The study of the toxicity of exhaust gases of a diesel engine when operating on methanol and methyl ester of rapeseed oil

N S Anfilatova, V A Likhanov, O P Lopatin and A S Yurlov

Department of thermal engines, automobiles and tractors, Vyatka State Agricultural Academy, 610017, Kirov, October prospect, 133, Russian Federation

1E-mail: nirs_vsaa@mail.ru

Abstract. While legal restrictions on the use of fossil fuels are applied to conserve natural resources, mixed alcohol fuels, vegetable oils and their esters are increasingly attracting attention as promising alternative sustainable energy sources for cars. The paper substantiates the need for the use of biofuels (BF) in diesel engines (DE) and studies such eco-friendly energy sources as methanol (M) and rapeseed oil methyl ether (ROME). M and ROME potentially lead to some solutions to environmental problems, because for their production, there are quite abundant resources and these energy sources are characterized by relatively low emissions of harmful substances during combustion. The paper presents the results of experimental studies of the toxicity of DE powered by M and ROME, and shows an improvement in its environmental performance.

The significant growth of the tractor fleet, as well as the expansion of its scope of activity in production, lead to a significant increase in emissions of toxic components and exhaust gas (EG) smoke. Scientists have found that high concentrations of harmful substances such as nitrogen oxides (NOx), unburned hydrocarbons (CHx), carbon monoxide (CO) and dioxide (CO2), soot (C) cause inflammation of the respiratory tract mucous membranes, chronic bronchitis, nervous disorders, irreversible changes in the cardiovascular system and numerous other diseases [1-6].

One of the ways to solve this problem is the use of alternative renewable fuels with better environmental performance. Fuels derived from plant seeds, as well as alcohols, can be used as such renewable energy sources. All this can be attributed to fuels of biological origin or the so-called liquid BF [7-12].

According to the forecasts of the Institute for Energy Research of the Russian Academy of Sciences and the Analytical Center under the Government of the Russian Federation, in the likely scenario by 2040, the use of liquid BF will increase by 2.3 times. The share of all renewable energy sources in the global energy mix will grow to 18% by 2040 [13-21]. The purpose of this work is to study the load conditions of the toxicity of DE EG when working on M and ROME. In the course of the research, BF of the following composition were used: M - 88% and ROME - 12%, supplied by a dual fuel supply system [22-30].

A number of bench tests of the DE were carried out to investigate the influence of operating modes, as well as the adjustment parameters of the fuel supply equipment on the content of toxic components in the EG.
Figure 1. Changes in the environmental performance of DE depending on p_e: a - DF; b - M and ROME; c - NO_x; d - CO_2.

During the bench tests, the optimal values of the angles of the start of the supply of each of the two fuels were determined, and the adjustment characteristics of the DE were obtained when operating on
these fuels. The optimal values of the setting angles of fuel injection advance based on the economic performance of the DE were set and amounted to: 34° of rotation of the crankshaft for M and 34° - for ROME [31-39].

When removing the characteristics of this research topic, the influence of load conditions on the content of toxic components in the EG of a DE running on both diesel fuel (DF) and M with ROME was studied [40-47].

Figure 1 shows the load characteristics of the toxic parameters of a DE running on M and ROME.

Analyzing the graphs of the toxicity of DE EG at the nominal speed mode when operating on M with, it is seen that there is a decrease in the NOx content in almost the entire range of the load study (except $p_e>0.66$ MPa). The use of methanol and leads to a decrease in CO at a load exceeding 0.47 MPa, and total of CHx at maximum loads at $p_e>0.56$ MPa, while a slight increase in CO2 was observed in the entire range of the pe study [48-56].

Figure 2 shows the load characteristics of the EG smoke of a DE running on M and ROME.

Analyzing the graphs of the smoke content of DE EG at the nominal speed mode when working on M with the ROME, it is seen that there is a decrease in the soot content over the entire range of the load study [57-62].

The results of studies of the environmental performance of DE are summarized in table 1.

Table 1. Results of research on the environmental performance of DE ($n=1800$ min$^{-1}$, $p_e=0.59$ MPa).

Fuel	NO_x, ppm	C, Bosch	CO, %
DF	760	5.0	0.29
M and ROME	400 (decrease by 47.4%)	0.48 (decrease by 90.4%)	0.16 (decrease by 44.8%)

A promising solution for improving the environmental performance of a DE running on BF of the following composition is given: M -88%, ROME -12% [63-68]. When the DE is running on M and ROME (at the nominal mode), the content of NO_x in the EG decreases by 47.4%, C by 90.4%, and CO by 44.8%.

References
[1] Yang C, Zhang B, Li R and Qiu Q 2018 Catalytic Science Series 17 129-73
[2] Likhanov V A, Lopatin O P and Vylegzhanin P N 2020 IOP Conf. Series: Materials Science and Engineering 862 062078
[3] Bhaskar K and Sendilvelan S 2018 Pertanika Journal of Science and Technology 26(3) 1067-80
[4] Lopatin O P 2020 IOP Conf. Series: Materials Science and Engineering 919 052033
[5] Kumari D and Singh R 2018 Renewable and Sustainable Energy Reviews 90 877-91
[6] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Earth and Environmental Science* **548** 062028

[7] Abd-Elhady M S, Malayeri M R and Müller-Steinhagen H 2011 *Fouling Heat Transfer Engineering* **32**(3-4) 248-57

[8] Lopatin O P 2020 *Journal of Physics: Conf. Series* **1515** 042021

[9] Tarnowski K, Bering S, Glowacka A and Mazur J 2018 *Desalination and Water Treatment* **134** 52-6

[10] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **734** 012202

[11] Jatana G S, Naik S V, Shaver G M and Lucht R P 2014 *International Journal of Engine Research* **15**(7) 773-88

[12] Lopatin O P 2020 *IOP Conf. Series: Earth and Environmental Science* **548** 062034

[13] Pandian A K, Nagappan B, Munuswamy D B, Radhakrishnan S, Devarajan Y and Ramakrishnan R B 2018 *Petroleum Science* **15**(1) 176-84

[14] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **919** 032011

[15] Lopatin O P 2020 *Journal of Physics: Conf. Series* **1515** 052004

[16] Vogel C F A, Kobayashi R, Liu X, Wong P et al. 2019 *Chemosphere* is **220** 993-1002

[17] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **862** 062027

[18] Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **919** 062005

[19] Melnyk V, Voytsehivska T and Sumer A 2018 *Scientific Works of Vinnytsia National Technical University* **2** 62-72

[20] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **919** 062004

[21] Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **734** 012199

[22] Pires de Oliveira I and A R L Caires 2019 *Renewable Energy* 203-11

[23] Likhanov V A and Lopatin O P 2020 *Journal of Physics: Conf. Series* **1515** 052002

[24] Plianos A and Stobart R K 2011 *International Journal of Systems Science* **42**(2) 263-275

[25] Lopatin O P 2020 *IOP Conf. Series: Earth and Environmental Science* **548** 062023

[26] Scaldaferri C A and Pasa V M D 2019 *Renewable and Sustainable Energy Reviews* **111** 303-13

[27] Likhanov V A and Lopatin O P 2018 *Ecology and Industry of Russia* **22**(10) 54-9

[28] Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **862** 062025

[29] Pirjola L, Karl M, Rönkkö T and Arnold F 2015 *Atmospheric Chemistry and Physics* **15**(18) 10435-52

[30] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Earth and Environmental Science* **548** 062041

[31] Arent D J, Wise A and Gelman R 2011 *Energy Economics* **33**(4) 584-93

[32] Lopatin O P 2020 *IOP Conf. Series: Earth and Environmental Science* **421** 072019

[33] Srifa A, Faungnawakij K, Ithibenchapong V and Assabumrungrat S 2015 *Chemical Engineering Journal* **278** 249-58

[34] Likhanov V A and Lopatin O P 2020 *Journal of Physics: Conf. Series* **1515** 042019

[35] Fino D and Russo N 2011 *Industrial and Engineering Chemistry Research* **50**(5) 3004-10

[36] Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **919** 062011

[37] Sadighi S and Targhi S K M 2017 *Bulletin of Chemical Reaction Engineering and Catalysis* **12**(1) 49-54

[38] Likhanov V A and Lopatin O P 2019 *Ecology and Industry of Russia* **23**(9) 60-5

[39] Lopatin O P 2020 *IOP Conf. Series: Earth and Environmental Science* **548** 062049

[40] Lankoff A, Kowalska M, Lisowska H, Wegierek-Ciuk A et al. 2017 *Environmental Science and Pollution Research* **24**(23) 19357-74

[41] Likhanov V A and Lopatin O P 2019 *Journal of Physics: Conf. Series* **1399** 055020
[42] Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **862** 062087
[43] Azad A K, Rasul M G, Khan M M K, Sharma S C and Hazrat M A 2015 *Renewable and Sustainable Energy Reviews* 43 331-51
[44] Likhanov V A and Lopatin O P 2017 *Thermal Engineering* **64**(12) 935-44
[45] Marchuk A, Likhanov V A and Lopatin O P 2019 *Theoretical and Applied Ecology* 3 080-6
[46] Dechambre D, Thien J and Bardow A 2017 *Fuel* **209** 615-23
[47] Likhanov V A, Lopatin O P and Yurlov A S 2020 *IOP Conf. Series: Materials Science and Engineering* **734** 012208
[48] Lif A and Holmberg K 2006 *Advances in Colloid and Interface Science* **123**(126) 231-9
[49] Likhanov V A and Lopatin O P 2020 *Journal of Physics: Conf. Series* **1515** 042008
[50] Subramanian K A 2017 *Biofuels, Reciprocating Internal Combustion Engines* 1-261
[51] Romanyuk V, Likhanov V A and Lopatin O P 2018 *Theoretical and Applied Ecology* 3 27-32
[52] Subramanian K A 2011 *Energy Conversion and Management* **52** 849-57
[53] Lopatin O P 2020 *Journal of Physics: Conf. Series* **1515** 042009
[54] Glenn B C, Upadhyay D and Washington G N 2010 *Transactions on Control Systems Technology* **18**(4) 769-78
[55] Likhanov V A and Lopatin O P 2018 *IOP Conf. Series: Materials Science and Engineering* **457** 012011
[56] Likhanov V A and Lopatin O P 2019 *Journal of Physics: Conf. Series* **1399** 055016
[57] Wu H W and Wu Z Y 2012 *Applied Thermal Engineering* **42** 154-62
[58] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Earth and Environmental Science* **421** 072018
[59] Tsolakis A, Torbati R, Megaritis A and Abu-Jrai A 2010 *Energy and Fuels* **24**(1) 302-8
[60] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **862** 062014
[61] Zhao D, Stobart R, Winward E and Dong G 2015 *Transactions on Control Systems Technology* **23**(3) 829-41
[62] Likhanov V A, Lopatin O P and Yurlov A S 2019 *Journal of Physics: Conf. Series* **1399** 055026
[63] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **862** 062033
[64] Sukumaran S, Van Huynh C and Kong S-C 2013 *Combustion Science and Technology* **185**(11) 1696-714
[65] Likhanov V A, Lopatin O P and Vylegzhanin P N 2020 *IOP Conf. Series: Materials Science and Engineering* **862** 062074
[66] Abd-Elhady M S, Zornek T, Malayeri M R, Müller-Steinhagen H et al. 2011 *International Journal of Heat and Mass Transfer* **54**(4) 838-46
[67] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **919** 062008
[68] Jung Y and Bae C 2015 *Fuel* **161** 312-22.