Symmetries of the Dirac operator with skew-symmetric torsion

Tsuyoshi Houri1, David Kubiznák2, Claude Warnick2,3 and Yukinori Yasui1

1 Department of Mathematics and Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
2 DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
3 Queens’ College, Cambridge CB3 9ET, UK

E-mail: houri@sci.osaka-cu.ac.jp, D.Kubiznak@damtp.cam.ac.uk, c.m.warnick@damtp.cam.ac.uk and yasui@sci.osaka-cu.ac.jp

Received 8 June 2010, in final form 13 July 2010
Published 4 August 2010
Online at stacks.iop.org/CQG/27/185019

Abstract
In this paper, we consider the symmetries of the Dirac operator derived from a connection with skew-symmetric torsion, ∇^T. We find that the generalized conformal Killing–Yano tensors give rise to symmetry operators of the massless Dirac equation, provided an explicitly given anomaly vanishes. We show that this gives rise to symmetries of the Dirac operator in the case of strong Kähler with torsion (KT) and strong hyper-Kähler with torsion (HKT) manifolds.

PACS numbers: 02.40.-k, 04.60.Cf, 04.65.+e

1. Introduction

In the study of symmetries of pseudo-Riemannian manifolds, an important role is played by conformal Killing–Yano tensors [1, 2]. These generalize conformal Killing vectors to higher rank anti-symmetric tensors and have many elegant properties which can be exploited both in mathematical and physical contexts. We refer the reader to four recent PhD dissertations and the references therein [3].

Recently, there has been interest in the generalization of the conformal Killing–Yano tensors to pseudo-Riemannian manifolds with skew-symmetric torsion first introduced in [2], and then re-discovered in [4, 5]. Such manifolds occur in superstring theories where the torsion form may be identified (up to a factor) with a 3-form field occurring naturally in the theory. Geometries with torsion are also of interest in the context of non-integrable special Riemannian geometries [6]. Important examples include Kähler with torsion (KT) and hyper Kähler with torsion (HKT) manifolds [7, 8], which have applications across mathematics and physics.
A key property of conformal Killing–Yano tensors in the absence of torsion is that one may construct from them symmetry operators for the massless Dirac equation \[9–12\]. Conversely any first-order symmetry operator of the massless Dirac equation is constructed from a conformal Killing–Yano tensor \[13–15\]. In this paper, we will consider the question of when a generalized conformal Killing–Yano (GCKY) tensor with respect to a connection with torsion \(T\) gives rise to a symmetry of an appropriate massless Dirac equation with torsion. For reasons which we will mention below, the appropriate Dirac operator to consider is not that constructed from the connection on the spin bundle with torsion \(\nabla T\), which we denote as \(\nabla T\), but that constructed from the connection with torsion \(T/3\), which we denote as \(\mathcal{D}\) and can relate to the Dirac operator of the connection \(\nabla T\) by

\[
\mathcal{D} = D^T + \frac{T}{2}. \tag{1.1}
\]

This ‘modified’ Dirac operator is that introduced by Bismut in \[16\]. One may alternatively choose to view our result as relating the symmetries of the Dirac operator with torsion \(T\) to the GCKY tensors of the connection with torsion \(3T\).

We now state the main theorem of the paper; see subsequent sections for conventions.

Theorem 1.1. Let \(\omega\) be a GCKY p-form obeying

\[
\nabla^T_X \omega = \frac{1}{p + 1} X \wedge d^T \omega + \frac{1}{n - p + 1} \wedge \delta^T \omega = 0; \tag{1.2}
\]

then the operator

\[
L_\omega = e^a \omega \nabla^T_{X^a} + \frac{p}{p + 1} d^T \omega - \frac{n - p}{n - p + 1} \delta^T \omega \tag{1.3}
\]

satisfies

\[
\mathcal{D} L_\omega = \omega \mathcal{D}^2 + \frac{(-1)^p}{p + 1} d^T \mathcal{D} + \frac{(-1)^p}{n - p + 1} \delta^T \omega \mathcal{D} - A. \tag{1.4}
\]

The anomaly \(A\), given explicitly below, contains no term where a derivative acts on a spinor and depends on \(T\) and \(\omega\). In the case where \(A\) vanishes, \(L_\omega\) is a symmetry operator for the massless Dirac equation.

We also exhibit this operator in terms of \(\gamma\)-matrices, a formalism perhaps more familiar to physicists. In the cases where either \(d^T \omega = 0\) or \(\delta^T \omega = 0\), we can exhibit operators which (anti)-commute with the Dirac operator.

Corollary 1.2. Let \(\omega\) be a generalized Killing–Yano (GKY) p-form such that \(A\) vanishes. Then there exists an operator \(K_{\omega}\) such that

\[
\mathcal{D} K_{\omega} + (-1)^p K_{\omega} \mathcal{D} = 0. \tag{1.5}
\]

Corollary 1.3. Let \(\omega\) be a GCCKY p-form such that \(A\) vanishes. Then there exists an operator \(M_{\omega}\) such that

\[
\mathcal{D} M_{\omega} = (-1)^p M_{\omega} \mathcal{D} = 0. \tag{1.6}
\]

Those operators which commute with the Dirac operator are of particular interest as they give rise to symmetry operators of the massive Dirac equation. Thus, in general, an odd-rank GKY or even-rank GCCKY generate symmetries of the massive Dirac equation.

The anomaly term of theorem 1.1 obviously vanishes for vanishing torsion, by the result of Benn and Charlton \[11\]. It is also shown to vanish in \[17\] for the case of the GCKY tensors.
exhibited by the charged Kerr-NUT metrics [18] (including the Kerr–Sen black hole spacetime [19]). The anomaly also vanishes in the case of strong Kähler with torsion (KT) and strong hyper-Kähler with torsion (HKT) metrics, giving the result

Corollary 1.4. A strong KT metric admits one operator and a strong HKT metric three operators which commute with the modified Dirac operator \mathcal{D}.

In section 2 we introduce our notation and conventions and derive some basic results which we require in the proof of theorem 1.1. Section 3 introduces the GCKY tensors, together with some of their properties. The proof of the main theorem takes up section 4.

2. Preliminaries

We assume that we work on (M^n, g), a pseudo-Riemannian spin manifold. It is convenient to denote by $\{X_a\}$ a local orthonormal basis for TM and by $\{e^a\}$ the dual basis for T^*M. We also define

\[
\eta_{ab} = g(X_a, X_b), \quad \eta^{ab} = (\eta^{-1})^{ab}, \quad X^a = \eta^{ab} X_b, \quad e_a = \eta_{ab} e^b.
\]

(2.1)

The matrix with entries η_{ab} will of course be diagonal, with entries ± 1. Throughout we sum over repeated indices.

2.1. The Clifford algebra

We will work with the conventions of Benn and Tucker [21], to whom we refer the reader for more details of this formalism. We recall that differential forms may be identified with elements of the Clifford algebra. Denoting the Clifford product by juxtaposition, our convention is that for a 1-form α and p-form ω:

\[
\alpha \omega = \alpha \wedge \omega + \alpha^\sharp \ast \omega, \quad \omega \alpha = (-1)^p (\alpha \wedge \omega - \alpha^\sharp \ast \omega).
\]

(2.2)

Repeated application of this rule allows us to construct the Clifford product between forms of arbitrary degree. The appendix contains, for convenience, expressions for the products and some (anti)-commutators. In order to state these products compactly, we introduce the contracted wedge product, defined inductively by

\[
\omega \wedge^0 \beta = \omega \wedge \beta, \quad \omega \wedge^n \beta = (X_a \wedge \omega) \wedge^{n-1} (X_a \wedge \beta).
\]

(2.3)

For those more familiar with the Clifford algebra in terms of γ-matrices, we note that the identification between differential forms and elements of the Clifford algebra can be expressed as

\[
\frac{1}{p!} \omega_{a_1 \ldots a_p} e^{a_1} \wedge \cdots \wedge e^{a_p} \longrightarrow \frac{1}{p!} \omega_{a_1 \ldots a_p} \gamma^{[a_1} \ldots \gamma^{a_p]}.
\]

(2.4)

Relations (2.2) are equivalent to the usual anti-commutator for the γ-matrices:

\[
\gamma^a \gamma^b + \gamma^b \gamma^a = 2\eta^{ab}.
\]

(2.5)

We will use the short-hand $e^a e^b = e^{a_1 \ldots a_p}$ and $e^{a_1} \wedge \cdots \wedge e^{a_p}$. Note that in our notations the middle expression involves the Clifford product, not the tensor product, among the basis 1-forms.

Note that in the mathematical literature, a different convention with the signs of the interior derivatives reversed is often used.
2.2. The connection with torsion

We wish to consider a connection with totally anti-symmetric torsion $T \in \Omega^3(M)$ which is defined, for arbitrary vectors X and Y, in terms of the Levi-Civita connection ∇ to be

$$\nabla^{\lambda}_X Y = \nabla_X Y + \frac{1}{2} T(X, Y, X_\lambda) X^\lambda.$$ \hfill (2.6)

Acting on a form, we find that

$$\nabla^{\lambda}_X \omega = \nabla_X \omega + \frac{1}{2} (X \shuffle T) \wedge \omega.$$ \hfill (2.7)

This connection is metric, so obeys $X(g(Y, Z)) = g(\nabla^{\lambda}_X Y, Z) + g(Y, \nabla^{\lambda}_X Z)$ and in addition has the same geodesics as the Levi-Civita connection since $\nabla^{\lambda}_X X = \nabla_X X$.

It is useful to define two operators on forms related to the exterior derivative and its adjoint as

$$d^T \omega = e^a \wedge \nabla^{\lambda}_X \omega = d\omega - T \wedge \omega,$$

$$\delta^T \omega = -X^a \shuffle \nabla^{\lambda}_X \omega = \delta\omega - \frac{1}{2} T \wedge \omega.$$ \hfill (2.8)

These respectively raise and lower the degree of a form by 1. Unlike the standard d, δ, they are not nilpotent in general.

In calculations it is often convenient to consider a basis which is parallel at a point p. For a connection with non-zero torsion, such a basis does not necessarily exist. It is always possible to arrange that at p

$$\nabla^{\lambda}_X X_\alpha X_\beta = \frac{1}{2} T(X_\alpha, X_\beta, X_\gamma) X_\gamma,$$

$$\nabla^{\lambda}_X e^b = \frac{1}{2} T(X_\alpha, X^b, X_\gamma)e^\gamma,$$

$$[X_\alpha, X_\beta] = 0.$$ \hfill (2.9)

We will assume from now on that we work with such a basis.

2.2.1. Curvature. The curvature operator is defined as usual by

$$R(X, Y) \omega = \left(\nabla^{\lambda}_X \nabla^{\lambda}_Y - \nabla^{\lambda}_Y \nabla^{\lambda}_X - \nabla^{\lambda}_[X, Y] \right) \omega.$$ \hfill (2.10)

In the appendix we prove versions of the first Bianchi identity for the curvature operator.

For any pair of vectors X, Y, we introduce the following 2-form, following [21]:

$$R_{X, Y} = \frac{1}{4} (X_\alpha \shuffle R(X, Y) e^b) e^a.$$ \hfill (2.11)

Here R_{ab} are the usual curvature 2-forms. The reason for introducing this 2-form is as follows. Using the results of the appendix it can be readily demonstrated that $[R_{X, Y}, e^a] = R(X, Y) e^a$, where the commutator is taken in the Clifford sense. One may extend this result by linearity to show that for any form ω, the curvature operator is related to the 2-form $R_{X, Y}$ by

$$[R_{X, Y}, \omega] = R(X, Y) \omega.$$ \hfill (2.12)

In the appendix we establish the following Bianchi identity for $R_{X, Y}$:

$$e^{ab}R_{X_\alpha, X_\beta} = -\frac{1}{2} d^T T - T \wedge T + \delta^T T - \frac{1}{2} s.$$ \hfill (2.13)

Here s is the scalar curvature of the connection with torsion, which we take to be defined by $s = -X^a \shuffle R(X_\alpha, X_\beta)e^b$.

4
2.2.2. The lift to the spinor bundle. We will consider the natural lift of the connection (2.6) to the spinor bundle, given by

\[\nabla^T_X \psi = \nabla_X \psi - \frac{1}{4} X \Lambda^T \psi, \]

where \(\psi \) is a spinor field (i.e. a section of the spinor bundle) and \(\nabla_X \) is the usual lift of the Levi-Civita connection. This connection is a derivation over the Clifford product between forms and spinors,

\[\nabla^T_X (\omega \psi) = (\nabla^T_X \omega) \psi + \omega \nabla^T_X \psi, \]

for any form \(\omega \) and spinor field \(\psi \). It is shown in [21] that the curvature operator acting on a spinor is given simply by

\[R(X, Y) \psi = (\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}^T) \psi = R_{X,Y} \psi. \]

2.3. The Dirac operator

The ‘naive’ or ‘bare’ Dirac operator defined by the spinor covariant derivative given above is

\[D^T = e^a \nabla^T_{X_a} = D - \frac{1}{2} \Lambda T, \]

where \(D \) is the Dirac operator of the Levi-Civita connection. For the purposes of the physics of spinning particles, among other reasons, it is convenient to consider a modified operator of the form \(D^T + \alpha T \) which satisfies a Schrödinger–Lichnerowicz-type formula [22].

Making use of the Clifford algebra, together with (2.13) one may show that

\[(D^T)^2 = -X_a \Lambda^T X_a + \Delta^T + \frac{1}{4} e^{ab} R_{X_a,X_b}, \]

where we have introduced the spinor Laplacian

\[\Delta^T = -\nabla^T_{X_a} \nabla^T_{X_a} + \nabla^T_{\nabla^T_{X_a} X_a}. \]

This suggests that a field obeying the massless Dirac equation will not obey the natural spinor Klein–Gordon equation associated with the connection \(\nabla^T \) as there is an additional term linear in derivatives of the field. In order to remove this unwanted term, we note that

\[T D^T + D^T T = 2X_a \Lambda^T \nabla^T_{X_a} + d^T T - \delta^T T, \]

so that

\[-(D^T + \alpha T)^2 = \Delta^T + (1 - 2\alpha) X_a \Lambda^T \nabla^T_{X_a} + \left(\alpha - \frac{1}{2} \right) \delta^T T + \left(\frac{3}{4} - \alpha \right) d^T T + \left(\frac{1}{2} - \alpha^2 \right) T \Lambda T + \frac{\alpha^2}{6} \| T \|^2 + \frac{s}{4}, \]

where we have made use of the results of the appendix to express the Clifford product of \(T \) with itself.

We may think of (2.21) as a formula relating the square of a Dirac operator with torsion \((1 - 4\alpha/3)T\) to derivatives involving the connection with torsion \(T \). Clearly the term linear in derivatives will vanish if we take \(\alpha = 1/2 \). It is therefore natural when we have a connection with torsion \(T \) to consider the modified Dirac operator \([6, 16, 29]\)

\[D \equiv D^T + \frac{T}{2} = D^{T/3}. \]

In terms of the Levi-Civita connection and with the help of correspondence (2.4) this reads

\[D = D - \frac{1}{2} T = \gamma^a \nabla_a - \frac{1}{2} \Lambda T_{abc} \gamma^{abc}. \]
Such an operator satisfies the elegant relation
\[D^2 = -\Delta^T - \frac{d^T}{4} - \frac{s}{4} - \frac{\|T\|^2}{24}. \] (2.24)

Up to quantum corrections this gives the Hamiltonian considered at the spinning particle level in [4, 23, 24]. It will be convenient for us to have the alternative form
\[D^2 = -\Delta^T + \frac{1}{2} \epsilon^{ab} R_{X_a X_b} + \frac{1}{2} (d^T T - \delta^T T) + \frac{1}{4} T^2. \] (2.25)

3. Generalized conformal Killing–Yano tensors

A \(p \)-form \(\omega \) is called a GCKY tensor [2, 4] if it obeys the conformal Killing–Yano equation with torsion:
\[\nabla^T_X \omega = -\frac{1}{p+1} X \lrcorner d^T \omega + \frac{1}{n-p+1} X^b \lrcorner \delta^T \omega = 0 \] (3.1)
for any \(X \in TM \). If \(\delta^T \omega = 0 \), \(\omega \) is called a GKY tensor, while if \(d^T \omega = 0 \) it is a GCCKY tensor. Equation (3.1) is conformally invariant and also invariant under \(\omega \rightarrow \ast \omega \). The Hodge dual interchanges GKY and GCCKY tensors.

A key property of GCCKY tensors is that they form a (graded) algebra under the wedge product [4, 28]. We summarize this in a lemma.

Lemma 3.1. If \(\omega_1 \) and \(\omega_2 \) are GCCKY tensors then so is \(\omega_1 \wedge \omega_2 \). Further, the operator
\[\delta^T \circ (n - \pi)^{-1} \] (3.2)
where \(\pi \) is the linear map taking a \(p \)-form \(\alpha \) to \(p \alpha \), is a graded derivation on the exterior algebra of GCCKY tensors.

Proof. First note that \(\omega \in \Omega^p M \) is GCCKY if and only if there exists an \(\tilde{\omega} \) such that
\[\nabla^T_X \omega = X^b \lrcorner \tilde{\omega} \] and if this holds, \(\tilde{\omega} = -(n - p + 1)^{-1} \delta^T \omega \). Suppose \(\omega_i \) are GCCKY forms of degree \(p_i \). We calculate
\[\nabla^T_X (\omega_1 \wedge \omega_2) = \nabla^T_X \omega_1 \wedge \omega_2 + \omega_1 \wedge \nabla^T_X \omega_2 = -X^b \wedge \left(\frac{\delta^T \omega_1 \wedge \omega_2}{n-p+1} + (-1)^{p_1 \omega_1 \wedge \delta^T \omega_2} \right). \]

\[\Box \]

3.1. Integrability conditions

We will require integrability conditions for the GCKY equation. By differentiating (3.1) we find the following conditions, generalizing results of Semmelmann [20]:
\[\Delta^T \omega = \frac{1}{p+1} \delta^T d^T \omega + \frac{1}{n-p+1} d^T \delta^T \omega, \] (3.3)
\[\epsilon^b \wedge X^a \lrcorner R(X_a, X_b) \omega = \frac{p}{p+1} \delta^T d^T \omega + \frac{n-p}{n-p+1} d^T \delta^T \omega + (X_b \lrcorner T) \wedge \nabla^T_{X_a} \omega. \] (3.4)

Here \(\Delta^T = -\nabla^T_{X_a} \nabla^T_{X_a} + \nabla^T_{\omega^a} \omega^a \) is the Bochner Laplacian derived from the connection \(\nabla^T \). These are consistent with the Weitzenböck identity in the presence of torsion:
\[\delta^T d^T + d^T \delta^T = \Delta^T + \epsilon^b \wedge X^a \lrcorner R(X_a, X_b) = (X_b \lrcorner T) \wedge \nabla^T_{X_a}. \] (3.5)

Condition (3.4) was already known to Yano and Bochner [2] in the case where \(\delta^T \omega \) vanishes.
At this stage it will be convenient to deduce an identity relating the curvature form R_{XY} to the integrability condition. We consider

$$
\frac{1}{2} [e^{ab}, \omega] R_{XaXb} - \left(\frac{p}{p+1} T^T d^T \omega + \frac{n-p}{n-p+1} d^T T \omega \right)
$$

$$
eq \frac{1}{2} [e^{ab}, \omega] R_{XaXb} - e^b \cdot X^a \cup R(X_a, X_b) \omega + (X_b \cup T) \wedge \nabla^T_{X_b} \omega
$$

$$
= \frac{1}{2} [e^{ab}, \omega] R_{XaXb} + \frac{1}{2} \omega \cdot [R_{XaXb}, \omega] - \frac{1}{2} e^{ab} \wedge R(X_a, X_b) \omega
$$

$$
- \frac{1}{2} X^a \cup X^b \cup R(X_a, X_b) \omega + (X_b \cup T) \wedge \nabla^T_{X_b} \omega
$$

$$
= \frac{1}{2} [e^{ab} R_{XaXb}, \omega] - d^T d^T \omega - (X^a \cup T) \wedge \nabla^T_{X_a} \omega - \delta^T d^T \omega + \frac{1}{2} (X^a \cup T) \wedge \nabla^T_{X_a} \omega
$$

$$
+ (X_b \cup T) \wedge \nabla^T_{X_b} \omega.
$$

Here we have made liberal use of the results of appendices A.1 and A.3. Putting this together with (2.13) we find

$$
\frac{1}{2} [e^{ab}, \omega] R_{XaXb} - \left(\frac{p}{p+1} T^T d^T \omega + \frac{n-p}{n-p+1} d^T T \omega \right)
$$

$$
eq \frac{1}{2} \left[- \frac{3}{2} d^T T - T \wedge T + \delta^T T, \omega \right] - d^T d^T \omega - \delta^T d^T \omega - (X^a \cup T) \nabla^T_{X_a} \omega. \quad (3.6)
$$

4. Symmetry operators

4.1. Massless Dirac

We are now ready to construct a symmetry operator for the Dirac operator. Our goal is to show that (up to anomaly terms) the operator

$$
L_\omega = e^a \omega \nabla^T_{X_a} + \frac{p}{p+1} d^T \omega - \frac{n-p}{n-p+1} \delta^T \omega + \frac{1}{2} T \omega
$$

(4.1)

satisfies

$$
\mathcal{D} L_\omega = \omega \mathcal{D}^2 + \frac{(-1)^p}{p+1} d^T \omega \mathcal{D} + \frac{(-1)^p}{n-p+1} \delta^T \omega \mathcal{D}, \quad (4.2)
$$

provided ω is a GCKY form and to calculate the anomaly terms. This means that when the anomaly terms (given explicitly by (4.7) below) vanish, the operator L_ω gives an on-shell ($\mathcal{D} \psi = 0$) symmetry operator for \mathcal{D}.

In the rest of this section, we shall sketch the proof of these assertions. It essentially consists of commuting \mathcal{D} through the operator L_ω. We calculate

$$
\mathcal{D} e^{a\nu} \omega \nabla^T_{X_a} = -\omega \Delta^T + \frac{1}{2} e^{ab} \omega \mathcal{R}_{X_aX_b} + 2 \nabla^T_{X_a} \omega \nabla^T_{X_a}
$$

$$
- e^b (d^T \omega - \delta^T \omega) \nabla^T_{X_b} - X^b \cup T \omega \nabla^T_{X_b} + \frac{1}{2} T e^b \omega \nabla^T_{X_b},
$$

$$
\mathcal{D} d^T \omega = (d^T d^T \omega - \delta^T d^T \omega) + e^a d^T \omega \nabla^T_{X_a} + \frac{1}{2} T d^T \omega,
$$

$$
\mathcal{D} \delta^T \omega = (d^T \delta^T \omega - \delta^T \delta^T \omega) + e^a \delta^T \omega \nabla^T_{X_a} + \frac{1}{2} T \delta^T \omega,
$$

$$
\mathcal{D} T \omega = (d^T \delta^T \omega + T \nabla^T_{X_a} \omega + \delta^T T \omega \nabla^T_{X_a} + \frac{1}{2} T^2 \omega. \quad (4.3)
$$

7
We need to simplify the sum of these four terms (with appropriate coefficients as given by \((4.1)\)). Let us first gather the terms with one derivative acting on a spinor

\[
2\nabla_{X_1}^T \omega - \frac{1}{p+1} e^{adT} \omega + \frac{1}{n-p+1} e^{adT} \omega \nabla_{X_1}^T + \left(-X^b \nabla_{X}^T + \frac{1}{2} T e^b + \frac{1}{2} e^b T \right) \omega \nabla_{X_1}^T
\]

\[
= 2 \left(\nabla_{X_1}^T \omega - \frac{X^a \nabla_{X_1}^T \omega + e^{aT} \nabla_{X_1}^T \omega}{n-p+1} \right) \nabla_{X_1}^T + \left(-\frac{1}{p+1} d^{T \omega} \omega \nabla_{X_1}^T + \frac{(-1)^p}{p+1} \frac{d^{T \omega} \omega \nabla_{X_1}^T}{n-p+1} \right) - \frac{(-1)^p}{2(p+1)} \frac{\delta T \omega \nabla_{X_1}^T}{n-p+1} \delta T \omega T,
\]

where in order to remove differential terms not proportional to \(D\) we impose the GCKY equation \((3.1)\). This condition on \(\omega\) arises also at the spinning particle level \([4]\). So we have

\[
\mathcal{D}L_\omega = \left(2\nabla_{X_1}^T \omega - \frac{1}{p+1} e^{adT} \omega + \frac{1}{n-p+1} e^{adT} \omega \nabla_{X_1}^T + \left(-X^b \nabla_{X}^T + \frac{1}{2} T e^b + \frac{1}{2} e^b T \right) \omega \nabla_{X_1}^T \right) \omega \nabla_{X_1}^T
\]

\[
- \omega \Delta T + \frac{1}{2} e^{ab} \omega R_{X_1 X_2} + \frac{1}{2} \left(d^T \omega - \delta T \omega \right) + \frac{1}{2} T^2 \omega
\]

\[
+ \frac{1}{2} e^{adT} \omega \nabla_{X_1}^T \omega + \frac{p}{2(p+1)} T d^T \omega - \frac{n-p}{2(n-p+1)} T \delta T \omega
\]

\[
+ \frac{p}{p+1} d^{T \omega} \omega \nabla_{X_1}^T \omega + \frac{n-p}{n-p+1} \delta T \omega \nabla_{X_1}^T \omega - \left(\frac{p}{p+1} \delta T \omega + \frac{n-p}{n-p+1} d^{T \omega} \omega \right)
\]

\[
= \left((-1)^p \frac{\delta T \omega \nabla_{X_1}^T \omega}{n-p+1} \delta T \omega - \frac{(-1)^p}{2(p+1)} \frac{d^{T \omega} \omega \nabla_{X_1}^T \omega}{n-p+1} \right)
\]

\[
+ \omega \Delta T + \frac{1}{2} \left[e^{ab} \omega \right] R_{X_1 X_2} + \frac{1}{2} \left[d^T \omega - \delta T \omega + \frac{1}{2} T^2 \omega \right]
\]

\[
+ \left(X^a \nabla_{X_1}^T \omega - \frac{T d^T \omega}{2(p+1)} + \frac{T \delta T \omega}{2(n-p+1)} \right)
\]

\[
+ \frac{p}{p+1} d^{T \omega} \omega + \frac{n-p}{n-p+1} \delta T \omega - \left(\frac{p}{p+1} \delta T \omega + \frac{n-p}{n-p+1} d^{T \omega} \omega \right)
\]

where we have used \((2.25)\). Consolidating, we obtain

\[
\mathcal{D}L_\omega = \omega \Delta T + \frac{(-1)^p}{p+1} d^{T \omega} \omega \nabla_{X_1}^T \omega + \frac{(-1)^p}{n-p+1} \delta T \omega \nabla_{X_1}^T \omega - A,
\]

where we define \(A\) to be the anomaly, i.e. the obstruction to \(L_\omega\) giving a symmetry operator of the massless Dirac equation. This completes the proof of theorem 1.1.

In order to find a compact expression for the anomaly \(A\), we make use of the integrability condition \((3.6)\) to find

\[
A = \frac{1}{2} \left([T, d^T \omega]_p + [T, \delta T \omega]_{p+1} \right) + \frac{1}{4} \left(\frac{d^T \omega}{n-p+1} + \delta T \omega \right),
\]

using the bracket notation of the appendix. Expanding the commutators gives

\[
A = \frac{1}{p+1} \left[d(d^T \omega) - \frac{1}{6} T \wedge d^T \omega - \frac{1}{2} dT \wedge \omega + \frac{1}{12} dT \wedge \omega \right].
\]

The anomaly \(A\) splits as \(A^{(c)}\) and \(A^{(q)}\) a \((p+2)\)-form and a \((p-2)\)-form, respectively, so that \(A = A^{(c)} + A^{(q)})\). In order that \(A\) vanishes, both parts must vanish separately. We have

\[
A^{(c)} = \frac{1}{p+1} \left[d(d^T \omega) - \frac{1}{6} T \wedge d^T \omega - \frac{1}{2} dT \wedge \omega \right],
\]

\[
A^{(q)} = \frac{1}{p+1} \left[\delta T \omega \wedge \omega \right].
\]
We shall sometimes refer to \(A^{(c)} \) as the ‘classical’ anomaly, as this anomaly shows up even in the semi-classical spinning particle limit. Note that when \(\omega \) is a Killing 1-form, \(A^{(q)} \) automatically vanishes and \(A^{(c)} \) reduces to the requirement that \(\omega \) ‘preserves’ the torsion, \(\mathcal{L}_\omega T = 0 \).

For convenience, we state some alternative forms of the operator \(L_\omega \). Re-writing in terms of the Levi-Civita connection, \(\nabla_{X_a} = \nabla_{X_a}^T + \frac{1}{2} X_a \cdot T \), we find

\[
L_\omega = (X^a \cdot \omega + e^a \cdot \omega) \nabla_{X_a} + \frac{p}{p+1} \, \text{d} \omega - \frac{n-p}{n-p+1} \, \delta \omega \\
- \frac{1}{4} T \wedge \omega + \frac{3-p}{4(p+1)} T \wedge \omega + \frac{n-p-3}{8(n-p+1)} T \wedge \omega + \frac{1}{24} T \wedge \omega.
\]

Using further the correspondence (2.4), one can rewrite this operator in ‘gamma-matrix notations’. Defining \(L_\omega = (p-1)!L_\omega \), we find

\[
L_\omega = \left[\omega_{b_1...b_p} \gamma^{b_1...b_p} + \frac{1}{p(p+1)} \omega_{b_1...b_p} \gamma^{ab_1...b_p} \right] \nabla_a + \frac{1}{(p+1)^2} \left(\text{d} \omega \right)_{b_1...b_p} \gamma^{b_1...b_p} \\
- \frac{n-p}{n-p+1} \left(\delta \omega \right)_{b_1...b_p} \gamma^{b_1...b_p} - \frac{1}{24} T_{b_1b_2b_3} \omega_{b_1...b_p} \gamma^{b_1...b_p} \\
+ \frac{3-p}{8(p+1)} T_{b_1b_2b_3} \omega_{b_1...b_p} \gamma^{b_1...b_p} + \frac{(n-p-3)}{8(n-p+1)} T_{b_1b_2b_3} \omega_{b_1...b_p} \gamma^{b_1...b_p} \\
+ \frac{(p-1)(p-2)}{24} T_{a_1b_1...b_p} \omega_{a_1b_1...b_p} \gamma^{b_1...b_p}.
\]

4.2. (Anti)-commuting operators for massive Dirac

We now deduce corollaries 1.2 and 1.3. Suppose now that the anomaly \(A \) vanishes; then

\[
\mathcal{D} L_\omega = \omega \mathcal{D}^2 + \frac{(-1)^p}{p+1} \, \text{d}^T \omega \mathcal{D} + \frac{(-1)^p}{n-p+1} \delta^T \omega \mathcal{D}.
\]

Let us further define

\[
K_\omega \equiv L_\omega - (-1)^p \omega \mathcal{D} = 2X^a \cdot \omega \nabla_{X_a}^T + \frac{p}{p+1} \, \text{d}^T \omega - \frac{n-p}{n-p+1} \delta^T \omega + \frac{1}{6} T \wedge \omega,
\]

\[
M_\omega \equiv L_\omega + (-1)^p \omega \mathcal{D} = 2 e^a \wedge \omega \nabla_{X_a}^T + \frac{p}{p+1} \, \text{d}^T \omega - \frac{n-p}{n-p+1} \delta^T \omega + \frac{1}{2} T \wedge \omega.
\]

Then, by using

\[
\mathcal{D} \omega = \left(e^a \nabla_{X_a}^T + \frac{1}{2} T \right) \omega = e^a \omega + \text{d}^T \omega - \delta^T \omega + \frac{1}{2} T \omega
\]

\[
= (-1)^p \omega \mathcal{D} + 2X^a \cdot \omega \nabla_{X_a}^T + \text{d}^T \omega - \delta^T \omega + \frac{1}{2} T \wedge \omega_{p+1}
\]

\[
= (-1)^p \omega \mathcal{D} + 2 e^a \wedge \omega \nabla_{X_a}^T + \text{d}^T \omega - \delta^T \omega + \frac{1}{2} T \wedge \omega_{p+1},
\]

we find that these new operators satisfy

\[
[\mathcal{D}, K_\omega]_p = \frac{2(-1)^p}{n-p+1} \delta^T \omega \mathcal{D}, \quad [\mathcal{D}, M_\omega]_{p+1} = \frac{2(-1)^p}{p+1} \text{d}^T \omega \mathcal{D}.
\]
4.2.1. GKY and the corresponding operator. When ω is a GKY tensor ($\delta^T \omega = 0$), the conditions for vanishing of the anomalies $A^{(c)}$ and $A^{(q)}$ reduce to

$$d(T \wedge \omega) + \frac{p + 1}{2} dT \wedge \omega = 0, \quad dT \wedge \omega - \frac{2}{p + 1} T \wedge dT \omega = 0,$$ \hspace{1cm} (4.16)

and the operator K_ω, obeying $[\mathcal{D}, K_\omega]p = 0$, becomes

$$K_\omega = 2X^a \wedge \omega \nabla_{X^a} + \frac{p}{p + 1} \frac{dT \wedge \omega + T \wedge \omega - \frac{1}{6} T \wedge \omega}{2}.$$ \hspace{1cm} (4.17)

The first condition (4.16) is present already at the spinning particle level (see, e.g., [24] where it is derived for a GKY 2-form). It may be useful to rewrite K_ω in terms of the Levi-Civita connection. A calculation in the Clifford algebra gives

$$K_\omega = 2X^a \wedge \omega \nabla_{X^a} + \frac{p}{p + 1} \frac{dT \wedge \omega + T \wedge \omega - \frac{1}{6} T \wedge \omega}{2}.$$ \hspace{1cm} (4.18)

Introducing $\tilde{K}_\omega \equiv K_\omega (p - 1)!/2$, we find

$$\tilde{K}_\omega = \omega^{a_1 \ldots a_p} \gamma^{a_1 \ldots a_p} \nabla_a + \frac{1}{2(p + 1)^2} (d\omega)_{b_1 \ldots b_p} \gamma^{b_1 \ldots b_p}$$

$$+ \frac{1 - p}{8(p + 1)} T^a_{b_1 \ldots b_p} \omega^{b_1 \ldots b_p} \gamma^{b_1 \ldots b_p} - \frac{p - 1}{24} T^a_{b_1 \ldots b_p} \omega^{b_1 \ldots b_p} \gamma^{b_1 \ldots b_p}$$

$$+ \frac{(p - 1)(p - 2)}{24} T^a_{b_1 b_2} \omega^{b_1 b_2} \gamma^{b_1 b_2} \gamma^{b_1 b_2}.$$ \hspace{1cm} (4.19)

The first two terms correspond to the symmetry operator discussed in [11, 12] in the absence of torsion. The third term is a ‘leading’ torsion correction, present already at the spinning particle level [4]. The last two terms are ‘quantum corrections’ due to the presence of torsion.

4.2.2. GCCKY and the corresponding operator. When ω is a GCCKY tensor ($d^T \omega = 0$), the conditions for vanishing of the anomalies $A^{(c)}$ and $A^{(q)}$ reduce to

$$A^{(c)} = - \frac{T \wedge \delta^T \omega}{n - p + 1} - \frac{1}{2} dT \wedge \omega = 0,$$ \hspace{1cm} (4.20)

$$A^{(q)} = - \frac{1}{2(n - p + 1)} \delta(T \wedge \omega) + \frac{1}{12} dT \wedge \omega = 0,$$

and the operator M_ω, obeying $[\mathcal{D}, M_\omega]p = 0$, becomes

$$M_\omega = 2\epsilon^a \wedge \omega \nabla_{X^a} + \frac{n - p}{n - p + 1} \frac{dT \wedge \omega + T \wedge \omega - \frac{1}{2} T \wedge \omega}{2}.$$ \hspace{1cm} (4.21)

Again, we may express this operator in terms of the Levi-Civita connection as

$$M_\omega = 2\epsilon^a \wedge \omega \nabla_{X^a} + \frac{n - p}{n - p + 1} \frac{dT \wedge \omega + T \wedge \omega - \frac{1}{2} T \wedge \omega}{4(n - p + 1)} T \wedge \omega,$$ \hspace{1cm} (4.22)

and introducing $\tilde{M}_\omega \equiv M_\omega p!/2$, we find

$$\tilde{M}_\omega = \omega^{b_1 \ldots b_p} \gamma^{b_1 \ldots b_p} \gamma^{a} - \frac{p(n - p)}{2(n - p + 1)} (\delta \omega)_{b_1 \ldots b_p} \gamma^{b_1 \ldots b_p}$$

$$- \frac{1}{24} T^a_{b_1 b_2} \omega^{b_1 b_2} \gamma^{b_1 b_2} \gamma^{b_1 b_2} + \frac{p}{4} T^a_{b_1 \ldots b_p} \omega^{b_1 \ldots b_p} \gamma^{b_1 b_2} \gamma^{b_1 b_2}$$

$$+ \frac{(p - 1)(n - p - 1)}{8(n - p + 1)} T^a_{b_1 b_2} \omega^{b_1 b_2} \gamma^{b_1 b_p} \gamma^{b_1 b_p}.$$ \hspace{1cm} (4.23)
The first two terms correspond to the symmetry operator discussed by [11] in the absence of torsion.

We noted above that GCCKY tensors form an algebra under the wedge product. Consider now \(\omega = \omega_1 \wedge \omega_2 \), where \(\omega_i \) are GCCKY tensors. From lemma 3.1 we know that \(\delta^T \circ (n - \pi + 1)^{-1} \) is a graded derivation on the exterior algebra of GCCKY forms. Since \(T \) is a 3-form, we deduce that \(T \wedge \delta^T \circ (n - \pi + 1)^{-1} \) is a derivation. A short calculation shows that

\[
d^T \wedge (\omega_1 \wedge \omega_2) = (d^T \wedge \omega_1) \wedge \omega_2 + \omega_1 \wedge (d^T \wedge \omega_2) \quad (4.24)
\]

so that

\[
A^{(cl)}(\omega_1 \wedge \omega_2) = A^{(cl)}(\omega_1) \wedge \omega_2 + \omega_1 \wedge A^{(cl)}(\omega_2). \quad (4.25)
\]

Hence we have derived the following lemma.

Lemma 4.1. Let \(\omega_1, \omega_2 \) be GCCKY tensors for which \(A^{(cl)}(\omega_i) = 0 \). Then the classical anomaly vanishes also for a GCCKY tensor \(\omega = \omega_1 \wedge \omega_2 \), \(A^{(cl)}(\omega_1 \wedge \omega_2) = 0 \).

4.3. Examples

In [17] we show that the charged Kerr-NUT spacetimes of Chow [18] admit the towers of GCCKY and GKY forms for which the anomaly vanishes. We additionally demonstrate the separability of the Dirac equation directly.

Another, more general, situation where the anomaly simplifies dramatically is the case of a Kähler with torsion (KT) or hyper-Kähler with torsion (HKT) manifold [7, 8]. Such manifolds have a range of applications in physics from supersymmetric sigma models with the Wess–Zumino term [26] to the construction of solutions in five-dimensional de Sitter supergravity [27].

A Hermitian manifold possesses an integrable complex structure \(J \) and a metric \(g \) compatible with \(J \) so that \(g(JX, JY) = g(X, Y) \). The Kähler form \(F \) is defined to be \(F(X, Y) = g(JX, Y) \). A result of Gauduchon [25] shows that there exists a unique connection \(\nabla^T \) with skew-symmetric torsion such that

\[
\nabla^T g = 0, \quad \nabla^T J = 0. \quad (4.26)
\]

A Hermitian manifold with this choice of connection is called a KT manifold. The holonomy of such a connection lies in \(U(n) \). If the torsion vanishes, then the manifold is in fact Kähler.

The Kähler form is clearly preserved by the connection \(\nabla^T \) and is therefore trivially a GCCKY form. Since \(d^T F = \delta^T F = 0 \), the anomaly simplifies to give

\[
A = \frac{1}{4} [d^T, F]. \quad (4.27)
\]

which may or may not vanish. A KT-manifold is said to be strong if \(T \) is closed. In this case we find that the anomaly vanishes and \(F \) generates a symmetry of the Dirac operator. In fact, since \(F \) is both GKY and GCCKY we have a symmetry of the massive Dirac equation.

A hyper-Hermitian manifold possesses three integrable complex structures \(I_1, I_2, I_3 \) satisfying

\[
I_1 I_j = -\delta_{ij} + \epsilon_{ijk} I_k \quad (4.28)
\]

and a metric \(g \) compatible with the \(I_i \) so that

\[
g(X, Y) = g(I_1 X, I_1 Y) = g(I_2 X, I_2 Y) = g(I_3 X, I_3 Y). \quad (4.29)
\]

If there exists a connection with skew-symmetric torsion \(\nabla^T \) such that

\[
\nabla^T g = 0, \quad \nabla^T I_1 = \nabla^T I_2 = \nabla^T I_3 = 0. \quad (4.30)
\]
then ∇^T is a HKT connection and M is a HKT manifold. Note that by Gauduchon’s result, if ∇^T exists it is unique. The holonomy of the connection in this case lies in $Sp(n)$. We may define the triplet of Kähler forms by $F_t(X, Y) = g(I_t X, Y)$. Each Kähler form is again a GCKY, with anomaly

$$A_t = \frac{1}{2}[dT, F_t].$$ \hspace{1cm} (4.31)

As in the KT case, a strong HKT structure has a closed T and therefore the Kähler forms generate symmetries of the Dirac operator.

Acknowledgments

The authors thank G W Gibbons for useful discussions. DK acknowledges the Herschel Smith Postdoctoral Research Fellowship at the University of Cambridge. The work of YY is supported by the Grant-in Aid for Scientific Research No 21244003 from Japan Ministry of Education. He is also grateful for the hospitality of DAMTP, University of Cambridge, during his stay.

Appendix

Clifford algebra relations

In this appendix we gather various identities for the Clifford product used in the main text. We define the brackets as follows:

$$[\alpha, \beta]_p = \alpha\beta + (-1)^p \beta\alpha. \hspace{1cm} (A.1)$$

and will make use of the shorthand $[\alpha, \beta]_k = \alpha\beta \pm \beta\alpha$.

Let $\alpha \in \Omega^{q}(M)$ and $\beta \in \Omega^{p}(M)$, $q \leq p$. Then, the following formulae can be derived from the defining Clifford algebra relations (2.2):5

$$\alpha\beta = \sum_{n=0}^{q} (-1)^{n(q - n)!/[n/2]} \alpha \wedge \beta, \hspace{1cm} \beta\alpha = (-1)^{pq} \sum_{n=0}^{q} (-1)^{n(q-n+1)!/[n/2]} \alpha \wedge \beta. \hspace{1cm} (A.2)$$

The corresponding brackets can be easily deduced. In particular, in the main text we shall use the following relations for $q \leq 4$.

Let $\alpha \in \Omega^{1}(M)$, $\beta \in \Omega^{q}(M)$; then

$$\alpha\beta = \alpha \wedge \beta + \alpha \wedge \beta, \hspace{1cm} (A.3)$$

$$\beta\alpha = (-1)^q (\alpha \wedge \beta - \alpha \wedge \beta). \hspace{1cm} (A.4)$$

5 The derivation of these relations goes as follows. Let us calculate a coefficient standing by the term with n contraction, $(\alpha\beta)_n$. We have

$$(\alpha\beta)_n = \sum_{a_1...a_n} (e^{a_1...a_n}\beta)_n = (-1)^{p(q-n)} \sum_{a_1...a_n} (e^{a_1...a_n}\alpha)(e^{a_1...a_n}\beta)_n$$

$$= \frac{(-1)^{p(q-n)!/[n/2]} q!}{(q-n)!} \alpha \wedge \beta.$$

Using now the fact that

$$\alpha \wedge \beta = \frac{(q-n)!}{q!} X_\alpha \wedge X_{\beta} = \cdots = (-1)^{q/2} \frac{(q-n)!}{q!} X_\alpha \wedge X_{\beta} \wedge \cdots \wedge X_{\alpha \wedge \beta},$$

we arrive at the first formula (A.2). The derivation of the second formula is analogous.
Lemma A.2. Suppose $\alpha, \beta \in \Omega^0(M)$; then

\[[\alpha, \beta]_p = 2\alpha \wedge \beta. \] \hfill (A.5)

\[[\alpha, \beta]_{p+1} = 2\alpha \wedge \beta. \] \hfill (A.6)

Let $\alpha \in \Omega^2(M), \beta \in \Omega^p(M)$; then

\[\alpha \beta = \alpha \wedge \beta - \alpha \wedge \beta - \frac{1}{2}\alpha \wedge \beta, \] \hfill (A.7)

\[\beta \alpha = \alpha \wedge \beta + \alpha \wedge \beta - \frac{1}{2}\alpha \wedge \beta, \] \hfill (A.8)

\[[\alpha, \beta]_+ = 2\alpha \wedge \beta - \alpha \wedge \beta. \] \hfill (A.9)

\[[\alpha, \beta]_- = -2\alpha \wedge \beta. \] \hfill (A.10)

Let $\alpha \in \Omega^1(M), \beta \in \Omega^p(M)$; then

\[\alpha \beta = \alpha \wedge \beta + \alpha \wedge \beta - \frac{1}{2}\alpha \wedge \beta - \frac{1}{6}\alpha \wedge \beta, \] \hfill (A.11)

\[\beta \alpha = (-1)^p(\alpha \wedge \beta - \alpha \wedge \beta - \frac{1}{2}\alpha \wedge \beta + \frac{1}{6}\alpha \wedge \beta). \] \hfill (A.12)

\[[\alpha, \beta]_p = 2\alpha \wedge \beta - \alpha \wedge \beta. \] \hfill (A.13)

\[[\alpha, \beta]_{p+1} = 2\alpha \wedge \beta - \frac{1}{2}\alpha \wedge \beta. \] \hfill (A.14)

Let $\alpha \in \Omega^2(M), \beta \in \Omega^p(M)$; then

\[\alpha \beta = \alpha \wedge \beta - \alpha \wedge \beta - \frac{1}{2}\alpha \wedge \beta + \frac{1}{6}\alpha \wedge \beta, \] \hfill (A.15)

\[\beta \alpha = \alpha \wedge \beta + \alpha \wedge \beta - \frac{1}{2}\alpha \wedge \beta + \frac{1}{6}\alpha \wedge \beta, \] \hfill (A.16)

\[[\alpha, \beta]_+ = 2\alpha \wedge \beta - \alpha \wedge \beta + \frac{1}{4}\alpha \wedge \beta. \] \hfill (A.17)

\[[\alpha, \beta]_- = 2\alpha \wedge \beta - \frac{1}{4}\alpha \wedge \beta. \] \hfill (A.18)

Contracted wedge product identities

In order to work with the contracted wedge product introduced in section 2.1, it is convenient to derive some identities to help with calculations. We collect some results here. Firstly some algebraic results.

Lemma A.1. Suppose $\alpha \in \Omega^p(M)$; then, the interior derivative $X \lhd$ satisfies

\[X \lhd (\alpha \wedge \beta) = (-1)^p(X \lhd \alpha) \wedge \beta + (-1)^p \alpha \wedge (X \lhd \beta). \] \hfill (A.19)

Proof. By induction. The $n = 0$ case is trivial. Suppose true for $n - 1$, we have

\[X \lhd (\alpha \wedge \beta) = X \lhd (X \lhd_{\alpha \wedge \beta} X^a \lhd \beta) \]

\[= (-1)^{n-1}(X \lhd X_{\alpha \wedge \beta} X^a \lhd \beta) + (-1)^{n-1}(X \lhd X_{\alpha \wedge \beta} X^a \lhd \beta) \]

\[= (-1)^n(X \lhd \alpha) \wedge \beta + (-1)^n \alpha \wedge (X \lhd \beta). \]

\[\square \]

Lemma A.2. Suppose $\omega \in \Omega^1(M)$ and $\alpha \in \Omega^p(M)$; then
\[(\omega \wedge \alpha) \wedge \beta = (-1)^{\beta} \omega \wedge (\alpha \wedge \beta) + n \alpha \wedge (\omega \wedge \beta), \quad (A.20)\]

\[\alpha \wedge (\omega \wedge \beta) = (-1)^{\beta} \omega \wedge (\alpha \wedge \beta) + n (\omega \wedge \alpha) \wedge \beta. \quad (A.21)\]

Proof. Consider (A.20). By linearity it suffices to consider the case \(\omega = e^a\). The \(n = 0\) case is straightforward. Suppose it is true for \(n - 1\). Then

\[(e^a \wedge \alpha) \wedge \beta = X_b \wedge (e^a \wedge \alpha) \wedge X^b \wedge \beta = \alpha \wedge X_a \wedge \beta - e^a \wedge (X_b \wedge \alpha) \wedge X^b \wedge \beta\]

\[= \alpha \wedge X_a \wedge \beta - (1)^{n-1} e^a \wedge \left(X_b \wedge \alpha \wedge X^b \wedge \beta \right) - (n-1)X_b \wedge \alpha \wedge X^b \wedge \beta\]

\[= (-1)^{n} e^a \wedge (\alpha \wedge \beta) + n\alpha \wedge (X^a \wedge \beta).\]

An entirely analogous calculation establishes (A.21). \(\square\)

We now consider the action of \(\nabla_X^T, \delta^T\) and \(d^T\) on the contracted wedge product

Lemma A.3. \(\nabla_X^T\) is a derivation over the contracted wedge product:

\[\nabla_X^T(\alpha \wedge \beta) = \nabla_X^T \alpha \wedge \beta + \alpha \wedge \nabla_X^T \beta. \quad (A.22)\]

Moreover, when \(\alpha \in \Omega^p(M)\), then

\[\delta^T(\alpha \wedge \beta) = (-1)^p \delta^T \alpha \wedge \beta - (-1)^p \nabla_X^T \alpha \wedge X^a \wedge \beta\]

\[+ (-1)^p \alpha \wedge \delta^T \beta - (-1)^p X^a \wedge \alpha \wedge \nabla_X^T \beta. \quad (A.23)\]

\[d^T(\alpha \wedge \beta) = (-1)^n (d^T \alpha \wedge \beta - n \nabla_X^T \alpha \wedge X^a \wedge \beta)\]

\[+ (-1)^p (\alpha \wedge d^T \beta - n X^a \wedge \alpha \wedge \nabla_X^T \beta). \quad (A.24)\]

Proof. Let us first prove (A.22). This is clearly true for \(n = 0\). Suppose it is true for \(n - 1\), then

\[\nabla_X^T(\alpha \wedge \beta) = \nabla_X^T(\alpha \wedge X^a \wedge \beta)\]

\[= \nabla_X^T(X_a \wedge \alpha \wedge X^a \wedge \beta)\]

\[= \frac{1}{2} T(X_b, X^a, X^c) \wedge X_a \wedge \alpha \wedge X^b \wedge \beta\]

\[+ X_a \wedge \alpha \wedge X^a \wedge \beta + X_a \wedge \alpha \wedge X^a \wedge \nabla_X^T \beta\]

\[= \nabla_X^T \alpha \wedge \beta + \alpha \wedge \nabla_X^T \beta,\]

using the anti-symmetry of the torsion. The properties (A.23) and (A.24) follow from (A.22), lemmas A.1, A.2 and the fact that \(\delta^T = -X^a \wedge \nabla_X^T, \delta^T = e^a \wedge \nabla_X^T\). \(\square\)

Bianchi identities

We derive some Bianchi identities by repeated application of the \(T\)-exterior derivative (2.8) to a general form \(\omega\). Working in a basis satisfying (2.9)

\[d^T d^T \omega = e^a \wedge \nabla_X^T \left(e^b \wedge \nabla_X^T \right)\]

\[= e^a \wedge \frac{1}{2} T(X_b, X^b, X^c) e^c \wedge \nabla_X^T \omega + \frac{1}{2} e^a \wedge e^b \wedge \left[\nabla_X^T, \nabla_X^T \right] \omega\]

\[= -X^a \wedge T \wedge \nabla_X^T \omega + \frac{1}{2} e^a \wedge e^b \wedge R(X_a, X_b) \omega. \quad (A.25)\]
Alternatively, we may express the T-exterior derivative as
\[d^T d^T \omega = (d - T \wedge)(d \omega - T \wedge \omega) = -T \wedge d \omega - d^T (T \wedge \omega) - T \wedge (T \wedge \omega). \] (A.26)

Now, making use of lemma A.3, we find
\[\frac{1}{2} e^a \wedge e^b \wedge R(X_a, X_b) \omega = d^T T \wedge \omega - \nabla^T_{X_a} T \wedge X^b \wedge \omega - T \wedge (T \wedge \omega). \] (A.27)

By an analogous calculation we deduce that
\[\delta^T \delta^T \omega = \frac{1}{2} \nabla^T_{X_a} T \wedge \omega - \nabla^T_{X_a} T \wedge X^b \wedge \omega - \frac{1}{2} T \wedge (T \wedge \omega). \] (A.28)

We now deduce a Bianchi identity for the curvature forms R_{ab} defined by
\[R_{ab}(X, Y) = X_a \wedge R(Y) e^b. \]
These are anti-symmetric on their indices as may be shown by considering the curvature operator acting on $g^{-1}(e_a, e_b)$. We calculate
\[R_{ab} \wedge e^b = -R_{ba} \wedge e^b = -\frac{1}{2} (X_b \wedge R(X_c, X_d) e^b) e^b \wedge e^c \wedge e^d = -\frac{1}{2} e^c \wedge e^d \wedge R(X_c, X_d) e^a. \] (A.30)

Making use of (A.28) we find
\[R_{ab} \wedge e^b = \nabla^T_{X_a} T - X_a \wedge d^T T + (X_a \wedge T) \wedge T \] (A.31)
and readily deduce
\[R_{ab} \wedge e^a \wedge e^b = -3 \delta^T T - 2 T \wedge T, \] (A.32)
\[X^a \wedge (R_{ab} \wedge e^b) = -\delta^T T. \] (A.33)

Now, recall the definition of $R_{X,Y}$:
\[R_{X,Y} = -\frac{1}{2} X \wedge Y \wedge R_{ab} e^{ab}. \] (A.34)
Making use of the rules for Clifford products we find
\[e^{ab} R_{X_a, X_b} = -\frac{1}{2} e^{ab} X_a \wedge Y_b \wedge R_{cd} e^{cd} = \frac{1}{2} R_{ab} e^{ab} \]
\[= \frac{1}{2} R_{ab} \wedge e^a \wedge e^b \wedge X_a \wedge (e^b \wedge R_{ab}) + \frac{1}{2} X^a \wedge X^b \wedge R_{ab} \]
\[= -\frac{1}{2} \delta^T T - T \wedge T + \delta^T T - \frac{1}{2} s. \] (A.35)

Here s is the scalar curvature of the connection with torsion, which we take to be defined by
\[s = -X^a \wedge X^b \wedge R_{ab} = -X^a \wedge R(X_a, X_b) e^b. \] (A.36)
References

[1] Yano K 1952 Ann. Math. 55 328
 Tachibana S 1969 Tôhoku Math. J. 21 56
 Kashiwada T 1968 Nat. Sci. Rep. Ochanomizu Univ. 19 67
[2] Yano K and Bochner S 1953 Curvature and Betti Numbers (Ann. Math. Stud. vol 32) (Princeton, NJ: Princeton University Press)
[3] Kress J 1997 Generalized conformal Killing–Yano tensors: applications to electrodynamics PhD Thesis University of Newcastle
 Charlton P 1997 The geometry of pure spinors, with applications PhD Thesis University of Newcastle
 Semmelmann U 2001 Conformal Killing forms on Riemannian manifolds PhD Thesis Ludwig-Maximilians-Universität München
 Kubizšík D 2008 Hidden symmetries of higher-dimensional rotating black holes PhD Thesis University of Alberta (arXiv:0809.2452 [gr-qc])
[4] Kubizšík D, Kunduri H K and Yasui Y 2009 Phys. Lett. B 678 240 (arXiv:0905.0722 [hep-th])
[5] Wu S Q 2009 Phys. Rev. D 80 044037
 Wu S Q 2009 Phys. Rev. D 80 069902 (arXiv:0902.2823 [hep-th])
[6] Agricola I 2006 Arch. Math. 42 5–84 (arXiv:math0606705)
[7] Howe P S and Papadopoulos G 1996 Phys. Lett. B 379 80 (arXiv:hep-th/9602108)
[8] Grantcharov G and Poon Y S 2000 Commun. Math. Phys. 213 19 (arXiv:math/9908015)
[9] Carter B and Mclenaghan R G 1979 Phys. Rev. D 19 1093
[10] Kalmus G, Miller W Jr and Williams G C 1986 J. Math. Phys. 27 1893
[11] Benn I M and Charlton P 1997 Class. Quantum Grav. 14 1037 (arXiv:gr-qc/9612011)
[12] Cariglia M 2004 Class. Quantum Grav. 21 1051 (arXiv:hep-th/0305153)
[13] Kamran N and Mclenaghan R G 1984 Phys. Rev. D 30 357
[14] Benn I M and Kress J M 2004 Class. Quantum Grav. 21 427
[15] Acik O, Etem O, Under M and Verecin A 2009 Class. Quantum Grav. 26 075001 (arXiv:0806.1328 [gr-qc])
[16] Bismut J-M 1989 Math. Ann. 284 681
[17] Houri T, Kubizšík D, Warnick C and Yasui Y 2010 J. High Energy Phys. JHEP07(2010)055 (arXiv:1004.1032 [gr-qc]) accepted
[18] Chow D D K 2008 arXiv:0811.1264 [hep-th]
[19] Sen A 1992 Phys. Rev. Lett. 69 1006 (arXiv:hep-th/9204046)
[20] Semmelmann U 2003 Math. Z. 245 503–27 (arXiv:math.DG/0206117)
[21] Benn I M and Tucker R W 1987 An Introduction to Spinors and Geometry (Bristol: Adam Hilger)
[22] Agricola I and Friedrich T 2004 Math. Ann. 328 711
[23] Rietdijk R H and van Holten J W 1996 Nucl. Phys. B 472 427 (arXiv:hep-th/9511166)
[24] De Jonghe F, Peeters K and Sfetsos K 1997 Class. Quantum Grav. 14 35 (arXiv:hep-th/9607203)
[25] Gauduchon P 1997 Bollettino U. M. I. B 11 257
[26] Gates S J, Hull C M and Rocek M 1984 Nucl. Phys. B 248 157
[27] Grover J, Gutowski J B, Herdeiro C A R and Sabra W 2009 Nucl. Phys. B 809 406 (arXiv:0806.2626 [hep-th])
[28] Królikowski A, Kubizšík D, Page D N and Frollov V P 2007 J. High Energy Phys. JHEP02(2007)004 (arXiv:hep-th/0612029)
 Frollov V P and Kubizšík D 2008 Class. Quantum Grav. 25 154005 (arXiv:0802.0322 [gr-qc])
[29] Kasubov M 2010 Ann. Glob. Anal. Geom. 37 33–71