Optimal Mechanism Design for Single-Minded Agents

KIRA GOLDNER, COLUMBIA UNIVERSITY

NIKHIL DEVANUR
AMAZON

RAGHUVANSH SAXENA
PRINCETON

ARIEL SCHVARTZMAN
PRINCETON -> RUTGERS

MATT WEINBERG
PRINCETON

CONTACT: kgoldner@cs.columbia.edu | ARXIV: 2002.06329 | PAPER: www.kiragoldner.com
bundle G = service or set of goods desired

(value v = how much getting their bundle is worth)

FedEx options

1 day 2 days 3 days

Service options

(v, G) ~ F

Results

General case:
Characterization via dual properties.
Menu complexity unbounded. (But finite!)

For any M, $\exists F$ over (v, G) s.t. the optimal mechanism has $\geq M$ different options.

DMR: $vf(v) - [1 - F(v)] = f(v)\phi(v)$ increasing

F is DMR:
Algorithmic characterization, deterministic.

Out-degree ≤ 1:
FedEx solution [FGKK '16] applies.
Complexity Spectrum: Characterization of the Optimal Mechanism
Number of Distinct Options to the Buyer

Menu Complexity	Characterization	Dual Properties	Dual Properties	Dual Properties
1 item	closed form	explicit	dual properties	(open, seems harder)
[Mye ‘81]	[MV ‘07, DDT ‘15]	[Mye ‘81]	[MV ‘07, DDT ‘15]	
FedEx: $2^n - 1$	1, 2, 3-day shipping	[FGKK ‘16, SSW ‘18]	[FGKK ‘16, SSW ‘18]	
0(2^n)	unbounded (but finite)	≥ unbounded	countably infinite	uncountably infinite
[DGSSW ‘20]	Single-Minded	[DGSSW ‘20]	[DGSSW ‘20]	[DGSSW ‘20]
[DHP ‘17, DGSSW ‘20]	Multi-Unit Pricing	1,2,3-cap for documents	1,2,3-cap for documents	
[DW ‘17]	Coordinated Valuations	Wifi, +TV, +Cable [w/ g(v)]	Wifi, +TV, +Cable [w/ g(v)]	
[DGSSW ‘20]	[DGSSW ‘20]	[DGSSW ‘20]	[DGSSW ‘20]	[DGSSW ‘20]
2 items	none	none	none	none

DMR => deterministic
Key Idea for Menu Complexity Bound

For any M:

\[a_A(x_1) > 0 \quad A \]

\[> a_B(x_2) \]

\[a_A(x_3) > 0 \]

\[> a_B(x_4) \]

\[\vdots \]

\[a_A(r_A) > 0 \quad A \]

\[> a_B(r_B) \]

\[\text{Complementary Slackness} \]

\[+ \implies a = 1 \quad \text{and} \quad - \implies a = 0 \]

\[0 \lambda_G(v) > 0 \implies \text{allocation constant} \]

\[\leftarrow a_{c,A}(v) > 0 \implies A \text{ is preferable to } B \text{ at } v \]

(at least as much area under A than B)

\[> M \text{ distinct options.} \]

\[a_B(x_1) = 1 \]

\[a_B(x_2) > 0 \]

\[> a_A(x_3) \]

\[a_B(x_4) > 0 \]

\[> a_A(x_5) \]

\[\vdots \]

\[\vdots \]

\[x_M \]

\[x_{M-1} \]

\[x_1 \]

\[x_2 \]

\[x_3 \]

\[x_4 \]

\[x_M \]

\[r_A \]

\[r_B \]

\[a_B(r_B) > 0 \]

Master Theorem:
For any dual given only by signs (+/−) and nonnegative variables (0 and \(\alpha \) ←), there exists a distribution that causes this dual.

Corollary: The “bad dual” exists.

Upper Bound:
Our algorithm gives menu complexity length of the sequence \((x_1, A), (x_2, B), (x_3, A), \ldots\)

An infinite such sequence:
Bounded and monotone sequence Converges to \(x^* \), can set this price.