Building evidence for conservation globally

Journal of Threatened Taxa

Open Access

10.11609/jott.2022.14.1.20311-20538
www.threatenedtaxa.org

26 January 2022 (Online & Print)
14(1): 20311–20538
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)
Associations of butterflies across different forest types in Uttarakhand, western Himalaya, India: implications for conservation planning

Arun Pratap Singh

Entomology Branch, Forest Research Institute, Chakarata Road, P.O. New Forest, Dehradun, Uttarakhand 248006, India. ranoteaps@gmail.com

Abstract: Champion & Seth classified Indian forests into different ‘forest types and sub-types’, based on similarity of dominant vegetation and structural arrangement of species in each. However, it is not known if the species composition and community structure of butterflies is also different in each forest sub-type. If this is the case then each forest sub-type harbouring unique species can be taken as units of conservation on a sub-regional scale. The present study assesses for the first time the species composition and community structure of butterflies across 20 different and prominent ‘forest sub-types’ found across the state of Uttarakhand, western Himalaya. Data collected over eight years (2006–2009; June 2012; 2017–2020) using random seasonal sampling covering 307 transects revealed 370 butterfly taxa. Hierarchical clustering of butterfly abundances revealed seven different butterfly communities spread over 19 forest subtypes. Of these four forest sub-types (3C/C2a moist Shiwalik sal forest; 12/C2c moist temperate deciduous forest; 12/C1a ban oak forest; & 3C/C2c moist Terai sal forest) were identified as most important as they hold most of the butterfly diversity of the state including 58 rare taxa identified according to ‘rarity’ out of the total. GIS based mapping of these 58 priority species over laid on the protected area network and forest cover distribution in the state revealed many forested sites outside the PA network supporting these rare taxa. These sites along a physio-geographical gradient with important forest sub-types and rare taxa can be recommended and listed as new sites for conservation in the state.

Keywords: Ban Oak, butterfly, protected area network, physiogeography, rarity, tropical moist deciduous forest, vegetation.
INTRODUCTION

Butterflies, amongst invertebrates, are suitable indicators for ecological studies (Lomov et al. 2006), as the taxonomy, geographical distribution and status of many species are relatively well known (Pollard 1977; Thomas 1983; Thomas & Mallorie 1985; Murphy & Wilcox 1986). They are phytophagous, primary herbivores, good pollinators and surrogates plant diversity living close by their food plants (Ehrlich & Raven 1964; Gilbert & Smiley 1978; Pyle 1980). The precise and restricted environmental requirements of particular butterflies make them of considerable value as a group of indicator taxa that indicate the broader effects of environmental changes or reflects a particular suite of ecological conditions or habitat heterogeneity (Pyle 1980; Gilbert 1980, 1984; Brown 1982; Rosenberg et al. 1986; Murphy et al. 1990; New 1991; Kermen 1992; Pearman et al. 1995). Strong association between vegetation structure and composition makes Lepidoptera a particularly useful bioindicator for monitoring eco-restoration programs (Kremen et al. 1993; New et al. 1995).

Habitat is an important requisite for the proliferation and conservation of a butterfly species (Gilbert & Singer 1975), as species prefer particular habitats, closely related to their life history, breeding, larval and adult food resources and destruction of forest severely affects species habitats (Wells et al. 1983) and many species which were once common become rare. Thus, identification and conservation of priority landscapes, is very important. Champion & Seth (1968) classified Indian forests into different ‘forest types’ their sub units as ‘forest sub-types’, based on the similarity of dominant vegetation and structural arrangement of species within each of them, i.e., ‘IV montane temperate forest’ is one of VI major ‘forest types’ found across India (other 5 categories being “I. moist tropical forests, II. dry tropical forests; III montane sub-tropical forests; V sub-alpine forests, and VI alpine forests” classified by Champion & Seth (1968)), while its lowest unit in the hierarchy is a ‘sub-type’, e.g., “12C/1a Ban oak forest” (Here, ‘12’ signifies “12 Himalayan moist temperate forest” in a group of three (the other two being 11 Montane wet temperate forests & 13 Himalayan dry temperate forests). Then further sub-division of this sub-group “12” into three groups: C1–C3, where “C,” signifies ‘C’, lower western Himalayan temperate forest’ (other 2 being “C2 upper west Himalayan temperate forest” and “C3 east Himalayan temperate forest”) and lastly its last sub-division which is depicted as “1a”, i.e., “1a Ban oak forest (Q. incana)” (Quercus incana = Q. leucotrachyphora) amongst the set of two (the other being “1b Moru oak forest (Q. dialata)” (Quercus dialata = Q. floribunda) (Champion & Seth 1968)]. In this way, different ‘forest subtypes’ have been classified and labelled in India.

However, it is not known if the species composition and community structure of lower groups of animals such as butterflies are also different within each ‘forest-sub-type’ or each have a unique community of butterflies. If this is the case then each forest sub-type harbouring unique and rare species can be taken as a unit of conservation on a sub-regional scale (western Himalaya) or state level (Uttarakhand). In this study we tried to evaluate and examine potential ‘forest sub-types’ or ‘a group of forest sub-types’ that have unique butterfly diversity which can be taken up as units of conservation of biodiversity at the state level. Besides, this can also be helpful in identification of new conservation areas with forest habitats outside the PA network and thus fill gaps in their connectivity, in the state. The rationale behind this is that many butterfly species are restricted to forested habitats in the state, have geographical distribution spread across the Himalayan region, i.e., western, central, and eastern Himalaya along a wide altitudinal gradient, e.g., Pale Green Sailer Neptis zaida zaida Doubleday, [1848] or Broad-banded Sailer, N. sanka sanka Kollar, [1844]) (Nymphalidae) both occur in the state between 800–2,500 m, as observed in the present study. Fragmentation of their forested habitats on a larger spatial and temporal scale, may lead to isolated populations, local extinctions that can significantly affect their distribution, as they do not migrate. Thus, gaps and connectivity of the protected areas needs to be maintained for long term conservation.

STUDY AREA

The study was carried out in Uttarakhand state of India which covers an area of 53,483 km², which is 1.63% of the geographical area of the country, and lies between 28.716–31.466 N latitude & 77.566–81.05 E longitude. This predominantly mountainous state, shares its borders with Himachal Pradesh to the west and Uttar Pradesh to the south. It also shares international borders with Nepal in the east and China (Tibet) to the north. The state is mainly representative of the western Himalaya, the climate and vegetation vary greatly with altitude, from glaciers at the highest elevations, and temperate to subtropical at the lower elevations. Nanda Devi peak is the highest point at 7,816 m in the state while the lowest areas at ~100m lie in the Terai grasslands.
The average annual rainfall is 1,500 mm and the annual temperature varies from below 0°C to 43°C. Major rivers, Ganga, Yamuna, Ramganga, & Sharda, drain the state along with their tributaries. The Himalayan range in Uttarakhand is divided into the distinct non-montane and montane physiographic zones. The lower zone comprises the ‘Bhabhar’ region in non-montane lowland woodlands having Gangetic moist deciduous forests and the Terai region (below 500 m) running parallel to it, which comprises mainly the marshes and grasslands (Botanical Survey of India 2021). The montane region is divided into sub-Himalaya, which consists of the Shiwalik ranges, the lower Himalayan ranges, and the Doon (flat long valleys) lying north of the Shiwaliks (~500–1,000 m). Above this region are the lesser Himalaya (~1,000–3,000 m) followed mid Himalaya (~3,000–4,000 m) and then greater Himalaya (~4,000–6,000 m) (Khanduri et al. 2013) and the trans-Himalaya (above 5,000 m), also known as the Tethys Himalayas and the Indo-Tibet plateau, the region is in the rain shadow area that transforms into the cold desert.

Forests cover an area of 24,303.04 km² in the state, which constitutes 45.44% of the state’s geographical area (FSI 2019). The state is represented by biogeographic zone 2B western Himalaya and 7B Shiwaliks of India (Rodgers & Pawar 1988). The state is rich in biodiversity having about 102 species of mammals, 692 birds (https://ebird.org/region/IN-UL), 13 amphibians & 53 reptiles (Vasudevan & Sondhi 2010), and 124 fishes (https://forest.uk.gov.in/wildlife-management). Some of the globally endangered fauna like the Asiatic Elephant Elephas maximus, Snow Leopard Panthera uncia, Tiger Panthera tigris, Leopard Panthera pardus, Musk Deer Moschus chrysogaster, Swamp Deer Rucervus duvaucelii, Cheer Pheasant Catreus wallichii, and the King Cobra Ophiophagus hannah are found in the state. Uttarakhand shelters around 4,000 species of plants, belonging to 1,198 genera, under 192 families, of which ~34 species have been listed as threatened (Nayar & Sastry 1987, 1988, 1990; https://indiabiodiversity.org/). The PA network cover 12 percent of the total geographical area of the state, which includes six national parks, seven wildlife sanctuaries, four conservation reserves, and one biosphere reserve (Appendix 1).

Previous studies on butterflies in Uttarakhand

Studies on natural history and checklists of different areas in Uttarakhand state have been carried out as early as 1886 (Doherty 1886; Mackinnon & de Nicéville 1889; Hannyngton 1910–11; Ollenbach 1930; Shull 1958, 1962; Baindur 1993; Smetacek 2002, 2004, 2012; Bhardwaj et al. 2012; Bhardwaj & Uniyal 2013; Singh &
Bhandari 2003, 2006; Singh & Sondhi 2016; Verma & Arya 2018; Sondhi & Kunte 2018; Singh & Singh 2021) and the total number of butterfly species recorded in the state so far is ~ 500 species, based on these records. However, none of these studies give an account on the association of butterfly species with different forest sub-types as classified by Champion & Seth (1968), found across the state of Uttarakhand. The author had earlier studied butterfly-forest type associations in 11 major “forest sub-types” in the state of Arunachal Pradesh (eastern Himalaya), India (Singh 2017) and identified four forest sub-types: 2B/1S1 sub-Himalayan light alluvial plains semi-evergreen forests; 2B/C1a Assam alluvial plains semi-evergreen forests; 2B/2S2 eastern alluvial secondary semi-evergreen forests, and 3/1S2 b Terminalia-Duabanga as major forest sub-types supporting 415 butterfly taxa along with many rare and endemic species in the northeastern region and eastern Himalaya, but the forest sub-types occurring in these two Himalayan states are totally different from each other.

METHODS

Random sampling surveys were carried out for eight years under two different projects (2006–2009 and 2017–2020, respectively) across 11 districts of Uttarakhand state covering all the six butterfly seasons (spring, summer, pre-monsoon, monsoon, post-monsoon, autumn, and winter; Smith 1989) of the year. Surveys were carried out using ‘Pollard Walk’ on the line transects (Pollard & Yates 1993). Sampling on each transect (ca. 1 km) was done and butterflies were observed up to 20 m on both the sides of the trail for 1 h in a stretch between 1000 h and 1600 h to collect data on individual butterfly species abundance. Each sampling survey was carried out by the author, while 1–2 helpers were also used for recording data, collection of insect and plant material from time to time. Coordinates of all the locations for 307 samplings carried out were recorded using a GPS (Etrex Garmin Vista) (Figure 1) covering 20 major forest sub-types (FSI 2011; Figure 2 & Appendix ii) existing across the state of Uttarakhand.

Identification and distribution range of each taxa was assessed based on published literature (Moore 1874, 1890–1992, 1893–1896, 1896–1899, 1899–1900, 1901–1903, 1903–1905; Swinhoe 1905–1910, 1910–1911, 1911–1912 & 1912–1913; Bingham 1905; Talbot 1939, 1947; Evans 1932; Wynter-Blyth 1957; D’Abrera 1982, 1985, 1986; Haribal 1992; Smith 1989, 2006; Kehimkar 2008, 2016; Singh 2011; Smetacek 2015; Gasse 2017; Sondhi & Kunte 2018) and websites (http://www.ifoundbutterflies.org/ and http://flutters.org/). Comparison of a few specimens was also done with specimens at the National Forest Insect Collection (NFIC) at Forest Research Institute, Dehradun, Uttarakhand, India, for identification.

Dominant vegetation (mainly trees & shrubs) in the respective forest sub-types were also identified and confirmed by ground truthing by laying down 10 x 10 m quadrates, collected plant material and preparing herbariums. Photographs and herbarium specimens were identified in the field and many were identified and confirmed from plant taxonomists based at Systematic Botany Branch, Botany Division, FRI, Dehradun and literature (Brandis 1906; Rai et al. 2017; http://www.gbif.org).

Evaluating species of conservation priority: rarity analysis of butterflies

The degree of “rarity” characterizing a species is usually an indicator of extinction risk (Rabinowitz et al. 1986; Pimm et al. 1988; Arita et al. 1990; Primarck 1993; Gaston 1994; Brown 1995; Gaston & Blackburn 1995) and provides a basis to identify threatened species (Rabinowitz 1981; Arita et al. 1990; Daniels et al. 1991; Berg & Tjernberg 1996). In general, species characterized by small geographic range, habitat specialization, and low abundance, are at higher risk of extinction than a widely distributed, habitat generalist and with high abundance. Rabinowitz et al. (1986) have examined types of rarity, and in what important ways rare species differ from one another. They first distinguish three traits, characteristic of all taxa recorded: (i) Geographical range - whether a species occurs over a broad area or whether it is endemic to a particular area; (ii) Habitat specificity - the degree to which a species occurs in a variety of biotopes’ or ‘habitats’ is restricted to one or a few specialized sites versus generalists; and (iii) Local population size - whether a species occurs in large populations somewhere within range or has small populations whenever it is found.

In the present study, Rabinowitz et al. (1986) classification of rarity based on the three above traits was used. Only those species were filtered out the total as rare which had: (i) narrow geographical range, i.e., those species which had narrow distribution restricted only to western and central Himalaya as against those with wide distribution, i.e., Himalaya, northeastern India, & Peninsular India; (ii) restricted to two or less forest sub-types as against more than two forest sub-
types; and (iii) having small local population size across their distribution range, i.e., those taxa which were classified as ‘very rare’, ‘rare’, and ‘not rare’ by Evans (1932) and Kehimkar (2008), as against ‘fairly common’, ‘common’, and ‘very common’.

Hierarchical clustering of different forest sub-types based on butterfly species distribution and relative abundance.

The data of relative abundance of all the species of butterflies sampled against 20 different forest sub-types was pooled and averaged to relative abundance per sampling in each of the forest sub-type to remove varied sampling bias and was done using statistical software “NCSS Data Analysis 2021, v21.0.2”, to know the dissimilarly of forest sub-types in terms of butterfly species composition.

RESULTS AND DISCUSSION

The field surveys revealed 370 butterfly taxa (Papilionidae (31); Pieridae (32); Nymphalidae (138); Lycaenidae (97); Hesperiidae (62) and Riodinidae (7); see appendix.iii), which accounted to ca 75% of the species recorded from the state so far. If we exclude ~ 40 historic records (Singh & Sondhi 2016; Sondhi & Kunte 2018), then it totals to 80% of the total species found in the state. The study also reported new range extensions from central and eastern Himalaya, i.e., Dark Sapphire (Singh & Seal 2019); Scarce Lilacfork Lethe dura gammiei (Moore, [1892]) (Singh & Singh 2019), Dubious Five ring Ypthima parasakra parasakra Eliot, 1987 (Singh & Singh 2022) and records like White-ringed Meadowbrown, Hyponephlele davendra davendra (Moore, 1865) (Singh & Singh 2021; Pale Jezebel Delias sanaca sanaca (Moore, [1858]) (Singh 2016); Mountain Tortoiseshell Aglais rizana (Moore, 1872) (Singh & Singh 2019); White-wedged Woodbrown Lethe dakwania Tytler, 1939.

Figure 2. Distribution of major forest types surveyed in Uttarakhand.
Butterflies across different forest types in Uttarakhand

Figure 3. Seasonality of butterflies in Uttarakhand.

Figure 4. Relative distribution of butterfly species in different forest sub-types in Uttarakhand.

Figure 5. Percentage of butterfly species in each forest sub-type in relation to the proportional area covered by each forest sub-type in Uttarakhand.

(Singh & Singh 2021), to the state. Some rare records like Garhwal Swordtail *Graphium garhwalica* (Katayama, 1988), Highbrown Silverspot, *Argynnis jainadeva* jainadeva Moore, 1864; Regal Apollo, *Parnassius charltonius* Gray, [1853] and new range extensions (Red-tailed Forester, *Lethe sinonix sinorix* (Hewitson, [1863]) and Nepal Comma *Polygonia c-album cognata* Moore, [1899]) are reported in this paper.

The relative abundance of species ranged 1–1,596 individuals. These species were then ranked into four abundance classes based on their quartile division, i.e.,
Butterflies across different forest types in Uttarakhand

Singh

Butterflies across different forest types in Uttarakhand are more diverse in the latter two than in the former. The diversity of nectar and larval food plants available in broad-leaved or mixed conifer-broad-leaved forests, as compared to pure conifer forest stands, support less diversity of butterflies as compared to the pure conifer-broad-leaved forests, as the diversity of nectar and larval food plants available are more diverse in the latter two than in the former.

Preference for Forest Sub-types

The highest number of species were recorded in 12/C1a Ban Oak Forest (292 species; Fig.4) followed by 3C/C2a Moist Shiwalik Sal Forest (220) and 12/C2c Moist Temperate Deciduous Forest (165), respectively which suggests that these forest sub-types hold the major diversity of butterflies found in the state. The number of species sampled were the least in 13/C2b Dry Deodar Forest (14), 15/C1 Birch Rhododendron Scrub (6) and 15/E1 Dwarf Rhododendron Scrub (2), respectively (Figure 4) suggesting them to be poor butterfly habitats, while the other 14 forest sub-types lay between them.

The percentage of butterfly species in each forest sub-type in relation to the proportional area covered by each in the state (Figure 5), suggests that forest sub-types: 9/C1b Upper or Himalayan Chir Pine Forest; 12/C2b West Himalayan Upper Oak/Fir Forest and 14/C1 B Western Himalayan Sub-alpine Birch/Fir Forest, support a relatively lower number of butterfly species per unit area as compared to the rest of the other forest sub-types (Figure 4). On the other hand forest sub-types: 3C/C2 Moist Shiwalik Sal Forest; 12/C1a Ban Oak Forest; 12/C2C Moist Temperate Deciduous Forest and 12/C1d Western Mixed Coniferous Forest have a relatively higher density of butterfly species per unit area amongst all the forest sub-types covered (Figure 5). The primary reason for this is that pure conifer forest stands support less diversity of butterflies as compared to the pure broad-leaved or mixed conifer-broad-leaved forests, as the diversity of nectar and larval food plants available are more diverse in the latter two than in the former.

Hierarchical clustering of forest sub-types

It was found that 7 forest-types butterfly clusters, 5 independent forest-subtypes and 2 clusters of 2 and 11 forest sub-types, respectively exist in the state (Fig.6). These are

1. 3C/C2a Moist Shiwalik Sal Forest.
2. 12/C2c Moist Temperate Deciduous Forest
3. 12/C1a Ban Oak Forest.
4. 3C/C2c Moist Terai Sal Forest
5. 9/C1b Upper or Himalayan Chir Pine
6. 5B/C2 Northern Dry Mixed Deciduous Forest & 5B/C1a Dry Shiwalik Sal Forest.
7. 12/C1b Moru Oak; 12/C2b Western Himalayan
 Upper Oak Forest/Fir; 12/C1d Western Mixed Coniferous;
 12/2S1 Low Level Blue Pine; 12/C2a Khasru Oak Forest;
 14/C1a West Himalayan Sub-alpine Fir; 14/C1 Best
 Himalayan Sub-alpine Birch/Fir/ 14/1S2 Deciduous Sub-
 alpine Scrub & 15/C1 Birch/Rhododendron Scrub.
The dendrogram (Figure 6) suggests that the butterfly community of 3C/C2a Moist Shiwalik Sal Forest is totally distinct from that of 12/C2c Moist Temperate Deciduous Forest and 12/C1a Ban Oak forest. While 12/C1a Ban Oak Forest and 12/C2c Moist Temperate Deciduous Forest show greatest similarity. While diversity of 5B/C2 Northern Dry Mixed Deciduous Forest and 5B/C1a Dry Shiwalik Sal is different from that of 3C/C2c Moist Terai Sal Forest or 3C/C2a Moist Shiwalik Sal Forest. Eleven forest sub-types show another cluster being distinct from other groups (Figure 6). Four forest sub-types that are most important in the state in terms of number of both butterfly species and with distinct dissimilarity of butterflies are 3C/C2a Moist Shiwalik Sal Forest; 12/C2c Moist Temperate Deciduous Forest; 12/C1a Ban Oak Forest and 3C/C2c Moist Terai Sal Forest.

Species preference of forest sub-types

Scatter plot (Figure 7) of individual butterfly species (n= 370) suggests that only one generalist species (Painted Lady Vanessa cardui) had preference for all 14 forest sub-types. While the number of species showing preference for more than five or more forest sub-types were fewer as compared to species showing preference for less than four forest sub-types (Figure 7 Horizontal bars) in the state. The maximum number of species showed preference for two forest sub-types (n= 90 species) followed by preference for only one forest sub-type (n= 60 species). This suggests that a large number of habitat specialist species exist in the state.
Butterflies across different forest types in Uttarakhand

Rarity in butterflies sampled in Uttarakhand: taxa of conservation priority

Out of the 370 taxa sampled in Uttarakhand, 58 were evaluated as rare species of conservation priority /concern based on rarity analysis (Rabinowitz 1981; Rabinowitz et al. 1986) (Appendix IV).

The 58 taxa of conservation concern evaluated based on rarity are scattered all across the state in at least 12 forest sub-types (Figure 8). It was also determined that most of the butterfly taxa of conservation priority occur in 12/C1a Ban Oak Forest followed by 12/C2c Moist Temperate Deciduous forest, 3C/C2 Moist Shiwalik Sal Forest and a few taxa in 12/C2b Western Himalayan Upper Oak/Fir Forest; 12/C1d Western Mixed Coniferous Forest, respectively (Figures 8–15).

The present study proved that individual ‘forest sub-types'(Champion & Seth 1968) or a group of ‘forest sub-types’ having high species richness, unique and rare butterfly taxa can be taken up as units of conservation at the state level in the Himalayan region as representatives of lower groups of animals, i.e., butterflies. Three most important forest sub-types: 12/C1a Ban Oak Forest followed by 12/C2c Moist Temperate Deciduous Forest and 3C/C2 Moist Shiwalik Sal Forest, respectively, hold the maximum number of butterflies, including many rare and protected taxa, in the state amongst the 20 forest sub-types evaluated, thus they form priority over the rest.

The 58 butterfly taxa conservation priority in the state lies both within and outside the PA network, but mainly in forested areas (Figure 16). Concentrations
Butterflies across different forest types in Uttarakhand

Figure 8. Spread of species of conservation priority species (orange bars) in different forest sub-types in relation to the total number of species sampled in them.

Figure 9. Map depicting the locations recorded for 58 species of conservation priority in 12 different forest sub-types across Uttarakhand.
Butterflies across different forest types in Uttarakhand

Figure 10. Important clusters of sites holding species of conservation priority in 12/C1a Ban Oak Forest in Uttarakhand.

Figure 11. Important clusters of sites holding species of conservation priority in 12/C2c Moist Temperate Deciduous Forest in Uttarakhand.
Butterflies across different forest types in Uttarakhand

Figure 12. Important clusters of sites holding species of conservation priority in 3C/C2a Moist Shiwalik Sal Forest in Uttarakhand.

Figure 13. Important cluster of sites holding species of conservation priority in 14/C1a West Himalayan Sub-alpine Fir Forest in Uttarakhand.
Figure 14. Important cluster of sites holding species of conservation priority in 14/1S2 Deciduous Sub-alpine Scrub in Uttarakhand.

Figure 15. Important clusters of sites holding species of conservation priority in 3C/C2c Moist Terai Sal Forest in Uttarakhand.
Figure 16. Locations of 58 butterfly species of conservation priority in relation to forest cover and the protected area network (16 no.), of Uttarakhand state along with 17 clusters where these species are concentrated.

Figure 17. Locations of 17 clusters showing concentration of 58 butterfly species of conservation priority in relation to their altitudinal distribution in the state of Uttarakhand.
of 58 species of conservation priority are marked in 17 circles (Figure 16) and at least 12 of these occur outside the PA network based on the findings of the present study. Important forest sub-types identified falling in these clusters having species of conservation concern can thus be recommended for conservation or future PAs. Seventeen concentrations/clusters that are located in different physiographic zones represented in the state are, three in Trans Himalaya; three in Greater Himalaya; eight in Lesser Himalaya; one in Shiwalk/Dun; one in Bhabar; and one in Tarai area along an elevation gradient, rather than a few as currently represented in the PA network of the state (Figure 17 & Appendix V).

Also, new conservation sites can be identified from these 17 clusters/concentrations of rare butterfly taxa especially in the ‘Lesser Himalaya’ where the number of PAs are almost negligible. This type of approach in identifying areas of conservation priority is more inclusive and suitable at a sub-regional or state level in restoring linkages and corridors in the PA network, rather than solely based on a broader geographic scale, i.e., zoogeographic zones. Many of these sites with high butterfly richness that lie outside the PAs and close to the villages and towns with suitable logistical support for boarding, lodging and travel can be promoted for sustainable and inclusive butterfly ecotourism activities in the state.
phytophagous insects: host specialists in tropical environments, pp. 89–104. In: Mound, L.A. & N. Waloff (eds.). Diversity of Insect Faunas. Blackwell Scientific, 204 pp.

Gilbert, L.E. (1980). Food web organization and the conservation of neotropical diversity, pp. 11–34. In: Soule, M.E. & B.A. Wilcox (eds.). Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, Massachusetts, USA, 395 pp.

Gilbert, L.E. (1984). The biology of butterfly communities, pp. 41–54. In: Vane-Wright, R.I. & P.R. Ackery (eds.). The Biology of Butterflies. Princeton University Press, Princeton, New Jersey, USA, 429 pp.

Gasse, P.V. (2017). Annotated checklist of Butterflies of the Indo-Burmanse region. http://flutters.org/home/docs/Butterflies_of_India_Paul_Van_Gasse.pdf

Hannington, F. (1910–11). The butterflies of Kumaon. Parts I & Part II. Journal of the Bombay Natural History Society 20 (1): 130–142; (2): 361–372; (3): 871–872.

Haribal, M. (1992). Butterflies of Sikkim Himalaya and their Natural History. Sikkim Nature Conservation Foundation, Gangtok, Sikkim, 217 pp.

Khanduri, K., A. Singh, D. Singh, Kursotam & P. Garg (2013). On the risk of extintion. Butterflies across different forest types in Uttarakhand

Haribal, M. (1992). Butterflies of Sikkim Himalaya and their Natural History. Sikkim Nature Conservation Foundation, Gangtok, Sikkim, 217 pp.

Khanduri, K., A. Singh, D. Singh, Kursotam & P. Garg (2013). On the risk of extintion. Butterflies across different forest types in Uttarakhand

Kremen, C. (1992). Pollard, E. (1977). A method for assessing changes in the abundance of butterflies. Biological Conservation 12(2): 115–124.

Kremen, C., R.K. Colwell, T.L. Erwin, D.D. Murphy, R.F. Noss & M.A. Lomov, B., D.A. Keith, D.R. Britton & D.F. Hochuli (2006). Assemblages for Natural Areas Monitoring. Conservation Biology 7(4): 796–908.

Kremen, C. (1992). Food web organization and the conservation of neotropical diversity, pp. 11–34. In: Soule, M.E. & B.A. Wilcox (eds.). Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, Massachusetts, USA, 395 pp.

Kremen, C., R.K. Colwell, T.L. Erwin, D.D. Murphy, R.F. Noss & M.A. Lomov, B., D.A. Keith, D.R. Britton & D.F. Hochuli (2006). Assemblages for Natural Areas Monitoring. Conservation Biology 7(4): 796–908.

Kremen, C. (1992). Food web organization and the conservation of neotropical diversity, pp. 11–34. In: Soule, M.E. & B.A. Wilcox (eds.). Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, Massachusetts, USA, 395 pp.

Kremen, C. (1992). Food web organization and the conservation of neotropical diversity, pp. 11–34. In: Soule, M.E. & B.A. Wilcox (eds.). Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, Massachusetts, USA, 395 pp.

Kremen, C., R.K. Colwell, T.L. Erwin, D.D. Murphy, R.F. Noss & M.A. Lomov, B., D.A. Keith, D.R. Britton & D.F. Hochuli (2006). Assemblages for Natural Areas Monitoring. Conservation Biology 7(4): 796–908.

Kremen, C. (1992). Food web organization and the conservation of neotropical diversity, pp. 11–34. In: Soule, M.E. & B.A. Wilcox (eds.). Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, Massachusetts, USA, 395 pp.

Kremen, C., R.K. Colwell, T.L. Erwin, D.D. Murphy, R.F. Noss & M.A. Lomov, B., D.A. Keith, D.R. Britton & D.F. Hochuli (2006). Assemblages for Natural Areas Monitoring. Conservation Biology 7(4): 796–908.

Kremen, C. (1992). Food web organization and the conservation of neotropical diversity, pp. 11–34. In: Soule, M.E. & B.A. Wilcox (eds.). Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, Massachusetts, USA, 395 pp.

Kremen, C. (1992). Food web organization and the conservation of neotropical diversity, pp. 11–34. In: Soule, M.E. & B.A. Wilcox (eds.). Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, Massachusetts, USA, 395 pp.

Kremen, C., R.K. Colwell, T.L. Erwin, D.D. Murphy, R.F. Noss & M.A. Lomov, B., D.A. Keith, D.R. Britton & D.F. Hochuli (2006). Assemblages for Natural Areas Monitoring. Conservation Biology 7(4): 796–908.

Kremen, C. (1992). Food web organization and the conservation of neotropical diversity, pp. 11–34. In: Soule, M.E. & B.A. Wilcox (eds.). Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, Massachusetts, USA, 395 pp.

Kremen, C., R.K. Colwell, T.L. Erwin, D.D. Murphy, R.F. Noss & M.A. Lomov, B., D.A. Keith, D.R. Britton & D.F. Hochuli (2006). Assemblages for Natural Areas Monitoring. Conservation Biology 7(4): 796–908.

Kremen, C. (1992). Food web organization and the conservation of neotropical diversity, pp. 11–34. In: Soule, M.E. & B.A. Wilcox (eds.). Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, Massachusetts, USA, 395 pp.

Kremen, C., R.K. Colwell, T.L. Erwin, D.D. Murphy, R.F. Noss & M.A. Lomov, B., D.A. Keith, D.R. Britton & D.F. Hochuli (2006). Assemblages for Natural Areas Monitoring. Conservation Biology 7(4): 796–908.

Kremen, C. (1992). Food web organization and the conservation of neotropical diversity, pp. 11–34. In: Soule, M.E. & B.A. Wilcox (eds.). Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Sunderland, Massachusetts, USA, 395 pp.

Kremen, C., R.K. Colwell, T.L. Erwin, D.D. Murphy, R.F. Noss & M.A. Lomov, B., D.A. Keith, D.R. Britton & D.F. Hochuli (2006). Assemblages for Natural Areas Monitoring. Conservation Biology 7(4): 796–908.
Meadowbrown, Hyponephele davendra davendra (Moore, 1865) (Lepidoptera: Nymphalidae) from inner valleys of Garhwal, Uttarakhand, India. Journal of Bombay Natural History Society 118(2): 1–5. https://doi.org/10.17087/jbnhs/2021/v118/152490

Singh, A.P. & T. Singh (2022). Occurrence of Dubious Five-Ring, Ypthima parasakra Eliot in Garhwal Himalaya. Indian Journal of Entomology 84(1): 1–3.

Smetacek, P. (2002). The genus Pontia Fabricius (Lepidoptera: Pieridae) in the Kumaon Himalaya. Journal of the Bombay Natural History Society 99(2): 224–231.

Smetacek, P. (2004). Descriptions of new Lepidoptera from the Kumaon Himalaya. Journal of the Bombay Natural History Society 101(2): 269–276.

Smetacek, P. (2011). Four new lycaenid records from the Kumaon Himalaya. Journal of Threatened Taxa 3(2): 1555–1558. https://doi.org/10.11609/jott.o2224.1555-8

Smetacek, P. (2012). A new sub-species of Mycalesis suaveolens Wood-Mason & de Niceville 1883 from the western Himalaya, India (Lepidoptera, Nymphalidae, Satyrinae). Nachrichten Entomologischen Vereins Apollo 32: 105–108.

Smetacek, P. (2012). Butterflies (Lepidoptera: Papilionoidea and Hesperoidea) and other protected fauna of Jones Estate, a dying watershed in the Kumaon Himalaya, Uttarakhand, India. Journal of Threatened Taxa 4(9): 2857–2874. https://doi.org/10.11609/jott.o3020.2857-74

Smith, C. (1989). Butterflies of Nepal (Central Himalaya). Tecpress Service L.P., Bangkok, 352 pp.

Smith, C. (2006). Illustrated Checklist of Nepal Butterflies. Craftman Press, Bangkok, 129 pp.

Sondhi, S. (2017). First records of butterflies Anthene emolus emolus (Godart, [1924]) (Lepidoptera: Lycaenidae: Polyommatinae) and Gandaca harina assamica Moore, [1906] (Lepidoptera: Pieridae: Coliadinae) from Kumaon, Uttarakhand, India. Journal of Threatened Taxa 9(6): 10355–10357. https://doi.org/10.11609/jott.3233.9.6.10355-10357

Sondhi, S. & K. Kunte (2018). Butterflies of Uttarakhand- A Field Guide. Bishen Singh Mahendra Pal Singh (Dehradun), Titli Trust (Dehradun) National Centre for Biological Sciences (Bengaluru).

Swinhoe, C. (1905–1910). Lepidoptera Indica. Part VII. Rhopalocera–Papilionidae & Lycaenidae. Lovell, Reeve & Co. Ltd, London, 286 pp +pls.551–639.

Swinhoe, C. (1910–1911). Lepidoptera Indica. Part VIII. Rhopalocera–Lycaenidae. Lovell, Reeve & Co. Ltd., London, 293 pp + pls. 640–705.

Swinhoe, C. (1911–1912). Lepidoptera Indica Part IX. Rhopalocera–Lycaenidae & Hesperiidae. Lovell, Reeve & Co. Ltd., London, 278 pp +pls. 706–756.

Swinhoe, C. (1912–1913). Lepidoptera Indica. Part X. Rhopalocera–Hesperiidae. Lovell, Reeve & Co. Ltd., London, 364 pp + pls. 757–835.

Talbot, G. (1939). The Fauna of British India including Ceylon and Burma. Butterflies. 2nd edition. Vol. I. Taylor & Francis, London, 600 pp.

Talbot, G. (1947). The Fauna of British India including Ceylon and Burma. Butterflies. 2nd edition. Vol. II. Taylor & Francis, London, 506 pp.

Thomas, J.A. (1983). A quick method for estimating butterfly numbers during surveys. Biological Conservation 27(3): 195–211.

Thomas, C.D. & H.C. Mallorie (1985). Rarity, species richness and conservation: butterflies of the Atlas mountains in Morocco. Biological Conservation 33(2): 95–117.

Verma, A. & M.K. Arya (2018). A preliminary study on the status and distribution of Butterfly Fauna in and around the valley of Reetha Sahib, Champawat, Kumaun Himalaya, India. Biological Forum- An International Journal 10(1): 43–51.

Verma, A. & M.K. Arya (2018). A preliminary study on the status and distribution of Butterfly Fauna in and around the valley of Reetha Sahib, Champawat, Kumaun Himalaya, India. Biological Forum- An International Journal 10(1): 43–51.

Wells, S.M., M.R. Pyle & M. Collins (1983). The IUCN invertebrate Red Data Book. IUCN, Switzerland, 623 pp.

Wynter-Blyth, M.A. (1957). Butterflies of the Indian Region. Bombay Natural History Society, Bombay, xx+523 pp+72 pls.
Appendix I. List of protected areas in Uttarakhand state, India

Name	Area (km²)
1 Corbett National Park	520.82
2 Gangotri National Park	2390
3 Govind National Park	558.88
4 Nanda Devi National Park	624.6
5 Rajaji National Park	819.54
6 Valley of Flowers Park	87.50
7 Askot Wildlife Sanctuary	600
8 Asan Conservation Reserve	4.44
9 Binsar Wildlife Sanctuary	45.59
10 Govind Wildlife Sanctuary	481.05
11 Jhilmil Conservation Reserve	37.84
12 Kedarnath Wildlife Sanctuary	975.20
13 Benog/Mussoorie Wildlife Sanctuary	10.82
14 Nandhaur Wildlife Sanctuary	269.96
15 Pauragarh Conservation Reserve	58.25
16 Sonanadi Wildlife Sanctuary	301.18
17 Naina Devi Bird Conservation Reserve	111.90

![Location of protected areas in Uttarakhand state of India](image-url)
Appendix II. Vegetation composition of forest sub-types sampled in the state taken up for study.

Forest sub-type	Area (km²)	Percent of state cover	Dominant trees
1 3/C2a Moist Shiwalik Sal Forest	3158	12.97	Shorea robusta, Anogeissus latifolia, Terminalia tomentosa, T. bellerica, Adina cordifolia, Lannea coromandelica, Mallotus philippensis
2 3/C2c Moist Terai Sal Forest	542	2.19	Shorea robusta, Adina cordifolia, Tala, Terwa nudiflora, Syzygium cuminii, Litsea glutinosa, Lagerstroemia parviflora, Cordia dichotoma, Putranjiva roxburghii, Litsea monopetala, Pogostemon benghalensis
3 SB/C1a Dry Shiwalik Sal Forest	236	1.5	Shorea robusta, Anogeissus latifolia, Buchanania lanza, Terminalia tomentosa, Bauhinia variegate, Emblica officinalis, Acacia catechu, Pinus roxburghii, Schleichera oleosa, Cassia fistula, Zizyphus xylorrhiza (B. vahlii-shrub)
4 SB/C2 Northern Dry Mixed Deciduous Forest	678	2.82	Anogeissus latifolia, Boswellia serrata, Acacia catechu, Shorea robusta, Bauhinia spp., Bauhanania lanza, Diospyros tomentosa, Terminalia bellerica, Kytiaoclycina, Sterculia loppeus, Myrtagnya parviflora, Aegle marmelos, Butea monosperma, Flacourtia indica, Zizyphus mauritiana
5 5/152 Khair Sissu Forest	236	0.98	Dalbergia sisso, Acacia catechu, Zizyphus mauritiana, Ehretia laevis, Holoptelea integrifolia.
6 9/C1b Upper or Himalayan Chir Pine Forest	6278	26.07	Pinus roxburghii, Quercus leucotrichophora, Pinus roxburghii ararum, Pyrus pashia, Myrica esculenta, Pyrazanthum crenulata, Symplacos crapeoids.
7 12/C1a Ban Oak Forest	4798	20.23	Quercus leucotrichophora, Rhododendron ararum, Rhododendron ararum, Lonicera ovalifolia, T. semecarpifolia, Q. floribunda, Carpinus viminea, Betula alnoides
8 12/C1b Moru Oak Forest	9317	3.95	Quercus floribunda, Q. leucotrichophora, Pinus wallichiana, Betula alnoides, Carpinus viminea, Acer caesium, Michulis dutehi, Aesculus indica, Abies pinow, Picea smithiana, Juglas regia.
9 12/C1c Moist Deodar Forest	485	1.96	Cedrus deodara, Pinus wallichiana, Quercus leucotrichophora
10 12/C1d Western Mixed Coniferous Forest- Spruce, Blue Pine, Silver Fir	513	2.19	Picea smithiana, Cedrus deodara, Abies pinow, Pinus wallichiana, Quercus floribunda, Q. semecarpifolia, Q. leucotrichophora, Acer caesium, A. pictum, A. acuminatum, Euonymus lacerus, Taxus baccata, Betula alnoides.
11 12/C1e Moist Temperate Deciduous Forest	246	1.07	Alnus nepatens, Aesculus indica, Acer caesium, A. pictum, Pinus roxburghii, Quercus semecarpifolia, Fagus crenulata, Fraxinus ornus, Rhododendron ararum.
12 12/C2a Kharasu Oak Forest (Q. semecarpifolia)	227	0.99	Quercus semecarpifolia, Abies pinow, Betula alnoides, Q. floribunda, Acer caesium, Ilex dipyrren, Taxus baccata.
13 12/C2b West Himalayan Upper Oak/Fir Forest	1087	4.57	Abies pinow, Picea smithiana, Quercus semecarpifolia, Q. floribunda, Pinus roxburghii, Ilex dipyrren, Sorbus solios, Rhododendron ararum, Barbatum, Ulmus wallichiana, Aesculus indica, Corylus colurna
14 12/151 Low Level Blue Pine Forest	384	1.54	Pinus wallichiana, Quercus leucotrichophora
15 13/C2b Dry Deodar Forest	363	1.46	Cedrus deodara, Pinus wallichiana, Picea smithiana, Corylus colurna
16 14/C1a West Himalayan Sub-Alpine High Level Fir Forest	195	0.78	Abies spectabilis, Pinus wallichiana, Picea smithiana, Rhododendron complanulatum, Taxus baccata, Prunus padus
17 14/C1b West Himalayan Sub-Alpine Birch/ Fir Forest	583	2.47	Abies spectabilis, Acer caesium, Picea smithiana, Quercus semecarpifolia, Rhododendron complanulatum, R. anthropogon, Lonicera ovalifolia, Sorbus soliosas
18 14/152 Deciduous Sub-Alpine Scrub	200	0.86	Betula utillus
19 15/C1 Birch/Rhododendron Scrub Forest	136	0.56	Betula utillus, Rhododendron complanulatum, Sorbus soliosa, Quercus semecarpifolia
20 15/E1 Dwarf Rhododendron Scrub Forest	32	0.13	Rhododendron anthropogon, R. lepidotatum, R. complanulatum, Ilex dipyrren

Source: Champion & Seth (1968).
Appendix III. Complete list of butterflies sampled in 20 different forest types of Uttarakhand ranked according to their relative abundances (2006–2009 & 2017–2020).

Butterfly species A.	Butterfly species
Very Common	
1 Eurema hecabe	43 Danaus chrysippus (Linnaeus, 1758)
(Linnaeus, 1758)	44 Lethe verma verma (Kollar, [1844])
2 Coptopilia pomona	45 Ypthima inca (Hewitson, [1865])
(Fabricius, 1775)	46 Ypthima baldus (Fabricius, 1775)
3 Ypthima sakra sakra	47 Pereronia hippa (Fabricius, 1787)
Moore, [1858])	48 Castalus rosimon (Fabricius, 1775)
4 Pieris candia indic	49 Heliothrus tamu tamu (Kollar, [1844])
s (Evans, 1883)	50 Acraea isoria (Hübner, [1819])
5 Celastrina huegeli	51 Lampsides boeticus (Linnaeus, 1767)
huegeli (Moore, 1882)	52 Cyrestis thydamos ganesha (Kollar, 1848)
6 Aporia agathon	53 Jamides celena celena (Cramer, [1775])
(Gray, 1831)	54 Delias belladonna (Hewitson, [1869])
7 Junonia iphita	55 Neopithecos zalmora (Butler, [1870])
iphita (Cramer, [1799])	56 Euploea mucibera (Cramer, [1777])
8 Callerebia nirmala	57 Euaspis millonia (Hewitson, [1869])
(Moore, 1865)	58 Sepha sidae (Kollar, [1844])
9 Aglais caschmiensis	59 Issoria isoria (Doherty, 1886)
acesis (Fruhstorfer, 1912)	60 Prosotas dubiosa (Evans, [1925])
10 Papilio polyes	61 Junonia attites (Linnaeus, 1763)
romulus Cramer, [1775]	62 Callerebia anna (Cramer, [1775])
11 Pseudozizeeria	63 Ypthima nareda (Kollar, [1844])
maha maha (Kollar, [1844])	64 Danaus genutia (Cramer, [1779])
12 Ancylopessa pupa	65 Papilio demoleus (Linnaeus, 1758)
(Horsfield, [1828])	66 Mycalesis peruseus (Fabricius, 1798)
13 Aulocera swaha	67 Arhopala ganesha (Moore, [1858])
swaha (Kollar, [1844])	68 Colias erate (Esper, 1805)
14 Dodona durga	69 Eurema blanda (Boisduval, 1836)
durga (Kollar, [1844])	70 Junonia hierta (Fabricius, 1798)
15 Leptosia nina	71 Parantica sita sita (Kollar, [1844])
(Fabricius, 1793)	72 Zizeeria karsandra (Moore, 1865)
16 Neptis hyas varma	73 Cupha erymanthis lotis (Sulzer, 1776)
varma Moore, 1872	74 Athyma perus perius (Linnaeus, 1758)
17 Vanessa indica	75 Kaniska canace canace (Linnaeus, 1763)
indica (Herbst, 1794)	76 Ixias pyrene (Linnaeus, 1764)
18 Euploea core	77 Zizeina oti oti (Fabricius, 1787)
core (Hewitson, [1780])	78 Hypolimnas bolina (Drury, 1773)
19 Arhopala amontes	79 Chrysopephyris birupa Moore, 1877
opelia (Swinhoe, 1886)	80 Acraea terpsicore (Linnaeus, 1758)
20 Pieris brassicae	81 Lycaena phlaeas baralacha (Moore, 1884)
(Linnaeus, 1758)	82 Delias eucharis (Drury, 1773)
21 Neptis mahendra	83 Celaenorrhinus leucocera (Kollar, [1844])
mahendra Moore, 1872	84 Junonia almana almana (Linnaeus, 1758)
22 Gonepteryx rhami	85 Junonia anthya (Linnaeus, 1758)
nepalensis Doubleday, 1847	
23 Vanessa linnaeus	
(Linnaeus, 1758)	
24 Celastrina	
lavendulalis limitatus (Moore, 1879)	
25 Ypthima huebneri	
Kirby, 1871	
26 Junonia lemonias	
lemonias (Linnaeus, 1758)	
27 Lethe sidonis	
(Hewitson, 1863)	
28 Ariadne merione	
taeumara (Moore, 1884)	
29 Lesiommata schakra	
schakra (Kollar, [1844])	
30 Symbrenthia ilaea	
khianiana Moore, [1875]	
31 Phalanta phalantha	
phalantha (Drury, [1773])	
32 Callerebia hybrid	
Butler, 1880	
33 Arhopala atrax	
(Hewitson, 1862)	
34 Callerebia scando	
scando (Kollar, [1844])	
35 Parantica aglea	
melanoide (Moore, 1883)	
36 Athyma oapina	
oapina Kollar, 1844	
37 Heliothrus sena	
(Kollar, [1844])	
38 Prosotas nora	
ardates (Moore, [1875])	
39 Coptopilia pyranthe (Linnaeus, 1758)	
40 Colias fieldii	
Ménétrés, 1855	
41 Ypthima nilaiea	
Moore, [1875]	
42 Cepora nerissa	
phryne (Fabricius, 1775)	
Butterfly species	Butterfly species
-------------------	-------------------
86	Aporia leucadice (Eversmann, 1843)
87	Polyxenes ektola ektola (Hewitson, 1869)
88	Symbrenthia hyspis cotanda Moore, [1875]
89	Megisba malaya sikkima Moore, 1884
90	Neptis anata ananta Moore, [1858]
91	Graphium nainius nainius (Esper, 1799)
92	Belenois aura aurata (Fabricius, 1793)
93	Pseudergolis wedah wedah (Kollar, [1844])
94	Anthopoda dodona (Moore, [1858])
95	Poiretia laja laja (Stoll, [1780])
96	Pieris hebetor hebetor Moore, [1866]
97	Lethe isana isana (Kollar, [1844])
98	Leptotes plinius plinius (Fabricius, 1793)
99	Neptis sankara sankara (Fabricius, [1844])
100	Byasa laterellae laterellae (Donovan, 1826)
101	Lethe nicetas (Hewitson, 1863)
102	Triumala septentrionis septentrionis (Butler, 1874)
103	Parnara guttatus mangala (Moore, [1866])
104	Eurema andersonii jordani Corbet & Pendlebury, 1932
105	Stichophaena nois (Forster, 1771)
106	Ausonia danava danava (Moore, [1858])
107	Celaenorrhinus patula de Nicéville, 1889
108	Graphium sarpedon sarpedon (Fabricius, 1798)
109	Belenois aura aurata (Fabricius, 1793)
110	Eurema hyperbius hyperbius (Fabricius, [1777])
111	Pseudergolis wedah wedah (Kollar, [1844])
112	Byasa laterellae laterellae (Donovan, 1826)
113	Lethe nicetas (Hewitson, 1863)
114	Triumala septentrionis septentrionis (Butler, 1874)
115	Parnara guttatus mangala (Moore, [1866])
116	Eurema andersonii jordani Corbet & Pendlebury, 1932
117	Stichophaena nois (Forster, 1771)
118	Ausonia danava danava (Moore, [1858])
119	Celaenorrhinus patula de Nicéville, 1889
120	Graphium sarpedon sarpedon (Fabricius, 1798)
121	Belenois aura aurata (Fabricius, 1793)
122	Eurema hyperbius hyperbius (Fabricius, [1777])
123	Parnara guttatus mangala (Moore, [1866])
124	Eurema andersonii jordani Corbet & Pendlebury, 1932
125	Stichophaena nois (Forster, 1771)
126	Ausonia danava danava (Moore, [1858])
127	Celaenorrhinus patula de Nicéville, 1889
128	Graphium sarpedon sarpedon (Fabricius, 1798)
129	Belenois aura aurata (Fabricius, 1793)
Butterfly species	Butterfly species
-------------------	-------------------
175	Neope pulaha pandya (Talbot, 1947)
176	Telinga lepcha lepcha (Moore, 1880)
177	Arhopala rama rama (Kollar, [1844])
178	Euchrysys caniceps caniceps (Fabricius, 1798)
179	Spindasis vulcanus vulcanus (Fabricius, 1775)
180	Notocrypta feisthamelii alysos (Moore, [1866])
181	Telicota colon colon (Fabricius, 1775)
182	Loxura atrignus continentalis (Moore, [1858])
183	Neptis cortica cortica Moore, 1872
184	Lapelia avara avara (Kollar, 1844)
185	Papilio paris paris Linnaeus, 1758
186	Athyma asura asura Moore, [1858]
187	Aricia agestis naziva (Moore, [1866])
188	Deudorix epiphras epiphras (Moore, [1858])
189	Papilio selina selina (Moore, 1874)
190	Burura javana javana (Moore, [1866])
191	Labyrinth oasulas oasulas (Moore, [1866])
192	Meandrus acherinus acherinus (Fabricius, 1803)
193	Charaxes bernardus hierax (Moore, 1879)
194	Mycalesis francisco sancatera Moore, [1858]
195	Neptis somo somo Eliot, 1969
196	Neptis xanda xanda Doubleday, [1848]
197	Hypolycaena kina kina Hewitson, [1869]
198	Borbo beiani (Moore, 1878)
199	Sarangesa purnendra purnendra Moore, 1882
200	Graphium eurus casimiriensis (Rothschild, 1895)
201	Hestina persimilis zella Butler, 1869
202	Paralasa kalinda kalinda Moore, 1865
203	Polygonia c-album cognata Moore, [1899]
204	Telinga nicotia (Westwood, [1850])
205	Freyeria trochylus orientalis Forster, 1980
206	Pratapa icheta icheta (Hewitson, [1865])
207	Caprona agastis agastis (Moore, [1858])
208	Celastrina gigas (Hemming, [1928])
209	Neptis sappho astola Moore, 1872
210	Notocrypta feisthamelii alysos (Moore, [1866])
211	Neptis somo somo Eliot, 1969
212	Celastrina gigas (Hemming, [1928])
213	Neptis sappho astola Moore, 1872
214	Notocrypta feisthamelii alysos (Moore, [1866])
215	Neptis sappho astola Moore, 1872
216	Notocrypta feisthamelii alysos (Moore, [1866])
217	Neptis sappho astola Moore, 1872
218	Neptis sappho astola Moore, 1872

Butterflies across different forest types in Uttarakhand Singh
Butterfly species	Butterfly species
264 Dilipa morgiana (Westwood, [1851])	308 Baoris farri (Moore, [1878])
265 Nymphalis xanthomelas fervescens (Stichel, [1908])	309 Bibasis sena sensa (Moore, [1866])
266 Calostrina angiolus kollari (Westwood, [1852])	310 Atrophaneura aidonea (Doubleday, 1845)
267 Spindasis ictis ictis (Hewitson, 1865)	311 Graphium garhwalica (Katayama, 1988)
268 Zuesis chrysomalus Hübner, [1819]	312 Aporia agathon caphusa (Moore, 1872)
269 Caprona ransonnetti potiphera (Hewitson, 1873)	313 Gonepteryx mahaguru mahaguru (Gustl, 1857)
270 Potanthus dora (Kollar, [1844])	314 Ariadne ariadne pallidior (Fruhstorfer, 1899)
271 Tagiades menaka menaka (Moore, [1866])	315 Charaxes solon solon (Fabricius, 1793)
272 Tarucus callinara (Butler, 1886)	316 Pantoporia sandoka dawsoni Eliot, 1969
273 Anthene emolus emolus (Godart, [1824])	317 Tanaecia julii appiodes (Ménétriers, 1857)
	318 Ypthima avanta Moore, [1875]
	319 Flas asoka (de Nicéville, [1884])
D. Uncommon	320 Petrelaea dana (de Nicéville, [1884])
274 Aulocera brahiminus (Blanchard, 1853)	321 Rapala pheretima petasiris (Hewitson, [1863])
275 Symbrenthia nipponica hysudra Moore, 1874	322 Sinthusa chandrana chandrana (Moore, 1882)
276 Freyenia puti (Kollar, [1844])	323 Spalgis epius epius (Westwood, [1851])
277 Iraota timoleon timoleon (Stoll, [1790])	324 Virachola isocrates (Fabricius, 1793)
278 Tagiuria cippus cippus (Fabricius, 1798)	325 Dadana oudia philegra Fruhstorfer, 1914
279 Tagiuria dieus dieus (Hewitson, [1865])	326 Celaenorrhinus pero pero de Nicéville, 1889
280 Chaoaes benjiminini japonica (Murray, 1875)	327 Coladenia indrani indrani (Moore, [1866])
281 Hyarotis adрастus prabo (Moore, [1866])	328 Ochlodes brahma (Moore, 1878)
282 Petalops conjuncta conjuncta (Herrich-Schäffer, 1869)	329 Odontoptilum angulata angulata (C. Felder, 1862)
283 Graphium doson aequalis (Page & Treadaway, 2014)	330 Sesoria dohertyi dohertyi (Watson, 1893)
284 Aporia agathon phryxe (Boisduval, 1836)	331 Taractrocera maevis (Fabricius, 1793)
285 Charaxes dolon dolon Westwood, [1848]	332 Papilio alcon alcon alcon (C. & R. Felder, [1864])
286 Mimathyma ambica ambica (Kollar, [1844])	333 Papilio memnon agenor Linnaeus, 1758
287 Ypthima indecora Moore, 1882	334 Paraxius epaphus Oberthür, 1879
288 Ancema ctesis ctesia (Hewitson, [1865])	335 Appias larage (Doubleday, 1842)
289 Chaetopraucta odata pelei Forster, 1980	336 Appias libythea (Fabricius, 1775)
290 Curetis bulus bulus (Westwood, [1851])	337 Aghalis rizana (Moore, 1872)
291 Thermozyphrus ataxus ataxus (Westwood, [1851])	338 Athyma inora inora Westwood, 1850
292 Virachola perse perse (Hewitson, [1863])	339 Euptychia midamus (Linnaeus, 1758)
293 Aeromachus stigmata stigmata (Moore, [1878])	340 Hyponephele pulchella (C. & R. Felder, [1867])
294 Celaenorrhinus dhanada (Moore, [1866])	341 Lethe askwania Tytler, 1939
295 Tagiades rapax rapax (Moore, [1866])	342 Mycalesis suaveolens ranatei Smetacek, 2012
296 Gandoca harina assamica Moore, 1906	343 Everes hugeli hugeli (Gistel, 1857)
297 Neptis narayana Moore, 1858	344 Helioptilus indicus (Fruhstorfer, 1908)
298 Ypthima hannygtoni hannygtoni Eliot, 1967	345 Horago viola Moore, 1882
299 Arhopala paragama paragama (de Nicéville, 1882)	346 Pratapa deva lila Moore, [1884]
300 Aporia sibylla sibylla (Stoll, [1782])	347 Spindasis elima uniformis (Moore, 1882)
301 Aeromachus dubius Elwes & Edwards, 1897	348 Tagiuria jehana jehana Moore, [1884]
302 Badamia exclamationis (Fabricius, 1775)	349 Baoris pagana (de Nicéville, 1887)
303 Argynnis javanaeja javanaeja Moore, 1864	350 Coloris kumara (Moore, 1878)
304 Aulocera padma padma (Kollar, [1844])	351 Eristalis torus Evans, 1941
305 Lethe balsdeva aisa Fruhstorfer, 1911	352 Peosta masuriensis masuriensis (Moore, 1878)
Butterflies across different forest types in Uttarakhand

Butterfly species	353	Sasia grahami grahami (Evans, 1926)
354	Papilio bootes janaka Moore, 1957	
355	Papilio helena helena Linnaeus, 1758	
356	Parnassius charltonius Gray, (1853)	
357	Colias etrica (Boisduval, 1836)	
358	Delias acalis pyramus [Wallace, 1867]	
359	Charaxes agrarius Swinhoe, [1887]	
360	Hyponephele davendra davendra (Moore, 1865)	
361	Lethe goolpara goolpara (Moore, [1866])	
362	Polygonia c-album agnicula (Moore, [1866])	
363	Ypthima parasakra Eliot, 1987	

Butterfly species	364	Heliophorus epicles latilimbata (Fruhstorfer, 1908)
365	Miletus chinesis assamensis (Doherty, 1893)	
366	Spindasis lohita himalayanus (Moore, 1884)	
367	Hasora chromus (Cramer, [1870])	
368	Thoressa aina (de Nicéville, 1889)	
369	Maneca bhota bhotea (Moore, 1884)	
370	Coleonornis pyrrha de Nicéville, 1889	

The relative abundance of butterfly taxa ranging from 1–1,596 individuals. The taxa are ranked into four abundance classes based on their quartile divisions, i.e., Q1= 1–7 Uncommon; Q2= 8–21= Fairly Common; Q3= 22–69= Common; Q4= 70–1,596= Very Common; Median value= 21.

Appendix IV. Butterfly taxa of conservation priority in Uttarakhand.

Family/Scientific name	Common name	Distribution	Associated forest sub-type*	Abundance status	WPA status	Altitudinal distribution (m)	
PAPILLIONIDAE							
1	Byasa dasara daravana (Moore, 1858)	Great Windmill	WH; CH	12C1a; 12/ C1b	NR	NA	150–2750
2	Graphium eurous caschmirensis (Rothschild, 1895)	Six-bar Swordtail	WH; CH	12C1a	NR	NA	1000–2800
3	Graphium garhwalica (Katayama, 1988)	Garhwal Swordtail	WH	12C1a	R	NA	1600–2300
4	Parnassius charltonius Gray, [1853]	Regal Apollo	WH; PA	12C1a	R	NA	3600–4400
PIERIDAE							
5	Aporia agathon caphusa (Moore, 1872)	Garhwal Great Blackvein	WH; CH	14/C1a	NR	NA	1200–3050
6	Aporia agathon phryxe (Boisduval, 1836)	Kashmir Great Blackvein	WH	12C1a	NR	NA	Up to 2100
7	Delias acalis pyramus (Wallace, 1867)	Redbreast Jezebel	WH; CH	3C/C2a	NR	NA	Up to 1500
8	Delias sanaca sanaca (Moore, [1858])	Pale Jezebel	WH	12/C1a; 12/ C1b	NR	Sch - I	1200–3000
9	Gonepteryx mahaguru mahaguru Gistel, 1857	Lesser Brimstone	WH; CH	12/C1a; 12/ C2c	NR	NA	Above 2100
NYMPHALIDAE							
10	Aglais rizana (Moore, 1872)	Mountain Tortoiseshell	WH; EH	14/152	R	Sch - II	2400–4500
11	Lethe dura gammei (Moore, [1892])	Scarce Lilacfork	WH; EH	12/C1a; 12/ C2b	VR	Sch - I	1800–2200
12	Polygonia c-album agnicula (Moore, 1872)	Nepalese Comma	WH; CH	14/C1a	R	Sch - II	2200–4500
13	Ypthima parasakra parasakra Eliot, 1987	Dubious Five-ring	WH; CH; EH	12/251	R	NA	2000–2700
14	Argynnis jainadeva jainadeva Moore, 1864	Highbrown Silverspot	WH	14/C1a	NR	NA	2400–4700
15	Callercibia hyagriva hyagriva (Moore, [1858])	Brown Argus	WH	9/C1b	R	Sch - II	1500–2400
16	Callercibia scanda scanda (Kollar, [1844])	Pallid Argus	WH	12/C1a; 12/ C1b	NR	NA	1200–2800
17	Charaxes dolon dolon Westwood, [1848]	Statley Nawab	WH; CH	12/C1a; 9/ C1b	R	Sch - II	1430–1900
18	Euthalia patala patala (Kollar, [1844])	Grand Duchess	WH	12/C1a	NR	NA	400–2500
19	Hestina persimilis zeillo Butler, 1869	Siren	WH	12/C1a; 3C/ C2a	R	Sch - II	750–1460
Family/Scientific name	Common name	Distribution	Associated forest sub-type*	Abundance status	WPA status	Altitudinal distribution (m)	
------------------------	-------------	--------------	-----------------------------	-----------------	-----------	-----------------------------	
20 Hyponephe davendra davendra (Moore, [1865])	White-ringed Meadowbrown	WH; PA	12/C1c	R	Sch-ii	900–2400	
21 Hyponephe lepuchella (C. & R. Felder, [1867])	Tawny Meadowbrown	WH; PA	12/C2b	NR	NA	3000–3600	
22 Lethe baladeva aiso Fruhstorfer, 1911	Treble Silverstripe	WH; CH	12/C1a; 12/C2c	R	Sch-ii	1800–2200	
23 Lethe dakwania Tytler, 1939	White-wedged Woodbrown	WH	12/C2c	R	NA	2300–2900	
24 Lethe gaalpara gaolpara (Moore, [1866])	Large Goldenfork	WH; CH	12/C2c	R	Sch-ii	1800–3000	
25 Lethe isana isana (Kollar, [1844])	Common Goldenfork	WH	12/C1a; 12/C1d; 9/C1b	R	NA	1500–2700	
26 Mycalesis suaveolens ranotei Smetacek, 2012	Wood-Mason’s Bushbrown	WH; CH	12/C1a	R	Sch-ii	700–1700	
27 Neope pulaha pandyia (Talbot, 1947)	Veined Labyrinth	WH	12/C1a; 12/C2c; 12/C251	R	Sch-ii	1500–3050	
28 Neope yama buckleyi Talbot, 1947	Dusky Labyrinth	WH; CH	12/C1a; 12/C2c	NR	Sch-ii	1200–2370	
29 Neptis anantaananta Moore, [1858]	Yellow Sailer	WH	12/C1a; 12/C2c	R	NA	400–2300	
30 Neptis clinia praedicta Smetacek, 2011	Sullied Sailer	WH	3C/C2a; 3C/C2c; 12/C1a	NR	NA	Low	
31 Neptis sankara sankara (Kollar, [1844])	Broad-banded Sailer	WH	3C/C2a; 5B/C2; 12/C1a	NR	NA	800–2500	
32 Neptis Zaida Zaida Doubleday, [1848]	Pale Green Sailer	WH; CH	3C/C2a; 12/C1a	R	Sch-ii	900–2500	
33 Nymphalis xanthomelas fervescens (Stichel, [1908])	Large Tortoiseshell	WH; CH	12/C1a; 12/C2b; 14/C1a	R	NA	900–3200	
34 Paranasa kalinda kalinda Moore, 1865	Scarce Mountain Argus	WH	3C/C2a; 3C/C2c; 12/C1a	R	NA	2700–3900	
35 Polygonia c-album cognata Moore, [1899]	Kumaon Comma	WH	12/C1a; 12/C2c	NR	NA	2100–4800	
36 Sephisa dichroa (Kollar, [1844])	Western Courtier	WH; CH	12/C1a; 12/C1b; 12/C2c	NR	NA	1500–2740	
37 Symbrenthia niphanda hysudra Moore, 1874	Blue-tail Jester	WH; CH	12/C1a; 12/C2c	R	Sch-ii	1000–2600	
38 Telinga Lepcha lepcha (Moore, 1880)	West Himalayan Lepcha-Bushbrown	WH; CH	12/C1a; 12/C2c; 3C/C2a	NR	NA	1100–2400	
39 Ypthima avanta Moore, [1875]	Jewel Five-ring	WH; CH	12/C1a	NR	NA	600–1800	
40 Ypthima hannyngtoni hannyngtoni Eliot, 1967	Garwhal Large Branded Five-ring	WH; CH	12/C1a; 12/C1b	NR	NA	2100–2300	
41 Ypthima indecora Moore, 1882	Western Five-ring	WH; CH	12/C1a; 12/C2c	NR	NA	1300–1700	
42 Ypthima kedarnathensis Singh, 2007	Garwhal Six-ring	WH; CH	12/C1a; 12/C2c	R	NA	1600–2200	

D. LYCAENIDAE

43 Aricia agestis nazira (Moore, [1866])	Orange-bordered Argus	WH; CH	12/C1a	NR	NA	1800–2980
44 Chrysozephyrus birupa Moore, 1877	Fawn Hairstreak	WH; CH	12/C1a; 12/C2c	NR	NA	above 1400
45 Esakiozephyrus icana icana (Moore, [1875])	Dull-green Hairstreak	WH; CH	12/C1a; 12/C1d	R	Sch-ii	2000–3300
46 Euaspa millonia millonia (Hewitson, [1869])	Water Hairstreak	WH; CH	12/C1a	NR	NA	1200–2000
47 Heliocharis morrei coruscans (Moore, [1882])	Azure Sapphire	WH; CH	12/C1a; 12/C2c	R	NA	1300–3000
48 Pratapa icetas icetas (Hewitson, [1865])	Dark Blue Royal	WH; CH	12/C1a; 12/C2b; 12/C2c	R	Sch-ii	1500–2700
49 Shizuyaozephyrus ziha (Hewitson, [1865])	White-spotted Hairstreak	WH; CH	12/C1a	R	Sch-ii	1200–2000
50 Sinthusa chandrana chandrana (Moore, [1882])	Broad Spark	WH; CH	12/C1a; 12/C1d; 12/C2a	R	Sch-ii	Up to 1820
Butterflies across different forest types in Uttarakhand

Family/Scientific name	Common name	Distribution	Associated forest sub-type*	Abundance status	WPA status	Altitudinal distribution (m)
Spindasis elimauni formi s (Moore, 1882)	Scarce Shot Silverline	WH; CH	3/C2a	NR	Sch-II	Up to 2700
Thermaezephyrus ataxus ataxus (Westwood, [1851])	Wonderful Hainstreak	WH; CH	12/C1a; 12/C2c	R	NA	1800–2400
Dodona dipoea nostia Fruhstorf, 1912	Lesser Punch	WH	12/C1a; 12/C2c	R	Sch-II	1800–3000
Dodona ouida phlegra Fruhstorf, 1914	Mixed Punch	WH; CH	12/C1a; 12/C2c	NR	NA	1200–2400
Celaenorrhinus peropero deNicéville, 1889	Mussoorie Spotted Flat	WH	12/C1a	R	NA	1500–2000
Potanthus dara (Kollar, [1844])	Himalayan Dart	WH; CH	12/C1a; 3/C2a	NR	NA	1830–2590
Sovia lucasii (Mabille, 1876)	Lucas's Ace	WH; EH	9/C1b	R	NA	1800–2000
Thoressa oina (de Nicéville, 1889)	Garhwal Ace	WH; CH	12/C1a	R	NA	1370–2800

WH–Western Himalaya | CH–Central Himalaya | * Forest Sub-type reference Table 2 | Abundance Status (Evans 1932): VR–Very Rare | R–Rare | NR–Not Rare | WPA–Wildlife (Protection) Act 1972 (Anonymous 2006) | Sch–Schedule listed in WPA1972 (Anon 2006).

Appendix V. Locations of Western Himalayan forest sub-types identified holding butterfly species of conservation priority in the state of Uttarakhand spread over different physiographic zones along the elevation gradient.

Physiographic zone	Forest Sub-type	District	Site/village/Reserve Forest
A. Trans Himalaya (Above 3600m)	14/C1a West Himalayan Sub-alpine Fir Forest	Chamoli	Ghamsali-Niti Pass
14/352 Deciduous Sub-alpine Scrub	Chamoli	Mana-Badrinath & Valley of Flowers NP.	
B. Greater Himalaya (2400–3600m)	12/C1a Ban Oak Forest	Chamoli & Rudraprayag	Mandal-Chopta-Duggalbitta-Makkumath-Kedarnath WS
Uttarkashi dist	Tehri Garhwal	Buddha Kedar-Jhala	
12/C2c Moist Temperate Deciduous Forest	Chamoli & Rudra prayag	Mandal-Chopta-Makkumath-Duggalbitta	
C. Lesser Himalaya (1200-2400m)	12/C1a Ban Oak Forest	Dehradun & Tehri Garhwal	BenogWS-Mussoorie-Kotkimi-Rotu-ki-beli
Dehradun	Pauri-Talisain-Dudatoli ridge		
Pithoragarh	Didihat-Thal		
Nainital	Naina Devi Conservation reserve-Kilbury-Pangot-Vinayak Khal		
Almora	Ranikhet		
Binsar WS			
D. Shiwalik-Dun/Bhabar (Below 1200m)	3C/C2a Moist Shiwalik Sal Forest	Dehradun	Timli RF-Karvapani RF
Dehradun	Jhuaja RF, Chowki Dhaulas-Rikhouli RF		
Pauri	Rahuthua dhab-Mundipani-Nauri		
E. Tarai (100–350m)	3C/C2c Moist Terai Sal Forest	Nainital	Chorgalia-Jolasal-Senapani (Nandhaur WS)
Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSQO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
J.W. Duskwuck, IUCN SSC, Bath, UK
Dr. Rajiv Jayapal, SACCN, Coimbatore, Tamil Nadu, India
Dr. Rajes K. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praween, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. GobindaBazar Sundar, Professor of Ornithology, IISER, Pune, Maharashtra, India
Dr. Binaangar, Mongolia
Dr. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundrik, Wetlands International, The Netherlands
Dr. Carol Inskipp, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirapalli, Tamil Nadu, India
Dr. Arlady Leho, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connote, Smithsonian Institution, Royal, VA, USA
Dr. M. Zafar-ul-Islam, Prince Saud Al Faisal Wildlife Research Center, Taf, Saudi Arabia

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anuaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACCN, Coimbatore, Tamil Nadu, India
Dr. Angielle Wild, Wild Cat Network, Germany
Dr. P. D. Namer, University of Adelaide, SA 5005, Australia
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Lala A.K. Singh, Bhabhanesarw, Orissa, India
Dr. M. Zafar-ul-Islam, Prince Saud Al Faisal Wildlife Research Center, Taf, Saudi Arabia

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. D. Pillai, National University of Singapore, Singapore
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Joe C. Humston, University of North Carolina, Chapel Hill, USA
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. Shomita Mukherjee, SACCN, Coimbatore, Tamil Nadu, India
Dr. K. Sivasubramonian, Director, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Ramulu S. G., Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Washington, DC, USA
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. M. Zafar-ul-Islam, Prince Saud Al Faisal Wildlife Research Center, Taf, Saudi Arabia

Print copies of the Journal are available at cost. Write to: The Managing Editor, IOT, c/o Wildlife Information Liaison Development Society, No. 12, Thiruvanmanalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Reviewers 2018–2020

Due to paucity of space, the list of reviewers for 2018–2020 is available online.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows uses unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

January 2022 | Vol. 14 | No. 1 | Pages: 20311–20538
Date of Publication: 26 January 2022 (Online & Print)

DOI: 10.11609/jott.2022.14.1.20311-20538

Articles

Estimating the completeness of orchid checklists and atlases: a case study from southern India
– Antonio Croce, Pp. 20311–20322

A floristic survey across three coniferous forests of Kashmir Himalaya, India – a checklist
– Ashaq Ahmad Dar, Akhtar Hussain Malik & Narayanaswamy Parthasarathy, Pp. 20323–20345

Associations of butterflies across different forest types in Uttarakhand, western Himalaya, India: implications for conservation planning
– Arun Pratap Singh, Pp. 20346–20370

Comparison of bird diversity in protected and non-protected wetlands of western lowland of Nepal
– Jagan Nath Adhihikari, Janak Raj Khatiwada, Dipendra Adhihikari, Suman Sapkota, Bishnu Prasad Bhattarai, Deepak Rijal & Lila Nath Sharma, Pp. 20371–20386

Local hunting practices and perceptions regarding the distribution and ecological role of the Large Flying Fox (Chiroptera: Pteropodidae: Asota) in the Lowland of Nepal
– Charmalie Anuradhie Dona Nahallage, Dahanakge Ayesha Madushani Dasanayake, Sarawak, Malaysian Borneo
– Jayasilah Mohd-Azlan, Joon Yee Yong, Nabilah Norshuhahah Mohd Hazrul, Philoveny Pengiran, Ariantl Atong & Sheema Abdul Azit, Pp. 20387–20399

Communications

Macrobilichen of Mathikettan Shola National Park, Western Ghats: a preliminary investigation with some new records
– Aswathi Anilkumar, Stephen Sequeira, Arun Christy & S.M. Arsha, Pp. 20400–20405

New distribution record of globally threatened Ocean Turf Grass Halophila beccarii
– Aswathi Anilkumar, Stephen Sequeira, Arun Christy & S.M. Arsha, Pp. 20400–20405

An inventory of new orchid (Orchidaceae) records from Kozhikode, Kerala, India
– M. Sulaiman, C. Murugan & M.U. Sharief, Pp. 20413–20425

Abundance and spatial distribution analyses of Stemonoporus moonii (Dipterocarpaceae) - a critically endangered species endemic to Sri Lanka
– K.A.M.R.P. Atapattu, H.D.D.C.K. Perera, H.S. Kathriarachchi & A.R. Gunawardena, Pp. 20426–20432

Plant diversity of Point Calimere Wildlife Sanctuary and fodder species grazed by the Blackbuck Antelope cervicapra L.
– Ashutosh Kumar Upadhyay, A. Andrew Emmanuel, Amsa Sarah Varghese & D. Narasimhan, Pp. 20433–20443

Raptors observed (1983–2016) in National Chambal Gharial Sanctuary: semi-arid biogeographic region suggestions for parametric studies on ecological continuity in Khathiar-Gir Ecoregion, India
– L.A.K. Singh, R.K. Sharma & Udayan Rao Pawar, Pp. 20444–20460

Nesting success of Sharpe’s Longclaw (Macronyx sharpei) Jackson, 1904) around the grasslands of lake O’bolosat Nyandarua, Kenya
– Hamisi Ann Risper, Charles M. Warui & Peter Njorge, Pp. 20461–20468

Population, distribution and diet composition of Smooth-coated Otter Lutrogale perspicillata (Mammalia: Carnivora: Mustelidae): in Ratnagiri, Maharashtra, India
– Monika Sharma, Manisha Mathela, Rupali Sharma, Himanshu Bargali, Gurinderjit S. Goraya & Amit Kumar, Pp. 20530–20533

Wildlife at the crossroads: wild animal road kills due to vehicular collision on a mountainous highway in northwestern Himalayan region
– Muzaffar A. Kichloo, Asha Sohil & Neeraj Sharma, Pp. 20517–20522

Notes

Robiquetia gracilis (Lindl.) Garay—a new record to the flora of Anamalai Hills, Tamil Nadu, India
– B. Subbailan, V. Ganesan, P.R. Nimal Kumar & S. Thangaraj Panneerselvam, Pp. 20523–20525

Ipomoea laxiflora H.J. Chowdhery & Debtba (Convolvulaceae): new records for the Western Ghats and semiarid regions
– Sachin M. Patil, Aijit M. Vasava, Vinay M. Raole & Kishore S. Rajput, Pp. 20526–20529

Counting the cost: high demand puts Bunium persicum (Boiss.) B.Fedtsch. in jeopardy
– Monika Sharma, Manisha Mathela, Rupali Sharma, Himanshu Bargali, Gurinderjit S. Goraya & Amit Kumar, Pp. 20530–20533

First record of Parasitic Jaeger Stercorarius parasiticus (Aves: Charadriiformes: Stercorariidae) from inland freshwater Inle Lake, Myanmar
– Sai Sein Lin Oo, Myint Kyaw, L.C.K. Yun, Min Zaw Tun, Yar Zar Lay Naung, Soe Naing Aye & Sven C. Renner, Pp. 20534–20536

Book Review

Capparis of India
– V. Sampath Kumar, Pp. 20537–20538