Geometry of $\ast-k$-Ricci-Yamabe soliton and gradient $\ast-k$-Ricci-Yamabe soliton on Kenmotsu manifolds

Santu Dey and Soumendu Roy

Abstract. The goal of the current paper is to characterize $\ast-k$-Ricci-Yamabe soliton within the framework on Kenmotsu manifolds. Here, we have shown the nature of the soliton and find the scalar curvature when the manifold admitting $\ast-k$-Ricci-Yamabe soliton on Kenmotsu manifold. Next, we have evolved the characterization of the vector field when the manifold satisfies $\ast-k$-Ricci-Yamabe soliton. Also we have embellished some applications of vector field as torse-forming in terms of $\ast-k$-Ricci-Yamabe soliton on Kenmotsu manifold. Then, we have studied gradient $\ast-\eta$-Einstein soliton to yield the nature of Riemannian curvature tensor. We have developed an example of $\ast-k$-Ricci-Yamabe soliton on 5-dimensional Kenmotsu manifold to prove our findings.

Mathematics Subject Classification (2010). 53C15, 53C25, 53C44.
Keywords. Ricci-Yamabe soliton, $\ast-k$-Ricci-Yamabe soliton, gradient $\ast-k$-Ricci-Yamabe soliton, torse forming vector field, conformal Killing vector field, Kenmotsu manifold.

1. Introduction

In modern mathematics, the methods of contact geometry make a major contribution. Contact geometry has evolved from the mathematical formalism of classical mechanics. In 1969, S. Tanno [34] classified the connected almost contact metric manifolds whose automorphism groups have maximal dimensions as follows:

(a) Homogeneous normal contact Riemannian manifolds with constant ϕ-holomorphic sectional curvature if $k(\xi, X) > 0$;

(b) Global Riemannian product of a line or a circle and a Kählerian manifold with constant holomorphic sectional curvature if $k(\xi, X) = 0$;
A warped product space $\mathbb{R} \times \lambda \mathbb{C}^n$ if $k(\xi, X) < 0$; where $k(\xi, X)$ denotes the sectional curvature of the plane section containing the characteristic vector field ξ and an arbitrary vector field X.

In 1972, K. Kenmotsu [20] obtained some tensor equations to characterize the manifolds of the third class. Since then the manifolds of the third class were called Kenmotsu manifolds.

In 1982, R. S. Hamilton [17] introduced the concept of Ricci flow, which is an evolution equation for metrics on a Riemannian manifold. The Ricci flow equation is given by:

$$\frac{\partial g}{\partial t} = -2S,$$

(1.1)
on a compact Riemannian manifold M with Riemannian metric g.

A self-similar solution to the Ricci flow ([17], [35]) is called a Ricci soliton [18] if it moves only by a one parameter family of diffeomorphism and scaling. The Ricci soliton equation is given by [23]:

$$\mathcal{L}_V g + 2S + 2\Lambda g = 0,$$

(1.2)
where \mathcal{L}_V is the Lie derivative in the direction of V, S is Ricci tensor, g is Riemannian metric, V is a vector field and Λ is a scalar. The Ricci soliton is said to be shrinking, steady and expanding accordingly as Λ is negative, zero and positive respectively.

Recently, Wang-Gomes-Xia [37] extended the notion of almost Ricci soliton to k-almost Ricci soliton. A complete Riemannian manifold (M^n, g) is said to be a k-almost Ricci soliton, denoted by (M^n, g, X, k, Λ), if there exists smooth vector field X on M^n, a soliton function $\Lambda \in C^\infty(M^n)$ and a non-zero real valued function k on M^n such that

$$k\mathcal{L}_V g + 2S + 2\Lambda g = 0.$$

(1.3)

The concept of Yamabe flow was first introduced by Hamilton [18] to construct Yamabe metrics on compact Riemannian manifolds. On a Riemannian or pseudo-Riemannian manifold M, a time-dependent metric $g(\cdot, t)$ is said to evolve by the Yamabe flow if the metric g satisfies the given equation,

$$\frac{\partial}{\partial t} g(t) = -rg(t), \quad g(0) = g_0,$$

(1.4)
where r is the scalar curvature of the manifold M.

In 2-dimension the Yamabe flow is equivalent to the Ricci flow [17] (defined by $\frac{\partial}{\partial t} g(t) = -2S(g(t))$, where S denotes the Ricci tensor). But in dimension > 2 the Yamabe and Ricci flows do not agree, since the Yamabe flow preserves the conformal class of the metric but the Ricci flow does not in general.

A Yamabe soliton [2] correspond to self-similar solution of the Yamabe flow, is defined on a Riemannian or pseudo-Riemannian manifold (M, g) as:

$$\frac{1}{2} \mathcal{L}_V g = (r - \Lambda)g,$$

(1.5)
where \(\mathcal{L}_V g \) denotes the Lie derivative of the metric \(g \) along the vector field \(V \), \(r \) is the scalar curvature and \(\Lambda \) is a constant. Moreover a Yamabe soliton is said to be expanding, steady, shrinking depending on \(\Lambda \) being positive, zero, negative respectively. If \(\Lambda \) is a smooth function then (1.5) is called almost Yamabe soliton [2].

Very recently, Chen [8] introduced a new concept, named \(k \)-almost Yamabe soliton. According to Chen, a Riemannian metric is said to be a \(k \)-almost Yamabe soliton if there exists a smooth vector field \(V \), a \(C^\infty \) function \(\Lambda \) and a nonzero function \(k \) such that

\[
\frac{k}{2} \mathcal{L}_V g = (r - \Lambda)g,
\]

(1.6) holds. If for any smooth function \(f \), \(V = Df \) then the previous equation is called gradient \(k \)-almost Yamabe soliton. If \(\Lambda \) is constant, then (1.6) is called \(k \)-Yamabe soliton.

Since the introduction of Ricci soliton and Yamabe soliton, many authors ([24], [25], [26], [29], [27], [14], [3], [9], [22]) have studied these solitons on contact manifolds.

Recently in 2019, S. Güler and M. Crasmareanu [15] introduced a new geometric flow which is a scalar combination of Ricci and Yamabe flow under the name Ricci-Yamabe map. This flow is also known as Ricci-Yamabe flow of the type \((\alpha, \beta)\). Let \((M^n, g)\) be a Riemannian manifold and \(T^*_2(M)\) be the linear space of its symmetric tensor fields of \((0, 2)\)-type and \(Riem(M) \subseteq T^*_2(M)\) be the infinite space of its Riemannian metrics. In [15], the authors have stated the following definition:

Definition 1.1: [15] A Riemannian flow on \(M \) is a smooth map:

\[
g : I \subseteq \mathbb{R} \rightarrow Riem(M),
\]

where \(I \) is a given open interval. We can call it also as time-dependent (or non-stationary) Riemannian metric.

Definition 1.2: [15] The map \(RY^{(\alpha, \beta, g)} : I \rightarrow T^*_2(M) \) given by:

\[
RY^{(\alpha, \beta, g)} := \frac{\partial}{\partial t}g(t) + 2\alpha S(t) + \beta r(t)g(t),
\]

is called the \((\alpha, \beta)\)-Ricci-Yamabe map of the Riemannian flow of the Riemannian flow \((M^n, g)\), where \(\alpha, \beta \) are some scalars. If \(RY^{(\alpha, \beta, g)} \equiv 0 \), then \(g(\cdot) \) will be called an \((\alpha, \beta)\)-Ricci-Yamabe flow.

Also in [15], the authors characterized that the \((\alpha, \beta)\)-Ricci-Yamabe flow is said to be:

- **Ricci flow** [17] if \(\alpha = 1, \beta = 0 \).
- **Yamabe flow** [18] if \(\alpha = 0, \beta = 1 \).
- **Einstein flow** ([4], [28]) if \(\alpha = 1, \beta = -1 \).
A soliton to the Ricci-Yamabe flow is called Ricci-Yamabe solitons if it moves only by one parameter group of diffeomorphism and scaling. The metric of the Riemannian manifold \((M^n, g), n > 2\) is said to admit \((\alpha, \beta)\)-Ricci-Yamabe soliton or simply Ricci-Yamabe soliton (RYS) \((g, V, \Lambda, \alpha, \beta)\) if it satisfies the equation:
\[
\mathcal{L}_V g + 2\alpha S + [2\Lambda - \beta r]g = 0,
\]
(1.7)
where \(\mathcal{L}_V g\) denotes the Lie derivative of the metric \(g\) along the vector field \(V\), \(S\) is the Ricci tensor, \(r\) is the scalar curvature and \(\Lambda, \alpha, \beta\) are real scalars.

In the above equation if the vector field \(V\) is the gradient of a smooth function \(f\) (denoted by \(Df\), \(D\) denotes the gradient operator) then the equation (1.7) is called gradient Ricci-Yamabe soliton (GRYS) and it is defined as:
\[
Hess f + \alpha S + [\Lambda - \frac{1}{2} \beta r]g = 0,
\]
(1.8)
where \(Hess f\) is the Hessian of the smooth function \(f\).

Moreover the RYS (or GRYS) is said to be expanding, steady or shrinking according as \(\Lambda\) is positive, zero, negative respectively. Also if \(\Lambda, \alpha, \beta\) become smooth function then (1.7) and (1.8) are called almost RYS and almost GRYS respectively.

Now using the previous identities (1.3), (1.6) and (1.7), we define new notation \(k\)-Ricci-Yamabe soliton(\(k\)-RYS). A complete Riemannian manifold \((M^n, g)\) is said to be a \(k\)-almost Ricci-Yamabe soliton, denoted by \((M^n, g, X, k, \Lambda)\), if there exists smooth vector field \(X\) on \(M^n\), a soliton function \(\Lambda \in C^\infty(M^n)\) and a non-zero real valued function \(k\) on \(M^n\) such that
\[
k\mathcal{L}_V g + 2\alpha S + [2\Lambda - \beta r]g = 0.
\]
(1.9)
In the previous equation if the vector field \(V\) is the gradient of a smooth function \(f\) (denoted by \(Df\), \(D\) denotes the gradient operator) then the equation (1.9) is called gradient almost \(k\)-Ricci-Yamabe soliton (\(k\)-GRYS) and it is defined as:
\[
kHess f + \alpha S + [\Lambda - \frac{1}{2} \beta r]g = 0.
\]
(1.10)
Also, \(k\)-Ricci-Yamabe soliton(\(k\)-RYS) is called
- \(k\)-Ricci soliton (or gradient \(k\)-Ricci soliton) if \(\alpha = 1\) and \(\beta = 0\).
- \(k\)-Yamabe soliton (or gradient \(k\)-Yamabe soliton) if \(\alpha = 0\) and \(\beta = 2\).
- \(k\)-Einstein soliton (or gradient \(k\)-Einstein soliton) if \(\alpha = 1\) and \(\beta = 1\).

The concept of \(*\)-Ricci tensor on almost Hermitian manifolds and \(*\)-Ricci tensor of real hypersurfaces in non-flat complex space were introduced by Tachibana \[33\] and Hamada \[16\] respectively where the \(*\)-Ricci tensor is defined by:
\[
S^*(X, Y) = \frac{1}{2} (\text{Tr} \{ \varphi \circ R(X, \varphi Y) \})
\]
(1.11)
for all vector fields X, Y on M^n, φ is a $(1, 1)$-tensor field and Tr denotes Trace.

If $S^*(X, Y) = \lambda g(X, Y) + \nu\eta(X)\eta(Y)$ for all vector fields X, Y and λ, ν are smooth functions, then the manifold is called $*$-η-Einstein manifold.

Further if $\nu = 0$ i.e $S^*(X, Y) = \lambda g(X, Y)$ for all vector fields X, Y then the manifold becomes $*$-Einstein.

In 2014, Kaimakamis and Panagiotidou [19] introduced the notion of $*$-Ricci soliton which can be defined as:

$$\mathcal{L}_V g + 2S^* + 2\Lambda g = 0 \quad (1.12)$$

for all vector fields X, Y on M^n and Λ being a constant.

In [36], authors have considered $*$-Ricci solitons and gradient almost $*$-Ricci solitons on Kenmotsu manifolds and obtained some beautiful results. Very recently, Dey et al. [24, 11, 27, 12, 13] have studied $*$-Ricci solitons and their generalizations in the framework of almost contact geometry.

Recently D. Dey [10] introduced the notion of $*$-Ricci-Yamabe soliton ($*$-RYS) as follows:

Definition 1.3: A Riemannian or pseudo-Riemannian manifold (M, g) of dimension n is said to admit $*$-Ricci-Yamabe soliton ($*$-RYS) if

$$\mathcal{L}_V g + 2\alpha S^* + [2\Lambda - \beta r^*]g = 0, \quad (1.13)$$

where $r^* = \text{Tr}(S^*)$ is the $*$-scalar curvature and Λ, α, β are real scalars.

The $*$-Ricci-Yamabe soliton ($*$-RYS) is said to be expanding, steady, shrinking depending on Λ being positive, zero, negative respectively. If the vector field V is of gradient type i.e. $V = \text{grad}(f)$, for f is a smooth function on M, then the equation (1.14) is called gradient $*$-Ricci-Yamabe soliton ($*$-GRYS).

Using (1.3) and (1.13), we introduce $*$-k-Ricci-Yamabe soliton ($*$-k-RYS) as:

Definition 1.4: A Riemannian or pseudo-Riemannian manifold (M, g) of dimension n is said to admit $*$-k-Ricci-Yamabe soliton ($*$-k-RYS) if

$$k\mathcal{L}_V g + 2\alpha S^* + [2\Lambda - \beta r^*]g = 0, \quad (1.14)$$

where $\mathcal{L}_V g$ denotes the Lie derivative of the metric g along the vector field V, S^* is the $*$-Ricci tensor, $r^* = \text{Tr}(S^*)$ is the $*$-scalar curvature and Λ, α, β are real scalars.

If the vector field V is of gradient type i.e., $V = \text{grad}(f)$, for f is a smooth function on M, then the soliton equation changes to

$$k\text{Hess} f + S^* + (\lambda - \frac{r^*}{2})g = 0 \quad (1.15)$$

then the equation (1.15) is called gradient $*$-k-Ricci-Yamabe soliton ($*$-k-GRYS). The $*$-k-Ricci-Yamabe soliton or gradient $*$-k-Ricci-Yamabe soliton is said to be expanding, steady, shrinking depending on Λ being positive, zero, negative respectively. A $*$-k-RYS (or $*$-k-GRYS) is called an almost $*$-k-RYS (or $*$-k-GRYS) if α, β and Λ are smooth functions on M.

The above notation generalizes a large class of solitons. We can also define some solitons in the following way. A $*$-k-RYS (or $*$-k-GRYS) is called

- $*$-k-Ricci soliton (or gradient $*$-k-Ricci soliton) if $\alpha = 1$ and $\beta = 0$.
- $*$-k-Yamabe soliton (or gradient $*$-k-Yamabe soliton) if $\alpha = 0$ and $\beta = 2$.
- $*$-k-Einstein soliton (or gradient $*$-k-Einstein soliton) if $\alpha = 1$ and $\beta = 1$.

On the other hand, a nowhere vanishing vector field τ on a Riemannian or pseudo-Riemannian manifold (M,g) is called torse-forming [42] if

$$\nabla_X \tau = \psi X + \omega(X) \tau,$$

(1.16)

where ∇ is the Levi-Civita connection of g, ψ is a smooth function and ω is a 1-form. Moreover, The vector field τ is called concircular ([5], [41]) if the 1-form ω vanishes identically in the equation (1.16). The vector field τ is called concurrent ([21], [40]) if in (1.16) the 1-form ω vanishes identically and the function $\psi = 1$. The vector field τ is called recurrent if in (1.16) the function $\psi = 0$. Finally if in (1.16) $\psi = \omega = 0$, then the vector field τ is called a parallel vector field.

In 2017, Chen [7] introduced a new vector field called torqued vector field. If the vector field τ satisfies (1.16) with $\omega(\tau) = 0$, then τ is called torqued vector field. Also in this case, ψ is known as the torqued function and the 1-form ω is the torqued form of τ.

Recent years, many authors have been studied Ricci soliton, Ricci-Yamabe soliton, $*$-Ricci-Yamabe soliton and its characterizations on contact geometry. First, Sharma [31] initiated the study of Ricci solitons in contact geometry. D. Dey [10] studied new type of soliton namely $*$-Ricci-Yamabe soliton on contact geometry. Roy et al. [30] have strained conformal Ricci-Yamabe soliton on perfect fluid space time. Siddiqi and Akyol [32] have discussed the notion of η-Ricci-Yamabe soliton to set up the geometrical structure on Riemannian submersions admitting η-Ricci-Yamabe soliton with the potential field. Very recently, Yoldas [39] measured Kenmotsu metric in terms of η-Ricci-Yamabe soliton. Next, Chen [6] considered a real hypersurface of a non-flat complex space form which admits a $*$-Ricci soliton whose potential vector field belongs to the principal curvature space and the holomorphic distribution. Recently, Wang [38] proved that if the metric of a Kenmotsu 3-manifold represents a $*$-Ricci soliton, then the manifold is locally isometric to the hyperbolic space $\mathbb{H}^3(−1)$.

In the ongoing paper, we will discuss about $*$-k-Ricci-Yamabe soliton and gradient $*$-k-Ricci-Yamabe soliton on Kenmotsu manifold.

The outline of the article goes as follows:

In section 2, after a brief introduction, we have discussed some preliminaries of kenmotsu manifold. In section 3, we have studied $*$-k-Ricci-Yamabe soliton admitting Kenmotsu manifold and obtained the nature of soliton, Laplacian
of the smooth function. We have also proved that the manifold is η-Einstein when the manifold satisfies $*-k$-Ricci-Yamabe soliton and the vector field is conformal Killing. Next section, we have demonstrated some applications of torse-forming potential vector field admitting $*-k$-Ricci-Yamabe soliton on Kenmotsu manifold. Section 5 deals with gradient $*-k$-Ricci-Yamabe soliton and obtain the curvature tensor. In section 6, we have constructed an example to illustrate the existence of $*-k$-Ricci-Yamabe soliton on 5-dimensional Kenmotsu manifold.

2. Preliminaries

Let M be a $(2n+1)$ dimensional connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g) where ϕ is a $(1,1)$ tensor field, ξ is a vector field, η is a 1-form and g is the compatible Riemannian metric such that

$$\phi^2(X) = -X + \eta(X)\xi, \eta(\xi) = 1, \eta \circ \phi = 0, \phi \xi = 0,$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

$$g(X, \phi Y) = -g(\phi X, Y),$$

$$g(X, \xi) = \eta(X),$$

for all vector fields $X, Y \in \chi(M)$.

An almost contact metric manifold is said to be a Kenmotsu manifold \cite{20} if

$$(\nabla X \phi)Y = -g(X, \phi Y)\xi - \eta(Y)\phi X,$$

$$\nabla X \xi = X - \eta(X)\xi,$$

where ∇ denotes the Riemannian connection of g.

In a Kenmotsu manifold the following relations hold \cite{11, 29}:

$$\eta(R(X, Y)Z) = g(X, Z)\eta(Y) - g(Y, Z)\eta(X),$$

$$R(X, Y)\xi = \eta(X)Y - \eta(Y)X,$$

$$R(X, \xi)Y = g(X, Y)\xi - \eta(Y)X,$$

where R is the Riemannian curvature tensor.

$$S(X, \xi) = -2n\eta(X),$$

$$S(\phi X, \phi Y) = S(X, Y) + 2n\eta(X)\eta(Y),$$

$$\nabla X \eta Y = g(X, Y) - \eta(X)\eta(Y)$$
for all vector fields $X, Y, Z \in \chi(M)$.

Now, we know

$$ (\mathcal{L}_\xi g)(X, Y) = g(\nabla_X \xi, Y) + g(X, \nabla_Y \xi), $$

(2.13)

for all vector fields $X, Y, \xi \in \chi(M)$.

Then using (2.6) and (2.13), we obtain

$$ (\mathcal{L}_\xi g)(X, Y) = 2[g(X, Y) - \eta(X)\eta(Y)]. $$

(2.14)

Proposition 2.1. [36] On a $(2n + 1)$-dimensional Kenmotsu manifold, the *-Ricci tensor is given by

$$ S^*(X, Y) = S(X, Y) + (2n - 1)g(X, Y) + \eta(X)\eta(Y). $$

(2.15)

Also, we take $X = e_i, Y = e_i$ in the above equation, where e_i’s are a local orthonormal frame and summing over $i = 1, 2, ..., (2n + 1)$ to achieve

$$ r^* = r + 4n^2, $$

(2.16)

where r^* is the *- scalar curvature of M.

3. Kenmotsu metric as *-k-Ricci-Yamabe soliton

Let M be a $(2n+1)$ dimensional Kenmotsu manifold. Consider $V = \xi$ in the equation of *-k-Ricci-Yamabe soliton (1.14) on M, we obtain:

$$ k(\mathcal{L}_\xi g)(X, Y) + 2\alpha S^*(X, Y) + [2\Lambda - \beta r^*]g(X, Y) = 0 $$

(3.1)

for all vector fields $X, Y, \xi \in \chi(M)$.

From (2.14) and (2.15), the above equation becomes

$$ \alpha S(X, Y) + [\Lambda + \alpha(2n - k) + 1 - \frac{\beta r^*}{2}]g(X, Y) + [\alpha - k]\eta(X)\eta(Y) = 0. $$

(3.2)

Now, we plug $Y = \xi$ in the above equation and from the identities (2.1), (2.10) to yield

$$ [\Lambda - \frac{\beta r^*}{2}]\eta(X) = 0. $$

(3.3)

Since $\eta(X) \neq 0$, the above equation takes the form

$$ \Lambda = \frac{\beta r^*}{2}. $$

(3.4)

Using (2.16), we acquire

$$ \Lambda = \frac{\beta(r + 4n^2)}{2}. $$

(3.5)

This leads to the following:

Theorem 3.1. If the metric g of a $(2n+1)$ dimensional Kenmotsu manifold satisfies the *-k-Ricci-Yamabe soliton $(g, \xi, \Lambda, \alpha, \beta)$, where ξ is the reeb vector field, then the soliton is expanding, steady, shrinking according as $\beta(r+4n^2) \geq 0$.

Also we have, if the manifold \(M \) becomes flat i.e., \(r = 0 \) then (3.5) becomes, \(\Lambda = 2\beta n^2 \).

So we can state

Corollary 3.2. If the metric \(g \) of a \((2n+1)\) dimensional Kenmotsu manifold, which is flat, satisfies the \(*k\)-Ricci-Yamabe soliton \((g, \xi, \Lambda, \alpha, \beta)\), where \(\xi \) is the reeb vector field, then the soliton is expanding, steady, shrinking according as \(\beta \geq 0 \).

Now consider a \(*k\)-Ricci-Yamabe soliton \((g, V, \Lambda, \alpha, \beta)\) on \(M \) as:

\[
k(\mathcal{L}_V g)(X, Y) + 2\alpha S^*(X, Y) + [2\Lambda - \beta r^*]g(X, Y) = 0 \tag{3.6}
\]

for all vector fields \(X, Y, \in \chi(M) \).

Taking \(X = e_i, Y = e_i \), in the above equation, where \(e_i \)'s are a local orthonormal frame and summing over \(i = 1, 2, \ldots, (2n+1) \) and using (2.16), we get

\[
\text{div} V + \frac{(r + 4n^2)}{k} \left[\alpha - \frac{\beta(2n+1)}{2} \right] + \frac{\Lambda}{k}(2n+1) = 0. \tag{3.7}
\]

If we take the vector field \(V \) is of gradient type i.e \(V = \text{grad}(f) \), for \(f \) is a smooth function on \(M \), then the equation (3.7) becomes

\[
\Delta(f) = -\frac{(r + 4n^2)}{k} \left[\alpha - \frac{\beta(2n+1)}{2} \right] - \frac{\Lambda}{k}(2n+1), \tag{3.8}
\]

where \(\Delta(f) \) is the Laplacian equation satisfied by \(f \).

So, we can state the following theorem:

Theorem 3.3. If the metric \(g \) of a \((2n+1)\) dimensional Kenmotsu manifold satisfies the \(*k\)-Ricci-Yamabe soliton \((g, V, \Lambda, \alpha, \beta)\), where \(V \) is the gradient of a smooth function \(f \), then the Laplacian equation satisfied by \(f \) is

\[
\Delta(f) = -\frac{(r + 4n^2)}{k} \left[\alpha - \frac{\beta(2n+1)}{2} \right] - \frac{\Lambda}{k}(2n+1). \tag{3.8}
\]

Now if \(\alpha = 1, \beta = 0 \), (1.14) reduces to \(*k\)-Ricci soliton and (3.8) takes the form \(\Delta(f) = -\frac{(r + 4n^2)}{k} - \frac{\Lambda}{k}(2n+1) \).

If \(\alpha = 0, \beta = 2 \), (1.14) reduces to \(*k\)-Yamabe soliton and (3.8) takes the form, \(\Delta(f) = \frac{1}{k}[r + 4n^2 - \Lambda](2n+1) \).

Moreover if \(\alpha = \beta = 1 \), (1.14) reduces to \(*k\)-Einstein soliton and (3.8) takes the form \(\Delta(f) = -\frac{(r + 4n^2)}{k} \left[1 - \frac{(2n+1)}{2} \right] - \frac{\Lambda}{k}(2n+1) \).

Then we have

Remark 3.4. Case-I: If the metric \(g \) of a \((2n+1)\) dimensional Kenmotsu manifold satisfies the \(*k\)-Ricci soliton \((g, V, \Lambda)\), where \(V \) is gradient of a smooth function \(f \), then the Laplacian equation satisfied by \(f \) is

\[
\Delta(f) = -\frac{(r + 4n^2)}{k} - \frac{\Lambda}{k}(2n+1). \tag{3.8}
\]

Case-II: If the metric \(g \) of a \((2n+1)\) dimensional Kenmotsu manifold satisfies
the $\ast k$-Yamabe soliton (g, V, Λ), where V is the gradient of a smooth function f, then the Laplacian equation satisfied by f is

$$\Delta(f) = \frac{1}{k}[r + 4n^2 - \Lambda](2n + 1).$$

Case-III: If the metric g of a $(2n+1)$ dimensional Kenmotsu manifold satisfies $\ast k$-Einstein soliton (g, V, Λ), where V is gradient of a smooth function f, then the Laplacian equation satisfied by f is

$$\Delta(f) = -\frac{(r + 4n^2)}{k}[1 - (2n + 1)] - \frac{\Lambda}{k}(2n + 1).$$

A vector field V is said to be a conformal Killing vector field iff the following relation holds:

$$(\mathcal{L}_V g)(X,Y) = 2\Omega g(X,Y), \quad (3.9)$$

where Ω is some function of the co-ordinates(conformal scalar). Moreover if Ω is not constant the conformal Killing vector field V is said to be proper. Also when Ω is constant, V is called homothetic vector field and when the constant Ω becomes non zero, V is said to be proper homothetic vector field. If $\Omega = 0$ in the above equation, then V is called Killing vector field.

Let $(g, V, \Lambda, \alpha, \beta)$ be a \ast-Ricci-Yamabe soliton on a $(2n+1)$ dimensional Kenmotsu manifold M, where V is a conformal Killing vector field. Then from (1.14), (2.15) and (3.9), we obtain

$$\alpha S(X,Y) = -\left[k(2n - 1) + \Lambda + \frac{\beta r^*}{2}\right]g(X,Y) - \alpha \eta(X)\eta(Y), \quad (3.10)$$

which leads to the fact that the manifold is η-Einstein, provided $\alpha \neq 0$.

Thus, we have the following theorem:

Theorem 3.5. If the metric g of a $(2n+1)$ dimensional Kenmotsu manifold satisfies the $\ast k$-Ricci-Yamabe soliton $(g, V, \Lambda, \alpha, \beta)$, where V is a conformal Killing vector field, then the manifold becomes η-Einstein, provided $\alpha \neq 0$.

Taking $Y = \xi$ in the above equation and using (2.1), (2.10), we achieve

$$2\alpha n - \alpha(2n - 1) - \Lambda - k\Omega + \frac{\beta r^*}{2} - \alpha \eta(X) = 0. \quad (3.11)$$

Since $\eta(X) \neq 0$, we obtain

$$\Omega = \frac{1}{k}\left[\frac{\beta r^*}{2} - \Lambda\right]. \quad (3.12)$$

Then using (2.16), the above equation becomes

$$\Omega = \frac{1}{k}\left[\frac{\beta(r + 4n^2)}{2} - \Lambda\right]. \quad (3.13)$$

Hence, we can state
Theorem 3.6. Let the metric g of a $(2n+1)$ dimensional Kenmotsu manifold satisfy the \ast-k-Ricci-Yamabe soliton $(g, V, \Lambda, \alpha, \beta)$, where V is a conformal Killing vector field. Then V is

(i) proper vector field if $\frac{1}{k} \left[\frac{\beta (r + 4n^2)}{2} - \Lambda \right]$ is not constant.

(ii) homothetic vector field if $\frac{1}{k} \left[\frac{\beta (r + 4n^2)}{2} - \Lambda \right]$ is constant.

(iii) proper homothetic vector field if $\frac{1}{k} \left[\frac{\beta (r + 4n^2)}{2} - \Lambda \right]$ is non-zero constant.

(iv) Killing vector field if $\Lambda = \frac{\beta (r + 4n^2)}{2}$.

Now, a Kenmotsu manifold (M^{2n+1}, g) is said to η-Einstein if its Ricci tensor S of type $(0, 2)$ is of the form

$$S = ag + b\eta \otimes \eta,$$

where a and b are smooth function on (M^{2n+1}, g).

Taking contraction on (3.14), we get

$$r = a(2n+1) + b. \quad (3.15)$$

Now using the identities (1.7), (2.15) and (2.16), we acquire

$$k[g(\nabla_X V, Y) + g(X, \nabla_Y V)] + 2\alpha S(X, Y) + [2\Lambda - \beta (r + 4n^2)]g(X, Y) + 2\alpha \eta(X)\eta(Y) = 0. \quad (3.16)$$

We insert the identities (3.14) and (3.15) into the previous equation to yield

$$k[g(\nabla_X V, Y) + g(X, \nabla_Y V)] + (2a\alpha + 2\alpha(2n-1) + 2\Lambda - \beta (r + 4n^2))g(X, Y) + 2\alpha (b + 1)\eta(X)\eta(Y) = 0. \quad (3.17)$$

Now, we plug $X = Y = \xi$ into (3.17) to achieve

$$2kg(\nabla_\xi V, \xi) = (2a\alpha + 2\alpha(2n-1) + 2\Lambda - \beta (r + 4n^2) + 2\alpha (b + 1)). \quad (3.18)$$

Putting $V = \xi$ into identity (3.18), we obtain

$$kg(\nabla_\xi \xi, \xi) = [a\alpha + 2n\alpha + \Lambda - \frac{\beta}{2} (r + 4n^2) + ab]. \quad (3.19)$$

As it is well known that

$$g(\nabla_\xi \xi, \xi) = 0$$

for all vector field on M. It follows that

$$\Lambda = -a\alpha - 2n\alpha + \frac{\beta}{2} (r + 4n^2) - b\alpha.$$

So, we have the following theorem:

Theorem 3.7. If $(M, \phi, g, \xi, \lambda, a, b)$ is \ast-k-Ricci-Yamabe soliton on an η-Einstein Kenmotsu manifold, then $\Lambda = -a\alpha - 2n\alpha + \frac{\beta}{2} (r + 4n^2) - b\alpha.$
4. Application of torse forming vector field on Kenmotsu manifold admitting $*$-k-Ricci-Yamabe soliton

Let $(g, \tau, \Lambda, \alpha, \beta)$ be a $*$-k-Ricci-Yamabe soliton on a $(2n+1)$ dimensional Kenmotsu manifold M, where τ is a torse-forming vector field. Then from (1.14), (2.15) and (2.16), we have

$$k(\mathcal{L}_\tau g)(X,Y) + 2\alpha[S(X,Y) + (2n-1)g(X,Y) + \eta(X)\eta(Y)]$$

$$+ [2\Lambda - \beta(r + 4n^2)]g(X,Y) = 0 \quad (4.1)$$

where $\mathcal{L}_\tau g$ denotes the Lie derivative of the metric g along the vector field τ.

Now using (1.16), we obtain

$$\mathcal{L}_\tau g(X,Y) = g(\nabla_X \tau, Y) + g(X, \nabla_Y \tau) = 2\psi g(X,Y) + \omega(X)g(\tau,Y) + \omega(Y)g(\tau,X) \quad (4.2)$$

for all $X,Y \in M$.

Then from (4.2) and (4.1), we get

$$\beta(r + 4n^2) - \Lambda - k\psi - \alpha(2n - 1) - \alpha S(X,Y) - \alpha \eta(X)\eta(Y)$$

$$= \frac{k}{2} \left[\omega(X)g(\tau,Y) + \omega(Y)g(\tau,X) \right] \quad (4.3)$$

Now, we take contraction of (4.3) over X and Y to acquire

$$\left[\frac{\beta(r + 4n^2)}{2} - \Lambda - k\psi - \alpha(2n - 1) \right] (2n + 1) - \alpha r - \alpha = k\omega(\tau) \quad (4.4)$$

which leads to

$$\Lambda = \frac{\beta(r + 4n^2) - \alpha(2n - 1) - \alpha r + \alpha + k\omega(\tau)}{(2n + 1)} \quad (4.5)$$

So, we can state the following theorem:

Theorem 4.1. If the metric g of a $(2n+1)$ dimensional Kenmotsu manifold satisfies the $*$-k-Ricci-Yamabe soliton $(g, \tau, \Lambda, \alpha, \beta)$, where τ is a torse-forming vector field, then $\Lambda = \frac{\beta(r + 4n^2) - \alpha(2n - 1) - \alpha r + \alpha + k\omega(\tau)}{(2n + 1)}$ and the soliton is expanding, steady, shrinking according as $\frac{\beta(r + 4n^2)}{2} - k\psi - \alpha(2n - 1) - \alpha r + \alpha + k\omega(\tau) \geq 0$.

Now in (4.5), if the 1-form ω vanishes identically then $\Lambda = \frac{\beta(r + 4n^2)}{2} - k\psi - \alpha(2n - 1) - \alpha r + \alpha$.

If the 1-form ω vanishes identically and the function $\psi = 1$ in (4.5), then

$$\Lambda = \frac{\beta(r + 4n^2)}{2} - k - \alpha(2n - 1) - \alpha r + \alpha$$

In (4.5), if the function $\psi = 0$, then

$$\Lambda = \frac{\beta(r + 4n^2)}{2} - \alpha(2n - 1) - \frac{\alpha r + \alpha + k\omega(\tau)}{(2n + 1)}.$$
If \(\psi = \omega = 0 \) in (4.5), then \(\Lambda = \frac{\beta(r+4n^2)}{2} - \alpha(2n - 1) - \frac{\alpha r + \alpha}{(2n+1)}. \)

Finally in (4.5), if \(\omega(\tau) = 0 \), then \(\Lambda = \frac{\beta(r+4n^2)}{2} - k\psi - \alpha(2n - 1) - \frac{\alpha r + \alpha}{(2n+1)}. \)

Then we have

Corollary 4.2. Let the metric \(g \) of a \((2n+1)\) dimensional Kenmotsu manifold satisfy the \(*-k\)-Ricci-Yamabe soliton \((g, \tau, \Lambda, \alpha, \beta)\), where \(\tau \) is a torse-forming vector field, then if \(\tau \) is

(i) concircular, then \(\Lambda = \frac{\beta(r+4n^2)}{2} - k\psi - \alpha(2n - 1) - \frac{\alpha r + \alpha}{(2n+1)} \) and the soliton is expanding, steady, shrinking according as \(\Lambda = \beta \left(\frac{r+4n^2}{2} - 1 - \alpha(2n - 1) - \frac{\alpha r + \alpha}{(2n+1)} \right) \leq 0. \)

(ii) concurrent, then \(\Lambda = \frac{\beta(r+4n^2)}{2} - \alpha(2n - 1) - \frac{\alpha r + \alpha}{(2n+1)} \) and the soliton is expanding, steady, shrinking according as \(\Lambda = \frac{\beta(r+4n^2)}{2} - 1 - \alpha(2n - 1) - \frac{\alpha r + \alpha}{(2n+1)} \leq 0. \)

(iii) recurrent, then \(\Lambda = \frac{\beta(r+4n^2)}{2} - \alpha(2n - 1) - \frac{\alpha r + \alpha + k\omega(\tau)}{(2n+1)} \) and the soliton is expanding, steady, shrinking according as \(\Lambda = \beta \left(\frac{r+4n^2}{2} - 1 - \alpha(2n - 1) - \frac{\alpha r + \alpha + k\omega(\tau)}{(2n+1)} \right) > 0. \)

(iv) parallel, then \(\Lambda = \frac{\beta(r+4n^2)}{2} - \alpha(2n - 1) - \frac{\alpha r + \alpha}{(2n+1)} \) and the soliton is expanding, steady, shrinking according as \(\Lambda = \frac{\beta(r+4n^2)}{2} - \alpha(2n - 1) - \frac{\alpha r + \alpha}{(2n+1)} \geq 0. \)

(v) torqued, then \(\Lambda = \frac{\beta(r+4n^2)}{2} - k\psi - \alpha(2n - 1) - \frac{\alpha r + \alpha}{(2n+1)} \) and the soliton is expanding, steady, shrinking according as \(\Lambda = \beta \left(\frac{r+4n^2}{2} - k\psi - \alpha(2n - 1) - \frac{\alpha r + \alpha}{(2n+1)} \right) \leq 0. \)

5. Gradient \(*-k\)-Ricci-Yamabe soliton on Kenmotsu manifolds

This section is devoted to the study of Kenmotsu manifolds admitting gradient \(*-k\)-Ricci-Yamabe soliton and we try to characterize the potential vector field of the soliton. First we proof a lemma on Kenmotsu manifold.

Now from (2.15), we can write

\[Q^*X = -X + \eta(X)\xi \quad (5.1) \]

Differentiating the above equation covariantly with respect to \(Y \), we get

\[
\nabla_Y Q^*X = -\nabla_Y X + [g(X,Y) - \eta(X)\eta(Y) + \eta(\nabla_Y X) - \eta(X)\eta(Y)]\xi \\
+ \nabla_X Y. \quad (5.2)
\]
Now, we use the above two identities (5.1) and (5.2) to yield
\[(\nabla Y Q^*)X = \nabla Y Q^*X - Q^*(\nabla Y X) = g(X, Y)\xi - 2\eta(X)\eta(Y)\xi + \eta(X)Y. \] (5.3)

We plug \(X = \xi \) into identity (5.3) to achieve
\[(\nabla Y Q^*)\xi = Y - \eta(Y)\xi = \nabla Y \xi. \] (5.4)

Now, we insert \(Y = \xi \) into (5.3) to find
\[(\nabla \xi Q^*)Y = 0. \] (5.5)

From the identities (5.4) and (5.6), we obtain
\[(\nabla Y Q^*)\xi - (\nabla \xi Q^*)Y = \nabla Y \xi. \] (5.6)

Now we have the following lemma.

Lemma 5.1. For a \((2n+1)\)-dimensional Kenmotsu manifold, the following relation holds
\[(\nabla Y Q^*)\xi - (\nabla \xi Q^*)Y = \nabla Y \xi. \]

Since the metric is gradient \(*-k\)-Ricci-Yamabe soliton, so using (1.15), (2.15) and (2.16), we can write
\[kHess f(X, Y) = -\alpha S(X, Y) - \left[\Lambda + \beta \frac{(r + 4n^2)}{2} + (2n-1) \right] g(X, Y) - \alpha \eta(X)\eta(Y) \] (5.7)
for all \(X, Y \in M \).

Now the foregoing equation can be rewritten as
\[k\nabla_X Df = -\alpha Q X - \left[\Lambda + \beta \frac{(r + 4n^2)}{2} + (2n-1) \right] X - \alpha \eta(X)\xi. \] (5.8)

Covariantly differentiating the previous equation along an arbitrary vector field \(Y \) and using (2.6), we achieve
\[k\nabla_Y \nabla_X Df + (Y k)\nabla_X Df = \nabla_Y Q X - \left[\lambda + \frac{r + 4n^2}{2} - (2n - 1) \right] \nabla Y X - \frac{Y(r)}{2} X - (\mu - 1)\nabla Y \eta(X)\xi + (Y - \eta(Y)\xi)\eta(X). \] (5.9)

Now, we replace \(X \) and \(Y \) into the identity (5.9) to yield
\[k\nabla_X \nabla_Y Df + (X k)\nabla_Y Df = \nabla_X Q Y - \left[\lambda + \frac{r + 4n^2}{2} - (2n - 1) \right] \nabla_X Y - \frac{X(r)}{2} Y - (\mu - 1)\nabla_X \eta(Y)\xi + (X - \eta(X)\xi)\eta(Y). \] (5.10)

Also in view of (5.8), we acquire
\[k\nabla_{[X,Y]} Df = Q(\nabla X Y - \nabla Y X) - \left[\lambda + \frac{r + 4n^2}{2} - (2n - 1) \right] (\nabla_X Y - \nabla_Y X) - (\mu - 1)\eta(\nabla_X Y - \nabla_Y X)\xi. \] (5.11)
Lemma 5.2. So, we have the following lemma:

\[(2n+1)\text{-dimensional Kenmotsu manifold}\]

\[(M,\varphi,\xi,\eta,g)\]

Now, we plug the values of (5.9), (5.10) and (5.11) into the very well known Riemannian curvature formula

\[R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,\]

to achieve

\[kR(X,Y)Df = \alpha[(\nabla_Q Y)X - (\nabla_X Q)Y] + \frac{\beta}{2}[X(r)Y - Y(r)X] + \frac{\alpha}{k}[(Xk)QY - (Yk)QX] + \frac{\beta}{k}[(Xk)QY - (Yk)QX] + \frac{\alpha}{k}[(Xk)\eta(Y)] - \alpha(Yk)\eta(X)] - \alpha[Y\eta(X) - X\eta(Y)].\]

(5.12)

So, we have the following lemma:

Lemma 5.2. If \((g, V, \alpha, \beta, \Lambda)\) is a gradient \(*k\)-Ricci-Yamabe soliton on a \((2n+1)\)-dimensional Kenmotsu manifold \((M, g, \phi, \xi, \eta)\), then the Riemannian curvature tensor \(R\) satisfies (5.12).

6. Example of a 5-dimensional Kenmotsu manifold admitting \(*k\)-Ricci-Yamabe soliton

Let us consider the set \(M = \{(x, y, z, u, v) \in \mathbb{R}^5\}\) as our manifold where \((x, y, z, u, v)\) are the standard coordinates in \(\mathbb{R}^5\). The vector fields defined below:

\[e_1 = e^{-v} \frac{\partial}{\partial x}, \quad e_2 = e^{-v} \frac{\partial}{\partial y}, \quad e_3 = e^{-v} \frac{\partial}{\partial z}, \quad e_4 = e^{-v} \frac{\partial}{\partial u}, \quad e_5 = \frac{\partial}{\partial v}\]

are linearly independent at each point of \(M\). We define the metric \(g\) as

\[g(e_i, e_j) = \begin{cases}
1, & \text{if } i = j \text{ and } i, j \in \{1, 2, 3, 4, 5\} \\
0, & \text{otherwise.}
\end{cases}\]

Let \(\eta\) be a 1-form defined by \(\eta(X) = g(X, e_5)\), for arbitrary \(X \in \chi(M)\). Let us define \((1,1)\)-tensor field \(\phi\) as:

\[\phi(e_1) = e_3, \quad \phi(e_2) = e_4, \quad \phi(e_3) = -e_1, \quad \phi(e_4) = -e_2, \quad \phi(e_5) = 0.\]

Then it satisfy the relations \(\eta(\xi) = 1, \phi^2(X) = -X + \eta(X)\xi\) and \(g(\phi X, \phi Y) = g(X,Y) - \eta(X)\eta(Y),\) where \(\xi = e_5\) and \(X, Y\) is arbitrary vector field on \(M\). So, \((M, \phi, \xi, \eta, g)\) defines an almost contact structure on \(M\).

We can now deduce that,

\[
\begin{align*}
[e_1, e_2] &= 0, & [e_1, e_3] &= 0, & [e_1, e_4] &= 0, & [e_1, e_5] &= e_1 \\
[e_2, e_1] &= 0, & [e_2, e_3] &= 0, & [e_2, e_4] &= 0, & [e_2, e_5] &= e_2 \\
[e_3, e_1] &= 0, & [e_3, e_2] &= 0, & [e_3, e_4] &= 0, & [e_3, e_5] &= e_3 \\
[e_4, e_1] &= 0, & [e_4, e_2] &= 0, & [e_4, e_3] &= 0, & [e_4, e_5] &= e_4 \\
[e_5, e_1] &= -e_1, & [e_5, e_2] &= -e_2, & [e_5, e_3] &= -e_3, & [e_5, e_4] &= -e_4.
\end{align*}
\]
Let ∇ be the Levi-Civita connection of g. Then from Koszul’s formula for arbitrary $X, Y, Z \in \chi(M)$ given by:

\[
2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]),
\]

we can have:

\[
\begin{align*}
\nabla_{e_1} e_1 &= -e_5 & \nabla_{e_1} e_2 &= 0 & \nabla_{e_1} e_3 &= 0 & \nabla_{e_1} e_4 &= 0 & \nabla_{e_1} e_5 &= e_1 \\
\nabla_{e_2} e_1 &= 0 & \nabla_{e_2} e_2 &= -e_5 & \nabla_{e_2} e_3 &= 0 & \nabla_{e_2} e_4 &= 0 & \nabla_{e_2} e_5 &= e_2 \\
\nabla_{e_3} e_1 &= 0 & \nabla_{e_3} e_2 &= 0 & \nabla_{e_3} e_3 &= -e_5 & \nabla_{e_3} e_4 &= 0 & \nabla_{e_3} e_5 &= e_3 \\
\nabla_{e_4} e_1 &= 0 & \nabla_{e_4} e_2 &= 0 & \nabla_{e_4} e_3 &= 0 & \nabla_{e_4} e_4 &= -e_5 & \nabla_{e_4} e_5 &= e_4 \\
\nabla_{e_5} e_1 &= 0 & \nabla_{e_5} e_2 &= 0 & \nabla_{e_5} e_3 &= 0 & \nabla_{e_5} e_4 &= 0 & \nabla_{e_5} e_5 &= 0.
\end{align*}
\]

Therefore $(\nabla_X \phi)Y = g(\phi X, Y)\xi - \eta(Y)\phi X$ is satisfied for arbitrary $X, Y \in \chi(M)$. So (M, ϕ, ξ, η, g) becomes a Kenmotsu manifold.

The non-vanishing components of curvature tensor are:

\[
\begin{align*}
R(e_1, e_2)e_2 &= -e_1 & R(e_1, e_3)e_3 &= -e_1 & R(e_1, e_4)e_4 &= -e_1 \\
R(e_1, e_5)e_5 &= -e_1 & R(e_1, e_2)e_1 &= e_2 & R(e_1, e_3)e_1 &= e_3 \\
R(e_1, e_4)e_1 &= e_4 & R(e_1, e_5)e_1 &= e_5 & R(e_2, e_3)e_2 &= e_3 \\
R(e_2, e_4)e_2 &= e_4 & R(e_2, e_5)e_2 &= e_5 & R(e_2, e_3)e_3 &= -e_2 \\
R(e_2, e_4)e_4 &= -e_2 & R(e_2, e_5)e_5 &= -e_2 & R(e_3, e_4)e_3 &= e_4 \\
R(e_3, e_5)e_3 &= e_5 & R(e_3, e_4)e_4 &= -e_3 & R(e_4, e_5)e_4 &= e_5 \\
R(e_5, e_3)e_5 &= e_3 & R(e_5, e_4)e_5 &= e_4.
\end{align*}
\]

Now from the above results we have, $S(e_i, e_i) = -4$ for $i = 1, 2, 3, 4, 5$ and

\[
S(X, Y) = -4g(X, Y) \forall X, Y \in \chi(M). \tag{6.1}
\]

Contracting this we have $r = \sum_{i=1}^{5} S(e_i, e_i) = -20 = -2n(2n + 1)$ where dimension of the manifold $2n + 1 = 5$. Also, we have

\[
S^*(e_i, e_i) = \begin{cases}
-1, & \text{if } i = 1, 2, 3, 4 \\
0, & \text{if } i = 5.
\end{cases}
\]

So,

\[
S^*(X, Y) = -g(X, Y) + \eta(X)\eta(Y) \forall X, Y \in \chi(M). \tag{6.2}
\]

Hence,

\[
r^* = \text{Tr}(S^*) = -4. \tag{6.3}
\]

Now, we consider a vector field V as

\[
V = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z} + u \frac{\partial}{\partial u} + v \frac{\partial}{\partial v}. \tag{6.4}
\]

Then from the above results we can justify that

\[
(L_V g)(X, Y) = 4\{g(X, Y) - \eta(X)\eta(Y)\}, \tag{6.5}
\]
which holds for all $X,Y \in \chi(M)$. Hence from (6.5), we have
\[
\sum_{i=1}^{5} (\mathcal{L}_V g)(e_i, e_i) = 16.
\]
(6.6)
Now putting $X = Y = e_i$ in the (1.14), summing over $i = 1, 2, 3, 4, 5$ and using (6.3) and (6.6), we obtain,
\[
\Lambda = \frac{4\alpha - 10\beta - 8k}{5}.
\]
(6.7)
As this Λ, defined as above satisfies (3.7), so g defines a $*k$-Ricci-Yamabe soliton on the 5-dimensional Kenmotsu manifold M.

Also we can state,

Remark 6.1. Case-I: When $\alpha = 1, \beta = 0$, (6.7) gives $\Lambda = \frac{4-8k}{5}$ and hence (g, V, Λ) is a $*k$-Ricci soliton which is shrinking when $k > \frac{1}{2}$, expanding when $k < \frac{1}{2}$ and steady if $k = \frac{1}{2}$.

Case-II: When $\alpha = 0, \beta = 2$, (6.7) gives $\Lambda = \frac{-20-8k}{5}$ and hence (g, V, Λ) is a $*k$-Yamabe soliton which is shrinking if $k > -\frac{5}{2}$, expanding if $k < -\frac{5}{2}$ and shrinking if $k = -\frac{5}{2}$.

Case-III: When $\alpha = 1, \beta = 1$, (6.7) gives $\Lambda = \frac{-6-8k}{5}$ and hence (g, V, Λ) is a $*k$-Einstein soliton which is shrinking if $k > -\frac{3}{4}$, expanding if $k < -\frac{3}{4}$ and steady if $k = -\frac{3}{4}$.

References

[1] C. S. Bagewadi and V. S. Prasad.: *Note on Kenmotsu manifolds*, Bull. Cal. Math. Soc.(1999), 91, pp-379-384.

[2] E. Barbosa and E. Ribeiro Jr.: *On conformal solutions of the Yamabe flow*, Arch. Math.(2013), Vol. 101, pp-79–89.

[3] H. D. Cao, X. Sun and Y. Zhang.: *On the structure of gradient Yamabe solitons*, arXiv:1108.6316v2 [math.DG] (2011).

[4] G. Catino and L. Mazzieri.: *Gradient Einstein solitons*, Nonlinear Anal(2016). Vol. 132, pp-66–94.

[5] B. Y. Chen.: *A simple characterization of generalized Robertson-Walker space-times*, Gen. Relativity Gravitation(2014), 46, no. 12, Article ID 1833.

[6] X. Chen.: *Real hypersurfaces with $*$-Ricci solitons of non-flat complex space forms*. Tokyo J. Math.41 (2018), 433–451.

[7] B. Y. Chen.: *Classification of torqued vector fields and its applications to Ricci solitons*, Kragujevac J. of Math.(2017), 41(2), pp-239-250.

[8] X. M. Chen.: *The k-almost Yamabe solitons and contact metric manifolds*, Rocky Mountain J. Math. 51, 125–137 (2021).

[9] J. T. Cho, Makoto Kimura.: *Ricci solitons and real hypersurfaces in a complex space form*, Tohoku Mathematical Journal, Second Series(2009), Vol. 61,Isu.2, pp. 205-212.
[10] D. Dey.: *-Ricci-Yamabe Soliton and Contact Geometry, arXiv:2109.04220v1 [math.DG] (2021).

[11] S. Dey and S. Roy.: *-η-Ricci Soliton within the framework of Sasakian manifold, Journal of Dynamical Systems & Geometric Theories, (2020), Vol-18(2), pp-163-181.

[12] S. Dey, S. Sarkar and A. Bhattacharyya.: *-η-Ricci soliton and contact geometry, accepted for publication in Ricerche di Matematica, Springer-Verlag(2021), https://doi.org/10.1007/s11587-021-00667-0.

[13] D. Ganguly, S. Dey, A. Ali and A. Bhattacharyya.: Conformal Ricci soliton and Quasi-Yamabe soliton on generalized Sasakian space form, Journal of Geometry and Physics, Vol. 169 (2021) 104339, https://doi.org/10.1016/j.geomphys.2021.104339.

[14] A. Ghosh.: Yamabe soliton and Quasi Yamabe soliton on Kenmotsu manifold, Mathematica Slovaca(2020), Vol.70(1), pp-151-160.

[15] S. Güler and M. Crasmareanu.: Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turk. J. Math.(2019), Vol. 43, pp. 2361-2641.

[16] T. Hamada.: Real hypersurfaces of complex space forms in terms of Ricci *-tensor, Tokyo J.Math.(2002), Vol. 25, pp-473-483.

[17] R. S. Hamilton.: Three Manifold with positive Ricci curvature, J. Differential Geom.(1982), Vol. 17(2), pp. 255-306.

[18] R. S. Hamilton.: The Ricci flow on surfaces, Contemporary Mathematics(1988), Vol. 71, pp. 237-261.

[19] G. Kaimakamis and K. Panagiotidou.: *-Ricci Solitons of real hypersurface in non-flat complex space forms, Journal of Geometry and Physics(2014), Vol. 76, pp-408-413.

[20] K. Kenmotsu.: A class of almost contact Riemannian manifolds, The Tôhoku Mathematical Journal(1972), 24, pp-93-103.

[21] J. A. Schouten.: Ricci Calculus, Springer-Verlag (1954), Berlin.

[22] A. Singh and S. Kishor.: Some types of η-Ricci Solitons on Lorentzian para-Sasakian manifolds, Facta Universitatis (NIS).

[23] S. Roy and A. Bhattacharyya.: Conformal Ricci solitons on 3-dimensional trans-Sasakian manifold, Jordan Journal of Mathematics and Statistics (2020), Vol-13(1), pp-89-109.

[24] S. Roy, S. Dey and A. Bhattacharyya, S. K. Hui.: *-Conformal η-Ricci Soliton on Sasakian manifold, Asian-European Journal of Mathematics, Online Ready, 2250035 (17 Pages) (2021), https://doi.org/10.1142/S1793557122500358.

[25] S. Roy, S. Dey and A. Bhattacharyya.: Yamabe Solitons on (LCS)_n-manifolds, Journal of Dynamical Systems & Geometric Theories, (2020), Vol-18(2), pp-261-279.

[26] S. Roy, S. Dey and A. Bhattacharyya.: Some results on η-Yamabe Solitons in 3-dimensional trans-Sasakian manifold, accepted for publication in Carpathian Mathematical Publications, arXiv:2001.09271v2 [math.DG](2021).

[27] S. Roy, S. Dey and A. Bhattacharyya.: Conformal Yamabe soliton and *-Yamabe soliton with torse forming potential vector field., Matematicki Vesnik, Available Online, arXiv:2105.13885v1 [math.DG](2021).
[28] S. Roy, S. Dey and A. Bhattacharyya.: *Conformal Einstein soliton within the framework of para-Kähler manifold*, arXiv:2005.05616v1 [math.DG], Differential Geometry-Dynamical Systems, Vol.23, 2021, pp. 235-243.

[29] S. Roy, S. Dey and A. Bhattacharyya.: *A Kenmotsu metric as a conformal η-Einstein soliton*, Carpathian Mathematical Publications, 13(1) (2021), 110-118, https://doi.org/10.15330/emp.13.1.110-118.

[30] S. Roy, S. Dey and A. Bhattacharyya.: *Geometrical structure in a perfect fluid spacetime with conformal Ricci-Yamabe soliton*, arXiv:2105.11142v1 [math.DG](2021).

[31] R. Sharma.: *Certain results on K-contact and (κ,µ)-contact manifolds*, J. Geom., 89, 2008, 138-147.

[32] M. D. Siddiqi and M. A. Akyol.: *η-Ricci-Yamabe Soliton on Riemannian Submersions from Riemannian manifolds*, arXiv:2004.14124v1 [math.DG](2020).

[33] S. Tachibana.: *On almost-analytic vectors in almost Kählerian manifolds*, Tohoku Math.J.(1959), Vol. 11, Number 2, pp-247-265.

[34] S. Tanno.: *The automorphism groups of almost contact Riemannian manifolds*, Tôhoku Math. J. (1969), Vol. 21, pp-21–38.

[35] P. Topping.: *Lecture on the Ricci Flow*, Cambridge University Press(2006).

[36] V. Venkatesha, D. M. Naik and H. A. Kumara.: *☆-Ricci solitons and gradient almost ☆-Ricci solitons on Kenmotsu manifolds*, arXiv:1901.05222 [math.DG](2019).

[37] Q. Wang, J. N. Gomes and C. Xia.: *On the h-almost Ricci soliton*, J. Geometry and Physics, 114(2017), 216-222.

[38] Y. Wang.: *Contact 3-manifolds and ☆-Ricci soliton*, Kodai Math. J., 43(2), (2020); 256–267.

[39] I. H. Yoldaş.: *On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons*, Int. J. geom. Methods Mod. Phys. 18(12) (2021), 2150189.

[40] K. Yano and B. Y. Chen.: *On the concurrent vector fields of immersed manifolds*, Kodai Math. Sem. Rep.(1971), 23, pp-343-350.

[41] K. Yano.: *Concircular geometry I. Concircular transformations*, Proc. Imp. Acad. Tokyo(1940), 16, pp-195-200.

[42] K. Yano.: *On the torse-forming directions in Riemannian spaces*, Proc. Imp. Acad. Tokyo(1944), 20, pp-340–345.

Santu Dey
Department of Mathematics
Bidhan Chandra College
Asansol, Burdwan, West Bengal-713304, India.
e-mail: santu.mathju@gmail.com

Soumendu Roy
Department of Mathematics
Jadavpur University
Kolkata-700032, India.
e-mail: soumendu1103mtma@gmail.com