Error correcting codes and spatial coupling

Rafah El-Khatib1, Jean Barbier2, Ayaka Sakata3, and R"udiger Urbanke1

1EPFL, Lausanne, Switzerland
2Ecole Normale Supérieure, Paris, France
3RIKEN, Wako, Japan

These are notes from the lecture of Rüdiger Urbanke given at the autumn school ”Statistical Physics, Optimization, Inference, and Message-Passing Algorithms”, that took place in Les Houches, France from Monday September 30th, 2013, till Friday October 11th, 2013. The school was organized by Florent Krzakala from UPMC and ENS Paris, Federico Ricci-Tersenghi from La Sapienza Roma, Lenka Zdeborová from CEA Saclay and CNRS, and Riccardo Zecchina from Politecnico Torino.

Contents

1 Polar Codes 3
 1.1 Motivation .. 3
 1.2 Upper Bound ... 4
 1.3 Lower Bound ... 4
 1.4 Summary .. 11

2 Applications 12
 2.1 Metrics .. 14

3 Low-Density Parity-Check Codes 14
 3.1 Linear Codes .. 14
 3.2 MAP decoding ... 15
 3.3 Low Density Parity Check codes 15
 3.4 Configuration model 16
 3.5 From Bit MAP to Belief propagation decoding 17
 3.6 Asymptotic Analysis: Density Evolution (DE) 19
 3.7 EXIT curves ... 20
 3.8 Some basic facts 23
4 Spatially Coupled Codes

4.1 Protographs ... 24
4.2 Construction of Spatially Coupled Codes 24
 4.2.1 Protograph construction 25
 4.2.2 Random construction 25
4.3 Why spatial coupling 26
 4.3.1 Degree dependence of the uncoupled ensembles 26
 4.3.2 Spatial coupling might help 28

5 Density Evolution for Coupled Codes 28
 5.1 Summary ... 32

6 Threshold Saturation 32
 6.1 Proof by Maxwell construction 33
 6.1.1 Definition of area threshold ϵ_{Area} 34
 6.1.2 Existence of a special fixed point 35
 6.1.3 Saturation 36
 6.1.4 Convergence 37
 6.2 Proof by EXIT charts 39
 6.2.1 EXIT charts 39
 6.2.2 Proof by EXIT charts for coupled code 40
 6.3 Proof by Potential Functions 43
 6.3.1 Potential Functions 43
 6.3.2 Potential Functions for coupled system 43
 6.4 Summary ... 44
Figure 1: A transmission scheme of scalar quantities over the binary erasure channel with parameter ϵ.

Figure 2: A transmission scheme of vector quantities over the binary erasure channel with parameter ϵ.

1 Polar Codes

1.1 Motivation

Consider the transmission scheme depicted in Fig. 1 where one bit $x \in \{0, 1\}$ is sent over a channel that either erases x with probability (w.p.) ϵ or passes the bit unchanged w.p. $1 - \epsilon$. This channel is called the Binary Erasure Channel with parameter ϵ and we will denote it as BEC(ϵ). The receiver thus receives the symbol $y \in \{0, 1, ?\}$ where

$$y = \begin{cases} x & \text{w.p. } 1 - \epsilon, \\ ? & \text{w.p. } \epsilon. \end{cases}$$

We want to recover the transmitted bit at the receiver and for this purpose the receiver forms an “estimate” of x given the received symbol y, denote this estimate as $\hat{x}(y)$; our goal is to minimize the quantity $\Pr(\{\hat{x}(y) \neq x\})$, i.e., we want to minimize the probability of error.

If we are only sending a single bit then we cannot hope to estimate the transmitted bit reliably in case it was erased. There is simply not enough information available. The picture changes if we are sending a block of bits.

Consider therefore the slightly more general setting shown in Fig. 2 where a vector $x \in \{0, 1\}^n$ is sent on the same channel, the BEC(ϵ). At the receiver, the vector $y \in \{0, 1\}^n$ is received such that each component of this vector follows the rules in (1), i.e., each component is erased independently from all other components with probability ϵ. It is easy to determine the expected number of erased and non-erased bits for this scenario, namely

$$E[|\{y_i = ?\}|] = n\epsilon,$$
$$E[|\{y_i \neq ?\}|] = n(1 - \epsilon).$$

The standard deviation associated to these values is $\sigma = \sqrt{n\epsilon(1 - \epsilon)}$. Similar to before, we are interested in determining the transmitted vector x.
given the received vector y, and for this purpose we form the estimate $\hat{x}(y)$, and, as before, $\Pr(\{\hat{x}(y) \neq x\})$ is the probability of error. If this probability of error is “small” then we say that we achieve a reliable transmission.

It is now natural to ask the following question: how many bits can we reliably transmit over such a channel, measured as a function of the vector length n, when $n \to +\infty$? We derive first an upper bound and then a matching lower bound.

1.2 Upper Bound

Assume that we are aided by a genie that tells the transmitter the positions that will be erased ahead of time. More formally, let $S \subseteq [n]$ be the set of erasures and assume that we know this set before sending the vector x.

Some thought then shows that the optimal strategy consists of sending our information in the positions $[n] \setminus S$ and to fill the positions S with dummy bits. The receiver then simply reads off the positions in $[n] \setminus S$ to recover the transmitted information and this way estimate at the receiver is perfect and we never make an error. This is also clearly the maximum amount of information that we can transmit reliably in this scenario.

Since $E[|n \setminus S|] = n(1 - \epsilon)$ it follows that the fraction of channel uses on which information can be sent reliably is equal to $1 - \epsilon$. This fraction is called the “transmission rate” and the highest possible rate for which reliable transmission is possible is called the “capacity.” Since we have just shown that the capacity of the genie-aided transmission is $1 - \epsilon$ it follows that the real capacity (i.e., the capacity without the genie) is at most $1 - \epsilon$.

1.3 Lower Bound

To prove that the capacity is equal to $1 - \epsilon$ we now derive a matching lower bound by describing a scheme which allows reliable transmission all the way up to a rate of $1 - \epsilon$. The typical way to prove this lower bound is by using a so-called “random coding” argument. This argument proceed by showing that “randomly” chosen codes from a suitably defined “ensemble” of codes work with high probability. This argument has the advantage that it is relatively simple and short. But on the downside, the argument is non-constructive and in addition does not take the complexity of the scheme into account.

Instead, we will describe an explicit scheme which in addition is also of low complexity. It is called the “polar coding” scheme. This scheme is fairly

1 A code is a subset of the set of all binary n-tuples and typically this subset is chosen in such a way that the individual codewords are well separated. This ensures that even with some of the components being erased, the receiver can still figure out which of the codewords was sent.
Figure 3: A one-step polarization transformation for the BEC(\(\epsilon\))’s.

The basic idea has already proven to be fundamental in a variety of areas [E. Arikan, 2008].

Let us first make an observation. For the BEC(\(\epsilon = 0\)) the capacity is \(1 - \epsilon = 1\). That is, we can fill in the entire vector \(x\) with information bits and recover them reliably. If, on the other hand, the erasure probability is \(\epsilon = 1\), then the capacity is 0 and there is no use of sending any information in \(x\). Both of these cases are thus easy to deal with in the sense that we know what to do. This observation extends to cases where \(\epsilon \sim 0\) and \(\epsilon \sim 1\). More precisely, we lose very little in the case when \(\epsilon \sim 1\) by not using the channel, and if \(\epsilon\) is very small (compared to \(n\)) then we can still use all components of the block and most of the time the whole block will arrive without erasures. Only once in a while will we not be able to recover the block, and this simply results in a small probability of error.

Let us now introduce the basic idea of polarization. Consider the transmission scheme in Fig. 3. Two bits, call them \(U_1\) and \(U_2\), are chosen uniformly at random from \(\{0, 1\}\) and are encoded into two other bits, denoted by \(X_1\) and \(X_2 \in \{0, 1\}\), as follows (all operations are over the binary field):

\[
X_1 = U_1 + U_2, \quad (2)
\]

\[
X_2 = U_2. \quad (3)
\]

Equivalently, we can describe this relationship in matrix form,

\[
\begin{bmatrix}
U_1 \\
U_2
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix}
= \begin{bmatrix}
X_1 \\
X_2
\end{bmatrix}.
\]

Assume that we receive \(Y = (Y_1 Y_2)\) and that we want to estimate \(U_1\) given \(Y = (Y_1 Y_2)\), where \(U_2\) is unknown (and has a uniform prior). We denote by \(\hat{U}_1(Y)\) this estimate. Note that from (2) we know that \(U_1 = X_1 + U_2\) (there are no signs in the binary field). If we combine this with (3) we see that \(U_1 = X_1 + X_2\). Note further that \(Y_1\) and \(Y_2\) are the result of transmitting \(X_1\) and \(X_2\), respectively, through independent erasure channels.

We therefore see that we can reconstruct \(U_1\) if and only if neither \(Y_1\) nor \(Y_2\) are erasures, so that \(X_1 = Y_1\) and \(X_2 = Y_2\). Hence, we have

\[
\hat{U}_1(Y) = \begin{cases}
Y_1 + Y_2, & \text{if } Y_1 \neq ? \land Y_2 \neq ?; \\
?, & \text{otherwise}.
\end{cases}
\]
Note that the bits X_1 and X_2 are sent over independent erasure channels and that

$$Pr(\{Y_1 = ?\}) = \epsilon,$$ \hspace{1cm} (4)
$$Pr(\{Y_2 = ?\}) = \epsilon.$$ \hspace{1cm} (5)

Therefore,

$$Pr(\{\hat{U}_1(Y) = U_1\}) = Pr(\{Y_1 \neq ? \land Y_2 \neq ?\}) = (1 - \epsilon)^2,$$
$$Pr(\{\hat{U}_1(Y) = ?\}) = 1 - (1 - \epsilon)^2 = \epsilon(2 - \epsilon) > \epsilon.$$

As we can see, the probability that U_1 is erased is strictly larger than ϵ (unless $\epsilon = 1$). So this does not seem to be a very good scheme. Why then would we use this transform, which is called the *polar* transform? As we will see shortly, estimating the bit U_2 is in fact easier than the original problem, and estimating the bit U_1 is more difficult as we just discussed. The key point is that both of these tasks are closer to the two trivial scenarios ($\epsilon = 0$ and $\epsilon = 1$) and by recursing this transform we will be able to approach these trivial cases closer and closer. Once we are sufficiently close no extra coding will be necessary since we know how to deal with these two cases.

Let us now look at the problem of estimating U_2. For this task, we will assume that a genie tells us the true value of U_1. We will soon see that in fact we have this information at the receiver as long as we decode the various bits in the appropriate order. Therefore, this assumption is in fact realistic. Let us summarize, we want to estimate U_2 given U_1 and Y. Reconsider our two basic equations. First, rewrite (2) as $U_2 = X_1 + U_1$ and note that by assumption U_1 is known. Further, write (3) as $U_2 = X_2$. We therefore see that we have two estimates of U_2 available at the receiver and that these two estimates are conditionally independent since X_1 and X_2 are transmitted over two independent channels (and U_1 is a known constant). We conclude that we will be able to recover U_2 as long as at least one of Y_1 and Y_2 are not erased. Let us summarize, we have

$$\hat{U}_2(U_1, Y) = \begin{cases}
Y_2, & \text{if } Y_2 \neq ?, \\
Y_1 + U_1, & \text{if } Y_2 = ? \land Y_1 \neq ?, \\
?, & \text{otherwise},
\end{cases}$$

and

$$Pr(\{\hat{U}_2(U_1, Y) = ?\}) = \epsilon^2 < \epsilon.$$ \hspace{1cm} (6)

Assume now that we estimate U_1 and U_2 successively using the following estimators.

$$\hat{U}_1 = \hat{U}_1(Y),$$
$$\hat{U}_2 = \begin{cases}
\hat{U}_2(\hat{U}_1, Y) & \text{if } U_1 \neq ?, \\
? & \text{otherwise}.
\end{cases}$$

6
Figure 4: A transmission scheme equivalent to the one-polarization step of two BEC(\(\epsilon\))'s.

Then,

\[
\Pr(\{\hat{U}_1(Y) =? \lor \hat{U}_2(\hat{U}_1(Y), Y) =?\}) = \Pr(\{\hat{U}_1(Y) =? \lor \hat{U}_2(U_1, Y) =?\}) \\
\leq \Pr(\{\hat{U}_1(Y) =?\}) + \Pr(\{\hat{U}_2(U_1, Y) =?\}) \\
= \epsilon(2 - \epsilon) + \epsilon^2 = 2\epsilon. \tag{8}
\]

This has the following interpretation. In terms of this union bound, the successive decoder is as good as the scenario shown in Fig. 4 where we have two independent BEC’s with different parameters. The scheme in Fig. 3 is obtained from that in Fig. 1 using the following relationship. Given two BEC’s with parameter \(\epsilon\) each, we obtain a BEC with parameter \(\epsilon(2 - \epsilon)\), which is called the “– channel” and a BEC with parameter \(\epsilon^2\), which is called the “+ channel”. Note further that the sum of the capacities of these two channels is \(1 - \epsilon(2 - \epsilon) + 1 - \epsilon^2 = 2(1 - \epsilon)\). In other words, the average capacity of these two channels is equal to the original capacity. So we have lost nothing in terms of capacity by using this transform with the particular successive decoding algorithm. If we look at the transform itself this is not surprising. After all, this transform is invertible, and hence lossless.

Consider the scheme in Fig. 3 with \(\epsilon = 0.5\). Then the equivalent scheme in Fig. 4 consists of two cascaded channels BEC(0.75) and BEC(0.25). Notice that the average erasure probability over the two channels is \(\frac{0.75 + 0.25}{2} = \epsilon\).

This procedure of starting with two independent channels, combining them, and then separating them again into two channels constitutes one “polarization step”.

Rather than performing only a single step, we can now recurse. Let us look explicitly at one further step, as shown in Fig. 5. Note that in the second step we combine “like” channels and that we decode successively in a very particular order, namely \(U_1, U_2, U_3, U_4\). The erasure probabilities that we get for the four resulting “synthetic” channels are as follows:

- \(U_1\) “sees” the BEC w.p. \(\delta(2 - \delta)\) where \(\delta = \epsilon(2 - \epsilon)\).
- \(U_2\) “sees” the BEC w.p. \(\delta^2\) where \(\delta = \epsilon(2 - \epsilon)\).
Figure 5: A two-polarization step of four BEC(\(\epsilon\))’s.

- \(U_3\) “sees” the BEC w.p. \(\delta (2 - \delta)\) where \(\delta = \epsilon^2\).
- \(U_4\) “sees” the BEC w.p. \(\delta^2\) where \(\delta = \epsilon^2\).

Clearly, we can recurse this procedure \(n \in \mathbb{N}\) times to create from \(2^n = N\) independent channels with parameter \(\epsilon\), \(N\) “new” (sometimes called synthetic) channels with parameters \(\epsilon_i, i \in 0 \ldots N - 1\). The parameters evolve at each polarization step according to the rules

\[
\begin{align*}
z &\rightarrow z(2 - z), \\
z &\rightarrow z^2.
\end{align*}
\]

The evolution of the erasure probabilities upon this recursion can be seen as an expansion of the tree diagram in Fig. 5. Notice that the mean of each column, with respect to the uniform distribution, is constant, namely equal to \(\epsilon\). This is true since

\[
\frac{z^2 + z(2 - z)}{2} = z.
\]

This implies that the overall capacity stays preserved.

Recall now the motivation for using this transform. We know how to deal with trivial and perfect channels and we hope that by applying a sufficient number of these transforms the resulting synthetic channels will all either become trivial or perfect. If this is indeed the case, and since we know that the overall capacity is preserved, it must be true that the proportion of perfect channels is equal to the capacity of the original channel. Therefore, if we send our bits over the perfect channels and fix the trivial channels to some known value we will be able to transmit reliably arbitrarily close to capacity. It remains to show that this “polarization” of the channels towards these extreme points is indeed the case.
Figure 6: A tree diagram that tracks the erasure probabilities obtained by polarization.

Towards this goal, let us look at the second moment associated to this transformation \(\rho^2_n \),

\[
\rho^2_n = \frac{z^4 + z^2(2 - z)^2}{2} = z^4 + 2z^2(1 - z).
\]

Consider \(f(z) = z^4 + 2z^2(1 - z) - z^2 = z^2(z^2 - 2z + 1) = z^2(z - 1)^2 \)
which represents the difference of the second moment after the transform and before the transform. Fig. 7 shows the plot of \(f(z) \). Note that \(f(z) > 0, z \in (0, 1) \), and that \(f(0) = f(1) = 0 \). This means the following: Consider

the \(n \)th column and let \(\mu_n \) and \(\rho^2_n \) denote the mean and second moment,
respectively. We have seen that for \(n \in \{0, 1, \ldots\} = \mathbb{N} \),

\[
\mu_n = \epsilon, \\
\rho^2_n \text{ is increasing and } \rho^2_n \leq 1.
\]

Thus, \(\lim_{n \to +\infty} \rho^2_n = \rho^2_\infty \) exists. Note further that as long as a non-zero probability mass lies strictly bounded away from 0 and 1, then the increase in the second moment is strict. It is therefore clear that the limiting distribution must be the one where all the mass is located either at 0 or at 1. This is made precise in the following statement. Let \(z_{nj}, j \in \{1, 2, \ldots, 2^n\} \), denote the \(2^n \) numbers in the \(n \)th column. For \(\delta \in [0, \frac{1}{2}] \), define

\[
S_n(\delta) = \{ j : \delta \leq z_{nj} \leq 1 - \delta \}.
\]

Then for any \(\delta > 0 \),

\[
\lim_{n \to +\infty} |S_n(\delta)|2^{-n} = 0.
\]

In words, all but a sublinear fraction of channels is either “good” or “bad”. For a fixed \(\delta > 0 \), we call a channel “good” if it belongs to the set \(G_n(\delta) = \{ j : |z_{nj}| < \delta \} \), and “bad” if it belongs to the set \(B_n(\delta) = \{ j : |1 - z_{nj}| < \delta \} \). Fix \(\delta \in [0, \frac{1}{2}] \). Since

\[
\lim_{n \to +\infty} \rho^2_n = \rho^2_\infty \text{ exists, then for all } \Delta > 0, \text{ there exists } n_0 \in \mathbb{N} \text{ so that}
\]

\[
\rho^2_n > \rho^2_\infty - \Delta \min\{f(\delta), f(1 - \delta)\}\]
for all $n \geq n_0$. We claim that for all $n \geq n_0$, $|S_n(\delta)|2^{-n} \leq \Delta$. Since this is true for all $\Delta > 0$, the claim will follow. Assume that $|S_n(\delta)|2^{-n} > \Delta$. This means that there are at least $\Delta 2^n$ numbers z_{nj} in the range $[\delta, 1 - \delta]$. It follows that the second moment must go up in the next iteration by at least $\Delta \min\{f(\delta), f(1 - \delta)\}$. But this would imply that $\rho_{n+1}^2 > \rho_\infty^2$, which is a contradiction. A more careful analysis shows that, for $0 \leq \beta < \frac{1}{2}$, with $N = 2^n$, we have

$$
\lim_{n \to +\infty} |S_n(2^{-2^{\beta n}})|2^{-n} = 0,
\lim_{n \to +\infty} |G_n(2^{-2^{\beta n}})|2^{-n} = 1 - \epsilon,
\lim_{n \to +\infty} |B_n(2^{-2^{\beta n}})|2^{-n} = \epsilon.
$$

This gives rise to the scheme shown in Fig. 8. Consider a polar code that is polarized n times, where n is chosen to be “sufficiently” large. The code thus has 2^n channels, input bits U_1, \ldots, U_{2^n} and output bits Y_1, \ldots, Y_{2^n}. “Freeze” the channels $j \in B_n$ and put the information bits in the channels $j \in G_n$. Here “freezing” means that we put a fixed value in these positions and this value is known both to the transmitter as well as the receiver. In fact, we are free to choose the value and generically we will choose this value to be 0. Decode the bits U_1, \ldots, U_{2^n} successively from 1 to N. Of course, if a bit U_k is frozen, then we already know its value and no actual decoding has to be done. Only if U_k belongs to the good set G_n will we need to decode. But in this case the error probability will by definition be very small. The associated computational complexity is of the order $O(n2^n) = O(N \log_2 N)$.

2That this is indeed the case takes some thinking. A closer look shows that the “graph-
the error probability decays, and it decays like $N2^{-\sqrt{N}}$. Finally, note that
\[\lim_{n \to +\infty} |G_n|2^{-n} = 1 - \epsilon. \] This means that the fraction channels that we can use for information transmission is $1 - \epsilon$. This fraction is equal to the upper bound on the capacity we previously derived. Hence, we have matching upper and lower bounds on the capacity and therefore determined capacity exactly. In addition we have found a low-complexity capacity achieving scheme!

1.4 Summary

For the BEC(ϵ), the capacity is $1 - \epsilon$. For polar codes, the encoding and decoding complexity is of the order $O(N \log_2 N)$, where $N = 2^n$ is the blocklength.

We mention a final point. Assume that we want to transmit information at a rate $R = C(1 - \delta)$. Here δ represents the so-called gap (of the rate) to the capacity. Assume further that we want to achieve a certain fixed block probability of error. Then what blocklength is required to achieve this goal? More precisely, if we let δ tend to 0, then how does the blocklength have to scale with δ? This question was addressed by Strassen as well as Polyanskiy, Poor and Verdu \cite{Polyanskiy11,Poor11}. The result is that, for any code, the blocklength must grow at least as the square of the reciprocal of the gap to capacity.

\[\lim_{n \to +\infty} |G_n|2^{-n} = 1 - \epsilon. \] This means that the fraction channels that we can use for information transmission is $1 - \epsilon$. This fraction is equal to the upper bound on the capacity we previously derived. Hence, we have matching upper and lower bounds on the capacity and therefore determined capacity exactly. In addition we have found a low-complexity capacity achieving scheme!

1.4 Summary

For the BEC(ϵ), the capacity is $1 - \epsilon$. For polar codes, the encoding and decoding complexity is of the order $O(N \log_2 N)$, where $N = 2^n$ is the blocklength.

We mention a final point. Assume that we want to transmit information at a rate $R = C(1 - \delta)$. Here δ represents the so-called gap (of the rate) to the capacity. Assume further that we want to achieve a certain fixed block probability of error. Then what blocklength is required to achieve this goal? More precisely, if we let δ tend to 0, then how does the blocklength have to scale with δ? This question was addressed by Strassen as well as Polyanskiy, Poor and Verdu \cite{Polyanskiy11,Poor11}. The result is that, for any code, the blocklength must grow at least as the square of the reciprocal of the gap to capacity,
i.e., $N = \Theta(1/\delta^2)$ and there exist coding schemes which achieve this lower bound.

How do polar codes stack up in terms of their finite-length scaling? It was shown in \cite{14} that for general channels we have

$$\frac{1}{\delta^{3.56}} \leq N \leq \frac{1}{\delta^{3.67}}.$$

For transmission over the BEC, we need $N = 1/\delta^{3.67}$ and for the Binary Symmetric Channel (BSC) we need $N = 1/\delta^{4.2}$. So this means that polar codes require roughly the square of the blocklength compared to optimal codes.

A BSC(\epsilon) is a channel that takes a bit $x \in \{0, 1\}$. It flips the bit to $1 - x \text{ w.p. } \epsilon$ and leaves it unchanged w.p. $1 - \epsilon$.

So far we only talked about polar codes for the binary erasure channel. But everything we mentioned can be extended to more general channels, such as the BSC or the so-called additive white Gaussian-noise channel (AWGNC). In the same manner as for the BEC we can construct low-complexity capacity-achieving polar codes or such channels.

Another caveat concerning polar codes concerns the question of “universality.” Consider a polar code C_1 for the BEC(\epsilon) and a polar code C_2 for the BSC(p). Assume that the parameters ϵ and p are chosen in such a way that the capacities of the two channels are equal. We know from our previous discussion that for both scenarios we can construct capacity-achieving polar codes. This means that if we pick $N = 2^n$ sufficiently large then the fraction of good indices in both cases is close to capacity.

Denote by $B_{n,1}$ and $B_{n,2}$ the sets of good channels corresponding to the C_1 and C_2, respectively. Denote by $G_{n,1}$ and $G_{n,2}$ the sets of bad channels similarly. It is now natural to ask if

$$B_{n,1} = B_{n,2}?,$$

$$G_{n,1} = G_{n,2}?$$

In words, we are asking if the same synthetic channels are good for the two scenarios. If this is the case then the code is universal, meaning one and the same code is good for both scenarios.

Unfortunately, the answer has been found to be negative, and so polar codes are not universal3.

\textbf{2 Applications}

Before we continue and describe codes based on sparse graphs it might be interesting to consider some standard application scenarios. This will make it clearer what range of parameters is typically of interest.

3In fact, recent results show that they can be made universal at the price of increasing the blocklength.
Consider transmission over the AGWNC. That is,

\[y_i = h_i x_i + z_i, \]

where \(x_i \in \{-1, +1\} \) is the bit that we want to transmit, \(y_i \) is the received value, \(z_i \sim \mathcal{N}(0, \sigma^2) \) (Gaussian noise of zero mean and unit variance), and \(h_i \) is the so-called fading coefficient, describing the path loss of signal strength caused by the transmission medium.

In wireless transmission settings, we are using electromagnetic waves emitted and captured by antennas, as the transmission medium. In practice, the following values are typical

- blocklength: \(N \sim 10^3 - 10^4 \) bits,
- rate: \(R \sim 0.5 \)
- block error probability: \(P_B \sim 10^{-2} \)
- throughput: \(10^4 - 10^6 \) bits/sec,
- processing power consumption: 10mW.

Thus, we have at our disposal about \(10^{-7} \) Joules to process one bit.

Another transmission scheme is that over the BSC. In that case,

\[y_i = x_i \oplus z_i, \]

where \(x_i \in \{0, 1\}, z_i \in \{0, 1\}, \) and \(P(z_i = 1) = p. \)

This is a first-order approximation to model optical transmission. In such settings, the following values are typical

- blocklength: \(N \sim 10^4 - 10^6 \) bits,
- rate: \(R \sim \frac{239}{255} \) for historical reasons,
- bit error probability: \(P_B \sim 10^{-15} \), basically “one error per day”
- throughput: 100 Gbits/sec
- processing power consumption: 100W.
- interchip data rate: \(5 \times 10^{12} \) bits/sec (within chip, for message passing),

Thus, we have at our disposal about \(10^{-9} \) Joules to process one bit, quite a limited quantity.
2.1 Metrics
How can one “measure” codes so that we can compare various competing schemes in a meaningful manner? The following are some useful metrics.

- **Construction complexity**: How difficult is it to find a code? For polar codes this can be done quite efficiently.

- **Encoding and decoding complexity**: How many operations do we need to encode and decode one information bit? As we have seen, for polar codes both encoding and decoding can be done in $O(N \log_2 N)$ (real) operations, where N is the blocklength. This is also efficient.

- **Finite length performance**: What blocklengths do we need in order to get “close” to capacity. This is one of the few weaknesses of polar codes. We have seen that the required blocklength is roughly the square of what is optimally achievable.

- **Throughput**: How many bits can we decode per clock cycle. For some high speed applications such as for optical transmission on the backbone network this is important. The standard decoder for polar codes is inherently sequential and so does not have a very high throughput. But it can made more parallel if we are willing to pay a higher processing cost.

- **Universality**: Is one and the same code good for many channels? Standard polar codes are not universal, but they can be made universal if we are willing to consider longer codes.

- **Proofs**: How simple is it to explain the scheme? Polar codes are by far the simplest of all known capacity-achieving schemes. In addition they have an explicit construction rather than only probabilistic guarantees.

3 Low-Density Parity-Check Codes

3.1 Linear Codes
Linear codes are codes so that the (weighted) sum of any two codewords is again a codeword. As a consequence, such codes have a compact algebraic description, either as the image of a linear map or as the kernel of a linear map. In the first case we typically consider the so-called generator matrix G and we represent the code as the space spanned by the rows of G. More precisely, let G be an $k \times n$ matrix over a field \mathbb{F}. Here, n is the blocklength4

4In the previous chapter the blocklength was denoted by N and $N = 2^n$, where n denoted the number of polar steps. For the most part we will revert now to the more standard notation where n denotes the blocklength except when we talk about polar codes. We hope that the resulting confusion will stay bounded.
and $0 \leq k \leq n$ is the dimension of the code. Although more general cases are possible and indeed can be useful, we will restrict our discussion to the case where F is the binary field. The code generated by G is then

$$C(G) = \{x \in F^n : x = uG, u \in F^k\} = \{x \in F^n : Hx^T = 0\}. \quad (10)$$

Here the second representation of the code is in terms of the kernel of the so-called parity-check matrix H. Note that if G has rank k (and thus $|C(G)| = 2^k$), then by the rank-nullity theorem H has rank $n - k$.

As an important example, polar codes that we discussed in the prequel, are linear codes. We can find the generator matrix corresponding to polar codes by starting with the binary matrix

$$G_1 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Let $G_n, n \in \mathbb{N}$, be the n-th Kronecker product of G_1. The generator matrix corresponding to a polar code of length $N = 2^n$ is then the matrix which corresponds to picking those rows of G_n which correspond to the “good” channels. Almost all codes used in practice are linear. This has two reasons. First, it can be shown that for most scenarios linear codes suffice if we want to get close to capacity. Secondly, linear codes are typically much easier to deal with in terms of complexity.

3.2 MAP decoding

In order to decode the output of the noisy channel, an appropriate choice is the Maximum-A-Posteriori (MAP) estimator:

$$\hat{x}_{MAP} = \arg\max_{c \in C(G)} P_Y|X(y|x)P_X(x) = \arg\max_{c \in C(G)} P_Y|X(y|x)P_X(x)$$

where $P_X(x)$ is the prior over X and $P_Y|X(y|x)$ is the likelihood of the output Y of the noisy channel given X. The MAP decoder outputs the mode of the posterior distribution and thus minimizes the block-error probability. This is why we would like to implement it. (In order to achieve capacity it is in fact not necessary to do MAP decoding).

3.3 Low Density Parity Check codes

Low-density parity-check codes (LDPC) are linear codes defined by a parity-check matrix H that has few non-zero entries, more precisely, the number of non-zero entries only grows linearly in the dimension n of the matrix.

A particularly useful description is in term of a factor graph (see Fig. 9). In this factor graph there are n variable nodes representing the components of the codeword and there are $n - k$ factor nodes, each representing one of
the \(n - k \) linear constraints implied by the parity-check matrix. There is an edge between a factor node and a variable node if that particular node participates in the constraints represented by the factor node. Since the parity matrix \(H \) is sparse, the number of edges in this factor graph only grows linearly in the length of the code.

The code is then the set of all binary \(n \)-tuples that fulfill each of the \(n - k \) constraints. As an example, looking at Fig. 9 the first constraint is \(C1 = I(x_6 \oplus x_7 \oplus x_{10} \oplus x_{20} = 0) \) where \(I(\bullet) \) is the indicator function. The code rate, i.e., the fraction of information bits contained in the \(n \) transmitted bits, is equal to \(R \geq R_{\text{design}} = \frac{\#\text{variables} - \#\text{factors}}{\#\text{variables}} \). In general, \(R_{\text{design}} \) is only a lower bound on the actual rate since some of the constraints can be linearly dependent. But it was shown by \cite{3}, that with high probability the rate of a randomly chosen regular code is very close to this lower bound (see also \cite{1}). A regular code one where all variables have constant degree \(d_l \) and all check nodes have degree \(d_r \).

3.4 Configuration model

One possible way of generating a \((d_l, d_r) \)-regular code is to define an ensemble of such codes and to create a specific instance by sampling uniformly at random from this ensemble. A canonical way of achieving this is via the so-called configuration model. In this model, associate \(d_l \) “sockets” to each variable node and \(d_r \) sockets to each check node. Note that there are in total \(nd_l \) variable node sockets and an equal number, namely \((n - k)d_r\) check-node sockets. We get from this model a graph by picking uniformly at random a
permutation on \(nd \) elements and by matching up sockets according to this permutation. This ensemble is convenient for practical implementations, since it is easy to sample from, and it is also well-suited for theoretical analysis.

For applications it is also important to be able to have nodes of various degrees. The corresponding ensembles of codes are called \textit{irregular} ensembles. To specify such an ensembles we need to specify how many nodes there are of what degree, or equivalently, how many edges there are that connect to nodes of various degrees.

One useful representation of the statistics of the degrees is in terms of a polynomial representation. For example, the polynomials corresponding to Fig. 10 are:

\[
\Lambda(x) = \frac{1}{4} x^2 + \frac{2}{4} x^4 + \frac{1}{4} x^5, \quad \lambda(x) = \frac{2}{15} x + \frac{8}{15} x^3 + \frac{5}{15} x^4
\]

\[
P(x) = \frac{1}{2} x^5 + \frac{1}{2} x^7, \quad \rho(x) = \frac{5}{12} x^4 + \frac{7}{12} x^6
\]

Here, \(\Lambda (P) \) is the normalized distribution from the node perspective (where \(\Lambda \) specifies the variable node degrees and \(P \) specifies the check node degrees). The coefficient in front of \(x^i \) is the fraction of nodes of degree \(i \). The normalized derivatives of these quantities, namely \(\lambda (\rho) \), represent the same quantities but this time from the perspective of the edges, i.e., the represent the probabilities that a randomly chosen edge is connected to a node of a particular degree.

3.5 From Bit MAP to Belief propagation decoding

For the BEC, bit MAP decoding can be done by solving a system of linear equations, i.e., in complexity \(O(n^3) \): one must solve \(Hx = 0 \), i.e. \(H_e x_e \oplus H_t x_t = 0 \), where \(H_e \) is submatrix of the parity-check matrix spanned by the columns corresponding to the erased components of \(x \), i.e, \(x_e \), and \(H_t \) is the complement. Thus \(H_e x_e = H_t x_t = s \) has to be solved to find back the missing part \(x_t \). But we are interested in an algorithm that is applicable for general binary-input memoryless output-symmetric (BMS) channels, where MAP decoding is typically intractable. We therefore consider a message-passing algorithm which is applicable also in the general case. More precisely, we consider the sum-product (also called Belief-Propagation (BP)) algorithm. This algorithm performs bit MAP decoding on codes whose factor graph is a tree, and performs well on locally tree like graphs such as the random ones (see Fig. 11). From (11) we get

\[
\hat{x}_i^{\text{MAP}} = \arg\max_{x_i \in \pm 1} \sum_{\{x_j: j \neq i\}} \left(\prod_j p(y_j|x_j) \right) \mathbb{I}(x \in C) \tag{13}
\]
How does BP perform on the BEC?

Figure 11: Instance of a random factor graph. The BP decoder allows to estimate the marginal or mode of each input components.

Figure 12: Performance of BP decoding over a BEC channel.

BP is a message passing algorithm that finds a fixed point to the following set of equations (here for the case of a parity check code):

\[m_{i \rightarrow \mu}(x_i) = \frac{p(y_i| x_i)}{z_{i \rightarrow \mu}} \prod_{\nu \in \partial_{\mu} \setminus \{i\}} \hat{m}_{\nu \rightarrow i}(x_i) \]

\[\hat{m}_{\mu \rightarrow i}(x_i) = \frac{1}{z_{\mu \rightarrow i}} \sum_{\{x_j : j \in \partial_\mu \setminus \{i\}\}} \left(\bigoplus_{\{x_j : j \in \partial_\mu \setminus \{i\}\}} x_j \right) \oplus x_i = 0 \prod_{\{x_j : j \in \partial_\mu \setminus \{i\}\}} m_{j \rightarrow \mu}(x_j) \]

where \(\partial_{\mu} \setminus \{i\} \) stands for the ensemble of variable indices of the variables that are neighbors of factor \(\mu \) except \(i \), the messages \(\{m_{i \rightarrow \mu}, \hat{m}_{\mu \rightarrow i}\} \) are the so-called cavity messages (which are probability distributions, \(\{z_{i \rightarrow \mu}, \hat{z}_{\mu \rightarrow i}\} \) are the normalization constants) from which we can infer their most probable state by maximization of the marginals \(\{m(x_i)\} \) allowing bit MAP decoding:

\[m(x_i) = \frac{1}{z_i} \prod_{\nu \in \partial_i} \hat{m}_{\nu \rightarrow i}(x_i) \]

What is the performances of the BP algorithm on the BEC? Here is the experiment we consider. Fix the ensemble. In the above example it is the (3, 6)-regular ensemble. Now pick very long instances of this ensemble. Pick a random codeword and transmit over a BEC with erasure probability \(\epsilon \). Run the BP decoder until convergence. Record the error probability.
Note that in the above equations the erasure probability entering a variable node or check node along the equations above.

The outgoing message is an erasure as well. This input/output relation between erasure values is depicted by message is in erasure, the check node output has no way knowing whether it is 0 or 1 and hence the information or we have absolutely useless information. On the check node side, even if one incoming message which is not an erasure, then the variable node is exactly determined. This is because we are transmitting over the BEC and either we have perfect information or we have absolutely useless information.

At the variable node, if there is an incoming message which is not an erasure, then the variable node is this by looking how the erasure probability behaves at each of the two types of the nodes. Consider a \((d_r)\)-regular code, i.e., every variable node has degree \(d_r\) and every check node has degree \(d_l\). We focus on the BEC. At the variable node, if there is an

\[
x^{(\ell)} = \epsilon (y^{(\ell)})^{d_l - 1}
\]

\[
y^{(\ell)} = 1 - (1 - x^{(\ell - 1)})^{d_r - 1}
\]

\[
x^{(\ell=2)} = \epsilon (y^{(\ell=2)})^{d_l - 1}
\]

\[
y^{(\ell=2)} = 1 - (1 - x^{(\ell=1)})^{d_r - 1}
\]

\[
x^{(\ell=1)} = \epsilon (y^{(\ell=1)})^{d_l - 1}
\]

\[
y^{(\ell=1)} = 1 - (1 - x^{(\ell=0)})^{d_r - 1}
\]

\[
x^{(\ell=0)} = \epsilon
\]

Figure 13: Representation of the DE dynamics over an infinite tree, allowing the computation of the asymptotic probability of decoding at the root.

\[
\epsilon y^{d_l - 1} \quad 1 - (1 - x)^{d_r - 1}
\]

Figure 14: DE iteration over a factor and a node.

and average over many instances. Plot the average bit-error probability versus \(\epsilon\). Naturally, as \(\epsilon\) decreases the error probability decreases. What is most interesting is that at some specific point we see a jump of the error probability from a non-zero value down to zero. This is the \(BP\) threshold (see Fig. [12]).

3.6 Asymptotic Analysis: Density Evolution (DE)

Density evolution is a general method that allows us to analyze decoding in the limit where the number of nodes and factors both become large but their ratio remains constant. We do this by looking at how the erasure probability behaves at each of the two types of the nodes. Consider a \((d_l, d_r)\)-regular code, i.e., every variable node has degree \(d_l\) and and every check node has degree \(d_r\). We focus on the BEC. At the variable node, if there is an
incoming message which is not an erasure, then the variable node is exactly
determined. This is because we are transmitting over the BEC and either
we have perfect information or we have absolutely useless information. On
the check node side, even if only one incoming message is an erasure, the
check node output has no way knowing whether it is 0 or 1. Denoting \(y(x) \) the probabilities that a factor (node) is undetermined, we obtain Fig. 14
giving the probabilities for a node (factor) to output no information after
one iteration.

So if we perform \(l \) iterations we get a sequence of erasure probabilities as
shown in Fig. 13. This is how Gallager analyzed LDPC codes. Luby and.
al. used a somewhat different procedure. In their analysis they look at
the so-called peeling decoder. This decoder is entirely equivalent to the BP
decoder (when transmitting over the BEC). In this decoder, as long as there
is a degree-one check node, we use this check node to determine one more
bit and then remove the used check node as well as the determined variable.

We then follow the evolution of the graph. This can be done by writing
down a system of differential equations. This method is called the Wormald
method [2].

Note that in the density evolution approach we assume that we first fix
the number of iterations and let the length of the code tend to infinity (so
that there are no loops in the graph up to the desired size). We then let
the number of iterations tend to infinity. In the Wormald approach on the
other hand we take exactly the opposite limit. Luckily both approaches give
exactly the same threshold: DE corresponds to the limit \(\lim_{l \to \infty} \lim_{n \to \infty} \)
but in fact we can take the limit in any order, or jointly, and we’ll always
get the same threshold: the approach is robust. The density evolution is
decreasing and bounded from below and will thus converge. For large codes,
the behavior of almost all of them in the ensemble is accurately predicted
by DE: it is the concentration property. DE can be applied to the BEC
to predict the fraction of bits that cannot be recovered by BP decoding
as a function of the erasure probability (see Fig. 15). It is predicted that
there exist a critical threshold (\(\epsilon \approx 0.429 \) for the BEC) under which BP will
recover the full codeword and above which it becomes impossible to recover
everything. It perfectly matches the experimental threshold (Fig. 12) but
the curves are different. We will understand why in the next section.

3.7 EXIT curves

Instead of plotting the \(x \)-value on the vertical axis it is often more conve-
nient to plot the EXIT value, see Fig. 19. The EXIT value has a simple
interpretation. It is the error probability of the best estimate we can do
using all the internal messages at a node but without the channel observa-
tion at this bit. This is why we have \(y \) to the power \(d_l \) and not \(d_l - 1 \) but
we do not have the factor \(\epsilon \) corresponding to the channel erasure fraction.
Let us now apply DE for our running example. We see that up to the “BP threshold”, which for the running example is around 0.429, the erasure probability tends to zero if we let the number of iterations tend to infinity. For higher values of \(\varepsilon \) the \(x \)-value tends to a non-zero value.

Figure 15: DE prediction for the fraction of lost bits after BP decoding for the BEC as a function of the erasure probability.

Figure 16: The experimental curve getting closer to the BP threshold as \(N \) increases.

We will see soon why the EXIT value is the right quantity to plot. Rather than running the recursion we can right away find the value to which the recursion converges. This is because this final value must be a solution to the fixed-point (FP) equation \(x = f(\varepsilon, x) \), where \(f(\cdot) \) denotes a recursive DE equation. The forward fixed points of DE (see Fig. 17), which follows the true decoding dynamics and with initial condition \(x^{(l=0)} = \varepsilon \) are:

\[
\begin{align*}
y^{(l)} &= 1 - (1 - x^{(l-1)})^{d_t-1} \\
x^{(l)} &= \varepsilon (y^{(l)})^{d_l-1} \\
x^{(l)} &= \varepsilon (1 - (1 - x^{(l-1)})^{d_l-1})^{d_t-1}
\end{align*}
\]

Then, the fixed points of DE (see Fig. 18) are obtained by removing the time step index:

\[
\begin{align*}
x &= \varepsilon (1 - (1 - x)^{d_t-1})^{d_l-1} \\
\varepsilon &= \frac{x}{(1 - (1 - x)^{d_t-1})^{d_l-1}}
\end{align*}
\]

Note that there are in general several values of \(x \) which satisfy the FP equation for a given \(\varepsilon \), but there is always just a single value of \(\varepsilon \) for a given \(x \), which is easily seen by solving for \(\varepsilon \) from the FP equation above. This makes it easy to plot this curve. But note also that in this picture we have additional fixed points. These fixed points are unstable and we cannot get them by running DE. The previous DE equations can be easily extended to the irregular graph case:

\[
\begin{align*}
x^{(l=0)} &= \varepsilon \\
y^{(l)} &= 1 - \rho(1 - x^{(l-1)}) \\
x^{(l)} &= \varepsilon \lambda(y^{(l)}) \\
x^{(l)} &= \varepsilon \lambda(1 - \rho(1 - x^{(l-1)}))
\end{align*}
\]
These distributions $\rho(\cdot)$ and $\lambda(\cdot)$ can be optimized over by finite size scaling techniques, in order to reach capacity of the channel in the large blocklength limit. For example we can take a family of the form:

$$\lambda_\alpha(x) = 1 - (1 - x)^\alpha, \quad \rho_\alpha(x) = x^{\frac{1}{\alpha}}$$

and try to find the best parameter α such that the error probability decreases as fast as possible to zero below the channel capacity as N increases. In addition, the distributions must verify the matching condition:

$$\epsilon\lambda(1 - \rho(1 - x)) - x \leq 0$$

Capacity achieving degree distributions should verify the strict conditions: $\epsilon\lambda(1 - \rho(1 - x)) - x = 0$ and have an average degree $\to \infty$. For instance, we can write $\lambda(x) = \sum_i w_i x^{i-1}$ with $\sum_i w_i = 1$, $w_i \geq 0$. In this case $\lambda(\cdot)$ can be
inverted and the matching condition becomes:

\[
\int_0^\epsilon 1 - \rho(1 - x)\,dx \leq \int_0^\epsilon \lambda^{-1}\left(\frac{x}{\epsilon}\right)\,dx \\
\epsilon - \frac{1}{O_R} + \int_0^{1-\epsilon} \rho(x)\,dx \leq \epsilon(1 - \frac{1}{O_L})
\]

where \(O_L = \int_0^\epsilon \lambda(x)\,dx\) is the average node degree and \(O_R = \int_0^\epsilon \rho(x)\,dx\) is the average check degree.

\[
\rightarrow \epsilon \leq \frac{O_L}{O_R} \left(1 - \frac{\int_0^{1-\epsilon} \rho(x)\,dx}{\int_0^1 \rho(x)\,dx}\right)
\] (20)

Again, the capacity is reached only in the strict equality case. In the case where there are \(n\) nodes and \(m\) checks in the graph, the condition \(O_L n = O_R m\) must be true, then the rate \(R = \frac{n-m}{m} = 1 - \frac{m}{n} = 1 - \frac{O_L}{O_R} = 1 - \epsilon_{Sh}\)

where \(\epsilon_{Sh}\) is the Shannon threshold satisfying \(\epsilon_{Sh} = \frac{O_L}{O_R}\). It implies for the matching condition:

\[
\epsilon \leq \epsilon_{Sh} (1 - P(1 - \epsilon_{Sh}))
\] (21)

where \(P\) is a polynomial that approaches 0 as \(O_R \rightarrow \infty\).

3.8 Some basic facts

What we saw does not only work for the BEC but for a large class of practically relevant channels. Only for the BEC we do have a proof that these codes achieve capacity. For the general case we need to optimize numerically. So far we looked at ensembles and excluded many practical concerns. To find a particular code for a standard much care and work is needed. These are the codes which are these days included in standards. Codes are not universal but need to be constructed with a particular channel in mind.

4 Spatially Coupled Codes

So far we have discussed the simplest form of LDPC ensembles, namely ensembles that are defined by degree distributions but are otherwise completely unstructured. Such ensembles can have good performance (e.g., we have seen that for the BEC they can achieve capacity) but “real” codes typically have additional structure which allows to optimize various performance metrics. We will now discuss one such structure which is called spatial coupling. As we will see, this structure will allow us to construct capacity-achieving ensembles for a much broader class of channels and it is nicely grounded in basic facts from statistical physics.
Figure 20: In the protograph construction we start with a single “protograph.” (see e.g., the left-most graph on the left side). We then “lift” this protograph to a larger graph by taking M copies (in our specific case $M = 5$). Finally, we connect the various copies by taking “like” edges (which we call an edge bundle) and by permuting the edges in the edge bundle via a permutation picked uniformly at random. One particular edge bundle is shown on the left by dotted lines and the result of the permutation is shown on the right.

4.1 Protographs

There are many ways of describing LDPC ensembles and many flavors of such ensembles. One particularly useful way of describing an ensemble is in terms of so-called protographs. This language will be useful when describing the more complex case of spatially-coupled ensembles.

Protographs were introduced by Thorpe [5]. They give a convenient and compact way of specifying ensembles and the additional structure they impose is useful in practice. The creation of a “real” graph from protographs is illustrated in Fig. 20. For simplicity, $M = 5$ copies are introduced in Fig. 20 but M is typically in the order of hundreds or thousands. The edges denoted by dashed lines in Fig. 20 are “edge bundles.” Such an edge bundle is a set of “like” edges that connect the same variable node and the same check node in each protograph. In a protograph we connect the M copies by permuting the edges in each edge bundle by means of a permutation chosen uniformly at random as shown in right of Fig. 20. Strictly speaking, the ensemble generated in this way is different from the ensemble generated by the configuration model, but these models are asymptotically equivalent in the sense that density evolution as discussed before gives the correct asymptotic predictions in both cases.

4.2 Construction of Spatially Coupled Codes

Let us now introduce spatially coupled ensembles. There are as many flavors and variations of spatially coupled codes as there are for uncoupled codes. The exact version we consider here is not so important since they all
behave more or less the same. Hence, let us consider two variants that are easy to describe and are typical. The first is a protograph-based construction whereas the second one is purely random.

4.2.1 Protograph construction

In the protograph construction, we start by taking a certain number of like protographs and placing them next to each other on a line as shown on the left in Fig. 21. We then “connect” neighboring copies in a regular fashion as shown on the right in the figure. This gives us a protograph which has a spatial structure, explaining the origin of the name “spatially coupled.” Note that towards the middle of the chain the degree structure of the graph is exactly the same as the degree structure of the protograph we started with. Only towards the boundary, due to boundary effects do we have a different degree structure. Note that a variable node in the picture is connected to 3 different positions. We therefore say that the “connection width” is 3 and we write $w = 3$. At the boundaries, the code has more available information in the sense that the number of edges are less than the middle part as shown in Fig. 21. As we will see, this boundary condition plays a crucial role.

Note that the right picture in Fig. 21 is not the graph (code) itself yet but just a protograph representing the code. As mentioned in Sec. 4.1, to generate the real code from a given protograph, we need to “lift” the graph M times and then randomly permute edges in the same edge bundle.

Note: Coupled codes constructed in this way from protograph show an excellent performance and are ideally suited for implementation by virtue of the additional structure. But they are more difficult to analyze than the random construction which we discuss below.

4.2.2 Random construction

In the random construction we have the same spatial structure for the nodes but edges connecting neighbors a placed in a more random fashion. More
Figure 22: Random construction of spatially coupled codes. Edges are defined randomly in the shaded area.

precisely, we randomly connect check nodes and variable nodes within a window of size w as shown in Fig. 22. Again, we ensure that the degree distribution away from the boundary is equal to the degree distribution of the original code. Note that when $w = L$, then in fact we impose no spatial constraints on the connectivity, and we recover the standard uncoupled LDPC ensemble. This randomly constructed coupled ensemble performs slightly worse in terms of its finite-length performance but it is easier to analyze since it has fewer parameters.

4.3 Why spatial coupling

Before we proceed with the theoretical analysis of the spatially coupled ensembles, let us quickly show that spatially coupled ensembles behave quite differently from uncoupled ensembles when we let the degrees tend to infinity. Since the local degree distribution is the same, this will show that the spatial structure indeed leads to some interesting behavior.

4.3.1 Degree dependence of the uncoupled ensembles

The two pictures in Fig. 23 show the fixed points of density evolution for the uncoupled case for (a) the (3, 6) LDPC ensemble and (b) the (100, 200) LDPC ensemble. Note that both have a rate of one-half. The solid and dashed line represent stable and unstable fixed points, respectively, and the vertical lines represent the BP threshold; for (a) we have $\epsilon_{\text{BP}} = 0.42944$ and for (b) we have $\epsilon_{\text{BP}} = 0.0372964$. As shown we can see from Fig. 23 and as one can show analytically, as we increase the degree the BP threshold decreases and it reaches 0 when the degree tends to infinity. Is this decrease of the threshold due to the fact that the associated code gets worse as the degrees become larger or is it the fault of the (suboptimal) BP decoder? A closer look reveals that the code itself in fact gets better as the degree increases. But the decoder becomes more and more suboptimal.
Figure 23: Fixed points of uncoupled (a) $(3, 6)$ code and (b) $(100, 200)$ code. The vertical lines represent threshold (a) $\epsilon_{BP} \simeq 0.42944$ and (b) $\epsilon_{BP} \simeq 0.0372964$.
4.3.2 Spatial coupling might help

Let us now repeat the above experiment with spatially coupled ensembles. We will see that they behave very differently.

Consider a coupled ensemble constructed via the protograph approach. To make the argument particularly simple, assume that all the edges between factor nodes and variables nodes are in fact double edges, as shown in Fig. 24. E.g., the protograph shown in this figure therefore represents an \((4, 8)\)-regular ensemble.

Consider now the decoder procedure. We want to show that the BP threshold does not tend to zero for such an ensemble even if we increase the degrees and let them tend to infinity.

To show this note that we can get a lower bound on the decoding threshold by “weakening” the decoder. We weaken the decoder in the following way. Instead of allowing the decoder to use all available information, assume that when we decode the bits in the first position we are not allowed to use the information we received in any of the positions to the right.

This means that for the given example we concentrate only on the double edges connected to a factor node (denoted by solid lines in Fig. 24) and ignore other edges (denoted by dashed lines). Note that if we concentrate on the bits in the left-most position this means that we are decoding a \((2, 4)\)-regular code, which is also known as “cycle code.” The BP threshold of such a code is known and e.g. for the BEC it is equal to \(\epsilon_{BP} = 1/3\).

Therefore, we know that we can decode the left-most bits using the BP decoder if we transmit over a BEC with erasure probability not exceeding \(1/3\). Now assume that these positions are known. We can then remove (the effect of) these bits from the graph. But if we do so, what is left looks again exactly like the original situation except that now the chain is shorter by one. We can therefore recurse our argument. In summary, we have just argue that the BP threshold of this chain is at least one-third.

The punch line is now the following. Exactly the same argument holds if we increase the degrees and look at the spatially coupled \((2k, 4k)\)-regular ensemble, regardless of the value of \(k\). Therefore, the BP threshold does not tend to zero for coupled ensembles even if we let the degrees tend to infinity. This argument only shows that the threshold is lower bounded by a constant and it does not permit to determine the actual threshold. In fact, we will shortly see that the actual threshold improves as the degree gets larger.

5 Density Evolution for Coupled Codes

Let us now get to the analysis of coupled ensembles using the same method, namely density evolution, which we used in the uncoupled case.

In the uncoupled case, the variable \(x\), which represents the erasure fraction along an outgoing edge from the variable node, is a scalar and density
Figure 24: A coupled (2, 4) ensembles with double edges.

Figure 25: Density evolution in spatially coupling code with width w.

evolution tracks the evolution of this scalar as a function of the iteration number.

For the coupled case the state is a vector, since variables at different positions will not experience the same “environment.” Recall that at the boundary we have a slightly different degree distribution and the decoder problem is easier there. As we will see, the decoder will be able to decode at the boundary first and this progress will then propagate towards the interior of the code along a “decoding wave.”

Due to this lack of “homogeneity” along the spatial dimension we need a vector \mathbf{x} to describe the state, where x_i describes the erasure probability at position i ($= 1, \cdots, L$). Recall that we know the values at the boundary, and hence the erasure probability at the boundary is 0.

In the randomly constructed code, each edge can be connected to positions in a certain range. More precisely, consider Fig. 25: variable nodes assigned $\{x_i\}$ are always connected to position “to the right” and check nodes assigned $\{y_i\}$ are always connected to variable nodes “on the left”.

29
We therefore need to average over the incoming messages from this range, and the density evolution equations for the coupled ensemble are given by

\[x_i = \epsilon \left(\frac{1}{w} \sum_{j=0}^{w-1} y_{i+j} \right)^{d_t-1} \]
\[y_i = 1 - \left(1 - \frac{1}{w} \sum_{k=0}^{w-1} x_{i-k} \right)^{d_r-1}, \]

where \(i = 1, \cdots, L \). Note that there is an \(x_i \) and an \(y_i \) value for each position of the chain and the equations for these values are coupled through the averaging operations.

Combining equations (22) and (23) and adding an index for the iteration number we get

\[x_i^{(l)} = \epsilon \left(1 - \frac{1}{w} \sum_{j=0}^{w-1} \left(1 - \frac{1}{w} \sum_{k=0}^{w-1} x_{i+j-k}^{(l-1)} \right)^{d_r-1} \right)^{d_t-1}. \]
(24)

To simplify our notation, and also to abstract from the specific case we are considering, let us define the functions \(f_i(\cdot) \) and \(g(\cdot) \),

\[f_i = \left(1 - \frac{1}{w} \sum_{k=0}^{w-1} x_{i-k} \right)^{d_r-1}, g(\{x_{i\in I(i)}\}) = \left(1 - \frac{1}{w} \sum_{j=0}^{w-1} f_{i+j} \right)^{d_t-1}, \]
(25)

where \(I(i) \) denotes set of indices connected to \(i \). In this way we get simple expressions, like

\[x_i = \epsilon g(\{x_{i\in I(i)}\}). \]
(26)

We call a vector \(\mathbf{x} = \{x_i\} \ (i = 1, \cdots, L) \) whose components are the erasure fractions at the various indices a constellation. At all the indices outside the constellation, \(i < 1 \) and \(i > L \), we assume that the corresponding \(x_i \) values are 0, i.e., we have perfect knowledge. A constellation \(\mathbf{x} \) which when inserted into the DE equations results in \(\mathbf{x} \) is called a fixed point of DE equation.

In Fig. 26, the \(\epsilon \)-dependence of the time evolution of the DE equation for the coupled ensemble, according to equation (24), is shown. Picture (a) corresponds to \(\epsilon = 0.3 \), (b) corresponds to \(\epsilon = 0.48 \), and (c) is for \(\epsilon = 0.6 \). Note that for \(\epsilon < \epsilon_{BP} \simeq 0.4294 \), DE proceeds in essentially exactly the same way as for the uncoupled case if we look at the \(x_i \) values in the center of the chain. At the boundary we see somewhat better values due to the boundary condition. And as expected, the DE is able to drive the erasure fraction in each section to zero and BP is successful.

At \(\epsilon = 0.48 \), which is considerably larger than the BP threshold \(\epsilon_{BP} = 0.4294 \) of the uncoupled ensemble (and close to the optimal threshold of 0.5
Figure 26: Time evolution of \(\{x_i\} \) by DE equation for the (3,6) coupled code at (a) \(\epsilon = 0.3 \), (b) \(\epsilon = 0.48 \), and (c) \(\epsilon = 0.6 \). The length is \(L = 100 \) and width is \(w = 20 \). The constellations evolve in the order of solid line \(\rightarrow \) dashed line \(\rightarrow \) dotted line \(\rightarrow \) dashed-dotted line.
of the best code and decoding algorithm), a small “wave front” is formed at both boundaries after a few iterations due to the fact that at the boundaries more knowledge is available, see Fig. 26(b). These wave fronts move towards the center of the coupled code at a constant speed and by doing so decrease the value of \(x_i \) for \(i \) located in the central part of the coupled code until the whole constellation is decoded. This is the interesting new phenomenon that happens due to the spatial structure. In other words, due to the spatial structure, the wave front can smoothly connect the desired fixed point of \(x_i = 0 \) to the undesired fixed point that is found by the BP decoder of the uncoupled system and at a constant speed the undesired fixed point is guided towards the desired one until decoding is accomplished. As we increase the parameter \(\epsilon \) up to a critical threshold, call it \(\epsilon_{\text{Area}} \), the speed of the wave is linearly decreased and it reaches the value zero at \(\epsilon_{\text{Area}} \).

At \(\epsilon \) above \(\epsilon_{\text{Area}} \), we get a non-trivial fixed point of DE and decoding is no longer successful. In the middle of the chain the \(x_i \) values are exactly as large as they would be for the same \(\epsilon \) value in the uncoupled case. Only at the boundary do we get somewhat better values because of the boundary condition.

5.1 Summary

In the following sections, we will see that spatially coupled ensembles can be decoded up to \(\epsilon_{\text{Area}} \) and this value is essentially equal to \(\epsilon_{\text{MAP}} \) of the underlying ensemble. This phenomenon is called threshold saturation. In order to exactly achieve \(\epsilon_{\text{MAP}} \), we have to let the chain length \(L \) tend to infinity (this makes decoding harder) and the interaction width \(w \) tend to infinity as well (with \(w \ll L \)). But in practice, even for moderate values of \(L \) of perhaps 10 or 20 and very small values of \(w \), perhaps 2 or 3, the decoding thresholds are already very close to \(\epsilon_{\text{MAP}} \); for instance for the BEC, the difference between \(\epsilon_{\text{MAP}} \) and \(\epsilon_{\text{Area}} \) with \(w = 3 \) is only about \(10^{-5} \) for the \((3, 6)\)-regular ensemble.

Note finally, that one can show that the MAP threshold \(\epsilon_{\text{MAP}} \) is an increasing function of the degrees and converges to the Shannon threshold exponentially fast in the degrees. This is contrary to the BP threshold \(\epsilon_{\text{BP}} \) for uncoupled codes which typically decreases in the degree.

6 Threshold Saturation

Let us now discuss why threshold saturation happens and how we can prove the above assertions.

We will limit our discussion to the simplest case, namely transmission over the BEC. Currently there are proofs of the threshold saturation phenomenon for the following cases; sparse graph codes and transmission over
any BMS channel, any system whose state (for the uncoupled system) is a scalar or a vector, and compressive sensing.

For the BEC, there are currently three known proof strategies; via the Maxwell construction, via EXIT charts, and via potential functions. These proofs share important features but each also have their own advantages.

Historically speaking, the proof of threshold saturation via the Maxwell construction was the first proof that spatially coupled codes achieving capacity under BP decoding when transmitting over the BEC. Later on the same approach led to the proof that spatially coupled codes universally achieving capacity under BP decoding over the whole class of BMS channels. The details of the proof for the BEC can be found in [6] whereas the general case is described in [7].

Recall that we are interested in finding the largest channel parameter ϵ so that the DE recursion of the coupled system, when started with the all-one vector inside the range $[1, L]$, converges to the all-zero vector. We denotes this parameter by ϵ_{Area}, and called it the area threshold.

6.1 Proof by Maxwell construction

The proof by Maxwell construction consists of three parts; show the existence of a special fixed point of the coupled DE equations explained in Sec. 6.1.2, prove that any such FP must have a channel parameter that is very close to the area threshold ϵ_{Area}, and, finally, show that for any channel parameter ϵ below ϵ_{Area}, the DE equations converge to the all-zero constellation $x = 0$.

![Figure 27: Definition of the area threshold ϵ_{Area}.](image)
6.1.1 Definition of area threshold ϵ_{Area}

Consider Fig. [27] This figure shows the so-called EXIT curve for the (3, 6)-regular uncoupled ensemble. Recall that this EXIT curve is the curve that we get if we project the fixed points of density evolution. The branch plotted as a solid line corresponds to the stable fixed points, whereas the branch plotted as dots corresponds to the unstable fixed points. Recall that equation (19) gives an explicit description of these fixed points, i.e., it expresses the channel parameter ϵ as an explicit function of the erasure probability x emitted by variable nodes, call this function $\epsilon(x)$. Explicitly, the EXIT curve is the curve given in parametric form as $\{x^d_l, \epsilon(x)\}_{x=0}^{1}$.

In terms of this EXIT curve the area threshold is defined as follows. Integrate the area enclosed under the top (stable) branch of the EXIT curve starting from the right ($\epsilon = 1$) until that channel parameter so that this area is equal to the rate of the code. For the example shown in Fig. [27] the rate is equal to $\frac{1}{2}$ and $\epsilon_{\text{Area}} \simeq 0.48818$.

Recall that for this example the BP threshold $\epsilon_{\text{BP}} \simeq 0.4299$ so that the area threshold is (considerably) larger than the BP threshold. This is always the case. It is also easy to see that the area threshold is always lower than the Shannon threshold since the EXIT curve is upper bounded by 1; $\text{EXIT}(\epsilon) \leq 1$ for any $\epsilon \in [0, 1]$, and so the area threshold is upper bounded by $\epsilon_{\text{Area}} \leq 1 - \text{rate}$.

By simple explicit calculation, it can be further shown that the area which is contained “inside” the “C”-shaped EXIT curve is also equal to the rate. This implies that the area (I) and (II) shown in the Fig. [27] are equal to each other. Therefore, an equivalent definition of the area threshold is to say that it is that point where a vertical line makes the two areas to be of equal size.

Because of the similarity between the definition of area threshold and Maxwell construction in thermodynamics, this line is called Maxwell construction of BP EXIT curve [8]. Indeed whereas in the original Maxwell construction the areas represent work, in the coding context the areas represent information which on the one hand a genie has to provide to the BP decoder in order to convert it into a MAP decoder (area (I)) and on the other side the amount of “confirmations” that the BP decoder receives during the decoding process that proves that the information provided by the genie is indeed correct. When these two areas are in balance then the BP decoder can with high probability decode (just like the MAP decoder could do) and can at the end certify that all the information provided by the genie is indeed correct.
6.1.2 Existence of a special fixed point

The special fixed point of x that we need is illustrated in the left of Fig. 28. What we need is a fixed point that is unimodal; where x_i is close to 0 close to the boundary, and close to x^* in the middle, respectively; here x^* is the fixed point of DE for the uncoupled system under the same channel parameter. Further, the number of positions i whose x_i value is in the range $[\delta, x^* - \delta]$, $\delta > 0$, must be of order $O(w)$. Note that the two stable fixed points of DE for the uncoupled system, namely 0 and x^*, are essentially the lower and upper bounds on x and that x should smoothly interpolate between them.

For simplicity, we consider DE for one-side constellations $(x_{-L}, \ldots, x_0) \in [0, 1]^{L+1}$ as shown in the right of Fig. 28, where L is the length of the chain and $x_{-L} < \cdots < x_0$. The DE equation for one-side constellations is obtained from the usual coupled DE equation eq. (24) by setting $x_i = 0$ for $i < -L$ and $x_i = x_0$ for $i > 0$. We define the average value (entropy) of the one-side constellation as

$$\bar{x} = \frac{1}{L+1} \sum_{i=-L}^{0} x_i. \quad (27)$$

We can establish the existence of the fixed point with the desired properties by the use of Schauder’s fixed point theorem, which states that any continuous mapping f from a convex compact subset S of a Euclidean space to S itself has a fixed point. In fact, when applying the fixed point theorem we do not fix the parameter ϵ, but this parameter is part of fixed point itself. Therefore, as a consequence of Schauder’s fixed point theorem, after some proper definition of the fixed point equation we are guaranteed the existence of a constellation x^* with the desired properties which is a fixed point for some channel parameter ϵ^*. Although one can establish a priori bounds on
the range of ϵ^*, its exact value is not known. This is the point of the next step in the proof.

6.1.3 Saturation

Next, we show that when we have the special fixed point, its channel parameter must be very close to ϵ_{Area}. The basic idea is very simple. Recall our discussion of the EXIT curve for the uncoupled system. In this case we mentioned that the area enclosed “within” this EXIT curve is equal to the rate of the code. For the uncoupled case this was the result of a simple explicit computation since the EXIT curve was known in parametric form and the integration can be carried out without problems. But there exists also a more conceptual proof which does not rely on explicit calculations and which shows that any time you have a smooth EXIT curve the area it encloses must be equal to the rate of the code. Why is this true? It turns
out that the EXIT curve can be interpreted as the derivative of an entropy term with respect to the channel parameter and so when we integrate, by the fundamental theorem of calculus, the area is just the difference of this entropy term at the two end points. This difference can be determined explicitly and it happens to be equal to the rate of the code. More is true, assume that instead of have a real EXIT curve, where we recall that each point corresponds to a fixed point of DE we have a smooth curve where every point corresponds to an “approximate” fixed point of density evolution. Here, “approximate” means that the difference of the point and the point we get after one iteration is small in the appropriate metric. In this case the same conceptual argument tells us that the area enclosed by this curve is “close” to the rate of the code, where the measure of “closeness” is related to how close the points are to being fixed points.

The idea is hence the following. Given the special fixed (ϵ^*, x^*) we will construct from it a whole family of approximate fixed points so that this family gives rise to an approximate EXIT curve. The shape of the approximate EXIT curve is the one shown as a solid curve in Fig. 29(b). In particular, the sharp vertical drop happens exactly at the parameter ϵ^* and the whole EXIT curve will look just like the curve we get from the Maxwell construction. Applying then the fact that the integral must be equal to the rate of the code will tell us that the sharp vertical drop must happen exactly at the area threshold.

But how can we construct from this single special fixed point a whole family? Rather than discussing the whole construction let us only discuss the most interesting part, namely the part corresponding to the sharp vertical drop. Recall that one of the conditions on the special fixed point was that in the “middle” the fixed point was essentially flat and had a value essentially equal to what the uncoupled ensemble would have for this channel parameter. Further, towards the boundary the values had to be essentially equal to 0. This means that we insert any number of further sections in the middle with the appropriate value or any number of further sections at the boundary with the value 0 and we will still have an appropriate fixed point. All of them will be appropriate fixed points corresponding to the same channel value but their average value will depend on how wide we make the middle part. By changing this width we get points on the vertical line. Since the width can only be changed in discrete steps but we need a continuous curve we also need to interpolate the discrete steps. In addition, in order to get the points on the top horizontal portion of the EXIT curve we also need to interpolate. This is shown in Fig. 29(a).

6.1.4 Convergence

We now get to the last part of the argument. By now we have established that such a special fixed point can only exist if its channel parameter is very
close to the area threshold. We will now argue that if we start DE with a channel value below this area threshold that it must converge to the all-zero constellation.

To see this, we consider the following experiment. We apply DE at $\epsilon_{BP} < \epsilon < \epsilon_{Area}$ to a constellation of size length L whose initial condition is the all-one vector inside the constellation and 0 outside. DE produces a sequence of monotonically decreasing (point-wise) constellations which are bounded by 0 (again point-wise) from below. We denoted the fixed point by ξ^* and assume that ξ^* is non-trivial, i.e., is not all-zero as shown in Fig. 30. It is clear that at each point in the constellation, the value of the fixed point is no larger than the fixed point we would get for the uncoupled case at ϵ since at the boundary the decoder has access to additional information.

Now let us compare this fixed point to our special fixed where we pick the length for this special fixed point sufficiently large so that this special fixed point dominates ξ^* everywhere point-wise. Note that ξ^* is a fixed point for the parameter ϵ but the special fixed point is for the parameter ϵ_{Area} and $\epsilon < \epsilon_{Area}$. So if we now apply DE to the special fixed point but with the parameter ϵ then the special fixed point must be decreasing strictly point-wise and it must in fact converge to the all-zero constellation since otherwise we would get another non-trivial fixed point which would again fulfill all the requirements of a special fixed point (this needs some arguments to prove this) and we know that the only channel parameter for which such a special fixed point exists is very close to ϵ_{Area}, a contradiction. But since our putative fixed point ξ^* is dominated by our special fixed point and the special fixed point collapses to the all-zero constellation it must in fact be true that ξ^* is also the all-zero constellation.
6.2 Proof by EXIT charts

6.2.1 EXIT charts

EXIT charts were introduced by S. ten Brink as a convenient way of visualizing DE [9]. For transmission over the BEC, the EXIT chart method is equivalent to DE. EXIT charts and EXIT curves which we have already introduced are quite different despite their similar name. The reason both objects have the word “EXIT” in there is that in both cases we measure the same thing (namely if the “other” bits in a code are able to determine the bit we are considering via the code constraints), but for EXIT charts we make local measurements, whereas for EXIT curves we measure the performance of the whole code.

An EXIT chart consists of two curves. One curve corresponds to the message-passing rules at the variable nodes and the other one to the message passing rules at the check nodes. In addition, it is customary, and it is convenient, that we plot one curve with its input on horizontal axis and its output on the vertical axis and the other curve is the plot with its output on horizontal axis and its input on the vertical axis. Fig. 31 shows the EXIT charts of uncoupled \((d_l, d_r)\)-LDPC for \(d_l = 3\) and \(d_r = 6\) at three channel
parameters, where two curves are given by

\[x = \epsilon y^{d_t-1} \] \hspace{1cm} (28)
\[y = 1 - (1 - x)^{d_r-1}. \] \hspace{1cm} (29)

On this EXIT chart, the DE trajectory can be regarded as a staircase pattern bound by these two curves. The DE points converge to zero if and only if the two curves do not cross (Fig. 31(a)). The threshold for the uncoupled case is given by the channel parameter so that the two EXIT curves just touch but do not cross (Fig. 31(b)). At \(\epsilon > \epsilon_{BP} \), two curves touch at three points (Fig. 31(c)).

6.2.2 Proof by EXIT charts for coupled code

In the coupled systems, the criterion of the threshold, namely that the two curves may touch but are not allowed to cross, is relaxed. To determine the threshold for the couple system, the two EXIT curves are now allowed to cross but not by too much, and indeed, the threshold relates to a balance of areas enclosed by two curves. One can show that the condition for the threshold is exactly the same as the matching of areas condition which we have seen in the Maxwell construction.

The first step of the proof consists of considering an appropriately chosen continuous version of the constellation. For the random coupled ensemble, we have introduced the window \(w \), within which the random connections are generated. This discrete system is difficult to analyze. Instead, one can consider the limit when \(w \) goes to infinity, of course, the length of the chain has to go to infinity as well. If we increase the length \(w \) and scale the length of the code by the same proportion then in the limit we can treat the constellation as a continuous curve rather than a set of spikes. DE equation for this continuous constellation is given by integrating over a window instead of taking discrete sums.

The next step is to analyze this continuous system. It is convenient to think of systems of infinite length, i.e., the horizontal axis extends from \(-\infty\) to \(-\infty\). Further, instead of consider a two-sides constellation, we consider a one-sided constellation, i.e., we only focus on the “left” part of the constellation from \(-\infty\) to 0. For the continuous system, it is proved that one has three different scenarios depending on the balance of the areas in the EXIT chart picture of the uncoupled system. We omit here the trivial case where the curves do not overlap at all since in this case it is easy to show that we will decode.

Consider first the scenario where the channel parameter is below \(\epsilon_{Area} \), but above the \(\epsilon_{BP} \) of the uncoupled ensemble (Fig. 32(a)). In this case, the curves do overlap but only little and the area on the left (green) is larger than the area on the right (yellow). One can show that there does not exist
Figure 32: EXIT charts of a coupled system for (a) $\epsilon < \epsilon_{\text{Area}}$, (b) $\epsilon = \epsilon_{\text{Area}}$ and (c) $\epsilon > \epsilon_{\text{Area}}$. These figures are quoted from lecture materials [10].
a fixed point of DE but there exists a one-sided constellation x. If we apply DE to this constellation, we get the same x but the position is shifted to the right. Given that our one-sided constellation represents the left part of an actual constellation, saying that the wave is propagating to the right means that the decoder is working and in each step decodes a further part of the constellation. The shift which we see in each iteration corresponds to the decoding speed and so tells us how many iterations we will need. To summarize, below the area threshold we get a decoding wave which moves to the right, that means the working of the decoder.

Assume next that the areas are exactly in balance, this means that we are transmitting exactly at ϵ_{Area} (Fig. 32(b)). In this case one can prove that the continuous version of DE has a fixed point. This fixed point can be regarded as a stationary wave or a wave with zero speed.

Finally, consider the case where we are transmitting above ϵ_{Area} (Fig. 32(c)). The curves overlap so much so that the area on the left is smaller than the area on the right. For this case one can then show that there does not exist a non-trivial fixed point but only a continuous constellation x, so that after one round of DE we get the same constellation back but shifted to the left. This means that the decoder does not work.

In a final step one needs to reconnect the continuous system to the actual discrete system and show that if the w is not too small then the behavior of the discrete system is well predicted by the behavior of the continuous system [11].

Figure 33: Potential function of (3, 6) uncoupled LDPC.
6.3 Proof by Potential Functions

6.3.1 Potential Functions

The potential function for uncoupled LDPC code is defined as

\[
U(x, \epsilon) = \int_0^x (z - f(g(z); \epsilon))g'(z)dz = g(x) - G(x) - F(g(x); \epsilon),
\]

where \(f(g(z); \epsilon) = \epsilon \lambda(1 - \rho(1 - z)), \) \(g(z) = 1 - \rho(1 - z), \) \(F(x; \epsilon) = \int_0^x (z; \epsilon)dz, \) and \(G(x) = \int_0^x g(z)dz. \) The functions \(\lambda(\cdot) \) and \(\rho(\cdot) \) are node-perspective degree distributions. The potential function corresponds to Bethe free energy. Fig. 33 shows the \(x \)-dependence of the potential function for \((3, 6)\) uncoupled LDPC, where \(\lambda(x) = x^2 \) and \(\rho(x) = x^5. \) When \(\epsilon \) is smaller than \(\epsilon_{BP} \simeq 0.42944, \) the potential function is an increasing function for all \(x \geq 0. \) At \(\epsilon = \epsilon_{BP}, \) the potential function have zero gradient at a certain \(x, \) and at \(\epsilon > \epsilon_{BP}, \) a local minimum appears and its value touches to the line 0 at \(\epsilon_{Area} \simeq 0.48818. \) This means that the state \(x = 0 \) is always exists as the unique solution when \(\epsilon < \epsilon_{BP}. \) At \(\epsilon > \epsilon_{BP}, \) another locally stable solution appears at \(x > 0, \) although the solution \(x = 0 \) is the globally stable state. At \(\epsilon > \epsilon_{Area}, \) the solution \(x = 0 \) is no longer a globally stable solution. In physical terminology, area threshold and BP threshold correspond to the first transition point and spinodal point, respectively.

6.3.2 Potential Functions for coupled system

The potential function of the coupled system, which is defined for a vector constellation \(x, \) is introduced in analogy to the uncoupled system. We consider the potential function for one-sided constellation; \(x_i = 0 \) when \(i \) is not in \([-L, i_0]\) and the value of \(x_i \) increases with \(i \) up to \(i_0 = \lfloor (w - 1)/2 \rfloor, \) given by [12]:

\[
U(x; \epsilon) = \int_C g'(z)(z - A^Tf(Ag(z; \epsilon))) \cdot dz = g(x)^T x - G(x) - F(Ag(x); \epsilon),
\]

where \(g'(x) = \text{diag}([g'(x)]) \), \([f(x; \epsilon)] \) = \(f(x; \epsilon), \) \([g(x)] \) = \(g(x), \) \(G(x) = \int_C g(z) \cdot dz = \sum_i G(x_i) \) and \(F(x; \epsilon) = \int_C f(z; \epsilon) \cdot dz = \sum_i F(x_i; \epsilon). \) The
matrix A is a $(L + 3w + i_0 + 1) \times (L + 3w + i_0 + 1)$ matrix given by

$$
A = \frac{1}{w} \begin{bmatrix}
1 & 1 & \cdots & 1 & 0 & \cdots & 0 \\
0 & 1 & & 1 & \cdots & \cdots & \\
\vdots & \ddots & \ddots & \ddots & \ddots & \cdots & 0 \\
0 & \cdots & 0 & 1 & 1 & \cdots & 1 \\
0 & 0 & \cdots & 0 & 1 & \cdots & 1 \\
0 & 0 & \cdots & 0 & 0 & 1 & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & 1
\end{bmatrix},
$$

(32)

which gives matrix notation of the DE equation eq.(24).

We set $K_{f,g} = \|g'|_\infty + \|g''|_\infty + \|f'|_\infty + \|g''|_\infty$, where $\|h\|_\infty = \sup_{x \in [0,1]} |h(x)|$ for functions $h : [0, 1] \to \mathbb{R}$ [12]. Using the potential function, it can be shown that when $\epsilon < \epsilon_{\text{Area}}$ and $w > K_{f,g}/\Delta E(\epsilon)$, coupled potential of a non-zero vector decreases by the shifting. It implies that the value of constellation must be reduced by recursion, and the fixed point is the zero vector. The outline is as follows. Let us assume that $x \neq 0$ is the unique fixed point of the one-sided DE equation. We introduce a right-shifted constellation from x as Sx, where $[Sx]_1 = 0$ and $[Sx]_i = x_{i-1}$ for $i \geq 2$. The difference of the potential functions between Sx and x is given by

$$
U(Sx; \epsilon) - U(x; \epsilon) = -U(x_{i_0}; \epsilon).
$$

(33)

Meanwhile, Taylor expansion of $U(Sx; \epsilon)$ around x gives

$$
U'(x; \epsilon) \cdot (Sx - x) \leq (U(Sx; \epsilon) - U(x; \epsilon)) + \frac{K_{f,g}}{w} \leq -U(x_{i_0}; \epsilon) + \Delta E(\epsilon) \leq 0,
$$

(34)

where we exploit $w > K_{f,g}/\Delta E(\epsilon)$.

When all components of $Sx - x$ are non-positive, at least one component of $U'(x; \epsilon)$ should be positive to satisfy eq.(34). The derivative is given by $[U'(x; \epsilon)]_i = g'(x_i)[x - A^T f(A g(x; \epsilon))]_i$ and $g'(x) \geq 0$, and hence $[A^T f(A g(x; \epsilon))]_i < x_i$ should hold. It means that one more iteration reduce the value of the i-th component. This gives a contradiction and means that the fixed point of the one-sided constellation is only $x = 0$ at $w > K_{f,g}/\Delta E(\epsilon)$.

6.4 Summary

We have shown three proofs of the threshold saturation phenomena. These three different criteria each have their own advantage. The first proof makes not only determines the threshold of the coupled system but makes it clear
that this is equal to the MAP threshold. The EXIT chart approach is convenient for people who are already familiar to EXIT charts for uncoupled systems and this criterion is very easy to apply. Finally, the potential function approach leads to the currently simplest proof of the threshold saturation phenomenon.

In more detail, let us summarize some of the main points of these three proofs. In the proof by the Maxwell construction, at the area threshold, a special fixed point exists, which has long tails, quick transition, and large flat part. This special fixed point cannot exist below the area threshold (and neither can it exists at larger channel parameters). This proof has a connections to problems in statistical physics and the picture is exactly the same if we consider transmission over general BMS channels, although the proofs are more complicated. Further, it strongly suggests that the area threshold is also the MAP threshold of the underlying ensemble. Indeed, that this is true has recently been shown [13].

In the EXIT chart approach, at the area threshold, a stationary wave exists. Below the area threshold, a propagating wave, traveling at a constant speed, shows that decoding will be successful. This approach, in particular, EXIT charts and the matching condition are frequently used to analyze systems which have a one-dimensional state and they are often use to approximately model more general systems (e.g., Gaussian approximation). For any such system, if we replace the matching condition with the area balance condition then we get the equivalent criterion for coupled systems. If the original state is one dimensional then this criterion is exact, otherwise it is an approximation in the same way as the matching condition for EXIT charts is an approximation for uncoupled systems.

Finally, in the potential function approach, at the area threshold, the potential function has zero gradient. Below the area threshold, potential energy is strictly decreasing implying convergence to perfect decoding. It leads to the currently simplest known proof for one dimensional systems. It can be extended to systems whose state is no longer a scalar but a vector and even to infinite-dimensional systems, e.g., general BMS channels.

References

[1] Richardson T. & Urbanke R, Modern Coding Theory, (Cambridge University Press, 2009).

[2] Wormald N. Differential equations for random processes and random graphs, Annals of Applied Probability, 5, 1218–1235 (1995).

[3] Miller G. & Cohen G. The rate of regular LDPC codes, Information Theory, Proc. IEEE International Symposium on, 89 (2003).
[4] Arikan E. Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels, *Information Theory, IEEE Transactions on*, 55, (7), 3051–3073 (2009).

[5] Thorpe J. Low-Density Parity-Check (LDPC) Codes Constructed from Protographs, *IPN Progress Report*, 42-154, 1–7 (2003).

[6] Kudekar S., Richardson T. & Urbanke R. Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform so well over the BEC, *Information Theory, IEEE Transactions on*, 57, (2), 803–834 (2011).

[7] Kudekar S., Méasson C., Richardson T. & Urbanke R. Threshold Saturation on BMS Channels via Spatial Coupling, *Proc. 6th International Symposium on Turbo Codes and Iterative Information Processing (ISTC)*, 309–313 (2010).

[8] Méasson C., Montanari A. & Urbanke R. Maxwell Construction: The Hidden Bridge between Iterative and Maximum a Posteriori Decoding, *arXiv preprint arXiv:cs/0506083* (2005).

[9] ten Brink S. Convergence of Iterative Decoding, *Electronics Letters*, 35, (10), 806–808 (1999).

[10] EPFL-IPG, http://ipg.epfl.ch/doku.php?id=en:publications:scc_tutorial (2013).

[11] Kudekar S., Richardson T. & Urbanke R. Wave-Like Solutions of General One-Dimensional Spatially Coupled Systems, *arXiv preprint arXiv:1208.5273* (2012).

[12] Yedla A., Jian Y., Nguyen P. S., & Pfister H. D. A Simple Proof of Threshold Saturation for Coupled Scalar Recursions, *Proc. 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC)*, 51–55, (2012).

[13] Giurgiu A., Macris N. & Urbanke R. Spatial Coupling as a Proof Technique, *arXiv preprint arXiv:1301.5676* (2013).

[14] Hassani S. H., Alishahi K. & Urbanke R. Finite-Length Scaling of Polar Codes, *arXiv preprint arXiv:1304.4778* (2013).

[15] Strassen V. Asymptotische Abschaetzungen in Shannon Informationstheorien, *Trans. 3d Prague Conf. Inf. Theory*, 689–732 (1962).

[16] Polyanskiy Y., Poor H.V. & Verdu S. Channel Coding Rate in the Finite Blocklength Regime, *Information Theory, IEEE Transactions on*, 56, (5), 2307–2359 (2010).