Supplementary materials for

Shh and Olig2 sequentially regulate oligodendrocyte differentiation from hiPSCs for the treatment of ischemic stroke

Jian Xu, Jingxin Zhao, Rui Wang, Yidi Zhang, Lan Shen, Qian Xiao, Yuan Xie,
Jinjun Jiang, Yichu Nie, Wenbin Deng

The file includes:

• Supplementary Table S1. Detailed composition of culture medium.
• Supplementary Table S2. Primary antibodies used for immunostainings.
• Supplementary Table S3. Sequence of primers for qPCR analysis.
• Supplementary Table S4. Sequences of shRNA assays.
• Supplementary figures and figure legends
Table S1. Detailed composition of culture medium

Media	Components	Provider	Final con.
NIM1	DMEM/F12	Life Technologies	50%
	Neurobasal	Gibco	50%
	B27 Supplement (50X)	Stem cell technology	1X
	N2 Supplement (100X)	Stem cell technology	1X
	Recombinant hLIF	PEPROTech	10 ng/ml
	SB431542	Med Chem Express	2 μM
	CHIR99021	Med Chem Express	3 μM
	GlutaMAX	Life Technologies	2 mM
	Compound E	Med Chem Express	0.1 μM
	Dorsomorphin	Med Chem Express	2 μM
NIM2	DMEM/F12	Life Technologies	50%
	Neurobasal	Gibco	50%
	B27 Supplement (50X)	Stem cell technology	1X
	N2 Supplement (100X)	Stem cell technology	1X
	Recombinant hLIF	PEPROTech	10 ng/ml
	SB431542	Med Chem Express	2 μM
	CHIR99021	Med Chem Express	3 μM
	GlutaMAX	Life Technologies	2 mM
	Compound E	Med Chem Express	0.1 μM
NSMM	DMEM/F12	Life Technologies	50%
	Neurobasal	Gibco	50%
	B27 Supplement (50X)	Stem cell technology	1X
	N2 Supplement (100X)	Stem cell technology	1X
	Recombinant hLIF	PEPROTech	10 ng/ml
	SB431542	Med Chem Express	2 μM
	CHIR99021	Med Chem Express	3 μM
	GlutaMAX	Life Technologies	2 mM
GIM	DMEM/F12	Gibco	
--------------	---------------------------	---------------	
B27 supplement lacking vitamin A (50X)	Stem cell technologies	1X	
N2 Supplement (100X)	Stem cell technologies	1X	
penicillin/streptomycin	Gibco	1%	
SAG	Med Chem Express	1 μM	
PDGF-AA	R&D Systems	10 ng/ml	
NT-3	Millipore	10 ng/ml	
IGF-I	R&D Systems	10 ng/ml	
AA	Sigma–Aldrich	200 μM	
T3	Sigma–Aldrich	60 ng/ml	
DM	DMEM/F12	Gibco	
B27 supplement lacking vitamin A (50X)	Stem cell technologies	1X	
N2 Supplement (100X)	Stem cell technologies	1X	
penicillin/streptomycin	Gibco	1%	
NT-3	Millipore	10 ng/ml	
IGF-I	R&D Systems	10 ng/ml	
AA	Sigma–Aldrich	200 μM	
T3	Sigma–Aldrich	60 ng/ml	
dbcAMP	Sigma–Aldrich	100 μM	
Table S2. Primary antibodies used for immunostainings

Antigen	Dilution	Reference
Olig2	1/100	Rabbit IgG ab254043
NESTIN	1/3200	Mouse IgG CST#33475
SOX2	1/400	Mouse IgG CST#3579
O4	1/500	Mouse IgM R&D MAB1326
O4-APC	1/50	Mouse IgG Miltenyi Biotec 130-118-978
NG2	1/500	Rabbit IgG ab129051
NG2-PE	1/200	Rabbit IgG C06035P
PDGFRa	1/1000	Rabbit IgG CST#3174
PDGFRa-APC	1/50	Mouse IgG1 BioLegend #323512
MBP	1/50	Rabbit IgG CST#78896
GFAP	1/400	Mouse IgG G-3893
Islet1	1/50	Rabbit IgG ab20607
beta III Tubulin(TUJ1)	1/1000	Rabbit IgG ab18207
hNA(HuNu)	1/200	Mouse IgG MAB1281
NeuN	1/3200	Rabbit IgG CST#24307
A2B5	1/500	Mouse IgM Invitrogen#433110
SOX10	1/1000	Rabbit IgG ab264405
p-OLIG2 (S147)	1/500	Rabbit IgG Bioworld AP0734
CEPT1	1/500	Rabbit IgG 20496-1-AP
GAPDH	1/5000	Mouse IgG ab8245
β-actin	1/2000	Rabbit IgG ab8227
Gene name	Species	Sequence of primers
-----------	---------	---------------------
β-actin	Human	Forward: CCAGAGCCCCGTAGACCTTTTT Reserve: CACTGCCCTCTAGCTTGCTCC
Olig2	Human	Forward: GCCCTGTATGTGAGGCAA Reserve: TCATCAAGAAATGTCGACG
CSPG4	Human	Forward: CTTTGACCCTGACTATGGTG Reserve: TGCAGGCGTCAGAGTATA
PDGFRα	Human	Forward: TGGCAAGTACCCCATGTCTGAA Reserve: CCAAGACGTCACAAAGAGGC
ST8SIA1	Human	Forward: GTCTCTGTTGCGCTACATCT Reserve: CCCCCTCATACCAACTGCTC
SOX10	Human	Forward: CTTTGACCCTGACTATGGTG Reserve: TGCAGGCGTCAGAGTATA
NKK2.2	Human	Forward: TGGCAAGTACCCCATGTCTGAA Reserve: CCAAGACGTCACAAAGAGGC
PAX6	Human	Forward: GCCTCGTATGTGAGGCAA Reserve: TCATCAAGAAATGTCGACG
NESTIN	Human	Forward: GGGCTCTGATCTTCATCCTAC Reserve: CCAAGACGTCACAAAGAGGC
NANOG	Human	Forward: TTGTGCTGCTGAAGAAACT Reserve: CACCCCTCATATACCAACTG
POU5F1	Human	Forward: CTGGTTGATCTCCTGACCT Reserve: CCAAGACGTCACAAAGAGGC
PLP1	Human	Forward: ACCTATGCCCTGAGCCTTG Reserve: TGGGAGGAGGGCAATAGACT
NNG2	Human	Forward: AGGAAGAGGACGTGTTATG Reserve: GCAATCTGATACAGACCCAG
SOX9	Human	Forward: AGCGAAGCGCACAATCAAGAC Reserve: CCCTAAGGGGAAACAAGATTTG
HB9	Human	Forward: CTCTACTCTCTGCAAGGAG Reserve: TGGGGTCCTAGAACACAAAG
SMARCA4	Human	Forward: GCCAGCAACTCCCAAGTTAC Reserve: CCAAGGAGGGCAATAGACT
CEPT1	Human	Forward: ATGTTGGAGATCTCTACCCGGA Reserve: TCTCTCTGCCCTTTGTTG
CHPT1	Human	Forward: CACCCAGAAGGGCCACATATG Reserve: GGGGTTGCTGCTGTAAGT
PPARG	Human	Forward: GGGATCGCTCTGATGAA Reserve: CGATGGGTACGCAGAAAATCCTG
PPARD	Human	Forward: GGGGGTGTGGATGAGG Reserve: CCAAGCAGGAATGTGAGG
PPARA	Human	Forward: AGGCAAGCGACACATCAAGAC Reserve: CCCTAAGGGGAAACAAGATTTG
MBP	Human	Forward: GGGGAGGAGGGCAATAGACT Reserve: TGGGGTCCTAGAACACAAAG
MOG	Human	Forward: GCCAGCAATGGAATTTGGAAGG Reserve: TGGGGTCTTGAACAACCAG
MAG	Human	Forward: GGTGTCCTGACCTCCATGCC Reserve: TGGGGTCTTGAACAACCAG
BDNF	Rat	Forward: GCTGCTGATGAGGACCAG Reserve: GCTGCTGATGAGGACCAG
β-actin	Rat	Forward: GCCCTCTCTTGGATAT Reserve: GGGCATAGAGGTCCTTACCG

Table S3. Sequence of primers for qPCR analysis.
Table S4. Sequences of shRNA assays.

RNAi Name	Species Specificity	Target sequences
CEPT1 shRNA1	Human	5’- ACTGTAGCAGGGACCATATTT-3’
CEPT1 shRNA2	Human	5’- GGCACTCTCTGTGGGCATATAT-3’
CEPT1 shRNA3	Human	5’- TGGTAACACGCCCTAACTATC-3’
Scramble shRNA	Human	5’-GATCTCGCTTGGGCGAGGATGAA-3’
Supplementary Figures

Figure S1 Establishment of hiPSC cell lines with induced expression of Olig2. A Schematic diagram of Tet-inducible Olig2 expression in hiPSCs. B qPCR analysis of Olig2 mRNA expression levels with treated or untreated doxycycline after 24 h (1 µg/mL) (n = 3, *** p < 0.001, by a two-tailed Student’s t test). C Western blot for Olig2 expression with treated or untreated doxycycline after 24 h. mRNA and protein levels were normalized to the housekeeping gene β-actin. Graphs represent the individual data points and the mean ± SEM of three independent experiments.
Figure S2 A Diagram of hiPSCs differentiated into NPCs and OPCs/OLs with untreated or treated GANT61, followed by induction of Olig2 expression. B qPCR analysis of *SOX10* mRNA expression at day 14 of differentiation (n = 3, *** p < 0.001). Graphs represent the individual data points and the mean ± SEM of three independent experiments.
Figure S3 Adherent hiPSC (A) colonies treated with NIM1 for 2 days, followed by NIM2 for another 5 days, generated neural tube-like structures (B). The cultured cells were dissociated as single cells in six-well plates precoated with Matrigel. Confluent GANT61-NPCs (passage 2) were cultivated in adherent monoculture and maintained typical neural crest morphology during *in vitro* culture (C). **D** Representative immunofluorescent staining images of Olig2, NG2, SOX10, PDGFRα, and A2B5 in Olig2 cultures at d4 after Olig2 induction (scale bar, 50 μm). **E** Representative immunofluorescent staining images of PDGFRα in Olig2 cultures at d7 (scale bar, 100 μm).
Figure S4 A The relative mRNA expression of GANT61-NPCs makers (PAX6, NESTIN) and pluripotency genes (OCT4, NANOG) in undifferentiated hiPSCs were detected by qPCR (n = 3, ** p < 0.01, *** p < 0.001, by a two-tailed Student’s t test).
B qPCR analysis for the OL-specific lineage maker genes SOX10, NKX2.2 and SOX9 mRNA expression level (ns, not significant, p > 0.05).
Figure S5

A Representative images for Olig2-induced OLs (scale bar, left, 100μm; right, 50 μm).

B by d21, the Olig2-induced OLs coexpressed O4-epitope, the more mature OL marker, MBP (scale bars, 50 μm).

C Quantification of O4+ mature OL yields at d14 and d28 after Olig2 transduction (n = 3, *** p < 0.001).
Figure S6. A KEGG pathway enrichment analysis of the Olig2/control-OPC-related mRNA-based RNA-seq data. The PPAR signaling pathway was highly enriched in Olig2-OPCs, and \(p < 0.05 \) was used as the threshold to select KEGG terms. B RNA-seq data indicated that the \(GPR17 \) mRNA expression level was significantly downregulated in Olig2 OPCs \((n = 6, \ * p < 0.05, \) by a two-tailed Student’s t test).
Figure S7 A qPCR analysis of *CEPT1* knockdown efficiency (n = 3, *** p < 0.001, by a two-tailed Student’s *t* test). B Western blot analysis of *CEPT1* knockdown efficiency. Proteins were normalized to GAPDH.
Figure S8 A Gating strategies to purify NG2+ OPCs for RNA-seq and cell transplantation. B Gating strategies to analyze the expression of the OPC-specific surface protein markers NG2, PDGFRa, and O4 in control-OPCs and Olig2-OPCs. C Gating strategies to analyze the coexpression of OPC-specific surface markers NG2 or PDGFRa in control-OPCs and Olig2-OPCs.
Figure S9 qPCR analysis for the mRNA expression level of *OLIG1* at 1 weeks after Olig2 induction. Olig2 overexpression did not affect the mRNA expression of *OLIG1* (n = 3, ns p > 0.05, by a two-tailed Student’s t test).