b → s + γ: A QCD Consistent Analysis of the Photon Energy Distribution

R. David Dikemana, M. Shifmana and N.G. Uraltsev\textsuperscript{a,\textsc{b,\textsc{c}}}

a Theoretical Physics Institute, Univ. of Minnesota, Minneapolis, MN 55455
b Physics Dept., Univ. of Notre Dame du Lac, Notre Dame, IN 46556
c Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188350

e-mail addresses:
dike0003@gold.tc.umn.edu, shifman@vx.cis.umn.edu

Abstract

The photon energy distribution in the inclusive $b \rightarrow s + \gamma$ transitions is a combination of two components: the first component, soft physics, is determined by the so-called primordial distribution function, while the second component, perturbative physics, is governed by the hard gluon emission. A simple ansatz is suggested for the primordial distribution function which obeys the QCD constraints known so far. We then discuss in detail how the hard gluon emission affects the energy distribution. An extension of the Sudakov approximation is worked out incorporating the Brodsky-Lepage-Mackenzie prescription and its generalizations. We explicitly calculate the marriage of nonperturbative with perturbative effects in the way required by OPE, introducing separation scale μ. A few parameters, such as m_b and μ^2, affect the shape of the distribution and, thus, can be determined by matching to the experimental data. The data, still scarce, while not giving precise values for these parameters, yield consistency with theory: the current values of the above parameters lie within experimental uncertainty. On the theoretical side we outline a method allowing one to go beyond the practical version of OPE.
1 Introduction

The inclusive \(b \to s + \gamma \) transition is one of a few low-energy processes which is potentially sensitive to new physics. Although the recent observation of this transition \([1]\) has so far detected no deviations from the Standard Model expectations, it is not ruled out that contributions to the decay parameters going beyond the Standard Model will be discovered in the future \([2]\). Therefore, untangling the effects of the electroweak interactions from those of the strong interactions in this problem becomes an important and urgent task.

The purpose of this work is to develop a theory which is as close to fundamental QCD as possible. Some model dependence is, unfortunately, unavoidable in the photon energy distribution at the present level of the strong interaction theory. Our approach in this aspect is to provide guidelines that can readily accommodate future refinements, if necessary, rather than giving a final prescription. In other words, we try to set a general framework for the theoretical analysis of \(b \to s\gamma \) and similar transitions.

The basis of our approach is the heavy quark expansion, a version of the Operator Product Expansion (OPE)\([3]\). This method has experienced a dramatic development over the last decade (see Ref. \([4]\) for a review and a list of references). The total inclusive widths of heavy flavor hadrons are most directly amenable to calculations within the \(1/m_Q \) expansion \([5, 6]\). In particular, it was shown that the nonperturbative corrections to the total widths start from terms \(\sim 1/m_Q^2 \) \([7]\). For the radiative decay \(b \to s + \gamma \) they were first calculated in Ref. \([8]\) and turn out to be rather small. The absence of the \(1/m_Q \) corrections does not apply, however, to the shape of the photon spectrum which depends in a crucial way on details of the bound state, viz., on the nonrelativistic “Fermi motion” of the heavy quark inside the decaying heavy hadron \([9]\). This nonrelativistic ‘jiggling’ leads to essential nonperturbative effects in the kinematical region near the endpoint, of the relative width \(1/m_Q \), in accord with the naive expectations following from the nonrelativistic picture. However, the way this “Fermi motion” manifests itself in QCD is essentially different \([4]\) from the description appearing in the nonrelativistic picture. A general formalism appropriate for treatment of the endpoint domain of the spectrum in QCD was suggested in Refs. \([10, 11, 12]\). This formalism was applied to the analysis of nonperturbative effects shaping the endpoint photon spectrum in the transition \(b \to s\gamma \) in Refs. \([12, 13, 14]\). The results can be summarised as follows: the spectrum is expressible in terms of a universal (one-dimensional) distribution function whose moments are related to local heavy quark operators of increasing dimensions. This distribution function replaces the Fermi motion wavefunction of the nonrelativistic quark model. In contrast with the latter, the properties of the distribution function crucially depend on whether the final state quark in the process at hand is light or heavy \([12]\). If the \(s \) quark mass is neglected the distribution function we deal with in \(b \to s\gamma \) is the light-cone one. The physical photon spectrum is obtained as a convolution of the primordial (soft) distribution function with the perturbative
spectral function corresponding to the hard gluon emission.

Attempts to account for the motion of the heavy quark inside heavy hadrons at a purely phenomenological level were made previously (e.g. [15, 16]). Models of this type [17] treat the heavy hadron as a bound state of the heavy quark Q plus a spectator, with a certain momentum distribution. Although at first sight this approach, heavily relying on the nonrelativistic picture, contradicts QCD, a closer inspection shows [19] (see also [20]) that the models of Refs. [15, 16] are compatible with QCD through the leading order in $1/m_Q$ for the decays into light quarks. The corresponding ansatz reduces to a specific choice of the primordial distribution function. In particular, the Gaussian distribution over the Fermi momentum in conjunction with the energy-momentum conservation relation of the quasifree type (routinely postulated in phenomenological models) implies the so-called “Roman” function for the primordial distribution [19]

$$\Phi(x) = \frac{1}{N} \theta(1-x) e^{-(\alpha(1-x)-\beta x^2)}; \quad (1)$$

the dimensionless parameters α and β are certain functions of m_{sp}/p_F^2 where m_{sp} and p_F are parameters of the AC2M2 model [16].

The models of Refs. [15, 16], being compatible with QCD in principle, are still unsatisfactory for a number of reasons. First, the Roman distribution function, taken at its face value, may have problems accommodating the values of the basic QCD parameters Λ and μ_π^2, as they emerge from the recent estimates (see below). Second, these models per se are responsible only for a soft smearing of the photon spectrum. Effects due to the hard gluon emission in the decay process that smear the spectrum further have to be incorporated additionally. The proper combination of the soft and hard effects in the spectrum crucially depends on the way one introduces the normalization point μ, an aspect which is usually totally ignored in the corresponding discussions. Finally, some technical details in the application of the models to analysing experimental data were not completely consistent with the heavy quark expansion (see Ref. [19] for details). In this work we address these issues in turn.

We propose a simple two parameter ansatz for the distribution function consistent with all general properties expected for the light-cone distribution function (which is relevant when the heavy quark decays into a massless one). Our ansatz seems to be more flexible allowing one to accommodate realistic values of the basic QCD parameters. We then dwell on the main aspects of inclusion of the hard gluon corrections. The endpoint behavior of the spectrum is affected by the perturbative radiative corrections which have a double logarithmic enhancement in the case of the light final quark (i.e. in the $b \to s \gamma$ transition). Although for the actual b quark mass the logarithm of the mass is not a particularly large number, the presence of Sudakov’s double logarithms enhances the role of the perturbative gluons.

An interplay between the perturbative and nonperturbative smearing of the spectrum is quite peculiar. A version of the Sudakov form factor appears that essentially
reduces the absolute height of the spectrum in the endpoint region. At the same
time, the *shape* of the spectrum is formed mainly by the primordial distribution
function \[12\]. Accounting for the bremsstrahlung corrections is crucial for centering
the predictions around the realistic values of the hadronic parameters.

Decreasing the normalization point \(\mu\) we change the definition of which gluons are
to be treated as soft and which as hard. Accordingly, the primordial distribution
and the hard perturbative one vary simultaneously – a part of the primordial smearing
leaks into the perturbative smearing. In principle, the physical distribution function
must be \(\mu\) independent, of course. However, since approximations are made in
different ways in the soft and hard domain, the \(\mu\) independence of the physical
distribution function may hold only approximately. One of our tasks is to check this
approximate \(\mu\) independence. To achieve this goal we, obviously, must explicitly
introduce the separation scale \(\mu\) in calculating the perturbative distribution (i.e.
the coefficient functions in the Wilson OPE). Thus, we go beyond the practical
version of OPE \[21\].

After the theoretical framework is set we then compare the theoretical spectrum
with the CLEO data \[1\]. The data, however, are extremely crude at present. Within
the existing uncertainty the parameters cannot be precisely attained. Still, though,
one can make some attempts with the data and show that the current level of
analysis is not only theoretically consistent, but also consistent with information on
the basic QCD parameters obtained from other sources. It then remains for the
data to improve for the analysis to become more predictive.

The organization of the paper is as follows. In Sect. 2 we formulate the problem
and remind the basic elements of the theoretical description. In Sect. 3 an *ansatz*
for the primordial light-cone distribution function is suggested. Sect. 4 is devoted to
perturbative corrections; here we present both rather standard expressions and new
considerations called upon to get a more accurate description in a manner consistent
with OPE. In particular, in Sect. 4.6 a method is outlined allowing one to explicitly
introduce the separation scale \(\mu\). Sect. 5 finalizes our expressions for the total
spectrum. In Sect. 6 we briefly discuss numerical results and give a comparison
with the first experimental data available now. In Sect. 7 our conclusions are
summarized.

2 Formulating the Problem

The \(b \rightarrow s\gamma\) transition at the fundamental level is generated by electroweak penguins
\[22\]. Since in this work we are interested only in the strong interaction effects at
distances \(m_b^{-1}\) and larger we will just assume that the effective Lagrangian governing
this transition has a local form

\[
\mathcal{L}_{b \rightarrow s\gamma} = \frac{h}{2} F_{\mu\nu} \bar{s} (1 + \gamma_5)i\sigma_{\mu\nu}b
\]

\(2\)
where h is a constant which includes the electroweak physics as well as the hard gluon corrections \[23\], both coming from distances smaller than $m_b^{-1} \[24\]$. We hasten to add that the assumption of locality of the interaction \[23\] is not absolutely correct. We will return to this point at the end of the Section. We also note that the s quark (current) mass will be consistently neglected.

The total inclusive decay width is given by

$$
\Gamma(b \rightarrow s\gamma) = \Gamma_0 \left[1 + \gamma_1 \frac{\alpha_s}{\pi} + \gamma_2 \left(\frac{\alpha_s}{\pi}\right)^2 + \ldots + \mathcal{O}(1/m_b^2)\right]
$$

(3)

where

$$
\Gamma_0 = \frac{h^2}{4\pi m_b^3},
$$

$\gamma_{1,2,\ldots}$ are numerical coefficients, and all quantities, including h and m_b, are assumed to be normalized at the scale m_b. The expansion in the square brackets is well-defined within Wilson’s OPE. In particular, all coefficients in the perturbative expansion are infrared finite, and the whole series is well-behaved. We will not be interested in the corrections to the total width which, as can be explicitly seen, are small.

The subject of our study is the photon energy spectrum which, unlike the total width, is strongly modified by corrections already at the level $\mathcal{O}(1/m_Q)$. Indeed, in the parton model (valid in the academic limit $m_Q \rightarrow \infty$) the adequate description of the inclusive transition is given by the two-body decay: a free b quark decays into a free s quark and a photon. Accordingly, the photon spectrum is monochromatic

$$
\frac{1}{\Gamma_0} \frac{d\Gamma_0}{dE} = \delta \left(E - \frac{m_b}{2}\right)
$$

(4)

where E is the photon energy. It is clear that in the actual decay of the B meson the monochromatic line at $E = m_b/2$ is smeared, and the photon spectrum stretches both, upwards, to the kinematic boundary at $E = M_B/2$, and downwards, to zero.

Two distinct effect are responsible for this smearing. First, the decaying heavy quark is not at rest in the restframe of B. It is submerged in a soft medium, light cloud, which exchanges energy and momentum of order of Λ_{QCD} with the heavy quark at hand. Thus, the soft gluon medium from the cloud creates a primordial nonperturbative distribution which is solely responsible, in particular, for filling in the window between $m_b/2$ and $M_B/2$ \[25\]. Second, in the process of decay the quarks can emit and absorb hard gluons, i.e. those whose momenta are much larger than Λ_{QCD}. For example, the s quark can shake off some of its energy and momentum by emitting a hard gluon which can result in the photon energy lying much below $m_b/2$. This gluon emission produces a long tail in the photon spectrum below $m_b/2$. If E is close to $m_b/2$ a subtle interplay between the two mechanisms takes place. As a matter of fact, the very definition of what can be called ‘soft gluon’ from the cloud (the corresponding effect will be described by the primordial distribution function) and what can be called ‘hard gluon’ (the effects due to the hard gluon emissions are to be incorporated additionally) is a matter of convention. We must
introduce a normalization point μ, and everything softer than μ will be referred to the cloud while everything harder than μ will be treated in perturbation theory. Correspondingly, all theoretical quantities – the primordial distribution $F(x)$, $\bar{\Lambda}$, and so on – become μ-dependent. In principle, the final prediction for the physical quantities (e.g., the photon spectrum) should be μ-independent. Since different approximations are made in the soft and hard domains, only an approximate μ independence will hold for a physically reasonable choice of μ (see below).

Technically, the proper way to introduce the primordial distribution function, $F(x)$, with

$$x = \frac{2}{\bar{\Lambda}} \left(E - \frac{m_Q}{2} \right), \quad \bar{\Lambda} = M_B - m_b,$$

is through consideration of the transition operator. The relevant operator product expansion for the transition operator runs over twists, not dimensions. An exhaustive discussion can be found in Refs. [10] – [14]; here we remind only that theoretically one predicts the moments of $F(x)$ as the B meson expectation values of some local operators, see below. The observed photon spectrum is then obtained as a convolution of the primordial distribution with the spectrum appearing at the level of the perturbative gluon emissions,

$$\frac{d\Gamma(E)}{dE} = \theta(E) \int dy F(y) \frac{d\Gamma_{b\text{pert}}^\text{pert}(E - (\bar{\Lambda}/2)y)}{dE}.$$

Integration over y runs from $-\infty$ to 1 (more exactly, the lower limit of integration is $y_0 = -m_Q/\bar{\Lambda}$ but we will consistently ignore this difference). One should keep in mind that $d\Gamma_{b\text{pert}}^\text{pert}/dE$ is nonvanishing only in the interval $(0, m_b/2)$. We also note that one can literally use the perturbative spectrum in the above equation only as long as one does not apply it to the very low energy part, $E \sim \bar{\Lambda}$; a more accurate expression for this case is discussed in Sect. 5. Both theoretical components in Eq. (6) will be considered below in detail.

Prior to submerging into the discussion of the nonperturbative and perturbative distributions, a comment is in order concerning the locality of the weak vertex in Eq. (2). For large m_t (we now know that m_t lies in the ballpark of 170 GeV) the main contribution to the weak vertex comes from distances of order m_t^{-1} which are indeed short in the scale m_b^{-1}, so that this part of the vertex is truly local, and our consideration is applicable in full. However, some small fraction of the amplitude (according to estimates of Ref. [26], less than 10% of the total width) comes from the part of the amplitude associated with the loop momenta $m_c^{-2} \lesssim k^2 \lesssim m_t^2$ in the penguin integral. (The corresponding photon is radiated by the low momentum virtual c quark in the penguin graph.) Numerically this effect is, thus, rather insignificant; but even this insignificant effect can be properly treated within the OPE-based approach as long as one is interested in the endpoint spectrum.

It turns out that the nonlocal part of the decay amplitude can modify the absolute decay rate (the endpoint domain and the low E part of the spectrum are
modified differently, generally speaking); however, the \textit{shape} of the endpoint spectrum is not affected. This property is the reflection of a universal nature of the corrections to the endpoint spectrum which do not depend on the underlying structure of the decay amplitude, a feature well-known in the theory of the Sudakov-like perturbative corrections. The universality of the nonperturbative effects has been discussed in detail in Ref. [12], and the above fact can be demonstrated by following a similar line of reasoning. Let us briefly illustrate our point.

Nonlocality arises due to the gluon emission from ‘inside’ the vertex (structural gluons). In particular, if the internal quarks (in our case the charmed quarks) are relatively light, the amplitude at the level of $\mathcal{O}(\alpha_s)$ corrections becomes complex due to real intermediate states that become kinematically possible in the decay. And even in this case the relation similar to Eq. (6) holds. It rests on two key facts: first, due to the gauge invariance, the leading twist effects in the transition amplitude depend only on the total momentum k of the hadronic system recoiling the photon. In the endpoint region $k^2 \ll m_b^2$ and, therefore, the momentum k practically does not differ from what one has at the parton level (i.e. transition of the free b quark into the free s quark where $k^2 = 0$); in particular, the same light-cone distribution function F emerges.

The second crucial property is that in the kinematics at hand the singularities in k^2 associated with the penguin amplitude itself lie far enough from the physical point $k^2 = m_b(m_b - 2E)$ where the transition operator is considered. This ensures the following: in considering the transition amplitude in the complex plane at small k^2 and performing the operator product expansion (with the aim of obtaining the discontinuity of the transition operator) in the way it was done in Ref. [12], one picks up only the contribution of the physical cut corresponding to the decay channel of interest, $b \to \gamma + \text{strange jet}$. The contributions of other cuts, although yielding a complex decay amplitude, are analytical in this kinematical region and have no discontinuity. In other words, the presence or absence of structural gluons is not essential for the spectrum; only the singularities of the perturbative transition amplitude matter here. A more detailed presentation of these arguments will be given elsewhere. Here we just note that one gets the same physical spectrum as shown in Eq. (5) even for a nonlocal penguin amplitude – the only difference is that $d\Gamma_b^{\text{pert}}/dE$ must be understood now as the perturbative spectrum generated by the total penguin amplitude, including its nonlocal part.

Reiterating, some corrections due to nonlocality of the $bs\gamma$ vertex appear in the total width, in the absolute normalization of the endpoint rate and in the shape of the lower part of the spectrum. The shape of the endpoint spectrum is given by a universal formula. The lower part of the spectrum or the total width, however, do not require a particular care – they are insensitive to the primordial distribution, nor one needs to carry out summation of the high-order perturbative corrections. Therefore, taking account of the nonlocality of the weak vertex here can be done in a straightforward manner for both perturbative [26] and nonperturbative [8] corrections.

6
3 Ansatz for the Primordial Distribution

In this section we ignore perturbative gluon emissions and discuss only the soft heavy quark distribution function which, in this approximation, is independent on the normalization point. We suggest the following ansatz

$$F(x) = \frac{1}{N} \theta(1-x) e^{c x} (1-x)^{\alpha} \left[1 + b(1-x)^k \right], \quad -\infty < x < 1$$

(7)

where

$$x = \frac{2}{\Lambda} \left(E - \frac{m_Q}{2} \right), \quad \Lambda = M_B - m_b,$$

E is the photon energy; the parameters α, b, c are positive while k is an integer, $k = 1, 2, \ldots$. We do not consider the integer k as a fit parameter; rather several independent ansätze corresponding to different values of k are introduced. We will focus here on the case $k = 1$, and only briefly comment on modifications for $k > 1$.

With this choice of the parameters the function $F(x)$ is positive everywhere in the physical domain and has exponential fall-off at large negative x. The latter property ensures the existence of all moments [27]. Here and in what follows we will consistently work in the leading non-trivial approximation in $1/m_b$; all terms which are additionally suppressed by $1/m_b$ are neglected. Then in the absence of the perturbative corrections

$$\frac{1}{\Gamma} \frac{d\Gamma}{dE} = \frac{2}{\Lambda} F \left(\frac{2E - m_b}{\Lambda} \right).$$

(8)

The primordial distribution function is to be properly normalized. In particular, for the first two moments one has

$$a_0 = \int dx F(x) = 1$$

$$a_1 = \int dxx F(x) = 0.$$

(9)

The first equation determines the normalization factor N whereas the second one determines the choice of the photon energy reference point to be equal to $m_b/2$. The latter can always be satisfied by means of an appropriate substitution

$$(1-x) \to \tau(1-x)$$

which amounts to the change

$$b \to \tau^{k} b, \quad c \to \tau c.$$

Therefore, our function in fact has two free parameters: the value of α and the ratio $\beta \equiv b/c^k$.

In general, our ansatz for $F(x)$ behaves as an arbitrary (non-integer) power of $1-x$ near the kinematical endpoint. This seems to be reasonable since purely
perturbative bremsstrahlung effects lead, generally speaking, to a similar behavior, as discussed in the next section, and the change in the normalization point leads to a change in this power.

The two next moments of the primordial distribution are given \cite{12} (see also \cite{29}) by

\[
a_2 = \int dx \, x^2 F(x) = \frac{\mu_\pi^2}{3\Lambda^2},
\]

\[
a_3 = \int dx \, x^3 F(x) = \frac{1}{6\Lambda^3} \frac{1}{2M_B} \langle B | \sum_q g_s^2 \bar{b} t^a b \bar{q} t^a \gamma_0 | B \rangle
\] \tag{10}

where in the second equation the sum runs over all light quarks and \(t^a\) are \(SU(3)_c\) generators. The matrix element of the kinetic operator is defined as

\[
\mu_\pi^2 = \frac{1}{2M_B} \langle B | \bar{b} (i\tilde{D})^2 b | B \rangle.
\]

Not much is known at present about even these lowest moments of \(F\). The best theoretical estimate of \(\mu_\pi^2\) existing today is derived from the QCD sum rules \cite{30} and suggests the value

\[
\mu_\pi^2 \approx 0.5 \text{ GeV}^2
\]

(see also \cite{31} for an updated discussion). This estimate is in good qualitative agreement with the model-independent bounds \cite{32, 33, 34} and a semiphenomenological estimate of Ref. \cite{35}. For the value of \(\Lambda \approx 500\, \text{MeV}\) \cite{30, 31, 36} one would expect then \(a_2 \sim 0.7\). The estimate \cite{12} of the expectation value of the four-fermion operator in the third moment leads to \(-a_3 \sim 0.3\) which, however, is even more uncertain.

One can readily see that for the function of a reasonable shape it is not easy to obtain a large value of the second moment. For example, the maximal value of \(a_2\) for a symmetric positive function which vanishes for \(|x| > 1\) is 1, and if additionally it exhibits only one peak then even \(a_3 < 2/3\). The actual distribution function does not have to (and, in fact, cannot) be symmetric. Nevertheless, it is clear that larger values of \(a_2 \gtrsim 1\) can be reached only at a price of having a relatively pronounced long tail towards the negative values of \(x\), which, in turn, would imply large negative values of the third moment \(a_3\) \cite{12}. In fact, strict inequalities can be easily obtained for any positive function \(F\)

\[
a_2 < \frac{1}{4} + \sqrt{\frac{1}{4} - a_3}, \quad a_3 < \frac{1}{4} - \left(a_2 - \frac{1}{2}\right)^2; \tag{11}
\]

the first inequality is somewhat stronger than the one obtained in Ref. \cite{12}.

To derive these inequalities one merely observes that for any \(t\) the integral over \(x\) over the function \((1 - x)(x - t)^2 F(x)\) running from \(-\infty\) to 1 is positive; on the other hand this integral is a second order polynomial in \(t\) and, therefore, its determinant is negative. In a similar manner one can get inequalities incorporating higher moments.
In view of poor information available about the moments and a crude nature of experimental data on the photon spectrum we mainly limit ourselves to the simplest ansatz corresponding to \(k = 1 \). The resulting function for \(k = 1 \) always has a simple one-peak shape. It turns out that within this \(k = 1 \) ansatz the value of \(a_3 \) is strongly correlated with \(a_2 \), and at fixed \(a_2 \) a rather limited range of values for \(a_3 \) can be reached. For example, with \(a_2 = 0.5 \) we get \(0.47 < -a_3 < 0.5 \). In Fig. 1 we show the domain of values of \(a_2 \) and \(a_3 \) which are accessible within the ansatz of Eq. (7) with \(k = 1 \) and \(k = 3 \). As one can see from the figure, again at the same point \(a_2 = 0.5 \) but for \(k = 3 \) the flexibility of the ansatz is much better; in fact, at this point \(0.29 < -a_3 < 0.55 \) if \(k = 3 \). The limitations imposed by the particular choice of the functional form for the primordial distribution may, under certain circumstances, turn out to be important for the phenomenological extraction of the hadronic parameters. In particular, if the values of \(\Lambda \) and \(\mu^2 \) are such that they lead to the parameters that lie in the vicinity of the boundary for \(a_2 \) shown in Fig. 1, one may suspect a significant bias imposed by the limited flexibility of the model. In this case it will be advantageous to go beyond this ansatz to extend the flexibility. This also may be desirable when one has more precise experimental data. The simplest way to modify it is by considering larger values of \(k \); say \(k = 3 \). Then one can easily have less trivially looking primordial distribution functions; in particular, it can have two maxima. Correspondingly, the domain of variation of \(a_3 \) at fixed \(a_2 \) becomes much wider which is illustrated by the dotted line in Fig. 1. On the other hand, if the result of the experimental fit happens to fall well inside the allowed region, one can assume that the bias caused by the concrete choice of the distribution function is minimal.

We pause here to make the following remark. As it will be discussed in detail in Sect. 4, the consistent treatment of nonperturbative effects in \(1/m_Q \) expansion by means of OPE requires the introduction of a separation scale \(\mu \) to ensure that the domain of gluon momenta below \(\mu \) gets excluded from the coefficient functions. In such a way, in particular, the mass of the heavy quark, \(m_Q \), that enters the expansion is not the pole mass that cannot be consistently defined at the level of nonperturbative effects \([37, 38, 39]\) but, rather, the well-defined running mass \([38]\); the parameter \(\Lambda \) is to be understood as \(\Lambda(\mu) \). Although this difference becomes relevant only when radiative corrections are considered (they are ignored so far), this fact suggests that the proper numerical value of \(\Lambda \) used in the above numbers must be larger by \(\sim 100 \) MeV \([38, 40]\) than the estimate based on the one-loop pole mass routinely used in the applications of HQET \([11]\). Then the expected theoretical values of the second moment \(a_2 \) group around 0.4 which seems to be an easy value for our distribution function even at \(k = 1 \).
4 Perturbative Corrections

In this Section we forget for awhile about nonperturbative aspects and discuss the effect of the perturbative QCD corrections. The tree-level spectrum is given by the monochromatic photon line at \(E = m_b/2 \), Eq. (1). This parton-like formula is strongly modified by the gluon bremsstrahlung. The emission of gluons makes the energy distribution continuous in the whole kinematical range \(0 < E < m_b/2 \), still strongly peaking near the endpoint. We will write it in the form

\[
\frac{1}{\Gamma} \frac{d\Gamma}{dE} = - \frac{dS}{dE}
\]

(12)

where the formfactor \(S(E) \) is constant outside the interval \(0 \leq E \leq m_b/2 \), \(S = 1 \) at \(E < 0 \) and \(S = 0 \) at \(E > m_b/2 \).

4.1 Sudakov’s Double Logarithms

Let us first approach the problem of the gluon emission in the problem at hand in the classic approximation of pure double logs. The inclusive \(b \to s\gamma \) transition is an ideal example since the decaying \(b \) quark is at rest while the \(s \) quark produced is ultrarelativistic; the corresponding drastic rearrangement of the color field manifests itself in producing two logarithms for each power of \(\alpha_s \) in the loop integrals. In this way we obtain a reasonable qualitative picture of the perturbative spectrum by summing up all terms of the form \(\alpha_s^n \ln \left(\frac{m_b}{m_b - 2E} \right) \). The result of the summation is given by the Sudakov exponent \(S_{dl}(E) = e^{-\frac{\alpha_s}{\pi} \ln^2 \frac{m_b}{m_b - 2E}} \). (13)

Correspondingly, in this approximation the photon spectrum reduces to

\[
\frac{1}{\Gamma} \frac{d\Gamma_{dl}}{dE} = \frac{8\alpha_s}{3\pi} \frac{\ln \left(\frac{m_b}{m_b - 2E} \right)}{m_b - 2E} S_{dl}(E).
\]

(14)

The crucial practical question is what value of \(\alpha_s \) is to be used in this equation.

In the classical Sudakov approximation the running of \(\alpha_s \) is not seen since it affects only terms beyond the pure double log approximation. Moreover, \(\mu \) is also not introduced so far. Below we will try to improve this approximation by including, at a certain level, the effects of running. For the time being one can use, for example, \(\alpha_s \) normalized at the scale \(m_b \). It is clear that the double logarithmic spectrum in Eq. (14) is quite close to the delta function; the width of the peak is of order of \(m_b \exp \left(-\text{const}/\sqrt{\alpha_s} \right) \).

The above double log expressions have rather transparent interpretation which allows us to easily improve the precision later on. To this end let us recall that the first order probability of emission of the massless gluon in the \(b \to s\gamma \) decay is

\[
\frac{1}{\Gamma} \frac{d^2\Gamma_g}{d\omega dv^2} = \frac{2\alpha_s}{3\pi \omega (1 - \cos v)}
\]

(15)
where ω is the gluon momentum and ϑ is its angle relative to the momentum of the s quark. In this expression it is assumed that $\omega \ll m_b$. The photon energy in the presence of a gluon in the final state is given by

$$E = \frac{m_b^2 - 2\omega(m_b - \omega)(1 - \cos \theta)}{2m_b - 2\omega(1 - \cos \theta)} \simeq \frac{m_b}{2} - \frac{k^2}{4\omega}, \quad (16)$$

$$k^2 \simeq \omega \vartheta$$

combination of Eq. (15) and Eq. (16) reproduces the first order continuum part of the photon spectrum obtained by expanding Eq. (14) in α_s.

The full Sudakov expression for the formfactor S is obtained in the following simple way. One starts with computing the (first order) probability $w(E)$ for the gluon to be emitted with such momentum that the photon gets energy below E. This probability is obtained by integrating the distribution (15) with this constraint using the kinematical relation (16):

$$w(E) = \int d\omega \, d\vartheta^2 \frac{1}{\Gamma} \frac{d^2\Gamma_g}{d\omega \, d\vartheta^2} \theta \left(\frac{k^2}{4\omega} - \left(\frac{m_b}{2} - E \right) \right) = \frac{2\alpha_s}{3\pi} \ln \frac{m_b}{m_b - 2E}.$$

(17)

The function $w(E)$ has the meaning of the probability of emission of a sufficiently hard gluon lowering the photon energy below E. The all-order summation of double logs in the Sudakov formfactor amounts then to merely exponentiating this probability:

$$S(E) = e^{-w(E)}, \quad (18)$$

where $w(E)$ is given in Eq. (17). As we will see shortly this classical result borrowed from QED can be used in QCD only provided E does not approach $m_b/2$ too closely. Otherwise, the gluon may become too soft, and such gluons, by definition, must be excluded by the perturbative calculations.

4.2 The Running α_s

The standard Sudakov line of reasoning does not allow one to collect subleading terms – those which have higher powers of α_s for the given number of double logarithms. Needless to say that in QCD it is practically important to determine an appropriate scale of α_s that enters the Sudakov formfactor, which amounts to the inclusion of subleading terms. Separation of the subleading terms in the background of double logs is a notoriously difficult task. However, one can readily single out a class of the subleading terms, namely those which are responsible for the running of α_s, leaving all others aside. A theoretical justification of this procedure is provided by the fact that b, the first coefficient in the Gell-Mann-Low function, is a numerically large parameter; those graphs which reflect the running of α_s do contain powers of b while all others, presumably, do not. (In the Coulomb gauge the relevant graphs are just the bubble insertions in the gluon line. In arbitrary gauge they can
be traced through their specific dependence on the number of the quark flavors). The prescription of keeping only this subset of graphs is the heart of the so called BLM approach [45]. In our problem it is natural to combine the BLM prescription with the Sudakov-type consideration.

The original BLM approach was engineered as a scale-setting prescription based on the “b-dominance” estimate of the next-to-leading correction. We will first see how it works in the problem at hand, and then proceed to a generalized scheme which has been used for a long time in theoretical discussions of the renormalon divergences of the perturbative series, and was applied recently for numerical improvement of the perturbative estimates in QCD [46, 47, 48]. This generalized approach, as it was used previously, is applicable to the situations when one deals with a single gluon line (dressed by all bubbles). It amounts to inserting the unexpanded expression for the running coupling constant \(\alpha_s(k^2) \sim 4\pi/(b \ln (k^2/\Lambda_{\text{QCD}}^2)) \) inside the integrand of a one-loop Feynman graph [19] which depends on the gluon momentum \(k \), with the subsequent integration over \(k \). In the problem of the Sudakov formfactor one sums over arbitrary number of gluon lines. However, since the resulting expression is just the exponent of the one gluon emission (i.e. in the given approximation all emissions are independent from each other), the application of the generalized BLM prescription is quite straightforward and legitimate as long as we stay within the approximation of the exponentiation.

The anatomy of the leading double logarithms presented above allows one to easily carry out the corresponding improvement. Indeed, for the emission of a soft collinear gluon (\(\omega \ll m_b \) and \(\vartheta \ll 1 \)) the effective running coupling enters at the scale \(k_\perp \), i.e. \(\alpha_s \rightarrow \alpha_s(k_\perp) \). This fact is well-known in the literature (see, e.g. [50]) and it can be substantiated as follows. To determine the relevant momentum scale involved, let us introduce a fictitious gluon mass \(\lambda \) in the denominator of the gluon propagator (we will need this technical trick later on anyway). We then note that introducing the gluon mass leads to exactly the same (main) kinematical impact as the transverse momentum of the gluon; for instance, the off-shellness of the quark propagator is given by \(k^2 \approx (k_\perp^2 + \lambda^2)(m_b/2\omega) \) if the on-shell gluon is emitted in the kinematics giving rise to leading logarithms. In other words, the cutoff over the spacelike gluon momentum in the rest frame looks like a cutoff over the transverse momentum if seen in the infinite momentum frame.

If so, taking account of the running of \(\alpha_s \) one has

\[
\begin{align*}
w(E) &= \frac{4}{3\pi} \int \frac{d\omega}{\omega} \frac{d\vartheta}{\vartheta^2} \alpha_s(\omega \vartheta) \theta \left(\frac{k_\perp^2}{4\omega} - \left(\frac{m_b}{2} - E \right) \right) \\
&\approx \frac{8}{3\pi} \left(\int_{\epsilon}^{\sqrt{m_b}} \frac{dk_\perp}{k_\perp} \ln \frac{k_\perp}{\epsilon} \alpha_s(k_\perp) + \int_{\sqrt{m_b}}^{m_b} \frac{dk_\perp}{k_\perp} \ln \frac{m_b}{k_\perp} \alpha_s(k_\perp) \right) \quad (19)
\end{align*}
\]

where \(\epsilon = m_b - 2E \).
The formfactor $S(E)$ is still given by $\exp(-w(E))$. If one neglects the running of α_s then Eq. (19) obviously reproduces the standard Sudakov exponent. Eq. (19) has been displayed in the literature in various forms (see, e.g., [43]).

One can further use the explicit expression (19) to estimate the effective value of the strong coupling which enters the Sudakov formfactor. Expanding

$$\alpha_s(k_\perp) = \alpha_s(\sigma) - \frac{b}{2\pi} \alpha_s^2(\sigma) \ln \frac{k_\perp}{\sigma}$$

one determines the scale σ for which the average of $\ln(k_\perp/\sigma)$ in the logarithmic integral in Eq. (19) vanishes. It is not difficult to check that

$$\sigma^2 = m_b \epsilon .$$

As a result we arrive at the following expression

$$S(E) = e^{-\frac{2\alpha_s(\sqrt{m_b \epsilon})}{3\pi} \ln^2 m_b / \epsilon}$$

(20)

exactly coinciding with the known next-to-leading formula [51].

We hasten to add that Eq. (20) is valid only outside the endpoint domain, i.e. when ϵ is parametrically larger than Λ. (Of course, ϵ has to be parametrically smaller than m_b for the logarithmic approximation to have sense.) The Sudakov formfactor in Eq. (20) has a peculiar feature. If $\epsilon \sim \Lambda_{QCD}$ the strong coupling that enters Eq. (20) corresponds to the scale $\sigma \sim \sqrt{\Lambda_{QCD} m_b} \gg \Lambda_{QCD}$. It seems, naively, that we are deep inside the perturbative domain. This, however, is not true. As soon as ϵ approaches the scale of Λ_{QCD} the integral (17) defining the exponent of the formfactor includes the region of the small gluon momenta (of order of Λ_{QCD}) where the perturbative consideration is inapplicable. This regime calls for the explicit introduction of the normalization point μ and must be treated separately. In the next section we will do a more careful analysis pertinent to the endpoint domain.

In view of importance of this fact, let us repeat the statement: although the expression for the radiative corrections (20) involves $\alpha_s(\sqrt{m_b \epsilon})$ and therefore, at first sight, allows descending down to the heart of the endpoint region, actually it is applicable only when $\epsilon \gg \Lambda_{QCD}$ (or $\epsilon \gg \mu = \text{several units} \times \Lambda_{QCD}$ in the logarithmic approximation) when the integral in Eq. (19) runs over the perturbative domain. This fact has been noted already in the first of Refs. [51]. On the other hand, as long as $\epsilon \gg \Lambda_{QCD}$, this asymptotics is correct (such an extravagant “step-like applicability” is the usual consequence of the logarithmic approximation). This property of the radiative corrections has been used in Ref. [12].

Let us stress that the breakdown of the perturbation theory when E approaches the endpoint by the distance of the typical hadronic energy scale signals that non-perturbative effects must appear in the spectrum when ϵ decreases down to $\sim \Lambda_{QCD}$. In other words, as it usually occurs the existence of nonperturbative corrections is indicated by the perturbation theory itself.
4.3 The Endpoint of the Sudakov Formfactor

The description of the domain \(\epsilon \sim \Lambda_{\text{QCD}} \) (where nonperturbative effects show up) requires a more accurate treatment of purely perturbative corrections as well; in particular, introduction of the renormalization point \(\mu \) is necessary, following the Wilson procedure where all momenta below \(\mu \) are excluded from the perturbative part of corrections (for a dedicated discussion see Refs. [38, 34]). The excluded soft contributions are referred to the primordial distribution function which, then, also explicitly depends on \(\mu \); in particular, the local operators that determine its moments are normalized at the scale \(\mu \) [12]. It is advantageous to choose the normalization scale \(\mu \) as low as possible still ensuring the perturbative regime \(\alpha_s(\mu)/\pi \ll 1 \). Practically, we keep in mind that \(\mu = \text{several units} \times \Lambda_{\text{QCD}} \). This necessarily modifies the standard expressions for the Sudakov formfactor.

Consistent introduction of the separation of large and small distances to all orders in perturbation theory is an unsolved technical problem. In the approximation of interest, however, the task can be easily accomplished in different ways. First, one may ascribe a fictitious mass in the gluon propagator. This route is very convenient even in a purely technical aspect [46] and will be discussed in Sect. 4.5. Here for illustrative purposes we will adopt even a simpler method cutting off all integrations over the gluon transverse momentum at \(k_\perp = \mu \). As a matter of fact, such cut off yields the same result for double logarithmic integrals. In different contexts similar cut off procedure was used for the same purpose – discarding the soft contribution – e.g. in recent work [52].

Then we arrive at

\[
\begin{align*}
 w(E; \mu) &= \frac{8}{3\pi} \left[\int_{\epsilon}^{\sqrt{\epsilon m_b}} \frac{dk_\perp}{k_\perp} \ln \frac{k_\perp}{\epsilon} \alpha_s(k_\perp) \theta(k_\perp - \mu) \\
 &\quad + \int_{\sqrt{\epsilon m_b}}^{m_b} \frac{dk_\perp}{k_\perp} \ln \frac{m_b}{k_\perp} \alpha_s(k_\perp) \theta(k_\perp - \mu) \right],
\end{align*}
\]

(21)

where \(w(E, \mu) \) is the same probability as in Sect. 4.1 with the gluon momentum cut off.

For the one-loop \(\alpha_s(k_\perp) \) the integrals are readily calculated analytically. One has

\[
 w(E; \mu) = \frac{8}{3\pi} \left(\frac{2\pi}{b} \right)^2 \left[\frac{1}{\alpha_s(m_b)} \ln \frac{\alpha_s(\sqrt{\epsilon m_b})}{\alpha_s(m_b)} - \frac{1}{\alpha_s(\epsilon)} \ln \frac{\alpha_s(\epsilon)}{\alpha_s(\sqrt{\epsilon m_b})} \right]
\]

(22)

for \(\epsilon \geq \mu \);

moreover,

\[
 w(E; \mu) = \frac{8}{3\pi} \left(\frac{2\pi}{b} \right)^2 \left[\frac{1}{\alpha_s(m_b)} \ln \frac{\alpha_s(\sqrt{\epsilon m_b})}{\alpha_s(m_b)} - \frac{1}{\alpha_s(\mu)} \ln \frac{\alpha_s(\mu)}{\alpha_s(\sqrt{\epsilon m_b})} - \right.
\]

\[
\left. - \frac{b}{2\pi} \ln \frac{\mu}{\epsilon} \left(1 - \ln \frac{\alpha_s(\mu)}{\alpha_s(\sqrt{\epsilon m_b})} \right) \right])
\]

(23)
and, finally,

$$\alpha_s(m_b) \ln \frac{\alpha_s(\mu)}{\alpha_s(m_b)} - \frac{b}{2\pi} \ln \frac{m_b}{\mu}$$

for $\frac{\mu^2}{m_b} \leq \epsilon < \mu$.

The photon spectrum is given by

$$\frac{1}{\Gamma} \frac{d\Gamma_{\text{pert}}}{dE} = -\frac{d}{dE} \theta(2m_b - E) e^{-w(E;\mu)}.$$ \hspace{1cm} (25)

The spectrum implied by Eqs. (22) – (25) has a peculiar feature: $w(E)$ does not depend on ϵ for $\epsilon < \mu^2/m_b$ and is equal to $w(m_b^2; \mu)$ given by Eq. (24). Therefore, differentiation in Eq. (25) leaves us with the vanishing spectrum in the interval

$$\frac{m_b}{2} - \frac{\mu^2}{2m_b} < E < \frac{m_b}{2}$$

plus the delta function corresponding to the two-body decay at the perturbative endpoint $E = m_b/2$; the height of the two-body peak is suppressed by the factor $\exp\{-w(m_b^2; \mu)\}$.

This behavior of the spectrum is not surprising. Indeed, as was mentioned above, introducing a cut off in k_\perp is kinematically equivalent, in our logarithmic approximation, to ascribing a finite mass μ to the gluon. It is quite clear then that the gluon mass μ purely kinematically does not allow to fill in the fake window (or mini-window) $E > E_0(\mu) = (m_b/2) - (2m_b)^{-1}\mu^2$ in the perturbative spectrum. Moreover, simultaneously it lifts the absolute suppression of the two-body mode, characteristic to the classical Sudakov expression. This miniwindow, somewhat aesthetically unappealing feature of the perturbative spectrum obtained above, is not physically significant, though, and could be actually eliminated, as discussed below.

A feature which is, perhaps, more surprising at first sight, is the μ dependence of the spectrum in the region $\mu > \epsilon \gg \mu^2/(2m_b)$ corresponding to the invariant mass squared of the recoiling hadronic system much larger than μ^2. This is a consequence of the logarithmically enhanced perturbative corrections involving integration over the gluon energies $\sim d\omega/\omega$. For small $\omega \ll m_b$ giving the main contribution, the kinematical impact of the gluon mass is enhanced: it is given by $\mu^2/2\omega$ rather than μ^2/m_b.

Below $(m_b - \mu)/2$ the perturbative photon spectrum does not depend on the normalization point, as it should be.

The theoretical prediction for the perturbative photon spectrum which we present here corresponds to consideration of the leading twist operators only. Fine details
of the spectrum, at the energy scale smaller than, or of order $\Lambda_{\text{QCD}}^2/m_b$, are shaped by high twist operators completely ignored in our analysis. As a matter of fact, in order to resolve the fine details of the spectrum at this scale one needs to analyse an infinite chain of corrections of all possible twists [4], a task obviously going beyond possibilities of the present-day theory. For reasons explained above we push μ as low as possible, in practice, a few units $\times \Lambda_{\text{QCD}}$. Then, at our level of accuracy we cannot distinguish between the spectrum presented above and the one where the elastic spike is moved to the left so as to close miniwindow, or just smeared evenly over the miniwindow. The corresponding changes in the moments $\int x^n F(x) dx$ are of order $1/m_b$. As long as one keeps the integrals intact to order $O(m_b^0)$ one can distort $w(\epsilon)$ compared to the formula (24) at will. In particular, one of the ways of eliminating the elastic spike at $\epsilon = 0$ is as follows. At $\epsilon \ll \Lambda_{\text{QCD}}$ one can use arbitrary (growing) $w(\epsilon)$ and not necessarily the one given by Eqs. (23), (24); assigning $w(\epsilon) \to \infty$ at $\epsilon \to 0$ smears the elastic peak completely. The prediction for the physical photon spectrum remains intact at the level of accuracy we work at in this paper.

4.4 The Endpoint Domain and the b Quark Mass

Specifying the theory above, we normalized all quantities including the weak $bs\gamma$ coupling h, α_s and m_b at some scale. For the inclusive b decays the appropriate scale is $\sim m_b$. Thus, we start from a high scale mass, say, $m_b(m_b)$. On the other hand, practical perturbative calculations are done similar to QED analysis which is phrased, of course, in terms of the on-shell mass. Literal application of our expressions, therefore, implies the use of the pole mass, m_b^{pole} in QCD. This mass is defined to any finite order in perturbation theory; in fact, it is a meaningful theoretical notion in the theory where a strong coupling regime does not occur. Then it is tempting to say that the endpoint of the spectrum is shaped by this pole mass, which is higher than $m_b(m_b)$.

However, it is well known [37, 38, 39] that the true pole mass cannot be consistently defined in QCD with the precision we are interested in, $\lesssim \Lambda_{\text{QCD}}$. This exactly corresponds to the circumstance explained above in detail, that one cannot compute the perturbative spectrum for $\epsilon \sim \Lambda_{\text{QCD}}$ naively, without introducing the normalization point μ. Of course, the problem does not show up in the expressions obtained in the pure double logarithmic approximation where the running of α_s is discarded, a “frozen” value of α_s is used and μ is not introduced. In this approximation there is no difference with QED, and the corresponding value of m_b essentially coincides with the “one-loop pole mass” discussed in Refs. [38, 34, 53].

We go beyond this approximation, however; correspondingly, the question arises as to what mass enters Eqs. (12) – (18) and below. It is clear that the mass we deal with in the endpoint domain in our approach is the pole mass in the theory where the gluon exchanges with $|\vec{k}| < \mu$ are excluded, i.e. the running mass normalized at μ, $m_b(\mu)$. It is important to notice that $m_b(\mu)$ has nothing to do with the dimensionally regularized mass $m_Q(\mu)$ (the latter mass is a well defined
theoretical notion but it is irrelevant for OPE in the infrared region \(\mu \ll m_Q \). The appearance of the running mass normalized at \(\mu \) in all expressions for the spectrum in the endpoint domain can be exactly proven in the BLM approximation where there are no technical problems with defining the explicit renormalization prescription. We have tacitly assumed the BLM approximation in the calculations above. For a related discussion see Ref. [53]. The occurrence of \(m_b(\mu) \) justifies the concluding remark of Sect. 3.

The perturbative spectrum does not extend above \(E = m_b/2 \), and the window between \(m_b/2 \) and \(M_B/2 \) is filled when nonperturbative corrections are accounted for. However, in the OPE-based approach the \(b \) quark mass, and, therefore, the endpoint of the perturbative spectrum, depends on \(\mu \). Let us dwell on this aspect in more detail. The dependence of the heavy quark mass on \(\mu \) at \(\mu \ll m_Q \) is given by \[38, 40\]

\[
\frac{d m_Q(\mu)}{d \mu} \simeq -c_m \frac{\alpha_s(\mu)}{\pi}, \quad c_m = \frac{4}{3} \tag{26}
\]

and, therefore, \(m_Q \) increases with \(\mu \) decreasing. Calculating perturbative corrections we must stop at some \(\mu_0 \gg \Lambda_{\text{QCD}} \). Then the mass we “see” in the endpoint region is \(m_b(\mu_0) \) and, in particular, the perturbative spectrum spans up to \(E_{\text{max}} = m_b(\mu_0)/2 \) (we assume that \(\mu_0 \sim \text{a few units} \times \Lambda_{\text{QCD}} \) and consistently neglect the corrections \(\sim \mu_0^2/2m_b \)). Assume we can go perturbatively a little bit further, down to a smaller value of \(\mu \). The perturbative physics below \(\mu_0 \) will populate the spectrum up to \(m_b(\mu)/2 \) and, therefore we will observe the decay events above the original perturbative “quark endpoint” \(m_b(\mu_0)/2 \).

Formally, the whole physics below \(\mu_0 \) is now treated in the \(\mu_0/m_b \) expansion and is accounted for by a ‘soft’ distribution function normalized at the scale \(\mu_0 \). In particular, it refers now as well to the region between \(\mu \) and \(\mu_0 \) which is still amenable to the perturbative treatment. Moreover, one can even introduce a perturbative analog of \(\overline{\Lambda} \),

\[
\overline{\Lambda} = m_b(\mu) - m_b(\mu_0) = c_m \int_{\mu}^{\mu_0} d \mu' \frac{\alpha_s(\mu')}{\pi} \simeq c_m \frac{\alpha_s(\mu)}{\pi} (\mu_0 - \mu) + \ldots \tag{27}
\]

Clearly one cannot, though, push \(\mu \) too low to get an “estimate” of the whole window \(\overline{\Lambda} = M_B - m_b(\mu_0) \).

This remark shows once again that many qualitative features of the nonperturbative dynamics have their seeds already in the perturbative expansion itself. Moreover, in QCD it is impossible to distinguish the perturbative effects from the nonperturbative ones, and one should rather speak about separation of the short distance effects from the long distance ones.

Eqs. (22), (23) determine the asymptotic suppression of the domain \(m_b \gg \epsilon \gg \Lambda_{\text{QCD}} \) when the heavy quark mass goes to infinity,

\[
S \sim m_Q \left(\frac{8}{3} \ln \frac{\alpha_s(m_Q)}{\Lambda_{\text{QCD}}} + \text{const} \right) \to m_Q \left(-\frac{8}{3} \ln \ln \frac{m_Q}{\Lambda_{\text{QCD}}} \right). \tag{28}
\]
It, thus, formally decreases faster than any finite power of m_Q. More instructive is the behavior of the spectrum as a function of ϵ when m_Q is asymptotically large but fixed. Eq. (23) shows that the formfactor S at small $\epsilon < \mu$ behaves like some power of ϵ:

$$S \sim \epsilon^{\frac{16}{3} \left(\ln \frac{\alpha_s(\mu)}{\sqrt{m_b}} - 1 \right)} \sim \epsilon^{\text{const}(m_b) + \frac{4}{3} \ln \alpha_s(\mu)} \sim \epsilon^{\epsilon_0(\mu)}.$$ \hspace{1cm} (29)

The critical exponent ϵ_0 actually depends on the normalization point, rather weakly though, as long as one stays within the domain of validity of the perturbative treatment \[54\]. The variation of ϵ_0 upon changing normalization point μ is calculable and is given by

$$\mu \frac{d\epsilon_0(\mu)}{d\mu} = -\frac{4}{3} \frac{\alpha_s(\mu)}{\pi} + O(\alpha_s^2(\mu)) + O(\alpha_s(\sqrt{m_b} \mu)) \hspace{1cm} (30)$$

Again, one cannot use this expression with too low of a normalization point, $\mu \sim \Lambda_{\text{QCD}}$, and, thus, determine a universal scaling law for the perturbative distribution function.

The results which were presented in Sect. 4.3 take into account all terms of the form $(\alpha_s \ln^2 m_b/\epsilon)^k \cdot (b \alpha_s/\pi)^l$. In other words we allow to loosen the Sudakov logarithms provided that the correction contains b, the first coefficient in the Gell-Mann-Low function. Thus, the approximation we work with can be called all order BLM-improved double logarithmic approximation (it will be referred to below as ‘natural’). It is similar to the approximations, often rather sophisticated, used in applications to problems where the Sudakov-type effects appear. The most crucial difference is the explicit introduction of the separation scale μ. Although b is not a true free parameter in QCD, its numerical value is rather large, and similar BLM-type approximations often work rather well. What is even more important for us, within the natural approximation we are able to capture main features of the full result. Some of them are of a rather subtle nature and are often misunderstood in the literature.

The BLM prescription treating b as a formal parameter allows one to determine the appropriate scheme which must be used for the strong coupling – Eqs. (19), (21), (22) – (24) and others are valid if α_s is understood in the V scheme. On the other hand, say, the precise kinematical boundaries of integrals in terms of ϵ, μ and m_b cannot be fixed in this way. For example, changing everywhere in the integrals determining $w(E) \epsilon \rightarrow 2\epsilon$ or $m_b \rightarrow 2m_b$ does not lead to the terms of the form $(\alpha_s \ln^2 m_b/\epsilon)^k \cdot (b \alpha_s/\pi)^l$ summed up within the natural approximation; their consistent computation requires an honest calculation of the next-to-leading terms and is very involved.

An improvement of the Sudakov-type calculations was considered in the recent publication \[55\]. The results obtained there provide one with the better accuracy in determining the m_b dependence of the spectrum for asymptotically large mass. They can not be directly applied, however, to the solution of our problem, since the separation scale μ was not explicitly introduced. The moments \[53\] we would
need to consider require integrating the anomalous dimensions in the region below the infrared pole. On the other hand, introducing the normalization point μ the way we do would violate the scale invariance, a crucial component of the method of Ref. [55].

Even leaving this aspect aside, determining the spectrum from the moments presented in [55] is a difficult problem. In the next section we propose an alternative approach which can be carried through rather straightforwardly and is expected to provide sufficiently good accuracy in $b \to s\gamma$ transitions.

4.5 A Suggestion for Further Improving $d\Gamma^{\text{pert}}/dE$

Combining the BLM prescription with the classical Sudakov calculation is already an improvement, beyond any doubt. However, as we have just noted, this natural approximation does not distinguish, say, between m_b and $2m_b$ in the argument of the logarithms. The logarithm is far from being asymptotically large in the b decays, and significant progress in experimental data on the $b \to s + \gamma$ spectrum will call for a more refined theoretical description of the perturbative part of the spectrum. One will have to address two different questions, namely further improvement of the bremsstrahlung spectrum, and calculation of corrections to the weak decay vertex itself (which is not exactly local). The latter complication has been briefly addressed in Sect. 2, and we focus now on further improving the accuracy of the bremsstrahlung spectrum. The consistent summation of all subleading logarithms is clearly an unrealistic task, the more so that we want to do it in a way compliant with the Wilson OPE, i.e. discarding the infrared domain in the perturbative calculation. Therefore, we are putting forward a suggestion resulting in what we will call “the advanced perturbative spectrum” (APS), combining the exact first-order result, the Sudakov summation of the logarithms and the extended BLM improvement.

(i) Since $\ln (m_b/\mu)$ is not a particularly large parameter we believe that it is sufficient to exactly calculate a few first orders in α_s (in the simplest version – merely the exact one-gluon expression) still continuing the summation of exploding double logarithms. For $m_b \simeq 4.8 \text{ GeV}$ the terms $O(\alpha_s)$ seem to be more important numerically than even the next-to-leading logarithm, $O((\alpha_s^2/\pi) \ln (m_b/\mu))$ (at least when the latter is not related to the running of the coupling).

(ii) One should continue to use the expression for the perturbative spectrum (12),

$$\frac{d\Gamma^{\text{pert}}}{dE} = -\Gamma(\mu) \frac{dS(E; \mu)}{dE}$$

(31)

with the exponentiated form of the Sudakov formfactor (18); however, the exponent $w(E; \mu)$ is calculated now as the exact first order probability of the gluon emission within the kinematical constraint that the resulting photon energy is less than E, rather than the double logarithmic probability as in Eq. (17).

The parameter μ must be introduced in such a way as to isolate and suppress the infrared part. In the double logarithmic approximation this goal was easily achieved
by discarding the low k_\perp part of the k integration. Now we can do the same job by introducing a fictitious “gluon mass”. The density matrix in the gluon propagator is kept the same (e.g., in the Feynman gauge it is $\delta_{\alpha\beta}$) while the Green function $k^{-2} \to (k^2 - \mu^2)^{-1}$. This “gluon mass” does not lead to any bad consequences in the one-gluon graphs (exponentiation does not count), which are the same in the abelian and non-abelian theories; in the abelian theory the mass term does not violate the conservation of the (abelian) current. The same trick was proposed recently in a different context [46, 56, 47] and we refer the reader to these publications for further comments.

To the first order in α_s the probability of the gluon emission (leading to the photon energy less than E) is given by

$$w(E; \mu) \equiv \alpha_s W(E; \mu^2) =$$

$$= \frac{1}{\Gamma(\mu)} \frac{1}{64\pi^3 m_b} \theta(E_0 - E) \int_0^E dE' \int_\Delta^{(1 - \frac{2E'}{m_b})^{-1}} dp_s |A(E', p_s, \vartheta)|^2$$

(32)

where

$$E_0 = \frac{m_b}{2} - \frac{\mu^2}{2m_b}, \quad \cos \vartheta = 1 + \frac{m_b}{E'} \left(\frac{E_0 - E'}{p_s} - 1 \right), \quad \Delta = E_0 - E'.$$

In the above equation E' is the photon energy, p_s is the energy (momentum) of the strange quark and ϑ is the angle between the momenta of the photon and the quark; $|A(E', p_s, \vartheta)|^2$ denotes the amplitude squared summed over polarizations of all particles in the final state [57] and color configurations; it depends on μ through kinematics. It is directly calculable but the analytic expression is too lengthy and is not important for our discussion. We have introduced above $W(E, \mu)$, the probability of having the photon with energy less than E, in the one-gluon approximation, with the factor α_s separated out. This quantity will be useful in what follows.

The total width $\Gamma(\mu)$ is obtained by the exact calculation of the decay width within the same (viz., first order in α_s) approximation [58]. The formula for the perturbative spectrum obtained in this way has obvious advantages. On the one hand, it gives the exact expression for the one-loop spectrum (with massive gluon) if expanded in α_s. On the other, it automatically leads to the summation of the double logarithms near the endpoint region where the one-loop expressions explode for large m_b/μ. At the same time, it respects the exact relation between the contributions of real and virtual gluons. This completes the first part of our suggestion.

(iii) The next step of our program that naturally follows from analysis in Sect. 4.3 is to BLM-improve this exact one-loop formula by using the running strong coupling, thus promoting it to the status of the advanced perturbative spectrum. Again, both the exponent $w(E, \mu)$ and the overall normalization $\Gamma(\mu)$ must be calculated within the same procedure.

Warning: we do not claim that the exponentiation of the exact $O(\alpha_s)$ amplitude (or even of the BLM-improved one) reproduces the full result in all orders, as is
the case with the standard Sudakov double logarithms. Moreover, we are unaware of any adjustable parameters that will control the accuracy of this prescription. Nevertheless, arguments can be given that numerically it must have a good accuracy in the problem at hand. It is important that the corrections to exponentiation are proportional to higher powers of $\alpha_s(\mu)$ (or even evaluated at higher scales), and, therefore, are to be calculated completely within perturbation theory.

Calculation of $w(E; \mu)$ in the BLM approximation accounting for the running of α_s can be easily done explicitly; it can be written as the integral over the fictitious gluon mass of the width introduced in Eq. (32), i.e. as a simple three-dimensional integral. The concrete expression is too cumbersome due to lengthy expression for the tree-level decay amplitude itself, and will be given elsewhere. The main technical complication is that this BLM-improved calculation must be done respecting the separation of low and high momentum scales required by OPE. The purpose of the discussion below is to show explicitly how it can be accomplished in a straightforward way.

4.6 Outlining a Method for Introducing μ beyond the Leading Logarithmic Approximation

The extended BLM-improvement of the one-gluon graphs *per se* is a rather simple technical exercise for Euclidean quantities where one merely uses the gluon propagator in the form $\alpha_s(k^2)/k^2$ with the running α_s inside the integrand [38, 39, 47, 48]. Moreover, it can be directly generalized for the quantities of the type of decay widths which are formulated in Minkowski space [46, 47, 59]; the results, however, cannot be used in the all-order resummed form in the both cases because one encounters the unphysical infrared pole in the gluon propagator which has wrong analytical properties. This problem is absent in the OPE-based approach where the contribution of low momentum domain is excluded from the perturbative coefficient functions.

Introduction of the hard infrared cutoff is rather trivial in the extended BLM approximation for the Euclidean integrals (see Refs. [38, 48, 53] for examples). However, such method is not directly applicable to the Minkowski integrals. Moreover, application of OPE to the inclusive widths introduces some peculiarity absent in the analysis of Ref. [47], and we briefly discuss it here. Details of the derivation and the complete discussion of the approach will be given in a separate publication [60].

Thus, our task is to eliminate the soft gluon part in the coefficient functions. This task can be achieved in two steps. First, we soften the theory in the infrared domain by introducing the gluon mass. In the BLM approximation the mass term can be added by hand; otherwise one could have introduced the gluon mass through the Higgs mechanism. If this mass is larger than Λ_{QCD} the effective color interaction never becomes strong. Then we calculate the coefficient functions in this softened theory.

Even though the theory is now softened in the infrared domain, our result for the coefficient function will still contain some (power suppressed) residual contributions
coming from the infrared domain. We still have to subtract them, but now the subtraction is much easier to do than in the unmodified QCD because the modified theory is not strongly coupled in the infrared domain. The subtraction can be carried out to any given order, and the procedure will presumably converge. Implementing this strategy which seems to be applicable rather universally (at least in principle), we go beyond the practical version of OPE \[21\].

A subtle point should be noted immediately. Modifying the theory in the infrared domain for calculational purposes we must ensure that it is not modified at large momenta – otherwise, instead of solving the technical problem of building the correct OPE in QCD we will be merely dealing with a different theory. In the procedure we suggest this latter requirement can be met to any given (fixed) order in the power series.

The advantage of introducing the separation scale \(\mu \) in the above way over the hard cut off in the Euclidean integrals, with the subsequent analytic continuation to the Minkowski domain, is rather obvious, even leaving aside purely computational aspect. In doing so we do not violate the analytical properties of the theory (and, therefore, the perturbative coefficients themselves) – the feature which cannot be achieved if eliminating of the low-energy contribution is carried out in the “hard” way. It is worth emphasizing that the procedure of softening is a technical device for OPE-based calculations. In particular, the short-distance parts of the amplitudes are not required to be unitary – the unitarity holds only for the complete physical amplitude.

How is this general strategy is implemented within the extended BLM routine? The substitution \(\alpha_s/k^2 \rightarrow \alpha_s(k^2)/k^2 \) for the renormalon chain in the integrand leads to the Landau pole at the (Euclidean) point \(\Lambda_{QCD}^2 \) where no singularities are allowed. However, one can merely shift this pole, by hand, to a Minkowski point \(-\mu^2\),

\[
\frac{\alpha_s(k^2)}{k^2} \delta_{\alpha\beta} \rightarrow \delta_{\alpha\beta} \left(\frac{\alpha_s(k^2)}{k^2} - \frac{4\pi}{b} \frac{1}{k^2 - \Lambda_{QCD}^2} + \frac{4\pi}{b} \frac{1}{k^2 + \mu^2} \right). \tag{33}
\]

Here we use a convention according to which \(k^2 \) is Euclidean. The one-loop expression for the running \(\alpha_s \) is implied. Here and below all couplings and \(\Lambda_{QCD} \) refer to the \(V \) scheme. Of course, the large \(k^2 \) asymptotics is changed, but only at the level \(k^{-4} \), which is important for power corrections. This drawback can be eliminated through any given order in the power series.

If we want to keep (a finite number) of the power corrections we must ensure that by modifying \(\alpha_s(k^2)/k^2 \) in the infrared domain we do not spoil the ultraviolet asymptotics, up to the level of the power terms we are interested in. Then we could choose, for instance, the infrared regularization as follows:

\[
\frac{\alpha_s(k^2)}{k^2} \delta_{\alpha\beta} \rightarrow G^{BLM}_{\alpha\beta}(k^2; \mu) = \delta_{\alpha\beta} \left(\frac{\alpha_s(k^2)}{k^2} - \frac{4\pi}{b} \frac{1}{k^2 - \Lambda_{QCD}^2} + \frac{4\pi}{b} \frac{1}{k^2 + \mu^2} \right) + \]

22
where \(l \) is a finite number corresponding to the number of Pauli-Villars subtractions. This function coincides with the unsoftened resummed propagator \(\alpha_s(k^2)/k^2 \) at \(k^2 \gg \mu^2 \) up to terms \(\sim \mu^{2+2}/k^{2l+4} \) and, thus, allows one to treat properly (within the accuracy of extended BLM) the condensate corrections through dimension \(2l \) (excluding the dimension of the heavy quark fields themselves). For instance, to address the effect of the kinetic energy operator it is \(a \ priori \) necessary to use \(l > 1 \).

If this infrared regularization method is accepted, the result of all-order BLM-summation for the generic inclusive width, \(\omega_{\text{BLM}}(\mu) \), (in our case it is \(\omega_{\text{BLM}}(E; \mu) \)) can be expressed as an integral over the “gluon mass” over the one-loop value of \(\omega \) obtained with the gluon mass \(\lambda \), \(W(\lambda^2) \) with a certain weight function \(\phi_{\text{BLM}} \):

\[
\omega_{\text{BLM}}(\mu) = \int_0^\infty \frac{d\lambda^2}{\lambda^2} W(\lambda^2) \phi_{\text{BLM}}(\lambda^2; \mu) .
\]

(35)

This expression is similar to the one obtained in Refs. [47]; however, \(\phi_{\text{BLM}} \) depends explicitly on the normalization point \(\mu \) and is not a function of only the “effective gluon mass” \(\lambda \) as was the case in the analysis of Refs. [47]. Moreover, it has quite different properties. It is given by the imaginary part of the gluon propagator in Eq. (34),

\[
\phi_{\text{BLM}}(\lambda^2; \mu) = \frac{1}{4} \text{Im} G_{\alpha\alpha}^{\text{BLM}}(\lambda^2; \mu) =
\]

\[
= -\frac{4\pi}{b} \frac{1}{\ln^2 \frac{\lambda^2}{\Lambda_{\text{QCD}}} + \pi^2} + \frac{4\pi}{b} \delta(\lambda^2 - \mu^2) + \frac{4\pi}{b} \sum_{n=1}^l \frac{(\mu^2 + \Lambda_{\text{QCD}}^2)^n}{n!} \delta(n)(\lambda^2 - \mu^2) .
\]

(36)

The first (regular) term in \(\phi_{\text{BLM}} \), when substituted in Eq. (35), represents the perturbative contribution of the continuum existing for all invariant masses \(\lambda^2 \). The sign of this continuum contribution is negative; this is a reflection of the asymptotic freedom. The delta function terms have the right (positive) sign. Hence, this continuum contribution is a correction diminishing the probability. The \(\delta \)-like terms in Eq. (36) have the meaning of the probability of emission of the gluon with the mass \(\mu \) (with small corrections \(\sim \mu^{2n} \) making up for the short distance dependence of this width compared to the actual massless case). The appearance of such local terms with higher derivatives is typical when one applies the OPE procedure to the spectral densities in Minkowski space [60].

In principle, derivation of Eq. (35) assumes that \(W(\lambda^2) \) is an analytical function of \(\lambda^2 \) at \(\lambda^2 \ll \mu^2 \). This is always valid in the consistent application of OPE: a closer singularity would imply the presence of other “soft” propagators and would mean that they have not been properly regularized in the infrared by adding the
corresponding operators in the OPE. In our particular case of the first order gluon emission probability \(W(E; \lambda) \), a singularity in the gluon mass \(\lambda \) occurs only at \(2m_b - E \simeq \mu^2/m_b \), i.e. only in the region of the “miniwindow”. Therefore, this requirement is met.

In the formal limit, \(\mu^2 \to 0 \), one essentially reproduces the expressions of Refs. [47] where in the latter the principal value prescription is used for treating the Landau singularity. This limit cannot be taken, however, if one wants to make OPE-compatible analysis and to address nonperturbative effects.

The specific form of the infrared softening is not very important. We have done it by adding \(\delta \)-functions in \(\phi_{BLM}^{BLM}; \) alternatively, one could have used some smeared functions. The only constraint to be observed is that the first \(l \) moments of \(\phi_{BLM}^{BLM} \) must remain the same. For example, one can consider \(\phi_{BLM}^{BLM} \) completely vanishing in the vicinity of \(\lambda^2 = 0 \) which would yield the propagator analytical at \(k^2 = 0 \).

Generically, the gluon Green function in the Euclidean becomes then

\[
G_{\alpha\beta}^{BLM}(k^2; \mu) = \delta_{\alpha\beta} \int_0^\infty d\lambda^2 \frac{\phi_{BLM}^{BLM}(\lambda^2; \mu)}{k^2 + \lambda^2}. \tag{37}
\]

As long as the moments are preserved all expressions of this type are equally suited for the OPE. Different choices merely correspond to somewhat different cutoff procedure, and the matrix elements of the dimension \(n \) operators then differ by perturbatively calculable terms \(\sim (\alpha_s(\mu)/\pi)^k \mu^n \).

Similar to the approach of Refs. [47], upon integrating by parts the integral over the gluon mass in Eq. (35) can be rewritten in the form resembling integration over the gluon virtuality with an effective strong coupling \(\alpha_s^{eff} \). The quantity that plays the role of the distribution over the gluon virtuality \(\lambda^2 \) is \(-dW(\lambda^2)/d\lambda^2\); however, \(\alpha_s^{eff} \) depends on both \(\mu \) and \(\lambda \) and also contains local terms:

\[
w^{BLM}(E, \mu) = \int_0^\infty d\lambda^2 \alpha_s^{eff}(\lambda; \mu) \frac{-dW(\lambda^2)}{d\lambda^2} - \frac{4\pi}{b} \left(W(\mu^2) - W(0) \right) + \frac{4\pi}{b} \sum_{n=1}^l \frac{(-\mu^2 - \Lambda_{QCD}^2)^n}{n!} \frac{d^n W(\mu^2)}{(d\mu^2)^n} \tag{38}
\]

where

\[
\alpha_s^{eff}(\lambda; \mu) = -\int_{\lambda^2}^\infty dk^2 \frac{\phi_{BLM}(k^2; \mu)}{k^2} = \frac{4}{b} \left[\frac{\pi}{2} - \arctan \left(\frac{\ln \frac{\lambda^2}{\Lambda_{QCD}^2}}{\pi} \right) \right] , \tag{39}
\]

with \(\alpha_s^{eff}(\infty) = 0 \) and \(\alpha_s^{eff}(0) = 4\pi/b \). One can formally introduce the “full” coupling \(\tilde{\alpha}_s^{eff} \) which combines all terms:

\[
\tilde{\alpha}_s^{eff}(\lambda; \mu) = \frac{4}{b} \left[\frac{\pi}{2} - \arctan \left(\frac{\ln \frac{\lambda^2}{\Lambda_{QCD}^2}}{\pi} \right) \right] - \frac{4\pi}{b} \theta(\mu^2 - \lambda^2) -
\]

24
\[-\frac{4\pi}{b} \sum_{n=1}^{l} \frac{(\mu^2 + \Lambda_{QCD}^2)^n}{n!} \delta^{(n-1)}(\lambda^2 - \mu^2)\]

which is legitimate for smooth $W(\lambda^2)$; otherwise one can use a regular “smeared” representation for local terms as was mentioned above.

For high momenta, when $\lambda^2 \gg \mu^2 \gg \Lambda_{QCD}^2$, the effective couplings $\alpha_s^{\text{eff}}(\lambda; \mu)$ and $\tilde{\alpha}_s^{\text{eff}}(\lambda; \mu)$ coincide with the usual strong coupling $\alpha_s(\lambda)$. However, $\tilde{\alpha}_s^{\text{eff}}$ vanishes for small gluon momenta which reflects the fact of excluding the low momentum (Euclidean) region instead of assuming a model behavior of the gluon propagator in Ref. [47]. One still has to keep in mind that all effective couplings introduced above depend (in the infrared region) on μ and, in particular, on the exact way the normalization point is introduced; on the other hand, the physical results are scheme-independent, and therefore the effective couplings cannot have a direct physical meaning in the low energy domain whatever technical convenience they grant. Further details will be available from [60].

Let us briefly illustrate how relation (38) works in simple cases. Consider, for example, the total inclusive width of a heavy flavor, say, the process $t \to b + W (+\text{gluon})$ [46]. The one loop correction to the decay width $\Gamma^{(1)}(\lambda^2)$ decreases fast for $\lambda^2 \gg m_t^2$ (it does not vanish for $\lambda > m_t - M_W$ because virtual corrections are present for arbitrary finite gluon mass). On the other hand, for $\lambda^2 \ll (m_t - M_W)^2$ it is practically independent of λ. Therefore with the logarithmic accuracy it can be approximated by the step-function, $\Gamma^{(1)}(\lambda^2) \approx \theta(m_t^2 - \lambda^2) \Gamma^{(1)}(0)$; then one immediately recovers the obvious result that the proper momentum scale for the strong coupling in the one loop correction is of the order of m_t.

To summarize this Section, we believe that the general method suggested above can provide one with a very good theoretical accuracy of describing the perturbative corrections to spectrum in a number of applications ($b \to s + \gamma$, semileptonic decays etc.) in the OPE compliant way. Let us repeat the necessary steps. First, one calculates the decay rate of interest to the first order in α_s with the nonvanishing gluon mass. (In the case of the photon spectrum in $b \to s + \gamma$ one calculates the first order probability to have photon with energy below E). Then, fixing the normalization point μ and using Eqs. (35)–(40) one sums up all perturbative corrections in the BLM approximation to get the “BLM-improved” Sudakov exponent and the total width which explicitly depends on the normalization point through the effective coupling. Then the decay distribution is given by Eq. (31) which exponentiates the gluon exchanges. Though looking somewhat cumbersome, this procedure can be done numerically in a straightforward manner.

The very same strategy can be literally applied to semileptonic decays as well; the only technical difference is that here one first needs to fix the invariant mass of leptons q^2 and, at the final stage, integrate over q^2. The contribution of the region of maximal q^2 in the case of $b \to u$ transitions can be treated within OPE as described in detail in Ref. [51].
5 Full $b \to s + \gamma$ spectrum

The full observable spectrum is obtained by convoluting the perturbative spectrum with the primordial distribution function responsible for the heavy quark motion due to the soft gluonic medium. The precise form of the convolution deserves a special discussion.

An obvious similarity exists between the classic theory of deep inelastic scattering (DIS) [62] and the OPE-based theory of the spectra in the inclusive heavy quark decays [10, 11, 12]. In both cases the expansion runs over twists, not dimensions, and the predictions are originally formulated for the moments of certain functions and are given by matrix elements of local operators times calculable coefficient functions (the latter carry all dependence on the large parameter, Q^2 in DIS or m_Q in the heavy flavor decays). The operators must be normalized at a scale which stays finite when Q^2 or m_Q tend to infinity. Then the statement of factorization of the large and short distance contributions in the moments is translated into the convolution of the primordial soft function with the one describing perturbative evolution due to the hard gluon emissions. In DIS this is the essence of the Gribov-Lipatov-Altarelli-Parisi equations [63].

However, there are some differences between the two cases – in essence, kinematical – and a straightforward extension of the parton-model language and all formulae we are used to in DIS to the theory of the spectra in the inclusive heavy quark decays can be unjustified. The main difference is as follows. The moments predicted in DIS are the moments of the structure functions $F(x)$, $0 < x < 1$, with respect to the Bjorken variable x. If we know a large but finite number of moments (i.e. a number not scaling with Q^2 when $Q^2 \to \infty$) we know $F(x)$ in the whole physical domain $0 < x < 1$ (with a certain accuracy). Now, in the problem of spectra the appropriate variable x is defined in Eq. (5). The knowledge of a finite number of moments with respect to this x determines the distribution function only in the window $0 < x < 1$ and in the nearby endpoint domain $-1 \lesssim x < 0$. One needs to consider the moments through order $\sim m_Q/\Lambda_{\text{QCD}}$ to address the whole spectrum, including the low E domain, in the heavy flavor decays. For such high moments the standard analysis does not apply. Thus, the standard convolution of the primordial and hard components (e.g. Eq. (79) in Ref. [12]) is valid only in the endpoint domain; what form is valid for lower values of E is a question to be answered.

The reasoning in Ref. [12] was applied to the endpoint spectrum. In the present paper, for practical purposes, we need to have an expression in the whole kinematical region $0 < E < M_B/2$. Fortunately, it is very easy to answer the question what happens outside the endpoint domain. We know for a fact, from the OPE analysis, that at these values of E the motion of the heavy quark inside B affects the physical spectrum only at the level of $1/m_b^2$ corrections. Since such corrections are consistently neglected in the present paper the proper convolution formula should be written in such a way that outside the endpoint domain the physical and perturbative spectra be the same up to terms $O(m_Q^2)$.
In fact, the answer can be prompted by a physical picture where one takes the b quark at rest and then boosts it to a moving reference frame to take account of the primordial motion. This suggests that

$$\frac{1}{\Gamma} \frac{d\Gamma_B}{dE} = \int_{-\infty}^{1} dx \, F(x) \cdot \left(1 - \frac{\Lambda}{M_B} x \right) \frac{d\Gamma_b^{\text{pert}}}{dE} \bigg|_{E'} \quad (41)$$

where

$$E' = E - \frac{\Lambda}{2M_B} x .$$

This expression is obviously equivalent to Eq. (6) if E is close to $m_b/2$, up to higher orders in $1/m_b$ distinguishing M_B from m_b. Moreover, both forms of the convolutions are always equivalent where the perturbative spectrum is smooth and can be Taylor expanded. Say, outside the endpoint domain (but not for $E \sim \Lambda_{\text{QCD}}$) the difference between evaluating the perturbative spectrum at E, E' or $E - \Lambda x/2$ is noticeable only in the next order in $1/m_b$ (and for the convolution, only in $1/m_b^2$) which is precisely what we wanted.

The actual difference between Eqs. (6) and (41) can show up only at the points where the perturbative spectrum is singular. In principle, it happens at two points – at $E = m_b/2$ (for the massless s quark) and at $E = 0$. At $E = m_b/2$ the formulae coincide, as was mentioned above. One must, therefore, address only the point $E = 0$ where the perturbative spectrum contains explicit $\theta(E)$ just due to the photon phase space.

Before doing it, let us comment on Eq. (41) from a different perspective. This equation sums up all leading twist contributions in the expansion of the transition amplitude, which shape the endpoint spectrum (for decays into light quarks) and is formally valid everywhere, $0 < E < M_B/2$. However, outside the endpoint domain the summed terms are not dominant and give corrections of the same order as some of the higher twist operators neglected in the expansion.

Now, consider small E. A formal derivation of the full spectrum can be carried out using the approach of Ref. [12] where the complete transition amplitude is considered first in the complex plain. One then observes that originally, instead of the perturbative spectrum, the convolution goes with a certain structure function (the discontinuity of the hadronic tensor corresponding to the quark process describing the hard gluon emission). This structure function is directly related, up to trivial kinematical factors, to the perturbative spectrum in the physical domain, but it is smooth at $E = 0$; the vanishing of the perturbative spectrum at $E < 0$ is ensured by a kinematical factor representing the photon phase space which contains $\theta(E)$. This structure function has singularity only near $E = m_b/2$ and, perhaps, at some other distant unphysical points.

Since the structure function above is smooth at zero, the convolution with the primordial distribution function in the small E domain has no effect whatsoever; one just reproduces the perturbative result. This is not what is done in Eq. (6) which merely ignores the phase space factor singularity absent for other values of
Taking account of this subtlety at small E leads to Eq. (41) which is written in such a way that this effect of the primordial smearing is just absent at all for small E: the smearing goes over the interval in E which is itself proportional to E; more essentially, the interval never covers the point $E = 0$. The last factor in Eq. (6) is introduced ad hoc to ensure the correct normalization (to unity); it is formally of higher order in $1/m_b$.

6 Analysis

At the present level of experimental data it seems premature to use APS in the numerical analysis. Thus, we return to the approximation called “natural” in Sect. 4.4 – exponentiated double logarithms all order BLM-improved. In other words, in practice we use the expressions for the perturbative spectrum given by Eq. (25) with the Sudakov exponent in Eqs. (22)–(24).

The form of the convolution exploited to obtain the theoretical spectrum of direct photons in $b \to s + \gamma$ decay is given in Eq. (41). The value of the strong coupling is taken following from the one loop value $\Lambda_{QCD}^{(V)} = 300$ MeV (in the V scheme) which nearly corresponds to $\alpha_s^{V}(2.3 \text{ GeV}) = \alpha_s^{MS}(1 \text{ GeV}) = 0.336$ as suggested by the most accurate low energy analysis [64]. In view of the poor experimental data available we limit ourselves to the primordial distribution functions with $k = 1$ only.

Fig. 2 shows the full spectrum (solid line) obtained for the theoretically preferable choice of parameters $\mu_2^2 = 0.5 \text{ GeV}^2$ [30, 31] and $m_b(\mu) = 4.67 \text{ GeV}$ [64, 65] where we use the normalization scale $\mu = 0.7 \text{ GeV}$; the dependence of m_b on the normalization point is assumed to be given by Eq. (26) [66]. The dashed line shows the corresponding nonperturbative spectrum which thus is based on $\Lambda(\mu) = 610 \text{ MeV}$ ($a_2 = 0.45$ obtained with $\alpha = 0.4$ and $\beta = b/c = 6.4$, see Sect. 3). We also show purely perturbative spectrum stemming from Eqs. (22)–(25) with $\Lambda_{QCD}^{(V)} = 300 \text{ MeV}$ and $\mu = 0.7 \text{ GeV}$; the area under the δ-function peak constitutes numerically 0.45 of the total perturbative width. It is clearly seen that the account for the perturbative corrections essentially modifies the resulting spectrum [12]; first of all, it decreases the height of the maximum by a factor of 2.5, and also noticeably broadens it.

The exact position of the normalization scale $\mu = 0.7 \text{ GeV}$ used above was chosen rather arbitrarily, just to meet the two usual requirements – to have it as small as possible compared to m_b and, on the other hand, still have the perturbative expansion parameter $\alpha_s(\mu)/\pi$ sufficiently small. Certainly, this still allows a significant variation of this scale. Fig. 3 illustrates the dependence of the full spectrum on the choice of μ; however, varying μ we must supplement it by related change in $m_b(\mu)$ in the perturbative spectrum and $\Lambda(\mu)$ in the primordial distribution function. We used the literal form of Eq. (26) (see also Ref. [53]) to determine the corresponding masses. In principle, in the test of the μ independence of the physical spectrum the value of μ_2^2 should also have been varied as a function of normalization point. We did not do that since numerically the most important effect is due to the change of
\(\bar{\Lambda}(\mu)\).

The solid line in Fig. 3 is obtained with the same, central, choice of parameters as in Fig. 2; dashed line represents the high normalization point \(\mu = 1\text{ GeV}\) and the long-dashed curve shows the case of low \(\mu = 0.4\text{ GeV}\); the overall normalization is the same for the three curves, unity. If \(m_b(0.7\text{ GeV}) = 4.67\text{ GeV}\) then the corresponding mass values for other normalization points are \(m_b(1\text{ GeV}) = 4.58\text{ GeV}\) and \(m_b(0.4\text{ GeV}) = 4.83\text{ GeV}\). The value of \(\mu_\pi^2 = 0.5\text{ GeV}^2\) was kept fixed which assumed rather different values of \(a_2\), 0.34 and 0.83, respectively. The normalization point \(\mu = 0.4\text{ GeV}\) is probably too low to be taken seriously. It is considered only for illustrative purposes, as an extreme case.

Although both the perturbative spectrum and the primordial distribution separately look very different for the three choices of the normalization point, the full spectra are very much alike. We stress once more that it was crucial to use the proper normalization point dependence of the heavy quark mass in order to get this similarity; using a universal, or “true”, mass as sometimes suggested would lead to essentially different spectra. This transparent demonstration of the physical relevance of the running \(b\) quark mass is an exact analog of a similar example analysed in Ref. [34] for the case of the small velocity (SV) kinematics.

The three curves in Fig. 3 are not exactly identical. A small difference emerges for a few reasons. First, it reflects the finite value of the \(b\) quark mass; therefore higher terms in \(1/m_b\) neglected in our analysis give finite contribution. We also used approximate expression for the perturbative spectrum. Second, it is due to the rather limited flexibility of the used ansatz for the primordial distribution: in principle, the functional form we adopted is not preserved by the renormalization from one value of \(\mu\) to another. This makes it important to use a physically justified choice of \(\mu\). However, the very fact that the full spectrum does appear to depend weakly on \(\mu\) indicates that our approximations work quite well.

Turning to comparison of theoretical predictions with data [1], we have to admit that the latter are rather crude at the moment to draw any well justified definite conclusions. Nevertheless it is fair to say that the theoretical spectrum for the preferred values of parameters fits well with what is seen in experiment. In any case, keeping in mind the fact that the experimental analysis which lead to the few experimental points we used, was rather involved, their naive fit with any theoretical prediction per se is hardly justified at the moment; the correct conclusion can be made only if the comparison to theory is incorporated into the analysis at early stage, and, therefore, it must be left for experiment itself. For this reason in our present analysis we aim only at tentatative conclusions and rather try to illustrate the sensitivity of the spectra to underlying theoretical parameters; this procedure can give an idea of what kind of precision one can expect in determination of these parameters from future accurate measurements. In other words, in varying input parameters we, to some extent, take more literally the theoretical spectrum obtained for the central values of parameters as representing the possible experimental shape, and compare other spectra with this hypothetical one.
In Fig. 4 we show the full spectrum in its high energy part varying the b quark mass: $m_b(0.7\text{ GeV}) = 4.67\text{ GeV}$ (solid line), 4.58 GeV (dashed line) and 4.83 GeV (long-dashed line); these (rather odd at first sight) values are the same as in Fig. 3 where they merely correspond to the different choice of the normalization point. We stress that now the normalization point is fixed at 0.7 GeV. We choose to take the examples above to separately study the effects of independent varying mass or normalization point. The value of μ^2_π is kept fixed at 0.5 GeV^2. Experimental points are also shown, with arbitrary normalization; the normalization of all three theoretical spectra is the same.

In Fig. 5, on the contrary, we fix $m_b(0.7\text{ GeV}) = 4.67\text{ GeV}$ and try to vary μ^2_π between 0.25 GeV^2 (dashed line) and 0.75 GeV^2 (long-dashed line).

A look at Figs. 4 and 5 suggests [67] that at present all theoretically allowed range of parameters is consistent with the CLEO data [1], and, apparently, even noticeably wider range of parameters cannot be excluded. Still it seems that the most probable values of m_b and μ^2_π are likely to lie not far from our current theoretical expectation. Although, clearly, any more definite conclusion can emerge only from a dedicated experimental fit.

In relation to the future data, Fig. 4 shows that the endpoint spectrum is rather sensitive to the value of the quark mass, and it seems probable that the precise data on the photon spectrum will allow to determine it here with the accuracy of about 50 MeV. On the other hand, according to Fig. 5 the dependence of the shape on the expectation value of the kinetic operator is not too strong and the possibility to decrease the error in μ^2_π below 0.15 GeV^2 looks questionable, if one takes into account that the theoretical resolution in the photon energy one can pretend on in this approach, is not more than $\sim 50\text{ MeV}$.

7 Conclusions

Shortly after it was realized that the parton-model delta function in the $b \to s\gamma$ spectrum is substituted by a universal primordial distribution in $B \to X_s\gamma$ concerns were aired that the hard gluon radiation of the Sudakov type might totally wash away the endpoint peak, so that no traces of the primordial distribution will be visible. The main lesson we learn from the present work is that this is not the case. Although the hard gluon emission definitely smears the primordial function, when properly treated within OPE this perturbative smearing turns out to be quite modest. As is seen from the plots discussed in Sect. 5 the peak in the endpoint domain survives perturbative smearing and is quite conspicuous. We hasten to add that it is not an artefact of the finite value of m_b used in the numerical analysis. The survival of the primordial peak was anticipated in Ref. [12].

Several reservations must be made as to the accuracy of the various approximations we adopted. Being QCD-compatible, the theory we suggest is simplified in many aspects.
First, in the OPE analysis we dealt with the leading twist operators only. Higher twist operators will introduce $1/m_b$ corrections, generally speaking, in all relations derived above, which may or may not be numerically significant. We know for sure, however, that the higher twist operators are absolutely crucial in a part of the window, namely in the region which will be called resonance, $M_B/2 - E \sim \Lambda_{QCD}^2/m_b$. By definition, in this domain of the spectrum the hadronic system produced in the radiative B decay is just one low-lying strange resonance, like K^*. In the discussion above we ignored the existence of this region altogether, consistently repeating that the physical spectrum stretches up to $M_B/2$. This was not wrong in our approximation considering that the resonance domain is an effect showing up only at the (relative) resolution of $1/m_b^2$. However, since m_b is not academically large in practical terms it is impossible to ignore the existence of the resonance region, at least for pure kinematical reasons. The mechanism governing the hadronic transition in the resonance domain may be quite different—a form factor type mechanism. Then our prediction for the physical spectrum can not be valid point-by-point on the extreme right of the spectrum, when E approaches the kinematic boundary by distance of order Λ_{QCD}^2/m_b. This resonance domain occupies, roughly, $\sim 1/5$ of the window.

In general, since only the leading twist operators were considered, in this approximation one cannot, in principle, predict the spectrum with the energy resolution of the order of Λ_{QCD}^2/m_b. Before confronting theory and experiment a smearing over a larger interval of energy must be performed. The smearing is superfluous outside the resonance domain where the measured spectrum is smooth by itself. On the other hand, if there is any hope of extrapolating the prediction for the spectrum to the resonance domain, the prediction will refer to the smeared spectrum, not point-by-point.

With very little information about the high twist contributions, one can get an idea about the size of the smearing interval resorting to consideration of the impact of the $\rho - \pi$ or $K^* - K$ mass difference on the kinematics of the decay. (This splitting is the most transparent effect of the next-to-leading twist corrections.) The corresponding difference in the two body decay energy δE is given by

$$\delta E \simeq \frac{M_{K^*}^2 - M_K^2}{2m_b} \simeq \frac{M_{\rho}^2 - M_{\pi}^2}{2m_b} \simeq 60 \text{ MeV}. \quad (42)$$

We see, therefore, that the size of the resonance domain and the smearing interval, although formally scaling like Λ_{QCD}^2/m_b, is quite significant numerically.

It may have important practical implications. For example, the point-to-point extraction of the distribution function from experimental data in the region very close to the kinematic boundary, sometimes proposed for elimination of the model dependence of the endpoint determination of V_{ub}, is not likely to be accurate enough for that reason.

On the other hand, the effect of inclusion of the current quark mass m_s in the analysis is minute and can be safely neglected: it scales like $m_s^2/2m_b$ (or is linear
in m_s in higher twists), and is much smaller numerically than the effects discussed above.

Addressing the phenomenological implications of our analysis, we report that in spite of the crude nature of the current data for the photon spectrum in $B \to X_s\gamma$, it is still possible to conclude that the current theory including both, perturbative and nonperturbative effects, is consistent. Moreover, the existing theoretical estimates for m_b [64] and μ_π^2 [30, 31] generate the spectrum which seems rather close to the data, rather than lying near the edge of contradicting them. Bearing in mind a very crude character of the existing data points we did not attempt any χ^2 fit of the data that would allow us to extract m_b, and μ_π^2. With data becoming more accurate such a fit will become a necessity.

We emphasize that our analysis in the future, when more exact data will appear, will change only in a technical sense. First, one needs to go beyond the “natural” approximation used in the present paper and rely on APS, as it is described in Sects. 4.5–4.6. The full $O(\alpha_s)$ calculation of the effective $b \to s + \gamma$ vertex is also desirable if one wants to consider the whole spectrum and not only the endpoint region, for example, address the total decay width on a parallel footing. Second, one may need to consider a more general ansatz for the primordial distribution function $F(x)$, say, put $k = 3$, which allows a much wider variety of shapes of the primordial distribution. Then even some experimental estimates of the third moment may be obtained.

With new precise experimental data one can hope to get a rather good independent estimate of the running mass m_b at a relatively low normalization point with an accuracy as high as ~ 50 MeV. Also, a reasonable estimate will be possible for the kinetic matrix element μ_π^2; the accuracy of ~ 0.1 GeV2 is conceivable here. We must note that the primordial distribution (depending on the low-energy parameters) is still rather significantly smeared by the short-distance perturbative effects. For this reason the apparent effect of varying the low-energy parameters is softened and their determination would require a dedicated analysis. The intervention of short distance corrections is much less pronounced in the semileptonic $b \to c\ell\nu$ transitions and, in particular, in the SV kinematics. The latter process, thus, offers a more accurate and less involved determination of m_b and μ_π^2 along the suggestions of Refs. [34, 35]. The corresponding analysis is under way now [69]. Consideration of the semileptonic $b \to u\ell\nu$ transitions is very similar to what is done here for $b \to s\gamma$. This work is also in progress [70]. It seems important to make independent determinations in different situations of heavy-to-light and heavy-to-heavy transitions where the corresponding distribution functions are radically different but are related to each other by certain constraints [12].

From the theoretical standpoint, in the present paper we develop the OPE-based formalism, going explicitly beyond the practical version of OPE, using the inclusive $b \to s\gamma$ transition as an example. For practical purposes we accepted the approximation which basically is similar to the double logarithmic approximation but incorportates the BLM-type improvement accounting for the perturbative run-
ning of the strong coupling to all orders; we call it “natural” approximation. Our considera-
tion seems instructive in revealing several key elements of the OPE-based approach. One clearly sees here the necessity of introduction of the separation scale μ to discriminate between short-distance and long-distance effects. The discrimination is rather nontrivial in the Minkowski kinematics, even in calculating the purely perturbative corrections. On the other hand, it is shown that using the well defined short distance parameters like $m_b(\mu)$ which do depend in the calculable way on μ, rather than ill defined “absolute” parameters of the sort of “resummed” pole mass originally suggested in HQET, leads to a consistent and μ-independent physical spectrum.

We also illustrated that seeds of the basic features of the physical spectrum – usually these features are attributed purely to nonperturbative effects – are in fact seen in the perturbative calculations as long as the latter are done in the OPE consistent manner. In particular, we showed that a “window” which manifests itself as the interval of the physical spectrum stretching above the kinematical boundary possible for the parton level process, is present already in the proper perturbative treatment. The consistent application of the “natural” expressions also allowed us to estimate the asymptotic behavior of the perturbative end point spectrum at (academically) high mass of the decaying heavy quark, which is μ-dependent as well.

The more accurate description of the spectrum requires going beyond the double logarithmic approximation, even improved by accounting for the running of the strong coupling. In particular, the question of the renormalization point dependence of the kinetic operator requires specifying explicitly the normalization scheme; the difference between the schemes, however, is beyond the double logarithmic accuracy in the description of the spectrum. Numerically such effects constitute about 0.1 GeV2 in μ^2. We suggest a more advanced and, on the other hand, technically rather feasible approximation – the APS. There are good reasons to believe that APS must yield sufficient numerical accuracy: it incorporates the exact $O(\alpha_s)$ result, the summation of the Sudakov logarithms and, additionally, the running of α_s within the BLM hypothesis. The numerical corrections to this approximation, therefore, are expected to be rather small for b decays.

Another new theoretical element of the corresponding analysis is that calculation of the perturbative effects is performed in the way required by OPE, viz., the perturbative coefficient functions are obtained using the explicit infrared cutoff μ. This procedure, more or less straightforward in the Euclidean calculations, is rather involved technically in all Minkowski processes where spectral densities at nonperturbative level are addressed. No consistent approach existed in the literature previously even in the framework of the BLM approximation. This problem must be solved in order to construct APS. We showed explicitly how it can be done with the example of the particular regularization scheme which is very convenient in the BLM-type calculations; no problems with infrared renormalons and related ambiguities in resummation of divergent series appear here as a manifestation of the consistent application of Wilson’s OPE, and nonperturbative matrix elements.
have definite meaning. This method is applicable in the direct way to all quantities treated within OPE. In the context of the present paper we had to limit ourselves only to a brief description of the method and formulating some results; more details and the discussion of both physical consequences and technical questions will be given elsewhere [60].

ACKNOWLEDGMENTS: The authors are grateful to G. Korchemsky, L. Koyrakh, A. Vainshtein and M. Voloshin for useful discussions. N.U. gratefully acknowledges discussions with I. Bigi, invaluable insights from Yu. Dokshitzer on bremmstrahlung effects and exchange of ideas with T. Mannel about possible ansatz for \(F(x) \). This work was supported in part by DOE under the grant number DE-FG02-94ER40823 and by NSF under the grant number PHY 92-13313.
References

[1] M.S. Alam et al. (CLEO) *First Measurement of the Rate for the Inclusive Radiative Penguin Decay* $b \rightarrow s\gamma$, Cornell preprint CLNS 94/1314; E.H. Thorndike (CLEO), Proc. XXVII International Conference on High Energy Physics, Glasgow, 1994, Eds. P.J. Bussey and I.G. Knowles, Institute of Physics Publishing, Bristol 1995, Vol. 2, page 1327.

[2] For a brief review see e.g. J. Hewett, *Probing New Physics in B Penguins*, Preprint SLAC-PUB-95-6782 [hep-ph/9505247].

[3] K. Wilson, *Phys. Rev.* **179** (1969) 1499; *Phys. Rev.* **D3** (1971) 1818.

[4] M. Shifman, *Theory of Preasymptotic Effects in Weak Inclusive Decays*, in Proc. of the Workshop *Continuous Advances in QCD*, ed. A. Smilga, [World Scientific, Singapore, 1994], page 249 [hep-ph/9405246].

[5] M. Voloshin, M. Shifman, *Yad. Fiz.* **41** (1985) 187 [Sov. Journ. Nucl. Phys. **41** (1985) 120]; *ZhETF* **91** (1986) 1180 [Sov. Phys. – JETP **64** (1986) 698].

[6] J. Chay, H. Georgi and B. Grinstein, *Phys. Lett.* **B247** (1990) 399.

[7] I. Bigi, N. Uraltsev and A. Vainshtein, *Phys. Lett.* **B293** (1992) 430; (E) **B297** (1993) 477.

[8] I. Bigi, B. Blok, M. Shifman, N. Uraltsev and A. Vainshtein, *The Fermilab Meeting* Proc. of the 1992 DPF meeting of APS, C. H. Albright et al., Eds. World Scientific, Singapore 1993, vol. 1, page 610; [hep-ph/9212227].

[9] I. Bigi, M. Shifman, N.G. Uraltsev and A. Vainshtein, *Phys. Rev. Lett.* **71** (1993) 496.

[10] R. Jaffe and L. Randall, *Nucl. Phys.* **B412** (1994) 79.

[11] M. Neubert, *Phys.Rev.* **D49** (1994) 3392.

[12] I. Bigi, M. Shifman, N.G. Uraltsev and A. Vainshtein, *Int. Journ. Mod. Phys.*, **A9** (1994) 2467.

[13] A. Falk, E. Jenkins, A. Manohar and M. Wise, *Phys. Rev.* **D49** (1994) 4553.

[14] M. Neubert, *Phys. Rev.* **D49** (1994) 4623.

[15] A. Ali, E. Pietarinen, *Nucl. Phys.* **B 154** (1979) 512.

[16] G. Altarelli, N. Cabibbo, G. Corbo, L. Maiani and G. Martinelli, *Nucl. Phys.* **B208** (1982) 365.
Qualitative discussion of the effects due to the heavy quark motion inside heavy hadrons in the problem of the heavy quark fragmentation can be traced back to the early days of QCD, see e.g. M. Suzuki, *Phys. Lett.* **B71** (1977) 139; V.A. Khoze, Ya. Azimov and L. Frankfurt, Inv. Talk at the XVIII Int. Conf. on High Energy Physics, Tbilisi, 1976; J.D. Bjorken, *Phys. Rev.* **D17** (1978) 171. A parton-like approach to consideration of the distribution functions in the inclusive semileptonic $b \to u$ transitions was suggested in Ref. [18].

A. Bareiss and E. Paschos, *Nucl. Phys.* **B327** (1989) 353; C. Jin, W. Palmer and E. Paschos, *Phys. Lett.* **B329** (1994) 364.

I. Bigi, M. Shifman, N.G. Uraltsev and A. Vainshtein, *Phys. Lett.* **B328** (1994) 431.

C. Csaki and L. Randall, *Phys. Lett.* **B324** (1994) 451; G. Baillie, *Phys. Lett.* **B324** (1994) 446.

V. Novikov, M. Shifman, A. Vainshtein and V. Zakharov, *Nucl. Phys.* **B249** (1985) 445.

The penguin mechanism was introduced in the theory of weak decays almost exactly 20 years ago, see A. Vainshtein, V. Zakharov and M. Shifman *Pis’ma ZhETF*, **22** (1975) 123 [JETP Lett. **22** (1975) 55]. The purely electromagnetic one-loop penguin in the theory with two generations relevant to $s \to d\gamma$ magnetic transition was first discussed in M. Shifman, A. Vainshtein and V. Zakharov, *Phys. Rev.* **D18** (1978) 2583 (operators $T_{1,2}$ in the nomenclature of this paper). The result has been generalized to the three-generation model in T. Inami and C.S. Lim, *Prog. Theoret. Phys.* **65** (1981) 297; N.G. Deshpande and G. Eilam, *Phys. Rev.* **D26** (1982) 2463; B.A. Campbell and P.J. O’Donnel, *Phys. Rev.* **D25** (1982) 1989; N.G. Deshpande and M. Nazerimonfare, *Nucl. Phys.* **B123** (1983) 390. From these papers one can extract the magnetic penguin for $b \to s\gamma$ in the Standard Model.

Warning: these genuinely hard gluon corrections should not be mixed with those which are due to the gluon emissions at distances from m_b^{-1} to $\Lambda_{\text{QCD}}^{-1}$. While the former will not be discussed below the latter are one of the central topics of this paper. We will reserve the term ‘hard gluon corrections’ for the effects of the gluon emissions at distances from m_b^{-1} to μ^{-1} where μ is ‘the end of the perturbative domain’, $\mu \sim$ several units $\times \Lambda_{\text{QCD}}$.

The first calculations of the hard gluon corrections were done in M. Shifman, A. Vainshtein and V. Zakharov, *Phys. Rev.* **D18** (1978) 2583. Later on the analysis has been repeatedly discussed in the literature, see e.g. S. Bertolini, F. Borzumati and A. Masiero, *Phys. Rev. Lett.* **59** (1987) 180; N. Deshpande, P. Lo, J. Trampetic, G. Eilam and P. Singer, *Phys. Rev. Lett.* **59** (1987) 183;
B. Grinshtein, R. Springer and M. Wise, *Phys. Lett.* **B202** (1988) 138; R. Grigjanis, P. O’Donnel, M. Sutherland and H. Navelet, *Phys. Lett.* **B213** (1988) 335; (E) *Phys. Lett.* **B286** (1992) 413; G. Cella, G. Curci, G. Ricciardi and A. Vicere, *Phys. Lett.* **B248** (1990) 181; **B325** (1994) 227; M. Misiak, *Phys. Lett.* **B269** (1991) 161; M. Ciuchini, E. Franco, G. Martinelli, L. Reina and L. Silvestrini, *Phys. Lett.* **B316** (1993) 127; **B334** (1994) 137; M. Misiak, *Phys. Lett.* **B321** (1994) 113; A. Ali and C. Greub, *Phys. Lett.* **B259** (1991) 182; *Z. Phys.* **C60** (1993) 433; A.J. Buras, M. Jamin, M. Lautenbacher and P. Weisz, *Nucl. Phys.* **B370** (1992) 69; **B400** (1993) 37, 75; G. Buchalla and A. Buras, *Nucl. Phys.* **B415** (1994) 403; A. Buras, M. Misiak, M. Munz and S. Pokorski, *Nucl. Phys.* **B424** (1994) 374.

[25] Let us remind relevant terminology to be used throughout the paper. The energy interval between the quark kinematic boundary and the physical one, \([m_b/2, M_B/2]\), is called window. Adding to the window the adjacent domain lying below \(m_b/2\), of width a few units \(\times \Delta_{\text{QCD}}\), we get the endpoint domain.

[26] A.Ali and C. Greub, *Z. Phys.* **C49** (1991) 431; *Phys. Lett.* **B287** (1992) 191.

[27] This is a very important feature. In general, the primordial distribution function is required to fall off faster than any power of \(1/x\) at large negative \(x\). This requirement is due to the fact that the moments of the primordial distribution function are related to the matrix elements of certain well-defined operators. For this reason, *ansätze* with a slower fall off, like, say, that of Ref. [28], have no interpretation in QCD as a primordial distribution.

[28] C. H. Jin and E. A. Paschos, *Preprint* DO-TH 95/07 [hep-ph/9504375].

[29] T. Mannel, *Phys. Rev.* **D50** (1994) 428.

[30] P. Ball and V. Braun, *Phys. Rev.* **D49** (1994) 2472.

[31] E. Bagan, P. Ball, V. Braun and P. Gosdzinsky, *Phys. Lett.* **B342** (1995) 362; see also the last of Refs. [47].

[32] M. Voloshin, *Preprint* TPI-MINN-94/18-T [unpublished].

[33] M. Shifman, N.G. Uraltsev and A. Vainshtein, *Phys. Rev.* **D51** (1995) 2217.

[34] I. Bigi, M. Shifman, N. Uraltsev and A. Vainshtein *Preprint* CERN-TH.7250/94 [hep-ph/9405410; to appear in *Phys. Rev.* **D** (1995)].

[35] I. Bigi, A. Grozin, M. Shifman, N.G. Uraltsev, A. Vainshtein, *Phys. Lett.*, **B339** (1994) 160.

[36] S. Narison, *Phys. Lett.* **B308** (1993) 365.
[37] I. Bigi and N.G. Uraltsev, \textit{Phys. Lett.} \textbf{B 321} (1994) 412.

[38] I. Bigi, M. Shifman, N.G. Uraltsev and A. Vainshtein, \textit{Phys. Rev.} \textbf{D50} (1994) 2234.

[39] M. Beneke and V. Braun, \textit{Nucl. Phys.} \textbf{B426} (1994) 301.

[40] M. Voloshin, \textit{Phys. Rev.} \textbf{D46} (1992) 3062.

[41] E. Eichten and B. Hill, \textit{Phys. Lett.} \textbf{B234} (1990) 511;
 H. Georgi, \textit{Phys. Lett.} \textbf{B240} (1990) 447

For recent reviews see e.g.
 N. Isgur and M.B. Wise, in: \textit{B Decays}, S. Stone, Ed. (World Scientific), Singapore, 1992;
 H. Georgi, in Proceedings of the Theoretical Advanced Study Institute 1991,
 R.K. Ellis, C.T. Hill and J.D. Lykken, Eds. (World Scientific, Singapore, 1992).

[42] In fact, S is the square of a formfactor; we still will use this somewhat sloppy notation because the formfactor itself will never appear, so there can be no confusion.

[43] For a review see e.g. Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troyan, \textit{Basics of Perturbative QCD}; Ed. J. Tran Thanh Van, (Editions Frontières, Gif-sur-Yvette, 1991), and references therein.

[44] This fact is demonstrated by Eqs. (22) – (24). One should keep in mind, though, that the latter are more accurate than the approximation we deal with in the present section. To make contact with Eqs. (22) – (24) one needs to expand in α_s there. Then Eq. (24) coincides with Eq. (17) with the additional constraint $\epsilon > \mu$.

[45] S.J. Brodsky, G.P. Lepage and P.B. Mackenzie, \textit{Phys. Rev.} \textbf{D28} (1983) 228;
 G.P. Lepage and P.B. Mackenzie, \textit{Phys. Rev.} \textbf{D48} (1993) 2250.

[46] B. Smith and M. Voloshin, \textit{Phys. Lett.} \textbf{B340} (1994) 176.

[47] M. Beneke and V. Braun, \textit{Preprint} UM-TH-94-37 [hep-th/9411229];
 P. Ball, M. Beneke and V. Braun, \textit{Preprint} CERN-TH/95-26 [hep-ph/9502300];
 \textit{Preprint} CERN-TH/95-65 [hep-ph/9503492].

[48] M. Neubert, \textit{Preprint} CERN-TH.7487/94 [hep-ph/9412265].

[49] Simplified elements of this procedure have been in use among the Sudakov theory practitioners for years, see, for example,
 G. Altarelli, \textit{Phys. Reps.} \textbf{81} (1982) 1 and further review of literature therein;
 Ref. 43.

38
[50] Yu.L. Dokshitzer, D.I. Dyakonov and S.I. Troyan, *Phys. Reps.* **58** (1980) 270; D. Amati, A. Bassetto, M. Ciafaloni, G. Marchesini and G. Veneziano, *Nucl. Phys.* **B173** (1980) 429.

[51] A. Smilga, *Nucl. Phys.* **B161** (1979) 449; G. Korchemsky, *Phys. Lett.* **B217** (1989) 330; Yu. Dokshitzer, V.A. Khoze and S. Troyan, *Preprint* LU-TP-92-10, 1992 [unpublished].

[52] Yu. Dokshitzer and B. Webber, *Preprint* LU-TP 95-8 [hep-ph/9504219].

[53] N.G. Uraltsev, *Preprint* TPI-MINN-95/5-T [hep-ph/9503404].

[54] We hope the reader will not be confused by the use of one and the same letter, ϵ, for the critical exponent and the photon energy. The former is marked by the subscript 0.

[55] G. Korchemsky and G. Sterman, *Phys. Lett.* **B340** (1994) 96.

[56] M. Beneke, V. Braun and V.I. Zakharov, *Phys. Rev. Lett.* **73** (1994) 3058.

[57] We note that if one obtains the gluon density matrix $\delta_{\alpha\beta}$ (or $\delta_{\alpha\beta} - k_\alpha k_\beta/k^2$) as a sum over polarizations, for massive gluons one must sum over three transverse polarizations rather than two in the massless case.

[58] In principle, the overall consistency requires the total width to be calculated with the similar cutoff μ. This is automatic in the OPE-based procedure. The operator expansion for the $b \to s + \gamma$ total width is presented in [8]: the first non-perturbative terms is quadratic in μ/m_b. Quadratically small corrections are not discussed in the present paper. Furthermore, in the approximation adopted in the present paper the corresponding perturbative matrix elements vanish. Therefore, one can do without any normalization point in the calculation of the total width Γ to this accuracy, using for example, the known $O(\alpha_s)$ expression [26] which is infrared stable.

[59] A similar consideration for the polarization tensor of light quark currents was done in M. Neubert, CERN-TH.7524/94 [hep-ph/9502264]. However, technique used there cannot be applied to other problems, in particular to heavy flavor transitions. Let us parenthetically note that we disagree with certain aspects of this work.

[60] M. Shifman, N.G. Uraltsev and A. Vainshtein, in preparation.

[61] I. Bigi, N.G. Uraltsev, *Nucl. Phys.* **B423** (1994) 33.

[62] For a review see e.g. B.L. Ioffe, V.A. Khoze and L.N. Lipatov *Hard Processes*, North Holland, 1984.
[63] V.N. Gribov and L.N. Lipatov, *Yad. Fiz.* **15** (1972) 781; 1218 [Sov. J. Nucl. Phys. **15** (1972)]
G. Altarelli, G. Parisi, *Nucl. Phys. B* **126** (1977) 298.

[64] M. Voloshin, *Preprint* TPI-MINN-95/1-T [hep-ph/9502224] *Int. J. Mod. Phys.*, to be published.

[65] M. Voloshin, in preparation.

[66] To make contact with other publications we observe that this value of the running b quark mass corresponds to the one-loop pole mass 4.81 GeV if it is extrapolated from the point $\mu = 1$ GeV.

[67] Comparing experimental data one also have to keep in mind some broadening of the spectrum due to slow movement of decaying B produced in $\Upsilon(4S)$.

[68] For a review see e.g. V. Chernyak and I. Zhitnitsky, *Phys. Reports* **112** (1984) 173.

[69] L. Koyrakh, N. Uraltsev and A. Vainshtein, to be published.

[70] H.-L. Yu, private communication to M.S. and H. Li and H.-L. Yu, to be published.
Figure Captions

Fig. 1 The region of the values of a_2 and a_3 possible with the ansatz for $F(x)$ given by Eq. (7) with $k = 1$ (solid line) and $k = 3$ (dashed line). We plot the value of $a_3 - a_3^{\text{min}}|_{k=1}$ along the y axis, where $a_3^{\text{min}}|_{k=1} \equiv -2a_2^2$.

Fig. 2 The primordial distribution (dashed line), the perturbative spectrum (dotted line) and the full spectrum (solid line) obtained for $\mu = 0.7 \text{ GeV}$, $m_b(\mu) = 4.67 \text{ GeV}$, $\mu_\pi^2 = 0.5 \text{ GeV}^2$ and $\Lambda_{\text{QCD}}^{(V)} = 300 \text{ MeV}$. All curves shown have the same area; the height of the elastic peak in the perturbative spectrum corresponds to its weight of 0.454 in the total width. Further details are described in Sect. 6.

Fig. 3 The full end point spectrum obtained at different values of the normalization point $\mu = 0.7 \text{ GeV}$ (solid line), 1.0 GeV (dashed line) and 0.4 GeV (long-dashed line); the running masses $m_b(\mu)$ are used, $m_b(0.7 \text{ GeV}) = 4.67 \text{ GeV}$, $m_b(1 \text{ GeV}) = 4.58 \text{ GeV}$ and $m_b(0.4 \text{ GeV}) = 4.83 \text{ GeV}$. The value of $\mu_\pi^2 = 0.5 \text{ GeV}^2$ is kept fixed.

Fig. 4 The dependence of the end point spectrum on the heavy quark mass; the normalization point is $\mu = 0.7 \text{ GeV}$. Solid line is $m_b = 4.58 \text{ GeV}$ and long-dashed line corresponds to $m_b = 4.83 \text{ GeV}$. The value of $\mu_\pi^2 = 0.5 \text{ GeV}^2$ is taken for all curves. CLEO data [1] are shown in an arbitrary normalization.

Fig. 5 The dependence of the end point spectrum on the expectation value μ_π^2 of the kinetic operator: solid line is $\mu_\pi^2 = 0.5 \text{ GeV}^2$, dashed line is $\mu_\pi^2 = 0.25 \text{ GeV}^2$ and long-dashed lined is $\mu_\pi^2 = 0.75 \text{ GeV}^2$. We assume $m_b = 4.67 \text{ GeV}$ and $\mu = 0.7 \text{ GeV}$. CLEO data [1] are shown in an arbitrary normalization.
Fig. 1

\[a_3 - a_3 \min (k=1) \]
Fig. 2

Photon Energy-GeV

Norm. Units
Fig. 4
