From biomedicine to natural history research: EST resources for ambystomatid salamanders

Srikrishna Putta†1, Jeramiah J Smith†1, John A Walker†1, Mathieu Rondet2, David W Weisrock1, James Monaghan1, Amy K Samuels1, Kevin Kump1, David C King3, Nicholas J Maness4, Bianca Habermann5, Elly Tanaka6, Susan V Bryant2, David M Gardiner2, David M Parichy7 and S Randal Voss*1

Address: 1Department of Biology, University of Kentucky, Lexington, KY 40506, USA, 2Department of Developmental and Cell Biology and the Developmental Biology Center, University of California, Irvine, CA 92697, USA, 3The Life Sciences Consortium, 519 Warm Lake Laboratory, Penn State University, University Park, PA 16802, USA, 4Department of Zoology, University of Wisconsin-Madison, 250 N. Mills, Madison, WI 53706, USA, 5Scionics Computer Innovation GmbH, Pforzheimerstrasse 110, 01307 Dresden, Germany, 6Max Planck Institute of Molecular Cell Biology and Genetics, Pforzheimerstrasse 108, 01307 Dresden, Germany and 7Section of Integrative Biology and Section of Molecular, Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA

Email: Srikrishna Putta - sputt2@uky.edu; Jeramiah J Smith - jjsmit3@uky.edu; John A Walker - jawalk2@uky.edu; Mathieu Rondet - mrondet@uci.edu; David W Weisrock - weisrock@uky.edu; James Monaghan - james.monaghan@uky.edu; Amy K Samuels - akasamu2@uky.edu; Kevin Kump - kevinkump@gmail.com; David C King - dck163@psu.edu; Nicholas J Maness - njmaness@wisc.edu; Bianca Habermann - habermann@mpi-cbg.de; Elly Tanaka - tanaka@mpi-cbg.de; Susan V Bryant - svbryant@uci.edu; David M Gardiner - dmgardin@uci.edu; David M Parichy - dparichy@mail.utexas.edu; S Randal Voss* - srvoss@uky.edu

* Corresponding author †Equal contributors

Abstract

Background: Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum) and Eastern tiger salamander (A. t. tigrinum), species with deep and diverse research histories.

Results: Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human – Ambystoma synten group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species.

Conclusions: Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research.

Published: 13 August 2004

BMC Genomics 2004, 5:54 doi:10.1186/1471-2164-5-54

Received: 19 July 2004

Accepted: 13 August 2004

This article is available from: http://www.biomedcentral.com/1471-2164/5/54

© 2004 Putta et al; licensee BioMed Central Ltd.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background

Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. Expressed sequence tags (EST) are particularly useful genomic resources because they enable multiple lines of research and can be generated for any organism: ESTs allow the identification of molecular probes for developmental studies, provide clones for DNA microchip construction, reveal candidate genes for mutant phenotypes, and facilitate studies of genome structure and evolution. Furthermore, ESTs provide raw material from which strain-specific polymorphisms can be identified for use in population and quantitative genetic analyses. The utility of such resources can be tailored to target novel characteristics of organisms when ESTs are isolated from cell types and tissues that are actively being used by a particular research community, so as to bias the collection of sequences towards genes of special interest. Finally, EST resources produced for model organisms can greatly facilitate comparative and evolutionary studies when their uses are extended to other, closely related taxa.

Salamanders (urodele amphibians) are traditional model organisms whose popularity was unsurpassed early in the 20th century. At their pinnacle, salamanders were the primary model for early vertebrate development. Embryological studies in particular revealed many basic mechanisms of development, including organizer and inducer regions of developing embryos [1]. Salamanders continue to be important vertebrate model organisms for regeneration because they have by far the greatest capacity to regenerate complex body parts in the adult phase. In contrast to mammals, which are not able to regenerate entire structures or organ systems upon injury or amputation, adult salamanders regenerate their limbs, tail, lens, retina, spinal cord, heart musculature, and jaw [2-7]. In addition, salamanders are the model of choice in a diversity of areas, including vision, embryogenesis, heart development, olfaction, chromosome structure, evolution, ecology, science education, and conservation biology [8-15]. All of these disciplines are in need of genomic resources as fewer than 4100 salamander nucleotide sequences had been deposited in GenBank as of 3/10/04.

Here we describe results from an EST project for two ambyssomatid salamanders: the Mexican axolotl, *Ambystoma mexicanum* and the eastern tiger salamander, *A. tigrinum tigrinum*. These two species are members of the Tiger Salamander Complex [16], a group of closely related species and subspecies that are widely distributed in North America. Phylogenetic reconstruction suggests that these species probably arose from a common ancestor about 10–15 million years ago [16]. *Ambystoma mexicanum* has a long research history of over 100 years and is now principally supplied to the research community by the Axolotl Colony [17], while *A. t. tigrinum* is obtained from natural populations in the eastern United States. Although closely related with equally large genomes (32 × 10^9 bp) [18], these two species and others of the Complex differ dramatically in life history: *A. mexicanum* is a paedomorphic species that retains many larval features and lives in water throughout it’s life cycle while *A. t. tigrinum* undergoes a metamorphosis that is typical of many amphibians. Like many other traditional model organisms of the last century, interest in these two species declined during the rise of genetic models like the fly, zebrafish, and mouse [19]. However, "early" model organisms such as salamanders are beginning to re-attract attention as genome resources can rapidly be developed to exploit the unique features that originally identified their utility for research. We make this point below by showing how the development of ESTs for these two species is enabling research in several areas. Furthermore, we emphasize the value of developing resources in model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research programs.

Results and Discussion

Selection of libraries for EST sequencing

Eleven cDNA libraries were constructed using a variety of tissues (Table 1). Pilot sequencing of randomly selected clones revealed that the majority of the non-normalized libraries were moderate to highly redundant for relatively few transcripts. For example, hemoglobin-like transcripts represented 15–25% of the sampled clones from cDNA libraries V1, V2, and V6. Accordingly, we chose to focus our sequencing efforts on the non-normalized MATH library as well as the normalized AG library, which had lower levels of redundancy (5.5 and 0.25% globins, respectively). By concentrating our sequencing efforts on these two libraries we obtained transcripts deriving from natural populations in the eastern United States. Although closely related with equally large genomes (32 × 10^9 bp) [18], these two species and others of the Complex differ dramatically in life history: *A. mexicanum* is a paedomorphic species that retains many larval features and lives in water throughout it’s life cycle while *A. t. tigrinum* undergoes a metamorphosis that is typical of many amphibians. Like many other traditional model organisms of the last century, interest in these two species declined during the rise of genetic models like the fly, zebrafish, and mouse [19]. However, "early" model organisms such as salamanders are beginning to re-attract attention as genome resources can rapidly be developed to exploit the unique features that originally identified their utility for research. We make this point below by showing how the development of ESTs for these two species is enabling research in several areas. Furthermore, we emphasize the value of developing resources in model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research programs.

Results and Discussion

Selection of libraries for EST sequencing

Eleven cDNA libraries were constructed using a variety of tissues (Table 1). Pilot sequencing of randomly selected clones revealed that the majority of the non-normalized libraries were moderate to highly redundant for relatively few transcripts. For example, hemoglobin-like transcripts represented 15–25% of the sampled clones from cDNA libraries V1, V2, and V6. Accordingly, we chose to focus our sequencing efforts on the non-normalized MATH library as well as the normalized AG library, which had lower levels of redundancy (5.5 and 0.25% globins, respectively). By concentrating our sequencing efforts on these two libraries we obtained transcripts deriving from natural populations in the eastern United States. Although closely related with equally large genomes (32 × 10^9 bp) [18], these two species and others of the Complex differ dramatically in life history: *A. mexicanum* is a paedomorphic species that retains many larval features and lives in water throughout it’s life cycle while *A. t. tigrinum* undergoes a metamorphosis that is typical of many amphibians. Like many other traditional model organisms of the last century, interest in these two species declined during the rise of genetic models like the fly, zebrafish, and mouse [19]. However, "early" model organisms such as salamanders are beginning to re-attract attention as genome resources can rapidly be developed to exploit the unique features that originally identified their utility for research. We make this point below by showing how the development of ESTs for these two species is enabling research in several areas. Furthermore, we emphasize the value of developing resources in model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research programs.

Table 1: Tissues selected to make cDNA libraries.

ID	Tissue	cDNAs sequenced
GARD	limb blastema	1029
MATH	limb blastema	16244
V1	tail blastema	1422
V2	brain	3196
V3	liver	792
V4	spleen	337
V5	heart	38
V6	gill	3039
V7	stage 22 embryo	96
AG	liver, gonad, lung, kidney, heart, gill	19871

Further information is found in Methods and Materials.
primarily from regenerating larval tissues in A. mexicanum and several non-regenerating larval tissues in A. t. tigrinum.

EST sequencing and clustering

A total of 46,064 cDNA clones were sequenced, yielding 39,982 high quality sequences for A. mexicanum and A. t. tigrinum (Table 2). Of these, 3,745 corresponded to mtDNA and were removed from the dataset; complete mtDNA genome data for these and other ambystomatid species will be reported elsewhere. The remaining nuclear ESTs for each species were clustered and assembled separately. We included in our A. mexicanum assembly an additional 16,030 high quality ESTs that were generated recently for regenerating tail and neurula stage embryos [20]. Thus, a total of 32,891 and 19,376 ESTs were clustered for A. mexicanum and A. t. tigrinum, respectively. Using PaCE clustering and CAP3 assembly, a similar number of EST clusters and contigs were identified for each species (Table 2). Overall contig totals were 11,190 and 9,901 for A. mexicanum and A. t. tigrinum respectively. Thus, although 13,515 more A. mexicanum ESTs were assembled, a roughly equivalent number of contigs were obtained for both species. This indicates that EST development was more efficient for A. t. tigrinum, presumably because ESTs were obtained primarily from the normalized AG library; indeed, there were approximately twice as many ESTs on average per A. mexicanum contig (Table 2). Thus, our EST project yielded an approximately equivalent number of contigs for A. mexicanum and A. t. tigrinum, and overall we identified > 21,000 different contigs. Assuming that 20% of the contigs correspond to redundant loci, which has been found generally in large EST projects [21], we identified transcripts for approximately 17,000 different ambystomatid loci. If ambystomatid salamanders have approximately the same number of loci as other vertebrates (e.g. [22]), we have isolated roughly half the expected number of genes in the genome.

Table 2: EST summary and assembly results.

	A. mex	A. t. tig
cDNA clones sequenced	21830	24234
high-quality sequences	19383	20599
mt DNA sequence	2522	1223
seqs submitted to NCBI	16861	19376
sequences assembled	32891	19376
PaCE clusters	11381	10226
ESTs in contigs	25457	12676
contigs	3756	3201
singlets	7434	6700
putative transcripts	11190	9901

*Includes 16,030 ESTs from [20].

![Figure 1](http://www.biomedcentral.com/1471-2164/5/54)

Results of BLASTX and TBLASTX searches to identify best BLAST hits for Ambystoma contigs searched against NCBI human RefSeq, nr, and Xenopus Unigene databases.
Identification of vertebrate sequences similar to Ambystoma contigs

We searched all contigs against several vertebrate databases to identify sequences that exhibited significant sequence similarity. As our objective was to reliably annotate as many contigs as possible, we first searched against 19,804 sequences in the NCBI human RefSeq database (Figure 1), which is actively reviewed and curated by biologists. This search revealed 5619 and 4973 “best hit” matches for the *A. mexicanum* and *A. t. tigrinum* EST data-sets at a BLASTX threshold of $E = 10^{-7}$. The majority of contigs were supported at more stringent E-value thresholds (Table 3). Non-matching contigs were subsequently searched against the Non-Redundant (nr) Protein database and *Xenopus tropicalis* and *X. laevis* UNIGENE ESTs (Figure 1). These later two searches yielded a few hundred more ‘best hit’ matches, however a relatively large number of ESTs from both ambystomatid species were not similar to any sequences from the databases above. Presumably, these non-matching sequences were obtained from the non-coding regions of transcripts or they contain protein-coding sequences that are novel to salamander. Although the majority are probably of the former type, we did identify 3,273 sequences from the non-matching set that had open reading frames (ORFs) of at least 200 bp, and 911 of these were greater than 300 bp.

The distribution of ESTs among contigs can provide perspective on gene expression when clones are randomly sequenced from non-normalized cDNA libraries. In general, frequently sampled transcripts may be expressed at higher levels. We identified the 20 contigs from *A. mexicanum* and *A. t. tigrinum* that contained the most assembled ESTs (Table 4). The largest *A. t. tigrinum* contigs contained fewer ESTs than the largest *A. mexicanum* contigs, probably because fewer overall *A. t. tigrinum* clones were sequenced, with the majority selected from a normalized library. However, we note that the contig with the most ESTs was identified for *A. t. tigrinum*: delta globin. In both species, transcripts corresponding to globin genes were sampled more frequently than all other loci. This may reflect the fact that amphibians, unlike mammals, have nucleated red blood cells that are transcriptionally active. In addition to globin transcripts, a few other house-keeping genes were identified in common from both species, however the majority of the contigs were unique to each list. Overall, the strategy of sequencing cDNAs from a diverse collection of tissues (from normalized and non-normalized libraries) yielded different sets of highly redundant contigs. Only 25% and 28% of the *A. mexicanum* and *A. t. tigrinum* contigs, respectively, were identified in common (Figure 2). We also note that several hundred contigs were identified in common between Xenopus and *Ambystoma*; this will help facilitate comparative studies among these amphibian models.

Functional annotation

For the 10,592 contigs that showed significant similarity to sequences from the human RefSeq database, we obtained Gene Ontology (23) information to describe ESTs in functional terms. Although there are hundreds of possible annotations, we chose a list of descriptors for molecular and biological processes that we believe are of interest for research programs currently utilizing salamanders as model organisms (Table 5). In all searches, we counted each match between a contig and a RefSeq sequence as identifying a different ambystomatid gene.
even when different contigs matched the same RefSeq reference. In almost all cases, approximately the same number of matches was found per functional descriptor for both species. This was not simply because the same loci were being identified for both species, as only 20% of the total number of searched contigs shared sufficient identity (BLASTN; $E<10^{-80}$ or $E<10^{-20}$) to be potential homologues. In this sense, the sequencing effort between these two species was complementary in yielding a more diverse collection of ESTs that were highly similar to human gene sequences.

Informatic searches for regeneration probes

The value of a salamander model to regeneration research will ultimately rest on the ease in which data and results can be cross-referenced to other vertebrate models. For example, differences in the ability of mammals and salamanders to regenerate spinal cord may reflect differences in the way cells of the ependymal layer respond to injury. As is observed in salamanders, ependymal cells in adult mammals also proliferate and differentiate after spinal cord injury (SCI) [24,25]; immediately after contusion injury in adult rat, ependymal cell numbers increase and proliferation continues for at least 4 days [26]; but see [27]). Rat ependymal cells share some of the same gene expression

Contig ID	# ESTs	Best Human Match	E-value
MexCluster_4615_Contig1	415	(NM_000519) delta globin	E^{-39}
MexCluster_600_Contig1	354	(NM_182985) ring finger protein 36 isoform a	E^{-110}
MexCluster_6279_Contig1	337	(NM_000559) A-gamma globin	E^{-32}
MexCluster_10867_Contig1	320	(NM_000558) alpha 1 globin	E^{-38}
MexCluster_5357_Contig1	307	(NM_000558) alpha 1 globin	E^{-17}
MexCluster_9285_Contig3	285	(NM_001614) actin, gamma 1 propeptide	0
MexCluster_7987_Contig3	252	(NM_001402) eukaryotic translation elongation fl	0
MexCluster_9285_Contig1	240	(NM_001101) beta actin; beta cytoskeletal actin	0
MexCluster_9279_Contig3	218	(NM_000223) keratin 12	E^{-113}
MexCluster_11203_Contig1	181	(NM_002032) ferritin, heavy polypeptide I	E^{-70}
MexCluster_8737_Contig2	152	(NM_058242) keratin 6C	E^{-131}
MexCluster_3193_Contig1	145	(NM_004499) heterogeneous nuclear ribonucleoprotein	E^{-90}
MexCluster_8737_Contig7	134	(NM_058242) keratin 6C	E^{-131}
MexCluster_5005_Contig3	132	(NM_031263) heterogeneous nuclear ribonucleoprotein	E^{-124}
MexCluster_6225_Contig1	125	(NM_001152) solute carrier family 25, member 5	E^{-151}
MexCluster_1066_Contig1	122	[31015660] IMAGE:6953586	E^{-16}
MexCluster_8737_Contig4	114	(NM_058242) keratin 6C; keratin, epidermal type II	E^{-132}
MexCluster_8187_Contig2	113	(NM_005507) coiflin 1 (non-muscle)	E^{-65}
MexCluster_2761_Contig1	109	(NM_001961) eukaryotic translation elongation factor2	0
MexCluster_9187_Contig1	105	(NM_007355) heat shock 90 kDa protein 1, beta	0
A. t. tigrinum			
TigCluster_6298_Contig1	654	(NM_000519) delta globin	E^{-28}
TigCluster_10099_Contig2	193	(NM_001614) actin, gamma 1 propeptide	0
TigCluster_6470_Contig1	167	(NM_000558) alpha 1 globin	E^{-39}
TigCluster_9728_Contig2	142	(NM_000477) albumin precursor	E^{-40}
TigCluster_6594_Contig1	117	(NM_001402) eukaryotic translation elongation fl	0
TigCluster_5960_Contig1	91	(NM_001101) beta actin; beta cytoskeletal actin	0
TigCluster_7383_Contig1	77	(NM_001164) actin, gamma 1 propeptide	0
TigCluster_6645_Contig1	76	(NM_001063) transferrin	0
TigCluster_7226_Contig4	74	(NM_006099) tubulin, alpha 3	E^{-160}
TigCluster_7191_Contig1	67	(NM_019016) keratin 24	E^{-89}
TigCluster_10121_Contig1	64	(NM_005141) fibrinogen, beta chain preproprotein	0
TigCluster_6705_Contig1	63	(NM_000558) alpha 1 globin	E^{-39}
TigCluster_7854_Contig1	62	(NM_021870) fibrinogen, gamma chain isoform	E^{-121}
TigCluster_6139_Contig1	52	(NM_001404) eukaryotic translation elongation fl	0
TigCluster_7226_Contig2	51	(NM_006099) tubulin, alpha 3	0
TigCluster_10231_Contig1	44	(NM_003018) surfactant, pulmonary-associated prot.	E^{-08}
TigCluster_6619_Contig1	36	(NM_000041) apolipoprotein E	E^{-38}
TigCluster_7232_Contig2	35	(NM_003651) cold shock domain protein A	E^{-46}
TigCluster_5768_Contig1	34	(NM_003380) vimentin	E^{-177}
TigCluster_9784_Contig3	32	[XP_218445.1] similar to RIKEN cDNA 1810065E05	E^{-15}

Table 4: Top 20 contigs with the most assembled ESTs.
and protein properties of embryonic stem cells [28], however no new neurons have been observed to derive from these cells in vivo after SCI [29]. Thus, although endogenous neural progenitors of the ependymal layer may have latent regenerative potential in adult mammals, this potential is not realized. Several recently completed microarray analyses of spinal cord injury in rat now make it possible to cross-reference information between amphibians and mammals. For example, we searched the complete list of significantly up and down regulated genes from Carmel et al. [30] and Song et al. [31] against all *Ambystoma* ESTs. Based upon amino acid sequence similarity of translated ESTs (TBLASTX; E<10⁻⁷), we identified DNA sequences corresponding to 69 of these 164 SCI rat genes (Table 6). It is likely that we have sequence corresponding to other presumptive orthologues from this list as many of our ESTs only contain a portion of the coding sequence or the untranslated regions (UTR), and in many cases our searches identified closely related gene family members. Thus, many of the genes that show interesting expression patterns after SCI in rat can now be examined in salamander.

Similar gene expression programs may underlie regeneration of vertebrate appendages such as fish fins and tetrapod limbs. Regeneration could depend on reiterative expression of genes that function in patterning, morphogenesis, and metabolism during normal development and homeostasis. Or, regeneration could depend in part on novel genes that function exclusively in this process. We investigated these alternatives by searching *A. mexicanum* limb regeneration ESTs against UNIGENE zebrafish fin regeneration ESTs (Figure 3). This search identified 1357 significant BLAST hits (TBLASTX; E<10⁻⁷) that corresponded to 1058 unique zebrafish ESTs. We then asked whether any of these potential regeneration homologues were represented uniquely in limb and fin regeneration databases (and not in databases derived from other zebrafish tissues). A search of the 1058 zebrafish ESTs against > 400,000 zebrafish ESTs that were sampled from non-regenerating tissues revealed 43 that were unique to the zebrafish regeneration database (Table 7). Conceivably, these 43 ESTs may represent transcripts important to appendage regeneration. For example, our search identified several genes (e.g. *hscp128*, pre-B-cell colony enhancing factor 1, *galecB*, 4, *galecB* 8) that may be expressed in progenitor cells that proliferate and differentiate during appendage regeneration. Overall, our results suggest that regeneration is achieved largely through the reiterative expression of genes having additional functions in other developmental contexts, however a small number of genes may be expressed uniquely during appendage regeneration.

DNA sequence polymorphisms within and between *A. mexicanum* and *A. t. tigrinum*

The identification of single nucleotide polymorphisms (SNPs) within and between orthologous sequences of *A. mexicanum* and *A. t. tigrinum* is needed to develop DNA markers for genome mapping [32], quantitative genetic analysis [33], and population genetics [34]. We estimated within species polymorphism for both species by calculating the frequency of SNPs among ESTs within the 20 largest contigs (Table 4). These analyses considered a total of 30,638 base positions for *A. mexicanum* and 18,765 base positions for *A. t. tigrinum*. Two classes of polymorphism were considered in this analysis: those occurring at

Table 5: Functional annotation of contigs	A. mex	A. t. tig
Molecular Function (0016209)		
antioxidant (0016209)	25	29
binding (0005488)	3117	2578
chaperone (0003754)	100	85
enzyme regulation (003023)	193	223
motor (0003774)	73	75
signal transduction (0004871)	344	375
structural protein (0005198)	501	411
transcriptional reg. (0030528)	296	221
translational reg. (004182)	94	59
bone remodeling (0046849)	8	8
circulation (0008015)	23	78
immune response (000695)	182	263
respiratory ex. (0009605)	254	288
respiratory in. (0009719)	72	58
stress (0006950)	263	320
Biological Process (0008150)		
Cellular (0009987)		
activation (0001775)	4	6
aging and death (0008219)	158	148
communication (0007154)	701	696
differentiation (0030154)	31	20
extracellular mat. (0043062)	4	4
growth and main. (0008151)	1731	1445
migration (0016477)	8	14
motility (0006928)	163	154
Developmental (0007275)		
aging (0007368)	32	21
embryonic (0009790)	6	1
growth (0040007)	2	2
morphogenesis (0009653)	350	272
pigment (0048066)	13	26
post embryonic (0009791)	8	13
reproduction (0000003)	42	27
Physiological (0007582)		
coagulation (0050817)	22	73
death and aging (0016265)	159	148
homeostasis (0042592)	22	27
metabolism (0008152)	3059	2513
secretion (0046903)	9	16
sex differentiation (0007548)	3	2

Numbers in parentheses reference GO numbers [23].
Table 6: Ambystoma contigs that show sequence similarity to rat spinal cord injury genes.

Ambystoma Contig ID	RAT cDNA clone	E-value		
MexCluster_7440_Contig1	gi	150557	c-myc, exon 2	E-28
MexCluster_4624_Contig1	gi	1468968	brain acyl-CoA synthetase II	E-91
TigCluster_4083_Contig1	gi	17352488	cyclin ania-6a	E-46
TigSingletonClusters_Salamander_4_G20_ab1	gi	1552375	SKR6 gene, a CB1 cannabinoid receptor	E-09
MexSingletonClusters_NT009B_B04	gi	1788068	binding zygulin	E-102
TigCluster_3719_Contig1	gi	1836160	Ca2+/calmodulin-dependent	E-20
MexCluster_7064_Contig1	gi	1906612	Rattus norvegicus CXC chemokine	E-48
MexSingletonClusters_Salamander_13_F03_ab1	gi	203042	(Na+, K+)-ATPase-beta-2 subunit	E-65
TigCluster_6994_Contig1	gi	203048	plasma membrane Ca2+ ATPase-isoform 2	E-112
MexSingletonClusters_Salamander_5_F07_ab1	gi	203167	GTP-binding protein (G-alpha-i1)	E-92
MexCluster_1251_Contig1	gi	203336	catechol-O-methyltransferase	E-152
TigSingletonClusters_Salamander_22_B01_ab1	gi	203467	voltage-gated K+ channel protein (RK5)	E-08
TigSingletonClusters_Salamander_17_N04_ab1	gi	203583	cytosolic retinol-binding protein (CRBP)	E-77
MexSingletonClusters_v1_p8_c16_triplEx5ld	gi	204647	heme oxygenase gene	E-47
TigCluster_2577_Contig1	gi	204664	heat shock protein 27 (Hsp27)	E-83
MexSingletonClusters_Salamander_12_M05_ab1	gi	205404	mammotrop glutamate receptor	E-51
MexSingletonClusters_BL285C_F02	gi	205508	myelin/oligodendrocyte glycoprotein	E-34
TigCluster_5740_V2_p10_M20_TriplEx5Id	gi	205531	metallothionein-2 and metallothionein 1	E-59
TigSingletonClusters_V2_p5_A2_TriplEx5Id	gi	205537	mircrotubule-associated protein 1A	E-149
MexCluster_6321_Contig1	gi	205633	Na, K-ATPase alpha-2 subunit	E-87
MexCluster_5399_Contig1	gi	205683	smallest neurofilament protein (NF-L)	E-95
TigCluster_6377_Contig1	gi	205754	nerve growth factor-induced (NGFI-A)	E-24
TigSingletonClusters_Contig328	gi	206161	peripheral-type benzodiazepine receptor	E-73
MexSingletonClusters_BL014B_F12	gi	206166	protease kinase C type III	E-36
MexSingletonClusters_NT016A_A09	gi	206170	brain type II Ca2+/calmodulin-dependent	E-117
MexCluster_1645_Contig1	gi	206170	brain type II Ca2+/calmodulin-dependent	E-0979
TigCluster_8032_Contig1	gi	20713	calcineurin A alpha	E-40
MexCluster_8345_Contig1	gi	207473	nerve growth factor-induced (NGFI-A)	E-34
TigSingletonClusters_NT014A_G03	gi	2116627	SNAP-25A	E-123
MexSingletonClusters_NT014A_G03	gi	220713	calcineurin A alpha	E-63
MexSingletonClusters_Salamander_7_K14_ab1	gi	220839	platelet-derived growth factor A chain	E-87
MexSingletonClusters_NT014A_G03	gi	2501807	brain digoxin carrier protein	E-31
MexSingletonClusters_Salamander_9_M15_ab1	gi	2746069	MAP-kinase phosphatase	E-55
MexSingletonClusters_Salamander_19_M06_ab1	gi	2832312	survival motor neuron (smn)	E-108
MexSingletonClusters_Contig100	gi	294567	heat shock protein 70 (HSP70)	E-161
MexCluster_8592_Contig2	gi	2961528	carboxyl-terminal PDZ	E-10
TigSingletonClusters_Salamander_17_N08_ab1	gi	298325	sodium-dependent neurotransmitter tran.	E-12
MexSingletonClusters_BL286C_D09	gi	2996031	brain finger protein (BFP)	E-23

Note: The table entries indicate the similarity with rat rat spinal cord injury genes using BLAST with a significant E-value.
moderate (identified in 10–30% of the EST sequences) and high frequencies (identified in at least 30% of the EST sequences). Within the A. mexicanum contigs, 0.49% and 0.06% of positions were polymorphic at moderate and high frequency, while higher levels of polymorphism were observed for A. t. tigrinum (1.41% and 0.20%). Higher levels of polymorphism are expected for A. t. tigrinum because they exist in larger, out-bred populations in nature.

To identify SNPs between species, we had to first identify presumptive, interspecific orthologues. We did this by performing BLASTN searches between the A. mexicanum and A. t. tigrinum assemblies, and the resulting alignments

Table 6: Ambystoma contigs that show sequence similarity to rat spinal cord injury genes. (Continued)
TigSingletonClusters_E16_Ag2_p8_O20_M13R
MexSingletonClusters_Contig1B8
MexCluster_6961_Contig1
MexSingletonClusters_nm_14_p15_t3_
TigCluster_218_Contig2
TigSingletonClusters_16_Ag2_p5_N7_M13R
MexSingletonClusters_V1_p1_a10_Triplex5Ld
TigSingletonClusters_v2_p1_D20_triplex5Ld
MexSingletonClusters_NT005B_F02
TigSingletonClusters_Salamander_22_I04_ab1
MexCluster_4589_Contig1
TigSingletonClusters_Contig220
MexSingletonClusters_nm_21_2_m7_t3_
TigCluster_8535_Contig1
MexSingletonClusters_v6_p1_j6_Triplex5_1ld_
TigSingletonClusters_Salamander_15_D22_ab1
MexCluster_3498_Contig1
TigCluster_6648_Contig1
MexSingletonClusters_NT013D_C12
TigCluster_5877_Contig1
MexSingletonClusters_nm_14_a9_t3_
TigSingletonClusters_G05_Ag2_p9_G8_M13R
MexSingletonClusters_Salamander_11_A13_ab1
TigSingletonClusters_Salamander_11_A13_ab1
MexSingletonClusters_Salamander_12_J14_ab1
MexSingletonClusters_nm_21_2_j13_t3_
TigCluster_2065_Contig1
MexCluster_10965_Contig1
TigCluster_5315_Contig1
MexCluster_4245_Contig1
TigSingletonClusters_G05_Ag2_p9_G8_M13R
MexSingletonClusters_Salamander_11_A13_ab1
TigCluster_9585_Contig1
MexCluster_4885_Contig1
TigSingletonClusters_Salamander_1_M03_ab1
MexSingletonClusters_NT008B_D05
TigSingletonClusters_Salamander_24_J16_ab1
MexCluster_9533_Contig1
TigCluster_5768_Contig1
MexSingletonClusters_13_J19_ab1
TigCluster_2146_Contig1
MexSingletonClusters_v6_p4_j2_Triplex5_1ld_
TigSingletonClusters_v11_p54_o4_t3_
TigSingletonClusters_Salamander_2_J12_ab1
14,961
A. mexicanum limb regeneration ESTs

TBLASTX vs 19,039 zfish regeneration ESTs
potential regeneration homologues
1058
BLASTN vs 404,876 zfish non-regeneration ESTs
candidate regeneration homologues
43

Figure 3
Results of BLASTN and TBLASTX searches to identify best BLAST hits for *A. mexicanum* regeneration ESTs searched against zebrafish EST databases. A total of 14,961 *A. mexicanum* limb regeneration ESTs were assembled into 4485 contigs for this search.

To identify informative markers for *A. ordinarius*, *A. mexicanum* and *A. t. tigrinum* EST contigs were aligned to identify orthologous genes with species-specific sequence variations (SNPs or Insertion/Deletions = INDELs). Primer pairs corresponding to 123 ESTs (Table 8) were screened by PCR using a pool of DNA template made from individuals of 10 *A. ordinarius* populations. Seventy-nine percent (*N = 97*) of the primer pairs yielded amplification products that were approximately the same size as corresponding *A. mexicanum* and *A. t. tigrinum* fragments, using only a single set of PCR conditions. To estimate the frequency of intraspecific DNA sequence polymorphism among this set of DNA marker loci, 43 loci were sequenced using a single individual sampled randomly from each of the 10 populations, which span the geographic range of *A. ordinarius*. At least one polymorphic site was observed for 20 of the sequenced loci, with the frequency of polymorphisms dependent upon the size of the DNA fragment amplified. Our results suggest that the vast majority of primer sets designed for *A. mexicanum* / *A. t. tigrinum* EST orthologues can be used to

Partial mtDNA sequence data obtained from multiple natural populations [16]. These results are consistent with the idea that mitochondrial mutation rates are lower in cold versus warm-blooded vertebrates [35]. From a perspective, the high level of sequence identity observed between these species suggests that informatics will enable rapidly the development of probes between these and other species of the *A. tigrinum* complex.

Extending EST resources to other ambystomatid species

Relatively little DNA sequence has been obtained from species that are closely related to commonly used model organisms, and yet, such extensions would greatly facilitate genetic studies of natural phenotypes, population structures, species boundaries, and conservatism and divergence of developmental mechanisms. Like many amphian species that are threatened by extinction, many of these ambystomatid salamanders are currently in need of population genetic studies to inform conservation and management strategies, e.g. [13]. We characterized SNPs from orthologous *A. mexicanum* and *A. t. tigrinum* ESTs and extended this information to develop informative molecular markers for a related species, *A. ordinarius*. *Ambystoma ordinarium* is a stream dwelling paedomorph endemic to high elevation habitats in central Mexico [36]. This species is particularly interesting from an ecological and evolutionary standpoint because it harbors a high level of intraspecific mitochondrial variation, and as an independently derived stream paedomorph, is unique among the typically pond-breeding tiger salamanders. As a reference of molecular divergence, *Ambystoma ordinarium* shares approximately 98 and 97% mtDNA sequence identity with *A. mexicanum* and *A. t. tigrinum* respectively [16].
amplify the corresponding sequence in a related *A. tigrinum* complex species, and for small DNA fragments in the range of 150–500 bp, approximately half are expected to have informative polymorphisms.

Table 7: Ambystoma limb regeneration contigs that show sequence similarity to zebrafish fin regeneration ESTs

Mex. Contig	Human ID	E-value	Zfish ID	E-value			
Contig94	gi	0835079	l e-63	gnl	UG	Dr#S12319632	l e-58
nm_30_a11_t3_	gi	32306539	l e-58	gnl	UG	Dr#S12312602	l e-35
Contig615	gi	4502693	l e-70	gnl	UG	Dr#S12313407	l e-34
nm_23_113_t3_	No Human Hit		l e-70	gnl	UG	Dr#S12320916	l e-31
nm_9_e22_t3_	gi	4758788	l e-98	gnl	UG	Dr#S12309914	l e-29
nm_8_117_t3_	gi	21361310	l e-16	gnl	UG	Dr#S12313396	l e-27
Contig531	gi	13775198	l e-27	gnl	UG	Dr#S12309680	l e-26
Contig152	gi	5453712	l e-32	gnl	UG	Dr#S12323984	l e-26
nm_32_h20_t3_	gi	39777601	l e-79	gnl	UG	Dr#S12316449	l e-25
Contig1011	gi	39752675	l e-65	gnl	UG	Dr#S12316449	l e-24
v1l_p50_b24_t3_	gi	41208832	l e-36	gnl	UG	Dr#S12319219	l e-23
Contig589	gi	32065053	l e-56	gnl	UG	Dr#S12312662	l e-22
Contig785	gi	32695095	l e-61	gnl	UG	Dr#S12326476	l e-22
Contig157	gi	21361122	l e-138	gnl	UG	Dr#S12313094	l e-21
v1l_p42_j20_t3_049_ab1	gi	47591841	l e-100	gnl	UG	Dr#S123173806	l e-21
Contig610	gi	10801345	l e-114	gnl	UG	Dr#S12310326	l e-20
nm_27_o1_t3_	gi	7706429	l e-72	gnl	UG	Dr#S12310422	l e-19
Contig439	gi	45047999	l e-25	gnl	UG	Dr#S12309233	l e-19
nm_31_d5_t3_	gi	8923956	l e-50	gnl	UG	Dr#S12326474	l e-17
v1l_p41_h12_t3_026_ab1	No Human Hit		l e-103	gnl	UG	Dr#S12320916	l e-17
Contig129	gi	34932414	l e-106	gnl	UG	Dr#S12313534	l e-17
nm_14_j21_t3_	gi	4505325	l e-42	gnl	UG	Dr#S12316571	l e-17
Contig1321	gi	4501857	l e-80	gnl	UG	Dr#S12309233	l e-17
nm_19_k3_t3_	gi	26051212	l e-106	gnl	UG	Dr#S123173637	l e-17
Contig488	gi	4557525	l e-105	gnl	UG	Dr#S12311975	l e-15
nm_35h_k19_t3_	gi	16950607	l e-43	gnl	UG	Dr#S123196214	l e-15
Contig195	gi	4557231	l e-99	gnl	UG	Dr#S12309233	l e-14
nm_14_h19_t3_	gi	4503787	l e-86	gnl	UG	Dr#S12310912	l e-13
v1l_p52_d20_t3_	gi	30520322	l e-19	gnl	UG	Dr#S12321150	l e-13
g4_h23	gi	24111250	l e-33	gnl	UG	Dr#S12312651	l e-13
Math_p2_A2_T3_	No Human Hit		l e-103	gnl	UG	Dr#S1207899	l e-13
nm_35h_f4_t3_	gi	41148476	l e-67	gnl	UG	Dr#S12319663	l e-13
Contig952	gi	21264558	l e-61	gnl	UG	Dr#S12318843	l e-12
g4_g21	gi	11995474	l e-65	gnl	UG	Dr#S123192176	l e-12
Contig854	gi	8923789	l e-117	gnl	UG	Dr#S12313534	l e-11
Contig1105	gi	69126381	l e-83	gnl	UG	Dr#S12319880	l e-11
nm_26_f7_t3_	gi	30812388	l e-83	gnl	UG	Dr#S12319880	l e-11
Contig949	gi	12238435	l e-68	gnl	UG	Dr#S123208856	l e-10
g3-n3	gi	18490091	l e-64	gnl	UG	Dr#S12320832	l e-10
v1l_p41_m16_t3_007_ab1	gi	4885661	l e-33	gnl	UG	Dr#S12310912	l e-10
Contig653	gi	4505047	l e-124	gnl	UG	Dr#S123239868	l e-9
Contig1349	gi	9665259	l e-46	gnl	UG	Dr#S12320840	l e-9
6h12	gi	31317231	l e-43	gnl	UG	Dr#S12321311	l e-9
v1l_p43h_i14_t3_070_ab1	No Human Hit		l e-35	gnl	UG	Dr#S12320916	l e-9
nm_35h_d11_t3_	gi	7661790	l e-35	gnl	UG	Dr#S123196146	l e-9
nm_35h_k22_t3_	gi	50319777	l e-124	gnl	UG	Dr#S123242267	l e-9
v1l_p48_g2_t3_087_ab1	gi	114963277	l e-60	gnl	UG	Dr#S12312396	l e-9
nm_30_e11_t3_	gi	32483357	l e-56	gnl	UG	Dr#S12309103	l e-8
nm_28_f23_t3_	gi	42544191	l e-25	gnl	UG	Dr#S12323984	l e-8
nm_12_p16_t3_	gi	21361553	l e-21	gnl	UG	Dr#S12310912	l e-8
nm_32_h8_t3_	gi	11386179	l e-22	gnl	UG	Dr#S12312152	l e-8

Human RefSeq sequence ID’s are provided to allow cross-referencing.
Table 8: EST loci used in a population-level PCR amplification screen in *A. ordinarium*

Locus ID	Forward Primer 5' to 3'	Reverse Primer 5' to 3'
1F8	AAGAAGGGTCGGGATGTGGTGA	CAGCCCTCTCCTCATGATCTTTTGCTTG
1H3	GGCACATGCTGCCCAACCAAA	GGACCAACTGCCCAAATACCAAT
2C8	GACGAACCCGACCACTTAC	GGCCACCATATACCACTCCTGCT
3B10	TCAACCAAGAATAAGGAGGACAGGCTG	TTGGCCCCCATATAAGGACATCCATCC
5E7	AGCCGCTGGGCTGGGATG	CCGTGAATTTGAGGACGACG
5F4	CGACAGTGGACTGATGTTGCATG	TAGGGGAACTGAACATGATA
6A3	GGTGTAGGACTGATGATGTG	ATCTGTCTTCTCTGGCGACTCTCTCGT
6B1	TGATGCTGGGACTACAACCCCTCTCTCT	TTTATACCTCTCCTCTCCCGGCAGCA
6B3	ATCAGGTCTGCTTCCCACTCATG	ACGAAGTCTATGTTGAAAGCTGTG
6B4	CCCCAGATGATGACTGATGCTG	CTGCTGCACTAGACACTACATATGTCG
6C4	ATCGGCCAAAGTATGAGA	GGGCCACGAGAAGCAACACA
6D4	ATCAAGGCTGGATGAGGAGGAGGCTG	CTGCTATACTGAGGACTATCC
6F4	CCGAGATGAGATTTATAGAAGGAC	GAATGAAGAGAAAATGTGGTGAAGGTCA
6H8	CACAGGCATGACTGCTGATG	CTGCTACCTCTCTCTGACCTACATCT

BL005B_A01.5.1
- **BL006A_G07.5.1**
- **BL012D_F02.5.1**
- **BL013C_E01.5.1**
- **BL014D_B11.5.1**
- **BL279A_G10.5.1**
- **Et.fasta.Contig1023.5.1**
- **Et.fasta.Contig1166.5.1**
- **Et.fasta.Contig1311.5.1**
- **Et.fasta.Contig1459.5.1**
- **Et.fasta.Contig1506.5.1**
- **Et.fasta.Contig1578.5.1**
- **Et.fasta.Contig1647.5.1**
- **Et.fasta.Contig1908.5.1**
- **Et.fasta.Contig1941.5.1**
- **Et.fasta.Contig1943.5.1**
- **Et.fasta.Contig235.5.1**
- **Et.fasta.Contig236.5.1**
- **Et.fasta.Contig917.5.1**
- **Et.fasta.Contig926.5.1**
- **Et.fasta.Contig93.5.1**
- **Et.fasta.Contig990.5.1**
- **G1-C12**
- **G1-C13**
- **G1-C5**
- **G1-C7**
- **G1-C9**
- **G1-D5**
- **G1-D6**
- **G1-D7**
- **G1-E12**
- **G1-F1**
- **G1-F20**
- **G1-I8**
- **G1-I10**
- **G1-I19**
- **G1-I21**
- **G1-I5**
- **G1-J10**
- **G1-J17**
Table 8: EST loci used in a population-level PCR amplification screen in A. ordinarium (Continued)

Locus	Sequence	Description
G1-J2	TACAGTAACATGCGCAAGATGAAATG	CAATATGGATATGCTGAGACCC
G1-J20	ATCCCTCGACGCTACACA	CCCGCCCTTCTCCCAAAACAG
G1-J9	CTGCTATGGCTCATCGGGGAAGAG	TGGTAGGGGGAAGCAGTTT
G1-K2	GTTCTCTGTTGACATCCCTCGA	GGGCGAACCATGTTGCAAGAGAAG
G1-L11	AAATGTGACCATCCAAGGACGACG	CCCACAGATCTGCAGATCACCAC
G1-L7	GTGCTACAGGGAAGATGATG	TACAGAGGAAACGCGCAATA
G1-M14	GCTTTCGCTTTGACACCC	CCGGCCCAGACATGACGTTCCCA
G1-M19	GAAGAGTATGTTCCGGGCAAGAA	ATGGGTGAAGAATTAGTTGGAAG
G1-N9	GGCGGGCAATACATGACGTTCC	GACCCCCATTCTCCGTCCCTTCC
G2-A11	GCCCCTCAGCAAGATGTTGAG	GCTCCCACGATGACACGAGTAG
G2-A7	TACCCCAAGCAATAATCAACACC	GGGGGCCCCCTCAGATCAAC
G2-B1	GGCTCTAGCTGCTGCTGTC	CAAGAGTGGGGGGAATGG
G2-B8	CAACATGGACACATACCTACGCCCTTCT	CCGGCCCAGACACCTCACCAC
G2-C2	TTTGGAGAAAGTCTAAACACAG	GTCACACACCCCTTCCCATCCCT
G2-D1	GCAAGTGGGAGAAGCTAAGAAGGAA	AGGTTGTTGTTGAAAGATGTTGTAAG
G2-E17	GGAGCACCAAAGAGATGTCAG	CTGCCCAGCTACATCCCAAC
G2-E19	CCCAGCGATCCGAGGAG	TGCGGGCACTAGAAGGCGTA
G2-F17	TATCCCCATCTGCTGCATCCTCATTAC	AGTACCCGCTTACATCCATT
G2-F2	CACACCAAGACAGATGTTGAG	TCCGAGCCTGCTGTACGAAC
G2-G13	GGGAGGGGAAGAAGCTCAGAAA	ATACAGGCGCTCAGTGTCAA
G2-G15	CAGGCCCACATCCATCAG	TCCGAGCAGAATCTCCGTATCA
G2-G23	GGTGTTGACCTCAGGGAATG	CCAAGAAGTAGCTACATGCGAAAG
G2-G5	CGGCTCTACCTGTTGCTATGTTTCTCA	GGCTCTGCAATCTCCGTGACACTC
G2-G6	CCCATGCAGGCAAGATGTTGAG	CAGGTGTTGTTGAGGCGAGT
G2-H5	TGCTCAGGTCAGGAGGAG	TGTTGTTGCGTCACAGAAT
G2-I18	GATCCTCAGGTTGACCTTCC	GATATGAGGGGCGTGTGCT
G2-I23	TACCTTCTCCAAATGAGCGACG	CAGAGTGTTGGAACAGACGAG
G2-J12	CTCCTGTGTCGGTGCGGAG	TCCGAGGCTACCCAAAGAAG
G2-J21	CCCGACCGCTGCTTACATTCC	GCCAAGGCTACGTACATGCGGAA
G2-K12	ACCATGTTGCTTCGTTACGAG	AAAGGCAGTCAGGAGAT
G2-K2	CTGCCCAAGAAGACGGAGGAGC	AGCGCCCCCTGTCACCAAAATA
G2-L16	CAAAGGAGTAGAACGGAAGAG	ATGGAGTAGCCCTGGGAAGATA
G2-L21	GAATCTAGTCTCAGATATTCC	GCACTACACACCCAACTCAAC
G2-L3	TTGGAGACAGAACAAAGAT	TCCCCAGGTCTCCATTACAAAT
G2-L4	TGGGAAGAAGACTGAAACAGG	TGGGGAAGAAGACTGAAACAGG
G2-M13	CCGGCTCAGGCAAGAGATTCC	CACGGGAGGCTGCTGACAG
G2-M24	ACCGAGAGCAGGTCTTTTACAG	CGGCGGCTGCTTTCGTCGCT
G2-M3	CGATCGCCATTGAGGAGT	TGTCGAGCAAGGAGGAG
G2-N2	CGCTGTTTCTCCTTTACTGAGTTGCTT	ACGTGCTCTGCTTCTTACTGAG
G2-D7	AGATTTCGGCCGGCTGAGTGG	GAACTGGGCGCTGTTGGAAGAGT
NT008D_E08S1	AGAAGTCTTCTGATGATTTGGGAG	AATATTCTCTACACAGTGGCAG
NT010B_E09S1	GAAAGGGTTCTCAATATCAAGATG	ATGATAGCATCGCTTGGCATAG
NT014D_E01S1	AAAGATTCCGCAGCTCATAACCT	ATTAATTATACAGCTGCTGCTATC
V2_p1_b8	ATGCATGTTGATTTGACATAC	ATTTATACACTGCTGCTGCT
V2_p1_c5	ATGACTTTGTTGCACCGCGATCT	TAGAACTACAGACAGTTAAACATA
V2_p1_d10	GAGATAGAAAAGGCTGCAATATGAAAT	TAGTTTCAACAGTGACGAGAAG
V2_p1_d4	CACCCAGCGAAAGCTTTTCTTTC	TGGTTTGACATATATATAAAAAGT
V2_p1_g7	GACTCTTCGACACATTGGGAAAC	ATTTGAAACTTGGATAGGCTGTCG

(page number not for citation purposes)
Comparative gene mapping

Salamanders occupy a pivotal phylogenetic position for reconstructing the ancestral tetrapod genome structure and for providing perspective on the extremely derived anuran *Xenopus* (37) that is currently providing the bulk of amphibian genome information. Here we show the utility of ambystomatid ESTs for identifying chromosomal regions that are conserved between salamanders and other vertebrates. A region of conserved synteny that corresponds to human chromosome (Hsa) 17q has been identified in several non-mammalian taxa including reptiles (38) and fishes (39). In a previous study Voss et al. (40) identified a region of conserved synteny between *Ambystoma* and Hsa 17q that included collagen type 1 alpha 1 (*Col1a1*), thyroid hormone receptor alpha (*Thra*), homeo box b13 (*Hoxb13*), and distal-less 3 (*Dlx3*) (Figure 4). To evaluate both the technical feasibility of mapping ESTs and the likelihood that presumptive orthologues map to the same synteny group, we searched our assemblies for presumptive Hsa 17 orthologues and then developed a subset of these loci for genetic linkage mapping. Using a joint assembly of *A. mexicanum* and *A. t. tigrinum* contigs, 97 Hsa 17 presumptive orthologues were identified. We chose 15 genes from this list and designed PCR primers to amplify a short DNA fragment containing 1 or more presumptive SNPs that were identified in the joint assembly (Table 9). All but two of these genes were mapped, indicating a high probability of mapping success using markers developed from the joint assembly of *A. mexicanum* and *A. t. tigrinum* contigs. All 6 ESTs that exhibited 'best hits' to loci within the previously defined human- *Ambystoma* synteny group did map to this region (*Hspc009*, *Sui1*, *Krt17*, *Krt24*, *Flj13855*, and *Rpl19*). Our results show that BLAST-based definitions of orthology are informative between salamanders and human. All other presumptive Hsa 17 loci mapped to *Ambystoma* chromosomal regions outside of the previously defined synteny group. It is interesting to note that two of these loci mapped to the same ambystomatid linkage group (*Cgi-125*, *Flj20345*), but in human the presumptive orthologues are 50 Mb apart and distantly flank the syntenic loci in Figure 4. Assuming orthology has been assigned correctly for these loci, this suggests a dynamic history for some Hsa 17 orthologues during vertebrate evolution.

Future directions

Ambystomatid salamanders are classic model organisms that continue to inform biological research in a variety of areas. Their future importance in regenerative biology and

Table 8: EST loci used in a population-level PCR amplification screen in *A. ordinarium* (Continued)

V2_p2_g6	AGAATCCCAATAGCACCTGAAAT	CACCTTGGATATACATGACACACAGCA
V2_p2_h2	CTTTTTGGCCTGTTTATTTTTTG	AGATTCTCCATCCTGTTTCTCCCTTT
V2_p3_a5	TTTACACAGCAAACTCTTGTTTTG	TTAAGGAGTGGTTAGGCAAGAGAGTTT
V2_p3_b1	AGTACCTGTGTTCTATATATCCCAAC	TATACACTGTGGTTATGCTTGCACTC
V2_p5_b3	AATGGGATGAAAGGGGAGAAT	CTGCCCCATTGCAATTCTCCTTT
V2_p5_h3	CTTCCCAGAGCAAAACAGGACTAAG	TACAGTGTATGGAGCGCCATAATTTC
V2_p6_a4	AGAAATACATCACAATACGGGTTG	AAAAAGGCAAATGTTGCTGTCCTC
V3_p1_a2	ACCAAGTTCTTGGAGGATGTTG	CTTAGGTCTCCTTGGTTTGAATTAG
V3_p1_b3	GTCTTGGTACCCATGAGGAGATG	TCAATCTGATGAGAGTTACCTGCTT

Figure 4
Comparison of gene order between *Ambystoma* linkage group 1 and an 11 Mb region of Hsa17 (37.7 Mb to 48.7 Mb). Lines connect the positions of putatively orthologous genes.
metamorphosis will almost certainly escalate as genome resources and other molecular and cellular approaches become widely available. Among the genomic resources currently under development (see [41]) are a comparative genome map, which will allow mapping of candidate genes, QTL, and comparative anchors for cross-referencing the salamander genome to fully sequenced vertebrate models. In closing, we reiterate a second benefit to resource development in *Ambystoma*. Genome resources in *Ambystoma* can be extended to multiple, closely related species to explore the molecular basis of natural, phenotypic variation. Such extensions can better inform our understanding of ambystomatid biodiversity in nature and draw attention to the need for conserving such naturalistic systems. Several paedomorphic species, including *A. mexicanum*, are on the brink of extinction. We can think of no better investment than one that simultaneously enhances research in all areas of biology and draws attention to the conservation needs of model organisms in their natural habitats.

Conclusions

Approximately 40,000 cDNA sequences were isolated from a variety of tissues to develop expressed sequence

Marker ID	Primers*	Diagnosis*	LG*	Symbol*	RefSeq ID*	E-value*
Pl_6_E/F_6	F-GAAAACCTGCTCAGCATATAGTGT R-TCTATTACCATACATTAATTGTCGAG	ASA ul PFN1 NP_005013 E-34				
Pl_5_G/H_5	F-CTATTTCATCTGAGTCATTGGAATG R-TAATGCTGAACTAATACTGGCCTCTTC E-CCATGGGATGCTGCTGCTG	PE (A) 23 CGI-125 NP_057144 E-56				
Pl_0.4_A/B_1	F-GCTCCAATCTCCGAAACCTG T-ATTCTCTACATCCATCAAGACAC	SP 1 RPL19 NP_000972 E-47				
Pl_4_B_7/8	F-CTCTGACATTACACACAAAGACACTCA R-ATAAGAAGAAGTTGCGATGT	RD (Dpn II) 1 KRT10 NP_061889 E-17				
Pl_4_B_9/10	F-GAACCTTGTTGCGAGTTTCTCTT R-CTATGATGGTTGACATACCAGAG	RD (AcI) 1 KRT17 NP_000413 E-146				
Pl_10_C/D_4	F-CTCCACTATTAAAAGACATCTACA R-TTAATATACCAACACATGCTC	PE (A) 1 SUII NP_005792 E-48				
Pl_6_E/F_11	F-AAAGGAAGTTCATTAGTATGTTGAG R-TGAAGAGAGAACTCAAAGTGTCTG	PE (A) 1 HSPC009 NP_054738 E-26				
Pl_9_A/B_10	F-TGATGGCTTTGCGAAGCAGGTG R-CTAGGGCTTACAGTACAAGTCTTC	PE (T) 1 FLJ13855 NP_075567 E-15				
Pl_10_C/D_9	F-AAATGCTGAAAAGAGGATTACCT R-GAGCTCAGAAAAAAGGCAGTAAC E-AAAATGATCAGTAGTATGCTGAGCACC	PE (T) 9 NMEI NP_002600 E-21				
Pl_9_C/D_9	F-GAGCTCTGTTAGATGAGCTATC R-GCTATGTTGACAGAGAAATGCACAG E-GTTCATGATGCAGTGATGGTTGAG	PE (T) 23 FLJ20345 NP_060247 E-17				
Pl_8_C/D_9	F-AGGATACCAACCTCTGCTGATACAT R-TAAATGGTTAACAACGGAAGCAAC E-CGGTGCGGACGCTTGTGCTGAG	PE (C) 15 H3F3B NP_005315 E-46				
Pl_9_C/D_4	F-GGTGGATTTGTGACACATTTGCTTGA G-AATTTACATTGGCTTCAATTTAC E-ATTTTTAAAAAGCCTTAAAGTTTAAAGAG	PE (A) 8 SFRS2 NP_003007 E-40				
Pl_6_C/D_5	F-CCTTAAAGTTTCTAAATGACAGTTG R-GAAGGAAGAAGATCAATCAAGTCTT	PE (G) 2 ACTG1 NP_001605 0				

*a*Sequences are 5’ amplification primers, 3’amplification primers, or primer extension probes, and are preceded by F-, R-, and E- respectively.
*b*Genotyping methods are abbreviated: allele specific amplification (ASA), size polymorphism (SP), restriction digestion (RD), primer extension (PE).
*c*Diagnostic restriction enzymes and diagnostic extension bases are provided in parentheses.
*d*Ambystoma linkage group ID.
ul designates markers that are unlinked.
Official gene symbols as defined by the Human Genome Organization Gene Nomenclature Committee http://www.gene.ucl.ac.uk/nomenclature/.
Best BLASTX hit (highest e-value) from the human RefSeq database using the contig from which each marker was designed as a query sequence.
Highest E-value statistic obtained by searching contigs, from which EST markers were designed, against the human RefSeq database.

Table 9: Presumptive human chromosome 17 loci that were mapped in Ambystoma
tags for two model salamander species (A. mexicanum and A. t. tigrinum). An approximately equivalent number of contigs were identified for each species, with 21,091 unique contigs identified overall. The strategy to sequence cDNAs from a diverse collection of tissues from normalized and non-normalized libraries yielded different sets of highly redundant contigs. Only 25% and 28% of the A. mexicanum and A. t. tigrinum contigs, respectively, were identified in common. To demonstrate the utility of these EST resources, we searched databases to identify new probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human/Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. Over 100 new probes were identified for regeneration research using informatic approaches. With respect to comparative mapping, 13 of 15 EST markers were mapped successfully, and 6 EST markers were mapped to a previously defined synteny group in Ambystoma. These results indicate a high probability of mapping success using EST markers developed from the joint assembly of A. mexicanum and A. t. tigrinum contigs. Finally, we found that primer sets designed for A. mexicanum / A. t. tigrinum EST orthologues can be used to amplify the corresponding sequence in a related A. tigrinum complex species. Overall, the EST resources reported here will enable a diversity of new research areas using ambystomatid salamanders.

Methods
cDNA library construction
Ten cDNA libraries were constructed for the project using various larval tissues of A. mexicanum and A. t. tigrinum (Table 1). Larval A. mexicanum were obtained from adult animals whose ancestry traces back to the Axolotl Colony [17]. Larval A. t. tigrinum were obtained from Charles Sullivan Corp. The GARD and MATH A. mexicanum limb regeneration libraries were constructed using regenerating forelimb mesenchyme. Total RNAs were collected from anterior and posterior limbs amputated at the mid-stylopod level on 15 cm animals, and from the resulting regenerates at 12 h, 2 days, 5 days and early bud stages. One hundred µg fractions of each were pooled together and polyA-selected to yield 5 µg that was utilized for directional library construction (Lambda Zap, Stratagene). The V1 (A. mex), V2 (A. tig), V4-5 (A. tig), and V6-7 (A. mex) libraries were made from an assortment of larval tissues (see Table 1) using the SMART cDNA cloning kits (Clontech). Total RNAs were isolated and reverse transcribed to yield cDNAs that were amplified by long distance PCR and subsequently cloned into pTriplEX. The V3 and AG libraries were constructed by commercial companies (BioS&T and Agencourt, respectively).

cDNA template preparation and sequencing
cDNAs were mass excised as phagemids, picked into microtitre plates, grown overnight in LB broth, and then diluted (1/20) to spike PCR reactions: (94°C for 2 min; then 30 cycles at 94°C for 45 sec, 58°C for 45°sec, and 72°C for 7 min). All successful amplifications with inserts larger than ~500 bp were sequenced (ABI Big Dye or Amersham Dye terminator chemistry and 5’ universal primer). Sequencing and clean-up reactions was carried out according to manufacturers’ protocols. ESTs were deposited into NCBI database under accession numbers BI817205-BI818091 and CN033008-CN045937 and CN045944-CN069430.

EST sequence processing and assembly
The PHRED base-calling program [42] was used to generate sequence and quality scores from trace files. PHRED files were then quality clipped and vector/contaminant screened. An in-house program called QUALSCREEN was used to quality clip the ends of sequence traces. Starting at the ends of sequence traces, this program uses a 20 bp sliding window to identify a continuous run of bases that has an average PHRED quality score of 15. Mitochondrial DNA sequences were identified by searching all ESTs against the complete mtDNA genome sequence of A. mexicanum (AJ584639). Finally, all sequences less than 100 bp were removed. The average length of the resulting ESTs was 629 bp. The resulting high quality ESTs were clustered initially using PaCE [43] on the U.K. HP Superdome computer. Multi-sequence clusters were used as input sequence sets for assembly using CAP3 [44] with an 85% sequence similarity threshold. Clusters comprising single ESTs were assembled again using CAP3 with an 80% sequence similarity threshold to identify multi-EST contigs that were missed during the initial analysis. This procedure identified 550 additional contigs comprising 1150 ESTs.

Functional annotation
All contigs and singletons were searched against the human RefSeq database (Oct. 2003 release) using BLASTX. The subset of sequences that yielded no BLAST hit was searched against the non-redundant protein sequence database (Feb. 2004) using BLASTX. The remaining subset of sequences that yielded no BLAST hit was searched against Xenopus laevis and X. tropicalis UNIGENE ESTs (Mar. 2004) using TBLASTX. Zebrafish ESTs were downloaded from UNIGENE ESTs (May 2004). BLAST searches were done with an E-value threshold of E <10-7 unless specified.

Sequence comparison of A. mexicanum and A. t. tigrinum assemblies
All low quality base calls within contigs were masked using a PHRED base quality threshold of 16. To identify
polymorphisms for linkage mapping, contigs from *A. mexicanum* and *A. t. tigrinum* assemblies were joined into a single assembly using CAP3 and the following criteria: an assembly threshold of 12 bp to identify initial matches, a minimum 100 bp match length, and 85% sequence identity. To identify putatively orthologous genes from *A. mexicanum* and *A. t. tigrinum* assemblies, and generate an estimate of gene sequence divergence, assemblies were compared using BLASTN with a threshold of $E < 10^{-20}$. Following BLAST, alignments were filtered to obtain reciprocal best BLAST hits.

Extending *A. mexicanum* / *A. t. tigrinum* sequence information to *A. ordinarium*

Polymorphic DNA marker loci were identified by locating single nucleotide polymorphisms (SNPs) in the joint *A. mexicanum* and *A. t. tigrinum* assembly. Polymerase chain reaction (PCR) primers were designed using Primer 3 [45] to amplify 100 – 500 bp SNP-containing fragments from 123 different protein-coding loci (Table 8). DNA was isolated from salamander tail clips using SDS, RNase and proteinase K treatment, followed by phenol-chloroform extraction. Fragments were amplified using 150 ng DNA, 75 ng each primer, 1.5 mM MgCl$_2$, 0.25 U Taq, and a 3-step profile (94°C for 4 min; 33 cycles of 94°C for 45 s, 60°C for 45 s, 72°C for 30 s; and 72°C for 7 min). DNA fragments were purified and sequenced using ABI Big Dye or Amersham Dye terminator chemistry. Single nucleotide polymorphisms were identified by eye from sequence alignments.

Linkage mapping of human chromosome 17 orthologous genes

Putative salamander orthologues of genes on human chromosome 17 (*Hsa 17*) were identified by comparing the joint *A. mexicanum* and *A. t. tigrinum* assembly to sequences from the human RefSeq (NCBI) protein database, using BLASTX at threshold $E < 10^{-7}$. Linkage distance and arrangement among markers was estimated using MapManager QTXb19 software [46] and the Kosambi mapping function at a threshold of $p = 0.001$. All markers were mapped using DNA from a previously described meiotic mapping panel [40]. All PCR primers and primer extension probes were designed using Primer 3 [45] and Array Designer2 (Premier Biosoft) software. Species-specific polymorphisms were assayed by allele specific amplification, restriction digestion, or primer extension, using the reagent and PCR conditions described above. Primer extension markers were genotyped using the AycloPrime-FP SNP detection assay (Perkin Elmer). See Table 9 for amplification and extension primer sequences, and information about genotyping methodology.

Author’s contributions

SP and DK: bioinformatics; JW: clone management and sequencing in support of *A. mexicanum* and *A. t. tigrinum* ESTs; JS: comparative mapping and polymorphism estimation; DW: extending ESTs to *A. ordinarium*; JM, KK, AS, NM: PCR and gel electrophoresis; BH and ET: cDNA library construction and sequencing for spinal cord regeneration ESTs; MR, SB, DG: cDNA library construction and clone management for limb regeneration ESTs; DP and SV conceived of the project and participated in its design and coordination. All authors read and approved the final manuscript.

Acknowledgements

We thank the Axolotl Colony. We thank Greg Chinchar and Betsy Davidson for providing RNA to make cDNA libraries V3 and V4. We acknowledge the support of the National Science Foundation, the National Center for Research Resources at the National Institutes of Health, the Kentucky Spinal Cord and Head Injury Research Trust, and the NSF EPSCOR initiative in Functional Genomics at University of Kentucky.

References

1. Beetschen J-C: How did urodele embryos come into promi- nence as a model system. *Int J Dev Biol* 1996, 40:629-636.
2. Gardiner DM, Endo T, Bryant SV: The molecular basis of amphibian limb regeneration: integrating the old with the new. *Semim Cell Dev Biol* 2002, 13:345-352.
3. Echeverri K, Tanaka EM: Ectoderm to mesoderm lineage switching during axolotl tail regeneration. *Science* 2002, 298:1933-1936.
4. Del Rio-Tsonis K, Jung JC, Chiu IM, Tsonis PA: Conservation of fibroblast growth factor function in lens regeneration. *Proc Natl Acad Sci USA* 1997, 94:13701-13706.
5. Ikegami Y, Mitsuda S, Araki M: Neural cell differentiation from retinal pigment epithelial cells of the newt: an organ culture model for the urodele retinal regeneration. *J Neurobiol* 2002, 50:209-20.
6. Chernoff EAG, Stocum DL, Nye HLD, Cameron JA: Urodele spinal cord regeneration and related processes. *Dev Dyn* 2003, 226:295-307.
7. Ferreri P: Re-examining jaw regeneration in urodeles: what have we learnt? *Int J Dev Biol* 1996, 40:807-811.
8. Zhang J, Wu SM: Goalpha labels ON bipolar cells in the tiger salamander retina. *J Comp Neural* 2003, 461:276-289.
9. Falck P, Hanken J, Olsson L: Cranial neural crest emergence and migration in the Mexican axolotl (*Ambystoma mexicanum*). *Zooligogy-Jena* 2002, 105:195-202.
10. Zhang C, Dube DK, Huang X, Zajdel RW, Bhata R, Foster D, Lemaniski SL, Lemaniski LF: A point mutation in bioactive RNA results in the failure of mutant heart correction in mexican axolotls. *Anat Embryol* 2003, 206:535-506.
11. Kauer JS: On the scents of smell in the salamander. *Nature* 2002, 417:336-342.
12. Voss SR, Prudic KL, Oliver JC, Shaffer HB: Candidate gene analysis of metamorphic timing in ambystomatid salamanders. *Mol Ecol* 2003, 12:1217-1223.
13. Riley SPD, Shaffer HB, Voss SR, Fitzpatrick BM: Hybridization between a rare, native tiger salamander (*Ambystoma californiense*). *Ecol Appl* 2003, 13:1263-1275.
14. Borland S, Crawford K, Brand V: Setting the stage: Developmental biology in pre-college classrooms. *Int J Dev Biol* 2003, 47:85-91.
15. Jancovich JK, Mao J, Chinchar VG, Wyatt C, Case ST, Kumar S, Valente G, Subramanian S, Davidson EW, Collins JP, Jacobs JB: Genomic sequence of a ranavirus (family Iridoviridae) associated with salamander mortalities in North America. *Virology* 2003, 316:90-103.
16. Shaffer HB, McKnight ML: The polytypic species revisited: genetic differentiation and molecular phylogenetics of the
tiger salamander *Ambystoma tigrinum* (Amphibia; Caudata) complex. Evolution 1996, 50:417-433.

17. Axolotl Website [http://www.indiana.edu/~axolotl/]

18. Straus NA: Comparative DNA renaturation kinetics in amphibians. Proc Nat Acad Sci USA 1971, 68:799-802.

19. Davis RH: *The age of model organisms*. Nat Rev 2004, 5:69-77.

20. Habermann B, Bebin A-G, Herklotz S, Volkmer M, Eckelt K, Pehlke K, Epperlein HH, Schackert HK, Wiebe G, Tanaka EM: *An Ambystoma-tid mexicanum EST sequencing project: Analysis of 17,352 expressed sequence tags from embryonic and regenerating blastema cDNA libraries*. Genome Biology in press.

21. Kawai J, Shinagawa A, Shibata K, et al.: Functional annotation of a full-length mouse cDNA collection. Nature 2001, 409:685-690.

22. Ewing B, Green P: Analysis of expressed sequence tags indicates 35,000 human genes. Nat Gen 2000, 25:232-234.

23. Gene Ontology Consortium [http://www.godatabase.org/dev/database/]

24. Adrian EK Jr, Walker BE: Incorporation of thymidine-H3 by cells in normal and injured mouse spinal cord. J Neuropathol Exp Neurol 1962, 21:597-609.

25. Namiki J, Tator CH: Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J Neuropathol Exp Neurol 1999, 58:489-98.

26. Bruni JE, Anderson WA: Ependyma of the rat fourth ventricle and central canal: Response to injury. Acta Anat 1985, 128:265-273.

27. Takahashi M, Yasuhisa A, Kurosawa H, Sueyoshi N, Shirai S: Ependymal cell reactions in spinal cord segments after compression injury in adult rat. J Neuropathol Exp Neurol 2003, 62:185-194.

28. Yamamoto S, Naga M, Sugimori M, Kosako H, Nakatomi H, Yamamoto N, Takebayashi H, Nabeshima Y, Kitamura T, Weinmaster G, Nakamura K, Nakafuku M: Transcription factor expression and notch-dependent regulation of neural progenitors in the adult rat spinal cord. J Neurosci 2001, 21:9814-9823.

29. Horner PJ, Power AE, Kempermann G, Kuhn HG, Plummer TD, Winkler J, Thal LJ, Gage FH: Proliferation and differentiation of progenitor cells throughout the intact adult spinal cord. J Neurosci 2000, 20:2218-2228.

30. Carmel JB, Galante A, Sotopoulos P, Tolias P, Recce M, Young W, Hart RP: Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol Genomics 2001, 7:201-213.

31. Song G, Cechvala C, Renwick DK, Dempsey RJ, Rao VLR: GeneChip analysis after acute spinal cord injury in rat. J Neurochem 2001, 79:804-815.

32. Parichy DM, Stoigan S, Voss SR: Genetic analysis of Steel and the P-g/Mviscerans-encoding gene AxSpG as candidate genes for the white (d) pigmentation mutant in the salamander *Ambystoma mexicanum*. Dev Genes Evol 1999, 209:349-356.

33. Voss SR, Shaffer HB: Adaptive evolution via a major gene effect: paedomorphosis in the Mexican axolotl. Proc Natl Acad Sci USA 1997, 94:14185-14189.

34. Fitzpatrick BM, Shaffer HB: Environment dependent admixture dynamics in a tiger salamander hybrid zone. Int J Org Evolution 2004, 58:1282-1293.

35. Martin AP, Palumbi SR: Rate of mitochondrial DNA evolution is slow in sharks compared to mammals. Proc Natl Acad Sci USA 1993, 90:4087-4091.

36. Anderson JD, WorthINGTON RD: The life history of the Mexican salamander *Ambystoma ordinarium* Taylor. Herpetologica 1971, 27:165-176.

37. Cannatella DC, De Sa RO: *Xenopus laevis* as a model organism. Syst Biol 1993, 42:476-507.

38. Schmid M, Nanda I, Gutenbach M, Steinlein C, Hoehn H, Scharl M, Haf T, Weigend S, Friess R, Buderstede J-M, et al.: First report on chicken genes and chromosomes. Cytogeten Cell Genet 2000, 90:169-218.

39. Postlethwait JH, Woods IG, Ngo-Hazelett YP, Yan Y-L, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS: *Zebrafish comparative genomics and the origins of vertebrate chromosomes*. Genome Res 2000, 10:1890-1902.

40. Voss SR, Smith JJ, Gardiner DM, Parichy DM: Conserved vertebrate chromosome segments in the large salamander genome. Genetics 2001, 158:735-746.

41. Salamander Genome Project Website [http://salamander.uky.edu/]

42. Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998, 8:186-194.

43. Kalyanaraman A, Aluru S, Kothari S, Brendel V: Efficient clustering of large EST data sets on parallel computers. Nucleic Acids Res 2003, 31:2963-2974.

44. Huang X, Madan A: CAP3: A dna sequence assembly program. Genome Res 1999, 9:868-877.

45. Rozen S, Skaletsky HJ: Primer 3. 1999 [http://frodo.wi.mit.edu/primer3/primer3_code.html].

46. Meer JM, Cudmore RH Jr, Manly KF: MapManager QTX. 2004 [http://www.mapmanager.org/mmtQTX.html].