Environmental and intracellular regulation of *Francisella tularensis* ripA

James R Fuller, Todd M Kijek, Sharon Taft-Benz and Thomas H Kawula*

Address: Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Email: James R Fuller - jrfuller@med.unc.edu; Todd M Kijek - todd_kijek@med.unc.edu; Sharon Taft-Benz - sharon_taft-benz@med.unc.edu; Thomas H Kawula* - kawula@med.unc.edu

* Corresponding author

Abstract

Background: *Francisella tularensis* is a highly virulent, facultative intracellular pathogen and the etiologic agent of the zoonotic disease Tularemia. RipA is a cytoplasmic membrane protein that is conserved among *Francisella* species and is required for intracellular growth. *F. tularensis* ripA deletion mutants escape the phagosome of infected cells, but unlike wild type organisms fail to replicate in the host cell cytoplasm.

Results: Further analysis of ripA with respect to environmental effects on the growth of mutant strains and expression levels revealed that RipA is required for optimal growth at pH 7.5 but not pH 6.5. Using a combination of RT-PCR, ripA-lacZ transcriptional and translational fusions, and a RipA-tetracysteine tag fusion protein we found that both ripA transcription and RipA protein levels were elevated in organisms grown at pH 7.5 as compared to organisms grown at pH 5.5. A number of genes, including iglA, that are required for intracellular growth are regulated by the transcriptional regulators MglA and SspA, and are induced upon infection of host cells. We quantified ripA and iglA expression at different stages of intracellular growth and found that the expression of each increased between 1 and 6 hours post infection. Given the similar intracellular expression patterns of ripA and iglA and that MglA and SspA are positive regulators of iglA we tested the impact of mglA and sspA deletions on ripA and iglA expression. In the deletion mutant strains iglA expression was reduced dramatically as expected, however ripA expression was increased over 2-fold.

Conclusion: Expression of ripA is required for growth at neutral pH, is pH sensitive, and is responsive to the intracellular environment. The intracellular expression pattern of ripA coincided with iglA, which is positively regulated by MglA and SspA. However, in contrast to their positive impact on iglA expression, MglA and SspA negatively impacted ripA expression in vitro.
the most lethal form of the disease exhibiting mortality rates as high as 60% [8].

F. tularensis is a facultative intracellular pathogen that invades, survives and replicates within numerous cell types including, but not limited to, macrophages [9,10], dendritic cells [11], and alveolar epithelial cells [12]. Intracellular growth is intricately associated with *F. tularensis* virulence and pathogenesis, and the intracellular lifestyle of *F. tularensis* is an active area of investigation. Following uptake or invasion of a host cell wild type *F. tularensis* cells escape the phagosome and replicate within the cytoplasm [13-15] of infected cells. The phagosome escape mechanism employed by *F. tularensis* remains essentially unknown, but this property is clearly necessary for *F. tularensis* intracellular growth since mutants that fail to reach the cytoplasm are essentially unable to replicate within host cells [16,17].

Following phagosome escape *F. tularensis* must adapt to the cytoplasmic environment. Purine auxotrophs [18], acid phosphatase [19], *clpB* protease [20], and ripA mutants [21] reach the cytoplasm but are defective for intracellular growth. RipA is a cytoplasmic membrane protein of unknown function that is conserved among *Francisella* species [21].

Notably, the majority of attenuating mutations described to date impart intracellular growth defects on the mutant strains. We recently identified a locus, ripA, that encoded a cytoplasmic membrane protein that was conserved among *Francisella* species. Mutant strains lacking ripA entered host cells and escaped the phagosome, but were defective for intracellular growth [21]. The deletion mutants had no apparent affect on *F. tularensis* growth with respect to doubling time or final density when propagated in Chamberlains chemically defined media or complex nutrient rich BHI. Thus, expression of ripA appeared to be required for adaptation and growth in the cytoplasmic environment of a host cell.

The expression of a number of *Francisella* virulence factors required for phagosomal escape and intracellular replication are induced in the intracellular environment by a process involving the positive transcriptional regulators MglA and SspA [16,22-24]. Data on whether MglA regulates ripA expression is contradictory. Microarray analysis of MglA regulated loci indicated that ripA expression was unaffected by MglA, [23], whereas results from a proteomics study suggested that RipA was repressed by MglA [25].

Given the ripA deletion mutant phenotype with respect to intracellular growth, that MglA and SspA regulate numerous genes required for intracellular growth and that there is a discrepancy between the microarray and proteomic results with respect to MglA affects on ripA expression, we applied multiple approaches to investigate environmental requirements for, and influences on, *F. tularensis* ripA expression.

Results

Characterization of the ripA locus and transcriptional unit

Prior to analyzing ripA expression patterns and regulation we sought to determine the context and extent of the ripA locus and transcript, respectively. The genome annotation suggests that the gene following ripA, FTL_1915, would be transcribed in the opposite orientation (Fig 1a). Preceding ripA are two genes, FTL_1912 and FTL_1913 that are predicted to be transcribed in the same orientation, and thus could constitute a three gene operon. We tested this possibility by RT-PCR and Northern blot analysis.

Individual primer sets were designed to amplify coding regions from each of the three genes, and another set was designed to amplify any RNA transcripts that bridged adjacent genes (Fig. 1a). Twenty ng of synthesized first strand cDNA was subjected to 25 or 30 cycles of amplification to synthesize intragenic and potential gene bridging (intergenic) products, respectively. There was no detectible product following amplification with primers bridging FTL_1912 and FTL_1913 (Fig. 1b), suggesting that a predicted Rho independent terminator located between the two genes was functional. A faint amplification product was present in reactions using FTL_1913 - ripA bridging primers (Fig. 1b). However, the band intensity was significantly lower than that of the ripA amplicon and was detectable only after the additional cycles of amplification. This result suggests that the FTL_1913 transcript terminates, albeit less efficiently than that of FTL_1912, and that ripA expression was initiated independently from the FTL_1912 promoter.

Total RNA harvested from mid exponential phase *F. tularensis* LVS and *F. tularensis* LVS ripA::Tn5 (Table 1) was evaluated by Northern blot analysis to determine the ripA transcript size. The ripA coding sequence is 537 nucleotides, and an approximately 600 nucleotide RNA fragment hybridized to an anti-sense ripA probe confirming that the ripA gene was transcribed (Fig. 1c), and supporting the RT-PCR data that potential co-expression with FTL_1913 is negligible, at best. No ripA message was detected in the *F. tularensis* LVS ripA::Tn5 RNA samples demonstrating the specificity of the ripA probe.

Quantifying ripA expression with transcriptional and translational lacZ fusions

To facilitate studies on ripA expression patterns and properties we constructed transcriptional and translational ripA-lacZ fusion strains (Table 1) so that β-galactosidase assays could be used to conveniently quantify ripA expres-
The translational and translational fusion constructs were also cloned into pBSK (Table 1), which cannot replicate in Francisella, and integrated into the LVS chromosome via single cross over recombination creating LVS ripA::pBSK ripA'-lacZ2 and LVS ripA::pBSK ripA'−lacZ1, respectively. The integration of the fusion constructs into the wild type ripA locus resulted in both ripA' (Fig. 3a) and ripA'−lacZ fusion alleles (Fig. 3b) on the chromosome (Fig. 3c). The insertions did not impact intracellular replication of the reporter strains and thus were unlikely to significantly impact expression of the wild type ripA gene.

We examined the effects of specific mutations in the predicted ripA promoter, ribosome binding site, and translation frame on the expression of β-galactosidase. Mutations in the predicted -10 sequence, RBS, and the introduction of a frameshift mutation (Fig. 2a) in the translational fusion constructs each resulted in decreased β-galactosidase activity as compared to the wild type reporter (Fig. 2c).

The β-galactosidase activity expressed by the chromosomal reporters was less than 25% of that produced by the plasmid reporters (Fig. 2b). The ripA'−lacZ translational fusion produced significantly less activity than the ripA'-lacZ translational fusion in both the chromosomal and plasmid version of the reporter (Fig. 2b). These differences might reflect post-transcriptional regulation of expression or simply a difference in the efficiency of translation initiation between the two constructs.

Quantification of RipA protein

We were unable to quantify native RipA protein concentrations in Francisella cultures since our polyclonal anti-RipA antisera produced high background in Western blots and ELISA [21]. We therefore generated a construct that expressed a RipA-tetracysteine (TC) fusion protein to facilitate the use of FlAsH™ (Invitrogen) reagents to directly measure RipA protein concentrations. Both plasmid and chromosomal integrant strains (Fig. 4a) expressing RipA-TC (Fig. 4b) were constructed in a ripA background. Intracellular replication was restored in each of these strains demonstrating that the RipA-TC fusion protein was functional and did not confer a detectable mutant phenotype (data not shown).

Whole cell lysates prepared from mid exponential phase bacteria growing in Chamberlains defined media were suspended in FlAsH™ loading buffer containing biarsen-
distinguishable in the 60 ng whole cell lysate samples whereas RipA-TC expressed from plasmid was discernable from RipA-TC which migrated at approximately 6.5 fold greater than RipA-TC (chromosomally expressed) was detected in 600 ng samples (Fig. 4c). The concentration of RipA-TC (plasmid) was approximately 6.5 fold greater than RipA-TC (chromosome). Thus, the use of the RipA-TC fusion in conjunction with biarsenical labeling provided a sensitive and reproducible method to detect and quantify RipA in *Francisella*

Expression of ripA is affected by pH

We previously reported that *F. tularensis* LVS ΔripA had no discernable growth defects in CDM [21]. While evaluating the characteristics of a ΔripA strain in a variety of environmental conditions we found that the growth of the mutant was pH sensitive. The reported optimal pH for the growth of *F. tularensis* in CDM is 6.2 to 6.4 [26]. *F. tularensis* LVS ripA grew at the same rate and extent as wild type at this pH (Fig. 5a). However, when the initial pH of CDM was increased to 7.0 the growth of the ΔripA strain was significantly decreased (Fig. 5b). This suggests that RipA plays a role in the regulation of FtuA, a member of the FrsA family of transcriptional regulators that is known to be important for the virulence of *F. tularensis* [27].

Table 1: Bacterial strains and plasmids.

Bacteria	Description	Source or Reference
Francisella tularensis LVS	*F. tularensis* live vaccine strain	CDC, Atlanta, GA
ripA::Tn5	Tn5 ripA transposon mutant	[21]
ripA::pBSK Phi(ripA'-lacZ)/1	Plasmid cointegrate	This work
ripA::pBSK Phi(ripA'-lacZ)/2	Plasmid cointegrate	This work
iglA:: pBSK Phi(iglA'-lacZ)	Plasmid cointegrate	This work
Phi(ripA'-TC)	Exchanged allele	This work
mglA	Inframe deletion of mglA	This work
mglA ripA::pBSK Phi(ripA'-lacZ)/2	Plasmid cointegrate	This work
mglA iglA:: pBSK Phi(iglA'-lacZ)	Plasmid cointegrate	This work
ssPA	Inframe deletion of ssPA	This work
ssPA ripA::pBSK Phi(ripA'-lacZ)/2	Plasmid cointegrate	This work
ssPA iglA:: pBSK Phi(iglA'-lacZ)	Plasmid cointegrate	This work
mglA ssPA	Inframe gene deletions	This work
mglA ssPA ripA::pBSK Phi(ripA'-lacZ)/2	Plasmid cointegrate	This work
mglA ssPA iglA:: pBSK Phi(iglA'-lacZ)	Plasmid cointegrate	This work

Plasmids	Description	Source or Reference
pBSK bla lacZ	pBluescript cloning vector	Stratagene
pBSK lacZ aphA1 lal	Transcriptional lacZ fusion	This work
pBSK lacZ cat bla	Translational lacZ fusion	This work
pBSK Phi(ripA'-lacZ)/2 aphA1 lal	*Francisella* suicide vector	This work
pBSK Phi(ripA'-lacZ)/1 cat	*Francisella* suicide vector	This work
pBSK Phi(iglA'-lacZ)/2 aphA1	*Francisella* suicide vector	This work
pMP590	Francisella sacB suicide vector	[47]
pMP590 mglA	mglA allelic exchange vector	This work
pMP590 ssPA	ssPA allelic exchange vector	This work
pMP590 Phi(ripA'-TC)	Phi(ripA'-TC) suicide vector	This work
pMP633	Francisella shuttle vector	[47]
pMP633 mglA+	mglA+ with native promoter	This work
pMP633 ssPA+	ssPA+ with native promoter	This work
pKK MCS	Francisella shuttle vector	[21]
pKK MCS Phi(ripA'-lacZ)/1	translational fusion	This work
pKK MCS Phi(ripA'-lacZ)/1a	-10 mutation	This work
pKK MCS Phi(ripA'-lacZ)/1b	-10 mutation	This work
pKK MCS Phi(ripA'-lacZ)/1c	-10 mutation	This work
pKK MCS Phi(ripA'-lacZ)/1d	-10 mutation	This work
pKK MCS Phi(ripA'-lacZ)/2	transcriptional fusion	This work
pKK MCS Phi(ripA'-TC)	ripA-CT tetracysteine tag fusion	This work
was set to 7.5 the mutant achieved maximum densities significantly lower than that of wild type *F. tularensis* LVS (P < 0.05, Fig. 5b). In 4 independent tests the mean OD_{600} achieved by *F. tularensis* LVS ΔripA grown for 24 hours in CDM with an initial pH of 7.5 was 0.448 ± 0.06 versus 0.732 ± 0.2 for wild type LVS (P < 0.05). This is an intriguing result since the described pH of the macrophage cytoplasm is approximately 7.4 [27] and *F. tularensis* LVS ripA fails to replicate in the cytoplasm [21]. This growth defect was not evident when the mutant was cultivated in the complex rich media BHI (Fig. 5a), which had an initial pH of approximately 7.3. Minimal media and neutral pH were both necessary for the growth defect. Thus, the defect may be due to the effects of pH on nutrient acquisition in the mutant.

We hypothesized that conditions under which ripA was necessary for growth might also impact ripA expression. We therefore used the ripA-lacZ fusion strains to examine the effects of pH on ripA expression. β-galactosidase activity was measured from mid-exponential phase cultures grown in Chamberlains defined media at pH 5.5 and 7.5, at which time the media was within 0.2 units of the initial pH. The plasmid-encoded translational reporter strain expressed 125 ± 3 and 223 ± 2 Miller units at pH 5.5 and 7.5, respectively (Fig. 6a) representing a 1.8 fold difference (P < 0.001). The chromosomal transcriptional reporter strain expressed 2618 ± 121 and 3419 ± 71 Miller units at pH 5.5 and 7.5, respectively (Fig. 6b) representing a 1.3 fold (P = 0.0016).

RT-PCR and FlAsH™ labeling of RipA-TC were used as complementary assays for comparison to the lacZ fusion results. The ripA transcript levels were evaluated by RT-PCR in replicates of four independent cultures and normalized to *tul4* [22]. Primers internal to ripA and *tul4* were designed with matched melting temperatures and amplification product sizes. Total RNA was collected from *F. tularensis* LVS cultures at mid exponential stage growing in Chamberlains defined media at pH 5.5 and pH 7.5. cDNA
was generated from the RNA samples using random primers in a reverse transcriptase reaction. Samples lacking reverse transcriptase were used to monitor DNA contamination. Quantization of \(\text{ripA} \) transcripts was achieved by densitometry of gene-specific products isolated by agarose electrophoresis. Mean normalized expression of \(\text{ripA} \) ± standard deviation at pH 5.5 was 1.527 ± 0.1656 and 2.448 ± 0.2934 at pH 7.5 (Fig. 6c) representing a 1.6 fold expression differential (\(P = 0.0033 \)).

The concentration of RipA protein present at pH 5.5 and pH 7.5 was measured by FlAsH™ labeling of RipA-TC present in whole cell lysates of the chromosomal fusion strain (Table 1). Six \(\mu \)g of total protein was incubated with TC specific FlAsH™ reagents, separated by SDS-PAGE and subjected to in-gel fluorescence. Mean intensity of RipA-TC ± standard deviation at pH 5.5 was 1.527 ± 0.1656 and 2.448 ± 0.2934 at pH 7.5 (Fig. 6c) representing a 1.6 fold expression differential (\(P = 0.0033 \)).

The pH effect on \(\text{ripA} \) expression parallels the location-specific requirement for functional RipA within the host cell. That is, RipA is dispensable for the early stages of invasion and phagosome escape where the pH is likely to be relatively acidic, but is required for replication in the more neutral pH of the cytoplasm, a condition where \(\text{ripA} \) expression is elevated. To see if this correlation exists throughout the course of infection we measured \(\beta \)-galactosidase produced by the \(F. \) \(\text{tularensis} \) LVS chromosomal transcriptional ripA-lacZ2 fusion strain at different stages.

Figure 3

Reporter plasmids and co-integrates. Cartoon representations of the \(F. \) \(\text{tularensis} \) LVS genomic organizations of the \(\text{ripA} \) locus (a), \(\text{pBSK ripA'}-\text{lacZ2} \) transcriptional reporter plasmid (b), and the \(\text{ripA':pBSK ripA'}-\text{lacZ} \) cointegrate (c). The \(\text{ripA} \) locus is present in only one copy in \(\text{ripA':pBSK ripA'}-\text{lacZ2} \) however the promoter is duplicated by the insertion resulting maintenance of the entire wild type \(\text{ripA} \) locus as well as the \(\text{ripA'}-\text{lacZ} \) reporter. The predicted \(\text{ripA} \) promoter is represented by a black arrow (a-c). \(\text{pBSK} \) \(\text{ripA'}-\text{lacZ2} \) is shown in gray while the alleles of the native locus are white.
of intracellular growth. Since the *iglA* gene is induced during intracellular growth [28], we therefore constructed and used an *iglA-lacZ* transcriptional reporter for control and comparison purposes. The *iglA-lacZ* fusion was cloned into pBSK *aphA1* (Table 1) and integrated into the *F. tularensis* LVS chromosome as described earlier for *ripA*. The insertion of pBSK *iglA'-lacZ* into the chromosome likely has polar effects on *iglB*, *iglC*, and *iglD*. However, since this operon is on the Pathogenicity Island which is duplicated in *F. tularensis* LVS this reporter construct strain still has an intact *igl* locus. We cannot say definitively that this reporter strain has no deficiencies, but there were no detectable differences between this strain and wild type *F. tularensis* LVS with respect to intracellular replication rate or extent (Fig 7c).

We predicted that the conditions under which the cultures were prepared might affect the *ripA* and *iglA* expression levels prior and subsequent to internalization by host cells. Therefore, the activities of *ripA'-lacZ2* and *iglA'-lacZ* transcriptional fusions were measured from cultures grown in BHI and CDM to assess the impact of complex nutrient rich and chemically defined minimal media, respectively, on their expression. The mean activity of each reporter was ca. 1.6 fold higher in CDM relative to BHI (P < 0.01) (Fig 7ab). Given the effect of growth media on *ripA* and *iglA* we measured and compared the expression of these genes in cells infected with the reporter strains propagated in each of these media.

To initiate the intracellular expression analyses host cell entry was synchronized by centrifugation of reporter strains onto chilled J774A.1 monolayers as described [29]. β-galactosidase activity was measured in the inoculums, and at 1, 6, and 24 hours post inoculation using a modified β-galactosidase assay similar in concept to the

Figure 4

Tetracysteine tag construction and expression. (a) Graphical depiction of *F. tularensis* LVS *ripA* locus showing the location of SOE PCR primers used to insert the C terminal TC tag (marked in gray). (b) Nucleotide and amino acid sequence of the C terminal TC tag showing the overlapping sequence of the SOE PCR primers. (c) In gel fluorescence of RipA-TC (black arrow) from dilution series of *F. tularensis* LVS (plasmid) pKK *ripA'-TC* and *F. tularensis* LVS (chromosomal) *ripA'-TC* using 6000 ng to 60 ng total protein of whole cell lysates. *F. tularensis* LVS lysates (wt) used as a non TC tagged control displaying three non specific bands (gray arrows) at a higher molecular weight than RipA-TC.
Miller assay but based on the rate and amount of CPRG conversion per CFU.

The mean β-galactosidase activity (± standard deviation) of *F. tularensis* LVS ripA'-lacZ2 at 0 (inoculum), 1, 6, and 24 hours post infection when the inoculum was prepared from BHI cultures was 199.7 (± 13.32), 155.9 (± 12.96), 193.5 (± 23.99), and 80.6 (± 17.83), respectively (Fig. 7a). The activity-galactosidase level remained similar to that of the inoculum at 1 hour post infection, increased slightly at 6 hours then dropped at 24 hours to a level that was significantly less than for all other time points (P < 0.05). When prepared in CDM the β-galactosidase levels started at a much higher value than that of the BHI-grown samples, and steadily decreased until the lowest measurement at 24 hours post inoculation (Fig. 7b).

Expression of *iglA* prepared in BHI was 135.0 (± 9.59), 97.8 (± 9.59), 199.4(± 26.24), and 112.0 (± 24.21) for the inoculum, 1, 6, and 24 hours post inoculation, respectively (Fig. 7a). The most significant change was a two fold increase at 6 hours post inoculation relative to 1 and 24 hours post inoculation (P < 0.01). By 24 hours post inoculation the relative activity returned to levels similar to that of the inoculum and at 1 hour post inoculation. The 6 hour post inoculation spike of *iglA* expression did not occur when the bacteria were prepared in CDM (Fig. 7b).

As with the *ripA* fusion strain, β-galactosidase levels were significantly higher in the inoculums and throughout the course of infection. Both fusion strains invaded and replicated in the J774A.1 cells (Fig. 7c) demonstrating that the reporter integrations did not impact intracellular replication. Also, even though growth media significantly impacted *ripA* and *iglA* expression levels throughout the experiment, it had no discernable effect on host cell invasion or replication.

The effects of mglA and sspA deletions on ripA expression

MglA and SspA are transcriptional regulators that associate with DNA and RNA-polymerase and modulate the expression of a number of stress response and virulence associated genes, including *iglA*, in *F. tularensis* [22-25]. In a recent study comparing protein expression profiles of wild type and *mglA* mutant strains both IglA and RipA protein levels were affected in the *mglA* mutant [25]. We investigated further the relationship between these regulators and RipA expression using the *ripA*-lacZ2 and *iglA*-lacZ transcriptional fusions in Δ*mglA* and Δ*sspA* mutant strains (Table 1).

β-galactosidase assays were performed on mid exponential phase reporter strains grown in Chamberlains defined media. The mean expression of *ripA* was nearly 2-fold higher (P < 0.01) in the Δ*mglA* (4091 ± 75) and Δ*sspA* (4602 ± 52) strains as compared to wild type (2549 ± 128) (Fig. 8a). Wild type levels of expression were restored by the wild type *mglA* and *sspA* alleles in the complemented mutant strains (Fig. 8a).

As expected the *mglA* and *sspA* deletions had the opposite effect on *iglA* expression. The mean expression (± stand-
ard deviation) of *F. tularensis* LVS *iglA*-lacZ was substantially decreased in both the ΔmglA (80 ± 2.2) and ΔsspA (67 ± 0.9) strains versus wild type (2757 ± 98) (Fig. 8b). The differences of *iglA* expression in the mutant backgrounds were all significantly different from wild type (P < 0.01), and near wild type levels of expression were restored by complementation with *mglA* and *sspA* in trans (Fig. 8b). Together, these results confirm that *mglA* and *sspA* expression positively influence *iglA* expression, and conversely demonstrate that these two regulators negatively influence *ripA* expression.

Discussion

As a facultative intracellular pathogen, *F. tularensis* is able to survive and replicate within several different types of eukaryotic cells as well as in a number of extracellular environments [9,11,12,29-32]. Other facultative intracellular pathogens such as *Salmonella typhimurium* [33], *Legionella pneumophila* [34], and *Listeria monocytogenes* [35,36] are similarly capable of adapting to multiple environments. These organisms exhibit differential gene expression in response to entering or exiting host cells, and even as they transition between intra-vacuolar and cytoplasmic niches. Mapping the gene expression profiles that accompany different stages of infection have helped to identify environmental cues that impact gene expression and virulence.

Studies on intracellular gene expression by *Francisella* species have revealed a number of genes including *iglC* [37], *iglA* [28] and *mglA* [38], that are induced upon entry and growth in macrophages. IgC protein concentrations increased between 6 hours and 24 hours post host cell invasion [37]. Similarly IgA protein concentrations increased between 8 hours and 12 hours post invasion as measured by Western blot [28]. In the current study we found that *iglA* expression was increased during intracellular growth, but only for a limited period of time. This increase in expression did not occur immediately after host cell invasion, but rather coincided with the time frame associated with the early stage of replication following phagosome escape.

We found that the laboratory growth media used to propagate the bacteria affected both *ripA* and *iglA* expression levels. Reporter activity of *ripA-lacZ* and *iglA-lacZ* transcriptional fusions were each significantly higher in inoculums prepared in CDM vs. those prepared in BHI. As a consequence, the results of intracellular expression assays were dependent on the type of media in which the organisms were grown prior to infection. Since the initial expression levels of *ripA* and *iglA* were significantly higher in CDM grown organisms, the relative in vivo expression levels of these genes actually decreased throughout the course of infection. Modest increases in *iglA* and *ripA* expression during intracellular growth were observed only when organisms were propagated in BHI prior to infection. These observations are in line with that of Hazlett et al. who found that *Francisella* virulence genes are variably expressed in different types of media, some of which more closely replicate intracellular expression profiles than others [39].
When infected with BHI-grown organisms, *F. tularensis* ripA and iglA gene expression changes coincided with the transitions from vacuolar, to early cytoplasmic, and then late cytoplasmic stages of infection. The expression of ripA was repressed during the early stage of infection when the bacteria are reportedly associated with a phagosome [13-15]. Expression of both ripA and iglA increased during the early phase of cytoplasmic growth then decreased during the latter stages of infection. The ripA expression levels associated with these sites and stages of intracellular growth corresponded to our observed effects of pH on ripA expression in CDM and the reported pH of the relevant intracellular environment. A number of studies have shown that the early *Francisella*-containing phagosome is acidified prior to bacterial escape [40,41]. Interestingly, we found that acidic pH repressed ripA. Additionally, ripA expression was dispensable for growth at acidic pH *in vitro*, and was likewise dispensable for survival and escape from the phagosome. The pH of the cytosol of a healthy macrophage is reportedly ~7.4. Neutral to mildly basic pH resulted in increased ripA expression *in vitro*. The ripA deletion mutant was defective for growth both at neutral pH *in vitro*, and within the cytoplasm of host cells. Finally, the pH of the cytosol during late stages of *Francisella* infection has not been measured, however, during apoptosis the pH reportedly drops to 5.8 [42]. Since *Francisella* has been demonstrated to induce apoptosis in macrophages [43] this might explain, at least in part, the drop in ripA expression during the late stage of infection. We are currently investigating the scope and mechanisms of pH associated gene regulation in *Francisella* and its role in host cell adaptation and virulence.

Given that growth media and the stage of infection had similar affects on iglA and ripA expression we thought it reasonable to determine if the two genes were subject to the same or overlapping regulatory mechanism(s). Earlier microarray and proteomic [22-25] analyses revealed that the expression of iglA and IglA, respectively, as well as a number of other genes and proteins, are regulated by two related transcriptional regulators, MglA and SspA [23,44]. Transcriptional profiling studies of mglA and sspA mutant strains by microarray [23] gave no indication that either of these regulators affected ripA expression. However, in complementary proteomic studies, RipA (FTN_0157) was present in 2-fold higher amounts in a *F. novicida* mglA mutant strain as compared to wild type [25]. This result suggested that MglA has a direct or indirect repressive effect on RipA expression. Our analysis using ripA-lacZ fusion reporter strains revealed that ripA expression was increased in both mglA and sspA mutants, and therefore correlated with the proteomics analysis of MglA mediated gene regulation. Thus, MglA and SspA positively affect iglA, but have a negative effect on ripA expression *in vitro*.

![Figure 7](http://www.biomedcentral.com/1471-2180/9/216)

Figure 7

Expression of ripA in the intracellular niche. Intracellular expression of LVS ripA-lacZ2 and LVS iglA-lacZ in J774A.1 macrophage like cells infected at an MOI of 100. Inoculums were either prepared from mid exponential phase bacteria grown in BHI (a) or CDM (b) as indicated in the legend. Preparation in CDM resulted in an increased initial activity in the reporter strains. All assays were performed on four replicate wells and reported as mean relative activity ± standard deviation. Inoculums activity was calculated from four samples taken before application of the inoculums. Mean β-galactosidase activity is normalized by time of development and CFU per well minus the activity from the control samples. All differences in expression were significant (P < 0.05) with the exception of comparisons between ripA-lacZ2 inoculums to 6 h, and iglA-lacZ 1 h to 24 h. The mean CFU recovered at each time point assayed are displayed as log CFU (c). Error bars represent the standard deviation of four samples. Each strain invaded and replicated by 24 hours in J774A.1 mouse macrophage like cells.
If the intracellular regulation of iglA does indeed occur through the activities of MglA and SspA it is likely that in the early stages of F. tularensis intracellular replication, the increase in ripA expression is mediated by a mechanism that is independent of, or ancillary to, the MglA/SspA regulon.

Conclusion
Studies focusing on intracellular gene expression are an important aspect of discerning Francisella pathogenesis mechanisms. We found that ripA, which encodes a cytoplasmic membrane protein that is required for replication within the host cell cytoplasm, is transcribed independently of neighbouring genes. Further, ripA is differentially expressed in response to pH and during the course intracellular infection. The intracellular expression pattern of ripA mirrored that of iglA and other Francisella virulence-associated genes that are regulated by MglA and SspA. However, in the transcriptional regulator deletion mutants, there were opposing effects on iglA and ripA expression in vitro. Since ripA is essentially repressed by MglA and SspA, the increase in ripA expression that corresponds with increased MglA/SspA activity in vivo suggests that this gene is responsive to an as-of-yet unknown complementary regulatory pathway in Francisella.

Methods
Bacterial strains and cell culture
F. tularensis Live Vaccine Strain (LVS) (Table 1) was propagated on chocolate agar (25 g BHI l-1, 10 μg hemoglobin ml-1, 15 g agarose l-1) supplemented with 1% IsoVitaleX (Becton-Dickson), BHI broth (37 g BHI l-1, 1% IsoVitalex), or Chamberlains defined media [26]. All bacterial strains cultured on chocolate agar were grown at 37°C. Broth cultures were incubated in a shaking water bath at 37°C. J774A.1 (ATCC TIB-67) reticulum cell sarcoma mouse macrophage-like cells were cultured in DMEM plus 4 mM L-glutamine, 4500 mg glucose l-1, 1 mM sodium pyruvate, 1500 mg sodium bicarbonate l-1, and 10% FBS at 37°C and 5% CO2 atmosphere.

Reverse transcriptase PCR
Total RNA was isolated from mid exponential phase cultures using a mirVana RNA isolation kit (Ambion) and procedures. DNA was removed by incubation with RQ1 DNase (Promega) for 1 hour at 37°C. First strand cDNA was generated using SuperScript III Reverse transcriptase (Invitrogen) and random primers. cDNA was quantified using a ND-1000 spectrophotometer (Nanodrop). PCR analysis of ripA and tul4 expression was accomplished using 20 ng cDNA per 50 μl PCR reaction. As a control for DNA contamination, a Reverse transcriptase reaction was conducted without the Reverse transcriptase enzyme. Ten percent of each reaction was analyzed by agarose gel electrophoresis, ethidium bromide staining, and densitome-
try using BioRad Quantity One software. Trace intensity (Int mm) of ripA was normalized to the mean tail4 expression [23]. Mean normalized expression and standard deviation were calculated based on RT-PCR of four samples of RNA derived from independent cultures. Significance was determined using an unpaired two tailed t test with unequal variance.

Agarose formaldehyde electrophoresis and Northern analysis

Total RNA was harvested from mid exponential phase *F. tularensis* LVS grown in Chamberlains defined media using RNAeasy columns (Qiagen), concentrated by ethanol/sodium acetate precipitation and quantified with a ND-1000 spectrophotometer (Nanodrop). RNA was separated using agarose-formaldehyde (2% agarose, 2.2 M Formaldehyde) electrophoresis followed by capillary transfer to nitrocellulose as described [45]. Additional lanes of the membrane containing duplicate samples were stained with methylene blue to assess rRNA bands for degradation and equality of loading. Digoxigenin labeled RNA probes were generated using a Northern Starter Kit (Roche). Probe generation, hybridization, washing, and detection were performed using the manufacturer’s (Roche) protocols.

Reporter fusion construction and mutagenesis

Specific *F. tularensis* LVS DNA fragments were produced by PCR amplification of genomic DNA using Pfu turbo DNA polymerase (Stratagene). Three DNA fragments were PCR amplified, cloned, and the DNA sequence for conformity to the published LVS DNA sequence. (1) 1300 bp amplicon (primers TTCTGGTGGTATCG- GTTCITGAAGGCGGTATTGATG and CAGCATATCCATTATCATTATTCATTATC) for the generation of the in-frame ripA'-lacZ1 translational fusion of the ripA start codon to lacZ [46]. (2) 1000 bp amplicon (primers atagccgccccgcaaggtgactaaagtacaagataatggtgc and gctgtaataacctttacccattttatccaaagaatttacac) for the generation of the ripA'-lacZ2 transcriptional fusion. (3) 740 bp amplicon (primers agttCCCGGCCTatcctacaggctgaccttt- cactttagtgc and TCCGCAATGTCCTTTTTT- TCACAAACCTATTACA) for the generation of the iglA'-lacZ transcriptional fusion. The lacZ reporter vectors pALH1109 and pALH1122 were used as the source of the translational and gene transcriptional lacZ constructs [46]. The translational gene fusion (pALH1109) was ligated with a pBSK vector containing the cat gene driven by the *F. tularensis* groEL promoter to construct pBSK lacZ cat. The transcriptional gene fusion (pALH1122) was ligated with a pBSK vector containing the aphA1 allele driven by the *F. tularensis* groEL promoter to construct pBSK lacZ aphA1. A KpnI/EcoRV fragment containing the ripA promoter was ligated to a SmaI/KpnI fragment of pBSK lacZ cat to form pBSK ripA'-lacZ1. NotI/Pacl fragments of the cloned promoters were ligated to a NotI/Pacl fragment of pBSK lacZ aphA1 to form pBSK ripA'-lacZ2 and pBSK iglA'-lacZ. KpnI/NotI fragments from pBSK reporters were ligated to KpnI/NotI fragments of pKK MCS to construct pKK ripA'-lacZ1 and pKK ripA'-lacZ2. All plasmids used in these studies are listed in Table 1.

Measuring β-galactosidase activity expressed by intracellular organisms

To determine the activity of *Francisella* promoter lacZ fusions in the intracellular environment, intracellular invasion and replication assays were conducted by adding *F. tularensis* LVS strains cultured to mid exponential phase in BH1 to J774A.1 monolayers at a multiplicity of infection (MOI) of 100 in 200 µl tissue culture media. Assays were synchronized as described [14,29]. At 15 minutes post inoculation, monolayers were washed 3 times with pre-warmed tissue culture media to remove extracellular bacteria. At 1, 6, and 24 hours post inoculation samples were washed with PBS and scraped into 200 µl PBS. The number of CFU in each sample was determined by serial dilutions and plating on Chocolate agar. One hundred µl of each sample was lysed in 2× lysis buffer (1% NP40, 0.5 M Tris pH 7.4, 5 mM EDTA) and assayed for β-galactosidase activity using the substrate Chlorophenol red-β-D-galactopyranoside (CPRG). Twenty µl of each sample was mixed with 130 µl of CPRG buffer (2 mM CPRG, 25 mM MOPS pH 7.5, 100 mM NaCl, 10 mM MgCl2, 50 mM β-mercaptoethanol) and incubated at 37°C until visible color developed. Enzymatic activity was stopped by adding 80 µl of 0.5 M Sodium Carbonate and OD560 measured to calculate substrate conversion. Background β-galactosidase activity was determined at each time point using duplicate samples of J774A.1 cells infected with wild type *F. tularensis* LVS. Mean background activity was subtracted from each sample before calculating relative activity. Relative β-galactosidase activity was calculated by normalizing OD560 readings with time of development, dilution of sample, and CFU recovered per sample. Data are presented as activity per 1010 bacteria which results in an activity range similar to Miller units. All assays were performed using four wells of infected cells from a 24 well tissue culture plate per time point. Inoculum activities were determined using the same techniques before addition to cell culture in replicates of four.
Relative activity \(= 10^{10} \times \text{OD}_{580} \times (\text{Dilution} \times \Delta T \times \text{CFU})^{-1}\)

Significance was calculated using an unpaired two tailed t test assuming unequal variance. P values of less than 0.05 were considered significant.

Allelic exchange

A ripA-1TC fusion was made by Splice Overlap Extension (SOE) PCR [48] using primers designed to insert the tetra-cysteine (TC) tag sequence with a glycine linker between the last ripA codon and the stop codon (Fig. 4b). Deletion constructs made by SOE PCR retained the start and stop codons of mglA (fusion of 1st four and last two codons) and sspA (fusion of 1st four and last 4 codons) in frame with 0.8 kb of flanking sequence. The constructs were cloned into pMP590 (Table 1) and sequenced to confirm the integrity of the flanking DNA sequence. Allelic exchange was achieved by transformation, selection for plasmid co-integrates, counter selection on sucrose containing media and confirmed via PCR analysis for replacement of the wild type with the deletion mutant allele as described [47]. Each mutation was confirmed by DNA sequence analysis.

Extracellular β-galactosidase assay

Overnight cultures of lacZ reporter strains were diluted 1:10 in Chamberlains defined media and cultured until mid exponential phase (0.2-0.8 OD_{600}). β-galactosidase activity was measured as OD_{420} using the substrate ONPG (Sigma) as described elsewhere [49]. Relative promoter activity was normalized using OD_{600} of culture, time of development, and cell to buffer ratio (CBR).

Miller Units = 1000 \times \text{OD}_{420} \times (\Delta T \times \text{CBR} \times \text{OD}_{600})^{-1}

Statistical analysis was performed to determine the mean Miller units and standard deviation from three independent cultures and significance calculated using an unpaired two tailed t test with unequal variance.

SDS-PAGE and FlAsH™ labelling

Proteins were separated by SDS-PAGE. Total protein loaded in each sample was equivalent as determined by a BCA assay (Pierce). FlAsH™ labeling was accomplished using the manufacturer’s protocols (Invitrogen). In gel fluorescence of the arsenical fluorescein and total protein stain was conducted on a Typhoon 9200 laser scanner (488 nm laser/520 nm BP 40 filter and 633 nm laser/670 nm BP 30 filter). Densitometry was conducted using ImageQuant XL software and sample comparisons made using the same gel and scan. Mean intensity and standard deviation of four samples from independent cultures was calculated and significance determined using an unpaired two tailed t test with unequal variance.

Authors’ contributions

JF carried out all experiments with the participation of TMK and SB in the extracellular galactosidase assays. TMK and SB helped draft the manuscript and provided intellectual input to data analysis. THK and IF designed and coordinated experiment, analyzed data, and drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank Allen Honeyman for sending us the lacZ containing plasmids pALH109 and pALH122. This work was supported by a Southeast Regional Center of Excellence in Biodefense and Emerging Infections grant (NHI/NAID U54-AI057157) and by the National Institutes of Health (AI069339).

References

1. Markowitz LE, Hynes NA, de la Cruz P, Campos E, Barbaree JM, Plikaytis BD, Mosier D, Kaufmann AF: Tick-borne tularemia. An outbreak of lymphadenopathy in children. JAMA 1985, 254(20):2922-2925.
2. Centers for Disease Control and Prevention (CDC): Tularemia transmitted by insect bites--Wyoming, 2001-2003. MMWR Morb Mortal Wkly Rep 2005, 54(7):170-173.
3. Reinstein R, Dedushaj I, Gjini A, Jorgensen TR, Cotter B, Liefucht A, D’Ancona F, Dennis DT, Kosay MA, Mulliqi-Osmani G, Grunow R, Kalaveshi A, Gashi L, Humolli I: Tularemia outbreak investigation in Kosovo: case control and environmental studies. Emerg Infect Dis 2002, 8(1):69-73.
4. Celebi G, Baruonu F, Ayoglu F, Cinar F, Karadenizli A, Ugur MB, Gedikoglu S: Tularemia, a reemerging disease in northwest Turkey: epidemiological investigation and evaluation of treatment responses. Jpn J Infect Dis 2006, 59(4):229-234.
5. Feldman KA, Encore RE, Lathrop SL, Maysas BT, McGuil M, Schriefer ME, Stiles-Enos D, Dennis DT, Petersen LR, Hayes EB: An outbreak of primary pneumonic tularemia on Martha’s Vineyard. N Engl J Med 2001, 345(22):1601-1606.
6. White JD, Rooney JR, Prickett PA, Derrenbacher EB, Beard CW, Griffith WR: Pathogenesis of Experimental Respiratory Tularemia in Monkeys. J Infect Dis 1964, 114:277-283.
7. Slaasw S, Egelsbach HT, Prior JA, Wilson HE, Carhart S: Tularemia vaccine study. II. Respiratory challenge. Arch Intern Med 1961, 107:702-714.
8. Dennis DT, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Friedlander AM, Layton MA, Lillibridge SR, Mysize NA, de la Cruz P, Campos E, Barbaree JM, Plikaytis BD, Mosier D, Kaufmann AF: Tick-borne tularemia. An outbreak of lymphadenopathy in children. JAMA 1985, 254(20):2922-2925.

Page 13 of 14

http://www.biomedcentral.com/1471-2180/9/216

References

1. Markowitz LE, Hynes NA, de la Cruz P, Campos E, Barbaree JM, Plikaytis BD, Mosier D, Kaufmann AF: Tick-borne tularemia. An outbreak of lymphadenopathy in children. JAMA 1985, 254(20):2922-2925.
2. Centers for Disease Control and Prevention (CDC): Tularemia transmitted by insect bites—Wyoming, 2001-2003. MMWR Morb Mortal Wkly Rep 2005, 54(7):170-173.
3. Reinstein R, Dedushaj I, Gjini A, Jorgensen TR, Cotter B, Liefucht A, D’Ancona F, Dennis DT, Kosay MA, Mulliqi-Osmani G, Grunow R, Kalaveshi A, Gashi L, Humolli I: Tularemia outbreak investigation in Kosovo: case control and environmental studies. Emerg Infect Dis 2002, 8(1):69-73.
4. Celebi G, Baruonu F, Ayoglu F, Cinar F, Karadenizli A, Ugur MB, Gedikoglu S: Tularemia, a reemerging disease in northwest Turkey: epidemiological investigation and evaluation of treatment responses. Jpn J Infect Dis 2006, 59(4):229-234.
5. Feldman KA, Encore RE, Lathrop SL, Maysas BT, McGuil M, Schriefer ME, Stiles-Enos D, Dennis DT, Petersen LR, Hayes EB: An outbreak of primary pneumonic tularemia on Martha’s Vineyard. N Engl J Med 2001, 345(22):1601-1606.
6. White JD, Rooney JR, Prickett PA, Derrenbacher EB, Beard CW, Griffith WR: Pathogenesis of Experimental Respiratory Tularemia in Monkeys. J Infect Dis 1964, 114:277-283.
7. Slaasw S, Egelsbach HT, Prior JA, Wilson HE, Carhart S: Tularemia vaccine study. II. Respiratory challenge. Arch Intern Med 1961, 107:702-714.
8. Dennis DT, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Friedlander AM, Layton MA, Lillibridge SR, Mysize NA, de la Cruz P, Campos E, Barbaree JM, Plikaytis BD, Mosier D, Kaufmann AF: Tick-borne tularemia. An outbreak of lymphadenopathy in children. JAMA 1985, 254(20):2922-2925.
Francisella tularensis can escape the phagosome of mononuclear cells. Infect Immun 2008, 76(1):746-751.

32. Forestal CA, Malik M, Catlett SV, Savitt AG, Benach JL, Sellati TJ, Furie B: Infection of macrophages by flow cytometry. J Immunol 2008, 76(1):4246-4249.

33. Chen CY, Eckmann L, Libby SJ, Fang FC, Okamoto S, Kagnoff MF, Bruggemann H, Hagman A, Jules M, Sismeiro O, Dillies MA, Gouyette Pechous R, Celli J, Penoske R, Hayes SF, Frank DW, Zahrt TC: A heat-shock protein ChIPb of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice. Mol Microbiol 2008, 67(6):1384-401.

34. Lindgren H, Golovilov I, Baranov V, Ernst RK, Telepnev M, Sjostedt A: Factors affecting the escape of Francisella tularensis from the phagosome. J Med Microbiol 2004, 53(Pt 10):953-958.

35. Moors MA, Levitt B, Youngman P, Portnoy DA: Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect Immun 1995, 63(7):1313-1319.

36. Chandrajeet SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, Domann E, Chakraborty T, Hain T: Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 2006, 74(2):1323-1338.

37. Golovilov I, Ericson M, Sandstrom G, Tarnvik A, Sjostedt A: Identification of genes required for intracellular survival. Infect Immun 2006, 74(12):5488-5499.

38. Baron GS, Nunnally FE: An erythromycin resistance cassette and mini-transposon for constructing transcriptional fusions to cot. Gene 1999, 229(1-2):59-65.

39. Haazlett KR, Caldon SD, McArthur DG, Cirillo KA, Kirimjaswara GS, Magguilli ML, Malik M, Shah A, Broderick S, Golovilov I, Metzger DW, Rajan K, Sellati TJ, Loegering DI: Adaptation of Francisella tularensis to the mammalian environment is governed by cues which can be mimicked in vitro. Infect Immun 2008, 76(10):4479-4488.

40. Santoc M, Arase R, Skrobobna I, Jones S, Abu Kwaik Y: Acquisition of the vacuolar ATPase proton pump and phagosome acidification is essential for escape of Francisella tularensis into the macrophage cytosol. Infect Immun 2008, 76(6):2671-2677.

41. Chong A, Wehrly TD, Nair V, Fischer ER, Barker JR, Klose KE, Celli J: The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun 2008, 76(12):5488-5499.

42. Nilsson C, Kagedal K, Johansson U, Ollinger K: Analysis of the expression of F. tularensis genes under in vitro conditions using bioinformatics tools. BMC Microbiology 2008, 8:235.

43. Rotherick HD, Hunt HD, Ho SN, Fuller JR, Taf-ten S, Klose J, Sellati TJ, Loegering DI: Francisella tularensis growth in macrophages and cloning of the gene encoding a 23-kilodalton protein. Infect Immun 2000, 68(7):4452-4461.

44. Chong A, Wehrly TD, Nair V, Fischer ER, Barker JR, Klose KE, Celli J: The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun 2008, 76(12):5488-5499.

45. Miller JH: Genomics of Francisella. Inflight microorganisms. Methods Cell Sci 2003, 25(3-4):183-194.

46. Chamberlain RE: Expression of Live Tularemia Vaccine Prepared in a Chemically Defined Medium. Appl Microbiol 1965, 13(2):323-325.

47. Tarnok A, Dorger M, Berg I, Gercken G, Schutter T: Rapid screening of possible cytotoxic effects of particulate air pollutants by measurement of changes in cytoplasmic free calcium, cytosolic pH, and plasma membrane potential in alveolar macrophages. J Toxicol Environ Health 2001, 64(3):204-210.

48. de Bruin OM, Ludu JS, Nane FE: The Francisella tularensis infection island protein IgIA localizes to the bacterial cytosol and is needed for intracellular growth. BMC Microbiology 2007, 7:11.

49. Craven RR, Hall JD, Fuller JR, Taf-Ben S, Klose J, Sellati TJ, Loegering DI: Francisella tularensis invasion of lung epithelial cells. Infect Immun 2008, 76(7):2833-2842.

50. Kobayasi A: Multiplication of Bacterium tularensis within HeLa cells and the effect of antibiotics. Jpn J Microbiol 1960, 4:193-201.

51. Abd S, Johansson T, Hall JD, Sandstrom G, Forsman M: Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl Environ Microbiol 2003, 69(1):600-606.

52. Forestal CA, Malik M, Catlett SV, Savitt AG, Benach JL, Sellati TJ, Furie B: Francisella tularensis has a significant extracellular phase in infected mice. Infect Dis 2007, 76(1):134-137.

53. Chen CY, Eckmann L, Libby SJ, Pang FC, Okamoto S, Kagnoff MF, Fierer J, Guiney DG: Expression of Salmonella typhimurium rpoS and rpoS-dependent genes in the intracellular environment of eukaryotic cells. Infect Immun 1996, 64(11):4739-4743.

54. Bruggemann H, Hagan A, Moul F, Simeone O, Dillies MA, Gouyette C, Kunst F, Steine S, Heuner K, Coppey J, Buchrieser C: Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 2006, 8(8):1228-1240.

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK

Your research papers will be:

- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp