Projective Curvature Tensors of Second Type Almost Geodesic Mappings

Nenad O. Vesić

Abstract

We consider equitorsion second type almost geodesic mappings of a non-symmetric affine connection space in this article. Using different computational methods, we obtained some invariants of these mappings. Last generalized Thomas projective parameter and Weyl projective tensor as invariants of a second type almost geodesic mapping of a non-symmetric affine connection space are further generalized here.

1 Introduction

A lot of research papers and monographs are dedicated to developments of the theory of differential geometry [1,2,6,8–21] and its applications [3–5,7]. Einstein (see [3–5]) concluded the symmetric affine connection theory covers researches about a gravitation. The theory electromagnetism is covered by anti-symmetric parts of affine connections. The research about non-symmetric affine connected spaces is started by L. P. Eisenhart [6].

An \(N\)-dimensional manifold \(\mathcal{M}_N\) endowed with a non-symmetric affine connection \(\nabla\) (affine connection coefficients \(L^i_{jk}\) and \(L^i_{kj}\) are different) is said to be the non-symmetric affine connection space \(\mathcal{GA}_N\). Because of the previous mentioned non-symmetry of affine connection coefficients it exists symmetric and anti-symmetric part of these coefficients respectively defined as:

\[
\tilde{S}^i_{jk} = \frac{1}{2}(L^i_{jk} + L^i_{kj}) \quad \text{and} \quad \tilde{T}^i_{jk} = \frac{1}{2}(L^i_{jk} - L^i_{kj}).
\]
A symmetrization and an anti-symmetrization without division by indices \(i \) and \(j \) will be denoted as \((i \ldots j)\) and \([i \ldots j]\) respectively.

The magnitude \(\tilde{T}_{jk}^i \) is a torsion tensor of the space \(\mathcal{G}_A N \). An affine connection space \(A_N \) endowed with an affine connection \(S \) which coefficients coincide with the symmetric part \(\tilde{S}_{jk}^i \) of the affine connection coefficients \(L_{jk}^i \) of the space \(\mathcal{G}_A N \) is said to be the associated space of the space \(\mathcal{G}_A N \).

There are a lot of researchers interested for a development of the non-symmetric affine connection space theory. Some significant results in this subject are obtained into the papers \([10, 11, 14–19, 21]\).

Four kinds of covariant differentiation (see \([10]\)) with regard to an affine connection of a non-symmetric affine connection space \(\mathcal{G}_A N \) are defined as:

\[
\begin{align*}
 a_{j|k}^{i_1} &= a_{j,k}^i + L^i_{\alpha k} a^\alpha_j - L^\alpha_{jk} a^i_j, \\
 a_{j|k}^{i_2} &= a_{j,k}^i + L^i_{k\alpha} a^\alpha_j - L^\alpha_{jk} a^i_j, \\
 a_{j|k}^{i_3} &= a_{j,k}^i + L^i_{\alpha k} a^\alpha_j - L^\alpha_{kj} a^i_j, \\
 a_{j|k}^{i_4} &= a_{j,k}^i + L^i_{k\alpha} a^\alpha_j - L^\alpha_{kj} a^i_j,
\end{align*}
\]

(1.2)

for a partial derivative denoted by comma and an indexed magnitude \(a_j^i \).

All of these covariant derivatives become restricted to a covariant derivative

\[
a_{j;k}^i = a_{j,k}^i + \tilde{S}_{\alpha k}^i a^\alpha_j - \tilde{S}_{jk}^\alpha a^i_j,
\]

(1.4)

of the magnitude \(a_j^i \) with regard to an affine connection of the associated space \(A_N \) of the space \(\mathcal{G}_A N \).

For this reason, it exists only one curvature tensor

\[
R_{jm;n}^i = \tilde{S}_{jm;n}^i - \tilde{S}_{jn;m}^i,
\]

(1.5)

of the associated space \(A_N \).

1.1 Almost geodesic mappings of a space \(\mathcal{G}_A N \)

In an attempt to generalize the term of geodesics N. S. Sinyukov (see \([12]\)) defined an almost geodesic line of a symmetric affine connection space \(A_N \). Consequently, he defined a term of an almost geodesic mapping \(f \) between symmetric affine connection spaces \(A_N \) and \(\overline{A}_N \). Sinyukov noticed three types \(\pi_1, \pi_2, \pi_3 \) of almost geodesic mappings between symmetric affine connection spaces. His research has been directly developed by many authors in a lot of papers \([1, 2, 8, 9, 13, 20]\).
The Sinyukov’s generalization of geodesics is primarily developed for the case of a generalized affine connection space GA_N in [14–16]. In this space it exists four kinds of covariant differentiation but these covariant derivatives are reduced onto first two ones (1.2) for the case of any contra-variant tensor.

For this reason, there are two kinds of almost geodesic lines of the space GA_N [14–19, 21] defined as a curve $\ell = \ell(t)$ which tangential vector $\lambda^i = d\ell^i/dt \neq 0$ satisfies the following equations:

\begin{align}
\lambda^i_\theta(2) &= \bar{a}(t)\lambda^i + \bar{b}(t)\lambda^i_\theta(1), \quad \lambda^i_\theta(1) = \lambda^i_\theta \parallel^\alpha \lambda^\alpha, \quad \lambda^i_\theta(2) = \lambda^i_\theta(1) \parallel^\alpha \lambda^\alpha, \\
\theta &= 1, 2, \text{ for covariant differentiation of the } \theta\text{-th kind with regard to affine connection of the space } GA_N \text{ denoted by } \parallel_\theta.
\end{align}

Because of two kinds of almost geodesic lines of this space a mapping $f : GA_N \to GA_N$ is the almost geodesic mapping of a θ-th kind, $\theta = 1, 2$, if any geodesic line of the space GA_N it turns into an almost geodesic line of the θ-th kind of the space GA_N. For this reason, there are three types of almost geodesic mappings of the space GA_N and any of these three types have two kinds. A class of almost geodesic mappings of a τ-th type, $\tau = 1, 2, 3$, and of a θ-th kind $\theta = 1, 2$ of the space GA_N is denoted as $\pi_{\theta \tau}$.

Basic equations of a second type almost geodesic mapping $f : GA_N \to GA_N$ of a θ-th kind, $\theta = 1, 2$, are [15]:

\begin{align}
\bar{L}^i_{jk} &= L^i_{jk} + \psi_j \delta^i_k + \psi_k \delta^i_j + \sigma_j F^i_k + \sigma_k F^i_j + \xi^i_{jk}, \\
F^i_{\theta|k} + F^i_{\theta|j} + F^\alpha_{\theta} F^i_j \sigma_k + F^\alpha_{\theta} F^i_k \sigma_j + (-1)^{\theta} (\xi^i_{j\alpha} F^\alpha_k + \xi^i_{k\alpha} F^\alpha_j) \\
&= \mu_j F^i_k + \mu_k F^i_j + \nu_j \delta^i_k + \nu_k \delta^i_j,
\end{align}

for covariant vectors μ_j, ν_j, an affinor F^i_j and an anti-symmetric tensor ξ^i_{jk}.

A second type almost geodesic mapping $f : GA_N \to GA_N$ of a θ-th kind, $\theta = 1, 2$, satisfies the property of reciprocity (it is an element of the class $\pi_{\theta}(e)$) if it saves the affinor F^i_j and its inverse mapping is a second type almost geodesic mapping of the θ-th kind. An almost geodesic mapping f of the space GA_N satisfies the property of reciprocity (see [15]) if and only if the affinor F^i_j satisfies a relation

\begin{equation}
F^i_{\alpha} F^\alpha_j = \epsilon \delta^i_j, \quad \epsilon = 0, \pm 1.
\end{equation}
2 Invariants of second type almost geodesic mappings

The aim of this paper is to find some new invariants of almost geodesic mappings of a second type which satisfy the property of reciprocity. The results in this subject obtained until now are about the theories of special subclasses of the classes $\pi_\theta^2, \theta = 1, 2$.

Motivated by Sinyukov’s results, it is obtained (see [15]) magnitudes

\[
T_{1}^{i}j_k = \tilde{S}_{j_k}^i - \frac{1}{e - F^2} \left((F \tilde{S}_{\alpha k}^\alpha - F_k^\alpha \tilde{S}_{\alpha \beta}^\beta) F_j^i + (F \tilde{S}_{j \alpha}^\alpha - F_j^\alpha \tilde{S}_{\alpha \beta}^\beta) F_k^i \right),
\]

\[
\hat{T}_{2}^{i}j_k = T_{j_k}^i + eF_a^i \left(F_{(j|k)}^\alpha - \tilde{T}_{\beta(k)j}^\alpha \right) - \frac{e}{1 + N} F_{\alpha}^\beta \left((F_{\beta j}^\alpha - \tilde{T}_{\gamma(j)F_{\gamma}^\gamma}^\alpha) \delta_{k}^i + (F_{\beta j}^\alpha - \tilde{T}_{\gamma(k)F_{\gamma}^\gamma}^\alpha) \delta_{j}^i \right),
\]

for $F = F_a^\alpha, e - F^2 \neq 0$ and Thomas projective parameter $T_{1}^{i}j_k$ of the associated space A_N in the expression of the invariant $T_{1}^{i}j_k$, are invariants of a canonical second type almost geodesic mapping of the first kind of the space GA_N.

Moreover, Weyl projective tensor of the space GA_N which affine connection coefficients are $\hat{L}_{j_k}^i = L_{j_k}^i + eF_a^i F_{(j|k)}^\alpha - eT_{\beta(j)F_{k}^\gamma}^\alpha F_{\alpha}^i$ is an invariant of the canonical second type almost geodesic mapping f of the first kind. The aim of our following research is to find some other more general invariants of special second type almost geodesic mappings of the space GA_N.

Let a mapping $f : GA_N \to GA_N$ be an equitorsion second type almost geodesic mapping of a θ-th kind, $\theta = 1, 2$, which satisfies the property of reciprocity. The composition (1.9) involved into the basic equation (1.8) together with using of the fact the mapping f is an equitorsion one ($\xi_{j_k}^i = 0$) involved into the both of basic equations (1.7, 1.8) proves it is satisfied relations

\[
\hat{T}_{j_k}^i = L_{j_k}^i + \psi_j^i \delta_{k}^i + \psi_k^i \delta_{j}^i + \sigma_j F_{k}^i + \sigma_k F_{j}^i,
\]

\[
F_{j_k}^i + F_{k_j}^i = \mu_j F_{k}^i + \mu_k F_{j}^i + (\nu_j - e\sigma_j) \delta_{k}^i + (\nu_k - e\sigma_k) \delta_{j}^i.
\]

It is proved a following proposition is satisfied in this way.
Proposition 2.1 Let $f : \mathbb{G}A_N \rightarrow \overline{\mathbb{G}A_N}$ be an equitorsion second type almost geodesic mapping of a θ-th kind, $\theta = 1, 2$, which satisfies the property of reciprocity. The equations (2.12, 2.13, 1.9) are basic equations of this mapping.

Based on the fact the second type almost geodesic mapping f satisfies the property of reciprocity the corresponding magnitudes $\overline{\psi}_i, \sigma_i, \overline{F}_j^i$ which determine an inverse mapping f^{-1} of the mapping f are

$$\overline{\psi}_i = -\psi_i, \quad \sigma_i = -\sigma_i, \quad \overline{F}_j^i = F_j^i.$$

After contracting the basic equation (2.12) by indices i and k and using the fact it is satisfied a relation $\sigma_j = \frac{1}{2}(\sigma_j - \overline{\sigma}_j)$ we obtain it is satisfied an equation

$$\psi_j = \frac{1}{N + 1}(L^\alpha_{j\alpha} - L^\alpha_{j\alpha}) + \frac{1}{2(N + 1)} \left[(\sigma_j \overline{F} + \sigma_\alpha \overline{F}_j^\alpha) - (\sigma_j F + \sigma_\alpha F_j^\alpha) \right], \quad (2.14)$$

for $F = F_\alpha^\alpha$ as above.

Using the previous expression of the magnitude ψ_j we conclude the basic equation (2.12) has a form

$$\overline{L}^i_{jk} = L^i_{jk} + \omega^i_{jk} - \omega^i_{jk}, \quad (2.15)$$

for

$$\omega^i_{jk} = -\frac{1}{2}(\sigma_j F^i_k + \sigma_k F_j^i) + \frac{1}{N + 1} \left[(L^\alpha_{j\alpha} \delta^i_k + L^\alpha_{k\alpha} \delta^i_j) \right] + \frac{1}{2(N + 1)} \left[(\sigma_j F + \sigma_\alpha F_j^\alpha) \delta^i_k + (\sigma_k F + \sigma_\alpha F_k^\alpha) \delta^i_j \right], \quad (2.16)$$

and the magnitude $\overline{\psi}_j$ defined in the same manner as a function of the corresponding elements of the space $\mathbb{G}A_N$.

The equation (2.15) proves it is satisfied an equality

$$\overline{T}^i_{2jk} = \overline{T}^i_{2jk},$$

for

$$\overline{T}^i_{2jk} = L^i_{jk} - \omega^i_{jk} \quad \text{and} \quad \overline{T}^i_{2jk} = \overline{L}^i_{jk} - \overline{\omega}^i_{jk}. \quad (2.17)$$

It is proved a following lemma in this way.
Lemma 2.1 Let \(f : \mathbb{G}A_N \rightarrow \mathbb{GA}_N \) be an equitorsion almost geodesic mapping of a second type which satisfies the property of reciprocity. A magnitude \(T_{2jk}^i \) defined in the first of the expressions (2.17) is an invariant of the mapping \(f \).

The invariant \(T_{2jk}^i \) of a second type almost geodesic mapping \(f : \mathbb{G}A_N \rightarrow \mathbb{GA}_N \) which satisfies the property of reciprocity is said to be the \(\pi_2 \)-generalized Thomas projective parameter.

Let us generalize Weyl projective tensor of an equitorsion almost geodesic mapping \(f : \mathbb{G}A_N \rightarrow \mathbb{GA}_N \) of the first type which satisfies the property of reciprocity. This generalization will be realized just for first type almost geodesic mappings. A result for the case of second type almost geodesic mappings may be obtained in the same manner.

First of all, we can observe the magnitude \(\omega_{jk}^i \) defined into the equation (2.16) is symmetric by indices \(j \) and \(k \). For this reason, symmetric parts \(\tilde{S}_{jk}^i \) and \(\tilde{S}_{ij}^k \) of affine connection coefficients \(L_{jk}^i \) and \(\bar{L}_{jk}^i \) of the spaces \(\mathbb{G}A_N \) and \(\mathbb{GA}_N \) satisfy a relation

\[
\tilde{S}_{jk}^i = \tilde{S}_{ij}^k + \omega_{jk}^i - \omega_{kj}^i,
\]

for the above defined magnitudes \(\omega_{jk}^i \) and \(\omega_{kj}^i \).

Using the covariant derivative of the first kind (1.2) we obtain a curvature tensor \(R_{jmn}^i \) of the associated space \(\mathbb{A}_N \) has a form:

\[
R_{jmn}^i = \tilde{S}_{jm|n}^i - \tilde{S}_{jn|m}^i - \tilde{T}_{\alpha n}^i \tilde{S}_{jm}^\alpha - \tilde{T}_{jm}^\alpha \tilde{S}_{\alpha n}^i + \tilde{T}_{jn}^\alpha \tilde{S}_{\alpha m}^i + \tilde{T}_{am}^\alpha \tilde{S}_{\alpha j}^n + 2 \tilde{T}_{mn}^\alpha \tilde{S}_{j\alpha}^i.
\]

Motivated by this result we are going to find a rule of change of the curvature tensor \(R_{jmn}^i \) bellow. Let us involve following substitutions:

\[
U_{2jk}^i = \frac{1}{2} (T_{2jk}^i + T_{2kj}^i) \quad \text{and} \quad \bar{U}_{2jk}^i = \frac{1}{2} (\bar{T}_{2jk}^i + \bar{T}_{2kj}^i),
\]

for the above obtained invariant \(T_{2jk}^i = \bar{T}_{2jk}^i \) of the mapping \(f \).

From the equations (2.17) and (2.20) together with the above mentioned symmetry of the magnitude \(\omega_{jk}^i \) from the equation (2.16) by indices \(j \) and \(k \) we conclude it is satisfied equalities.
\(U^i_{jk} = \tilde{S}^i_{jk} - \omega^i_{jk} \) and \(\overline{U}^i_{jk} = \tilde{S}^i_{jk} - \overline{\omega}^i_{jk} \). \hfill (2.21)

It is easy to be obtained covariant derivatives

\[
U^i_{jm|n} = \frac{1}{2} (T^i_{jm|1} + T^i_{mj|1}) \quad \text{and} \quad \overline{U}^i_{jm||n} = \frac{1}{2} (\overline{T}^i_{jm||1} + \overline{T}^i_{mj||1}),
\]

of the previous defined magnitudes \(U^i_{jm} \) and \(\overline{U}^i_{jm} \) satisfy a relation

\[
\overline{U}^i_{jm||n} = U^i_{jm|n} + \tilde{S}^i_{an} \overline{U}^a_{jm} - \tilde{S}^a_{jn} \overline{U}^i_{2am} - \tilde{S}^a_{mn} \overline{U}^i_{2j\alpha} - \tilde{S}^i_{an} U^a_{jm} + \tilde{\omega}^i_{jn} U^i_{2am} + \tilde{\omega}^a_{mn} U^i_{2j\alpha}.
\hfill (2.23)

The equations (2.21, 2.23) prove it is satisfied a following proposition.

Proposition 2.2 Let \(f : \mathcal{A}_N \to \mathcal{A}_N \) be an equitorsion second type almost geodesic mapping of the first kind between non-symmetric affine connection spaces \(\mathcal{A}_N \) and \(\overline{\mathcal{A}}_N \). Covariant derivatives \(\tilde{S}^i_{jm|n} \) and \(\overline{T}^i_{jm||n} \) of symmetric parts \(\tilde{S}^i_{jm} \) and \(\overline{T}^i_{jm} \) of the corresponding affine connection coefficients \(L^i_{jm} \) and \(\overline{L}^i_{jm} \) satisfy a relation

\[
\tilde{S}^i_{jm|n} = \tilde{S}^i_{jm|1} + \omega^i_{jm|n} - \omega^i_{jm|1} + \tilde{S}^i_{an} \overline{U}^a_{jm} - \tilde{S}^a_{jn} \overline{U}^i_{2am} - \tilde{S}^a_{mn} \overline{U}^i_{2j\alpha} - \tilde{S}^i_{an} U^a_{jm} + \tilde{\omega}^i_{jn} U^i_{2am} + \tilde{\omega}^a_{mn} U^i_{2j\alpha},
\hfill (2.24)

for the magnitudes \(U^i_{jk} \) and \(\overline{U}^i_{jk} \) defined above. \(\square \)

Using the invariance \(\tilde{T}^i_{jk} = \tilde{\tilde{T}}^i_{jk} \) and the consequent invariances \(\tilde{T}^\alpha_{jm} \tilde{\tilde{T}}^i_{\alpha n} = \tilde{T}^\alpha_{jm} \tilde{T}^i_{\alpha n} \) such as \(\tilde{T}^i_{jm} \tilde{\tilde{T}}^\alpha_{mn} = \tilde{T}^i_{jm} \tilde{T}^\alpha_{mn} \) we obtain it is satisfied a following proposition.

Proposition 2.3 Let \(f : \mathcal{A}_N \to \mathcal{A}_N \) be an equitorsion second type almost geodesic mapping of the first kind between non-symmetric affine connection spaces \(\mathcal{A}_N \) and \(\overline{\mathcal{A}}_N \). Magnitudes \(\tilde{S}^\alpha_{jm} \tilde{T}^i_{\alpha n}, \tilde{S}^\alpha_{aj} \tilde{T}^\alpha_{mn} \) and its deformations \(\tilde{\tilde{S}}^\alpha_{jm} \tilde{\tilde{T}}^i_{\alpha n}, \tilde{\tilde{S}}^\alpha_{aj} \tilde{\tilde{T}}^\alpha_{mn} \) under the mapping \(f \) satisfy equations...
\[\tilde{S}_jm \tilde{T}_\alpha = \tilde{S}_jm \tilde{T}_\alpha + \tilde{\omega}_jm \tilde{T}_\alpha - \omega_{jm} \tilde{T}_\alpha, \]
\[\tilde{S}_ja \tilde{T}_{mn} = \tilde{S}_ja \tilde{T}_{mn} + \tilde{\omega}_ja \tilde{T}_{mn} - \omega_{ja} \tilde{T}_{mn}, \]

for the magnitude \(\omega_{jk} \) defined into the equation (2.16) and the corresponding one \(\tilde{\omega}_{jk} \).

If we contract the basic equation (2.13) by the indices \(i \) and \(k \) we conclude it is satisfied a relation

\[F_{\theta j} = \mu_j F + \mu_\alpha F_\alpha^j + (N + 1)(\nu_j - e\sigma_j) - F_{\alpha j}^\alpha, \]

\(\theta = 1, 2 \). This equation proves it is satisfied a following proposition.

Proposition 2.4 Let \(f : \mathbb{G}_A^N \rightarrow \mathbb{G}_A^\alpha_N \) be an equitorsion second type almost geodesic mapping of the first kind between non-symmetric affine connection spaces \(\mathbb{G}_A^N \) and \(\mathbb{G}_A^\alpha_N \) which satisfies the property of reciprocity. A covariant derivative \(\omega_{jm|n}^i \) of the magnitude \(\omega_{jk} \) defined into the equation (2.16) satisfies an equality

\[\omega_{jm|n}^i = \frac{1}{N + 1} (L_{\alpha |n}^\alpha \delta_m^i + L_{\alpha m|n}^\alpha \delta_j^i) + \frac{1}{2}(\nu_n - e\sigma_n)(\sigma_j \delta_m^i + \sigma_m \delta_j^i) \\
- \frac{1}{2}(\sigma_j \delta_m^i F_m^i + \sigma_m \delta_j^i F_j^i + \sigma_j F_m^i \delta_j^i + \sigma_m F_j^i \delta_j^i) \\
+ \frac{1}{2(N + 1)} (\sigma_j \delta_m^i F_\alpha^\alpha_j + \sigma_\alpha \delta_m^i F_j^\alpha \sigma_\alpha + \sigma_\alpha \delta_m^i F_j^\alpha) \delta_j^i \\
+ \frac{1}{2(N + 1)} (\sigma_m \delta_j^i F_\alpha^\alpha_m + \sigma_\alpha \delta_m^i F_m^\alpha \sigma_\alpha + \sigma_\alpha \delta_m^i F_m^\alpha) \delta_j^i \\
+ \frac{1}{2(N + 1)} (\mu_n F + \mu_\alpha F_\alpha^\alpha_n - F_{\alpha n}^\alpha (\sigma_j \delta_m^i + \sigma_m \delta_j^i)), \]

for magnitudes \(\mu_i, \nu_i \) used into the basic equation (2.13).

A difference \(\Delta_{jmn}^i = \tilde{\omega}_{jm||n}^i - \omega_{jm|n}^i \), of the magnitudes \(\tilde{\omega}_{jm||n}^i \) and \(\omega_{jm|n}^i \) satisfies a relation

\[\Delta_{jmn}^i = \frac{1}{N + 1} \left((\tilde{S}_ja||n - \tilde{S}_ja|n) \delta_m^i + (\tilde{S}_\alpha ma|n - \tilde{S}_\alpha ma|n) \delta_j^i \right) \\
+ \tilde{\rho}_{jmn}^i - \tilde{\rho}_{jmn}^i, \]
such that the equation (2.24) has a form

\[
2\hat{\rho}_{jmn} = -2L^\beta_{jn} T_{i\beta\alpha} \delta^i_{m} - 2L^\beta_{mn} T_{i\beta\alpha} \delta^i_{j} + (\nu_n - e\sigma_n)(\sigma_j \delta^i_m + \sigma_m \delta^i_j) \\
- (\sigma_i F^i_m + \sigma_m F^i_j + \sigma_j F^i_m + \sigma_m F^i_j) \\
+ \frac{1}{N+1} (\sigma_j F^\alpha_i + \sigma_m F^\alpha_j) \delta^i_m \\
+ \frac{1}{N+1} (\sigma_m F^\alpha_m + \sigma_F^\alpha_j) \delta^i_j \\
+ \frac{1}{N+1} (\mu_n F_m + \mu_m F_j) (\sigma_j \delta^i_m + \sigma_m \delta^i_j),
\]

(2.30)

From the equations (2.29) and (2.30) we conclude it exists a magnitude \(\hat{\rho}_{jmn}\) from the space \(\mathbb{G}_N\) analogue to the magnitude \(\hat{\rho}_{jmn}\), the magnitudes \(\mu_i, \nu_i\) from the equation (2.13) and the corresponding ones \(\overline{\mu}_i, \overline{\nu}_i\).

such that the equation (2.24) has a form

\[
\tilde{S}_{jm\parallel n} = \tilde{S}_{jm\parallel n} - \delta^i_m \hat{\nu}_{jn} - \delta^i_j \hat{\nu}_{mn} \\
- \frac{1}{2} (\sigma_j F^i_m + \sigma_m F^i_j + \sigma_j F^i_m + \sigma_m F^i_j) \\
+ \frac{1}{2} (\sigma_j F^i_m + \sigma_m F^i_j + \sigma_j F^i_m + \sigma_m F^i_j) \\
+ \tilde{S}_{an} F^\alpha_{2jm} - \tilde{S}_{jn} U^\alpha_{2am} - \tilde{S}_{mn} F^\alpha_{2ja} - \tilde{S}_{an} U^\alpha_{2jm} + \tilde{S}_{jn} U^\alpha_{2am} + \tilde{S}_{mn} U^\alpha_{2ja},
\]

(2.32)
Using the equations \(2.20, 2.25, 2.26, 2.32\) and the expression \(2.19\) of the curvature tensors \(R^i_{jmn}\) and \(\overline{R}^i_{jmn}\) of the associated spaces \(\mathcal{A}_N\) and \(\overline{\mathcal{A}}_N\) we obtain it is satisfied the following equation

\[
\overline{R}^i_{jmn} = R^i_{jmn} - \delta^i_m \hat{\nu}^j_{1j} + \delta^i_n \hat{\nu}^j_{1jm} - \delta^i_j \hat{\nu}^m_{1mn} \\
- \frac{1}{2} (\sigma^i_m F^i_m + \sigma^m_i F^i_j + \sigma^i_j F^i_m + \sigma^i_j F^i_j)
\]

\[
+ \frac{1}{2} (\sigma^i_m F^i_m + \sigma^m_i F^i_j + \sigma^i_j F^i_m + \sigma^i_j F^i_j)
\]

\[
+ \frac{1}{2} (\sigma^i_j F^i_m + \sigma^m_i F^i_j + \sigma^i_j F^i_m + \sigma^i_j F^i_j)
\]

\[
- \frac{1}{2} (\sigma^i_m F^i_n + \sigma^m_i F^i_j + \sigma^i_j F^i_m + \sigma^i_j F^i_j)
\]

\[
+ 2 \tilde{S}^i_{\alpha j} - 2 \tilde{S}^i_{\alpha j} - 2 \tilde{S}^i_{\alpha m} - 2 \tilde{S}^i_{\alpha m} - 2 \tilde{S}^i_{\alpha m} - 2 \tilde{S}^i_{\alpha m}
\]

\[
- \tilde{F}^a_{m j} \alpha i + \omega^a_{m j} L^i_{\alpha m} - \tilde{F}^a_{m j} \alpha i + \omega^a_{m j} L^i_{\alpha m} + 2 \omega^a_{m j} L^i_{\alpha m} - 2 \omega^a_{m j} L^i_{\alpha m}
\]

\[
= R^i_{jmn} - \delta^i_m \hat{\nu}^j_{1j} + \delta^i_n \hat{\nu}^j_{1jm} - \delta^i_j \hat{\nu}^m_{1mn} + F^i_{1jmn} - \overline{F}^i_{1jmn},
\]

for

\[
F^i_{1jmn} = \frac{1}{2} (\sigma^i_m F^i_m + \sigma^m_i F^i_j + \sigma^i_j F^i_m + \sigma^i_j F^i_j)
\]

\[
- \frac{1}{2} (\sigma^i_m F^i_n + \sigma^m_i F^i_j + \sigma^i_j F^i_m + \sigma^i_j F^i_j)
\]

the magnitude \(\omega^i_{jk}\) defined into the equation \(2.16\) and the corresponding magnitude \(\overline{F}^i_{1jmn}\).

After contracting the equation \(2.33\) by indices \(i\) and \(n\) we conclude Ricci tensors \(R_{jm}\) and \(\overline{R}_{jm}\) of the associated spaces \(\mathcal{A}_N\) and \(\overline{\mathcal{A}}_N\) satisfy a relation

\[
\overline{R}_{jm} = R_{jm} + (N - 1) \hat{\nu}^i_{1jm} + \hat{\nu}^i_{1jm} + F^i_{1j} - \overline{F}^i_{1j},
\]

for \(F^i_{1j} = F^i_{1j\alpha}\) and \(\overline{F}^i_{1j} = \overline{F}^i_{1j\alpha}\).
After alternating the equation (2.35) by indices \(j \) and \(m \) we conclude it is satisfied a relation

\[
(N + 1)\dot{v}_{[jm]} = \overline{R}_{[jm]} - R_{[jm]} - \overline{F}_{[jm]} + \overline{F}_{[jm]},
\]

(2.36)

From the equations (2.35) and (2.36) we conclude it is satisfied an expression

\[
(N^2 - 1)\dot{v}_{jm} = (NR_{jm} + R_{mj}) - (NR_{jm} + R_{mj})
+ (N\overline{F}_{jm} + \overline{F}_{mj}) - (N\overline{F}_{jm} + \overline{F}_{mj}).
\]

(2.37)

After involving the results (2.36, 2.37) in the equation (2.33) we obtain it is satisfied an equality

\[
\overline{W}^i_{2 jmn} = W^i_{2 jmn},
\]

where we denoted by

\[
\begin{align*}
W^i_{2 jmn} &= R^i_{jmn} + \frac{1}{N + 1} \delta^i_j R_{[mn]} + \frac{N}{N^2 - 1} \delta^i_m R_{jn} + \frac{1}{N^2 - 1} \delta^i_n R_{jm} \\
&+ \frac{1}{N + 1} \delta^i_j F_{[mn]} + \frac{N}{N^2 - 1} \delta^i_m F_{jn} + \frac{1}{N^2 - 1} \delta^i_n F_{jm},
\end{align*}
\]

(2.38)

a geometric object of the space \(\mathcal{G} \mathcal{A}_N \), where the magnitude \(F^i_{1 jmn} \) is defined into the equation (2.34) and for the corresponding magnitude \(F^i_{1 ij} = F^i_{1 j} \). The corresponding magnitude \(\overline{W}^i_{2 jmn} \) of the space \(\mathcal{G} \mathcal{A}_N \) is defined in the same manner.

It is proved a following theorem is satisfied in this way.

Theorem 2.1 Let \(f : \mathcal{G} \mathcal{A}_N \rightarrow \mathcal{G} \mathcal{A}_N \) be an equitorsion second type almost geodesic mapping of the first kind which satisfies the property of reciprocity. The magnitude \(W^i_{2 jmn} \) defined into the equation (2.38) is an invariant of this mapping. \(\square \)

3 Acknowledgements

This paper is financially supported by the Serbian Ministry of Education, Science and Technological Developments, Grant. No. 174012.
References

[1] V. Berezovski, J. Mikeš, *On the classification of almost geodesic mappings of affine-connected spaces*, Differential geometry and its applications (Dubrovnik, 1988), 41-48, Univ. Novi Sad, Novi Sad, 1989, MR 1040054.

[2] V. E. Berezovski, J. Mikeš, A. Vanžurová, *Fundamental PDE’s of the Canonical Almost Geodesic Mappings of Type \(\tilde{\pi}_1 \)*, Bull. Malays. Math. Sci. Soc. (2) 37, No. 3, 647-659 (2014). Zbl 1298.53018.

[3] A. Einstein, *A Generalization of the Relativistic Theory of Gravitation*, Annals of Mathematics, Princeton, 46, (1945), 576-584.

[4] A. Einstein, *Bianchi Identities in the Generalized Theory of Gravitation*, Canadian Journal of Mathematics, 2, (1950), 120-128.

[5] A. Einstein, *Relativistic Theory of the Non-symmetric field*, Appendix II in the Book: The Meaning of Relativity 5th edit., Princeton, 49, 1955.

[6] L. P. Eisenhart, *Non-Riemannian Geometry*, American Mathematical Society, Colloquium Publications, vol. VIII, New York, 1927.

[7] S. Ivanov, M. Zlatanović, *Connections on Non-symmetric (Generalized) Riemannian Manifold and Gravity*, Classical and Quantum Gravity, Volume 33, Number 7, 075016, (2016).

[8] J. Mikeš, H. Chudá, I. Hinterleitner, *Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition*, Int. J. Geom. Methods Mod. Phys. 11, No. 5, Article ID 1450044, 8 p. (2014), Zbl 1304.53012.

[9] J. Mikeš, at all, *Differential geometry of special mappings*, Olomouc: Palacký University, Faculty of Science (ISBN 978-80-244-4671-4/pbk). 566 p. (2015), Zbl 06556646.

[10] S. M. Minčić, *Ricci identities in the space of non-symmetric affine connection*, Matematicki Vesnik, 10(25), Vol. 2, (1973), 161-172.

[11] S. M. Minčić, *Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connexion*, Colloquia Mathematica Societatis Janos Bolyai, 31, Differential Geometry, Budapest (Hungary), (1979), 445-460.
[12] N. S. Sinyukov, *Geodesic mappings of Riemannian spaces*, "Nauka" Moskow, (1979) (in Russian).

[13] V. S. Sobchuk, J. Mikeš, O. Pokorná, *On Almost Geodesic Mappings* π_2 *between Semisymmetric Riemannian Spaces*, Novi Sad J. Math., Vol. 29, No. 3, 1999, 309-312.

[14] M. S. Stanković, *First type almost geodesic mappings of general affine connection spaces*, Novi Sad J. Math. 29 (3) (1999) 313-323.

[15] M. S. Stanković, *On a canonic almost geodesic mappings of the second type of affine spaces*, FILOMAT 13 (1999) 105-114.

[16] M. S. Stanković, *On a special almost geodesic mappings of the third type of affine spaces*, Novi Sad J. Math. 31 (2) (2001) 125-135.

[17] M. S. Stanković, *Special equitorsion almost geodesic mappings of the third type of non-symmetric affine connection spaces*, Applied Mathematics and Computation, 244, (2014), 695-701.

[18] M. S. Stanković, N. O. Vesić, *Some relations in non-symmetric affine connection spaces with regard to a special almost geodesic mappings of the third type*, FILOMAT 29:9 (2015), 1941-1951.

[19] M. S. Stanković, M. Lj. Zlatanović, N. O. Vesić, *Basic Equations of G-Almost Geodesic Mappings of the Second Type, which Have the Property of Reciprocity*, CZECH MATH J, 65 (140) (2015), 787-799.

[20] H. Vavříková, J. Mikeš, O. Pokorná, G. Starko, *On fundamental equations of almost geodesic mappings of type $\pi_2(e)$*, Russ. Math. vol. 51 (1) (2007) 8-12.

[21] N. O. Vesić, *Curvature Tensors and the Third Type Almost Geodesic Mappings*, FACTA UNIVERSITATIS (NIŠ), Ser. Math. Inform. Vol. 29, No 4 (2014), 445-460.

Author’s addresses:

- Nenad O. Vesić;

 Address: Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, Serbia;

 e-mail: vesko1985@pmf.ni.ac.rs