MEASUREMENT OF CORTISOL IN HUMAN PLASMA AND URINE BY ULTRA PERFORMANCE LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

SYED N ALVI*, MUHAMMAD M HAMMAMI

Department of Clinical Studies and Empirical Ethics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.
Email: salvi@kfshrc.edu.sa

INTRODUCTION

Cortisol (Hydrocortisone, CAS: 50-23-7), the main glucocorticoid hormone in humans, plays several important physiological and pathological roles [1,2]. Measurement of its level in biological fluids is essential to establish a variety of related diagnoses [3,4].

Radioimmunoassay (RIA) is commonly used to determine cortisol level in biological fluids [5,6], whereas high-performance liquid chromatography (HPLC) with ultraviolet detection is mostly used for pharmaceutical preparations [7-9]. RIA in general has high sensitivity but often lack selectivity due to cross-reactivity with related substances [10,11]. To improve selectivity, Takao et al. [12] and Fenske [13] reported methods based on derivatization of cortisol with a fluorocarboxyl reagent, followed by HPLC or thin-layer chromatography, respectively. LC coupled with mass spectrometry (MS) or tandem MS/MS is a powerful and selective technique that has been used to determine steroid hormone levels [14-16]; however, most of the reported assays used d4 cortisol as internal standard (IS), which may not be readily available [15,16].

In the present paper, we describe a simple, sensitive, specific, and rapid ultra performance liquid chromatographic-tandem mass spectrometric (UPLC-MS/MS) assay for determination of clinically related cortisol level in human plasma and urine samples, using tolperisone as an IS. The method involves simple liquid/liquid extraction and uses 0.5 ml plasma or 1.0 ml urine sample. The method was fully validated according to the international standards and used to determine cortisol stability under various clinical laboratory conditions.

METHODS

Chemicals and reagents
All chemicals were of analytical grade unless stated otherwise. Hydrocortisone and tolperisone were purchased from Acros Organics, NJ, USA, and Sigma-Aldrich MO, USA, respectively. Ammonium acetate, methyl tert-butyl ether, hexane, and acetonitrile (HPLC grade) were purchased from Fisher Scientific, NJ, USA. HPLC-grade water was prepared by reverse osmosis and further purified by passing through a Milli-Q System (Millipore, Bedford, MA, USA). Human plasma was obtained from the blood bank of King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia. The study was approved by the Research Ethics Committee of KFSHRC (RAC# 2160008).

Instrument and chromatographic conditions
The liquid chromatography-tandem mass spectrometer (LC-MS/MS) consists of Xevo-TQD detector equipped with Z-spray atmospheric pressure ionization interface, Acquity UPLC H-Class system, and integrated solvent and sample manager (Waters Corporation, Milford, MA, USA). Analysis was performed at room temperature using a reversed-phase Atlantis dC18 column (2.1×100 mm, 3 µm) steel column, protected by a column guard on-line filter (0.2 µm×2 mm). The mobile phase was composed of 2 mM ammonium acetate and acetonitrile (50:50, v: v) and was delivered at a flow rate of 0.30 ml/min. The electrospray ionization (ESI) source was operated in the positive ion mode at a capillary voltage of 1.5 kV and a cone voltage of 36 V. Nitrogen was used as the nebulizing and desolvation gas at a flow rate 1000 L/h. Argon was used as the collision gas, maintaining cell pressure at 3.5875 E+01 mbar. An optimum collision energy of 20 eV was applied for both cortisol and IS. The ion source and desolvation temperatures

ABSTRACT

Objective: The objective of this study is to develop and validate a simple, sensitive, specific, and rapid assay for quantification of clinically relevant cortisol level in human plasma and urine samples.

Methods: Ultra performance liquid chromatographic-tandem mass spectrometric (UPLC-MS/MS) analysis was performed on Atlantis dC18 column (2.1×100 mm, 3 µm) with a mobile phase consisting of acetonitrile and 2 mM ammonium acetate (50:50, v: v) that was delivered at a flow rate of 0.3 ml/min. Tolperisone (2 ng) was used as an internal standard (IS). Biological samples were extracted with a mixture of hexane and methyl tert-butyl ether (8:2, v: v). The eluents were monitored using electrospray ionization in the positive ion mode with transition mass to charge ratio set at 363.1 → 121.0 and 246.0 → 97.9 for cortisol and IS, respectively. The method was validated according to international guidelines.

Results: Retention times of cortisol and IS were about 1.4 and 2.3, respectively. Relationship between cortisol level and peak area ratio of cortisol to IS was linear (R^2=0.987) in the range of 2.5–400 ng/ml and 1.0–200 ng/ml in plasma and urine samples, respectively. Intra- and inter-day coefficient of variation and bias were ≤9.7% and ±11.3%, and ≤10.4% and ±11.5% for plasma and urine samples, respectively. Extraction recoveries were in 80–91% for cortisol plasma and 80–86% for cortisol in urine samples. Cortisol was ≥86% stable when stored at room temperature for 24 h or at −20°C for 24 weeks in plasma samples and ≥93% stable when stored at room temperature for 24 h or −20°C for 16 weeks in urine samples.

Conclusion: We report a validated, clinically relevant, simple, and rapid UPLC-MS/MS assay of cortisol level in human plasma and urine.

Keywords: Cortisol, Tolperisone, Human plasma, Urine, Ultra performance liquid chromatographic-tandem mass spectrometric.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i6.24709
were maintained at 150°C and 500°C, respectively. Cortisol and IS were detected and quantified in the positive ion mode; product ion response was measured at mass to charge (m/z) transition of 363.1 → 121.0 and 246.0 → 97.9, respectively. Mass lynx Ver 4.1 (Waters Corporation, Milford, MA, USA) software working under Microsoft Windows XP professional environment was used to control the instrument parameters, data acquisition, peak integration, peak smoothing, and signal-to-noise ratio measurements.

Preparation of standard and control samples
Cortisol and the IS stock solutions were prepared in methanol (1.0 µg/ml). Cortisol extracted human plasma, and urine samples were used as blanks for calibration standard and quality control samples’ preparation. Nine calibration standards in the range of 2.5–400 ng/ml for plasma and 1–200 ng/ml for urine and four quality controls concentrations (2.5, 15, 200, and 380 ng/ml for plasma and 1.0, 3.0, 100, and 180 ng/ml for urine) were prepared in human plasma and urine, respectively. IS working solution was prepared in water (20 ng/ml). Standard and control solutions vortexed for 1 min. Aliquots of plasma (0.5 ml) and urine (1.0 ml) samples were transferred into 7 ml glass culture tubes and stored at -20°C until used.

Preparation of samples
100 ml of the IS working solution was added to 0.5 ml unknown plasma or 1.0 ml urine samples, calibration standard samples, or quality control samples in 7 ml glass culture tubes and vortexed for 30 s. 4.0 ml mixture of methyl tert-butyl ether and hexane (8:2, v:v) was added to each tube, vortexed for 2 min, and centrifuged at 4000 rpm for 10 min at 20°C. The clear supernatant layer was transferred to a clean borosilicate culture tube and dried under gentle steam of nitrogen at 40°C. The residue was reconstituted in 100 ml mobile phase, and 10 ml of the clear solution was injected into the LC-MS/MS system.

Effect of matrix
Matrix effect was evaluated by comparing peak area response obtained from spiked plasma and urine samples to peak area response obtained from direct injection of corresponding concentrations.

Stability studies
Two QC samples (7.5 and 360 ng/ml in plasma and 3.0 and 180 ng/ml in urine) were used for stability studies. Five aliquots of each sample were extracted and immediately analyzed (baseline). Five aliquots of each sample were allowed to stand on the benchtop for 24 h at room temperature before being processed and analyzed, and five aliquots were stored at −20°C for 16 or 24 weeks, before being processed and analyzed. Five aliquots were processed and stored at room temperature for 24 h or at −20°C for 48 h before analysis. Finally, fifteen aliquots of each sample were stored at −20°C for 24 h. After leaving them to completely thaw unassisted at room temperature, five aliquots were analyzed and the rest were stored at −20°C for another 24 h. The cycle was repeated 3 times.

RESULTS
Method development
MS/MS optimal analytical conditions were determined by infusing a standard mixture of cortisol and IS (1.0 µg/ml in methanol) using configured Intellistart software program. Precursor and product ion transitions for the measurement of cortisol and the IS response were set as m/z 363.1 → 121.0 and 246.0 → 97.9, respectively. MS/MS spectra and chemical structure of cortisol and tolperisone are shown in Fig. 1.

LC conditions
LC conditions were optimized using mobile phase composed of 2 mM ammonium acetate and acetonitrile (50:50, v:v) at a flow rate 0.3 ml/min. The high proportion of acetonitrile facilitated lower back pressure of the column and shorter analysis time (<3.0 min).

Extraction recovery
The absolute recovery of cortisol was assessed by comparing absolute peak area of spiked human plasma and urine samples to mobile phase samples, using five replicates for each of four concentrations (2.5, 7.5, 200, and 360 ng/ml for plasma and 1.0, 3.0, 100, and 180 ng/ml for urine). Similarly, the recovery of the IS was determined by comparing the peak area of the IS in 5 aliquots of human plasma and urine spiked with 20 ng/ml IS to the peak area of equivalent aliquots prepared in mobile phase.

Effect of matrix
Atmospheric pressure ESI (APESI) is a widely used technique in bioanalytical applications. Although it is expected that analyte response may supress more in APESI compared to atmospheric chemical ionization mode [17], in the present study, in the present study, mean matrix effect on cortisol and IS response were low when measured using APESI (~11.1% and ~5.9%), respectively.

Method validation
The method was validated according to the international guidelines. The validation parameter included selectivity, recovery, linearity, accuracy, precision, and stability [18,19].

Selectivity
The selectivity/specificity of the assay was determined by screening six different batches of blank human plasma and urine; none showed interference. Further, the potential interference of seven structurally similar compounds, i.e., cortisone, progesterone, 17 α-hydroxyprogesterone, and...
prednisone, prednisolone, methyl prednisolone, and testosterone was also examined. 1.0 ng/ml solutions were prepared in methanol:water (1:1, v: v) and 10 μl were injected into the system. No compound showed interference with the peaks of cortisol or the IS. Fig. 2 depicts representative chromatograms of human plasma and urine that was used in the preparation of calibration curve and quality control samples.

Recovery
Recovery of cortisol and IS was assessed by comparing analyte peak areas obtained from spiked plasma, urine, and mobile phase samples, using five replicates of four cortisol concentrations (2.5, 7.5, 200, and 360 ng/ml for plasma and 1.0, 3.0, 100, and 180 ng/ml for urine) and 20 ng/ml for IS. Extraction recoveries were in 80–86% for cortisol in plasma, 80–86% for cortisol in urine, and ≥84% for the IS in plasma and urine. The results are presented in Table 1.

Linearity and limit of quantification
Linearity of the assay was evaluated by analyzing a series of cortisol standards at nine different concentrations over the range of 2.5–400 ng/ml in plasma and 1–200 ng/ml in urine. Corresponding peak area ratios and concentrations were subjected to regression analysis. The mean equation obtained from eight standard curves was y=0.0031 (x)+0.0010, with R² (SD)=0.9971 (0.0028), and y=0.0093 (x)+0.0030, with R² (SD)=0.9949 (0.0058), for plasma and urine samples, respectively. The detection and quantification limits were as 1.0 ng/ml and 2.5 ng/ml for plasma and 0.5 ng/ml and 1.0 ng/ml for urine samples, respectively.

Accuracy and precision
Accuracy and precision were determined by measuring cortisol levels at four concentrations (2.5, 7.5, 200, and 360 ng/ml for plasma and 1.0, 3.0, 100, and 180 ng/ml for urine). Intraday (n=10) imprecision and bias were ≤9.7% and ±10.8% and ≤10.4% and ±11.5%, for plasma and urine samples, respectively. Interday (n=20) imprecision and bias, determined over 3 days, were ≤9.7% and ±10.8% and ≤10.4% and ±11.5%, for plasma and urine samples, respectively. The detection and quantification limits were as 1.0 ng/ml and 2.5 ng/ml for plasma and 0.5 ng/ml and 1.0 ng/ml for urine samples, respectively.

Accuracy and precision
Accuracy and precision were determined by measuring cortisol levels at four concentrations (2.5, 7.5, 200, and 360 ng/ml for plasma and 1.0, 3.0, 100, and 180 ng/ml for urine). Intraday (n=10) imprecision and bias were ≤9.7% and ±10.8% and ≤10.4% and ±11.5%, for plasma and urine samples, respectively. Interday (n=20) imprecision and bias, determined over 3 days, were ≤9.7% and ±10.8% and ≤10.4% and ±11.5%, for plasma and urine samples, respectively. The detection and quantification limits were as 1.0 ng/ml and 2.5 ng/ml for plasma and 0.5 ng/ml and 1.0 ng/ml for urine samples, respectively.

Stability
It is necessary to perform stability studies of the analyte and IS to determine the range of appropriate conditions and times of storage. The availability of long-term stability studies is essential for sample collection planning and results in interpretation as described by Syed et al.[20].

In the present study, cortisol and IS stability in processed and unprocessed plasma and urine samples was investigated. Cortisol in processed plasma (7.5 and 360 ng/ml) and urine (3.0 and 180 ng/ml) samples was stable for 24 h at room temperature (±90%) and 48 h at +20°C (±90%). Cortisol in unprocessed plasma samples was stable for at least 24 h at room temperature (+86%), 24 weeks at +20°C (±90%), and after three freeze-and-thaw cycles (±84%). Similar stability was seen for cortisol in urine samples. The data are summarized in Table 3. Further, no significant change in chromatographic behavior of cortisol or the IS was observed under any of the above conditions.

DISCUSSION
In general, cortisol levels in serum/plasma or urine were measured by radioimmunoassay (RIA) utilizing commercially available kits. Most of the reported methods indicated that the performance of RIA for urinary free cortisol is relatively less satisfactory than plasma/serum cortisol[10]. Wood et al.[11] reported that urine-free cortisol levels measured by RIA are 1.6 and 1.9 times overestimated compared to gas chromatography (GC)-MS and LCMS/MS, respectively. On the other hand, results obtained by GC-MS and LC-MS/MS have good agreement, indicating that chromatographic assays are more reliable than RIA for cortisol measurements. Several LCMS/MS methods have been described for quantitative measurement of cortisol in serum and urine[15,16]. However, most of them are based on solid-phase extraction and deuterated cortisol as IS, which may not be readily available. We described a simple and convenient LCMS/MS method that is based on liquid-liquid extraction and that uses a commercially available IS, tolperisone. Intra- and inter-day coefficient of variation and bias were ≤9.7% and ±11.1% and ≤10.4% and ±11.5% for plasma and urine samples, respectively, and extraction recoveries were 80–91% for plasma cortisol and 80–86% for urine cortisol. The assay was successfully used to determine the stability of cortisol in biological

Table 1: Extraction recovery of cortisol and tolprisone (IS) from human plasma and urine

| Cortisol (ng/ml) | *Plasma | *Mobile phase | †Recovery (%) | Cortisol (ng/ml) | *Urine | *Mobile phase | †Recovery (%) |
|-----------------|---------|---------------|---------------|-----------------|--------|---------------|---------------|
| 2.5             | 3699    | 4317          | 86            | 1.0             | 1089   | 1304          | 84            |
| 7.5             | 12635   | 13931         | 91            | 3.0             | 3070   | 3562          | 86            |
| 200             | 217809  | 270711        | 80            | 100             | 74837  | 92971         | 80            |
| 360             | 529223  | 584503        | 91            | 180             | 125576 | 152344        | 82            |
| IS (20)         | 199045  | 236899        | 84            | IS (20)         | 64951  | 76209         | 85            |

*Mean peak area of 5 replicates. †Mean peak area of cortisol in human plasma or urine divided by mean peak area in mobile phase×100. IS: Internal standard.

Table 2: Intra- and inter-day precision and bias of cortisol assay

| Nominal Level (ng/ml) | Intraday (n=10) | Interday (n=20) |
|-----------------------|-----------------|-----------------|
|                       | Measured level  |                 |
|                       | Mean (SD)       | CV (%)          |
|                       | Bias (%)        |                 |
|                       | Mean (SD)       | CV (%)          |
|                       | Bias (%)        |                 |
| Plasma sample         |                 |                 |
| 2.5                   | 2.7 (0.3)       | 9.7             |
|                       |                 | 6.0             |
| 7.5                   | 7.1 (0.6)       | 8.7             |
|                       |                 | -5.2            |
| 200                   | 180.8 (15.3)    | 8.5             |
|                       |                 | -9.6            |
| 360                   | 321.2 (10.7)    | 3.3             |
|                       |                 | -10.8           |
| Urine sample          |                 |                 |
| 1.0                   | 1.0 (0.1)       | 9.7             |
|                       |                 | -2.5            |
| 3.0                   | 2.7 (0.1)       | 3.5             |
|                       |                 | -11.5           |
| 100                   | 103.5 (10.3)    | 10.9            |
|                       |                 | 3.5             |
| 180                   | 181.4 (15.8)    | 8.7             |
|                       |                 | 0.8             |

SD: Standard deviation. CV: Coefficient of variation. Bias: Bias (%) = (measured concentration - nominal concentration)/nominal concentration × 100.
samples. Cortisol was ≥86% stable when stored at room temperature for 24 h or at −20°C for 24 weeks in plasma samples and ≥93% stable when stored at room temperature for 24 h or −20°C for 16 weeks in urine samples.

CONCLUSION

We described a validated, clinically relevant, simple, and rapid UPLC-MS/MS assay of cortisol level that utilizes 0.5 ml human plasma samples. Cortisol was ≥86% stable when stored at room temperature for 24 h or at −20°C for 24 weeks in plasma samples and ≥93% stable when stored at room temperature for 24 h or −20°C for 16 weeks in urine samples.
Table 3: Stability of cortisol in different matrix and conditions

| Storage condition          | Matrix: Plasma | Matrix: Urine |
|---------------------------|----------------|--------------|
|                           | Nominal level (ng/ml) | Measured level mean (SD) (ng/ml) | Stability (%) | Nominal level (ng/ml) | Measured level mean (SD) (ng/ml) | Stability (%) |
| Baseline                  | 7.5 (10)       | 7.9 (0.6)    | 3.0 (10)     | 2.7 (0.1)    | 180 (10)       | 165 (9.4)        |
| Processed samples 24 hr (RT) | 7.5 (360)    | 7.6 (0.8)    | 96 (360)     | 3.0 (10)     | 180 (10)       | 154 (8.2)        |
| 48 h (−20°C)              | 7.5 (360)     | 7.4 (0.7)    | 90 (360)     | 3.0 (10)     | 180 (10)       | 154 (8.2)        |
| Unprocessed samples 24 h (RT) | 7.5 (360)    | 6.8 (0.3)    | 86 (360)     | 3.0 (10)     | 180 (10)       | 154 (8.2)        |
| 24 weeks (plasma) (−20°C) | 7.5 (360)     | 7.1 (0.4)    | 90 (360)     | 3.0 (10)     | 180 (10)       | 154 (8.2)        |
| 16 weeks (Urine) (−20°C)  | 7.5 (360)     | 7.6 (0.8)    | 96 (360)     | 3.0 (10)     | 180 (10)       | 154 (8.2)        |

Stability (%) = mean measured level at the indicated time divided by mean measured level at base line×100 (n=5). RT: Room temperature (20±2°C). FT: Freeze-thaw cycle; samples were frozen at−20°C and thaw at RT

REFERENCES

1. Saiah E. The role of 11 beta-hydroxysteroid dehydrogenase in metabolic disease and therapeutic potential of 11 beta-hsd inhibitors. Cur Med Chem 2008;15:642-9.
2. Bauer ME. Chronic stress and immunosenescence: A review. Neuroimmunomodulation 2008;15:241-50.
3. Findling JW. Raff H. Cushing’s syndrome: Important issue in diagnosis and management. J Clin Endocrinol Metab 2006;91:3746-53.
4. Nieman LK. Dynamic evaluation of adrenal hypofunction. J Endocrinol Invest 2003;26:74-82.
5. Ruder HJ, Gey RL, Lipsett MB. A radioimmunoassay for cortisol in plasma and urine. J Clin Endocrinol Metab 1972;35:219-24.
6. Huang CM, Zweing M. Evaluation of radioimmunoassay of urine cortisol without extraction. Clin Chem 1989;35:1374-53.
7. Ofosua AD, Samuel OB, Kwabena OK, Enoch A, Paul P. Novel HPLC analysis of hydrocortisone in conventional and controlled pharmaceutical preparations. J Pharmaceutics 2017;2017: Article ID: 9495732, 8.
8. Fawcett JP, Boulton DW, Jiang R, Woods DJ. Stability of hydrocortisone oral suspensions prepared from tablets and powder. Ann Pharmacother 1995;29:987-90.
9. Zuo ZH, Tang SF. RP-HPLC determination of hydrocortisone acetate eye ointment and its related substance of hydrocortisone acetate injection. Chinese J Pharm Anal 2010;30:1516-9.
10. Turpeninen U, Markkanen H, Valimaki M, Steenman UH. Determination of urinary free cortisol by HPLC. Clin Chem 1979;45:1386-91.
11. Wood L, Duroq DH, Fraser HL, Gillinwater S, Evans C, Pickett AJ, et al. Measurement of urinary free cortisol by tandem mass spectrometry and compression with results obtained by gas chromatography-mass spectrometry and two commercial immunoassays. Am Clin Biochem 2008;45:380-8.
12. Takao K, Masako M, Akio T. Determination of plasma and urine cortisol by high-performance liquid chromatography using fluorescence derivatization with dansyl hydrazine. J Chromatogr B Biomed Sci Appl 1979;2:143-50.
13. Fenske M. Determination of cortisol in plasma and urine by thin-layer chromatography and fluorescence derivatization with isonicotinic acid hydrazide. Chromatographia 1998;47:695-700.
14. Huang W, Kalhorn TF, Baillie M, Shenn DD, Thummel KE. Determination of free and total cortisol in plasma and urine by liquid chromatography-tandem mass spectrometry. Ther Drug Monit 2007;29:215-24.
15. Mark M, Kushnir Alan LR, Gordon JN, Alan HT, Wayne MA. Liquid chromatography-tandem mass spectrometry analysis of urinary free cortisol. Clin Chem 2005;49:965-7.
16. Robert LT, Stefan KG, Ravinder JS. Quantitative, high sensitive liquid chromatography-tandem mass spectrometry method for detection of synthetic corticosteroids. Clin Chem 2004;50:2345-52.
17. Dams R, Huestis MA, Lambert WE, Murphy CM. Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: Influence of ionization type, sample preparation, and biofluid. J Am Soc Mass Spectrom 2003;14:1290-4.
18. Guidance for Industry. Bioanalytical Method Validation. Rockville, MD: US Department of Health Services, Food and Drug Administration, CDER, CVM; 2001.
19. Tijare LK, Rangari NT, Mahajan UN. A review on bioanalytical method development and validation. Asian J Pharm Clin Res 2016;9:6-10.
20. Syed NA, Rajaa FH, Saleh AD, Muhammad MH. Quantitation of amiodpine in human plasma by LCMS/MS assay. Int J Pharm Pharm Sci 2016;8:268-72.