Research

Word-based characterization of promoters involved in human DNA repair pathways

Jens Lichtenberg*1, Edwin Jacox2, Joshua D Welch1, Kyle Kurz1, Xiaoyu Liang1, Mary Qu Yang2, Frank Drews1, Klaus Ecker1, Stephen S Lee3, Laura Elnitski2 and Lonnie R Welch1,4,5

Abstract

Background: DNA repair genes provide an important contribution towards the surveillance and repair of DNA damage. These genes produce a large network of interacting proteins whose mRNA expression is likely to be regulated by similar regulatory factors. Full characterization of promoters of DNA repair genes and the similarities among them will more fully elucidate the regulatory networks that activate or inhibit their expression. To address this goal, the authors introduce a technique to find regulatory genomic signatures, which represents a specific application of the genomic signature methodology to classify DNA sequences as putative functional elements within a single organism.

Results: The effectiveness of the regulatory genomic signatures is demonstrated via analysis of promoter sequences for genes in DNA repair pathways of humans. The promoters are divided into two classes, the bidirectional promoters and the unidirectional promoters, and distinct genomic signatures are calculated for each class. The genomic signatures include statistically overrepresented words, word clusters, and co-occurring words. The robustness of this method is confirmed by the ability to identify sequences that exist as motifs in TRANSFAC and JASPAR databases, and in overlap with verified binding sites in this set of promoter regions.

Conclusion: The word-based signatures are shown to be effective by finding occurrences of known regulatory sites. Moreover, the signatures of the bidirectional and unidirectional promoters of human DNA repair pathways are clearly distinct, exhibiting virtually no overlap. In addition to providing an effective characterization method for related DNA sequences, the signatures elucidate putative regulatory aspects of DNA repair pathways, which are notably under-characterized.
Background

Genomic signature techniques were originally developed for identifying organism-specific characterizations [1,2]. Genomic signature methods carry the limitation that they were not designed for sub-categorization of sequences from within a single organism. To address this shortcoming, the authors present genomic signature techniques from within a single organism. To address this shortcoming, the authors present genomic signature techniques that can be used to identify regulatory signatures, i.e. to classify DNA sequences regarding related biological units within an organism, such as particular functions, pathways and tissues.

The term *genomic signature* was introduced by Karlin and Burge to refer to a function characterizing genomes based on compositional variation [2]. Karlin and others showed that a di-nucleotide odds-ratio was an effective genomic signature. In addition to the odds ratio, oligonucleotide frequencies (as n-mers) and machine learning methods have been employed to classify sequences based on their organism of origin [1,3-20], and to identify unique features of genomic data sets. Such approaches were effectively employed in a more refined focus examining tissue-specific categorization of regulatory sequences in liver or muscle [21-24].

Here, the authors employ a word-based genomic signature method. That is, given a group of related sequences, a set of characteristic subsequences is discovered. Each subsequence is called a *genomic word*. The set of characteristic subsequences and their attributes constitute a *word-based genomic signature*. It is hypothesized that each functionally related group of sequences has a detectable word-based signature, consisting of multiple genomic words. Furthermore, it is hypothesized that the genomic words that constitute a word-based genomic signature are functional genomic elements. Unlike most existing types of genomic signatures, a word-based genomic signature provides insights that are directly applicable to the problem of identifying functional DNA elements, because the words identify putative transcription factor binding sites.

The authors have identified two primary components of word-based genomic signatures that are useful for characterizing a set of related genomic sequences, *RGS*. The set of statistically overrepresented words that can be derived from *RGS* can be regarded as a word-based signature (*SIG1*) since it provides information about the complete set of potential control elements regulating the set of *RGS*. A second signature (*SIG2*) provides a set of words related to the elements of *SIG1*. The similarity between the sets can be measured based on evolutionary distance metrics, e.g. hamming and edit distance (also called Levenshtein distance, see Methods). In addition to *SIG1* and *SIG2* several post-processing steps built upon the two word-based signatures are undertaken to create the final regulatory genomic signature. These post-processing steps include sequence clustering, co-occurrence analysis, biological significance analysis, and a conservation analysis.

DNA repair genes represent a large network of genes that respond to DNA damage within a cell. Discrete pathways for DNA repair responses have been identified in the Reactome database [25]. A discernable feature among genes in these pathways is the promoter architecture. A large percentage of genes with DNA repair functions are regulated by bidirectional promoters [26,27], whereas the rest are regulated by unidirectional promoters. Bidirectional promoters fall between the DNA repair gene and a partner gene that is transcribed in the opposite direction. The close proximity of the 5' ends of this pair of genes facilitates the initiation of transcription of both genes, creating two transcription forks that advance in opposite directions. DNA repair genes rarely share bidirectional promoters with other DNA repair genes. Rather, they are paired with genes of diverse functions [26].

The formal definition of a bidirectional promoter requires that the initiation sites of the genes are spaced no more than 1000 bp from one another. Using these criteria the authors have comprehensively annotated the human and mouse genomes for the presence of bidirectional promoters, using *in silico* approaches [26,28]. Bidirectional promoters utilized repeatedly in the genome are known to regulate genes of a specific function [26] and serve as prototypes for complete promoter sequences for computational studies- i.e., one can deduce the full intergenic region because exons flank each side. These promoters represent a class of regulatory elements with a common architecture, suggesting a common regulatory mechanism could be employed among them. Recent molecular studies confirm that RNA PolII can dock at promoters while simultaneously facing both directions [29], rather than being restricted to a single direction.

DNA repair genes are likely to play a universal role in damage repair, therefore mutations that affect their regulation will become important diagnostic indicators in disease discovery. The authors have previously shown that bidirectional promoters regulate genes with characterized roles in both DNA repair and ovarian cancer [28]. A more detailed analysis of the regulatory motifs within this subset of promoters will address regulatory mechanisms controlling transcription of this important set of genes. This paper presents word-based genomic regulatory signatures based on statistically overrepresented oligonucleotides (6-8 mers) found in unidirectional and bidirectional promoters of genes in DNA repair pathways. The results demonstrate the effectiveness of using signatures for
Results

The effectiveness of genomic regulatory signatures that are based on SIG1 and SIG2 was addressed by analyzing promoter sequences for genes in DNA repair pathways of humans. The promoters were divided into two classes, the bidirectional promoters and the unidirectional promoters, and distinct genomic signatures were calculated for each class. The human DNA repair pathways included 32 genes, and distinct genomic signatures were calculated for bidirectional promoters and the unidirectional promoters. Bidirectional promoters had a GC content ranging from 47.55% to 77.09% with an average of 59.87% while unidirectional promoters varied from 38.00% to 68.09%, averaging 50.84%.

Statistically overrepresented words

For each set of promoters, the statistically overrepresented words were identified. The top 25 overrepresented 8-mer words for each dataset are presented in Tables 1a and 1b, respectively (See Additional file 1 and Additional file 2 for the complete lists of words discovered in the bidirectional and unidirectional promoter set respectively). Each word is presented as an observed number or a statistical expectation, respectively, including the number of sequences the word is contained in (S or Es), the number of overall occurrences of the word (0 or Es), and a score measuring overrepresentation for the word \(S \cdot \ln\left(\frac{S}{E_S} \right) \). Additional information such as reverse complement words, their relative positions in the list of top words, palindromic words, and p-values assessing the statistical relevance of the appearance of the word are also presented. A comparison of Tables 1a and 1b reveals that the characteristic words for the two sets are distinct, with no overlaps. The significance of the selected 25 words can be seen by comparing their scores and p-values to the scores and p-values for all words, which are plotted in Figures 1 and 2).

Missing words

The dataset of bidirectional promoters and unidirectional promoters contained 21,076 and 22,101 unique words of length 8, respectively, out of 65,536 unique possibilities. Thus, in each set, more than 43,000 possible words did not occur (See Additional file 3 and Additional file 4 for the complete lists of non-occurring words). The missing words in each set were enumerated, and ranked in descending order by their E_S values. The top 25 missing words are shown in Tables 2a and 2b.

The scatterplot of the E_S values for all missing words is shown in Figure 3; note the outlier values, which correspond with the words in Tables 2a and 2b. The utility of using missing words as regulatory signatures, as reported in the literature [32,33], was consistent with the observation of no overlapping words between bidirectional and unidirectional promoter sets.

Word-based clusters

For the top 2 overrepresented words, clusters were created using two different distance metrics, hamming distance and edit distance (Tables 3, 4, 5, 6. See Additional File 5, 6, 7, 8 for the complete lists of hamming distance and edit distance based clusters for bidirectional and unidirectional promoters). Each table contains the set of words that clustered around a given 'seed' word. A comparison of the sequence logos for the hamming-distance-based clusters, presented in (Figures 4, 5), shows no overlap between the two promoter sets. Similarly, no overlap existed for clusters based on edit-distance (Figures 6, 7).

Sequence-based clusters

Sequences can be clustered and categorized into different families (and subfamilies). The sequence-based clusters presented here are restricted to two promoters per cluster. Sequence clustering is a measure of the co-existence of statistically overrepresented words shared between pairs of promoters as shown in Tables 7a,b. Each cluster contains IDs for the sequences that make up the cluster and the number of overrepresented words not shared within the cluster (distance). Sequences in each set were grouped into clusters based on the set of statistically overrepresented words. The shared words for the top-scoring sequence cluster of each data set were illustrated using the GBrowse environment [34] (Figures 8, 9). The visualization shows a strong positional correlation between the sequences of the top sequence cluster for the bidirectional promoters (Word: GCCCGAGCC) and minor correlation between the sequences for the unidirectional promoters (Words: AGCAGGGC, GCAGGGCG).

Word co-occurrence

The promoter sets were characterized further by word co-occurrence analysis, in which word-pairs that appeared together more frequently than expected were identified. Interesting pairs of words were selected from the overrepresented words of Table 1 (Table 8a,b). Each word pair was characterized as the number of observed or expected occurrences for the word combination (S or E_S) and a sta-
Table 1: Top 25 words. The top 25 words for the bidirectional promoter set (a) and the unidirectional promoter set (b) of DNA-repair pathways. The words are sorted in descending order according to their statistical overrepresentation.

(a) Bidirectional

Word	S	E_s	O	E_o	Sn(S/E_s)	RevComp	Position	Palindrome	P-Value
TCGCGCCA	4	0.918299	4	0.9375	5.88611	TGGCGCGA	12538	No	0.015391
TCCCCGGGA	8	3.97165	8	4.26667	5.60208	TCCCCGGGA	2	Yes	0.068606
GGCAGCC	10	5.85012	11	6.5	5.36123	GGCAGCC	21073	No	0.066821
TCCCCGGCT	6	2.54354	6	2.66667	5.14921	ACGCCCGA	NA	No	0.054084
CAGGGGCG	4	1.1085	4	1.13514	5.13315	GGCCCCCTG	14546	No	0.028413
AGGGCCGT	5	1.80245	5	1.86667	5.10145	AGGGCCGT	613	No	0.04142
TCTGAGGA	5	1.84222	6	1.90909	4.99234	TCTGAGGA	5391	No	0.013499
CGTGGGGG	5	1.86993	5	1.93548	4.92572	CCCCCACG	20402	No	0.047015
TGCTGAGA	4	1.7067	4	1.2	4.91487	TCTGAGA	NA	No	0.033766
CGGGGCG	4	1.7067	4	1.2	4.91487	CGGGGCG	20259	No	0.033766
TCTGGGAT	2	0.180188	2	0.181818	4.8138	ATCCGAGA	2854	No	0.014655
GGGGCGG	5	1.92725	5	2	4.76672	CCGGGGCG	20866	No	0.052648
AGGGAGGG	6	2.73111	6	2.87234	4.7223	CCCCTCTC	9852	No	0.07159
AGAAAAGA	3	0.632564	3	0.64285	4.66976	TCTTTCAG	NA	No	0.027559
CGACTCCG	3	0.632564	3	0.64285	4.66976	CGGAGTCC	NA	No	0.027559
GGGCCAGG	7	3.61284	7	3.85714	4.6299	CCTGCGGC	19875	No	0.096315
ACTCCAGC	5	2.02051	5	2.1	4.53045	GCTGGAGT	NA	No	0.062121
CGGGGCA	5	2.05153	5	2.13333	4.45426	TCGGGGCA	6128	No	0.065478
TGCCGGAT	2	0.220092	2	0.222222	4.41371	ATCCGAGA	NA	No	0.021321
GCCCTCTCC	8	4.63031	9	5.03226	4.37454	GGAGGGGC	7041	No	0.070206
GCCGGGGA	3	0.707627	3	0.72	4.33335	TGCCGGG	20143	No	0.036618
TGCCGAGG	4	1.38876	4	1.42857	4.23154	TGCTCCAG	NA	No	0.056996
TGCCGGGA	6	3.01111	6	3.18182	4.1367	TCCCTGCC	10531	No	0.103337
TGCCAGC	5	2.19845	5	2.29167	4.10844	CGCGGGCA	NA	No	0.082773
CAGCAGGC	6	3.02748	6	3.2	4.10418	GGCTGCTG	19198	No	0.105399

(b) Unidirectional
Table 1: Top 25 words. The top 25 words for the bidirectional promoter set (a) and the unidirectional promoter set (b) of DNA-repair pathways. The words are sorted in descending order according to their statistical overrepresentation. (Continued)

Word	S	E_s	O	E_o	Sn(S/E_s)	RevComp	Position	Palindrome	P-Value
ACCCGCCT	4	0.716577	4	0.727273	6.87826	AGGCGGGT	1940	No	0.006562
CTTCTTTC	5	1.7686	5	1.81818	5.19624	GAAAGAAG	13567	No	0.037733
AGGAACA	4	1.16659	4	1.19048	4.92885	TGTTTCCT	21667	No	0.032947
GCAGGGCG	6	2.75716	6	2.86957	4.66535	CGCCCTGC	1311	No	0.071337
GGGCTGCG	5	2.036	5	2.1	4.49226	GCAGCCCC	16359	No	0.062122
CTTCTTTC	4	1.30438	4	1.33333	4.48225	GAAGAAGA	NA	No	0.046491
GGGGAGTA	3	0.682407	3	0.692308	4.44222	TACTCCCC	17991	No	0.033211
ATTAATA	4	1.36853	4	1.4	4.29023	ATTTTAAT	16078	No	0.053723
CGGAAACC	3	0.750393	3	0.761905	4.15731	GGTTCG	NA	No	0.042101
TGGGCGGA	4	1.44679	4	1.48148	4.06778	TCCGCCCA	NA	No	0.063337
CGGGCGCG	3	0.787559	3	0.8	4.01229	CGCCCGCG	22091	No	0.047421
TTTTTTGA	3	0.787559	3	0.8	4.01229	TCAAAAAA	NA	No	0.047421
TTTCTCCA	4	1.48541	4	1.52174	3.96242	TGGAGAAA	2378	No	0.068398
AGCGGGCT	3	0.805285	3	0.818182	3.94551	AGCGGGCT	14	Yes	0.050071
CCTCTTTA	2	0.282982	2	0.285714	3.91104	TAAAGAGG	NA	No	0.033814
CGCCCTTT	6	3.12976	6	3.27273	3.90482	AAGGGGCG	21917	No	0.113859
CGCGCGCG	5	2.33164	5	2.41379	3.81433	CGCGCGCG	15062	No	0.097601
ATTCGCCAG	3	0.843245	3	0.857143	3.80733	CTGGGAAT	21297	No	0.055985
TCTCCCT	4	1.56036	4	1.6	3.7655	AGGGGAGA	18183	No	0.07881
TCCGCCGG	3	0.855341	3	0.869565	3.7646	CCGCGCGA	NA	No	0.057938
CTCCGGCT	3	0.867789	3	0.882353	3.72126	AGCGGGAG	NA	No	0.059981
TGGCGCGA	2	0.316812	2	0.32	3.68519	TCGCGCA	3202	No	0.041483
GGGCGCCC	4	1.59514	4	1.63636	3.67732	GGGCGCCC	23	Yes	0.083901
GTGCGTTT	3	0.884961	3	0.9	3.66247	AAACGCAC	NA	No	0.062855
TTGTTCCT	4	1.60537	4	1.64706	3.65176	GAGACCAA	NA	No	0.085429
tistical overrepresentation score \(S \cdot \ln \left(\frac{S}{E_S} \right) \). No overlap was found between the bidirectional and the unidirectional set, nevertheless, the word pairs for the bidirectional promoter set achieved a higher number of sequence hits for the pairs.

Comparison of word-based properties

The distances between the scores for different word sets (Figure 10) provided a basis for discriminating among bidirectional promoters and unidirectional promoters, (Table 9 and Figure 11), whereas similarities were identified from correlated words (Table 10 and Figure 12). These tables and figures show that word-based genomic

Figure 1
Score-based scatterplots. Shown here are the scatterplots for the scores of all words contained in the bidirectional promoter dataset (a) and the unidirectional promoter dataset (b) of the DNA repair pathways.

Figure 2
P-Value-based scatterplots. Scatterplots of the p-values for all words contained in the promoters of the DNA repair pathways exhibiting bi-directionality (a) and uni-directionality (b).
Table 2: Top 25 words not part of promoter sets. The top 25 words that were not discovered as being part of the bidirectional (a) and unidirectional (b) promoter set of DNA-repair pathways. The words are sorted in descending order by the expected sequence occurrence (ES).

Word	(a) Bidirectional	Word	(b) Unidirectional
GCGGCCC	3.34859	CAGGCAAGG	2.17759
GAGGGAGG	2.41485	ATTTTGTT	2.15141
TGCCCGCC	2.39066	CAAAAAAA	2.13045
GCACCCCC	2.23699	AAACCTCA	2.11329
GCCTCTGG	2.23699	TCCCCGCTC	2.11329
TG CCTGGC	2.23699	CCCCCGCC	2.05605
GGGCTGGC	2.21328	GAGGAGGC	2.05268
GCCAGGAGC	2.18091	AGCACTGG	2.02023
CAGCAAGG	2.1341	TTATCTGC	2.02023
CGAGG CCT	2.12325	CCGCCCCCA	1.99873
GAGGGAAG	2.12325	CCCCCGCC	1.94132
GAGGTGTA	2.11348	CTCTTTCT	1.94132
CCTGTGC	2.10187	GAGAGAGC	1.94132
TCCAGGGC	2.0706	GGCCCAAC	1.94132
CCAGGCGG	2.06039	GTCTGGGC	1.94132
CGCCTGTC	2.06039	TAGGGGGC	1.94132
regulatory signatures can be used to describe promoter sets based on their uniqueness.

Regulatory Database Lookup

We developed a method [35] to determine if these signatures matched any known motifs from TRANSFAC or JASPAR (Table 11). The words from bidirectional promoters matched known motifs in 8/10 cases, with the words from unidirectional promoters matching known motifs in 8/10 cases as well. Compared to the consensus sequences of the known motifs, the matches were off by no more than one letter. Some of the matches corresponded to nucleotide profiles determined from collections of phylogenetically conserved, cis-acting regulatory elements [36]. Imperfect matches resulted from bases that flanked the core motifs (Table 11a, b) (see also [37]). Such events decreased the detection score to slightly above the threshold of 85% similarity. Overall, the findings in Table 11 validate that the signatures have biological relevance and suggest that the remaining signatures, which do not match known motifs could represent novel binding sites.

Conservation analysis

To address selective constraint in the word sets, sequence conservation was examined for pairs of co-occurring words. The top ten word-pairs from the unidirectional and bidirectional datasets were examined in 28-way sequence alignments using the PhastCons [38] dataset in the UCSC Human Genome Browser [39]. The results are presented in Table 12. The bidirectional promoters revealed 9/10 word sets had a record of sequence conservation in one or both words (Table 12a). The analysis of the unidirectional promoters, presented in Table 12b, showed partial conservation in only one of the word-pairs.

Biological implications

The words in the list of bidirectional promoters were examined for known biological evidence. For instance, the gene POLH has a known binding motif, TCCCGGGA, annotated as a PAX-6 binding site in the cis-RED database [313x287]. This is the same sequence as the second most common word in the bidirectional promoters. Along with sequences that cluster with this word, we found that 19/32 genes in the bidirectional promoter set had a match to this word cluster (cluster 2) within 1 kb of their TSS, while 15/32 bidirectional promoters had a match to the words of cluster 1. Furthermore, this word also represents a Stat5A recognition site (Table 11). The RAD51 gene, which is known to be regulated by STAT5A, showed two examples from this word cluster (TGCCGGGA and TCCCGGGC).

Limitations of the approach

The presented approach does not attempt to automate the process of finding a small set of regulatory elements for a limited set of related genomic signatures like MEME [40] or AlignACE [41]. The different approach presented here produces more detailed information outside of the lim

Figure 3

Scatterplot of words not detected in the promoters. Scatterplots for the expected number of sequence occurrences for every word not detected in the bidirectional (a) or unidirectional (b) promoters.
Table 3: Top 2 clusters for the bidirectional promoter. The word-based clusters for the two most overrepresented words for the bidirectional promoters. Rank 1 refers to word TCGCGCCA and Rank 2 to TCCCGGGA.

(a) Rank 1

Word	S	E_s	O	E_o	Sin(S/E_s)	RevComp.	Position	Palindrome
TCGCGCCA	4	0.918299	4	0.9375	5.88611	TGGCGCGA	12538	No
TCGCCCCA	3	0.805161	3	0.820513	3.94598	TGGGGCGA	2834	No
TAGCGCCA	1	0.263929	1	0.266667	1.33207	TGGCGCTA	4918	No
TCGAGCCA	1	0.469775	1	0.47619	0.755501	TGGCTCGA	NA	No
TCGGACA	1	0.655751	1	0.666667	0.421975	TGTCGCGA	NA	No
TCGGACA	1	0.683955	1	0.695652	0.379863	TGCCCGCA	NA	No
TTGCCCA	1	0.693903	2	0.705882	0.365423	TGCGCGCA	NA	No
TCGGGCA	1	0.826074	1	0.841201	0.191071	TGCGCGCA	NA	No
TCGGTCG	1	0.84063	1	0.85714	0.173604	TGAGCGGCA	4051	No
TCGCAGCCA	1	1.51582	1	1.5625	-0.41596	GGCGCGCA	13089	No
CCGCGCCA	2	2.5054	2	2.625	-0.4506	TGCGCGGCA	NA	No

(b) Rank 2

Word	S	E_s	O	E_o	Sin(S/E_s)	RevComp.	Position	Palindrome
TCCCGGGA	8	3.97165	8	4.26667	5.60208	TCCCGGGA	2	Yes
TCCAGGGA	2	0.941495	2	0.961358	1.50687	TCCCTGGA	NA	No
TCCCGAGA	2	1.05556	2	1.08	1.27816	TCTCGGGA	13248	No
TGCCGGGA	1	0.514348	1	0.52173	0.664856	TCCGGGA	NA	No
TCCGTGGA	1	0.702073	1	0.714286	0.353718	TCACGGGA	NA	No
TCCCAGGA	4	3.71413	5	3.97222	0.296597	TCTTGGA	19059	No
TCTCGGGA	2	1.73986	2	1.8	0.278683	TCCCGGGA	3074	No
ACCCGGGA	1	0.785281	1	0.8	0.241714	TCCCCGG	20941	No
TCCCCGGA	1	0.852649	1	0.869565	0.159407	TCCGGGGA	NA	No
TCCCCGGA	1	1.01424	1	1.03704	-0.01414	TCGCGGGA	NA	No
TCCCGGGA	3	3.29619	3	3.5	-0.28247	TTCCGGGA	NA	No
TCCTGGGA	1	1.32696	1	1.36364	-0.28289	TCCCCAGGA	13129	No
TCCCIGGGA	3	3.34568	3	3.55556	-0.32717	CCCCCGGA	21071	No
Table 3: Top 2 clusters for the bidirectional promoter. The word-based clusters for the two most overrepresented words for the bidirectional promoters. Rank 1 refers to word TCGCGCCA and Rank 2 to TCCCGGGGA. (Continued)

Word	S	E₁	O	E₀	Sln(S/E₁)	RevComp.	Position	Palindrome
TCCCGGGT	1	2.38044	1	2.48889	-0.86729	ACCCGGGA	13746 No	
CCCCCGGA	1	2.78651	1	2.93333	-1.02479	TCCCGGGG	19211 No	
GCCCGGGA	1	3.73853	2	4	-1.31869	TCCCGGGC	21163 No	
TCCCGGGC	3	5.1829	4	5.68889	-1.64025	GCCCGGGA	21138 No	

Table 4: Top 2 clusters for the unidirectional promoter. The word-based clusters for the two most overrepresented words for the bidirectional promoters. Rank 1 refers to word ACCCGCCT and Rank 2 to CTTCTTTC.

(a) Rank 1

Word	S	E₁	O	E₀	Sln(S/E₁)	RevComp.	Position	Palindrome
ACCCGCCT	4	0.716577	4	0.727273	6.87826	AGGCGGGT	19440 No	
ATCCGCCT	1	0.132296	1	0.133333	2.02271	AGGCGGAT	NA No	
ACCAGCCT	2	0.738772	2	0.75	1.99183	AGGCTGCT	1303 No	
AGCCGCCT	1	0.657331	1	0.666667	0.419567	AGGCAGGCT	1056 No	
ACCCACCT	1	0.738772	1	0.75	0.302766	AGGCGGCT	NA No	
AGGCCGCCT	1	1.16147	1	1.18519	-0.14969	AGGCCGCT	NA No	
CCCCCCCT	1	2.45503	2	2.54545	-0.89814	AGGCCGGG	21912 No	

(b) Rank 2

Word	S	E₁	O	E₀	Sln(S/E₁)	RevComp.	Position	Palindrome
CTTCTTTC	5	1.7686	5	1.81818	5.19624	GAAAGAAG	13567 No	
CTACTTTC	1	0.180301	1	0.181818	1.71313	GAAAGTAG	NA No	
CTTCTTCC	1	0.304671	1	0.307692	1.18852	GAAAGAAG	5306 No	
CTGCCCTT	2	1.15305	2	1.17647	1.10147	GAAAGCAG	9703 No	
CGTCTTTC	1	0.371023	1	0.375	0.991491	GAAAGACG	20167 No	
CTCTTCTT	3	2.36561	3	2.45	0.712729	GAAAGAGA	11346 No	
CTTCTATC	1	0.607134	1	0.615385	0.499005	GATAGAAG	NA No	
CTTCTTTC	1	0.921427	1	0.9375	0.0818318	GAAAGGAAG	10908 No	
GTTCTTTC	1	1.07027	1	1.09091	-0.067912	GAAAGAAC	17502 No	
CTTCTTTC	1	1.2055	1	1.23077	-0.186894	GAAAAAAAG	NA No	
TTTCTTTC	2	3.4628	2	3.63636	-1.09786	GAAAGAAA	NA No	
ited list by showing a larger (complete) set of words that are ranked based on their statistical significance. Additionally, word- and sequence-based clusters, word co-occurrences and functional significance of the words have been computed as a means of adding more detail to the retrieval of putative elements allowing a more informed interpretation of the actual regulatory function of a word.

Conclusion
This paper presents a word-based genomic signature that characterizes a set of sequences with (1) statistically over-represented words, (2) missing words, (3) word-based clusters, (4) sequence-based clusters and (5) co-occurring words. The word-based signatures of bidirectional and unidirectional promoters of human DNA repair pathways showed virtually no overlap, thereby demonstrating the signature's utility.

In addition to providing an effective characterization method for related DNA sequences, the signatures elucidate putative regulatory aspects of DNA repair pathways. Genes in DNA repair pathways contribute to diverse functions such as sensing DNA damage and transducing the signal, participating in DNA repair pathways, cell cycle signalling, and purine and pyrimidine metabolism. The synchronization of these functions implies co-regulatory relationships of the promoters of these genes to ensure the adequate production of all the necessary components in the pathway. We present a subtle, yet detectable signature for bidirectional promoters of DNA repair genes. The consensus patterns, detected as words and related clusters of words, provide a DNA pattern that is strongly represented in these promoters. Although the proteins that bind these sequences must be examined experimentally, the data show that a protein such as STAT5A could be involved in regulating many of these promoters. STAT5A has biological relevance in DNA repair pathways, playing a known role in the regulation of the RAD51 gene. We propose that this initial study of a network of DNA repair genes serve as a model for studies that examine regulatory networks. As the relationships among genes involved in DNA repair pathways are elucidated more thoroughly, the analyses of

Table 5: Edit cluster for bidirectional promoters. The word-based clusters for the two most overrepresented words for the bidirectional promoters according to the edit distance metric. Rank 1 refers to word TCGCGCCA and Rank 2 to TCCCGGGA.

Word	S	Eₐ	O	E₀	Sln(S/Eₐ)	RevComp.	Position	Palindrome
TCGCGCCA	4	0.918299	4	0.9375	5.88611	TGGCGCGA	12538	No
TCGCCCCA	3	0.805161	3	0.820513	3.94598	TGGGGCGA	2834	No
TAGCTCCA	2	0.352982	2	0.357143	3.46897	TGGAGCTA	NA	No
TCTCGCGA	2	0.438673	2	0.444444	3.0343	TCGCGAGA	4937	No
TCGCCACA	2	0.455424	2	0.461538	2.95935	TGTGGCGA	4669	No

...
their regulatory relationships will gain more power to
detect a larger number of DNA words that are shared in
common among the network of genes. The results of this
analysis are supported by evidence of sequence conserva-
tion and overlap between predicted sites and known func-
tional elements.

Methods
Two fundamental elements of word-based genomic signa-
tures are created with the approach presented in [42,43].
SIG1 identifies the set of statistically overrepresented
words, while SIG2 represents a set of words from SIG1
that is in itself similar to the elements of SIG1, based on a
specific distance measure.

The set SIG1 is computed as described in [42,43], which is summarized as follows:

1. Identify maximally repeated words of length \([m, n]\).
2. Remove low complexity words, redundant words,
and words that are contained in repeat elements.
3. For each word compute a 'score' that characterizes
the statistical overrepresentation of the word.
4. Select the words with the highest scores.

The set SIG2 is found by taking each of the elements of
SIG1 and performing 'word clustering'. For each word \(w \in\)
SIG1, this involves a two-step process:

1. Construct a set (cluster) of words from RGS that
have a 'distance' of no more than \(h\) from word \(w\).
Hamming distance and edit distance are used for this
step.
2. Construct a motif that characterizes the set of words
found in step 1.

Word-based signature (SIG1)
As the foundation of the signature generation it is neces-
sary to compute the set of distinct words \(W_{\text{Sig}}\) in a set of
input sequences \(S\). In order to determine the statistical sig-
nificance of \(w \in W_{\text{Sig}}\) it is necessary to count the total

Word	S	E\(_s\)	O	E\(_o\)	S_{\text{ln}}(S/E\(_o\))	Rev.Comp.	Position	Palindrome
ACCCGGCT	4	0.716577	4	0.727273	6.87826	AGGCGGGT	19440	No
AGCCGGCT	3	0.805285	3	0.818182	3.94551	AGCCGGCT	14	Yes
AGGCGGCT	3	1.11427	3	1.13636	2.97124	AGGCGGCT	92	Yes
AAGCGGCT	4	2.15617	4	2.222727	2.47184	AGGCGCCT	5872	No
ACCTGCAT	2	0.592063	2	0.6	2.43458	ATGCAGGT	NA	No

(a) Rank 1

Word	S	E\(_s\)	O	E\(_o\)	S_{\text{ln}}(S/E\(_o\))	Rev.Comp.	Position	Palindrome
CTTCTTTC	5	1.7686	5	1.81818	5.19624	GAAAGAAG	13567	No
TCTTCTTC	4	1.30438	4	1.33333	4.48225	GAAAGAAG	NA	No
CCTCTTTA	2	0.282982	2	0.285714	3.91104	TAAAGGG	NA	No
CTTCCTCA	3	0.917377	3	0.93333	3.55455	TGAAAAAG	NA	No
GTTCATTTC	2	0.359828	2	0.363636	3.43055	GAATGAAC	NA	No

(b) Rank 2
number of occurrences of a given word w, o_w, as well as the number of sequences containing the word, s_w. The occurrence information is modelled as a set of tuples. Assuming a binomial model for the distribution of words across the input sequences, it is possible to model the total occurrence of a word w by introducing the random variable l, where l is the complete sequence length, v the length of w, and Y_i a binary random variable indicating if a word occurs at position i, or not, leading to the series of yes/no Bernoulli experiments. An expected value for the specific number of occurrences for a word w can then be computed as $E[w] = \sum_{i=1}^{l-v+1} p_w Y_i$, where p_w is the probability of word w. Following a similar modelling approach, the expected number of sequences a word occurs in is given by $E[s_w] = \sum_{i=1}^{l-v+1} p_w (1 - (1 - p_w)^v)$. The actual probabilities are determined by a homogenous Markov chain model of a specific order m. Based on the expected values we compute multiple scores for each word:

Figure 4
Sequence logos for bidirectional promoters. Sequence logos corresponding to the word-based clusters of the top 2 overrepresented words of the bidirectional promoters. Rank 1 (a) is corresponding to the word TCGCGCCA, while Rank 2 (b) refers to TCCCGGGA.

Figure 5
Sequence logo for unidirectional promoters. Sequence logos corresponding to the word-based clusters of the top 2 overrepresented words of the unidirectional promoters. Rank 1 (a) is corresponding to the word ACCCGCCT, while Rank 2 (b) refers to CTTCTTTT.
• $S(w) \cdot \ln \left(\frac{S(w)}{E(S(w))} \right)$: This scoring function, called ShnSES, enables the inclusion of sequence coverage into the score. A highly scored word occurs in a large percentage of sequences in the data set. It does not necessarily have to be highly significant if the overall number of occurrences is taken into account, but it is of particular use for the discovery of shared regulatory elements across multiple sequences.

• p-Value: The p-value is defined as the probability of obtaining at least as many words as the actual observed number of words:

$$pval_w = 1 - \sum_{i=0}^{l_j-\nu+1} \binom{l_j - \nu + 1}{i} p_w^i (1 - p_w)^{l_j - \nu + 1 - i},$$

where $|S|$ represents the number of sequences in S and l_j is the length of sequence j.

Word-based clusters (SIG2)

Two methods are employed for the detection of similarities between the words that make up SIG1: hamming distance and Levenshtein distance (also called edit distance).

While hamming distance is defined as the number of positions for which the corresponding characters of two words of the same length differ, edit distance allows the comparison of different length words and accounts for three edit operations (insert, delete and substitute), rather than the plain mismatch (corresponds to substitute) employed by the hamming distance.

The biological reasoning for employing distance metrics in order to group similar words together can be found in the evolution of sequences. A biological structure is constantly exposed to mutation pressure. These mutations can occur as insertions, deletions or substitutions, however insertions and deletions are deleterious in most cases, leading to the issue that edit distance provides a very detailed model of the mutations but hamming distance is a reasonable abstraction and will work well for this case.

The motif logos for the hamming distance clusters were constructed using the TFBS Perl module by Lenhard and Wasserman [44]. ClustalW2 [45] was used to align the words of the edit distance clusters.

Sequence clustering

The sequence clustering conducted in this research is focussed on the words shared between element of a set of sequences. A set of words is taken as the input for the clustering. A binary vector $s_i = (s_{i,1}, s_{i,2}, \ldots, s_{i,k})$ for each sequence s_i is created, marking an element $s_{i,k}$ where k is the number of words used to distinguish the sequences with $k \leq |W_w|$. The element $s_{i,k}$ of the vector is populated with a ‘1’ if the word k is found in sequence i, and ‘0’ if it is not. The similarity between sequences is determined by the dot product between the binary sequence vectors, and is deducted from the complete number of words in the vector space. In order to determine the distance between k sequences (with $k \geq 2$), the dot product is extended to accommodate multiple sequences.

$$d_{1,2,\ldots,k} = \sum_{i=0}^{n} (s_{1,i} \ast s_{2,i} \ast \cdots \ast s_{k,i})$$

The cluster with the smallest distance is visualized using GMOD’s GBrowse framework [34]. For each of the sequences contained in the cluster, the words pertaining to SIG1 are displayed.

Biological significance (lookup)

Once genomic signatures are identified, the next step is to discern their biological role. One important aspect of this role, crucial to understanding gene regulation [46], is the location of the preferred binding sites for certain proteins (transcription factor binding sites or TFBSs). To locate...
Table 7: Sequence clusters (pairs of sequences). Sequence clusters containing pairs of sequences for the bidirectional (a) and unidirectional (b) promoter sets. Each sequence occurs in only one cluster. The sequences are clustered based on the number of words (within the top 60 overrepresented words) that are shared between them with the distance denoting the number of words not shared between them.

	(a) Bidirectional		(b) Unidirectional		
Sequence 1	Sequence 2	Distance	Sequence 1	Sequence 2	Distance
chr3:185561466–185562546	chr11:832429–833529	54	chr10:50416978–50418078	chr3:188006884–188007984	57
chr19:53365272–53366372	chr19:7600339–7601439	55	chr12:52868924–52870024	chr7:73306574–73307674	57
chr11:18299718–18300818	chr15:41589928–41591028	56	chr5:68890824–68891924	chr19:55578407–55579507	58
chr4:57538069–57539168	chr19:48776246–48777346	56	chr6:30982955–30984055	chr9:99499360–99500460	58
chr11:107598052–107599152	chr12:131773918–131775018	56	chr10:131154509–131155609	chr19:50618917–50620017	58
chr13:107668425–107669525	chr1:11674165–11675265	57	chr5:86744492–86745592	chr17:30330654–30331754	58
chr6:43650922–43652022	chr16:2037768–2038868	57	chr11:118471287–118472387	chr8:55097461–55098561	58
chr22:36678663–36679763	chr11:61315725–61316825	58	chr16:13920523–13921623	chr8:101231014–101232114	58
chr5:60276548–60277648	chr22:40346240–40347340	58	chr5:131919528–131920628	chr19:1046236–1047336	58
chr11:93866588–93867688	chr3:130641442–130642542	58	chr12:108015528–108016628	chr16:56053079–56054179	59
chr17:7327541–7328521	chr17:1679094–1680194	58	chr1:132113723–13214823	chr2:216681376–216682476	59
chr20:5055168–5056268	chr15:38773660–38774760	58	chr8:91065972–91067072	chr4:39044247–39045347	59
chr14:19992129–19993229	chr11:66877493–66878593	59	chr14:60270222–60271322	chr11:47192088–47193188	59
chr17:38530557–38531657	chr13:31786616–31787716	59	chr7:7724663–7725763	chr11:62284590–62285690	59
chr12:122683333–122684433	chr13:33289233–33290333	59	chr12:116937892–116938992	chr12:166937892–116938992	59
chr5:82408167–82409267	chr9:109084364–109085464	59	chr7:101906286–101907386	chr7:101906286–101907386	59
chr2:127768122–127769222	chr8:42314186–42315286	59	chr19:50565569–50566669	chr19:50565569–50566669	59
chr12:102882746–102883846	chr3:9764704–9765804	59	chr14:49224583–49225683	chr6:30790834–30791934	59
chr12:102295174–102296274	chr13:33289233–33290333	59	chr12:116937892–116938992	chr12:166937892–116938992	59
chr12:912403–913503	chr13:3289233–3290333	59	chr12:116937892–116938992	chr12:166937892–116938992	59
chr2:128332074–128333174	chr7:44129555–44130655	59	chr11:73980276–73981376	chr11:73980276–73981376	59
chr2:128332074–128333174	chr7:44129555–44130655	59	chr11:73980276–73981376	chr11:73980276–73981376	59
Figure 8
GBrowse visualization for primary bidirectional sequence cluster. The GBrowse visualization of the two sequences for the top sequence-based cluster in the bidirectional promoter set. Shown are the words from the set of top 60 words that are detected in these two sequences.

Figure 9
GBrowse visualization for primary unidirectional sequence cluster. The GBrowse visualization of the two sequences for the top sequence-based cluster in the unidirectional promoter set. Shown are the words from the set of top 60 words that are detected in these two sequences.
Table 8: Word co-occurrence. The top 25 word pairs for the bidirectional (a) and unidirectional (b) promoter set. The word pairs are sorted in descending order by $S^*\ln(S/E_S)$ score.

(a) Bidirectional	(b) Unidirectional								
Word 1	**Word 2**	S	E_S	$S^*\ln(S/E_S)$	**Word 1**	**Word 2**	S	E_S	$S^*\ln(S/E_S)$
TCTGAGGA	TCGCGCCA	3	0.0529	12.1158	GTTCATTTC	TCGGCCGGG	2	0.0073	11.2184
ACTCCAGC	TCGCGCCA	3	0.0580	11.8387	CTGTGTGC	TCGGCCGA	2	0.0074	11.1966
GCCCCAGCC	TCCGGCCG	3	0.0722	11.1827	TGAGCGGA	CTCCCCGCT	2	0.0082	10.9997
GCCCCAGCC	CGGAGCGG	2	0.0087	10.8711	AGCCGGCT	GGGAGTA	2	0.0131	10.0590
TGCCCCCGG	TCCCGGGA	4	0.2729	10.7404	ATTGCAGG	ATTCTCTC	2	0.0169	9.5459
GGCAGGGGA	GGCCAGGG	4	0.3400	9.8609	GGGGAGTA	AGGAAACA	2	0.0190	9.3177
TCCGGGGA	TCCGGCCA	3	0.1140	9.8112	CTGGGAGG	GTTCATTTC	2	0.0218	9.0337
AGCCGTTC	TCCGGGGA	3	0.1158	9.7646	CTTTCCGA	CTGGGAGG	2	0.0240	8.8439
GGAGGCTG	TCCGGCCA	3	0.1173	9.7250	TGGGGGGA	ACCCGGCT	2	0.0247	8.7895
TCCGGCCG	GCCCTCC	4	0.3554	9.6830	TTTCTCCA	CGGAAACC	2	0.0265	8.6446
AGAAAAAGA	TCGCGCCA	2	0.0182	9.4042	CCCCCGGG	ACCCGGCT	2	0.0280	8.5339
GCCCCAGCC	GCCCTCC	3	0.1360	9.2808	TCCGGCCG	GGGGCGTG	2	0.0415	7.7522
TGCCAAA	GGGGCGG	2	0.0195	9.2604	AGCTGGCT	CCAGGCTG	2	0.0422	7.7192
CAGCAGCC	TGGGAAAT	2	0.0208	9.1297	TTTGTCTC	AGGAAACA	2	0.0446	7.6068
AAGGGCCGT	TCCGGGCT	3	0.1433	9.1249	CTGGGAGG	TCCGGCGG	2	0.0519	7.3020
CCTTCA	TTTCACCC	2	0.0216	9.0521	CTTTTCCT	GGGGCGTG	2	0.0545	7.2046
CGAGGAGA	TCGCGCCA	2	0.0220	9.0204	ATTGGCAGG	ATTAAT	2	0.0585	7.0639
TCCGGCGG	CGGAGCGG	2	0.0228	8.9501	TGGGGGCA	GCAGGCGG	2	0.0645	6.8693
ACCCTCCT	AGGGAGGG	2	0.0253	8.7380	GGGGCGG	AGCTGGCT	2	0.0657	6.8326
GCCCAGCC	TCCACTGT	2	0.0254	8.7315	TTGGTCTC	CTCTTCTC	2	0.0676	6.7745
CAGCAGCC	AGGGCGGT	3	0.1705	8.6024	CTTTTCCT	GGGCCCTT	2	0.0684	6.7522
TGCCGGCGG	TCCGGGCT	3	0.1747	8.5291	GCAGGCGG	AGGAAACA	2	0.0766	6.5251
CCCAGGAC	AGAGAGCT	2	0.0291	8.4590	GGGCGGCG	TTTTTCGCC	2	0.0939	6.1181
TCTGGGAT	GGGCGGCC	2	0.0329	8.2123	CTGGGAGG	TCTCCCTC	2	0.0947	6.0996
AGGGCGGC	AGAAAAAGA	2	0.0333	8.1930	AGGAGGCG	GCTTTTTA	2	0.0956	6.0805
Table 9: Unique and interesting words for the promoter sets. The words for the unidirectional and bidirectional promoter set which exhibit a significant score-based distance to the other data set.

Word	Unidirectional	Bidirectional	Distance	Word	Unidirectional	Bidirectional	Distance
ACCCGCCT	6.87826	-0.0263597	4.882303411	TCCGGGA	-0.0850495	5.60208	-4.021407835
GGGCTGCG	4.49226	-1.0872000	3.945274001	GGGCCGCC	0	5.36123	-3.790962089
CGGCAGCG	4.01229	-1.3139900	3.766248706	CGGCAGCG	-0.3641650	4.91487	-3.732841447
AGGAAACA	4.92885	0.1254760	3.936498328	TCCGGCT	0	5.14921	-3.641041309
CTTCTTTC	5.19624	0.4219750	3.375915157	CAGGGGCT	0	5.13315	-3.629685174
TCCGGGCG	3.76460	-0.8986470	3.297413576	AGGGCCGT	0	5.10145	-3.607269889
TCTTCTTC	4.48225	0	3.169429730	TCTGAGGA	0	4.99234	-3.530117468
ATTTAAAT	4.29023	0	3.033650726	CGTGGGGG	0.0180292	4.92572	-3.470261445
GGGAGATA	4.44222	0.3737000	2.876878081	TCTGGGAT	0	4.81380	-3.403870623
CGCCCCCTT	3.90482	-0.1463740	2.864626749	AGGGAGGG	0	4.72230	-3.339170353
TTTTTTGA	4.01229	0	2.837117467	AGAAAAA	0	4.66976	-3.302018963
TTTCCTCA	3.96242	0	2.801854052	GGGCCAGG	0	4.62990	-3.273833686
AGCCGGCT	3.94551	0	2.789896876	ACTCCAGC	0	4.53045	-3.203511917
TTGCTTC	3.65176	-0.2608830	2.766656398	CCCAGCT	-0.9904730	3.48143	-3.162112936
GCGCCGCG	3.81433	0	2.697138609	GGGCCGA	0	4.45426	-3.149637451
ATTCCAG	3.80733	0	2.692188861	TCCGGCCG	-0.8886350	3.55395	-3.141381979
GCAGGGCG	4.66535	0.8645290	2.687586303	TGCAGCCG	-0.3137370	4.10844	-3.126951344
GAGGGGCAG	3.03108	-0.7557900	2.677721456	TGCGGAAT	0	4.41371	-3.120964271
CCCCCCGG	3.55664	-0.1908410	2.649869227	GGGCCGA	0	4.33335	-3.064141170
AGGGAGCC	3.15866	-0.5635770	2.632019024	CAGCGGCC	-0.0679120	4.10418	-2.950114545
TGCGCCGA	3.68519	0	2.605822839	CGGAGGA	0	4.09415	-2.895001228
CGCGGCCC	2.25420	-1.4189300	2.597295131	CGCAGCGC	-0.2779570	3.74626	-2.845551130
GTGCGTTC	3.66247	0	2.589757373	TTCCACCC	0	4.02098	-2.843262225
CTGGGGTG	3.36673	-0.2940760	2.588580747	TCCAGCCA	0	3.94598	-2.790229216
TGCCTCCC	3.34992	-0.2629130	2.554658714	GGGCCGCG	0.8548330	4.76672	-2.766121825
Table 10: Descriptive words for both the unidirectional and bidirectional promoter sets.

The top 25 words that are correlated in the two promoter sets, according to their overrepresentation scores. The Words had to be overrepresented according to SlnSES with at least a score of 1.5. Shown are the words with a distance between -0.11 and 0.11.

Word	Unidirectional	Bidirectional	Distance
CTTTG GCCC	2.08857	2.23024	-0.100175818
AGGCAGGA	1.51526	1.64780	-0.093719933
CTCAGGAT	1.58527	1.71375	-0.090849079
GGGGGGAC	1.61803	1.70814	-0.063717392
CTTGCCGA	1.65530	1.73350	-0.055295750
CTGAGCAG	1.99183	2.05890	-0.047425652
GCCTGAGG	1.99183	2.04796	-0.039689904
TGAAGTGG	1.61803	1.66175	-0.030914708
GCCATCCG	1.86393	1.89589	-0.022599133
AGGTGCA	2.20477	2.23024	-0.018010010
TCTGTGCC	1.84096	1.85915	-0.012862272
TACC ACTA	1.86393	1.88037	-0.011624835
CAAAGAAT	1.61803	1.61872	-0.000487904
ACCGCTCA	1.61803	1.61872	-0.000487904
TATCT TAG	1.61803	1.61872	-0.000487904
AGAGTTCC	1.62605	1.61872	0.005183093
GTCGGCTT	1.90512	1.88037	0.017500893
CGCGCGCA	1.94164	1.90263	0.027584236
CAGGCCAG	1.95383	1.86972	0.059474751
ACAGAAAG	2.79686	2.70295	0.066404398
GTCAGGAG	2.40520	2.25776	0.104255824
GGAAGTGA	1.96108	1.81095	0.106157941
TAGAGGC	1.99183	1.84125	0.106476139
TGCCAGGG	1.75813	1.60511	0.108201480
GCACAAGC	1.95383	1.80053	0.108399470
TTC ACTTA	2.15055	1.99725	0.108399470
Comparison analysis: plot for complete set of words. Comparison of the words detected for the two promoter sets based on their computed overrepresentation scores.

Comparison analysis: plot for distinctive words. The words descriptive of the unidirectional promoter set (red) and the bidirectional promoter set (green). Words that are not sufficiently descriptive of either data set are eliminated from the plot.

Comparison analysis: plot for general words. The words that are significantly correlated in both data sets.
Table 1: Lookup results for interesting words in the promoters. Information about the regulatory function of the top 10 overrepresented words for the bidirectional and unidirectional promoter set based on lookups in the TRANSFAC and JASPAR databases.

(a) Bidirectional

Sequence	Transcription Factor (Matrix Id)	Sequence (bottom) aligned to matrix consensus	Matches	Avg. Score	Score Range
TCGCGCCA	PF0112f	TGGGCGGGAA	4/6	89.0	86.5–96.8
TCCCCGGA	STAT5A	TTCYNRGAA	8/16	86.7	86.7–86.7
GGC CGGCC	SPI (V$SPI_01)	DRGGCRKGSW	8/13	90.2	86.5–90.8
TCCC GGCT	ELK1 (MA0028)	NNNMC GGAAR	3/6	86.9	86.5–87.7
CAGGGGGCC	V$WT1_Q6	SVC HCC BVC	5/6	87.4	85.0–91.1
AGGGCCGT	MYB (V$MYB_Q3)	NNNBNCMGT TTN	2/7	91.2	89.8–92.6
TCTGAGGA	TFIIA (V$TFIIA_Q6)	TMDHRA GGRV S TCTGAGGA	2/8	88.1	85.8–90.5
CGTGGGGG	E2F (V$E2F1_Q3)	EKTSSC05	6/6	87.3	87.3–87.3
TGCTGAGA		No match.			
CGCGGGCC		No match.			

(b) Unidirectional

Sequence	Transcription Factor (Matrix Id)	Sequence (bottom) aligned to matrix consensus	Matches	Avg. Score	Score Range
ACCCGCCT	SPI (V$SPI_01)	DRGGCRKGSW	4/7	86.2	85.9–87.3
CTTCTTTC		No match.			
AGGAAACA	NFAT (V$NFAT_Q4_01)	NNG GAA AA N WB	5/5	87.3	85.8–88.1
these sites, the signatures are compared to a set of known binding sites, which are usually represented as weighted matrices [47]. However, a simple scoring scheme can misclassify results when applied to the typically short sequences produced by signature finders. In this simple approach, short signatures are aligned to each matrix by ignoring the parts of the matrices that are longer than the signature. This results in erroneous scores since a signature could match just the very end of large matrix, which is often of little significance (the core of the matrix generally represents the sites of strongest binding).

To give a more significant measure of similarity, we developed a tool that uses a window around the original sequences (those which the signature is based upon) to improve the comparison. The naive implementation of this approach is to use a window of base pairs around each signature and find the optimal alignment to each TFBS matrix by scoring every possible sub-sequence containing the signature. For instance, if a signature is located 10 times within the set of sequences, each matrix is aligned to each of the 10 loci containing the signatures. Our tool uses a faster approach; it finds all occurrences of TFBSs meeting the desired threshold in every sequence, and subsequently uses this information to quickly score the signatures. As a benefit, the list of TFBS can be reused to quickly score new signatures or to redo the analysis with interesting subsets of sequences, such as all sequences which in liver cells are highly expressed.

Co-occurrence analysis

The co-occurrence analysis aims to determine the expected number of sequences containing a given pair of not necessarily distinct words at least once. If \(n \) denotes the word length, \(m \) the number of sequences, \(p_{w_i} \) the probability for a word \(i \) to occur anywhere in the sequence, and \(l_k \) the length of sequence \(k \), the expected number of sequences containing a given pair of words can be calculated as:

\[
E_S(w_i, w_j) = \sum_{k=1}^{m} \left(1 - (1 - p_{w_i})^{l_k-n+1} \right) \left(1 - (1 - p_{w_j})^{l_k-n+1} \right)
\]
Table 12: Conservation analysis. The results for conservation analysis of the top 10 word pairs in the bidirectional (a) and unidirectional (b) promoter set. For each word pair, the occurrence location of the pair is given, as well as an identifier for the conservation of the sites, and a PhastCons score for the quality of the conservation across 28 organisms. Conservation can be categorized as: none (no word was conserved), partial (one word was conserved) and complete (all words were conserved).

(a) Bidirectional

Word 1	Word 2	Location	Conservation	Hit	Score
TCTGAGGA	TCGCGCA	chr19:53365272–53366372	None		
		chr19:48776246–48777346	None		
		chr19:7600339–7601439	Partial	TCGCGCA	385
ACTCCAGC	TCGCGCA	chr4:57538069–57539168	None		
		chr19:48776246–48777346	None		
		chr19:7600339–7601439	Partial	TCGCGCA	385
GCCCAGCC	TCCGCCGC	chr3:185561446–185562546	Partial	TCCGCCGC	310
		chr14:19992129–19993229	None		
		chr11:832429–833529	None		
GCCCAGCC	CCGAGCGC	chr3:185561446–185562546	None		
		chr14:19992129–19993229	None		
TGCCCGGC	TCCCGGGA	chr19:53365272–53366372	Partial	TCCCGGGA	390
		chr13:107668425–107669525	None		
		chr20:5055168–5056268	None		
		chr11:832429–833529	None		
GGCAGGGA	GGGCCAGG	chr19:53365272–53366372	Partial	GGGCCAGG	390
		chr22:40346240–40347340	Complete	GGCAGGGA	325
				GGGCCAGG	522
		chr5:60276548–60277648	None		
		chr12:131773918–131775018	None		
TCCCGGGA	TCGCGCA	chr19:53365272–53366372	Partial	TCCCGGGA	390
		chr4:57538069–57539168	None		
		chr19:7600339–7601439	Partial	TCGCGCA	385
AGCCTGTC	TCCCGGGA	chr17:38530557–38531657	None		
		chr13:107668425–107669525	Partial	AGCCTGTC	244
		chr4:57538069–57539168	None		
Table 12: Conservation analysis. The results for conservation analysis of the top 10 word pairs in the bidirectional (a) and unidirectional (b) promoter set. For each word pair, the occurrence location of the pair is given, as well as an identifier for the conservation of the sites, and a PhastCons score for the quality of the conservation across 28 organisms. Conservation can be categorized as: none (no word was conserved), partial (one word was conserved) and complete (all words were conserved). (Continued)

Word 1	Word 2	Location	Conservation	Hit	Score
GGAGGCTG	TCGGCCCA	chr4:57538069–57539168	None		
		chr19:48776246–48777346	None		
		chr19:7600339–7601439	Partial	TCGGCCCA	385
TCCGCGGC	GCCCCTCC	chr3:18556146–185562546	Partial	TCCGCGGC	310
		chr14:19992129–19993229	None		
		chr1:11674165–11675265	Partial	GCCCCTCC	360
		chr11:832429–833529	None		
(b) Unidirectional					

Word 1	Word 2	Location	Conservation	Hit	Score
GTTCATTC	TCCGCGGG	chr7:73306574–73307674	None		
		chr12:52868924–52870024	Partial	TCCGCGGG	325
CTGTGTGC	TGCGCCGA	chr10:131154509–131155609	None		
		chr19:1046236–1047336	None		
TGACGCGA	CTCCCGCT	chr12:116937892–116938992	None		
		chr17:30330654–30331754	None		
AGCCGCGT	GGGGAGTA	chr6:30982955–30984055	None		
		chr16:13920523–13921623	None		
ATTGCAGG	ATTCTCTC	chr5:86744492–86745592	None		
		chr17:30330654–30331754	None		
GGGGAGTA	AGGAACA	chr16:13920523–13921623	None		
		chr8:101231014–101232114	None		
CTGGGAGC	GTTCATTC	chr7:73306574–73307674	None		
		chr12:52868924–52870024	None		
CCTCCGA	CTGGGAGC	chr5:68890824–68891924	None		
		chr7:73306574–73307674	None		
TGGGGCGGA	ACCGCCT	chr6:30982955–30984055	None		
		chr9:994999360–99500460	None		
TTTCTCCA	CGAAACC	chr8:55097461–55098561	None		
		chr11:118471287–118472387	None		
The $S \cdot \ln \left(\frac{S}{E_S} \right)$ score is used as the main scoring function in the co-occurrence analysis.

Conservation analysis

Sequence conservation was mapped using PhastCons conservation scores [38] calculated on 28 species, which are based on a two-state (conserved state vs. Non-conserved region) phylo-HMM. PhastCons scores were obtained from the UCSC Human Genome Browser [39]. The scores reported by the UCSC Human Genome Browser contain transformed log-odds scores, ranging from 0–1000. Conserved regions were required to cover the majority of the word length.

Comparison

Words can have significantly different scores for each of the data sets in which they occur. In order to analyze the words based on their impact on the data sets it is useful to assign a distance metric that determines which data set is described best by a given word.

Based on a graphical analysis, three points of interest can be determined: the point where the perpendicular of a given point on the x-axis crosses the main diagonal, the point where the perpendicular of a given point on the main diagonal crosses the main diagonal and finally the point where the perpendicular from a given point on the y-axis crosses the main diagonal. Based on the conventional techniques of fold-change detection in microarray analysis, we consider the perpendicular on the main diagonal. The resulting distance formula is:

$$d = \sqrt{2 \cdot \ln \left(\frac{S}{E_S} \right)}$$

with y_0 being the score for the word within the unidirectional data set, and x_0 being the score of the word in the bidirectional data set.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JL contributed in the development of algorithms and models, the implementation of algorithms, generation of the signature data and drafting of the document. EJ contributed the lookup of biological significance for the words of the signatures. JDW contributed in the development of the models and algorithms and the implementation of the approaches. KK contributed in the development and implementation of models and algorithms. XL contributed in the development of the models and algorithms for co-occurrence analysis and generated the respective data. MQY and LE generated and categorized the promoter data set. FD contributed in the development of models and algorithms, and in the implementation of the methods. KE contributed the idea of hamming-distance-based clustering. SSL contributed to the statistical foundations of the scoring model. LE provided the text describing the biological background and significance, conducted the conservation analysis, and participated in the drafting of the paper. In addition to architecting the software pipeline employed in this research, LRW contributed to the design, implementation and validation of models and algorithms (especially in the areas of word searching, word scoring, and sequence clustering) and to the writing of this manuscript.

Additional material

Additional file 1

Words discovered in bidirectional promoters. Entire set of words discovered in the bidirectional promoters with occurrences, expected occurrences, scores, reverse complement information and p-value.

Click here for file http://www.biomedcentral.com/content/supplementary/1471-2164-10-S1-S18-S1.csv

Additional file 2

Words discovered in unidirectional promoters. Entire set of words discovered in the unidirectional promoters with occurrences, expected occurrences, scores, reverse complement information and p-value.

Click here for file http://www.biomedcentral.com/content/supplementary/1471-2164-10-S1-S18-S2.csv

Additional file 3

Mmissing words in bidirectional promoters. Set of words not detected in the bidirectional promoters with expected occurrences.

Click here for file http://www.biomedcentral.com/content/supplementary/1471-2164-10-S1-S18-S3.csv

Additional file 4

Mmissing words in unidirectional promoters. Set of words not detected in the unidirectional promoters with expected occurrences.

Click here for file http://www.biomedcentral.com/content/supplementary/1471-2164-10-S1-S18-S4.csv

Additional file 5

Hamming distance clusters in bidirectional promoters. Entire set of hamming distance based clusters for the bidirectional promoters with detailed cluster element information position weight matrix and corresponding regular expression motif.

Click here for file http://www.biomedcentral.com/content/supplementary/1471-2164-10-S1-S18-S5.csv
Acknowledgements
The Ohio University team acknowledges the support of the Stocker Endowment, Ohio University’s Graduate Research and Education Board (GERB), the Ohio Plant Biotechnology Consortium, the Ohio Supercomputer Center, and the Choose Ohio First Initiative of the University System of Ohio.

The Ohio University team further acknowledges Sarah Wyatt for providing the initial motivation and guidance for the work in regulatory genomics as well as Mo Alam, Jasmine Bascom, Kaiyu Shen, Nathaniel George, Dazhang Gu, Eric Petri and Haqian Zhang for their support during the development of the approach.

LE is supported by the Intramural Program of the National Human Genome Research Institute.

The authors would like to thank to anonymous reviewers for their insights and comments.

This article has been published as part of BMC Genomics Volume 10 Supplement 1, 2009: The 2008 International Conference on Bioinformatics & Computational Biology (BIOCOMP08). The full contents of the supplement are available online at http://www.biomedcentral.com/1471-2164/10issue=S1.

References
1. Deschavanne PJ, Giron A, Vilain J, Fagot G, Fertil B: Genomic signature: characterization and classification of species assessed by chaos game representation of sequences. Mol Biol Evol 1999, 16(10):1391-1399.
2. Karlin S, Burge C: Dinucleotide relative abundance extremes: a genomic signature. Trends Genet 1995, 11(7):283-290.
3. Abe T, Kanaya S, Kinouchi M, Ichiba Y, Kozuki T, Ikemura T: A novel bioinformatic strategy for unveiling hidden genome signature of eukaryotes: self-organizing map of oligonucleotide frequency. Genome Inform 2002, 13:12-20.
4. Abe T, Kanaya S, Kinouchi M, Ichiba Y, Kozuki T, Ikemura T: Informatics for unveiling hidden genome signatures. Genome Res 2003, 13(4):693-702.
5. Bastien O, Lespinats S, Roy S, Metayer K, Fertil B, Codani J, Marechal E: Analysis of the compositional biases in Plasmodium falciparum genome and proteome using Arabidopsis thaliana as a reference. Gene 2004, 336(2):163-173.
6. Bentley SD, Parkhill J: Comparative genomic structure of prokaryotes. Annu Rev Genet 2004, 38:771-792.
7. Campbell AM, Mrzak J, Karlin S: Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci USA 1999, 96(14):9184-9189.
8. Carbone A, Kepes F, Zinovyev A: Codon bias signatures, organization of microorganisms in codon space, and lifestyle. Mol Biol Evol 2005, 22(3):547-561.
9. Deschavanne PJ, Giron A, Vilain J, Dufraine C, Fertil B: Genomic signature is preserved in short DNA fragments. IEEE International Symposium on Bioinformatics and Biomedical Engineering 2000.
10. Elhai J: Determination of bias in the relative abundance of oligonucleotides in DNA sequences. J Comput Biol 2001, 8(1):151-175.
11. Fertil B, Massin M, Lespinats S, Devic C, Dumee P, Giron A: GENSTYLE: exploration and analysis of DNA sequences with genomic signature. Nucleic Acids Res 2005, 33:512-515.
12. Gentles AJ, Karlin S: Genome-scale compositional comparisons in eukaryotes. Genome Res 2001, 11(4):540-546.
13. Jeffrey H: Chaos game representation of gene structure. Nucleic Acids Res 1990, 18(8):2163-2170.
14. Karlin S: Global dinucleotide signatures and analysis of genomic heterogeneity. Curr Opin Microbiol 1998, 1(5):598-610.
15. Karlin S, Campbell AM, Mrzak J: Comparative DNA analysis across diverse genomes. Annu Rev Genet 1998, 32:85-225.
16. Karlin S, Mrzak J, Campbell AM: Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 1997, 179(12):3899-3913.
17. Karlin S, Mrzak J, Gentles AJ: Genome comparisons and analysis. Curr Opin Struct Biol 2003, 13(3):344-352.
18. Li J, Sayood K: A Genome Signature Based on Markov Modeling. Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 2005; Shanghai 2005.
19. Wong K, Finan TM, Golding GB: Dinucleotide compositional analysis of Sinorhizobium melloti using the genome signature: distinguishing chromosomal and plasmids. Funct Integr Genomics 2002, 2(6):274-281.
20. Zhang C, Zhang R, Ouyang H: The Z curve database: a graphic representation of genome sequences. Bioinformatics 2003, 19(5):593-599.
21. Fickett JW, Wasserman WW: Discovery and modeling of transcriptional regulatory regions. Curr Opin Biotechnol 2000, 11(1):19-24.
22. Schones DE, Sumazin P, Zhang MQ: Similarity of position frequency matrices for transcription factor binding sites. Bioinformatics 2005, 21(3):307-313.
23. Wasserman WW, Fickett JW: Identification of regulatory regions which confer muscle-specific gene expression. J Mol Biol 1998, 278(1):167-181.
24. Wasserman WW, Palumbo M, Thompson W, Fickett JW, Lawrence CE: Human-mouse genome comparisons to locate regulatory sites. Nat Genet 2000, 26(2):225-228.
25. Yoch-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 2005, 33:D428-432.
26. Yang MQ, Elinitsky LL: A computational study of bidirectional promoters in the human genome. Springer Verlag Lecture Notes in Bioinformatics 2007:361-371.
27. Adachi N, Lieber MR: Bidirectional gene organization: a common architectural feature of the human genome. Cell 2002, 109:807-809.
28. Yang MQ, Koehly LM, Elinitsky LL: Comprehensive annotation of bidirectional promoters identifies co-regulation among breast and ovarian cancer genes. PLoS Comput Biol 2007, 3(4):e72.
29. Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA, Young RA, Sharp PA: Divergent Transcription from Active Promoters. Science 2008, 114:2253.

30. Wingender E, Chen X, Hehl R, Karas H, Liebich I: TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 2000, 28:316-319.

31. Bryne JC, Valen E, Tang PH, Mastrand T, Winther O: JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 2008, 36:D102-106.

32. Herold J, Kurtz S, Giegerich R: Efficient computation of absent words in genomic sequences. BMC Bioinformatics 2008, 9(1):167.

33. Hapukrishnan G, Andersen T: Absent sequences: nullomers and primes. Pac Symp Biocomput 2007:355-366.

34. Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A, et al.: The generic genome browser: a building block for a model organism system database. Genome Res 2002, 12(10):1599-1610.

35. Jacox E, Elnitski L: Finding Occurrences of Relevant Functional Elements in Genomic Signatures. International Journal of Computational Science 2008.

36. Xie X, Lu J, Kulpakos EJ, Golub TR, Mootha VP: Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature 2005, 434:338-345.

37. Chekmenev DS, Haid C, Kel AE: P-Match: transcription factor binding site search by combining patterns and weight matrices. Nucleic Acids Res 2005, 33:W432-437.

38. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Shi J, Hillier LW, Richards S, et al.: Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 2005, 15(8):1034-1050.

39. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D: The Human Genome Browser at UCSC. Genome Res 2002, 12(6):996-1006.

40. Bailey TL, Williams N, Misleh C, Li WW: MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 2006, 34(1):W369-373.

41. Roth FP, Hughes JD, Estep PW, Church GM: Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotech 1998, 16(10):993-945.

42. Lichtenberg J, Jacox E, Yang MQ, Elnitski L, Welch L: Word-based characterization of the bidirectional promoters from the human DNA-repair pathways. In: The 2008 International Conference on Bioinformatics and Computational Biology Las Vegas, 2008.

43. Lichtenberg J, Morris P, Ecker K, Welch L: Discovery of regulatory elements in oomycete orthologs. In: The 2008 International Conference on Bioinformatics and Computational Biology Las Vegas, 2008.

44. Lenhard B, Wasserman WW: TFBS: Computational framework for transcription factor binding site analysis. Bioinformatics 2002, 18:1135-1136.

45. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: ClustalW and ClustalX version 2.0. Bioinformatics 2007, 23(21):2947-2948.

46. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447(7146):799-816.

47. Wasserman WW, Sandelin A: Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 2004, 5(4):276-287.