A novel and simple method for generation of human dendritic cells from unfractionated peripheral blood mononuclear cells within 2 days: its application for induction of HIV-1-reactive CD4+ T cells in the hu-PBL SCID mice

Akira Kodama1, Reiko Tanaka1, Mineki Saito2, Aftab A. Ansari3 and Yuetsu Tanaka1*

1 Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
2 Department of Microbiology, Kawasaki Medical School, Kurashiki, Japan
3 Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA

*Correspondence: yuetsu@s4.dion.ne.jp

INTRODUCTION

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) which play a critical role in the regulation of the adaptive immune response through activation and polarization of naïve T cells (Banchereau et al., 2000). Since small numbers of activated DCs are highly efficient in generating immune responses against infections and cancers (Moll and Berberich, 2001; Steinman and Banchereau, 2007), the DC therapy represents a new and promising immunotherapeutic approach for treatment of advanced cancers as well as for prevention of infectious diseases. Indeed, the current clinical trials with ex vivo-generated DCs (so-called DC vaccine) will yield precious information regarding their potentials as vectors for immunotherapy (Gilboa, 2007; Connolly et al., 2008; Ezeldarab and Thomson, 2011). However, the general protocols to generate DCs are complicated and time consuming. Moreover, since different ex vivo DC generation methods affect the DC phenotype and function (Kulantzi et al., 2011), it is critical to choose appropriate method for generating functional DCs. In general, the DC precursor monocytes are purified from PBMCs by adherence (Jondet et al., 2001), elutriation (Berger et al., 2003) or positive or negative selection using immunomagnetic beads (Babatz et al., 2003). These enriched monocytes are then induced to differentiate into DCs by 5 days ex vivo cultivation in medium supplemented with granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4 followed by a 2-days maturation procedure (Sallusto and Lanzavecchia, 1999; Gilboa, 2007; Dauer et al., 2008). However, a lines of evidence are increasing that mature monocyte-derived DCs can be generated even after short-term cell culture for 2–3 days (Dauer et al., 2003a,b; Jarnjak-Jankovic et al., 2007; Zhang et al., 2008; Tabab et al., 2009).

In this study, in an attempt to simplify the methods currently being used for optimal DC generation and to develop a standardized method of preparing effective myeloid DC vaccine for immunotherapies, we explored the efficacy of using unfractionated PBMCs as a source of DC precursors and short-term in vitro cell culture just for 2 days.

MATERIALS AND METHODS

REAGENTS

The media used were RPMI 1640 medium (Sigma, St. Louis, MO, USA) supplemented with 10% fetal calf serum (FCS; Sigma, St. Louis, MO, USA), 100 U of penicillin per ml, and 100 μg of streptomycin per ml (hereafter called RPMI medium) and Iscove’s modified Dulbecco’s medium (Life technologies, Grand Island,
NY, USA) supplemented with 10% FCS with the same antibiotics (hereafter called Iscove's medium). Adikthiol-2 (AT-2) and low-endotoxin bovine serum albumin (BSA) was purchased from Sigma (St. Louis, MO, USA). The recombinant human cytokines used included IL-4, GM-CSF, TNF-α and IL-1β (PeproTech, London, UK). Enzyme-linked immunosorbent assay (ELISA) kits for the quantitation of human IFN-γ, human IL-4, human IL-10 and human IL-12 (detecting IL-12 p75 heterodimer) were purchased from Biolegend. The human monocyte negative isolation kits and human T cell isolation kits were purchased from Invitrogen (Carlsbad, CA, USA). The human naive CD4+ T cell isolation kit was purchased from Miltenyi Biotec (Gladbach, Germany). The Vybrant CFDA SE Cell Tracer Kit was purchased from Invitrogen.

GENERATION OF DCs

Human PBMCs were isolated from heparinized peripheral blood obtained from normal healthy adult volunteers donors by standard density gradient centrifugation. Cells at the interface were collected and washed three times in cold phosphate-buffered saline (PBS) containing 0.1% low-endotoxin BSA and 2 mM Na2EDTA. For select experiments, monocytes were purified from PBMCs using the CD14+ monocyte negative isolation kit (Invitrogen, Carlsbad, CA, USA). An aliquot of cells from each monocyte preparation was examined by flow cytometry and found to contain >90% CD14+ cells. To obtain immature MDDCs (iMDDCs), PBMCs (2.5 × 106 cells/ml) or the purified monocytes (5 × 105 cells/ml) were cultured in RPMI medium containing 20 ng/ml of human GM-CSF and 20 ng/ml of human IL-4 at 37°C in 24-well plates in a 5% CO2 humidified incubator for 5 days. In other experiments, iDCs were generated from either purified monocytes or whole PBMCs by cultivation in RPMI medium containing GM-CSF (20 ng/ml), IL-4 (20 ng/ml) and IFN-γ (1,000 U/ml) for 1 day. These iDCs were matured by incubation in the presence of either 10 ng/ml of LPS (Sigma) or a cocktail containing 10 ng/ml of TNF-α, 10 ng/ml of IL-1β and 1 μg/ml of prostaglandin E2 (PGE2; TIP cocktail) for 1–2 days.

FLOW CYTOMETRY

Aliquots of the cells to be analyzed were incubated in PBS containing 0.1% BSA and 0.1% sodium azide (FACS buffer) supplemented with 2 mg/ml normal human IgG on ice for 15 min to block Fc receptors. The cell suspension was then incubated with a predetermined optimal concentration of the appropriate fluorescent dye-labeled mAbs against human cell surface markers on ice for 30 min. The fluorescent dye-labeled monoclonal antibodies (mAbs) against human cell surface molecules used included anti-CD3, anti-CD4, anti-CD8, anti-CD14, CD20, anti-CD80, anti-HLA-DR, and isotype-matched control mAbs (Beckman Coulter, Fullerton, CA, USA), and anti-CD141c, anti-CD86, and anti-CD383 (BioLegend, San Diego, CA, USA). After washing with FACS buffer, cells were fixed in 1% paraformaldehyde (PFA) containing FACS buffer. The cells were then analyzed on a FACsCalibur flow cytometer with CellQuest software (BD Pharmingen, San Diego, CA, USA). Isotype-matched mAbs were utilized as controls to stain an aliquot of the cells to be analyzed for purposes of establishing gates and for determination of the frequency of positively stained cells.

HIV-1 PREPARATION AND INACTIVATION

HIV-1gag (virus that only use CXCR4 as chemokine co-receptor, termed X4) was harvested from Molt-4/IIIB cell cultures. Batches of each HIV-1 preparation were inactivated with Adikthiol-2 (AT-2, Sigma) as described previously (Yoshida et al., 2003). AT-2 was removed by three successive ultrafiltration in PBS using 100-kDa cut-off centrifugal filtration devices (Centriprep 100, Amicon, Beverly, MA, USA). Then AT-2-inactivated HIV-1 (iHIV) was purified by pelleting down the virus at 20,000 × g for 2 h three times in 0.1% BSA-PBS. The virus pellet was resuspended in 0.1% BSA-PBS, aliquoted, and stored at −80°C until use. The concentration of HIV-1 was estimated by measuring levels of HIV-1 p24 antigen with our in-house p24 ELISA kit (Tanaka et al., 2010). As previously described (Yoshida et al., 2003), activated human PBMCs incubated with an aliquot of 1 ng/ml of the AT-2-treated HIV-1 preparation failed to demonstrate the presence of any detectable infectious virions (data not shown).

STIMULATION OF T CELLS

Enriched populations of naive CD4+ T cells and bulk T cells with >90% purity were isolated from normal human PBMCs by using appropriate negative cell isolation kits. These T cells (4 × 106 cells/well) were first labeled with carboxy-fluorescein diacetate succinimidyl ester (CFSE) according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA), then co-cultured with allogeneic DCs at a T cells: DCs ratio of 50:1 in 100 μl of RPMI medium supplemented with 20 U/ml human IL-2 in 96-well, U-bottomed plates. Cell proliferation and cytokine production were determined on day 4.

hu-PBL SCID MICE

The BALB/c-rag2−/−γc−/− mice lacking T cells, B cells and natural killer (NK) cells (Rag2−/−γc−/− mice; Traggiai et al., 2004) were used in this study. The mice were kept in the specific-pathogen-free and F3 animal facilities of the Laboratory Animal Center, University of the Ryukyus. The protocols for the care and use of mice engrafted with human PBMCs and autologous DCs sensitized with inactivated HIV-1 or ovalbumin (OVA) were approved by the committee on animal research of the University of the Ryukyus prior to initiation of the study. Matured DCs (3 × 105 cells) pulsed with either AT-2-inactivated HIV-1 (40 ng of p24) or 100 μg of OVA in 100 μl of RPMI medium for 2 h at 37°C were mixed with autologous fresh PBMCs (3 × 106 cells) in a final volume of 100 μl in serum-free RPMI medium, and were directly injected into the spleen of Rag2 mice as previously described (Yoshida et al., 2003). One week later, the same number of DCs pulsed with the same antigens were inoculated again into the spleen. One week later, mice were sacrificed, blood was collected by cardiocentesis, and human CD4+ T cells were enriched from splenocytes using a human CD4+ T cell isolation kit according to the manufacturer’s instructions. For the measurement of antigen-specific human cellular immune responses, human CD4+ T cell (2 × 105 cells) collected from the spleens of immunized Rag2−/− mice were cultured for 2 days with autologous monocytes (2 × 106 cells) in the presence or absence of inactivated HIV containing 40 ng/ml of p24 in 500 μl of RPMI medium supplemented with 20 U/ml of IL-2 in individual wells of a 48-well plate at 37°C. The concentration...
of human IFN-γ or IL-4 produced in the culture supernatants was determined with ELISA kits.

STATISTICAL ANALYSIS

Data were analyzed by Student’s t test with the with Prism software (GraphPad Software Inc., San Diego, CA, USA).

RESULTS

GENERATION OF MYELOID MATURE DCs DIRECTLY FROM PBMCs WITHIN 2 DAYS

In order to reduce the cost, labor and any loss of potential precursors from PBMCs, we have previously established a novel culture method for generating functional human DCs from unfractiooned PBMC in which whole PBMCs were cultured in the presence of IL-4 and GM-CSF for 5 days followed by a 2-day maturation in media containing poly I:C and IL-1β (Kodama et al., 2010). However, there were considerable lot variations in commercial poly:IC in the DC-maturation activity (data not shown). Therefore, we tested a previously reported maturation cytokine cocktail containing TNF-α, IL-1β, IL-6 and PGE2 (Jonuleit et al., 1997). In a preliminary study, we found that IL-6 was not necessary to mature DCs from purified monocytes in the present cell culture conditions, probably due to the use of serum-containing media. Thus, we used a cytokine cocktail

![Figure 1: Generation of functional human myeloid DCs directly from PBMCs in vitro within 2 days.](image-url)
containing 10 ng/ml of TNF-α, 10 ng/ml of IL-1β and 1 µg/ml of PGE2 (hereafter called TIP cocktail) throughout the present study.

Based on our previous report that monocytes can be differentiated into mature DCs within 2 days (Zhang et al., 2008), we tested whether Th1-inducing DCs could be generated from unfractionated PBMCs. PBMCs (2.5 x 10⁶ cells/ml) were cultured in RPMI medium containing GM-CSF (20 ng/ml), IL-4 (20 ng/ml) and IFN-β (1,000 U/ml) for 1 day followed by additional 1 day cultivation in the presence or absence of the TIP cocktail. The phenotypes of CD11c+ large cells in these 2-day PBMC cultures were compared with those of MDDCs derived from purified monocyte for 7 days (7-day-DC/Mo; Figure 1). The proportion of Fv4⁺CD16⁺ and Dv4⁺CD8⁻ cells in the 2-day DC/PBMC culture was 20–25% of total viable cells depending on donors and these cells expressed CD11c (data not shown). After maturation with the TIP cocktail, similar to the 7-day-DC/Mo, the large CD11c⁺ cells in the 2-day PBMC cultures became CD14⁺CD16⁻ and CD83⁺, a typical marker of matured myeloid DCs (Ushijama et al., 1997). The other viable cell populations in the 2-day PBMC cultures were CD11c⁺ T cells (54.0–59.2%), CD3⁺ NK cells (8.4–9.3%) and CD19⁺ B cells (6.5–8.6%; n = 3). These data showed that the present culture method was applicable to generate myeloid mature DCs from bulk PBMCs within 2 days (2-day-DC/PBMC).

Then we tested cytokine production by these 2-day-DC/PBMC. Interestingly, in contrast to the DCs matured in the presence of LPS, the production of IFN-γ and IL-10 by the TIP matured 2-day-DC/P was minimum (Figure 2). To investigate whether the 2-day-DC/PBMC were immunologically functional, we examined their ability to stimulate allogeneic T cell proliferation (Figure 3A). Then we quantitated the levels of IFN-γ and IL-4 in the culture supernatants from allogeneic CD4⁺ T cells co-cultured with various DCs. As shown in Figure 3B, among the four DC preparations including the 7-day-DC/Mo, 7-day-DCs from PBMCs (7-day-DC/PBMC), 2-day-DCs from monocytes (2-day-DC/Mo) and 2-day-DC/PBMC, the 2-day-DC/PBMC were most potent in induction of IFN-γ production. The bulk 2-day-DC/PBMC alone did not produce detectable IFN-γ (<20 pg/ml) in the present culture conditions (data not shown). The levels of IL-4 and IL-10 were below detection (<5 pg/ml) in all the samples tested (data not shown). These results indicated that the 2-day-DC/PBMC had a potential to induce Th1 response.

INDUCTION OF HIV-1-REACTIVE HUMAN CD4⁺ T CELL RESPONSES IN hu-PBL-SCID MICE

Finally, we examined whether the short-term generated 2-day-DC/PBMC could induce HIV-1-reactive immune responses in vivo in comparison to MDDCs (7-day-DC/Mo) using our hu-PBL-SCID mice model (Yoshida et al., 2003). SCID mice were intra-splenicly transplanted with DCs loaded with AT-2-inactivated HIV-1 together with autologous fresh PBMCs. On day 7, these mice were received an intra-splenic booster injection with similarly prepared antigen-pulsed DCs. Seven days after the booster injection, mice were sacrificed and examined for antigen-specific human immune responses. Figure 4 showed that after an in vitro re-stimulation with autologous APCs pulsed with inactivated HIV-1, enriched human CD4⁺ T cells from two out of three mice immunized with MDDCs (7-day-DC/Mo) pulsed with HIV-1 and those from three out of four mice immunized with 2-day-DC/PBMC pulsed with HIV-1 produced IFN-γ in antigen-dependent way, indicating that the 2-day-DC/PBMC could induce HIV-1 antigen-reactive human T responses in vivo as potent as MDDCs. In the re-stimulated culture supernatants, no IL-4 or IL-10 was detected (<5 pg/ml) using ELISA (data not shown). In addition, no detectable antibodies against HIV-1 were detected...
inducing HIV-1-reactive Th1 responses in hu-PBL-SCID mice.

We have developed a novel, simple and rapid protocol for generating Th1-stimulating human myeloid DCs in vitro that can be used for clinical use in DC-based immunization in humans against HIV-1. The present study showed the induction of primary HIV-1-specific CD4+ T cell immune responses in hu-PBL-SCID mice by DC-based immunization, demonstrating that the present 2-day-PBMC-derived DCs might have a potential for clinical use in DC-based immunization in humans against HIV-1. It was of interest that the levels of IFN-γ production were higher in CD4+ T cells immunized with 7-day-DC/Mo than those immunized with 2-day-DC/PBMC. It is possible that 2-day-DC/PBMC could live longer than 7-day-DC/Mo in vivo to stimulate antigen-specific CD4+ T cells. In addition, because myeloid DCs are susceptible to HIV-1 infection (Knight et al., 1990), the use of these IFN-γ-treated DCs will be beneficial for HIV-1-infected individuals.

In conclusion, the present study provided a new method to generate functional human myeloid DCs directly from PBMCs in a short-term culture period. These DCs will be useful for studies exploring potentials of DC-based immunization for not only infectious diseases but also cancers in vivo and in vitro.

ACKNOWLEDGMENTS

This work was supported by the Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

The use of whole PBMCs as DC precursors might reduce any loss of monocytes in the step of purification by adherence (Jonuleit et al., 2001), clariﬁation (Börg et al., 2005) or positive or negative selection using immunomagnetic beads (Babatz et al., 2003). One possible concern on using whole PBMCs was that the non-monocyte cells, such as T, B or NK cells, in the PBMCs might interfere with differentiation and function of DCs. However, in the present study there was no obvious difference in DC maturation and function between in PBMC and puriﬁed monocyte cultures.

For the final maturation, we used a cytokine cocktail containing TNF-α and IL-1β and PGE2 (TIP cocktail). Simultaneous use of these three reagents in TIP was essential for maturation of DCs since use of the reagents either in single or in two combinations failed to mature DCs (data not shown). In general, IL-6 that is included in the maturation cytokine cocktail TNF-α and IL-1β and PGE2 to mature DCs was not necessary in the present culture conditions. The reason remains to be studied, but it is possible that IL-6 is required in serum-free culture conditions. The present 2-day-DC/PBMC matured by TIP produced lower IL-12 than those matured by LPS. Low levels production of IL-12 might be ascribed to the use of PGE2 that inhibits bioactive IL-12 heterodimer production (Kalinski et al., 2001; Kalin and Groettrup, 2013). Despite of the low level production of IL-12, the TIP-matured 2-day-DC/PBMC were potent in stimulating IFN-γ, but not IL-4 or IL-10, production by allogeneic T cells. The reason for higher potentials of 2-day-DC/PBMC to induce Th1 cells than MDDCs remains to be clariﬁed. It is speculated that natural DCS contained in the 2-day-PBMC-derived DCs might enhance the activation. Indeed, 2-day-DC/PBMC culture generated from CD4+ cell-depleted PBMCs were able to stimulate allogeneic CD4+ T cells to a lesser extent (data not shown). However, we cannot clearly determine if the stimulation was mediated by remaining monocytes. Further study is required to solve this issue. Importantly, as the previous study (Yoshida et al., 2003), the present study showed the induction of primary HIV-1-specific human CD4+ T cell immune responses in hu-PBL-SCID mice by DC-based immunization, demonstrating that the present 2-day-PBMC-derived DCs might have a potential for clinical use in DC-based immunization in humans against HIV-1. It was of interest that the levels of IFN-γ production were higher in CD4+ T cells immunized with 7-day-DC/Mo. It is possible that 2-day-DC/PBMC could live longer than 7-day-DC/Mo in vivo to stimulate antigen-specific CD4+ T cells. In addition, because myeloid DCs are susceptible to HIV-1 infection (Knight et al., 1990), the use of these IFN-γ-treated DCs will be beneficial for HIV-1-infected individuals.

In conclusion, the present study provided a new method to generate functional human myeloid DCs directly from PBMCs in a short-term culture period. These DCs will be useful for studies exploring potentials of DC-based immunization for not only infectious diseases but also cancers in vivo and in vitro.

ACKNOWLEDGMENTS

This work was supported by the Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

FIGURE 3 | High levels of production of IFN-γ by allogeneic T cells stimulated with 2-day-DCs generated from PBMCs. (A) MNCs (7-day-DC/Mo) and 2-day-DCs (7-day-DC/P) were co-cultured with CFSE-labeled allogeneic CD4+ T cells at DC to T cell ratio of 1:50 for 4 days. The cell number of DCs in 2-day-PBMC was manually counted using a Burker-Turk hemocytometer in which only large cells were counted. (B) Percentages of proliferated cells were examined by flow cytometry. (A) The levels of IFN-γ produced in the supernatants were quantitated by ELISA. In addition to the DCs shown in (A), MDDCs generated from PBMCs for 7 days (7-dDC/M) and 2-day-DCs generated from purified monocytes (2-dDC/Mo) were also tested. Data shown are representative of three independent experiments using blood from two different donors.

www.frontiersin.org September 2013 | Volume 4 | Article 282 | 5
Akira Kodama designed and performed the experiments, analyzed the data and wrote the paper. Reiko Tanaka and Mineki Saito performed the experiments, analyzed the data and wrote the paper. Yuetsu Tanaka designed and supervised the research, performed experiments and wrote the paper. All authors checked the final version of this manuscript.

REFERENCES

Bortolotti, J., Rolings, C., Ochskopf, U., Zhao, S., Ehlenger, G., Schumitz, M., et al. (2003). Large-scale immunomagnetic selection of CD34+ monocytes to generate dendritic cells for cancer immunotherapy: a phase I study. J. Hematother. Stem Cell Res. 12, 525–525. doi: 10.1016/j.jhec.2003.03.2491.2217

Buncher, J., Bres, J., Caux, C., Davoust, J., Lebdoua, S., Lia, Y., et al. (2000). Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 765–811. doi: 10.1146/annurev.immunol.18.1.767

Bengt, E. G., Streeu, E., Smith, B., Raine, C., Schuler-Thurner, B., Kaempgen, E., et al. (2005). Efficient large-scale generation of dendritic cells. Hum. Immunol. 66, 39–47. doi: 10.1016/j.humimm.2004.07.007

Buonocore, M., Pellicci, E., Boni, S., and Venturoli, S. (2011). Tolerogenic dendritic cells under fetal immunomodulation of immunogenic and tolerogenic dendritic cells under fetal immunomodulation. Hum. Immunol. 72, 366–374. doi: 10.1016/j.huimun.2010.10.001

Carraro, S. E., and Macatonia, S. E. (2001). Prostaglandin E(2) is required for tumor necrosis factor alpha-induced secretion of IL-12(p70) and IL-12(p40) by human dendritic cells. J. Immunol. 167, 1195–1203. doi: 10.4049/jimmunol.167.2.1195

Chapuis, C., Haerle, C., Pohl, K., Rothenfusser, S., Jonuleit, H., Giesecke-Tuettenberg, A., et al. (2005). Efficiency of dendritic cell differentiation from blood precursors. Blood 105, 3981–3988. doi: 10.1182/blood-2004-06-1946

Chen, W., and Riddler, S. A. (2008). Therapeutic immunization with human dendritic cells. Immunol. Rev. 223, 252–265. doi: 10.1111/j.1600-0652.2007.00610.x

Costello, N. C., Whitehead, T. L., Wilson, C., Kondragunta, V., Rinaldo, C., and Riddler, S. A. (2001). Human dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J. Immunol. 170, 4069–4076.

Deininger, M., Pohl, K., Obermaier, B., Radunski, T., Bobe, J., Schrutz, M., et al. (2002b). Interferon-alpha enables dendritic cell precursor dendritic cells derived from interferon-alpha-treated monocytes are defective in maturation and T-cell stimulation. J. Immunol. 168, 357–364. doi: 10.4049/jimmunol.168.1.357

Dietrich, M., Schumart, M., and Eigler, A. (2001). Dendritic cell-based cancer vaccination: quo vadis? Expert Rev. Vaccines. 7, 1045–1055. doi: 10.1586/14760584.7.7.1041

Dietrich, M., Schumart, M., and Eigler, A. (2001). Dendritic cell-based cancer vaccination: quo vadis? Expert Rev. Vaccines 7, 1045–1055. doi: 10.1586/14760584.7.7.1041

Dinarello, C. A., and Thorensen, A. W. (2011). Tollergic dendritic cells and their role in transplantation. Immunol. Res. 50, 135–140. doi: 10.1007/s12026-011-8255-5

Dinarello, C. A., and Thorensen, A. W. (2011). Tollergic dendritic cells and their role in transplantation. Immunol. Res. 50, 135–140. doi: 10.1007/s12026-011-8255-5

Dinarello, C. A., and Thorensen, A. W. (2011). Tollergic dendritic cells and their role in transplantation. Immunol. Res. 50, 135–140. doi: 10.1007/s12026-011-8255-5

Dinarello, C. A., and Thorensen, A. W. (2011). Tollergic dendritic cells and their role in transplantation. Immunol. Res. 50, 135–140. doi: 10.1007/s12026-011-8255-5

Dinarello, C. A., and Thorensen, A. W. (2011). Tollergic dendritic cells and their role in transplantation. Immunol. Res. 50, 135–140. doi: 10.1007/s12026-011-8255-5

Dinarello, C. A., and Thorensen, A. W. (2011). Tollergic dendritic cells and their role in transplantation. Immunol. Res. 50, 135–140. doi: 10.1007/s12026-011-8255-5

Dinarello, C. A., and Thorensen, A. W. (2011). Tollergic dendritic cells and their role in transplantation. Immunol. Res. 50, 135–140. doi: 10.1007/s12026-011-8255-5

Dinarello, C. A., and Thorensen, A. W. (2011). Tollergic dendritic cells and their role in transplantation. Immunol. Res. 50, 135–140. doi: 10.1007/s12026-011-8255-5

Dinarello, C. A., and Thorensen, A. W. (2011). Tollergic dendritic cells and their role in transplantation. Immunol. Res. 50, 135–140. doi: 10.1007/s12026-011-8255-5

Dinarello, C. A., and Thorensen, A. W. (2011). Tollergic dendritic cells and their role in transplantation. Immunol. Res. 50, 135–140. doi: 10.1007/s12026-011-8255-5

Dinarello, C. A., and Thorensen, A. W. (2011). Tollergic dendritic cells and their role in transplantation. Immunol. Res. 50, 135–140. doi: 10.1007/s12026-011-8255-5

Dinarello, C. A., and Thorensen, A. W. (2011). Tollergic dendritic cells and their role in transplantation. Immunol. Res. 50, 135–140. doi: 10.1007/s12026-011-8255-5
Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 108-117. doi: 10.1126/science.1093035
Yoshida, A., Tanaka, R., Murakami, T., Takahashi, Y., Koyanagi, Y., Nakamura, M., et al. (2003). Induction of protective immune responses against R5 human immunodeficiency virus type 1 (HIV-1) infection in hu-PBL-SCID mice by intrapleural immunization with HIV-1-pulsed dendritic cells: possible involvement of a novel factor of human CD4+ T-cell origin. J. Virol. 77, 8719-8728. doi: 10.1128/JVI.77.16.8719-8728.2003
Zhang, L. F., Okuma, K., Tanaka, R., Kodama, A., Kondo, K., Ansari, A. A., et al. (2008). Generation of mature dendritic cells with unique phenotype and function by in vitro short-term culture of human monocytes in the presence of interleukin-4 and interferon-beta. Exp Biol Med (Maywood) 233, 721-731. doi: 10.3181/0712-RM-333

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 25 June 2013; accepted: 10 September 2013; published online: 27 September 2013.

Citation: Kodama A, Tanaka R, Saito M, Ansari AA and Tanaka Y (2013) A novel and simple method for generation of human dendritic cells from unfractionated peripheral blood mononuclear cell within 2 days: its application for induction of HIV-1-reactive CD4+ T cells in the hu-PBL-SCID mice. Front. Microbiol. 4:292. doi: 10.3389/fmicb.2013.00292

This article was submitted to Virology, a section of the journal Frontiers in Microbiology. Copyright © 2013 Kodama, Tanaka, Saito, Ansari and Tanaka. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.