Environmental Research Letters

LETTER

Significantly lower summer minimum temperature warming trend on the southern Tibetan Plateau than over the Eurasian continent since the Industrial Revolution

Chunming Shi1,2,*, Kaicun Wang1, Cheng Sun*, Yuandong Zhang*, Yanyi He*, Xiaoxu Wu1,*, Cong Gao*, Guocan Wu* and Lifu Shu*

1 State Key Laboratory of Earth Surface Processes and Resource Ecology College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, People’s Republic of China
2 Key Laboratory of Forest Ecology and Environment, State Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, People’s Republic of China

E-mail: chunming.shi@gmail.com and wuxx@bnu.edu.cn

Keywords: Tibetan Plateau, warming trend, palaeoclimate, minimum temperature, CMIP5, tree ring

Supplementary material for this article is available online

Abstract

Summer temperature dominates environmental degradation and water resource availability on the Tibetan Plateau (TP), affecting glacier melting, permafrost degradation, desertification and streamflow, etc. Extending summer temperature records back before the instrumental period is fundamentally important for climatic and environmental studies over long timescales. By pooling 39 tree-ring width records from the TP that show significant \((P < 0.05)\) correlations with the summer (June–August) minimum temperature (MinT) of the nearest grid point, we reconstructed a 366-year summer MinT record for the southern TP (STP). Reconstructed and instrumental data are highly coherent within the 1950–2010 calibration interval \((R^2 = 0.50, P < 0.001)\). The reconstruction captures major temperature anomalies, such as the coldest interval of the 1810s–1820s and unprecedented warming since the 1990s. We found that the linear trends of the instrumental and reconstructed STP summer MinTs are significantly lower than those for the larger Eurasian continent over the periods 1950–2010 and 1850–1950, respectively. The lower warming rate of STP summer MinT since 1850 could be due to increased evaporative cooling, and the absence of warming enhancement factors such as snow-albedo and energy-absorbing aerosols in summer. The reconstructed summer warming rate for the STP appears to be significantly overestimated by the ensemble mean of the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulation.

1. Introduction

Rapid warming has been observed in the annual mean temperature of the Tibetan Plateau (TP), which is faster than that in low-latitude regions of the Northern Hemisphere and Eurasian continent (Yao et al 2000). This difference has mainly been attributed to a rapid winter–spring temperature increase (Liu and Chen 2000, Liu et al 2009). Nevertheless, summer temperature is the key factor dominating glacier melting and permafrost degradation (Li et al 2008, Xue et al 2009, Kang et al 2010, Yang et al 2010). The summer temperature of the TP modulates Asian summer monsoon precipitation (Li and Yanai 1996, Ueda and Yasunari 1998, Wang et al 2008) and the run-off of rivers originating in the TP, and therefore has significant impact on water resources over the TP and in densely populated downstream East Asia (Piao et al 2010). In addition, summer warming has led to enhanced greenness of the southern Tibetan Plateau (STP) (Shen et al 2016), and increased desertification over the northeast of the TP (Xue et al 2009, Xie et al 2010).
The temporal variabilities of the TP temperature are seasonally asymmetrical (Xu et al. 2017), are sensitive to external climatic forcings including greenhouse gases, volcanic eruptions and energy-absorbing aerosols (Duan et al. 2006, Ramanathan et al. 2007, Lau et al. 2010, Duan et al. 2018), and are susceptible to internal variability embedded in the climate system at annual to multi-decadal timescales (Wang et al. 2014, Shi et al. 2015). Moreover, the warming rates of the TP are spatially inhomogeneous in northern and southern regions (Yang et al. 2014), with generally faster warming rates observed at higher elevations (Liu et al. 2009, Qin et al. 2009). Since most meteoro logical stations began operation in the 1950s (Liu and Chen 2000), little is known about whether the observed rapid annual mean temperature increase over the TP also holds true for the summer season prior to instrumental observation. Therefore, temperature records from further back in the past are vital for understanding climate variabilities and subsequent environmental changes over long timescales.

Palaeoclimate proxies are widely used to extend climate records back before the beginning of the instrumental records. Among the existing temperature reconstructions for the TP, most use a single record, or a few records, at local or small regional scales, and the results can be strongly biased to the local non-climate signals such as variations in local topography and species competition intensity (Shi et al. 2015). This situation can be improved by pooling a larger number of records covering a wider area. In this study, we assemble a dataset compositing 39 tree-ring width (TRW) records spread across the STP (defined as 27–35°N, 77–103°E), all of which show significant correlations with the summer (June–August) minimum temperature (MinT) of the nearest grid point. By combining the TRW series into one record, we reconstruct a summer MinT history for the STP over the past 366 years. The early-stage warming trend from the Industrial Revolution (here defined as 1850) to 1950 is calculated and compared with the trends derived from the PAGES 2K reconstruction for the Eurasian continent and the ensemble mean of the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations over the STP.

2. Materials and methods

2.1. TRW, instrumental, PAGES 2K and CMIP5 historical simulation data

We assembled a dataset combining TRW data from 159 forest sites across the STP, of which 121 were downloaded from the International Tree Ring Data Bank (ITRDB) and the rest were from our and our contributors’ datasets. All TRW measurements were detrended and standardized into chronologies using signal-free regional curve standardization with the CRUST software (Melvin and Briffa 2014a, 2014b) in order to remove age-related growth effects and preserve maximum climatic signal. Available off-pith data from the ITRDB and our datasets were used to estimate the pith offset during the detrending process. The portions of the chronologies with expressed population signal (EPS) values greater than 0.85 were included in the synthesis (Wigley et al. 1984). Each chronology was linearly regressed over the maximum period overlapping with the 1950–2010 Climate Research Unit (CRU) TS4.03 (0.5° resolution) summer MinT of the closest grid point (Harris et al. 2014). Thirty-nine TRW chronologies showing significant ($P < 0.05$) and positive correlations with local summer MinTs were included in the analysis (figure 1). Among them, the first 23 listed in supplementary table 1, available online at stacks.iop.org/ERL/14/124033/mtmedia, were obtained from the ITRDB, with only five chronologies overlapping with the PAGES 2K project (marked with stars in supplementary table 1). The rest are from combined published datasets from summer temperature reconstructions on the TP (Fan et al. 2009, Fan et al. 2010, Li et al. 2011, Shi et al. 2015) and forest growth response to climate changes (Guo et al. 2018, Shi et al. 2019). These are identified according to the first authors of the data source references.

To compare the summer warming trends on the STP with those of larger regions and model simulations, summer MinT reconstructions for the Asian and Eurasian continents from the PAGES 2K project (Ahmed et al. 2013), and individual historical summer MinT simulations for the STP region from 47 models used for CMIP5 (Taylor et al. 2012), were obtained; outputs of several runs of the same model were averaged (the number of runs for each model is listed in supplementary table 2). Then, linear trends of summer MinTs derived from CMIP5 and PAGES 2K over the periods 1860–1950 and 1850–1950 were calculated, respectively, (some CMIP5 models started in 1860) and were compared with that of the STP summer MinT reconstruction using the Kruskal–Wallis test, a nonparametric (distribution free) test assessing for significant differences on a continuous dependent variable by a categorical independent variable.

2.2. Climate reconstruction

All 39 chronologies were Z-score normalized and averaged into a single record. The interval from 1645–2010 when replication was greater than ten chronologies (equivalent to an EPS value of 0.90) was considered for further analysis. The new record (spanning 1645–2010), termed the STP TRW record, was calibrated with the annual mean CRUTS4.03 STP summer MinT over the period 1950–2010 using linear regression. The validity of the model was tested using leave-one-out verification (Michaelsen 1987), the main indicators of which include the reduction of error statistic (RE), coefficient of efficiency (CE),
product means test (PMT) and sign test (ST). In order to remove the possible trend effect on correlation results, \(R^2 \) was also calculated using linearly detrended STP TRW records and the CRU STP summer MinT.

2.3. Reconstruction error

The CRU summer MinT and STP TRW records were randomly divided into two halves within the period 1950–2010. Each half was used to calculate a linear calibration model and validated with the other half, yielding 61 error values (the difference between validation data and calibration model prediction). This process was repeated 1000 times, and the 2.5 and 97.5 percentiles of the total error population were defined as the 95% confidence interval of the summer MinT reconstruction (Carre et al 2012).

3. Results

The mean correlation coefficient among the 39 chronologies is 0.46 \((P < 0.001) \) over 1850–1949, suggesting a large common variance embedded in these data. The \(R^2 \) value between the STP TRW record and the STP average summer MinT is 0.50 \((P < 0.001) \) for 1950–2010 (figure 2(a)), and \(R^2 \) is 0.41 \((P < 0.001) \) if both series are linearly detrended (figure 2(b)). RE, CE, PMT, and ST yield values of 0.46, 0.48, 4.62 and 11.08, respectively, for the leave-one-out verification test, suggesting that the STP TRW record is a robust proxy for past summer MinTs. Once these tests were passed, the equation \(\text{MinT}_{\text{JJA}} = 0.48 \times \text{chronology} + 4.88 \) (in °C), where the subscript JJA refers to June–August, derived from the calibration of undetrended data within the period 1950–2010 (figure 2(a)), was used to reconstruct the STP summer MinTs for 1645–2010.

The most obvious feature of the reconstruction is an abrupt increase in summer MinT after about the 1970s, leading to a dramatic rise in temperature, with the warmest interval of the reconstruction in the 1990s–2000s (figure 3). The coldest period is found in the 1810s–1820s (figure 3), with the coldest year in 1816, one year after the 1815 Tambora volcanic eruption (figure 3(b)).

The linear trend for the CRU STP summer MinTs for 1950–2010 is 1.03 ± 0.50 × 10^{-2} °C yr^{-1}, which is significantly \((P < 0.05) \) lower than the trends for Asia, Eurasia and the land surface of the Northern Hemisphere over the same interval (figure 4, 1.83 ± 0.18, 1.87 ± 0.20 and 1.87 ± 0.17 × 10^{-2} °C yr^{-1}, respectively).

The linear trend of the STP summer MinT reconstruction from 1850–1950 is 2.3 ± 0.38 × 10^{-3} °C yr^{-1} (figure 5(a)), significantly \((P < 0.01) \) lower than those derived from Asian and Eurasian reconstructions by the PAGES 2K project (figures 5(b) and (c), 5.0 ± 0.82 and 5.1 ± 0.71 × 10^{-3} °C yr^{-1}, respectively). The warming rate of our reconstruction is significantly \((P < 0.05) \) lower than that of the ensemble mean CMIP5 historical simulations over the STP between 1860–1950 (figure 5(d), 3.2 ± 0.43 versus...
Figure 2. Linear calibration of the STP TRW records and CRU TS4.03 summer MinTs averaged over the STP. Panel (a): raw STP TRW records and summer MinTs; and panel (b): the same as panel (a) but using linearly detrended STP TRW records and summer MinTs.

Figure 3. Instrumental (CRU TS4.03, blue line) and reconstructed (black line) STP summer MinTs. Grey shading is the 95% confidence interval for the summer MinT reconstruction. The horizontal green line is the number of chronologies combined for reconstruction, and the thick red line is the 30-year loess smoothing.
Figure 4. The linear trends of CRU TS4.03 summer MinT anomalies over the STP and Asian and Eurasian continents, and the land surface of the Northern Hemisphere (NH) within 1950–2010. The vertical lines are the 95% confidence intervals of the trends. The difference of the linear trends was verified using the Kruskal–Wallis test.

Figure 5. Linear trends of summer MinT anomalies in 1850–1950 (1860–1950 for CMIP5 ensemble mean) and their 95% significance intervals. Panel (a): our reconstruction for the STP; panel (b): PAGES 2K reconstruction for Asia; panel (c): PAGES 2K reconstruction for Eurasia; and panel (d): mean CMIP5 historical simulation for the STP. The difference of the linear trends was verified using the Kruskal–Wallis test.
4.08 ± 0.41 × 10⁻³ °C yr⁻¹, respectively, as some CMIP5 historical outputs are available from 1860).

4. Discussion and conclusions

The 1809 unknown and subsequent 1815 Tambora volcanic eruptions, which caused large radiative forcings over the globe (−12.01 and −17.20 W m⁻², respectively) (Sigl et al 2015), led to 40 years of summer cooling in North America, unprecedented over the last 1100 years, and were the coldest decades of the last millennium in the Eurasian continent and the Northern Hemisphere (Briffa et al 1998, Ahmed et al 2013). The abrupt volcanic cooling of the 1810s–1820s recorded in our STP summer MinT reconstruction was evident in other summer temperature reconstructions over the STP (Liang et al 2008, Shi et al 2015), the Himalayas in Nepal (Cook et al 2003), and the entire TP (Duan et al 2018). However, the volcanic cooling signal in the post-1850s period that mixed with a significant anthropogenic warming trend (figure 5(a)), was challenging to identify. It is worth noticing that the amplitude of abrupt instrumental cooling in 1975 was largely underestimated in our reconstruction. An insensitive or even absent response to large and abrupt cold stress was widely reported for TRW-based studies (Mann et al 2012, D’Arrigo et al 2013, Stoffel et al 2015). So far, consensus has not been reached about the causes (Anchukaitis et al 2012, Mann et al 2012), while maximum wood density was proved to be a good substitute for TRW for studying abrupt cooling events (D’Arrigo et al 2013, Stoffel et al 2015, Duan et al 2018).

The warmest period of the 1990s–2000s in our reconstruction was also reported in temperature reconstructions for North India, the Northern Hemisphere and the entire globe (D’Arrigo et al 2006, Mann et al 2008, Ahmed et al 2013, Shah et al 2019), which coincided with the observed rapid glacier melting, permafrost degradation and consequent lake-level increase across the TP (Yao et al 2007, Kang et al 2010, Vu et al 2012, Yao et al 2012, Zhang et al 2013), and the accelerating Greenland and Antarctica ice sheet and high mountain glacier melting outside the TP (Gardner 2013, Luthcke et al 2013).

Greater warming rates were observed subsequently at higher elevations and this effect, termed ‘elevation-dependent warming’ (Qin et al 2009, Wang et al 2014, Pepin et al 2015), was mainly attributed to faster MinT warming at higher elevations as compared to the maximum (Diaz and Bradley 1997), Easterling et al 1997, Ding et al 2018). Elevation-dependent warming rates were also recorded for the TP MinT, characterized by a seasonally asymmetrical pattern with the highest warming rate in winter–spring and the lowest in summer (Liu et al 2006, Wang et al 2018). The observed maximum winter–spring MinT warming on the TP was mainly induced by largest snow cover and albedo reduction (Liu et al 2009, Minder et al 2018), further enhanced by black carbon deposition on the snow surface (Ming et al 2008, Ramanathan and Carmichael 2008, Rahul et al 2014) and by energy-absorbing aerosols most prominent in spring (Ramanathan et al 2007).

By combining 240 tree-ring records, the PAGES 2K project has reconstructed summer MinTs for the Eurasian continent over the past millennium. With only five TRW chronologies overlapping, our reconstruction is independent of the PAGES 2K project. Similar to the lower STP summer MinT trend found in the instrumental data (figure 4), the warming rate of reconstructed summer STP MinTs over the period 1850–1950 is also significantly lower than those for the Asian and Eurasian continents (figures 5(a)–(c)). The mean changes of CRU summer MinT from 1950–2010 showed that STP warming is minor, and the largest warming occurred in central-western and high latitudes of the northeastern Eurasian continent (supplementary figure 1).

The lower warming rate of STP summer MinT could be due to the absent snow-albedo effect, and black carbon deposition on snow at elevations with extensive forests on the STP in the summer season. Energy-absorbing aerosols, accounting for 50% of the warming amplitude over the STP (Ramanathan and Carmichael 2008) are also insignificant in summer (Lau et al 2010). The summer warming can be further attenuated by evaporative cooling in response to warming-induced enhancements in vegetative growth and evapotranspiration (Shen et al 2015). The large summer MinT warming at high latitudes shown in supplementary figure 1, partly dominating the Eurasian continent summer MinT trend, could be largely due to the arctic amplification effect through the greatest sea ice reduction in boreal summer (Screen and Simmonds 2010), and to persistent warming of the North Atlantic Ocean (Zhang et al 2007, Delworth et al 2016).

The smaller trend of our reconstruction as compared to the ensemble mean of CMIP5 simulations suggests that most CMIP5 models have overestimated the historical warming rate of the STP summer MinT, and implies the warming attenuating factors in summer should be implemented in these models.

Acknowledgments

This study was supported by the National Key Research and Development Plan (2017YFD0600106), the National Natural Science Foundation of China (91647202, 31971667, 31600354, 31570645, 31770490), and the Fundamental Research Funds for the Central Universities from Beijing Forestry University.
Data availability statement

The CRU climate data are available at http://www.cru.uea.ac.uk/data; CMIP5 historical simulation data can be downloaded from KNMI climate explorer at http://climexp.knmi.nl/selectfield_cmip5.cgi; some of the TRW data are available at the ITRDB https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring); and the rest of the TRW data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID iDs

Chunming Shi https://orcid.org/0000-0002-6609-7058
Cheng Sun https://orcid.org/0000-0003-0474-7593
Xiaoxu Wu https://orcid.org/0000-0003-1884-4095

References

Ahmed M, Anchukaitis K J, Asrat A, Bogaard H P, Braida M, Buckley B M, Buntgen U, Chase B M, Christie D A and Cook E R 2013 Continental-scale temperature variability during the past two millennia Nat. Geosci. 6 339–46
Anchukaitis K J, Breitenmoser P, Briffa K R, Buchwal A, Buentgen U, Cook E R, D’Arrigo R D, Esper J, Evans M N and Frank D 2012 Tree rings and volcanic cooling Nat. Geosci. 5 836–7
Briffa K R, Jones P D, Schweingruber F H and Osborn T J 1998 Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years Nature 393 450–5
Carre M, Sachs J P, Wallace J M and Favier C 2012 Exploring errors in paleoclimatic proxy reconstructions using Monte Carlo simulations: paleotemperatures from mollusk and coral geochemistry Clim. Past 8 433–50
Cook E R, Krusic P J and Jones P D 2003 Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal Int. J. Climatol. 23 707–32
D’Arrigo R, Wilson R and Jacoby G 2006 On the long-term context for late twentieth century warming J. Geophys. Res. 111 D03103
D’Arrigo R, Wilson R and Anchukaitis K J 2013 Volcanic cooling signal in tree ring temperature records for the past millennium J. Geophys. Res. 118 9008–10
Delworth T L, Zeng F, Vecchi G A, Yang X, Zhang L and Zhang R 2016 The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere Nat. Geosci. 9 509–12
Diaz H F and Bradley R S 1997 Temperature variations during the last century at high elevation sites Clim. Change 36 253–79
Ding J, Cao L, Zhang Y and Zhu F 2018 Monthly and annual temperature extremes and their changes on the Tibetan Plateau and its surroundings during 1963–2015 Sci. Rep. 8 11840
Duan J, L Li, Ma Z, Esper J, Buentgen U, Xoplaki E, Zhang D, Wang L, Yin H and Luterbacher J 2018 Summer cooling driven by large volcanic eruptions over the Tibetan Plateau J. Clim. 31 9869–79
Duan A, Wu G, Zhang Q and Liu Y 2006 New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions Clim. Sci. Bull. 51 1396–400
Easterling D R, Horton B, Jones P D, Peterson T C, Karl T R, Parker D E, Salinger M J, Razuvaev V, Plummer N and Jamason P 1997 Maximum and minimum temperature trends for the globe Science 277 364–7
Fan Z, Braüning A, Cao K and Zhou S 2009 Growth–climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China Forest Ecol. Manage. 258 326–33
Fan Z, Braüning A, Tian Q, Yang B and Cao K 2010 Tree-ring recorded May–August temperature variations since AD 1585 in the Gaoligong Mountains, southeastern Tibetan Plateau Palaeogeogr. Palaeoclimatol. Palaeoecol. 296 94–102
Gardner A S 2013 A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009 Science 340 852–7
Guo M, Zhang Y, Wang X, Gu F and Liu S 2018 The responses of dominant tree species to climate warming at the treeline on the eastern edge of the Tibetan Plateau Forest Ecol. Manage. 425 21–6
Harris I, Jones P D, Osborn T J and Lister D H 2014 Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset Int. J. Climatol. 34 623–42
Kang S, Xu Y, You Q, Fluegel W, Pepin N and Yao T 2010 Review of climate and cryospheric change in the Tibetan Plateau Environ. Res. Lett. 5 015101
Lau W K M, Kim M, Kim K and Lee W 2010 Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols Environ. Res. Lett. 5 025204
Liang E, Shao X and Qin N 2008 Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau Glob. Planet. Change 61 313–20
Li C F and Yanai M 1996 The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast J. Clim. 9 538–75
Li Z, Shi C M, Liu Y, Zhang J, Zhang Q and Ma K 2011 Summer mean temperature variation from 1710–2005 inferred from tree-ring data of the Baimang Snow Mountains, northwestern Yunnan, China Clim. Res. 47 207–18
Li X, Cheng G, Jin H, Kang E, Che T, Jin R, Wu L, Nan Z, Wang J and Shen Y 2008 Cryospheric change in China Glob. Planet. Change 62 210–18
Liu X, Cheng Z, Yan L and Yin Z 2009 Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings Glob. Planet. Change 68 164–74
Liu X, Yin Z, Shao X and Qin N 2006 Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003 J. Geophys. Res. 111 D19109
Liu X D and Chen B D 2000 Climatic warming in the Tibetan Plateau during recent decades Int. J. Climatol. 20 1729–42
Luthcke S B, Sabaka T J, Loomis B D, Arendt A A, McCarthy J J and Plummer N 2011 Ice evolution from an iterated GRACE global mascon solution J. Glaciol. 57 613–631
Mann M E, Fuentes J D and Rutherford S 2012 Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures Nat. Geosci. 5 202–5
Mann M E, Zhang Z, Hughes M K, Bradley R S, Miller S K, Rutherford S and Ni F 2008 Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia Proc. Natl Acad. Sci. USA 105 13252–7
Melvin T M and Briffa K R 2014a CRUST: Software for the implementation of Regional Chronology Standardisation: I. Signal-Free RCS Dendrochronologia 32 7–20
Melvin T M and Briffa K R 2014b CRUST: Software for the implementation of Regional Chronology Standardisation: II. Further RCS options and recommendations Dendrochronologia 32 343–56
Michaelson J 1987 Cross-validation in statistical climate forecast models J. Appl. Meteorol. Climatol. 26 1589–600
Minder J R, Letcher T W and Liu C 2018 The character and causes of elevation-dependent warming in high-resolution simulations of Rocky Mountain climate change J. Clim. 31 2093–113
Ming J, Cachier H, Xiao C, Qin D, Kang S, Hou S and Xu J 2008 Black carbon record based on a shallow Himalayan ice core and its climatic implications Atmos. Chem. Phys. 8 1343–52
Pepin N, Bradley R S, Diaz H F, Baraaer M, Caceres E B, Forsythe N, Fowler H, Greenwood G, Hashmi M Z and Liu X D 2015 Elevation-dependent warming in mountain regions of the world Nat. Clim. Change 5 424–30
Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y and Ding Y 2010 The impacts of climate change on water resources and agriculture in China Nature 467 43–51
Qin J, Yang K, Liang S L and Guo X F 2009 The altitudinal dependence of recent rapid warming over the Tibetan Plateau Clim. Change 97 321–7
Rahul P B C, Bhowar R L, Ayantika D C, Panicker A S, Safai P D, Tharaprabhakaran V, Padmakumari B and Raju M P 2014 Double blanket effect caused by two layers of black carbon aerosols exacerbating warming in the Brahmaputra River Valley Sci. Rep. 4 3670
Ramanathan V and Carmichael G 2008 Global and regional climate changes due to black carbon Nat. Geosci. 1 221–7
Ramanathan V, Ramana M V, Roberts G, Kim D, Corrigan C, Rahul P R C, Bhawar R L, Ayantika D C, Panicker A S, Safai P D, Pepin N, Bradley R S, Diaz H F, Baraaer M, Caceres E B, Forsythe N, Fowler H, Greenwood G, Hashmi M Z and Liu X D 2015 Elevation-dependent warming in mountain regions of the world Nat. Clim. Change 5 424–30
Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y and Ding Y 2010 The impacts of climate change on water resources and agriculture in China Nature 467 43–51
Qin J, Yang K, Liang S L and Guo X F 2009 The altitudinal dependence of recent rapid warming over the Tibetan Plateau Clim. Change 97 321–7
Rahul P B C, Bhowar R L, Ayantika D C, Panicker A S, Safai P D, Tharaprabhakaran V, Padmakumari B and Raju M P 2014 Double blanket effect caused by two layers of black carbon aerosols exacerbating warming in the Brahmaputra River Valley Sci. Rep. 4 3670
Ramanathan V and Carmichael G 2008 Global and regional climate changes due to black carbon Nat. Geosci. 1 221–7
Ramanathan V, Ramana M V, Roberts G, Kim D, Corrigan C, Chung C and Winker D 2007 Warming trends in Asia amplified by brown cloud solar absorption Nature 448 575–8
Shah S K, Pandey U, Mehrotra N, Wiles G C and Chandra R 2019 A winter temperature reconstruction for the Lidder Valley, Kashmir, Northwest Himalaya based on tree-rings of Pinus wallichiana Clim. Dynam. 53 4059–75
Shen M, Piao S, Chen X, An S, Fu Y H, Wang S, Cong N and Janssens I A 2016 Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau Glob. Change Biol. 22 3057–66
Shen M, Piao S, Leong S, Zhou L, Zeng Z, Ciais P, Chen D, Huang M, Jin C and Li L Z X 2015 Evaporative cooling over the Tibetan Plateau induced by vegetation growth Proc. Natl Acad. Sci. USA 112 9299–304
Shi C, Mason-Delmonte V, Daux V, Li Z, Carre M and Moore J C 2015 Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from Alpine treeline dendrochronology Clim. Dynam. 45 1367–80
Shi C, Shen M, Wu X, Cheng X, Li X, Fan T, Li Z, Zhang Y, Fan Z and Shi F 2019 Growth response of alpine pine forests to a warmer and drier climate on the southeastern Tibetan Plateau Agric. Forest Meteorol. 264 73–9
Sigl M, Winstup M, McConnell J R, Welten K C, Plunkett G, Ludlow F, Buentgen U, Caffee M, Chellman N and Dahl-Jensen D 2015 Timing and climate forcing of volcanic eruptions for the past 2500 years Nature 523 543–9
Screen J A and Simmonds I 2010 The central role of diminishing sea ice in recent Arctic temperature amplification Nature 464 1334–9
Steffel M, Khodri M, Corona C, Guillet S, Poulain V, Bekki S, Guiot J, Luckman B H, Oppenheimer C and Lebas N 2015 Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1300 years Nat. Geosci. 8 784–8
Taylor K E, Stoffner R J and Meehl G A 2012 An overview of CMIP5 and the experiment design Bull. Am. Meteorol. Soc. 93 485–98
Ueda H and Yasunari T 1998 Role of warming over the Tibetan Plateau in early onset of the summer monsoon over the Bay of Bengal and the South China Sea J. Meteorol. Soc. Japan 76 1–12
Vu H P, Lindenbergh R and Menenti M 2012 ICESat derived elevation changes of Tibetan lakes between 2003 and 2009 Int. J. Appl. Earth Obs. Geoinf. 17 12–22
Wang B, Bao Q, Hoskins B, Wu G and Liu Y 2008 Tibetan plateau warming and precipitation changes in East Asia Geophys. Res. Lett. 35 L140721
Wang J, Yang B, Qin C, Kang S, He M and Wang Z 2014 Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic Multidecadal Oscillation Clim. Dynam. 43 627–40
Wang Q, Fan X and Wang M 2014 Recent warming amplification over high elevation regions across the globe Clim. Dynam. 43 87–101
Wang Q, Wang M and Fan X 2018 Seasonal patterns of warming amplification of high-elevation stations across the globe Int. J. Climatol. 38 3466–73
Wigley T, Griffa K R and Jones P D 1984 On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology J. Appl. Meteorol. Climatol. 23 201–13
Xie H, Ye J, Liu X and E C 2010 Warming and drying trends on the Tibetan Plateau (1971–2005) Theor. Appl. Climatol. 101 241–53
Xu Y, Knudby A, Ho H C, Shen Y and Liu Y 2017 Warming over the Tibetan Plateau in the last 55 years based on area-weighted average temperature Reg. Environ. Change 17 2339–47
Xue X, Guo J, Han B, Sun Q and Liu L 2009 The effect of climate warming and permafrost thaw on desertification in the Qinghai–Tibetan Plateau Geomorphology 108 182–90
Yang K, Wu H, Qin J, Lin C, Tang W and Chen Y 2014 Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review Glob. Planet. Change 112 79–91
Yang M, Nelson F E, Shiklomanov N I, Guo D and Wan G 2010 Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research Earth–Sci. Rev. 103 31–44
Yao T D, Liu X D, Wang N L and Shi Y F 2000 Amplitude of climatic changes in Qinghai–Tibetan Plateau Chin. Sci. Bull. 45 1236–43
Yao T, Pu J, Lu A, Wang Y and Yu W 2007 Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions Arct. Antarct. Alp. Res. 39 642–50
Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H and Xu B 2012 Different glacier status with their relationships with the Atlantic Multidecadal Oscillation over high elevation regions across the globe Clim. Dynam. 43 627–40
Zhang R, Delworth T L and Held I M 2007 Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys. Res. Lett. 34 L02709