Differential Geometry on Linear Quantum Groups

Peter Schupp, Paul Watts and Bruno Zumino

Department of Physics
University of California
and
Theoretical Physics Group
Physics Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720

Abstract

An exterior derivative, inner derivation, and Lie derivative are introduced on the quantum group $GL_q(N)$. $SL_q(N)$ is then obtained by constructing matrices with determinant unity, and the induced calculus is found.

*This work was supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098 and in part by the National Science Foundation under grant PHY90-21139.
Disclaimer

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof of The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.
1 Introduction

The general theory of differential calculi on quantum groups is due to Woronowicz [1], and a number of interesting papers have been written since (cf. [2, 3]). In this paper, we present an explicit formulation of the differential geometry on the quantum groups $GL_q(N)$ and $SL_q(N)$. We will show how a calculus incorporating a closed algebra of derivations can be introduced on these quantum groups. We approach the subject from a more physics-oriented perspective, presenting commutation relations between the various matrix elements, differential operators, forms, etc. The Hopf algebraic nature of the subject is deemphasized; there are occasional references to such objects as “antipode”, but in general the focus is on a formulation which is suitable for computations. (A treatment of some of the material contained here using the more mathematical structures of quasitriangular Hopf algebras will be presented in a forthcoming paper [4].)

Many of the conventions and notations we use can be found in [5], as well as other references herein.

2 $GL_q(N)$

2.1 The Quantum Group $GL_q(N)$

The R-matrix for $GL_q(N)$, which of course satisfies the Yang-Baxter equation

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12},$$

(1)

is given in [3] as

$$R_{12} = q \sum_i e_{ii} \otimes e_{ii} + \sum_{i \neq j} e_{ii} \otimes e_{jj} + \lambda \sum_{i > j} e_{ij} \otimes e_{ji},$$

(2)

where $i, j = 1, \ldots, N$, $\lambda = q - q^{-1}$, and e_{ij} is the $N \times N$ unit matrix with lone nonzero element at (i, j). This matrix satisfies the characteristic equation

$$\hat{R}_{12}^2 - \lambda \hat{R}_{12} - 1 = 0,$$

(3)
where \hat{R}_{12} is defined by
\begin{equation}
(\hat{R}_{12})^{ij}_{kl} = (P_{12}R_{12})^{ij}_{kl} = (R_{12})^{ji}_{kl},
\end{equation}
with P_{12} being the permutation matrix which exchanges spaces 1 and 2, as above. The defining representation for the quantum group $GL_q(N)$ is given by matrices A satisfying
\begin{equation}
R_{12}A_1A_2 = A_2A_1R_{12}.
\end{equation}
The determinant of such a matrix can be introduced in the following way: let $\{x^i\}$ be the N coordinates of the quantum hyperplane whose transformation group is $GL_q(N)$, and let $\{dx^i\}$ be the associated differentials. The commutation relations between these quantities which are preserved under such transformations are
\begin{align}
x^j x^i &= q^{-1}(R_{12})^{ij}_{kl}x^k x^l, \\
x^j dx^i &= q(R_{12})^{ij}_{kl}dx^k x^l, \\
dx^j dx^i &= -q(R_{12})^{ij}_{kl}dx^k dx^l.
\end{align}
These commutation relations allow us to define the Levi-Civita tensor as
\begin{equation}
dx^i_1 dx^i_2 \ldots dx^i_N = \epsilon^i_1^{i_2 \ldots i_N} dx^1 dx^2 \ldots dx^N.
\end{equation}
This tensor satisfies the relations
\begin{align}
(R_{0N} \ldots R_{02}R_{01})^{i_0i_1i_2 \ldots i_N}_{j_0j_1j_2 \ldots j_N} \epsilon^i_{q}^{j_1j_2 \ldots j_N} &= \\
(R_{10}R_{20} \ldots R_{N0})^{i_0i_1i_2 \ldots i_N}_{j_0j_1j_2 \ldots j_N} \epsilon^i_{q}^{j_1j_2 \ldots j_N} &= q^{j_{i_0}^{i_1i_2 \ldots i_N}}.
\end{align}
The quantum determinant of A, $det_q A$, is defined through the relation
\begin{equation}
A^{i_1}_{j_1} \ldots A^{i_N}_{j_N} \epsilon^j_{q}^{j_1 \ldots j_N} = \epsilon^i_{q}^{i_1 \ldots i_N} det_q A,
\end{equation}
and this definition, together with (3), makes $det_q A$ commute with all elements of A.

2
2.2 The Calculus for $GL_q(N)$

Following the approach of [9], we introduce the exterior derivative d on $GL_q(N)$ as a left action which maps k-forms to $(k + 1)$-forms and satisfies the same properties as the undeformed exterior derivative, i.e. it is a linear operator, and for any forms f and g,

$$d^2g = 0, \quad d(fg) = (df)g + (-1)^k f(dg),$$ \hspace{1cm} \text{(12)}

where f is a k-form. Functions of the elements of A are taken as 0-forms, and we take the elements of dA to be a basis for 1-forms; the commutation relations (first found in [10, 11, 12, 13] but put in R-matrix notation in [14, 15, 16]) are

$$dA_1A_2 = R_{12}^{-1}A_2dA_1R_{21}^{-1}, \quad dA_1dA_2 + R_{12}^{-1}dA_2dA_1R_{21}^{-1} = 0.$$ \hspace{1cm} \text{(13)}

These are consistent with (3) and (5), of course. (Alternatively, we could have taken

$$A_1dA_2 = R_{12}^{-1}dA_2A_1R_{21}^{-1}$$ \hspace{1cm} \text{(14)}

which is also consistent with (3) and (5), and gives the same $dA - dA$ commutation relations as above.)

\textbf{Aside:} It is convenient to introduce the numerical matrix D given by

$$D \equiv q^{2(N-1)}tr_2(P_{12} \tilde{R}_{12}) = diag(1, q^2, \ldots, q^{2(N-1)}),$$ \hspace{1cm} \text{(15)}

where $\tilde{K} = [(K^{tI})^{-1}]^{tI}$ for any $N^2 \times N^2$ matrix K. (Here tr_I and t_I denote tracing and transposing with respect to the Ith pair of indices, respectively.) The definition of the D-matrix, together with (4), gives

$$(D^{-1})^tA^tD^tS(A)^t = S(A)^t(D^{-1})^tA^tD^t = 1,$$ \hspace{1cm} \text{(16)}

where $S(A)$, the antipode of A, is simply A^{-1}. A consequence of this relation is that

$$S^2(A) = DAD^{-1}.$$ \hspace{1cm} \text{(17)}
(5) and (13) together imply the identities
\[\tilde{R}_{12} = D_1^{-1}R_{12}^{-1}D_1, \quad \tilde{R}_{21} = D_1R_{21}^{-1}D_1^{-1}. \quad (18) \]

All of the above implies two important results: if \(M \) is an \(N \times N \) matrix, then
\[
tr_1(D_1^{-1}R_{12}^{-1}M_1R_{12})^i_j = tr_1(D_1^{-1}R_{21}^{-1}M_1R_{21})^i_j = tr(D^{-1}M)\delta^i_j, \quad (19)
\]
and if the elements of \(M \) commute with the elements of \(A \),
\[
tr(D^{-1}S(A)MA) = tr(D^{-1}M). \quad (20)
\]
For this reason, \(tr(D^{-1}M) \) is called the invariant trace of \(M \).

(5) and (13) go into themselves under the right coaction \(A \mapsto AA' \) and the left coaction \(A \mapsto A'A \), where \(A' \) is a constant (i.e. \(dA'=0 \) \(GL_q(N) \) matrix satisfying (5), and whose elements commute with those of \(A \) and \(dA \). \(d \) is invariant under both these coactions. However, the Cartan-Maurer form
\[
\Omega \equiv S(A)dA \quad (21)
\]
is left-invariant and right-covariant i.e. \(\Omega \mapsto \Omega \) and \(\Omega \mapsto S(A')\Omega A' \) under the respective coactions above. (We could have chosen the left-covariant, right-invariant form \(dA S(A) \) instead.) This allows us to define the left- and right-invariant 1-form \(\xi \) as
\[
\xi \equiv -q^{2N-1}tr(D^{-1}\Omega). \quad (22)
\]
\(\Omega \) satisfies the following equations due to (5) and (13):
\[
\Omega_1 A_2 = A_2 R_{12}^{-1} \Omega_1 R_{21}^{-1}, \quad (23)
\]
\[
\Omega_1 dA_2 + dA_2 R_{12}^{-1} \Omega_1 R_{12} = 0, \quad \Omega_1 R_{21}^{-1} \Omega_2 R_{21} + R_{21}^{-1} \Omega_2 R_{12}^{-1} \Omega_1 = 0.
\]
Using these, (3), and the definition of D,

$$dA = \lambda^{-1}[\xi, A], \quad d\Omega = -\Omega^2 = \lambda^{-1}\{\xi, \Omega\}, \quad (24)$$

so ξ is in fact the generator of the exterior derivative. These imply that the exterior derivative of any form f is given by

$$df = \lambda^{-1}[\xi, f]_\pm \quad (25)$$

(where $[,]_\pm$ is a commutator for even-forms, an anticommutator for odd-forms). $\det_q A$ is a 0-form, and the above equations imply that

$$\Omega(\det_q A) = q^{-2}(\det_q A)\Omega,$$

$$d(\det_q A) = -q^{-1}(\det_q A)\xi = -q\xi(\det_q A). \quad (26)$$

(A consequence of these equations is that both $d\xi$ and ξ^2 vanish.) The elements of Ω form a linearly independent basis for 1-forms, and we shall use them instead of the elements of dA from now on.

We now introduce the inner derivation, which we take to be a left action mapping k-forms to $(k-1)$-forms. Its action on the N^2 elements of A and Ω is given by introducing N^2 vector fields X^i_j, and the associated N^2 inner derivations are the entries in the matrix i_X whose elements are

$$(i_X)^i_j = i_{X^i_j}. \quad (27)$$

i_X must act on 0- and 1-forms in a way preserving the commutation relations (3) and (23); the appropriate actions are

$$i_{X_1} A_2 = A_2 R_{21} i_{X_1} R_{12},$$

$$R_{21} i_{X_1} R_{12} \Omega_2 + \Omega_2 R_{21} i_{X_1} R_{12} = \frac{1 - R_{21} R_{12}}{\lambda}. \quad (28)$$

This last relation implies

$$i_X \xi + \xi i_X = I. \quad (29)$$
(Notice that by using (3), $\frac{1-R_{21}R_{12}}{\lambda}$ could be replaced by $-\tilde{R}_{12}$ if so desired.)

On $det_q A$, the inner derivation acts as

$$i_X(det_q A) = q^2(det_q A)i_X.$$ \hspace{1cm} (30)

The commutation relations between the inner derivation matrices are similar to the ones for Ω:

$$R_{12}^{-1}i_{X_1}R_{12}i_{X_2} + i_{X_2}R_{21}i_{X_1}R_{12} = 0.$$ \hspace{1cm} (31)

Equations (28) imply that i_X is left-invariant and right-covariant under the respective coactions on A.

We may now introduce the Lie derivative matrix L_X in the same way as in the classical theory, i.e. a left action taking k-forms to k-forms given by

$$L_X \equiv i_Xd + di_X,$$ \hspace{1cm} (32)

where L_X is a matrix with elements $L_{X_{ij}}$ which by definition transforms in the same way as i_X does. The equations already given for d and i_X imply a whole host of relations involving L_X:

$$LXd = dL_X,$$

$$R_{21}L_{X_1}R_{12}i_{X_2} - i_{X_2}R_{21}L_{X_1}R_{12} = \lambda^{-1}(R_{21}R_{12}i_{X_2} - i_{X_2}R_{21}R_{12}),$$

$$R_{21}L_{X_1}R_{12}L_{X_2} - L_{X_2}R_{21}L_{X_1}R_{12} = \lambda^{-1}(R_{21}R_{12}L_{X_2} - L_{X_2}R_{21}R_{12}),$$

$$L_{X_1}A_2 = A_2R_{21}L_{X_1}R_{12} + A_2\left(\frac{1 - R_{21}R_{12}}{\lambda}\right),$$

$$R_{21}L_{X_1}R_{12}\Omega_2 - \Omega_2R_{21}L_{X_1}R_{12} = \lambda^{-1}(R_{21}R_{12}\Omega_2 - \Omega_2R_{21}R_{12}),$$

$$L_{X}\xi = \xi L_X,$$ \hspace{1cm} (33)

and for the determinant,

$$L_X(det_q A) = q^2(det_q A)L_X - q(det_q A).$$ \hspace{1cm} (34)

Many of these relations take a much simpler form if we introduce the Lie derivative valued operator Y given by

$$Y = 1 - \lambda L_X,$$ \hspace{1cm} (35)
which, of course, has the same transformation properties as \(L_X \). Using this, we obtain

\[
Y d = d Y,
\]

\[
R_{21} Y_1 R_{12} i_{X_2} = i_{X_2} R_{21} Y_1 R_{12},
\]

\[
R_{21} Y_1 R_{12} Y_2 = Y_2 R_{21} Y_1 R_{12},
\]

\[
Y_1 A_2 = A_2 R_{21} Y_1 R_{12},
\]

\[
R_{21} Y_1 R_{12} \Omega_2 = \Omega_2 R_{21} Y_1 R_{12},
\]

\[
Y_\xi = \xi Y,
\]

(36)

and

\[
Y (\det_q A) = q^2 (\det_q A) Y.
\]

(37)

\(Y \) is useful for more than making pretty equations. Since its leading term is unity, it is invertible. More importantly, we can define a quantity \(\text{Det} Y \), which we identify as the determinant of \(Y \), satisfying

\[
Y (\text{Det} Y) = (\text{Det} Y) Y.
\]

(38)

This quantity is defined through [4]

\[
(Y_{1_N^1}^{(1)} \ldots Y_{1_N^N}^{(N)})^{i_1 \ldots i_N}_{j_1 \ldots j_N} \epsilon^{j_1 \ldots j_N}_q = \epsilon^{i_1 \ldots i_N}_q \text{Det} Y,
\]

(39)

where

\[
Y^{(k)}_{1_N} = \begin{cases}
(R_{k,N} \ldots R_{k(k+1)})^{-1} Y_k (R_{k,N} \ldots R_{k(k+1)}) & \text{for } k = 1, \ldots, N - 1, \\
Y_N & \text{for } k = N.
\end{cases}
\]

(40)

This determinant is invariant under transformations of \(Y \) (i.e. \(Y \mapsto Y \) for \(A \mapsto AA' \) and \(Y \mapsto S(A')Y A' \) for \(A \mapsto A' A \), with \(Y \) and \(A' \) having commuting elements), and satisfies the following as a consequence of the above equations:

\[
d (\text{Det} Y) = (\text{Det} Y) d,
\]

(36)
\[(\text{Det} Y)i_X = i_X(\text{Det} Y), \]
\[(\text{Det} Y)A = q^2 A(\text{Det} Y), \]
\[(\text{Det} Y)\Omega = \Omega(\text{Det} Y), \]
\[(\text{Det} Y)\xi = \xi(\text{Det} Y), \]
\[(\text{Det} Y)(\text{det}_q A) = q^{2N}(\text{det}_q A)(\text{Det} Y). \] \tag{41}

The above equations for \(\text{Det} Y \) suggest the definition of an operator \(H_0 \) as

\[\text{Det} Y \equiv q^{2H_0} = 1 + q\lambda[H_0]_q \] \tag{42}

where

\[[x]_q = \frac{1 - q^{2x}}{1 - q^2}. \] \tag{43}

\(H_0 \) commutes with \(Y, d, i_X, \Omega, \) and \(\xi, \) and satisfies

\[[H_0, A] = A, \quad [H_0, \text{det}_q A] = N(\text{det}_q A). \] \tag{44}

This operator will be important in the next section.

3 \(SL_q(N) \)

3.1 The Quantum Group \(SL_q(N) \)

There seems to be an obvious way to specify the quantum group \(SL_q(N) \): take the matrix \(A \) and set its determinant to unity. Unfortunately, this doesn’t work. True, \(\text{det}_q A \) as defined in the previous section commutes with the elements of \(A \), but it does not commute with such quantities as \(\Omega \) and \(Y \). Therefore, instead of imposing \(\text{det}_q A = 1 \), we define matrices \(T \) as

\[T = (\text{det}_q A)^{-\frac{1}{2}} A. \] \tag{45}

With \(\text{det}_q T \) defined as in \([11] \), the centrality of \(\text{det}_q A \) automatically gives \(T \) determinant unity. Furthermore, the antipode of \(T \) is also given by \(T^{-1} \).
Therefore, this matrix T is what we identify as an element of the defining representation of $SL_q(N)$, since it also satisfies (5) with A replaced by T. However, as we will see in the next section, it becomes convenient to introduce the matrix

$$R_{12} = q^{-\frac{1}{N}} R_{12},$$

(46)

which we identify as the R-matrix for $SL_q(N)$. Thus, we shall write (5) as

$$R_{12} T_1 T_2 = T_2 T_1 R_{12}.$$

(47)

3.2 The Calculus for $SL_q(N)$

The exterior derivative on $SL_q(N)$ can be taken to be the same as that introduced on $GL_q(N)$; this is because T is a function of elements of A, so its differentials are given by

$$dT = \lambda^{-1} [\xi, T].$$

(48)

Note that this implies that the Cartan-Maurer form $\tilde{\Omega}$ for $SL_q(N)$ is given by

$$\tilde{\Omega} \equiv S(T)dT = q^{\frac{2}{N}} \Omega + q [1/N] q [\xi].$$

(49)

(see (43) for the definition of $[\cdot]_q$.) In the classical limit $q \rightarrow 1$, $\tilde{\Omega}$ is traceless, giving the appropriate reduction from N^2 to $N^2 - 1$ independent elements in the Cartan-Maurer matrix 1-form for $SL(N)$.

We have thus found a way to set the determinant of our $SL_q(N)$ matrices to unity; for the calculus of the group, we must do something similar, namely impose a constraint so that the number of independent differential operators is reduced from N^2 to $N^2 - 1$. In a way, we have already done this, because (44) and (45) together imply

$$[H_0, T] = 0,$$

(50)

†This relation implies that the matrix of differential forms introduced in (9) is equal to $-q^{2N-1} \Omega$.

9
so that H_0 commutes with everything of interest in $SL_q(N)$, i.e. matrices, forms, exterior derivative, etc. Thus, within the context of $SL_q(N)$, H_0 is irrelevant, reducing the number of generators from N^2 to $N^2 - 1$, as desired. Explicitly, this restriction is accomplished by defining a new Lie derivative valued operator Z by

$$ Z \equiv q^{-\frac{2H_0}{N}}Y, \quad (51) $$

Note that the determinant of Z, computed using (39), is unity. This is equivalent to the introduction of a set of N^2 “vector fields” V_{ij} through

$$ Z = 1 - \lambda L_X, $$

so that

$$ L_V = L_X + q^{-1}[H_0/N]_{q^{-1}} - q^{-1}\lambda L_X[H_0/N]_{q^{-1}}. \quad (52) $$

The fact that $Det Z = 1$ implies that only $N^2 - 1$ of the elements of L_V are actually independent, which is precisely what we require for $SL_q(N)$. In the classical limit, $H_0 = -tr(L_X)$, so L_V becomes traceless; thus, V contains only $N^2 - 1$ linearly independent vector fields, as we’d expect.

Now that we have obtained all these quantities, we want to find the various relations they satisfy. As a starting point, note that the commutation relations between Ω and T are given by

$$ \Omega_1 T_2 = q^{\frac{1}{N}}T_2 R_{12}^{-1} \Omega_1 R_{21}^{-1} = T_2 R_{12}^{-1} \Omega_1 R_{21}^{-1}. \quad (53) $$

Here we see the appearance of R_{12}, as promised. In fact, there is a general pattern: by using the substitutions $A \to T$, $R_{12} \to R_{12}$, and $L_X \to L_V$, we obtain most of the corresponding relations for $SL_q(N)$. (Ω remains unchanged, so the last of equations (23) does not have R_{12} in place of R_{12}.) L_V satisfies

$$ R_{21} L_{V_1} R_{12} L_{V_2} - L_{V_2} R_{21} L_{V_1} R_{12} = \lambda^{-1}(R_{21} R_{12} L_{V_2} - L_{V_2} R_{21} R_{12}), $$

$$ R_{21} L_{V_1} R_{12} i_X - i_X R_{21} L_{V_1} R_{12} = \lambda^{-1}(R_{21} R_{12} i_X - i_X R_{21} R_{12}). \quad (54) $$

‡When restricted to acting on 0-forms, this operator is identical to the operator Y in [9].
The actions of the various operators on the 0- and 1-forms of $SL_q(N)$ are given by

\begin{align*}
L_{V_1}T_2 &= T_2R_{21}L_{V_1}R_{12} + T_2\left(\frac{1 - R_{21}R_{12}}{\lambda}\right), \\
R_{21}L_{V_1}R_{12}\Omega_2 - \Omega_2R_{21}L_{V_1}R_{12} &= \lambda^{-1}(R_{21}R_{12}\Omega_2 - \Omega_2R_{21}R_{12}), \\
i_{X_1}T_2 &= T_2R_{21}i_{X_1}R_{12}, \\
R_{21}i_{X_1}R_{12}\tilde{\Omega}_2 + \tilde{\Omega}_2R_{21}i_{X_1}R_{12} &= \frac{1 - R_{21}R_{12}}{\lambda}.
\end{align*}

(55)

As a consequence, ξ satisfies

\begin{equation}
L_V\xi = \xi L_V.
\end{equation}

(56)

The relations for Z corresponding to (36) are easily obtained by using $L_V = \frac{1 - Z}{\lambda}$ in all of the above equations.

\section{Conclusion}

Many of the relations in this work are not unique to a discussion of $GL_q(N)$ or $SL_q(N)$; for instance, given an R-matrix, the differentials of the quantum hyperplane can be defined and their commutation relations found, and the corresponding Levi-Civita tensor found. This allows the definition of the determinant of a quantum matrix. However, much of this paper is based on the fact that the characteristic equations for $GL_q(N)$ and $SL_q(N)$ are quadratic in \hat{R}_{12}. For other quantum groups, the characteristic equation for \hat{R}_{12} may be of higher degree (as in $SO_q(N)$ and $Sp_q(N)$, where the characteristic equations are cubic), in which case relations like (36) will not be consistent with (5). Although others have looked at the calculi of such quantum groups \cite{17}, it remains to be seen whether it is possible to use techniques similar to ours in these cases.

\section*{References}
[1] S. L. Woronowicz, Commun. Math. Phys. 122 125 (1989)

[2] D. Bernard, Prog. of Theoretical Phys. Supp. 102 49 (1990)

[3] B. Jurčo, Lett. Math. Phys. 22 177 (1991)

[4] P. Schupp, P. Watts, and B. Zumino, paper in preparation

[5] N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Leningrad Math. J. 1 193 (1990)

[6] Yu. Manin, Commun. Math. Phys. 123 163 (1989)

[7] J. Wess and B. Zumino, Nucl. Phys. B (Proc. Suppl.) 18B 302 (1990)

[8] B. Zumino, Mod. Phys. Lett. A 13 1225 (1991)

[9] B. Zumino, Berkeley preprint, LBL-31432 and UCB-PTH-59/91, to appear in Proc. X-th IAMP Conf., Leipzig (1991), Lec. Notes in Phys., Springer-Verlag

[10] Yu. Manin, Bonn preprint MPI/91-47

[11] Yu. Manin, Bonn preprint MPI/91-60

[12] G. Maltsiniotis, C. R. Acad. Sci. Paris, 331 831 (1990)

[13] G. Maltsiniotis, “Calcul differentiel sur le groupe lineaire quantique”, ENS exposé (1990)

[14] A. Schirrmacher, Munich preprint, MPI-PTH-91-117, presented at the 1st Max Born Symp. in Theoretical Physics, Wroclaw, Poland, Sept. 27-29, 1991

[15] A. Sudbery, York preprint PRINT-91-0498 (YORK)

[16] A. Sudbery, York preprint YORK-92-1
[17] U. Carow-Watamura, M. Schlieker, S. Watamura, and W. Weich, Commun. Math. Phys. 142 605 (1991)