Effects of Tai Chi and Qigong on the mobility of stroke survivors: A systematic review and meta-analysis of randomized trials

Moonkyoung Park, Rhayun Song, Kyoungok Ju, Jisu Seo, Xing Fan, Ahyun Ryu, YueLin Li, Taejeong Jang

1 College of Nursing, Chungnam National University, Daejeon, Republic of Korea, 2 Department of Nursing, Woosuk University, Wanju, Republic of Korea

☯ These authors contributed equally to this work.
‡ KJ, JS, XF, AR, YL and TJ also contributed equally to this work.
* songry@cnu.ac.kr

Abstract

Background
Stroke survivors often experience impaired mobility and physical functions. Tai Chi and Qigong have been shown to have physical and psychological benefits for stroke patients.

Purpose
To summarize the evidence on Tai Chi and Qigong for improving mobility in stroke survivors, specifically the ability to walk, dynamic balance, and activities of daily living (ADL).

Methods
Independent searches of 16 electronic databases in English, Korean, and Chinese from their inception until December 2021 were conducted by two research teams. Methodological quality was assessed using Cochrane’s risk of bias tool 2.0. Comprehensive Meta-Analysis 3.0 software was used to calculate effect sizes with subgroup analysis and to assess heterogeneity and publication bias.

Results
The meta-analysis included 27 randomized trials (18 with Tai Chi and 9 with Qigong) on stroke survivors (N = 1,919). None of the studies were considered at high risk of bias, about 70% had some concerns, and 30% were considered low risk. Meta-analysis of 27 randomized controlled trials with random-effects models indicated that Tai Chi and Qigong effectively improved mobility, specifically on the ability to walk (Hedges’g = 0.81), dynamic balance (Hedges’g = 1.04), and ADL (Hedges’g = 0.43). The effects of Tai Chi and Qigong were significant for short-term and long-term programs (Hedges’g 0.91 vs. 0.75), and when compared with active controls and no treatment group (Hedges’g 0.81 vs. 0.73).
Conclusion
Tai Chi and Qigong performed for 12 weeks or less were effective in improving the mobility of stroke survivors. Further studies are warranted to assess whether Tai Chi and Qigong work best as an adjunct to rehabilitation, an effective alternative to rehabilitation or as a maintenance strategy, and whether the results could be further optimized by assessing different schools of Tai Chi and Qigong, different types of stroke patients, and different points in the post-stroke recovery process.

PROSPERO registration number
This study has been registered on the UK National Institute for Health Research (http://www.crd.york.ac.uk/PROSPERO) PROSPERO registration number: CRD42020220277.

Background
Stroke is a major worldwide cause of death and disability. Despite the declining stroke incidence, the aging population and accumulating risk factors contribute to an increased lifetime risk of stroke [1]. Stroke survivors often experience permanent disability and have difficulties performing activities of daily living (ADL) and walking [2]. Individuals with stroke also have reduced muscle strength and impaired mobility and physical functions [3], which reduces their quality of life [4].

Complex factors prevent stroke survivors from successfully surviving, and most risk factors are lifestyle-related and largely modifiable [5]. Physical activity, as one of the modifiable behavioral factors, has been shown as a rehabilitation approach and a significant component of comprehensive stroke rehabilitation programs to enhance balance, walking, and physical function among stroke survivors [6–8], while physical inactivity and physical deconditioning could contribute to worsening disability [9].

Tai Chi and Qigong (TCQ) are grounded in the principles of traditional Chinese medicine and have been described as equivalent in terms of essential forms and principles. Qigong is considered the ancient root of all traditional Chinese medicine practices [10], and many branches of Qigong have been developed for over 5,000 years. While hundreds of forms of Qigong have been developed in different regions of China, Tai Chi has become one of the best-known and most highly choreographed forms of performance in Qigong. A growing body of evidence supports the potential efficacy and safety of both Tai Chi and Qigong for various health conditions [11–13], specifically in promoting the motor function of stroke [14–16]. For these reasons, Tai Chi and Qigong are grouped together for this review as the equivalent intervention.

Recovery of mobility function is considered one of the main goals of stroke rehabilitation [17]. Although previous meta-analyses have strengthened the claim that TCQ is beneficial in stroke patients with related mobility function [18–22], only one of these studies performed a subgroup analysis showing that traditional Chinese exercises including TCQ were effective for limb function rehabilitation. At the same time, various types of TCQ with different intervention periods were applied [19]. Most of the other meta-analyses analyzed relatively small numbers of RCT studies, which prevented them from performing subgroup analyses to identify the effect on specific aspects of mobility, such as the ability to walk, dynamic balance, and activities of daily living (ADL).
Therefore, this study aimed to use a meta-analysis combined with recent clinical trials not included in previous reviews written in multi-languages. In addition, subgroup analyses were conducted based on outcome measures, duration of intervention, and control conditions to identify TCQ as an effective alternative intervention among stroke survivors.

Methods

This review was registered in the PROSPERO database (PROSPERO Register code: CRD42020220277, http://www.crd.york.ac.uk/PROSPERO/), and reported based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [23].

Eligibility criteria

This systematic review and meta-analysis included randomized controlled trials (RCTs) published in English, Korean, and Chinese. Participants were stroke patients with either cerebro-vascular infarction or hemorrhage who had been discharged from hospitals and managed at rehabilitation or community health centers. The intervention group was those who applied Tai Chi or Qigong alongside conventional medication. There were no limitations on Tai Chi or Qigong intervention types, durations, or settings. The control group consisted of those who used other forms of physical activity, conventional or no treatment. Pretest and posttest data were also included.

The primary outcome of this review was mobility, defined as the ability to move freely and easily, which consisted of the objective measures of the ability to walk, dynamic balance, and ADL.

Information sources and search strategies

A literature search was conducted between the year of inception and December 2021 on the following databases: Embase, PubMed, Cochrane Library, CINAHL, ScienceDirect, Ovid, DDOD for English, Research Information Sharing Service (RISS), Korean Studies Information Service System, National Digital Science Library, DBPIA, KoreaScholar, National Assembly Library of Korea, and Chinese National Knowledge Infrastructure (CNKI), Wanfang Data, and VIP for Chinese Science Journals Database.

To reduce publication bias, dissertations and conference proceedings were also searched by setting the search terms included in the title and abstract. In addition, the thesis and dissertation database were searched by DODD in English and Research Information Sharing Service (RISS) in the Korean database. In the Chinese database, the thesis and dissertation were automatically searched together during the general search. When duplicate studies were found, peer-reviewed articles were chosen over dissertations or conference proceedings.

We divided the search team into Korean, English, and Chinese teams in pairs. Each researcher independently searched their assigned databases to agree on a decision during the screening process and to minimize the number of missing studies. The search team used consistent search strategies. First, a search strategy was established using English MeSH and Emtree search terms. The Chinese database search strategy was then based on confirming it with the Chinese team and translating it into Chinese terms. In the Korean database, MeSH terms and corresponding keywords in Korean were used. All search strategies were established by sharing among the research teams, and progress was checked and shared through research meetings. Additional manual searches were conducted on Google Scholar and the references in the retrieved articles. MeSH and Emtree search terms were used, with Boolean operators used to combine these terms. S1 Table lists the search strategies for the English databases.
CNKI terms were the main terms for searching Chinese databases, including “Taichi (太\) OR “Qigong （气功）” OR “Taiji Quan （太极拳）” OR “Baduan jin （八段锦）” (S2 Table). All articles selected from each database were screened for duplicates and managed using EndNote X9.3. Microsoft Excel was used to summarize the following characteristics of the included studies: year of publication, language, population, intervention type, outcome variables, and comparison groups.

Risk of bias assessment
Two teams of reviewers independently assessed the bias risk of each selected English and Chinese study according to Cochrane’s risk of bias tool 2.0 (Cochrane RoB 2.0) [24]. Several issues arose when applying the original Cochrane RoB version, including interrater inconsistency in some domains, potential misunderstandings of selective reporting domains, and other types of bias. The updated Cochrane RoB 2.0 contained five domains: bias arising from the randomization process, bias in deviations from intended interventions, bias from missing outcome data, bias in outcome measurements, and bias in reported-result selection. The judgment on bias risk arising from each domain was made by an algorithm, leading to final decisions on ‘low-risk bias’, ‘some concerns’, or ‘high-risk bias’ [24]. Any discrepancy between two independent reviewers [JS&AR for English, KJ&TJ for Korean, FX&YL for Chinese] was discussed among the reviewers or a third expert reviewer [RS for the Korean or English team, MP for the Chinese team] if necessary to generate consensus.

Data extraction and analysis
Comprehensive Meta-Analysis (version 3, Biostat, USA) was used to combine the effect sizes and assess heterogeneity and publication bias. The analyzed data included the sample description (sample size, and Tai Chi or Qigong intervention), duration (duration of one session, frequency, and intervention length), mobility outcome measure (the ability to walk, dynamic balance, and ADL), and control condition (active or no-treatment). As a mobility outcome, the ability to walk was measured using Timed Up and Go (TUG), gait (a subscale of the Short Physical Performance Battery [SPPB]), Dynamic Gait Index, functional ambulation category, computerized gait analysis, 10-m walk tests, 6-min walk tests, and 2-min step tests. Dynamic balance was measured using the Berg Balance Scale (BBS), and ADL was measured using the Barthel Index (BI) or modified Barthel Index (MBI) in all included studies.

Two independent researchers extracted and confirmed all available statistical data for the included studies and then entered them into an Excel spreadsheet. Quantitative data extraction included pre- and post-test data means and standard deviations, the mean and standard deviation of each group’s changed scores, and the sample size of each group. Hedges’ g was used to quantify effect sizes and 95% confidence intervals (CIs). A random-effects model was used for the analysis so that the results of this analysis could be compared with similar studies [25]. A subgroup analysis was conducted on intervention duration (less than 12 weeks as short-term vs. 12 weeks or longer as long-term), control condition (active control vs. no-treatment control), and outcome measures (the ability to walk vs. dynamic balance vs. ADL). The effect-size direction was determined by the difference between mean values for the experimental and control groups.

Heterogeneity was tested using 95% prediction intervals (PIs) computed using the CMA prediction intervals program [26]. Multiple control groups or outcomes included in single studies were entered separately when reporting mean effect sizes [27]. Publication bias was assessed using funnel plots [27] and Egger’s regression test (p >.05) [28].
Results

Study selection

As shown in Fig 1, selecting literature for the qualitative and quantitative analyses was performed in line with the Cochrane guidelines and reported using PRISMA [23]. Of the 6,299 citations identified in the databases until December 2021, 3,282 were from Embase and other international web-based databases, 1,966 were from Korean databases, and 1,051 were from Chinese databases. Manual searches identified two additional citations. Duplicate citations
were removed by reviewing titles and abstracts based on the inclusion criteria. After initial screening, the full texts of 134 articles were reviewed, and those without RCTs ($k = 23$), TCQ ($k = 11$), not matched mobility outcomes ($k = 49$), those with duplicate participants ($k = 4$), no data ($k = 1$) and not peer-reviewed studies ($k = 8$) were excluded. Qualitative synthesis and quantitative analysis were conducted on 27 studies (Fig 1).

Quality of trials and bias risk

Bias risk was assessed using Cochrane RoB 2.0 to determine the bias level of each domain via an algorithm [24]. The domain-level judgments of bias risk were determined as a low bias risk if all domains had a low risk, some concerns if at least one domain had concerns, or a high bias risk if at least one domain had a high risk. A randomization process was described in all studies, but only seven were considered to have a low bias risk (29.6%). In comparison, there were some concerns about most studies (70.4%) due to a lack of a specific description of concealed or random allocation sequencing. No study suggested a baseline imbalance, which was the criterion for a high bias risk in the randomization process. For bias due to deviations from the intended intervention, 26 studies had a low bias risk (96.3%), and there were some concerns about one study (3.7%). Most studies involving Tai Chi or Qigong did not apply blinding to participants and staff; however, no deviation from the intended intervention was suspected in the experimental context.

In the domains of bias risk due to missing outcome data and outcome measurements, there were some concerns about only one study (3.7%), with most studies considered a low bias risk. Some of the study outcome measurements were conducted with blinding ($k = 13$), not specified ($k = 8$), or no blinding ($k = 6$), but mostly objective or valid measures were used as study outcomes. Regarding the bias risk in the selection of the reported results, there were some concerns about three studies (3.7%) and most studies (96.3%) had a low bias risk. The overall assessment indicated that there were some concerns about 70.4% of the studies, 29.6% had a low bias risk, and no high bias risk (Fig 2).

Modality and medium

The main characteristics of the 27 RCTs (18 using Tai Chi [14, 16, 29–44] and 9 using Qigong [45–53]) are listed in Table 1. These studies were conducted in China ($k = 23$), USA ($k = 2$), and Korea ($k = 2$). The intervention settings for stroke patients were the hospital outpatient ($k = 19$) and community ($k = 8$). The sample size of these studies ranged from 16 to 244 (1,919 total stroke patients) with a mean age range of 45 to 69 years. About 62.1% of the participants were male.

Stroke diagnoses consisted of ischemic or hemorrhagic infarction, including either hemiparesis or hemiplegia. Most studies did not include stroke duration as an inclusion criterion, with patients recruited within 3 months after the diagnosis in four studies, longer than 3 months in five studies, and longer than 6 months in two studies.

The intervention types varied for TCQ, while Yang style Tai Chi ($k = 9$) and Baduanjin Qigong ($k = 8$) were mostly applied. The intervention was defined as short term ($k = 11$) when performed for less than 12 weeks, with ranges of 2–14 sessions and 1–5 hours per week. The other 17 studies applied long-term interventions (12 weeks or longer), with ranges of 12–48 weeks, 2–14 sessions per week, and 20–90 min per session. The comparison groups were either a no-treatment control (received usual or no treatment) or an active control (received rehabilitation training, acupuncture, a national exercise program [e.g., the SilverSneakers app], or balance training).

Safety monitoring

No adverse events (AEs) occurred during the TCQ intervention in 7 of the 27 included studies [14, 16, 29, 31, 42, 50, 51], while nine studies implemented safety measures.
monitoring by therapists, staff, or caregivers [30, 32, 34, 36, 38, 39, 41, 45, 49]. Neither safety monitoring nor AEs during the program was reported for 59.3% (k = 16) of the studies.

Meta-analysis: Synthesis of results

Primary outcome: Total effect on mobility. The meta-analysis of 27 RCTs with random-effects models indicated that TCQ was effective in improving the mobility of stroke survivors (Hedges' $g = 0.81$, 95% CI = 0.57 to 1.05). Potential heterogeneity across studies was indicated by a 95% prediction interval (PI) of –0.39 to 2.00 (Fig 3A). Publication bias was suspected based on asymmetric funnel plots and Egger’s regression test ($p = .018$) (S1 Fig).

Subgroup analysis

1. Subgroup analysis by the ability to walk, dynamic balance, and activities of daily living
 Mobility was assessed as an outcome measure using the ability to walk ($k = 15$), dynamic balance ($k = 15$), or ADL ($k = 12$). Hedges' g was calculated for each mobility measure: the ability to walk, dynamic balance, and ADL (Fig 3B).
 The ability to walk was assessed in 15 studies using TUG, gait analysis, 2-min step tests, 10-m walking tests, and 6-min walking tests. The significant effect of TCQ on the ability to walk was indicated by a Hedges' g of 0.43 (95% CI = 0.21 to 0.65; 95% PI = –0.35 to 1.20). No publication bias was suspected based on funnel plots and Egger’s regression test ($p = .176$) (S1 Fig).
 Dynamic balance was measured using BBS in all included studies, and a significant large
Table 1. Characteristics of the included studies.

Study, year	Country Setting	Language	Participants	Disease-related characteristics	Mean age (years)†	Type	Intervention duration (weeks)	Intensity (per week)	Duration (weeks)	Comparison	Outcome measure	Outcomes
Au-Yeung, 2009	Hong Kong, Community	English	59 (33:26) 35	Stroke time >6months	63.4 ±10.7	Tai Chi, Sun style	60min	1-3h	12	Stretching and education	TUG	
Liu, 2009	China, Community	Chinese	24 (14:10) 30	Unilateral hemiplegia	52.1 ±14.1	Tai Chi, Yang style	30min	1h	12	Home rehabilitation training	BBS, Caregiver support	
Bai, 2011	China, Hospital	Chinese	30 (22:8) 30	Ischemic: 61.7%	53.7 ±4.5	Qigong (Baduanjin)	20min	14	4	Balance training	BI	
Cai, 2011	China, Community	Chinese	30 (20:10) 30	Stroke time <6months	60.3 ±10.5	Sitting Qigong (Baduanjin)	30min	4/5	12	No treatment	SPPB, 2-min step test	
Taylor-Piliae, 2012	USA, Hospital (OPD)	English	16 (10:6) 30	Stroke time <3months	69.3 ±11.0	Tai Chi, Yang style	1h	3	12	No treatment	SPPB (gait), UC, 10MWT, TUG	
Yang, 2013	China, Hospital	English	50 (35:15) 30	First stroke	54.3 ±13.8	Tai Chi, not specified	45min	7	4	Balance training	BI, BBS	
Kim, 2015	Korea	Hospital	11 (7:4) 11	First stroke	53.5 ±11.5	Tai Chi, not specified	1h2	2	6	Physical therapy	ADL (NI)	
Zhang, 2016	China, Hospital	Chinese	31 (17:14) 31	Stroke	51.4 ±15.6	Tai Chi, not specified	40min	3	8	Routine rehabilitation training	BI, BBS, IOMVS, gait analysis	
Fu, 2016	China, Hospital	Chinese	30 (19:11) 30	Stroke	50.5 ±7.6	Tai Chi, not specified	40min	6	8	No treatment	BBS, gait analysis	
Wang, 2016	China, Community	Chinese	14 (9:5) 16	Stroke	51 ±7.4	Tai Chi, not specified	40min	5	12	Balance training	BBS	
Yang, 2016	China, Hospital	Chinese	26 (17:9) 21	Stroke	51.4 ±15.6	Tai Chi, not specified	40min	3	8	Balance training	BI, BBS	
Zhang, 2016	China, Hospital	Chinese	31 (17:14) 31	Stroke	51.4 ±15.6	Tai Chi, not specified	40min	3	8	Balance training	BI, BBS	
Chen, 2018	Hong Kong	English	8	Stroke ≥3 months	80.7 ±7.0	Tai Chi, not specified	40min	3	8	No treatment	NI	

Note: E (M:F) = Event (Male:Female), C (M:F) = Control (Male:Female), ADL = Activities of Daily Living, BI = Balance Index, BBS = Berg Balance Scale, UC = Upper Limb Coordination, TUG = Timed Up and Go Test, SPPB = Short Physical Performance Battery, DASH = Disabilities of the Arm, Shoulder and Hand, 10MWT = 10-Meter Walk Test, NRS = Numerical Rating Scale, 100MWT = 100-Meter Walk Test, FLS = Fugl-Meyer Assessment, NRS = Numerical Rating Scale, GMFCS = Gross Motor Function Classification System, NIS = National Institutes of Health Stroke Scale, SARA = Scale for the Assessment of Ataxia in Stroke, 6MWT = 6-Meter Walk Test, 15F-MWT = 15-Foot Walk Test, TUG = Timed Up and Go Test, TUG = Timed Up and Go Test, TUG = Timed Up and Go Test.
Study year	Country	Setting	Language	Participants	Disease-related characteristics	Mean age (years)	Type	Intensity (per week)	Duration (weeks)	Comparison	Outcome measure	Safety monitoring
Xie, 2018	China	Hospital	English	120 (83.37)	Ischemic: 74.2% Hemorrhage: 25.8%	60.9±8.7	Tai Chi, Yang style	1×5	12	Balance training	BBS, TUG, MBI	No AEs
Zhang, 2018	China	Hospital	English	45 (27:18)	Ischemic: 60.0% Hemorrhage: 40%	63.7±6.8	Tai Chi, Yang style	40min×5	48	No treatment	BI, NR	
Ding, 2019	China	Hospital	Chinese	57 (33:24)	Ischemic: 46.9% Hemorrhage: 53.1%	55.4±4.7 (E) 56.3±3.2 (C)	Qigong (Baduanjin)	20min×5	4	Balance training	BBS	Monitored
Xie, 2019	China	Hospital	Chinese	30 (13:7)	Ischemic: 50% Hemorrhage: 50%	51.1±12.9 (E) 53.9±13.0 (C)	Qigong (Baduanjin)	50min×5	3	No treatment	BI, BBS, 6MWT	Monitored
Fan, 2020	China	Hospital	Chinese	43 (29:14)	Ischemic: 61.6% Hemorrhage: 38.4%	63.4±5.0 (E) 63.8±5.3 (C)	Tai Chi, not specified	1.5h×3	12	No treatment	BBS, TUG, 6MWT	Monitored
Wang, 2020	China	Hospital	Chinese	30 (16:14)	Stroke time	55.1±6.3 (E) 55.9±6.2 (C)	Qigong (Baduanjin)	12min×5	4	No treatment	MBI	NR
Yang, 2020	China	Hospital	Chinese	30 (18:12)	Ischemic: 73.3% Hemorrhage: 26.7%	64.0±3.9 (E) 62.9±4.7 (C)	Tai Chi, Yang style	30min×2	6	No treatment	BI	Assist patients
Yu, 2020	China	Community	English	35 (21:14)	Stroke time ≥3months Ischemic: 57.7% Hemorrhage: 42.3%	63.0±8.9 (E) 58.7±9.7 (C)	7 step forms Tai Chi from 24-form Tai Chi	40min×3	12	Conventional rehabilitation program	Gait analysis, BBS	No AEs
Zheng, 2020	China	Community	English	24 (19:5)	Stroke time >3months (first ever stroke) Ischemic: 47.9% Hemorrhage: 52.1%	61.6±9.2 (E) 62.8±6.4 (C)	Qigong (Baduanjin)	40min×3	24	Routine rehabilitation treatment	MBI	No AEs
Zheng, 2021	China	Hospital	English	30 (24:6)	Stroke time <2months (first ever stroke) Ischemic: 78.3% Hemorrhage: 21.7%	63.5±10.4 (E) 67.2±9.2 (C)	Qigong (Liuzhutai)	45min×1	3	Conventional respiration training	BBS, MBI	NR
Song, 2021	Korea	Hospital (OPD)	English	18 (10:8)	Ischemic: 58.8% Hemorrhage: 41.2%	58.7±17.1 (E) 57.1±10.7 (C)	Modified Tai Chi	50min×2	24	Symptom management program	BBS, FAC, K-MBI	No AEs
Yuen, 2021	Hong Kong	Hospital (OPD)	English	29 (15:14)	Stroke time >3months (first ever stroke) Ischemic: 62.1% Hemorrhage:37.9%	63.1±10.6 (E) 62.0±13.1 (C)	Qigong (Baduanjin)	50min×3	16	Stretching training	TUG, MBI	No AEs

*Data are mean±standard deviation or range values.
Abbreviations: M, males; F, females; MBI, modified Barthel Index; BBS, Berg Balance Scale; TUG, Timed Up and Go; BI, Barthel Index; SPPB, Short Physical Performance Battery; E, experimental group; C, control group; 10MWT, 10-m walking test; ADL, activities of daily living. AC, active control group; UC, no-treatment group; OPD, outpatient department; 10MWS, 10-m maximum walking speed; 6MWT, 6-min walking test; FAC, Functional Ambulation Category; K-MBI, Korean Version of the Modified Barthel Index; AEs, adverse events; NR, not reported.
The effect size of TCQ on balance (k = 15) was indicated (Hedges’ g = 1.04; 95% CI = 0.65 to 1.43; 95% PI = –0.54 to 2.62), with potential heterogeneity (Fig 3B). Publication bias was suspected based on funnel plots and Egger’s regression test (p = .024) (S1 Fig).

ADL was measured using BI or MBI. The significant effect size of TCQ on ADL (k = 12) was indicated by a Hedges’ g of 0.63 (95% CI = 0.34 to 0.91; 95% PI = –0.38 to 1.63). The symmetrical funnel plot and Egger’s regression test (p = .110) suggested that publication bias was not present (S1 Fig).

2. Subgroup analysis by program duration

A subgroup analysis was conducted based on program duration, presented as either short term (k = 10) or long term (k = 17). The effect sizes of TCQ on mobility were indicated by Hedges’ g values of 0.91 (95% CI = 0.66 to 1.16) and 0.87 (95% CI = 0.62 to 1.12) for short- and long-term interventions, respectively.

3. Subgroup analysis by comparison groups

A subgroup analysis was conducted by comparison groups (Table S2), presented as Tai Chi / Qigong versus no treatment (k = 17), Tai Chi / Qigong versus control (k = 10), and Tai Chi / Qigong versus other interventions (k = 12). The effect sizes of TCQ on mobility were indicated by Hedges’ g values of 0.87 (95% CI = 0.62 to 1.12) and 0.91 (95% CI = 0.66 to 1.16) for Tai Chi / Qigong versus control and Tai Chi / Qigong versus other interventions, respectively.

Fig 3. Forest plots of the effects of Tai Chi and Qigong on mobility.

https://doi.org/10.1371/journal.pone.0277541.g003

PLOS ONE

Effects of Tai Chi and Qigong on mobility for stroke survivors

PLOS ONE | https://doi.org/10.1371/journal.pone.0277541 November 17, 2022 10 / 16

A. Total effect on mobility

B. Subgroup analysis by outcome measurements

C. Subgroup analysis by program duration

D. Subgroup analysis by comparison groups
respectively. The effect of TCQ on mobility was significant regardless of the duration of intervention, but there is no significant difference in the effect sizes between short- and long-term interventions ($Q = 0.37$, $p = .544$) (Fig 3C). The prediction interval indicated the presence of heterogeneity among the included studies. No publication bias was considered based on funnel plots and Egger’s regression test for the short-term ($p = .538$), but publication bias was suspected in the long-term with significant Egger’s regression test ($p = .038$) (S1 Fig).

3. Subgroup analysis according to comparison groups
A subgroup analysis was conducted between active control ($k = 14$) and no-treatment control ($k = 15$). The effect sizes of TCQ on mobility were indicated by Hedges’ g values of 0.81 (95% CI = 0.43 to 1.18; 95% PI = –0.69 to 2.31) and 0.73 (95% CI = 0.47 to 0.99; 95% PI = –0.23 to 1.69) for active control and no treatment control, respectively. The effect sizes of TCQ on mobility were significant regardless of the types of comparison groups, but no significant difference was found between active control and no-treatment control groups ($Q = 0.12$, $p = .730$) (Fig 3D). The funnel plot was symmetrical, but significant Egger’s regression tests ($p = .038$) suggested publication bias for active control. There was no publication bias for no-treatment control ($p = .687$) (S1 Fig).

Discussion
Meta-analysis of 27 RCTs with 1,919 subjects found TCQ improved mobility, including the ability to walk, dynamic balance, and ADL in stroke patients. The effect size of the random effect model remained significant for different intervention duration, and even when compared with active control groups such as physiotherapy, balance training, or combined exercise programs.

The ability to walk was measured in our included studies using TUG, PPB, gait analysis, and walking tests, with PIs of –0.66 to 1.32. While some concerns about heterogeneity exist, these findings indicate the potential benefits of TCQ in improving the ability to walk (Hedges’ $g = 0.43$) among stroke survivors. A previous meta-analysis involving five RCTs assessed the ability to walk using TUG and SPPB and similarly found a small effect size [20].

Our analysis of dynamic balance based on 20 studies indicated the inclusion of TCQ in stroke rehabilitation programs would improve dynamic balance (Hedges’ $g = 1.04$) among stroke survivors for a duration less than 12 weeks. Previous meta-analyses have supported that TCQ affects dynamic balance when performed two or three times weekly for 6–12 weeks [20, 54]. The effect of TCQ on ADL (Hedges’ $g = 0.63$) in our subgroup analysis was also supported by a previous meta-analysis of 31 RCTs with traditional Chinese exercise as an intervention (MD = 15.60 on the BI scale) [19].

However, the effects of TCQ on mobility have varied between outcome measures or intervention dose [54]. Our meta-analysis indicated that TCQ effectively improved the ability to walk with a relatively small effect size (Hedges’ $g = 0.43$), which became insignificant in the subgroup analysis after adjusting for intervention durations. According to a meta-analysis of 19 RCTs with stroke patients, Tai Chi was effective in improving mobility when performed in sessions lasting 30–60 min for five or more times each week [54]. A review of 75 RCTs on stroke survivors also suggested that exercise interventions were effective in improving mobility (1) regardless of whether the duration was less than 12 weeks or at least 12 weeks, (2) with intensity at 60–80% of maximum heart rate, and (3) when performed regularly (mostly 3–5 days/week) and progressively [55]. This information could be useful when determining the optimal intervention dose for improving mobility in stroke survivors. An optimal dose of the
training content would be more beneficial for stroke survivors than increasing the intensity or duration [55].

Multiple clinical studies have considered TCQ safe and feasible interventions for improving mobility in stroke survivors [16, 29, 31, 32]. Adverse events (AEs) reporting within clinical trials is essential in assessing intervention safety, preferably via full descriptions of AEs monitoring protocols and/or specific AEs reported by the participants. Less than half the studies in this meta-analysis mentioned safety monitoring procedures (K = 12), and only 5 reported no AEs. This is slightly better than the 35% reporting rate identified in a previous study [56].

Some strengths and limitations should be considered when interpreting the results. The strengths of this study would be that it drew from three different language databases, including from countries where TCQ is widely practiced and that the quality of the included trials is fairly good—with none at high risk of bias and almost 30% at low risk of bias. In addition, with the exception of walking ability, there appeared to be a low possibility of publication bias when assessed for the different components of mobility.

The main limitation of this study was the heterogeneity among the studies due to the wide range of stroke-related symptoms and rehabilitation stages. The types of intervention, although all based on traditional Chinese principles, were different in timing, intensity, and duration. Moreover, mobility was assessed using various outcome measurement methods. A subgroup analysis was performed, which defined mobility using the ability to walk, dynamic balance, and ADL, yet the PI was still large (from −0.54 to 2.62), indicating heterogeneity across the included studies.

Implication

Further studies are warranted to assess whether TCQ works best as an adjunct to rehabilitation, an effective alternative to rehabilitation or as a maintenance strategy, and whether the results could be further optimized by assessing different schools of TCQ, different types of stroke patients, and different points in the post-stroke recovery process. Although TCQ has been considered safe and feasible for stroke survivors, all future trials should have careful safety monitoring plans in place and report adverse events on the findings.

Conclusion

Our review suggests that TCQ was effective in improving mobility including the ability to walk, dynamic balance, and ADL among stroke survivors for programs of both shorter and longer duration. This effect of TCQ remained significant when compared with other alternative interventions. As an effective alternative to rehabilitation, TCQ could effectively applied to stroke survivors to promote functional recovery through improving the ability to walk, dynamic balance, and ADL. The heterogeneity of the included studies should be considered.

Supporting information

S1 Checklist. PRISMA 2009 checklist. (DOCX)

S1 Fig. Funnel plots of the effects of Tai Chi and Qigong on mobility. (TIF)

S1 Table. Examples of search strategies in PubMed and Embase. (DOCX)
S2 Table. Korean and Chinese search terms.

Author Contributions

Conceptualization: Rhayun Song.

Data curation: Kyoungok Ju, Jisu Seo, Xing Fan, Ahyun Ryu, YueLin Li, Taejeong Jang.

Formal analysis: Moonkyoung Park, Jisu Seo.

Funding acquisition: Rhayun Song.

Methodology: Moonkyoung Park, Kyoungok Ju, Jisu Seo, Xing Fan, Ahyun Ryu, YueLin Li, Taejeong Jang.

Project administration: Rhayun Song.

Resources: Xing Fan, YueLin Li.

Software: Moonkyoung Park.

Supervision: Rhayun Song.

Validation: Moonkyoung Park, Kyoungok Ju, Xing Fan, YueLin Li, Taejeong Jang.

Visualization: Moonkyoung Park.

Writing – original draft: Rhayun Song.

Writing – review & editing: Moonkyoung Park, Kyoungok Ju, Jisu Seo, Xing Fan, Ahyun Ryu, YueLin Li, Taejeong Jang.

References

1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020; 141(9):e139–e596. Epub 2020/01/30. https://doi.org/10.1161/CIR.0000000000000757 PMID: 31992061

2. Tyson SF, Hanley M, Chillala J, Selley AB, Tallis RC. The relationship between balance, disability, and recovery after stroke: predictive validity of the Brunel Balance Assessment. Neurorehab Neural Repair. 2007; 21(4):341–6. Epub 2007/03/14. https://doi.org/10.1177/1545968306296666 PMID: 17353462

3. Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000; 31(6):1210–6. Epub 2000/06/03. https://doi.org/10.1161/01.str.31.6.1210 PMID: 10835434

4. Wu S, Chen J, Wang S, Jiang M, Wang X, Wen Y. Effect of Tai Chi Exercise on Balance Function of Stroke Patients: A Meta-Analysis. Med Sci Monit Basic Res. 2018; 24:210–5. Epub 2018/12/07. https://doi.org/10.12659/MSMBR.911951 PMID: 30504762

5. Nichols-Larsen DS, Clark P, Zeringue A, Greenspan A, Blanton S. Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke. 2005; 36(7):1480–4. https://doi.org/10.1161/01.STR.0000170706.13594.4f PMID: 15947263

6. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006; 19(1):84–90. Epub 2006/01/18. https://doi.org/10.1097/01.wco.0000200544.29915.cc PMID: 16415682

7. Pollock A, Baer G, Campbell P, Choo PL, Forster A, Morris J, et al. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev. 2014;(4):CD001920. Epub 2014/04/24. https://doi.org/10.1002/14651858.CD001920.pub3 PMID: 24756870

8. Gordon NF, Gulanick M, Costa F, Fletcher G, Franklin BA, Roth EJ, et al. Physical activity and exercise recommendations for stroke survivors: an American Heart Association scientific statement from the Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention; the Council on Cardiovascular Nursing; the Council on Nutrition, Physical Activity, and Metabolism; and the Stroke Council. Circulation. 2004; 109(16):2031–41. https://doi.org/10.1161/01.CIR.0000126280.65777.A4 PMID: 15117863
9. Macko RF, Ivey FM, Forrester LW, Hanley D, Sorkin JD, Katzel LI, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. Stroke. 2005; 36(10):2206–11. Epub 2005/09/10. https://doi.org/10.1161/01.STR.0000181076.91805.89 PMID: 16151035

10. Jahnke R. The healing promise of qi: Creating extraordinary wellness through qigong and tai chi: McGraw Hill Professional; 2002.

11. Klein PJ, Roger Schneider M. Qigong and tai chi as therapeutic exercise: survey of systematic reviews and meta-analyses addressing physical health conditions. Alternative therapies in health and medicine. 2019; 25(5):48–53. PMID: 31221939

12. Yeh GY, Wang C, Wayne PM, Phillips R. Tai chi exercise for patients with cardiovascular conditions and risk factors: a systematic review. Journal of cardiopulmonary rehabilitation and prevention. 2009; 29(3):152. https://doi.org/10.1097/HCR.0b013e3181a33739 PMID: 19471133

13. Lan C, Chen SY, Wong MK, Lai JS. Tai chi chuan exercise for patients with cardiovascular disease. Evidence-Based Complementary and Alternative Medicine. 2013; 2013. https://doi.org/10.1155/2013/983206 PMID: 24348732

14. Song R, Park M, Jang T, Oh J, Sohn MK. Effects of a tai chi-based stroke rehabilitation program on symptom clusters, physical and cognitive functions, and quality of life: a randomized feasibility study. International Journal of Environmental Research and Public Health. 2021; 18(10):5453. https://doi.org/10.3390/ijerph18105453

15. Huang S, Yu X, Yu Y, Qiao J, Wang H, Jiang LM, et al. Body weight support-Tai Chi footwork for balance of stroke survivors with fear of falling: A pilot randomized controlled trial. Complement Ther Clin Pract. 2019; 37:140–7. Epub 2019/10/02. https://doi.org/10.1016/j.ctcp.2019.101061 PMID: 31570211

16. Xie G, Rao T, Lin L, Lin Z, Xiao T, Yang M, et al. Effects of Tai Chi Yunshou exercise on community-based stroke patients: a cluster randomized controlled trial. Eur Rev Aging Phys Act. 2018; 15:17. Epub 2018/12/20. https://doi.org/10.1186/s11556-018-0206-x PMID: 30564291

17. Sharma N, Pomeroy VM, Baron J-C. Motor imagery: a backdoor to the motor system after stroke? Stroke. 2006; 37(7):1941–52. https://doi.org/10.1161/01.STR.0000226902.43357.fc PMID: 16741183

18. Chen BL, Guo JB, Liu MS, Li X, Zou J, Chen X, et al. Effect of Traditional Chinese Exercise on Gait and Balance for Stroke: A Systematic Review and Meta-Analysis. PLoS One. 2015; 10(8):e0135932. Epub 2015/08/21. https://doi.org/10.1371/journal.pone.0135932 PMID: 26291978

19. Ge L, Zheng QX, Liao YT, Tan JY, Xie QL, Rask M. Effects of traditional Chinese exercises on the rehabilitation of limb function among stroke patients: A systematic review and meta-analysis. Complement Ther Clin Pract. 2017; 29:35–47. Epub 2017/11/11. https://doi.org/10.1016/j.ctcp.2017.08.005 PMID: 29122267

20. Li GY, Wang W, Liu GL, Zhang Y. Effects of Tai Chi on balance and gait in stroke survivors: A systematic meta-analysis of randomized controlled trials. J Rehabil Med. 2018; 50(7):582–8. Epub 2018/05/08. https://doi.org/10.2340/16501977-2346 PMID: 29736553

21. Li Y, Zhang Y, Cui C, Liu Y, Lei M, Liu T, et al. The effect of Tai Chi exercise on motor function and sleep quality in patients with stroke: A meta-analysis. Int J Nurs Sci. 2017; 4(3):314–21. Epub 2017/07/05. https://doi.org/10.1016/j.ijnss.2017.06.001 PMID: 31406759

22. Lyu D, Lyu X, Zhang Y, Ren Y, Yang F, Zhou L, et al. Tai Chi for Stroke Rehabilitation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Physiol. 2018; 9:983. Epub 2018/08/10. https://doi.org/10.3389/fphys.2018.00983 PMID: 30090071

23. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009; 62(10):1006–12. Epub 2009/07/28. https://doi.org/10.3389/fphys.2018.00983 PMID: 19631508

24. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019; 366:i4898. Epub 2019/08/30. https://doi.org/10.1136/bmj.i4898 PMID: 31462531

25. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010; 1(2):97–111. Epub 2010/04/01. https://doi.org/10.1002/jrsm.12 PMID: 20661376

26. Borenstein M. Common mistakes in meta-analysis and how to avoid them. Englewood, NJ, USA: Biostat, Inc.; 2019 August 27, 2019. 409 p.

27. Higgins JP, Thomas GA, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of Interventions Version 6.1: The Cochrane Collaboration; 2020 [cited 2020 December 30]. https://training.cochrane.org/handbook/current.

28. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315(7109):629–34. Epub 1997/10/06. https://doi.org/10.1136/bmj.315.7109.629 PMID: 9310563
29. Chan WN, Tsang WW. The effect of Tai Chi training on the dual-tasking performance of stroke survivors: a randomized controlled trial. Clin Rehabil. 2018; 32(8):1076–85. Epub 2018/05/23. https://doi.org/10.1177/0269215518777872 PMID: 29783899

30. Fan J, Guo YP, Guo PF. Effect of modified Tai Chi on balance in stroke patients and on serum alkaline phosphatase, neuropeptide Y and interleukin-6 expression. Chin J Mult Organ Dis Elderly. 2020; 19(02):103–8. https://doi.org/10.11915/j.issn.1671-5403.2020.02.026

31. Taylor-Piliae RE, Coull BM. Community-based Yang-style Tai Chi is safe and feasible in chronic stroke: a pilot study. Clin Rehabil. 2012; 26(2):121–31. Epub 2011/09/23. https://doi.org/10.1177/0269215511419381 PMID: 21937523

32. Taylor-Piliae RE, Hoke TM, Hepworth JT, Latt LD, Najafi B, Coull BM. Effect of Tai Chi on physical function, fall rates and quality of life among older stroke survivors. Arch Phys Med Rehabil. 2014; 95(5):816–24. Epub 2014/01/21. https://doi.org/10.1016/j.apmr.2014.01.001 PMID: 24440643

33. Wang XB, Hou MJ, Tao J, Lin LL, Rao T, Zhong JR, et al. The effect of Tai Chi Yunshou on gait of community-based hemiplegic patients after stroke. Chin J Rehabil Med. 2016; 31(12):1328–33. https://doi.org/10.3969/j.issn.1001-1242.2016.12.007

34. Au-Yeung SS, Hui-Chan CW, Tang JC. Short-form Tai Chi improves standing balance of people with chronic stroke. Neurorehabilitation and Neural Repair. 2009; 23(5):515–22. https://doi.org/10.1177/1545968308326425 PMID: 19129308

35. Chen T. Effects of martial arts on recovery of motor function and nerve excitability of stroke patients. NeuroQuantology. 2018; 16(6).

36. Fu C, Zhang Q. Effects of Taijiquan on balance function and walking ability of stroke hemiplegic patients in convalescent phase. J Rehabil Med. 2016; 31:536–9.

37. Kim H, Kim YL, Lee SM. Effects of therapeutic Tai Chi on balance, gait, and quality of life in chronic stroke patients. International Journal of Rehabilitation Research. 2015; 38(2):156–61. https://doi.org/10.1097/MRR.0000000000000103 PMID: 25591053

38. KQ Y, BL L. Effect of Taijiquan on for patients with unilateral spatial neglect after stroke. Reflexology and Rehabilitation Medicine. 2020; 29(12):85–7. https://doi.org/10.19589/j.cnki.issn2096-7950.2020.12.08

39. Liu T, Qin P, Chen X. Effect of Taijiquan on balance function in stroke patients. Chinese Journal of Physical Medicine and Rehabilitation. 2009; 31(11):781–2.

40. Yang H, Tang Q. Clinical observation of Tai Chi for rehabilitation of motor dysfunction in stroke patients. Chinese Journal of Rehabilitation Medicine. 2016; 31(10):1146–8.

41. Yang Z, Liu D, Chang Y, Sun P, Zhao G, Jia L. Clinical study on Tai-Chi balance therapeutics in treating balance disorders of hemiplegia after stroke. Contemp Med. 2013; 19:5–7.

42. Yu X-M, Jin X-M, Lu Y, Gao Y, Xu H-C, Xue X, et al. Effects of body weight support-Tai Chi footwork training on balance control and walking function in stroke survivors with hemiplegia: a pilot randomized controlled trial. Evidence-based Complementary and Alternative Medicine. 2020; 2020. https://doi.org/10.1155/2020/9218078 PMID: 33414842

43. Zheng W, Zhang Y, Jiang X, Chen R, Xiao W. Effects of persistent Tai Chi exercise on rehabilitation in ischemic stroke: a prospective randomized controlled trial. J Integr Chin Med. 2015; 13:304–7.

44. Zhang L, Zhao J, Quan S-l, Liu Y-h, Shi X-h, Li Z-g, et al. Effect of acupuncture plus Tai Ji Quan on the recovery of neurological function and depression state in post-stroke depression patients. Journal of Acupuncture and Tuina Science. 2018; 16(2):96–103.

45. Xie BJ, Yang M, Bai YL. Clinical study on the effect of Baduanjin on motor rehabilitation of stroke patients. West China Med J. 2019; 34(05):515–9. https://doi.org/10.7507/1002-0179.201903234

46. Bai Y, Mao H, Guo J, Zhang M. Research on baduanjin combined with function training in improving balance functions of stroke patients. China Journal of Chinese Medicine. 2011; 10:1231–2.

47. Cai W, Liang C. Effects of sitting Baduanjin on the ability of activities daily living of patients with stroke sequelae in community. J Nurs Adm. 2011; 11(11).

48. Wang J, Gui P, Xie Y. Rehabilitation effect of Baduanjin group therapy on post-stroke fatigue. J Clin Exp Med. 2020; 19:399–403.

49. Y D, CC G, N W, XC N, L L. Effect of Baduanjin’s third part combined with conventional balance training on balance function of patients with cerebral stroke. Shandong J Chin Med. 2019; 38(7):673–6. https://doi.org/10.16295/j.cnki.0257-358x.2019.07.013

50. Yuen M, Ouyang H, Miller T, Pang MY. Baduanjin Qigong Improves Balance, Leg Strength, and Mobility in Individuals With Chronic Stroke: A Randomized Controlled Study. Neurorehabilitation and Neural Repair. 2021; 35(5):444–56. https://doi.org/10.1177/15459683211005020 PMID: 33825587
51. Zheng G, Zheng Y, Xiong Z, Ye B. Effect of Baduanjin exercise on cognitive function in patients with post-stroke cognitive impairment: a randomized controlled trial. Clinical rehabilitation. 2020; 34(8):1028–39. https://doi.org/10.1177/0269215520930256 PMID: 32517490

52. Zheng Y, Zhang Y, Li H, Qiao L, Fu W, Yu L, et al. Comparative effect of Liuzijue Qigong and conventional respiratory training on trunk control ability and respiratory muscle function in patients at an early recovery stage from stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation. 2021; 102(3):423–30. https://doi.org/10.1016/j.apmr.2020.07.007 PMID: 32795561

53. Zhang Y, Li L. Effect of a combined intervention (Baduanjin and balance training) on balance and sensorimotor function in post-stroke patients. Shangdong J Chin Med. 2016; 35:716–8.

54. Zheng X, Wu X, Liu Z, Wang J, Wang K, Yin J, et al. The Influences of Tai Chi on Balance Function and Exercise Capacity among Stroke Patients: A Meta-Analysis. Evid Based Complement Alternat Med. 2021; 2021:6636847. Epub 2021/03/13. https://doi.org/10.1155/2021/6636847 PMID: 33708256

55. Saunders DH, Sanderson M, Hayes S, Johnson L, Kramer S, Carter DD, et al. Physical fitness training for stroke patients. Cochrane Database Syst Rev. 2020; 3:CD003316. Epub 2020/03/21. https://doi.org/10.1002/14651858.CD003316.pub7 PMID: 32196635

56. Wayne PM, Berkowitz DL, Litrownik DE, Buring JE, Yeh GY. What do we really know about the safety of tai chi?: A systematic review of adverse event reports in randomized trials. Arch Phys Med Rehabil. 2014; 95(12):2470–83. Epub 2014/06/01. https://doi.org/10.1016/j.apmr.2014.05.005 PMID: 24878398