Recommendations on generic names competing for use in *Leotiomycetes* (Ascomycota)

Peter R. Johnston¹, Keith A. Seifert², Jeffrey K. Stone³, Amy Y. Rossman⁴, and Ludmila Marvanová⁵

¹Landcare Research, Private Bag 92170, Auckland 1142, New Zealand; corresponding author e-mail: johnstonp@landcareresearch.co.nz
²Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
³Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
⁴Systematic Mycology & Microbiology Laboratory, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
⁵Czech Collection of Microorganisms, Institute of Experimental Biology, Masaryk University, 625 00 Brno, Czech Republic

Abstract: In advancing to one scientific name for fungi, this paper treats genera competing for use in the phylogenetically defined class *Leotiomycetes* except for genera of *Erysiphales*. Two groups traditionally included in the so-called “inoperculate discomycetes” have been excluded from this class and are also not included here, specifically *Geoglossomycetes* and *Orbiliomycetes*. A recommendation is made about the generic name to use in cases in which two or more generic names are synonyms or taxonomically congruent along with the rationale for the recommendation. In some cases the recommended generic name does not have priority or is based on an asexual type species, thus needs to be protected and ultimately approved according to Art. 57.2 of the *International Code of Nomenclature for algae, fungi and plants* (ICN). A table is presented listing all competing generic names and their type species noting the recommended generic name. New combinations are introduced for the oldest epithet in the recommended genus including *Ascoscypha berenice*, *Ascoconidium purpurascens*, *Ascocoryne albida*, *A. trichophora*, *Blumeniella filipendulinae*, *B. ceanothi*, *Botrytis arachidis*, *B. fritillariae-pallidoflori*, *Calloria urticae*, *Calycellina aspera*, *Dematoscypha delicata*, *Dermea abietinum*, *D. boycei*, *D. stellata*, *Diplocarpus alpestre*, *D. fragariae*, *Godroniopsis peckii*, *Grovesinia moricola*, *Heterosphaera sublineolata*, *Hyphodiscus brachyconium*, *H. brevicollaris*, *H. luxurians*, *Lepotrichia campanulae*, *Monilinia polystoma*, *Neofabraea actiniae*, *N. citricarpa*, *N. vagabunda*, *Oculimacula aestivalis*, *O. anguoides*, *Pezicula brunnea*, *P. californiae*, *P. comina*, *P. diversispora*, *P. ericae*, *P. melanogena*, *P. queripilhilla*, *P. radicicola*, *P. rhizophila*, *Phialocephala piceae*, *Pilidium lythri*, *Rhabdocline lanicis*, *Streptotinia streptothrix*, *Symphyosirinia parasitica*, *S. rosea*, *Unguiculariopsis caespitosa*, and *Vibrissea laxa*.

Article info: Submitted: 23 May 2014; Accepted: 31 May 2014; Published: 18 June 2014.

INTRODUCTION

As a contribution to the ‘one fungus–one name’ process resulting from changes introduced with the recent *International Codes of Nomenclature for algae, fungi and plants* (ICN) (McNeill *et al.* 2012), this paper reviews genera competing for use in class *Leotiomycetes*. A recommendation is made about the name to use in cases where two or more generic names are synonyms or taxonomically congruent. In some cases the recommended generic name does not have priority or is based on an asexual type species and thus needs approval according to Art. 57.2 of the ICN and further explained by Hawksworth (2014). The background to the changes in the Code and the need for papers such as this one resulting in lists of protected names (McNeill *et al.* 2012, Art. 14.13) is provided by Rossman *et al.* (2013).

Many *Leotiomycetes* have cup-shaped, often stalked, ascomata with a widely exposed hymenium of unitunicate ascii and sterile paraphyses arranged in a compact palisade. These fungi are ecologically diverse and include plant pathogens, saprobes of leaves and wood, endophytes, mycorrhizas, and aquatic hyphomycetes (Wang *et al.* 2006a,b). This breadth of ecology means that different research communities have worked more or less independently on these fungi, for example, some primarily dealing with aquatic fungi while others are concerned with plant pathogens. Researchers in some of these mycological communities have often been concerned with asexual taxa while others have dealt with fungi that primarily produce a sexual morph. In an attempt to determine the correct single name to be applied to genera typified by species with sexual/asexual types, these communities are working together to determine the “best” or most widely accepted name for genera that represent the same group of related species regardless of whether the type species represents the sexual or asexual morph.
Traditionally *Leotiomycetes* having morphologically similar ascomata and asci were regarded as an informal group termed the “inoperculate discomycetes” differentiated from the “operculate discomycetes” or *Pezizales*. The phylogenetically defined class *Leotiomycetes* within the subphylum *Pezizomycotina* does not include some of the groups previously referred to as the “inoperculate discomycetes” such as *Orbiliomycetes* and *Geoglossomycetes* (Wang 2006a, b, Husted & Miller 2011); these groups are not considered in this paper. The class *Leotiomycetes* does include the ecologically specialised *Erysiphales*, the powdery mildews (Braun & Cook 2011, Braun 2012); however, the genera and species of this order have already been reviewed for one scientific name by Braun (2013).

Within *Leotiomycetes*, considerable taxonomic confusion exists at all levels, thus the orders and families are not included for the genera mentioned here. The confusion extends to the genus level, making some decisions about connections between genera based on sexual and asexual morphs impossible at this time. For example a confused taxonomy has existed for the genera *Mollisia* and *Cadophora*. After de Hoog et al. (1999) showed that the type species of *Phialophora* is not a member of *Leotiomycetes*, the name *Cadophora* was adopted by Gams (2000) for the phialophor-like asexual morphs of some *Mollisia* species. Subsequently, it was determined that specimens representing the type species of *Mollisia*, *M. cinerea*, and *Cadophora*, *C. fastigiata*, belong in divergent clades (Day et al. 2012, Baschien et al. 2013) and these two generic names do not represent the same lineage. A maximum likelihood tree places *Cadophora s. str.* into *Rhynchosporium* (Baschien et al. 2013) along with *Mollisia dextrinospora*, whereas *Mollisia s. str.* belongs in the *Vibrissaea-Loramyces* clade (Wang et al. 2006a, b). Thus, these generic names are not taxonomically congruent, meaning that they do not circumscribe the same set of species and thus do not compete with each other for use as the single name for the genus represented by the type and related species.

Taxonomic confusion also results if a genus as currently conceived is not monophyletic. For example, the type species of the large genus *Lophodermium* is the grass-inhabiting *L. arundinaceum* (Johnston 2001). This species is phylogenetically distinct from the important pine-inhabiting species such as *Lophodermium pinastri* and *L. sedoides* (Lantz et al. 2011). In determining which generic names might compete with *Lophodermium*, only the type species influences this decision, although could be changed by conservation or protection. The pine-inhabiting species must be placed in another genus unless *Lophodermium* is conserved or protected with a different pine-inhabiting type species. The names of the asexual morphs connected with species of *Lophodermium* on pine such as *L. conigenum* are placed in *Leptostroma*, in this case *L. pinorum* (Minter 1980). However, the type species of *Leptostroma is L. scirpi*, again not congeneric with *L. pinorum* (Lantz et al. 2011). Thus although *Lophodermium conigenum* is the sexual morph of *Leptostroma pinorum*, neither genus is appropriate for these species as the generic names are currently typified. Thus in establishing the correct names for competing genera, the first step is always to review the phylogenetic status of their type species.

Many of the generic names of *Leotiomycetes* are old, especially those of the asexual morphs. DNA sequences are available for only a few of the type species, and most certainly not from the type specimen but also not from an authentic or as yet designated epitype specimen. Thus resolving the taxonomic issues amongst these fungi is difficult because of a lack of knowledge about the phylogenetic position of the type species of potentially competing genera. Many genera, especially those applied to asexual morphs, are polyphyletic often including several hundred names described in the 1800s and 1900s that have since been placed outside the genus or that remain obscure. This resulted from asexually typified genera having previously been regarded as “form-genera” rather than representing monophyletic genera.

In reviewing the potentially competing generic names for sexual and asexual morphs of aquatic hyphomycetes, it was determined that only one of these appears to be truly taxonomically congruent. The names applied to the sexual and asexual morphs of a species are mostly based on polyphyletically defined genera in which the type species is not congeneric with the names used for the connected specific names. For example, *Dimorphospora folicola*, the monotype species of *Dimorphospora*, has a sexual morph placed in *Hymenoscyphus*. However, the type species of *Hymenoscyphus*, *H. fructigenus*, and *D. folicola* are probably not congeneric. AnBLAST search of sequences from *D. folicola* does not link *Dimorphospora* with *Hymenoscyphus*. Also, in Baschien et al. (2013), the ex-type culture of *D. folicola* does not appear in a clade together with *Hymenoscyphus*. As another example *Tricladium splendens*, type of the genus *Tricladium*, has a sexual morph named *Hymenoscyphus splendens*. The latter species appears to be closely related to *H. varicosporoides* (Seena et al. 2010, Baschien et al. 2013), however, *H. varicosporoides* is considered the sexual morph of a *Tricladium* (Sivichai et al. 2003) that is conspecific with an isolate of *T. indicum* from South Africa for which Webster et al. (1995) named the sexual morph as *Cudoniella indica*. Given the differences in morphology between the aquatic hyphomycetes and their sexual morphs and the tendency towards morphological convergence in this habitat, determining whether these taxa are congeneric is difficult without molecular phylogenetic data.

Based on the type species, generic names representing sexual and asexual morphs were investigated to determine if these generic names circumscribed the same group of species. If the type species of two genera represent the same species, the respective genera are considered *synonyms*. If the type species of one genus is judged to be congeneric with the type species of the other genus, i.e. the type species are within the same circumscription as the set of related species, the generic names are termed *taxonomically congruent* or congeneric. If molecular phylogenetic data are available, these are used to determine if the type species are congeneric. If phylogenetic data are not available but it appears likely that the genera are congeneric, they are included. If later it is determined that these genera are not taxonomically congruent, then both generic names are available for use as explained in Rossman (2014).

After a thorough review of the literature and discussion among members of various user communities, one generic
name is recommended for use here. Since July 2011, generic names compete for priority regardless of whether the type material of the type species of the genus represents a sexual or an asexual morph. In most cases the generic name that has priority, i.e. the name that was described first, would be that to be adopted under the ICN and is recommended. However, a number of factors have contributed to recommendations that priority of publication be overruled. One factor is the potential number of names changes required. This can be determined to some extent by the number of names listed under each genus in Index Fungorum1 or MycoBank in which placement of species on other genera is indicated. A second factor is the frequency of use of each generic name as determined by searches of database resources such as Google, Google Scholar, MycoBank, and the SMML Fungal Databases2. The latter retrieves reports of fungi on plant hosts and retains the original fungus name, thus one can see how commonly used is a particular genus. Consideration is given to which generic name is used most commonly and whether specific names of importance to user communities would be changed. Finally this document was circulated among a number of users for comments and these comments accommodated to the greatest extent possible. Sometimes these opinions were in conflict and thus the authors of this document came to a consensus among themselves. The names of all participants who responded to requests for input about this document are listed in the Acknowledgements.

For each genus the rationale is presented for this recommendation and inclusion on the list of protected genera of Leotiomycetes. Teleomorph or sexually typified genera are indicated by an (S), while anamorph or asexually typified genera are indicated by an (A). If a sexually typified genus that is younger than an asexually typified genus is recommended for use, then the term protect indicates that this genus does not have priority and thus must be included on this list of protected names of genera in Leotiomycetes. If an asexually typified genus has priority, i.e. it is the oldest generic name, and is recommended for use, then the term protect indicates that this genus has priority but has an asexual type species and therefore must be protected as dictated in Article 57.2 of the ICN if both names are widely used. These are the two situations in which action is needed such that these genera must be approved by the Nomenclature Committee for Fungi (NCF) appointed by the Melbourne Congress. For competing genera in which the genus representing the sexual morph has priority and is recommended for use, no action is needed even though the name is included on this list. Finally, if the generic synonymy is relatively conclusive, specific names have been evaluated for priority. New combinations are made if an older epithet exists for the type and other species that must be placed in the genus recommended for use.

Because of their importance to plant pathologists seven specific names from the genera treated here will be formally proposed for conservation in a separate publication. Conservation is required for these names because the oldest competing epithet is not in the correct genus. These include: Blumeriella jaapii (cause of shot-hole disease of Prunus), Gremmeniella abietina (cause of Sclerotodes canker of conifers), Leptotrichia medicago (cause of yellow leaf blotch of alfalfa), Neofabraea malicorticis (cause of bull’s eye rot on apple and pear), Oculimacula yallundae (cause of eyespot of wheat), Pezicula cinnamomea (pezicula canker of red oak), and Pyrenopeziza brassicae, (cause of light leaf spot on winter oilseed rape).

Generic names considered here are presented in Table 1 with the recommended generic name listed first and in bold. For each generic name, the place of publication and the type species with its place of publication and the currently accepted specific name are listed. Additional synonyms of the recommended generic name are listed in the third column. If action is needed, this is noted in the last column.

Rationale for Recommendations

Protect Ascocalyx 1926 (S) over Bothriodiscus 1907 (A) and Pycnocalyx 1916 (A)

The generic name Ascocalyx, with the sexual type species A. abietis, and the asexually typified generic name Bothriodiscus, with the type species B. berenice now referred to as B. pinicola, were shown to be morphs of the same fungus by Groves (1936) by isolation of identical colonies from ascospores and conidia. In addition, the monotypic genus Pycnocalyx, with the type species P. abietis, is also considered a taxonomic synonym of Ascocalyx and A. abietis (Groves 1936); despite the identical species epithets, the names are heterotypic. Thus these three generic names are considered synonyms. Seven specific names have been placed in Ascocalyx, with only four remaining in that genus, while two of the three names in Bothriodiscus are considered synonyms of A. abietis. All species of this genus occur on the Pinaceae on which they cause minor cankers (Groves 1968, Smerlis 1973). Ascocalyx is the most frequently used generic name. Therefore, we recommend that Ascocalyx be protected over the two older asexually typified genera. Based on this recommendation, the binomial of the type and most commonly encountered species, a fungus causing a canker on pine (Kondo & Kobayashi 1984), must be changed as follows:

Ascocalyx berenice (Berk. & M.A. Curtis) Baschien, comb. nov.

MycoBank MB808789
Basionym: Fusisporium berenice Berk. & M.A. Curtis, Grevillea 3: 147 (1875),
Synonyms: Bothriodiscus pinicola Shear, Bull. Torrey bot. Club 34: 313 (1907),
Ascocalyx abietis Naumov, Bolezni Rast. 14: 138 (1925) [1926],
Pycnocalyx abietis Naumov, Zap. Ural’sk. Obšč. Ljubit. Estestv. 35: 11 (1916).

Ascocalyx obscurus (Peck) Baschien, comb. nov.

MycoBank MB808790

1http://www.IndexFungorum.org
2Systematic Mycology and Microbiology Laboratory, ARS, USDA; http://nt.ars-grin.gov/fungaldatabases/
Basionym: Excipulina obscura Peck, Bull. Torrey Bot. Club 22:209 (1895).
Synonyms: Bothrodiscus obscurus (Peck) Nag Raj, Canad. J. Bot. 57: 2489 (1979).
Ascocalyx tenuisporus J.W. Groves, Canad. J. Bot. 46: 1275 (1968).

Note: Although the differentiation of Ascocalyx abietis from Gremmeniella abietina has sometimes been a matter of discussion (Petrini et al. 1989), the two are now generally considered distinct. The epithets for A. berenice as A. abietis and G. abietina should not be confused; these are two different fungi. The latter is the cause of a serious canker disease of conifers and has sometimes been classified in Ascocalyx, thus the use of this generic name as A. abietina in the literature refers to Gremmeniella abietina.

Protect Ascoconidium 1942 (A) over Sageria 1975 (S)

The type species of Ascoconidium, A. castaneae, was described as the asexual morph of the earlier Dermatea purpurascens (Seaver 1942), while the type species of Sageria, A. tsugae, is the sexual morph of A. tsugae (Funk 1975). Although one might question whether these two species are congeneric, Nag Raj & Kendrick (1975) present a convincing case for the generic synonymy, showing that both asexual morphs have large phialides with conidiogenous loci at the base and apices that rupture to release large, cylindrical, multisepate conidia. The sexual morphs are likewise similar. Thus these generic names are regarded as taxonomically congruent, although there is presently no molecular data to confirm this. The two genera, each with two named species, are well characterised. Although the species are considered minor pathogens, neither species is economically significant.

Neither generic name is widely used. One argument in favour of Sageria is that ‘ascoconidium’ is also used as a technical term (Kirk et al. 2008) for conidia that arise from ascospores and conidia, hence the two genera are synonyms. This species protects wood from decay by basidiomycetes and has been explored as a biological control of Heterobasidion annosum in Scandinavia, mostly under the confused moniker Coryne sarcoides (Singh 1989). The complexities of the nomenclature and typification of these two genera were described by Groves & Wilson (1967) using the code of nomenclature then in force. They argued that the epithet sarcoides should be applied to a sexual morph. *Pirobasidium* was based on the same epithet that was ascribed to Jacquin (1781). Groves & Wilson (1967) suggested that the rules of nomenclature needed to be changed and based on this philosophical position attributed the description of a new asexual “species” to Höhnel (1902) alone. This interpretation is no longer recognized. Additionally, they sought to “neotypify” both the sexual and asexual names, *Lichen sarcoides* and *Acrosporum dubium* by the same specimen from North America, but their neotypification is not supportable because original illustrations exist. *Endostilbium*, typified by *E. cerasi*, is now considered the asexual morph of *Ascocoryne solitaria* (Korf & Candoussau 1974). Both generic names predate *Ascocoryne*. Seifert et al. (2011) added *Pleurocolla*, typified by *P. tiliae*, to the list of asexual state names that precede *Ascocoryne*. *Coryne* includes 69 names, few of them considered in the last fifty years. Unpublished type and field studies by Seifert (pers. comm.) suggest that the number of species attributable to this genus may be large. Seven names are included in *Ascocoryne* of which two or three have known asexual morphs. At first glance, protection of *Ascocoryne* could require numerous name changes but the comparative obscurity of most of the names in *Coryne* suggests that this is unlikely. The generic concept of *Ascocoryne* has always been well-circumscribed and is presumably monophyletic whereas the classical concept of *Coryne* is heterogeneous. Also, *Coryne* is used for a genus of hydrozoans, and the ICN now recommends avoidance of such names (Rec. 54A). Two of the other generic synonyms based on asexual morphs, *Pirobasidium* and *Endostilbium*, are monotypic and obscure; the third generic synonym, *Pleurocolla*, is also obscure but has been used mostly for a non-type species, *P. compressa*, which is a basidiomycete now classified in *Leucohloea* (2004). *Ascocoryne sarcoides* is used in the conversion of cellulosic biomass to liquid biofuels (Gianoulos 2012). For these reasons, we suggest protection of *Ascocoryne* over *Coryne* and the other names based on asexual morphs.

Ascocoryne albida (Berk.) Seifert, comb. nov.
MycoBank MB808792
Basionym: Tubercularia albida Berk., Smith’s English Flora 5: 354 (1836).
Synonyms: Coryne albida (Berk.) Korf & Candoussau, Bull. Soc. Mycol. France 90: 214 (1974).
Coryne solitaria Rehm, Rabenh. Krypt.-Fl., 2nd edn 1 (3): 448 (1891) [1896].
Didymocoryne solitaria (Rehm) Sacc. & Trotter, Syll. Fung. 22: 730 (1913).

The type species of the genus *Coryne*, *C. dubia*, is considered the asexual morph of the type species of *Ascocoryne*, *A. sarcoides*. This genetic connection between the morphs has been proven by culturing of ascospores and conidia, hence the two genera are synonyms. This species protects wood from decay by basidiomycetes and has been explored as a biological control of *Heterobasidion annosum* in Scandinavia, mostly under the confused moniker *Coryne sarcoides* (Singh 1989). The complexities of the nomenclature and typification of these two genera were described by Groves & Wilson (1967) using the code of nomenclature then in force. They argued that the epithet sarcoides should be applied to a sexual morph. *Pirobasidium* was based on the same epithet that was ascribed to Jacquin (1781). Groves & Wilson (1967) suggested that the rules of nomenclature needed to be changed and based on this philosophical position attributed the description of a new asexual “species” to Höhnel (1902) alone. This interpretation is no longer recognized. Additionally, they sought to “neotypify” both the sexual and asexual names, *Lichen sarcoides* and *Acrosporum dubium* by the same specimen from North America, but their neotypification is not supportable because original illustrations exist. *Endostilbium*, typified by *E. cerasi*, is now considered the asexual morph of *Ascocoryne solitaria* (Korf & Candoussau 1974). Both generic names predate *Ascocoryne*. Seifert et al. (2011) added *Pleurocolla*, typified by *P. tiliae*, to the list of asexual state names that precede *Ascocoryne*. *Coryne* includes 69 names, few of them considered in the last fifty years. Unpublished type and field studies by Seifert (pers. comm.) suggest that the number of species attributable to this genus may be large. Seven names are included in *Ascocoryne* of which two or three have known asexual morphs. At first glance, protection of *Ascocoryne* could require numerous name changes but the comparative obscurity of most of the names in *Coryne* suggests that this is unlikely. The generic concept of *Ascocoryne* has always been well-circumscribed and is presumably monophyletic whereas the classical concept of *Coryne* is heterogeneous. Also, *Coryne* is used for a genus of hydrozoans, and the ICN now recommends avoidance of such names (Rec. 54A). Two of the other generic synonyms based on asexual morphs, *Pirobasidium* and *Endostilbium*, are monotypic and obscure; the third generic synonym, *Pleurocolla*, is also obscure but has been used mostly for a non-type species, *P. compressa*, which is a basidiomycete now classified in *Leucohloea* (2004). *Ascocoryne sarcoides* is used in the conversion of cellulosic biomass to liquid biofuels (Gianoulos 2012). For these reasons, we suggest protection of *Ascocoryne* over *Coryne* and the other names based on asexual morphs.
Phloeosporella, the type species of Phloeosporella, *P. ceanothi*, causing leaf spot and dieback of *Ceanothus*. The only available data for *B. jaapii* is for a-deamylase CYP51, a gene that is not used in fungal phylogenetics. Because of the common use of the name *Blumeriella jaapii* for the widespread shoot-hole disease of *Prunus* and its frequent appearance on lists of regulated pests in countries with a stone fruit agricultural sector, it is essential to protect the generic name *Blumeriella* over *Microgloeum* and *Phloeosporella*. In addition to protecting the generic name *Blumeriella*, the specific name *Pseudopeziza jaapii* needs to be formally conserved over the older names *Ascochyta padi* 1832 and *Hainesii feurichii* 1906. Given the prevalent use of *Blumeriella jaapii* for this disease in regulatory documents internationally and the lack of certainty about its relationship to the type species of *Phloeosporella*, it seems prudent to protect the generic name *Blumeriella* for which the name *B. jaapii* will be formally proposed for conservation in a separate publication. If the type species of *Phloeosporella* is found not to be congeneric with *Blumeriella*, it remains available for use.

A number of species in *Blumeriella* have asexual morphs in the large genus *Cylindrosporium*. The type species of *Cylindrosporium*, *C. concentricum*, is considered the asexual morph of *Pyrenopeziza brassicae*, thus the generic name *Cylindrosporium* is not a synonym of *Blumeriella* (see under *Pyrenopeziza*). However, two new combinations are required for species of *Blumeriella* for which names in *Cylindrosporium* provide the oldest epithet. Many additional new names may be required for species of *Cylindrosporium* that are determined to be congeneric with *Blumeriella*.

Blumeriella filipendulae (Thüm.) Rossman, comb. nov.

MycoBank MB808794

Basionym: *Cylindrosporium filipendulae* Thüm., *Symb. mycol. austr.* 2: 146 (1878).

Synonyms: *Phloeosporella filipendulae* (Thüm.) M.A. Will. & E.C. Bernard, *Can. J. Bot.* 66: 2052 (1988).

Blumeriella haddenii M.A. Will. & E.C. Bernard, *Can. J. Bot.* 66: 2051 (1988).

Blumeriella ceanothi (Ellis & Everh.) Rossman, comb. nov.

MycoBank MB808795

Basionym: *Cylindrosporium ceanothi* Ellis & Everh., *Proc. Acad. nat. Sci. Philad.* 43: 84 (1891).

Synonyms: *Phloeosporella ceanothi* (Ellis & Everh.) Hön., *Annis mycol.* 22: 201 (1924).

Protect Botrytis 1794 (A) over Botryotinia 1945 (S)

Botrytis cinerea, the type species of *Botrytis*, is an important and ubiquitous plant pathogen and also the agent of ‘noble rot’ exploited for the production of Tokaj, Sauternes, Beerenauelese, and Trockenbeerenauelese wines. When the sexual morph of *Botrytis cinerea* was discovered, it was placed in the genus *Botryotinia* as *B. fuckeliana* (Whetzel 1945). The type species of *Botryotinia, B. convoluta*, basionym *Sclerotinia convoluta*, and *Botrytis cinerea* are congeneric as indicated by using ITS sequences (Holst-Jensen et al. 2004).
Although their types are not the same species, Botrytis and Botryotinia are taxonomically congruent. More than 400 species were described in the classical concept of Botrytis, many of them excluded by Hughes (1958) and Hennebert (1963), and the status of many names remains poorly known. Only 20 names are included in Botryotinia, most also named in Botrytis. The name Botryotinia fuckeliana is mentioned only in connection with Botrytis cinerea. Other important plant diseases usually referred to by their Botrytis names include B. aclada and B. allii, major pathogens of onions worldwide, B. convoluta on iris rhizomes, B. fabae causing chocolate spot on beans, B. narcissicola on bulbs and leaves of daffodils, B. paeniae causing wilt on peonies, and B. tulipae causing ‘fire’ disease of tulips. Changing these names would severely disrupt the plant pathological literature. Despite its originally heterogeneous classical concept, Botrytis has been used in a taxonomically and phylogenetically consistent way for at least 50 years and no confusion or imprecision would follow from taxonomically and phylogenetically consistent way for at least 50 years and no confusion or imprecision would follow from using this name for the genus. A round table discussion was held at the XVIII International Botrytis Symposium, Locorotondo, Italy, June 23-28, 2013. There was unanimous support for retaining use of the older name Botrytis. Given the frequency with which Botrytis cinerea is observed, recognition of this name, and the number of described species in Botrytis, it seems expedient to propose the generic name Botrytis for protection over Botryotinia. Two new combinations are needed for species of Botryotinia.

Botrytis arachidis (Hanzawa) Seifert & Kohn, comb. nov.
MycoBank MB808796
Basionym: Sclerotinia arachidis Hanzawa, Collect. Bot. Pap. [Miyabe Festschrift]: 215 (1911).
Synonym: Botryotinia arachidis (Hanzawa) W. Yamam., Trans. Mycol. Soc. Japan 2(2): 4 (1959).

Botrytis fritillarii-pallidoflori (Q.T. Chen & J.L. Li) Seifert & Kohn, comb. nov.
MycoBank MB808797
Basionym: Botryotinia fritillarii-pallidoflori Q.T. Chen & J.L. Li, Acta Mycol. Sin. 6: 15 (1987).

Use Calloria 1836 (S) rather than Cylindroccola 1851 (A), Crethrygium 1925 (A) or Calloria 1971 (S)
The type species of Calloria, C. fusarioides, recently regarded as C. neglecta, is considered the sexual morph of the type species of Cylindroccola, C. urticae, thus these types represent the same species and the two genera are synonyms (Hein 1976, Seifert 2011). Calloria was also described for the same species, thus this is another synonymous generic name. The monotypic genus Crethrygium, based on C. pulchellum, is obscure but Sutton (1977) considered it a synonym of Cylindroccola. Calloria includes 122 names, only a few of which have been included in recent monographs such as Hein (1976), while Cylindroccola has never been monographed and includes 33 names, most of which are not considered in recent literature. No DNA sequence data exist for any species of this genus. Calloria has priority and because neither generic name is widely used, we choose to follow priority. However, the oldest epitetht for the type species of both Calloria and Cylindroccola must be transferred to Calloria.

Calloria urticae (Pers. : Fr.) Seifert, comb. nov.
MycoBank MB808798
Basionym: Tremella urticae Pers., Syn. meth. fung. 2: 628 (1801) : Fr., Syst. Mycol. 2: 231 (1823) [as Dacrymyces urticae].
Synonyms: Dacrymyces urticae (Pers. : Fr.) Mart., Fl. crypt. Erlang.: 368 (1817).
Peziza neglecta Lib., Plantes Crypt. Ard. 2:no. 29 (1832) [1830].
Calloria neglecta (Lib.) B. Hein, Beih. Wildenowia 9: 54 (1976).
Peziza fusarioides Berk., Mag. Zool. Bot. 1: 46 (1837).
Calloria fusarioides (Berk.) Fr., Summa veg. Scand. 2: 359 (1849).
Mollisia fusarioides (Berk.) Gillet, Champ. Fr. Discom.: 120 (1879).
Callorina fusarioides (Berk.) Korf, Phytologia 21: 203 (1971).

Use Calycellina 1918 (S) rather than Chaetochalara 1965 (A)
The genus Calycellina based on C. punctiformis, and now regarded as C. punctata (Lowen & Dumont 1984), includes 61 species. Although no asexual morph is known for this species, another species, C. carolinensis, included in this genus by Lowen & Dumont (1984), was considered to have an asexual morph named Chaetochalara aspera. The genus Chaetochalara, based on C. bulbosa and including C. aspera plus six other species, was monographed by Nag Raj & Kendrick (1975). Based on this literature Calycellina and Chaetochalara are considered taxonomically congruent. Given that Calycellina is the oldest name and has the most species, that generic name should be used. Most of the other names in Chaetochalara are now recognized in Chalara (Kirk 1984).

One new combination is made here:

Calycellina aspera (Piroz. & Hodges) Rossman, comb. nov.
MycoBank MB808799
Basionym: Chaetochalara aspera Piroz. & Hodges, Can. J. Bot. 51: 157 (1973).
Synonym: Calycellina carolinensis Nag Raj & W.B. Kendr., Monogr. Chalara Allied Genera: 183 (1975).

Protect Chaetomella 1870 (A) over Zoellneria 1934 (S), Volutellospora 1965 (A) and Harikrishnaella 1972 (A)
Recent research has demonstrated that Chaetomella, based on the type species C. oblonga, is congeneric with Zoellneria based on Z. rosarum (Johnston & Baral, pers. comm.). In addition, Index Fungorum lists Amerisporium patellarioides as a synonym of Zoellneria rosarum; the former is also considered a synonym of C. oblonga (Rossman et al. 2004). Thus these...
three genera appear to be taxonomically congruent. The genus *Chaetomella* with about 40 names has been well-defined with species widely reported from plant hosts (Rossman et al. 2004) and some species are a source of the potential anticancer drugs based on inhibitors of Ras farnesylation (Billis et al. 1995). Zoellneria, with only six species, is relatively obscure. Volutellospora and Harikrishnaella were shown to be taxonomic synonyms of *Chaetomella* (Rossman et al. 2004). Given the frequent citation of *Chaetomella* and the number of species included in that genus, we recommend following priority and protecting *Chaetomella* as the name for this genus. Species in *Chaetomella* remain unchanged while not enough is known about the other two species in Zoellneria to make any name changes.

Protect Chlorociboria 1958 (S) over Dothiorina 1911 (A)

The type species of *Chlorociboria* is the commonly encountered *C. aeruginosa*; the genus consists of 34 names including a number of species known primarily from New Zealand (Johnston & Park 2005). Dixon (1975) suggested that the asexual morph of *C. aeruginascens* might be the coelomycete *Dothiorina*, based on *D. tulasnei*, but a convincing connection between the two has not been made. *Dothiorina tulasnei* was little known until Sanchez & Bianchinotti (2007) provided a detailed description including an analysis of conidiogenesis. They concluded that *D. tulasnei* was not the asexual morph of *C. aeruginascens* based on significant deviations in phialide morphology and conidial shape compared to what is known about *C. aeruginosa in vitro*. They questioned the classification of the two other species in *Dothiorina*, excluding *D. discoidea* and *D. subcarnea*. Although *Chlorociboria* is well-represented in GenBank, no DNA sequences of *Dothiorina* are available for comparison. The prevalence of the well-known name *Chlorociboria*, the number of species in that genus, and the lack of clarity about whether *Dothiorina* is actually a synonym argue that *Chlorociboria* should be proposed for protection. No name changes are required.

Protect Claussenomyces 1923 (S) over Dendrostilbella 1905 (A)

The type species of *Claussenomyces*, *C. jahnianus*, was included in the monograph of Korf & Abawi (1971), with a key to four species including *C. prasinulus* (syn. *Peziza prasinula*). Seifert (1985) presented a morphological revision of the type species of *Dendrostilbella*, *D. prasinula*, considering it the asexual morph of *C. prasinulus* based on the observations of Dennis (1956), but he noted that the morphological species, *D. prasinula*, was associated with both *C. atrovirens* and *C. prasinulus*. Based on these publications, *Claussenomyces* and *Dendrostilbella* are considered taxonomic synonyms, although it remains to be shown with DNA sequence analysis that *C. jahnianus* and *C. prasinulus* are actually congeneric. Although 23 species were named in *Dendrostilbella*, many are now placed in other genera (Seifert 1985). Nineteen species are currently accepted in *Claussenomyces* based on Korf & Abawi (1971), Ouellette & Korf (1979), Gamundi & Gialotti (1995), and Medardi (2007), although some of these species may not be congeneric with *C. jahnianus*. Considering the amount of recent taxonomic work on *Claussenomyces* and the number of accepted species, it seems advisable to protect *Claussenomyces* for this genus defined by its type species. At present not enough is known about the relationships of species of *Dendrostilbella* to make new combinations.

Protect Coma 1972 (A) over Ascocoma 1987 (S)

The type species of *Coma*, *C. circularis*, is the presumed asexual morph of the type species of *Ascocoma*, *A. eucalypti* (Swart 1987, Beilharz & Pascoe 2005). Although based on coincidental occurrence, it appears that these genera represent the same species and are synonyms. Clearly, *Ascocoma* was named in full awareness that it was the same fungus as *Coma*. If *Coma* is used, no name changes are required because the one variety, *A. eucalypti* var. *didymospora* is considered a synonym of *C. circularis* (Beilharz & Pascoe 2005), thus we recommend following priority for the choice of the generic name.

Protect Cristulariella 1916 (A) over Nervostroma 2006 (S)

The genus *Nervostroma*, based on *N. depraedans*, was established for the sexual morph of *Cristulariella depraedans*, type of *Cristulariella*, thus these generic names are taxonomic synonyms (Narumi-Saito et al. 2006). In the same article, three species previously described in *Cristulariella* were removed to *Hinomyces* (Narumi-Saito et al. 2006), having a sexual morph in *Grovesinia*. Thus *Cristulariella* now includes three species, whereas *Nervostroma* includes only *N. depraedans* and *N. cerideriphyllii*, both of which already have an older name in *Cristulariella*. Neither generic name is widely used, although leaf spots attributed to *Cristulariella* are often reported in published plant disease surveys. The asexual generic name *Cristulariella* has been used in the plant pathology literature, however, in these cases the name may refer to *C. moricola* and *C. pyramidalis*, now classified in *Grovesinia*. Given that *Cristulariella* has priority and its use would not result in any name changes, we suggest that this asexual name be protected.

Protect Crumenulopsis 1969 (S) over Digitosporium 1953 (A)

The generic name *Crumenulopsis* with the type species *C. pinicola* based on *Peziza pinicola*, was established to replace the name *Crumenula* Rehm 1888 (non De Not. 1864). Van Vloten & Gremmen (1953) described *Digitosporium piniphilum* for the asexual morph of *Crumenula sororia*, now referred to as *Crumenulopsis sororia*. Although no molecular data exist to determine whether *C. pinicola* and *C. sororia* are synonyms, this appears likely. Thus the generic names *Crumenulopsis* and *Digitosporium* are most likely synonyms or at least taxonomically congruent. At present six taxa are named in *Crumenulopsis*, including *C. pinicola* and *C. sororia*, both causing dieback diseases of pine in Europe, and *C. atropurpurea*, causing a disease of Japanese red pine in Georgia (Hanlin et al. 1992). Because the older, monotypic genus *Digitosporium* has not been widely used and many names changes would be required, it seems advisable to protect the name *Crumenulopsis*.
Protect *Dematoscypha* 1977 (S) over *Schizochromeum* 1852 (A) and *Haplographium* 1859 (A)

The genus *Dematoscypha* based on *D. dematiicola* is circumscribed to include five related taxa (Svrček 1977, Huthinen 1987, Hosoya & Otani 1997). The older generic name *Schizochromeum*, based on *S. atrofuscum*, includes four species none of which have been considered since before 1900. The relationship of *S. atrofuscum* to *D. dematiicola* is difficult to determine. *Schizochromeum atrofuscum* was placed in *Haplographium* by Saccardo (1886) but Seifert *et al.* (2011), based on the protologue, considered the identity to be unknown in modern terms. The type species of *Haplographium* was based on the protologue, considered the type species of *S. atrofuscum* to be unknown in modern terms. The type species of *Schizochromeum* and *Haplographium* is difficult to determine.

One new combination is needed:

Dematoscypha delicata (Berk. & Broome) Hosoya, comb. nov.

Mycobank MB808800

Basionym: Haplographium delicatum Berk. & Broome, *Ann. Mag. nat. Hist.*, ser. 3 3: 360 (1859).

Synonyms: Peziza dematiicola Berk. & Broome, *Ann. Mag. nat. Hist.*, ser. 3 15: 446 (1865).

Dematoscypha dematiicola (Berk. & Broome) Svrček, Česká Mykol. 31: 193 (1977).

Protect *Dermea* 1825 (S) over *Sphaeronaema* 1815 (A) and *Foveostroma* 1978 (A)

Dermea, based on *D. cerasi*, is a well defined genus that includes a number of plant pathogenic species (Abeln *et al.* 2000). Although over 200 names have been placed in *Sphaeronaema*, almost nothing is known about the type species, *S. cylindricum*. Most of the names in *Sphaeronaema* that have been considered in the modern literature are now placed in other genera. Whether *Dermea* and *Sphaeronaema* are taxonomically congruent is not known. The genus *Foveostroma* was based on *F. drupacearum*, a name for the asexual morph of *D. cerasi* (DiCosmo 1978), thus *Foveostroma* and *Dermea* are synonyms. *Dermea* includes 31 names, while eight names have been described in *Foveostroma*. Among these three genera, *Dermea* is the best known and some species of *Dermea* have been sequenced (Abeln *et al.* 2000). Because of the unknown placement of the type species of *Sphaeronaema*, the less frequent use of *Foveostroma*, and the wide-circumscribed concept of *Dermea*, it seems advisable to protect the name *Dermea* over *Sphaeronaema* and not use the name *Foveostroma*.

Three new combinations are required:

Dermea abietinum (Peck) Rossman, comb. nov.

Mycobank MB808801

Basionym: Gelatinosporium abietinum Peck, *Ann. Rep. Reg. Univ. St. N. Y.* 25: 84 (1873) [1872].

Synonyms: Foveostroma abietinum (Peck) Di Cosmo, *Can. J. Bot.* 56: 1682 (1978).

Cenangium balsamea Peck, *Ann. Rep. N. Y. St. Mus. nat. Hist.* 38: 101 (1885).

Derma balsamea (Peck) Seaver, *Mycologia* 24: 427 (1932).

Dermea boycei (Dearn.) Rossman, comb. nov.

Mycobank MB808802

Basionym: Cryptosporium boycei Dearn., *Mycologia* 20: 245 (1928).

Synonyms: Foveostroma boycei (Dearn.) A. Funk, *Can. J. Bot.* 57: 767 (1979).

Dermea stellata (Ellis) Rossman, comb. nov.

Mycobank MB808803

Basionym: Sphaeronaema stellatum Ellis, *Bull. Torrey bot. Club* 6: 107 (1876).

Synonyms: Micropera stellata (Ellis) Jacz., *Nouv. Mem. Soc. Imp. nat. Moscow* 15: 366 (1898).

Cenangium peckiana Rehm, *Ann. mycol.* 13: 3 (1915).

Derma peckiana (Rehm) Seaver, *N. Am. Cup-fungi* (Inoperculates): 356 (1951).

Protect *Diplocarpon* 1906 (S) over *Entomosporium* 1856 (A), *Bostrichonema* 1867 (A), *Marssonina* 1906 (A) and *Entomopeziza* 1914 (S)

The type species of *Diplocarpon*, *D. rosae*, has been linked to an asexual morph in *Marssonina*, *M. rosae*, for the serious disease of roses called black spot (Sivanesan & Gibson 1975a). The type species of *Entomosporium*, *E. mespili*, is used for the asexual morph of a cosmopolitan leaf and fruit spot disease of rose and other rosaceous plants to which the sexual morph name, *Diplocarpon mespili* (syn. *Diplocarpon maculatum*), has been applied (Sivanesan & Gibson 1975b). A third genus *Bostrichonema*, based on *B. alpestre*, and now regarded as *B. polygoni*, includes seven names. *Bostrichonema polygoni* is considered the asexual morph of *Diplocarpon polygoni* (Müller 1977). Assuming that *D. rosae* is congeneric with *D. mespili* and *D. polygoni*, then *Entomosporium* and *Bostrichonema* are taxonomically congruent with *Diplocarpon*. A fourth genus, *Marssonina* based on *M. potentillae* as *M. fragariae*, has a sexual morph referred to as *D. earlianum* (Sivanesan & Gibson 1975c) and thus *Marssonina* also competes for synonymy with *Diplocarpon*. Although the conidia of these species appear superficially different because of the long appendages on those of *E. mespili*, developmental similarities to the conidia of *M. rosae* and *M. fragariae* have been noted (Farr 1993, Sutton 1980) as well as the morphologically similar sexual morphs. In addition, ITS sequences indicate that the type species of *Diplocarpon*, *Entomosporium*, and *Marssonina* may be congeneric.
Thus Bostrichonema, Diplocarpon, Entomosporium, and Marssonina are considered taxonomically congruent. An obscure fifth genus, Entomopeziza, based on E. soraueri (syn. Entomosporium mespili), is considered a synonym of Diplocarpon. The number of names in Diplocarpon and Entomosporium are about equal while Diplocarpon is more frequently used. Over 100 names have been placed in Marssonina, but this genus has not been well defined and many of these names represent unrelated species. Although Entomosporium is highly descriptive of the conidia and has been frequently used, Diplocarpon is more widely known for the serious, widespread diseases of rosaceous plants and is widely known in plant pathology literature. We recommend the protection of Diplocarpon.

Two new combinations are needed:

Diplocarpon alpestre (Ces.) Rossman, comb. nov. MycoBank MB808804
Basionym: Bostrichonema alpestre Ces., Erb. critt. Ital., ser. 1, 2: no. 149 (1867).
Synonyms: Cylindrosporum polygoni Unger, Exanth. Pflanzen: 169 (1833).
Bostrichonema polygoni (Unger) J. Schröt., Krypt.-Fl. Schlesien 3 (2(4)): 484 (1897) [1908].
Diplocarpon polygoni E. Müll., Beitr. Kryptfl. Schweiz 15(1): 40 (1977).

Diplocarpon fragariae (Sacc.) Rossman, comb. nov. MycoBank MB808805
Basionym: Leptothyrium fragariae Lib., Pl. crypt. Ard. 2: no. 162 (1832).
Synonyms: Peziza earliana Ellis & Everh., Bull. Torrey bot. Club 11: 74 (1884).
Diplocarpon earlianeum (Ellis & Everh.) F.A. Wolf, J. Elisha Mitchell scien. Soc. 39: 158 (1924) [as 'earliana'].

Use Gelatinipulvinella 1995 (S) rather than Aureohyphozyma 1995 (A)
The monotypic genera Gelatinipulvinella based on G. astraeicola, and Aureohyphozyma based on A. astraeicola, were described as the sexual and asexual morphs of the same species (Hosoya 1995). The type species of these genera represent the same species, thus they are synonyms and compete equally for use. Given the more widespread use of Gelatinipulvinella based on the past preference for sexual morph names, it is recommended that Gelatinipulvinella be used.

Protect Gloeotinia 1954 (S) over Endoconidium 1891 (A)
The genus Gloeotinia, with the type species G. temulenta based on Phialea temulentum, was established for the sexual morph of Endoconidium temulentum, the type species of Endoconidium. Thus Gloeotinia and Endoconidium are synonyms. Although four species remain in Endoconidium, they are obscure without any recent reports. Two of the four species in Gloeotinia have been removed to Ciboria, leaving the two species that cause blind seed diseases, commonly referred to as Gloeotinia granigena and G. temulenta. Their distinction as two different species has only recently been reported (Alderman 1998). If Endoconidium were used, the relatively well known name G. granigena would have to be changed, thus it seems expedient to protect the name Gloeotinia.

Protect Godronia 1846 (S) over Sphaeronaema 1815 (A), Topospora 1836 (A), Mastomyces 1848 (A), Clinterium 1849 (A), Fuckelia 1864 (S) and Chondropodiella 1917 (A)
The genus Godronia, based on the type species G. muehlenbeckii on Phragmites australis in Europe, was monographed by Groves (1965) and includes a number of plant pathogenic species, primarily on woody, dicotyledonous hosts. Only one species, G. urceolata, has been sequenced (de Gruyter et al. 2009), thus the phylogenetic placement of this non-type species in Leotiomycetes is confirmed. The relationship of the type species to other species in Godronia or their asexual morphs is unknown. Although over 200 names have been placed in Sphaeronaema, almost nothing is known about the type species, S. cylindricum based on Sphaeria cylindrica. This type species is relatively obscure and undefined, described on Quercus and Salix in Sweden and Germany. Most of the names in Sphaeronaema that have been considered in the modern literature have been placed in other genera. The taxonomic congruence of Godronia with Sphaeronaema is not known. Topospora, based on T. uberiformis, is considered the asexual morph of Godronia uberiformis on Ribes (Groves 1965, Sutton 1980), thus these genera are taxonomically congruent. Godronia includes 88 names while eight species have been placed in Topospora. The type species of Mastomyces, Clinterium, and Chondropodiella are linked to species placed in Godronia or Topospora (Sutton 1977). The type of Fuckelia, F. ribis, is a synonym of G. ribis. Based on the unknown phylogeny of Sphaeronaema, the relative obscurity of Topospora, and the accepted use of Godronia, it seems advisable to protect the name Godronia. Not enough is known about the relationships among these species to make taxonomic changes. These generic names remain available for segregate genera.

Protect Godroniopsis 1929 (S) over Sphaeronaema 1815 (A) and Dichaeonopsella 1952 (A)
Godroniopsis is a small but well defined genus with two plant-pathogenic species, including the type species G. quernea, the asexual morph of Dichaeonopsella quernae, the monotype species of Dichaeonopsella. The asexual morph of Godroniopsis nemopanthis is described as Sphaeronaema peckii. Over 200 names have been placed in Sphaeronaema, yet almost nothing is known about the type species, S. cylindricum, as mentioned above. Most of the names in Sphaeronaema that have been considered in the modern literature have been placed in other genera. It is not known if Godroniopsis and Sphaeronaema are taxonomically congruent. Based on the unknown phylogeny of Sphaeronaema and the accepted use of Godroniopsis, it seems advisable to protect the name Godroniopsis.
One new combination is needed:

Godroniopsis peckii (Sacc. & P. Syd.) J. K. Stone, comb. nov.
MycoBank MB808806
Basionym: Sphaeronaema peckii Sacc. & P. Syd., Syll. fung. 14: 900 (1899).
Synonym: Godroniopsis nemopanthi J.W. Groves, Mycologia 29: 71 (1937) [as ‘nemopanthis’].

Protec

Godroniopsis peckii (Sacc. & P. Syd.) J. K. Stone, comb. nov.
MycoBank MB808806
Basionym: Sphaeronaema peckii Sacc. & P. Syd., Syll. fung. 14: 900 (1899).
Synonym: Godroniopsis nemopanthi J.W. Groves, Mycologia 29: 71 (1937) [as ‘nemopanthis’].

Protect Gremmeniella 1969 (S) over Brunchorstia 1891 (A)
The type species of Gremmeniella, G. abietina based on Crumenula abietina, has been used for the sexual morph of the asexual name Brunchorstia pinea based on Septoria pinea, a synonym of B. destruens, and the type species of the genus Brunchorstia. All of these epithets are synonyms according to Punthalingam & Gibson (1973), Sutton (1980), and Müller & Dorworth (1983), thus there is no doubt that these generic names are synonyms. The serious disease of conifers caused by G. abietina is known as Scleroderris canker or Brunchorstia dieback of pines and has plant quarantine significance under that name (CABI 2013). Although seven names have been placed in Gremmeniella, only four species are still included in this genus. Among the seven names in Brunchorstia, only one remains in that genus. The name Gremmeniella especially for G. abietina is more widely used than Brunchorstia, thus it seems expedient to protect the name Gremmeniella. In addition the name G. abietina based on C. abietina will be formally proposed for conservation in a separate publication.

Use Grovesinia 1983 (S) rather than Hinomycetes 2006 (A)
The type species of Grovesinia, G. pyramidalis, is considered the sexual morph of the type species of Hinomycetes, H. moricola, thus these two genera are synonyms (Narumi-Saito et al. 2006). This fungus causes bull’s eye or zonate leaf spot on a number of hosts in colder regions of North America and Asia. Both genera have a second species, Grovesinia pruni (syn. Hinomycetes pruni). These species have been placed in Cristulariella (Redhead 1975) but their separation into distinct genera was recognized by Narumi-Saito et al. (2006) as mentioned under Cristulariella. Given that usage of Grovesinia and Hinomycetes is about equal, the older name, Grovesinia, is recommended for use. However, the oldest epithet for this species must be transferred to Grovesinia.

Grovesinia moricola (I. Hino) Redhead, comb. nov.
MycoBank MB808807
Basionym: Botrytis moricola I. Hino, Bull. Miyazaki Coll. Agric. Forest. 1: 80 (1929).
Synonyms: Cristulariella moricola (I. Hino) Redhead, Mycologia 71: 1249 (1974).
Hinomycetes moricola (I. Hino) Narumi & Y. Harada, Mycoscience 47: 357 (2006).
Sclerotinia moricola I. Hino, Bull. Miyazaki Coll. Agric. Forest. 1: 77 (1929).
Botryotinia moricola (I. Hino) W. Yaman., Trans. Mycol. Soc. Japan 2: 5. (1950).

Cristulariella pyramidalis Waterman & R.P. Marshall, Mycologia 39: 692 (1947).
Grovesinia pyramidalis M.N. Cline et al., Mycologia 75: 991 (1983).

Use Heterosphaeria 1824 (S) rather than Heteropatella 1874 (A)
The type species of Heterosphaeria, H. patella, is the sexual morph of the type species of Heteropatella, H. lacera (Leuchtmann 1987, Nag Raj 1993), thus these two genera are synonyms. None of these species have been analyzed phylogenetically but Leuchtmann (1987) provides a monographic account of the eight species accepted in Heterosphaeria. The number of names in each genus is about equal and Heterosphaeria is slightly more commonly used than Heteropatella. Because there is no compelling reason to do otherwise, use of the oldest generic name, Heterosphaeria, is recommended.

Based on Leuchtmann (1987), one new combination is required:

Heterosphaeria sublineolata (Thüm.) Leuchtm., comb. nov.
MycoBank MB808808
Basionym: Septoria sublineolata Thüm., Bull. Soc. Imp. nat. Moscou 52: 116 (1877).
Synonym: Heterosphaeria veratrni Nespiak & Müller, Beitr. Kryptfl. Schweiz 15 (1): 44 (1977).
For further synonyms, see Leuchtmann (1987) and Müller (1977).

Protect Holwaya 1889 (S) over Crinula 1821 (A)
The type species of Holwaya, H. ophiobolus, now regarded as H. mucida, is the sexual morph of the type species of Crinula, C. caliciiformis (Korf & Abawi 1971), thus these type species are conspecific and the generic names are taxonomic synonyms. The connection has been confirmed by culturing. Neither name has been used more commonly than the other, although Holwaya is a well-known name among field mycologists interested in discomycetes. Ten names and two varieties have been included in Crinula, although most of the names have not been used in modern literature. Several of the names in Crinula are synonyms of the asexual state of H. mucida, previously referred to as C. caliciiformis. Among nine names described in Holwaya, six of them are synonyms of H. mucida. The two remaining names in Holwaya have been placed outside the genus. The generic name Holwaya is recommended for use. One species has been redescribed by Seifert (1985) and should be transferred to Holwaya.

Holwaya byssogenata (Berk. & Broome) Seifert, comb. nov.
MycoBank MB808809
Basionym: Stilbum byssogenum Berk. & Broome, J. Linn. Soc. Bot. 14: 97 (1875).
Synonym: Crinula byssogenata (Berk. & Broome) Seifert, Stud. Mycol. 27: 192 (1985).
Use **Hyphodiscus** 1907 (S) rather than **Catenulifera** 2002 (A)

The genus *Hyphodiscus*, based on *H. gregarius*, now regarded as *H. theioideus*, was reviewed by Hosoya (2002) who described the genus *Catenulifera* typified by *C. rhodogena* as the asexual morph of *H. hymenophilius*. More recently Bogale et al. (2010) confirmed the relationship based on sequence analyses of *H. hymenophilius* and *C. rhodogena*. Assuming that *H. hymenophilius* and *H. theioideus* are congeneric as suggested by Hosoya (2002), then *Hyphodiscus* and *Catenulifera* are taxonomically congruent. Bogale et al. (2010) transferred two species of *Phialophora* to *Catenulifera* with four names in the latter genus. The genus *Hyphodiscus* currently includes 11 species many of which do not have known asexual morphs. Given the greater number of species, the frequency of use, and its priority, we recommend the use of *Hyphodiscus*.

Three species of *Catenulifera* should be transferred to *Hyphodiscus*:

Hyphodiscus brachyconius (W. Gams) Hosoya, **comb. nov.**

MycoBank MB808810

Basionym: Phialophora brachyconia W. Gams, *Stud. Mycol.* **13**: 68 (1976).

Synonym: Catenulifera brachyconia (W. Gams) Bogale & Unter., *Fungal Biology* **114**: 404 (2010).

Hyphodiscus brevicollaris (W. Gams) Hosoya, **comb. nov.**

MycoBank MB808811

Basionym: Phialophora brevicollaris W. Gams, *Stud. Mycol.* **13**: 71 (1976).

Synonym: Catenulifera brevicollaris (W. Gams) Bogale & Unter., *Fungal Biology* **114**: 404 (2010).

Hyphodiscus luxurians (Bogale & Unter) Hosoya, **comb. nov.**

MycoBank MB808812

Basionym: Catenulifera luxurians Bogale & Unter., *Fungal Biology* **114**: 404 (2010).

Protect **Hypohelion** 1990 (S) over **Leptostroma** 1815 (A)

The type species of *Hypohelion*, *H. scirpinum*, is based on *Hypoderma scirpinum*, which is considered the sexual morph of *Leptostroma scirpinum*, the type species of *Leptostroma*. This relationship was first established by Grove (1937) as *Leptothyrium scirpinum* (syn. *Leptostroma scirpinum*) and accepted by Minter (1997) as *Hypohelion scirpinum*. Thus *Hypohelion* and *Leptostroma* are synonyms. The genus *Leptostroma* includes 208 names but many of these have been removed to other genera. Although Sutton (1980) recognized *Leptostroma*, he only included the type species. The remaining names in *Leptostroma* are of unknown phylogenetic affinities. Many species described in *Leptostroma* occur on *Pinus* (Minter 1980) and are more closely related to *Lophodermium*, not congeneric with *L. scirpinum* (Lantz et al. 2011). One additional species has been placed in *Hypohelion*, *H. durum* (Lin et al. 2004). Given the polyphyletic nature of the genus *Leptostroma* now applied to species deviating from the type, we recommend protecting the well-characterized genus *Hypohelion*. No name changes are needed.

Protect **Leptotrichia** 1871 (S) over **Sporonema** 1847 (A)

Yellow leaf blotch of alfalfa, a widespread disease in temperate regions, is caused by a fungus known as *Leptotrichia medicaginis*, which has an asexual morph referred to as *Sporprena phacidioides*, the type species of *Sporonema* (Schuepp 1959, Sutton 1980). The type of *Leptotrichia* is *L. radians* occurring on *Campanula* in Europe. Assuming that *L. medicaginis* is congeneric with *L. radians* (Schuepp 1959), then *Leptotrichia* and *Sporonema* are taxonomically congruent. No species in either of these genera have been sequenced. *Leptotrichia* was separated from *Pseudopeziza* by Schuepp (1959) who included 14 species in *Leptotrichia*. These genera are about equally well known although plant pathologists appear to use the name *Leptotrichia* most frequently. A number of species of *Sporonema* are placed in unrelated genera such as *Siroccoccus* or *Coleophoma*. Given the use of the *Leptotrichia* for *L. medicaginis*, an important plant pathogen, and the lack of knowledge about *Sporonema*, it seems useful to protect the generic name *Leptotrichia*. The name *Leptotrichia medicaginis*, cause of yellow leaf blotch of alfalfa, will be formally proposed for conservation in a separate publication.

Note: *Leptotrichia medicaginis* is distinct from *Pseudopeziza medicaginis*, the cause of a common leaf spot of lucerne (Booth & Waller 1979).

Leptotrichia campanulae (DC.) Rossman, **comb. nov.**

MycoBank MB808812

Basionym: Xyloma campanulae DC., *Fl. franç.*, 3rd edn **5/6**: 159 (1815).

Synonyms: Phacidium radians Roberge ex Desm., *Annl. Sci. Nat.*, Bot., sér. 2 **17**: 116 (1842).

Leptotrichia radians (Roberge ex Desm.) P. Karst., *Bidr. Känn. Finl. Nat. Folk* **19**: 22 (1871).

Use **Micraspis** 1963 (S) rather than **Peripéridium** 1963 (A)

The type species of *Micraspis*, *M. acicola*, was described as the sexual morph of the type species of *Peripéridium*, *P. acicola*, by Darker (1963), therefore, these generic names are synonyms. Two additional names have been placed in *Micraspis* and this name has been more frequently used than the monotypic *Peripéridium*, thus the use of *Micraspis* is recommended. No name changes are needed.

Protect **Monilinia** 1928 (S) instead of **Monilia** 1794 (A), with the rejection of **Epochneum** 1809 (A)

Monilia is one of the most heterogeneous of the classical hyphomycete genera. Named for species with constricted chains of spores, i.e. moniloid, it included about 350 species that were subsequently classified in a vast array of yeast.
and hyphomycete genera such as Aspergillus, Candida, Chrysosporium (i.e. Neurospora asexual morph), Cladosporium, and Scopulariopsis, to name just a few. The extremely confused nomenclature of this generic name was reviewed by Donk (1963). It was originally proposed in the pre-pre-starting point literature as Monilia Hill 1751, in this sense a synonym of the zygomycete genus Syzgites. Later Persoon (1794) provided conflicting lectotypifications as did Link (1809), in this sense a synonym of Bispora. Donk (1963) proposed conservation of the genus with attribution to Bonorden (1851), choosing Monochaetiella themedae as type, now a synonym of the asexual morph of Monilinia laxa. Since that time, the generic name Monilia has been used consistently for the asexual morphs of Monilinia. Despite its older age, the extremely confused nomenclatural history and contradictory typifications prior to its stabilized taxonomic application argues against the use of Monilia. Although Monilinia has been used in a consistent sense in the modern literature, the name is not used independently of the sexual morph name, Monilinia.

Although Monilinia is a much younger generic name, it has been used in a taxonomically and phylogenetically consistent fashion, in particular since the monograph of Batra (1991). This monograph includes an account of 30 species with a discussion of ten additional names. The generic name Monilinia has been used almost exclusively in the plant pathogenic literature for economically important diseases of tree fruit such as M. fructicola and M. laxa on stone fruit, M. fructigena on pome fruit, and M. oxyccoci and M. vaccinii-corymbosi on ericaceous berry crops (Batra 1991). Several of the species are involved in international quarantine legislation, most notably M. fructicola, of concern in the European Union (EPPO 2012).

Another asexually typified generic name, Epocynium Link 1809, was regarded as a synonym of Monilia by Hughes (1958), but Donk (1963) questioned the logic of this; neither examined the type specimen. Because no author has examined the type of Epocynium, if it exists, and the name has never been used in any literature other than taxonomic compilations, it would be impractical to adopt this name. We propose that Epocynium and its type species E. monilioides be rejected.

One new combination is needed:

Monilinia polystroma (G.C.M.Leeuwen) Kohn, comb. nov.
MycoBank MB808820
Basionym: Monilia polystroma G.C.M. Leeuwen, Mycol. Res. 106: 450 (2002).

Protect Monochaetiellopsis 1977 (A) over Hypnotheca 1970 (S)
The monotypic genus Hypnotheca, based on H. graminis, was described as the sexual morph of the type species of Monochaetiellopsis, M. themedae with the basionym Monochaetiella themedae (Tommerup 1970), thus these genera are synonyms. The two species of Monochaetiellopsis (Nag Raj 1993) are more widely known than H. graminis. Although Hypnotheca has priority, its use would require that both names in Monochaetiellopsis be changed. Given the greater use of Monochaetiellopsis and lack of required name changes, it is recommended that Monochaetiellopsis be protected for use.

Protect Mycopappus 1985 (A) over Redheadia 2005 (S)
The type species of Mycopappus, M. alni, does not have a known sexual morph; however, a second species, M. quercus, is the asexual morph of the type species of Redheadia, R. quercus (Suto & Suyama 2005). When Redhead & White (1985) described M. alni, they suggested that it was a sclerotiniaceous fungus, as is M. quercus, due to “the presence of phialides and microconidia in culture and the melanisation of the phialidic clusters converting them into microsclerotia.” It seems likely that M. alni and M. quercus are congeneric and the names Mycopappus and Redheadia are taxonomically congruent. Of the four names in Mycopappus, the two other species are now placed in Dothideomycetes: M. aceris in Xenoistigmina (Crous et al. 2009) and M. aesculi as the asexual morph of Mycocodyllumella aesculi (Wei et al. 1998). Although Mycopappus appears to be a widely used generic name, some references are to species that no longer belong in that genus. Nevertheless, it seems advisable to use the earliest name, Mycopappus, for this genus. No name changes are required.

Protect Neofabraea 1913 (S) over Phlyctcoma 1847 (A) and Allantozythia 1924 (A)
The genus Neofabraea is characterized by the type species N. malicorticis (Verkley 1999), the cause of bull’s eye rot of apple and pear, while the type species of Phlyctroma, P. vagabunda, is the asexual morph of N. alba. Given that Verkley (1999) accepts both species in Neofabraea, Neofabraea and Phlyctoma are taxonomically congruent. This monographic account provides a thorough account of the well circumscribed genus Neofabraea. In contrast, more than 60 names have been placed in Phlyctoma, some of which have been transferred to other genera such as Phomopsis and Rhabdospora and placed among other genera of morphologically simple coelomycetes (Verkley 1999). The virtually unknown genus Allantozythia, based on A. alutacea, a synonym of Phlyctema vagabunda, is also a synonym of Neofabraea. Given that Neofabraea has been monographed, is well characterized phylogenetically (Abeln et al. 2000, de Jong et al. 2001), and includes a number of plant pathogens, it seems expedient to protect the name Neofabraea. The name of the type species, N. malicorticis, cause of bull’s-eye rot on apple and pear, will be formally proposed for conservation.

Many species described in Cryptosporiopsis belong in Neofabraea even though the type species, C. pruinosa, is placed in Pezicula.

Based on Verkley (1999), Johnston et al. (2004) and Zhu et al. (2012), three name changes are made here:

Neofabraea actinidiae (P.R. Johnst. et al.) P.R. Johnst., comb. nov.
MycoBank MB808962
Basionym: Cryptosporiopsis actinidiae P.R. Johnst. et al., Mycotaxon 89: 132 (2004).
Neofabraea citricarpa (L. Zhu et al.) P.R. Johnst., comb. nov.
MycoBank MB809002
Basionym: Cryptosporiopsis citricarpa L. Zhu et al., Pl. Dis. 96: 809 (2012).

Neofabraea vagabunda (Desm.) P.R. Johnst., comb. nov.
MycoBank MB808821
Basionym: Phlyctema vagabunda Desm., Annls Sci. Nat., Bot., sér. 3 8: 16 (1847).
Synonyms: Peziza alba E.J. Guthrie, Trans. Br. mycol. Soc. 42: 504 (1959).
Neofabraea alba (E.J. Guthrie) Verkley, Stud. Mycol. 44: 125 (1999).

Use Ocotomyces 1985 (S) rather than Uyucamyces 1985 (A)
Ocotomyces and Uyucamyces are both monotypic genera described for the same species. Ocotomyces is more widely cited than Uyucamyces, thus we recommed the use of Ocotomyces.

Use Oculimacula 2003 (S) rather than Helgardia 2003 (A)
These genera were described in the same paper based on type species that represent the same species and thus are synonyms having equal priority. Four species have been placed in Helgardia while Oculimacula includes two species. Crous et al. (2003) determined that the name commonly used for eyespot of wheat, Tapesia yallundae, must be moved to another genus because the generic name Tapesia, based on T. fusca, is a rejected name (Hawksworth & David 1989). The name Oculimacula is most commonly used by plant pathologists for the eyespot diseases of wheat and barley. The name of the causal organism of eyespot disease of wheat, O. yallundae, has been widely accepted by plant pathologists and thus will be proposed for formal conservation while the name for the fungus causing eyespot disease of barley would remain O. acuformis. Even though two name changes are required, the generic name Oculimacula is recommended because of its use by plant pathologists.

Oculimacula aestiva (Nirenberg) Crous, comb. nov.
MycoBank MB808963
Basionym: Pseudocercospora aestiva Nirenberg, Z. PflKrankh. PflSchutz 88: 246 (1981).
Synonyms: Ramulispora aestiva (Nirenberg) E.L. Stewart & Crous, Mycol. Res. 103: 1497 (1999).
Helgardia aestiva (Nirenberg) Crous & W. Gams, Eur. J. Pl. Path. 109: 848 (2003).

Oculimacula anguioides (Nirenberg) Crous, comb. nov.
MycoBank MB808964
Basionym: Pseudocercospora anguioides Nirenberg, Z. PflKrankh. PflSchutz 88: 246 (1981).
Synonyms: Ramulispora herpotrichoides var. anguioides (Nirenberg) U. Braun, Nova Hedwigia 56: 433 (1993).

Ramulispora anguioides (Nirenberg) Crous, S. Afr. J. Bot. 61: 47 (1995).
Helgardia anguioides (Nirenberg) Crous & W. Gams, Eur. J. Pl. Path. 109: 846 (2003).

Use Ovulina 1940 (S) rather than Ovulitis 1970 (A)
The type species of Ovulina, O. azaleae, is the sexual morph of Ovulitis azaleae, the type species of Ovulitis, thus these generic names are synonyms. Both genera include a second species that are also synonyms. Because Ovulina has priority, this name should be used. No name changes are required.

Use Pezicula 1865 (S) over Cryptosporiopsis 1912 (A) and Lagynodella 1922 (A)
The type species of Pezicula, P. carpinea, has an asexual morph regarded as Cryptosporiopsis fasciculata while the type species of Cryptosporiopsis, C. nigra, is the asexual morph of Pezicula ocellata (Verkley 1999). The genus Lagynodella based on L. pruinosa (as Cryptosporiopsis pruinosa) is the asexual morph of P. pruinosa and thus also a synonym of Pezicula. Both the monographic account by Verkley (1999) and a phylogeny of these species (Abeln et al. 2000) suggest that these three genera are taxonomically congruent. Pezicula and Cryptosporiopsis are used about equally. Some species of Cryptosporiopsis have also been linked to Neofabraea and may need to be placed in that genus while others have no known sexual morph. Verkley (1999) notes that those species of Cryptosporiopsis linked to Neofabraea rather than Pezicula tend to have conidia less regular in shape. Because a monograph of Pezicula exists and it has priority, this generic name should be used.

Out of the 26 species included in Verkley (1999), one name, Pezicula cinnamomea, cause of pezicula canker of red oak, will be formally proposed for conservation in a separate publication. The species listed as P. carpinea in Verkley (1999) should be recognized as P. fasciculata. Most species of Cryptosporiopsis that are in common use already have names in Pezicula; however, a number of recently described species of Cryptosporiopsis should be placed in Pezicula based on the molecular phylogeny of Lynch et al. (2013) or Verkley (1999). These new combinations are proposed here.

Pezicula brunnea (Sigler) P.R. Johnst., comb. nov.
MycoBank MB808965
Basionym: Cryptosporiopsis brunnea Sigler, Stud. Mycol. 53: 60 (2005).

Pezicula californiae (Cheewangkoon et al.) P.R. Johnst., comb. nov.
MycoBank MB808966
Basionym: Cryptosporiopsis californiae Cheewangkoon et al., Fungal Diversity 44: 91 (2010).

Pezicula cornina (Peck) P.R. Johnst., comb. nov.
MycoBank MB808822
Basionym: Sphaeropsis cornina Peck, Ann. Rep. N.Y. St. Mus. nat. Hist. 32: 38 (1880) [1879].
Synonym: Pezicula corni Petr., Annls mycol. 20: 197 (1922).
Pezicula diversispora (Robak) P.R. Johnst., comb. nov.
MycoBank MB808967
Basionym: Cryptosporiopsis diversispora Robak, Svensk Bot. Tidskr. 44: 471 (1950).

Pezicula ericae (Sigler) P.R. Johnst., comb. nov.
MycoBank: MB808968
Basionym: Cryptosporiopsis ericae Sigler, Stud. Mycol. 53: 57 (2005).

Pezicula melanigena (T. Kowalski & Halmschl.) P.R. Johnst., comb. nov.
MycoBank MB808971
Basionym: Cryptosporiopsis melanigena T. Kowalski & Halmschl., Mycol. Res. 102: 348 (1998).

Pezicula querciphila (S.C. Lynch, et al.) P.R. Johnst., comb. nov.
MycoBank MB809003
Basionym: Cryptosporiopsis querciphila S.C. Lynch et al., Plant Dis. 97: 1033 (2013).

Pezicula radicicola (T. Kowalski & C. Bartnik) P.R. Johnst., comb. nov.
MycoBank MB808969
Basionym: Cryptosporiopsis radicicola T. Kowalski & C. Bartnik, Mycol. Res. 99: 663 (1995).

Pezicula rhizophila (Verkley & Zijlstra) P.R. Johnst., comb. nov.
MycoBank MB808970
Basionym: Cryptosporiopsis rhizophila Verkley & Zijlstra, Mycol. Res. 107: 694 (2003).

Protect the name Phacidiopecnis 1912 (A) over Potebniamyces 1962 (S) and Discosporiopsis 1921 (A)
The type species of Phacidiopecnis is P. malorum, now regarded as P. pyri (Windmayer 1965). The genus Phacidiopecnis Potebnia 1912 (non P. Karst. 1884) was replaced by the name Potebniamyces by Smerlis (1962) typified by P. discolor, now regarded as P. pyri. Phacidiopecnis pyri is considered the asexual morph of Potebniamyces pyri (Brooks 1928, Sutton 1980, as P. discolor), thus these two generic names are synonyms. A third generic name, Discosporiopsis, was based on Phacidiopecnis pyri and is likewise a synonym of Phacidiopecnis. Both Phacidiopecnis and Potebniamyces are used in the plant pathology literature most recently in reference to a canker and twig dieback of pear also associated with pome fruits (Xiao & Boal 2005, Xiao et al. 2005). A number of species also occur on conifers (Gross & Weidensaul 1967, Punithalingam & Gibson 1976) but their phylogenetic affinities are not known. The frequency of use and number of names is highest for Phacidiopecnis, therefore we recommend protecting this asexual name that has priority. No name changes are required except possibly for Potebniamyces gallicola if determined to belong in this genus.

Use Phacidium 1815 (S) rather than Ceuthospora 1826 (A)
The type species of Phacidium, P. lacerum, has an asexual morph named Ceuthospora pinastri (DiCosmo et al. 1984) while the type species of Ceuthospora, C. lauri, has been linked to P. multivalve (DiCosmo et al. 1984, Nag Raj 1993, Sutton 1972). The latter connection has not been reviewed in the recently literature but, given the number of species of Ceuthospora having sexual morphs in Phacidium, it seems likely that these genera are taxonomically congruent. Issues concerning the type species of Ceuthospora and conservation of Greville’s name were addressed by Sutton (1972). Ceuthospora lauri is known to cause a bleeding brown zonate leaf blight of tea (Ando et al. 1989). Species of Phacidium have been connected with a number of other genera, namely Allantophomopsis 1925 based on A. cytispora and Apostrasseria 1983 based on A. lunata, neither of which are taxonomically congruent with Phacidium; however, the type species of these genera are synonyms (Carris 1990). The name Phacidium has been widely used and includes a greater number of names than Ceuthospora, therefore we recommend the use of the older name Phacidium. Given the number of species and lack of recent monographic accounts of either genus based on phylogenetic information, it is difficult to determine if name changes are required.

Protect Phialocephala 1961 (A) over Phaeomollisia 2009 (S)
Based on the phylogenetic studies by Grünig et al. (2009) and Day et al. (2012), it appears that, although it lacks a known asexual morph, the monotypic genus Phaeomollisia based on P. piceae is congeneric with Phialocephala. Based on an ITS phylogeny, Phaeomollisia piceae groups with several species of Phialocephala including the type species, P. dimorphospora. Given that 35 names exist in the genus Phialocephala and the genus was recently recircumscribed (Day et al. 2012), it seems expedient to use this older generic name.

Phialocephala piceae (T.N. Sieber & Grünig) Rossman, comb. nov.
MycoBank MB808823
Basionym: Phaeomollisia piceae T.N. Sieber & Grünig, Mycol. Res. 113: 213 (2009).

Protect Pilidium 1823 (A) over Discohainesia 1932 (S), Hainesia 1884 (A) and Sclerotiospis 1882 (A)
The genus Pilidium, based on P. concavum, the asexual morph of Discohainesia oenotherae, monotype species of Discohainesia (Rossman et al. 2004). The relationship between D. oenotherae, P. concavum, Hainesia lythri, and Sclerotiospis testudinacea as morphs of the same species was shown by Palm (1991) who grew the various morphs in culture. The type species of Hainesia, H. rhoina, and the type species of Sclerotiospis, S. australasica, have long been considered synonyms of this species as Pezizella lythri (Shear & Dodge,1913, Sutton & Gibson 1977). Pilidium is taxonomically congruent with Discohainesia as well as Hainesia and Sclerotiospis while the
type species of Discohainesia, Hainesia and Sclerotiopsis all represent the same species and thus are synonyms. About twenty species of Pilidium and Sclerotiopsis each have been described, but Pilidium is the most widely used generic name and includes a number of plant pathogenic species. Given that Pilidium is the oldest generic name and has been recently monographed (Rossman et al. 2004), we recommend the use of that genus. Using the older epithet Dacryomyces lythri, the common pathogen known as Pilidium concavum is transferred to Pilidium below.

Pilidium lythri (Desm.) Rossman, comb. nov.
MycoBank MB808824
Basionym: Dacrymyces lythri Desm., Pl. Crypt. Fr. no. 1545 (1846).
Synonyms: Peziza oenotherae Cooke & Ellis, Grevillea 6: 90 (1878).
Discohainesia oenotherae (Cooke & Ellis) Nannf., Nova Acta R. Soc. Scient. Upsal., ser. 4 8 (2): 88 (1932).
Cetheuspora concava Desm., Ann. Sci. Nat., Bot., sér. 3, 8: 17 (1847).
Pilidium concavum (Desm.) Höhn., Sitzungsber. Kaiserl. Akad. Wiss., Math.-Naturwiss. Kl., Abt. 1, 124: 148 (1915).
Many additional synonyms exist for this species (Palm 1991).

Use Plyidderma 1967 (S) rather than Cryocaligula 1986 (A)
The monotypic genus Cryocaligula, based on the type species C. hedgcocckii, was described for the asexual morph of Plyidderma hedgcocckii, the type species of Plyidderma, thus these generic names are synonyms. The name Cryocaligula has not been used since it was described while the older Plyidderma includes 11 names and is well known, thus the use of Plyidderma is recommended. No name changes are needed.

Use Pragmopora 1855 (S) rather than Pragmopynis 1975 (A)
Although the type species of Pragmopora, P. amphibola, was initially considered to possibly be lichenized, later authors, most recently Groves (1967), concluded that a thallus was lacking in this species. He accepted six more species in his monograph of this genus, including P. pithya. The type species of the monotypic genus Pragmopynis, P. pithya, was described as the asexual morph of Pragmopora pithya, thus these genera are regarded as taxonomically congruent. None of these species have been sequenced. Pragmopora is most frequently cited and has priority, thus its use is recommended. No name changes are needed.

Protect Pyrenoepizza 1984 (S) over Cylindrosorpium 1823 (A)
The genus Pyrenoepizza includes a number of important plant pathogenic species. Although reported several times from Europe on Apiaceae, the type species, P. chartellii, has not been well-characterized. One important plant pathogen, P. brassicaceae, has been linked to the asexually typified generic name Cylindrosorpium concentricum, type of the genus Cylindrosorpium (Rawlinson et al. 1978, Cheah et al. 1980). Assuming that P. chartellii is congeneric with P. brassicaceae as C. concentricum, then Pyrenoepizza and Cylindrosorpium are taxonomically congruent. Kirk et al. (2008) suggested that Pyrenoepizza includes ca 59 names with three names in Cylindrosorpium, although many more names in that genus remain obscure. Sutton (1980) states that “Few genera have been the subject of more confusion than Cylindrosorpium…”.
Considerable research has been published on Pyrenoepizza although no monographic account exists, and Pyrenoepizza is more commonly used than Cylindrosorpium. Given the plant pathogenic species recognized as Pyrenoepizza, the greater use of the name Pyrenoepizza, and the lack of clarity about Cylindrosorpium, we recommend protecting the name Pyrenoepizza over Cylindrosorpium. The name for the important pathogen, Pyrenoepizza brassicaceae, cause of light leaf spot on winter oilseed rape, will be formally proposed for conservation in a separate publication.

Protect Rhabdocline 1922 (S) over Meria 1896 (A), Hartiigilia 1900 (A) and Rhabdogloeum 1922 (A)
Rhabdocline and the asexually typified genus Rhabdogloeum were described in the same article based on different type species (Sydow & Petrak 1922). The type species of Rhabdogloeum, R. pseudotsugae, is connected to Rhabdocline weiiii according to Parker & Reid (1969). The genus Rhabdocline is clearly defined to include both the type species of Rhabdocline, R. pseudotsugae, and R. weiiii by Stone & Gernandt (2005), thus the genera Rhabdocline and Rhabdogloeum appear to be taxonomically congruent. Two older asexual genera are also considered synonyms of Rhabdocline, namely Hartiigilia and Meria. The type monotype species of Hartiigilia, H. laricis, is a synonym of Meria laricis (Vullimien 1905), thus Hartiigilia is also taxonomically congruent with Rhabdocline. Gernandt et al. (1997) showed that the type species of Meria, M. laricis, and Rhabdocline pseudotsugae to be congeneric, thus Meria is also taxonomically congruent with Rhabdocline.
Rhabdocline includes nine names and is more commonly used than *Meria*, with two names, and *Rhabdogloeum*, with only the type species left in the genus. Of the two species of *Meria*, *M. parkeri* has a name in Rhabdocline while *M. laricis* Vuill. needs to be placed in Rhabdocline. Note that two additional *Meria* species belonging in the Clavicipitaceae were recombined in Drechsleria by Gams & Jannson (1985). Given its more common use, protecting the name Rhabdocline for this genus is recommended. One name change is required.

Rhabdocline laricis (Vuill.) J. K. Stone, comb. nov. MycoBank MB808826

Basionym: *Meria laricis* Vuill., Compt. Rend. hebd. Séanc. Acad. Sci., Paris 122: 21 (1896).

Synonyms: *Alleschiera laricis* R. Hartig, Centralbl. Gesammte Forstwesen 25: 425 (1899).

Hartigiella laricis (R. Hartig) Dietel & P. Syd. Hedwigia (Beibl.) 39: (91) (1900).

Protect Rhizothyrium 1915 (A) over Rhizocalyx 1928 (S) and Bactrexcipula 1918 (A)

The type species of *Rhizothyrium*, *R. abietis*, was shown to be the asexual morph of *Rhizocalyx abietis*, type species of *Rhizocalyx*, by Smerlis (1967), thus *Rhizothyrium* and *Rhizocalyx* are synonyms. The type species, *Bactrexcipula strasseri*, of the monotypic genus *Bactrexcipula* was described as the same as *Rhizothyrium abietis* by Petrak (1962). Based on Petrak’s (1928) hypothesis about the relationships of these taxa, Smerlis (1967) grew both morphs in culture and provided convincing descriptions and illustrations. While *Rhizocalyx* remains monotypic, a second species of *Rhizothyrium*, *R. parasiticum*, was described by Butin (1986). No molecular data exist for either genus. Although both genera are relatively obscure, *Rhizothyrium* has been used more often than *Rhizocalyx*, thus it seems most useful to protect the earlier name *Rhizothyrium* for this genus. No name changes are required.

Use Rhytisma 1818 (S) rather than Melasmia 1846 (A)

The type species of *Rhytisma*, *R. acerinum*, is the sexual morph of the type species of *Melasmia*, *M. acerina* (Cannon & Minter 1984), therefore, the genera are synonyms. *Melasmia* is a morphologically simple, putatively spermatial asexual state. The genus *Rhytisma* has been widely used for species causing various tar spot diseases on living leaves. We recommended that the older, relatively well characterised name *Rhytisma* be used. Most names in *Melasmia* are obscure, thus it is difficult to determine if any name changes are required.

Use Scleropezicula 1999 (S) rather than Cryptosypmodula 1999 (A)

These monotypic genera were described for the sexual and asexual morphs of the same species, therefore, the genera are synonyms. Neither name has been widely used but the sexual morph has been more frequently reported and is already in *Scleropezicula*, therefore, we recommend the use of the sexual morph generic name *Scleropezicula*.

Protect Scytalidium 1957 (A) rather than Xylogone 1969 (S)

The type species of *Scytalidium*, *S. lignicola*, appears to be congeneric or at least closely related with the type species of *Xylogone*, *X. sphaerosperrma*, in the phylogenetic analyses by Kang et al. (2010), thus *Xylogone* and *Scytalidium* may be taxonomically congruent. A second species of *Xylogone*, *X. ganodermophthora*, causes yellow rot of cultivated *Ganoderma lucidum* in Korea (Kang et al. 2010). The genus *Scytalidium* has included two well-known species that are now placed in the Botryosphaeriaceae, specifically the medically important and plant pathogenic species known as *Neoscytalidium dimidiatum* (syn. *Scytalidium dimidiatum*) and *N. hyalinium* (syn. *Scytalidium hyalinium*) (Crous et al. 2006, Phillips et al. 2013). The four species of *Scytalidium* having affinities with *Xylogone* are used in the forest products industry (Robinson et al. 2014). The remaining 18 species of *Scytalidium* are of unknown affinity, many of which were isolated from soil and wood but also animals including humans. Two thermophilic species are considered to belong outside of *Scytalidium*, although no genus was available (Straatma & Samson 1993). Given the number of species remaining in *Scytalidium* compared to the small genus *Xylogone*, we recommend the use of *Scytalidium*.

Use Seaverinia 1945 (S) rather than Verrucobotrys 1973 (A)

The type species of *Verrucobotrys*, *V. geranii*, was established for the asexual morph of the type species of *Seaverinia*, *S. geranii*, thus these genera are synonyms. Both genera are monotypic. Given the equal citation of these names, the use of the older generic name *Seaverinia* is recommended.

Use Septotinia 1961 (S) rather than Septotis 1970 (A)

The type species of *Septotis*, *S. podophyllina*, was established for the asexual morph of the type species of *Septotinia*, *S. podophyllina*, thus these genera are synonyms. Both genera include two names that represent the same two species. Given the equal citation of these names, use of the older generic name *Septotinia* is recommended.

Use Stamnaria 1870 (S) rather than Titaeospora 1916 (A)

Stamnaria persoonii, type species of *Stamnaria*, is a relatively common fungus on stems and leaves of *Equisetum* spp. in temperate regions (Farr & Rossman 2014). The asexual morph of *Stamnaria persoonii* was described as *Titaeospora equiseti* of which *T. detospora*, the type species of *Titaeospora*, is a synonym (von Arx 1970), thus *Stamnaria* and *Titaeospora* are synonyms. Given the equal number of species and the equal use of names in these genera, the older generic name *Stamnaria* is recommended for use.

Use Streptotinia 1945 (S) rather than Streptobotrys 1973 (A)

The genus *Streptobotrys*, based on the type species *S. streptothrix*, was described for the asexual morph of *Streptotinia* (Hennebert 1973) although *Streptobotrys streptothrix* does not have a known sexual morph. The
other two species of Streptobotrys are listed with their corresponding sexual morphs including Streptotinia arisaenatis, the type species of Streptotinia. Thus these two genera are taxonomically congruent. Given that the number of species in each genus is small and both generic names are cited about equally, we recommend use of the older generic name Streptotinia.

The following new combination is required:

Streptotinia streptothrix (Cooke & Ellis) Seifert & Kohn, comb. nov.
MycoBank MB808827
Basionym: Polyactis streptothrix Cooke & Ellis, Grevillea 7: 39 (1878).

Use Strossmayeria 1881 (S) rather than Pseudosiropes 1971 (A)
The sexual morph of Pseudosiropes nodosus, the type species of Pseudosiropes, has been shown to be Strossmayeria atriseda by Iturriaga & Korf (1990) who regarded S. atriseda as congeneric with the type species of Strossmayeria, S. basitricha, thus Strossmayeria and Pseudosiropes are taxonomically congruent. They suggest that the assexual morphs of species of Strossmayeria are referable to Pseudosiropes, but note that other phylogenetically distant, morphologically similar asexual species have been described in Pseudosiropes. Many of the 36 names described in Pseudosiropes have been placed in other genera leaving only 16 species in that genus while 20 species are accepted in Strossmayeria (Index Fungorum, Iturriaga & Korf 1990). We recommend use of the older, well characterised generic name Strossmayeria. Although new combinations in Strossmayeria may be required for species in Pseudosiropes (Casteñada Ruiz et al. 2001), this be done as phylogenetic data become available because of the heterogeneity of Pseudosiropes.

Use Symphyosirinia 1956 (S) rather than Symphyosirella 2009 (A)
Although the type species of the discomycte genus Symphyosirinia, based on S. galli, and the type species of the hyphomycete genus Symphyosirella, S. parasitica, are not synonyms, they are considered congeneric (Gams et al. 2009), thus these genera are taxonomically congruent. Symphyosirinia was described for two species parasitic on seeds (Gams 2009). Because Symphyosirinia includes five species (Baral 1994, Ellis 1956, Svrček 1989), is widely used, and has priority, we recommend the use of this generic name. Priority at the species level requires recombining Symphyosirinia parasitica and S. rosea into Symphyosirella. According to Gams et al. (2009) the earlier hyphomycete generic name Symphiosira Preuss 1853, in which these two species were originally described, is a nomen dubium.

Symphyosirinia parasitica (Massee & Crossl.) Seifert, comb. nov.
MycoBank MB808828
Basionym: Symphysisira parasitica Massee & Crossl., Naturalist, Hull 1904: 6 (1904).

Sympomorphs: Symphyosirinia parasitica (Massee & Crossl.) Seifert, Mycotaxon 110: 105 (2009).
Symphyosirinia heraclei E.A. Ellis, Trans. Norfolk Norw. Nat. Soc. 25(2): 43 (1980).

Symphyosirinia rosea (Keissl.) Seifert, comb. nov.
MycoBank MB808829
Basionym: Symphysirinia rosea Keissl., Mycol. Zentbl. 2: 322 (1913).
Synonym: Symphyosirinia rosea (Keissl.) Seifert, Mycotaxon 110: 105 (2009).

Use Tympanis 1790 (S) rather than Sirodothis 1909 (A) or Pleurophomella 1914 (A)
The type species of Tympanis, T. saligna, is considered the sexual morph of Sirodothis saligna while the type species of Sirodothis, S. populi, is a synonym of S. populnea, the asexual morph of Tympanis sparsatiospora (Sutton & Funk 1975, Sutton 1980), therefore these genera are taxonomically congruent. The type species of Pleurophomella, P. eumorpha, has been linked to “one of the three species” of Tympanis on Pinus, possibly T. confusa (Groves 1949), thus is also taxonomically congruent with Tympanis. The genus Tympanis has many more species than Sirodothis and Pleurophomella and is widely used. We recommend use of the well known genus Tympanis. Although some name changes may be required, most species of Sirodothis and Pleurophomella have names in Tympanis.

Use Unguiculariopsis 1909 (S) rather than Deltosperma 1888 (A)
When Zhuang (1988) monographed the genus Unguiculariopsis, including the type species U. ilicincola, she established the genus Deltosperma based on D. infundibuliformis for the asexual morph of U. infundibuliformis. Unguiculariopsis and Deltosperma are taxonomically congruent. Given that there are many more species of Unguiculariopsis than Deltosperma and that Unguiculariopsis is more frequently cited, the older name Unguiculariopsis is recommended for use. Although two new combinations may be required, only the older name with a known sexual morph is recombinated here.

Unguiculariopsis caespitosa (Fuckel) W.Y. Zhuang, comb. nov.
MycoBank MB808830
Basionym: Sphaeronaema caespitosa Fuckel, Fungi Rhenani Exs. no. 2147 (1868).
Synonyms: Deltosperma caespitosa (Fuckel) W.Y. Zhuang, Mycotaxon 32: 48 (1988).
Cenangium parasiticum Fuckel, Jb. nassau. Ver. Naturk. 25-26: 43 (1871).
Unguiculariopsis parasitica (Fuckel) W.Y. Zhuang, Mycotaxon 32: 46 (1988).

Protect Valdensia 1923 (A) over Valdensinia 1953 (S) and Asterobolus 1972 (A).
The monotype genus Valdensia, based on V. heterodoxa, was established for the sexual morph of Valdensia heterodoxa, type of Valdensia (Peyronel 1923, 1953), thus
Valdensia and Valdensisinia have the same type species and are generic synonyms. This species has an asexual morph that produces large stauroporous propagules quite unlike the discoid sexual morph and belongs in the Sclerotiniaceae (Holst-Jensen et al. 1997). It causes a leaf-spot disease of ericaceous plants and others hosts. Norvell & Redhead (1994) speculated that this fungus may cause a 20 % loss of green foliage used for floral arrangements in western North America; it is also being considered as a bioherbicide for the treatment of ericaceous shrubs beneath power lines (Wilkin et al. 2005). Although both generic names have been used, more reports have been made using the asexually typified genus, thus the earlier name Valdensia is proposed for protection. According to Redhead & Perrin (1972), their genus Asterobolus, based on A. gaultheriae, is a synonym of Valdensia heterodoxa. No name changes are required.

Use Vibriessa 1822 (S) over Anavirga 1975 (A)
The type species of Vibriessa, V. truncorum, occurring on submerged wood in temperate regions, lacks a known asexual morph. The type of Anavirga, A. laxa, is found on cupules of Castanea sativa and rotting tree leaves and lacks a known sexual morph. A second species of Anavirga, A. dendromorpha, on submerged leaves and twigs (Descals & Sutton 1976) has a sexual morph referred to as Vibriessa flavovirens, initially as the name Apostemidium torrenticola (Hamad & Webster 1987). Phylogenetic studies are lacking to confirm the cogenic status of the type species of Vibriessa and Anavirga; however, A. laxa is morphologically similar to A. dendromorpha; the differences in branching pattern and size of conidial elements are small, possibly due to differences in specimens from pure culture (A. dendromorpha) and nature (A. laxa). The phialocephala-like state observed in cultures of A. dendromorpha was not seen in the collections of A. laxa from nature. We suggest that Vibriessa and Anavirga circumscribe the same group of species and are taxonomically congruent. Anavirga has only three species including A. vermiformis known from a terrestrial habitat in a mountain forest in India associated with monsoon rains (Bhat & Kendrick 1993). It differs somewhat in conidial morphology from the two older species, A. laxa and A. dendromorpha, namely through the inconspicuous or absent conidiophores and branching of conidia exclusively near the base; therefore, we refrain from recombining it, until information on relationships on molecular level becomes available. The genus Vibriessa with over 50 species is widely known and thus that name is recommended for use.

One new combination is proposed:

Vibriessa laxa (B. Sutton) Marvanová, comb. nov.
MycoBank MB808831
Basionym: Anavirga laxa B. Sutton, Trans. Br. mycol Soc. 64: 406 (1975).

ACKNOWLEDGEMENTS
In obtaining input from the diverse user communities, the individuals listed below were consulted about their preferences for use of generic names. Although conflicting preferences could not be accommodated, all opinions and ideas were taken into consideration. These scientists include: Hans-Otto Baral, Christiane Baschien, Virginia Bianchinotti, Paul Cannon, Pedro Crous, Everett Hansen, David L. Hawksworth, Charles Hodges, Tsuyoshi Hosoya, Theresa Iturriaga, Paul M. Kirk, Richard Korf, Linda Kohn, Adrian Leuchtmann, Henrik Nilsson, Alan Phillips, Scott Redhead, Megan Romberg, Andrea Irene Romero, Conrad Schoch, Lynn Sigler, Matthew Smith, Wendy Untereiner, Gerard Verkley, Zheng Wang, Chang-Lin Xiao, and Wen-ying Zhuang. L. Marvanová acknowledges the financial support from the Czech Collection of Microorganisms. P.R. Johnston acknowledges financial support from the Landcare Research Systematics Portfolio through funding from the Science and Innovation group of the New Zealand Ministry of Business, Innovation and Employment.

REFERENCES
Abeln ECA, de Pagter MA, Verkley GJM (2000) Phylogeny of Pezicula, Dernea and Neofabraea inferred from partial sequences of the nuclear ribosomal RNA gene cluster. Mycologia 92: 685–693.
Alderman SC (1998) Gloeotinia temulentata and G. granigena, two distinct species. Mycologia 90: 422–426.
Ando Y, Oniki M, Nonaka T, Narisawa N (1989) Brown zonate leaf blight, a new disease of tea plant caused by Cethehospora lauri in Japan. Annals of the Phytopathological Society of Japan 55: 391–396.
Baral H-O (1994) Über Drepanopeziza verrucispora und Symphyosporinia clematidis (Leotiales, Ascomycetes), mit einem Bestimmungsschlüssel der Symphyosporinia-Arten. Zeitschrift für Mykologie 60: 211–224.
Baschien C, Tsui C K-M, Gulis V, Szewzyk U, Marvanova L (2013) The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes. Fungal Biology 117: 660–672.
Beilharz V, Pascoe I (2005) Ascomora eucalyptii (anamorph: Coma circularis), confirmation of the elusive microconidial state. Mycotaxon 91: 273–278.
Bhat DJ, Kendrick B (1993) Twenty-five new conidial fungi from the Western Ghats and the Andaman Islands (India). Mycotaxon 49: 19–90.
Beilharz V, Pascoe I (2005) Ascomora eucalyptii (anamorph: Coma circularis), confirmation of the elusive microconidial state. Mycotaxon 91: 273–278.
Bhat DJ, Kendrick B (1993) Twenty-five new conidial fungi from the Western Ghats and the Andaman Islands (India). Mycotaxon 49: 19–90.
Billis GF, Lingham RB, Martin I, Silverman KC, Singh SB, Smith JL (1995) Inhibitors of farnesyl-protein transferase. US Patent # 08/222,773.
Bogale M, Orr M-J, O’Hara MJ, Untereiner WA (2010) Systematics of Catenulifera (anamorphic Hyaloscyphaceae) with an assessment of the phylogenetic for Phialophora hyalinula. Fungal Biology 114: 396–409.
Bonorden HF (1951) Handbuch der Allgemeinen Mykologie. Stuttgart: Schweizerbart.
Booth C, Waller JM (1979) Pseudopeziza medicaginis. CMI Descriptions of Pathogenic Fungi and Bacteria 637: 1–2.
Braun U (2012) The impacts of the discontinuation of dual nomenclature of pleomorphic fungi: the trivial facts, problems and strategies. IMA Fungus 3: 81–86.
Braun U, Cook RTA (2012) Taxonomic Manual of the Erysiphales (Powdery Mildews). [CBS Biodiversity Series no. 11.] Utrecht: CBS-KNAW Fungal Diversity Centre.
Brooks FT (1928) On the occurrence of Phacidella discolor (Mout. & Sacc.) Potebnia in England. Transactions of the British Mycological Society 13: 75–81.
Butin H (1977) Taxonomy and morphology of Ascodichaena rugosa gen. et sp. nov. Transactions of the British Mycological Society 69: 249–254.

Butin H (1986) Rhiizoctyon parasiticum sp. nov. (Coelomycetes), ein Blattparasit auf Araucaria araucana (Mol.) C. Koch Journal of Phytopathology 115: 313–317.

Butin H, Marmeolejo JG (1990) Ascodichaena mexicana sp. nov. (Ascomycota, Sordariales). Transactions of the British Mycological Society 95: 217–222.

Cannon PF, Minter DW (1984) Ascodichaena nigra. CMI Descriptions of Pathogenic Fungi and Bacteria 791: 1–2.

Carris LM (1990) Cranberry black rot fung: Allantophomopsis clytopsida and Allantophomopsis lycopodini. Canadian Journal of Botany 68: 2283–2291.

Casteñada Ruiz RF, Heredia G, Reyes M, Arias RM, De Cock C (2001) A revision of the genus Pseudosporoscyphus and some new taxa. Cryptogamie, Mycologique 22: 3–18.

Cheah LH, Hartill WFT, Corbin JB (1980) First report of the natural occurrence of Pyrenopeziza brassicae in New Zealand. New Zealand Journal of Botany 18: 197–202.

Crous PW, Braun U, Wingfield MJ, Wood AR, Shin HD, Summerell BA, Alfenas AC, Cumagun CJR, Groenewald JZ (2009) Phylogenetic reclassification of the Phialocephala-like anamorph genus Pragmopora and nomenclature of Pragmopora and some new related European species. Mycological Papers 113: 207–221.

Crous PW, Slippers B, Wingfield MJ, Rheedee J, Marasas WFO, Phillips AJL, Alves A, Burgess T, Barber P, Groenewald JZ (2006) Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology 55: 235–253.

Day MJ, Hall JC, Currah RS (2012) Phialide arrangement and character evolution in the helotialean anamorph genera Cadophora and Phialocephala. Mycologia 104: 371–381.

Dennis RWG (1956) A revision of the British Helotiales in the herbarium of the Royal Botanic Gardens, Kew, with notes on related European species. Mycological Papers 62: 1–216.

Descals E, Sutton BC (1976) Anavirga dendromorpha and its Phialocephala phialide state. Transactions of the British Mycological Society 57: 269–274.

DiCosmo F (1978) A revision of Corniculariella. Canadian Journal of Botany 56: 1665–1690.

DiCosmo F, Nag Raj TR, Kendick WB (1984) A revision of the Phaciaceae and related anamorphs. Mycologia 26: 1–234.

Dixon JR (1975) Chlorosplenium and its segregates. II The genera Chlorociboria and Chlorocotylea. Mycologia 1: 193–237.

Donk MA (1963) Proposals for conservation of some names of fungi. . Monilia ‘Bon.’ (Deuteromycetes) – I. Taxon 12: 266–271.

EPPO (2012) Datasheets of Quarantine Pests: Monilinia fructicola. http://www.eppo.int/QUARANTINE/fungi/Monilinia_fructicola/MONIFIC_ds.pdf

Farr DF (1993) Massoniana obclavata sp. nov. with observations on Massoniana and Septogloeum. Mycologia 85: 814–824.

Funk A (1975) Sageria, a new genus of Helotiales. Canadian Journal of Botany 53: 1196–1199.

Gams W (2000) Phialocephala and some similar morphologically little-differentiated anamorphs of divergent ascomycetes. Studies in Mycology 45: 187–199.

Gams W, Jansson H-B (1985) The nematode parasite Meria coniospora Drechsler in pure culture and its classification. Mycotaxon 22: 33–38.

Gamundi IJ, AL Gialotti (1995) A new species of Claustronectus (Helotiales) from southern South America. New Zealand Journal of Botany 33: 513–517.

Gemandt DS, Camacho FJ, Stone JK (1997) Meria laricis, an anamorph of Rhabdocline. Mycologia 89: 735–744.

Gross HL, Weidensaul TC (1967) Phacidiopycnis pseudotsugae associated with bleeding cankers on hemlock. Plant Disease Reporter 51: 807–808.

Grove WB (1937) British Stem- and Leaf-Fungi (Coelomycetes). Vol. 2. Cambridge: Cambridge University Press.

Groves JW (1936) Asccalyx abietis and Bothrodiscus pinicola. Mycologia 28: 451–462.

Groves JW (1965) The genus Godronia. Canadian Journal of Botany 43: 1195–1276.

Groves JW (1967) The genus Pragmopora. Canadian Journal of Botany 45: 169–181.

Groves JW (1968) Two new species of Asccalyx. Canadian Journal of Botany 46: 1273–1278.

Groves JW, Wilson DE (1967) The nomenclatural status of Coryne. Taxon 16: 35–41.

Gruning CR, Queloz V, Duo A, Sieber TN (2009) Phylogeny of Pheaeomollisia piceae gen. sp. nov.: a dark, septate, conifer-needle endophyte and its relationships to Phialocephala and Acephala. Mycological Research 113: 207–221.

Gruyter J de, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ (2009) Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycological Research 113: 508–519.

Hamad SR, Webster J (1987) Anavirga dendromorpha, anamorph of Apostemidium torrenticola. Sydowia 40: 60–64.

Hanlin RT, Jimenez B, Chang L-H, Brown EA (1992) Crumenulopsis atropurpurea comb. nov., from Japanese red pine in Georgia. Mycologia 84: 650–658.

Harrington TC, McNew DL (2003) Phylogenetic analysis places the Phialophora-like anamorph genus Cadophora in the Helotiales. Mycotaxon 87: 141–152.

Hawskworth DL (1983) The nomenclature of the beech bark fungus: a solution to the complex case of Ascodichaena, Dichaena and Polymorphum. Taxon 32: 212–217.

Hawskworth DL (2014) Possible house-keeping and other draft proposals to clarify or enhance the naming of fungi within the International Code of Nomenclature for algae, fungi, and plants. IMA Fungus 4: 31–37.

Hawskworth DL, David JC (1989) Proposal to conserve Mollisia (E.M. Fries) P. Karsten over Tapesia (Pers.: E.M. Fries) Fuckel (Fungi). Taxon 38: 496.

Hawskworth DL, McNeill J, de Beer ZW, Wingfield MJ (2013) Names of fungal species with the same epithet applied to different morphs: how to treat them. IMA Fungus 4: 53–56.

Hawskworth DL, Punithalingham E (1973) Typification and nomenclature of Dichaena Fr., Heterogrpha Fee, Polymorphum Chv., Psillospora Rabenh. and Psilosporina Died. Transactions of the British Mycological Society 60: 501–509.
Norvell L, Redhead S (1994) Valdensia heterodoxa (Sclerotiniaceae) in the United States. Canadian Journal of Forest Research 24: 1981–1983.

Ouellette GB, Korf RP (1979) Three new species of Claussenomyces from Macaronesia. Mycotaxon 10: 255–264.

Palm ME (1991) Taxonomy and morphology of the synanamorphs Pilidi um concavum and Hainesia lythri (Coelomycetes). Mycologia 83: 787–796.

Parker AK, Reid J (1969) The genus Rhabdocline Syd. Canadian Journal of Botany 47: 1533–1545.

Paulin AE, Harrington TC (2000) Phylogenetic placement of anamorphic species of Chalar a among Ceratocystis species and other ascomycetes. Studies in Mycology 45: 209–222.

Persoon CH (1794) Neuer Versuch einer systematischen Einteilung der Schwämme. Neues Magazine für der Botanik 1: 63–138.

Petrak F (1928) Mykologische Beiträge zur Flora von Sibirien. Hedwigia 68: 203–241.

Petrak F (1962) Ergebnisse einer Revision der Grundtypen Gremmeniella abietina. Botanica Acta 76: 153–138.

Peyronel, Peyronel B (1953) La forma ascofora di Valdensia heterodoxa. Neues Magazine für der Botanik 63: 191–185.

Phillips AJL, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald JZ, Crous PW (2013) The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology 76: 51–167.

Punithalingam E, Gibson IAS (1976a) Gremmeniella abietina. CMI Descriptions of Pathogenic Fungi and Bacteria 369: 1–2.

Punithalingam E, Gibson IAS (1976b) Potebniomyces coniferarum. CMI Descriptions of Pathogenic Fungi and Bacteria 517: 1–2.

Rawlinson CJ, Sutton BC, Muthyalu G (1978) Taxonomy and biology of Asterobolus: a synonym of Redheadia. Canadian Journal of Forest Research 8: 1533–1545.

Reappraisal of the coelomycetous genera Blennoria, Sclerotiniaceae and Rhizothyrium: a new concept with comments on its condiogenesis. Mycologia 76: 412–415.

Seaver FJ (1942) Photographs and descriptions of cup-fungi. XXVIII. Peziza purpurescens. Mycologia 34: 203–241.

Shear C, Dodge BO (1921) The life history and identity of “Peltellina fragariae,” “Leptothyrium macrotetricum,” and “Pezza oenotherae”. Mycologia 13: 135–170.

Singh P (1989) Role of biotechnology in forest disease research and management in Canada: synthesis. European Journal of Forest Pathology 19: 129–143.

Sivanesan A, Gibson IAS (1976a) Diplocarpon rosae. CMI Descriptions of Pathogenic Fungi and Bacteria 485: 1–2.

Sivanesan A, Gibson IAS (1976b) Diplocarpon maculatum. CMI Descriptions of Pathogenic Fungi and Bacteria 486: 1–2.

Sivanesan A, Gibson IAS (1976c) Diplocarpon earliana. CMI Descriptions of Pathogenic Fungi and Bacteria 487: 1–2.

Sivichai S, Jones EBG, Hywel-Jones NL (2003) Lignicolous freshwater Ascomycota from Thailand. Hymenoscyphus variosporoides and its Tricladium anamorph. Mycologia 95: 340–346.

Smerlis E (1962) Taxonomy and morphology of Potenbniomyces balsamicola sp. nov. associated with a twig and branch blight of balsam fir in Quebec. Canadian Journal of Botany 40: 351–359.

Smerlis E (1967) Rhizocalyx abietis Petrak, the perfect state of Rhizothynium abietis Naumoff. Canadian Journal of Botany 45: 1715–1717.

Smerlis E (1973) Pathogenicity tests of some discymycetes occurring on conifers. Canadian Journal of Forest Research 3: 7–16.

Stone JK, Gernandt DS (2005) A reassessment of Hemiphaci um, Rhabdocline, and Sarcotricha (Hemipha ciaceae). Mycotaxon 91: 115–126.

Straatsma G, Samson RA (1993) Taxonomy of Scytalidium thermophilum, an important thermophilic fungus in mushroom compost. Mycological Research 97: 321–328.

Swt HJ (1986) Australian leaf-inhabiting fungi XXIV. Coma circularis and its teleomorph. Transactions of the British Mycological Society 87: 603–612.

Suto Y, Suyama H (2005) Redheadia quercus gen. et sp. nov., the teleomorph of Mycoppus quercus, the frosty mildew fungus in Quercus acutissima. Mycoscience 46: 227–234.

Sutton BC (1972) Nomenclature of Ceuthospora, Pyrenophora and Blennoria (Fungi). Taxon 21: 319–316.

Sutton BC (1977) Coelomycetes VI. Nomenclature of generic names proposed for Coelomycetes. Mycological Papers 141: 1–253.

Sutton BC (1980) The Coelomycetes: Fungi Imperfecti with pycnidia, acervuli and stromata. Kew: Commonwealth Mycological Institute.

Sutton BC, Funk A (1975) Comidial states of some Pragmopora and Tymanis species. Canadian Journal of Botany 53: 521–526.
Sutton BC, Gibson IAS (1977) Pezizella oenotherae. CMI Descriptions of Pathogenic Fungi and Bacteria 535: 1–2.
Svrček M (1977) New or less known Discomycetes. VI. Česká Mykologie 31: 193–200.
Svrček M (1989) New or less known Discomycetes. XX. Česká Mykologie 43: 215–226.
Sydow von H, Petrik F (1922) Ein Beitrag zur Kenntnis der Pilzflora Nordamerikas, insbesondere der nordwestlichen Staaten. Annales Mycologici 20: 178–218.
Tommerup IC (1970) Hypnotheca graminis gen. et sp. nov., perfect state of Monochaetiella themedae. Transactions of the British Mycological Society 55: 463–475.
Verkley GJM (1999) A monograph of the genus Pezicula and its anamorphs. Studies in Mycology 44: 1–180.
Vloeten H van, Gremmen J (1953) Studies in the discomycete genera Crumenula de Not. and Cenangium Fr. Acta Botanica Neerlandica 2: 226–241.
von Arx JA (1970) A revision of the fungi classified as Gloeosporium. Bibliotheca Mycologica 24: 1–203.
Vuillemin JP (1905) Identité des genres Meria et Hartigiella. Annales Mycologici 3: 340–343.
Wang CJK (2010) Wood-inhabiting Microfungi (Molds) of New York. Amherst, MA: C. J. K. Wang.
Wang Z, Binder M, Schoch CL, Johnston PR, Spatafora JW, Hibbett DS (2006a) Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): A nuclear rDNA phylogeny. Molecular Phylogeny and Evolution 41: 295–312.
Wang Z, Johnston PR, Takamatsu S, Spatafora JW, Hibbett DS (2006b) Toward phylogenetic classification of the Leotiomycetes based on rDNA data. Mycologia 98: 1065–1075.
Webster J, Eicker A, Spooner BM (1995) Cudoniella indica sp. nov. (Ascomycetes, Leotiales), the teleomorph of Trichadium indicum, an aquatic fungus isolated from a South African river. Nova Hedwigia 60: 493–498.
Wei CZ, Harada Y, Katumoto K (1998) Mycoididymella aesculi gen. et sp. nov. and its synanamorphs Blastostroma aesculi gen. et sp. nov. and Mycopappus aesculi sp. nov. on Aesculus turbinata in Japan. Mycologia 90: 334–345.
Weindlmayr J (1964) Beitrag zu einer revision der Gattung Myxosporium Link. 2. Mitteilung. Sydowia 18: 26–36.
Whetzel HH (1945) A synopsis of the genera and species of the Sclerotiniaceae, a family of stromatic inoperculate discomycetes. Mycologia 37: 648–714.
Whetzel HH, White WL (1940) Mollisia tetrica, Peziza sojournei, and the genera Phaeociboria and Pycnopeziza. Mycologia 32: 609–620.
White WL, Whetzel HH (1938) Pleomorphic life cycles in a new genus of the Helotiaceae. Mycologia 30: 187–203.
Wilkin JE, Shamoun SF, Ritland R, Ritland K, El-Kassaby YA (2005) Genetic diversity and population structure of Valdensinia heterodoxa, a potential biocontrol agent for salal in coastal British Columbia. Canadian Journal of Plant Pathology 27: 559–571.
Xiao CL, Boal RJ (2005) Distribution of Potebniamyces pyri in the U.S. Pacific Northwest and its association with a canker and twig dieback disease of pear trees. Plant Disease 89: 920–925.
Xiao CL, Rogers JD, Kim YK, Liu Q (2005) Phacidiopycnis washingtonensis - a new species associated with pome fruits from Washington State. Mycologia 97: 464–473.
Zhu L, Wang X, Huang F, Zhang J, Li H, Hyde KD, Ding D (2012). A destructive new disease of Citrus in China caused by Cryptosporiopsis citricarpa sp. nov. Plant Disease 96: 804–812.
Zhuang W-Y (1988) A monograph of the genus Unguiculariopsis (Leotiaceae, Encoelioideae). Mycotaxon 32: 1–8.
Recommended generic name	Synonymous alternate morph generic name	Additional synonymous generic names	Action required
Ascocalyx Naumov, *Boloz. Rast.* 14: 138 (1926); type species *A. abietis* Naumov (1926), now *A. berenice* (Berk. & M.A. Curtis) Rossman (2014)	*Bathrodisca* Shear, *Bull. Torrey bot. Club* 34: 312 (1907); type species *B. pinicola* Shear 1907, now *Ascocalyx berenice* (Berk. & M.A. Curtis) Rossman (2014)	*Pycnocalyx* Naumov, *Zap. Ural'sk. Obšč. Ljubit. Estestv.* 20: 35 (1916); type species *P. abietis* Naumov (1916), now *Ascocalyx berenice* (Berk. & M.A. Curtis) Rossman (2014)	Later name proposed for protection.
Ascoconidium Seaver, *Mycologia* 34: 414 (1942); type species *A. castaneae* Seaver 1907, now *A. purpurascens* (Ellis & Everh.) Rossman (2014)	*Sageria* A. Funk, *Can. J. Bot.* 53: 1196 (1975); type species *S. tsugae* A. Funk (1975), now *Ascoconidium tsugae* A. Funk (1966)	*Procambium* Höh., *Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1* 111: 1001 (1902); type species *P. sarcoides* (Jacq.) Höh. (1902), basionym *Lichen sarcoides* Jacq. (1781)	Asexual type. Approval needed by Nomenclature Committee for Fungi.
Ascocoryne J.W. Groves & D.E. Wilson, *Taxon* 16: 40 (1967); type species *A. sarcoides* (Jacq.) J.W. Groves & D.E. Wilson (1967), basionym *Lichen sarcoides* Jacq. (1781)	*Coryne* Nees, *Syst. Pilze*: 157 (1816); type species *C. dubia* (Pers.) Gray (1821), basionym *Ascocoryne sarcoides* (Jacq.) J.W. Groves & D.E. Wilson (1967)	*Psorospermium* Höh., *Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1* 111: 1001 (1902); type species *P. sarcoides* (Jacq.) Höh. (1902), basionym *Lichen sarcoides* Jacq. (1781)	Later name proposed for protection.
Ascodichaena Butin, *Trans. Br. mycol. Soc.* 69: 249 (1977); type species *A. rugosa* (L.) Butin (1977)	*Polysporum* Chevall., *J. Phys. Chim. Hist. nat. Arts* 94: 32 (1822); type species *P. fagineum* (Pers.) Chevall. (1822), basionym *Opegrapha faginea* Pers. (1794), now *Ascodichaena rugosa* (L.) Butin (1977)	*Phloeospora* Wallr., *Naturgesch. Flecht.* 1: 22, 721 (1825); type species *P. faginea* (Pers.) Wallr. (1825), basionym *Opegrapha faginea* Pers. (1794), now *Ascodichaena rugosa* (L.) Butin (1977)	Later name proposed for protection.
Pleurocolla Petr., *Annls mycol.* 22: 15 (1924); type species *P. tiliae* Petr. (1924)	*Endostilbum* Malençon, *Bull. trimest. Soc. mycol. Fr.* 80: 111 (1964); type species *E. cerasi* (Bourdot & Galzin) Malençon, (1964), basionym *Strasbogia cerasi* Bourdot & Galzin, (1903), now *Ascodichaena solitaria* (Rehm) Dennis (1971)	*Pleurocolla* Petr., *Annls mycol.* 22: 15 (1924); type species *P. tiliae* Petr. (1924)	
Table 1. (Continued)

Recommended generic name	Synonymous alternate morph generic name	Additional synonymous generic names	Action required	
Blumeriella Arx, Phytopath. Z. 42: 164 (1961); type species B. jaapii (Rehm) Arx (1961) nom. cons. prop., basionym Pseudopeziza jaapii Rehm (1907)	Microgloeum Petr., Anns mycol. 20: 215 (1922); type species M. pruni Petr. (1922), now Blumeriella jaapii (Rehm) Arx (1961) nom. cons. prop.	Phloeospora Höhn., Ann. Mycol. 22: 201 (1924); type species P. oeanothi (Ellis & Everh.) Höhn. (1924), basionym Cylindrosporum oeanothi Ellis & Everh. (1891), now Blumeriella oeanothi (Ellis & Everh.) Rossman (2014)	Later name proposed for protection with the type species, B. jaapii nom. cons. prop.	
Botrytis P. Micheli ex Pers. [Nov. Pl. Gen.: 212, tab. 91 (1729) ex Neues Mag. Bot. 1: 120 (1794): Fr., Syst. mycol. 3(2): 393 (1832); type species B. cinerea Pers. (1794); Fr., Syst. mycol. 3(2): 393 (1832); type species B. cinerea Pers. (1794)	Botryotinia Whetzel, Mycologia 37: 679 (1945); type species Botryotinia convoluta (Drayton) Whetzel (1945), basionym Sclerotinia convoluta Drayton (1937), now Botrytis convoluta Whetzel & Drayton (1932)	Creothryum Petr., Ann. Mycol. 23: 79 (1925); type species C. pulchellum Petr. (1925)	Asexual type. Approval needed by Nomenclature Committee for Fungi.	
Calloria Fr., Fl. Scan.: 343 (1836); type species C. fusarioides (Berk.) Fr. (1849), basionym Peziza fusarioides Berk., (1837), now Calloria urticae (Pers. : Fr.) Seifert (2014)	Cylindrocolla Bonord., Handb. Allgem. mykol.: 149 (1851); type species C. urticae (Pers.) Bonord. (1851), basionym Tremella urticae Pers. (1801), now Calloria urticae (Pers. : Fr.) Seifert (2014)	Callorina Korf, Phytologia 21:201. 1971; type species C. fusarioides (Berk.) Korf (1971), basionym Peziza fusarioides Berk. (1837), now Calloria urticae (Pers. : Fr.) Seifert (2014)	None	
Calycellina Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 127: 601 (1918); type species C. punctiformis (Grev.) Höhn. (1926), basionym Peziza punctiformis Grev. (1824)	Chaetochalara B. Sutton & Piroz., Trans. Br. mycol. Soc. 48: 350 (1965); type species C. bulbosa B. Sutton & Piroz. 1965, now Calycellina aspera (Piroz. & Hodges) Rossman (2014)	Volulettopora Thirum. & P.N. Mathur, Sydowia 18: 38 (1965); type species V. raphigera (Swift) Thirum. & P.N. Mathur, now Chaetomella raphigera Swift (1930)	None	
Chaetomella Fuckel, Jb. nassau. Ver. Naturk. 23-24: 401 (1870); type species C. oblonga Fuckel (1870)	Zoelineria Velen., Monogr. Discom. Bohem.: 296 (1934); type species Z. rosarum Velen. (1934), now Chaetomella oblonga Fuckel (1870)	Calycellina Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 127: 601 (1918); type species C. punctiformis (Grev.) Höhn. (1926), basionym Peziza punctiformis Grev. (1824)	None	
Chlorociboria Seaver ex C.S. Ramamurthi et al., Mycologia 49: 857 (1958) [1957] type species C. aeruginosa (Oeder) Seaver ex C.S. Ramamurthi et al. (1958) [1957], basionym Helvella aeruginosa Oeder, Fl. Danic. 3 (9); tab. 534:2 (1770): Fr., Syst. mycol. 2(1): 130 (1822), now Chlorociboria aeruginascens (Nylander) C.S. Ramamurthi et al. (1958)	Dothiorina Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 120: 464 [86 repr.] (1911); type species D. tulasnei (Sacc.) Höhn. (1911), basionym Dothiorula tulasnei Sacc. (1884)	Harikrishnaella D.V. Singh & A.K. Sarbhoy, Sydowia 25: 66 (1972); type species H. arachidis D.V. Singh & A.K. Sarbhoy (1972), now Chaetomella raphigera Swift (1930)	Later name proposed for protection.	
Clusena Kirschst., Verh. bot. Ver. Prov. Brandenburg. 65: 122 (1923); type species C. jahniatus Kirschst. (1923)	Dentrostibella Höhn., Öst. bot. Z. 55: 22 (1905); type species D. prasinitula Höhn. (1905), now Clusena prasinitula (P. Karst.) Korf & Abawi (1971)		Later name proposed for protection.	
Recommended generic name	Synonymous alternate morph generic name	Additional synonymous generic names	Action required	
--------------------------	--	-----------------------------------	----------------	
Coma Nag Raj & W.B. Kendr., Can. J. Bot. 50: 614 (1972); type species *C. circularis* (Cooke & Massee ex Cooke) Nag Raj & W.B. Kendr. (1972), basionym *Pestalozziella circularis* Cooke & Massee ex Cooke (1890)	*Ascocoma* H.J. Swart, *Trans. Br. mycol. Soc.* 87: 606 (1987); type species *A. eucalypti* (Hansf.) H.J. Swart (1987), basionym *Pseudoepizeiza eucalypti* Hansf. (1956), now *Coma circularis* (Cooke & Massee ex Cooke) Nag Raj & W.B. Kendr. (1972)		Asexual type. Approval needed by Nomenclature Committee for Fungi.	
Cristulariella Höhn., Sber. Akad. Wiss. Math.-naturw. Kl., Abt. 1 125: 124 (1916); type species *C. depraedans* (Cooke) Höhn. (1916), basionym *Polyactis depraedens* Cooke (1885)	*Nervostroma* Narumi & Y. Harada, Mycoscience 47: 357 (2006); type species *N. depraedans* Narumi & Y. Harada (2006), now *Cristulariella depraedans* (Cooke) Höhn. (1916)		Asexual type. Approval needed by Nomenclature Committee for Fungi.	
Crumenulopsis J.W. Groves, Can. J. Bot. 47: 48 (1969); type species *C. pinicola* (Rebent.) J.W. Groves (1969), basionym *Peziza pinicola* Pers. (1804)	*Digitosporium* Gremmen, *Acta bot. neerl.* 2(2): 233 (1953); type species *D. piniphilum* Gremmen (1953), now *Crumenulopsis sororia* (P. Karst.) J.W. Groves (1969)		Later name proposed for protection.	
Dematioscypha Srček, Česká Mykol. 31: 193 (1977); type species *D. dematiicola* (Berk. & Broome) Srček (1977), basionym *Peziza dematiicola* Brek. & Broome (1865), now *Cristulariella depraedans* (Cooke) Höhn. (1916)	*Foveostroma* DiCosmo, Can. J. Bot. 56: 1682 (1978); type species *F. drupacearum* (Lév.) DiCosmo, basionym *Microperra drupacearum* Lév. (1846), now *Dermea cerasi* (Pers.) Fr. (1825)		Later name proposed for protection.	
Dermea Fr., Syst. orb. veg. 1: 114 (1825); type species *D. cerasi* (Pers.) Fr. (1825), basionym *Peziza cerasi* Pers. (1794)	*Sphaeronaema* Fr., *Obs. mycol.* 1: 187 (1815); type species *S. cylindricum* (Tode) Fr. (1815), basionym *Sphaeria cylindrica* Tode (1790)		Later name proposed for protection.	
Diplocarpon F.A. Wolf, Bot. Gaz. 54: 231 (1912); type species *D. rosae* F.A. Wolf (1912)	*Entomosporium* Lév., *Bull. Soc. bot. Fr.* 3: 31 (1856); type species *E. mespili* (DC.) Sacc. (1880), basionym *Xyloma mespili* DC. (1815), now *Diplocarpon mespili* (Sorauer) B. Sutton (1980)		Later name proposed for protection.	
Diplocarpon F.A. Wolf, Bot. Gaz. 54: 231 (1912); type species *D. rosae* F.A. Wolf (1912)		*Bostrichonema* Ces., *Erb. critt. Ital.*, ser. 1, fasc. 2: no. 149 (1867); type species *B. alpestre* Ces. (1867), syn. *B. polygoni* (Unger) J. Schröt., basionym *Cylindrosporium polygoni* Unger 1833, now *Diplocarpon alpestre* (Ces.) Rossman (2014)		
Diplocarpon F.A. Wolf, Bot. Gaz. 54: 231 (1912); type species *D. rosae* F.A. Wolf (1912)		*Morthiera* Fuckel, *Jb. nassau. Ver. Naturk.* 23-24: 382 (1870); type species *M. potenillae* (Desm.) Magnus (1906), now *Diplocarpon earlianum* (Ellis & Everh.) F.A. Wolf (1924)		
Diplocarpon F.A. Wolf, Bot. Gaz. 54: 231 (1912); type species *D. rosae* F.A. Wolf (1912)		*Marssonina* Magnus, *Hedwigia* 45: 89 (1906); type species *M. potentillae* (Desm.) Magnus (1906), now *Diplocarpon earlianum* (Ellis & Everh.) F.A. Wolf (1924)		
Diplocarpon F.A. Wolf, Bot. Gaz. 54: 231 (1912); type species *D. rosae* F.A. Wolf (1912)		*Entomopeiza* Kiebl., *Vortrag. Gesamtgeb. Bot., ser. 1, 1: 33 (1914); type species *E. soraueri* Kiebl. (1914), now *Diplocarpon mespili* (Sorauer) B. Sutton (1980)		
Recommended generic name	Synonymous alternate morph generic name	Additional synonymous generic names	Action required	
--------------------------	--	------------------------------------	----------------	
Gelatinipulvinella Hosoya & Y. Otani, *Mycologia* 87: 690 (1995); type species *G. astraeicola* Hosoya & Y. Otani (1995) now *Gelatinipulvinella astraeicola* Hosoya & Y. Otani (1995)	*Aureohyphozyma* Hosoya & Y. Otani, *Mycologia* 87: 690 (1995); type species *A. astraeicola* Hosoya & Y. Otani (1995) now *Gelatinipulvinella astraeicola* Hosoya & Y. Otani (1995)	None		
Gloeotinia M. Wilson et al., Trans. Bnt. mycol. Soc. 37: 31 (1954); type species *G. temulenta* (Prill. & Delacr.) M. Wilson et al. (1954), basionym *Phialea temulenta* Prill. & Delacr. (1892)	*Endoconidium* Prill. & Delacr., *Bull. Soc. bot. Fr*. 38: 208 (1891); type species *E. temulentum* Prill. & Delacr. (1891), now *Gloeotinia temulenta* (Prill. & Delacr.) M. Wilson et al. (1994)	Later name proposed for protection.		
Godronia Moug. & Lév., Consid. Vég. Vosges: 355 (1846); type species *G. muenhlenbeckii* Moug. & Lév. (1846)	*Sphaeronaema* Fr., *Obs. mycol.* 1: 187 (1815), basionym *Sphaeria cylindrica* Tode (1790)	*Mastomyces* Mont., *Ann. Sci. Nat., Bot.*, sér. 3 10: 134 (1848); type species *M. friesii* Mont. (1848), now *Godronia uberiformis* J.W. Groves (1965)	Later name proposed for protection.	
Godroniopsis Diehl & E.K. Cash, *Mycologia* 21: 243 (1929); type species *G. quernea* (Schwein.) Diehl & E.K. Cash (1929), basionym *Peziza quernea* Schwein. (1822)	*Sphaeronaema* Fr., *Obs. mycol.* 1: 187 (1815), basionym *Sphaeria cylindrica* Tode (1790)	*Dichaeopsella* Petr., *Sydowia* 6: 375 (1952); type species *D. quernea* Petr. 1952, now *Godroniopsis quernea* (Schwein.) Diehl & E.K. Cash (1929)	Later name proposed for protection.	
Gremmeniella M. Morelet, *Bull. Soc. Sci. nat. Arch. Toulon et du Var* 183: 9 (1969); type species *G. abietina* (Lagerb.) M. Morelet (1969) nom. cons. prop., basionym *Crumenula abietina* Lagerb. (1913)	*Bunchorstia* Eriks., *Bot. Zbl.* 46: 298 (1891); type species *B. destruens* Eriks. (1891), now *Gremmeniella abietina* (Lagerb.) M. Morelet (1969) nom. cons. prop.	*Lagerbergia* J. Reid, *Kew Bull.* 25: 350 (1971); type species *L. abietina* (Lagerb.) J. Reid ex Dennis (1971), basionym *Crumenula abietina* Lagerb. (1913), now *Gremmeniella abietina* (Lagerb.) M. Morelet (1969) nom. cons. prop.	Later name proposed for protection with the type species *G. abietina* nom. cons. prop.	
Recommended generic name	Synonymous alternate morph generic name	Additional synonymous generic names	Action required	
--------------------------	--	-----------------------------------	----------------	
Grovesinia *M. N. Cline et al., Mycologia 75: 98* (1983); type species *G. pyramidalis* *M. N. Cline et al. (1983)*, now *Grovesinia moricola* (I. Hino) Redhead (2014)	*Hinomyces* Narumi & Y. Harada, *Mycoscience* 47: 357 (2006); type species *H. moricola* (I. Hino) Narumi & Y. Harada (2006), basionym *Botrytis moricola* (Furita) Iino (1929), now *Grovesinia moricola* (I. Hino) Redhead (2014) *H. lacera* type species (I. Hino) Narumi & Y. Harada (2006), basionym *Heterosphaeria lacera* G. Grev. (1983), now *Grovesinia lacera* et al. (1983); basionym *B. moricola* type species *H. moricola* (I. Hino) Redhead (2014)	None		
Heterosphaeria Grev., Scott. crypt. fl. 1: pl. 103 (1824); type species *H. patella* Grev. (1823), basionym *Sphaeria penetrans* I. Hino (1929), now *Grovesinia penetrans* (I. Hino) Redhead (2014)	*Cinula* Fr., Syst. mycol. 1: 493 (1821); type species *C. caliciiformis* Fr. (1821), now *H. mucida* (Schulzer) Korf & Abawi (1971)	Later name proposed for protection		
Holwaya Sacc., Syll. fung. 8: 646 (1889); type species *H. ophiobolus* (Ellis) Sacc. (1883), now *Bulgaria ophiobolus* Ellis (1883), now *H. ophiobolus* type species (Ellis) Sacc. (1889), now *Bulgaria ophiobolus* Ellis (1883), now *H. ophiobolus* species (Ellis) Sacc. (1889), basionym *B. ophiobolus* Ellis (1883)	*Catenulifera* Hosoya, *Mycoscience* 43: 48 (2002); type species *Kirschst. & Brandenb., Verh. bot. Ver. Prov. 48: 44 (1907) [1906]; type species *Scopulariopsis rhodogena* F. Mangenot (1952), now *H. rhodogena* (F. Mangenot) Hosoya (1902), basionym *Periperidium acicola* Darker (1963), now *Micraspis acicola* Darker (1963)	Asexual type. Approval needed by Nomenclature Committee for Fungi.		
Hypoderma P. R. Johnst., *Mycotaxon* 39: 221 (1990); type species *H. scirpinum* (DC.) P. R. Johnst. (1990)	*Hypoderma scirpinum* (DC.) P. R. Johnst. (1990)	Later name proposed for protection		
Hypohelion P. R. Johnst., Mycologia 39: 221 (1990); type species *H. scirpinum* (DC.) P. R. Johnst. (1990), basionym *H. theioideus* hymeniophilus (P. Karst.) Baral (1993)	*Leptostroma* Fr., Obs. mycol. 1: 196 (1815); type species *L. radians* Roberge ex Desm. (1842), now *L. radians* (Roberge) Schüepp (1959), nom. cons. prop.	Later name proposed for protection		
Micraspis Darker, Can. J. Bot. 41: 1390 (1963) type species *M. acicola* Darker (1963)	*Peripendium Darker, Can. J. Bot. 41: 1392 (1963); type species Peripendium acicola Darker (1963), now *Micraspis acicola* Darker (1963)	None		
Monilia Honey, *Mycologia* 20: 153 (1928); type species *M. fruticola* (G. Winter) Honey 1928, basionym *Ciboria fruticola* G. Winter (1883)	*Monilia Bonord., Handb. Allgem. mykol.: 7 (1851), nom. cons. Art. 14; type species *M. cinerea* Bonord. (1851), now *Monilinia laxa* (Aderh. & Ruhland) Honey (1945)	Later name proposed for protection, Asexual type. Approval needed by Nomenclature Committee for Fungi.		
Monochaetiella B. Sutton & DiCosmo, Can. J. Bot. 55: 2536 (1977); type species *M. themedae* (M. Kandasw. & Sundaram) B. Sutton & DiCosmo (1977), basionym *Monochaetiella themedae* M. Kandasw. & Sundaram (1957)	*Hypnotheca Tommerup, Trans. Brit. mycol. Soc. 55: 467 (1970); type species *Hypnotheca graminis* Tommerup (1970), now *Monochaetiella themedae* (M. Kandasw. & Sundaram) B. Sutton & DiCosmo (1977)	Asexual type. Approval needed by Nomenclature Committee for Fungi.		
Monochaetiellopsis B. Sutton & DiCosmo, Can. J. Bot. 55: 2536 (1977); type species *M. themedae* (M. Kandasw. & Sundaram) B. Sutton & DiCosmo (1977), basionym *Monochaetiella themedae* M. Kandasw. & Sundaram (1957)	*Hypnotheca Tommerup, Trans. Brit. mycol. Soc. 55: 467 (1970); type species *Hypnotheca graminis* Tommerup (1970), now *Monochaetiella themedae* (M. Kandasw. & Sundaram) B. Sutton & DiCosmo (1977)	Asexual type. Approval needed by Nomenclature Committee for Fungi.		
Mycopappus Redhead & G.P. White, Can. J. Bot. 63: 1430 (1985); type species *M. alni* (Deam. & Barthol.) Redhead & G.P. White 1985, basionym *Cercospora alni* Deam. & Barth. (1917)	*Redheadia Y. Suto & Suyama, Mycoscience* 46: 228 (2005); type species *R. quercus* Y. Suto & Suyama (2005), now *Mycopappus quercus* Y. Suto & M. Kawai (2000)	Asexual type. Approval needed by Nomenclature Committee for Fungi.		

Recommended generic name	Synonymic alternate morph generic name	Additional synonymous generic names	Action required
Neofabraea H.S. Jacks., Rep. Oregon Exp. Stn 1911-12, 187 (1913); type species N. malicorticis H.S. Jacks. (1913), nom. cons. prop.	Phyctema Desm., Annis Sci. Nat., Bot., sér. 3 B: 16 (1847); type species P. vagabunda Desm. (1847), now Neofabraea vagabunda (Desm.) P.R. Johnst. (2014)	Allantozynthia Höhn., Annis mycol. 22: 203 (1924); type species A. alutacea (Sacc.) Höhn., basionym Gloeosporium alutaceum Sacc. (1897), now Neofabraea vagabunda (Desm.) P.R. Johnst. (2014)	Later name proposed for protection and type species of Neofabraea. N. malicorticis, nom. cons. prop.
Ocotomyces H.C. Evans & Minter, Trans. Br. mycol. Soc. 84: 68 (1985); type species O. parasiticus H.C. Evans & Minter (1985)	Uycamycites H.C. Evans & Minter, Trans. Br. mycol. Soc. 84: 68 (1985); type species U. parasiticus H.C. Evans & Minter (1985), now Ocotomyces parasiticus H.C. Evans & Minter (1985)	None	
Oculema Crous & W. Gams, Eur. J. Pl. Path. 109: 845 (2003); type species O. yallundae (Wallwork & Spooner) Crous & W. Gams (2003), basionym Tapesia yallundae Wallwork & Spooner (1988), nom. cons. prop.	Helgardia Crous & W. Gams, Eur. J. Pl. Path. 109: 845 (2003); type species H. herpotrichoides (Fron) Crous & W. Gams (2003), basionym Cercosporella herpotrichoides Fron (1912), now Oculema yallundae (Wallwork & Spooner) Crous & W. Gams (2003)	None	
Oculimacula, O. yallundae	Later name proposed for protection and type species of Oculimacula, nom. cons. prop.		
Pezicula Tul. & C. Tul., Select. fung. carpal. 1: 182 (1865); type species P. carpinea (Pers.) Tul. ex F. K. Petr.	Cryptosporiopsis Bubák & Kabát, Hedwigia 52: 360 (1912); type species C. nigra Bubák & Kabát (1912), now C. scutellata (Oth.) Petr., basionym Sphaeropsis scutellata Oth (1866), now Pezicula ocellata (Pers.: Fr.) Seaver (1951)	Lagyniodella Petr., Annis mycol. 20: 207 (1922); type species L. pruinosum (Peck) Petr. 1922, basionym Sphaeronaema pruinosum Peck, (1872) [1917], now Pezicula pruinosum Petr. (1922)	
Phacidioecys Petr. ex T. Minter, Can. J. Bot. 40: 352 (1962); type species P. discolor (Mouton & Sacc.) Smerlis (1962), basionym Phacidium discolor Mouton & Sacc. (1899), now Phacidioecys pyri (Fucell) Weindlm. (1965)	Diacosporiopsis Petr., Annis mycol. 19: 217 (1921); type D. pyri (Fucell) Petr. (1921), basionym Cytospora pyri pyri (Fucell) (1960), now Phacidioecys pyri (Fucell) Weindlm. (1965)		
Phacidium Fr., Obs. mycol. 1: 167 (1815), nom. cons. : Fr., Syst. Mycol. 2: 571 (1823); type species P. lacerum Fr. (1818)	Cezospora Grev., Scott. crypt. fl. 5: pl. 253-254 (1826) nom. cons.; lectotype species C. lauri (Grev.) Grev. (1827), now Phacidium multivale (DC.) Kunze & J.C. Schmidt (1918)	None	
Phialocephala W.B. Kendr., Can. J. Bot. 39: 1079 (1963); type species P. dimorphospora W.B. Kendr. (1961)	Phaeomollisia T.N. Sieber & Grünig, Mycol. Res. 113: 213 (2009); type species P. piceae T.N. Sieber & Grünig (2009), now Phialocephala piceae (T.N. Sieber & Grünig) Rosman (2014)	Asexual type. Approval needed by Nomenclature Committee for Fungi	
Pliodrum Kunze, Mycol. Helvet. 2: 92 (1823); type species P. aerinum (Ab. & Schwein.) Kunze (1823), basionym Sclerotium aerinum Ab. & Schwein. (1805)	Discohainesia Nannf., Nova Acta R. Soc. Scient. Upsal., ser. 4 B:2: 89 (1932); type species D. oenotherae (Cooke & Ellis) Nannf. (1932), basionym Peziza oenotherae Cooke & Ellis (1878), now Pliodrum lythri (Desm.) Rossman (2014)	Hainesia Ellis & Sacc., Syll. fung. 3: 698 (1884); type species H. rhoinum (Sacc.) Ellis & Sacc. (1884), basionym Gloeosporium rhoinum Sacc. (1881), now Pliodrum lythri (Desm.) Rossman (2014)	
Plioiderma Darker, Can. J. Bot. 45: 1424 (1967); type species P. hedgcockii (Dearm.) Darker (1967), basionym Hypoderma hedgcockii Dearm. (1926)	Cryocaligula Minter, Recent Res. Conifer Needle Diseases: 78 (1986); type species C. hedgcockii (Dearm.) Minter (1986), basionym Leptostroma hedgcockii Dearm. (1926), now Plioiderma hedgcockii (Dearm.) Darker (1967)	Sclerotiapia Speg., Anal. Soc. cient. argent. 13: 14 (1882); type species S. australasica Speg. (1882), now Pliodrum lythri (Desm.) Rossman (2014)	

Asexual type. Approval needed by Nomenclature Committee for Fungi.
Recommended generic name	Synonymous alternate morph generic name	Additional synonymous generic names	Action required
Pragmopora A. Massal., *Framm. Lichenogr.* 12 (1855); type species *P. amphibola* A. Massal. (1855)	*Pragmopora* B. Sutton & A. Funk, *Can. J. Bot.* 53: 522 (1975); type species *P. pithya* B. Sutton & A. Funk (1975), now *Pragmopora pithya* (Fr.) J.W. Groves (1967)		None
Pycnopeziza W.L. White & Whetzel, *Mycologia* 30: 187 (1938); type species *P. sympodialis* W.L. White & Whetzel (1938)	*Acarosporium* Bubák & Vleugel ex Bubák, *Ber. dt. bot. Ges.* 29: 384 (1911); type species *A. sympodiale* Bubák & Vleugel (1911), now *Pycnopeziza sympodialis* W.L. White & Whetzel (1938)		Later name proposed for protection.
Pyrenopeziza Fuckel, *Jb. nassau. Ver. Naturk.* 23-24: 293 (1870); type species *P. chailletii* (Pers.) Fuckel (1870), basionym *Peziza chailletii* Pers. (1822)	*Cylindrosporium* Grev. *Scott. crypt. fl.* 1: pl. 27 (1822); type species *C. concentricum* Grev. (1822), now *Pyrenopeziza brassicae* B. Sutton & Rawl. (1979) nom. cons. prop.		Later name proposed for protection.
Rhabdocline Syd., *Annls mycol.* 20: 194 (1922); type species *Rhabdocline pseudotsugae* Syd. (1922)	*Meria* Vuill., *Compt. rend. hebdomad. Séanc. Acad. Sci., Paris* 122: 546 (1896); type species *M. laricis* Vuill. (1896), now *Rhabdocline laricis* (Vuill.) J.K. Stone (2014)		Later name proposed for protection.
Rhizothyrium Naumov, *Bull. Soc. mycol. Fr.* 30: 429 (1915); type species *R. abietis* Naumov (1915)	*Rhizocalyx* Petr., *Hedwigia* 68: 233 (1928); type species *R. abietis* Petr. (1928), now *Rhizothyrium abietis* Naumov (1915)	*Bactrexcipulum* Höhn., *Hedwigia* 60: 161 (1918); type species *B. strasseri* Höhn. (1918), now *Rhizothyrium abietis* Naumov (1915)	Asexual type. Approval needed by Nomenclature Committee for Fungi.
Rhytisma Fr., *K. svenska Vetensk-Akad. Handl.* 39: 104 (1818); Fr., *Syst. mycol.* 2: 565 (1823); type species *R. acerinum* (Pers.) Fr. (1818), basionym *Xylogone acerinum* Pers. (1794)	*Melasma* Lév., *Annls Sci. Nat., Bot.* sér. 3 5: 276 (1846); type species *M. acerina* Lév. (1846), now *Rhytisma acerinum* (Pers.) Fr. (1818)		None
Scleropezicula Verkley, *Stud. Mycol.* 44: 132 (1999); type species *S. alnicola* (J.W. Groves) Verkley (1999), basionym *Pezicula alnicola* J.W. Groves (1940)	*Cryptosympodula* Verkley, *Stud. Mycol.* 44: 132 (1999); type species *C. appendiculata* Verkley (1999), now *Scleropezicula alnicola* (J.W. Groves) Verkley (1999)		None
Scytalidium Pesante, *Annali Sper. agr.*, n.s. 11 (2, Suppl.): cclxiv (1957); type species *S. lignicola* Pesante (1957)	*Xylogene* Arx & T. Nilsson, *Svensk bot. Tidskr.* 63: 345 (1969); type species *X. sphaerospora* Arx & T. Nilsson (1969), now *Scytalidium sphaerospora* Sigler & Kang (2010)		None
Synonymous alternate morph generic name	Recommended generic name	Action required	
--	--------------------------	----------------	
Septotinia Whetzel, Mycologia 37: 684 (1945); type species S. podophyllina Whetzel (1947)	Septotinia Whetzel, Mycologia 37: 684 (1945); type species S. podophyllina Whetzel (1947)	None	
Verrucobotrys Hennebert, Persoonia 7: 193 (1973); type species V. geranii (Botrytis geranii S. geranii type species Whetzel (1945), now Seaverinia geranii (Seaver & W.T. Horne) Whetzel (1945), basionym Sclerotinia geranii Whetzel (1945), Seaver & W.T. Horne (1918)	Verrucobotrys Hennebert, Persoonia 7: 193 (1973); type species V. geranii (Botrytis geranii S. geranii type species Whetzel (1945), now Seaverinia geranii (Seaver & W.T. Horne) Whetzel (1945), basionym Sclerotinia geranii Whetzel (1945), Seaver & W.T. Horne (1918)	None	
T. persoonii (Moug.) Fuckel (1870)	T. persoonii (Moug.) Fuckel (1870)	None	
Pseudospiropes Wallr. (1833), now Strossmayeria Schulzer 1881, S. rackii (Massee & Crossl.) Seifert (2009), basionym S. basitricha (Massee & Crossl. (1904), now Helminthosporium atriseda (Saut.) Iturr. (1990)	Pseudospiropes Wallr. (1833), now Strossmayeria Schulzer 1881, S. rackii (Massee & Crossl.) Seifert (2009), basionym S. basitricha (Massee & Crossl. (1904), now Helminthosporium atriseda (Saut.) Iturr. (1990)	None	
Peziza heterosperma Schultzer (1878), now Symphyosira parasitica (Massee & Crossl.) Seifert (2014)	Peziza heterosperma Schultzer (1878), now Symphyosira parasitica (Massee & Crossl.) Seifert (2014)	None	
Deltosperma B. Sutton, Fung. mecklenb. sel. 1: 24 (1909); type species D. infundibuliformis (E.J. Durand) Korf (1971)	Deltosperma B. Sutton, Fung. mecklenb. sel. 1: 24 (1909); type species D. infundibuliformis (E.J. Durand) Korf (1971)	None	
Vibrissea Fr., V. truncorum species (Alb. & Schwein.) Fr. (1822), basionym Leotia truncorum (Alb. & Schwein. (1805)	Vibrissea Fr., V. truncorum species (Alb. & Schwein.) Fr. (1822), basionym Leotia truncorum (Alb. & Schwein. (1805)	None	

(Continued)