Comment on “Magnetic-Field-Tuned Quantum Phase Transition in the Insulating Regime of Ultrathin Amorphous Bi Films”

A recent Letter by Lin and Goldman [1] presented experimental data for the relative magnetoresistance (MR) in disordered thin films, which were interpreted as evidence of a quantum phase transition. Such films are known to exhibit a superconductor (SC)-insulator transition as a function of disorder [2], and a huge peak in the resistance $R(B)$ with magnetic field B [3,4]. These highly disordered samples were insulating at zero B. The experimental results supporting the quantum phase transition scenario are: (a) the relative magnetoresistance, $MR(B,B_0)=(R(B)-R(B_0))/R(B_0)$, at $B_0=0$ was temperature independent at a specific, non-universal, field B_C, and (b) near this point all the different-T curves collapsed upon rescaling $R=R_0F(|B-B_C|/T^{1/\nu_z})$, where ν and z were interpreted as the critical exponents of the transition. In this comment we present an alternative interpretation based on activated transport in a disordered landscape. We first present numerical simulations, and then support them by simple analytic arguments.

Our numerical simulations were performed using a new ab initio technique, based on the disordered negative-U Hubbard model, that fully captures the effects of thermal phase fluctuations [5]. The results of this method describe the observed phenomenology of transport through thin disordered SC films, including the origin of the magnetoresistance peak [6]. Here we report results for more disordered systems, which, as in the experiment, are resistive at zero B (we used an onsite energy standard deviation of $W=6t$, where t is the lattice hopping integral, onsite interaction $U=1.6t$, and 0.37 filling). The inset of Fig. 1(b) depicts $R(B)$ for several temperatures, with the resulting MR shown in Fig. 1(a), where the main experimental result is reproduced — following a peak, the MR isotherms cross at a constant magnetic field. Near that point, all the curves collapse (Fig. 1(c)), using the same scaling analysis as in [1], with $\nu_z=0.89$. The sample displays no notable phenomenon in the local currents and chemical potential at B_C.

Since our numerical calculations neglect quantum fluctuations, the source of our crossing point B_C cannot be the putative quantum phase transition [1]. To understand the crossing we note that both in the theory and in the experiment, the resistance is activated, $R(B,T)=R_0(B)e^{T_A(B)/T}$, with $T_A(B)$ the activation temperature at field B, and $R_0(B)\approx\hbar/4e^2$ is the high temperature resistance. Fig. 1(a) shows that $T_A(B)$, in agreement with experiment, is a non-monotonic function, and, in fact, B_C corresponds to $T_A(B_C)=T_A(0)$. If $R(B,T)$ obeys the activated behavior above, $MR(B,0)$ becomes T-independent at $B=B_C$. Moreover, expanding $T_A(B)$ around $B=B_C$, we find that the scaling function

$$MR(B,B_0) = \frac{R_0(B)}{R_0(B_0)} \left(1 + \frac{T_A(B_C)(B-B_C)}{T} \right)^{-1},$$

is in agreement with the experimental fitted form with $\nu_z=1$. (The deviations from perfect scaling come from the weak dependence of $R_0(B)$ on B, and from the deviations, both experimentally and numerically, from simple activation at lower temperatures.)

If our interpretation is correct, and B_C was only determined by $T_A(B_C)=T_A(0)$, the same behavior should be observed in less disordered samples for $MR(B,B_0)$, where $T_A(B_C)=T_A(B_0)$ and $B_0>0$. Indeed in Fig. 1(c,d) we present results for a sample with lower disorder $W=t$ that is SC at $B=0$. Again the MR isotherms all cross at $B=B_C$, with a reasonable collapse. Moreover the inset of Fig. 1(d) depicts the excellent collapse of the experimental data published in Ref. [3] for a lower disorder sample, with $B_0=4T$ and $B_C=12.8T$, supporting our scenario.

In summary, using ab initio simulations and analytic arguments, we have demonstrated an alternative explanation of the experimental results of Ref. [1]. The crossing of the MR curves can be understood entirely in terms of activated transport, which our previous analysis attributed to transport through Coulomb blockade islands [6]. Finally, we have made a specific prediction to test our analysis.

G.J. Conduit and Y. Meir
Ben Gurion University, Beer Sheva 84105, Israel

FIG. 1: (Color online) (a,c) The MR curves (solid) and activation temperature (dotted) with magnetic field. The upper plots were taken at disorder $W=6t$ and the lower at $W=t$. The blue curve (lowest at large fields) is at low temperature $T=0.02t$, and red high temperature $T=0.07t$. (b,d) The MR with scaled magnetic field. The inset (b) shows the variation of resistance with magnetic field and (d) the MR for the experimental data from Ref. [3].

[1] Y.-H. Lin and A.M. Goldman, Phys. Rev. Lett. 106, 127003 (2011).

[2] For a review, see, e.g., A. Goldman, Physics Today, Nov.
1998, p.41.

[3] G. Sambandamurthy, L.W. Engel, A. Johansson, and D. Shahar, Phys. Rev. Lett. 92, 107005 (2004)

[4] M.A. Steiner, G. Boebinger, and A. Kapitulnik, Phys. Rev. Lett. 94, 107008(2005); H.Q. Nguyen, S.M. Hollen, M.D. Stewart, Jr., J. Shainline, Aijun Yin, J.M. Xu, and J.M. Valles, Jr., Phys. Rev. Lett. 103, 157001 (2009).

[5] G.J. Conduit and Y. Meir, Phys. Rev. B 84, 064513 (2011).

[6] G.J. Conduit and Y. Meir, arxiv/1111.2941.