Research Article

The Influence of Tea Tree Oil (Melaleuca alternifolia) on Fluconazole Activity against Fluconazole-Resistant Candida albicans Strains

Anna Mertas, Aleksandra Garbusińska, Ewelina Szliszka, Andrzej Jureczko, Magdalena Kowalska, and Wojciech Król

Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland

Correspondence should be addressed to Wojciech Król; wkrol@sum.edu.pl

Received 9 June 2014; Revised 17 September 2014; Accepted 12 October 2014

Academic Editor: Vasilis P. Valドラミdis

Copyright © 2015 Anna Mertas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of this study was to evaluate the activity of fluconazole against 32 clinical strains of fluconazole-resistant Candida albicans, and C. albicans ATCC 10231 reference strain, after their exposure to sublethal concentrations of tea tree oil (TTO) or its main bioactive component terpinen-4-ol. For all tested fluconazole-resistant C. albicans strains TTO and terpinen-4-ol minimal inhibitory concentrations (MICs) were low, ranging from 0.06% to 0.5%. The 24-hour exposure of fluconazole-resistant C. albicans strains to fluconazole with sublethal dose of TTO enhanced fluconazole activity against these strains. Overall, 62.5% of isolates were classified as susceptible, 25.0% exhibited intermediate susceptibility, and 12.5% were resistant. For all of the tested clinical strains the fluconazole MIC decreased from an average of 244.0 μg/mL to an average of 38.46 μg/mL, and the fluconazole minimal fungicidal concentrations (MFC) decreased from an average of 254.67 μg/mL to an average of 66.62 μg/mL. Terpinen-4-ol was found to be more active than TTO, and strongly enhanced fluconazole activity against fluconazole-resistant C. albicans strains. The results of this study demonstrate that combining natural substances such as TTO and conventional drug such as fluconazole, may help treat difficult yeast infections.

1. Introduction

Essential oils are antiseptic substances produced by plants. Tea tree oil (TTO) is the essential oil obtained by steam distillation from the Australian native plant Melaleuca alternifolia and is used medicinally as a topical antiseptic. It has a broad spectrum of antimicrobial activity against a wide range of bacteria, viruses, and fungi, including yeasts and dermatophytes. TTO is a mixture of more than 100 different compounds, primarily terpenes (mainly monoterpenes and sesquiterpenes). The physical properties and chemical composition of TTO are variable, and it is, therefore, important to determine international standards. The Australian Standard for tea tree oil (AS 2782-1985) includes directives relating to the levels of two components: the minimum content of terpinen-4-ol should be at least 30% and the maximum content of 1,8-cineole should be less than 15% of the oil volume [1]. The international standard for tea tree oil (ISO 4730:2004) includes maximum and minimum percentage values for the 15 most important TTO components. TTO obtained by steam distillation of the leaves and terminal branches of Melaleuca alternifolia Cheel, Melaleuca linariifolia Smith, Melaleuca dissitiflora F. Mueller, and other species of Melaleuca should conform to this standard [2].

TTO has been used for centuries in Australian folk medicine, predominantly for wound treatment [3, 4]. In the 1920s, Penfold described for the first time the properties and chemical composition of TTO, and he later confirmed the antiseptic properties of TTO and its components [5–8]. In the 1930s, consecutive publications appeared which demonstrated the powerful antimicrobial activity of TTO when used in inhalation therapy, aseptic surgery, dental surgery, wound disinfection, and oral cavity rinsing [9–11].

Currently, TTO is used as a local agent for treating various diseases, predominantly dermatoses (e.g., recurrent herpes labialis, acne, pustules, dandruff, and rash). TTO is also used
to treat *Staphylococcus aureus* infections of the oral cavity and the pharynx, vaginitis, and respiratory tract diseases. Numerous studies have confirmed the broad antimicrobial activity of TTO against bacteria, fungi, and viruses, as well as microorganisms that are resistant to conventional drugs [12–16]. This is important due to the increase in infections that are difficult to treat, as TTO can be used as an alternative to or in combination with conventional drugs (including antibiotics and chemotherapeutic agents).

Treatment of infections can be based on monotherapy (using one antimicrobial drug) or combined therapy (two or more drugs). The primary aim of combined therapy is to enhance the action of the drugs while decreasing the dosages, through synergism. When monotherapy or combined therapy based on conventional drugs is unsuccessful, then combined treatment including a natural agent may be more effective. Several recent studies have reported the increased antimicrobial activity of natural substances combined with conventional drugs as compared to conventional drug treatment alone [17–20].

The aim of this study was to evaluate the activity of fluconazole against clinical strains of fluconazole-resistant *Candida albicans* and reference strain *C. albicans* ATCC 10231, after their exposure to sublethal concentrations of TTO or its main bioactive component terpinen-4-ol.

2. Materials and Methods

2.1. Candida albicans Strains. This study included 32 clinical *Candida albicans* strains, which were isolated from the following materials: swabs of the pharynx and oral cavity (n = 5), vagina (n = 15), sputum (n = 8), or faeces (n = 4). These strains were isolated from culture on Sabouraud agar (bioMérieux, Marcy l’Etoile, France), and species identification was performed using the biochemical test ID 32C (bioMérieux, Marcy l’Etoile, France). We also used the reference strain *C. albicans* ATCC 10231, which was purchased from Oxoid Ltd. (Basingstoke, Great Britain). We previously determined the sensitivity of *C. albicans* strains to fluconazole by the Kirby-Bauer disk diffusion susceptibility test [21] using 6 mm filter paper disks impregnated with 10 μg of fluconazole obtained from DHN (Cracow, Poland) and YNB agar (Yeast Nitrogen Base-Difco 0.5%, glucose 3%, agar 1.8%, pH = 7) also obtained from DHN (Cracow, Poland). The *C. albicans* strains were classified as exhibiting susceptibility (diameter of growth inhibition zone ≥18 mm), intermediate susceptibility (diameter of growth inhibition zone from 14 mm to 17 mm), or resistance (diameter of growth inhibition zone <14 mm) to fluconazole (the data were described in chapter 3). The fluconazole MIC (minimal inhibitory concentration) and MFC (minimal fungicidal concentration) values were determined by the broth dilution method according to the Clinical and Laboratory Standards Institute (CLSI document M27-A3-2008) [22]. Using this standard, the *C. albicans* strains were classified as exhibiting susceptibility (MIC ≤ 8 μg/mL), intermediate susceptibility (MIC from 9 μg/mL to 63 μg/mL), or resistance (MIC ≥ 64 μg/mL) to fluconazole (the data were presented in chapter 3).

2.2. Tea Tree Oil (TTO). In this study, we used Australian tea tree oil (*Melaleuca alternifolia*) from Thursday Plantation (Integria Healthcare, Eight Mile Plains, QLD, Australia) series 270930 that conforms to the ISO standard 4730:2004 [2] (Table 1). TTO was distilled from specially selected *Melaleuca alternifolia* leaves, a plant native to the coastal regions of northern New South Wales and south eastern Queensland in Australia. The analysis of TTO composition was carried out by gas chromatography according to the international standard ISO 4730 [2]. It was performed in the following conditions: fused-silica column (50 m × 0.2 mm i.d., film thickness 0.25 μm) and flame ionisation type of detector were used, the carrier gas was hydrogen (flow rate of 1 mL/min), the oven temperature programme was from 70°C to 220°C at a rate of 2°C/min, the injector temperature was 230°C, the detector temperature was 250°C, the volume of injected TTO was 0.2 μL, and the split ratio was 1:100.

In our study, we also used terpinen-4-ol, which was obtained from Sigma-Aldrich (St. Louis, MO, USA).

2.3. Fluconazole. In this study, we used the antifungal drug fluconazole (Polfarmex, Kutno, Poland). The structure of the fluconazole molecule is shown in Figure 1.

2.4. Preparation of the Initial Candida albicans Suspension. *C. albicans* cells cultured for 24 h on Sabouraud agar were suspended in a saline solution (0.85% NaCl) and adjusted to a 0,5 McFarland density standard (1,5 × 10⁸ CFU/mL). This suspension was later diluted to a density of 6 × 10⁴ CFU/mL. The suspension was then used to estimate the MIC and MFC values for TTO, terpinen-4-ol, and fluconazole.
2.5. Determination of MIC and MFC Values for TTO and Terpinen-4-ol. The TTO activity against the C. albicans strains tested was determined by broth macrodilution using the general dilution standards as described by PN-EN ISO 20776-1:2007 [24]. TTO was serially diluted in liquid Sabouraud medium with 10% Tween 80 to final TTO concentrations of 1% to 0.0075%. The Tween 80 detergent helps dissolve the TTO. The same volume of the liquid Sabouraud medium with 10% Tween 80 to final TTO concentrations was added to each tube to obtain a final density of 3 × 10^3 CFU/mL. After 24 h of incubation at 35°C, the cell growth in each tube was assessed visually. The MIC value was defined as the lowest concentration of fluconazole that resulted in no visible growth of the strains tested. The cells from the tube identified as the MIC, as well as several of the surrounding dilutions, were plated to Sabouraud agar. After 24 h of incubation at 35°C, the C. albicans colonies were counted. The MFC value was defined as the lowest concentration of fluconazole that showed no growth of C. albicans colonies. The experiment was performed in triplicate. The C. albicans strains were classified as exhibiting susceptibility, intermediate susceptibility, or resistance to fluconazole according to CLSI document M27-A3-2008 [22], as described in Section 2.1.

2.6. Brief Pretreatment of Candida albicans with 1/4 MIC TTO. For each sample, a tube was prepared containing saline solution with 10% Tween 80 and TTO to a final concentration of 1/4 MIC TTO. A control tube with no TTO was also prepared. Next, the C. albicans suspension was added to tubes to obtain a final density of 3 × 10^3 CFU/mL. The suspensions were then incubated at 35°C for 30 minutes. The samples were then rinsed twice and centrifuged between rinses (3000 × g, 15 minutes), and the cells were resuspended to a density of 6 × 10^4 CFU/mL. The suspension was then used to determine the fluconazole MIC and the minimal fungicidal concentration (MFC) of fluconazole. The study was performed in triplicate.

2.7. Determination of the Fluconazole MIC and MFC Values after Brief Pretreatment of Candida albicans with 1/4 MIC TTO. The fluconazole activity against the C. albicans strains tested was determined by broth macrodilution using the general dilution standards as described by PN-EN ISO 20776-1:2007 [24]. Serial, parallel dilutions of fluconazole ranging from 256.0 μg/mL to 0.125 μg/mL were prepared in liquid Sabouraud medium, and a control tube without the drug was included. For each of the tubes, the same volume of C. albicans cells suspension pretreated with 1/4 MIC TTO was added, and the inoculum was adjusted to a final density of 3 × 10^3 CFU/mL. After 24 h of incubation at 35°C, the cell growth in each tube was assessed visually. The MIC value was defined as the lowest concentration of fluconazole that resulted in no visible growth of the strains tested. The cells from the tube identified as the MIC, as well as several of the surrounding dilutions, were plated to Sabouraud agar. After 24 h of incubation at 35°C, the C. albicans colonies were counted. The MFC value was defined as the lowest concentration of fluconazole that showed no growth of C. albicans colonies. The experiment was performed in triplicate. The C. albicans strains were classified as exhibiting susceptibility, intermediate susceptibility, or resistance to fluconazole according to CLSI document M27-A3-2008 [22], as described in Section 2.1.

2.8. Prolonged Pretreatment of Candida albicans with Fluconazole and Sublethal Dose of TTO or Terpinen-4-ol. Serial, parallel dilutions of fluconazole ranging from 256.0 μg/mL to 0.125 μg/mL were prepared in liquid Sabouraud culture medium. Two positive controls were included. All tubes contained 10% Tween 80, and TTO was added to each dilution and one of the control tubes to achieve a final concentration of 1/4 MIC TTO. The second control tube contained only the liquid medium. Next, an equal volume of C. albicans suspension was added to each tube to a final density of 3 × 10^3 CFU/mL. All the tubes were incubated at 35°C for 24 h. After incubation, the cell growth in each tube was evaluated visually, and the fluconazole MIC and MFC values were defined, as described previously. The cells from the tube identified as the MIC, as well as several of the surrounding dilutions, were plated to Sabouraud agar. After 24 h of incubation at 35°C, the C. albicans colonies were counted, and the fluconazole MFC value was defined. The experiment was performed in triplicate. The prolonged pretreatment of C. albicans with fluconazole and terpinen-4-ol was performed identically as described above.

2.9. Statistical Methods. The results are presented as the arithmetic mean and the median. The statistical differences between the mean values were determined by Student’s t-test and the Mann-Whitney U test, depending on how well the results correlated with a normal distribution. Values of P ≤ 0.05 were considered statistically significant. The programme STATISTICA version 10 (StatSoft, Cracow, Poland) was used to perform the statistical analyses.

3. Results

The Candida albicans strains tested were resistant to fluconazole and susceptible to low concentrations of TTO. The clinical C. albicans strains and C. albicans ATCC 10231
reference strain, tested by the Kirby-Bauer disk diffusion susceptibility test, did not exhibit the zone of inhibition of growth. All the studied \textit{C. albicans} strains were classified as exhibiting resistance to fluconazole. The fluconazole MIC values for the 32 clinical \textit{C. albicans} strains ranged from 64.0 \(\mu \text{g/mL} \) to 256.0 \(\mu \text{g/mL} \) (average = 244.0 \(\pm 47.22 \mu \text{g/mL} \)). The most common values were 256.0 \(\mu \text{g/mL} \) (30 strains) and 64.0 \(\mu \text{g/mL} \) (2 strains). For \textit{C. albicans} ATCC 10231 strains tested, the fluconazole MIC was 256.0 \(\mu \text{g/mL} \).

The TTO MICs for the 32 clinical \textit{C. albicans} strains ranged from 0.06% to 0.5% (average = 0.19 \(\pm 0.09\% \)). The most common values were 0.125% (15 strains) and 0.25% (15 strains). The TTO MICs of the two remaining strains were 0.06% and 0.5%. For \textit{C. albicans} ATCC 10231 reference strain, the TTO MIC was 0.125%. These results indicate that the \textit{C. albicans} strains tested did not exhibit any cross-resistance to TTO and fluconazole. The TTO MIC values were used to calculate the sublethal doses (1/4 MIC TTO) used in the rest of the study.

The brief pretreatment of 32 clinical \textit{C. albicans} strains and of \textit{C. albicans} ATCC 10231 reference strain with 1/4 MIC TTO did not change the fluconazole MIC and MFC values. Exposing \textit{C. albicans} strains to 1/4 MIC TTO and fluconazole for 24 hours (prolonged pretreatment) significantly increased susceptibility yeast strains to fluconazole. Out of 32 fluconazole-resistant \textit{C. albicans} clinical strains, 28 strains (87.5\%) exhibited then high or intermediate susceptibility to fluconazole (Table 2).

Exposure of fluconazole-resistant \textit{C. albicans} strains for 24 h to 1/4 MIC TTO and fluconazole enhanced fluconazole activity against these strains. Overall, 62.5\% of isolates were classified as susceptible, 25.0\% exhibited intermediate susceptibility, and 12.5\% were resistant. For all of the tested clinical strains, the average fluconazole MIC decreased from 244.0 \(\mu \text{g/mL} \) to 38.46 \(\mu \text{g/mL} \) after this prolonged pretreatment, and the average fluconazole MFC decreased from 254.67 \(\mu \text{g/mL} \) to 66.62 \(\mu \text{g/mL} \) (Table 3). The MIC and MFC values for the susceptible strains \((n = 20)\) and strains with intermediate susceptibility \((n = 8)\) were statistically low compared to the analogous values obtained for the control sample and for the samples that were only briefly pretreated with TTO. For the group of susceptible isolates, the fluconazole MIC decreased to an average of 0.52 \(\mu \text{g/mL} \), and the fluconazole MFC decreased to an average of 4.25 \(\mu \text{g/mL} \). Prolonged pretreatment of \textit{Candida albicans} ATCC 10231 standard strain with 1/4 MIC TTO and fluconazole did not increase the susceptibility of this strain to fluconazole, like the four fluconazole-resistant clinical \textit{C. albicans} strains studied.

Terpinen-4-ol, the main bioactive component present in TTO, strongly enhanced fluconazole activity against fluconazole-resistant \textit{C. albicans} strains. The terpinen-4-ol MICs for clinical \textit{C. albicans} strains ranged from 0.06% to 0.25% (average = 0.11 \(\pm 0.09\% \)). For \textit{C. albicans} ATCC 10231 standard strain, the terpinen-4-ol MIC was 0.06%. The \textit{C. albicans} strains tested did not exhibit any cross-resistance to terpinen-4-ol and fluconazole. Exposure of fluconazole-resistant clinical and standard \textit{C. albicans} strains for 24 h to fluconazole and sublethal doses (1/4 MIC) of terpinen-4-ol strongly enhanced fluconazole activity against these strains, and all of \textit{C. albicans} isolates were classified as susceptible (fluconazole MIC decreased to 0.125 \(\mu \text{g/mL} \)). We summed up the results of this study, and the most important data are presented in a table form (Table 4).

Table 2: Susceptibility of fluconazole-resistant clinical \textit{Candida albicans} strains to fluconazole after exposure to 1/4 MIC TTO.

\textit{Candida albicans} strains \((n = 32)\)	Number (%) of \textit{Candida albicans} strains with the indicated susceptibility to fluconazole
Strains not exposed to TTO (control)	32 (100\%)
Strains exposed to 1/4 MIC TTO for 30 minutes	32 (100\%)
Strains exposed to 1/4 MIC TTO and fluconazole for 24 hours	4 (12.5\%) 8 (25.0\%) 20 (62.5\%)

4. Discussion

TTO is the most commonly used essential oil for its antibacterial and antifungal properties [3, 25]. In this study, we evaluated the change in fluconazole activity \textit{in vitro} against fluconazole-resistant clinical \textit{Candida albicans} strains exposed to the sublethal concentrations of TTO or terpinen-4-ol, the main bioactive component of TTO. The earlier \textit{in vitro} studies of the sensitivity of \textit{Candida} spp. to TTO have shown that TTO is highly active against these microbes, as well as azole-resistant strains, for which the TTO MICs ranged from 0.25\% to 0.5\% [14, 26]. For the \textit{C. albicans} strains that were resistant to both fluconazole and itraconazole, the TTO MICs ranged from 0.25 to 1.0\%, the TTO MIC\(_{90}\) was 0.5\%, and the TTO MIC\(_{99}\) was 1\% [27]. Another study showed that three fluconazole-resistant clinical \textit{C. albicans} strains had very low TTO MICs (0.15\% for two strains and 0.07\% for the third strain) [15].

The experiments performed in this study confirm the results from previously published studies in that all of the tested fluconazole-resistant \textit{C. albicans} strains were sensitive to TTO [14, 15, 28, 29]. The determined TTO MICs were low, ranging from 0.06\% to 0.5\%. The TTO antimicrobial activity is attributed mainly to terpinen-4-ol, the main bioactive component present in TTO [3, 14]. The determined MIC values for terpinen-4-ol were very low, ranging from 0.06\% to 0.25\%. Our study and other studies show that \textit{C. albicans} does not exhibit cross-resistance to TTO and azole agents [14, 15, 26, 27]. Clinical resistance to TTO has not been reported. Multicomponent nature of TTO may reduce the potential for resistance to occur spontaneously, and multiple simultaneous mutations may be required to overcome all of
Table 3: Fluconazole MIC (a) and MFC (b) values (μg/mL) for fluconazole-resistant *Candida albicans* clinical strains after their exposure to 1/4 MIC TTO.

(a) Fluconazole MIC values (μg/mL)

	Control	Brief pretreatment with TTO and fluconazole	Control	Brief pretreatment with TTO and fluconazole	Control	Brief pretreatment with TTO and fluconazole
Range of MICs	64.0–256.0	64.0–256.0	0.125–256.0	256.0–256.0	0.125–2.67	64.0–256.0
Average MIC	244.0 ± 47.22	256.0 ± 0.0	256.0 ± 0.0	256.0 ± 0.0	208.0 ± 88.88	208.0 ± 88.88
p	*P < 0.0001*	*P < 0.0001*	*P < 0.0001*	*P < 0.0001*	*P < 0.0001*	*P < 0.0001*

(b) Fluconazole MFC values (μg/mL)

	Control	Brief pretreatment with TTO and fluconazole	Control	Brief pretreatment with TTO and fluconazole	Control	Brief pretreatment with TTO and fluconazole
Range of MFCs	213.33–256.0	256.0–256.0	0.17–256.0	256.0–256.0	4.25 ± 6.19	256.0 ± 0.0
Average MFC	254.48 ± 754	256.0 ± 0.0	256.0 ± 0.0	256.0 ± 0.0	250.67 ± 15.08	127.83 ± 70.42
p	*P < 0.0001*	*P < 0.0001*	*P < 0.0001*	*P < 0.0001*	*P < 0.0001*	*P < 0.0001*

a All 32 tested fluconazole-resistant clinical *Candida albicans* strains.

b Fluconazole-resistant clinical *Candida albicans* strains (n = 20) that exhibited susceptibility to fluconazole after prolonged pretreatment with TTO.

c Fluconazole-resistant clinical *Candida albicans* strains (n = 8) that exhibited intermediate susceptibility to fluconazole after prolonged pretreatment with TTO.

P < 0.0001: the level of statistical significance for the average MIC/MFC values.

P: statistical significance compared to the control.

P: statistical significance compared to the group that was pretreated briefly.
the antimicrobial actions of each of the components [3]. Thus,
TTO can be used as a topical antiseptic to effectively treat
superficial mycoses caused by fluconazole-resistant Candida
spp. and other azole-resistant yeast. Unfortunately, TTO can
be potentially toxic when it is ingested in high doses, and,
therefore, TTO should not be administrated orally. The acute
oral toxicity of TTO is similar to the oral toxicity of other
common essential oils, for example, such as eucalyptus oil
[30, 31]. The lipophilic nature of TTO, which enables it to
penetrate the outer layers of skin, potentiates not only the
antisepic actions but also the possibility of TTO toxicity
due to dermal absorption. TTO can cause skin irritation at
higher concentrations and may cause allergic reactions in
preadmitted individuals [3, 31, 32]. Zhang and Robertson
observed ototoxic effect of 100% TTO [33]. The toxicity of
TTO is dose-dependent, and the majority of adverse events
can be avoided through the use of TTO in a diluted form [31].
TTO is not mutagenic or genotoxic [34, 35].

There is increasing interest not only in the activity of
natural substances against resistant bacteria but also in
the synergistic interactions between these substances and
conventional drugs [19, 20, 36–38]. Fluconazole is one of
the azole antifungal agents widely used for both prophylaxis
and therapy of Candida infections [39–41]. In this study,
we explored changes in the activity of fluconazole against
fluconazole-resistant C. albicans strains after exposure
in vitro to sublethal concentrations of TTO or terpinen-4-ol. We used
exclusively fluconazole-resistant strains because identifying
synergistic treatments for these strains would be especially
important. We tested sublethal concentrations of TTO and
terpinen-4-ol because we expected concentrations lower than
the MIC to weaken the cell structure without killing the
cells, facilitating the activity of fluconazole and consequently
inhibiting C. albicans resistance to fluconazole. Our results
show that brief (0.5 h) exposure of fluconazole-resistant C.
albicans strains to sublethal concentration of TTO (1/4 MIC
TTO) had no influence on the antifungal activity of flucono-
ze. However, exposing C. albicans cells to sublethal con-
centration of TTO and then treating them with fluconazole
inhibited the resistance to fluconazole in 87.5% of the tested
strains. These results suggest that there is a synergistic inter-
action between fluconazole and TTO against fluconazole-
resistant C. albicans. TTO was used to permeabilise the
yeast cell membranes, markedly increasing the susceptibility
to fluconazole. The TTO becomes embedded in the lipid
bilayer membrane, which disrupts its structure, resulting in
increased permeability and impaired physiological function.
TTO also inhibits the formation of germ tubes or mycelial
conversion in C. albicans and inhibits respiration in C.
albicans in dose-dependent manner [3]. Fungal cells exposed
to TTO will eventually rupture. Sublethal concentrations of
TTO also weaken Candida spp. cells vitality [41, 42]. The
mechanism of fluconazole antifungal activity is different.
It was demonstrated that fluconazole interferes with the
cytochrome P-450-dependent enzyme C-14α-demethylase,
which is responsible for production of ergosterol. The disrup-
tion of ergosterol synthesis causes structural and functional
changes in the fungal cell membrane, which predispose the
genus cells to damage. Inhibition of cytochrome c oxida-
tive and peroxidative enzymes is an additional antifungal
activity of fluconazole [39]. Several mechanisms have been
described for fluconazole resistance in C. albicans isolates:
increased production of lanosterol 14α-demethylase encoded
by ERG11 gene and decreases in the affinity of lanosterol 14α-
demethylase for fluconazole because of mutations in ERG11
gene and a defect in Δ5-6 desaturase encoded by ERG3 gene
causing loss of function in the ergosterol pathway. The other
mechanism of fluconazole resistance in C. albicans is the
active transport of drugs across the plasma membrane by
"efflux pumps," which requires the expression of the CDR1/2
and MDRI genes [39, 43–47]. TTO-induced cell membrane
damage can disrupt the function of "efflux pumps," thus
making the fungal cell more susceptible to fluconazole [48,
49].

Our data show that there is a synergistic effect in vitro
of sublethal concentrations of TTO and fluconazole
against fluconazole-resistant C. albicans strains. However,
the fluconazole-resistant C. albicans ATCC 10231 standard
strain and four clinical C. albicans strains did not increase
the susceptibility to fluconazole. The differences in mechanisms
of resistance of these strains to fluconazole were probable
cause of this effect. In our in vitro study the TTO main com-
ponent terpinen-4-ol was more active than TTO and strongly
enhanced fluconazole activity against all studied fluconazole-
resistant C. albicans strains. Mondello et al. [14] as well as

Reagents	C. albicans ATCC 10231	C. albicans clinical strains (n = 32)				
	MIC	MFC	Range	Average	Range	MFC
Fluconazole (µg/mL)	256.0	256.0	64.0–256.0	244.0 ± 47.22	213.33–256.0	254.48 ± 7.44
TTO (% v/v)	0.125	0.25	0.06–0.5	0.19 ± 0.09	0.125–0.5	0.37 ± 0.13
Fluconazole (µg/mL) with sublethal dose of TTO	256.0	256.0	0.125–256.0	38.46 ± 84.35	0.17–256.0	66.62 ± 96.16
Terpinen-4-ol (% v/v)	0.06	0.125	0.06–0.25	0.11 ± 0.09	0.125–0.5	0.22 ± 0.19
Fluconazole (µg/mL) with sublethal dose of terpinen-4-ol	0.125	0.125	0.125–0.125	0.125 ± 0.0	0.125–1.0	0.38 ± 0.42
Ninomiya et al. [50] observed that in vivo TTO and terpinen-4-ol were similarly effective against candidiasis caused by azole-resistant C. albicans. The mechanisms underlying the synergy between fluconazole and TTO did not elucidate. Yu et al. [51] confirmed the synergism between fluconazole and triclosan against clinical isolates of fluconazole-resistant C. albicans. Liu et al. [52] observed synergistic effect between fluconazole and glabridin against C. albicans related to the effect of glabridin on cell envelope. Ahmad et al. [53] described synergistic activity of thymol and carvacrol with fluconazole against Candida isolates. Both monoterpenes inhibited efflux by 70–90% showing their high potency to block drug transporter pumps.

Previous studies also have evaluated the activity of TTO against various microorganisms in combination with other antimicrobial substances. A synergistic effect was observed for itraconazole and TTO in a thermosensitive gel used to treat vaginal candidiasis [26]. Synergistic effects have also been observed between essential oils and ciprofloxacin, gentamicin, cefixime, and pristinamycin [20]. In a disc diffusion test using C. albicans, C. glabrata, C. tropicalis, C. krusei, C. guilliermondii, and C. parapsilosis, larger growth inhibition zones occurred around discs impregnated with TTO and amphotericin B than around discs containing only TTO [17]. In a study of Staphylococcus aureus, larger zones of growth inhibition occurred around discs impregnated with TTO and other essential oils compared to discs impregnated with TTO only [54].

The synergistic action of antimicrobial substances has also been shown using time-kill curves. The short pretreatment of Pseudomonas aeruginosa with a substance that disrupts the cytoplasmic membrane (carbonyl cyanide m-chlorophenylhydrazone, polymyxin B nonapeptide, or N-ethylmaleimide) enhanced the bactericidal effect of amphotericin B and vancomycin [60, 61]

The authors would like to thank the MELALEUCA company in Glivice (Poland) for kindly donating the Australian tea tree oil obtained from Melaleuca alternifolia, the Polfarmex company in Kutno (Poland) for kindly donating the fluconazole, and the LABOMED Microbiological Laboratory in Glivice (Poland) for kindly providing the clinical Candida albicans strains used in this study.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors would like to thank the MELALEUCA company in Glivice (Poland) for kindly donating the Australian tea tree oil obtained from Melaleuca alternifolia, the Polfarmex company in Kutno (Poland) for kindly donating the fluconazole, and the LABOMED Microbiological Laboratory in Glivice (Poland) for kindly providing the clinical Candida albicans strains used in this study.

References

[1] Standards Association of Australia, AS 2782:1985, Essential Oils—Oil of Melaleuca, Terpinen-4-ol Type, Standards Association of Australia, Sydney, Australia, 1985.

[2] International Organisation for Standardization, “Oil of Melaleuca, terpinen-4-ol type (Tea Tree oil),” International Standard ISO 4730:2004, International Organisation for Standardization, Geneva, Switzerland, 2004.

[3] C. F. Carson, K. A. Hammer, and T. V. Riley, “Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties,” Clinical Microbiology Reviews, vol. 19, no. 1, pp. 50–62, 2006.

[4] J. M. Wilkinson and H. M. A. Cavanagh, “Antibacterial activity of essential oils from Australian native plants,” Phytotherapy Research, vol. 19, no. 7, pp. 643–646, 2005.

[5] A. R. Penfold, “The essential oils of Melaleuca linariifolia (Smith) and Melaleuca alternifolia (Cheel),” Journal of the Royal Society of New South Wales, vol. 95, pp. 306–324, 1925.

[6] A. R. Penfold and R. Grant, “The germicidal values of some Australian essential oils and their pure constituents. Together with those for some essential oil isolates, and synthetics. Part III,” Journal of the Royal Society of New South Wales, vol. 59, pp. 346–349, 1925.

[7] A. R. Penfold and R. Grant, “The germicidal values of the principal commercial Eucalyptus oils and their pure constituents, with observations on the value of concentrated disinfectants,” Journal of the Royal Society of New South Wales, vol. 57, pp. 80–89, 1923.

[8] A. R. Penfold and R. Grant, “The economic utilization of the residues from the steam rectification of the essential oil of Eucalyptus cneorifolia and the germicidal values of the crude
and the pure active constituents,” Journal of the Royal Society of New South Wales, vol. 56, pp. 219–226, 1922.

[9] "An Australian antiseptic oil,” British Medical Journal, vol. i, p. 966, 1933.

[10] E. M. Humphrey, "A new Australian germicide,” Medical Journal of Australia, vol. 1, pp. 417–418, 1930.

[11] Anonymous, "Ti-troll oil,” British Medical Journal, vol. 2, p. 927, 1933.

[12] J. A. Vasquez, M. T. Arganoza, D. Boikov, J. K. Vaishampayan, and R. A. Akins, "In vitro susceptibilities of Candida and Aspergillus species to Melaleuca alternifolia (tea tree) oil," Revista Iberoamericana de Micología, vol. 17, no. 2, pp. 60–63, 2000.

[13] J. A. Vasquez and A. A. Zawawi, "Efficacy of alcohol-based and alcohol-free melaleuca oral solution for the treatment of fluconazole-refractory oropharyngeal candidiasis in patients with AIDS," HIV Clinical Trials, vol. 3, no. 5, pp. 379–385, 2002.

[14] F. Mondello, F. de Bernardis, A. Girolamo, and G. Salvatore, "In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Chees (tea tree) oil against azole-susceptible and -resistant human pathogenic Candida spp., isolated from the oral cavity of HIV-infected patients," International Journal of Antimicrobial Agents, vol. 31, no. 3, pp. 272–276, 2008.

[15] M. Fadli, A. Saad, S. Sayadi et al., "Antibacterial activity of Thymus maroccamus and Thymus broussetii essential oils against nosocomial infection—bacteria and their synergistic potential with antibiotics," Phytomedicine, vol. 19, no. 5, pp. 464–471, 2012.

[16] A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, "Antibiotic susceptibility testing by a standardized single disk method," American Journal of Clinical Pathology, vol. 45, no. 4, pp. 493–496, 1966.

[17] National Committee for Clinical Laboratory Standards/ Clinical and Laboratory Standards Institute (NCCLS/CLSI), "Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard—third edition," CLSI document M27-A3, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2008.

[18] "Fluconazolum (Fluconazol)," in Farmakopecia Polska VIII, vol. 2, p. 1763, Polskie Towarzystwo Farmaceutyczne, Warsaw, Poland, 2008.

[19] Polski Komitet Normalizacyjny, "Kliniczne badania laboratorijne i metody badań diagnostycznych in vitro. Oznaczanie wraźliwości drobnoustrojów i ocena przydatności gotowych testów do oznaczania wraźliwości na leki przeciwbakteryjne," Tech. Rep. PN-EN ISO 20776-1 2007, Polski Komitet Normalizacyjny, Warsaw, Poland, 2007.

[20] S. Stea, A. Beraudi, and D. De Pasquale, "Essential oils for complementary treatment of surgical patients: state of the art," Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 726341, 6 pages, 2014.

[21] F. Mondello, F. de Bernardis, A. Girolamo, G. Salvatore, and A. Cassone, "In vitro and in vivo activity of tea tree oil against azole-susceptible and -resistant human pathogenic yeasts," Journal of Antimicrobial Chemotherapy, vol. 51, no. 5, pp. 1223–1229, 2003.

[22] J. Bagg, M. S. Jackson, M. Petrina Sweeney, G. Ramage, and A. N. Davies, "Susceptibility to Melaleuca alternifolia (tea tree) oil of yeasts isolated from the mouths of patients with advanced cancer," Oral Oncology, vol. 42, no. 5, pp. 487–492, 2006.

[23] N. Thosar, S. Basak, R. N. Bahadure, and M. Rajurkar, "Antimicrobial efficacy of five essential oils against oral pathogens: an in vitro study," European Journal of Dentistry, vol. 7, pp. 71–77, 2013.

[24] S. Sharma and V. Hegde, "Comparative evaluation of antifungal activity of Melaleuca oil and fluconazole when incorporated in tissue conditioner: an in vitro study," Journal of Prosthodontics, vol. 23, no. 5, pp. 367–373, 2014.

[25] C. F. Carson and T. V. Riley, "Antimicrobial activity of the essential oil of Melaleuca alternifolia," Letters in Applied Microbiology, vol. 16, no. 2, pp. 49–55, 1993.

[26] K. A. Hammer, C. F. Carson, T. V. Riley, and J. B. Nielsen, "A review of the toxicity of Melaleuca alternifolia (tea tree) oil," Food and Chemical Toxicology, vol. 44, no. 5, pp. 616–625, 2006.

[27] T. Rutherford, R. Nixon, M. Tam, and B. Tate, "Allergy to tea tree oil: retrospective review of 41 cases with positive patch tests over 4.5 years," Australasian Journal of Dermatology, vol. 48, no. 2, pp. 83–87, 2007.

[28] S. Zhang and D. Robertson, "A study of tea tree oil ototoxicity," Audiology Neuro-Otoloy, vol. 5, no. 2, pp. 64–68, 2000.

[29] N. Pazyar, R. Yaghhoobi, N. Bagherani, and A. Kazerouni, "A review of applications of tea tree oil in dermatology," International Journal of Dermatology, vol. 52, no. 7, pp. 784–790, 2013.

[30] J. K. W. Klimmek, R. Nowicki, K. Szendzielorz et al., "Application of a tea tree oil and its preparations in combined treatment of dermatomycoses," Mikologia Lekarska, vol. 9, no. 2, pp. 93–96, 2002.

[31] M. A. Mirza, S. Ahmad, M. N. Mallick, N. Manzoor, S. Talegaonkar, and Z. Iqbal, "Development of a novel synergistic thermosensitive gel for vaginal candidiasis: an in vitro, in vivo evaluation," Colloids and Surfaces B: Biointerfaces, vol. 103, pp. 275–282, 2013.

[32] K. L. LaPlante, "In vitro activity of lysostaphin, mupirocin, and tea tree oil against clinical methicillin-resistant Staphylococcus aureus," Diagnostic Microbiology and Infectious Disease, vol. 57, no. 4, pp. 413–418, 2007.

[33] L. M. Hollier and S. M. Cox, "Fluconazole (Diflucan)," Infectious Diseases in Obstetrics and Gynecology, vol. 3, no. 6, pp. 222–225, 1995.
M. A. Kabir and Z. Ahmad, “Candida infections and their prevention,” ISRN Preventive Medicine, vol. 2013, Article ID 763628, 13 pages, 2013.

F. Eksi, E. D. Gayyurhan, and I. Balci, “In vitro susceptibility of Candida species to four antifungal agents assessed by the reference broth microdilution method,” The Scientific World Journal, vol. 2013, Article ID 236903, 6 pages, 2013.

R. Paduch, M. Kandefer-Szerszen, M. Trytek, and J. Fiedurek, “Terpenes: substances useful in human healthcare,” Archivum Immunologiae et Therapiae Experimentalis, vol. 55, no. 5, pp. 315–327, 2007.

K. A. Hammer, C. F. Carson, and T. V. Riley, “Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae,” Journal of Antimicrobial Chemotherapy, vol. 53, no. 6, pp. 1081–1085, 2004.

J. Cernicka and J. Subik, “Resistance mechanisms in fluconazole-resistant Candida albicans isolates from vaginal candidiasis,” International Journal of Antimicrobial Agents, vol. 27, no. 5, pp. 403–408, 2006.

M. Niimi, N. A. Firth, and R. D. Cannon, “Antifungal drug resistance of oral fungi,” Odontology, vol. 98, no. 1, pp. 15–25, 2010.

D. Hiller, S. Stahl, and J. Morschhauser, “Multiple cis-acting sequences mediate upregulation of the MDRI efflux pump in a fluconazole-resistant clinical Candida albicans isolate,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 7, pp. 2300–2308, 2006.

L. Manastir, M. C. Ergon, and M. Yücesoy, “Investigation of mutations in ERG11 gene of fluconazole resistant Candida albicans isolates from Turkish hospitals,” Mycoses, vol. 54, no. 2, pp. 99–104, 2011.

V. O. Carvalho, T. S. Okay, M. S. C. Melhem, M. W. Szeszs, and G. M. B. del Negro, “The new mutation L321F in Candida albicans ERG11 gene may be associated with fluconazole resistance,” Revista Iberoamericana de Micologia, vol. 30, no. 3, pp. 209–212, 2013.

S. D. Cox, C. M. Mann, J. L. Markham et al., “The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil),” Journal of Applied Microbiology, vol. 88, no. 1, pp. 170–175, 2000.

C. Giordani, A. Molinari, L. Tocccacieli et al., “Interaction of tea tree oil with model and cellular membranes,” Journal of Medicinal Chemistry, vol. 49, no. 15, pp. 4581–4588, 2006.

K. Ninomiya, N. Maruyama, S. Inoue et al., “The essential oil of Melaleuca alternifolia (tea tree oil) and its main component, terpinen-4-ol protect mice from experimental oral candidiasis,” Biological and Pharmaceutical Bulletin, vol. 35, no. 6, pp. 861–865, 2012.

L. Yu, G. Ling, X. Deng, J. Jin, Q. Jin, and N. Guo, “In vitro interaction between fluconazole and triclosan against clinical isolates of fluconazole-resistant Candida albicans determined by different methods,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 7, pp. 3609–3612, 2011.

W. Liu, L. P. Li, J. D. Zhang et al., “Synergistic antifungal effect of glabridin and fluconazole,” PLoS ONE, vol. 9, no. 7, Article ID e103442, 10 pages, 2014.

A. Ahmad, A. Khan, and N. Manzoor, “Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole,” European Journal of Pharmaceutical Sciences, vol. 48, no. 1-2, pp. 80–86, 2013.

V. Edwards-Jones, R. Buck, S. G. Shawcross, M. M. Dawson, and K. Dunn, “The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model,” Burns, vol. 30, no. 8, pp. 772–777, 2004.

C. J. Longbottom, C. F. Carson, K. A. Hammer, B. J. Mee, and T. V. Riley, “Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes,” Journal of Antimicrobial Chemotherapy, vol. 54, no. 2, pp. 386–392, 2004.

C. M. Mann, S. D. Cox, and J. L. Markham, “The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil),” Letters in Applied Microbiology, vol. 30, no. 4, pp. 294–297, 2000.

M. A. S. McMahon, I. S. Blair, J. E. Moore, and D. A. McDowell, “Habituation to sub-lethal concentrations of tea tree oil (Melaleuca alternifolia) is associated with reduced susceptibility to antibiotics in human pathogens,” Journal of Antimicrobial Chemotherapy, vol. 59, no. 1, pp. 125–127, 2007.

M. A. McMahon, M. M. Tunney, I. E. Moore, I. S. Blair, D. F. Gilpin, and D. A. McDowell, “Changes in antibiotic susceptibility in staphylococci habituated to sub-lethal concentrations of tea tree oil (Melaleuca alternifolia),” Letters of Applied Microbiology, vol. 47, pp. 263–268, 2008.

I. H. N. Bassolé and H. R. Juliani, “Essential oils in combination and their antimicrobial properties,” Molecules, vol. 17, no. 4, pp. 3989–4006, 2012.

G. Chladek, A. Mertas, I. Barszczewska-Rybarek et al., “Antifungal activity of denture soft lining material modified by silver nanoparticles—a pilot study,” International Journal of Molecular Sciences, vol. 12, no. 7, pp. 4735–4744, 2011.

W. L. Low, C. Martin, D. J. Hill, and M. A. Kenward, “Antimicrobial efficacy of liposome-encapsulated silver ions and tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans,” Letters in Applied Microbiology, vol. 57, no. 1, pp. 33–39, 2013.