SHORT COMMUNICATION

Apoptotic mechanisms of myricitrin isolated from *Madhuca longifolia* leaves in HL-60 leukemia cells

Monaj Kumar Sarkar1 · Amrita Kar2 · Adithyan Jayaraman2 · Karthi Shanmugam3 · Vellingiri Vadivel1 · Santanu Kar Mahapatra2

Received: 7 January 2021 / Accepted: 15 June 2021 / Published online: 22 June 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Myricitrin, a naturally occurring flavonoid in *Madhuca longifolia*, possesses several medicinal properties. Even though our earlier work revealed its role against the proliferation of acute myelogenous leukemia cells (HL-60), its molecular mechanisms have not yet been revealed. The current study aims to explore the molecular mechanisms of myricitrin (isolated from an ethnomedicinal drug *Madhuca longifolia*) to induce apoptosis in HL-60 cells. Treatment with IC-50 dose of myricitrin (353 µM) caused cellular shrinkage and cell wall damage in HL-60 cells compared to untreated control cells. Myricitrin treatment reduced the mitochondrial membrane potential (22.95%), increased DNA fragmentation (90.4%), inhibited the cell survival proteins (RAS, B-RAF, & BCL-2) and also induced pro-apoptotic proteins (p38, pro-caspase-3, pro-caspase-9 and caspase-3) in the HL-60 cells. The present study provides scientific evidence for the apoptosis caused by myricitrin in HL-60 leukemia cells. Hence, the phytochemical myricitrin could be considered as a potential candidate to develop an anticancer drug after checking its efficacy through suitable pre-clinical and clinical studies.

Keywords Myricitrin · Leukemia cells · Apoptosis · DNA fragmentation · Mitochondrial membrane potential · Cell signaling proteins

Introduction
Flavonoids are plant as secondary metabolites, chemically defined by their typical structure which consists of diphenylpropanes (C6-C3-C6) and carry two different aromatic rings containing three oxygenated heterocyclic carbons [1]. Myricitrin, a 3-O-rhamnoside of myricetin, is a flavonoid synthesized in several edible plants, including Chinese bayberry (*Myrica rubra*) [2–6]. Myricitrin is used as a flavor modifier in edible foods and dairy products in Japan [7]. Myricitrin is listed as “safe” by several committees such as U.S. Flavor and Extract Manufacturer Association (USFEMA) and the Joint Expert Committee on Food Additives (JECFA) [7].

Myricitrin showed anti-bacterial activity [4], anti-allergic effect [3], antioxidant and anti-diabetic activities [8], and anti-allodynic property [1]. It reduces inflammation [9], inhibits nitric oxide production in normal cells [2], functions as myeloperoxidase inhibitor [10] and protects against atherosclerosis [11]. Myricitrin exhibited anti-proliferative activity against prostate cancer PC-3 cells [12], azoxymethane-induced premalignant lesions [13] and ovarian cancer cells [14]. Our previous study revealed the anti-leukemic activity of myricitrin isolated from *Madhuca longifolia* leaf in HL-60 cells by inducing reactive oxygen species (ROS), cell membrane damage, and increasing lipid peroxidation [6]. However, the detailed mechanisms of the anti-proliferative action of myricitrin needs to be investigated. Hence, the present work aims to reveal the apoptotic mechanisms of myricitrin through in vitro studies in HL-60 cells.
Materials and methods

Materials

Myricitrin was isolated from the leaves of *Madhuca longifolia* (Voucher number BSI/CDM/273) as described in our previous paper [6] (Supplementary Fig. 1). HL-60 cells were purchased from NCCS, Pune, India and maintained in a sterile humidified CO₂ incubator at 37 °C using RPMI 1640 media (Himedia) supplemented with 10% fetal bovine serum (FBS-Himedia) and 1% antibiotic solution (Himedia).

Cell morphological changes

Changes in the morphology of HL-60 cells upon treatment with myricitrin were studied using light microscopy (Olympus BX43) as described by Lee et al. [15]. IC-50 doses of myricitrin (353 µM) and doxorubicin (82 µM) were used to treat HL-60 cells based on our previous report [6]. The untreated and treated cell suspensions were incubated in a sterile CO₂ incubator at 37 °C for 24 h. Then, the suspension was centrifuged at 2000 rpm for 8 min, the cell pellet was washed twice with sterile PBS and re-suspended in PBS. Then, 10 µL of cell suspension was placed on a sterile slide and observed for morphological changes under 40 × magnification.

Mitochondrial membrane potential (MMP)

The effect of myricitrin on the MMP of HL-60 cells was measured by following the method of Dash et al. [16]. HL-60 cells (1 × 10⁶ cells in 950 µL) were seeded in a sterile 6-well plate, treated with 50 µL of IC-50 doses of myricitrin (353 µM) and doxorubicin (82 µM) and kept in a CO₂ incubator at 37 °C for 24 h. After treatment, the cell suspension was centrifuged at 2000 rpm for 8 min, the pellet was collected and washed twice with PBS. Further, the cell pellet was re-suspended in 300 µL of PBS, mixed adequately with 1 µM of Rhodamine-123 (Rh-123) and incubated in the dark at 37 °C for 30 min. Then, the fluorescent intensity was measured by spectrofluorometer (Biotek, synergy H1 multimode plate reader) using excitation (493 nm) and emission (522 nm) wavelengths. Based on the results, the MMP was calculated and expressed on a percentage basis.

DNA fragmentation assay

DNA fragmentation in myricitrin-treated HL-60 cells was determined by TUNEL assay using APO-Direct kit (BD Pharmingen, Cat. No. 556381) [17]. HL-60 cells (2 × 10⁶ cells in 950 µL) were treated with an IC-50 dose of myricitrin (353 µM) for 24 h in a sterile CO₂ incubator at 37 °C. Then, the DNA fragmentation was analyzed in a flow cytometer (Beckman Coulter, CyAn ADP, Miami, FL, USA) using green (for dUTP-FITC incorporated in fragmented DNA) and red (for PI binding to DNA) filters and the results were processed through Kaluza software (Version 2.1, Beckman coulter).

In silico docking study

A molecular docking study was conducted with Schrödinger software (Schrödinger Release 2020–4: Glide, Schrödinger, LLC, New York) to analyze the interaction of myricitrin with the leukemia protein targets. The molecular structure of myricitrin was drawn using MarvinSketch (V19.13) and prepared using the LigPrep module implemented in Schrödinger. The energies of the structure were optimized using OPLS_2005 force-field. All possible ionization states were generated between the biological pH ranges of 5–9. The chiralities of the input structure were retained during the ligand preparation. Crystal structure of target proteins such as H-RAS (2CL7), N-RAS (3CON), K-RAS (4OBE), B-RAF (4MBJ), and BCL2 (6QGG) were obtained from the protein data bank (PDB) and used to analyze the binding affinity of myricitrin. The crystal structures were processed using the Protein Preparation Wizard implemented in Schrödinger. Protein preparation briefly includes the addition of missing hydrogen atoms, correction of metal ionization states, enumeration of bond orders to hetero groups, removal of co-crystallized water molecules, determination of optimal protonation states for histidine residues, optimization of hydrogen bond network of proteins, and minimization of relaxing in strained bonds. All crystal structures were co-crystallized with either a known inhibitor or endogenous ligand molecule. A 3D grid box for each protein was positioned by keeping the co-crystallized ligand as the centre, which covers all the crucial binding pocket amino acids. The prepared ligand was docked against each protein using Glide extra precision docking mode (Glide XP). OPLS3 force-field was used to score the docked complexes. The molecular interactions of the docked complex were visualized and analyzed using the molecular graphics system PyMOLV1.8 (Schrodinger, LLC).

Western blotting analysis

The effect of myricitrin on the expression of cell signaling pathway proteins (H-RAS, N-RAS, K-RAS, RAF, p38, BCL-2, Pro-caspase-9, Pro-caspase-3, Caspase-3 and BAX) in HL-60 cells was studied using the western blotting technique. HL-60 cells (4 × 10⁶ cells) were seeded in a sterile 6-well plate, treated with an IC-50 dose of myricitrin (353 µM) and incubated in a humidified CO₂ incubator for
After incubation, the cells were collected by centrifugation, washed with PBS and treated with 100 µL of lysis buffer (20 mM Tris–HCl, 150 mM NaCl, 1 mM EDTA, 1 mM Na2VO4, 1 mg/mL leupeptin, 1 mM PMSF, 0.1% CHAPS, pH 7.4). Then the protein concentration of the cell lysate was measured using the Bradford reagent. Cell lysate (50 µg of protein) with loading dye was subjected to 10% SDS polyacrylamide gel electrophoresis. Then, the separated proteins were transferred to a polyvinylidene fluoride (PVDF) membrane and blocked with 3% BSA. PVDF membrane with protein bands was then incubated with primary antibodies from Santa Cruz (USA) such as H-RAS (SC-35), N-RAS (SC-31), K-RAS (SC-30), RAF (SC-271929), Pro-caspase-9 (56073), Pro-caspase-3 (31A1067), p-38 (SC-7973), BCL-2 (SC-7382), BAX (6A7) and GAPDH (SC-365062) followed by gentle washing with TBST & TBS. Then, the membrane was treated with horse-radish peroxidase (HRP) conjugated secondary antibodies (Sigma Aldrich, A0545) for 2 h. The target proteins were visualized using an ECL detection kit (Biorad clarity max, Catalog No. 1705062) through Gel Documentation system (Biorad Chemidoc) and processed with Image-J software (Version 1.48).

Statistical analysis

For the MMP experiment, the results were expressed as mean with standard deviation. Statistical analysis was carried out by one-way analysis of variances (ANOVA) followed by Tukey’s post hoc test using Graph Pad Prism 5.0. Values marked with ***p < 0.05 are considered statistically significant as compared to untreated control.

Results and discussion

Cell morphology

Apoptosis is an essential feature of cell death, which mainly causes damage to the cell wall and the release of cellular debris. Even though cancer cells show resistance to apoptosis because of their cell wall rigidity, chemotherapeutics can alter the morphology of cancer cells. Cellular morphological changes in HL-60 cells in response to myricitrin treatment were observed using upright light microscopy and the results exhibited shrinkage and damage of the cell walls (Supplementary Fig. 2). Myricitrin-treated sample illustrated more damages and cell wall ruptures compared to untreated control cells. Thus, the cytotoxic potential of myricitrin through altering the cell wall rigidity of leukemia cells is revealed. Several cellular enzymes can be released due to myricitrin-induced morphological changes in HL-60 cells, as we noticed the release of lactate dehydrogenase in our previous study [6].

Myricitrin is a 3-O-α-L-rhamnopyranoside of myricetin and the rhamnose sugar might increases the water solubility of myricetin and thus enhances its bioavailability. In agreement with our results, rhamnose-containing phytochemicals like ursolic acid and betulic acid saponins exhibited cytotoxic potential against human colorectal adenocarcinoma cells [18]. In addition, L-rhamnose alone revealed an anti-cancer effect in Ehrlich carcinoma-bearing mice [19]. Hence, the presence of the rhamnose component might facilitate/improve the anti-proliferative activity of myricitrin. In line to our project, Ko et al. [20] reported the apoptotic mechanisms of the aglycone (myricetin) through mitochondrial-dependant translocation of cytochrome-C and activation of caspase 3 & 9, which was mediated by the decrease in the Bcl-2/Bax protein ratio in HL-60 cells. In their work, they have compared anti-proliferative activity of myricetin and its glycoside myricitrin in HL-60 cells and found myricetin (aglycone) was effective at a dose range of 20–80 µM. But, in our study, high concentration of myricitrin (353 µM) was used as IC-50 dose and hence, remarkable anti-proliferative action of glycoside (myricitrin) was noticed. Thus, by comparing these results it is inferred that, the aglycone (myricetin) is effective at low dose range, while high concentration of glycoside is necessary (because of sugar counterpart) to exhibit apoptosis in HL-60 cells.

An uptake of 27.32% myricitrin was observed at 120 min and after that, the uptake level decreased in HL-60 cells (Data not shown). Uptake of phyto-compounds by the cell is regulated by the plasma membrane, which is necessary for their cytotoxicity. Limitations of drugs’ therapeutic effect might be due to their impermeability to the plasma membrane and poor cellular delivery [21]. The molecular weight, size, high polarity of the molecules, presence of sugar moiety and interactions between phyto-compound and phospholipids of the cell membrane could be responsible for the poor absorption of myricitrin. Reduced uptake of myricitrin after 120 min may be due to either efflux of the phyto-compound by the cells or disturbance of cell membrane fluidity [22]. Once myricitrin entered into HL-60 cells, it induced apoptosis by damaging the cell membrane, altering MMP, causing DNA fragmentation and regulating cell signaling proteins.

MMP

Loss of MMP leads to the release of cytochrome-C from the mitochondrial wall, which results in apoptosis and therefore it is a vital indicator of cellular health [23]. The MMP of HL-60 cells treated with IC-50 dose of myricitrin was measured and the results revealed a significant (p < 0.05) loss.
of MMP in HL-60 cells (22.95%) (Supplementary Fig. 3). As myricitrin increased the production of intracellular ROS [6], the free radical mediated damage can cause oxidation of proteins and lipids in the inner wall of mitochondria and it may result in decreased MMP in HL-60 cells. Loss of MMP could increases the permeability of membrane pores, which are early apoptotic mechanisms followed by swelling and disruption of the mitochondrial membrane. Similarly, Gymnema montanum caused apoptosis in leukemia cells by reducing MMP up to 20% in HL-60 cells [24].

Fig. 1 DNA fragmentation measured in untreated control and HL-60 cells treated with myricitrin by TUNEL assay. TUNEL positive cells in untreated control (A) and myricitrin treated HL-60 cells (B) assessed by flow cytometry. Left side images show the histogram area in green colour indicates TUNEL negative cells while red colour denotes TUNEL positive cells. Right side images show dot plots of control and treated cells. (Color figure online)
DNA fragmentation

Apoptosis can cause cellular morphological and structural changes, which include shrinkage, cell wall damage, biochemical alterations, chromatin condensation and DNA fragmentation. In TUNEL assay, the reactants penetrate the nucleus, bind with the labeled dUTPs onto the OH moieties of fragmented DNA using TdT enzyme and the DNA fragmentation level was visualized through fluorescence probes. In this study, maximum DNA fragmentation was observed in HL-60 cells treated with myricitrin (90.4%) when compared with untreated control cells (0.1 to 1.9%) (Fig. 1 and Supplementary Table 1). DNA fragmentation is an important hallmark of the apoptosis in cancer cells, which results from the damaging of chromatin structure into smaller fragments by the activation of endonucleases [25]. The double-stranded DNA is cleaved by DNA fragmentation factor, which exhibits endonuclease activity at A/T-rich regions of DNA strands in the presence of Mg\(^{2+}\).

Cell signaling study

In silico docking results demonstrated the affinity of myricitrin towards the target proteins. Myricitrin exhibited binding affinity with H-RAS (− 7.289 kcal/mol), K-RAS (− 6.309 kcal/mol), N-RAS (− 4.756 kcal/mol), B-RAF (− 10.482 kcal/mol), and BCL2 (− 4.771 kcal/mol) of HL-60 cells (Supplementary Table 2 & Supplementary Fig. 4). Thus, inhibition of the presently investigated cell survival proteins by myricitrin might have induced the apoptotic pathways in HL-60 leukemia cells. These in silico findings are in agreement with the results of western blotting analysis of cell signaling proteins, which revealed that myricitrin inhibits the expression of different RAS (K-RAS,
N-RAS, and H-RAS) and RAF oncoproteins in HL-60 cells (Fig. 2A). Review of literature indicates RAS/RAF/MEK/ERK signaling pathway as the predominant cell survival mechanism in HL-60 cells [26–29]. Hence, the RAS-RAF protein targets were chosen in the present work to evaluate their interaction with myricitrin and also to reveal their contribution to apoptosis in HL-60 cells.

The members of the RAS gene family are K-RAS, H-RAS and N-RAS, which all encode proteins that have a pivotal role in cell survival and proliferation. Different types of human cancers, including leukemia, pancreatic, lung and colorectal cancers, are driven by mutations in RAS genes. When RAS genes mutated, cells grow uncontrollably and evade death signals in addition to giving resistance to cells towards cancer drugs. Nearly 30% of human cancers, including solid tumors and hematologic malignancies, are associated with mutations in RAS genes. Parikh et al. [30] noticed that all RAS proteins can induce myeloid leukemia. Hence, inhibition of different RAS proteins increases the chance of apoptosis in leukemic cells. In the RAS/RAF/MEK/ERK1/2 pathway, H-RAS, K-RAS and N-RAS are small GTP-binding proteins, which can activate RAF protein based on signals from cell surface receptors and thus regulate cells’ survival [31]. Blockage of RAS proteins is essential to control cell division and proliferation of leukemia cells, as they are critical components of the RAS/RAF/MEK/ERK signaling pathway. Western blotting results (Fig. 2A) indicated that myricitrin inhibits RAS proteins and thus blocks the RAS/RAF/MEK/ERK cell survival pathway. Similarly, other phyto-constituents like tocotrienol inhibited the expression of RAS and RAF proteins in HL-60 cells [29]. In addition to RAS and RAF proteins, myricitrin also inhibited the cell survival protein BCL2, an anti-apoptotic factor, which prevents the activation of BAX protein in the mitochondrial outer membrane and thus inhibits cell death [32].

On the other hand, myricitrin activated the pro-apoptotic factors such as p38, pro-caspase-3 and pro-caspase-9 in HL-60 cells (Fig. 2B). The p38 regulates extrinsic and intrinsic apoptotic factors such as BAX, Caspase-9 and Caspase-3 and thus induces apoptosis in HL-60 cells [33]. In agreement with our results, other phytochemicals 3,6-Dihydroxyflavone also reported to activate p-38 in HL-60 cells [27]. Activation of pro-apoptotic proteins by myricitrin might led to the activation of caspases followed by DNA fragmentation and apoptosis. Myricitrin-treated HL-60 cells exhibited the reduction of Pro-caspase-9 & Pro-caspase-3 and expression of Bax and Caspase-3 (Fig. 2B). Decreased BCL-2 and increased Bax expressions in myricitrin-treated HL-60 cells indicates mitochondrial-mediated apoptosis. Similarly, syringaresinol inhibited BCL2 and induced the expression of BAX, Pro-caspase-9/3, and thereby resulted in apoptosis in HL-60 cells [34]. Nobiletin induced Pro-caspase-9/3, altered BCL2 & BAX, and also increased p38 and caused MAPK mediated apoptosis in HL-60 cells [35].

Conclusions

Myricitrin is a natural constituent of several plant-based products and is found to play a key role as an anti-proliferating agent against leukemic HL-60 cells. The current work demonstrated experimental evidence for the potential anti-leukemic mechanism of myricitrin against HL-60 cells. Myricitrin induced apoptosis in HL-60 cells by causing cell wall damage, reducing MMP, increasing DNA fragmentation, up-regulating the expression of apoptotic proteins and down-regulating cell survival proteins. Based on the current research outcomes, myricitrin could be considered a potential anti-leukemic candidate for the development of pharmaceutical/nutraceutical formulations after conducting further studies using suitable pre-clinical and clinical models.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11033-021-06500-z.

Acknowledgements Authors are also grateful to the Honorable Vice-Chancellor, SASTRA Deemed University for providing the necessary support.

Author contributions Mr. MKS has performed the in vitro experiments, acquisition and analysis of data, and writing the manuscript draft. Ms. AK and Mr. AJ have provided technical support for in vitro experiments especially western blotting and acquisition of data. Mr. KS helped to perform in silico studies. Dr. VV contributed in experimental design, supervision, conceptualization, project administration and manuscript writing. Dr. SKM has conceptualized and designed the experiments, analyzed the data, manuscript writing and contributed reagents/materials/analysis tools.

Funding Authors are thankful to NMPB-AYUSH (Grant No. R&D/ TN-03/2016–17) for the financial support.

Data Availability The data and materials of this study are available from the corresponding author upon reasonable request.

Declarations

Conflict of interest The authors declare that there are no conflict of interest.

Consent to participate Not applicable as this work does not contain studies with human participants or animals.

Ethical approval This article does not contain any studies with human participants or animal performed by any of the authors.
References

1. Meotti FC, Missau FC, Ferreira J, Pizzolatti MG, Mizukazi C, Nogueira CW, Santos AR (2006) Anti-allodynic property of flavonoid myricitrin in models of persistent inflammatory and neuropathic pain in mice. Biochem Pharmacol 72(12):1707–1713

2. Yang ZG, Jia LN, Shen Y, Ohmura A, Kitanaka S (2011) Inhibitory effects of constituents from *Euphorbia lanulata* on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Mol 16(10):8305–8318

3. Shimosaki S, Tsurunaga Y, Itamura H, Nakamura M (2011) Anti-allergic effect of the flavonoid myricitrin from *Myrica rubra* leaf extracts in vitro and in vivo. Nat Prod Res 25(4):374–380

4. Sharma R, Kishore N, Hussein A, Lall N (2013) Antibacterial and anti-inflammatory effects of Scygium jambo L. (Alston) and isolated compounds on acne vulgaris. BMC Complement Med 13(1):1–10 Article No. 292

5. Zhang Y, Chen S, Wei C, Gong H, Li L, Ye X (2016) Chemical and cellular assays combined with in vitro digestion to determine the antioxidant activity of flavonoids from Chinese Bayberry (*Myrica rubra* Sieb. et Zucc.) leaves. PLoS ONE 11(12):e0167484

6. Sarkan MK, Mahapatra SK, Vadivel V (2020) Oxidative stress mediated cytotoxicity in leukemia cells induced by active phytoconstituents isolated from traditional herbal drugs of West Bengal. J Ethnopharmacol 251:112527

7. Hobbs CA, Swartz C, Maronpot R, Davis J, Recio L, Koyanagi M, Hayashi SM (2015) Genotoxicity evaluation of the flavonoid myricitrin in models of persistent inflammatory and neuropathic pain in rats. Adv Hematol. https://doi.org/10.1155/2012/524308 (Article No. 524308)

8. Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M (2018) Solid lipid nanoparticles of myricitrin have antioxidant and cellular assays combined with in vitro digestion to determine the antioxidant activity of flavonoids from Chinese Bayberry (*Myrica rubra* Sieb. et Zucc.) leaves. PLoS ONE 11(12):e0167484

9. Qi S, Feng Z, Li Q, Z, Zhang Y (2017) Myricitrin modulates NAPDH oxidase-dependent ROS production to inhibit endotoxin-mediated inflammation by blocking the JAK/STAT1 and NOX2/p47phox pathways. Oxid Med Cell Longev 2017:9738745. https://doi.org/10.1155/2017/973874

10. Meotti FC, Senthilmohan R, Harwood DT, Missau FC, Pizzolatti MG, Kettle AJ (2008) Myricitrin as a substrate and inhibitor of myeloperoxidase: implications for the pharmacological effects of flavonoids. Free Rad Biol Med 44(1):109–120

11. Sun GB, Qin M, Ye JX, Pan RL, Meng XB, Wang M, Luo Y, Li ZY, Wang HW, Sun XB (2013) Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE−/− mice. Toxicol Appl Pharmacol 271(1):114–126

12. Xu R, Zhang Y, Ye X, Xu S, Shi J, Pan J, Chen Q (2013) Inhibition effects and induction of apoptosis of flavonoids on the prostate cancer cell line PC-3 in vitro. Food Chem 138(1):48–53

13. Asano N, Kuno T, Hirose Y, Yamada Y, Yoshida K, Tomita H, Nakamura Y, Mori H (2007) Preventive effects of a flavonoid myricitrin on the formation of azoxymethane-induced premalignant lesions in colons of rats. Asian Pac J Cancer Prev 8(1):73–76

14. Zhang Y, Chen S, Wei C, Rankin GO, Ye X, Chen YC (2018) Flavonoids from Chinese bayberry leaves induced apoptosis and G1 cell cycle arrest via Erk pathway in ovarian cancer cells. Eur J Med Chem 147:218–226

15. Lee JE, Thuy NTT, Lee J, Cho N, Yoo HM (2019) Platyplyloseside isolated from *Betula platyphylla* is anti-proliferative and induces apoptosis in colon cancer and leukemia cells. Mol 24(16):2960

16. Dash SK, Chattopadhyay S, Dash SS, Tripathy S, Das B, Mahapatra SK, Bag BG, Karmarkar P, Roy S (2015) Self assembled nanofibers of betulinic acid: a selective inducer for ROS/TNF-alpha pathway mediated leukemic cell death. Bioorg Chem 63:85–100

17. Czarnomsy R, Bielawski K, Muszynska A, Bielawska A, Gorowicz A (2016) Biological evaluation of dimethylpyridine-platinum complexes with potent anti-proliferative activity. J Enz Inhib Med Chem 31:150–165

18. Sylla B, Lavoie S, Legault J, Gauthier C, Pichette A (2019) Synthesis, cytotoxicity and anti-inflammatory activity of flavone-containing ursolic and betulinic acid saponins. RSC Adv 9:39743–39757

19. Tomsk P, Soukup T, Cermaková E, Micuda S, Nogueira CW, Santos AR (2006) Anti-allodynic property of the flavonoid myricitrin from *Syzygium jambos* L. (Alston) and isolated compounds on acne vulgaris. BMC Complement Med 13(1):1–10 Article No. 292

20. Ko CH, Shen SC, Hsu CS, Chen YC (2005) Mitochondrial-dependent, reactive oxygen species-independent apoptosis by myricetin: roles of protein kinase C, cytochrome c, and caspase cascade. Biochem Pharmacol 69(6):913–927

21. Zhang R, Qin X, Cong F (2019) Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv 26(1):328–342

22. Tsuchiya H (2015) Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants. Molecules 20(10):18923–18966

23. Liao K, Bian Z, Xie D, Peng Q (2017) A selenium-modified ginger polysaccharide promotes the apoptosis in human promyelocytic leukemia (HL-60) cells via a mitochondrial-mediated pathway. Biol Trace Elem Res 177(1):64–71

24. Ramkumar KM, Manjula C, Elango B, Krishnamurthi K, Saravanan Devi S, Rajaguru P (2013) In vitro cytotoxicity of *Gymnema montanum* in human leukaemia HL-60 cells: induction of apoptosis by mitochondrial membrane potential collapse. Cell Prolif 46(3):263–271

25. Figueroa-Gonzalez G, Perez-Plasencia C (2017) Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol Lett 13(6):3982–3988

26. Lin S, Fujii M, Hou DX (2003) Rhein induces apoptosis in HL-60 cells via reactive oxygen species-independent mitochondrial death pathway. Arch Biochem Biophys 418(2):99–107

27. Chang H, Lin H, Yi L, Zhu J, Zhou Y, Mi M, Zhang Q (2010) 3,6-Dihydroxyflavone induces apoptosis in leukemia HL-60 cell via reactive oxygen species-mediated p38 MAPK/JNK pathway. Eur J Pharmacol 648:31–38

28. Ho SY, Wu WJ, Chiu HW (2011) Arsenic trioxide and radiation enhance apoptotic effects in HL-60 cells through increased ROS generation and regulation of JNK and p38 MAPK signaling pathways. Chem Biol Interact 193:162–171

29. Chen CC, Liu TY, Huang SP, To CT, Huang TC (2015) Differentiation and apoptosis induction by lovastatin and p53 in HL-60 cells via reactive oxygen species-independent mitochondrial death pathway. Oncol Lett 13(6):3982–3988

30. Parikh C, Subrahmanyam R, Ren R (2007) Oncogenic NRAS, KRAS, and HHRAS exhibit different leukemogenic potentials in mice. Cancer Res 67(15):7139–7146

31. Chung E, Kondo M (2011) Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunol Res 49(3):248–268

32. Tzifi F, Economopoulou C, Pichette A (2012) The role of BCL2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv Hematol. https://doi.org/10.1155/2012/524308 (Article No. 524308)

33. Popescu R, Heiss EH, Ferk F (2011) Ikarugamycin induces DNA damage, intracellular calcium increase. p38 MAP kinase
activation and apoptosis in HL-60 human promyelocytic leukemia cells. Mutat Res 709:60–66
34. Park BY, Oh SR, Ahn KS, Kwon OK, Lee HK (2008) (−)-Syringaresinol inhibits proliferation of human promyelocytic HL-60 leukemia cells via G1 arrest and apoptosis. Int J Immunopharmacol 8(7):967–973
35. Hsiao PC, Lee WJ, Yang SF, Tan P, Chen HY, Lee LM, Chang JL, Lai GM, Chow JM, Chien MH (2014) Nobiletin suppresses the proliferation and induces apoptosis involving MAPKs and caspase-8/-9/-3 signals in human acute myeloid leukemia cells. Tumor Biol 35(12):11903–11911

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.