Properties of Axial-vector Mesons and Charmless B Decays: $B \to VV, VA, AA$

Kwei-Chou Yang

aDepartment of Physics, Chung Yuan Christian University, Chung-Li 320, Taiwan

I introduce the properties of the light axial-vector mesons. The branching ratios, longitudinal fractions and direct CP asymmetries of the related charmless two-body B decays into final states involving two axial-vector mesons (AA) or one vector and one axial-vector meson (VA) are discussed within the framework of QCD factorization.

1. INTRODUCTION

The distribution amplitudes of an energetic light hadron moving nearly on the light-cone can be described by a set of light-cone distribution amplitudes (LCDAs). The LCDAs are governed by the special collinear subgroup $SL(2,\mathbb{R})$ of the conformal group. The conformal partial wave expansion of a light-cone distribution amplitude is fully analogous to the partial wave expansion of a wave function in quantum mechanics. Each conformal partial wave is labeled by the specific conformal spin j, in analogy to the orbital quantum number in quantum mechanics of having spherically symmetric potential [1].

There are two distinct types of (P-wave) axial-vector mesons, 3P_1 and 1P_1. Because of G-parity, the axial-vector (tensor) decay constants of 1P_1 (3P_1) states vanish in the SU(3) limit. Nevertheless, the constituent partons within a hadron are actually non-localized. It is interesting to note that due to G-parity the chiral-even LCDAs of a 1P_1 (3P_1) meson defined by the nonlocal axial-vector current is antisymmetric (symmetric) under the exchange of quark and anti-quark momentum fractions in the SU(3) limit, whereas the chiral-odd LCDAs defined by the non-local tensor current are symmetric (antisymmetric) [2]. The large magnitude of the first Gegenbauer moment of the mentioned antisymmetric LCDAs can have large impact on B decays involving a 3P_1 or/and 1P_1 meson(s). The related phenomenologies are thus interesting [3-11]. Some B decays involving an axial-vector meson were studied in [78] using the naive factorization approach.

2. POLARIZATION ANOMALY IN $B \to VV$ DECAYS

The B-factories have been measured the branching ratios and polarization fractions of charmless $\overline{B} \to VV$ decays, involving $\rho\rho$, $\rho\omega$, ρK^*, ϕK^*, ωK^* and K^*K^* in final states [9]. Theoretically, we naively expect that the helicity amplitudes \bar{A}_h (with helicities $h = 0, -, +$) for $\overline{B} \to VV$ respect the hierarchy pattern [10][11]:

$$\bar{A}_0 : \bar{A}_- : \bar{A}_+ = 1 : \left(\frac{\Lambda_{QCD}}{m_b}\right) : \left(\frac{\Lambda_{QCD}}{m_b}\right)^2,$$

so that we have the following scaling law:

$$1 - f_L = \mathcal{O}\left(\frac{m_V^2}{m_b}\right), \quad \frac{f_L}{f_\parallel} = 1 + \mathcal{O}\left(\frac{m_V}{m_B}\right),$$

with f_L, f_\perp, and f_\parallel being the longitudinal, perpendicular, and parallel polarization fractions, respectively. The large fraction of transverse polarization observed in penguin-dominated $K^*\rho$ and $K^*\phi$ modes poses a challenge for theoretical interpretation. To obtain a large transverse polarization in $B \to K^*\rho, K^*\phi$, this scaling law must be circumvented in one way or another. Various mechanisms such as sizable
penguin-induced annihilation contributions [11, 12], non-factorization of spectator-interactions [13,14], and new physics (where only models with large (pseudo)scalar or tensor coupling can explain the observation for \(f_\perp \sim f_\parallel \) respectively). We thus expect to have sizable new-physics effects contribute directly to the smallness of the decay amplitudes can be written as

\[A = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p \langle p_1K | T_A^{h,p} + T_B^{h,p} | \bar{B} \rangle, \]

where \(\lambda_p \equiv V_{ph}V_{pq}^* \) with \(q = s, d \), and the superscript \(h \) denotes the helicity of the final state meson. \(T_A \) accounts for topologies of the form-factor and spectator-scattering, while \(T_B \) contains annihilation topology amplitudes.

3.1. Tree-dominated \(B \rightarrow (a_1, b_1)(\rho, \omega) \)

Because of G-parity, the axial-vector (tensor) decay constants for \(^1P_1 \) \((^3P_1)\) states vanish in the SU(3) limit. The amplitudes of \((a_1^-, b_1^-)(\rho^+, \rho^0, \omega)\) modes are proportional to \(f_{a_1} \) or \(f_{b_1} \) in factorization limit. The \(a_1^\pm \omega \) mode should have the rate similar to \(a_1^- \rho^0 \sim 23 \times 10^{-6}, b_1^- \rho^0 \) modes are highly suppressed by the smallness of \(f_{b_1} \). Since the \(a_1^- \pi^+ \) mode is also governed by \(f_{a_1} \), we anticipate that \(a_1^- \rho^+ \) and \(a_1^- \pi^+ \) have comparable rates.

The decays \(\bar{B}^0 \rightarrow (a_1^+, b_1^+)(\rho^-, \pi^-) \) are governed by the decay constants of the \(\rho \) and \(\pi \), respectively. We thus expect to have \(\bar{B}(\bar{B}^0 \rightarrow a_1^+ \rho^-) \simeq (f_\rho/f_\pi)B(\bar{B}^0 \rightarrow a_1^+ \pi^-) \) and \(B(\bar{B}^0 \rightarrow b_1^- \rho^-) \simeq (f_\rho/f_\pi)B(\bar{B}^0 \rightarrow b_1^- \pi^-) \) [16].

3.2. Penguin-dominated \(B \rightarrow (a_1, b_1)K^* \)

The potentially large weak annihilation contributions to the penguin-dominated decay \(\bar{B} \rightarrow M_1M_2 \) can be described in terms of the building blocks \(b_i^{p,h} \) and \(b_{i,i}^{p,h} \).

\[\frac{G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_p \langle M_1M_2 | T_B^{h,p} | \bar{B} \rangle \]

\[= i \frac{G_F}{\sqrt{2}} \sum_{p,i} \lambda_p f_B f_{M_1} f_{M_2} (d_i b_i^{p,h} + d_{i,i}^{p,h}), \]

where the coefficients \(d_i \) and \(d_{i,i} \) are process-dependent. The main contribution of annihilation amplitudes arises from the operator \(-2(\bar{q}_1b)_{s-P}(\bar{q}_2q_3)_{s-P}, \) and is denoted as \(A_3^{f,0}(h) \) (with the superscript \(f \) indicating the gluon emission from the final state quarks):

\[A_3^{f,0}(^3P_1 V) \approx -18\pi\alpha_s(2X_A^0 - 1) \times \left[a_1^- X_A^0 - 3 - r_\pi(X_A^0 - 2) \right], \]

\[A_3^{f,-}(^3P_1 V) \approx 18\pi\alpha_s(2X_A^- - 3) \times \left[\frac{m_V}{m_P} r_\pi(X_A^- - 1) - 3a_1^- X_A^0 - 1 \right], \]

\[A_3^{f,0}(^1P_1 V) \approx 18\pi\alpha_s(X_A^0 - 2) \times \left[r_\pi(2X_A^0 - 1) - a_1^- X_A^0 - 11 \right], \]

\[A_3^{f,-}(^1P_1 V) \approx -18\pi\alpha_s(X_A^- - 1) \times \left[-\frac{m_V}{m_P} r_\pi(2X_A^- - 3) + a_1^- X_A^- - 17 \right], \]

where the logarithmic divergences are simply parameterized as \(X_A^0 = (1 + \rho_A e^{i\phi_A}) \ln (m_B/\Lambda_b) \). It is interesting to note that the magnitude of the first Gegenbauer moments \(a_1^- X_A^0 \) and \(a_1^- X_A^- \) is of order 1. We use the penguin-annihilation parameters \(\rho_A = 0.65 \) and \(\phi_A = -53^\circ \) as the
Table 1
Branching ratios (B) in units of 10^{-6}, the longitudinal polarization fractions (f_L) in parentheses and direct CP asymmetries (A_{CP}) for decays B \to (a_1, b_1) K^* with a_1 = a_1(1260) and b_1 = b_1(1235). The central values for default inputs (left) refer to \rho_A = 0.65 and \phi_A = -53^\circ, and for results without annihilation (right) to \rho_A = -1. The first theoretical error corresponds to uncertainties due to variation of Gegenbauer moments, decay constants, quark masses, form factors, the \lambda_B parameter for the B meson wave function, and the second one to 0 \leq \rho_{A,H} \leq 1, arbitrary phases \phi_{A,H} for the left part (or 0 \leq \rho_H \leq 1, arbitrary phase \phi_H for the right part). For longitudinal polarization fractions and CPs, we consider only the latter one for the error. The light-cone sum rule results for form factors are used [1,6].

Mode	(Default) B	f_L	A_{CP}	Mode	(\rho_A = -1) B	f_L	A_{CP}
a_1^- K^+-	10.6^{+7.4+3.7}_{-4.0-8.1}(0.37-0.29)	0.04+0.04	a_1^+ K^+-	3.6^{+1.6+0.5}_{-1.3-0.1}(0.68+0.06)	0.07+0.01		
a_1^- K^+0	4.2^{+2.7+1.5}_{-1.9-4.2}(0.23+0.45)	0.12+0.15	a_1^+ K^+0	0.5^{+0.5+0.0}_{-0.4-0.0}(0.50+0.45)	-0.30+0.15		
a_1^- K^-0	11.2^{+6.1+3.9}_{-1.9-4.2}(0.37+0.48)	0.005+0.001	a_1^+ K^-0	4.1^{+2.0+1.7}_{-1.6-1.0}(0.62+0.13)	0.01+0.00		
a_1^- K^+	7.8^{+3.2+1.6}_{-1.3-4.3}(0.52+0.42)	0.005+0.003	a_1^+ K^-	4.4^{+1.1+0.0}_{-1.1-0.0}(0.75+0.06)	0.15+0.04		
b_1^+ K^+	12.5^{+7.3+2.0+21.1}_{-9.0-8.2-41}	0.44+0.03	b_1^- K^-	4.1^{+2.3+0.3}_{-2.0-0.3}(0.91+0.05)	0.10+0.02		
b_1^- K^+0	6.4^{+2.4+8.8}_{-1.7-4.8}	0.02+0.02	b_1^- K^-0	2.4^{+3.3+0.5}_{-1.1-1.0}(0.88+0.04)	-0.12+0.07		
b_1^- K^-0	12.8^{+5.0+20.1}_{-9.6-9.6}	0.02+0.02	b_1^- K^-	4.0^{+2.9+0.7}_{-2.5-0.6}(0.87+0.04)	0.02+0.00		
b_1^- K^-	7.0^{+2.6+12.0}_{-2.0-4.8}	0.60+0.06	b_1^- K^-	2.4^{+1.2+0.3}_{-0.9-0.3}(0.92+0.01)	0.24+0.08		

default central values inferred from B \to K^*\phi decays as a guidance for annihilation enhancement in B \to V A, A A decays. We see from Table 1 that the branching ratios for a_1 K^* and b_1 K^* modes are substantially enhanced by penguin annihilation [6]. Due to the antisymmetric tensor and axial-vector distribution amplitudes for the a_1 and b_1, respectively, the direct CP asymmetry (A_{CP}) can reach 60% for b_1^- K^*+, 44% for b_1^+ K^*-, 12% for a_1^- K^+0, and -17% for b_1^- K^-0. Moreover, the branching ratios of these modes can be of order 10^{-5}. Here we adopt the convention for the A_{CP} to be

$$A_{CP}(\bar{f}) = \frac{B(\bar{B} \to \bar{f}) - B(B^0 \to f)}{B(\bar{B} \to \bar{f}) + B(B^0 \to f)}.$$ (9)

When penguin annihilation is turned off, we have alternative patterns for A_{CP}: A_{CP}(b_1^- K^*-) \sim 0.24, A_{CP}(a_1^- K^*+) \sim 0.10, A_{CP}(a_1^- K^-0) \sim -0.30 and A_{CP}(b_1^- K^-0) \sim -0.12. These can be easily accessible in present B-factories and LHCb. For the corresponding channels, we have the pattern

$$f_L(b_1 K^*) > f_L(\rho K^*) > f_L(a_1 K^*)$$ (10)

if \rho_A = 0.65 and \phi_A = -53^\circ for VA modes, but we have

$$f_L(b_1 K^*) > f_L(a_1 K^*) > f_L(\rho K^*)$$ (11)

if neglecting the penguin annihilation for VA modes. Experimentally, it is thus important to measure them to test the importance of the penguin annihilation mechanism [17].

3.3. Penguin-dominated B \to K_1\phi
The physical states K_1(1270) and K_1(1400) are the mixtures of K_{1A} (1^3P_1) and K_{1B} (1^3P_1) states. K_{1A} and K_{1B} are not mass eigenstates and can be mixed together due to the strange and nonstrange light quark mass difference. The physical states can be parametrized as

$$|K_1(1270)| = |\bar{K}_{1A}| \sin \theta_{K_1} + |\bar{K}_{1B}| \cos \theta_{K_1},$$ (12)

$$|K_1(1400)| = |\bar{K}_{1A}| \cos \theta_{K_1} - |\bar{K}_{1B}| \sin \theta_{K_1},$$ (13)

where the sign ambiguity for \theta_{K_1} is due to the fact that one can add arbitrary phases to |\bar{K}_{1A}| and |\bar{K}_{1B}|. This ambiguity can be further removed by fixing the signs for \bar{f}_{K_{1A}} and \bar{f}_{K_{1B}}, which do not vanish in the SU(3) limit. Following Ref. [2], we adopt the convention: \bar{f}_{K_{1A}} > 0, \bar{f}_{K_{1B}} > 0, which are defined by

$$\langle 0 | \bar{q} \gamma_{\mu} \gamma_5 \bar{s} | \bar{K}_{1A}(P, \lambda) \rangle = -i \bar{f}_{K_{1A}} m_{K_{1A}} \epsilon_{\mu}^{(3)}.$$ (14)
\[\langle 0 | \bar{q} \sigma_{\mu \nu} s | K_1B(P, \lambda) \rangle = i f_{K_1B} \epsilon_{\mu \nu \alpha \beta} \epsilon^\alpha_{(\lambda)} P^\beta. \]

From the study for \(B \to K_1(1270)\gamma \) and \(\tau \to K_1(1270)\nu \), we recently obtain \[\theta_{K_1} = -(34 \pm 13)^\circ. \]

For \(B \to K_1\phi \), when the penguin annihilation is turned off, we find \(B(B^- \to K_1(1270)^-\phi) \approx 3 \times 10^{-6} > B(B^- \to K_1(1400)^-\phi) \approx 3 \times 10^{-7} \). This feature is dramatically changed in the presence of weak annihilation with \(\rho_A = 0.65 \) and \(\phi_A = -53^\circ \). Because \(\beta_3(K_{1A}\phi) \) and \(\beta_3(K_1B\phi) \) are opposite in sign, the interference between terms with \(\alpha_i \) of and \(\beta_i \) is destructive for \(B^- \to K_1(1270)^-\phi \), but constructive for \(B^- \to K_1(1400)^-\phi \). Therefore we have \(B(B^- \to K_1(1270)^-\phi) \approx 4 \times 10^{-6} < B(B^- \to K_1(1400)^-\phi) \approx 11 \times 10^{-6} \). If this relation is not borne out by experiment, this will indicate that the weak annihilation is negligible. For the recent measurement see \[16 \].

3.4. Tree-dominated \(B \to (a_1, b_1)(a_1, b_1) \)

Because \(f_{a_1} \) vanishes in SU(2) limit, it is expected that \(b_1b_1 \) channels are highly suppressed relative to \(a_1a_1 \). Only the color-allowed \(a_1^- b_1^+ \) and \(a_1^- b_1^0 \) modes, of which the decay amplitudes are proportional to \(f_{a_1} \), in large \(m_b \) limit, are comparable to \(a_1^- a_1^- \) and \(a_1^- a_1^0 \). We find that

\[B(a_1^- b_1^+) > B(a_1^- a_1^-) \approx B(\rho^+ a_1^-) > B(\rho^- b_1^+) > B(\rho^+ \rho^-) \approx B(a_1^+ a_1^-). \]

These branching ratios are of order \((20 \sim 40) \times 10^{-6}\). Comparing with the \(\rho^+ \rho^- \) mode, we observe that \(f_L \) is enhanced by the replacement \(\rho \to b_1 \), but suppressed by \(\rho \to a_1 \), i.e.,

\[f_L(b_1^+ \rho^-) > f_L(\rho^+ a_1^-) > f_L(a_1^+ a_1^-) \approx f_L(a_1^+ \rho^-). \]

4. CONCLUSION

Owing to the \(G \)-parity, the chiral-even two-parton LCDAs of the \(^3P_1 (^1P_1) \) mesons are symmetric (antisymmetric) under the exchange of quark and anti-quark momentum fractions in the SU(3) limit. For chiral-odd LCDAs, it is other way around. Because the properties of LCDAs between axial-vector and vector mesons are different, the polarization puzzle can be further examined by studying hadronic B decays involving axial-vector mesons in the final states.

REFERENCES

1. V. M. Braun, G. P. Korchemsky and D. Muller, Prog. Part. Nucl. Phys. 51, 311 (2003).
2. K.C. Yang, Nucl. Phys. B 776, 187 (2007).
3. K. C. Yang, Phys. Rev. D 72, 034009 (2005) [Erratum-ibid. D 72, 059901 (2005)].
4. H.Y. Cheng and K.C. Yang, Phys. Rev. D 76, 114020 (2007).
5. K.C. Yang, Phys. Rev. D 76, 094002 (2007).
6. H. Y. Cheng and K. C. Yang, arXiv:0805.0329 [hep-ph], to appear in Phys. Rev. D.
7. V. Laporta, G. Nardulli, and T.N. Pham, Phys. Rev. D 74, 054035 (2006).
8. G. Calderón, J.H. Muñoz, and C.E. Vera, Phys. Rev. D 76, 094019 (2007).
9. See results summarized by Heavy Flavor Averaging Group, E. Barberio et al., arXiv:0704.3575 [hep-ex] and online update at http://www.slac.stanford.edu/xorg/hfag.
10. H. Y. Cheng and K.C. Yang, Phys. Lett. B 511, 40 (2001).
11. A. L. Kagan, Phys. Lett. B 601, 151 (2004).
12. M. Beneke, J. Rohrer, and D.S. Yang, Nucl. Phys. B 774, 64 (2007).
13. P.K. Das and K.C. Yang, Phys. Rev. D 71, 094002 (2005).
14. H. Hatanaka and K. C. Yang, Phys. Rev. D 77, 035013 (2008).
15. M. Beneke, G. Buchalla, M. Neubert, and C.T. Sachrajda, Nucl. Phys. B 591, 313 (2000); Nucl. Phys. B 606, 245 (2001).
16. K. C. Yang, Phys. Rev. D 78, 034018 (2008).
17. B. Aubert, et al. [BABAR Collaboration], arXiv:0808.0579 [hep-ex].
18. H. Hatanaka and K. C. Yang, Phys. Rev. D 77, 094023 (2008).
19. B. Aubert, et al. [BABAR Collaboration], arXiv:0806.4419 [hep-ex].