Finite Element Modelling of the Connection for Timber-concrete Composite Beams

Lukasz Polus 1, Maciej Szumigala 1
1 Poznan University of Technology, Faculty of Civil and Environmental Engineering, Institute of Structural Engineering, Piotrowo 5 street, 60-965 Poznan, Poland
lukasz.polus@put.poznan.pl

Abstract. The present study investigated the structural behaviour of the connection for timber-concrete composite (TCC) beams using numerical analysis. In the proposed TCC system, a concrete slab was connected to timber girders with mechanical shear connectors developed by the authors of this article. The load-slip behaviour of the connections was characterised in the push out test. Non-linear 3D finite element (FE) models of the tested joints were verified against experimental results. The comparison between the experimental and numerical results indicates that the adopted 3D model can adequately capture the response of the TCC joints.

1. Introduction
Wood is often used for building structural elements. The load-bearing capacity and stiffness of a timber beam may be increased by joining it with an element made of a different material. For this reason, composite structures may be highly efficient. In timber-concrete composite (TCC) beams a timber beam is joined with a concrete slab. The concrete may be poured into trapezoidal decking [1] on the construction site or the concrete slab may be prefabricated [2, 3]. The connection between a wooden beam and a concrete slab may be achieved by: an adhesive layer [4-6], shear connectors, e.g. nails [7], anchor connection [8], composite connectors [9], dowel-type fasters [10, 11], or a concrete plug [12].
There are some interesting composite structures with a timber element, which may provide an alternative for TCC structures, e.g.: steel-timber composite structures [13-16], timber-glass composite structures [17, 18] and aluminium-timber composite structures [19].

2. Problem formulation
This article presents a numerical simulation of the push-out test of the mechanical shear connectors developed by its authors. Push-out tests are often used to investigate resistance and stiffness of connectors [20-22]. The mechanical properties of connections play an essential role in the behaviour of TCC beams. For this reason, the authors of this article prepared laboratory tests of such connectors. The results of the above-mentioned tests were presented in article [23] and they were used to verify the numerical model. The load-slip model of behaviour of the connector obtained from these tests was used for a non-linear analysis of the TCC joints (see Figure 1).
3. Numerical model

The numerical model was prepared in the Abaqus program [24]. The results from the laboratory tests presented in [23] were used to discuss the load-slip behaviour of the connections. An experimental model consisted of: two concrete slabs made of C60/75 concrete, two steel sheets made of 0.7 mm-thick S320GD steel, four shear connectors developed by the authors of this article made of S235 steel, two reinforcing meshes made of 6 mm S235JRG2 steel, round bars and a timber beam made of GL28h timber. The numerical model had two axes of symmetry. For this reason, the authors of this article prepared only 1/2 of the model (see Figure 2). The shear connectors were modelled implicitly using a zero-length spring and the load-slip model from the laboratory tests presented in the article [23].

![Figure 1](image1.png)

Figure 1. Non-linear load-slip response for one connector [23]

![Figure 2](image2.png)

Figure 2. Connection model in the Abaqus program: a) complete model; b) half of the model;
1 – concrete slab, 2 – timber beam, 3 – steel plate, 4 – steel mesh, 5 – profiled steel sheeting

The concrete slab and the timber beam were divided into eight-node cuboidal finite solid elements (C3D8R), the reinforcing meshes were modelled by means of truss elements (T3D2), and the steel mesh and sheeting were divided into four-node shell elements (S4R). The mesh size was 20 mm. The total number of all such elements was 12 650. Surface-to-surface “hard” contact and friction were defined between the flange of the timber beam and the edge of the concrete slab. The coefficient of friction was 0.3. The meshes were embedded in the concrete slab. The calculations were performed...
using the Newton-Raphson method in the Abaqus program. The load was applied in the form of displacement. Figure 3 presents the boundary conditions used in the computer model.

![Boundary conditions](image)

Figure 3. Boundary conditions: 1 – displacement, 2 – displacement in x, y, z directions (blocked), 3 – displacement in y direction (blocked) and rotation around x and z axes (blocked), 4 – connector (spring).

The behaviour of glued laminated timber (GLT) was modelled using an elastic-perfectly plastic model. The non-linear behaviour of concrete was captured using the concrete damaged plasticity (CDP) model available in the Abaqus program and successfully used in [25-29]. The behaviour of the materials is presented in Figure 4.

![Material models](image)

Figure 4. Material models

The stress-strain diagram for the analysis of the concrete subjected to compression was adopted from [30], the stress-strain diagram for the analysis of the concrete subjected to tension was taken from [31]. The compressive strength of the concrete was based on own laboratory tests, and the tensile
strength of the concrete was taken from [30]. The value of the fracture energy and the critical crack opening were calculated using the formulas presented in [31–34]. The parameters for GL28h were based on the standard [35]. The material parameters for S235 steel were from the standard [36]. All the parameters of the materials used in the numerical model are presented in Tables 1, 2 and 3.

Table 1. Parameters of materials used in numerical calculations.

Material	Parameter	Value
Concrete C60/75	Young’s modulus E_{cm} [MPa]	39 000
	Poisson’s ratio ν [-]	0.20
	Mean value of concrete cylinder compr. strength f_{cm} [MPa]	68.0
	Mean value of axial tensile strength of concrete f_{ctm} [MPa]	4.4
	Largest nominal maximum aggregate size d_a [mm]	16.0
	Fracture energy G_F [N/m]	103.5
	Parameter n [-]	0.7
	Dilatation angle [°]	40.0
	Eccentricity [-]	0.1
	f_{b0}/f_{c0} [-]	1.16
	Parameter κ [-]	0.667
	Viscosity parameter [-]	0.001
GL28h	Young’s modulus $E_{0,mean}$ [MPa]	12 600
	Poisson’s ratio ν [-]	0.3
	Compression strength, parallel to grain $f_{c,0,k}$ [MPa]	26.5
S235	Young’s modulus E [MPa]	210 000
	Poisson’s ratio ν [-]	0.3
	Yield strength [MPa]	235.0

Table 2. Material parameters used in the CDP model for the C60/75 concrete subjected to compression.

Stress [MPa]	Crushing strain [-]	Concrete compression hardening	Concrete compression damage
22.300	0.00000000	0.000	0.00000000
46.285	0.00011321		0.0011321
51.760	0.00017283	0.000	0.0017283
56.621	0.00024818	0.000	0.0024818
60.780	0.00034155	0.000	0.0034155
64.127	0.00045573	0.000	0.0045573
66.530	0.00059410	0.000	0.0059410
68.000	0.00085641	0.000	0.0085641
67.817	0.00096111	0.003	0.0096111
67.244	0.00107579	0.011	0.0107579
66.244	0.00120143	0.026	0.0120143
64.774	0.00133912	0.047	0.0133912
62.785	0.00149013	0.077	0.00149013
60.221	0.00165587	0.114	0.00165587
57.018	0.00183800	0.162	0.00183800
53.102	0.00203842	0.219	0.00203842
48.386	0.00225933	0.288	0.00225933
Concrete compression hardening

Stress [MPa]	Crushing strain	Concrete compression damage
42.771	0.00250331	0.371
36.138	0.00277339	0.469
28.348	0.00307314	0.583
19.234	0.00340682	0.717
8.5970	0.00377957	0.874
2.6330	0.00398248	0.961

Table 3. Material parameters used in the CDP model for the C60/75 concrete subjected to tension (n=0.7).

Concrete tension stiffening

Stress [MPa]	Cracking strain	Concrete tension damage
3.900000	0.0000000	0.0000000
2.947157	0.0001244	0.001244
2.5020962	0.0001854	0.0001854
2.218909	0.0002431	0.0002431
1.814188	0.0003535	0.0003535
1.070363	0.0008226	0.0008226
1.028382	0.0008736	0.195992
0.955266	0.0009755	0.253156
0.893613	0.0010771	0.301357
0.840809	0.0011784	0.342640
0.774267	0.0013301	0.394664
0.577958	0.0020352	0.548142
0.510162	0.0024369	0.601146
0.259079	0.0064434	0.797447

4. Results and discussions

The results from the laboratory test [23] and numerical simulation are presented in Figure 5. The adopted 3D model adequately captured the response of the TCC joints.

Figure 5. Force-slip diagrams from the push-out tests: 1 – Laboratory test [23], 2 – FEA analysis
The first part of plot 1 presented the cyclic load. This phase of the test was used to eliminate clearances. In the numerical simulation, the first part of the test was modelled using the springs with low stiffness (see Figure 1). For this reason, the first part of plot 2 (from 0.0 kN to the point where the load reached 8.0 kN) presented the initial slip. The load-slip model of behaviour of the connector obtained from the laboratory test was successfully used for a non-linear analysis of the TCC joints. This model could also be used in a non-linear analysis of the TCC composite beams, which requires further investigation.

5. Conclusions
The main conclusions of this paper include:

- The mechanical properties of connections play an essential role in the behaviour of TCC joints.
- The load-slip model of behaviour of the connector, obtained from laboratory tests, may be successfully used for a non-linear analysis of the TCC joints.
- The adopted 3D FE model adequately captured the response of the TCC joint.

Future tests should focus on using such connection in timber-concrete composite beams.

Acknowledgment
This research was supported by the grants 01/11/DSMK/0906 and 01/11/DSPB/0805.

References
[1] M. Szumigala, E. Szumigala, Ł. Polus, “An analysis of the load-bearing capacity of timber-concrete composite beams with profiled sheeting”, Civil and Environmental Engineering Reports, Vol. 27, issue 4, pp. 143-156, ISSN 2080-5187, 2017.

[2] E. Łukaszewska, M. Fragiacomio, H. Johnsson, “Laboratory Tests and Numerical Analyses of Prefabricated Timber-Concrete Composite Floors”, ASCE Journal of Structural Engineering, Vol. 136, issue 1, pp. 46-55, 2009.

[3] E. Łukaszewska, H. Johnsson, M. Fragiacomio, “Performance of connection for prefabricated timber-concrete composite floors”, Materials and Structures, 41, pp. 1533-1550, ISSN 1359-5997, 2008.

[4] J. Dankova, P. Mec, T. Majstrikova, “Stiffness analysis of glued connection of timber-concrete structure”, Open Engineering, Vol. 6, issue 1, pp. 241-249, ISSN 2391-5439, 2016.

[5] A. Ceccotti, R. Fellow, M. Fragiacomio, S. Giordano, “Long –term and collapse tests on a timber-concrete composite beam with glued-in connection”, Materials and Structures, 40, pp. 15-25, ISSN 1359-5997, 2006.

[6] M. Schafers, S. Werner, “Investigation on bonding between timber and ultra-high performance concrete (UHPC)”, Construction and Building Materials, Vol. 25, issue 7, pp. 3078-3088, ISSN 0950-0618, 2011.

[7] Perkowski Z., Czabak M., Gozarska K., “Estimation of shear stiffness of interlayer connection in two-layer composite beams based on analysis of natural frequencies”, Komunikacie, Vol. 15, issue 4, pp. 18-20, ISSN 1335-4205, 2013.

[8] R. Gutkowski, K. Brown, A. Shigidi, J. Natterer, “Laboratory tests of composite wood-concrete beams”, Construction and Building Materials, 22, pp. 1059-1066, ISSN 0950-0618, 2008.

[9] S. C. Auclair, L. Sorelli, A. Salenikovich, “A new composite connector for timber-concrete composite structures”, Construction and Building Materials, 112, pp. 84-92, ISSN 0950-0618, 2016.

[10] A. M. P. G. Dias, S.M.R. Lopes, J. W. G. Van De Kuilen, H. M. P. Cruz, “Load-carrying capacity of timber-concrete joints with dowel-type fasteners”, Journal of Structural Engineering, Vol. 133, issue 5, pp. 720-727, ISSN 0733-9445, 2007.

[11] A. M. P. G. Dias, H. M. P. Cruz, S. M. R. Lopes, J. W. G. Van De Kuilen, “Stiffness of dowel-type fasteners in timber-concrete joints”, Structure and Buildings, Vol. 163, issue SB4, pp.
257-266, ISSN 0965-0911, 2010.

[12] B. L. Deam, M. Fragiacomo, A. H. Buchanan, “Connections for composite concrete slab and LVL flooring systems”, Materials and Structures, 41, pp. 495-507, ISSN 1359-5997, 2008.

[13] A. Hassanieh, H. R. Valipour, M. A. Bradford, “Experimental and analytical behaviour of steel-timber composite connections”, Construction and Building Materials, 118, pp. 63-75, ISSN: 0956-041X, 2016.

[14] A. Hassanieh, H. R. Valipour, M. A. Bradford, “Experimental and numerical study of steel-timber composite (STC) beams, Journal of Construction Steel Research, 122, pp. 367-378, ISSN 0143-974X, 2016.

[15] A. Hassanieh, H. R. Valipour, M. A. Bradford, C. Sandhaas, “Composite connections between CLT slab and steel beam: Experiments and empirical models”, Journal of Constructional Steel Research, 138, pp. 823-836, ISSN 0143-974X, 2017.

[16] A. Hassanieh, H. R. Valipour, M. A. Bradford, C. Sandhaas, “Modelling of steel-timber composite connections: Validation of finite element model and parametric study”, Engineering Structures, 138, pp. 35-49, ISSN 0956-041X, 2017.

[17] K. Furtak, K. Rodacki, “Experimental investigations of load-bearing capacity of composite timber-glass I-beams”, Archives of Civil and Mechanical Engineering, Vol. 18, issue 3, pp. 956-964, ISSN 1644-9665, 2018.

[18] K. Rodacki, “The load-bearing capacity of timber-glass composite I-beams made with polyurethane adhesives”, Civil and Environmental Engineering Reports, Vol. 27, issue 4, pp. 105-120, ISSN 2080-5187, 2017.

[19] M. Szumigała, M. Chybiński, Ł. Polus, “Preliminary analysis of the aluminium-timber composite beams”, Civil and Environmental Engineering Reports, Vol. 27, issue 4, pp. 131-141, ISSN 2080-5187, 2017.

[20] W. Lorenc, E. Kubica, M. Kożuch, “Testing procedures in evaluation of resistance of innovative shear connection with composite dowels”, Archives of Civil and Mechanical Engineering, Vol. 10, issue 3, pp. 51-63, ISSN 1644-9665, 2010.

[21] Ł. Polus, M. Szumigała, “Tests of shear connectors used in aluminium-concrete composite structures”, [in:] Recent Progress in Steel and Composite Structures, M. Gizejowski, J. Marcinowski, J. Ziółko [Eds.], CRC Press-Taylor & Francis Group, Boca Raton, pp. 133-136, ISBN 978-1-315-62319-1, 2016.

[22] R. Studziński, K. Ciesielecki, “Connection stffiness between thin-walled beam and sandwich panel”, Journal of Sandwich Structures and Materials, DOI: 10.1177/1099636217750539, 2017.

[23] M. Szumigała, E. Szumigała, Ł. Polus, “Laboratory tests of new connectors for timber-concrete composite structures”, Engineering Transactions, Vol. 66, issue 2, pp. 161-173, ISSN 0867-888X, 2018.

[24] Abaqus 6.13 Documentation, Abaqus Analysis Users Guide, Abaqus Theory Guide.

[25] I. Jankowiak, “Case study of flexure and shear strengthening of RC beams by CFRP using FEA”, AIP Conference Proceedings, Vol. 1922, article number 130004, DOI: 10.1063/1.5019154, 2017.

[26] T. Jankowiak, T. Łodygowski, “Quasi-static failure criteria for concrete”, Archives of Civil Engineering, Vol. 56, issue 2, pp. 123-154, ISSN 1230-2945, 2010.

[27] M. Szumigała, Ł. Polus, “An numerical simulation of an aluminium-concrete beam”, Procedia Engineering, 172, pp. 1086-1092, ISSN 1877-7058, 2017.

[28] I. Jankowiak, A. Madaj, “Numerical analysis of effectiveness of strengthening concrete slab in tension of the steel-concrete composite beam using pretensioned CFRP strips”, Civil and Environmental Engineering Reports, Vol. 27, issue 4, pp. 5-15, ISSN 2080-5187, 2017.

[29] P. Szewczyk, M. Szumigała, “The trial of optimal strengthening of composite beams”, in] Recent Advances in Computational Mechanics, T. Łodygowski, J. Rakowski, P. Litewka [Eds.], Taylor & Francis Group, London, pp. 277-283, ISBN 978-1-138-02482-3, 2014.
[30] European Committee for Standardization, EN 1992-1-1, Eurocode 2, Design of concrete structures - Part 1-1: General rules and rules for buildings, Brussels 2004.

[31] P. Kmiecik, M. Kamiński, “Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration”, *Archives of Civil and Mechanical Engineering*, Vol. 11, issue 3, pp. 623-636, ISSN 1644-9665, 2011.

[32] Z. P. Bazant, E. Becq-Giraudon, “Statistical prediction of fracture parameters of concrete and implications for choice of testing standard”, *Cement and Concrete Research*, 32, pp. 529-556, ISSN 0008-8846, 2002.

[33] Committee Euro-International du Beton, CEB-FIP Model Code 1990, Thomas Telford, London 1991.

[34] D. A. Hordijk, Local approach to fatigue of concrete, PhD Thesis, Delft University of Technology, 1991.

[35] Normenausschuss Bauwesen, DIN 1052, Design of timber structures – General rules and rules for buildings, 2004.

[36] European Committee for Standardization, EN 1993-1-1, Eurocode 3, Design of steel structures - Part 1-1: General rules and rules for buildings, Brussels 2005.