RESEARCH ARTICLE

Characterization of the prohormone complement in *Amphiprion* and related fish species integrating genome and transcriptome assemblies

Bruce R. Southey1*, Sandra L. Rodriguez-Zas1,2,3, Justin S. Rhodes2,4, Jonathan V. Sweedler2,5

1 Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 2 Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 3 Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 4 Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 5 Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America

*southey@illinois.edu

Abstract

The *Amphiprion* (anemonefish or clownfish) family of teleost fish, which is not a common model species, exhibits multiple unique characteristics, including social control of body size and protandrous sex change. The social changes in sex and body size are modulated by neuropeptide signaling pathways. These neuropeptides are formed from complex processing from larger prohormone proteins; understanding the neuropeptide complement requires information on complete prohormones sequences. Genome and transcriptome information within and across 22 teleost fish species, including 11 *Amphiprion* species, were assembled and integrated to achieve the first comprehensive survey of their prohormone genes. This information enabled the identification of 175 prohormone isoforms from 159 prohormone proteins across all species. This included identification of 9 CART prepropeptide genes and the loss of insulin-like 5B and tachykinin precursor 1B genes in Pomacentridae species. Transcriptome assemblies generally detected most prohormone genes but provided fewer prohormone genes than genome assemblies due to the lack of expression of prohormone genes or specific isoforms and tissue sampled. Comparisons between duplicate genes indicated that subfunctionalization, degradation, and neofunctionalization may be occurring between all copies. Characterization of the prohormone complement lays the foundation for future peptidomic investigation of the molecular basis of social physiology and behavior in the teleost fish.

Introduction

Non-model species provide a unique opportunity to gain a more complete understanding of the molecular mechanisms underlying processes such as sex change that are not observed in
classical model species [1]. The increasingly affordable and accurate genome and transcriptome next-generation sequencing technologies are benefiting the study of these non-model organisms [1]. Members of the *Amphiprion* (anemonefish or clownfish) genus are examples of a non-model model species for which the research interest and opportunity for affordable next-generation sequencing has ensured the availability of several genome and transcriptome datasets for these teleost fish species.

Amphiprion are mainly found in tropical Indo-West Pacific regions and live in a symbiotic relationship with certain sea anemone species [2]. A unique characteristic of the 30 *Amphiprion* species is their socially controlled sex and corresponding body size changes. They typically live as a small social group in a size-based socially controlled dominance hierarchy where the largest individual is the adult female and the second largest is the adult male, with varying numbers of immature individuals of differing sizes, depending on species and anemone host size [2, 3]. When the female is lost, the male changes to female, typically over a period of one to three months [2, 4–7]. In some species, the largest non-adult individual can move to a new host to become a female [2–8]. When the male either undergoes the protandrous sex change or is lost, the largest non-adult replaces the male. The body size ratio between individuals is socially maintained as a constant function of the host anemone size [9]. This unique feature of the *Amphiprion* species may have evolved as a response to limited shelter space and reproductive competition [10].

Underlying the *Amphiprion* socially driven sex and body size changes is a complex array of biological signals and changes that involves reorganization of the chemistry and structure of the brain, genitalia, gonads, body size, and body features [11, 12]. These biological signals are modulated by neuropeptides, small signaling molecules present in the brain and hypothalamic-pituitary-gonadal axis. Examples of these signaling molecules include the pituitary prohormone genes, notably neuropeptide VF precursor (NPVF or gonadotropin-inhibitory hormone GnIH), proopiomelanocortin (POMC), Oxytocin (OXT) and Vasopressin (AVP) [3, 11, 13]. In fish NPVF exerts numerous reproductive inhibitory effects as well as effects on behavior [14]. The melanocortin system involving the POMC genes have been shown to be directly related to cichlid behavior where yellow *Astatotilapia burtoni* males were more aggressive and had lower cortisol levels than the blue males [15]. Both AVP and OXT genes contain similar nonapeptides, isotocin (homologous to mammalian oxytocin) and vasotocin (homologous to mammalian vasopressin), respectively, that influence various fish social behaviors [8, 11, 16–21]. AVP has been associated with a variety of fish behaviors, including social status [22, 23], and regulates mate-guarding behaviors [24] and species differences in mutualistic behavior [25]. In contrast, OXT has been less studied but appears to be a regulator of social response [23], such as male courtship [26], mediating social habituation [27], and may be associated with sexual dimorphism [25].

Neuropeptides are formed by enzymatic cleavage and chemical post-translational modifications of larger, inactive precursor proteins referred to as prohormones. In order to characterize these neuropeptides, the prohormone complement first needs to be revealed using sequence information and a list of known prohormones [28–34]. Ideally, the sequence information is obtained from the genome sequencing project of the species of interest but next-generation sequencing of the transcriptome can also be used for identification [35]. When there is no sequence information for the species of interest, genome and transcriptome sequence information can be obtained from closely related species. Integration of next-generation sequencing of genome and transcriptome sequence information across species would then provide accurate and comprehensive gene annotation and characterization.

The investigation of neuropeptides that control socially-driven physiological changes has been hindered by the limited genome and transcriptome sequence resources available for
Amphiprion and related species. The first objective of the present study was to develop a comprehensive survey of the prohormone complement in Amphiprion ocellaris. The detailed and comprehensive sequence information secured upon the accomplishment of our first objective enabled us to pursue a second objective, the characterization of the prohormone complement of the more distantly related Pomacentridae (Damselﬁsh) family that includes the Amphiprion genus within the Perciformes (Perch-like) order. The ﬁnal objective was to compare the prohormone complement across species to identify unique and common sequences that could offer insights into unique and common physiological and behavioral features. A supporting goal was the development of a bioinformatics pipeline that integrates genome and transcriptome sequence information across species. An innovative bioinformatics workflow was developed to address the fragmentary nature of the sequencing information available and to integrate complementary genomic and transcriptomic sequence records across Amphiprion species.

The exhaustive survey of prohormone sequences across ﬁsh families obtained from the present inter-species and multi-step bioinformatics initiative enable the accurate identiﬁcation and quantiﬁcation of corresponding genes, proteins and peptides. This information supports the study of molecular mechanisms regulated by neuropeptides, such as behavior, body size, sex plasticity and feeding [8, 18–21, 36–38]. Moreover, the multi-species comparison enabled the identiﬁcation of conserved regions among the prohormones, and sequences that are unique to particular species or families. The results from the present comparative omics study may aid further work to understand both function and evolutionary changes associated with neuropeptide specialization and species divergence.

Material and methods

Bioinformatic annotation of prohormones across species

Genome and transcriptome sequence information from 22 species, including 11 Amphiprion species, were obtained from published sources or publicly available databases, including National Center for Biotechnology Information (NCBI) Biosystems databases [39]. Information was obtained from the following specific species: Amphiprion species with sequenced DNA genomes by subgenus Actinicola: Amphiprion ocellaris (3 assemblies) [40–42], Amphiprion percula [40, 41]; Amphiprion clarkii-complex: Amphiprion bicinctus and Amphiprion clarkia [42]; Amphiprion ephippium-complex: Amphiprion frenatus [43] and Amphiprion melanopus [42]; Paramphiprion: Amphiprion polymnus [42] and Amphiprion sebae [42]; Phalerebus: Amphiprion akallopisos, Amphiprion nigripes and Amphiprion perideraion [42]; and Amphiprion species with transcriptome data: A. bicinctus [44], A. clarkia [41], A. melanopus [45], A. percula [40, 41], A. ocellaris and A. sebae. Species from the Pomacentridae family with DNA genome data were Acanthochromis polyacanthus, Chromis chromis, Pomacentrus moluccensis [42], Premnas biaculeatus [42] and Stegastes partitus. Transcriptome data were from Chromis viridis [41]. Ovalentaria was represented by the DNA genome assemblies of Astatotilapia burtoni [46] and Pseu dochromis fuscus [47]. Three species from the Perciform order (Percomorphaceae) with sequenced DNA genome assemblies selected based on similarity were: protandrous hermaphrodite Lates calcarifer [6, 48], Larimichthys crocea [49], and Nothobranchius furzeri [50]. The estimated divergence time from Amphiprion genus from other genera in the Pomacentridae family is between 12 and 36 mya, from the Ovalentaria group was 95 mya, and from Perciform between 95 to 126.8 mya [51, 52]. The phylogenetic tree with evolution time between species studied (Fig 1) was obtained from TimeTree [52].

The genome and transcriptome sequences of all the species studied were obtained from the appropriate NCBI Bioproject (Table 1). For species without available assemblies, de novo
assemblies were obtained using MEGAHIT [53], SOAPdenovo [54], and Trinity [55, 56] with
default settings and without any preprocessing of reads for quality.

Prohormone annotations were obtained using our published prohormone prediction pipe-
line [29, 34] using the A. burtoni annotated prohormone complement [33]. Briefly, a
TBLASTN [57] search of each A. burtoni prohormone sequence was performed on each
genome or transcriptome assembly. For genome assemblies, GeneWise [58] was used to pre-
dict the protein sequence from region with the best match and the A. burtoni sequence. For
the transcriptome assemblies, the matched RNA sequence was translated into a protein
sequence and the open reading frame(s) corresponding to the prohormone sequence were
extracted. When a complete sequence was not obtained from a single RNA transcript due to
incomplete sequence coverage, GeneWise and homology based on the TBLASTN match were
combined to predict the most likely sequence based on the prohormone sequences from A.
burtoni and other species. Prohormone isoforms were identified where different protein
sequences were observed in at least one species that were not due to incomplete sequence cov-
erage and present either in at least one transcriptome assembly. These prohormone isoforms
were also predicted using GeneWise in the other species. Each predicted prohormone
sequence was evaluated for the presence of signal peptide using SignalP [59] and potential
cleavage sites using NeuroPred [60]. Prohormone sequences were verified from multiple
sequence alignments performed with the L-INS-i iterative refinement method MAFFT
v6.861b [61]. Completeness of the A. ocellaris and A. percula prohormone isoforms and the
Amphiprion transcriptome assemblies were assessed by the number of gaps in MAFFT multi-
ple sequence alignments. Within species with multiple assemblies, a single sequence with the
fewest gaps was used for subsequent analysis.

Phylogenetic trees were obtained using Phyml 3.1 [62] with default settings from the multi-
ple sequence alignments for all sequences (Pomacentridae and Amphiprion). The evolution
rate of change for each prohormone isoform was computed using Mean Protein Evolutionary
Distance (MeaPED) [63], 100 times the mean distance between species divided by the median
length of the sequences used. Normalized Robinson–Foulds metric (nRF) was calculated for
each prohormone isoform as Robinson–Foulds metric [64] divided by the maximum Robin-
son–Foulds metric observed. Proportion of edges (Pedges) shared between phylogenetic trees
were averaged for each prohormone isoform. Mean distance between species, Robinson-
Foulds metric between phylogenetic trees, and proportion of edges between phylogenetic trees
were computed using ETE 3 [65].

Multiple sequence alignment was performed with the L-INS-i iterative refinement method
MAFFT v6.861b for the CARTPT (sequences provided in S2 File CARTPT sequences) and
PCSK1N (sequences provided in S3 File PCSK1N sequences). The phylogenetic tree of
CARTPT was obtained from Phyml 3.1 [62] with default settings from the multiple sequence
alignment and generated by using ETE 3 [65].

Results

Identification of the teleost prohormone complement

Existing or de novo genome or transcriptome assemblies were used to annotate the prohor-
mone complement from 22 species, including 11 Amphiprion species in the Percomorphaceae
subdivision of teleost fish (Table 1; Fig 1). Three different genome assemblies and 1 transcrip-
tome assembly were used for A. ocellaris and 4 other species with both genome and transcrip-
tome assemblies. For the remaining species, genome (15 species) and transcriptome (2
species) assemblies were used. All genome and transcriptome assemblies available from the
same species were from different sequencing studies or used different sequencing data.
Across all 22 species, 175 prohormone isoforms from 159 prohormones were identified (Table 1), with individual sequences provided in S1 File. Species with only transcriptome assemblies were limited to the particular prohormone isoforms present and, consequently, many isoforms were not identifiable from some transcriptome assemblies. Among the prohormones with multiple isoforms, 146 prohormones had only one sequence, 12 prohormones were detected with two isoforms, and one prohormone, neuromedin U (NMU), was detected with 5 isoforms.

Evidence of differential gene loss across species was identified for 3 neuropeptide genes: augurin 2 (AUGN2), insulin-like 5B (INSL5B), and tachykinin precursor 1B (TAC1B). Both INSL5B and TAC1B appear to have been lost in the Pomacentridae after Pomacentridae diverged from the other families from the Ovalentaria series. AUGN2 was only detected in some of Pomacentridae species (complete sequences in S. partitus and C. chromis and partial sequences in C. viridis, A. percula and A. ocellaris), indicating that it may have been retained in Pomacentridae or arose from tandem duplication in Pomacentridae.

Multiple copies of the CART prepropeptide (CARTPT) and hepcidin antimicrobial peptide (HAMP) gene families were detected. Among the 9 CARTPT genes detected, only CARTPT2A and CARTPT3A were detected in all species (Fig 2). A partial fragment of an additional CARTPT gene (CARTPT8) was only detected in L. calcarifer. Several hepcidin antimicrobial peptide (HAMP) genes were detected but not all HAMP genes were detected in all assemblies.
Only HAMP1 was detected in all assemblies and HAMP3A and HAMP4 were not annotated in any transcriptome assemblies. The A. ocellaris HAMP3C sequence was only located in the transcriptome assembly and was not detected in any other Pomacentridae genome or transcriptome assemblies, implying inconsistencies in the sequencing and assembly.

Impact of assembly type and species on the detection of prohormones

The evaluation of multiple sequence alignments indicated that the determination of recovery was confounded with taxonomic and assembly related differences. There was inadequate experimental evidence to confirm that general trends were apparent from the detection of proteins across species. Table 1 summarizes the data for all species studied based on the number

Series	Family	Species	Subgenus	Assembly*	Deg. Sim. b
Ovalentaria	Pomacentridae	Amphiprion ocellaris	Actincola	PRJNA407816	AmpOce1.0
				PRJNA515163	de novo
				PRJNA374650	de novo
Amphiprion percula	Actincola			PRJNA436093	Nemo_v1.1
Amphiprion bicinctus	Amphiprion clarii-complex	PRJNA515163	de novo	PRJE277750	de novo
Amphiprion clarkii	Amphiprion clarii-complex	PRJNA34358	de novo	PRJE277750	de novo
Amphiprion frenatus	Amphiprion ephippium-complex	PRJNA515163	de novo	PRJNA398732	de novo
Amphiprion melanopus	Amphiprion ephippium-complex	PRJNA515163	de novo	PRJE285007	de novo
Amphiprion polynus	Paramphiprion	PRJNA515163	de novo	PRJE285007	de novo
Amphiprion sebae	PRJNA515163	de novo	34 63 72 6		
Amphiprion akallopisos	Phalerebus	PRJNA515163	de novo	PRJE12469	de novo
Amphiprion nigripes	PRJNA515163	de novo	34 63 72 6		
Amphiprion perideraion	PRJNA515163	de novo	35 62 71 7		
Pomacentrus moluccensis	PRJNA515163	de novo	35 62 71 7		
Premnas biaculeatus	PRJNA515163	de novo	35 60 73 8		
Acanthochromis polyacanthus	PRJNA311159	ASM210954v1	PRJE285007	de novo	
Chromis chromis	PRJNA69147	Stegastes partitus	PRJE12469	de novo	
Chromis viridis	PRJE277750	Stegastes partitus	PRJE12469	de novo	
Stegastes partitus	PRJNA69147	Stegastes_partitus-1.0.2	PRJE12469	de novo	
Ovalentaria Pseudochromidae	Pseudochromis fuscus	PRJE12469	de novo	PRJE12469	de novo
Ovalentaria Cichlidae	Astatotilapia burtoni	PRJNA60363	de novo	PRJE12469	de novo
Ovalentaria Nothobranchiidae	Nothobranchius furzeri	PRJE58537	de novo	PRJE58537	de novo
Carangaria Centropomidae	Latas calcarifer	PRJNA345597	ASM16480v1	de novo	
Eupercariai Sciaenidae	Larimichthys croca	PRJNA245366	ASM74293v1	de novo	

*Assembly where T: Type of sequence data denoting if the sequence is from the genome (G), alternative genome assembly (H), de novo genome assembly (I) or transcriptome (T); BioProject: NCBI BioProject identifier; Version: provides the assembly identifier, reference for the assembly or denotes that a de novo assembly was used.

b Deg. Sim: Degree of Similarity of sequences across species where Exact (E)–sequences aligned without gaps; Close (C)–sequences aligned with less than 5 consecutive gaps; Partial (P)–more than 5 consecutive gaps within the alignment; Missed (M)—No prohormone isoform annotated.

https://doi.org/10.1371/journal.pone.0228562.t001
Characterization of the prohormone complement in *Amphiprion* and related fish species
of consecutive gaps within the alignment of all species, with individual prohormone isoforms given in S1 Table. Genome assemblies generally provided fewer missing prohormone isoforms and higher recovery of complete sequences than the transcriptome assemblies. Excluding prohormones not detected within taxonomic groups, no genome assembly provided all identified prohormone isoforms. Most Pomacentridae species lacked HAMP4C, which was only detected in the A. ocellaris transcriptome assembly.

Assembly quality was a more important factor than the species and source of data used in prohormone detection. The A. melanopus transcriptome assembly was derived from gill samples and, thus, lacked most of the expected prohormones, and most prohormone predictions were incomplete. The N. furzeri genome assembly provided a number of unpredicted and incomplete prohormone isoforms similar to many of the transcriptome assemblies. The A. bicinctus and A. sebae transcriptome assemblies supported a similar or greater recovery rate of complete prohormones to the genome assemblies from other species.

The impact of data types on the assembly and subsequent prohormone gene detection was assessed from the comparison of the genome and transcriptome assemblies of Amphiprion species (Table 2). Overall, 60% of the prohormone isoforms were completely recovered from all transcriptome assemblies with either the same sequence or amino acid variants. Only 14% of the prohormone isoforms detected in the genome were missed by the corresponding transcriptome assembly. Some prohormone isoforms missed in the corresponding genome assemblies were detected in the transcriptome assemblies. However, 14% of the prohormone isoform transcriptome predictions had alignment gaps compared to 6% of prohormone isoform genome predictions.

Comparisons across species and assemblies identified probable assembly errors (e.g., unanticipated stop codons) and gaps (e.g., variation in the number of sequentially repeated amino acids). Direct comparison of predictions from the A. percula and A. ocellaris assemblies identified a small region of secretogranin IIB (SCG2B) that differed between genome and transcriptome. The partial aligned sequence, TEESD-AKAAQGI, from the A. percula and 2 of the

Table 2. Comparison between different assemblies from the same species.

Species 1	Species 2	Sequence	Gap	Missing							
Name	At^b	Name	At	Identity	Variant	Both	Sp1	Sp2	Both	Sp1	Sp2
Amphiprion ocellaris	G	Amphiprion ocellaris	H	50	81	4	7	27	5	0	1
Amphiprion ocellaris	G	Amphiprion ocellaris	I	54	66	6	3	37	5	0	4
Amphiprion ocellaris	H	Amphiprion ocellaris	I	79	27	14	16	30	6	0	3
Amphiprion bicinctus	G	Amphiprion bicinctus	T	80	38	3	14	14	6	0	20
Amphiprion melanopus	G	Amphiprion melanopus	T	8	11	3	2	45	6	0	100
Amphiprion ocellaris	G	Amphiprion ocellaris	T	79	32	3	5	38	4	1	13
Amphiprion ocellaris	H	Amphiprion ocellaris	T	37	54	6	22	37	4	2	13
Amphiprion ocellaris	I	Amphiprion ocellaris	T	42	44	13	25	29	4	5	13
Amphiprion percula	G	Amphiprion percula	T	61	66	2	3	32	5	0	6
Amphiprion sebae	G	Amphiprion sebae	T	76	31	4	11	20	6	1	26

^a Sequence: Sequences aligned without gaps with either complete sequence identity or presence of amino acid variants.

^b Gap: Sequence aligned with at least one gap in both sequences (Both), only in the first species (Sp1) or only in the second species.

^c Missing: No sequence recovered from corresponding assembly from both species (Both), only in the first species (Sp1) or only in the second species.

^d Assembly molecular type: G–genome assembly; H–[42] alternative genome assembly; I–[42] de novo genome assembly; T–de novo transcriptome assembly.

https://doi.org/10.1371/journal.pone.0228562.t002
A. ocellaris genome assemblies was one amino acid shorter from the corresponding partial aligned sequence, TEESAKAAQGI, from the A. ocellaris de novo assembly and the A. percula and A. ocellaris transcriptome assemblies. The corresponding region was present in the actual raw data and was identified as a 3 nucleotide insertion or deletion (indel) in the respective assemblies.

The recovery of prohormone isoform sequences from the Amphilpion transcriptome assemblies varied between species due to gene expression and sequence coverage (Table 3). Overall 73% of all prohormone isoforms (128 isoforms) were completely recovered from at least 2 Amphilpion transcriptome assemblies. However, the recovery of any specific prohormone isoform varied across species with 14 prohormone isoforms detected in all 6 Amphilpion species. Allowing for 3 missed species, 68% of all prohormones were completely recovered in at least 3 species and partially recovered in the remaining species. In addition to the 4 prohormone isoforms not found in Amphilpion species, HAMP3B and NMU isoform 6 (found in the C. viridis transcriptome assembly) were not detected in any transcriptome assembly but were detected in the 3 Amphilpion species that had genome assemblies.

Changes in prohormone evolution distance

The average nRF and Pedes in common between trees in prohormone families with at least 5 protein isoforms indicated that 62 to 73% of the phylogenetic trees had similar topology regardless of prohormone family (Table 4). Comparison of individual protein isoforms (S2 Table) from these prohormone families exhibited variation between individual members often related to differences between duplicated genes. The average MeaPED varied across prohormone families with at least 5 protein isoforms, indicating that prohormone families had different levels of conservation (Table 4). Nucleobindin, Granin and PDGF/VEGF growth factor families all exhibited high conservation across multiple genes. However, the Parathyroid, Tachykinin and Hepcidin families exhibited large variation between members. Within the Hepcidin family, HAMP2, HAMP3A, HAMP3B, HAMP3C and HAMP4A had greater MeaPED than HAMP1. INS3 exhibited high MeaPED in Pomacentridae and Amphilpion

Complete^a	Partial^b	Missing^c	Total
0	1	3+	40
3+	1	27	49
3+	3+	10	21
2	0	0	2
2	3+	5	16
1	0	0	6
1	1	0	5
1	2	0	5
1	3+	5	16
0	0	0	6
0	3+	4	9
Total	65	66	44

^a Number of prohormone isoforms that were completely recovered from 0, 1, 2 or 3 or more species.

^b Number of prohormone isoforms that were partially recovered from 0, 1, 2, or 3 or more species.

^c Number of prohormone isoforms that were not recovered from 0 species, 1 or 2 species, or 3 or more species.

https://doi.org/10.1371/journal.pone.0228562.t003
species but average change when considered with all species. While TAC1B was not detected in the *Pomacentridae* species, a relatively high rate of MeaPED was observed that indicated this gene was altered between species.

Discussion

Prohormone complement

Genome availability of *Amphiprion* and related species enabled the annotation of prohormones across species using different sequencing technologies. Compared to the *A. burtoni* prohormone complement [33], INSL5B and TAC1B were lost in the *Pomacentridae* species and AUGN2 was lost in the non-*Pomacentridae* species; multiple CARTPT and HAMP genes and the additional somatostatin 6 (SST6) gene, also identified in *Danio rerio* [66], were detected. Differences in the number of HAMP genes detected between species are likely due to genome-wide and species-specific tandem duplication and, as evident with *A. ocellaris* HAMP3C, sequence assembly and prediction.

The detected differences in the prohormone complement between *Amphiprion* and *Pomacentridae* species could be associated with differences in the physiology of these fish groups that have potential impact in their social behavior. For example, sound production could be a component of courtship and agonistic behaviors in fish species, and significant sexual dimorphism in physiology and morphology have been linked to sonic/vocal pathways. Only males produce sound in many species of pomacentrids and cichlids, whereas females can produce similar sounds in cichlid species [67]. The loss of TAC1B detected in our study could be associated with the differential social behavior between *A. burtoni* and the *Pomacentridae* species and with reports of the effect of injections of a tachykinin receptor antagonist in *Carassius auratus* [16, 68]. Peripheral injections of a tachykinin receptor antagonist completely blocked the effects of central arginine vasotocin on the social approach behavior of *C. auratus* whereas central infusions of the tachykinin receptor antagonist had no effect on social approach [16, 68].

Table 4. Average Mean Protein Evolutionary Distance (MeaPED), normalized Robinson–Foulds metric (nRF) and proportion of edges shared between phylogenetic trees (Pedges) for prohormone families with 6 or more prohormones for *Amphiprion, Pomacentridae* and All species.

Family	N isoforms	MeaPED	nRF	Pedges
Calcitonin	10	0.012	0.032	0.106
CARTPT	9	0.011	0.036	0.116
Corticotrophin	5	0.007	0.036	0.085
Endothelin sarafotoxin	6	0.011	0.053	0.173
Glucagon	10	0.024	0.042	0.107
Granin	9	0.004	0.012	0.037
Heparin	7	0.047	0.189	0.605
Insulin	6	0.008	0.034	0.119
Natriuretic peptide	6	0.007	0.044	0.141
Neureomedin U (NmU)	6	0.011	0.036	0.124
Opioid	8	0.006	0.024	0.071
Parathyroid	7	0.015	0.055	0.165
PDGF/VEGF growth factor	16	0.004	0.016	0.054
Relaxin	6	0.031	0.071	0.253
Somatostatin/Urotensin	9	0.013	0.046	0.142
Tachykinin	7	0.018	0.061	0.250
Total	175	0.015	0.046	0.143

https://doi.org/10.1371/journal.pone.0228562.t004
The absence of INS5B in the Pomacentridae species and presence in the A. burtoni genome could explain the differences in behavior between these species. INS5B shares receptors with Relaxin 3 (RLN3), a prohormone that presents broadly similar expression patterns in Oryzias latipes and D. rerio [69]. Oryzias latipes is highly sensitive to environmental stimuli and studies have postulated the role of INS5B and RLN3 in modulating the effect of stress on reproduction, growth and feeding behavior [69]. The impact of the loss of AUGN2 in the non-Pomacentridae species on social behavior cannot be completely assessed due to the limited study of this prohormone in fish. In D. rerio, AUGN2 but not AUGN1 was associated with hypoxia response in embryos and embryonic brain hypoxia has been related to behavioral changes [70].

CARTPT produces neuropeptides that are involved with multiple biological processes, including stress, feeding, and reward dependencies [36, 71]. The present study increased the number of reported CARTPT teleost fish genes [33, 72–74] to 9. The CARTPT fish gene sequences (Fig 2) are consistent with two rounds of vertebrate whole genome duplication, the teleost whole genome duplication and tandem duplication [74]. Within Cyclostomata (jawless vertebrates) species, a partial CARTPT sequence was detected in the Eptatretus burgeri genome assembly. Within the Chondrichthyes (cartilaginous fishes), 2 and 3 CARTPT sequences were found in the draft Rhincodon typus and Callorhinichus milii assemblies, respectively. Further duplication of the CARTPT genes occurred with Euteleostomi (bony vertebrates) since duplicated genes are found in both Actinopterygii (ray-finned fishes) and Sarcopterygii superfamilies. The role of these multiple CARTPT genes is unclear because the majority of studies in fish have not examined the 8 completely annotated CARTPT genes. Different CART genes exhibit different expression patterns [73, 75, 76], and differential response to feeding [73, 75], and stress [77].

The differences in number of CARTPT genes between fish species could contribute to differences in social behavior. Territorial intrusion and the associated interactions with neighbors or intruders was correlated with under-expression of the CARTPT gene in the diencephalon of male Gasterosteus aculeatus [78, 79]. Likewise, differences in the number of HAMP genes between species could be linked to behavioral differences. The expression of HAMP genes in the mudskipper Boleophthalmus pectinirostris has been associated to the behavior of this burrow-dwelling species, characterized by augmentation of the burrow tunnel during the spawning season where a male and female fish mate and lay eggs that are incubated [80]. The HAMP produced in the male reproductive tract have short antimicrobial function and have been postulated to protect the eggs generated from the burrow-bound mating behavior. Lastly, the variation in somatostatin gene number between species observed in the present study has a direct association with variation in social behavior based on the established relationship between this gene family and aggressive, dominant and courtship behavior. Somatostatin modulates aggressive behavior and social dominance A. burtoni [81]. The negative relationship between the neuromodulator somatostatin and aggressive behavior was characterized by increased aggressive behavior with higher levels of somatostatin antagonist whereas somatostatin agonist decreased aggression in A. burtoni.

The comparison of fish genome and transcriptome sequences enabled the identification of 3 POMC prohormone sequences. Peptides cleaved from POMC prohormones modulate social status [82], stress, color, feeding patterns [83–86], and behavior [87] in fish. A sustained elevation of the expression of the POMC gene observed in subordinates relative to dominant sexually mature rainbow trouts [82]. Also, POMC was over-expressed in A. burtoni and Salmo salar and this pattern was associated with the aggressive and sexual behaviors observed in dominant males relative to subordinate males in these species [88]. The 3 POMC prohormone sequences detected in this study resulted from the teleost whole genome duplication and tandem duplication [89–92]. The tandem duplication of POMC1 appeared to have occurred after
Neoteleostei split from Euteleostomorpha since only a single POMC1 gene was found in Prota-
canthopterygii genome-sequenced species such as Esox lucius (Esociformes) or Oncorhynchus
kisutch, Oncorhynchus mykiss, and S. salar (Salmoniformes). The 3 POMC prohormones are
precursors of similar corticotropin, melanotropin alpha, and melanotropin beta peptides but
different beta-endorphin peptides. The expression of the 3 POMC genes was detected in A. burtoni [33],
Paralichthys olivaceus [93], and Verasper moseri [94], and peptides were identified in A. burtoni [33] and V. moseri [94].

The difference in beta-endorphin sequences between the fish species compared in the pres-
ent study may be associated with behavioral differences. Low levels of beta-endorphin admin-
istration have been associated with higher cohesiveness and duration of schooling and lower
latency of school formation whereas higher levels decreased schooling behaviors in C. auratus
[95]. Also, variations in the beta-endorphin sequence across species could influence the effec-

tiveness of receptors to recognize the signal of these endorphins and this could have an effect
similar to that of changes in the peptide level.

The prohormone SCG2 has a wide range of functions in fish [96, 97] including neuropep-
tide release [98] and has been proposed as a signal integrator of glutamate and dopamine
inputs [99]. Secretoneurin, EM66, and manserin are mammalian SCG2 peptides that have
equivalent peptides in both SCG2A and SCG2B. Secretoneurin is the only SCG2 peptide with
known biological effects including reproduction, osmoregulation, hypertension, and stress,
and is hypothesized to be co-released with oxytocin and vasopressin [97]. In the electric fish,
Brachyhypopomus gauderio, the SCG2B secretoneurin was demonstrated to influence electrical
behavior [100]. Also, administration of secretoneurin increased feeding behavior and locomo-
tion in the C. auratus [101].

The secretoneurin peptide is relatively highly conserved between duplicated SCG2 genes
detected in some fish species and with the single copy of SCG2 detected in other species [102].
The SCG2B secretoneurin peptide is the only exhibited widespread immunoreactivity in the C.
auratus brain [102, 103]. The differences in the secretoneurin sequence between fish species
detected in the present study could be associated with differences in reproductive behavior in
consideration of the role of this peptide on the reproductive activity of the catfish Hetero-
pneustes fossilis [104]. The observed difference in the SCG2B sequence across fish species iden-
tified in this study is located in a peptide resulting from the C-terminal cleavage of the teleost
prohormone that is equivalent of the mammalian EM66 peptide. While there is no known
matching mammalian peptide, this peptide shows high homology to a predicted mammalian
peptide C-terminal to manserin. Multiple sequence alignment showed that the shorter form
(TEESD–AKAAQGI) of SCG2B was identical to the sequence found in the other Amphiprion
subgenera. While predictions were supported by the underlying raw data used for the genome
and transcriptome assemblies, only the mate pair data from [42] had raw reads from both vari-
ants, identifying a 3 nucleotide indel that was possibly due to a sequencing error [105] or natu-
ral hybridization in Amphiprion [106].

Prohormone convertases process precursor proteins into biologically active peptide. There-
fore, the differences in prohormone convertase inhibitor PCSK1N sequences across fish spe-
cies detected in the present study could be associated to differences in behavior or physiology
through differences in the capacity of this molecule to generate biocactive peptides that in turn
modulate these characteristics [107]. In mammals, PCSK1N participates in the processing of
neuropeptides and also acts as a neural chaperon. Consistent with prior studies [30, 31, 33,
107], PCSK1N prohormone was generally not detected in homology searches within Saurops-
sida and non-Eutherian mammals with genome assemblies. However, a partial Terrapene mex-
icana triunguis PCSK1N prohormone was identified, indicating that PCSK1N may have been
lost when Archosauria diverged from Testudines.
The alignment of sequences without a signal peptide (Fig 3) shows the locations of mouse-detected peptides KEP and Little SAAS, which are cleaved from the Big SAAS peptide, and the conserved cleavage sites. Both *A. ocellaris* and *A. percula* lack the cleavage site that produces the Big SAAS peptide and there is no predicted site in the non-mammalian sequences that cleaves Big SAAS into KEP and Little SAAS. The mouse peptide, ELLRYLLGRIL, that is
proposed to be essential for the chaperone functionality [108], showed homology in the fish sequences (Fig 4), implying that the peptide may have the same function in teleost fish. The highly conserved convertase inhibitory segment homology region [107] contains the conserved cleavage site that separates the mouse PEN and LEN peptides. The C-terminal cleavage site for PEN is also highly conserved (Fig 4) and peptides similar to the LEN peptide were also reported in *D. rerio* [109].

The differences in the number of prohormone gene or protein sequences or variations in the sequences across species identified in the present study could be associated with the differences in physiology and behavior between the fish species studied. Single nucleotide polymorphisms in prohormone genes are known to influence food intake in animal models [110] and could also explain some of the observed differences in physiology and behavior. In addition, molecular differences between fish species that are associated with physiological and behavioral differences could be elicited by differences in epigenetic, regulatory, and post-translational modifications mechanisms affecting the neuropeptide genes studied. Epigenetic mechanisms could be mediators and effectors of environment-dependent sex transitions in fish including the temperature-induced male-female sex reversal in *Thalassoma bifasciatum* [111]. Sex change processes encompass epigenetic reprogramming and intermediate states that present altered epigenetic machinery. *A. burtoni* fish that present higher methylation states tend to ascend among the social ranks whereas lower methylation levels were not associated with rank ascension [112]. Also, epigenetics was postulated as a possible cause for the observed shift across generations towards decreased maternal care behavior of young *A. burtoni* [113]. The role of epigenetic changes in DNA methylation in the reprogramming of the *N. pulcher* hypothalamus-pituitary-I axis and impact on the prohormones produced by this system is being elucidated [114](https://royalsocietypublishing.org/doi/full/10.1098/rspb.2012.2605).
Transcription factors regulate the transcription level of some genes associated with behavior in fish and could contribute to differences in behavior and physiology between species in addition to gene number, variants and epigenetic effects. The minearalcorticoid receptor acts as a transcription factor and can be more effective at regulating gene expression than glucocorticoids in *A. burtoni*. Also, two glucocorticoid receptors found in the African cichlid *Neolamprologus pulcher* have been associated with behavior and stress response [114]. A study of the *D. rerio* forebrain identified neurons that express cell-type specific combinations of transcription factors that are required for the expression of the neuropeptide vasotocin-neurophysin gene [115].

Post-translational modifications of the prohormones and cleaved neuropeptides can participate, together with gene variants in sequence and copy number, epigenetics and transcriptional regulation, in the modulation of physiological and behavioral characteristics in fish species. This mode of neuropeptide regulation has been studied in gherlin, a neuropeptide identified in the *C. auratus, O. mykiss* and various cichlid species [116]. An acyl post-translational modification of the C-terminal peptide region from the preprogherin produces the mature gherlin. Also, fish gherlin present a unique amidation posttranslational modification that is not present in mammals or other non-mammalian vertebrates. The physiological functions of ghrelin in fish include the control of drinking behavior, regulation of pituitary hormone secretion, and regulation of food intake [116].

Effect of resources on prohormone annotation and peptide identification

The study of multiple *Amphiprion* and related species enabled a comparison of the impact of genome and transcriptome resources on prohormone identification. The transcriptome assemblies provided a relatively higher number of incomplete protein sequences compared to the genome assemblies, which was a consequence of the sequence coverage and assembly quality. The relatively poor performance of the *A. melanopus* transcriptome assembly is attributed to the use of non-neural gill tissue. One notable advantage of using transcriptome assemblies was the recovery of the complete sequence of multiple prohormone isoforms and novel sequences, such as *A. ocellaris* HAMP4C that was unpredicted from the genome assemblies. While de novo assemblies generally provided sufficient identification of prohormone genes, gene expression, sequence coverage, sample tissue, and number of samples are also important to extract the complete protein sequence. As a result, some prohormone isoforms were not detected, and incomplete prohormone sequences were recovered in many transcriptome assemblies.

Quality issues were detected in all genome and transcriptome assemblies studied using multiple sequence alignments. The availability of different assemblies from the same species did identify that many of the stop codons and gaps were due to sequencing errors or lack of coverage. The use of multiple *Amphiprion* species enabled the discrimination between assembly errors and taxonomic differences. A notable assembly error was identified in the transcriptome assembly of the *A. melanopus* AVP where the OXT signal peptide region was included. This error is likely a direct result of the remarkable degree of similarity between the AVP and OXT genes, even though these genes have resulted from ancient duplication. This issue was resolved by the identification of the actual AVP signal region in the *A. melanopus* transcriptome reads and confirmed from the *A. melanopus* genome assembly. Utilizing multiple related species also uncovered probable sequencing errors where the number of sequentially repeated amino acids varied between species that cannot be resolved without alternative assemblies.

Sequence differences were associated with differences between species and the genome and transcriptome resources used. These differences are problematic for peptide identification,
even with single amino acid variants [117]. The MeaPED rates provide information that can be used to identify miss-specified sequences and improve peptide identification by characterizing the expected sequence similarity between species. Prohormones that have low MeaPED rates are expected to be relatively highly conserved between species such that peptides can be detected using typical across-species comparisons. In contrast, prohormones with low MeaPED rates are expected to be variable and show little sequence conservation. Higher MeaPED rates are consistent with a relatively high rate of evolution, such as INSL3, compared to other members of the teleost relaxin family [118]. These prohormones with relatively high MeaPED rates will require alternative approaches, such as utilizing across species sequence variation [119, 120], to identify proteins and peptides.

Most of 40 prohormone families with retained duplicated genes exhibit similar MeaPED rates between copies, reflecting subfunctionalization where both copies retain the original functionality [121]. In some prohormone families, such as CRH1, NMB, PRLH, spexin hormone (SPX) and TAC3, one copy has over 5 times the rate of the other copy, indicating possible degradation or neofunctionalization [121]. Of the prohormone families that have more than 2 copies, all versions of CARTPT, NUCB and POMC had similar low MeaPED rates, indicating subfunctionalization between copies. Subfunctionalization of POMC is evident by the tissue-specific gene expression profiles of the different *A. burtoni* POMC genes [33, 90]. For some prohormones families, such as GCG and INS, subfunctionalization, degradation, and neofunctionalization may be occurring between copies.

Conclusions

Next-generation sequencing genome and transcriptome sequence information across species was successfully integrated to obtain accurate and comprehensive characterization of the prohormone complement of non-model *Amphiprion* and related species. Direct comparison of species with both genome and transcriptome assemblies showed that the recovery of prohormone sequences was dependent on the sequencing coverage and sample type rather than type of data used. This indicated transcriptome assemblies can be used to provide accurate annotations as well as identify prohormone isoforms resulting from alternative splicing. Examining multiple closely related species also enabled the identification of possible sequencing errors and evolutionary changes. MeaPED enabled the identification of prohormones with potentially miss-specified sequences and the characterization of evolutionary changes associated with neuropeptide specialization and species divergence. Overall, next-generation genome and transcriptome sequencing can be used in non-model species, especially when many similar species are available. These results provide the foundation for experimental identification of peptides associated with social behavior and sex change.

Supporting information

S1 File. Prohormone sequences. Predicted prohormone protein sequences. Predicted protein sequences of the prohormones including isoforms from the different teleost fish species are provided. (FASTA)

S2 File. CARTPT sequences. CART prepropeptide (CARTPT) protein sequences used to generate the phylogenetic tree in Fig 2. (FASTA)

S3 File. PCSK1N sequences. Proprotein convertase subtilisin/kexin type 1 inhibitor (PCSK1N) protein sequences used to generate the multiple sequence alignments in Figs 3.
and 4.

(FASTA)

S1 Table. Individual prohormone statistics of each prohormone isoform computed for all species, Pomacentridae family and Amphiprion species.

(XLSX)

S2 Table. Protein Evolutionary Distance (MeaPED) of each prohormone isoform computed for all species, Pomacentridae family and Amphiprion species.

(XLSX)

Acknowledgments

We thank the numerous researchers including Dr. Wesley Warren and various institutes including The Genome Institute, Washington University School of Medicine, for providing the publicly available genome and transcriptome data that made this study possible. We also thank Dr. Michael Wise for providing the MeaPED code.

Author Contributions

Conceptualization: Bruce R. Southey, Sandra L. Rodriguez-Zas, Justin S. Rhodes, Jonathan V. Sweedler.

Data curation: Bruce R. Southey, Sandra L. Rodriguez-Zas.

Formal analysis: Bruce R. Southey, Sandra L. Rodriguez-Zas.

Funding acquisition: Sandra L. Rodriguez-Zas, Jonathan V. Sweedler.

Investigation: Bruce R. Southey, Jonathan V. Sweedler.

Methodology: Bruce R. Southey, Sandra L. Rodriguez-Zas.

Project administration: Bruce R. Southey, Jonathan V. Sweedler.

Resources: Bruce R. Southey, Sandra L. Rodriguez-Zas, Jonathan V. Sweedler.

Software: Bruce R. Southey.

Supervision: Bruce R. Southey, Jonathan V. Sweedler.

Validation: Bruce R. Southey.

Visualization: Bruce R. Southey.

Writing – original draft: Bruce R. Southey, Sandra L. Rodriguez-Zas.

Writing – review & editing: Bruce R. Southey, Sandra L. Rodriguez-Zas, Justin S. Rhodes, Jonathan V. Sweedler.

References

1. Russell JJ, Theriot JA, Sood P, Marshall WF, Landweber LF, Fritz-Laylin L, et al. Non-model model organisms. BMC Biology. 2017; 15(1):55. https://doi.org/10.1186/s12915-017-0391-5 PMID: 28662661

2. Colleye O, Iwata E, Parmentier E. Clownfishes. In: Frédéric B, Parmentier E, editors. Biology of Damselfishes. Boca Raton: CRC Press, Taylor & Francis Group; 2016. p. 246–66.

3. Hattori A, Casadevall M. Sex Change Strategies and Group Structure of Damselfishes. In: Frédéric B, Parmentier E, editors. Biology of Damselfishes. Boca Raton: CRC Press, Taylor & Francis Group; 2016. p. 55–83.
4. Miura S, Komatsu T, Higa M, Bhandari R, Nakamura S, Nakamura M. Gonadal sex differentiation in protandrous anemone fish, Amphiprion clarkii. Fish Physiology and Biochemistry. 2003; 28(1–4):165–6.

5. Avise JC, Mank JE. Evolutionary perspectives on hermaphroditism in fishes. Sex Dev. 2009; 3(2–3):152–63. https://doi.org/10.1159/000223079 PMID: 19684459.

6. Todd EV, Liu H, Muncaster S, Gemmell NJ. Bending Genders: The Biology of Natural Sex Change in Fish. Sex Dev. 2016; 10(5–6):223–41. https://doi.org/10.1159/000449297 PMID: 27820936.

7. Fricke H, Fricke S. Monogamy and sex change by aggressive dominance in coral reef fish. Nature. 1977; 266(5605):830–2. https://doi.org/10.1038/266830a0 PMID: 865603.

8. Dodd LD, Nowak E, Lange D, Parker CG, DeAngelis R, Gonzalez JA, et al. Active feminization of the preoptic area occurs independently of the gonads in Amphiprion ocellaris. Horm Behav. 2019; 112:65–76. https://doi.org/10.1016/j.yhbeh.2019.04.002 PMID: 30959023.

9. Buston P. Social hierarchies: size and growth modification in clownfish. Nature. 2003; 424(6945):145–6. https://doi.org/10.1038/424145a PMID: 12853944.

10. Hattori A. Determinants of body size composition in limited shelter space: why are anemonefishes protandrous? Behavioral Ecology. 2012; 23(3):512–20. https://doi.org/10.1093/beheco/arr217.

11. Godwin J. Social determination of sex in reef fishes. Semin Cell Dev Biol. 2009; 20(3):264–70. https://doi.org/10.1016/j.semcdb.2008.12.003 PMID: 19124081.

12. Francis RC. Sexual Lability in Teleosts: Developmental Factors. The Quarterly Review of Biology. 1992; 67(1):1–18. https://doi.org/10.1086/417445.

13. De Vries GJ, Panzica GC. Sexual differentiation of central vasopressin and vasotocin systems in vertebrates: different mechanisms, similar endpoints. Neuroscience. 2006; 138(3):947–55. https://doi.org/10.1016/j.neuroscience.2005.07.050 PMID: 16310321; PubMed Central PMCID: PMC1457099.

14. Munoz-Cueto JA, Paullada-Salmeron JA, Aliaga-Guerrero M, Cowan ME, Parhar IS, Ubuka T. A Journey through the Gonadotropin-Inhibitory Hormone System of Fish. Front Endocrinol (Lausanne). 2017; 8:285. https://doi.org/10.3389/fendo.2017.00285 PMID: 29163357; PubMed Central PMCID: PMC5670112.

15. Dijkstra PD, Maguire SM, Harris RM, Rodriguez AA, DeAngelis RS, Flores SA, et al. The melanocortin system regulates body pigmentation and social behaviour in a colour polymorphic cichlid fish. Proc Biol Sci. 2017; 284(1851). https://doi.org/10.1098/rspb.2016.2936 PMID: 28356453; PubMed Central PMCID: PMC5378087.

16. Godwin J, Thompson R. Nonapeptides and social behavior in fishes. Horm Behav. 2012; 61(3):230–8. https://doi.org/10.1016/j.yhbeh.2011.12.016 PMID: 22285647.

17. Albers HE. Species, sex and individual differences in the vasotocin/vasopressin system: relationship to neurochemical signaling in the social behavior neural network. Front Neuroendocrinol. 2015; 36:49–71. https://doi.org/10.1016/j.yfne.2014.07.001 PMID: 25102443; PubMed Central PMCID: PMC4317378.

18. DeAngelis RS, Rhodes JS. Sex Differences in Steroid Hormones and Parental Effort across the Breeding Cycle in Amphiprion ocellaris. BIOONE; 2016. 586–93, 8 p.

19. DeAngelis R, Gogola J, Dodd L, Rhodes JS. Opposite effects of nonapeptide antagonists on paternal behavior in the teleost fish Amphiprion ocellaris. Horm Behav. 2017; 90:113–9. https://doi.org/10.1016/j.yhbeh.2017.02.013 PMID: 28288796.

20. DeAngelis R, Dodd L, Snyder A, Rhodes JS. Dynamic regulation of brain aromatase and isotocin receptor gene expression depends on parenting status. Horm Behav. 2018; 103:62–70. https://doi.org/10.1016/j.yhbeh.2018.06.006 PMID: 29528890.

21. Yaeger C, Ros AM, Cross V, DeAngelis RS, Stobaugh DJ, Rhodes JS. Blockade of arginine vasotocin signaling reduces aggressive behavior and c-Fos expression in the preoptic area and periventricular nucleus of the posterior tuberculum in male Amphiprion ocellaris. Neuroscience. 2014; 267:205–18. https://doi.org/10.1016/j.neuroscience.2014.02.045 PMID: 24631675.

22. Huffman LS, Hinz FI, Wojcik S, Aubin-Horth N, Hofmann HA. Arginine vasotocin regulates social ascent in the African cichlid fish Astatotilapia burtoni. Gen Comp Endocrinol. 2015; 212:106–13. https://doi.org/10.1016/j.ygcen.2014.03.004 PMID: 24662391.

23. Reddon AR, O’Connor CM, Marsh-Rollo SE, Balshine S, Gozdowski M, Kulczykowska E. Brain nonapeptide levels are related to social status and affiliative behaviour in a cooperatively breeding cichlid fish. R Soc Open Sci. 2015; 2(2):140072. https://doi.org/10.1098/rsos.140072 PMID: 26064593; PubMed Central PMCID: PMC4448801.

24. Yokoi S, Okuyama T, Kamei Y, Naruse K, Taniguchi Y, Ansai S, et al. An essential role of the arginine vasotocin system in mate-guarding behaviors in triadic relationships of medaka fish (Oryzias latipes).
25. Kulczykowska E, Cardoso SC, Gozdowska M, Andre GI, Paula JR, Slebioda M, et al. Brain levels of nonapeptides in four labrid fish species with different levels of mutualistic behavior. Gen Comp Endocrinol. 2015; 222:99–105. https://doi.org/10.1016/j.ygcen.2015.06.005 PMID: 26095225.

26. Kulczykowska E, Kleszczyńska A. Brain arginine vasotocin and isotocin in breeding female three-spined sticklebacks (Gasterosteus aculeatus): the presence of male and egg deposition. Gen Comp Endocrinol. 2014; 204:8–12. https://doi.org/10.1016/j.ygcen.2014.04.039 PMID: 24852350.

27. Weitekamp CA, Solomon-Lane TK, Del Valle P, Triki Z, Nugent BM, Hofmann HA. A Role for Oxytocin-Like Receptor in Social Habitation in a Teleost. Brain Behav Evol. 2017. https://doi.org/10.1159/000464098 PMID: 28448987.

28. Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J, Ewing MA, et al. From the genome to the proteome: uncovering peptides in the Apis brain. Science. 2006; 314(5799):647–9. https://doi.org/10.1126/science.1124128 PMID: 17068263.

29. Southey BR, Rodriguez-Zas SL, Sweedler JV. Characterization of the prohormone complement in cattle using genomic libraries and cleavage prediction approaches. BMC Genomics. 2009; 10:228. https://doi.org/10.1186/1471-2164-10-228 PMID: 19445702 PubMed Central PMCID: PMC2698334.

30. Delfino KR, Southey BR, Sweedler JV, Rodriguez-Zas SL. Genome-wide census and expression profiling of chicken neuropeptide and prohormone convertase genes. Neuropetides. 2010; 44(1):31–44. https://doi.org/10.1016/j.npep.2009.11.002 PMID: 20006904 PubMed Central PMCID: PMC2814002.

31. Xie F, London SE, Southey BR, Amare A, Rodriguez-Zas SL, et al. The zebra finch neuropeptide and prohormone convertase genes: prediction, detection and expression. BMC Biol. 2010; 8:28. https://doi.org/10.1186/1741-7007-8-28 PMID: 20359331 PubMed Central PMCID: PMC2873334.

32. Porter KI, Southey BR, Sweedler JV, Rodriguez-Zas SL. First survey and functional annotation of prohormone and convertase genes in the pig. BMC Genomics. 2012; 13:582. https://doi.org/10.1186/1471-2164-13-582 PMID: 23153308 PubMed Central PMCID: PMC3499383.

33. Hu CK, Southey BR, Romanova EV, Fernald RD. Identification of prohormones and pituitary neuropeptides in the African cichlid, Astatotilapia burtoni. BMC Genomics. 2016; 17(1):660. https://doi.org/10.1186/s12864-016-2914-9 PMID: 27543050 PubMed Central PMCID: PMC4992253.

34. Southey BR, Romanova EV, Rodriguez-Zas SL, Sweedler JV. Bioinformatics for Prohormone and Neuropeptide Discovery. Methods Mol Biol. 2018; 1719:71–96. https://doi.org/10.1007/978-1-4939-7537-2_5 PMID: 29476058 PubMed Central PMCID: PMC5847276.

35. Ning K, Nesvizhskii AI. The utility of mass spectrometry-based proteomic data for validation of novel alternative splice forms reconstructed from RNA-Seq data: a preliminary assessment. BMC Bioinformatics. 2010; 11 Suppl 11:S14 https://doi.org/10.1186/1471-2105-11-S11-S14 PMID: 21172049 PubMed Central PMCID: PMC3024872.

36. Volkoff H, Canosa LF, Unniappan S, Cerda-Reviter JM, Bernier NJ, Kelly SP, et al. Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol. 2005; 142(1–2):3–19. https://doi.org/10.1016/j.ygcen.2004.11.001 PMID: 15862543.

37. Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci. 2010; 4:540. https://doi.org/10.3389/fnins.2016.00540 PMID: 27965528 PubMed Central PMCID: PMC35126056.

38. Delgado MJ, Cerda-Reverter JM, Oengas JL. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake. Front Neurosci. 2017; 11:354. https://doi.org/10.3389/fnins.2017.00354 PMID: 28694769 PubMed Central PMCID: PMC5484543.

39. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, et al. The NCBI BioSystems database. Nucleic Acids Res. 2018; 46(Database issue):D492–6. https://doi.org/10.1093/nar/gkx658 PMID: 19854944 PubMed Central PMCID: PMC2808896.

40. Tan MH, Austin CM, Hammer MP, Lee YP, Croft LJ, Gan HM. Finding Nemo: hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris) genome assembly. Gigascience. 2018; 7(3):1–6. https://doi.org/10.1093/gigascience/gix137 PMID: 29342277 PubMed Central PMCID: PMC5848817.

41. Sahl A, Almada-Pagan P, Bens M, Mutalipassi M, Lucas-Sanchez A, de Costa Ruiz J, et al. Clownfishes are a genetic model of exceptional longevity and reveal molecular convergence in the evolution of lifespan. bioRxiv. 2018. https://doi.org/10.1101/380709.

42. Marchionetti A, Rossier V, Roux N, Salis P, Lauter V, Salamin N. Insights into the Genomics of Clownfish Adaptive Radiation: Genetic Basis of the Mutualism with Sea Anemones. Genome Biol Evol. 2019; 11(3):866–82. https://doi.org/10.1093/gbe/evz042 PMID: 30830203 PubMed Central PMCID: PMC6430985.
43. Marcionetti A, Rossier V, Bertrand JAM, Litios G, Salamin N. First draft genome of an iconic clownfish species (Amphirion frenatus). Mol Ecol Resour. 2018. https://doi.org/10.1111/1755-0998.12772 PMID: 29455459.

44. Casas L, Saborido-Rey F, Ryu T, Michell C, Ravasi T, Irgoen X. Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis. Scientific reports. 2016; 6.

45. Sun Y, Huang Y, Li X, Baldwin CC, Zhou Z, Yan Z, et al. Fish-T1K (Transcriptomes of 1,000 Fishes) Project: large-scale transcriptome data for fish evolution studies. Gigascience. 2016; 5:18. https://doi.org/10.1186/s13742-016-0124-7 PMID: 27144000; PubMed Central PMCID:PMC4853854.

46. Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature. 2014; 513(7518):375–81. https://doi.org/10.1038/nature13726 PMID: 25186727; PubMed Central PMCID:PMC4353498.

47. Malmstrom M, Matschiner M, Torresen OK, Jakobsen KS, Jenofft S. Whole genome sequencing and de novo draft assemblies for 66 teleost species. Sci Data. 2017; 4:160132. https://doi.org/10.1038/sdata.2016.132 PMID: 28094797; PubMed Central PMCID:PMC5240625.

48. Vj S, Kuhl H, Kuznetsova IS, Komissarov A, Yurchenko AA, Van Heusden P, et al. Chromosomal-Level Assembly of the Asian Seabass Genome Using Long Sequence Reads and Multi-layered Scaffold. PLoS Genet. 2016; 12(4):e1005954. https://doi.org/10.1371/journal.pgen.1005954 PMID: 27082250; PubMed Central PMCID:PMC4833346.

49. Ao J, Mu Y, Xiang LX, Fan D, Feng M, Zhang S, et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genet. 2015; 11(4):e1005118. https://doi.org/10.1371/journal.pgen.1005118 PMID: 25835511; PubMed Central PMCID:PMC4383535.

50. Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, et al. Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish. Cell. 2015; 163(6):1527–38. https://doi.org/10.1016/j.cell.2015.10.071 PMID: 26638077.

51. Sanciangco MD, Carpenter KE, Betancur RR. Phylogenetic placement of enigmatic percomorph families (Teleostei: Percomorphaceae). Mol Phylogenet Evol. 2016; 94(Pt B):565–76. https://doi.org/10.1016/j.ympev.2015.10.006 PMID: 26493227.

52. Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol Biol Evol. 2017; 34(7):1812–9. https://doi.org/10.1093/molbev/msx116 PMID: 28387841.

53. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015; 31(10):1674–6. https://doi.org/10.1093/bioinformatics/btv033 PMID: 25609793.

54. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012; 1(1):18. https://doi.org/10.1186/2047-217X-1-18 PMID: 23587118; PubMed Central PMCID:PMC3626529.

55. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 29(7):644–52. https://doi.org/10.1038/nbt.1883 PMID: 21572440; PubMed Central PMCID:PMC3571712.

56. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013; 8(8):1494–512. https://doi.org/10.1038/nprot.2013.084 PMID: 23845982; PubMed Central PMCID:PMC3875132.

57. Altshul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25(17):3389–402. https://doi.org/10.1093/nar/25.17.3389 PMID: 9254694; PubMed Central PMCID:PMC146917.

58. Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res. 2004; 14(5):988–95. https://doi.org/10.1101/gr.1865504 PMID: 15123598; PubMed Central PMCID:PMC479130.

59. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011; 8(10):785–6. https://doi.org/10.1038/nmeth.1701 PMID: 21959131.

60. Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV. NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res. 2006; 34(Web Server issue):W267–72. https://doi.org/10.1093/nar/gkl161 PMID: 16845008; PubMed Central PMCID:PMC1538825.

61. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30(4):772–80. https://doi.org/10.1093/molbev/ms310 PMID: 23329690; PubMed Central PMCID:PMC3603318.
71. Vicentic A, Jones DC. The CART (cocaine- and amphetamine-regulated transcript) system in appetite.

72. Murashita K, Kurokawa T. Multiple cocaine- and amphetamine-regulated transcripts (CART) genes in

77. Greenald D, Jeyakani J, Pelster B, Sealy I, Mathavan S, van Eeden FJ. Genome-wide mapping of Hif-

73. Bonacic K, Martinez A, Martin-Robles AJ, Munoz-Cuetos JA, Morais S. Characterization of seven
cocaine- and amphetamine-regulated transcripts (CARTs) differentially expressed in the brain and

74. Nishio S, Gibert Y, Berekeley L, Bernard L, Brunet F, Guillot E, et al. Fasting induces CART down-reg-

75. Alnafea H, Vahkal B, Zelmer CK, Yegorov S, Bogerd J, Good SV. Japanese medaka as a model for

68. Thompson RR, Walton JC, Bhalla R, George KC, Beth EH. A primitive social circuit: vasotocin-sub-

69. Porter DT, Roberts DA, Maruska KP. Distribution and female reproductive state differences in orexi-

70. Vicentic A, Jones DC. The CART (cocaine- and amphetamine-regulated transcript) system in appetite

78. Sanogo YO, Band M, Blatti C, Sinha S, Bell AM. Transcriptional regulation of brain gene expression in

76. Liu Y, Lu D, Zhang Y, Li S, Liu X, Lin H. The evolution of somatostatin in vertebrates. Gene. 2010; 463

67. Rice AN, Lobel PS. The pharyngeal jaw apparatus of the Cichlidae and Pomacentridae: function in

62. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maxi-
mum likelihood. Syst Biol. 2003; 52(5):696–704. https://doi.org/10.1080/10635150390235520 PMID:

63. Wise MJ. Mean protein evolutionary distance: a method for comparative protein evolution and its applic-
ation. PLoS One. 2013; 8(4):e61276. https://doi.org/10.1371/journal.pone.0061276 PMID:

64. Robinson DF, Foulds LR. Comparison of Phylogenetic Trees. Mathematical Biosciences. 1981; 53(1–

65. Robinson DF, Foulds LR. Comparison of Phylogenetic Trees. Mathematical Biosciences. 1981; 53(1–

66. Liu Y, Lu D, Zhang Y, Li S, Liu X, Lin H. The evolution of somatostatin in vertebrates. Gene. 2010; 463

61. Liu Y, Lu D, Zhang Y, Li S, Liu X, Lin H. The evolution of somatostatin in vertebrates. Gene. 2010; 463

60. Porter DT, Roberts DA, Maruska KP. Distribution and female reproductive state differences in orexi-

59. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

58. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

57. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

56. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

55. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

54. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

53. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

52. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

51. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

50. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

49. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

48. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

47. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

46. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

45. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

44. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

43. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

42. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

41. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

40. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

39. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

38. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

37. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

36. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

35. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

34. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

33. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

32. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

31. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

30. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

29. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

28. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

27. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

26. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

25. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

24. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

23. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

22. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

21. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

20. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

19. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

18. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

17. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

16. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

15. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

14. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

13. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

12. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

11. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

10. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

9. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

8. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

7. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

6. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

5. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

4. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

3. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

2. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

1. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

0. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome

Characterization of the prohormone complement in *Amphiprion* and related fish species
81. Trainor BC, Hofmann HA. Somatostatin regulates aggressive behavior in an African cichlid fish. Endocrinology. 2006; 147(11):5119–25. https://doi.org/10.1210/en.2006-0511 PMID: 16887916.

82. Winberg S, Lepage O. Elevation of brain 5-HT activity, POMC expression, and plasma cortisol in socially subordinate rainbow trout. Am J Physiol. 1998; 274(3):R645–54. https://doi.org/10.1152/ajpregu.1998.274.3.R645 PMID: 950229.

83. Wendelaar Bonga SE. The stress response in fish. Physiol Rev. 1997; 77(3):591–625. https://doi.org/10.1152/physrev.1997.77.3.591 PMID: 9234959.

84. van der Salm AL, Spannings FA, Gresnigt R, Bonga SE, Flik G. Background adaptation and water acidification affect pigmentation and stress physiology of tilapia, Oreochromis mossambicus. Gen Comp Endocrinol. 2005; 144(1):51–9. https://doi.org/10.1016/j.ygcen.2005.04.017 PMID: 16005875.

85. Tsalafouta A, Gorissen M, Pelgrim TN, Papaionnou N, Flik G, Pavlidis M. alpha-MSH and melanocortin receptors at early ontogeny in European sea bass (Dicentrarchus labrax, L.). Sci Rep. 2017; 7:46075. https://doi.org/10.1038/srep46075 PMID: 28378841; PubMed Central PMCID: PMC5380957.

86. Slominski A, Wortsman J, Luger T, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000; 80(3):979–1020. https://doi.org/10.1152/physrev.2000.80.3.979 PMID: 10893429.

87. Ducrest AL, Keller L, Roulin A. Pleiotropy in the melanocortin system, coloration and behavioral syndromes. Trends Ecol Evol. 2008; 23(9):502–10. https://doi.org/10.1016/j.tree.2008.06.001 PMID: 18644658.

88. Sundstrom G, Dreborg S, Larhammar D. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One. 2010; 5(5):e10512. https://doi.org/10.1371/journal.pone.0010512 PMID: 20463905; PubMed Central PMCID: PMC2865548.

89. Kang DY, Kim HC. Functional relevance of three proopiomelanocortin (POMC) genes in darkening camouflage, blind-side hypermelanosis, and appetite of Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol. 2015; 179:44–56. https://doi.org/10.1016/j.cbpb.2014.09.002 PMID: 25242625.

90. Takahashi A, Amano M, Amiya N, Yamanome T, Yamamori K, Kawauchi H. Expression of three proopiomelanocortin subtype genes and mass spectrometric identification of POMC-derived peptides in pars distalis and pars intermedia of barfin flounder pituitary. Gen Comp Endocrinol. 2006; 145(3):280–6. https://doi.org/10.1016/j.ygcen.2005.09.005 PMID: 16242690.

91. Kavaliers M. Schooling behavior of fish: an opiate-dependent activity? Behav Neural Biol. 1981; 33 (4):397–401. https://doi.org/10.1016/s0163-1047(81)91743-x PMID: 6277292.

92. Wiedermann CJ. Secretoneurin: a functional neuropeptide in health and disease. Peptides. 2000; 21 (8):1289–98. https://doi.org/10.1016/s0196-9781(00)00271-0 PMID: 11035217.

93. Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, et al. Granin-derived peptides. Prog Neurobiol. 2017. https://doi.org/10.1016/j.pneurobio.2017.04.003 PMID: 28442394.

94. You ZB, Saria A, Fischer-Colbrie R, Terenius L, Goiny M, Herrera-Marschitz M. Effects of secretogranin II-derived peptides on the release of neurotransmitters monitored in the basal ganglia of the rat with in vivo microdialysis. Naunyn Schmiedebergs Arch Pharmacol. 1996; 354(6):717–24. https://doi.org/10.1007/bf00166897 PMID: 8971731.

95. Iwase K, Ishihara A, Yoshimura S, Andoh Y, Kato M, Seki N, et al. The secretogranin II gene is a signal integrator of glutamate and dopamine inputs. J Neurochem. 2014; 128(2):233–45. https://doi.org/10.1111/jnc.12467 PMID: 24111984.
101. Mikwar M, Navarro-Martín L, Xing L, Volkoff H, Hu W, Trudeau VL. Stimulatory effect of the secretogranin-II derived peptide secretoneurin on food intake and locomotion in female goldfish (Carassius auratus). Peptides. 2016; 78:42–50. https://doi.org/10.1016/j.peptides.2016.01.007 PMID: 2680475.

102. Zhao E, Hu H, Trudeau VL. Secretoneurin as a hormone regulator in the pituitary. Regul Pept. 2010; 165(1):117–22. https://doi.org/10.1016/j.regpep.2009.11.019 PMID: 2000664.

103. Canosa LF, Lopez GC, Scharrig E, Lesaux-Farmer K, Somoza GM, Kah O, et al. Forebrain mapping of secretoneurin-like immunoreactivity and its colocalization with isotocin in the preoptic nucleus and pituitary gland of goldfish. J Comp Neurol. 2011; 519(18):3748–65. https://doi.org/10.1002/cne.22688 PMID: 21674489.

104. Sharma S, Chaube R. Molecular cloning and characterization of secretogranin II in the catfish Heteropneustes fossilis: Sex and seasonal brain regional variations and its gonadotropin regulation. Comp Biochem Physiol A Mol Integr Physiol. 2019; 232:13–27. https://doi.org/10.1016/j.cbpa.2019.02.020 PMID: 30818020.

105. Laehnemann D, Borkhardt A, McHardy AC. Denoising DNA deep sequencing data-high-throughput sequencing errors and their correction. Brief Bioinform. 2016; 17(1):154–79. https://doi.org/10.1093/bib/bbv029 PMID: 26026159; PubMed Central PMCID: PMC4719071.

106. Litsios G, Salamin N. Hybridization and diversification in the adaptive radiation of clownfishes. BMC Evol Biol. 2014; 14:245. https://doi.org/10.1186/s12862-014-0245-5 PMID: 25433367; PubMed Central PMCID: PMC4264551.

107. Kudo H, Liu J, Jansen EJ, Ozawa A, Panula P, Martens GJ, et al. Identification of proSAAS homologs in lower vertebrates: conservation of hydrophobic helices and convertase-inhibiting sequences. Endocrinology. 2009; 150(3):1393–9. https://doi.org/10.1210/en.2008-1301 PMID: 18948394; PubMed Central PMCID: PMC2654743.

108. Jarvela TS, Lam HA, Helwig M, Lorenzen N, Otzen DE, McLean PJ, et al. The neural chaperone proSAAS blocks alpha-synuclein fibrillation and neurotoxicity. Proc Natl Acad Sci U S A. 2016; 113(32):E4708–15. https://doi.org/10.1073/pnas.1601091113 PMID: 27457957; PubMed Central PMCID: PMC4987805.

109. Van Camp KA, Baggerman G, Blust R, Husson SJ. Peptidomics of the zebrafish Danio rerio: In search for neuropeptides. J Proteomics. 2017; 150:290–6. https://doi.org/10.1016/j.jprot.2016.09.015 PMID: 27705817.

110. Ericson MD, Haskell-Luevano C. A Review of Single-Nucleotide Polymorphisms in Orexigenic Neuropeptides Targeting G Protein-Coupled Receptors. ACS Chem Neurosci. 2018; 9(6):1235–46. https://doi.org/10.1021/acsschemneuro.8b00151 PMID: 29714060; PubMed Central PMCID: PMC6042215.

111. Todd EV, Ortega-Recaledo O, Liu H, Lamm MS, Rutherford KM, Cross H, et al. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. Sci Adv. 2019; 5(7):eaaw7006. https://doi.org/10.1126/sciadv.aaw7006 PMID: 31309157; PubMed Central PMCID: PMC6620101.

112. Lenkov K, Lee MH, Lenkov OD, Swafford A, Femald RD. Epigenetic DNA Methylation Linked to Social Dominance. PLoS One. 2015; 10(12):e0144750. https://doi.org/10.1371/journal.pone.0144750 PMID: 26717574; PubMed Central PMCID: PMC4696829.

113. Grone BP, Carpenter RE, Lee M, Maruska KP, Femald RD. Food deprivation explains effects of mouthbrooding on ovaries and steroid hormones, but not brain neuropeptide and receptor mRNAs, in an African cichlid fish. Horm Behav. 2012; 62(1):18–26. https://doi.org/10.1016/j.yhbeh.2012.04.012 PMID: 22561338; PubMed Central PMCID: PMC3379815.

114. Taborsky B, Tschirren L, Meunier C, Aubin-Horth N. Stable reprogramming of brain transcription profiles by the early social environment in a cooperatively breeding fish. Proc Biol Sci. 2013; 280(1753):20122605. https://doi.org/10.1098/rspb.2012.2605 PMID: 23269853; PubMed Central PMCID: PMC3574353.

115. Tessmar-Raible K, Raible F, Christoudoulou F, Guy K, Rembold M, Hausen H, et al. Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell. 2007; 129(7):389–400. https://doi.org/10.1016/j.cell.2007.04.041 PMID: 17604726.

116. Unniappan S, Peter RE. Structure, distribution and physiological functions of ghrelin in fish. Comp Biochem Physiol A Mol Integr Physiol. 2005; 140(4):396–408. https://doi.org/10.1016/j.cbpa.2005.02.011 PMID: 15936989.

117. Welker F. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment. BMC Evol Biol. 2018; 18(1):23. https://doi.org/10.1186/s12862-018-1141-1 PMID: 29463217; PubMed Central PMCID: PMCS819086.
118. Good-Avila SV, Yegorov S, Harron S, Bogerd J, Glen P, Ozon J, et al. Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, and expression analysis. BMC Evol Biol. 2009; 9:293. https://doi.org/10.1186/1471-2148-9-293 PMID: 20015397; PubMed Central PMCID: PMC2805637.

119. Feltens R, Gorner R, Kalkhof S, Groger-Arndt H, von Bergen M. Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry. BMC Evol Biol. 2010; 10:95. https://doi.org/10.1186/1471-2148-10-95 PMID: 20374617; PubMed Central PMCID: PMC2858148.

120. Roth S, Fromm B, Gade G, Predel R. A proteomic approach for studying insect phylogeny: CAPA peptides of ancient insect taxa (Dictyoptera, Blattoptera) as a test case. BMC Evol Biol. 2009; 9:50. https://doi.org/10.1186/1471-2148-9-50 PMID: 19257902; PubMed Central PMCID: PMC2667406.

121. Hurles M. Gene duplication: the genomic trade in spare parts. PLoS Biol. 2004; 2(7):E206. https://doi.org/10.1371/journal.pbio.0020206 PMID: 15252449; PubMed Central PMCID: PMC449868.