Three Dimensional Differential Calculus on the Quantum Group $SU_q(2)$ and Minimal Gauge Theory

D.G. Pak *

Department of Theoretical Physics, Research Institute of Applied Physics, Tashkent State University, Vuzgorodok, 700095, Tashkent, Republic of Uzbekistan

Classification numbers: 210, 220, 240

Abstract

Three-dimensional bicovariant differential calculus on the quantum group $SU_q(2)$ is constructed using the approach based on global covariance under the action of the stabilizing subgroup $U(1)$. Explicit representations of possible q-deformed Lie algebras are obtained in terms of differential operators. The consistent gauge covariant differential calculus on $SU_q(2)$ is uniquely defined. A non-standard Leibnitz rule is proposed for the exterior differential. Minimal gauge theory with $SU_q(2)$ quantum group symmetry is considered.

*E-mail: dmipak@apctp.kaist.ac.kr
1 Introduction

One of the features of non-commutative geometry in the quantum group theory [1-5] is non-uniqueness in defining a differential calculus on the quantum groups and quantum spaces. The bicovariance condition determines a unique differential calculus on the linear quantum groups $GL_q(N)$ (up to symmetry corresponding to the exchange $q \rightarrow \frac{1}{q}$) [6, 7] and provides existence of the corresponding gauge covariant differential algebra [8]. Direct reducing the $GL_q(N)$-bicovariant differential calculus to a case of the special linear quantum group $SL_q(N)$ encounters difficulties connected with a loss of the centrality condition for a quantum determinant. Four-dimensional $4D_\pm$ bicovariant and three-dimensional (3D) left-covariant differential calculi on the simplest special unitary quantum group $SU_q(2)$ were considered as well using a standard Woronowicz approach [3, 6]. A full consistent construction of the 3D bicovariant differential calculus and a gauge covariant differential algebra on the $SU_q(2)$ are unknown up to now, furthermore, there are strong limitations imposed by no-go theorems [8]. A possible way to solve this problem suggests using a non-standard Leibnitz rule as it was considered in ref. [9].

In this paper possible 3D bicovariant differential calculi and gauge covariant differential algebra on the quantum group $SU_q(2)$ are considered in the framework of approach which respects a global $U(1)$-covariance. The group $U(1)$ is a stabilizing subgroup for the quantum group $SU_q(2)$ and the $U(1)$-covariant treatment allows to pass straightforward to the description of the quantum sphere $S^2_q \sim SU_q(2)/U(1)$. In Section 2 we construct explicit representations of q-deformed Lie algebras of left-invariant vector fields on $SU_q(2)$ in terms of differential operators. The $U(1)$-covariance constraint reduces the variety of possible covariant differential calculi on $SU_q(2)$ and leads to a unique gauge covariant differential algebra as it is shown in Section 3. We propose non-standard Leibnitz rules for the exterior differential which are compatible with the quantum group $SU_q(2)$ structure and gauge covariance. Section 4 is devoted to construction of the minimal quantum group gauge theory of $SU_q(2)$.

2 q-deformed Lie algebras

Following the R-matrix formalism [4] the main commutation relation for the generators T_j^i ($i, j = 1, 2$) of the quantum group $SU_q(2)$ is defined by a standard R-matrix as follows

$$R_{12} T_1 T_2 = T_2 T_1 R_{12}. \quad (2.1)$$
Let us choose a covariant parametrization for the matrix T^i_j

$$T^i_j = \begin{pmatrix} y^1 & x^1 \\ y^2 & x^2 \end{pmatrix} \equiv (y^i x^j), \quad (2.2)$$

where x^i, y^i are generators (coordinates) of the function algebra on the quantum hermitean vector space U_q^2 endowed with an involution $*: x^i = y_i$ and $SU_q(2)$-comodule structure. The unimodularity condition takes a simple covariant form

$$D \equiv \det_q T^i_j = x_i y^i = 1, \quad x_i = \varepsilon_{ij} x^j.$$

Hereafter the $SU_q(2)$ indices are raised and lowered with the invariant metric $\varepsilon_{ij}(\varepsilon_{12} = 1, \varepsilon_{21} = -\frac{1}{q}).$

The parametrization (2.2) was used in a harmonic formalism [10] of extended superfield supersymmetric theories. The coordinates (x, y) parametrize the quantum sphere $S^2_q \sim SU_q(2)/U(1)$ and are just the quantum generalizations of classical harmonic functions (u^\pm) (so called "harmonics")

$$x^i \equiv u^{+i}, \quad y^i \equiv u^{-i}.$$

The signs (\pm) correspond to charges (± 1) of a stabilizing subgroup $U(1)$ for the quantum group $SU_q(2)$. To simplify notations we shall not pass to the notations adopted in the harmonic formalism keeping in mind that all geometric objects (like coordinates, derivatives, differential forms etc.) have definite $U(1)$ charges.

Consider main commutation relations between the coordinates (x, y) and derivatives $\partial_i \equiv \frac{\partial}{\partial x^i}, \quad \bar{\partial}^i \equiv \frac{\partial}{\partial y_i}$ on the quantum group $SU_q(2)$:

$$R_{12}(\partial_T)_1(\partial_T)_2 = (\partial_T)_2(\partial_T)_1 R_{21}, \quad (\partial_T)_j^i \equiv \begin{pmatrix} \bar{\partial}_1 & \bar{\partial}_2 \\ \partial_1 & \partial_2 \end{pmatrix},$$

$$\partial_i x^k = q^{3-2i} \delta_i^k + q Y^{nk}_m x^m \partial_n, \quad \bar{\partial}^j y_j = \delta_j^i + q y_m \bar{\partial}^n \tilde{R}_m^{nj},$$

$$\partial_i y_j = q (\tilde{R}^{-1})_{ji} y_k \partial_k, \quad \bar{\partial}^i x^j = \frac{1}{q} \tilde{R}^{ij}_{kl} x^k \bar{\partial}^l,$$

$$Y_{sj}^{ri} = (\tilde{R}^{-1})_{ji}^{r} q^{2(s-i)}.$$

The commutation relations (2.3) do not differ on principle from ones given in ref. [11]. Our choice is motivated by using manifest covariant tensor notations which are convenient in constructing explicit representations for the q-Lie algebras. Thus, one implies all geometric
objects with upper (lower) indices to be transformed under the quantum group co-action Δ like classical co-(contra-) variant tensors. For instance, a second rank tensor N_{ij} will be transformed as follows

$$(N_{ij})' = (T^l)^i_k N^l_k$$

(2.4)

(Hereafter the signs \otimes of tensor product are omitted).

Let us define the left-invariant first-order differential operators

$$D^{++} \equiv x_i \bar{\partial}^i, \quad D^{--} \equiv -y_i \bar{\partial}^i,$$

where $(\pm\pm)$ correspond to $U(1)$ charges (± 2). The action of the operators $D^{\pm\pm}$ on the coordinates (x, y) has a simple form

$$D^{++} x^i = 0, \quad D^{--} x^i = y^i,$$
$$D^{++} y_i = x_i, \quad D^{--} y_i = 0.$$

The Leibnitz rule for these differential operators may be written in a convenient form if one considers their action on functions with definite $U(1)$ charges. The functions are defined in analogy with the classical case [10] and can be decomposed in formal series

$$f^{(n \geq 0)}(x, y) = \sum_{k=1}^{\infty} C_{(i_1i_2...i_{k+n}j_1j_2...j_k)} x^{i_1} x^{i_2} ... x^{i_{k+n}} y^{j_1} y^{j_2} ... y^{j_k},$$

(2.5)

where $C_{(i_1i_2...i_{k+n}j_1j_2...j_k)}$ are $-n$-number coefficients symmetrized over all indices. Functions with negative charges are defined in a similar manner. After some calculations one can find the next Leibnitz rule for the operators $D^{\pm\pm}$:

$$D^{\pm\pm} (f^{(m)} g^{(n)}) = (D^{\pm\pm} f^{(m)}) g^{(n)} + q^{-m} f^{(m)} D^{\pm\pm} g^{(n)}.$$

(2.6)

This is a special feature of quantum group non-commutative geometry that the quantum analogue to classical $U(1)$ generator can be realized as a second-order differential operator

$$D^0 \equiv -x_i \bar{\partial}^i - q^2 y_i \bar{\partial}^i + (1 - q^2) x_i y_k \bar{\partial}^k \bar{\partial}^i.$$

(2.7)

The operator D^0 has eigenfunctions which are just the functions with definite $U(1)$ charges

$$D^0 f^{(n)} = \{n\}_q f^{(n)}, \quad \{n\}_q \equiv \frac{1 - q^{-2n}}{1 - q^{-2}},$$

(2.8)
where \(\{ n \}_q \) is a \(q \)-number. It is not hard to check the following Leibnitz rule for the operator \(D^0 \)

\[
D^0(f^{(m)}g^{(n)}) = (D^0 f^{(m)})g^{(n)} + q^{-2m} f^{(m)} D^0 g^{(n)}. \tag{2.9}
\]

Reducing the space of functions on \(SU_q(2) \) to the space of functions with a definite \(U(1) \) charge one obtains the covariant description of the coset \(S^2_q \sim SU_q(2)/U(1) \).

By direct calculating one can verify that the operators \(D^{\pm\pm,0} \) form the \(q \)-deformed Lie algebra of \(SU_q(2) \) [12]

\[
[D^0, D^{++}], q^{-4} = \{2\}_q D^{++}, \quad [D^0, D^{--}] q^{4} = \{-2\}_q D^{--},
\]

\[
[D^{++}, D^{--}] q^{2} = D^0, \tag{2.10}
\]

here, \([A, B]_q \equiv AB - q^s BA\). Note, that the algebra (2.10) is valid irrespective of whether one imposes the unimodularity constraint \(D = 1 \). We shall treat the algebra (2.10) as a main \(q \)-deformed Lie algebra of left-invariant vector fields on the quantum group \(SU_q(2) \).

A corresponding \(q \)-generalized Jacobi identity is available

\[
[D^0, [D^{++}, D^{--}] q^2] + [D^{++}, [D^{--}, D^0] q^{-4}] q^{-2} + q^2 [D^{--}, [D^0, D^{++}] q^{-4}] q^{-2} = 0.
\]

Let us now pass to constructing other possible \(q \)-deformed Lie algebras of left-invariant vector fields on the \(SU_q(2) \). For this purpose we consider differential operators \(\mu, \nu \) [13]

\[
\mu = 1 + (q^2 - 1) y_i \bar{\partial}^i, \quad \nu = 1 + (1 - \frac{1}{q^2}) x_i \partial^i. \tag{2.11}
\]

One can see that the operators \(\mu, \nu \) obey the simple commutation relations

\[
\mu D^{--} = q^2 D^{--}\mu, \quad \mu D^{++} = \frac{1}{q^2} D^{++}\mu,
\]

\[
\mu D^0 = D^0\mu, \quad \mu \nu = \nu \mu.
\]

Similar formulae hold for the operator \(\nu \) as well. Using these relations one can find that the operators \(D^{++}, D^{--}, D^0 \) defined by the next equations

\[
D^{++} = \mu^{-\frac{1}{2}} D^{++}, \quad D^{--} = \nu^{-\frac{1}{2}} D^{--},
\]

\[
D^0 = \frac{1}{q} \mu \nu D^0 \equiv [\partial^0]_q
\]

generate just the Drinfeld-Jimbo quantum algebra

\[
[\partial^0, D^{++}] = 2 D^{++}, \quad [\partial^0, D^{--}] = -2 D^{--},
\]

\[
[D^{++}, D^{--}] = [\partial^0]_q, \tag{2.12}
\]

To construct other possible q-Lie algebras one introduces another differential operators $\Delta^{++}, \Delta^{--}, \Delta^0$ as follows

$$
\Delta^{++} = D^{++}, \quad \Delta^{--} = \frac{q^2 - 1}{q^{2p}} \hat{Z}^{1-p} D^{--},
$$

$$
\Delta^0 = 1 - \frac{\hat{Z}^s}{1 - q^{2s}},
\hat{Z} \equiv (\mu \nu)^{-\frac{1}{2}}, \quad \hat{Z} f^{(n)} = q^n f^{(n)}.
$$

(2.13)

The operators $\Delta^{\pm\pm,0}$ generate the next q-deformed Lie algebra:

$$
\Delta^{++} \Delta^{--} - q^{2p} \Delta^{--} \Delta^{++} = \frac{\hat{Z}^2 - 1}{\hat{Z}^{1+p}},
\Delta^0 \Delta^{++} - q^{2s} \Delta^{++} \Delta^0 = \Delta^{++},
\Delta^0 \Delta^{--} - q^{-2s} \Delta^{--} \Delta^0 = -q^{-2s} \Delta^{--},
$$

where s, p – arbitrary integers. The equation (2.13) allows to express the operator \hat{Z} in terms of Δ^0, then the arbitrariness in the choice of parameters s, p can be reduced by considering only quadratic in $\Delta^{\pm\pm,0}$ q-commutators.

3 Gauge covariant differential algebra

In this section we give description of possible $SU_q(2)$ bicovariant differential algebras with $U(1)$ conserved charge. The gauge covariance condition leads to a unique differential algebra of $SU_q(2)$. At the same time a Leibnitz rule for the exterior differential is not fixed yet. To find the differentiation rules one needs to choose a corresponding q-Lie algebra of left-invariant vector fields.

Consider the left-invariant Cartan 1-forms Ω on the quantum group $SU_q(2)$

$$
\Omega = dT^\dagger T \equiv \left(\begin{array}{cc} \omega^0 & \omega^{++} \\ \omega^{--} & -q^2 \omega^0 \end{array} \right),
$$

where $\omega^0, \omega^{++}, \omega^{--}$ are the basic left-invariant differential 1-forms with corresponding $U(1)$ charges $(0, +2, -2)$. One defines gauge transformations as follows

$$
T^g = \tilde{T} T,
\Omega^g = \Omega - T^\dagger \tilde{\Omega} T,
\tilde{\Omega} \equiv d\tilde{T}^{-1} \tilde{T},
$$

(3.1)

where the matrix \tilde{T} commutes with the matrices T, dT and satisfies the same equation (2.1) as for the matrix T. In the case of gauge symmetry the matrices \tilde{T}, T depend on
the coordinates of a base space-time and the connection 1-form A has the same transformation and commutation properties as the right invariant 1-form dT_T^\dagger. It turns out that the requirement of global $U(1)$-covariance and the consistency with the quantum group structure determine uniquely all commutation relations between the differential 1-forms ω and the coordinates (x, y). As a result we have

$$\begin{align*}
\omega^{++}x &= qx^{++}, \\
\omega^{--}x &= \frac{1}{q}x^{--} + \frac{1}{q} - q^4 y\omega^0, \\
\omega^{++}y &= \frac{1}{q}y^{++}, \\
\omega^{--}y &= qy^{--}, \\
\omega^0x &= x\omega^0 + \left(1 - \frac{1}{q^2}\right)y\omega^{++}, \\
\omega^0y &= y\omega^0.
\end{align*}$$

(3.2)

Similar consideration of commutation relations for the basic differential 1-forms $\omega^{\pm\pm,0}$ leads to covariant algebras parametrized by a real number σ:

$$\begin{align*}
\omega^{++}\omega^{++} &= \omega^{--}\omega^{--} = 0, \quad \omega^{\pm\pm,0} + q^{\pm2}\omega^0\omega^{\pm\pm} = 0, \\
\omega^{++}\omega^{--} + q^\sigma\omega^{--}\omega^{++} + \frac{q^2(1 - q^\sigma)(1 + q^2)}{q^2 - 1}\omega^0\omega^0 &= 0, \\
\omega^0\omega^0 &= \frac{1 - q^2}{q^2(1 + q^2)}\omega^{++}\omega^{--}.
\end{align*}$$

(3.3-3.5)

It should be noted that the algebra defined by eqs. (3.3-3.5) is bicovariant irrespective of whether one considers the last relation (3.5). Requiring the covariance under the gauge transformations and using the additional commutation constraint

$$\tilde{\Omega}\Omega = -q^2\Omega\tilde{\Omega}$$

one finds a unique gauge covariant differential algebra at $\sigma = 4$:

$$\begin{align*}
\omega^{++}\omega^{++} &= \omega^{--}\omega^{--} = 0, \\
\omega^{\pm\pm,0} + q^{\pm2}\omega^0\omega^{\pm\pm} &= 0, \\
(1 + q^2)^2\omega^0\omega^0 &= \frac{1}{q^2}\omega^{++}\omega^{--} + q^2\omega^{--}\omega^{++}.
\end{align*}$$

(3.6)

The equation (3.5) is not gauge covariant and should be omitted. So defined gauge covariant differential algebra differs from one considered in refs. [6,9]. Our treatment does not contain the condition of vanishing for the central element $C_2 \equiv tr_q(\Omega^2)$, which is not gauge covariant. Here we have used the notion of the q-deformed covariant trace [4, 7].

One can rewrite the commutation relations for the gauge covariant differential algebra in terms of the R-matrix. Direct checking leads to the next formulae

$$\begin{align*}
R_{12}dT_1T_2 &= T_2dT_1R_{12}, \\
R_{12}\Omega_2R_{12}^{-1}\Omega_1 + \frac{1}{q^2}\Omega_1R_{12}\Omega_2R_{12}^{-1} - \frac{q^2}{1 + q^2 + q^4(E_{12} - (1 + q^2)A_{21})tr_q\Omega^2} &= 0.
\end{align*}$$

(3.7-3.8)
here $E_{kl}^{ij} = \delta_k^i \delta_l^j$ and A_{21} is the quantum antisymmetrizer [11]. Note, that the first relation in (3.7) had been obtained earlier in ref. [9].

To construct an exterior differential it is convenient to use the definition based on the dualism between the exterior algebra of differential forms and the q-Lie algebra of vector fields. In this way the Leibnitz rule is followed straightforwardly and it depends only on a special choice of the q-Lie algebra.

Let us start from a general 3D q-Lie algebra of left-invariant vector fields $D^a = (D^{++}, D^{--}, D^0)$ on the quantum group $SU_q(2)$ with a Lie bracket

$$[D^a, D^b]_B \equiv D^a D^b - B^{abcd} D^c D^d = C^{abc} D^c.$$

We consider the matrix B^{abcd} to be unitary, so that it generates a representation of the permutation group. Thus, one can easily define the alteration rules for the tensor algebra of vector fields. Moreover, a generalized Jacobi identity will be available as well.

The basic left-invariant differential 1-forms ω^a are defined as dual objects by means of the scalar product $\omega^a(D^b) = \delta^{ab}$. The action of the exterior differential on arbitrary functions f and differential 1-forms u is defined in analogy with the classical case [14]

$$df(D^a) = D^a f,$$

$$du(D^a, D^b) = -\frac{1}{2} (D^a u(D^b) - B^{abcd} D^c u(D^d) - u([D^a, D^b]_B)),$$

$$du(D^a, D^b) = -B^{abcd} du(D^c, D^d).$$

Rules for the exterior differentiation of the differential $(n > 1)$-forms can be generalized in a similar fashion. The Cartan-Maurer equations have a standard form

$$d\omega^d(D^a, D^b) = \frac{1}{2} C^{abc} \omega^d(D^c).$$

As a concrete example we consider the q-Lie algebra (2.10) which is consistent with the gauge covariant algebra of left-invariant differential 1-forms (3.7). In that case differentiation rules (3.9) can be rewritten in a more familiar form after using the explicit tensor representation for the exterior products of 2-forms $\omega^a \wedge \omega^b$. After some calculations one finds

$$df = \omega^a D^a f,$$

$$d(\omega^{++} f) = d\omega^{++} f + \beta \omega^0 \omega^{++} D^0 f - d\omega^0 D^{++} f,$$

$$d(\omega^{--} f) = d\omega^{--} f + \beta q^2 \omega^0 \omega^{--} D^0 f + q^2 d\omega^0 D^{--} f,$$

$$d(\omega^0 f) = d\omega^0 f + \beta q^2 \omega^{++} \omega^0 D^{--} f + \beta \omega^{--} \omega^0 D^{++} f,$$

$$\beta \equiv \frac{1 + q^4}{q^2(1 + q^2)}.$$
It should be noted that the formulae (3.11) involve just three independent basis differential 2-forms $\omega^0\omega^{++},\omega^0\omega^{--},d\omega^0$ in the space of exterior 2-forms in correspondence with the classical case. The fourth linearly independent basis 2-form σ^0 can be defined as follows

$$\sigma^0 = \frac{1}{1 + q^2}(\omega^{++}\omega^{--} + q^2\omega^{--}\omega^{++}) ,$$

The form σ^0 takes a non-zero value only for the symmetrical tensor product $D^0 \otimes D^0$:

$$\sigma^0(D^0, D^0) = \rho,$$

where the number ρ vanishes in the classical limit $q \to 1$. Due to this property the form σ^0 does not appear in eqs. (3.11).

To construct the differentiation rules for the $(n > 1)$-forms it is convenient to use the specific structure of the exterior algebra of $SU_q(2)$. It is easy to check that the invariant 2-form

$$C \equiv \frac{\beta q^4}{1 + q^2 + q^4} C_2 = \frac{\beta q^2}{1 + q^2}(\omega^{++}\omega^{--} + \omega^{--}\omega^{++})$$ (3.12)

is a central element. We put the natural constraint

$$d(C\omega^{(n)} f) = C d(\omega^{(n)} f).$$ (3.13)

Using this constraint and starting from the most general form for differentiation rules one finds

$$d(\omega^0\omega^{++} f) = \pm q^4 v D^{++} f,$$

$$d(\omega^{++}\omega^{--} f) = \frac{1}{\beta} C df + v D^0 f,$$

$$d(\omega^{--}\omega^{++} f) = \frac{1}{\beta q^2} C df - v D^0 f,$$

$$d(\omega^0\omega^{++}\omega^{--} f) = \frac{1}{\beta} C d \omega^0 f - q^4 C \omega^0 \omega^{++} D^{--} f - \frac{1}{q^2} C \omega^0 \omega^{--} D^{++} f ,$$

$$d(v f) = 0 ,$$

$$v \equiv \frac{1}{2}(\omega^0\omega^{++}\omega^{--} - q^2\omega^0\omega^{--}\omega^{++}) ,$$ (3.14)

where v is a volume 3-form on the $SU_q(2)$.

All basis differential forms of order $n > 3$ can be obtained from lower order forms multiplied by the invariant C in an appropriate degree. So that the relations (3.11, 3.14) complete the differential rules for the differential algebra of $SU_q(2)$.

Having carried out some calculations one can also find the explicit expressions for the Cartan-Maurer equations (3.10)

$$d\Omega = \Omega^2 - \frac{q^2}{1 + q^2} I \text{tr}_q \Omega^2 .$$

The right hand side of the equation contains only the traceless part of Ω^2.

9
4 Construction of the minimal $SU_q(2)$ gauge theory

A minimal gauge theory corresponding to the quantum algebra $SU_q(2)$ was proposed in ref. [15], where the initial gauge transformations contain by definition the antipodal map. One can try to formulate a gauge Yang-Mills theory for the quantum group $SU_q(2)$ in analogy with a covariant $GL_q(N)$ version proposed in ref. [7]. For this purpose one should define the algebra of main operators (matter fields and gauge potential) and a corresponding comodule structure.

In the case of the quantum group $SU_q(2)$ it is convenient to put the matter field $\phi^i(\bar{\phi}^i)$ into one matrix $\Phi = (\bar{\phi}^i \phi^i)$. The operators $(\Phi, d\Phi)$ generate the Z_2-graded algebra Z with the same commutation relations as for the differential algebra of $SU(2)$. The algebra Z is a left $SU_q(2)$-comodule with the following co-action:

$$\Phi \to \Phi^g = T\Phi, \hspace{1cm} \text{(4.1)}$$

$$d\Phi \to (d\Phi)^g = (dT)\Phi + T(d\Phi). \hspace{1cm} \text{(4.2)}$$

All axioms for the comodule are fulfilled.

We introduce also an operator A (gauge potential 1-form) satisfying the same commutation relations as for the right-invariant Cartan 1-forms on the $SU_q(2)$. One can consider the quantum analogue to the gauge transformation for the A:

$$A \to A^g = TAT^\dagger + (dT)T^\dagger. \hspace{1cm} \text{(4.3)}$$

A covariant differential Δ acting on the matter field is defined as

$$\Delta \Phi = (d - A)\Phi. \hspace{1cm} \text{(4.4)}$$

The curvature 2-form F is introduced as follows

$$F = dA - A^2 + \frac{1}{1 + q^2}tr_q A^2 \hspace{1cm} \text{(4.5)}$$

and it contains only traceless part.

To define the commutation relations in the algebra G generated by the operators $(\Phi, d\Phi, A, dA)$ we will take into account the compatibility conditions with the gauge transformations and the centrality property for the quantum determinant $\det_q \Phi = 1$. The commutation relations for the operators Φ, A are uniquely defined from the formula (3.7), since the gauge potential A in a pure gauge limit is just the right-invariant Cartan form on the quantum group $SU_q(2)$, so we have

$$\Phi_1A_2 = R_{21}A_2R_{21}^{-1}\Phi_1. \hspace{1cm} \text{(4.6)}$$
We demand the covariant combination \((F \Phi)\) to have the same commutation relations with itself and \(A\) as for the operator \(\Phi\)

\[
(F \Phi)_1 A_2 = R_{21} A_2 R_{21}^{-1} (F \Phi)_1, \tag{4.7}
\]

\[
R_{12} (F \Phi)_1 (F \Phi)_2 = (F \Phi)_2 (F \Phi)_1 R_{12}. \tag{4.8}
\]

Using these formulae one can easily derive the next commutation relations:

\[
F_1 R_{21} A_2 R_{21}^{-1} = R_{21} A_2 R_{21}^{-1} F_1, F_1 R_{21} \tilde{r}_2 R_{21}^{-1} = R_{21} \tilde{r}_2 R_{21}^{-1} F_1, \tag{4.9}
\]

where \(\tilde{r} = (d \Phi) \Phi^\dagger\).

The bicovariance condition, the traceless property for the \(F\) and the centrality of the quantum determinant \(\text{det}_q \Phi\) lead to the following commutation relation for the operators \((\Phi, F)\):

\[
\Phi_1 F_2 = R_{21} F_2 R_{21}^{-1} \Phi_1. \tag{4.10}
\]

From this equation taking into account the eqn. (34) one finds

\[
R_{12} F_1 R_{21} F_2 = F_2 R_{12} F_1 R_{21}. \tag{4.11}
\]

Note, that the last equation coincides with the corresponding relation in \(GL_q(N)\) gauge theory [7]. It is not difficult to check the next simple relations as well:

\[
R_{12} \Delta \Phi_1 \Phi_2 = \Phi_2 \Delta \Phi_1 R_{12}, \tag{4.12}
\]

\[
\Phi_1 dA_2 = R_{21} dA_2 R_{21}^{-1} \Phi_1. \tag{4.13}
\]

The commutation relations obtained above are the main ones which imply all other commutations in the algebra \(G\). To construct a formal expression for the Lagrangian of the gauge theory one needs to specify the underlying space-time and define the dual \(*\)-operation. The simplest variant correspond to the choice of the space-time isomorphic to the quantum space of \(SU_q(2)\). Another problem is the construction of Leibnitz rules for the exterior differential which have essentially non-standard form. Differentiation rules for the algebra of matter fields \((\Phi^i, d \Phi)\) are defined by similar formulae (23, 26) in full analogy with the case of the differential algebra of \(SU_q(2)\). For instance, one has the following equations for the quadratic combinations of matter fields

\[
d(\phi^i \phi^j) = d\phi^i \phi^j + \frac{1}{q^2} \phi^i d\phi^j + \frac{q^2 - 1}{q^3} \epsilon^{ijk} d\phi_k \phi^k,
\]

\[
d(\bar{\phi}^i \bar{\phi}^j) = d\bar{\phi}^i \bar{\phi}^j + q^2 \bar{\phi}^i d\bar{\phi}^j,
\]

\[
d(\bar{\phi}^i \phi^j) = d\bar{\phi}^i \phi^j + q^2 \bar{\phi}^i d\phi^j + (q^2 - 1) \bar{\phi}^i \bar{\phi}^j d\phi_k \phi^k.
\]
Another possible way towards a consistent minimal quantum group gauge Yang-Mills theory corresponds to the differential calculus with a q-Lie algebra differed from one defined by eqs. (2.10).

Acknowledgments

The author would like to acknowledge Professor M. Arik and the members of the Organizing Committee for kind hospitality and financial support. Author thanks F. Mueller-Hoissen, V.D. Gershun and M. Nomura for useful discussions.

References

[1] V.G. Drinfeld *Quantum Groups*, in: Proc. Int. Cong. Math. **1** (Berkeley, CA, USA, 1986), 793.

[2] M. Jimbo, Int. J. Mod. Phys. **A4** (1989) 3759.

[3] S.L. Woronowicz, Publ. Res. Inst. Math. Sci., Kyoto University **23** (1987) 117.

[4] L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Algebra i Analiz. **1** (1989) 178.

[5] S.L. Woronowicz, Comm. Math. Phys. **122** (1989) 125.

[6] A.P. Isaev and P.N. Pyatov, Phys. Lett. **A179** (1993) 81.

[7] A.P. Isaev and Z. Popowicz, Phys.Lett. **B307** (1993) 353.

[8] I.Ya.Aref’eva and G.E.Antyunov, ”On *-representations of the Z_2-graded extension of the quantum group $U_q(2)$” Trudi MIAN, v.203 (1994)

[9] L.D. Faddeev and P.N. Pyatov, *The Differential Calculus on Quantum Linear groups*. Preprint [hep-th/9402070](http://arxiv.org/abs/hep-th/9402070) (1994).

[10] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky and E. Sokatchev, Class. Quant. Grav. **1** (1984) 469.

[11] J. Wess and B. Zumino, Nucl. Phys. (Proc. Suppl.) **B18** (1990) 302.

[12] A. Schirrmacher, J. Wess and B. Zumino, Zeit. Ph. **C49** (1991) 317.

[13] O. Ogievetsky, Lett. Math. Phys. **24** (1992) 245.
[14] S. Kobayashi and K. Nomizu, Vol.1. *Foundations of Differential Geometry* (Interscience Publishers, N.Y., London, 1963).

[15] T. Sudbery Phys.Lett. B375 (1996) 75.