A Lieb-Thirring inequality for singular values

Koenraad M.R. Audenaert

Mathematics Department
Royal Holloway, University of London
Egham TW20 0EX, United Kingdom

Abstract

Let A and B be positive semidefinite matrices. We investigate the conditions under which the Lieb-Thirring inequality can be extended to singular values. That is, for which values of p does the majorisation $\sigma(B^pA^p) \prec_w \sigma((BA)^p)$ hold, and for which values its reversed inequality $\sigma(B^pA^p) \succ_w \sigma((BA)^p)$.

Key words: Inequalities, Lieb-Thirring inequality, Singular values, Majorisation

1991 MSC: 15A60

The famous Lieb-Thirring inequality [6] states that for positive semidefinite matrices A and B, and $p \geq 1$, $\text{Tr}(AB)^p \leq \text{Tr}(A^pB^p)$, while for $0 < p \leq 1$ the inequality is reversed. Many generalisations of this inequality exist [2,7], one of the most notable being the Araki-Lieb-Thirring inequality [1]. For positive matrices A and B, and any unitarily invariant norm $||| \cdot |||$, the following holds (see also Theorem IX.2.10 in [3]): $|||(BAB)^p||| \leq |||B^pA^pB^p|||$ when $p \geq 1$, and the reversed inequality when $0 < p \leq 1$. This inequality can be equivalently expressed as the weak majorisation relation between singular values $\sigma((BAB)^p) \prec_w \sigma(B^pA^pB^p)$. Here, $\sigma(X) \prec_w \sigma(Y)$ if and only if \(\sum_{j=1}^{k} \sigma_j(X) \leq \sum_{j=1}^{k} \sigma_j(Y) \), for $1 \leq k \leq d$, where $\sigma_j(X)$ denotes the j-th largest singular value of X.

In this paper we study the related question whether a majorisation relation exists between the singular values of the non-symmetric product B^pA^p and $(BA)^p$. The latter expression is well-defined because the eigenvalues of a product of positive semidefinite matrices are real and non-negative. Our main result is the following:

Theorem 1 Let $A, B \geq 0$ be $d \times d$ matrices. For $0 < p \leq 1/2$,

$$\sigma(B^pA^p) \prec_w \sigma((BA)^p).$$

Email address: koenraad.audenaert@rhul.ac.uk (Koenraad M.R. Audenaert).
In addition, if \(d = 2 \), the range of validity extends to \(0 < p \leq 1 \).

For \(p \geq d - 1 \) and for \(p \in \mathbb{N}_0 \), the reversed inequality holds:

\[
\sigma(B^p A^p) \succ_w \sigma((BA)^p).
\] (2)

In the first half of the paper, we prove this Theorem for \(p \) satisfying the condition \(1/p \in \mathbb{N}_0 \) or \(1/p \geq d - 1 \) or \(p \in \mathbb{N}_0 \) or \(p \geq d - 1 \). We do so by chaining together two majorisations; in terms of the first inequality, (1), we chain together \(\sigma(A^p B^p) \prec_w \sigma^p(AB) \) and \(\sigma^p(AB) \prec_w \sigma((AB)^p) \). While the first majorisation indeed holds generally and is a straightforward consequence of the original Lieb-Thirring inequality, see Theorem 2, the second majorisation turns out to be subject to the rather surprising condition on \(p \) (Theorem 3). In the second half of this paper, we follow a different route and obtain validity of (1) for \(0 < p \leq 1/2 \).

Henceforth, we abbreviate the term positive semidefinite as PSD.

The following Theorem is already well-known:

Theorem 2 For \(A, B \) PSD, and \(0 < p \leq 1 \),

\[
\sigma(A^p B^p) \prec_w \sigma^p(AB).
\]

For \(p \geq 1 \), the direction of the majorisation is reversed.

Proof. We only have to prove the statement for \(\sigma_1 \), i.e. the infinity norm \(\| \cdot \|_\infty \).

From that we can derive the full majorisation statement by using the well-known trick, due to Weyl, of replacing \(X \) by its antisymmetric tensor powers, as in [1].

Consider \(0 < p \leq 1 \). By the Araki-Lieb-Thirring inequality for the infinity norm \(\| \cdot \|_\infty \), we have

\[
\| AB^2 A \|^p = \|(AB^2 A)^p\| \geq \| A^p B^{2p} A^p \|.
\]

Noting that \(\|XX^*\| = \|X\|^2 \), this gives, indeed,

\[
\| AB \|^p \geq \| A^p B^p \|.
\]

This inequality was first proven by Heinz (see Theorem IX.2.3 in [3]). For \(p \geq 1 \), the direction of the inequalities is reversed. \(\Box \)

For the second majorisation we need a lemma, which relates the question to a result by FitzGerald and Horn.
Lemma 1 Let \((\lambda_i)_i\) be a sequence of \(d\) non-negative numbers. The \(d \times d\) matrix \(C\) with entries
\[
C_{i,j} = \frac{1 - \lambda_i^\alpha \lambda_j^\alpha}{1 - \lambda_i \lambda_j},
\]
is PSD if \(\alpha \in \mathbb{N}_0\) or \(\alpha \geq d - 1\).

Proof. This expression can be represented in integral form as
\[
C_{i,j} = \alpha \int_{0}^{1} dt \,(t + (1 - t)\lambda_i \lambda_j)^{\alpha - 1}.
\]
Thus \(C\) is PSD if the integrand is. Since for \(0 \leq t \leq 1\) the matrix \((t + (1 - t)\lambda_i \lambda_j)_{i,j}\) is PSD and has non-negative entries, \(C\) being PSD follows from a Theorem of FitzGerald and Horn [5] that states that the \(q\)-th entrywise power of an entrywise non-negative PSD matrix is again PSD, provided either \(q \in \mathbb{N}_0\) or \(q \geq d - 2\). Here, \(q = \alpha - 1\), hence the condition is \(\alpha \in \mathbb{N}_0\) or \(\alpha \geq d - 1\). \(\square\)

Theorem 3 Let \(X\) be a \(d \times d\) matrix with non-negative real eigenvalues. For \(p\) in the range \(0 < p \leq 1\), the majorisation
\[
\sigma^p(X) \prec_w \sigma(X^p)
\]
holds, provided \(1/p \in \mathbb{N}_0\) or \(1/p \geq d - 1\).

For the range \(p \geq 1\), the direction of the majorisation is reversed, and the conditions for validity are \(p \in \mathbb{N}_0\) or \(p \geq d - 1\).

Proof. Consider the case \(0 < p \leq 1\) first.

Again, we consider the inequality \(\sigma^p_1(X) \leq \sigma_1(X^p)\), from which the majorisation of the Theorem follows by the Weyl trick.

An equivalent statement of the inequality is: \(\|X^p\| = 1\) implies \(\|X\| \leq 1\) (obtainable via rescaling \(X\)).

If we impose that \(X\) be diagonalisable, it has an eigenvalue decomposition \(X = S \Lambda S^{-1}\), where \(S\) is invertible, and \(\Lambda\) is diagonal, with diagonal entries \(\lambda_k \geq 0\). Then
\[
\|X^p\| = 1 \implies (X^p)^* (X^p) \leq 11
\implies S^{-*} \Lambda^p S^* S \Lambda^p S^{-1} \leq 11
\implies \Lambda^p S^* S \Lambda^p \leq S^* S.
\]
Let us introduce the matrix \(A = S^* S\), which of course is positive definite, by invertibility of \(S\). Thus the statement \(\|X^p\| = 1\) is equivalent with \(\Lambda^p A \Lambda^p \leq A\).
Likewise, the statement $||X|| = 1$ is equivalent with $\Lambda A \Lambda \leq A$. We therefore have to prove the implication

$$\Lambda^p A \Lambda^p \leq A \implies \Lambda A \Lambda \leq A.$$ \hspace{1cm} (3)

Now note that, since Λ is diagonal, the condition $\Lambda^p A \Lambda^p \leq A$ can be written as

$$A' := A \circ (1 - \lambda_i^p \lambda_j^p)_{i,j=1} \geq 0,$$

where \circ denotes the Hadamard product. Likewise, $\Lambda A \Lambda \leq A$ can be written as

$$A \circ (1 - \lambda_i \lambda_j)_{i,j=1} \geq 0.$$

In terms of A', this reads

$$A' \circ C \geq 0,$$

with

$$C := \left(\frac{1 - \lambda_i \lambda_j}{1 - \lambda_i^p \lambda_j^p} \right)_{i,j=1}^d.$$

Thus, by Schur’s Theorem [4], the implication (3) would follow from non-negativity of the matrix C. Using Lemma [1], we find that a sufficient condition is $1/p \in \mathbb{N}_0$ or $1/p \geq d - 1$.

Using a standard continuity argument, we can now remove the restriction that X be diagonalisable.

The case $p > 1$ is treated in a completely similar way, but relying instead on the non-negativity of the matrix

$$\left(\frac{1 - \lambda_i^p \lambda_j^p}{1 - \lambda_i \lambda_j} \right)_{i,j=1}^d.$$

For all other values of p than the mentioned ones, the matrix C encountered in the proof is in general no longer non-negative. Likewise, for these other values of p, counterexamples can be found to the inequality that we wanted to prove here, so the given conditions on p are the best possible.

Combining Theorem 2 and Theorem 3 immediately proves Theorem 1 for $1/p \in \mathbb{N}_0$ or $1/p \geq d - 1$ or $p \in \mathbb{N}_0$ or $p \geq d - 1$.

\[\star \star \star \]

To prove the remaining case covered by Theorem [1], we derive several equivalent forms of the inequalities (1) and (2). We again only need to treat the σ_1 case, as the full statement follows from it using the Weyl trick.
Consider first the case $0 < p \leq 1$. Then we need to consider

$$
\|B^p A^p\| \leq \|(BA)^p\|,
$$

(4)

since the largest singular value is just the operator norm.

As a first step, we reduce the expressions in such a way that only positive matrices appear with a fractional power.

By exploiting the relation $\|X\| = \|X^*X\|^{1/2}$, (4) is equivalent to

$$
\|A^p B^{2p} A^p\| \leq \|(AB)^p (BA)^p\|,
$$

which, by homogeneity of both sides, can be reformulated as

$$
\|(AB)^p (BA)^p\| \leq 1 \implies \|A^p B^{2p} A^p\| \leq 1,
$$

and, in terms of the PSD ordering,

$$
(AB)^p (BA)^p \leq 11 \implies A^p B^{2p} A^p \leq 11.
$$

(5)

Lemma 2 For any $A > 0$ and $B \geq 0$, there exist diagonal $\Lambda \geq 0$ and invertible S such that $A = SS^*$ and $AB = S\Lambda S^{-1}$, and, consequently, $B = S^{-*}\Lambda S^{-1}$.

Proof. Let $AB = T\Lambda T^{-1}$ be an eigenvalue decomposition of AB. Because A and B are PSD, the eigenvalues of AB are non-negative, hence $\Lambda \geq 0$. Assuming that all eigenvalues of AB are distinct, we show that $T^{-1}AT^{-*}$ is necessarily diagonal.

Indeed, from $AB = T\Lambda T^{-1}$ follows $T^{-1}AT^{-*} T^*BT = \Lambda$. The factors $X = T^{-1}AT^{-*}$ and $Y = T^*BT$ are positive definite, and positive semidefinite, respectively, since they are related to A and B by a $*$-conjugation. Now note that Λ is diagonal and all its diagonal elements are distinct. This implies that X and Y, both Hermitian, are themselves diagonal. This follows from taking the hermitian conjugate of $XY = \Lambda$, $YX = \Lambda$, and noting that the two equations taken together imply that X and Y commute and are therefore diagonalised by the same unitary conjugation. Then we see that the product XY must also be diagonalised by that same unitary conjugation. However, $XY = \Lambda$ is already diagonal, so that X and Y must be diagonal too.

By a continuity argument, we see that there must exist a T diagonalising both AB (via a similarity) and A (via a $*$-conjugation) even when the eigenvalues of AB are not distinct.

The lemma now follows by putting $S = TX^{1/2}$. \(\Box\)
Using the Lemma, the left-hand side (lhs) of (5) can be rewritten as

\[(AB)^p(BA)^p = (SL^{-1})^p(S^{-*}ΛS^*)^p = SL^{-1}S^{-*}Λ^pS^*.\]

The condition \((AB)^p(BA)^p \leq 1\) then becomes

\[Λ^pS^{-1}S^{-*}Λ^p \leq S^{-1}S^{-*},\]

which turns into

\[Λ^pCA^p \leq C\]

on defining \(C = S^{-1}S^{-*} > 0\).

Similarly, the condition of the right-hand side (rhs) of (5), \(A^pB^{2p}A^p \leq 1\), can be rewritten as \(B^{2p} \leq A^{-2p}\), or

\[(S^{-*}ΛS^{-1})^{2p} \leq (SS^*)^{-2p} = (S^{-*}S^{-1})^{2p}.\] \(6\)

Using the polar decomposition, we can put \(S^{-*} = UC^{1/2}\), where \(U\) is a unitary matrix. Then the condition of the rhs becomes \((UC^{1/2}ΛC^{1/2}U^*)^{2p} \leq (UCU^*)^{2p}\), or

\[(C^{1/2}ΛC^{1/2})^{2p} \leq C^{2p}.\] \(7\)

Thus, implication (5) is equivalent to

\[Λ^pCA^p \leq C \implies (C^{1/2}ΛC^{1/2})^{2p} \leq C^{2p},\] \(8\)

for \(0 \leq p \leq 1\), and \(C > 0\), \(Λ \geq 0\).

On left- and right-multiplying both sides of the lhs of \(8\) with \(C^{1/2}\), we get

\[(C^{1/2}Λ^pC^{1/2})^2 \leq C^2 \implies (C^{1/2}ΛC^{1/2})^{2p} \leq C^{2p}.\]

By putting \(A = C^{1/2}\) and \(B = Λ^p\), this becomes

\[(ABA)^2 \leq A^4 \implies (AB^{1/p}A)^{2p} \leq A^{4p}.\]

In this equivalent form, it is now easy to prove (1) for \(p \leq 1/2\).

Proof of Theorem 1 for \(0 \leq p \leq 1/2\): By operator monotonicity of the square root, \((ABA)^2 \leq A^4\) implies \(ABA \leq A^2\). Dividing out \(A\) on both sides, this is equivalent with \(B \leq 11\). This implies \(B^{1/p} \leq 11\), for all \(p > 0\), and thus \(AB^{1/p}A \leq A^2\). Since \(0 < p \leq 1/2\), operator monotonicity of the \(2p\)-th power finally implies \((AB^{1/p}A)^{2p} \leq A^{4p}\). \(\Box\)
For $d > 2$ and $1/2 < p < 1$, we have found counterexamples. To narrow down the search for counterexamples, we semi-intelligently chose a random positive diagonal $d \times d$ matrix D and a random d-dimensional vector ψ to construct A and B matrices:

$$A^2 = \left(\frac{\psi_k \overline{\psi}_l}{1 - D_{kk} D_{ll}} \right)_{i,j=1}^d$$

$$B = \| A^{-1} D A^2 D A^{-1} \|^{-1/2} D.$$

The condition $(ABA)^2 \leq A^4$ is equivalent with $\| A^{-1} B A^2 B A^{-1} \| \leq 1$ and is thus satisfied by construction. However, with high probability A and B are found that violate $(AB^{1/p} A)^{2p} \leq A^{4p}$. As the violations are extremely small, all calculations have to be done in high-precision arithmetic (we used 60 digits of precision). This numerical procedure yielded counterexamples for $d = 3$ and p between 0.89 and 1.

In a similar way counterexamples can be found in the regime $d > 2$ and $p > 1$. For $p \geq 1$, we find by a similar reasoning that the reversed inequality of (4) is equivalent to the converse of (5), and therefore to the converse implication

$$A^p C A^p \leq C \iff (C^{1/2} \Lambda C^{1/2})^{2p} \leq C^{2p}. \quad (9)$$

For $d = 3$ we have found counterexamples up to $p = 1.25$, but no higher. It is therefore imaginable that the second majorisation inequality in Theorem 1 could be valid under more general conditions, e.g. for $p \geq 2$ perhaps. For the time being, this problem is still open.

References

[1] H. Araki, “On an inequality of Lieb and Thirring”, Lett. Math. Phys. 19, 167–170 (1990).

[2] K.M.R. Audenaert, “On the Araki-Lieb-Thirring inequality”, Int. J. of Information and Systems Sciences, 4(1), 78–83 (2008). See also eprint arXiv:math.FA/0701129.

[3] R. Bhatia, Matrix Analysis, Springer, Heidelberg (1997).

[4] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge (1985).

1 A Mathematica notebook with these calculations is available from the author on request.
[5] R.A. Horn and C.R. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, Cambridge (1991).

[6] E. Lieb and W. Thirring, in *Studies in Mathematical Physics* (Eds. E. Lieb, B. Simon and A. Wightman), 301–302, Princeton Press (1976).

[7] B-Y. Wang and F. Zhang, “Trace and Eigenvalue Inequalities for Ordinary and Hadamard Products of Positive Semidefinite Hermitian Matrices”, SIAM J. Matrix Anal. Appl. 16, 1173–1183 (1995).