The first human report of *Hyphopichia burtonii*, initially misdiagnosed as sterile peritonitis in a patient on peritoneal dialysis

Tamonwan Chamroensakchai a, Talernsak Kanjanabuch a,b,c,*, Wadsamon Saikong d, Worauma Panya d, Siriwan Thaweekote d, Somchai Eiam-Ong a, Vedprakash G. Hurdeal a,e, Kevin D. Hyde g

a Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
b Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
c CAPD Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
d Continuous Ambulatory Peritoneal Dialysis (CAPD) Clinic, Mukdahan Hospital, Mukdahan, 49000, Thailand
e Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
f Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
g School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand

* Corresponding author. Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
E-mail address: golfnephro@hotmail.com (T. Kanjanabuch).

https://doi.org/10.1016/j.mmcr.2021.06.005
Received 26 May 2021; Received in revised form 29 June 2021; Accepted 30 June 2021
Available online 13 July 2021

ARTICLE INFO

Keywords:
Fungal peritonitis
Sterile peritonitis
Hyphopichia burtonii
Peritoneal dialysis

ABSTRACT

This is the first human infection caused by *Hyphopichia burtonii*, resulting in peritonitis in a patient on peritoneal dialysis initially diagnosed as sterile peritonitis, resulting in delayed diagnosis and treatment. This pathogen posed a challenging diagnosis, causing low-grade peritonitis and difficulty to culture with standard bacterial broth. Moreover, automated platforms for pathogenic yeast identification could not specify the species, but broad-range PCR targeting rDNA followed by DNA sequencing successfully solved the etiology.

1. Introduction

Fungal peritonitis is a severe life-threatening condition, causing high morbidity and mortality in patients on peritoneal dialysis (PD), particularly in those with delayed diagnosis and treatment [1]. However, the clinical presentation of fungal peritonitis is sometimes challenging since it is nonspecific and can be confused with a plethora of other infectious or non-infectious conditions, such as sterile peritonitis. Sterile peritonitis (also termed chemical peritonitis) is described as peritoneal inflammation caused by non-infectious agents, may present sporadically or in clusters [2], such as an outbreak caused by peptidoglycan-contaminated icodextrin bags in 2002 [3]. Various chemical compounds (such antibiotics, dialysis solutions, bag contaminants, etc.) have been reported causing chemical peritonitis [4].

Hyphopichia burtonii, formerly known as *Pichia burtonii*, is a wide-spread spoilage yeast, causing food and beverage spoilage, such as “chalk molds” defects on partially baked bakery products, cured meat, and cookies [5,6]. *Hyphopichia burtonii* can cause cutaneous infection in Barbastelle bats [7]; however, human infection has not yet been reported. We present the first human infection caused by *H. burtonii* in a patient on PD resulting in peritonitis and describe the challenges encountered in diagnosing this infection. The organism was successfully identified using broad-range PCR targeting rDNA and DNA sequencing and was successfully treated with PD catheter removal and a 2-week course of antifungal therapy.

2. Case report

A 43-year-old non-diabetic Thai farmer on PD with a regimen of 4 exchanges/day with 2L of 1.5% dextrose since 2 years presented with cloudy PD effluent (PDE) on day 0. He reported non-compliance with the handwashing technique, particularly during a daytime exchange after returning from agricultural work. PDE examination revealed a leukocyte count of 121 cells/mm³ (55% neutrophils). Intraperitoneal cefazolin and ceftazidime (both 1 gm daily) was empirically started. PDE leukocyte counts were still elevated around 200 cells/mm³ on subsequent days, resulting in the second examination of PDE on day +3. Bacterial cultures of the PDE revealed no organisms on both examinations. The provisional diagnosis was sterile peritonitis, and the attending clinician decided to withdraw the empirical antibiotics after the patient completed a 14-day course. Two days later (day -16), the patient was revisited with cloudy PDE and mild abdominal pain. PDE cell count was 301 cells/mm³ (85%
Intraperitoneal cefazolin and ceftazidime were resumed, with the third negative PDE culture on day +19. With meticulous inspection, small white spots were observed inside the PD catheter lumen (Fig. 1A), raising a suspicion of fungal colonization. The PD catheter was removed (day +21), and 2-week oral fluconazole was started at a dosage of 200 mg daily. The patient was transferred to temporary hemodialysis for 1 month. The PD catheter and PDE were submitted to a central microbiology laboratory to identify the microorganism. A new PD catheter was inserted on day +67, and the PD was resumed without relapsing peritonitis within 12 months after the diagnosis of infection. The specimens were inoculated onto several media, including broths, blood agar, Sabouraud Dextrose agar (SDA), trypticase soy agar (TSA) plates, and incubated at 25 °C and 35 °C. A spotted swab from the PD catheter displayed higher and faster colony growth than the PDE at 25 °C, but faint growth could be seen in both specimens at 37 °C. On day +35, the colonies obtained were cream-colored mucoid with a radiating fringe at the periphery (Fig. 1B), while on day +42, the surface of the colonies became arid (Fig. 1C). Wet mounts of the colonies demonstrated partly conjugating yeast cells, branching filamentous hyphae, and large quantities of small (3–5 μm), oval to rounded spores located inside and outside the asci, which attached to the fungal hyphae laterally on fine, shortened denticles (Fig. 1D–E). Duplicated examinations on the VITEK-2 yeast identification system failed to identify the yeast pathogen, giving a numerical number code of 6752144065301370 (‘Unidentified organism’). Ancillary assessment with VITEK-MS (IVD Knowledgebase v.3.0) (bioMérieux, Marcy l’ Etoile, France) using Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) technology also proved to be unsuccessful to identify the pathogen. Broad-range polymerase chain reaction (PCR) targeting the internal transcribed spacer (ITS1/ITS4 primer) [8] and large-subunit region (LSU primer) [9] of ribosomal DNA (rDNA) and DNA sequencing were employed. A blast search of the sequence data against the nucleotide database in GenBank revealed a similarity of 93.64% (577/577, accession number MH532416.1) and 100% (2028/2028, accession number NG054819.1) to H. burtonii in ITS and LSU rDNA gene regions respectively (https://blast.ncbi.nlm.nih.gov). The phylogenetic tree for the identified organism is shown in Table 1. Using the Epsilometer test (E-test) (bioMérieux, Marcy l’ Etoile, France), the pathogen was highly susceptible to amphotericin B, voriconazole, fluconazole, itraconazole, and caspofungin with minimal inhibitory concentrations (MICs) of 0.023, 0.032, 4.0, 0.023, and 0.75 μg/ml, respectively.

3. Discussion

We describe the first human infection, peritonitis, caused by H. burtonii in a patient on PD. The diagnosis was delayed due to the fact that standard microbiological assays initially didn’t reveal the fungal pathogen, and identification of this rare yeast was not retrieved by automated fungal identification platforms using growth-based technology and mass spectrophotometry.

The prevalence of fungal peritonitis varies from approximately 1%–24% of all peritonitis episodes in people undergoing PD, ranging from
or at a higher temperature than 30°C diagnosed based on clinical suspicion, a cloudy appearance of the PDE, acquired by ingestion of contaminated food as no gastrointestinal contamination since the patient did not comply to the aseptic technique while performing exchange. Proper hand hygiene is crucial and should be periodically reemphasized to prevent peritonitis. Moreover, this genus has not been found in humans gut, albeit reports demonstrating that it can be found in animal feces, on the chicken egg shell, and in food products. It is unlikely that the infection was acquired by ingestion of contaminated food as no gastrointestinal symptoms were present. Identification of yeast to the species level is essential to be informed about the antifungal susceptibility, and may provide clues to how the infection was introduced due to non-compliance with aseptic practices. The source of infection was probably associated with contamination of the dialysate bag.

Table 1

Candida sibiriana NRRL-Y-17782	0.08
Metahypopichia lactica CBS 13022 T	96
Dunsleya ostianus CBS 8502 T	98
Hypopichia paragoti CBS 13913 T	97
Hypopichia gori CBS 8531 T	98
Hypopichia rhagi CBS 4237 T	97
Hypopichia hemii CBS 6139 T	97
Hypopichia pseudohemii CBS 9998 T	96
Candida sp EU12802	98
Candida sp BG001-721-025A1-2	96
Hypopichia pseudohemii CBS 9998 T	96
Hypopichia lactica CBS 13022 T	96
Hypopichia burtonii NRRL Y-1953	96

The phylogeny tree of the identified organism is consistent with *H. burtonii*. Yeast. Appropriate media should be selected to detect fungal pathogens, and incubation at different temperature conditions are recommended (room temperature and 35–37°C) [19].

The 2016 International Society for Peritoneal Dialysis (ISPD) Peritonitis Guidelines strongly recommend removing the PD catheter immediately after fungi are identified in PDE of patients with fungal peritonitis, followed by antifungal therapy for 2 weeks. No specific recommendations are made regarding the type and dose of antifungal medications to be administered [20]. However, these recommendations are based on studies of Candida peritonitis. Ram et al. [21] demonstrated that the mortality rate increases exponentially with the delayed onset of the catheter removal, 19% (1 day), 67% (1 week), and 94% (1 month). Attempting to treat fungal peritonitis with the catheter in situ might leave an ongoing source of infection and impair the effectiveness of antifungals. Prompt removal of the patient’s PD catheter and administering of an antifungal agent successfully eradicated the infection, resulting in a clinical cure. The *H. burtonii* was susceptible to all common antifungal agents, and the infection was successfully treated with oral fluconazole for 2 weeks after PD catheter removal.

In conclusion, we reported the first human infection caused by *H. burtonii* resulting in fungal peritonitis in a patient on PD. Diagnosis was delayed due to challenges to diagnose this rare yeast. Most likely, the infection was introduced due to non-compliance with aseptic handling techniques around the PD process.

Declaration of competing interest

T.K. has received consultancy fees from VISTERA as a country investigator and current recipient of the National Research Council of Thailand and received speaker honoraria from Astra Zeneca and Baxter Healthcare.

Acknowledgments

We would like to acknowledge physicians, nurses, technicians, and social workers who are not listed as authors in this work and took care of the patient in the Mukdahan Hospital and the patient samples at the KCMH microbiological laboratory. This study was supported by the National Research Council of Thailand, Thailand (6/2562).

References

[1] A.C. Nadeau-Fredette, J.M. Bargman, Characteristics and outcomes of fungal peritonitis in a modern North American cohort, Perit. Dial. Int. 35 (1) (2015) 76–84.

[2] C. Freitas, A. Rodrigues, M.J. Carvalho, A. Cabrita, Chemical peritonitis in a patient treated with icodextrin and intraperitoneal vancomycin, Nefrologia 31 (5) (2011) 625–626.

[3] E. Goffin, Aseptic peritonitis and icodextrin, Perit. Dial. Int. 26 (2006) 314–316.

[4] I. Teitelbaum, Cloudy peritoneal dialysate: it’s not always infection, Contrib. Nephrol. 150 (2006) 187–194.

[5] A.C. Lee, Y. Fujio, Microflora of banh men, a fermentation starter from Vietnam, World J. Microbiol. Biotechnol. 15 (1999) 57–62.

[6] N. Simoncini, D. Rotelli, R. Virgili, S. Quintavalla, Dynamics and characterization of yeasts during ripening of typical Italian dry-cured ham, Food Microbiol. 24 (2007) 577–584.

[7] V.R. Simpson, A.M. Borman, R.I. Fox, F. Mathews, Cutaneus mycosis in a barbastelle bat (Barbastella barbastellus) caused by *Hypopichia burtonii*, J. Vet. Diagn. Invest. 25 (2013) 551–554.

[8] T.J. White, T. Bruns, S.J. Lee, J. Taylor, Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in: M.A. Innis, D.H. Gelfand, J. Sninsky, T.J. White (Eds.), PCR Protocols: A Guide to Methods and Applications, first ed., Academic Press, San Diego, CA, 1990, pp. 315–321.

[9] K. O’Donnell, Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete *Fusarium sambucinum* (Gibberella pulicaris), Curr. Genet. 22 (3) (1992) 222–226.

[10] N. Prasad, A. Gupta, Fungal peritonitis in peritoneal dialysis patients, Perit. Dial. Int. 25 (2005) 207–222.
[12] C. Michel, L. Courdavault, R. Al Khayat, B. Viron, P. Roux, F. Mignon, Fungal peritonitis in patients on peritoneal dialysis, Am. J. Nephrol. 14 (1994) 113–120.

[13] A.Y. Wang, A.W. Yu, P.K. Li, P.K. Lam, C.B. Leung, K.N. Lai, et al., Factors predicting outcome of fungal peritonitis in peritoneal dialysis: analysis of a 9-year experience of fungal peritonitis in a single center, Am. J. Kidney Dis. 36 (2000) 1183–1192.

[14] S.J. Goldie, L. Kierman-Troidle, C. Torres, N. Gorban-Brennan, D. Dunne, A. S. Kliger, et al., Fungal peritonitis in a large chronic peritoneal dialysis population: a report of 55 episodes, Am. J. Kidney Dis. 28 (1996) 86–91.

[15] S.O. Suh, M. Blackwell, C.P. Kurtzman, M.A. Lachance, Phylogenetics of Saccharomycetales, the ascomycete yeasts, Mycologia 98 (6) (2006) 1006–1017.

[16] A. Burgain, M. Bensoussan, P. Dantigny, Validation of a predictive model for the growth of chalk yeasts on bread, Int. J. Food Microbiol. 204 (2015) 47–54.

[17] C. Cafarchia, R. Iatta, F. Danesi, A. Camarda, G. Capelli, D. Otranto, Yeasts isolated from cloacal swabs, feces, and eggs of laying hens, Med. Mycol. 57 (3) (2019) 340–345.

[18] S.R. Lockhart, B.R. Jackson, S. Vallabhaneni, L. Ostrosky-Zeichner, P.G. Pappas, T. Chiller, Thinking beyond the common Candida species: need for species-level identification of Candida due to the emergence of multidrug-resistant Candida auris, J. Clin. Microbiol. 55 (2017) 3324–3327.

[19] T. Kanjanabuch, T. Chatsuwan, N. Udomsantisuk, T. Nopsopon, P. Paapatanakul, G. Halue, et al., Association of local peritoneal dialysis (PD) unit sampling and microbiology laboratory culture practices with the ability to identify causative pathogens in PD-associated peritonitis: results of a national survey, Kidney Int. Rep. 6 (4) (2021) 1118–1129.

[20] P.K. Li, C.C. Szeto, B. Piraino, J. de Arteaga, S. Fan, A.E. Figueroedo, D.N. Fish, et al., ISPD peritonitis recommendations: 2016 update on prevention and treatment, Perit. Dial. Int. 36 (2016) 481–508.

[21] R. Ram, G. Swarnalatha, P. Neela, K.D. Murty, Fungal peritonitis in patients on continuous ambulatory peritoneal dialysis: a single-centre experience in India, Nephron Clin. Pract. 110 (2008) e207–e212.