Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Cell adhesion is essential for the formation of organs, cellular migration, and interaction with target cells and the extracellular matrix. Integrins are large protein α/β-chain heterodimers and form a major family of cell adhesion molecules. Recent research has dramatically increased our knowledge of how integrin phosphorylations regulate integrin activity. Phosphorylations determine the signaling complexes formed on the cytoplasmic tails, regulating downstream signaling. α-Chain phosphorylation is necessary for inducing β-chain phosphorylation in LFA-1, and the crosstalk from one integrin to another activating or inactivating its function is in part mediated by phosphorylation of β-chains. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus receptor angiotensin-converting enzyme 2 (ACE2) and possible integrin coreceptors may crosstalk and induce a phosphorylation switch and autophagy.

Cell adhesion functions by cooperation between extracellular and intracellular molecules

A variety of adhesion molecules bind cells to each other and mediate both cell–cell and cell–matrix communication. The adhesion molecules form molecular families, which include the integrins, cadherins, immunoglobulin superfamily molecules, and selectins. While earlier reviews dealt with integrins and their interactions with cytoplasmic interactors [1–8], recent studies have increased our understanding of integrin-mediated adhesion and signaling. This includes how specific integrin phosphorylations regulate cell adhesion and signaling by enabling specific and dynamic interactions between integrins and intracellular interactors.

Herein, we first briefly review what integrins are and their extracellular and cytoplasmic interacting proteins. We then focus on recent studies that show how specific phosphorylations of integrin cytoplasmic tails regulate their activity by mediating interactions with key intracellular proteins including 14-3-3ζ, talin, and kindlins, but also abrogating interactions with inhibitory proteins such as filamin A.

Integrins are important adhesion molecules regulated in a dynamic manner

The integrins are protein heterodimers consisting of α- and β-chains, which form integrin subfamilies. They are type I membrane glycoproteins with large extracellular domains, single transmembrane domains, and relatively short intracellular tails. Integrins can be activated by inside-out or outside-in activation. In inside-out integrin activation, signals originate from non-integrin receptors, which transmit signals to the integrins. In outside-in activation, ligands bind to the external integrin domains and signal into the cells. The most detailed information on integrin inside-out activation comes from leukocytes and platelets as model cells, but platelets have also provided important information on outside-in activation [2,3,7,8].

Some integrin α-chains contain an inserted I domain acting as the ligand-binding site, or the binding site may be formed by a combination of the α- and β-chains and form an integrin ‘head.’ In the
resting state, the integrin ligand-binding head faces the membrane, and the intracellular tails are clasped. Upon activation, the integrin stalk extends, the ligand-binding site opens, and the intracellular integrin tails separate [2,9]. The different integrin conformations enable adjustments in cell adhesion and signaling.

Extracellular interactions
Integrin ligands include extracellular molecules such as fibronectin, laminins, fibrinogen, and collagens. Several integrins, including α5β1, αvβ3, and αvβ6β3, recognize an RGD sequence found in fibronectin, fibrinogen, and several other proteins [10], but also in some virus proteins, among them the SARS-CoV-2 spike protein [11,12]. The major lymphocyte integrins, LFA-1 (αLβ2; CD11a/CD18) and VLA-4 (α4β1; CD49d/CD29), bind to the cellular ligands intercellular adhesion molecules 1–5 (ICAM1–5) and the vascular cell adhesion molecule 1 (VCAM-1), respectively. Integrins are inhibited by antibodies, RGD, and other ligand-derived peptides and snake venom peptides such as echistatin. Del-1 is a natural inhibitor of LFA-1 [13].

Intracellular interactions
A number of cytoplasmic components regulate the interactions of integrins with the cytoskeleton, enabling changes in both ligand-binding *avidity* (see Glossary), due to integrin clustering, or allosteric alterations, affecting integrin ligand *affinity* [6]. Integrins are also regulated by mechanotransduction. Here, bonds are formed between integrins and extracellular or cellular ligands, which generate activation by inducing interactions between the integrin tails and cytoplasmic proteins [14,15].

The integrin β-chain cytoplasmic domains are homologous, containing conserved regions (Figure 1). The β-chains are important in integrin activity regulation by interacting with cytoplasmic proteins, some of which are shared by different β-chains, such as talin, and some are unique for a particular β-chain. By contrast, the α-chain tails show low homology. They contain a common GFFKR sequence close to the membrane, however, and its deletion activates integrins, probably due to unclasping of the integrin tails. The α-chain-binding proteins include calreticulin, RapL, paxillin, and SHARPIN [16], but they do not appear to be shared by all α-chains [8]. In fact, SHARPIN also binds to integrin β-chains [17].

Several proteins bind to the integrin cytoplasmic domains; most of those identified bind to integrin β-chains and a few to α-chains. LFA-1 is shown as an example in Figure 2. The best-known cytoplasmic binding proteins are filamin A, DOK1, talin-1, 14-3-3ζ, α-actinin, and kindlin-3. Many of the LFA-1 intracellular binding proteins also bind to other integrins.

Negative regulators of integrins
The filamins are large 280 kDa proteins containing two actin-binding domains followed by 24 immunoglobulin-like repeats [18]. Filamin A is an important negative regulator of integrins, among them LFA-1 and αvβ3, and its binding to integrins has been studied in detail [19]. It is phosphorylated on Ser2152 by the Ndr2 kinase, which promotes its dissociation from LFA-1 [20]. Filamin A seems to have many different functions, and mutations in it may result in cardiovascular malformations and skeletal dysplasia [21].

Like filamin A, Dok1 is an integrin inhibitor [22], and it may be more important in neutrophil and platelet adhesion than in T cell adhesion. It was observed bound with high affinity to the tyrosine phosphorylated proximal NPLY sequence in β3 and competed with talin for binding [23]. Dok1 bound weakly to β2 cytoplasmic peptides, but peptides phosphorylated at S756 showed stronger binding. The result suggests that in β2-integrins, there may occur a phosphorylation

Glossary

- **Affinity**: the binding strength of an individual molecule.
- **Avidity**: increased avidity means that several interacting molecules together increase binding strength.
- **Constitutively phosphorylated**: phosphorylation that is present without the preceding activation.
- **Crosstalk**: the ability to connect some function from one molecule to another.
- **G protein**: a protein regulated by GTP–GDP exchange.
- **Immunological synapse**: an interface between an antigen-presenting cell and a lymphocyte.
- **LAD-I**: leukocyte adhesion deficiency type I is a genetic disorder due to lack of functioning β2-integrins.
- **LAD-II**: leukocyte adhesion deficiency type II is a genetic disorder due to lack of kindlin-3 function.
- **Protein kinases**: enzymes that phosphorylate proteins on tyrosine, serine, or threonine.
- **Protein phosphatase**: enzyme that hydrolyses the linkage between a protein and phosphate.
Figure 2. Binding sites on the LFA-1 αL and β2 cytoplasmic tails for important interacting proteins. Talin binds to two sites on the β2 tail, one of which is the important proximal NPLF sequence. Filamin binds to a stretch covering part of the NPLF and NPKF sequences and the important TTT sequence between them. When T758 is phosphorylated, filamin is released, and 14-3-3ζ binds to the phosphorylated residue. In β2, Dok1 binds to the phosphorylated S756, but when T758 is phosphorylated, it is released. Kindlin binds to the sequence from T758 to the end of the distal NPKF sequence. Its binding needs cooperation by talin and phosphorylation on T758. SHARPIN binds to the α-chain and probably to the proximal NPLF sequence in β-tails, as has been shown for β1 (NPIY). The phosphorylation sites are marked in red. The most studied interacting proteins are marked in green.

ACE2 KARSGE\textit{NPY}(781)AS(783)\textit{DISKGENNNPGFQNTDVDQTSF}

Figure 1. The sequences of the human integrin and the angiotensin-converting enzyme 2 (ACE2) severe acute respiratory syndrome coronavirus 2 receptor cytoplasmic tails. The known phosphorylation sites are marked in red. The important NPXY/F sequences are marked in blue. The β4 tail is longer than the tails of the other β-chains, and is not shown.
switch that regulates Dok1 binding [24]. In the neutrophil αMβ2 integrin, the small G protein Rap1 bound to the phosphorylated S756 and may compete with Dok1 binding and release the inhibition [25].

SHARPIN is another negative regulator of some integrins, but less is known about how it regulates adhesion. This may be due to its interaction with the proximal NPXY/F sequence in integrin β-chains, where it competed with talin binding [17].

Positive regulators of integrins

The dimeric 14-3-3 proteins bind with high affinity to phosphorylated serine and threonine residues in proteins [26]. 14-3-3ζ is important in blood cell adhesion, and it binds to phosphorylated integrin β-chains [27].

Talin-1 and -2 are important components involved in integrin regulation [28]. Their 4.1-ezrin-radixin-moesin (FERM) domain binds to two sites on the β-chain cytoplasmic tails, including the proximal NPXY/F sequence (Figure 1). The talin rod binds to the cytoskeleton. Absence of talin is lethal [29].

Three kindlin molecules are present in mammals [30]. Kindlin-3 is expressed in hematopoietic cells, and lack of a functional molecule results in the leukocyte adhesion deficiency type III (LAD-III) syndrome, characterized by defective adhesion of blood cells [31–33]. Active kindlin-3 is a dimer [34–36], and its phosphorylation on S484 is induced by integrin-linked kinase (ILK)-stimulated protein kinase Cα (PKCα), and it is required for activity [37].

Filamin A, 14-3-3ζ, kindlins, and talins together form an important integrin regulatory assembly, which depends on integrin phosphorylation as described later. Several other cytoplasmic proteins bind to the integrin cytoplasmic domains, but because the possible role of integrin phosphorylation on their activity is less understood, we do not focus on them. The reader is referred to reviews covering cytoplasmic proteins [5,8,38].

Site-specific integrin phosphorylations regulate integrin activity

In this review, we aim to explain how integrin activity is regulated by integrin phosphorylation. Protein kinases and phosphatases induce specific integrin phosphorylations and dephosphorylations, enabling the integrins to regulate dynamic interactions with cytoplasmic proteins to achieve changes in adhesion and signaling. A dramatic development in our understanding of integrin regulation has occurred during the past few years, and integrin phosphorylation has turned out to be of fundamental importance.

Integrins are phosphorylated at specific sites

Early work on integrin phosphorylation was initiated by the fact that PKC activation by phorbol esters induced integrin-dependent leukocyte adhesion [39]. Phosphorylation sites were first determined by labelling of cells with radioactive 32P-phosphate, followed by immune precipitation with anti-integrin antibodies and Edman degradation of the isolated integrin chains [40]. Later phosphospecific antibodies have been used both against phosphorylated serine/phosphorylated threonine (pS/pT) sites and phosphotyrosine [41,42]. Antibodies are convenient to use, but their specificity must be carefully checked. Currently, mass spectrometry is the preferred technique to identify phosphorylation sites [43].

LFA-1 has been a favorite study object because of its importance in T cells. The α-chain of LFA-1 is constitutively phosphorylated in resting cells, but the phosphorylation is constantly turning
over. Activation results in β_2-chain phosphorylation. The integrin β_2-phosphorylation site was initially observed on S756, but the S756A mutation did not affect T cell adhesion [44]. Later work showed phosphorylation of the functionally important T758-T759 residues, but to observe it, it was necessary to inhibit protein phosphatase activity [40,45]. A similar finding was reported for T788-T789 in β_1-integrins [46]. The single α-chain phosphorylation sites of LFA-1, Mac-1 ($\alpha_M\beta_2$; CD11b/CD18), and $\alpha_\xi\beta_2$ (CD11c/CD18) were found to be essential for cell adhesion and cellular movement [47–49]. Importantly, α-chain phosphorylation enabled LFA-1 β-chain phosphorylation, including opening of the cytoplasmic clasp, allowing binding of cytoplasmic integrin regulatory proteins [41]. Structural and functional studies have now shown how molecular complexes are formed on the phosphorylated β-chain and how adhesion and signaling take place. The Mac-1, $\alpha_\xi\beta_2$, and $\alpha_\zeta\beta_2$ integrins have not yet been studied in this respect.

$\alpha_{IIb}\beta_3$ is the major platelet integrin, and it is an important model for studies on outside-in integrin activation [50]. Important sites in the β-chains are the two NPXY sequences, which flank the conserved serine/threonines (Figure 1). The mutation Y747A in β_3 inhibited the uptake of fibrinogen-coated particles and cell spreading of $\alpha_{IIb}\beta_3$ transfected Chinese hamster ovary cells, and the Y759A mutation likewise inhibited fibrinogen uptake, but had less effect on cell spreading [51]. Sarcoma virus kinase (Src) phosphorylated both Y747 and Y759 in β_3 [52,53].

Inside-out signaling results in integrin phosphorylation

To get a more general understanding of integrin-dependent cell adhesion, we must compromise and combine results obtained with different cell, signaling, and adhesion models. The β_1-, β_2-, and β_3-integrins are best known, and many of the regulatory mechanisms appear similar in the different integrin families. A few protein kinases and phosphatases have been identified to be involved in integrin phosphorylation, but here much additional work is needed [27,54].

Activation of the T cell receptor (TCR) [55,56] and chemokine receptors results in β_2-integrin activation [41,57]. Figure 3 shows a simplified map of the signaling routes in inside-out activation of LFA-1. Signaling starts from the initial binding of an agonist to the TCR in the immunological synapse, activation of lymphocyte-specific protein tyrosine kinase (Lck), followed by activation of downstream signaling molecules.

An excellent example of integrin activation in T cells with large clinical implications is how the commonly used immunosuppressive drugs cyclosporine and FK506 inhibit the phosphorylation and the subsequent activation of LFA-1. Until recently, these drugs were only known to inhibit the dephosphorylation of nuclear factor of activated T cells (NFAT) proteins and transcription. Recent studies have shown, however, that they also inhibit T cell adhesion by inhibiting the phosphatase calcineurin [58]. Calcineurin normally dephosphorylates the inhibitory phosphorylated S59 on Lck kinase and activates it. This results in signaling to LFA-1 and β_2-chain phosphorylation [58]. Using a transgenic mouse model that expresses Lck-S59A, Otsuka et al. [59] found that the calcineurin inhibitors suppressed acute graft-versus-host disease via NFAT-independent inhibition of TCR signaling and T758 phosphorylation of β_2.

Like activation through the TCR, several chemokines activate leukocyte integrins. They bind to trimeric G protein receptors, which dissociate and activate phospholipase C β_2 (PLCβ_2) and PLCβ_3, which generate diacyl glycerol (DAG) and inositol trisphosphate. The chemokine induced activation also resulted in T758 phosphorylation [41]. ILK may be important for the activation of PKCα and its membrane targeting [60].
The interactions of cytoplasmic proteins with integrins are regulated by integrin phosphorylation

LFA-1 integrin as a model for adhesion studies

Let us now look in detail how integrin activity is regulated and use the T cell LFA-1 integrin as a model (Figure 4). The α-chain phosphorylation on S1140 is required for β-chain phosphorylation on T758 [41]. For example, when cells migrate towards a chemokine source, there must be a continuous adhesion and deadhesion to the substrate, and these events may be a consequence of α-chain phosphorylation turnover, which in turn regulates β-chain T758 phosphorylation and activates adhesion. The phosphorylation of T758 takes place by activated PKCs [27], but they must get access to their substrate in the β-chain. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) has also been implicated in β-chain phosphorylation [61].

A separation of the clasped integrin tails upon activation was observed by electron microscopy and Förster resonance energy transfer (FRET) analysis [8]. α-Actinin binds to the cytoplasmic domain of LFA-1 with the intermediate-affinity extended conformation [62,63]. It bound well to the activated wild-type (WT) LFA-1 integrin, whereas the α-chain S1140A mutation inhibited binding, indicating steric hindrance in the clasped tail [41]. The separation of the cytoplasmic tails only occurred when both integrin chains were phosphorylated, the α-chain on S1140 and the β-chain on T758. The chain separation could be due to repulsion between the negatively charged α- and β-tails, but we cannot exclude that integrin tail binding proteins can be involved.

The interactions of cytoplasmic proteins with integrins are regulated by integrin phosphorylation

LFA-1 integrin as a model for adhesion studies

Let us now look in detail how integrin activity is regulated and use the T cell LFA-1 integrin as a model (Figure 4). The α-chain phosphorylation on S1140 is required for β-chain phosphorylation on T758 [41]. For example, when cells migrate towards a chemokine source, there must be a continuous adhesion and deadhesion to the substrate, and these events may be a consequence of α-chain phosphorylation turnover, which in turn regulates β-chain T758 phosphorylation and activates adhesion. The phosphorylation of T758 takes place by activated PKCs [27], but they must get access to their substrate in the β-chain. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) has also been implicated in β-chain phosphorylation [61].

A separation of the clasped integrin tails upon activation was observed by electron microscopy and Förster resonance energy transfer (FRET) analysis [8]. α-Actinin binds to the cytoplasmic domain of LFA-1 with the intermediate-affinity extended conformation [62,63]. It bound well to the activated wild-type (WT) LFA-1 integrin, whereas the α-chain S1140A mutation inhibited binding, indicating steric hindrance in the clasped tail [41]. The separation of the cytoplasmic tails only occurred when both integrin chains were phosphorylated, the α-chain on S1140 and the β-chain on T758. The chain separation could be due to repulsion between the negatively charged α- and β-tails, but we cannot exclude that integrin tail binding proteins can be involved.
in chain separation. The unclasping of the cytoplasmic domain then makes binding possible of the key components 14-3-3ζ, talin, and kindlin to the β tails.

Phosphorylation of LFA-1 β-chain promotes 14-3-3ζ binding

In resting cells, filamin A bound to the β2-chain and inhibited cell adhesion [19]. When T758 was phosphorylated, 14-3-3ζ bound with high affinity and inhibited filamin A binding. The β2-tail forms a loop, and whereas 14-3-3ζ readily fitted into the loop, the filamin A domain did not due to steric hindrance by pT758 [64]. The interaction with 14-3-3ζ did not affect talin binding. The dimeric
14-3-3ζ in turn bound to the Tiam1 adaptor protein, which further activated the small G protein Rac-1, which regulates the organization of the actin cytoskeleton [65].

Unclasping of LFA-1 cytoplasmic tails after β-chain phosphorylation

Talins and kindlins must cooperate to induce the integrin conformational changes, resulting in increased adhesion. In experiments with neutrophils, a portion of kindlin-3 molecules was recruited to the plasma membrane before the rolling-induced cellular arrest of leukocytes and the appearance of small clusters of highly active β2-integrins [66]. Kindlin activity was induced before integrin-mediated adhesion was upregulated.

Kindlins bind to the TTVMNPKF peptide sequence in β2 (Figure 2); it covers both the important T758 site and the distal NPKF sequence. Indeed, when the T758-760/AAA mutated β2 was expressed in mice, FRET analysis indicated a loss of kindlin-3 association with the β2 chain [67]. The mice were healthy but showed an accumulation of leukocytes in the blood, fewer T cells in lymph nodes, decreased cell adhesion, and less spreading of T cells. The results support the concept that β2-chain phosphorylation is important for leukocyte functions in vivo.

To further test if the phosphorylation of the threonine residues affects kindlin binding, various peptides were used, and the homologous integrin β1 was used as a model [68]. In integrin β1, residues T788-T789 correspond to T758-T759 in β2. Kindlin-2 bound to the unphosphorylated WT β1-peptide covering residues 762–798 in vitro, whereas a peptide containing pT788/pT789 showed no binding. Importantly, in the presence of the talin F3 domain, kindlin-2 bound to the integrin β1, pT788/pT789 and required the intact distal NPKY motif for binding. The results are explained by the fact that although talin and kindlin do not directly interact with each other, talin reorients the integrin tail so that kindlin now can bind. A prerequisite for kindlin binding in vivo is thus that the T788/T789 residues in β1 are phosphorylated [68]. The phosphorylated integrin outcompeted the binding of filamin A.

Further proof for the importance of T788/T789 phosphorylation for kindlin binding was obtained using GFP–kindlin-2. It strongly colocalized with the phosphomimicking T788D/T789D (threonines replaced by negative aspartic acids) β1-integrin in intact cells [68]. The results support earlier results, which showed that T788/T789 must be phosphorylated for activation of β1 [69]. Kindlin-2 has been shown to bind to the distal NITY sequence in β3, and its tyrosine phosphorylation inhibited adhesion [70]. This finding strengthens the concept that an intact distal NPXY sequence is required to promote adhesion.

Very recent studies showed that kindlin-3 disrupted the association of the integrin β2 tails and the subunit clasp and in this way contributed to integrin activation [71]. An interesting possibility is that a fraction of kindlin-3 molecules in hematopoietic cells could bind to the phosphorylated T758 residues in β2 through 14-3-3ζ. It has been shown that 5–10% of the normal levels of kindlin-3 suffices for its basal functions in mice [72]. Therefore, the 14-3-3ζ-Tiam-1–Rac-1 pathway would not exclude binding of kindlin-3. The 14-3-3ζ proteins are dimers and could bind both phosphorylated T/S residues in integrin β-chains and phosphorylated kindlin-3. Kindlin-3 is phosphorylated at several sites, but the double-mutant T482/S484-AA in kindlin-3 inhibited adhesion of T lymphocytes, which shows that phosphorylation of kindlin-3 is functionally important [57,73].

Structural studies confirm that the β2 phosphorylated cytoplasmic tail simultaneously can bind both the talin FERM domain and 14-3-3ζ [74]. Using single-protein analysis, it is now established that the β1 tail, talin, and kindlin form a molecular complex and that the distances between the measured binding sites on individual integrins match the known binding sites [75]. These findings
indicate that single integrins can both cluster and change conformation by two different downstream events, originating from the threonines between the NPXY/F sequences. The talin/kindlin- and 14-3-3ζ/Tiam-1/Rac-1-induced structural changes greatly advance our understanding of how adhesion takes place.

Dephosphorylation of the β-chain allows filamin binding

The phosphorylated T788/T789 residues in β₁ are dephosphorylated by the PPM1F phosphatase, re-gaining filamin A binding and abrogating adhesion [68]. PPM1F-knockout cells, which express increased levels of the pT788/pT789 β₁-integrin, showed an accumulation of kindlin-2 with β₁. Overexpression of PPM1F impaired talin recruitment to the integrin tail. WT cells showed clustering of GFP-filamin A with β₁, whereas overexpression of inactive PPM1F showed no codistribution [70]. The results indicate that PPM1F activity towards T788/T789 is important for integrin/filamin A association. Currently, we do not know whether PPM1F is involved in the regulation of other integrins than β₁-integrins, but due to the high homology of β-chains, it is highly probable. We do not know how PPM1F is regulated, but it certainly plays an important role at least in the regulation of β₁-integrin activity.

Integrin serine/threonine phosphorylation has general significance

In addition to the β₁- and β₂-integrins, the possible involvement of serine/threonine phosphorylation for the activity of other integrins has been studied to some extent. For example, treatment of platelets with the phosphatase inhibitor calyculin A resulted in phosphorylation of T751 and T753 in β₃ [76]; the phosphorylation inhibited outside-in signaling. By use of a β₃ T753 phosphorylated cytoplasmic peptide, it was shown that the tyrosine phosphorylation by Src was not affected by the T753 phosphorylation. Rather, the T753 phosphorylation inhibited the binding of the adaptor protein SHC (SH2-domain-containing transforming protein C1). In vitro experiments showed that the PDK1 and/or Akt/PKB kinases could phosphorylate T753 [77]. Additionally, the β₅ chain in the α₅β₅ integrin contains a SERS motif, and S759 and S762 in the motif were phosphorylated by the p21-activated kinase 4. Mutation of both residues to alanine abrogated cell migration [78].

Little is known about α-chain phosphorylation. The α-chain of VLA-4 was found to be phosphorylated on S988 by protein kinase A, and the phosphorylation displaced paxillin from the integrin, resulting in integrin activation [79–81].

Outside-in signaling through the platelet integrin αIIbβ₃ involves both tyrosine and serine/threonine phosphorylations

The platelet integrin αIIbβ₃ is an important model for outside-in integrin activation. Patients with Glanzmann thrombasthenia, who lack a functional αIIbβ₃ integrin, develop serious bleeding due to absence or mutations in the integrin [82].

One should bear in mind that inside-out and outside-in activations are intimately connected. When integrins have been activated through inside-out activation, ligands bind and in turn may activate outside-in activation.

Src is the major tyrosine kinase in platelets, and it bound to the integrin β₃ chain C-terminal sequence RGT through its SH3-domain and phosphorylated it [83]. Integrin clustering enabled transphosphorylation of Src molecules and subsequent spleen tyrosine kinase (Syk) and focal adhesion kinase (FAK) tyrosine kinase activations. Like Lck, Src is autoinhibited by C-terminal tyrosine phosphorylation, and it is activated by tyrosine phosphatases such as protein tyrosine phosphatase IB [84]. Downstream of Src phosphorylation, Syk and FAK phosphorylate signaling molecules, among them PKCs and PLCs or α-actinin, respectively. Recent studies showed that,
upon activation with fibrinogen, a 14-3-3ζ/Src/β3 complex was formed through binding to the KEATSTF sequence of β3 [85]. Interestingly, a myristylated KEATSTF peptide, which was taken up by cells, inhibited the β3 outside-in signaling and platelet aggregation. The result indicates that it could be possible to develop drugs that interfere with functions associated with specific integrin phosphorylation sites.

Defects in integrin phosphorylation-mediated signaling could be less severe than total loss of integrins or adaptors

Deletion of the β2-integrin gene results in leukocyte adhesion deficiency type I (LAD-I), which is characterized by several deficiencies, including antibody production, T cell cytotoxicity, and chemotaxis [86]. To the best of our knowledge, no mutations of the human leukocyte integrin phosphorylation sites have been described in patients. Experimental results indicate that such mutations would be less severe than a total loss of integrin activity. Mutations in adaptor and signaling molecules may not wipe out all effects connected to a specific integrin, on the one hand, but could, on the other hand, affect the functions of several integrins. One example is the absence of a functional kindlin-3, which results in LAD-III [31–33]. In addition to defects in leukocyte cell adhesion-related functions, leukocyte development was impaired. Another example is deficiency in filamin function.

Phosphorylation is important in integrin crosstalk and may affect integrin/SARS-CoV-2 receptor ACE2 interaction

Crosstalk between integrins is well documented and depends on phosphorylation. For example, activated LFA-1 crosstalked with VLA-4 [87,88]. When LFA-1 was targeted with activating LFA-1 antibodies or ICAM-1, T758 in β2 was phosphorylated, resulting in intracellular signaling, dephosphorylation of β1, and inactivation of VLA-4 [89]. The two integrins have similar regulatory characteristics, and it is possible that the integrins simply exchange the β-chain-binding proteins, resulting in activation of one integrin and inactivation of the other. Monoclonal antibodies are used in the clinics to inhibit specific integrins, but we should now be aware of that by blocking the activity of one integrin, the activity of another integrin may change. Interestingly, T lymphocytes can migrate upstream of blood flow by binding of LFA-1 to ICAM-1, whereas they migrate downstream by VLA-4 interaction with VCAM-1 [90,91]. The ability to migrate upstream is preserved after the flow is terminated, due to integrin crosstalk between VLA-4 and LFA-1 [92].

The major receptor for the SARS-CoV-2 virus is angiotensin-converting enzyme 2 (ACE2) [93]. Its cytoplasmic domain contains short linear motifs with potential roles in endocytosis and autophagy [11]. ACE2 is present in the kidney and heart, but less in the lungs, where SARS-CoV-2 induces severe damage. This fact indicates that there may be alternative receptors for the virus in some tissues. One such receptor is neuropilin-1, which shows strong expression in the olfactory epithelium [94]. Integrins act as receptors for several viruses [95]. The SARS-CoV-2 virus spike protein contains an RGD sequence to which integrins expressed on lung epithelial cells can bind; these include αVβ3 and β1 integrins such as α4β1 [96–98]. β1 and β3 integrins could act as a coreceptor for SARS-CoV-2 [12,98], but they could also function as separate receptors in the lung and facilitate virus uptake by a phosphorylation switch [12,97]. In the immunological synapse, the binding specificity comes from the TCR–antigen interactions, but LFA-1–ICAM-1 interaction is important in strengthening the interaction [99]. In a corresponding way, integrins could strengthen the SARS-CoV-2–receptor interaction.

Previous work has shown a function for integrins and their NPXY motifs in both trafficking and autophagy [100,101]. The cytoplasmic tails of both ACE2 and integrin β3 contain motifs that may participate in the internalization of the virus and its interactions with the autophagy
pathway (Figure 5). The β3 cytoplasmic domain bound the autophagy-related protein 8 (ATG8) domains and required phosphorylation [14]. Phosphorylation of S752 in β3 strengthened binding to all ATG8 domains, whereas T753 phosphorylation enhanced binding to one of the tested ATG8 domains, but not to the others. Phosphorylation of Y759 improved binding in all cases, and double phosphorylation on T753 and Y759 promoted ATG8 binding. The C-terminus of ACE2 is similar to integrin β-tails containing NPYA and NPGF sequences and serine residues between them (Figures 1 and 5). SH2 domain-containing tyrosine kinases showed binding to the ACE2 cytoplasmic domain, and pY781 disabled the interaction, while pS783 increased the affinity about twofold. The results indicate that the cytoplasmic domains of the ACE2 and integrins may regulate SARS-CoV-2 endocytosis and autophagy, but further work on the role of these proteins as links between pathogen infection and autophagy is required.

Figure 5. Binding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to its receptors and possible crosstalk between integrins and the angiotensin-converting enzyme 2 (ACE2) receptor. The ACE2 receptor has been studied extensively and is strongly expressed in the upper airways, but not much in the lungs, where the most serious complications occur. Phosphorylated Y781 acts as a binding site for Src family kinases through their SH2-domains, and its phosphorylation inhibited the binding of the clathrin adaptor AP2μ2, whereas phosphorylation of S783 enhanced the binding [14]. It could act as a binding switch. β1- and β3-integrins are expressed in the lungs and can bind SARS-CoV-2 through the RGD motif in the virus spike. These integrins could act as coreceptors or as primary receptors, and they could bind autophagy-related protein 8 (ATG8) domains when phosphorylated on S752 or T753. The similarities between ACE2 and β1- and β3-cytoplasmic tails could induce phosphorylation switches such as those seen between LPA-1 and VLA-4 in T cells.
Concluding remarks

Cell adhesion is of pivotal importance for the development of organs, immunity against foreign microbes, metastasis from malignant tumors, restriction of excessive activity of T cells and macrophages towards own tissues, and clotting of platelets. Integrins constitute an important family of adhesion proteins, and their activity must be dynamically regulated to enable fast changes in activity. Several cytoplasmic proteins bind to the integrin cytoplasmic tails and affect their activity. Among them, 14-3-3ζ, talins, and kindlins are important activators, whereas filament A and Dok-1 are inhibitory. Although relatively little is known about the protein kinases and phosphatases involved, they are responsible for specific integrin phosphorylations on both the α- and β-chains and regulate the interactions between the integrins and the cytoplasmic adaptors and thus adhesion. Monoclonal antibodies have been used to inhibit cell adhesion of leukocytes, but their clinical use has often been disappointing due to unwanted side effects. In the future, it should be possible to develop drugs that specifically target integrin phosphorylation sites and have more restricted effects (see Outstanding questions).

Acknowledgments

These studies were supported by grants from the Finnish Medical Association, the Finnish Society of Science and Letters, the Wilhelm and Else Stockmann Foundation, the Magnus Ehrenrooth Foundation, and the Medicinska Understödsföreningen Liv och Hälsa Foundation. Figures 3–5 were created with BioRender. Figure 5 was adapted from “SARS-CoV-2 Spike Protein Conformations” from BioRender.com (2021).

Author contributions

Both authors wrote the text and planned the figures.

Declaration of interests

The authors have no conflict of interest.

References

1. Hynes, R.O. (2002) Integrins: Bidirectional, allosteric signalling machines. Cell 110, 673–687
2. Amanat, M.A. et al. (2000) Integrin structure, allosteric, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 21, 381–410
3. Moggs, J.G. et al. (2011) The insider’s guide to leukocyte integrin signalling and function. Nat. Rev. Immunol. 11, 416–426
4. Caldecourt, D.A. et al. (2013) Talins and kindlins: Partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol. 14, 523–537
5. Gahmberg, C.G. et al. (2019) Regulation of cell adhesion: A collaborative effort of integrins, their ligands, cytoplasmic actors and phosphorylation. Q. Rev. Biophys. 52, e10
6. Bachmann, M. et al. (2019) Cell adhesion by integrins. Physiol. Rev. 99, 1655–1699
7. Nitta, M.A. and Margadant, C. (2020) Activation and suppression of hematopoietic integrins in hemostasis and immunity. Blood 135, 7–16
8. Abram, C.L. and Lowell, C.A. (2009) The ins and outs of leukocyte integrin signaling. Annu. Rev. Immunol. 27, 339–362
9. Kim, M. et al. (2003) Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725
10. Pierschbacher, M.D. and Ruoslahti, E. (1985) Fibronectin. Nature 319, 30–33
11. Meszaros, B. et al. (2003) Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci. Signal. 14, eaax0334
12. Köhler, J. et al. (2021) Cytoplasmic short linear motifs in ACE2 and integrin (β3) link SARS-CoV-2 host cell receptors to mediators of endocytosis and autophagy. Sci. Signal. 14, eabf1177
13. Choi, E.Y. et al. (2018) Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science 362, 1101–1104
14. Nordenfelt, P. et al. (2016) Coordinated integrin activation by actin-dependent force during T-cell migration. Nat. Commun. 7, 13119
15. Sun, Z. et al. (2019) Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21, 25–31
16. Rantala, J.K. et al. (2011) SHARPIN is an endogenous inhibitor of β-integrin activation. Nat. Cell Biol. 13, 1315–1324
17. Gao, J. et al. (2019) Sharpin suppresses β-integrin activation by competing with the β3 tail and kindlin-1. Cell Commun. Signal. 17, 101
18. Stossel, T.P. et al. (2001) Flamingos as integrators of cell mechanics and signaling. Nat. Rev. Mol. Cell Biol. 2, 138–145
19. Kiema, T. et al. (2009) The molecular basis of filamin binding to integrins and competition with talin. Mol. Cell 19, 327–347
20. Waldt, N. et al. (2018) Flamin A phosphorylation at serine 2152 by the serine/threonine kinase Ndr2 controls TCR-induced LFA-1 activation in T cells. Front. Immunol. 9, 2952
21. Sasaki, E. et al. (2019) A review on flamin A mutations and associated lung disease. Eur. J. Pediatr. 178, 121–129
22. Yasuda, T. et al. (2007) Dock-1 and Dock-2 are negative regulators of T cell receptor signaling. Int. Immunol. 19, 487–495
23. Oliver, C.L. et al. (2008) An integrin phosphorylation switch. The effect of β3 integrin tail phosphorylation on Dock-1 and talin binding. J. Biol. Chem. 283, 5420–5426
24. Gupta, S. et al. (2015) An alternative phosphorylation switch in integrin (β2) (2018) talin Dock-1 binding. Sci. Rep. 5, 11650
25. Lim, J. et al. (2011) Ser766 of β2 integrin controls Rap1 activity during inside-out activation of eNOS. Biochem. J. 437, 461–467
26. Muslim, A.J. et al. (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889–897
27. Fagerholm, S. et al. (2002) Phosphorylation of the cytoplasmic domain of the integrin CD18 chain by protein kinase C isoforms in leukocytes. J. Biol. Chem. 277, 17295–17301

Outstanding questions

1. Which protein kinases and phosphatases, in addition to the few known, affect cell adhesion?
2. Are some integrins regulated in very different ways, or are the mechanisms for the most part similar?
3. What are the structures of integrin–adaptor complexes like? How are their dynamics regulated?
4. Will it be possible to develop drugs targeting the integrin phosphorylation sites?
5. Which additional cytoplasmic proteins will turn out to be important in adhesion?
6. Does cytoplasmic glycosylation regulate adhesion by competing with phosphorylation?
42. Johnson, S.A. and Hunter, T. (2005) Kinomics: Methods for deciphering the kinome. Trends Biochem. Sci. 34, 129–133

43. Robertson, J. et al. (1997) Structural basis of kindlin-mediated integrin recognition and activation. Proc. Natl. Acad. Sci. U.S.A. 94, 10538–10543

44. Hibbs, M.L. et al. (2010) Kindlin-3 disrupts an intersubunit association of the integrin beta3 chain. J. Biol. Chem. 285, 30705–30713

45. Bialkowski, K. et al. (2021) Phosphorylation of kindlin and the control of integrin function. Cells 10, 825

46. Chatterjee, D. et al. (2016) Interaction analyses of the integrin αβ cytoskeletal tail with the F3 FERM domain of talin and 14-3-3. J. Biol. Chem. 291, 4129–4142

47. Fischer, L.S. et al. (2021) Quantitative single-protein imaging reveals molecular complex formation of integrin, talin, and kindlin during cell adhesion. Nat. Commun. 12, 919

48. Lerea, K.M. et al. (1999) Phosphorylation sites in the integrin β3 cytosolic domain in intact platelets. J. Biol. Chem. 274, 1914–1919
77. Kirk, R.I. et al. (2000) Threonine phosphorylation of the β3 integrin cytoplasmic tail, at a site recognized by PDK1 and Akt/PKB in vitro, regulates Src binding. J. Biol. Chem. 275, 30961–30966

78. Li, Z. et al. (2010) p21-activated kinase 4 phosphorylation of integrin β5 Ser-759 and Ser-762 regulates cell migration. J. Biol. Chem. 285, 23699–23710

79. Han, J. et al. (2001) Phosphorylation of the integrin alpha 4 cytoplasmic domain regulates paxillin binding. J. Biol. Chem. 276, 40903–40909

80. Han, J. et al. (2003) Integrin alpha 4 beta 1-dependent T cell migration requires both phosphorylation and dephosphorylation of the alpha 4 cytoplasmic domain to regulate the reversibility of binding of paxillin. J. Biol. Chem. 278, 34845–34853

81. Goldfinger, L.E. et al. (2000) Spatial restriction of α5 integrin phosphorylation regulates lamellipodial stability and α4β1-dependent cell migration. J. Cell Biol. 162, 731–741

82. Böttner, J.P. et al. (2000) Glanzmann thrombasthenia: Genetic basis and clinical correlates. Haematologica 105, 888–894

83. Wu, Y. et al. (2015) The tyrosine kinase c-Src specifically binds to the active integrin αIIbβ3 to initiate outside-in signaling in platelets. J. Biol. Chem. 290, 15625–15634

84. Arias-Romero, L.E. (2009) Activation of Src by protein tyrosine phosphatase 1B is required for ErbB2 transformation of human breast epithelial cells. Cancer Res. 69, 4582–4588

85. Shen, C. et al. (2020) The 14-3-3ζ-c-Src integrin-β3 complex is vital for platelet activation. Blood 136, 974–986

86. Springer, T.A. et al. (1984) Inherited deficiency of the MAC-1, LFA-1, P150,95 glycoprotein family and its molecular basis. J. Exp. Med. 160, 1901–1919

87. Porter, K. and Hogg, N. (1997) Integrin cross-talk: Activation of lymphocyte function-associated antigen-1 on human T cells alters α4β1- and α5β1-mediated function. J. Cell Biol. 138, 1437–1447

88. Uotila, L.M. et al. (2014) Specific phosphorylations transmit signals from leukocyte (α2- to α1-)integrins and regulate adhesion. J. Biol. Chem. 289, 32230–32242

89. Grönholm, M. et al. (2016) LFA-1 integrin antibodies inhibit leukocyte α4β1-mediated adhesion by intracellular signaling. Blood 128, 1270–1281

90. Homung, A. et al. (2020) A bistable mechanism mediated by integrins controls mechanotaxis of leukocytes. Biophys. J. 118, 565–577

91. Roy, N.A. et al. (2020) LFA-1 signals to promote actin polymerization and upstream migration in T cells. J. Cell Sci. 133, jcs248329

92. Kim, S.H.J. and Hammer, D.A. (2019) Integrin crosstalk allows CD4+ T lymphocytes to continue migrating in the upstream direction after flow. Integr. Biol. 11, 384–393

93. Hikmet, F. et al. (2020) The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol. 16, e99110

94. Cantuti-Castelvetri, L. et al. (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. Science 370, 866–870

95. Stewart, P.J. and Nemerow, G.R. (2007) Cell-integrins: Commonly used receptors for diverse viral pathogens. Trends Microbiol. 15, 500–507

96. Makowski, L. et al. (2021) Biological and clinical consequences of integrin binding via a rogue RGD motif in the SARS-CoV-2 spike protein. Viruses 13, 146

97. Calver, J. et al. (2021) The novel coronavirus SARS-CoV-2 binds RGD integrins and upregulates αvβ3 integrins in Covid-19 infected lungs. Thorax 76, S31

98. Park, E.J. et al. (2021) The spike glycoprotein of SARS-CoV-2 binds to α1 integrins expressed on the surface of lung epithelial cells. Viruses 13, 645

99. Bromley, S.K. et al. (2001) The immunological synapse. Annu. Rev. Immunol. 19, 375–396

100. Moreno-Layseca, P. et al. (2019) Integrin trafficking in cells and tissues. Nat. Cell Biol. 21, 122–132

101. Vlahakis, A. and Debnath, J. (2017) The interconnections between autophagy and integrin-mediated cell adhesion. J. Mol. Biol. 429, 515–530