Peripheral blood stem cell mobilization in multiple myeloma: Growth factors or chemotherapy?

Whitney D Wallis, Muzaffar H Qazilbash

Abstract
High-dose therapy followed by autologous hematopoietic stem cell (HSC) transplant is considered standard of care for eligible patients with multiple myeloma. The optimal collection strategy should be effective in procuring sufficient HSC while maintaining a low toxicity profile. Currently available mobilization strategies include growth factors alone, growth factors in combination with chemotherapy, or growth factors in combination with chemokine receptor antagonists; however, the optimal strategy has yet to be elucidated. Herein, we review the risks and benefits of each approach.

Key words: Multiple myeloma; Stem cell; Mobilization; Growth factors; Chemotherapy

INTRODUCTION

High-dose therapy followed by autologous hematopoietic stem cell transplant is considered standard of care for eligible patients with multiple myeloma. The optimal collection strategy should be effective in procuring sufficient HSC while maintaining a low toxicity profile. Currently available mobilization strategies include growth factors alone, growth factors in combination with chemotherapy, or growth factors in combination with chemokine receptor antagonists; however, the optimal strategy has yet to be elucidated. Herein, we review the risks and benefits of each approach.

Key words: Multiple myeloma; Stem cell; Mobilization; Growth factors; Chemotherapy

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Obtaining an adequate peripheral blood stem cell yield is essential for the successful outcome of autologous hematopoietic stem cell transplant in multiple myeloma. While growth factor mobilization continues to be largely successful, suboptimal collection rates have been noted, particularly as use of novel therapies continue to increase. Chemomobilization remains toxic and has not been associated with better disease control. The newest mobilizing agent, plerixafor, is capable of overcoming suboptimal mobilization even in patients who are at a high risk of mobilization failure. Each mobilization strategy should be selected based on patient specific variables as well as risk factors for mobilization failure.

Wallis WD, Qazilbash MH. Peripheral blood stem cell mobilization in multiple myeloma: Growth factors or chemotherapy? World J Transplant 2017; 7(5): 250-259 Available from: URL: http://www.wjgnet.com/2220-3230/full/v7/i5/250.htm DOI: http://dx.doi.org/10.5500/wjt.v7.i5.250

INTRODUCTION

High-dose therapy followed by autologous hematopoietic stem cell transplant is considered standard of care for eligible patients with multiple myeloma. The optimal collection strategy should be effective in procuring sufficient HSC while maintaining a low toxicity profile. Currently available mobilization strategies include growth factors alone, growth factors in combination with chemotherapy, or growth factors in combination with chemokine receptor antagonists; however, the optimal strategy has yet to be elucidated. Herein, we review the risks and benefits of each approach.

Key words: Multiple myeloma; Stem cell; Mobilization; Growth factors; Chemotherapy

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Obtaining an adequate peripheral blood stem cell yield is essential for the successful outcome of autologous hematopoietic stem cell transplant in multiple myeloma. While growth factor mobilization continues to be largely successful, suboptimal collection rates have been noted, particularly as use of novel therapies continue to increase. Chemomobilization remains toxic and has not been associated with better disease control. The newest mobilizing agent, plerixafor, is capable of overcoming suboptimal mobilization even in patients who are at a high risk of mobilization failure. Each mobilization strategy should be selected based on patient specific variables as well as risk factors for mobilization failure.

Wallis WD, Qazilbash MH. Peripheral blood stem cell mobilization in multiple myeloma: Growth factors or chemotherapy? World J Transplant 2017; 7(5): 250-259 Available from: URL: http://www.wjgnet.com/2220-3230/full/v7/i5/250.htm DOI: http://dx.doi.org/10.5500/wjt.v7.i5.250

INTRODUCTION

High-dose therapy followed by autologous hematopoietic stem cell transplant is considered standard of care for eligible patients with multiple myeloma. The optimal collection strategy should be effective in procuring sufficient HSC while maintaining a low toxicity profile. Currently available mobilization strategies include growth factors alone, growth factors in combination with chemotherapy, or growth factors in combination with chemokine receptor antagonists; however, the optimal strategy has yet to be elucidated. Herein, we review the risks and benefits of each approach.

Key words: Multiple myeloma; Stem cell; Mobilization; Growth factors; Chemotherapy

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Obtaining an adequate peripheral blood stem cell yield is essential for the successful outcome of autologous hematopoietic stem cell transplant in multiple myeloma. While growth factor mobilization continues to be largely successful, suboptimal collection rates have been noted, particularly as use of novel therapies continue to increase. Chemomobilization remains toxic and has not been associated with better disease control. The newest mobilizing agent, plerixafor, is capable of overcoming suboptimal mobilization even in patients who are at a high risk of mobilization failure. Each mobilization strategy should be selected based on patient specific variables as well as risk factors for mobilization failure.

Wallis WD, Qazilbash MH. Peripheral blood stem cell mobilization in multiple myeloma: Growth factors or chemotherapy? World J Transplant 2017; 7(5): 250-259 Available from: URL: http://www.wjgnet.com/2220-3230/full/v7/i5/250.htm DOI: http://dx.doi.org/10.5500/wjt.v7.i5.250

INTRODUCTION

High-dose therapy followed by autologous hematopoietic stem cell transplant is considered standard of care for eligible patients with multiple myeloma. The optimal collection strategy should be effective in procuring sufficient HSC while maintaining a low toxicity profile. Currently available mobilization strategies include growth factors alone, growth factors in combination with chemotherapy, or growth factors in combination with chemokine receptor antagonists; however, the optimal strategy has yet to be elucidated. Herein, we review the risks and benefits of each approach.

Key words: Multiple myeloma; Stem cell; Mobilization; Growth factors; Chemotherapy

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Obtaining an adequate peripheral blood stem cell yield is essential for the successful outcome of autologous hematopoietic stem cell transplant in multiple myeloma. While growth factor mobilization continues to be largely successful, suboptimal collection rates have been noted, particularly as use of novel therapies continue to increase. Chemomobilization remains toxic and has not been associated with better disease control. The newest mobilizing agent, plerixafor, is capable of overcoming suboptimal mobilization even in patients who are at a high risk of mobilization failure. Each mobilization strategy should be selected based on patient specific variables as well as risk factors for mobilization failure.

Wallis WD, Qazilbash MH. Peripheral blood stem cell mobilization in multiple myeloma: Growth factors or chemotherapy? World J Transplant 2017; 7(5): 250-259 Available from: URL: http://www.wjgnet.com/2220-3230/full/v7/i5/250.htm DOI: http://dx.doi.org/10.5500/wjt.v7.i5.250
stem cell (HSC) transplant (auto-HCT) is considered standard of care for eligible patients with multiple myeloma (MM). MM remains the most common indication for auto-HCT, accounting for over 6000 transplants in the United States alone in 2013[11]. Auto-HCT has been shown to prolong progression-free survival and overall survival in patients with MM[2-4], a benefit that has been maintained even after the availability of immunomodulatory drugs such as thalidomide and lenalidomide[5,6], and proteasome inhibitors like bortezomib. Mobilization and collection of an optimal number of HSC is a fundamental requirement for auto-HCT. The optimal collection strategy should be effective in procuring sufficient HSC while maintaining a low toxicity profile. Currently available mobilization strategies include growth factors alone, growth factors in combination with chemotherapy, or growth factors in combination with chemokine receptor antagonists; however, the optimal strategy has yet to be elucidated. Herein, we review the data surrounding each approach.

SOURCE OF HSCs
Historically, bone marrow (BM) was used as the sole source of HSC for transplantation[7,8]. However, the ability to mobilize HSC to peripheral blood (PB) has eliminated the risk of general anesthesia, intubation, and painful aspirations associated with BM harvesting. Peripheral blood stem cell (PBSC) collection can be performed in the outpatient setting with a shorter recovery time. Additionally, use of PBSC reduces time to hematopoietic reconstitution, hospital stay, and need for transfusions[9-11]. Consequently, PB has largely replaced BM as the source of HSC for auto-HCT[12].

PBSC DOSE
The number of CD34 expressing mononuclear cells in PBSC collection correlates well with engraftment kinetics and thus is used as a surrogate marker of HSC[13-16] (Figure 1). A dose of > 2 million CD34+ cells per kilogram (cells/kg) is considered the minimum acceptable dose for timely engraftment[17]. However, larger cell doses have been associated with a more rapid time to platelet and neutrophil recovery[18,19] and therefore ≥ 3-5 million CD34 cells/kg is considered an optimal target[20,21].

PBSC MOBILIZATION APPROACHES
HSC primarily reside in the BM and account for 1%-4% of all mononuclear cells[13,15,22]. Retention of HSC in the BM is dependent on interactions between cell adhesion molecules on the surface of HSC, such as chemokine receptor 4 and very late antigen 4 (VLA4), and BM stromal factors, such as vascular cell adhesion molecule (VCAM-1) and stromal cell-derived factor-1 (SDF-1)[23]. Mobilization of HSC from BM to PB is the result of induced chemical disruption of these interactions between HSC and BM stroma. Cytokines, such as granulocyte-colony stimulating factor (G-CSF), and chemotherapy drugs like cyclophosphamide play an important role in releasing HSC from their niches in the BM[23-25] (Figure 2).

Growth factors alone
Historically, growth factors alone have been largely successful in mobilizing an adequate cell yield in MM patients undergoing auto-HCT[26,27] (Table 1). G-CSF has well established kinetics as well as favorable toxicity and cost profiles[26-30] but has been associated with suboptimal mobilization in over 20% of MM patients[31-33]. Data regarding a dose-response relationship between G-CSF and CD34+ cell yield is discordant but doses up to 40 μg per kilogram per day (μg/kg per day) have been studied[34-36]. A widely accepted G-CSF dose for PBSC mobilization is 10 μg/kg per day as single or divided doses.

Other growth factors such as granulocyte-macrophage-colony stimulating factor (GM-CSF), pegylated G-CSF, and tbo G-CSF have also been studied for PBSC mobilization in MM patients[37-42]. When G-CSF was compared to GM-CSF in MM patients, CD34+ cell yield was similar between

![Figure 1](http://www.nature.com/bmt/index.html)
the two groups, but GM-CSF-mobilized patients had a longer duration of neutropenia\(^43\). In-vitro data suggest that combination of G-CSF + GM-CSF may improve PBSC yield\(^44,45\), but clinical trial data has not found a significant difference in CD34\(^+\) cell yield or time to hematopoietic recovery with combination therapy\(^41\).

Pegylated (PEG) filgrastim, a covalent conjugate of G-CSF and monomethoxy-polyethylene glycol, has a terminal half-life of 15-80 h, which enables less frequent administration compared to G-CSF. Given as a single 12 mg injection followed by PBSC collection, all MM patients who received PEG filgrastim successfully collected their target CD34\(^+\) cells/kg dose\(^39\). Similarly, a multi-dose regimen of PEG filgrastim had a higher CD34\(^+\) cells yield on first apheresis compared to G-CSF, but no differences in overall cell yield was observed\(^46\). Its convenient dosing schedule makes it an attractive option for PBSC mobilization.

Tbo-filgrastim is a non-glycosylated recombinant methionyl human G-CSF manufactured using the bacterium strain E. coli K802\(^47\). While not FDA approved for stem cell mobilization, retrospective data in MM patients found no difference in overall cell yield, number of apheresis sessions required for collection, nor need for rescue therapy with plerixafor\(^38,48\).

Myelosuppressive chemotherapy

Transient circulation of PBSC occurs during the recovery phase of chemotherapy-induced pancytopenia\(^22,49,50\) and is augmented by growth factor support\(^22\) (Table 2). This

Table 1 Growth factor mobilization

Ref.	Disease	Collection strategy	n	CD34\(^+\) yield (× \(10^6\) cell/kg): Median (range)	Failure a (%)
Desikan et al\(^26\)	MM	G-CSF 10-16 \(\mu\)g/kg per day	117	6.2 (0.6-34.1)	NR
Kröger et al\(^27\)	MM	G-CSF 10-24 \(\mu\)g/kg per day	25	3.8 (0.3-17)	3 (12)
Popat et al\(^28\)	MM	G-CSF 30 \(\mu\)g/kg per day	302	NR	9%
Pusic et al\(^29\)	MM	G-CSF 10 \(\mu\)g/kg per day	384	4.6	24 (6.3)
	NHL HD	G + C	17	8.5	1 (5.9)
Weaver et al\(^30\)	BC	G-CSF 10 \(\mu\)g/kg per day	14	0.6 (0.1-2.8)	NR
		G-CSF 20 \(\mu\)g/kg per day	13	1 (0.2-5.2)	
		G-CSF 30 \(\mu\)g/kg per day	14	2.4 (0.6-6.8)	
		G-CSF 40 \(\mu\)g/kg per day	14	1.4 (0.1-4.8)	
	BC	G-CSF 250 \(\mu\)g/m\(^2\) per day	16	4.78 (3.02-10.68)	0
	HD	G-CSF 250 \(\mu\)g/m\(^2\) per day	15	8.01 (3.17-29)	0
Weisdorf et al\(^32\)	NHL	GM-CSF 10 \(\mu\)g/kg per day	26	21.45 (1.63-182.91)	NR
	HD	G-CSF 10 \(\mu\)g/kg per day +	24	14.33 (0.56-102.08)	
	MM	GM-CSF 5 \(\mu\)g/kg per day	19	8.4 (4.1-15.8)	0
		PEG 12 mg × 1		8.1 (5.17-19.2)	0

MM: Multiple myeloma; G-CSF: Granulocyte colony stimulating factor; NR: Not reported; BC: Breast cancer; NHL: Non-hodgkin’s lymphoma; GM-CSF: Granulocyte macrophage colony stimulating factor; HD: Hodgkin’s disease; GCT: Germ cell tumor; PEG: Pegylated filgrastim.

The figures illustrate the bone marrow microenvironment: A) at physiologic state and effects of (B) granulocyte colony stimulating factor mobilization and (C) Plerixafor mobilization. Reprinted from Journal of Cellular Biochemistry, Vol 99/edition 3, Bruno Nervi, Dan C. Link, John F DiPersio, Cytokines and Hematopoietic Stem Cell Mobilization, 690-705, 2010, with permission from Wiley\(^26\). G-CSF: Granulocyte colony stimulating factor; HSC: Hematopoietic stem cell; SDF-1: Stromal cell-derived factor-1; VCAM-1: Vascular cell adhesion molecule.
process, chemomobilization (CM), provides not only higher cell yields than G-CSF alone, but also affords anti-myeloma activity. Cyclophosphamide (CY) 2-4 g/m², either alone or in combination with other chemotherapeutic agents, is commonly used in CM and has been a successful mobilization technique even in patients who underwent induction therapy with novel agents. The impact of increased doses of CY on PBSC yields has shown conflicting results but was consistently associated with a longer duration of neutropenia as well as the use of antibiotics and blood products. No additional impact on cell yield or objective response rate has been seen with the use of combination chemotherapy followed by growth factor (G-CSF) (Table 3). Furthermore, despite the potential benefit of cyto reduction, CM has not been associated with a better disease control or survival in MM.

Chemokine receptor antagonist

The newest mobilizing agent, plerixafor, rapidly and reversibly inhibits chemokine receptor CXCR4 on HSC, thereby preventing the binding of SDF-1α to CXCR4. Synergistic effect on PBSC mobilization is observed when plerixafor is given in combination with G-CSF. A phase III randomized, placebo controlled trial in MM patients compared mobilization with plerixafor + G-CSF to placebo + G-CSF. Use of plerixafor resulted in an increase in proportion of patients that were able to collect a cell yield of ≥6 × 10⁶/kg with fewer apheresis procedures compared to the G-CSF only group. Transplant outcomes were similar between groups. Plerixafor can overcome suboptimal mobilization seen with conventional chemotherapy agents. Plerixafor can overcome suboptimal mobilization seen with prolonged prior lenalidomide therapy and other conventional chemotherapies.

Table 2 Growth factors following chemotherapy

Ref.	Disease	Collection strategy	n	CD34⁺ yield (× 10⁴ cell/kg): Median (range)	Failure rates n (%)
Weaver et al[65]	MM ML	G-CSF 6 µg/kg per day	49	12 (0.1-54)	2 (4.3)
Gojo et al[61]	MM	G-CSF 10 µg/kg per day	35	16.4 (1.1-71.7)	NR
Hamadani et al[67]	MM	G-CSF 250 µg/m² per day	12	7.4 (4.9-38)	0
Tricot et al[69]	MM	G-CSF 8.5 µg/kg per day	12	10.1 (5.47)	0

Table 3 Impact of chemotherapy on cell yield and morbidity

Ref.	Collection strategy	n	CD34⁺ yield (× 10⁴ cell/kg): Median (range)	Hospital days: median (range)	Infection (%)	Transfusions (% platelet/PRBC)
Desikan et al[62]	CY 6 g/m² + G-CSF 6 µg/kg per day	22	33.4 (NR)	No difference	18	86/86
Alegre et al[63]	CY 4 g/m² + GM-CSF	18	6.8 (1.8-34.8)	21 (16-34)	11	33.3/27.7
Jantunen et al[64]	CY 4 g/m² + G-CSF	42	14.4 (1.7-66.8)	22 (13-55)	16.7	26.2/52.4
Gojo et al[65]	CY 1.5 g/m² + GM-CSF	42	5.6 (0.9-19)	5 (5-12)	NR	0/28
Hamadani et al[67]	CY 3-4 g/m² + G-CSF	35	16.6 (2.8-2)	4 (1-9)	NR	21.8/34.5
Hiwase et al[68]	CY 1-2 g/m² + G-CSF	61	5.17	6 (3-18)	5	No difference

1st apheresis session. PRBC: Packed red blood cells; CY: Cyclophosphamide; G-CSF: Granulocyte colony stimulating factor; GM-CSF: Granulocyte macrophage colony stimulating factor; NR: Not reported; HGF: Hematopoietic growth factor; VP-16: Etoposide.
PB CD34⁺ count on day 4 is less than a predetermined threshold (10 × 10⁶/L-10 × 10⁹/L). Such strategies are associated with fewer mobilization failures when compared to traditional mobilization methods and appear to be cost effective [76-79]. Additional methods of cost reduction, namely the use of tbo-filgrastim, in combination with plerixafor has been studied. Prospective data in MM patients found similar overall cell yields without any mobilization failures [80].

PREDICTORS OF SUBOPTIMAL MOBILIZATION

Mobilization failure is generally defined as the inability to procure 2 × 10⁶ CD34⁺ cells/kg in 4 apheresis sessions. Despite recent advances in PBSC collection strategies, failure to obtain an adequate cell dose continues to delay and preclude auto-HCT in otherwise suitable transplant candidates. Factors associated with inadequate HSC mobilization in MM patients include: Thrombocytopenia [81], age > 60 years [36,38,52], extensive treatment course [17], prior radiotherapy, prior exposure to alkylating agents [17,63], and prolonged use of lenalidomide [20,21,31,34,35]. Such factors have been incorporated in consensus guidelines on stem cell mobilization (Table 4).

Lenalidomide’s impact on cell yield is of particular concern due to its common use in frontline therapy [86]. While known to cause neutropenia and thrombocytopenia, the exact mechanism of lenalidomide induced myelosuppression is not fully known. In one study, lenalidomide was associated with a significant decrease in expression of transcription factor PU.1, which is critical for myeloid maturation [87]. In another study, lenalidomide-treated patients were found to have decreased BM CD34⁺ cells after six cycles of therapy [88]. This supports the literature that identifies lenalidomide as a risk factor for suboptimal stem cell collection and suggests that transplant eligible patients receiving lenalidomide should proceed to mobilization as early as feasible.
Wallis WD et al. Stem cell mobilization in multiple myeloma

Did the patient have PR to induction therapy?

Yes	Add plerixafor or administer additional CM
No	G-CSF 10-16 μg/kg daily
	CM with cyclophosphamide 2-4 g/m²

Figure 3 Mobilization strategies at authors’ institution. CM: Chemomobilization; G-CSF: Granulocyte colony stimulating factor.

Despite identification of risk factors for poor mobilization, predictive algorithms have not correctly identified poor mobilizers. The best predictor of adequate CD34+ cell collection is the pre-collection PB CD34+ cell count. A strong correlation exists with PB CD34+ cell count and the final CD34+ cell collection (Figure 1). PB CD34+ count ≥ 20 × 10^6 CD34+ cells/mL was associated with an adequate HSC collection in 94% of patients.

CONCLUSION

In summary, obtaining an adequate PBSC yield is essential for the successful outcome of auto-HCT in MM. Each mobilization strategy reviewed here has its own advantages and disadvantages (Table 5) and should be selected based on patient specific variables. Current practice at the authors’ institution is detailed in Figure 3; however, practitioners should be cognizant of risk factors for mobilization failure and utilize appropriate algorithms to optimize stem cell collection.

REFERENCES

1. Pasquini MC, Zhu X. Current uses and outcomes of hematopoietic stem cell transplantation. 2014 CIBMTR Summary Slides. [accessed 2016 June 1]. Available from: URL: http://www.cibmtr.org

2. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF, Casassus P, Maisonneuve H, Facon T, Inah N, Payen C, Bataille R. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Français du Myélome. N Engl J Med 1996; 335: 91-97 [PMID: 8649495 DOI: 10.1056/NEJM199607113350204]

3. Child JA, Morgan GJ, Davies FE, Owen RG, Bell SE, Hawkins K, Brown J, Drayson MT, Selby PJ. Medical Research Council Adult Leukaemia Working Party. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003; 348: 1875-1883 [PMID: 12736280 DOI: 10.1056/NEJMoa022340]

4. Palumbo A, Brighen S, Petrucci MT, Musto P, Rossini F, Nunzi M, Lauta VM, Bergonzin C, Barbiu A, Caravita T, Capaldi A, Pregno P, Guglielmielli T, Grasso M, Callea V, Bertola A, Cavaliolo F, Falco P, Rus C, Massaia M, Mandelli F, Carella AM, Pogliani E, Liberati AM, Darmaccio F, Ciccone G, Boccadoro M. Intermediate-dose melphalan improves survival of myeloma patients aged 50 to 70: results of a randomized controlled trial. Blood 2004; 104: 3052-3057 [PMID: 15265788 DOI: 10.1182/blood-2004-02-0408]

5. Palumbo A, Caraviti F, Gay F, Di Raimondo F, Ben Yehuda D, Petrucci MT, Pezzatti S, Caravita T, Cerrato C, Ribakovsky E, Genuardi M, Calfo A, Marcatti M, Catalano L, Offidani M, Carella AM, Zanagni E, Patriarca F, Musto P, Evangelista A, Ciccone G, Omelè P, Crippa C, Corradini P, Nagler A, Boccadoro M. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med 2014; 371: 895-905 [PMID: 25184862 DOI: 10.1056/NEJMoa1402888]

6. Gay F, Oliva S, Petrucci MT, Conticello C, Catalano L, Corradini P, Siniscalchi A, Magarotto V, Pour L, Carella A, Malfttano A, Petro D, Evangelista A, Spada S, Pescosta N, Omelè P, Campbell P, Liberati A, Offidani M, Ria R, Pulini S, Patriarca F, Hajek R, Spencer A, Boccadoro M, Palumbo A. Chemotherapy plus lenalidomide versus autologous transplantation, followed by lenalidomide plus prednisone versus lenalidomide maintenance, in patients with multiple myeloma: a randomised, multicentre, phase 3 trial. Lancet Oncol 2015; 16: 1617-1629 [PMID: 26596670 DOI: 10.1016/S1470-2045(15)00389-7]

7. Köhring M, Freireich EJ. Twenty-five years of peripheral blood stem cell transplantation. Blood 2011; 117: 6411-6416 [PMID: 21460243 DOI: 10.1182/blood-2010-12-322214]

8. Kessinger A, Sharp JG. The whys and hows of hematopoietic progenitor and stem cell mobilization. Bone Marrow Transplant 2003; 31: 319-329 [PMID: 12634722 DOI: 10.1038/sj.bmt.1703837]

9. Beyer J, Körbling M, Freireich EJ. Twenty-five years of peripheral blood stem cell transplantation. Blood 2011; 117: 6411-6416 [PMID: 21460243 DOI: 10.1182/blood-2010-12-322214]

10. Pasquini MC, Wang Z. Current use and outcome of hematopoietic stem cell transplantation: 2011 CIBMTR summary slides. [accessed 2016 June 1]. Available from: URL: http://www.cibmtr.org

11. Andrews RG, Singer JW, Bernstein ID. Monoclonal antibody 12-8 recognizes a 115-kd molecule present on both unipotent and multipotent hematopoietic colony-forming cells and their precursors. Blood 1986; 67: 842-845 [PMID: 3947749]

12. Benenson RJ, Andrews RG, Bersinger W, Kalamsas D, Krüger G, Buckner CD, Bernstein ID. Antigenic CD34+ marrow cells engraf lethally irradiated baboons. J Clin Invest 1988; 81: 951-955 [PMID: 2893812 DOI: 10.1172/JCI113409]

13. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 1984; 133: 157-165 [PMID: 6588833]
analysis of mobilization and engraftment. Br J Haematol 2013; 162: 107-111 [PMID: 23614650 DOI: 10.1111/bjh.12345]

41 Spitzer G, Adkins D, Mathews M, Velasquez W, Bowers C, Dunphy F, Kronmueller N, Niemeyer R, McIntyre W, Petruska P. Randomized comparison of G-CSF + GM-CSF vs G-CSF alone for mobilization of peripheral blood stem cells: effects on hematopoietic recovery after high-dose chemotherapy. Bone Marrow Transplant 1997; 20: 921-930 [PMID: 9422470 DOI: 10.1038/sj.bmt.1700999]

42 Weisdorf D, Miller J, Verfaillie C, Burns L, Wagner J, Blazar B, Davies S, Miller W, Hanan P, Steinbuch M, Ramsay N, McGlave P. Cytokine-primed bone marrow stem cells vs. peripheral blood stem cells for autologous transplantation: a randomized comparison of GM-CSF, G-CSF, Blood Biol Marrow Transplant 1997; 3: 217-233 [PMID: 9360784]

43 Arora M, Burns LJ, Barker JN, Miller JS, Defor TE, Olujohungbe AB, Weisdorf DJ. Randomized comparison of granulocyte colony-stimulating factor versus granulocyte-macrophage colony-stimulating factor plus intensive chemotherapy for peripheral blood stem cell mobilization and autologous transplantation in multiple myeloma. Biol Blood Marrow Transplant 2004; 10: 395-404 [PMID: 15148493 DOI: 10.1016/j.bmt.2004.02.001]

44 Rot EJ, van Eijk L, Schipper P, Backx LB, Löwenberg B. Synergistic effects between GM-CSF and G-CSF or M-CSF on highly enriched human marrow progenitor cells. Leukemia 1990; 4: 325-328 [PMID: 1697008]

45 Harra H, Namiki M. Mechanism of synergy between granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in colony formation from human marrow cells in vitro. Exp Hematol 1980; 17: 816-821 [PMID: 2473914]

46 Tricot G, Barlogie B, Zangari M, van Rhee F, Philpott-Davis S, Litzow MR, Gastineau DA, Gertz MA. Cyclophosphamide + G-CSF alone. multiple myeloma: high-dose cyclophosphamide plus GM-CSF vs. G-CSF. Blood 2002; 99: 1697-1700 [PMID: 11694461 DOI: 10.1182/blood.V99.6.1697.6978]

47 Granix® [package insert]. North Wales, PA: Teva Pharmaceuticals Inc; 2014. [accessed 2016 June 9]. Available from: URL: http://www.granix.com/Pdf/prescribing-information.pdf

50 Martino M, Rechia AG, Mosato T, Fedele R, Neri S, Gentile M, Alati C, Vincelli ID, Piro E, Penna G, Musolin C, Ronco F, Molica S, Morabito F. Efficacy of biosimilar granulocyte colony-stimulating factor versus originator granulocyte colony-stimulating factor in peripheral blood stem cell mobilization in de novo multiple myeloma patients. Cytotherapy 2015; 17: 1485-1493 [PMID: 26189697 DOI: 10.1016/j.jcyt.2015.05.010]

51 Bell AJ, Figes A, Ocieja DG, Hamblin TJ. Peripheral blood stem cell autografting. Lancet 1986; 1: 1027 [PMID: 2871297]

52 Richman CM, Weiner RS, Yankee RA. Increase in circulating stem cells following chemotherapy in man. Blood 1976; 47: 1031-1039 [PMID: 1276467]

53 Alegre A, Tomás JF, Martinz-Chamorro C, Gil-Fernández JJ, Fernández-Villalta MJ, Arranz R, Díaz MA, Granda A, Bernardo MR, Escudero A, López-Lorenzo JL, Fernández-Villalta MJ, Arranz R, Díaz MA, Granda A, Bernardo MR, Escudero A, López-Lorenzo JL, Fernández-Villalta MJ, Putkonen M, Nousiainen T, Pelliniemi TT, Mahlamäki E, Remes K. Low-dose or intermediate-dose cyclophosphamide plus granulocyte colony-stimulating factor for mobilisation of peripheral blood progenitor cells in 116 multiple myeloma patients. Bone Marrow Transplant 2001; 27: 837-842 [PMID: 11477441 DOI: 10.1038/sj.bmt.1702879]

54 Jantunen E, Putkonen M, Nousiainen T, Pelliniemi TT, Mahlamäki E, Remes K. Low-dose or intermediate-dose cyclophosphamide plus granulocyte colony-stimulating factor for mobilisation of peripheral blood progenitor cells in patients with multiple myeloma. Bone Marrow Transplant 2003; 31: 347-351 [PMID: 12634725 DOI: 10.1038/sj.bmt.1703840]

55 Corso A, Arcaini L, Caberlon S, Zappasodi P, Magnacavalli S, Lorenzi A, Rusconi C, Torelli D, Maiochi MA, Pascutto C, Morra E, Lazzarino M. A combination of dexamethasone, cyclophosphamide, etoposide, and cisplatin is less toxic and more effective than high-dose cyclophosphamide for peripheral stem cell mobilization in multiple myeloma. Haematologica 2002; 87: 1041-1045 [PMID: 12368158]

56 Goldschmidt H, Hegenbart U, Haas R, Hanstein W. Mobilization of peripheral blood progenitor cells with high-dose cyclophosphamide (4 or 7 g/m2) and granulocyte colony-stimulating factor in patients with multiple myeloma. Bone Marrow Transplant 1996; 17: 691-697 [PMID: 8733683]

57 Sizemore CA, LaPorte J, Sanacore M, Holland HK, McEllum J, Westerman J, Morris LE, Bashey A, Solomon SR. A Comparison of Toxicity and Mobilization Efficacy Following Two Different Doses of Thalidomide for Mobilization of Peripheral Blood Stem Cells in Multiple Myeloma Patients [abstract]. Blood Biol Marrow Transpl 2010; 16: S206-S206 [DOI: 10.1182/bmt.2009.12.125]

58 Gojo I, Guo C, Sarkodie-Adoo C, Meissenberg B, Fassas A, Rapport AP, Cottler-Fox M, Heyman M, Takebe N, Tricot G. High-dose cyclophosphamide with or without etoposide for mobilization of peripheral blood progenitor cells in patients with multiple myeloma: efficacy and toxicity. Bone Marrow Transplant 2004; 34: 69-76 [PMID: 15133484 DOI: 10.1038/sj.bmt.1704529]

Wallis WD et al. Stem cell mobilization in multiple myeloma.
Stewart AK, Vesco R, Schiller G, Ballester O, Noga S, Rugo H, Freytet C, Stadtmueller E, Tarantolo S, Sahbeh F, Stiff P, Mehandjiev, J, Schlossman R, Brown R, Tully H, Benyunes M, Jacobs C, Berenson R, White M, DiPersio J, Anderson KC, Berenson J. Purging of autologous peripheral-blood stem cells using CD34 selection does not improve overall or progression-free survival after high-dose chemotherapy for multiple myeloma: results of an multicenter randomized controlled trial. J Clin Oncol 2001; 19: 3771-3779 [PMID: 11533101 DOI: 10.1200/ JCO.2001.19.17.3771]

Tuchman SA, Bacon WA, Huang LW, Long G, Rizziere D, Horwitz M, Chute JP, Sullivan K, Morris Engemann A, Yopp A, Li Z, Corbet K, Chao N, Gasparetto C. Cyclophosphamide-based hematopoietic stem cell mobilization before autologous stem cell transplantation in newly diagnosed multiple myeloma. J Clin Apher 2015; 30: 176-182 [PMID: 25293363 DOI: 10.1177/2153957114551320]

Uy GL, Costa LJ, Hari PN, Zhang MJ, Huang JX, Anderson KC, Bredeson CN, Callander NS, Cornell RF, Perez MA, Dispensieri A, Freytet CO, Gale RP, Garfall A, Gertz MA, Gibson J, Hamadani M, Lazarus HM, Kalaycio ME, Kamdar K, Khoury I, Eds, Kharfan-Dabaja MA, Krishnan AY, Kumara SN, Kyle RK, Landau HJ, Lee CH, Maiolino A, Marks DJ, Iyer GM, Murty R, Nishihori T, Olson RF, Ramnanthan M, Rodriguez TE, Saad AA, Savani BN, Schiller GJ, Schouten HC, Schrier JR, Scott E, Soo A, Sharma M, Gugany S, Stadtmueller EA, Tay J, To LB, Vesole DH, Vogl DT, Wagner JL, Wink B, Wood WA, D’Souza A. Contribution of chemotherapy mobilization to disease control in multiple myeloma treated with autologous hematopoietic stem cell transplantation. Bone Marrow Transplant 2015; 50: 1513-1518 [PMID: 26361967 DOI: 10.1038/bmt.2015.190]

Broxmeyer HE, Oorschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Likes WC, Li X, Graham-Engmann B, Campbell TB, Clandera G, Bridger G, Dale DC, Srouf ER. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201: 1307-1318 [PMID: 15837815 DOI: 10.1084/jem.20041385]

Liles WC, Broxmeyer HE, Rodger E, Wood B, Hübel K, Cooper S, Hangoc G, Bridger G, Henson GW, Clandera G, Dale DC. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003; 102: 2728-2730 [PMID: 12855591 DOI: 10.1182/blood-2003-02-0663]

DiPersio JF, Stadtmueller EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL, Maziarz RT, Hosing C, Frühhauf S, Horwitz M, Cooper D, Bridger G, Calandra G. 3102 Investigators. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 2009; 113: 5720-5726 [PMID: 19363221 DOI: 10.1182/blood-2008-07-174846]

Costa LJ, Abbas J, Hogan KR, Kramer CP, Strapatsas T, Dienst A, Heinzler N, Boquoi A, Cadeddu RP, Strapatsa
multiple myeloma patients: implications for risk-stratification. *Biol Blood Marrow Transplant* 2014; **20**: 222-228 [PMID: 24211319 DOI: 10.1016/j.bbmt.2013.11.003]

90 **Pusic I**, Jiang SY, Landau S, Uy GL, Rettig MP, Cashen AF, Westervelt P, Vij R, Abboud CN, Stockerl-Goldstein KE, Sempek DS, Smith AL, DiPersio JF. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. *Biol Blood Marrow Transplant* 2008; **14**: 1045-1056 [PMID: 18721768 DOI: 10.1016/j.bbmt.2008.07.004]

91 **Weaver CH**, Schulman KA, Wilson-Relyea B, Birch R, West W, Buckner CD. Randomized trial of filgrastim, sargramostim, or sequential sargramostim and filgrastim after myelosuppressive chemotherapy for the harvesting of peripheral-blood stem cells. *J Clin Oncol* 2000; **18**: 43-53 [PMID: 10623692 DOI: 10.1200/JCO.2000.18.1.43]

92 **Fruehauf S**, Ehninger G, Hübel K, Topaly J, Goldschmidt H, Ho AD, Müller S, Moos M, Badel K, Calandra G. Mobilization of peripheral blood stem cells for autologous transplant in non-Hodgkin's lymphoma and multiple myeloma patients by plerixafor and G-CSF and detection of tumor cell mobilization by PCR in multiple myeloma patients. *Bone Marrow Transplant* 2010; **45**: 269-275 [PMID: 19597422 DOI: 10.1038/bmt.2009.142]

93 **Steidl U**, Ferik R, Bruns I, Neumann F, Kondakei M, Hoyer B, Gräf T, Rohr UP, Bork S, Kronenwett R, Haas R, Kobbe G. Successful transplantation of peripheral blood stem cells mobilized by chemotherapy and a single dose of pegylated G-CSF in patients with multiple myeloma. *Bone Marrow Transplant* 2005; **35**: 33-36 [PMID: 15531906 DOI: 10.1038/sj.bmt.1704702]

94 **Hamadani M**, Kochuparambil ST, Osman S, Campston A, Leadmon S, Bunner P, Watkins K, Morrison D, Speir E, Deremer D, Kota V, Jilella A, Craig M, Awan F. Intermediate-dose versus low-dose cyclophosphamide and granulocyte colony-stimulating factor for peripheral blood stem cell mobilization in patients with multiple myeloma treated with novel induction therapies. *Biol Blood Marrow Transplant* 2012; **18**: 1128-1135 [PMID: 22248715 DOI: 10.1016/j.bbmt.2012.01.005]

95 **Hiwase DK**, Bollard G, Hiwase S, Bailey M, Muirhead J, Schwarzer AP. Intermediate-dose CY and G-CSF more efficiently mobilize adequate numbers of PBSC for tandem autologous PBSC transplantation compared with low-dose CY in patients with multiple myeloma. *Cytotherapy* 2007; **9**: 539-547 [PMID: 17882718 DOI: 10.1080/14653240701452800]

P- Reviewer: Spyridonidis A, Zhang JJ
S- Editor: Ji FF
L- Editor: A
E- Editor: Lu YJ
