Evidence for Direct Roles of Two Additional Factors, SECp43 and Soluble Liver Antigen, in the Selenoprotein Synthesis Machinery

Xue-Ming Xu
NCI, National Institutes of Health, Bethesda, Maryland

Heiko Mix
University of Nebraska-Lincoln

Bradley A. Carlson
NCI, National Institutes of Health, Bethesda, Maryland

Paula J. Grabowski
University of Pittsburgh, Pittsburgh, Pennsylvania

Vadim N. Gladyshev
University of Nebraska-Lincoln, vgladyshev@rics.bwh.harvard.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/biochemgladyshev

Part of the Biochemistry, Biophysics, and Structural Biology Commons

Xu, Xue-Ming; Mix, Heiko; Carlson, Bradley A.; Grabowski, Paula J.; Gladyshev, Vadim N.; Berry, Marla J.; and Hatfield, Dolph L., "Evidence for Direct Roles of Two Additional Factors, SECp43 and Soluble Liver Antigen, in the Selenoprotein Synthesis Machinery" (2005). *Vadim Gladyshev Publications*. 58.
https://digitalcommons.unl.edu/biochemgladyshev/58

This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Vadim Gladyshev Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Evidence for Direct Roles of Two Additional Factors, SECp43 and Soluble Liver Antigen, in the Selenoprotein Synthesis Machinery*

Received for publication, June 20, 2005, and in revised form, October 14, 2005. Published, JBC Papers in Press, October 17, 2005, DOI 10.1074/jbc.M506696200

Xue-Ming Xu, Heiko Mix, Bradley A. Carlson, Paula J. Grabowski, Vadim N. Gladyshev, Marla J. Berry, and Dolph L. Hatfield‡¹

From the ‡Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, the †Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, the §Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and the ‡Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96822

Selenocysteine (Sec) is inserted into selenoproteins co-translationally with the help of various cis- and trans-acting factors. The specific mechanisms of Sec biosynthesis and insertion into protein in eukaryotic cells, however, are not known. Two proteins, SECp43 and the soluble liver antigen (SLA), were previously reported to interact with tRNA[Ser][Sec], but their functions remained elusive. Herein, we report that knockdown of SECp43 in NIH3T3 or TCMK-1 cells using RNA interference technology resulted in a reduction in the level of methylation at the 2'-hydroxylribosyl moiety in the wobble position (Um34) of Sec tRNA[Ser][Sec], and consequently reduced glutathione peroxidase 1 expression. Double knockdown of SECp43 and SLA resulted in decreased selenoprotein expression. SECp43 formed a complex with Sec tRNA[Ser][Sec] and SLA, and the targeted removal of one of these proteins affected the binding of the other to Sec tRNA[Ser][Sec]. SECp43 was located primarily in the nucleus, whereas SLA was found in the cytoplasm. Co-transfection of both proteins resulted in the nuclear translocation of SLA suggesting that SECp43 may also promote shuttling of SLA and Sec tRNA[Ser][Sec] between different cellular compartments. Taken together, these data establish the role of SECp43 and SLA in selenoprotein biosynthesis through interaction with tRNA[Ser][Sec] in a multiprotein complex. The data also reveal a role of SECp43 in regulation of selenoprotein expression by affecting the synthesis of Um34 on tRNA[Ser][Sec] and the intracellular location of SLA.

Several factors required for the specific incorporation of selenocysteine (Sec) as the 21st amino acid in the genetic code have been identified, and their roles have been assessed in mammalian cells and tissues (see Refs. 1 and 2 for reviews). For example, the tRNA that specifically incorporates Sec into protein in response to Sec UGA codons has been characterized wherein the amino acid is biosynthesized on the tRNA following its aminoacylation with serine by seryl-tRNA synthetase (2). Thus, Sec tRNA has been designated Sec tRNA[Ser][Sec]. There are two species of this tRNA in mammalian cells that differ by a single methyl group on the ribosyl moiety at position 34 (designated Um34; Ref. 3). The form that does not contain Um34 is 5-methoxycarbonylmethyluridine (mcm5U) and that containing Um34 is 5-methoxycarbonylmethyl-2'-O-methyluridine (mcm5Um). The two species appear to have different roles in protein synthesis, wherein mcm5Um is associated with the synthesis of stress-related selenoproteins (e.g. glutathione peroxidase 1 [GPx1]), and mcm5U is associated with the synthesis of housekeeping selenoproteins (e.g. thioredoxin reductases) (4, 5).

A specialized stem-loop structure in the 3' untranslated region of mammalian selenoprotein genes, designated the SEC insertion sequence (SECIS) element, was identified that accounted for UGA codon specificity in dictating Sec incorporation into protein (6). The SECIS elements that have been identified in the 24 known selenoproteins in rodents and 25 known selenoproteins in humans (7) fall into two classes that differ in the occurrence of a ministem that is adjacent to the apical loop of the structure (8). A SECIS-binding protein, designated SBP2, was purified from various mammalian sources including liver, testes, and hepatoma cells (9) and shown to be required along with the SECIS element in selenoprotein mRNA for Sec insertion into protein (10). Recently, a ribosomal protein, L30, was found to bind SECIS elements and to have a role in mediating Sec incorporation at the ribosomal level (11). A specific elongation factor for Sec-tRNA[Ser][Sec] has also been characterized (12, 13), and it recognizes only the selenocysteinyll-tRNA[Ser][Sec] form of the tRNA and not, for example, the seryl-tRNA[Ser][Sec] form (13). Additional factors that have a role in the biosynthesis of Sec and its insertion into protein in mammals are selenium-phosphate synthetases 1 (SPS1; Ref. 14) and 2 (SPS2) (15). These enzymes apparently are responsible for generating an active form of selenium for its utilization in Sec synthesis and/or possibly other selenium-requiring reactions. Interestingly, SPS2 is a selenoprotein and thus has been implicated in the autoregulation of selenoprotein synthesis (15).

There are two other factors that also have been shown to be associated with Sec tRNA[Ser][Sec]; SECp43 (16) and the soluble liver antigen, SLA (17). Protein overlay analysis provided evidence for the interaction of SECp43 with a 48-kDa protein in HeLa cytoplasmic extracts (16), whereas SLA was detected in patients with an autoimmune chronic hepatitis as an autoantibody that precipitated Sec tRNA[Ser][Sec] from human cell extracts and recognized a 48-kDa protein (17). However, the identity of the 48-kDa protein, the requirements of the SECp43 complex formation, and the roles of either SECp43 or SLA were not determined. Herein, we investigated the role of SECp43 and SLA using RNAi knockdown technology (18–21). The targeted knockdown of SECp43
resulted in the reduced formation of Um34 on Sec tRNA[Sec]Sec and affected selenoprotein expression in a similar manner as mice lacking or containing reduced levels of mcm5Um (4, 5, 22). These observations suggest that SECP43 has a role in Um34 synthesis. To target the knockdown of SLA, we generated a construct that contained five knockdown target sites in SLA mRNA, which resulted in dramatically reduced levels of this mRNA in transfected cells. Interestingly, transfection of cells with a construct encoding both SECP43 and SLA knockdown sequences had a much more pronounced effect on selenoprotein biosynthesis than either individual knockdown construct suggesting that, although both components likely have separate roles in selenoprotein synthesis, they also act in concert. In addition, we found that SLA forms a complex with SECP43 and Sec tRNA[Sec]Sec and found that SECP43 was located primarily in the nucleus, whereas SLA was in the cytoplasm. However, co-transfection of both protein genes resulted in the nuclear translocation of the SLA gene product suggesting that the roles of these two components are interdependent.

EXPERIMENTAL PROCEDURES

Materials—Selenium (specific activity 1000 Ci/mmol) was purchased from the Research Reactor Facility, University of Missouri, Columbia, MO. [α-32P]dCTP (specific activity ~6000 Ci/mmol) was from NEN Corporation, and [3H]serine (specific activity 29 Ci/mmol) and Hybond Nylon N+ membranes were from Amersham. NuPage 10% polyacrylamide gels, polyvinylidene difluoride membranes, Superscript II reverse transcriptase, cell culture fetal bovine serum, Dulbecco’s modified Eagle’s medium, α-minimum essential medium, Lipo-fectamine 2000, TIRZol reagent, and Hygromycin B were purchased from Invitrogen. DNA polymerase I large Klenow fragment was obtained from New England BioLabs, pSilencer 2.0 U6 Hygro vector was from Ambion, the pTriEx-4 Hygro vector was from Novagen, and SuperSignal West Dura extended duration substrate was from Pierce. Anti-His-tag antibodies were purchased from Qiagen, horseradish per-oxidase-conjugated secondary antibodies were from Sigma, and SLA antibodies, generated against the peptide, TFRGFMSHTNNYP (amino acids 358–371 of human SLA), were prepared by Spring Valley Laboratories, Inc. (Woodbine, MD). pEGFP-N1 and pEGFP-C3 vectors, (amino acids 358–371 of human SLA), were prepared by Spring Valley Laboratories, Inc. (Woodbine, MD). Antibodies, generated against the peptide, TFRGFMSHTNNYP (amino acids 358–371 of human SLA), were prepared by Spring Valley Laboratories, Inc. (Woodbine, MD).

Generation of SECP43 Expression and SECP43 and SLA siRNA Constructs—The SECP43 clone and antibodies to SECP43 were obtained as given (16). The SECP43 clone was amplified using PCR and cloned into the pTriEx-4 Hygro vector for SECP43 expression. The sequence was confirmed by DNA sequencing. The pU6 vector used for expressing siRNA constructs was constructed using the pSilencer 2.1-U6 Hygro vector as the backbone. Changes were inserted into the vector as follows: 1) GC (positions 468–469) were changed to A making the U6 promoter more homologous to the corresponding wild type gene, 2) the EcoRI site was deleted at position 4110, and 3) Xhol and MfEl sites were added at positions 384 and 393, respectively. The latter two changes made it possible to insert multiple siRNA target sequences into the vector. The modified vector was designated as pU6-m4 Hygro.

For knocking down SECP43 gene expression, five separate 19-nt sequences, 5′-TTATCGCGAACGCGCTCAG-3′, 5′-GCCGAGAAGTGTTTGCAATA-3′, 5′-TTGTTGAAATTTACAGATAG-3′, 5′-GCAGTACCAGAAGACTACTAT-3′, and 5′-CCATGCGACATATAGAAGA-3′, were selected from within mouse SECP43 cDNA as being unique to this gene using the online service “siDESIGN” of Dharmacon Research, Inc. Oligonucleotides containing 19 nt of sense and 19 nt of complementary (antisense) sequences with an intervening AGAGAATCTT loop were synthesized and inserted into the pU6-m4 Hygro vector according to the manufacturer’s instructions. The sequences of all five of SECP43 siRNA constructs were verified by sequencing. The five constructs and the negative control plasmids were separately transfected into NIH3T3 and TCMK-1 cells. After stabilizing the transfected cells with 0.8 mg/ml hygromycin, several colonies were selected from plates, and the SECP43 mRNA levels were determined by northern hybridization as described above. Based on mRNA levels, the best siRNA target sequence was identified as 5′-GCAGTACCAGAAGACTACTAT-3′, and its siRNA construct was used in subsequent experiments.

For knocking down mouse SLA (designated MSLA) gene expression, five separate 19–24-nt sequences, 1) 5′-GCTTGCACTATCGGAGT- AGCAACAA-3′, 2) 5′-GAATATCCCGGATGTCCAAA-3′, 3) 5′-GCTACATCCCTTCTAACTGT-3′, 4) 5′-GTCAACACGGCT- TATGGATTA-3′, and 5) 5′-GAAACAGACTAGAGCAAGTGTG-3′, were selected from within MSLA cDNA as being unique to this gene using the online service siDESIGN of Dharmacon Research, Inc. Oligonucleotides containing between 19 and 24 nt of sense and 19 to 24 nt of complementary (antisense) sequences with an intervening AGAGAATCTT loop were synthesized and inserted separately within the BamHI and HindIII cloning sites of the pU6-m4 Hygro vector. The sequences of all five of MSLA siRNA constructs were determined for confirmation. For combining the five siRNA transcription units, two of the constructs (encoding the second and fourth siRNA sequences shown above) were digested with EcoRI and Xhol to release the U6-siRNA units. Two additional constructs (encoding the first and third siRNA sequences shown above) were digested with MfEl and Xhol. The released second and fourth U6-siRNA unit fragments were purified and inserted separately into the digested first and third siRNA vectors. Then the first and the second U6-siRNA units were combined in tandem into one vector, whereas the third and the fourth U6-siRNA units were combined in tandem in another vector. Repeating the same procedure, all of the five U6-siRNA units were inserted into the same vector. The combined MSLA construct and the negative control plasmids were transfected into NIH3T3 and TCMK-1 cells. After stabilizing the transfected cells with 0.8 mg/ml hygromycin, MSLA mRNA levels were determined by northern blot hybridization as described below.

To generate a double knockdown vector encoding the siRNA targeting site for SECP43 mRNA and the five targeting sites for MSLA, the MSLA siRNA construct was digested with EcoRI and Xhol to release the fivelMSLAU6-siRNA units as a single fragment. The multiple MSLA-U6-siRNA fragment was then inserted into the SECP43 siRNA construct, which was initially digested with MfEl and Xhol.

Labeling of Selenoproteins—Cultured cells were washed three times in phosphate-buffered saline to remove exogenous selenium, suspended in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum, and
Role of SECp43 and SLA in Selenoprotein Synthesis

μCi/ml of 75Se added to the medium, and grown an additional 24 h before harvesting as described (4, 22). Cells were again washed in phosphate-buffered saline, suspended in 1 × SDS loading buffer, and electrophoresed on NuPage 10% polyacrylamide gels along with standard molecular weight markers to assess labeled selenoprotein sizes. The developed gels were stained with Coomassie Blue, dried, and exposed to Phosphor screens. The screens were then scanned using a Storm Image (PhosphorImager) system (4, 22). Band densities of GPx1 were quantified using ImageQuant Version 5.3 (Molecular Dynamics).

Northern Blot Analyses—Total RNA was isolated from various transfected cells using TRIzol reagent. Equal amounts (15 μg) from the different cells were loaded onto the gels, and the developed gels were transferred onto a nylon membrane. The membrane was hybridized with 32P-labeled probe and analyzed with a PhosphorImager for northern blot analysis as given (4, 22). The GPx1 probe was prepared and used as described (4, 22). The SECp43, MSLA, and glyceroldehyde-3-phosphate dehydrogenase probes were generated by either PCR or reverse transcription-PCR using Superscript II reverse transcriptase and Universal Reference RNA (4, 22). The sizes of all reverse transcription-PCR-generated probes were in the 500–1200-bp range. To detect an array of mRNAs on the same membrane, membranes, after an initial probing for SECp43 mRNA, were stripped in boiling buffer (0.1 M NaOH), hybridized with a second probe, analyzed, stripped, hybridized with another probe, and analyzed, etc., using successively labeled MSLA, GPx1, and glyceroldehyde-3-phosphate dehydrogenase cDNA probes. Hybridized membranes were exposed to Phosphor screens, and the screens were then scanned using a PhosphorImager System (Molecular Dynamics). The density of GPx1 northern blotting bands were quantified using ImageQuant Version 5.2 (Molecular Dynamics).

Immunoprecipitation, Western Blot, and Sec tRNA[Sec/Sec] Northern Blot Analyses—CHO or NIH3T3 cells (1 × 10^7) were harvested and suspended in 1 ml of lysis buffer (1 × TBS with 0.2% Triton X-100). Either 50 μl of anti-His-agarose or 5 μl of preimmune sera, anti-SLA sera, or anti-SECp43 antibody along with 50 μl of protein A/G-agarose were added to 500 μg of lysis proteins in 1 ml of lysis buffer. After binding at 4°C overnight, the agarose beads were washed three times with 1 ml of 1 × TBS with 0.1% Tween 20 and suspended in 30 μl of 1 × protein loading buffer (for Western blotting) or 1 × TBE/urea loading buffer (for northern blotting). 10 μl were loaded onto gels for Western blotting or for Sec tRNA[Sec/Sec] northern hybridization.

Proteins obtained by immunoprecipitation (see above) or from 50 μg of proteins from SECp43 siRNA, MSLA siRNA, or SECp43/MSLA siRNA-transfected cell lysate and control cell lysate were electrophoresed on NuPage 10% polyacrylamide gels and transferred to polyvinyldene difluoride membranes. Membranes containing proteins obtained by immunoprecipitation were then incubated with either mouse anti-His (1:2000 dilution), or rabbit-anti-human-SLA (1:250), whereas those containing cell lysates were incubated with rabbit-anti-mouse GPx1 (1:1000). Horseradish peroxidase-conjugated secondary antibodies (1:30000) were then applied, and the membranes were washed with 0.1% TBS-T, incubated in SuperSignal West Dura Extended Duration Substrate, and exposed to x-ray film as given (4, 22). Sec tRNA-[Sec/Sec] obtained by immunoprecipitation (see above) was electrophoresed on 15% TBE/urea polyacrylamide gels and transferred to Hybond nylon membranes, and the membranes were hybridized with 32P-labeled Sec tRNA-[Sec/Sec] probe and analyzed with a PhosphorImager as above.

Isolation, Aminoacylation, and Chromatography of tRNA—SECp43 siRNA-transfected and control-transfected NIH3T3 cells were grown in 75-cm² plates either with 300 nM SeO_3²⁻ or without selenium. After reaching 80–90% confluence, the cells were collected, and total tRNA was isolated from ~1 g of cells as described (23). Transfer RNA was aminoacylated with [3H]serine in the presence of 19 unlabeled amino acids and rabbit reticulocyte aminocyl-tRNA synthetases (24), and the resulting aminocyl-tRNAs were fractionated on a RPC-5 column (25) as described (4, 22, 26).

RESULTS

Development of Multi-siRNA Constructs for Efficient Knockdown of SECp43 and MSLA mRNA Expression—Because SECp43 (16) and MSLA (17) were previously implicated in binding Sec tRNA[Sec/Sec], we explored the possibility of whether these two proteins function in the same pathway, or possibly in concert, by knocking down their gene expression using RNAi technology. Constructs of the five 19-nt sequences selected for targeting knockdown of mouse SECp43 (see “Experimental Procedures”) were examined for their ability to reduce the mRNA level of this protein in NIH3T3 cells. The construct corresponding to nucleotides 594–612 within the coding sequence was the most effective of those examined and was sufficient for targeting the removal of SECp43 mRNA (comparative data not shown). This siRNA construct, which is designated SECp43 siRNA construct, was used in all subsequent experiments.

When five distinct MSLA siRNA targets were assayed individually for their knockdown potential, they were unsuccessful in reducing mRNA levels more than 50–60% (data not shown). Therefore, we generated a construct that encoded all five of the RNAi sequences unique to the corresponding cDNA as described under “Experimental Procedures.”

Finally, we devised a strategy to knockdown both proteins in the same cell line. The SECp43 siRNA target sequence was cloned into the multi-siRNA vector-construct developed in targeting MSLA knockdown such that the new construct contained the five MSLA targeting sequences and the SECp43 targeting sequence. This construct was designated SECp43/MSLA siRNA construct.

SECp43 and MSLA siRNAs Target Their Respective mRNAs for Removal—Northern blot analysis was used to document the effect of the SECp43 and MSLA siRNA on inhibiting the expression of the corresponding target mRNAs following transfection of NIH3T3 and TCMK-1 cells with the appropriate construct. TCMK-1 cells were transfected with either the SECp43 siRNA construct or the MSLA siRNA construct (Fig. 1A), and NIH3T3 cells were transfected with...
either of these siRNA constructs or the SECp43/MSLA siRNA construct (Fig. 1B). Because selenoproteins and Sec tRNA[Sec]Sec are responsive to selenium status (2, 4) and because the two protein factors were implicated in selenoprotein metabolism (16, 17), the effects of the siRNA constructs on the targeted mRNAs were examined in cells grown in the presence or absence of supplemental selenium. SECp43 siRNA effectively knocked down its mRNA in both NIH3T3 and TCMK-1 cells when the cells were grown either in the absence (compare lanes 1 and 5 in Fig. 1A with lanes 1 and 7 in Fig. 1B, respectively) or the presence of supplemental selenium (compare lanes 2 and 6 in Fig. 1A with lanes 2 and 8 in Fig. 1B, respectively). MSLA RNAi also inhibited the expression of its mRNA in NIH3T3 and TCMK-1 cells transfected with the multi-siRNA construct grown in the absence (compare lanes 3 and 5 in Fig. 1A with lanes 3 and 7 in Fig. 1B, respectively) or presence of supplemental selenium (compare lanes 4 and 6 in Fig. 1A with lanes 4 and 8 in Fig. 1B, respectively). As expected, the SECp43/MSLA siRNA was also effective in knocking down both targeted mRNAs in NIH3T3 cells, independent of selenium status (compare lanes 5 and 7 with 6 and 8 in Fig. 1B). SECp43 and MSLA siRNA Effects on Selenoprotein Expression, 75Se-labeling—A simple means of monitoring selenoprotein synthesis is to label the respective treated and untreated cells with 75Se and resolve the labeled proteins by gel electrophoresis. To examine the effect of the siRNA knockdown constructs on selenoprotein expression, NIH3T3 cells were stably transfected with the SECp43 siRNA, MSLA siRNA, and SECp43/MSLA siRNA constructs or the control vector, and the cells were grown in the presence and absence of supplemental selenium and labeled with 75Se (Fig. 2). The upper panel in Fig. 2A shows the labeling of selenoproteins, whereas the lower panel shows the Coomassie Blue-stained gel from the transfected cells following gel electrophoresis. Clearly, the double knockdown SECp43/MSLA siRNA construct had a greater effect on selenoprotein synthesis than either of the individual siRNA knockdown constructs (compare lanes 5 and 6 (double knockdown construct) with lanes 1–4 (SECp43 and MSLA siRNA constructs, respectively) and lanes 7 and 8 (control construct)). MSLA siRNA did not appear to affect selenoprotein synthesis (compare lanes 3 and 4 with lanes 7 and 8), but SECp43 siRNA appeared to selectively reduce the amount of GPx1 when the cells were grown in the presence of supplemental selenium (compare lanes 2 and 8). The relative intensities of the GPx1 bands were quantified to examine more closely the effect of SECp43 knockdown on GPx1 expression (Fig. 2B). The level of GPx1 in cells transfected with the SECp43 siRNA construct was significantly reduced in cells grown in the presence of selenium (p value was 0.01, see legend to Fig. 2).

SECp43 siRNA Effects on GPx1 Expression, Northern and Western Blot Analyses—To further assess the effect of SECp43 siRNA on GPx1 expression, NIH3T3 cells transfected with either the SECp43 siRNA construct or control vector were examined for GPx1 mRNA expression by northern blot analysis (Fig. 3A) and for GPx1 expression by Western blot analysis (Fig. 3C). In addition, we examined the effects of MSLA and SECp43/MSLA siRNA on the expression of GPx1 mRNA and the protein itself. SECp43 siRNA reduced GPx1 mRNA expression in both TCMK-1 and NIH3T3 cells when the cells were grown in the presence or absence of selenium (Fig. 3A, compare lanes 2 and 8 with lanes 1 and 7, respectively), whereas MSLA siRNA did not reduce GPx1 mRNA expression (see lanes 3, 4, 7, and 8). The double knockdown construct, SECp43/MSLA siRNA, had a dramatic effect on GPx1 mRNA expression in NIH3T3 cells, especially in the presence of selenium (Fig. 3A, compare lanes 4 and 8). To better illustrate the effects of the SECp43 siRNA and the double knockdown constructs on GPx1 mRNA and GPx1 expressions, the relative amounts of these components in cells transfected with the different constructs were quantified (Fig. 3B). The most pronounced effects on GPx1 mRNA and protein reductions...
occurred in the presence of the double knockdown construct. In addition, the SECp43 siRNA construct caused a significant reduction in GPx1 mRNA that was more apparent in the TCMK-1 than NIH3T3 cells.

As expected, Western blot analysis of GPx1 in extracts of the various siRNA knockdown cells (Fig. 3C) yielded similar results as that observed for GPx1 mRNA. It should also be noted that GPx1 mRNA is thought to be subject to nonsense-mediated decay in cells and tissues that are deficient in selenium, which also lack or have lower levels of Sec tRNA\[^{[}{\text{Ser}}\text{Sec}\] (see Refs. 4 and 5 and references therein). Therefore, the reduced amounts of GPx1 mRNA observed by northern analysis and GPx1 observed by Western analysis in cells grown in the absence of selenium (Fig. 3) were anticipated.

SECp43 siRNA Effects on Um34 Synthesis—Because NIH3T3 cells had reduced levels of GPx1 in SECp43 siRNA-transfected cells than control cells (see above), and this effect is also a characteristic of mammalian cells and tissues containing lower amounts of the mcm\[^{5}\]Um isoform (4, 5), we examined the Sec tRNA\[^{[}{\text{Ser}}\text{Sec}\] population in NIH3T3 cells transfected with SECp43 siRNA or the control vector. Total tRNA was isolated from both transfected cell lines that were grown in the presence and absence of supplemental selenium. TCMK-1 cells were not transfected with the SECp43 siRNA construct. NIH3T3 cells were transfected with the SECp43 siRNA construct (lanes 1 and 2), the MSLA siRNA construct (lanes 3 and 4), or the control vector (lanes 5 and 6), or the control vector (lanes 7 and 8) and grown in the presence (lanes 2, 4, 6, and 8) or absence (lanes 1, 3, 5, and 7) of supplemental selenium. The SECp43/MSLA siRNA construct (lanes 5 and 6), or the control vector (lanes 7 and 8) and grown in the presence (lanes 2, 4, 6, and 8) or absence (lanes 1, 3, 5, and 7) of supplemental selenium (lanes 1, 3, 5, and 7), and extracts were prepared for northern (A, lower two long rectangular boxes) or Western blotting (C) as described under “Experimental Procedures.” Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used in northern blots in A, and tubulin was used in B as the controls to monitor sample loading. The densities of GPx1 bands from northern blotting of TCMK-1 cell RNA are shown in the upper panel of B, and the average densities of GPx1 bands from three separate northern blottings of NIH3T3 cell RNA are shown in the lower panel of B. The asterisk (*) indicates a p value equal to or lower than 0.01 in each case with the exception of that in lane 5, which is 0.03.
Role of SECp43 and SLA in Selenoprotein Synthesis

that grown in the presence of added selenium (compare Fig. 4, B1 and B2 and see Refs. 2, 4, and 22). The level of mcmtU was even more reduced in cells containing the SECp43 siRNA construct and grown in the absence of supplemental selenium (compare A2 to A1 and to B2) further demonstrating the effect of SECp43 on Um34 synthesis.

Cellular Interrelationship of SECp43 and SLA, Co-precipitation—To examine the cellular interrelationship of SECp43 and SLA, CHO cells were transfected with the SECp43 expression construct encoding a His-tag at the C terminus of the protein, and the resulting cell extracts were treated with SLA or His-tag antibodies (Fig. 5A). Extracts from CHO cells transfected with the SECp43 expression construct that were immunoprecipitated with anti-His-tag (to bring down SECp43), yielded a strong signal on Western blots using antibodies against SLA (see Fig. 5A, lane 2). Extracts from CHO cells transfected with the control protein expression construct encoding a His-tag at its C terminus did not respond on Western blots (Fig. 5A, lane 1). Immunoprecipitation with anti-SLA antibodies further confirmed the presence of the in vivo SECp43-MSLA complex (Fig. 5A, lane 4). Interestingly, similar results were obtained on northern blots by assaying for the attachment of Sec tRNA\(^{\text{Ser}}\)\(^{\text{Sec}}\) to the SECp43-MSLA complex in NIH3T3 cell extracts transfected with either the SECp43 siRNA or MSLA siRNA construct or the control vector (Fig. 5B). Immunoprecipitation of SECp43 from extracts of NIH3T3 cells transfected with either the SECp43 or MSLA siRNA constructs pulled down very little Sec tRNA\(^{\text{Ser}}\)\(^{\text{Sec}}\) compared with that observed with the control (compare lanes 1 and 2 with lane 3 in the left panel of Fig. 5B). Immunoprecipitation of MSLA from extracts of NIH3T3 cells transfected with either the SECp43 or MSLA siRNA constructs manifested reduced pull down of Sec tRNA\(^{\text{Ser}}\)\(^{\text{Sec}}\) compared with that observed with the control (compare lanes 4 and 5 with lane 6 in right panel of Fig. 5B). However, less Sec tRNA\(^{\text{Ser}}\)\(^{\text{Sec}}\) pull down occurred with the MSLA knockdown cells compared with SECp43 knockdown cells (Fig. 5B, compare lanes 4 and 6 with lanes 5 and 6, respectively). Clearly, the targeted removal of either one of these factors affected the binding of Sec tRNA\(^{\text{Ser}}\)\(^{\text{Sec}}\) to the complex, although tRNA\(^{\text{Ser}}\)\(^{\text{Sec}}\) binding appears to be far more stringently dependent on SLA.

Cellular Interrelationship of SECp43 and SLA, Subcellular Localization—To investigate the cellular distribution of SECp43, both N- and C-terminal GFP fusion constructs were generated. SECp43-GFP was predominantly present in the nucleus of NIH3T3 cells 48 h after transfection (Fig. 6). Because N- or C-terminal GFP fusion might affect localization, a GFP-SECp43 construct was also tested that confirmed the subcellular localization of SECp43 as being in the nucleus (data not shown).

We also investigated the cellular location of SLA and used the corresponding HSLA as the model protein. For this purpose, HSLA-GFP fusion constructs were generated. Transfection experiments revealed the cytosolic accumulation of SLA-GFP, whereas GFP expression alone resulted in the homogenous nuclear and cytosolic distribution (Fig. 6).
The same result was obtained using a GFP/H18528HSLA fusion construct (data not shown).

Because the co-immunoprecipitation studies with SECp43 and MSLA revealed that they formed a complex, we examined the co-transfection of the SECp43-BFP fusion and the HSLA-GFP fusion proteins to assess their subcellular co-localization. As shown in Fig. 7, after co-transfecting NIH3T3 cells with the corresponding fusion protein constructs, HSLA appeared in the nucleus. As SLA does not have an obvious nuclear localization signal or phosphorylation sites that might govern its transfer to the nucleus, this finding suggested that SECp43 may act as a chaperone for SLA directing its subcellular localization. These observations are further considered below in the Discussion.

DISCUSSION

When both SECp43 (16) and SLA (17) were discovered, they were characterized as RNA-binding proteins that formed a complex with Sec tRNA^Ser^Sec. SECp43 was also found to have two RNA binding sites and to interact with a 48-kDa protein. The 48-kDa component, however, was not identified (16). In a separate study, a 48-kDa protein was precipitated in a complex with an autoantibody in human cell extracts that was found in patients with autoimmune chronic hepatitis (17). It is apparent from the present study that the SECp43-associated protein was most likely SLA as MSLA is a 48-kDa protein, and it was found herein to exist in a complex with SECp43 in NIH3T3 cells. Interestingly, Sec tRNA^Ser^Sec was also shown to occur in this complex providing strong evidence that the multifarious complex includes all three components. More importantly, our study provided the first evidence for the role of SECp43 and SLA in regulation of selenoprotein expression and firmly linked these proteins to the pathway of selenoprotein biosynthesis.

Different approaches were employed to elucidate the function of the two protein components in the complex. Initially, we used RNAi technology to knockdown SECp43 mRNA and devised a siRNA vector encoding five separate targeting sites in MSLA mRNA to effectively reduce its level. Under our cell culture conditions, knockdown of SECp43 mRNA had no effect on MSLA mRNA expression, and the knockdown of MSLA mRNA had no effect on SECp43 expression in either NIH3T3 or TCMK-1 cells. Although the virtual removal of MSLA mRNA had no detectable effect on selenoprotein expression, knockdown of SECp43 mRNA affected GPx1 mRNA and protein expression levels. Because these observations regarding GPx1 mimic those observed in mammalian cells and tissues containing reduced levels of the mcm^34Um isoform (4, 5), we examined the effect of SECp43 knockdown on the distribution of mcm^34U and mcm^34Um in NIH3T3 cells. The level of mcm^34Um relative to mcm^34U was reduced in cells transfected with the SECp43 siRNA construct compared with cells transfected with the control vector. These studies provide evidence that SECp43 is involved in Um34 methylation. Whether this is a transient effect on Um34 synthesis or a direct effect that is responsible for Um34 formation must await further study. However, additional studies on SECp43 described herein clearly show that it has other roles than an involvement in methylation of Sec tRNA^Ser^Sec at position 34 (see below).

Interestingly, simultaneous knockdown of SECp43 and MSLA mRNAs reduced the overall expression of selenoproteins suggesting that the two protein factors act in concert. The two factors do indeed...
form a complex with Sec tRNA\[^{[\text{Ser}]\text{Sec}}\], and the targeted reduction of either one of the factors substantially reduced the overall binding of tRNA to the complex. The cellular location of SECp43 suggests additional roles of this factor. For example, SECp43 occurs primarily in the nucleus; however, when the construct encoding it was co-transfected with that of SLA, it resulted in the nuclear translocation of SLA from the cytoplasm to the nucleus. This observation suggests that SECp43 may function as a chaperone for SLA and Sec-tRNA\[^{[\text{Ser}]\text{Sec}}\]. Although the present study provides new insights into the roles of SECp43 and SLA, it firmly plants them as important factors in the biosynthesis of Sec and its incorporation into protein, the full characterization of these two factors must await further studies.

Sec insertion in bacteria has been thoroughly characterized and all involved factors identified (28). The bacterial pathway includes an elongation factor (SelB), Sec synthase (SelA), Sec tRNA (SelC), and selenophosphate synthetase (SelD). Conservation of some of these components suggested that a similar mechanism operates in eukaryotes, including mammals. However, recent studies clearly changed this paradigm as several additional factors have been identified (1, 2). The present study has demonstrated the significance of two additional factors, SECp43 and SLA, in this pathway that are not present in bacteria. These observations highlight an increasing complexity of the Sec insertion machinery during evolution.

In conclusion, this study provides the first evidence for the direct role of SECp43 and SLA in selenoprotein biosynthesis. These factors interact and occur in a complex with tRNA\[^{[\text{Ser}]\text{Sec}}\]. In addition, our study linked SECp43 to the regulation of selenoprotein synthesis through its involvement in methylation of tRNA\[^{[\text{Ser}]\text{Sec}}\] and the intracellular distribution of SLA.

REFERENCES
1. Driscoll, D. M., and Copeland, P. R. (2003) Annu. Rev. Biochem. 14, 11–16
2. Hatfield, D. L., and Gladyshev, V. N. (2002) Mol. Cell. Biol. 22, 3565–3576
3. Diamond, A. M., Choi, I. S., Crain, P. F., Hashizume, T., Pomerantz, S. C., Cruz, R., Steer, C. I., Hill, K. E., Burk, R. F., McCloskey, J. A., and. (1993) J. Biol. Chem. 268, 14215–14223
4. Carlson, B. A., Xu, X. M., Gladyshev, V. N., and Hatfield, D. L. (2005) J. Biol. Chem. 280, 5542–5548
5. Carlson, B. A., Xu, X.-M., Gladyshev, V. N., and Hatfield, D. L. (2005) in Topics in Current Genetics (Grosjean, H., ed) pp. 431–438, Springer-Verlag, Heidelberg, Germany
6. Low, S. C., and Berry, M. J. (1996) Trends Biochem. Sci. 21, 203–208
7. Kryukov, G. V., Castellano, S., Novoselov, S. V., Lobanov, A. V., Zehtab, O., Guigo, R., and Gladyshev, V. N. (2003) Science 300, 1439–1443
8. Grundner-Culemann, E., Martin, G. W., Ill, Harney, J. W., and Berry, M. J. (1999) RNA (N. Y.) 5, 625–635
9. Copeland, P. R., and Driscoll, D. M. (1999) J. Biol. Chem. 274, 25447–25454
10. Copeland, P. R., Fletcher, J. E., Carlson, B. A., Hatfield, D. L., and Driscoll, D. M. (2000) EMBO J. 19, 306–314
11. Chavatte, L., Brown, B. A., and Driscoll, D. M. (2005) Nat. Struct. Mol. Biol. 12, 408–416
12. Fagelgaitier, D., Hubert, N., Yamada, K., Mizutani, T., Carbon, P., and Krol, A. (2000) EMBO J. 19, 4796–4805
13. Tojebajeva, R. M., Copeland, P. R., Xu, X. M., Carlson, B. A., Harney, J. W., Driscoll, D. M., Hatfield, D. L., and Berry, M. J. (2000) EMBO Rep. 1, 158–163
14. Low, S. C., Harney, J. W., and Berry, M. J. (1995) J. Biol. Chem. 270, 21659–21664
15. Guimaraes, M. I., Peterson, D., Vicari, A., Coaks, B. G., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Ferrick, D. A., Kastelein, R. A., Bazan, J. F., and Zlotnik, A. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 15086–15091
16. Ding, F., and Grabowski, P. J. (1999) RNA (N. Y.) 5, 1561–1569
17. Gelpi, C., Sontheimer, E. J., and Rodriguez-Sanchez, J. L. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 9739–9743
18. Fire, A., Xu, S., Montgomery, M. K., Costas, S. A., Driver, S. E., and Mello, C. C. (1998) Nature 391, 806–811
19. Hannon, G. J. (2002) Nature 418, 244–251
20. Scherr, M., Morgan, M. A., and Eder, M. (2003) Curr. Med. Chem. 10, 245–256
21. Yu, Y. J., DeRuiter, S. L., and Turner, D. L. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 6047–6052
22. Moustafa, M. E., Carlson, B. A., El Saadani, M. A., Kryukov, G. V., Sun, Q. A., Harney, J. W., Hill, K. E., Combs, G. F., Feigenbaum, L., Mansur, D. B., Burk, R. F., Berry, M. J., Diamond, A. M., Lee, B. J., Gladyshev, V. N., and Hatfield, D. L. (2001) Mol. Cell. Biol. 21, 3840–3852
23. Hatfield, D., Lee, B. J., Hampton, L., and Diamond, A. M. (1991) Nucleic Acids Res. 19, 939–943
24. Hatfield, D., Matthews, C. R., and Rice, M. (1979) Biochim. Biophys. Acta 564, 414–423
25. Kelmers, A. D., and Heatherly, D. E. (1971) Anal. Biochem. 44, 486–495
26. Kumaraswamy, E., Carlson, B. A., Morgan, F., Miyoshi, K., Robinson, G. W., Su, D., Wang, S., Southon, E., Tesserolfo, L., Lee, B. J., Gladyshev, V. N., Hennighausen, L., and Hatfield, D. L. (2003) Mol. Cell. Biol. 23, 1477–1488
27. Costa, M., Rodriguez-Sanchez, J. L., Czaia, A. J., and Gelpi, C. (2000) Clin. Exp. Immunol. 121, 364–374
28. Böck, A. (2001) in Selenium: Its Molecular Biology and Role in Human Health (Hatfield, D. L., ed) pp. 7–22, Kluwer Academic Publishers, Norwell, MA

Role of SECp43 and SLA in Selenoprotein Synthesis