Incidence Survey of Acute Otitis Media in Children in Sado Island, Japan—Sado Otitis Media Study (SADOMS)

Taketo Otsuka1*, Osamu Kitami2, Kouji Kondo3, Hisayuki Ota4, Shinsuke Oshima4, Akio Tsuchiya4, Takatoshi Shirai5, Koyata Fuji1, Michihide Nakamura1, Yasuhiro Shoji1, Hisano Nakamura1, Yasuko Masuda6, Kenichi Komiyama6, Kazunaga Yoshida6, Yukio Ishikawa6, Atsushi Iwaya5, Sugata Takahashi7, Minoru Okazaki1, Muneki Hotomi8, Noboru Yamanaka8

1 Department of Pediatrics, Sado General Hospital, Sado, Niigata, Japan, 2 Shiseido Otolaryngology Clinic, Sado, Niigata, Japan, 3 Kondo Clinic, Sado, Niigata, Japan, 4 Department of Otolaryngology, Sado General Hospital, Sado, Niigata, Japan, 5 Department of Pediatrics, Ryotsu Hospital, Sado, Niigata, Japan, 6 Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama-shi, Wakayama, Japan

Introduction

Acute otitis media (AOM) is one of the most common forms of bacterial infection and cause for clinic visits in children, with 70% of children experiencing at least one episode by age 3 [1,2]. The incidence of AOM were reported as 0.9–1.2 episodes per person-year during the first 2 years of life in previous reports conducted before 2000. The aim of this study was to 1) evaluate the latest AOM incidence in pediatric outpatients and 2) identify the bacterial pathogens from these patients and ascertain their serotypes and resistance.

Methods: The study was conducted in a closed population, involving all pediatricians and otolaryngologists in Sado Island allowing accurate determination of AOM incidence. In each month, one week was assigned as “surveillance week”, and all outpatients with acute illness aged 0–18 years examined during the surveillance weeks were enrolled. AOM was diagnosed on the basis of otoscopic findings and clinical symptoms were recorded. Specimens were collected from the nasopharynx or middle ear cavity of AOM patients and examined for bacteria. Antimicrobial susceptibilities, serotypes, and molecular typing for resistance were determined among *Streptococcus pneumoniae* and *Haemophilus influenzae*.

Results: In total, 8,283 clinic visits were conducted, and 354 episodes (4.3%, 95% CI: 3.9–4.7%) among 312 children were diagnosed as AOM. The incidence of AOM was highest in children of 1 year of age (0.54 episodes/child/year, 95% CI: 0.44–0.64). Serotype coverage of 7- and 13-valent pneumococcal conjugate vaccines in this study were 38.0% (95% CI: 29.3–47.3) and 62.8% (95% CI: 53.6–71.4), respectively. Of 122 *H.influenzae* isolates available for typing, 120 were nontypeable and 2 were type b. A high proportion of *S. pneumoniae* isolates (46%) showed resistance to penicillin. Approximately half of *H. influenzae* isolates had genetic markers for beta-lactamase-negative ampicillin-resistance.

Conclusions: Approximately 4–5% of pediatric outpatients, even without AOM-related symptoms, had AOM in our study. Pediatricians as well as otolaryngologists should check the tympanic membrane findings of all pediatric outpatients.
bacterial pathogens from these patients and ascertain their resistance.

Methods

Study Area and Population

The study, Sado Otitis Media Study (SADOMS), was conducted in Sado Island, which lies 60 km off the Japanese mainland, between January 2010 and December 2011. In Japan, *H. influenzae* type b (Hib) conjugate vaccine and 7-valent pneumococcal conjugate vaccine (PCV7) were introduced for voluntary immunization in December 2008 and February 2010, respectively. However, they have not been implemented as part of a routine vaccination program in Japan, and they have only been provided free of charge since January 2011 (See Table 1). SADOMS phase I was undertaken between January 2010 and December 2011 (the PCV7-introductory era), phase II will be undertaken between January 2012 and December 2013 (early phase of the post-PCV7 era), and phase III will be undertaken between January 2014 and December 2015 (late phase of the post-PCV7 era). At the time when the study was started (January 2010), the population of the island was 64,120, with 9,388 (14.6%) aged 0–18 years. Children aged less than five years constituted 3.4% (2,167) of the total population. Here, we report on SADOMS phase I.

Surveillance

The second week of each month was assigned as a surveillance week for observational surveillance. When the second week had a national holiday, the first or third week was assigned as a surveillance week. All outpatients with acute illness aged 0–18 years examined during the surveillance weeks were enrolled in this study. Acute illness was defined as the presence of one or more of the following symptoms: fever, cough, rhinorrhea, fatigue, nausea, vomiting, diarrhoea, otalgia, exantheme, and irritability. Because symptoms of respiratory tract infections among children can be non-specific, our definition of acute illness could include non-respiratory tract infections, such as gastrointestinal infection, urinary tract infection, and acute phase of chronic diseases. Children visiting a doctor for health checkups, vaccination, or treatment of chronic diseases were excluded from this study. No outpatient could be enrolled twice in the same surveillance week, while each outpatient could be enrolled every surveillance week.

Each pediatric outpatient was seen by a doctor belonging to the pediatricians (6 doctors) and all otolaryngologists (3 doctors) in Sado Island, which lies 60 km off the Japanese mainland, between January 2010 and December 2011. In Japan, *H. influenzae* type b (Hib) conjugate vaccine and 7-valent pneumococcal conjugate vaccine (PCV7) were introduced for voluntary immunization in December 2008 and February 2010, respectively. However, they have not been implemented as part of a routine vaccination program in Japan, and they have only been provided free of charge since January 2011 (See Table 1). SADOMS phase I was undertaken between January 2010 and December 2011 (the PCV7-introductory era), phase II will be undertaken between January 2012 and December 2013 (early phase of the post-PCV7 era), and phase III will be undertaken between January 2014 and December 2015 (late phase of the post-PCV7 era). At the time when the study was started (January 2010), the population of the island was 64,120, with 9,388 (14.6%) aged 0–18 years. Children aged less than five years constituted 3.4% (2,167) of the total population. Here, we report on SADOMS phase I.

Incidence of Acute Otitis Media in Children

Specimens were collected from the nasopharynx or middle ear cavity and examined for bacteria. The middle ear fluid samples were obtained by myringotomy or from ear discharge.

Except for myringotomy samples, these cultures were obtained from AOM patients using a sterile cotton-tipped aluminum swab (Seed Swab No. 2; Eiken Chemical Co. Ltd., Tokyo, Japan). Swabs were cultured immediately on chocolate and sheep blood agar plates and incubated at 36°C in 5% vol/vol CO2 for 18–24 hours. *S. pneumoniae* strains were identified by colony morphology, susceptibility to optochin, and bile solubility. *H. influenzae* strains were identified by colony morphology and the use of an automated diagnostic system (HNID panel with the MicroScan Walk Away-96; Dade Behring Inc., West Sacramento, CA). Then, the pathogen was confirmed as *H. influenzae* isolates by a PCR method identifying the 16S ribosomal DNA and IgA protease gene [12]. *M. catarrhalis* strains were identified by colony morphology and the presence of butyrate esterase. The predominant colony type on each plate was selected for this study.

All isolates of *S. pneumoniae* and *H. influenzae* were stored at −80°C until further analysis.

Antibiotic Susceptibility Testing

Antimicrobial susceptibilities were determined using commercially available MIC panels (MICROFAST 3 for *S. pneumoniae* and 4 for *H. influenzae*; Dade Behring Inc., Deerfield, IL, USA). MICs were interpreted as susceptible, intermediate, or resistant according to the guidelines set by the Clinical and Laboratory Standards Institute (CLSI) [13]. The following antimicrobial agents were tested: penicillin G (PEN), erythromycin, and clindamycin for *S.
Age (years)	Population (person)*	Clinic visit (per 2 years)	AOM episodes (per 2 years)	Overall (95% CI)	Severe	Moderate	Mild	PCV7	Among AOM patients	p-value	Entire Sado population**	Among AOM patients	p-value
0	400	893	41	0.22	0.16–0.30	0.10	0.10	0.02	49.3%	26.8%	<0.01	50.0%	29.3%
1	420	1,289	104	0.54	0.44–0.64	0.21	0.23	0.10	23.7%	13.5%	0.03	23.2%	13.5%
2	428	1,117	68	0.34	0.27–0.43	0.06	0.13	0.15	22.0%	13.2%	0.14	19.9%	14.7%
3	443	893	43	0.21	0.15–0.28	0.02	0.06	0.13	18.6%	16.3%	0.86	19.2%	18.6%
4	449	679	29	0.14	0.09–0.20	0.02	0.04	0.08	20.7%	3.4%	0.04	17.0%	3.4%
5	421	628	18	0.09	0.06–0.15	0.02	0.04	0.03	N.A.	0.0%	N.A.	N.A.	0.0%
6	389	457	10	0.06	0.03–0.10	0.01	0.01	0.04	N.A.	0.0%	N.A.	N.A.	0.0%
7–18	6324	2327	41	0.01	0.01–0.02	0.00	0.00	0.01	N.A.	0.0%	N.A.	N.A.	0.0%

*Average of January 2010 and January 2011 in Sado Island.
**Vaccination coverage in Sado Island on November 2011.
AOM, acute otitis media; PCV7, 7-valent pneumococcal conjugate vaccine; Hib, H. influenzae type b; N.A., not available.

doi:10.1371/journal.pone.0068711.t001
pneumoniae, and ampicillin (AMP) and amoxicillin-clavulanic acid (AMC) for H. influenzae.

Serotyping
The isolates of H. influenzae and S. pneumoniae were serotyped with a commercially available slide agglutination kit (Denka Seiken Co., Tokyo, Japan), and by the capsular swelling method (Quellung reaction) using commercially available antisera (Statens Serum Institutes, Copenhagen, Denmark). Isolates that showed negative reactions for all pooled sera were considered to be nontypeable.

Molecular Typing for Resistance
Molecular typing for resistance was determined by PCR. Bacterial DNA was extracted from the isolates using a High Pure PCR Template Preparation Kit (Roche Diagnostics GmbH, Mannheim, Germany) according to the manufacturer’s instructions. Macrolide-lincosamide-streptogramin B (MLSB) resistance genes (ermB and mefA/E), and mutations for penicillin resistance (ppb 1a, ppb 2a, and ppb 2b mutations) in S. pneumoniae were identified by PCR [14–16]. S. pneumoniae isolates were classified into 3 genotypes by the presence of ppb 1a, ppb 2a, and ppb 2b mutations: penicillin susceptible S. pneumoniae (gPSSP, no mutation), penicillin intermediate S. pneumoniae (gPISP, with 1 or 2 mutations), and penicillin resistant S. pneumoniae (gPRSP, with all mutations).

The beta-lactamase gene (bla) and ftsI mutations in H. influenzae were identified by PCR [17]. H. influenzae isolates were classified into 4 genotypes on the basis of the PCR-based genotyping: beta-lactamase-negative AMP-susceptible isolates, beta-lactamase-negative AMP-resistant (gBLNAR, and subdivided I/II and III) isolates, beta-lactamase-positive AMP-resistant isolates, and beta-lactamase-positive AMC-resistant (subdivided I/II and III) isolates [17].

Data Analysis
The vaccination coverage by age among the entire Sado population and AOM patients, and the rates of bacterial carriage for each level of severity were compared. These analyses were performed by chi-square test and Fisher’s exact test. Adjusted standardized residuals were calculated, when the rate of bacterial carriage was significantly different between groups based on AOM severity. P-values <0.05 were considered significant. All statistical calculations were performed with PASW Statistics 18.0 for Windows (SPSS Inc., Chicago, IL, USA).

Ethics Statement
Because this study was an observational study and sampling of bacteria was a routine work in AOM treatment, verbal informed consent was obtained from all of the patients' parents or guardians. The study was approved by Ethics Committee of Sado Island School Health Service and the National Police Agency of Japan.

Figure 1. Pediatric patients with acute otitis media in Sado Island by surveillance week 1A. The proportion of acute otitis media patients with 95% CI among all outpatients showing acute illness. 1B. The black bar and gray bar indicate the number of acute otitis media patients and all outpatients with acute illness, respectively. AOM, acute otitis media.
doi:10.1371/journal.pone.0068711.g001
Incidence of Acute Otitis Media in Children

Table 2. Severity and bacterial pathogens in acute otitis media.

Severity	Number of bacterial pathogens (%)
	Nasopharynx
Total (n = 283)	143
Mild (n = 104)	53
Moderate (n = 113)	62
Severe (n = 66)	29
p-value	0.03

p value comparing with mild, moderate, and severe groups.

Results

In total, 8,283 (male 4,432 and female 3,851) clinic visits for acute illness were conducted, at which 354 AOM episodes (4.3%, 95% CI: 3.9–4.7%) were detected (Figure 1). Considering recurrent episodes, 312 children were diagnosed as AOM at least 1 time during study period. AOM proportion in outpatients were 5.5% (95% CI: 4.9-6.1%) among patients aged 0–5 years, and 1.8% (95% CI: 1.4–2.4%) among patients aged 6–18 years. Of 8,283 outpatients, pediatricians consulted otolaryngologists for <100 children with diagnosed AOM and doubtful AOM. During this study, the number of clinic visits in each surveillance week ranged from 269 (in July 2011) to 402 (in May 2010 and November 2010). The number and proportion of AOM episodes among outpatients ranged from 5 (1.4%) in September 2011 to 25 (6.7%) in April 2011. The analysis for seasonality was not done, because we judged that 2 years surveillance was not enough for such an analysis.

Of 312 children with AOM, 162 (51.9%) were the first episode and 146 (46.8%) had recurrent episodes, including 21 (6.7%) otitis prone children, at the time they were diagnosed with AOM in this study. Past AOM histories in 4 AOM patients were not available. The clinic visit-based incidence of AOM was highest in children of 1 year of age (0.54 episodes/child/year, 95% CI: 0.44–0.64) and tended to decrease in older children (Table 1). Seventy and 143 were diagnosed as severe and non-severe AOM, respectively, among AOM patients aged 0–2 years. On the other hand, 16 and 125 were diagnosed as severe and non-severe AOM, respectively, among AOM patients aged >3 years. Younger children were more likely to be diagnosed with severe AOM (p<0.001).

Of 354 episodes, 310 cultures from nasopharyngeal (283 specimens; 91.3%) and middle ear (27 specimens; 8.7%) cavities were obtained. Of 283 specimens from nasopharynx, 143 (50.5%) were positive for S. pneumoniae, 130 (45.9%) were positive for H. influenzae, and 127 (44.9%) were positive for M. catarrhalis. On the other hand, among 27 middle ear fluid samples, 6 (22%) were positive for S. pneumoniae, 10 (37%) were positive for H. influenzae, and 3 (11%) were positive for M. catarrhalis. We obtained a relatively small number of middle ear fluid samples, because the clinical efficacy of myringotomy is still controversial [7].

Most patients with AOM (83.9%, 260/310) had at least 1 AOM pathogen and nearly half of the patients (43.9%, 136/310) had 2 or more AOM pathogens. As shown in Table 2, there were significant differences in the carriage rates of these nasopharyngeal pathogens between severe, moderate, and mild AOM. H. influenzae isolates were more likely to be detected in moderate AOM cases, while M. catarrhalis were more likely to be detected in severe cases.

Serotype distribution of S. pneumoniae and their resistant genes in AOM patients is shown in Figure 2A. Of 149 S. pneumoniae isolates, 121 were available for typing. Frequently isolated S. pneumoniae serotypes included 19F (19%, 23/121), 3 (9%, 11/121), 6C (9%, 11/121), 6B (9%, 11/121), 6A (8%, 10/121), 19A (7%, 9/121), 23F (7%, 9/121), and 23A (7%, 9/121). Serotype coverage of PCV7 and 13-valent PCV (PCV13) in this study were 38.0% (95% CI: 32.9–43.3) and 62.8% (95% CI: 56.6–68.4), respectively. Genetic classification of resistance among S. pneumoniae isolates revealed that 29% were gPRSP (1a+2a+2b), 17% were gPISP (1a+2a), 9% were gPISP (2a+2b), 38% were gPISP (2a), and 7% consent was obtained from the guardians of all children with AOM when the questionnaire was filled out. The bacteria samples and data sheets were anonymized. This study protocol including consent procedure was approved by the Ethics Committee in Sado General Hospital.
2A. *S. pneumoniae*

Proportion of serotypes and resistance genes in acute otitis media patients

- **gPSSP** (None)
- **gPISP** (2x)
- **gPISP (1a+2x)**
- **gPISP (2x+2b)**
- **gPRSP** (1a+2x+2b)

Serotype

	6B	23F	19F	14	4,9V	6A	19A	3	1,5	6C	15B/C	23A	Others
6B	23F	19F	14	4,9V	6A	19A	3	1,5	6C	15B/C	23A	Others	

2B. *H. influenzae*

Proportion of serotypes and resistance genes in acute otitis media patients

- **nontypeable**
- **gBLNAS**
- **gBLNAR-I/II**
- **gBLNAR-III**
- **gBLPACR-III**

Serotype

	NTHi	typeb										
6B	23F	19F	14	4,9V	6A	19A	3	1,5	6C	15B/C	23A	Others
6B	23F	19F	14	4,9V	6A	19A	3	1,5	6C	15B/C	23A	Others

Figure 2. Proportion of serotypes and resistance genes in acute otitis media patients

- **2A. S. pneumoniae.** Serotype coverage of 7- and 13-valent pneumococcal conjugate vaccine in this study were 38.0% (95% CI: 29.3–47.3) and 62.8% (95% CI: 53.6–71.4%), respectively. **2B. H. influenzae.** Of 122 *H. influenzae* available for typing, 120 were NTHi and 2 were Hib. Resistance genotyping showed that 9% were gBLPACR-III, 43% were gBLNAR-III, 4% were gBLNAR-I/II, 40% were gBLNAS, and 4% were nontypeable. gPSSP, genetically penicillin susceptible *S. pneumoniae*; gPISP, genetically penicillin intermediate *S. pneumoniae*; gPRSP, genetically penicillin resistant *S. pneumoniae*; gBLNAS, genetically beta-lactamase-negative ampicillin-susceptible isolates; gBLNAR, genetically beta-lactamase-negative ampicillin-resistant isolates; gBLPACR, genetically beta-lactamase-positive ampicillin-resistant isolates; NTHi, nontypeable *H. influenzae*.

doi:10.1371/journal.pone.0068711.g002

Table 3. PCR-based genotyping and susceptibility of acute otitis media isolates.

PCR-based genotype	Susceptibility to Penicillin G	MLS\(_p\) genes	MLS\(_p\) genes					
	mef\(_{A/E}\)	erm\(_B\)	mef\(_{A/E}\)	erm\(_B\)	none			
gPSSP (none)	9 (7%)	9	0	0	1	1	2	5
gPISP (2x)	46 (38%)	43	3	0	10	3	32	1
gPISP (1a+2x)	20 (17%)	10	10	0	3	2	7	8
gPISP (2x+2b)	11 (9%)	2	9	0	0	3	7	1
gPRSP (1a+2x+2b)	35 (29%)	1	24	10	4	16	13	2
Total	121 (100%)	65 (54%)	46 (38%)	10 (8%)	18 (15%)	25 (21%)	61 (50%)	17 (14%)

PCR-based genotype	Susceptibility to Ampicillin			
	mef\(_{A/E}\)	erm\(_B\)	mef\(_{A/E}\)	erm\(_B\)
gBLNAS	49 (40%)	48	1	0
gBLNAR-I/II	5 (4%)	3	0	2
gBLNAR-III	52 (43%)	20	15	17
gBLPACR-III	11 (9%)	0	0	11
Others*	5 (4%)	4	0	1
Total	122 (100%)	75 (62%)	16 (13%)	31 (25%)

* Not detectable by PCR. gPSSP, genetically penicillin susceptible *S. pneumoniae*; gPISP, genetically penicillin intermediate *S. pneumoniae*; gPRSP, genetically penicillin resistant *S. pneumoniae*; MLS\(_p\), Macrolide-lincosamide-streptogramin B.

H. influenzae.

doi:10.1371/journal.pone.0068711.t003
were gPSSP (Table 3A). Antimicrobial susceptibilities testing showed that 46% (56/121) of the S. pneumoniae isolates were resistant to PEN. On the other hand, 15% of the S. pneumoniae isolates had both ermB and mefA/E genes, 50% had ermB gene, 21% had mefA/E gene, and 14% had neither ermB nor mefA/E genes. The MLSB resistance genes were consistent with the antimicrobial susceptibility testing results for those isolates with 3 exceptions. With regard to php mutations and MLSB resistance genes, almost all gPRSP isolates carried MLSB resistance genes except 2 exceptions. With regard to isolates.

There was a difference in AMP resistance rate between genotype (gPRSP (56%) and phenotype (38%) among 120 NTHi and 2 Hib. Genetic classification of resistance among 47/122) and 9% (11/122) of the gBLNAR-III, 4% were gBLNAR-I/II, 40% were genetically beta-lactamase-positive AMC-resistant-III isolates, 43% were gBLNAR-III, 4% were gBLNAR-I/II, 40% were genetically beta-lactamase-negative AMP-susceptible isolates, and 4% were nontypeable (Table 3B). Antimicrobial susceptibility testing revealed that 38% (47/122) and 9% (11/122) of the H. influenzae isolates were resistant to AMP and AMC, respectively (Table 3B). There was a difference in AMP resistance rate between genotype (56%) and phenotype (38%) among H. influenzae isolates. Similarly, there was a difference in PEN resistance rate between genotype (gPRSPgPISP; 93%) and phenotype (46%) among S. pneumoniae isolates.

Discussion

We conducted a hospital-based AOM surveillance which included almost all AOM cases in Sado Island. We observed that 4.3% (95% CI: 3.9–4.7) of pediatric outpatients (including those with and without the AOM-related symptoms mentioned above) had AOM in our study, indicating that pediatricians should check the tympanic membrane findings of all pediatric outpatients regardless of the presence of symptoms. A history of acute onset of signs and symptoms is controversial for diagnosis of AOM [9,10]. Stankh, et al. suggest that tympanic membrane bulging is sufficient to diagnose AOM [10].

In addition, we report the clinic visit-based incidence of AOM in an area with limited movement of people (particularly of children) to and from other areas. AOM incidence was highest in children of 1 year of age 0.54 episodes/child/year (95% CI: 0.44–0.64) and tended to decrease in older children. A limitation of our study design is that children with AOM who did not visit hospitals/clinics would be missed. However, our main purpose was to identify the incidence of AOM in all outpatients. It is important for pediatricians to know the AOM frequency and to pay attention to AOM patients in the actual exam room.

We previously reported the serotype distribution of S. pneumoniae isolates and their resistance in colonization [8]. In this previous

study, the most common serotypes among S. pneumoniae isolates were 6B (17.3%), 23F (12.6%), 19F (12.2%), 6C (10.6%), and 6A (9.9%). The serotype distribution of S. pneumoniae in isolates from AOM-positive patients differed in comparison to that of healthy colonization, with serotype 3 (1.5% in healthy colonization and 9% in AOM-positive patients) and 19A (2.8% and 7%) increased in isolates from AOM-positive patients, while 6B (17.3% and 9%) and 23F (12.6% and 7%) decreased. PCV13, which includes serotypes 3 and 19A, could prevent the infection and thus AOM.

AOM patients aged 0–1 year showed lower vaccination coverage for PCV7, compared to all children aged 0–1 year in Sado Island (Table 1). A possible explanation is that these children without PCV7 vaccination were more likely to develop AOM. However, only 38.0% of pneumococcal isolates were serotypes that are included in PCV7 in this study. Therefore, we speculate that missing vaccination opportunities caused by illness, such as recurrent infections including AOM, is also an important factor. The observation that younger AOM children had the low coverage of Hib vaccination provides support for the latter explanation, because Hib vaccination has no (or very little) effect to prevent AOM.

Some of the limitations in this study include subject enrollment, sample isolation, and the number of isolates available for genetic characterization. During the time that we enrolled 269–402 patients with acute illness, over 300 patients also visited our hospitals/clinics with chronic diseases, for vaccination, and for follow-up examination in each surveillance week. We decided to use “surveillance week” system because the trends of infectious diseases may gradually change in Sado Island. Over 90% of the cultures evaluated in this study were isolated from the nasopharynx, which included only colonization pathogens. Thus, we could not determine whether these pathogens were causative agents or not. However, there are differences in serotype proportion of S. pneumoniae between healthy children and AOM patients. Approximately 4–5% of pediatric outpatients, even without AOM-related symptoms, had AOM in our study. Pediatricians as well as otolaryngologists should check the tympanic membrane findings of all pediatric outpatients. Pediatric AOM caused by antimicrobial resistant S. pneumoniae and H. influenzae are still a major concern in Japan. PCV13 as well as vaccines for NTHi could prevent the infection and thus AOM.

Acknowledgments

We thank H. Zaraket, Y. Tatsumi, and T.F. Murphy for their helpful suggestions and editing of the manuscript.

Author Contributions

Conceived and designed the experiments: TO ST MH NY. Performed the experiments: TO OK K. Konou HO SO AT TS KF MN YS HN YM K. Komiyama KY YI AL MO. Analyzed the data: TO MH NY. Contributed reagents/materials/analysis tools: TO. Wrote the paper: TO MH NY.
management of acute otitis media (AOM) in children in Japan. Auris Nasus Larynx 39: 1–8.
8. Otsuka T, Chang B, Shirai T, Iwaya A, Wada A, et al. (2013) Individual risk factors associated with nasopharyngeal colonization with *Streptococcus pneumoniae* and *Haemophilus influenzae*: a Japanese birth cohort study. Pediatr Infect Dis J [in press].
9. American Academy of Pediatrics Subcommittee on Management of Acute Otitis Media (2004) Diagnosis and management of acute otitis media. Pediatrics 113: 1451–1465.
10. Shaikh N, Hoberman A, Rockette HE, Kurs-Lasky M (2012) Development of an algorithm for the diagnosis of otitis media. Acad Pediatr 12: 214–218.
11. Carlson LH, Stool SE (1999) Diagnosis. In: RM Rosenfeld, CD Bluestone, editors. Evidence-based otitis media. Hamilton, Ontario, Canada: BC Decker, Inc. 105–115.
12. Hotomi M, Kono M, Togawa A, Arat J, Takei S, et al. (2010) *Haemophilus influenzae* and *Haemophilus haemolyticus* in tonsillar cultures of adults with acute pharyngotonsillitis. Auris Nasus Larynx 37: 594–600.
13. Clinical and Laboratory Standards Institute (2008) Performance standards for antimicrobial susceptibility testing; 18th informational supplement M100–S18. Wayne, PA: Clinical and Laboratory Standards Institute.
14. Nagai K, Shibasaki Y, Hasegawa K, Davies TA, Jacobs MR, et al. (2001) Evaluation of PCR primers to screen for *Streptococcus pneumoniae* isolates and beta-lactam resistance, and to detect common macrolide resistance determinants. *J Antimicrob Chemother* 48: 915–918.
15. Tait-Kamradt A, Clancy J, Cronan M, Dib-Hajj F, Wondrack L, et al. (1997) *mefE* is necessary for the erythromycin-resistant M phenotype in *Streptococcus pneumoniae*. *Antimicrob Agents Chemother* 41: 2251–2255.
16. Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L (1996) Detection of erythromycin-resistant determinants by PCR. *Antimicrob Agents Chemother* 40: 2562–2566.
17. Hotomi M, Fujiwara K, Billal DS, Suzuki K, Nishimura T, et al. (2007) Genetic characteristics and clonal dissemination of beta-lactamase-negative ampicillin-resistant *Haemophilus influenzae* strains isolated from the upper respiratory tract of patients in Japan. *Antimicrob Agents Chemother* 51: 3969–3976.