Contamination and UV ageing of diffuser targets used in satellite inflight and ground reference test site calibrations

Anna Vaskuri1,2, Claire Greenwell2, Isabel Hessey2, Jordan Tompkins2, and Emma Woolliams2

1Metrology Research Institute, Aalto University, P.O. Box 15500, 00076 Aalto, Finland
2National Physical Laboratory, Teddington, TW11 0LW, United Kingdom

E-mail: anna.vaskuri@aalto.fi

Abstract. Diffuser reflectance targets are key components in in-orbit calibrations and for verifying ground reference test sites. In this work, Spectralon, Diffusil, and Heraeus diffusers were exposed to exhaust gases and ultraviolet (UV) radiation in the ambient air conditions and their degradations were monitored by measuring changes in spectral reflectances. Spectralon is a state-of-the-art diffuser made of polytetrafluoroethylene, and Diffusil and Heraeus diffusers are made of fused silica with gas bubbles inside. Based on the contamination tests, Spectralon degrades faster than fused silica diffusers. For the samples exposed to contamination for 20 minutes, the 250 nm – 400 nm total diffuse spectral reflectance of Spectralon degraded 3–5 times more when exposed to petrol-like emission and 16–23 times more when exposed to diesel-like emission, compared with Diffusil. When the reflectance changes of Spectralon were compared with those of Heraeus, Spectralon degraded 3–4 times more when exposed to petrol-like emission for 20 minutes and 5–7 times more when exposed to diesel-like emission for 7.5 minutes. When the samples contaminated were exposed to UV radiation in the ambient air, their reflectance gradually restored back to the original level. In conclusion, fused silica diffusers are more resistant to hydrocarbon contaminants present in ground reference test sites, and thus more stable under UV radiation in the air.

1. Introduction

Diffuser reflectance targets are key components in calibrating satellite sensors to support climate research, agriculture and forest monitoring [1, 2]. Inflight calibration systems use onboard diffusers as references, either as references for satellite Earth-reflectance products, or, combined with the known solar spectral irradiance, as references for satellite radiance products. Vicarious methods are also commonly used for satellite inflight calibration and validation. These use top-of-the-atmosphere reflectance models for reference test sites, e.g. RadCalNet [3], based on ground reflectance and atmospheric transmittance measurements and an atmospheric retrieval algorithm. Diffuser reflectance targets are also used in the characterisation and monitoring of such ground-based reference test sites. As reflectance targets are so critical for both onboard and vicarious satellite calibration it is essential to understand how these degrade in space and field environments. Degradation in both spectral reflectance and any changes in the bidirectional reflectance distribution function (BRDF) of the samples must be monitored. Unfortunately,
space and field measurements involve contaminants, which can deteriorate the stability of the
Spectralon diffusers currently used [1,4].

In this work Spectralon diffusers made of polytetrafluoroethylene (PTFE) are compared with
alternative diffusers Diffusil and Heraeus, made of ultra-pure synthetic fused silica glass with
gas bubbles. Especially Diffusil diffusers have been measured to have good BRDF properties [5].
Earlier studies have shown that pure Spectralon is photochemically stable and will not react with
ultraviolet (UV) radiation [4]. However, if Spectralon contains residues e.g. of hydrocarbons, it
becomes unstable under UV radiation [6]. In satellites, the diffusers are exposed to hydrocarbons
due to the widely-used Pennzane lubricant [1] and possibly due to rocket fuel. In ground reference
test sites, car emissions are a possible source of hydrocarbons [7].

The main objective of this paper is to find the best pre-ageing method for Spectralon targets,
and to study alternative diffuser materials with more stable characteristics that could possibly
replace Spectralon in the future. The second section introduces the setups for contaminating
and UV ageing of the diffuser targets. The ageing results are discussed in Section 3. Finally,
conclusions are drawn in Section 4.

2. Contaminating the samples
The setup used for contaminating the diffuser samples is shown in Fig. 1. The setup uses
a propane flame produced using a mini-CAST soot source (JING mini-CAST Soot Generator
Model 6203 Type C) as a particle emission source, which produces particles with composition and
size similar to incomplete combustion of the fuel in car engines. The particle sizes (diameters) of
the exhaust gases produced can be varied between 10 nm – 200 nm by mixing propane, nitrogen
gas, oxidation air, and dilution air. The furnace at 400 °C can be used to remove volatile
particles from the exhaust gas. Volatile particles have low boiling points and as the gas cools
down, they condense on the surface of larger particles. The dilution air increases the velocity of
the gas flow to encourage the particles to stick to the surface of the diffuser samples. Another
purpose of the dilution air is to prevent volatile particles from recoalescing when the furnace is
in use. A dilution loop in the setup is used for safety reasons as it allows particles to be filtered
from gas flow when changing the samples.

Car emissions have wide particle size distributions; for diesel exhaust gases the peak of the
distribution is ∼100 nm, whereas for petrol exhaust gases it is ∼20 nm [8]. Figure 2 shows the
replicated distributions with the settings listed in Table 1. The particle sizes are determined by
selection with a differential mobility analyser, which is calibrated with polystyrene latex spheres.
The uncertainty of these sizes (k = 2) is about 5 %. Such particle emission distributions were
used for contaminating the samples as detailed in Table 2. The particle size distributions in
Fig. 2 are plotted at a logarithmic horizontal scale as the airborne particle emissions have been
observed to follow near log-normal distributions [8]. From theoretical perspective, the log-normal
particle size distribution can be derived from a random residence time approach [9].
Figure 1. Contamination setup (a) and Diffusil sample on the holder of the chamber (b).

Figure 2. Particle size distributions with the concentrations of undiluted exhaust produced by the contamination setup to replicate petrol (crosses) and diesel (circles) exhaust measured in Ref. [8]. The petrol and diesel distributions [8] are normalised to the peaks of our particle size distributions.

Table 1. Settings for the gas inputs of the soot aerosol generator to produce petrol-like and diesel-like particle size distributions.

Type of emission	Particle size at the peak of the distribution nm	Propane ml/min	Nitrogen gas ml/min	Oxidation air l/min	Dilution air l/min
Petrol-like emission	20	20	10	0.6	2
Diesel-like emission	100	16	0	1	2

As listed in Table 2, we studied 10 Spectralon, 10 Diffusil, and 6 Heraeus samples. From each data sets, samples were exposed either to petrol-like or diesel-like particle emission. Diffusil
samples have polished and rough sides and in this paper, we report the results for the rough sides. One Spectralon and one Diffusil sample were kept as uncontaminated references. Two Spectralon and two Diffusil samples were also exposed to the particle emissions with volatile particles evaporated from the exhaust gas by heating the gas with the furnace at 400 °C.

Table 2. Contamination times for Spectralon, Diffusil, and Heraeus sample sets. Petrol-like contamination refers to the 20 nm particle size distribution and diesel-like contamination refers to the 100 nm particle size distribution.

Diffuser type	Total number of samples	Sample ID	Type of particle emission	Exposure time / min
Spectralon USRS-99-020 by Labsphere	10	S1	Uncontaminated	–
		S2	Diesel-like	2.5
		S3	Diesel-like	5.0
		S4	Diesel-like	7.5
		S5	Diesel-like	20.0
		S6	Diesel-like, volatile particles removed	20.0
		S7	Petrol-like	5.0
		S8	Petrol-like	10.0
		S9	Petrol-like	20.0
		S10	Petrol-like, volatile particles removed	20.0
Diffusil R by Opsira	10	D1	Uncontaminated	–
		D2	Diesel-like	2.5
		D3	Diesel-like	5.0
		D4	Diesel-like	7.5
		D5	Diesel-like	20.0
		D6	Diesel-like, volatile particles removed	20.0
		D7	Petrol-like	5.0
		D8	Petrol-like	10.0
		D9	Petrol-like	20.0
		D10	Petrol-like, volatile particles removed	20.0
OM100 by Heraeus	6	H1	Diesel-like	2.5
		H2	Diesel-like	5.0
		H3	Diesel-like	7.5
		H4	Petrol-like	5.0
		H5	Petrol-like	10.0
		H6	Petrol-like	20.0

Degradation of the contaminated samples was monitored by measuring their $0°;45°$ spectral radiance factor and total diffuse spectral reflectance at 250 nm – 850 nm with a Perkin Elmer Lambda 900 spectrophotometer. To study how contaminated diffuser surfaces react to UV radiation, we radiated the samples gradually under the broadband spectrum of a xenon (Xe) lamp with the setup illustrated in Fig. 3 and monitored their degradation.
3. Results

3.1. Degradation due to contaminants

Spectralon is porous to hydrocarbon particles [1, 2, 4], which can be seen in Figs. 4(a) and 4(b) as a drastic drop in the total diffuse spectral reflectance at UV and visible (VIS) regions. The total diffuse spectral reflectance of an uncontaminated Spectralon reference, plotted as a black solid line, did not change. Contaminated Spectralon samples changed both in the UV and VIS. Diesel-like particle emission in Fig. 4(b) was more damaging to Spectralon than petrol-like particle emission in Fig. 4(a). In both cases, exhaust gas including volatile particles caused more degradation than that without volatile particles.

The total diffuse spectral reflectance of an uncontaminated Diffusil reference degraded 1% at the UV region after 9 months, seen as a black solid line in Fig. 4(c). Fused silica diffusers change in the UV region due to hydrogen enrichment by defects, e.g. by non-bridging oxygen-hole and E'-centres [12]. The reflectances of Diffusil and Heraeus samples exposed to petrol-like particle emission also changed as seen in Figs. 4(c) and 4(e). Petrol-like particle emission was more damaging to these fused silica diffusers than diesel-like particle emission shown in Figs. 4(d) and 4(f). The reflectances of the Diffusil samples exposed to diesel-like particle emission did not change as systematically as those of the other samples. One possibility is that the ~100 nm particles did not stick to the surface and fell off when the samples were moved during the experiments. For fused silica diffusers, petrol-like emission was more damaging and in all these tests they were more resistant to contamination compared with Spectralon. The degradation of 0°:45° spectral reflectance was similar to the degradation of diffuse spectral reflectance for the diffuser samples studied.
Figure 4. Ratios of the diffuse reflectances measured after and before the contamination for Spectralon (a)–(b), Diffusil (c)–(d), and Heraeus (e)–(f) samples. The degradation of the samples exposed to petrol-like particle emission are shown in figures on left and the degradation of the samples exposed to diesel-like particle emission are shown in figures on right. At this stage, the samples were not exposed to UV radiation.
3.2. Effect of combined contamination and UV radiation
We exposed the samples contaminated to the Xe lamp radiation with the setup illustrated in Fig. 3 and we noticed that UV radiation gradually cleaned the contaminated surfaces. Examples of such bleaching effect are presented in Fig. 5 for two Spectralon diffusers. The results for other diffuser types were systematically similar and the bleaching was relatively more effective for heavily contaminated diffuser surfaces.

![Graphs showing spectral reflectance of Spectralon samples](image1)

Figure 5. Examples of UV bleaching seen as the changing spectral reflectance of Spectralon samples; the sample #S9 exposed to petrol-like emission for 20 min and UV (a)–(b) and the sample #S2 exposed to diesel-like emission for 2.5 min and UV (c)–(d).

Based on our tests, mainly concerning ground reference test sites, the primary car emissions reduce reflectance. However, UV radiation in the presence of air bleaches the contaminated surfaces of Spectralon, Diffusil, and Heraeus diffusers. In the case of Spectralon, such bleaching in the air has also been noted in Ref. [13]. Bleaching takes place as UV radiation can break the relatively weak bonds of hydrocarbon molecules on the diffuser surface and the unstable hydrocarbons reach with the ambient air.

Based on literature in the case of in-orbit conditions [14], Spectralon is absorptive to vacuum UV radiation [15]. Such photon energies can break bonds between fluorine and carbon leading...
to the surface erosion of Spectralon [2, 16] and thus the surface loses fluorine [14, 17]. Broken carbon chains react with hydrocarbons outgassed, e.g. from lubricants [1], thus forming larger hydrocarbons. However, in the low-level orbit, atomic oxygen would bleach the surface [2, 14]. The atomic oxygen is formed when solar UVB and UVC radiation breaks the atmospheric oxygen molecules [18] according to Eq. (1). The atomic oxygen can further react with oxygen molecules and form ozone as shown in Eq. (2) that is also reactive. Top-of-the-atmospheric air is thin and sometimes the oxygen atom cannot find an oxygen molecule.

\[
\begin{align*}
 O_2 + h\nu & \rightarrow 2O \\
 O + O_2 & \rightarrow O_3
\end{align*}
\]

In new Earth observation satellites, the problems related to the excess UV exposure of a diffuser target are reduced by having a diffuser wheel with a working diffuser and a reference diffuser [19]. The reference diffuser is only used for monitoring the degradation of the working diffuser and it is rarely exposed to UV radiation. However, the reference diffuser may still change e.g. due to contamination induced degradation.

4. Conclusions

Three diffuser technologies: Spectralon, Diffusil, and Heraeus, were exposed to hydrocarbon contaminants and UV radiation in the air. Hydrocarbon contamination degraded the reflectance of Spectralon more than they degraded fused silica diffusers. The 250 nm – 400 nm total diffuse spectral reflectance of Spectralon degraded 3–5 times more when exposed to petrol-like particle emission for 20 minutes and 16–23 times more when exposed to diesel-like particle emission for 20 minutes, compared with Diffusil. Comparing the degradation of Spectralon against that of Heraeus showed almost similar results; Spectralon degraded 3–4 times more when exposed to petrol-like particle emission for 20 minutes and 5–7 times more when exposed to diesel-like particle emission for 7.5 minutes.

When the samples contaminated were exposed to UV radiation in the air, their reflectance gradually restored back to the original level. This means that in the air, hydrocarbon degradation competes with UV bleaching and we could not develop an optimal pre-ageing method for Spectralon panels used in the ground reference test sites. The results presented in this paper are only indicative as we did not study the effect of some other contaminants, such as sand grains and secondary car emissions.

Based on the earlier studies of Spectralon in vacuum conditions, both UV radiation and contaminants caused reflectance degradation. Based on the findings presented in this paper, fused silica diffusers are more resistant to hydrocarbon contaminants present in ground reference test sites compared with Spectralon, and thus more stable under UV radiation in the air. However, further tests are needed to see how fused silica diffusers perform in vacuum conditions when exposed to hydrocarbon contaminants and UV radiation.

Acknowledgements

This work has been supported by the European Metrology Research Programme (EMRP) within the joint research project ENV53 “European metrology for Earth observation and climate” (MetEOC2). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. Authors thank Paul Miller for helping with the UV irradiance measurements and Sara Pastor for helping with the reflectance measurements of the diffuser samples. Petri Kärhä is acknowledged for helping A.V. with the funding applications. A.V. thanks Jere Liukkonen for proof-reading this paper.
References

[1] Georgiev G T, Butler J J, Thome K J, Ramos-Izquierdo L A, Ding L, Graziani J, and Meadows G A, 2014 Initial studies of the directional reflectance changes in pressed and sintered PTFE diffusers following exposure to contamination and ionizing radiation Metrologia 51 S319–S328.

[2] Grossman E and Gouzman I, 2003 Space environment effects on polymers in low earth orbit Nuclear Instruments and Methods in Physics Research B 208 48–57.

[3] Website: www.radcalnet.org

[4] Stiegman A E, Bruegge C J, and Springsteen A W, 1993 Ultraviolet stability and contamination analysis of Spectralon diffuse reflectance material Optical Engineering 32 799–804.

[5] Lemailliet P, Patrick H J, Germet T A, Hanssen L, Johnson B C, and Georgiev G T, 2016 Goniometric and hemispherical reflectance and transmittance measurements of fused silica diffusers Proceedings of SPIE 9961 996109.

[6] Bruegge C J, Stiegman A E, Rahnen R A, and Springsteen A W, 1993 Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors Optical Engineering 32 805–814.

[7] Shaw P-S, Li Z, Arp U, and Lykke K R, 2007 Ultraviolet characterization of integrating spheres Applied Optics 46 5119–5128.

[8] Harris S J and Maricq M M, 2001 Signature size distributions for diesel and gasoline engine exhaust particulate matter Aerosol Science 32 749–764.

[9] Kiss L B, Söderlund J, Niklasson G A, and Granqvist C G, 1999 The real origin of lognormal size distributions of nanoparticles in vapor growth processes Nanostructured Materials 12 327–332.

[10] Vaskuri A, Kärhä P, Egli L, Gröbner J, and Ikonen E, (submitted) Monte Carlo method for determining uncertainty of total ozone derived from direct solar irradiance spectra: Application to Izaña results.

[11] Gröbner J, Kröger I, Egli L, Hüsen G, Riechelmann S, and Sperfeld P, 2017 The high resolution extra-terrestrial solar spectrum determined from ground-based solar irradiance measurements Atmospheric Measurement Techniques 10 3375–3383.

[12] Nürnberg F, Kühl B, Langner A, Altwein M, Schötz G, Takke R, Thomas S, and Vydra J, 2015 Bulk damage and absorption in fused silica due to high-power laser applications Proceedings of SPIE 9632 96321R.

[13] Dever J A, Rutledge S K, Hasegawa M M, and Reed C K, 1998 Evaluation of Low Earth Orbit Environmental Effects on International Space Station Thermal Control Materials NASA / TM–1998-208500, 11 pages.

[14] Zhao X, Shen Z, Xing Y, and Ma S, 2004 Experimental Study of Vacuum Ultraviolet Radiation Effects and Its Synergetic Effects with Atomic Oxygen on a Spacecraft Material Polytetrafluoroethylene Chinese Journal of Aeronautics 17 181–186.

[15] Townsend J A, Hansen P A, McClendon M W, de Groh K K, and Banks B A, 1999 Ground-based testing of replacement thermal control materials for the Hubble Space Telescope High Performance Polymers 11 63–79.

[16] Ishikawa K, Sumi N, Kono A, Horibe H, Takeda K, Kondo H, Sekine M, and Hori M, 2012 Synergistic Formation of Radicals by Irradiation with both Vacuum Ultraviolet and Atomic Hydrogen: a Real-time in situ Electron Spin Resonance Study. https://arxiv.org/pdf/1206.6920.

[17] Ferry L, Vigier G, Alexander-Katz R, and Garapon C, 1998 Interaction between UV Radiation and Filled Polytetrafluoroethylene (PTFE). I. Degradation Processes Journal of Polymer Science B 36 2057–2067.

[18] Fabry C and Buisson H, 1921 A study of the ultra-violet end of the solar spectrum Astrophysical Journal 54 297–322.

[19] Pérez Albiñana A, Erdmann M, Wright N, Martin D, Melf M, Bartsch P, and Seefelder W, 2017 Sentinel-5: the new generation European operational atmospheric chemistry mission in polar orbit Proceedings of SPIE 10403 104030P.