Agreement between upper and lower limb measures to identify older adults with low skeletal muscle strength, muscle mass and muscle quality

Charles Phillipe de Lucena Alves¹, Marcyo Câmar¹, Geovani Araújo Dantas Macêdo¹, Yuri Alberto Freire², Raíssa de Melo Silva¹, Ronildo Paulo-Pereira², Luiz Fernando Farias-Junior³, Ana Paula Trussardi Fayh¹,²,⁴, Arnaldo Luís Mortatti¹, Eduardo Caldas Costa¹,²*¹Graduate Program in Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil, ²Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil, ³Graduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil, ⁴Graduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil

* ecc@ufn&rnet.br

Abstract

Background

Identifying low skeletal muscle strength (SMS), skeletal muscle mass (SMM) and skeletal muscle quality (SMQ) is pivotal for diagnosing sarcopenia cases. Age-related declines in SMS, SMM, and SMQ are dissimilar between the upper (UL) and lower limbs (LL). Despite this, both UL and LL measures have been used to assess SMS, SMM and SMQ in older adults. However, it is not clear whether there is agreement between UL and LL measures to identify older adults with low SMS, SMM and SMQ.

Objective

To investigate the agreement between UL and LL measures to identify older adults with low SMS, SMM and SMQ.

Methods

Participants (n = 385; 66.1 ± 5.1 years; 75.4% females) performed the handgrip strength test (HGS) and the 30-s chair stand test (CST) to assess UL- and LL-SMS, respectively. The SMM was assessed by dual-energy X-ray absorptiometry (DXA). The UL-SMQ was determined as: handgrip strength (kgf) ÷ arm SMM (kg). LL-SMQ was determined as: 30-s CST performance (repetitions) ÷ leg SMM (kg). Results below the 25th percentile stratified by sex and age group (60–69 and 70–80 years) were used to determine low SMS, SMM and SMQ. Cohen’s kappa coefficient (κ) was used for the agreement analyses.
Results

There was a slight and non-significant agreement between UL and LL measures to identify older adults with low SMS (κ = 0.046; 95% CI 0.093–0.185; p = 0.352). There was a moderate agreement to identify low SMM (κ = 0.473; 95% CI 0.371–0.574; p = 0.001) and a fair agreement to identify low SMQ (κ = 0.206; 95% CI 0.082 to 0.330; p = 0.005).

Conclusion

The agreement between UL and LL measures to identify older adults with low SMS, SMM and SMQ is limited, which might generate different clinical interpretations for diagnosing sarcopenia cases.

1 Introduction

Aging is commonly accompanied by declines in skeletal muscle strength (SMS), skeletal muscle mass (SMM) and skeletal muscle quality (SMQ) [1–4]. SMQ can be defined in terms of muscle composition or relative strength [5, 6]. SMQ (as relative strength) describes the muscle’s ability to function and is operationally defined in terms of SMS normalized to SMM [5, 6]. Assessing SMS, SMM, and SMQ in older adults has been recommended by clinical guidelines. For example, the European Working Group on Sarcopenia in Older People (EWGSOP2) recommends assessing SMS, SMM, and SMQ to identify those who are at high risk for or have established sarcopenia [7]. In addition, low SMS, SMM, and SMQ are associated with a higher risk for several adverse health-related outcomes in older adults, such as reduced mobility [8], physical disability [8], frailty [9], falls [10], impaired health-related quality of life [11, 12], all-cause and cardiovascular mortality [13–16].

Age-related declines in SMS, SMM, and SMQ are dissimilar between the upper (UL) and lower limbs (LL) [1–4]. Despite this, both UL and LL measures have been used to assess SMS, SMM and SMQ in older adults [17–20]. The handgrip strength test (HGS) and the chair stand test (CST) have been commonly used in clinical practice to assess SMS in older adults. However, a previous study [20] demonstrated that the prevalence of older adults at high risk for (low SMS) and having established sarcopenia (low SMS + low SMM) was lower using HGS than the 5-repetition CST. In addition, the authors observed poor agreement between the HGS and the 5-repetition CST to identify both individuals at high risk for and having established sarcopenia, suggesting that the interchangeable use of these tests might generate different clinical interpretations for the EWGSOP2 algorithm [7]. Thus, more information is needed about the agreement between UL and LL measures to identify older adults with impaired neuromuscular characteristics. In view of this, the aim of this study was to investigate the agreement between UL and LL measures to identify older adults with low SMS, SMM and SMQ.

2 Methods

2.1 Study design

This was a cross-sectional study which is reported in accordance with the STROBE (STrengthening the Reporting of OBservational studies in Epidemiology) statement [21]. This study was conducted at the Onofre Lopes University Hospital and at the Department of Physical...
Education of the Federal University of Rio Grande do Norte between June 2018 and December 2019. The Ethics Committee of the Federal University of Rio Grande do Norte approved this study (protocol number: 2.603.422/2018), which was conducted according to the Declaration of Helsinki. All participants were informed about the study procedures and gave written informed consent.

2.2 Participants

Community-dwelling older adults aged 60–80 years from the city of Natal, RN, Brazil were recruited to participate in this study by advertisements on radio, TV, e-flyers in social media sites, healthcare units, and older adult community centers. The inclusion criteria were: i) no history of known cardiovascular diseases or major cardiovascular events (e.g., acute myocardial infarction, stroke, coronary artery disease, arrhythmias, or peripheral vascular disease); ii) no muscle, joint or bone injury which limits the ability to perform exercise; iii) no acute diabetes- or hypertension-related decompensation (i.e. glycaemia \(\geq 300 \text{ mg/dL} \); blood pressure \(\geq 160/105 \text{ mmHg} \)). Participants with incomplete data related to the strength tests or body composition assessment were excluded from the final analysis.

2.3 Skeletal muscle strength

2.3.1 Handgrip strength test. The HGS was performed following the recommendations of Coldham [22] as a proxy of UL-SMS. All participants were seated in a straight-backed chair with their feet flat on the floor and positioned in a standardized position with their shoulder adducted and neutrally rotated, elbow flexed at 90˚, forearm in a neutral rotation, and their wrist between 0˚ and 30˚ extension and between 0˚ and 15˚ ulnar deviation. All participants were instructed to squeeze the handgrip (Jamar15030J1) as hard as possible during a 5-second period with their dominant hand during the expiration phase, avoiding Valsalva’s maneuver. They performed three attempts with verbal encouragement interspersed by 1-minute interval between each attempt. The highest value observed in the three attempts was considered for data analysis.

2.3.2 30-s chair stand test. The 30-s CST was performed following the recommendations of Rikli and Jones [23] as a proxy of LL-SMS. The participants were instructed to sit in the middle of the chair with their back straight, feet flat on the floor, and arms crossed at the wrists and held against their chest. On the signal "go", they were instructed to rise to a full stand and then return to a fully seated position. All participants were verbally encouraged to complete as many full stands as possible within a 30-s period. The number of repetitions was considered for data analysis.

2.4 Skeletal muscle mass

Dual-energy X-ray absorptiometry (DXA) is a widely used technique which assesses body composition at the molecular level [24, 25]. It assesses the lean soft tissue (LST) or lean body mass, which is the sum of body water, total body protein, carbohydrates, non-fat lipids, and soft tissue mineral [24, 25]. Body composition was assessed by DXA (GE Healthcare1Lunar Prodigy Advance) following the recommendations of the National Health and Nutrition Examination Survey [26]. Participants’ weight (kg) and height (cm) were previously measured (Welmy1W300). Total-, arm- and leg-LST in kilograms were calculated by specific software (Encore, version 14.1) from the DXA scan. In this study, LST determined by the DXA technique was used as a proxy of total-, arm-, and leg-SMM [24], as recommended by the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis working group on frailty and sarcopenia.
2.5 Muscle quality
SMQ was determined in terms of UL- and LL-SMS (HGS and 30-s CST, respectively) normalized to appendicular skeletal muscle mass (ASM; kg) as assessed by DXA [5, 6]. Therefore, UL-SMQ was determined as: HGS (kgf) ÷ arm SMM (kg). LL-SMQ was determined as: 30-s CST performance (repetitions) ÷ leg SMM (kg).

2.6 Criteria for defining older adults with low SMS, SMM and SMQ
The UL and LL measures for SMS, SMM and SMQ were stratified into quartiles based on sex and age group (60–69 and 70–80 years). Males and females from each sex and age group who had UL and LL measures for SMS, SMM and SMQ below the 25th percentile were identified as older adults with low SMS, SMM and SMQ [23, 27].

2.7 Physical activity
Physical activity level was determined by the Brazilian version of the Minnesota Leisure Time Activities Questionnaire for older adults [28]. The physical activities were classified as light, moderate or vigorous considering the absolute intensity (metabolic equivalents; METs) for each specific age (40–64 years; ≥ 65 years), based on the American College of Sports Medicine [29]. Participants who performed ≥600 MET/min/wk of moderate-vigorous physical activities were considered as ‘active’, while those who performed < 600 MET/min/wk were considered as ‘inactive’.

2.8 Statistical analysis
Descriptive data are expressed as mean ± standard deviation, absolute and relative frequencies. Data normality was verified by Shapiro-Wilk and Q-Q plot tests. Cohen’s kappa coefficient (κ) was used to analyze the agreement between UL and LL measures to identify older adults with low SMS, SMM and SMQ. Cohen’s kappa coefficient (κ) < 0.00 was interpreted as poor agreement, 0.00–0.20 as slight agreement, 0.21–0.40 as fair agreement, 0.41–0.60 as moderate agreement, 0.61–0.80 as substantial agreement, and 0.81–1.00 as almost perfect [30]. The significance level was set at p < 0.05 for all analyses.

3 Results
A total of 385 older adults were included in the final analysis (Fig 1). Most participants were females (72.4%; n = 279), Caucasian (42%; n = 163) and ‘Pardos’ or Brown (49.7%; n = 193), lived with a partner (69.1%; n = 266), were overweight or obese (overweight: 40.0%, n = 154; obesity: 38.4%, n = 148), and had hypertension (52.5%; n = 202). Approximately one-third of the participants were ex-smokers (35.3%; n = 136) and had dyslipidemia (32.9%; n = 127). Few participants had post-secondary education (4.2%; n = 16), were smokers (3.4%; n = 13), or had diabetes (14.3%; n = 54). Additionally, 58.4% (n = 225) were physically active and 41.6% (n = 160) were physically inactive. Table 1 shows the neuromuscular characteristics of the participants.

Table 2 shows the cut-offs (25th percentile) to identify older adults with low SMS, SMM and SMQ, according to sex and age group. Overall, the cut-offs for the neuromuscular characteristics were slightly lower for females and older adults aged 70–80 years.

Table 3 shows the agreement analysis between UL and LL measures to identify older adults with low SMS, SMM, and SMQ. There was a slight and non-significant agreement between UL and LL measures to identify older adults with low SMS (κ = 0.046; 95% CI 0.093–0.185; p = 0.352). There was a moderate agreement between UL and LL measures to identify older
adults with low SMM ($\kappa = 0.473; 95\% \text{ CI } 0.371–0.574; p = 0.001$). There was a fair agreement between UL and LL measures to identify older adults with low SMQ ($\kappa = 0.206; 95\% \text{ CI } 0.082$ to $0.330; p = 0.005$).

Tables 4 and 5 shows the agreement analysis between UL and LL measures to identify older males and females with low SMS, SMM, and SMQ. There was a slight and non-significant agreement between UL and LL measures to identify low SMS in older males ($\kappa = 0.183; 95\% \text{ CI } -0.071–0.436; p = 0.059$). There was a fair agreement between UL and LL measures to identify low SMM in older males ($\kappa = 0.376; 95\% \text{ CI } -0.071–0.436; p = 0.001$) and a fair agreement to identify low SMQ in older males ($\kappa = 0.448; 95\% \text{ CI } 0.223$ to $0.673; p = 0.001$). There was a poor and non-significant agreement between UL and LL measures to identify low SMS in older females ($\kappa = 0.001; 95\% \text{ CI } -0.166–0.164; p = 0.987$). There was moderate agreement
between UL and LL measures to identify low SMM in older females ($\kappa = 0.507; 95\% \text{ CI} 0.384–0.629; p = 0.001$) and a fair agreement to identify low SMQ in older females ($\kappa = 0.126; 95\% \text{ CI} -0.019–0.271; p = 0.001$).

4 Discussion

To the best of our knowledge, this is the first study which has investigated the agreement between UL and LL measures to identify older adults with low SMS, SMM and SMQ. The main findings indicate that: i) there was slight and non-significant agreement between UL and LL measures to identify older adults with low SMS; ii) there was a moderate and fair agreement between UL and LL measures to identify older adults with low SMM and SMQ, respectively.

Despite the HGS and 30-s CST being well-recognized tests to measure SMS, we did not observe a significant agreement between them to identify older adults with low SMS. The decline of SMS occurs in different magnitudes over aging in UL and LL [1–4, 31,32]. Frontera et al. [33] showed a decline of 1.4 and 2.5% per year in UL- and LL-SMS, respectively. Other studies have observed a higher magnitude of difference (i.e. a decline of 1.4 and 5.4% per year in UL- and LL-SMS, respectively) [19, 34]. It seems clear that the LL-SMS declines to a greater magnitude with aging than the UL-SMS, which can partially explain our findings. Recently, Yeung et al [35] investigated the agreement between the HGS and knee extension strength.

Table 1. Characteristics of the participants (n = 385).

	Total	Males	Females
N (%)	385 (100)	106 (27.6)	279 (72.4)
Age (years)	66.1 ± 4.5	66.0 ± 4.4	66.1 ± 4.6
Height (cm)	157.0 ± 8.43	166.3 ± 6.72	153.4 ± 5.96
Body weight (kg)	71.2 ± 13.83	77.4 ± 13.47	68.8 ± 13.27
Body mass index (kg/m²)	28.8 ± 4.86	27.9 ± 4.31	29.1 ± 5.01
Total skeletal muscle mass (kg)	40.7 ± 8.34	50.3 ± 6.93	37.1 ± 5.47
Arm skeletal muscle mass (kg)	4.5 ± 1.30	6.08 ± 1.10	3.98 ± 0.82
Leg skeletal muscle mass (kg)	14.1 ± 3.05	17.2 ± 2.69	12.9 ± 2.25
Handgrip strength test (kg)	29.0 ± 8.09	39.1 ± 6.41	25.2 ± 4.57
30-s chair stand test (rep)	13.3 ± 3.80	14.9 ± 4.40	12.6 ± 3.30
Upper limb skeletal muscle quality (kgf/kg)	0.71 ± 0.12	0.78 ± 0.12	0.68 ± 0.11
Lower limb skeletal muscle quality (rep/kg)	0.33 ± 0.11	0.30 ± 0.11	0.35 ± 0.11

Data are expressed as mean ± standard deviation. Rep = repetition.

https://doi.org/10.1371/journal.pone.0262732.t001

Table 2. Cut-offs for upper and lower limb measures to identify older adults with low skeletal muscle strength, muscle mass, and muscle quality according to sex and age group.

	Males	Females		
	60–69 yr	70–80 yr	60–69 yr	70–80 yr
Handgrip strength test (kg)	36.0	34.0	23.0	21.0
30-s chair stand test (rep)	12.0	12.0	11.0	10.0
Arm skeletal muscle mass (kg)	6.0	5.0	3.5	3.0
Leg skeletal muscle mass (kg)	15.0	15.0	12.0	11.0
Upper limb skeletal muscle quality (kgf/kg)	0.70	0.61	0.72	0.59
Lower limb skeletal muscle quality (rep/kg)	0.24	0.22	0.28	0.27

Cut-offs were defined as values below 25th percentile for sex and age group. Rep = repetition.

https://doi.org/10.1371/journal.pone.0262732.t002
performance in individuals from different age and health-status groups, in which they observed a low correlation between HGS and knee extension strength in healthy older adults and a moderate correlation in geriatric outpatients and older adults post-hip fracture. The authors found poor to moderate intraclass correlation coefficients between the tests. At an individual level, Bland-Altman plots indicated that the agreement between HGS and knee extension strength was lower among healthy older adults compared to geriatric outpatients and older adults post-hip fracture. Taken together, even using a different test to assess LL-SMS and other statistical approaches, the results from Yeung et al. [35] seem to be in accordance with our findings regarding the limited agreement between UL and LL measures to assess SMS in healthy older adults.

Another reason which can explain the non-significant agreement between the HGS and 30-s CST to identify older adults with low SMS is the characteristics of these tests. Although HGS and 30-s CST are valid proxies of SMS [36], the HGS measures the maximal isometric contraction, while the 30-s CST assesses the performance on a functional task, which seems to involve other fitness-related components in addition to SMS [23]. In accordance with our findings, Johansson et al. [20] found a poor agreement between HGS and 5-repetition CST to identify older adults at high risk for (κ = 0.07) and having established sarcopenia (κ = 0.18). Moreover, only 1.3% and 4.4% of the older adults were identified as having a high risk for or having established sarcopenia by both HGS and 5-repetition CST, respectively.

A significant agreement between UL and LL measures to identify low SMM in older adults was observed in the present study. Different from SMS, the decline of SMM seems to occur in a similar magnitude over aging in UL and LL in some studies [17, 37, 38], which may explain

Skeletal muscle strength	Low UL-SMS	Normal UL-SMS	Kappa	95% CI	P
Low LL-SMS	20 (27.8%)	52 (72.2%)	0.046	0.093 to 0.185	0.352
Normal LL-SMS	71 (22.7%)	242 (77.3%)			
Skeletal muscle mass	Low UL-SMM	Normal UL-SMM			
Low LL-SMM	67 (60.4%)	44 (39.6%)	0.473	0.371 to 0.574	0.001
Normal LL-SMM	38 (13.9%)	236 (86.1%)			
Skeletal muscle quality	Low UL-MQ	Normal UL-SMQ			
Low LL-SMQ	37 (39.8%)	56 (60.2%)	0.206	0.082 to 0.330	0.005
Normal LL-SMQ	56 (19.2%)	236 (80.8%)			

UL = upper limb; LL = lower limb; SMS = skeletal muscle strength; SMM = skeletal muscle mass; SMQ = skeletal muscle quality; CI: confidence interval.

https://doi.org/10.1371/journal.pone.0262732.t003

Table 4. Agreement between upper and lower limb measures to identify older males with low skeletal muscle strength, muscle mass and muscle quality.

Skeletal muscle strength	Low UL-SMS	Normal UL-SMS	Kappa	95% CI	P
Low LL-SMS	08 (33.3%)	16 (66.7%)	0.183	-0.071 to 0.436	0.059
Normal LL-SMS	13 (15.9%)	69 (84.1%)			
Skeletal muscle mass	Low UL-SMM	Normal UL-SMM			
Low LL-SMM	24 (51.2%)	18 (48.8%)	0.376	0.191 to 0.561	0.001
Normal LL-SMM	13 (3.2%)	51 (96.8%)			
Skeletal muscle quality	Low UL-MQ	Normal UL-SMQ			
Low LL-SMQ	12 (63.2%)	07 (36.8%)	0.448	0.223 to 0.673	0.001
Normal LL-SMQ	12 (13.8%)	75 (86.2%)			

UL = upper limb; LL = lower limb; SMS = skeletal muscle strength; SMM = skeletal muscle mass; SMQ = skeletal muscle quality; CI: confidence interval.

https://doi.org/10.1371/journal.pone.0262732.t004
the agreement between UL and LL measures observed in this study. On the other hand, some studies show a reduction in different magnitudes between UL and LL, depending on how and where we measure [39, 40]. Despite this, the magnitude of this agreement was moderate. It is reasonable to think that other factors can explain the moderate agreement between UL and LL measures to identify low SMM in older adults. The DXA technique assesses the LST, which includes ~55% of SMM [24, 25]. The additional components of LST (body water, carbohydrates, nonfat lipids, and soft tissue mineral) can be different between UL and LL, which could also explain the moderate agreement observed between UL- and LL-SMM [41]. In addition, ~75% of SMM are concentrated in the LL and the rest is distributed in the trunk and in the UL [24]. This aspect can partially explain the moderate agreement between UL and LL measures to identify low SMM in older adults.

Regarding the SMQ, which is an index derived from the SMS and SMM [6, 42], a significant but fair agreement was observed between UL and LL measures to identify low SMQ in older adults. Only 39.8% of the older adults were identified as having low SMQ by both UL and LL measures. We believe that this finding may be explained by the dissimilar performance of the older adults in the UL and LL tests to assess SMS. It should be noted that the UL- and LL-SMQ indexes are dissimilar in their nature due to the different characteristics of the SMS tests. The UL-SMQ index refers to a maximal isometric SMS normalized by SMM, which is commonly reported in the literature [6]. The LL-SMQ index refers to maximal performance on an LL functional task normalized by SMM, in which its ability seems to not be exclusively dependent of the maximal dynamic LL-SMS. Although the 30-s CST shows a high correlation with one-repetition maximum test on the leg press (older females: r = 0.71; older males: r = 0.78) [23], which is a multi-joint exercise involving the hips, knees, and ankles, it seems reasonable to assume the 30-s CST performance requires additional fitness-related components in addition to maximal dynamic SMS, such as dynamic balance, coordination, and power. We believe that the above-mentioned aspects may explain the fair agreement between UL and LL measures to identify low SMQ in older adults.

From a clinical perspective, our findings might be useful to rethink the recommendation of the interchangeable use of the HGS and CST in the EWGSOP2 [7] practical algorithm for dynapenia and sarcopenia case-finding, diagnosis and severity, mainly due the limited agreement between these UL and LL tests to identify low SMS and SMQ in older adults. Based on
our findings, using the HGS an older adult can be classified as ‘normal SMS’ and nonsarcopenic while using CST his/her classification can be dynapenia (low SMS) or even sarcopenia. The opposite scenario is also possible; i.e. ‘normal SMS’ and nonsarcopenic using CST and dynapenia or sarcopenia using HGS. Thus, misinterpretation regarding the clinical identification of dynapenia and sarcopenia can occur, which can favor unappropriate interventions delivered for these individuals.

Despite our novel and interesting findings, this study has limitations which should be mentioned. First, although HGS and 30-s CST are well recommended to assess SMS in older adults by clinical guidelines, including the EWGSOP2 [7], these tests have different characteristics which may have influenced our findings. Future studies could consider investigating the agreement between UL and LL measures to identify older adults with low SMS using tests with similar characteristics. Second, the cut-offs to determine low SMS, SMM and SMQ were defined according to sex and 10-year age groups due to a low number of participants aged 75–80 years. Other studies suggest determining neuromuscular characteristics and fitness-related performance cut-offs for 5-year age groups [23, 27]. Third, our study included older adults aged 60–80 years. Therefore, our findings should be interpreted with caution and they are not transferable to older adults aged > 80 years. Fourth, we recruited community-dwelling older adults by diverse advertisement methods, but we do not rule out the possibility of some selection bias due to the need for transportation to the research laboratory. This aspect might have limited the participation of older adults with poor mobility and other age-related conditions such as sarcopenia and frailty. Fifth, as previously described, the DXA technique assesses the LST, which includes SMM and other body composition components [24, 25]. Although LST is highly correlated with SMM assessed by magnetic resonance imaging and computerized tomography imaging [24] and is a well-recognized proxy of SMM, the DXA technique does not provide a specific evaluation of SMM.

5 Conclusion
The agreement between UL and LL measures to identify low SMS, SMM and SMQ in older adults is limited, which might generate different clinical interpretations for diagnosing sarcopenia cases. In order to establish better implications of our findings, it seems important to identify which neuromuscular UL or LL measure (SMS, SMM and SMQ) is more associated with adverse health-related outcomes in older adults. Future studies to address the above-mentioned question are important.

Author Contributions

Conceptualization: Charles Phillipe de Lucena Alves, Marcyo Câmara, Geovani Araújo Dantas Macêdo, Yuri Alberto Freire, Raissa de Melo Silva, Ronildo Paulo-Pereira, Luiz Fernando Farias-Junior, Ana Paula Trussardi Fayh, Arnaldo Luis Mortatti, Eduardo Caldas Costa.

Formal analysis: Charles Phillipe de Lucena Alves.

Investigation: Charles Phillipe de Lucena Alves, Marcyo Câmara, Geovani Araújo Dantas Macêdo, Yuri Alberto Freire, Raissa de Melo Silva, Ronildo Paulo-Pereira, Luiz Fernando Farias-Junior, Ana Paula Trussardi Fayh, Arnaldo Luis Mortatti, Eduardo Caldas Costa.

Methodology: Charles Phillipe de Lucena Alves, Marcyo Câmara, Geovani Araújo Dantas Macêdo, Yuri Alberto Freire, Raissa de Melo Silva, Ronildo Paulo-Pereira, Luiz Fernando Farias-Junior, Ana Paula Trussardi Fayh, Arnaldo Luis Mortatti, Eduardo Caldas Costa.
Project administration: Charles Phillipe de Lucena Alves, Arnaldo Luis Mortatti, Eduardo Caldas Costa.

Supervision: Eduardo Caldas Costa.

Writing – original draft: Charles Phillipe de Lucena Alves, Marcyo Câmara, Geovani Araújo Dantas Macêdo, Yuri Alberto Freire, Raissa de Melo Silva, Ronildo Paulo-Pereira, Luiz Fernando Farias-Junior, Ana Paula Trussardi Fayh, Arnaldo Luis Mortatti, Eduardo Caldas Costa.

Writing – review & editing: Charles Phillipe de Lucena Alves, Marcyo Câmara, Geovani Araújo Dantas Macêdo, Yuri Alberto Freire, Raissa de Melo Silva, Ronildo Paulo-Pereira, Luiz Fernando Farias-Junior, Ana Paula Trussardi Fayh, Arnaldo Luis Mortatti, Eduardo Caldas Costa.

References

1. Lynch NA, Metter EJ, Lindle RS, Fozard JL, Tobin JD, Roy TA, et al. Muscle quality. I. Age-associated differences between arm and leg muscle groups. J Appl Physiol. 1999; 86: 188–194. https://doi.org/10.1152/jappl.1999.86.1.188 PMID: 9887130

2. Tracy BL, Ivey FM, Hurburt D, Martel GF, Lemmer JT, Siegel EL, et al. Muscle quality. II. Effects of strength training in 65- to 75-yr-old men and women. J Appl Physiol. 1999; 86: 195–201. https://doi.org/10.1152/jappl.1999.86.1.195 PMID: 9887131

3. Metter EJ, Lynch N, Conwit R, Lindle R, Tobin J, Hurley B. Muscle quality and age: Cross-sectional and longitudinal comparisons. Journals Gerontol—Ser A Biol Sci Med Sci. 1999; 54: 8207–8218. https://doi.org/10.1093/gerona/54.5.b207 PMID: 10362000

4. Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol. 1991; 71: 644–650. https://doi.org/10.1152/jappl.1991.71.2.644 PMID: 10362000

5. Barbat-Artigas S, Rolland Y, Zamboni M, Aubertin-Leheudre M. How to assess functional status: A new muscle quality index. J Nutr Heal Aging. 2012; 16: 67–77. https://doi.org/10.1007/s12603-012-0004-5 PMID: 22238004

6. Fragala MS, Kenny AM, Kuchel GA. Muscle Quality in Aging: a Multi-Dimensional Approach to Muscle Functioning with Applications for Treatment. Sport Med. 2015; 45: 641–658. https://doi.org/10.1007/s40279-015-0305-2 PMID: 25655372

7. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019; 48: 16–31. https://doi.org/10.1093/ageing/afy169 PMID: 30312372

8. Zoico E, Di Francesco V, Guralnik JM, Mazzali G, Borlontan A, Guariento S, et al. Physical disability and muscular strength in relation to obesity and different body composition indexes in a sample of healthy elderly women. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2004; 28: 234–241. https://doi.org/10.1038/sj.ijo.0802552 PMID: 14708033

9. Xue QL. The Frailty Syndrome: Definition and Natural History. Clin Geriatr Med. 2011; 27: 1–15. https://doi.org/10.1016/j.cger.2010.08.009 PMID: 21093718

10. Berry SD, Miller RR. Falls: Epidemiology, pathophysiology, and relationship to fracture. Curr Osteoporos Rep. 2008; 6: 149–154. https://doi.org/10.1007/s11914-008-0026-4 PMID: 19032925

11. Derksen JWG, Kurk SA, Peeters PHM, Dorresteijn B, Jourdan M, van der Velden AMT, et al. The association between changes in muscle mass and quality of life in patients with metastatic colorectal cancer. J Cachexia Sarcopenia Muscle. 2020; 11: 919–928. https://doi.org/10.1002/jcsm.12562 PMID: 32107889

12. Bye A, Sjøblom B, Wentzel-Larsen T, Grenberg BH, Baracoss VE, Hjermsd Mj, et al. Muscle mass and association to quality of life in non-small cell lung cancer patients. J Cachexia Sarcopenia Muscle. 2017; 8: 759–767. https://doi.org/10.1002/jcsm.12206 PMID: 28493418

13. Farmer RE, Mathur R, Schmidt AF, Bhaskaran K, Fatemifar G, Eastwood S V., et al. Associations between measures of sarcopenic obesity and risk of cardiovascular disease and mortality: A cohort study and mendelian randomization analysis using the UK biobank. J Am Heart Assoc. 2019;8. https://doi.org/10.1161/JAHA.118.011636 PMID: 31221000
14. Brown JC, Harhay MO, Harhay MN. The muscle quality index and mortality among males and females. Ann Epidemiol. 2016; 26: 648–653. https://doi.org/10.1016/j.annepidem.2016.07.006 PMID: 27480478

15. Reinders I, Murphy RA, Brouwer IA, Visser M, Launer L, Siggeirsdottir K, et al. Muscle Quality and Myosteatosis: Novel Associations with Mortality Risk. Am J Epidemiol. 2016; 183: 53–60. https://doi.org/10.1093/aje/kww153 PMID: 26643983

16. Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. Journals Gerontol—Ser A Biol Sci Med Sci. 2006; 61: 72–77. https://doi.org/10.1093/gerona/61.1.72 PMID: 16456196

17. Kemmler W, von Stengel S, Schoene D. Longitudinal Changes in Muscle Mass and Function in Older Men at Increased Risk for Sarcopenia—The FrOST-Study. J frailty aging. 2019; 8: 57–61. https://doi.org/10.14283/jfa.2019.9 PMID: 30997916

18. Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, et al. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: The Health, Aging and Body Composition Study. J Am Geriatr Soc. 2002; 50: 897–904. https://doi.org/10.1046/j.1532-5415.2002.00217.x PMID: 12028178

19. Rantanen T, Masaki K, Foley D, Izmirlian G, White L, Guralnik JM. Grip strength changes over 27 yr in Japanese-American men. J Appl Physiol. 1998; 85: 2047–2053. https://doi.org/10.1152/jappl.1998.85.6.2047 PMID: 9843525

20. Johansson J, Strand BH, Morseth B, Hopstock LA, Grimsgaard S. Differences in sarcopenia prevalence between upper-body and lower-body based EWGSOP2 muscle strength criteria: the Tromsø study 2015–2016. BMC Geriatr. 2020; 20: 1–11. https://doi.org/10.1186/s12877-020-01860-w PMID: 33172391

21. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008; 61: 344–349. https://doi.org/10.1016/j.jclinepi.2007.11.008 PMID: 18313558

22. Coldham F, Lewis J, Lee H. The reliability of one vs. three grip trials in symptomatic and asymptomatic subjects. J Hand Ther. 2006; 19: 318–327.

23. Rikli RE, Jones CJ. Development and validation of a functional fitness test for community-residing older adults. J Aging Phys Act. 1999; 7: 129–161.

24. Buckinx F, Landi F, Cesari M, Fielding RA, Visser M, Engelke K, et al. Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle. 2018; 9: 269–278. https://doi.org/10.1002/jcsm.12268 PMID: 29349935

25. Prado CMM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN J Parenter Enteral Nutr. 2014; 38: 940–953. https://doi.org/10.1177/0148607114550189 PMID: 25239112

26. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS One. 2009; 4: e7038. https://doi.org/10.1371/journal.pone.0007038 PMID: 19753111

27. Rikli RE, Jones CJ. Functional Fitness Normative Scores for Community-Residing Older Adults, ages 60–94. J Aging Phys Act. 1999; 7: 162–184.

28. Lustosa LP, Pereira DS, Dias RC, Britto RR, Parentoni AN, Souza L, et al. Tradução e adaptação transcultural do Minnesota Leisure Time Activities Questionnaire em idosos. Geriatr Gerontol. 2000; 2011: 57–65.

29. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med Sci Sports Exerc. 2011; 43: 1334–1359. https://doi.org/10.1249/MSS.0b013e318213efb PMID: 21694556

30. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977; 33: 159–174. PMID: 843571

31. Hughes VA, Frontera WR, Wood M, Evans WJ, Dallas GE, Roubenoff R, et al. Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci. 2001; 56: B209–17. https://doi.org/10.1093/gerona/56.5.b209 PMID: 11320101

32. Candow DG, Chilibeck PD. Differences in size, strength, and power of upper and lower body muscle groups in young and older men. J Gerontol A Biol Sci Med Sci. 2005; 60: 148–156. https://doi.org/10.1093/gerona/60.2.148 PMID: 15814855
33. Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R. Aging of skeletal muscle: A 12-yr longitudinal study. J Appl Physiol. 2000; 88: 1321–1326. https://doi.org/10.1152/jappl.2000.88.4.1321 PMID: 10749826

34. Winegard KJ, Hicks AL, Sale DG, Vandervoor t AA. A 12-year follow-up study of ankle muscle function in older adults. Journals Gerontol—Ser A Biol Sci Med Sci. 1996; 51: 202–207. https://doi.org/10.1093/gerona/51a.3.b202 PMID: 8630696

35. Yeung SSY, Reijnierse EM, Trappenburg MC, Hogrel J-Y, McPhee JS, Piasecki M, et al. Handgrip Strength Cannot Be Assumed a Proxy for Overall Muscle Strength. J Am Med Dir Assoc. 2018; 19: 703–709. https://doi.org/10.1016/j.jamda.2018.04.019 PMID: 29935982

36. Bohannon RW. Measurement of sit-to-stand among older adults. Top Geriatr Rehabil. 2012; 28: 11–16. https://doi.org/10.1097/TGR.0b013e31823415fa

37. McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology. 2018; 19: 519–536. https://doi.org/10.1007/s10222-018-9775-3 PMID: 30259289

38. Keller K, Engelhardt M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J. 2013; 3: 346–350. https://doi.org/10.1007/s10522-013-9775-3 PMID: 24596700

39. Ata AM, Kara M, Kaymak B, Özçakar L. Sarcopenia Is Not “love”: You Have to Look Where You Lost it! Am J Phys Med Rehabil. 2020; 99: e119–e120. https://doi.org/10.1097/PHM.0000000000001391 PMID: 32084033

40. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3 JUL: 1–18. https://doi.org/10.3389/fphys.2012.00001 PMID: 22275902

41. Bhasin S, Travison TG, Manini TM, Patel S, Pencina KM, Fielding RA, et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J Am Geriatr Soc. 2020; 68: 1410–1418. https://doi.org/10.1111/jgs.16372 PMID: 32150289

42. Fragala MS, Fukuda DH, Stout JR, Townsend JR, Emerson NS, Boone CH, et al. Muscle quality index improves with resistance exercise training in older adults. Exp Gerontol. 2014; 53: 1–6. https://doi.org/10.1016/j.exger.2014.01.027 PMID: 24508922