A primal-dual approach for a total variation Wasserstein flow

28/08/2013

Authors: Martin Benning, Luca Calatroni, Bertram Düring, Carola-Bibiane Schönlieb

Publication: GSI2013 - Geometric Science of Information

OAI: oai:www.see.asso.fr:2552:4874

DOI:

Télécharger

Le téléchargement implique l’acceptation de nos conditions d’utilisation

Abstract

Authors

Martin Benning

A primal-dual approach for a total variation Wasserstein flow

Luca Calatroni

A primal-dual approach for a total variation Wasserstein flow

Bertram Düring

A primal-dual approach for a total variation Wasserstein flow

Carola-Bibiane Schönlieb

A primal-dual approach for a total variation Wasserstein flow
A primal-dual approach for a total variation Wasserstein flow

Metrics

Downloaded: 110
Viewed: 6
Size: 571.94 KB
Type: application/pdf
URI: bitcache://43dca8ca271a83f1a2342498ab6e6b6e6689fc8e

License

La SEE (Société de l'Electricité, de l'Électronique et des Technologies de l'Information et de la Communication – Association reconnue d'utilité publique, régie par la loi du 1er juillet 1901) met à la disposition de ses adhérents et des abonnés à ses publications, un ensemble de documents numériques accessibles à partir de son portail des publications. Ces documents incluent notamment les articles des revues REE, 3 EI et e-STA disponibles sous forme numérique ainsi que des publications additionnelles regroupées dans l'espace eREE. Les présentes conditions précisent les conditions de diffusion et d'utilisation de ces documents et des informations qu'ils contiennent. L'accès à ces documents, qu'il se fasse de façon gratuite ou dans le cadre d'abonnements ou d'achats faits à titre onéreux, implique l'acceptation sans restriction de ces dispositions.

Droits de propriété et de diffusion des contenus téléchargés sur le portail des publications

Les contenus rendus accessibles sur le portail des publications sont, en règle générale, protégés par le droit d'auteur. En tant que producteur, et le cas échéant d'auteur, des informations rassemblées dans les contenus accessibles par ce portail, SEE se réserve l'exclusivité des droits de copie et de diffusion de tout ou partie de ces contenus.

Les contenus sont rendus accessibles à titre individuel, pour les besoins de la personne en déttenant des droits d'accès en cours de validité. Aussi, la modification, la reproduction et/ou la diffusion via Internet ou le Web, intranet, extranet ou toute autre forme numérique ou imprimée, de tout ou partie des contenus téléchargés sont interdites. Une tolérance est consentie quant à la reproduction d'extraits limités de ces contenus, dans le cadre de travaux ou d'activités auxquels ils sont utiles, à la condition que l'origine de ces reproductions partielles soit mentionnée de façon lisible et sans ambigüité. Figureront en particulier : la REE (ou toute autre revue accessible sur le portail) en tant que la source, la référence de la publication et le nom de l'auteur (s'il figure dans la revue).
Ces dispositions s'appliquent également aux figures, illustrations, logos ou images.

Publication externe des contenus du portail des publications

Tout extrait des contenus du portail destiné à être utilisé dans des publicités, des communiqués de
Presse ou du matériel de promotion nécessite un accord préalable écrit de la SEE. Une version préliminaire du document proposé contenant ces extraits doit accompagner chacune de ces demandes. SEE se réserve le droit de refuser un tel usage externe pour quelque raison que ce soit.

Responsabilités

La SEE apporte tout le soin possible à la préparation des informations délivrées dans les contenus produits. Cependant elle ne peut être tenue pour responsable d'aucune perte ou frais qui pourrait résulter d'imprécisions, d'inexactitudes, d'erreurs ou de possibles omissions portant sur des informations publiées, ni des résultats obtenus par l'utilisation et la pratique des informations délivrées.

Utilisation des informations recueillies lors du téléchargement de contenu

Le portail des publications est susceptible d'utiliser des « cookies » afin notamment de permettre l'utilisation de paniers d'achat et de personnaliser les parcours sur le site. SEE se réserve la possibilité d'utiliser les informations recueillies lors des téléchargements pour ses besoins internes et notamment pour l'amélioration de ses services, sans qu'elles puissent être cédées à des partenaires commerciaux. Conformément à la loi "informatique et libertés" du 6 janvier 1978, chaque utilisateur du portail dispose d'un droit d'accès et de rectification aux informations qui le concernent. Pour exercer ce droit, les utilisateurs doivent s'adresser à SEE – 17 rue de l’amiral Hamelin – 75783 Paris Cedex 16, par simple lettre ou en utilisant le formulaire de contact disponible sur son site.

Paris, le 28 avril 2013

Sponsors

Scientific sponsors

Funding sponsors
A primal-dual approach for a total variation Wasserstein flow

Martin Benning, Luca Calatroni, Bertram D"uring, Carola-Bibiane Schönlieb

1 Magnetic Resonance Research Centre, University of Cambridge, UK
2 Cambridge Centre for Analysis, University of Cambridge, UK
3 Department of Mathematics, University of Sussex, UK
4 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK

Geometric Science of Information 2013
Ecole des Mines, Paris, 28-30 August 2013
Benning, Calatroni, D"uring, Schönlieb (CCA)

A primal-dual approach for a TV-Wasserstein flow

GSI 2013, Paris, August 2013

1 / 24

Outline
1 The problem
2 Primal-dual formulation of the problem
A relaxed optimality system of PDEs
The numerical approach
3 Numerical results
The 1-D case
The 2-D case with applications to denoising
4 Conclusions

Benning, Calatroni, D"uring, Schönlieb (CCA)
A primal-dual approach for a TV-Wasserstein flow
GSI 2013, Paris, August 2013

2 / 24

A highly nonlinear fourth-order PDE
For a regular domain \(\Omega \subset \mathbb{R}^d \), \(d = 1, 2 \) we consider: The problem

\[
\begin{align*}
\frac{\partial u}{\partial t} &= \cdot (u \frac{\partial}{\partial x_1}), & q \in i|Du|, \\
\text{in } \Omega \times (0, T), & u(0, x) = u_0(x) \geq 0 \text{ in } \Omega \\
\text{where } \Omega u_0 dx &= 1 \text{ and the total variation of } u \text{ over } \Omega \text{ is defined as: } |Du| = \sup_{p \in C^0_0(\Omega; \mathbb{R}^d)} |u \cdot p dx|.
\end{align*}
\]

Subgradients of TV can be characterised such that: \(q \in i|Du| \Rightarrow q = - \cdot u | u| \text{ if } |u| = 0 \), which makes the problem above a nonlinear fourth-order PDE with severe restrictions.
and constraints for its numerical solution. . . Benning, Calatroni, D’urin, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 3 / 24

An L2-Wasserstein flow for density smoothing. An equivalent problem has been investigated by Burger, Franek, Schönlieb (2012). Therein, a smoothed version \(u \) of a given probability density \(u_0 \) was computed as a minimiser of: \(1/2 W^2(u_0 L^d , u L^d) + \alpha E(u) \) smoothing term for different choices of \(E(u) \) (Dirichlet energy, Log-entropy, Fisher information, Total Variation...), e.g. \(u_0 \) could be a noisy MRI image or represent some real-world data (earthquakes or fires measurements). Benning, Calatroni, D’urin, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 4 / 24, An L2-Wasserstein flow for density smoothing. An equivalent problem has been investigated by Burger, Franek, Schönlieb (2012). Therein, a smoothed version \(u \) of a given probability density \(u_0 \) was computed as a minimiser of: \(1/2 W^2(u_0 L^d , u L^d) + \alpha E(u) \) L2-Wasserstein distance for different choices of \(E(u) \) (Dirichlet energy, Log-entropy, Fisher information, Total Variation...), e.g. \(u_0 \) could be a noisy MRI image or represent some real-world data (earthquakes or fires measurements). Previous work in imaging by means of Wasserstein distance: S. Haker, L. Zhu and A. Tannenbaum (2004) for image registration; G. Peyr’è et al. (2013) for image color transfer; X. Bresson, T. Chan et al. (2009) for image segmentation; L. P. S. Demers et al. (2010) for particle image velocimetry. . . Benning, Calatroni, D’urin, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 4 / 24 The L2-Wasserstein metric \((\Omega, d) \) is a metric space. The L2-Wasserstein distance between two probability measures \(\mu_1 , \mu_2 \in P^2(\Omega) \) (the space of all probability measures on \(\Omega \) with \(\mu \)-integrable second moment) is defined by \(W^2(\mu_1 , \mu_2)^2 := \min \Gamma(\mu_1 , \mu_2) \subset \Omega \times \Omega \) \(d(x, y)^2 \Gamma(\mu, \gamma) \). Here \(\Gamma(\mu_1 , \mu_2) \) denotes the space of pairings \(\gamma \in P(\Omega \times \Omega) \) such that: \(\mu_1 \) is the first marginal of \(\gamma \) and \(\mu_2 \) is the second marginal of \(\gamma \). The definition can be extended to \((p, h) \)-Wasserstein distances. . . Benning, Calatroni, D’urin, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 5 / 24

Why TV-Wasserstein? Compared to smoother regularisers: Capability of preserving discontinuities and structures when regularising densities (Rudin, Osher, Fatemi ’92). Interest in Image Processing: discontinuities are the edges of the image = characteristic features in many imaging applications (bone density and brain images. . .). Benning, Calatroni, D’urin, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 6 / 24

Previous results and our goal In their work Burger, Franek, Schönlieb have shown: Existence results (by standard technique in Calculus of Variations); Self-similarity properties of the solutions; Numerical results: augmented Lagrangian schemes solving the minimisation problem (for a fixed \(\alpha \), this means computing one timestep of the minimising movement scheme). Benning, Calatroni, D’urin, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 6 / 24

The minimisation problem and our PDE

\[\text{The problem: } \frac{1}{2} W^2(u_0 L^d , u L^d) + \alpha E(u) \text{ has to be interpreted as a time discrete approximation of a solution of the gradient flow of } E \text{ with respect to the L2-Wasserstein metric: it represents one timestep of De Giorgi’s minimising movement scheme. Benning, Calatroni, D’urin, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 7 / 24} \]

The minimisation problem and our PDE

\[\text{The problem: } \frac{1}{2} W^2(u_0 L^d , u L^d) + \alpha E(u) \text{ has to be interpreted as a time discrete approximation of a solution of the gradient flow of } E \text{ with respect to the L2-Wasserstein metric: it represents one timestep of De Giorgi’s minimising movement scheme. Solving: } \begin{cases} 1/2 W^2(u_0 L^d , u L^d) + \alpha E(u) \text{ has to be interpreted as a time discrete approximation of a solution of the gradient flow of } E \text{ with respect to the } L_2 \text{-Wasserstein metric: it represents one timestep of De Giorgi’s minimising movement scheme.} \\ \text{Solving: } 1/2 W^2(u_0 L^d , u L^d) + \alpha E(u) \text{ has to be interpreted as a time discrete approximation of a solution of the gradient flow of } E \text{ with respect to the } L_2 \text{-Wasserstein metric: it represents one timestep of De Giorgi’s minimising movement scheme.} \\ \text{Solving: } 1/2 W^2(u_0 L^d , u L^d) + \alpha E(u) \text{ has to be interpreted as a time discrete approximation of a solution of the gradient flow of } E \text{ with respect to the } L_2 \text{-Wasserstein metric: it represents one timestep of De Giorgi’s minimising movement scheme.} \end{cases} \]

\[\text{Solving: } 1/2 W^2(u_0 L^d , u L^d) + \alpha E(u) \text{ has to be interpreted as a time discrete approximation of a solution of the gradient flow of } E \text{ with respect to the } L_2 \text{-Wasserstein metric: it represents one timestep of De Giorgi’s minimising movement scheme.} \]

\[\text{Solving: } 1/2 W^2(u_0 L^d , u L^d) + \alpha E(u) \text{ has to be interpreted as a time discrete approximation of a solution of the gradient flow of } E \text{ with respect to the } L_2 \text{-Wasserstein metric: it represents one timestep of De Giorgi’s minimising movement scheme.} \]
Outline

1 The problem
2 Primal-dual formulation of the problem
3 Numerical results

1 The problem

The relaxed problem

Merging the original equation

The relaxed equation we consider is: \(\frac{\partial u}{\partial t} = \nabla \cdot (u \nabla f) \), where \(f \) is a relaxed convex function. The relaxed function \(f \) is defined as:

\[
\tilde{f}(p) = \begin{cases}
1 & \text{if } p < 1 \\
\frac{1}{1 - p} & \text{if } p > 1 \\
\frac{1}{2} \left| p \right| & \text{if } p = 1
\end{cases}
\]

where \(\tilde{f}(p) \) is the relaxed version of the function \(f(p) \).

The relaxed problem is:

\[
\min_{u \in \mathbb{L}^2(\Omega)} \int_{\Omega} \left(\frac{1}{2} \left| \nabla u \right|^2 + f(u) \right) \, dx
\]

subject to:

\[
\int_{\Omega} u \, q \, dx = 0, \quad q \in \mathbb{L}^2(\Omega)
\]

with \(f(u) \) being a relaxed convex function.

1.1 The primal-dual approach

The primal-dual approach is a numerical method for solving the relaxed problem. It consists of:

- A primal-dual formulation of the problem
- A numerical approach

1.2 Numerical results

We present numerical results for the 1-D and 2-D cases, as well as applications to denoising.

1.3 Conclusions

Benning, Calatroni, Düring, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow

GSI 2013, Paris, August 2013 10 / 24 An alternative approach

The original equation we consider is: \(\frac{\partial u}{\partial t} = \nabla \cdot (u \nabla f) \) Benning, Calatroni, Düring, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow

GSI 2013, Paris, August 2013 11 / 24 The relaxed equation we consider is: \(\frac{\partial u}{\partial t} = \nabla \cdot (u \nabla f) \) Benning, Calatroni, Düring, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow

GSI 2013, Paris, August 2013 12 / 24

The relaxed equation we consider is: \(\frac{\partial u}{\partial t} = \nabla \cdot (u \nabla f) \) Benning, Calatroni, Düring, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow

GSI 2013, Paris, August 2013 13 / 24 A damped Newton method to solve the system

We discretise the differential operators and compute the numerical approximation of the solution \(u \) using the following scheme:

- Inner process (\(k \) superscripts) producing approximations of \(u \), \(v \) and \(\nabla f \)
- Outer iterations (\(n \) subscripts) for the time loop

1.4 Numerical results

We present numerical results for the 1-D and 2-D cases, as well as applications to denoising.

1.5 Conclusions

Benning, Calatroni, Düring, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow

GSI 2013, Paris, August 2013 14 / 24 A damped Newton method to solve the system

We discretise the differential operators and compute the numerical approximation of the solution \(u \) using the following scheme:

- Inner process (\(k \) superscripts) producing approximations of \(u \), \(v \) and \(\nabla f \)
- Outer iterations (\(n \) subscripts) for the time loop

1.6 Numerical results

We present numerical results for the 1-D and 2-D cases, as well as applications to denoising.

1.7 Conclusions

Benning, Calatroni, Düring, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow

GSI 2013, Paris, August 2013 15 / 24

The relaxed equation we consider is: \(\frac{\partial u}{\partial t} = \nabla \cdot (u \nabla f) \) Benning, Calatroni, Düring, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow

GSI 2013, Paris, August 2013 16 / 24

The relaxed equation we consider is: \(\frac{\partial u}{\partial t} = \nabla \cdot (u \nabla f) \) Benning, Calatroni, Düring, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow

GSI 2013, Paris, August 2013 17 / 24

The relaxed equation we consider is: \(\frac{\partial u}{\partial t} = \nabla \cdot (u \nabla f) \) Benning, Calatroni, Düring, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow

GSI 2013, Paris, August 2013 18 / 24

Some 1-D examples

We compare the TV-Wasserstein approach with the standard TV one:

- TV-Wasserstein comparison
- Initial condition TV result
- TV-Wasserstein result

(a) Gaussian in. cond. \(-0.5 \text{ to } 0.5\)

(b) \(\chi[a,b] \) in. cond. \(-0.5 \text{ to } 0.5\)

(c) Stair in. cond. Figure: Solutions for TV and TV-Wasserstein flows.
efficiently by using a nested damped Newton method that computes the numerical approximation of the solution in each time iteration; The results preserve smoothness of the higher-order TV-subgradients and relaxing via a penalty term leads to a system of nonlinear PDEs; The numerical solution is computed efficiently by using a nested damped Newton method that computes the numerical approximation of the solution in each time iteration; The results preserve the mass-conservation property and show good results in density smoothing (e.g. denoising in imaging), reducing artifacts compared to lower-order models; Q1 Rigorous analysis of the scheme? Barrier term? Stability properties? Benning, Calatroni, D‘uring, Sch‘onlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 18 / 24 Some 1-D examples We compare the TV-Wasserstein approach with the standard TV one: -0.5 0 0.5 1 1.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 x y TV−Wasserstein solution (c) Stair in. cond. Figure: Solutions for TV and TV-Wasserstein flows. \(\varepsilon = 10^{-5} \), \(t_0 = 1 \). Features: Similar with TV: Preservation of structure (i.e. discontinuities); Benning, Calatroni, D‘uring, Sch‘onlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 18 / 24 Some 1-D examples We compare the TV-Wasserstein approach with the standard TV one: -0.5 0 0.5 1 1.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 x y TV−Wasserstein solution (c) Stair in. cond. Figure: Solutions for TV and TV-Wasserstein flows. \(\varepsilon = 10^{-5} \), \(t_0 = 1 \). Features: Similar with TV: Preservation of structure (i.e. discontinuities); Different with TV: Decreasing of intensity -- enlarging of the support (because of the mass conservation); * Constant background = TV solutions: convergence to their mean. Benning, Calatroni, D‘uring, Sch‘onlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 18 / 24 Outline 1 The problem 2 Primal-dual formulation of the problem A relaxed optimality system of PDEs The numerical approach 3 Numerical results The 1-D case The 2-D case with applications to denoising 4 Conclusions Benning, Calatroni, D‘uring, Sch‘onlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 19 / 24 2-D results Solution of the TV-Wasserstein flow: (a) Initial condition. (b) TV result. Benning, Calatroni, D‘uring, Sch‘onlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 20 / 24 2-D results: applications to denoising Solution of the TV-Wasserstein flow: (a) Original pyramid. (b) Noisy pyramid. (c) TV-Wasserstein. Benning, Calatroni, D‘uring, Sch‘onlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 21 / 24 2-D results: applications to denoising (cont.) Solution of the TV-Wasserstein flow for real-world images: (a) Noisy LEGO. (b) TV result. (c) TV-Wasserstein result. Benning, Calatroni, D‘uring, Sch‘onlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 22 / 24 2-D results: applications to denoising (cont.) Solution of the TV-Wasserstein flow for real-world images: (a) Noisy LEGO. (b) TV result. (c) TV-Wasserstein result. Applications in MRI: the images of interest are densities restored from undersampled measurements and/or corrupted by noise or blur:. Benning, Calatroni, D‘uring, Sch‘onlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 23 / 24 Recap and future directions Tackling directly the non-smoothness of the higher-order TV-subgradients and relaxing via a penalty term leads to a system of nonlinear PDEs; The numerical solution is computed efficiently by using a nested damped Newton method that computes the numerical approximation of the solution in each time iteration; The results preserve the mass-conservation property and show good results in density smoothing (e.g. denoising in imaging), reducing artifacts compared to lower-order models; Benning, Calatroni, D‘uring, Sch‘onlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 24 / 24 Recap and future directions Tackling directly the non-smoothness of the higher-order TV-subgradients and relaxing via a penalty term leads to a system of nonlinear PDEs; The numerical solution is computed efficiently by using a nested damped Newton method that computes the numerical approximation of the solution in each time iteration; The results preserve the mass-conservation property and show good results in density smoothing (e.g. denoising in imaging), reducing artifacts compared to lower-order models; Q1 Rigorous analysis of the scheme? Barrier term? Stability properties? Q2 From the analysis of the 1-D case, more insights on the theory underlying the TV-Wasserstein gradient flow (joint work with M. Burger, D. Matthies). Benning, Calatroni, D‘uring, Sch‘onlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 24 / 24 Recap and future directions Tackling directly the non-smoothness of the higher-order TV-subgradients and relaxing via a penalty term leads to a system of nonlinear PDEs; The numerical solution is computed efficiently by using a nested damped Newton method that computes the numerical approximation of the solution in each time iteration; The results preserve the mass-conservation property and show good results in density smoothing (e.g. denoising in imaging), reducing artifacts compared to lower-order models; Q1 Rigorous analysis of the scheme? Barrier term? Stability properties?
the mass-conservation property and show good results in density smoothing (e.g. denoising in imaging), reducing artifacts compared to lower-order models; Q1 Rigorous analysis of the scheme? Barrier term? Stability properties? Q2 From the analysis of the 1-D case, more insights on the theory underlying the TV-Wasserstein gradient flow (joint work with M. Burger, D. Matthes). Thanks for listening! e-mail: l.calatroni@maths.cam.ac.uk Benning, Calatroni, D’uring, Schönlieb (CCA) A primal-dual approach for a TV-Wasserstein flow GSI 2013, Paris, August 2013 24 / 24