Gene-Environment Interactions of Circadian-Related Genes for Cardiometabolic Traits

OBJECTIVE

Common circadian-related gene variants associate with increased risk for metabolic alterations including type 2 diabetes. However, little is known about whether diet and sleep could modify associations between circadian-related variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs1387153, MTNR1B-rs10830963, NR1D1-rs2314339) and cardiometabolic traits (fasting glucose [FG], HOMA-insulin resistance, BMI, waist circumference, and HDL-cholesterol) to facilitate personalized recommendations.

RESEARCH DESIGN AND METHODS

We conducted inverse-variance weighted, fixed-effect meta-analyses of results of adjusted associations and interactions between dietary intake/sleep duration and selected variants on cardiometabolic traits from 15 cohort studies including up to 28,190 participants of European descent from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.

RESULTS

We observed significant associations between relative macronutrient intakes and glycemic traits and short sleep duration (<7 h) and higher FG and replicated known MTNR1B associations with glycemic traits. No interactions were evident after accounting for multiple comparisons. However, we observed nominally significant interactions (all P < 0.01) between carbohydrate intake and MTNR1B-rs1387153 for FG with a 0.003 mmol/L higher FG with each additional 1% carbohydrate intake in the presence of the T allele, between sleep duration and CRY2-rs11605924 for HDL-cholesterol with a 0.010 mmol/L higher HDL-cholesterol with each additional hour of sleep in the presence of the A allele, and between long sleep duration (≥9 h) and MTNR1B-rs1387153 for BMI with a 0.60 kg/m² higher BMI with long sleep duration in the presence of the T allele relative to normal sleep duration (7 to <9 h).

CONCLUSIONS

Our results suggest that lower carbohydrate intake and normal sleep duration may ameliorate cardiometabolic abnormalities conferred by common circadian-related genetic variants. Until further mechanistic examination of the nominally significant interactions is conducted, recommendations applicable to the general population regarding diet—specifically higher carbohydrate and lower fat composition—and normal sleep duration should continue to be emphasized among individuals with the investigated circadian-related gene variants.

Hassan S. Dashti,1 Jack L. Follis,2 Caren E. Smith,3 Toshiko Tanaka,4 Marta Garaulet,4 Daniel J. Gottlieb,5,6,7 Adela Hruby,8 Paul F. Jacques,9 Jessica C. Kiefte-de Jong,10,11 Stefania Lamon-Fava,12 Frank A.J.L. Scheer,5,6 Traci M. Bartz,13,14 Leena Kovanen,15 Mary K. Wojczynski,16 Alexis C. Frazier-Wood,17 Tanveer S. Ahluwalia,18,19,20 Mia-Maria Perälä,21 Anna Jonsson,18 Taulant Muka,10 Ioanna P. Kalafati,22 Vera Mikkilä,23,24 and José M. Ordovás,1,25,26 for the CHARGE Nutrition Study Group*

1Nutrition and Genomics Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA
2Department of Mathematics, Computer Science and Cooperative Engineering, University of St. Thomas, Houston, TX
3Translational Gerontology Branch, National Institute on Aging, Baltimore, MD
4Department of Physiology, University of Murcia, Murcia, Spain
5Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA
6Division of Sleep Medicine, Harvard Medical School, Boston, MA
7Sleep Disorders Center, VA Boston Healthcare System, Boston, MA
8Department of Nutrition, Harvard School of Public Health, Boston, MA
9Nutritional Epidemiology Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA
10Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
Gene-environment interactions can identify potential opportunities for personalized health interventions for individuals who are genetically susceptible to type 2 diabetes and related chronic diseases (1). During the past decade, researchers have examined lifestyle interventions, particularly those related to diet, physical activity, and sleep, for individuals at increased genetic risk for metabolic alterations such as type 2 diabetes (2,3). For example, dietary changes in carbohydrate (CHO) and fat intake have been shown to attenuate a genetic predisposition to elevated fasting glucose (FG) (4), insulin resistance (5), and type 2 diabetes (6). Sleep duration has also been assessed as a modifying factor in the associations between genetics and type 2 diabetes because of the association of sleep with diet and chronic disease and its effect on the genetic risk for obesity (7). Identifying optimal and personalized therapies for the primary prevention of type 2 diabetes through gene-environment investigations is critical to public health for a disease that affects an estimated 29.1 million Americans (9.3% of the U.S. population) (1,8). In addition, because only 10% of the total heritability of type 2 diabetes is accounted for by genetic variants (9), gene-environment investigations may also reveal novel biological pathways and genetic loci pertinent to this disease.

Glucose homeostasis and insulin secretion are among several biological processes that are controlled by the circadian biological clock, which is maintained endogenously through a transcription-translation feedback loop composed of clock genes (10). Glycemic control is mediated through multiple processes, including circadian regulation of hepatic glucose metabolism (11,12); secretion of adipokines, such as leptin and adiponectin (13,14); and the pancreatic secretion of insulin and glucagon (15). Experiments in clock mutant mice showing disrupted glucose homeostasis, insulin secretion and sensitivity, and other metabolic processes, along with circadian disruption in humans (16), emphasize the importance of circadian control in metabolic control (15,17).

In support of the link between the circadian system and glycemic control in humans is results from genome-wide association studies (GWAS) of FG (18,19) and type 2 diabetes (9,20) that have reported associations with clock gene CRY2, encoding cryptochrome 2, and the circadian-related melatonin receptor 1B gene MTNR1B. In addition, the circadian locomotor output of clock genes cycles kaput CLOCK and, more recently, the nuclear receptor rev-erb-α NR1D1 have been associated with related metabolic traits, including lower circulating concentrations of HDL-cholesterol (HDL-C) and elevated central adiposity (21–23). Because metabolic traits are important predictors of type 2 diabetes, these loci may also be relevant to the pathogenesis of type 2 diabetes (24). Thus, investigating whether lifestyle modifications—particularly diet, for its potent role in entraining circadian clocks in metabolic tissues (25), and sleep, for its putative effect on disease risk (7)—attenuate circadian-related genetic predispositions to metabolic disruptions may facilitate the development of personalized recommendations to improve type 2 diabetes prevention strategies.

In cross-sectional meta-analyses of large population-based cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, we tested whether dietary intake (total CHO, total fat, polyunsaturated fatty acid [PUFA], monounsaturated fatty acid [MUFA], and saturated fatty acid [SFA]) and sleep duration (continuous and categorical) modify the associations between five common circadian-related gene variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs1387153, MTNR1B-rs10830963, and NR1D1-rs2314339) and the two glycemic traits of FG and HOMA-insulin resistance (HOMA-IR), as well as related anthropometric (BMI and waist circumference) and lipid (HDL-C) traits. These outcomes are related to cardio-metabolic disease and have previously been shown to associate with the selected genetic variants.
RESEARCH DESIGN AND METHODS

Cohorts
The present cross-sectional meta-analyses include up to 28,190 participants of European descent from the following 15 cohort studies of the CHARGE Consortium Nutrition Working Group (Supplementary Table 1): Coronary Artery Risk Development in Young Adults Study (CARDIA); Corogene Controls; Cardiovascular Health Study (CHS); Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome (DILGOM); Family Heart Study (FamHS); Framingham Offspring Study (FOS); Genetics of Lipid Lowering Drugs and Diet Network (GOLDN); GOYA MALE; Helsinki Birth Cohort Study (HBCS); Invecchiare in Chianti (aging in the Chianti area, INCHIANTI); Inter99; Multi-Ethnic Study of Atherosclerosis (MESA); The Rotterdam Study; The Hellenic Study of Interactions between SNPs and Eating in Atherosclerosis Susceptibility (THISEAS); and the Cardiovascular Risk in Young Finns Study (YFS). Participants provided written informed consent, and the study protocols were approved by local institutional review boards and/or oversight committees.

Dietary Assessment
Dietary data were collected via validated food-frequency questionnaires (13 cohorts), dietary recall (1 cohort), and food record (1 cohort) (Supplementary Table 2). The type of food-frequency questionnaire used in each cohort differed slightly to capture the dietary habits of the population of interest. The present analysis quantified total CHO intake and total fat intake as percentages of total energy intake. Additional analyses used percentage of energy from specific fatty acids, including PUFA, MUFA, and SFA. Total energy intake from protein was not included in the present analysis because of the lack of evidence supporting protein intake in gene-environment interactions (3).

Sleep Assessment
Data on habitual weekday/weekday nighttime sleep duration in hours per night were obtained from self-reported responses to questions such as, “How many hours of sleep do you usually get at night?” or were calculated from self-reported weekday/weekday bed and rise times (Supplementary Table 3). Responses were analyzed as continuous and categorical variables. Commonly accepted cutoffs were used to create three sleep duration categories: short (<7 h), normal (7 to <9 h), and long (≥9 h).

Outcome Measurements
Cohort-specific assessment methods for FG (mmol/L), BMI (kg/m²), waist circumference (cm), and HDL-C (mmol/L) are described in detail in Supplementary Table 3. HOMA-IR was estimated from fasting insulin and FG concentrations, using the previously validated equation [HOMA-IR = FG (mmol/L) × fasting insulin (mU/L)/22.5], and was natural log-transformed to reduce skew before data analysis.

Genotyping
We selected five single nucleotide polymorphisms (SNPs) in circadian-related genes based on previous reports from GWAS meta-analysis (CRY2-rs11605924, MTNR1B-rs10830963), replicated candidate gene association studies (NR1D1-rs2314339), gene-environment interaction studies, or a combination of these findings (CLOCK-rs1801260, MTNR1B-rs1387153) that showed associations with type 2 diabetes, FG, and/or BMI (4,9,18–21). SNPs and/or SNPs in linkage disequilibrium (r² > 0.80; HapMap III release 2 data set) were previously directly genotyped or imputed by participating cohorts before inclusion in this analysis (Supplementary Table 4). SNPs were assessed for quality control: genotyped SNPs were excluded on the basis of low call rate (≤95%) and departure from Hardy-Weinberg equilibrium (≤1E-06), and imputed SNPs were removed on the basis of low imputation quality (MACH: R² < 0.3 or IMPUTE: proper info <0.4). Not all SNPs were available in all participating cohorts (Supplementary Table 5), and therefore, total sample sizes for analyses varied.

Cohort-Specific Analyses
All participating cohort-specific statistical analyses followed a uniform analysis plan. First, main associations between dietary intake or sleep duration and all outcomes were estimated with adjustment for age, sex, BMI (except for BMI outcome), and study site (in CARDIA, CHS, FamHS, GOLDN, INCHIANTI, and MESA) using linear regression models. Second, main associations between selected SNPs and all outcomes were investigated by using linear regression models and an additive genetic model adjusted for the aforementioned covariates in addition to family or population structure (in Corogene Controls, DILGOM, FamHS, FOS, GOLDN, MESA, The Rotterdam Study, and YFS), and genotype batch (in FamHS). Third, for our primary analysis of interest, 175 interactions (7 environmental variables × 5 SNPs × 5 outcomes) between dietary intake or sleep duration (continuous and categorical) and the selected SNPs on all outcomes were tested by using intake/sleep duration × SNP cross-product terms and including main-effect terms in linear regression models adjusted for the aforementioned covariates. Participants within each cohort were excluded from the analysis if they were shift workers, on sleep medications or antidepressant medications, reported bedtimes after 5 A.M. or before 6 P.M., and/or reported sleep duration ≤3 or ≥16 h. For glycemic outcomes, participants with type 2 diabetes within each cohort were excluded from main association and interaction analyses.

Meta-analyses
We conducted inverse-variance weighted, fixed-effect meta-analyses using METAL (version released 2011-03-25) for 1) main associations of dietary intake/sleep duration on the outcomes, 2) main associations of the selected SNPs on the outcomes, and 3) interactions between SNPs and dietary intake/sleep duration on the outcomes. Heterogeneity across studies was tested by using Cochran’s Q statistic and quantified using the I² statistic. All association and interaction analyses with moderate heterogeneity (I² > 30%) were further assessed for potential sources of heterogeneity by conducting meta-regression and sensitivity analyses. Meta-regression analyses were conducted using the R metafor package (R version 3.1.0) to assess the effect of the following moderator variables on heterogeneity of association/interaction: geographical location (U.S. vs. northern Europe vs. Mediterranean), mean age of cohort (20–64 years vs. 65–80 years), and total energy intake (<2,000 vs. ≥2,000 kcal/day). Sensitivity analyses assessed the influence of a single cohort on the meta-analyzed estimate by
RESULTS

General characteristics of participants are reported in Table 1. Mean ages ranged between 31.6 and 70.2 years, with women comprising 37–62% of participants. Total energy intake was generally higher in U.S. cohorts than northern European and Mediterranean cohorts, but relative macronutrient intake was similar across studies and cohorts, except for GOYA MALE (all men). Mean BMI exceeded 25 kg/m² for all cohorts, except for the Mediterranean cohorts (InCHIANTI and THISEAS) that had lower SFA and higher MUFA intake than northern European and U.S. cohorts (p < 0.0001). In addition, the average macronutrient intake was generally higher in U.S. cohorts. The Mediterranean cohorts (InCHIANTI and THISEAS) were similar across studies and cohorts, except for GOYA MALE (all men). Mean BMI exceeded 25 kg/m² for all cohorts, except for the Mediterranean cohorts (InCHIANTI and THISEAS) that had lower SFA and higher MUFA intake than northern European and U.S. cohorts (p < 0.0001).

We performed power calculations using Quanto version 1.2.4 ([https://www Epideminfo.com](https://www.Epideminfo.com)) with the least possible power (based on lowest allele frequency and sample size). At 80% power, our sample size met the estimated sample size. Mean BMI was generally higher in U.S. cohorts, but relative macronutrient intake was similar across studies and cohorts, except for the Mediterranean cohorts (InCHIANTI and THISEAS) that had lower SFA and higher MUFA intake than northern European and U.S. cohorts (p < 0.0001).

Interaction analyses. Statistical significance was assessed at a level of 0.05 for each independent variable (CHO, SFA, PUFA, and sleep duration) with the least possible power (based on lowest allele frequency and sample size). At 80% power, our sample size met the estimated sample size. Mean BMI was generally higher in U.S. cohorts, but relative macronutrient intake was similar across studies and cohorts, except for the Mediterranean cohorts (InCHIANTI and THISEAS) that had lower SFA and higher MUFA intake than northern European and U.S. cohorts (p < 0.0001).

At 80% power, we used sign tests to detect an interaction between macronutrient intake and sleep duration (per 1% intake) on FG.
intake was associated with 0.007 mmol/L lower FG ($\beta \pm SE = -0.007 \pm 0.001$ mmol/L, $P = 2.7E-29$) and a 0.001 lower HOMA-IR ($\beta \pm SE = -0.001 \pm 0.0004$ [ln], $P = 0.002$). Each additional 1% of total fat intake was associated with a 0.01 mmol/L higher FG ($\beta \pm SE = 0.01 \pm 0.001$ mmol/L, $P = 8.36E-13$) and a 0.005 higher HOMA-IR ($\beta \pm SE = 0.005 \pm 0.0005$ [ln], $P = 2.76E-16$). Similar trends were evident for MUFA intake. Each additional 1% of SFA intake was associated with a 0.007 mmol/L lower FG ($\beta \pm SE = -0.007 \pm 0.0003$ mmol/L, $P = 0.02$), which suggests a 0.007 mmol/L lower FG with each additional 1% of MUFA intake in the presence of the effect T allele (Supplementary Fig. 2B). In addition, a nominal interaction was present between total fat intake and NR1D1-rs2314339 on HOMA-IR ($\beta \pm SE = 0.0024 \pm 0.001$ [ln], $P = 0.04$) (Supplementary Fig. 2C), suggesting a 0.0024 higher HOMA-IR with each additional 1% of total fat intake in the presence of the effect T allele.

For anthropometric and lipid traits, we observed nominal interactions (i.e., $P < 0.05$), including that between SFA intake and NR1D1-rs2314339 for BMI ($\beta \pm SE = 0.005 \pm 0.002$ kg/m2, $P = 0.01$); the interaction suggests a 0.005 kg/m2 higher BMI with each additional 1% of SFA intake in the presence of the effect T allele (Supplementary Fig. 1D).

Interactions Between Sleep Duration and Selected SNPs on Cardiometabolic Traits

Meta-analyzed estimates of the interactions between sleep duration (continuous and categorical) and selected SNPs on cardiometabolic traits are presented in Table 3. We observed no interactions at the prespecified Bonferroni-corrected significance level of $P < 0.003$. A nominal interaction was evident between sleep duration and CRY2-rs11605924 for FG ($\beta \pm SE = 0.058 \pm 0.007$ mmol/L per additional T allele, $P = 1.7E-17$), whereas MTN18-rs10830963 was associated with FG ($\beta \pm SE = 0.1 \pm 0.008$ mmol/L per additional G allele, $P = 4.2E-35$) and HOMA-IR ($\beta \pm SE = 0.016 \pm 0.004$ [ln] per additional G allele, $P = 0.004$). We did not replicate previous associations between MTN18-rs11605924 and FG ($P = 0.06$) (18,19). Consistent with previous findings, no associations were observed for CLOCK-rs1801260 or NR1D1-rs2314339 on glycomic traits. Main associations of selected SNPs on anthropometric and lipid traits are presented in Supplementary Table 7.

Interactions Between Dietary Intake and Selected SNPs on Cardiometabolic Traits

Meta-analyzed estimates of the interactions between dietary intake and selected SNPs on cardiometabolic traits are presented in Table 2. We observed no interactions at the prespecified Bonferroni-corrected significance level of $P < 0.003$. We observed a nominal interaction (i.e., $P < 0.05$) between CHO intake and MTN18-rs1387153 for FG ($\beta \pm SE = 0.003 \pm 0.001$ mmol/L, $P = 0.01$), which suggests a 0.003 mmol/L higher FG with each additional 1% of CHO intake in the presence of the effect T allele (Supplementary Fig. 2A and Supplementary Fig. 3A). In other words, although higher CHO intake is associated with lower FG when evaluated independently of genotype, the protective association of a higher CHO intake was 0.003 mmol/L weaker (per 1% difference in CHO intake) in the presence of each additional T allele, implying that the T allele attenuates the inverse association between CHO intake and FG. Another nominal interaction was evident for MUFA intake and the same MTN18 variant for FG ($\beta \pm SE = -0.007 \pm 0.003$ mmol/L, $P = 0.02$), which suggests 0.007 mmol/L lower FG with each additional 1% of MUFA intake in the presence of the effect T allele (Supplementary Fig. 2B). In addition, a nominal interaction was present between total fat intake and NR1D1-rs2314339 on HOMA-IR ($\beta \pm SE = 0.0024 \pm 0.001$ [ln], $P = 0.04$) (Supplementary Fig. 2C), suggesting a 0.0024 higher HOMA-IR with each additional 1% of total fat intake in the presence of the effect T allele.

For anthropometric and lipid traits, we observed nominal interactions (i.e., $P < 0.05$), including that between SFA intake and NR1D1-rs2314339 for BMI ($\beta \pm SE = 0.005 \pm 0.002$ kg/m2, $P = 0.01$); the interaction suggests a 0.005 kg/m2 higher BMI with each additional 1% of SFA intake in the presence of the effect T allele (Supplementary Fig. 1D).

Associations of SNPs With Cardiometabolic Traits

Sensitivity analyses indicated that substantial heterogeneity ($I^2 > 30\%$) was introduced by one cohort (GOLDN) for glycomic trait outcomes; consequently, GOLDN was excluded from the association meta-analyses for glycomic traits.

Main associations of selected SNPs on cardiometabolic traits are presented in Supplementary Table 7. We replicated previously published associations between MTN18 variants and glycomic traits in the present meta-analysis (18,19). In short, MTN18-rs1387153 was associated with FG ($\beta \pm SE = 0.058 \pm 0.007$ mmol/L per additional T allele, $P = 1.7E-17$), whereas MTN18-rs10830963 was associated with FG ($\beta \pm SE = 0.1 \pm 0.008$ mmol/L per additional G allele, $P = 4.2E-35$) and HOMA-IR ($\beta \pm SE = 0.016 \pm 0.004$ [ln] per additional G allele, $P = 0.004$). We did not replicate previous associations between CRY2-rs11605924 and FG ($P = 0.06$) (18,19). Consistent with previous findings, no associations were observed for CLOCK-rs1801260 or NR1D1-rs2314339 on glycomic traits. Main associations of selected SNPs on anthropometric and lipid traits are presented in Supplementary Table 7.

Additional main associations of dietary intake and selected SNPs on cardiometabolic traits

- **Sensitivity analyses** indicated that substantial heterogeneity ($I^2 > 30\%$) was introduced by one cohort (GOLDN) for glycomic trait outcomes; consequently, GOLDN was excluded from the association meta-analyses for glycomic traits.
- **Main associations** of selected SNPs on cardiometabolic traits are presented in Supplementary Table 7. We replicated previously published associations between MTN18 variants and glycomic traits in the present meta-analysis (18,19). In short, MTN18-rs1387153 was associated with FG ($\beta \pm SE = 0.058 \pm 0.007$ mmol/L per additional T allele, $P = 1.7E-17$), whereas MTN18-rs10830963 was associated with FG ($\beta \pm SE = 0.1 \pm 0.008$ mmol/L per additional G allele, $P = 4.2E-35$) and HOMA-IR ($\beta \pm SE = 0.016 \pm 0.004$ [ln] per additional G allele, $P = 0.004$). We did not replicate previous associations between CRY2-rs11605924 and FG ($P = 0.06$) (18,19). Consistent with previous findings, no associations were observed for CLOCK-rs1801260 or NR1D1-rs2314339 on glycomic traits. Main associations of selected SNPs on anthropometric and lipid traits are presented in Supplementary Table 7.

Interactions Between Sleep Duration and Selected SNPs on Cardiometabolic Traits

Meta-analyzed estimates of the interactions between sleep duration (continuous and categorical) and selected SNPs on cardiometabolic traits are presented in Table 3. We observed no interactions at the prespecified Bonferroni-corrected significance level of $P < 0.003$. A nominal interaction was evident between sleep duration and CRY2-rs11605924 for HDL-C ($\beta \pm SE = 0.010 \pm 0.004$ mmol/L, $P = 0.005$), suggesting a 0.010 mmol/L higher HDL-C with each additional hour of sleep in the presence of the effect A allele (Supplementary Fig. 2E and Supplementary Fig. 3B). That is, in the presence of each additional A allele, the protective association of higher sleep duration on HDL-C was 0.01 mmol/L stronger (per 1 h of additional sleep), such that the A allele appears to strengthen the positive association observed with longer sleep duration. No interactions were evident between categories of sleep duration and this variant for HDL-C (short sleep duration, $P = 0.15$; long sleep duration, $P = 0.21$). Finally, we observed a nominal interaction between short sleep duration (<7 h) and MTN18-rs1387153 for BMI ($\beta \pm SE = 0.25 \pm 0.12$ kg/m2, $P = 0.04$) (Supplementary Fig. 2F) and a stronger interaction between long sleep duration (>9 h) and the same variant for BMI ($\beta \pm SE = 0.60 \pm 0.20$ kg/m2, $P = 0.003$) (Supplementary Fig. 2G); these interactions suggest 0.25 and 0.60 kg/m2 higher BMIs with short and long sleep durations, respectively, in the...
independent observations in each interaction analysis. Exact numbers of observations vary depending on availability of phenotype and genotype information and are presented in Supplementary Table 8.

The number of

† represents the direction and magnitude of the change in outcome

coefficients are shown as

*Additive allele mode, adjusted for age, sex, BMI (except when assessing BMI outcome), study site (in CARDIA; CHS; FamHS; GOLDN; InCHIANTI; MESA), family or population structure (in Corogene Controls; DRKON; Framingham Heart Study; PGS1 and PGS2 in CARDIA; interaction with sex in CARDIA; interaction with age, sex, BMI, and race in MESA; interaction with age and sex in LIPC; interaction with age and sex in MESA; interaction with sex and race in MESA).

Table 2—Meta-analyzed interactions between dietary intake and SNPs on cardiometabolic traits.
Circadian-Related Gene-Environment Interactions

The presence of the effect T allele, relative to normal sleep duration (≥7 to <9 h), was not observed between short sleep and lower FG intake as assessed in the current study. The SFA intake of MUFAs and SFA intake on FG may be partially driven by the strong correlation between age and current dietary intake and recommend dietary changes for individuals with diabetes (29). The similar associations observed for individuals with the 27. Furthermore, the association remained nominal after adjusting for age, sex, BMI (except when assessing BMI outcomes), study site (in CHS; InCHIANTI; MESA), family or population structure (in Corogene Controls; DILGOM; FOS; MESA; YFS), and genotype batch (in FamHS). Interaction coefficients are shown as β ± SE. β represents the direction and magnitude of the change in outcome trait per one additional hour of sleep or compared with the reference sleep groups (≥7 to <9 h). Boldface type indicates nominally significant values (P < 0.05). *Alleles presented as effect/noneffect alleles. Data in Table 8. **Alleles presented as effect/noneffect alleles. Data in Table 8. **Wald test P-value represents the heterogeneity statistic presented as percent. Exact I² represents the heterogeneity statistic presented as percent. Exact I² is presented in Supplementary Table 8.

Table 3—Meta-analyzed interactions between sleep duration (continuous and categorical) and SNPs on cardiometabolic traits

SNP	Gene	Alleles†	n	FG (mM)	In-HOMA-IR	BMI (kg/m²)	Waist circumference (cm)	HDL-C (mM/L)					
				β ± SE	β ± SE	β ± SE	β ± SE	β ± SE					
Continuous, h													
rs1801260	CLOCK	C/T	10,707	0.005 ± 0.02	0.67	-0.004 ± 0.01	0.61	-0.07 ± 0.07	0.32	0.08 ± 0.09	0.38	0.001 ± 0.005	0.82
rs11605924	CY2	A/C	10,706	-0.001 ± 0.01	0.85	-0.004 ± 0.01	0.52	0.02 ± 0.05	0.66	-0.07 ± 0.06	0.24	**0.01 ± 0.004**	**0.005**
rs1387153	MTNR1B	B/C	19,911	0.006 ± 0.01	0.42	0.007 ± 0.01	0.23	0.04 ± 0.05	0.35	0.09 ± 0.06	0.14	-0.001 ± 0.004	0.78
rs10830963	MTNR1B	G/C	19,913	0.002 ± 0.01	0.859	-0.004 ± 0.01	0.60	-0.03 ± 0.06	0.58	0.06 ± 0.07	0.41	-0.006 ± 0.004	0.13
rs2314339	NR1D1	T/C	18,404	0.007 ± 0.02	0.64	0.015 ± 0.01	0.19	-0.14 ± 0.08	0.10	0.03 ± 0.11	0.78	0.002 ± 0.006	0.79
Short (<7 h)													
rs1801260	CLOCK	C/T	2,158	-0.010 ± 0.03	0.709	0.005 ± 0.23	0.82	-0.06 ± 0.19	0.60	-0.11 ± 0.23	0.65	-0.008 ± 0.001	0.57
rs11605924	CY2	A/C	3,294	-0.002 ± 0.02	0.925	0.006 ± 0.01	0.666	0.02 ± 0.12	0.899	-0.08 ± 0.15	0.58	0.010 ± 0.001	0.15
rs1387153	MTNR1B	B/C	2,158	0.010 ± 0.02	0.49	-0.001 ± 0.01	0.929	0.25 ± 0.12	0.04	-0.23 ± 0.15	0.13	0.005 ± 0.001	0.62
rs10830963	MTNR1B	G/C	3,525	0.020 ± 0.02	0.385	0.020 ± 0.02	0.139	-0.08 ± 0.15	0.189	-0.11 ± 0.18	0.53	-0.005 ± 0.001	0.62
rs2314339	NR1D1	T/C	3,525	0.0004 ± 0.004	0.88	-0.003 ± 0.003	0.26	0.45 ± 0.23	0.05	0.35 ± 0.28	0.22	-0.003 ± 0.002	0.86
Long (≥7 h)													
rs1801260	CLOCK	C/T	52	-0.006 ± 0.04	0.89	-0.030 ± 0.04	0.48	0.14 ± 0.31	0.65	-0.30 ± 0.41	0.47	-0.020 ± 0.002	0.45
rs11605924	CY2	A/C	906	0.002 ± 0.03	0.95	0.010 ± 0.02	0.68	0.27 ± 0.21	0.19	-0.03 ± 0.27	0.92	-0.010 ± 0.002	0.21
rs1387153	MTNR1B	B/C	522	0.020 ± 0.03	0.54	0.010 ± 0.02	0.70	0.60 ± 0.20	0.003	-0.40 ± 0.25	0.109	0.010 ± 0.003	0.57
rs10830963	MTNR1B	G/C	961	0.008 ± 0.03	0.79	0.030 ± 0.03	0.30	-0.20 ± 0.24	0.429	0.20 ± 0.30	0.509	-0.020 ± 0.002	0.64
rs2314339	NR1D1	T/C	961	0.070 ± 0.06	0.28	-0.040 ± 0.05	0.506	0.44 ± 0.40	0.28	0.58 ± 0.50	0.25	0.010 ± 0.002	0.83

*Additive allele mode, adjusted for age, sex, BMI (except when assessing BMI outcome), study site (in CHS; InCHIANTI; MESA), family or population structure (in Corogene Controls; DILGOM; FOS; MESA; YFS), and genotype batch (in FamHS). Interaction coefficients are shown as β ± SE. β represents the direction and magnitude of the change in outcome trait per one additional minor allele, per each additional hour of sleep or compared with the reference sleep group (≥7 to <9 h). Boldface type indicates nominally significant values (P < 0.05). *Alleles presented as effect/noneffect alleles. Data in Table 8. **Alleles presented as effect/noneffect alleles. Data in Table 8. **Wald test P-value represents the heterogeneity statistic presented as percent. Exact I² represents the heterogeneity statistic presented as percent. Exact I² is presented in Supplementary Table 8.
duration (<7 h) and higher FG supports previously reported associations in single cohorts (28) and supports previously reported associations between short sleep duration and type 2 diabetes (7). As such, lifestyle recommendations should include dietary modifications related to higher CHO and lower fat composition and achieving normal sleep durations (≥7 to <9 h).

Our evaluation of gene-environment interactions suggest novel putative interactions that fell short of our Bonferroni-corrected cut point but are supported by biological plausibility and may be important for understanding the etiology of type 2 diabetes. The strongest nominal interaction for glycemic traits was an interaction of CHO intake and the MTNR1B-rs1387153 variant on FG, which suggests that every 1% increase in CHO intake exacerbates the FG-raising effect of the T allele that interacts similarly with CHO as another clock variant in CRY2 (5). Among other nominal interactions observed for MTNR1B-rs1387153, these findings suggest lower CHO and higher MUFA intakes for lower FG among those with the effect T allele. The high frequency of the effect T allele among individuals of European descent (minor allele frequency = 0.28) and the consistency of the rs1387153-FG association across different ethnicities (29) warrant further investigation of this interaction and examination of the potential role of CHO quality in the FG-raising effect of the T allele. These nominal findings, in conjunction with confirmed associations between two common MTNR1B variants and FG of effect sizes similar to those reported earlier (18,30), indicate that continuing efforts to identify lifestyle modifications that offset this genetic risk remain an important area of active research. Consistent with previous findings, no interactions were evident between sleep duration and the selected variants on glycemic traits (7).

Our previous work suggests that variants identified through GWAS or candidate gene association studies for type 2 diabetes may show gene-environment interactions for related metabolic traits beyond glycemic traits (3). We identified three nominal interactions that are supported by previous reports and biological plausibility. The first is a nominal interaction between SFA intake and NR1D1-rs2314339 on BMI. The obesity-associated NR1D1 gene encodes the nuclear receptor rev-erb-α, which plays a critical role in metabolism and was reported to respond to dietary MUFA for the outcome of BMI (21,31,32). The second is a nominal interaction between FG-associated CRY2-rs11605924 and sleep duration for HDL-C. We observed a positive association between HDL-C and sleep only when considered in the context of CRY2, a clock gene that inhibits CLOCK:BMAL1-mediated transcription of genes involved in lipid metabolism (33). Supporting the circadian control of HDL-C are results from the Global Lipids Genetics Consortium GWAS for HDL-C for this CRY2 variant (β ± SE = 0.0004 ± 0.0001 mmol/L per additional A allele, P < 0.001) (34), which suggest marginal associations between CRY2 and HDL-C (Supplementary Fig. 4). The CRY2 variant is in linkage disequilibrium with rs6843722 (r² = 1.00 in the 1000 Genomes Project data set), a CRY2 intronic variant that was shown to abolish the upregulation of CRY2 expression in human peripheral blood mononuclear cells after sleep restriction and has functional evidence to affect transcriptional regulation of CCCTC-binding factor and glucocorticoid receptor, two transcription factors associated with HDL-C (35–37). Therefore, it is possible that short sleep duration results in differences in CRY2 expression, influencing CRY2 control of downstream pathways, namely HDL-C. Finally, we observed nominal interactions between short and long sleep duration, both of which are associated with higher BMI, and MTNR1B-rs1387153 on BMI, suggesting even higher BMI with short and long sleep duration among carriers of the effect T allele. This interaction provides additional support for the potential role of sleep duration in modifying the associations between circadian-related genetic variants and cardiometabolic outcomes (38) and the importance of normal sleep duration (≥7 to <9 h) for optimal health.

The strengths of the present observational study from 15 cohorts include a large sample size necessary to detect gene-environment interactions. Our collaborative approach enabled us to standardize our analytic approach across cohorts, and despite the wide range of cohorts included in the study, we observed little evidence of heterogeneity in our overall analysis. However the present investigation also has limitations. The reported findings are limited to individuals of European descent, and exploring the interaction in other populations is warranted considering replication of the SNP associations in different ethnicities (29,39).

Our use of self-reported dietary intake and sleep duration was susceptible to reporting bias, and the use of different assessment tools across cohorts could have increased measurement error, biasing our results toward the null (40). In addition, we failed to replicate a previously reported significant association between CRY2 variant and FG, although we observed an effect size similar to that of the discovery GWAS of up to 46,000 individuals (18); it is possible our sample size was too small to replicate the significant associations. Although we have selected circadian-related gene variants showing strong associations with metabolic traits from GWAS and candidate-gene studies, it is possible that interactions might be observable for other circadian-related variants.

Lastly, these cross-sectional meta-analyses of observational studies can only lead us toward hypotheses rather than demonstrate the temporal relationships or causal pathways linking clock genes, diet, or sleep, with glycemic, anthropometric, and lipid traits. Other studies are required to establish these mechanistic links, including studies of genetic modification of the effects of experimental changes in diet composition or sleep duration.

Our findings contribute to the understanding of how lifestyle can reduce the risk of type 2 diabetes and cardiometabolic disorders in genetically susceptible individuals. Results from the present large observational study from 15 cohorts suggest the potential presence of selected common circadian-related gene-environment interactions on metabolic traits. The nominal interaction between CHO intake and the MTNR1B variant on FG, suggesting that CHO intake could exacerbate the FG-raising effects of this well-studied MTNR1B variant, the evidence supporting the role for CRY2 in HDL-C control and its responsiveness to sleep duration, and the interaction between long sleep duration and MTNR1B variant on BMI,
suggesting that the association between long sleep duration and higher BMI is exacerbated among carriers of the MTNR1B variant, are interesting and merit further study. Mechanistic examinations of the novel nominal interactions and further investigations in larger cohorts are necessary before personalized recommendations are framed for individuals at genetic risk for metabolic disruption. Moreover, the observed associations between diet—specifically, higher CHO and lower fat composition—and normal sleep duration (≥7 to <9 h) on glycemic traits—particularly FG—suggest that emphasis should be placed on these modifiable lifestyle factors to offset the growing prevalence of type 2 diabetes and cardiovascular disease.

Funding. Infrastructure for the CHARGE Consortium is supported in part by the National Heart, Lung, and Blood Institute grant HHSN268200800007C. Support was provided by the U.S. Department of Agriculture, under agreement no. 58-950-0-014, American Heart Association (grant 14BGIA1874001), Academy of Finland (grant 117787), Italian Ministry of Health (grant IC5110.1/RP97.71), National Institute of Diabetes and Digestive and Kidney Diseases (grant DK063491), National Center for Advancing Translational Sciences (grant UL1TR000124). C.E.S. is supported by K08-HL-112845-01. F.A.J.L.S. was supported in part by National Institutes of Health grants R21-DK-089378 and R01-HL-094806. Cohort-specific sources of support and acknowledgments are presented in Supplementary Table 1. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the U.S. Department of Agriculture.

Duality of Interest. No potential conflicts of interest relevant to this article were reported.

Author Contributions. H.S.D., C.E.S., T.T., M.G., D.J.G., F.A.J.L.S., and J.M.O. designed the study. H.S.D., J.L.F., T.T., T.M.B., L.K., M.K.W., A.C.F.-W., T.S.A., M.-M.P., A.J., T.M., I.P.K., and V.M. conducted research and contributed to statistical analyses. H.S.D., C.E.S., M.G., D.J.G., A.H., P.F.J., S.L.-F., F.A.J.L.S., and J.M.O. interpreted the data. All authors read and approved the final version of the manuscript. H.S.D. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Prior Presentation. Preliminary results were presented at the 78th Scientific Sessions and Annual Meeting of the American Society for Nutrition in conjunction with Experimental Biology 2014, San Diego, CA, 26–30 April 2014, and at the 2014 Society for Research on Biological Rhythms Meeting, Big Sky, MT, 14–18 June 2014.
References

1. Franks PW, Pearson E, Florez JC. Environment and gene–treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care 2013;36:1413–1421

2. Ordovas JM, Corella D. Nutritional genomics. Annu Rev Genomics Hum Genet 2004;5:71–118

3. Parnell LD, Blokker BA, Dashti HS, et al. REV-ERB-ALPHA circadian gene variant associates for cardiometabolic traits. BioData One 2011;6:e21464

4. Garaulet M, Smith CE, Gomez-Abellan P, et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 2009;106:4453–4458

5. Dashti HS, Smith CE, Lee YC, et al. CRY1 circadian gene variant interacts with dietary fat and carbohydrate to modulate insulin resistance. J Nutr 2013;143:354–361

6. Zheng JS, Arnett DK, Parnell LD, et al. Genetic variants at PSMD3 interact with dietary fat and carbohydrate to modulate insulin resistance. J Nutr 2013;143:354–361

7. Tare A, Lane JM, Cade BE, et al. Sleep duration does not mediate or modify association of common genetic variants with type 2 diabetes. Diabetologia 2014;57:339–346

8. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014;37(Suppl. 1):S81–S90

9. Voight BF, Scott LJ, Steinthorsdottir V, et al. MAGIC investigators. Novel genetic loci implicated in fasting glucose and pancreatic beta-cell function. Science 2009;326:1336–1341

10. Dupuis J, Langenberg C, Prokopenko I, et al.; DIAGRAM Consortium; GIANT Consortium; Global BPgen Consortium; Andras Hamsten on behalf of Procardis Consortium; MAGIC investigators. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010;42:105–116

11. Garaulet M, Smith CE, Gomez-Abellan P, et al. CR1 circadian gene variant interacts with dietary fat and carbohydrate to modulate insulin resistance in two independent populations: Mediterranean and North American. Chronobiol Int 2014;31:660–667
24. Lorenzo C, Okoloise M, Williams K, Stern MP, Haffner SM; San Antonio Heart Study. The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study. Diabetes Care 2003;26:3153–3159

25. Froy O. The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol 2007;28:61–71

26. American Diabetes Association; Bantle JP, Wylie-Rosett J, Albright AL, et al. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 2008;31(Suppl. 1):S61–S78

27. Nettleton JA, McKeown NM, Kanoni S, et al.; MAGIC Investigators. Interactions of dietary whole-grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies. Diabetes Care 2010;33:2684–2691

28. Knutson KL, Van Cauter E, Zee P, Liu K, Lauderdale DS. Cross-sectional associations between measures of sleep and markers of glucose metabolism among subjects with and without diabetes: the Coronary Artery Risk Development in Young Adults (CARDIA) Sleep Study. Diabetes Care 2011;34:1171–1176

29. Chambers JC, Zhang W, Zabaneh D, et al. Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes 2009;58:2703–2708

30. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proença C, et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 2009;41:89–94

31. Goumidi L, Grechez A, Dumont J, et al. Impact of REV-ERB alpha gene polymorphisms on obesity phenotypes in adult and adolescent samples. Int J Obes (Lond) 2013;37:666–672

32. Yang X, Downes M, Yu RT, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 2006;126:801–810

33. van der Horst GT, Muijtjens M, Kobayashi K, et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 1999;398:627–630

34. Willer CJ, Schmidt EM, Sengupta S, et al.; Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat Genet 2013;45:1274–1283

35. Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012;22:1790–1797

36. Lavebratt C, Sjöholm LK, Soronen P, et al. CRY2 is associated with depression. PLoS One 2010;5:e9407

37. Figtree GA, Grieve SM, Speller B, et al. A commonly occurring polymorphism upstream of the estrogen receptor alpha alters transcription and is associated with increased HDL. Atherosclerosis 2008;199:354–361

38. Dashti HS, Follis JL, Smith CE, et al. Habitual sleep duration is associated with BMI and macronutrient intake and may be modified by CLOCK genetic variants. Am J Clin Nutr 2015;101:135–143

39. Kan MY, Zhou DZ, Zhang D, et al. Two susceptible diabetogenic variants near/in MTNR1B are associated with fasting plasma glucose in a Han Chinese cohort. Diabet Med 2010;27:598–602

40. Freedman LS, Schatzkin A, Midthune D, Kipnis V. Dealing with dietary measurement error in nutritional cohort studies. J Natl Cancer Inst 2011;103:1086–1092