SNP 1772 C > T of HIF-1α gene associates with breast cancer risk in a Taiwanese population

Chih-Jen Huang1,2†, Shi-Long Lian1,2†, Ming-Feng Hou3,4,5, Chee-Yin Chai6,7,8, Yi-Hsing Yang9, Sheng-Fung Lin10*, and Hsueh-Wei Chang5,11,12,13*

Abstract

Background: Hypoxia inducible factor 1α (HIF-1α) is a stress-responsive transcription factor to hypoxia and its expression is correlated to tumor progression and angiogenesis. Several single nucleotide polymorphisms (SNPs) of HIF-1α gene in the oxygen-dependent degradation (ODD) domain was reportedly associated with increased HIF-1α activity.

Results: In this study, we focused on the relationship between SNP 1772 C > T (rs11549465) of HIF-1α gene and its breast cancer risk, as well as its correlation with HIF-1α expression and tumor angiogenesis. Ninety six breast cancer patients and 120 age-matched controls were enrolled. We found that 1772 T allele of HIF-1α gene was associated with increased breast cancer risk (adjusted OR = 14.51; 95% CI: 6.74-31.24). This SNP was not associated with clinicopathologic features of angiogenesis such as VEGF activity and the micro-vessel density and survival of breast cancer patients.

Conclusion: Taken together, the 1772 C > T of HIF-1α gene is a potential biomarker for breast cancer susceptibility.

Keywords: HIF-1α, SNPs, Breast cancer, Association study, Survival

Background

Single nucleotide polymorphisms (SNPs), the most common variants in human genome [1], are popular biomarkers for disease/cancer prediction and therapeutic evaluation [2-8]. Most SNPs have been reported to be associated with breast cancer [9-11], however, other SNPs are still potential to be associated with breast cancer.

Tumor hypoxia is common in tumorigenesis. Hypoxia inducible factor-1 (HIF-1) is a crucial transcription factor in cellular response to tumor hypoxia and is considered as an adverse prognostic factor in breast cancers [12-14]. Additionally, the HIF-1α isoform is the oxygen-regulated component that controls HIF-1 activity [15]. The degradation of HIF-1α depends on prolyl hydroxylation. Under normoxic status, oxygen-dependent prolyl hydroxylases [16,17] may hydroxylate the HIF-1α on proline residues 402 and 564 located in the oxygen-sensitive degradation domain (ODD, encoded by codons 401–603) of HIF-1α. In contrast, degradation of HIF-1α is suppressed under hypoxic status. Therefore, the SNPs located at several proline residues of HIF-1α gene in breast cancer association are potential to modulate the HIF-1α activity.

Recent studies demonstrated that another SNP located in ODD of HIF-1α, 1772 C > T (rs11549465), may lead to an amino acid change from proline 582 to serine (P582S) and are reportedly associated with renal [18,19], head and neck [20], prostate [21], lung [22], and pancreatic [23] cancers. Meta-analysis from 34 case–control studies also reported that SNP 1772 C > T (P582S) of HIF-1α gene is significantly associated with breast cancer risk in many countries [24]. However, the association of SNP 1772 C > T (rs11549465) of the HIF-1α gene to breast cancer remains unclear in a Taiwanese population.

The purpose of this study is to investigate the association between SNP 1772 C > T of the HIF-1α gene in breast cancer patients and healthy control subjects. Furthermore, HIF-1 has been reported to transactivate many oxygen responsive genes such as vascular endothelial growth factor (VEGF) [25]. Therefore, the relationships

*Correspondence: shlin@kmu.edu.tw; changhw@kmu.edu.tw
†Equal contributors
1Department of Medical Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
2Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
3Department of Medical Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
4Full list of author information is available at the end of the article

© 2014 Huang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
between genotypes of SNP 1772 C > T of HIF-1α gene and the clinicopathologic characteristics, the immuno-staining expression levels of HIF-1α and VEGF, and clinical outcomes of breast cancer are also addressed in this study.

Methods and materials
Patient characteristics and control subjects
Between 1991 and 2001, a total of 96 randomly-selected female patients with breast cancer at Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, were enrolled in this study. All patients underwent a standard modified radical mastectomy. Ninety-four patients (94/96, 98%) received adjuvant systemic chemotherapy with 6 cycles of 5-fluorouracil, doxorubicin and cyclophosphamide. After completion of chemotherapy, all patients received hormone therapy with tamoxifen and 92 patients (92/96, 96%) received radiation therapy. The principle of treatment was followed as described previously [26]. We collected clinical data including clinical stage, treatment outcomes and follow-up status. Controls were recruited from 120 healthy female without a history of cancer and matched to the breast cancer patients by sex and age.

DNA extraction and PCR-RFLP
Genomic DNA was isolated from paraffin-embedded tumor tissues of surgical specimens and peripheral blood of 120 normal controls as described [27,28]. The sequence of primers for HIF-1α is as follows: forward 5′-AGGACA CAGATTAGACTTGG-3′ and reverse 5′-GGAATAC GTAACTGTGCTTTG-3′. PCR reaction mixture (10 μl) contained 1 μl of 10× PCR buffer, 0.3 μl of 50 mM MgCl2, 0.2 μl of 10 mM dNTP each, 0.6 μl DMSO, 0.14 μl of Taq enzyme, 0.12 μl of 350 μg/ml primers mix (1:1), 2 μl DNA extracts and 5.64 μl distilled water. PCR was performed with the following protocol: 94°C (1 min); 4 cycles of 94°C (15 s), 58°C (15 s), 70°C (8 s); 60 cycles of 94°C for (15 s), 55°C (15 s), 70°C (8 s); 94°C (1 min) and 60°C (5 min). The available restriction enzyme for HIF-1α 1772 C > T (rs11549465) was retrieved from the SNP-RFLP freeware [29-31]. PCR products were digested with the Hph I restriction enzyme (NEB) at 37°C for overnight and then they were subjected to 3% agarose electrophoresis and stained with SYBR Safe DNA gel stain (Invitrogen) for visualization of the PCR-restriction fragment length polymorphism (PCR-RFLP) patterns.

Sequencing
Typical patterns of genotyping by PCR-RFLP have confirmed by sequencing. DNA amplicon from PCR reaction was purified using a MiniElute PCR purification kit (Qiagen) [28] for commercial sequencing.

Immunohistochemical analyses of HIF-1α and VEGF proteins
Streptavidin-biotin based immunohistochemical staining (IHC) was performed to detect HIF-1α and VEGF protein levels as previously described [32]. Immunoreactivity of HIF-1α was located in both nuclei and cytoplasm. Using a semiquantitative scale described previously [33], the HIF-1α expression was classified as follows: 1+, nuclear staining in less than 1% of cells; 2+, nuclear staining in 1-10% of cells and/or with weak cytoplasmic staining; 3+, nuclear staining in 10-50% of cells and/or with distinct cytoplasmic staining; 4+, nuclear staining in more than 50% of cells and/or with strong cytoplasmic staining. For further analysis, we defined two groups of low and high HIF-1α expression: 1+ or 2+ staining pattern regarded as low expression, and 3+ or 4+ staining pattern as high expression. VEGF expression was assessed according to the intensity of cytoplasmic staining as described previously [32]. VEGF expression was detected tumor cells in a distinct and strong cytoplasmic staining. VEGF staining was defined as four grades as follows: no staining, weak,

Table 1 HIF-1α 1772 C > T genotype and allele frequencies in breast cancer patients and control subjects

Parameters	Breast cancer patients	Control subjects	p valuea	Crude OR	Adjusted ORb	p value	95% CI
Age	46.5 ± 9.9 (19–73)	44.6 ± 11.5 (21–77)	0.224	1.00	1.00		
CC (%)	53 (55%)	116 (97%)		1.00	1.00		
CT (%)	21 (22%)	0 (0%)					
TT (%)	22 (23%)	4 (3%)	<0.001	12.04	11.33	<0.001	3.70-34.72
CT/CC (%)	74 (77%)	116 (97%)		1.00	1.00		
TT (%)	22 (23%)	4 (3%)	<0.001	8.62	8.31	<0.001	2.74-25.25
CT (%)	53 (55%)	116 (97%)		1.00	1.00		
CT/TT (%)	43 (45%)	4 (3%)	<0.001	23.53	23.23	<0.001	7.92-68.09
C genotype (%)	127 (66%)	232 (97%)		1.00	1.00		
T genotype (%)	65 (34%)	8 (3%)	<0.001	14.84	14.51	<0.001	6.74-31.24

aComparisons were performed by Chi-Square test.
bAdjusted by age by conditional logistic regression analysis.

OR = odds ratio; CI = Confidence interval.
distinct and strong cytoplasmic staining. Distinct and strong cytoplasmic staining was defined as high VEGF and negative or weak cytoplasmic staining was defined as low VEGF expression.

Immunohistochemical analysis for microvessel detection
Microvessel density (MVD) represents tumor angiogenesis by using immunostaining of endothelial cells with monoclonal antibody, recognizing the CD31 endothelial glycoprotein. Each slide was scanned at low magnification (× 100) to identify the four areas of high density of microvessels (hotspots). The number of stained vessels per in each hotspot was counted at high power fields (× 400). Any stained endothelia cell was considered as a countable single microvessel. Large vessels with thick muscular walls were excluded. MVD was classified as either low (≤35.0) or high (>35.0/high power field (HPF)); 35.0 was the median value.

Statistical analysis
Statistical significance was evaluated by the chi-square test and Fisher exact test. Overall survival curves were analyzed by the Kaplan-Meier method, and differences between the curves were analyzed by log-rank test. The p values smaller than 0.05 are regarded as significance.

Results
In Table 1, the mean age of the breast cancer patients was 46.5 years (range 19–73 years), and this was 44.6 years for controls (range 21–77 years). There was no significant difference between breast cancer patients and controls in age (p = 0.22).

In Figure 1A, RFLP results demonstrated that CC genotype yielded one band (76 base pairs), CT genotype yielded two bands (76 bp, C-allele; 153 bp, T allele) and TT genotype yielded one band (153 bp). The corresponding genotypes of homozygous and heterozygous patterns from

Figure 1 PCR-RFLP genotyping and sequencing of SNP 1772 C > T of HIF-1α gene. (A) PCR-RFLP genotyping of SNP 1772 C > T of HIF-1α gene (76 bp, C-allele; 153 bp, T-allele) in formalin-fixed, paraffin-embedded breast cancer tissues. (B) Sequence chromatograms of PCR-RFLP product contained SNP 1772 C > T of HIF-1α gene. Arrow indicated location of 1772 C > T.

Figure 2 Expression of (A) HIF-1α, (B) VEGF and (C) CD34 for microvessel density (200×) of a 34 year-old female patient with T2N1M0 breast cancer.
PCR-RFLP had confirmed by DNA sequence analysis (Figure 1B).

Based on PCR-RFLP analysis, the genotype distribution of control group was 116 CC (97%), 0 CT (0%) and 4 TT (3%). In contrast, the genotype distributions of breast cancer patients were 53 CC (55%), 21 CT (22%), and 22 TT (23%). The genotype distribution in breast cancer patients differed significantly from that of controls ($p < 0.001$). The allele frequencies in controls and cancer patients were 232 C (97%)/8 T (3%) and 127 C (66%)/65 T (34%), respectively. The T-allele distribution in breast cancer patients were 53 CC (55%), 21 CT (22%), and 22 TT (23%). The genotype distribution in breast cancer patients differed significantly from that of controls ($p < 0.001$). The allele frequencies in controls and cancer patients were 232 C (97%)/8 T (3%) and 127 C (66%)/65 T (34%), respectively. The T-allele distribution in breast cancer patients differed significantly from that of controls ($p < 0.001$), adjusted OR = 14.51).

Immunoreactivity of HIF-1α was distributed in both nuclei and cytoplasm (Figure 2A). VEGF expression was measured by its cytoplasmic staining (Figure 2B). Microvessel density (MVD) representing tumor angiogenesis was measured by immunostaining of CD31 endothelial glycoprotein (Figure 2C).

When connecting the results of these stainings with HIF-1α genotypes with clinicopathological analysis (Table 2), there were no significant correlation between 1772 C > T genotypes with clinicopathological analysis (Table 2), except for laterality ($p = 0.022$, Mann-Whitney test). VEGF expression was measured by immunostaining of CD31 endothelial glycoprotein (Figure 2C).

Table 2 Clinicopathologic characteristics, clinical outcomes in breast cancer patients with different HIF-1α 1772 C > T genotypes

Genotype	CC (%)	CT (%)	TT (%)	p value	
Case number	53 (55%)	21 (22%)	22 (23%)	0.117^a	
Age				0.0117^a	
Mean± SD (years)	46.5 ± 9.7	43.1 ± 10.3	49.4 ± 9.6	0.646^b	
Range (years)	27 ~ 68	19 ~ 62	31 ~ 73	0.463^b	
Laterality				0.046^b	
Left	26 (52%)	10 (20%)	14 (28%)	0.0253	
Right	27 (58%)	11 (24%)	8 (17%)	0.481	
T-stage				0.481	
T1 or T2	35 (53%)	13 (20%)	18 (27%)	0.303^b	
T3 or T4	18 (60%)	8 (27%)	4 (13%)	0.375^b	
N-stage				0.375^b	
Node negative	14 (58%)	5 (21%)	5 (21%)	0.936^b	
Node positive	39 (54%)	16 (22%)	17 (24%)	0.697^b	
HIF-1α expression				0.311^b	
Low	34 (51%)	15 (22%)	18 (27%)		
High	19 (66%)	6 (21%)	4 (14%)		
VEGF expression				0.646	
Low	18 (62%)	7 (24%)	4 (14%)	0.211^b	
High	35 (52%)	14 (21%)	18 (27%)	0.211^b	
Microvessel density				0.375^b	
Low	32 (63%)	8 (16%)	11 (22%)		
High	21 (47%)	13 (29%)	11 (24%)		

^aby ANOVA test.
^bby Chi-Square test.
example, the SNP 1772 C > T of HIF-1α gene was detected in several cancers [18-21,23] but it was absent for colorectal [34], and cervical [35] cancers.

Within ODD of the HIF-1α, proline residues 402 and 564 were reported to independently determine tightly binding to the von Hippel-Lindau (VHL) protein for HIF-1α ubiquitination and degradation under nonhypoxia condition [17,36-39]. In current study, however, the proline residue 582 located within ODD of the HIF-1α, i.e., the SNP 1772 C > T, was unable to interfere the binding of HIF-1α with VHL and to impair HIF-1α prolyl hydroxylation [40]. Similarly, the genotypes of SNP 1772 C > T of HIF-1α gene did not show significant difference between low and high HIF-1α levels in terms of immunostaining (Table 2). Other study [41] found that the HIF-1α overexpressed in immunostaining measurement for invasive breast cancer in the absence of 1772 C > T transition of HIF-1α gene. Accordingly, the role of SNP 1772 C > T of HIF-1α gene in its protein expression level is not clear. In future, the examination of more expression patterns of HIF-1α protein in these patients may clearly investigate this relationship.

Furthermore, the genotypes of SNP 1772 C > T of HIF-1α gene are not significantly associated with clinicopathologic characteristics and clinical outcome of breast cancer (Table 2) although SNP 1772 C > T of HIF-1α gene confers significant association with breast cancer (Table 1). Similar results were reported in prostate cancer study [21]. Therefore, the SNP 1772 C > T of HIF-1α gene is a good predictor for breast cancer risk but may be a poor clinicopathologic-associated factor.

The relationship between expression levels of HIF-1α and survival of breast cancer patients has been investigated. For example, high levels of HIF-1α were reportedly
associated with decreased overall survival ($p = 0.059$) and disease-free survival ($p = 0.110$) [42]. Similarly, we found that HIF-1α expression shows the association with disease-free survival ($p = 0.0732$) but weak association with overall survival ($p = 0.3225$) (Table 3). These results suggest that expression levels of HIF-1α may be the potential risk factor for survival prediction of breast cancer.

The phenomena mentioned above may be partly explained by the multigene theory for carcinogenesis [43]. Furthermore, many SNPs may be associated with breast cancer. Although only single SNP was examined in our study, the SNP-SNP interaction [9,44-48] tumor may play a joint effect to associate with cancer and it is warranted for further investigation for multiple SNPs in breast cancer association.

Conclusion

Taken together, SNP 1772 C > T (P582S) of HIF-1α gene confers significant association with breast cancer risk but it show no association with the clinicopathologic features and survival of breast cancer patients.

Competing interests

The authors have no conflict of interests to declare.

Authors’ contributions

C-JH and H-WC managed for genotyping studies. C-JH and S-LL drafted the manuscript. M-FH and C-YC were responsible for the sample collection and pathology experiments. Y-HY performed statistics analyses. S-FL and H-WC were involved in discussion and editing the manuscript. All authors read and approved the final manuscript.

Acknowledgement

This work was supported by grants from the National Science Council (NSC92-2314-B-037-051, NSC102-2622-B-037-003-CC2, and MOST 103-2320-B-037-008), the KMU Cancer Research Foundation (QC094002), the National Sun Yat-sen University-KMU Joint Research Project (#NSYSU-KMU 103-p014), and Health and welfare sucharge of tobacco products, the Ministry of Health and Welfare, Taiwan, Republic of China (MOHW103-TD-B-111-05). We thank Sung-Wei Li, MD, for clinical data collection; De-Leung Gu in technical assistance of RFLP; Wen-Tsue Chen in immunohistochemistry stain; and Susan L. Olmstead, PhD, Johns Hopkins University for English revision.

Author details

1Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University
2Department of Radiation Oncology, Kaohsiung Medical University
3Institute of Clinical Medicine, Kaohsiung Medical University
4Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University
5Department of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
6School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
7Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
8Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University
9Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University
10Department of Medical Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University
11Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University
12Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
13Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.

Received: 13 April 2014 Accepted: 25 August 2014

References

1. Chuang LY, Yang CH, Tsai KH, Cheng YH, Chang PL, Wen CH, Chang HW: Restriction enzyme mining for SNPs in genomes. Anticancer Res 2008, 28(4A):2001–2007.
2. Cantor CR: The use of genetic SNPs as new diagnostic markers in preventive medicine. Ann N Y Acad Sci 2005, 1055:48–57.
3. Chang HW, Chuang LY, Tsai MT, Yang CH: The importance of integrating SNP and cheminformatics resources to pharmacogenomics. Curr Drug Metab 2012, 13(7):991–999.
4. Liu SC, Gao C, Zhang RD, Jiao Y, Cui L, Li WJ, Chen ZP, Wu MY, Zheng HY, Zhao XX, Yue ZX, Li ZG: FPGS rs1544105 polymorphism is associated with treatment outcome in pediatric B-precursor acute lymphoblastic leukemia. Cancer Cell Int 2013, 13(1):107.
5. Ding H, Jue X, Ding N, Fu Z, Song Y, Zhu J: Single nucleotide polymorphisms of CD20 gene and their relationship with clinical efficacy of R-CHOP in patients with diffuse large B cell lymphoma. Cancer Cell Int 2013, 13(1):158.
6. Lin HJ, Kung YJ, Lin YJ, Sheu JJ, Chen BH, Lan YC, Lai CH, Hsu YA, Wan L, Tsai FJ: Association of the lumiican gene functional 3′-UTR polymorphism with high myopia. Invest Ophthalmol Vis Sci 2010, 51(1):96–102.
7. Kuo HC, Yang KD, Juo SH, Liang CD, Chen WC, Wang YS, Lee CH, Hsi E, Yu HR, Woon PY, Lin IC, Huang CF, Hwang DY, Lee CF, Lin LY, Chang WP, Chang WC: JTPKC single nucleotide polymorphism associated with the Kawasaki disease in a Taiwanese population. PLoS One 2011, 6(4):e17370.
8. Hwang CW, Lu CH, Sun SF, Sung TY, Chung HY, Huang SY, Hung HC, Chen CH, Sun YM, Lin YY, Liu WS, Wen ZH: Comprehensive association analysis of 10 single nucleotide polymorphisms associated with osteoporosis among a Taiwanese population. Int J Hum Genet 2011, 13(1):249–257.
9. Lin GT, Tseng HF, Yang CH, Hou MF, Chuang LY, Tai HT, Tai MH, Cheng YH, Wen CH, Liu CS, Huang CJ, Wang CL, Chang HW: Combinational polymorphisms of seven CXCL12-related genes are protective against breast cancer in Taiwan. OMICS 2009, 13(2):165–172.
10. Chen FM, Ou-Yang F, Yang SF, Tsai EM, Hou MF: PS3 codon 72 polymorphism in Taiwanese breast cancer patients. Kaohsiung J Med Sci 2013, 29(5):259–264.
11. Chang WC, Woon PY, Hsu YW, Yang S, Chiu YC, Hou MF: The association between single-nucleotide polymorphisms of ORAI1 gene and breast cancer in a Taiwanese population. ScientificWorldJournal 2012, 2012916387.
12. Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003, 3(10):721–732.
13. Bos R, Zhang H, Hanahan DF, Monnens EC, Semenza GL, Pinedo HM, Abeleff MD, Simons JW, van Diest PJ, van der Wall E: Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst 2001, 93(4):309–314.
14. Gruber G, Greiner RH, Hlushchuk R, Aebenoldt DM, Altermatt HG, Bercigás C, Djionov V: Hypoxia-inducible factor 1 alpha in high-risk breast cancer: an independent prognostic parameter? Breast Cancer Res 2004, 6(3):R191–R198.
15. Semenza GL: HIF-1: a mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000, 88(4):1474–1480.
16. Epstein AC, Geadle JM, McNeill LA, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ: E. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001, 107(1):43–54.
17. Jaakkola P, Male DR, Tian YM, Wilson MI, Gilbert J, Kriegesheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ: Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001, 292(5510):468–472.
18. Ollerenshaw M, Page T, Hammond J, Demaine A: Polymorphisms in the hypoxia inducible factor-1alpha gene (HIF1A) are associated with the renal cell carcinoma phenotype. Cancer Genet Cytogenet 2006, 153(2):122–126.
19. Clifford SC, Atsuti D, Hooper L, Maxwell PH, Ratcliffe PJ, Maher ER: The pVHL-associated SCF ubiquitin ligase complex: molecular genetic
Huang et al. Cancer Cell International 2014, 14:87
http://www.cancerci.com/content/14/1/87

Page 7 of 7

DOI: 10.1186/s12935-014-0087-7
Cite this article as: Huang et al.: SNP-RFLPing: an updated and integrated platform for SNP genotyping. Bioinformatics 2010, 11:737.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

30. Chang HW, Yang CH, Geter H, Kaelin WG Jr, Pavletich NP: Structure of an HIF-1alpha–pVHL complex: hydroxylproline recognition in signaling. Science 2000, 296(5574):1886–1889.

Perky MJ, Mooney SM, McMullen MF, Flores A, Lappin TR, Lee FS: A common polymorphism in the oxygen-dependent degradation (ODD) domain of hypoxia inducible factor-1alpha (HIF-1alpha) does not impair Pro-564 hydroxylation. Mol Cell 2003, 2:41.

Veuelp MM, Greijer AE, van der Wall E, van Diest PJ: Mutation analysis of the HIF-1alpha oxygen-dependent degradation domain in invasive breast cancer. Cancer Genet Cytogenet 2005, 163(2):168–172.

Boon R, van der Groep P, Greijer AE, Stuverts A, Meijer S, Pinedo HM, Semenza GL, van Diest PJ, van der Wall E: Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 2003, 97(6):1573–1581.

Goncalves R, Bose R: Using multigene tests to select treatment for early-stage breast cancer. J Natl Compr Canc Netw 2013, 11(2):174–182, quiz 182.

Yang CH, Chuang LF, Cheng YH, Lin YD, Wang CL, Wen CH, Chuang HW: Single nucleotide polymorphism barcoding to evaluate oral cancer risk using odds ratio-based genetic algorithms. Kaohsiung J Med Sci 2012, 28(7):362–368.

Yen CY, Liu SY, Cheng CH, Tseng HF, Chuang LY, Yang CH, Lin YC, Wen CH, Chang WF, Ho CH, Cheng HC, Wang ST, Lin CW, Chuang HW: Combinational polymorphisms of four DNA repair genes XRCC1, XRCC2, XRCC3, and XRCC4 and their association with oral cancer in Taiwan. J Oral Pathol Med 2008, 37(5):271–277.

Zheng SL, Sun J, Wiklund F, Smith S, Sattin P, Li G, Adami HO, Hsu FC, Zhu Y, Balter K, Kader AK, Turner AR, Liu W, Bleecker ER, Meyers DA, Duggan D, Carpen GD, Blak BL, Isacso XW, Wu XB, Ju G, Gronberg H: Cumulative association of five genetic variants with prostate cancer. N Engl J Med 2008, 359(8):910–919.

Vogelsang M, Wang Y, Veber N, Mwagashaga LM, Parker M: The cumulative effects of polymorphisms in the DNA mismatch repair genes and tobacco smoking in oesophageal cancer risk. PLoS One 2012, 7(5):e36962.

Chang WC, Fang YH, Chuang HW, Chuang LY, Lin YD, Hou MF, Yang CH: Identifying association model for single-nucleotide polymorphisms of ORA1 gene for breast cancer. Cancer Cell Int 2014, 14(1):29.

31. Yang CH, Cheng YH, Chuang LY, Chang HW: Drug-SNPing: an integrated drug-based, protein interaction-based tagSNP-based pharmacogenomics platform for SNP genotyping. Bioinformatics 2013, 29(6):758–764.

32. Chen WT, Huang CJ, Wu MT, Yang SF, Su YC, Chai CY: Comparison of local recurrence and distant metastases between breast cancer patients after postmastectomy radiotherapy with and without immediate TRAM flap reconstruction. Plast Reconstr Surg 2006, 118(5):1079–1086, discussion 1087–1078.

33. Singer G, Kurman RJ, Chang HW, Cho SK, Shih Ie M: Diverse tumorigenic pathways in ovarian serous carcinoma. Am J Pathol 2002, 160(4):1223–1228.

34. Huang CJ, Hou MF, Lin SD, Chuang HY, Huang MF, Fu QY, Lian SL: Comparison of thymidylate synthase and hypoxia inducible factor-1alpha DNA polymorphisms with pancreatic cancer. Tumori 2002, 88(3):364–369.

35. Fu SL, Mao J, Ding B, Wang XL, Cheng WJ, Dai HH, Han SP: Single nucleotide polymorphism barcoding to evaluate oral cancer risk using odds ratio-based genetic algorithms. Kaohsiung J Med Sci 2012, 28(7):362–368.

36. Yang CH, Chuang LF, Cheng YH, Lin YD, Wang CL, Wen CH, Chuang HW: Single nucleotide polymorphism barcoding to evaluate oral cancer risk using odds ratio-based genetic algorithms. Koahsiung J Med Sci 2012, 28(7):362–368.

37. Huang CJ, Hou MF, Lin SD, Chuang HY, Huang MF, Fu QY, Lian SL: Comparison of local recurrence and distant metastases between breast cancer patients after postmastectomy radiotherapy with and without immediate TRAM flap reconstruction. Plast Reconstr Surg 2006, 118(5):1079–1086, discussion 1087–1078.

38. Huo YH, Shih CM, Lin CW, Cheng WE, Chen SC, Chen W, Lee YL: Immediate TRAM flap reconstruction. Plast Reconstr Surg 2006, 118(5):1079–1086, discussion 1087–1078.

39. Min JT, Yang H, Ivan M, Gertler F, Kaelin WG Jr, Pavletich NP: Structure of an HIF-1alpha–pVHL complex: hydroxylproline recognition in signaling. Science 2002, 296(5574):1886–1889.

40. Perky MJ, Mooney SM, McMullen MF, Flores A, Lappin TR, Lee FS: A common polymorphism in the oxygen-dependent degradation (ODD) domain of hypoxia inducible factor-1alpha (HIF-1alpha) does not impair Pro-564 hydroxylation. Mol Cell 2003, 2:41.

41. Veuealg MM, Greijer AE, van der Wall E, van Diest PJ: Mutation analysis of the HIF-1alpha oxygen-dependent degradation domain in invasive breast cancer. Cancer Genet Cytogenet 2005, 163(2):168–172.

42. Boon R, van der Groep P, Greijer AE, Stuverts A, Meijer S, Pinedo HM, Semenza GL, van Diest PJ, van der Wall E: Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 2003, 97(6):1573–1581.

43. Goncalves R, Bose R: Using multigene tests to select treatment for early-stage breast cancer. J Natl Compr Canc Netw 2013, 11(2):174–182, quiz 182.

44. Yang CH, Chuang LF, Cheng YH, Lin YD, Wang CL, Wen CH, Chuang HW: Single nucleotide polymorphism barcoding to evaluate oral cancer risk using odds ratio-based genetic algorithms. Kaohsiung J Med Sci 2012, 28(7):362–368.

45. Yen CY, Liu SY, Cheng CH, Tseng HF, Chuang LY, Yang CH, Lin YC, Wen CH, Chang WF, Ho CH, Cheng HC, Wang ST, Lin CW, Chuang HW: Combinational polymorphisms of four DNA repair genes XRCC1, XRCC2, XRCC3, and XRCC4 and their association with oral cancer in Taiwan. J Oral Pathol Med 2008, 37(5):271–277.

46. Zheng SL, Sun J, Wiklund F, Smith S, Sattin P, Li G, Adami HO, Hsu FC, Zhu Y, Balter K, Kader AK, Turner AR, Liu W, Bleecker ER, Meyers DA, Duggan D, Carpen GD, Blak BL, Isacso XW, Wu XB, Ju G, Gronberg H: Cumulative association of five genetic variants with prostate cancer. N Engl J Med 2008, 359(8):910–919.

47. Vogelsang M, Wang Y, Veber N, Mwagashaga LM, Parker M: The cumulative effects of polymorphisms in the DNA mismatch repair genes and tobacco smoking in oesophageal cancer risk. PLoS One 2012, 7(5):e36962.

48. Chang WC, Fang YH, Chuang HW, Chuang LY, Lin YD, Hou MF, Yang CH: Identifying association model for single-nucleotide polymorphisms of ORA1 gene for breast cancer. Cancer Cell Int 2014, 14(1):29.