A COMPREHENSIVE HST BVI CATALOGUE OF STAR CLUSTERS IN FIVE HICKSON COMPACT GROUPS OF GALAXIES.

K. Fedotov,1,2 S. C. Gallagher,1 P. R. Durrell,3 N. Bastian,4 I. S. Konstantopoulos,5 J. Charlton,6 K. E. Johnson,7 R. Chandar8

1University of Western Ontario, London, ON N6A 3K7, Canada
2Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7, Canada
3Department of Physics & Astronomy, Youngstown State University, Youngstown, OH 44555, USA
4Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF, UK
5Australian Astronomical Observatory, North Ryde, NSW 1670, Australia
6Pennsylvania State University, University Park, PA 16802, USA
7Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA
8Department of Physics & Astronomy, University of Toledo, Toledo, OH 43606, USA

19 March 2015

ABSTRACT

We present a photometric catalogue of star cluster candidates in Hickson compact groups (HCGs) 7, 31, 42, 59, and 92, based on observations with the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope. The catalogue contains precise cluster positions (right ascension and declination), magnitudes, and colours in the BVI filters. The number of detected sources ranges from 2200 to 5600 per group, from which we construct the high-confidence sample by applying a number of criteria designed to reduce foreground and background contaminants. Furthermore, the high-confidence cluster candidates for each of the 16 galaxies in our sample are split into two sub-populations: one that may contain young star clusters and one that is dominated by globular older clusters. The ratio of young star cluster to globular cluster candidates varies from group to group, from equal numbers to the extreme of HCG 31 which has a ratio of 8 to 1, due to a recent starburst induced by interactions in the group. We find that the number of blue clusters with $M_V < -9$ correlates well with the current star formation rate in an individual galaxy, while the number of globular cluster candidates with $M_V < -7.8$ correlates well (though with large scatter) with the stellar mass. Analyses of the high-confidence sample presented in this paper show that star clusters can be successfully used to infer the gross star formation history of the host groups and therefore determine their placement in a proposed evolutionary sequence for compact galaxy groups.

Key words: galaxies: groups: general — galaxies: groups: individual: HCG 07, HCG 31, HCG 42, HCG 59, HCG 92; — galaxies: evolution — galaxies: interactions — galaxies: star clusters: general

1 INTRODUCTION

It is widely accepted that interactions and mergers between gas-rich galaxies lead to star formation (e.g., Kennicutt et al. 1987; Mihos & Hernquist 1996; Barton Gillespie et al. 2003; Springel et al. 2005), and that the majority of stars form in clusters and associations (Lada & Lada 2003; Bressert et al. 2010). It therefore follows that a detailed analysis of star cluster populations in a galaxy can reveal its history of interaction events (e.g., Whitmore et al. 1999; Gallagher et al. 2001; Bastian et al. 2005; Wilson et al. 2006).

In that light, star clusters are a powerful tool for studying star formation events triggered by mergers and tidal interactions between galaxies. In particular, star clusters could prove useful for studying compact groups (CGs), specifically Hickson Compact Groups (HCGs; Hickson 1982; 1997, Hickson et al. 1989; 1992). By virtue of their selection criteria (low velocity dispersions and high galaxy number densities), HCGs represent an environment with frequent and prolonged interactions, that can trigger the formation of star cluster populations associated with specific events.

Initially motivated by the work of Verdes-Montenegro et al. (2001), Johnson et al. (2007) proposed an evolutionary sequence of HCGs by separating them into three types based on the ratio of their H content (a proxy for the available reservoir of cool gas for star
formation) and the dynamical mass of the Group with Type I being the gas-rich and Type III the gas-poor ones. Johnson et al. (2007) also report – based on Spitzer mid-infrared colours – that galaxies in Type I groups are more actively star-forming than galaxies in Type II groups while galaxies in Type III groups are relatively quiescent. Konstantopoulos et al. (2010) expanded on this classification by splitting group types into two parallel sequences according to their gas distributions: Sequence A groups maintain the bulk of their cold gas inside galaxies, whereas Sequence B groups have gas dispersed throughout the intra-group medium (IGM) (Konstantopoulos et al. 2010 their fig. 1). The gas distribution of Sequence B groups likely results from strong interactions that occur while disk galaxies are still gas-rich. The initial conditions of the positions and relative velocities of Sequence A group galaxies are such that only softer interactions occur, and while secular evolution may be enhanced and lead to a boost in star formation rates in individual galaxies, the bulk of the cold gas is not pulled into the IGM. As a consequence, the groups in Sequence A are expected to ultimately lead to the formation of a single elliptical galaxy with little to no X-ray envelope, as gas is consumed within galaxies before late-stage dry mergers. Groups in Sequence B – where galaxies interact strongly before gas is consumed – would be more likely to form ellipticals with a strong X-ray envelope (heated by star-formation triggered by one or more gas-rich mergers), as can be seen around some massive elliptical galaxies or so-called ‘fossil’ groups (Jones et al. 2003). The differences in star-forming histories, which vary depending on gas content and distribution and advance along the evolutionary path, must be reflected in the star cluster populations of the groups. Thus, star cluster populations can potentially be used to infer their hosts’ placement on the CG evolutionary sequence proposed by Konstantopoulos et al. (2010).

In this paper, we consolidate the information on star clusters in compact groups of galaxies that has been presented in a number of projects (Gallagher et al. 2010 Konstantopoulos et al. 2010 Fedotov et al. 2011 Konstantopoulos et al. 2012 2013) and present it in a consistent, coherent catalogue, with the goal of further assisting researchers in star cluster-related studies. We also take this opportunity to compare the basic properties between cluster populations in compact groups at distinct evolutionary stages.

This paper is organized in the following way: in Section 2, we describe the samples and data sets. We outline the procedure for constructing the catalogue in Section 3, and present our results and describe the samples and data sets. We outline the procedure for a consistent, coherent catalogue, with the goal of further assisting to et al. 2011; Konstantopoulos et al. 2012, 2013) and present it in projects (Gallagher et al. 2010; Konstantopoulos et al. 2010; Fedotov et al. 2011). The gas distribution of Sequence B groups likely results from strong interactions that occur while disk galaxies are still gas-rich. The initial conditions of the positions and relative velocities of Sequence A group galaxies are such that only softer interactions occur, and while secular evolution may be enhanced and lead to a boost in star formation rates in individual galaxies, the bulk of the cold gas is not pulled into the IGM. As a consequence, the groups in Sequence A are expected to ultimately lead to the formation of a single elliptical galaxy with little to no X-ray envelope, as gas is consumed within galaxies before late-stage dry mergers. Groups in Sequence B – where galaxies interact strongly before gas is consumed – would be more likely to form ellipticals with a strong X-ray envelope (heated by star-formation triggered by one or more gas-rich mergers), as can be seen around some massive elliptical galaxies or so-called ‘fossil’ groups (Jones et al. 2003). The differences in star-forming histories, which vary depending on gas content and distribution and advance along the evolutionary path, must be reflected in the star cluster populations of the groups. Thus, star cluster populations can potentially be used to infer their hosts’ placement on the CG evolutionary sequence proposed by Konstantopoulos et al. (2010).

In this paper, we consolidate the information on star clusters in compact groups of galaxies that has been presented in a number of projects (Gallagher et al. 2010 Konstantopoulos et al. 2010 Fedotov et al. 2011 Konstantopoulos et al. 2012 2013) and present it in a consistent, coherent catalogue, with the goal of further assisting researchers in star cluster-related studies. We also take this opportunity to compare the basic properties between cluster populations in compact groups at distinct evolutionary stages.

This paper is organized in the following way: in Section 2, we describe the samples and data sets. We outline the procedure for constructing the catalogue in Section 3, and present our results and discuss them in Section 4. Lastly, we summarize the main conclusions in Section 5. Throughout, we use the cosmology \(H_0 = 73.0 \) km s\(^{-1}\) Mpc\(^{-1}\), \(\Omega_{\text{m}} = 0.27 \), and \(\Omega_{\text{vacuum}} = 0.73 \) to determine distances and physical sizes.

2 DATA

The data for this project were obtained with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3). These observations are part of two programs: ID 10787 (PI J. Charlton) and ID 11502 (PI K. Noll). The observations were carried out in the F435W (F438W for WFC3), F606W, and F814W filters, which are similar to the Johnson BVI system.

Although we did not make transformations to the Johnson-Cousins system.

Table 1 contains an observation log. The last column in the table lists publications related to those observations. Table 2 presents properties of the 16 individual galaxies within the five compact groups included in this sample.

3 DATA ANALYSIS

Before we go into the detailed description of selecting and sorting the detected sources, here are a few words about our terminology to clarify the differences between samples.

Our catalogue consists of all detected point sources that passed the criteria described below. However, the high-confidence portion of the catalogue is divided into two subcategories that we denote as star cluster candidates (SCCs) and globular cluster candidates (GCCs). The major difference between these two subcategories is that the selection criteria for the SCCs do not discriminate against sources with significant nebular emission. In contrast, the selection criteria for GCCs filter out objects with nebular emission (both in terms of their colours and their spatial extent), while being less strict about the lower luminosity limit (see Fig. 1). These two subcategories are not mutually exclusive, i.e., the same cluster may be present in both categories. Indeed, the selection criteria (described in detail in the section below) for the globular cluster candidates are fine-tuned to filter out potentially young star clusters in the dynamically young groups with active star formation (e.g., HCG 31) where we detect many young SCs. Thus, we expect to see a small fraction of SCCs being classified as GCCs in such groups (for HCG 31 out of 338 SCCs only 13 of them, or less than 4%, are also GCCs). On the other hand, in a group such as HCG 42, which in our sample is represented by the giant elliptical NGC 3091 and where the majority of the detected sources are expected to be old star clusters, we anticipate a majority of SCCs to be also classified as GCCs (out of 356 SCCs for HCG 42, 331 of them, or ~93% are classified as GCCs). Hence, we use the SCC sample primarily to study the young star cluster populations and GCCs to study globular cluster populations.

Throughout the paper we use the terms young, intermediate, and old when we talk about star clusters. These are general terms without standard definitions in the literature. For this paper, when we talk about young star clusters we mean clusters that are younger (according to their location in BVI colour space) than 10 Myr. For intermediate clusters the age range is between a low hundreds Myrs and a few Gyrs, and for the old clusters the range is from ~ 5 Gyr to 14 Gyr. The intervals not covered by our definitions are grey areas, and star clusters in those intervals are labelled according to context. For example, if we are talking about intermediate age clusters (750 Myr old), clusters less than 50 Myr old could be referred to as young/younger SCs. For most of the cases, whenever we are using these terms (young, intermediate, old) we are specifying the time intervals within the parentheses following the term.

3.1 Star Cluster Selection

For the ACS observations, the closest group is HCG 07 at a distance of 56.6 Mpc (from the initial radial velocity measurement by Hickson (1982) modified based on the velocity field model of Mould et al. (2000)), equivalent to a distance modulus of \(m - M = 33.76 \) mag. At this distance, the 07/09 pixel size of the ACS corresponds to 13.7 pc. The distance to Stephan’s Quintet which was ob-
Table 1. Details of observations.

Group	Galaxy	Instrument	Program ID	t_{exp} (s)	Date	References
		ACS/WFC	10787	1710 1230 1065	Sept 2006	K10
HCG 07	A, B, D	ACS/WFC	10787	1710 1230 1065	Sept 2006	
		ACS/WFC	10787	1710 1230 1065	Aug 2006	G10
HCG 31	A–C, E–H	ACS/WFC	10787	1710 1230 1065	Dec 2007	K12
HCG 42	A, C	ACS/WFC	10787	1710 1230 1065	Dec 2007	K13
HCG 92	A, C	ACS/WFC	10787	1710 1230 1065	Nov 2006	
	B, E	ACS/WFC	11502	3410 1395 1860	Aug 2009	F11, T12
	C, B	WFC3		3410 1395 1860	July 2009	
	E	WFC3		3410 1395 1860		

Notes. * For HCG 92 B filter is F438W of WFC3 camera. In the last column we reference star cluster studies that used the associated observations.

G10: Gallagher et al. (2010)
F11: Fedotov et al. (2011)
K10: Konstantopoulos et al. (2010)
K12: Konstantopoulos et al. (2012)
K13: Konstantopoulos et al. (2013)
T12: Tranch et al. (2012)

From Schlafly & Finkbeiner (2011), published in the NASA/IPAC Extragalactic Database (NED). Table 3 gives overall information on the number of stars used in the PSF constructions, the aperture correction values, and foreground extinctions for different filters and targets.

At this stage, we had an unfiltered point source list for each group, which we refer to as the “extended sample”.

3.2 PSF photometry justification

Quite often in studies of extragalactic star clusters, the question of which type of photometry to use (aperture or PSF) arises. If star clusters can be resolved, then, logically, aperture photometry would produce the most accurate results. On the other hand, for unresolved objects PSF photometry is preferred. What about sources that are marginally resolved? Harris (2009) have shown that if a SC is larger than ~ 10% of the FWHM of the stellar PSF then it can be treated as marginally resolved and aperture photometry should be applied. This result is certainly important for studies that look at SC sizes, but what about work that focussing on the colours (and colour-based properties such as ages) of these SCs?

Colours are differences between the magnitudes in different filters and as such are less dependent on the accuracy of the total magnitude measurements than the relative magnitudes. That is, if measurements are carried out consistently for all of the filters, the magnitude differences between filters (i.e., the colours) should be similar for both PSF and aperture photometry. For our study, most of the compact groups are at distances where their SCs may be marginally resolved, except, perhaps HCG 92 (at 88.6 Mpc). However, most of our groups have areas with highly variable backgrounds, and in some cases, albeit rarely, the issue of crowding arises. The above concerns lead us to prefer PSF photometry. Additionally, if a PSF for a given filter is generated and applied correctly, PSF photometry can potentially give more accurate magnitude measurements than aperture photometry, and with much smaller uncertainties.
Table 2. HCG Galaxies Information.

Galaxy Name	RA (2000)	Dec (2000)	Type	v_r	M_∗	SFR
NGC0192	00h 39m 13.4s + 00d 51m 52s	Sb	4133	10.76	2.30	0.02
NGC0196	00h 39m 17.8s + 00d 54m 46s	SB0	4255	10.76	2.30	0.02
NGC2021	00h 39m 34.8s + 00d 51m 36s	SBc	4415	10.76	2.30	0.02
NGC0197	00h 39m 18.8s + 00d 53m 31s	SBc	4121	10.76	2.30	0.02
NGC1741	05h 01m 38.7s – 04d 15m 34s	Sm	4074b	10.76	2.30	0.02
NGC1741	05h 01m 36.2s – 04d 15m 43s	Sm	4136b	10.76	2.30	0.02
M1089	05h 01m 37.7s – 04d 15m 28s	Im	4019b	10.76	2.30	0.02
IC0399	05h 01m 37.5s – 04d 15m 57s	Sm	4009b	10.76	2.30	0.02
IC0399	05h 01m 40.0s – 04d 16m 22s	Sbc	3969b	10.76	2.30	0.02
NGC3091	10h 00m 14.3s – 19d 38m 13s	E3	3964	10.76	2.30	0.02
IC0397	10h 00m 10.3s – 19d 38m 13s	E3	4005	10.76	2.30	0.02
IC0397	11h 48m 27.5s + 12d 43m 39s	Sa	4109	10.76	2.30	0.02
IC0397	11h 48m 20.1s + 12d 43m 00s	E0	4004	10.76	2.30	0.02
IC0397	11h 48m 32.4s + 12d 42m 19s	Sb	4394	10.76	2.30	0.02
KUG1145+129	11h 48m 30.6s + 12d 43m 47s	Im	3635	10.76	2.30	0.02
KUG1145+130	22h 35m 56.4s + 33d 57m 56s	E2	6630	10.76	2.30	0.02
NGC7318A	22h 35m 35.1s + 33d 56m 42s	E4	6599	10.76	2.30	0.02

Notes. Unless indicated otherwise stellar masses taken from Desjardins et al. (2014), SFR values are from Tzanavaris et al. (2010), velocities from de Vaucouleurs et al. (1991), and morphology types from Hickson et al. (1989).

We have compared the aperture photometry with our PSF photometry and found that the difference between the two are within the accepted error level for this study (< 0.17 mag). Moreover, as was mentioned previously, the differences in the photometries becoming even less noticeable in colour indices (< 0.09 mag). Thus, we conclude that on average the two photometries produce comparable results, and we prefer PSF photometry for the reasons given above.

3.3 Star Cluster Candidate Selection

To create a catalogue of high confidence star cluster candidates we applied to our extended samples the following selection criteria:

1. Magnitude cut at M_V < −9 mag (S1)

To eliminate the contamination from individual luminous supergiants, which can reach M_V ∼ –8 mag, we only considered sources with M_V < −9 mag. This roughly corresponds to a cluster mass of a few ×10^8 M_☉ at 10 Myr and ∼10^9 M_☉ at 10 Gyr (depending on metallicity and distance modulus).

2. Photometric error σ < 0.3 mag in all three filters (S2)

To maintain photometric quality of magnitudes and colours, all point sources that had photometric errors larger than 0.3 mag in any of the B_435/438, V_606, or I_614 filters were discarded.

3. Sharpness between −2 and 2 in all bands (S3)

To further minimize contamination from cosmic rays and background galaxies, we applied a sharpness filter which, essentially, is a constraint on the intrinsic angular size of the detected objects. Sharpness is measured as the difference between the square of the width of the object and the square of the width of the PSF, and for our purposes should be between −2 and 2: large positive values of sharpness are indicative of blended sources and partially resolved galaxies, whereas large negative numbers are flags for cosmic rays and blemishes. For a well-matched width the sharpness is zero.

4. X < 3 in the I_614-band (S4)

The DAOPHOT goodness of fit factor χ from PSF-fitting in the I_614-band should be less than 3. The use of I_614-band for the χ parameter is twofold: (a) the PSF model is typically best determined in that band because we have the most PSF stars; and (b) no contamination from nebular emission lines (e.g., Hα) is expected (nebular emission around a young star cluster may cause them to be marginally resolved in the V_606-band images).

5. Colour cuts (S5)

In order to minimize the contamination from foreground Galactic stars, we applied colour cuts, where all sources that had colours B_435/438 − V_606 > 1.5 mag or V_606 − I_614 > 1.0 mag were discarded. As can be seen on fig. 8 of Tranch et al. (2012), applying these colour cuts removes the majority of spectroscopically
confirmed contaminants.

3.4 Globular Cluster Candidate Selection

In a similar manner we created a catalogue of Globular Cluster Candidates, with the following (generally stricter) criteria (based on Rejkuba et al. (2005)):

1. **Hyperbolic filters in photometric error (G1)**
 - The hyperbolic filter in the photometric error was defined in such a manner as to retain $\sim 97\%$ of all recovered artificial sources (these are the sources that were used in determining the completeness level, see Section 3.5). The application effect of this filter on detected sources can be observed in Fig. 1 panels b₀ and b₁.

2. **Hyperbolic filters in DAOPHOT sharpness parameter (G2)**
 - We defined the hyperbolic filter in the V_{606} DAOPHOT sharpness parameter in the same manner as the photometric error filter. That is, the sharpness filter is tuned so that it retains $\sim 97\%$ of all recovered artificial sources. However, there is a possibility that for the closest groups (e.g., HCG 07, HCG 42) some of the GCCs might be marginally resolved. In these cases we relax the upper envelope of the sharpness filter to make sure that we do not discard larger GCCs. The example of the application and effect of the sharpness filter on detected sources can be seen in Fig. 1 panels c₀ and c₁.

3. **Magnitude cut at $M_{V_{606}} \leq -7.8$ mag (G3)**
 - Because contamination from supergiants is less of a problem for objects with GC-like colours, we relaxed our luminosity cut to $M_{V_{606}} \leq -7.8$ mag to get closer to the expected peak of the GC luminosity function $M_V \sim -7.4$ (e.g., Ashman & Zepf 1998, Harris 2001). The -7.8 magnitude cutoff roughly corresponds to a globular cluster mass of $\sim 5 \times 10^5 M_\odot$ (depending on metallicity and distance modulus). The effect of application of this filter is shown on Fig. 1 panels d₀ and d₁.

4. **Milky Way Globular Cluster selection parallelogram (G4)**
 - We use reddened GCs from the updated Harris (1996) Milky Way Globular Cluster catalogue to derive a selection parallelogram in $B - V$ vs. $V - I$ colour space. We convert the vertices of the parallelogram from Johnson’s B, V, I magnitudes to $B_{435}, V_{606}, I_{814}$ magnitudes via transformations derived from Sirianni et al. (2005). We keep all sources that would fall into the selection parallelogram in the $B_{435} - V_{606}$ vs $V_{606} - I_{814}$ colour space or that would overlap the selection region with their 1σ error bars. HCG 92 was observed with WFC3 and there is (to our knowledge) currently no equivalent to the Sirianni et al. (2005) calibration paper for this instrument. Therefore, we apply the same selection box for globular clusters to these data as for the ACS data. Given the similarities between these two instruments and their filter sets, we would not expect a significant change in the number of globular cluster candidates as the result of that action.

3.5 Completeness Levels

To determine completeness of our catalogue we carried out the following routine for each group in our sample. For groups HCG 07, 42, 31 and 59 we used ADDSTAR to add 3000 artificial stars to the images (over the entire field, including the galaxies) in the apparent magnitude range 24–28 mag, i.e., absolute magnitudes ranging between -9.99 mag and -5.76 mag (taking into consideration that these groups are located in the range of distances from 56.6 and 62.8 Mpc). For HCG 92 we used ADDSTAR to add 5000 artificial stars to the image as the image covers a larger field of view. The apparent magnitude range of artificial stars was the same, i.e., 24–28 mag, which translates into absolute magnitudes range between -10.74 mag and -6.74 mag, given that the distance modulus for HCG 92 is 34.74 mag. After artificial stars were added to the images, we applied the same algorithm for point source detection to determine the recovery rates. The average limiting magnitudes for the 50% and 90% recovery rates for each group are presented in Table 5. As can be seen, we operate at the slightly higher than 90% completeness level (in V_{606} filter) for GCCs and at even higher completeness level for the SCCs, except for HCG 92 which is the most distant group in our sample. In that case we are at $\gtrsim 50\%$ and...
Figure 1. Illustration of the criteria applied to the HCG 07 extended point source catalogue to produce the GCC sample for that group. The rows in this figure show the same point sources being plotted in error, $\sigma_{V_{606}}$, vs. V_{606} magnitude (left-hand-side panels with subscript 0) and in DAOPHOT sharpness parameter vs. V_{606} magnitude space (right-hand-side panels with subscript 1). The upper row of panels shows the initial point sources. We apply the hyperbolic filter in magnitude error, as observed in panel b_0, and panel b_1 represents the point sources that satisfy that criterion in sharpness parameter space. Panel c_1 shows the hyperbolic filter that was applied in the sharpness parameter space, and c_0 displays point sources in magnitude error space that pass that filtration. We apply a magnitude cut ($M_{V_{606}} < -7.8$) which is illustrated by panels d_0 and d_1. To obtain the final GCC sample for HCG 07, we select only those sources that have colours similar to those of the Milky Way globulars (see Fig. 14, panel (a) for reference). Resulting objects are presented in panels e_0 and e_1. The number in the lower left corner of the left-hand-side panels indicates the number of point sources that remain after application of each criterion. (A colour version of this figure is available in the online journal.)

~90% completeness level for the GCCs and SCCs, respectively. We point out that the method described gives the values for the average completeness level over the entire image. Because of the random distribution of artificial sources and because galaxies (with elevated surface brightness) typically take up a smaller fraction of the field-of-view, our actual completeness levels will generally be lower as star clusters tend to be found in galaxies (with HCG 92 as a notable exception).

The level of completeness becomes especially important when we are dealing with the specific frequencies and metallicity distributions for globular cluster candidates. The $B - V$ colour for GCCs is, on average, about 1 although our selection parallelogram (the G4 criterion,§3.4) goes down to $B - V \approx 1.38$. As an example, consider a hypothetical GCC source in HCG 42. If this source has $m_V = 26$ mag (just above the 90% completeness level in the V filter; Table 5, its magnitude in B, according to our G4 criterion, will be between 26.68 and 27.38. However, the 90% completeness level in B is 26.2 mag. Thus, if we force our sources to have 90% completeness level only in the V filter, we will be missing some of the red sources at the faint end. Moreover, even forcing 90% completeness in the limiting filter (in our case it is B filter), we are still risking missing some objects (Fig. 2). So, for the calculation of the total number of clusters in the GC system of a host galaxy, the globular cluster specific frequency, and the metallicity distributions, we will be using a portion of our catalogue, in which all sources are at or above 90% completeness level in all three filters and which also minimises the loss of the faint metal rich GCCs. For our sample of HCGs, that corresponds to V-filter magnitude cutoffs at 25.0 mag
for HCG 42, and 25.5 mag for HCG 07, 31, and 59. The only exception is HCG 92, the farthest group in our sample. For this group we went down to 50% completeness level, to maximise the number of GCCs to strengthen the statistical conclusions validity. Unfortunately, even at that completeness level, we are still sampling only about 10% of the GCLF making the derived values of the total number in the GC populations (N_{total}) and specific frequencies (S_N) of HCG 92 galaxies highly uncertain (∼ factor of 5). Although we forego determining N_{total} and S_N for HCG 92 (for aforementioned reasons), we are still attempting a GCC population analysis, based on a “face value” GCC catalogue containing sources that are at or above the 50% completeness level with a cutoff at V = 25.5 mag (to minimise the loss of the faint metal rich GCCs).

3.6 Physical Extent of the SCC and GCC Systems

For each group, we present an image with regions that define the expected extent of the star cluster and globular cluster systems (to minimise the loss of the faint metal rich GCCs). For HCG 42, the farthest group in our sample. For this group we went down to 50% completeness level, to maximise the number of GCCs to strengthen the statistical conclusions validity. Unfortunately, even at that completeness level, we are still sampling only about 10% of the GCLF making the derived values of the total number in the GC populations (N_{total}) and specific frequencies (S_N) of HCG 92 galaxies highly uncertain (∼ factor of 5). Although we forego determining N_{total} and S_N for HCG 92 (for aforementioned reasons), we are still attempting a GCC population analysis, based on a “face value” GCC catalogue containing sources that are at or above the 50% completeness level with a cutoff at V = 25.5 mag (to minimise the loss of the faint metal rich GCCs).

\[y = [(45.7 \pm 9.5) x^2] - [(985 \pm 217) x] + (5320 \pm 1240), \]

where \(x \) is the mass of a host galaxy in \(\log(M/M_\odot) \) and \(y \) is the expected radial extent of a system in kpc. However, given the quadratic nature of the above equation and the low mass of some...
Table 5. Completeness levels for our Hickson Compact Group sample.

Group	B435	V606	I814	Distance modulus	GCC cutoff	SCC cutoff
	50%	90%	50%	90%	50%	90%
HCG 07	27.4	26.7	27.5	26.3	27.1	26.4
HCG 31	27.3	26.7	27.4	26.4	27.2	26.5
HCG 42	27.2	26.2	27.2	26.1	27.1	26.0
HCG 59	27.2	26.6	27.2	26.5	27.1	26.5
HCG 92	26.9	25.9	27.1	26.0	27.0	25.9

The values for distance moduli were taken from NED with the following cosmology parameters: \(H_0 = 73.0 \text{ Mpc km s}^{-1}\), \(\Omega_{\text{matter}} = 0.27\), and \(\Omega_{\text{vacuum}} = 0.73\).

* For HCG 92 B filter is B$_{238}$ of WCF3 camera.

\[
(B - I)_0 = 2.158 + 0.375\text{[Fe/H]}. \tag{3}
\]

For the GC population of our sample galaxies with a sufficient number of clusters (we use populations with 40 or more GCs), we plot the \((B - I)_0\) colour distribution and measure the specific frequency. We also plot \((B - I)_0\) colour distributions of GCs for each galaxy group in our sample. We use the GMM (Gaussian Mixture Modeling) code of Muratov & Gnedin (2010) to probe the bimodality and to determine the peaks and dispersions of these distributions. Because mixture modeling codes are generally sensitive to extended tails we use GMM on the distribution between \(-2.5 < \text{[Fe/H]} < 1.0\). The GMM results are recorded in Table 6 similarly to table 2 of Blakeslee et al. (2012), where one can find a detailed guide to interpreting the GMM results. The plots of the metallicity distributions for groups and galaxies from Table 6 are presented in Figures 14–18 and described on a group-by-group basis in §4 below.

3.8 Empirical Estimate of GC System Population

In recent work, Harris et al. (2013) have determined an empirical predictor of the total number of GCs for galaxies of all luminosities as a function of effective radius \((R_e)\) and velocity dispersion \((\sigma_v)\), given by equation:

\[
N_{\text{GC}} = (600 \pm 35) \left[\frac{R_e}{10 \text{ kpc}} \left(\frac{\sigma_v}{100 \text{ km s}^{-1}} \right) \right]^{1.29 \pm 0.03}. \tag{4}
\]

For those galaxies in our sample for which we were able to find the values of \(R_e\) and \(\sigma_v\) in the literature (HCG 42A and HCG 99B), we calculate the predicted numbers of GCs and compare them to our estimates (Table 7) based on the observed GC luminosity function in each galaxy.

4 RESULTS AND DISCUSSION

Below, we present a short overview of the star cluster populations in our sample of Hickson Compact Groups. Analyses of the data presented in this catalogue for individual groups have been published in a number of publications (e.g., Gallagher et al. 2010; Konstantopulos et al. 2013). However, most of these analyses were on a case-by-case basis. In this publication, we aim for a systematic approach by applying the same criteria to the catalogue selection as whole. Because of this, there will be some differences between already published results and the numbers obtained in this paper. For example, the total number of GCCs may differ because we apply a...
different magnitude cut off or use a slightly modified distance modulus. Throughout the paper, we carefully outline all of our steps so the reader can follow them and, if desired, modify them to apply their own criteria.

Furthermore, we examine the star cluster populations of compact groups through the prism of the formation history and evolution of those groups. As mentioned previously, Konstantopoulos et al. (2010) outlined a proposed evolutionary sequence of CGs with respect to the amount and spatial distribution of cold gas in these groups. In brief, using the ratio of gas mass to the dynamical mass, the groups are divided into three types: I, II, and III for gas rich, intermediate, and gas poor groups. Moreover, these groups are further split into two parallel sequences, depending on the location of gas inside a group. Sequence A is for groups with gas contained in galaxies, and Sequence B is for groups with gas being dispersed throughout the intra-group medium. Our sample represents all three types of groups in terms of gas content, and so we can trace differences between the group types through the lens of their star cluster populations.

To check the general properties of galaxies in our sample we plot two figures. First, we plot the number of detected GCCs in galaxies as a function of stellar masses of those galaxies, Fig. 4. On average, the numbers of GCCs in a host galaxy are proportional to the stellar mass of that galaxy. However, galaxy 59B and as the result the whole HCG 59, appears to have an excess of GCCs given its stellar mass. This is discussed in §6.1 in more detail.

The second plot represents the number of “blue” star clusters (young SCs with ages $\lesssim 10$ Myr) in each galaxy as a function of star formation rate of the host galaxies, Fig. 5. The young SCs were selected by applying the colour cut of $V - I < 0.1$. This generous colour cut enables us to keep the maximum number of young clusters, even those that may have significant reddening, avoiding both the evolutionary track loop around ages of 10 and 100 Myr and the old globular cluster region (see Fig. 9 for reference). The numbers of young SCs behave in a predictable manner as well: the galaxies with higher SFR have a larger number of young SCs. Notably, the large irregular 59d has a very high number of young SCs given its stellar mass. Large diamonds represent HCGs, where the total number of globular clusters in each group is the summation of globular clusters of its individual galaxies. Similarly, the mass of a group is the summation of the stellar masses of all galaxies in that group from Desjardins et al. (2010), although we do not observe strong signs of interactions between the galaxies in this group, the large number of young star clusters indicates that star formation rates are at an elevated level (see Fig. 5). From the distribution of clusters within the colour-colour diagrams compared to the simple stellar population models (SSP) of Mango et al. (2008), galaxies A, C, and D appear to have the youngest SCCs, while B has a more mature population. Most of the youngest SCCs are located down and to the right of the dashed evolutionary track of nebular emission for < 10 Myr clusters along the direction of the reddening vector, consistent with the hypothesis that these clusters have $A_V = 1$ to 3 mag. Similarly, Whitmore & Zhang (2002) found that the median extinction value for optically selected very young clusters ($\lesssim 4$ Myr) in the Antennae galaxies is 2.6 mag. Moreover, from the distribution of SCCs it would appear
that the star formation in galaxy C has a more extended history, whereas galaxies A and D exhibit an onset of more recent star formation (Fig. 7), as shown by lower cluster densities between the ages of 100 Myr and 1 Gyr.

4.1.2 Global Cluster Candidates

The colour-colour plots of the GCC population for galaxies in HCG 07 are presented in Fig. 14 and their properties are presented in Table 7. Because galaxies A, C, and D are spiral galaxies (with C and D being face-on galaxies), the number of GCCs in them should be taken with caution. The GCCs located in the central regions and spiral arms may be contaminated by reddened young star clusters. For the GCCs of galaxies B and D, we considered the pair as a single object because of the difficulty of distinguishing cluster ownership given the overlap of the expected extent of the GC systems in these galaxies. As derived from the $B - I$ colour, the average metallicities of the global clusters in galaxy A (spiral) and the BD (B is lenticular, D is spiral) system are below Solar metallicity and comparable to metallicities of galaxies of comparable luminosity (e.g., Barmby et al. 2000; Goudfrooij et al. 2003; Chandar et al. 2004; Kundu & Whitmore 2001; Peng et al. 2006). Galaxy A has 43 ± 7 observed GCCs with $V < 25.5$ mag. Compensating for the missing portion of GC system extent, and assuming a circular symmetry, we estimate the total number of observed GCCs as 62 ± 14 (taking in consideration the foreground sources, Table 7). At the given $V = 25.5$ mag cutoff, assuming the GCLF turnover at -7.4 ± 0.2 mag and width $\sigma = 1.2 \pm 0.2$ mag, we sample $28\% \pm 6\%$ of the GCLF. Taking our completeness fraction as 0.95 ± 0.05, we conclude that for galaxy A ($M_V = -21.31$ mag) the total number of GCCs in the system is $N_{total} = 226 \pm 73$ and specific frequency is $S_N = 0.7 \pm 0.2$. Applying the same approach to other galaxies in the group we find that for the BD region ($M_V = -20.9$ mag for B, $M_V = -19.7$ mag for D) $N_{total} = 580 \pm 150$ and $S_N = 2.5 \pm 0.8$, for C ($M_V = -20.85$) $N_{total} = 140 \pm 39$ and $S_N = 0.6 \pm 0.2$. We note that because galaxies A and C are spiral (A is highly inclined and C is a face-on), a significant number of objects with GC-like colours could, potentially, be reddened young star clusters.

4.2 HCG 31

4.2.1 Star Cluster Candidates

This group – classified as Type I with a cold gas-rich intra-group medium – consists of a number of small galaxies apparently coming together for the first time. The colour-colour plot of all detected SCCs, including those in the intra-group medium, paints a picture of a group that is actively forming stars for the last tens of Myrs (panel (a) of Fig. 10). Simultaneous interactions (e.g., galaxies AC and B) have triggered a very high star formation rate of 8.11 M_\odot yr$^{-1}$ (Tzanavaris et al. 2010), as shown by the large number of very young SCCs on the colour-colour plots. Virtually all of the SCCs in regions E and F (24 SCCs combined) are younger than 10 Myr. These regions are tidal features connecting spiral galaxy G, interacting pair AC and B, placing a time constraint on the interaction between these galaxies. There is a high concentration of SCCs around the region where the evolutionary track makes a backward loop, essentially making it impossible in this colour-space to distinguish between SCCs of 10 to 100 Myr old (panels (c) and (d) of Fig. 10). However, given the low density of SCCs older than 300 Myr (log(t) \sim 8.5 yr) and the large number of young SCCs (\leq 10 Myr), we consider it likely that most of the SCCs in the vicinity of evolutionary track loop are closer to being a few tens of Myr old rather than 100 Myr.

4.2.2 Global Cluster Candidates

The global cluster population of HCG 31 as expected is rather small, with only 77 sources with colours similar to the Milky Way’s GCs. Most of the clusters are situated within the boundaries of the major galaxies AC, B, and G, and, in all likelihood, are reddened young SCs (especially for galaxies B and G). Additionally, we do not expect a large GC population in this group as the galaxies are not massive enough to host a significant number of GCs with masses (and hence luminosities) large enough to be detectable at such distances. Furthermore, we observe a lack of old (> 1 Gyr) star clusters in the colour-colour plot for SCCs of HCG 31 (panel (a) of Fig. 10).
Determined the total number of GCCs and GC specific frequencies in the galaxies of HCG 31 is more straightforward – there is no reason to extrapolate to areas outside the ACS field of view. At the $V < 25.5$ mag cutoff we observe 30% ± 7% of the GCLF assuming the GCLF turnover is at -7.4 ± 0.2 mag and $\sigma = 1.2$ ± 0.2 mag. Taking the completeness fraction as 0.95 ± 0.05, we obtain $N_{\text{total}} = 67 ± 23$ and $S_N = 0.6 ± 0.2$ for 31AC ($M_V = -20.5$), $N_{\text{total}} = 35 ± 14$ and $S_N = 1.0 ± 0.4$ for 31B ($M_V = -18.9$), and $N_{\text{total}} = 28 ± 13$ and $S_N = 0.7 ± 0.3$ for 31G ($M_V = -19.0$).

4.3 HCG 42

4.3.1 Globular Cluster Candidates

The HCG 42 group consists of four large galaxies, three of which are elliptical and one lenticular, with low overall H I content. In the evolutionary sequence scheme this group qualifies as Type III. More details on this group configuration including the dwarf galaxy 42C. From the magnitude difference of view and overlaps the extent of the globular cluster system of HCG 31. The photometric metallicity distribution as probe by $B_{335} - I_{414}$ was determined for 393 of them (for reasons mentioned in §3.2). The distribution has a very well defined bimodality with peaks at [Fe/H] = $-1.04 ± 0.07$ and [Fe/H] = $0.16 ± 0.15$, for the ‘blue’ and ‘red’ peaks, respectively. Both peaks appear to be more metal rich by ~ 0.4 as compared to the average peaks of GC metallicity distributions of approximately -1.5 and -0.5 measured for different types of galaxies (VanDalfsen & Harris 2004 and references within).

From RC3, we find that the effective radius is 32.9 (estimated from a Johnson B image and corresponding to ~ 9.4 kpc); the value for the velocity dispersion, $\sigma = 99.9$ km s$^{-1}$ and the value of the effective radius $R_e = 3'' 18$ (as determined from a de Vaucouleurs profile) which corresponds to 0.96 kpc. Substituting these numbers into equation 4 we find that the predicted number of GCs for this galaxy $N_{\text{GCS,pred}} = 29 ± 2$ is significantly smaller than the number of GCs estimated from the observed bright end of the GCLF ($N_{\text{GCS,est}} = 507 ± 150$, details to follow), and is in fact even smaller than the number of detected GCCs ($N_{\text{GCC,obs}} = 191 ± 14$ or $N_{\text{GCC,es}} = 112 ± 11$ for sources with 95% completeness level). However, we note that the velocity dispersion value taken from SDSS appears to be rather low for a galaxy with this mass (see Table 2). In addition, we point out the unusually dense population of extra-galactic star clusters located to the south-west of 59B (panel (d) of Fig. 17), away from the visual center of the group and along the stellar stream that appears to connect galaxies A and B (Konstantopoulos et al. 2012). One of the possible explanations for this population of clusters is that they are possibility a remnant of a prior interaction between the A and B galaxies, approximately 1 Gyr ago (see Konstantopoulos et al. 2012 for further discussion).

At the cutoff magnitude of $M_V = 25.5$ and with the assumption of a GCLF turnover at -7.4 ± 0.2 mag and width $\sigma = 1.2 ± 0.2$ mag, we probe 14% ± 7% of the GCLF. Taking a completeness fraction as 0.95 ± 0.05 we estimate $N_{\text{GCS,pred}} = 3420 ± 1710$ and $S_N = 2.6 ± 1.3$. Although the $N_{\text{GCS,pred}}$ number is ~ 50% larger that one predicted by equation 4 it is still within reasonable uncertainties. Given the large number of GCCs in a luminous, central dominant group elliptical, it seems likely that 42A is the product of a gas-rich merger from several Gyr ago.

4.4 HCG 59

4.4.1 Star Cluster Candidates

According to Konstantopoulos et al. (2012), HCG 59 belongs to the Type III groups, with low H I content relative to its apparent dynamical mass. However, a number of young SCCs are found in this group, located in the smaller galaxies 59C and D (panels (f) and (g) of Fig. 12). The SCC population of the spiral 59C is somewhat small, with only 16 SCCs detected in the disc of the galaxy. These clusters span a range of ages between a few Myr and 1 Gyr, similar to clusters in the large irregular 59D. The difference between the SCC populations of those galaxies is that 59D has a larger population of clusters detected and there is also a number of very young clusters present (~ 1 Myr). Given that these two galaxies have approximately the same stellar mass (Table 2) we can compare their sSFRs and see that 59D is forming stars over 8 times more efficiently than 59C (sSFRs are 0.024 Gyr$^{-1}$ and 0.200 Gyr$^{-1}$ for 59C and 59D, respectively), which can be seen clearly in the colour-magnitude plots for each galaxy. The irregular galaxy 59D has a higher sSFR likely because of the larger amount of available cold gas. Star formation in 59D may also be enhanced dynamically because of its proximity to 59A.

4.4.2 Global Cluster Candidates

The majority of GCCs in HCG 59 are part of the globular cluster system of the elliptical galaxy 59B (IC 0736) (panels (d) and (g) of Fig. 17). Intriguingly, it appears that the GCC population is much richer than would be expected of a galaxy of its luminosity ($M_B = -18.5$; Sabater et al. 2012). We use the SDSS (York et al. 2005) values for the velocity dispersion, $\sigma = 99.9$ km s$^{-1}$ and the value of the effective radius $R_e = 3'' 18$ (as determined from a de Vaucouleurs profile) which corresponds to 0.96 kpc. Substituting these numbers into equation 4 we find that the predicted number of GCs for this galaxy $N_{\text{GCS,pred}} = 29 ± 2$ is significantly smaller than the number of GCs estimated from the observed bright end of the GCLF ($N_{\text{GCS,est}} = 507 ± 150$, details to follow), and is in fact even smaller than the number of detected GCCs ($N_{\text{GCC,obs}} = 191 ± 14$ or $N_{\text{GCC,es}} = 112 ± 11$ for sources with 95% completeness level). However, we note that the velocity dispersion value taken from SDSS appears to be rather low for a galaxy with this mass (see Table 2). In addition, we point out the unusually dense population of extra-galactic star clusters located to the south-west of 59B (panel (d) of Fig. 17), away from the visual center of the group and along the stellar stream that appears to connect galaxies A and B (Konstantopoulos et al. 2012). One of the possible explanations for this population of clusters is that they are possibility a remnant of a prior interaction between the A and B galaxies, approximately 1 Gyr ago (see Konstantopoulos et al. 2012 for further discussion).

At the cutoff magnitude of $M_V = 25.5$ and with the assumption of a GCLF turnover at -7.4 ± 0.2 mag and width $\sigma = 1.2 ± 0.2$ mag, we probe 22% ± 6% of the GCLF of galaxies in this group. Taking the completeness fraction as 0.95 ± 0.05 we estimate $N_{\text{GCS,pred}} = 86 ± 33$ and $S_N = 0.7 ± 0.3$ for 59A ($M_V = -20.1$;
Table 7. General properties of GCC systems in galaxies in our sample.

Galaxy	N_{GCC} (1)	N_{contam} (2)	N_{total} (3)	S_N (4)	S_{N}^{*} (5)
HCG 07A	62 ± 14	2 ± 1	226 ± 73	0.7 ± 0.2	
HCG 07BD	155 ± 22	2 ± 1	580 ± 150	2.5 ± 0.8	
HCG 07C	38 ± 6	2 ± 1	140 ± 39	0.6 ± 0.2	
HCG 31AC	19 ± 5	1 ± 1	67 ± 23	0.6 ± 0.2	
HCG 31B	10 ± 3	1 ± 1	35 ± 14	1.0 ± 0.4	
HCG 31G	8 ± 3	1 ± 1	28 ± 13	0.7 ± 0.3	
HCG 42A	465 ± 26	4 ± 2	3420 ± 1710	2.6 ± 1.3	
HCG 53	18 ± 5	1 ± 2	86 ± 33	0.7 ± 0.3	
HCG 59B	106 ± 11	1 ± 2	507 ± 150	8.7 ± 2.6	
HCG 59C	≤ 2	1 ± 2	< 10	0.1	
HCG 92BD	10 ± 4	5 ± 2	
HCG 92C	3 ± 1	4 ± 2	
HCG 92E	5 ± 3	2 ± 1	

Notes. Columns list: (1) galaxy id; (2) number of detected GCCs in the system’s extent. The GCCs presented here are all at or above the 90% completeness level in all three filters. Additionally, V-filter magnitude cutoffs were applied at 24.5 mag for HCG 92, 25.0 mag for HCG 42, and 25.5 mag for HCG 07, 31, and 59. The reasons for doing so are explained in Table 3. If the full system extent is not visible, detected numbers of GCCs are scaled to estimate the numbers of the full system extent. Foreground contamination is taken into account, i.e. subtracted from the number of detected GCCs; (3) estimated number of contamination sources from Besançon Milky Way stellar population model (Robin et al. 2003) in the direction of the group up to the distance of 100 kpc, with colours similar to MW GC colours and in the visible area of GC system extent; (4) estimated total number of GC population based on GC luminosity function; (5) specific frequency. * Because GCC extent of 59A overlap sources from 59D (which are, most likely, reddened young star clusters), the predicted number of GCCs for 59A galaxy was obtained by subtraction of 59D sources from all detected sources in that region. ** For HCG 59, the background contamination is much higher (4 ± 2), due to the close proximity of the Sagittarius dwarf galaxy (Kostantopoulos et al. 2012).

after removing clusters around the irregular 59D that are within the expected 59A GC system extent, but are most likely reddened young star clusters), and N_{total} = 507 ± 105 and S_N = 8.7 ± 2.6 for 59B (M_V = −19.4). For galaxy 59C, the number of detected GCCs from the 95% completeness sub catalogue, is on a par with the number of contaminating sources, N_{contam} ≤ 2. That gives us the upper limits for N_{total} < 10 and S_N < 0.1. We did not estimated N_{total} and S_N for 59D because the detected objects may well be reddened bluer objects, rather than GCCs.

Being the only elliptical with sufficient number of GCCs in this group, 59B was checked for bimodality in its metallicity distribution. The GMM statistical results do not support the idea of bimodality, rather, it would appear that the distribution is unimodal with a peak at [Fe/H] = −1.04 ± 0.05.

In all, the population of old clusters in HCG 59 is intriguing enough to warrant further study.

4.5 HCG 92

4.5.1 Star Cluster Candidates

HCG 92, which also known as Stephan’s Quintet and which classified as Type II in the proposed CG evolutionary sequence (Kostantopoulos et al. 2010), is a group of five galaxies (including the foreground interloper NGC 7320) with numerous signs of past and ongoing interactions. Another galaxy associated with the group, NGC 7320C, is not in the HST field-of-view. As a result, this group exhibits the largest number of detected star clusters in our sample. There are a number of interesting features singular to this group which are explored in depth in Fedotov et al. (2011). For example, we were able to detect star clusters in two tidal tails, the Old Tail (OT) and Young Tail (YT) (Fig. 13). Because tidal tails typically have low gas and dust content (M_V ⩽ 0.5 mag; e.g., Temporin et al. 2005), star clusters in tails usually suffer minimal reddening and their ages estimated from BVI colour-colour plots are more accurate than in galaxy discs. In our case, star clusters detected in these tails have compact distributions in the colour-colour plane, supporting the idea that SCCs within each tidal tail were formed coevally (Trancho et al. 2012), presumably during the interactions that caused the formation of those features. Thus, from overdensities of star clusters in colour-colour plots and supplemental information from the literature, we were able to estimate the ages for the young and old tidal tails to be 150–200 Myr and 400–500 Myr, respectively (Fedotov et al. 2011).

HCG 92 is an ideal system to study populations of star clusters forming outside of galaxies. In particular, there are two areas of extragalactic clusters labelled as the Northern Star Burst Region (NSBR) and the Southern Debris Region (SDR). The NSBR has a SCC population that spans a wide range of ages, from young SCCs of a few Myr to very old globular clusters of over 10 Gyr old. This region includes two intersecting tidal arcs, a byproduct of the interaction between 92B (NGC 7318B) and 92D (NGC 7318A). The young SCCs detected in the region were likely formed during that interaction. The presence of a significant number of intermediate-age SCCs (ranging from 100 to 500 Myr old) could be indicative of earlier interactions involving 92C (NGC 7319), NGC 7320C, and perhaps 92D (Moles et al. 1997; Xu et al. 1999). And finally, there are a few old star clusters likely deposited into that region through gravitational interactions between the galaxies.

Consideration of the SCC population of the Southern Debris Region, on the other hand, paints a bit different picture. To begin with, there are not as many very young (1 to 8 Myr) SCCs in that region. Also, there is a well-defined separation between two groups of SCCs in the colour-colour plane, one group consists of clusters that are approximately 10 to 100 Myr old (unfortunately, it is impossible to establish more precise ages based only on BVI photometry) and the second group, a collection of older star clusters ranging in age from 1 to 10 Gyr. Interestingly, there appears to be a concentration of clusters with ages between 6 and 8 Gyr. Since it is highly unlikely that a galaxy interaction would specifically launch into this extragalactic region star clusters of such a limited age range, we speculate that these clusters (with ages 6 to 8 Gyr) were formed together at some location, and the population of the younger SCCs is either the latest addition or a chance projection. We consider the former as more likely explanation, and as such, SDR could potentially be the remnants of a dwarf galaxy that used up its last reservoir of gas to form these younger population of clusters. However, there are a few reasons why this might not be true. For example, the SDR region appears to extend over a large area for a dwarf galaxy, and there is no detection of extended, diffuse light consistent with a dwarf galaxy.

The spiral galaxy 92C is the largest galaxy in the group. At the same time, it has no detectable H I (Sulentic et al. 2001), which most likely was stripped during previous interactions among the group members (Moles et al. 1998). Unless the galaxy manages to acquire more cold gas, the intermediate age (100 to 500 Myr) population of SCCs is likely the trace of the last epoch of star formation in that galaxy.

© 0000 RAS, MNRAS 000, 000–000
4.5.2 Globular Cluster Candidates

For the GCC population in SQ we focus on three regions (panel (c) of Fig. 18). One region is associated with the elliptical galaxy 92E (NGC 7317), another one with the spiral galaxy 92C (NGC 7319), and the last one with the interacting pair 92B and D (NGC 7318B and A). For the last system, we expect that a large fraction of GCCs belong to 92D: first, because it is an elliptical galaxy, and, secondly, it is more massive than the spiral 92B (Table 2). According to our estimates of the GCC system extent, the GCC systems of 92C and 92BD overlap. Moreover, the overlap adds virtually no GCCs to 92BD region, whereas the expected system extent of 92C adds an appreciable part of the eastern tidal feature of 92BD.

According to GMM statistics, the distribution of all GCCs in SQ has detectable bimodality (panel (b) of Fig. 18). However, the individual distributions for each galaxy/region do not have well defined bimodality, with the possible exception in the case of 92C. However, this galaxy does not have a large enough number of GCCs for statistically significant analysis. If we look at the unimodal peaks of −0.55 ± 0.12, −0.38 ± 0.08, and −0.63 ± 0.10, for the GCC systems in 92C, 92BD, and 92E, respectively, we notice that these values are a bit larger (less negative) compared to the average value of Galactic GCs, the bulk of which have metallicities around [Fe/H] = −1.3 (Murdin 2001).

4.6 Bimodality of GCC Population of Elliptical Galaxies

Above we discussed bimodality in the galaxies from our sample and the results are outlined in Table 7. We compare our results with those in the literature, in particular, the bimodality analysis in the sample of 92 elliptical galaxies in the Virgo cluster (Peng et al. 2006). The authors found a relationship between the GCs colour distribution modality and absolute magnitude of the host galaxy. According to their fig. 5, which plots the colour distributions of GCs in seven bins of host galaxy magnitude, for the luminous HCG 42A we expect a well-defined bimodality, whereas with the much lower luminosity of HCG 59B, only a weak bimodality is expected. Given that we observe only 22% ± 6% of the total GC population in that galaxy, it is not surprising that we cannot confirm bimodality of GC distribution. Thus, our findings compare well with the conclusions of Peng et al. (2006): HCG 42A has a well-defined bimodal distribution and the colour distribution of HCG 59B GCCs is unimodal. The question of the nature of colour distribution for HCG 92E is still open. The luminosity of HCG 92E, according to Peng et al. (2006), corresponds with a relatively well-defined bimodality. However, we currently do not possess the required number of GCCs to definitively answer that question. As it is, with the currently observed number of GCCs, HCG 92E has a unimodal distribution.

4.7 Star Cluster Populations in Compact Groups

Here, we relate the star cluster populations to the CG evolutionary sequence proposed by Konstantopoulos et al. (2010) (see their fig. 1). Upon inspection, the SCC populations of different group types have qualitative differences. Specifically, the population of HCG 31 (panel (d) of Fig. 13), classified as a Type I group (gas-rich and dynamically young), is distinguished by a large number of young and intermediate-aged SCs. Type II groups, represented in our sample by HCG 07 and 92 (panels (b) and (e), respectively), still have a large number of young and intermediate SCs; however, a population of > 500 Myr – 10 Gyr is also well defined. For compact groups of Type III, which predominantly consist of early type galaxies, we can observe the lack of young SCs, and a significant reduction in the numbers of intermediate-aged SCs (HCG 42, panel (f)). Initially, Johnson et al. (2007) classified HCG 59 (panel (c)) as Type II group. The recent work of Konstantopoulos et al. (2013) has associated five additional dwarf galaxies with that group. The updated information on velocity dispersion and H I mass led to a change of the HCG 59 from Type II to Type III. However, based on the observations outlined above, the SC population of HCG 59 would appear to be more consistent with that of Type II groups.

These discrepancies between type classification based on the SC populations and on the ratio of H I to dynamical mass point to the issue of accuracy in measurements of the dynamical masses. In particular, it is quite difficult to accurately measure a dynamical mass of a group given only a handful of radial velocities and the projected separations between galaxies (McConnachie et al. 2008). It may be more appropriate in this case to classify the groups based on the ratio of H I to total stellar mass, which can be much more reliably measured from near-to-mid infrared photometry (Desjardins et al. 2014).

4.8 Cluster Luminosity Function

Figure 7 shows the cluster luminosity functions (CLFs) for selected galaxies from our sample. To obtain statistically significant results, only galaxies with more than 40 SCCs were used. In each plot, the CLF is shown as a cumulative distribution function of the absolute magnitude, \(M_{V,006} \). The solid line represents the best-fitting slope of the distribution that was determined by the least squares fit over the range covered by the line. The chosen range was manually based on our assessment of the linear region of each CLF starting at the faint-end cutoff. The dashed line represents the best-fitting slope over a common range for all CLFs, from −9 mag to −10.75 mag. The slope is for a power-law distribution index \(\alpha \) from \(N(dL) \propto L^{-\alpha}dL \) as 2.5 × slope + 1. The overall range of the indices (from here on we are using slopes fitted to the custom ranges) for CG galaxies in our sample is from −2.13 to −3.24 (see Table 8 for all the numbers). Figure 3 represents a plot of the LF index as a function of Hubble T-type. For comparison, on the same figure, we overplot the data for 20 nearby star-forming spiral galaxies, which span Hubble T-types from 2 to 9, obtained from Whitmore et al. (2014). As can be seen, our results do not reproduce the shape of the LF index distribution of Whitmore et al. (2014). Moreover, it appears that no significant correlation between \(\alpha \) and \(T \) can be observed.

Overall, the CLF indices of spirals in our sample of galaxies are in reasonable agreement with the values reported in other works (e.g., Larsen et al. 2002, Whitmore et al. 2014, Kyon et al. 2014), except for a noticeable outlier 07C, which is a bit more negative than in Gieles et al. (2006). In addition, the galaxies in HCG 31 have very similar \(\alpha \)-values (−2.39 ± 0.04, −2.36 ± 0.05, and −2.38 ± 0.05, for galaxies 31AC, 31B, and 31G, respectively); the irregular 59D has a rather high negative \(\alpha \)-value of −2.82 ± 0.05. As in the case of 07A and 07C, recent (and on-going) star formation could be responsible for the steeper value of \(\alpha \) in 59D. A sustained star-formation episode could cause a build-up of clusters near the low-luminosity end of the luminosity function as old clusters fade with age.

Some CLFs for the galaxies in our sample exhibit a bend at the bright part of the distribution, with that part of the distribution being steeper, a trend that was also noticed in the aforementioned studies. Gieles et al. (2006) argues that the bend in the CLF corresponds to the upper mass limit in the cluster initial mass function. For exam-
Figure 6. Colour-colour plots of the SCC populations of the compact groups in our sample, arranged similarly to fig. 1 in Konstantopoulos et al. (2010). The solid black line trace the evolution of SSP models of $1.0 \ Z_{\odot}$ (Marigo et al. 2008). The dashed line to the left of the main evolutionary track represents a track that incorporates a model of nebular emission (Starburst99; Leitherer et al. 1999), common for young star clusters (e.g. Vacca & Conti 1992; Conti et al. 1996). The numbers on the track denote age represented in $\log(\text{age/yr})$. The upper panels represent groups with the H\textsc{i} gas contained within the member galaxies, whereas the lower panels represent groups with the H\textsc{i} gas stripped from the galaxies. These groups tend to have a rich intra-group medium. Although Konstantopoulos et al. (2013) have classified HCG 59 (panel c) as a Type III group based on its estimated dynamical mass, the SC population is more consistent with a Type II group. (A colour version of this figure is available in the online journal.)

4.9 Spatial Distribution of Globular Clusters in Elliptical Galaxies

For the three elliptical galaxies in our sample with significant GC systems (HCG 42A, 59B, and 92E), we examined the physical distribution of the globular clusters in those galaxies as a function of metallicity (Fig. 19). We divided the clusters in each system into three groups, based on their metallicity distribution plots (e.g., panel e of 19). Specifically, all clusters to the left of the “blue” peak are considered to be relatively metal-poor. Similarly, all clusters to the right of the “red” peak are considered relatively metal-rich. The clusters between the peaks are tagged as having an intermediate metallicity content. Thus, the metal-poor cluster have metallicities below -1.04, -1.05, and -0.93 for galaxies HCG 42A, 59B, and 92E, respectively. The metal-rich clusters have metallicities above 0.16, -0.43, and 0.09, for the same galaxies. Accordingly, the intermediate metallicity clusters in these galaxies have metallicities ranging between the values cited above. Then we plot the cumulative distribution of the clusters as a function of projected distance from the center of the galaxy. We find that 42A and 59B have
Figure 7. Cumulative luminosity functions of galaxies in our sample. For statistically significant results, only galaxies with more than 40 SCCs were used. The slopes were determined by a least squares fit over the range covered by the line. The solid line represents the best-fitting slope over the range that was chosen manually, whereas the dashed line represents the best-fitting slope over a common range for all CLFs, from -9 mag to -10.75 mag. The corresponding α values for each slope are displayed in the upper right corner of each panel. (A colour version of this figure is available in the online journal.)
Table 8. CLF indices for galaxies in our sample that have over 40 SCCs.

Galax/Region	N_{SCC}	Type	\(\alpha_1\)	\(\alpha_2\)	Magnitude range
HCG 07A	48	Sh	-2.65 \pm 0.06	-3.01 \pm 0.14	-9.00 \ldots -9.81
HCG 07C	135	Sb	-3.24 \pm 0.04	-3.47 \pm 0.11	-9.00 \ldots -9.96
HCG 07D	47	Sbc	-2.26 \pm 0.05	-2.70 \pm 0.14	-9.00 \ldots -9.91
HCG 31AC	138	Sdm + Im	-2.39 \pm 0.04	-2.46 \pm 0.06	-9.00 \ldots -10.28
HCG 31B	89	Sm	-2.36 \pm 0.05	-2.47 \pm 0.08	-9.00 \ldots -10.28
HCG 31G	76	Sbc	-2.38 \pm 0.05	-2.39 \pm 0.05	-9.00 \ldots -10.60
HCG 42A	246	E3	-2.31 \pm 0.04	-2.46 \pm 0.08	-9.00 \ldots -10.20
HCG 59B	73	E0	-2.13 \pm 0.02	-3.02 \pm 0.14	-9.00 \ldots -9.49
HCG 59D	75	Im	-2.82 \pm 0.05	-2.90 \pm 0.08	-9.00 \ldots -10.39
HCG 92BD	124	Sbc + E2	-2.38 \pm 0.05	-2.58 \pm 0.13	-9.00 \ldots -10.14
HCG 92C	79	Sbc	-2.54 \pm 0.05	-2.70 \pm 0.10	-9.00 \ldots -10.24
HCG 92E	57	E4	-2.73 \pm 0.07	-3.25 \pm 0.29	-9.00 \ldots -9.91
HCG 92NSBR	102	-	-2.20 \pm 0.01	-3.32 \pm 0.17	-9.00 \ldots -9.34

Notes. Types of galaxies are taken from Hickson et al.

(1989). Region 92NSBR represent a collection of intergroup clusters and as such does not have a morphological type. Magnitude range column specifies the range over which the slope was fitted.

Figure 8. Plot of CLF index \(\alpha\) as a function of Hubble type (T). Red circles represent indices based on fitting custom ranges of CLFs, and blue squares represent indices based on fitting custom ranges of CLFs, and blue squares represent indices of common range fittings. In all cases, extending the fitting range makes the indices more negative. Green triangles are the indices obtained from Whitmore et al. (2014), who studied a sample of 20 nearby star-forming spiral galaxies and found a correlation between \(\alpha\) and T, for T ranging from 2 to 9. Based on our sample, it appears that no significant correlation between \(\alpha\) and T can be observed. Out of 11 data points in this plot, 1 point does not represent a galaxy itself but rather a pair of close interacting galaxies: 31AC – a combination of spiral and irregular galaxies. Because their Hubble type is very close in value (for 31A T = 8.9 \pm 0.9, for 31C T = 10 \pm 2), for the T value of 31AC we adopted the value of 9.45 \pm 2.15. For another interacting pair, 92BD – a close pair of a spiral and an elliptical, the morphological types are very different and the “average” value would not be meaningful. For this reason, we do not include this data point in our plot. The morphological types are taken from HyperLeda. (A colour version of this figure is available in the online journal.)

Figure 8. Plot of CLF index \(\alpha\) as a function of Hubble type (T). Red circles represent indices based on fitting custom ranges of CLFs, and blue squares represent indices of common range fittings. In all cases, extending the fitting range makes the indices more negative. Green triangles are the indices obtained from Whitmore et al. (2014), who studied a sample of 20 nearby star-forming spiral galaxies and found a correlation between \(\alpha\) and T, for T ranging from 2 to 9. Based on our sample, it appears that no significant correlation between \(\alpha\) and T can be observed. Out of 11 data points in this plot, 1 point does not represent a galaxy itself but rather a pair of close interacting galaxies: 31AC – a combination of spiral and irregular galaxies. Because their Hubble type is very close in value (for 31A T = 8.9 \pm 0.9, for 31C T = 10 \pm 2), for the T value of 31AC we adopted the value of 9.45 \pm 2.15. For another interacting pair, 92BD – a close pair of a spiral and an elliptical, the morphological types are very different and the “average” value would not be meaningful. For this reason, we do not include this data point in our plot. The morphological types are taken from HyperLeda. (A colour version of this figure is available in the online journal.)

5 CONCLUSIONS

We present a catalogue of star clusters detected in five compact galaxy groups (HCG 07, 31, 42, 59, and 92), based on sensitive, high-resolution multi-colour images from the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3 (in the case of HCG 92) with the goal of examining the properties of the star cluster systems of compact group galaxies overall and further assisting researchers in star cluster-related studies. Altogether, the catalogue consists of 18,292 objects. After applying a number of criteria, we left with 1963 star cluster candidates and 1505 globular cluster candidates detected in 16 galaxies in the high confidence samples. A sample of the photometric data from this catalogue is presented in the electronic Table.

In particular, a detailed examination of our catalogue revealed the following:

more metal-rich clusters concentrated closer to their galaxy centres, clusters with intermediate metal content are distributed throughout the galaxies, and metal-poor clusters tend to have higher concentrations in the outer regions of the galaxies.

A Kolmogorov-Smirnov (KS) statistical test was used to determine if the cumulative radial distributions of the different metallicity clusters are consistent with each other. The results showed that the \(p\)-value for comparing the low and high metallicity distributions in 42A was \(\sim 10^{-4}\), which allows us to reject the null hypothesis (that they are drawn from the same parent population) with \(> 99.9\%\) confidence. Similarly, \(p = 4 \times 10^{-4}\) for the rich and poor clusters of 59B, and so their radial distributions are also significantly different. For galaxy 92E the \(p\)-values for all combinations of distributions are not rejecting the null hypothesis. From the lower panel of Fig. 19 it appears that the GCs of different metallicities are mixed throughout the galaxy. However, we have to note that the statistics of small numbers might be at play here. The way we split the GC population into three groups with the different metallicity content leaves the the metal-rich population of 92E with only 7 GCs with \(\text{Fe/H} = -0.63\) (panel (i), fig. 18). The KS test does not reject the null hypothesis, and so it would appear that GCs do not have a preferential distribution based on their metallicities. One of the possible explanations for this apparently well-mixed distribution would be a dry merger between two galaxies of similar mass. An examination of the unsharp-masked image of 92E to look for signs of recent interaction such as shells or streams did not reveal any such features.
Table 9. A sample table of the \(BV{I}\) catalogue for star clusters in Hickson compact groups. The full catalogue is available online.

RA	Dec	B	V	I	X1	S1	S2	S3	S4	G1	G2	G3	G4	SCC	GCC	[Fe/H]	HCG							
deg	deg	mag	err	sharp	mag	err	mag	err	sharp	mag	err	mag	err											
338.9945	33.936701	28.921	-0.902	-0.122	27.844	0.203	-0.67	26.716	0.107	0.143	1.35	0	0	1	1	0	1	1	0	-	-	0.1232	92	
339.04281	33.936755	25.844	0.057	0.112	25.462	0.048	0.224	24.997	0.055	0.218	1.784	1	1	1	1	1	1	1	0	yes	-	3.441	92	
339.02544	33.936792	26.918	0.1	0.111	26.642	0.123	-0.615	26.429	0.183	-0.408	2.811	0	1	1	0	1	1	1	0	-	-	4.389	92	
338.96391	33.94628	27.076	0.13	-0.348	25.919	0.062	-0.079	25.111	0.054	0.075	1.606	0	1	1	1	1	1	1	1	-	yes	-0.499	92	
339.97734	33.937033	26.963	0.116	0.033	26.369	0.075	-0.046	25.716	0.158	0.122	3.819	0	1	1	0	1	1	1	1	-	-	2.539	92	
339.0115	33.937167	28.511	0.365	0.652	27.192	0.105	-0.22	27.058	0.208	-0.034	2.137	0	1	1	1	1	1	1	1	0	-	-	1.840	92
339.03372	33.937201	28.687	0.388	-1.17	26.171	0.075	0.168	26.308	0.128	0.439	2.171	0	0	1	0	1	1	1	0	-	-	0.5495	92	
339.95818	33.937251	27.208	0.144	-0.517	26.064	0.066	-0.137	25.33	0.074	-0.072	2.078	0	1	1	1	1	1	1	1	-	yes	-0.725	92	
339.00239	33.937371	26.475	0.063	0.313	25.395	0.057	0.369	24.446	0.063	0.386	2.433	1	1	1	1	1	1	1	1	yes	yes	-0.332	92	
339.96115	33.937472	25.62	0.046	0.182	24.629	0.026	-0.035	23.766	0.042	0.19	1.955	1	1	1	1	1	1	1	0	yes	-0.710	92		
339.02347	33.937476	28.012	0.228	-1.068	26.94	0.093	0.051	25.747	0.102	0.029	2.27	0	0	1	1	0	1	1	1	yes	-0.278	92		
339.99922	33.937483	27.763	0.155	0.289	25.791	0.051	0.236	24.743	0.064	0.337	2.284	0	1	1	0	1	1	1	0	-	-	2.2147	92	

Notes. Columns list: (1) Right Ascension (J2000); (2) Declination (J2000); (3)—(5) Magnitude, error in magnitude, and sharpness values for B-band (F435W; F450W for HCG 52); (6)—(8) Magnitude, error in magnitude, and sharpness values for V-band (F606W); (9)—(11) Magnitude, error in magnitude, and sharpness values for I-band (F814W); (12) Goodness of fit factor \(\chi^2\) from PSF-fitting in I-band; (13)—(17) Star cluster candidates selection criteria, see Section 3.4 for full description. 1 means that a given criterion is satisfied; (18)—(20) Globular cluster candidate selection criteria, see Section 3.4 for full description. 1 means that given criterion is satisfied; (21) Star cluster candidate flag. If ‘yes’, all SCC criteria are satisfied; (22) Globular cluster candidate flag. If ‘yes’, all GCC criteria are satisfied; (23) Metallicity value derived from \(B - I\) color, see Section 4 for more details; (24) Hickson Compact group number.

- Star clusters are powerful tracers of episodes of star formation activity. Careful study of the distribution of cluster colours can lead to a better understanding of the evolutionary state of their hosts and can help to constrain (and in some cases to reconstruct) the sequence of events in the host groups (e.g. Gallagher et al. 2010; Konstantopoulos et al. 2010; Fedotov et al. 2011; Konstantopoulos et al. 2012, 2013). Thus, the analysis of star cluster populations in CGs allowed us to propose a reclassification of HCG 59 from a Type III to a Type II group. Most galaxies in Type III groups appear to be ‘red’ and ‘dead’ (e.g., HCG 42). However, the galaxy morphologies of HCG 59 do not comply with that statement. Moreover, its ‘red’ and ‘dead’ (e.g., HCG 42). However, the galaxy morphologies of HCG 59 do not comply with that statement. Moreover, its

- In general, the cluster luminosity functions of the CG spiral galaxies were consistent with spirals studied in the literature (e.g. Larsen 2002; Whitmore et al. 2014). In particular, their CLF \(\alpha\)-values ranged from \(-2.26 \pm 0.05\) to \(-2.54 \pm 0.05\). A notable exception were the large negative \(\alpha\)-values for the spirals of galaxies with a similar mass could explain this last observation. However, the characteristic features for such a merger (such as shells and streams) are not detected.

- We have examined the metallicity distributions of GCs in the five groups overall and individually in the elliptical galaxies (nominally elliptical 07BD and 92BD, 42A, 59B, 92C, and 92E) with sufficient numbers of GCs. Only in galaxy 42A do we detect a metallicity distribution with well-defined bimodality peaking at \([\text{Fe/H}] = -1.04 \pm 0.07\) and \([\text{Fe/H}] = -0.16 \pm 0.15\). The galaxy 92C may also host a bimodal distribution, but the statistical results were not conclusive.

- The number of GCs in each galaxy is proportional to the total stellar masses of galaxies (Fig. 3). Notably, we detect a rather large number of GCs in 59B (and its immediate environs) and a small number of GCs in 59A. It is possible that these two galaxies have interacted before given their morphologies (59B is elliptical, 59A is lenticular) and apparent proximity; the GC population distribution may be the only record of that interaction. A low surface brightness stream of material between galaxies 59A and B, reported in Konstantopoulos et al. 2013, as well as their line-of-sight velocities
ACKNOWLEDGEMENTS

K.F. and S.C.G. thank the Natural Sciences and Engineering Research Council of Canada and the Ontario Early Researcher Award Program for support. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Additional support for this work was provided by NASA through grant No. HST-GO-10787.15-A from the Space Telescope Science Institute which is operated by AURA, Inc., under NASA contract NAS 5-26555. We thank Alan McConnachie, John Blakeslee, Pat Côte, and Ruben Sanchez-Janssen for illuminating discussions on the properties of GCs and Peter Stetson for sharing his insight in aperture and PSF photometries. We also thank Theodoros Bitsakis, the referee for this paper, for the supportive encouragement of our work and for suggestions that improved the manuscript. We thank Robert Corless, Gretchen Harris, John Landstreet, and Aaron Sigut for a careful read of the manuscript and their valuable suggestions.

Facilities: HST
Figure 9. Colour-colour plots of all the star cluster candidates in HCG 07 (a), including clusters located in the intra-group medium. The thin solid line, solid line, and dashed line trace the evolution of SSP models of $[0.2, 1.0, 2.0] Z\odot$ (Marigo et al. 2008). The thin dashed line to the left of the main evolutionary track represents a track that incorporates a model of nebular emission (Starburst99; Leitherer et al. 1999), common for young star clusters (e.g. Vacca & Conti 1992; Conti et al. 1996). The numbers on the track denote age represented in $\log(\text{age/yr})$. In the upper left corner one can find a reddening vector with length equivalent to $V_{606} = 1$ mag. The number of star cluster candidates detected in this group is marked in the lower left corner. A typical photometric error bar, based on the median errors, is located in the lower right corner. A colour bar that represents the absolute magnitude of SCCs is given on the right. For ease of reading the plot, the sizes of SCCs in the plot are linearly proportional to their magnitude: the larger the dot, the brighter the SC. All SCCs on this and following plots have absolute magnitude ≤ -9 mag. This figure is continued on the next page. (A colour version of this figure is available in the online journal.)
Figure 9. Figure continued from the previous page. Panels (b) and (c) are inverted V_{606} images which show the star cluster system extent of each galaxy as defined by a brightness contour in V_{606} of $\sim 1.25 \sigma$ above the background level. Here and in subsequent plots, a compass indicates North (with an arrowhead) and East (without the arrowhead). Panels (d)–(g) are BVI colour-colour plots for individual galaxies and regions in the group. The large spiral HCG 7C hosts the greatest number of young clusters, while the quiescent elliptical HCG 7B has only globular clusters. (A colour version of this figure is available in the online journal.)
Figure 10. A colour-colour plot of all the star cluster candidates in HCG 31 (a), including clusters located in intra-group medium. Symbols are as in Fig. 9. (A colour version of this figure is available in the online journal.)
Figure 10. Figure continued from the previous page. Image (b) is the inverted \(V_{606} \) image which shows the SCC system extent as defined by a brightness contour of \(\sim 1.25\sigma \) in \(V_{606} \) above the background level. Panels (c)–(f) are colour-colour plots for particular galaxies and regions in the HCG 31 group. All galaxies (31AC, B, and G) and tidal regions (31E and F) in this group host young clusters; the entire system is suffused with star formation triggered by strong, recent galaxy interactions. (A colour version of this figure is available in the online journal.)
Figure 10. . . . Figure continued from the previous page. A colour-colour plot for the galaxy G. (A colour version of this figure is available in the online journal.)
Figure 11. A colour-colour plot of all star clusters candidates in the ACS image of HCG 42 (a), including clusters in intergroup medium, and subplot for a particular galaxy in that group (b), continued on the next page. For more details see caption for Fig. 9. (A colour version of this figure is available in the online journal.)
Figure 11. Figure continued from the previous page. Panel (b) is the inverted V_{606} image which shows the SCC system extent as defined by the V_{606} brightness contour of $\sim 1.25\sigma$ above the background level. Panel (c) is a colour-colour plot for the luminous elliptical 42A. In this colour-space, all of the clusters are consistent with being old globular clusters. (A colour version of this figure is available in the online journal.)
Figure 12. A colour-colour plot of all star clusters candidates in HCG 59 (a), including clusters in the intergroup medium, and subplots for particular galaxies in that group (c)–(f), continued on the next page. For more details see caption for Fig. 9. (A colour version of this figure is available in the online journal.)
Figure 12. . . . figure continued from the previous page. Panels (b) and (c) are inverted V_{606} images which show the SCC system extent as defined by a V_{606} brightness contour of $\sim 1.25\sigma$ above the background level. Panels (c)–(f) are colour-colour plots for individual galaxies in the HCG 59 group. The large irregular 59D has a large population of young clusters. 59A hosts both old and intermediate-aged clusters, while the elliptical 59B has only a globular cluster population. (A colour version of this figure is available in the online journal.)
Figure 13. A colour-colour plot of all SCCs in HCG 92 (a), including clusters in the intergroup medium, and subplots for particular galaxies in that group (c)–(f) and (h)–(i), continued on the next pages. For more details see the caption for Fig. 9. (A colour version of this figure is available in the online journal.)
Figure 13. Figure continued from the previous page. Panel (b) is the inverted V_{606} image which shows the SCC system extent as defined by the V_{606} brightness contour of $\sim 1.25\sigma$ above the background level. (The foreground galaxy 92A is outlined in yellow.) Panels (c)–(f) are colour-colour plots for particular galaxies and regions in the HCG 92 group. 92BD has a population of young clusters whose formation was triggered by the collision of 92B with the cold intra-group medium. 92C shows evidence for truncated star formation, with an intermediate ($> 100\,\text{Myr}$) to old SC population. The Old Tail (OT) and Young Tail (YT) tidal features show a small populations of star clusters with well-defined colours, tracers of short bursts of star formation in these features. The 8-shape objects observed in the panel (b), also in panel (c) in Fig. 13, are ghost images caused by reflections off the CCD and return reflections from the CCD housing entrance window in WFC3. (A colour version of this figure is available in the online journal.)
Figure 13. . . Figure continued from the previous page. Panels (g)–(i) are colour-colour plots for particular galaxies and regions in the HCG 92 group. The Northern Starburst Region (NSBR) shows the largest concentration of young clusters within the whole group, the Southern Debris Region (SDR) has a slightly older population of star clusters, and the elliptical 92D has primarily old clusters as expected. (A colour version of this figure is available in the online journal.)
Figure 14. A colour-colour diagram of all detected GCCs in HCG 07 (a), including clusters located in the IGrM, and their metallicity distribution (b). The selection parallelogram in (a) is based on the colours of Milky Way Globular Clusters (Harris 1996). The number of GCCs in the lower left corner is the number of clusters that are located inside the selection parallelogram or that overlap the selection region with their 1σ error bars. The thin solid line, solid line, and dashed line trace the evolution of SSP models of $[0.2, 1.0, 2.0] Z\odot$ (Marigo et al. 2008). The numbers on the track denote age represented in log(age/yr). Note that the measured quantity for the panel (b), and for the rest of the plots of the same nature, is the colour index $B - I$. It was converted to Fe/H values according to prescription in Harris et al. (2013) and further analysis were carried out with those Fe/H values. Figure continued on the next page. (A colour version of this figure is available in the online journal.)
Figure 14. Panels (c) and (d) are inverted V_{606} images which show the GCC system extent, with locations of GCCs overplotted as circles. GCCs found in the central regions and spiral arms of galaxies A and C could potentially be reddened young star clusters. Panels (e) and (g) are colour-colour plots for particular galaxies in the group. The systems of 7B and D are considered together because of the projected overlap of their expected GC system extents. Their metallicity distribution is consistent with a single-peaked Gaussian. (A colour version of this figure is available in the online journal.)
Figure 15. The GCC population of HCG 31 (a) and its metallicity distribution (b). For more details see caption for Fig. 14. Given the high rate of star formation in this group, the low masses of the individual galaxies, and the spatial distribution of GCCs, it is reasonable to assume that the majority of the star clusters labelled as GCCs are in fact reddened young clusters. Therefore, the metallicity distribution plot (b) should be considered with caution. (A colour version of this figure is available in the online journal.)
Panel (c) is an inverted V_{606} image which shows the GCC system extent, with locations of GCCs overplotted as circles. Panels (d)–(f) are colour-colour plots for particular galaxies/regions in that group. Most likely, the majority of the small population of GCCs are reddened young clusters. (A colour version of this figure is available in the online journal.)
Figure 16. The GCCc population of HCG 42 (a) and its metallicity distribution (b). For more details see caption for Fig. 14. (A colour version of this figure is available in the online journal.)
Figure 16. . . Panel (c) is an inverted V_{606} images which show the GCC system extent, with locations of detected GCCs overplotted as circles. Panel (d) is a colour-colour plot for galaxy HCG 42A. A slight overdensity of GCCs close to the left upper corner corresponds to the location of a dwarf galaxy, a member of HCG 42. Panel (e) is a plot of the metallicity distribution of GCCs in HCG 42A. The GMM results favour a bimodal distribution with the first peak at $[\text{Fe/H}] = -1.04 \pm 0.07$ and the second peak at $[\text{Fe/H}] = 0.16 \pm 0.15$. (A colour version of this figure is available in the online journal.)
Figure 17. The GCC population of HCG 59 (a) and its metallicity distribution (b). See caption for Fig. 14. (A colour version of this figure is available in the online journal.)
Panels (c) and (d) are inverted V_{606} images which show the GCC system extent, with locations of detected GCCs overplotted as circles. Panels (e)–(g) are colour-colour plots for particular galaxies in that group. Panel (h) represent metallicity distribution of the large population of GCCs in HCG 59B. The GMM results are inconclusive, and a single-peaked distribution is consistent with the data. (A colour version of this figure is available in the online journal.)
Figure 18. The GCCs population of HCG 92 (a) and its metallicity distribution (b). See caption for Fig. 14. (A colour version of this figure is available in the online journal.)
Figure 18. Panel (c) is the inverted V_{606} image which shows the GCC system extents, with locations of detected GCCs overplotted as circles. Panels (d) and (f) are colour-colour plots for particular galaxies and regions HCG 92. NGC 7319 (HCG 92C) is a face-on spiral and the GCC located in the central region, as well as in the spiral arms, could potentially be reddened young star clusters. The BD region contains the elliptical galaxy NGC 7318A (HCG 92D) and the spiral galaxy NGC 7318B (HCG 92B) in a field of debris, material left from current and previous interactions. Thus, it is likely that GCCs in the BD region are heavily contaminated by reddened young star clusters. Subfigures (e) and (g) are the metallicity distributions for C and BD, respectively. (A colour version of this figure is available in the online journal.)
Figure 18. . . Panel (h) is a colour-colour plot for galaxy E and panel (i) is a plot of its metallicity distribution. (A colour version of this figure is available in the online journal.)
Figure 19. Cumulative function of radial distribution of clusters with different metallicities for galaxies HCG 42A, HCG 59B, and HCG 92E (top, middle, and bottom panels, respectively). The KS-test has shown that metal rich and metal poor populations of 42A and 59B are drawn from different distributions (with confidence of > 99%). The GC populations in 92E appear to be well mixed throughout the galaxy. (A colour version of this figure is available in the online journal.)
REFERENCES

Ashman, K. M., & Zepf, S. E. 1998, Globular Cluster Systems (Cambridge, U. K.; New York: Cambridge University Press)

Barmby, P., Huchra, J. P., Brodie, J. P., Forbes, D. A., Schroder, L. L., & Grillmair, C. J. 2000, The Astronomical Journal, 119, 727

Barmby, P., Kuntz, K. D., Huchra, J. P., & Brodie, J. P. 2006, The Astronomical Journal, 132, 883

Barton Gillespie, E., Geller, M. J., & Kenyon, S. J. 2003, The Astrophysical Journal, 582, 668

Bastian, N., Gieles, M., Lamers, H. J. G. L. M., Scheepmaker, R. A., & de Grijs, R. 2005, Astronomy and Astrophysics, 431, 905

Bitsakis, T., Charmandaris, V., Appleton, P. N., Díaz-Santos, T., Le Floc’h, E., da Cunha, E., Alatalo, K., & Cluver, M. 2014, Astronomy and Astrophysics, 565, A25

Bitsakis, T., Charmandaris, V., da Cunha, E., Díaz-Santos, T., Le Floc’h, E., & Magdis, G. 2011, Astronomy and Astrophysics, 533, A142

Blakeslee, J. P., Cho, H., Peng, E. W., Ferrarese, L., Jordán, A., & Martel, A. R. 2012, The Astrophysical Journal, 746, 88

Bressert, E., et al. 2010, Monthly Notice of the Royal Astronomical Society, 409, L54

Carrasco, E. R., Mendes de Oliveira, C., & Infante, L. 2006, The Astronomical Journal, 132, 1796

Chandar, R., Whitmore, B., & Lee, M. G. 2004, The Astrophysical Journal, 611, 220

Conti, P. S., Leitherer, C., & Vacca, W. D. 1996, The Astrophysical Journal, 461, L87+

de Vaucouleurs, G., de Vaucouleurs, A., Corwin, Jr., H. G., Buta, R. J., Paturel, G., & Fouqué, P. 1991, Third Reference Catalogue of Bright Galaxies. Volume I: Explanations and references. Volume II: Data for galaxies between 0h and 12h. Volume III: Data for galaxies between 12h and 24h. (Springer)

Desjardins, T. D., et al. 2014, The Astrophysical Journal, 790, 132

Fedotov, K., Gallagher, S. C., Konstantopoulos, I. S., Chandar, R., Bastian, N., Charlton, J. C., Whitmore, B. C., & Trancho, G. 2011, The Astronomical Journal, 142, 42

Gallagher, S. C., Charlton, J. C., Hunsberger, S. D., Zaritsky, D., & Whitmore, B. C. 2001, The Astronomical Journal, 122, 163

Gallagher, S. C., et al. 2010, The Astronomical Journal, 139, 545

Gieles, M., Larsen, S. S., Bastian, N., & Stein, I. T. 2006, Astronomy and Astrophysics, 450, 129

Goudfrooij, P., Strader, J., Brenneman, L., Kissler-Patig, M., Minniti, D., & Edwin Huizinga, J. 2003, Monthly Notice of the Royal Astronomical Society, 343, 665

Harris, W. E. 1996, The Astronomical Journal, 112, 1487

Harris, W. E. 2001, in Saas-Fee Advanced Course 28: Star Clusters, ed. L. Lablardi & B. Binggeli, 223 —. 2009, The Astrophysical Journal, 699, 254

Harris, W. E., Harris, G. L. H., & Alesi, M. 2013, The Astrophysical Journal, 772, 82

Harris, W. E., Whitmore, B. C., Karakla, D., Oko, W., Baum, W. A., Hanes, D. A., & Kavellaars, J. J. 2006, The Astrophysical Journal, 636, 90

Hickson, P. 1982, The Astrophysical Journal, 255, 382

Hickson, P., Kindl, E., & Auman, J. 1989, The Astrophysical Journal Supplement Series, 70, 687

Hickson, P., Mendes de Oliveira, C., Huchra, J. P., & Palumbo, G. 1992, The Physical Journal, 399, 353

Johnson, K. E., Hibbard, J. E., Gallagher, S. C., Charlton, J. C., Hornschemeier, A. E., Jarrett, T. H., & Reines, A. E. 2007, Astronomy, J., 134, 1522

Jones, L. R., Ponman, T. J., Horton, A., Babul, A., Ebeling, H., & Burke, D. J. 2003, Monthly Notice of the Royal Astronomical Society, 343, 627

Kennicutt, Jr., R. C., Roettinger, K. A., Keel, W. C., van der Hulst, J. M., & Hummel, E. 1987, The Astronomical Journal, 93, 1011

Konstantopoulos, I. S., et al. 2010, The Astrophysical Journal, 723, 197 —. 2012, The Astrophysical Journal, 745, 30 —. 2013, The Astrophysical Journal, 770, 114

Kundu, A., & Whitmore, B. C. 2001, The Astronomical Journal, 122, 1251

Lada, C. J., & Lada, E. A. 2003, Annual Review of Astronomy and Astrophysics, 41, 57

Larsen, S. S. 2002, The Astronomical Journal, 124, 1393

Larsen, S. S. 2004, Astronomy and Astrophysics, 416, 537

Leitherer, C., et al. 1999, The Astrophysical Journal Supplement Series, 123, 3

Makarov, D., Prugniel, P., Terekhova, N., Courtois, H., & Vauglin, I. 2014, A&A, 570, A13

Marigo, P., Girardi, L., Bressan, A., Groenewegen, M. A. T., Silva, L., & Granato, G. L. 2008, Astronomy and Astrophysics, 482, 883

McConnachie, A. W., Ellison, S. L., & Patton, D. R. 2008, Monthly Notice of the Royal Astronomical Society, 387, 1281

Mendes de Oliveira, C. L., Temporin, S., Cyprianos, E. S., Planas, H., Amram, P., Sodré, Jr., L., & Balkowski, C. 2006, The Astronomical Journal, 132, 570

Mihos, J. C., & Hernquist, L. 1996, The Astrophysical Journal, 464, 641

Misgeld, I., & Hilker, M. 2011, Monthly Notice of the Royal Astronomical Society, 414, 3699

Moles, M., Marquez, I., & Sulentic, J. W. 1998, Astronomy & Astrophysics, 334, 8

Moles, M., Sulentic, J. W., & Márquez, I. 1997, The Astrophysical Journal, 485, L69

Mould, J. R., et al. 2000, The Astrophysical Journal, 529, 786

Muratov, A. L., & Gnedin, O. Y. 2010, The Astrophysical Journal, 718, 1266

Murdin, P. 2001, Encyclopedia of astronomy and astrophysics (Bristol: Nature Publishing)

Nishiura, S., Shimada, M., Ohyama, Y., Murayama, T., & Taniguchi, Y. 2000, The Astronomical Journal, 120, 1691

Peng, E. W., et al. 2006, The Astrophysical Journal, 639, 95

Rejkuba, M., Greggio, L., Harris, W. E., Harris, G. L. H., & Peng, E. W. 2005, Astrophys. J., 631, 262

Rhode, K. L., Zepf, S. E., Kundu, A., & Larner, A. N. 2007, The Astronomical Journal, 134, 1403

Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, Astronomy and Astrophysics, 409, 523

Ryon, J. E., et al. 2014, The Astronomical Journal, 148, 33

Sabater, J., Verdes-Montenegro, L., Leon, S., Best, P., & Sulentic, J. 2012, Astronomy and Astrophysics, 545, A15

Scheepmaker, R. A., Haas, M. R., Gieles, M., Bastian, N., Larsen, S. r., & Lamers, H. J. G. L. M. 2007, Astronomy and Astrophysics, 469, 925

Schlafly, E. F., & Finkbeiner, D. P. 2011, The Astrophysical Journal, 737, 103

Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, The Astro-
Sirianni, M., et al. 2005, Publications of the Astronomical Society of the Pacific, 117, 1049
Springel, V., Di Matteo, T., & Hernquist, L. 2005, Monthly Notices of the Royal Astronomical Society, 361, 776
Stetson, P. B. 1987, Publications of the Astronomical Society of the Pacific, 99, 191
Sulentic, J. W., Rosado, M., Dultzin-Hacyan, D., Verdes-Montenegro, L., Trinchieri, G., Xu, C. K., & Pietsch, W. 2001, The Astronomical Journal, 122, 2993
Temporin, S., Staveley-Smith, L., & Kerber, F. 2005, Monthly Notice of the Royal Astronomical Society, 356, 343
Trancho, G., Konstantopoulos, I. S., Bastian, N., Fedotov, K., Gallagher, S., Mullan, B., & Charlton, J. C. 2012, The Astrophysical Journal, 748, 102
Tzanavaris, P., et al. 2010, The Astrophysical Journal, 716, 556
Vacca, W. D., & Conti, P. S. 1992, The Astrophysical Journal, 401, 543
VanDalfsen, M. L., & Harris, W. E. 2004, The Astronomical Journal, 127, 368
Verdes-Montenegro, L., Yun, M. S., Williams, B. A., Huchtmeier, W. K., Del Olmo, A., & Perea, J. 2001, Astron. Astrophys., 377, 812
Whitmore, B. C., Chandar, R., Bowers, A. S., Larsen, S., Lindsay, K., Ansari, A., & Evans, J. 2014, The Astronomical Journal, 147, 78
Whitmore, B. C., & Zhang, Q. 2002, The Astronomical Journal, 124, 1418
Whitmore, B. C., Zhang, Q., Leitherer, C., Fall, S. M., Schweizer, F., & Miller, B. W. 1999, The Astronomical Journal, 118, 1551
Wilson, C. D., Harris, W. E., Longden, R., & Scoville, N. Z. 2006, The Astrophysical Journal, 641, 763
Xu, C. K., Sulentic, J. W., & Tuffs, R. 1999, The Astrophysical Journal, 512, 178
York, D. G., et al. 2005, in IAU Colloq. 199: Probing Galaxies through Quasar Absorption Lines, ed. P. Williams, C.-G. Shu, & B. Menard, 58–64