Dynamical stability and electronic structure of β-phosphorus carbide nano-wires

Shcherbinin S. A., Ustiuhanina S.V., Kistanov A. A.*
1 – Southern Federal University, 344006 Rostov-on-Don, Russia
2 – Institute for Metals Superplasticity Problems, Russian Academy of Sciences, 450001 Ufa, Russia
3 – Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland

andrey.kistanov@oulu.fi

Abstract In this work, β-phosphorus carbide 1D nano-wires (PCNWs) are investigated in the framework of density functional theory. The dynamical stability of the considered β-PCNWs at 300 K is verified using ab initio molecular dynamics calculations. According to the results on the band structure calculations, β-PCNWs can be semiconductors, semimets or metals depending on their size and form. Thus, owning to their unique shape and high tunability of electronic properties β-PCNWs may be used in optical and photovoltaic nanodevices.

Keywords: nanowires, structural stability, phosphorus carbide, 2D materials

1. Introduction

In the last decade, the number of new two-dimensional (2D) materials has been constantly growing. Advanced theoretical and novel experimental approaches make it possible to obtain hybrid 2D materials [1-4]. Recent theoretical predictions [5,6] and experimental investigations [7] have proven the existence of several allotropes of a new 2D material, phosphorus carbide (PC). Depending on its structure PC can be metallic, semi-metallic or semiconductor [5].

The predicted allotropes exhibit thermal stability and possess well tunable electronic structure [8]. In addition, the possibility of rolling of α-PC monolayer to a PC nanotube at room temperature under compressive strain has been found has been shown [9]. Another predicted γ-allotrope of PC with an InSe-like structure has been shown to have promoted adsorption of lithium atoms, which render its application in rechargeable batteries [6]. Furthermore, γ-PC has been found as a good material for gas sensing and storage devices [10]. Very recently, β-PC has been fabricated via a novel carbon doping technique [11]. Theoretical and experimental studies have shown the existence of different β-PC phases which may have a potential for application in nanodevices [11, 12].

In this work using first-principles calculations we studied the structural stability and electronic band structure of β_0- and β_1-PC 1D nano-wires.

2. Simulation Details

The computational simulations were performed by using the Vienna ab initio simulation package (VASP) [13] within the framework of the density functional theory.

one need to evince that it cannot undergo any structural changes that lower its energy. In practice, at the first-principles level, the verification can be done using AIMD simulations.

To evince the dynamical stability of the considered structures, the ab initio molecular dynamics calculations [14] which is the most common method for low dimensional materials [15] were implemented. The structure optimization and band structure calculations the Perdew–Burke–Ernzerhof (PBE) functional with generalized gradient approximation (GGA) [16] was selected with an energy cutoff of 400 eV. All the structures were fully optimized until the forces become smaller than 0.01 eV/Å.

The optimized unicells of the considered β_0- and β_1 allotropes of PC are shown in Figure 1. The calculated lattice constants of β_0- and β_1-PC are $a = 5.050$ Å and $b = 2.915$ Å and $a =$
4.725 and \(b = 2.915 \), respectively. The results are in good agreement with the available references [4].

Figure 1. The optimized unicells of the considered (a) \(\beta_0 \)- and (b) \(\beta_1 \) allotropes of PC.

3. Simulation Results
First, we created \(\beta_0 \)- and \(\beta_1 \)-PCNWs consisting of 12 atoms and more by the rippling of \(\beta_0 \)-PC and \(\beta_1 \)-PC monolayers along their armchair (APCNW) and zigzag (ZPCNW) directions. Further, the dynamical stability of the created PCNWs is systematically checked using AIMD calculations conducted at 300 K during the period time 10 ps. It is found that the stable \(\beta_0 \)- and \(\beta_1 \)-APCNWs of the smallest/biggest size consist of 12/40 atoms. Stable \(\beta_0 \)-ZPCNWs may consist of 32 to 44 atoms, while \(\beta_1 \)-ZPCNWs consists of 24 to 44 atoms. For PCNWs found to be stable, we next calculated the band structure. Figure 2 presents the bandgap size of the considered PCNWs as a function of their size.

Figure 2. The bandgap size as a function of size of \(\beta_0 \)- and \(\beta_1 \)-APCNW and \(\beta_0 \)- and \(\beta_1 \)-ZPCNW.
Figure 3 shows the optimized atomic (upper panels) and band (lower panels) structures of β_0-APCNWs. As it is seen from Figure 3, β_0-APCNWs may have different forms such as triangle and star-like structure. Depending on the size, the β_0-APCNWs vary from a direct (wire consisting of 12 atoms) to an indirect bandgap semiconductor. According to Figure 2 with increasing the size of β_0-APCNWs from 12 atoms to 40 atoms its bandgap size decreases drastically from 1.14 eV to 0.27 eV.

The atomic and band structures of stable β_1-APCNWs are presented in Figure 4. Based on the geometry optimization results, the APCNWs are characterized by a star-like structure. The band structure calculations (Figure 2) suggest β_1-APCNWs may have a zero bandgap (wires consisting of 12 and 16 atoms), or to be a direct (wires consisting of 20 atoms) and an indirect (wires consisting of 24 to 40 atoms) bandgap semiconductors. Based on the results presented in Figure 2, the bandgap size of β_1-APCNWs is increasing by leaps from 0 eV up to 0.87 eV with increasing their size.

Figure 3. The atomic (the upper panel) and band (the lower panel) structures of β_0-APCNWs.

Figure 4. The atomic (the upper panel) and band (the lower panel) structures of β_1-APCNWs.

ZPCNWs have been found less stable than APCNWs. In case of β_0-ZPCNWs, there are only four stable configurations, which are shown in Figure 5. The β_0-ZPCNWs consisting of 32 to 40 atoms are direct bandgap semiconductors while β_0-ZPCNW consisting of 44 atoms has a zero bandgap (see Figure 5, lower panels). With increasing the size, the bandgap size of β_0-ZPCNWs decreases as it is shown in Figure 2. β_0-ZPCNWs have six stable configurations which are presented in Figure 6. The most interesting results are found for band structure of β_1-ZPCNWs. It is predicted that β_1-ZPCNW consisting of 24 atoms is metallic, β_1-ZPCNWs consisting of 28 to 40 atoms are indirect bandgap semiconductors, and β_1-ZPCNW consisting of 44 atoms is a direct bandgap semiconductor (see Figure 6, lower panels). Differently from
other PCNWs here the bandgap size of \(\beta_1 \)-ZPCNWs significantly increases with size from 0 eV to 0.97 eV (see Figure 2).

![Figure 5](image)

Figure 5. The atomic (the upper panel) and band (the lower panel) structures of \(\beta_0 \)-ZPCNWs.

![Figure 6](image)

Figure 6. The atomic (the upper panel) and band (the lower panel) structures of \(\beta_1 \)-ZPCNWs.

4. Conclusions

In conclusion, our theoretical predictions show the existence of \(\beta \)-PCNWs of different sizes and unique shapes. These \(\beta \)-PCNWs also possess existing electronic properties. Particularly, the bandgap size of \(\beta \)-PCNWs is directly depends on their size. Such tunability of the band structure suggests \(\beta \)-PCNWs as a perfect material for application in optoelectronic nanodevices.

Acknowledgments

For A.A.K. this work is supported by the Academy of Finland grant No. 311934. S.A.Sh. acknowledges the financial support by the Ministry of Education and Science of the Russian Federation (state task in the field of scientific activity, Southern Federal University), theme N BAS0110/20-3-08IF. Computing resources were provided by CSC-IT Center for Science, Finland.
tor via carbon doping. Self-gated elastic minimum energy paths on battery anode boride: A study of thiazole adsorption upon BC₃N nanotube: DFT/TD-DFT investigation. Structural Chemistry 31, 1959–1967.

[3] Kaur, M., Sawhney, R. S. and Engles, D. 2017 Morphology pursuance in C20 fullerene molecular junction: ab initio implementation. Journal of Micromechanics and Molecular Physics. 02 1750007.

[4] Kochaev, A., Katin, K., Maslov, M. and Meftakhutdinov R. 2020 AA-stacked borophene-graphene bilayer with covalent bonding: Ab initio investigation of structural, electronic and elastic properties. The Journal of Physical Chemistry Letters 11(14), 5668–5673.

[5] Guan, J., Liu, D., Zhu, Z. and D. Tománek. 2016 Two-dimensional phosphorus carbide: Competition between sp² and sp³ bonding. Nano Letters 16, 3247–3252.

[6] Zhang, W., Yin, J., Zhang, P., Tang, X. and Y. Ding. 2018 Two-dimensional phosphorus carbide as a promising anode material for lithium-ion batteries. Journal of Materials Chemistry A 6, 12029–12037.

[7] Huang, X., Cai, Y., Feng, X., Tan, W. C., Hasan, D. Md. N., Chen, L., Chen, N., Wang, L., Huang, L., Duffin, T. J., Nijhuis, C. A., Zhang, Y. W., Lee, C. and Ang, K. W. 2018 Black phosphorus carbide as a tunable anisotropic plasmonic metasurface. ACS Photonics 5(8), 3116–3123.

[8] Kistanov, A. A., Korznikova, E. A., Huttula, M., and W. Cao. 2020 The interaction of two-dimensional α- and β-phosphorus carbide with environmental molecules: a DFT study. Physical Chemistry Chemical Physics 22, 11307-11313.

[9] Shcherbinin, S. A., Zhou, K., Dmitriev, S. V., Korznikova, E. A., Davletshin, A. R. and Kistanov A. A. 2020 Two-dimensional black phosphorus carbide: rippling and formation of nanotubes. The Journal of Physical Chemistry C 124(18), 10235–10243.

[10] Kistanov, A. A. 2020 The first-principles study of the adsorption of NH₃, NO, and NO₂ gas molecules on InSe-like phosphorus carbide. New Journal of Chemistry 44, 9377-9381.

[11] Tan, W. C., Cai, Y., Ng, R. J., Huang, L., Feng, X., Zhang, G., Zhang, Y. W., Nijhuis, C. A., Liu, X., Ang, K. W. 2017 Few-layer black phosphorus carbide field-effect transistor via carbon doping. Advanced Materials 29, 1700503.

[12] Li, F., Liu, X., Wang, J., Zhang, X., Yang, B., Qu, Y. and Zhao M. 2017 A promising alkali-metal ion battery anode material: 2D metallic phosphorus carbide (β₀-PC). Electrochimica Acta 258, 582–590.

[13] Kresse G. and Furthmüller J. 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 54(16), 11169-11186.

[14] Henkelman, G., Uberuaga, B. P. and Jonsson H. 2000 A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of Chemical Physics. 113, 9901.

[15] Malyi, O. I., Sopiza, K. V. and Persson C. 2019 Energy, phonon, and dynamic stability criteria of two-dimensional materials. ACS Applied Materials and Interfaces. 11(28), 24876–24884.

[16] Perdew, J. P., Burke, K. and Ernzerhof, M. 1996 Generalized gradient approximation made simple. Physical Review Letters 77(18), 3865-3868.