Malformed vertebrae: a clinical and imaging review

Apeksha Chaturvedi · Nina B. Klionsky · Umakanthan Nadarajah · Abhishek Chaturvedi · Steven P. Meyers

Abstract

A variety of structural developmental anomalies affect the vertebral column. Malformed vertebrae can arise secondary to errors of vertebral formation, fusion and/or segmentation and developmental variation. Malformations can be simple with little or no clinical consequence, or complex with serious structural and neurologic implications. These anomalies can occasionally mimic acute trauma (bipartite atlas versus Jefferson fracture, butterfly vertebra versus burst fracture), or predispose the affected individual to myelopathy. Accurate imaging interpretation of vertebral malformations requires knowledge of age-appropriate normal, variant and abnormal vertebral morphology and the clinical implications of each entity. This knowledge will improve diagnostic confidence in acute situations and confounding clinical scenarios.

This review article seeks to familiarize the reader with the embryology, normal and variant anatomy of the vertebral column and the imaging appearance and clinical impact of the spectrum of vertebral malformations arising as a consequence of disordered embryological development.

Teaching points

- Some vertebral malformations predispose the affected individual to trauma or myelopathy.
- On imaging, malformed vertebrae can be indistinguishable from acute trauma.
- Abnormalities in spinal cord development may be associated and must be searched for.
- Accurate interpretation requires knowledge of normal, variant and abnormal vertebral morphology.

Keywords

Vertebral malformations · Children · Spine · Magnetic resonance imaging · Developmental

Embryology

Development of the spine and spinal cord occurs side by side, intimately intertwined. The vertebral column develops or as an accompaniment to multiorgan developmental malformations [4]. When symptomatic, these abnormalities can predispose the affected individual to biomechanical instability, spinal canal narrowing and myelopathy and can even be life-threatening. Developmental defects of cardiovascular, neurological, urinary and reproductive systems may be associated [5].

This article overviews the embryology of the vertebral column and imaging appearance and clinical impact of the spectrum of abnormalities arising as a consequence of disordered development. It is difficult to separate discussion of the spine from that of the enclosed spinal cord, so associated spinal cord/brain anomalies will be mentioned where applicable but will not be elaborated.
in distinct phases, as illustrated below (Fig. 1a) [5]. Spinal cord development occurs in four basic embryological stages including gastrulation (weeks 2 to 3), primary neurulation (weeks 3 to 4) and secondary neurulation (weeks 5 to 6). Simply put, gastrulation is the process by which a bilaminar embryonic disk is converted into a trilaminar structure by migration of epiblastic cells through the Hensen’s node (knoblike termination of the primitive streak containing totipotential cells) to the epiblast/hypoblast interface—a process that ultimately results in formation of the intervening mesoderm/notochord. The notochord plays an important role in somitic differentiation, vertebral chondrogenesis and segmentation [6].

Since the notochord is created during gastrulation, multi-system abnormalities typically coexist with notochordal developmental anomalies [7]. After the notochord interacts with the overlying ectoderm to form the neuroectoderm, neural tube closure occurs to complete the process of primary neurulation. The sacrum and coccyx develop last at about 31 days of gestation [5] from a large aggregate of undifferentiated cells (caudal cell mass) representing remnants of the primitive streak. Underlying embryological processes include canalisation (secondary neurulation) and retrogressive differentiation.

The craniocervical junction (CVJ) is embryologically unique and complex. Four occipital sclerotomes contribute to formation of the occipital bone, clivus and occipital condyles, anterior arch of the atlas and the apical, cruciate and alar ligaments. The posterior arch of the atlas is derived from both the first occipital and first cervical sclerotomes. The axis is derived from both the fourth occipital and first and second cervical sclerotomes. The ventral portion of the vertebrae: This follows chondrification and typically occurs after 9 weeks of gestation. One dorsal and one ventral primary ossification centre forms for each vertebral body; these unite to create a centrum, which develops into three primary loci at the conclusion of embryonic development. One of these loci eventually develops into the vertebral body while the other two develop into one half of the eventual vertebral arch. c: Development of C1 (atlas): The atlas develops from three centres of ossification separated by cartilaginous synchondroses—one for body and two for lateral masses. The sequence of appearance and fusion of the ossification centres as noted in the illustration. d: Development of the C2 (axis): Six centres of ossification separated by four cartilaginous synchondroses. Sequence of appearance and fusion of the ossification centres as noted in the illustration.

Fig. 1 a-d: Embryology of vertebral bodies and intervertebral discs: Illustration (1–6) demonstrating the steps in development of vertebral bodies from sclerotomes. The sclerotomes migrate around the neural tube and the notochord forming the vertebral bodies, arches, transverse and spinous processes. Chondrification centres appear during the 6th week of development within a mesenchymal template, which enclose the notochord and developing neural tube. The notochord expands and develops into the nucleus pulposus of intervertebral disks. The six stages of vertebral development include: (1) gastrulation and formation of the somitic mesoderm and notochord, (2) condensation of the somitic mesoderm into somites, (3) formation of dermomyotomes and sclerotomes, (4) formation of membranous somites and re-segmentation with definitive vertebral formation, (5) vertebral chondrification and (6) vertebral ossification. b: Ossification of subaxial cervical, thoracic and lumbar vertebrae: This follows chondrification and typically occurs after 9 weeks of gestation. One dorsal and one ventral primary ossification centre forms for each vertebral body; these unite to create a centrum, which develops into three primary loci at the conclusion of embryonic development. One of these loci eventually develops into the vertebral body while the other two develop into one half of the eventual vertebral arch. e: Development of C1 (atlas): The atlas develops from three centres of ossification separated by cartilaginous synchondroses—one for body and two for lateral masses. The sequence of appearance and fusion of the ossification centres as noted in the illustration. d: Development of the C2 (axis): Six centres of ossification separated by four cartilaginous synchondroses. Sequence of appearance and fusion of the ossification centres as noted in the illustration.
first cervical sclerotome forms most of the odontoid process [3, 5].

The final steps in vertebral formation, chondrification and ossification occur after 6 and 9 weeks respectively. Chondrification of the CVJ begins at 45 days and chondrification of the C1 anterior arch begins at 50 to 55 days of gestation [5, 8].

The subaxial cervical, thoracic and lumbar vertebral bodies each have two ossification centres, which merge, and single ossification centres on each side of the vertebral arch (Fig. 1b). Ossification centres of the first and second cervical vertebrae follow a predictable sequence and timing of appearance and fusion [9, 10] (Figs. 1c,d and 2). The atlas should be completely visible on cervical spine radiographs by 6–7 years of age [10]. The body of C2 usually fuses to the neural arches and dens between 3 and 6 years of age, and the dens fuses to the ossiculum terminale at 12 years [10].

At the sacrococcygeal levels, the first three sacral elements contain an additional pair of ossification centres. Fusion of sacral vertebrae begins early in puberty and is complete in the middle part of the 3rd decade. Ossification of the first coccygeal segment begins between 1 to 4 years of age; remaining coccygeal segments ossify cranio-caudally between 5 to 20 years of age [11].

Vertebral malformations have been classified based on the underlying embryopathy [5, 12] (ESM_1). Developmental variances leading to transitional vertebrae at the thoracolumbar and lumbosacral junctions and developmentally short/absent pedicles have been identified as a separate category. The subsequent paragraphs outline the embryology, clinical and radiological manifestations of commonly encountered vertebral malformations (ESM_1).

Abnormal gastrulation

The embryological processes underlying this spectrum of malformations involve disorders resulting from abnormal development of the notochord during gastrulation. These typically manifest with malformation of the neurex and axial skeleton involving tissues derived from all three primary germ cell layers [13]. Broadly, these include disorders of midline integration of the notochord (split notochord syndrome, split cord) and disorders of notochordal formation (caudal agenesis and segmental spinal dysgenesis) (ESM_2).

Split notochord syndrome This results from splitting of the notochord leading to a persistent connection between the ventral endoderm and the dorsal ectoderm. The most severe manifestation is a dorsal enteric fistula through which the intestinal cavity communicates with a dorsal skin surface to the midline, traversing all the intervening structures [11]. Variants on this theme include a dorsal bowel hernia and diverticuli, duplications, cysts or sinuses along this anomalous tract [11].

Split cord/diastematomyelia (Fig. 3a,b) This refers to sagittal division of the spinal cord into two symmetric/asymmetric hemicords, each containing a central canal, one dorsal and one ventral horn and each invested by its own leptomeninges [11].

Erroneous specification of the rostro-caudal positional encoding of prospective notochordal cells can result in inadvertent apoptosis of notochordal precursors and subsequent interference with primary and secondary neurulation, leading to disordered formation of the notochord; these can manifest as caudal/sacral agenesis or segmental spinal dysgenesis.

Caudal/sacral agenesis (Fig. 4a-e) This represents a group of rare structural vertebral anomalies affecting the formation of the distal spinal segments and the spinal cord [14]. These abnormalities are characterised by varying degrees of developmental failure involving the lower extremities, sacrococcygeal and occasionally distal thoracolumbar vertebrae and the corresponding spinal cord segments [15]. Based on the underlying embryopathy, there are two broad variants. Type I involve disorders of both primary and secondary neurulation, thereby resulting in pronounced agenesis of the distal vertebrae with coexistent aplasia of the caudal metameres of the spinal cord, whereas type II involve disorders of only secondary neurulation, resulting in less severe vertebral dysgenesis, absence of only the tip of the conus medullaris and association with tethered cord syndrome [16]. Associated myelomeningoceles, diastematomyelia, tethered spinal cord, thickened filum terminale and lipomas of the cord may be present.
Caudal agenesis may be a component in syndromic complexes including OEIS (concurrent omphalocele, cloacal extrophy, imperforate anus and spinal deformities) [17], Currarino’s triad [sacral dysgenesis, a pre-sacral mass and anorectal malformation] (Fig. 5a-d) and VACTERL anomalies (vertebral anomalies, imperforate anus, cardiac malformations, tracheoesophageal fistula, renal anomalies and limb deformities) [7].

A discussion of sacral dysgenesis is incomplete without mention of sirenomelia/mermaid sequence (Fig. 6a-b). This rare, lethal congenital anomaly is characterised by an absent sacrum, rectum and bladder, fused lower extremities and bilateral renal agenesis [18]. The underlying aetiology is believed to be related to vascular disruption to the caudal portion of the embryo [18].
Segmental spinal dysgenesis (Fig. 7a-e) This is a complex spinal dysraphism. Thoracic, lumbosacral segments of the spine may be affected. The clinical/radiological definition includes: (1) segmental agenesis or dysgenesis of the lumbar or thoracolumbar spine; (2) segmental abnormality of the underlying spinal cord and nerve roots; (3) congenital paraplegia or paraparesis; (4) congenital lower limb deformities [16]. The most extreme cases manifest with absence of the spinal cord at the affected level and focal aplasia of the vertebral body, resulting in acute kyphosis [7]. The lower spinal cord is thick and abnormally low [7]. Associated lipomas, dermal sinuses or hydromyelia may be present. Horseshoe kidney is commonly associated [7].

Abnormal alignment of sclerotomal rests

Hemivertebrae These result from complete failure of formation of one of the two paired cartilaginous centres of the developing vertebra, secondary to tardy development of a somite on one side resulting in a caudal metameric segmental shift of one somatic column relative to another, leading to an unpaired sclerotome and resultant hemivertebra [5]. The contralateral vertebral centrum and corresponding dorsal vertebral arch are characteristically absent. The ipsilateral posterior arch, though present, is incorporated into the vertebral arch above or below.

Hemivertebrae can occur sporadically or in association with spinal dysraphisms, skeletal, cardiac, genitourinary and gastrointestinal anomalies; the latter category of infants is predisposed to increased perinatal mortality [19].

Based on their growth pattern, hemivertebrae can be classified into the fully segmented (nonincarcerated and incarcerated variants) (Fig. 8a-b), semisegmented (Fig. 8c-e) and nonsegmented. The fully segmented, nonincarcerated hemivertebra has a normal disk space above and below and causes the most disruption of normal spinal curvature; the incarcerated variant is set into defects in the vertebra above and below and leads to less pronounced disruption of spinal curvature [20]. A semisegmented hemivertebra only has one disk space adjacent to it. A nonsegmented hemivertebra lacks disk spaces on either side, being attached to both its neighbours; this variant is least likely to result in scoliosis [19].
Disordered vertebral formation from sclerotomal precursors

Embryologically, these occur as a consequence of disruption of the somitic mesoderm during gastrulation, somites during segmentation or sclerotomal precursors during the membranous phase. Examples include wedge vertebrae and less than 10% of hemivertebrae.

Wedge vertebrae These arise as a result of diminished cell contribution from the ventral sclerotome and thereby diminished centrum height (Fig. 9a-b). As a more severe manifestation of this spectrum, the posterior vertebral arches may be deficient and hypoplastic posterior segments of the adjacent vertebrae may fuse to form a dorsolateral unsegmented bar with associated rib anomalies at the thoracic location. In yet more severe forms, irregular hemivertebrae may result. These
are distinct from hemivertebrae arising secondary to hemimetameric shifts, cross the midline to a variable degree and comprise less than 10% of all hemivertebrae [5].

Defective vertebral segmentation

These abnormalities occur as a result of failed segmentation of somites. These include block vertebrae, unsegmented bars and congenital cervical spine fusions as seen with Klippel-Feil syndrome [21].

Block vertebrae are congenitally fused vertebrae and may be ventral (affecting only the vertebral body) (Fig. 10), dorsal (affecting the vertebral arch) or both. Unilateral unsegmented bars represent a common cause of congenital scoliosis. These lack growth plates but the unaffected side of the spine continues to grow leading to spinal deformities [20]. These may coexist with hemivertebrae. Spinal curvature deteriorates at an average rate of 5° or greater annually [20].

Klippel-Feil syndrome This represents congenital partial or complete fusion of two or more adjacent cervical vertebrae
The classic triad including short neck, limited neck motion and low posterior hairline is present in 50% of these patients [23]. According to one retrospective review, the most common lesion is an isolated fusion of C2 and C3 [24]. Intraspinal abnormalities such as Arnold-Chiari malformation type I, syringomyelia, diastematomyelia or tethered cord may be associated. These abnormalities increase the vulnerability of the cord to trauma with even minor injury [22, 25, 26]. Reduced neck mobility in these patients makes emergency endotracheal intubation challenging [22].

Disordered vertebral alignment

This entity results from simple mechanical buckling of the embryo between the 4th and 6th embryonic weeks, after neurulation but before chondrification [29]. This commonly occurs at or near the thoracolumbar junction and manifests as congenital vertebral dislocation. The spinal canal at the affected level is typically widened, pedicles of the more cephalad vertebra are elongated, and the dorsal vertebral arches are dysraphic. The spinal cord is frequently low-lying, although intact across the lesion. Usually, patients are neurologically intact or present with subtle neurological deficits. Associated tracheoesophageal fistula and unilateral renal agenesis may be present.

Disordered fusion of the sclerotome, chondrification or ossification centres

Vertebral malformations attributed to disordered assimilation or fusion include butterfly vertebra and dysplastic spondylosis [30].

Butterfly vertebra (Fig. 12) These manifest as a sagittal cleft between the unfused sclerotomal pairs. Moulding of adjacent vertebral bodies towards the midsagittal constriction may or may not be present. Although usually asymptomatic, this can be mistaken for compression, burst or wedge fractures on imaging [30].

Localised failure of fusion of ventral and dorsal ossification centres can result in malformed vertebral pedicles or facets (dysplastic spondylosis). When this process occurs dorsally, spina bifida occulta can result.

Disordered ossification

Failure of development of the vertebral centrum during late stages of gestation manifests as isolated hypoplasia or aplasia of the vertebral centrum, without corresponding alterations in the dorsal vertebral arch. On imaging, part or all of the vertebral centrum may be absent with intact pedicles and posterior body up to the neurocentral synchondrosis. Also included in the spectrum are dorsal hemivertebra with isolated absence or wedging of the ventral portion of the centrum [5].
Craniovertebral junction (CVJ) malformations

The unique embryology of the craniovertebral junction predisposes this region to some unique developmental errors (ESM_3). Abnormalities of the CVJ can impact the cervical spinal cord, brainstem, cerebellum, cervical nerve roots, lower cranial nerves and vascular supply to these structures. Atlanto-occipital assimilation is the most common congenital anomaly of the craniovertebral junction (Fig. 13a-b). Os odontoideum (Fig. 14a-c) refers to a circumferentially

Fig. 11 a-c: Klippel-Feil abnormality with Sprengel shoulder: Frontal radiograph of the neck and upper chest in an 11 year old demonstrates marked elevation of the left scapula. Also seen are segmentation anomalies of the cervical spine (demarcated by circle on a). Sagittal (b) and axial (c) T2-weighted MR images demonstrate a large bony omovertebral bar (marked by asterisks on both images) extending between the medial border of elevated scapula and spinous process of a lower cervical vertebra

Fig. 12 Butterfly vertebra in two patients: Coronal reformatted image from a non-contrast CT of the spine (a) and coronal T1-weighted MR image of the upper thoracic spine (b) both demonstrate separate ossification centres on each side of the vertebral body (marked by asterisks). Note that there is moulding of the adjacent vertebral bodies towards the midsagittal constriction, especially pronounced on a
corticated ossific fragment separated from a hypoplastic or foreshortened base of the dens [31, 32]. The two subtypes include orthotopic and dystopic [31]. This can be stable or unstable [31]; the latter, if symptomatic, should be surgically addressed [33]. Klippel-Feil anomaly, spondyloepiphyseal dysplasia, Down syndrome and Morquio syndrome may be associated.

Persistent ossiculum terminale (Fig. 15a-b) This condition exists when the ossiculum terminale (secondary ossification centre located at the superior margin of dens) fails to fuse with the dens, a process that normally occurs early in the 2nd decade of life. Usually incidental, this may mimic a type I dens fracture; both are typically stable [31]. Smooth, corticated margins characterise a persistent ossiculum terminale, whereas irregular, lucent margins are seen with acute type I fractures of the dens, enabling differentiation [31].

Other abnormalities of this region include congenitally absent anterior/posterior atlas arches (Fig. 16a-b), odontoid tip/entire odontoid, bifid odontoid, fused odontoid tip with inferior clivus, with basilar invagination and hypoplastic occipital condyles [3] (ESM_3).

Developmental variance

This category includes vertebral malformations that do not strictly fall under any of the above categories but arise secondary to variances in development. Entities discussed under this
category include transitional vertebrae [34] and congenitally short/absent vertebral pedicles. Thoracolumbar and lumbosacral junctional variances

Thoracolumbar junctional variances manifest either as an increase or decrease in the number of rib-bearing thoracic vertebrae or altered appearances of the costal processes of the most caudal thoracic or the uppermost lumbar vertebra. Lumbosacral transitional vertebrae have been described as either sacralisation of the lowest lumbar segment or lumbarisation of the most superior sacral segment of the spine [35]. On imaging, these are best seen with CT. Clinically, these can be associated with back pain/“Bertolotti syndrome” [36] and can lead to nomenclature and/or surgical errors [37]. Castellvi et al. proposed a radiographic classification system based on the morphological characteristics of these vertebrae [38]. Treatment may be conservative or surgical.

Congenital/developmental spinal stenosis secondary to short pedicles (Fig. 17a–b) This developmental variant manifests as narrowing of the anteroposterior dimension of the spinal canal to less than 10 mm or thecal sac cross-sectional area less than 77 ± 13 mm² [39]. This occurs most commonly at the level of the lumbar spine, where it may present with neurogenic intermittent claudication and radiculopathy [40]. The spinal cord is vulnerable to trauma or disk herniation. In one prospective cohort study [39], the measured pedicle lengths among congenitally stenotic patients approximated 6 mm whereas the control group had pedicle lengths closer to 9 mm.

Pedicular agenesis [41] This unusual disorder manifests with isolated agenesis of a vertebral pedicle, most commonly C5 or C6. Imaging findings include misleading appearance of enlarged ipsilateral neural foramen, dysplastic dorsally displaced ipsilateral lamina and a dysplastic...
ipsilateral transverse process. Although a stable congenital anomaly, this can be mistaken for acute trauma [42].

Conclusion

Structural abnormalities of the spine can occur at multiple levels and have a variety of imaging and clinical manifestations. The radiologist plays an important role in assessing these abnormalities and can alert the clinician to the likelihood of a serious complication arising secondary to such abnormalities and assist in the pre-operative workup and postoperative follow-up.

Acknowledgments The authors are grateful to Margaret Kowaluk, Nadezhda Kiriyak and Gwen Mack from the Graphics section, Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, for help with radiographic images and original artwork in this article.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Meyers SP. Differential Diagnosis in Neuroimaging-Spine: Thieme; December, 2016
2. Trenga AP, Singla A, Feger MA, Abel MF (2016) Patterns of congenital bony spinal deformity and associated neural anomalies on X-ray and magnetic resonance imaging. J Child Orthop 10(4):343–352
3. Klimo P Jr, Rao G, Brockmeyer D (2007) Congenital anomalies of the cervical spine. Neurosurg Clin N Am 18(3):463–478
4. Passias PG, Pooman GW, Jalai CM et al (2017) Incidence of congenital spinal abnormalities among pediatric patients and their association with scoliosis and systemic anomalies. J Pediatr Orthop
5. Dias MS (2007) Normal and abnormal development of the spine. Neurosurg Clin N Am 18(3):415–429
6. Fleming A, Keynes RJ, Tannahill D (2001) The role of the notochord in vertebral column formation. J Anat 199(Pt 1–2):177–180
7. Schwartz ES, Rossi A (2015) Congenital spine anomalies: the closed spinal dysraphisms. Pediatr Radiol 45(Suppl 3):S413–S419
8. David KM, McLachlan JC, Aiton JF et al (1998) Cartilaginous development of the human craniovertebral junction as visualised by a new three-dimensional computer reconstruction technique. J Anat 192(Pt 2):269–277
9. Copley LA, Dormans JP (1998) Cervical spine disorders in infants and children. J Am Acad Orthop Surg 6(4):204–214
10. Kim HJ (2013) Cervical spine anomalies in children and adolescents. Curr Opin Pediatr 25(1):72–77
11. Barkovich JARJ (2012) Pediatric Neuroimaging. 5th Ed. ed. Lippincott Williams and Wilkins, Philadelphia, PA
12. Tsou PM, Yau A, Hodgson AR (1980) Embryogenesis and prenatal development of congenital vertebral anomalies and their classification. Clin Orthop Relat Res 152:211–231
13. Dias MS, Walker ML (1992) The embryogenesis of complex dysraphic malformations: a disorder of gastrulation? Pediatr Neurosurg 18(5–6):229–253
14. Singh SK, Singh RD, Sharma A (2005) Caudal regression syndrome—case report and review of literature. Pediatr Surg Int 21(7):578–581
15. Boulas MM (2009) Recognition of caudal regression syndrome. Adv Neonatal Care 9(2):61–69 quiz 70-1
16. Rossi A, Biancheri R, Cama A, Pietelli G, Ravegnani M, Tortori-Donati P (2004) Imaging in spine and spinal cord malformations. Eur J Radiol 50(2):177–200
17. Pang D (1993) Sacral agenesis and caudal spinal cord malformations. Neurosurgery 32(5):755–778 discussion 78-9
18. Sikandar R, Munim S (2009) Sirenomelia, the mermaid syndrome: case report and a brief review of literature. J Pak Med Assoc 59(10):721–723
19. Johal J, Loukas M, Fisahn C, Chapman JR, Oskouian RJ, Tubbs RS (2016) Hemivertebrae: a comprehensive review of embryology, imaging, classification, and management. Childs Nerv Syst 32(11):2105–2109
20. Oskouian RJ Jr, Sansur CA, Shaffrey CI (2007) Congenital abnormalities of the thoracic and lumbar spine. Neurosurg Clin N Am 18(3):479–498
21. Tracy MR, Dormans JP, Kusumi K (2004) Klippel-Feil syndrome: clinical features and current understanding of etiology. Clin Orthop Relat Res 424:183–190
22. Xue X, Shen J, Zhang J et al (2014) Klippel-Feil syndrome in congenital scoliosis. Spine (Phila Pa 1976) 39(23):E1353–E1358
23. Hensinger RN, Lang JE, MacEwen GD (1974) Klippel-Feil syndrome; a constellation of associated anomalies. J Bone Joint Surg Am 56(6):1246–1253
24. Winter RB, Moe JH, Lonstein JE (1984) The incidence of Klippel-Feil syndrome in patients with congenital scoliosis and kyphosis. Spine (Phila Pa 1976) 9(4):363–366
25. Samartzis D, Lubicky JP, Herman J, Shen FH (2006) Faces of spine care: from advanced imaging. Severe thoracic kyphoscoliosis in a Klippel-Feil patient with complete cervical spine fusion and deformity—primum non nocere. Spine J 6(6):723–724
26. Vaidyanathan S, Hughes PL, Soni BM, Singh G, Sett P (2002) Klippel-Feil syndrome—the risk of cervical spinal cord injury: a case report. BMC Fam Pract 3:6
27. O’Donnel DP, Seuqal RA (2008) Klippel-Feil syndrome. Am J Emerg Med 26(2):252 e1–252 e2
28. Harvey EJ, Bernstein M, Desy NM, Saran N, Ouellet JA (2012) Sprengel deformity: pathogenesis and management. J Am Acad Orthop Surg 20(3):177–186
29. Dias MS, Li V, Landi M, Schwend R, Grabb P (1998) The embryogenesis of congenital vertebral dislocation: early embryonic buckling? Pediatr Neurosurg 29(6):281–289
30. Satpathy A, Sloan R, Bhoora IG (2004) Compression fracture or butterfly vertebra: diagnostic importance in a trauma setting. Ann R Coll Surg Engl 86(6):W41–W43
31. O’Brien WT Sr, Shen P, Lee P (2015) The dens: normal development, developmental variants and anomalies, and traumatic injuries. J Clin Imaging Sci 5:38
32. Nguyen JC, Pollock AN (2015) Os odontoideum. Pediatr Emerg Care 31(3):225–227
33. Arvin B, Fournier-Gosselin MP, Fehlings MG (2010) Os odontoideum: etiology and surgical management. Neurosurgery 66(suppl_3):A22–A31
34. Wigh RE (1980) The thoracolumbar and lumbosacral transitional junctions. Spine (Phila Pa 1976) 5(3):215–222
35. Konin GP, Walz DM (2010) Lumbosacral transitional vertebrae: classification, imaging findings, and clinical relevance. AJNR Am J Neuroradiol 31(10):1778–1786
36. Elster AD (1989) Bertolotti’s syndrome revisited. Transitional vertebrae of the lumbar spine. Spine (Phila Pa 1976) 14(12):1373–1377
37. Hughes RJ, Saifuddin A (2004) Imaging of lumbosacral transitional vertebrae. Clin Radiol 59(11):984–991
38. Castellvi AE, Goldstein LA, Chan DP (1984) Lumbosacral transitional vertebrae and their relationship with lumbar extradural defects. Spine (Phila Pa 1976) 9(5):493–495
39. Singh K, Samartzis D, Vaccaro AR et al (2005) Congenital lumbar spinal stenosis: a prospective, control-matched, cohort radiographic analysis. Spine J : Off J N Am Spine Soc 5(6):615–622
40. Cowley P (2016) Neuroimaging of spinal canal stenosis. Magn Reson Imaging Clin N Am 24(3):523–539
41. Abduljabbar FH, Rossel F, Nooh A, Jarzem P (2015) Misdiagnosing absent pedicle of cervical spine in the acute trauma setting. Orthop Rev (Pavia) 7(3):5889
42. Ferracci FX, Dudoit T, Gilard V, Perez A, Lucas F (2017) Cervical pedicular agenesis: case report and a review of the literature. Neurochirurgie 63(4):323–326