Review
The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review

Antonio Zuorro 1,* , Janet B. García-Martínez 2 and Andrés F. Barajas-Solano 2

1 Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy
2 Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; janetbibianagm@ufps.edu.co (J.B.G.-M.);
andresfernandobs@ufps.edu.co (A.F.B.-S.)
* Correspondence: antonio.zuorro@uniroma1.it

Abstract: Over the last decades, microalgal biomass has gained a significant role in the development of different high-end (nutraceuticals, colorants, food supplements, and pharmaceuticals) and low-end products (biodiesel, bioethanol, and biogas) due to its rapid growth and high carbon-fixing efficiency. Therefore, microalgae are considered a useful and sustainable resource to attain energy security while reducing our current reliance on fossil fuels. From the technologies available for obtaining biofuels using microalgal biomass, thermochemical processes (pyrolysis, Hydrothermal Liquefaction (HTL), gasification) have proven to be processed with higher viability, because they use all biomass. However, due to the complex structure of the biomass (lipids, carbohydrates, and proteins), the obtained biofuels from direct thermochemical conversion have large amounts of heteroatoms (oxygen, nitrogen, and sulfur). As a solution, catalyst-based processes have emerged as a sustainable solution for the increase in biocrude production. This paper’s objective is to present a comprehensive review of recent developments on the catalyst-mediated conversion of algal biomass. Special attention will be given to operating conditions, strains evaluated, and challenges for the optimal yield of algal-based biofuels through pyrolysis and HTL.

Keywords: microalgal biomass; thermochemical conversion; catalytic upgrading; liquid fuels; hydrothermal liquefaction; pyrolysis; gasification

1. Introduction

Fossil fuels have been a critical commodity for the economic and social development of the modern world. However, their consumption has inevitably increased the levels of anthropogenic carbon dioxide (CO₂) emissions to concentrations that exceed the earth’s absorption capacity through the natural carbon cycle [1]. Biomass-based fuels (or biofuels) are considered as a substitute for traditional fossil fuels [2] for both developed and non-developed countries due to their abundance and distribution [3].

Over the last years, several biomass resources such as grass, wood, crops and residues, animal waste, municipal solid waste, and even aquatic plants have been studied to produce biofuels [4]. However, up to date, microalgae are considered one of the most attractive sources of renewable energy and raw materials; it diversifies the scope of different industries in the elaboration of food and feed, pharmaceuticals, pigments, colorants, bioplastics, and protein hydrolysates [5].

Microalgae and cyanobacteria are a diverse group of photosynthetic microorganisms that naturally grow in lakes, rivers, and oceans. Microalgae offer several advantages over plant-based biofuels such as (i) high growth rate, (ii) use of non-arable lands, (iii) can be grown in wastewater, (iv) high consumption of CO₂, and (v) their production can be directed toward the synthesis of several compounds of commercial interest [6].
To obtain biomass with a high concentration of specific metabolites is one of the cornerstones of microalgae biotechnology. Several authors have proved that specific culturing conditions such as nutrient concentration [7], photobioreactor configuration [8], environmental conditions (temperature and illuminance), agitation, and pH [9] directly influence the cellular composition, resulting in the final concentration and productivity of the strain, as well as the variation in the content of specific metabolites (lipids, carbohydrates, proteins, and other components) [10].

The transformation of algal biomass into biofuels is not new. Several studies have covered different areas on the strain selection, culture method, and transformation into biofuel, which is the critical link in the production chain toward obtaining sustainable biofuels from microalgae.

The algal biomass produced under specific conditions can be transformed into energy by applying thermochemical and biochemical methods. Biofuel such as Bio-oil, biochar, synthesis gas (syngas), and heat are obtained through thermochemical conversion. On the other side, biodiesel, biohydrogen, biomethane (or biogas), and bioethanol can be produced via the biochemical conversion of algal biomass [1]. Although different forms of cultivation and production have been developed in recent years, it is still necessary to find an effective and sustainable production mechanism to reach the full potential of microalgae-based biofuels, especially in large-scale industrial applications.

One possible solution to achieve the potential of algae as a feedstock for biofuels is the use of reactions that employ whole biomass such as anaerobic digestion (AD) and thermochemical conversion. Biogas is the main product of AD and is considered one of the most promising biofuels that can address rising concerns about fossil fuels [11]. Another alternative is the application of catalytic-based processes such as Hydrothermal Liquefaction (HTL) and pyrolysis. Through thermochemical conversion, the biomass is decomposed under oxygen/air deficient conditions to produce Bio-oil, Biochar (specially on HTL and pyrolysis process), and syngas (especially on gasification process), which primarily consists of carbon monoxide (CO) and carbon dioxide (CO₂) [12], the quantity and quality of the final product depends upon the process, reaction temperature, heating rate, and oxygen supply [13]. In comparison to the biochemical conversion of algal biomass, the thermochemical approach is a more straightforward route to produce biofuels due to several factors: (i) the entire biomass is employed as feedstock, (ii) the process times is shorter, and (iii) the final yield can be improved by the addition of chemical catalyst [14].

The present study is intended to give a comprehensive overview of the state-of-the-art usage of catalysts on the thermochemical conversion of algal biomass into solids, liquids, and gas biofuels. Special attention will be given to operating conditions, strains evaluated, and challenges for the optimal yield of algal-based biofuels through pyrolysis and HTL.

2. Algae-Based Biofuels

Biofuels are broadly classified by generations. First-generation (1st gen) biofuels are produced from food feedstock (corn, sugarcane, soybean, potato, beet, soybeans, coconut, sunflower, rapeseed, palm oil, switchgrass, Jatropha, Camelina, Cassava). Although 1st gen is considered a sustainable source of energy due to the reduction on greenhouse gas (GHG) emissions, specific details such as their competition with food supply, high requirement of government subsidies, large amounts of non-sustainable fertilizers, and environmental concerns due to the loss of biodiversity linked to the promotion of deforestation for large monoculture areas [15] hinder their true impact as a cleaner and more sustainable option over fossil fuels.

Second-generation (2nd gen) was conceived as a partial solution of several drawbacks of 1st gen biofuels. This generation relies on nonfood items such as cellulosic biomass, straw, manure, used cooking oil, and other non-conventional sources, which usually finish in landfills once their useful portion has been removed [12]. However, 2nd gen is still not industrially profitable due to biomass complexity and problems associated with its production, storage, and transportation [2].
Third-generation (3rd gen) focuses on the upgrade of aquatic feedstock, such as microalgal and cyanobacterial biomass, into different fuels. Microalgae have been praised as a better solution for the energy problem due to specific qualities of algal production: (i) do not compete with human and animal food stock, (ii) harvesting can be done through the year, (iii) can employ saline and wastewater, (iv) have better growth rate than higher plants, (v) can convert up to 183 G tons of CO$_2$ to produce 100 G tons of biomass in comparison to higher plants such as wood crops (165 G tons of CO$_2$ to produce 100 G tons of biomass) [16], and (vi) the concentration of transformable metabolites (lipids and carbohydrates) is stable in the biomass. First, the selected strain had to be cultured until it reaches the largest possible biomass concentration in the photobioreactor; once reached, the biomass is removed from the culture media (centrifugation, flocculation, filtration, and other techniques) and dried. Then, the dried biomass is ready to be used as feedstock for several biofuels (biodiesel, bioethanol, biogas, and so on). These different sections have been the main topic of research over the last 20 years, attracting the attention of different universities, research centers, and energy companies worldwide such as Ecopetrol (Colombia), Exxon Mobile, Shell (US), Petrobras (Brazil), and Total (France).

2.1. How the Production of Algae-Based Biofuels Changed over Time

Several companies worldwide such as Solix biofuels, Corbion (previously known as Terravia or Solazyme), Cellana, Sapphire Energy, Seambiotic, Oil Fox, Synthetic genomics, Euglena, and others started the race for algae-based biofuels. However, after years of research, none of the companies proved the economic balance of algal-based biofuels [2]. The latter can be due to several problems identified through the last decade. First, the microalgal biodiversity is so vast that after ten years of research, we are still far from identifying the total diversity of algae and cyanobacteria [15]. Another problem related to the strains is the stability of their growth on industrial photobioreactors and the synthesis of the target metabolite [5,6]. Limited studies reported that few species of microalgae and cyanobacteria possess an inherent capacity for lipid synthesis and storage (Table 1).

Strain	Lipids (wt%)	Carbohydrates (wt%)	Proteins (wt%)	Reference
Arthrospira platensis	30.23	31.89	16.81	[17]
Auxenochlorella protothecoides	42	26	30	[18]
Botryococcus braunii	45	10	44	[19]
Chlamydomonas reinhardtii	22.11	52.2	23.69	[20]
Ch. reinhardtii CC-400	28.5	n/a	n/a	[21]
Ch. Reinhardtii CC-4349	64.25	n/a	n/a	[22]
Chlorococcum sp G-9	36.5	n/a	n/a	[23]
C. kessleri	20	18.7	53.8	[24]
C. pyrenoidosa	19.8	14.8	57.3	[25]
C. vulgaris UTEX 259	28	35	20	[26]
C. vulgaris UTEX 1803	12	36	41	[27]
C. vulgaris Mutant (UV715)	41	n/a	n/a	[28]
Chlorococcum oleofaciens	20	42	35	[29]
Dunaliella tertiolecta	15	10	56	[30]
Nannochloropsis gaditana	17.6	n/a	24.1	[31]
Pseudokirchneriella Subcapitata	40	20	30	[32]
Phaeodactylum tricornutum	55.7	9	22	[33]
Scenedesmus almeriensis	13.1	n/a	30	[34]
Scenedesmus obliquus	13.1	n/a	30	[35]
Tetraselmis suecica	25.07	17.52	42.05	[36]
Initially, the studies focused on applying industrially relevant strains such as *Spirulina* (*Arthorspira*) [17], *Auxenochlorella* [18], *Botryococcus* [19,20], *Chlamydomonas* [21–23], *Chlorella* [24–29], *Dunaliella* [34], *Scenedesmus* [38–43], and *Tetraselmis* [44,45]. Over time, other strain with a unique capacity for the synthesis of lipids and hydrocarbons such as *Botryococcus braunii* [19,20] were isolated and identified, and more recently, the scientific community has opted for the production of mutant strains with large lipid storage [22,23,31].

Microalgae can be produced under autotrophic, mixotrophic, or heterotrophic conditions. Different systems for the production of algae are available for their culture under the three conditions, as mentioned earlier [41]. Autotrophic systems are the most common, since the algae only require light as an energy source and dissolved CO\textsubscript{2} as a source of carbon. Usually, algae growth under autotrophic systems can be produced in open or closed photobioreactors. Open ponds are the simplest of all systems for algal production, and it requires low energy inputs. It has easy maintenance; however, it is severely affected by seasonal variations and is prone to contamination by other microbes [42]. Mixotrophic and heterotrophic production of algae requires the addition of organic carbon sources (glucose, acetate, and others), which can lead to contamination by the presence of bacteria and fungi; therefore, these systems require closed photobioreactors (PBR). Closed PBR offers several advantages over open systems: (i) aseptic growth conditions, (ii) increased cell concentration due to better light distribution, (iii) improved pH control, and (iv) reduced water loss due to evaporation. However, their operation cost, maintenance, and energy inputs are considerably higher than in open ponds [42].

After biomass production, the cells are harvested from the media. Due to their nature, microalgal cells have a small size and low specific gravity; therefore, their concentration and harvesting are energy and time-intensive [43]. Several techniques are available at industrial scale such as centrifugation, filtration, flocculation, flotation, electroflootation, and so on [10]. However, the method’s selection and application lie on the technical and economic analysis since some of them can be extremely expensive and energy-intensive for the production of algal-based biofuels [44]. Once the biomass is removed from the media, most of the cell water content must be removed via spray drying, drum drying, freeze-drying, or solar drying to avoid any interference with the extraction [41]. Following drying comes the extraction of lipids and carbohydrates, which is considered as the crucial step that inhibits the industrial-scale production of algae-based biofuels [44]. The microalgal cell wall is made of polysaccharides and cellulose synthesized from silicic acid [45], and it must be broken in order to release both lipids and carbohydrates; as a consequence, only a fraction of the biomass is used in biofuel process production. Therefore, biodiesel and bioethanol production are still not economically feasible due to the high cost and energy inputs in almost all stages [46]. Other biofuels such as biogas and biohydrogen have gained attention as sustainable alternatives for energy production using microalgal biomass.

2.2. Biochemical Conversion for Third-Generation Biofuel

The biochemical conversion of algal biomass into third-generation biofuels are divided into biodiesel, bioethanol, biogas, and biohydrogen. Biodiesel from algae requires the extraction and conversion of lipidic fraction into low atomic weight compounds, biodegradable fatty acid methyl esters (FAME), for hands ready usage in engines through transesterification [47]. In the transesterification reaction in the presence of a chemical (acid, alkali) or biological (lipase) catalyst [48], methanol or ethanol is used to increase the reaction rate and maintain a balance change toward the production of fatty acid esters with glycerol as a by-product [49]. The biodiesel derived from algal biomass has a petrodiesel-like calorific value (39–41 MJ/kg) [50]; it also has a higher percentage of unsaturated fatty acid compared to saturated fatty acid, which is a prerequisite for fuel engineering [51]. A higher degree of unsaturation leads to better cold flow; however, insoluble particle production is simultaneously increased [52].
Microalgae are an alternative resource for bioethanol production as they showed higher productivity than certain feedstocks for bioethanol production, such as sugarcane and corn [53]. Several strains accumulate carbohydrates in excess (mainly as insoluble starch and cellulose, with the absence of lignin) of up to 50% of their dry weight (DW) [54]. These carbohydrates are not readily fermentable to bioethanol [55]; thus, pretreatment processes, including chemical (acid and alkaline) or enzymatic hydrolysis, are crucial [56–58].

There are many pretreatment methods (acid, basic, and enzymatic hydrolysis); however, their cost can significantly contribute up to 30% of the total cost of bioethanol production [59]. Acid hydrolysis is quicker and cheaper under high temperatures and pressures but can decompose sugar into inhibitors [60–62]. Conversely, under mild temperatures and pressure, enzymatic hydrolysis can be achieved, but it is slower, more costly, and still involves physical or chemical pretreatment [63].

Biogas is produced via a sequence of biochemical processes converting the organic material: hydrolysis, fermentation, acetogenesis, and methanogenesis, also known as anaerobic digestion (AD) [64]. In this process, the whole biomass is used for the production of methane (55–75%) and carbon dioxide (25–45%) [65]; therefore, the energy performance is higher in comparison to biodiesel and bioethanol [66]. Additionally, nutrients such as organic nitrogen or phosphorus may be mineralized and subsequently recycled for algae cultivation [67]. Unlike biogas, biohydrogen is produced via their metabolic pathways along with the cell growth; therefore, it does not require further processing of the biomass (i.e., harvesting, dewatering, drying, and extraction), and it is considered clean and renewable, with higher energy production (142 MJ/Kg) [68]. Biohydrogen can be obtained by photofermentation, dark fermentation, direct and indirect biophotolysis [69]; however, hydrogen production cannot be achieved amidst effective photosynthesis, as oxygen inactivates hydrogenase [70]. The Research and Development on algal-based biofuels is a field that, in recent years, has been maintained with a considerable number of publications. Figure 1 shows the number of publications per year in the last 18 years, according to the Scopus database (Elsevier). It is possible to observe an exponential increase in the number of publications between 2006 and 2015. Since 2016, the number of documents has remained almost constant up to a final number of 8022 (including accepted manuscripts for 2021). The United States, China, India, South Korea, and the United Kingdom dominate the scientific publication on algal-based biofuels.

![Figure 1](image_url)

(a)

Figure 1. Cont.
Figure 1. Evolution of the number of publications from 2003 to 2020 on algal biofuels (a) and their country of origin (b).

3. Thermochemical Conversion of Algal Biomass

Thermochemical methods can be grouped into four classes (Figure 2): hydrothermal liquefaction, pyrolysis, gasification, and torrefaction [71]. In the thermochemical process, the algal biomass is thermally decomposed into usable biofuels such as syngas, bio-oil, and biochar (Figure 2). Unlike the biochemical production of biofuels, thermochemical processes do not require the extraction of lipids nor carbohydrates; therefore, the entire biomass can be used. Finally, the reaction time is short, providing a simpler route for the biofuel production [10].

Figure 2. Different thermochemical conversion methods of microalgal biomass and their main products.

3.1. Microalgal Torrefaction

Torrefaction (usually called mild pyrolysis) is a pretreatment process focused on altering the physicochemical properties of biomass to improve their fuel characteristics and applicability in thermal conversion processes [72]. Their application of microalgae is relatively new (Figure 3a), with the first reported use in 2011. Usually, the reaction temperature of the torrefaction process occurs between 200 and 300 °C, under slow heating rates (<50 °C/min), mainly in an inert environment [73,74]. The torrefied biomass poses several
advantages: higher heating value, lower atomic O/C and H/C ratios, lower moisture content, higher water-resistivity, and improved reactivity [72]. There are several reports of torrefaction (both wet and dry) on algal biomass upgrade. The torrefied biomass of *S. platensis* (300 °C and 30 min) showed an increase in the higher heating value (from 20 to 25.92 MJ/kg) and a lower moisture content (from 7.61 to 1 wt%) in comparison to untreated biomass [73]. In a different study, *C. vulgaris* ESP-31 was torrefied in the presence of water (20 g dried microalga and 100 g of distilled water) using different temperatures (160, 170, and 180 °C) for 10 min. The torrefied biomass showed an increased fixed carbon (25.29 and 16.39 wt% respectively) and Higher Heating Value (HHV) in comparison with raw biomass (24.49 and 22.02 MJ/kg, respectively) [75]. In a complementary study, the treated biomass of *C. vulgaris* ESP-31 was further transformed through gasification [76]. As a result, the biomass reached the devolatilization peak at lower temperatures (between 266 and 270 °C) compared to raw samples (287.7 °C). The efficiency of torrefaction is linked to temperature and time reaction [77]. According to Chen et al. [78], 300 °C and 30 min increased the final HHV content in Chlamydomonas sp. JSC4 (from 19.27 to 25 MJ/kg). Another possibility is the application of wet torrefaction for the co-production of biochar and bioethanol; Yu et al. [79,80] torrefied *C. vulgaris* ESP-31 biomass addition of 0.2 M H$_2$SO$_4$ (170 °C, 10 min). Their results show a significant increase in the HHV, from 19.23 to 32.35 MJ/kg, while the hydrolysate contained a considerably high content of total reducing sugar (7.31–98.11 g/L).
3.2. Pyrolysis of Microalgae

Pyrolysis is the thermal decomposition of biomass at high temperature (400–600 °C), in an atmospheric-pressure inert environment. Compared to other conversion technologies, the pyrolysis of algal biomass has achieved reliable and promising outcomes that could lead to commercial exploitation [81]. Due to the lipid and protein content of algal biomass, the bio-\textit{oils} obtained have a higher heating value (10–35 MJ/kg) [82], higher aromatics, and lower acidity (pH 3.7) compared to lignocellulosic biomass (15.14–30.47 MJ/kg, pH < 3) [83–85].

Pyrolysis can be categorized in five modes: (i) slow, (ii) intermediate (iii) fast, (iv) flash, and (v) microwave pyrolysis; each one possesses a differential heating rate, the presence, and/or heating route [9]. Slow pyrolysis is characterized by the heating of biomass under a “slow” heating rate (0.1–0.8 °C/s), with moderate temperature (300–500 °C) and long retention times (5–60 min) [86–88]. Their main product is biochar with by-products such as bio-oil and syngas [89]. Under slow pyrolysis, different particle sizes can be processed; therefore, both macro and microalgae can be used without mechanical pretreatment. Intermediate pyrolysis is carried out using the intermediate conditions between slow and fast pyrolysis [90]. Normally, intermediate pyrolysis occurs at moderate temperatures of reaction (up to 500 °C), 0.5–25 min residence times for feedstocks, and 2–4 s moderate residence times for vapor [91]. The main product from intermediate pyrolysis is bio-oil (40–60%) followed by non-condensable syngas (20–30%) and biochar (15–25%) [92], the bio-oil obtained has a reduced viscosity with a small concentration of tar [93], and the syngas is mainly composed of hydrogen (H\textsubscript{2}), carbon monoxide (CO), carbon dioxide (CO\textsubscript{2}) and methane (CH\textsubscript{4}) [94]. Both bio-oil and syngas can be further refined into fuels for energy, heat, and transport [95]. One interesting product from intermediate pyrolysis is hydrogen. Generally, H\textsubscript{2} is not expected in conventional pyrolysis gas, as no reduction process for H\textsubscript{2} formation occurs; however, the contact between hot char and water vapor lead to CO and H\textsubscript{2} [96].

Biochar is a carbon-rich charcoal material that can be obtained from any biomass feedstock by thermal decomposition under minimal oxygen (O\textsubscript{2}) supply [97] and contains most of the feedstock mineral components [98]. As mentioned above, slow pyrolysis is the preferred method for biochar production. Biochar has a high heat value, carbon content, porosity, and strong capacity reduction [99]. Due to its sustainable nature and its carbon-neutral properties [100], biochar is mainly focused on carbon reduction, soil amendment, energy resources, and water treatment [101]. More recently, several researchers used biochar to synthesize metal-supported catalysts due to their unique physical properties and low price [102]. In a study on the slow pyrolysis of six genera of macroalgae, the authors obtained high yields of biochar (45.3–62.4 wt%) with moderate HHV values (10.7–17.8 MJ/kg) [84]. On another study, Chlorella sp. produced higher biochar yield (41 wt%) with relatively high heating value (21.5 MJ/kg) in comparison of the macroalga Sargassum sp. (39 wt% and 18.5 MJ/kg) [99]. Temperature is an important parameter on biochar production; when biomass from Laminaria japonica was subjected to higher temperatures under slow pyrolysis (600 °C) the yield of biochar was reduced from 78.34 to 27.05%, while ash content increased from 22.92 to 64.19% [103]. Finally, unlike most studies, Wang et al. [98] obtained a higher biochar yield (31 wt%) under fast pyrolysis of C. vulgaris; however, this result can be due an unusually high ash content on the biomass.

The preferred method for optimizing bio-oil production is fast pyrolysis; this method is carried out at elevated temperatures (850–1100 °C), fast heating rate (>1 °C/s), and short pyrolysis time (0.5–10 s) [104,105]. These conditions reduce secondary reactions (secondary cracking, condensation, and polymerization of intermediates), which contribute to the production of high bio-oil yields, making it efficient for biomass conversion [83,106]. Flash pyrolysis uses high temperatures (950–1250 °C), high heating rates (>1000 °C/s), and a reduced time (0.5–10 s), with bio-oil as their main product (90 wt%) [89,107]. Finally, Microwave-Assisted Pyrolysis (MAP) employs a heating rate between conventional pyrolysis and fast pyrolysis [107]. It is considered a more energy-efficient method than other pyrolysis-related systems [108], since it can use different particle size biomass. Over the last
years, several studies have been conducted to increase the efficiency of pyrolysis process using microalgal genera such as *Arthrospira* sp. [109], *Chaetoceros* sp. [93], *Chlamydomonas* sp. [4,110], *Chlorella* sp. [83,111–115], *Desmodesmus* sp. [116], *Dunaliella* sp. [98], *Haematococcus* sp. [93,117], *Isochrysis* sp. [118–120], *Microcystis* sp. [105], *Nannochloropsis* sp. [121–124], *Oscillatoria* sp. [125], *Pavlova* sp. [126,127], *Schizochytrium* sp. [128], *Tetraselmis* sp. [118,119], *Spirulina* sp. [112,129,130], and *Synechococcus* [119]. A detailed list of species studied can be found in Table 2.

The application of catalyst on microalgal pyrolysis is an alternative to increase selectivity for certain pyrolytic products (liquid, solid or gas) and improve process parameters (reduced temperature and processing time) [98]; it can also lead to in situ upgrading of generated bio-oil with less oxygenic compounds, which prevent polymerization and condensation [83,131]. Another advantage is that catalysts used for pyrolysis can be recycled to the reactor [83]. Various catalysts such as acid type, base type, metal type, zeolite type, carbon type or a combination of different materials may be used to improve pyrolysis [98]. The most common catalysts used include Na$_2$CO$_3$, metallic-based catalysts such as Ni, Mo, and ceria-based catalysts (NieCe/Al$_2$O$_3$ and NieCe/ZrO$_2$) have shown great catalytic efficiency [126]. On the other hand, other metal catalysts including Ce, Ti, Co, Mg, and Al did not show obvious catalytic effect [107]. ZSM-5-based zeolites such as H-ZSM-5, Fe-ZSM-5 Cu-ZSM-5, Ni-ZSM-5, and Ga-HZSM-5 are considered as the most effective catalyst for the pyrolysis of algal biomass. Ga-ZSM-5 is called a bifunctional catalyst, where Ga promotes decarbonylation and olefin aromatization reactions, while the remaining reactions (e.g., oligomerization and cracking) are catalyzed by the ZSM-5 [132]. In the study on the catalytic pyrolysis of *C. vulgaris* with egg whites, Ga-HZSM-5 and Cu-ZSM-5 increased the Aromatic production from 16.72% for normal HZSM-5 (30) to 21.16% and 18.03%, respectively [133]. Another study [132] found that Ga/ZSM-5 catalysts increased the yield of aromatics using Catalytic fast pyrolysis (CFP) by 40% compared to ZSM-5 catalyst. In the catalytic pyrolysis of Jatropha residues, [134] found that Ga/HZSM-5 yield the highest aromatics (95%) high monocyclic aromatic hydrocarbons (MAHs) and low polycyclic aromatic hydrocarbons (PAHs) selectivity of 87% and 13%, respectively. Other zeolites such as ITQ-2 and MCM-22 had a similar but less effective function [135]. In a study on the catalytic pyrolysis of *Nannochloropsis* sp. [121] were able to significantly reduce the oxygen content (from 30 to 19 wt%) and a higher calorific value (from 24.6 to 32.5 MJkg). Other studies such as [136–138] proved the ability of catalytic-mediated pyrolysis to increase the yield of bio-oil.

Du et al. [137] found that an increase in catalyst-to-biomass ratio from 1:1 to 5:1 using HZSM-5 significantly improved the aromatic yields. On the other hand, Gao et al. [138] obtained bio-oil with less nitrogenated compounds through the usage of Mg–Al layered double oxide/ZSM-5 composites on the pyrolysis of cyanobacterial biomass. On another study, Aysu et al. [118] improved the yield and quality of bio-oil from *Tetraselmis* sp. and *Isochrysis* sp. in a fixed bed reactor with the addition of NieCe/Al$_2$O$_3$ and NieCe/ZrO$_2$. Campanella et al. [111] investigated the efficiency of five different zeolite-based catalysts (H-, Fe-, Cu-, and Ni-ZSM-5) in the bio-oil production from *Chlorella* biomass, and they found that HZSM-5 increased the yield of the hydrocarbon fraction in the organic phase from 21 to 43 wt%. Finally, Mo et al. [129] evaluated the efficiency of MgO and ZSM-5 under environment enriched with N$_2$ and CO$_2$, where maximum bio-oil (46.2 wt%) was obtained with basic metal MgO. Figure 3 shows the evolution of the number of publications per year along the last 16-year period. According to the data obtained from the Scopus database (Elsevier), it is possible to observe an exponential increase in the number of publications between 2008 and 2017. Finally, the United States, China, India, South Korea, and the United Kingdom dominate the scientific publication on the application of torrefaction, pyrolysis, and HTL.
Strain	HHV (MJ/kg)	Heating Rate (°C/min)	Pyrolysis Time (min)	Pyrolysis Temperature (°C)	Catalyst	Bio-oil (wt%)	Bio-char (wt%)	Syngas (wt%)	Reference
Arthrospira plantensis	21.45	100	30	400–700	Ni/HMS-ZSM5	32.52	34.04	33.44	[109]
					Fe/HMS-ZSM5	30.01	31.84	38.15	
					Ce/HMS-ZSM5	31.80	31.79	36.41	
Chlamydomonas reinhardtii	20.47	150	10–34	500	hydrotalcite	54.84	37.59	7.57	[110]
Ch. debaryana	21.9	>200	30	500–800	β-zeolite	23.5	n/a	n/a	[4]
	21.2	n/a	30	300–450	Activated charcoal	43.8	n/a	n/a	
Chlorella sp.	19.5	n/a	10	500	Ni-ZSM-5	46.9	27.9	24.6	[111]
					Cu-ZSM-5	45.1	30.1	25.4	
					Mg-ZSM-5	53.8	27.4	22.8	
					Activated carbon	49.4	37.3	13.3	[112]
C. vulgaris	16.8	10	30	700	H+ZSM-5	25	28	n/a	[113]
	18.6	10	30	300–600	Ni-ZSM-5	18.97	n/a	n/a	[114]
Desmodesmus communis	n/a	n/a	20	460	HZSM-5	52.7	25.7	21.6	[115]
	15	100	60	500	KOH	12	60	28	
					MgO	15	61	24	
					H2O	13	63	24	
Haematococcus pluvialis	8.98	10	n/a	600	Microalgae Residue	15	60	25	[117]
					CeO3	23	30	47	
					Ce/Al2O3	25	32	42	
					NiCe/Al2O3	24	32	43	
					MgCe/Al2O3	23	31	46	[118]
					Ce/ZnO2	25	29	54	
					NiCe/ZnO2	23	27	50	
					MgCe/ZnO2	23	28	49	
Isochrysis sp.	12.38	100	60	500	Li-LSX-zeolite	42.5	33	24.5	[119]
	15	100	20	500	Li-LSX-zeolite	29	35	36	[120]
	15	100	20	500	Li-LSX-zeolite	29	35	36	
Table 2. Cont.

Strain	HHV (MJ/kg)	Heating Rate (°C/min)	Pyrolysis Time (min)	Pyrolysis Temperature (°C)	Catalyst	Bio-oil (wt%)	Bio-char (wt%)	Syngas (wt%)	Reference
Nannochloropsis sp.	15.17	50	60	400–600	Ni–Ce/Al₂O₃	23.3	30.9	n/a	[112]
	n/a	n/a	15	500–900	HZSM-5	49	40	10	[113]
N. oculata	18	n/a	n/a	400–600	Co-Mo/γ-Al₂O₃	26	42	n/a	[114]
Oscillatoria sp.	14.26	20	120	550	TiO₂, ZnO	33.33	43.05	26.25	[115]
					Ce₃O₃	21.07	47.96	45.92	[116]
					TiO₃	20.04	48.18	45.10	[116]
					Co/TiO₃	20.4	48.28	44.61	[116]
Pavlova sp.					Ce/TiO₃	21.07	47.86	41.07	[116]
					Ni/TiO₃	22.55	47.66	45.39	[116]
					Co/TiO₃	20.4	48.28	44.61	[116]
Schizochytrium limacinum	25.8	n/a	n/a	350–800	ZYNa	26	9	n/a	[117]
					Ce₃O₃	23	19	58	
					Ce/Al₂O₃	25	17	58	
					NiCe/Al₂O₃	25	17	58	
					MgCe/Al₂O₃	23	16	51	
					Mg/ZnO₂	23	18	59	
					Ce/ZnO₂	23	17	58	
					NiCe/ZnO₂	23	16	51	
					MgCe/ZnO₂	23	17	58	
Tetraselmis sp.	12.07	100	60	500	ZYS	49.4	25.4	25.2	[119]
					Magnete	49.4	25.4	25.2	[119]
Spirulina sp.	n/a	n/a	50	350–650	Activated carbon	46.4	33.2	20.4	[112]
					ZSM-5	44.8	21.1	34.1	[112]
S. platensis	17.6	15	60	350–500	MgO	46.2	29.5	24.3	[120]
	18.6	10	n/a	400	Ce(II)/HZSM-5	49.7	20	30.3	[130]
3.3. Hydrothermal Liquefaction of Algal Biomass

One of the problems with algal biomass is the necessity to remove the high-water content prior to the production of biofuels. In this case, Hydrothermal Liquefaction (HTL) stands out as a promising technology for the thermochemical conversion of biomass into more useful liquid fuels [139]. Unlike pyrolysis, HTL can convert high-moisture biomass to biocrude in water medium and thus does not require preliminary drying processes [140]. HTL is performed in the presence of water under high pressure (5–25 MPa) and sub-critical water temperature (280–370 °C). Under these conditions, macromolecules found within algal biomass (including lipid, protein, and carbohydrate) undergo depolymerization reactions (fragmentation, hydrolysis, dehydration, deoxygenation, aromatization, and repolymerization) [141] for the production of several products such as bio-oil, gas, solid residue, and aqueous phase by-products [142]. HTL is considered a more robust thermochemical technology, not only for the usage of wet biomass, but also due to their high biocrude yield (24–64 wt%) [143]; some essential nutrients (N, P, Mg, and K) can be recycled for microalgal culture [144]. Additionally, up to 50% of oxygen can be removed, resulting in a biocrude with a Higher Heating Value (HHV) ranging from 30 to 40 MJ/kg [145,146]. However, the algae-derived biocrude possesses some disadvantages such as a high-water content, high viscosity, and high heteroatom content, which impede its upgrade into usable fuels [143]. Several studies underline that the biomass load/ratio, reaction temperature, residence time, pressure, catalyst (including homogenous and heterogeneous catalyst), and reaction medium influence the yield, composition, and physicochemical properties of biocrude obtained under HTL [147]. The application of catalysts on HTL reaction is an interesting opportunity to improve the process in several aspects such as the yield and quality of biocrude [148,149], inhibition of side reactions, decrease of reaction temperature, and pressure reduce its viscosity and the processing time [150]. The catalysts employed can be separated into homogeneous (water soluble) and heterogeneous (non-water soluble) [139]; Table 3 presents a list of homogeneous and heterogeneous catalysts employed on the conversion of algal biomass into biofuels.

3.3.1. Homogeneous Catalysis

Homogeneous catalysts are water-soluble at room temperature. During the reaction, the formation of char/tar is inhibited while enhancing product yield by expediting the water–gas shift reaction [150]. The most common forms include alkali salts (Na$_2$CO$_3$ and KOH), mineral and organic acids (CH$_3$COOH and HCOOH), and metallic cations (Zn$^{2+}$ and Co$^{3+}$) [149,150]. Over the last years, several studies have been conducted to test the efficiency of different homogeneous catalyst using micro and macroalgal genera such as Chlorella sp. [151–154], Cyanidioschyzon sp. [155], Dunaliella sp. [156], Enteromorpha sp. [157], Isochrysis sp. [158], Laminaria sp. [159], Microcystis sp. [160], Nannochloropsis sp. [151,158,161], Pavlova sp. [158], Porphyridium sp. [151], Spirulina sp. [152,162,163], Tetraselmis sp. [163], Ulva sp. [164]; and a unknown mixture of algal species [165]. A detailed list of species and the catalyst studied can be found in Table 3.
Na$_2$CO$_3$ is the most common catalyst employed, and they can enhance the production of BTEX (benzene, toluene, ethylbenzenes, and xylenes) and C5 to C18 aliphatic hydrocarbons, which are critical elements of gasoline and diesel fuels \[139\]. In their work, Ref. \[158\] observed that Na$_2$CO$_3$ enhanced the yield of bio-crude from *Nannochloropsis* sp. at 250 °C. However, at higher temperatures (300–350 °C), other species studied such as *Pavlova* and *Isochrysis* sp. have higher bio-oil yields (50–60%). The difference between results can be explained by the difference on biomass composition, since *Pavlova* and *Isochrysis* sp. have high lipid and carbohydrate contents. These results are consistent with those reported by \[151\], who observed that algae with high carbohydrate content were efficiently liquefied. In other study, \[163\] found that Na$_2$CO$_3$ increased the bio-oil yield up to 52% (29% higher than for the uncatalyzed process) on *Spirulina platensis*, and Ca$_3$(PO$_4$)$_2$ and NiO produced a negative effect on bio-oil yield. On the other hand, \[153\] found that Na$_2$CO$_3$ does not improved the formation of bio-oil on a strain of *C. vulgaris*. KOH has been reported as an interesting catalyst; according to \[155\], in the catalytic HTL of *Cyanidioschyzon merolae*, KOH can increase the bio-oil yield in the range of 5–10% of bio-oil (from 16.9 to 22.7%) than for the non-catalytic process under similar reaction conditions. The performance of alkali catalyst is significantly affected by the temperature of the process, irrespective of the species evaluated \[153,160\]. For example, the formation of aliphatic and cyclics are directly affected with an increment of temperature (300 °C); however, at higher temperatures, their concentrations declined due to subsequent cracking \[139\]. Apart from alkaline catalysts, both organic (HCOOH and CH$_3$COOH) and inorganic acid (H$_2$SO$_4$) catalysts have been used \[153,166\]. According to Zhuang et al. \[167\], a concentration of 6% of H$_2$SO$_4$ increased up to 70% the bio-oil production from macroalga *Ulva prolifera* sp.; however, the bio-oil contained large quantities of O, S, and N (52.89, 3.23, and 1.43 wt% respectively) which must be eliminated before it can be used as a fuel. In another research, \[166\] found that 2.4% H$_2$SO$_4$ had a positive effect on the bio-crude oil production from *Dunaliella tertiolecta*; it can be highlighted that the bio-oil obtained is composed mainly of esters, carboxylic acids, and ketones. In the application of HCOOH and CH$_3$COOH in a reaction with *C. vulgaris* (300–350 °C for 1 h), Ross et al. \[152\] demonstrated that acid catalyst produced a higher bio-crude oil yield with a better flowability of oil product. Yang et al. \[157\] obtained a maximum yield of 28% of bio-oil using H$_2$SO$_4$ and CH$_3$COOH in the catalytic HTL of *Enteromorpha prolifera*. There are certain challenges that hinder the prospect of industrial application of homogeneous catalysts on HTL. Catalysts based on carbonates (hydroxides or simple carboxylic acids) have a low efficiency on the decarboxylation, isomerisation, and aromatization of fatty acids \[140\]. Formic acid and acetic acid can induce the formation of gas fractions (30 wt% and 16–22 wt%, respectively) \[152\], and are consumed through the reaction stage; therefore, this type of catalyst must be removed and disposed \[150\].
3.3.2. Heterogeneous Catalysis

Heterogeneous catalysts, or water-insoluble catalysts, exist in the different phases with liquefaction medium; therefore, they can be recovered and recycled [147]. Another major advantage over homogeneous catalysts is their low corrosion rate and high catalytic activity under severe reaction conditions, which often damage the homogeneous catalysts [139]. Several genera such as Chlorella sp. [154, 168–171], Dunaliella sp. [172, 173], Nannochloropsis sp. [168, 174–176], Spirulina sp. [177–179], Ulva sp. [180], and a mixture of microalgal species [181] have been studied using different heterogeneous catalysts of including supported metal catalysts (such as Pd, Pt, Ni, and Ru), metal oxide catalyst, and metals supported on Al$_2$O$_3$, SiO$_2$, and zeolites. However, the influence of metal catalysts in the biocrude yield is complex, and not all of the evaluated metals can positively improve the yield, even some of them can significantly reduce the overall performance of HTL.

According to the results obtained by Nava Bravo et al. [181], the composition of algal biomass (carbohydrates, lipids, protein, and ash content) and the catalyst play a crucial role in bio-oil yield. In this scenario, bio-oil from C. vulgaris was positively affected by Pt/Al$_2$O$_3$ and CoMo/Al$_2$O$_3$ (from 34 to 39 wt%); on the other hand, the bio-oil yield from N. occulta was reduced by each of the three heterogeneous catalysts. Similar results were reported by [174], who evaluated different metal catalysts on Nannochloropsis sp. biomass (Pd/C, Pt/C, Ru/C, Ni/SiO$_2$–Al$_2$O$_3$, CoMo/γ-Al$_2$O$_3$, and zeolite). Their results show that metal-based catalysts (especially Ni/SiO$_2$–Al$_2$O$_3$) reduce the bio-oil yield. The promotion of gas formation can explain this process by gasification reactions [182]. However, only Pd/C effectively increased the bio-oil yield (from 35 to 57 wt%). In another study, Yang et al. [173] evaluated the efficiency of REHY and Ni/REHY in D. salina conversion. The results showed an increase of bio-oil yield from 35% up to 52 and 72% for REHY and Ni/REHY, respectively. The Ni-based catalyst can improve the overall biomass conversion by catalyzing bond cleavages and the depolymerization process. In another study, Raney-Ni and HZSM-5 type zeolite (using ethanol as solvent) were evaluated on the catalytic efficiency over C. pyrenoidosa biomass [182]. The results show that the catalyst does not improve the yield of bio-oil for the different conditions considered. However, the catalyst employed enhanced the concentration of other reaction products such as light fuel-range (gasoline range) hydrocarbons. Other zeolite-based catalysts such as H-ZSM-5 and Ce/H-ZSM-5 have been reported for the conversion of C. pyrenoidosa biomass [171], and their results highlight the efficiency of zeolite-based catalysts, due to a raise in the yield of bio-oil from 32% to 38% and 52% for H-ZSM-5 and Ce/H-ZSM-5, respectively. Even after all the different research highlighted in the present review, there is no clarity on the underlying mechanism of heterogeneous catalysts in the liquefaction process of algal biomass. According to the literature, heterogeneous catalysts are considered superior to their counterpart; however, there are some conditions that hamper their efficiency. Xu et al. [171] found that biomass impurities such ash and excess of media nutrients can produce catalyst deactivation after a certain period in a continuous operation. It is found that found that a high concentration of S, N, and O derivatives can accelerate the deactivation of heterogeneous catalyst [183–185].
Table 3. Strains evaluated and their catalyst.

Strain	HHV Biomass (MJ/kg)	Catalyst	Temperature (°C)	Residence Time (min)	Catalyst Type	Bio-oil Yield (wt%)	HHV Bio-oil (MJ/kg)	Reference
Chlorella vulgaris		HCOOH	320	30		28	33.2	[151]
	23.2	Na₂CO₃				28	37.1	
		KOH	300–350	60		27.3	37.2	
		CH₃COOH				22.4	35.7	
		HCOOH				20.4	34.1	[152]
		HCOOH	275	50		19.1	34.7	
C. pyrenoidosa		NaOH	240–280	20–50		29.39	36.03	[153]
	n/a	Na₂CO₃				12.5	31.8	
Cyanidioschyzon merolae		NaOH	300	30		41–47.5	n/a	[154]
	18.1	KOH				21.23	33.36	
		CH₃COOH				21.78	32.89	
Dunaliella tertiolecta		n/a				22.67	33.6	[155]
		Na₂CO₃	340	60		42.0	n/a	[156]
Enteromorpha prolifera		13.4	Na₂CO₃	290	20	23.0	29.5	[157]
Isochrysis sp.		22.97	Na₂CO₃	300	60	42.5	35.61	[158]
Laminaria saccharina		14.46	KOH	350	15	63	34.18	[159]
Microcystis viridis		n/a	Na₂CO₃	300–340	30–60	33	28–30	[160]
	24.02	CH₃COOH				homogeneous catalysts	48.67	33.71
Nannochloropsis sp.		17.9	HCOOH	320	30	28	39	[151]
		Na₂CO₃				28	35.5	
Porphyridium cruentum		23.88	Na₂CO₃	250	60	24.2	38.31	[161]
Pavlova sp.		22.69	Na₂CO₃	350	60	47.7	36.93	[158]
		KOH	320	30		27.1	22.8	[151]
Spirulina sp.		14.7	Na₂CO₃	300–350	60	15.2	35.7	
	21.2	CH₃COOH				20	37.8	[152]
		HCOOH				16.6	34.1	
		Ca₃(PO₄)₂	350	60		14.2	34.7	
S. platensis		NiO				34.5	35.07	[162]
	20.52	Na₂CO₃				30.2	38.41	
		Na₂CO₃	250–350	30		51.6	36.29	
Tetraselmis sp.	n/a	Na₂CO₃				35	38.65	[163]
						40	35.58	
Table 3. Cont.

Strain	HHV Biomass (MJ/kg)	Catalyst	Temperature (°C)	Residence Time (min)	Catalyst Type	Bio-oil Yield (wt%)	HHV Bio-oil (MJ/kg)	Reference
Ulva prolifera		KOH	290	30		26.7	33.6	[164]
		NaOH				25.2	29.8	
		Na₂CO₃				19	29.2	
Green macroalgal blooms	9.45	CaO	270	45		14.6	23.8	[165]
		TiO₂				17.3	25.37	
Chlorella sp.	n/a	CuO/Al-SBA-15	170–350	30	Pt/C	45.1	n/a	[168]
		HZSM-5	350	30		37.9	33.2	[169]
		NaY	250–300	60	USY	73	n/a	
		HY				68		
						66		
						64		
C. pyrenoidosa	n/a	Pd/Al₂O₃	240–280	30	Pt/C	27.5–48	30–42.5	[171]
		Pd/C				34–46		
		Pt/Al₂O₃			Pt/C	33–45		
		Pt/Al₂O₃			Raney Ni	33–50		
					Pt/Al₂O₃	38.9		
C. vulgaris	Ni/Al₂O₃		350	60		30	n/a	[168]
	Co/Mo/Al₂O₃				KidB	38.7		
	MgO/MCM-41					49.09	32.36	
D. tertiolecta	17.81	ZrO₂/SO₄²⁻	360	30	HZSM-5	29	33.24	[172]
		MgO/MCM-41			Ni/REHY	31.1	33.67	
		Ni/REHY			REHY	36	33.17	
						72	30.11	
						51.6	26.88	
D. salina	18.47	Pt/Al₂O₃	200	60		30.2	n/a	
	Ni/Al₂O₃					18.1		
	Co/Mo/Al₂O₃					18.1		
N. oculata	n/a	Pt/Al₂O₃	350	60		18.1	25.5	[168]
Table 3. Cont.

Strain	HHV Biomass (MJ/kg)	Catalyst	Temperature (°C)	Residence Time (min)	Catalyst Type	Bio-oil Yield (wt%)	HHV Bio-oil (MJ/kg)	Reference
Nannochloropsis sp.	18.5	Pd/C	350	60		57	38.9	[174]
		Pt/C				49	40.1	
		Ru/C				50	38.4	
		Ni/SiO₂·Al₂O₃				50	39.4	
		CoMo/Al₂O₃				55	38.6	
		Zeolite				48	38.5	
		Pd/C	350	60		48	n/a	[175]
		Fe/HZSM-5	365	60		38.1	n/a	[176]
		HZSM-5				30.63	28.32	
		ZSM-5@MS				32.45	29.51	
Spirulina sp.	n/a	Pd/HZSM-5	380	120		34.9	29.43	[177]
		Pd/HZSM-5@MS				35.62	29.21	
S. platensis		CeO₂	250	30		34	39.21	[178]
		Fe₃O₄	272	37		27.6	30.98	[179]
Ulva prolifera		ZSM-5	280	15		29.3	34.8	[180]
Micronutrient (M)		H-ZSM—5	350	120		16.0	37.7–41.6	[181]
4. Conclusions

This paper reviews the experimental aspects of conventional and catalytic thermochemical conversion of microalgal biomass and their product distribution, yields, and quality. The thermochemical conversion of algal biomass is a promising route to obtain alternative fuels for energy generation; however, several challenges must be overcome to increase the sustainability of algal-based biofuels. Torrefaction proved to be an effective pretreatment for algal biomass prior to pyrolysis process; so far, the scientific literature on this pretreatment is still rare, and further research must be done in order to improve its efficiency. Pyrolysis is a well-established technology that shows the right concentration of bio-oil, char, and syngas. Macrogalal biomass can be more interesting for this technology due to the necessity of dried biomass. On the other hand, hydrothermal liquefaction can convert high-moisture biomass to biocrude in water medium and thus does not require preliminary drying processes, which makes HTL the most promising process an energetic point of view for the conversion of algal-based biofuels. The application of catalyst (both homogeneous and heterogeneous) has increased the overall efficiency of conversion of algal biomass in bio-oil, bio-char, and syngas. ZSM-5-based zeolites such as H-ZSM-5, Fe-ZSM-5, Cu-ZSM-5, Ni-ZSM-5, and Ga-HZSM-5 have shown exciting results in the conversion of biomass into bio-oil and bio-char. Therefore, it can be considered the most effective catalyst for the pyrolytic transformation of algal biomass. In HTL reactions, heterogeneous catalysts, specially Pd/C, Ni-based catalyst, and zeolite-based catalyst have shown more consistent data in converting the selected biomass into bio-oil; their recycling ability and low corrosion rate make them a more suitable option. However, particular challenges hinder the prospect of industrial application of catalysts, such as possible corrosion on the reaction equipment, low recycling capacity, and catalyst deactivation after a certain period in a continuous operation. Therefore, designing novel catalysts for the selective conversion of microalgae into biofuels is a mandatory step to increase the efficiency of the process.

Author Contributions: Conceptualization, A.Z.; Data curation, A.F.B.-S. and J.B.G.-M.; Funding acquisition, A.F.B.-S.; Investigation, A.Z. and A.F.B.-S.; Resources, A.Z.; Software, J.B.G.-M. and A.Z.; Supervision, A.F.B.-S. and A.Z.; Writing—original draft, A.F.B.-S. and A.Z.; Writing—review and editing, J.B.G.-M. and A.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This review was partially supported by grants from Sapienza University of Rome (Italy), Gen Foundation with the project “Isolation of thermo-tolerant algae as a novel source of food colorants”. UFPS internal Research funding: FINU 27-2019; and Newton Fund Institutional Links, ID 527624805.

Acknowledgments: We would like to express our sincere gratitude to Gen Foundation, Sapienza University of Rome (Italy) and Universidad Francisco de Paula Santander for providing the equipment for this review and the Colombian Ministry of Science Technology and Innovation MINCIENCIAS for the support to national Ph.D. Doctorates through the Francisco José de Caldas scholarship program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kosmela, P.; Kazimierski, P.; Formela, K.; Haponiuk, J.; Piszczyk, L. Liquefaction of Macroalgae Enteromorpha Biomass for the Preparation of Biopolylols by Using Crude Glycerol. J. Ind. Eng. Chem. 2017, 56, 399–406. [CrossRef]
2. Chowdhury, H.; Loganathan, B. Third-Generation Biofuels from Microalgae: A Review. Curr. Opin. Green Sustain. Chem. 2019, 20, 39–44. [CrossRef]
3. Garcia-Moscoso, J.L.; Obeid, W.; Kumar, S.; Hatcher, P.G. Flash Hydrolysis of Microalgae (Scenedesmus sp.) for Protein Extraction and Production of Biofuels Intermediates. J. Supercrit. Fluids 2013, 82, 183–190. [CrossRef]
4. Ansah, E.; Wang, L.; Zhang, B.; Shahbazi, A. Catalytic Pyrolysis of Raw and Hydrothermally Carbonized Chlamydomonas Debaryana Microalgae for Denitrogenation and Production of Aromatic Hydrocarbons. Fuel 2018, 228, 234–242. [CrossRef]
5. Costa, J.A.V.; de Freitas, B.C.B.; Lisboa, C.R.; Santos, T.D.; de Fraga Brusch, L.R.; de Morais, M.G. Microagal Biorefinery for CO2 and the Effects under the Blue Economy. Renew. Sustain. Energy Rev. 2019, 99, 58–65. [CrossRef]
6. Quintero-Dallos, V.; Garcia-Martinez, J.B.; Contreras-Ropero, J.E.; Barajas-Solano, A.F.; Barajas-Ferreirra, C.; Lavecchia, R.; Zuoerry, A. Vinasse as a Sustainable Medium for the Production of Chlorella vulgaris UTEX 1803. Water 2019, 11, 1526. [CrossRef]
7. Lu, W.; Asraf Al Alin, M.; Liu, S.; Xu, J.; Parra Saldivar, R. Critical Processes and Variables in Microalgae Biomass Production Coupled with Bioremediation of Nutrients and CO₂ from Livestock Farms: A Review. *Sci. Total Environ.* 2020, 716, 135247. [CrossRef]

8. Zuorro, A.; Lavecchia, R.; Maffei, G.; Marra, F.; Miglietta, S.; Petrangeli, A.; Familiari, G.; Valente, T. Enhanced lipid extraction from unbroken microalgal cells using enzymes. *Chem. Eng. Trans.* 2015, 43, 211–216. [CrossRef]

9. Ananthi, V.; Brindhadevi, K.; Pugazhendhi, A.; Arun, A. Impact of Abiotic Factors on Biodiesel Production by Microalgae. *Fuel* 2021, 284, 118962. [CrossRef]

10. Castellanos-Estupiñan, M.; Sanchez-Galvis, M.; Garcia-Martinez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Design of an Electrofloation System for the Concentration and Harvesting of Freshwater Microalgae. *Chem. Eng. Trans.* 2018, 64, 1–6. [CrossRef]

11. Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Zhang, Y.; Qi, X. Biogas from Microalgae: Technologies, Challenges and Opportunities. *Renew. Sustain. Energy Rev.* 2020, 117, 109093. [CrossRef]

12. Raheem, A.; Wan Azlina, W.A.K.G.; Taufiq Yap, Y.H.; Danquah, M.K.; Harun, R. Thermochemical Conversion of Microalgal Biomass for Biofuel Production. *Renew. Sustain. Energy Rev.* 2015, 49, 990–999. [CrossRef]

13. Chen, W.-H.; Lin, B.-J.; Huang, M.-Y.; Chang, J.-S. Thermochemical Conversion of Microalgal Biomass into Biofuels: A Review. *Bioreour. Technol.* 2015, 184, 314–327. [CrossRef] [PubMed]

14. Ong, H.C.; Chen, W.-H.; Farooq, A.; Gan, Y.Y.; Lee, K.T.; Ashokkumar, V. Catalytic Thermochemical Conversion of Microalgae for Biofuel Production: A Comprehensive Review. *Renew. Sustain. Energy Rev.* 2019, 113, 109266. [CrossRef]

15. Kargbo, H.; Harris, J.S.; Phan, A.N. “Drop-in” Fuel Production from Biomass: Critical Review on Techno-Economic Feasibility and Sustainability. *Renew. Sustain. Energy Rev.* 2021, 135, 110168. [CrossRef]

16. Huang, C.-H.; Tan, C.-S. A Review: CO₂ Utilization. *Aerosol Air Qual. Res.* 2014, 14, 480–499. [CrossRef]

17. Hena, S.; Znad, H.; Heong, K.T.; Judd, S. Dairy Farm Wastewater Treatment and Lipid Accumulation by *Arthrosira platensis*. *Water Res.* 2018, 128, 267–277. [CrossRef]

18. Alavijeh, R.S.; Karimi, K.; Wijffels, R.H.; van den Berg, C.; Eppink, M. Combined Bead Milling and Enzymatic Hydrolysis for Biofilm Attached Culture and Feed Production While Treating Swine Wastewater. *Bioresour. Technol.* 2019, 282, 118–124. [CrossRef] [PubMed]

19. Gouveia, J.D.; Ruiz, J.; van den Broek, L.A.M.; Hesselink, T.; Peters, S.; Kleinegris, D.M.M.; Smith, A.G.; van der Veen, D.; Barbosa, M.J.; Wijffels, R.H. *Botryococcus braunii* Strains Compared for Biomass Productivity, Hydrocarbon and Carbohydrate Content. *J. Biotechnol.* 2017, 248, 77–86. [CrossRef]

20. Barajas-Solano, A.F.; Guzmán-Monsalve, A.; Kafarov, V. Effect of Carbon-Nitrogen Ratio for the Biomass Production, Hydrocarbon and Carbohydrates on *Botryococcus braunii* UBS 003. *Chem. Eng. Trans.* 2016, 49, 247–252. [CrossRef]

21. Banerjee, S.; Ray, A.; Das, D. Optimization of *Chlamydomonas reinhardtii* Cultivation with Simultaneous CO₂ Sequestration and Biofuels Production in a Biorefinery Framework. *Sci. Total Environ.* 2020, 143080. [CrossRef] [PubMed]

22. Kao, P.-H.; Ng, I.-S. CRISPRi Mediated Phosphoenolpyruvate Carboxylase Regulation to Enhance the Production of Lipid in *Chlamydomonas reinhardtii*. *Bioreour. Technol.* 2017, 245, 1527–1537. [CrossRef] [PubMed]

23. Shin, Y.S.; Jeong, J.; Nguyen, T.H.T.; Kim, J.Y.H.; Jin, E.; Sim, S.J. Targeted Knockout of Phospholipase A2 to Increase Lipid Productivity in *Chlamydomonas reinhardtii* for Biodiesel Production. *Bioreour. Technol.* 2019, 271, 368–374. [CrossRef] [PubMed]

24. Gao, F.; Yang, H.L.; Li, C.; Peng, Y.-Y.; Lu, M.-M.; Jin, W.-H.; Bao, J.-J.; Guo, Y.-M. Effect of Organic Carbon to Nitrogen Ratio in Wastewater on Growth, Nutrient Uptake and Lipid Accumulation of a Mixotrophic Microalgae *Chlorella kessleri*. *Bioresour. Technol.* 2020, 282, 118–124. [CrossRef] [PubMed]

25. Gouveia, J.D.; Ruiz, J.; van den Broek, L.A.M.; Hesselink, T.; Peters, S.; Kleinegris, D.M.M.; Smith, A.G.; van der Veen, D.; Barbosa, M.J.; Wijffels, R.H. *Botryococcus braunii* Strains Compared for Biomass Productivity, Hydrocarbon and Carbohydrate Content. *J. Biotechnol.* 2017, 248, 77–86. [CrossRef]

26. Cheng, P.; Chu, R.; Zhang, X.; Song, L.; Chen, D.; Zhou, C.; Yan, X.; Cheng, J.; Ruan, R. Screening of the Dominant *Chlorella vulgaris* Strain for Biofilm Attached Culture and Feed Production While Treating Swine Wastewater. *Bioresour. Technol.* 2020, 318, 124054. [CrossRef]

27. Kalavajah, R.S.; Karimi, K.; Wijffels, R.H.; van den Berg, C.; Eppink, M. Combined Bead Milling and Enzymatic Hydrolysis for Efficient Fractionation of Lipids, Proteins, and Carbohydrates of *Chlorella vulgaris* Microalgae. *Bioreour. Technol.* 2020, 309, 123321. [CrossRef]

28. Estévez-Landazábal, L.L.; Barajas-Solano, A.F.; Barajas-Ferreira, C.; Kafarov, V. Improvement of lipid productivity on *Chlorella vulgaris* using waste glycerol and sodium acetate. *CTF Cienc. Tecnol. Futuro* 2013, 5, 113–126. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832013000100009 (accessed on 29 November 2020).

29. Sarayloo, E.; Simsek, S.; Unlu, Y.S.; Cevahir, G.; Erkey, C.; Kavaklı, I.H. Enhancement of the Lipid Productivity and Fatty Acid Methyl Ester Profile of *Chlorella vulgaris* by Two Rounds of Mutagenesis. *Bioresour. Technol.* 2018, 250, 764–769. [CrossRef]

30. Del Río, E.; García-Gómez, E.; Moreno, J.; Guerrero, M.G.; García-González, M. Microalgae for Oil. Assessment of Fatty Acid Productivity in Continuous Culture by Two High-Yield Strains, *Chlorococcum oleofaciens* and *Pseudokirchneriella subcapitata*. *Algal Res.* 2017, 23, 37–42. [CrossRef]

31. Chinnasamy, S.; Bhattachar, A.; Hunt, R.W.; Das, K.C. Microalgae Cultivation in a Wastewater Dominated by Carpet Mill Effluents for Biofuel Applications. *Bioreour. Technol.* 2010, 101, 3097–3105. [CrossRef] [PubMed]

32. Sanchez-Silva, L.; López-González, D.; García-Mingoñan, A.M.; Valverde, J.L. Pyrolysis, Combustion and Gasification Characteristics of *Nannochloropsis gaditana* Microalgae. *Bioreour. Technol.* 2013, 130, 321–331. [CrossRef] [PubMed]
33. Xue, J.; Balamurugan, S.; Li, D.-W.; Liu, Y.-H.; Zeng, H.; Wang, L.; Yang, W.-D.; Liu, J.-S.; Li, H.-Y. Glucose-6-Phosphate Dehydrogenase as a Target for Highly Efficient Fatty Acid Biosynthesis in Microalgae by Enhancing NADPH Supply. Metab. Eng. 2017, 41, 212–221. [CrossRef] [PubMed]

34. Priharto, N.; Korssje, F.; Prins, W.; Carlee, R.; Heeres, H.J. Experimental Studies on a Two-Step Fast Pyrolysis-Catalytic Hydrotreatment Process for Hydrocarbons from Microalgae (Nannochloropsis gaditana and Scenedesmus almeriensis). Fuel Process. Technol. 2020, 206, 106466. [CrossRef]

35. Gupta, S.; Pawar, S.B. An Integrated Approach for Microalgae Cultivation Using Raw and Anaerobic Digested Wastewaters from Food Processing Industry. Bioresour. Technol. 2018, 269, 571–576. [CrossRef]

36. Girard, J.-M.; Roy, M.-L.; Hafsa, M.B.; Gagnon, J.; Faucheux, N.; Heitz, M.; Tremblay, R.; Deschênes, J.-S. Mixotrophic Cultivation of Green Microalgae Scenedesmus Obliquus on Cheese Whey Permeate for Biodiesel Production. Algal Res. 2014, 5, 241–248. [CrossRef]

37. Cuellar-García, D.J.; Rangel-Basto, Y.A.; Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Muñoz-Peráñolaza, Y.A. Lipids production from Scenedesmus obliquus through carbon/nitrogen ratio optimization. J. Phys. Conf. Ser. 2019, 1388, 012043. [CrossRef]

38. Cuellar-García, D.J.; Rangel-Basto, Y.A.; Barajas-Solano, A.F.; Muñoz-Peráñolaza, Y.A.; Urbina-Suarez, N.A. Towards the production of microalgae biofuels: The effect of the culture medium on lipid deposition. BioTechnologia 2019, 100, 273–278. [CrossRef]

39. Andreottl, V.; Solimeno, A.; Rossi, S.; Picara, E.; Marazzi, F.; Mezzanotte, V.; García, J. Bioremediation of Aquaculture Wastewater with the Microalga Tetraselmis suecica: Semi-Continuous Experiments, Simulation and Photo-Respirometric Tests. Sci. Total Environ. 2020, 738, 139859. [CrossRef]

40. Srivatsa, S.C.; Li, F.; Bhattacharya, S. Optimization of Reaction Parameters for Bio-Oil Production by Catalytic Pyrolysis of Microalgal Tetraselmis suecica: Influence of Ni-Loading on the Bio-Oil Composition. Renew. Energy 2019, 142, 426–436. [CrossRef]

41. Guiza-Franco, L.; Orozco-Rojas, L.G.; Sanchez-Galvis, M.; Garcia-Martinez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Production of Chlorella vulgaris Biomass on UV-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522. [CrossRef]

42. Mercuch, J.C. Chapter 5—Photobioreactor Design; Jacob-Lopes, E., Maroneze, M.M., Queiroz, M.I., Zepka, L.Q., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 101–126. [CrossRef]

43. Sanchez-Galvis, E.M.; Cardenas-Gutierrez, I.Y.; Contreras-Ropero, J.E.; Garcia-Martinez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F.; Muñoz-Peráñolaza, Y.A.; Urbina-Suarez, N.A. Mixotrophic Cultivation of Microalgae Chlorella vulgaris: Semi-Continuous Experiments, Simulation and Photo-Respirometric Tests. Sci. Total Environ. 2020, 738, 139859. [CrossRef]

44. Arun, J.; Gopinath, K.P.; SundarRajan, P.; Felix, V.; JoselynMonica, M.; Malolan, R. A Conceptual Review on Microalgae as Potential Feedstock for the Production of Biofuels. Energy Convers. Manag. 2011, 52, 3331–3335. [CrossRef]

45. Kumar, R.; Ghosh, A.K.; Pal, P. Synergy of Biofuel Production with Waste Remediation along with Value-Added Co-Products Recovery through Microalgae Cultivation: A Review of Membrane-Integrated Green Approach. Sci. Total Environ. 2020, 698, 134169. [CrossRef] [PubMed]

46. Zuorro, A.; Malavasi, V.; Cao, G.; Lavecchia, R. Use of cell wall degrading enzymes to improve the recovery of lipids from Chlorella sorokiniana. Chem. Eng. J. 2019, 377, 120325. [CrossRef]

47. Arun, J.; Gopinath, K.P.; SundarRajan, P.; Felix, V.; JoselynMonica, M.; Malolan, R. A Conceptual Review on Microalgae Bioferry as an Alternative to Traditional Biofuel Sources. Biofuels Review. Technol. Rep. 2020, 11, 100477. [CrossRef]

48. Rangel-Basto, Y.A.; García-Okcha, I.E.; Suarez-Gelvez, J.H.; Zuorro, A.; Barajas-Solano, A.F.; Urbina-Suarez, N.A. The Effect of Temperature and Enzyme Concentration in the Transesterification Process of Synthetic Microalgae Oil. Chem. Eng. Trans. 2018, 64, 331–336. [CrossRef]

49. Kumar, M.; Sun, Y.; Rathour, R.; Pandey, A.; Thakur, I.S.; Tsang, D.C.W. Algae as Potential Feedstock for the Production of Biofuels and Value-Added Products: Opportunities and Challenges. Sci. Total Environ. 2020, 716, 137116. [CrossRef]

50. Demirbas, A. Use of Algae as Biofuel Sources. Energy Convers. Manag. 2010, 51, 2738–2749. [CrossRef]

51. Tripathi, R.; Singh, J.; Thakur, I.S. Characterization of Microalgae Scenedesmus sp. ISTGA1 for Potential CO₂ Sequestration and Biodiesel Production. Renew. Energy 2015, 74, 774–781. [CrossRef]

52. Kumar, M.; Thakur, I.S. Municipal Secondary Sludge as Carbon Source for Production and Characterization of Biodiesel from Oleaginous Bacteria. Bioresour. Technol. Rep. 2018, 4, 106–113. [CrossRef]

53. De Farias Silva, C.E.; Bertucco, A. Bioethanol from Microalgae and Cyanobacteria: A Review and Technological Outlook. Process Biochem. 2016, 51, 1833–1842. [CrossRef]

54. Dragone, G.; Fernandes, B.D.; Abreu, A.P.; Vicente, A.A.; Teixeira, J.A. Nutrient Limitation as a Strategy for Increasing Starch Accumulation in Microalgae. Appl. Energy 2011, 88, 3331–3335. [CrossRef]

55. Ho, S.-H.; Huang, S.-W.; Chen, C.-Y.; Hasunuma, T.; Kondo, A.; Chang, J.-S. Bioethanol Production Using Carbohydrate-Rich Microalgae Biomass as Feedstock. Bioresour. Technol. 2013, 135, 191–198. [CrossRef] [PubMed]

56. El-Dalatony, M.M.; Kurade, M.B.; Abou-Shanab, R.A.I.; Kim, H.; Salama, E.-S.; Jeon, B.-H. Long-Term Production of Bioethanol in Repeated-Batch Fermentation of Microalgae Biomass Using Immobilized Saccharomyces cerevisiae. Bioresour. Technol. 2016, 219, 98–105. [CrossRef] [PubMed]

57. Chen, C.-Y.; Zhao, X.-Q.; Yen, H.-W.; Ho, S.-H.; Cheng, C.-L.; Lee, D.-J.; Bai, F.-W.; Chang, J.-S. Microalgae-Based Carbohydrates for Biofuel Production. Biochem. Eng. J. 2013, 78, 1–10. [CrossRef]
58. Wang, H.; Ji, C.; Bi, S.; Zhou, P.; Chen, L.; Liu, T. Joint Production of Biodiesel and Bioethanol from Filamentous Oleaginous Microalgae Tribonema sp. *Bioreour. Technol.* 2014, 172, 169–173. [CrossRef]

59. Talebnia, F.; Karakashev, D.; Angelidaki, I. Production of Bioethanol from Wheat Straw: An Overview on Pretreatment, Hydrolysis and Fermentation. *Bioreour. Technol.* 2010, 101, 4744–4753. [CrossRef]

60. Baeyens, J.; Kang, Q.; Appels, L.; Dewil, R.; Lv, Y.; Tan, T. Challenges and Opportunities in Improving the Production of Bio-Ethanol. *Prog. Energy Combust. Sci.* 2015, 47, 60–88. [CrossRef]

61. Hernández, D.; Riaño, B.; Coca, M.; García-González, M.C. Saccharification of Carbohydrates in Microalgal Biomass by Physical, Chemical and Enzymatic Pre-Treatments as a Previous Step for Bioethanol Production. *Chem. Eng. J.* 2015, 262, 939–945. [CrossRef]

62. Barajas-Solano, A.F.; Gonzalez-Delgado, A.D.; Kafarow, V. Effect of Thermal Pre-Treatment on Fermentable Sugar Production of Chlorella vulgaris. *Chem. Eng. Trans.* 2014, 37, 655–660. [CrossRef]

63. Rizza, L.S.; Smachetti, M.E.S.; Do Nascimento, M.; Salerno, G.L.; Curatti, L. Bioprospecting for Native Microalgae as an Alternative Source of Sugars for the Production of Bioethanol. *Algal Res.* 2017, 22, 140–147. [CrossRef]

64. Córdova, O.; Santis, J.; Ruiz-Fillipi, G.; Zuñiga, M.E.; Fermoso, F.G.; Chamy, R. Microalgae Digestive Pretreatment for Increasing Biogas Production. *Renew. Sustain. Energy Rev.* 2018, 82, 2806–2813. [CrossRef]

65. Jankowska, E.; Sahu, A.K.; Oleskowicz-Popiel, P. Biogas from Microalgae: Review on Microalgae’s Cultivation, Harvesting and Pretreatment for Anaerobic Digestion. *Renew. Sustain. Energy Rev.* 2017, 75, 692–709. [CrossRef]

66. González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P. Thermal Pretreatment to Improve Methane Production of Scenedesmus Biomass. *Biomass Bioenergy* 2012, 40, 105–111. [CrossRef]

67. Sialve, B.; Bernet, N.; Bernard, O. Anaerobic Digestion of Microalgal as a Necessary Step to Make Microalgal Biodiesel Sustainable. *Biotchnol. Adv.* 2009, 27, 409–416. [CrossRef]

68. Anwar, M.; Lou, S.; Chen, L.; Li, H.; Hu, Z. Recent Advancement and Strategy on Bio-Hydrogen Production from Photosynthetic Microalgae. *Bioreour. Technol.* 2019, 292, 121972. [CrossRef]

69. Jiménez-Llanos, J.; Ramirez-Carmona, M.; Rendón-Castrillón, L.; Ocampo-López, C. Sustainable Biohydrogen Production by Chlorella sp. Microalgae: A Review. *Int. J. Hydrogen Energy* 2020, 45, 8310–8328. [CrossRef]

70. Gimpel, J.A.; Specht, E.A.; Georgianna, D.R.; Mayfield, S.P. Advances in Microalgae Engineering and Synthetic Biology Applications for Biofuel Production. *Curr. Opin. Chem. Biol.* 2013, 17, 489–495. [CrossRef]

71. Mathimani, T.; Baldinelli, A.; Rajendran, K.; Prabakar, D.; Matheswaran, M.; Pieter van Leeuwen, R.; Pugazhendhi, A. Review on Cultivation and thermochemical Conversion of Microalgal to Fuels and Chemicals: Process Evaluation and Knowledge Gaps. *J. Clean. Prod.* 2019, 208, 1053–1064. [CrossRef]

72. Chen, W.-H.; Peng, J.; Bi, X.T. A State-of-the-Art Review of Biomass Torrefaction, Densification and Applications. *Renew. Sustain. Energy Rev.* 2015, 44, 847–866. [CrossRef]

73. Wu, K.-T.; Tsai, C.-J.; Chen, C.-S.; Chen, H.-W. The Characteristics of Torrefied Microalgae. *Appl. Energy* 2012, 100, 52–57. [CrossRef]

74. Cahyanti, M.N.; Doddapaneni, T.R.K.C.; Kikas, T. Biomass Torrefaction: An Overview on Process Parameters, Economic and Environmental Aspects and Recent Advancements. *Bioreour. Technol.* 2020, 301, 122737. [CrossRef] [PubMed]

75. Bach, Q.-V.; Chen, W.-H.; Lin, S.-C.; Sheen, H.-K.; Chang, J.-S. Effect of Wet Torrefaction on Thermal Decomposition Behavior of Microalgae Chlorella vulgaris ESP-31. *Energy Procedia* 2017, 105, 206–211. [CrossRef]

76. Bach, Q.-V.; Chen, W.-H.; Sheen, H.-K.; Chang, J.-S. Gasification Kinetics of Raw and Wet-Torrefied Microalgal Chlorella vulgaris ESP-31 in Carbon Dioxide. *Bioreour. Technol.* 2017, 244, 1393–1399. [CrossRef] [PubMed]

77. Uemura, Y.; Matsumoto, R.; Saadon, S.; Matsumura, Y. A Study on Torrefaction of Laminaria japonica. *Fuel Process. Technol.* 2015, 138, 133–138. [CrossRef]

78. Chen, W.-H.; Huang, M.-Y.; Chang, J.-S.; Chen, C.-Y.; Lee, W.-J. An Energy Analysis of Torrefaction for Upgrading Microalgal Residue as a Solid Fuel. *Bioreour. Technol.* 2015, 185, 285–293. [CrossRef]

79. Yu, K.L.; Chen, W.-H.; Sheen, H.-K.; Chang, J.-S.; Lin, C.-S.; Ong, H.C.; Show, P.L.; Ng, E.-P.; Ling, T.C. Production of Microalgal Biochar and Reducing Sugar Using Wet Torrefaction with Microwave-Assisted Heating and Acid Hydrolysis Pretreatment. *Renew. Energy* 2020, 156, 349–360. [CrossRef]

80. Yu, K.L.; Chen, W.-H.; Sheen, H.-K.; Chang, J.-S.; Lin, C.-S.; Ong, H.C.; Show, P.L.; Ling, T.C. Bioethanol Production from Acid Pretreated Microalgal Hydrolysate Using Microwave-Assisted Heating Wet Torrefaction. *Fuel* 2020, 279, 118435. [CrossRef]

81. Brennan, L.; Owende, P. Biofuels from Microalgae—A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. *Renew. Sustain. Energy Rev.* 2010, 14, 557–577. [CrossRef]

82. Harman-Ware, A.E.; Morgan, T.; Wilson, M.; Crocker, M.; Zhang, J.; Liu, K.; Stork, J.; Debolt, S. Microalgae as a Renewable Fuel Source: Fast Pyrolysis of Scenedesmus sp. *Renew. Energy* 2013, 60, 625–632. [CrossRef]

83. Babich, I.V.; van der Hulst, M.; Lefferts, L.; Moulijn, J.A.; O’Connor, P.; Seshan, K. Catalytic Pyrolysis of Microalgae to High-Quality Liquid Bio-Fuels. *Biomass Bioenergy* 2011, 35, 3199–3207. [CrossRef]

84. Roberts, D.A.; Paul, N.A.; Dworjanyn, S.A.; Bird, M.I.; de Nys, R. Biochar from Commercially Cultivated Seaweed for Soil Amelioration. *Sci. Rep.* 2015, 5, 9665. [CrossRef] [PubMed]

85. Huang, Y.F.; Lo, S.L. Predicting Heating Value of Lignocellulosic Biomass Based on Elemental Analysis. *Energy* 2020, 191, 116501. [CrossRef]
86. Choi, J.H.; Kim, S.-S.; Suh, D.J.; Jang, E.-J.; Min, K.-I.; Woo, H.C. Characterization of the Bio-Oil and Bio-Char Produced by Fixed Bed Pyrolysis of the Brown Alga Saccharina japonica. Korean J. Chem. Eng. 2016, 33, 2691–2698. [CrossRef]

87. Bae, Y.J.; Ryu, C.; Jeon, J.-K.; Park, J.; Suh, D.J.; Suh, Y.-W.; Chang, D.; Park, Y.-K. The Characteristics of Bio-Oil Produced from the Pyrolysis of Three Marine Macroalgae. Bioresource. Technol. 2011, 102, 3512–3520. [CrossRef]

88. Maddi, B.; Viamajala, S.; Varanasi, S. Comparative Study of Pyrolysis of Algal Biomass from Natural Lake Blooms with Lignocellulosic Biomass. Bioresource. Technol. 2011, 102, 11018–11026. [CrossRef]

89. Lee, X.J.; Ong, H.C.; Gan, Y.Y.; Chen, W.H.; Mahlia, T.M.I. State of Art Review on Conventional and Advanced Pyrolysis of Macrocystis and Microalgae for Bio-Oil and Bio-Syngas Production. Energy Convers. Manag. 2020, 210, 112707. [CrossRef]

90. Ahmed, A.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Phusunti, N. Intermediate Pyrolysis of Acacia cincinnata and Acacia holosericea Species for Bio-Oil and Biochar Production. Energy Convers. Manag. 2018, 176, 393–408. [CrossRef]

91. Kebelmann, K.; Hornung, A.; Karsten, U.; Griffiths, G. Thermo-Chemical Behaviour and Chemical Product Formation from Polar Seaweeds during Intermediate Pyrolysis. J. Anal. Appl. Pyrolysis 2013, 104, 131–138. [CrossRef]

92. Mahmood, A.S.N.; Brammer, J.G.; Hornung, A.; Steele, A.; Poulston, S. The Intermediate Pyrolysis and Catalytic Steam Reforming of Brewers Spent Grain. J. Anal. Appl. Pyrolysis 2013, 103, 328–342. [CrossRef]

93. Yang, Y.; Zhang, Y.; Omairey, E.; Cai, J.; Gu, F.; Bridgwater, A.V. Intermediate Pyrolysis of Organic Fraction of Municipal Solid Waste and Rheological Study of the Pyrolysis Oil for Potential Use as Bio-Bitumen. J. Clean. Prod. 2018, 187, 390–399. [CrossRef]

94. Mohammed, I.Y.; Abakr, Y.A.; Yusup, S.; Kazi, F.K. Valorization of Napier Grass via Intermediate Pyrolysis: Optimization Using Response Surface Methodology and Pyrolysis Products Characterization. J. Clean. Prod. 2017, 142, 1848–1866. [CrossRef]

95. Kebelmann, K.; Hornung, A.; Karsten, U.; Griffiths, G. Intermediate Pyrolysis and Product Identification by TGA and Py-GC/MS over Microporous and Hierarchical Zeolites: Characterization of Heavy Products. Biomass Bioenergy 2015, 39, 38–48. [CrossRef]

96. Yang, Y.; Bramer, J.G.; Mahmood, A.S.N.; Hornung, A. Intermediate Pyrolysis of Biomass Energy Pellets for Producing Sustainable Liquid, Gaseous and Solid Fuels. Bioresource. Technol. 2014, 169, 794–799. [CrossRef] [PubMed]

97. Chang, Y.-M.; Tsal, W.-T.; Li, M.-H. Chemical Characterization of Char Derived from Slow Pyrolysis of Microalgal Residue. J. Anal. Appl. Pyrolysis 2015, 111, 88–93. [CrossRef]

98. Wang, K.; Brown, R.C.; Homsy, S.; Martinez, L.; Sidhu, S.S. Fast Pyrolysis of Microalgae Remnants in a Fluidized Bed Reactor for Bio-Oil and Biochar Production. Bioresource. Technol. 2013, 127, 494–499. [CrossRef]

99. Ashokkumar, V.; Chen, W.-H.; Kamyab, H.; Kumar, G.; Al-Muhtaseb, A.H.; Ngamcharussrivichai, C. Cultivation of Microalgae Chlorella vulgaris over Its Biochar and Activated Biochar-Supported Fe Catalysts. J. Anal. Appl. Pyrolysis 2020, 104799. [CrossRef] [PubMed]

100. Ahmed, A.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Phusunti, N. Intermediate Pyrolysis of Marine Chlorella sp. Residue for Bio-Oil and Bio-Syngas Production. Energy Convers. Manag. 2019, 199, 116128. [CrossRef]

101. woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable Biochar to Mitigate Global Climate Change. Nat. Commun. 2010, 1, 56. [CrossRef]

102. Lavecchia, R.; Medici, F.; Patterer, M.S.; Zuorro, A. Lead removal from water by adsorption on spent coffee grounds. Chem. Eng. Trans. 2016, 47, 295–300. [CrossRef]

103. Nejati, B.; Adami, P.; Bozorg, A.; Tavasoli, A.; Mirzahosseini, A.H. Catalytic Pyrolysis and Bio-Products Upgrading Derived from Chlorella vulgaris over Biochar and Activated Biochar-Supported Fe Catalysts. J. Anal. Appl. Pyrolysis 2020, 104799. [CrossRef]

104. Jung, K.-W.; Jeong, T.-U.; Kang, H.-J.; Ahn, K.-H. Characteristics of Biochar Derived from Marine Macroalgae and Fabrication of Granular Biochar by Entrapment in Calcium-Alginate Beads for Phosphate Removal from Aqueous Solution. Bioresource. Technol. 2016, 211, 108–116. [CrossRef] [PubMed]

105. Cai, J.; Wu, W.; Liu, R.; Huber, G.W. A Distributed Activation Energy Model for the Pyrolysis of Lignocellulosic Biomass. Green Chem. 2013, 15, 1331–1340. [CrossRef]

106. Hertzog, J.; Carré, V; Jia, L.; Mackay, C.L.; Pinard, L.; Dufour, A.; Mašek, O.; Aubriet, F. Catalytic Fast Pyrolysis of Biomass over Microporous and Hierarchical Zeolites: Characterization of Heavy Products. ACS Sustain. Chem. Eng. 2018, 6, 4717–4728. [CrossRef]

107. Li, F.; Srivatsa, S.C.; Bhattacharya, S. A Review on Catalytic Pyrolysis of Microalgae to High-Quality Bio-Oil with Low Oxygenous and Nitrogenous Compounds. Sustain. Energy. Rev. 2019, 108, 481–497. [CrossRef]

108. Yang, C.; Li, R.; Zhang, B.; Qiu, Q.; Wang, B.; Yang, H.; Ding, Y.; Wang, C. Pyrolysis of Microalgae: A Critical Review. Fuel Process. Technol. 2019, 186, 53–72. [CrossRef]

109. Amin, M.; Chetpattanamongdi, P.; Ratanawilai, S. Application of Extracted Marine Chlorella sp. Residue for Bio-Oil Production as the Biomass Feedstock and Microwave Absorber. Energy Convers. Manag. 2019, 195, 819–829. [CrossRef]

110. Jafarian, S.; Tavasoli, A. A Comparative Study on the Quality of Bioproducts Derived from Catalytic Pyrolysis of Green Microalgae Spirulina (Arthrospira) plantensis over Transition Metals Supported on HMS-ZSM5 Composite. Int. J. Hydrogen Energy 2018, 43, 19002–19017. [CrossRef]

111. Andrade, L.A.; Barrozo, M.A.S.; Vieira, L.G.M. Catalytic Solar Pyrolysis of Microalgae Chlamydomonas reinhardtii. Sol. Energy 2018, 173, 928–938. [CrossRef]

112. Campanella, A.; Harold, M.P. Fast Pyrolysis of Microalgae in a Falling Solids Reactor: Effects of Process Variables and Zeolite Catalysts. Biomass Bioenergy 2012, 46, 218–232. [CrossRef] [PubMed]
113. Wang, K.; Brown, R.C. Catalytic Pyrolysis of Microalgae for Production of Aromatics and Ammonia. *Green Chem.* 2013, 15, 675–681. [CrossRef]

114. Zainan, N.H.; Srivatsa, S.C.; Li, F.; Bhattacharya, S. Quality of Bio-Oil from Catalytic Pyrolysis of Microalgae *Chlorella vulgaris*. *Fuel* 2018, 223, 12–19. [CrossRef]

115. Thangalazhy-Gopakumar, S.; Adhikari, S.; Chattanathan, S.A.; Gupta, R.B. Catalytic Pyrolysis of Green Algae for Hydrocarbon Production Using H-ZSM-5 Catalyst. *Bioresour. Technol.* 2012, 118, 150–157. [CrossRef] [PubMed]

116. Conti, R.; Pezzolesi, L.; Pistocchi, R.; Torri, C.; Massoli, P.; Fabbi, D. Photobioreactor Cultivation and Catalytic Pyrolysis of the Microalgae *Desmodesmus communis* (Chlorophyceae) for Hydrocarbons Production by HZSM-5 Zeolite Cracking. *Bioresour. Technol.* 2016, 222, 148–155. [CrossRef] [PubMed]

117. Gong, Z.; Fang, P.; Wang, Z.; Li, Q.; Li, X.; Meng, F.; Zhang, H.; Liu, L. Catalytic Pyrolysis of Chemical Extraction Residue from Microalgae Biomass. *Renew. Energy* 2018, 148, 712–719. [CrossRef]

118. Aysu, T.; Abd Rahman, N.A.; Sanna, A. Catalytic Pyrolysis of *Tetraselmis* and *Isochrysis* Microalgae by Nickel Ceria Based Catalysts for Hydrocarbon Production. *Energy* 2016, 103, 205–214. [CrossRef]

119. Rahman, N.A.A.; Fermoso, J.; Sanna, A. Effect of Li-LSX-Zeolite on the in-Situ Catalytic Deoxygenation and Denitrogenation of *Isochrysis* sp. Microalgae Pyrolysis Vapours. *Fuel Process. Technol.* 2018, 173, 253–261. [CrossRef]

120. Abd Rahman, N.A.; Fermoso, J.; Sanna, A. Stability of Li-LSX Zeolite in the Production of High-Quality Bio-Oils. *Bioresour. Technol.* 2010, 101, 4593–4599. [CrossRef]

121. Pan, P.; Hu, C.; Yang, W.; Li, Y.; Dong, L.; Zhu, L.; Tong, D.; Qing, R.; Fan, Y. The Direct Pyrolysis and Catalytic Pyrolysis of *Nannochloropsis* sp. Residue for Renewable Bio-Oils. *Bioresour. Technol.* 2010, 101, 139–143. [CrossRef]

122. Aysu, T.; Sanna, A. *Nannochloropsis* Algae Pyrolysis with Ceria-Based Catalysts for Production of High Quality Bio-Oils. *Bioresour. Technol.* 2015, 194, 108–116. [CrossRef] [PubMed]

123. Qi, P.; Chang, G.; Wang, H.; Zhang, X.; Guo, Q. Production of Aromatic Hydrocarbons by Catalytic Co-Pyrolysis of Microalgae and Polypropylene Using HZSM-5. *J. Anal. Appl. Pyrolysis* 2018, 136, 178–185. [CrossRef]

124. Gautam, R.; Vinu, R. Non-Catalytic Fast Pyrolysis and Catalytic Fast Pyrolysis of *Nannochloropsis Oculata* Using Co-Mo/γ-Al2O3 Catalyst for Valuable Chemicals. *Algal Res.* 2018, 34, 12–24. [CrossRef]

125. Kawale, H.D.; Kishore, N. Production of Hydrocarbons from a Green Algae (Oscillatoria) with Exploration of Its Fuel Characteristics over Different Reaction Atmospheres. *Energy* 2019, 178, 344–355. [CrossRef]

126. Aysu, T.; Fermoso, J.; Sanna, A. Ceria on Alumina Support for Catalytic Pyrolysis of *Pavlova* sp. Microalgae to High-Quality Bio-Oils. *J. Energy Chem.* 2018, 27, 874–882. [CrossRef]

127. Aysu, T.; Ola, O.; Maroto-Valer, M.M.; Sanna, A. Effects of Titania Based Catalysts on In-Situ Pyrolysis of *Pavlova* Microalgae. *Fuel Process. Technol.* 2017, 166, 291–298. [CrossRef]

128. Anand, V.; Gautam, R.; Vinu, R. Non-Catalytic and Catalytic Fast Pyrolysis of *Schizochytrium limacinum* Microalga. *Fuel* 2017, 205, 1–10. [CrossRef]

129. Mo, L.; Dai, H.; Peng, L.; Liu, B.; Li, X.; Chen, Y.; Khan, S. In-Situ Catalytic Pyrolysis Upgradation of Microalgae into Hydrocarbon Rich Bio-Oil: Effects of Nitrogen and Carbon Dioxide Environment. *Bioresour. Technol.* 2020, 314, 123758. [CrossRef]

130. Xu, Y.; Hu, Y.; Peng, Y.; Yao, L.; Dong, Y.; Yang, B.; Song, R. Catalytic Pyrolysis and Liquefaction Behavior of Microalgae for Bio-Oil Production. *Bioresour. Technol.* 2020, 300, 122665. [CrossRef]

131. Suali, E.; Sarbatly, R. Conversion of Microalgae to Biofuel. *Renew. Sustain. Energy Rev.* 2012, 16, 4316–4342. [CrossRef]

132. Cheng, Y.-T.; Jae, J.; Shi, J.; Fan, W.; Huber, G.W. Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. *Angew. Chem. Int. Ed.* 2012, 51, 1387–1390. [CrossRef] [PubMed]

133. Du, Z.; Ma, X.; Li, Y.; Chen, P.; Liu, Y.; Lin, X.; Lei, H.; Ruan, R. Production of Aromatic Hydrocarbons by Catalytic Pyrolysis of Microalgae with Zeolites: Catalyst Screening in a Pyroprobe. *Bioresour. Technol.* 2013, 139, 397–401. [CrossRef] [PubMed]

134. Vichaphund, S.; Aht-ong, D.; Sricharoenchaikul, V.; Atong, D. Production of Aromatic Compounds from Catalytic Fast Pyrolysis of Jatropha Residues Using Metal/HZSM-5 Prepared by Ion-Exchange and Impregnation Methods. *Renew. Energy* 2015, 79, 28–37. [CrossRef]

135. Naqvi, S.R.; Naqvi, M.; Noor, T.; Hussain, A.; Iqbal, N.; Uemura, Y.; Nishiyama, N. Catalytic Pyrolysis of *Botryococcus braunii* (Microalga) Over Layered and Delaminated Zeolites for Aromatic Hydrocarbon Production. *Energy Procedia* 2017, 142, 381–385. [CrossRef]

136. Belotti, G.; de Caparrinis, B.; De Filippis, P.; Scarsella, M.; Verdone, N. Effect of *Chlorella vulgaris* Growing Conditions on Bio-Oil Production via Fast Pyrolysis. *Biomass Bioenergy* 2014, 61, 187–195. [CrossRef]

137. Du, Z.; Hu, B.; Ma, X.; Cheng, Y.; Liu, Y.; Lin, X.; Wan, Y.; Lei, H.; Chen, P.; Ruan, R. Catalytic Pyrolysis of Microalgae and Their Three Major Components: Carbohydrates, Proteins, and Lipids. *Bioresour. Technol.* 2013, 130, 777–782. [CrossRef]

138. Gao, L.; Sun, J.; Xu, W.; Xiao, G. Catalytic Pyrolysis of Natural Algae over Mg-Al Layered Double Oxides/ZSM-5 (MgAl-LDO/ZSM-5) for Producing Bio-Oil with Low Nitrogen Content. *Bioresour. Technol.* 2017, 225, 293–298. [CrossRef]

139. Galadima, A.; Muraza, O. Hydrothermal Liquefaction of Algae and Bio-Oil Upgrading into Liquid Fuels: Role of Heterogeneous Catalysts. *Renew. Sustain. Energy Rev.* 2018, 81, 1037–1048. [CrossRef]

140. Yang, J.; He, Q.; Yang, L. A Review on Hydrothermal Co-Liquefaction of Biomass. *Appl. Energy* 2019, 250, 926–945. [CrossRef]
141. Ponnusamy, V.K.; Nagappan, S.; Bhosale, R.R.; Lay, C.H.; Duc Nguyen, D.; Pugazhendhi, A.; Chang, S.W.; Kumar, G. Review on Sustainable Production of Biochar through Hydrothermal Liquefaction: Physico-Chemical Properties and Applications. *Bioresour. Technol.* 2020, 310, 123414. [CrossRef]

142. Chaudry, S.; Bahri, P.A.; Moheimani, N.R. Pathways of Processing of Wet Microalgae for Liquid Fuel Production: A Critical Review. *Renew. Sustain. Energy Rev.* 2015, 52, 1240–1250. [CrossRef]

143. Yu, G.; Zhang, Y.; Guo, B.; Funk, T.; Schideman, L. Nutrient Flows and Quality of Bio-Crude Oil Produced via Catalytic Hydrothermal Liquefaction of Algae and Upgrading of Biocrude: A Critical Review. *Renew. Sustain. Energy Rev.* 2018, 97, 103–118. [CrossRef]

144. Guo, Y.; Yeh, T.; Song, W.; Xu, D.; Wang, S. A Review of Bio-Oil Production from Hydrothermal Liquefaction of Algae. *Renew. Sustain. Energy Rev.* 2015, 48, 776–790. [CrossRef]

145. Tekin, K.; Karagöz, S.; Bektas, S. A Review of Hydrothermal Biomass Processing. *Renew. Sustain. Energy Rev.* 2014, 40, 673–687. [CrossRef]

146. Pavlovic, I.; Knez, Ž.; Škerget, M. Hydrothermal Reactions of Agricultural and Food Processing Wastes in Sub- and Supercritical Water: A Review of Fundamentals, Mechanisms, and State of Research. *J. Agric. Food Chem.* 2013, 61, 8003–8025. [CrossRef]

147. Hu, Y.; Gong, M.; Feng, S.; Xu, C.; Bassi, A. A Review of Recent Developments of Pre-Treatment Technologies and Hydrothermal Liquefaction of Microalgae for Bio-Crude Oil Production. *Renew. Sustain. Energy Rev.* 2019, 101, 476–492. [CrossRef]

148. Shakya, R.; Whelen, J.; Adhikari, S.; Mahadevan, R.; Neupane, S. Effect of Temperature and NaOH Concentration on Hydrothermal Liquefaction of Algae. *Bioresour. Technol.* 2020, 310, 217–233. [CrossRef]

149. Eboibi, B.E.; Lewis, D.M.; Ashman, P.J.; Chinnasamy, S. Influence of Process Conditions on Pretreatment of Microalgae for Production of Biocrude during Hydrothermal Liquefaction of Pretreated *Tetraselmis* sp. *RSC Adv.* 2015, 5, 20193–20207. [CrossRef]

150. Mathimani, T.; Mallick, N. A Review on the Hydrothermal Processing of Microalgal Biomass to Bio-Oil—Knowledge Gaps and Recent Advances. *J. Clean. Prod.* 2019, 217, 69–84. [CrossRef]

151. Biller, P.; Ross, A.B. Potential Yields and Properties of Oil from the Hydrothermal Liquefaction of Microalgae with Different Biochemical Content. *Bioresour. Technol.* 2011, 102, 215–225. [CrossRef]

152. Ross, A.B.; Biller, P.; Kubacki, M.L.; Li, H.; Lea-Langton, A.; Jones, J.M. Hydrothermal Processing of Microalgae Using Alkali and Organic Acids. *Fuel* 2010, 89, 2234–2243. [CrossRef]

153. Hu, Y.; Feng, S.; Yuan, Z.; Xu, C.; Bassi, A. Investigation of Aqueous Phase Recycling for Improving Bio-Crude Oil Yield in Hydrothermal Liquefaction of Algae. *Bioresour. Technol.* 2017, 239, 151–159. [CrossRef] [PubMed]

154. Yang, W.; Li, X.; Liu, S.; Feng, L. Direct Hydrothermal Liquefaction of Undried Macroalgae *Enteromorpha prolifera* Using Acid Catalysts. *Energy Convers. Manage.* 2019, 192, 98–106. [CrossRef]

155. Shakya, R.; Whelen, J.; Adhikari, S.; Mahadevan, R.; Neupane, S. Effect of Temperature and Na$_2$CO$_3$ Catalyst on Hydrothermal Liquefaction of Algae. *Algal Res.* 2015, 16, 89–97. [CrossRef] [PubMed]

156. Muppaneni, T.; Reddy, H.K.; Selvaratnam, T.; Dandamudi, K.P.R.; Dungan, B.; Nirmalakhandan, N.; Schaub, T.; Omar Holguin, F.; Voorhies, W.; Lammers, P.; et al. Hydrothermal Liquefaction of Cyanidioschyzon merolae and the Influence of Catalysts on Products. *Bioresour. Technol.* 2017, 223, 91–97. [CrossRef] [PubMed]

157. Minowa, T.; Yokoyama, S.; Kishimoto, M.; Okakura, T. Oil Production from Algal Cells of Dunaliella tertiolecta by Direct Thermochemical Liquefaction. *Fuel* 1995, 74, 1735–1738. [CrossRef]

158. Yang, W.; Li, X.; Liu, S.; Feng, L. Direct Hydrothermal Liquefaction of Undried Macroalgae *Enteromorpha prolifera* Using Acid Catalysts. *Energy Convers. Manage.* 2014, 76, 154–158. [CrossRef]

159. Shakya, R.; Whelen, J.; Adhikari, S.; Mahadevan, R.; Neupane, S. Effect of Temperature and Na$_2$CO$_3$ Catalyst on Hydrothermal Liquefaction of Algae. *Algal Res.* 2015, 16, 89–90. [CrossRef]

160. Bach, Q.-V.; Sillero, M.V.; Tran, K.-Q.; Skjermo, J. Fast Hydrothermal Liquefaction of a Norwegian Macro-Alga: Screening Tests. *Algal Res.* 2014, 6, 271–276. [CrossRef]

161. Yang, Y.F.; Feng, C.P.; Inamori, Y.; Maekawa, T. Analysis of Energy Conversion Characteristics in Liquefaction of Algae. *Resour. Conserv. Recycl.* 2004, 43, 21–33. [CrossRef]

162. Saber, M.; Golszty, A.; Hosseinpour, M.; Takahashi, F.; Yoshikawa, K. Catalytic Hydrothermal Liquefaction of Microalgae Using Nanocatalyst. *Appl. Energy* 2016, 183, 566–576. [CrossRef]

163. Jena, U.; Das, K.C.; Kastner, J.R. Comparison of the Effects of Na$_2$CO$_3$, Ca$_3$(PO$_4$)$_2$, and NiO Catalysts on the Thermochemical Liquefaction of Microalga *Spirulina platensis*. *Appl. Energy* 2012, 98, 368–375. [CrossRef]

164. Lou, M.; Meenakshisundaram, A.; Renganathan, S.; Chinnasamy, S.; Lewis, D.M.; Nallasivam, J.; Bhaskar, S. Hydrothermal Liquefaction of Freshwater and Marine Algal Biomass: A Novel Approach to Produce Distillate Fuel Fractions through Blending and Co-Processing of Biocrude with Petrocrude. *Bioresour. Technol.* 2016, 203, 228–235. [CrossRef] [PubMed]

165. Lee, Y.; Wang, Y.; Li, J.; Zhang, Y.; Ma, L.; Fu, F.; Chen, B.; Liu, H. Hydrothermal Liquefaction of Ulva prolifera Macroalgae and the Influence of Base Catalysts on Products. *Bioresour. Technol.* 2019, 292, 121286. [CrossRef] [PubMed]

166. Kumar, V.; Kumar, S.; Chauhan, P.K.; Verma, M.; Bahuguna, V.; Joshi, H.C.; Ahmad, W.; Negi, P.; Sharma, N.; Ramola, B.; et al. Low-Temperature Catalyst Based Hydrothermal Liquefaction of Harmful Macroagal Blooms, and Aqueous Phase Nutrient Recycling by Microalgae. *Sci. Rep.* 2019, 9, 1–9. [CrossRef] [PubMed]

167. Yuan, L.; Wang, Y.; Li, J.; Zhang, Y.; Ma, L.; Fu, F.; Chen, B.; Liu, H. Hydrothermal Liquefaction of Ulva prolifera Macroalgae and the Influence of Base Catalysts on Products. *Bioresour. Technol.* 2019, 292, 121286. [CrossRef] [PubMed]

168. Zou, S.; Wu, Y.; Yang, M.; Li, C.; Tong, J. Thermochemical Catalytic Liquefaction of the Marine Microalgae *Dunaliella tertiolecta* and Characterization of Bio-Oils. *Energy Fuels* 2009, 23, 3753–3758. [CrossRef]

169. Zhuang, Y.; Guo, J.; Chen, L.; Li, D.; Liu, J.; Ye, N. Microwave-Assisted Direct Liquefaction of *Ulva prolifera* for Bio-Oil Production by Acid Catalysis. *Bioresour. Technol.* 2012, 116, 133–139. [CrossRef]
168. Li, J.; Fang, X.; Bian, J.; Guo, Y.; Li, C. Microalgae Hydrothermal Liquefaction and Derived Biocrude Upgrading with Modified SBA-15 Catalysts. *Bioresour. Technol.* 2018, 266, 541–547. [CrossRef]

169. Xu, D.; Guo, S.; Liu, L.; Lin, G.; Wu, Z.; Guo, Y.; Wang, S. Heterogeneous Catalytic Effects on the Characteristics of Water-Soluble and Water-Insoluble Biocrudes in Chlorella Hydrothermal Liquefaction. *Appl. Energy* 2019, 243, 165–174. [CrossRef]

170. Yang, L.; Ma, R.; Ma, Z.; Li, Y. Catalytic Conversion of *Chlorella pyrenoidosa* to Biofuels in Supercritical Alcohols over Zeolites. *Bioresour. Technol.* 2016, 209, 313–317. [CrossRef]

171. Xu, Y.; Zheng, X.; Yu, H.; Hu, X. Hydrothermal Liquefaction of *Chlorella pyrenoidosa* for Bio-Oil Production over Ce/HZSM-5. *Bioresour. Technol.* 2018, 266, 541–547. [CrossRef]

172. Chen, Y.; Wu, Y.; Ding, R.; Zhang, P.; Liu, J.; Yang, M.; Zhang, P. Catalytic Hydrothermal Liquefaction of *D. tertiolecta* for the Production of Bio-Oil over Different Acid/Base Catalysts. *AIChE J.* 2015, 61, 1118–1128. [CrossRef]

173. Yang, L.; Li, Y.; Savage, P. E. Catalytic Hydrothermal Liquefaction of a Microalga in a Two-Chamber Reactor. *Ind. Eng. Chem. Res.* 2014, 53, 11939–11944. [CrossRef]

174. Kandasamy, S.; Zhang, B.; He, Z.; Chen, H.; Feng, H.; Wang, Q.; Wang, B.; Ashokkumar, V.; Siva, S.; Bhuvanendran, N.; et al. Effect of Low-Temperature Catalytic Hydrothermal Liquefaction of *Spirulina platensis*. *Energy* 2020, 190, 116236. [CrossRef]

175. Kandasamy, S.; Zhang, B.; He, Z.; Chen, H.; Feng, H.; Wang, Q.; Wang, B.; Bhuvanendran, N.; Esakkimuthu, S.; Ashokkumar, V.; et al. Hydrothermal Liquefaction of Microalgae Using Fe$_3$O$_4$ Nanostuctures as Efficient Catalyst for the Production of Bio-Oil: Optimization of Reaction Parameters by Response Surface Methodology. *Biomass Bioenergy* 2019, 131, 105417. [CrossRef]

176. Liu, Z.; Li, H.; Zeng, J.; Liu, M.; Zhang, Y.; Liu, Z. Influence of Fe/HZSM-5 Catalyst on Elemental Distribution and Product Properties during Hydrothermal Liquefaction of Nannochloropsis sp. *Algal Res.* 2018, 35, 1–9. [CrossRef]

177. Liu, C.; Kong, L.; Wang, Y.; Dai, L. Catalytic Hydrothermal Liquefaction of Spirulina to Bio-Oil in the Presence of Formic Acid over Palladium-Based Catalysts. *Algal Res.* 2018, 33, 156–164. [CrossRef]

178. López Barreiro, D.; Prins, W.; Ronisse, F.; Brilman, W. Hydrothermal Liquefaction (HTL) of Microalgae for Biofuel Production: State of the Art Review and Future Prospects. *Biomass Bioenergy* 2013, 53, 113–127. [CrossRef]

179. Tian, C.; Li, B.; Liu, Z.; Zhang, Y.; Lu, H. Hydrothermal Liquefaction for Algal Biorefinery: A Critical Review. *Renew. Sustain. Energy Rev.* 2014, 38, 933–950. [CrossRef]