Removal of COD from petroleum refinery wastewater using electrocoagulation method

Amal H. Khalil¹, Mohammed A. Naji²*, Salam M. Naser³
¹ Department of Civil Environmental, College of Engineering, University of Babylon, Babylon, Iraq
² Karbala refinery Project, Ministry of oil, Kerbala, Iraq
³ Al-Mustaqbal University College, Babylon, Iraq.
* Corresponding author, Email: Mohammed.naji@krpscop.org

Abstract. This research assessed the removability of chemical oxygen demand (COD) from petroleum effluent using aluminum-based electrocoagulation reactor. A series of batch flow studies have been conducted to evaluate the impact of current density, electrodes separation, and duration of treatment on the removal of COD from the refinery effluent. The COD levels were determined employing the remaining concentrations using spectrophotometer namely Hach-Lang and standard cuvette test (LCC 514, LCK 314, or APC 400). The findings of the current investigation indicate the capacity of the electrocoagulation technique in a relatively short processing time to reduce the COD levels. The greatest efficiency in removing COD has been determined to be 80.0%. After 100 minutes of electrolysis, a current density of 8 mA/cm² and electrodes separation of 20 mm achieved the highest percentage removal.

1. Introduction
The oil sector is essential in the financial system mostly because it constitutes the primary component of the country’s national revenue and also because the industrialised civilisation in its existing form must be maintained [1]. Nevertheless, the operations of this sector of the economy pose severe ecological consequences since it uses large volumes of water, particularly for distillation, water treatment, desalination, and cooling operations [2, 3]. Around 300 L of water must be generated to produce 1 barrel of oil, meaning the worldwide oil industry creates approximately 34 million barrels of polluted water each day predicated upon on present decade’s average global oil output [1]. Moreover, the fast rise in global oil consumption suggests that the oil sector would continue to produce and release contaminated sewage. Based on its source, the chemical makeup of oil effluent is different. The effects of the oil wastewater are increasing because the amount of freshwater is on the Earth is decreasing gradually due to global warming [4-6], uneven distribution of water [7-10], and rapid urbanisation [11-13]. Oil sewage, for illustration, might include metals such as iron, aromas, sulfates, fats, phenols, cadmium, toxic substances, nitrogen, and radiation contaminants [14-16]. Throughout all oil sewage nevertheless, COD is present. The researches indicated the high content of COD which could reach 5.3 g/l in refineries sewage. It should be noted that the allowable quantity of COD is 125 mg/l in the treated effluent. Additionally, the researchers would like to mention the COD come from other industries, like concrete plants [17-23], cement production [24-29], and contact with
the polluted air [30-33]. Such elevated contaminant content is a severe danger to the environment, biological diversity, and public health when it substantially pollutes the surface of water and groundwater and also kills fish populations. These contaminants also contaminate river/lake bottoms and lands surrounding oil facilities and factories that need costly clean-up methods. Such contaminants result in severe illness or toxic consequences on public health. As mentioned before, since global warming continues to raise the water demand and rivers in many places of the globe, the necessity for effective treatment solutions is becoming even more pressing. The current rising temperatures of our planet, resulting from the emission of hazardous gasses to the Earth’s atmosphere, have worsened these consequences. Accordingly, a number of researches have been done with the purpose of finding an appropriate treatment technique or a series of treatment procedures for treating the sewage of oil before releasing it into the ecosystem. The removal of one or a set of contaminants that originate in oil effluents, like nitrate, organic substance, phosphate, toxic metals, turbidity and bacteria adsorbents, was done using various removal technologies like adsorbents [34, 35], coagulants [36, 37], electrocoagulation [38-40], and combined methods [41-46]. Nevertheless, almost all of the techniques are expensive and not effective enough to satisfy the required limitations variability in oil effluent chemical structure.

Simulation of a wide variety of contaminants, comprising key contaminants in the sewage sludge, like toxic substances, phosphates, ammonia, dyes, and organic compounds, was stated to be effectively removed by the electrocoagulation (EC) process by a large number of academics [47, 48]. The scientists also said that the EC technique is distinct from previous treatment techniques in terms of low cost, unnecessary to qualified personnel, unnecessary petrochemicals, small size, and selectivity [49-51]. Several researchers also highlighted that the EC technique sludge has many electrodes, thus increasing the possibility of recycling it in concrete slurry production and reducing the requirement for waste disposal [52, 53]. The present study investigated how the EC approach can be feasible for the removal of the chemical oxygen demand (COD) from oil sewage. Due to its appealing benefits, the EC technique was used in this investigation. For example, it requires no chemicals additions, cheap running expenses, and simple operation. It allows workers to monitor both electrical and operational parameters to minimise pollution.

2. Methods

Specimens of oil sewage with 450 mg/l COD were processed utilising EC cells with various operational variables for treatment of the reflactionary oil effluent. Table 1 shows the key features of the oil sewage samples.

Parameter	Value	Unit
pH	6.5	
Conductivity	9.52	ms/cm
TSS	132	Mg/l
Salinity	0.18	%
COD	450	Mg/l

A DC rectifier was used to apply to the desired current density value ranging from 3 to 7 mA/cm². A manual adjustment has been adopted to change the spacing between the electrodes to have the necessary value ranging between 20 and 30 mm. The electrolysis procedure was done by pumping the samples of sewage until the reactor has been full. The samples have been stored in the tank for durations of 0 to 120 minutes to complete the treatment of the wastewater.

15 mL samples of water were taken frequently from the EC reactor in order to track the elimination process. The specimens were purified at a filter of 0.45 μm. A spectrophotometer namely Hach Lange DR 2800) has
been used to quantify the remaining COD concentration in the filter using the acceptable estimation cuvette test namely LCK 514, LCK 314, or APC 400, based on residual concentrations. Hach Lang, UK, supplied the standard cuvettes. All tests were completed at room temperature.

The removal efficiency is calculated by the following equation [38]:

\[
COD \text{ removal} \% = \frac{r_0 - r}{r_0} \times 100\%
\]

(1)

where \(r_0 \) is the influent COD concentration in mg/L and \(r \) is the effluent COD concentration in mg/L.

A rectangular EC reactor was used to remove the COD from the oil refinery effluent. The EC reactor is made of a 200 mm-wide, 75 mm-wide, 120 mm-depth rectangular Perspex container and four aluminum electrodes. The electrode is made of aluminum which is pierced plates measuring 70 mm in width and 120 mm in height. There are 35 circular holes in each electrode. During the treatment process, the electrodes mix sewage which improves elimination performance by improving the collision rate between coagulants and contaminants.

3. Results and discussion

3.1. Spacing of electrodes influence

To assess the effect of spacing on COD removal effectiveness, waste samples having 400 mg/l COD concentration with varying distances between 20 and 30 mm were electrolysed. At a constant current of 4 mA/cm², and a retention duration of 60 min, the electrocoagulation tests were placed. The results showed that the wider the distance, the lower the removal rate. For example, the removal effectiveness of COD declined from around 48% to 36% after the 60 minutes of electrolysing as the distance grew from 20 mm to 30 mm, Figure 1. There are two explanations for this conduct. Increasing distance between electrodes increases the development of anodising metal foil, which decreases the anode melting rate, slowing down the removal rate. Widening the distance between electrodes lessens the electrostatic attraction force that lowers the production of flocs and hence reduces the effectiveness of removal.

![Figure 1: The impact of the distance on COD reduction.](image-url)
3.2. Current density influence
The formation of the coagulants, flock expansion as well as the sizes and rates of air bubbles are determined by current densities. The effect of COD removal based on current was thus examined using the electrolysis of 400 mg/l COD sewage samples at various currents ranging from 4 to 8 mA/cm². Spacing and detention duration at 20 mm and 60 min were held constant, respectively.

The results achieved, Figure 2, indicated that the greater the flow, the faster the elimination of COD. Where it can be seen from such achievements that the elimination of COD rose from 49 percent to 62 percent after 60 minutes of electrolysation, as the current increased correspondingly from 4 to 8 mA/cm². This might be attributed to the improvement of the melted coagulant. As the number of coagulants improved, COD removal was steadily increased and the number of sites in operation improved. But raising the current applied will increase electricity usage.

![Figure 2: The impact of the current on COD reduction.](image)

3.3. Retention time Influence
The study reveals linear relationships between retention time and coagulant production, which enhances the clearance of pollutants. Therefore, electrolysising a sewage sample containing 400 mg/l COD was investigated in order to eliminate COD for 100 min at current 6 mA/cm² and a distance of 20 mm. The findings clearly, figure 3, indicate that extending the retention period increases the reduction effectiveness of COD. Where, it has been noted that the removal effectiveness of COD rose from 15 percent to around 81 percent as the retention durations extended from 10 to 100 minutes, correspondingly.

The release of consistent quantities of the anodes’ coagulants to the constant voltage and electrolysising periods could clarify this. The quantity of melted aluminum oxides in the liquids, therefore, grows with the growth of the electrolysing times. Consequently, the reduction of COD is also increasing. Longer EC durations also provide improved contact periods between impurities and aluminum oxides, which enhance the extraction of pollutants.
Figure 3: The impact of the Time on COD reduction.

Figure 3, nevertheless, shows that the investigation’s last 20 minutes improvement in the removal effectiveness was approximately 6 percent, were not particularly important. This might be related to the formation of a passive layer on the conductors’ surfaces that reduces coagulant synthesis and hence the effectiveness of removal. It might thus be fair to maintain the detention duration at 80 minutes, decreasing the operating cost of this procedure in the present research. In conclusion, the findings showed that an important quantity of COD could be removed from sewage from oil refinery effluent, but the full elimination of such contaminants is not sufficiently possible. The author believes thus that this approach may be utilised to increase the performance of other treatment facilities as a pre-processing facility for oil effluent.

Finally, the researchers in this work highlight the recent developments in wireless technologies [54-57], sensing methods [58-60], and IoT [61, 62] could be applied in the development of the electrocoagulation reactor.

4. Conclusion

In order to explore the viability of the EC technique as a method for oil sewage, a series of batch flow tests were conducted. The results showed that the COD content in oil refinery effluence might be reduced successfully by this technique. Furthermore, it has been shown that with regards to COD reductions, the efficiency of this technique may be enhanced by increasing the current user or the processing periods or by reducing the distance among poles. Finally, the author suggested that the EC unit could be integrated with other conventional processes to obtain total removal effectiveness at acceptable costs within a reasonably short processing period.

References

[1] Shonza N, Andreatta D, Muniz E, de Freitas R and Porto P 2020. Crude oil wastewater treatment by electrocoagulation in a continuous process with polarity switch. Environmental Technology, 1-9.
[2] Hashim K, Al-Saati N, Hussein A and Al-Saati Z 2018. An investigation into the level of heavy metals leaching from canal-dreged sediment: a case study metals leaching from dredged sediment. First Int. Conference on Materials Engineering & Science, Istanbul Aydin University, Turkey 12-22.

[3] Hashim K S, AlKhaddar R, Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljefery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources Engineering and Management, Berlin: Springer.

[4] Zubaidi S L, Al-Bugharbee H, Muhsen Y R, Hashim K, Alkhaddar R M, Al-Jumeily D and Aljaaf A J 2019. The Prediction of Municipal Water Demand in Iraq: A Case Study of Baghdad Governorate. 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia 274-7.

[5] Salah Z, Abdulkaareem I H, Hashim K S, Al-Bugharbee H, Ridha H M, Gharghan S K, Al-Qaim F F, Muradov M, Kot P and Alkhaddar R 2020. Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand. Water, 12 1-18.

[6] Salah Z, Hashim K, Ethaib S, Al-Bdaairi N S S, Al-Bugharbee H and Gharghan S K 2020. A novel methodology to predict monthly municipal water demand based on weather variables scenario. Journal of King Saud University-Engineering Sciences, 32 1-18.

[7] Zubaidi S, Hashim K, Alkhaddar R, Abdellatif M and Muhsin Y R 2019. Using LARS–WG model for prediction of temperature in Columbia City, USA. IOP Materials Science and Engineering. 012026.

[8] Salah Z, Ortega-Martorell S, Kot P, Alkhaddar R M, Abdellatif M, Gharghan S K, Ahmed M S and Hashim K 2020. A Method for Predicting Long-Term Municipal Water Demands Under Climate Change. Water Resources Management, 34 1265-79.

[9] Zubaidi S, Muhsin Y, Hashim K and Alkhaddar R 2020. Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study. IOP Materials Science and Engineering, 012018.

[10] Zubaidi S, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim K S, Gharghan S K, Kot P and Al-Khaddar R 2020. Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study. Water, 12 1-18.

[11] Farhan S, Antón D, Akef V, Zubaidi S and Hashim K 2021. Factors influencing the transformation of Iraqi holy cities: the case of Al-Najaf. Scientific Review Engineering and Environmental Sciences, 30 365-75.

[12] Al-Maliki L A, Farhan S L, Jasim I A, Al-Mamoori S K and Al-Ansari N 2021. Perceptions about water pollution among university students: A case study from Iraq. Cogent Engineering, 8 1895473.

[13] Jasim I A, Farhan S L, Al-Maliki L A and Al-Mamoori S K 2021. Climatic Treatments for Housing in the Traditional Holy Cities: A Comparison between Najaf and Yazd Cities. IOP Conference Series: Earth and Environmental Science, 012017.

[14] Abdulla G, Kareem M M, Hashim K S, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020. Removal of iron from wastewater using a hybrid filter. IOP Conference Series: Materials Science and Engineering, 012035.

[15] Abduraheman F, Al-Khafaji Z, Hashim K S, Muradov M, Kot P and Shubbar A 2020. Natural filtration unit for removal of heavy metals from water. IOP Materials Science and Engineering, 012034.

[16] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Makkiabadi M, Naghdali Z, Hashim K S and Ghanbari R 2020. Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes. Separation Science and Technology, 55 3184-94.

[17] Al-Jumeily D, Hashim K, Alkaddar R, Al-Tufaily M and Lunn J 2019. Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future). 11th International Conference on Developments in eSystems Engineering (DeSE), Cambridge, UK 214-9.

[18] Omran I I, Al-Saati N H, Hashim K S, Al-Saati Z N, Patryk K, Khaddar R A, Al-Jumeily D, Shaw A, Ruddock F and Aljefery M 2019. Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel. Desalination and Water Treatment, 168 165-74.
[19] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020. Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent. *Advances in Cement Research*, 32 1-38.

[20] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020. Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust. *Journal of Building Engineering*, 32 1-17.

[21] Ali A, Al-Shaer A, Hashim K, Hawesah H and Sadique M 2019. Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar. *First Int. Conference on Civil and Environmental Engineering Technologies*, University of Kufa, Iraq 31-8.

[22] Shubbar A A, Sadique M, Shanbara H K and Hashim K 2020 *The Development of a New Low Carbon Binder for Construction as an Alternative to Cement*. In *Advances in Sustainable Construction Materials and Geotechnical Engineering*, Berlin: Springer.

[23] Idowu I A, Hashim K, Shaw A and Nunes I J 2021. Enhancing the fuel properties of beverage wastes as non-edible feedstock for biofuel production. *Biofuels*, 14 1-8.

[24] Majdi H, Ali A, Nasr M, Al-Khafaji Z, Jafer H, Abdulredha M, Masoodi Z, Sadique M and Hashim K 2020. Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations. *Data in Brief*, 31 105961-72.

[25] Al-Saati N H, Omran I I, Salman A A, Al-Saati Z and Hashim K S 2021. Statistical modelling of monthly streamflow using time series and artificial neural network models: Hindiya Barrage as a case study. *Water Practice and Technology*, 16 648-60.

[26] Omran I I, Al-Saati N H, Al-Saati H H, Hashim K S and Al-Saati Z N 2021. Sustainability assessment of wastewater treatment techniques in urban areas of Iraq using multi-criteria decision analysis (MCDA). *Water Practice and Technology*, 16 648-60.
[36] Alenazi M, Hashim K S, Hassan A A, Muradov M, Kot P and Abdulhadi B 2020. Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. *IOP Conference Series: Materials Science and Engineering*, 012064.

[37] Alhendal M, Nasir M J, Hashim K S, Amoako-Attah J, Al-Faluji D, Muradov M, Kot P and Abdulhadi B 2020. Cost-effective hybrid filter for remediation of water from fluoride. *IOP Conference Series: Materials Science and Engineering*, 012038.

[38] Hashim K S, Hussein A H, Zubaidi S L, Kot P, Kraidi L, Alkhaddar R, Shaw A and Alwash R 2019. Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. *2nd International Scientific Conference, Al-Qadisiyah University, Iraq* 12-22.

[39] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020. Electrochemical removal of brilliant green dye from wastewater. *IOP Conference Series: Materials Science and Engineering*, 012036.

[40] Mohammed A, Hussein A, Yeboah D, Al Khaddar R, Abdulhadi B, Ali A and Hashim K S 2020. Electrochemical removal of nitrate from wastewater. *IOP Materials Science and Engineering*, 012037.

[41] Hashim K, Ali S, AlRifaie J K, Kot P, Shaw A, Al Khaddar R, Idowu I and Gkantou M 2020. Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor. *Chemosphere*, 247 125868-75.

[42] Alenezi A K, Hasan H A, Hashim K S, Amoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020. Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution. *IOP Conference Series: Materials Science and Engineering*, 012031.

[43] Al-Marri S, AlQuzweeni S S, Hashim K S, AlKhadar R, Kot P, AlKizwini R S, Zubaidi S L and AlKhadar R A 2020. Ultrasonic-Electrocoagulation method for nitrate removal from water. *IOP Conference Series: Materials Science and Engineering*, 012073.

[44] Hashim K S, Shaw A, AlKhaddar R, Kot P and Al-Shamma’a A 2021. Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment. *Journal of Cleaner Production*, 280 1-17.

[45] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021. Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study. *Science of The Total Environment*, 760 1-16.

[46] Alnaimi H, Idan I J, Al-Janabi A, Hashim K, Gkantou M, Zubaidi S L, Kot P and Muradov M 2020. Ultrasonic-electrochemical treatment for effluents of concrete plants. *888* 1-9.

[47] Abdulhadi B A, Kot P, Hashim K S, Shaw A and Khaddar R A 2019. Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflostation (EC/EF) process. *First International Conference on Civil and Environmental Engineering Technologies (ICCEET), University of Kufa, Iraq* 12-22.

[48] Hashim K S, Al-Saati N H, Alquzweeni S S, Zubaidi S L, Kot P, Kraidi L, Hussein A H, Alkhaddar R, Shaw A and Alwash R 2019. Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters. *First International Conference on Civil and Environmental Engineering Technologies (ICCEET), University of Kufa, Iraq* 25-32.

[49] Hashim K S, Khaddar R A, Jasim N, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W, Abdulredha M and Alawsh R 2019. Electrocoagulation as a green technology for phosphate removal from River water. *Separation and Purification Technology*, 210 135-44.

[50] Emamjomeh M, Kakavand S, Jamali H, Alizadeh S, Mousavi S, Hashim K and Mousazade M 2020. The treatment of printing and packaging wastewater by electrocoagulation–flostation: the simultaneous efficacy of critical parameters and economics. *Desalination and water treatment*, 205 161-74.

[51] Hashim K, Kot P, Zubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljeferiy M 2020. Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater. *Journal of Water Process Engineering*, 33 101079-86.

[52] Hashim K, Shaw A and Phipps D, 2019. Treatment reactor and method of treating a liquid. WIPO, PCT/GB2019/052493, L J M University, United Kingdom.
[53] Zanki A K, Mohammad F H, Hashim K S, Muradov M, Kot P, Kareem M M and Abdulhadi B 2020. Removal of organic matter from water using ultrasonic-assisted electrocoagulation method. *IOP Conference Series: Materials Science and Engineering*, 012033.

[54] Gkantou M, Muradov M, Kamaris G S, Hashim K, Atherton W and Kot P 2019. Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection. *Sensors*, 19 5175-89.

[55] Ryecroft S P, shaw A, Fergus P, Kot P, Hashim K and Conway L 2019. A Novel Gesomin Detection Method Based on Microwave Spectroscopy. *12th International Conference on Developments in eSystems Engineering (DeSE)*, Kazan, Russia 429-33.

[56] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Moody A and Conway L 2019. A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna. *Sensors*, 19 1813-23.

[57] Kot P, Hashim K S, Muradov M and Al-Khaddar R 2021 *How can sensors be used for sustainability improvement?*. In *Methods in Sustainability Science*, Elsevier, United Kingdom: Joe Hayton, p 426.

[58] Omer G, Kot P, Atherton W, Muradov M, Gkantou M, Shaw A, Riley M, Hashim K and Al-Shamma’a A 2021. A Non-Destructive Electromagnetic Sensing Technique to Determine Chloride Level in Maritime Concrete. *Karbala International Journal of Modern Science*, 7 61-71.

[59] Kot P, Muradov M, Gkantou M, Kamaris G S, Hashim K and Yeboah D 2021. Recent Advancements in Non-Destructive Testing Techniques for Structural Health Monitoring. *Applied Sciences*, 11 1-28.

[60] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Tang A, Moody A and Conway L 2021. An Implementation of a Multi-Hop Underwater Wireless Sensor Network using Bowtie Antenna. *Karbala International Journal of Modern Science*, 7 113-29.

[61] Ghazali R, Hussain A, Al-Jumeily D and Merabti M 2007. Dynamic ridge polynomial neural networks in exchange rates time series forecasting. *International Conference on Adaptive and Natural Computing Algorithms*, 123-32.

[62] Fergus P, Hussain A, Al-Jumeily D, Huang D-S and Bouguila N 2017. Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms. *Biomedical engineering online*, 16 1-26.