INTRODUCTION

As we are entering the era of an aging society, the incidence and prevalence of chronic diseases in the older population are increasing. One of the most notable diseases is dementia. In recent years, mild cognitive impairment (MCI), which is considered a prodromal stage of dementia, has received much attention. MCI refers to a cognitive decline greater than expected for an individual's age and education level that does not meet the criteria for dementia of the Alzheimer type (DAT). Among MCI subtypes, amnestic MCI (aMCI) is characterized by memory decline and is highly likely to progress to dementia of the Alzheimer's type (DAT). Even older people who do not have dementia or aMCI often complain of memory problems. The factors affecting memory performance in older individuals include age, sex, education level, social resources, personal experience, religious activity, memory beliefs, memory control, cognitive activity, and depression.

These aforementioned variables affecting memory have been studied extensively. However, fewer studies have assessed variables related to psychological factors such as metamemory. Therefore, the aim of this study was to compare the differences in factors affecting memory performance—such as memory beliefs (memory efficacy and memory control), the psychological factor; level of cognitive activity, the activity factor; and level of depression, the emotional factor—in healthy older adults (OA), patients with aMCI, and patients with DAT.

MATERIALS AND METHODS

Twenty-one OA (11 males, 10 females) from the elderly welfare center in the Incheon area and 16 aMCI (6 males, 10 females) and 18 DAT patients (6 males, 12 females) were administrated to all subjects.

Key Words: Mild cognitive impairment, Alzheimer disease, Memory, Depression, Cognition
Comparison of Memory in Healthy Elderly, MCI, AD

There were no significant differences in age, education, and gender among the three groups; however, the K-MMSE and CDR scores differed significantly (Table 1). The K-MMSE total score was significantly higher in the OA group than in the aMCI and DAT groups, but there was no significant difference in scored between the aMCI and DAT groups (OA>aMCI=DAT). The OA group showed the highest CDR scores, followed by the aMCI and DAT groups (OA>aMCI>DAT).

On the immediate recall of the SVLT, DAT patients showed the worst performance, followed by aMCI patients, who showed a poorer performance than OA. DAT and aMCI patients showed lower performance scores than OA on the delayed recall test, but no difference between DAT and aMCI patients was observed. In contrast, DAT patients showed significantly lower performance scores than OA and aMCI patients on the recognition test, and no difference was observed between OA and aMCI patients. These results suggest that the deterioration of memory in the case of aMCI may mainly be due to deficits in coding (registration) and retrieval capability. There was no difference in depression scores among the three groups. For memory efficacy, memory control, and cognitive activity level, the scores of DAT and aMCI patients were significantly lower than those of OA. However, there was no difference between aMCI and DAT patients. The level of cognitive activity in daily life was also significantly lower in aMCI and DAT patients than in OA (Table 2).

Table 1. Participant demographic characteristics

Variable	OA (n=21)	aMCI (n=16)	DAT (n=18)	χ²
Age (y)	73.24±3.82	72.88±7.67	73.44±7.76	0.57
Sex (male/female), n	11/10	6/10	10/8	1.22
Education (y)	9.28±2.45	7.19±4.04	9.33±4.57	3.54
K-MMSE score	28.19±1.50	21.88±1.66	21.39±3.82	36.33***
CDR	-	0.50±0.00	0.83±0.24	48.82***

Values are presented as mean±standard deviation.
OA, older adults; aMCI, amnestic mild cognitive impairment; DAT, dementia of the Alzheimer type; K-MMSE, Korean version of mini-mental state examination; CDR, clinical dementia rating.

***p<0.001.
DISCUSSION

Previous studies on metamemory as a psychological factor affecting memory performance were performed mostly in healthy individuals rather than patient populations. In contrast, our study investigated memory efficacy and memory control, which are considered a part of metamemory, in patients with aMCI and DAT. Memory efficacy refers to an individual’s thoughts about his or her memory ability. Memory control can be defined as an individual’s thoughts about his or her ability to control memory. In previous studies on memory beliefs, older people reported lower levels of memory efficacy and memory control than did adolescents and middle-aged adults. Furthermore, aging is associated with a decline in one’s ability to control cognitive function and memory function. While several studies have reported that memory performance is partly related to memory beliefs, other studies have shown a relatively weaker relationship between memory performance and beliefs than expected.

The results of this study showed that memory efficacy and memory control were significantly poorer in patients with aMCI and DAT than in OA, suggesting that aMCI patients yet to be diagnosed with dementia already experience impairments in memory efficacy and memory control, similar to DAT patients. Based on the results of our study as well as previous reports suggesting that non-pharmacological interventions may help alleviate symptoms in Alzheimer’s patients, cognitive rehabilitation therapy related to the maintenance and improvement of memory efficacy and memory control from the aMCI stage rather than from early-stage Alzheimer’s disease may help to relieve patient symptoms.

The results of this study showed that memory efficacy and memory control were significantly poorer in patients with aMCI and DAT than in OA, suggesting that aMCI patients yet to be diagnosed with dementia already experience impairments in memory efficacy and memory control, similar to DAT patients. Based on the results of our study as well as previous reports suggesting that non-pharmacological interventions may help alleviate symptoms in Alzheimer’s patients, cognitive rehabilitation therapy related to the maintenance and improvement of memory efficacy and memory control from the aMCI stage rather than from early-stage Alzheimer’s disease may help to relieve patient symptoms.

A number of studies have reported a statistically significant relationship between the level of cognitive activity and memory performance. In the present study, the cognitive activity of patients diagnosed with aMCI and DAT was significantly lower than that of OA. Previous studies showed that cognitive activity and memory performance maintain a static relationship in OA. In aMCI and DAT patients with memory impairment, low cognitive activity in daily life may also have some impact on memory impairment. Therefore, it may be helpful to increase cognitive activity, and interventions from the aMCI stage may be more effective.

In conclusion, it is important to precisely determine the factors (psychological/cognitive activity/emotional) that affect memory deterioration in patients with aMCI and DAT. Interventions such as timely non-pharmacological treatment to delay or stop the deteriorating factors may contribute to the maintenance and improvement of patients’ symptoms. Finally, the limitations of this study include the inability to study various factors related to non-pharmacological treatment, the modest number of subjects, and the lack of any evaluation of a cognitive rehabilitation treatment program.

CONFLICTS OF INTEREST DISCLOSURES

The researchers claim no conflicts of interest.

ACKNOWLEDGMENTS

This study was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT of Korea (NRF-2015M3C7A1064832).

REFERENCES

1. Scarpini E, Scheltens P, Feldman H. Treatment of Alzheimer’s disease: current status and new perspectives. Lancet Neurol 2003;2:539-47.
2. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Arch Neurol 2001;58:1985-92.
3. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of
Neurology. Neurology 2001;56:1133-42.
4. Hwang JN, Kwon SM. The relation between the participation in social activity and cognitive function among middle-aged and elderly population. J Korea Gerontol Soc 2009;29:971-86.
5. Jeon HS. An exploratory study on the predictors of cognitive improvement among older adults: using Korean Longitudinal Study of Aging (KLoSA). Health Soc Welf Rev 2013;33:461-88.
6. Kim HR, Yang M. Cognitive impairment and risk factors among elderly persons aged 60 or more in Korea. J Korean Public Health Nurs 2013;27:450-65.
7. Kim MS, Ko JW. Study on the determinants of life satisfaction among the elderly: an integrative approach. J Korea Contents Assoc 2013;13:246-59.
8. Cho W, Son SJ, Lee Y, Back JH, Noh JS, Koh SH, et al. Relationship between social activity and cognitive function in Korean elderly. J Korean Geriatr Psychiatry 2012;16:38-43.
9. Everard KM. The relationship between reasons for activity and older adult well-being. J Appl Gerontol 1999;18:325-40.
10. Kim CG, Jang HJ, Kim SS. The correlation between ability of activity in daily living and self-care agency among elderly in Chungchon province. J Korean Acad Soc Adult Nurs 2001;13:40-52.
11. Berry JM, West RL, Dennehey DM. Reliability and validity of the Memory Self-Efficacy Questionnaire. Dev Psychol 1989;25:701-13.
12. Heckhausen J, Baltes PB. Perceived controllability of expected psychological change across adulthood and old age. J Gerontol 1991;46:165-73.
13. Lee SB, Kim KW. Nonpharmacological interventions for Alzheimer's disease. J Korean Med Assoc 2009;52:1069-76.
14. Kim HS, Kim YW. Non-pharmacotherapy including rehabilitation for dementia. Geriatr Rehabil 2014;4:29-35.
15. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-44.
16. Kim JH. Effects of a memory training program using efficacy sources on memory improvement in elderly people [thesis]. Seoul: Kyunghee University; 2000.
17. Ko SG, Kwon JH. The relation among memory beliefs, cognitive activity and memory performance in healthy older adults. Korean J Clin Psychol 2006;25:747-64.
18. Lachman ME, Bandura M, Weaver SL, Elliott E. Assessing memory control beliefs: the memory controllability inventory. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 1995;2:251-61.
19. Ko SG. Efficacy of a multifactorial memory enhancement program for older adults in the community [thesis]. Seoul: Korea University; 2006.
20. Wilson RS, Bennett DA, Bienias JL, Aggarwal NT, Mendes De Leon CF, Morris MC, et al. Cognitive activity and incident AD in a population-based sample of older persons. Neurology 2002;59:1910-7.
4. Bae JN, Cho MJ. Development of the Korean version of the Geriatric Depression Scale and its short form among elderly psychiatric patients. J Psychosom Res 2004;57:297-305.
22. Lezak MD. Neuropsychological assessment. 3rd ed. New York: Oxford University Press; 1995.
23. Kang YW, Na DL, Hahn SH. A validity study on the Korean Mini-Mental State Examination (K-MMSE) in dementia patients. J Korean Neurol Assoc 1997;15:300-8.
24. Choi SH, Na DL, Lee BH, Hahn DS, Jeong JH, Yoon SJ, et al. Estimating the validity of the Korean version of expanded Clinical Dementia Rating (CDR) scale. J Korean Neurol Assoc 2001;19:585-91.
25. Kang Y, Jahng SM, Na DL. Seoul Neuropsychological Screening Battery 2nd edition. Seoul: Human Brain Research & Consulting Co.; 2012.
26. Hultsch DF, Hertzog C, Dixon RA. Age differences in metamemory: resolving the inconsistencies. Can J Psychol 1987;41:193-208.
27. Berry JM, West RL. Cognitive self-efficacy in relation to personal mastery and goal setting across the life span. Int J Behav Dev 1993;16:351-79.
28. Bandura A. Self-efficacy: the exercise of control. New York: W.H. Freeman; 1997.
29. Min HS, Suh MJ. The effects of personal characteristics and metamemory on the older adults' memory performance. J Korean Acad Soc Adult Nurs 1999;11:581-92.
30. Hertzog C, Hultsch DF. Metacognition in adulthood and old age. In: Craik FIM, Salthouse TA, and editors. The handbook of aging and cognition. Mahwah (NJ): Lawrence Erlbaum Associates; 2000.
31. Craik FIM, Byrd M, Swanson JM. Patterns of memory loss in three elderly samples. Psychol Aging 1987;2:79-86.
32. Hill RD, Wahlin A, Winblad B, Bäckman L. The role of demographic and lifestyle variables in utilizing cognitive support for episodic remembering among very old adults. J Gerontol B Psychol Sci Soc Sci 1995;50:P219-27.
33. Yesavage JA, Westphal J, Rush L. Senile dementia: combined pharmacologic and psychologic treatment. J Am Geriatr Soc 1981;29:164-71.
34. Heiss WD, Kessler J, Mielke R, Szellies B, Herholz K. Long-term effects of phosphatidylserine, pyritinol, and cognitive training in Alzheimer's disease. A neuropsychological, EEG, and PET investigation. Dementia 1994;5:88-98.
35. Rothi LJ, Fuller R, Leon SA, Kendall D, Moore A, Wu SS, et al. Errorless practice as a possible adjuvant to donepezil in Alzheimer's disease. J Int Neuropsychol Soc 2009;15:311-22.
36. Valenzuela M, Sachdev P. Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. Am J Geriatr Psychiatry 2009;17:179-87.
37. Clare L, Woods RT. Cognitive training and cognitive rehabilitation for people with early-stage Alzheimer's disease: a review. Neuropsychol Rehabil 2004;14:385-401.