REVIEW ARTICLE

The emergence of tumor-infiltrating lymphocytes in nasopharyngeal carcinoma: Predictive value and immunotherapy implications

Liu Yang a, Guohong Liu b, Yirong Li a,**, Yunbao Pan a,*

a Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, PR China
b Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, PR China

Received 15 November 2020; received in revised form 26 July 2021; accepted 27 July 2021
Available online 8 August 2021

Abstract The clinical study of nasopharyngeal carcinoma (NPC) often reveals a large number of lymphocytes infiltrating the primary tumor site. As an important part of the tumor microenvironment, tumor-infiltrating lymphocytes (TILs) do not exist alone but as a complex multicellular population with high heterogeneity. TILs play an extremely significant role in the occurrence, development, invasion and metastasis of NPC. The latest research shows that they participate in tumorigenesis and treatment, and the composition, quantity, functional status and distribution of TILs subsets have good predictive value for the prognosis of NPC patients. TILs are an independent prognostic factor for TNM stage and significantly correlated with better prognosis. Additionally, adoptive immunotherapy using anti-tumor TILs has achieved good results in a variety of solid tumors including NPC. This review evaluates recent clinical and preclinical studies of NPC, summarizes the role of TILs in promoting and inhibiting tumor growth, evaluates the predictive value of TILs, and explores the potential benefits of TILs-based immunotherapy in the treatment of NPC.

KEYWORDS Nasopharyngeal carcinoma; NPC microenvironment; Tumor-infiltrating lymphocyte; Tumor immunotherapy; Tumor prognosis

Copyright © 2021, Chongqing Medical University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, PR China.
** Corresponding author. Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, PR China.
E-mail addresses: liyirong201705@163.com (Y. Li), panyunbao@outlook.com (Y. Pan).
Peer review under responsibility of Chongqing Medical University.

https://doi.org/10.1016/j.gendis.2021.07.002
2352-3042/Copyright © 2021, Chongqing Medical University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Globally, the incidence of nasopharyngeal carcinoma (NPC) has continued to rise from 2009 to 2019 increased by 45.09%. The age-standardized incidence rate (ASIR) of NPC increased from 1.81 in 2009 to 2.12 in 2019. On the contrary, the age-standardized death rate (ASDR) of NPC showed a decreasing trend from 0.93 in 2009 to 0.86 in 2019 and negatively correlated with social demographic index (SDI) in most regions. Morbidity and mortality rates of NPC have stabilized or declined in high-incidence areas. The incidence and mortality of NPC in males were significantly higher than those in females. The NPC patients with onset age over 50 years old accounted for the highest proportion. The World Health Organization recognizes three classes of NPC by histopathology: keratinized squamous cell carcinoma (with varying degrees of differentiation), non-keratinizing carcinoma (differentiated and undifferentiated types) and basal cell-like squamous cell carcinoma. The etiology is not completely clear for any of these classes. The occurrence of NPC is considered as the result of the interaction of Epstein–Barr virus (EBV) infection, genetic, environmental factors (such as drinking and smoking) and consumption of salted fish, with EBV infection playing a major role.

At present, most NPC patients can be successfully cured by improving treatment strategies. However, due to early hidden sites and lack of specific symptoms, NPC patients usually develop to advanced stage at the time of preliminary diagnosis. Chemotherapy combined with radiotherapy (stage I radiotherapy alone; stage II radiotherapy with or without simultaneous chemotherapy; stage III-IVB chemotherapy) is the first-line treatment strategy for patients with advanced NPC; however, due to acquired drug resistance, the survival rate is still not ideal, resulting in recurrence, metastasis and even death. Local recurrence or metastasis of NPC remains an important challenge, requiring more effective and lasting treatment. Studies have shown that NPC patients may benefit from cancer immunotherapy because human leukocyte antigen (HLA) alleles and other immune-related genes are associated with the disease. Lymphocytes infiltration is associated with the response of several tumor types to checkpoint inhibition, which is also common in NPC specimens. In recent years, tumor immunotherapy has developed vigorously and provided a breakthrough in the treatment of recurrent or metastatic diseases, creating new opportunities for NPC treatment.

As early as 1988, it was reported that tumor-infiltrating lymphocytes (TILs) play an active role in many advanced malignant tumors. This means TILs as the main target for anti-tumor immunity in NPC might induce beneficial clinical reaction and become an important part of individualized therapy of NPC patients. TILs are tumor-infiltrating cells with anti-tumor effects that were discovered and isolated from mouse tumor tissue by Rosenberg in 1986. TILs include both intra-tumoral TILs in tumor cell nests and stromal TILs in the stroma. Recent studies show that TILs are present in NPC tumors and play a critical role in the development, prognosis and treatment of advanced NPC.

This paper reviews the latest research progress on TILs in NPC and puts forward some new ideas for the development of TILs as both tumor biomarkers and therapeutic agents, that is significant for individualized immunotherapy of NPC.

NPC microenvironment

There are many reports supporting the important role of tumor microenvironment (TME) in the pathogenesis of NPC. In many cases, NPC cells escape the anti-EBV immune response and need to be supported by TME. The coexistence of TILs and EBV-infected NPC cells represents a unique TME, which is considered to play an important role in supporting the growth and development of NPC (Fig. 1). In the TME, while the immune system removes tumor cells, it also remodels the biological characteristics of other tumor cells (such as tumor antigenicity), which is called “immune editing”. In the process of tumor editing, tumor cells develop strategies to evade immune detection or destruction. This may be due to the downregulation of major histocompatibility complex molecules and the inability to produce tumor peptides. With the loss of tumor antigens, NPC antigens are no longer effectively presented to the immune system. At the same time, the rapid growth of tumor cells after tumor formation will produce a TME that suppresses immune cells. In the NPC-TME, NPC cells release immunosuppressive molecules, such as transforming growth factor-β (TGF-β), epidermal growth factor (EGF) and interleukin-10 (IL-10). They induce Tregs to express cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which suppresses other immune cells and leads to tolerance of the immune system to tumors. The study shows that EBV latent membrane protein 1 (LMP1) mediated by NPC promotes myeloid-derived suppressor cell (MDSC) expansion in the TME by promoting extramitochondrial glycolysis in malignant cells. This is a case of immune escape in NPC, initially due to the large number of MDSC subsets that can be detected in tumor sections.

NPC-TME consists of cellular components and extracellular matrix (ECM). The cellular components are mainly immune cells, which make TME show a reactive and inflammatory appearance. In addition, TME also contains chemokines, cytokines and other bioactive substances. The cellular components of TME play an important role in the immunosuppression, growth and invasion of NPC. The majority of lymphocytes infiltrating in NPC biopsies is CD3+ T-lymphocytes. Although the CD4+/CD8+ ratios vary in different NPC specimens, they generally comprise over 50% of the TILs of NPC. Small subsets of B lymphocytes, monocytes, macrophages, natural killer (NK) cells and neutrophils were also detected in TME of NPC. The recruitment and activity of TILs are thought to be determined by the concentration of different cytokines and chemokines present in TME. It’s worth noting that there may be significant differences in the size and composition of TME between different cases of NPC. This may reflect the different degrees of attraction of chemokines to TME cells and the different degrees of activation of TME cells by cytokines and cell–cell interactions. Increased levels of IL-6, IL-8, IL-10, and interferon-γ (IFN-γ) and decreased levels of IL-2 are commonly detected in NPC patients, which may be related to the recruitment and activity of these TILs.
It’s reported that IL-6R is expressed in NPC, and IL-6 is produced by tumor cells in TME, which acts as a growth factor and leads to the activation of STAT3. In fact, it’s known that the immunosuppressive TME provides immune space for tumor growth. This local tolerance is mediated by cytokines and regulatory immune cells.

NPC cells and viral products encoded by EBV play an important role in triggering the release of various pro-inflammatory cytokines and promoting the aggregation and homing of lymphocytes to TME. NPC cells secrete IL-18 and CXCL-10 in many cases. IL-18 and CXCL-10 can activate and induce CXCR3⁺ T cells to produce IFN-γ, which in turn may stimulate CD68⁺ macrophages to produce IL-12 and IL-18, and then stimulate T cells and NK cells which producing IFN-γ to promote inflammation and immune cell infiltration. The IL-10 has been known as a potent immunosuppressive cytokine that can effectively inhibit the cytotoxic function of activated CD8⁺ cells and promote EBV-infected NPC cells survival.

Many proinflammatory cytokines including CCL20, MIP3-α (CCL20), interferon (IFN)-γ, IL-6/8/10/18, GM-CSF (granulocyte-macrophage colony-stimulating factor), TGF, VEGF, IL1-β are present in the TME. The presence of TGF and IL-10, as well as the up-regulation of PD-1 and PD-1 by LMP1, and the release of exosomes containing LMP1 into TME induce the expansion of Tregs, MDSC and TAM, thereby generating immunosuppressive TME and promoting tumor escape. Mip3-α is produced by NPC cells and chemically induces lymphocytes and dendritic cells via CCR6. NPC cells also produce IL-1-β, IL-6, and GM-CSF. Transforming growth factor-β (TGF-β) and IL-10 are important immunosuppressive cytokines that promote tumor immune escape. NPC cells release a large number of exosomes expressing CCL20 to evade immune detection.

Figure 1

Illustration of the presence of multiple immune cells and cytokines in the TME of NPC. Many proinflammatory cytokines including CCL20, MIP3-α (CCL20), interferon (IFN)-γ, IL-6/8/10/18, GM-CSF (granulocyte-macrophage colony-stimulating factor), TGF, VEGF, IL1-β are present in the TME. The presence of TGF and IL-10, as well as the up-regulation of PD-1 and PD-1 by LMP1, and the release of exosomes containing LMP1 into TME induce the expansion of Tregs, MDSC and TAM, thereby generating immunosuppressive TME and promoting tumor escape. Mip3-α is produced by NPC cells and chemically induces lymphocytes and dendritic cells via CCR6. NPC cells also produce IL-1-β, IL-6, and GM-CSF. Transforming growth factor-β (TGF-β) and IL-10 are important immunosuppressive cytokines that promote tumor immune escape. NPC cells release a large number of exosomes expressing CCL20 to evade immune detection.
Inhibitory effect of TILs on anti-tumor immunity in NPC

T cells have the ability to recognize tumor antigens and stimulate tumor rejection, but this is not always the case. Although it has been reported that specific cytotoxic T cells targeting EBV can be detected in peripheral blood and biopsy tissues of NPC patients, most of the patients are still in a state of immune escape (Fig. 2). Studies have shown that the expression of metallothionein and CD3\(^+\) in T cells of NPC is downregulated, while the expression of Tregs and programmed death factor 1 (PD-1) is upregulated, resulting in the inability of T cells to produce an effective anti-tumor response and promoting the immune escape of NPC. The Tregs population in NPC tissue is related to the PD-1 positive population in CD8\(^+\) T cells, suggesting that the expression of PD-1 on Tregs and CD8\(^+\) T cells together inhibit tumor immunity. Fogg et al.\(^{48}\) were able to restore the EBV-specific CD8\(^+\) T cell response by removing Tregs or blocking their inhibitory function, confirming that Tregs are an important part of immune escape in NPC. It can be seen that Tregs are a T cell subset with immunosuppressive function, which represents an effective mechanism of inhibition of anti-tumor response.\(^{49}\) Transcriptional factor forkhead box protein P3 (FoxP3), an important nuclear transcription factor that determines the function of Tregs, is currently recognized as a specific marker of Tregs.\(^{50}\) Tregs (CD4\(^+\)CD25\(^+\)FoxP3\(^+\)) are a subgroup of CD4\(^+\) cells that have an inhibitory effect on CD8 effector T cells and CD4 helper T cells in NPC.

The mechanisms of immune escape mediated by Tregs include: (1) After contacting with immune effector cells, Tregs directly inhibit activated effector T cells through the interaction between their surface receptors and ligands, such as CTLA-4, and then suppress immune function; (2) Tregs directly or indirectly kill effector T cells and antigen-presenting cells (APCs) through perforin and granzyme B, and so on. (3) CTLA-positive Tregs induce APC to express indoleamine 2,3-dioxxygenase (IDO), then IDO inhibits T cell activation by reducing tryptophan degradation;\(^{51,52}\) (4) Tregs or other cells secrete immunosuppressive factors, such as IL-10 and TGF-\(\beta\), thereby interfering with antigen presentation and inhibiting the proliferation of immunoreactive cells.\(^{48}\) It has been reported that the frequency of Tregs in peripheral blood increases in patients with several types of tumors, and their aggregation in the TME may be a poor prognostic factor for some types of malignant tumors.\(^{53}\) The increasing number of Tregs in NPC is highly correlated with the possibility of early recurrence in NPC patients. The number of Tregs not only interferes with anti-tumor immune response but may also be a major obstacle for anti-cancer immunotherapy and active vaccination. Although great progress has been made in the treatment of NPC patients, regrettably the survival rate of NPC did not significantly improve over the past 20 years.\(^{54}\)

![Figure 2](image.png)

Figure 2 Tumor immune escape. The mechanisms of tumor immune escape include the following points: (1) the production of immunosuppressive cells (Tregs, TAM, MDSC, inhibitory DC); (2) the changes in the expression of tumor cell surface markers (low expression of MHC molecules in tumor cells; lack of presentation function of MHC class I molecules; apoptosis of lymphocytes mediated by Fas system; abnormal expression of B7 molecules in tumor cells); (3) lack of co-stimulatory molecules (ICAM-1, ICAM-3, VCAM-1, HSA) in tumor cells; (4) tumor-derived soluble immunosuppressive factors (TGF-\(\beta\), IL-10, PGE2, B7Hs, chemokines, IDO and other metabolic enzymes). In the process of tumorogenesis and development, tumor cells can escape from the immune surveillance of the body through a variety of pathways. Among them, it's considered that the main mechanism of tumor immune escape is to promote the chemotaxis of immunosuppressive cells into the tumor microenvironment to escape the immune response of the body. These immunosuppressive cells and their secreted cytokines can inhibit the anti-tumor immune response. CD8\(^+\), cytotoxic T cells; CD4\(^+\), T helper cells; NK, natural killer cells; DC, mature dendritic cells; Treg, regulatory T cells; MDSC, myeloid-derived suppressor cells; M, macrophage; TAM, tumor-associated macrophage; VEGF, vascular endothelial growth factor; PGE2, prostaglandin E2; IL-10, interleukin-10; IDO, indoleamine 2,3-dioxxygenase; TNF, tumor necrosis factor; Fas, Fasrdmrit; HLA-G, human leukocyte antigen G; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; PDGF, platelet-derived growth factor; HGF, hepatocyte growth factor; MMPs, matrix metalloproteinases; EGF, epidermal growth factor; B7–H, serum soluble B7–H protein; TGF-\(\beta\), transforming growth factor-\(\beta\); INOS, inducible nitric oxide synthase; MHC-1, major histocompatibility complex-1.
At present, many studies have proved that there are a large number of Tregs in peripheral blood and within the draining lymph nodes of NPC patients, especially in local tumor tissues. These Tregs are closely related to the patients’ clinical outcomes. In most solid tumors, the number of Tregs is negatively correlated with tumor progression and prognosis. In recent years, enhancing the immune status of patients by inhibiting the number or function of Tregs has become a hot research area in immunology, and Tregs are expected to become important targets of immunotherapy.

TILs in NPC prognosis

The presence of TILs is increasingly regarded as an important biomarker of head and neck squamous cell carcinoma (HNSCC). Consistent observations using various techniques showed that higher levels of TILs in the TME are associated with improved results. Many studies have investigated the prognostic value of TILs in NPC patients, but the exact role of TILs in different subtypes of NPC needs to be further clarified. At present, the TNM stage (for tumor, lymph node and metastasis) and the DNA load of EBV are the main tools to determine the treatment strategy and evaluate the prognosis of NPC. However, anatomical information based on the staging system is not sufficient to obtain an accurate and definite prognosis of NPC patients. This is because treatment methods for NPC patients with the same TNM stage may be similar, while their clinical efficacy is quiet different. Recently, it has been confirmed that TILs can distinguish the prognosis of different TNM stages. TILs can reflect the immune heterogeneity of NPC. The distribution and number of TILs subtypes are strong prognostic factors that complement or even surpass the pathological criteria alone. Larger number of TILs in NPC patients was significantly correlated with better disease-free survival (DFS), overall survival (OS), distant metastasis-free survival (DMFS) and local-regional relapse-free survival (LRRFS). It has been proved that TILs is the strongest independent predictor of DFS. At the same time, new evidence suggests that TILs can predict immunotherapy responses, including CTLA-4 and PD-1/PD-L1 antibodies. The current results further support the important prognostic role of TILs in NPC, and shows much potential of TILs using immunotherapeutic modalities in NPC treatment.

Development of immune score and TNM-immune (TNM-I) in NPC

TNM staging system is widely used to reflect the progress and predict prognosis of NPC. However, the TNM staging system does not take into account the characteristics of the immune system or the immune characteristics of the tumor infiltration area. The prognosis of NPC patients receiving similar treatment in the same stage is quite different. Therefore, the TNM system may be inadequate to assess the status of the entire NPC patients or guide treatment. At present, immune score has become a useful clinical prognostic marker for a variety of cancers, such as colorectal cancer, non-small cell lung cancer and so on. Recent studies have shown that the immune score of cancer patients has prognostic value in some cases and appears to be superior to AJCC/UICC/TNM classification. Galon et al. developed a special diagnostic tool called TNM-I to quantify in situ immune infiltration. It’s proved that immune score is highly repeatable, objective and robust when quantifying specific T cell subsets in specific tumor regions. The positive prognostic value of immune score has been proved to be consistent in many cancers. Immunochemistry was used to detect the total number of CD3+ and CD8+ T lymphocytes in the tumor core and tumor infiltration, from I0 (low density, neither region has two cell types) to I4 (high immune cell density at both sites), which is quantified by “TNM-I” method. The study shows that immune score has an advantage in predicting survival compared with TNM staging system.

Immune score is a prognostic tool for quantifying in situ immune infiltration, and it shows great prospect as a supplement to TNM classification of various tumors. Part of the explanation for the statistical advantage of immune score may be that the density of CD8+ T cell infiltration is negatively correlated with T stage in non-recurrent tumors. While in recurrent tumors, CD8+ T cell density is lower, even in minimally invasive cancers. Immune score based on the density of certain lymphocyte populations (CD3, CD8 and CD45RO) can predict the risk of individual death, disease progression and distant metastasis. Based on the threshold, each patient was given a binary score (0 for low, 1 for high) for each type of immune cell (CD3+, CD8+ and CD45RO+) in the tumor and stroma. Immune score for each patient is obtained by adding six binary scores; the range is 0–6. Seven patient groups are defined: T cells in the tumor and stromal regions of CD3+, CD8+ and CD45RO+ patients are classified as IS-0; one marker is classified as IS-1; and patients with two, three, four, five and six high density regions of the three markers are classified as IS-2, IS-3, IS-4, IS-5 and IS-6, respectively. The high degree of immune cell infiltration (3–6) is the high infiltration group, and the low degree of immune cell infiltration (0–2) is the low infiltration group. The OS, DFS and DMFS of NPC patients with high immune score were significantly longer than those with low immune score. Studies have shown that evaluating the immune score of NPC patients could be an initial step for patient treatment. For NPC patients with low immune score, initiating therapy combined with immune checkpoint blocking inhibitors may be helpful. However, for NPC patients with high immune score, the expression information of immune checkpoints should be detected and appropriate immune checkpoint blocking inhibitors should be selected as monotherapy or combination therapy. Combined with immune score, the expression of immune checkpoints can guide immunotherapy. This strategy is more suitable for NPC patients.

Immune score, as a marker of cancer classification, has dual advantages: firstly, it seems to be the strongest prognostic factor for DFS and OS, especially in early cancer; secondly, it provides a useful target for new treatments in NPC. However, tumor infiltrating lymphocytes presented by several independent TIL-related factors are related to the prognosis of advanced NPC. The exact immune scoring system of NPC has not yet been established. There are still some challenges in the establishment of immune core, such as the standardization of immunohistochemical staining.
TILs predict survival in NPC

Although recent advances in radiotherapy techniques have improved clinical outcomes, a considerable number of patients with LA-NPC will eventually relapse. Once patients are diagnosed with a recurrent disease, it’s important to determine reliable prognostic factors so as to estimate the probability of recurrence of locally-advanced NPC (LA-NPC). Recent research showed that the process of the tumor genesis and treatment, the composition and number of TILs subsets and their location in the TME of NPC were closely related to the patients’ prognosis, and there may be significant differences depending on the location and extent of the tumor. According to Kaplan-Meier curves, the density of total TILs, CD3⁺ TILs and CD8⁺ TILs can significantly distinguish the survival time of NPC patients. Wang et al used H&E-stained sections to study total TILs in NPC. It was found that it’s a strong correlation between total TILs and the prognosis of the disease. We have shown that low density of CD3⁺ TILs is associated with a good prognosis for short DF and OS in locally LA-NPC. In short, CD3⁺ TILs abundance is a potentially robust and independent prognostic factor for LA-NPC patients receiving standard chemotherapy treatment. The number of CD8⁺ cells is positively correlated with survival in the NPC. In principle, CD8⁺ TILs requires CD4⁺ TILs to release cytokines, such as IL-2, to promote its proliferation. Thus, CD8⁺ TILs predicting favorable prognosis may be due to widespread infiltration of CD4⁺ TILs. The greater the number of cells, the worse the prognosis, which is basically consistent with the previous studies of NPC. In addition to the traditional Th1 and Th2 helper T cell subsets, Tregs and Th17 cell subsets were also found in the total number of CD4⁺ T cells. The new feature of Th17 cells is that they can secrete IL-17, IL-22 and IL-21 to promote the inflammatory process. Thus, CD8⁺ TILs can inhibit tumor growth and lymph node metastasis in early NPC (the increase of CD8⁺ TIL number was positively correlated with N stage). That is to say, Treg cells rather than CTLs play a favorable role in the anti-tumor immunity of NPC patients. Some studies have even found that in several solid cancers such as ovarian cancer and cervical cancer, the high number of tumor-infiltrating Foxp3⁺ Treg cells is related to poor survival. However, these Treg subsets are reported to be unstable in the body and can be transformed into IL-17 secreting cells. IL-17⁺ TILs has no significant correlation with the clinicopathological characteristics and survival time of NPC patients. Since it’s difficult to determine the general function of Treg cells in all types of cancer, the study suggests to analyze the function of Treg cells in different malignant tumors. Currently, the study evaluates the functions and related mechanisms of FoxP3⁺ Tregs extracted from TILs of NPC patients in vitro and animal experiments.

The study has reported that OS and DFS of NPC patients with dense tumor infiltration of CD3⁺ and CD8⁺ T cells are significantly longer. An interesting finding is that the CD3⁺ or CD8⁺ lymphocyte density in the infiltrating marginal zone has nothing to do with the prognosis, but the patients with higher CD3⁺ or CD8⁺ lymphocyte density in the tumor center have a better prognosis than those with lower density. Therefore, this result means that the immune score criteria for squamous cell carcinoma and adenocarcinoma may be different. High immune score based on the density of specific lymphocyte populations (CD3, CD8 and CD45RO) suggests the prolongation of OS, DFS and DMFS. The DFS of advanced NPC patients with high immune score is similar to that patients in the early stages of the disease, while patients with low immune score are observed to have a worse prognosis than early NPC patients. This means that the immune score is a strong independent predictor of OS, DFS and DMFS in NPC patients and can predict individual death, disease progression and distant metastasis risk. Galon and his colleagues had demonstrated that the immune score was highly repeatable, objective and robust in quantifying specific T cell subsets.

In addition, stratified analysis provides some clues, such as sample size and follow-up time, that may affect the results of CD3⁺ TILs and CD8⁺ TILs studies. Smaller studies of CD3⁺ and CD8⁺ TILs produce more dramatic hazard ratios than larger studies. In addition, the number of patients and the follow-up time seem to affect the results; studies with low numbers of patients and longer follow-up periods are unlikely to produce statistically significant results. Infiltration of CD68⁺ monocytes and macrophage subsets is usually associated with poor prognosis, although this has not been shown to be statistically significant. The evidence shows that cytokine and prostaglandin crosstalk can affect the number and function of TILs, especially FoxP3⁺ Tregs. The activation of CTLs is regulated by complex immune checkpoints in the TME. However, some studies also indicate that the correlation with prognosis is affected by the type of treatment and the stage of the disease. Different treatments suggest that the immune system may be particularly important in chemotherapy and radiotherapy, which may be due to the fact that effective cell reduction with these treatments involves the immune system. Although not reported in NPC, TILs have been shown to predict the response of breast cancer to neoadjuvant chemotherapy.
The greater the number of TILs, the better the outcome, but this effect is more pronounced in studies of binding lymphocyte ratios. However, it’s not clear whether immunotherapy can improve the prognosis of low TILs in patients with LA-NPC. Once a standardized method for evaluating TILs is developed, this indicator may be very valuable in predicting disease progression in NPC patients. It’s worthwhile to conduct further prospective studies to determine the prognostic value of standardized TILs evaluation and evaluate whether they should be routinely included in the primary pathological report of NPCs as a potentially useful biomarker (Table 1).

TIL immunotherapy in NPC

At present, radiotherapy alone and concurrent chemoradiotherapy are important treatments for NPC. Compared with the good prognosis of NPC patients in the early stage of disease, the incidence of failure of LA-NPC treatment is still high. Although concurrent chemoradiotherapy (CCRT) can improve the treatment outcome of these patients, about 25% of LA-NPC showed poor prognosis after receiving CCRT treatment. It’s reported that adjuvant chemotherapy in addition to CCRT does not significantly improve the survival rate of LA-NPC patients compared with CCRT alone, and the compliance of NPC patients is not satisfactory due to severe toxicity. Therefore, it’s urgent to find new strategies to improve DFS and reduce treatment-related toxicity. New data from the NPC immunotherapy study reveals its potential anti-tumor efficacy. The unique immune environment of EBV-related NPC provides a reasonable target for immunotherapy (Fig. 3). People are getting to know the virology of EBV and the immune escape mechanism of NPC. Immunotherapy strategies have shown encouraging efficacy and safety results in early clinical studies. To date, phase I and II studies involving adoptive metastasis of autologous EBV-specific cytotoxic T cells (EBV-CTL) have been shown to

TIL types	Mechanism	Biological effect	Prognosis
CD3⁺ lymphocyte	The surface marker of CD3 cell and TCR form the TCR-CD3 complex.	Transduce antigen signals into the cells.	Good prognosis
Th1	Activated by reacting with polypeptide antigens presented by MHCII; secrete cytokines such as IFN-γ, TNF-α, and IL-2	Mediate cellular immunity, enhance the killing ability of NK cells and cytotoxic T cells; inhibit the proliferation of Th2.	Good prognosis
Th2	Secrete cytokines such as IL-4, IL-5, IL-6, IL-10, and IL-13	Angiogenesis, tumorigenesis, immune regulation	Poor prognosis
Th17	Secrete cytokines such as IL-17, IL-6, TNF-α	Promote the inflammatory response in tissue.	Ambiguous
CD45RO⁺	Regulate the signal transduction process after TILs are stimulated	Regulate B cell proliferation and differentiation.	Good prognosis
CD20⁺ B	Regulate the flow of calcium ions into B cells and participate in BCR signal transduction; participate transmembrane calcium flow	Promote the development and maturation of lymphocytes	Good prognosis
CD8⁺ Cytotoxic cell	secrete perforin, granzyme and other substances; Combine with the receptors on the surface of target cells by expressing FasL or secreting TNF-α, respectively	Induce apoptosis of target cells.	Good prognosis
FoxP3⁺ Treg	Secrete cytokines such as IL-2, IL-4, TNF-α, IL-17, IL-10, IFN-γ	Inhibit the function of effector cells or effector molecules.	Poor prognosis
CD56 NK	Recognize NKG2D homodimers and natural cytotoxic receptors	Cytotoxic functions without prior sensitization	Good prognosis
M1	Express CD163, CD206 and CD204 markers, and secrete Th2 cytokines	Promoting anti-tumor TH1 and TH17 immune responses	Good prognosis
M2	Secrete TH1 cytokines such as TNF-α, IL-12, and small amounts of IL-10 and IL-4	Supporting angiogenesis, tumor progression, and metastasis;	Poor prognosis
DC	Activate the initial T cells and CD8⁺ T cells and secrete a variety of cytokines and chemokines	Binary immune regulatory function shaped by TME.	Ambiguous
MDSCs	Differentiating into TAMs, secreting cytokines (TGF-β/IL-10) and inhibiting T cell activation	Promote tumor growth	Poor prognosis
be safe and potentially effective for EBV-associated malignant tumors, including NPC. The evidence indicates that TILs selected for tumor identification and massive amplification in vitro is particularly effective in the treatment of NPC patients. At present immunotherapy of NPC is one of the important methods of tumor biotherapy. The core idea is that the occurrence of tumors is due to the suppression of the autoimmune system so that cancer cells cannot be eliminated. Removing endogenous auto-immune suppression with immune checkpoint inhibitors or exogenously supplementing immune cells won’t be suppressed through adaptive immunotherapy. It’s possible to treat or even cure cancer. TILs immunotherapy has aroused people’s interest, mainly because the lymphocytes that infiltrate into the tumor are more meaningful in anticancer effect than circulating lymphocytes and more accurately reflect the immune response state of the interaction between host tumors. They are autologous lymphocytes, there is no immune rejection. The results of experimental study and preliminary clinical application show that the body can tolerate a therapeutic dose of TILs without serious side effects. Various types of immunotherapy have been actively investigated in recent years, including adoptive immunotherapy, therapeutic vaccines, immune checkpoint inhibitors, solution-induced therapy and viral immunotherapy. Since latent EBV infection provides a unique immune target for NPC cells, adoptive T cell therapy targeting EBV antigens is promising in the treatment of NPC. The principle is to use immune effector cells to recognize immunogenic antigens so as to activate or enhance the immune system. For example, immunotherapy with autologous TILs has become a powerful treatment option for patients with metastatic melanoma. In recent years, adoptive autologous T cell immunotherapy in NPC patients has used the EBV antigen-reactive T cells from patients’ peripheral blood mononuclear cells (PBMCs), including EBV-CTLs, and E1-LMP-poly-generated T cells and T cells transduced with the EBV antigen-specific TCR gene. These T cells can survive in a patient’s tumor tissue, vary depending on the tumor-associated virus antigen of each patient and reduce the plasma EBV load in the body. The current phase I clinical trial evaluates the adoptive immunotherapy of NPC with concurrent chemotherapy and radiotherapy (CCRT) for the locally advanced EBV-related NPC patients. Amplified TILs are used to assess the safety of radiotherapy and antitumor activity, and evaluate toxicity, survival, clinical, and immune responses in all treated patients. TILs from NPC patients has high frequency of CD4+ T cells and always produces high frequency CD4+ IFN-γ-releasing cells in response to EBNA1 stimulation, which can induce the expansion of EBNA1-specific T cells in vivo and may contribute to tumor regression as shown in clinical evaluation. According to studies, the clinical benefits to patients don’t depend entirely on the number of TILs and CD8+ T cells. A number of clinical studies have explored the efficacy of EBV-specific cytotoxic T lymphocytes in patients with refractory NPC. It can be observed that the EBV-DNA copy number decreases and the CTL level increases in these clinical studies.

It’s worth noting that a significant advantage of TILs therapy is that compared with the single specificity and limited coverage of major histocompatibility complexes of newer TCR and chimeric antigen receptor transduction techniques, TILs have a wide range of recognition characteristics for all possible major histocompatibility complexes, rather than a single specificity. For example, double-positive (CD3+CD56+) T cells induced by cytokines can kill tumors, and they are not restricted by MHC. At the same time, IL-2 is involved in the proliferation and activation of T cells. After chemotherapy, NPC patients tolerated TILs combined with IL-2 injection well, and there was no treatment-related death, infection, fever, or allergic reaction. Therefore, T cells can rapidly expand in cultured condition containing IL-2, which is consistent with the previously reported TILs combined with IL-2 injection for the treatment of NPC.

Although TILs therapy has shown some clinical success, it still has some limitations. Its generation from peripheral blood is complex, laborious and lengthy (12–16 weeks). During this period, NPC patients may have developed and become unsuitable for infusion. The main problem is that lymphocytes injected into the body have a short time to work. The number of TILs increases significantly after one week of infusion (the increase of LMP-1, LMP-2 and EBNA-1 specific T cells can be detected), but it reduces to the normal range within 6 months after infusion. In the small-scale phase 1 study, the researchers cannot find a statistical correlation between the clinical benefit and the number of EBV antigen-specific T cells in the peripheral blood of treated patients. At the same time, mild adverse events consistent with immune-related reasons are also observed, including grade 3 neutropenia, some patients experience...
DFS of more than 12 months and objective anti-tumor reactions. Therefore, Li and his colleagues are studying the use of TILs for rapid expansion (4–5 weeks). The advantage is that TILs contain high rate of EBV antigen-specific T cells. The expansion process is relatively efficient and can infiltrate into TME. Further modification of T cell expansion methods to enhance their homing and cytotoxicity capability may pave the way for clinical application.

In the phase I clinical study of cancer adoptive cell therapy (ACT) with autologous TILs in patients with local recurrence and metastasis of NPC, the studies did not clearly define the results and efficacy of TIL immunotherapy. Getting more about immunological mechanism of EBV-induced NPC carcinogenesis and its interaction with the host immune system will allow the improvement of immunotherapeutic strategies. While the success of this approach has so far been limited to melanoma patients, we still have a long way from offering this treatment to patients with NPC. In short, TILs-based immunotherapy strategies related to EBV are still in the early stage. Large, randomized phase II studies are needed to further determine the efficacy of TIL immunotherapy and support further clinical studies on the use of in vitro amplified TIL in the treatment of NPC patients.

Conclusion and perspective

Numerous studies have confirmed the role of TILs in the immune microenvironment. The study emphasizes that TILs are not only a powerful independent predictor of DFS in NPC patients, but also an important regulator of NPC progression. TILs are considered as an auxiliary way of TNM classification to improve the diagnosis, treatment and prognosis of patients. However, some studies have reported the association between lymphocytes and OS or DFS, the exact role of TILs in different NPC subtypes has not been further elucidated. There is no consensus on how lymphocyte infiltration affects tumor progression and prognosis. Therefore, the main objective of clinical studies is to evaluate the role and function of TILs in NPC and to improve the clinical benefit.

In summary, as a new therapeutic target of NPC, adoptive therapy with TILs combined with traditional therapy (such as surgery, radiotherapy and chemotherapy) and emerging therapy (immune checkpoint inhibitors and genetic modification) is the direction of clinical treatment in the future. It’s highly necessary for us to further study the subsets and functions of TILs in NPC, which is the basis for developing new approaches to tumor immunotherapy.

Conflict of interests

The authors have no conflicts of interest to declare.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81872200, 31900558), the Natural Science Foundation of Hubei Province (No. 2020CFB298), the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Seed Fund (No. ZNY2018090, ZNY2019002), and the Fundamental Research Funds for the Central Universities (No. 2042019k0139).

References

1. Yu H, Yin X, Mao Y, Chen M, Tang Q, Yan S. The global burden of nasopharyngeal carcinoma from 2009 to 2019: an observational study based on the Global Burden of Disease Study 2019. Eur Arch Otorhinolaryngol. 2022;279(3):1519–1533.
2. Sinha S, Gajra A. Nasopharyngeal cancer. In: StatPearls. Treasure Island (FL) StatPearls Publishing; 2021.
3. Renaud S, Lefebvre A, Mordon S, Morales O, Delhem N. Novel therapies boosting T cell immunity in Epstein Barr virus-associated nasopharyngeal carcinoma. Int J Mol Sci. 2020;21(12):4292.
4. Lee HM, Okuda KS, Gonzalez FE, Patel V. Current perspectives on nasopharyngeal carcinoma. Adv Exp Med Biol. 2019;1164: 11–34.
5. Tsang CM, Lui WWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol. 2020;61:84–100.
6. Wang X, Li H, Li W, et al. The role of Caspase-1/GSDMD-mediated pyroptosis in Taxol-induced cell death and a Taxol-resistant phenotype in nasopharyngeal carcinoma regulated by autophagy. Cell Biol Toxicol. 2020;36(5): 437–457.
7. Yang J, Hu M, Bai X, et al. Plasma levels of soluble programmed death ligand 1 (sPD-L1) in WHO II/III nasopharyngeal carcinoma (NPC): a preliminary study. Medicine (Baltimore). 2019;98(39):e17231.
8. Chow JC, Ngan RK, Cheung KM, Cho WC. Immunotherapeutic approaches in nasopharyngeal carcinoma. Expert Opin Biol Ther. 2019;19(11):1165–1172.
9. Huang J, Fogg M, Wirth LJ, et al. Epstein-Barr virus-specific adoptive immunotherapy for recurrent, metastatic nasopharyngeal carcinoma. Cancer. 2017;123(14):2642–2650.
10. Linette GP, Carreno BM. Tumor-infiltrating lymphocytes in the checkpoint inhibitor era. Curr Hematol Malig Rep. 2019;14(4): 286–291.
11. Makowska A, Meier S, Shen L, Busson P, Balocco V, Kontny U. Anti-PD-1 antibody increases NK cell cytotoxicity towards nasopharyngeal carcinoma cells in the context of chemotherapy-induced upregulation of PD-1 and PD-L1. Cancer Immunol Immunother. 2021;70(2):323–336.
12. Rosenberg SA. Adoptive immunotherapy of cancer: accomplishments and prospects. Cancer Treat Rep. 1984;68(1): 233–255.
13. Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015;26(2):259–271.
14. Solinas C, Carbognin L, De Silva P, Criscitiello C, Lambertini M. Tumor-infiltrating lymphocytes in breast cancer according to tumor subtype: current state of the art. Breast. 2017;35: 142–150.
15. Liu W, Chen G, Zhang C, et al. Prognostic significance of tumor-infiltrating lymphocytes and macrophages in nasopharyngeal carcinoma: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol. 2022;279(1):25–35.
16. Al-Rajhi N, Soudy H, Ahmed SA, et al. CD3+ T-lymphocyte infiltration is an independent prognostic factor for advanced nasopharyngeal carcinoma. BMC Cancer. 2020;20(1):240.
17. Lo AK, Dawson CW, Lung HL, Wong KL, Young LS. The role of EBV-encoded LMP1 in the NPC tumor microenvironment: from function to therapy. Front Oncol. 2021;11:640207.
Lymphocytes in nasopharyngeal carcinoma

18. Huang SC, Tsao SW, Tsang CM. Interplay of viral infection, host cell factors and tumor microenvironment in the pathogenesis of nasopharyngeal carcinoma. *Cancers (Basel).* 2018;10(4):106.

19. O’Donnell JS, Teng M, Smyth MJ. Cancer immunoeediting and resistance to T cell-based immunotherapy. *Nat Rev Clin Oncol.* 2019;16(13):151–167.

20. Kunimasa K, Goto T. Immunosurveillance and immunoeediting of lung cancer: current perspectives and challenges. *Int J Mol Sci.* 2020;21(2):597.

21. Walsh SR, Simovich B, Chen L, et al. Endogenous T cells prevent tumor immune escape following adoptive T cell therapy. *J Clin Invest.* 2019;129(12):5400–5410.

22. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoeediting. *Immunity.* 2004;21(2):137–148.

23. Cai TT, Ye SB, Liu YN, et al. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. *PLoS Pathog.* 2017;13(7):e1006503.

24. Hu B, Sun M, Wang Z, et al. Prognostic value of programmed cell death-ligand 1 expression in tumor-infiltrating lymphocytes and viral load in peripheral blood mononuclear cells for Epstein-Barr virus-positive nasopharyngeal carcinoma. *Clin Chem.* 2020;66(9):1219–1227.

25. Ooft ML, van Ipenburg JA, Braunius WW, Zuur CI, Koljenovic S, Willems SM. Prognostic role of tumor infiltrating lymphocytes in EBV positive and EBV negative nasopharyngeal carcinoma. *Oral Oncol.* 2017;71:16–25.

26. Gourcens C, Barjon C, Busson P. Host-tumor interactions in nasopharyngeal carcinomas. *Semin Cancer Biol.* 2012;22(2):127–136.

27. Zhang G, Tsang CM, Deng W, et al. Enhanced IL-6/IL-6R signaling promotes growth and malignant properties in EBV-infected premalignant and cancerous nasopharyngeal epithelial cells. *PLoS One.* 2013;8(5):e62284.

28. Lane AN, Higashi RM, Fan TW. Metabolic reprogramming in tumors: contributions of the tumor microenvironment. *Genes Dis.* 2019;7(2):185–198.

29. Vrzalikova K, Ibrahim M, Nagy E, et al. Co-expression of Epstein-Barr virus-encoded latent membrane proteins and the interferon-inducible chemokine IP-10 (CXCL10), a chemokine and resistance to T cell-based immunotherapy. *Cancer Res.* 2020;80(10):3136–3145.

30. Lo AK, To KF, Lo KW, et al. Prognostic role of LMP1 expression by EBV-infected premalignant and cancerous nasopharyngeal carcinomas. *Semin Cancer Biol.* 2012;22(2):127–136.

31. Lo AK, To KF, Lo KW, et al. Modulation of LMP1 protein expression by EBV-infected microRNAs. *Proc Natl Acad Sci U S A.* 2007;104(41):16164–16169.

32. Tong LG, Luo B, Zhang L, Nong HB. Interleukin-18 gene promoter polymorphism and the risk of nasopharyngeal carcinoma in a Chinese population. *DNA Cell Biol.* 2009;28(10):507–513.

33. Teichmann M, Meyer B, Beck A, Niedobitek G. Expression of the interferon-inducible chemokine IP-10 (CXCL10), a chemokine with proposed anti-neoplastic functions, in Hodgkin lymphoma and nasopharyngeal carcinoma. *J Pathol.* 2005;206(1):68–75.

34. Ren Y, Yang J, Li M, et al. Viral IL-10 promotes cell proliferation and cell cycle progression via JAK2/STAT3 signaling pathway in nasopharyngeal carcinoma cells. *Biotechnol Appl Biochem.* 2020;67(6):929–938.

35. Yan S, Zhang Y, Sun B. The function and potential drug targets of tumour-associated Tregs for cancer immunotherapy. *Sci China Life Sci.* 2019;62(2):179–186.

36. Wang J, Huang H, Lu J, et al. Tumor cells-induced-M2 macrophage favors accumulation of Treg in nasopharyngeal carcinoma. *Int J Clin Exp Pathol.* 2017;10(8):8389–8401.

37. Ooft ML, van Ipenburg JA, Sanders ME, et al. Prognostic role of tumour-associated macrophages and regulatory T cells in EBV-positive and EBV-negative nasopharyngeal carcinoma. *J Clin Pathol.* 2018;71(3):267–274.

38. Chow YP, Tan LP, Chai SJ, et al. Exome sequencing identifies potentially druggable mutations in nasopharyngeal carcinoma. *Sci Rep.* 2017;7:42980.

39. Huang D, Song SJ, Wu ZZ, et al. Epstein-Barr virus-induced VEGF and GM-CSF drive nasopharyngeal carcinoma metastasis via recruitment and activation of macrophages. *Cancer Res.* 2017;77(13):3591–3604.

40. Zhou Y, Xia L, Lin J, et al. Exosomes in nasopharyngeal carcinoma. *J Cancer.* 2018;9(5):767–777.

41. Raab-Traub N. Novel mechanisms of EBV-induced oncogenesis. *Curr Opin Virol.* 2012;2(4):453–458.

42. Mrizak D, Martin N, Barjon C, et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. *J Natl Cancer Inst.* 2014;107(1):363.

43. You B, Cao X, Shao X, et al. Clinical and biological significance of HAX-1 overexpression in nasopharyngeal carcinoma. *Oncotarget.* 2016;7(11):12505–12524.

44. Schumacher TN, Schreiber RD. Neotumorigen in cancer immunotherapy. *Science.* 2015;348(6230):69–74.

45. Chan OS, Kowanetz M, Ng WT, et al. Characterization of PD-L1 expression and immune cell infiltration in nasopharyngeal cancer. *Oral Oncol.* 2017;67:52–60.

46. Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. *Trends Cell Biol.* 2015;25(4):198–213.

47. Chen M, Jin F, Ma L, et al. The detection and significance of T cells in nasopharyngeal carcinoma patients. *J Cancer Ther.* 2018;14(Supplement):5331–5335.

48. Wang J, Luo Y, Bi P, et al. Mechanisms of Epstein-Barr virus nuclear antigen 1 favor Tregs accumulation in nasopharyngeal carcinoma. *Cancer Med.* 2020;9(15):5598–5608.

49. Yan S, Zhang Y, Sun B. The function and potential drug targets of tumour-associated Tregs for cancer immunotherapy. *Science.* 2019;62(2):179–186.

50. Saleh R, Elkord E. FoxP3(+) T regulatory cells in cancer: prognostic biomarkers and therapeutic targets. *Cancer Lett.* 2020;490:174–185.

51. Holmgard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. *J Exp Med.* 2013;210(7):1389–1402.

52. Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. *Clin Cancer Res.* 2015;21(4):687–692.

53. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? *Cancer Sci.* 2019;110(7):2080–2089.

54. Saleh R, Elkord E. Treg-mediated acquired resistance to immune checkpoint inhibitors. *Cancer Lett.* 2019;457:168–179.

55. Erdag G, Schaefer JT, Smolkin ME, et al. Immuneotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. *Cancer Res.* 2012;72(5):1070–1080.

56. Wei KR, Zheng RS, Zhang SW, Li ZM, Chen WQ. Nasopharyngeal carcinoma incidence and mortality in China, 2013. *Chin J Cancer.* 2017;36(1):90.

57. Nguyen N, Bellile E, Thomas D, et al. Tumor infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. *Head Neck.* 2016;38(7):1074–1084.
58. Wang YQ, Chen YP, Zhang Y, et al. Prognostic significance of tumor-infiltrating lymphocytes in non-disseminated nasopharyngeal carcinoma: a large-scale cohort study. Int J Cancer. 2018;142(12):2558–2566.

59. Donnem T, Kiliaer TK, Andersen S, et al. Strategies for clinical implementation of TNM-immuno-score in resected nonsmall-cell lung cancer. Ann Oncol. 2016;27(2):225–232.

60. Ji RR, Chasalow SD, Wang L, et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother. 2012;61(7):1019–1031.

61. Mlecnik B, Bindea G, Pagés F, Galon J. Tumor immunosurveillance in human cancers. Cancer Metastasis Rev. 2011;30(1):5–12.

62. Lee AW, Ma BB, Ng WT, Chan AT. Management of nasopharyngeal carcinoma: a large-scale cohort study. J Clin Oncol. 2015;33(29):3356–3364.

63. Pagés F, Mlecnik B, Marliot F, et al. International validation of the consensus ImmunoScore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018;391(10135):2128–2139.

64. Paulsen EE, Kilvaer T, Khanehkenari MR, et al. CD45RO(+) memory T lymphocytes–a candidate marker for TNM-immuno-score in squamous cell lung cancer. Neoplasia. 2017;19(11):839–848.

65. Galon J, Mlecnik B, Bindea G, et al. Towards the introduction of the ‘ImmunoScore’ in the classification of malignant tumours. J Pathol. 2014;232(2):199–209.

66. Bruni D, Angell HK, Galon J. The immune contexture and ImmunoScores in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20(11):662–680.

67. Mlecnik B, Tosolini M, Kirilovsky A, et al. Histopathologic-prognostic based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011;29(6):610–618.

68. Wang YQ, Chen L, Mao YP, et al. Prognostic value of ImmunoScore in nasopharyngeal carcinoma using digital pathology. J Immunother Cancer. 2020;8(2):e000334.

69. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218.

70. Burugu S, Dancsok AR, Nielsen TO. Emerging targets in cancer immunotherapy. Semin Cancer Biol. 2018;52(Pt 2):39–52.

71. Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41(3):283–297.

72. Lee GR. The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci. 2018;19(3):730.

73. Zhang YL, Li J, Mo HY, et al. Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways. Mol Cancer. 2010;9:4.

74. Molling JW, de Grujil TD, Glim J, et al. CD4(+)CD25hi regulatory T-cell frequency correlates with persistence of human papillomavirus type 16 and T helper cell responses in patients with cervical intraepithelial neoplasia. Int J Cancer. 2007;121(8):1749–1755.

75. Wolf D, Wolf AM, Rumpold H, et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res. 2005;11(23):8326–8331.

76. Ayyoub M, Deknuydt F, Rainbaud I, et al. Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the Th(H)17 lineage-specific transcription factor RORgamma t. Proc Natl Acad Sci U S A. 2009;106(21):8635–8640.

77. Chen J, Ye X, Pitmon E, et al. IL-17 inhibits CXCL9/10-mediated recruitment of CD8(+) cytotoxic T cells and regulatory T cells to colorectal tumors. J Immunother Cancer. 2019;7(1):324.

78. Kim JH, Patil AM, Choi JY, et al. CCR5 ameliorates Japanese encephalitis virus via dictating the equilibrium of regulatory CD4(+)Foxp3(+) T and IL-17(+)CD4(+)Th17 cells. J Neuroinflammation. 2016;13(1):223.

79. Spector ME, Bellile E, Amlani L, et al. Prognostic value of tumor-infiltrating lymphocytes in head and neck squamous cell carcinoma. JAMA Otolaryngol Head Neck Surg. 2019;145(11):1012–1019.

80. Chen YL. Prognostic significance of tumor-associated macrophages in patients with nasopharyngeal carcinoma: a meta-analysis. Medicine (Baltimore). 2020;99(39):e21999.

81. Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent advances in targeting CD8 T-Cell immunity for more effective cancer immunotherapy. Front Immunol. 2018;9:14.

82. Krishna S, Anderson KS. T-cell epitope discovery for therapeutic cancer vaccines. Methods Mol Biol. 2016;1403:779–796.

83. Chapuis AG, Roberts IM, Thompson JA, et al. T-cell therapy using interleukin-21-primed cytotoxic T-Cell lymphocytes combined with cytotoxic T-Cell lymphocyte antigen-4 blockade results in long-term cell persistence and durable tumor regression. J Clin Oncol. 2016;34(31):3787–3795.

84. Lin C, Eigentler T, Brenner E, Rücken M. Immune checkpoint blockade therapy. J Allergy Clin Immunol. 2018;142(5):1403–1414.

85. Dieci MV, Radosevic-Robin N, Fineberg S, et al. Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: a report of the International Immunoo-Oncology Biomarker Working Group on Breast Cancer. Semin Cancer Biol. 2018;52(2):16–25.

86. Denkert C, von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018;19(11):40–50.

87. Lin C, Chen S, Li Y. T cell modulation in immunotherapy for hematological malignancies. Cell Biol Toxicol. 2017;33(4):323–327.

88. Sun Z, Chen F, Meng F, Wei J, Liu B. MHC class II restricted neoadjuvant: a promising target in tumor immunotherapy. Cancer Lett. 2017;392:17–25.

89. Bremnes RM, Busund LT, Kiliaer TK, et al. The role of tumor-infiltrating lymphocytes in development, progression, and prognosis of non-small cell lung cancer. J Thorac Oncol. 2016;11(6):789–800.

90. Asadzadeh Z, Mohammadi H, Safarzadeh E, et al. The paradox of Th17 cell functions in tumor immunity. Cell Immunol. 2017;322:15–25.

91. Guery L, Hugues S. Th17 cell plasticity and functions in cancer immunity. Biomed Res Int. 2015;2015:314620.

92. Schalper KA, Brown J, Carvajal-Hausdorf D, et al. Objective measurement and clinical significance of TILs in non-small cell lung cancer. J Natl Cancer Inst. 2015;107(3):dju435.

93. Kara I, Çağlı S, Vural A, et al. The effect of FoxP3 on tumor stage, treatment response, recurrence and survivalability in nasopharynx cancer patients. Clin Otolaryngol. 2019;44(3):349–355.

94. Ng YT, Yang AZY, Lee MY, Chua MJM, Lim CM. The role of NK cells in EBV infection and EBV-associated NPC. Viruses. 2021;13(2):300.
