JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy

Xinbing Sui1,2*, Na Kong1,2*, Xian Wang1,2, Yong Fang1, Xiaolong Li2, Yinghua Xu1, Wei Chen1, Kaifeng Wang1, Da Li1, Wei Jin1, Fang Lou1, Yu Zheng1, Hong Hu1, Liu Song1, Xiaoyun Zhou1, Hongming Pan1,2 & Weidong Han1,2

1Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China, 2Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China 310016.

Deficiency or mutation in the p53 tumor suppressor gene commonly occurs in human cancer and can contribute to disease progression and chemotherapy resistance. Currently, although the pro-survival or pro-death effect of autophagy remains a controversial issue, increasing data seem to support the idea that autophagy facilitates cancer cell resistance to chemotherapy treatment. Here we report that 5-FU treatment causes aberrant autophagosome accumulation in HCT116 p53+/− and HT-29 cancer cells. Specific inhibition of autophagy by 3-MA, CQ or small interfering RNA treatment targeting Atg5 or Beclin 1 can potentiate the re-sensitization of these resistant cancer cells to 5-FU. In further analysis, we show that JNK activation and phosphorylation of Bcl-2 are key determinants in 5-FU-induced autophagy. Inhibition of JNK by the compound SP600125 or JNK siRNA suppressed autophagy and phosphorylation of c-Jun and Bcl-2 but increased 5-FU-induced apoptosis in both HCT116 p53+/− and HT29 cells. Taken together, our results suggest that JNK activation confers 5-FU resistance in HCT116 p53+/− and HT29 cells by promoting autophagy as a pro-survival effect, likely via inducing Bcl-2 phosphorylation. These results provide a promising strategy to improve the efficacy of 5-FU-based chemotherapy for colorectal cancer patients harboring a p53 gene mutation.
c-Jun N-terminal kinase (JNK) plays a critical role in the outcome and sensitivity to anticancer therapies. Activated JNK can transmit extracellular signals to regulate cell proliferation, apoptosis and autophagy in response to chemotherapeutic agents. The JNK signaling pathway has been shown to be closely associated with the resistance to several antitumor agents such as cisplatin, mitoxantrone, docetaxel and oxaliplatin. However, no relationship has been reported between 5-FU resistance caused by mutations or deletions of p53 and the JNK signaling pathway.

We investigated the impact of autophagy regulation and JNK signaling on 5-FU resistance in p53-deficient HCT116 cancer cells (HCT116 p53\(^{-/-}\)) and p53-mutant HT-29 cancer cells. Here we demonstrate that autophagy is activated by 5-FU treatment in HCT116 p53\(^{-/-}\) and HT29 cells. Moreover, JNK activation and Bcl-2 phosphorylation have been proven to trigger survival-promoting autophagy to protect tumor cells against the cytotoxic effects of 5-FU. Specific inhibition of autophagy or JNK can potentiate the sensitization of these resistant cancer cells to 5-FU and significantly enhance 5-FU-induced apoptosis, indicating that JNK activation confers 5-FU resistance in HCT116 p53\(^{-/-}\) and HT29 cells by inducing survival autophagy.

Results

5-FU treatment in human colon cells. Thus far, 5-FU remains a widely used chemotherapeutic drug in clinical colon cancer therapy. To examine its effect on human colon cells, we used RKO (wt p53), HT-29 (mutant p53), HCT116, and wt p53 HCT116 (HCT116 p53\(^{+/+}\)) cell lines and their isogenic derivatives, in which the p53 gene had been somatically knocked out (HCT116 p53\(^{-/-}\)). After treatment with various concentrations of 5-FU for 24 h, MTT assay results showed that HCT116 p53\(^{+/+}\) and RKO cells were hypersensitive to 5-FU treatment, but very few dying cells emerged in HCT116 p53\(^{-/-}\) and HT-29 cells after 5-FU treatment, indicating that HCT116 p53\(^{-/-}\) and HT-29 cells may be insensitive or resistant to 5-FU (Figure 1a). Consequently, we used 20 \(\mu M\) 5-FU in HCT116 cells and 30 \(\mu M\) 5-FU in RKO and HT-29 cells for 24 h in subsequent experiments.

Aberrant autophagosome accumulation is involved in p53-deficient and mutant p53-expressing colon cancer cells. To examine whether autophagy is an important mechanism for 5-FU resistance in p53-deficient and mutant p53-expressing colon cancer cells, we compared HCT116 p53\(^{+/+}\), HCT116 p53\(^{-/-}\), RKO and HT-29 cell lines. Interestingly, the results suggested that functional autophagy was activated in HCT116 p53\(^{-/-}\) and HT-29 cells because an increased LC3-II/LC3-I ratio and decreased abundance of the autophagic degradation marker p62 were induced in a time-dependent manner in 5-FU-treated HCT116 p53\(^{-/-}\) and HT-29 cells but not in HCT116 p53\(^{+/+}\) and RKO cells (Figure 1b). By contrast, the apoptotic protein caspase-3 increased in a time-dependent manner in 5-FU-treated HCT116 p53\(^{-/-}\) and RKO cells but not in HCT116 p53\(^{+/+}\) and HT-29 cells.
indicating that autophagy may protect HCT116 p53\(^+/-\) and HT-29 cells against cell death induced by 5-FU treatment. Next, to confirm the induction of autophagy, all of these cells were analyzed by electron microscopy. After HCT116 p53\(^+/-\) and RKO cells were treated with 5-FU for 24 h, very few autophagosomes were observed in most cells (Figure 2). By contrast, most of the HCT116 p53\(^+/-\) and HT-29 cells displayed extensive accumulation of double and multimembraned structures with a broad range of morphologies. These results imply that induction of autophagy may be a key mediator for the resistance to 5-FU in HCT116 p53\(^+/-\) and HT-29 cells.

Autophagy promotes resistance against 5-FU-induced cell death in HCT116 p53\(^+/-\) and HT-29 cells. To assess whether autophagy contributed to the resistance to 5-FU in HCT116 p53\(^+/-\) and HT-29 cells, we first treated these cells with two pharmacological inhibitors of autophagy, 3-methyladenine (3-MA) and chloroquine (CQ). 3-MA, a class III phosphatidylinositol 3-kinase (PtdIns3K) inhibitor, can block the early steps of autophagy\(^1\). CQ is a lysosomotropic agent that acts as a weak base in lysosomes and compromises autophagosome fusion with lysosomes and autophagosome degradation in the final stage of autophagy\(^2\). Light microscopy showed that the viability of HCT116 p53\(^+/-\) cells treated with the combination of 3-MA or CQ and 5-FU was significantly lower than that of controls (Figure 3a), with more detached and shrunken cells appearing. Similar results were obtained in HT-29 cells, indicating that autophagy plays a protective role and facilitates the chemo-resistance of the treated cells. Next, we suppressed the expression of Atg5 and Beclin 1, two key regulators of autophagy, with short interfering RNA (siRNA). Cells were seeded at equal densities in six-well plates and transfected with siRNA. Twenty-four hours after the addition of siRNA, HCT116 p53\(^+/-\) and HT-29 cells were treated with 5-FU for 24 h. As shown in Fig. 3b, the expression level of Atg 5 or Beclin 1 was significantly down-regulated, together with the accumulation of p62 in siRNA-transfected groups, revealing that Atg 5 or Beclin 1 siRNA block 5-FU-induced autophagy at an early stage. The MTT assay was used to assess cytotoxicity in 5-FU-treated HCT116 p53\(^+/-\) and HT-29 cells transfected with control siRNA or anti-Atg5 or Beclin1 siRNAs. Knockdown of Atg5 or Beclin1 augmented the cytotoxicity of 5-FU (Figure 3c). A colony formation assay showed that knockdown of Atg5 or Beclin1 suppressed the colony formation efficiency (Figure 3d). To obtain objective quantification of apoptosis, we performed an Annexin V–FITC dual staining assay followed by flow cytometry. In agreement with above results, the dual staining assay also showed that the percentage of apoptotic cells was significantly higher in HCT116 p53\(^+/-\) and HT-29 cells treated with the combination of 3-MA and 5-FU than that in their respective controls (Figure 3e).

For further confirmation, both HCT116 p53\(^+/-\) and HT-29 cells were first incubated with an antibody against LC3, a key component of the autophagosomal membrane, not required for the initiation of autophagy but which instead mediates phagophore expansion and autophagosome formation\(^3\). When autophagy is induced, punctate fluorescence of LC3B can be observed. As shown in Fig. 3f, punctate fluorescence was very frequently observed in HCT116 p53\(^+/-\) and HT-29 cells treated with 5-FU alone. However, after treatment with

Figure 2 | Electron microscopy shows ultrastructures of autophagosome in these cells. The experiments were performed in triplicate. Bar = 1 µm.
the combination of 3-MA and 5-FU, this fluorescence was effectively inhibited. This finding suggests that 3-MA can efficiently inhibit autophagy induced by 5-FU. We next performed western blotting analysis to detect cleaved LC3-II and active caspase-3 (Figure 3g). A significantly increased LC3-II/I ratio was shown in HCT116 p53\(^{-/-}\) and HT-29 cells transiently transfected with negative control siRNA, siAtg5 or siBeclin1 compared with 5-FU treatment. Importantly, more prominent active caspase-3 was observed in HCT116 p53\(^{-/-}\) and HT-29 cells when these cells were treated with the combination of 3-MA and 5-FU. In conclusion, induction of autophagy has emerged as a drug resistance mechanism that promotes the survival of p53-deficient and mutant p53-expressing colon cancer cells in response to 5-FU, and inhibition of autophagy enhances the cytotoxic effect of 5-FU in these resistant cells.

5-FU induces JNK activation and Bcl-2 phosphorylation in HCT116 p53\(^{-/-}\) and HT-29 cells. JNK has been demonstrated to contribute to autophagic induction in response to genotoxic stress\(^{22,23}\). To investigate whether JNK activation is a key determinant for the up-regulation of LC3 during 5-FU-induced autophagy in p53-deficient and mutant p53-expressing colon cancer cells, the abundance of MAPKs and phosphorylated forms of these proteins were assessed by western blotting using specific antibodies in HCT116 p53\(^{-/-}\) and HT-29 cells treated with various concentrations of 5-FU for 24 h. We found that JNK was activated in a dose-dependent manner in 5-FU-treated HCT116 p53\(^{-/-}\) cells compared with HCT116 p53\(^{+/+}\) cells. Similar results were obtained in HT-29 cells but not in RKO cells (Figure 4a), indicating that JNK may be activated in HCT116 p53\(^{-/-}\) and HT-29 cells after 5-FU treatment. For further confirmation, the abundance of c-Jun, phospho-c-Jun and phospho-Bcl-2 was assessed by western blotting. Our data showed that, following 5-FU treatment, c-Jun and Bcl-2 phosphorylation was significantly increased in HCT116 p53\(^{-/-}\) and HT-29 cells (Figure 4b). Moreover, an increase in the LC3-II/I ratio and induced p62 degradation were observed when HCT116 p53\(^{-/-}\) and HT-29 cells were treated with 5-FU. Because JNK-mediated Bcl-2 phosphorylation has been previously reported to regulate genotoxic stress-induced autophagy\(^{22}\), we analyzed whether JNK activation and Bcl-2 phosphorylation may be associated with the induction of autophagy in HCT116 p53\(^{-/-}\) and HT-29 cells in response to 5-FU.

Figure 3 | Blockade of autophagy enhances 5-FU-induced cell death in HCT116 p53\(^{-/-}\) and HT29 cells. (A) Pharmacological inhibition of autophagy with 3-MA or CQ. Representative cell morphological changes are detected by light microscopy; characteristic morphological features of apoptosis were observed, including detachment and cell shrinkage. (B) The expression of ATG5 or Beclin1 in HCT116 p53\(^{-/-}\) and HT29 cells transiently transfected with negative control siRNA, siAtg5 or siBeclin1 were determined by western blotting. (C) Cell viability was quantified by the MTT assay in HCT116 p53\(^{-/-}\) and HT-29 cells transiently transfected with negative control siRNA, siAtg5 or siBeclin1, *p < 0.05, compared with the 5-FU group. The experiments were performed in triplicate. (D) Cell cycle analysis was performed to quantify the proportion of cells in each phase of the cell cycle. (E) Representative results of annexin V-FITC/PI staining and quantitative analysis; values are expressed as the mean ± SD of three independent experiments; *p < 0.05, compared with the 5-FU group. The experiments were performed in triplicate. (F) HCT116 p53\(^{-/-}\) and HT29 cells were treated by 20 μM 5-FU with or without 3-MA for 24 h. Cells were fluorescently labeled and imaged using a confocal microscope. Green, FITC-labeled LC3; Blue, DAPI-labeled nucleus; quantitative analyses of punctate fluorescence numbers are shown; *p < 0.05, compared with the 5-FU group. The experiments were performed in triplicate. (G) The expression of LC3B II and active caspase-3 was examined by western blotting.
Inhibition of JNK activity sensitizes HCT116 p53\(^{-/-}\) and HT-29 cells to 5-FU-mediated cell death. Recent reports have shown that JNK-dependent phosphorylation of Bcl-2 can lead to autophagy activation and/or cell survival\(^2\). To further evaluate the relationship between 5-FU-induced autophagy and JNK signaling, we specifically attenuated JNK activation using a pharmacological inhibitor of JNK SP600125 (10 \(\mu\)M). Inhibition of JNK by SP600125 decreased LC3B punctate fluorescence (Figure 5a). Western blotting confirmed that the blockage of JNK significantly decreased the LC3-II/I ratio and phosphorylation of JNK, c-Jun and Bcl-2 but increased the abundance of cleaved caspase-3 and p62 (Figure 5b). This result suggests that 5-FU-mediated JNK activation probably promotes autophagy as a pro-survival effect by inducing Bcl-2 phosphorylation, and inhibition of autophagy by JNK knock-down increased 5-FU-induced apoptosis as shown in Fig. 5f and g. Taken together, these data demonstrate that JNK signaling is a critical mediator of the 5-FU resistance associated with increased autophagy, and JNK inhibition re-sensitized HCT116 p53\(^{-/-}\) and HT-29 cells to 5-FU, resulting in more apoptosis.

Figure 4 | 5-FU induces JNK activation and Bcl-2 phosphorylation in HCT116 p53\(^{-/-}\) and HT-29 cells. (A) HCT116 p53\(^{-/-}\) and HT29 cells were treated with varying concentrations of 5-FU for 24 h. The expression of several key MAPK regulators was examined by western blot (the blots were cropped, and the full-length blots are included in the supplementary information). (B) HCT116 p53\(^{-/-}\) and HT29 cells were treated by 5-FU for 24 h, and then JNK, c-Jun and Bcl-2 phosphorylation, as well as the expression of active caspase-3 and several key autophagic regulators, were analyzed by western blotting.

Discussion
In this study, we demonstrate that protective autophagy is involved in the 5-FU resistance of p53-deficient or mutant p53-expressing colon cancer cells and that 5-FU-mediated JNK activation in HCT116 p53\(^{-/-}\) and HT-29 cells promotes autophagy as a pro-survival effect, probably by inducing Bcl-2 phosphorylation. Finally, JNK inhibition augments the cytotoxic effect of 5-FU in these resistant cells.

It is increasingly appreciated that autophagy supports cancer cell survival because of certain selective advantages in response to chemotherapy or radiation therapy, although on the other hand, autophagy can also contribute to cancer cell death in some cases\(^24,25\). Autophagy inhibitors may potentiate the anti-cancer effect of 5-FU via cell cycle suppression\(^26\). Li et al. showed that inhibition of autophagy augmented the effects of 5-FU in in vitro and in vivo human colon cancer models\(^27\). Moreover, autophagy inhibition was also proven to promote 5-FU-induced apoptosis by stimulating ROS.
formation in human non-small cell lung cancer A549 cells. Here we confirm the same finding by showing that aberrant autophagosome accumulation is involved in the 5-FU resistance of p53-deficient and mutant p53-expressing colon cancer cells; conversely, autophagy inhibition sensitizes these resistant cells to 5-FU. The latter finding indicates that autophagy plays a protective role and facilitates p53-deficient and mutant p53-expressing colon cancer cells resistance to 5-FU. Therefore autophagy inhibitors could be used to develop a promising therapeutic strategy to enhance the effects of chemotherapy and improve clinical outcomes for colon cancer patients with a p53 mutation.

The JNK pathway plays a critical role in cell proliferation, apoptosis, motility, metabolism and DNA repair. In response to genotoxic stress, JNK also contributes to autophagic induction. JNK1-mediated multisite phosphorylation of Bcl-2 stimulates starvation-induced autophagy by disrupting the Bcl-2/Beclin 1 complex. The transcription factor c-Jun, a prototypic JNK target, protects against sustained hepatic endoplasmic reticulum stress, thereby promoting hepatocyte survival by inducing macroautophagy. JNK inhibition has been previously reported to be associated with a resistant phenotype to various genotoxic stimuli, such as chemotherapeutic drugs. However, our data indicate that in HCT116 p53−/− and HT-29 cells, JNK can induce autophagy, leading to the promotion of colon cancer cell survival in response to 5-FU. We showed, for the first time, that JNK inhibition did not generate a chemoresistant phenotype but enhanced the cytotoxic effect of 5-FU in these resistant cells. Similarly, Paillas et al. reported that MAPK14/p38α conferred irinotecan resistance to TP53-defective cells by inducing survival autophagy. O’Donovan et al. showed that the induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. High-mobility group box 1 protein (HMGB1) rendered myeloid leukemia...
cells resistant to conventional anticancer treatments through increasing JNK-dependent autophagy. In addition, recent studies have indicated a considerable overlap or interdependence of apoptosis and autophagy mediated by p38MAPK signaling; however, whether JNK may also control the balance between apoptosis and autophagy remains unresolved. Moreover, the role of autophagy and JNK in cancer treatment is unclear because JNK activity might vary according to cell type, the stress signal and other circumstances. Therefore, analyzing the role of JNK in regulating the balance of 5-FU-induced apoptosis and autophagy will be a key issue. In the present study, we demonstrated that 5-FU-mediated JNK activation promotes autophagy as a pro-survival effect probably by inducing Bcl-2 phosphorylation, and inhibition of JNK increases the cytotoxic effect of 5-FU in HCT116 p53−/− and HT-29 cells.

In conclusion, our report indicates that increased autophagy may be an important mechanism to enable p53-deficient or mutant p53-expressing colon cancer cells to acquire resistance to 5-FU, and JNK activation triggers autophagy as a pro-survival effect to protect cancer cells against the cytotoxic effects of 5-FU, probably via inducing Bcl-2 phosphorylation.

Methods

Cell lines and reagents. The human colorectal carcinoma HCT116 p53−/−. HCT116 p53−/− cell lines were kindly given by Mian Wu. HT-29 and RKO cells were purchased from ATCC (LGC Standards SLU, Barcelona, Spain). The cell lines were maintained in McCoy’s 5A’s or Dulbecco’s modified Eagle’s medium (DMEM; Gibco BRL, Rockville, MD, USA) with 10% fetal bovine serum (FBS), 100 units/ml penicillin, 100 μg/ml streptomycin (Invitrogen), and 2 mM L-glutamine at 37 °C in a humidified atmosphere of 95% air and 5% CO2. 5-FU was purchased from Jinyao Amino Acid Co., Ltd. (Tianjin, China); 3-MA and CQ were obtained from Sigma–Aldrich.

Measurement of Cell Viability and Apoptosis. Cell viability was determined by MTT assay. Cells were seeded in 96-well flat bottom microtiter plates at a density of 1 × 104 cells per well 24 h later. 5-FU was added at the concentration of 5 μM for 24 h. The absorbance was measured on a microplate reader (Synergy HT, Bio-Tek, USA) at 570 nm. Phartmingen annexin V-FITC Apoptosis Detection Kit I (BD, USA) was used to detect apoptosis and the estimation procedure was performed according to the manufacturer’s instructions. 2 × 104 cells were added into a 6 cm dish. After attachment overnight, cells were washed twice with FBS and the medium was replaced with medium with 30 μg/ml 5-FU for 24 h. All cells including the rotating cells in the culture medium were harvested. The cells were resuspended in ice-cold 1× binding buffer at a concentration of 1 × 106 cells/ml. 10 μl of cell suspension were each mixed with 5 μl FITC Annexin V and 5 μl PI. The mixture was incubated for 15 min at room temperature in the dark and then analyzed using a FACS Calibur Flow Cytometer (BD Biosystems, Heidelberg, Germany).

Clonogenic survival assay. Cells were trypsinized and replated in triplicate into six well plates at different densities based on cell types. Cells were treated with the indicated concentrations of 5-FU or vehicle control for 24 h. Twenty-four hours after 5-FU treatment, the medium was replaced with 30 μg/ml 5-FU for 24 h. The absorbance was measured on a microplate reader (Synergy HT, Bio-Tek, USA) at 570 nm. Phartmingen annexin V-FITC Apoptosis Detection Kit I (BD, USA) was used to detect apoptosis and the estimation procedure was performed according to the manufacturer’s instructions. 2 × 104 cells were added into a 6 cm dish. After attachment overnight, cells were washed twice with FBS and the medium was replaced with medium with 30 μg/ml 5-FU for 24 h. All cells including the rotating cells in the culture medium were harvested. The cells were resuspended in ice-cold 1× binding buffer at a concentration of 1 × 106 cells/ml. 10 μl of cell suspension were each mixed with 5 μl FITC Annexin V and 5 μl PI. The mixture was incubated for 15 min at room temperature in the dark and then analyzed using a FACS Calibur Flow

Cytometer (BD Biosystems, Heidelberg, Germany).

Clonogenic survival assay. Cells were trypsinized and replated in triplicate into six well plates at different densities based on cell types. Cells were treated with the indicated concentrations of 5-FU or vehicle control for 24 h. Twenty-four hours after 5-FU treatment, the medium was replaced with medium with 30 μg/ml 5-FU for 24 h. All cells including the rotating cells in the culture medium were harvested. The cells were resuspended in ice-cold 1× binding buffer at a concentration of 1 × 106 cells/ml. 10 μl of cell suspension were each mixed with 5 μl FITC Annexin V and 5 μl PI. The mixture was incubated for 15 min at room temperature in the dark and then analyzed using a FACS Calibur Flow Cytometer (BD Biosystems, Heidelberg, Germany).

Clonogenic survival assay. Cells were trypsinized and replated in triplicate into six well plates at different densities based on cell types. Cells were treated with the indicated concentrations of 5-FU or vehicle control for 24 h. Twenty-four hours after 5-FU treatment, the medium was replaced with medium with 30 μg/ml 5-FU for 24 h. All cells including the rotating cells in the culture medium were harvested. The cells were resuspended in ice-cold 1× binding buffer at a concentration of 1 × 106 cells/ml. 10 μl of cell suspension were each mixed with 5 μl FITC Annexin V and 5 μl PI. The mixture was incubated for 15 min at room temperature in the dark and then analyzed using a FACS Calibur Flow Cytometer (BD Biosystems, Heidelberg, Germany).
27. Li, J., Hou, N., Faried, A., Tsutsumi, S. & Kuwano, H. Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. *Eur J Cancer* 46, 1900–1909 (2010).

28. Pan, X. *et al.* Autophagy inhibition promotes 5-fluorouracil-induced apoptosis by stimulating ROS formation in human non-small cell lung cancer A549 cells. *PLoS One* 8, e56679 (2013).

29. Wei, Y. *et al.* JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. *Mol Cell* 30, 678–688 (2008).

30. Fuest, M. *et al.* The transcription factor c-Jun protects against sustained hepatic endoplasmic reticulum stress thereby promoting hepatocyte survival. *Hepatology* 55, 408–418 (2012).

31. Mansouri, A. *et al.* Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. *J Biol Chem* 278, 19245–1956 (2003).

32. Xiao, F., Liu, B. & Zhu, Q. X. c-Jun N-terminal kinase is required for thermotherapy-induced apoptosis in human gastric cancer cells. *World J Gastroenterol* 18, 7348–7356 (2012).

33. Paillas, S. *et al.* MAPK14/p38a confers irinotecan resistance to TP53-defective cells by inducing survival autophagy. *Autophagy* 8, 1098–1112 (2012).

34. O’Donovan, T. R., O’Sullivan, G. C. & McKenna, S. L. Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. *Autophagy* 7, 509–524 (2011).

35. de la Cruz-Morcillo, M. A. *et al.* P38MAPK is a major determinant of the balance between apoptosis and autophagy triggered by 5-fluorouracil: implication in resistance. *Oncogene* 31, 1073–1085 (2012).

36. Sui, X. *et al.* p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. *Cancer lett* 344, 174–179 (2014).

37. Chaanine, A. H. *et al.* JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. *Cell Death Dis* 3, 265 (2012).

38. Hu, X. *et al.* Protocadherin 17 acts as a tumor suppressor inducing tumor cell apoptosis and autophagy, and is frequently methylated in gastric and colorectal cancers. *J Pathol* 229, 62–73 (2011).

Acknowledgments

We thank Mian Wu for providing HCT116 p53−/−, HCT116 p53+/− cell lines. This study is supported by grants from National Natural Science Foundation of China (grant No. 81301891, 81272593, 81071651 and 81071963) and Zhejiang Provincial Natural Science Foundation of China (grant No. LQ13H160008 and LQ13H160009).

Author contributions

H.P. and W.H. designed the study. X.S. wrote the main manuscript text. X.S., N.K., X.W., Y.F., X.H., Y.X., W.C., K.W., D.L., W.J., F.L., Y.Z., H.H., L.G. and X.Z. performed experiments. Y.X. and W.C. prepared figures. H.H. and L.G. did the statistical analyses. All authors reviewed the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Sui, X.B. *et al.* JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. *Sci. Rep.* 4, 4694; DOI:10.1038/srep04694 (2014).

This work is licensed under a Creative Commons Attribution 3.0 Unported License. The images in this article are included in the article’s Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, reusers will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/