ABSTRACT

Objective: The aim of this study was to assess the influence of traditional herbal formulas, including Bangpungtongseong-san (BPTSS; Fangfengtongsheng-san, Botu-tsusho-san), Ojeok-san (OJS; Wuijisan, Goshaku-san), and Oyakusngi-san (OYSGS; Wuyaoshungi-san, Uyakujyunki-san), on the activities of the human cytochrome P450s (CYP450s) and UDP-glucuronosyltransferases (UGTs), which are drug-metabolizing enzymes. Materials and Methods: The activities of the major human CYP450 isozymes (CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP2E1) and UGTs (UGT1A1, UGT1A4, and UGT2B7) were investigated using in vitro fluorescence-based and luminescence-based enzyme assays, respectively. The inhibitory effects of the herbal formulas were characterized, and their IC₅₀ values were determined. Results: BPTSS inhibited the activities of CYP1A2, CYP2C19, CYP2E1, and UGT1A1 while it exerted relatively weak inhibition on CYP2B6, CYP2C9, CYP2D6, and CYP3A4. BPTSS also negligibly inhibited the activities of UGT1A1 and UGT2B7 with IC₅₀ values in the excess of 1000 μg/mL. OJS and OYSGS inhibited the activity of CYP2D6, whereas they exhibited no inhibition of the UGT1A4 activity at doses <1000 μg/mL. In addition, OJS inhibited the CYP1A2 activity but exerted a relatively weak inhibition on the activities of CYP2C9, CYP2C19, CYP2E1, and CYP3A4. Conversely, OJS negligibly inhibited the activities of CYP2B6, UGT1A1, and UGT2B7 with IC₅₀ values in excess of 1000 μg/mL. OYSGS weakly inhibited the activities of CYP1A2, CYP2C19, CYP2E1, CYP3A4, and UGT1A1, with a negligible inhibition on the activities of CYP2B6, CYP2C9, and CYP2D6, with IC₅₀ values in excess of 1000 μg/mL. Conclusions: These results provide information regarding the safety and effectiveness of BPTSS, OJS, and OYSGS when combined with conventional drugs.

Key words: Cytochrome P450s, herb-drug interactions, traditional herbal formulas, UDP-glucuronosyltransferases

SUMMARY

- Bangpungtongseong-san inhibited the activities of human microsomal CYP1A2, CYP2C19, CYP2E1, and UGT1A1, with a negligibly inhibition on the activities of CYP2B6, CYP2C9, CYP2D6, CYP3A4, UGT1A1, and UGT2B7.
- Ojeok-san (OJS) inhibited the CYP1A2 and CYP2D6 mediated metabolism while showing a comparatively weak inhibition against CYP2B6, CYP2C9, CYP2C19, CYP2E1, and CYP3A4 in human microsomes.

- Oyakusngi-san (OYSGS) inhibited the activities of human microsomal CYP2D6, with a relatively weak inhibition on the activities of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2E1, CYP3A4, UGT1A1, and UGT2B7.
- OJS showed no inhibition on the activities of human microsomal UGT1A4 and UGT2B7, and OYSGS did not affect the human microsomal UGT1A4 activity.

INTRODUCTION

Drug metabolism is responsible for the biotransformation of xenobiotics, including therapeutic drugs and endogenous/exogenous substances, yielding products that are more soluble in water than are their parent substances. Drug-metabolizing enzymes are classified into two groups, phase I and II enzymes, and cytochrome P450 (CYP450) and UDP-glucuronosyltransferase (UGT) are responsible for the phase I and phase II transformation reactions, respectively.1-4

CYP450s participate in the oxidative metabolism of a variety of xenobiotics. CYP450s consist of numerous families and subfamilies...
In this study, the effects of the traditional herbal formulas BPTSS, OJS, and OYSGS on the activities of the major human CYP450s (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4), and UGTs (UGT1A1, UGT1A4, and UGT2B7) were investigated in vitro CYP450 isozyme and UGT isozyme assays.

Table 1: The compositions of the three herbal formulas

Crude drug	Scientific name	Bangpungtongseong-san	Ojeok-san	Oyaksungi-san
Talcum	Talcum	6.38		
Glycyrrhiza Radix et Rhizome	Glycyrrhiza uralensis	4.50	2.20	1.13
Gypsum Fibrosum	Gypsum	2.63		
Scutellariae Radix	Scutellaria baicalensis	2.63		
Platycodonis Radix	Platycodon grandiflorum	2.63	3.00	3.75
Saposhnikoviae Radix	Ledebouria seelosiodes	1.69		
Paoniae Radix	Paonia lactiflora	1.69	3.00	
Cnidii Rhizoma	Cnidium officinale	1.69	2.60	3.75
Angelicae Gigantis Radix	Angelica gigas	1.69	3.00	
Rhei Radix et Rhizoma	Rheum undulatum	1.69		
Ephedrae Herba	Ephedra sinica	1.69	3.70	5.63
Menthae Herba	Mentha pulegium	1.69		
Forsythiae Fructus	Forsythia koreana	1.69		
Natrii Sulphas	Natrī sulfās	1.69		
Schizonepetae Spica	Schizonepeta tenuifolia	1.31		
Atractylodis Rhizoma Alba	Atractylodes japonica	1.31		
Gardeniae Fructus	Gardenia jasminoides	1.31		
Zingiberis Rhizoma Crudus	Zingiber officinale	6.25	3.70	3.75
Atractylodis Rhizoma	Atractylodes lancea	7.50		
Citri Unshii Pericarpium	Citrus unshiu	3.70	5.63	
Magnoliae Cortex	Magnolia officinalis	3.00		
Angelicae Dahuricae Radix	Angelica dahurica	2.60	3.75	
Aurantii Fructus Immaturus	Citrus unshiu	3.00	3.75	
Zingiberis Rhizoma	Zingiber officinale	3.00	1.88	
Hoelen	Poria cocos	3.00		
Pinelliae Tuber	Pinellia ternata	2.60		
Cinnamomi Bark	Cinnamomum cassia	2.60		
Allii Radix	Allium fistulosum	3.70		
Linderae Radix	Lindera strychnifolia	5.63	3.75	
Bombycis Corpus	Bombyx mori	3.75		
Zizyphi Fructus	Zizyphus jujuba	46.15		
Total amount (g)	44.16	55.90	46.15	
Yield (%)	17.70	21.00	24.40	
MATERIALS AND METHODS

Chemicals and materials

Reference standards, albuflorin, paconflorin, geniposide, liquiritin, baicalin, glycerrhizin, ferulic acid, cinnamaldehyde, naringin, and 6-gergnerol were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Hesperidin and neohesperidin were purchased from Biopurify Phytochemicals (Chengdu, China). Nodakenin was purchased from NPC BioTechnology, Inc., (Daejeon, Korea). The purity of all reference standards was ≥ 98.0%. High-performance liquid chromatography (HPLC) grade methanol, acetonitrile, and water were obtained from J.T. Baker (Phillipsburg, NJ, USA). Glacial acetic acid of analytical reagent grade was purchased from Junsei (Tokyo, Japan).

Vivid CYP450 Screening Kits (Vivid CYP1A2 Blue, Vivid CYP2B6 Blue, Vivid CYP2C9 Blue, Vivid CYP2C19 Blue, Vivid CYP2D6 Blue, Vivid CYP2E1 Blue, and Vivid CYP3A4 Green) were purchased from Invitrogen Co., (Camarillo, CA, USA). These kits use 7-ethoxy-methylxol-3-cyanocoumarin as a substrate for CYP1A2, CYP2B6, CYP2C19, and CYP2E1. In addition, di (benzoxylmethoxy) fluorescein was used as a substrate for CYP3A4, and 7-benzoyl-oxyl-4-trifluoromethylcoumarin was used as a substrate for CYP2B6 and CYP2C9. UGT-Glo UGT1A1 and UGT2B7 Screening Systems were purchased from Promega (Madison, WI, USA). The recombinant human UGT1A4 enzyme was purchased from Corning Inc. Life Science (Tewksbury, MA, USA). α-Naphthoflavone, ketoconazol, miconazol, sulfaphenazol, quinidine, sodium diethyldithiocarbamate trihydrate, dicyclofenac, and lopinavir were obtained from Sigma Chemical Co., (St. Louis, MO, USA). All other chemicals were of analytical grade.

Preparation of herbal formula extracts

The crude herbs forming the herbal formulations of BPTSS, OJS, and OYSGS were purchased from a traditional herb market, Omniherb (Yeongcheon, Korea) and HMAX (Jechon, Korea). All herbs were taxonomically confirmed by Professor Je-Hyeon Lee, Dongguk University, Korea. To obtain the water decoction of the three herbal formulas, each herbal medicine was chopped and mixed as shown in Table 1. The extraction of each herbal formula was performed in distilled water at 100°C for 120 min using an electric extractor (COSMOS-660; Kyungseo Machine Co., Incheon, Korea). The crude herbs forming the herbal formulations of BPTSS, OJS, and OYSGS were chopped and mixed as shown in Table 1. The extraction of each herbal formula was performed in distilled water at 100°C for 120 min using an electric extractor (COSMOS-660; Kyungseo Machine Co., Incheon, Korea). The crude herbs forming the herbal formulations of BPTSS, OJS, and OYSGS were purchased from a traditional herb market, Omniherb (Yeongcheon, Korea) and HMAX (Jechon, Korea). All herbs were taxonomically confirmed by Professor Je-Hyeon Lee, Dongguk University, Korea. To obtain the water decoction of the three herbal formulas, each herbal medicine was chopped and mixed as shown in Table 1. The extraction of each herbal formula was performed in distilled water at 100°C for 120 min using an electric extractor (COSMOS-660; Kyungseo Machine Co., Incheon, Korea).

Life Sciences, Ann Arbor, MI, USA) before HPLC analysis. The assays were performed using the Vivid CYP450 Reaction Buffer and Regeneration System (consisting of glucose-6-phosphate and glucose-6-phosphate dehydrogenase), and the plate was incubated for 20 min to allow the samples to interact with the CYP enzymes. After preincubation, the reaction was started by adding 10 μL of the Vivid Substrate and NADP+. The regeneration system converts NADP+ into NADPH, which is required to start the CYP450 reaction. The enzymatic reaction is initiated by the addition of a mixture of NADP+ and the appropriate Vivid Substrate. The fluorescence intensity was measured using an EnVision2103 Multilabel Reader (PerkinElmer Inc., MA, USA) for 15 min at the excitation and emission wavelengths of 485 and 535 nm, respectively, for CYP3A4. For CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, the fluorescence intensity was measured for 60 min at the excitation and emission wavelengths of 415 and 460 nm, respectively, using a SpectraMax i3 (Molecular Devices Co., Sunnyvale, CA, USA).

The inhibition percentage (%) was obtained via the following equation: % Inhibition = 1 - (S1-S0)/(C1-C0) ×100, where C1 is the fluorescence of the control after incubation, C0 is the initial fluorescence of the control, S1 is the fluorescence of the test sample after incubation, and S0 is the initial fluorescence of the test sample in the linear section.

High-performance liquid chromatography analysis

For quality assessment of the three formulas of BPTSS, OJS, and OYSGS, a chromatographic analysis was performed using a Shimadzu Prominance LC-20A series (Kyoto, Japan), equipped with a solvent delivery unit, an on-line degasser, a column oven, an autosampler, and a photo diode array (PDA) detector. The data were acquired and processed using Lc solution software (Version 1.24, Shimadzu Co., Kyoto, Japan). The constituents in each formula were separated on a Phenomenex Gemini C18 column (250 mm × 4.6 mm, 5 μm, Torrance, CA, USA) for OJS and OYSGS and a Phenomenex Luna C18 column (250 mm × 4.6 mm, 5 μm, Torrance, CA, USA) for BPTSS, with the column temperature set to 40°C. The mobile phases consisted of 0.1% (v/v) acetic acid in distilled water (A) and 0.1% (v/v) acetic acid in acetonitrile (B). The gradient elutions of the mobile phases are shown in Table 2. The flow-rate and injection volume were 1.0 mL/min and 10 μL, respectively. For HPLC analysis of each formula, 200, 200 and 400 μg of lyophilized BPTSS, OJS, and OYSGS extract were dissolved in 20 mL of distilled water, respectively, and then, the solution was filtered through a SmartPor GHP 0.2 μm syringe filter (PALL Life Sciences, Ann Arbor, MI, USA) before HPLC analysis.

Cytochrome P450 isozyme assay

The assays were performed using the Vivid CYP450 Screening Kits according to the protocol provided by the manufacturer. The Vivid CYP450 Screening Kits are designed to assess the metabolic activity of the predominant human CYP450 isozymes involved in hepatic drug metabolism: CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP2E1. The Vivid Substrate and Fluorescent Standards were reconstituted, and a standard curve was prepared. A test sample of 40 μL diluted in solvent, a positive inhibition control (a compound that inhibits the respective CYP450 enzyme), or a solvent control was added to each well. The solutions were mixed after adding 50 μL of the Master Pre-Mix containing P450 BACULOSOMES in the Vivid CYP450 Reaction Buffer and Regeneration System (consisting of glucose-6-phosphate and glucose-6-phosphate dehydrogenase), and the plate was incubated for 20 min to allow the samples to interact with the CYP enzymes. After preincubation, the reaction was started by adding 10 μL of the Vivid Substrate and NADP+. The regeneration system converts NADP+ into NADPH, which is required to start the CYP450 reaction. The enzymatic reaction is initiated by the addition of a mixture of NADP+ and the appropriate Vivid Substrate. The fluorescence intensity was measured using an EnVision2103 Multilabel Reader (PerkinElmer Inc., MA, USA) for 15 min at the excitation and emission wavelengths of 485 and 535 nm, respectively, for CYP3A4. For CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, the fluorescence intensity was measured for 60 min at the excitation and emission wavelengths of 415 and 460 nm, respectively, using a SpectraMax i3 (Molecular Devices Co., Sunnyvale, CA, USA).

The inhibition percentage (%) was obtained via the following equation: % Inhibition = 1 - (S1-S0)/(C1-C0) ×100, where C1 is the fluorescence of the control after incubation, C0 is the initial fluorescence of the control, S1 is the fluorescence of the test sample after incubation, and S0 is the initial fluorescence of the test sample in the linear section.

Table 2: Solvent gradient for analysis of high-performance liquid chromatography-photo diode array

Time (min)	Bangpungtongseong-san	Ojeok-san	Oyak-sungi-san					
	A (%)	B (%)	A (%)	B (%)	A (%)	B (%)		
0	95	5	0	85	15	0	85	15
40	25	70	20	75	25	40	35	65
45	0	100	40	45	55	45	0	100
50	0	100	45	0	100	50	0	100
55	95	5	50	0	100	55	85	15
70	95	5	55	85	15	70	85	15

a1.0% (v/v) acetic acid in water; b1.0% (v/v) acetic acid in acetonitrile
The background fluorescence of the herbal formulas was corrected by subtracting the values obtained from the incubation without substrates. The CYP450 inhibition of each sample was expressed regarding IC50 as calculated from the log-dose inhibition curve (SigmaPlot, version 12.5, Systat Software, Inc., CA, USA). The data were expressed as the mean ± standard error of the mean (SEM) (n = 3). α-Naphthoflavone, ketoconazole, sulfaphenazole, quinidine, and sodium diethyldithiocarbamate trihydrate were used as positive controls for CYP1A2, CYP3A4, CYP2C9, CYP2D6, and CYP2E1, respectively. Miconazole was used as a positive control for CYP2B6 and CYP2C19.

UDP-glucuronosyltransferase isozyme assay

The assays were performed using the UGT-Glo™ Screening Systems according to the manufacturer's protocol. The assay systems provide a luminescent method for measuring the activity of UGTs. Two glucuronidation reactions were set up in parallel to measure UGT activity. Both reactions contained a source of UGT (UGT1A1, UGT1A4, or UGT2B7) and the procluciferin substrates (UGT multi-enzyme substrate or UGT1A4 substrate), but only one of them contained the uridine 5′-diphosphoglucuronic acid (UDPGA) cofactor. Ten microliters of 4× concentrated test sample; diclofenac, which is a known inhibitor of the UGT1A1 and UGT2B7 isozymes; lopinavir, as a UGT1A4 inhibitor; or vehicle was added each well (white opaque 96 well-plate, Corning Inc., NY, USA). Then, 10 μL of UDPGA (plus-UDPGA reaction set) or distilled water (minus-UDPGA reaction set) was added to the relevant wells. Twenty microliters of the prepared 2× control reaction mixture (minus-UGT enzyme) and 2× UGT reaction mixture (UGT1A1, UGT1A4, or UGT2B7) were added to the appropriate wells. The reaction solution was mixed and incubated at 37°C for 90, 180, or 60 min, respectively, for UGT1A1, UGT1A4, and UGT2B7. The final contents of the reactant were 0.1 mg/mL UGT enzyme and 20 μM enzyme substrate in the presence or absence of 4 mm UDPGA. After incubation, 40 μL of the reconstituted luciferin detection reagent plus D-cysteine was added to all wells. After 20 min of incubation at room temperature, the luminescence signal was detected using a SpectraMax® i3.

The detected data were converted to the calculated the difference using the following percent of substrate consumed (%SC) equation: % Substrate consumed = (background corrected difference)/(average minus-UDPGA values) × 100. The inhibition percentage (%) was obtained via the following equation: % Inhibition = (1 – [S/CAVR]) × 100, where S is the %SC of each sample or the control wells, and CAVR is the average %SC of the control wells. The UGT inhibition of each sample was expressed regarding IC50 as calculated using computer software (SigmaPlot) capable of generating a four parameter logistic curve fit. The data were expressed as the mean ± SEM (n = 2).

RESULTS

High-performance liquid chromatography analysis of herbal formulas

The developed HPLC-PDA method was subsequently applied for the quality control of the three formulas of BPTSS, OJS, and OYSGS. Consequently, the marker compounds in BPTSS, OJS, and OYSGS eluted within 40, 45, and 35 min, respectively, and the typical three-dimensional chromatograms are shown in Figure 1. The correlation coefficient (r2) of all analytes showed good linearity (≥0.9997). Using the optimized chromatography conditions, the amounts of the various marker compounds in BPTSS, OJS, and OYSGS are summarized in Table 3.

Compound	Contents in extract (mg/g)		
	Bangpungtongseong-san	Ojeok-san	Oyaksungi-san
Geniposide	5.59±0.012		
Baicalin	13.53±0.120		
Liquiritin	6.06±0.010	1.53±0.040	0.86±0.010
Glycyrrhizin	6.92±0.070	1.85±0.000	0.92±0.012
Naingin	6.29±0.050	4.52±0.100	5.98±0.020
Hesperidin	5.68±0.025	4.10±0.060	5.68±0.025
Ferulic acid	0.40±0.000	0.30±0.000	0.33±0.000
Albiflorin	0.25±0.000	2.14±0.010	0.15±0.000
Nodakenin	0.30±0.000	1.00±0.000	0.25±0.000
Cinnamaldehyde	0.25±0.000	0.12±0.000	

The data are presented as the mean±SD from three independent experiments in triplicate.

Figure 1: The three-dimensional chromatograms of Bangpungtongseong-san (a), Ojeok-san (b) and oyaksungi-san (c) from high-performance liquid chromatography-photo diode array.
Effects of herbal formulas on the activities of cytochrome P450s

In vitro CYP450 isozyme assays were performed to evaluate whether the three traditional herbal formulas influence the activities of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4. As shown in Figures 2-4 and Table 4, α-naphthoflavone, sulfaphenazole, quinidine, diethyldithiocarbamate, and ketoconazole were used as positive controls for CYP1A2, CYP2C9, CYP2D6, CYP2E1, and CYP3A4, respectively. Miconazole was used as a positive control for CYP2B6 and CYP2C19. The data are presented as the mean ± standard error of the mean (n = 3).

Figure 2: The effects of Bangpungtongseong-san on the activities of CYP1A2 (a), CYP2B6 (b), CYP2C9 (c), CYP2C19 (d), CYP2D6 (e), CYP2E1 (f), and CYP3A4 (g). The fluorescence-based enzyme assays of the CYP450 isozymes were established in vitro. α-Naphthoflavone, sulfaphenazole, quinidine, sodium diethyldithiocarbamate trihydrate, and ketoconazole were used as positive controls for CYP1A2, CYP2C9, CYP2D6, CYP2E1, and CYP3A4, respectively. Miconazole was used as a positive control for CYP2B6 and CYP2C19. The data are presented as the mean ± standard error of the mean (n = 3).
Figure 3: The effects of Ojok-san on the activities of CYP1A2 (a), CYP2B6 (b), CYP2C9 (c), CYP2C19 (d), CYP2D6 (e), CYP2E1 (f), and CYP3A4 (g). The fluorescence-based enzyme assays of the CYP450 isozymes were established in vitro. α-Naphthoflavone, sulfaphenazole, quinidine, sodium diethyldithiocarbamate trihydrate, and ketoconazole were used as positive controls for CYP1A2, CYP2C9, CYP2D6, CYP2E1, and CYP3A4, respectively. Miconazole was used as a positive control for CYP2B6 and CYP2C19. The data are presented as the mean ± standard error of the mean (n = 3).
Figure 4: The effects of oyaksungi-san on the activities of CYP1A2 (a), CYP2B6 (b), CYP2C9 (c), CYP2C19 (d), CYP2D6 (e), CYP2E1 (f), and CYP3A4 (g). The fluorescence-based enzyme assays of the CYP450 isozymes were established in vitro. α-Naphtho flavone, sulphanilazole, quinidine, sodium diethyldithiocarbamate trihydrate, and ketoconazole were used as positive controls for CYP1A2, CYP2C9, CYP2D6, CYP2E1 and CYP3A4, respectively. Miconazole was used as a positive control for CYP2B6 and CYP2C19. The data are presented as the mean ± standard error of the mean (n = 3).
Effects of Bangpungtongseong-san on the activities of cytochrome P450s

As presented in Figure 2 and Table 4, BPTSS inhibited the activities of CYP1A2, CYP2C19, and CYP2E1, with respective IC$_{50}$ values of 141.77, 94.14, and 104.86 μg/mL. In contrast, BPTSS exerted a relatively weak inhibition on the activities of CYP2B6, CYP2C9, CYP2D6, and CYP3A4, with IC$_{50}$ values ranging from 1.29 to 3.49 μM and 1.56 to 1.93 μM, respectively [Figures 2 and Table 4].

Effects of Ojeok-san on the activities of cytochrome P450s

As shown in Figure 3 and Table 4, OJS exerted the most potent inhibition of the activity of CYP2B6, with an IC$_{50}$ value of 88.92 μg/mL. In addition, OJS inhibited the activity of CYP1A2, with an IC$_{50}$ value of 191.30 μg/mL, whereas it showed competitively weak inhibition on the activities of CYP2C9, CYP2C19, CYP2E1, and CYP3A4, with respective IC$_{50}$ values of 868.74, 252.25, 357.30, and 583.60 μg/mL [Figures 3 and Table 4]. Conversely, OJS inhibited the activity of CYP2B6 in a dose-dependent manner, but the inhibition at 1000 μg/mL OJS did not reach 50%.

Effects of oyaksungi-san on the activities of cytochrome P450s

As demonstrated by the data in Figure 4 and Table 4, OYSGS inhibited the CYP2D6 activity, with an IC$_{50}$ value of 141.47 μg/mL, followed by the activities of CYP1A2 (IC$_{50}$ = 227.11 μg/mL), and CYP2E1 (IC$_{50}$ = 249.84 μg/mL). In addition, OYSGS inhibited the activities of CYP3A4 and CYP2C19, with similar IC$_{50}$ values of 347.00 and 386.41 μg/mL, respectively [Figures 4 and Table 4]. In contrast, OYSGS exhibited the negligible inhibition of both the activities of CYP2B6 and CYP2C9, with IC$_{50}$ values in excess of 1000 μg/mL.

Effects of herbal formulas on the activities of UDP-glucuronosyltransferases

In vitro UGT isozyme assays were performed to investigate the effects of the three traditional herbal formulas on the activities of UGT1A1, UGT1A4, and UGT2B7. As shown in Figures 5-7 and Table 5, diclofenac, which was used as a positive control for UGT1A1 and UGT2B7 in a dose-dependent manner, had IC$_{50}$ values ranging from 295.87 to 823.95 μM and 41.15 to 81.97 μM, respectively. Lopinavir was used as a positive control for UGT1A4, and it was inhibited the CYP1A4 activity in a dose-dependent manner, with an IC$_{50}$ value ranging from 51.88 to 96.41 μM.

Effect of Bangpungtongseong-san on the activities of UDP-glucuronosyltransferases

As shown in Figure 5 and Table 5, BPTSS inhibited the UGT1A1 activity, with an IC$_{50}$ value of 136.36 μg/mL. In contrast, BPTSS inhibited the activities of UGT1A4 and UGT2B7 in a dose-dependent manner, but inhibition at 1000 μg/mL did not reach 50% [Figure 5 and Table 5].

Effect of Ojeok-san on the activities of UDP-glucuronosyltransferases

OJS showed a dose-dependent inhibition on the UGT1A1 activity, but the IC$_{50}$ value was higher than 1000 μg/mL [Figure 6 and Table 5]. In contrast, OJS did not affect the activities of UGT1A4 and UGT2B7 at doses <1000 μg/mL [Figure 6].

Effect of oyaksungi-san on the activities of UDP-glucuronosyltransferases

As presented in Figure 7 and Table 5, OYSGS exhibited a competitively weak inhibition on the UGT1A1 activity, with an IC$_{50}$ value of 824.57 μg/mL. Furthermore, OYSGS inhibited the activity of UGT2B7 in a dose-dependent manner, but inhibition at 1000 μg/mL did not reach 50% [Figure 7]. Conversely, OYSGS showed no inhibition of the UGT1A4 activity at doses <1000 μg/mL [Figure 7].

DISCUSSION

According to the increasing interest in the importance of herb-drug interactions in clinical settings,[25,26] in the study, the effects of traditional herbal formulas (BPTSS, OJS, and OYSGS) that are used to treat MSDs on the activities of CYP450 isozymes (CYP1A2, CYP2C9, CYP2D6, CYP2C19, CYP2D6, and CYP2E1) and UGT isozymes (UGT1A1, UGT1A4, and UGT2B7) were examined. Several reports have demonstrated the influence of herbal extracts or the components present in these herbal formulas on the activities of CYP450s and UGTs. Among them, Glycyrrhizae Radix and Cnidii Rhizoma of BPTSS, OJS, and OYSGS inhibit the activity of human

Table 4: The IC$_{50}$ values (μg/mL) of the herbal formula extracts on the activities of CYP450 isozymes

Herbal formula	CYP1A2	CYP2B6	CYP2C9	CYP2C19	CYP2D6	CYP2E1	CYP3A4
Bangpungtongseong-san	141.77	446.35	740.94	94.14	455.56	104.86	363.39
Ojeok-san	191.30	> 1000	> 1000	252.25	> 1000	252.25	> 1000
Oyaksungi-san	227.11	> 1000	> 1000	386.41	> 1000	141.47	249.84
Positive control	0.28-0.45 μM	1.29-3.49 μM	0.38 μM	1.56-1.93 μM	5.23-11.72 nM	6.47-12.41 μM	1.33-2.70 nM

a-Naphthoflavone, sulfaphenazole, quinidine, sodium diethyldithiocarbamate trihydrate and ketoconazole were used as positive controls for CYP1A2, CYP2C9, CYP2D6, CYP2C19 and CYP3A4, respectively. Miconazole was used as a positive control for CYP2B6 and CYP2C19. The values are the means of triplicate experiments.

Table 5: The IC$_{50}$ values (μg/mL) of the herbal formula extracts on the activities of UGT isozymes

Herbal formula	UGT1A1	UGT1A4	UGT2B7
Bangpungtongseong-san	136.36	> 1000	> 1000
Ojeok-san	> 1000	> 1000	> 1000
Oyaksungi-san	824.57	> 1000	> 1000
Positive control	295.87-823.95 μM	51.88-96.41 μM	41.15-81.97 μM

Diclofenac was used as a positive control for UGT1A1 and UGT2B7. Lopinavir was used as a positive control for UGT1A4. The values are the means of duplicate experiments.
UGT1A1 and rat CYP1A1, respectively. In addition, it has been reported that Scutellariae Radix of BPTSS induces and suppresses the levels of CYP1A and CYP2B in rats, respectively. Scutellariae Radix also inhibits the activity of UGT1A1 in humans. Cinnamomi Bark of OJS inhibits the activities of CYP1A2, CYP2C8, CYP2C9, CYP2D6, and UGT1A1 in humans and CYP1A2 and CYP2C11 in rats. Pseudoephedrine, one of the components in Ephedrae Herba of BPTSS, OJS, and OYSGS, inhibits the activities of CYP1A1/2 and CYP2E1 in rats. Moreover, decursin in Angelicae Gigantis Radix of BPTSS and OJS has inhibitory effects on the activities of CYP1A1/2, CYP3A12, and CYP2D15 in canines. The chromatographic analysis of the various marker components in these herbal formulas was performed using an HPLC-PDA. Among them, geniposide of BPTSS has been reported to decrease the activities of liver microsomal CYP2E1 in mice. Furthermore, baicalin of BPTSS has an inhibitory effect on CYP1A1, CYP2B1, and CYP2C11 in mice. Glycyrrhizin, which is one of the marker compounds of BPTSS and OYSGS, has been reported to inhibit the activities of CYP1A2 in human. In addition, naringin of OJS and OYSGS reduces the CYP1A2 protein level in mice. Cinnamaldehyde of OJS showed inhibits UGT1A1 in humans. However, the major and/or active compounds of herbal formulas are not known. It is difficult to specifically comprehend the metabolizing mechanisms of medicinal herbs, including herbal formulas because they contain a complex group of hundreds of constituent molecules. To date, the effects of herbal formulas, such as BPTSS, OJS, and OYSGS on the activities of CYP450s and UGTs have not been elucidated. In this study, we investigated the inhibitory effects of BPTSS, OJS, and OYSGS on the activities of human CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, UGT1A1, UGT1A4, and UGT2B7 to assess their clinical significance in herb-drug interactions.

The CYP3A family contributes to approximately 50% of the total CYP450 activity in the human liver and is involved in the metabolism of approximately 60% of therapeutic substances. CYP3A4 is the dominant CYP3A enzyme and is expressed in the human liver and gastrointestinal tract. CYP3A4 also has genetic polymorphisms. Some of the most serious CYP-mediated drug interactions are caused by the accumulation of substrates that are metabolized by CYP3A4, such as astemizole, terfenadine, and cisapride. CYP2D6 exhibits genetic polymorphisms and represents <5% of the total CYP proteins. More than 80 drugs in current clinical use are metabolized by CYP2D6, which has aroused great interest because of its large number of substrates (30–50 drugs) and its genetic polymorphism. CYP2C19 also exhibits genetic polymorphisms and has a number of commonly used substrates, including the benzodiazepine diazepam, the proton-pump inhibitor omeprazole, propranolol, and the antidepressive amitriptyline. Few drugs, other than chlorzoxazone and several inhalation anesthetics, are metabolized by CYP2E1. Moreover, CYP2E1 is responsible for the metabolism of ethanol, and chronic ethanol consumption can induce CYP2E1. In this study, BPTSS inhibited the activities of CYP1A2, CYP2C19, CYP2E1, and UGT1A1, which may have clinical implications. Therefore, caution should be exercised when coadministering BPTSS with substrates/inhibitors of CYP1A2, CYP2C19, CYP2E1, or UGT1A1. In addition,
Figure 6: The effects of Ojeok-san on the activities of UGT1A1 (a), UGT1A4 (b), and UGT2B7 (c). The luminescence-based enzyme assays of the UGT isozymes were established in vitro. Diclofenac was used as a positive control for UGT1A1 and UGT2B7. Lopinavir was used as a positive control for UGT1A4. The data are presented as the mean ± standard error of the mean (n = 2).

Figure 7: The effects of oyaksungi-san on the activities of UGT1A1 (a), UGT1A4 (b), and UGT2B7 (c). The luminescence-based enzyme assays of the UGT isozymes were established in vitro. Diclofenac was used as a positive control for UGT1A1 and UGT2B7. Lopinavir was used as a positive control for UGT1A4. The data are presented as the mean ± standard error of the mean (n = 2).
these results suggest that glycyrrhizin and geniposide of BPTSS would contribute to the inhibition of CYP1A2 and CYP2E1, respectively, by BPTSS.33,43 In contrast, BPTSS are unlikely to inhibit the metabolism of drugs metabolized by CYP2B6, CYP2C9, CYP2D6, CYP3A4, UGT1A4, and UGT2B7. OJS inhibited the CYP2D6 activity most potently, followed by CYP1A2, CYP2C19, CYP2E1, CYP3A1, and CYP2C9. Thus, attention should be paid when OJS is administered simultaneously with drugs that are metabolized by CYP2D6, and OJS may influence the metabolic reactions mediated by CYP1A2, CYP2C9, CYP2C19, CYP2E1, or CYP3A4 at a high concentration. In contrast, OJS negligibly inhibited the activities of CYP2B6 and UGT1A1, with IC\textsubscript{50} values in excess of 1000 μg/mL, and OJS not influence the activities of UGT1A4 and UGT2B7 at doses <1000 μg/mL. Thus, OJS would not affect CYP2B6, UGT1A1, UGT1A4, or UGT2B7-mediated metabolism in the clinic. OYS showed potent inhibition of the activity of CYP2D6 followed by CYP1A2, CYP2E1, CYP3A4, CYP2C19, and UGT1A1, but it had no significant inhibition on CYP2B6, CYP2C9, UGT1A4, and UGT2B7 at concentrations of over 1000 μg/mL. These findings indicate that OYS is an inhibitor of CYP2D6 and that caution is necessary to reduce its adverse effects when it is coadministered with a substrate/inhibitor of CYP2D6. Furthermore, OYS has a relatively low potential to be involved in herb-drug interactions when administered simultaneously with substrates or inhibitors of CYP2B6, CYP2C9, UGT1A4, or UGT2B7.

In general, aceclofenac and aspirin, which are used for the treatment of rheumatoid arthritis 2 and osteoarthritis, are metabolized by CYP2C9.42,43 In addition, naproxen, which is used to treat pain or inflammation caused by arthritis, ankylosing spondylitis, tendinitis, and gout, is a substrate of CYP1A2 and CYP2C9.44 and the drug also inhibits the UGT2B7 activity.45 Acetaminophen, which is widely used to treat muscle aches, arthritis, backache, and toothache, is metabolized by CYP3A4, CYP2D6, and CYP2E1.46,48 Therefore, BPTSS, OJS, and OYS showed potent inhibition of the activity of CYP2D6 followed by CYP1A2, CYP2E1, CYP3A4, CYP2C19, and UGT1A1, but it had no significant inhibition on CYP2B6, CYP2C9, UGT1A4, and UGT2B7 at concentrations of over 1000 μg/mL. These findings indicate that OYS is an inhibitor of CYP2D6 and that caution is necessary to reduce its adverse effects when it is coadministered with a substrate/inhibitor of CYP2D6. Furthermore, OYS has a relatively low potential to be involved in herb-drug interactions when administered simultaneously with substrates or inhibitors of CYP2B6, CYP2C9, UGT1A4, or UGT2B7.

CONCLUSIONS

This study provided information regarding the risks and benefits potentially associated with the use of BPTSS, OJS, and OYS. Caution is necessary when BPTSS is administered together with a substrate/inhibitor of CYP1A2, CYP2C19, CYP2E1, or UGT1A1. Furthermore, herb-drug interactions can occur when OJS or OYS is used in combination with other drugs that are metabolized by CYP2D6, to a greater extent than those that are metabolized by other isozymes.

Financial support and sponsorship

This research was supported by the grants “Construction of Scientific Evidences for Herbal Medicine Formulas (K16251)” and “Evaluation of Herb-Drug Interactions (K16252)” from the Korea Institute of Oriental Medicine (KIOM).

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Guengerich FP. Characterization of human microsomal cytochrome P-450 enzymes. Annu Rev Pharmacol Toxicol 1989;29:241-64.
2. Miners JO, Smith PA, Sorich MJ, McKinnon RA, Maskenzie Pl. Predicting human drug glucuronidation parameters: Application of in vitro and in silico modeling approaches. Annu Rev Pharmacol Toxicol 2004;44:1-25.
3. Oguri K, Yamada H, Yoshimura H. Regiochemistry of cytochrome P450 isozymes. Annu Rev Pharmacol Toxicol 1994;34:251-79.
4. Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: Metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 2000;40:581-616.
5. Bertz RJ, Granneman GR. Use of in vivo and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997;32:210-58.
6. Detryverendo KN. Structural domains of P450-containing monooxygenase systems. Protein Eng 1995; 8:737-47.
7. Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev 2004; 104:3947-80.
8. Werk-Reichhart D, Feyereisen R. Cytochromes P450: A success story. Genome Biol 2001;1:REVIEW3003.
9. Food and Drug Administration. Drug interaction studies-Study design, data analysis, implications for dosing, and labeling recommendations; 2012.
10. Guillermette C, Levesque E, Rouleau M. Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implications. Clin Pharmacol Ther 1994;56:324-39.
11. Singil JC, Bartels H, Viviani R, Lehmann ML, Brockmöller J. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther 2014;141:92-116.
12. Evans WE, Relling MV. Pharmacogenomics: Translating functional genomics into rational therapeutics. Science 1999;286:487-91.
13. Colebatch AN, Marks JL, Edwards C]. Safety of non-steroidal anti-inflammatory drugs, including aspirin and paracetamol (acetaminophen) in people receiving metformine for inflammatory arthritis (rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, other spondyloarthritides). Cochrane Database Syst Rev 2011;11:CD008872.
14. de Leon-Casasola OA. Opioids for chronic pain: New evidence, new strategies, safe prescribing. Am J Med 2013;126 3 Suppl 1:S3-11.
15. Moon YH, Park YJ. Studies on the anti-inflammatory and analgesic activities of Ohjaksun Ginseng. J Sasang Const Med 1998;10:589-613.
16. Moon YH, Lee DI, Lee SY. Studies on the anti-inflammatory and analgesic activities of Ohyaksungisun. Korean J Pharmacogn 1996;26:174-9.
17. Moon YH, Park YJ. Studies on the anti-inflammatory and analgesic activities of Ohyaksungisun. Korean J Pharmacogn 1996;25:258-63.
18. Akagis S, Naito Y, Ichikawa H, Mizushima K, Takagi T, Handa O, et al. Bofutsuhoshan, an oriental herbal medicine, attenuates the weight gain of white adipose tissue and the increased size of adipocytes associated with the increase in their expression of uncoupling protein 1 in high-fat diet-fed male KK/Ta mice. J Clin Biochem Nutr 2008;42:188-96.
19. Kim KS, Jeon HY, Jeon SY, Hong S, Kang HJ, Kim JS. Mechanism study of Bangangutongseongsan (IBTS) on the cerebral hemodynamics in mice. Korean J Orient Intern Med 2002;23:91-8.
20. Lee NH, Lee KS. Effect of Bangangutongseongsan on the hypertension and hyperlipidemia. J Korean Orient Med 1975;12:44-55.
21. Shimada T, Kudo T, Akase T, Aburada M. Preventive effects of Bofutsuhoshan on obesity and various metabolic disorders. Biol Pharm Bull 2008;31:1362-7.
22. Kim JH, Soh KS, Jeong CG, Kim KH. Effects of Quack-san on hyperlipidemia in rats. Korean J Orient Prev Med Res Soc 2004;8:185-202.
23. Jung MJ, Lee JH, Yeom SR, Lee SK, Song YS, Kim KB, et al. Effects of Ohyaksungisun (Wuyaozhiqisanzheng) on Jungsongyouhiyul pharmacopuncture on pain reduction and nerve regeneration after crush injury in rat sciatic nerve. J Orient Rehabil Med 2009;19:51-72.
24. Jung SY, Lee MJ. The effects of Ohyaksun-san(Wuyaozhiqisanzheng) on increasing body fat of rat induced by high fat diet. J Orient Rehabil Med 2007;17:23-39.
25. Eric Y, Kathy A. Interaction of herbal constituents with cytochrome P450 enzymes. Altern Complement Ther 2007;13:239-47.
26. Sparreboom A, Cox MC, Acharya MR, Figg WD. Herbal remedies in the United States: Potential adverse interactions with anticancer agents. J Clin Oncol 2004;22:2489-503.

27. Katoh M, Yoshikawa Y, Nakagawa N, Yokoi T. Effects of Japanese herbal medicine, Kampo, on human UGT1A1 activity. Drug Metab Pharmacokinet 2009;24:226-34.

28. Son YH, Kim HG, Nam GS. Effect of Cnidii Rhizoma water extract on chemopreventive enzymes for hepatocarcinoma. Korean J Pharmacogn 2003;34:297-302.

29. Kang JJ, Chen YC, Kuo ML, et al. Modulation of microsomal cytochrome P450 by Scutellariae Radix and Gentianae scabrae Radix in rat liver. Am J Chin Med 1996;24:19-29.

30. Park HJ. Effects of Herbal Medicines Including Cinnamomi Cortex on Activity of Several Cytochrome P450 Isoforms. PhD Thesis. Wonkwang University, Department Oriental Pharmacy; 2009.

31. Wu W, Liu L, Han F, Chen Y. Effect of pseudoephedrine and ephedrine on the activities of cytochrome P450 enzymes in rat liver microsomes. China J Tradit Med Pharm 2011;26:1804-7.

32. Abd El-Aty AM, Shah SS, Kim BM, Choi JH, Cho HJ, Hee-Yi, et al. In vitro inhibitory potential of decursin and decursinol angelate on the catalytic activity of cytochrome P450 1A1/2, 2D15, and 3A12 isoforms in canine hepatic microsomes. Arch Pharm Res 2008;31:1425-35.

33. Hou YN, Zhu XY, Cheng GF. Effects of baicalin on liver microsomal cytochrome P450 system. Acta Pharm Sin 2000;35:890-2.

34. Park JH, Park JY, Ju YS. Inhibitory effects of licorice ethanol extracts and glycyrrhizin on cytochrome P450 drug-metabolizing enzymes in human liver microsomes. Korean J Orient Prev Med Soc 2003;7:65-74.

35. Ueng YF, Chang YL, Oida Y, Park SS, Liao JF, Lin MF, et al. In vitro and in vivo effects of naringin on cytochrome P450-dependent monooxygenase in mouse liver. Life Sci 1999;65:2591-602.

36. Cascorbi I. Genetic basis of toxic reactions to drugs and chemicals. Toxicol Lett 2000;162:16-28.

37. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002;54:1271-94.

38. Bibs Z. Role of cytochrome P450 in drug interactions. Nutr Metab (Lond) 2008;5:27.

39. Badyal DK, Dadhich AP. Cytochrome P450 and drug interactions. Indian J Pharmacol 2001;33:248-59.

40. Goshman L, Roller K. Clinically significant cytochrome P450 drug interactions. J Pharm Sci 2001;90:3566-9.

41. Bigler J, Whitton J, Lampe JW, Bostick RM, Potter JD. CYP2C9 and UGT1A6 genotypes modulate the protective effect of aspirin on colon adenoma risk. Cancer Res 2001;61:3566-9.

42. Ihm CH, Hwang IT, Kim EY, Kang WK. Pharmacokinetic study of aceclofenac and its metabolites, and application to bioequivalence study. Korean J Clin Pharm 2006;16:52-6.

43. Miners JG, Coulter S, Tukey RH, Veronese ME, Birkett DJ. Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochem Pharmacol 1996;51:1003-8.

44. Joo J, Kim YW, Wu Z, Shin JH, Lee B, Shon JC, et al. Screening of non-steroidal anti-inflammatory drugs for inhibitory effects on the activities of six UDP-glucuronosyltransferases (UGT1A1, 1A3, 1A4, 1A6, 1A9 and 2B7) using LC-MS/MS. Biopharm Drug Dispos 2015;36:258-64.

45. Dong H, Haining RL, Thummel KE, Rettie AE, Nelson SD. Involvement of human cytochrome P450 2D6 in the bioactivation of acetaminophen. Drug Metab Dispos 2000;28:1397-400.

46. Snaider JD, Roe AL, Benson RW, Roberts DW. Loss of CYP2E1 and CYP1A2 activity as a function of acetaminophen dose: Relation to toxicity. Biochem Biophys Res Commun 1994;203:532-9.

47. Thummel KE, Lee CA, Kunze KL, Nelson SD, Slattery JT. Oxidation of acetaminophen to N-acetyl-p-aminobenzoquinone imine by human CYP2A4. Biochem Pharmacol 1993;45:1563-9.