Bead formation research in TIG welding of AISI 304 steel

Manahil Tongov¹², Rayna Dimitrova¹ and Konstantin Konstantinov¹

¹Technical University of Sofia, Bulgaria, Faculty of Industrial Technology, Department “Materials Science and Technology”
²Institute of Metal Science, equipment, and technologies with Center for Hydro- and Aerodynamics “Acad. A. Balevski” at the Bulgarian Academy of Sciences – (IMSETHC-BAS)

E-mail: tongov@tu-sofia.bg

Abstract. On the basis of the experimental results in depositing strips of molten metal onto AISI 304 steel using the D-optimal plan of the experiment and processing of the got results, regression equations were obtained describing the dependence of the bead width and the penetration depth depending on the welding speed and the value of the welding current. In parallel, a regression equation is obtained connecting the arc voltage and the welding current.

1. Introduction

High-alloy austenitic steel AISI 304 (1.4301) is widely used in various industries. Building regression models to determine the influence of process parameters on bead formation is a common practice for analysis and optimization [1÷10]. TIG welding is one of the main methods for welding of constructions from that steel. The application of technologies and tools for solving technological problems by simulation modeling of welding process is one of the most promising areas in this field. In order to be complete realized it is necessary to modeling the heat source with subsequent calibration, verification and validation of the built model.

In the present work, on the basis of experimental results, regression equations, which are applicable for the definition of the heat source in simulation modeling of the welding process, are obtained.

2. Materials and research method

The survey was performed using a consistent quasi-D-optimal plan. In this study, the magnitude of the welding current (in the range of 80 to 180 [A]) and the welding speed (12 to 30 [cm / min]) were varied. The arc length was constant and equal to 2 [mm]. The shielding gas flow rate was 6 [l / min] at a current value up to 120 [A] and 10 [l / min] at a higher value of the welding current. Thus, the number of factors in the experiment plan was two. During the experiment, strips were surfaced onto specimens 6x100x100 [mm] from AISI 304 steel at preliminary set values of welding current and welding speed. On each specimen several strips of molten metal were deposited after natural cooling the specimen to room temperature, measuring the values of the welding current, the arc voltage and the average welding speed. Samples for metallographic analysis were prepared from the specimens with deposited strips of molten metal. The preparation includes the following stages: sectioning of a sample, wet grinding in several stages, polishing and etching with a mixture of concentrated nitric and hydrochloric acid, optimally in a molar ratio of 1:3. Metallographic analysis with an optical
metallographic microscope Neophot 21 “Carl Zeiss” were carried out. It was determined the geometric parameters for all samples – the penetration depth and the width of the welding bead.

The regression equations were sought as complete second-degree polynomials, and in the case of an inadequate model as third-degree complete polynomials. The plan of the experiment in relative coordinates is given in Table 1. In addition, seven experiments were performed in the center of the plan to verify the adequacy of the model. The value of the current was used as the first factor and the welding speed as the second factor. The processing of the obtained results was as follows:

The experiment plan matrix was specified, with each row representing the values of the factors for a particular surfaced stripe:

\[
X = \begin{pmatrix}
 x_{1,1} & x_{2,1} \\
 x_{1,2} & x_{2,2} \\
 \vdots & \vdots \\
 x_{1,21} & x_{2,21}
\end{pmatrix}
\]

Table 1. Experiment plan in relative coordinates.

№	X1	X2	№	X1	X2	№	X1	X2
1	1	1	8	1	-0.447	15	-0.447	-0.447
2	-1	-1	9	-0.447	0.447	16	0.447	0.447
3	1	-1	10	-0.447	-1	17	-1	1
4	-1	1	11	1	0.447	18	-1	-1
5	-1	-0.447	12	-0.447	1	19	1	-1
6	0.447	1	13	-1	0.447	20	1	1
7	0.447	-1	14	0.447	-0.447	21	0.447	1

The sought regression equation is of the type

\[
\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_1 x_2 + b_4 x_1^2 + b_5 x_2^2 + b_6 x_1^2 x_2 + b_7 x_1 x_2^2 + b_8 x_1^2 + b_9 x_2^3
\]

which can be written down as \(y = \sum_{j=0}^{9} b_j f_j(x) \) and therefore the elements of the extended matrix of plan \(F = F F^T \), where \(j \) is the function number, \(i \) – the experiment number.

Fisher Information Matrix is \(F^T F \), and the sought coefficients were determined as

\[
b = G^{-1} F^T y
\]

To verify the adequacy of the model according to the Fisher criterion, the ratio \(F = \frac{s_{ost}^2}{s^2} \) was used. Here \(s_{ost} \) and \(s \) are respectively the variation of adequacy and variance of experience. The variation of adequacy was determined by the obtained results \(y_i \) and the calculated value by equation

\[
\hat{y}_i:
\]

\[
s_{ost}^2 = \frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{N - k} = \frac{\sum_{i=1}^{21} (y_i - \hat{y}_i)^2}{11}
\]

where \(N \) is the number of experiments, \(k \) - the number of coefficients in equation (2).
The variance of experience s was determined on the basis of further conducted experiments at the center of the plan such as:

$$s^2 = \frac{1}{n-1} \sum_{u=1}^{n} (y_u - \bar{y}_u)^2$$

where \bar{y} is the average of the measured values y_i.

Thus, the value of F was compared with the value of the Fisher distribution F_T at the significance level α and the number of degrees of freedom $\nu_{ost} = N - k = 11$ and $\nu = n - 1 = 6$. In order to consider the model adequate, it is necessary to observe the ratio $F < F_T$.

The Student's criterion was used to check the statistical significance of the coefficients of the regression equation. For its implementation, there is a matrix $C = G^{-1}$ (it has dimensions $k \times k$) with diagonal elements c_{jj} . To make a coefficient significant, it is necessary to observe the condition

$$\frac{|b_j|}{\sqrt{s^2c_{jj}}} > t(\alpha, \nu_{ost})$$

where $t(\alpha, \nu_{ost})$ is the value of the Student distribution at the significance level α and degrees of freedom ν_{ost}.

3. Results and discussion

The measurement of the geometric parameters – the bead width and the penetration depth is illustrated in Figure 1. The results of the experiments are shown in Table 2 in absolute values in the sequence in which the welds are performed. The expanded plan matrix and the inverted Fisher information matrix, respectively, are shown in Table 3 and Table 4. The results for the stripes in the center of the plan are shown in Table 5, and the values of the coefficients of the regression equations are shown in Table 6. The value of Fisher distribution at significance level 0.05, number of residual degrees of freedom 11 and degree of freedom 6 is 4.027442. The ratio is 2.0926827 for the penetration depth and 2.2872729 for the bead width. This indicates that the obtained models are adequate. Statistically significant coefficients are shown in Table 6 in bold.

Figure 1. Measurement of the bead width and the penetration depth
Table 2. Experimental results.

№	X1 - welding current, [A]	X2 - welding speed, [cm/min]	bw - bead width, [mm]	hw - penetration depth, [mm]
1	180	30	7.609	1.24
2	180	12	11.518	2.112
3	80	30	2.801	0.438
4	80	12	4.025	1.006
5	80	17	3.552	0.767
6	152	30	6.713	1.033
7	152	12	9.358	1.659
8	180	17	9.242	1.517
9	108	25	5.305	1.017
10	108	12	6.322	1.377
11	180	25	8.324	1.221
12	108	30	4.719	0.804
13	80	25	2.942	0.538
14	152	17	8.326	1.221
15	108	17	5.295	1.046
16	152	25	7.267	1.074
17	180	30	7.542	1.23
18	80	30	1.92	0.449
19	80	30	2.307	0.325
20	130	12	7.543	1.283
21	152	30	6.51	1.111

Table 3. Expanded experiment plan matrix for penetration depth.

№	b0	b1	b2	b3	b4	b5	b6	b7	b8	b9
1	1	180	30	5400	32400	900	972000	162000	5832000	27000
2	1	180	12	2160	32400	144	388800	25920	5832000	1728
3	1	80	30	2400	6400	900	192000	72000	512000	27000
4	1	80	12	960	6400	144	76800	11520	512000	1728
5	1	80	17	1360	6400	289	108800	23120	512000	4913
6	1	152	30	4560	23104	900	693120	136800	3511808	27000
7	1	152	12	1824	23104	144	277248	21888	3511808	1728
8	1	180	17	3060	32400	289	550800	52020	5832000	4913
9	1	108	25	2700	11664	625	291600	67500	1259712	15625
10	1	108	12	1296	11664	144	139968	15552	1259712	1728
11	1	180	25	4500	32400	625	810000	112500	5832000	15625
12	1	108	30	3240	11664	900	349920	972000	1259712	27000
13	1	80	25	2000	6400	625	160000	50000	512000	15625
14	1	152	17	2584	23104	289	392768	43928	3511808	4913
15	1	108	17	1836	11664	289	198288	31212	1259712	4913
16	1	152	25	3800	23104	625	577600	95000	3511808	15625
17	1	180	30	5400	32400	900	972000	162000	5832000	27000
18	1	80	30	2400	6400	900	192000	72000	512000	27000
19	1	80	30	2400	6400	900	192000	72000	512000	27000
20	1	130	12	1560	16900	144	202800	18720	2197000	1728
21	1	152	30	4560	23104	900	693120	136800	3511808	27000
Table 4. Matrix C (inverted matrix G) for penetration depth.

Ci	Ci0	Ci1	Ci2	Ci3	Ci4	Ci5	Ci6	Ci7	Ci8	Ci9
C0	597.577	-8.663	-37.715	0.1484	0.05583	1.3731	-0.0003	-0.0017	-0.0001	-0.0178
C1	-8.663	0.18749	0.1665	-0.0015	-0.0014	-0.0033	4E-06	1E-05	3E-06	3E-05
C2	-37.715	0.1665	-4.81024	-0.0127	-0.0003	-0.196	2E-05	0.0002	-3E-07	0.0027
C3	0.14841	-0.0015	-0.0127	0.0001	1.9E-06	0.0002	-2E-07	-2E-06	8E-09	-2E-07
C4	0.05583	-0.0004	-0.0003	2E-06	1.1E-05	9E-06	-1E-08	2E-08	-3E-08	-2E-07
C5	1.37309	-0.0033	-0.196	0.0002	8.5E-06	0.009	-1E-07	-4E-06	-1E-08	-0.0001
C6	-0.0003	3.9E-06	1.6E-05	-2E-07	-1E-08	-1E-07	8E-10	3E-10	2E-11	5E-10
C7	-0.0017	1.2E-05	0.0002	-2E-06	2.2E-08	-4E-06	3E-10	3E-08	-7E-11	7E-10
C8	-0.0001	3.2E-06	-3E-07	8E-09	-3E-08	-1E-08	-2E-11	-7E-11	7E-11	4E-10
C9	-0.0178	2.9E-05	0.00266	-2E-07	-2E-07	-0.0001	5E-10	7E-10	4E-10	2E-06

Table 5. Results of measuring the penetration depth and the bead width for the experiments carried out at the center of the plan I=130[A] u v_w = 21[cm/min].

u	1	2	3	4	5	6	7
hw, [mm]	1.08	1.142	1.127	1.033	1.095	1.002	1.095
bw, [mm]	6.697	6.869	6.572	6.494	6.369	6.353	6.588

Table 6. Regression equations coefficients values.

b0	-0.7979	0.40782	b5	0.0089	0.044
b1	0.08334	0.16434	b6	-7E-06	-2E-05
b2	-0.2401	-0.9219	b7	4E-05	0.0001
b3	0.0001	-0.0006	b8	2E-06	2E-06
b4	-0.0006	-0.0005	b9	-0.0002	-0.0009

A graphical representation of the experimental and calculated results is shown on Figure 2 and Figure 3.

Figure 2. Comparison of experimental and calculated results for penetration depth.
To determine the dependence of the arc voltage on the current magnitude, a D-optimal plan for the second-degree full polynomial was used (Table 7). The processing of these data and taking into account only statistically significant coefficients the following arc voltage equation was obtained:

$$U_a = 7.0996 + 0.043345J_w$$

Table 7. Arc voltage data.

№	Welding current, A	Welding speed, cm/min	Arc voltage, V	№	Welding current, A	Welding speed, cm/min	Arc voltage, V
1	180	30	13.7	10	180	30	12.8
2	180	12	13.7	11	180	12	13.3
3	80	30	10.1	12	80	30	9.9
4	80	12	10.1	13	80	12	10.1
5	130	30	11.8	14	130	21	11.4
6	180	21	13.2	15	130	12	11.6
7	130	12	12	16	180	30	13
8	80	21	10.1	17	80	30	10
9	130	21	12	18	180	12	13.2

The influence of the welding current magnitude on the penetration depth and the bead width for different values of the welding speed is shown on Figure 4 and Figure 5. As expected, with increasing welding current, the penetration depth is increasing. This increase is nonlinear depending on both the current magnitude and the welding speed (Figure 6). The bead width increases almost linearly with increasing current at a constant welding speed.
Figure 4. Influence of the current magnitude on the penetration depth for different values of the welding speed.

Figure 5. Influence of the current magnitude on the bead width for different values of the welding speed.
Figure 6. Influence of welding speed on penetration depth for different values of the welding current.

4. Conclusions
On the basis of experimental results for the conditions of TIG welding in argon and arc length 2 [mm], regression equations for the penetration depth, the bead width and the arc voltage were obtained. The penetration depth and the bead width depend on both the current magnitude/value and the welding speed, and these dependencies are described by third-degree polynomials. The arc voltage depends only on the current and the dependence is linear.

Acknowledgements
This work was supported by the Bulgarian National Scientific Fund under Grant DN 07/26.

5. References
[1] Nagesh, D.S., Datta, G.L., Genetic algorithm for optimization of welding variables for height to width ratio and application of ANN for prediction of bead geometry for TIG welding process, Applied Soft Computing Journal 10(3), pp. 897-907, https://doi.org/10.1016/j.asoc.2009.10.007
[2] Madadi, F., Ashrafizadeh, F., Shamanian, M., Optimization of pulsed TIG cladding process of stellite alloy on carbon steel using RSM, Journal of Alloys and Compounds 510(1), pp. 71-77, https://doi.org/10.1016/j.jallcom.2011.08.073
[3] Bodkhe, S.C., Dolas, D.R., Optimization of Activated Tungsten Inert Gas Welding of 304L Austenitic Stainless Steel, Procedia Manufacturing 20, pp. 277-282, https://doi.org/10.1016/j.promfg.2018.02.041
[4] Babu, A.V.S., Giridharan, P.K., Narayanun, P.R., Murty, S.V.S.N., Prediction of Bead Geometry for Flux Bounded TIG Welding of AA 2219-T87 Aluminum Alloy, ournal of
Advanced Manufacturing Systems 15(2), pp. 69-84, https://doi.org/10.1142/S0219686716500074

[5] Pichumani, S., Srinivasan, R., Weld profile optimization on weld speed & arc length parameters of TIG welding on Al-SiC composite, Journal of Advanced Research in Dynamical and Control Systems 9(Special issue 11), pp. 487-491, ISSN: 1943023X

[6] Jerold Jose, P.J., Anand, M.D., Optimization of weld bead profile parameters in TIG welding process for inconel 718 alloy using RSM and regression analysis, Journal of Chemical and Pharmaceutical Sciences 9(4), pp. 1953-1962, ISSN: 09742115

[7] Gopinath, V., Manojkumar, T., Sirajudeen, I., Yogeshwaran, S., Chandran, V., Optimization of process parameters in TIG welding of AISI 202 stainless steel using response surface methodology, International Journal of Applied Engineering Research 10(13), pp. 11053-11057, ISSN: 09734562

[8] Pavan, A.R., Arivazhagan, B., Vasudevan, M., Process Parameter Optimization of A-TIG Welding on P22 Steel, Lecture Notes in Mechanical Engineering pp. 99-113, DOI: 10.1007/978-981-13-8767-8_8, ISSN: 21954356, ISBN: 978-981138766-1

[9] Jung, S.H., Kim, J.-W., A study on the optimal welding condition for root-pass in horizontal butt-joint TIG welding, Transactions of the Korean Society of Mechanical Engineers, A 41(4), pp. 321-327, https://doi.org/10.3795/KSME-A.2017.41.4.321

[10] Deepak, P., Jualeash, M.J., Jishnu, J., Padmanaban, R., Thirumalini, S., Optimization of process parameters of pulsed TIG welded maraging steel C300, IOP Conference Series: Materials Science and Engineering 149(1),012007, https://doi.org/10.1088/1757-899X/149/1/012007