De novo transcriptome assembly of the Italian white truffle (Tuber magnatum Pico)

Federico Vita¹,², Amedeo Alpi²,³, Edoardo Bertolini⁴,⁵

¹LINV-Department of Plant Soil and Environmental Science, University of Florence, Viale delle idee 30, 50019 Sesto-Fiorentino (FI), Florence, Italy
²A.R.E.A. Foundation, Via Tavoleria, 28 – 56125 Pisa, Italy
³Department of Agriculture, Food and Environment, University of Pisa, Via Mariscoglio 34, 56124, Pisa, Italy
⁴Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, 56127, Pisa, Italy
⁵Present address: Donald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, Missouri 63132 USA

Correspondence to:
Edoardo Bertolini
Donald Danforth Plant Science Center
975 North Warson Road
St. Louis, MO 63132 USA
E-mail: ebertolini@danforthcenter.org
Abstract

The Italian white truffle (Tuber magnatum Pico) is a gastronomic delicacy that dominates the worldwide truffle market. Despite its importance, the genomic resources currently available for this species are still limited. Here we present the first de novo transcriptome assembly of T. magnatum. Illumina RNA-seq data were assembled using a single-k-mer approach into 22,932 transcripts with N50 of 1,524 bp. Our approach allowed to predict and annotate 12,367 putative protein coding sequences, reunited in 6,723 loci. In addition, we identified 2,581 gene-based SSR markers. This work provides the first publicly available reference transcriptome for genomics and genetic studies providing insight into the molecular mechanisms underlying the biology of this important species.

1. Introduction

Tuber magnatum Pico is an edible ectomycorrhizal ascomycete that forms specialized symbioses with higher plants (Bonito and Smith 2016). Also known as Italian white truffle, Tuber magnatum is greatly appreciated for its intense flavor and aroma (Splivallo et al. 2011) and among the European truffle species (Tuber melanosporum, Tuber aestivum, Tuber borchii) it is considered the most precious with high economic value (Mello et al. 2006). The white truffle is present only in some parts of Italy, Istria and western Balkans. This species grows in a restricted number of areas and preferably in moist and drained environments with soil characterized by neutral to alkaline pH (Bragato and Marjanović 2016). While the cultivation of the European truffles gave successful results, the Italian white truffle grows only in natural environment. This inability to cultivation together with the high worldwide demand make this truffle one the most expensive food on the market.

To date, T. melanosporum and T. borchii nuclear genomes have been published (Martin et al. 2010; Murat et al. 2018) revealing crucial information regarding their genome composition, size and organization. Although several ongoing genomics projects will release in the coming years the genome sequences of fourteen additional Tuber species, including Tuber magnatum Pico (Murat and Martin 2016), at the present time little is known about the evolution, biology and ecology of the Tuber genus.

In this frame, this study provides the first publicly available de novo transcriptome assembly of T. magnatum based on Illumina short-read sequencing giving a valuable resource for future genetic and genomic studies. Moreover, this resource will be useful for providing a genomic reference for gene expression studies in order to investigate several molecular mechanisms such as the aroma biosynthesis pathways and the mechanisms underlying evolution and adaptation of the different Italian white truffle ecotypes.

2. Results and Discussion

2.1. Illumina Sequencing and Transcriptome Assembly

We built the T. magnatum transcriptome generating a cDNA library from fruiting bodies collected in southern, central and northern Italy. To maximize the discovery and accurate estimate of transcripts, all the selected fruiting bodies (see Methods) were homogenized together and subjected to RNA extraction, Illumina poly(A)+ library preparation and sequencing. A total number of 375 million 100-bp single-end reads were generated corresponding to ~ 37 Gbp of high quality data (Phred score > Q30).

We first mapped our sequencing data to Tuber melanosporum genome sequence (version 1) (Martin et al. 2010) (downloaded from https://www.genoscope.cns.fr/externe/Download/Projets/Tuber/assembly/) and to Tuber borchii (draft) (Murat et al. 2018) (downloaded from http://genome.jgi.doe.gov/Tubbor1) to check the possibility of using the closest species to help the transcriptome reconstruction based on a genome-guided approach. This analysis was conducted using the aligner Hisat2 (Pertea et al. 2016) with default parameters (maximum number of mismatches allowed equal to 2) and resulted in 2.24 % and 1.36 % of overall alignment rate against T. melanosporum and T. borchii, respectively (Table
Thus, we proceeded with a de novo transcriptome assembly using a single kmer (k=25) employing the program Trinity (Haas et al. 2013). Overall, 99,507 transcripts were pre-assembled and, in order to eliminate the transcriptome redundancy and the artifacts derived from sequencing together three T. magnatum ecotypes, the longest transcript for each locus was selected according to 95 % sequence identity. The remaining sequences were then screened through the EvidentialGene pipeline in order to generate the best biological dataset comprising both coding and non-coding transcripts, leading to 67,120 unique transcripts (unitranscripts). Candidate coding regions were predicted using the tool TransDecoder for a total of 22,932 transcripts with N50 of 1,524 bp and a mean transcript length of 696 bp (Table 1 and Figure 2). This set was then subsetted for sequences containing complete ORFs resulting in 12,367 transcripts, reunited 6,723 loci (see deposited files in the figshare db).

Overall, the number of gene models we annotated in T. magnatum is comparable with the closely related species T. melanosporum (version 1, 7,496 gene models annotated) whilst seems drastically reduced compared to T. borchii (draft, 12,346 gene models annotated)(Murat et al. 2018).

To evaluate the consistency of the assembly we first mapped all the RNA-seq reads back to the transcriptome (22,932 transcripts) using the algorithms Salmon and Bowtie2. The alignment rate for the programs was 68.35 % and 61.62 %, respectively with 51.61 % of unique mapped reads resulted from the latter one. Overall, considering we mapped back the reads only on a small fraction of the transcriptome (34 % of total unitranscripts), this result confirms the high quality of the T. magnatum sequence transcripts and their assembly.

We also checked the transcriptome completeness and gene prediction by comparing our set of transcripts with the set of genes belonging to Ascomycota and Pezizomycotina by running the Benchmarking Universal Single-Copy Orthologs tool (BUSCO) (Simão et al. 2015; Waterhouse et al. 2017). Out of a total of 4,471, the number of complete and single copy BUSCOs found in our dataset was 3,217 (72 %) while the number of missing BUSCOs was 689 (15 %) with ~11 % of fragmented BUSCOs found.

In addition, the putative protein coding sequences (12,367) were functionally annotated using Trinotate (Bryant et al. 2017) searching for nucleotide and protein sequence homology against the UniProtKb/Swiss-Prot and Pfam database. When available, Gene Ontology (GO) (see Supplemental Figure S1) and KEGG terms were retrieved from TrEMBL/SwissProt database and associated to the transcripts (see deposited files in the figshare db).

2.2. Genic-single sequence repeat (SSR)

To date, no genetic markers have been reported for Tuber magnatum Pico. We explored our transcriptome data for the development and characterization of gene-based SSR markers. The candidate coding transcripts (22,932) were screened for repeat motifs to explore the microsatellite profile in T. magnatum. A total of 2,581 SSRs were obtained from 2,225 candidate coding transcripts (~ 10 %). Our data suggest strong enrichment of mono- and tri-nucleotide repeat motifs among the five SSR classes we analyzed (see Method), while longer repeat motifs were underrepresented (see deposited files in the figshare db).

2.3. Data

Raw RNA-seq data generated in this study were deposited in the NCBI Sequence Read Archive (SRA) (BioProject ID: PRJNA501857). All the transcriptome data developed in this study were deposited in the figshare database and are accessible through the link https://figshare.com/s/01ec86ee5e0f657ab955.

3. Methods

3.1. Biological Material

T. magnatum fruiting bodies were collected in southern, central and northern Italy, respectively in the regions of Molise, Tuscany and Piedmont in the years 2013, 2014 and 2015. According to the
percentage of ascidia as described by (Zeppa et al. 2002) we selected 6 carpophores at stage five (average weight 7-10 g) for each year, for a total of 18 carpophores per location. Fruiting bodies were thoroughly washed with distilled water and subsequently rinsed with absolute ethyl alcohol to remove contaminants. The thin external layer of the peridium was removed and samples were flash frozen in liquid nitrogen and stored at -80 °C until further processing.

From each fruited body we collected 100 mg of tissue and pooled them together by year and geographical area for a total of 9 representative samples.

3.2. RNA Extraction, Library Construction and Sequencing

The nine samples were homogenized with liquid nitrogen using mortar and pestle. To minimize the variability derived from the sampling time and locations, the samples were balanced and mixed. RNA extraction was achieved using the Plant/Fungi Total RNA Purification Kit (Norgen Biotek Corp., Canada) according to the manufacturer protocol. Total RNA integrity was further checked on 1 % agarose gel and using Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA). An Illumina directional poly(A)⁺ RNA library was generated from the mixed sample according to the TruSeq RNA Library Prep Kit (Illumina, San Diego, CA) and subjected to sequencing using a single-read 100 bp design with a HiSeq2000 sequencer at IGATech (Udine, Italy). Illumina CASAVA v1.8.2 pipeline was used to process raw data for format conversion.

3.3. Read Pre-Processing and de novo Assembly

Raw reads were quality scored before the data analysis using the program FastQC v0.11.5 (Andrews et al. 2014). A quality score above Q30 was kept to maintain high accuracy in the downstream analysis. Undefined bases (Ns) within the reads and the presence of sequencing adapters were excluded with the program Cutadapt (version 1.8.3) (Martin 2011). All the quality reads were employed to de novo reconstruct the Tuber magnatum transcriptome with a de Bruijn graph based approach. Trinity assembler (v2.1.1) (Haas et al. 2013) with a single k-mers method (k-mer = 25) was used. The resulting assembled transcripts were then clustered based on 95% sequence identity using the program CD-HIT (v4.6.6) (Fu et al. 2012). To generate a final assembly, the reconstructed sequences were further evaluated through the EvidentialGene tr2aacsds pipeline (http://eugenew.org/EvidentialGene/) leading to a final transcriptome assembly containing a unique set of transcripts (unitranscripts). Potential protein coding transcripts were predicted using the ab initio utility TransDecoder (https://github.com/TransDecoder) to extract long open reading frames (ORFs) and predicts coding regions.

Trinotate (v.3) (Bryant et al. 2017) was applied to functional annotate the non-redundant T. magnatum transcriptome searching against the UniProtKb/Swiss-Prot database (uniprot, downloaded from: https://www.uniprot.org/) using the algorithm BLASTx and BLASTp (v2.7.1+) with the options: -evalue 1e10 -num_threads 4 -max_target_seqs 1 -outfmt 6. Functional domains were searched using HMMER (v3.2.1) (Finn et al. 2015) against the Pfam database (Pfam-A.hmm, downloaded from: https://www.ebi.ac.uk/pfam/) with default options. All the top-matching BLAST hits and the corresponding Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) assignments from TrEMBL/SwissProt databases were extracted using a maximum e-value cutoff of 1e-5.

Transcript abundance and quality of the assembled transcriptome were estimated using salmon (v0.9.1) (Patro et al. 2017) in quasi-mapping mode with the option --numBootstraps 30 and Bowtie2 (Langmead and Salzberg 2012) in end-to-end mode (--sensitive) with maximum number of mismatches allowed equal to 1.

The quality of the non-redundant T. magnatum transcriptome was checked using the Benchmarking Universal Single-Copy Orthologs tool (BUSCO) (v3.0.2) (Simão et al. 2015; Waterhouse et al. 2017)
comparing the unitranscripts with the Ascomycota and Pezizomycotina specific lineage conserved single copy orthologs derived from OrthoDB v9.

3.4. Identification of genic-SSRs

T. magnatum transcripts were scanned for single sequence repeats (SSRs) markers using the program MISA (Beier et al. 2017) with default options searching for mono-, di-, tri-, tetra-, penta-, hexa-nucleotide motifs with minimum number of repeat units equal to 10, 6, 5, 5, 5 respectively.

Author Contributions

FV designed the experiment and performed the wet-lab activities. EB designed the experiment, performed the *in silico* analyses and wrote the manuscript. AP read critically and drafted the paper.

Acknowledgements

Sequencing cost was supported by Tuscany regional administration through the research project VOLATOSCA (http://www.ipsp.cnr.it/projects/volatosca). Data analysis was conducted and supported by the International Doctoral Programme in Agrobiodiversity - Scuola Superiore Sant’Anna (www.santannapisa.it) and LOLIETTOO® - the academic spin-off company of Scuola Superiore Sant'Anna (www.loliettoo.it).

Conflicts of Interest

The authors declare no conflict of interest.
References

Beier S, Thiel T, Münch T, et al (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583–2585

Bonito GM, Smith ME (2016) General Systematic Position of the Truffles: Evolutionary Theories. In: Zambonelli A, Iotti M, Murat C (eds) True Truffle (Tuber spp.) in the World: Soil Ecology, Systematics and Biochemistry. Springer International Publishing, Cham, pp 3–18

Bragato G, Marjanović ŽS (2016) Soil Characteristics for Tuber magnatum. In: Zambonelli A, Iotti M, Murat C (eds) True Truffle (Tuber spp.) in the World: Soil Ecology, Systematics and Biochemistry. Springer International Publishing, Cham, pp 191–209

Bryant DM, Johnson K, DiTommaso T, et al (2017) A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors. Cell Rep 18:762–776

Finn RD, Clements J, Arndt W, et al (2015) HMMER web server: 2015 update. Nucleic Acids Res 43:W30–8

Fu L, Niu B, Zhu Z, et al (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152

Haas BJ, Papanicolaou A, Yassour M, et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

Martin F, Kohler A, Murat C, et al (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17:10–12

Mello A, Murat C, Bonfante P (2006) Truffles: much more than a prized and local fungal delicacy. FEMS Microbiol Lett 260:1–8

Murat C, Kuo A, Barry KW, et al (2018) Draft Genome Sequence of Tuber borchii Vittad., a Whitish Edible Truffle. Genome Announce 6.: doi: 10.1128/genomeA.00537-18

Murat C, Martin F (2016) Truffle Genomics: Investigating an Early Diverging Lineage of Pezizomycotina. In: Zambonelli A, Iotti M, Murat C (eds) True Truffle (Tuber spp.) in the World: Soil Ecology, Systematics and Biochemistry. Springer International Publishing, Cham, pp 137–149

Patro R, Duggal G, Love MI, et al (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419

Pertea M, Kim D, Pertea GM, et al (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667

Simão FA, Waterhouse RM, Ioannidis P, et al (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699
Waterhouse RM, Seppey M, Simão FA, et al (2017) BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. doi: 10.1093/molbev/msx319

Zeppa S, Guidi C, Zambonelli A, et al (2002) Identification of putative genes involved in the development of Tuber borchii fruit body by mRNA differential display in agarose gel. Curr Genet 42:161–168
Table 1
Tuber magnatum de novo transcriptome assembly statistics

Metric	Final transcriptome
Total number of transcripts	22,932
Total assembled bases (bp)	24,090,894
Max transcript length (bp)	17,115
Mean transcript length (bp)	696
N50 (bp)	1,524
Total number of cds	18,197
Total number of cds < 5 kb	17,977
Total number of high-confidence genes*	6,723
Total number of high-confidence transcripts*	12,367

sequences containing a complete ORF
Figure 1
Transcript length distribution of *Tuber magnatum de novo* transcriptome. The image represents the cds transcripts (n=17,988) selected for sequence length < 5000 bp (98 % of cds). Blue dotted line represents the median length.
Figure S1

Histograms represent the frequency of the top 50 GO terms associated with the annotated *T. magnatum* transcripts. Gene Ontology categories: molecular functions (MF), biological process (BP), cellular components (CC) are represented. X-axis represents the frequency of the GO term. Y-axis shows the description of the GO term.
Table S1
Mapping statistics of *T. magnatum* against the reference genomes of *T. borchii* and *T. melanosporum*. See Result section for details.

	Total number of reads	Reads mapped exactly 1 time	Reads mapped >1 times	Unmapped reads	Overall alignment rate
T. borchii	375,046,769	5,075,954	41,206	369,929,609	1.36%
T. melanosporum	375,046,769	6,846,901	1,551,868	366,648,000	2.24%