Brain vasculature disturbance in schizophrenia
Puvogel, Sofía; Palma, Verónica; Sommer, Iris E C

Published in:
Current opinion in psychiatry

DOI:
10.1097/YCO.0000000000000789

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Puvogel, S., Palma, V., & Sommer, I. E. C. (2022). Brain vasculature disturbance in schizophrenia. Current opinion in psychiatry, 35(3), 146-156. Advance online publication. https://doi.org/10.1097/YCO.0000000000000789
Purpose of review
The vascular hypothesis of schizophrenia (SZ) postulates that brain endothelial dysfunction contributes to brain pathophysiology. This review discusses recent evidence for and against this hypothesis, including data related to blood–brain barrier (BBB), brain endothelium, and brain blood supply, to provide a critical weighed update.

Recent findings
Different studies report a consistent proportion of SZ patients showing increased BBB permeability, reflected by higher levels of albumin in the cerebral spinal fluid. Of note, this was not a result of antipsychotic medication. The high inflammatory profile observed in some SZ patients is strongly associated with increased BBB permeability to circulating immune cells, and with more severe cognitive deficiencies. Also, sex was found to interact with BBB integrity and permeability in SZ. The strongest independent genetic association with SZ has been identified in FZD1, a hypoxia-response gene that is 600-fold higher expressed in early development endothelium as compared to adult brain endothelium. Regarding brain blood supply, there is evidence to suggest alterations in proper brain perfusion in SZ. Nonetheless, ex-vivo experiments suggested that widely used antipsychotics favor vasoconstriction; thus, alterations in cerebral perfusion might be related to the patients’ medication.

Summary
In some patients with SZ, a vulnerable brain endothelium may be interacting with environmental stressors, such as inflammation or hypoxia, converging into a more severe SZ symptomatology. Gene expression and performance of human brain endothelium could vary along with development and the establishment of the BBB; therefore, we encourage to investigate its possible contribution to SZ considering this dynamic context.

Keywords
blood-brain-barrier, brain perfusion, endothelial cells, inflammation, neurodevelopment, schizophrenia, asculature

INTRODUCTION
Schizophrenia (SZ) is a heterogeneous psychiatric disorder, affecting around 24 million people worldwide [1]. Although early death by suicide reduces life expectancy in SZ patients, the largest reduction comes from cardiovascular morbidity [2], illustrating the importance of the vasculature for them. Genome-wide association studies (GWAS) evidenced a polygenic architecture underlying SZ, with a few rare variants with large effects and hundreds of common genetic variants with small effects (reviewed in [3]). In addition, it has been described that genetic risk is better for predicting SZ in the presence of early life complications [4]. Therefore, an adverse environment, such as intrauterine hypoxia or obstetric complications [5], amongst others, interacting with multiple susceptible genes could trigger the disease during adulthood [6]. Accordingly, the neurodevelopmental hypothesis of SZ has been extended to a developmental risk factor model [7], and SZ is considered a multifactorial disease.
synchrony with the nervous system [8]. The blood vessels of the brain are structured within a multicellular niche called the neurovascular unit (NVU), composed of brain endothelial cells (BECs), smooth muscle cells, fibroblasts, pericytes, astrocytes, neurons, and microglia [9]. NVU cells secrete growth factors with neurotrophic, neuromodulator, and angiogenic effects [10] such as Vascular Endothelial Growth Factor (VEGF), Brain-Derived Neurotrophic Factor (BDNF) [11] and Nerve Growth factor (NGF) [12], among many others. In conjunction with other cellular components of the NVU, the brain endothelium contributes to regulating local blood flow based on neuronal activity changes; a phenomenon known as neurovascular coupling [13,14].

At the first stages of central nervous system (CNS) development, molecular signals from neural progenitor cells and neurons induce BECs to express a barrier phenotype. This blood-brain barrier (BBB) maintains a homeostatic CNS microenvironment and promotes neuronal activity by responding dynamically to the ongoing physiological demands [15]. Adherent (cadherins) and tight junction proteins (e.g., Claudins (CLDN) and Occludins (OCLN)) confer paracellular tightness between adjacent BECs, contributing to the barrier integrity and restricting the migration of cells and molecules across it [16]. ATP-driven transmembrane efflux pumps, such as ABC transporters, clear toxic material by removing it from the brain. Fetal astrocytes are also involved in BBB formation, through retinoic acid signaling [17,18], and contribute to the barrier maintenance throughout adulthood [13,19,20].

Alterations in BBB integrity due to down-regulation of tight or adherent junction proteins can trigger the loss of barrier function by enhancing general permeability (leakage) across brain endothelium. Some proteolytic enzymes, such as Matrix Metalloproteinase 9 (MMP9), can degrade blood vessels basement membrane and tight junction proteins. Therefore, MMP9 up-regulation can impair BBB integrity and increase its permeability [21,22]. Elevated albumin in cerebrospinal fluid (CSF), the most abundant protein in blood, is an indicator of increased BBB permeability to macromolecules [23]. Also, increased blood levels of brain-derived neuronal growth factors, such as S100 Calcium-Binding Protein (S100B), are potential biomarkers of BBB leakage.

BECs activation by systemic inflammatory challenges increases BBB selective permeability to circulating immune cells, through the up-regulation of Vascular and Intercellular Cell Adhesion molecules (VCAM1 and ICAM1, respectively), P-selectin and E-selectin [24–26]. Based on the aforementioned, a BBB function more sensitive to environmental stressors due to intrinsic alterations in BECs performance in SZ, could lead to neuroinflammation by allowing ingress of harmful material and infiltration of peripheral immune cells into the CNS. On the other hand, increased systemic inflammation may be a causal factor of increased BBB permeability in SZ patients. To study endothelial intrinsic mechanisms underlying SZ, human induced pluripotent stem cells (hiPSC)-derived BBB models have been employed [27,28]. hiPSC are obtained from SZ and control subjects’ somatic cells and differentiated to brain endothelium. Thereby, hiPSC-derived BBB models account for the patients’ whole genetic information [27,29–32] and allow to assess the performance of BBB isolated from other factors that might be present in SZ, such as inflammation and use of medication.

This review aims to summarize and discuss the latest findings related to impaired brain vascular function in SZ. As the brain vasculature is involved in the functioning of the BBB and in the regulation of local brain perfusion, the present review is divided into these two main topics. Data on structural and functional alterations of the cerebral vasculature, and how these features could be interacting with other altered phenotypes described in SZ, such as inflammation, will be covered. We will focus on the most recent literature.

The blood-brain barrier in schizophrenia

The BBB mediates communication between the CNS and the periphery. Thus, its integrity and performance are crucial to maintain a proper brain environment. Recent data, obtained through different techniques, have suggested impairments in BBB integrity and increased permeability in SZ. These will be detailed in the following paragraphs.
Evidence from peripheral and cerebrospinal fluid markers

A meta-analysis found increased blood levels of S100B and MMP9, and increased CSF albumin (24–2 studies; 1107-69 SZ and 873-92 control subjects), suggesting BBB damage and increased barrier permeability in SZ [33**]. A subsequent study also reported increased CSF albumin, as compared to reference control levels, but only in 15% of the patients with SZ (40 SZ) [34**].

Genetic variation in CLDN5 has been weakly associated with SZ in Chinese [35–37] and Iranian populations [38]. CLDN5 codes for a tight junction protein crucial to maintain BECs paracellular tightness and thus BBB integrity [39]. On the contrary, Zonulin secretion enhances barrier permeability by reducing epithelial paracellular tightness [40,41]. In 2021, decreased CLDN5 and increased zonulin serum levels were observed in SZ (50 SZ and 50 controls) [42].

Evidence from postmortem studies

Immunohistochemical staining of postmortem brain samples (15 SZ and 15 control samples) revealed a significant CLDN5 decrease in the hippocampus of SZ patients, whereas no difference was observed in the orbitofrontal cortex [43**]. This might suggest that alterations in BBB integrity in SZ could be regional rather than widely distributed throughout the brain.

Evidence from in-vitro experiments

Deletion at the 22q11.2 chromosomal region (22qDS) is a relatively common chromosomal anomaly, which is associated with a 20-fold increase in SZ risk [44]. Interestingly, CLDN5 is located in this chromosomal region. In a matched-pair experimental design, hiPSC-derived BBB from 22qDS-SZ patients (5 SZ and 5 control cell lines) exhibited a disorganized CLDN5 expression pattern and higher expression of ICAM1, as compared to their matched controls. Furthermore, 22qDS-SZ-derived endothelium showed impaired barrier function, with reduced transendothelial electrical resistance and increased permissiveness to monocyte transmigration [27**]. These findings suggest intrinsic BECs dysfunction in 22qDS-SZ patients.

SEP-363856 is a Serotonin 1A receptor (5-HT1A) agonist and has been recently proposed as a promising potential drug for SZ treatment [45]. In 2021, Sugimoto et al. demonstrated that 5-HT1A is also expressed in human brain endothelium. Of note, serotonin signaling through 5-HT1A binding increased CLDN5 in cultured human BECs [46**]. Thus, SEP-363856 beneficial effects maybe partially related to BBB protection.

Inflammation and blood-brain barrier performance in schizophrenia

According to the neuroinflammatory hypothesis of SZ, brain vasculature may be affected by chronic inflammation. Increased expression of pro-inflammatory genes in the brain is associated with SZ [47], as has been described for the complement pathway (discussed in Woo et al., 2020 [48]). Peripheral blood levels of pro-inflammatory cytokines, such as IL-6, IL-1, TNF, and IFN are also often reported to be increased [49]. Different studies suggested an association between BBB permeability and the inflammatory status of the patients; these are described below.

Evidence from peripheral and cerebrospinal fluid markers

The major histocompatibility complex locus, a chromosomal region coding for hundreds of genes and including the complement C4, carries a strong genetic association with SZ [50]. Increased plasma levels of C4-anaphylatoxin (C4-ana), a fragment of C4 released upon its activation, were reported in SZ (15 SZ and 14 controls). The authors evidenced that C4-ana increases BBB permeability to macromolecules in primary cultures of BECs [51].

A group of first-episode SZ patients presented slightly increased systemic inflammation (41.4%, 116/280 SZ subjects), reflected by increased C-reactive protein levels in the blood, whereas signs of BBB leak were reported solely in 15.8% of the first-episode SZ patients (49/310 SZ), as reflected in higher CSF albumin [52**]. In a cohort of 456 SZ patients, only 7% showed signs of neuroinflammation, although 19% of the SZ patients reported BBB leakage. Antipsychotic medication did not affect these albumin quotients [53**]. Summarizing, BBB leakage seems to be present in a consistent proportion of SZ cases, but its relationship with systemic or neuroinflammation is not yet clear.

Aside from its possible involvement in BBB leakage, systemic inflammation in SZ could facilitate immune cells infiltration into the CNS through the up-regulation of cell adhesion molecules, such as ICAM1, VCAM1 and P-selectin, in BECs [24–26,54]. The soluble forms of these adhesion molecules serve as indicators of endothelial activation [55]. In 2020, a meta-analysis reported increased blood levels of soluble P-selectin in SZ (3 studies; 98 SZ and 72 control subjects). However, no differences were observed in blood sICAM1 or sVCAM1, nor in the CSF, between SZ and controls (2–12...
Blood-brain-barrier disturbance in schizophrenia Puvogel et al.

Evidence from postmortem studies

In 2020, Purves-Tyson et al. grouped SZ postmortem cases into 'SZ-high-inflammation' and 'SZ-low-inflammation', based on transcript measurements of inflammatory cytokines in brain tissue. Mid-brain ICAM and the macrophage marker CD163 expression was substantially increased in the SZ-high-inflammation group, but no difference was observed in the SZ-low-inflammation compared to controls (13 SZ-high-inflammation, 15 SZ-low-inflammation, 28 controls) [62**]. The same group also measured different brain endothelial transcripts in the dorsolateral prefrontal cortex (DLPFC). Considering the previously described 'high' and 'low inflammation' SZ biotypes, the authors found altered expression of structural and functional BECs markers such as increased CDH5 and OCLN, and decreased ABCG2 in the DLPFC of the SZ-high-inflammation group, as compared to controls (13 SZ-high-inflammation, 21 SZ-low-inflammation, 37 controls) [63**]. In addition, SZ-high-inflammation samples presented higher ICAM1, along with an increased number of CD163+ macrophages [63**]. Thus, neuroinflammation, endothelial dysfunction, increased BBB permeability and more peripheral macrophages in cerebro are linked with the high inflammatory biotype in SZ patients. Expression of ICAM and classic BBB genes in cultured BECs was independent of therapeautical doses of different antipsychotics [63**].

SERPINA3 exerts antiangiogenic and anti-inflammatory effects on the endothelium [64]. Its expression was increased in postmortem cerebral cortex of SZ subjects [65]. In 2020, high expression of SERPINA3 in SZ was replicated and was even higher in SZ-high-inflammation cases (14 SZ-high-inflammation, 23 SZ-low-inflammation, and 33 low-inflammation controls). Immunostainings indicated that blood-vessel-associated astrocytes are the major source of SERPINA3 increment in the SZ-high-inflammation group [66]. SERPINA3 upregulation in SZ could be a compensatory response to chronic inflammation [65]. However, SERPINA3 inhibits the catalytic activity of leukocyte elastase [67], a protease that cleaves ICAM1 which in turn favors attachment of leukocytes to endothelium [68]. Hence, elevated SERPINA3 in blood-vessel-associated astrocytes could be cooperating with CD163+ CNS infiltration in the SZ-high-inflammation group [63**].

Brain endothelial cells- and blood-brain barrier-related growth factors in schizophrenia

Growth factors secreted by the cellular components of the NVU modulate different aspects of BECs performance, including growth, proliferation, and BBB establishment [10]. Recent data about BEC-related growth factors in SZ are described below.

Studies; 56–833 SZ and 50–941 control subjects). Worth mentioning, heterogeneity was high across all these meta-analytic results (> 80%, except for CSF sICAM1) [33**]. Radu et al., (2020) reported lower sICAM1 and higher sVCAM1 plasma levels in first-episode SZ patients (50 SZ, 50 controls). sVCAM1 correlated positively with the severity of symptoms, suggesting an association between increased BBB permeability and worsening of the disease [56].

Plasminogen activator inhibitor-1 (PAI-1) is a pro-coagulant protein and its expression is enhanced in a pro-inflammatory environment [57], facilitating leukocyte migration across the endothelium [58]. Meixensberger et al., (2021) quantified CSF levels of endothelial cell adhesion molecules in SZ (40) and unipolar depression patients (39), and reported increased sICAM1, sVCAM1, and PAI-1 in SZ compared to the depressed patients. In SZ, CSF sICAM1 was also higher than reference control levels. Levels of these proteins were similar among first-episode and chronic SZ patients, suggesting that alterations were not a consequence of a degenerative process, nor of cumulative antipsychotic use [34**]. Elevated serum levels of PAI-1 and other pro-inflammatory cytokines were also reported in another study with large samples, and levels were even higher in SZ patients that had experienced Acute Ischemic Stroke (SZ-AIS) (150 SZ, 150 SZ-AIS, and 150 controls) [59]. The latter indicates a gradually increased inflammatory profile in SZ, exacerbated even further in SZ-AIS, along with the same trend in BBB permeability to circulating immune cells.

A cohort of 78 SZ patients and 73 controls was annotated into high and low inflammation groups based on circulating inflammatory cytokine transcripts. Plasma sICAM1 was elevated in the SZ-high-inflammation group compared to the high-inflammation control group (number of high-inflamed subjects not reported). Leukocytes can also produce ICAM1; however, authors reported no differences in subjects not reported). Leukocytes can also produce ICAM1; however, authors reported no differences in subjects not reported. Leukocytes can also produce ICAM1; however, authors reported no differences in subjects not reported. Leukocytes can also produce ICAM1; however, authors reported no differences in subjects not reported. Leukocytes can also produce ICAM1; however, authors reported no differences in subjects not reported. Leukocytes can also produce ICAM1; however, authors reported no differences in subjects not reported.
Evidence from peripheral and cerebrospinal fluid markers

Monocyte Chemoattractant Protein-1 (MCP1) is produced by different cells of the NVU, including BECs. It is involved in monocyte migration across endothelium [69] and can modulate BBB integrity [70]. In 2020, a meta-analysis reported unaltered MCP1 blood levels among drug-naive first-episode SZ (3 studies; 57 SZ and 127 controls) [71**]. In contrast, Klaus et al., (2021) found increased blood levels of MCP1 in SZ patients (20 SZ and 20 controls). Also, SZ subjects with particularly high MCP1 presented reduced cognitive flexibility [61**].

Glial Cell-derived Neurotrophic Factor (GDNF) is involved in BBB establishment [72,73]. Amyloid precursor protein (APP) is highly expressed in murine endothelium during the first stages of embryogenesis [74] and in vitro studies indicated a positive effect of APP on endothelial cells migration, proliferation [75] and nitric oxide production [76]. CSF measurements of 11 different growth factors associated with neuro-plasticity indicated lower levels of APP and GDNF in SZ (94 SZ and 118 controls) [77**]. Of note, Human Umbilical Vein Endothelial Cells (HUVEC) lacking APP presented four times increase in permeability to FITC-dextran in the presence of an IL-1β stimulus compared to control HUVEC, suggesting a more sensitive endothelial barrier function to inflammation in the absence of APP [75].

NGF, VEGF, Insulin (INS), Insulin-like Growth Factor (IGF1) and Insulin Receptor (INSR), are growth factors and receptors exerting powerful activities on BECs functioning. VEGF and NGF promote proliferation [12], whereas INS, IGF1R and INSR modulate nitric oxide production [78]. Interestingly, increased antibody reactivity for all these molecules was found in the CSF of SZ patients (17 SZ and 127 controls) [79].

Evidence from postmortem studies

Based on the heterogeneity of causes and symptomatology in SZ, Huang et al. [2020] applied a statistical methodology to identify genes with higher expression variance in SZ (212 SZ and 214 control postmortem samples). The authors describe a general over dispersion in gene expression among SZ brains and identified VEGF as the most differentially variable expressed gene in SZ as compared to controls [83]. This finding allows reconciling different studies that point to such diverse results regarding the participation of VEGF in SZ. Variation in VEGF expression among patients may be related to a differential role in distinct stages of the disease.

Astrocytes mediated blood-brain barrier dysfunction in schizophrenia

Astrocytes are involved in BBB formation [17,18] and maintenance [13,17–20]. Nonetheless, astrocytes contribute with pro-inflammatory signals in SZ patients with neuroinflammation [66]. Data indicating involvement of astrocytes in BBB dysfunction in SZ are described in the following lines.

Evidence from genetics

ALDH1A2 codes for aldehyde dehydrogenase that catalyzes a key step in retinoic acid synthesis by astrocytes, and retinoic acid is involved in the establishment of the BBB [17,18] and may prevent inflammation-induced increases in BBB permeability [84]. Methylome-wide association studies (MWAS) investigate correlations between a particular trait and the methylation state across different sites throughout the genome [85]. Interestingly, one of the most variably methylated site associated with SZ is located in the region of ALDH1A2 (744 SZ and 704 control subjects) [86].

The AQP4 is expressed in brain perivascular astrocytic processes. It is a water channel protein involved in brain homeostasis and in BBB development and function [87]. In 2020, three different SNPs in AQP4 were associated with SZ risk (100 SZ and 100 control subjects) [88].
Sex differences in blood-brain barrier integrity, permeability and brain endothelial cells functioning in schizophrenia

Sex differences in prevalence and symptomatology are evident in SZ [89]. There are sex differences in the immune system, as sex hormones have opposite effects in particular on Th cells, leading to stronger (adaptive) immune activation in females [90], which might be contributing to the sex differences observed in the development of SZ. Additionally, recent data suggest interactions between sex and the performance of BECs in SZ. These findings are detailed below.

Evidence from genetics

In 2021, a GWAS assessed interactions between sex and SZ genetic risk (33,403 SZ and 109,946 control subjects). The strongest gene-sex interaction for SZ was found in a locus harboring the gene MOCOS, a gene predominantly expressed in BECs [91].

As mentioned previously, CLDN5 is located at 22q11.2 chromosomal region and deletion of this region carries the largest genetic risk factor for SZ [44]. The CLDN5 rs10314 variant was associated with a 50% reduction in CLDN5 protein expression when assessed in-vitro [92]. Therefore, a genetic background combining 22qDS with CLDN5 rs10314 is expected to converge in even stronger reductions of CLDN5 protein expression. Whole-genome sequencing of 490 subjects with 22qDS indicated an increase in SZ frequency for females carrying rs10314. The association was absent in males carrying the variant [93*]; thus, suggesting possible interactions between sex and protection of BBB function in males.

Evidence from postmortem studies

Angiogenesis Inhibitor 3 (BAI3) is involved in angiogenesis [94,95]. A recent postmortem study evidenced an exclusive reduction of hippocampal BAI3 expression in male SZ patients (104 SZ and 174 control samples) [96*].

Evidence from mice studies

As part of the renin-angiotensin system, angiotensinogen (AGT) is hydrolyzed into angiotensin I (ANG1), which is then converted into ANGII [97]. ANGII increases BBB permeability through its binding to AT1R, expressed in BECs [98,99]. Increased serum AGT was reported in SZ (111 SZ and 109 controls) [100]. Vasconcelos et al. (2021), studied the effect of peri-pubertal administration of an AT1R blocker, candesartan, in a two-hit mice model of SZ that combines a neonatal immune challenge with stressors during puberty. Low doses of candesartan prevented SZ-like behavior in female and male mice. But only males induced with the two-hits had an increase in pro-inflammatory cytokines in the hippocampus that could be significantly reduced to control levels with the peri-pubertal administration of candesartan [101]. These results add novel evidence for differential sex contribution in SZ neurobiology, with different pathways possibly contributing to BBB susceptibility. Moreover, the administration of an AT1R blocker could help to reduce SZ risk, indirectly implying that protection of BBB could prevent stress-triggering SZ.

Brain blood supply in schizophrenia

Besides the relevance of BECs to the BBB, they are also involved in the regulation of local brain blood supply. Astrocytes, pericytes, and BECs sense changes in neuronal activity and modulate the diameter of the vessels, modifying the blood flow according to the metabolic and oxygen demands resulting from increased brain activity [102]. Oxygen diffuses freely from the blood to the brain across the BBB, as does carbon dioxide in the opposite direction [103], and diverse glucose transporters expressed in BECs ensure a continuous delivery of glucose to the brain [104]. Therefore, under physiological conditions, regional cerebral blood flow (CBF) is firmly coupled to cerebral glucose metabolism, and to brain activity [105,106]. Although, the vasculature density, the morphology of blood vessels, and their ability to dilate in response to brain activity are variables that may modulate the strength of this coupling and thus brain blood supply [107]. In the following lines, recent studies intended to evaluate brain blood perfusion in SZ will be detailed.

Evidence from different imaging techniques

Deviations in the brain vascular network structure may interfere with proper blood supply. Microtomographic images of the anterior cingulate cortex and the superior temporal gyrus showed strong correlations between neurite and capillaries curvatures in both SZ and controls (4 SZ and 4 control samples) [108], but higher neurite curvatures in the SZ group [109]. Capillary diameters did not differ between groups [108], whereas slices from SZ patients showed thinner neurites [109], leading to a volumetric mismatch between neurons and vessels.

SZ patients showed a deviant hemodynamic profile during cognitive challenges compared to control subjects, with a delay in mean flow velocity...
Evidence from animal experiments

Recent ex-vivo findings indicate inhibition of K⁺ rectifier currents in coronary arterial smooth muscle cells by olanzapine [114], ziprasidone [115], and risperidone [116]; widely used antipsychotic treatments for SZ. This leads to cell membrane depolarization and can promote vasoconstriction. Accordingly, brain perfusion in patients with SZ might be influenced by their treatment.

Retinal vasculature in schizophrenia

The retina and optic nerve are derived from the diencephalon during embryonic development and are components of the CNS [117]. Correspondingly, assessment of the retinal vasculature may serve as a reliable window to approach the cerebral vasculature of SZ patients. Recent studies that assessed the density and the morphology of retinal blood vessels in SZ are mentioned below.

Evidence from different imaging techniques

Fundus photography is a widely used method to obtain a two-dimensional representation of the retina and its vasculature [118]. Two studies using fundus photography indicated greater venular and narrower arterial diameters in SZ compared to control retinas (98, 34 SZ and 92, 45 controls, respectively) [119,120]. Furthermore, retinal venular diameters correlated with lower performance on working memory tests, whereas retinal arterial diameters correlated with better performance [120]. Another study using fundus imaging reported greater vein diameters in SZ, but also increased arterial diameters (39 SZ and 32 controls) [121]. Korann, et al., (2021) combined fundus photography with brain magnetic resonance imaging to investigate the relationship between the diameter of retinal blood vessels and brain structure in SZ (20 SZ and 17 controls). They found a negative correlation between average vein diameters and mean cortical thickness; the correlation was absent in the control group [122]. These results relate the decreased cerebral cortex thickness in SZ with recent hypotheses implicating vasculature as an important factor in SZ pathophysiology.

Optical coherence tomography angiography (OCTA) is a more modern optical method that allows volumetric mapping of the retina. Four studies conducted during 2020 and 2021 provided evidence for decreased density of retinal blood vessels in SZ (22-39 patients and 15-37 control subjects), in at least one region of the retina (macular or peripapillary area) [124,125,126,127]. In contrast, one recent study found a higher density of blood vessels in the retina of SZ patients (26 SZ and 21 control subjects) [128].

A possible declined response to hypoxia in schizophrenia and the role of early development endothelium

When cells are faced with limited oxygen levels, hypoxia-induced signaling pathways are activated to overcome these adverse conditions. BECs are sensitive to hypoxia and are relevant contributors to these adaptation processes [129]. Early life complications, including pre- and perinatal hypoxia, are risk factors for SZ (discussed in [130]), and become stronger predictors when co-occurring with a high genetic risk for this disease [4]. Accordingly, a diminished or altered hypoxia-induced signaling might be contributing to SZ. Recent data related to hypoxia-induced response in SZ are described below.

Evidence from genetics

Hypoxia inducible factors (HIFs) up-regulate transcriptional cascades that induce adaptive responses to protect the hypoxic tissue [131]. In 2020, an analysis was conducted to better understand the biological relevance of 145 SZ-related loci [132], previously reported by a SZ GWAS [133], and 33 of the SZ-associated genes were identified as HIFs-related genes. Also, SZ-mutation intolerant genes
(112 genes) were enriched for three different gene sets related to hypoxia-response [132]. Comparisons of whole-genome transcriptomic data from mice embryonic periventricular endothelial cells (PVECs) and adult BECs showed that thousands of genes are differentially expressed. Early development brain endothelium indicated an increased sensitivity to hypoxia as compared to adult brain endothelium, reflected by the up-regulation of HIF-1 target genes in PVECs [134*]. Strikingly, the expression of WNT frizzled class receptor 1 (FZD1), an hypoxia-response gene [135–137] that carries the strongest independent genetic association with SZ (429 SZ and 255 control samples) [138], was 600-fold higher in the early development brain endothelium.

Taken together, these results suggest an altered response to hypoxia in SZ, with a contribution from BECs possibly during early development.

CONCLUSION

This review summarized many recent findings reflecting structure and function of the brain vascularization in SZ in general and that of the BBB in particular. Some findings were only reported in one or two small samples. Meta-analyses showed high heterogeneity among included studies. This is a clear indication that this field is still in its infancy and few conclusions can be drawn at this stage. Nevertheless, some findings derived either from large studies or replicated are discussed below.

A meta-analysis indicated BBB leak in SZ, reflected by higher levels of CSF albumin [33**]. Three subsequent studies corroborated this result and indicated BBB leakage across a relatively similar percentage of the patients (15.8% [52**], 19% [53**], 15% [34**]). Reductions in the tight junction protein CLDNS were reported in the hippocampus [43**] and serum of the patients [42]. Also, aberrant CLDNS expression pattern was described in 22qDS-SZ-derived BECs [27*]. Accordingly, BBB integrity may be disrupted in some of the patients with SZ, causing BBB leakage. Additionally, the imbalances observed in BECs-related growth factors in SZ [61**,71**,77**,79*,82,83] might be translated into an altered BBB integrity and function after stressful events [75].

Multiple works indicate the presence of a SZ group associated with a pro-inflammatory immune status and increased BBB permeability to peripheral immune cells, reflected in higher brain or blood levels of ICAM [60**,61**,62**,63**]. Furthermore, two postmortem studies demonstrated increased number of peripheral macrophages in the CNS of SZ patients with high inflammatory profile [62**,63**]. Whether inflammation in SZ increases BBB permeability or if it is a cause of intrinsic endothelial dysfunction remains an open question.

No recent studies using PET to assess BBB function in SZ have been reported. Clinical studies using novel hydrophilic radioactive tracers, unidirectionally transported from the blood to the brain and with low baseline brain uptake [139–141], would contribute with highly-sensitive and quantitative *in-vivo* measurements of BBB integrity in SZ patients.

Considering that BECs are also involved in the regulation of regional brain blood supply, we reviewed evidence related to CBF and blood vessels morphology in SZ. Reductions in brain perfusion and activity are jointly present in SZ [110,112*,113*], but it is not clear whether there is a common origin for both alterations and how they might be influencing each other. Regarding the morphology of the blood vessels, greater retinal venular diameters were described in SZ [119,120*,121*], suggesting deviations of the local vascular network structure. It is important to consider that widely used antipsychotics for SZ treatment promoted depolarization of arterial smooth muscle cells [114–116]; thus, may favor vasoconstriction. Hence, we cannot rule out that perfusion anomalies in SZ are related to its treatment. Brain irrigation measurements in drugnaı ¨ve SZ patients would help to better understand brain perfusion in SZ.

In summary, while the field is not very consistent and the number of methods applied are large, there is converging evidence that some of the patients with SZ have increased BBB permeability (potentially those with a pro-inflammatory signature) and altered brain perfusion. Astrocytes may be contributing to the pro-inflammatory signature [66] and to BBB dysfunction in some of the patients [86*,88*]. It is important to have in mind that gene expression along development can vary drastically within the same brain cell type [134*]. Accordingly, SZ genetic background may be differentially manifested along with the establishment of the BBB [134*,138]. Overlaying SZ-associated genes with the transcriptomic profile of different cellular components of the NVU at distinct neurodevelopmental stages could shed lights on particular cells, cellular states, and molecular pathways being altered during SZ etiology. Additionally, the sex of the patients should also be taken into account when evaluating BBB performance, due to potential sex interactions with brain barrier integrity and permeability in SZ [91*,93*,96*,101].

Acknowledgements

The authors would like to thank Prof. Dr Bart Eggen and BSc. Vera Maksaev for critical reading, and MSc Bote Smid for language editing of the review.
Schizophrenia and related disorders

Financial support and sponsorship

This work is supported by a grant to I.E.C.S. from ZonMw mental health (GGZ) (ZonMw, project code: 6363 1001 0). V.P. is recipient of a Fondecyt grant (# 1190083). S.P. is a recipient of ‘Graduated School of Medical Sciences, University of Groningen’, and ‘Agencia Nacional de Investigación y Desarrollo de Chile’ fellowships for PhD studies (#21181102).

Conflicts of interest

I.E.C.S. was a consultant to Gabather, received research support from Janssen Pharmaceuticals Inc. and Sunovion Pharmaceuticals Inc. The rest of the authors do not have any conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

* of special interest
** of outstanding interest

1. World Health Organization. Mental Disorders 2019. Available from: https://www.who.int/news-room/fact-sheets/detail/schizophrenia [Accessed 25 June 2021].
2. Taipale H, Tanskanen A, Mehtala J, et al. 20-year follow-up study of physical morbidity and mortality in relationship to antipsychotic treatment in a nationwide cohort of 62,250 patients with schizophrenia (FIN20). World Psychiatry 2020; 19:61–68.
3. Smeland OB, Frei O, Dale AM, et al. The polygenic architecture of schizophrenia - rethinking pathogenesis and nosology. Nat Rev Neurosci 2020; 16:366–379.
4. Ursini G, Puric G, Chen Q, et al. Convergence of placenta biology and genetic risk for schizophrenia. Nat Med 2018; 24:792–801.
5. Geddes JR, Verdoux H, Takei N, et al. Schizophrenia and complications of pregnancy and labor; an individual patient data-metanalysis. Schizophr Bull 1999; 25:413–423.
6. Feigenson KA, Kusnecev AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev 2014; 38:72–93.
7. Murray RM, Bhavsar V, Tripoli G, et al. Neuronal regulation of the blood-brain barrier maintenance in the adult mouse brain. Glia 2021; 69:436–472.
8. Liu Y, Xia Y, Zhu H, et al. Investigation of neurodevelopmental deficits of 22q11.2 deletion syndrome with a patient-iPSC-derived blood-brain barrier model. Cells 2021; 10:
9. Vatine GD, Barrie R, Workman MJ, et al. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 2019; 24:995–1005.e6.
10. Campisi M, Shin Y, Osaki T, et al. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 2018; 163:1–13.
11. Fuutruth J, Margolinsky R, Benros ME, et al. Blood-brain barrier pathology in patients with severe mental disorders: a systematic review and meta-analysis of biomarkers in case-control studies. Brain Behav Immun Health 2020; 6:100102–110012.
12. Results of this meta-analysis suggest BBB damage and increased BBB permeability in SZ.
13. Meisensberger S, Kuzior H, Feibich BL, et al. Upregulation of sICAM-1 and sVCAM-1 levels in the cerebrospinal fluid of patients with schizophrenia spectrum disorders. Diagnostics 2021; 11.
14. Sun ZY, Wei J, Xie L, et al. The CLDN5 locus may be involved in the vulnerability to schizophrenia. Eur Psychiatry 2019; 14:354–357.
15. Ye L, Wei J, Sun Z, et al. Further study of a genetic association between the CLDN5 locus and schizophrenia. Schizophr Res 2005; 75:139–141.
16. Wu N, Zhang X, Jin S, et al. A weak association of the CLDN5 locus with schizophrenia in Chinese case-control samples. Psychiatry Res 2010; 178:223.
17. Afbaro A. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol 2012; 10:1096–1100.
18. Tajik N, Frech M, Schulz O, et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun 2020; 11:1995.
19. Omidinia E, Mashayekh Mazaf F, Shahamati P, et al. Polymorphism of the CLDN5 gene and Schizophrenia in an Iranian Population. Iran J Public Health 2014; 43:79–83.
20. Greene C, Hanley N, Campbell M. Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS 2019; 16:3.
21. Wu M-Y, Gao F, Yang X-M, et al. Matrix metalloproteinase-9 regulates the blood brain barrier in the human brain. Brain Res 2020; 1727:146553.
22. Brilla S, Og CWM, Weckler S, et al. Matrix metalloproteinase-9 activity and adovonregulated Hedgehog pathway in barrior-brain function in an in vitro model of CNS tuberculosis. Sci Rep 2017; 7:16031.
23. Musaese CS, Gelenius H, Hegh P, et al. Cerebrospinal fluid/plasma albumin ratio as a biomarker for blood-brain barrier impairment across neurodegenerative dementias: J Alzheimers Dis 2020; 75:429–436.
24. Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vasc Biol 2020; 2:HI–H18.
25. Ulbrick H, Eriksson EE, Lindbom L. Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol Sci 2003; 24:640–647.
26. Cargnelli MD, Visintin I, Kang SJ, et al. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 2000; 123:1092–1101.
27. Crockett AM, Ryan SK, Vasquez AH, et al. Disruption of the blood-brain barrier in 22q11.2 deletion syndrome. Brain 2021; 144:1351–1360.
28. This study suggests intrinsic BECs dysfunctions in SZ patients carrying a deletion at the 22q11.2 chromosomal region, using hPSC-derived BBB modelling.
29. Li Y, Xia Y, Zhu H, et al. Investigation of neurodevelopmental deficits of 22q11.2 deletion syndrome with a patient-iPSC-derived blood-brain barrier model. Cells 2021; 10:
30. Votadaria VC, Jones JR, Linker S, et al. Modeling brain disorders using induced pluripotent stem cells. Cold Spring Harb Perspect Biol 2020; 12:
31. Vutrop J, Margolinsky R, Benros ME, et al. Blood-brain barrier pathology in patients with severe mental disorders: a systematic review and meta-analysis of biomarkers in case-control studies. Brain Behav Immun Health 2020; 6:100102–110012.
32. This study suggests intrinsic BECs dysfunctions in SZ patients carrying a deletion at the 22q11.2 chromosomal region, using hPSC-derived BBB modelling.
33. Li Y, Xia Y, Zhu H, et al. Investigation of neurodevelopmental deficits of 22q11.2 deletion syndrome with a patient-iPSC-derived blood-brain barrier model. Cells 2021; 10:
34. Votadaria VC, Jones JR, Linker S, et al. Modeling brain disorders using induced pluripotent stem cells. Cold Spring Harb Perspect Biol 2020; 12:
35. This study suggests intrinsic BECs dysfunctions in SZ patients carrying a deletion at the 22q11.2 chromosomal region, using hPSC-derived BBB modelling.
Blood-brain-barrier disturbance in schizophrenia
Puvgel et al.

47. van Kesteren CFMG, Kemmels H, deWitte LD, et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry 2017; 7:e1075–e11075.

48. Wio J, Lee JD, JG, Zai CC, et al. The complement system in schizophrenia: where are we and what’s next? Mol Psychiatry 2020; 25:114–130.

49. Fong G, Lannon C, Korcha T, et al. The role of inflammation in the treatment of schizophrenia. Front Psychiatry 2020; 11:.

50. Sekar A, Blas A, de Rivera H, et al. Schizophrenia risk from complex variation component 4. Nature 2016; 530:173–183.

51. Kalinowski A, Lillent J, Arker LA, et al. Increased activation product of complement 4 protein in plasma of individuals with schizophrenia. Trans Psychiatry 2021; 11:486.

52. Kampana J, Straub J, Munt S, et al. Cerebrospinal fluid pathologies in schizophrenia-spectrum disorder - a retrospective chart review. Schizophr Bull 2021.

These results indicate BBB leakage in 15.8% of the patients from a first-episode SZ cohort.

53. Endres D, Meesensbinger S, Dersch R, et al. Cerebrospinal fluid, antineuronal autoantibody, EGG, and MRI findings from 992 patients with schizophrenia and affective psychosis. Transl Psychiatry 2020; 10:279.

These results evidence BBB leakage in 19% of a large SZ cohort (N = 456) and demonstrate that antipsychotic medication does not affect this outcome.

54. Y, X, Y, et al. The role of cell adhesion molecules P-selectin, E-selectin and intercellular adhesion molecule-1 in leucocyte recruitment induced by exogenous methylglyoxal. Immunology 2012; 137:65–79.

55. Kjær AT, Krog J, et al. Soluble adhesion molecules correlate with surface expression in an in vitro model of endothelial activation. Basic Clin Pharmacol Toxicol 2013; 113:273–279.

56. Radu CF, T, et al. The predictive value of endothelial inflammatory markers in the onset of schizophrenia. Neuropsychiatr Dis Treat 2020; 16:545–555.

57. Kang S, Tonga Y, et al. IL-6 trans-signaling induces plasmogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci USA 2020; 117:22351–22356.

58. Morrow GB, Whyte CS, Mutch NJ. A serpin with a finger in many Pals: PAI-1’s central function in thrombomodulation and cardiovascular disease. Front Cardiovasc Med 2021; 8:.

59. Ibrahim RR, Amer RA, Abouelh AA, et al. Micro RNA 146a gene variant /TNF-a /IL-6/IL-1β: a cross-link axis between oxidative stress, endothelial dysfunction and neuro-inflammation in acute ischemic stroke and chronic schizophrenic patients. Arch Biochem Biophys 2020; 679:108193.

60. Cai HQ, Weickert TW, Catts VS, et al. Increased levels of immune cell adhesion molecules are associated with memory impairment in schizophrenia and healthy controls. Brain Behav Immun 2020; 89:200–208. This is the only study that includes control subjects with a high inflammatory profile, and highlights that the increase in BBB permeability observed in SZ patients with high inflammation is not simply due to the inflammation, rather to an interaction of inflammation with a more vulnerable BBB in SZ.

61. Klaus F, Mitchell K, Luo SC, et al. Chemokine MCP1 is associated with cognitive flexibility in schizophrenia: A preliminary analysis. J Psychiatr Res 2021; 138:139–145.

This study reports increased blood ICAM1 in a SZ cohort with high levels of pro-inflammatory cytokines, supporting the associations between SZ, inflammation, and increased BBB permeability.

62. Twenty-Two, Robinson K, Brown AM, et al. Increased macrophages and CD4+ T cells in the brain of people with schizophrenia. Front Immunol 2020; 11:.

This study links inflammation with increased BBB permeability circulating immune cells in SZ.

63. Cai HQ, Catts VS, Webster MJ, et al. Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Mol Psychiatry 2020; 25:761–775.

This study links neuroinflammation, endothelial dysfunction, increased BBB permeability and CNS infiltration of peripheral macrophages in SZ patients.

64. Liu X, Lin Z, Zhou T, et al. Antianogenic and anti-inflammatory effects of SERPIN A9 on corneal injury. PLoS One 2011; 6:e18712.

65. Fillman SG, Sinclair D, Fung SJ, et al. Markers of inflammation and stress distinguish subsets of individuals with schizophrenia and bipolar disorder. Transl Psychiatry 2014; 4:e365–e365.

66. Murphy CE, Kondo Y, Walker AK, et al. Regional, cellular and species difference of two key neuroinflammatory genes implicated in schizophrenia. Brain Behav Immun 2020; 88:826–839.

67. Vincenzo L, Sfrochic DE, Lattorei A, et al. The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting Tc-receptor-degraded leukocyte elastase. Nat Med 2015; 21:518–523.

68. Champagne B, Tremblay P, Cattin A, et al. Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J Immunol 1998; 161:6398.

69. Deshmane SL, Kremlev S, Amini S, et al. Monocyte chemotactant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 2009; 29:919–925.

70. Yao Y, Sierka SE. Monocyte chemotactant protein-1 and the blood-brain barrier. Cell Mol Life Sci 2014; 71:683–697.
Schizophrenia and related disorders

94. Liu F, Tan A, Yang R, et al. C141Q/C141p and C142Q/C142p promote angiogenesis of endothelial cells through activation of ERK1/2 signal path way. Mol Cell Biochem 2017; 424:57–67.

95. Lee K-H, Ahn KY, Choi KC, et al. Expression of brain-specific angiogenic inhibitor 3 (BAI3) in normal brain and implications for BAI3 in ischemia-induced brain angiogenesis and malignant glioma. FEBS Lett 2004; 569:307–316.

96. Ennio KA, Glover ME, Shupe EA, et al. Periostin-SBRI exposure disrupts G protein-coupled receptor B3a1-mediated development of guanylate cyclase-dependent uterine motional behavior: relevancetopsychiatricdisorders. Neuroscience 2021; 471:32–50.

These results indicate an exclusive reduction of BAI3 among male SZ patients; thus, suggesting possible interactions between sex and brain endothelium functioning in SZ.

97. Egemsen S. The role of the brain renin-angiotensin system in neurodegener ative disorders. Curr Alzheimer Res 2005; 2:29–35.

98. Freitag-Gottsta MA, Dogho S, Banks WA. Angiotensin II type 1 receptor deficiency protects against the impairment of blood-brain barrier in a mouse model of traumatic brain injury. Int J Neurosci 2021; 1–9.

99. Li M, Yang X, Sun L, et al. Decreased serum apolipoprotein A4 as a potential peripheral biomarker for patients with schizophrenia. J Psychiatr Res 2021; 137:14–21.

100. Vasciavellos GS, dos Santos Junior MA, Monte AS, et al. Low-dose candesartan prevents schizophrenia-like behavioral alterations in a neuro developmental-two hit model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110548.

101. Bell AH, Williams SL, Castillo-Melendez M, et al. The neurovascular unit: effects of brain insults during the perinatal period. Front Neurol 2020; 13:.

102. Kady H, Noorani B, Cucullo L. Abisd-brain barrier overview structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020; 17:69.

103. Patching SG. Glucose transporters at the blood-brain barrier: function, regulati on and neuroprotection in the macula, of SZ patients regarding control retinas.

104. Li B, Freeman RD. Neurovascular-metabolic coupling between neural activity, glucose, and lactate in activated visual cortex. J Neurochem 2015; 135:742–754.

105. Venkat S, Chopp M, Chen J. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Cereb Med 2016; 57:225–228.

106. Shaw K, Bell A, Boyd K, et al. Neurovascular coupling and oxygenation are decreased in hppcampus compared to neocortex because of microvas cular differences. Nat Commun 2012; 3:1390.

107. Saiga R, Usugi M, Takeuchi A, et al. Brain capillary structures of schizoph renia cases and controls show a correlation with their neuron structures.

108. Mitzuani R, Saiga R, Takeuchi A, et al. Three-dimensional alteration of neurites in schizophrenia. Transl Psychiatry 2019; 9:85.

109. Egger ST, Bobes J, Rauen K, et al. Improvements of frontotemporal cerebral blood flow and cognitive functioning in patients with schizophrenia and healthy controls: a functional transcranial doppler study. Front Psychiatr 2021; 12:.

110. Kindler J, Schuster-Lutter F, Haul M, et al. Increased striatal and reduced prefrontal cerebral blood flow in clinical high risk for psychosis. Schizophr Bull 2018; 44:182–192.

111. Peitl V, Bachmayr VA, Sisko Markus L, et al. Improvements of frontotemporal cerebral blood flow and cognitive functioning in patients with first episode of schizophrenia treated with long-acting antipsychotics. J Clin Psychopharmacol 2021. This article indicates that enhancing CBP, through antipsychotic treatment, has a positive effect on patients’ cognitive functioning.

112. Sukumar N, Sabesan P, Anazodo U, et al. Neurovascular uncoupling in schizophrenia and related disorders: a bimodal meta-analysis of brain perfusion and glucose metabolism. Front Psychiatry 2020; 11.

This meta-analysis reports that regional reductions, and increases, in brain perfu sion and activity are jointly present in SZ.

113. Kang M, An JR, Seo MS, et al. Atypical antipsychotic olanzapine inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells. Pharmacol Rep 2021.

114. An JR, Seo MS, Jung HS, et al. Inhibition of the atypical antipsychotic risperidone on voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Eur J Pharmacol 2020; 874:173027.

115. London A, Benhar I, Schwartz M. The retina as a window to the brain - from eye research to CNS disorders. Nat Rev Neurosci 2013; 9:44–53.

116. Abramoff MD, Garvin MK, Sonka M. Retinal imaging and image analysis. IEEE Eng Med Biol Mag 2010; 3:169–208.

117. Liu Z, Sun L, Cai Y, et al. Hypoxia-induced suppression of alternative splicing of Servers 2.0 promotes breast cancer metastasis via activation of FDZ1. Cancer Res 2021; 81:12365.

118. Liu X, Atkins JR, Low S-K, et al. Intraocular pressure and blood-brain barrier dysfunction. Front Genet 2021; 12:.

119. Silverstein SM, Lai A, Green KM, et al. Retinal microvascularmorphology in schizophrenia. Eye Brain 2021; 13:205–217.

These results evidenced retinal microvascular density reductions in the macula and peripapillary area of SZ patients compared to control retinas.

120. Komar-Wierdak E, Rog J, Brzozowska A, et al. Analysis of the peripapillary and macular regions using OCT angiography in patients with schizophrenia and bipolar disorder. J Clin Med 2019; 8:.

121. Asanad S, Addis H, Chen S, et al. Retinal thickness and vascular pathology as ocular biomarkers for schizophrenia: morphometric analysis of the peripapillary and macular regions using OCT and OCTA in vivo. Invest Ophthalmol Vis Sci 2020; 61:15105–15105.

This study indicates reduced vessel density in the peripapillary area, while increases measured in retinas of SZ patients as compared to controls.

122. Banna D, Adhan I, Katz R, et al. Quantifying retinal microvascularmorphology in schizophrenia using swept-source optical coherence tomography angiography. Schizophr Bull 2021; 9:.

These results indicate increased retinal vessel density in SZ patients regarding control subjects.

123. Li Q, Michaud M, Park C, et al. The role of endothelial HIF-1a in response to sublethal hypoxia in C57BL/6 mouse pups. Labor Invest 2017; 97:356–369.

124. Robinson N, Bergen SE. Environmental risk factors for schizophrenia and bipolar disorder and their relationship to genetic risk: current knowledge and future directions. Front Genet 2021; 12:.

125. Schmidt-Kastner R, Guloksuz S, Kietzmann T, et al. Analysis of GWAS-derived schizophrenia genes for links to ischemia-hypoxia response in the brain. Front Psychiatr 2020; 11:.

126. Pardinas AF, Holmans P, Pocklington AJ, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong positive selection. Nat Genet 2018; 50:381–389.

127. Kimper FC, Angolano C, Visappagada R, et al. Embryonic periventricul ar endothelial cells demonstrate a unique pro-neurodevelopment and anti-inflammatory gene signature. Sci Rep 2020; 10: 20393–120393.

Early development brain endothelium indicated an increased sensitivity to hypoxia as compared to adult brain endothelium and highly expressed FDZ1, which carries the strongest independent genetic association with SZ.

128. Udarteova OO, Andreeva ER, Buravkova LB. WNT-associated gene expression in human mesenchymal stromal cells under hypoxic stress. Diol Bio chem Biophys 2018; 465:854–857.

129. Fan J, Qiu L, Shu H, et al. Recombinant frizzled1 protein attenuated cardiac hypertrophy after myocardial infarction via the canonical Wnt signaling pathway. Oncotarget 2018; 9:3080–3080.

130. Liu Z, Sun L, Cai Y, et al. Hypoxia-induced suppression of alternative splicing of MBD2 promotes breast cancer metastasis via activation of FDZ1. Cancer Res 2021; 81:12365.

131. Hugan G, Goulai S, Dauba A, et al. [18F]Fluoro-2-deoxy-sorbitol pet imaging for quantitative monitoring of enhanced blood-brain barrier permeability induced by focused ultrasound. Pharmaceutics 2021; 13:.

132. Okada M, Kikuchi T, Okamura T, et al. In-vivo imaging of blood-brain barrier permeability using positron emission tomography with 2-aminoo-[18F]Ciso-butyric acid. Nucl Med Com Mun 2015; 36:.

133. Nowosielski M, Difrando MD, Putzer D, et al. An intra-individual comparison of MRI, [18F]FET and [18F]FLT PET in patients with high-grade gliomas. PLoS One 2014; 9:e95830.