MicroRNAs’ role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration

Marwa M. Mahmoud 1 • Eman F. Sanad 1 • Nadia M. Hamdy 1

Received: 2 March 2021 / Accepted: 19 May 2021 / Published online: 27 May 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The discovery of microRNAs (miRNAs) 20 years ago has advocated a new era of “small molecular genetics.” About 2000 miRNAs are present that regulate one third of the genome. MiRNA dysregulated expression arising as a response to our environment insult or stress or changes may contribute to several diseases, namely non-communicable diseases, including tumor growth. Their presence in body fluids, reflecting level alteration in various cancers, merit circulating miRNAs as the “next-generation biomarkers” for early-stage tumor diagnosis and/or prognosis. Herein, we performed a comprehensive literature search focusing on the origin, biosynthesis, and role of miRNAs and summarized the foremost studies centering on miR value as non-invasive biomarkers in different environment-related non-communicable diseases, including various cancer types. Moreover, during chemotherapy, many miRNAs were linked to multidrug resistance, via modulating numerous, environment triggered or not, biological processes and/or pathways that will be highlighted as well.

Keywords ncRNA • miR • NCDs • lncRNA • Cancer • mTOR • ceRNA

History/background

MicroRNA: the short non-protein-coding RNAs
The human genome reveals that the protein-coding genes can be as few as 25,000 (Feinberg and Moore 2016). Despite the fact that the exact number of coding genes, within the human genome, is unknown, non-protein-coding genes make up a significant portion of the human genome (Spadafora 2015). Human cells contain several distinguishing sequences of non-coding RNA (ncRNA) that could be categorized into two major classes: long ncRNA (≥ 200 nucleotide length) and short ncRNA (< 200 nucleotides). The short ncRNA group comprises different classes such as small interfering RNAs (siRNA), small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), Piwi-interacting RNAs (piRNAs), and microRNAs (miRNAs)(Wang et al. 2016a).

miRNAs are the essential gene expression environment-related regulatory molecules miRNAs regulate one third of the human genome (Hombach and Kretz 2016). These are small single-stranded 17–25 nucleotides, recently known as essential gene expression regulatory molecules (Hao et al. 2016).

The parent microRNA member is lin-4 (Horvitz and Sulston 1980) that has been discovered within a nematode called Caenorhabditis elegans. Lin-4 was found to play a pivotal role in the transition from a larval stage into another, via suppression of lin-4 gene, concerned with larval development (O’Brien et al. 2018). miRs are encoded either via separate transcription units within the pre-mRNA introns or via multi-cis-tronic clusters (Catalanotto et al. 2016). miRNAs organized in clusters within the genome and are sharing the same transcriptional regulatory elements, but are expressed individually, in the event, as if they have their own promoters (de Rie et al. 2017).

miRs direct major cellular functions such as proliferation, differentiation, maturation, and metabolism (Wang et al. 2017a). Irregular expression of miRNAs may occur in a range of distinctive pathologies, with striking modifications in tumor tissues (Wang et al. 2017a). Profiling of miRNAs has contributed to the molecular classification of tumors (Blenkiron and Miska 2007). The presence of miRNAs in
body fluids, such as the urine, serum or plasma, CSF, and tears, permitted non-invasive identification of various cancer types (Kai et al. 2018; Armand-Labit and Pradines 2017; Elkhouly et al. 2020; Condrat et al. 2020) considered as beneficial potential liquid biopsy.

Review methodology

An online search in the medical databases PUBMED and NCBI for the following terms: (“Circulating miRNA”) AND (“Health and diseases regulation of gene expression”) AND (“Role in Carcinogenesis”) AND (“Epigenetics”) AND (“Future promising biomarkers”) was done on September 2020. Priority was given to papers with higher empirical evidence methodology, including clinical guidelines, meta-analysis, randomized clinical studies, systematic review, original papers, and narrative reviews, since but not limited to 2015.

Review aims

In “Part I” section, the review aims to briefly discuss “miRs biosynthetic pathways and down-stream effects upon binding target mRNA.” In “Part II” section, the review aims to highlight “the utility of circulating miRNAs as biomarkers for environment-related non-communicable diseases (NCDs) and a brief about their role in cancer growth or resistance to treatment.”

Part I

miRNA biogeny

miRNA biogenesis include various coordinated steps and specific cellular mechanisms (de Rie et al. 2017). Biogenesis of miRNA starts with post-transcriptional or co-transcriptional preparation (Morlando et al. 2008) of RNA polymerase II–III transcripts. Around 50% of the miRNAs recently identified are intragenic and are typically regulated from introns and some protein-coding gene exons. The remaining ones are intergenic, freely transcribed and guided according to their own promoters from a host gene (Vishnoi and Rani 2017). miRNAs could be translated as a single long transcript, named clusters (Oliveto et al. 2017). Moreover, miRNA biogenesis is categorized as either canonical or non-canonical.

Canonical miRNA biogenic pathway

This is the main route by which miRNAs are developed, as shown in Fig. 1A. In this process, primary miRNAs (pri-miRNAs) are transcribed from their genes by RNA polymerase II, which is then handled by a microprocessor complex composed of DiGeorge Syndrome Critical Region 8 (DGCR8), an RNA-binding protein, and Drosha, a class 2 ribonuclease III enzyme into precursor miRNAs (pre-miRNAs) (Alarcón et al. 2015). In this process, DGCR8 identifies an N6-methyl adenylated GGAC and a different motif within the pri-miRNA (Alarcón et al. 2015), while Drosha begins processing inside the nucleus by cutting the stem-loop precursor (Kim et al. 2016).

For most of the double-stranded RNAs (dsRNAs) which are involved in small RNA production routes, pre-miRNA seems to be a signature motif. This signature is recognized by the Exportin-5 protein that facilitates the release of pre-miRNAs to the cytoplasm, through nuclear pores, depending on a GTP-GDP gradient (Kim et al. 2016). Exported pre-miRNA is transferred to another RNase-III enzyme in the cytoplasm, called Dicer. Dicer, the cytoplasmic RNase-III enzyme, cuts the pre-miRNA to a miRNA duplex, which is unwound afterwards giving the “fully developed functional miRNA” molecule.

In an ATP-dependent manner, the two strands defined from the resultant miRNA duplex might be stacked into the protein family Argonaute (AGO) known as AGO1-4 (Hansen et al. 2016). After miRNA duplex formation, one strand of the miRNA associates with an RNA-induced silencing complex (RISC) forming the “regulatory miRNA-RISC complex.” The choice of strands 5p or 3p is dependent on the thermodynamic stability at the 5’ untranslated regions (UTRs) at the 1-position of the nucleotide (Hammond 2015). The unoccupied strand known as the passenger strand is loosened by different components from the loaded strand, named the guide or leading strand, depending on complementarity (O’Brien et al. 2018).

Non-canonical miRNA biogenic pathway

Several non-canonical pathways have been illustrated to date, primarily Drosha/DGCR8-independent and Dicer-independent pathways (O’Brien et al. 2018), as illustrated in Fig. 1B.

Drosha/DGCR8-independent non-canonical miRNA pathway

This pathway joins mRNA introns and their own transients to “mirtrons transcripts.” Drosha/DGCR8 is skipped at that stage of processing and these transcripts are, again, carried by the protein Exportin-1 to the cytoplasm (Kim et al. 2016).

Dicer-independent miRNA biogenic pathway

miRNAs could be dealt by Drosha/DGCR8 to form short heterogeneous RNA (shRNA). Since these transcripts are not lengthy to serve as Dicer substrates, AGO2 protein leads in their cytoplasmic developmental steps (Seok et al. 2016), as previously mentioned.
Role of long non-coding RNAs in miRNA biogenesis

The cross talk between long non-coding RNAs (lncRNAs) and miRNAs is one of important regulators in the ncRNA world, for gene expression, mainly the epigenetic field, where lncRNAs may serve as both the source and the inhibitory regulators to miRNAs. Many intragenic miRNA sequences are embedded within lncRNA introns and to lesser extent within their exons. This genomic organization highlights the post-transcriptional regulatory role of lncRNAs in the biogenesis of miRNAs (Liu et al. 2019a; Dykes and Emanueli 2017).

miRNA target binding Via complementarity between unique sequences, which are 2–7 bases, from the 5′ end of the
miRNA and certain target mRNA sequences, recognized as “miRNA response elements” (MREs), the developed miRNA attaches to its target (Pisarello et al. 2015).

miRNA target gene mRNA-binding types

Ideal binding where complete complementarity occurs when miRNA binds its target ORF resulting in an “RNA decay.” On the other hand, imperfect binding results in “post-transcriptional silencing” via mRNA de-stabilization, de-capping, de-adenylation, and translational repression (O’Brien et al. 2018; Issler and Chen 2015).

It is worthy to mention the fundamental multifaced aspect of miRNAs target binding is that their suppressive role is not limited to one mRNA, highlighting the “one-mRNA paradigm” in which multiple mRNA targets can be achieved by one microRNA and multiple microRNAs can hit one mRNA (Bracken et al. 2016).

miRNA target gene(s) mRNA silencing mode(s) Depending on the degree of MREs complementarity, the target gene(s) mRNA silencing strategies, by miRNAs, could be attained either via target gene mRNA degradation or target gene mRNA translation repression.

Target mRNA decay MiRNA-induced silencing complex (miRISC) AGO proteins bind to the GW182 (a protein-containing glycine–tryptophan repeat) to enroll the “deadenylase complex” and promote de-adenylation of the target gene mRNA poly(A) tail. With the aid of the catalytic de-capping protein-2 (DCP2), after de-adenylation, and in the presence of an additional de-capping activators, miRISC de-caps the de-adenylated gene mRNAs. In the presence of an enhancer of de-capping 4 (EDC4), DCP1 and additional de-capping cofactors, the decay of the target mRNA is aided by the cytoplasmic 5’ to 3’ exonuclease1 (Xrn1p) (Iwakawa and Tomari 2015)

Target mRNA translation repression miRNA-mediated target mRNA translational repression can occur before and after translational initiation step, through several mechanisms.

miRISC ties to the target mRNA (Wightman et al. 1993) at that point AGO protein interacts with the GW182. This interaction promotes the relocation of poly(A) binding protein from the 3’ poly(A)-tail and blocks its binding to the eukaryotic initiation factor 4 complex (eIF4G), interfering with the “translation-initiation step.”

Repressing cap-structure recognition by eIF4F complex where the AGO protein separates the eIF4A from the 5’ cap binding complex of the target mRNA, and therefore, the ribosomal subunit will not be recruited or attached to the mRNA for translation initiation (Khan et al. 2019).

Also, miRNA can repress protein synthesis after target mRNA translation initiation. Additionally, miRISC could interfere with the targeted mRNA elongation components (Wightman et al. 1993). Finally, to ensure no escape from miR silencing effect, if the target mRNA was translated,

| Table 1 miRNA list in relation to glucose homeostasis, adipogenesis, metabolic syndrome, and type 2 DM |
|---|---|
| **Metabolic disease** | **miRNAs effect** | **miRNA list** |
| **Obesity and metabolic syndrome** | Adipogenesis promoting | miR-26b (Li et al. 2017a), miR-103 (Li et al. 2015a), miR-146b, miR-148a (Shi et al. 2015), miR-199a, miR-181, miR-320 (Iacomino and Siani 2017) |
| | Anti-adipogenic | miR-33b, miR-93 (Cioffi et al. 2015), miR-125a, miR-193a/b (Belarbi et al. 2015), miR-194, miR-363, miR-709 (Amer and Kulyte 2015) |
| **Type 2 DM** | β-cell development | miR-197-3p, miR-9-5p, miR-9-3p, miR-99a-3p, miR-124a, miR-135a, miR-138, miR-149, miR-342-3p, miR-375, miR-100b, miR-222 (Tattikota et al. 2015; Coskun et al. 2018; Samandari et al. 2017; LaPierre and Stoffel 2017; Sebastiani et al. 2017; Bai et al. 2017; Engelmann et al. 2017) |
| | Insulin sensitivity/resistance | miR-31, miR-127, miR-302c-3p, miR-373, miR-518b, miR-520c-3p, miR-200, miR-7 (Vienberg et al. 2017; Greco et al. 2017; Sims et al. 2017; Anuradha et al. 2014; Sebastiani et al. 2017) |
| | Insulin production/secretion | miR-29, miR-221, miR-222, miR-103, miR-107, miR-223 (Hubal et al. 2017), miR-320, miR-126, miR-103, miR-107 (Vivacqua et al. 2017; He et al. 2017), Let-7 family (Martinez-Sanchez et al. 2015), miR-375, miR-9, miR-7, miR-124a, miR-96, miR-124, miR-184, miR-29a (Tattikota et al. 2015; Sebastiani et al. 2017) |
| | Insulin signaling | miR-7, miR-1, miR-133a/b, miR-206, miR-128a, miR-330, miR-223 (Wu et al. 2017a; Gu et al. 2017; Lima et al. 2017), miR-144 |
miRISC could recruit proteases resulting in degradation of the nascent polypeptide chains (Khan et al. 2019).

miRNA target gene(s) activation mode Activated targeted mRNA expression could be triggered by miRNAs (O’Brien et al. 2018), via AGO2 protein and fragile-x-mental retardation related protein-1, rather than GW182. This is achieved via miR attachment on the target promoter, to induce RNA polymerase II recruitment followed by transcription activation (Mohammadi et al. 2016).

Either “miR-target gene(s) binding” results in an expression silencing or activation; these effects have been witnessed and recorded by researchers to be associated with various disease(s), which will be discussed in the current review part II.

Table 2 miRNA lists associated with different cardiovascular diseases

Cardiovascular disease(s)	miRNA list
Acute myocardial infarction	miR-208a/b, miR-1, miR-133a/b, miR-499 (Liu et al. 2015), miR-328, miR-134, miR-1291, miR-663b, miR-22 (Wang et al. 2019b), miR-126 (Potosi et al. 2015)
Heart failure	miR-423-5p, miR-22, miR-320a, miR-92b (Schulte et al. 2017), miR-21 (Li et al. 2018)
Atrial fibrillation	miR-133b, miR-328 (Seok et al. 2016), miR-499 (da Silva et al. 2018), miR-126 (Shen et al. 2020)
Hypertension	miR-34a, miR-21 (Hijmans et al. 2018), miR-23b, miR-191, miR-451, miR-126-3p, miR-26a-5p, miR-107 (Yang et al. 2018a)

Table 3 miRNA list in some cerebrovascular diseases

Cerebrovascular disease(s)	miRNA regulatory effect	miRNA list
Stroke Upregulation	miR-125b-2, miR-422a, miR-488, miR-627 (Dewdney et al. 2018), miR-290 (Li et al. 2013b), miR-124, miR-27a, miR-10a, miR-182, miR-200b (Stary et al. 2015), miR-298, miR-106b-5P, miR-4306 (Kim et al. 2015)	
Downregulation	let-7i, miR-126, miR-1259, miR-142-3p, miR-15b, miR-186, miR-519e, miR-768-5p (Völgyi et al. 2015), miR-320e, miR-320d (Völgyi et al. 2015)	
Alzheimer’s Upregulation	miR-146a (Dong et al. 2015), miR-361-5p, miR-30e-5p, miR-93-5p, miR-15a-5p, miR-143-3p, miR-106b-5p, miR-101-3p, miR-424-5p, miR-106a-5p, miR-18b-5p, miR-3065-5p, miR-20a-5p, miR-582-5p (Cheng et al. 2015)	
Downregulation	miR-31, miR-93, miR-143, miR-146a (Dong et al. 2015), miR-1306-5p, miR-342-3p, miR-15b-3p (Cheng et al. 2015)	
Parkinson’s Upregulation	miR-331-5p (Ding et al. 2016), miR-137-3p, miR-124-3p (Li et al. 2017b), miR-30a/b-5p (Schwienbacher et al. 2017)	
Multiple sclerosis	Upregulation, miR-18 and IL-17A (Mohamed et al. 2019)	
an effect on glucose homeostasis and adipogenesis increment, characterized by the final upregulation of adipogenic markers (Hamam et al. 2015). On the other hand, miRNAs would repress adipogenic differentiation via adipogenic factor downregulation, together with a decreased triacylglycerol level (Das et al. 2020).

miRNA relation to type 2 diabetes mellitus

As listed in Table 1, many miRNAs are linked to β-cell growth, insulin resistance or sensitivity, insulin production/secretion, and insulin signaling, which can influence the obesity or gene-based T2DM disease course (He et al. 2017). Therefore, diabetes-related nephropathy or retinopathy is

Cancer type	miRNA role	miRNA list
Leukemia	Oncogenic	miR-128a, miR-128b, miR-150, miR-155, miR-181b-5p, miR-423-3p, miR-486-5p, miR-92b-3p (Wallaert et al. 2017)
	Tumor suppressor	miR-15a, miR-16-1 (Pekarsky and Croce 2015), miR-495
Breast	Oncogenic	miR-128b/Hiromaka-Mitsuhashi et al. 2020, miR-10b, miR-373 (Youness and Gad 2019), miR-520c, miR-21, miR-155
	Tumor suppressor	miR-125a/b, miR-142 (Jin et al. 2018), miR-124-3p (Wang et al. 2016c), miR-101, miR-204-5p (Hong et al. 2019), miR-491-5p (Hui et al. 2015), miR-491-5p (Hui et al. 2015), miR-206 (Yin et al. 2016), miR-152 (Ge et al. 2017), miR-142-3p (Mansoori et al. 2019)
Gastric	Oncogenic	miR-23a (Hu et al. 2017), miR-27a (Zhou et al. 2016), miR-223 (Wang et al. 2020), miR-106a (Hou et al. 2015), miR-106b-5-25 cluster, miR-107 (Wang et al. 2016b)
	Tumor suppressor	miR-145, miR-143 (Lei et al. 2017), miR-9 (Fan et al. 2019), miR-34b (Jafari and Abediankenari 2017), miR-124a, miR-335, miR-218, miR-484 (Zare et al. 2018)
HCC	Oncogenic	miR-182-5p (Cao et al. 2018), miR-106b-3p, miR-101-3p, miR-1246 (Moshiri et al. 2018), miR-221, miR-224
	Tumor suppressor	miR-34a, miR-199a (Lou et al. 2018), miR-200a
Prostate	Oncogenic	miR-141 and miR-21 (Sharma and Baruah 2019), miR-125b (Yin et al. 2015)
	Tumor suppressor	miR-145, miR-143 (Ma et al. 2017)
Pancreatic	Oncogenic	miR-132, miR-212, miR-122-5p, miR-125b-5p, miR-192-5p, miR-193b-3p, miR-221-3p, miR-27b-3p (Zhou et al. 2018), miR-222 (Li et al. 2018), miR-181a/bd (Pop-Bica et al. 2018), miR-155, miR-103, miR-107
	Tumor suppressor	miR-125b-5p (Zhou et al. 2018), miR-34a, miR-96, miR-221
Ovarian	Oncogenic	miR-16, miR-939 (Ying et al. 2015), miR-21, miR-27a, miR-26a/b, miR-103, miR-182, miR-223, miR-205 (He et al. 2019), miR-195, miR-10b, miR-7, miR-429 (Meng et al. 2015)
	Tumor suppressor	miR-145, miR-125b, miR-211 (Xia et al. 2015a), miR-25, miR-93, miR-377, miR-432, miR-124a, miR-436, miR-302a (Guo et al. 2015)
Uterine leiomyoma	Oncogenic	miR-15b (Kim et al. 2018)
	Tumor suppressor	miR-29a/b/c, miR-197, miR-200c (Kim et al. 2018)
Thyroid	Oncogenic	miR-129-1, miR-146b, miR-183, miR-197 (Sheikhholeslami et al. 2020), miR-146b (Ramirez-Moya et al. 2018)
	Tumor suppressor	miR-338-3p (Sui et al. 2017), miR-497 (Wang et al. 2017b)
Colorectal	Oncogenic	miR-1246, miR-1308, miR135b-5p, miR-183-5p, miR-18a-5p, miR18b-5p, hsa-miR-21-5p, miR-223-3p, miR-224-5p, miR-503-5p (Falzone et al. 2018)
	Tumor suppressor	miR-1-3p, miR-133b, miR-143-3p, miR-145-5p, miR-150-5p, miR-195-5p, miR215-5p, miR-375, miR-378-3p, miR497-5p (Falzone et al. 2018)
Melanoma	Oncogenic	miR-195 (Cirilo et al. 2017), miR-210 (Šapková et al. 2020)
	Tumor suppressor	miR-193a, miR-33a (Zhou et al. 2015), miR-let-7b/c
Pituitary adenoma	Oncogenic	miR-128a, miR-155, miR-516a-3p, miR-372, miR-181b-5p, miR-181d, miR-191-3p, miR-598 (Wu et al. 2017b)
	Tumor suppressor	miR-34a (Yang et al. 2018b), miR-3676-5p, miR-383 (Wu et al. 2017b)
Osteosarcoma	Oncogenic	miR-504 (Cai et al. 2017), miR-149 (Xie et al. 2018b)
Neuroblastoma	Oncogenic	miR-181a/b (Liu et al. 2018), miR-1208, miR-1303 (Li et al. 2016c), miR-1308, miR-1908, miR-198, miR-513b-5p, miR-548b, miR-580
	Tumor suppressor	miR-513, miR-548a/b-5p, miR-323-5p, miR-342 (Soriano et al. 2019), miR-639, miR-640, miR-641, miR-662, miR-34a (Cheng et al. 2019), miR-16, miR-15a/b (Chava et al. 2020)
Lung non-small cell	Oncogenic	miR-25 (Ding et al. 2018), miR-7, miR-34a, miR-328-3p (Ma et al. 2016), miR-499a (Wu et al. 2019)
	Tumor suppressor	miR-451 (Liu et al. 2019b), miR-214
Bladder	Oncogenic	miR-222, miR-452, miR-6724-5p, miR-1185-1-3p, miR-6831-5p (Usuba et al. 2019)
	Tumor suppressor	miR-143, miR-99a-5p (Tsai et al. 2018), miR-6087, miR-3960, miR-1343-5p (Usuba et al. 2019)
Cervical	Oncogenic	miR-31 (Zheng et al. 2015), miR-19a/b, miR-145 (Ma and Li 2019), miR-155 (Li et al. 2019), miR-125a (Xue et al. 2015)
	Tumor suppressor	miR-34a (Geng et al. 2015), miR-886-5p (Xiang et al. 2019)
also affected by an altered microRNA expression (Barutta et al. 2018).

miRNA lists in cardiovascular diseases

miRNAs regulate the cardiac progenitor cell differentiation and proliferation, controlling cardiac myocytes, endothelial cells, pacemaker cells, and smooth muscle cell’s function. Table 2 shows miRNA lists dysregulated in various CVDs (Schulte et al. 2017). For example, miR-208a and miR-208b, encoded within alpha and beta-cardiac muscle myosin heavy chain genes, respectively, were found to be elevated in patients with acute myocardial infarction (AMI). Liu et al. (2015) demonstrated a significant predictive value for miR-208, miR-1, and miR-499 in AMI, higher than the traditional cardiac biomarkers, namely, TnT and CPK-MB.

miRNA list in cerebrovascular diseases

miRNAs are essential to the nervous system’s improvement, with few miRNAs having function in developing ischemic cerebrovascular disorders incapacity (Volný et al. 2015). Many miRNAs have been associated with post-stroke brain edema and post-stroke cell death, namely, apoptosis; a protective facility against environmental toxicants as inflammation or stressors and heat, etc., (Vasudeva and Munshi 2020) as listed in Table 3.

miRNAs in the oncology field

Onco-miR or tumor suppressor miR: a coin with two faces

Being a multifactorial player, miRNA in the oncology field represents a coin with two faces, either oncogenic or tumor suppressor (Youness and Gad 2019), as listed in Table 4. miRNA that can hit/suppress various mediators of the oncogenic signaling pathways is known as a tumor suppressor mediator (Ahmed Youness et al. 2020; Shaalan et al. 2018; Rahmoon et al. 2017). On the contrary, the miRNA that aims the cell cycle checkpoint proteins or the fundamental tumor suppressor proteins is nominated the oncogenic miRNA or an onco-miR (Frixa et al. 2015).

Again, the cross talk is between miRNAs and IncRNAs in the oncology field. IncRNAs are evolving as miRNA sponges, with critical functions in cancer biology and growth. Several bioinformatic techniques for analyzing the competitive relations between IncRNAs and miRNA to target mRNAs.
Table 5 miRNA list targeting various mTOR pathway signals

miRNA list	Targeted gene(s)	Cancer type	Effect
miR-7 (Glover et al. 2015)	AKT, PI3K	HCC, Adrenocortical	Proliferation, Invasion
miR-99 family (Yu et al. 2015a; Li et al. 2015c; Zhao et al. 2016a; Li et al. 2016b)	mTOR, AKT	Endometrial, NSCLC, Cervical, Breast, Pancreatic, HCC, Esophageal, Bladder	Proliferation, Invasion, Apoptosis, Cell cycle, Autophagy, Tumor formation
miR-101 (Zhang et al. 2017)	EZH2, mTOR	HCC, Osteosarcoma	Proliferation, Invasion, Cell cycle
miR-122 (Yang et al. 2015)	PI3K	Breast	Proliferation
miR-149 (Zhang et al. 2017)	mTOR	Cervical	Proliferation
miR-193a-3p/5p (Jian et al. 2016; Shen et al. 2015; Yu et al. 2015b)	mTOR, PI3K	NSCLC	Proliferation, Migration, Epithelial–mesenchymal transition (EMT)
miR-204 (Xia et al. 2015b)	mTOR	NSCLC	Metastasis
miR-155 (Zhang et al. 2017)	AKT, S6K1, Rictor	Cervical, Nasopharyngeal, Breast	Proliferation, Autophagy
miR-214 (Yu et al. 2015c; Das et al. 2016)	mTOR	Renal	Proliferation
miR-218 (Lu et al. 2015; Zhang et al. 2015a, b; Tian et al. 2015)	PI3K, mTOR	Colorectal, OSCC, Cervical	Tumorigenesis Progression, Invasion, Migration
miR-125a (Chen et al. 2019)	mTOR	HCC	Metastasis
miR-199a (Callegari et al. 2018)	mTOR	Glioma, Endometrial, HCC	Proliferation
miR-22 (Meng et al. 2020)	mTOR	Suprarenal epithelioma	Metastasis
miR-93 (Chen et al. 2015b; Ohta et al. 2015; Jiang et al. 2015; Kawano et al. 2015)	PTEN	Osteosarcomas, Ovarian	Proliferation, Migration, Invasion, Inhibiting apoptosis
miR-532-5p (Wang et al. 2019a)	mTOR	Gastric	Proliferation, Metastasis
miR-451 (Du et al. 2015)	mTOR, AMPK	Colon	Proliferation, Migration
miR-205 (Zhuo and Yu 2017)	PTEN	NSCLC	Proliferation, Angiogenesis
miR-96 (Zhang et al. 2015a, b; Leung et al. 2015; Chong 2016)	mTOR, PRAS40	Prostatic, Breast	Proliferation, Metastasis
miR-634 (Cong et al. 2016)	mTOR	Prostatic, Pancreatic, Cervical	Proliferation, Metastasis, Apoptosis
miR-21 (Shi 2016; Fragni et al. 2016; Li et al. 2016; Kalorigiou et al. 2016; Chen et al. 2015a; Yu et al. 2016)	TSC, PTEN, PI3K, PDCD4	Gastric, Lymphadenoma, NSCLC, HCC, Breast, Pancreatic, Renal	Proliferation, Proapoptosis, Cell cycle
miR-1271 (Xie et al. 2018a)	mTOR	Gastric	Proliferation, Apoptosis
miR-125b (Vilquin et al. 2015)	mTOR	Sarcoma, Small cell osteosarcoma	Proliferation, Metastasis, Cell cycle, apoptosis
have been suggested based on the hypothesis of competing endogenous RNAs (ceRNAs). For instance, lncRNA–CDC6 functions as ceRNA to regulate CDC6 by sponging miRNA-215 (Kong et al. 2019) and lncRNA PICSAR sponges miRNA-4701-5p (Xuan et al. 2019).

miRNA involvement in carcinogenesis via mTOR signaling

In different types of cancer, the mechanistic target of rapamycin (mTOR), a conserved serine/threonine kinase enzyme involved in cell metabolism, tied to environmental cues including nutrient levels and growth factors, could be subsequently hyperactive, leading to an abnormal cell proliferation and eventually cancer (Katayama et al. 2007). An association was observed between miRNA(s) and the mTOR pathway during cancer growth (Kovalchuk et al. 2008; Zhang et al. 2017).

Targeted Raptor mutation, a fundamental component of mTORC1 type, may affect increments in miRNA biogenesis (Ye et al. 2015). On the other hand, Mdm2-dependent ubiquitination of Drosha, an RNase, is assigned to pri-miRNA formation to give pre-miRNA; therefore, mTOR activation widely suppresses miRNA biogenesis (Katayama et al. 2007). Few specific miRNA(s) related to cancer are known to be regulated by mTOR signaling, as sketched in Fig. 2.

miRNAs and multidrug resistance in cancer therapy

Over decades, the significant clinical obstacle to successful cancer treatment is multidrug resistance (MDR), arising from ATP binding cassette (ABC) drug transporter(s) dysregulation, apoptosis or autophagy machinery surrender, redox homeostasis imbalance, drug-dysregulated metabolism, and drug target alterations (An et al. 2017). Several manuscripts addressed miRNAs role in MDR (Kovalchuk et al. 2008; Geretto et al. 2017; Bach et al. 2017; Si

Table 6 miRNA list involved in multidrug resistance highlighting their regulatory function(s) and the MDR targets

Regulation of	Target	miRNA list
MDR transporters	ABCB1/MDR1	miR-302c, miR-3664 (Ghanbarian et al. 2018), miR-873 (Wu et al. 2016), miR-381, miR-495, miR-223, miR-203a, miR-200c (Armada et al. 2019), miR-508-5p (Shang et al. 2016), miR-451 (Kovalchuk et al. 2008)
	ABCG2/BCRP	miR-328, miR-519, miR-520, miR-181a, miR-487a, miR-519c, miR-212 (To et al. 2015)
	ABCC1/MRP1	miR-326, miR-1291, miR-508-5p (Pei et al. 2016)
	p53	miR-125a/b, miR-140 (Liang et al. 2016), miR-122, miR-34
	CDK6	miR-34a, miR-139-5p (Li et al. 2016a), miR-143 (Zhuang et al. 2015), miR-503, miR-1271
	BCL2	miR-15b, miR-16, miR-21, miR-497, miR-200bc/429, miR-1915, miR-214, miR-195 (Qu et al. 2015), miR-205
	BCL-XL	miR-574-3p
	MCL-1	miR-101 (He et al. 2016)
	BIM	miR-494
	BAX	miR-365
	Caspase-3	miR-30 b/c, miR-21
	PTEN	miR-21, miR-22, miR-221, miR-214, miR-19a/b, miRNA-17-5p, miR-222 (Zeng et al. 2016)
Autophagy induction	Beclin-1 and ATG5	miR-30a, miR-30d/c, miR-155, miR-15a (Huang et al. 2015), miR-16 (Chatterjee et al. 2015), miR-200b (Pei et al. 2016), miR-181a (Zhao et al. 2016b)
Anti-cancer drug metabolism modulation	CYP1B1	miR-27b (Mu et al. 2015)
	CYP1A1	miR-892a, miR-130b (Rieger et al. 2015)
	CYP2J2	let-7b (An et al. 2017)
Drug target modulation (An et al. 2017)	TS enzyme	miR-148a, miR-27b
	DPD enzyme	miR-192, miR-215
	RRMI2	miR-27a, miR-27b, miR-134, miR-582-5p
	MMR proteins	miR-21, miR-155
	BRCA1	miR-182, miR-9, miR-218 (He et al. 2015), miR-638 (Strumiało et al. 2017)
GSH and GSH-dependent enzymes	GSH	miRNA-27a (An et al. 2017)
	GST	miR-513a-3p, miR-133b (Chen et al. 2015c)
et al. 2019). Therefore, miRNAs might be potential targets for preventing chemotherapy MDR.

Differences in miRNA expression pattern in drug-resistant cancer cells relative to drug-sensitive cells (An et al. 2017) have been reported. A list of miRNAs regulating MDR by stressing on a specific cellular-signaling pathway or transporters is summarized in Table 6.

Conclusion

One abundant class of ncRNAs is miRs. MiRs are involved in the pathogenesis as well as detection of various environment-related NCDs, including different cancer types. Moreover, miRNAs are linked to mTOR signaling pathway, a fundamental pathway of MDR and/or carcinogenesis. Current evidence indicates that in most diseases, including the NCDs, miRNAs and mTOR binding do happen.

Prospects Being ideal biomarkers for predicting chemotherapy response, miRs would be possible goals for future drug design to solve MDR (1). Additionally, (2) combining miRNAs detection together with the mTOR signaling route components, being related to SNPs, would draw the complete picture concerning miRNAs as viable targets for evaluating and prognosticating NCDs.

Author contribution Mahmoud MM: data curation, original draft preparation, and rewriting; Sanad EF: editing, rewriting, and reviewing; Hamdy NM: conceptualization, supervision, editing, rewriting, and reviewing from submission till acceptance.

Availability of data and materials Not applicable.

Declarations

Conflict of interest The authors declare no competing interests.

Abbreviations ABCB1, ATP Binding Cassette Subfamily B Member 1; ABCC1, ATP Binding Cassette Subfamily C Member 1; ABCG, ATP binding cassette super-family G member; AGO, Argonaute; AMI, Acute myocardial infarction; AMPK, Adenosine 5-monophosphate-activated protein kinase; ATG5, Autophagy related 5; BCL-XL, B-cell lymphoma-extra large; BCL2, B-cell lymphoma 2; BCRP, Breast cancer resistant protein; CDK6, Cyclin-dependent kinase 6; CeRNA, Competitive endogenous non-coding RNA; CRC, Colorectal cancer; CYP, Cytochrome P450; CVD, Cardiovascular diseases; DCP, De-capping protein; DGCR8, Drosophila-DiGeorge syndrome-critical region gene 8; DPD, Dihydroorotidine dehydrogenase; dsRNA, Double stranded RNAs; EDC4, Enhancer of de-capping 4; eIF4G, Eukaryotic initiation factor 4; ERK, Extracellular signal-regulated kinase; GSH, Glutathione; GST, Glutathione S-transferases; HCC, Hepatocellular carcinoma; LncRNA, Long non-coding RNA; MAPK, Mitogen-activated protein kinase; MDR, Multidrug resistance; miRNA, MicroRNA; MRE, MiRNA response elements; MRP1, Multidrug resistance-associated protein 1; mTOR, Mechanistic target of rapamycin; NCDs, Non communicable diseases; ncRNA, Noncoding RNAs; NSCLC, Non small-cell lung carcinoma; ORF, Open reading frame; Onco miR, Oncogenic miRNA; PD, Parkinson’s Disease; PDCD4, Proapoptotic factors programmed cell death 4; PI3K, Phosphoinositide 3- kinase; piRNA, Piwi-interacting RNAs; PPARY, Peroxisome Proliferator-activated Receptor y; Pre-miRNAs, Precursor-miRNAs; Pri-miRNAs, Primary miRNAs; PTEN, Phosphatase and tensin homolog; Rictor, Rapamycin-insensitive companion of mTOR; RISCs, RNA-induced silencing complex; S6K1, Ribosomal protein S6 kinase beta 1; shRNAs, Short heterogenous RNAs; siRNA, Small interfering RNA; snoRNAs, Small nucleolar RNAs; snRNAs, Small nuclear RNAs; TS, Thymidylate synthase; UTR, Untranslated Region;

References

Ahmed Youness R, Amr Assal R, Mohamed Ezzat S, Zakaria Gad M, Abdel Motaal A (2020) A methoxylated quercetin glycoside harnesses HCC tumor progression in a TP53/miR-15/miR-16 dependent manner. Nat Prod Res 34:1475–1480. https://doi.org/10.1080/14786419.2018.1509326

Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF (2015) N 6-methyladenosine marks primary microRNAs for processing. Nature 519:882–885

An X, Sarmiento C, Tan T, Zhu H (2017) Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B 7:38–51. https://doi.org/10.1016/j.apsb.2016.09.002

Anuradha R, Saraswati M, Kumar KG, Rani SH (2014) Apoptosis of Beta cells in diabetes mellitus. DNA Cell Biol 33:743–748. https://doi.org/10.1089/dna.2014.2352

Armad A, Gomes BC, Viveiros M, Rueff J, Rodrigues AS (2019) miRNAs in drug-resistance of cancer cells. Int J Cancer 141:220–230. https://doi.org/10.1002/ijc.30669

Bai C, Gao Y, Li X, Wang K, Xiong H, Shan Z, Zhang P, Wang W, Guan W, Ma Y (2017) MicroRNAs can effectively induce formation of autophagic vacuoles in breast cancer cells. Cancer Res 77:5274–5283. https://doi.org/10.1158/0008-5472.CAN-16-3165

Barrett R, Bellini S, Mastrocola R, Bruno G, Gruden G (2016) MicroRNA and microvascular complications of diabetes. Int J Endocrinol 2016:1–18. https://doi.org/10.1155/2016/589501

Belbari Y, Meijhart N, Lorente-Cebrián S, Dahlman I, Arner P, Rydén M, Kulyté A (2015) MicroRNA-193b controls adiponectin production in human white adipose tissue. J Clin Endocrinol Metab 100:E1084–E1088. https://doi.org/10.1210/jc.2015-1530

Blenkiron C, Miska EA (2007) miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet. 16 Spec No 1:R106–R113. doi: https://doi.org/10.1093/hmg/ddm056

Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17:719–732. https://doi.org/10.1038/nrg.2016.134

Cai Q, Zeng S, Dai X, Wu J, Ma W (2017) mir-504 promotes tumour growth and metastasis in human osteosarcoma by targeting TP53NIP1. Oncol Rep 38:2993–3000. https://doi.org/10.3892/or.2017.5983
Callegari E, D’Abundo L, Guerriero P, Simioni C, Elamin BK, Russo M, Cani A, Bassi C, Zaggati B, Giacomelli L, Blandamura S, Moshiro F, Ultimo S, Frassoldati A,Altavilla G, Gramantieri L, Neri LM, Sabbioni S, Negri M (2018) miR-199a-3p modulates MTOR and PAK4 pathways and inhibits tumor growth in a hepatocellular carcinoma transgenic mouse model. Mol Ther Nucleic Acids 11:485–493. https://doi.org/10.1016/j.ymthe.2018.04.002

Cao M-Q, You A-B, Zhu X-D, Zhang W, Zhang YY, Zhang SZ, Zhang DW, Gupta SC, Pandey MK, Challagundla KB (2020) miR-15a-5p, and miR-16-5p inhibit tumor progression by directly targeting Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis. Cell Signal 27:189–203. https://doi.org/10.1016/j.cellsig.2014.11.023

Chava S, Reynolds CP, Pathania AS, Gorantla S, Poluektova L, Coulier DW, Gupta SC, Pandey MK, Challagundla KB (2020) miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol Oncol 14:180–196. https://doi.org/10.1002/1878-0261.12588

Chen J, Xu T, Chen C (2015a) The critical roles of miR-21 in anti-cancer effects of curcumin. Ann Transl Med 3

Chen Q, Qin R, Fang Y, Li H (2015b) Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cell Physiol Biochem 36:956–965. https://doi.org/10.1007/s13045-018-0555-y

Cheng X, Xu Q, Zhang Y, Shen M, Zhang S, Mao F, Li B, Yan X, Shi Z, Wang L, Sheng G, Zhang Q (2019) miR-34a-3′ inhibits progression of pancreatic stem cells to beta cells. J Cell Biochem 119:455–467. https://doi.org/10.1002/jcb.26203

da Silva AMG, de Araújo JNG, de Oliveira KMM et al (2018) Circulating miRNAs in acute new-onset atrial fibrillation and their target mRNA network. J Cardiovasc Electrophysiol 29:1159–1166. https://doi.org/10.1111/jice.13612

Chatterjee A, Chattopadhyay D, Chakrabarti G (2015) miR-16 targets PI3K/Akt/mTOR signaling pathway. Cell Physiol Biochem 36:949–955. https://doi.org/10.1007/s13045-018-0555-y

Cheng X, Xu Q, Zhang Y, Zhang YY, Zhang SZ, Zhang KW, Cai H, Shi WK, Li XL, Li KS, Gao DM, Ma DN, Ye BG, Wang CH, Qin CD, Sun HC, Zhang T, Tang ZY (2018) miR-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a. J Hematol Oncol 11:1–12. https://doi.org/10.1186/s13045-018-0555-y

Catalano C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17:1712. https://doi.org/10.3390/ijms17101712

Chong ZZ (2016) Targeting PRAS40 for multiple diseases. Drug Discov Today 21:1222–1231. https://doi.org/10.1016/j.drudis.2016.04.005

Cioffi M, Vallespinos-Serrano M, Trabolo SM, Fernandez-Marcos PJ, Firment AN, Vazquez BN, Vieira CR, Muler F, Camara JA, Cronin UP, Perez M, Soriano J, G. Galvez B, Castells-Garcia A, Haage V, Raj D, Megias D, Hahn S, Serrano L, Moon A, Aicher A, Hessechen C (2015) MiR-93-94 controls adiposity via inhibition of Sirt7 and Tbx3. Cell Rep 12:1594–1605. https://doi.org/10.1016/j.celrep.2015.08.006

Cirilo PDR, de Sousa Andrade LN, Corrêa BRS, Qiao M, Furuya TK, Chammas R, Penalva LOF (2017) MicroRNA-195 acts as an anti-inflammatory miRNA in human melanoma cells by targeting prohibitin 1. BMC Cancer 17:750. https://doi.org/10.1186/s12885-017-3721-7

Condrat CE, Thompson DC, Babu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC (2020) miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9:276. https://doi.org/10.3390/cells9020276

Cong J, Liu R, Wang X, Jiang H, Zhang Y (2016) miR-634 decreases cell proliferation and induces apoptosis by targeting miR-93/PTEN/Akt signaling pathway in cervical cancer cells. Artif Cells, Nanomedicine, Biotechnol 44:1694–1701. https://doi.org/10.3109/21691401.2015.1080171

Coskun E, Ercin M, Gezgincli-Oktayoglu S (2018) The role of epigenetic regulation and pluripotency-related microRNAs in differentiation of pancreatic stem cells to beta cells. J Cell Biochem 119:455–467. https://doi.org/10.1002/jcb.26203

Das S, Mohamed IN, Teoh SL, Thevaraj T, Xu P, Ahmad Nasir KN, Zawawi A, Salim HH, Zhou DK (2020) Micro-RNA and the features of metabolic syndrome: a narrative review. Mini-Reviews Med Chem 20:626–635. https://doi.org/10.2174/1389557520666200122124445

derie D, Abugessais A, Alam T et al (2017) An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 35:872–878. https://doi.org/10.1038/nbt.3947

Dewdney B, Trollope A, Moxon J, Thomas Manapurathe D, Biros E, Golledge J (2018) Circulating microRNAs as biomarkers for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis 27:522–530. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.058

Ding H, Huang Z, Chen M, Wang C, Chen X, Chen J, Zhang J (2016) Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism Relat Discor 22:68–73. https://doi.org/10.1016/j.parkreldis.2015.11.014

Ding X, Zhong T, Jiang L, Huang J, Xia Y, Hu R (2018) miR-25 enhances cell migration and invasion in non-small-cell lung cancer cells via ERK signaling pathway by inhibiting KLF4. Mol Med Rep 17:7005–7016. https://doi.org/10.3892/mmr.2018.8772

Dong H, Li J, Huang L, Chen X, Li D, Wang T, Hu C, Xu J, Zhang C, Zen K, Xiao S, Yan Q, Wang C, Zhang CY (2015) Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer’s disease. Dis Markers 2015:1–11. https://doi.org/10.1155/2015/625659

Du J, Liu S, He J et al (2015) Micro-RNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma. Oncotarget 6:14993–15007. https://doi.org/10.18632/oncotarget.3802

Dykes IM, Emanueli C (2017) Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics 15:177–186

ElKholy AM, Youness RAA, Gad MZZ (2020) MicroRNA-486-5p and microRNA-486-3p: multifaceted pleiotropic mediators in oncological and non-oncological conditions. Non-coding RNA Res 5:11

Engelmann I, Aledjino EK, Bemt HP, Bossu J, Villenet C, Figee M, Sane F, Hober D (2017) Persistent coxsackievirus B4 infection induces microRNA dysregulation in human pancreatic cells. Cell Mol Life Sci 74:3851–3861. https://doi.org/10.1007/s00018-017-1567-0

Falzone L, Scola L, Zanghì A, Biondi A, di Cataldo A, Libra M, Candido S (2018) Integrated analysis of colorectal cancer microRNA datasets: identification of microRNAs associated with tumor development. Aging (Albany NY) 10:1000–1014. https://doi.org/10.18632/aging.101444
Fan Y, Shi Y, Lin Z, Huang X, Li J, Huang W, Shen D, Zhuang G, Liu W (2019) miR-9-5p suppresses malignant biological behaviors of human gastric cancer cells by negative regulation of TNFAIP8L3. Dig Dis Sci 64:2823–2829. https://doi.org/10.1007/s10620-019-05626-2

Feinberg MW, Moore KJ (2016) MicroRNA regulation of atherosclerosis. Circ Res 118:703–720. https://doi.org/10.1161/CIRCRESAHA.115.306300

Frangi M, Bonini SA, Bettinsoli P, Bodei S, Generali D, Bottini A, Spano PF, Meno M, Sigala S (2016) The miR-21-PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines. Naunyn Schmiedeberg’s Arch Pharmacol 389:529–538. https://doi.org/10.1007/s00210-016-1224-8

Frixia T, Donzelli S, Blandino G (2015) Oncogenic microRNAs: key players in malignant transformation. Cancers (Basel) 7:2466–2485. https://doi.org/10.3390/cancers7040904

Ge S, Wang D, Kong Q, Gao W, Sun J (2017) Function of miR-152 as a tumor suppressor in human breast cancer by targeting PIK3CA. Oncol Res Feat Preclin Clin Cancer Ther 25:1363–1371. https://doi.org/10.7272/096504017X14878536973557

Geng D, Song X, Ning F, Song Q, Yin H (2015) miR-34a inhibits viability and invasion of human papillomavirus-positive cervical cancer cells by targeting E2F3 and regulating survivin. Int J Gynecol Cancer 25:707–713. https://doi.org/10.1097/IGC.0000000000000399

Gerotto M, Pullicher A, Rosano C, Zabayedova D, Bersimbaev R, Izzotti A (2017) Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am J Cancer Res 7:1350–1371

Ghanbarian M, Afgar A, Yadegarazari R, Najafi R, Teimoori-Toolabi L (2018) Oxaliplatin resistance induction in colorectal cancer cell lines. Naunyn Schmiedeberg's Arch Pharmacol 387:1070–1080. https://doi.org/10.1007/j.biophap.2018.09.112

Glover AR, Zhao JT, Gill AJ, Weiss J, Mugridge N, Kim E, Feeney AL, Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–17

Hamam D, Ali D, Kassem M, Aldahmash A, Alajez NM (2015) miR-15a and miR-16 induce autophagy and enhance chemosensitivity of camptothecin. Cancer Biol Ther 16:941–948. https://doi.org/10.1080/15384047.2015.1040963

Horvitz HR, Sulston JE (1980) Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 96(2):435–454

Hou X, Zhang M, Qiao H (2015) Diagnostic significance of miR-106a in gastric cancer. Int J Clin Exp Pathol 8:425–429. https://doi.org/10.2147/ijkep.s42542

Hu X, Wang Y, Liang H, Fan Q, Zhu R, Cui J, Zhang W, Zen K, Zhang CY, Hou D, Zhou Z, Chen X (2017) miR-23a/b promote tumor growth and suppress apoptosis by targeting PDCD4 in gastric cancer. Cell Death Dis 8:e3059. https://doi.org/10.1038/cddis.2017.447

Huang N, Wu J, Qiu W, Luy Q, He J, Xie W, Xu N, Zhang Y (2015) miR-15a and miR-16 induce autophagy and enhance chemosensitivity of camptothecin. Cancer Biol Ther 16:941–948. https://doi.org/10.1080/15384047.2015.1040963

Hubal MJ, Nadler EP, Ferrante SC, Barberio MD, Suh JL, Wang J, Dohn GL, Pories WJ, Mietus-Snyder M, Freishtat RJ (2017) Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity 25:102–110. https://doi.org/10.1111/oby.21709

Hui Z, Yiling C, Wenting Y, XuQun H, ChuanYi Z, Hui L (2015) miR-491-5p functions as a tumor suppressor by targeting JMJD2B in breast cancer. Mol Cell Proteomics 14. https://doi.org/10.1016/j.molcp.2017.01.025

Hombach S, Kretz M (2016) Non-coding RNAs: classification, biology and functioning. Non-coding RNAs in colorectal cancer. Springer, In, pp 3–17

Horvitz HR, Sulston JE (1980) Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 96(2):435–454

Hou X, Wang Y, Liang H, Fan Q, Zhu R, Cui J, Zhang W, Zen K, Zhang CY, Hou D, Zhou Z, Chen X (2017) miR-23a/b promote tumor growth and suppress apoptosis by targeting PDCD4 in gastric cancer. Cell Death Dis 8:e3059. https://doi.org/10.1038/cddis.2017.447

Huang N, Wu J, Qiu W, Luy Q, He J, Xie W, Xu N, Zhang Y (2015) miR-15a and miR-16 induce autophagy and enhance chemosensitivity of camptothecin. Cancer Biol Ther 16:941–948. https://doi.org/10.1080/15384047.2015.1040963

Hubal MJ, Nadler EP, Ferrante SC, Barberio MD, Suh JL, Wang J, Dohn GL, Pories WJ, Mietus-Snyder M, Freishtat RJ (2017) Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity 25:102–110. https://doi.org/10.1111/oby.21709

Lambert M, Lassen HD, Hammersen S, Høyer J, Wachtmeister C, Schouenborg J, Bratman SV, Sørensen HT, Steen NA, Højrup P, Kruun B, Højrup P, Madsen J (2015) Non-coding RNAs: classification, biology and functioning. Non-coding RNAs in colorectal cancer. Springer, In, pp 3–17

Iacomino G, Siani A (2017) Role of microRNAs in obesity and obesity-related diseases. Genes Nutr 12:23. https://doi.org/10.1186/s12263-017-0577-z

Issler O, Chen A (2015) Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci 16:201–212. https://doi.org/10.1038/nrn3879
Iwakawa H, Tomari Y (2015) The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol 25:651–665. https://doi.org/10.1016/j.tcb.2015.07.011

Jafari N, Abediankenari S (2017) MicroRNA-34 dysregulation in gastric cancer and gastric cancer stem cell tumor. Tumor Biol 39:101042317701652. https://doi.org/10.1017/100428317701652

Jiang L, Wang C, Lei F, Zhang L, Liu A, Wu G, Zhu J, Song L (2015) miR-93 promotes cell proliferation in gliomas through activation of PI3K/Akt signaling pathway. Oncotarget 6:8266–8299. https://doi.org/10.18632/oncotarget.3221

Jin F, Wang Y, Li M, Zhu Y, Liang H, Wang C, Wang F, Zhang CY, Zen K, Li L (2018) MiR-26 enhances chemosensitivity and promotes apoptosis of hepatocellular carcinoma cells through inhibiting autophagy. Cell Death Dis 8:e2540–e2540. https://doi.org/10.1038/cddis.2016.461

Kai K, Dittmar RL, Sen S (2018) Secretory microRNAs as biomarkers of cancer. Semin Cell Dev Biol 78:22–26. https://doi.org/10.1016/j.semcdb.2017.12.011

Katayama K, Yoshioka S, Tsukahara S, Mitsuhashi J, Sugimoto Y (2007) microRNA-93 promotes cell proliferation via targeting of PTEN in osteosarcoma cells. J Exp Clin Cancer Res 34:76. https://doi.org/10.18632/oncotarget.4423

Leung WKCC, He M, Chan AWHH et al (2015) Wnt/β-catenin activates MiR-183/96/182 expression in hepatocellular carcinoma that promotes cell invasion. Cancer Lett 362:97–105. https://doi.org/10.1016/j.canlet.2015.03.023

Li M, Liu Z, Zhang Z, Liu G, Sun S, Sun C (2015a) miR-103 promotes 373-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D. Biol Chem 396:235–244. https://doi.org/10.1515/hbz-2014-0241

Liu X, Peng F, Gao F, Zhang M, Wu J, Zhang C (2015b) Identification of circulating microRNAs as potential biomarkers for detecting acute ischemic stroke. Cell Mol Neurobiol 35:433–447. https://doi.org/10.1007/s10571-014-0139-5

Li W, Chang J, Wang S, Liu X, Peng J, Huang D, Sun M, Chen Z, Zhang W, Guo W, Li J (2015c) miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR. Oncotarget 6:24448–24462. https://doi.org/10.18632/oncotarget.4423

Li X, Zang A, Jia Y et al (2016) Triptolide induces cell proliferation and enhances apoptosis of human non-small cell lung cancer cells through PTEN by targeting miR-21. Mol Med Rep 13:2763–2768. https://doi.org/10.3892/mmr.2016.4844

Li Q, Liang X, Wang Y, Meng X, Xu Y, Cai S, Wang Z, Liu J, Cai G (2016a) miR-139-5p inhibits the epithelial-mesenchymal transition and enhances the chemotherapeutic sensitivity of colorectal cancer cells by downregulating BCL2. Cell Rep 6:27157. https://doi.org/10.1016/j.celrep.2016.07.010

Li N, Pan X, Zhang J, Ma A, Yang S, Ma J, A (2017b) Plasma levels of miR-137 and miR-124 are associated with Parkinson’s disease but not with Parkinson’s disease with depression. Neurol Sci 38:761–767. https://doi.org/10.1007/s10072-017-2841-9

Li Z, Xu Z, Xie Q, Gao W, Xie J, Zhou L (2016c) miR-1303 promotes the proliferation of neuroblastoma cell SH-SYSY by targeting GSK3β and SFRP1. Biomed Pharmacother 83:508–513. https://doi.org/10.1016/j.biopha.2016.07.010

Li Q, Ding C, Ma Y, Jin L, Tang Q, Li X, Li M, Liu H (2017a) miR-26b promotes 373-L1 adipocyte differentiation through targeting PTEN. DNA Cell Biol 36:672–681. https://doi.org/10.1089/dna.2017.3712

Li N, Pan X, Zhang J, Ma A, Yang S, Ma J, A (2017b) Plasma levels of miR-137 and miR-124 are associated with Parkinson’s disease but not with Parkinson’s disease with depression. Neurol Sci 38:761–767. https://doi.org/10.1007/s10072-017-2841-9

Li Z, Lin X, Zhang W, Jiang P, Li J, Peng M, Zhang X, Chen K, Liu H, Zhen P, Zhu J, Liu X, Liu (2018) Tumor-secreted exosomal miR-222 promotes tumor progression via regulating P27 expression and re-localization in pancreatic cancer. Cell Physiol Biochem 51:610–629. https://doi.org/10.1159/000495281

Liu N, Cui T, Guo W, Wang D, Mao L (2019) MiR-155-5p accelerates the metastasis of cervical cancer cell via targeting TP53INP1. Onco Targets Ther Volume 12:3181–3196. https://doi.org/10.2147/OTT.S193097

Liang S, Gong X, Zhang G, Huang G, Lu Y, Li Y (2016) MicroRNA-140 regulates cell growth and invasion in pancreatic duct adenocarcinoma by targeting lASPP. Acta Biochim Biophys Sin Shanghai 48:174–181. https://doi.org/10.1093/abbs/gmv127

Lima TT, Araujo HN, Menezes ES, Sponton CH, Araújo MB, Bomfim LHM, Queiroz AL, Passos MA, e Sousa TA, Hirabara SM, Martins AC, Silveira LR (2017) Role of microRNAs on the regulation of mitochondrial biogenesis and insulin signaling in skeletal muscle. J Cell Physiol 232:958–966. https://doi.org/10.1002/jcp.25645

Liu X, Fan Z, Zhao T, Cao W, Zhang L, Li H, Xie Q, Tian Y, Wang B (2015) Plasma miR-1, miR-208, miR-499 as potential predictive biomarkers for acute myocardial infarction: an independent study of Han population. Exp Gerontol 72:230–238. https://doi.org/10.1016/j.exger.2015.10.011

Liu X, Peng H, Liao W, Luo A, Cui M, He J, Zhang X, Luo Z, Jiang H, Xu L (2018) miR-181a/b induce the growth, invasion, and
metastasis of neuroblastoma cells through targeting AB1. Mol Carcinog 57:1237–1250. https://doi.org/10.1002/mc.22839

Liu B, Shyr Y, Cai J, Liu Q (2019a) Interplay between miRNAs and host genes and their role in cancer. Brief Funct Genomics 18:255–266

Liu Y, Li H, Li LH, Tang JB, Sheng YL (2019b) mir-451 inhibits proliferation and migration of non-small cell lung cancer cells via targeting LKB1/AMPK. Eur Rev Med Pharmacol Sci 23:274–280

Lou Z, Gong Y, Zhou X, Hu G (2018) Low expression of mir-199 in hepatocellular carcinoma contributes to tumor cell hyperproliferation by negatively suppressing XBP1. Oncol Lett 16:6531–6539. https://doi.org/10.3892/ol.2018.9476

Lu Y, Zhang L, Waye MMY, Fu WM, Zhang JF (2015) MiR-218 Mediates tumorigenesis and metastasis: perspectives and implications. Exp Cell Res 334:173–182. https://doi.org/10.1016/j.excr.2015.03.027

Ma L, Li L-L (2019) miR-145 contributes to the progression of cervical carcinoma by directly regulating FSCN1. Cell Transplant 28:1299–1305. https://doi.org/10.1177/0963689719861063

Ma W, Ma C, Zhou N et al (2016) Up-regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapy. Sci Rep 6:1–9

Ma Z, Luo Y, Qiu M (2017) miR-143 induces the apoptosis of prostate cancer LNCap cells by suppressing Bcl-2 expression. Med Sci Monit 23:3359–365. https://doi.org/10.12659/MSM.899719

Mansoori B, Mohammad A, Ghasabi M, Shirjang S, Dehghan R, Montazeri V, Holmskov U, Kazemi T, Duijj P, Gjerstorff M, Baradaran B (2019) miR-142-3p as tumor suppressor miRNA in the regulation of tumorigenicity, invasion and migration of human breast cancer by targeting Bach-1 expression. J Cell Physiol 234:9816–9825. https://doi.org/10.1002/jcp.27670

Martinez-Sanchez A, Nguyen-Tu M-S, Rutter GA (2015) Dicer inactivates activation and CYP1B1 suppression. Cell Res 25:477–5631. https://doi.org/10.1038/cr.2015.23

Muhammad M, Ballarino M, Gromak N, Pagano F, Bozzoni I, Proudfoot NJ (2008) Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 15(9):902–909. https://doi.org/10.1038/nsmb.1475

Moishri F, Salvi A, Gramantieri L, Sangiovanni A, Guerrieri P, de Petro G, Bassi C, Lupini L, Sattari A, Cheung D, Veneziano D, Piemonti L, Dotta F (2017) Circulating miR-106b-3p, miR-376a and miR-429 in ovarian cancer patients. Br J Cancer 113:1358–1366. https://doi.org/10.1038/bjc.2015.340

Mu W, Liu B, Zhang H, Qu Z, Cen J, Qiu Z, Li C, Ren H, Li Y, He X, Shi X, Hui L (2015) miR-27b synergizes with anticancer drugs via p53 activation and CYP1B1 suppression. Cell Res 25:477–495. https://doi.org/10.1038/cr.2015.23

Mushtaq G, H Greg N, Anwar F, et al. (2016) miRNAs as circulating biomarkers for Alzheimer’s disease and Parkinson’s disease. Med Chem (Los Angeles) 12:217–225

O’Brien J, Hayden H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402. https://doi.org/10.3389/fendo.2018.00402

Ohta K, Hoshino H, Wang J, Ono S, Iida Y, Hata K, Huang SK, Colquhoun S, Hoon DSB (2015) MicroRNA-93 activates c-Met/P53/Akt pathway activity in hepatocellular carcinoma by directly inhibiting PTEN and CDKN1A. Oncotarget 6:3211–3224. https://doi.org/10.18632/oncotarget.3085

Oliveiro S, Mancinno M, Manfrini N, Biffi S (2017) Role of microRNAs in translation regulation and cancer. World J Biol Chem 8:45–56. https://doi.org/10.4331/wjc.v8.i1.45

Pei K, Zhu JJ, Wang CE et al (2016) MicroRNA-185-5p modulates chemosensitivity of human non-small cell lung cancer to cisplatin via targeting ABCC1. Eur Rev Med Pharmacol Sci 20:4697–4704

Pekarsky Y, Croce CM (2015) Role of miR-15/16 in CLL. Cell Death Differ 22:6–11. https://doi.org/10.1038/cdd.2014.87

Pisarello MJL, Loarca L, Ivanics T, Morton L, La Russo N (2015) MicroRNAs in the cholangiopathies: pathogenesis, diagnosis, and treatment. J Clin Med 4:1688–1712. https://doi.org/10.3390/jcm4091688

Pop-Bica C, Pintea S, Cojocneau-Petric R et al (2018) mir-181-family-specific behavior in different cancers: a meta-analysis view. Cancer Metastasis Rev 37:17–32 https://doi.org/10.1007/s10555-017-9714-9

Potus F, Rufienach G, Dahou A, Thebault C, Breuils-Bonnet S, Tremblay É, Nadeau V, Paradis R, Graydon C, Wong R, Johnson I, Paquin L, Lajoie AC, Perron J, Charbonneau E, Joubert P, Pibarat P, Michelakis ED, Provencher S, Bonnet S (2015) Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 132:932–943. https://doi.org/10.1161/CIRCULATIONAHA.115.016382

Qu J, Zhao L, Zhang P, Wang J, Xu N, Mi W, Jiang X, Zhang C, Qu J (2015) MicroRNA-195 chemosensitizes colon cancer cells to the chemotherapeutic drug doxorubicin by targeting the first binding site of BCL2L2 mRNA. J Cell Physiol 230:535–545. https://doi.org/10.1002/jcp.24366

Rahmoun MA, Youness RA, Gomaa AI, Hamza MT, Waked I, el Tayebi F, Pellegrini S, Martino G, Sordi V, Piemonti L, Dotta F (2017) Micro-RNA-136 reduces the proliferation of osteosarcoma cells by inhibiting autophagy via the PI3K/Akt/mTOR pathway. Oncol Rep 43:1169–1186. https://doi.org/10.1080/02974229.2020.7492

Mohammed MS, El-Nahery EMA, Shalaby N et al (2019) Micro-RNA 18b and interleukin 17A profiles in relapsing remitting multiple sclerosis. Mult Scler Relat Disord 28:222–229

Mohammadi A, Mansoori B, Baradaran B (2016) The role of microRNAs in colorectal cancer. Biomed Pharmacother 84:705–713. https://doi.org/10.1016/j.biopha.2016.09.099

Morlando M, Ballarino M, Gromak N, Pagano F, Bozzoni I, Proudfoot NJ (2008) Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 15(9):902–909. https://doi.org/10.1038/nsmb.1475

Moshiri F, Salvi A, Gramantieri L, Sangiovanni A, Guerrieri P, de Petro G, Bassi C, Lupini L, Sattari A, Cheung D, Veneziano D, Nigita G, Shankarajah RC, Portolani N, Carforo P, Fornari F, Bolondi L, Frassoldati A, Sabbioni S, Colombo M, Croce CM, Negrini M (2018) Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma. Oncotarget 9:15350–15364. https://doi.org/10.18621/oncotarget.24601

Mukhopadhyay S, Datta S, Bhattacharyya S, Saha P, Mandal D, Banerjee S, Mitra S, Ghosh S, Deb SB (2015) MicroRNA expression profile of human iPSCs differentiation into Parkinson’s disease. J Mol Neurosci 62:244–280. https://doi.org/10.1007/s12031-017-0926-9

Sebastiani G, Valentinii M, Greco GE, Ventriglia G, Nigi L, Mancarella F, Pellegrini S, Martino G, Sordi V, Piemonti L, Dotta F (2017) MicroRNA expression profiles of human iPSCs differentiation into Alzheimer’s disease. Mol Neurobiol 54:229–244. https://doi.org/10.1007/s12031-017-0926-9
cancer tumor growth and invasion by suppressing BDNF. Oncotarget 8:2825–2834. https://doi.org/10.18632/oncotarget.13747

Wang YP, Liu J, Liu D, Wang XD, BIAN AM, Fang DZ, Hui XB (2019a) MiR-532-5p acts as a tumor suppressor and inhibits glioma cell proliferation by targeting CSF1. Eur Rev Med Pharmacol Sci 23: 8964–8970.

Wang YU, Chang W, Zhang Y, Zhang L, Ding H, Qi H, Xue S, Yu H, Hu L, Liu D, Zhu W, Wang Y, Li P (2019b) Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. J Cell Physiol 234:4778–4786

Wang J, Lv W, Lin Z, Wang X, Bu J, Su Y (2020) Hsa_circ_0003159 inhibits gastric cancer progression by regulating miR-223-3p/NDRG1 axis. Cancer Cell Int 20:57. https://doi.org/10.1186/s12935-020-1119-0

Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 75(5):855–866

Wu F, Mo Q, Wan X, Dan J, Hu H (2019) NEAT1/hsa-mir-98-5p/miR-206 suppresses epithelial mesenchymal transition and facilitates insulin signaling and impairing lipogenesis. J Hepatol 66:816–824. https://doi.org/10.1016/j.jhep.2016.12.016

Wu S, Gu Y, Huang Y, Wong TC, Ding H, Liu T, Zhang Y, Zhang X (2017b) Novel biomarkers for non-functioning invasive pituitary adenomas were identified by using analysis of microRNAs expression profile. Biochem Genet 55:253–267. https://doi.org/10.1007/s10528-017-9794-9

Wu F, Mo Q, Wan X, Dan J, Hu H (2019) NEAT1/hsa-mir-98-5p/ MAPK6 axis is involved in non-small-cell lung cancer development. J Cell Biochem 120:2836–2846. https://doi.org/10.1002/jcb.26442

Xia B, Yang S, Liu T, Lou G (2015a) miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting cyclin D1 and p53. Mol Cancer 14:57. https://doi.org/10.1186/s12935-015-0322-4

Xia Z, Liu F, Zhang J, Liu L (2015b) Decreased Expression of MiRNA-204-5p Contributes to Gioma Progression and Promotes Gioma Cell Growth, Migration and Invasion. PLoS One 10:e0132399. https://doi.org/10.1371/journal.pone.0132399

Xiang P, Liu Y, Liu L, Lin Q, Liu X, Zhang H, Xu J, Fang B (2019) The biological function and clinical significance of miR-886-5p in multiple myeloma. Acta Haematol 142:208–216. https://doi.org/10.1159/000499620

Xie F, Huang Q, Liu CH, Lin XS, Liu Z, Liu LL, Huang DW, Zhou HC (2018a) miR-1271 negatively regulates Akt/mTOR signaling and promotes apoptosis via targeting PDK1 in pancreatic cancer. Eur Rev Med Pharmacol Sci 22:678–686

Xie Z, Xu J, Peng L, Gao Y, Zhao H, Qu Y (2018b) miR-149 promotes human osteosarcoma progression via targeting bone morphogenetic protein 9 (BMP9). Biotechnol Lett 40:47–55. https://doi.org/10.1007/s10529-017-2445-8

Xuan Bi, Xing Hua Guo, Bi Yao Mo, Man Li Wang, Xi Qing Luo, Yi Xiong Chen, Fang Liu, Nancy Olsen, Yun Feng Pan, Song Guo Zheng (2019) LncRNA PiCSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis, EBioMedicine 50:408–420. https://doi.org/10.1016/j.ebiom.2019.11.024

Xue M, Qin X, Wan Y, Wang S (2015) MicroRNA-125a-5p modulates human cervical carcinoma proliferation and migration by targeting ABL2. Drug Des Devel Ther 10:71. https://doi.org/10.2147/DDDT.S93104

Yang YM, Lee CG, Koo JH, Kim TH, Lee JM, An J, Kim KM, Kim SG (2015) Gx12 overexpressed in hepatocellular carcinoma reduces microRNA-122 expression via HNF4α inactivation, which causes c-Met induction. Oncotarget 6:19055–19069. https://doi.org/10.18632/oncotarget.3957

Yang X, Niu X, Xiao Y, Lin K, Chen X (2018a) MiRNA expression profiles in healthy OSAHs and OSAHs with arterial hypertension: potential diagnostic and early warning markers. Respir Res 19:194. https://doi.org/10.1186/s12931-018-0894-9

Yang Z, Zhang T, Wang Q, Gao H (2018b) Overexpression of microRNA-34a attenuates proliferation and induces apoptosis in pituitary adenoma cells via SOX7. Mol Ther - Oncolytics 10:40–47. https://doi.org/10.1016/j.omto.2018.07.001

Ye P, Liu YY, Chen C, Tang F, Wu Q, Wang X, Liu CG, Liu X, Liu R, Yin Y, Zheng P (2015) An mTORC1-Mdm2-Drosha axis for miRNA biogenesis in response to glucose- and amino acid-deprivation. Mol Cell 57:708–720. https://doi.org/10.1016/j.molcel.2014.12.034

Yin H, Sun Y, Wang X, Park J, Zhang Y, Li M, Yin J, Liu Q, Wei M (2015) Progress on the relationship between miR-125 family and tumorigenesis. Exp Cell Res 339:252–260. https://doi.org/10.1016/j.xcr.2015.09.015

Yin K, Yin W, Wang Y, Zhou L, Liu Y, Yang G, Wang J, Lu J (2016) miR-206 suppresses epithelial mesenchymal transition by targeting TGF-β signaling in estrogen receptor positive breast cancer cells. Oncotarget 7:24537–24548. https://doi.org/10.18632/oncotarget.8233

Ying X, Li-ya Q, Feng Z, Yin W, Ji-hong L (2015) MiR-939 promotes the proliferation of human ovarian cancer cells by repressing APC2 expression. Biomed Pharmacother 71:64–69. https://doi.org/10.1016/j.biopha.2015.02.020

Youness RA, Gad MZ (2019) Long non-coding RNAs: functional regulators in breast cancer. Non-coding RNA Res 4:36–44. https://doi.org/10.1016/j.ncrna.2019.01.003

Yu SS, Zhang CC, Dong FF, Zhang YY (2015a) miR-99a suppresses the metastasis of human non-small cell lung cancer cells by targeting AKT1 signaling pathway. J Cell Biochem 116:268–276. https://doi.org/10.1002/jcb.24965

Yu T, Li J, Yan M, Liu L, Lin H, Zhao F, Sun L, Zhang Y, Cui Y, Zhang F, Li J, He X, Yao M (2015b) MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PiK3R3/mTOR/S6K2 signaling pathway. Oncogene 34:413–423. https://doi.org/10.1038/onc.2013.574

Yu X, Luo A, Liu Y, Wang S, Li Y, Shi W, Liu Z, Xu Q (2015c) miR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy. Mol Cancer 14:208. https://doi.org/10.1186/s12935-015-0480-4

Yu X, Li R, Shi W, Jiang T, Wang Y, Li C, Qu X (2016) Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomed Pharmacother 77:37–44. https://doi.org/10.1016/j.biopha.2015.11.005

Zare A, Ahadi A, Larki P, Omrani MD, Zalir MR, Alamdari NM, Ghaedi H (2018) The clinical significance of miR-335, miR-124, miR-218 and miR-484 downregulation in gastric cancer. Mol Biol Rep 45:1587–1595. https://doi.org/10.1007/s12749-018-4278-5

Zeng L-P, Hu Z-M, Li K, Xia K (2016) miR-222 attenuates cisplatin-induced cell death by targeting the PPF2R2A/Akt/mTOR axis in bladder cancer cells. J Cell Mol Med 20:559–567. https://doi.org/10.1111/jcm.12760

Zhang W, Qian P, Zhang X, Zhang M, Wang H, Wu M, Kong X, Tan S, Ding K, Perry JK, Wu Z, Cao Y, Lobie PE, Zhu T (2015a) Autocrine/paracrine human growth hormone-stimulated miRNA 96-182-183 cluster promotes epithelial-mesenchymal transition and invasion in breast cancer. J Biol Chem 290:13812–13829. https://doi.org/10.1074/jbc.M115.653261
Zhang X, Shi H, Tang H et al (2015b) miR-218 inhibits the invasion and migration of colon cancer cells by targeting the PI3K/Akt/mTOR signaling pathway. Int J Mol Med 35:1301–1308. https://doi.org/10.3892/ijmm.2015.2126

Zhang Y, Huang B, Wang H-YY, Chang A, Zheng XFS (2017) Emerging role of microRNAs in mTOR signaling. Cell Mol Life Sci 74:2613–2625. https://doi.org/10.1007/s00018-017-2485-1

Zhao J, Chen F, Zhou Q, Pan W, Wang X, Xu J, Ni L, Yang H (2016a) Aberrant expression of microRNA-99a and its target gene mTOR associated with malignant progression and poor prognosis in patients with osteosarcoma. Onco Targets Ther 9:1589. https://doi.org/10.2147/OTT.S102421

Zhao J, Nie Y, Wang H, Lin Y (2016b) miR-181a suppresses autophagy and sensitizes gastric cancer cells to cisplatin. Gene 576:828–833. https://doi.org/10.1016/j.gene.2015.11.013

Zheng W, Liu Z, Zhang W, Hu X (2015) miR-31 functions as an onco-gene in cervical cancer. Arch Gynecol Obstet 292:1083–1089. https://doi.org/10.1007/s00404-015-3713-2

Zhou J, Xu D, Xie H, Tang J, Liu R, Li J, Wang S, Chen X, Su J, Zhou X, Xia K, He Q, Chen J, Xiong W, Cao P, Cao K (2015) miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1α. Cancer Biol Ther 16:846–855. https://doi.org/10.1080/15384047.2015.1030545

Zhou L, Liang X, Zhang L, Yang L, Nagao N, Wu H, Liu C, Lin S, Cai G, Liu J (2016) MiR-27a-3p functions as an onco-gene in gastric cancer by targeting BTG2. Oncotarget 7:51943–51954. https://doi.org/10.18632/oncotarget.10460

Zhu X, Lu Z, Wang T, Huang Z, Zhu W, Miao Y (2018) Plasma miRNAs in diagnosis and prognosis of pancreatic cancer: a miRNA expression analysis. Gene 673:181–193. https://doi.org/10.1016/j.gene.2018.06.037

Zhuang M, Shi Q, Zhang X, Ding Y, Shan L, Shan X, Qian J, Zhou X, Huang Z, Zhu W, Ding Y, Cheng W, Liu P, Shu Y (2015) Involvement of miR-143 in cisplatin resistance of gastric cancer cells via targeting IGF1R and BCL2. Tumor Biol 36:2737–2745. https://doi.org/10.1007/s13277-014-2898-5

Zhuo Z, Yu H (2017) miR-205 inhibits cell growth by targeting AKT-mTOR signaling in progesterone-resistant endometrial cancer Ishikawa cells. Oncotarget 8:28042–28051. https://doi.org/10.18632/oncotarget.15886