Breast Cancer Care Quality in South Africa’s Public Health System: An Evaluation Using American Society of Clinical Oncology/National Quality Forum Measures

Daniel S. O’Neil, MD, MPH; Wenlong Carl Chen, MSc; Oluwatosin Ayeni, MSc; Sarah Nietz, MD; Ines Bucchinazza, MBChB; Urishka Singh, MBChB; Sharon Cañada, MBChB; Laura Stopforth, MBChB; Maureen Joffe, PhD; Katherine D. Crew, MD; Judith S. Jacobson, MBA, PhD; Alfred I. Neugut, MD, PhD; Paul Ruff, MBChB, MMed; and Herbert Cubasch, MD

abstract

PURPOSE The quality of breast cancer care in sub-Saharan Africa contributes to the region’s dismal breast cancer mortality. ASCO has issued quality measures focusing on delivery of adjuvant chemotherapy, radiotherapy, and endocrine therapy. We applied these measures in five South African public hospitals and analyzed factors associated with care concordance.

MATERIALS AND METHODS Among 1,736 women with breast cancer who were enrolled in the South African Breast Cancer and HIV Outcomes study over 24 months, we evaluated care using ASCO’s three measures. We also evaluated adjuvant chemotherapy receipt in 957 women with an indication. We used logistic regression to estimate associations between measure-concordant care and patient factors.

RESULTS Of 235 women with hormone receptor–negative cancer, 173 (74%) began adjuvant chemotherapy within 120 days from diagnosis. Of 194 patients who received breast-conserving surgery, 73 (37%) began radiotherapy within 365 days from diagnosis. Of 999 women with hormone receptor–positive cancer, 719 (72%) initiated endocrine therapy within 365 days from diagnosis. Chemotherapy and radiotherapy measure-concordant care were more common among women residing < 20 km from the hospital (odds ratio [OR], 1.79; 95% CI, 1.32 to 2.44 and OR, 3.17; 95% CI, 1.57 to 6.42). Endocrine therapy measure-concordant care was more common among English-speaking women (OR, 2.12; 95% CI, 1.12 to 4.02). Participating hospitals varied in care concordance. HIV infection did not affect care quality.

CONCLUSION More timely delivery of chemotherapy, radiotherapy, and endocrine therapy is needed in South Africa, particularly for women living < 20 km from the hospital or not speaking English. Focused quality improvement efforts could support that goal.

J Global Oncol. © 2019 by American Society of Clinical Oncology

INTRODUCTION

Breast cancer (BC) is the most common cancer among women in sub-Saharan Africa (SSA). Unfortunately, resource constraints limit access to surgery, radiotherapy, and systemic treatments, and mortality rates are much higher than in the United States and Europe.

In 2007, ASCO published three measures for evaluating the quality of BC care:

1. Proportion of women age 18-70 years with American Joint Committee on Cancer (AJCC) stage II-III disease and estrogen receptor (ER)– and progesterone receptor (PR)–negative histology who receive chemotherapy within 120 days from diagnosis

2. Proportion of women age 18-70 years with AJCC stage I-II disease treated with breast-conserving surgery (BCS) who receive radiation therapy to the breast within 365 days from diagnosis

3. Proportion of women aged ≥ 18 years with AJCC stage I-II disease, tumor size > 1 cm, and ER- or PR-positive histology who receive tamoxifen or an aromatase inhibitor within 365 days from diagnosis

These measures were based on evidence of clinical benefit from each therapy. They were endorsed by the National Quality Forum and used in ASCO’s Quality Oncology Practice Initiative. Although the three measures were designed for the United States, they have previously been used to assess BC care in middle-income countries, including Brazil and Malaysia.
The South Africa (SA) National Department of Health’s BC treatment guidelines, which overlap significantly with guidelines issued by ASCO and the European Society for Medical Oncology (ESMO), recommend treatment consistent with the ASCO measures. All three modalities are offered within SA’s public health care system, but high patient volumes, provider shortages, and other resource constraints limit their availability. Little has been published regarding the extent to which actual BC care in SA’s public hospitals aligns with national guidelines. Given their consistency with SA’s national BC guidelines, ASCO’s quality metrics may be appropriate for describing the quality of BC care in SA. However, the feasibility of their use in SA and their relevance to patients in SA have not been evaluated.

In this study, therefore, we used those measures to describe the quality of BC care in five SA public hospitals and examined the role of patient factors in measure-concordant care. Through our analyses, we also hoped to gain insight into the applicability of the ASCO measures to SA’s public health care system.

MATERIALS AND METHODS

Data Source and Setting

Our study population was drawn from the South African Breast Cancer and HIV Outcomes (SABCHO) study cohort. The primary aim of SABCHO, which has been enrolling women from five public SA hospitals since July 2015, is to characterize the impact of HIV infection on BC outcomes. Women were eligible for SABCHO if they were > 18 years of age, newly diagnosed with BC, had no history of other cancers, received their BC care at a study hospital, and provided consent.

The five study hospitals—all part of the same public system—were Chris Hani Baragwanath Academic Hospital (CHBAH), Charlotte Maxeke Johannesburg Academic Hospital (CMJAH), Inkosi Albert Luthuli Central Hospital (IALCH), Ngwelezana Hospital (NH), and Grey’s Hospital (GH). CHBAH and CMJAH serve Soweto and Johannesburg, respectively, and are affiliated with the University of Witwatersrand. IALCH, NH, and GH are affiliated with the University of KwaZulu-Natal and located in the cities of Durban, Empangeni, and Pietermaritzburg, respectively. IALCH and NH share facilities and providers and were analyzed as a single site. Participants’ BC care is centralized at the hospitals, where study staff enter data on patient demographics, risk factors, household wealth, pathology, treatments, and outcomes into a custom-built, Web-based electronic medical record (EMR) system originally developed for clinical use but adapted to serve as the SABCHO study database. A few participating providers continue to use paper records; study staff regularly extract their patients’ data into the electronic database.

Although SA is an upper middle income country, it has tremendous income inequality. The mean household income of white families is 6 times that of black households. HIV prevalence in black women is 25%, 20 times higher than in white women. Per capita spending in the public health care system is < 15% of that in the coexisting private system; BC survival differs significantly between the two. National policy specifies that low- or no-cost cancer surgery, chemotherapy, radiotherapy, and endocrine therapy be available at tertiary-level public hospitals, but timely access to these treatments is inconsistent.

Study Design and Participants

We analyzed women enrolled in the SABCHO study between July 1, 2015, and July 1, 2017, with follow-up through August 2018. We used data on age, American Joint Committee on Cancer 7th edition stage, ER/PR status,
and type of surgery to establish three cohorts, each corresponding to the denominator described by the ASCO measures for delivery of chemotherapy (ASCO-C cohort), radiotherapy (ASCO-R cohort), or endocrine therapy (ASCO-E cohort). Patients were excluded from a given cohort if they died during that measure’s follow-up period. We also created an additional cohort of women < 70 years old with an indication for adjuvant chemotherapy according to ESMO 2015 guidelines for BC management (ESMO-C cohort; ie, luminal B, human epidermal growth factor receptor 2 [HER2]-enriched, and triple-negative [TNBC] tumors or luminal A tumors with metastases in ≥ 4 lymph nodes, ≥ T3 tumor stage, or grade 3 tumor histology). Thus, the ESMO-C cohort included all women in the ASCO-C cohort and additional women with aggressive luminal-type cancers. The molecular subtype definitions used for SABCHO analyses have been published. Laboratories accredited by the South African National Accreditation System conducted all immunohistochemistry.

Variables
We compiled participant data on age, race, primary language, relationship status (ie, married/cohabitating vs not), employment status (ie, full- or part-time employment vs unemployed or retired), HIV status, and other comorbidities. Addresses were used to calculate straight-line distance from the treating hospital. Date of diagnosis was the date of first biopsy confirming invasive disease.

Adapting a strategy used by the Demographics and Health Surveys Program to create a single variable approximating socioeconomic status, we performed principal component analysis on items from each patient’s baseline household wealth survey, including water sources, toilet facilities, and physical amenities. We assigned participants to quintiles using the value of the first principal component.

Outcomes
For each ASCO measure cohort, our primary outcome was initiation of the relevant therapy within the specified time frame. For the ESMO-C cohort, our primary outcome was initiation of chemotherapy within 120 days from diagnosis. We therefore collected the dates of surgery, chemotherapy initiation, radiotherapy initiation, and endocrine therapy initiation. We reviewed paper records as well as the electronic study database to minimize underestimation of delivered therapies.

Statistical Analysis
We categorized the care of participants who received the relevant therapy within the time frame as measure concordant and that of those who did not as discordant. We report rates of concordance with each measure. We computed crude odds ratios for the association of each the above-mentioned patient characteristics with measure-concordant care using bivariate logistic regression. Factors showing a P-value ≤ .1 on Wald testing for crude association were included as covariates in multivariate logistic regression models used to calculate adjusted odds ratios (ORs). All calculations were performed using SAS Studio, version 3.6 (Cary, NC).

Ethics
This work was approved by the institutional review boards of Columbia University, the University of Witwatersrand, and the University of KwaZulu-Natal. All participants provided informed consent for inclusion in the SABCHO study cohort.

RESULTS
Participants
Of the 1,795 women enrolled in the SABCHO study, 59 either lacked invasive disease or had a second cancer diagnosis. The remaining 1,736 were eligible for the 4 study cohorts. Median age at diagnosis was 55.5 (interquartile range [IQR], 44.9-66.2) years, median distance from home to the hospital was 20.7 (IQR, 8.7-42.9) km, and 1,320 (76%) women were black (Table 1). The most common primary language was Zulu (42%). At diagnosis, 743 (43%) patients had stage III disease, and 353 (20%) had stage IV. ER/PR expression and HER2 overexpression were detected in 1,356 (79%) and 467 (27%) women, respectively, and 367 (22%) women were HIV infected (Table 1). The ASCO-C, ESMO-C, ASCO-R, and ASCO-E cohorts included 235, 957, 194, and 999 patients, respectively (Fig 1).

Chemotherapy
Among ASCO-C patients, 173 (74%) received chemotherapy within 120 days from diagnosis (ie, measure-concordant care). An additional 33 (14%) patients received chemotherapy after 120 days; overall median time to treatment was 66.5 (IQR, 50-105) days (Table 2). Among ESMO-C patients, 642 (67%) received chemotherapy within 120 days. Another 166 (17%) patients were treated later; median time to treatment was 75 (IQR, 49.5-112.5) days (Table 2; Fig 2A).

The ESMO-C cohort’s multivariate model included age; distance from the hospital; employment status; stage; molecular subtype; concurrent hypertension, diabetes, and arthritis; treating hospital; and receipt of radiotherapy (Table 3). Concordant care was more likely in patients residing < 20 km from the hospital (OR, 1.79; 95% CI, 1.32 to 2.44) or who had received radiotherapy (OR, 2.81; 95% CI, 2.06 to 3.85). Concordant care was less likely in patients with stage II disease (OR, 0.47; 95% CI, 0.34 to 0.64), with luminal A versus TNBC subtype (OR, 0.32; 95% CI, 0.18 to 0.55), or treated at IALCH/ NH versus CHBAH (OR, 0.38; 95% CI, 0.26 to 0.57; Table 3).

Radiation Therapy
In the ASCO-R cohort, 73 patients (37%) received radiotherapy within 365 days. An additional 69 (36%) patients received radiotherapy after 365 days; median time to treatment was 358 (IQR, 296-425) days (Table 2; Fig 2B).
TABLE 1. Overall Demographic and Clinical Characteristics Among All Eligible SABCHO Study Participants and Within Each Quality Measure Cohort

Characteristic	Eligible Cohort (N = 1,736)	ASCO-C (n = 232)	ESMO-C (n = 957)	ASCO-R (n = 194)	ASCO-E (n = 999)
Age at diagnosis, years	55.5 (44.9-66.2)	51.5 (42.6-61.6)	50.8 (42.1-59.4)	50.0 (41.5-59.0)	55.2 (44.8-66.7)
Distance from the hospital, kilometers	20.7 (8.7-42.9)	21.8 (8.9-39.2)	20.1 (8.6-37.8)	18.4 (8.5-33.1)	19.9 (8.5-39.0)
Race					
Black	1,320 (76.0)	178 (76.7)	752 (78.6)	125 (64.4)	725 (72.6)
Asian	206 (11.9)	33 (14.2)	102 (10.7)	35 (18.0)	127 (12.7)
White	125 (7.2)	15 (6.5)	58 (6.1)	19 (9.8)	86 (8.6)
Mixed race	85 (4.9)	6 (2.6)	45 (4.7)	15 (7.7)	61 (6.1)
Education completed					
Informal only	148 (8.6)	16 (6.9)	43 (4.5)	4 (2.1)	64 (6.5)
Some primary school	94 (5.5)	9 (3.9)	37 (3.9)	9 (4.6)	52 (5.3)
Completed primary school	667 (39.0)	94 (40.7)	353 (37.3)	64 (33.0)	373 (37.9)
Completed high school	659 (38.5)	96 (41.6)	428 (45.2)	87 (44.9)	410 (41.6)
Technical or professional college	94 (5.5)	7 (3.0)	57 (6.0)	25 (12.9)	64 (6.5)
Postgraduate/university	50 (2.9)	9 (3.9)	29 (3.1)	5 (2.6)	22 (2.2)
Relationship status					
Partnered	668 (38.9)	111 (48.1)	417 (43.9)	96 (49.5)	380 (38.3)
Not partnered	1,051 (61.1)	120 (52.0)	532 (56.1)	98 (50.5)	611 (61.7)
Employment status					
Employed	455 (26.3)	76 (32.9)	336 (35.3)	80 (41.2)	282 (28.3)
Unemployed	1,273 (73.7)	155 (67.1)	616 (64.7)	114 (58.8)	715 (71.7)
Primary language					
Zulu	729 (42.0)	104 (44.8)	398 (41.6)	62 (32.0)	383 (38.3)
English	317 (18.3)	45 (19.4)	156 (16.3)	53 (27.3)	205 (20.5)
Other	690 (39.8)	83 (35.8)	403 (42.1)	79 (40.7)	411 (41.1)
Stage					
I	80 (4.6)	27 (13.9)	53 (5.3)		
II	555 (32.1)	130 (67.0)	438 (43.8)		
III	743 (42.9)	310 (64.7)	313 (64.7)		
IV	353 (20.4)	145 (74.7)	752 (75.2)		
Estrogen/progesterone receptor status					
Positive	1,356 (78.5)	722 (75.7)	158 (81.4)	999 (100)	
Negative	371 (21.5)	232 (100)	36 (18.6)		
HER2 status					
Positive	467 (27.1)	69 (29.9)	307 (32.2)	49 (25.3)	248 (24.8)
Negative	1,259 (72.9)	162 (70.1)	647 (67.8)	145 (74.7)	752 (75.2)
Comorbidities					
HIV infection	367 (21.5)	59 (25.7)	232 (24.5)	28 (14.6)	188 (19.0)
Hypertension	718 (41.6)	79 (34.2)	329 (34.6)	60 (30.9)	430 (43.2)
Heart disease	69 (4.0)	6 (2.6)	29 (3.1)	6 (3.1)	47 (4.7)
Diabetes	236 (13.7)	33 (14.3)	111 (11.7)	21 (10.8)	141 (14.2)
Stroke	43 (2.5)	5 (2.2)	14 (1.5)	1 (0.5)	21 (2.1)

(Continued on following page)
The multivariate model included distance from the hospital, stage, molecular subtype, and receipt of chemotherapy (Table 4). Patients residing < 20 km from the hospital (OR, 3.17; 95% CI, 1.57 to 6.42) or having stage I versus stage III disease (OR, 6.74; 95% CI, 1.83 to 24.88) were more likely to receive radiotherapy measure-concordant care, and those with luminal B subtype versus TNBC (OR 0.30, 95% CI 0.12-0.78) were less likely.

TABLE 1. Overall Demographic and Clinical Characteristics Among All Eligible SABCHO Study Participants and Within Each Quality Measure Cohort (Continued)

Characteristic	Eligible Cohort (N = 1,736)	ASCO-C (n = 232)	ESMO-C (n = 957)	ASCO-R (n = 194)	ASCO-E (n = 999)
Tuberculosis	131 (7.6)	18 (7.8)	75 (7.9)	5 (2.6)	68 (6.8)
Arthritis	196 (11.4)	15 (6.5)	84 (8.8)	22 (11.3)	134 (13.5)
Asthma/COPD	94 (5.5)	10 (4.3)	47 (4.9)	12 (6.2)	56 (5.6)
Treating hospital					
CHBAH	585 (32.6)	77 (33.2)	362 (37.9)	61 (31.6)	354 (35.4)
CMJAH	407 (23.4)	56 (24.1)	227 (23.7)	65 (33.7)	232 (23.2)
IALCH/NH	429 (24.7)	57 (24.6)	213 (22.3)	57 (29.5)	238 (23.8)
GH	335 (19.3)	42 (18.1)	154 (16.1)	10 (5.2)	175 (17.5)

NOTE. Data presented as No. (%) or median (IQR).
Abbreviations: C, chemotherapy; CHBAH, Chris Hani Baragwanath Academic Hospital; CMJAH, Charlotte Maxeke Johannesburg Academic Hospital; COPD, chronic obstructive pulmonary disease; E, endocrine therapy; ESMO, European Society for Medical Oncology; GH, Grey’s Hospital; HER2, human epidermal growth factor receptor 2; IALCH, Inkosi Albert Luthuli Central Hospital; IQR, interquartile range; NH, Ngwelezana Hospital; R, radiotherapy; SABCHO, South African Breast Cancer and HIV Outcomes study.

The women enrolled in the SABCHO study from July 1, 2015 to July 1, 2017 (N = 1,795) are shown in **FIG 1.** Excluded reasons are not mutually exclusive. C, chemotherapy; BCS, breast-conserving surgery; E, endocrine therapy; ER, estrogen receptor; ESMO, European Society for Medical Oncology; PR, progesterone receptor; R, radiotherapy.
Endocrine Therapy

Of the 999 eligible patients, 719 (72%) patients initiated endocrine therapy within 365 days. Another 117 (12%) patients started after 365 days; median time to initiation was 238 (IQR, 157-308.5) days (Table 2; Fig 2C). Age; race; primary language; stage; molecular subtype; HIV infection, hypertension, heart disease, diabetes, arthritis, or asthma/chronic obstructive pulmonary disease; hospital; and receipt of radiotherapy were included in the multivariate model. Measure-concordant care was increased in women whose primary language was English (OR, 2.12; 95% CI, 1.12 to 4.02), with stage I versus stage III (OR, 3.17; 95% CI, 1.18 to 8.50), treated at GH versus CHBAH (OR, 2.25; 95% CI, 1.39 to 3.65), and those who received radiotherapy (OR, 2.32; 95% CI, 1.69 to 3.18). It was decreased in those age <45 years or 45-65 years versus ≥65 years (OR, 0.44; 95% CI, 0.27 to 0.73; OR, 0.51; 95% CI, 0.34 to 0.77; Table 5).

DISCUSSION

In this cohort from 5 public SA hospitals, we found variations in the concordance of BC care with ASCO’s quality measures. Regarding chemotherapy, 73% of patients in the ASCO-C cohort and 67% with an ESMO guideline indication for chemotherapy received their first dose within 120 days from diagnosis. In the ASCO-R and the ASCO-E cohorts, 37% and 72% of patients initiated radiotherapy and endocrine therapy, respectively, within 365 days. Women living <20 km from the treating hospital were less likely to receive care concordant with the chemotherapy and radiotherapy measures, and those who primarily spoke English were more likely to receive care concordant with the endocrine therapy measure. HIV infections showed no association with care quality, and study hospitals’ provision of measure-concordant care varied. Measure performance is often lower than expected on initial evaluation in US hospitals. Baseline chemotherapy, radiotherapy, and endocrine therapy compliance rates at hospitals from the National Cancer Institute Community Centers Cancer Program were 85%, 79%, and 58% but improved to 93%, 92%, and 92% with just implementation of real-time reporting. Increased data capture with routine measurement of performance likely contributed to the rapid improvement, suggesting that baseline reports may underestimate actual care quality. Investigators at Parkland Memorial Hospital in Dallas saw drastic improvement in performance when data were drawn from all available clinical documents rather than from medical records alone. Our study used all available clinical documents though, decreasing the likelihood that performance is significantly underestimated.

TABLE 2. Rates of Metric-Concordant Care and Median Times to Treatment Initiation for All Measure Cohorts, by Hospital Quality Measure Cohort

Measure-c oncordant/chemotherapy by 120 days	ASCO-C (n = 232)	CHBAH (n = 77)	CMJAH (n = 56)	IALCH/NH (n = 57)	GH (n = 42)
Measure-concordant/chemotherapy by 120 days	173 (74)	60 (78)	42 (75)	36 (63)	35 (83)
Days to chemotherapy	66.5 (50-105)	61 (50-83)	50 (38-70)	101 (69-130)	68.5 (54-111)
	ASCO-R (n = 194)	CHBAH (n = 61)	CMJAH (n = 65)	IALCH/NH (n = 57)	GH (n = 10)
Measure-concordant/radiotherapy by 365 days	73 (37)	27 (44)	26 (40)	17 (30)	3 (30)
Days to radiotherapy	358 (296-425)	326.5 (294-399)	345 (271-425)	389 (313-433.5)	374 (320-413)
	ASCO-E (n = 999)	CHBAH (n = 354)	CMJAH (n = 232)	IALCH/NH (n = 238)	GH (n = 20)
Measure-concordant/endocrine therapy by 120 days	719 (72)	230 (65)	147 (63)	195 (82)	147 (84)
Days to endocrine therapy	238 (157-308.5)	251 (185-330)	234 (123-282)	225 (106-317)	224 (180-292)

NOTE. Data presented as No. (%) or median (IQR).

Abbreviations: C, chemotherapy; CHBAH, Chris Hani Baragwanath Academic Hospital; CMJAH, Charlotte Maxeke Johannesburg Academic Hospital; E, endocrine therapy; ESMO, European Society for Medical Oncology; GH, Grey's Hospital; IALCH, Inkosi Albert Luthuli Central Hospital; NH, Ngwelezana Hospital; R, radiotherapy.

© 2019 by American Society of Clinical Oncology
FIG 2. Days from diagnosis to first receipt of (A) neoadjuvant or adjuvant chemotherapy in the European Society for Medical Oncology–chemotherapy cohort, (B) radiotherapy in the ASCO-radiotherapy cohort, and (C) endocrine therapy in the ASCO–endocrine therapy cohort.
TABLE 3. Sociodemographic and Clinical Factors in Relation to Chemotherapy Receipt Within 120 Days From Diagnosis Among Women in the ESMO-C Cohort

Factor	Measure Concordance* No. (%)	Measure Discordance* No. (%)	Crude OR (95% CI)	Adjusted OR† (95% CI)
Age, years				
< 45	225 (73.3)	82 (26.7)	2.30 (1.44 to 3.66)	1.45 (0.82 to 2.59)
45-65	362 (65.9)	187 (34.1)	1.62 (1.05 to 2.49)	1.28 (0.78 to 2.11)
≥ 65	55 (54.5)	46 (45.5)	1 (Ref)	1 (Ref)
Distance from the hospital, km				
< 20	348 (72.8)	130 (27.2)	1.68 (1.28 to 2.20)	1.79 (1.32 to 2.44)
≥ 20	294 (61.5)	184 (38.5)	1 (Ref)	1 (Ref)
Race				
Black	515 (68.5)	237 (31.5)	1.34 (0.97 to 1.84)	—
Other	127 (62.0)	78 (38.1)	1 (Ref)	—
Wealth percentile				
≤ 20th	98 (61.6)	61 (38.4)	0.81 (0.52 to 1.28)	—
21st-40th	136 (68.3)	63 (31.7)	1.09 (0.70 to 1.69)	—
41st-60th	138 (67.0)	68 (33.0)	1.02 (0.66 to 1.58)	—
60-80th	159 (70.4)	67 (29.7)	1.20 (0.78 to 1.84)	—
> 80th	111 (66.5)	56 (33.5)	1 (Ref)	—
Education completed				
Informal only	25 (58.1)	18 (41.9)	0.85 (0.32 to 2.23)	—
Some primary school	18 (48.7)	19 (51.4)	0.58 (0.22 to 1.56)	—
Completed primary school	238 (67.4)	115 (32.6)	1.27 (0.58 to 2.77)	—
Completed high school	300 (70.1)	128 (29.9)	1.43 (0.66 to 3.12)	—
Technical or professional college	41 (71.9)	16 (28.1)	1.57 (0.61 to 4.04)	—
Postgraduate/ university	18 (62.1)	11 (37.9)	1 (Ref)	—
Relationship status				
Partnered	294 (70.5)	123 (29.5)	1.27 (0.97 to 1.68)	—
Not partnered	347 (65.2)	185 (34.8)	1 (Ref)	—
Employment status				
Employed	240 (71.4)	96 (28.6)	1.34 (1.00 to 1.79)	1.16 (0.83 to 1.62)
Unemployed	401 (65.1)	215 (34.9)	1 (Ref)	1 (Ref)
Primary language				
English	101 (64.7)	55 (35.3)	0.88 (0.62 to 1.27)	—
Other	541 (67.5)	260 (32.5)	1 (Ref)	—
Stage				
II	198 (58.4)	141 (41.6)	0.55 (0.42 to 0.73)	0.47 (0.34 to 0.64)
III	444 (71.8)	174 (28.2)	1.00 (Ref)	1.00 (Ref)
Molecular subtype				
Luminal A	60 (51.3)	57 (48.7)	0.37 (0.23 to 0.61)	0.32 (0.18 to 0.55)
Luminal B	409 (67.6)	196 (32.4)	0.74 (0.50 to 1.08)	0.70 (0.46 to 1.06)
HER2 enriched	51 (72.9)	19 (27.1)	0.95 (0.50 to 1.78)	1.11 (0.56 to 2.20)
Triple negative	122 (73.9)	43 (26.1)	1 (Ref)	1 (Ref)

(Continued on following page)
TABLE 3. Sociodemographic and Clinical Factors in Relation to Chemotherapy Receipt Within 120 Days From Diagnosis Among Women in the ESMO-C Cohort (Continued)

Factor	Measure Concordance* No. (%)	Measure Discordance* No. (%)	Crude OR (95% CI)	Adjusted OR† (95% CI)
HIV				
Positive	159 (68.5)	73 (31.5)	1.09 (0.80 to 1.50)	—
Negative	477 (66.6)	239 (33.4)	1 (Ref)	—
Hypertension				
Present	200 (60.8)	129 (39.2)	0.64 (0.48 to 0.84)	0.83 (0.57 to 1.19)
Absent	441 (70.9)	181 (29.1)	1 (Ref)	1 (Ref)
Heart disease				
Present	12 (41.4)	17 (58.6)	0.33 (0.16 to 0.70)	0.42 (0.18 to 1.0)
Absent	629 (68.2)	293 (31.8)	1 (Ref)	1 (Ref)
Diabetes				
Present	62 (55.9)	49 (44.1)	0.57 (0.38 to 0.85)	0.79 (0.49 to 1.28)
Absent	579 (68.9)	261 (31.1)	1 (Ref)	1 (Ref)
Stroke				
Present	9 (64.3)	5 (35.7)	0.87 (0.29 to 2.61)	—
Absent	632 (67.5)	305 (32.6)	1 (Ref)	—
Tuberculosis				
Present	46 (61.3)	29 (38.7)	0.75 (0.46 to 1.22)	—
Absent	595 (67.9)	281 (32.1)	1 (Ref)	—
Arthritis				
Present	45 (53.6)	39 (46.4)	0.53 (0.33 to 0.83)	1.02 (0.61 to 1.73)
Absent	596 (68.7)	271 (31.3)	1 (Ref)	1 (Ref)
Asthma/COPD				
Present	33 (70.2)	14 (29.8)	1.15 (0.61 to 2.18)	—
Absent	608 (67.3)	296 (32.7)	1 (Ref)	—
Treating hospital				
CHBAH	262 (72.4)	100 (27.6)	1 (Ref)	1 (Ref)
CMJAH	165 (72.7)	62 (27.3)	1.02 (0.70 to 1.47)	0.91 (0.61 to 1.37)
IALCH/NH	112 (52.6)	101 (47.4)	0.42 (0.30 to 0.60)	0.38 (0.26 to 0.57)
GH	103 (66.9)	51 (33.1)	0.77 (0.51 to 1.16)	0.85 (0.54 to 1.35)
Radiotherapy‡				
Received	346 (77.4)	101 (22.6)	2.48 (1.87 to 3.29)	2.81 (2.06 to 3.85)
Never received	296 (58.0)	214 (42.0)	1 (Ref)	1 (Ref)
Endocrine therapy‡				
Received	386 (68.0)	182 (32.0)	1.10 (0.84 to 1.45)	—
Never received	256 (65.8)	133 (34.2)	1 (Ref)	—

Abbreviations: C, chemotherapy; CHBAH, Chris Hani Baragwanath Academic Hospital; CMJAH, Charlotte Maxeke Johannesburg Academic Hospital; COPD, chronic obstructive pulmonary disease; GH, Grey’s Hospital; HER2, human epidermal growth factor receptor 2; IALCH, Inkosi Albert Luthuli Central Hospital; NH, Ngwelezana Hospital; OR, odds ratio; Ref, reference.

*Row percentages displayed.
†Model includes age group; distance from the hospital; employment status; stage; molecular subtype; presence of hypertension, heart disease, diabetes, and arthritis; treating hospital; and receipt of radiotherapy.
‡Includes receipt of treatment type at any time after study enrollment.
Factor	Measure Concordance* No. (%)	Measure Discordance* No. (%)	Crude OR (95% CI)	Adjusted OR† (95% CI)
Age, years				
< 45	23 (33.3)	46 (66.7)	4.50 (0.54 to 37.71)	—
45-65	49 (42.6)	66 (57.4)	6.68 (0.82 to 54.50)	—
≥ 65	1 (10.0)	9 (90.0)	1 (Ref)	1 (Ref)
Distance from the hospital, km				
< 20	49 (46.7)	56 (53.3)	2.33 (1.27 to 4.23)	3.17 (1.57 to 6.42)
≥ 20	24 (27.3)	64 (72.7)	1 (Ref)	1 (Ref)
Missing	0	1		
Race				
Black	47 (37.6)	78 (62.4)	1.00 (0.54 to 1.83)	—
Other	26 (37.7)	43 (62.3)	1 (Ref)	1 (Ref)
Wealth percentile				
≤ 20th	6 (35.3)	11 (64.7)	0.57 (0.18 to 1.74)	—
21st-40th	10 (31.3)	22 (68.8)	0.47 (0.19 to 1.17)	—
41st-60th	11 (28.2)	28 (71.8)	0.41 (0.17 to 0.97)	—
60-80th	18 (36.7)	31 (63.3)	0.60 (0.28 to 1.31)	—
> 80th	28 (49.1)	29 (50.9)	1 (Ref)	—
Education completed				
Informal only	3 (75.0)	1 (25.0)	12.00 (0.51 to 280.09)	—
Some primary school	3 (33.3)	6 (66.7)	2.00 (0.15 to 26.73)	—
Completed primary school	28 (43.8)	36 (56.3)	3.11 (0.33 to 29.41)	—
Completed high school	28 (32.2)	59 (67.8)	1.90 (0.20 to 17.78)	—
Technical or professional college	10 (40.0)	15 (60.0)	2.67 (0.26 to 27.49)	—
Postgraduate/university	1 (20.0)	4 (80.0)	1 (Ref)	—
Relationship status				
Partnered	33 (34.4)	63 (65.6)	0.76 (0.42 to 1.36)	—
Not partnered	40 (40.8)	58 (59.2)	1 (Ref)	—
Employment status				
Employed	29 (36.3)	51 (63.8)	0.91 (0.50 to 1.64)	—
Unemployed	44 (38.6)	70 (61.4)	1 (Ref)	—
Primary language				
English	17 (32.1)	36 (67.9)	0.72 (0.37 to 1.40)	—
Other	56 (39.7)	85 (60.3)	1 (Ref)	—
Stage				
I	20 (74.1)	7 (25.9)	8.89 (2.84 to 27.86)	6.74 (1.83 to 24.88)
II	44 (33.9)	86 (66.2)	1.59 (0.69 to 3.67)	1.26 (0.52 to 3.05)
III	9 (24.3)	28 (75.7)	1 (Ref)	1 (Ref)
Molecular subtype				
Luminal A	26 (53.1)	23 (46.9)	1.13 (0.44 to 2.93)	0.70 (0.23 to 2.08)
Luminal B	31 (28.4)	78 (71.6)	0.40 (0.17 to 0.95)	0.30 (0.12 to 0.78)
HER2 enriched	3 (30.0)	7 (70.0)	0.43 (0.09 to 2.03)	0.39 (0.08 to 2.01)
Triple negative	13 (50.0)	13 (50.0)	1 (Ref)	1 (Ref)

(Continued on following page)
The performance of our sites on the radiotherapy measure was poor. Radiotherapy equipment is in short supply in SA’s public health care system. This constraint is a barrier to the use of BCS throughout SSA. SA’s national guidelines include lack of access to radiotherapy as a contraindication to BCS, and until access improves, breast conservation should be used cautiously.

Factor	Measure Concordance *	Measure Discordance *	Crude OR (95% CI)	Adjusted OR † (95% CI)
HIV				
Positive	8 (28.6)	20 (71.4)	0.63 (0.26 to 1.50)	—
Negative	64 (39.0)	100 (61.0)	1 (Ref)	—
Hypertension				
Present	20 (33.3)	40 (66.7)	0.76 (0.40 to 1.45)	—
Absent	53 (39.6)	81 (60.5)	1 (Ref)	—
Heart disease				
Present	7 (37.2)	118 (62.8)	1 (Ref)	—
Absent	66 (38.2)	107 (61.9)	1 (Ref)	—
Diabetes				
Present	7 (33.3)	14 (66.7)	0.81 (0.31 to 2.11)	—
Absent	63 (39.0)	102 (61.0)	1 (Ref)	—
Stroke				
Present	1 (100.0)	0 (0.0)	—	—
Absent	72 (37.3)	121 (62.7)	—	—
Tuberculosis				
Present	2 (40.0)	3 (60.0)	1.11 (0.18 to 6.79)	—
Absent	71 (37.6)	118 (62.4)	1 (Ref)	—
Arthritis				
Present	11 (50.0)	11 (50.0)	1.77 (0.73 to 4.33)	—
Absent	62 (36.1)	110 (64.0)	1 (Ref)	—
Asthma/COPD				
Present	5 (41.7)	7 (58.3)	1.20 (0.37 to 3.92)	—
Absent	68 (37.4)	114 (62.6)	1 (Ref)	—
Treating hospital				
CHBAH	27 (44.3)	34 (55.7)	1 (Ref)	—
CMJAH	26 (40.0)	39 (60.0)	0.84 (0.41 to 1.70)	—
IALCH/NH	17 (29.8)	40 (70.2)	0.54 (0.25 to 1.14)	—
GH	3 (30.0)	7 (70.0)	0.54 (0.13 to 2.29)	—
Chemotherapy ‡				
Received	50 (33.3)	100 (66.7)	**0.46 (0.23 to 0.90)**	0.51 (0.22 to 1.21)
Never received	23 (52.3)	21 (47.7)	1 (Ref)	1 (Ref)
Endocrine therapy ‡				
Received	53 (38.1)	86 (61.9)	1.08 (0.57 to 2.06)	—
Never received	20 (36.4)	35 (63.6)	1 (Ref)	—

Abbreviations: CHBAH, Chris Hani Baragwanath Academic Hospital; CMJAH, Charlotte Maxeke Johannesburg Academic Hospital; COPD, chronic obstructive pulmonary disease; GH, Grey’s Hospital; HER2, human epidermal growth factor receptor 2; IALCH, Inkosi Albert Luthuli Central Hospital; NH, Ngwelezana Hospital; OR, odds ratio; R, radiotherapy; Ref, reference.

*Row percentages displayed.
†Model includes distance from the hospital, stage, molecular subtype, and receipt of chemotherapy.
‡Includes receipt of treatment type at any time after study enrollment.

The performance of our sites on the radiotherapy measure was poor. Radiotherapy equipment is in short supply in SA’s public health care system. This constraint is a barrier to the use of BCS throughout SSA.
Factor	Measure-Concordance* No. (%)	Measure-Discordance* No. (%)	Crude OR (95% CI)	Adjusted OR† (95% CI)
Age, years				
< 45	165 (65.5)	87 (34.5)	0.46 (0.31 to 0.68)	0.44 (0.27 to 0.73)
45-65	326 (70.3)	138 (29.7)	0.57 (0.40 to 0.81)	0.51 (0.34 to 0.77)
≥ 65	228 (80.6)	55 (19.4)	1 (Ref)	1 (Ref)
Distance from the hospital, km				
< 20	372 (73.8)	132 (26.2)	1.19 (0.91 to 1.58)	—
≥ 20	347 (70.2)	147 (29.8)	1 (Ref)	—
Missing	0	1	—	—
Race				
Black	494 (68.1)	231 (31.9)	0.47 (0.33 to 0.66)	1.12 (0.66 to 1.90)
Other	225 (82.1)	49 (17.9)	1 (Ref)	1 (Ref)
Wealth percentile				
≤ 20th	115 (71.0)	47 (29.0)	0.81 (0.51 to 1.29)	—
21st-40th	128 (67.7)	61 (32.3)	0.70 (0.45 to 1.08)	—
41st-60th	140 (67.6)	67 (32.4)	0.69 (0.45 to 1.06)	—
60-80th	179 (77.2)	53 (22.8)	1.12 (0.72 to 1.73)	—
> 80th	157 (75.1)	52 (24.9)	1 (Ref)	—
Education completed				
Informal only	54 (84.4)	10 (15.6)	1.59 (0.48 to 5.29)	—
Some primary school	38 (73.1)	14 (26.0)	0.80 (0.25 to 2.57)	—
Completed primary school	276 (74.0)	97 (26.0)	0.84 (0.30 to 2.33)	—
Completed high school	282 (68.8)	128 (31.2)	0.65 (0.23 to 1.80)	—
Technical or professional college	44 (68.8)	20 (31.3)	0.65 (0.21 to 2.00)	—
Postgraduate/ university	17 (77.3)	5 (22.7)	1 (Ref)	—
Relationship status				
Partnered	268 (70.5)	112 (29.5)	0.88 (0.66 to 1.17)	—
Not partnered	447 (73.2)	164 (26.8)	1 (Ref)	—
Employment status				
Employed	195 (69.2)	87 (30.9)	0.82 (0.60 to 1.11)	—
Unemployed	524 (73.3)	191 (26.7)	1 (Ref)	—
Primary language				
English	178 (86.8)	27 (13.2)	3.08 (2.00 to 4.75)	2.12 (1.12 to 4.02)
Other	541 (68.1)	253 (31.9)	1 (Ref)	1 (Ref)
Stage				
I	48 (90.6)	5 (9.4)	4.41 (1.72 to 11.30)	3.17 (1.18 to 8.50)
II	323 (73.7)	115 (26.3)	1.29 (0.97 to 1.72)	1.22 (0.89 to 1.67)
III	348 (68.5)	160 (31.5)	1 (Ref)	1 (Ref)
Molecular subtype				
Luminal A	240 (79.5)	62 (20.5)	1.76 (1.28 to 2.43)	1.32 (0.92 to 1.88)
Luminal B	479 (68.7)	218 (31.3)	1 (Ref)	1 (Ref)

(Continued on following page)
TABLE 5. Sociodemographic and Clinical Factors in Relation to Endocrine Therapy Receipt Within 365 Days From Diagnosis by Women in the ASCO-E Cohort (Continued)

Factor	Measure-Concordance* No. (%)	Measure-Discordance* No. (%)	Crude OR (95% CI)	Adjusted OR† (95% CI)
HIV				
Positive	120 (63.8)	68 (36.2)	0.61 (0.44 to 0.86)	0.82 (0.56 to 1.20)
Negative	593 (74.2)	206 (25.8)	1 (Ref)	1 (Ref)
Hypertension				
Present	322 (74.9)	108 (25.1)	1.27 (0.96 to 1.68)	0.81 (0.56 to 1.15)
Absent	397 (70.1)	169 (29.9)	1 (Ref)	1 (Ref)
Heart disease				
Present	42 (89.4)	5 (10.6)	3.73 (1.32 to 8.62)	1.98 (0.71 to 5.50)
Absent	677 (71.3)	272 (28.7)	1 (Ref)	1 (Ref)
Diabetes				
Present	111 (78.7)	30 (21.3)	1.50 (0.98 to 2.31)	0.99 (0.61 to 1.61)
Absent	608 (71.1)	247 (28.9)	1 (Ref)	1 (Ref)
Stroke				
Present	16 (76.2)	5 (23.8)	1.24 (0.45 to 3.41)	—
Absent	703 (72.1)	272 (27.9)	1 (Ref)	—
Tuberculosis				
Present	46 (67.7)	22 (32.4)	0.79 (0.47 to 1.34)	—
Absent	673 (72.5)	255 (27.5)	1 (Ref)	—
Arthritis				
Present	110 (82.1)	24 (17.9)	1.90 (1.20 to 3.03)	1.16 (0.69 to 1.94)
Absent	609 (70.7)	253 (29.4)	1 (Ref)	1 (Ref)
Asthma/COPD				
Present	46 (82.1)	10 (17.9)	1.83 (0.91 to 3.67)	1.40 (0.66 to 2.98)
Absent	673 (71.6)	267 (28.4)	1 (Ref)	1 (Ref)
Treating hospital				
CHBAH	230 (65.0)	124 (35.0)	1 (Ref)	1 (Ref)
CMJAH	147 (63.4)	85 (36.6)	0.93 (0.66 to 1.32)	0.75 (0.52 to 1.10)
IALCH/NH	195 (81.9)	43 (18.1)	2.45 (1.65 to 3.63)	1.52 (0.97 to 2.38)
GH	147 (84.0)	28 (16.0)	2.83 (1.79 to 4.48)	2.25 (1.39 to 3.65)
Chemotherapy‡				
Received	522 (73.4)	189 (26.6)	1.28 (0.95 to 1.72)	—
Never received	197 (68.4)	91 (31.6)	1 (Ref)	—
Radiotherapy‡				
Received	345 (79.1)	91 (20.9)	1.92 (1.43 to 2.56)	2.32 (1.69 to 3.18)
Never received	374 (66.4)	189 (33.6)	1 (Ref)	1 (Ref)

Abbreviations: CHBAH, Chris Hani Baragwanath Academic Hospital; CMJAH, Charlotte Maxeke Johannesburg Academic Hospital; COPD, chronic obstructive pulmonary disease; E, endocrine therapy; GH, Grey’s Hospital; IALCH, Inkosi Albert Luthuli Central Hospital; NH, Ngwelezana Hospital; OR, odds ratio; R, radiotherapy; Ref, reference.

*Rown percentages displayed
†Model includes age group; race; primary language; stage; molecular subtype; presence of HIV infection, hypertension, heart disease, diabetes, arthritis, and asthma/COPD; treating hospital; and receipt of radiotherapy.
‡Includes receipt of treatment type at any time after study enrollment.
The relationship between measure-concordant care and distance from the hospital is revealing. In high-income countries (HICs), proximity to a health care facility affects BC stage at diagnosis, treatment, and outcomes.21-23 In an earlier breast cancer cohort, greater distance from CHBAH was associated with later stage at diagnosis.24 In SSA, decentralized services for HIV and noncommunicable diseases have improved access and survival, but specialized and multidisciplinary cancer care is harder to make available in remote areas.25,26 Interventions to instead reduce burdens related to frequent travel may significantly improve care quality. Poorer performance among women whose primary language is not English may reflect misconimation between these patients and their English-speaking providers. Multilingual providers or standardized communication tools may also improve care.

Hospital-level variations persisted after adjustment for patient factors, so they do not seem to be entirely due to differences in populations served. Anecdotal reports of differences in available resources may explain our findings. The medical oncology division at IALCH/NH experienced high provider attrition during the study period and provided less chemotherapy measure-concordant care. GH serves a small population and had an especially well-organized clinical support staff, which may have allowed more consistent provision of endocrine therapy. These differences, although hard to quantify, illustrate the instability of resource-limited care systems.

We did not find associations between care quality and race, household wealth, education, relationship status, or employment. Socioeconomic factors certainly affect access to SA’s private health care system, but we found no evidence of racial or socioeconomic disparities in public system care quality. This finding may signal a true equivalence of care, a limited ability of our wealth indicator to represent socioeconomic status, or low variability in socioeconomic status within our cohort preventing any measurable effect.

A Lancet Global Health commission recently reported that, in low- and middle-income countries (LMICs), low-quality health care is responsible for more deaths than lack of access.27 Our findings similarly suggest that quality improvement will be needed to decrease BC mortality and must start with the identification of meaningful quality measures. Appropriateness of a process measure can be evaluated according to several characteristics: the feasibility of measurement, the existence of variability and substandard performance, the possibility of improving performance, and the potential to affect clinical outcomes (both the strength of the scientific evidence supporting the process under evaluation and the proportion of patients to whom it applies).28

Performance variability and room for improvement were clearly demonstrated. The ASCO measures also relied on data routinely captured from the EMR at our 5 hospitals. Such EMR systems allow for real-time quality monitoring with regular reporting at the institutional level, just as in the United States. Reporting itself can prompt quality improvement by increasing providers’ attention to the monitored processes and their own performance.

Multiple randomized trials have confirmed that the ASCO measures’ therapies improve survival. Early Breast Cancer Trialists’ Collaborative Group meta-analyses estimate the relative risks of death with appropriate use of adjuvant chemotherapy, radiotherapy after BCS, and endocrine therapy as 0.75 at 4 years, 0.82 at 15 years, and 0.71 at 4 years, respectively.4,6 There is less real-world evidence that measure-concordant care leads to improved outcomes. A study of high- versus low-performing regions in the US National Cancer Database did not show differences in survival.29 However, even low-performing regions provided > 80% concordant care, and variation was slight. Stronger associations with survival might be observed in health care systems with poorer baseline performance and less access to advanced treatments.

The ESMO chemotherapy and endocrine therapy measures were applicable to > 50% of our patients with BC. However, the radiotherapy measure was less relevant because only 20% of patients received BCS.

The ASCO measures may also overlook challenges specific to SSA. They focus on treatment initiation, ignoring long-term adherence. Moreover, patients may receive only a portion of indicated treatment types. A “treatment completion” measure used in Rwanda found that only half of patients initiate all indicated treatment types (surgery, chemotherapy, and endocrine therapy).30 Furthermore, these measures examine only care processes. Patient experience, quality of life, and safety are important quality considerations but rarely studied in LMICs.31

This study provides the largest and, as far as we are aware, first prospective, multicenter description of BC care quality in SSA. SA’s public health system is better resourced than most SSA systems but serves many impoverished patients, providing a unique context for establishing quality baselines. We believe our findings are broadly representative of SA’s public system. The South African National Cancer Registry reports 8,230 new BC diagnoses in 2014.42 Of these, approximately 3,500 were in the public system, suggesting the SABCHO study enrolled nearly 25% of the public system’s incident patients with BC over the 2-year period.

Limitations include uncertainty that our findings are generalizable to other nations. Care across SSA is drastically heterogeneous.33 In addition, we captured only patient-level factors and, thus, are unable to assess the potentially significant effects of system-level factors (eg, number of providers, chemotherapy chairs and radiotherapy machines per facility, drug stock-outs) on care quality. Data on care received outside our study sites were not available,
although we believe that this limitation had little effect on our findings; public BC care is centralized at tertiary hospitals, and public patients are unlikely to seek private care for these expensive services.

In summary, in our cohort of patients with BC receiving care in five public hospitals in SA, baseline care was reasonably concordant with the ASCO BC care quality measures for chemotherapy and endocrine therapy but poor for radiotherapy. Measure-concordant care was associated with proximity to the hospital and with speaking English, and study hospitals varied in performance. The measures, designed for HICs, likely require adaptation for use in LMICs. Although the measures proved informative about care quality in SA’s public system, they call for quality improvement initiatives that target both high-risk patient groups and system-level barriers to the provision of high-quality care. Such initiatives are necessary, although not sufficient, to eliminate the disparities in outcomes between SA patients with BC and those from HICs.

REFERENCES
1. Ferlay J, Shin HR, Bray F, et al: Estimates of worldwide burden of cancer in 2008. GLOBOCAN 2008. Int J Cancer 127:2893-2917, 2010
2. Pace LE, Shulman LN: Breast cancer in sub-Saharan Africa: Challenges and opportunities to reduce mortality. Oncologist 21:739-744, 2016
3. Desch CE, McNiff KK, Schneider EC, et al: American Society of Clinical Oncology/National Comprehensive Cancer Network quality measures. J Clin Oncol 26:3631-3637, 2008
4. Early Breast Cancer Trialists' Collaborative Group (EBCTCG), Peto R, Davies C, et al: Comparisons between different polychemotherapy regimens for early breast cancer: Meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379:432-444, 2012

AFFILIATIONS
1 University of Miami Leonard M. Miller School of Medicine, Miami, FL
2 Wits Health Consortium, Johannesburg, South Africa
3 National Cancer Registry, Johannesburg, South Africa
4 University of the Witwatersrand, Johannesburg, South Africa
5 Charlotte Maxeke Johannesburg Academic Hospital, University of Witwatersrand, Johannesburg, South Africa
6 Inkosi Albert Luthuli Central Hospital, Durban and Ngwelezane Hospital, University of KwaZulu Natal, Empangeni, KwaZulu Natal, South Africa
7 Grey’s Hospital, University of KwaZulu Natal, Pietermaritzburg, KwaZulu Natal, South Africa
8 Columbia University, New York, NY
9 Chris Hani Baragwanath Academic Hospital, University of Witwatersrand, Johannesburg, South Africa

CORRESPONDING AUTHOR
Daniel S. O’Neil, MD, MPH, Division of Medical Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, Sylvester Medical Office Building, Rm 245-B, Miami, FL 33136; e-mail: daniel.oneil@med.miami.edu.

SUPPORT
This work was supported by the Conquer Cancer Foundation of the American Society of Clinical Oncology (2018 Endowed Young Investigator Award in memory of Evelyn H. Lauder (D.S.O)); the National Cancer Institute of the National Institutes of Health (grant number NCI 1R01CA192627 [J.S.J., M.J., A.I.N. and P.R.]) and NCI 3P30CA136968 [A.I.N.]; a University of Witwatersrand/South African Medical Research Council / University of the Witwatersrand Common Epithelial Cancer Research Centre grant (P.R.).

AUTHOR CONTRIBUTIONS
Conception and design: Daniel S. O’Neil, Sarah Nietz, Maureen Joffe, Judith S. Jacobson, Alfred I. Neugut, Paul Ruff, Herbert Cubasch
Financial support: Daniel S. O’Neil, Maureen Joffe, Alfred I. Neugut, Paul Ruff
Administrative support: Maureen Joffe, Alfred I. Neugut, Paul Ruff

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/site/misc/authors.html.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Daniel S. O’Neil
Honoria: Ipsen
Alfred I. Neugut
Stock and Other Ownership Interests: Stemline Therapeutics Consulting or Advisory Role: Otsuka Pharmaceutical, United BioSource, EHE International Expert Testimony: Hospira
Paul Ruff
Research Funding: MSD (Inst), Janssen Oncology (Inst), Roche (Inst), AstraZeneca (Inst), Novartis (Inst), Pfizer (Inst)
Travel, Accommodations, Expenses: Merck Serono, MSD Oncology, Pfizer, Dr. Reddy’s Laboratories, AstraZeneca, Roche

No other potential conflicts of interest were reported.
1. Senkus E, Kyriakides S, Ohno S, et al: Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 26:v8-v30, 2015
2. O'Neill ET, Philip E, Bergerot PG: Quality Oncology Practice Initiative and quality oncology practice: A systematic review. J Glob Oncol 2:537-545, 2016
3. Mia SD, Amin TF, Johnson KH, et al: The impact of a quality improvement project on cancer care in low-resource settings. J Glob Oncol 4:558-565, 2018
4. Jourdain H, Hecht SF, Yankelevitz DF, et al: Quality Oncology Practice Initiative and quality oncology practice: A systematic review. J Glob Oncol 2:537-545, 2016
5. Early Breast Cancer Trialists' Collaborative Group (EBCTCG), Darby S, McGale P, et al: Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378:1707-1716, 2011
6. Early Breast Cancer Trialists' Collaborative Group (EBCTCG), Davies C, Godwin J, et al: Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet 378:771-784, 2011
7. Neus MN, Desch CE, McNiff KK, et al: A process for measuring the quality of cancer care: The Quality Oncology Practice Initiative. J Clin Oncol 23:6233-6239, 2005
8. Bergerot CD, Philip EJ, Bergerot PG: Quality Oncology Practice Initiative can guide and improve oncology providers' training in Brazil. J Glob Oncol 3:189-193, 2016
9. Lim GC, Aina EN, Cheah SK, et al: Closing the global cancer divide—performance of breast cancer care services in a middle income developing country. BMC Cancer 14:212, 2014
10. Republic of South Africa National Department of Health: Breast Cancer Control Policy. South Africa, National Department of Health, 2017. http://www.health.gov.za/index.php/2014-08-15-12-53-24?download=2533;breast-cancer-policy
11. Cubasch H, Ruff P, Joffe M, et al: South African breast cancer and HIV outcomes study: Methods and baseline assessment. J Glob Oncol 3:114-124, 2017
12. Statistics South Africa: Census 2011 Statistical release (Revised) - P0301.4. 2012. http://www.statssa.gov.za/publications/P03014/P030142011.pdf
13. Human Sciences Research Council: The Fifth South African National HIV Prevalence, Incidence, Behavior and Communication Survey, 2017. HIV Impact Assessment Summary Report. Cape Town, HSRC Press, 2018. http://www.hsrc.ac.za/uploads/pageContent/9234/SABSSMV_Impact_Assessment_Summary_ZA_ADS_cleared_PDFA4.pdf
14. Coovadia H, Jewkes R, Barron P, et al: The health and health system of South Africa: Historical roots of current public health challenges. Lancet 374:817-834, 2009
15. Coetzee WC, Appelstaedt JP, Zeeman T, et al: Disparities in breast cancer care: Private patients have better outcomes than public patients. World J Surg 42:727-735, 2018
16. Senkus E, Kypriakides S, Ohno S, et al: Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 26:v8-v30, 2015 (suppl 5)
17. McCormack VA, Joffe M, van den Berg E, et al: Breast cancer receptor status and stage at diagnosis in over 1,200 consecutive public hospital patients in Soweto, South Africa: A case series. Breast Cancer Res 15:R84, 2013
18. Rustein SO, Johnson K: The DHS wealth index. 2004. http://dhsprogram.com/publications/publication-cr6-comparative-reports.cfm
19. Spain P, Teixeira-Poit S, Halpern MT, et al: The National Cancer Institute Community Cancer Centers Program (NCCCP): Sustaining quality and reducing disparities in guideline-concordant breast and colon cancer care. Oncologist 22:910-917, 2017
20. Rodrigues W, Dumas J, Rao M, et al: Compliance with the commission on cancer quality of breast cancer care measures: Self-evaluation advised. Breast J 17:167-171, 2011
21. Ambroggi M, Biasini C, Del Giovane C, et al: Distance as a barrier to cancer diagnosis and treatment: Review of the literature. Oncologist 20:1378-1385, 2015
22. Schroen AT, Brenin DR, Kelly MD, et al: Impact of patient distance to radiation therapy on mastectomy use in early-stage breast cancer patients. J Clin Oncol 23:7074-7080, 2005
23. Jensen LF, Pedersen AF, Andersen B, et al: Distance to screening site and non-participation in screening for breast cancer: A population-based study. J Public Health (Oxf) 36:292-299, 2014
24. Dickens C, Joffe M, Jacobson J, et al: Stage at breast cancer diagnosis and distance from diagnostic hospital in a periurban setting: A South African public hospital case series of over 1,000 women. Int J Cancer 135:2173-2182, 2014
25. Boyer S, Eboko F, Camara M, et al: Scaling up access to antiretroviral treatment for HIV infection: The impact of decentralization of healthcare delivery in Cameroon. AIDS 24:S5-S15, 2010 (suppl 1)
26. Newman PM, Frankie MF, Arrieta J, et al: Community health workers improve disease control and medication adherence among patients with diabetes and/or hypertension in Chiapas, Mexico: An observational stepped-wedge study. BMJ Glob Health 3:e000566, 2018
27. Kruk ME, Gage AD, Joseph NT, et al: Mortality due to low-quality health systems in the universal health coverage era: A systematic analysis of amenable deaths in 137 countries. Lancet 392:2203-2212, 2018
28. Rubin HR, Pronovost P, Diette GB: From a process of care to a measure: The development and testing of a quality indicator. Int J Qual Health Care 13:489-496, 2001
29. Kantor O, Wang C-H, Yao K: Regional variation in performance for commission on cancer quality measures and impact on overall survival. Ann Surg Oncol 25:3069-3075, 2018
30. O'Neill ET, Keating NL, Dusengimana JM, et al: Quality of breast cancer treatment at a rural cancer center in Rwanda. J Glob Oncol 4:1-11, 2018
31. Ganz PA, Hassett MJ, Miller DC: Challenges and Opportunities in Delivering High-Quality Cancer Care: A 2016 Update. Am Soc Clin Oncol Educ Book e294-e300, 2016
32. National Cancer Registry: Cancer in South Africa: 2014 Full Report. South Africa, National Institute for Communicable Diseases, 2017. http://www.nicd.ac.za/wp-content/uploads/2017/03/2014-NCR-tables-1.pdf
33. Sutter SA, Slinker A, Balumuka DD, et al: Surgical management of breast cancer in Africa: A continent-wide review of intervention practices, barriers to care, and adjuvant therapy. J Glob Oncol 3:162-168, 2016