SARS-CoV-2–induced Acute Respiratory Distress Syndrome: Pulmonary Mechanics and Gas-Exchange Abnormalities

To the Editor:

In January 2020, the first cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reported in Europe. Multiple outbreaks have since then led to a global pandemic, as well as to massive medical, economic, and social repercussions (1, 2).

SARS-CoV-2 pneumonia can develop into acute respiratory distress syndrome (ARDS) when mechanical ventilation (MV) is needed (3, 4). ARDS produces abnormalities in gas exchange with a variable degree of shunt (5), high dead space ventilation (dead space volume [Vd]/tidal volume [Vt]) ratio (6), diminished pulmonary compliance (7), and alterations to the pulmonary circulation (8). The cornerstone of ARDS management is to provide adequate gas exchange without further lung injury as a result of MV. To date, information regarding the characteristics of SARS-CoV-2–induced ARDS is not completely known. However, this information is crucial to better apply MV and facilitate organ support strategies. We therefore present the characteristics of gas exchange, pulmonary mechanics, and ventilatory management of 50 patients with laboratory-confirmed SARS-CoV-2 infection, who developed ARDS and underwent invasive MV (IMV).

Methods

Descriptive analysis included 50 consecutive patients with laboratory-confirmed SARS-CoV-2 infection who developed ARDS (9) and underwent IMV. These patients were admitted to the SARS-CoV-2–dedicated intensive care units (ICUs) at Hospital Clinic of Barcelona, Spain, between March 7 and March 25, 2020.

Upon ICU admission, epidemiological characteristics, the severity of SARS-CoV-2 infection with the Acute Physiology and Chronic Health Evaluation II score, prognostic biomarkers of SARS-CoV-2 infection (described in Reference 4), time from hospital to ICU admission, time from ICU admission to intubation, oxygen therapy or noninvasive ventilation (NIV) use, and microbiology were investigated.

On the day that criteria for ARDS diagnosis were met (9) and IMV was needed, the following assessments were performed: impairment in oxygenation was analyzed with the partial pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio, and abnormalities of CO2 metabolism were studied with the ventilatory ratio (VR), a surrogate parameter of Vd/Vt (10).

In addition, adjunctive therapies and MV parameters related with ventilation-induced lung injury (VILI) described elsewhere (11–15) were investigated.

Table 1. Characteristics of 50 patients with SARS-CoV-2–induced ARDS

Characteristic	Median (IQR) or n (%)
Baseline characteristics	
Age, yr	66 (67–74)
Male†	38 (72)
BMI, kg/m²	27.88 (26.43–30.39)
Smoking status*	
Never	23 (56)
Current	4 (10)
Former	14 (34)
Alcohol consumption habit	6 (12)
APACHE II score at ICU admission	13 (11–18)
SOFA score upon ARDS diagnosis	7 (6–9)
Time from hospital admission to ICU admission, d	2 (1–3.75)
Time from ICU admission to intubation, d	1 (0–1)
Coinfection	2 (4)
Oxygen therapy and NIV before intubation†	
Venturi and nonrebreathing oxygen mask	43 (93)
High-flow oxygen therapy	23 (50)
NIV	5 (11)
ARDS severity	
Mild	12 (24)
Moderate	22 (44)
Severe	16 (32)
Management factors	
Prone position	11 (22)
Neuromuscular blockade use	24 (48)
Recruitment maneuvers	18 (36)
Vasopressor use	16 (32)
Corticosteroid therapy	18 (36)
Laboratory findings‡	
Hemoglobin, g/dl	12.80 (11.83–13.40)
White blood cell count, ×10⁹/L	8.11 (6.26–11.42)
Lymphocyte count, ×10⁹/L	0.60 (0.40–0.90)
Platelet count, ×10⁹/L	219 (174–274)

(Continued)
Results

By March 25th, 2020, 50 patients with laboratory-confirmed SARS-CoV-2 infection and ARDS had been admitted to our hospital. Table 1 shows the demographic and clinical characteristics of these patients. The median (interquartile range [IQR]) age was 66 (57–74) years. Thirty-six patients (72%) were men. Upon ARDS diagnosis, 44% of patients were admitted as having mild ARDS and 32% were admitted as having severe ARDS. As Crs decreases alongside the collapse of alveolar units due to lung edema, several factors may provide explanations for such reported differences, including treatments, intubation strategies, and the stage of the disease. In our cohort with early SARS-CoV-2–induced ARDS, the time from ICU admission to intubation was only 24 hours, despite the use of high-flow nasal cannula or NIV in some cases.

Correlations of SARS-CoV-2 prognostic biomarkers (4), pulmonary mechanics, and gas-exchange data were performed. Twenty-eight–day and hospital mortality, ventilator- and ICU-free days at Day 28, hospital and ICU lengths of stay, and need for tracheostomy were also evaluated (16). Finally, a subanalysis assessing differences before and after prone positioning was performed. For additional detail on the method, see the online supplement.

Definition of abbreviations: APACHE II = Acute Physiology and Chronic Health Evaluation II; ARDS = acute respiratory distress syndrome; BMI = body mass index; ICU = intensive care unit; IQR = interquartile range; NIV = noninvasive ventilation; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; SOFA = sequential organ failure assessment.

1Missing data from nine patients.
2Missing data from four patients.
3Laboratory findings upon ARDS diagnosis.
4Six patients were still in the hospital after follow-up ending.

Characteristic	Median (IQR) or n (%)
Creatinine, mg/ml	0.98 (0.77–1.45)
Sodium, mEq/L	138 (136–140)
Potassium, mEq/L	3.90 (3.60–4.30)
Aspartate aminotransferase, U/L	65 (48–82)
Alanine aminotransferase, U/L	45 (28–76)
Total bilirubin, mg/dl	0.50 (0.40–0.90)
γ-Glutamyltransferase, U/L	54 (36–105)
Lactate, mmol/L	1.33 (1–1.59)
Alkaline phosphatase, U/L	67 (53–86)
Lactate dehydrogenase, U/L	442 (386–541)
Albumin, g/L	36 (33–38)
D-dimer, ng/ml	1,100 (800–3,800)
Ferritin, ng/ml	1,436.50 (951.25–2,149.25)
Procalcitonin, ng/ml	0.27 (0.17–0.97)
C-reactive protein, mg/dl	15.88 (9.04–27.03)
Outcomes	
Hospital mortality	15 (34)
Mortality at Day 28	10 (20)
Ventilator-free at Day 28, d	9 (0–16)
ICU-free at Day 28, d	0 (0–9)
Hospital length of stay, d	36 (24–44)
ICU length of stay, d	26 (17–34)
Tracheostomy	30 (60)

Measure	Median (IQR)
Arterial blood gas	
pH	7.31 (7.28–7.37)
PaO2, mm Hg	107 (88.5–133.6)
PaCO2, mm Hg	47 (42.9–53.4)
PaO2/FIO2	174 (128–232)
Ventilator ratio*	1.93 (1.55–2.23)
Ventilator settings, pulmonary mechanics, and other variables associated with VILI	
VR/PBW, ml/kg	6.78 (6.30–7.32)
Respiratory rate, breaths/min	22 (20–23)
PEEP, cm H2O	13 (11–14)
FIO2, %	62 (53–76)
Peak inspiratory pressure, cm H2O	32 (29–34)
End-inspiratory plateau pressure, cm H2O	23 (21–25)
Driving pressure, cm H2O O2†	11 (9–13)
Mechanical power, J/min†	22.32 (18.49–28.10)
Crs, ml × cm H2O O2†	40.13 (32.88–51.68)

*Ventilatory ratio is defined as (minute ventilation [ml/min] × PaO2/FIO2)/[PBW × 100 × 37.5].
†Driving pressure is the difference between plateau pressure and PEEP.
‡Mechanical power was calculated following previously published formulas (11).
§Crs is the ratio of tidal volume to driving pressure.

Comparison of SARS-CoV-2–induced ARDS and VILI of 50 patients with SARS-CoV-2–induced ARDS upon ARDS diagnosis

Measure	Median (IQR)
Arterial blood gas	
pH	7.31 (7.28–7.37)
PaO2, mm Hg	107 (88.5–133.6)
PaCO2, mm Hg	47 (42.9–53.4)
PaO2/FIO2	174 (128–232)
Ventilator ratio*	1.93 (1.55–2.23)
Ventilator settings, pulmonary mechanics, and other variables associated with VILI	
VR/PBW, ml/kg	6.78 (6.30–7.32)
Respiratory rate, breaths/min	22 (20–23)
PEEP, cm H2O	13 (11–14)
FIO2, %	62 (53–76)
Peak inspiratory pressure, cm H2O	32 (29–34)
End-inspiratory plateau pressure, cm H2O	23 (21–25)
Driving pressure, cm H2O O2†	11 (9–13)
Mechanical power, J/min†	22.32 (18.49–28.10)
Crs, ml × cm H2O O2†	40.13 (32.88–51.68)

*Ventilatory ratio is defined as (minute ventilation [ml/min] × PaO2/FIO2)/[PBW × 100 × 37.5].
†Driving pressure is the difference between plateau pressure and PEEP.
‡Mechanical power was calculated following previously published formulas (11).
§Crs is the ratio of tidal volume to driving pressure.

Table 1. Gas exchange, pulmonary mechanics, and VILI of 50 patients with SARS-CoV-2–induced ARDS upon ARDS diagnosis

Characteristic	Median (IQR) or n (%)
Sodium, mEq/L	138 (136–140)
Potassium, mEq/L	3.90 (3.60–4.30)
Aspartate aminotransferase, U/L	65 (48–82)
Alanine aminotransferase, U/L	45 (28–76)
Total bilirubin, mg/dl	0.50 (0.40–0.90)
γ-Glutamyltransferase, U/L	54 (36–105)
Lactate, mmol/L	1.33 (1–1.59)
Alkaline phosphatase, U/L	67 (53–86)
Lactate dehydrogenase, U/L	442 (386–541)
Albumin, g/L	36 (33–38)
D-dimer, ng/ml	1,100 (800–3,800)
Ferritin, ng/ml	1,436.50 (951.25–2,149.25)
Procalcitonin, ng/ml	0.27 (0.17–0.97)
C-reactive protein, mg/dl	15.88 (9.04–27.03)
Outcomes	
Hospital mortality	15 (34)
Mortality at Day 28	10 (20)
Ventilator-free at Day 28, d	9 (0–16)
ICU-free at Day 28, d	0 (0–9)
Hospital length of stay, d	36 (24–44)
ICU length of stay, d	26 (17–34)
Tracheostomy	30 (60)

Table 2. Gas exchange, pulmonary mechanics, and VILI of 50 patients with SARS-CoV-2–induced ARDS upon ARDS diagnosis

Table 1. (Continued)
We found no correlation between Crs and $\text{PaO}_2/\text{FiO}_2$. Crs estimates the amount of aerated lung volume in ARDS (7). These results might therefore suggest that the proportion of nonaerated or poorly aerated to well-aerated lung volume is not the only determinant for such a degree of hypoxemia. This may not be specific to SARS-CoV-2–induced ARDS, as other factors apart from the amount of aerated lung tissue (i.e., lung perfusion) are largely known to influence pulmonary shunt (24). However, some authors have reported that lung perfusion in SARS-CoV-2–induced ARDS is more impaired than ARDS by other causes (21). We identified remarkable abnormal lung perfusion in computed tomographic scans performed in these patients (Figure E1).

We found no correlation between D-dimer and VR, suggesting that high V_D/V_T might not be related to a coagulation disorder (i.e., pulmonary microthrombosis). Nonetheless, as suggested by its association with VR, high end-inspiratory and end-expiratory pressures (i.e., mean airway pressures) could increase V_D/V_T if the lung is overdistended and perfusion is decreased.

Although driving pressure and end-inspiratory plateau pressure were within the protective range, mechanical power was found to be slightly high and might have promoted lung injury (25). In patients undergoing prone positioning, $\text{PaO}_2/\text{FiO}_2$ improvement was followed by an increase in Crs, suggesting recruitment and aeration of previously collapsed alveoli. In our study, mortality was similar to that reported in other studies of critically ill patients with SARS-CoV-2 pneumonia (3, 19).

This study presents some limitations. Four manual end-inspiratory and end-expiratory pauses could not be performed in all patients because of protective equipment shortages. However, all patients included had at least one end-inspiratory and end-expiratory pause done on the first day. These results cannot be extrapolated to late SARS-CoV-2–induced ARDS.

In summary, SARS-CoV-2–induced ARDS presents with an impairment in gas exchange and pulmonary mechanics comparable with those of prior ARDS cohorts. However, lung perfusion in SARS-CoV-2–induced ARDS warrants further investigation.

Author disclosures are available with the text of this letter at www.atsjournals.org.

Acknowledgment: The authors thank Anthony Armenta for providing medical editing assistance of the publication at hand.

Enric Barbeta, M.D.*
Hospital Clinic of Barcelona
Barcelona, Spain
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain
Centro de Investigación Biomédica en Red–Enfermedades Respiratorias
Barcelona, Spain
and
Hospital Universitari Sagrat Cor
Barcelona, Spain

Ana Motos, M.Sc.*
Hospital Clinic of Barcelona
Barcelona, Spain
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain
Centro de Investigación Biomédica en Red–Enfermedades Respiratorias
Barcelona, Spain
and
University of Barcelona
Barcelona, Spain

Figure 1. Correlation between pulmonary mechanics and gas-exchange abnormalities. (A) Correlation between Crs and $\text{PaO}_2/\text{FiO}_2$. (B) Correlation between ventilatory ratio and D-dimer concentration. (C) Correlation between plateau pressure and ventilatory ratio. (D) Correlation between PEEP and ventilatory ratio. Solid lines are the regression lines, whereas shaded bands display 95% confidence intervals. Crs = static compliance of the respiratory system; $\text{PaO}_2/\text{FiO}_2$ = ratio between partial pressure of oxygen and fraction of inspired oxygen, PEEP = positive end-expiratory pressure.
LETTERS

Antoni Torres, M.D., Ph.D., F.E.R.S.‡
Hospital Clinic of Barcelona
Barcelona, Spain
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain
Centro de Investigación Biomédica en Red-Enfermedades Respiratorias
Barcelona, Spain
Hospital Universitari Sagrat Cor
Barcelona, Spain
and
University of Barcelona
Barcelona, Spain
Adrian Ceccato, M.D., Ph.D.
Hospital Clinic of Barcelona
Barcelona, Spain
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain
Centro de Investigación Biomédica en Red-Enfermedades Respiratorias
Barcelona, Spain
and
Hospital Universitari Sagrat Cor
Barcelona, Spain
Miquel Ferrer, M.D., Ph.D.
Hospital Clinic of Barcelona
Barcelona, Spain
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain
Centro de Investigación Biomédica en Red-Enfermedades Respiratorias
Barcelona, Spain
and
University of Barcelona
Barcelona, Spain
Leticia Bueno
Hospital Clinic of Barcelona
Barcelona, Spain
and
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain
Joan Ramon Badia, M.D., Ph.D.
Hospital Clinic of Barcelona
Barcelona, Spain
Pedro Castro, M.D., Ph.D.
Hospital Clinic of Barcelona
Barcelona, Spain
and
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain
Carlos Ferrando, M.D., Ph.D.
Hospital Clinic of Barcelona
Barcelona, Spain
and
University of Barcelona
Barcelona, Spain
Manuel Castellà, M.D., Ph.D.
Hospital Clinic of Barcelona
Barcelona, Spain
Javier Fernández, M.D., Ph.D.
Hospital Clinic of Barcelona
Barcelona, Spain
and
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain

Alex Soriano, M.D., Ph.D.
Hospital Clinic of Barcelona
Barcelona, Spain
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain
and
University of Barcelona
Barcelona, Spain
Ricard Mellado, M.D.
Hospital Clinic of Barcelona
Barcelona, Spain
Rubén López-Aladid, M.Sc.
Hospital Clinic of Barcelona
Barcelona, Spain
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain
Centro de Investigación Biomédica en Red-Enfermedades Respiratorias
Barcelona, Spain
and
University of Barcelona
Barcelona, Spain
Hua Yang, M.D.
Minlan Yang, M.D.
Hospital Clinic of Barcelona
Barcelona, Spain
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain
Centro de Investigación Biomédica en Red-Enfermedades Respiratorias
Barcelona, Spain
and
University of Barcelona
Barcelona, Spain
Andrea Catalina Palomeque, M.D.
Hospital Clinic of Barcelona
Barcelona, Spain
and
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain
Ivan Vollmer, M.D.
Hospital Clinic of Barcelona
Barcelona, Spain
José María Nicolás, M.D., Ph.D.,
Hospital Clinic of Barcelona
Barcelona, Spain
Institut d’Investigacions Biomèdiques August Pi i Sunyer
Barcelona, Spain
and
University of Barcelona
Barcelona, Spain

The Covid Clinic Critical Care Group
ORCID IDs: 0000-0001-9454-062X (A.C.); 0000-0002-4646-9838 (C.C.);
0000-0001-7528-9636 (L.F.-B.).
*These authors equally contributed to this work.
‡Corresponding author (e-mail: atorres@clinic.cat).

Covid Clinic Critical Care Group: A. Almuedo, J. R. Alonso, F. Aziz,
X. Borrat, E. Bragulat, I. Carmona, O. De Diego, M. Farrero, S. Fernández,
M. Forga, E. Guasch, M. Hernández-Tejero, A. Jacas, P. Leyes, T. López,
Urban–Rural Disparities in Pulmonary Hypertension Mortality

Urban–rural disparities in life expectancy in the United States have been widely documented, and this gap appears to be widening (1, 2). Published studies have shown that rural Americans are more likely to die of a range of cardiopulmonary diseases because of poor access to specialty care (2, 3). To date, there remains a paucity of similar data in the populations of patients with pulmonary hypertension (PH)—an often overlooked cause of morbidity and mortality in many cardiopulmonary disorders. Here, we examined urban–rural disparities in all-cause mortality in a nationally representative cohort of patients with PH in the United States.

Methods

We performed a retrospective cohort study of nonelderly adults with PH (18–64 yr old) drawn from a commercial health insurance/Medicare Advantage database (years 2000–2011), including enrollees across all 50 states of the United States. The database comprises

References

1 Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19): Cases in the U.S. Atlanta, GA: Centers for Disease Control and Prevention; 2020. [accessed 2020 Apr 6]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html.

2 European Centre for Disease Prevention and Control. COVID-19 situation update worldwide. Solna, Sweden: European Centre for Disease Prevention and Control; 2020 [accessed 2020 Apr 6]. Available from: https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases.

3 Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al.; COVID-19 Lombardy ICU Network. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA 2020;323:1574–1581.

4 Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–1062.

5 Rademaker P, Maggiore SM, Mercat A. Fifty years of research in ARDS: gas exchange in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017;196:964–984.

6 Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, et al. Pulmonary dead-space fraction as a risk factor for death in acute respiratory distress syndrome. N Engl J Med 2002;346:1281–1286.

7Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med 2006;31:776–784.

8 Boiszier F, Katsahian S, Razazi K, Thille AW, Roche-Campo F, Leon R, et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 2002;96:802–808.

9 Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al.; ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin definition. JAMA 2012;307:2526–2533.

10 Sinha P, Caffee CS, Bettle JR, Soni N, Ho K, Matthay MA, et al. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am J Respir Crit Care Med 2019;199:333–341.

11 Cressoni M, Gotti M, Chiurazzi C, Massardi D, Algieri I, Amini M, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology 2016;124:1100–1108.

12 Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372:747–755.

13 Guerín C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al.; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013;368:2159–2168.

14 Moss M, Huang DT, Brower RG, Ferguson ND, Ginde AA, Gong MN, et al.; National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med 2019;380:1997–2008.

15 Villar J, Ferrando C, Martinez D, Ambrós A, Muñoz T, Soler JA, et al.; Dexamethasone in ARDS Network. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020;8:267–276.

16 Schoenfeld DA, Bernard GR; ARDS Network. Statistical evaluation of ventilator-free days as an efficacy measure in clinical trials of treatments for acute respiratory distress syndrome. Crit Care Med 2002;30:1772–1777.

17 Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al.; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016;315:786–800.

18 Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology 2002;96:802–808.

19 Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet 2020;395:1763–1770.

20 Ziehr DR, Alladina J, Petri CR, Maley JH, Moskowitz A, Medoff BD, et al. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med 2020;201:1560–1564.

21 Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D. COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 2020;202:1299–1300.

22 Pan C, Chen L, Lu C, Zhang W, Xia JA, Sklar MC, et al. Lung Recruitability in COVID-19-associated acute respiratory distress syndrome: a single-center observational study. Am J Respir Crit Care Med 2020;201:1294–1297.

23 Schenck EJ, Hoffman K, Goyal P, Choi J, Torres L, Rajwani K, et al. Respiratory mechanics and gas exchange in COVID-19 associated respiratory failure. Am Thorac Soc [online ahead of print] 20 May 2020; DOI: 10.1513/AnnalsATS.202005-427RL.

24 Cressoni M, Caironi P, Polli F, Carlesso E, Chiumello D, Cadringer P, et al. Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med 2008;36:669–675.

25 Serpa Neto A, Deliberato RO, Johnson AJE, Bos LD, Amorim P, Pereira SM, et al.; PROVE Network Investigators. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med 2018;44:1914–1922.

Copyright © 2020 by the American Thoracic Society