An efficient synthesis of new benzoalidrazide and 1, 3-thizane fused s-triazines as potential antiamicrobial agents

G. M. Malik1*, T. V. Patel2

1Associate Professor, 2PhD Student, Dept. of Chemistry, Navyug Science College, Surat, Gujarat, India

*Corresponding Author:
Email: talha.patel9@gmail.com

Abstract
As a part of our endeavor toward the synthesis of new heterocyclic bioactive agents, some new substituted 1,3,5 triazine derivatives with 4-nitrobenzalidrazide and 6-(4-methoxyphenyl)-4-phenyl-6H-1,3-thiazin-2-amine and substituted thiourea were reacted and evaluated for their in vitro antimicrobial activity against Gram positive and Gram negative strains using a micro dilution procedure. Synthesized compounds T1GE to T15GE showed to be effective with MIC (µg/mL), among them T5GE, T8GE, T9GE and T14GE showed excellent activity against a panel of microorganisms. The newly synthesized compounds were characterized using IR, 1H-NMR, 13C-NMR, MASS Analysis.

Keywords: Cyanuric Chloride, 4-nitrobenzalidrazide, 6-(4-methoxyphenyl)-4-phenyl-6H-1, 3-thiazin-2-amine, Different thiourea derivatives and antiamicrobial activity.

Introduction
After years of misuse and overuse of antibiotics, bacteria are becoming antibiotic resistant therefore recent efforts have been directed toward exploring novel antibacterial agents1. Since last two decades there are many antibiotics and chemotherapeutics available. The challenging therapeutic problems of the treatment of infectious diseases were still remains due to the inexorable increase and spread of multidrug-resistant strains. So as to diminish the speedy multidrug-resistance in pathogenic microbes, there is an inexorable increase and spread of multidrug-resistant strains.

The major problem in the use of these drugs is that resistance is likely to develop rapidly. Therefore, it is predicted that chemical entities with 1,3,5-thiazine fused, 6-(4-methoxyphenyl)-4-phenyl-6H-1, 3-thiazin-2-amine different thiourea and s-triazine moieties would result in compounds of interesting biological activities. In view of these findings, we have attempted to incorporate all these four biologically active components together to give a confined structure as described below in reaction scheme. All synthesized compounds for evaluating their antibacterial and antifungal activities.

Previously, we were also reported synthesis, characterization and antimicrobial evaluation of 4-((5-(benzyl-1,3,4-thiadiazol-2-yl)amo)-6-((phenylamino)1,3,5-triazin-2-yl)amo)-6-((tert-butyl)-3(methylthio)-1,2,4-triazin-5(4H)-one derivatives30, 1-((4-(5-methyl-1,3,4-thiadiazol-2-yl)amo)-6-((4-phenylthiazol-2-yl)amo)-1,3,5-thiazin-2-yl)-3-phenylurea31, 4-((4-((5-benzyl-1,3,4-thiadiazol-2-yl)amo)-6-(phenyl amino)1,3,5-triazin-2-yl)amo)-6-((tert-butyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one32. Keeping this in mind we have subsequently carried out the synthesis of s-triazine based 4-(benzo[d]thiazol-2-yl)aniline and 6-(4-methoxyphenyl)-4-phenyl-2H-1,3-oxazin-2-amine derivatives to explore the synthesis of more potential bioactive molecules in one framework.

Methods and Materials
All reactions except those in aqueous media were carried out by standard techniques for the exclusion of moisture. Melting points were determined on an electro thermal melting point apparatus and are reported uncorrected. TLC on silica gel plates were used for purity checking and reaction monitoring. Elemental analysis (% C, H, N) was carried out by a
Preparation of 1-(4, 6-dichloro-1,3,5-triazin-2-yl)-3-phenylthiourea: (T1 to T15)

To the stirred solution of cyanuric chloride (0.01 mol) in acetone (25 mL) at 0-5 °C, the solution of substituted phenyl thiourea (0.01 mol) in acetone (15 mL) was added and pH was maintained neutral by the addition of 10% sodium bicarbonate solution from time to time as per requirement of reaction condition. The stirring was continued at 0-5 °C for 2 hours. After the completion of reaction the stirring was stopped and the solution was treated with crushed ice. The solid product obtained was filtered and dried. The crude product was purified by crystallization from absolute alcohol to get title compound.

Preparation of 1-(4-chloro-6-(2-(4-nitrobenzoyl) hydrazinyl)-1, 3, 5-triazin-2-yl)-3-phenyl thiourea:(T1 to 15 G)

Reaction Scheme

Step 1:

To a stirred solution of (T1 to 15) (0.01 mol) in DMF (25 mL), the solution of 4-nitrobenzohydrazide (0.01 mol) in DMF (15 mL) was added drop wise maintaining the temperature at 40 °C, the pH was maintained neutral by the addition of 10% sodium bicarbonate solution from time to time as per requirement of reaction condition. The temperature was gradually raised to 45 °C during three hours. After the completion of reaction, the resultant content was poured into ice-cold water. The solid product obtained was filtered and dried. The crude product was purified by crystallization from absolute alcohol to get the title compound.

Preparation of 1-(4-((6-(4-methoxyphenyl)-4-phenyl-6H-1, 3-thiazin-2-yl) amino)-6-(2-(4-nitrobenzoyl) hydrazinyl)-1, 3, 5-triazin-2-yl)-3-phenylthiourea: (T1 to 15 GE)

A mixture of (T1G to 15G) (0.01 mol) and 6-(4-methoxyphenyl)-4-phenyl-6H-1, 3-thiazin-2-amine (0.01 mol) in DMF (15mL) was refluxed in oil bath. The temperature was gradually raised to 80-100 °C during four hours, the pH being maintained neutral by the addition of 10% sodium bicarbonate solution from time to time as per requirement of reaction condition. After the completion of reaction charcoal was added in R.B.F. and heated then mixture was filtered into cold water. The solid product obtained was filtered and dried. The crude product was purified by recrystallization from absolute alcohol.

Perkin–Elmer 2400 CHN analyzer. IR spectra of all compounds were recorded on a Perkin–Elmer FT-IR spectrophotometer in KBr. ¹HNMR spectra were recorded on Bruker Avance II-400 MHz and ¹³CNMR spectra on Bruker Avance II-400, 100 MHz in DMSO-d₆ as a solvent and tetramethylsilane (TMS) as an internal standard. Mass spectra were recorded on triple quadrupole LCMS-6410 from Agilent Technology.
Step 3:

![Chemical Structure](image_url)

Compound T1GE: IR(KBr, cm⁻¹): -C=N str. in s-triazine (783.3), -C=S-C str. in thiazole (830.5), -C=S str. in thiourea (1148.0), -N=O- str. as -NO₂(1540.0), -C=O str. in amide (1591.0), -N-H deformation in -²²NH(1700.0), -C-H str. in -OCH₃(2831.4), -C-H str. in aromatic (3173.2), -N-H str. in -²²NH(3384.1).¹H NMR (400.0 MHz, DMSO-d₆, δH ppm): 10.61 (s, 2H, -CS-NH), 9.11 (s, 1H, -CO-NH), 8.24 (s, 1H, -NH-NH-C), 6.90-8.32 (m, 18H, Ar), 6.88 (s, 1H, Ar=C-H), 5.11 (s, 1H, Ar-S-CH), 3.91 (s, 1H, -NH), 3.70-3.80 (s, 3H, -OCH₃).

Compound T2GE: -C=N str. in s-triazine (785.1), -C=S-C str. in thiazine (861.1), -C=S str. in thiourea (1121), -C=CH str. in aromatic ring(1330.1), -N=O str. in aromatic ring (1537), -C=O str. in amide(1606.7), -N-H deformation in -²²NH(1718.5), -C-H str. in -OCH₃(2815.1), -C-H str. in -CH₃(2924.1), -C-H str. in aromatic (3136.5), -N-H str. in -²²NH(3400.1).¹H NMR (400.0 MHz, DMSO-d₆, δH ppm): 10.68 (s, 2H, -CS-NH), 9.01 (s, 1H, -CO-NH), 8.19 (s, 1H, -NH-NH-C), 6.92-8.10 (m, 17H, Ar), 6.90 (s, 1H, Ar=C-H), 5.07 (s, 1H, Ar-S-CH), 3.93 (s, 1H, -NH), 3.80-3.83 (s, 3H, -OCH₃). 2.18-2.28 (s, 3H, -CH₃).¹³C NMR(100MHz,DMSO-d₆,δC ppm):18.23,35.14,55.23,113.84,114.26(db),125.77,127.2(db),127.72,128.21(db),128.26,128.52,128.63(db),130.01(db),130.57(db),132.64(db),133.40,134.24,136.08,137.84,143.94,151.35,159.3(db),165.25(db),172.52,179.21(db).MS (EI): m/z: 718.5 (M+).

Table 1: Physicochemical data of the synthesized compounds T1GE to T15GE

S. No.	R	M.P. °C	Yield %	Mol. Formula	Calculated (Found) %		
					C	H	N
T1GE	H	190	70.25	C₃₄H₃₂N₁₀O₈S₂	57.94	4.00(3.98)	19.87(19.81)
T2GE	2-CH₃	205	55.45	C₃₅H₃₀N₁₀O₈S₂	58.48	4.21(4.16)	19.49(19.45)
T3GE	4-CH₃	213	60.25	C₃₅H₃₀N₁₀O₈S₂	58.48	4.21(4.13)	19.49(19.44)
T4GE	2-OCH₃	210	65.70	C₃₅H₃₀N₁₀O₈S₂	57.21	4.12(4.08)	19.06(19.01)
T5GE	4-OCH₃	185	69.55	C₃₅H₃₀N₁₀O₈S₂	57.21	4.12(4.10)	19.06(19.03)
T6GE	3-N₂O	190	55.55	C₃₅H₃₀N₁₀O₈S₂	54.47	3.63(3.60)	20.55(20.50)
T7GE	3-Cl	200	58.60	C₃₅H₃₂Cl₁₈N₈O₈S₂	55.24(55.20)	3.68(3.62)	18.95(19.80)
T8GE	4-Cl	165	71.15	C₃₅H₃₂Cl₁₈N₈O₈S₂	55.24(55.21)	3.68(3.66)	18.95(18.88)
T9GE	4-F	188	60.50	C₃₅H₂₂F₁₈N₈O₈S₂	56.50	3.77(3.72)	19.38(19.36)
T10GE	4-Br	170	68.60	C₃₅H₂₂Br₁₈N₈O₈S₂	52.11	3.47(3.44)	17.87(17.81)
T11GE	2-N₂O	155	70.25	C₃₅H₂₂N₁₀O₈S₂	54.47	3.63(3.61)	20.55(20.52)
T12GE	3-CH₃	220	67.80	C₃₅H₂₂N₁₀O₈S₂	57.21	4.12(4.10)	19.06(19.04)
T13GE	3-CH₃	185	62.65	C₃₅H₂₂N₁₀O₈S₂	58.48	4.21(4.17)	19.49(19.44)
T14GE	4-NO₂	215	66.75	C₃₅H₂₂N₁₀O₈S₂	54.47	3.63(3.58)	20.55(20.52)
T15GE	-Naphthyl	225	69.85	C₃₅H₃₀N₁₀O₈S₂	60.47	4.01(3.99)	18.56(18.53)

Compound T3GE: IR(KBr, cm⁻¹): -C=N str. in s-triazine (786.3), -C=S-C str. in thiazole (830.5), -C=S str. in thiourea (1143.0), -C=CH str. in aromatic ring(1348.0), -N=O- str. as -NO₂(1532.0), -C=O str. in amide(1596.0), -N-H deformation in -²²NH(1712.0), -C-H str. in -OCH₃(2843.4), -C-H str. in aromatic (3180.2), -N-H str. in -²²NH(3388.1).¹H NMR (400.0 MHz, DMSO-d₆, δH ppm): 10.61 (s, 2H, -CS-NH), 9.12 (s, 1H, -CO-NH), 8.31 (s, 1H, -NH-NH-C), 6.98-8.23 (m, 17H, Ar), 6.90 (s, 1H, Ar=C-H), 5.13 (s, 1H, Ar-S-CH), 3.99 (s, 1H, -NH), 3.65-3.88 (s, 3H, -OCH₃), 2.14-2.20 (s, 3H, -CH₃).

Compound T4GE: IR(KBr, cm⁻¹): -C=N str. in s-triazine (789.3), -C=S-C str. in thiazole (839.5), -C=S str. in thiourea (1149.0), -N=O- str. as -NO₂(1536.0), -C=O str. in amide (1594.0), -N-H deformation in -²²NH(1701.0), -C-H str. in -OCH₃(2838.4), -C-H str. in aromatic (3177.2), -N-H str. in -²²NH(3382.1).¹H NMR (400.0 MHz, DMSO-d₆, δH ppm): 10.76 (s, 2H, -CS-NH), 9.16 (s, 1H, -CO-NH), 8.25 (s, 1H, -NH-NH-...
Compound T5GE: IR (KBr, cm⁻¹): -C≡N str. in s-triazine (780.3), -C-S-C str. in thiazole (832.1), -C=S str. in thioiourea (1111.0), -N=O- str. as -NO₂(1545.0), -C=O str. in amide (1595.0), -N-H deformation in -NO\(\text{\textsubscript{2}}\) NH(1709.0), -C=H str. in -OCH\(\text{\textsubscript{3}}\)(2842.4), -C-H str. in aromatic (3188.2), -N-H str. in -NO\(\text{\textsubscript{2}}\) NH(3380.1).\(^1\)\(^\text{H}\) NMR (400.0 MHz, DMSO-\(\text{d}_{\text{6}}, \delta_{\text{ppm}}\): 10.60 (s, 2H, -CS-NH), 9.12 (s, 1H, -CO-NH), 8.18 (s, 1H, -NH-NH-C), 6.71-8.08 (m, 17H, Ar), 6.89(s, 1H, Ar=C-H), 5.11 (s, 1H, Ar-S-CH), 3.91 (s, 1H, -NH), 3.65-3.88 (s, 6H, -OCH\(\text{\textsubscript{3}}\)).

Compound T6GE: IR(KBr, cm⁻¹): -C≡N str. in s-triazine (780.3), -C-S-C str. in thiazole (824.5), -C=S str. in thioiourea (1135.0), -N=O- str. as -NO₂(1545.0), -C=O str. in amide (1600.0), -N-H deformation in -NO\(\text{\textsubscript{2}}\) NH(1711.0), -C=H str. in -OCH\(\text{\textsubscript{3}}\)(2828.4), -C-H str. in aromatic (3178.2), -N-H str. in -NO\(\text{\textsubscript{2}}\) NH(3380.1).\(^1\)\(^\text{H}\) NMR (400.0 MHz, DMSO-\(\text{d}_{\text{6}}, \delta_{\text{ppm}}\): 10.55 (s, 2H, -CS-NH), 9.14 (s, 1H, -CO-NH), 8.20 (s, 1H, -NH-NH-C), 6.78-8.24 (m, 17H, Ar), 6.90(s, 1H, Ar=C-H), 5.23 (s, 1H, Ar-S-CH), 3.98 (s, 1H, -NH), 3.61-3.91 (s, 3H, -OCH\(\text{\textsubscript{3}}\)).

Compound T7GE: IR (KBr, cm⁻¹): -C=Cl str. In aromatic ring(753.0), -C≡N str. in s-triazine (778.3), -C-S-C str. in thiazole (826.5), -C=S str. in thioiourea (1145.0), -N=O- str. as -NO₂(1531.0), -C=O str. in amide(1580.0), -N-H deformation in -NO\(\text{\textsubscript{2}}\) NH(1716.0), -C=H str. in -OCH\(\text{\textsubscript{3}}\)(2839.4), -C-H str. in aromatic (3175.2), -N-H str. in -NO\(\text{\textsubscript{2}}\) NH(3388.1).\(^1\)\(^\text{H}\) NMR (400.0 MHz, DMSO-\(\text{d}_{\text{6}}, \delta_{\text{ppm}}\): 10.61 (s, 2H, -CS-NH), 9.11 (s, 1H, -CO-NH), 8.27 (s, 1H, -NH-NH-C), 6.90-8.11 (m, 17H, Ar), 6.95 (s, 1H, Ar=C-H), 5.12 (s, 1H, Ar-S-CH), 3.90 (s, 1H, -NH), 3.70-3.86 (s, 3H, -OCH\(\text{\textsubscript{3}}\)).

Compound T8GE: IR (KBr, cm⁻¹): -C=Cl str. In aromatic ring (751.0), -C≡N str. in s-triazine (781.3), -C-S-C str. in thiazole (835), -C=S str. in thioiourea (1128.0), -N=O- str. as -NO₂(1531.0), -C=O str. in amide(1599.0), -N-H deformation in -NO\(\text{\textsubscript{2}}\) NH(1725.0), -C=H str. in -OCH\(\text{\textsubscript{3}}\)(2846.4), -C-H str. in aromatic (3171.2), -N-H str. in -NO\(\text{\textsubscript{2}}\) NH(3389.1).\(^1\)\(^\text{H}\) NMR (400.0 MHz, DMSO-\(\text{d}_{\text{6}}, \delta_{\text{ppm}}\): 10.61 (s, 2H, -CS-NH), 9.43 (s, 1H, -CO-NH), 8.11 (s, 1H, -NH-NH-C), 6.71-8.45 (m, 17H, Ar), 6.90 (s, 1H, Ar=C-H), 5.15 (s, 1H, Ar-S-CH), 3.99 (s, 1H, -NH), 3.71-3.81 (s, 3H, -OCH\(\text{\textsubscript{3}}\)).

Compound T9GE: IR (KBr, cm⁻¹): -C≡N str. in s-triazine (787.5), -C-S-C str. in thiazole (831.5), -C=F str. In aromatic ring(1097.0), -C=S str. in thioiourea (1140.0), -N=O- str. as -NO₂(1536.0), -C=O str. in amide(1594.0), -N-H deformation in -NO\(\text{\textsubscript{2}}\) NH(1701.0), -C=H str. in -OCH\(\text{\textsubscript{3}}\)(2838.4), -C-H str. in aromatic (3177.2), -N-H str. in -NO\(\text{\textsubscript{2}}\) NH(3382.1).\(^1\)\(^\text{H}\) NMR (400.0 MHz, DMSO-\(\text{d}_{\text{6}}, \delta_{\text{ppm}}\): 10.67 (s, 2H, -CS-NH), 9.02 (s, 1H, -CO-NH), 8.21 (s, 1H, -NH-NH-C), 6.98-8.38 (m, 17H, Ar), 6.91(s, 1H, Ar=C-H), 5.04 (s, 1H, Ar-S-CH), 3.93 (s, 1H, -NH), 3.75-3.82 (s, 3H, -OCH\(\text{\textsubscript{3}}\)).

Compound T10GE: IR (KBr, cm⁻¹): -C≡N str. in s-triazine (780.3), -C-S-C str. in thiazole (826.5), -C=Br str. In aromatic ring(1097.0), -C=S str. in thioiourea (1149.0), -N=O- str. as -NO₂(1543.0), -C=O str. in amide(1595.0), -N-H deformation in -NO\(\text{\textsubscript{2}}\) NH(1712.0), -C=H str. in -OCH\(\text{\textsubscript{3}}\)(2839.4), -C-H str. in aromatic (3179.2), -N-H str. in -NO\(\text{\textsubscript{2}}\) NH(3380.1).\(^1\)\(^\text{H}\) NMR (400.0 MHz, DMSO-\(\text{d}_{\text{6}}, \delta_{\text{ppm}}\): 10.66 (s, 2H, -CS-NH), 9.11 (s, 1H, -CO-NH), 8.27 (s, 1H, -NH-NH-C), 6.74-8.22 (m, 17H, Ar), 6.76 (s, 1H, Ar=C-H), 5.13 (s, 1H, Ar-S-CH), 3.98 (s, 1H, -NH), 3.70-3.84 (s, 3H, -OCH\(\text{\textsubscript{3}}\)).
NH(1696.0), -C-H str. in -OCH₃(2827.4), -C-H str. in aromatic (3165.2), -N-H str. in -2° NH(3380.1).¹¹H NMR (400.0 MHz, DMSO-d₆, δH ppm): 10.76 (s, 2H, -CS-NH), 9.17 (s, 1H, -CO-NH), 8.29 (s, 1H, -NH-NH-C), 6.90-8.45 (m, 17H, Ar), 6.84 (s, 1H, Ar=C-H), 5.18 (s, 1H, Ar-S-CH), 3.84 (s, 1H, -NH), 3.67-3.97 (s, 3H, -OCH₃).

Compound T15GE: IR(KBr, cm⁻¹): -C=N str. in s-triazine (796.3), -C-S-C str. in thiazole (842.5), -C=S str. in thiourea (1156.0), -N=O- str. as -NO₂(1543.0), -C=O str. in amide(1578.0), -N-H deformation in -2° NH(1706.0), -C-H str. in -OCH₃(2825.4), -C-H str. in aromatic (3167.2), -N-H str. in -2° NH(3374.1).¹¹H NMR (400.0 MHz, DMSO-d₆, δH ppm): 10.65 (s, 2H, -CS-NH), 8.94 (s, 1H, -CO-NH), 8.11 (s, 1H, -NH-NH-C), 6.76-8.30 (m, 20H, Ar), 6.88 (s, 1H, Ar=C-H), 5.14 (s, 1H, Ar-S-CH), 3.87 (s, 1H, -NH), 3.70-3.80 (s, 3H, -OCH₃).

Table 2

S.N.	Comp.	R=	Gram Negative Bacteria	Gram Positive Bacteria	FUNGAL SPECIES				
			E. coli	P. aeruginosa	S. aureus	S. pyogenes	C. albicans	A. niger	A. clavatus
1	T1GE	H	250	>1000	250	500	125	500	>1000
2	T2GE	2-CH₃	125	500	250	500	125	500	500
3	T3GE	4-CH₃	500	250	500	250	1000	500	500
4	T4GE	2-OCH₃	250	62.5	500	1000	>1000	250	250
5	T5GE	4-OCH₃	62.5	125	250	62.5	1000	250	125
6	T6GE	3-NO₂	250	500	250	500	125	500	500
7	T7GE	3-Cl	62.5	500	250	500	500	1000	1000
8	T8GE	4-Cl	62.5	125	500	62.5	250	500	125
9	T9GE	4-F	125	125	62.5	500	250	1000	500
10	T10GE	4-Br	125	250	62.5	125	500	1000	500
11	T11GE	2-NO₂	250	250	500	125	1000	500	>1000
12	T12GE	3-OCH₃	125	500	1000	500	125	500	500
13	T13GE	3-CH₃	250	500	1000	250	125	500	500
14	T14GE	4-NO₂	250	250	62.5	250	500	250	250
15	T15GE	Naphthyl	500	125	1000	500	250	1000	1000
16	Ampicillin	500	100	100	250	*	*	*	*
17	Chloramphenicol	50	50	50	50	*	*	*	*
18	Griseofulvin	*	*	*	500	100	100		

Result and Discussion

Compounds T5GE, T7GE and T8GE exhibited excellent activity and T2GE, T9GE, T10GE and T12GE compounds exhibited good activity against *E. coli* as compared to Ampicillin. Compounds T5GE, T8GE, T9GE and T15GE exhibited good activity at 100-125 μg/mL activity and T4GE exhibited excellent activity as 62.5 μg/mL against *P. aeruginosa* as compared to Ampicillin. Compounds T9GE, T10GE and T14GE showed excellent activity at 62.5 μg/mL against *S. aureus* as compared to Ampicillin (MIC= 250 μg/mL). Compounds T10GE, T11GE exhibited good activity at 100-125 μg/mL and compound T5GE and T8GE showed excellent activity at 62.5 μg/mL against *S. pyogenes* as compared to Ampicillin (MIC= 100 μg/mL).

Most of the compounds showed very good antifungal activity against *Candida albicans*, their MIC values were in the range between (100-500 μg/mL). As far as the anti-fungal activity are concerned for substituted thiourea derivatives of s-triazine compounds T1GE, T6GE, T12GE and T13GE showed excellent activity at 125 μg/mL and compounds T8GE and T9GE showed average activity at 250 μg/mL against *C. albicans* as compared to Griseofulvin (MIC= 500 μg/mL). Whereas T2GE, T4GE, T5GE and T14GE compounds showed good activity against *Aspergillus Clavatus* as compared to Griseofulvin (MIC= 100 μg/mL).

Conclusion

In this article we have report a series of 4-nitrobenzohydrazide and 6-(4-methoxyphenyl)-4-phenyl-6H-1, 3-thiazin-2-amine and substituted thiourea linked s-triazine showing better activity. T5GE showed better antifungal activity compared to standard. All the synthesized compounds have been established by elemental analysis, IR, ¹¹H NMR and mass spectral data. So, there is a future in doing more work on the synthesized compounds as some of them showed good activity against standard drugs.

Acknowledgement

The authors thankful to Principal Dr. A. S. Patel, Naviyug Science College, Surat for providing necessary research facility, SAIF Chandigarh for NMR data and Central Keshlya laboratory for providing antimicrobial activity.
References
1. Moustafa M A, Gineinah M M, Nasr M N, Arch Pharma, (2004) 337,427-433.
2. Demain A L, Sanchez S, J Antibiots, (2009) 62,5-16.
3. Krchnak V, Holliday M W, Solid phase heterocyclic chemistry Chem Rev, (2002) 102,61-92.
4. Da Silva C M, Da Silva D L, Modolo L V, Alves R V, De Resende M A, Martins C V B, De Fatima A, J Adv Res, (2011) 2,1-8.
5. Mohini Y, Prasad R B N, Karuna M S L, Med Chem Res, (2013) 22,4360-6.
6. Shi L, Tan S H, Li H Q, Song Y C, Zhu H L, Tan R X, Eur J Med Chem, (2007) 2,558-64.
7. Cheng L S, Tang J J, Luo H, Jin X J, Dai F, Yang Y, Qian Y P, Bioorg Med Chem Lett, (2010) 20, 2417-20.
8. Rollas S, Gulerman N, Erdeniz H, J Med Chem, (2002) 57, 171-4.
9. Bayrak H, Demirbas A, Demirbas N, Karaoglu S A, Eur J Med Chem, (2009) 44, 4362-6.
10. Kamble V U, Patil A S, Badami S P, J Incl Pheno Macro Chem, (2010) 68(3), 347-58.
11. Kaymakcioglu B, Elcin Oruc-Emre E, Unsalan S, Tabanca N, Khan S I, Earl D, Iscan G, Demirci F, Rollas S, Med Chem Res, (2012) 21, 3499-508.
12. Loncle C, Brunel J M, Vidal N, Dherbomez M, Letourneux Y, Eur J Med Chem, (2004) 39,1067-71.
13. Yamashita H, Ohno K, Amada Y, Hattori H, Funatsu Y O, Toya T, J Pharm Exp Ther, (2004) 308,127-33.
14. Rathod S P, Charjan A P and Rajput P R, Ras J Chem, (2010) 3,363-7.
15. Keerthi Kumar B, J Pharm Resi, (2011) 4,274-5.
16. Srikanth Jupudi et al Inter J Rese Pharm Chem, (2013) 3, 213-20.
17. Kalirajan R et al, J Chem Tech Rese, (2009) 1, 27-34.
18. Wang W, Zhao B, Chao X and Wenpeng W, Inter J Org Chem, (2012) 2, 117-20.
19. Meric A, Zerrin N and Ibrahim H, Med Chem Rese, (2014) 17, 30-41.
20. Beauchamp B, Hilpert and Wang, World Intellectual Property Organization, (2011) 165.
21. Levy S B, Marshall B, Nat Med, (2004) 10, S122-9.
22. Patel R V, Kumar P, Rajani D P, Panneconque C, DeClercq E, Chikhalia K H, Med Chem, (2012) 4, 1053-65.
23. Mishra A R, Singh S, J Agric Food Chem, (2000) 48, 5465-8.
24. Patel D H, Chikhalia K H, Shah N K, Patel D P, Kaswala P B, Buha V M, J Enzyme Inhib Med Chem, (2010) 25, 121-5.
25. Kumar G J, Bomma S S, Srihari E, Shrivastava S, Naidu V G M, Srinivas K, Rao V J, Med Chem Res, (2013) 22, 5973-81.
26. Liu B, Lee Y, Zou J, Petrazzi H M, Joseph R W, Chao W, Michelotti E L, Bukhtiyarova M, Springman E B, Dorsey B D, Bioorg Med Chem Lett, (2010) 20, 6592-6.
27. Dianzani C, Collino M, Gallicchio M, Fantozzi R, Samaritani S, Signore G, Menicagli R, J Pharm Pharmacol, (2006) 58,219-26.
28. Avupati V R, Yejella R P, Parala V R, Killari K N, Papasani V M R, Bioorg Med Chem Lett, (2013) 23, 5968-5970.
29. Bhat H R, Singh U P, Gahtori P, Ghosh S K, Gogoi K, Prakashe A, Singh R S, New J Chem, (2013) 37, 2654-62.
30. Malik G M, Patel T V, Journal of Asian Scientific Research, (2017) 7(6), 214-23.
31. Malik G M, Patel T V, International Journal of Advanced Research in Science, Engineering and Technology, (2017) 4, 6.
32. Malik G M, Patel T V, JUC (2018) 14(2), 76-83.