Ascomycota Members Dominate Fungal Communities during Straw Residue Decomposition in Arable Soil

Anzhou Ma¹, Xuliang Zhuang¹*, Junmei Wu¹, Mengmeng Cui¹, Di Lv², Chunzhao Liu³, Guoqiang Zhuang¹*

¹ Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China, ² Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China, ³ National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China

Abstract

This study investigated the development of fungal community composition in arable soil during the degradation of straw residue. We explored the short-term responses of the fungal community over 28 days of decomposition in soil using culture-independent polymerase chain reaction in combination with a clone library and denaturing gradient gel electrophoresis (DGGE). Fungal cellubiohydrolase I (cbhI) genes in the soil were also characterized, and their diversity suggested the existence of a different cellulose decomposer. The DGGE profiles based on fungal internal transcribed spacer analysis showed different successions of fungal populations during residue decomposition. Members of Lecythophora and Sordariales were dominant in the early succession, while Hypocrea and Engyodontium were better adapted in the late succession. The succession of fungal communities might be related to changes of residue quality during decomposition. Collectively, sequences assigned to Ascomycota members were dominant at different stages of the fungal succession during decomposition, revealing that they were key drivers responsible for residue degradation in the arable soil tested.

Introduction

Large quantities of lignocellulosic wastes consisting mainly of industrial and agricultural residues are generated worldwide every year [1]. As it is the most abundant renewable resource on the earth, diverse methods for the effective utilization of lignocellulose have been proposed [1,2]. In sustainable agricultural treatments, crop detritus is incorporated directly into fields, which can improve soil physicochemical properties, increase nutrient ability, and eliminate the harmful influence of agriculture waste to environments [3,4]. The decomposition of crop residues by soil microbial communities is a key step to release inorganic nutrients from plant residues as well as transform this material into soil organic matter. It is essential to elucidate the microbial communities associated with straw residue decomposition in arable soil and understand the decomposition processes.

A broad taxonomic range of microorganisms contributes to the degradation of plant residue in soil, and microbial activities are responsible for most of the turnover of cellulose for the recalcitrant structure of this biopolymer [5]. Fungi are capable of producing a wide range of extracellular enzymes, which make them effective in attacking the intermolecular bonds of the cellulose biopolymer [1]. In fact, soil fungal communities are essential to litter degradation in forest ecosystems, and they are considered the key decomposers [6–8]. Using a cultivation-based isolation method, Osono and colleagues suggested that the succession of decomposer fungal communities is required to complete the litter degradation process [9,10]. Recently, the use of molecular approaches for microbial community analysis provides a more comprehensive investigation of the complex litter decomposition process mediated by various fungal taxa [6]. Compared with forest ecosystems, lignin content in arable soil is relatively low in the chemical constituents of the crop residue input. The differences in the intrinsic quality of the substrate and the surrounding environment could have an influence on the fungal community involved in decomposition process [11–15]. Previous studies of fungal communities during litter decomposition have focused on activities of enzyme, microbial biomass, and phylogenetic groups in the soil based on laboratory and natural ecosystem experiments [16–18]. Some studies have found that members of Ascomycota and Basidiomycota represent the main soil fungal decomposers [19,20], while others have found that members of Basidiomycota are important and are more able to degrade lignocellulose organic matter [21,22]. Results of the general community characteristics have been mixed in early studies, and current knowledge regarding the active and functional fungal communities involved in decomposition is limited.

The application of functional genes can aid in the detection of some functional fungal groups. To this end, Edwards and colleagues recently used the cellubiohydrolase-encoding cbhI gene as a functional biomarker to analyze cellulolytic fungal populations, advancing our understanding of microorganisms involved in cellulose degradation [23]. Therefore, the identification of the functional cbhI genes of soil together with the analysis of phylogenetic information of fungal communities during straw residue decomposition is useful to gain underlying insights. The
main objective of the present study was to investigate the diversity and dynamics of the fungal community throughout the degradation process. To characterize the succession of fungal decomposers, we studied short-term (28 days) responses of the fungal community via constructed microcosms using arable soil and rice straw residue. Using DNA-based denaturing gradient gel electrophoresis (DGGE) methods, we monitored the fungal community changes at different stages during the incubation. We also evaluated the metabolic activity of the fungi community in the soil we sampled through the measurement using Biolog microplates and detection of the cellobiohydrolase gene biomarker.

Materials and Methods

Soil and Preparation of Microcosm

The soil used for the microcosm incubation was taken from a field located in Taoyuan State Key Experimental Station for Ecological Agriculture, Hunan Province. Since 1990, a long-term experiment involving the input of residues into the soil as one organic management practice has been maintained in this field. No specific permits were required for the described field studies. The location is not privately owned, and the field studies did not involve endangered or protected species. Taoyuan State Key Experimental Station for Ecological Agriculture is one of the sites of the Chinese Ecosystem Research Network (CERN), which was implemented by the Chinese Academy of Sciences (CAS) to study environmental issues concerning China. In addition, studies of the C and N biocycle and soil science take place at Taoyuan State Key Experimental Station for Ecological Agriculture. These study fields can be used by the institutes of the CAS freely for research, and all data are shared and can be published. Our institute, Research Center for Eco-Environmental Sciences, is affiliated with CAS; thus, we can perform scientific research in these fields without specific permits. The soil samples were collected in November 2008 at a depth of 0–15 cm. Several small soil cores (approximately 5 cm in diameter) were collected randomly from each plot and mixed together as a representative sample. Each sample was placed in a sterile plastic bag, sealed, and placed on ice while transported to the laboratory. The soil was air-dried in a glass house and then filtered through 2-mm mesh to eliminate plant debris. The characteristics of the soil were as follows: pH, 4.9; total organic C, 23.2 g kg$^{-1}$; and total N, 2.3 g kg$^{-1}$.

The soil samples were moistened with sterile deionized water and preincubated at 20°C for two weeks in the dark to reach a biological steady state. The microcosms consisted of 100 g of soil in 500-ml glass universal bottles with screw caps. The cellulose decomposition was investigated by adding small pieces of straw residue (2 g kg$^{-1}$ soil dry weight) to the soil. The microcosms were weighed regularly during the incubation, and water lost through evaporation was replaced through the aseptic addition of sterile deionized water. Soil amended with straw was incubated with duplicate microcosms at 20°C in the dark with weekly aeration. As controls, soil microcosms were incubated without the application of the straw. Subsamples of 10 g soil were sampled from each treatment group on days 0, 7, 14, and 28, representing different stages of decomposition. The soil was preserved at −20°C in 50-ml Falcon tubes until used. Analysis was carried out on samples from two separate microcosms of the same treatment.

Microbial Activity

The metabolic potential of the soil fungi communities was estimated using the Biolog$^\text{TM}$ FF plate (Biolog Inc., Hayward, CA, USA) according to the following protocol [24]: 10 g of fresh soil were suspended in an NaCl solution (0.8%) and shaken for 20 min. The sample suspensions were allowed to settle for 10 min, and then 150 ml of the sample supernatant were added to each well of the Biolog plates. The inoculated microplates were incubated at 25°C in darkness, and the optical density [25] was determined using a Biolog microplate reader for each plate at 12-h intervals.

![Figure 1. Curve results from the Biolog$^\text{TM}$ FF plate. Average well color development (AWCD) with time (squares). Growth curve (triangles) and microbial activity (circles) of soil fungi on the individual cellobiose carbon sources used in this experiment. The values represent the means and were calculated from three parallel experiments. doi:10.1371/journal.pone.0066146.g001](image)
Table 1. Cellobiohydrolase I gene fragments recovered from the arable soil and the putative CBHI protein.

Clone	Size (bp)	Intron 5' splice site (size [bp])	Protein size (amino acids)	BLASTP (% identity)
C12	512	None	170	Hypocrea koningii 1,4-beta-cellobiosidase (99)
C35	585	424(67)	172	Infundibulicybe gibba exocellobiohydrolase (81)
C36	585	424(67)	172	Infundibulicybe gibba exocellobiohydrolase (81)
C55	561	417(49)	170	Infundibulicybe gibba exocellobiohydrolase (78)
C53	582	421(38)	172	Volvariella volvacea cellobiohydrolase I-II (75)
C43	561	418(49)	170	Clitopilus prunulus exocellobiohydrolase (81)
C62	566	421(50)	171	Thermoascus aurantiacus 1,4-beta-cellobiosidase (73)
C73	571	418(58)	170	Volvariella volvacea cellobiohydrolase I-II (84)
C14	562	418(49)	170	Infundibulicybe gibba exocellobiohydrolase (77)

Figure 2. Phylogenetic relationship of the amino acid sequences derived from arable soil cellobiohydrolase I (cbhI) sequences. All of the sequences, except for those from this study, were obtained from GenBank. Reference sequences are shown in Roman type, and the sequences generated in this study are in boldface. The numbers on the branches refer to the bootstrap values of 1000, and bootstrap frequencies of >50% are shown.

doi:10.1371/journal.pone.0066146.g002
ABI PRISM 3730 sequencer (Applied Biosystems).

positive clones was performed with the standard primer T7F on an
were selected, and the inserts were sequenced. Sequencing of
products of the correct sizes, as determined by gel electrophoresis,
were picked at random. Colony PCR was then performed with
cloned into
(Omega Bio-tek Inc., Doraville, GA, USA), the ampicons were
ExcTa DNA polymerase (Takara Biotechnology (Dalian) Co.,
in an Eppendorf mastercycler gradient PCR machine using
Edwards and colleagues [23]. PCR amplification was performed
Gene
for the amplification of the cellobiohydrolase I (cbhI) gene.

DNA Extraction and Construction of cbhI Gene Clone
Library

The soil DNA was extracted using the FastDNA® SPIN Kit for
soil (Bio 101 Inc., USA) following the manufacturer’s instructions.
The DNA was eluted with 30 μl of the solution buffer supplied
with the kit and visualized by electrophoresis in a 1% agarose gel.
The amount of DNA was quantified using a NanoDrop ND-3300
fluorospectrometer (Thermo Fisher Scientific, Wilmington, DE).
The DNA was stored at −20 °C until use.

Purified total genomic DNA (~10 ng) was used as a template
for the amplification of the cellobiohydrolase I (cbhI) gene.
Polymerase chain reaction (PCR) was used to amplify the cbhI
gene using fungbIIP and fungbIIR primers according to
Edwards and colleagues [23]. PCR amplification was performed in
an Eppendorf mastercycler gradient PCR machine using
ExTaq DNA polymerase (Takara Biotechnology (Dalian) Co.,
Ltd., Japan). After purification using EZNA Cycle-Pure Kits
(Omega Bio-tek Inc., Doraville, GA, USA), the ampicons were
cloned into Escherichia coli JM109 using the p-GEMT easy vector
(Promega, Madison, WI) in accordance with the manufacturer’s
instructions. Blue-white screening was used, and white colonies
were picked at random. Colony PCR was then performed with
pgEM-T primers T7F and SP6R. Clones that had yielded PCR
products of the correct sizes, as determined by gel electrophoresis,
were selected, and the inserts were sequenced. Sequencing of
positive clones was performed with the standard primer T7F on an
ABI PRISM 3730 sequencer (Applied Biosystems).

PCR and DGGE Analysis of Fungal ITS

Amplifications of the fungal internal transcribed spacer (ITS)
rRNA regions were performed using the primer sets ITS1F/ITS4
and ITS1F-GC/ITS2 using nested PCR [26]. A GC clamp (5'-
GCA CGG GGG G-3') was added to the 5' end of the ITS1-F
primer to prevent complete dissociation of the DNA strands. The
reaction was performed in a 50-μl volume that contained
approximately 10 ng of DNA, ExTaq buffer, 0.2 μM of dNTPs,
0.2 μM of each primer, and 2 units of ExTaq DNA polymerase.
The amplification protocol consisted of an initial denaturation at
95°C for 5 min; followed by 35 cycles of 94°C for 1 min, 55°C for
1 min, and 72°C for 1 min; and a final elongation at 72°C for
5 min. The first round of PCR products was purified using the
EZNA Cycle-Pure Kit according to the manufacturer’s instructions.
A nested PCR was conducted using the purified products as
the template and the primers ITS2 and ITS1F-GC using the
conditions and parameters described above. All of the reaction
mixtures lacking template DNA were performed as negative
controls in parallel.

DGGE was carried out using a D-Code universal mutation
detection system (Bio-Rad Laboratories) according to the
instruction manual and 8% (w/v) polyacrylamide [acrylamide-bisacryla-
mide (37.5:1)] gels containing denaturing gradients of 20–50%
(100% denaturant containing 7 M urea and 40% formamide) for
the separation of the PCR products. The gel was run for 17 h at
60 V at 60 °C. The gels were stained in 1X TAE buffer containing
1 μg ml⁻¹ of ethidium bromide, and the results were visualized
under UV light. The dominant bands in the DGGE gels were
excised, and the acrylamide slices were crushed and resuspended
overnight at 4°C in 50 μl of sterile water to elute the DNA [27].
The recovered DNA fragments were amplified using the primers
ITS1F and ITS2. The resulting PCR products were cloned into E.
coli, and positive clones were sequenced using the same protocols
mentioned above.

DNA band positions and intensities were detected using
Quantity One software (Bio-Rad Laboratories). Cluster analysis
was performed by the unweighted pair group method using
arithmetic averages (UPGMA). The Shannon-Weaver index of
general diversity (H),

Table 2. Closest relatives of eukaryotes with the DNA sequences of excised ITS-DGGE bands.

Band ID	Closest species match	Similarity (%)	Phylogenetic affiliation
S7a	Uncultured soil fungus clone 53–40,DDQ420800	91	Eukaryote
S7b	Uncultured fungus clone 134–1201,FJ777879	89	Eukaryote
S14a	Calluna vulgaris root associated fungus,FMJ172810	94	Eukaryote
S14b	Uncultured fungus clone RFLP49,FJ528723	83	Eukaryote
S14c	Uncultured Sordariales clone NHPY779,FJ440938	91	Ascomycota
S14d	Ustilaginoidea virens,AB162148	100	Ascomycota
S14e	Enyoedentium album,AB106650	95	Ascomycota
S14f	Lecithophora sp. 1179,GO62252	97	Ascomycota
S28a	Uncultured endophytic fungus clone 38-1-11,EF505584	80	Eukaryote
S28b	Uncultured fungus clone LMRF_85,GO78651	90	Eukaryote
S28c	Hypocrea virens strain DAOM,EU280090	100	Ascomycota

http://dx.doi.org/10.1371/journal.pone.0066146.t002

over a period of 168 h at 590 nm (metabolic activity) and 750 nm
(mycelial growth). The data were exported into an Excel
spreadsheet for analysis. The average well color developments
(AWCD) of the different replicates were calculated, where AWCD
equals the sum of the difference between the OD of the blank well
(water) and substrate wells divided by 95 (the number of substrate
wells in the FF plates). The well color developments and growth
curves were also analyzed based on the data collected from the
individual cellulosic carbon source wells of the microplate [24].
Sequence Analysis

Raw sequence data was assembled and checked with DNAStar (Madison, WI, USA). NetGene2 was used to detect possible intron splice sites [28]. The sequences were compared with the GenBank database sequences using BLASTN and BLASTP for ITS and amino acid sequences deduced from the cbhI DNA sequences, respectively, and the highest matched sequences were obtained from the GenBank database (http://www.ncbi.nlm.nih.gov/BLAST/). The ITS sequences were screened for putative chimeras, as proposed by Nilsson and colleagues [29]. The final sequences were then aligned with the sequences downloaded from GenBank using ClustalW, and manual adjustments were made to the alignment where necessary. The neighbor-joining trees were constructed using MEGA version 4.0 [Molecular Evolutionary Genetics Analysis (http://megasoftware.net)] with 1000 bootstrap replicates [30].

Nucleotide Sequence Accession Numbers

The cbhI gene sequences of the clone library reported here were deposited in GenBank under the accession numbers JX560501 to JX560509. The sequences of the DGGE bands were submitted to GenBank under the accession numbers JX560485 to JX560500.

Results and Discussion

Metabolic Activity of Fungal Community

Fungi are known to secrete hydrolytic enzymes involved in biopolymer degradation, such as cellobiohydrolase and glucosidase. Using these enzymes, fungi can hydrolyze cellulosic biomass [1]. To assess the heterotrophic soil fungal communities, we applied Biolog FF carbon-source-utilization-based optical density data analysis during an incubation of 168 h (Fig. 1). The average well color development values increased slowly during the incubation. Compared with AWCD, the Biolog values, based on the sole cellubiose carbon source, exhibited a significant increase,
Fungal Community Dynamics during Decomposition

To analyze the dynamics of the fungal community during cellulose residue decomposition, DGGE was performed on fungal ITS fragments derived from the microcosm at 7, 14, and 28 days for both treatments and on the initial soil (day 0) (Fig. 3). Although the duplication is insufficient for proper statistical assessment, reproducible profiles were obtained from both replicates for all soil treatments (Text S1). After 7 days, the DGGE profile generated from the DNA of the straw residue microcosm differed from that obtained from the DNA of the control microcosm with the appearance of new bands (S7a, S7b, and S14f), and a slight increase in the relative intensity of the existing band S0e was observed. Novel bands (S14a, S14c, S14d, S14e, S14f, and S7b) of the cellulose microcosm appeared, as compared with the DGGE profile of the control microcosm sampled at day 14. At day 28, new bands (S28a, S28c, S14a, S14e, S14f, and S7b) of the straw treatment microcosm appeared compared with the DGGE pattern of the control microcosm. In contrast, band S0e disappeared, and a decrease in the relative intensity was observed in bands S0a, S0b, and S0d. The specific band S7a of the cellulose microcosm always appeared throughout the incubation period; however, it was nearly undetectable in the DGGE profile of the control microcosm. Almost all of the bands that newly appeared in the treatment microcosms at different stages belonged to the Ascomycota based on the phylogenetic analysis (Table 2). Detailed analysis of the fungal phylogeny revealed that they were assigned to Ustilaginoidea, Lecythophora, Engyodontium, and Hypocrea. Their potential role during decomposition is discussed below. Changes in the DGGE patterns of the fungal ITS were also observed in the control treatment, which might be due to the utilization of the soil basal organic matter.

The DGGE patterns derived from the cellulose microcosm were different from the control microcosm at each sampling time point (Fig. 3A). The straw residue incorporation affected the structure of the fungal communities in the soil, which is consistent with the cluster analysis of the fungal ITS fingerprints. Cluster analysis revealed two major clusters: one formed by the residue microcosm and the other consisting of the control microcosm (Fig. 3B). The different clusters indicated that relatively similar fungal communities were involved in the cellulose microcosm and control microcosm. The fungal ITS fingerprints obtained from the cellulose residue microcosm exhibited specific profiles at each incubation time (from 0–28 days) (Fig. 3). This highlighted the existence of a succession of the microbial community during the degradation process, as described in recent studies on plant litter decomposition based on phospholipid fatty acid analyses [32]. The Shannon-Wiener indices for the samples with and without straw residue revealed that there was not a significantly greater biological diversity between the treated samples and the control. For the control microcosm, the average value was 3.35; for the cellulose residue treatment, the average value was 3.54. The diversity recovered in the control and enriched microcosms was higher than that reported in the soil environments [4]. The diversity remained similar, while the straw residue treatment significantly affected the microbial community structure and diversity (Fig. 4). The H value (3.48) was highest 7 days following the addition of the cellulose residue, suggesting an increase in the diversity of the fungal population. Interestingly, a lower diversity was observed over the time course in the enriched microcosm (Fig. 4). Similarly, a decrease in the active bacterial diversity has been observed after the incorporation of the wheat residue into the soil [33]. This was surprising, because an addition of a large amount of straw residue might be expected to increase the community diversity and dominance of specific fungal decompos- ers within the decomposition process. One portion of the carbon compounds of the straw residue, easily usable by soil microorganisms, might stimulate the growth of the soil fungi in early stages of the decomposition process [13]. These results suggested that the addition of the straw residue stimulated a great diversity of fungal populations affiliated with the Ustilaginoidea, Lecythophora, Engyodontium, and Hypocrea at early stages of decomposition process (Fig. 3 and Fig. 5). However, with the disappearance of an increasing proportion of labile components and the concomitant accumulation of remaining recalcitrant organic matter, most fungal populations with a limited ability to degrade recalcitrant compounds could not grow well. Within the

![Image](58x573 to 247x730)

Figure 4. The Shannon index diversity (H) from the DGGE profiles of the ITS fragments. The ITS fragments were amplified from the DNA of the microcosm soil with (black column) or without (gray column) the straw residue at different time points. Error bars refer to the standard error between the replicates. doi:10.1371/journal.pone.0066146.g004

indicating that the soil fungi have a higher metabolic activity on cellulose. Moreover, the growth of the soil fungi using cellulose carbon is also observed in the growth curve (Fig. 1). The potential cellulose carbon source utilization provides an independent estimate of the existence of β-glucosidase.

CBHI cellobiohydrolases are key extracellular cellulase enzymes mediating cellulose decomposition to release cellulose [31]. To characterize the cbhI functional gene diversity of the fungal community, we cloned and sequenced PCR products from the soil. Sequences ranging from 512–585 bp were obtained from the soil library (Table 1). Possible intron splice site analysis revealed that the majority of the sequences contained a single intron, except for C12. The translation of putative amino acid sequences ranging in length from 170–180 residues and all of the putative amino acid sequences resulted in BLASTP matches (73–99% identity) to known fungi CBHI sequences (Table 1). Pairwise similarity of the putative protein sequence ranged from 54.2–99.4%. Only C12 matched best to the known fungi Hypocrea kawingi CBHI sequence (99%). Given that few known cbhI genes are deposited in public databases, it was not surprising that some of these environmental cbhI genotypes were not annotated to known species. The taxonomic affinity of the environmental clones were displayed by phylogenetic analysis (Fig. 2). The deduced CBHI protein fragments recovered from the soil libraries were clustered in the Ascomyota and Basidiomycota group members (Fig. 2). In combination, the metabolic activity of β-glucosidase and the diversity of the cbhI functional gene reveal the cellulose degradation potential of the fungi community in arable soil.

Fungal Community Dynamics during Decomposition

Ascomycota Decomposers in an Arable Soil

PLOS ONE | www.plosone.org 6 June 2013 | Volume 8 | Issue 6 | e66146
Figure 5. Phylogenetic relationships between the sequences of the sequenced ITS DGGE bands. The band numbers correspond to those presented in Fig. 3. The reference sequences available in GenBank are shown in Roman type, and the sequences generated in this study are in boldface. The scale bar represents the number of base substitutions per site. The bootstrap values are shown for the major branches, which had >50% support in a bootstrap analysis of 1000 replicates.

doi:10.1371/journal.pone.0066146.g005
decomposition process, the disappearing proportion of the labile component and the accumulation of the remaining recalcitrant components would regroup the related decomposers, and the novel niche with a more uniform environment might decrease the diversity of the microbial community [6].

Fungal Genetic Structure during Decomposition

The DGGE profiles for the microcosm samples showed a clear succession of fungal populations during the straw residue decomposition. The representative bands were excised for further sequence analysis. The closest relatives of the characteristic DGGE bands (Fig. 3) mentioned above are listed in Table 2. The majority of the sequences had high (>90%) similarity to the fungal ITS sequences in the databases, except for two sequences (S14b and S28a) with low sequence similarities (<85%). The Ascomycota populations were the major active soil fungal decomposers (Table 2). The DGGE band sequences consistently clustered to the Ascomycota phylum in the phylogenetic analysis (Fig. 5). Interestingly, Osono and colleagues proposed that fungi from the Ascomycota phylum were dominant at early stages of the litter degradation process. Fungi from the Basidiomycete phylum are important in forest soil during the degradation of plant residue, especially in litter with high lignin content [25]. In crop residue in which lignin content is low, this might make fungi from the Ascomycota phylum the key decomposers in the agricultural soil tested.

The early successional group increased in the beginning stage followed by a decrease in the later stages. Bands S7b and S14f in the straw treatment were indicative of the early succession during followed by a decrease in the later stages. Bands S7b and S14f in Sordariaceae wall. Moreover, enzymes that can break glycosidic bonds present in the plant cell wall. This study demonstrates the dynamics of fungal communities involved at different stages in residue decomposition. The fungal community succession can be divided into early succession, late succession, and non-succession. Importantly, Ascomycota fungi were dominant in the early and late succession communities, suggesting they were key drivers of arable soil decomposition process in our study. Furthermore, the distribution of soil fungi cbhl functional gene in Ascomycota and Basidiomycota suggested that the decomposition of the crop residue is a more complex and long-term process for the complete transformation of plant biopolymers. However, further research, for example, the use of stable isotope probing approaches in situ, is needed to identify the actual decomposers and their contribution during degradation.

Supporting Information

Text S1 Information of review comments including changes of cbhl gene and lignocellulose during straw decomposition.

Acknowledgments

We thank Wuren Huang for help with field sampling. We also acknowledge Juanli Yun and Hongguang Guo for assistance in the laboratory. We are very grateful to anonymous reviewers for their helpful comments on the manuscript.

Author Contributions

Conceived and designed the experiments: AM XZ GZ. Performed the experiments: AM DL JW MC. Analyzed the data: AM XZ GZ. Contributed reagents/materials/analysis tools: AM DL JW MC CL. Wrote the paper: AM XZ CL GZ.

References

1. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev 66: 739–779.
2. Kwon YJ, Ma AZ, Li Q, Wang F, Zhuang GQ, et al. (2011) Effect of lignocellulosic inhibitory compounds on growth and ethanol fermentation of newly-isolated thermotolerant Isospora cataracta. Bioresour Technol 102: 8099–8104.
3. Hasadas A, Kausats L, Gock M, Karra EE (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol Biochem 36: 253–266.
4. Waken SA, Colloff MJ, Harvey PR, Marschner P, Gregg AL, et al. (2007) The effects of stable retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. FEMS Microbiol Ecol 59: 661–670.
5. Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14: 259–263.
6. Voronkova J, Baldrian P (2012) Fungal community on decomposing leaf litter undergoes rapid successional changes. BSEJ 7: 477–486.
7. Lindahl BD, Ibarzak K, Boberg J, Trumbore SE, Hogberg P, et al. (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173: 611–620.

Ascomycota Decomposers in an Arable Soil
8. Kelkar H, Zak DR, Vandenbult M (2010) Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PloS One 5: e10971.

9. Osono T (2006) Role of phylosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52: 701–716.

10. Osono T, Ishit Y, Takeda H, Sera, Rachancun T, Khamsyong S, et al. (2009) Fungal succession and lignin decomposition on Shorea obtusa leaves in a tropical seasonal forest in northern Thailand. Fungal Divers 36: 101–119.

11. Dilly O, Munch JC (2004) Litter decomposition and microbial characteristics in agricultural soils in northern, central, and southern Germany. Soil Sci Plant Nutr 50: 845–853.

12. Johnson JMF, Barbour NW, Weyers SL (2007) Chemical composition of crop biomass impacts its decomposition. Soil Sci Soc Am J 71: 155–162.

13. Bertrand I, Prevot M, Chabbert B (2009) Soil decomposition of wheat intermedes of different maturity stages: Relative impact of the soluble and structural fractions. Bioresour Technol 100: 153–163.

14. Wu JP, Liu ZF, Wang XL, Sun YX, Zhou LX, et al. (2011) Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China. Funct Ecol 25: 921–931.

15. Zhao J, Wang XL, Shao YH, Xu GL, Fu SL (2011) Effects of vegetation removal on soil properties and decomposer organisms. Soil Biol Biochem 43: 954–960.

16. Dilly O, Bartsch S, Rosenbrock P, Buscot F, Munch JC (2001) Shifts in physiological capabilities of the microbiosa during the decomposition of leaf litter in a black alder (Alnus glutinosa (Gaertn.) L.) forest. Soil Biol Biochem 33: 921–930.

17. Nicolardot B, Bouziri L, Bastian F, Ranjard L (2007) A microcosm experiment to evaluate the influence of location and quality of plant residuals on residue decomposition and genetic structure of soil microbial communities. Soil Biol Biochem 39: 1631–1644.

18. Han X, Cheng ZH, Meng HW (2012) Soil properties, nutrient dynamics, and soil enzyme activities associated with garbage stalk decomposition under various conditions. PloS One 7.

19. Vandenkerkhouyse P, Baldauf SL, Leyval C, Straczek J, Young JPW (2002) Evolution - Extensive fungal diversity in plant roots. Science 295: 2051–2051.

20. Bastian F, Bouziri L, Nicolardot B, Ranjard L (2009) Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Bioresour Technol 100: 155–162.

21. Osono T, Takeda H (2006) Fungal decomposition of Abies needle and Betula biomass on a mountain forest. Can. J. Microbiol. 52: 701–716.

22. Yelle DJ, Ralph J, Lu FC, Hammel KE (2008) Evidence for cleavage of lignin by Hypocrea atroviridis - optimization of the fermentation medium and partial characterization of the enzyme. Appl Environ Microbiol 74: 3461–3489.

23. Friedl MA, Schmoll M, Kubicek CP, Druzhinina IS (2008) Photostimulation of Hypocrea atriviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. Microbiology 154: 1229–1241.

24. Blackwood CB, Waldrop MP, Zak DR, Sinnaubaur RL (2007) Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environ Microbiol 9: 1306–1316.

25. Blackwood CB, Waldrop MP, Zak DR, Sinnaubaur RL (2007) Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environ Microbiol 9: 1306–1316.

26. Anderson JC, Campbell CD, Proser J (2003) Diversity of fungi in organic soils under a moorland-Scots pine (Pinus sylvestris L.) gradient. Environ Microbiol 5: 1121–1132.

27. Mondali L, Benzerara K, Carriere M, Christen R, Mamindy-Pajany Y, et al. (2011) Influence of uranium on bacterial communities: A comparison of natural uranium-rich soils with controls. PloS One 6: e25771.

28. Jacobson J, Lydolph M, Lange L (2005) Culture independent PCR: an alternative enzyme discovery strategy. J Microbiol Methods 60: 63–71.

29. Nilsson RH, Abarenkov K, Veldere V, Nylander S, De Wit P, et al. (2010) An open source chimera checker for the fungal ITS region. Mol Ecol Resour 10: 1076–1081.

30. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.

31. Zhao J, Wang XL, Shao YH, Xu GL, Fu SL (2011) Effects of vegetation removal on soil properties and decomposer organisms. Soil Biol Biochem 43: 954–960.

32. Snajdr J, Cajthaml T, Valaskova V, Merhautova V, Petrankova M, et al. (2011) Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol 75: 291–303.

33. Bernard L, Mougé C, Maron PA, Nowak V, Leveque J, et al. (2007) Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Environ Microbiol 9: 752–764.

34. Lopez MJ, Vargas-Garcia MD, Suarez-Estrella F, Nichols NN, Dien BS, et al. (2007) Lignocellulose-degrading enzymes produced by the ascomycete Coniophora ligniaria and related species: Application for a lignocellulosic substrate treatment. Enzyme Microb Technol 40: 794–800.

35. Phosri C, Polme S, Taylor AFS, Koljalg U, Suwannasai N, et al. (2012) Diversity and community composition of ectomycorrhizal fungi in a dry deciduous drier copar forest in Thailand. Biodivers Conserv 21: 2287–2298.

36. Tian CG, Beeson WT, Iavarone AT, Sun JP, Marletta MA, et al. (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci U S A 106: 22157–22162.

37. Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, et al. (2003) A high throughput technique for DNA extraction and community analysis of fungal communities in arable soils. J Microbiol Methods 48: 1–16.

38. Artham T, Doble M (2010) Biodegradation of physicochemically treated polycarbonate by fungi. Biomacromolecules 11: 20–26.

39. Gomes J, Gomes I, Esterhauer H, Kreuzer W, Steinw (1987) Production of cellulases by a wild strain of Gluconobacter martis - optimization of the fermentation medium and partial characterization of the enzymes. Appl Environ Microbiol 60: 601–608.

40. Ruan ZH, Zanotti M, Wang XQ, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina. Environ Microbiol 14: 316–327.

41. Saur C, Beets B, Glaab P, Sultmann H, Hofmann S, et al. (2008) A new strategy for substrate utilization profiling in fungi. Environ Microbiol 10: 1844–1859.

42. Duong LM, McKenzie EHC, Lumyong S, Hyde KD (2008) Fungal succession on senescent leaves of Castanopsis diversifolia in Doi Suthep-Pui National Park, Thailand. Fungal Divers 30: 23–36.