A quantitative sharpening of Moriwaki’s arithmetic Bogomolov inequality

N. Naumann

A. Moriwaki proved the following arithmetic analogue of the Bogomolov unstability theorem. If a torsion-free hermitian coherent sheaf on an arithmetic surface has negative discriminant then it admits an arithmetically destabilising subsheaf. In the geometric situation it is known that such a subsheaf can be found subject to an additional numerical constraint and here we prove the arithmetic analogue. We then apply this result to slightly simplify a part of C. Soulé’s proof of a vanishing theorem on arithmetic surfaces.

1 Introduction and statement of result

Let K be a number field with ring of integers \mathcal{O}_K and $X/\text{Spec}(\mathcal{O}_K)$ an arithmetic surface, i.e. a regular, integral, purely two-dimensional scheme, proper and flat over $\text{Spec}(\mathcal{O}_K)$ and with smooth and geometrically connected generic fibre. Attached to a hermitian coherent sheaf on X are the usual characteristic classes with values in the arithmetic Chow-groups $\widehat{CH}^i(X)$ (cf. [GS1], 2.5), and in particular the discriminant of E

$$\Delta(E) := (1 - r)\hat{c}_1(E)^2 + 2r\hat{c}_2(E) \in \widehat{CH}^2(X)$$

where $r := \text{rk}(E)$. The arithmetic degree map

$$\hat{\deg} : \widehat{CH}^2(X)_\mathbb{R} \rightarrow \mathbb{R}$$
is an isomorphism \([GS2]\) and we will use the same symbol to denote an element in \(\widetilde{CH}^2(X)_{\mathbb{R}}\) and its arithmetic degree in \(\mathbb{R}\), see \([GS2]\), 1.1 for the definition of arithmetic Chow-groups with real coefficients \(\widetilde{CH}^2(X)_{\mathbb{R}}\). Following \([Mo2]\) we define the positive cone of \(X\) to be

\[
\hat{C}^+(X) := \{ x \in \widetilde{CH}^1(X)_{\mathbb{R}} \mid x^2 > 0 \text{ and } \deg_K(x) > 0 \}.
\]

Given a torsion-free hermitian coherent sheaf \(\mathcal{E}\) of rank \(r \geq 1\) on \(X\) and a subsheaf \(\mathcal{E}' \subseteq \mathcal{E}\) we endow \(\mathcal{E}'\) with the metric induced from \(\mathcal{E}\) and consider the difference of slopes

\[
\xi_{\mathcal{E}', \mathcal{E}} := \frac{\hat{c}_1(\mathcal{E}')}{\text{rk}(\mathcal{E}')} - \frac{\hat{c}_1(\mathcal{E})}{r} \in \widetilde{CH}^1(X)_{\mathbb{R}}.
\]

Recall that a subsheaf \(\mathcal{E}' \subseteq \mathcal{E}\) is saturated if the quotient \(\mathcal{E}/\mathcal{E}'\) is torsion-free. Our main result is the following.

Theorem 1 Let \(\mathcal{E}\) be a torsion-free hermitian coherent sheaf of rank \(r \geq 2\) on the arithmetic surface \(X\), satisfying

\[
\Delta(\mathcal{E}) < 0.
\]

Then there is a non-zero saturated subsheaf \(\mathcal{E}' \subseteq \mathcal{E}\) such that \(\xi_{\mathcal{E}', \mathcal{E}} \in \hat{C}^+(X)\) and

\[
\xi^2_{\mathcal{E}', \mathcal{E}} \geq -\frac{\Delta}{r^2(r - 1)}.
\]

Remark 2 The existence of an \(\mathcal{E}' \subseteq \mathcal{E}\) with \(\xi_{\mathcal{E}', \mathcal{E}} \in \hat{C}^+(X)\) is the main result of \([Mo2]\) and means that \(\mathcal{E}' \subseteq \mathcal{E}\) is arithmetically destabilising with respect to any polarisation of \(X\), c.f. loc. cit. for more details on this. The new contribution here is the inequality \(\xi^2\) which is the exact arithmetic analogue of a known geometric result, c.f. for example \([HL]\), Theorem 7.3.4.

Remark 3 A special case of Theorem \(\xi^2\) appears in disguised form in the proof of \([So]\), Theorem 2: Given a sufficiently positive hermitian line bundle \(L\)
on the arithmetic surface X and some non-torsion element $e \in H^1(X, L^{-1}) \simeq \text{Ext}^1(L, \mathcal{O}_X)$, C. Soulé establishes a lower bound for

$$||e||^2 := \sup_{\sigma: \mathbb{K} \hookrightarrow \mathbb{C}} ||\sigma(e)||^2_{L^2}$$

by considering the extension determined by e

$$E : 0 \to \mathcal{O}_X \to E \to L \to 0$$

and suitably metrised as to have $\hat{c}_1(E) = \mathcal{L}$ and $2\hat{c}_2(E) = \sum_{\sigma} ||\sigma(e)||^2_{L^2}$, hence $\Delta(E) = -\mathcal{L}^2 + 2\sum_{\sigma} ||\sigma(e)||^2_{L^2}$ (where we write $\mathcal{L} = \hat{c}_1(L)$ following the notation of loc. cit.).

If $E_{\mathbb{Q}}$ is semi-stable the arithmetic Bogomolov inequality concludes the proof. Otherwise, the main point is to show the existence of an arithmetic divisor D satisfying

(2) $\deg_K(D) \leq \deg_K(L)/2$ and

(3) $2(\mathcal{L} - D)D \leq [K : \mathbb{Q}] \cdot ||e||^2$,

c.f. (28) and (32) of loc. cit. where these inequalities are established by some direct argument. We wish to point out that the existence of some D satisfying (2) and (3) is a special case of Theorem 1. In fact, let $E' \subseteq E$ be as in Theorem 1 and define $D := L - \hat{c}_1(E')$. We then compute

$$\xi_{E', E} = \mathcal{L}^2/2 - D$$

and $\xi_{E', E} \in \mathcal{C}^{++}(X)$ implies (2). Furthermore, the inequality (1) in the present case reads

$$\xi^2_{E', E} = \mathcal{L}^2/4 + D^2 - \mathcal{L}D \geq -\Delta/4 = \mathcal{L}^2/4 - 1/2 \sum_{\sigma} ||\sigma(e)||^2_{L^2}$$

i.e.

$$2(\mathcal{L} - D)D \leq \sum_{\sigma} ||\sigma(e)||^2_{L^2},$$

3
hence the trivial estimate \([K : \mathbb{Q}] : ||e||^2 \geq \sum |\sigma(e)|_2^2\) gives \([\mathfrak{M}]\).

I would like to thank K. Kunnemann for useful conversations about a preliminary draft of the present note.

2 Proof of Theorem 1

We collect some lemmas first. We call a short exact sequence
\[\mathcal{E} : 0 \rightarrow \mathcal{E}' \rightarrow \mathcal{E} \rightarrow \mathcal{E}'' \rightarrow 0 \]
of hermitian coherent sheaves on \(X\) isometric if the metrics on \(\mathcal{E}'\) and \(\mathcal{E}''\) are induced from the one on \(\mathcal{E}\). This implies that \(\hat{c}_1(\mathcal{E}) = \hat{c}_1(\mathcal{E}') + \hat{c}_1(\mathcal{E}')(\text{i.e. } \tilde{c}_1(\mathcal{E}) = 0)\). We also have
\[\hat{c}_2(\mathcal{E}) = \hat{c}_2(\mathcal{E}' \oplus \mathcal{E}'') - a(\tilde{c}_2(\mathcal{E})) \text{ in } \overline{CH}^2(X), \]
where
\[a : \tilde{A}^{1,1}(X_{\mathbb{R}}) \rightarrow \overline{CH}^2(X) \]
is the usual map \([SABK]\), chapter III.

Lemma 4 If
\[\mathcal{E} : 0 \rightarrow \mathcal{E}' \rightarrow \mathcal{E} \rightarrow \mathcal{E}'' \rightarrow 0 \]
is an isometric short exact sequence of hermitian coherent sheaves on \(X\) with ranks \(r', r, r'' \geq 1\) and discriminants \(\Delta', \Delta, \Delta''\), then
\[\frac{\Delta'}{r'} + \frac{\Delta''}{r''} - \frac{\Delta}{r} = \frac{rr'}{r''} \xi^2_{\mathcal{E}' \mathcal{E}} + 2a(\tilde{c}_2(\mathcal{E})) \text{ in } \overline{CH}^2(X)_{\mathbb{R}}. \]

Proof We omit the computation using the formulas for \(\tilde{c}_i(\mathcal{E})\) recalled above which shows that the left hand side of the stated equality equals
\[\hat{c}_1(\mathcal{E})^2 \left(\frac{r - 1}{r} + \frac{1 - r'}{r'} \right) + \hat{c}_1(\mathcal{E}'')^2 \left(\frac{r - 1}{r} + \frac{1 - r''}{r''} \right) + \]
Similarly one writes \(\xi^2_{E,E'} \) as a rational linear combination of \(\hat{c}_1(E)^2, \hat{c}_1(E'')^2 \) and \(\hat{c}_1(E') \hat{c}_1(E'') \) and comparing the results, the stated formula drops out. □

Lemma 5 For \(E \) as in Lemma 4 and \(G'' \subseteq E'' \) a saturated subsheaf of rank \(s \geq 1 \) carrying the induced metric, put

\[
\overline{G} := \ker(E \to E'' \to E''/G'') \subseteq \overline{E}
\]

with the induced metric. Then

\[
\xi_{G,E} = \frac{r'(r''-s)}{(r'+s)r''} \xi_{E,E'} + \frac{s}{r'+s} \xi_{G'',E'} \quad \text{in } \overline{CH^1(X)}_{\mathbb{R}}.
\]

Observe that the coefficients in the last expression are non-negative rational numbers.

Proof We have a commutative diagram with exact rows and columns

Here, we have endowed \(E/G, E''/G'' \) and \(H \) with the metrics induced from \(\overline{E}, \overline{E''} \) and \(\overline{G} \), hence all rows and columns are isometric by definition. A
minor point to note is that with this choice of metrics the two indicated isomorphisms are isometric, indeed this only means that taking sub- (resp. quotient-)metrics is transitive. One has

\[\xi_{E'E} = \frac{r'' - r' c_1(E')}{{r'} r} \]

and analogously for any isometric exact sequence in place of \(E \). Using this and the diagram one writes both sides of the stated equality as a \(\mathbb{Q} \)-linear combination of \(c_1(E'), c_1(G'') \) and \(c_1(E''/G'') \) to obtain the same result, namely

\[\frac{r'' - s}{{(r' + s)} r} c_1(E') + \frac{r'' - s}{{(r' + s)} r} c_1(G') - \frac{1}{r} c_1(E''/G''). \]

Finally, we will need the following observation about the intersection theory on \(X \) where, for \(x \in \hat{C}_{++}(X) \), we write \(|x| := (x^2)^{1/2} \in \mathbb{R}^+ \).

Lemma 6 The subset \(\hat{C}_{++}(X) \subseteq \hat{CH}^1(X)_{\mathbb{R}} \) is an open cone, i.e. \(x, y \in \hat{C}_{++}(X) \) and \(\lambda \in \mathbb{R}^+ \) implies that \(x + y, \lambda x \in \hat{C}_{++}(X) \). For \(x, y \in \hat{C}_{++} \) we have \(|x + y| \geq |x| + |y| \).

Proof This is [Mo2], (1.1.2.2) except for the final assertion which is obvious if \(x \in \mathbb{R} y \) and we can thus assume that \(V := \mathbb{R} x + \mathbb{R} y \subseteq \hat{CH}^1(X)_{\mathbb{R}} \) is two-dimensional. We claim that the restriction of the intersection-pairing makes \(V \) a real quadratic space of type \((1, -1)\). As we have \(x \in V \) and \(x^2 > 0 \) we only have to exhibit some \(v \in V \) with \(v^2 < 0 \). To achieve this let \(h \in \hat{CH}^1(X)_{\mathbb{R}} \) be the first arithmetic Chern class of some sufficiently positive hermitian line bundle on \(X \) such that the arithmetic Hodge index theorem holds for the Lefschetz operator defined by \(h \), c.f. [GS2], Theorem 2.1, ii). Then \(a := x h \) (resp. \(b := y h \)) are non-zero real numbers for otherwise we would have \(x^2 < 0 \) (resp. \(y^2 < 0 \)). Thus \(v := \frac{x}{a} - \frac{b}{h} \in V \) satisfies \(v \neq 0 \) and \(vh = 0 \), hence \(v^2 < 0 \).

Fix a basis \(e, f \in V \) with \(e^2 = 1, f^2 = -1 \) and write

\[x = \alpha e + \beta f \]
\[y = \gamma e + \delta f. \]

To show that \(|x + y| \geq |x| + |y|\) we can assume, changing both the signs of \(x\) and \(y\) if necessary, that \(\alpha > 0\). We then claim that \(\gamma > 0\). For otherwise there would be \(\lambda_1, \lambda_2 \in \mathbb{R}_+\) such that \(v := \lambda_1 x + \lambda_2 y\) would have \(e\)-coordinate equal to zero, hence \(v^2 \leq 0\) contradicting the fact that either \(-v\) or \(v\) lies in \(\hat{C}_+\) (depending on whether or not we changed the signs of \(x\) and \(y\) above).

From \(x^2 = \alpha^2 - \beta^2, \ y^2 = \gamma^2 - \delta^2 > 0\) we obtain \(\alpha = |\alpha| \geq |\beta|\) and \(\gamma = |\gamma| \geq |\delta|\) and then \(\alpha \gamma \geq |\beta \delta| \geq \beta \delta\), i.e.

\[xy = \alpha \gamma - \beta \delta \geq 0. \]

(4)

To conclude, we use the following chain of equivalent statements

\[
\begin{align*}
|x + y| & \geq |x| + |y| \iff \\
(x + y)^2 - (|x| + |y|)^2 & \geq 0 \iff \\
2xy - 2|x||y| & \geq 0 \iff \\
xy & \geq |x||y| \iff \\
(x^2)^2 & \geq |x|^2 |y|^2 \iff \\
(\alpha \gamma - \beta \delta)^2 & \geq (\alpha^2 - \beta^2)(\gamma^2 - \delta^2) \iff \\
\alpha^2 \gamma^2 + \beta^2 \delta^2 - 2\alpha \beta \gamma \delta & \geq \alpha^2 \gamma^2 - \alpha^2 \delta^2 - \beta^2 \gamma^2 + \beta^2 \delta^2 \iff \\
2\alpha \beta \gamma \delta & \leq \alpha^2 \delta^2 + \beta^2 \gamma^2 \iff \\
0 & \leq (\alpha \delta - \beta \gamma)^2.
\end{align*}
\]

\[\square \]

Proof of Theorem

We first remark that for a torsion-free hermitian coherent sheaf \(\mathcal{F}\) of rank one on \(X\) we always have \(\Delta(\mathcal{F}) \geq 0\). In fact,

\[F \simeq \mathcal{L} \otimes \mathcal{I}_Z \]
for some line-bundle L and I_Z the ideal sheaf of some closed subscheme $Z \subseteq X$ of codimension 2. This becomes an isometry for the trivial metric on I_Z and a suitable metric on L (since I_Z is trivial on the generic fibre of X). Then

$$\Delta(F) = 2\hat{c}_2(T \otimes I_Z) = 2\hat{c}_2(I_Z) = 2\text{length}(Z) \geq 0.$$

By the main result of [Mo2], there is $0 \neq E' \subseteq E$ saturated such that $\xi_{E',E} \in \hat{C}_{++}(X)$. We can assume that, as E' varies through these subsheaves, the real numbers $\xi_{E',E}^2$ remain bounded for otherwise there is nothing to prove. So we can choose $0 \neq E' \subseteq E$ saturated with $\xi_{E',E'} \in \hat{C}_{++}(X)$ and $\xi_{E',E}^2$ maximal subject to these conditions. Put $E'' := E/E'$ and consider the isometric exact sequence

$$E : 0 \to E' \to E \to E'' \to 0$$

with discriminants $\Delta', \Delta, \Delta''$ and ranks r', r, r''. We claim that $\Delta' \geq 0$. This is clear in case $r = 2$ from the remark made at the beginning of the proof. In case $r \geq 3$ we assume that $\Delta' < 0$ and we let $G \subseteq E'$ be a saturated subsheaf with $\xi_{G,E'} \in \hat{C}_{++}$. Then $G \subseteq E$ is saturated and using lemma 6 we get

$$|\xi_{G,E'}| = |\xi_{G,E} + \xi_{E',E'}| \geq |\xi_{G,E'}| + |\xi_{E',E'}| > |\xi_{E',E'}|$$

contradicting the maximality of $|\xi_{E',E'}|$. So we have indeed $\Delta' \geq 0$. Assume now, contrary to our assertion, that

$$\frac{\Delta}{r} < -r(r-1)\xi_{E',E}^2.$$

Then from Lemma 1 $\Delta' \geq 0$, $\xi_{E',E} \leq 0$ ([Mo1], 7.2) we get

$$\frac{\Delta''}{r''} \leq \frac{\Delta}{r} + \frac{r'r''}{r''} \xi_{E',E}^2 < \left(-r(r-1) + \frac{r'r''}{r''}\right) \xi_{E',E}^2$$

$$= -r^2 \frac{r'' - 1}{r''} \xi_{E',E} ^2 \leq 0,$$

hence $\Delta'' < 0$. By induction, there is $0 \neq G'' \subseteq E''$ saturated with $\xi_{G'',E''} \in \hat{C}_{++}(X)$ and

$$\xi_{G'',E''}^2 \geq \frac{-\Delta''}{r''(r'' - 1)} > \frac{r^2}{r''^2} \xi_{E',E}^2.$$

8
Clearly $\overline{G} := \ker(E \to E''/G'') \subset \overline{E}$ is saturated and from Lemma 5 the positivity of the coefficients appearing there and lemma 6 we get

$$|\xi_{E',E}| \geq \frac{r'(r'' - s)}{(r' + s)r''} |\xi_{E',E}^*| + \frac{s}{r'} |\xi_{E',E}^*|$$

$$> \frac{r'(r'' - s)}{(r' + s)r''} |\xi_{E',E}^*| + \frac{s}{r'} \frac{r}{r'' + s} |\xi_{E',E}^*|$$

$$= \left(\frac{r'(r'' - s) + rs}{r''(r' + s)} \right) |\xi_{E',E}^*| = |\xi_{E',E}^*|.$$

This again contradicts the maximality of $|\xi_{E',E}|$ and concludes the proof.

References

[GS1] H. Gillet, C. Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), no. 3, 473–543.

[GS2] H. Gillet, C. Soulé, Arithmetic analogs of the standard conjectures, Motives (Seattle, WA, 1991), 129–140, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.

[HL] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg and Sohn, Braunschweig, 1997.

[Mo1] A. Moriwaki, Inequality of Bogomolov-Gieseker type on arithmetic surfaces, Duke Math. J. 74 (1994), no. 3, 713–761.

[Mo2] A. Moriwaki, Bogomolov unstability on arithmetic surfaces, Math. Res. Lett. 1 (1994), no. 5, 601–611.

[So] C. Soulé, A vanishing theorem on arithmetic surfaces, Invent. Math. 116 (1994), no. 1-3, 577–599.

[SABK] C. Soulé, Lectures on Arakelov geometry, with the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer, Cambridge Studies in Advanced Mathematics, 33, Cambridge University Press, Cambridge, 1992.