Functional Principal Component Analysis: A Robust Method for Time-Series Phenotypic Data

Molecular breeding relies on careful assessment of phenotypic traits linked to DNA markers so that causal genes can be identified and desirable crop alleles selected. Over the past decade, DNA markers have become abundant with the rapid advancement of next-generation sequencing technology, including whole-genome sequencing and genome-wide marker profiles in diverse germplasms. However, the labor-intensive job of phenotyping, which traditionally depends on the experienced eye of breeders, remains a bottleneck to taking advantage of the massive amount of genomic information. In recent years, high-throughput phenotyping, also known as phenomics, has emerged and thrived. Phenomics brings together imaging and sensor technology, robotics, high-performance computing, and artificial intelligence to characterize plant structure and function in various environmental conditions (Tardieu et al., 2017; Zhao et al., 2019). Algorithms and software convert image data into measurable plant traits that can be analyzed accordingly (Gehan et al., 2017; Li et al., 2018; Zhao et al., 2019). The increasing complexity of phenotypic data also demands appropriate statistical methodology (Xu et al., 2018; York, 2019).

In this issue of *Plant Physiology*, Miao et al. (2020) investigate hypertemporal image data in a genome-wide association study (GWAS). They demonstrate that compared with the analysis of individual time points, functional principal component analysis (FPCA) is a robust statistical approach to analyze phenotypic changes over time. As their focal species, Miao et al. (2020) chose sorghum (*Sorghum bicolor*), a drought-tolerant bioenergy crop in the grass family. They focused on plant height as the phenotypic trait, for which several causal loci have been identified, including *Dwarf1* (*Dw1*; encoding a protein in the brassinosteroid signaling pathway), *Dw2* (encoding a protein kinase), and *Dw3* (encoding an auxin-related transporter). *Dw2* is also genetically linked with the flowering-time gene *Maturity1* (*Ma1*).

Using a collection of sorghum germplasms, Miao et al. (2020) compared three approaches for plant height measurement and analysis, with each method followed by GWAS (Fig. 1A). They first manually measured plant height at maturity in the field from the base of the plant to the top of panicle using 357 lines and identified *Dw1*, *Dw2-Ma1*, and another known plant-height locus, *KHL1*. After removing lines that could not be measured under greenhouse conditions (described below), either due to limitations of the maximum height of their imaging facility or poor plant growth, GWAS using the remaining 292 lines retrieved only *Dw1* as a significant locus. Neither the full panel nor the remaining population identified *Dw3* (Miao et al., 2020).

Next, the authors performed GWAS using greenhouse-grown and automated phenotyped plants in a time...
distinctive mechanisms of these genes controlling plant height. Furthermore, the single-nucleotide polymorphisms nearest to the significant loci are generally closer to the known responsible genes, further supporting greater accuracy and precision of the FPCA method.

In conclusion, time-series data are crucial for studying plant developmental dynamics and plant-environment interactions and become easier to acquire with the advance of high-throughput phenotyping. Compared with single-time-point comparisons, FPCA confers greater power in gene identification in time-series GWAS regardless of missing data and may be applicable in a wide range of time-series phenotypic data analyses.

Yunqing Yu1,2

ORCID ID: 0000-0003-2447-6161

Assistant Features Editor
Donald Danforth Plant Science Center,
Saint Louis, Missouri 63132

LITERATURE CITED

Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol 111: 611–619

Gehan MA, Fahlgren N, Abbasi A, Berry JC, Callen ST, Chavez L, Doust AN, Feldman MJ, Gilbert KB, Hodge JG, et al (2017) PlantCV v2: Image analysis software for high-throughput plant phenotyping. PeerJ 5: e4088

Li M, Frank MH, Coneva V, Mio W, Chitwood DH, Topp CN (2018) The persistent homology mathematical framework provides enhanced genotype-to-phenotype associations for plant morphology. Plant Physiol 177: 1382–1395

Miao C, Xu Y, Liu S, Schnable PS, Schnable J (2020) Increased power and accuracy of causal locus identification in time-series genome-wide association in sorghum. Plant Physiol 183: 1899–1909

Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27: R770–R783

Xu Y, Qu Y, Schnable JC (2018) Functional modeling of plant growth dynamics. The Plant Phenome Journal 1: 1–10

York LM (2019) Functional phenomics: An emerging field integrating high-throughput phenotyping, physiology, and bioinformatics. J Exp Bot 70: 379–386

Zhang C, Zhang Y, Du J, Guo X, Wen W, Gu S, Wang J, Fan J (2019) Crop phenomics: Current status and perspectives. Front Plant Sci 10: 714

1Author for contact: yyu@danforthcenter.org.
2Senior author.

www.plantphysiol.org/cgi/doi/10.1104/pp.20.00797

Copyright © 2020 American Society of Plant Biologists. All rights reserved.

News and Views

Plant Physiol. Vol. 183, 2020

1423

Downloaded from on November 3, 2020 - Published by www.plantphysiol.org