The prevalence of molar-incisor hypomineralization: a systematic review and meta-analysis

Luísa Bandeira Lopes1, Vanessa Machado1,2, Paulo Mascarenhas1,2, José João Mendes1,2 & João Botelho1,2*

Molar-Incisor Hypomineralization (MIH) is a qualitative defect of enamel of unknown etiology, affecting one or more permanent molars and may include incisors. This condition is a clinical challenge and its prevalence is still uncertain given the recent increase in research. Thus, we aimed to comprehensively estimate the overall prevalence of MIH and associated characteristics. This systematic review is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). We searched articles using PubMed, MEDLINE, CENTRAL, Web of Science, SciELO, LILACS and TRIP databases, until July 2021. Heterogeneity and publication bias were computed via I² test statistics and Egger’s significance test, respectively. Random-effects meta-analysis of prevalence were processed. We used the Strength of Recommendation Taxonomy [SORT] to grading the strength of evidence. Overall, 116 observational studies were included, with one study with moderate methodological quality and the remaining of high methodological quality. Subgroup analysis confirmed an influence of not using the 2003 MIH case definition (p = 0.0066). The pooled prevalence of MIH was 13.5% (95% CI 12.0–15.1, I² = 98.0%). Affected incisors were seen in 36.6% (95% CI 30.0–43.7, I² = 92.5%) of the cases. Lastly, the prevalence of hypomineralization of the second primary molars was observed in 3.6% of the MIH cases (95% CI 1.9–6.8, I² = 96.3%). America was the continent with highest prevalence (15.3, 95% CI 12.8–18.3, p < 0.001, I² = 96.3%) and Asia had the lowest prevalence (10.7, 95% CI 8.5–13.5, p < 0.001, I² = 98.7%), however no continental differences were found. Sample size and year of publication were slight contributing factors to the heterogeneity in the analysis. Overall, these results were classified with a SORT A recommendation.

Molar-Incisor Hypomineralization (MIH) is designated as a qualitative defect of unknown etiology in the enamel development1,2. Since 2003, the European Academy of Pediatric Dentistry (EAPD) has proposed its first nomenclature to define a pathology of unknown etiology that affects one or more permanent molars and may include permanent incisors1.

As a potential oral public health concern, the prevalence of MIH became imperative to determine as a measure of interest in oral health programs. The prevalence of MIH was reported to range 2.8 to 40.2%, yet this inconsistency leads to a challenging interpretation and is mainly caused by the lack of standardization among clinicians/researchers3. As a result, the EAPD introduced a diagnostic and classification system for MIH, with the purpose of improving epidemiological assessments3,4.

Two systematic reviews have estimated the prevalence of MIH between 13.1% and 14.2, with significant variances amid regions5,6. Moreover, Schwendicke et al.5 estimated MIH prevalence on country scale via the Global Burden of Disease database, which may explain the variances between those regions. Additionally, both searches were conducted until mid 2017, and ever since, a number of new epidemiological studies have been published. However, other relevant information remains to be elucidated, namely the prevalence of moderate/severe cases, prevalence of molars and incisors affected and the prevalence of hypomineralization of the second primary molars (HSPM). For these reasons, conducting a new systematic review on the topic would be convenient and relevant globally.

In this sense, and given the increase research on the prevalence of MIH, we aimed to comprehensively investigate the global prevalence of MIH, as well as its associated characteristics.

1Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz – Cooperativa de Ensino Superior, CRL, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Almada, Portugal.
2Evidence-Based Hub, Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz – Cooperativa de Ensino Superior, CRL, 2829-511 Almada, Portugal.
3email: jbotelho@egasmoniz.edu.pt
Methods
Protocol and registration. The protocol for this systematic review was defined by all authors and registered at the National Institute for Health Research PROSPERO, International Prospective Register of Systematic Review (http://www.crd.york.ac.uk/PROSPERO, ID Number: CRD42021229435). We based our review design following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline.

Focused question and eligibility criteria. We aimed to answer the following PECO question: “What is the global prevalence of MIH?”. The respective statements were as follows: Clinical/Epidemiologic studies in humans (P, Population); Diagnosis of MIH (E, Exposure); No MIH (C, Comparison); Prevalence of MIH (O, Outcome).

The primary aim was the prevalence of MIH. The secondary aims were the prevalence of moderate/severe MIH cases, prevalence of molars and incisors affected and the prevalence of HSPM.

Studies were eligible for inclusion based on the following criteria: (1) Observational studies reporting the prevalence of MIH; (2) Studies with clear reporting of MIH definition; (3) Subjects with no systemic disorders; (4) Studies including both genders.

In contrast, studies based on specific population, for example, children born preterm, studies which only reported on primary molars, and studies which focused on non-representative samples (e.g., institutionalized populations, particular professions, those with specific dental outcomes like high caries experience, among others) were excluded.

Search strategy. Identification of studies for this systematic review was performed through detailed search strategies developed for each database (Pubmed, MEDLINE, CENTRAL [The Cochrane Central Register of Controlled Trials], Web of Science, SciELO [Scientific Electronic Library Online], EMBASE [The Excerpta Medica Database], LILACS [Latin-American scientific literature in health sciences], and TRIP [Turning Research Into Practice]) up to July 2021. Our search strategy was based on the following algorithm: “(hypomineralization OR hypomineralisation OR hypomineralised OR hypoplasia OR demarcated OR opacities OR MIH OR cheese molars) AND (survey OR questionnaire OR cross-sectional OR prevalence OR frequency OR population OR sample OR sampling) AND (molar OR molars OR incisors)”.

Study selection. Study selection was assessed independently by two investigators (LBL and JB), who performed the assessment of titles and/or abstracts of retrieved studies. For measurement reproducibility purposes, inter-examiner reliability following full-text assessment was calculated via kappa statistics. Any disagreements were resolved by discussion with a third author (VM).

Data extraction process and data items. Data extraction was performed by two reviewers independently and in duplicate (LBL and JB). The agreement between the reviewers was assessed by Kappa statistics. Any paper classified as potentially eligible by either reviewer was ordered as a full text and independently screened by the reviewers. All disagreements were resolved through discussion with a third reviewer (VM). The following information was gathered in general description, research characteristics, methodology, and outcome measurements. The following standard information was extracted from each eligible study: first author’s name, year of publication, year of study conduct, country and place (region, city) of sampling, setting of sampling, sampling strategy, case definition, setting, observation setting, sample size, age of participants, total sample size, prevalence estimation, sex-specific sample size and prevalence (if available), the diagnostic criteria of MIH, mean number of affected teeth, and funding. Also, severity of MIH was registered whenever studies reported it. We considered studies that have defined or used classifications that considered severe cases of MIH as having demarcated enamel opacities with breakdowns, caries, persistent/spontaneous hypersensitivity affecting function and strong aesthetic concerns.

We applied no publication year nor language restrictions. Grey literature was searched via http://www.opengrey.eu/. If not reported, corresponding authors were contacted to obtain baseline data.

Risk of bias (RoB) assessment. The Newcastle–Ottawa (NOS) Scale for case–control studies was used by two calibrated reviewers (LBL and JB). For calibration purposes, a random sample of 10 studies was assessed and reassessed 2 days later (to calculate Cohen's kappa). We have categorized studies as of low RoB (with 7–9 stars), moderate RoB (studies with 5–6 stars), and high RoB (with less than 5 stars) (as previously performed). If any doubt occurred, they were resolved by discussion with a third author (VM).

Summary measures and synthesis of results. We began by conducting a prior sensitivity analysis to understand if studies reporting MIH with the 2003 case definition would differ from other alternative case definitions. Predefined tables were prepared to collect continuous data, mean values and standard deviations (SD). Random-effects meta-analysis and forest plots of prevalence were calculated in R version 3.4.1 (R Studio Team 2018) using ‘meta’ package, through DerSimonian-Laird random-effects meta-analysis. Subgroup meta-analysis was conducted for two reasons: (a) comparing the EAPD case definition with other alternative methods; (b) comparing continental prevalence of MIH. Also, a meta-analysis of binary outcome data comparing females and males prevalence was performed. Heterogeneity and publication bias were computed via I² test statistics (p < 0.1) and Egger’s significance test, respectively. Substantial heterogeneity was considered when I² statistics exceeded 50%. In meta-analysis with 10 or more studies included, we analyzed publication bias. Meta-regressions were conducted using continuous variables to appraise potential sources of heterogeneity, such as sample size, female/
male ratio (FMR), geographic location (latitude and longitude) and year of publication. The regression approach also allowed to quantify the percentage of heterogeneity that could be explained by that variable. All tests were two-tailed with alpha set at 0.05 except for the homogeneity test whose significance level cutoff was 0.10 due to the low power of the χ² test with a limited number of studies. Estimates were described with 95% confidence interval (CI).

Additional analyses. We employed the Strength of Recommendation Taxonomy (SORT) to appraise the strength and quality of the evidence.

Results

Study selection. The online search retrieved strategy 2290 possibly relevant publications. After duplicates removal, 357 papers were judged against the eligibility criteria, and 1576 were excluded after titles and/or abstracts review. Among 138 articles assessed for full paper review eligibility, 22 articles were excluded with the respective reasons for exclusion detailed in the Supplementary S2. As a result, a final number of 116 observational studies were included for qualitative synthesis (Fig. 1). Inter-examiner reliability at the full-text screening was considered very substantial (kappa score = 0.915, 95% CI 0.895–0.925).

Studies characteristics. The characteristics of the included studies are presented in Table 1. We identified 116 different cohorts from fifty different countries, across five continents. The year of publication of the included studies ranged between 2003 and 2021. Overall, a total of 135,181 participants were included in this review, being 52,876 girls and 52,872 boys, even though 18 manuscripts did not report on sex distribution. Thirty-four papers did not report the prevalence of MIH according to sex. Seven studies reported data on HSPM. Most studies recorded the MIH-related hypomineralization according to the diagnostic criteria of the EAPD case definition, and others indices were also used such as the modified Developmental Defects of Enamel (mDDE) index, the Kemoli, Mathu-Muju and Wright criteria, and the diagnostic criteria of Cho et al. Three cohorts had their data reported in more than one article (Petrou et al. and Petrou et al.; Balmer et al. and Balmer et al.; Negre-Barber et al. and Negre-Barber et al.); thus, these papers were grouped under a single name study as follows: Petrou et al., Balmer et al., and Negre-Barber et al.
Authors (year) (country)	Funding	Age range (years)	MIH classification	Total (MIH/No MIH) (n)	Females (n)	Males (n)	Molars affected (%)	Incisors affected (%)	Incisors and molars affected (%)	HSPM cases (n)					
Abdalla et al. (2021) (Sudan)	None	8–11	EAPD3	568 (114/470)	55	284	284	33.3	29.8	23.7	13.2	7.6	12.5	NR	
Ahmad et al. (2019) (United Arab Emirates)	NI	6–10	EAPD3	779 (59/220)	39	515	20	264	11.9	47.5	25.4	15.3	25.4	25.4	NR
Ahmad et al. (2012) (Iran)	NI	7–9	EAPD3	433 (55/378)	25	218	30	215	NR						
Alhowaish et al. (2021) (Saudi Arabia)	NR	8–10	EAPD3	893 (362/531)	194	461	168	432	NR						
Alazzam et al. (2014) (Saudi Arabia)	NI	8–12	EAPD3	267 (23/244)	10	133	13	134	21.7	34.8	8.7	34.8	65.2	67.5	NR
Amend et al. (2020) (Germany)	Self-funded	6–12	EAPD3	2103 (283/1820)	NR	1005	NR	1098	30.4	24.7	19.4	25.4	48.7	65.2	64
Arhetam et al. (2021) (Saudi Arabia)	NI	8–10	EAPD3	1047 (162/885)	78	550	84	497	NR	NR	NR	NR	49.4	NR	NR
Arslanagic-Muratbegovic et al. (2020) (Bosnia and Herzegovina)	NI	6–9	EAPD3	444 (51/393)	28	NR	23	NR	11.8	35.3	23.5	35.3	64.7	64.7	NR
Balmer et al. (2011) (2015) (England)	NI	12	mDDE129	3333 (514/2719)	NR										
Bhaskar et al. (2014) (India)	NI	8–13	EAPD3	1173 (111/1062)	47	536	64	637	6.3	27.0	17.1	49.6	29.0	NR	NR
Biondi et al. (2011) (Argentina)	NI	NR	Mathu-Muju and Wright38	1098 (175/923)	NR	577	NR	521	NR	NR	NR	18.9	NR	NR	NR
Biondi et al. (2012) (Argentina and Uruguay)	NI	7–17	Mathu-Muju and Wright38	512 (32/480)	29	519	36	456	NR	NR	NR	24.6	NR	NR	NR
				463 (33/430)	29	519	36	456	NR	NR	NR	26.1	NR	NR	NR
Buchgraber et al. (2017) (Austria)	Medical University Graz	6–12	EAPD3	1111 (78/1033)	40	564	38	547	24.4	16.7	23.1	35.7	NR	NR	NR
Calderara et al. (2005) (Italy)	European Union, Regione Lombardia and Academy of Finland	7.3–8.3	EAPD3	227 (39/188)	NR	113	NR	114	NR						
Cho et al. (2008) (Hong Kong)	NR	11–14	Cho et al. criteria12	2635 (73/2562)	NR	NR	NR	NR	49.3	24.7	15.1	11.0	33.0	45.0	NR
Da Costa-Silva et al. (2010) (Brazil)	NR	6–12	EAPD3	918 (182/736)	92	508	90	410	71	NR	NR	24	NR	55.2	NR
Daatas-Neta et al. (2016) (Brazil)	Piaui Research Foundation	11–14	EAPD3	594 (109/485)	NR										
Daatas-Neta et al. (2018) (Brazil)	Piaui Research Foundation	8–10	EAPD3	744 (186/558)	103	412	83	332	NR						

Continued
Authors (year) (country)	Funding	Age range (years)	MIH classification	Total (MIH/No MIH) (n)	Females (n)	Males (n)	Molars affected (%)	Incisors affected (%)	Incisors and molars affected (%)	HSPM cases (n)					
Davenport et al. (2019) (USA)	Marquette University	7–12	EAPD¹	375 (36/339)	25	226	11	142	52.8, 33.3	5.6	8.3	52.8, 52.8	NR		
De Lima et al. (2015) (Brazil)	State of Piauí Research Foundation	11–14	EAPD¹	594 (109/485)	69	375	40	219	NR, NR	NR, NR	NR, NR	NR, NR	NR		
Dietrich et al. (2003) (Germany)	NI	10–17	mDDE¹⁰	2408 (135/2273)	NR	NR	NR	NR	34.1	28.1	9.7	28.1	23.0, 23.0	NR	
Dourado et al. (2020) (Brazil)	Erasmus MC, the Netherlands Organization for Health Research and Development and GABA	6–10	EAPD¹	2530 (203/2327)	NR										
Elfrink et al. (2012) (The Netherlands)	NI	8–14	EAPD¹	251 (117/134)	55	116	62	135	NR, NR	NR, NR	NR, NR	NR, NR	NR		
Elzein et al. (2019) (Lebanon)	NI	7–9	EAPD¹	659 (176/483)	96	NR	80	NR	12.8	19.5	26.8	40.9	45.1	45.1	NR
Emmaty et al. (2020) (India)	None	8–15	EAPD¹	5318 (216/5102)	96	2613	120	2705	NR, NR	NR, NR	NR, NR	NR, NR	NR		
Farias et al. (2020) (Brazil)	Pará State Research Support Foundation	8–10	EAPD¹	471 (46/425)	26	265	20	206	NR, NR	NR, NR	NR, NR	NR, NR	NR		
Fatturi et al. (2020) (Brazil)	São Paulo Research Foundation	8	EAPD¹	731 (88/643)	39	357	49	374	NR, NR	NR, NR	NR, NR	NR, NR	NR		
Fernandes et al. (2021) (Brazil)	NI	6–12	EAPD¹	610 (60/550)	26	281	34	329	NR, NR	NR, NR	NR, NR	NR, NR	NR		
Freitas Fernandes et al. (2021) (Brazil)	CAPES, National Council for Scientific and Technological Development (CNPq), Research Productivity Scholarship (302850/2016-3), and the State of Paraíba Research Support Foundation (FAPESQ/PB)	11–14	EAPD¹	463 (50/413)	NR	293	NR	170	NR, NR	NR, NR	NR, NR	NR, NR	NR		
Freita et al. (2006) (Libya)	Academy of Finland	7–8,9	mDDE¹⁰	378 (11/367)	6	188	5	190	63.6	27.3	9.1	NR, NR	NR, NR	NR	
Gambetta-Tessini et al. (2018) (Australia)	NI	6–12	EAPD¹	327 (48/279)	NR	26									
Gambetta-Tessini et al. (2019) (Chile)	Melbourne Dental School and Fund. Becas Chile	6–12	EAPD¹	577 (91/486)	52	292	39	285	NR, NR	NR, NR	NR, NR	NR, NR	29		
García-Margarit et al. (2013) (Spain)	University of Valencia	8	EAPD¹	840 (183/657)	NR	412	NR	428	NR, NR	NR, NR	NR, NR	32.5	NR, NR		
Ghanim et al. (2011) (Iraq)	NI	7–9	EAPD¹	823 (197/626)	NR	352	NR	471	NR, NR	NR, NR	NR, NR	NR, NR	28.8	NR	
Ghanim et al. (2013) (Iran)	Shiraz University of Medical Sciences	9–11	EAPD¹	810 (164/646)	96	450	68	360	NR, NR						

Continued
Authors (year) (country)	Funding	Age range (years)	MIH classification	Total (MIH/No MIH) (n)	Females (n) Males (n)	Molars affected (%)	Incisors affected (%)	Incisors and molars affected (%)	HSPM cases (n)
Glodkowska et al. (2019) (Poland)	NI	6–12	EAPDi	1437 (51/1386)	27 726 24 711	3.9 17.0 21.0 58.0	NR 3.2	NR	
Goswami et al. (2019) (India)	None	6–12	EAPDi	1026 (12/1014)	1 492 11 534	0 16.7 0 83.3	42.9 41.7	NR	
Groedl et al. (2013) (Slovenia)	Slovenian Ministry of Science and Education	6.0–11.5	EAPDi	478 (102/376)	NR 212 NR 266	NR NR NR NR NR	NR NR	NR	
Gurrusquieta et al. (2017) (Mexico)	NI	6–12	EAPDi	1156 (183/973)	NR 582 NR 574	NR NR NR NR NR	NR NR	NR	
Haman et al. (2015) (Brazil)	NI	6–10	EAPDi	2062 (188/1874)	90 941 98 933	NR NR NR NR NR	NR NR	NR	
Hartzoc et al. (2020) (USA)	University of Pittsburgh	7–32	EAPDi	104 (10/94)	8 64 2 40	NR NR NR NR NR	NR NR	NR	
Heitmuller et al. (2013) (Germany)	Federal Ministry of Environment and the GABA GmBH	10	Koch et al.140	693 (253/2327)	NR 359 NR 334	NR NR NR NR NR	NR NR	NR	
Hernández et al. (2018) (Spain)	NI	6–14	EAPDi	705 (56/649)	34 361 22 344	23.2 35.7 21.4 19.6	92.8	NR	
Hussain et al. (2018) (United Arab Emirates)	NI	6–12	EAPDi	342 (93/249)	70 215 23 127	NR NR NR NR NR	NR NR	NR	
Hussein et al. (2015) (Malaysian)	Research Management Institute of Universiti Teknologi MARA	7–12	EAPDi	154 (26/128)	NR 87 NR 67	NR NR NR NR NR	NR NR	50.0	
Hysi et al. (2016) (Albania)	NR	8–10	EAPDi	1575 (227/1348)	114 744 113 831	NR NR NR NR NR	NR NR	NR	
Irigoyen-camacho et al. (2019) (Mexico)	NI	6–8	EAPDi	232 (47/185)	19 115 28 117	NR NR NR NR NR	NR NR	NR	
Jancovik et al. (2014) (Bosnia and Herzegovina)	NI	8	EAPDi	141 (26/115)	NR 70 NR 71	NR NR NR NR NR	NR NR	NR	
Jasulaityte et al. (2007) (Lithuania)	NI	6–9	EAPDi	1227 (190/1087)	102 629 88 560	NR NR NR NR NR	NR NR	44.4	
Jasulaityte et al. (2008) (Netherlands)	NI	9	EAPDi	442 (63/379)	NR 220 NR 222	11.1 30.2 22.2 36.5	2.6 NR NR	NR	
Jeremias et al. (2013) (Brazil)	Federal funding from São Paulo State	6–12	EAPDi	1157 (142/1015)	88 622 54 533	23.9	NR NR NR 51.4	51.4	NR
Jurfina et al. (2020) (Croatia)	None	8	EAPDi	729 (88/641)	49 356 39 373	NR NR NR NR NR	6.6	NR	
Kemoli et al. (2009) (Kenya)	NI	NR	Kemoli10	3591 (493/3098)	375 1593 118 1998	NR NR NR NR NR	NR NR	NR	
Kevrekidou et al. (2015) (Greece)	NI	8–14	EAPDi	2335 (498/1837)	253 1196 245 1139	48.0 28.0 13.0 11.0	54.0	NR	
Kiling et al. (2019) (Turkey)	NI	9–10	EAPDi	1237 (142/1095)	69 NR 73 NR	NR NR NR NR NR	NR NR	NR	

Continued
Authors (year) (country)	Funding	Age range (years)	MIH classification	Total (MIH/No MIH) (n)	Females (n)	Males (n)	Molars affected (%)	Incisors affected (%)	Incisors and molars affected (%)	HSPM cases (n)			
Kirthiga et al. (2015) (India)	NI	11–16	Cho et al.22	2000 (179/1821)	92	827	87	1173	NR	NR	NR	NR	NR
Kohlbueck et al. (2013) (Germany)	Federal Ministry of Environment and the GARA GmbH	10	EAPD4	1126 (381/745)	NR	549	NR	577	NR	NR	NR	NR	NR
Koruycu et al. (2018) (Turkey)	Istanbul University	8 and 11	EAPD4	1511 (215/1296)	113	751	102	760	NR	NR	NR	NR	NR
Krishnan et al. (2015) (India)			EAPD4	4989 (384/4605)	253	2831	131	2158	NR	NR	NR	NR	NR
Kühnisch et al. (2018) (Germany)	Federal Ministry for Education	15	EAPD4	1302 (224/1078)	NR	651	NR	651	38.2	NR	17.1	NR	9.8
Kucu et al. (2009) (Turkey)			EAPD4	153 (14/139)	6	72	8	67	NR	21.4	NR	NR	50.0
López Jordi et al. (2014) (Argentina & Uruguay)			EAPD	1090 (176/914)	NR	572	NR	518	NR	NR	NR	NR	NR
Lygidakis et al. (2008) (Greece)			mDDE	3518 (360/3158)	211	NR	149	NR	NR	NR	NR	NR	62.5
Mahoney et al. (2009) (New Zealand)			mDDE	234 (44/190)	NR	117	25	117	NR	NR	NR	NR	NR
Mahoney et al. (2011) (New Zealand)			mDDE	532 (78/444)	NR	282	NR	240	NR	NR	NR	NR	NR
Martinez Gomez et al. (2012) (Spain)			EAPD	505 (90/415)	45	246	45	259	10.0	11.1	11.1	8.8	58.8
Martinovic et al. (2017) (Kosovo)			EAPD	712 (87/625)	49	383	38	329	NR	NR	NR	NR	100.0
Mejia et al. (2019) (Colombia)			EAPD	1075 (120/955)	46	443	74	632	NR	NR	NR	NR	NR
Mishra et al. (2016) (India)			EAPD	1369 (191/1178)	99	NR	92	NR	NR	NR	NR	NR	27.7
Mittal et al. (2013) (India)			EAPD	1792 (113/1679)	50	NR	63	NR	NR	NR	NR	NR	NR
Mulic et al. (2017) (Bosnia and Herzegovina)	University of Odo	8–9	EAPD	103 (12/91)	NR	41	NR	62	25	50	25	NR	NR
Muratbegovic et al. (2007) (Bosnia and Herzegovina)			EAPD	560 (69/491)	36	NR	33	NR	NR	NR	NR	NR	92.5
Negre-Barber et al. (2016) (Spain)	Spanish national R&D&D Plan and European Regional Development Fund	8–9	EAPD	414 (100/314)	46	202	54	212	17.0	22.0	26.0	35.0	60.0
Ng et al. (2014) (Singapore)			EAPD	1083 (135/948)	68	608	67	475	46.7	22.2	8.1	4.4	25.2

Continued
Authors (year) (country)	Funding	Age range (years)	MIH classification	Total (MIH/No MIH) (n)	Females (n)	Males (n)	Molars affected (%)	Incisors affected (%)	Incisors and molars affected (%)	HSPM cases (n)
Ordonez-Romero et al. (2021) (Ecuador) | None | 7–12 | EAPD¹⁰ | 249 (23/226) | 17 | 144 | 6 | 105 | NR | NR | NR | NR | 25.6 | NR | NR
Oyedele et al. (2015) (Nigeria) | NI | 8–10 | EAPD³ | 469 (83/386) | 32 | 214 | 51 | 255 | NR | NR | NR | NR | 10.8 | 40.9 | NR
Padavala et al. (2018) (India) | None | 7–12 | EAPD³ | 170 (22/148) | 7 | 85 | 15 | 85 | NR | NR | NR | NR | 10.8 | NR | NR
Parikh et al. (2012) (India) | NI | 8–12 | EAPD³ | 1366 (1261/1240) | 58 | NR | 68 | NR | NR | NR | NR | 82.5 | NR | NR
Petrou et al. (2014)/ (2015) (Germany) | NI | 7–10 | EAPD³ | 2395 (242/2153) | 114 | 1200 | 128 | 1195 | 39.2 | NR | NR | NR | 42.2 | NR | NR
Pitiphat et al. (2014) (Thailand) | Thailand Research Fund | 6–7 | EAPD³ | 484 (95/389) | 51 | 246 | 44 | 238 | 86.0 | NR | NR | NR | NR | NR | NR
Portella et al. (2019) (Brazil) | CAPES Grant/Award Number: 001 | 8 | EAPD³ | 728 (88/640) | NR | 356 | NR | 372 | NR | NR | NR | 54.5 | NR | NR
Preusser et al. (2007) (Germany) | NR | 6–12 | Koch et al.¹⁶ | 1002 (59/943) | NR | 496 | NR | 506 | NR
Rai et al. (2018) (India) | NI | 7–9 | mDDE¹³⁰ | 992 (212/780) | 80 | 460 | 132 | 532 | NR
Rai et al. (2019) (India) | Indian Council of Medical Research | 9–12 | EAPD³ | 1600 (210/1390) | 104 | 814 | 106 | 786 | NR | NR | NR | NR | 12.1 | 70.2 | NR
Ray et al. (2020) (India) | None | 8–12 | EAPD³ | 1525 (87/1438) | 37 | 725 | 50 | 800 | NR | NR | NR | NR | 56.3 | 18.4 | NR
Reyes et al. (2019) (Brazil) | NI | 8 | EAPD³ | 731 (88/643) | 39 | 357 | 49 | 374 | NR | NR | NR | NR | 6.6 | NR | NR
Rodrigues et al. (2015) (Brazil) | NI | 7–14 | mDDE¹³⁰ | 1179 (30/1149) | NR
Saber et al. (2018) (Egypt) | NI | 8–12 | EAPD³ | 1001 (23/978) | 14 | 502 | 9 | 499 | NR
Saitoh et al. (2018) (Japan) | Japanese Dental Science Federation | 7–9 | EAPD³ | 4496 (892/3604) | 464 | 2280 | 428 | 2216 | NR
Sakly et al. (2020) (Tunisia) | None | 7–12 | EAPD³ | 510 (181/329) | 82 | 257 | 99 | 253 | NR
Schmaulius et al. (2015) (Norway) | NI | 16 | EAPD³ | 794 (110/684) | NR | 380 | NR | 414 | 48.2 | 30.0 | 12.7 | 9.1 | 41.8 | NR | NR | NR
Sreetha et al. (2015) (Nepal) | NI | 7–12 | EAPD³ | 747 (102/645) | 48 | 357 | 54 | 288 | 4.9 | 9.8 | 10.8 | 74.5 | 84.3 | 85.3 | NR | NR
Sidhu et al. (2019) (Canada) | Hospital for Sick Children | NR | EAPD³ | 429 (29/400) | NR | 181 | NR | 248 | NR
Silva et al. (2020) (Brazil) | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil— (CAPES) | 7–14 | EAPD³ | 407 (59/348) | 26 | 182 | 33 | 225 | NR
Silva Júnior et al. (2015) (Brazil) | Federal University of Pará | 5–17 | EAPD³ | 260 (23/237) | 11 | 112 | 12 | 148 | NR | NR | NR | NR | 39.1 | 34.8 | NR | NR
Singh et al. (2020) (India) | None | 7–10 | EAPD³ | 649 (97/552) | NR | NR | NR | NR | 5.7 | 39.3 | 7.4 | 47.5 | 93.8 | 8.8 | NR | NR
Continued
three studies reported in the same study two cohorts: Biondi et al.18 reported data for Buenos Aires (Argentina) and Montevideo (Uruguay); López Jordi et al.108 reported data for Buenos Aires (Argentina) and Montevideo (Uruguay); and Irigoyen-Camacho et al.62 reported data for both 2008 and 2017 cohorts.

Authors (year) (country)	Funding	Age range (years)	MIH classification	Total (MIH/No MIH) (n)	Females (n)	Males (n)	Molars affected (%)	Incisors affected (%)	Incisors and molars affected (%)	HSPM cases (n)					
Sonmez et al. (2013) (Turkey)	NI	7–12	EAPD3	4018 (308/3710)	156	2029	152	2020	NR	NR	NR	NR	NR	NR	
Sosa-Soto et al. (2021) (Mexico)	Programa de Fortalecimiento de la Calidad Educativa	8	EAPD3	613 (76/537)	NR	295	NR	318	38.2	NR	NR	17.1	NR	NR	
Souza et al. (2013) (Brazil)	Federal Funding from São Paulo State	7–12	EAPD3	1151 (142/1009)	88	624	54	527	NR	NR	NR	NR	NR	NR	
Sovierio et al. (2009) (Brazil)	State University of Rio de Janeiro	7–13	EAPD3	249 (100/149)	NR										
Subramaniam et al. (2016) (India)	None	7–9	EAPD3	2500 (12/2488)	7	1104	5	1396	42.3	40.4	5.8	11.5	23.1	23.1	
Tagelsir Ahmed et al. (2020) (USA)	NI	6–15	EAPD3	337 (43/294)	24	169	19	168	NR	NR	NR	NR	NR	6	
Temilola et al. (2015) (Nigeria)	NI	NR	Kemoli5	236 (23/213)	14	120	9	116	NR	NR	NR	NR	NR	8	
Thakur et al. (2020) (India)	NR	8–16	EAPD3	2000 (58/1942)	NR	967	NR	1033	8.5	32.3	13.6	44.2	41.2	41.2	13
Tourino et al. (2016) (Brazil)	None	8–9	EAPD3	1181 (241/940)	125	599	116	582	NR	NR	NR	NR	NR	NR	
Villanueva-Gutierrez et al. (2019) (Mexico)	Metropolitan Autonomous University-Xochimilco	7–12	EAPD3	686 (243/443)	120	365	123	321	6.6	21.7	28.3	43.4	NR	NR	
Wogelius et al. (2008) (Danmark)	"Augustinus Foundation", the Danish Cancer Society, and Boernecan-fonden	6–8	EAPD3	647 (241/426)	116	321	125	326	32.0	27.4	13.7	27.0	NR	NR	
Wuollet et al. (2014) (Finland)	Academy of Finland	7–13	EAPD3	818 (140/678)	66	401	74	417	NR	NR	NR	NR	NR	NR	
Wuollet et al. (2016) (Finland)	Academy of Finland	NR	EAPD3	287 (33/254)	17	128	16	159	NR	NR	NR	NR	NR	NR	
Wuollet et al. (2018) (Finland)	Academy of Finland	8–13	EAPD3	636 (115/521)	NR										
Yannam et al. (2016) (India)	NI	8–12	EAPD3	2864 (277/2587)	NR	1365	NR	1499	NR	NR	NR	NR	NR	NR	
Yi et al. (2020) (China)	Scientific Research Fund of National Health Commission of China	12–15	EAPD3	6523 (655/5868)	340	3295	315	3228	NR	NR	NR	28.4	NR		
Zawawi et al. (2011) (Jordania)	NI	7–9	EAPD3	3241 (570/2671)	302	1539	268	1702	41.0	28.0	20.0	11.0	32.0	32.0	

Table 1. Characteristics of the included studies. NR Not reported, NI No information, EAPD European Academy of Pediatric Dentistry (Weerheim et al.1), mDDE modified Developmental Defects of Enamel index.
Assessment of RoB within studies. Inter-examiner reliability at RoB analysis was considered very substantial (kappa score = 0.885, 95% CI 0.865–0.905). The RoB for observational studies, with the NOS, ranged from 6 to 9 stars (Supplementary S3). After the assessment, forty-eight had the maximum score (9/9). Additionally, fifty-three and six articles scored 8/9 and 7/9, respectively. Only one paper was of moderate RoB (score = 6/9). The main sources of inconsistencies arose from the representativeness of the cases. While all articles succeed to apply an adequate MIH case definition, selection of control, ascertainment of exposure, equal method of assessment of cases and controls and non-response rate (100.0%, n = 113), studies failed to provide adequate representativeness of the cases (48.7%, n = 55), two studies failed the definition of controls (1.8%) and 8.8% only provided information regarding MIH and not any other variables (n = 10).

Prevalence of MIH. A first subgroup meta-analysis confirmed that estimates from studies using the EAPD 2003 classification were significantly different from studies with alternative classifications (categorized as ‘others’) (p = 0.0061) (Supplementary S4). This initial analysis comprised 133,734 participants. Thus, we proceeded with the analyses using only studies reporting prevalence through the 2003 MIH case definition.

Global prevalence (primary outcome). The overall prevalence of MIH for a total of 113,089 participants was estimated at 13.5% (95% CI 12.1–15.1, p < 0.001) (Table 2), with high heterogeneity (I² = 98.0%) (Supplementary S5). Cumulative meta-analysis confirmed the overall estimate was not influenced by a particular study or group of studies (Supplementary S6A). We further confirmed the non-existence of influential studies through leave-one-out meta-analysis (Supplementary S6B).

The prevalence of moderate to severe cases of MIH was estimated at 36.3% (95% CI 29.9–43.2, I² = 95.2%) (Table 2, Supplementary S7). Detailed information on the definition of severity in each study was collectively presented in Table 3. Regarding the number of affected molars, estimates point to 24.3% of cases with one molar (95% CI 18.9–30.7, I² = 94.2%), 26.7% of cases with two molars (95% CI 23.9–29.7, I² = 65.0%), 18.1% of cases with three molars (95% CI 13.8–23.3, I² = 90.0%) and 26.8% of cases with four molars (95% CI 21.1–34.7, I² = 94.0%) (Supplementary S8-S11). The cases with affected incisors were estimated at 38.7% (95% CI 32.1–45.8, I² = 93.2%) (Supplementary S12), while cases with both molars and incisors were estimated at 42.1% (95% CI 34.9–50.0, I² = 95.5%) (Supplementary S13). Lastly, the prevalence of HSPM cases was estimated at 3.6% (95% CI 1.9–6.8, I² = 96.3%) (Supplementary S14). All the latter results had high heterogeneity.

Table 2. Meta-analysis on the prevalence of MIH cases, severity of cases, number of affected molars, cases with affected incisors and HSPM. MIH Molar-Incisor Hypomineralization, HSPM Hypomineralization of the Second Primary Molars, 95% CI 95% Confidence Interval.

Condition	N	Estimate (%)	95% CI (%)	p-value	I² (%)	Egger test t (p-value)
MIH	98	13.5	12.0–15.1	<0.001	98.0	−2.366 (0.179)
Moderate-to-severe cases	33	36.3	29.9–43.2	<0.001	95.2	0.233 (0.052)

Number of affected molars

1	31	24.3	18.9–30.7	<0.001	94.2	−3.392 (0.002)
2	27	26.7	23.9–29.7	<0.001	65.0	−0.141 (0.889)
3	26	18.1	13.8–23.3	<0.001	90.9	−1.207 (0.239)
4	27	27.4	21.1–34.7	<0.001	94.0	−0.020 (0.984)
Cases with affected incisors	31	38.7	32.1–45.8	<0.001	93.2	−0.747 (0.461)
Cases with both molars and incisors affected	36	42.1	34.9–50.0	<0.001	95.5	−0.153 (0.774)
HSPM	7	3.6	1.9–6.8	<0.001	95.9	-

Sex and geographic location (secondary outcomes). We further analyzed whether the prevalence results were influenced by study sample size, female/male ratio, geographic location (latitude and longitude) and year of publication (Table 4).

Overall, MIH was influenced by the study sample size explaining 7.7% of the accounted heterogeneity, respectively. The year of publication (estimate = 0.09, p = 0.023) demonstrated a slight influence on the prevalence of MIH cases with one molar affected (explained 11.6% of heterogeneity).

We then explored whether the prevalence between males and females would differ regarding MIH. Meta-analysis confirmed the latter result from meta-regression that MIH is not sex-related and females and males present a non-significant difference on the prevalence of MIH (0.986, 95% CI 0.940–1.035, I² = 32.6%, p = 0.564) (Fig. 2).

We further explored the prevalence of MIH per continent (Table 5). Among the five continents analyzed, America was the continent with highest prevalence (15.3, 95% CI 12.8–18.3, p < 0.001, I² = 96.3%) and Asia had the lowest prevalence (10.7, 95% CI 78.5–13.5, p < 0.001, I² = 98.7%). The differences between continents (test for subgroup differences) were not significant (p = 0.1643).
Authors (year) (country)	Severity Index/definition	Definition	Moderate/severe cases (%)
Amend et al. (2020) (Germany)	Wetzel and Reckel scale[6]	*Degree 1* (isolated hypomineralization of white cream to yellow–brown color, solely located in the uppermost part of the tooth crown (chewing surface), no post-eruptive enamel breakdown); *degree 2* (enamel hypomineralization of yellow–brown color affecting almost all humps in the coronal part of the tooth crown combined with a small amount of post-eruptive enamel breakdown), and *degree 3* (extensive enamel hypomineralization of yellow–brown color along with extensive post-eruptive enamel breakdown causing changes of the tooth crown morphology)	
Arslanagic-Muratbegovic et al. (2020) (Bosnia & Herzegovina)	-	21 tooth with post-eruptive enamel breakdown, atypical fillings or tooth extracted due to MIH	82.0
Da Costa-Silva et al. (2010) (Brazil)	Leppäniemi et al.[135]	Mild (demarcated opacities without fracture), moderate (hard and fractured enamel and need for treatment), and severe (loss of tooth structure affecting the enamel and dentine, replacement of hard tissues with atypical restorations, and tooth extraction due to hypomineralization)	54.0
Dantas-Neta et al. (2018) (Brazil)	Leppäniemi et al.[135]	Mild (demarcated opacities without fracture), moderate (hard and fractured enamel and need for treatment), and severe (loss of tooth structure affecting the enamel and dentine, replacement of hard tissues with atypical restorations, and tooth extraction due to hypomineralization)	50.5
Dantas-Neta et al. (2018) (Brazil)	Leppäniemi et al.[135]	Mild (demarcated opacities without fracture), moderate (hard and fractured enamel and need for treatment), and severe (loss of tooth structure affecting the enamel and dentine, replacement of hard tissues with atypical restorations, and tooth extraction due to hypomineralization)	5.4
Davenport et al. (2019) (USA)	Leppäniemi et al.[135]	Mild (demarcated opacities without enamel breakdown, occasional sensitivity to external stimuli) and severe (demarcated enamel with breakdown, caries, and persistent/spontaneous hypersensitivity)	30.6
Ghanim et al. (2013) (Iran)	-	Mild (color changes only [i.e. creamy white or yellow/brown]), moderate (loss of enamel substance), and severe (loss of enamel associated with affected dentine and/or atypical restorations)	34.3
Glodkowska et al. (2019) (Poland)	Lygidakis et al.[134]	Mild (demarcated enamel opacities without enamel breakdown, occasional sensitivity to external stimuli but not brushing and only mild aesthetic concerns on discoloration of the incisors), and severe (demarcated enamel opacities with breakdowns, caries, persistent/spontaneous hypersensitivity affecting function and finally strong aesthetic concerns that may have socio-psychological impact)	26.6
Gurrusqueta et al. (2017) (Mexico)	Mathu-Muju and Wright[118]	Mild (Opacities delimited in areas free of occlusal forces, isolated opacities, no enamel loss in opaque areas, no history of dental hypersensitivity, no activities related to caries of affected enamel, alterations of incisors), moderate (atypical and intact restorations may be present, opacities delimited in the occlusal/incisal third of the tooth, without loss of the structure after eruption, loss of post-eruptive enamel and carious lesions that are limited to 1 or 2 areas, without participation of cusps, tooth sensitivity and often, aesthetic complaints) and severe (post-eruptive losses, history of tooth sensitivity, extensive carious lesions associated with the affected enamel, coronal destruction with pulpal involvement, presence of defects in atypical restorations, aesthetic complaints)	43.7
Hartsock et al. (2020) (USA)	Lygidakis et al.[134]	Mild (demarcated enamel opacities without enamel breakdown, occasional sensitivity to external stimuli but not brushing and only mild aesthetic concerns on discoloration of the incisors), and severe (demarcated enamel opacities with breakdowns, caries, persistent/spontaneous hypersensitivity affecting function and finally strong aesthetic concerns that may have socio-psychological impact)	30.0
Hussain et al. (2018) (United Arab Emirates)	Chawla et al.[138]	Hypomineralisation Severity Index	47.0
Irigoyen-camacho et al. (2019) (Mexico)	-	Mild (demarcated opacities affected less than one-third of the tooth surface, without post-eruptive enamel breakdown), moderate (demarcated opacities that affected at least one-third but less than two-thirds of the surface, without post-eruptive enamel breakdown; atypical caries lesions could affect less than two-thirds of the surface), and severe (demarcated opacities that affected more than two-thirds of the tooth surface, or the presence of post-eruptive enamel breakdown, atypical caries lesions larger than two-thirds of the surface, or large restorations with unusual shape, extended to smooth surfaces, or extraction of the tooth because of MIH)	21.2
Janković et al. (2014) (Bosnia and Herzegovina)	-	Mild (tooth enamel color changes [white, yellow or brown]), moderate (discoloration and minimal loss of tooth substances without the need for restoration), and severe (damaged enamel and dentin loss that require restoration)	13.4

Continued
Authors (year) (country)	Severity Index/definition	Definition	Moderate/severe cases (%)
Jasulaityte et al. (2008) (The Netherlands)	–	Mild (opacities) and severe (enamel breakdowns and atypical restorations both include lesions with disintegrated enamel, in one case restored)	45.2
Jeremias et al. (2013) (Brazil)	Jasulaityte et al.134	Severe (post-eruptive enamel breakdown, atypical restorations and extraction due to MIH)	9.3
Kevekidou et al. (2015) (Greece)	Lygidakis et al.134	Mild (demarcated enamel opacities without enamel breakdown, occasional sensitivity to external stimuli but not brushing and only mild aesthetic concerns on discoloration of the incisors), and severe (demarcated enamel opacities with breakdowns, caries, persistent/spontaneous hypersensitivity affecting function and finally strong aesthetic concerns that may have socio-psychological impact)	25.0
Kühnisch et al. (2018) (Germany)	Kühnisch et al.130	Severe (hypomineralization on first permanent molars and incisors)	56.7
Martínez Gomez et al. (2012) (Spain)	Mathu-Muju and Wright138	Mild (Opacities delimited in areas free of occlusal forces, isolated opacities, no enamel loss in opaque areas, no history of dental hypersensitivity, no activities related to caries of affected enamel, alterations of incisors), moderate (atypical and intact restorations may be present, opacities delimited in the occlusal/incisal third of the tooth, without loss of the structure after eruption, loss of post-eruptive enamel and carious lesions that are limited to 1 or 2 areas, without participation of cusps, tooth sensitivity and often, aesthetic complaints) and severe (post-eruptive losses, history of tooth sensitivity, extensive carious lesions associated with the affected enamel, coronary destruction with pulp involvement, presence of defects in atypical restorations, aesthetic complaints)	50.0
Martinovic et al. (2017) (Kosovo)	–	Mild (stained changes in the tooth enamel), moderate (changes in color [white/opaque, yellow or brown] and minimal loss of tooth substance with no need for restoration, or minimally invasive treatment is sufficient to repair defects), and severe (loss of damaged enamel and dentin which require restoration)	40.3
Mejia et al. (2019) (Colombia)	Leppäniemi et al.135	Mild (demarcated opacities without fracture, and severe (opacity with loss of structure compromising enamel and/or dentin, with atypical restorations, and/or exodontia due to hypomineralization)	15.0
Parikh et al. (2012) (India)	Lygidakis et al.134	Mild (demarcated enamel opacities without enamel breakdown, occasional sensitivity to external stimuli but not brushing and only mild aesthetic concerns on discoloration of the incisors), and severe (demarcated enamel opacities with breakdowns, caries, persistent/spontaneous hypersensitivity affecting function and finally strong aesthetic concerns that may have socio-psychological impact)	22.3
Petrou et al. (2014) (Germany)	Lygidakis et al.130	Mild (demarcated enamel opacities without enamel breakdown, occasional sensitivity to external stimuli but not brushing and only mild aesthetic concerns on discoloration of the incisors), and severe (demarcated enamel opacities with breakdowns, caries, persistent/spontaneous hypersensitivity affecting function and finally strong aesthetic concerns that may have socio-psychological impact)	52.1
Portella et al. (2019) (Brazil)	Leppäniemi et al.135	Mild (demarcated opacities without fracture), moderate (hard and fractured enamel and need for treatment), and severe (loss of tooth structure affecting the enamel and dentine, replacement of hard tissues with atypical restorations, and tooth extraction due to hypomineralization)	28.4
Silva et al. (2020) (Brazil)	Lygidakis et al.134	Mild (demarcated enamel opacities without enamel breakdown, occasional sensitivity to external stimuli but not brushing and only mild aesthetic concerns on discoloration of the incisors), and severe (demarcated enamel opacities with breakdowns, caries, persistent/spontaneous hypersensitivity affecting function and finally strong aesthetic concerns that may have socio-psychological impact)	22.6
Silva Júnior et al. (2015) (Brazil)	Mathu-Muju and WrightWetzel and Reckel scale130	Mild (Opacities delimited in areas free of occlusal forces, isolated opacities, no enamel loss in opaque areas, no history of dental hypersensitivity, no activities related to caries of affected enamel, alterations of incisors), moderate (atypical and intact restorations may be present, opacities delimited in the occlusal/incisal third of the tooth, without loss of the structure after eruption, loss of post-eruptive enamel and carious lesions that are limited to 1 or 2 areas, without participation of cusps, tooth sensitivity and often, aesthetic complaints) and severe (post-eruptive losses, history of tooth sensitivity, extensive carious lesions associated with the affected enamel, coronary destruction with pulp involvement, presence of defects in atypical restorations, aesthetic complaints)	21.5

Continued
Table 3. Detailed case definition of MIH severity for each study with the respective reported prevalence.

Authors (year) (country)	Severity Index/definition	Moderate/severe cases (%)
Zawaideh et al. (2011) (Jordania)	Wetzel and Reckel scale	56.0
Villanueva-Gutierrez et al. (2019) (Mexico)	–	81.5
Negre-Barber et al. (2016) (Spain)	–	28.0
Fernandes et al. (2021) (Brazil)	Ghanim et al.	41.7

Table 4. Meta-regression analyses on the effect of female/male ratio (FMR), latitude, longitude and year. Values are provided as estimate (Standard Error) [Variance explained (%)]. MIH Molar-Incisor Hypomineralization, HSPM Hypomineralization of the Second Primary Molars, 95%CI 95% Confidence Interval, FMR Female/Male Ratio. *Significant p-value < 0.05.
Figure 2. Forest plot of meta-analysis comparing MIH prevalence of female versus male participants.
We have attempted to explore ways to mitigate heterogeneity, and all studies used to compute estimates (and that we confirmed substantial differences with a downgrading in prevalence when alternative methods were applied. More, prior to any analysis, we compared the EAPD case definition with other classifications than the EAPD, and present new prevalence estimates concerning clinical characteristics of MIH (molars and incisors affected, severity and HSPM).

Table 5. Meta-analysis on the prevalence of MIH per continent. MIH Molar-Incisor Hypomineralization, HSPM Hypomineralization of the Second Primary Molars, 95% CI 95% Confidence Interval, FMR female/male ratio.

Continent	N	Estimate	95% CI	p-value	I² (%)
Africa	5	14.5	7.7–25.6	< 0.001	98.1
Asia	29	10.7	8.5–13.5	< 0.001	98.7
America	30	15.3	12.8–18.3	< 0.001	96.3
Europe	34	14.4	12.1–17.1	< 0.001	97.8
Oceania	1	14.7	11.2–18.9	–	–

Test for subgroup differences (random effects model) p-value = 0.1643

Additional analyses. No publication bias was detected in the overall analysis (Table 2), except for the prevalence of cases with one molar affected (p = 0.004).

Using the SORT recommendation, we concluded the estimates obtained are classified as SORT A, that means, the results provide high level of confidence.

Discussion

Summary of main findings. The results of the present systematic review estimated a pooled prevalence of MIH at 13.5%. The moderate to severe cases of MIH were estimated at 36.3% of all cases. Having three molars affected with MIH is the least probable situation and affected incisors were seen in 36.6% of the cases. The prevalence of HSPM in MIH cases was estimated at 3.6%. The sample size was a significant source of heterogeneity for the overall MIH prevalence and the year of publication for the prevalence of one molar affected. Sex, year of publication and geographic location were not deemed influential factors in almost all the results. Continents showed no different prevalence on MIH, with the American continent displaying the highest prevalence and the Asian continent the lowest.

Quality of the evidence and potential biases in the review process. Overall, these results were categorized with a SORT A recommendation, which means that all studies found coherent conclusions regarding the prevalence of MIH and that these results are consistent and good-quality patient-oriented evidence. Furthermore, this is the first systematic review providing pooled estimates on molars and incisors affected with MIH and HSPM cases.

As previously presented, two previous systematic reviews have focused on the prevalence of MIH. Overall, our results provided similar prevalence to the one reported by Schwendicke et al.¹³ (13.1%) and slightly above from Zhao et al.⁶ (14.2%). However, comparing with the latter, the present systematic review expanded the number of countries (49), confirmed the downgrading of alternative case definition of MIH to the overall pooled estimate (while the previous reviews combined classifications), and present new prevalence estimates concerning clinical characteristics of MIH (molars and incisors affected, severity and HSPM).

Regarding the comparison between sexes, our result fully align with those by Schwendicke et al.³ (OR 0.92; 0.81–1.04) and Zhao et al.⁶ (regression estimate = 0.005, p-value = 0.938), which means that both girls and boys present similar distribution of MIH lesions.

When analyzing the prevalence among continents, the comparison with literature is not reasonable as we only accounted for the EAPD classification, and this explains why Oceania had no studies available (despite two publication by Mahoney et al.¹⁸¹⁹). Also, in Zhao et al.⁵, Africa was the continent with lowest prevalence, yet in our review Asia had the lowest prevalence. The American continent includes for the first time studies from the United States of America and Mexico which may explain a decrease in MIH prevalence from the two previous studies, however remains as the continent (super-region) with highest prevalence.

Regarding the methodological aspects, by comparing the EAPD with alternative diagnostic methods as a subgroup analysis we confirmed the downgrading potential of alternative methods to the overall estimates. Thus, this step methodological assortment into the analyses despite the substantial heterogeneity from the meta-analytical estimations. Also, our analyses on the severity, teeth affected and HSPM were severely reduced because this sort of data is still scarce. Future studies shall provide extensive information on these characteristics to confirm these results. Also, we were unable to explore hypothetical MIH-related factors (both medical, sociodemographic and environmental) once again because of the lack of relevant information, and this should be taken into account in future epidemiological studies.

All in all, readers must bear in mind that although the overall prevalence seems to be constant over the time, new prevalence data has been pooled that contribute to understand the clinical characteristics of this enamel defect entity.

Strengths and potential limitations. This systematic review was conducted following PRISMA a strict guideline for data reporting, a comprehensive literature search and a meticulous predefined protocol. Furthermore, prior to any analysis, we compared the EAPD case definition with other classifications than the EAPD, and we confirmed substantial differences with a downgrading in prevalence when alternative methods were applied. We have attempted to explore ways to mitigate heterogeneity, and all studies used to compute estimates (and that employed the EAPD case definition) were of high methodological quality. Another advantage of this study is that
we have expanded the search for potential sources of heterogeneity with the addition of geographic measures and the further assessment into the new prevalence estimates. Also, the number of included participants has increased, which is logical given the increase in studies included, yet this is a point to keep in mind.

Nevertheless, there are a number of limitations important discussing. Almost half of the studies had not fulfilled the criterion of representativeness and this is a point where future studies shall be careful. These results should be prudentely analyzed because of the elevated heterogeneity observed in some of the reported estimates, though from our analyses the heterogeneity mostly derives from the variability between regions already discussed in a previous study assessing meta-analysis of prevalence31, rather than the sources of heterogeneity considered as proven through meta-regression.

Also, a number of studies have not employed the EAPD case definition for MIH and after the subgroup analysis aforementioned they were not accounted for the analyses. It is essential that there is a standardization of the classification used, which is a topic already widely discussed in the literature32. Ergo, and given the results of the present systematic review, several challenges may emerge. First, a global partnership between all geographic representative associations shall be attained, to ultimately ensure a standardization of MIH reporting and, certainly, will encourage new and updated epidemiological and clinical data. Second, this suggested consensus will clarify the terminologies and guidelines towards a global alliance that will benefit all people affected by MIH. All in all, these may contribute to overcoming the lack of epidemiological data and a still methodologically unsettled reporting approach.

Only a percentage of the overall included studies reported data on the teeth affected with MIH, with the severity of cases or HSPM cases. Several classifications for the severity of MIH have been proposed33,34, and some date before the EAPD 2003, such as Leppäniemi35 or the Wetzel & Reckel scale 36,37. Moreover, the MIH Treatment Need Index (MIH-TNI) was recently presented, which is38 part of the Wuerzburg MIH concept. Nevertheless, the lack of a homogenous definition may have contributed to the heterogeneity of results, making it urgent to establish a consensal severity classification.

Hence, future studies should focus on data on these prevalence characteristics to deepen our knowledge regarding the specifics of MIH. These information are of the utmost relevance for clinicians and may aid the development and implementation of future oral health programs.

Conclusion

The estimated prevalence of MIH was estimated at 13.5%. Moderate to severe cases of MIH were estimated at 36.3%. Affected incisors were seen in 36.6% of the cases. The prevalence of hypomineralization of the second primary molars in MIH cases was estimated at 3.6%. Overall, these results were categorized with a SORT A recommendation.

Data availability

Data is provided in the materials of the paper.

Received: 8 July 2021; Accepted: 6 October 2021
Published online: 17 November 2021

References

1. Weerheijm, K. L. et al. Judgement criteria for molar incisor hypomineralisation (MIH) in epidemiologic studies: A summary of the European meeting on MIH held in Athens, 2003. Eur. J. Paediatr. Dent. 4, 110–113 (2003).
2. Elhenawy, K. et al. Structural, mechanical and chemical evaluation of molar-incisor hypomineralization-affected enamel: A systematic review. Arch. Oral. Biol. 83, 272–281 (2017).
3. Ghanim, A. et al. Molar incisor hypomineralisation (MIH) training manual for clinical field surveys and practice. Eur. Arch. Pediatr. Dent. 18, 225–242 (2017).
4. Almuallem, Z. & Basuutil-Naudi, A. Molar incisor hypomineralisation (MIH): An overview. Br. Dent. J. https://doi.org/10.1038/sj.bdj.2018.814 (2018).
5. Schwendicke, F. et al. Global burden of molar incisor hypomineralization. J. Dent. 68, 10–18 (2018).
6. Zhao, D., Dong, B., Yu, D., Ren, Q. & Sun, Y. The prevalence of molar incisor hypomineralization: Evidence from 70 studies. Int. J. Paediatr. Dent. 28, 170–179 (2018).
7. Liberati, A. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 339, 2700 (2009).
8. Botelho, J. et al. Periodontitis and circulating blood cell profiles: A systematic review and meta-analysis. Exp. Hematol. 93, 1–13 (2021).
9. Machado, V., Escalda, C., Proença, L., Mendes, I. J. & Botelho, J. Is there a bidirectional association between polycystic ovarian syndrome and periodontitis? A systematic review and meta-analysis. J. Clin. Med. 9, E1961 (2020).
10. Higgins, J. P. T. et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343, d5928–d5928 (2011).
11. Higgins, J. P. et al. Cochrane Handbook for Systematic Reviews of Interventions 2nd edn. (Wiley, 2019).
12. Newman, M. G., Weyant, R. & Hujoei, P. JEBDP improves grading system and adopts strength of recommendation taxonomy grading (SORT) for guidelines and systematic reviews. J. Evid. Based Dent. Pract. 7, 147–150 (2007).
13. Balmer, R., Toumba, J., Godson, J. & Duggal, M. The prevalence of molar incisor hypomineralisation in Northern England and its relationship to socioeconomic status and water fluoridation. Int. J. Paediatr. Dent. 22, 250–257 (2012).
14. Balmer, R., Toumba, K. J., Munyombwe, T., Godson, J. & Duggal, M. S. The prevalence of incisor hypomineralisation and its relationship with the prevalence of molar incisor hypomineralisation. Eur. Arch. Paediatr. Dent. 16, 265–269 (2015).
15. Biondi, A. M. et al. Prevalence of molar incisor hypomineralization in the city of Buenos Aires. Acta Odontol. Latinoam. 24, 81–85 (2011).
16. Biondi, A. M. et al. Prevalence of molar-incisor hypomineralization (MIH) in children seeking dental care at the Schools of Dentistry of the University of Buenos Aires (Argentina) and University of la Republica (Uruguay). Acta Odontol. Latinoam. 25, 224–230 (2012).
56. Ghanim, A., Manton, D., Bailey, D., Martíño, R. & Morgan, M. Risk factors in the occurrence of molar-incisor hypomineralization among a group of Iraqi children. Int. J. Paediatr. Dent. 23, 187–206 (2013).

57. Głowekowska, N. & Emerich, K. Molar incisor hypomineralization: Prevalence and severity among children from Northern Poland. Eur. J. Paediatr. Dent. 20, 59–66 (2019).

58. Gurrusqueta, B. J., Núñez, V. M. M. & López, M. L. A. J. Prevalence of molar-incisor hypomineralization in Mexican children. J. Clin. Pediatr. Dent. 41, 18–21 (2017).

59. Hanan, S. et al. Molar-incisor hypomineralization in schoolchildren of Manaus, Brazil. Pesqui. Bras. Odontopediatr. Clin. Integr. 15, 309–317 (2015).

60. Hernández, M., Boj, J.-R., Espasa, E. & Perez, B. First permanent molars and permanent incisors teeth by tooth prevalence of molar–incisor–hypomineralisation in a group of Spanish schoolchildren. Acta Stomatol. Croat. 52, 4–11 (2018).

61. Hussain, G., Al-Halabi, M., Kowash, M. & Hassan, A. The Prevalence and severity of molar incisor hypomineralization and molar hypomineralization in Dubai, UAE. J. Dent. Child. 85, 102–107 (2018).

62. Irigoien-Camacho, M. E. et al. Evaluating the changes in molar incisor hypomineralization prevalence: A comparison of two cross-sectional studies in two elementary schools in Mexico City between 2008 and 2017. Clin. Exp. Dent. Res. 6, 82–89 (2020).

63. Jasulaityte, L., Weerheijm, K. L. & Veerkamp, J. S. Prevalence of molar-incisor-hypomineralisation among children participating in the Dutch National Epidemiological Survey (2003). Eur. Arch. Paediatr. Dent. 9, 218–223 (2008).

64. Jeremias, F. et al. Dental caries experience and molar-incisor hypomineralization. Acta Odontol. Scand. 71, 870–876 (2013).

65. Jurlina, D., Uzarevic, Z., Ivanisevic, Z., Matijevic, N. & Matijevic, M. Prevalence of molar incisor hypomineralization and caries in eight-year-old children in Croatia. Int. J. Environ. Res. Public Health 17, E6358 (2020).

66. Kevrekidou, A., Kosma, I., Arapostathis, K. & Kotsanos, N. Molar incisor hypomineralization of eight- and 14-year-old children: Prevalence, severity, and defect characteristics. Pediatr. Dent. 37, 455–461 (2015).

67. Koruyucu, M., Ozel, S. & Tuna, E. B. Prevalence and etiology of molar-incisor hypomineralization (MIH) in the city of Istanbul. J. Dent. Sci. 13, 318–328 (2018).

68. Krishnan, R., Ramesh, M. & Chalakkal, P. Prevalence and characteristics of MIH in school children residing in an endemic fluorosis area of India: An epidemiological study. Eur. Arch. Paediatr. Dent. 16, 455–460 (2015).

69. Kühnisch, J. et al. Relationship between caries experience and demarcated hypomineralised lesions (including MIH) in the permanent dentition of 15-year-olds. Clin. Oral. Investig. 22, 2013–2019 (2018).

70. Mishra, A. & Pandey, R. K. Molar incisor hypomineralization: An epidemiological study with prevalence and etiological factors in Indian pediatric population. Int. J. Clin. Pediatr. Dent. 9, 167–171 (2016).

71. Mulic, A., Cehajić, E., Cehajić, E., Tveit, A. B. & Stenhagen, K. R. How serious is molar incisor hypomineralization (MIH) among 8- and 9-year-old children in Bosnia-Herzegovina? A clinical study. Eur. J. Paediatr. Dent. 18, 153–157 (2017).

72. Muratbegovic, A., Markovic, N. & Ganibegovic Selimovic, M. Molar incisor hypomineralisation in bosnia and herzegovina: Prevalence, aetiology and clinical consequences in medium caries activity population. Eur. Arch. Paediatr. Dent. 8, 189–194 (2007).

73. Ng, J. J., Eu, O. C., Nair, R. & Hong, C. H. L. Prevalence of molar incisor hypomineralization (MIH) in Singaporean children. Int. J. Paediatr. Dent. 25, 73–78 (2015).

74. Perdorez-Romero, I., Jijón-Granja, Y., Uliba-Mazzini, W., Porro-Porro, L. & Alvarez-Giler, G. Distribution of molar incisor hypomineralization in Ecuadorian children. Dent. Hypotheses 10, 65 (2019).

75. Oyedele, T. A., Folyan, M. O., Adekoya-Sofowora, C. A., Oziegbe, E. O. & Esan, T. A. Prevalence, pattern and severity of molar incisor hypomineralization in 8- to 10-year-old school children in Ile-Ife, Nigeria. Eur. Arch. Paediatr. Dent. 16, 277–282 (2015).

76. Padavala, S. & Sukumar, G. Molar incisor hypomineralization and its prevalence. Contemp. Clin. Dent. 9, 246 (2018).

77. Parikh, D. R., Ganesh, M. & Bhaskar, V. Prevalence and characteristics of molar incisor hypomineralization (MIH) in the child population residing in Gandhinagar, Gujarat, India. Eur. Arch. Paediatr. Dent. 13, 21–26 (2012).

78. Petit, P. et al. Prevalence of molar-incisor-hypomineralisation among school children in four German cities. Int. J. Paediatr. Dent. 24, 434–440 (2014).

79. Pitiphat, W., Savisit, R., Chansamak, N. & Subarnbhesaj, A. Molar incisor hypomineralization and dental caries in six- to seven-year-old Thai children. Pediatr. Dent. 36, 478–482 (2014).

80. Saber, F., Waly, N. & Mohed, D. Prevalence of molar incisor hypomineralisation in a group of Egyptian children using the short form: A cross-sectional study. Eur. Arch. Paediatr. Dent. 19, 337–345 (2018).

81. Schmalfuss, A., Stenhagen, K. R., Tveit, A. B., Crossner, C.-G. & Espelid, I. Canines are affected in 16-year-olds with molar-incisor hypomineralization. Int. J. Environ. Res. Public Health 14, 263–270 (2020).

82. da Silva, F. M. F. et al. Defining the prevalence of molar incisor hypomineralization in Brazil. Pesqui. Bras. Odontopediatr. Clin. Integr. 20, e5146 (2020).

83. Singh, R., Srivastava, B. & Gupta, N. Prevalence and pattern of molar incisor hypomineralization in Delhi region. J. Anat. Soc. India 69, 150 (2020).

84. Souza, J. F. et al. Aetiology of molar-incisor hypomineralisation (MIH) in Brazilian children. Eur. Arch. Paediatr. Dent. https://doi.org/10.1007/s40368-013-0054-3 (2013).

85. Subramaniam, P., Gupta, T. & Sharma, A. Prevalence of molar incisor hypomineralization in 7-9-year-old children of Bengaluru City, India. Contemp. Clin. Dent. 7, 11–15 (2016).

86. Temilola, O. D., Folyan, M. O. & Oyedele, T. The prevalence and pattern of deciduous molar hypomineralisation and molar-incisor hypomineralization in children from a suburban population in Nigeria. BMC Oral Health 15, 73 (2015).

87. Kemoli, A. M. Prevalence of molar incisor hypomineralisation in six to eight year-olds in two rural divisions in Kenya. East Afr. Med. J. 85, 514–519 (2008).

88. Wuolleter, E., Laiai, S., Salmela, E., Ess, A. & Alaluusua, S. Background factors of molar-incisor hypomineralization in a group of Finnish children. Acta Odontol. Scand. 72, 963–969 (2014).

89. Wuolleter, E., Laiai, S., Alaluusua, S. & Waltimo-Sirén, J. The association between molar-incisor hypomineralization and dental caries with socioeconomic status as an explanatory variable in a group of Finnish children. Int. J. Environ. Res. Public Health 15, E1324 (2018).

90. Buchgraber, R., Kojku, L. & Ebelseeder, K. A. Molar incisor hypomineralization: Proportion and severity in primary public school children in Graz, Austria. Clin. Oral Investig. 22, 757–762 (2018).

91. Cho, S.-Y., Ki, Y. & Chu, V. Molar incisor hypomineralization in Hong Kong Chinese children. Int. J. Paediatr. Dent. 18, 348–352 (2008).

92. Dantas-Neta, N. B. et al. Factors associated with molar-incisor hypomineralisation in schoolchildren aged 8–10 years: A case-control study. Int. J. Paediatr. Dent. 28, 570–577 (2018).

93. Thakur, H., Kaur, A., Singh, N., Singh, R. & Kumar, S. Prevalence and clinical characteristics of molar-incisor hypomineralization in 8–16-year-old children in industrial town of Solan District of Himachal Pradesh. Int. J. Clin. Pediatr. Dent. 13, 230–234 (2020).
135. Leppäniemi, A., Lukinmaa, P. L. & Alaluusua, S. Nonfluoride hypomineralizations in the permanent first molars and their impact on the treatment need. Cariess Res. 35, 36–40 (2001).
136. Wetzel, W. E. & Reckel, U. Defective 6-year molars increasing: An inquiry. Zahnarztl. Mitt. 81, 650–652 (1991).
137. Steffen, R., Krämer, N. & Bekes, K. The Würzburg MIH concept: the MIH treatment need index (MIH TNI): A new index to assess and plan treatment in patients with molar incisor hypomineralisation (MIH). Eur. Arch. Paediatr. Dent. 18, 355–361 (2017).
138. Chawla, N., Messer, L. B., & Silva, M. Clinical studies on molar-incisor-hypomineralisation part 2: development of a severity index. European archives of paediatric dentistry : official journal of the European Academy of Paediatric Dentistry, 9(4), 191–199. https://doi.org/10.1007/BF03262635 (2008).
139. Jälevik, B. Prevalence and Diagnosis of Molar-Incisor-Hypomineralisation (MIH): A systematic review. European archives of paediatric dentistry : official journal of the European Academy of Paediatric Dentistry, 11(2), 59–64. https://doi.org/10.1007/BF03262714 (2010).
140. Koch, G. et al. Epidemiologic study of idiopathic enamel hypomineralization in permanent teeth of Swedish children. Community Dent Oral Epidemiol. 15, 279–85 (1987).

Author contributions
Conceptualization: L.B.L., V.M., J.B. Data curation: L.B.L., P.M., J.B. Formal Analysis: P.M., V.M., J.B. Investigation: L.B.L., V.M., J.B. Methodology: J.B. Project administration: L.B.L., J.B. Resources: J.B. Visualization: J.B. Writing—original draft: L.B.L., V.M., P.M., J.J.M., J.B. Writing—review & editing: L.B.L., V.M., P.M., J.J.M., J.B.

Funding
This work is financed by national funds through the FCT—Foundation for Science and Technology, I.P., under the Project UIDB/04585/2020.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-01541-7.

Correspondence and requests for materials should be addressed to J.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021