Testing CP-Violation in the Scalar Sector at Future e^+e^- Colliders

Gang Li 2,*, Ying-nan Mao 1,†, Chen Zhang 2,‡, and Shou-hua Zhu 2,3,4,§

1 Center for Future High Energy Physics & Theoretical Physics Division,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

2 Institute of Theoretical Physics & State Key Laboratory of Nuclear Physics and Technology,
Peking University, Beijing 100871, China

3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

4 Center for High Energy Physics, Peking University, Beijing 100871, China

(Dated: February 16, 2017)

We propose a model-independent method to test CP-violation in the scalar sector through measuring the inclusive cross sections of $e^+e^- \rightarrow Zh_1, Zh_2, h_1h_2$ processes with the recoil mass technique, where h_1, h_2 stand for the 125 GeV standard model (SM) like Higgs boson and a new lighter scalar respectively. This method effectively measures a quantity K proportional to the product of the three couplings of h_1ZZ, h_2ZZ, h_1h_2Z vertices. The value of K encodes a part of information about CP-violation in the scalar sector. We simulate the signal and backgrounds for the processes mentioned above with $m_2 = 40$GeV at the Circular Electron-Positron Collider (CEPC) with the integrated luminosity $5ab^{-1}$. We find that the discovery of both Zh_2 and h_1h_2 processes at 5σ level will indicate an $O(10^{-2})$ K value which can be measured to 16% precision. The method is applied to the weakly-coupled Lee model in which CP-violation can be tested either before or after utilizing a “p_T balance” cut (see section II B for the definition). Lastly we point out that $K \neq 0$ is a sufficient but not a necessary condition for the existence of CP-violation in the scalar sector, namely $K = 0$ does not imply CP conservation in the scalar sector.

* gangli@pku.edu.cn
† maoyin@ihep.ac.cn
‡ larry@pku.edu.cn
§ shzhu@pku.edu.cn
I. INTRODUCTION

CP-violation was first observed through $K_L^0 \rightarrow \pi\pi$ decay in 1964 [1]. More CP-violation effects have been discovered in K- and B- meson sectors since then [2]. In 1973, Kobayashi and Maskawa propose [3] that if there exist three or more generations of fermions, one or more nontrivial phase(s) will be left in the quark mixing matrix, namely the Cabibbo-Kobayashi-Maskawa (CKM) matrix [3, 4]. In the standard model (SM), only a single nontrivial phase is left which turns out to explain all the measured CP-violation effects successfully [2]. However, it is still necessary and attractive to study additional sources of CP-violation, which may help to understand the matter-antimatter asymmetry in the universe [2, 5].

In the SM, there is no CP-violation in the scalar sector. In models with additional scalars, extra CP-violation may be introduced in the scalar sector [6]. For example, in a minimal extension of SM [7], some kinds of two-Higgs-doublet models (2HDM) like Lee model [8] or Georgi model [9], and Weinberg model which contains three Higgs doublets [10], etc., there exists CP-violation in the scalar sector. In such models, a Higgs boson can be a CP-mixing state. As an example, two of the authors have studied the phenomenology of Lee model which contains spontaneous CP-violation in the scalar sector in detail [11–13]. These papers revealed the possible correlation between the lightness of Higgs boson and the smallness of CP-violation based on spontaneous CP-violation mechanism which provides another important motivation to study CP-violation further in the scalar sector.

In 2012, a SM-like Higgs boson was discovered by the ATLAS and CMS collaborations [14, 15] with its mass around 125 GeV [16]. Its spin and CP properties have also been studied through the final state distributions of $h \rightarrow ZZ^* \rightarrow 4\ell$ decay process with the conclusion that a pure 0^+ state is favored and a pure 0^- state is excluded at over 3σ level [17–19]. However, a CP-mixing state is still allowed [17, 20] because the contribution from pseudoscalar component is loop induced and thus highly suppressed.

CP-violation beyond the SM may show several kinds of indirect effects [1]. For example, it may contribute to the electric dipole moments (EDM) of electron or neutron [22] which

\footnote{Here “indirect” means these phenomena will show evidence for CP-violation, but we cannot extract the CP-violation vertex through these processes; while in the “direct” effects discussed below, we can obtain the CP-violation vertex through these measurements directly. Besides the effects discussed below, the Higgs cubic self coupling could also be modified [21] though the modification does not imply CP-violation.}
are stringently constrained experimentally \cite{23,24}; it may contribute to meson mixing matrix element and thus a modification from SM prediction could occur \cite{25}; or it may also contribute to the anomalous ZZZ coupling vertex \cite{26,27} which could lead to a nontrivial CP-sensitive asymmetry in $e^+e^- \rightarrow ZZ$ process \cite{28}.

However, to study the exact sources of extra CP-violation, we need their direct effects. For example, a CP-mixing Higgs boson could couple to a fermion through the effective interaction

$$L_{hf} = -h \bar{f} (g_S + ig_P \gamma^5) f,$$ \hspace{1cm} (1)

where g_S and g_P may be of the same order. For $f = \tau$, it is possible to test CP-violation effects in $h \tau^+ \tau^-$ vertex at future pp or e^+e^- colliders \cite{29,30,31} using the final state distribution of $h \rightarrow \tau^+ \tau^- \rightarrow \nu \bar{\nu} + X$ decay process. Similarly, for $f = t$, the top polarization asymmetry in $e^+e^- \rightarrow t \bar{t}h$ process is useful to test CP-violation effects in $ht\bar{t}$ vertex \cite{32}.

In this paper, we will focus on the scalar sector itself and propose a model-independent method to test CP-violation effects in the scalar sector through the interaction between scalars and massive gauge bosons. The paper is organized as follows. In section II we describe our method and perform a simulation study at the CEPC. In section III we apply this method to the weakly-coupled Lee model. And in section IV we give our conclusions and discussions.

II. MODEL-INDEPENDENT METHOD TO TEST CP-VIOLATION IN THE SCALAR SECTOR AT FUTURE e^+e^- COLLIDERS

If more than one neutral scalars are discovered in the future, the tree level interaction between neutral scalars and massive gauge bosons could be written as

$$L_{tree} = \sum_i c_i h_i v \left(\frac{g^2}{2} W^\mu_\alpha W^-_\mu + \frac{g^2}{4c_W^2} Z^\mu Z_\mu \right) + \sum_{i<j} \frac{c_{ij}g}{2c_W} Z_\mu (h_i \partial^\mu h_j - h_j \partial^\mu h_i). \hspace{1cm} (2)$$

Here g is the SU(2)$_L$ coupling constant, c_W denotes the cosine of electro-weak angle θ_W \footnote{In this paper, we denote $s_\alpha = \sin \alpha$, $c_\alpha = \cos \alpha$, and $t_\alpha = \tan \alpha$ for any angle α.}, v is the vacuum expected value for SM scalar field, and h_i represents the ith scalar. For the first two terms, a nonzero tree-level $h_i VV$ vertex requires that h_i must contain CP-even component; while for the last term, a nonzero tree-level $h_i h_j Z$ vertex requires that h_i and

$$\text{...}$$
\(h_j \) must contain components with different CP-properties. If CP is a good symmetry, there must be some terms vanishing in (2); on the other hand, if all \(c_i \) and \(c_{ij} \) are nonzero, there must be CP-violation in the scalar sector.

A. Method for the Minimal Case

For the minimal case, two neutral scalars with non-degenerate masses are required to be discovered. CP-violation can be confirmed with \(c_1, c_2, \) and \(c_{12} \) all measured to be nonzero. It is natural to define

\[
K \equiv c_1 c_2 c_{12}
\]

which is a useful quantity to measure the CP-violation effect since \(K \neq 0 \) is a sufficient condition for the existence of CP-violation in the scalar sector. As an example, in 2HDMs, there are three neutral Higgs bosons. We can use this idea to search for direct CP-violation effect once two of them are discovered. A straightforward calculation shows \(c_{12} = c_3 \), and \(K \) is just the product for all \(c_i \) in 2HDM. That is an important quantity to measure CP-violation in the scalar sector [26–28, 33].

At the LHC, the 125 GeV Higgs boson \(h_1 \) has already been discovered and the direct \(h_1VV \) vertices have been confirmed [17, 34]. If another Higgs boson \(h_2 \) is discovered and it has tree level decay channels \(h_2 \rightarrow WW, ZZ, Zh_1 \), it would strongly suggest CP-violation in the scalar sector which has already been discussed in [11, 13, 36]. However, the \(\sigma \cdot Br \) measurements at LHC depend on not only \(c_{1,2} \) and \(c_{12} \), but also a lot of other parameters which would affect on the production cross section or branching ratios. Thus it is difficult to extract or constrain the value of \(K \) from these measurements without model-dependent assumptions.

At future \(e^+e^- \) colliders, we can use three associated production processes, \(e^+e^- \rightarrow Z^* \rightarrow Zh_1, Zh_2, h_1h_2 \), to search for CP-violation in the scalar sector. The Feynman diagrams are shown in Figure 1. The cross sections at tree-level are given as [37, 38].

3 One should aware that \(K \neq 0 \) is not a necessary condition for the existence of CP-violation in the scalar sector which means in some models, there may be CP-violation in the scalar sector with \(K = 0 \), see the discussions in the last section.

4 In some special models, for example, the loop-philic model [35], a loop-induced decay channel can also have a large branching ratio even it is weakly-coupled.
FIG. 1: Feynman diagrams for associated production processes $e^+e^- \rightarrow Zh_1, Zh_2, h_1h_2$.

\[
\begin{align*}
\sigma_{zh_i} &= \frac{\pi \alpha^2 s \cdot c_i^2}{96(s - m_Z^2)^2} \left(\frac{8s_W^4 - 4s_W^2 + 1}{s_W^4c_i^4} \right) \left(f^3 \left(\frac{m_i^2}{s}, \frac{m_Z^2}{s} \right) + \frac{12m_Z^2}{s} f \left(\frac{m_i^2}{s}, \frac{m_Z^2}{s} \right) \right); \\
\sigma_{h_ih_j} &= \frac{\pi \alpha^2 s \cdot c_{ij}^2}{96(s - m_Z^2)^2} \left(\frac{8s_W^4 - 4s_W^2 + 1}{s_W^4c_{ij}^4} \right) f^3 \left(\frac{m_i^2}{s}, \frac{m_j^2}{s} \right).
\end{align*}
\]

Here s is the square of total energy in the center-of-mass frame, $s(c)_W$ denotes the (co)sine of electro-weak angle θ_W, and the function

\[
f(x, y) \equiv \sqrt{1 + x^2 + y^2 - 2x - 2y - 2xy}.
\]

The cross sections are sensitive to c_i or c_{ij}, but besides these, they don’t depend on more details of the model.

The recoil mass technique \[39\] would be very effective for precision measurements on these inclusive cross sections. For $e^+e^- \rightarrow Z(f\bar{f})h_i$ process, the recoil mass is defined as \[39, 40\]

\[
m_{\text{rec}} \equiv \sqrt{s + m_{ff}^2 - 2\sqrt{s}(E_f + E_{\bar{f}})}
\]

whose distribution would show a narrow peak around m_i where $m_{ff}^2 = m_Z^2$ is the invariant mass of the fermion pair. With this method, the sensitivity to Zh_1 inclusive cross section would reach better than 1% at future Higgs factories \[41\] with $\sqrt{s} = 250\text{GeV}$ and $\mathcal{O}(ab^{-1})$ luminosity. The result doesn’t depend on the decay channels of Higgs boson which means this is a model-independent technique to measure h_iZZ couplings c_i. Generalizing this technique to $e^+e^- \rightarrow h_1(b\bar{b})h_2$ process, with h_1 the 125 GeV Higgs boson and $m_{bb}^2 = m_{11}^2$, the distribution of m_{rec} would show a narrow peak around m_2 and thus we can measure the $e^+e^- \rightarrow h_1h_2$ inclusive cross section to extract the h_1h_2Z coupling c_{12} in a model-independent way \[5\]. Thus through measuring the three inclusive associated production cross sections, σ_{zh_i}, σ_{zh_j}, and $\sigma_{h_ih_j}$, the recoils m_{rec_1}, m_{rec_2}, and m_{rec_3} can be extracted and the coupling c_i or c_{ij} can be measured.

\[5\] In order to measure $\sigma_{h_ih_2}$ using this method, Br($h_1 \rightarrow b\bar{b}$) is needed as a model-dependent quantity, which can be accurately measured through $e^+e^- \rightarrow Zh_1$ process.
sections, we can extract all the three couplings c_1, c_2, c_{12} and subsequently obtain K in a model-independent way.

B. Model-Independent Simulation Study

Here we perform a simulation study of the signal and backgrounds for the case $m_2 = 40\text{GeV}$ at Circular Electron-Positron Collider (CEPC) [11] which would be a e^+e^- collider with $\sqrt{s} = 250\text{GeV}$ 6. Such a light scalar can occur in many models, such as 2HDMs [6, 12, 13, 45, 46].

Assuming h_1 is SM-like, $c_1 \sim 1$ which is consistent with the recent 125 GeV Higgs measurements [47]. In the following we focus on the inclusive measurements on Zh_2 and h_1h_2 associated production processes. The strictest direct constraints on c_2 and c_{12} came from LEP results [48, 49] which give

$$|c_2| < 0.18, \quad |c_{12}| < 0.54$$

for $m_2 = 40\text{GeV}$ at 95\% C.L. assuming all scalars decay only to $b\bar{b}$ final states.

In our simulation analysis, we use WHIZARD-2.3.1 [50] to generate signal and background events with initial state radiation (ISR) and beamstrahlung effects. For beamstrahlung effects, we use the built-in spectra CIRCE2 for the CEPC project [51]. For both processes, we adopt the recoil mass method in which we do not reconstruct h_2 directly using its decay final states thus the results do not depend on the properties of h_2 except its mass.

For Zh_2 process, we choose the $Z \rightarrow \mu^+\mu^-$ decay channel. The corresponding backgrounds are $e^+e^- \rightarrow \mu^+\mu^- X$ where $X = e^+e^-, \mu^+\mu^-, \tau^+\tau^-, q\bar{q}, b\bar{b}, \nu\bar{\nu}$, or $\gamma\gamma$ [41, 52–54]. We impose the basic cuts as [41, 52]

$$|\cos \theta_{\mu^+\mu^-}| < 0.98, \quad m_{\mu^+\mu^-} > 15\text{GeV}, \quad m_{\text{rec}} > 15\text{GeV},$$

$$|\cos \theta_{e^+\gamma}| < 0.995, \quad E_\gamma > 0.1\text{GeV}, \quad \Delta R_{ij} > 0.4.$$ \hspace{1cm} (9)

where m_{rec} is defined in (7) with $f = \mu$ and $\Delta R_{ij} \equiv \sqrt{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2}$ with i and j running over all partons in the final state 7. The transverse momentum of muon is smeared

6 If the extra scalar is a heavier one, we can utilize this method at e^+e^- colliders with larger \sqrt{s}, like the International Linear Collier (ILC) [44].

7 The cuts in the second line are useful to avoid the infrared and collinear divergences in background
by a Gaussian distribution with the standard deviation of $[41]$

$$\sigma_{1/p_T} = 2 \times 10^{-5} \oplus 1 \times 10^{-3}/(p_T \sin \theta)[\text{GeV}^{-1}].$$

(10)

FIG. 2: Normalized kinematical distributions of the signal and backgrounds in the $e^+e^- \rightarrow Zh_2$ channel after the basic cuts are applied. The first three figures show the $\cos \theta_{\mu^-}$, $p_T(\mu^+\mu^-)$, and m_{rec} distributions respectively in which we reconstructed only μ^+ and μ^-. The last figure shows the “p_T balance” distribution (see the text below for details) in which we must tag at least one photon that breaks the inclusiveness a little bit.

We show some kinematical distributions in Figure 2. Based on the kinematical differences shown in the first three figures in Figure 2, we impose the selection cuts as

$$|\cos \theta_{\mu^\pm}| < 0.8, \quad p_T(\mu^+\mu^-) > 35\text{GeV}, \quad |m_{\mu^+\mu^-} - m_Z| < 10\text{GeV},$$

and

$$30\text{GeV} < m_{\text{rec}} < 60\text{GeV}.$$

(11)

The cuts on $\cos \theta_{\mu^-}$ and $p_T(\mu^+\mu^-)$ are helpful to reduce large $\mu^+\mu^-\nu\bar{\nu}$ and $\mu^+\mu^-\gamma\gamma$ backgrounds. The $m_{\mu^+\mu^-}$ cut is imposed to extract the signal events around Z peak in $m_{\mu^+\mu^-}$ distribution, and the recoil mass cut is imposed to extract the signal events around h_2 peak in m_{rec} distribution. After all the selection cuts, the cross sections of the signal and backgrounds are

$$\sigma_{\text{sig}} = c_2^2 \times 7.438\text{fb}, \quad \sigma_{\text{bkg}} = 5.916\text{fb},$$

(12)

in which $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$ is the dominant background process with the cross section $\sigma_{\mu^+\mu^-\gamma\gamma} = 4.659\text{fb}$. Moreover, we can take advantage of the “p_T balance” cut $[54, 55]$ to suppress the $\mu^+\mu^-\gamma\gamma$ background further. The observable $p_{T,\text{bal}}$ is defined as

$$p_{T,\text{bal}} \equiv p_T(\mu^+\mu^-) - p_T(\gamma)$$

(13)

processes. We do not consider the decays of τ leptons in our analysis. The final state with single photon can be totally rejected by the requirement of a large recoil mass m_{rec} at the parton level.
where $p_T(\gamma)$ is the transverse momentum of the most energetic photon tagged \(^8\). Based on the last figure in Figure 2 if we choose the cut $p_{T,\text{bal}} > 20\text{GeV}$ as \(^5\), we have

$$\begin{align*}
\sigma'_{\mu^+\mu^-\gamma\gamma} &= 0.211\text{fb} \quad \text{thus} \quad \sigma'_{\text{bkg}} = 1.468\text{fb}
\end{align*}$$

(14)

with cross sections of other processes unchanged. Using these results, we summarize the 3σ, 5σ discovery potential and expected 95% C.L. upper limit (corresponding to 1.64σ) on $|c_2|$ with 5ab^{-1} luminosity at CEPC before and after “p_T balance” cut separately in Table I.

TABLE I: Expected 95% C.L. upper limit, 3σ, and 5σ discovery potential for $|c_2|$ with 5ab^{-1} luminosity at CEPC.

	95% C.L. limit	3σ discovery	5σ discovery
before “p_T balance” cut	< 0.087	> 0.118	> 0.152
after “p_T balance” cut	< 0.061	> 0.083	> 0.107

For h_1h_2 process, we use the $h_1 \rightarrow b\bar{b}$ decay channel. The backgrounds include $e^+e^- \rightarrow b\bar{b}X$ and $e^+e^- \rightarrow Zh_1(b\bar{b})$ where $X = e^+e^-, \mu^+\mu^-, \tau^+\tau^-, q\bar{q}, b\bar{b}, \nu\bar{\nu}, \gamma\gamma, g\gamma$, and gg \(^9\). We impose the basic cuts as

$$\begin{align*}
m_{bb} &> 15\text{GeV}, \quad m_{\text{rec}} > 15\text{GeV}, \\
|\cos\theta_{e^+\gamma}| &< 0.995, \quad E_{\gamma} > 0.1\text{GeV}, \quad E_g > 1\text{GeV}, \quad \Delta R_{ij} > 0.4
\end{align*}$$

(15)

where m_{rec} is defined in (7) with $f = b$ and ΔR_{ij} run over all partons in the final state \(^10\). The jet energy is smeared by a Gaussian distribution with the standard deviation of \(^\Pi\)

$$\begin{align*}
\frac{\sigma_E}{E} &= \frac{0.3}{\sqrt{E(\text{GeV})}}
\end{align*}$$

(16)

for the jet energy less than 100GeV. The b-tagging efficiency and c-faking rate are \(^\Pi\)

$$\begin{align*}
\epsilon_b &= 0.9, \quad P_{c\rightarrow b} = 0.1
\end{align*}$$

(17)

\(^8\) With this method, we must tag at least one photon which breaks the inclusiveness of the measurement. But for most cases, we can assume $\text{Br}(h \rightarrow \gamma\gamma) \ll 1$ so that tagging a photon would make only a little difference on the measurement.

\(^9\) We also considered other background processes like $e^+e^- \rightarrow b\bar{b}h_{1,2}$ and $e^+e^- \rightarrow Z(b\bar{b})h_2$. However, numerically they are all negligible except for a very strong $h_{1,2}b\bar{b}$ coupling, thus we don’t list them here. Again the SM backgrounds $b\bar{b}g$ and $bb\gamma$ can be completely removed at the parton level.

\(^10\) The cuts in the second line are useful to avoid the infrared and collinear divergences in background processes as discussed above.
separately. In an event, at least two b jets should be tagged. The candidates of b jets from h_1 decays are selected with the minimal $|m_{bb'} - m_1|$ and then sorted by the transverse momenta. The leading and sub-leading p_T of the selected b jet pairs are denoted as $p_T(b)$ and $p_T^{\text{sub}}(b)$.

FIG. 3: Normalized kinematical distributions of the signal and backgrounds in the $e^+e^- \rightarrow h_1h_2$ channel after the basic cuts are applied and $\geq 2b$ jets are tagged. In the first five figures, only b jets are reconstructed; while in the last figure, at least one photon should be tagged which breaks the inclusiveness a little bit.

Based on the kinematic differences between the signal and backgrounds as shown in the first five figures in Figure 3, we impose the selection cuts as

$$70\text{GeV} < p_T(bb) < 100\text{GeV}, \quad 70\text{GeV} < p_T(b) < 110\text{GeV}, \quad 30\text{GeV} < p_T^{\text{sub}}(b) < 70\text{GeV},$$

$$|m_{bb'} - m_1| < 25\text{GeV}, \quad \text{and} \quad 20\text{GeV} < m_{\text{rec}} < 70\text{GeV}. \quad (18)$$

The cuts in the first line use the differences in b jets p_T distributions to distinguish events from signal and backgrounds. The $m_{bb'}$ cut is imposed to extract the signal events around Z peak in $m_{bb'}$ distribution, and the recoil mass cut is imposed to extract the signal events around h_2 peak in m_{rec} distribution. After these selection cuts, the cross sections of signal
\[\sigma_{\text{sig}} = \frac{c_{12}^2 \text{Br}(h_1 \to b\bar{b})}{\text{Br}_{\text{SM}}(h_1 \to b\bar{b})} \times 12.5 \text{fb}, \quad \sigma_{\text{bkg}} = \left(20.54 + 0.577 \left(\frac{\text{Br}(h_1 \to b\bar{b})}{\text{Br}_{\text{SM}}(h_1 \to b\bar{b})} \right) \right) \text{fb} \]

(19)

where \(\text{Br}_{\text{SM}}(h_1 \to b\bar{b}) = 0.5824 \) for \(m_1 = 125\text{GeV} \). The dominant background is \(b\bar{b}gg \) production with its cross section \(\sigma_{b\bar{b}gg} = 13.2 \text{fb} \). The backgrounds with photon have the cross section \(\sigma_{b\bar{b}g\gamma + b\bar{b}\gamma\gamma} = 4.981 \text{fb} \) which can be suppressed to \(\sigma'_{b\bar{b}g\gamma + b\bar{b}\gamma\gamma} = 1.107 \text{fb} \) by using the “\(p_T \) balance” cut based on the last figure in Figure 3. The “\(p_T \) balance” cut does not affect the signal and other background processes thus the total background can be reduced to

\[\sigma'_{\text{bkg}} = \left(16.66 + 0.577 \left(\frac{\text{Br}(h_1 \to b\bar{b})}{\text{Br}_{\text{SM}}(h_1 \to b\bar{b})} \right) \right) \text{fb}. \]

(20)

As a benchmark point, take \(\text{Br}(h_1 \to b\bar{b}) = \text{Br}_{\text{SM}}(h_1 \to b\bar{b}) \). We use the results above to summarize the 3\(\sigma \), 5\(\sigma \) discovery potential and expected 95% C.L. upper limit on \(|c_{12}| \) with 5ab\(^{-1}\) luminosity at CEPC before and after “\(p_T \) balance” cut separately in Table II.

TABLE II: Expected 95% C.L. upper limit, 3\(\sigma \), and 5\(\sigma \) discovery potential for \(|c_{12}| \) with 5ab\(^{-1}\) luminosity at CEPC.

	95% C.L. limit	3\(\sigma \) discovery	5\(\sigma \) discovery
before “\(p_T \) balance” cut	< 0.092	> 0.125	> 0.161
after “\(p_T \) balance” cut	< 0.088	> 0.119	> 0.153

For \(m_2 < 125\text{GeV} \), the three processes \(e^+e^- \to Zh_1, Zh_2, h_1h_2 \) are possible at CEPC. However, the method discussed in this paper is not always effective for the whole mass region. If \(m_2 \lesssim 34\text{GeV} \) when rare decay \(h_1 \to Zh_2 \) process opens, it will set a stricter constraint \(|c_{12}| \lesssim 0.07 \) which make this method invalid. For a larger \(m_2 \), both cross sections \(\sigma_{Zh_2,h_1h_2} \) decrease when \(m_2 \) grows. But when \(m_2 \) is not close to \(Z \) peak, for example, \(m_2 \lesssim 70\text{GeV} \), the cross sections of signal and backgrounds change slowly thus the method will still be effective. For example, when \(m_2 = 70\text{GeV} \), our simulations show that the 5\(\sigma \) discovery bound can reach \(|c_2| > 0.13(0.11) \) and \(|c_{12}| > 0.21(0.20) \) respectively before (after) “\(p_T \) balance” cut. For \(m_2 \sim (70 - 110)\text{GeV} \) which is around the \(Z \) peak, large \(Z \) backgrounds will be difficult to reduce for both \(e^+e^- \to Zh_2, h_1h_2 \) which means the analysis we used above is not enough and we may need more careful analysis. For larger \(m_2 \), the \(h_1h_2 \) production cross section will decrease quickly when \(m_2 \) grows. Thus at CEPC, this method is effective for \(m_2 \sim (35 - 70)\text{GeV} \).
III. IMPLICATION FOR WEAKLY-COUPLED LEE MODEL

In this paper, we choose weakly-coupled Lee model [12, 13] which naturally contains a light scalar in small CP-violation limit as a benchmark model to study the implications of our simulation results.

Lee model was proposed by Lee in 1973 [8] as a 2HDM which is CP-conserved at Lagrangian level but the CP-violation comes from the vacuum. The scalar potential can be written as

\[V(\phi_1, \phi_2) = \mu_1^2 R_{11} + \mu_2^2 R_{22} + \lambda_1 R_{11}^2 + \lambda_2 R_{11} R_{12} \]
\[+ \lambda_3 R_{11} R_{22} + \lambda_4 R_{12}^2 + \lambda_5 R_{12} R_{22} + \lambda_6 R_{22}^2 + \lambda_7 t_{12}^2 \] (21)

where \(R(I)_{ij} \) is the real (imaginary) part of \(\phi_i^\dagger \phi_j \). Both \(\phi_i \) are scalar doublets which can be written as \(\phi_1 = (\phi_1^+, v_1 + R_1 + i I_1)/\sqrt{2} \) and \(\phi_2 = (\phi_2^+, v_2 \exp(i\xi) + R_2 + i I_2)/\sqrt{2} \). Here \(I_{1,2} \) and \(R_{1,2} \) are scalar degrees of freedom and \(v = \sqrt{v_1^2 + v_2^2} = 246\text{GeV} \). According to the vacuum stability condition, if

\[|\lambda_2 v_1^2 + \lambda_5 v_2^2| < 2|\lambda_4 - \lambda_7| v_1 v_2, \] (22)

a nontrivial phase difference \(\xi \) between the vacuum expected values (VEV) of the two Higgs doublets would arise thus CP symmetry is spontaneously broken. As a consequence all the three neutral Higgs bosons must be CP-mixing states.

Defining \(t_\beta \equiv v_2/v_1 \), for weakly-coupled scalar sector (\(\lambda_i \lesssim \mathcal{O}(1) \)), in the limit of small \(t_\beta s_\xi \), a new light scalar is predicted with the mass \(m_2 \sim \mathcal{O}(vt_\beta s_\xi) \) [11–13]. We treat it as the 40GeV new scalar. Its couplings to massive vector bosons are also suppressed by \(c_2 \sim \mathcal{O}(t_\beta s_\xi) \sim \mathcal{O}(0.1) \). If the heavy Higgs boson has its mass \(m_3 \sim \mathcal{O}(v) \), there is also additional constraint on \(c_{12} \) from LHC results [17]. If 200GeV < \(m_3 < 300\text{GeV} \), \(c_{12} \equiv c_3 \lesssim (0.3 - 0.4) \) [12, 13, 57] which is stricter than the LEP result. In this scenario, the 125GeV Higgs boson \(h_1 \) has SM-like couplings. The \(h_1 \rightarrow 2h_2 \) decay channel measurements impose a strict constraint on \(h_1 h_2 h_2 \) coupling to \(\mathcal{O}(10^{-2}) \) [12, 58], but this measurement does not give tighter constraints on the \(c_1, c_2 \) and \(c_{12} \) couplings. The electro-weak precision measurements [59] require that the charged Higgs boson mass must be close the the heavy Higgs mass \(m_3 \) [12]. For \(m_3 \sim v \), there is no further constraints from \(t \rightarrow H^+ b \) rare decay [12]. The study in [12] and its update results in [57] showed this scenario is still viable facing all experimental constraints.
The results we obtained above showed we can set stricter constraint or discovery potential on this scenario. For $h_1 h_2$ production channel, we use $\text{Br}(h_1 \to b \bar{b}) = \text{Br}_{\text{SM}}(h_1 \to b \bar{b})$ as a benchmark point. Assuming all $c_{1,2,12} > 0$, we have

$$K = c_{212} \sqrt{1 - c_2^2 - c_{12}^2}. \quad (23)$$

In Figure 4 we show the expected limit or significance for different (c_2, c_{12}) points before (see the left figure) or after (see the right figure) “p_T balance” cut discussed above. The four curves are $K = 0.01, 0.02, 0.03, 0.04$ separately from left to right.

If there is no hint for either processes before “p_T balance” cut, it is expected to set an upper limit $K < 7.9 \times 10^{-3}$; while the upper limit is expected to be $K < 5.3 \times 10^{-3}$ after “p_T balance” cut. If both processes are discovered at over $3(5)\sigma$ level before “p_T balance” cut, we have $K > 1.5(2.4) \times 10^{-2}$; while the number should be $1.0(1.6) \times 10^{-2}$ after “p_T balance” cut. In this case, we can confirm CP-violation in the scalar sector and measure K to the accuracy $\delta K/K \lesssim 24(16)\%$. For the case with the largest K, both couplings are set to the recent allowed upper limit, $c_2 = 0.18$ and $c_{12} = 0.3$, we will have $K = 5.4 \times 10^{-2}$ and $\delta K/K = 7.9(4.7)\%$ before (after) “p_T balance” cut.
In the discussions above, we just use the inclusive measurements to determine the couplings and hence K in a model-independent way. For the discovery potential of a specific model, it would be better to use exclusive decay channels such as $h_2 \rightarrow b \bar{b}$ which is expected to be dominant in most models. The sensitivity would also increase if we combine the results from more decay channels of Z and h_1.

IV. CONCLUSIONS AND DISCUSSIONS

Once two scalars are discovered, we can test the CP-violation in the scalar sector through searching for nonzero tree-level h_1ZZ, h_2ZZ, h_1h_2Z vertices according to the CP-properties analysis. Based on this idea, we proposed a model-independent method to confirm CP-violation in the scalar sector at future e^+e^- colliders through measuring the inclusive $e^+e^- \rightarrow Zh_1, Zh_2, h_1h_2$ cross sections with recoil mass technique. We can use a quantity $K = c_1c_2c_{12}$ which is defined in (3) to measure CP-violation in the scalar sector.

We have performed simulation studies for $m_2 = 40$GeV at CEPC assuming the 125GeV Higgs boson h_1 is SM-like and the results are shown in Table I and Table II. We have adopted the recoil mass technique to ensure the measurements are inclusive. The 5σ discovery limit for both c_2 and c_{12} are below the recent 95% C.L. upper limits. For Zh_2 associated production, the “p_T balance” cut is efficient to drop the photon background but it also lose the inclusiveness a little. We choose the weakly-coupled Lee model which contains CP-violation and allows an extra light scalar as a benchmark model. In the weakly coupled Lee model, both processes, Zh_2 and h_1h_2, are possible to be discovered at 5σ level before or after “p_T balance” cut. If both processes are discovered at $3(5)\sigma$ level, K must reach $O(10^{-2})$ and the sensitivity of $\delta K/K$ measurement can reach $24(16)\%$. This method is also applicable for other e^+e^- colliders if all the three processes can be discovered. For example, if the extra scalar is heavier, we can use this method at a e^+e^- collider with larger \sqrt{s}, such as ILC.

We should note that $K \neq 0$ is a sufficient but not necessary condition for the existence of CP-violation in the scalar sector. Precisely speaking, we can use this method to confirm

11 After “p_T balance” cut, it is quasi-model-independent as discussed above.
12 For most perturbative models, this method is useful to extract tree level information instead of loop level since loop-induced processes have small enough cross sections.
the existence of CP-violation in the scalar sector according to the nonzero K, but can’t constrain or exclude the CP-violation in the scalar sector if K is unmeasurable small. For example, in a minimal extension of SM mentioned above [7], there is only an additional complex singlet in the extension of the scalar sector. For some parameter choices, the three scalars would become CP-mixing states, but there are still no tree-level $h_i h_j Z$ vertices thus the measurement on $e^+ e^- \rightarrow h_i h_j$ cannot give a positive result.

Acknowledgement

We thank Yacine Haddad, Wolfgang Kilian, Gang Li (IHEP), Zhen Liu, Xin Mo, Juergen Reuter, Man-Qi Ruan, Yi-Lei Tang, Xia Wan, and Hao Zhang for helpful discussions. This work was supported in part by the Natural Science Foundation of China (Grants No. 11635001, No. 11135003, and No. 11375014).

[1] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).
[2] K. A. Olive et. al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014); Chin. Phys. C 40, 100001 (2016).
[3] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[4] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[5] The Planck Collaboration, Astron. Astrophys. 571, A16 (2014).
[6] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, Phys. Rep. 516, 1 (2012).
[7] L. Bento, G. C. Branco, and P. A. Parada, Phys. Lett. B 267, 95 (1991).
[8] T. D. Lee, Phys. Rev. D 8, 1226 (1973); Phys. Rep. 9, 143 (1974).
[9] H. Georgi, Hadronic J. 1, 155 (1978).
[10] S. Weinberg, Phys. Rev. Lett. 37, 657, (1976).
[11] Y.-N. Mao and S.-H. Zhu, Phys. Rev. D 90, 115024 (2014).
[12] Y.-N. Mao and S.-H. Zhu, Phys. Rev. D 94, 055008 (2016); Phys. Rev. D 94, 059904 (2016, erratum added).
[13] Y.-N. Mao, PhD Thesis (Peking University, 2016).
[14] The ATLAS Collaboration, Phys. Lett. B 716, 1 (2012).
[15] The CMS Collaboration, Phys. Lett. B 716, 30 (2012).
[16] The ATLAS and CMS Collaborations, Phys. Rev. Lett. 114, 191803, (2015).
[17] The CMS Collaboration, Phys. Rev. D 89, 092007 (2014).
[18] The CMS Collaboration, Report No. CMS-PAS-HIG-14-014.
[19] The ATLAS Collaboration, Report No. ATLAS-CONF-2015-008.
[20] The CMS Collaboration, Reports No. CMS-HIG-14-035 and No. CERN-PH-EP/2015-331, arXiv: 1602.00209.
[21] L. Bian and N. Chen, J. High Energy Phys. 09, 069 (2016).
[22] M. Pospelov and A. Ritz, Ann. Phys. (Amsterdam) 318, 119 (2005).
[23] ACME Collaboration, Science 343, 269 (2014).
[24] C. A. Baker et. al., Phys. Rev. Lett. 97, 131801 (2006); J. M. Pendlebury et. al., Phys. Rev. D 92, 092003 (2015).
[25] A. Hocker and Z. Ligeti, Ann. Rev. Nucl. Part. Sci. 56, 501 (2006); J. Charles, S. Descotes-Genon, Z. Ligeti, S. Monteil, M. Papucci, and K. Trabelsi, Phys. Rev. D 89, 033016 (2014).
[26] J. F. Gunion and H. E. Haber, Phys. Rev. D 72, 095002 (2005).
[27] B. Grzadkowski, O. M. Ogreid, and P. Osland, J. High Energy Phys. 11, 084 (2014); PoS CORFU2014, 086 (2015).
[28] B. Grzadkowski, O. M. Ogreid, and P. Osland, J. High Energy Phys. 05, 025 (2016).
[29] S. Berge, W. Bernreuther, and J. Ziethe, Phys. Rev. Lett. 100, 171605 (2008).
[30] S. Berge, W. Bernreuther, and S. Kirchner, Phys. Rev. D 92, 096012 (2015).
[31] S. Berge, W. Bernreuther, and H. Spiesberger, Phys. Lett. B 727, 488 (2013).
[32] P. S. Bhupal Dev, A. Djouadi, R. M. Godbole, M. M. Mühlleitner, and S. D. Rindani, Phys. Rev. Lett. 100, 051801 (2008).
[33] A. Méndez and A. Pomarol, Phys. Lett. B 272, 313 (1991).
[34] The CMS Collaboration, J. High Energy Phys. 01, 096 (2014); The ATLAS Collaboration, Report No. ATLAS-CONF-2015-007; The ATLAS and CMS Collaborations, Report No. ATLAS-CONF-2015-044.
[35] G. Li, Y.-N. Mao, Y.-L. Tang, C. Zhang, Y. Zhou, and S.-H. Zhu, Phys. Rev. Lett. 116, 151803 (2016).
[36] C.-Y. Chen, S. Dawson, and Y. Zhang, J. High Energy Phys. 06, 056 (2015).
[37] The ALEPH, DELPHI, L3, and OPAL Collaborations (LEP Higgs Working Group), Eur. Phys. J. C 47, 547 (2006).

[38] S. Heinemeyer and C. Schappacher, Eur. Phys J. C 76, 220 (2016).

[39] The NLC ZDR Design Group and NLC Physics Working Group Collaborations, Reports No. SLAC-R-0485, No. SLAC-R-485, No. SLAC-0485, No. SLAC-485, No. BNL-52502, No. FERMILAB-PUB-96-112, No. LBL-PUB-5425, No. LBNL-PUB-5425, No. UCRL-ID-124160, No. BNL-52-502, No. SLAC-REPORT-485, No. –UCRL-ID-124160, and No. UC-414, arXiv: hep-ex/9605011.

[40] J. F. Gunion, T. Han, and R. Sobey, Phys. Lett. B 429, 79 (1998).

[41] The CEPC-SPPC Study Group, Reports No. IHEP-CEPC-DR-2015-01, No. IHEP-TH-2015-01, and No. HEP-EP-2015-01, http://cepc.ihep.ac.cn/preCDR/volume.html.

[42] The TLEP Design Study Working Group, J. High Energy Phys. 01, 164 (2014).

[43] M. Thomson, Eur. Phys. J. C 76, 72 (2016).

[44] C. Adolphsen et. al., arXiv: 1306.6328; arXiv: 1306.6353.

[45] J.-M. Gérard and M. Herquet, Phys. Rev. Lett. 98, 251802 (2007); B. Coleppa, F. Kling, and S. Su, J. High Energy Phys. 01, 161 (2014).

[46] B. Dumont, J. F. Gunion, Y. Jiang, and S. Kraml, Phys. Rev. D 90, 035021 (2014); J. Bernon, J. F. Gunion, Y. Jiang, and S. Kraml, Phys. Rev. D 91, 075019 (2015).

[47] The ATLAS collaboration, Report No. ATLAS-CONF-2016-081; the CMS collaboration, Report No. CMS-PAS-HIG-16-033.

[48] G. Abbiendi et. al. (ALEPH, DELPHI, L3, and OPAL Collaborations and the LEP Higgs Working Group), Phys. Lett. B 565, 61 (2003).

[49] S. Schael et. al. (The ALEPH, DELPHI, L3, OPAL Collaborations and LEP Higgs Working Group), Eur. Phys. J. C 47, 547 (2006).

[50] M. Moretti, T. Ohl, and J. Reuter, Reports No. IKDA-2001-06 and No. LC-TOOL-2001-040, arXiv: hep-ph/0102195; W. Kilian, T. Ohl, and J. Reuter, Eur. Phys. J. C 71, 1742 (2011); http://whizard.hepforge.org/.

[51] W. Kilian et. al. (WHIZARD team), http://whizard.hepforge.org/circe_files/CEPC/.

[52] J. F. Gunion, T. Han, and R. Sobey, Phys. Lett. B 429, 79 (1998).

[53] X. Mo, G. Li, M.-Q. Ruan, and X.-C. Lou, Chin. Phys. C40, 033001 (2016); Z. Chen, Y. Yang, M. Ruan, D. Wang, G. Li, S. Jin, and Y. Ban, arXiv: 1601.05352.
[54] H. Li, arXiv: 1007.2999.

[55] H. Li, PhD Thesis (Université de Paris-Sud, 2009), http://hal.inria.fr/file/index/docid/430432/filename/Li.pdf

[56] The LHC Higgs Cross Section Working Group, arXiv: 1610.07922.

[57] Y.-N. Mao (2016), http://indico.ihep.ac.cn/event/5600/session/114/contribution/428/material/slides/0.pdf

[58] D. Curtin et. al., Phys. Rev. D 90, 075004 (2014).

[59] M. Baak, J. Cuth, J. Haller, A. Hoecker, R. Kogler, K. Mönig, M. Schott, and J. Stelzer, Eur. Phys. J. C 74, 3046 (2014).