Prevalence and molecular characterization of Cryptosporidium spp. in Père David's deer (Elaphurus davidianus) in Jiangsu, China

Prevalência e caracterização molecular de Cryptosporidium spp. no cervo de Père David (Elaphurus davidianus) em Jiangsu, China

Si-Yang Huang1*; Yi-Min Fan1; Yi Yang1; Yi-Jun Ren2; Jing-Zhi Gong1; Na Yao1; Bin Yang1

1 Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province, PR China
2 Dafeng Elk National Natural Reserve, Yancheng, Jiangsu Province, PR China

How to cite: Huang SY, Fan YM, Yang Y, Ren YJ, Gong JZ, Yao N, et al. Prevalence and molecular characterization of Cryptosporidium spp. in Père David's deer (Elaphurus davidianus) in Jiangsu, China. Braz J Vet Parasitol 2020; 29(2): e017919. https://doi.org/10.1590/S1984-29612020013

Abstract
Cryptosporidium is a zoonotic parasite that causes diarrhea in a broad range of animals, including deer. Little is known about the prevalence and genotype of Cryptosporidium spp. in Père David's deer. In this study, 137 fecal samples from Père David's deer were collected between July 2017 and August 2018 in the Dafeng Reserve and analyzed for Cryptosporidium spp. by nested-PCR based on the small subunit ribosomal RNA (SSU rRNA) gene, followed by sequence analyses to determine the species. The 60 kDa glycoprotein (gp60) gene was used to characterize Cryptosporidium spp. Among 137 samples, 2 (1.46%) were positive for Cryptosporidium spp. according to SSU rRNA gene sequencing results. Both samples belonged to the Cryptosporidium deer genotype, with two nucleotide deletions and one nucleotide substitution. The prevalence data and molecular characterization of this study provide basic knowledge for controlling and preventing Cryptosporidium infections in Père David's deer in this area.

Keywords: Cryptosporidium, Père David's deer, 60 kDa glycoprotein (gp60) gene, the small subunit ribosomal RNA (SSU rRNA).

Resumo
Cryptosporidium é um parasita zoonótico que causa diarreia em uma ampla gama de animais, incluindo veas. Pouco se sabe sobre a prevalência e o genótipo de Cryptosporidium spp. no cervo de Père David. Neste estudo, 137 amostras fecais do cervo de Père David foram coletadas entre julho de 2017 e agosto de 2018, na Reserva Dafeng, e analisadas para Cryptosporidium spp. por nested-PCR baseado no gene do RNA ribossômico da subunidade pequena (SSU rRNA), seguido de análises de sequências para determinar as espécies. O gene da glicoproteína de 60 kDa (gp60) foi utilizado para caracterizar Cryptosporidium spp. Dentre as 137 amostras, 2 (1,46%) foram positivas para Cryptosporidium spp. de acordo com os resultados do sequenciamento gênico de SSU rRNA. Ambas as amostras pertenciam ao genótipo do cervo Cryptosporidium, com duas deleções nucleotídicas e uma substituição nucleotídica. Os dados de prevalência e a caracterização molecular deste estudo fornecem conhecimentos básicos para controlar e prevenir infecções por Cryptosporidium nos cervos de Père David nessa área.

Palavras-chave: Cryptosporidium, cervos de Père David, Gene de glicoproteína de 60 kDa (gp60), RNA ribossômico da pequena subunidade (SSU rRNA).
Introduction

Cryptosporidiosis is caused by Cryptosporidium spp., which is an important enteric apicomplexan parasite of zoonosis in the world (Parsons et al., 2015; Tanriverdi et al., 2007; Zhang et al., 2016). It is a critical emerging infectious disease in humans and animals that can lead to diarrhea or other serious symptoms (Zhao et al., 2015). In general, cryptosporidiosis is transmitted through the fecal-oral route, when ingesting food or water contaminated with infective oocysts. Currently, there is no effective drug or vaccine to cure or prevent cryptosporidiosis. Therefore, this disease has caused significant economic losses in animal husbandry. In addition, infected animals may be a source of secondary infection, because they can serve as potential carriers for human and other animal infections via excreting feces, including oocysts, that contaminate food and water (Deng & Cliver, 1999).

Père David's deer (Elaphurus davidianus), also called Milu deer, native to the Yangtze River Basin of China, is an endangered deer species in the world and listed as Extinct in the Wild by the International Union for Conservation of Nature (IUCN). It became extinct in the wild in China at the end of the 19th century. Fortunately, from 1985 to 1987, two groups of 40 and 39 Père David's deer were reintroduced to China from the UK and raised in the Nanhaizi Nature Reserve and Dafeng Reserve, respectively. The largest population in the world lives in the Dafeng Reserve, which is historically synonymous with Père David's deer (Ding et al., 2018).

Currently, more than 30 Cryptosporidium species and genotypes have been identified (Baroudi et al., 2018; Ryan et al., 2014). Eleven of them, C. muris, C. parvum, Cryptosporidium muskrat II genotype, C. hominis-like genotype, Cryptosporidium caribou genotype, C. hominis, C. bovis, C. ryanae, Cryptosporidium deer genotype, C. ubiquitum and Cryptosporidium suis-like genotype, have been identified in cervids, including red deer, sika deer, white-tailed deer, roe deer, caribou and moose in China, Czech Republic, Japan, the United Kingdom, Spain, the United States, Norway and Poland (Garcia-Presedo et al., 2013; Huang et al., 2018; Jellison et al., 2009; Kato et al., 2016; Kotkova et al., 2016; Siefker et al., 2002; Wang et al., 2008; Wells et al., 2015). Little information is available about Cryptosporidium infections in Père David's deer (Huang et al., 2018). In this study, the prevalence of Cryptosporidium infections and molecular characteristics were investigated in Père David's deer in the Dafeng Reserve, China.

Materials and Methods

Specimen collection and preparation

A total of 137 fecal samples of Père David's deer were collected between July 2017 and August 2018 in the Dafeng Reserve, Jiangsu Province, China. The samples were collected immediately after excreted onto the ground using sterile gloves and placed in individual plastic bags. No visible clinical signs were observed in these deer. The samples were pretreated in the laboratory in the following steps: 50 g of feces were placed in a beaker, diluted with normal saline, and stirred evenly with a glass rod. Then, the suspension was filtered with a 200-mesh sieve. The filtrate was loaded into a 50-mL centrifuge tube, centrifuged at 3,000× g for 10 min, and the precipitate was collected and stored at -20°C for further study.

DNA extraction and PCR amplification

Genomic DNA was extracted from each sample using the E.Z.N.A. Stool DNA Kit (OMEGA, USA) according to the manufacturer’s directions and stored at -20°C or immediately used for PCR. Cryptosporidium species and genotypes were examined by nested-PCR based on the small subunit ribosomal RNA (SSU rRNA) gene, as previously described (Zhao et al., 2013). For further identification and subtype detection, the samples positive for SSU rRNA were further analyzed by nested-PCR targeting the 60-kDa glycoprotein (gp60) gene (Alves et al., 2003; Feng et al., 2012; Li et al., 2014). The cycling conditions were as follows: 5 min at 95°C, followed by 35 cycles, each composed of 45 s at 94°C, an annealing step at a suitable temperature (Table 1) for 45 s, and 1 min at 72°C, and the final extension at 72°C for 10 min. Positive and negative controls were included in each reaction. The products were observed under UV light after electrophoresis in 1.5% agarose gels stained with ethidium bromide.
Cryptosporidium spp. in Père David's deer

Sequencing and phylogenetic analyses

All PCR products were sequenced by the GenScript Company (Nanjing, China). The sequence accuracy was confirmed by bidirectional sequencing. To determine Cryptosporidium species and subtypes, the sequencing results were aligned with known reference sequences of Cryptosporidium available in GenBank using BLAST. MEGA 5.0 was used to construct the phylogenetic trees using neighbor-joining (NJ) analysis of the SSU rRNA sequences, based on the Kimura-2-parameter model, and bootstrapping was performed using 1000 replicates. The nucleotide sequences obtained in this study were deposited in the GenBank under accession number MK571183.

Results and Discussion

Prevalence of Cryptosporidium

In this study, 2 of 137 fecal samples were positive for Cryptosporidium infection. The overall prevalence of Cryptosporidium was 1.46% in Père David’s deer in the Dafeng Reserve. The result was similar to 3.7% seen in wild red deer, European leisure deer, white-tailed deer and mouflon sheep in the Czech Republic (Kotkova et al., 2016), but lower than that in the red deer, Père David’s deer and sika deer in Henan and Jilin, China (6.8%), the Hokkaido sika deer in Japan (7.8%) and white-tailed deer in central Maryland (12.5%) (Huang et al., 2018; Kato et al., 2016; Santin & Fayer, 2015). Although one study indicated that Cryptosporidium was found in Père David’s deer, there was no detailed information about prevalence. Thus, it is difficult to compare the prevalence with that in other studies. In addition, due to the influence of ecological conditions, age distributions, seasons, management systems, sample sizes and other factors, explaining the discrepancies in the prevalence of Cryptosporidium among different studies is challenging (Huang et al., 2014).

Cryptosporidium species and genotypes

Two Cryptosporidium-positive samples were sequenced and genotyped by the sequence analysis of the SSU rRNA gene. According to the results of the BLAST (NCBI) analysis, both isolates represented the Cryptosporidium deer genotype. The Cryptosporidium deer genotype (GenBank accession numbers: KX259129), which was recently reported in red deer in Henan and Jilin, China, has two nucleotide deletions (-/G position 8, -/T position 16) and one nucleotide substitution (G/T position 11) (Huang et al., 2018) in the two isolates in the present study. In the Cryptosporidium genome, the gp60 gene was used for C. parvum and C. ubiquitum subtype analysis due to its heterogeneity and biological correlation. Although no C. parvum and C. ubiquitum were detected, the two positive samples were analyzed by nested-PCR targeting the gp60 gene (Feng et al., 2007b). The results were negative; no PCR amplicon was amplified. Currently, there are several reports on cervid infections with the Cryptosporidium deer genotype in England, Australia, Czech Republic, China, and Japan (Cinque et al., 2008; Feng et al., 2007a; Koehler et al., 2016; Perz & Le Blancq, 2001; Robinson et al., 2011; Xiao et al., 2002). However, there is little genotype information about Cryptosporidium in Père David’s deer. In the present study, the genotype identified in the Père David’s deer

Primers names	Primers Sequence (5’-3’)	Annealing temperature (°C)	Amplicon length (bp)	References
SSU rRNA F1	CCCATTTCCTTCGAAACAGGA	55	830	Zhao et al. 2013
SSU rRNA R1	TCTAGAGCTAATACATGCCG			
SSU rRNA F2	AAGGAGTAAGGAACACCTCCA	58		
SSU rRNA R2	GGAAGGGTTGTATTAGATAAAG			
gp60 F1	ATAGTCCCGCTGATTC	50	800 to 850	Alves et al. 2003
gp60 R1	GGAAGGAAGATGTATCT			
gp60 F2	TCCGCTGTATTCTCAGCC	50		
gp60 R2	GCAGAGGAACCAGCATC			
is similar to the *Cryptosporidium* deer genotype reported before; however, compared with the *Cryptosporidium* deer genotype (GenBank accession numbers: KX259129), there were three mutants. More information and future studies are needed to determine whether this genotype represents a new genotype.

Phylogenetic analyses

Phylogenetic relationships were established by the NJ method; the *Plasmodium cathemerium* sequence was used as the outgroup, and the sequence similarity between *Cryptosporidium* species and genotypes available in GenBank was observed based on SSU rRNA (Figure 1). *Cryptosporidium* forms two main groups, one of which includes *C. muris*, *C. serpentis*, *C. galli* and *C. andersoni*, previously known as parasitic gastrosporidium. The other group includes *C. bovis*, *C. ryanæ*, *C. scrofarum*, *Cryptosporidium* pig genotype, *C. avium*, *C. baileyi*, *C. canis*, *C. suis*, *C. lemur*, *C. wrairi*, *C. meleagris*, *C. parvum*, *Cryptosporidium* deer genotype, and the isolated strain of *Cryptosporidium* derived from Père David's deer (MK571183). The results indicated that *Cryptosporidium* spp. Père David's deer (the newly generated sequences in this study) was clustered in the *Cryptosporidium* deer genotype branch. The genotype shares a branch with isolates from the United States, Japan and China and is closely related to *C. ryanæ* and *C. bovis*.

Figure 1. Phylogenetic relationship between SSU rRNA sequences of *Cryptosporidium* was analyzed using the Kimura-2 parametric model of Neighbor-Joining (NJ). The numbers on branches was the percentage of the bootstrap values in 1000 replicates. The *Cryptosporidium* isolates identified in this study are represented by black triangles.
These results indicate that the Cryptosporidium isolated from the Père David's deer in this study were close to the Cryptosporidium deer genotype. This study reported the prevalence (1.46%, 2/137) of Cryptosporidium infection in Père David's deer in the Dafeng Reserve, China, for the first time. The genotype identified in Père David's deer in the Dafeng Reserve was Cryptosporidium deer genotype with 3 mutants, which was closely related to C. ryanae and C. bovis. Further investigation into the transmission dynamics of these pathogens should be continued.

Acknowledgements

Project support was provided by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (Veterinary Medicine);

References

Alves M, Xiao L, Sulaiman I, Lal AA, Matos O, Antunes F. Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. J Clin Microbiol 2003; 41(6): 2744-2747. http://dx.doi.org/10.1128/JCM.41.6.2744-2747.2003. PMid:12791920.

Baroudi D, Hakem A, Adamu H, Amer S, Khelef D, Adjou K, et al. Zoonotic Cryptosporidium species and subtypes in lambs and goat kids in Algeria. Parasit Vectors 2018; 11(1): 582. http://dx.doi.org/10.1186/s13071-018-3172-2. PMid:30400983.

Cinque K, Stevens MA, Haydon SR, Jex AR, Gasser RB, Campbell BE. Investigating public health impacts of deer in a protected drinking water supply watershed. Water Sci Technol 2008; 58(1): 127-132. http://dx.doi.org/10.2166/wst.2008.632. PMid:18653946.

Deng MQ, Cliver DO. Improved immunofluorescence assay for detection of Giardia and Cryptosporidium from asymptomatic adult cervine animals. Parasitol Res 1999; 85(8-9): 733-736. http://dx.doi.org/10.1007/s004360050623. PMid:10431741.

Ding Y, Ding J, Li P, Zhu J. Strategy study of wild Pere David deer (Elaphurus davidianus) population development in China. J Jiangsu Forestry Sci Technol 2018; 45: 49-51.

Feng Y, Alderisio KA, Yang W, Blancero LA, Kuhne WG, Nadareksi CA, et al. Cryptosporidium genotypes in wildlife from a New York watershed. Appl Environ Microbiol 2007a; 73(20): 6475-6483. http://dx.doi.org/10.1128/AEM.01034-07. PMid:17720824.

Feng Y, Karna SR, Dearen TK, Singh DK, Adhikari LN, Shrestha A, et al. Common occurrence of a unique Cryptosporidium ryanae variant in zebu cattle and water buffaloes in the buffer zone of the Chitwan National Park, Nepal. Parasitol Res 2012; 185(2-4): 309-314. https://doi.org/10.1007/j.vetpar.2011.09.025.

Feng Y, Ortega Y, He G, Das P, Xu M, Zhang X, et al. Wide geographic distribution of Cryptosporidium bovis and the deer-like genotype in bovines. Vet Parasitol 2007b; 144(1-2): 1-9. http://dx.doi.org/10.1016/j.vetpar.2006.10.001. PMid:17097231.

Garcia-Presedo I, Pedraza-Díaz S, González-Warleta M, Mezo M, Gómez-Bautista M, Ortega-Mora LM, et al. The first report of Cryptosporidium bovis, C. ryanae and Giardia duodenalis sub-assemblage A-II in roe deer (Capreolus capreolus) in Spain. Vet Parasitol 2013; 197(3-4): 658-664. http://dx.doi.org/10.1016/j.vetpar.2013.07.002. PMid:23890824.

Huang J, Zhang Z, Zhang Y, Yang Y, Zhao J, Wang R, et al. Prevalence and molecular characterization of Cryptosporidium spp. and Giardia duodenalis in deer in Henan and Jilin, China. Parasit Vectors 2018; 11(1): 239. http://dx.doi.org/10.1186/s13071-018-2813-9. PMid:29650036.

Huang JY, Yue DY, Qi M, Wang Rj, Zhao JF, Li JQ, et al. Prevalence and molecular characterization of Cryptosporidium spp. and Giardia duodenalis in dairy cattle in Ningxia, northwestern China. BMC Vet Res 2014; 10(1): 292. http://dx.doi.org/10.1186/s12917-014-0292-6. PMid:25488627.

Jellison KL, Lynch AE, Ziemann JM. Source tracking identifies deer and geese as vectors of human-infectious Cryptosporidium genotypes in an urban/suburban watershed. Environ Sci Technol 2009; 43(12): 4267-4272. http://dx.doi.org/10.1021/es900081m. PMid:19603633.

Kato S, Yanagawa Y, Matsuyama R, Suzuki M, Sugimoto C. Molecular identification of the Cryptosporidium deer genotype in the Hokkaido sika deer (Cervus nippon yesoensis) in Hokkaido, Japan. Parasitol Res 2016; 115(4): 1463-1471. http://dx.doi.org/10.1007/s00436-015-4880-6. PMid:26687968.

Koehler AV, Haydon SR, Jex AR, Gasser RB. Cryptosporidium and Giardia taxa in faecal samples from animals in catchments supplying the city of Melbourne with drinking water (2011 to 2015). Parasit Vectors 2016; 9:315. https://dx.doi.org/10.1186%2Fs13071-016-1607-1.

Kotková M, Nemejc K, Sak B, Hanzal V, Kvetonova D, Hlaskova L, et al. Cryptosporidium ubiquitum, C. muris and Cryptosporidium deer genotype in wild cervids and caprines in the Czech Republic. Folia Parasitol (Praha) 2016; 63: 003. https://doi.org/10.14411/fp.2016.003.
Cryptosporidium spp. in Père David’s deer

Li N, Xiao LH, Alderisio K, Elwin K, Cebelinski E, Chalmers R, et al. Subtyping Cryptosporidium ubiquitum, a Zoonotic Pathogen Emerging in Humans. Emerg Infect Dis 2014; 20(2): 217-224. http://dx.doi.org/10.3201/eid2002.121797. PMid:24447504.

Parsons MB, Travis D, Lonsdorf EV, Lipende I, Roellig DMA, Kamanya S, et al. Epidemiology and molecular characterization of Cryptosporidium spp. in humans, wild primates, and domesticated animals in the Greater Gombe Ecosystem, Tanzania. PLoS Negl Trop Dis 2015; 9(2): e0003529. http://dx.doi.org/10.1371/journal.pntd.0003529. PMid:25700265.

Perz JF, Le Blancq SM. Cryptosporidium parvum infection involving novel genotypes in wildlife from lower New York State. Appl Environ Microbiol 2001; 67(3): 1154-1162. http://dx.doi.org/10.1128/AEM.67.3.1154-1162.2001. PMid:11229905.

Robinson G, Chalmers RM, Stapleton C, Palmer SR, Watkins J, Francis C, et al. A whole water catchment approach to investigating the origin and distribution of Cryptosporidium species. J Appl Microbiol 2011; 111(3): 717-730. http://dx.doi.org/10.1111/j.1365-2672.2011.05068.x. PMid:21649804.

Ryan U, Fayer R, Xiao L. Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology 2014; 141(13): 1667-1685. http://dx.doi.org/10.1017/S0031182014001085. PMid:25111501.

Santin M, Fayer R. Enterocytozoon bieneusi, Giardia, and Cryptosporidium infecting white-tailed deer. J Eukaryot Microbiol 2015; 62(1): 34-43. http://dx.doi.org/10.1111/jeu.12155.

Wang R, Wang J, Sun M, Dang H, Feng Y, Ning C, et al. Molecular characterization of the Cryptosporidium cervine genotype from a sika deer (Cervus nippon Temminck) in Zhengzhou, China and literature review. Parasitol Res 2008; 103(4): 865-869. http://dx.doi.org/10.1007/s00436-008-1069-2. PMid:18575889.

Wells B, Shaw H, Hotchkiss E, Gilray J, Ayton R, Green J, et al. Prevalence, species identification and genotyping Cryptosporidium from livestock and deer in a catchment in the Cairngorms with a history of a contaminated public water supply. Parasit Vectors 2015; 8(1): 66. http://dx.doi.org/10.1186/s13071-015-0684-9. PMid:25650114.

Zhao GH, Ren WX, Gao M, Bian QQ, Hu B, Cong MM, et al. Genotyping Cryptosporidium andersoni in cattle in Shaanxi Province, Northwestern China. PLoS One 2013; 8(4): e60112. http://dx.doi.org/10.1371/journal.pone.0060112. PMid:23560072.