties of the \mathcal{L}_n-transform that will be used to solve the ordinary differential equations (1.53)-(1.54) given above.

Firstly, we introduce a differential operator δ (see [7, 8]) that we call the δ-derivative and define as

$$\delta_x = \frac{1}{x^{n-1}} \frac{d}{dx}, \quad n = 2^k, \ k \in \mathbb{N}$$ \hfill (2.1)

we note that

$$\delta^2_x = \delta_x \delta_x = \frac{1}{x^{n-1}} \frac{d}{dx} \left(\frac{1}{x^{n-1}} \frac{d}{dx} \right) = \frac{1}{x^{2n-2}} \frac{d^2}{dx^2} - \frac{(n - 1)}{x^{2n-1}} \frac{d}{dx}.$$ \hfill (2.2)

The δ derivative operator can be successively applied in a similar fashion for any positive integer power.

Here we will derive a relation between the \mathcal{L}_n-transform of the δ-derivative of a function and the \mathcal{L}_n-transform of the function itself.
Suppose that \(f(x) \) is a continuous function with a piecewise continuous derivative \(f'(x) \) on the interval \([0, \infty)\). Also suppose that \(f \) and \(f' \) are of exponential order \(\exp(\alpha x^n) \) as \(x \to \infty \) where \(\alpha \) is a constant. By using the definitions of \(\mathcal{L}_n \)-transform and the \(\delta \) derivative and integration by parts, we obtain

\[
\mathcal{L}_n\{\delta_x f(x); y\} = \int_{0}^{\infty} \exp(-y^n x^n) f'(x) dx, \tag{2.3}
\]

\[
\int_{0}^{\infty} \exp(-y^n x^n) f'(x) dx = \lim_{b \to \infty} f(x) \exp(-y^n x^n)|_0^b + ny^n \int_{0}^{\infty} x^{n-1} \exp(-y^n x^n) f(x) dx. \tag{2.4}
\]

Since \(f \) is of exponential order \(\exp(\alpha x^n) \) as \(x \to \infty \), it follows that

\[
\lim_{x \to \infty} \exp(-y^n x^n) f(x) = 0 \tag{2.5}
\]

and consequently,

\[
\mathcal{L}_n\{\delta_x f(x); y\} = ny^n \mathcal{L}_n\{f(x); y\} - f(0^+). \tag{2.6}
\]

Similarly, if \(f \) and \(f' \) are continuous functions with a piecewise continuous derivative \(f'' \) on the interval \([0, \infty)\), and if all three functions are of exponential order \(\exp(\alpha x^n) \) as \(x \to \infty \) we can use (2.6) to obtain

\[
\mathcal{L}_n\{\delta_x^2 f(x); y\} = n^2 y^{2n} \mathcal{L}_n\{f(x); y\} - ny^n f(0^+) - \delta_x f(0^+). \tag{2.7}
\]

Using (2.6) and (2.7) we get

\[
\mathcal{L}_n\{\delta_x^3 f(x); y\} = n^3 y^{3n} \mathcal{L}_n\{f(x); y\} - n^2 y^{2n} f(0^+) - ny^n \delta_x f(0^+) - \delta_x^2 f(0^+). \tag{2.8}
\]

By repeated application of (2.6) and (2.8) we obtain the following theorem.

Theorem 2.1. If \(f, f', ..., f^{(k-1)} \) are all continuous functions with a piecewise continuous derivative \(f^{(k)} \) on the interval \([0, \infty)\), and if all functions are of exponential order \(\exp(\alpha x^n) \) as \(x \to \infty \) for some constant \(\alpha \) then

\[
\mathcal{L}_n\{\delta_x^k f(x); y\} = (ny^n)^k \mathcal{L}_n\{f(x); y\} - (ny^n)^{k-1} f(0^+) - (ny^n)^{k-2} \delta_x f(0^+) - \cdots - \delta_x^{k-1} f(0^+) \tag{2.9}
\]

for \(k \geq 1, \ k \) is a positive integer.

The \(\mathcal{L}_n \)-transform defined in (1.3) is an analytic function in the half plane \(\text{Re} \ y > \alpha \). Therefore, \(\mathcal{L}_n\{f(x); y\} \) has derivatives of all orders and the derivatives can be formally obtained by differentiating (1.3). Applying the \(\delta \) with respect to the variable \(y \) we obtain

\[
\delta_y \mathcal{L}_n\{f(x); y\} = \frac{1}{y^{n-1}} \frac{d}{dy} \int_{0}^{\infty} x^{n-1} \exp(-y^n x^n) f(x) dx
\]

8
\[\frac{1}{y^{n-1}} \int_{0}^{\infty} x^{n-1}(-x^n y^{n-1} \exp(-y^n x^n)) f(x) dx = -n \mathcal{L}_n \{x^n f(x); y\}. \quad (2.11)\]

If we keep taking the δ-derivative of (1.3) with respect to the variable y, then we deduce
\[\frac{\partial^k}{\partial y^k} \mathcal{L}_n \{f(x); y\} = \int_{0}^{\infty} x^{n-1} \frac{\partial^k}{\partial y^k} \exp(-y^n x^n) f(x) dx \quad (2.12)\]
for $k \in \mathbb{N}$.

\[\int_{0}^{\infty} x^{n-1} \frac{\partial^k}{\partial y^k} \exp(-y^n x^n) f(x) dx = \int_{0}^{\infty} x^{n-1} \frac{\partial^{k-1}}{\partial y^{k-1}} (-n) x^n \exp(-y^n x^n) f(x) dx \]
\[= \int_{0}^{\infty} x^{n-1} \frac{\partial^{k-2}}{\partial y^{k-2}} (-n)^2 x^{2n} \exp(-y^n x^n) f(x) dx \]
\[= \int_{0}^{\infty} x^{n-1} (-n)^k x^{kn} \exp(-y^n x^n) f(x) dx = (-n)^k \mathcal{L}_n \{x^{kn} f(x); y\}. \quad (2.13)\]

As a result we obtain the following theorem.

Theorem 2.2. If f is piecewise continuous on the interval $[0, \infty)$ and is of exponential order $\exp(\alpha^n x^n)$ as $x \to \infty$, then
\[\mathcal{L}_n \{x^{kn} f(x); y\} = \frac{(-1)^k}{(n)^k} \frac{\partial^k}{\partial y^k} \mathcal{L}_n \{f(x); y\}. \quad (2.14)\]
for $k \geq 1$, k is a positive integer.

Theorem 2.3. Let $\mathcal{L}_n \{f(x); y^{1/n}\}$, $n = 2^k$, $k = 0, 1, 2, \ldots$ be an analytic function of y except at singular points each of which lies to the left of the vertical line $\text{Re} \ y = a$ and they are finite numbers. Suppose that $y = 0$ is not a branch point and $\lim_{y \to \infty} \mathcal{L}_n \{f(x); y^{1/n}\} = 0$ in the left plane $\text{Re} \ y \leq a$ then, the following identity
\[\mathcal{L}_n^{-1} \{\mathcal{L}_n \{f(x); y\}\} = \frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} n \mathcal{L}_n \{f(x); y^{1/n}\} \exp(yx^n) dy \]
\[= \sum_{k=1}^{m} [\text{Res} n \mathcal{L}_n \{f(x); y^{1/n}\} \exp(yx^n); y = y_k] \quad (2.15)\]
hold true for m singular points.
Proof. We take a vertical closed semi-circle as contour of integration. Using residues theorem and boundedness of $L_n\{f(x); y^{1/n}\}$, we show that the identity (2.13) of Theorem 2.3 is valid. When $y = 0$ is a branch point we take key-hole contour instead of simple vertical semi-circle.

We assume that $L_n\{f(x); y^{1/n}\}$ has a finite number of singularities in the left half plane $Re y \leq a$. Let $\gamma = \gamma_1 + \gamma_2$ be the closed contour consisting of the vertical line segment γ_1, which is defined from $a - iR$ to $a + iR$ and vertical semi-circle γ_2, that is defined as $|y - a| = R$. Let γ_2 lie to the left of vertical line γ_1. The radius R can be taken large enough so that γ encloses all the singularities of the $L_n\{f(x); y^{1/n}\}$. Hence, by the residues theorem we have

$$
\frac{1}{2\pi i} \int_{-i\infty}^{i\infty} nL_n\{f(x); y^{1/n}\} \exp(yx^n)dy
= \frac{1}{2\pi i} \int_{\gamma_1} nL_n\{f(x); y^{1/n}\} \exp(yx^n)dy
- \frac{1}{2\pi i} \int_{\gamma_2} nL_n\{f(x); y^{1/n}\} \exp(yx^n)dy
$$

\hspace{1cm} (2.16)

where y_1, y_2, \ldots, y_m are all the singularities of $L_n\{f(x); y^{1/n}\}$. Taking the limit from both sides of the relation (2.16) as R tends to $+\infty$, because of the Jordan’s Lemma, the second integral in the right tends to zero.

Even $L_n\{f(x); y^{1/n}\}$ has one branch point at $y = 0$, we can use the identity (2.13). The proof of the proposition is similar to the proof of the Main Theorem in the paper [1], where we take $n = 2^k, k \in \mathbb{N}$ instead of $n = 2$.

If the number of singularities is infinite, we take the semi-circles γ_m which is centered at point a, with radius $R_m = \pi^2 m^2, m \in \mathbb{N}$.

We illustrate the above Theorem by showing that the following examples.

Example 2.11. We show that

$$
L^{-1}_n\left\{\frac{1}{y^{2n} + a^{2n}}; x\right\} = \frac{n}{a^n} \sin(a^n x^n)
$$

(2.17)

where $Re a > 0$.

Using the assertion (2.15) of Theorem 2.3 we obtain

$$
L^{-1}_n\left\{\frac{1}{y^{2n} + a^{2n}}; x\right\} = \sum_{k=1}^{2} \text{Res}\left[n\frac{1}{y^{2} + a^{2n}} \exp(yx^n); y = y_k\right]
$$

(2.18)

where the singular points are $y_k = \mp ia^n, k = 1, 2$ and then we have

$$
\text{Res}\left[n\frac{1}{y^{2} + a^{2n}} \exp(yx^n); ia^n\right] = n \lim_{y \to ia^n} (y - ia^n)^{x} \frac{\exp(yx^n)}{y^2 + a^{2n}} = n \frac{\exp(ia^n x^n)}{2ia^n}
$$

(2.19)
and similarly we have
\[
\text{Res}[n \frac{1}{y^2 + a^{2n}} \exp(yx^n); -ia^n] = -n \frac{\exp(-ia^n x^n)}{2ia^n}.
\] (2.20)

Using the relations (2.19) and (2.20) we find the formula (2.17) from (2.18) as follows
\[
\mathcal{L}_n^{-1}\{ \frac{1}{y^{2n} + a^{2n}}; x \} = \frac{n}{a^n} \exp(ia^n x^n) - \exp(-ia^n x^n)
\]
\[
= \frac{n}{a^n} \sin(a^n x^n).
\] (2.21)

Example 2.12. We show that
\[
\mathcal{L}_n^{-1}\{ \frac{1}{y^n} \exp(-a^n x^n); x \} = n J_0(2a^n x^{n/2})
\] (2.22)
where \(J_0 \) is the Bessel function of order zero.

Using the assertion (2.15) of Theorem 2.3 we have
\[
\mathcal{L}_n^{-1}\{ \frac{1}{y^n} \exp(-a^n y^n) \exp(y x^n), y = y_k \}.
\] (2.23)

From the following Taylor expansions of the exponential functions in (2.23),
\[
n \frac{1}{y^n} \exp(-\frac{a^n}{y^n}) \exp(y x^n) = n \frac{1}{y} \sum_{m=0}^{\infty} (-1)^m \frac{a^{mn}}{m! y^m} \sum_{k=0}^{\infty} \frac{y^k x^{nk}}{k!}
\]
\[
= \frac{n}{y} [1 - \frac{a^n}{1!y} + \frac{a^{2n}}{2!y^2} - \frac{a^{3n}}{3!y^3} + ...] [1 + \frac{x^ny}{1!} + \frac{x^{2n}y^2}{2!} + \frac{x^{3n}}{3!} + ...]
\] (2.24)

we find that \(\text{Res}[n \frac{1}{y^n} \exp(\frac{a^n}{y^n}) \exp(y x^n)] \) as the coefficient of the term \(\frac{1}{y} \) as follows
\[
\text{Res}[n \frac{1}{y} \exp(\frac{a^n}{y^n}) \exp(y x^n)] = n [1 - \frac{a^n x^n}{(1!)^2} + \frac{a^{2n} x^{2n}}{(2!)^2} - \frac{a^{3n} x^{3n}}{(3!)^2} + ...]
\]
\[
= n \sum_{m=0}^{\infty} (-1)^m \frac{(ax)^{mn}}{(n!)^2} = n J_0(2a^{n/2} x^{n/2}).
\] (2.25)

Thus, we obtain from (2.25) and the formula (2.23), the assertion (2.22) of Example 2.12.

3. Application of the \(\mathcal{L}_n \)-transform to ordinary differential equations

First we consider the ordinary differential equation (1.53) for \(v > n \) and \(v = 2m + 1, m = 0, 1, 2, ... \)

Dividing (1.53) by \(x^{n-1} \), adding and subtracting the term \(\frac{n+1}{x^n-1}z' \) we obtain
\[
x^n \left(\frac{1}{a^{2n-2}z^n} - \frac{n-1}{x^{2n-1}z'} \right) + \frac{n-1}{x^{n-1}z'} - \frac{2v + n - 3}{x^{n-1}z'} + z = 0.
\] (3.1)
Using the definition of the δ-derivative given in (2.1) and (2.2), we can express (3.1) as
\[
x^n \delta_x^2 z(x) - 2(v - 1) \delta_x z(x) + z(x) = 0. \tag{3.2}
\]
Applying the L_n-transform to (3.2) we find
\[
L_n\{x^n \delta_x^2 z; y\} - 2(v - 1) L_n\{\delta_x z; y\} + L_n\{z; y\} = 0. \tag{3.3}
\]
Using Theorem 2.1 for $k = 1$ and $k = 2$ in (3.3) and performing necessary calculations we obtain
\[
- \frac{1}{n} \delta_y L_n\{\delta_x^2 z; y\} - 2(v - 1) L_n\{\delta_x z; y\} + L_n\{z; y\} = 0, \tag{3.4}
\]
\[
- \frac{1}{n} \left[\frac{d}{dy} (n^2 y^{2n} \pi(y) - n y^n z(0^+) - \delta_x z(0^+)) - 2(v - 1)(n y^n \pi(y) - z(0^+)) \right] \pi(y) = 0 \tag{3.5}
\]
where $\pi(y) = L_n\{z(x); y\}$. We assume that $z(0^+) = 0$. Thus, we obtain the following first order differential equation:
\[
\pi'(y) + (2(n + v - 1) \frac{1}{y} - \frac{1}{ny^{n+1}}) \pi(y) = 0. \tag{3.6}
\]
Solving the first order differential equation (3.6) we have
\[
\pi(y) = C \sum_{m=0}^{\infty} (-1)^m \frac{1}{m! n^m y^{mn+2n+2v-2}}. \tag{3.7}
\]
Applying the L_n^{-1} transform we obtain
\[
z(x) = C \sum_{m=0}^{\infty} (-1)^m \frac{x^{mn+n+2v-2}}{m! \Gamma(m + \frac{n+2v-2}{n} + 1)n^{2m-1}}. \tag{3.8}
\]
where we use the following relations
\[
L_n\{x^k; y\} = \frac{\Gamma(k + \frac{n}{n} + 1)}{ny^{n+k}}, \quad k = mn + n + 2v - 2 \tag{3.9}
\]
and
\[
L_n^{-1}\left\{ \frac{1}{y^{mn+n+2v-2+n}} \right\} = \frac{n x^{mn+n+2v-2}}{\Gamma(m + 1 + \frac{2v-2}{n} + 1)}. \tag{3.10}
\]
Setting $\alpha = \frac{2v+n-2}{n}$, $C = n^{-\frac{2v-2}{n}}$ we obtain the solution of the ordinary differential equation (1.53)
\[
z(x) = x^{\frac{2v+n-2}{n}} J_\alpha \left(\frac{2v+n-2}{n} \right) \tag{3.11}
\]
where $\alpha \in \mathbb{Z}$ because of the inequality $v > n \ (v, n \in \mathbb{N})$ and J_α is the Bessel function of the first kind of order α.

In the second step we will use the L_n-transform for solving (1.54). Dividing (1.54) by x^{n-1}, adding and subtracting the term $\frac{1}{x^{n-1}} z'$ we obtain
\[
x^n \left(\frac{1}{x^{2n-2} z''(x)} - \frac{n-1}{x^{n-1} z'(x)} \right) + n \frac{1}{x^{n-1}} z'(x) - (n^2 - 1) \frac{1}{x^{n-1}} z'(z) + z(x) = 0. \tag{3.12}
\]
Using the definition of the δ_x-derivative (2.1) and (2.2) we can express (3.12) as

$$x^n\delta_x^2 z(x) - n(n-1)\delta_x z(x) + z(x) = 0. \quad (3.13)$$

Considering the following relations

$$L_n\{x^n\delta_x^2 z(x); y\} = -\frac{1}{n} \delta_y L_n\{\delta_x^2 z(x); y\} = -2n^2 y^n \zeta(y) - ny^{n+1} \zeta'(y) + nz(0^+), \quad (3.14)$$

$$n(n-1)L_n\{\delta_x z(x); y\} = n(n-1)(ny^n \zeta(y) - \zeta(0^+)) = n^2 (n-1)y^n \zeta(y) - n(n-1)z(0^+) \quad (3.15)$$

and applying the L_n-transform to (3.13) we obtain

$$L_n\{x^n\delta_x^2 z(x); y\} - n(n-1)L_n\{\delta_x z(x); y\} + L_n\{z(x); y\} = 0 \quad (3.16)$$

$$ny^{n+1} \zeta'(y) + [n^2(n+1)y^n - 1] \zeta(y) - n^2 z(0^+) = 0 \quad (3.17)$$

where $\zeta(y) = L_n\{z(x); y\}$.

We may assume

$$z(0^+) = 0. \quad (3.18)$$

Solving the first order differential equation after substituting (3.18) into (3.17) we get

$$\zeta(y) = Cy^{-n^2-n} \exp\left(-\frac{1}{n^2y^n}\right). \quad (3.19)$$

Calculating the Taylor expansion of the exponential function in (3.19) we have

$$\zeta(y) = C \sum_{m=0}^{\infty} \frac{(-1)^m}{m!n^{2m}y^{n+nm+n^2}}. \quad (3.20)$$

Using the following relation

$$L_n^{-1}\{\frac{1}{y^{n+nm+n^2}}\} = \frac{n^2x^{n+nm+n^2}}{\Gamma(m + n + 1)} \quad (3.21)$$

and applying the L_n^{-1} transform to (3.20) we find

$$z(x) = Cn^{n+1}x^n \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m + n + 1)} \left(\frac{2x^{n/2}}{2n}\right)^{m+n}. \quad (3.22)$$

Setting $C = n^{-n-1}$ in (3.22) we obtain the solution of the equation (1.54)

$$z(x) = x^{n^2} J_n\{\frac{2}{n}x^{n/2}\} \quad (3.23)$$

where J_n is the Bessel function of the first kind of order n.

13
References

[1] Aghili A, Ansari A, Sedghi A.: An inversion technique for the L_2-transform with applications. Int. J. Contemp. Math. Sciences 2.28, 1387-1394 (2007).

[2] Erdelyi, A.: Tables of Integral Transforms vol. 1. New York, NY, USA, McGraw-Hill, (1954).

[3] Erdelyi, A.: Tables of Integral Transforms vol. 2. New York, NY, USA, McGraw-Hill, (1954).

[4] Yürekli O, Sadek I.: A Parseval-Goldstein type theorem on the Widder potential transform and its applications. International Journal of Mathematics and Mathematical Sciences 14.3, 517-524 (1991).

[5] Yürekli O.: Theorems on L_2-transform and its applications. Complex Variables and Elliptic Equations 38.2, 95-107 (1999).

[6] Yürekli O.: New identities involving the Laplace and the L_2-transforms and their applications. Applied Mathematics and Computation 99.2, 141-151 (1999).

[7] Yürekli O, Wilson S.: A new method of solving Bessel’s differential equation using the L_2-transform. Applied Mathematics and Computation 130.2, 587-591 (2002).

[8] Yürekli O, Wilson S.: A new method of solving Hermite’s differential equation using the L_2-transform. Applied Mathematics and Computation 145.2, 495-500 (2003).