Factors Affecting Hospital Stay in Patients Aged >65 Years Who Underwent Urological Intervention: A Single-Center Retrospective Study

Elif Bombaci*
Department of Anesthesiology and Reanimation, Kartal Dr. Lutfi Kirdar Training and Research Hospital, Health Sciences University, Kartal, Istanbul, Turkey

Abstract

Purpose: The geriatric patient population is predominant in urologic surgeries. The perioperative period of geriatric patients is affected by several factors. This study aimed to investigate the factors affecting morbidity and hospital stay in patients aged >65 years, who underwent urological intervention. Materials and Methods: The data of patients aged >65 years, who underwent urological surgery, were retrospectively evaluated. Age; sex; the American Society of Anesthesiologists (ASA) physical status; type and method of surgical intervention; duration of surgery; anesthesia method; concomitant diseases; preoperative values of blood serum albumin, potassium, creatinine, and hemoglobin (Hb); presence of infection; admission to the intensive care unit; and duration of hospital stay were recorded. The effects of the data obtained on hospital stay were evaluated. P < 0.05 was considered statistically significant. Results: Surgical method, duration of surgery, anesthesia method, presence of a comorbid disease, ASA physical status, preoperative values of blood serum albumin and Hb, presence of infection, and intensive care hospitalization had a significant effect on hospital stay, and particularly, long duration of surgery, ASA physical status, and low serum albumin levels were found to be the most effective factors to prolong hospital stay. Conclusion: In older patients who undergo a urological intervention, advanced age is not the only risk factor. The length of hospital stay is affected by a number of interrelated factors. A detailed preoperative evaluation and preparation with a multidisciplinary approach in elderly patients may prevent additional problems that may occur, ensuring the determination of the most appropriate surgical and anesthetic method.

Keywords: Aged, length of stay, risk factors, urologic surgical procedures

INTRODUCTION

The population of elderly people has been increasing. Although the population of Turkey is younger than that of the European countries, the proportion of elderly people to the total population increased in the last 5 years.1,2 This situation is reflected in our surgical patients’ profiles, and the number of elderly patients in operating rooms has been increasing day by day.

Elderly patients may have more than one systemic additional disease due to the decline of physiological functions with
As urological problems increase with age, urological interventions are common in this age group. In many of these patients, the accompanying comorbidities are not the only cause of perioperative problems. Many more factors may affect the morbidity and also duration of hospital stay in elderly patients undergoing urological surgery.

The aim of this study is to determine the factors affecting postoperative hospital stay in patients over 65 years of age, who underwent urological intervention.

Subjects and Methods

This study was a single-center retrospective study. The study group comprised patients aged >65 years who underwent elective urological intervention between January 2017 and June 2018. After obtaining approval from the ethics committee of our hospital (decision number: 2018/514/124/2), the study was conducted within the framework of the ethical principles stated in the Declaration of Helsinki. The informed consent was obtained from the cases included in this study. In the first stage, patients aged >65 years who underwent urological surgery under general anesthesia or neuraxial block (NAB) were identified from the electronic patient record system of our hospital. The data of patients who underwent surgery under local anesthesia or whose surgery was terminated for any reason were excluded from the study.

In the subsequent stage, age, sex, the American Society of Anesthesiologists (ASA) physical status, type and method of surgical intervention, duration of surgery, anesthesia method, and transfusion requirement were recorded in preprepared forms by analyzing anesthesia records from the identity data obtained. Surgical approaches have been divided into three classes as follows: endoscopic (transurethral), percutaneous, and laparotomy. The group with the transurethral bladder tumor resection, transurethral prostate resection, and the ureterorenoscopic surgeries (URSs) had undergone endoscopic interventions. Percutaneous nephrolithotomy (PNL) operations were done in the percutaneous group. Furthermore, the laparotomy group had undergone surgeries initiated with large skin incision such as transvesical prostatectomy, radical prostatectomy, removal of large diameter bladder stone, tumor- or stone-induced nephrectomy, and radical bladder resection. In the third stage, comitant diseases of the patients determined during the preoperative preparation period and consultations and laboratory results obtained from the electronic patient record system of our hospital were examined, and preoperative blood serum albumin and hemoglobin (Hb) values, presence of infection in the preoperative or postoperative period, admission to the intensive care unit (ICU), and duration of hospital stay were recorded.

Statistical analysis

Statistical analysis of the data obtained in the study was performed using the GraphPad software, San Diego, CA, USA. In comparison of descriptive statistical parameters (mean, standard deviation, and minimum and maximum values) in two groups, the Student’s t-test was used, whereas, in multiple group comparisons, one-way ANOVA and Tukey’s posttest were used. $P < 0.05$ was considered statistically significant. In terms of statistical grading, values between $P < 0.05$ and $P > 0.01$ were considered to indicate borderline significance, between $P < 0.01$ and $P > 0.001$ high level of significance, and $P < 0.001$ extremely high level of significance. The factors affecting hospital stay were determined by univariate logistic regression analysis. Correlation analysis was performed to determine whether there is a linear relationship between two numerical measurements and if any, the direction and severity of this relationship.

Results

The data of 522 patients aged >65 years who underwent urological intervention were included in the study. The mean age of the patients was 72.9 ± 6.3 (range, 65–99) years. In the sex distribution, the number of male patients was higher ($n = 454$ [87%]) than female patients ($n = 68$ [13%]). The number of patients with no comorbid disease was 34 (6.5%); 207 (39.5%) patients had one comorbid disease; 187 (35%) patients had two; 83 (16%) patients had three; and 11 (2%) patients had four comorbid diseases. In other words, 93.5% of patients had at least one comorbid disease.

The mean duration of hospital stay was 5.6 ± 4.7 (1–33) days. The mean duration of surgery was 109 ± 67.2 (30–420) min.

No statistically significant difference was found between the patients aged 65–75 years and older than 75 in terms of the length of hospital stay ($P = 0.8347$). Similarly, male or female gender does not significantly affect the length of hospital stay ($P = 0.5785$). Considerable number of patients had ASA II and III physical status, and the ASA classification was determined to have a statistically significant effect on the duration of hospital stay. Accordingly, it was observed that the duration of hospital stay significantly increased as the ASA score increased ($P = 0.0006$). The data of patients related with hospital stay are shown in Table 1.

The most common comorbid diseases were chronic obstructive pulmonary disease, diabetes mellitus, and hypertension. These three diseases were most common in patients with multiple comorbidities. Ischemic heart disease and congestive heart failure were less frequently found. Statistical analysis revealed that the number of comorbid diseases increased as the duration of hospital stay significantly increased ($P = 0.0074$).

Forty-nine patients had been treated for infection, and eight of them had been treated preoperatively. All eight patients with preoperative infection had kidney or ureteral stones, and four had recently undergone urological intervention and had been discharged from the hospital. After excluding eight patients with preoperative infection, the remaining 41 patients who developed postoperative infection and the 473 patients without infection were compared statistically in...
terms of length of hospital stay. This difference was statistically significant \((P < 0.0001) \).

Analysis revealed that the duration of hospital stay in the ICU patients was significantly longer than in those without ICU admission \((P < 0.0001) \).

Patients with a preoperative Hb value of Hb <12 g had significantly longer hospital stay compared to patients with higher Hb values \((P = 0.0378) \).

Serum albumin level was found to be below 3.5 g/dl in 59 patients. The duration of hospital stay was significantly longer in these patients \((P < 0.0001) \).

In total, 214 patients had general anesthesia and 308 patients had NAB (305 spinal and 3 epidural blocks). PNL, nephrectomy, radical cystectomy, and radical prostatectomy and majority of ureteroscopy (URS) procedures were performed under general anesthesia. The operations in the remaining cases were performed under NAB. Almost all of the NAB methods applied in transurethral resection of bladder tumor (TURBT) surgeries were “saddle block”. The duration of hospital stay was significantly longer in patients who received general anesthesia than that in those who received NAB \((P = 0.0006) \). Relationship between duration of hospital stay and method of anesthesia and surgery is shown in Table 2.

When the effects of the method of surgical procedure on the duration of hospital stay were examined in this study, the surgical methods were divided into three groups: endoscopic (transurethral), percutaneous, and laparotomy. Of the patients included in the study, 366 underwent endoscopic procedures, 25 underwent percutaneous surgeries, and 131 underwent laparotomy surgeries. Twenty-five surgeries performed with dorsal lumbotomy were included in the laparotomy group because of incision and long duration of the procedure. All these 25 surgeries were tumor-induced nephrectomy surgeries, and three were laparoscopic surgeries. In the evaluation, it was observed that the surgical method had a statistically significant effect on the duration of hospital stay, and it was longer in surgeries performed with laparotomy \((P < 0.0001) \).

In this study, operation time (OT) was evaluated in three groups. The groups and the number of patients in the groups

| Table 1: Age, gender, American Society of Anesthesiologists physical status, number of comorbidities, infection, intensive care unit admission, preoperative hemoglobin, and albumin values related to hospital stay |
|---------------------------------|-----------------|---------------|
| Number of patients (n) | Duration of hospital stay (day)\(^{a}\) | \(P \) |
| Age (years) | | |
| ≤65-<75 | 334 | 5.60±0.29 | 0.8347 |
| ≥75 | 188 | 5.71±0.43 | |
| Gender | | |
| Male | 454 | 5.59±0.25 | 0.5785 |
| Female | 68 | 5.98±0.75 | |
| ASA physical status | | |
| ASA I | 30 | 3.50±0.36 | 0.0006*** |
| ASA II | 231 | 4.85±0.25 | |
| ASA III | 240 | 6.54±0.42 | |
| ASA IV | 21 | 7.07±1.85 | |
| Number of comorbidities | | |
| 0 | 34 | 3.56±0.34 | 0.0074*** |
| 1 | 207 | 5.16±0.33 | |
| 2 | 187 | 5.83±0.43 | |
| 3 | 83 | 7.24±0.72 | |
| 4 | 11 | 6.25±2.23 | |
| Infection (postoperative) | | |
| Present | 41 | 12.67±1.35 | <0.0001*** |
| Absent | 473 | 4.97±0.20 | |
| ICU admission | | |
| Present | 31 | 10.27±1.41 | <0.0001*** |
| Absent | 491 | 5.36±0.23 | |
| Preoperative Hb value (% g) | | |
| <12 | 147 | 6.44±0.52 | 0.0378 |
| ≥12 | 375 | 5.32±0.27 | |
| Preoperative albumin value (% g)| | |
| <3.5 | 59 | 8.73±1.05 | <0.0001*** |
| ≥3.5 | 463 | 5.33±0.24 | |

\(^{a}\)Mean±SD, *\(P \) between 0.05 and 0.01: Borderline significance, **\(P \) between 0.01 and 0.001: High level of significance, ***\(P \leq 0.001 \): Extremely high level of significance. ICU: Intensive care unit, Hb: Hemoglobin, ASA: American Society of Anesthesiologists, SD: Standard deviation
were as follows: 333 patients with OT <120 min, 116 patients with OT = 120–180 min, and 73 patients with OT >180. In the evaluation, it was observed that an OT >180 min significantly prolonged the duration of hospital stay (P < 0.0001).

Regression analysis for duration of hospital stay

Approximately 19.4% of the change in the duration of hospital stay was affected by independent variables (R²: 0.194). Although some variables showed significant results in t-test or ANOVA and correlation tests, regression analysis showed no significant regression. As all the independent variables were put together in the regression model, the data of each variable positively or negatively affected the others. According to the regression analysis for these variables, OT was the most effective in those who significantly affected the duration of hospital stay. In addition, low preoperative albumin levels play a significant role, and a negative correlation was determined. Moreover, classification of ASA physical status was found to be effective. Regression analysis for duration of hospital stay is shown in Table 3. Paired correlation analysis of measured values is presented in Table 4.

Discussion

With prolonged life expectancy, the rate of elderly people who undergo surgical intervention is increasing day by day. Urinary system diseases frequently occur in advanced ages. This study showed that the presence of comorbid disease, high ASA physical status score, and low levels of Hb and albumin in elderly patients undergoing urological intervention prolong the duration of hospital stay. In addition, in case of development of infection and/or a need for intensive care, these treatment processes are added to the total treatment period; hence, the duration of hospital stay is prolonged and causes additional morbidity in patients.

In general, both anesthesiologists and surgeons get anxious that older patients may not tolerate surgical interventions. In fact, advanced age does not constitute an extra risk in terms of bleeding, infection, or surgical complications. However, physiological changes associated with aging and regression of organ system functions may cause difficulties in the treatment of these complications. For example, postoperative infections are an important cause of morbidity and mortality in the elderly, particularly owing to the weakening of immunity.

Table 2: Anesthesia method, surgical technique, and surgical time related to hospital stay
Number of patients (n)
Anesthesia method
General
Neuraxial block
Surgical technique
Endoscopy
Percutaneous
Laparotomy
Surgical time (min)
ST <120
120≤ ST <180
180≤ ST

*Mean±SD, *P between 0.01 and 0.001: High level of significance, **P<0.001: Extremely high level of significance. ST: Surgical time, SD: Standard deviation

Table 3: Regression analysis results of the factors which affect hospital stay
Coefficients
Unstandardized coefficients
Age
Gender
Surgical techniques
Surgical time
Anesthesia method
ASA
Comorbidities
ICU admission
Hb
Albumin
Infection

*Dependent variable: Duration of hospital stay. ASA: American Society of Anesthesiologists, Hb: Hemoglobin, ICU: Intensive care unit, SE: Standard error
Table 4: Correlations between two numerical measurements

Correlations	Age	Gender	Surgical techniques	Surgical time	Anesthesia method	ASA	Comorbidities	ICU admission	Hb	Albumin	Duration of hospital stay
Age	1	0.038	-0.153**	-0.088	0.149**	0.229**	0.080	0.052	-0.231**	-0.188**	0.023
Significant (two-tailed)	0.459	0.002	0.083	0.003	0.000	0.115	0.307	0.000	0.000	0.000	0.650
n	522	522	522	522	522	522	522	522	518	505	522
Gender	0.038	1	-0.133**	-0.051	0.237**	-0.046	-0.071	-0.035	0.211**	0.064	-0.028
Significant (two-tailed)	0.459	0.009	0.313	0.000	0.370	0.165	0.496	0.000	0.217	0.578	
n	522	522	522	522	522	522	522	522	518	505	522
Surgical techniques	-0.153**	-0.133**	0.653**	-0.153**	-0.153**	0.149**	0.080	0.052	0.229**	0.080	0.023
Significant (two-tailed)	0.002	0.009	0.000	0.000	0.003	0.115	0.307	0.000	0.000	0.000	0.650
n	522	522	522	522	522	522	522	522	518	505	522
Surgical time	-0.088	-0.051	0.653**	1	-0.533**	-0.11	0.023	0.255**	0.080	0.034	0.251**
Significant (two-tailed)	0.083	0.313	0.000	0.000	0.505	0.085	0.000	0.000	0.119	0.513	0.000
n	522	522	522	522	522	522	522	522	518	505	522
Anesthesia method	0.149**	0.237**	-0.536**	-0.536**	-0.536**	1	0.011	-0.003	-0.224**	-0.040	-0.173**
Significant (two-tailed)	0.003	0.313	0.000	0.000	0.505	0.085	0.000	0.000	0.000	0.000	0.000
n	522	522	522	522	522	522	522	522	518	505	522
ASA	0.229**	-0.046	-0.011	0.034	0.111	1	0.631**	0.175**	0.256**	-0.264**	0.206**
Significant (two-tailed)	0.000	0.370	0.836	0.510	0.829	0.000	0.000	0.001	0.001	0.000	0.000
n	389	389	389	389	389	389	389	389	384	372	389
Comorbidities	0.080	-0.071	0.023	0.088	-0.023	0.631**	1	0.172**	-0.196**	-0.160**	0.166**
Significant (two-tailed)	0.115	0.165	0.652	0.085	0.657	0.000	0.001	0.000	0.002	0.001	0.000
n	522	522	522	522	522	522	522	522	522	505	522
ICU admission	0.052	-0.035	0.255**	0.404**	-0.224**	0.175**	0.172**	1	-0.067	-0.103*	0.239**
Significant (two-tailed)	0.307	0.496	0.000	0.000	0.000	0.001	0.001	0.001	0.193	0.048	0.000
n	522	522	522	522	522	522	522	522	518	505	522
Hb	-0.231**	0.211**	0.080	0.062	-0.040	-0.256**	-0.196**	-0.067	1	0.551**	-0.160**
Significant (two-tailed)	0.000	0.000	0.119	0.227	0.437	0.000	0.000	0.000	0.000	0.000	0.000
n	518	518	518	518	518	518	518	518	518	505	518

Contd...
Moreover, the risk of worsening of present cardiovascular, respiratory, and other diseases in the surgical intervention of elderly patients is highly probable and should be considered. Brodak et al. examined urological surgeries in patients aged >75 years and reported that low recovery capacity in elderly patients and presence of comorbidity were risk factors for postoperative complications and prolonged hospital stay. They reported that it is extremely important to define and treat comorbidities before elective procedure for it to be successful.[7]

The ASA physical status classification scale is the most widely used scoring system in the world for assessing patients’ perioperative morbidity and mortality, although it is not actually anesthetic risk score but a system that classifies patients’ physical conditions. The severity of the disease, rather than the number of comorbid diseases, affects the ASA score.[8,9]

In this study, it was shown that high ASA score significantly prolonged the duration of hospital stay ($P = 0.0006$). Increased number of comorbid diseases was found to be correlated with the duration of hospital stay as well as a high ASA score, which is an indicator of severe comorbidity. The mean duration of hospital stay was 3.5 days in patients with no comorbidity disease, whereas the duration of hospital stay in the case of one or more comorbidity disease was at least 5 days ($P = 0.0074$).

High comorbidity and low albumin levels can be determiners in discharge from the hospital and at 6-month mortality in patients aged >65 years after a major surgery.[10] It has been reported that preoperative low albumin levels have a negative effect on recovery from anesthesia in geriatric patients.[11] In this study, regression analysis showed that preoperative low serum albumin level was one of the three factors that negatively affected the duration of hospital stay. It was believed that revealing the underlying reason for preoperative hypoalbuminemia and its correction before elective surgery may be effective in preventing postoperative complications.

Anemia in the elderly is also an important factor affecting postoperative morbidity. Preoperative anemia and blood transfusions have been reported to be associated with higher risk of postoperative infection and longer hospital stay.[12,13] The optimal transfusion threshold in the elderly remains clear.[6,14] In this study, it was observed that a preoperative Hb value of <12 g/dl significantly prolonged the hospital stay.

Urinary tract infections are the most common type of infection in the elderly. It has been reported that having multiple comorbidities, prolonged OT, and urinary tract infection poses a risk for prolonging hospital stay following ureteroscopy procedure.[15]

Urinary catheters, which are required in the majority of urological surgeries, are the most important cause of urinary tract infections. It is known that the best way to prevent this infection, which increases the duration of hospital stay and
related costs, is to avoid catheterization or remove the catheter as soon as possible. In this study, it was determined that infection occurred in 49 cases, and nearly all of them had urinary tract infections, which developed in postoperative period in most of them (41 patients). The duration of hospital stay was significantly longer in all patients who developed infection \((P < 0.0001)\) because the patients had delayed their surgeries until the preoperative development of the infection was controlled or the duration of hospital stay was prolonged due to the development of infection after the surgery.

The choice of anesthesia in geriatric patients may also affect the duration of hospital stay. For many urological procedures, NAB is sufficient. In the study, approximately 60% of the cases selected the central nerve block as the anesthesia method. The duration of hospital stay was significantly shorter in patients who received a NAB than that in those operated on under general anesthesia \((P = 0.0006)\). There were two important reasons for this. First, the patients who received NAB had undergone an endoscopic surgery, which is an uncomplicated procedure with a relatively short application time. Therefore, postoperative surgical recovery is expected to be faster in these patients. The second reason is that the cognitive and respiratory functions of geriatric patients operated on with NAB are less affected. Chung et al. reported that more postoperative pulmonary complications occurred in patients aged >80 years who were operated on under general anesthesia, and there was a reduction in respiratory complications with spinal or epidural anesthesia. In another study, it was shown that intraoperative complications can be reduced by continuing the surgeries with epidural block which should be performed under general anesthesia, and the duration of hospital stay can be shortened by postoperative pain control.

In the study, it was shown that the method of surgery was one of the factors affecting the duration of hospital stay, and patients operated on with laparotomy remained in the hospital longer than those patients operated on with other procedures. Surgeries performed by laparotomy adversely affect postoperative period as it is more complicated and involves more bleeding and longer procedures performed under general anesthesia. In recent years, surgeries performed by laparotomy could have been performed laparoscopically; therefore, less bleeding and transfusion, less postoperative pain, and shorter hospital stay could have been achieved. Similarly, the duration of surgery also affects the duration of hospital stay. The duration of hospital stay was found to be increased approximately twice in surgeries performed for \(\geq 3\) h compared with those that lasted \(< 2\) h. Vast majority of long surgeries are major and complicated with bleeding, requiring laparotomy. However, some of them were endoscopic or percutaneous procedures, and some surgical procedures were prolonged due to case-specific problems. Therefore, it was found based on the regression analysis that the OT was the most important factor affecting the duration of hospital stay.

The power of this single-center study is that it includes a high number of patients which allows obtaining stronger results. The limitation of this retrospective study is that it does not allow the correlation between perioperative complications and outcomes with the patients’ preoperative status.

Conclusion

The results of our study showed that the length of hospital stay in patients over 65 years of age, who underwent urological intervention, may be influenced by many factors alone or in combination. The outcomes revealed that ASA physical condition, high number of comorbidities, postoperative infection, hospitalization in ICU, low preoperative Hb and albumin levels, different anesthesia and surgical techniques, and long surgical time were effective. In addition, the regression analysis showed that the most effective factors were long surgical time, low albumin level, and high ASA physical status.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Turkish Statistical Institute. Main Statistics: Population and Demography, Population Projections, Demographic Indicators; c2019. Available from: http://www.turkstat.gov.tr/Start.do. [Last accessed on 2019 Jan 20].
2. Tekin SC, Kara F. Aging in world and Turkey. J Int Sci Res 2018;3:219-29.
3. Stowers AR, Noorily SH, Kraus SR, Basler JW. Perioperative anesthetic evaluation and clinical decision making. In: Griebling TL, editor. Geriatric Urology. New York: Springer Science+ Business Media; 2014. p. 443-52.
4. Smith R, Osterweil D, Ouslander JG. Perioperative care in the elderly urologic patient. Urol Clin North Am 1996;23:27-41.
5. Watt J, Tricco AC, Talbot-Hamon C, Pham B, Rios P, Grudniewicz A, et al. Identifying older adults at risk of harm following elective surgery: A systematic review and meta-analysis. BMC Med 2018;16:2.
6. Lagoo-Deenadayalan SA, Newell MA, Pofahl WE. Common perioperative complications in older patients. In: Rosenthal RA, Zenilman ME, Katlic MR, editors. Principles and Practice of Geriatric Surgery. New York: Springer Science+Business Media, LLC; 2011. p. 361-76.
7. Brodak M, Tomasek J, Pacovsky J, Holub L, Husek P. Urological surgery in elderly patients: Results and complications. Clin Interv Aging 2015;10:379-84.
8. Sankar A, Johnson SR, Beattie WS, Tait G, Wijeyundera DN. Reliability of the American Society of Anaesthesiologists physical status scale in clinical practice. Br J Anaesth 2014;113:424-32.
9. ASA Physical Status Classification System; c2018. Available from: https://www.asahq.org/standards-and-guidelines/asa-physical-status-classification-system. [Last accessed on 2018 Dec 10].
10. Robinson TN, Eiseman B, Wallace JI, Church SD, McFann KK, Pfister SM, et al. Redefining geriatric preoperative assessment using frailty, disability and co-morbidity. Ann Surg 2009;250:449-55.
11. Kim S, Brooks AK, Groban L. Preoperative assessment of the older surgical patient: Honing in on geriatric syndromes. Clin Interv Aging 2015;10:13-27.
12. Kumar A, Carson JL. Perioperative anemia in the elderly. Clin Geriatr
13. Conlon NP, Bale EP, Herbison GP, McCarroll M. Postoperative anemia and quality of life after primary hip arthroplasty in patients over 65 years old. Anesth Analg 2008;106:1056-61.
14. Eisenstaedt R, Penninx BW, Woodman RC. Anemia in the elderly: Current understanding and emerging concepts. Blood Rev 2006;20:213-26.
15. Bloom J, Fox C, Fullerton S, Matthews G, Phillips J. Sepsis after elective ureteroscopy. Can J Urol 2017;24:9017-23.
16. Chung JY, Chang WY, Lin TW, Lu JR, Yang MW, Lin CC, et al. An analysis of surgical outcomes in patients aged 80 years and older. Acta Anaesthesiol Taiwan 2014;52:153-8.
17. Hammady A, Abdelgalil W, Rashed E, Elbadry MS. Upper urinary tract retroperitoneoscopic surgery under epidural anesthesia: Shifting towards outpatient treatment. Scand J Urol 2015;49:181-4.
18. Salami SS, George AK, Rais-Bahrami S. Outcomes of minimally invasive urologic surgery in the elderly patient population. Curr Transl Geriatr Exp Gerontol Rep 2013;2:84-90.