Beam Squint in Ultra-Wideband mmWave Systems: RF Lens Array vs. Phase-Shifter-Based Array

Sang-Hyun Park, Byoungnam Kim, Dong Ku Kim, Linglong Dai, Kai-Kit Wong, and Chan-Byoung Chae

Abstract

In this article, we discuss the potential of radio frequency (RF) lens for ultra-wideband millimeter-wave (mmWave) systems. In terms of the beam squint, we compare the proposed RF lens antenna with the phase-shifter-based array for hybrid beamforming. To reduce the complexities of fully digital beamforming, researchers have come up with RF lens-based hybrid beamforming. The use of mmWave systems, however, causes an increase in bandwidth, which gives rise to the beam squint phenomenon. We first find the causative factors for beam squint in the dielectric RF lens antenna. Based on the beamforming gain at each frequency, we verify that in a specific situation, RF lens can be free of the beam squint effect. We use 3D electromagnetic analysis software to numerically interpret the beam squint of each antenna type. Based on the results, we present the degraded spectral efficiency by system-level simulations with 3D indoor ray tracing. Finally, to verify our analysis, we fabricate an actual RF lens antenna and demonstrate the real performance using an mmWave, NI PXIe, and software-defined radio system.

Introduction

Fifth-generation (5G) cellular networks suggest a paradigm shift from sub-6 GHz systems to millimeter-wave (mmWave and 30–300 GHz). In the technical reports [1], the Third Generation Partnership Project (3GPP) has already announced the 3 GHz bandwidth (26.5–29.5 GHz). An ultra-wideband range, the 3 GHz bandwidth has not been used in the sub-6 GHz frequency spectrum. Due to the unique characteristics of mmWave, use in cellular networks is different from using the sub-6 GHz bands. The mmWave band, for instance, is vulnerable to obstacles and long-distance path losses. This vulnerability has prompted researchers to use multiple-input multiple-output (MIMO) systems in the mmWave band to restore capacity and link reliabilities. Due to the shorter wavelengths of mmWave systems, more antenna elements can be integrated for the same array size. For fully digital beamforming (BF) [2], integrating more antenna elements exponentially raises the computational complexity. Furthermore, as antenna elements require dedicated radio frequency (RF) chains [3], the hardware complexity increases as well. The application of phase-shifting to multiple data streams after the baseband to form a highly directed beam is called analog-digital hybrid BF. Hybrid BF achieves array and multiplexing gains simultaneously. In general, the array gain is proportional to the array size and the number of antenna elements. Between performance and hardware cost, though, hybrid BF is subject to a trade-off. According to [4, 5], the RF lens antennas can reduce the hardware complexity without incurring performance degradation. In the proposed lens-based hybrid BF system, the RF lens is placed at the front-end of the antenna array (Fig. 1). Study results verify that the lens antenna, while reducing hardware complexity, achieves the conventional high gain and directivity with lens-focusing characteristics.

In a fully digital BF system, beam squint can be mitigated by frequency-dependent steering vectors via wideband beamforming structures, such as tapped delay line, finite impulse response (FIR), and infinite impulse response (IIR) filters [6]. However, in hybrid analog-digital BF systems, the digital precoding process burden is divided into an analog BF processing burden, and it is difficult to mitigate beam squint due to a narrowband characteristic of phase shifts [7]. Therefore, a major problem remaining for hybrid BF is beam squint. Beam squint refers to the phenomenon wherein the beam-steering angle is altered depending on the operating frequency [7]. The phase of each antenna element must be shifted to steer the analog BF in a specific direction. Because the wave number influences the array factor of the phased array, the operating frequency band alters the analog BF angle. Figure 1 shows the RF lens and phase-shifter-based ultra-wideband hybrid BF structure and the beam squint phenomenon. Beams misaligned due to beam squint (colored red and blue) will cause the transmitter to miss the user equipment (UE). Since these beams are incredibly narrow in a large-array hybrid BF system, the beam squint phenomenon can be a critical issue that affects the received power. The dielectric RF lens and the phased array both generate beam squint, although their causes differ. In the former, the cause is the frequency-dependent permittivity of the RF lens, and in the latter, the cause is the same steering vector of the phased array in different frequency bands. We detail this below.

Digital Object Identifier: 10.1109/MWC.007.2100530

Sang-Hyun Park, Dong Ku Kim, and Chan-Byoung Chae (corresponding author) are with Yonsei University, Korea. Byoungnam Kim is with Sensor View, Korea; Linglong Dai is with Tsinghua University, China; Kai-Kit Wong is with University College London, UK and also with Yonsei University, Korea.
We summarize the contributions of this study as follows:

1. We propose a low-cost practical solution to resolve the beam squint problem with the dielectric RF lens.
2. We verify that the beam squint problem of the dielectric RF lens system, even when not considering the true time delay line, can be negligible when using stable permittivity materials.
3. By analyzing the beam squint phenomenon in an ultra-wideband dielectric RF lens antenna via 3D electromagnetic simulation, we provide an insight into the causative factor and suppression method of beam squint in a lens-based beamforming system.
4. We analyze the relationship between each causative factor and beam squint by categorizing the causative factors as an inherent causative factor and an external factor.
5. These results are evaluated through an indoor 3D ray tracing system-level simulation and a link-level demonstration with a fabricated dielectric RF lens.

The remainder of this article is organized as follows: The next section presents the inherent causative factors of beam squint in the RF lens and the phased array. We then present the system model used in the 3D electromagnetic analysis software. In addition, we introduce the BF gain ratio that assesses the beam squint effects. We also classify and summarize the causative factors of the beam squint phenomenon. Following that, we present the results of an indoor, map-based, 3D ray tracing method for accurate analysis of the beam squint. We then verify the degraded spectral efficiency and received power ratio of the fabricated RF lens through the NI mmWave software-defined radio (SDR) platform over the air. Finally, we summarize our results and contributions, and propose future work.

EXISTING SUPPRESSION METHODS AND BEAM SQUINT IN THE RF LENS ANTENNA

EXISTING BEAM SQUINT SUPPRESSION METHODS

This section introduces the existing beam squint suppression method. In systems that use phased array structure, several methods have been proposed to solve the beam squint [7, 8]. There are two primary methods: the first uses true time delay (TTD) circuits and the second does not use TTD circuits. The TTD method can eliminate the beam squint phenomenon by replacing the characteristic of the phase shifter with a TTD circuit, but the hardware cost for the implementation of TTD is not suitable for large-scale arrays [8]. In comparison, the method that does not use TTD cannot fundamentally eliminate beam squint impairments and only mitigates performance degradation caused by beam squint. The authors of [7] proposed methods use beam broadening and TTD circuits in a hybrid beamforming system. In the first method, the authors proposed beam broadening that divides the array into sub-arrays to widen the beamwidth. This mitigates the beam squint without structural changes, but the throughput performance deteriorates as the beam is broadened. In the second method, the beam squint is removed by adding TTD lines between the phase shifter and the RF chain. In particular, the second method shows a result close to fully digital BF in ultra-wideband, but the cost of analog parts due to the addition of TTD still exists. In conclusion, these solutions are still subject to trade-offs between performance and hardware cost.

In the field of RF lens antenna, the authors in [9] considered beamspace channel estimation for the mmWave wideband. By exploiting the effect
Beam squint is generated by the material permittivity of the dielectric RF lens, which is a function of operating frequency. In an ultra-wideband system, the RF lens antenna demonstrates beam squint for reasons different from those for the phased array.

The external causative factor refers to the influence related to analog BF structures. Here, the inherent causative factor refers to the influence from the antenna element. Why does beam squint occur in the lens antenna structure?

Based on Snell’s law, an electromagnetic wave is refracted when passing through a dielectric lens. According to the Drude-Lorentz model [11], the refraction is caused by the fact that permittivity is a function of frequency — one of the causative factors of beam squint. Permittivity is also not linear due to the damping constant and resonance frequency. Permittivity consists of real and imaginary parts. The real part is the dielectric constant, and the tangent loss is the ratio of the real part to the imaginary part.

What accounts for the beam refraction, as it can be observed, is the real part of the refractive index. Because the permittivity influences the real part of the refractive index, the wave with other frequency bands passes through the material with different degrees of refraction, resulting in beam squint at the lens. The permittivity affects the refractive index, so it is advantageous to have fewer dielectric-constant-and-tangent-loss variations in the operating frequency band. Therefore, it is essential to select the lens material with fewer permittivity variations in the lens-based BF system.

Lens Antenna Structure

As shown in Fig. 1, the RF lens antenna consists of two parts: the antenna array connected with RF chains and the lens structure in the front end of the antenna array. The lens structure is used to focus the beam generated by the antenna array for an analog BF. Beam steering is achieved using the lens refractions with the on-off switching of the antenna [12, 13]. To reduce hardware complexity and allow faster beam tracking that is faster than phase-shifted array, it is possible to use switching BF using one element or a subset of the antenna array [5, 12].

As per the previous section, the refractive index of the lens is a function of frequency. When selecting the material to manufacture the lens, one should take care to account for the beam squint phenomenon. In designing the RF lens, our previous study considered five materials: Teflon type A, polyethylene, polycarbonate, Boron Nitride, and MgO. We need to consider whether these materials have stable dielectric constants and tangent loss values. However, for most of the RF lens materials in the mmWave band, precise dielectric constant and tangent loss measurements data are not available. In this article, the lens material used in the simulation is Teflon type A. According to [14], Teflon type A has small loss tangent values and no large deviations in the permittivity of the 27 GHz to 30 GHz range. These characteristics of Teflon work in favor of the lens to mitigate beam squint. In this article, we use a hyperbolic curve shape of the lens based on [13].

Beam Squint Analysis Based on 3D Electromagnetic Analysis Software

In this section, to analyze the beam squint phenomenon in the RF lens and the phased array, we use the 3D electromagnetic simulation, CST Studio Suite. We introduce the assessment model below and present our simulation results following that.

Beam Squint Assessment Model

For an accurate analysis of the beam squint, we set two evaluation models. Evaluation model 1 takes into account only Assumption 1. Evaluation model 2 considers Assumptions 1 and 2. The assumptions are explained as follows:

Assumption 1: The antenna gain of the RF lens, the factor that affects beam refraction is only the refractive index, which is a function of permittivity.

Assumption 2: The antenna gain of the elements in the uniform linear array (ULA) is consistent for the ultra-wideband.

Assumption 1 is made to eliminate the likelihood of intervention by other variables (e.g., diffraction phenomenon on the edge of RF lens) in the refractive index. Assumption 2 removes the distorted components according to the narrowband antenna elements. In evaluation model 2, we can observe the beam squint phenomenon due to the inherent causative factors, excluding external causative factors, such as the narrowband antenna elements. Here, the inherent causative factor refers to the influence related to analog BF structures. The external causative factor refers to the influence unrelated to analog BF structures, such as the influence from the antenna element.

Parameters and Degraded Power Caused by Beam Squint for Analysis

As beam squint occurs, the BF gain is degraded. This degraded gain leads to degraded received power. We analyze, from the perspective of the transmitter, the extent of the attenuated BF gains. To assess the beam squint phenomenon, we introduce several parameters.
The first is angle distortion (AD). AD is the difference between the azimuth angle at peak BF gain for the operating frequency and the center frequency. The second parameter is power difference (PD). PD represents the difference between the peak BF gain at each operating frequency and the center frequency. The third parameter is the half-power beamwidth (HPBW) at each frequency band. The HPBW depends on the array size, with a larger array size resulting in a narrower beam, leading to critical misalignment. Evaluating beam squint by AD alone cannot accurately account for the performance attenuation. Hence, we add PD and HPBW to provide the BF gain ratio and received power ratio, which evaluate more general and accurate beam squint performance.

Based on the direction of the analog beam at the center frequency, the BF gain ratio is defined as the percentage of the ratio of the directivity gain at the center frequency to the misaligned directivity gain at the operating frequency. For example, an 80 percent BF gain ratio value at 27 GHz implies that the antenna gain at 27 GHz in the direction aligned with 28.5 GHz is 80 percent of the antenna gain at 28.5 GHz.

TABLE 1. Angle distortion values and power difference values in Evaluation Model 1 (EM1) and Evaluation Model 2 (EM2).

Angle distortion values	27 GHz	27.5 GHz	28 GHz	29 GHz	29.5 GHz	30 GHz
Phased array						
EM1						
EM2						
AoD1 6°	-0.18	-0.12	-0.06	0.06	0.11	0.16
12°	-0.55	-0.36	-0.18	0.17	0.33	0.48
18°	-0.92	-0.60	-0.30	0.28	0.55	0.82
24°	-1.32	-0.87	-0.43	0.40	0.80	1.18
30°	-1.76	-1.15	-0.57	0.54	1.06	1.56
RF lens						
EM1						
EM2						
AoD1 6°	-1.19	-0.03	-0.97	-0.81	-0.13	-0.16
12°	-0.37	-0.11	-0.48	-0.46	0.15	-0.47
18°	0.03	-0.01	-0.18	-0.30	-0.16	-0.20
24°	-0.23	0.11	-0.20	-0.11	-0.23	-0.09
30°	0.12	0.61	0.35	0.50	0.20	0.49

Power difference values	dBi	27 GHz	27.5 GHz	28 GHz	29 GHz	29.5 GHz	30 GHz
Phased array							
EM1							
EM2							
AoD1 6°	0.4	0.2	-0.0	0.0	0.2	0.4	
12°	0.5	0.2	-0.1	0.1	0.2	0.4	
18°	0.6	0.2	0.0	0.0	0.2	0.3	
24°	0.7	0.3	0.1	0.0	0.2	0.3	
30°	1.0	0.5	0.2	-0.0	-0.0	0.2	
RF lens							
EM1							
EM2							
AoD1 6°	0.1	-0.2	0.2	0.4	0.2	0.4	
12°	0.0	-0.1	-0.4	-0.3	0.3	-0.2	
18°	0.3	-0.0	-0.0	-0.4	0.1	-0.3	
24°	0.1	-0.2	-0.3	-0.6	-0.3	-0.7	
30°	0.6	-0.2	-0.9	-0.1	-0.1	0.9	

Please refer to earlier sections for the definitions of angle distortion, power difference, EM1, and EM2.

1. Tx beamforming direction in the azimuth angle of antenna via analog BF.
2. The values are not changed from Evaluation model 1 to Evaluation model 2.
3. ** < .001
4. ‡ < .01

The first is angle distortion (AD). AD is the difference between the azimuth angle at peak BF gain for the operating frequency and the center frequency. The second parameter is power difference (PD). PD represents the difference between the peak BF gain at each operating frequency and the center frequency. The third parameter is the half-power beamwidth (HPBW) at each frequency band. The HPBW depends on the array size, with a larger array size resulting in a narrower beam, leading to critical misalignment. Evaluating beam squint by AD alone cannot accurately account for the performance attenuation. Hence, we add PD and HPBW to provide the BF gain ratio and received power ratio, which evaluate more general and accurate beam squint performance.
AD, PD, and BF Gain Ratio Comparison for Phased Array with RF Lens in a ULA

We simulated two different antenna structures — an RF lens and a phased array in 20λ antenna diameters — where λ is a wavelength at the center frequency. The 20λ arrays consist of 28 × 1 patch antennas with λ/2 distance between two adjacent patch antennas. Table 1, based on a 3D electromagnetic analysis software simulation, shows the AD and PD data of the RF lens antennas and the phased array. In Table 1, the y-axis represents the angle of departure (AoD) of Tx analog BF, and the x-axis represents operating frequencies from 27 GHz to 30 GHz without 28.5 GHz. The data in the tables consist of AD and PD values introduced above. We analyze Table 1 data as the phased array, RF lens antenna, and BF gain ratio. Finally, with Table 2, we present a summary of the categories of the causative factors and affected parameters in each antenna structure.

Phased Array: According to evaluation model 1 data, shown in Table 1, AD in the phased array becomes more distorted as the frequency gets further away from the center frequency. This is because the steering vector set for the center frequency causes angle distortion at different operating frequencies. In addition, AD becomes more distorted as the AoD increases. Hence, maximum distortion values are −1.76° (30°, 27 GHz) and 1.56° (30°, 30 GHz). It is worth noting that the data from evaluation model 2 are the same as those from evaluation model 1. In addition, the existing PD values in evaluation model 1 become zero in evaluation model 2. This data implies that PD in a phased array is affected by a narrowband antenna beam pattern, the only external factor. In the phased array, however, AD does not depend on that external factor.

RF Lens Antenna: According to evaluation model 1, we can see that the AD values of the RF lens are not consistent. For those causative factors of distortion, we can see that the data from evaluation model 2 — where AD values of RF lens are less than 0.001 — are independent of both AoD and frequencies. This data analysis implies that most of the causative factors which cause AD are inconsistent antenna gains across the frequency band. In Table 1, the PD of the RF lens has the same result. The PD values of evaluation model 1 in the RF lens are less than 0.01. This result implies that the most significant causative factor of PD is not an RF lens’s inherent factor but rather the narrowband antennas as an external factor. The remaining values are caused by the frequency-dependent permittivity mentioned previously.

A Summary of the Causative Factors in Each Antenna: In Table 1, we analyze and summarize based on the data, the causative factors, and the parameters (AD, PD, and HPBW). In Table 2, the causative factors are classified as either inherent or external. The inherent factor concerns a structural feature of the antenna that gives rise to the beam squint phenomenon. Evaluation model 1 contains two types of causative factors, and Evaluation model 2 analyzes only the inherent factors. An inherent factor of the phased array structure is the steering vector that affects AD. In the RF lens structure, a causative factor is the frequency-dependent permittivity, and it affects AD and PD. In the external factor category, a narrowband antenna affects the PD of the phased array and the AD and PD of the RF lens. The external factor constitutes — especially in the RF lens — the most significant causative factor. Hence, the RF lens array that uses ideal or ultra-wideband antenna elements is a robust answer to the beam squint problem.

BF Gain Ratio: We analyze degraded BF gain by converting the Table 1 data to BF gain ratio. Figure 2 presents the BF gain ratio values of each Evaluation method in terms of the operating frequency. The solid lines signify Evaluation model
The BF gain ratio from the proposed RF lens is much less degraded than that of the conventional phased array. In Evaluation model 1, we can see that the phased array has only 67 and 69 percent BF gain of the standard BF gain (at the center frequency) at 27 GHz and 30 GHz, respectively. In Evaluation model 1, in contrast, a minimum value of the RF lens’s BF gain ratios has 93 percent. By excluding any external factor in evaluation model 2, the RF lens is almost free of BF gain attenuation by the beam squint.

System-Level Performance Analysis and Evaluation

We evaluate the RF lens-embedded system and phased array with a system-level simulator using Wireless System Engineering (WiSE), a 3D ray tracing tool developed by Bell Labs [13]. For realistic performance evaluations, we model a building in a university, as shown in Fig. 3b. The simulation area is indoors with a line of sight (LoS) environment to consider the beam squint phenomenon and straightness characteristics of the mmWave signal. With a multiuser environment, we assume perfect channel state information (CSI) in all Rx locations. We adopt the best beam selection (BBS) method to choose the best beam for each user according to received power. As shown in Table 1, because the AD unit is 0.01°, we set a 0.01 m distance for accurate received power and high resolution of AoD estimations. In Fig. 3b, the base station (BS) (marked by a blue star) steers 10 beams between 0° and 30° toward the left in the simulated space. To estimate the received power ratio and spectral efficiency, researchers aggregate the received power for the other frequencies of a selected beam at each location. In the two evaluation models, we analyze the two types of antennas. The detailed system parameters are given in Fig. 3a.

In the simulations, each user selects the best beam based on the center frequency at each UE position. However, although the beam was selected based on the center frequency, the overall received power is attenuated by ADs and PDs at the other operating frequencies, depending on the beam squint phenomenon. Figure 3c presents the spectral efficiencies for the system-level simulation. In the spectral efficiency graphs, the solid line indicates the spectral efficiency without the beam squint phenomenon. Evaluation model 1 is indicated by dashed lines, and Evaluation model 2 is indicated by dotted lines. In Fig. 3c, the phased array in Evaluation model 1 (represented as the dashed line) demonstrates 1.11 dB degradation relative to the scenario without beam squint (represented as the solid line). Furthermore, the phased array in Evaluation model 2 shows degradation of 0.87 dB. In the case of the RF lens, the deterioration in system performance is minimal. Evaluation model 1 shows a degradation of 0.12 dB, while Evaluation model 2 has no deterioration. It is worth noting that the spectral efficiency of the lens antenna system is higher at 2 bit/s/Hz than that of the phased array. Although the same power is used in both systems, the lens antenna with the beam-focusing characteristic performs twice as well as the phased array.

In conclusion, it is impossible in the hybrid BF system to entirely compensate for the AD and PD of the phased array without increasing hardware complexity. Therefore, the phased array structure has an inherent limitation due to the beam squint phenomenon. In contrast, the beam squint problem of the RF lens system can, with stable permittivity materials, be negligible.

Link-Level Performance Analysis and Evaluation

System Configuration: To test the lens antenna performance as a component of a transmission system, we evaluated its link-level performance.
using the mmWave transceiver system SDR platform [15]. The communication system consists of LabVIEW system design software and a PXle SDR. As shown in Fig. 4a, the Tx node (as a BS) and Rx node (as a user equipment, UE) are separated by 5 m. The Tx consists of an IF-LO module, I/Q-generator, and Tx NI up-converter. The Rx consists of an IF-LO module, I/Q-digitizer, decoder, multiple access channel, and Rx downconverter. The fabricated lens antenna is used in the BS with uplink and downlink frequencies of 28.5 GHz and 800 MHz bandwidth each. We test the link-level performance when the lens antenna is a transmitter, and the feed horn antenna is a receiver. A single data stream is transmitted and received via a modulation and coding scheme; more specifically, 64-quadrature amplitude modulation.

The detailed parameters are given in Fig. 4b. Figure 4a shows the fabricated RF lens antenna used in the BS. The fabricated lens material is polycarbonate, not Teflon type A. The diameter of the RF lens is 4.5λ. Because we use a different RF lens, the results in Fig. 4c are different from the system-level simulation results above. However, this demonstration is performed in the same environment as used for the system-level simulation. We verify the beam squint phenomenon of the fabricated lens in terms of its AD, PD, and received power ratio. In this demonstration, the analog BF’s AoD is 9.26°. We measure the received powers at 27.5 GHz, 28.5 GHz, and 29.5 GHz.

MmWave Link-Level Beam Squint Performance Assessment: Here, the received power ratio values are empirically demonstrated for assessing performance degradation due to beam squint in the indoor link-level testbed. The testbed verifies the existence of beam squint in the fabricated lens antenna. As a result, Fig. 4c illustrates the AD, PD, and received power ratio from a beam squint perspective. The AoD changes are 0.26° at 27.5 GHz and 0.08° at 29.5 GHz. The HBPBW of the fabricated lens is 15°. Regarding the received power ratio, this RF lens shows a percentage of 91.98 and 91.99 percent at 27.5 GHz and 29.5 GHz, respectively.

Conclusion and Future Directions
This study investigates the beam squint phenomenon of a phased array and an RF lens antenna in an ultra-wideband mmWave system. Our work analyzes, in a dielectric RF lens-based hybrid BF system, the causative factors for the beam squint problem, separated into inherent causative factors and an external factor. Using a 3D electromagnetic analysis software, we compare and analyze the phased array and the lens antenna under the same conditions in terms of beam squint with the BF gain and the received power. Through the analysis, we verify that the beam squint problem of the RF lens system can, with stable permittivity materials, be made negligible. Then, using 3D ray tracing in an indoor environment, we show the degraded spectral efficiency caused by beam squint for both the phased array and the RF lens antenna. Finally, we demonstrate the indoor mmWave link level with the fabricated RF lens and verify the performance degradation incurred by beam squint.

There are several potential directions that are worth being studied:
- RF lens-based hybrid BF systems can be considered for use in the promising integrated sensing and communications (ISAC) field, given their lower hardware costs and small pilot overhead. Especially in lens-based vehicle-to-everything (V2X) scenarios, performance analysis of positioning acquisition and tracking errors caused by beam squint must be conducted.
- Although our low-cost solution resolves the beam squint problem with the dielectric RF lens, theoretical analysis of the relationship between beam squint impairment and the variance of frequency-dependent permittivity must be conducted.
- Theoretical analysis must be conducted on the beam squint impairment and combined fre-
frequency-dependent permittivity of lenses consisting of multiple dielectric materials.

We hope this paper will inspire future research on mmWave lens-based RF systems and help lay the foundation for designing future UWB systems.

ACKNOWLEDGMENT

This work was supported by Institute of Communications & Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) No. 2016-0-00208, High-Accurate Positioning Enabled MIMO Transmission and Network Technologies for Next 5G-V2X (vehicle-to-everything) Services, No. 2021-0-00486, Augmented Beam-routing: Carom-MIMO, No. 2021-0-02208, Sub-THz Augmented Routing and Transmission for 6G).

REFERENCES

[1] 3GPP TR 21.915 v15.0.0, Tech. Spec. Group Services and System Aspects, Release 15 Description, Sept. 2019, p. 35.
[2] A. Ghasempour et al., “Data Synchronization for Throughput Maximization in Distributed Transmit Beamforming,” Proc. 2017 Cognitive Commun. Aerospace Applications Wksp., 2017, pp. 1–4.
[3] R. W. Heath et al., “An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, Apr. 2016, pp. 436–53.
[4] J. Brady et al., “Beamspaces MIMO for Millimeter-Wave Communications: System Architecture, Modeling, Analysis, and Measurements,” IEEE Trans. Antennas Propag., vol. 61, no. 7, July 2013, pp. 3814-27.
[5] Y. Zeng and R. Zhang, “Millimeter Wave MIMO With Lens Antenna Array: A New Path Division Multiplexing Paradigm,” IEEE Trans. Commun., vol. 64, no. 4, Feb. 2016, pp. 1557–71.
[6] W. Liu et al., “Wideband Beamforming: Concepts and Techniques,” Wiley, 2010.
[7] F. Gao et al., “Wideband Beamforming for Hybrid Massive MIMO Terahertz Communications,” IEEE JSAC, vol. 39, no. 6, June 2021, pp. 1725–40.
[8] Z. Wang et al., “Digital Compensation Wideband Analog Beamforming for Millimeter-Wave Communication,” Proc. IEEE VTC-Spring, June 2016, pp. 1–5.
[9] X. Gao et al., “Wideband Beamspace Channel Estimation for Millimeterwave MIMO Systems Relying on Lens Antenna Arrays,” IEEE Trans. Signal Process., vol. 67, no. 18, July 2019, pp. 4809–24.
[10] B. Liu et al., “Rotman Lens-Based Two-Tier Hybrid Beamforming for Wideband mmWave MIMO-OFDM System with Beam Squint,” EURASIP J. Wireless Commun. Network, vol. 2018, Nov. 2018, pp. 1–13.
[11] H. A. Lorentz, The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, Wentworth Press, 1919.
[12] Y. J. Cho et al., “RF Lens-Embedded Antenna Array for mmWave MIMO: Design and Performance,” IEEE Commun. Mag., vol. 56, no. 7, July 2018, pp. 42–48.
[13] T. Kwon et al., “RF Lens-Embedded Massive MIMO Systems: Fabrication Issues and Codebook Design,” IEEE Trans. Microwave Theory Tech., vol. 64, no. 7, June 2016, pp. 2256–71.
[14] G. Oliver, “Low-Loss Materials in High Frequency Electronics and the Challenges of Measurement,” report, DuPont, Feb. 2013.
[15] S. H. Park et al., “Demo: mmwave Lens MIMO,” Proc. IEEE Wireless Commun. Netw. Conf., Apr. 2020.

BIOGRAPHIES

SANG-HYUN PARK (willkampark@yonsei.ac.kr) is currently pursuing the Ph.D. degree in the School of Integrated Technology, Yonsei University, Korea. His research interest includes emerging technologies for 6G.

BYOUNGKIM KIM (klaus.kim@sensor-view.com) received his Ph.D. from Korea Advanced Institute of Science and Technology, South Korea. He is CEO of SensorView Ltd. His research interests include advanced RF technologies for 6G.

DONG KU KIM (dkkim@yonsei.ac.kr) is a professor in the School of Electrical and Electronic Engineering, Yonsei University, South Korea. His current research interests are full-duplex MIMO systems, flexible interference management, and 6G V2X communication system.

LINGDONG DAI (dal@tonghua.edu.cn) is a professor at Tsinghua University, China. His current research interests include massive MIMO, millimeter-wave/THz communications, reconfigurable intelligent surface, multiple access, and sparse signal processing.

KAI KIT WONG (kai-kit.wong@ucl.ac.uk) is a Chair in Wireless Communications in the Department of Electronic and Electrical Engineering, University College London, UK. He is also affiliated with Yonsei Frontier Lab., Yonsei University, Seoul, Korea. His current research interests include 6G and beyond mobile communications.

CHAN-BYOUNG CHAE (cbchae@yonsei.ac.kr) is an Underwood Distinguished Professor at Yonsei University, Korea. His research interest includes emerging technologies for 6G and molecular communications.