Spherical symmetric dust collapse in a Vector-Tensor gravity

Roberto Dale

Departamento de Estadística,
Matemática e Informática,
Universidad Miguel Hernandez,
Elche, Alicante, Spain

Center of Operations Research (CIO),
University Miguel Hernandez of Elche (UMH)

Diego Sáez

Departamento de Astronomía y Astrofísica,
Universidad de Valencia,
46100 Burjassot, Valencia, Spain.

Observatorio Astronómico,
Universidad de Valencia,
E-46980 Paterna, Valencia, Spain

(Dated: December 1, 2020)
Abstract

There is a viable vector-tensor gravity (VTG) theory, whose vector field produces repulsive forces leading to important effects. In the background universe, the effect of these forces is an accelerated expansion identical to that produced by vacuum energy (cosmological constant). Here, we prove that another of these effects arises for great enough collapsing masses which lead to Schwarzschild black holes and singularities in general relativity (GR). For these masses, pressure becomes negligible against gravitational attraction and the complete collapse cannot be stopped in the context of GR; however, in VTG, a strong gravitational repulsion could stop the falling of the shells towards the symmetry center. A certain study of a collapsing dust cloud is then developed and, in order to undertake this task, the VTG equations in comoving coordinates are written. In this sense and, as it happens in general relativity for a pressureless dust ball, three different solutions are found. These three situations are analyzed and the problem of the shell crossings is approached. The apparent horizons and trapped surfaces, whose analysis will lead to diverse situations, depending on certain theory characteristic parameter value, are also examined.

I. INTRODUCTION

Any vector-tensor theory of gravitation involves the metric tensor $g^{\mu\nu}$ and a vector field A^μ. These fields are coupled to build up an appropriate action leading to the basic equations via variational calculations. There are many actions and vector-tensor theories [1, 2], but one of them has been extensively studied to conclude that: (i) it has not either classical or quantum instabilities and, (ii) it explains -as well as general relativity (GR)- both cosmological and solar system observations [3–7]; hence, new applications of this viable and promising theory are worthwhile. Since there are opposite gravitational forces, this theory will be hereafter called AR-VTG (attractive-repulsive vector-tensor gravity).

As it was shown in [6], for appropriate values of the AR-VTG parameters (see below), there are black hole event horizons with admissible radii which are a little smaller than those of GR; nevertheless, for other values of these parameters, there are no horizons of this kind.

Our signature is (−,+,+,+). Greek indexes run from 0 to 3. Symbol ∇ (\(\partial\)) stands for a...
covariant (partial) derivative. The antisymmetric tensor $F_{\mu \nu}$ is defined by the relation $F_{\mu \nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$. It has nothing to do with the electromagnetic field. Quantities $R_{\mu \nu}$, R, and g are the covariant components of the Ricci tensor, the scalar curvature, and the determinant of the matrix $g_{\mu \nu}$ formed by the covariant components of the metric, respectively. Units are chosen in such a way that the gravitational constant, G, and the speed of light, c, take the values $c = G = 1$; namely, we use geometrized units.

This paper is structured as follows: The AR-VTG theory is described in Sect. II; the vacuum stationary spherically symmetric solutions of the field equations are presented in Sect. III; the collapsing systems to be considered are described in Sect. IV; the behavior of the collapse of a spatially bounded spherical dust cloud, modelled into shells, is considered in Sect. V and finally, Sect. VI contains conclusions, a certain discussion, and prospects.

II. AR-VTG FOUNDATIONS

Let us now briefly summarize the AR-VTG basic equations, which were derived in [3, 4] from an appropriated action, which is a particularization of the general vector-tensor action given in [1]. The resulting field equations are:

$$G^{\mu \nu} = 8\pi (T^{\mu \nu}_{GR} + T^{\mu \nu}_{VT}) ,$$

(1)

$$2(2\varepsilon - \gamma) \nabla^\nu F_{\mu \nu} = J^A_\mu ,$$

(2)

where $G^{\mu \nu}$ is the Einstein tensor, $T^{\mu \nu}_{GR}$ is the GR energy momentum tensor, $J^A_\mu \equiv -2\gamma \nabla_\mu (\nabla \cdot A)$ with $\nabla \cdot A = \nabla_\mu A^\mu$, and

$$T^{\mu \nu}_{VT} = 2(2\varepsilon - \gamma)[F^{\mu \alpha} F^{\nu \alpha} - \frac{1}{4}g^{\mu \nu} F_{\alpha \beta} F^{\alpha \beta}]$$

$$-2\gamma[A^\alpha \nabla_\alpha (\nabla \cdot A) + \frac{1}{2}(\nabla \cdot A)^2]g^{\mu \nu}$$

$$-A^\mu \nabla^\nu (\nabla \cdot A) - A^\nu \nabla^\mu (\nabla \cdot A) .$$

(3)

Equation (2) leads to the following conservation law

$$\nabla^\mu J^A_\mu = 0$$

(4)

for the fictitious current J^A_μ. Moreover, the conservation laws $\nabla_\mu T^{\mu \nu}_{GR} = 0$ and $\nabla_\mu T^{\mu \nu}_{VT} = 0$ are satisfied by any solution of Eqs. (1) and (2) (see [1]).
The pair of parameters \((\varepsilon, \gamma)\) must satisfy the inequality \(2\varepsilon - \gamma > 0\) to prevent the existence of quantum ghosts and unstable modes in AR-VTG (see \([5]\) for references cited therein). The condition \(\gamma > 0\) must be required to have a positive \(A^\mu\) energy density in the background universe, which will play the role of vacuum energy; hence, the inequalities \(\varepsilon > \frac{\gamma}{2} > 0\) must be satisfied.

III. Vacuum Stationary Spherically Symmetric Metrics in AR-VTG

In the stationary spherically symmetric case, in Schwarzschild coordinates, the line element may be written as follows [see e.g., \([8]\)]:

\[
ds^2 = -e^\nu dt^2 + e^\lambda dr^2 + r^2(d\theta^2 + \sin^2\theta \, d\phi^2),
\]

where \(\nu\) and \(\lambda\) are functions of \(r\). Moreover, the covariant components \(A_\mu\) have the form:

\[
A_\mu \equiv (A_0, A_1, 0, 0).
\]

In the absence of any matter content, the form of functions \(\nu(r), \lambda(r), A_0(r), A_1(r)\), and \(\nabla \cdot A\) may be found in \([6]\). The resulting functions involve integration constants and some of them have not yet been fixed; nevertheless, the involved constants in \(A_0(r)\), and \(A_1(r)\) are not necessary to perform this research since, whatever their values may be, the AR-VTG line element is:

\[
ds^2 = -h(r) dt^2 + h^{-1}(r) dr^2 + r^2(d\theta^2 + \sin^2\theta \, d\phi^2),
\]

where

\[
h(r) = 1 - \frac{2M}{r} - \frac{\Lambda}{3} r^2 + \frac{\alpha^2 M^2}{r^2}.
\]

The dimensionless quantity \(\alpha^2 > 0\) is proportional to the positive number \(2\varepsilon - \gamma\). It is obvious that the metric \((8)\) is formally identical to the Reissner-Nordström-de Sitter metric of Einstein-Maxwell theory for a stationary spherically symmetric charged system, with charge \(Q\) such that \(Q^2 = \alpha^2 M^2\). For \(Q = 0\) this metric reduces to the Kottler-Schwarzschild-de Sitter metric \([9]\) of GR.
Finally, as it was shown in [6], the scalar $\nabla \cdot A$ is constant. Its value may be easily fixed taking into account Eq. (3). In fact, according to this equation, as r tends to infinity, the energy momentum tensor $T^{\mu\nu}_{VT}$ created by the total mass M tends to $-\gamma (\nabla \cdot A)^2 \eta^{\mu\nu}$, where $\eta^{\mu\nu}$ is the Minkowski metric. Since this energy momentum tensor must asymptotically vanish, one concludes that the relation $\nabla \cdot A = 0$ must be satisfied for the vacuum solution under consideration. This relation and the fact that M is a constant will be taken into account to fit the inner and outer solutions on the collapsing star boundary.

IV. GENERAL CONSIDERATIONS

In terms of the function $h(r) = -g_{00}(r)$, the event horizons are the hypersurfaces $r = r_h$ defined by the condition $h(r_h) = 0$. A complete discussion about horizons -for the line element defined by Eqs. (7) and (8)- may be found in [10]. The number of horizons and their radius depend on the values of M, Λ and α^2.

In the standard ΛCDM cosmological model of GR, most current observations are explained for a vacuum energy density parameter $\Omega_\Lambda \simeq 0.7$; namely, for $\Lambda \simeq 1.2 \times 10^{-46} \text{ km}^{-2}$. The same value also explains current observations in the framework of AR-VTG (see [5]); hence, this value of the cosmological constant is hereafter fixed. In AR-VTG cosmology, quantity $\nabla \cdot A$ takes on a constant value, and the cosmological constant is proportional to the square of this value; nevertheless, this constant must have another unknown origin in GR; anyway, in the stationary spherically symmetric case, it is denoted Λ and its treatment is the same in both theories. The line element (5) does not depend on time and, consequently, it does not describe a cosmological space-time, but the space-time in a region located well inside the so-called cosmological horizon and outside the black hole event horizon (if it exists). In this region one has $h(r) > 0$ as it should be. Sometimes, the black hole horizon does not exist and the metric is well defined everywhere -inside the cosmological horizon- excepting the singular point $r = 0$.

For realistic masses, M, ranging from those of the smallest black holes (star collapses) to the masses of the greatest super massive black holes located in galactic centers, the product ΛM^2 is many orders of magnitude smaller than unity and, as a result of this fact, the general discussion about horizons presented in [10] may be simplified. First of all, it may be easily proved that, for arbitrary realistic values of M and α^2 (see below), there is a
cosmological horizon with radius \(r_c \simeq 1.73 \times 10^{23} \text{ km} \); this is the outermost horizon, whose radius essentially depends on the cosmological constant, which has been fixed; furthermore, for \(r \) of the order of \(M (r << r_c) \), other inner horizons may exist. The radius of these horizons may be easily estimated, with very high precision, by neglecting the term \(\Lambda r^2/3 \) -order \(\Lambda M^2 \)- in the \(h(r) \) formula; the error due to this approximation is fully negligible. By solving then the equation \(h(r) = 0 \) one easily finds: (i) for \(\alpha^2 > 1 \), there are no solutions and, consequently, only the cosmological horizon exists, (ii) for \(\alpha^2 = 1 \), there is an unique double solution \(r = M \) corresponding to an inner event horizon and, (iii) for \(\alpha^2 < 1 \) there are two solutions \(r_{H-} \) and \(r_{H+} \) with \(r_{H-} < r_{H+} \). In such a situation, there are two inner horizons plus the cosmological one.

In the context of GR, after a supernova explosion, three cases may be distinguished:

(1) if the mass \(M \) of the supernova core is smaller than the Chandrasechar limit (\(\sim 1.4 M_\odot \)), a white dwarf is formed. As an example, let us mention Sirius B \[11\], with a mass \(M \sim M_\odot \) and a radius \(R \sim 8 \times 10^{-3} R_\odot \), this white dwarf has a ratio \(M/r \sim 3 \times 10^{-4} \) and a mean density \(\rho \sim 3 \times 10^6 \text{ gr/cm}^3 \); in this situation, the pressure of degenerate electrons prevents collapse, and the value of \(M/r \) is so small that the term \(\alpha^2 M^2/r^2 \) in Eq. (8) is negligible against \(2M/r \) for \(\alpha^2 \leq 2 \), which means that AR-VTG, with \(\alpha^2 \leq 2 \) (see below), and GR (\(\alpha^2 = 0 \)) lead to the same description of Sirius B. The same occurs for any white dwarf,

(2) for a mass \(M \gtrsim 1.4 M_\odot \), the pressure due to degenerate electrons cannot balance gravity and star contraction continues to reach densities much greater than \(\rho \sim 10^6 \text{ gr/cm}^3 \). For masses \(1.4 \lesssim M \lesssim 3 M_\odot \) \[12\], the pressure due to degenerate neutrons and their strong interactions may prevent collapse to form a dense neutron star with a small radius of the order of \(10 \text{ km} \) \[13\]; e.g., a great neutron star, with mass \(M = 2M_\odot \) and radius \(R \sim 10 \text{ km} \), has a ratio \(M/r \sim 0.15 \) and a mean density \(\rho \sim 2 \times 10^{15} \text{ gr/cm}^3 \) (see \[14\]). For this value of \(M/r \) and \(\alpha^2 \leq 2 \), the term \(\alpha^2 M^2/r^2 \) is less than 15\% of \(2M/r \); hence, small but non-negligible deviations between the neutron star structures in GR and AR-VTG should exist. Since these deviations could be too great for \(\alpha^2 >> 2 \), in this paper, it has been tentatively assumed the condition \(\alpha^2 \leq 2 \). The mass-radius relation must be estimated in the context of AR-VTG; namely, taking into account the \(A^\mu \) repulsion for different \(\alpha^2 \) values. This will be done elsewhere,

(3) for masses \(M \gtrsim 3M_\odot \), the pressure of degenerate neutrons cannot prevent collapse.
All the particles would reach the singularity $r = 0$ in a finite proper time, although this fall towards $r = 0$ cannot be observed from points with $r > 2M$ due to the existence of an event horizon at $r = 2M$. As the system approaches the singularity, its density grows, reaching greater values than the so-called Planck density. For these huge densities, classical gravity does not apply and quantum gravity might prevent the singularity; however, as it will show in next sections, the shells of a collapsing star cannot reach the singularity ($r = 0$) in AR-VTG due to the action of a strong A^μ repulsion. Nothing similar occurs in GR (just gravitation, that is, no external fields) where any neutral (not charged) shell collapses.

The question is: what happens with star and black hole formation in the context of AR-VTG for $\alpha^2 \leq 2$? A qualitative but accurate answer follows from points (1)-(3). For $M \lesssim 3 \ M_\odot$, GR and AR-VTG predict similar qualitative evolutions, even for the most massive observed neutron stars. The differences between both theories grow as M increases. For $M \gtrsim 3 \ M_\odot$, the nuclear density $\rho_N \sim 2 \times 10^{14} \ g/cm^3$ will be reached at a certain moment, t_N, as in neutron stars, but the pressure of degenerated nucleons cannot stop contraction when this density is reached and, consequently, collapse continues. Let us study this last phase starting at time t_N. Close to this time RG and AR-VTG evolutions would be comparable, but these evolutions dramatically deviate later. In GR, contraction cannot be stopped and particles converge towards $r = 0$; however, in the context of AR-VTG, it may be proved that the repulsive gravitational forces quickly grow as r decreases, in such a way that, the fall of the fluid shells towards $r = 0$ is stopped when certain minimum bounce radius is reached. Nevertheless, specifically because of this increasing repulsive force, the innermost shells are gravitationally less bounded, and hence, collapse more slowly than the outer ones, and, as it happens with an electromagnetic repulsive force for a collapsing charged dust, shell crossings is a possibility that have to be reviewed; this is complemented with an analysis about the formation of horizons and trapped surfaces. The determination of the conditions under which trapped surfaces are formed (if there exist) is an interesting, or furthermore necessary, task because it may reveal the presence of singularities in a gravitational collapse [15]. Analytical models for the evolution of the dust collapsing cloud is considered in next section, where the aforementioned issues are also examined.
V. SINGULARITIES IN GR AND AR-VTG

In the framework of GR, any shell – including the outermost one – (see [16]) of the pressureless collapsing dust, reaches point $r = 0$ in a proper finite time $\Delta \tau$, thus, the collapse of the whole dust cloud is unavoidable. However, in AR-VTG, the outermost shell has a very different behavior. One could expect that the dust sphere’s surface moves as a test particle in the AR-VTG stationary spherically symmetric spacetime defined by the line element given by Eqs. (7) and (8). Neglecting the term $\Lambda r^2/3$, the radial motion is ruled by the equation:

$$\frac{d\tau}{dx} = \pm M \left[(E^2 - 1) + \frac{2}{x} - \frac{\alpha^2}{x^2} \right]^{-1/2},$$

(9)

where E is the energy per unit rest mass, τ is the proper time and x is defined by the ratio $x \equiv r/M$. The causal structure of this spacetime is analogous to the Reissner-Nordström one (see figure 1 in [17]) for $\alpha^2 < 1$, and the apparent horizons are defined by the expression:

$$r_{H\pm} = M \left(1 \pm \sqrt{1 - \alpha^2} \right).$$

(10)

A possible solution of Eq. (9) would lead to damped oscillations with a small period driving the test particle to a state of minimum gravitational energy with a finite radius. Point $r = 0$ would be not reached by the aforementioned test particle; this situation is due to the existence of the repulsive component of the AR-VTG modified gravity. As it happens in a collapsing charged dust (see [17]), the motion of the outermost shell may not be independent of the evolution of the inner dust cloud. For instance, in the same way that in [17], the shell crossings may break down prior expectations. This possibility has to be analyzed.

Hereafter, it is assumed that the collapsing core is big enough and pressure gradients become negligible against gravitational forces. This core is an ideal fluid with $T^{\mu\nu}_{GR} = \rho u^\mu u^\nu$, where ρ is the energy density, $u^\mu = dx^\mu/d\tau$ the 4-velocity, and τ the proper time. The non vanishing components of the 4-velocity are u^0 and u^1.

8
A. The Basic Equations in Schwarzschild-like coordinates

Let us first consider Schwarzschild-like coordinates to write the interior non stationary spherically symmetric metric in the form (5), with $\nu = \nu(r, t)$ and $\lambda = \lambda(r, t)$. In this way, the interior solution may be matched with the exterior vacuum solution given by Eqs. (7) and (8).

It has been proved (see above) that the scalar $\nabla \cdot A$ vanishes outside the collapsing core. Let us now assume that, in the spherically symmetric case, this scalar vanishes everywhere (also inside the collapsing object); so, there are no matching problems with $\nabla \cdot A$ at the core surface. This assumption will be proved to be consistent with the AR-VTG equations and it is necessary to coherently match the inner and outer solutions (see below). In spite of the fact that $\nabla \cdot A$ vanishes everywhere, functions A_0 and A_1 do not simultaneously vanish and AR-VTG does not coincide with GR in the spherically symmetric case (spherical collapse).

For $\nabla \cdot A = 0$, the field equations (2) reduces to

$$\nabla^\nu F^{\mu \nu} = \frac{1}{\sqrt{-g}} \partial (\sqrt{-g} F^{\mu \nu})/\partial x^\nu = 0 . \quad (11)$$

Inside the collapsing object, the non vanishing components of the AR-VTG vector field are $A_0 = A_0(r, t)$ and $A_1 = A_1(r, t)$ and, the nonvanishing components of $F_{\mu \nu}$ are $F_{01} = -F_{10} = \partial A_1/\partial t - \partial A_0/\partial r$. It is then easily proved that Eqs. (11) reduce to

$$\partial (r^2 e^\sigma F_{01})/\partial r = 0 \quad (12)$$

and

$$\partial (r^2 e^\sigma F_{01})/\partial t = 0 , \quad (13)$$

where $\sigma = (\lambda + \nu)/2$; hence, $r^2 e^\sigma F_{01}$ quantity is a constant.

In the absence of electrical charges and currents, Eq (11) is also valid in Einstein-Maxwell theory. In such a case, the relation $r^2 e^\sigma F_{01} = 0$ is satisfied (see [18]). In AR-VTG, without charges and currents, we can write $r^2 e^\sigma F_{01} \equiv D$, where D is a nonvanishing constant and, then, the field equations (11) lead to:

$$8\pi \left[\left(\varepsilon - \gamma \right) \frac{D^2}{r^4} - \rho u^0 u_0 \right] = \frac{1}{r^2} + e^{-\lambda} \left(\frac{\lambda'}{r} - \frac{1}{r^2} \right) , \quad (14)$$

$$8\pi \left[\left(\varepsilon - \gamma \right) \frac{D^2}{r^4} - \rho u^1 u_1 \right] = \frac{1}{r^2} - e^{-\lambda} \left(\frac{\nu'}{r} + \frac{1}{r^2} \right) , \quad (15)$$
\[8\pi \rho u^1 u_0 = e^{-\frac{\lambda}{r}}. \] (16)

With the essential aim of matching metrics at the core surface, let us write the interior metric as follows:
\[e^{-\lambda} = 1 - \frac{2m(r,t)}{r} + 8\pi \left(\varepsilon - \frac{\gamma}{2} \right) \frac{D^2}{r^2}. \] (17)

A similar procedure may be found in [18]. Since \(D \) is a constant, this last equation plus Eq. (14) give:
\[\frac{\partial m}{\partial r} = -4\pi \rho r^2 u_0 u^0, \] (18)

and, from Eqs. (16) and (17) one easily obtains
\[\frac{\partial m}{\partial t} = 4\pi \rho r^2 u_0 u^1. \] (19)

Finally, from the 4-velocity definition plus Eqs. (18) and (19) it follows that
\[\frac{dm}{d\tau} = \frac{\partial m}{\partial r} u^1 + \frac{\partial m}{\partial t} u^0 = 0. \] (20)

According to this equation, the proper-time derivative of \(m \) with respect to an observer comoving with the fluid vanishes, which means that the mass inside a sphere comoving with the collapsing matter is conserved. This is only true in the absence of pressure. The same conservation holds in Einstein-Maxwell theory [18]. It is not possible for \(\nabla \cdot A \neq 0 \). In particular, the total mass \(M \) will be conserved since it is the mass inside the comoving boundary. This fact is necessary to match the interior metric (17) and the exterior one; in fact, on the boundary one has \(m(r,t) = M \) and by choosing
\[8\pi \left(\varepsilon - \frac{\gamma}{2} \right) D^2 = \alpha^2 M^2, \] (21)

the exterior metric has the same form as that defined by Eqs. (7) and (8).

B. The Basic Equations in comoving coordinates

Hereafter, we will try to use comoving coordinates \((T,a,\theta,\phi)\) to get an analytical shell model inside the collapsing object; this will lead us to a revision of the shell crossings issue (an extensive analysis can be found in [21] within the framework of GR), that is the collision of two adjacent dust shells. As stated in [22], this fact is directly related to the absence of
any coupling between the motion of the different dust shells. By using these coordinates, the line element inside the collapsing object has the following form:

$$ds^2 = -e^\nu dT^2 + e^\lambda da^2 + R^2 (d\theta^2 + \sin^2 \theta d\phi^2) ,$$

(22)

where ν, λ, and $R > 0$ are functions of a and T (see [16, 18]).

For a collapsing spherically symmetric pressureless fluid, the conservation law $\nabla_\mu T^\mu_{GR} = 0$, which is valid in GR as well as in AR-VTG (see Sect. [1]), leads to

$$\dot{\lambda} + \frac{4R}{R} = -2\frac{\dot{\rho}}{\rho} ; \nu' = 0 .$$

(23)

Hereafter, the prime (dot) denotes a derivative with respect to coordinate a (T). Since function ν does not depend on a ($\nu' = 0$), the time T may be redefined to have $\nu = 0$, and the resulting coordinates are synchronous and comoving. In these coordinates the line element reads as follows [16, 19]:

$$ds^2 = -dT^2 + e^\lambda da^2 + R^2 (d\theta^2 + \sin^2 \theta d\phi^2) .$$

(24)

Moreover, due to the remaining coordinate degree of freedom left, comoving coordinate a may be chosen in such a way that, inside the collapsing core, it takes values inside the interval $0 \leq a \leq 1$, with $a = 0$ at the center and $a = 1$ for the core boundary.

By using the line element [24], Eqs. [11] give:

$$(R^2 e^{\lambda/2} F^{01})' = 0$$

(25)

and

$$(R^2 e^{\lambda/2} F^{01})' = 0 .$$

(26)

These two equations express that quantity $R^2 e^{\lambda/2} F^{01}$ is a constant. Moreover, in Schwarzschild coordinates, it has been proved that $r^2 e^\sigma F^{01}$ quantity is constant too (see subsection V B).

Both expressions give $\sqrt{-g} F^{01}$ in the corresponding coordinates. Both constants are identical since $\sqrt{-g} F^{01}$ behaves as an scalar under coordinate transformations of the form $a = a(r, t)$ and $T = T(r, t)$ with fixed coordinates θ and ϕ, which has the form of the
transformations between comoving synchronous and Schwarzschild coordinates. Hence, in comoving synchronous coordinates, we can write

\[R^2 e^{\lambda/2} F^{01} = D , \]

and Eq. (21) holds. On account of these equations, plus the above expressions for \(T^\mu_\nu_{GR} \) and \(T^\mu_\nu_{VT} \), Eqs. (1) may be written as follows

\[-8\pi \left[\left(\varepsilon - \frac{\gamma}{2} \right) \frac{D^2}{R^4} + \rho \right] = \frac{1}{R^2} \left[e^{-\lambda} \left(2RR'' + R^2 - \lambda'RR' \right) \right. \]

\[\left. - \left(\dot{\lambda}RR + \ddot{R}^2 \right) - 1 \right] , \]

\[-8\pi \left[\left(\varepsilon - \frac{\gamma}{2} \right) \frac{D^2}{R^4} \right] = \frac{1}{R^2} \left[e^{-\lambda} R^2 - \left(2R\dot{R} + \ddot{R}^2 \right) - 1 \right] , \]

\[- \frac{1}{R} e^{-\lambda} (2\dot{R}' - \dot{\lambda}R') = 0 . \]

As it is shown in [19], the solution of Eq. (30) is given by:

\[e^\lambda = \frac{R^2}{1 - \beta f^2(a)} , \]

where \(\beta = 0, \pm 1 \), and \(f(a) \) is an arbitrary function of the radial coordinate \(a \) subject the sole condition \(1 - \beta f^2(a) > 0 \). To make the reader easier, let us mention that the function \(f \) we use and the used one by Landau [16] and many other authors –say \(f_L \)–, are related by the expression \(f_L = -\beta f^2 \).

Substituting expression (31) in Eq. (29), we find

\[2R\dot{R} + \ddot{R}^2 = -\beta f^2(a) + \frac{\alpha^2 M^2}{R^2} . \]

This equation reduces to the corresponding equation of GR [19] for \(\alpha^2 = 0 \). An integration gives

\[\dot{R}^2 = -\beta f^2(a) + \frac{F(a)}{R} - \frac{\alpha^2 M^2}{R^2} , \]

where \(F(a) \) is a new arbitrary function.

By combining Eqs. (28), (31), and (33) one easily gets the following formula for the fluid energy density of the \(a \)-shell at time \(T \):

\[8\pi \rho(a, T) = \frac{F'(a)}{R^2(a, T) \dot{R}'(a, T)} . \]
Equation (33) may be rewritten in the form
\[dT = \frac{RdR}{\sqrt{-\beta R^2 f^2(a) + RF(a) - \alpha^2 M^2}} \] (35)
and, evidently, the inequality
\[P_a(R) \equiv \beta R^2 f^2(a) - RF(a) + \alpha^2 M^2 < 0 \] (36)
must be satisfied whatever the radial coordinate value may be.

Assuming the weak energy condition \((T_{\mu\nu}V^\mu V^\nu \geq 0)\) in GR, it follows that \(F' \geq 0\) [20].

It is worth noting that the same conclusion can be drawn in AR-VTG from the expression \(T^\mu{}_{\nu} = T_{\mu\nu}^{GR} + T_{\mu\nu}^{VT}\). In the same manner \(F(a)\) can be interpreted as twice of the weighted mass (by the factor \(\sqrt{1 - \beta f^2(a)}\)) inside a volume \(V\) of coordinate radius \(a\), so \(F\) must be positive everywhere ; \(\beta f^2 < 1\) must hold for a Lorentzian manifold, as mentioned previously, in relation with Eq. (31).

1. Elliptic Regions

Let us first consider \(\beta = 1\). In such a case, the above inequality (36) requires \(F(a) > 0\) for any given shell labeled by the comoving coordinate \(a\). If functions \(F(a)\) and \(f(a)\) are chosen in such a way that
\[\alpha^2 M^2 < F^2/4f^2, \] (37)
the condition \(0 < F^2(a) - 4f^2(a)\alpha^2 M^2 \equiv \Delta^2(a)\) is satisfied for any \(a\), and the equation \(P_a(R) = 0\) has two real solutions:
\[R_{\text{min}} = [F(a) - \Delta(a)]/2f^2(a) > 0 \] (38)
and
\[R_{\text{max}} = [F(a) + \Delta(a)]/2f^2(a) > 0. \] (39)

It may be trivially verified that the inequality (36) is satisfied by \(R\) values ranging inside the interval \([R_{\text{min}}, R_{\text{max}}]\). If a shell labeled as \(a\) arrives to \(R = R_{\text{min}}(a)\) at time \(T = T_0(a)\), an integration of Eq. (35) leads to
\[T - T_0(a) = -\frac{1}{f^2} \sqrt{-R^2 f^2 + RF - \alpha^2 M^2} \]
\[+ \frac{F}{f^3} \sin^{-1} \sqrt{\frac{f^2 R}{\Delta} + \frac{\Delta - F}{2\Delta}}. \] (40)
Denoting \(\chi \equiv \frac{2aM}{F} \), Eq. (40) is written in the following parametric form:

\[
R = \frac{F}{2f^2} [1 - \sqrt{(1 - \chi^2)} \cos \eta],
\]

\[
T - T_0(a) = \frac{F}{2f^3} [\eta - \sqrt{(1 - \chi^2)} \sin \eta],
\]

where \(\eta \) is the parameter.

As it occurs with a test particle in the AR-VTG stationary spherically symmetric background, inner shells could move between two \(R \) values, which are turning points satisfying the conditions \(\dot{R}(R_{max}) = \dot{R}(R_{min}) = 0 \) as it follows from Eq. (33). In order to avoid shell crossings in this motion, the arbitrary functions involved in the dynamic equations could be chosen to ensure the condition \(R'(a, T) > 0 \), which guarantees (strictly enforced) no shell crossings \[21, 23\]. This concern will be reviewed in the subsection \(\text{VC} \).

2. **Parabolic Regions**

For \(\beta = 0 \) and \(F(a) > 0 \), inequality (36) reduces to \(R > \alpha^2 M^2 / F(a) \), which means that any admissible \(R \) value must be greater than

\[
R_{min} = \alpha^2 M^2 / F(a). \tag{42}
\]

According to Eq. (33), there is a turning point at \(R = R_{min} \), where \(\dot{R} \) vanishes. Condition \(F(a) < 0 \) is not admissible, and now the resulting expression after integration of Eq. (35) is:

\[
T - T_0(a) = \frac{2\sqrt{FR - \alpha^2 M^2}}{3F^2} \left(FR + 2\alpha^2 M^2 \right). \tag{43}
\]

3. **Hyperbolic Regions**

Finally, for \(\beta = -1 \), equation \(P_a(R) = 0 \) has only a positive solution given by

\[
R_{min} = [-F(a) + \tilde{\Delta}(a)]/2f^2(a) > 0, \tag{44}
\]

where \(\tilde{\Delta}(a)^2 \equiv F^2(a) + 4f^2(a)\alpha^2 M^2 > 0 \) for any \(a \). According to (36) any admissible \(R \) value must be greater than \(R_{min} \). By using Eq. (33) one easily concludes that \(R = R_{min} \) is a unique turning point where \(\dot{R} \) vanishes. Now, the evolution equation for \(R(a, T) \) takes the
form

\[T - T_0(a) = \frac{1}{f^2} \sqrt{R^2 f^2 + R F - \alpha^2 M^2} \]

\[- \frac{F}{f^3} \sinh^{-1} \sqrt{\frac{f^2 R}{\tilde{\Delta}}} + \frac{F - \tilde{\Delta}}{2\tilde{\Delta}}, \] (45)

or parametrically, can be written as:

\[R = \frac{F}{2f^2} \left[\frac{\tilde{\Delta}}{F} \cosh \eta - 1 \right], \]

\[T - T_0(a) = \frac{F}{2f^3} \left[\frac{\tilde{\Delta}}{F} \sinh \eta - \eta \right]. \] (46)

Notice that the Eqs. (40)-(46) describe an expanding or collapsing phase, in accordance with \(T \geq T(a) \) or \(T \leq T(a) \), respectively. We can parametrize this fact replacing \(T - T_0(a) \) by \(\epsilon[T - T_0(a)] \) at Eqs. (40)-(46), where the new \(\epsilon \) parameter values are: \(\epsilon = +1 \) for expansion and \(\epsilon = -1 \) for the collapse.

C. Shell Crossings

For \(\beta = 0 \) and \(\beta = -1 \) just one turning point exists, and oscillations of shells are not possible. There is only a minimum \(R_{\text{min}} \) and, consequently, falling shells bounce at \(R = R_{\text{min}} \) and then expand forever.

The above discussion of cases \(\beta = 1 \) (two turning points), \(\beta = 0 \) (one) and \(\beta = -1 \) (one) is consistent with the behavior of a test particle in the fixed AR-VTG stationary spherically symmetric background, which has two turning points for \(E < 1/2 \) and only one for \(E \geq 1/2 \). Let us discuss separately the existence of shell crossings for \(\beta = 1, \beta = 0, \) and \(\beta = -1 \).

In the first case, using the following expression for \(R' \) –which is obtained from Eqs. (41)– (47)
it can be proved that, for any shell, quantities $R'[R_{\text{min}}(a)]$ and $R'[R_{\text{max}}(a)]$ have opposite signs and, consequently, $R'[R(a,T)]$ vanishes for some R between $R_{\text{min}}(a)$ and $R_{\text{max}}(a)$; hence, for $\beta = 1$ the use of comoving coordinates numbering shells is not a good choice to fully describe the internal shells collapse. A similar situation it is analyzed in [17] and [24] for a spherically symmetric charged dust collapse, and also in [25] where the charged dust solution of Ruban [26], a generalisation of the Datt [27] solution for a non-charged dust is considered. It can be found in [28] that, in spite of the inclusion of a positive cosmological constant, this repulsion does not prevent the shell crossings. However, it is possible to describe a first bounce if the comoving time T origin is not chosen at $R_{\text{max}}(a)$, say $R_N(a)$, in which case, a set of functions $F(a)$, $f(a)$ and $T_0(a)$ so that $R'(a) > 0$, $F(a) > 0$ and $F'(a) > 0$ inside the interval $[R_N, R_{\text{min}}]$ can be found, that is, our picture has begun with a certain $\dot{R} \neq 0$; in such a case the following inequality have to be satisfied:

$$\frac{F'}{F} < \frac{f'}{f} \left(1 - \frac{\Delta}{F}\right).$$

(48)

When the $\beta = 0$ case is considered, taking the derivative of Eq. (43) it follows that

$$R' = \frac{1}{3} \frac{F'}{F} R + \frac{4}{3} \frac{F'}{F^2} \alpha^2 M^2 \left(1 - 2 \frac{\alpha^2 M^2}{FR}\right) - T_0' \dot{R},$$

(49)

and therefore

$$\lim_{T \to T_0(a)} R'(a,T) = -\frac{F' \alpha^2 M^2}{F^2} = R'_{\text{min}}(a).$$

From Eq. (34) it is immediately evident that

$$\lim_{T \to T_0(a)} 8\pi \rho(a,T) = -F^4/\alpha^6 M^6 = 8\pi \rho_{\text{min}}(a) < 0.$$
\[
R' = \left(\frac{F'}{F} - \frac{2f'}{f}\right)R \nonumber \\
- \left[T_0' + \left(\frac{F'}{F} - \frac{3f'}{f}\right)(T - T_0)\right]\dot{R}
+ \frac{2\alpha^2M^2}{\Delta^2}\left(\frac{F'}{F} - \frac{f'}{f}\right)\left(F - \frac{2\alpha^2M^2}{R}\right).
\tag{50}
\]

Then taking into account the condition \(R'[R_{\text{min}}(a)] > 0\), that is accomplished iff the inequality
\[
\frac{F'}{F} < \frac{f'}{f}\left(1 - \frac{\tilde{\Delta}}{F}\right) \tag{51}
\]
is satisfied for any \(a\)-shell, we may select an appropriate function \(T_0(a)\) in order to guarantee \(R'(a, T) > 0\) in the interval \([R_N, R_{\text{min}}]\). In the next section, other considerations will be taken into account which will limit this result.

For a general solution, numerical methods and codes similar to those used to study the collapse in GR \[29-33\] have to be adapted to AR-VTG. Nevertheless, this is a hard task which is out of this paper’s scope.

D. Apparent Horizons and Trapped Surfaces

Now we analyze the apparent horizons for the AR-VTG, that reveal the boundary of the trapped surfaces specifying the region from which no light is allowed to escape. In order to obtain, the condition \(g^\mu\nu\partial_\mu R\partial_\nu R = 0\) and the Eqs. (31) and (33) are used. The table below (Table I) shows the three different cases that can happen.

As it can be appreciated, the existence and number of apparent horizons, do not depend on the local type of time evolution defined by \(\beta\) value, furthermore do not depend on the particular form of the \(f\) function. The \(R = F(a)\) horizon of GR is recovered when setting \(\alpha = 0\), as expected.

In the following, we present the different situations, depending on \(\beta\) value, for the last entry at Table I, that is, when there are two apparent horizons. Firstly, for \(\beta = 0\), taking into account Eqs. (42)-(43) and the \(R_{H\pm}\) definition, is easy to derive the inequalities \(R_{\text{min}} < R_{H-} < R_{H+}\) and \(T_0 > T_{H-} > T_{H+}\), where \(T_{H\pm}\) represents the time when the \(a\)-shell crosses the horizon \(R_{H\pm}\); the same results are obtained in the case of \(\beta = -1\) when considering Eqs. (44)-(45). And secondly, for \(\beta = 1\), in which case two turning points
exist, using Eqs. (38)-(40) together with the fact that condition $f^2 < 1$ must be satisfied, the inequalities $R_{\text{min}} < R_{H_-} < R_{H_+} < R_{\text{max}}$ and $T_0 > T_{H_-} > T_{H_+} > T_{\text{max}}$ are obtained, where $T_{\text{max}} = T_0 - \pi F/2f^3$ represents time T value for a a-shell at R_{max}. In this case, the condition for the last row at Table 1 with the already mentioned inequality $f^2 < 1$, provides the restriction (37) to be fulfilled. So, in any case, any signal emitted from R_{min} (that is at $T = T_0$) is future trapped at the region above $T = T_{H_-}$.

VI. DISCUSSION AND CONCLUSIONS

Our starting point has been the vacuum static spherically symmetric metric of AR-VTG given by Eqs. [7] and [8]. This metric and some values of r_{BH} corresponding to $\alpha^2 < 1$ were found in [6], where the singularity was not considered at all. A very different behavior to GR is found in the introduction of Sect. [9], where a test particle on the AR-VTG fixed background is presented; it is revealed that oscillatory trajectories for the aforementioned particles can be obtained. One of the first published descriptions of the motion of a point on the surface of a charged collapsing ball of mass M and charge Q can be found at [34]. This description is fully equivalent to our case, however in AR-VTG gravity no charge is necessary to obtain a similar motion. The $\alpha^2 < 1$ condition in AR-VTG is analogous to charge to the mass ratio one ($Q/M)^2 < 1$ in the Reissner-Nordström spacetime, where the surface of the collapsing sphere crosses the inner horizon $r_{\text{inh}} = M - \sqrt{M^2 - Q^2}$ (in AR-VTG $r_{H_-} = M(1 - \sqrt{1 - \alpha^2})$). An equivalent spacetime diagram can be found at [35].

The dynamic properties of AR-VTG are presented in Sect. [9], divided in different subsections, were the dust core is considered. The study of the internal core in comoving coordinates leads to, as in GR, three possible families of solutions that classify the spacetime as bound, marginally bound or unbound [20]. This fact has been characterized with $\beta = 1$, $\beta = 0$ and $\beta = -1$ respectively. In all three cases a minimum value for R has been found, say $R_{\text{min}}(a,T_0(a))$, where $\dot{R}(a,T_0(a)) = 0$ and which is reached after crossing the apparent horizon at T_{H_-}, then the collapse is halted and reversed. The same fact was first found for a non charged dust in an external electromagnetic field by Shikin [36]. So, under the premise that the real Universe and astrophysical objects (in general) have no net electric charge, AR-VTG provides an interesting alternative for preventing gravitational
singularities as a pure classical gravitation effect.

The shell crossings issue has been analyzed, and several similarities can be observed when a charged dust is considered (see Sections VI and VII in [24]). However there are also differences, for instance, the absence of real charges eliminates fundamental equations relative to these, and changes some of the regularity conditions at the center of symmetry as the fact that charge has to be zero there. In AR-VTG, while using comoving coordinates, we have found the unavoidable shell crossings for $\beta = 0$, for any collapsing a-shell before reaching $R_{\text{min}}(a)$. So, the use of comoving coordinates does not allow the possibility to follow further evolution. For $\beta = 1$ it is possible to find a set of appropriate free functions that should allow us to avoid shell crossings collapse during a first bounce at R_{min}, although it will be unavoidable during the expansion before reaching R_{max}. Finally, when $\beta = -1$ it has been found, apparently, a configuration (defined by the inequality (51)) avoiding the issue, but there are extra constraints to be considered due to the regularity at the symmetry center. From inequality (51) it is immediately derived that the quotient f'/f has to be negative. Therefore one of the conditions related as necessary at [37] for a charged dust, which is $f(a_c) = 0$ (where $a = a_c$ is the symmetry center), cannot be honored. Nevertheless, an initial cloud with a Minkowskian central bubble should not require the $f(a_c) = 0$ condition [17], and then inequality (51) may be achieved. Following the same procedure that Krasiński and Bolejko present in [24], it can be demonstrated that also in AR-VTG gravity shell crossings is a coordinate singularity, so inherent to the coordinates selection. According to [23] the degeneracy created in the metric (24) when $R' = 0$ can be saved through a C^0 extension of it. Once the fluid has been modeled into shells, this process represents the collisions of adjacent shells and it is related to the fact that there is no coupling between the movement of different shells.

The fundamental symmetry of AR-VTG is $A^\mu \rightarrow A^\mu + \nabla^\mu \Phi$ with $\nabla_\mu \nabla^\mu \Phi = 0$, which is different from the standard U(1) gauge symmetry [5]; the quantities $\nabla \cdot A$ and $F_{\mu\nu}$ are invariant under these transformations. In cosmology, a quantity proportional to $(\nabla \cdot A)^2$ is a candidate to play the role of dark energy with an equation of state $w = p/\rho = -1$, and AR-VTG has been demonstrated to be in agreement with the background and perturbed spacetimes [3, 5, 7], while $F_{\mu\nu}$ vanishes. In this paper it has been shown that a quantity related with F_{01} plays the role of the repulsive component of the gravitation and may prevent the gravitational collapse, while $\nabla \cdot A$ is null.
The influence of the repulsive component of AR-VTG on neutron star structure is also an open problem deserving attention. The presented dust collapse model provides an interesting alternative of a non singular collapse as may be the weakly charged dust. An interesting open issue is the study of the A_μ field perturbations that may save the unstable character found in a charged black hole where the innermost sections are unstable to electromagentic perturbations [17].

ACKNOWLEDGMENTS

This work has been supported by the Spanish “Ministerio de Economía y Competitividad” and the “Fondo Europeo de Desarrollo Regional” MINECO-FEDER Project No. FIS2015-64552-P. We thank J. A. Morales-Lladosa for useful discussion and support.

[1] C. M. Will, *Theory and experiment in gravitational physics* (Cambridge University Press, NY, 1993).
[2] C. M. Will, Living Rev. Relativity 9, 3 (2006)
[3] R. Dale, J. A. Morales and D. Sáez, arXiv: 0906.2085[astro-ph.CO].
[4] R. Dale and D. Sáez, Phys. Rev. D 85, 124047 (2012).
[5] R. Dale and D. Sáez, Phys. Rev. D 89, 044035 (2014).
[6] R. Dale, M. J. Fullana and D. Sáez, Astrophys. Space Sci. 357, 116 (2015).
[7] R. Dale and D. Sáez, J. Cosmol. Astropart. Phys. 01, 004 (2017).
[8] H. Stephani et al., *Exact Solutions of Einstein’s Field Equations* (Cambridge University Press, Cambridge, 2003).
[9] F. Kottler, Ann. Phys. 361, 401 (1918).
[10] K. Lake, Phys. Rev. D 19, 421 (1979).
[11] J. B. Holberg et al., Astrophys. J. 497, 935 (1998).
[12] S. L. Shafiro and S. A. Teukolski, *Black holes, white dwarfs, and neutron stars* (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004).
[13] F. Ozel and P. Freire, Annual Review of Astronomy and Astrophysics 54, 401 (2016).
[14] C. W. Misner, K. S. Thorne and J. A. Wheeler, *Gravitation* (W. H. Freeman and Company,
[15] R. Penrose, Phys. Rev. Lett. 14, 57 (1965).
[16] L. D. Landau and E. M. Lifshitz, The classical theory of fields (Elsevier Ltd., Oxford, 1975).
[17] A. Ori, Phys. Rev. D 44, 2278 (1991).
[18] J. D. Bekenstein, Phys. Rev. D 4, 2185 (1971).
[19] H. Stephani, Relativity: an introduction to special and general relativity (Cambridge University Press, Cambridge, 2004).
[20] P. S. Joshi, Gravitational Collapse and Spacetime Singularities (Cambridge University Press, Cambridge, 2003).
[21] C. Hellaby and K. Lake, Astrophys. J. 290, 381 (1985).
[22] A. Ori, Class. Quant. Grav. 7, 985 (1990).
[23] R. P. A. C. Newman, Class. Quant. Grav. 3, 527 (1986).
[24] A. Krasiński and K. Bolejko, Phys. Rev. D 73, 124033 (2006).
[25] A. Krasiński and G. Giono, Gen. Relativ. Gravit. 44, 239 (2012).
[26] V. A. Ruban, Inhomogeneous cosmological models with planar and pseudospherical symmetries (Third Soviet Gravitational Conference, Erevan, p. 348 - 351, 1972).
[27] B. Datt, Zeitschrift für Physik 108, 314 (1938).
[28] S. M. C. V. Gonçalves, Phys. Rev. D, 63 124017 (2001).
[29] J. A. Font, Living Rev. Relativity 6, 4 (2003).
[30] C. R. Ghezzi, Phys. Rev. D, 72 104017 (2005).
[31] C. R. Ghezzi, P.S. Letelier, Phys. Rev. D 75, 024020 (2007).
[32] E. O’Connor, C. D. Ott, Class. Quant. Grav. 27, 114103 (2010).
[33] D. Gerosa, U. Sperhake and C. D. Ott, Class. Quant. Grav. 33, 135002 (2016).
[34] I. D. Novikov, Astronomicheskii Zhurnal 43, 911 (1966).
[35] J. Plebański, A. Krasiński An Introduction to General Relativity and Cosmology (Cambridge University Press, Cambridge, 2006).
[36] I. S. Shikin, Commun. Math. Phys. 26, 24 (1972).
[37] P. A. Vickers, Ann. Inst. Henri Poincaré 18, 137 (1973).
TABLE I. AR-VTG apparent horizons in comoving coordinates. For simplicity we define $\mathcal{M}(a) \equiv F(a)/2$.

Condition	Number of horizons	R Value
$\mathcal{M} < \alpha M$	No horizon	Not applicable
$\mathcal{M} = \alpha M$	One horizon	$R_H \equiv \mathcal{M} = \alpha M$
$\mathcal{M} > \alpha M$	Two horizons	$R_{H\pm} \equiv \mathcal{M} \pm \sqrt{\mathcal{M}^2 - \alpha^2 M^2}$