A typological framework of non-floodplain wetlands for global collaborative research and sustainable use

Wenjun Chen¹,²,*, Josefin Thorslund¹, Daniel M Nover¹, Mark C Rains¹, Xin Li¹, Bei Xu¹,², Bin He¹, Hui Su¹, Haw Yen¹, Lei Liu¹, Huili Yuan¹,², Jerker Jarsjö³ and Joshua H Viers⁴

¹ Jinling Institute of Technology, Nanjing 211169, People’s Republic of China
² Key Laboratory of Watershed Geographic Science, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
³ Department of Physical Geography and the Bolin Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden
⁴ School of Engineering, University of California Merced, Merced, CA 95343, United States of America
⁵ School of Geosciences, University of South Florida, Tampa, FL 33620, United States of America
⁶ State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
⁷ Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, People’s Republic of China
⁸ Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, People’s Republic of China
⁹ School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, United States of America

* Author to whom any correspondence should be addressed.
E-mail: chenwenjun@niglas.ac.cn

Keywords: non-floodplain wetlands, global collaborative research, sustainable wetland use, interdisciplinary, small vulnerable waters

Abstract
Non-floodplain wetlands (NFWs) are important but vulnerable inland freshwater systems that are receiving increased attention and protection worldwide. However, a lack of consistent terminology, incohesive research objectives, and inherent heterogeneity in existing knowledge hinder cross-regional information sharing and global collaboration. To address this challenge and facilitate future management decisions, we synthesized recent work to understand the state of NFW science and explore new opportunities for research and sustainable NFW use globally. Results from our synthesis show that although NFWs have been widely studied across all continents, regional biases exist in the literature. We hypothesize these biases in the literature stem from terminology rather than real geographical bias around existence and functionality. To confirm this observation, we explored a set of geographically representative NFW regions around the world and characteristics of research focal areas. We conclude that there is more that unites NFW research and management efforts than we might otherwise appreciate. Furthermore, opportunities for cross-regional information sharing and global collaboration exist, but a unified terminology will be needed, as will a focus on wetland functionality. Based on these findings, we discuss four pathways that aid in better collaboration, including improved cohesion in classification and terminology, and unified approaches to modeling and simulation. In turn, legislative objectives must be informed by science to drive conservation and management priorities. Finally, an educational pathway serves to integrate the measures and to promote new technologies that aid in our collective understanding of NFWs. Our resulting framework from NFW synthesis serves to encourage interdisciplinary collaboration and sustainable use and conservation of wetland systems globally.

1. Introduction
Wetlands provide multiple benefits and services that are essential in achieving the global Sustainable Development Goals. Non-floodplain wetlands (NFWs) are a common type of wetlands, surrounded by uplands outside of floodplains and riparian areas (Lane et al. 2018). These waters are numerous, widely distributed, and tightly linked to socio-economic development, but their typically small size...
(even down to 0.01 ha; Lane and D’Amico 2016) and shallow nature (water depth < 6 m; Ramsar Convention 1971) leave them frequently unmonitored and unmapped. Thus, due to their minimal physical stature, NFWs remain poorly protected and vulnerable to degradation and destruction caused by both hydro-climatic and anthropogenic drivers (e.g. agricultural intensification, urban expansion, eutrophication, salinization, and invasive species) (Van Meter and Basu 2015, Creed et al 2017, Golden et al 2019). Over the last decade, NFWs have however been increasingly recognized for their functional role in providing multiple ecosystem services, that were once primarily associated with larger, more widely studied systems such as riverine and coastal floodplain wetlands (Cohen et al 2016, Rains et al 2016, Golden et al 2017, Lane et al 2018). This recognition has led to a range of recent initiatives highlighting the importance of NFWs and emergence of collaborative efforts at national and transnational levels to achieve their sustainable use (Hill et al 2018, Sullivan et al 2019, Cheng et al 2020, Sayer and Greaves 2020, Swartz and Miller 2021, Lane et al 2022).

The 1971 Ramsar Convention is by far the most far-reaching international agreement on wetland conservation and sustainable use. A major objective of the Convention is to provide opportunities for the global community to learn and collaborate based on the geographical, functional, and biological representation of the Ramsar wetland sites (Bridgewater and Kim 2021). This is yet far from being achieved for the world’s NFWs, with lacking coordinated research and collaborative utilization at cross-regional to global scales. Starting with terminology, ‘NFW’ is derived from ‘isolated wetlands’ and ‘geographically isolated wetlands (GIWs);’ terms more widely published in North America (Leibowitz and Nadeau 2003, Leibowitz 2015). Although ‘NFW’ has gradually gained acceptance in academia for emphasizing the geographical location rather than falsely generalizing the hydrological isolation of these waters (Mushet et al 2015, Calhoun et al 2017a, Lane et al 2018), it is used inconsistently and often accompanied by ‘GIWs,’ even in the recent research literature and government documents (e.g. U.S. Environmental Protection Agency 2015). Other terms including but not limited to ‘small water bodies’ (Biggs et al 2017), ‘neglected freshwater habitats’ (Hunter et al 2017), ‘temporary wetlands’ (Calhoun et al 2017b), ‘vulnerable waters’ (Creed et al 2017), and ‘wetlandscapes’ (Thorslund et al 2017, Ghajarnia et al 2020) are used or partially used in studying similar small wetlands, but often with a specific focus on wetland attributes (e.g. size, perimeter-area-volume relationship, and hydroperiod), functions (e.g. flood attenuation, nutrient retention, and biodiversity support), and study scales (e.g. individual wetlands, wetlands across landscapes, and wetlands at watershed and regional scales), respectively. Such marked heterogeneity has been cross-validated by several reviews and calls for improved research and collaborative utilization of these wetland systems (Hunter et al 2017, Chen et al 2019, Golden et al 2019, Sayer and Greaves 2020), which indicate the prevailing perspectives at local and regional scales—NFWs are studied with different emphases under different motivations, depending upon where they are located and what we are interested in. The lack of further refinement and organization on the heterogeneity obscures the representativeness of these wetland systems and is an obstacle to collaborative research and sustainable use at larger scales.

Given these knowledge gaps, we raise three questions that are central for promoting the theory and practice of sustainable NFW use to global scale: (a) how extensively have NFWs been studied in different parts of the world? (b) what are the patterns of their research focal areas across different regions? and (c) how can current research efforts aid in improving collaborative research and management of NFWs? We address these questions through the use of meta-analyses of recent scientific literature, an in-depth investigation of representative regions, and interdisciplinary research recommendations, with detailed methods and intermediate results in appendix 1–3. Although any term has inherent limitations for phenomenon that actually spans a continuum (e.g. river vs. stream; Richardson et al 2022), ‘NFW’ is favored over the others here, following previous studies of terminology consolidation (Leibowitz 2015, Mushet et al 2015, Calhoun et al 2017a, Lane et al 2018). This is because of the essential characteristics that distinguish NFWs from floodplain wetlands and our willingness to remain neutral to those different research objectives and motivations. Our exploratory examination of research activity and resulting framework represents a synthesis of what to date has been a diverse but dispersed knowledge base. In turn, this emerging framework can now be used to concentrate dialogue and also aid management and protection for similar small vulnerable waters (e.g. ephemeral or intermittent headwater streams; Lane et al 2022) in the context of global freshwater challenges.

2. NFWs have been widely studied with strong North America influences

Using a dual-step search procedure, our meta-analysis on NFW research yielded 2213 peer-reviewed articles, published over a period of 20 years (2001–2020) and cataloged in the Web of Science™ Core Collection. This procedure contains a first step to retrieve three synthesis types of studies (i.e. review, commentary,
We first identified 36 specific NFW types, and organized them into 9 main types and 27 subtypes, according to the inland wetland classification scheme of the Ramsar Convention (Ramsar Convention Secretariat 2013) and the U.S. Environmental Protection Agency (www.epa.gov/wetlands/classification-and-types-wetlands) (figure 1(a)). Ponds, including its subtypes farm ponds, temporary ponds, multipond systems, karst ponds, chain-of-ponds, and Delmarva ponds, are most studied. Ponds account for 34% of the 2213 articles, despite a recent functional definition involving surface area, depth and coverage of emergent vegetation, that distinguishes them from lakes and wetlands (Richardson et al. 2022). Other NFW types, in descending order of research frequency (ranging from 27% to 5%), include pools, constructed wetlands, marshes, potholes, swamps, fens, and bogs (including their subtypes), while other less-studied wetland types aggregate third at 16%.

Based on the specific NFW types, relevant studies have been found across all seven continents, but the studies are predominantly located in North America (between 39% and 96%, for the nine main types; figure 1(b)). This result is presumably due to the origination of ‘NFW’ terminology, and the further development of legislative/regulatory and management/funding policies around NFWs in the U.S. (Sullivan et al. 2020, Wade et al. 2022). Apart from potholes, in which the dominant subtype of prairie potholes is endemic to North America, literature from Asia and Europe have a combined share of pond, marsh, and constructed wetland research, reaching 33%–53%, each close to or higher than that of North America. Subsequently, NFW research in Africa, South America, and Australia shows an average share of 3.3%, 4.6%, and respectively.
with the total share of swamps (17%) close to that of Asia, while no studies on fens or bogs being found in Africa. Moreover, Antarctica has a small but noteworthy share at 0.9%–1.1% for the categories of ponds, pools, and other wetland types (i.e. 4 out of the 11 polar wetlands in figure 1(a); see table A2 for further elaboration). The geographic distribution of widely studied NFWs were cross-validated by several global wetland databases, including HydroLAKES (www.hydrosheds.org/page/hydrolakes/) and MERIT Hydro (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/). Note, these datasets also highlight the inherent lack of a generalized framework for NFW research as they are both missing geographic distribution data for Antarctica (Hu et al 2017, Zhang et al 2021).

3. Emerging research patterns across representative NFW regions

The above meta-analysis revealed strong North America influence in the NFW studies, which we hypothesize stem from terminology rather than real geographical bias around existence and functionality. To confirm any potential bias in publication frequency, we selected 30 representative regions for an in-depth investigation of research characteristics across NFWs around the world (figure 2). The selection criteria were based around trying to include as many identified NFW types as possible, to cover a wide geographical distribution (by continent) and hydro-climatic settings (by the updated Köppen-Geiger climate classification system; Peel et al 2007), and to cover active NFW study areas, based on recent literature and relevant projects on sustainable wetland use. Further narrations on the selection criteria, grouping experiments, and analytical procedures are in appendix 2. In particular, we analyzed the land-cover characteristics for grouped representative regions, and then linked these regions with a subset (229 site-related articles) of the above full set of articles to assess 12 research focal areas (including hydrogeomorphology, water resource, hydrological and biogeochemical processes, nutrient retention, greenhouse gas regulation, biodiversity, ecosystem services, sustainable agriculture, inventory mapping, and climate change) on NFWs. These research focal areas were summarized from the Millennium Ecosystem Assessment (WHO 2006) and retrieved literature, and to quantified to converge scientific and management concerns across the representative regions (appendix 3).

Using the updated Köppen-Geiger climate classification system as a grouping criterion, and based on grid-formatted Esri 2020 Global Land Cover map (https://livingatlas.arcgis.com/), our results identified similarities in land-cover types around NFWs in different regions of the world. Specifically, tropical and cold zones have common dominant land-cover types around NFWs, including trees, flood vegetation, and scrub-shrub (17%–28%), followed by a smaller proportion of water, grass, crops and build area (2%–15%), despite their huge difference in climatic conditions. Similarly, both arid and polar zones have a higher proportion of scrub-shrub and bare ground (17%–57%), although the second largest land-cover type in arid zones (20%), i.e. crops, does not exist in polar zones, while snow-ice in polar zones (26%) is statistically higher (p-value < 0.1) than that of all other zones combined and almost none in arid zones. Moreover, around NFWs, the proportion of crops, trees, and build area in temperate zones (38%, 24%, and 21%, respectively) and waters in cold zones (6%) are statistically higher than that of the same land-cover type in all other zones combined.

Commonalities and patterns were discovered with regard to the 12 NFW research focal areas. Biodiversity stands out from the others, with high prevalence across all climate zones (44% on average here and throughout). Hydrological and biogeochemical processes are also common across all zones (both 40%), whereas wetland protection is popular in tropical, arid, and temperate zones (52%), but with a lower focus in cold and polar zones (21%). Inventory mapping, nutrient retention (although a subset of biogeochemical processes), and sustainable agriculture have been least studied (13%–14%), although the first one in tropical zones and the latter two in temperate zones are more prominent. Additionally, evaluated publications appear to focus to a larger extent on climate change (44%) and greenhouse gas regulation (40%) in tropical, polar, and cold zones, and ecosystem services in tropical zones (38%) with moderate ecosystem service concerns in arid, temperate and cold zones (25%). Hydrogeomorphology in arid, cold and polar zones (26%) and water resources in arid and temperate zones (24%) are moderately studied.

These emerging patterns of research focal areas, discovered here at global scales, can be attributed to cross-regional differences in hydro-climatic settings and NFW land-cover characteristics. Specifically, greater motivations in studying hydrological and biogeochemical processes are presumably due to relatively limited precipitation but equally necessary freshwater resources in arid and cold zones (Lawford et al 2013, Pekel et al 2016). Higher sensitivities to climate change in tropical, polar, and cold zones at extreme latitudes (IPCC 2021) have led to more attention towards climate change related topics, including greenhouse gas regulation. Extensive cropland and human activities are associated with all land-cover types except snow-ice, confirming higher prevalence of nutrient retention in temperate zones and ecosystem services in all zones outside the polar zones, respectively.
4. New opportunities for global collaborative research and sustainable use

We have demonstrated that NFWs have been widely studied across all continents (including the often-overlooked Antarctica), but with a strong North America influence that may bias interpretation of typology, prevalence, and importance (although the reasons behind the North America influence were not quantified in this study). Moving beyond terminology to wetland functionality, we have further shown commonalities and patterns of research focal areas in representative regions of different NFW types and climate zones. This convergence of scientific evidence on NFW typology and prevalence implies that additional efforts to develop a common framework for collaboration and sustainable use of NFWs are needed. We present here a vision for global collaboration, and outline four pathways that will enhance our understanding and sustainable use of these wetland systems across regions—from classification and simulation as theoretical and technical bases, to improved legislative/regulative support via mutual learning of governments, and bidirectionally reinforced education and science (figure 3). These recommendations, particularly for countries with similar geo-climatic settings and socioeconomic development levels (due to better opportunities to learn from each other),
can complement existing frameworks of NFW utilization and protection for governments and agencies (Golden et al. 2017, Hunter et al. 2017, Calhoun et al. 2017b, Chen et al. 2019, Swartz and Miller 2021), and have potential to galvanize broader international collaborations on sustainable wetland use.

4.1. Classification
NFWs have heterogeneous naming criteria in different geographical settings, e.g. relating to hydroperiod for temporary ponds (Calhoun et al. 2017b), landforms for karst ponds (Hill et al. 2018), structures for chain-of-ponds (Williams et al. 2020), and purpose for farm ponds (Takeuchi et al. 2016) (figure 1(a)). Previous studies have attempted semantic mediation among the terms used (Leibowitz 2015, Mushet et al. 2015, Calhoun et al. 2017a). This however continues to be a fundamental issue that requires urgent and systematic solutions for better understanding and inventorying across regions, as well as reducing regional influences. A systematized categorization can then be built upon main wetland types with subtypes identified, with particular focus on the ecosystem services that characterize NFWs (figure 2(b)) and hydrogeomorphic settings that shape NFWs (e.g. classification systems of Tiner 2003, Dvoretz et al. 2012), plus additional reference to historical classics that reveal how NFWs evolve (e.g. historical records in Gao et al. 2015, Poschlod and Braun-Reichert 2017). On this basis, mutual aid with local adaption considerations (i.e. taking local conditions into considerations), especially on the dominant hydro-climatic characteristics and landscape processes, e.g. the freeze-thaw processes for polar wetlands (Rains 2011) and irrigation practices for multipond systems (Chen et al. 2020b), is preferred, when developing novel technologies, such as hyperspectral remote sensing (Wu et al. 2019), in detecting NFWs’ presence and physical characteristics. Together, these could be more reliable than the distance criterion currently in use (Lane and D’Amico 2016), whether it is 10 meters or longer. At continental and global scales, reassembling exemplary and sophisticated datasets like the U.S. National Wetlands Inventory and Pan-European High-Resolution Layers, while integrating observations of various research focal areas (e.g. the six data categories of the integrated monitoring framework proposed by Chen et al. 2019), with regular automatic or semi-automatic updates (e.g. via google Earth Engine Data Catalog), is recommended to reflect the impact of human activities in disparate regions and boost watershed and climate change sciences (Berrang et al. 2015, Golden et al. 2021).

4.2. Simulation
Recent advances have demonstrated that incorporating NFWs into watershed modeling (from watershed areas ranging from ∼10 km² like Chen et al. 2020b to ∼1000 km² like Evenson et al. 2016, Yeo et al. 2019, Zeng and Chu 2021, and to ∼5 × 10⁵ km² like, Rajib et al. 2020) can improve the accuracy of runoff and nutrient yield simulations. However, challenges remain in understanding the cumulative and comprehensive effects of these landscape mosaics (i.e. small but nonnegligible aquatic patches that embedded in various land-cover types, according to Mushet et al. 2019 and validated by figure 2(b)) at continental or global scales, given our general lack of understanding of their underlying hydrological processes and sensitivity to climate alteration. In terms of land-cover characteristics and research focal areas that characterize NFWs (figure 2), the emerging,
cross-regional differences we demonstrated confirm the diversity of current model refinements, e.g. hydrological connectivity for prairie potholes (Lane et al. 2018), phosphorus retention for farm ponds (Chen et al. 2019), and biodiversity support for vernal pools (Sullivan et al. 2019) in the cold, temperate and arid climate zones, respectively; while the commonalities we presented highlight the need and potential of mutual learning of model assumptions and coupling of model refinements, especially when assessing the coevolution of natural and human systems around NFWs at larger scales. Additionally, separate modeling and parameter estimation for typical study sites, followed by integration and comparison of simulation results, can help eliminate the issues of inconsistent model objectives and structures due to the lack of unified knowledge (i.e. epistemic uncertainty), but requires further inventory, calibration and fidelity assessment to reflect cross-regional discrepancies. Open web-distributed collaborative modeling frameworks, from implementation standards like OpenMI to service-oriented platforms like CSDMS and OpenGMS (Salas et al. 2020, Chen et al. 2020a), are a viable solution, especially in the trend of sharing and reuse for monitoring data.

4.3. Legislation/regulation
In contrast to the universal research focal areas across the globe (figure 2), environmental legislation and regulation for NFWs is uneven, much like the uneven proportions of NFW systems studied across different continents (figure 1(b)). At a more general level, wetland conservation priorities and actions are well developed (Pittock et al. 2015) and are embedded within broader freshwater conservation planning best practices (Nel et al. 2009). At the implementation scale, however, only a few countries, such as England (Biggs et al. 2005), have extensive experience in NFW (mainly pond) monitoring and restoration (Sayer and Greaves 2020). Not surprisingly, other countries, such as U.S., have different and often conflicting policies between federal and state governments—The former has once enforced rules that put NFWs at risk but now more generally promote conservation, whereas the latter have often enacted additional, protective regulations (e.g. Florida in particular) (Creed et al. 2017, Sullivan et al. 2019, 2020, Wade et al. 2022). Additionally, laws and regulations that implement indirect protection have been emerging in a few countries over the past two decades. Examples include Japan’s Satoyama Initiative that promotes the sustainable use of rural natural resources (Takeuchi et al. 2016), China’s Lake/River Chief Mechanism that ensures the water governance and ecological integrity throughout river basins (Wang et al. 2019), and Kenya and Tanzania’s Wildlife Act that improves the biodiversity of national nature reserves with relevance to the safety of large mammals (Cockerill and Hagerman 2020). These cases confirm the value of NFWs in larger ecosystems (i.e. rural, water and wildlife ecosystems) and effectiveness of indirect protection by enhancing existing legal frameworks relating to greater social concerns, although the reality on the ground may not be as effective as the legal framework (Xu et al. 2019). Structured analysis and extension of all these ongoing efforts in conjunction with comprehensive valuation and compensation of ecosystem services is recommended to promote win-win management investment for NFW protection and restoration. This recommendation is particularly useful for countries with similar geo-climatic settings around NFWs (figure 2) and socio-economic development levels, since similar monitoring, evaluating and management strategies can be employed, according to (Flörke et al. 2013, Aguilar 2020).

4.4. Education
The sustainable use of NFWs can be an excellent testbed for two-way interactions between science and education. For popular education and science popularization, cross-regional comparisons based on either formal lectures or field trips can enhance understanding of the ecosystem services provided by NFWs. For research and professional education, establishing connections between historical legacies of NFW terminology (e.g. chain-of-ponds and multipond systems in figure 1), commonalities and patterns in the characterizing land-cover types and research focal areas (figure 2), and geographical, historical, political, and cultural driving factors behind (which together contributed to the prevalence of a term), can help understand our diverse world, including the major current issues such as climate change and resource scarcity. Future scientific discovery on the valuation of NFWs’ ecosystem services, as has been tried in the U.S. (Creed et al. 2017), could explore macroeconomic indicators and ecological compensation systems that contribute to wetland sustainable use, for example. Meanwhile, technological advances are constantly making interdisciplinary knowledge comprehensible and participatory. Virtual reality and gamification, as a basis of the metaverse (Lee et al. 2021), for example, can be used to develop immersive, targeted exhibitions on NFWs in conjunction with iconic wildlife species (e.g. salamanders for vernal pools in the northeastern U.S.; Brooks 2005) and surrounding land-cover types (e.g. woodlands, plantations, grasslands, farmlands, irrigated ponds, canals, etc for the Satoyama landscape in Japan; Takeuchi et al. 2016), as have been applied in the online version of some prominent museums (Lee et al. 2020). The popularization of high-definition cellphone cameras, fifth generation mobile network, and edge machine learning capabilities (i.e. techniques that achieve real-time processing on resource-constrained terminal
devices of the Internet of Things, reducing reliance on the cloud network) can enhance crowdsourced data collection and real-time sharing and analysis on the ecological conditions of these small, vulnerable waters, if properly used to keep the applications attractive to the public participants (including local planners, citizens, farmers, travelers, etc as summarized by Chen et al 2019).

5. Connecting the disconnected

Protection and sustainable use of wetlands is an important global challenge without a simple solution. Local and regional efforts on NFW conservation and sustainable use are often piecemeal and subject to parochial boundaries, while to date cross-regional collaborations have been limited due to lack of consistent terminology, differentiated research focal areas, and heterogeneity at different scales. The meta-analysis and synthesis of the global literature presented here, however, has shown that there are multiple commonalities that emerge for NFW systems. The emerging commonalities and patterns in NFW research focal areas resulted in a framework that spans global climate zones and captures biodiversity, hydrological and biogeochemical processes. This framework in turn serves as a means to identify top research topics and their geographic locations. These NFW research hotspots include climate change impacts and greenhouse gas regulation in tropical, polar, and cold zones. Conversely, inventory mapping, nutrient retention, and sustainable agriculture are the least studied NFW attributes, suggesting room for further collaborative research. These findings suggest that there is more that unites disparate wetland research and management efforts than we might otherwise appreciate. They can also help us move forward with practical work, connecting pathways for new opportunities for sustainable NFW use by the global community—from (a) classification to support inventory mapping, measurement with local adaptations, and data integration, to (b) simulation to promote cognition of different model assumptions, coupling of model refinements, and online collaborative modeling, (c) sharing and learning of legislation/regulation experience from countries with similar backgrounds, and (d) stimulated two-way interaction between science and education with the use of emerging technologies. These recommendations should be further explored to improve collaboration and global realization of sustainable wetland systems.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

We appreciate the editor and reviewers for their valuable suggestions and comments. We thank Dr Yang Xuan from Shanghai University of International Business and Economics for his advice on the data statistics. This study was sponsored by National Natural Science Foundation of China (Grant Nos. 42101476, 42105025 and 42177065), ‘Qing Lan’ Project and Natural Science Research Project of Higher Education Institutions of Jiangsu Province (Grant No. 21KJB170025), U.S. Department of Energy (DOE) U.S.-China Clean-Energy Research Center-Water Energy Technologies CERC-WET (Grant No. DE-IA0000018), Water Conservancy Science and Technology Project of Jiansu Province (Grant No. 2021058), Science and Technology Research Program in Key Areas of Guangdong Province (Grant No. 2020B111530001), and the 2021 Visiting Scholar Program sponsored by China Scholarship Council for the first author. Josefin Thorslund was financially supported by a grant from the Swedish Research Council Formas (Project No. 2018-00812).

Appendix 1. Literature retrieval and wetland type analysis

We developed a dual-step search procedure to retrieve peer-reviewed articles on non-floodplain wetlands (NFWs; including main types and subtypes, as described below) from the Web of Science Core Collection (WoS, www.webofscience.com; the 30 September 2021 Release). To capture the latest knowledge and scientific advances in this field, we focused on published literature within the most recent two decades; 2001–2020. Table A1 shows the search strings, instructions, and results of the search procedure, as detailed below.

In the first step, both ‘NFW’, ‘isolated wetland’, ‘geographically isolated wetland’, and other keywords that reveal the characteristics and research focal areas of these wetlands, were used to retrieve review, commentary, and perspective studies in the field. Studies on aquaculture and water treatment facilities were excluded because the ecosystem processes, particularly the hydroperiod of these waters, are largely human-controlled. Specific NFW types were then manually screened from the result 57 articles based on the authors’ expertise as wetland scientists, and then organized into main wetland types and subtypes (table A2). To make subsequent search steps concise and effective, common modifiers (e.g. ‘blanket’ in ‘blanket bogs’ and ‘ephemeral’ in ‘ephemeral pools’) and equivalents (e.g. ‘constructed ponds or pools’ that are equal to ‘constructed wetlands’) were omitted here. Even so, the alphabetical collection of wetland types in table A2 should be interpreted with caution—it is not a strict classification scheme for
Table A1. Dual-step search procedure for published articles on NFWs.

Search string and keyword	Instruction	Result
Step 1		
(non-floodplain wetland OR isolated wetland OR geographically isolated wetland OR small water bodies OR small vulnerable waters OR neglected freshwater habitat OR temporary wetland OR wetlandscape) \(\text{AND}\) (review OR commentary OR perspective)	(a) Each retrieved article was read through to ensure that it is a review, commentary, or perspective study of NFWs.	57 articles and organized wetland types in table A2.
	(b) Studies on aquaculture and water treatment facilities were excluded.	
	(c) Specific wetland types were manually screened and organized from the eligible articles.	
	(a) Only one keyword in the left parentheses and one keyword in the right parentheses were joined for each search.	
	(b) Results were ranked by relevance.	
	(c) Abstract, conclusions, and figures were perused for each retrieved article from top to bottom, to filter out articles that are not related to NFWs.	
	(d) A maximum of 50 eligible articles were selected for each search.	
Step 2		
(each wetland type in Table A2) \(\text{AND}\) (wetland OR small water bodies OR small vulnerable waters OR neglected freshwater habitat OR wetlandscape)		2213 articles.

Table A2. Main NFW types and subtypes, organized according to the inland wetland classification scheme of the Ramsar Convention and the U.S. Environmental Protection Agency.

Main type	Subtype	Main type	Subtype
Bogs	Kettle-holes	Ponds (continued)	Karst ponds
	Pocosins		Multipool systems
Constructed wetlands (CWs)		Temporary ponds	Temporary pools
Cypress domes\(^a\)		Seasonal pools	Vernal pools
Delmarva and Carolina bays\(^a\)			Limesinks
Desert springs\(^a\)			Prairie potholes
Fens	Alvar wetlands	Wet meadows	Sinkholes
Marshes	Playa\(^a\)	Playa lakes	Desert seeps
	Sandhills wetlands\(^a\)		Hillside seeps
Polar wetlands\(^a,\)	Chain-of-ponds		
	Delmarva ponds		
	Farm ponds		
	Delmas \(^a\)		
	Seeps\(^a\)		
	Swales\(^a\)		
	Swamps		

\(^a\) These wetland types and their subtypes are organized into ‘other wetland types’ in figure 1 in the main manuscript, due to the relatively smaller number of articles that related to them (as described below).

\(^b\) ‘Polar wetlands’ is a generic term used in literature for wetlands in the Arctic, Antarctic, and Tibetan Plateau.

NFWs, as some terms of types are used as synonyms in the literature (e.g. ‘constructed wetlands’ and ‘ponds’, and ‘vernal pools’ and ‘temporary pools’).

In the second step, we expanded the search criteria by joining each wetland type in table A2 and characteristic keywords used above, to retrieve all published articles on NFWs, i.e. not limited to review, commentary, and perspective studies. Some terms like ‘constructed wetlands’, ‘marshes’ and ‘ponds’ had a large number of retrieved results (>10000), while the others like ‘Delmarva ponds’, ‘multipond systems’ and ‘limesinks’ had, comparatively, very few results (<30). To address this issue and evenly use the above wetland types, we ranked the retrieved articles by relevance according to the WoS built-in algorithm (30 September 2021 Release), and then reviewed the abstract, figures, and conclusions of each article manually, to ensure the remaining articles are related to NFWs, and filter out articles that are not related to NFWs. In other words, with particular attention paid to geographical features (i.e. non-floodplain), articles were retained only when the research object belongs to, contains, is within NFWs, or the research topic is explicitly related to NFWs.
Otherwise, a minimum distance of 10-meters far away from rivers, coasts, and floodplains was used as a criterion for the visual inspection of NFWs, according to Lane and D'Amico (2016). Based on this procedure and filtering out repetitive articles that have already been retrieved, the top 50 eligible articles (or all articles if less than 50) were selected for each search, resulting in a total dataset of 2213 articles for this step. The maximum number of 50 was used to balance the number and relevance of articles for each retrieval.

Based on the full set of literature, we analyzed the number of articles where each NFW type (main and subtypes) occurs and the proportion of studies (main types) on each continent (figure 1 in the main manuscript). The number of articles was counted by using the advance search tool of Zotero (www.zotero.org/). Results were shown in a grouped tag cloud (figure 1 in the main manuscript), rather than standard statistical charts (e.g. pie charts), because, as mentioned above, the wetland types we organized here were not a strict classification scheme for NFWs, while some articles were double-counted in the analysis. Specifically, when calculating the proportions of wetland types being studied, the number of continent-related articles increased by one, if a review study includes a specific NFW identifier (IDs) as in figure 2 in the main manuscript, and in tables A3, A4 and A7 below. Additionally, on-site photos of similar NFWs and surrounding landscapes can be found in Google Images (https://images.google.me/) by searching for the specific wetland types and locations in table A3. They can serve as a reference for the general readership. The grid-formatted Esri 2020 Global Land Cover map was used to analyze the proportion of land-cover types for each site. This dataset was built on the European Space Agency Sentinel-2 satellite imagery and has a recent release date (July 2021) and high spatial resolution (10 m) at global scales. The land-cover map was clipped by twice the extent of the imagery for each site in figure A1; showing NFWs and surrounding landscapes, climate group, wetland type, and location information (table A3) of the 30 representative regions are presented, with the same identifiers (IDs) as in figure 2 in the main manuscript and in tables A3, A4 and A7 below. Additionally, on-site photos of similar NFWs and surrounding landscapes can be found in Google Images (https://images.google.me/) by searching for the specific wetland types and locations in table A3. They can serve as a reference for the general readership. The grid-formatted Esri 2020 Global Land Cover map was used to analyze the proportion of land-cover types for each site. This dataset was built on the European Space Agency Sentinel-2 satellite imagery and has a recent release date (July 2021) and high spatial resolution (10 m) at global scales. The land-cover map was clipped by twice the extent of the imagery for each site in figure A1 to better grasp the land-cover characteristics around NFWs, and then reclassified and removed null values (i.e. invalid values in the source files) using ArcToolbox (http://desktop.arcgis.com/), yielding the proportional results in table A4. Due the relatively small sample size in each group, an independent-samples t-test was performed using SPSS, to determine whether the proportions of one climate zone were statistically higher (p-value < 0.1) than those of the other climate zones in the same land-use type.

Appendix 2. Representative region selection and land-cover analysis

In addition to the meta-analysis, 30 representative regions were selected and grouped to investigate research characteristics across NFWs around the world. Following the selection criteria narrated in the main manuscript, the active projects around NFW were gathered from information within the European Pond Conservation Network (www.europeanponds.org/), Global Wetland Ecohydrology Network (www.gwenetwork.se/), and National Association of Wetland Managers (www.nawm.org/). Both classification and clustering experiments were conducted to group the representative NFW regions when investigating their land-cover types and research characteristics. The classification was based on the assumption that NFWs play different roles across different continents, land-cover characteristics, or hydro-climatic settings (by the updated Köppen-Geiger climate classification system), while the clustering, as a type of unsupervised learning, was performed by the Hierarchical Cluster Analysis tools of SPSS Statistics 26 (www.ibm.com/). These regions were eventually grouped by the climate zones due to the most explanatory results and widely-recognized hydro-climatic drivers of wetland change at global scales (Bertassello et al 2019, Åhlén et al 2021).

Satellite imagery (figure A1; showing NFWs and surrounding landscapes), climate group, wetland type, and location information (table A3) of the 30 representative regions are presented, with the same identifiers (IDs) as in figure 2 in the main manuscript and in tables A3, A4 and A7 below. Additionally, on-site photos of similar NFWs and surrounding landscapes can be found in Google Images (https://images.google.me/) by searching for the specific wetland types and locations in table A3. They can serve as a reference for the general readership. The grid-formatted Esri 2020 Global Land Cover map was used to analyze the proportion of land-cover types for each site. This dataset was built on the European Space Agency Sentinel-2 satellite imagery and has a recent release date (July 2021) and high spatial resolution (10 m) at global scales. The land-cover map was clipped by twice the extent of the imagery for each site in figure A1 to better grasp the land-cover characteristics around NFWs, and then reclassified and removed null values (i.e. invalid values in the source files) using ArcToolbox (http://desktop.arcgis.com/), yielding the proportional results in table A4. Due the relatively small sample size in each group, an independent-samples t-test was performed using SPSS, to determine whether the proportions of one climate zone were statistically higher (p-value < 0.1) than those of the other climate zones in the same land-use type.
Figure A1. Recent (July 2021) satellite imagery of the 30 representative NFW regions (numbered according to Site ID). Data source: Google Earth and Maxar Technologies (www.maxar.com). Red arrows points to NFWs if they are not obvious on the image.
Table A3. Information about the 30 representative NFW regions, including their distribution across the climate zones used, region name with specific wetland type, and detailed location (including coordinates).

Climate zone	Region ID	Region name	Detailed location	Central coordinates of the satellite imagery
Tropical	1	Swamps-North Colombia	Near the Ciénaga Grande de Santa Marta, Colombia	74.58 W, 10.49 N
	2	Swamps-East Brazil	Rural area of Canindé, state of Ceará, Brazil	39.27 W, 4.35 S
	3	Swamps-Congo	Sangha River basin, Congo	17.31 E, 0.45 N
	4	Temporary pools-Tanzania	Kilombero River valley, Tanzania	36.05 E, 8.87 S
	5	Marshes-Sri Lanka	Jaffna peninsula, Sri Lanka	79.99 E, 9.74 N
	6	Swamps-Indonesia	Near the Sentarum Lake National Park, Indonesia	112.14 E, 0.99 N
Arid	7	Vernal pools-West U.S.	Sierra Nevada mountain range of California, U.S.	118.81 W, 36.21 N
	8	Swamps-North Mexico	Northeast Coahuila, Mexico	100.90 W, 28.99 N
	9	Playa lakes-Spain	Northwest Malaga Province, Spain	4.85 W, 37.09 N
	10	Swamps-Libya	Southeast of the Maradah oasis, Libya	19.74 E, 28.93 N
	11	Temporary pools-Uzbekistan	Amu Darya River delta, Uzbekistan	58.87 E, 42.94 N
	12	Playas-Central Australia	Between the Lake White and Gregory, Australia	128.42 E, 20.87 S
Temperate	13	Marshes-Southeast U.S.	Upper Ocklawaha River Basin, central Florida, U.S.	81.67 W, 28.44 N
	14	Temporary ponds-England	Northeast Norfolk, England	1.16 E, 52.91 N
	15	Temporary ponds-South Africa	Southeast suburb of Cape Town, South Africa	18.56 E, 34.03 S
	16	Marshes-North India	Jaunpur rural district, Uttar Pradesh, India	82.90 E, 25.92 N
	17	Farm ponds-South China	Xifu River Watershed, Guangdong Province, China	114.76 E, 23.05 N
	18	Multipond systems-Southeast China	Huashan Watershed, Anhui Province, China	118.20 E, 32.32 N
	19	Farm ponds-Japan	Northeast of Himeji City, Honshu Japan	134.99 E, 34.94 N
	20	Chain-of-ponds-Southeast Australia	Southern Tablelands of New South Wales, Australia	149.63 E, 34.87 S
Cold	21	Ponds-Alaska	West of Lake Iliamka, Alaska, U.S.	156.23 W, 59.32 N
	22	Prairie potholes-Canada	Southern Saskatchewan, Canada	106.55 W, 50.74 N
	23	Peat bogs-Canada	Hudson Bay Lowlands, Ontario, Canada	85.19 W, 53.29 N
	24	Marshes-Sweden	Norrström drainage basin, Sweden	14.29 E, 60.23 N
	25	Peat bogs-West Russia	Near the Volga River Delta, Russia	46.29 E, 44.44 N
	26	Peat bogs-Siberia	Lena river basin, Siberia (Russian Far East)	121.71 E, 66.59 N
Polar	27	Polar wetlands-West Antarctica	King George Island, Antarctica	58.48 W, 62.17 S
	28	Polar wetlands-Greenland	Disko Island, west central Greenland	52.15 W, 69.54 N
	29	Ponds-Tibetan Plateau	East of Lake Namuka Co, Tibetan Plateau (the Third Pole)	90.16 E, 31.92 N
	30	Polar wetlands-East Antarctica	The Pyramid Trough Region, Antarctica *	163.32 E, 78.28 S

* Upland ponds fed by intermittent, meltwater streams exist in the Pyramid Trough Region, according to Jungblut et al (2012) and Vincent et al (1994).
Table A4. Classified land-cover proportions (%) around the 30 representative NFW regions, quantified by using the grid-formatted Esri 2020 Global Land Cover map (https://livingatlas.arcgis.com/).

Climate zone	Site ID	Water	Trees	Grass	Flooded vegetation	Crops	Scrub/Shrub	Built area	Bare ground	Snow/Ice
Tropical	1	2.19	5.22	14.16	36.22	1.48	40.37	0.36	0.00	0.00
2	0.73	0.56	0.02	0.00	0.00	0.02	95.26	3.41	0.00	0.00
3	1.10	61.82	25.96	7.76	0.00	0.00	3.28	0.08	0.00	0.00
4	1.81	0.29	1.80	15.43	46.57	46.57	28.88	5.23	0.00	0.00
5	1.34	0.26	0.31	0.26	29.13	29.13	0.33	68.36	0.00	0.00
6	7.02	47.29	0.00	43.60	0.00	0.00	2.09	0.00	0.00	0.00
Average										
7	0.09	5.75	0.19	0.00	0.00	0.00	90.97	2.89	0.10	0.10
8	1.00	2.28	0.00	0.00	9.87	9.87	83.44	2.99	0.41	0.10
9	1.12	3.22	0.07	0.00	37.58	37.58	52.26	3.32	2.43	0.00
Arid	10	0.22	0.00	0.00	0.00	0.00	1.02	0.02	98.75	0.00
11	0.42	0.00	0.00	0.00	74.01	74.01	17.77	7.54	0.26	0.00
12	0.00	3.02	0.00	0.00	0.00	0.00	96.93	0.00	0.04	0.00
Average										
Temperate	13	12.64	30.13	7.59	17.11	1.95	14.11	31.02	0.85	0.00
14	0.07	20.67	0.15	0.00	74.94	74.94	0.58	3.59	0.00	0.00
15	0.21	4.54	2.44	0.12	31.24	31.24	4.72	56.33	0.39	0.00
16	0.84	0.25	0.04	0.16	80.32	80.32	0.58	17.81	0.00	0.00
Average										
Cold	17	15.00	59.52	0.19	0.00	18.69	14.11	31.02	0.85	0.00
18	4.63	28.10	0.00	0.00	55.74	55.74	0.11	11.42	0.00	0.00
19	3.24	45.16	2.16	0.00	11.03	11.03	0.85	37.56	0.00	0.00
20	0.06	2.79	60.46	0.00	27.18	27.18	8.27	1.24	0.00	0.00
Average										
Polar	21	5.64	7.38	13.83	49.58	20.24	57.06	2.79	17.00	0.02
22	15.00	59.52	0.19	0.00	18.69	18.69	0.54	6.05	0.00	0.00
23	4.63	28.10	0.00	0.00	55.74	55.74	0.11	11.42	0.00	0.00
24	3.24	45.16	2.16	0.00	11.03	11.03	0.85	37.56	0.00	0.00
25	0.06	2.79	60.46	0.00	27.18	27.18	8.27	1.24	0.00	0.00
26	0.84	0.25	0.04	0.16	80.32	80.32	0.58	17.81	0.00	0.00
Average										
27	5.64	7.38	13.83	49.58	0.00	23.57	0.00	0.00	0.00	0.00
28	0.31	0.02	0.00	5.81	89.81	89.81	3.65	0.39	0.00	0.00
29	8.86	1.40	1.31	84.21	0.00	4.19	0.00	0.04	0.00	0.00
30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	38.78	61.22	0.00
Average										

*The one and two asterisks indicate statistical significance with confidence intervals of 90 and 95%, respectively.

Appendix 3. Further investigation of research focal areas

Twelve investigated research focal areas were summarized according to the full set of literature retrieved above, the Millennium Ecosystem Assessment (WHO 2006), and the authors’ expertise in wetland sciences (table A5). These research focal areas were used to reflect the main scientific and practical concerns on sustainable NFW use, despite a few overlaps, e.g. among the hydrological and biogeochemical patterns and processes. Meanwhile, for each of the 30 investigated regions, we considered additional site-related articles to quantify the prevalence of the 12 classes of research focal areas (table A6). These articles were selected from the full set of literature, based on the criteria covering the representative regions in figure A1 and surrounding areas with the same type of wetland. Each article has been exhaustively reviewed (without references) for expert judgment and categorization. Table A7 shows the aggregated proportions of research focal areas for the 30 regions, categorized according to the five climate zones. The proportional values were organized into three groups using the Jenks Natural Breaks Classification method implemented in ArcGIS (https://pro.arcgis.com/), to conduct the analysis of research focal areas in the main manuscript.
Table A5. Research focal areas of NFWs and surrounding landscapes.

Research focal areas	Description
Hydrogeomorphology (HM)	Hydrological regime and geomorphic settings that shape and develop the various wetland types and further influence their functions.
Water resource (WR)	Natural resources of water in wetlands (e.g. storage capacity) that are useful or potentially useful to agricultural, industrial, domestic and other human activities.
Hydrological processes (HP)	Components that influence the water budget, including precipitation, evaporation, surface and subsurface inflows, spillage and seepage outflows, groundwater recharge and discharge, etc.
Biogeochemical processes (BP)	Complex interactions between HP, mineralogical transformations, bacterial and vegetation communities, soil stores of carbon and nutrients, including the regulation/cycling of carbon, nitrogen, phosphorus, sulfur, mercury, and other elements.
Nutrient retention (NR)	Role of wetlands as a sink that reduce nutrient loads for downstream waters. This item is valid only when the term 'retention', 'reduction', or 'removal' is mentioned, as relevant mechanisms including sedimentation, plant uptake, and microbial decomposition were classified to belong to BP.
Greenhouse gas regulation (GG)	Fluxes of greenhouses gases (e.g. carbon dioxide, methane, and nitrous oxide), emitted into and absorbed from the atmosphere, and the driving mechanisms like photosynthesis, respiration, decomposition, nitrification, and denitrification.
Biodiversity (BD)	The large number and variety of plants, animals, and microorganisms that wetlands support, as well as the food, habitats, and breeding grounds for these creatures that wetlands provide.
Ecosystem services (ES)	The four categories of provisioning, regulating, cultural and supporting services, defined by the Millennium Ecosystem Assessment (WHO 2006). This item is valid only when the term 'ecosystem services' is mentioned, i.e. these services are recognized as a whole.
Sustainable agriculture (SA)	Wetland-related agriculture that holds a multi-pronged goal: a healthy environment, sufficient food production, economic profitability, and good quality of life for the practitioners. This item is valid when any of the goals are mentioned.
Inventory mapping (IM)	Dataset and digitized map that provides information on the actual or potential location, size, and type of wetlands.
Climate change (CC)	Global warming caused by human activity, particularly the burning of fossil fuels and removal of forests, and its impacts on Earth's weather patterns. This item is valid only when CC is associated with NFWs in the literature.
Wetland protection (WP)	Protecting and conserving the areas where wetland exist. This item is valid only when the term 'protection', 'conservation', or 'preservation' is mentioned.
Table A6. Site-related literature, including their research focal areas of the 30 NFW representative regions.

Site ID	Site-related literature	Research focal areas
		HM WR HP BP NR GG BD ES SA IM CC WC
1	Craven J et al 2017 Development and testing of a river basin management simulation game for integrated management of the Magdalena-Cauca river basin Environ. Modell. Softw. 90 78–88	√ a √ √ √
2	Garcés O O et al 2019 Marine litter and microplastic pollution on mangrove soils of the Ciénaga Grande de Santa Marta Colombian Caribbean. Mar. Pollut. Bull. 145 455–462	√ √
3	Jaramillo F et al 2018 Effects of hydroclimatic change and rehabilitation activities on salinity and mangroves in the Ciénaga Grande de Santa Marta Colombias. Wetlands 38 755–767	√ √ √ √ √
4	Konnerup D et al 2014 Nitrous oxide and methane emissions from the restored mangrove ecosystem of the Ciénaga Grande de Santa Marta Colombias. Estuar. Coast. Shelf S. 140 43–51	√ √
5	Polanía J et al 2015 Recent advances in understanding Colombian mangroves Acta. Oecol. 63 82–90	√ √ √ √
6	Rivera M et al 2011 Salinity and chlorophyll a as performance measures to rehabilitate a mangrove-dominated deltic coastal region: The Ciénaga Grande de Santa Marta-Pajarales Lagoon Complex Colombias. Estuar. Coast. 34 1–19	√ √ √
7	Wemple B C et al 2018 Ecohydrological disturbances associated with roads: Current knowledge, research needs, and management concerns with reference to the tropics Ecohydrology 11 e1881	√ √ √ √
8	Zamora S et al 2020 Carbon fluxes and stocks by Mexican tropical forested wetland soils: A critical review of its role for climate change Mitigation Int. J. Env. Res. Pub. He. 17 7372	√ √ √ √
9	Zipper S C et al 2020 Integrating the water planetary boundary with water management from local to global scales Earth Future 8 e2019EF001377	√ √ √ √ √

(Continued.)
Reference	Title	Journal/Year	Page(s)	Notes
2	Keddy P A et al. 2009 Wet and wonderful: The world's largest wetlands are conservation priorities	*Bioscience* 59	39–51	✓
3	Mitchel E T 2018 The tropical forest carbon cycle and climate change	*Nature* 559	527–534	✓
4	2 Lyon S W et al. 2015 Interpreting the varied drainage-time scale variability across Kilombero Valley	*Hydrol. Process.* 29	1912–1924	✓
5	1 Gopalakrishnan T et al. 2019 Sustainability of coastal agriculture under climate change	*Sustainability* 11	7200	✓
6	2 Couwenberg J et al. 2010 Greenhouse gas fluxes from tropical peatlands in south-east Asia	*Global. Change Biol.* 16	1715–1722	✓
7	3 Graham L L et al. 2017 A common-sense approach to tropical peat swamp forest restoration in Southeast Asian	*Restor. Ecol.* 25	312–321	✓
8	1 Chen C C et al. 2014 Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi	*Sci. Total. Environ.* 487	91–96	✓
9	2 Couwenberg J et al. 2010 Greenhouse gas fluxes from tropical peatlands in south-east Asia	*Global. Change Biol.* 16	1715–1722	✓
10	3 Graham L L et al. 2017 A common-sense approach to tropical peat swamp forest restoration in Southeast Asian	*Restor. Ecol.* 25	312–321	✓
	4 Dohong A et al. 2017 A review of the drivers of tropical peatland degradation in south-east Asia	*Land Use Policy* 69	349–360	✓
	5 Hergoualc'h K & Verchot L V 2011 Stocks and fluxes of carbon associated with land use change in south-east	*Global. Biogeochem. Cy.* 25	101881	✓
	6 Kumar P et al. 2020 Towards an improved understanding of greenhouse gas emissions and fluxes in tropical	*Sustain. Cities. Soc.* 53	101881	✓
	7 Margono B A et al. 2014 Mapping wetlands in Indonesia using Landsat and PALSAR data-sets and derived	*Geo-spat. Inf. Sci.* 17	60–71	✓
	8 Murdiyarso D et al. 2010 Opportunities for reducing greenhouse gas emissions in tropical peatlands	*P. Natl. Acad. Sci.* 107	19655–19660	✓
	9 Page S E et al. 2011 Global and regional importance of the tropical peatland carbon pool	*Carbon. Bal. Manage.* 12	1–12	✓
	10 Warren M et al. 2017 An appraisal of Indonesia’s immense peat carbon stock using national peatland	*Carbon. Bal. Manage.* 12	1–12	✓
Table A6. (Continued.)

	Reference	Year	Categories	Marka	Markb	Markc	Markd	Marke
7	Black C H et al 2016 Using wildfires as a natural experiment to evaluate the effect of fire on southern California vernal pool plant communities	2016						
8	Gosejohan M C et al 2017 Hydrologic influences on plant community structure in vernal pools of northeastern California	2017						
9	Huntsinger J L & Oviedo J L 2014 Ecosystem services are social-ecological services in a traditional pastoral system: The case of California’s Mediterranean rangelands	2014						
10	Kneitel J M et al 2017 California vernal pool endemic responses to hydroperiod, plant thatch, and nutrients	2017						
11	Merriam K E et al 2016 Livestock use has mixed effects on slender orcutt grass in Northeastern California Vernal Pools Rangeland Ecol. Manag.	2016						
12	Pyke C R 2005 Assessing climate change impacts on vernal pool ecosystems and endemic branchiopods	2005						
13	Raimondo S et al 2019 A unified approach for protecting listed species and ecosystem services in isolated wetlands using community-level protection goals	2019						
14	Rains M C et al 2008 Geological control of physical and chemical hydrology in California vernal pools	2008						
15	Rice K J & Emery N C 2003 Managing microevolution: Restoration in the face of global change	2003						
16	Sinnathamby S et al 2020 A sensitivity analysis of pesticide concentrations in California Central Valley vernal pools	2020						
17	Sloop C M et al 2011 Conservation genetics of butte county meadowfoam (Limnanthes floccose ssp. California Arroyo), an endangered vernal pool endemic	2011						
18	Varin M et al 2021 Mapping vernal pools using lidar data and multitemporal satellite imagery	2021						
19	Wacker M & Kelly N M 2004 Changes in vernal pool edaphic settings through mitigation at the project and landscape scale	2004						
20	Beach T et al 2009 A review of human and natural changes in Masa lowland wetlands over the Holocene	2009						
21	Howeth J G et al 2008 Contrasting demographic and genetic estimates of dispersal in the endangered Coahuilan box turtle: a contemporary approach to conservation	2008						
22	Krause S et al 2019 Ancient Maya wetland management in two watersheds in Belize: Soils, water, and paleoenvironmental change	2019						
23	Minckley T A et al 2013 The relevance of wetland conservation in arid regions: A re-examination of vanishing communities in the American Southwest	2013						

(Continued.)
Table A6. (Continued.)

	First Name	Last Name	Title	Journal	Year	Pages	Status	Notes
1	Höbig N	et al	2016 Palaeohydrological evolution and implications for palaeoclimate since the Late Glacial at Laguna de Fuente de Piedra, southern Spain	Quatern. Int.	407	29–46	√	
2	Kohfeld H	et al	2008 Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data	J. Hydrol.	351	170–187	√	
3	Montalván	F J et al	2017 Hydrochemical and isotopes studies in a hypersaline wetland to define the hydrogeological conceptual model: Fuente de Piedra Lake (Malaga, Spain)	Quatern. Int.	407	29–46	√	
4	Rodríguez	R M et al	2016 Applying piezometric evolution indicators to facilitate stakeholder’s participation in the management of groundwater-dependent ecosystems. Case study: Fuente de Piedra playa lake (southern Spain)	J. Hydrol.	543	462–476	√	
5	Rodríguez	R M et al	2006 Estimation of ground-water exchange with semi-arid playa lakes (Antequera region, southern Spain)	J. Arid. Environ.	66	272–289	√	
6	Rodríguez	R M et al	2016 Hydrogeological behaviour of the Fuente-de-Piedra playa lake and tectonic origin of its basin (Malaga, southern Spain)	J. Hydrol.	543	462–476	√	
7	Rodríguez	R M et al	2007 Hydrogeology of ponds, pools, and playa-lakes of southern Spain	Water Resour. Manag.	27	819–830	√	
8	Park L E	& Gierlowski	E H 2007 Paleozoic lake faunas: Establishing aquatic life on land	Palaeogeogr. Palaeocl.	249	160–179	√	
9	Sánchez C S	et al	2004 Evapotranspiration in semi-arid wetlands: Relationships between inundation and the macrophyte-cover: Open-water ratio	Adv. Water Resour.	27	643–655	√	
10	Argyriou T	et al	2015 A fish assemblage from an early Miocene horizon from Jabal Zaltan, Libya	J. Afr. Earth. Sci.	102	86–101	√	
11	Cohen T J	et al	2011 Continental aridification and the vanishing of Australia’s megalakes	Geology.	39	167–170	√	
12	Gouramanis	C et al	2015 High-resolution, multiproxy palaeoenvironmental changes recorded from two mile lake, southern western Australia: Implications for Ramsar-listed playai sites	Mar. Freshwater. Res.	67	748–770	√	
13	Habeck A & Nanson G C	2014 Environmental character and history of the Lake Eyre Basin, one seventh of the Australian continent	Earth-Sci. Rev.	132	59–66	√		

(Continued.)
	Author(s)	Title	Journal/Volume/Issue	Pages	DOI
13	Batzer D P	The seemingly intractable ecological responses of invertebrates in north American wetlands: A review	Wetlands 33 1–15		
2	Chadwick J	Integrated LiDAR and IKONOS multispectral imagery for mapping mangrove distribution and physical properties	Int. J. Remote. Sens. 32 6765–6781		
3	Engle V D	Estimating the provision of ecosystem services by Gulf of Mexico coastal wetlands	Wetlands 31 1793		
4	Lane C R & D’Amico E	Calculating the ecosystem service of water storage in isolated wetlands using LiDAR in north central Florida, USA	Wetlands 30 967–977		
5	Lane C R et al	Denitrification potential in geographically isolated wetlands of North Carolina and Florida, USA	Wetlands 35 59–471		
6	McLaughlin D L & Cohen M J	Ecosystem specific yield for estimating evapotranspiration and groundwater exchange from diel surface water variation	Hydrol. Process. 28 1495–1506		
7	Middleton B A	Regeneration potential of f≤xodium distichum swamps and climate change	Plant. Ecol. 202 257–274		
8	Park J et al	Stochastic modeling of hydrologic variability of geographically isolated wetlands: Effects of hydro-climatic forcing and wetland bathymetry	Adv. Water Resour. 69 38–48		
9	Reif M et al	Mapping isolated wetlands in a karst landscape: GIS and remote sensing methods	Gisci. Remote. Sens. 46 187–211		
10	Said A et al	Simulation of surface water for un-gauged areas with storage-attenuation wetlands	J. Am. Water Resour. As. 43 546–556		
11	Zhang J et al	Calibration of the HSPF model with a new coupled FABLE generation method	Prog. Nat. Sci. 19 1747–1755		
14	Biggs J et al	15 years of pond assessment in Britain: Results and lessons learned from the work of pond conservation	Aquat. Conserv. 15 693–714		
2	Bilton D T et al	Ecology and conservation status of temporary and fluctuating ponds in two areas of southern England	Aquat. Conserv. 19 134–146		
3	Ewald N C et al	Climate change and trophic interactions in model temporary pond systems: The effects of high temperature on predation rate depend on prey size and density	Freshwater. Biol. 58 2481–2493		
4	Lewis J et al	Pond management enhances the local abundance and species richness of farmland bird communities	Agr. Ecosyst. Environ. 273 130–140		
5	Ruse L P, Greaves H et al	Consequences of pond management for chironomid assemblages and diversity in English farmland ponds	J. Limnol. 77		
6	Sayer C & Greaves H	Making an impact on UK farmland pond conservation	Aquat. Conserv. 30 1821–1828		
7	Sayer C	Conservation of aquatic landscapes: Ponds, lakes, and rivers as integrated systems	Wires. Water 1 573–585		
8	Sayer C et al	The role of pond management for biodiversity conservation in an agricultural landscape	Aquat. Conserv. 22 626–638		
9	Thornhill I A et al	The functional response and resilience in small waterbodies along land-use and environmental gradients	Global. Change Biol. 24 3079–3092		
10	Zhang Y et al	The potential benefits of on-farm mitigation scenarios for reducing multiple pollutant loadings in prioritized agri-environment areas across England	Environ. Sci. Policy 73 100–114		
No.	Author(s)	Title	Journal/Note		
-----	---	--	-----------------------		
1	Apinda L. F. et al. 2014	Value of artificial ponds for aquatic beetle and bug conservation in the Cape Floristic Region biodiversity hotspot	*Aquat. Conserv.* 24: 522–535		
2	Carta A 2016	Seed regeneration in Mediterranean temporary ponds: Germination ecophysiology and vegetation processes	*Hydrobiologia* 782: 23–35		
3	De Necker L. et al. 2020	Using stable 813 C and 815 N isotopes to assess food web structures in an African subtropical temporary pool	*Afr. Zool.* 55: 79–92		
4	Melly B. L. et al. 2017	Mapping ephemeral wetlands: Manual digitization and logistic regression modelling in Nelson Mandela Bay Municipality, South Africa	*Wetl. Ecol. Manag.* 25: 313–330		
5	Namugize J. N. et al. 2018	Effects of land use and land cover changes on water quality in the umgeni river catchment, South Africa	*Phys. Chem. Earth* 105: 247–264		
6	Rockstrom J. 2000	Water resource management in smallholder farms in Eastern and Southern Africa: An overview	*Phys. Chem. Earth* 25: 275–283		
7	Samways M. J. et al. 2020	Value of artificial ponds for aquatic insects in drought-prone southern Africa: A review	*Biodivers. Conserv.* 29: 3131–3150		
8	Vimercati G. et al. 2017	Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran	*Ecol. Model.* 356: 104–116		

No.	Author(s)	Title	Journal/Note
16	Behera M. D. et al. 2012	Wetland monitoring, serving as an index of land use change-A study in Samaspur wetlands, Uttar Pradesh, India	*J. Indian. Soc. Remote.* 40: 287–297
17	Rahman M. M. et al. 2016	An enhanced SWAT wetland module to quantify hydraulic interactions between riparian depressional wetlands, rivers and aquifers	*Environ. Model. Softw.* 84: 263–289
3	Singh E. J. et al. 2013	Groundwater quality in Imphal West district, Manipur, India, with multivariate statistical analysis of data	*Environ. Sci. Pollut. R.* 20: 2421–2434
4	Singh M. & Sinha R. 2020	Distribution, diversity, and geomorphic evolution of floodplain wetlands and wetland complexes in the Ganga plains of north Bihar, India	*Geomorphology* 351: 106960
5	Sundar K. G. & Kittur S. 2013	Can wetlands maintained for human use also help conserve biodiversity?	*Landscape-scale patterns of bird use of wetlands in an agricultural landscape in north India* *Biol. Conserv.* 168: 49–56
6	Urfi A. J. et al. 2007	Nesting ecology of the painted stork mycteria leucocephala at Sultanpur National Park, Haryana, India	*Forktail* 23: 150

(Continued.)
	Author(s)	Title	Journal/Book/Conference/Other	Year	Pages	Status	
6	Tang Z 2019	Rural revitalization and scientific management in the Pearl River Delta: Scientific decision based on scientific rationality and public understanding	Global Transitions 1 241–250	2019		√	
7	Weng Q 2007	A historical perspective of river basin management in the Pearl River Delta of China	J. Environ. Manage. 85 1048–1062	2007		√	
8	Xiao D N 2011	Landscape ecological construction in rural China: Theory and application	Chinese Geogr. Sci. 11 104–114	2011		√	
1	Chen H 2011	Surface-flow constructed treatment wetlands for pollutant removal: Applications and perspectives	Wetlands 31 805–814	2011		√	
2	Chen W et al 2020	Exploring the multiscale hydrologic regulation of multipond systems in a humid agricultural catchment	Water Res. 184 115987	2020		√	
3	Fang T et al 2016	Study on the application of integrated eco-engineering in purifying eutrophic river waters	Ecol. Eng. 94 320–328	2016		√	
4	Liu Y et al 2009	Phosphorus sorption and sedimentation in a multipond system within a headstream agricultural watershed	Water Qual. Res. J. Can. 44 243–252	2009		√	
5	Tang W et al 2010	Phosphorus buildup and release risk associated with agricultural intensification in the estuarine sediments of Chaohu Lake valley, eastern China	Clean-Sol Air Water 38 336–343	2010		√	
6	Verhoeven J T et al 2006	Regional and global concerns over wetlands and water quality	Trends Ecol. Evol. 21 96–103	2006		√	
7	Wu D et al 2019	Improvement and testing of SWAT for multi-source irrigation systems with paddy rice	J. Hydrol. 568 1031–1041	2019		√	
8	Xia Y et al 2013	Is indirect N\(_2\)O emission a significant contributor to the agricultural greenhouse gas budget?	A case study of a rice paddy-dominated agricultural watershed in eastern China	Atmos. Environ. 77 943–950	2013		√
9	Yin C & Shan B 2001	Multipond systems: A sustainable way to control diffuse phosphorus pollution	Ambio 30 369–375	2001		√	
10	Zhang H & Shan B 2008	Historical distribution and partitioning of phosphorus in sediments in an agricultural watershed in the Yangtze-Huaihe region, China	Environ. Sci. Technol. 42 2328–2333	2008		√	
11	Zhang H & Shan B 2008	Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze-Huaihe region, China	Sci. Total. Environ. 399 113–120	2008		√	

(Continued.)
Table A6. (Continued.)

Table No.	Author(s) and Year	Description	Journals	Citations
7	Usio N et al. 2017	Effects of land use on trophic states and multi-taxonomic diversity in Japanese farm ponds	Agr. Ecosyst. Environ. 247: 205–215	√ √ √ √
8	Usio N et al. 2013	Effects of pond draining on biodiversity and water quality of farm ponds	Conserv. Biol. 27: 1429–1458	√ √ √ √
9	Wang Z et al. 2017	Retrieval of chlorophyll-a and total suspended solids using iterative stepwise elimination partial least squares (ISE-PLS) regression based on field hyperspectral measurements in irrigation ponds in Higashihiroshima, Japan	Remote. Sens. 9: 264	√
20	Cartwright I & Morgenstern U 2016	Using tritium to document the mean transit time and sources of water contributing to a chain-of-ponds river system: implications for resource protection	Appl. Geochem. 75: 9–19	√ √ √ √
2	Hazell D et al. 2004	A comparison of constructed and natural habitat for frog conservation in an Australian agricultural landscape	Biol. Conserv. 119: 61–71	√ √
3	Mactaggart B et al. 2007	When History May Lead us Astray: using historical documents to reconstruct swampy meadows/chains of ponds in the New South Wales Central Tablelands, Australia	Aust. Geogr. 38: 233–252	√ √ √
4	Mould S & Fryirs K 2017	The Holocene evolution and geomorphology of a chain of ponds, southeast Australia: Establishing a physical template for river management	Carina 149: 349–362	√ √
5	Williams R T & Fryirs K A 2020	The morphology and geomorphic evolution of a large chain-of-ponds river system	Earth Surf. Proc. Land. 45: 1732–1748	√ √
6	Williams R T et al. 2020	The hydrological function of a large chain-of-ponds: A wetland system with intermittent surface flows	Aquat. Sci. 82: 1–18	√ √
1	Bennett J R et al. 2015	Polar lessons learned: Long-term management based on shared threats in Arctic and Antarctic environments	Front. Ecol. Environ. 13: 316–324	√ √ √ √ √
2	Bowling L C & Lettenmaier D P 2010	Modeling the effects of lakes and wetlands on the water balance of Arctic environments	J. Hydrometeorol. 11: 276–295	√ √
3	Clewley D et al. 2015	Evaluation of ALOS PALSAR data for high-resolution mapping of vegetated wetlands in Alaska	Remote. Sens. 7: 7272–7297	√ √ √
4	Hindman L D et al. 2005	Evidence and implications of recent climate change in northern Alaska and other arctic regions	Climatic Change 72: 251–298	√ √ √ √ √
5	In’t Zandt M H, Liebner S & Welte C U 2020	Roles of thermokarst lakes in a warming world.	Trends Microbiol. 28: 769–779	√ √
6	Kalliovirta A Y et al. 2019	Thermokarst lakes, ecosystems with intense microbial processes of the methane cycle	Microbiology + 8: 649–661	√ √ √ √
7	Klein E et al. 2005	Wetland drying and succession across the Kenai Peninsula Lowlands, south-central Alaska	Can. J. Forest. Res. 35: 1931–1941	√ √
8	Necsoiu M et al. 2013	Multi-temporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska	Environ. Res. Lett. 8: p.025007	√ √ √ √ √
9	Rains M C 2011	Water sources and hydrodynamics of closed-basin depressions, cook inlet region, Alaska	Wetlands 31: 377–387	√ √
10	Rautio M et al. 2011	Shallow freshwater ecosystems of the circumpolar Arctic	Ecoscience 18: 204–222	√ √ √ √ √

(Continued.)
Table A6. (Continued.)

No.	Authors and Year	Title	Journal	Volume	Pages	References
11	Riordan B et al. 2006	Shrinking ponds in subarctic Alaska based on 1930–2002 remotely sensed images	Geophys. Res.-Biogeogr.	111	266–275	✓
12	Schmidt J H et al. 2009	Environmental and human influences on trumpeter swan habitat occupancy in Alaska	Condor.	111	33:1151–1163	✓
13	Tieg S D et al. 2013	Litter decomposition, and associated invertebrate communities, in wetland ponds of the Copper River Delta, Alaska (USA)	*Wetlands*	33	1151–1163	✓
14	Wik M et al. 2016	Climate-sensitive northern lakes and ponds are critical components of methane release	Geosci.	9	99–105	✓
15	Van Huisteden J & Dolman A J. 2012	Soil carbon in the Arctic and the permafrost carbon feedback	*Curr. Opin. Env. Sust.*	4	545–551	✓
16	Yoshikawa K & Hinzman L D. 2003	Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska	*Permafrost. Periglac.*	14	151–160	✓
22	Ameli A A & Creed I F. 2019	Does wetland location matter when managing wetlands for watershed-scale flood and drought resilience	*J. Am. Water Resour. As.*	55	529–542	✓
23	Bartzen B A et al. 2010	Trends in agricultural impact and recovery of wetlands in prairie Canada	*Ecol. Appl.*	20	525–538	✓
24	Benoy G A. 2008	Tiger salamanders in prairie potholes: A 'fish in amphibian's garments'?	*Wetlands*	28	464–472	✓
25	Brooks J R et al. 2018	Estimating wetland connectivity to streams in the prairie pothole region: An isotopic and remote sensing approach	*Water Resour. Res.*	54	955–977	✓
26	Evenson G R et al. 2018	Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions	*Ecol. Appl.*	28	953–966	✓
27	Fedy B et al. 2018	Distribution of priority grassland bird habitats in the Prairie Pothole Region of Canada.	*Avian Conserv. Ecol.*	13	4	✓
28	Forey G M et al. 2007	Influence of land use and climate on wetland breeding birds in the Prairie Pothole region of Canada	*Can. J. Zool.*	85	421–436	✓
29	Muhammad A et al. 2018	Assessing the importance of potholes in the Canadian prairie region under future climate change scenarios	*Water*	10	1657	✓
30	Neff B P & Rosenberry D O. 2013	Groundwater connectivity of upland-embedded wetlands in the prairie pothole region	*Wetlands*	38	51–63	✓
31	Patterson J K et al. 2018	Wetlands, flood control and ecosystem services in the Smith Creek Drainage Basin: A case study in Saskatchewan, Canada	*Can. Ecol. Econ.*	147	36–47	✓
32	Shaw D A et al. 2013	Topographic analysis for the prairie pothole region of western Canada	*Hydrol. Process.*	27	3105–3114	✓
33	van der Valk A G & Pederson R L. 2003	The SWANCC decision and its implications for prairie potholes	*Wetlands*	23	590–596	✓
34	Wu Q et al. 2019	Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google earth engine	*Remote. Sens. Environ.*	228	1–13	✓
35	Zeng T & Arnold W A. 2013	Pesticide photolysis in prairie potholes: probing photosensitized processes	*Environ. Sci. Technol.*	47	6735–6745	✓
Table A6. (Continued.)

	Reference	Ecology	Climate	Ecosystem Service	Service Area	Description
1	Delidjakova K K et al 2016 Influence of Hudson Bay on the carbon dynamics of a Hudson bay lowlands coastal site.	✓	✓	✓	✓	
2	Glaser P H et al 2004 Rates, pathways and drivers for peatland development in the Hudson bay lowlands, northern Ontario, Canada.	✓	✓	✓	✓	
3	Harris L I et al 2020 Mechanisms for the development of microform patterns in peatlands of the Hudson bay lowland.	✓	✓	✓	✓	
4	Helbig M et al 2019 Contrasting temperature sensitivity of CO2 exchange in peatlands of the Hudson bay lowlands, Canada.	✓	✓	✓	✓	
5	Holmqvist J R et al 2014 Peatland initiation, carbon accumulation, and 2 ka depth in the James bay lowland and adjacent regions.	✓	✓	✓	✓	
6	Humphreys E R et al 2014 Two bogs in the Canadian Hudson bay lowlands and a temperate bog reveal similar annual net ecosystem exchange of CO2.	✓	✓	✓	✓	
7	Laamrani A et al 2020 Analysis of the effect of climate warming on paludification processes.	✓	✓	✓	✓	
8	Martini I P 2006 The cold-climate peatlands of the Hudson Bay Lowland, Canada: Brief overview of recent work.	✓	✓	✓	✓	
9	Richardson M et al 2012 The influences of catchment geomorphology and scale on runoff generation in a northern peatland complex.	✓	✓	✓	✓	
10	Ulanowski T A & Branson R A 2013 Small-scale variability in peatland pore-water biogeochemistry,	✓	✓	✓	✓	

(Continued.)
25	1	Bukvareva E N et al	2015	The current state of knowledge of ecosystems and ecosystem services in Russia: A status report	Ambio	44	491–507	√
	2	Kasimov N S et al	2012	Modern geochemical evolution of lagoon-marshy landscapes in the western Caspian Sea region	Eurasian Soil. Sci.	45	1–11	√
	3	Kholodov V N et al	2012	Facies types of sedimentary iron ore deposits and their geochemical features: Communication 1. Facies groups of sedimentary ores, their lithology, and genesis	Lithol. Miner. Resour.	47	447–472	√
	4	Lychagin M Y et al	2015	Heavy metals in the water, plants, and bottom sediments of the Volga River mouth area	J. Coastal. Res.	31	859–868	√
	5	Robarts R D et al	2013	The state of knowledge about wetlands and their future under aspects of global climate change: The situation in Russia	Aquat. Sci.	75	27–38	√
	6	Tanneberger F et al	2017	The peatland map of Europe	Mires. Peat.	19	1–17	√
26	1	Fonseca A et al	2014	Integrated hydrological and water quality model for river management: A case study on Lena River	Sci. Total. Environ.	485	474–489	√
	2	Helbig M et al	2013	Spatial and seasonal variability of polygonal tundra water balance: Lena River Delta, northern Siberia (Russia)	Hydrogeol. J.	21	133–147	√
	3	Razjigaeva N G et al	2019	Landscape response to the medieval warm period in the south Russian far east	Quatern. Int.	519	215–231	√
	4	Suzuki K et al	2016	Satellite gravimetry-based analysis of terrestrial water storage and its relationship with run-off from the Lena River in eastern Siberia	Int. J. of Remote. Sens.	37	2198–2210	√
	5	Vompersky S E et al	2011	Estimation of forest cover extent over peatlands and paludified shallow-peat lands in Russia	Contemp. Probl. Ecol.	4	734–741	√
27	1	Krogulec E et al	2018	Hydrogeological characteristics of aquifer near Arctowski Polish Antarctic station on King George Island (South Shetland Islands), Antarctica	Polar. Sci.	16	68–77	√
	2	Krivárová J & Elster J	2013	Standardized algal growth potential and/or algal primary production rates of maritime Antarctic stream waters (King George Island, South Shetlands)	Polar. Res.	32	11191	√
	3	Šabacka M & Elster J	2006	Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress	Polar Biol.	30	31–37	√

(Continued.)
Table A6. (Continued.)

	Authors	Title	Journal/Book	Year	Volume	Page Range	Mark
28	Christiansen J R et al	2015 Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland	Biogeochimistry 122	2015	15–33		√
	Joabsson A & Christensen T R	2001 Methane emissions from wetlands and their relationship with vascular plants an Arctic example	Global. Change. Biol. 7	2001	919–932		√
	Pirk N et al	2017 Toward a statistical description of methane emissions from arctic wetlands	Ambio 46	2017	70–80		√
	Schuldt R J et al	2013 Modelling Holocene carbon accumulation and methane emissions of boreal wetlands—an Earth system model approach	Biogeosciences 10	2013	1659–1674		√
	Ström L et al	2012 Presence of Eriophorum scheuchzeri enhances substrate availability and methane emission in an Arctic wetland	Soil. Biol. Biochem. 45	2012	61–70		√
	Westegaard A et al	2013 Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area	Isprs. J. Photogramm.	2013	86	89–99	√
	Woo M K & Young K L	2006 High Arctic wetlands: their occurrence, hydrological characteristics and sustainability	J. Hydrol. 320	2006	432–450		√
29	Gao J et al	2012 Topographic influence on wetland distribution and change in Maduo county, Qinghai-Tibet Plateau, China	J. Mt. Sci.-Engl. 9	2012	362–371		√
	Gao J et al	2013 Degradation of wetlands on the Qinghai-Tibet Plateau: A comparison of the effectiveness of three indicators	J. Mt. Sci.-Engl. 10	2013	658–667		√
	Gao J et al	2013 Geomorphic-centered classification of wetlands on the Qinghai-Tibet Plateau, Western China	J. Mt. Sci.-Engl. 10	2013	632–642		√
	Jin H et al	2009 Changes in permafrost environments along the Qinghai–Tibet engineering corridor induced by anthropogenic activities and climate warming	Cold. Reg. Sci. Technol. 53	2009	317–333		√
	Serban R D et al	2020 Mapping thermokarst lakes and ponds across permafrost landscapes in the headwater area of yellow river on northeastern Qinghai–Tibet plateau	Int. J. Remote. Sens. 41	2020	7042–7067		√
	Wang J et al	2020 High uncertainties detected in the wetlands distribution of the Qinghai–Tibet Plateau based on multisource data	Landsc. Ecol. Eng. 16	2020	46–61		√
	Zhang L et al	2020 Significant methane ebullition from alpine permafrost rivers on the east Qinghai–Tibet plateau	Nat. Geoci. 13	2020	349–354		√
30	Head J W & Marchant D R	2014 The climate history of early Mars: Insights from the Antarctic Mcmurdo dry valleys hydrologic system	Antartic. Sci. 26	2014	774–800		√
	Power S N et al	2020 Estimating microbial mat biomass in the Mcmurdo dry valleys, Antarctica using satellite imagery and ground surveys	Polak. Biol. 43	2020	1753–1767		√
	Jungblut A D et al	2012 The Pyramid Trough Wetland: environmental and biological diversity in a newly created Antarctic protected area	Fems. Microb. Ecol. 82	2012	356–366		√
	Sutherland D L et al	2020 Environmental drivers that influence microalgal species in meltwater pools on the Mcmurdo ice shelf, Antarctica	Polar. Biol. 43	2020	467–482		√
	Włośkowiski A N et al	2019 The hydroecology of an ephemeral wetland in the Mcmurdo dry valleys, Antarctica	J. Geophys. Res. 124	2019	3814–3830		√

* A tick mark indicates this research focus is included in the literature.
Table A7. Aggregated proportions (%) of research activity for the 30 representative NFW regions, categorized according to the five climate zones and research focal areas.

Climate zone	HM	WR	HP	BP	NR	GG	BD	ES	SA	IM	CC	WC
Tropical	17.95	38.46	30.77	7.69	51.28	46.15	38.46	12.82	20.51	51.28	48.72	+
Arid	21.62	56.76	43.24	5.41	2.70	48.65	27.03	18.92	8.11	18.92	48.65	+
Temperate	26.09	26.09	31.88	30.43	10.14	44.93	23.19	26.09	13.04	14.49	57.97	+
Cold	17.74	53.23	45.16	22.58	32.26	35.48	24.19	4.84	9.68	38.71	19.35	+
Polar	13.64	27.27	50.00	0.00	36.36	45.45	13.64	0.00	18.18	40.91	22.73	+

The plus, minus and no marks indicate the three groups of all proportional data here, classified by the Jenks classification method implemented in ArcGIS.

ORCID ID

Joshua H Viers @ https://orcid.org/0000-0001-7957-7942

References

Aguilar N 2020 Green gross domestic product (Green GDP) and sustainable development Reduced Inequalities (Switzerland: Springer) pp 1–15

Åhlén I et al 2021 Hydro-climatic changes of wetlandscapes across the world Sci. Rep. 11 1–11

Berrang F L, Pearce T and Ford J D 2015 Systematic review approaches for climate change adaptation research Reg. Environ. Change 15 755–69

Biggs J et al 2017 The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers Hydrobiologia 793 3–39

Biggs J, Williams P, Whitfield M, Nicolet P and Weatherby A 2005 15 years of pond assessment in Britain: results and lessons learned from the work of pond conservation Aquat. Conserv. 15 693–714

Brooks R T 2005 A review of basin morphology and pool hydrology of isolated ponded wetlands: implications for seasonal forest pools of the northeastern United States Wetl. Ecol. Manage. 13 335–48

Calhoun A J, Mustel D M, Alexander I C, DeKeyser E S, Fowler L, Lane C R, Lang M W, Rains M C, Richter S C and Walls S C 2017 The significant surface-water connectivity of "geographically isolated wetlands" Wetlands 37 801–6

Calhoun A J, Mustel D M, Bell K P, Boix D, Fitzsimons J A and Isselin-Nondedeu F 2017 Temporary wetlands: challenges and solutions to conserving a ‘disappearing’ ecosystem Biol. Conserv. 211 3–11

Chen M et al 2020a Position paper: open web-distributed integrated geographic modelling and simulation to enable broader participation and applications Earth-Sci. Rev. 207 103223

Chen W, He B, Nover D, Lu H, Liu J, Sun W and Chen W 2019 Farm ponds in southern China: challenges and solutions for conserving a neglected wetland ecosystem Sci. Total Environ. 659 1322–34

Chen W, Nover D, Yen H, Xia Y, He B, Sun W and Viers J 2020 Exploring the multiscale hydrologic regulation of multipond systems in a humid agricultural catchment Water Res. 184 115987

Cheng F Y, Van Meter K J, Byrnes D K and Basu N B 2020 Maximizing US nitrate removal through wetland protection and restoration Nature 588 625–30

Cockerill K and Hagerman S 2020 Historical insights for understanding the emergence of community-based conservation in Kenya: international agendas, colonial legacies, and contested worldviews Ecol. Soc. 25 15

Cohen M J et al 2016 Do geographically isolated wetlands influence landscape functions? Proc. Natl Acad. Sci. USA 113 1978–86

Cred F E et al 2017 Enhancing protection for vulnerable waters Nat. Geosci. 10 809–15

Dvoret D, Bidwell J, Davis C and DuBois C 2012 Developing a hydrogeomorphic wetland inventory: reclassifying national wetlands inventory polygons in geographic information systems Wetlands 32 83–93

Evenson G R, Golden H E, Lane C R and D’Amico E 2016 An improved representation of geographically isolated wetlands in a watershed-scale hydrologic model Hydrol. Process. 30 4168–44

Flörke M, Kynast E, Bärland I, Eisner S, Wimmer F and Akamno J 2013 Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study Glob. Environ. Change 23 144–56

Gao J, Wang R and Huang J 2015 Ecological engineering for traditional Chinese agriculture—a case study of beitang Ecol. Eng. 76 7–13

Ghajarnia N et al 2020 Data for wetlandscapes and their changes around the world Earth Syst. Sci. Data 12 1083–100

Golden H E et al 2017 Integrating geographically isolated wetlands into land management decisions Front. Ecol. Environ. 15 319–27

Golden H E, Lane C R, Rajib A and Wu Q 2021 Improving global flood and drought predictions: integrating non-floodplain wetlands into watershed hydrologic models Environ. Res. Lett. 16 091002

Golden H E, Rajib A, Lane C R, Christensen J R, Wu Q and Mengistu S 2019 Non-floodplain wetlands affect watershed nutrient dynamics: a critical review Environ. Sci. Technol. 53 7203–14

Hill M J et al 2018 New policy directions for global pond conservation Conserv. Lett. 11 e12447

Hu S, Niu Z and Chen Y 2017 Global wetland datasets: a review Fems Microbiol. Ecol. 694 133765

IPCC 2021 Summary for policymakers Climate Change 2021: The Physical Science Basis (available at: www.ipcc.ch/report/ar6/wg1/)

Jungblut A D, Wood S A, Hawes I, Webster-Brown J and Harris C 2012 The Pyramid Trough Wetland: environmental and conservation implications of shifts in hydro-climatic forcing and landscape configuration Sci. Total Environ. 694 133765

Kaltenmuller B, Scholl M, Wimmer F, Kynast E, Lauth M, Poels M, Wimmer A and Muller J 2020 Implementing the Ramsar Convention in the wetland-rich region of the Lower Danube Basin—case studies of Austria and Germany Ecol. Soc. 25 16

Lam C R et al 2020 Implementing the Ramsar Convention in the wetland-rich region of the Lower Danube Basin—case studies of Austria and Germany Ecol. Soc. 25 16

Lane C R, Leibowitz S G, Autrey B C, LeDuc S D and Alexander L C 2018 Hydrological, physical, and chemical...
functions and connectivity of non-floodplain wetlands to downstream waters: a review J. Am. Water Resour. Assoc. 54 346–71

Lawford R, Strauch A, Toll D, Fekele B and Cripe D 2013 Earth observations for global water security Curr. Opin. Environ. Sustain. 5 633–43

Lee H, Jung T H, Tom Dieck M C and Chung N 2020 Experiencing immersive virtual reality in museums Inform. Manage. 57 103229

Lee I H, Braud T and Zhou P, Wang L, Xu D, Lin Z and Hui P 2021 All one needs to know about meanders: a complete survey on technological singularity, virtual ecosystem, and research agenda (arXiv:2110.05352)

Leibowitz S G 2015 Geographically isolated wetlands: why we should keep the term Wetlands 35 997–1003

Leibowitz S G and Nadeau T L 2003 Isolated wetlands: state-of-the-science and future directions Wetlands 23 663–84

Mushet D M, Alexander I C, Bennett M, Schofield K, Christensen J R, Ali G, Pollard A, Fritz K and Lang M W 2019 Differing modes of biotic connectivity within freshwater ecosystem mosaics J. Am. Water Resour. Assoc. 55 307–17

Mushet D M, Calhoun A J, Alexander I C, Cohen M J, DeKrey E S, Fowler L, Lane C R, Lang M W, Rains M C and Wallis S C 2015 Geographically isolated wetlands: rethinking a misnomer Wetlands 35 423–31

Neil J L, Roux D J, Abel R, Ashton P J, Cowling R M, Higgins J V, Thieme M and Viers J H 2009 Progress and challenges in freshwater conservation planning Aquat. Conserv. 19 474–85

Peel M C, Finlayson B L and McMahon T A 2007 Updated world map of the Köppen-Geiger climate classification Hydrocl. Earth Syst. Sci. 11 1633–44

Pekel J E, Cottam A, Gorelick N and Belward A S 2016 High-resolution mapping of global surface water and its long-term changes Nature 540 418–22

Pittock J, Finlayson B L and McMahon T A 2007 Updated world map of the Köppen-Geiger climate classification Hydrocl. Earth Syst. Sci. 11 1633–44

Pekel J E, Cottam A, Gorelick N and Belward A S 2016 High-resolution mapping of global surface water and its long-term changes Nature 540 418–22

Pittock J, Finlayson M, Arthington A H, Roux D, Matthews J H, Biggs H and Viers J 2015 Managing freshwater, river, wetland and estuarine protected areas Protected Area Governance and Management (Canberra: ANU Press) pp 569–608 (available at: www.jstor.org/stable/j.cti.16575.v5d.26)

Poschlod P and Braun-Reichert R 2017 Small natural features with large ecological roles in ancient agricultural landscapes of central europe-history, value, status, and conservation Biol. Conserv. 211 60–68

Rains M C 2011 Water sources and hydrodynamics of closed-basin depressions, cook inlet region Alaska Wetlands 31 377–87

Rains M C, Leibowitz S G, Cohen M J, Creed I, Golden H, Jawitz J, Kalla P, Lane C, Lang M and McLaughlin D 2016 Geographically isolated wetlands are part of the hydrological landscape Hydrocl. Process. 30 153–60

Rajib A, Golden H E, Lane C R and Wu Q 2020 Surface depression and wetland water storage improves major river basin hydrologic predictions Water Resour. Res. 56 e2019WR026561

Ramsar Convention Secretariat 2013 The Ramsar Convention Manual: A Guide to the Convention on Wetlands 6th edn (Switzerland: Gland) (available at: www.ramsar.org/document/the-ramsar-convention-manual-6th-edition)

Ramsar Convention 1971 Convention on wetlands of international importance especially as waterfowl habitat (available at: www.ramsar.org/)

Richardson D C et al 2022 A functional definition to distinguish ponds from lakes and wetlands Sci. Rep. 12 1–13

Salas D, Liang X, Navarro M, Liang Y and Luna D 2020 An open-data open-model framework for hydrological models’ integration, evaluation and application Environ. Model. Softw. 126 104622

Sayer C D and Greaves H M 2020 Making an impact on UK farmland pond conservation Aquat. Conserv. 30 1821–8

Sullivan S, Rains M C and Rodewald A D 2019 Opinion: the proposed change to the definition of “waters of the United States” slight sound science Proc. Natl Acad. Sci. USA 116 11558–61

Sullivan S, Rains M C, Rodewald A D, Buzbee W W and Rosendorn A D 2020 Distorting science, putting water at risk Science 369 766–8

Swartz T M and Miller J R 2021 The American pond belt: an untold story of conservation challenges and opportunities Front. Ecol. Environ. 19 501–9

Takeuchi K, Ichikawa K and Elmqvist T 2016 Satoyama landscape as social-ecological system: historical changes and future perspective Curr. Opin. Environ. Sustain. 19 30–39

Thorslund J et al 2017 Wetlands as large-scale nature-based solutions: status and challenges for research, engineering and management Ecol. Eng. 108 489–97

Tiner R W 2003 Geographically isolated wetlands of the United States Wetlands 23 494–516

U.S. Environmental Protection Agency 2015 Connectivity of streams and wetlands to downstream waters: a review and synthesis of the scientific evidence EPA/600/R-14/475F (Washington, DC: U S Environmental Protection Agency) (available at: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=296414)

Van Meter J K and Basu N B 2015 Signatures of human impact: size distributions and spatial organization of wetlands in the prairie pothole landscape Ecol. Appl. 25 431–65

Vincent W F and Howard-Williams C 1994 Nitrate-rich inland waters of the Ross Ice Shelf region Antarctica Antarct. Sci. 6 339–46

Wade J, Kelleher C and Ward A and Schewe R 2022 The fluid definition of the ‘waters of the United States’: non-uniform effects of regulation on US wetland protections Authorea Preprint (https://doi.org/10.22541/au.164914936.65736086/v1) (posted online 5 April 2022)

Wang L, Tong J and Li Y 2019 River chief system (RCS): an experiment on cross-sectoral coordination of watershed governance Front. Ecol. Sci. Eng. 13 1–3

WHO 2006 Ecosystems and Human Well-being: Health Synthesis: A Report of the Millennium Ecosystem Assessment (Geneva: WHO) (available at: www.millenniumassessment.org/en/synthesis.aspx)

Williams R T, Fryirs K A and Hose G C 2020 The hydrological function of a large chain-of-ponds: a wetland system with intermittent surface flows Aquat. Sci. 82 1–18

Wu Q, Lane C R, Li X, Zhao K, Zhou Y, Clinton N, DeVries B, Golden H E and Lang M W 2019 Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using google earth engine Remote Sens. Environ. 228 1–13

Xu W et al 2019 Hidden loss of wetlands in google China Curr. Biol. 29 3065–71

Yeo I Y, Lee S, Lang M W, Yetemen O, McCarty G W, Sadeghi A M and Evenson G 2019 Mapping landscape-level hydrological connectivity of headwater wetlands to downstream waters: a catchment modeling approach- part 2 Sci. Total Environ. 653 1557–70

Zeng L and Chu X 2021 Integrating depression storages and their spatial distribution in watershed-scale hydrologic modeling Adv. Water Resour. 151 103911

Zhang Z, Fluet-Chouinard E, Jensen K, McDonald K, Hugelius G, Gumbricht T, Carroll M, P.SelectedIndexChanged, Bartsch A and Pouliher B 2021 Development of the global dataset of wetland area and dynamics for methane modeling (WAD2M) Earth Syst. Sci. Data 13 2001–23