THE DUALITY OPERATION IN THE CHARACTER RING
OF A FINITE CHEVALLEY GROUP

BY DEAN ALVIS

It is possible (as in [4]) to define a duality operation \(\xi \mapsto \xi^* \) in the ring of virtual characters of an arbitrary finite group with a split \((B, N)\)-pair of characteristic \(p \). Such a group arises as the fixed points under a Frobenius map of a connected reductive algebraic group, defined over a finite field [1]. This paper contains statements of several general properties of the duality map \(\xi \mapsto \xi^* \) and two related operations (see \$2\$ and \$4\$). The duality map \(\xi \mapsto \xi^* \) generalizes the construction in [2] of the Steinberg character, and interacts well with the organization of the characters from the point of view of cuspidal characters (\$6\$). It is hoped that there is also a useful interaction with the Deligne-Lusztig virtual characters \(R_T^G \theta \). Partial results have been obtained in this direction (\$5\$). Detailed proofs will appear elsewhere.

1. Let \(G \) be a finite group with split \((B, N)\)-pair of characteristic \(p \). Let \((W, R)\) be the Coxeter system, and let \(P_j = L_j V_j \) be the standard parabolic subgroup corresponding to \(J \subseteq R \), with \(V_j = O_p(P_j) \) (see [3] for definitions and notations). Let \(\text{char}(G) \) denote the ring of virtual characters of \(G \), and \(\text{Irr}(G) \) the set of irreducible characters of \(G \), all taken in the complex field. For \(J \subseteq R \) and \(\xi \in \text{char}(G) \), define

\[
\xi_{(P_j/V_j)} = \sum_{\Im} \xi_{(P_j/V_j)} \sim
\]

where \(\sim \) denotes extension to \(P_j \) via the projection \(P_j \rightarrow L_j \cong P_j/V_j \), and the sum is over all \(\lambda \in \text{Irr}(L_j) \). Let \(\xi_{(P_j)} = \xi_{(P_j/V_j)} \sim \). The duality map is then defined by:

1.2 DEFINITION. \(\xi^* = \sum_{J \subseteq R} (-1)^{|J|} \xi_{(P_j)} \), for all \(\xi \in \text{char}(G) \).

2. The truncation map \(\xi \mapsto \xi_{(P_j/V_j)} \) and the map \(\lambda \mapsto \lambda^G \) behave in much the same way as ordinary restriction and induction. The following basic properties follow directly from the structure theorems [3].

2.1 FROBENIUS RECIPROCITY. Let \(\xi \in \text{char}(G) \) and \(\lambda \in \text{char}(L_j) \). Then

\[\xi \mapsto \xi_{(P_j)} \text{ and } \lambda \mapsto \lambda^G \text{ behave in much the same way as ordinary restriction and induction.} \]
If $K \subseteq J \subseteq R$, let Q_K be the standard parabolic subgroup $P_K \cap L_J$ of L_J and let $V_{J,K} = O_p(Q_K) = L_J \cap V_K$. Then if $\xi \in \text{char}(G)$ and $\xi \in \text{char}(L_J)$, we have

$$((\xi(P_J/V_J)))(Q_K/V_{J,K}) = \xi(P_K/V_K),$$

and

$$((\lambda L_J)^G = \lambda^G.$$
4. The first main result relates duality and the operations \(\xi \rightarrow \xi_{(p_f/V_f)} \) and \(\lambda \rightarrow \widetilde{\lambda}^G \). Part (1) is Theorem 1.3 of [4].

Theorem. (1) \((\xi^*)_{{(p_f/V_f)}} = (\xi_{(p_f/V_f)})^* \) for \(J \subseteq R, \xi \in \text{char}(G) \)

(2) \((\widetilde{\lambda}^G)^* = (\lambda^*)_{-G} \) for \(J \subseteq R, \lambda \in \text{char}(L_J) \).

We provide a sketch of the proof of (2). Let \(J_1 = J \). Using 2.4, 2.2, and then Lemma 3.1 (noting that \(L_{K_1} = \cup L_{K_2} \) by Proposition 2.6 of [3]) we have

\[
(\widetilde{\lambda}^G)^* = \sum_{J_2 \subseteq R} (-1)^{|J_2|} \sum_{w \in \mathcal{W}_{J_1}, J_2} \lambda(Q_{K_1}/V_{J_1}, K_1)_{-G}
\]

The proof is then completed by applying Lemma 3.2 and 2.2.

4.2 Theorem. The map \(\xi \rightarrow \xi^* \), from \(\text{char}(G) \rightarrow \text{char}(G) \) is an isometry of order two. In particular, \(\xi^{**} = \xi \) and \(\pm \xi^* \in \text{Irr}(G) \), whenever \(\xi \in \text{Irr}(G) \).

In order to prove Theorem 4.2, one first proves that \((\xi_1, \xi_2)_G = (\xi_1^*, \xi_2^*)_G \). It then suffices to prove \(\xi^{**} = \xi \). The key is to apply Theorem 4.1 part (1) to the expression for \(\xi^{**} \). We have

\[
\xi^{**} = \sum_{J \subseteq R} (-1)^{|J|} \xi_{(p_f/V_f)}^*_{-G}
\]

\[= \sum_{J \subseteq R} (-1)^{|J|} \sum_{K \subseteq J} (-1)^{|K|} \xi_{(p_K)^G}
\]

using 2.2. To finish the proof, note that \(\sum (-1)^{|J|} \) summed over all \(J \) such that \(K \subseteq J \subseteq R \) is zero unless \(K = R \).

5. It is clear that \(\xi^* = (-1)^{|R|} \xi \) for any cuspidal \(\xi \in \text{Irr}(G) \). Thus by applying Theorem 4.1 part (2) we have:

5.1 Corollary. Let \(\lambda \in \text{Irr}(L_\lambda) \) be cuspidal. Then \((\widetilde{\lambda}^G)^* = (-1)^{|R|}\widetilde{\lambda}^G \).

Thus duality permutes (up to sign) the components of \(\widetilde{\lambda}^G \). We can thus determine the “sign” of \(\xi^* \) as follows: \((-1)^{|J|} \xi^* \) is in \(\text{Irr}(G) \) if \(\xi \in \text{Irr}(G) \) is a component of \(\widetilde{\lambda}^G, \lambda \in \text{Irr}(L_J) \) cuspidal. In particular, \(\xi \rightarrow \xi^* \) permutes the principal series characters, i.e. the components of \(\widetilde{\lambda}^G, \lambda \in \text{Irr}(L_G) \). A more explicit result is known for the components \(\xi_{\varphi, q} \) of \(\Gamma_{B(q)} \) in a system of groups \(\{G(q)\} \) of type \((W, R) \). Specifically, \(\xi_{\varphi, q}^* = \xi_{e\varphi, q} \) where \(e \) is the sign character of \(\mathcal{W} \) ([4]).
Finally, consider the case $G = G^F$ where G is a reductive algebraic group and $F : G \to G$ is a Frobenius map over F_q. Let $R_T^G \theta$ denote the Deligne-Lusztig generalized character of G (a F-stable maximal torus of G, θ a linear character of T^F). It is natural to ask whether

\[(5.2) \quad (R_T^G \theta)^* = \pm R_T^G \theta\]

holds. The following suggests the answer is yes.

\[(5.3) \quad (R_T^G \theta)^*(s) = \pm R_T^G \theta(s)\]

for semisimple elements s of G. The \pm sign in 5.3 does not depend on the particular element s of G. The proof of 5.3 uses several results of [5]. (Note added in proof: The conjecture 5.2 has been proved by G. Lusztig.)

5.4 Example. Let $G = G^F$ as above, with (relative) Coxeter system (W, R). Let V be the set of unipotent elements of G and let ϵ_V be the characteristic function of V. A recent result of Springer (Theorem 1 of [6])\(^1\) shows

\[\epsilon_V = q^d \sum_{J \subseteq R} (-1)^{|J|} |P_J|^{-1} 1_{G,J}^G\]

where $d = \dim(G/B)$, B a Borel subgroup of G. Applying Theorems 4.1 and 4.2 we have:

5.5 Theorem. (1) $\epsilon_V^* = (q^d/|G|) \rho_G$ where ρ_G is the regular character of G.

(2) For $\xi \in \text{Irr}(G)$,

\[\frac{1}{\xi(1)} \sum_{\nu \in \nu} \xi(\nu) = q^d (\xi^*(1)/\xi(1)).\]

(3) For $\xi \in \text{Irr}(G), |\xi^*(1)|_p = \xi(1)_p$, where p is the characteristic of F_q and n_p is the p' part of n.

(4) For $\xi \in \text{Irr}(G), 1/\xi(1) \sum_{\nu \in \nu} \xi(\nu)$ is, up to sign, a power of p.

Part (4) of Theorem 5.5 confirms a special case of a conjecture of Macdonald (see [6]), namely the case when $q = p$ is prime.

REFERENCES

1. A. Borel and J. Tits, \textit{Groupes reductifs}, Inst. Hautes Etudes Sci. Publ. Math. 27 (1965), 55–151.
2. C. W. Curtis, \textit{The Steinberg character of a finite group with a (B, N)-pair}, J. Algebra 4 (1966), 433–441.

\(^1\)The author is indebted to T. A. Springer for communicating both his results in [6] and the suggestion of G. Lusztig of combining them with duality.
3. ———, *Reduction theorems for characters of finite groups of Lie type*, J. Math. Soc. Japan 27 (1975), 666–688.

4. ———, *Truncation and duality in the character ring of a finite group of Lie type*, J. Algebra (to appear).

5. P. Deligne and G. Lusztig, *Representations of reductive groups over finite fields*, Ann. of Math. 103 (1976), 103–161.

6. T. A. Springer, *A formula for the characteristic function of the unipotent set of a finite Chevalley group* (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403