Condensate Heating by Atomic Losses

Jacek Dziarmaga and Krzysztof Sacha

Intytut Fizyki Uniwersytetu Jagiellońskiego, ul. Reymonta 4, 30-059 Kraków, Poland

(Dated: February 15, 2003)

Atomic Bose-Einstein condensate is heated by atomic losses. Predicted depletion ranges from 1% for a uniform 3D condensate to around 10% for a quasi-1D condensate in a harmonic trap.

PACS 03.75-b, 03.75.Gg, 03.75.Hh

Heating by atomic losses.— An ideal Bose-Einstein condensate (BEC) is a state where all bosons occupy the same single particle state \(\phi_0 \). So far the atomic BEC is the closest to this ideal \[1\]. However, even the atomic BEC is not perfect because atoms are depleted from \(\phi_0 \) by atom-atom interactions (quantum depletion) and thermal fluctuations (thermal depletion). Moreover, atomic condensates last only for tens of seconds before atomic losses empty the trap. This process is dominated by 3-body losses, where 3 atoms collide to form a bi-atomic molecule and an atom with large kinetic energy, and then both of them escape from the trap. There are also 1-body losses, where individual atoms are kicked out from the trap by external heating agents, see e.g. Ref. [2]. While the 1-body losses can, at least in principle, be minimized, so far the more intrinsic 3-body losses have not been eliminated.

Atomic losses from a trap can be modeled by repeated application of the annihilation operator \(\hat{\psi}(\vec{x}) \). An ideal condensate \(|N : \phi_0\rangle \) is a “fixed point” of the annihilation operator: action of \(\hat{\psi}(\vec{x}) \) neither depletes an ideal condensate nor changes its wave function \(\hat{\psi}(\vec{x})|N : \phi_0\rangle = \sqrt{N}\phi_0(\vec{x})|N - 1 : \phi_0\rangle \). A destructive measurement of atomic positions in a trap can also be described by repeated application of \(\hat{\psi}(\vec{x}) \). In Refs. [3] it was shown on a few examples that such a repeated annihilation can gradually increase a condensed fraction of atoms remaining in a trap. Annihilation is driving the remaining atoms toward an ideal condensate. This phenomenon is a foundation for a quite popular believe that “atomic losses improve a condensate”. This is not a sound foundation.

In the destructive measurement all annihilations happen at the same time, or in a very short measurement time. Hamiltonian of atoms has no time to do anything before all atoms are annihilated. In contrast, in a typical experiment it is the Hamiltonian that is much faster than atomic losses. An ideal condensate \(|N : \phi_0\rangle \) is not an eigenstate of the Hamiltonian: atom-atom interactions are depleting atoms from the condensate wave function \(\phi_0 \). On the other hand, eigenstates of the Hamiltonian \(\hat{H} \) are not “fixed points” of the annihilation operator: \(\hat{\psi}(\vec{x}) \) applied to an eigenstate of \(\hat{H} \) gives a non-stationary state because \(\hat{\psi}(\vec{x}) \) does not commute with \(\hat{H} \), \([\hat{\psi}(\vec{x}), \hat{H}] \neq 0\). A competition between the Hamiltonian depleting a condensate and the atomic losses increasing the condensed fraction leads to a state that is neither an ideal condensate nor the N-body ground state. A condensate is heated by atomic losses — this phenomenon will be more quantified in the following.

In Ref. [4] Timmermans demonstrated that heating of fermionic atoms by atomic losses is a serious obstacle on the way to atomic superconductors. In the case of fermions the mechanism is simple: atomic losses create holes in the Fermi sea. In the case of bosons the heating is a conceptually more subtle effect. One has to realize the interplay between the losses and the Hamiltonian to see that losses are in fact heating a condensate. However, as we will see below, a conceptually subtle effect is not necessarily a quantitatively subtle effect. It is a serious and rather fundamental limitation on quantum coherence of atomic BEC.

Master equation.— The non-unitary (due to atomic losses) evolution of trapped atoms is described by a master equation \[5\]

\[
\frac{d\rho}{dt} = \frac{1}{i\hbar}[\hat{H}, \rho] + \sum_i \gamma_i \int d^3x \, \mathcal{D}[\hat{\psi}^i(\vec{x})] \rho.
\]

Here \(\hat{H} \) is a Hamiltonian of trapped atoms

\[
\hat{H} = \int d^3x \left[\frac{\hbar^2}{2m} \nabla^2 \hat{\psi}^i \nabla \hat{\psi} + V(\vec{x}) \hat{\psi}^i \hat{\psi} + \frac{g}{2} \hat{\psi}^i \hat{\psi}^i \hat{\psi}^j \hat{\psi}^j \right],
\]

with \(g = 4\pi\hbar^2 a/m \), where \(a \) is the s-wave scattering length. \(\mathcal{D}[\hat{\psi}^i(\vec{x})] \) is a Lindblad superoperator \[6\]

\[
\mathcal{D}[\hat{a}^\dagger \rho \hat{a}] \equiv \hat{a} \rho \hat{a}^\dagger - \frac{1}{2} \hat{a}^\dagger \hat{a} \rho - \frac{1}{2} \rho \hat{a}^\dagger \hat{a},
\]

describing l-body losses.

Bogoliubov theory.— We assume that almost all \(N \) atoms occupy a common condensate wave function \(\phi_0(\vec{x}) \), which solves a stationary Gross-Pitaevskii equation \[7\]

\[
\mu \phi_0 = -\frac{\hbar^2}{2m} \nabla^2 \phi_0 + V(\vec{x}) \phi_0 + N g |\phi_0|^2 \phi_0.
\]

The annihilation operator can be split into a condensed part and a non-condensed part which is then approximated by an expansion in Bogoliubov modes \[8\],

\[
\hat{\psi}(\vec{x}) \approx N^{1/2} \phi_0(\vec{x}) + \delta \hat{\psi}(\vec{x}) \approx N^{1/2} \phi_0(\vec{x}) + \sum_{m=1}^{\infty} \left[\hat{b}_m u_m(\vec{x}) + \hat{b}_m^\dagger v_m(\vec{x}) \right].
\]
Here \hat{b}'s are bosonic quasiparticle annihilation operators, and the wave functions u_m and v_m satisfy Bogoliubov-de Gennes equations [3].

The operator of a number of atoms depleted from ϕ_0 is $d\hat{N} = \int d^3x \, \delta \hat{\psi}^\dagger \delta \hat{\psi}$. In the Bogoliubov vacuum state $|0_b\rangle$ without any quasiparticles, $\hat{b}_m |0_b\rangle = 0$, the number of depleted atoms is

$$d\hat{N}^{(0)} = \sum_m \int d^3x \, |u_m|^2 = \sum_m dN_m^{(0)}. \quad (6)$$

More generally, in a state with exactly n_m quasiparticles in a mode m the number of depleted atoms is

$$d\hat{N} = \sum_m \left[dN_m^{(0)} + \left(1 + 2dN_m^{(0)} \right) n_m \right]. \quad (7)$$

Here we used $\int d^3x \, (|u_m|^2 - |v_m|^2) = 1$.

Master equation in the quasiparticle representation. — Bogoliubov expansion [3] can be used to rewrite the master equation (11) in the quasiparticle representation. Expansion to second order in \hat{b}'s in Eqs. (11) results in a Bogoliubov Hamiltonian [3], which is a sum of harmonic oscillators $\hat{H} \approx \sum_n \hbar \omega_n \hat{b}^\dagger_n \hat{b}_n$, and an approximate master equation

$$\frac{d\hat{\rho}}{dt} = \sum_m -i\hbar \omega_m [\hat{b}_m^\dagger \hat{b}_m, \hat{\rho}] + \sum_{ml} \lambda_{ml} \alpha_{lm} N_l^{-1} \left[(1 + n_{lm}) D[\hat{b}_m] \rho + n_{lm} D[\hat{b}_m^\dagger] \rho \right]. \quad (8)$$

The coefficients are defined by integrals

$$\int d^3x \, |\phi_0|^{2l-2} |u_m|^2 = \alpha_{lm} (1 + n_{lm}), \quad (9)$$

$$\int d^3x \, |\phi_0|^{2l-2} |v_m|^2 = \alpha_{lm} n_{lm}. \quad (10)$$

In addition to small depletion, derivation of the master equation (8) requires the rotating wave approximation (RWA). In the RWA we neglect all terms of the form $\hat{b} \hat{b}^\dagger$, $\hat{b}^\dagger \hat{b}$, or $\hat{b}_m \hat{b}_n^\dagger$ for $m \neq n$, but keep all terms like $\hat{b}_m \hat{b}_n$ or $\hat{b}_m^\dagger \hat{b}_n^\dagger$. The RWA is accurate when the Hamiltonian evolution is much faster than atomic losses, or more precisely $\omega_m \gg \sum_l \lambda_{lm} \alpha_{lm} N_l^{-1} n_{lm}$. This condition is satisfied in all present day experiments.

A thermal state. — Due to atomic losses the coefficients in (5) are not constant. However, we fix them (for a while) and analyze a stationary state of the resulting master equation. Later on we will see that such an analysis allows us to predict a lower bound for a stationary depletion of a condensate caused by atomic losses.

A remarkable thing is that the master equation (8), with the coefficients fixed, can be recognized to describe a set of harmonic oscillators (numbered by m) coupled to external heat reservoirs (numbered by l). Every oscillator relaxes to a thermal state. When atomic losses are dominated by only one of the channels l, then average numbers of quasiparticles in the thermal states are

$$n_m = \text{Tr} \hat{b}_m^\dagger \hat{b}_m \rho (t \to \infty) = n_{lm}. \quad (11)$$

When many channels l are involved, then the averages n_m can be obtained from equations

$$\frac{1 + n_m}{n_m} = \frac{\sum_l \lambda_{lm} \alpha_{lm} N_l^{-1} (1 + n_{lm})}{\sum_l \lambda_{lm} \alpha_{lm} N_l^{-1} n_{lm}}. \quad (12)$$

Every oscillator m can be assigned to an inverse temperature β_m which follows from a textbook formula $n_m = (e^{\beta_m \hbar \omega_m} - 1)^{-1}$. The thermal state is

$$\rho (t \to \infty) = \otimes_m e^{- \beta_m \hbar \omega_m \hat{b}_m^\dagger \hat{b}_m}. \quad (13)$$

A thermal state of a uniform BEC. — For a 3D condensate with $\phi_0(\vec{x}) = \text{const}$, the $n_{lm} = dN_m^{(0)}$ are independent of l, compare Eqs. (11) and (13). In a uniform condensate of density ρ_c a phonon of momentum $\hbar k$ has energy $\hbar \omega_k$

$$\hbar \omega_k = \sqrt{\frac{\hbar^2 k^2}{2m} \left(\frac{\hbar^2 k^2}{2m} + 2g\rho_c \right) + \frac{k^2 \xi^2}{m}} \approx \frac{c}{\hbar k} \sqrt{\frac{m}{\hbar}}. \quad (14)$$

Here $c = \sqrt{g\rho_c/m}$ is a velocity of sound. In the thermal state (13) there are on average $\hbar \omega_k$

$$n_k = \int d^3x \, |v_k|^2 = \frac{k^2 \xi^2}{2m} + g\rho_c \frac{1}{2} \frac{1}{\xi^2} \frac{c}{\hbar k} \approx \frac{c}{\hbar k} \frac{1}{2 \hbar k} \quad (15)$$

phonons of momentum $\hbar k$. With the general formula (7) we can calculate a fraction of depleted atoms in the thermal state $d = d\hat{N}/N = \frac{1}{4\pi \rho_c a^3}$ for a typical condensate density of $\rho_c = 10^{20} m^{-3}$ we find depletions $d_{2Na} = 0.44\%$ and $d_{37Rb} = 1.55\%$ at the scattering lengths of $a = 2.5$ nm and $a = 5.8$ nm respectively.

The depletion is dominated by a contribution from small k where the number of quasiparticles n_k in Eq. (13) is divergent. A remarkable thing is that for small k the equipartition of energy $n_k \hbar \omega_k = \beta^{-1}$ yields the same temperature T for all phonons. The temperature is $T_{2Na} = 76$ nK and $T_{37Rb} = 37$ nK.

These estimates are valid for a 3D uniform condensate. In less than 3D the infrared divergence $n_k \sim k^{-1}$ results in a divergent depleted fraction d. Anticipating a much larger but finite d we now turn to effectively one-dimensional harmonic traps.

A thermal state of a BEC in a 1D harmonic trap. — In a sufficiently anisotropic trap $V(x,y,z) = \frac{\hbar}{2m} \omega^2 [x^2 + \kappa^2 (y^2 + z^2)]$ with $\kappa \gg 1$ the $y - z$ state of all atoms is frozen in the ground state. The condensate wave function $\phi_0(x)$ solves a 1D Gross-Pitaevskii equation [4] with an effective $g_{1D} = g/\xi^2$, where ξ is the size of the ground state in the $y - z$ plane. We solved the 1D Bogoliubov-de Gennes equations [3] to get u_m and
TABLE I: Lower bound for the stationary depletion due to atomic losses for parameters corresponding to quasi-1D \cite{9} and 1D \cite{10} experiments. In the calculations the values of $g_{1D}/\hbar \omega$ have been estimated to be 7500 (where $N = 1.5 \cdot 10^6$) and 500 ($N = 10^3$), respectively.

	1-body losses	3-body losses
quasi-1D	6%	10%
1D	2%	4%

v_m for two sets of parameters relevant to the quasi-1D \cite{9} and strictly 1D \cite{10} experiments. Relative depletions

d = \frac{dN}{N}$ corresponding to the thermal state \cite{19} are listed in Table I. These values give lower bounds for the
stationary depletions in these experiments. The 10% depletion in the 3-body losses for the quasi-1D condensate
is actually close to the thermal cloud fraction estimated in the Hannover experiment \cite{9}. In other words, this
experiment is close to the minimal stationary depletion set by atomic losses.

Relaxation time.— It takes time to reach the thermal state \cite{19}. To simplify notation we assume here
that losses are dominated by only one of the channels l. Time evolution of the average number of quasiparticles $n_m(t) = \text{Tr} \rho(t) \hat{b}_m \hat{b}_m^\dagger$ directly follows from the master equation \cite{8} and satisfies a differential equation

$$\frac{d}{dt} n_m(t) = -\gamma l \alpha_l m N^{-1}(t)[n_m(t) - n_{lm}] \ . \quad (16)$$

$n_m(t)$ is relaxing toward its equilibrium value n_{lm}. Eq. (16) has to be compared with the decay law for the
total number of atoms $N(t) = \text{Tr} \rho(t) \int d^3x \hat{\psi}^\dagger \hat{\psi}$

$$\frac{d}{dt} N(t) = -\gamma l \alpha_l N(t) \ . \quad (17)$$

Here $\alpha_l = \int d^3x |\phi_l|^2$. This equation is valid for small depletion, when almost all atoms occupy $\phi_l(x)$.

As dominant Bogoliubov modes are localized on the condensate, we can approximate $\alpha_l m \approx \alpha_l$. Consequently the
relaxation and decay rates in Eqs. (16) and (17) are comparable, $d n_{lm}/n_m \approx d N/N$. As the equilibrium value
n_{lm} in Eq. (16) depends on the time-dependent $N(t)$ and the rates are comparable, $n_m(t)$ will never quite reach the
instantaneous equilibrium value $n_{lm}(t)$. In the following we will consider 1- and 3-body losses in the two modes
(double well) toy model to see that the estimated equilibrium depletion, we have considered so far, is a lower
bound for a stationary depletion.

Double well model.— The model is described by Hubbard Hamiltonian

$$\hat{H}_2 = -\Omega (\hat{a}_1^\dagger \hat{a}_2 + \hat{a}_2^\dagger \hat{a}_1) + \frac{1}{2}(\hat{a}_1^\dagger \hat{a}_1 \hat{a}_1^\dagger \hat{a}_2 + \hat{a}_2^\dagger \hat{a}_2 \hat{a}_2^\dagger \hat{a}_1) \ . \quad (18)$$

Here we use rescaled dimensionless units such that $\hbar = 1$.

The master equation (1) becomes

$$\frac{d\hat{\rho}}{dt} = \frac{i}{\hbar} [\hat{H}_2, \hat{\rho}] + \gamma_l \sum_{j=1,2} D[\hat{a}_j^\dagger \hat{a}_j] \hat{\rho} \ . \quad (19)$$

We assume that l-body losses dominate.

The condensate wavefunction $\phi_0 = (1, 1)/\sqrt{2}$ and $\phi_1 = (1, -1)/\sqrt{2}$ span the single particle Hilbert space. There
is only one Bogoliubov mode with $u_1 = X \phi_1/\sqrt{X^2 - 1}$ and $v_1 = -\phi_1/\sqrt{X^2 - 1}$, where $X = (1 + \frac{4O}{N}) + \sqrt{(1 + \frac{4O}{N})^2 - 1}$. As ϕ_0 is “uniform”, the equilibrium number of quasiparticles is independent of l,

$$n_{l1} = dN_{l1}(0) = \nu_1 v_1 = \sqrt{\frac{N}{32\Omega}} - \frac{1}{2} + O(N^{-1/2}) \ . \quad (20)$$

Depletion in the equilibrium thermal state \cite{18} is

$$d = \frac{dN(0)}{N} + \left(1 + 2dN(0)\right)n_{l1} = \frac{1}{16\Omega} + O(N^{-1}) \ . \quad (21)$$

1-body losses.— We begin with $l = 1$ and a condensate initially in the Bogoliubov vacuum state, i.e. the
number of quasiparticles $n_{l1}(0) = 0$. A formal solution of Eq. (20), where $\alpha_l = 1$, is $n_{l1}(t) = \gamma_1 \int_0^t d\tau \text{exp}[-\gamma_1 (t - \tau)] n_{l1}(\tau)$. $N(t) = N_0 e^{-\gamma_1 t}$, which solves Eq. (17), and Eqs. (20) give (time-dependent) depletion

$$d^{l=1}(t) = \frac{1 - \sqrt{f}}{8\Omega} + \frac{f}{\sqrt{32\Omega} N} + O(N^{-1}) \ . \quad (22)$$

Here $f = N(t)/N_0$ is a fraction of atoms remaining in the trap. When $f \to 0$ (the system is forgetting about the
initial conditions) the depletion (22) becomes roughly twice the equilibrium value (21). At small f the system is
reaching a stationary state with twice the equilibrium depletion.

When we initially prepare the system with $n_{l1}(0) = 2\sqrt{\frac{N_0}{32\Omega}} - \frac{1}{2}$, instead of the rather arbitrary $n_{l1}(0) = 0$,
then the depletion is stationary — it does not depend on f (and through f on the initial N_0),

$$d^{l=1}_{\text{stat}} = \frac{1}{8\Omega} + O(N^{-1}) \ . \quad (23)$$

This stationary depletion (23) is roughly twice the equilibrium value (21).

3-body losses.— When 3-body losses dominate, the system gets much closer to the equilibrium than in the
life of 1-body losses. For a condensate initially in the Bogoliubov vacuum state, $n_{l1}(0) = 0$, a similar procedure
as for $l = 1$ leads to a depletion

$$d^{l=3}(t) = \frac{3(1 - f^{5/2})}{40\Omega} + \frac{f^3}{\sqrt{32\Omega} N} + O(N^{-1}) \ . \quad (24)$$

When $f \to 0$ $d^{l=3}(t)$ is approaching a stationary value

$$d^{l=3}_{\text{stat}} = \frac{3}{40\Omega} + O(N^{-1}) \ , \quad (25)$$
that is only 1.2 higher than the equilibrium value \[21\]. Starting with the initial \[n_1(0) = \frac{6}{\pi} \sqrt{\frac{N_0}{32\pi}} - \frac{1}{2}\] results in a depletion independent of \(f\) (and thus also on \(N_0\)) and equal to the stationary value \[20\].

We conclude that our estimates of depletion based on the equilibrium values are lower bounds for stationary depletions.

Numerical experiment.— We verified the predictions \[22\] of the Bogoliubov theory in numerical simulations. For a large \(N_0\) a direct solution of the master equation \[19\] is not the most efficient. It is better to replace the deterministic \(\rho(t)\) by an ensemble of stochastic pure states \(|\Psi(t)\rangle\), such that \(\rho(t)\) is reproduced as an average over many stochastic realizations, \([\Psi(t)]|\Psi(t)\rangle = \rho(t)\). A stochastic “unraveling” of the master equation \[19\] is given by Ito stochastic nonlinear Schrödinger equation \[11\],

\[
\begin{align*}
 d|\Psi\rangle &= -idt\hat{H}_2|\Psi\rangle - \frac{d\gamma_l}{2} \sum_{j=1,2} \left((\hat{a}^+_j)^\dagger \hat{d}^+_j \hat{d}_j - (\hat{a}_j)^\dagger \hat{a}_j \right) |\Psi\rangle \\
 &+ \sum_{j=1,2} dN_j(t) \left[\frac{\hat{d}_j|\Psi\rangle}{\sqrt{\langle (\hat{a}_j)^\dagger \hat{a}_j \rangle}} - |\Psi\rangle \right],
\end{align*}
\]

where \(\langle \hat{A} \rangle \equiv \langle \Psi|\hat{A}|\Psi\rangle\), \(dN_j(t) \in \{0,1\}\) is a stochastic process \([dN_j(t) = 1\) when \(l\) atoms escape from a well \(j\) between \(t\) and \(t + dt\), and 0 otherwise\]. A probability that \(l\) atoms will escape between \(t\) and \(t + dt\) is \(dt \langle (\hat{a}_j)^\dagger \hat{a}_j \rangle\).

In Fig.1 we compare the predictions \[22\] with corresponding averages over many stochastic realizations. As they compare quite well, the Bogoliubov theory \[8\] passes the test on the double-well model.

Conclusion.— A condensate is heated by atomic losses. The depletion of the system approaches a stationary value that ranges from around 1% for a uniform 3D condensate to around 10% for a quasi-1D harmonic trap. As atomic losses cannot be easily eliminated, this depletion is a serious limitation on quantum coherence of atomic BEC. We only note here that outcoupling in the atom laser is a non-markovian process of atomic losses. Its influence on laser coherence will be addressed elsewhere.

Acknowledgements.— We are grateful to Zbyszek Karkuszewski for discussions. This research was supported in part by KBN grants 2 P03B 092 23 (JD) and 5 P03B 088 21 (KS).

[1] M.H. Anderson et al., Science 269, 198 (1995); K. Davis et al., Phys.Rev.Lett. 75, 3969 (1995).

[2] Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics “Enrico Fermi”, course 140, edited by M. Inguscio, S. Stringari, and C. Wieman (IOS Press, Amsterdam, 1999).

[3] J. Javanainen et al., Phys. Rev. Lett. 76, 161 (1996); Y. Castin et al., Phys. Rev. A 55, 4330 (1997); J. Dziarmaga et al., cond-mat/0212392; J. Phys. B (in press).

[4] E. Timmermans, Phys. Rev. Lett. 87, 240403 (2001).

[5] D. A. R. Dalvit, J. Dziarmaga, and R. Onofrio, Phys. Rev. A 65, 033620 (2002); ibid. 65, 053604 (2002); M. W. Jack, arXiv:cond-mat/0208319.

[6] G. Lindblad, Comm. Math. Phys. 40, 119 (1976).

[7] L.P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)]; E.P. Gross, Nuovo Cimento 20, 454 (1961); F. Dalfovo et al., Rev. Mod. Phys. 71, 463 (1999).

[8] Ph. Nozieres and D. Pines, The Theory of Quantum Liquids, (Addison Wesley, New York, 1990), Vol.II; A.L. Fetter, Ann. Phys. (N.Y.), 70, 67 (1972).

[9] S. Burger et al., Phys. Rev. Lett. 83, 5198 (1999).

[10] A. Görlitz et al., Phys. Rev. Lett. 87, 130402 (2001).

[11] H. Carmichael, Lecture Notes in Physics, An Open Systems Approach to Quantum Optics, (Springer-Verlag Berlin Heidelberg 1993).