Longitudinal changes in pulmonary function and patient-reported outcomes after lung cancer surgery

Sumin Shin1,2†, Sunga Kong3,4†, Danbee Kang3,5†, Genehee Lee3,4, Jong Ho Cho2, Young Mog Shim2,4, Juhee Cho3,4,5,6, Hong Kwan Kim2,3,4*† and Hye Yun Park4,7*†

Abstract

Background: Surgery is the mainstay of treatment for non-small cell lung cancer, but the decline in pulmonary function after surgery is noticeable and requires attention. This study aimed to evaluate longitudinal changes in pulmonary function and integrated patient-reported outcomes (PROs) after lung cancer surgery.

Methods: Data were obtained from a prospective cohort study, the Coordinate Approach to Cancer Patients’ Health for Lung Cancer. Changes in forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) at 2 weeks, 6 months, and 1 year after surgery, and the corresponding modified Medical Research Council (mMRC) dyspnea scale and chronic obstructive lung disease assessment test (CAT) scores were evaluated. Mixed effects model was used to investigate changes in pulmonary function and PROs.

Results: Among 620 patients, 477 (76.9%) underwent lobectomy, whereas 120 (19.4%) and 23 (3.7%) were treated with wedge resection/segmentectomy and bilobectomy/pneumonectomy, respectively. Both FVC and FEV1 markedly decreased 2 weeks after surgery and improved thereafter; however, they did not recover to baseline values. The corresponding mMRC dyspnea scale and CAT scores worsened immediately after surgery. The dyspnea scale of the mMRC was still higher, while CAT scores returned to baseline one year after surgery, although breathlessness and lack of energy persisted. Compared to the changes from baseline of FVC and FEV1 in patients who underwent lobectomy, patients who underwent bilobectomy/pneumonectomy showed a greater decrease in FVC and FEV1, while wedge resection/segmentectomy patients had smaller decreases in FVC and FEV1 at 2 weeks, 6 months, and 1 year after surgery. Bilobectomy/pneumonectomy patients had the highest mMRC dyspnea grade among the three groups, but the difference was not statistically significant one year after surgery.
Background

Lung cancer is the leading cause of cancer-related deaths in both men and women [1]. The median age at diagnosis of lung cancer is 70 years [2], and more than 70% of future lung cancer cases are expected to occur in adults older than 65 years [3]. Surgery is the best treatment option for patients with early stage non-small cell lung cancer (NSCLC) [4], and the 5-year survival rate among patients with stage I NSCLC after curative resection has increased to 70% [5]. Despite this improvement in survival rate, a decrease in pulmonary function after surgery is inevitable. Accordingly, several studies have shown serial changes in pulmonary function after lung resection [6–9]. Lung function dropped sharply until 1 month, partly recovered at 3 months, and stabilized at 6 months after surgery [6–9]. These changes in lung function vary depending on the extent of surgery, with the reduction in forced expiratory volume in 1 s (FEV₁) being 9% and 35% after lobectomy and pneumonectomy, respectively [7, 8].

Lung cancer survivors commonly suffer from post-treatment symptoms, such as pain, dyspnea, and fatigue, which negatively affect their quality of life (QOL) [10–14]. Given the importance of health-related quality of life (HRQOL) in patients with lung cancer and its prognostic impact, assessment of patient-reported outcomes (PROs) has been emphasized [15]. In particular, lung cancer-specific HRQOL domains include dyspnea and cough [16, 17] influencing in a sedentary lifestyle and physical function ability [18, 19]. In addition, several studies have found that postoperative respiratory symptoms are more frequently observed in patients with low pulmonary function; however, the changes in PROs were measured between baseline and only one point after surgical resection. There are limited data on the changes in PROs that are associated with changes in pulmonary function over time after surgical resection during longitudinal follow-up. Thus, we conducted a longitudinal cohort study to examine serial changes in pulmonary function and the associated changes in PRO in NSCLC patients undergoing curative resection.

Methods

We used data from a prospective cohort study called the Coordinated Approach to Cancer Patients’ Health for Lung Cancer (CATCH-LUNG), which recruited patients expected to undergo curative lung cancer surgery for suspected NSCLC at Samsung Medical Center in Seoul, Korea from March 2016 to October 2018. The patient inclusion criteria were as follows: (1) expected to undergo curative lung cancer surgery for suspected or histologically confirmed NSCLC, (2) Eastern Cooperative Oncology Group performance status of either 0 or 1, (3) no problems in walking, and (4) understood the purpose of the study and agreed to participate in it. Patients were excluded if they were free of NSCLC on final pathologic examination and if they had either benign pathology (n = 27), cancers other than NSCLC (n = 5), or pulmonary metastasis from other cancers (n = 1). In addition, patients who were diagnosed with disseminated lung cancer in the operative field thus did not undergo curative intent surgery were excluded (n = 7), as were patients who had synchronous cancer in another organ (n = 3). Finally, among 663 patients, 620 were included in the analysis (Fig. 1). The protocols for patient enrollment and data collection are described in a previous study [20]. The study protocol was approved by the Institutional Review Board of Samsung Medical Center (no. 2015–11-025), and written informed consent was obtained from all participants.

Measurements

Pulmonary function and PROs were measured before surgery and repeated at 2 weeks (median, 2 weeks), 6 months (median, 5 months), and 1 year (median, 11.2 months) after surgery. Pulmonary function measurements, including spirometry and diffusing capacity of the lung for carbon monoxide (DLco), were performed using a Vmax 22 respiratory analyzer (SensorMedics, OH, USA) according to the American Thoracic Society/European Respiratory Society criteria [21, 22]. Absolute values of FEV₁, forced vital capacity (FVC), and DLco were obtained, and their percent of the predicted values (% pred) were calculated using a representative Korean sample [23, 24] as

Conclusions: After lung cancer surgery, pulmonary function and PROs noticeably decreased in the immediate post-operative period and improved thereafter, except for dyspnea and lack of energy. Proper information on the timeline of changes in lung function and symptoms following lung cancer surgery could guide patient care approaches after surgery.

Trial registration: ClinicalTrials.gov; No.: NCT03705546; URL: www.clinicaltrials.gov

Keywords: Non-small cell lung cancer, Patients reported outcomes, Pulmonary function, Surgery
a reference. An obstructive spirometric pattern was defined as FEV₁/FVC < 70%, and a restrictive spirometric pattern was defined as both FEV₁/FVC ≥ 70% and FVC < 80% pred. PROs were assessed using the modified Medical Research Council (mMRC) dyspnea scale and chronic obstructive lung disease assessment test (CAT) score. The mMRC dyspnea scale is a questionnaire consisting of five statements related to perceived breathlessness, which are classified into grades 0 to 4 [25]. The CAT score consists of eight parameters: cough, sputum, chest tightness, dyspnea, activity confidence, sleep, and energy. The scores range from 0 to 5 points, resulting in a total CAT score ranging from 0 to 40 points [26].

Sociodemographic and behavioral information of the participants, including age, sex, body mass index, smoking status, and comorbidities, were obtained from electronic medical records. Clinical information, including cell type, surgery type, video-assisted thoracic surgery, postoperative pulmonary complications (PPC), and adjuvant treatmen were also collected after surgery. PPC were defined as any of the following conditions: (1) atelectasis requiring bronchoscopic toileting, (2) pneumonia (at least three of leukocytosis, pulmonary infiltrate or consolidation, fever [> 38 °C], culture-positive, or use of antibiotics), (3) acute lung injury or acute respiratory distress syndrome (rate of arterial oxygen partial pressure to fractional inspired oxygen < 300 and bilateral infiltrate observed on chest radiograph without evidence of congestive heart failure or volume overload), or (4) acute exacerbation of chronic obstructive pulmonary disease [27].

Statistical analysis

We used mixed effects model for longitudinal data analysis and modeled changes in absolute values of FVC, FEV₁ and DLco; % pred for FVC, FEV₁, and DLco; FEV₁/FVC; and prevalence of obstructive or restrictive spirometric patterns at each time point. These mixed effects model provided the average longitudinal change from preoperative values (with 95% confidence intervals [CI]) and allowed for random variations in longitudinal changes among participants according to normal distributions with unstructured variance–covariance matrices (See Additional file 1 containing information regarding the formula of the mixed effects model). Generalized estimating equation with binomial as the family and logit as the link function was used to calculate prevalence ratio for FEV₁/FVC, obstructive pattern and restrictive pattern comparing to the baseline. Adjusted mean and proportion were obtained from the models. Furthermore, we compared changes from baseline of pulmonary function at each time point according to the type of surgery (bilobectomy/pneumonectomy, lobectomy, and wedge resection/segmentectomy). We performed sensitivity analysis in patients with normal lung function before surgery.

In terms of PROs, patients grade 2 scores or higher on the mMRC dyspnea scale (I get short of breath when hurrying on a level or up a slight hill) were considered to have significant dyspnea in the current study [25]. Based on CAT total scores, patients were categorized into three groups, low (0 ≤ CAT < 10), medium (10 ≤ CAT < 20), and high (20 ≤ CAT ≤ 40) impact groups, according to the CAT user guide (http://www.catestonline.org). To
evaluate the change in the prevalence of mMRC \(\geq 2 \) and medium or high CAT (total score \(\geq 10 \)), we used a generalized estimating equation with binomial as the family and logit as the link function. To adjust for confounding factors, we included age, sex, stage, obesity, smoking status, cell type, surgery type, video-assisted thoracic surgery, postoperative pulmonary complications, and adjuvant treatment.

All reported \(P \)-values were set at a significance level of 0.05. Statistical analyses were performed using Stata version 16 (StataCorp LLC, College Station, TX).

Results

Patient characteristics

The mean (standard deviation, SD) age of study participants was 61.2 (9.0) years, and the percentage of male patients was 56.5% (\(n = 350 \)) (Table 1). Among the 620 eligible participants, 23 (3.7%), 477 (79.9%), and 120 (19.4%) underwent bilobectomy/pneumonectomy, lobectomy, and wedge resection/segmentectomy, respectively. All the participants completed the baseline examination, and 603 (97.3%, bilobectomy/pneumonectomy \(n = 21 \); lobectomy \(n = 464 \); wedge resection/segmentectomy \(n = 118 \)), 536 (86.6%, bilobectomy/pneumonectomy \(n = 20 \); lobectomy \(n = 406 \); wedge resection /segmentectomy \(n = 110 \)), and 518 (83.5%, bilobectomy/pneumonectomy \(n = 17 \); lobectomy \(n = 395 \); wedge resection/segmentectomy \(n = 106 \)) completed the examinations at 2 weeks, 6 months, and 1 year after surgery, respectively. Compared to patients who underwent lobectomy, bilobectomy/pneumonectomy was more associated with parameters such as old age, male sex, ever smoker, squamous cell carcinoma, advanced stage, and adjuvant treatment (Table 1).

Changes in pulmonary function

The baseline, average (SD) levels were 3595.1 mL and 92.9% pred for FVC, 2637.4 mL and 90.1% pred for FEV\(_1\), and 18.4 ml/min/mmHg and 89.9% pred for DLco. The adjusted means were 3600.3 mL and 93.2%.

Table 1	Clinical and surgical characteristics of the study participants			
Characteristic	Overall (N = 620)	Wedge resection/ segmentectomy (n = 120, 19.4%)	Lobectomy (n = 477, 76.9%)	Bilobectomy/ pneumonectomy (n = 23, 3.7%)
Age, years	61.2 (9.0)	59.6 (9.2)	61.5 (9.0)	63.2 (7.8)
Sex, male	350 (56.5)	63 (52.5)	268 (56.2)	19 (82.6)
Body mass index, kg/m\(^2\)	24.0 ± 2.9	319 (51.5)	54 (45.0)	247 (51.8)
Smoking status, ever smoker	319 (51.5)	247 (51.8)	18 (78.3)	
Comorbidities				0.01
COPD\(^a\)	140 (22.8)	26 (21.7)	106 (22.2)	8 (34.8)
Hypertension	211 (34.0)	31 (25.8)	170 (35.6)	10 (43.5)
Diabetes mellitus	92 (14.8)	14 (11.7)	73 (15.3)	5 (21.7)
Cardiovascular disease	16 (2.6)	4 (3.3)	12 (2.5)	0
Cell type				<0.01
Adenocarcinoma	513 (82.7)	111 (92.5)	394 (82.6)	8 (34.8)
Squamous cell	87 (14.0)	6 (5.0)	67 (14.1)	14 (60.9)
Others	20 (3.2)	3 (2.5)	16 (3.4)	1 (4.4)
Tumor size, cm	2.7 (1.5)	1.7 (0.7)	2.9 (1.5)	4.1 (1.9)
Pathologic stage				<0.01
I	451 (72.7)	116 (96.7)	330 (69.2)	5 (21.7)
II	96 (15.5)	2 (1.7)	83 (17.4)	11 (47.8)
III	70 (3.0)	2 (1.7)	62 (13.0)	6 (26.1)
IV	3 (2.2)	0	2 (0.4)	1 (4.4)
Surgical approach (VATS, %)	490 (79.0)	112 (93.3)	373 (78.2)	5 (21.7)
PPC, yes	49 (7.9)	10 (8.3)	36 (7.6)	3 (13.0)
Adjuvant treatment, yes	149 (24.0)	3 (2.5)	131 (27.5)	15 (65.2)

Values in the table are presented as mean ± standard deviation or n (%)

COPD chronic obstructive pulmonary disease, VATS video-assisted thoracic surgery, PPC postoperative pulmonary complications

* COPD is defined as a pre-bronchodilator forced expiratory volume in 1 s/forced expiratory vital capacity < 70%
| Type of surgery | Before surgery | 2 weeks after surgery | 6 months after surgery | 1 year after surgery |
|--|----------------|-----------------------|------------------------|----------------------|
| **FVC (mL)** | | | | |
| Adjusted mean (SE) | 3600.3 (21.2) | 2721.4 (21.5) | 3137.7 (23.1) | 3268.8 (24.8) |
| Change from baseline (95% CI) | Reference | −879 (−910.3, −847.6) | −462.6 (−495.4, −429.8) | −331.6 (−365.4, −297.7) |
| **FVC, % pred** | | | | |
| Adjusted mean (SE) | 93.2 (0.5) | 70.9 (0.5) | 81.6 (0.5) | 85.2 (0.6) |
| Change from baseline (95% CI) | Reference | −23.3 (−24.1, −22.5) | −12.3 (−13.2, −11.4) | −8.5 (−9.4, −7.6) |
| **FEV1 (mL)** | | | | |
| Adjusted mean (SE) | 2647.0 (16.7) | 2033.1 (16.9) | 2318.3 (17.9) | 2395.2 (18.9) |
| Change from baseline (95% CI) | Reference | −613.9 (−636.2, −591.6) | −328.7 (−352.0, −305.3) | −251.7 (−275.7, −227.8) |
| **FEV1, % pred** | | | | |
| Adjusted mean (SE) | 90.4 (0.5) | 69.8 (0.5) | 79.6 (0.6) | 82.6 (0.6) |
| Change from baseline (95% CI) | Reference | −20.6 (−21.3, −19.9) | −10.7 (−11.5, −10.0) | −7.8 (−8.6, −7.0) |
| **DLco, ml/min/mmHg** | | | | |
| Adjusted mean (SE) | 18.6 (0.1) | 15.8 (0.1) | 15.9 (0.1) | 15.9 (0.1) |
| Change from baseline (95% CI) | Reference | −4.0 (−5.1, −2.9) | −3.3 (−4.4, −2.2) | −3.3 (−4.4, −2.2) |
| **DLco, % pred** | | | | |
| Adjusted mean (SE) | 90.5 (0.6) | 77.5 (0.6) | 78.3 (0.6) | 78.3 (0.6) |

P-values:
- 0.15
- 0.01
- 0.01
- 0.25
- 0.01
- 0.01
- 0.01
- 0.01
- 0.01
- 0.01
- 0.01
- 0.01
- 0.01

Change from baseline (95% CI): Reference

P for interaction:
- < 0.01
- < 0.01
- < 0.01
- < 0.01
- < 0.01
- < 0.01
- < 0.01
- < 0.01
- < 0.01
- < 0.01
- < 0.01
- < 0.01
and 18.6 ml/min/mmHg and 90.5% pred for DLco (Table 2). FVC decreased sharply 2 weeks after surgery; it increased thereafter, but it did not return to baseline levels (2721.4 mL, 3137.7 mL, and 3268.8 mL at 2 weeks, 6 months, and 1 year after surgery, respectively) (Table 2). Compared to baseline, patients showed reduced FVC of 331.6 mL at 1 year after surgery (Fig. 2). Furthermore, compared to baseline, patients showed declines in % pred of FVC (95% CI) over the follow-up period: -23.3% (-24.1, -22.5), -12.3% (-13.2, -11.4), and -8.5% (-9.4, -7.6) at 2 weeks, 6 months, and 1 year after surgery, respectively (Fig. 2). A similar pattern was observed for FEV1 (mL and % pred) and DLCO.

Table 2 (continued)

Procedure	Before surgery	2 weeks after surgery	6 months after surgery	1 year after surgery
Wedge resection/segmentectomy	Reference	-471.3 (-520.9, -421.8)	-192.4 (-243.4, -141.4)	-140.5 (-192.8, -88.2)
Lobectomy	Reference	-642.4 (-667.4, -617.5)	-352.1 (-378.4, -325.8)	-270.3 (-297.2, -243.5)
Bilobectomy/pneumonectomy	Reference	-780.3 (-897.4, -663.3)	-577.7 (-697.2, -458.2)	-468.8 (-596.9, -340.7)

For interaction, P < 0.01.

FEV1, % pred

Adjusted mean (SE)

Procedure	Before surgery	2 weeks after surgery	6 months after surgery	1 year after surgery
Wedge resection/segmentectomy	90.3 (1.2)	74.8 (1.2)	84.2 (1.3)	86.3 (1.3)
Lobectomy	90.6 (0.6)	68.9 (0.6)	79.0 (0.6)	82.2 (0.7)
Bilobectomy/pneumonectomy	85.2 (2.9)	61.3 (3)	66.8 (3)	70.8 (3.2)

P-values 0.19 < 0.01 < 0.01.

Change from baseline (95% CI)

Procedure	Before surgery	2 weeks after surgery	6 months after surgery	1 year after surgery
Wedge resection/segmentectomy	Reference	-15.5 (-17.1, -13.8)	-6.0 (-7.7, -4.3)	-4.0 (-5.8, -2.1)
Lobectomy	Reference	-21.7 (-22.6, -20.9)	-11.6 (-12.5, -10.7)	-8.4 (-9.4, -7.5)
Bilobectomy/pneumonectomy	Reference	-24.0 (-27.8, -20.1)	-18.4 (-22.4, -14.5)	-14.4 (-18.9, -10)

P-values < 0.01 < 0.01 < 0.01.

DLco, ml/min/mmHg

Adjusted mean (SE)

Procedure	Before surgery	2 weeks after surgery	6 months after surgery	1 year after surgery
Wedge resection/segmentectomy	18.4 (0.3)	16.9 (0.3)	16.7 (0.3)	16.7 (0.3)
Lobectomy	18.6 (0.1)	15.6 (0.2)	15.7 (0.1)	15.0 (0.7)
Bilobectomy/pneumonectomy	18.4 (0.7)	14.4 (0.8)	15.0 (0.7)	15.0 (0.7)

P-values 0.81 < 0.01 < 0.01.

Change from baseline (95% CI)

Procedure	Before surgery	2 weeks after surgery	6 months after surgery	1 year after surgery
Wedge resection/segmentectomy	Reference	-1.5 (-1.9, -1.1)	-1.7 (-2.2, -1.3)	-1.7 (-2.2, -1.3)
Lobectomy	Reference	-3.0 (-3.2, -2.8)	-2.9 (-3.1, -2.6)	-2.9 (-3.1, -2.6)
Bilobectomy/pneumonectomy	Reference	-4.0 (-5.1, -2.9)	-3.3 (-4.4, -2.2)	-3.3 (-4.4, -2.2)

P-values < 0.01 < 0.01.

DLco, % pred

Adjusted mean (SE)

Procedure	Before surgery	2 weeks after surgery	6 months after surgery	1 year after surgery
Wedge resection/segmentectomy	88.4 (1.3)	81.2 (1.3)	81.1 (1.4)	81.1 (1.4)
Lobectomy	91.0 (0.6)	76.6 (0.7)	77.6 (0.7)	77.6 (0.7)
Bilobectomy/pneumonectomy	90.1 (3.1)	71.7 (3.4)	75.4 (3.3)	75.4 (3.3)

P-values 0.21 < 0.01 0.05.

Change from baseline (95% CI)

Procedure	Before surgery	2 weeks after surgery	6 months after surgery	1 year after surgery
Wedge resection/segmentectomy	Reference	-7.1 (-0.3, -5.1)	-7.3 (-9.5, -5.1)	-7.3 (-9.5, -5.1)
Lobectomy	Reference	-14.4 (-15.5, -13.3)	-13.4 (-14.5, -12.3)	-13.4 (-14.5, -12.3)
Bilobectomy/pneumonectomy	Reference	-18.5 (-23.8, -13.1)	-14.8 (-20.2, -9.4)	-14.8 (-20.2, -9.4)

P-values < 0.01 < 0.01.

* Adjusted for age, sex, stage, obesity, smoking status, cell type, type of surgery, video-assisted thoracic surgery, postoperative pulmonary complications, and adjuvant treatment.

CI, confidence interval; DLco, diffusing lung capacity of the lung for carbon monoxide; FEV1, forced expiratory volume in 1 s; FVC, forced expiratory vital capacity; SE, standard error; % pred (percent of the predicted value)
Fig. 2 Change in pulmonary function and patient-reported outcomes by postoperative time. (A) FVC (mL), (B) FVC (percent of the predicted value), (C) FEV₁ (mL), (D) FEV₁ (percent of the predicted value), (E) mMRC dyspnea scale, (F) CAT. CAT chronic obstructive pulmonary disease assessment test, FEV₁ forced expiratory volume in 1 s, FVC forced expiratory vital capacity, mMRC dyspnea scale modified Medical Research Council dyspnea scale.
(ml/min/mmHg and % pred) (Table 2, Fig. 2). During follow-up, compared to baseline, the prevalence of restrictive patterns increased by 7.8, 4.5, and 3.2 times at 2 weeks, 6 months, and 1 year after surgery, respectively, whereas the prevalence of obstructive patterns was similar (Table 3). In sensitivity analyses of participants with normal lung function at baseline (n = 431.69.5%), 10.4%, 12.0%, and 12.3% of patients had incidents of the obstructive pattern at 2 weeks, 6 months, and 1 year after surgery, respectively. On the other hand, 61.7%, 29.8%, and 20.4% of patients had incidents of the restrictive pattern at 2 weeks, 6 months, and 1 year after surgery, respectively (See Additional file 2).

Changes of PROs
Both the mMRC dyspnea scale and CAT scores decreased at 2 weeks after surgery and were alleviated over time (Table 4, Fig. 2). The prevalence of subjects with mMRC ≥ 2 was increased to 15.2, 3.3, and 2.1 times that of baseline at 2 weeks, 6 months, and 1 year after surgery, respectively. The prevalence of subjects with CAT scores ≥ 10 also increased by 6.0 and 1.4 times that of baseline at 2 weeks and 6 months after surgery, respectively, although CAT scores fully recovered at 1 year (Table 5). The individual changes in CAT levels are listed in Table 5. Two weeks post-surgery, all domains except the amount of phlegm were significantly worse than at baseline; only the breathlessness walking upstairs and

Table 3 Changes in FEV₁/FVC and patterns of ventilatory defect from baseline to 2 weeks, 6 months, and 1 year after surgery

Overall	Before surgery	2 weeks after surgery	6 months after surgery	1 year after surgery
FEV₁/FVC (%)				
Adjusted mean (SE)	73.9 (0.3)	75.1 (0.3)	74.2 (0.3)	73.6 (0.4)
Change from baseline (95% CI)	Reference	1.3 (0.8, 1.7)	0.4 (−0.1, 0.9)	−0.3 (−0.8, 0.3)
Obstructive pattern				
Adjusted proportion (SE)	20.2 (1.5)	20.4 (1.6)	22.1 (1.6)	25.8 (1.8)
Odds ratio (95% CI)	Reference	1.0 (0.8, 1.1)	1.0 (0.8, 1.2)	1.2 (1.0, 1.3)
Restrictive pattern				
Adjusted proportion (SE)	7.4 (1.0)	57.8 (1.9)	33.1 (1.9)	23.5 (1.8)
Odds ratio (95% CI)	Reference	7.8 (6.0, 10.3)	4.5 (3.4, 5.8)	3.2 (2.4, 4.1)
Type of surgery				
FEV₁/FVC (%)				
Adjusted mean (SE)				
Wedge resection/segmentectomy	73.6 (0.7)	74.7 (0.7)	73.4 (0.8)	73.1 (0.8)
Lobectomy	74.0 (0.3)	75.3 (0.4)	74.3 (0.4)	73.6 (0.4)
Pneumonectomy/bilobectomy	73.0 (1.7)	74.6 (1.7)	77.4 (1.8)	75.5 (2.0)
P-values	0.79	0.73	0.12	0.55
Obstructive pattern				
Adjusted proportion (SE)				
Wedge resection/segmentectomy	25.1 (3.8)	22.4 (3.7)	24.4 (3.9)	27.2 (4)
Lobectomy	21.7 (1.7)	21.7 (1.7)	22.3 (1.8)	25.8 (1.9)
Bilobectomy/pneumonectomy	23.0 (7.3)	17.3 (6.7)	13.5 (6.1)	22.0 (7.7)
P-values	0.69	0.83	0.44	0.85
Restrictive pattern				
Adjusted proportion (SE)				
Wedge resection/segmentectomy	4.9 (2)	44.6 (4.5)	15.5 (3.4)	9.1 (2.8)
Lobectomy	6.8 (1.1)	60.0 (2.2)	35.8 (2.3)	25.7 (2.1)
Bilobectomy/pneumonectomy	26.7 (9)	72.3 (10.4)	67.0 (10.9)	48.2 (11.7)
P-values	<0.01	<0.01	<0.01	<0.01

An obstructive pattern was defined as FEV₁/FVC < 70%; a restrictive pattern was defined as both FEV₁/FVC ≥ 70% and FVC < 80% predicted. CI confidence interval, FEV₁ forced expiratory volume in 1 s; FVC forced expiratory vital capacity, SE standard error.

* Adjusted for age, sex, stage, obesity, smoking status, cell type, type of surgery, video-assisted thoracic surgery, postoperative pulmonary complications, and adjuvant treatment.
lack of energy domains of the CAT persisted 1 year after surgery.

Impact of surgical extent on pulmonary function and PROs

The baseline levels of pulmonary function were similar, regardless of the type of surgery (Table 2). In patients with bilobectomy/pneumonectomy, FVC were decreased compared to those at baseline (-1195.6 mL, -999.6 mL, and -770.1 mL at 2 weeks, 6 months, and 1 year after surgery, respectively). Furthermore, patients with wedge resection/segmentectomy showed decreased FVC of -670.1 mL, -244.4 mL, and -164.7 mL at 2 weeks, 6 months, and 1 year after surgery, respectively (Table 2, Fig. 3). When we compared the changes from baseline of FVC (mL and % pred) by surgical extent, the changes from baseline of FVC (mL and % pred) in patients who underwent lobectomy were greater than those with wedge resection/segmentectomy, but were smaller than those with bilobectomy/pneumonectomy at 2 weeks, 6 months, and 1 year after surgery (Table 2). A similar pattern was observed for FEV₁ (mL and % pred) and DLCO (ml/min/mmHg and % pred). The prevalence of restrictive patterns at baseline was 4.9%, 6.8%, and 26.7% in the wedge resection/segmentectomy, lobectomy, and bilobectomy/pneumonectomy groups, respectively. During follow-up, the prevalence of restrictive patterns was higher than baseline, but the prevalence of obstructive patterns

Table 4	Changes in patient-reported outcomes from baseline to 2 weeks, 6 months, and 1 year after surgery			
	Before surgery	2 weeks after surgery	6 months after surgery	1 year after surgery
Overall				
mMRC dyspnea scale				
Adjusted mean (SE)	0.25 (0.03)	1.05 (0.03)	0.53 (0.03)	0.42 (0.03)
Change from baseline (95% CI)a	Reference	0.81 (0.74, 0.88)	0.28 (0.21, 0.36)	0.17 (0.10, 0.24)
CAT total score				
Adjusted mean (SE)	5.97 (0.23)	12.77 (0.24)	7.29 (0.25)	6.22 (0.25)
Change from baseline (95% CI)a	Reference	6.79 (6.3, 7.29)	1.32 (0.8, 1.84)	0.24 (–0.29, 0.77)
Type of surgery	mMRC dyspnea scale			
Adjusted mean (SE)				
Wedge resection/segmentectomy	0.27 (0.06)	0.82 (0.06)	0.36 (0.07)	0.34 (0.07)
Lobectomy	0.24 (0.03)	1.09 (0.03)	0.55 (0.03)	0.42 (0.03)
Bilobectomy/pneumonectomy	0.13 (0.14)	1.44 (0.15)	0.83 (0.16)	0.65 (0.17)
P-values	0.67	<0.01	<0.01	0.22
Change from baseline (95% CI)a	Reference	0.55 (0.39, 0.71)	0.10 (–0.06, 0.26)	0.07 (–0.09, 0.24)
Wedge resection/segmentectomy	Reference	0.85 (0.76, 0.93)	0.30 (0.22, 0.39)	0.17 (0.09, 0.26)
Lobectomy	Reference	1.31 (0.95, 1.67)	0.78 (0.41, 1.16)	0.52 (0.13, 0.91)
P for interaction	<0.01	<0.01	<0.01	0.11
CAT total score				
Adjusted mean (SE)				
Wedge resection/segmentectomy	6.08 (0.54)	11.61 (0.55)	6.55 (0.55)	5.78 (0.54)
Lobectomy	5.83 (0.27)	13.09 (0.28)	7.42 (0.28)	6.28 (0.27)
Bilobectomy/pneumonectomy	8.48 (1.27)	12.55 (1.3)	8.75 (1.34)	6.96 (1.31)
P-values	0.12	0.02	0.12	0.2
Change from baselinea	Reference	5.54 (4.43, 6.64)	0.47 (–0.67, 1.61)	–0.30 (–1.48, 0.89)
Wedge resection/segmentectomy	Reference	7.26 (6.69, 7.83)	1.59 (1.00, 2.18)	0.45 (–0.15, 1.05)
Lobectomy	Reference	4.07 (1.53, 6.61)	0.27 (–2.46, 3.00)	–1.52 (–4.31, 1.27)
P for interaction	<0.01	0.17	0.25	

CAT chronic obstructive pulmonary disease assessment test, CI confidence interval, mMRC dyspnea scale modified Medical Research Council dyspnea scale, SE standard error

*a Adjusted for age, sex, stage, obesity, smoking status, cell type, type of surgery, video-assisted thoracic surgery, postoperative pulmonary complications, and adjuvant treatment
was similar in all surgery types (Table 3). In sensitivity analyses of participants with normal lung function at baseline, similar pattern was observed. Incidences of restrictive patterns in patients with lobectomy was lower than those with bilobectomy/pneumonectomy and was higher in patients with wedge resection/segmentectomy at 2 weeks, 6 months, and 1 year after surgery and (See Additional file 2).

Bilobectomy/pneumonectomy patients had the highest mMRC dyspnea grade among the three groups, but the difference was not statistically significant one year after surgery (Table 4). The odds ratio for a CAT score > 10 was significantly higher in patients with bilobectomy/pneumonectomy than those with lobectomy or wedge resection/segmentectomy at 2 weeks after surgery; however, this difference was not statistically significant at 6 months and 1 year after surgery (Additional file 3).

Discussion

In this study, we investigated the changes in pulmonary function and PROs over one year after lung cancer surgery. We demonstrated that all parameters of lung function, dyspnea scale, and CAT scores noticeably worsened 2 weeks after surgery. During the follow-up period, lung function and PROs partly recovered but did not fully return to baseline. The pattern of alteration in PROs was found to be closely linked to changes in pulmonary function. Although the CAT scores fully recovered one year after surgery, the breathlessness and energy domains deteriorated. Lung function declines, along with worsening PROs including dyspnea, were more evident in patients who underwent bilobectomy or pneumonectomy. To our knowledge, this is the largest prospective cohort study with repeated (over 1 year) evaluations of pulmonary function and PROs after lung cancer surgery.

Surgical resection offers the best long-term survival results in patients with resectable NSCLC, but it also leads to the loss of lung parenchyma, with subsequent impairment of pulmonary function and worsening of PROs [7, 28–30]. Immediately after surgery, the FVC and FEV₁ values dramatically decreased with worse PROs, including dyspnea. The proportion of patients with mMRC ≥ 2 was only 2.4% at baseline, which increased to 26.3% 2 weeks after surgery. CAT scores also showed

| COPD assessment test results from baseline to 2 weeks, 6 months, and 1 year after surgery |
|-----------------------------------|----------------|----------------|----------------|----------------|
| Before surgery | 2 weeks after surgery | 6 months after surgery | 1 year after surgery |
| Cough frequency | Adjusted mean (SE) | 0.82 (0.05) | 2.00 (0.05) | 0.96 (0.06) | 0.68 (0.06) |
| Amount of phlegm | Change from baseline (95% CI)² | Reference | 1.18 (1.05, 1.31) | 0.15 (0.01, 0.28) | — (0.14 (−0.27, 0.00)) |
| Amount of phlegm | Adjusted mean (SE) | 0.83 (0.05) | 0.89 (0.05) | 0.77 (0.05) | 0.67 (0.05) |
| Chest tightness | Change from baseline (95% CI)² | Reference | 0.05 (−0.06, 0.16) | — (0.06 (−0.18, 0.05)) | — (0.16 (−0.27, −0.04)) |
| Breathlessness walking upstairs | Adjusted mean (SE) | 0.50 (0.05) | 1.30 (0.05) | 0.50 (0.05) | 0.47 (0.05) |
| Breathlessness walking upstairs | Change from baseline (95% CI)² | Reference | 0.8 (0.68, 0.91) | — (0.01 (−0.12, 0.11)) | — (0.04 (−0.15, 0.08)) |
| Chest tightness | Adjusted mean (SE) | 1.28 (0.06) | 2.85 (0.06) | 1.97 (0.06) | 1.79 (0.07) |
| Breathlessness walking upstairs | Change from baseline (95% CI)² | Reference | 1.57 (1.43, 1.71) | 0.70 (0.55, 0.84) | 0.52 (0.37, 0.66) |
| Home activities limited | Adjusted mean (SE) | 0.05 (0.03) | 0.64 (0.03) | 0.16 (0.04) | 0.10 (0.04) |
| Home activities limited | Change from baseline (95% CI)² | Reference | 0.59 (0.51, 0.68) | 0.12 (0.03, 0.21) | 0.06 (−0.04, 0.15) |
| Not confident leaving home | Adjusted mean (SE) | 0.08 (0.04) | 1.26 (0.04) | 0.23 (0.05) | 0.15 (0.05) |
| Not confident leaving home | Change from baseline (95% CI)² | Reference | 1.19 (1.07, 1.3) | 0.16 (0.04, 0.28) | 0.08 (−0.04, 0.2) |
| Sleep disturbance | Adjusted mean (SE) | 0.96 (0.06) | 1.56 (0.07) | 0.86 (0.07) | 0.86 (0.07) |
| Sleep disturbance | Change from baseline (95% CI)² | Reference | 0.60 (0.44, 0.75) | — (0.10 (−0.26, 0.06)) | — (0.42 (−0.58, −0.25)) |
| Lack of energy | Adjusted mean (SE) | 1.49 (0.06) | 2.50 (0.06) | 1.84 (0.06) | 1.80 (0.06) |
| Lack of energy | Change from baseline (95% CI)² | Reference | 1.00 (0.87, 1.14) | 0.35 (0.21, 0.49) | 0.31 (0.17, 0.46) |

COPD chronic obstructive pulmonary disease, CI confidence interval, SE standard error
² Adjusted for age, sex, stage, obesity, smoking status, cell type, type of surgery, video-assisted thoracic surgery, postoperative pulmonary complications, and adjuvant treatment
Fig. 3 Change in pulmonary function and patient-reported outcomes by type of surgery and postoperative time. (A) FVC (mL), (B) FVC (percent of the predicted value), (C) FEV1 (mL), (D) FEV1 (percent of the predicted value), (E) mMRC dyspnea scale, (F) CAT according to type of surgery and postoperative time. CAT: chronic obstructive pulmonary disease assessment test, FEV1: forced expiratory volume in 1 s, FVC: forced expiratory vital capacity, mMRC: modified Medical Research Council dyspnea scale. *P for interaction (P < 0.01) between type of surgery (reference: lobectomy) and time after adjustment for age, sex, smoking status, obesity, stage, cell type, type of surgery, video-assisted thoracic surgery, postoperative pulmonary complications, and adjuvant treatment.
after bilobectomy/pneumonectomy, respectively. How-

8.5% and 8.4% after lobectomy, and 18.2% and 14.4%
were 4.1% and 4% after wedge resection/segmentectomy,
the proportion was not significantly associated with the

dyspnea of mMRC

the patients with bilobectomy/pneumonectomy still had
that patients who underwent pneumonectomy experi-
results were similar to those of a previous study showing
3–6 months would be required to overcome the postop-
in the early postoperative period. Thus, approximately
function could have been impaired more than expected
35, 36]. Owing to surgical incision and pain, pulmonary

cant dyspnea with mMRC

of PROs, approximately 5% of the patients had signifi-
had restrictive patterns one year after surgery. In terms
tion/segmentectomy, 23.3% and 21.7% after lobectomy,
and 28.8% and 24% after bilobectomy or pneumonec-
tomy, respectively. Furthermore, approximately half of
patients with bilobectomy/pneumonectomy had dyspnea
with mMRC ≥2, and even after wedge resection/segment-
tectomy, more than 18% of patients suffered from dysp-
nea with mMRC ≥2 in the early postoperative period
(Additional file 3). Our study indicated that patients
undergo substantial symptomatic discomfort including
dyspnea with a profound decrease of pulmonary func-
tion in the early postoperative period independent of the
extent of surgery.

Six months after surgery, the decline in lung function
and worsened PROs partially recovered, which is con-
sistent with the results of previous studies [6–9, 28–30,
35, 36]. Owing to surgical incision and pain, pulmonary
function could have been impaired more than expected
in the early postoperative period. Thus, approximately
3–6 months would be required to overcome the postop-
erative residual pleural space (occupied by pleural fluid),
achieve lung expansion, and displace the mediastinum
and diaphragm [37]. Accordingly, symptoms were more
relieved 6 months after surgery in our study, but the
remaining significant symptoms varied according to the
extent of surgery. While 8% of the patients showed sig-
nificant dyspnea of mMRC ≥2 after lobectomy, 16% of
the patients with bilobectomy/pneumonectomy still had
dyspnea of mMRC ≥2 after surgery at 6 months. These
results were similar to those of a previous study showing
that patients who underwent pneumonectomy experi-
enced greater dyspnea and pain than those who under-
went lobectomy [32].

One year after surgery, lung function loss and worsen-

ing of symptoms were mitigated, regardless of the surgi-
cal extent. Regarding lung function, the remaining FVC
(% pred) and FEV1 (% pred) losses one year after surgery
were 4.1% and 4% after wedge resection/segmentectomy,
8.5% and 8.4% after lobectomy, and 18.2% and 14.4%
after bilobectomy/pneumonectomy, respectively. How-
ever, 25% of patients with lobectomy and approximately
half patients with bilobectomy/pneumonectomy still
had restrictive patterns one year after surgery. In terms
of PROs, approximately 5% of the patients had signifi-
cant dyspnea with mMRC ≥2 1 year after surgery, and
the proportion was not significantly associated with the
extent of surgery. Other symptoms such as cough, sput-
tum, chest tightness, confidence, and home activities
were restored after 1 year compared to baseline, but the
lack of energy and breathlessness persisted. Although
lung function loss and dyspnea persisted in some patients
1 year after surgical resection, our results provide mean-
ful information on lung function and PRO changes
over one year after surgery, based on surgical extent. Our
results could guide patients on the timeline of improve-
ment in lung function and PROs, especially from 2 weeks
after surgery.

Postoperative impairment of pulmonary function has
been reported to be an indicator of dyspnea [38]. The
presence of dyspnea is associated with a low level of
QOL, including physical, social, and role functions [12,
30]. The relationship between subjective symptoms and
objective pulmonary function has been reported among
patients with chronic lung disease [39–41], but it has
rarely been reported in lung cancer patients postopera-
tively. In a previous study, respiratory symptoms were
significantly more common in the presence of moderate-
to-severe pulmonary dysfunction [38], but postoperative
symptoms, such as dyspnea, are often ignored and under-
estimated. Despite these symptoms, medication usage
was not commonly reported, and only 18% of the patients
reported use of prescribed bronchodilators [38]. Several
previous studies have shown that exercise programs are
effective in improving exercise capacity, symptoms, and
QOL after lung cancer surgery [42, 43]; however, the
clinical application of exercise programs is still limited.
To our knowledge, this is the largest prospective study to
show the longitudinal changes in PROs related to post-
operative lung function decline. Our data showed the
nature of pulmonary function changes and symptoms
over 1 year after lung cancer surgery, and found that the
most deteriorated PROs and pulmonary function reduc-
tions occurred at 2 weeks, which could be targets for
intervention. Deterioration of pulmonary function and
related symptoms could be relieved or mitigated with
integrated programs, including medication and rehab-
ilitation. Future research is required to establish inter-
ventions to improve pulmonary function and patient
discomfort.

The present study has several limitations. First, as the
study was conducted only in patients at a tertiary hos-
pital, the results might not represent different settings.
Second, few patients dropped out during follow-up;
hence, changes in pulmonary function could be overes-
timated if those patients showed worse performance.
Third, the surgical procedures largely depended on the
tumor characteristics, and differences in baseline char-
acteristics according to surgical procedure were unavoid-
able. Finally, although the CAT is largely accepted among
patients with chronic obstructive pulmonary disease, its clinical application in postoperative lung cancer patients has not been fully established. However, in this study, the Cronbach’s alpha of the CAT was 0.77, which is an acceptable value [44]. In terms of the mMRC dyspnea scale, which only involves one item, the correlation coefficient as convergence validity between CAT score and mMRC dyspnea scale was 0.49, which is also acceptable [45].

Conclusions
In conclusion, our study demonstrated longitudinal changes in pulmonary function and integrated PROs in a large prospective cohort after lung cancer surgery. Lung function and PROs improved over time, but patients suffered from dyspnea and symptoms along with sharply decreased lung function in the early postoperative period, independent of the extent of surgery. Thus, physicians are required to stay attentive regarding lung function decline and associated symptoms after surgery and could provide proper information with emotional support as their lung function and QOL are expected to improve with time. Further studies are needed to establish intervention programs for these patients.

Abbreviations
NSCLC: Non-small cell lung cancer; FEV1: Forced expiratory volume in 1 s; QOL: Quality of life; HRQOL: Health-related quality of life; PROs: Patient-reported outcomes; DLco: Diffusing capacity of the lung for carbon monoxide; FVC: Forced vital capacity; mMRC: Modified Medical Research Council; CAT: Chronic Obstructive Lung Disease Assessment Test; % pred: Percent of the predicted values.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12931-022-02149-9

Acknowledgements
Not applicable.

Author contributions
SS, SK, DK, HKK, and HYP drafted the manuscript. All authors listed have provided substantial contributions to the conception or design of this work, or data acquisition, analysis, or interpretation, and all authors participated in revising the manuscript after critical review. All authors read and approved the final manuscript.

Funding
This work was supported by grants from the National Research Foundation of Korea (NRF), funded by the Korean government (MSIP) (No. 2021R1A2C1006871). This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health Welfare, Republic of Korea (grant number : HR21C0885).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding authors (Dr Hong Kwan Kim or Hye Yun Park) in response to reasonable requests.

Declarations

Ethics approval and consent to participate
The study protocol was approved by the Institutional Review Board of Samsung Medical Center (no. 2015–11-025), and written informed consent was obtained from all participants.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Thoracic and Cardiovascular Surgery, School of Medicine, Ewha Womans University, Seoul, South Korea. 2 Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul 06351, Korea. 3 Department of Clinical Research Design and Evaluation, SAHST, Sungkyunkwan University, Seoul, South Korea. 4Patient-Centered Outcomes Research Institute, Samsung Medical Center, Seoul, South Korea. 5 Center for Clinical Epidemiology, Samsung Medical Center, Seoul, South Korea. 6Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA. 7Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul 06351, South Korea.

Received: 6 February 2022 Accepted: 11 August 2022
Published online: 30 August 2022

References
1. Collaboration GBDoC. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524–48.
2. Howlader N, Noone AM, Krapcho M, Dillner J, Bastian PJ, Neyman N, Amin MB, globocan 2018, Version 1.1, International Agency for Research on Cancer (IARC). 3. Smith BD, Smith GL, Hurria A, Hortobagyi GN, Buchholz TA. Future of cancer incidence in the United States: burdens upon an aging, changing nation. J Clin Oncol. 2009;27:2758–65.
4. Howington JA, Blum MG, Chang AC, Ballekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e278S-e313S.
5. Goldstraw P, Chansky K, Crowley J, Ramí-Porta R, Asamura H, Eberhardt WEE, Nicholson AG, Groome P, Mitchell A, Bolejack V, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11:39–51.
6. Gu Z, Wang H, Mao T, Ji C, Xiang Y, Zhu Y, Xu P, Fang W. Pulmonary function changes after different extent of pulmonary resection under video-assisted thoracic surgery. J Thorac Dis. 2018;10:2331–7.
7. Bolliger CT, Jordan P, Soler M, Stulz P, Tamme M, Wyser C, Goniom M, Perucchini AP. Pulmonary function and exercise capacity after lung resection. Eur Respir J. 1996;9:415–21.
8. Win T, Groves AM, Ritchie AJ, Wells FC, Cafferty F, Laroche CM. The effect of lung resection on pulmonary function and exercise capacity in lung cancer patients. Respir Care. 2007;52:720–6.

9. Larsen NR, Svendsen UG, Milman N, Bnæe J, Petersen BN. Cardiopulmonary function at rest and during exercise after resection for bronchial carcinoma. Ann Thorac Surg. 1997;64:960–4.

10. Fitch MJ. Exploring Experiences of Survivors and Caregivers Regarding Lung Cancer Diagnosis, Treatment, and Survivorship. J Patient Exp. 2020;7:193–9.

11. Lowery AE, Kebbs P, Coups EJ, Feinstein MB, Burkhall JE, Park BJ, Ostroff JS. Impact of symptom burden in post-surgical non-small cell lung cancer survivors. Support Care Cancer. 2014;22:173–80.

12. Hechtner M, Eichler M, Wehler B, Buhl R, Sebastian M, Stratmann J, Schmiederger H, Gehrbandt B, Reuser J, Kortsik C, et al. Quality of life in NSCLC survivors—a multicenter cross-sectional study. J Thorac Oncol. 2019;14:420–35.

13. Yang P, Cheville AL, Wampfler JA, Garces YJ, Jatoi A, Clark MM, Casriovi SD, Midthun DE, Marks RS, Aubry MC, et al. Quality of life and symptom burden among long-term lung cancer survivors. J Thorac Oncol. 2012;7:64–70.

14. Ostroff JS, Kebbs P, Coups EJ, Burkhall JE, Feinstein MB, Steingart RM, Loeve AE, Park BJ. Health-related quality of life among early-stage, non-small cell, lung cancer survivors. Lung Cancer. 2011;71:103–8.

15. Gridelli C, Perrone F, Nelli F, Ramponi S, De Marinis F. Quality of life in lung cancer patients. Ann Oncol. 2001;12:521–5.

16. Bergman B, Aaronson NK, Ahmadzai S, Kwaas S, Sullivan M. The EORTC QLQ-LC13: a modular supplement to the EORTC Core Quality of Life Questionnaire (QLQ-C30) for use in lung cancer clinical trials. EORTC Study Group on Quality of Life. Eur J Cancer. 1994;30A:655–42.

17. Eidiabeh DE, Coens C, Zikos E, Quenent J, Ringasugh J, King MT, Schmucker von Koch J, Gotay C, Geimle F, Eichler M, et al. Does change in health-related quality of life score predict survival? Analysiss of EORTC 08975 lung cancer trial. Br J Cancer. 2014, 110:2427–2433.

18. Sollberg Nås L, Liu H, Patten CA, Rausch SM, Sloan JA, Cheville AL, West PD, Clark MM. Physical activity level and quality of life in long term lung cancer survivors. Lung Cancer. 2012;77:611–6.

19. Pozo CL, Morgan MA, Gray J. Survivorship issues for patients with lung cancer. Cancer Control. 2014;21:40–50.

20. Lee H, Kim HK, Kang D, Song S, Lee JK, Lee G, Shin S, Cho J, Zo JI, Shin YM, Park HY. Prognostic value of 6-min walk test to predict postoperative cardiopulmonary complications in patients with non-small cell lung cancer. Chest. 2020;157:1665–73.

21. Miller MR, Hankinson J, Bruscasico V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CPM, Gustafsson P, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.

22. American Thoracic Society. Single-breath carbon monoxide diffusing capacity (transfer factor). Recommendations for a standard technique—1995 update. Am J Respir Crit Care Med. 1995;152:2185–98.

23. Choi JK, Paek D, Lee JO. Normal predictive values of spirometry in Korean population. TRD. 2005;58:230–40.

24. Park JO, Choi IS, Park KO. Normal predicted values of single-breath diffusing capacity of the lung in healthy nonsmoking adults. Korean J Intern Med. 1986;1:784–8.

25. Bestall JC, Paul EA, Garrod R, Garmham R, Jones PW, Wdzech JA. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax. 1990;45:581–6.

26. Jones PW, Harding G, Berry P, Wdroud L, Chen WH, Leidy NK. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009;34:648–54.

27. Shin S, Park HY, Kim H, Kim HK, Choi YS, Kim J, Um S-W, Chung MJ, Kim H, Kwon OJ, et al. Joint effect of airflow limitation and emphysema on postoperative outcomes in early-stage non-small cell lung cancer. Eur Respir J. 2016;48:1743.

28. Lima LN, da Silva RA, Gross JL, Deheinzelin D, Negri EM. Assessment of pulmonary function and quality of life in patients submitted to pulmonary resection for cancer. J Bras Pneumol. 2009;35:521–8.

29. Brunelli A, Socci L, Refai M, Salati M, Xiume F, Sabattini A. Quality of life before and after major lung resection for lung cancer: a prospective follow-up analysis. Ann Thorac Surg. 2007;84:410–6.

30. Poghosyan H, Sheldon LK, Leveille SG, Cooley ME. Health-related quality of life after surgical treatment in patients with non-small cell lung cancer: a systematic review. Lung Cancer. 2013;81:1–16.

31. Baldyuck B, Hendriks J, Lauwers P, Sardan N, Van Schill P. Quality of life evolution after lung cancer surgery in septuagenarians: a prospective study. Eur J Cardiothorac Surg. 2009;35:1070–5.

32. Baldyuck B, Hendriks J, Lauwers P, Van Schill P. Quality of life after lung cancer surgery: a prospective pilot study comparing bronchial sleeve lobectomy with pneumonectomy. J Thorac Oncol. 2008;3:604–8.

33. Burfeind WR Jr, Tong BC, O’Branski E, Herndon JE, Tolosa EM, D’Amico TA, Harper LH, Harper DH Jr. Quality of life outcomes are equivalent after lobectomy in the elderly. J Thorac Cardiovasc Surg. 2008;136:597–604.

34. Kenny PM, King MT, Viney RC, Boyer MJ, Pollicino CA, Mcleam JM, Fullham MJ, McCaughan BC. Quality of life and survival in the 2 years after surgery for non-small cell lung cancer. J Clin Oncol. 2008;26:233–41.

35. Kim SJ, Lee YJ, Park JS, Choy YJ, Cho S, Yoon H, Kim K, Lee JH, Jeon S, Lee CT. Changes in pulmonary function in lung cancer patients after video-assisted thoracic surgery. Ann Thorac Surg. 2015;99:210–7.

36. Baldyuck B, Hendriks J, Lauwers P, Van Schill P. Quality of life evolution after lung cancer surgery: a prospective study in 100 patients. Lung Cancer. 2007;56:423–31.

37. Misiroli C, Beretta R, Rivolta I. Respiratory mechanics and fluid dynamics after lung resection surgery. Thorac Surg Clin. 2010;20:345–57.

38. Sanna L, Evangelista L, Tankin O, Padilla G, Holmes C, Brecht ML, Grannis F. Impact of respiratory symptoms and pulmonary function on quality of life of long-term survivors of non-small cell lung cancer. Chest. 2004;125:439–45.

39. Martinez-TY, Pereira CA, dos Santos ML, Ciconelli RM, Guimarães SM, Martinez JA. Evaluation of the short-form 36-item questionnaire to measure health-related quality of life in patients with idiopathic pulmonary fibrosis. Chest. 2000;117:1627–32.

40. Mahler DA, Faryniz K, Tomlinson D, Golins AG, O’Connor GT. Impact of dyspnea and physiologic function on general health status in patients with chronic obstructive pulmonary disease. Chest. 1992;102:395–401.

41. Ruffin RE, Wilton CR, Chittleborough CR, Southcott AM, Smith B, Christopher DJ. Multiple respiratory symptoms predict quality of life in chronic lung disease: a population-based study of Australian adults. Qual Life Res. 2000;9:1031–9.

42. Avancini A, Sartori G, Gkountakos A, Casali M, Trestini I, Tregnago D, Bria E, Jones LW, Millella M, Lanza M, Pilottio S. Physical activity and exercise in lung cancer care: will promises be fulfilled? Oncologist. 2020;25:e555–69.

43. Codima A, das Neves Silva W, de Souza Borges AP, de Castro G, Jr. Exercise prescription for symptoms and quality of life improvements in lung cancer patients: a systematic review. Support Care Cancer 2021, 29:445–457.

44. Steiner DL. Starting at the beginning: an introduction to coefficient alpha and internal consistency. J Pers Assess. 2003;80:99–103.

45. Goehring HJ. Statistical methods in education. Arlington: Information Resources Press; 1981.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.