The Use of Sawdust Mixed with Ground Branches Pruned from Wax Apple or Indian Jujube as Substrate for Cultivation of King Oyster Mushroom (Pleurotus eryngii)

San-Gwang Hwang, Yi-Ying Li, and Huey-Ling Lin
Department of Horticulture, National Chung Hsing University, 250 Kuo Kuang Road, 402 Taichung, Taiwan, Republic of China

Abstract. The king oyster mushroom [Pleurotus eryngii (DC.:Fr.) Quél] is gaining popularity across the world due to its excellent taste, high nutritional quality, medicinal value, and long shelf life. Conventional substrates for king oyster mushroom cultivation consist of sawdust derived from various tree species. Sawdust demand is increasing worldwide, creating a need for alternative materials that can at least partially replace sawdust as substrate for king oyster mushroom. In Taiwan, as in other countries that grow fruit trees, pruned fruit tree branches are an expensive agricultural waste, particularly if they are not recycled or reused. In the present study, we evaluated substrates containing sawdust and different proportions of material ground from pruned wax apple or Indian jujube branches for cultivation of king oyster mushroom. Our results suggested that among all five substrate mixes tested, the best substitute for conventional sawdust (100% sawdust) was a substrate that contained 75% sawdust mixed with 25% materials ground from trimmed wax apple branches (Wax apple 25%). Furthermore, determination of mineral element content, pH, and electrical conductivity (EC) levels of the substrates both before spawn inoculation and after harvesting revealed no significant changes in mineral content, a slight reduction in pH value, and a minor increase in EC levels after cultivation. Taken together, results from this study suggest that agricultural wastes from pruned fruit tree branches can partially replace sawdust as the cultivation substrate for king oyster mushroom.

Materials and Methods

Preparation of mushroom growing materials and spawn inoculation. The spawn of a commercial king oyster mushroom strain (Ruifeng-6) and sawdust were provided by a local farm located in Taichung, Taiwan. Pruned wax apple and Indian jujube tree branches were collected from the Horticulture Research Station at the College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan. Pruned fruit tree branches including leaves were first completely dried in a 70 °C oven for 2–3 d and then ground in a small batch pulverizing machine to 25-mesh size (Model RT-01A; Rong Tsong Precision Technology Co., Taiwan). In this study, five mixes were prepared: sawdust as the control (Sawdust 100%), 25% replacement of sawdust with materials ground from pruned wax apple (Wax apple 25%) or Indian jujube (Indian jujube 25%) tree branches, and 50% replacement of sawdust with materials ground from pruned wax apple (Wax apple 50%) or Indian jujube (Indian jujube 50%) tree branches. The water content of the five sawdust-based mixes was adjusted to 60% by weight with tap water. The final substrates contained standard ingredients in a ratio (w/w) of 89% wet sawdust mix, 5% dried rice bran, 5% dried wheat bran, and 1% calcium carbonate and were packed into a polyethylene (PE) bag (36 cm × 9 cm). The overall water content of the mixed substrate inside the PE bag was then adjusted to 62% using tap water. A cotton plug was inserted into the bag and a ring wrapped around the neck to seal the PE bag. The finished PE bags containing 980 g of cultivation substrate were autoclaved at 100 °C for 8 h, cooled to 30 °C at room temperature, and then inoculated with 15–18 g/bag of Ruifeng-6 king oyster spawn.

Evaluation of mycelium growth and mushroom fruiting conditions. After spawn inoculation, the PE bags were kept in the dark markets that rely on imports. On the other hand, horticultural wastes, such as the trimmed branches of fruit trees, are a good source of lignocellulose. However, it is unknown whether pruned fruit tree branches can serve as an alternative substrate for king oyster mushroom growth. In Taiwan, around 5113 ha of land are devoted to wax apple [Syzygium samarangense (Blume) Merrill & Perry] cultivation, with 70% to 80% of wax apple tree branches pruned annually to achieve off-season production. Additionally, around 2048 ha of land in Taiwan are used for Indian jujube (Ziziphus mauritiana Lam.) production (Council of Agriculture-Taiwan, 2013), with annual tree pruning a common practice among growers to obtain higher yields. These pruned fruit tree branches are a horticultural waste and their removal from the orchard are an expense. In the present study, we investigated the potential of ground branches pruned from wax apple or Indian jujube trees to partially substitute sawdust in king oyster mushroom cultivation.
The sample was subjected to spectrophotometric determination using the Hitachi U-2000 Spectrophotometer. The micro-Kjeldahl method was used to analyze nitrogen (N). Briefly, 1 kg of substrate sample was ground and dried in a 170°C oven for one night. Then 0.2 g of dried sample was wrapped with filter paper (Whatman #1) and placed into a digestion tube together with 1 g of catalyst (Merck 8030) and 4.5 mL of concentrated sulfuric acid. The mixture was placed in the digestion vessel and heated at 410°C for 2.5–3 h until the sample became clear or light green in color. The digested sample was then poured into the Kjeldahl flask with addition of 20 mL 12 N NaOH. After reaction, 50 mL of the converted ammonia was collected in a plastic beaker containing 20 mL of 2% boric acid mixed with 19 μM bromocresol green and 25 μM methyl red indicator. The reaction was then titrated with 1/14 N sulfuric acid to determine the percentage of ammonia in the substrate sample.

Determination of substrate pH and EC values before inoculation and after harvesting. For each substrate evaluated, two PE bags were sampled (100 g) before inoculation and after harvesting to determine the pH and EC of the substrate. The two samples were thoroughly mixed in a plastic container, from which 100 g of well-mixed substrate sample was sampled, air-dried for 2–3 d, and then stored in a sulfuric acid paper bag before measurement of pH and EC. To determine the pH and EC values, 5 g of dried substrate sample was homogenized with 40 mL of purified water, incubated for 2 h, and then filtered through gauze. The pH and EC of the liquid was determined with a pH meter (SP-701; Suntex, Taiwan) and an EC meter (SC-170; Suntex), respectively. In this analysis, three repeats were performed for each substrate tested.

Statistical analysis. Calculation of sample means, analysis of variance (ANOVA), and least significant difference (LSD) were performed using SAS ver. 9.0 (SAS Institute, Cary, NC).

Results and Discussion

Substrate effects on mycelium growth and mushroom fruiting. Substrate mixes containing various ratios of sawdust and wax apple or Indian jujube grindings were prepared and tested using king oyster mushrooms. The four mixes showed no significant differences ($P < 0.05$) in mushroom length or mycelium extension rate at 14 or 42 d after spawn inoculation relative to control (Sawdust 100%) (Tables 1 and 2). However, at 28 d after spawn inoculation, the mycelium length and mycelium extension rate values were significantly smaller in the substrate mixes with 25% or 50% ground Indian Jujube than in control ($P < 0.05$; Tables 1 and 2). The reason for this is not clear and requires further analysis.

The densest mycelium was observed in the Wax apple 25% and Wax apple 50% substrates (Table 3). The mycelium color appeared white in all substrates tested (Table 3). The shortest MGP was noted for Sawdust 100% and Wax apple 25% substrates, with values of 40.7 and 40.0 d, respectively. In contrast, the other substrates were fully colonized with mycelium after more than 50 d (Table 3). Similarly, the earliest primordia were observed in Sawdust 100% and Wax apple 25% substrates, with average DPV values of 56.5 and 55.4 d, respectively (Table 3). These substrates also resulted in an earlier harvest (DIH, Table 3). The earliest harvest, at 50–60 d after inoculation, was obtained when king oyster mushroom was cultivated in Wax apple 25% substrate (Table 3). These results suggested that up to 25% of the sawdust can be replaced with wax apple grindings.

The yield of mushroom in the Indian jujube 25% substrate was significantly lower ($P < 0.05$) than in the control (Sawdust 100%) (Table 4). The highest yield was...

Table 1. The effect of different substrate base mixes on mycelium length (centimeters).

Substrate Bases	Days after inoculation			
	0	14	28	42
Sawdust 100%	0.00 a*	1.31 a	6.58 a	15.23 a
Wax apple 25%	0.00 a	1.17 a	5.00 ab	12.97 a
Wax apple 50%	0.00 a	1.30 a	5.13 ab	12.95 a
Indian jujube 25%	0.00 a	1.23 a	4.55 b	12.88 a
Indian jujube 50%	0.00 a	1.85 a	3.20 b	11.90 a

*Means with the same letter are not significantly different (Fisher’s least significant difference test at 5% level)."
observed in Wax apple 25% substrate, with a value of 241.84 g/bag (Table 4). No significant difference ($P < 0.05$) was recorded for the average length of fruiting body among the different substrates tested, with values ranging from 9.78 to 11.00 cm (Table 4). The number of marketable fruiting bodies was significantly ($P < 0.05$) smaller in Indian jujube 50% substrate (1.00) relative to control (3.18). No significant differences ($P < 0.05$) were detected among the other substrates, with values ranging from 1.88 to 3.18 (Table 4). Similar to the mycelium length and mycelium extension rate, recorded after 28 d after spawn inoculation, biological efficiency was higher in Sawdust 100%, Wax apple 25%, and Wax apple 50% substrates, with efficiency values of more than 60% and no significant difference ($P < 0.05$) among them (Table 4).

These results suggest that a substrate containing 25% wax apple grindings may serve as a suitable alternative substrate for king oyster mushroom cultivation.

Table 3. Characteristics of mycelium growth in different substrates.

Density index	Color index	MGP	DPV	DIH	
Sawdust 100%	4 c	5 a	40.7 b	56.5 c	75.8 c
Wax apple 25%	5 a	5 a	40.0 b	55.4 c	68.0 d
Wax apple 50%	5 a	5 a	51.8 a	65.6 b	82.3 b
Indian jujube 25%	4 c	5 a	53.3 a	66.1 b	84.8 b
Indian jujube 50%	4.3 b	5 a	75.1 a	93.6 a	

The number 5 indicates the highest density and 1 indicates the lowest density.

The number 5 represents pure white color and 1 indicates a yellowish white color.

MGP: average days after inoculation for the substrate to be fully colonized with mycelium.

DPV: average days after inoculation for the mushroom primordia to be first visible.

DIH: average days from inoculation to harvest.

Table 4. Characteristics of fruiting body development in different substrates.

Yield (g/bag)	Length (cm)	Number of marketable fruiting bodies	Biological efficiency (%)
Sawdust 100%	241.11 a	10.52 a	64.42 a
Wax apple 25%	241.84 a	10.13 a	64.88 a
Wax apple 50%	231.09 a	10.83 a	61.97 a
Indian jujube 25%	165.20 b	9.78 a	44.30 b
Indian jujube 50%	165.61 ab	11.00 a	51.90 ab

Fruiting body with normal stipe, pileus and a fresh weight of more than 15 g.

Means with the same letter are not significantly different (Fisher’s least significant difference test at 5% level).

Table 5. Nutrient content in different substrates before inoculation.

N (%)	P (%)	K (%)	Ca (%)	Mg (%)	Fe (ppm)	Mn (ppm)	Zn (ppm)	Cu (ppm)	
Sawdust 100%	0.86 bc	0.13 b	0.39 c	1.01 c	0.16 c	754.65 a	95.29 a	25.32 d	3.33 ab
Wax apple 25%	0.92 bc	0.15 ab	0.48 b	1.00 c	0.17 c	657.23 a	86.47 b	24.99 ab	3.17 b
Wax apple 50%	1.05 a	0.17 ab	0.54 b	1.02 c	0.17 c	568.20 a	62.93 a	27.33 c	3.05 ab
Indian jujube 25%	0.85 bc	0.14 b	0.52 b	1.39 b	0.20 b	827.33 a	88.15 b	50.32 a	3.50 ab
Indian jujube 50%	0.77 c	0.19 a	0.70 a	1.92 a	0.27 a	496.00 a	84.22 b	44.96 b	4.50 a

Means with the same letter are not significantly different (Fisher’s least significant difference test at 5% level).

Table 6. Nutrient content in different substrates after harvesting.

N (%)	P (%)	K (%)	Ca (%)	Mg (%)	Fe (ppm)	Mn (ppm)	Zn (ppm)	Cu (ppm)	
Sawdust 100%	0.86 b	0.28 b	0.39 d	1.43 d	0.22 d	340.86 b	73.97 a	23.33 d	3.17 d
Wax apple 25%	0.97 b	0.33 a	0.48 c	1.63 b	0.25 c	374.74 b	73.45 ab	25.82 c	3.83 cd
Wax apple 50%	1.23 a	0.34 a	0.61 b	1.71 b	0.27 b	441.91 a	70.49 ab	28.16 ab	4.83 b
Indian jujube 25%	0.82 b	0.32 a	0.52 c	1.51 c	0.25 bc	275.95 c	69.65 b	27.33 bc	4.33 bc
Indian jujube 50%	0.84 b	0.34 a	0.77 a	1.83 a	0.31 a	226.11 c	61.98 a	36.49 a	7.17 a

Means with the same letter are not significantly different (Fisher’s least significant difference test at 5% level).
mushroom cultivation, results that are consistent with Lee et al. (2009).

pH and EC values of substrates before inoculation and after harvesting. To determine the effect of substrate pH and EC values on king oyster mushroom growth, the pH and EC levels of different substrates were determined before inoculation. To determine how mycelium growth affects pH and EC, the values were measured after harvesting. The initial pH values in Sawdust 100% and Wax apple 25% substrates before inoculation were 6.25 and 6.06, respectively. These two pH values were significantly ($P < 0.05$) higher than those in the other substrates (Table 7). In contrast, the initial EC levels in Sawdust 100% and Wax apple 25% substrates before inoculation were 1.12 and 1.64 dS/m, respectively, which were significantly ($P < 0.05$) lower than those in the other substrates (Table 7). Results from this study suggested that greater yield and growth occurred in substrate with a higher pH value (Tables 4 and 7). After harvesting, the pH was acidified, with all substrate showing pH values less than 5.31. The EC levels were greater after mycelium growth in all five substrates tested (Table 7). Consistent with our findings, Khan et al. (2013) suggested that pH plays a pivotal role in oyster mushroom production and that most mushrooms grow best with a near-neutral or slightly basic pH.

Table 7. The pH and electrical conductivity (EC) of different substrates before inoculation and after harvesting.

Substrate	pH Before inoculation	EC (dS/m) Before inoculation	pH After harvesting	EC (dS/m) After harvesting
Sawdust 100%	6.25 a	1.12 d	4.91 b	1.89 d
Wax apple 25%	6.06 a	1.64 c	4.96 b	2.18 c
Wax apple 50%	5.66 b	2.07 b	5.23 a	2.42 b
Indian jujube 25%	5.45 b	2.11 b	4.96 b	2.15 c
Indian jujube 50%	5.58 b	2.61 a	5.31 a	2.92 a

*Means with the same letter are not significantly different (Fisher’s least significant difference test at 5% level).

Conclusion

In this study, the possibility of using sawdust mixed with ground fruit tree branches as substrate for cultivation of king oyster mushroom was evaluated. The results indicated that the best substitute for conventional sawdust was a substrate that contained 75% sawdust mixed with 25% ground wax apple branches. Furthermore, analyses revealed that mycelium and fruiting did not significantly change mineral content, slightly reduced pH, and somewhat increased EC of the spent substrates. Overall, results from this study suggested that the pruning waste of fruit trees should be tested for potential utilization in king oyster mushroom production.

Literature Cited

Baysal, E. 2003. Cultivation of oyster mushroom on waste paper with some added supplementary materials. Bioresour. Technol. 89:95–97.

Council of Agriculture—Taiwan. 2013. Statistics Yearbook, p. 88–100. <http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx>.

Customs Administration, R.O.C. 2014. Ministry of Finance, Executive Yuan. Import Statistics of Wood Pallets during Jan.–Oct. 2014. The Inquiry System of Statistical Database. <https://portal.sw.nat.gov.tw/APGA/GA03_LIST>.

Juang, L.D., C.C. Shiesh, and H.L. Lin. 2012. Effects of temperatures on the fruiting-body growth and development of king oyster mushroom (*Pleurotus eryngii*). Horticulture 37 (1):31–44.

Khan, M.W., M.A. Ali, N.A. Khan, M.A. Khan, A. Rehman, and N. Javed. 2013. Effect of different levels of lime and pH on mycelial growth and production efficiency of oyster mushroom (*Pleurotus spp.*). Pak. J. Bot. 45:297–302.

Koshy, J. and P. Nambisan. 2012. Pretreatment of agricultural waste with *Pleurotus sp.* for ethanol production. Intl. J. Plant Anim. Environ. Sci. 2:244–249.

Kurt, S. and S. Buyukalaca. 2010. Yield performances and changes in enzyme activities of *Pleurotus spp.* (*P. ostreatus* and *P. sajor-caju*) cultivated on different agricultural wastes. Bioresour. Technol. 101:3164–3169.

Lee, C.Y., J.E. Park, B.B. Kim, S.M. Kim, and H.S. Ro. 2009. Determination of mineral components in the cultivation substrates of edible mushrooms and their uptake into fruiting bodies. Mycology 37:109–113.

Obodai, M., J. Cleland-Okiné, and K.A. Vowotor. 2003. Comparative study on the growth and yield of *Pleurotus ostreatus* mushroom on different lignocellulosic by-products. J. Ind. Microbiol. Biotechnol. 30:146–149.

Peng, J.T. 1997. Study on the effects of single and mixed sawdusts of different origins on the production of *Pleurotus eryngii*. J. Agr. Res. China 46:51–59.

Petre, M. and A. Teodorescu. 2012. Biotechnology of agricultural wastes recycling through controlled cultivation of mushrooms. In: M. Petre (ed). Advances in applied biotechnology. InTech. ISBN: 978-953-307-820-5.

Poppe, J. 2000. Use of agricultural waste materials in the cultivation of mushrooms. Mushroom Sci 15:3–23.

Rani, P., N. Kalyani, and K. Prathiba. 2008. Evaluation of lignocellulosic wastes for production of edible mushrooms. Appl. Biochem. Biotechnol. 151:151–159.

Sharma, R.K. and D.S. Arora. 2015. Fungal degradation of lignocellulosic residues: An aspect of improved nutritive quality. Crit. Rev. Microbiol. 41:52–60.

Sherief, A., A. El-Tanash, and A. Temraz. 2010. Lignocellulolytic enzymes and substrate utilization during growth and fruiting of *Pleurotus ostreatus* on some solid wastes. J. Environ. Sci. Technol 3:18–34.

Yamanaka, K. 2011. Mushroom cultivation in Japan. WSBMBP Bul. 4:1–10.

Yildiz, S., U.C. Yildiz, E.D. Gezer, and A. Temiz. 2002. Some lignocellulosic wastes used as raw material in cultivation of the *Pleurotus ostreatus* culture mushroom. Process Biochem. 38:301–306.

Zervakis, G.I. 2005. Cultivation of the king-oyster mushroom *Pleurotus eryngii* on substrates deriving from the olive-oil industry. Intl. J. Med. Mushrooms 7:486–487.