Effect of packing height and location of porous media on heat transfer in a cubical cavity
Are extended Darcy simulations sufficient?

Chakkingal, Manu; Schiavo, Sabino; Ataei Dadavi, Iman; Tummers, Mark; Kleijn, Chris; Kenjeres, Sasa

DOI
10.1016/j.ijheatfluidflow.2020.108617

Publication date
2020

Document Version
Final published version

Published in
International Journal of Heat and Fluid Flow

Citation (APA)
Chakkingal, M., Schiavo, S., Ataei-Dadavi, I., Tummers, M. J., Kleijn, C. R., & Kenjereš, S. (2020). Effect of packing height and location of porous media on heat transfer in a cubical cavity: Are extended Darcy simulations sufficient? International Journal of Heat and Fluid Flow, 84, [108617].
https://doi.org/10.1016/j.ijheatfluidflow.2020.108617

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
Effect of packing height and location of porous media on heat transfer in a cubical cavity: Are extended Darcy simulations sufficient?

Manu Chakkingal\textsuperscript{a,1,1}, Sabino Schiavo\textsuperscript{1,1}, Iman Ataei-Dadavi\textsuperscript{a}, Mark J. Tummers\textsuperscript{b}, Chris R. Kleijn\textsuperscript{a}, Saša Kenjereš\textsuperscript{a}

\textsuperscript{a}Transport Phenomena Section, Department of Chemical Engineering, Delft University Of Technology, Delft, The Netherlands
\textsuperscript{b}Fluid Mechanics Section, Department of Process and Energy, Delft University Of Technology, Delft, The Netherlands

\textbf{A R T I C L E  I N F O}

Keywords:
Natural convection
Porous media
Partially filled
Shifted porous layer
Pore-structure resolved
Polyhedral mesh
Darcy-Forchheimer assumption
OpenFOAM
ANSYS-FLUENT

\textbf{A B S T R A C T}

We numerically investigate natural convection in a bottom-heated top-cooled cavity, fully and partially filled with adiabatic spheres (with diameter-to-cavity-size ratio $d/L = 0.2$) arranged in a Simple Cubic Packing (SCP) configuration. We study the influence of packing height and location of porous media. We carry out the simulations using water as the working fluid with Prandtl number $Pr = 5.4$ at Rayleigh number $Ra = 1.16 \times 10^5$, $1.16 \times 10^6$ and $2.31 \times 10^7$. The applicability and suitability of Darcy-Forchheimer assumption to predict the global heat transfer is analysed by comparing it with the pore-structure resolved simulations. We found that the heat transfer in pore-structure resolved simulations is comparable to that in fluid-only cavities at high Rayleigh numbers, irrespective of the number of layers of packing and its location. Discrepancies in heat transfer between the Darcy-Forchheimer and the fully resolved simulations are observed when the porous medium is close to the isothermal wall and at high $Ra$, while it vanishes when the porous medium is away from the isothermal bottom wall.

\section{1. Introduction}

Natural convective heat transfer in porous media packed cavities is of great importance in various engineering and real-life applications. It is an important mechanism in refrigeration devices Laguerre et al. (2008a,b), distribution transformers Torriano et al. (2018), nuclear waste disposal Shams et al. (2014), air dehumidifiers Fazliati et al. (2016), catalytic reactors Li et al. (2013); Thiagalingam et al. (2015), etc. It can also be of crucial importance in heat exchangers Boomsma et al. (2003); Missirlis et al. (2007) under safety mode operation, when the forced flow is blocked. In most of the applications mentioned above the domain may be partially filled Zhu et al. (2018) with materials and the relative position of these materials may vary (like food kept at the bottom or top of a refrigerator), which demands an in-depth understanding of the heat transfer mechanism in a partially filled porous media and its relative position.

Several experimental and numerical studies on natural convection in porous media are available in literature Nield et al. (2006). Most of the studies are on the influence of Rayleigh number Katto and Masuoka (1967), Prandtl number Catton and Jonsson (1987); Kladias and Prasad (1989), conductivity Zhao et al. (2005); Ataei-Dadavi et al. (2019b) and size of porous media Seki et al. (1978); Keene and Goldstein (2015); Nithiarasu et al. (1998). Studies also report that the heat transfer in fully packed porous media filled cavities asymptotically approach the heat transfer in a fluid-only cavity at high Rayleigh numbers Keene and Goldstein (2015); Ataei-Dadavi et al. (2019a). All these studies concentrate on the effect of the above mentioned parameters on fully packed cavities. However, the studies on the effect of location of the porous medium and its height are limited. Studies on partially filled porous media made of metal foam report a positive influence of porous media on heat transfer enhancement Kathare et al. (2008). The enhancement reported is mostly due to the increased conductivity of the medium. Experimental studies also report a non-monotonic change in heat transfer with packing height Prasad et al. (1991); Prasad (1993). Visualization from the top of the cavity hints at the channeling effect to be the reason for the non-monotonic heat transfer variation.

A variety of different cases and conditions were tested using Darcy assumption and other more refined Darcy models Nield et al. (2006), with most of them being 2D simulations. Semi-analytical solution for 2-dimensional Fahs et al. (2014, 2015) and 3-dimensional

\textsuperscript{1}Corresponding author.
\textsuperscript{E-mail address: M.Chakkingal@tudelft.nl (M. Chakkingal).}
\textsuperscript{1}contributed equally to this manuscript.

https://doi.org/10.1016/j.ijheatfluidflow.2020.108617

Received 4 November 2019; Received in revised form 6 March 2020; Accepted 20 April 2020

0142-727X/ © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
We use water \((3 \text{ m/s})\) as \(u\), and with adiabatic spheres of diameter, \(d\) and \(Da\) are high, and also with the change in the location and height of the packing \(\delta_h\), we find that spherical beads of the dimensions mentioned above result in its influence on heat transfer at low \(Ra\), while the effect reduces with an increase in \(Ra\). The bottom and top walls of the cubical cavity are maintained at uniform temperatures \(T_b\) and \(T_c\) \((T_b \geq T_c)\) respectively. All the other vertical walls are adiabatic. Effects of packing height and packing location are investigated carrying out fully resolved numerical simulations and comparing with Darcy-Forchheimer simulations.

### Subscripts
- \(f\): Fluid
- \(s\): Solid
- \(eff\): Effective

## 1. Nomenclature

| Symbol | Description |
|--------|-------------|
| \(\alpha\) | Thermal diffusivity, \((\lambda/\rho c_p)\), \(m^2/s\) |
| \(\beta\) | Thermal expansion coefficient, \(K^{-1}\) |
| \(\lambda\) | Thermal conductivity, \(W/m.K\) |
| \(\lambda_{\text{eff}}\) | Effective thermal conductivity, \(W/m.K\) |
| \(\nu\) | Kinematic viscosity of fluid, \(m^2/s\) |
| \(\phi\) | Porosity |
| \(\rho\) | Density, \(kg/m^3\) |
| \(\delta_h\) | Thermal boundary layer thickness, \(L_{\text{DB}}/2N_{\text{u}}\), \(m\) |
| \(L\) | Height of cavity, \(m\) |
| \(K\) | Permeability |
| \(Da\) | Darcy number, \(K/L^2\) |
| \(\nu_{\text{pores}}\) | Total volume of porous layer, \(m^3\) |
| \(\nu_{\text{spheres}}\) | Volume occupied by spheres, \(m^3\) |
| \(u\) | Pore-scale velocity, \(m/s\) |
| \(u^*\) | Non-dimensional pore-scale velocity, \(u/\sqrt{\nu\alpha}\), \(m/s\) |
| \(U_0\) | Characteristic velocity scale, \(Ra_{\text{eff}}^{1/3} \nu_{f} c_p\), \(m/s\) |
| \(t_0\) | Characteristic time scale, \(L_{\text{DB}}/u_0\), \(s\) |
| \(X, Y, Z\) | Represents the rectangular coordinate system |
| \(D-F\) | Darcy-Forchheimer simulation with continuum approach |
| \(P-R\) | Pore-structure resolved simulation |
| \(g\) | Acceleration due to gravity (acts along \(Z\) axis), \(m/s^2\) |
| \(p\) | Pressure, \(N/m^2\) |
| \(\rho_{\text{eff}}\) | Reference temperature, \(T_b + T_c/2\), \(K\) |
| \(c_p\) | Specific heat capacity, \(J/kg.K\) |
| \(d\) | Diameter of sphere, \(m\) |
| \(d_p\) | Diameter of pore-space, \(m\) |
| \(\sigma\) | Surface tension, \(N/m\) |
| \(\nu\) | Kinematic viscosity, \(m^2/s\) |
| \(\theta\) | Non-dimensional temperature, \((T - T_c)/(T_b - T_c)\) |
| \(\theta_{\text{ref}}\) | Time- and plane-averaged temperature |
| \(T\) | Temperature, \(K\) |
| \(Ra\) | Rayleigh number based on fluid properties, \(L\nu_{f}^3T_{\text{ref}}/\lambda\) |
| \(Nu\) | Nusselt number based on fluid properties |
| \(Pr\) | Prandtl number |
| \(\theta\) | Non-dimensional temperature, \((T - T_c)/(T_b - T_c)\) |
| \(\theta_{\text{ref}}\) | Time- and plane-averaged temperature |
| \(T\) | Temperature, \(K\) |
| \(Ra\) | Rayleigh number based on fluid properties, \(L\nu_{f}^3T_{\text{ref}}/\lambda\) |
| \(Nu\) | Nusselt number based on fluid properties |
| \(Pr\) | Prandtl number |
| \(\theta\) | Non-dimensional temperature, \((T - T_c)/(T_b - T_c)\) |
| \(\theta_{\text{ref}}\) | Time- and plane-averaged temperature |
| \(T\) | Temperature, \(K\) |
| \(Ra\) | Rayleigh number based on fluid properties, \(L\nu_{f}^3T_{\text{ref}}/\lambda\) |
| \(Nu\) | Nusselt number based on fluid properties |
| \(Pr\) | Prandtl number |
| \(\theta\) | Non-dimensional temperature, \((T - T_c)/(T_b - T_c)\) |
| \(\theta_{\text{ref}}\) | Time- and plane-averaged temperature |
| \(T\) | Temperature, \(K\) |
| \(Ra\) | Rayleigh number based on fluid properties, \(L\nu_{f}^3T_{\text{ref}}/\lambda\) |
| \(Nu\) | Nusselt number based on fluid properties |
| \(Pr\) | Prandtl number |
| \(\theta\) | Non-dimensional temperature, \((T - T_c)/(T_b - T_c)\) |
| \(\theta_{\text{ref}}\) | Time- and plane-averaged temperature |
| \(T\) | Temperature, \(K\) |
| \(Ra\) | Rayleigh number based on fluid properties, \(L\nu_{f}^3T_{\text{ref}}/\lambda\) |
| \(Nu\) | Nusselt number based on fluid properties |
| \(Pr\) | Prandtl number |
| \(\theta\) | Non-dimensional temperature, \((T - T_c)/(T_b - T_c)\) |
| \(\theta_{\text{ref}}\) | Time- and plane-averaged temperature |
| \(T\) | Temperature, \(K\) |
| \(Ra\) | Rayleigh number based on fluid properties, \(L\nu_{f}^3T_{\text{ref}}/\lambda\) |
| \(Nu\) | Nusselt number based on fluid properties |
| \(Pr\) | Prandtl number |
| \(\theta\) | Non-dimensional temperature, \((T - T_c)/(T_b - T_c)\) |
| \(\theta_{\text{ref}}\) | Time- and plane-averaged temperature |
| \(T\) | Temperature, \(K\) |
| \(Ra\) | Rayleigh number based on fluid properties, \(L\nu_{f}^3T_{\text{ref}}/\lambda\) |
| \(Nu\) | Nusselt number based on fluid properties |
| \(Pr\) | Prandtl number |
| \(\theta\) | Non-dimensional temperature, \((T - T_c)/(T_b - T_c)\) |
| \(\theta_{\text{ref}}\) | Time- and plane-averaged temperature |
| \(T\) | Temperature, \(K\) |
| \(Ra\) | Rayleigh number based on fluid properties, \(L\nu_{f}^3T_{\text{ref}}/\lambda\) |
| \(Nu\) | Nusselt number based on fluid properties |
| \(Pr\) | Prandtl number |
| \(\theta\) | Non-dimensional temperature, \((T - T_c)/(T_b - T_c)\) |
| \(\theta_{\text{ref}}\) | Time- and plane-averaged temperature |
| \(T\) | Temperature, \(K\) |
| \(Ra\) | Rayleigh number based on fluid properties, \(L\nu_{f}^3T_{\text{ref}}/\lambda\) |
| \(Nu\) | Nusselt number based on fluid properties |
| \(Pr\) | Prandtl number |
| \(\theta\) | Non-dimensional temperature, \((T - T_c)/(T_b - T_c)\) |
| \(\theta_{\text{ref}}\) | Time- and plane-averaged temperature |
| \(T\) | Temperature, \(K\) |

## 2. Mathematical formulations and numerical methods

### 2.1. Geometry and boundary conditions

We study natural convection in a cubical \(L \times L \times L\) cavity filled with adiabatic spheres of diameter, \(d = 0.2L\) at \(Ra = 1.16 \times 10^7, 1.16 \times 10^8\) and \(2.3 \times 10^7\). We use water \((Pr = 5.4)\) as the working fluid. The gravity, \(g\) acts along the negative \(Z\)-axis of the Cartesian coordinate system. From our previous experimental study on natural convection in fully-packed cavity Ataei-Dadavi et al. (2019a), we find that spherical beads of the dimensions mentioned above result in its influence on heat transfer at low \(Ra\), while the effect reduces with an increase in \(Ra\). The bottom and top walls of the cubical cavity are maintained at uniform temperatures \(T_b\) and \(T_c\) \((T_b \geq T_c)\) respectively.

#### • Packing height:
The domain is stacked with different number of horizontal layers (Fig. 1 and Table 1) of sphere-packing from the bottom wall to the top, arranged in a Simple Cubic Packing (SCP) fashion.

#### • Packing location:
The domain is stacked with single layer (and 2 layers) of spheres at different positions with respect to the bottom wall (Table 1) in an SCP fashion.

No slip boundary condition is applied at all the walls for both fully resolved and D-F simulations, and also at the spherical surfaces in the fully resolved packed bed simulations. We ensure that \(\beta \Delta T \ll 1\) in all our simulations such that the Boussinesq approximation Gray and Giorgini (1976) is valid.

### 2.2. Governing equations and numerical method

The governing equations used for the simulations are split into two:

- • Fully resolved simulations of fluid-only (Rayleigh-Bénard convection) and packed bed cavities using open-source finite volume CFD solver Foam Extend 4.0 Weller et al. (1998)
For the fully resolved simulations using the Boussinesq approximation, we numerically solve the transient Navier-Stokes and thermal energy transport equations for Newtonian fluids:

$$\nabla \cdot \mathbf{u} = 0$$  

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u} + \beta (T - T_{ref})$$  

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \alpha \nabla^2 T$$  

To perform fully resolved numerical simulations in our complex geometry, we use Foam Extend 4.0 (a fork of OpenFOAM). We use unstructured polyhedral grids to carry out numerical simulations for the packed bed cavities and structured grids for the reference (fluid only) Rayleigh-Bénard convection simulations. The above set of equations, Eq. (1)-(3) are discretized and fully resolved numerical simulations are carried out using the standard solver buoyantBoussinesqPisoFoam. The solver is validated by comparing the heat transfer obtained numerically with adiabatic beads is comparable to that obtained with glass beads (of lower conductivity) experimentally. This confirms the suitability of the current solver for the pore-structure resolved simulations of the packed bed.

Figure 1: Numerical schemes for fully resolved simulations using OpenFOAM.

| Settings                  | Numerical scheme |
|---------------------------|------------------|
| Time scheme               | Backward (2nd order) |
| Gradient scheme           | Gauss linear, (2nd order central) |
| Divergence scheme         | Gauss linear corrected |
| Laplacian scheme          | Gauss linear corrected |
| Interpolation scheme      | Linear |
| Pressure-velocity coupling| PISO |


\(Ra\), in a cavity filled with glass beads of the same size and packing Ataei-Dadavi et al. (2019a) we obtain a Nusselt number \(Nu = 17.9\) (interpolated from data). The heat transfer obtained numerically with adiabatic beads is comparable to that obtained with glass beads (of lower conductivity) experimentally. This confirms the suitability of the current solver for the pore-structure resolved simulations of the packed bed.

We use the numerical schemes as listed in Table 2 to solve the convective and diffusive termsWeller et al. (1998) and to handle the pressure-velocity-coupling at each time step Issa (1986). The adaptive time-stepping is carried out by limiting the maximum cell Courant number to 0.33.

For the D-F simulations in ANSYS-Fluent, the effect of porous medium is modelled by including the pressure drop in a porous medium due to the viscous and inertial effects as a source term \(S\) in the momentum equation, Eq. 5 Nithiarasu et al. (1998).

$$\nabla \cdot \mathbf{u} = 0$$  

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u} + \beta (T - T_{ref}) + \frac{1}{\rho_f} (\rho_f - \rho_s) \mathbf{u} \cdot \nabla \mathbf{u}$$  

$$S = \nabla \cdot \left( \frac{\mathbf{u}}{C_0} \right) - C_1 \frac{\rho_s}{\rho_f} |\mathbf{u}|$$  

For a packed bed cavity \(C_0\) and \(C_1\) are calculated using Ergun’s equation as:

$$C_0 = \frac{d^2 (1 - \phi)^3}{150 (1 - \phi)^4}$$  

$$C_1 = \frac{3.5 (1 - \phi)}{d^4 (1 - \phi)^4}$$  

where \(d\) and \(\phi\) are the diameter of the spherical beads and local porosity, respectively. For each packing scheme the packed bed section is substituted by a Darcy equivalent, both in position/size and properties. The porosity, \(\phi\) is calculated for the porous layer using the porous layer height, \(L_{ref}\) (in 4.2L, 0.4L: for 1 Layer packing, 2 Layer packing etc. respectively) and the diameter of the sphere \(d\) as:

$$\phi = \frac{V_f^{\text{pores}} - V_f^\text{spheres}}{V_f^{\text{pores}}}$$  

where, \(V_f^{\text{pores}}\) and \(V_f^\text{spheres}\) is the total volume of the cavity of height \(L_{ref}\) and volume occupied by the spherical beads, respectively. The Eq. (4) (7) in ANSYS Fluent user manual (when re-arranged) are the same as

Table 1: Numerical schemes for fully resolved simulations using OpenFOAM.

| Settings | Numerical scheme |
|----------|------------------|
| Time scheme | Backward (2nd order) |
| Gradient scheme | Gauss linear, (2nd order central) |
| Divergence scheme | Gauss linear corrected |
| Laplacian scheme | Gauss linear corrected |
| Interpolation scheme | Linear |
| Pressure-velocity coupling | PISO |

Table 2: Numerical schemes for fully resolved simulations using OpenFOAM.

| Packing name | Corresponding packing scheme |
|--------------|-----------------------------|
| 1 Layer      |                            |
| 2 Layer      |                            |
| 3 Layer      |                            |
| 4 Layer      |                            |
| 5 Layer      |                            |
| 1L Middle    |                            |
| 1L Quarter   |                            |
| 2L Quarter   |                            |
reported in Nithiarasu et al. (1998). The details of solver validation are reported in Appendix A. For the investigated \(d/L\) ratio and porosity, the permeability \(K\) is equal to \(1.05 \times 10^6\) resulting in a \(Da\) varying between \(2.62 \times 10^3\) and \(1.05 \times 10^4\) for packing height varying from 1 Layer to 5 Layers.

The governing equations in ANSYS-Fluent are solved using the numerical schemes listed in Table 3.

The time step size determined using for D-F simulations also satisfy the condition of maximum cell Courant number \(\leq 0.33\).

### 2.3. Mesh requirement

The pore-structure resolved (P-R) simulations are carried out using polyhedral mesh (Fig. 2(b)), generated by converting a fine tetrahedral mesh (Fig. 2(a)). The function \(polyDualMesh\) available in OpenFOAM is used to carry out this conversion. The number of mesh cells is decreased using this approach. For example, it reduces a 30 million cell tetrahedral mesh to a polyhedral mesh with around 6 million cells. Initial estimates of the grid requirement close to the wall and the bulk of the cavity are made based on the correlations provided in Shishkina et al. (2010) for Rayleigh-Bénard convection. Using the estimate for the highest \(Ra = 2.3 \times 10^7\) as a base, a grid independence study is carried out using three different polyhedral meshes with 0.5 million, 4 million and 6 million cells for the cavity packed with 1 layer of spherical beads. The non-dimensional integral Nusselt number (deviation less than 4%) and non-dimensional time- and plane- averaged non-dimensional temperature, \(\theta_m\) along the vertical direction (Fig. 3) are used to ensure that we get a grid-independent solution. Though the volume of the packed-cavity to be meshed decreases with an increase in the number of layers of spherical beads, we use \(\sim 6\) million polyhedral cells to account for the increase in curved surfaces in the domain.

For the fluid-only and Darcy-Forchheimer simulations, we use structured hexahedral grid cells, with a growth factor of 1.2 close to the horizontal isothermal walls. A grid independence study is carried out using \(32^3\), \(64^3\) and \(128^3\) and \(167^3\) hexahedral cells. The deviation of time- and wall- averaged integral Nusselt number between \(128^3\) and \(167^3\) cells is less than 0.5% for \(Ra = 2.3 \times 10^7\). All the reported results are thus obtained with the \(128^3\) hexahedral cells.

### 3. Results and Discussion

The influence of Rayleigh number, packing height and location of packing of spherical beads on the flow and heat transfer is discussed in this section. In the following sections, the ANSYS Fluent simulations with Darcy and Forchheimer terms are referred to as Darcy-Forchheimer (D-F) simulations. All the D-F simulations are carried with grid-size required to fully resolve the flow in the porous media free region. In the porous region we find the flow velocities to be very low such that the Reynolds number calculated with maximum flow velocity as the velocity scale and square root of permeability \(\sqrt{K}\) as the length scale is \(\approx 3\) within the porous region. Thus laminar models are used for the simulations.

The pore-scale resolved simulations are compared to D-F simulations to better understand the suitability and applicability of D-F assumptions to simulate the flow and heat transfer in fully and partially packed porous domains. The results obtained with D-F simulations are also reported in terms of intrinsic velocity \(u\). All the results reported below are expressed in non-dimensional form. The instantaneous temperature is non-dimensionalised using the temperature difference between the top and bottom wall as in \(\theta = \frac{T_t - T_b}{T_t - T_c}\). The instantaneous intrinsic velocities, \(u\) are non-dimensionalized with the characteristic velocity scale \(U_0 = \frac{Ra^{3/7} \pi}{L}\) Castaing et al. (1989), such that the non-dimensional velocity vector \(u^*\) equals

\[
    u^* = \frac{u}{U_0}
\]

(11)

The time- and wall- averaged global heat transfer is expressed in terms of Nusselt number defined as:

\[
    Nu = \frac{-L}{\Delta T} \left( \frac{\partial T}{\partial z} \right)_{wall}
\]

(12)
3.1 Influence of Ra and packing height

We compare the heat transfer and flow features in P-R cavities with 1-5 layers of spherical beads stacked from the bottom to the top. The results from P-R simulations are compared with the D-F simulation results with the same local Darcy number Da and ϕ. We also compare the heat transfer obtained with P-R and D-F simulations to that in a fluid-only filled cavity.

In Fig. 4 we plot the time- and plane-averaged (averaged along XY plane) non-dimensional temperature of pore-structure resolved (P-R) simulations with 1 Layer to 5 Layer of spherical beads. The vertical lines indicate the packing height, for e.g. z/L = 0.2 and z/L = 1 represent the height of 1Layer packing and 5 Layer packing, respectively. At low Ra = 1.16 × 10^5 (Fig. 4(a)), the temperature distribution becomes conduction-dominated with the increase in the number of layers of spherical beads i.e. from 1Layer to 5Layer packing. The "close to linear" temperature in fully-packed cavity (5 Layer) indicates the absence of convection in the cavity. The flow resistance imposed by the adiabatic spherical beads results in this behaviour.

In contrast to the above, at Ra = 2.3 × 10^7 (Fig. 4(b)) the slope of time- and plane-averaged temperature close to the wall (z/L = 0 and z/L = 1) is comparable to that in a fluid-only filled cavity, indicating a convection dominated heat transfer. The presence of multi-layered adiabatic spherical beads results in an asymmetry in the temperature distribution, which vanishes in the cavity with 5 layers of packing.

From Fig. 5 we observe that the inclusion of spherical beads in the cavity, adversely affects the convective flow and thus the heat transfer is lower than in the fluid-only cavity, especially at low Ra. The non-dimensional heat transfer Nu in P-R cavities and in cavities with the D-F assumption are comparable at lower Rayleigh numbers (Ra = 1.16 × 10^5, 1.16 × 10^6). At Ra = 1.16 × 10^5 the heat transfer is much lower than in a fluid-only filled-cavity, and decreases with an increase in the number of layers of packing. At Ra = 1.16 × 10^6, though the heat transfer is much lower than in fluid-only cavity, it is practically independent of the layers of packing (1 Layer-4 Layer). However, when the spherical beads are introduced close to the top cold wall (5 Layer), the heat transfer reduces further.

With the increase in Ra (Ra = 2.3 × 10^7), the heat transfer in P-R cavities are slightly lower than (1 Layer-3 Layer, 5 Layer) or comparable (4 Layer) to that in fluid-only filled cavities, while the heat transfer obtained from simulations with D-F assumption is observed to be much lower than in the fluid-only cavities. The results from the P-R simulations are qualitatively similar to that obtained experimentally for partially filled Prasad et al. (1991) and fully-filled cavities Ataei-Dadavi et al. (2019a). Unlike the P-R simulations, the D-F simulations cannot capture this behaviour and thus significantly under-predict the heat transfer.

To understand the difference in heat transfer (Nu) between P-R and D-F simulations we analyse the instantaneous local Nusselt number, local non-dimensional temperature and the local non-dimensional velocity magnitude in cavities with 1 Layer and 5 Layer packing, at Ra = 2.3 × 10^7.
3.1.1. Darcy-Forchheimer simulations

In simulations with D-F assumption, the local Nusselt number (Fig. 6) at the bottom hot wall significantly decreases with the increase in the height of packing. In the D-F cavity with porous layer equivalent to the height of 1 Layer of spherical bead packing (Fig. 6(a)), the instantaneous heat transfer is high throughout the surface of the bottom wall. However, when the cavity is fully filled with porous media (Fig. 6(b)), the surface area with high local Nusselt number is smaller when compared to that in the cavity with 1 Layer of packing.

The reason for the reduction in heat transfer with the increase in porous layer height, becomes clear from the local non-dimensional instantaneous temperature (Fig. 7) and velocity magnitude (Fig. 8) along a plane ($x = \frac{x}{L}/0.43$) in the configurations with 1 Layer and 5 Layers of packing. From Fig. 7(a) we see that the cold thermal plumes erupting from the top cold wall moves downward (as indicated by the velocity vectors) towards the bottom wall. From the velocity vectors we see that the flow in the porous region is lower when compared to the fluid-only region above the porous layer (Fig. 7(a)). The temperature at the interface of the fluid-only and porous region (Fig. 7(c)) is close to the cold fluid temperature. The fluid region above this interface thus behaves like a fluid only cavity.

The reason for the reduction in heat transfer with the increase in porous layer height, becomes clear from the local non-dimensional instantaneous temperature (Fig. 7) and velocity magnitude (Fig. 8) along a plane ($x/L = 0.43$) in the configurations with 1 Layer and 5 Layers of packing. From Fig. 7(a) we see that the cold thermal plumes erupting from the top cold wall moves downward (as indicated by the velocity vectors) towards the bottom wall. From the velocity vectors we see that the flow in the porous region is lower when compared to the fluid-only region above the porous layer (Fig. 7(a)). The temperature at the interface of the fluid-only and porous region (Fig. 7(c)) is close to the cold fluid temperature. The fluid region above this interface thus behaves like a fluid only cavity.

Fig. 7. Instantaneous non-dimensional temperature distribution and velocity vectors at $x/L = 0.43$, in a cavity with (a) 1 layer (layer height highlighted with a box) (b) 5 layers at $Ra = 2.3 \times 10^7$ simulated using Darcy-Forchheimer assumption. The velocity vectors are visualized by projecting them to a $32 \times 32$ grid along the vertical plane. The enlarged 3D view of the temperature distribution in the porous region of cavity with 1 Layer of packing is depicted in (c) with a different colour scale.

Fig. 8. Instantaneous non-dimensional velocity magnitude distribution at $x/L = 0.43$, in a cavity with (a) 1 layer (b) 5 layers at $Ra = 2.3 \times 10^7$ simulated using Darcy-Forchheimer assumption. The legend of (c) has a different scale from (a).
When the cavity is fully packed with porous media the asymmetry in temperature distribution (Fig. 7(b)) observed above, vanishes. The velocity vectors suggest the flow velocity to be much lower than that in the cavity with 1 Layer of packing (Fig. 7(a)). The contours of non-dimensional velocity magnitude confirm the reduction in flow velocity when the cavity is fully packed with porous media (Fig. 8(b)) when compared to the cavity with 1 Layer of packing (Fig. 8(a)). From Fig. 7 and Fig. 8 we find that the convective contribution to the heat transfer in the cavity decreases when the cavity is fully packed. The fluid-only region in the partially filled cavity dictates the total heat transfer thus resulting in a higher heat transfer (Fig. 6(a)) than in the fully-packed cavities (Fig. 6(b)).

3.1.2. Pore-structure resolved simulations

As observed in Fig. 5, the heat transfer obtained with pore-structure resolved simulations are comparable to that in fluid-only filled cavities and is higher than in D-F simulations, at high \(Ra\). This is also evident from the local Nusselt number distribution of heat transfer at the bottom hot wall in P-R simulations, obtained in cavities with 1 Layer and 5 Layer of packing (Fig. 9). The local Nusselt number in P-R simulations (Fig. 9) are higher than in D-F simulations (Fig. 6). Unlike the Nusselt number distribution with D-F simulations, the heat transfer in P-R simulations are high in the regions close to the pore-space and are close to 0 at regions very close to the point of contact of the spherical beads with the bottom wall. To explain this behaviour, we look at the local flow and temperature in the plane \(X/L = 0.43\), where the spherical beads and the pore-space are comparable in size. In Fig. 10 we compare configurations with 1 Layer (Fig. 10(a)) and 5 Layer (Fig. 10(b)) of spherical bead packing, at \(Ra = 2.3 \times 10^7\). The instantaneous non-dimensional temperature contours also have the non-dimensional velocity vectors to give an indication of the direction and strength of the in-plane (\(Z/Y\) plane) flow. At the top right corner of the temperature contours we have the non-dimensional out-of-plane velocity \(u^*_z\) contours.

From the temperature contours we observe that the thermal plumes erupting from the isothermal walls are thinner than the pore-space size (discussed later in next section), resulting in a flow-dominated heat transfer. This results in the heat transfer in spherical bead filled cavities to be comparable to that in a fluid-only filled cavity. Unlike the cavity with 1 Layer packing in which the flow is 3-dimensional with high value of out of plane velocity \(u^*_z\) (Fig. 10(a)), in the cavity with 5 Layer packing (Fig. 10(b)), we observe a channeled (2D planar) flow with negligible out of plane velocity. The slight increase in heat transfer observed with 4 Layer packing (Fig. 5) could be due to the dominance of the channeled flow in which the thin hot and cold plumes move through the pore-space and directly impinge on the cold and hot walls. However, a slight reduction in heat transfer occurs when the 5th layer of spherical beads is placed close to the cold wall. Losing the area for the eruption of cold plumes in the cavity with 5 layers of packing results in this reduction, the effect of which is expected to diminish at higher \(Ra\).

To understand the local flow in P-R simulations, we look at the frequency spectra of thermal and kinetic energy at \(Ra = 2.3 \times 10^7\) (of vertical velocity \(u_z\)) at the probe location \((y/L = 0.5, x/L = 0.6, z/L = 0.6)\) in cavities with 1 Layer, 3 Layer and 5 Layer packing. The probe is far from the spherical beads in cavity with 1Layer packing, close to the beads in 3 Layer packing and within the pore-space in 5Layer packing. We also compare the spectra with that in a fluid-only cavity (same probe location) to understand the influence of spherical beads on local flow and thermal features.

The frequency spectra of thermal and kinetic energy at \(Ra = 2.3 \times 10^7\) (of vertical velocity \(u_z\)) are turbulent in a fluid-only cavity following \(E_T(f) \sim f^{-7/5}\) and \(E_k(f) \sim f^{-11/5}\) comparable to that reported in Zhou and Xia (2001) and Shang and Xia (2001), respectively. From the P-R simulations of the spherical bead filled cavities, we observe that the temporal flow and temperature fluctuations (Fig. 11) dies out with the addition of layers of spherical beads. When we increase the number of the packing layers, the flow is still turbulent and thus the energy spectra follow the turbulent scaling for 1 Layer and 3 Layer packing, while the flow becomes oscillatory in the cavity with 5 Layer packing.

---

**Fig. 9.** Instantaneous Nusselt number distribution (top view) at the bottom wall, in a cavity with (a) 1 layer (b) 5 layers of spherical beads at \(2.3 \times 10^7\) obtained with pore-structure resolved (P-R) simulations.

**Fig. 10.** Instantaneous non-dimensional temperature distribution and velocity vectors at \(x/L = 0.43\), in a cavity with (a) 1 layer, (b) 5 layers of spherical beads at \(Ra = 2.3 \times 10^7\). The smaller figure to the left of temperature contour depicts the non-dimensional out-of-plane velocity. The velocity vectors are visualized by projecting them to a \(32 \times 32\) grid along the vertical plane.

**Fig. 11.** Power-laws for the frequency (a) thermal energy spectra and (b) kinetic energy spectra of the vertical velocity \(u_z\) at \(Ra = 2.3 \times 10^7\), \(y/L = 0.5, x/L = 0.6, z/L = 0.6\).
This indicates that the flow becomes less turbulent as the relative distance of the probe with the spherical beads decreases, because of the increased resistance imposed by the spheres.

3.2. Influence of shift of packing

In contrast to the cavities with spherical beads touching the hot wall (Fig. 5), the suppression in heat transfer is comparatively lower when the spherical beads are shifted away from the hot wall (Fig. 12), both in P-R and D-F simulations.

3.2.1. Pore-structure resolved simulations

With P-R simulations, at $Ra = 1.16 \times 10^5$, for both 1 Layer and 2 Layer cases (Fig. 12), when the packing is away from the wall i.e for 1L/2L Quarter/Middle (P-R), the suppression in heat transfer varies significantly from that in cavities with the spherical beads touching the wall 1L/2L Bottom (P-R), for e.g. $Nu_{1L \text{ Layer Middle}} > Nu_{1L \text{ Layer Quarter}} > Nu_{1L \text{ Layer Bottom}}$. At higher $Ra$ ($Ra = 1.6 \times 10^6, 2.3 \times 10^6$), the heat transfer in porous media filled cavities with the packing away from the isothermal walls becomes comparable to or even slightly higher than that in fluid-only filled cavities, unlike the cavities in which the spherical beads touch the hot wall (1L Bottom (P-R)). To understand this difference in heat transfer behaviour, we look at the thermal plume (boundary layer) thickness defined as:

$$\delta_{th} = \frac{L}{2Nu} \tag{13}$$

When the thermal plume size $\delta_{th}$ is scaled with the diameter of the pore-space $d_p$ (Fig. 13), we observe that the thermal plumes are thicker than the pore-space ($\delta_{th}/d_p > 1$) at low $Ra$ ($Ra = 1.16 \times 10^5$). While with the increase in $Ra$, thermal plumes become comparable to pore-size ($Ra = 1.16 \times 10^6$) and even gets smaller than the pore-size ($Ra = 2.31 \times 10^6$). At the lowest $Ra$ ($Ra = 1.16 \times 10^5$), as the thermal plumes are thicker than the pore-space, the inclusion of the spherical beads leads to a considerable suppression in heat transfer as the thermal plumes cannot meander through the pore-space. The inclusion of spherical beads thus increases the resistance offered to the thermal plumes and even makes them thicker (Fig. 13).

A comparison of the cavities with 1 Layer of packing (Fig. 12) shows that the suppression in heat transfer is minimum when the porous layer is at the center of the cavity (1L Middle (P-R)). This indicates that the influence of the packing on heat transfer decreases with the increase in its distance from the hot isothermal wall.

At $Ra = 1.16 \times 10^5$, the thermal plume thickness of the fluid-only cavity is comparable to the pore-space (Fig. 13) and thus the reduction in heat transfer with the inclusion of spherical beads away from the isothermal walls is minimal (Fig. 12). This is also evident from the small change in the $\delta_{th}/d_p$ ratio in the cavities with spherical beads, when compared to the fluid-only filled cavity (Fig. 13). With the increase in $Ra$ ($Ra = 2.31 \times 10^6$), the thermal plumes become much thinner than the pore-space (Fig. 13). The inclusion of layers of packing irrespective of their location, thus does not significantly obstruct the flow as the plumes meander through the pore-space. Thus at high $Ra$, the heat transfer in cavities with spherical beads are comparable to that in a fluid-only cavity (Fig. 12).

3.2.2. Darcy-Forchheimer simulations

At the lowest $Ra = 1.16 \times 10^5$, when the porous media touches the bottom hot wall, the heat transfer with D-F and P-R simulations are comparable, for e.g. $Nu_{1L \text{ Layer Bottom (D-F)}} \approx Nu_{1L \text{ Layer Bottom (P-R)}}$ (Fig. 12).

However, the heat transfer obtained with the D-F simulations are lower than the P-R simulations at higher $Ra$, for e.g. at $Ra = 2.31 \times 10^5$, $Nu_{1L \text{ Layer Bottom (D-F)}} < Nu_{1L \text{ Layer Bottom (P-R)}}$. When the porous media is away from the isothermal hot wall, we observe a different behaviour.

- At $Ra = 1.16 \times 10^5$, $Nu$ with D-F simulations are higher than with the P-R simulations (Fig. 12). This indicates that the flow within the pore-space of the spherical bead packing in P-R simulations is blocked as the thermal plumes are thicker than the pore-space (Fig. 13). While in the D-F simulations of the cavities with porous media not touching the isothermal walls, the convective flow is not fully choked as in P-R simulations, thus resulting in comparatively higher heat transfer (Fig. 12).

- At $Ra = 1.16 \times 10^6$ and $Ra = 2.31 \times 10^7$, the D-F and P-R simulations gives us comparable heat transfer, irrespective of the number of layers (Fig. 12).

We also observe that the resistance to the convective flow imposed by the porous media in D-F simulations is higher when it touches the isothermal wall when compared to the cavity with the porous media located away from it, thus resulting in lower heat transfer (Fig. 12), i.e. $Nu_{1L \text{ Layer Bottom (D-F)}} < Nu_{1L \text{ Layer Quarter (D-F)}}$. 

Fig. 12. Variation of $Nu$ with $Ra$ in pore-structure resolved (P-R) and Darcy-Forchheimer (D-F) simulations for different packing arrangement. The results are compared with heat transfer in fluid-only cavities reported in literature Ataei-Dadavi et al. (2019a); Chu and Goldstein (1973); Valencia et al. (2005). For naming convection of packing arrangement refer to Table 1.

Fig. 13. Ratio of boundary layer thickness to pore-size at different $Ra$, for pore-scale resolved simulations. The boundary layer thickness of fluid-only cavity is also scaled with pore-size of the porous media filled-cavity for reference.
To understand the difference in the behaviour of the D-F simulations when the porous media touches the wall and when it is away from the wall, we look at the instantaneous non-dimensional velocity magnitude and temperature distribution along the plane, \( x/L = 0.43 \) in cavities with 2 layer of porous media packing touching the isothermal wall (Fig. 14(a1), Fig. 15(a1)) and away from it (Fig. 14(b1), Fig. 15(b1)). We also compare it with the P-R simulations of the respective cavities (Fig. 14(a2,b2), Fig. 15(a2,b2)).

Since the thermal boundary layer is thinner than the pore-space at \( Ra = 2.31 \times 10^7 \) (Fig. 13), the pore-space flow velocity in the P-R simulation of the cavity with 2 Layer packing touching the bottom wall (Fig. 14(a2)), is less influenced by the spherical beads, resulting in hot thermal plumes at high velocity meandering through the pore-space (Fig. 15(a2)). In the cavities with porous media touching the isothermal hot wall, the flow velocity in the porous region obtained with D-F simulation (Fig. 14(a1)) is much lower than with the P-R simulation (Fig. 14(a2)). We also observe that in the simulation with D-F assumption, hot thermal plumes of comparatively lower temperature (Fig. 15(a1)) erupt from the bottom hot wall. Unlike the D-F simulation, the temperature and flow velocity of the hot thermal plumes (erupting from the bottom wall) within the pore-space is higher in the P-R simulation (Fig. 15(a2)). The combined effect of the thermal plume temperature and flow velocity results in lower convective heat transfer in the simulation with D-F assumption (Fig. 5).

However, in the D-F simulation with porous-media defined away from the wall (Fig. 14(b1)), the flow velocity close to the isothermal walls is less influenced by the porous media and is comparable to that in the P-R simulation (Fig. 14(b2)). Thus, comparable flow velocity close to the isothermal walls results in comparable heat transfer with D-F (2L Quarter (D-F)) and P-R (2L Quarter (P-R)) simulations (Fig. 12).

### 4. Summary and Conclusion

A detailed study on the validity and applicability of Darcy-Forchheimer assumption to simulate convective heat transfer in flow dominated porous media filled-cavity is reported. The Darcy-Forchheimer simulations of cavities with porous media touching the isothermal walls and away from them are compared with the pore-structure resolved simulations at different \( Ra \).

Major findings of this work can be summarized as:

(i) In cavities with porous media touching the isothermal wall, the heat transfer in simulations with Darcy-Forchheimer assumption is comparable to that in pore-structure resolved simulations at low \( Ra \). With an increase in \( Ra \) the Darcy-Forchheimer simulations under-predict the heat transfer. At high \( Ra \), the temperature and velocity of the thermal plumes impinging the hot wall are higher in the pore-structure resolved simulations resulting in heat transfer comparable to fluid-only cavities.

(ii) In cavities with porous media not touching the isothermal wall, Darcy-Forchheimer simulations and pore-structure resolved simulations report comparable heat transfer irrespective of the number of layers of porous media.
of layers of packing and its location, for $Ra \geq 1.16 \times 10^6$. However, at low $Ra = 1.16 \times 10^5$ D-F simulations over-predict the heat transfer. This shows that the laminar model for porous-media simulations predicts heat transfer comparable to the pore-structure resolved simulations, when the non-porous regions are fully resolved.

(iii) Heat transfer in a porous medium filled-cavity decreases when the porous medium is close to the isothermal walls. A slight enhancement in heat transfer with porous media over the fluid-only cavity occurs when the channeling effect dominates over the effect due to the reduction in the area available for plume impingement when the packings are away from the isothermal walls.

(iv) From pore-structure resolved simulations, we observe that when the thermal boundary layer thickness (thermal plume size) is larger than the pore-space (of a pore-structure resolved cavity), the location and the number of layers of packing influence the heat transfer ($Ra = 1.16 \times 10^5$) for all packing configurations. However, it is practically independent of the porous packing when the boundary layer thickness is considerably smaller than the pore-size and when the porous media does not touch the wall ($Ra = 2.3 \times 10^7$). When the porous media touches the isothermal wall, the heat transfer is however reduced by the adiabatic spherical beads close to the wall. The reduction in heat transfer compared to fluid-only cavity is due to the comparatively lower flow velocity close to the wall.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

CRediT authorship contribution statement

Manu Chakkingal: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Supervision, Validation,

Fig. 15. Instantaneous non-dimensional temperature distribution and velocity vectors at $x/L = 0.43$, in a cavity with 2 layers of spherical beads at $Ra = 2.3 \times 10^7$ in Darcy-Forchheimer (a1,b1) and pore-scale resolved (a2,b2) simulations. (a1,a2) has porous media from $z/L = 0$ to 0.4 and (b1, b2) has porous media from $z/L = 0.2$ to 0.6.
Visualization, Writing - original draft. **Sabino Schiavo:** Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing - original draft. **Iman Ataei-Dadavi:** Investigation, Visualization, Writing - review & editing. **Mark J. Tummers:** Project administration, Funding acquisition, Writing - review & editing. **Chris R. Kleijn:** Project administration, Resources, Software, Funding acquisition, Supervision, Writing - review & editing. **Saša Kenjereš:** Project administration, Resources, Visualization, Funding acquisition, Supervision, Writing - review & editing.

**Acknowledgments**

This research was carried out under project number S41.5.14526a in the framework of the Partnership Program of the Materials innovation institute M2i (www.m2i.nl) and the Technology Foundation TTW (www.stw.nl), which is part of the Netherlands Organization for Scientific Research (www.nwo.nl). We would like to thank our industrial partner TATA Steel, The Netherlands, for continuous financial support and SURFsara for the support in using the Cartesius Computing Cluster (NWO File No.17178).

**Appendix A. Validation of Darcy-Forchheimer solver**

To validate the Darcy-Forchheimer solver in ANSYS Fluent, we carry out 2D steady-state simulation of a differentially heated $L \times L$ cavity filled with porous media for fluid with $Pr = 1$ at $Da = 10^{-6}, Ra = 10^8, \phi = 0.8$ and $Da = 10^{-2}, Ra = 10^4, \phi = 0.6$, and carry out with the results reported in Das et al. (2016). The simulations are carried out in a $80 \times 80$ hexahedral grids of equal size. The isotherm (Fig. A.16) obtained with different $Da$ and $Ra$ are comparable to that reported in Das et al. (2016). A plot of the temperature along the horizontal line at the mid-height of the cavity (Fig. A.17) shows us that the results obtained with ANSYS Fluent are comparable to that in literature.

---

2 The validation is carried out using Second-order Upwind scheme for momentum and energy equations as central differencing schemes are not available for 2D simulations in Fluent.
