Efficient optical pumping and high optical depth in a hollow-core photonic-crystal fibre for a broadband quantum memory

Michael R Sprague1,5, Duncan G England1,4, Amir Abdolvand2, Joshua Nunn1, Xian-Min Jin1, W Steven Kolthammer1, Marco Barbieri1, Bruno Rigal3, Patrick S Michelberger1, Tessa F M Champion1, Philip St J Russell2 and Ian A Walmsley1

1Clarendon Laboratory, Parks Road, University of Oxford, OX1 3PU Oxford, UK
2Max Planck Institute for the Science of Light, Guenther-Scharowsky Straße 1, D-91058 Erlangen, Germany
3École Polytechnique, Route de Saclay, 91120 Palaiseau, France
E-mail: michael.sprague@physics.ox.ac.uk

Abstract. The generation of large multiphoton quantum states—for applications in computing, metrology and simulation—requires a network of high-efficiency quantum memories capable of storing broadband pulses. Integrating these memories into a fibre offers a number of advantages towards realizing this goal: strong light–matter coupling at low powers, simplified alignment and compatibility with existing photonic architectures. Here, we introduce a large-core kagome-structured hollow-core fibre as a suitable platform for an integrated fibre-based quantum memory with a warm atomic vapour. We demonstrate, for the first time, efficient optical pumping in such a system, where 90±1\% of atoms are prepared in the ground state. We measure high optical depths (3\times104) and narrow homogeneous linewidths (6±2 MHz) that do not exhibit significant...
transit-time broadening, showing that we can prepare a Λ-level system in a pure state. Our results establish that kagome fibres are suitable for implementing a broadband, room-temperature quantum memory, as well as a range of nonlinear optical effects.

Contents

1. Introduction ... 2
2. Kagome-structured hollow-core fibre 3
3. Optical depth ... 4
 3.1. Light-induced atomic desorption 6
4. State preparation .. 6
 4.1. Optical pumping 6
 4.2. Saturated absorption spectroscopy 8
5. Conclusion and future directions 8
Acknowledgments ... 9
References .. 9

1. Introduction

Quantum memories are critical for the synchronization of probabilistic components in large-scale quantum networks [1] and have been implemented using a range of protocols and physical systems [2–11]. In the context of increasing the rate of multiphoton generation from probabilistic single-photon sources, a key metric is the product of the memory efficiency η and the time-bandwidth product (TBP) B, the ratio of the storage time to the pulse duration [12]. Recently, we demonstrated, using a warm atomic vapour of cesium, a far-off-resonant Raman memory capable of storing broadband (1.5 GHz), single-photon-level pulses [13–15] with a TBP $B = 3000$ and an efficiency $\eta = 30\%$, which would yield, for instance, a 1000-fold enhancement in the rate of generation of two synchronized single photons.

Towards this goal, a quantum memory in an integrated architecture is attractive for several reasons. Firstly, guided-wave optics can confine an optical mode to a small area over a distance longer than is possible with diffractive optics. The optical power needed to achieve strong light–matter coupling can therefore be reduced; in practice this could increase the attainable memory efficiency [13]. Secondly, an integrated platform can be easily interfaced with existing photonic architectures [16, 17] as well as easily scaled-up to build multiple units. Thirdly, an integrated system simplifies the spatial overlap of the various beams involved in the memory interaction. One possible approach is to use on-chip waveguides coupled to rare-earth doped solids cooled to several kelvin [18], miniature vapour cells [19] or evanescent ridge waveguides [20]. The latter two suffer from significant transit-time broadening due to the small optical modes and, in the last case, low optical depth. In this paper, we demonstrate that these two limitations can be overcome by using cesium atoms in kagome-structured hollow-core fibres, which have lower transmission losses than chip-based waveguides.
Figure 1. (a) Schematic of the high-vacuum system showing the ensheathed fibre, location of the cesium ampoule and the orientation of optical beams. The two viewports on the top of the apparatus were to monitor the amount of cesium in the vacuum chamber. The light-induced atomic desorption (LIAD) and optical pumping beam were combined with a spectral filter. (b) Scanning electron microscopy image of the kagome-structured hollow-core fibre with core diameter of 26 µm and pitch 13 µm. (c) Optical image of the fundamental mode at the face of the fibre.

2. Kagome-structured hollow-core fibre

Hollow-core photonic crystal fibres are divided into two main types: photonic bandgap fibres and kagome-structured photonic-crystal fibres. Photonic bandgap fibres (PBGFs) possess a true bandgap as their guidance mechanism, which prevents light from propagating in the fibre cladding and confines the light within the core [21]. Electromagnetically induced transparency [22, 23], four-wave mixing [24] and two-photon absorption [25] have been previously demonstrated with alkali atoms in PBGFs with a 6 µm diameter core. The cladding of kagome-structured photonic crystal fibres (see figure 1(b)) does not possess a photonic bandgap, but guides by a mechanism that, while still being elucidated [26–28], appears to be related to anti-resonant reflections [29]. Kagome fibres can easily be made with large core diameters (25–30 µm) and benefit from spectral guidance over several hundred nanometres at the cost of slightly higher transmission losses than PBGFs [28, 30]. A large core is important to facilitate loading atoms, as will be discussed in section 3, and to allow for sufficient time to store and retrieve a pulse of light, as will be discussed in section 4.

New Journal of Physics 15 (2013) 055013 (http://www.njp.org/)
To test its suitability for a quantum memory, we mounted a 20 cm length of kagome fibre in an ultra-high-vacuum system with two viewports to provide optical access for the coupling lenses mounted outside the vacuum system (see figure 1(a)). The fibre was mounted inside an aluminium tube that was connected, via Swagelok fittings, to two vacuum cubes mounted with viewports for optical access. The base pressure at the ion gauge was 5×10^{-10} Torr before introducing the cesium. A conservative estimate of the pressure inside the fibre is 1×10^{-6} Torr based on the fibre conductance and outgassing rate [31]. The core diameter of the fibre was $26 \, \mu m$, shown in figure 1(b), and the transmission loss of the fibre at a wavelength of $852 \, nm$ was measured to be $1 \, dB \, m^{-1}$. A glass ampoule, broken under vacuum using a flexible bellows, provided a source of cesium atoms for loading the fibre, as shown in figure 1(a). The coupling efficiency of the optical modes into the fibre was 65%. The collimated output of the kagome fibre coupled into a single-mode fibre with 67% efficiency, indicating the output was, to good approximation, single mode (see also figure 1(c)). For use as a quantum memory, it is essential to observe a high optical depth and efficient optical pumping in the kagome fibre, as will be detailed in the following sections.

3. Optical depth

The optical depth d, defined as the on-resonance absorption $d = -\ln(I/I_0)$ with no inhomogeneous broadening, quantifies the strength of the light–matter coupling in an ensemble-based memory. It is the parameter that defines the efficiency of the memory interaction for an equivalence-class of memory protocols [32, 33]. For a Raman memory, the coupling C^2 is given by $C^2 \approx d \left(\frac{4}{\delta} \right)^2$, where γ is the homogeneous linewidth, δ is the bandwidth of the pulse to be stored, Ω is the Rabi frequency of the control field and Δ is the excited-state detuning [34]. Efficient memory operation requires $C^2 \gg 1$. In the adiabatic regime, the Rabi frequency is much less than the detuning and, therefore, the condition for efficient memory becomes $d \gg (\frac{\delta}{\gamma})$. In the presence of inhomogeneous broadening, the effective optical depth d^* is reduced by the ratio of the inhomogeneous γ_i to the homogeneous broadening, giving the condition $d^* \gg (\frac{\delta}{\gamma})$. As an example, storing $1.5 \, GHz$ pulses in cesium at room temperature (cf [13, 14]) requires an effective optical depth $d^* \gg 4$.

The optical depth in the fibre was measured with a low-power, continuous-wave probe beam (10 nW) swept over the Doppler-broadened resonance. An avalanche photodiode detected the transmitted light. The normalized transmission spectrum for the ground-state hyperfine manifold F was fit to the function $T_F(f) = \exp(-d^* \sum S_{F,F'} \exp(-\frac{f-F'}{2\sigma}))$, where the summation is over the excited-state hyperfine manifolds F'. The Doppler width σ and the optical depth were free parameters and the relative transition strengths of the hyperfine manifolds $S_{F,F'}$ and the frequency spacing $(f_{F'} - f_F)$ of the excited-state hyperfine manifolds were fixed parameters. Simultaneously, we performed saturation absorption spectroscopy in a bulk vapour-cell in order to calibrate the frequency span of the sweep. The overall optical depth, including the atoms inside the fibre and in the vacuum system, was $d^* = 5.7 \pm 0.1$ for the $6^2S_{1/2}(F = 3)$ to $6^2P_{3/2}$ transition, as shown in figure 2(a), and $d^* = 5.7 \pm 0.3$ for the $6^2S_{1/2}(F = 4)$ to $6^2P_{3/2}$ transition, corresponding to approximately 10^7 atoms involved in the interaction. We estimated that $85 \pm 1\%$ of these atoms were confined to the core as opposed to residing between the viewport and fibre face, which were separated by 3 mm. The probe beam
Figure 2. (a) Transmission spectrum through the kagome fibre without LIAD, and heated to 363 K, showing measurement (thin black line) and fit (thick blue line). Arrows indicate location of hyperfine manifolds with the lengths are scaled relative to the transition strength. (b) Transmission spectra during the application of LIAD (80 mW beam at 780 nm wavelength). (c) Extracted effective optical depth d^* from figure (b), plotted as the logarithm base ten. The dashed line indicates the onset of LIAD. (d) Repeated application of the same 45 s LIAD pulse at 30 min intervals for 120 min.

was coupled to a mode confined to the solid silica cladding, avoiding any interaction with atoms confined in the fibre. The optical depth measured by this probe beam was then compared to the optical depth measured by a mode confined to the fibre core to determine the fraction of atoms in the fibre as seen by the probe beam. Care was taken to ensure that the optical power used in both instances was sufficiently low such that it did not saturate the atomic transition. The measured optical depth is an order of magnitude larger than obtained previous measurements in a PBGF [22, 30], and approaches the level needed for an efficient, broadband quantum memory in cesium.
3.1. Light-induced atomic desorption

The optical depth can be further increased through LIAD, a transient process where alkali atoms are ejected from a surface by interaction with light far-detuned from resonance [35]. This effect was previously observed with rubidium in uncoated PBGFs [36, 37]. Here, we study the evolution of the optical depth during repeated exposure to LIAD. The LIAD beam was derived from a 780 nm, continuous-wave diode laser amplified using a tapered amplifier, and we coupled 80 mW, counter-propagating, through the uncoated kagome fibre (see figure 1(a)). After application of the LIAD beam, the optical depth rapidly increased within 100 ms by two orders of magnitude and then slowly decreased over 1 min, even though the LIAD beam remained on. Figure 2(b) shows an example of how the transmission spectra changed as LIAD was applied. The effective optical depth is plotted in figure 2(c), and reached an estimated maximum \(d^* = 300 \pm 50 \). The fit Doppler width \(\sigma \) during LIAD corresponded to a temperature of 480 K (compared to the cell temperature of 363 K), although in this transient regime atoms may not have reached thermal equilibrium with the fibre [36]. We repeated the application of LIAD at 30 min intervals for 2 h, as shown in figure 2(d), and observed a third timescale; the peak optical depth decreased with each application of LIAD. Further measurements showed that a full recovery of the maximum optical depth required several hours of quiescence. This is qualitatively consistent with previous observations in a PBGF, where a phenomenological model was proposed involving the formation and plasmon-excitation of nano-clusters [36, 37]. While this timescale presents a limitation for the application of LIAD at these powers, we note that more modest increases in optical depth, sufficient for a quantum memory, can be achieved reproducibly at lower powers with a much shorter timescale, on the order of hundreds of microseconds [37]. To summarize this section, we have shown that an extremely high optical depths, \(d^* = 300 \) and \(d = 3 \times 10^4 \) can be reached with LIAD in kagome fibres, a necessary condition for an efficient quantum memory.

4. State preparation

4.1. Optical pumping

In a \(\Lambda \)-system quantum memory, the atoms must be efficiently prepared into the ground state by means of optical pumping. At room temperature, however, the two hyperfine ground-state manifolds of cesium are essentially equally populated; thermal excitations in the storage state can be read out during retrieval of the stored excitation via spontaneous Raman scattering, contributing noise to the memory process and reducing the fidelity of the memory. The number of signal photons to noise photons is determined by the optical pumping efficiency \(\eta_p \); the signal to noise ratio is then approximately \(1/(1 - \eta_p) \) [13]. In addition, in the limit of equal populations, the competing processes of absorption and emission reduce the memory efficiency; therefore, efficient optical pumping is critical to realize a quantum memory. In a confined geometry, such as in a hollow-core fibre, the atoms should ideally be optically pumped during the time taken for the atoms to traverse the optical mode in the fibre. Collisions with the fibre wall can, with some probability, thermalize the hyperfine-polarization of the atoms [38]. For cesium, the thermalization probability per collision is approximately one half, although this number is not well constrained [39]. The limiting timescale for optical pumping is the excited-state lifetime, since multiple spontaneous decay events are required to prepare all the atoms in the ground state. The transit time must, then,
Figure 3. (a) Optical pumping of the Doppler-broadened transition with a fixed-frequency pump at a Rabi frequency of 650 MHz. (b) The fraction of the population pumped into the ground hyperfine state \((F = 4)\) as a function of the Rabi frequency of the optical pumping beam. (Inset) Schematic of energy levels and optical beams for optical pumping, where \(|e⟩\) is the excited-state \(6^2P_{3/2}(F = 2, 3, 4, 5)\) D\(_2\) line, \(|g_1⟩\) is the \(6^2S_{1/2}(F = 3)\) manifold and \(|g_2⟩\) is the \(6^2S_{1/2}(F = 4)\) manifold.

We measured the optical pumping efficiency as a function of optical pumping power, parameterized by the Rabi frequency \(Ω_p = \frac{\vec{d} \cdot \vec{E}}{\hbar}\), where \(\vec{d}\) is the dipole moment and \(\vec{E}\) is the electric field of the pump beam. A weak probe beam (10 nW) was scanned in frequency over the \(6^2S_{1/2}(F = 3)\) to \(6^2P_{3/2}\) hyperfine manifold in order to measure the change in optical depth due to the counter-propagating optical pumping beam. The pump beam was derived from a separate diode laser and remained on for the duration of the measurement. The pump and probe beams had orthogonal linear polarizations. The frequency of the optical-pump laser was locked to the \(6^2S_{1/2}(F = 3)\) to \(6^2P_{3/2}(F' = 3)\) sub-Doppler peak and the linewidth was 1 MHz. Figure 3(a) shows the change in the transmission over the entire Doppler-broadened profile due to optical pumping, where the Rabi frequency of the pump is 650 MHz. From the change in optical depth, we extracted the optical pumping efficiency, that is the percentage of atoms in the ground state, which is plotted as a function of the Rabi frequency in figure 3(b). The maximum pumping efficiency we measured was \((90 \pm 1)\)% for \(Ω_p = 700\) MHz, which exceeded the Doppler-broadened linewidth of the transition (full-width half-maximum = 420 MHz). We measured the same optical pumping efficiency with the LIAD beam switched on. Figure 3(b) represents the first observation of efficient pumping in a hollow-core fibre with a warm alkali vapour; previous experiments with small-core PBGFs were limited to 55% optical pumping efficiency [24]. The signal-to-noise ratio, then, for \(η_p = 0.9\) is equal to 10, which is, therefore, favourable for single-photon-level operation.
Our results imply that the narrow-linewidth pump beam was sufficiently power-broadened to pump all velocity classes in the Doppler-broadened transition. This represents a significant advantage of the hollow-core geometry as compared to free-space systems: high Rabi frequencies can be achieved with relatively low, and easily accessible, powers (<1 mW). This is in contrast to previous experiments with bulk vapour cells [13, 14], where, instead of power broadening, the optical pumping required collisions with a buffer gas to sweep all the atoms through the velocity class resonant with the frequency of the laser diode.

4.2. Saturated absorption spectroscopy

Next, we examined the linewidth of the atoms confined within the core of the fibre. If the transit time were comparable to the excited-state lifetime, the homogeneous linewidth would be broadened to a width greater than the natural linewidth of the transition. We directly measured, with saturation absorption spectroscopy, the homogeneous linewidth from atoms confined within the core of the fibre. To resolve the excited-state hyperfine manifold, a weak probe beam (10 nW), coupled into the fibre, was scanned over the Doppler-broadened transition and a higher-power, counter-propagating pump beam, derived from the same laser, was launched into the fibre. The resulting spectrum is shown in figure 4(a). The width of the $^6\text{S}_1/2(F=3)$ to $^6\text{P}_3/2(F'=4)$ transition was measured as a function of the pump intensity I scaled to the experimentally determined saturation intensity I_{sat}. Outside the vacuum chamber, saturated absorption spectroscopy was performed in a bulk vapour cell to estimate the homogeneous linewidth in a parameter range when transit-time broadening is known to be negligible; this served as a verification to our analysis. The Doppler-free linewidths are plotted in figure 4(b), along with a weighted nonlinear least-squares fit according to the equation $\Gamma = \Gamma_0 \sqrt{1 + \frac{I}{I_{\text{sat}}}}$, where Γ is the power-broadened homogeneous linewidth and Γ_0 is the homogeneous linewidth. The pressure broadening due to cesium–cesium collisions is negligible at these atomic densities in both the fibre and reference cell [41]. The homogeneous linewidth in the fibre was 6 ± 2 MHz and the saturation power was 50 ± 20 nW, which agrees with the homogeneous linewidth in the vapour cell of 6.5 ± 0.6 MHz; both are consistent with the natural linewidth of 5.2 MHz [40]. There was no apparent transit-time broadening within the resolution of our measurement. In contrast, previous measurements done with commercially available hollow-core photonic-crystal fibre, with a 6 µm core, measured a homogeneous linewidth of 27 ± 3 MHz [42], indicating significant transit-time broadening. Furthermore, the saturation spectroscopy supports the optical pumping measurements in section 3, both of which show that the transit time exceeds the excited state lifetime in the large-core kagome fibre, a critical condition for initializing pure quantum states.

5. Conclusion and future directions

We have presented strong evidence that kagome-structured hollow-core fibres loaded with cesium vapour are suitable for implementing a quantum memory. We have observed, for the first time, efficient optical pumping in a hollow-core photonic crystal fibre, measured a homogeneous linewidth of 6 ± 2 MHz, the narrowest in such a system and demonstrated an extremely high optical depth of $d = 3 \times 10^4$. These represent key parameters for the initialization of a Raman quantum memory. The initial memory lifetime will be limited by the transit time of atoms...
Figure 4. (a) Saturation absorption spectroscopy of atoms inside the kagome fibre. The probe power was 10 nW (0.2 I_{sat}). CO$_{23}$ refers to the cross-over resonance of the $F' = 2$ and 3 excited-state hyperfine manifold. (b) Width of the ($F = 3$) to ($F' = 4$) transition as a function of intensity (power). Blue circles refer to measurements in the kagome fibre, and the blue solid line is the fit (see text). Grey triangles refer to measurements made in the bulk vapour cell, and the grey dashed line is the fit.

Within the fibre-confined mode (\sim100 ns). However, with a 300 ps pulse [13, 14], this represents a TBP of several hundred, making it already useful for enhancing the rate of multiphoton generation [12]. Further, the spin-coherence lifetime could potentially be extended by coating the fibre walls with a spin-preserving compound [22, 30], which may be especially promising for large-diameter hollow-core fibres such as kagome fibres. In addition, splicing the kagome fibre to a solid-core, single-mode fibre under vacuum [43] would enable the realization of an integrated, ‘plug-and-play’ quantum memory.

Acknowledgments

The authors thank Mike Tacon and his team at the departmental machine shop for their assistance, and Peter Mosley for his helpful input. This work was supported by the Royal Society, EU IP Q-ESSENCE (248095), EU ITN FASTQUAST (PITN-GA-2008-214962), EPSRC (EP/J000051/1), AFOSR EOARD (FA8655-09-1-3020), EU Marie-Curie Fellowship (PIIF-GA-2011-300820, XMJ), the Clarendon Fund (MRS) and St Edmund Hall (MRS).

References

[1] Sangouard N, Simon C, de Riedmatten H and Gisin N 2011 Quantum repeaters based on atomic ensembles and linear optics Rev. Mod. Phys. 83 33–80
[2] Julsgaard B, Sherson J, Ignacio J Cirac, Fiurasek J and Polzik E S 2004 Experimental demonstration of quantum memory for light Nature 432 482–6

New Journal of Physics 15 (2013) 055013 (http://www.njp.org/)
Choi K S, Deng H, Laurat J and Kimble H J 2008 Mapping photonic entanglement into and out of a quantum memory *Nature* **452** 67–71

Zhao R, Dudin Y O, Jenkins S D, Campbell C J, Matsukevich D N, Kennedy T A B and Kuzmich A 2009 Long-lived quantum memory *Nature Phys.* **5** 100–4

Hedges M P, Longdell J J, Li Y and Sellars M J 2010 Efficient quantum memory for light *Nature* **465** 1052–6

Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S and Rempe G 2011 A single-atom quantum memory *Nature* **473** 190–3

Hosseini M, Campbell G, Sparkes B M, Lam P K and Buchler B C 2011 Unconditional room-temperature quantum memory *Nature Phys.* **7** 794–8

Clausen C, Usmani I, Bussieres F, Sangouard N, Afzelius M, de Riedmatten H and Gisin N 2011 Quantum storage of photonic entanglement in a crystal *Nature* **469** 508–11

Zheng H et al 2011 Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion *Nature Photon.* **5** 628–32

Lee K C et al 2011 Entangling macroscopic diamonds at room temperature *Science* **334** 1253–6

Lee K C, Sussman B J, Sprague M R, Michelberger P, Reim K F, Langford N K, Nunn J, Bustard P J, Jaksch D and Walmsley I A 2012 Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond *Nature Photon.* **6** 41–4

Nunn J, Langford N K, Kolthammer W S, Champion T F M, Sprague M R, Michelberger P S, Jin X-M, England D G and Walmsley I A 2013 Enhancing multiphoton rates with quantum memories *Phys. Rev. Lett.* **110** 133601

Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D and Walmsley I A 2010 Towards high-speed optical quantum memories *Nature Photon.* **4** 218–21

Reim K F, Michelberger P, Lee K C, Nunn J, Langford N K and Walmsley I A 2011 Single-photon-level quantum memory at room temperature *Phys. Rev. Lett.* **107** 053603

Reim K F, Nunn J, Jin X-M, Michelberger P S, Champion T F M, England D G, Lee K C, Kolthammer W S, Langford N K and Walmsley I A 2012 Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout *Phys. Rev. Lett.* **108** 263602

Schreiber A, Gábris A, Rohde P P, Laiho K, Štefaňák M, Potoček V, Hamilton C, Jex I and Silberhorn C 2012 A 2d quantum walk simulation of two-particle dynamics *Science* **336** 55–8

Shadbolt P J, Verde M R, Peruzzo A, Politi A, Laing A, Lobino M, Matthews J C F, Thompson M G and O’Brien J L 2012 Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit *Nature Photon.* **6** 45–9

Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W and Tittel W 2011 Broadband waveguide quantum memory for entangled photons *Nature* **469** 512–5

Wu B, Hulbert J F, Lunt E J, Hurd K, Hawkins A R and Schmidt H 2010 Slow light on a chip via atomic quantum state control *Nature Photon.* **4** 776–9

Stern L, Desiatov B, Goykhman I and Levy U 2013 Nanoscale light–matter interactions in atomic cladding waveguides *Nature Commun.* **4** 1548

Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P St J, Roberts P J and Allan D C 1999 Single-mode photonic band gap guidance of light in air *Science* **285** 1537–9

Ghosh S, Bhagwat A R, Kyle Renshaw C, Goh S, Gaeta A L and Kirby B J 2006 Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber *Phys. Rev. Lett.* **97** 023603

Bajcsy M, Hofferberth S,バルック V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V and Lukin M D 2009 Efficient all-optical switching using slow light within a hollow fiber *Phys. Rev. Lett.* **102** 203902

Londero P, Venkataraman V, Bhagwat A R, Slepkov A D and Gaeta A L 2009 Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber *Phys. Rev. Lett.* **103** 043602

Saha K, Venkataraman V, Londero P and Gaeta A L 2011 Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber *Phys. Rev. A* **83** 033833

Benabid F, Knight J C, Antonopoulos G and Russell P St J 2002 Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber *Science* **298** 399–402

Shadbolt P J, Verde M R, Peruzzo A, Politi A, Laing A, Lobino M, Matthews J C F, Thompson M G and O’Brien J L 2012 Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit *Nature Photon.* **6** 45–9

Schreiber A, Gábris A, Rohde P P, Laiho K, Štefaňák M, Potoček V, Hamilton C, Jex I and Silberhorn C 2012 A 2d quantum walk simulation of two-particle dynamics *Science* **336** 55–8

Shadbolt P J, Verde M R, Peruzzo A, Politi A, Laing A, Lobino M, Matthews J C F, Thompson M G and O’Brien J L 2012 Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit *Nature Photon.* **6** 45–9

Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W and Tittel W 2011 Broadband waveguide quantum memory for entangled photons *Nature* **469** 512–5

Wu B, Hulbert J F, Lunt E J, Hurd K, Hawkins A R and Schmidt H 2010 Slow light on a chip via atomic quantum state control *Nature Photon.* **4** 776–9

Stern L, Desiatov B, Goykhman I and Levy U 2013 Nanoscale light–matter interactions in atomic cladding waveguides *Nature Commun.* **4** 1548

Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P St J, Roberts P J and Allan D C 1999 Single-mode photonic band gap guidance of light in air *Science* **285** 1537–9

Ghosh S, Bhagwat A R, Kyle Renshaw C, Goh S, Gaeta A L and Kirby B J 2006 Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber *Phys. Rev. Lett.* **97** 023603

Bajcsy M, Hofferberth S,バルック V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V and Lukin M D 2009 Efficient all-optical switching using slow light within a hollow fiber *Phys. Rev. Lett.* **102** 203902

Londero P, Venkataraman V, Bhagwat A R, Slepkov A D and Gaeta A L 2009 Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber *Phys. Rev. Lett.* **103** 043602

Saha K, Venkataraman V, Londero P and Gaeta A L 2011 Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber *Phys. Rev. A* **83** 033833

Benabid F, Knight J C, Antonopoulos G and Russell P St J 2002 Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber *Science* **298** 399–402
[27] Couny F, Benabid F and Light P S 2006 Large-pitch kagome-structured hollow-core photonic crystal fiber Opt. Lett. 31 3574–6
[28] Pearce G J, Wiederhecker G S, Poulton C G, Burger S and Russell P St J 2007 Models for guidance in kagome-structured hollow-core photonic crystal fibres Opt. Express 15 12680–5
[29] Benabid F and Roberts P J 2011 Linear and nonlinear optical properties of hollow core photonic crystal fiber J. Mod. Opt. 58 87–124
[30] Light P S, Benabid F, Couny F, Maric M and Luiten A N 2007 Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber Opt. Lett. 32 1323–5
[31] Chambers A 2010 Basic Vacuum Technology 2nd edn (Boca Raton, FL: CRC Press)
[32] Gorshkov A V, André A, Lukin M D and Sørensen A S 2007 Photon storage in λ-type optically dense atomic media: I. Cavity model Phys. Rev. A 76 033804
[33] Gorshkov A V, André A, Lukin M D and Sørensen A S 2007 Photon storage in λ-type optically dense atomic media: II. Free-space model Phys. Rev. A 76 033805
[34] Nunn J, Walmsley I A, Raymer M G, Surmacz K, Waldemann F C, Wang Z and Jaksch D 2007 Mapping broadband single-photon wave packets into an atomic memory Phys. Rev. A 75 011401
[35] Meucci M, Mariotti E, Bicchi P, Marinelli C and Moi L 1994 Light-induced atom desorption Europhys. Lett. 25 639
[36] Slepkov A D, Bhagwat A R, Venkataraman V, Londero P and Gaeta A L 2008 Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers Opt. Express 16 18976–83
[37] Bhagwat A R, Slepkov A D, Venkataraman V, Londero P and Gaeta A L 2009 On-demand all-optical generation of controlled Rb-vapor densities in photonic-band-gap fibers Phys. Rev. A 79 063809
[38] Haverkort J E M, Hoogeveen R W M and Woerdman J P 1987 Relaxation of sodium hyperfine populations in wall collisions Opt. Commun. 61 109–15
[39] de Freitas H N, Oria M and Chevrollier M 2002 Spectroscopy of cesium atoms adsorbing and desorbing at a dielectric surface Appl. Phys. B 75 703–9
[40] Steck D A 2010 Cesium D Line Data available at http://steck.us/alkalidata (revision 2.1.4, 23 December 2010)
[41] Jabbour Z J, Sagle J, Namiotka R K and Huennekens J 1995 Measurement of the self-broadening rate coefficients of the cesium resonance lines J. Quant. Spectrosc. Radiat. Transfer 54 767–78
[42] Slepkov A D, Bhagwat A R, Venkataraman V, Londero P and Gaeta A L 2010 Spectroscopy of Rb atoms in hollow-core fibers Phys. Rev. A 81 053825
[43] Benabid F, Couny F, Knight J C, Birks T A and Russell P St J 2005 Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres Nature 434 488–91

New Journal of Physics 15 (2013) 055013 (http://www.njp.org/)