A Review of Neotropical Myxomycetes (1828-2008)

by

Carlos Lado & Diana Wrigley de Basanta

Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain. lado@rjb.csic.es

Abstract

Lado, C. & Wrigley de Basanta, D. 2008. A Review of Neotropical Myxomycetes (1828-2008). Anales Jard. Bot. Madrid 65(2): 211-254.

A synthesis of the accumulated knowledge on myxomycetes recorded from the Neotropical region is presented in this paper. The biodiversity of these microorganisms in the Neotropics has been underestimated, and this paper shows that half the known species in the world have been recorded from the region. The monograph by M.L. Farr, for the series Flora Neotropica, published in 1976, has been taken as a baseline. The records produced after this date, some older obscure records, and data from recently published catalogues, monographs and other papers have been incorporated. The information is presented in a table format by species and countries. Species names are listed with synonyms that have been used in Neotropical literature and nomenclature has been updated. A comprehensive list of references by country has been included. A characteristic assemblage of myxomycetes from the Neotropics has been identified. The richness of myxobiota in different countries has been evaluated, and gaps in current information and unexplored areas have become evident from the results. Use of the compiled information to direct conservation plans, and to serve as a starting point to establish and develop future strategies for the study of myxomycetes in this area of the world, is discussed. The importance of prioritizing this research on microorganismal biodiversity, in view of accelerated habitat destruction, is stressed.

Keywords: biodiversity, microorganisms, protists, Mycetozoa, tropics, geographical distribution, catalogue, Central America, Caribbean, South America.

Introduction

The biodiversity of microorganisms is a topic that is becoming increasingly important since they are the very basis of ecosystems. Myxomycetes are eukaryotic microorganisms, with unicellular and coenocytic phagotrophic phases. They inhabit all terrestrial ecosystems, feeding on bacteria and other microorganisms, in and on plant parts and plant remains. Some are known to be associated with specific ecosystems, while others are more cosmopolitan, and research into their diversity and their specific relation-
ships within certain ecosystems is an emerging focus of recent research. This is especially critical in areas like the Neotropics, where rapid habitat loss endangers all components of the various biomes. The Neotropical region is one of the biogeographical regions with the highest biodiversity in the world. Estimates by Davis & al. (1997), show that more than 70,000 endemic plant species exist in the Neotropics, and the Tropical Andean region alone, contains about a sixth of all plant life in less than 1% of the world’s land area. More than a third of the centres of plant diversity and endemisms recognized by Davis & al. (1997) and eight of the designated biodiversity “hot spots”, where “exceptional concentrations of endemic species are undergoing exceptional loss of habitat” (Myers & al., 2000), are located in this area (Mittermeier & al., 2004). In contrast, the knowledge of myxomycetes of the Neotropics is far from complete. The first record of myxomycetes in the Neotropics was in 1828, from Chile (Bertero, 1828). In the 19th Century there were various publications from the region. Farr (1976), included these in a monograph published in the series Flora Neotropica, in which she compiled all the information available up to the year 1975. In this monograph, 250 of the almost 900 myxomycete species known in the world (Lado, 2008), were reported for this region. This is about the same as in single, possibly less diverse, but well studied countries, like the United Kingdom, the Netherlands, Ireland, France or Spain, which have 250-350 species recorded (Nannenga-Bremekamp, 1991; Lado, 1994; Ing, 1999).

Several research projects on Neotropical myxomycetes, supported by science foundations or research institutions from different countries such as Spain, USA, Brazil or Mexico, have been developed over the last decade and some are currently in progress. The objectives and outcomes of these projects are different but complementary. Some are devoted to the study of myxomycetes from the Neotropics, it can be used to provide information for future conservation and protection plans, and also serve as a starting point to establish and develop future strategies for the study of myxomycetes in this area of the world.

Geographic area covered

The geographic area covered by this review includes all of the American territories between the Tropic of Cancer and the Tropic of Capricorn, and encompasses all the Mesoamerica and Caribbean bioregions as well as South America. We consider whole countries in a political sense, even when the limits of all the territory of the country are not included between the limits of the Neotropical region in a strict sense, as is the case of Mexico, Argentina and Chile. Uruguay, the only country out of the limits of the tropics, but with subtropical features, is also included. With these criteria the paper includes all of the territories between Mexico (Fig. 1), as the northern limit, and Tierra del Fuego (Fig. 2), as the southern limit.

The area has been divided, for practical reasons, into thirty regions, which largely conform to political jurisdictions. But the designations of geographical entities do not imply the expression of any opinion whatsoever concerning the legal status of any country, territory or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The countries are designated with the three-letter code of Botanical Countries established by Brummitt (2001) in the World Geographical Scheme for Recording Plant Distributions. Some exceptions were made, to enable an easier interpretation of the data, and so a single code is used for all the continental territory of Mexico (MEX) as well as its Pacific and Caribbean Islands, and for all of the territories of Brazil (BZI). Those of Argentina (AGA) and Chile (CLI), include each country’s area of Tierra del Fuego (see Table 1).
Fuego. Tiny enclaves of one country in another have been ignored, and geographical disjunctions such as major or remote islands have been included in their countries of political dependence. According to these criteria, the Desventurados Islands and Juan Fernandez Islands are also included in Chile (CLI), the Galapagos Islands are included in Ecuador (ECU), and the Fernando de Noronha and Trindade Islands in Brazil (BZI).

Due to the large number of islands and to avoid too much division of the territory, the Leeward Islands of the Caribbean bioregion, such as Anguilla, Antigua-Barbuda, Guadalupe, Montserrat or the American Virgin Islands, have been considered as one territory (LEE). The same criteria have been applied to the Bahama Islands (BAH) and the Windward Islands (WIN), that include Barbados, Dominica, Grenada, St. Lucia, Martinique and St. Vincent. The little islands making up the Central American Pacific Islands such as Cocos, Coiba and Malpelo, are included in the countries of political dependence (Costa Rica, Panama or Colombia), as have the Southwest Caribbean Islands of Colombian, Honduran and Nicaraguan Islands. The Dutch territories of Aruba, Bonaire and Curaçao Islands, are included in Venezuela as well as the Venezuelan Antilles. The Turks and Caicos Islands have been included with the Bahamas, and the Cayman Islands jointly with Cuba. Abbreviations used herein are listed and shown on figs. 1-2.

Central America

MEX Mexico (Guadalupe Island, Rocos Alijos Islands and Revillagigedo Islands included)
BLZ Belize
GUA Guatemala
HON Honduras (Honduran Caribbean Islands included)
ELS El Salvador
NIC Nicaragua (Nicaraguan Caribbean Islands included)
COS Costa Rica (Cocos Island included)
PAN Panama (Coiba Island included)

Caribbean

BAH Bahamas (Turs and Caicos Islands included)
CUB Cuba (Cayman Islands included)
JAM Jamaica
HAI Haiti (Navassa Island included)
DOM Dominican Republic
PUE Puerto Rico
LEE Leeward Islands (Antigua-Barbuda, Anguilla, Aves Island, British Virgin Islands, Guadeloupe, Montserrat, Netherlands Leeward Islands, St. Kitts-Nevis, St. Martin-St. Barthélemy and Virgin Islands)
WIN Windward Islands (Barbados, Dominica, Grenada, Martinique, St. Lucia, St. Vincent)
TRT Trinidad and Tobago
South America

CLM Colombia (Colombian Caribbean Islands and Malpelo Island included)
VEN Venezuela [Venezuelan Antilles and Netherlands Antilles (Curaçao and Bonaire), the island of Aruba included]
GUY Guyana
SUR Suriname
FRG French Guiana

ECU Ecuador (Galápagos Islands included)
PER Peru
BOL Bolivia
BZI Brazil (Fernando de Noronha and Trindade Island included)
PAR Paraguay
URU Uruguay
AGA Argentina (Tierra del Fuego and other islands included)
CLI Chile (Desventurados Islands, Juan Fernández Islands, Tierra del Fuego and other islands included)

Fig. 2. South America.
Other criteria followed

To present the data, the same basic format employed by Lado (1994) in the checklist of Myxomycetes of the Mediterranean countries, has been followed. The review is similar to a checklist, basically a species listing (Table 1), including synonyms, of myxomycetes from the Neotropics cited in the literature, with species distribution by countries. With regard to nomenclature used, the generic and species treatment are those accepted by Lado (2001, 2008) and Hernández-Crespo & Lado (2005), the generic names *Amaurochaete*, *Ceratiomyxa* (traditionally considered a myxomycete until recently) and *Hemitrichia* are conserved according to Lado & al. (2005) (see also, Gams, 2005). Infraspecific taxa have not been considered, due to the inconsistency of distinctive characters in many of the cases, and are treated under their respective species. All the species names utilised in the consulted sources have been verified. Spelling variations and transcriptional errors have been corrected. The accepted names appear in bold, and the synonyms (homo or heterotypic synonyms), which have been used for species in the literature from the Neotropics, appear in italics. Records cited herein are compiled from the literature and no attempt has been made, for this paper, to examine or authenticate material.

The taxa, in the Table 1, are arranged alphabetically by genera and species. A query after a species under a certain country, means doubts as to its presence in that country, which is usually due to imprecision by the author of the paper, or the collector of the specimen. The countries or geographical units have been arranged more or less in order from the North to the South, in three major bioregions, starting with Central America, continuing with the Caribbean Islands and South, in three major bioregions, starting with Central America, continuing with the Caribbean Islands and South, in three major bioregions, starting with Central America, continuing with the Caribbean Islands and South, in three major bioregions, starting with Central America, continuing with the Caribbean Islands and South. The totals for the number of species by countries and countries for each species have been given at the end and the side of the table. Doubtful excluded or species have been listed in a separate table (Table 2).

Sources of information

The monograph by Farr (1976) for the series *Flora Neotropica*, has been taken as a baseline for this review, and the reference has been included in all the countries for which she gave citations. This may lead to some duplication in the numbers of references for a country, but this has not caused duplication in the records of Myxomycetes, which have been listed only once. All the literature references of Farr’s monograph have been incorporated into the list of references below, except those general works that review compile records or references, such as Lister (1911, 1925), Hagelstein (1944) or Macbride (1899, 1922). Some pre-1975 papers, omitted by Farr (1976), are also included. In addition, checklists, inventories, catalogues as well as more obscure papers with valuable information, published after 1975, have been perused for myxomycete records, and used as sources of information for this review. All the sources of information used for the myxomycete records listed in Table 1 are given below, arranged by countries and date. Compilation of this data by country should assist future researchers, and be useful as a guideline for future government initiatives. The sources are:

- **Argentina** (AGA): Spegazzini (1880a, 1880b, 1880c, 1881, 1882, 1886, 1887b, 1889, 1896a, 1896b, 1899a, 1899b, 1909a, 1909b, 1912, 1913, 1919a, 1926, 1927), Berlese (1888), Massee (1889), Saccardo (1892), Saccardo & Sydow (1899, 1902), Fries (1903), Torrend (1908), Saccardo & Trotter (1913), Sturgis (1916), Digilio (1946, 1950), Farr (1971, 1973, 1974, 1976), Arambari (1972, 1973, 1975), Deschamps (1972, 1974, 1975, 1976a, 1976b), Castillo & al. (1996), Crespo & Lugo (2003), Wrigley de Basanta & Stephenson (2005), Wright & Albertó (2006).
- **Bahamas** (BAH): Britton & Millspaugh (1920).
- **Bolivia** (BOL): Fries (1903), Saccardo & Saccardo (1906), Torrend (1908), Stevenson & Cardenas (1949), Farr (1976).
- **Brazil** (BZI): Montagne (1837), Berkeley & Cooke (1876), Spegazzini (1881, 1888, 1889, 1919b, 1926), Berlese (1888), Massee (1889), Saccardo (1892, 1895), Hemmings (1896, 1902a), Bresadola (1896), Pachschke (1896), Saccardo & Sydow (1899), John (1902, 1904), Saccardo & Saccardo (1906), Höhnel (1907), Sydow & Sydow (1907), Torrend (1908, 1915, 1916), Batista (1949), Hashimoto (1953), Hertel (1954a, 1954b, 1955), Farr & Martin (1958), Farr (1959, 1960, 1968, 1973, 1974, 1976, 1985), Fidalgo & al. (1965), Ing (1966), Göttsberger (1968, 1971), Mariz (1968), Cavalcanti (1970, 1974a, 1974b, 1976, 1977, 1985, 1996a, 1996b, 2002), Dennis (1970), Göttsberger & Nannenga-Bremkamp (1971), Mariz & Cavalcanti (1970), Maimoni-Rodella & Göttsberger (1980), Bononi & al. (1981), Cavalcanti & al. (1982, 1985, 1993, 1999, 2005, 2006), Porto & Cavalcanti (1984, 1986), Porto & al. (1982), Cavalcanti & Araújo (1985), Cavalcanti & Dias Filha (1985), Cavalcanti & Marinho (1985), Cavalcanti & Oliveira (1985), Cavalcanti & Porto (1985), Cavalcanti & Silva (1985), Rodrigues (1985), Santos & al. (1986), Muchovej & Muchovej (1987), Capelari & Mazeiro (1988), Silva & Cavalcanti (1988), Santos & Cavalcanti (1988, 1991a, 1991b, 1995), Hochgesand & Göttsberger (1989, 1996), Hochgesand & al. (1989), Cavalcanti & Brito (1990), Mendes & Guererro (1990), Rodrigues & Guerreiro (1990), Rogerson & al. (1990), Cavalcanti & Santos (1991), Göttsberger & al. (1992), Cavalcanti & Fortes (1994, 1995), Gomes Neto (1996), Barbosa (1996), Putzke (1996, 2002), Alves & Cavalcanti (1996), Cavalcanti & Putzke (1998), Mobin & Cavalcanti (1998, 1999a, 1999b, 2000, 2001), Yamamoto & al. (2000), Cavalcanti & Mobin (2001, 2002, 2004), Gomes Neto & Cavalcanti (2002), Maimoni-Rodella (2002), Matsumoto (2002), Chiappeta & al. (2003), Ponte & al. (2003), Maimoni-Rodella & Cavalcanti (2006), Bezerra & al. (2007), Rufino & Cavalcanti (2007).
- **Chile** (CLI): Bertero (1828), Montagne (1837, 1852a, 1852b),
| Species | List of countries |
|---|
| Arcyria affinis Rostaf. | MEX ECU |
| Arcyria afroalpina Rammeloo | MEX COS CUB PUE ECU |
| = A. afroalpina var. mexicana Lizárraga, G. Moreno & Illana | |
| Arcyria cinerea (Bull.) Pers. | MEX BLZ GUA HON NIC COS PAN BAH CUB JAM HAI DOM PUE LEE WIN TRT CLM VEN GUY SUR FRG BZI ECU PER BOL PAR URU CLI AGA |
| = A. digitata Schwein. | |
| = A. cinerea var. digitata (Schwein.) G. Lister | |
| = A. albida Pers. | |
| = A. cookei Massie | |
| = A. cinerea f. rubella Y. Yamam. | |
| Arcyria corymbosa M.L. Farr & G.W. Martin | BZI AGA |
| Arcyria denudata (L.) Wettst. | MEX BLZ HON NIC COS PAN BAH CUB JAM DOM PUE LEE WIN TRT CLM VEN GUY SUR FRG BZI ECU PER BOL PAR URU CLI AGA |
| = A. punicea Pers. | |
| Arcyria ferruginea Sauter | MEX BZI PAR URU AGA |
| Arcyria fuegiana Aramb. | |
| Arcyria glauca Lister | AGA |
| Arcyria globosa Schwein. | MEX CUB PUE CLM BZI ECU |
| Arcyria incamata (Pers. ex J.F. Gmel.) Pers. | MEX COS CUB JAM HAI DOM PUE LEE WIN TRT CLM VEN BZI ECU PAR CLI AGA |
| Arcyria insignis Kalchbr. & Cooke | MEX COS PAN CUB JAM PUE LEE TRT CLM VEN FRG BZI ? BOL URU CLI AGA |
| Arcyria magna Rex | MEX COS PAN CUB WIN BZI |
| = A. magna var. rosea Rex | |
| Arcyria major (G. Lister) Ing | BZI ECU |
| Arcyria minuta Buchet | MEX COS PAN BZI |
| = A. carnea (G. Lister) G. Lister | |
| Arcyria nigella Emoto | |
| Arcyria ovata (Oeder) Onsberg | MEX COS PAN CUB JAM LEE TRT VEN BZI ECU PAR AGA |
| Species | MEX | PAN | JAM | DOM | CLM | VEN | BZI | ECU | PAR | AGA |
|-------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Arcyria oerstedii Rostaf. | | | | | | | | | | |
| Arcyria pomiformis (Leers) Rostaf. | | | | | | | | | | |
| Arcyria stipata (Schwein.) Lister | | | | | | | | | | |
| Arcyriatella congregata Hochg. & Gottsb. | | | | | | | | | | |
| Badhamia affinis Rostaf. | | | | | | | | | | |
| = B. orbiculata Rex | | | | | | | | | | |
| Badhamia calcaripes Gottsb. | | | | | | | | | | |
| Badhamia capsulifera (Bull.) Berk. | | | | | | | | | | |
| = B. hyalina (Pers.) Berk. | | | | | | | | | | |
| Badhamia cinerascens G.W. Martin | | | | | | | | | | |
| Badhamia dubia Nann.-Bremek. | | | | | | | | | | |
| Badhamia foliicola Lister | | | | | | | | | | |
| Badhamia gigantospora Ukkola & Härk. | | | | | | | | | | |
| Badhamia goniospora Meyl. | | | | | | | | | | |
| = B. dearnesii Hagelst. | | | | | | | | | | |
| Badhamia macrocarpa (Ces.) Rostaf. | | | | | | | | | | |
| Badhamia melanospora Specg. | | | | | | | | | | |
| = B. gracilis (T. Madbr.) T. Madbr. | | | | | | | | | | |
| = B. gracilis var. melanospora (Specg.) | | | | | | | | | | |
| = B. grandispora Illana & G. Moreno | | | | | | | | | | |
| Badhamia nitens Berk. | | | | | | | | | | |
| = B. aurantiaca Lizárraga, G. Moreno & Illana | | | | | | | | | | |
| = B. nitens var. aurantiaca (Lizárraga, G. Moreno & Illana) | | | | | | | | | | |
| Badhamia panicea (Fr.) Rostaf. | | | | | | | | | | |
| Badhamia papaveracea Berk. & Ravenel | | | | | | | | | | |
| Badhamia populina Lister & G. Lister | | | | | | | | | | |
| Badhamia utricularis (Bull.) Berk. | | | | | | | | | | |
| Badhamia versicolor Lister | | | | | | | | | | |
| Badhamiopsis ainoae (Yamash.) T.E. Brooks & H.W. Keller | | | | | | | | | | |
| = Badhamia ainoae Yamash. | | | | | | | | | | |
| Name | Continuation | MEX | PAN | JAM | BZI | ECU | CU | AGA | |
|---|---|-----|-----|-----|-----|-----|----|-----|---|
| Barbeyella minutissima Meyl. | | | | | | | | | 1 |
| Brefeldia maxima (Fr.) Rostaf. | | | | | | | | | 2 |
| Calomyxa metallica (Berk.) Neuw. | = Margarita metallica (Berk.) Lister | MEX | | JAM | | | | | 6 |
| Calomyxa synspora M.L. Farr & Kowalski | | | | | | | | VEN | 1 |
| Calonema foliicola Estrada, J.M. Ramirez | = Hemitrichia foliicola (Estrada, J.M. Ramirez & Lado) Lizárraga, G. Moreno & Illana | MEX | | | | | | | 1 |
| Ceratiomyxa fruticulosa (O.F. Müll.) T. Macbr. | = Ceratiomyxa mucida (Pers.) Schröt. | MEX | HON | NIC | COS | PAN | CUB | JAM | PUE | LEE | WIN | TRT | CLM | VEN | GUY | FRG | BZI | ECU | PER | BOL | PAR | URU | CLI | AGA | 25 |
| Ceratiomyxa morchella A.L. Welden | | MEX | HON | COS | PAN | JAM | | PUE | | VEN | SUR | BZI | ECU | | | | | | | | | | | | | | | 10 |
| Ceratiomyxa sphaerosperma Boedijn | | MEX | COS | PAN | CUB | JAM | | | WIN | CLM | VEN | GUY | FRG | BZI | ECU | | | | | | | | | | | | | | 12 |
| Clastoderma debaryanum A. Bytt | = C. debaryanum var. imperatorium Emoto | MEX | COS | PAN | CUB | JAM | PUE | LEE | WIN | TRT | CLM | VEN | | | BZI | ECU | | | | | | | | | | | | 14 |
| Clastoderma pachypus Nann.-Brenek. | | MEX | | 3 |
| Collaria arcyronema (Rosta.) Nann.-Brenek | = Lampioderma arcyronema Rostaf. | MEX | BLZ | HON | NIC | COS | PAN | CUB | JAM | HAI | DOM | PUE | LEE | WIN | BZI | ECU | AGA | | | | | | | | | | | | 16 |
| = Comatricha shimekiana T. Macbr. | | |
| Collaria luidia (Lister) Nann.-Brenek. | = Comatricha luidia Lister | MEX | |
| = Comatricha luidia Lister | | |
| Collaria rubens (Lister) Nann.-Brenek. | = Comatricha rubens Lister | MEX | |
| = Comatricha rubens Lister | | |
| Colloderma oculatum (C. Lippert) G. Lister| | |
| = Comatricha rubens Lister | | |
| Colloderma robustum Meyl. | | |
| Comatricha afroalpina Rammeloo | | |
| Comatricha aggregata M.L. Farr | | |
| Comatricha anomala Rammeloo | | |
Table 1. (Continuation).

Species	Location	Distribution	
Comatricha argentinae J.R. Deschamps	MEX	AGA	1
Comatricha elegans (Radd.) G. Lister	MEX	GUA, COS, JAM, HAI, PUE, WIN, TRT, CLM, VEN, BZI, ECU	14
Comatricha ellae Häk.	MEX		
Comatricha laxa Rostaf.	MEX	GUA, COS, PAN, CUB, PUE, LEE, VEN, BZI, CLI	11
Comatricha longipilla Nann.-Bremek.	MEX		
Comatricha meandrispora A. Castillo, G. Moreno & Illana	MEX	BZI	1
Comatricha nigra (Pers. ex J.F. Gmel.) J. Schröt. = C. friesiana Rostaf. = Stemonitis ovata Pers. = C. obtusata (Fr.) Preuss	MEX	COS, PAN, CUB, JAM, LEE, FRG, BZI, ECU, BOL, CLI	12
Comatricha pulchella (C. Bab.) Rostaf.	MEX	COS, PAN, PUE, VEN, BZI, ECU, BOL, URU, AGA	10
Comatricha reticulospora Ing & Holland	MEX		
Comatricha tenerina (M.A. Curtis) G. Lister	MEX	BLZ, COS, CUB, JAM, PUE, LEE, VEN, BZI, ECU, PER, AGA	12
Craterium aureum (Schumach.) Rostaf.	MEX	COS, JAM, DOM, PUE, WIN, CLM, VEN, BZI, ECU, PER, AGA	12
Craterium condinum Rex	MEX	COS, CUB, JAM, CLM, ECU	5
Craterium leucocephalum (Pers. ex J.F. Gmel.) Ditmar = C. leucocephalum var. scyphoides (Cooke & Balf. f.) G. Lister = C. scyphoides (Cooke & Balf. f.) Lizárraga, Illana & G. Moreno = Cribraria perpusilla Speg.	MEX	COS, CUB, JAM, COU, PAN, LEE, WIN, TRT, CLM, VEN, FRG, BZI, ECU, BOL, AGA	17
Craterium minutum (Leers) Rostaf.	MEX	CUB, CLM, BZI	4
Craterium obovatum Peck = Badhamia obovata (Peck) S.J. Sm. = C. obovatum var. dictyoisporum (Rostaf.) Moreno & Illana	MEX	PAN, CLM, VEN, FRG, BZI, ECU, PAR, AGA	9
Craterium paraguayense (Speff.) G. Lister = locraterium rubescens (Rein) E. Jahn = Didymium paraguayense Speg. = D. guarapiense Speg.	MEX	PAN, CLM, VEN, FRG, BZI, ECU, PAR, AGA	9
Cribraria argillacea (Pers. ex J.F. Gmel.) Pers.	MEX	PAN, BZI, AGA	4
Cribraria atrofuscus G.W. Martin & Lovejoy	MEX	PAN, JAM, VEN, BZI, CLI, AGA	1
Cribraria aurantiaca Schrad.	MEX	PAN, JAM, VEN, BZI, CLI, AGA	7
Species	Distribution	Notes	
---------	--------------	-------	
Cribaria cancellata (Batsch) Nam.-Bremek. = Dictyotum cancellatum (Batsch) T. Macbr. = D. cernuum (Pers.) Nees = C. cancellata var. fusca (Lister) Nann.-Bremek. = C. exilis T. Macbr.	MEX	23	
Cribaria confusa Nam.-Bremek. & Y. Yamam.	MEX	4	
Cribaria costata Dhillon & Nam.-Bremek.	MEX	1	
Cribaria elegans Berk. & M.A. Curtis	MEX	2	
Cribaria ferruginea Meyl.	MEX	1	
Cribaria fagills Lado & Estrada	MEX	1	
Cribaria intricata Schrad.	MEX	14	
Cribaria languescens Rex	MEX	11	
Cribaria laxa Hugelst.	MEX	1	
Cribaria lepida Meyl.	MEX	1	
Cribaria macrocarpa Schrad.	MEX	3	
Cribaria maritinii Nam.-Bremek.	MEX	1	
Cribaria microcarpa (Schrad.) Pers. = C. pachydictyon Nann.-Bremek.	MEX	14	
Cribaria minutissima Schwein.	MEX	8	
Cribaria mirabilis (Rostaf.) Massee = Dictyotum mirabile (Rostaf.) Meyl.	MEX	4	
Cribaria oregana H.C. Gilbert = C. vulgaris var. oregana (H.C. Gilbert) Nam.-Bremek. & Lado	MEX	2	
Cribaria piriformis Schrad.	MEX	6	
Cribaria purpurea Schrad.	MEX	2	
Cribaria rubiginosa Fr.	MEX	1	
Cribaria rufa (Roth) Rostaf.	MEX	1	
Cribaria rutila (G. Lister) Nam.-Bremek.	AGA	1	
Cribaria splenders (Schrad.) Pers.	MEX	7	
Cribaria tenella Schrad.	MEX	14	
Cribaria violacea Rex	MEX	14	
Table 1. (Continuation).

Species	Country	COS	PAN	CUB	JAM	PUE	WIN	CLM	VEN	BZI	ECU	AGA	CLI	LEE	VEN	BOL	PAR	URI	AGA
Cribaria vulgaris Schrad.	MEX																		
Cribaria zona1spora Lado, Mosquera & Beltrán-Tej.	MEX																		
Diachea bulbillosa (Berk. & Broome) Lister	MEX	COS	PAN	CUB	JAM	PUE	WIN	CLM	VEN	BZI	ECU								
Diachea leucopodia (Bull.) Rostaf.	MEX	COS	PAN	CUB	JAM	DOM	PUE	LEE	WIN	TRT	CLM	VEN	BZI	ECU	BOL	PAR	URI	AGA	
= **D. elegans** (Tenn.) Fr.	MEX					DOM	PUE	LEE	WIN	TRT	CLM	VEN	BZI	ECU	BOL	PAR	URI	AGA	
= **D. confusa** Massee	MEX					DOM	PUE	LEE	WIN	TRT	CLM	VEN	BZI	ECU	BOL	PAR	URI	AGA	
Diachea radiata G. Lister & Petch	MEX													CLI					
Diachea silvaepluvialis M.L. Farr	MEX													WIN					
Diachea subsessilis Peck	MEX													LEE					
Diacheopsis insessa (G. Lister) Ing	MEX																		
Diadema corticatum Lister	MEX																		
Dianema harveyi Rex	MEX																		
Dicksonia plumbea (Schumach.) Rostaf.	MEX																		
= **D. plumbea** var. **entoxhantum** (Berk.) G. Lister	MEX																		
= **D. plumbea** var. **cinnabarum** (Berk. & Broome) Shirai & Hara	MEX																		
= **Clathroptychium rugulosum** (Wallr.) Rostaf.	MEX																		
Didieria acanthosporum Estrada & Lado	MEX																		
Didieria antarctica E. Horak	AGA																		
Didieria antarctica (Speg.) Sturgis	AGA		CLI																
= **Licea antarctica** Speg.	AGA		CLI																
Didieria asteroides (Lister & G. Lister) G. Lister	MEX																		
Didieria chondrioderma (de Bary & Rostaf.)	MEX																		
G. Lister	MEX																		
Didieria cor-rubrum T. Macbr.	BZI																		
Didieria corrugatum T.E. Brooks & H.W. Keller	MEX																		
Didieria crustaceum Peck	MEX																		
Didieria deplanatum Fr.	MEX																		

Note: The table continues with similar entries for other species, each listed with their corresponding countries and codes.
Table 1. (Continuation).

Species	Mix	Mexico	Belize	Costa Rica	Panama	Jamaica	Puerto Rico	Trinidad	Curaçao	Venezuela	Brazil	Ecuador	Peru	Argentina																																
Diderma effusum (Schwein.) Morgan = Physarum effusum Schwein. = D. cubense Berk. & M.A. Curtis = Chondrodendron reticulatum (Rostaf.) Rostaf.	MEX	BLZ	COS	PAN	CUB	JAM	PUE	LEE	WIN	TRT	CLM	VEN	BZI	ECU	URU	AGA	16																													
Diderma fallax (Rostaf.) Lado = D. lyallii (Massee) T. Macbr.	MEX																CLI	1																												
Diderma floriforme (Bull.) Pers. = Chondrodendron floriforme Rostaf.	MEX																?	1																												
Diderma fragile Aramb.																AGA	1																													
Diderma gigantocolumnellae M.L. Fair																AGA	1																													
Diderma globosum Pers.																VEN	ECU	PER	AGA	4																										
Diderma gracile Aramb.																AGA	1																													
Diderma hemisphaerium (Bull.) Hornem. = Chondrodendron micheli (Lb.) Rostaf.	MEX																MEX	GUA	COS	PAN	CUB	JAM	HAI	PUE	LEE	WIN	TRT	CLM	VEN	BZI	ECU	PER	URU	AGA	18											
Diderma maculatum Buyck																VEN																														
Diderma miniatum Nann.-Bremek.	MEX																ECU																													
Diderma montanum (Meyl.) Meyl.																VEN																														
Diderma niveum (Rostaf.) T. Macbr. = Chondrodendron niveum Rostaf.	MEX																MEX			COS							CLM																			
Diderma ochraceum Hoffm.																MEX																														
Diderma radiatum (L.) Morgan	MEX																				CLM																									
Diderma rimosum Eliasson & Nann.-Bremek.	MEX																				ECU																									
Diderma robustum Aramb.																						AGA	1																							
Diderma rugosum (Rex) T. Macbr. = Chondrodendron rugosum Rex	MEX																MEX				否																									
Diderma saundersii (Massee) Lado = D. platycarpum var. berkeleyanum Nann.-Bremek.	MEX																MEX																													
Diderma sauteri (Rostaf.) T. Macbr.	MEX																				COS																									
Diderma scabrum Eliasson & Nann.-Bremek.	MEX																				ECU																									
Diderma simplex (J. Schröt.) G. Lister	MEX																						CU	1																						
Diderma spumarioides (Fr.) Fr.	MEX																MEX			GUA							PAN	CUB	JAM	PUE	LEE	WIN	VEN	BZI	BOL	CU	AGA	13								
Species	Author(s)	Collections	Country(s)	Reference(s)																																										
-------------------------------	-----------------	-------------	------------	--------------																																										
Didymium аnells Morgan	M. Morgan	MEX	JAM, PUE, TRT, CLM	BZI, ECU, CLI, AGA																																										
Didymium аplanatum Nann.-Bremek.	MEX	MEX		ECU																																										
Didymium аquatile Gottsb. & Nann.-Bremek.	MEX	MEX		BZI																																										
Didymium bahiense Gottsb. = D. bahiense var. microsporum Hochg.	MEX	MEX	CLM, VEN	BZI, ECU																																										
Didymium clavodecus K.D. Whitney	MEX	MEX		BZI																																										
Didymium clavus (Alb. & Schwein.) Rabenh.	MEX	MEX, BLZ	COS, ?, CUB, JAM, HAI, PUE, LEE, WIN, TRT, CLM, VEN	BZI, ECU, BOL, AGA																																										
Didymium columnellacavum Hochg., Gottsb. & Nann.-Bremek.	MEX	MEX		BZI																																										
Didymium comatum (Lister) Nann.-Bremek.	MEX	MEX	WIN																																											
Didymium crustaceum Fr.	MEX	MEX	COS, CUB	WIN, ? BOL																																										
Didymium difforme (Pers.) Gray = Didymium difforme Pers. = Chondrioderma difforme (Pers.) Rostaf. = Chondrioderma micraspis Speg.	MEX	MEX	COS, JAM, HAI, WIN, CLM, VEN	BZI, ECU, BOL, PAR, URU, CLI, AGA																																										
Didymium dubium Rostf.	MEX	MEX	COS	CLM, VEN																																										
Didymium eremophilum M. Blackw. & Gilb.	MEX	MEX		BZI																																										
Didymium flexuosum Yamash.	MEX	MEX		BZI																																										
Didymium floccosum G.W. Martin, K.S. Thind & Rehill	?	VEN	ECU	AGA																																										
Didymium intermedium J. Schröt = D. excelsum Lister	NC, PAN, JAM	WIN	CLM, BZI	AGA																																										
Species	Code	Country	Code	Country	Code	Country																																								
--	------	------------------	------	------------------	------	------------------																																								
Didymium iridis (Ditmar) Fr.	1	NC	22	BZ	1	NC																																								
	1	COS			2	COS																																								
	1	PAN			2	PAN																																								
					1																																									
	2				1																																									
Didymium proximum Berk, & M.A. Curtis	1	MEX			1	MEX																																								
	4	HON			1	HON																																								
	4	CUB			3	CUB																																								
	1	JAM			1	JAM																																								
	4	HAI			1	HAI																																								
	1	DOM			1	DOM																																								
	5	HON			1	HON																																								
	4	COS			1	COS																																								
	1	PAN			1	PAN																																								
	2				2																																									
Didymium karstensii Nann.-Bremek.	1	MEX			1	MEX																																								
	1	ECU			1	ECU																																								
	1	JAM			1	JAM																																								
					1																																									
					1																																									
Didymium laxifilum G. Lister & J. Ross	1	MEX			1	MEX																																								
	1	JAM			1	JAM																																								
					1																																									
					1																																									
Didymium leoninum Berk. & Broome	4	MEX			1	MEX																																								
	1	JAM			1	JAM																																								
	1	CLM			1	CLM																																								
	1	ECU			1	ECU																																								
	1	BZ			1	BZ																																								
	1	ECU			1	ECU																																								
	1	MEX			3	MEX																																								
	1	BZ			1	BZ																																								
	1	ECU			1	ECU																																								
	2				2																																									
Didymium listeri Massee	2	MEX			1	MEX																																								
	3	HON			1	HON																																								
	1	COS			1	COS																																								
	1	PAN			1	PAN																																								
	2				2																																									
Didymium nigripes (Link) Fr.	21	MEX			1	MEX																																								
	1	GUA			1	GUA																																								
	1	HON			1	HON																																								
	1	COS			1	COS																																								
	1	PAN			1	PAN																																								
	2				2																																									
Didymium mexicanum G. Moreno, Lizárraga	1	MEX			1	MEX																																								
	1	ECU			1	ECU																																								
	1	JAM			1	JAM																																								
	2	HON			1	HON																																								
	4	COS			1	COS																																								
	4	PAN			1	PAN																																								
	2				2																																									
Didymium minus (Lister) Morgan	11	MEX			1	MEX																																								
	1	COS			1	COS																																								
	2	PAN			1	PAN																																								
	1	Bol			1	Bol																																								
	1	CLM			1	CLM																																								
	4	ECU			1	ECU																																								
	2				2																																									
Didymium ochroideum G. Lister	4	MEX			1	MEX																																								
	1	BLZ			1	BLZ																																								
	2				2																																									
Didymium perforatum Yamana	1	AGA			1	AGA																																								
	1	BLZ			1	BLZ																																								
	1				1																																									
Didymium quitense (Pat.) Torrend	1	MEX			1	MEX																																								
	1	BLZ			1	BLZ																																								
	1				1																																									
Didymium serpula Fr.	1	MEX			1	MEX																																								
	1	BLZ			1	BLZ																																								
	1				1																																									
Didymium synsporon T.E. Brooks & H.W. Keller	1	CLI			1	CLI																																								
	1				1																																									

Review of Neotropical Myxomycetes 225

Anales del Jardín Botánico de Madrid 65(2): 211-254, julio-diciembre 2008. ISSN: 0211-1322
Table 1. (Continuation).
Species
Didymium tehuacanense
Didymium trachysporum
Didymium umbilicatum
Didymium vaccinum
Didymium verrucosporum
Didymium wildpretii
Echinostelium apitectum
Echinostelium arboreum
Echinostelium bisporum
Echinostelium brooksii
Echinostelium coelocephalum
Echinostelium colliculosum
Echinostelium corynophorum
Echinostelium cribrarioides
Echinostelium elachiston
Echinostelium fragile
Echinostelium minutum
Elaeomyxa cerifera
Enerthenema papillatum
Fuligo cinerea
Fuligo intermedia
Fuligo megaspora
Fuligo muscorum
Fuligo septica
Echinostelium elephas
Echinostelium melanolacrima
Echinostelium psillospermum
Echinostelium tenuisulphuratum
Fuligo intermedia
Fuligo muscorum
Fuligo septica
Table 1. (Continuation).

Species	Synonyms	Distribution	AGA
Hemitrichia abietina (Wigand) G. Lister	AGA		1
Hemitrichia calyculata (Speg.) M.L. Farr	= Hemiarcyria calyculata Speg. = Hyporhamma calyculata (Speg.) Lado = Hemitrichia stipitata (Massae) T. Macbr. = H. clavata var. calyculata (Speg.) Y. Yamam. = Hemiarcyria plumosa Morgan	MEX GUA HON NC COS PAN CUB JAM DOM PUE LEE WIN TRT CLM VEN FRG BZI ECU PER PAR CLI AGA 22	
Hemitrichia clavata (Pers.) Rostaf.	= Hemiarcya clavata (Pers.) Rostaf.	MEX ? ? BAH CUB DOM PUE LEE WIN TRT CLM VEN BZI ECU URU CLI AGA 15	
Hemitrichia insignis Torrend			1
Hemitrichia intorta (Lister) Lister			2
Hemitrichia leiocarpa (Cooke) Lister	= Arcyria leiocarpa (Cooke) G.W. Martin & Alexop.	MEX BLZ COS PAN CUB WIN CLM BZI 8	
Hemitrichia leiotricha (Lister) G. Lister		MEX	2
Hemitrichia minor G. Lister	= Perichaena minor (G. Lister) Hagest. = Hyporhamma minor (G. Lister) Lado	MEX BLZ COS PAN CUB WIN BZI CLI 7	
Hemitrichia montana (Morgan) T. Macbr.		MEX	1
Hemitrichia paegoga M.L. Farr			2
Hemitrichia pardina (Minakata) Ing	= Perichaena minor var. pardina (Minakata) Hagest.	MEX COS CUB PUE BZI ECU 6	
Hemitrichia parviverrucospora (Lizarraga, G. Moreno & Illana)	= H. serpula var. parviverrucospora Lizarraga, Illana & G. Moreno	MEX	1
Hemitrichia serpula (Scop.) Rostaf. ex Lister	= Hemiarcya serpula (Scop.) Rostaf. = Hyporhamma serpula (Scop.) Lado = Hemitrichia serpula var. piuensis Cavalcanti & Mobin = Mucor serpula Scop. = Trichia serpula (Scop.) Pers. = Arcyria serpula (Scop.) Masssee	MEX GUA NC COS PAN CUB JAM DOM PUE LEE WIN TRT CLM VEN FRG BZI ECU BOL URU CLI AGA 21	
Lamproderma arciroides (Sommerf.) Rostaf.		MEX JAM DOM PUE BZI ECU 6	
Species	Geographic Range	Additional Information	
--	------------------	------------------------	
Lamproderma columbinum (Pers.) Rostaf.	MEX, COS		
Lamproderma cribrarioides (Fr.) R.E. Fr.	COS		
Lamproderma echinulatum (Berk.) Rostaf.	MEX, COS		
Lamproderma gulielmæ Meyl.	MEX		
Lamproderma muscorum (Lév.) Hagelst. = Enerthenema muscorum Lév.	MEX, CLM, VEN, BZI	?	
Lamproderma sauteri Rostaf.	MEX	COS	
Lamproderma scintillans (Berks. & Broome) Morgan	MEX, COS, PAN, CUB, JAM, HAI, PUE, LEE, WIN, CLM, VEN, BZI, ECU, BOL	14	
Lamproderma tuberculosporum M.L. Farr	CLM		
Leocarpus fragilis (Dicks.) Rostaf. = L. vernicosus S.F. Gray	MEX, CLM, BZI	AGA, 6	
Lepidoderma granuliferum (W. Phillips) R.E. Fr.	AGA		
Lepidoderma trevelyanii (Grev.) Poulain & Mar. Mey. = Diderma trevelyanii (Grev.) Fr.	CLI, AGA	2	
Lepidoderma tigrinum (Schrad.) Rostaf.	MEX		
Leptoderma megaspora Aramb. & Spinelli	AGA		
Licea belmontiana Nann.-Bremerk.	MEX		
Licea biforis Morgan	MEX, BLZ	CO, CU, JAM	
Licea bulbosa Nann.-Bremerk. & Y. Yamam.	CUB		
Licea castanea G. Lister	MEX	BZI	
Licea denudescens H.W. Keller & T.E. Brooks	MEX, BLZ	BZI	
Licea erecta K.S. Thind & Dhillon = L. erectoides Namn.-Bremerk. & Y. Yamam.	BLZ, CUB	BZI	
Licea floriformis T.N. Lakhk. & R.K. Chopra = L. floriformis var. aureospora M.T.M. Willemse & Nann.-Bremerk.	MEX		
Licea kleistobolus G.W. Martin	MEX, BLZ	BZI	
Licea marginata Namn.-Bremerk.	BLZ		
Licea minima Fr.	MEX	PAN	

Table 1. (Continuation).
Species Name	Location(s)	Coordinates
Licea nanengae Pando & Lado	MEX	
Licea operculata (Wingate) G.W. Martin	MEX	COS, PAN, PUE, WIN, VEN, BZI, ECU, PER, URU
Licea parasitica (Zuka) G.W. Martin	MEX	BLZ, BZI
Licea pediellata (H.C. Gilbert) H.C. Gilbert	MEX	PAN, PUE, WIN, BZI, ECU
Licea peregrina T.E. Brooks & H.W. Keller	MEX	BLZ, COS
Licea pociiformis Ukkola	MEX	
Licea pseudoconica T.E. Brooks & H.W. Keller	MEX	BLZ
Licea punctiformis G.W. Martin	MEX	
Licea pusilla Schrad.	MEX	PAN, JAM
Licea pygmaea (Meyl.) Ing	MEX	
Licea rugosa Nann.-Bremek. & Y. Yamam.	MEX	
= L. rugosa var. fujikahara (Y. Yamam.)		
D. Wrigley & Lado		
Licea scyphoides T.E. Brooks & H.W. Keller	MEX	BLZ, ECU, PER
Licea succulenticola Mosquera, Lado, Estrada & Beltran-Tej.	MEX	
Licea tenera E. Jahn	MEX	BZI, URU
Licea tubea G.W. Martin	MEX	PAN
Licea variabilis Schrad.	MEX	BZI, ECU, CLI
= L. flexuosa Pers.		
Lindbladia tubulina Fr.	MEX	AGA
Lycopogala confusum Nann.-Breker. ex Ing	MEX	ECU
Lycopogala conicum Pers.	MEX	NC, PAN, CUB, JAM, LEE, BZI
Lycopogala epidendrum (L.) Fr. = L. miniatum Pers. = L. epidendrum var. terrestre (Fr.) Y. Yamam.	MEX	NC, COS, PAN, BAH, CUB, JAM, DOM, PUE, LEE, WIN, TRT, CLM, VEN, FRG, BZI, ECU, URU, CLI, AGA
Lycopogala euvae Morgan	MEX	COS, PAN, CUB, JAM, PUE, LEE, WIN, CLM, VEN, Guy, FRG, BZI, ECU
Lycopogala flavofuscum (Ehrenb.) Rostaf.	MEX	BZI, AGA
Macbrideola cornea (G. Lister & Cran) Alexop.	MEX	COS
Macbrideola decapillata H.C. Gilbert	MEX	COS
Macbrideola herrerae Lizarraga, G. Moreno & Illana	MEX	
Table 1. (Continuation).		

Macbrideola lamirodermoides G. Moreno, Lizárraga & Illana	MEX	1
Macbrideola martini (Alexop. & Beneke) Alexop. = Comatricha martini Alexop. & Beneke	MEX BLZ	COS
Macbrideola oblonga Pando & Lado	MEX	1
Macbrideola scintillans H.C. Gilbert = M. scintillans var. verrucosa (Nann.-Bremek. & Y. Yamam.) Y. Yamam.	MEX BLZ	COS
Macbrideola synsporos (Alexop.) Alexop.	MEX	1
Metatrichia floriformis (Schwein.) Nann.-Bremek. = Trichia floriformis (Schwein.) G. Lister = T. lateritia Lév.	MEX	COS
Metatrichia hornida Ing	MEX	CUB
Metatrichia vesparia (Batsch) Nann.-Bremek. ex G.W. Martin & Alexop. = Hemitrichia vesparia (Batsch) T. Macbr. = Trichia rubiformis Pers. = T. pyriformis Leers ex Hoffm. = Hemiarcyria rubiformis (Pers.) Rostaf.	MEX	NC
Mucilago crustacea F.H. Wigg. = M. dictyospora (R.E. fr.) Lizárraga, G. Moreno & Illana	MEX	CUB
Oligonema dancoi Asamb. & Spinedi	AGA	1
Oligonema schweinitzii (Berk.) G.W. Martin	MEX	BZI
Paradiachea caspitoso (Sturigs) Hertel ex H. Neubert, Nowotny & K. Baumann = Comatricha caspitoso Sturigs	MEX	BZI
Paradiacheopsis curtibana Hertel	BZI	1
Paradiacheopsis fimbriata (G. Lister & Cran) Hertel ex Nann.-Bremek. = Comatricha fimbriata G. Lister & Cran = P. fimbriata var. penicillata (Nann.-Bremek. & Y. Yamam.) Y. Yamam.	MEX	ECU
Paradiacheopsis longipes Hooff & Nann.-Bremek.	COS	1
Table 1. (Continuation).

Species	Location	BLZ	NC	COS	PAN	CUB	JAM	DOM	PUE	LEE	WIN	TRT	CLM	VEN	GUY	BZI	ECU	URU	CLU	AGA			
Paradiacheopsis rigida (Brandza) Nann.-Bremek.	BLZ	1																					
Perichaena chrysosperma (Curr.) G. Lister = *Hemitrichia melanopeziata* (Speg.) Berl. = *Ophiotaeca wrighii* Berl. & M.A. Curtis = *Comuvia wrighii* (Berl. & M.A. Curtis) Rostaf. = *O. chrysosperma* Curr.	MEX																					20	
Perichaena corticalis (Batsch) Rostaf. = *P. corticalis* var. *licoides* (Rostaf.) G. Lister	MEX																						9
Perichaena depressa Lib.	MEX																					18	
Perichaena dicyonema Rammeloo	MEX																						2
Perichaena luteola (Kowalski) Gilert = *Calonema luteola* Kowalski	MEX																						1
Perichaena micropora Penz & Lister	MEX																						2
Perichaena pedata (Lister & G. Lister) G. Lister ex E. Jahn	MEX																						3
Perichaena quadrate T. Madr.	MEX																						1
Perichaena stipitata Lado, Estrada & D. Wingley	MEX																						1
Perichaena syncarpon T.E. Brooks	MEX																						1
Perichaena vermiculatus (Schwein.) Rostaf.	MEX																						12
Physarella oblonga (Berk. & M.A. Curtis) Morgan = *Tilmadoche oblonga* (Berk. & M.A. Curtis) Rostaf. = *Ph. oblonga* f. *alba* Alexop. = *Ph. mirabilis* (Ped.) Peck = *Perichaena pseudoaecidium* Speg.	MEX																						18
Physarina echinospora K.S. Thind & Manocha	MEX																						1
Physarum aeneum (Lister) R.E. Fr.	MEX																						7
Physarum album (Bull.) Chevall. = *Ph. nutans* Pers. = *Tilmadoche nutans* (Pers.) Rostaf. = *Didymium furfuraceum* (Schummach.) Fr.	MEX	BLZ																				20	
Physarum alpinum (Lister & G. Lister) G. Lister	MEX																						1
Table 1. (Continuation).

Species	Distribution	References																	
Physarum alvoradianum Gottb.	MEX	BZI	2																
Physarum auriscalpium Cooke = Ph. limonium Nann.-Bremek. = Ph. chlorinum Cooke?	MEX BLZ ? PAN PUE LEE WIN VEN BZI	8																	
Physarum betheli T. Macbr. ex G. Lister	MEX	BZI	CLU AGA 3																
Physarum bitectum G. Lister	MEX	COS JAM PUE CLM VEN	6																
Physarum bivalve Pers. = Leocarpus malaleucus Mont. = Ph. sinuosum (Bull.) Weimn.	MEX	COS PAN CUB HAI LEE CLM VEN FRG BZI ECU PER CLI AGA	14																
Physarum bogoriense Racib.	MEX	COS PAN CUB JAM PUE LEE WIN TRT CLM VEN SUR BZI ECU BOL PAR URU CLI AGA	20																
Physarum brunneolum (W. Phillips) Masse	MEX	COS	CLM ?	CLI	4														
Physarum bubalinum M.L. Fair			WIN																
Physarum carneum G. Lister & Sturgs	MEX				1														
Physarum cinereum (Batsch) Pers. = Didymium cinereum (Batsch) Fr.	MEX NC COS PAN CUB JAM HAI DOM PUE LEE WIN TRT CLM VEN SUR BZI ECU BOL PAR URU CLI AGA	22																	
Physarum citrinum Schumach.	MEX	COS	LEE WIN CLM VEN		CLI AGA 8														
Physarum compressum Alb. & Schwein.	MEX BLZ GUA COS PAN BAH CUB JAM HAI DOM PUE LEE WIN TRT CLM VEN SUR FRG BZI ECU PER BOL CLI AGA	24																	
Physarum contextum (Pers.) Pers.	MEX	COS																	
Physarum crateriforme Petch	MEX BLZ	COS CUB PUE LEE WIN	BZI ECU		9														
Physarum decipiens M.A. Curtis	MEX	COS		BZI PER BOL		5													
Physarum dictyospermum Lister & G. Lister				VEN	CLI	2													
Physarum dictyosporum G.W. Martin	MEX	COS		CLM		CLU	3												
Physarum diderma Rostaf.	MEX	COS			AGA 1														
Physarum dideroides (Pers.) Rostaf. = Ph. platense Speg.	MEX GUA COS PAN CUB JAM HAI DOM PUE LEE WIN TRT CLM VEN	BZI ECU	AGA 14																
Physarum echinosporum Lister	PAN JAM LEE WIN	BZI ECU URU CLI	8																
Physarum flavicomum Berk.	MEX BLZ	?	LEE TRT CLM	BZI	7														
Physarum flavidum (Peck) Peck		COS			CLI	1													
Physarum fulgens Pat.	PAN JAM PUE WIN CLM	BZI	ECU	7															
Physarum galbeum Wingate	MEX	NC	CUB JAM	WIN CLM	BZI ?	AGA 8													
Physarum globuliferum (Bull.) Pers. = Didyma globuliferum (Bull.) Fr. = Ph. delicatissimum Speg.	MEX	COS PAN BAH JAM LEE TRT CLM VEN FRG BZI ECU PER	CLI AGA 15																
Species	Location	Continental	Code	Code	Code	BZI	Code	Code	Code										
--	----------	-------------	------	------	------	-----	------	------	------										
Physarum gyrosum Rostaf. = Fuligo gyrosa (Rostaf.) E. Jahn	MEX		?	CLM	BZI														
Physarum hongkongense Chao H. Chung	MEX																		
Physarum javanicum Rostaf. & Y. Yamam.	MEX																		
Physarum lakhanpalii Nann.-Bremek.	MEX																		
Physarum lateritium (Berk. & Ravenel) Morgan	MEX																		
Physarum leucophaeum Fr. = Ph. inaequale Peck	MEX																		
Physarum leucoceps Link = Didymium squamulosum var. leucopus (Link) Rostaf. = Didymium leucophaeum (Link) Fr.	MEX	GUA	COS	PAN	JAM	WIN	CLM	BZI	PAR	AGA									
Physarum licheniforme (Schwein.) Lado = Ph. lividum Rostaf. = Ph. didemoides var. lividum (Rostaf.) Lister	MEX		CUB																
Physarum luteolium Peck	MEX																		
Physarum megalosporum T. Macbr.	MEX																		
Physarum melleum (Berk. & Broome) Mass. = Ph. rubropunctatum Pat.	MEX	GU A	COS	PAN	CUB	JAM	DOM	PUE	LEE	WIN	TRT	CLM	VEN	FRG	BZI	ECU	BOL	AGA	
Physarum menegae Nann.-Bremek.	MEX																		
Physarum murrinum Lister	MEX																		
Physarum mutabile (Rostaf.) G. Lister	MEX																		
Physarum newtonii T. Macbr.	MEX																		
Physarum nicaraguae T. Macbr.	MEX	BLZ	NC	COS	JAM	HAI	PUE	TRT											
Physarum nitens (Lister) Ing = Ph. virescens var. nitens Lister	MEX																		
Physarum notable T. Macbr. = Ph. connatum Peck	MEX																		
Physarum nucleatum Rex	MEX																		
Physarum nudum T. Macbr.	MEX																		
Physarum obtatum T. Macbr.	MEX	BLZ		PAN		JAM		WIN		CLM		VEN		BZI		ECU			
Physarum ovisporum G. Lister	?																		
Table 1. (Continuation).

Species	Countries		
Physarum penetrale	MEX		
Physarum pezizoideum (Jungh.)	PAN, JAM, WIN, VEN		
& Lagarde	BZI, ?		
Physarum polyleptus	COS, NC, CUB, JAM,		
Schwei.	PUE, LEE, WIN, TRT		
Didymium polyleptum	BZI, ?		
MEX	AGA, 4		
Physarum polycephalum	MEX, PUE, LEE, WIN		
Polyphoma	CLM, VEN		
Physarum psittacinum	PAN, WIN, CLM, VEN		
Physarum pulcherrimum	PAR, CLI		
Physarum pulcherripes	MEX, COS, PAN, JAM,		
& Ravenel	WIN, TRT, VEN		
Physarum pusillum (Berk. & M.A.	MEX, BLZ		
Curtis) G. Lister	COS, PAN, CUB, JAM,		
Physarum reniforme (Massee)	HAI, DOM, PUE, LEE,		
G. Lister	WIN, CLM, BZI, ECU,		
Physarum rigidum (G. Lister)	BZI, URU, AGA, 8		
Physarum robustum (Lister)	MEX, Nann.-Bremek.		
Physarum roseum Berk. & Broome	MEX, JAM, WIN, CLM		
Physarum rubiginosum Fr.	MEX, JAM, WIN		
Physarum serpula Morgan	MEX, COS, PAN, CUB,		
Physarum sessile Brandza	JAM, TRT, BZI, ECU		
Physarum spectabile	CLM, VEN, BZI, ?		
& Nann.-Bremek., Lado & G.			
Moreno			
Physarum stellatum (Massee)	MEX, NIC, COS, PAN,		
G.W. Martin	CUB, JAM, PUE, LEE,		
Physarum straminipes	CLM, VEN, BZI, ?		
& Lister			
Physarum sulphureum	MEX, JAM, PUE, LEE,		
Alb. & Schwein.	VEN, BZI, AGA, 7		
Physarum superbum	MEX, COS, HAI, PUE,		
Hagelst.	VEN, BZI, ECU, PER		
Physarum superflum			
Physarum sulphureum			
Physarum superbum			
Physarum sulphureum			
Physarum superbum			
Name of species	Location(s)	Author(s)	Synonyms
-----------------	-------------	-----------	----------
Physarum tenerum Rex	MEX, PAN, CLM, BZI, ECU, AGA		14
= Ph. maculatum T. Madr.			
Physarum tropicale T. Madr.	MEX, BLZ		2
Physarum vernum Sommerf.	MEX, GUA, CUB, CLM, BZI, ECU, AGA		7
Physarum virescens Ditmar	MEX, VEN, BZI, PAR, AGA		5
= T. mutabilis Rostaf.			
= Ph. viride var. aurantiwm (Bull.) Lister			
= T. mutabilis var. aurantiaca Rostaf.			
= Ph. viride var. incanum G. Lister			
= Ph. viride f. incanum (G. Lister) Y. Yamam.			
Physarum xanthinum Nann.-Bremek. & Döbbeler	MEX, ECU, AGA		1
Prototrichia metallica (Berk.) Massee	MEX, CLM		2
= E. splendens var. juranum (Meyl.) Härk			
= E. rozeanum (Rostaf.) Wingate			
= Comatricha irregularis Rex			
= Enteridium intermedium (Nann.-Bremek.) M.L. Farr	MEX, BZI, ECU, PAR, BZI, ECU, PER, PAR, URU, CLU, AGA		22
= Enteridium intermedium (Nann.-Bremek.) M.L. Farr			
= E. splendens var. juranum (Meyl.) Härk			
= E. rozeanum (Rostaf.) Wingate			
= Comatricha irregularis Rex			
Reticularia jurana Meyl.	MEX, PAN, JAM, DOM, PUE, WIN, CLM, BZI, ECU, URU, CLU, AGA		12
= Enteridium juranum (Meyl.) L.H. Cavalc. & S.C. Brito			
= E. splendens var. juranum (Meyl.) Härk			
= Enteridium lycoperdon Bull.			
= E. splendens (Morgan) T. Madr.			
= E. rozeanum (Rostaf.) Wingate			
= Comatricha irregularis Rex			
Reticularia olivacea (Ehrenb.) Fr.	MEX, JAM, PUE, WIN, VEN, BZI, ?		6
= Enteridium olivaceum (Ehrenb.) Fr.			
= E. splendens Morgan			
= Enteridium splendens (Morgan) T. Madr.			
= E. rozeanum (Rostaf.) Wingate			
Stemonaria gracilis Nann.-Bremek., & Y. Yamam.	MEX, JAM, PUE, WIN, VEN, BZI, ?		6
= Comatricha irregularis Rex			
= Stemonaria irregularis (Rex) Nann.-Bremek., R. Sharma & Y. Yamam.			
Table 1. (Continuation).			

Stemonaria longa (Peck) Nann.-Bremek., R. Sharma & Y. Yamam. = Comatricha longa Peck	MEX	NC	PAN
Stemonitis axifera (Bull.) T. Macbr. = S. ferruginea R. Ennemb. = S. smithii T. Macbr. = S. axifera var. smithii (T. Macbr.) Hagelst.	MEX	HON	NC
Stemonitis flavogenita E. Lahn	MEX	GUA	COS
Stemonitis foliicola ing	MEX		
Stemonitis fusca Roth = S. nigrescens Rex = S. fusca var. nigrescens (Rex) Torrend = S. carolinensis T. Macbr. = S. maxima Schwein = S. castellensis T. Macbr.	MEX	NC	COS
Stemonitis herbatica Peck	MEX	BLZ	GUA
Stemonitis incanspicua Nann.-Bremek.	MEX		
Stemonitis mussoberiana G.W. Martin, K.S. Thind & Sohi = S. brasiliensis M.L. Farr & G.W. Martin	MEX		
Stemonitis pallida Wingate	MEX		PAN
Stemonitis splendens Rostaf. = S. webberii Rex = S. ignicola Nann.-Bremek.	MEX	BLZ	GUA
Stemonitis virginiensis Rex	MEX		PAN
Stemonitopsis aequalis (Peck.) Y. Yamam. = Comatricha aequalis Peck	MEX		
Stemonitopsis gracilis (G. Lister) Nann.-Bremek. = Comatricha pulchella var. gracilis G. Lister	MEX		
Stemonitopsis hyperopta (Meyl.) Nann.-Bremek. = Stemonitis hyperopta Meyl.	MEX	GUA	
Stemonitopsis microsperma (Lister) Nann.-Bremek. = Stemonitis microsperma L.H. Celak.	MEX		
Stemonitopsis reticulata (H.C. Gilbert) Nann.-Bremek. & Y. Yamam. = Comatricha dictyspora L.F. Celak.	MEX	GUA	
Species	MEX	GUA	NC
---	---	---	---
Stemonitopsis subcaespitosa (Peck)			
= *Comatricha subcaespitosa* Peck			
Stemonitopsis typhina (F.H. Wigg.)	MEX		
= *Comatricha typhoides* (Bull.) Rostaf.			
= *Stemonitis platensis* Speg.			
= *C. typhoides var. longipes* E. Jahn			
= *C. typhoides var. similis* G. Lister			
Symphytocarpus amaurochaetoides Nann.-Bremek.	MEX		
Symphytocarpus confluens (Cooke & Ellis) ing & Nann.-Bremek.	MEX		
= *Stemonitis confluens* Cooke & Ellis			
Symphytocarpus flaccidus (Lister) ing & Nann.-Bremek.	MEX		
Symphytocarpus trechisporus (Berk. ex Torrend) Nann.-Bremek. = *Stemonitis trechispora* (Berk. ex Torrend) T. Madr.	MEX		
Trabrooksia appplanata H.W. Keller			
Trichia affinis de Bary	MEX		
= *Trichia agaves* (G. Moreno, Lidarraga & Illana) Mosquera, Lado, Estrada & Beltrán-Tej. = *T. perichaenoides* Mosquera, Lado, Estrada & Beltrán-Tej.	MEX		
= *Trichia crateriformis* G.W. Martin			
Trichia botrytis (J.F. Gmel.) Pers.	MEX		
= *T. botryta var. cerifera* G. Lister = *T. loricata* Corda = *T. fragilis* (Sowerby) Rostaf. = *T. decipiens* var. olivacea (Meyl.) Meyl.	MEX		
Trichia crateriformis G.W. Martin			
Trichia excentrica var. olivacea (Meyl.) Meyl.			

Anales del Jardín Botánico de Madrid 65(2): 211-254, julio-diciembre 2008. ISSN: 0211-1322
Species	Continent(s)
Trichia erecta Rex	MEX
Trichia favoginea (Batsch) Pers.	MEX
= *Lycoperdon favogineum* Batsch	
= *T. chrysosperma* (Bull.) Lam. & DC.	
= *T. kalbreyeri* Massee	
Trichia flavicorn (Lister) Ing	MEX
Trichia lutescens (Lister) List.	
Trichia macbridei M. Peck	
Trichia munda (Lister) Meyl.	MEX
= *T. botritis var. munda List*	
Trichia persimilis P. Karst.	MEX
Trichia scabra Rostaf.	MEX
Trichia subfusca Rex	
Trichia varia (Pers. ex J.F. Gmel.) Pers.	MEX
= *T. nigripes* Pers.	
Trichia venuscosa Berk.	MEX
Tubifera bombarda (Berk. & Broome) G.W. Martin	
Tubifera casparyi (Rostaf.) T. Madbr.	MEX
Tubifera dimorphotheca Nann.-Brenek. & Loer	
Tubifera ferruginosa (Batsch) J.F. Gmel.	MEX
= *Tubulina cylindrica* (Bull.) DC.	
Tubifera microsperma (Berk. & M.A. Curtis) G.W. Martin	
= *Licea microsperma* Berk. & M.A. Curtis	
= *Tubulifera microsperma* (Berk. & M.A. Curtis) Lado	
= *Tubulina stipitata* Berk. & Ravenel ex Rostaf.	
= *Licea stipata* Berk. & Rabelenn ex Rostaf.	
= *Tubifera stipitata* (Berk. & Ravenel ex Rostaf) T.Macbr.	
Willkommlangea reticulata (Alb. & Schwein.) Kuntze	
= *Cienkowskia reticulata* (Alb. & Schwein.) Rostaf.	
TOTAL NUMBER OF SPECIES: 431	
Table 2. Doubtful and Excluded species.

Species	Description
Arcyria carlee Hertel	— described from Brazil (Hertel, 1954). No material available for examination (Farr, 1976: 80).
Arcyria forseae Hertel	— described by Hertel (1954) from Brazil. No material available for examination (Farr, 1976: 81).
Arcyria occidentalis (F. Mabcr) G. Lister	— reported from Brazil by Teixeira (1971), probably based on the uncertain listing by Martin & Alexopoulos (1969), fide Farr (1976: 82).
Arcyria ramulosa (F. Rudolph) Wingard	— described by Rudolph (1829) from Peru. According to Martin & Alexopoulos (1969) could represent a new genus.
Arcyria stellfeldi Hertel	— described by Hertel (1954) from Brazil. No material available for examination (Farr, 1974: 82).
Arcyria versicolor W. Phillips	— cited by Torrend (1915) from Brazil and Spegazzini (1909) and Digilio (1946) from Argentina. Highly improbable, fide Farr (1976: 83).
Chondrioderma frustulosum Pat. & Lagerh.	— cited by Patouillard & Lagerheim (1895a) from Ecuador, probably a synonym of Didemora globosum, fide Farr (1976: 205).
Comatricha fluminensis (Spec.) & Torrend	— described from Brazil (Farr, 1976: 279).
Comatricha suksdorfi Ellis & Everh	— cited by Torrend (1915) from Brazil. Identity uncertain, fide Farr (1976: 266).
Cornuvia minutula	— described from Brazil by Spegazzini (1899b) from Argentina. Identity uncertain, fide Farr (1976: 281).
Didymium discoidum	— described by Spegazzini (1880) from Argentina. Identity uncertain, fide Farr (1976: 50).
Didymium oosica of Pat. & Gaillard	— described by Patouillard & Gaillard (1888) from Venezuela. Identity uncertain, fide Farr (1976: 236).
Didymium platense	— described by Spegazzini (1899) from Argentina. Identity uncertain.
Enteridium antarcticum Speg.	— described from Chile by Spegazzini (1887b) and cited from Argentina (Spegazzini, 1912), probably a synonym of Reticularia ol- vacea, fide Farr (1976: 40).
Hemitrichia insignis Torrend	— described by Torrend (1916) from Brazil. Identity uncertain.
Licea floriformis var.	— described by Spegazzini (181a) from Argentina. Identity uncertain, fide Farr (1976: 101).
Licea guaranitica	— based on Licea argentinense. Not a myxomycete, fide Farr (1976: 41).
Licea schoenleinii	— described from Chile. Not a myxomycete, fide Farr (1976: 281).
Licea var.	— described by Spegazzini (1881a) from Argentina. Identity uncertain, fide Farr (1976: 281).
Licea var.	— described from Argentina by Spegazzini (1881a) but identity uncertain, fide Farr (1976: 36).
Licea var.	— described from Mexico by Estrada-Torres & al., (in press). Identity uncertain.
Physarum albescens Ellis ex T. Macbr.	— reported from Brazil by Cavalcanti (2002). Identity uncertain.
Physarum chlorinum Cooke	— cited by Cooke (1877) from Guyana. Identity uncertain, fide Farr (1976: 173).
Physarum conglomeratum (Fr.) Rostaf.	— cited by Lister (1898a) from Antigua and Torrend (1908) from “Antilles”. Identity uncertain, fide Farr (1976: 173).
Physarum anomalum (Massei) Torrend	— described from Argentina by Spegazzini (1898a) but identity uncertain, fide Farr (1976: 36).
Physarum crustiforme Speg.	— described by Spegazzini (1899b) from Argentina. Identity uncertain, fide Farr (1976: 281).
Physarum minuta var.	— described by Batista (1949) from Brazil. Identity uncertain, fide Farr (1976: 279).
Physarum tribinctens Hertel	— described by Hertel (1955) from Brazil. Identity uncertain, fide Farr (1976: 279).
Physarum tuber	— described from Brazil by Farr (1976: 279).
Physarum turbinata (Bolton) Whit	— described by Berkeley (1868) from Cuba, by Spegazzini (1886) from Paraguay and by Montagne (1852a, 1852b) from Chile. Identity uncertain.

Excluded species

Species	Description
Chondrioderma andinum Speg.	— an unpublished species, fide Farr (1976: 280).
Colloderma pustulatum G. W. Martin	— the name apparently has remained unpublished, fide Farr (1976: 246).
Comatricha platensis Speg.	— apparently an unpublished name, fide Farr (1976: 266).
Cornuvia minutula Speg.	— described from Brazil. Identity uncertain, fide Farr (1976: 280).
Licea berteroana Mont.	— described from Chile. Not a myxomycete, fide Martin & Alexopoulos (1969).
Licea guaranitica Speg.	— described from Paraguay. Not a myxomycete, fide Farr (1976: 28).
Tubulina guaranitica (Speg.) Speg.	— based on Licea guaranitica Speg. See comments under this species.
Reticularia affinis Berk. & M.A. Curtis	— described from Cuba. Not a myxomycete, fide Martin & Alexopoulos (1969).
Reticularia atrorufa Berk. & M.A. Curtis	— described from Cuba. Not a myxomycete, fide Farr (1976: 41).
Reticularia pyrrophora Berk.	— described from Cuba, not a myxomycete, fide Farr (1976: 41).
Reticularia venulosa Berk. & M.A. Curtis	— described from Cuba. Not a myxomycete, fide Martin & Alexopoulos (1969).
Rostafiniska auralis Speg.	— described from Argentina. Not a myxomycete, fide Farr (1976: 281).
Physarum arenolatum Bertero	— apparently an unpublished name, fide Farr (1976: 173).
Physarum argentinense Speg.	— apparently and unpublished name, fide Farr (1976: 173).
Discussion

This review includes 431 myxomycete taxa from 51 genera reported from countries of the Neotropics. This is almost half of the total number of species known in the world (Lado, 2008), and in four decades of research, nearly double the number previously published from the region by Farr (1976). It includes 86% of known genera, most (71%) represented by more than one species. Of the thirty countries included in Table 1, Mexico, with 323 species, has by far the largest number of myxomycete species registered, and El Salvador has the least, since no myxomycetes have yet been published from this country. Although eleven countries have over 100 species published, twelve of the countries have recorded fewer than 10% of the total (Table 1). Very few species can be considered pan-neotropical as only 22 of the species (5%) were found in 20 countries or more, whereas 144 species (33%) have been reported from only one country in the Neotropics. Some of the latter have only been found in a single country worldwide, such as *Arcyriatella congregata*, *Calomyxa synspora*, *Didierma robustum*, or *Physarum bubalinum*, but others have been reported from other countries in different parts of the world, and still others have been recently described, and may well be found to be more widely distributed in the future.

Arcyria cinerea has been reported from 28 of the 30 countries. This species, and many of the others that make up the 5%, such as *Arcyria denudata*, *Cribaria cancellata*, *Didymium nigripes*, *D. squamulosum*, *Fuligo septica*, *Hemitrichia calyculata*, *H. serpula*, *Lycogala epidendrum*, *Perichaena chrysosperma*, *Physarum album*, *P. viride*, *Stemonitis fusca* or *Trichia favoginea*, are the most common species in many environments, and considered to be generalists, with the ability to exploit the conditions in both temperate and tropical habitats. In addition, there seem to be ecotypes or varieties of some species in the tropics which future work may show are species complexes, but they are all included at present under the same name. The assemblage of myxomycetes which does appear to be characteristically Neotropical, in that they have been recorded from many of the strictly tropical countries, includes *Ceratomyxa morchella*, *C. spheosperma*, *Comatrichia tenerrima*, *Craterium paraguayense*, *Cribaria microcarpa*, *C. tenella*, *Diachea bulbilosa*, *Didierma chondrioderma*, *Didymium intermedium*, *Lycogala conicum*, *L. exiguum*, *Physarella oblonga*, *Physarum aeneum*, *P. crateriforme*, *P. fulgens*, *P. javanicum*, *P. nicaraguense*, *P. nucleatum*, *P. oblatum*, *P. roseum*, *P. stellatum*, *P. superbum*, *Stemonaria longa*, *Stemonitis herbatica*, *S. pallida*, *Tabibera bombarda* and *T. microspora*.

The list also includes 13 new species that have been described in the last decade from material from the Neotropics, which are *Calonema foliicola* Estrada, J.M. Ramirez & Lado, *Cribaria fragilis* Lado & Estrada, *C. zonatissora* Lado, Mosquera & Beltrán-Tej., *Didierma acanthosporum* Estrada & Lado, *D. yucatanensis* Estrada, Lado & S.L. Stephenson, *Didymium tehuacanense* Estrada, D. Wrigley & Lado, *D. umbilicatum* D. Wrigley, Lado & Estrada, *D. wildpretii* Mosquera, Estrada, Beltrán-Tej., D. Wrigley & Lado, *Licea succulentica* Mosquera, Lado, Estrada & Beltrán-Tej., *Macbriodeola berrerae* Lizárraga, G. Moreno & Illana, *L. lamprodermoides* G. Moreno, Lizárraga & Illana, *Perichaena stipitata* Lado, Estrada & D. Wrigley, and *Trichia agaves* (G. Moreno, Lizárraga & Illana) Mosquera, Lado, Estrada & Beltrán-Tej. (described as *Hemitrichia agaves*).

The most representative order from the Neotropics was the Physarales, which is also the order with the greatest number of species. However, if the size of each order is looked at as a percentage of the total number of myxomycete species (Fig. 3) and compared to the percentage of each order found in the Neotropics, it can be seen that the Physarales are indeed more prevalent and more diverse in this area. Among these were 75 species of *Physarum* and 42 species of *Didymium*, the most representative genera. Almost 50% of the species in arid areas of Chile or Mexico (Lado & al, 2007, Estrada & al, in press) and over 40% in a cloud forest in Ecuador (Schnittler & al., 2002) were also from this order. Not all tropical areas are the same, however, since very few species of these genera were found in the high elevation forests of Costa Rica (Rojas & Stephenson, 2007). The orders Trichiales and Echinosteliales also seem to be better represented in the Neotropics than are the Stemontiales or Liceales (Fig. 3).

Myxomycetes have been found to date in all major biomes (Ing, 1994), living on decaying remains of all types of vegetation. Information on vegetation, and particularly vascular plants, as the habitats and substrates for all myxomycetes, is therefore fundamental to understanding their distribution. In the Neotropical region, even specific parts of plants have been shown to be new microhabitats for myxomycetes, such as the inflorescences of tropical plants (Schnittler & Stephenson, 2002, 2002b), living and dead lianas (Wrigley de Basanta & al., 2008), or the interior of succulent plants (Estrada-Torres & al., in press). Other potential microhabitats probably exist too in poorly studied vegetation, such as the mangrove swamps or the grasslands of the pampa. In addition to information on the vegetation, other factors must be taken into consideration when analyzing the data compiled above in Table 1. The geographical exten-
sion of each country obviously affects the potential number of myxomycetes to be found, and also the extent to which the country has been studied. The problem with any biogeographical analyses, as mentioned by Morawetz & Raedig (2007), is the difficulty in measuring the sampling effort. As the authors note, there can be insufficient sampling in places which are difficult to access, and intense sampling in easily accessible places. In order to enable a more realistic evaluation of the data in Table 1 to be made, a comparison of some of this information is given in Table 3.

Mexico, with the greatest number of myxomycetes, including all thirteen of the new species described from the region in the last decade, has been surveyed in a number of recent projects. Records appear in 138 papers, of which almost 100 are since 1990 (Table 3), but its myxomycete richness is also because it is so geographically diverse. It is the area where Boreal, Neotropical and Caribbean vegetation overlap. Some of these areas do not strictly belong to the Neotropics, as mentioned earlier, but for the purposes of this paper the records from all parts of the countries like Mexico and Argentina have been included, since records of some surveys did not include specific locations. Some parts of Mexico are in Central America, but others pertain to North America. For this reason we treat it alone. Mexico is also a country of varied relief with the trans-Mexican volcanic belt perpendicular to the two north-south mountain chains. This creates a profusion of different microclimates and vegetation islands in the valleys and consequently many varied habitats for myxomycetes. Its diversity of vegetation according to Davis & al. (1997) is comparable only to India and Peru. Rzedowski (1991) also highlights the high level of plant endemism particularly in arid or semi-arid areas and subhumid montane highlands. Recent surveys have been done in arid areas of the country, such as the Tehuacán-Cuicatlán Valley in Puebla and Oaxaca (Estrada-Torres & al., in press) or Sonora (Lizárraga & al., 2007, 2008), in tropical moist forests such as El Eden in Quintana Roo, and Los Tuxtlas in Veracruz (Lado & al., 2003) or in a dry forest in Chamela, Jalisco (Lado & al., 1999), among others. Many areas of interest remain to be studied in Mexico, however, including the Lacandona region (Chiapas), the Upper Mezquital River region (Durango), or the Sierra de Juárez (Oaxaca).

Central America is of particular interest as it is the land bridge between North and South America, literally closing the circulation between the Pacific and the Atlantic oceans during its formation, and permitting the exchange of organisms between the two land masses. The region has a very varied topography, with

Fig. 3. Percentage of known Myxomycetes in different Orders compared to the percentage of species from the Neotropics in each order.
mountains, valleys and high plateaus, which affects the climate and vegetation types. Although it is made up of small countries, it contains up to 8% of the world's plant species (Davis & al., 1997) many of which are endemic (Gentry, 1992). Some of the Central American countries have been sampled in several surveys recently, most notably Costa Rica (Schnittler & Stephenson, 2000) and Panama (Pando, 1997) which have more than 100 species of myxomycete recorded, but others such as El Salvador have not

Table 3. Neotropical countries included in this paper: A comparison of land area, vascular plant species richness, myxomycete species richness and number of publications; na = information not available. Sources: Gentry (1982, 1992); Davis & al. (1997).

Country	Area (km²)	Vascular plants (approx.)	Myxomycete species	Publications
Mexico	1,972,546	30,000	323	138
Central America				
Belize	22,800	4,400	41	1
Costa Rica	51,060	10,500	143	16
El Salvador	20,720	2,500	0	0
Guatemala	108,430	8,000	26	2
Honduras	111,890	6,000	12	4
Nicaragua	118,750	7,000	33	5
Panama	75,990	9,000	106	14
Caribbean				
Bahamas	14,260	1,300	10	1
Cuba	108,722	7,000	101	25
Dominican Republic	48,441	5,500	39	8
Haiti	27,749	with Dominican Republic	20	3
Jamaica	11,425	3,700	119	10
Leeward Islands	na	na	83	12
Puerto Rico	8,897	2,900	93	19
Trinidad and Tobago	4,838	2,600	62	7
Windward Islands	na	na	106	12
South America				
Argentina	2,736,690	9,370	160	46
Bolivia	1,084,380	17,350	42	5
Brazil	8,456,510	56,000	206	114
Chile	748,800	5,200	102	19
Colombia	1,038,700	45,000	96	12
Ecuador	276,840	21,000	136	31
French Guiana	90,976	4,000	37	2
Guyana	196,850	6,400	12	7
Paraguay	397,300	8,000	20	9
Peru	1,280,000	19,000	31	5
Surinam	156,000	5,000	9	4
Uruguay	174,810	2,270	52	8
Venezuela	882,050	21,070	111	19
est apportioned 11 new species to the country record, as previously there had been very little work done in that type of forest. Of the great variety of vegetation in Central America from lowland rain forest and swamps to arid areas full of cacti, the Petén region of Guatemala or the Darién Province of Panama are unexplored endangered areas and of great interest for future work.

The Caribbean Islands are a group of islands with different origins, and some are remains of continents, others of recent volcanoes. Each major tropical island cluster has independently evolved its own native flora, influenced by the fact that some of the islands, such as Hispaniola, have been formed from several territories, which separated and rejoined various times in their geologic history (Davis & al., 1997). Myxomycetes from the Caribbean have been relatively well studied (Table 3) and cited in 98 publications, 26% of them from Cuba, the largest island with the greatest number of vascular plant species. In addition, other islands, such as Jamaica or the Windwards which have been the site of intensive surveys, have as many or more myxomycetes, although reported in fewer papers. A total of 174 different myxomycete species have been recorded from these islands. Some areas of high plant diversity as yet understudied for myxomycetes in these islands, are the Oriente in Cuba, the Morne Trois Pitons National Park in Dominica, the Central Highlands and Sierra de Neiba in the Dominican Republic, the Pic Macaya or the Morne La Visite in Haiti, the Blue and John Crow Mountains, or the Cockpit Country in Jamaica and the Aripo Savannas Scientific Reserve in Trinidad.

The continent of South America has about one-eighth of the Earth’s land surface. It has been an island continent during most of the period of angiosperm evolution, and it has been joined to North America by the Isthmus of Panama, and then separated, more than once in its geologic history. The topography of South America is varied and ranges from the Brazilian lowland with its tropical rain forest to the snow-covered Andes. The Andes is the longest mountain range in the world, and stretches for over 7,000 km forming the backbone of the continent from Colombia to Tierra del Fuego. It has the highest mountain in the Western Hemisphere, the Aconcagua. Most of the continent of South America is in the tropics, but the elevation of the Andes and the presence of cold ocean currents, like the Humboldt stream, cause cool temperatures even at the equator. The combined effect of these environmental factors accounts for the variety of vegetation in this area, which in turn provides multiple substrates, and distinct macro and microhabitats for myxomycetes. In South America, Brazil with the largest land area (Table 3) has by far the largest number of vascular plants. It has also been intensively studied for myxomycetes (114 publications), but mainly in the northeastern area of the country. Vast areas of the Amazon have never been surveyed, and geographic areas of special scientific interest such as the Pantepui region, the Gran Chaco, the Transverse Dry Belt, have not been sampled. Some areas of distinct vegetation are also of great interest such as the Atlantic moist forest, the Tabuleiro forest, the Caatinga of north-eastern Brazil, or the Cerrado of central Brazil.

Argentina has the second largest land mass and the third number of myxomycete species of the region to date. It was initially studied for these organisms over a hundred years ago, but until recently little intensive work has been done since (only 46 publications). A recent research project, Myxotropic, was undertaken to study the Myxomycetes that develop on endemic succulent plants (Cactacea and sclerophyllous shrubs) of the Neotropical region. The first phase of the project was directed towards the study of this group of organisms from arid regions of Mexico (Estrada Torres & al., in press). The second phase of the Project, involves the unexplored arid areas of Argentina and the North of Chile, specifically the desert areas of El Monte and Atacama, which are among the most arid of the planet (Lado & al., 2007a). This study extends and complements a current International project “Global Biodiversity of Eumycetoza” supported by the National Science Foundation (NSF) of the United States, developed to investigate unexplored regions of the world (Stephenson & al., 2005). To date the Myxotropic project has provided more than 1200 myxomycete collections from Argentina which are currently under study.

The number of different myxomycete species recorded from all of South America is 328. It is evident from the list that several countries are totally undersurveyed. For example, considering their landmass and richness in vascular plants, Peru, Colombia, and Bolivia have relatively few myxomycete records. Some of the specific areas of interest in these countries would be the Iquitos region, or the eastern slopes of the Andes in Peru, the Chocó or the Chiribiquete-Araracuara-Cahuinari region in Colombia, and the Gran Chaco or the Madidi-Apolo region of Bolivia. There are a number of ecosystems and types of vegetation, that span several countries on the continent, and which would provide interesting data and analyses on the role of specific microhabitats or plant species in the distribution of myxomycetes. Some of these are mangrove swamps, dry forest, the cerrado and caatinga, open grass savanna, the Patagonian steppe, and the Valdavian forest.
If the number of publications is taken as an indication of the amount of research done in a country, the suggestion that apparent distribution of myxomycetes follows the distribution pattern of research efforts (Stephenson & Stempen, 1994) is supported by these data. The research intensity, however, is not always related to the number of papers since some papers listed may have only a few records while others, such as the Bahamas or Belize, may have the total for the country in one paper. Myxomycete records have appeared in fewer than ten publications from over half (16) of the 30 countries listed (Table 3), which gives an idea of the enormous amount of research still to be done.

This paper indicates that almost half the known species of myxomycetes have been recorded from the Neotropics. It also indicates that there are many areas that remain under studied, or not investigated at all. This can be seen graphically on the map (Fig. 4), generated by the GBIF (Global Biodiversity Information Facility) network, from their database of geo-referenced records of myxomycetes in major herbaria, which shows sparse points in many of the areas of the Neotropics and none in vast areas of the South American continent. The biodiversity occurrence data for the area mapped from this database, is provided by: University of Arkansas (2008), Staatliche Naturwissenschaftliche Sammlungen Bayerns (2008), GBIF-Sweden, Gothenburg Herbarium (2008), Real Jardín Botánico, Madrid (2008), Utah State University (2008).

The importance and urgency attached to the completion of more biodiversity surveys for these microorganisms in the Neotropics lies in the fact that this area contains some of the most threatened environments on earth. Habitat loss and destruction of the vegetation, to which the myxomycetes are so intimately linked, is on the increase. As Mittermeier et al., (2004) have pointed out, the tropical Andes is the richest and most diverse biodiversity hotspot on earth, and yet only 25% of the original primary vegetation of the tropical Andes remained when Myers & al., (2000) went to press. Approximately 100 Neotropical plant narrowendemisms per year are now being lost due to forest conversion (Morawetz & Raedig, 2007). The importance of the conservation of these habitats is not limited to the larger flora or fauna of major conservation efforts. Microorganisms, such as the myxomycetes, with unknown ecological importance and unsuspected species richness are subject to the same, or greater, risks. Protection of their gene pools, and investigation into their ecological importance, before their threatened habitats shrink further, should give high priority to biodiversity research on myxomycetes in the Neotropics.

Fig. 4. Myxomycete biodiversity occurrence data from North and South America. This map only shows records with coordinates from the GBIF network and may not properly represent the total distribution of Myxomycetes.

Acknowledgements

This research has been supported by the Ministry of Education and Science of Spain [grant CGL2005-00320/BOS]. The authors thank María Aguilar, Eva García and Juan Carlos Hernández for their valuable assistance in the bibliographic search. We would also like to thank Steven L. Stephenson and the two US National Science Foundation projects [grants DEB-9705464 and DEB-0316284], which facilitated some of the research in the Neotropics.

References

Alexopoulos, C.J. 1967. Taxonomic studies in the Myxomycetes I. The genus Macbrideola. Mycologia 59(1): 103-115.
Alexopoulos, C.J. 1970. Rainforest Myxomycetes. In: Odum, H.T. (ed.), A Tropical Rain Forest. U. S. Atomic Energy Commission 3: 21-23.
Alexopoulos, C.J. & Beneke, E.S. 1994a. A new species of Comatricha from Jamaica. Mycologia 46: 245-247.
Alexopoulos, C.J. & Beneke, E.S. 1994b. Myxomycetes from Jamaica. Transactions British Mycological Society 37(3): 306-313.
Alexopoulos, C.J. & Blackwell, M. 1968. Taxonomic studies in the Myxomycetes II. Physarina. Journal Elisha Mitchell Science Society 84: 48-51.
Alexopoulos, C.J. & Sáenz, J.R. 1975. The Myxomycetes of Costa Rica. Mycotaxon 2: 223-271.
Alves, M.H & Cavalcanti, L.H. 1996. Myxomycetes em palmeiras (Arecaceae). Acta Botanica Brasilica 10: 1-7.
Andrade-Torres, A. 1998. Riqueza, abundancia y diversidad de myxomycetes sobre hojarasca, troncos caídos y cortezas de árboles tropicales vivos. www.uv.mx/CITRO/el_eden/research/papers/andrade_torres/

Andrade-Torres, A., Meza-Hernández, E.A. & Cuevas-Suárez, C. 2002a. Los Myxomycetes del estado de Quintana Roo, México. In: Guzmán, G. & Mata, G. (eds.), Estudios sobre los hongos latinoamericanos. Revista IV Congreso Latinoamericano de Mycología: 252.

Andrade-Torres, A., Meza-Hernández, E.A. & Cuevas-Suárez, C. 2002b. Los Myxomycetes del parque ecológico El Haya, Xalapa, Veracruz, México. In: Guzmán, G. & Mata, G. (eds.), Estudios sobre los hongos latinoamericanos. Revista IV Congreso Latinoamericano de Mycología: 253.

Arambarri, A.M. 1972. Una nueva especie de Myxomycetes de Tierra del Fuego (Argentina). Boletín de la Sociedad Argentina de Botánica 14: 154-156.

Arambarri, A.M. 1973. Myxomycetes de Tierra del Fuego I. Especies nuevas y críticas del género Didera (Didymiacae). Boletín de la Sociedad Argentina de Botánica 15: 175-182.

Arambarri, A.M. 1975. División Myxophyta, Clase Myxomycetes. In: Guarrella & al. (eds.), Flora criptógama de Tierra del Fuego. Vol. 2. Fundación para la Educación, la Ciencia y la Cultura. Buenos Aires.

Baker, R.E.D. & Dale, W.T. 1951. Fungi of Trinidad and Tobago. Commonwealth Mycological Institute Miscellaneous Publication 33: 1-123.

Barbosa, M.R.V. 1996. Pesquisa Botânica Nordestina: progresso e perspectivas. Recife. Sociedade Botânica do Brasil, pp. 37-45.

Barnes, R.F. 1963. Myxomycetes from Trinidad. Transactions British Mycological Society 46(3): 453-458.

Batista, A.C. 1949. Três mixomicetes comuns em Pernambuco. Boletim Secretaria de Agricultura Indústria Comércio Estado de Pernambuco 16: 166-167.

Benjamin, C.R. & Slot, A. 1969. Fungi of Haiti. Syndoevia, Anales Mycologici Ser. II 23: 125-163.

Berkeley, M.J. 1868. On a Collection of Fungi from Cuba. Part.II., including those belonging to the Families Gasteromycetes, Co- niohyphomycetes, Hyphomycetes, Physomyctes, and Ascomycetes. Journal Linncean Society, Botany 10: 341-392.

Berkeley, M.J. & Cooke, M.C. 1876. The fungi of Brazil. Journal Linncean Society, Botany 15(86): 363-398

Berlese, A.N. 1888. Myxomycetaceae Wallr. In: Saccardo, P.A., Sylloge fungorum. Ed. Sumptibus auctoris typis Seminarii 7: 323-453.

Bertero, C. 1828. Variedades Ciencias Naturales. El Mercurio Chileno 4: 194-195.

Bezerra, M.F.A., Lado, C. & Cavalcanti, L.H. 2007. Mixobiota do Parque Nacional Serra de Itabaiana, SE, Brasil: Liceales. Acta Botanica Brasiliaca 21(1): 107-118.

Biodiversity occurrence data provided by: National Botanic Gardens of the United Kingdom, British Mycological Society, The Netherlands, and The Royal Botanic Garden, Madrid. (Accessed through GBIF Data Portal, www.gbif.net, 2008-05-20).

Bonar, L. 1939. Fungi from the Galapagos and other Pacific coastal islands. IV. Proceeding California Academy Science 22: 195-206.

Bononi, V.L.R., Trufem, S.F.B. & Grandi, R.A.P. 1981. Fungos macróscopicos do Parque Estadual das Fontes do Ipiranga, Sao Paulo, Brasil, depositados no herbario do Instituto de Botânica. Rícoki 9: 37-53.

Braun, K.L. & Keller, H.W. 1976. Myxomycetes of Mexico I. Mycotaxon 3: 297-317.

Braun, K.L. & Keller, H.W. 1986. Myxomycetes of Mexico III. Revista Mexicana de Micología 2: 25-39.

Bresadola, J. 1896. Fungi brasilensis lecti a cl. Dr. Alfredo Möller. Hedwigia 35(5): 276-302.

Britton, N.L. & Millsbaugh, C.F. 1920. The Bahama flora. New York.

Brummitt, R.K. 2001. World Geographical Scheme for Recording Plant Distributions. 2nd ed. TDWG. Hunt Institute for Botanical Documentation. Carnegie Mellon University, Pittsburgh.

Buyck, B. 1984. Diderma maculatum Buyck, a new Myxomycete species from Venezuela. Bulletin Jardin Botanique National Belgique 54: 131-136.

Camino, M. 1991. Myxomycetes de Cuba. I. Revista Jardín Botánico Nacional 12: 127-131.

Camino, M. 1996. Contribución al estudio de los Myxomycetes en Cuba. In: Lado, C. & Hernández, J.C. (eds.), Abstracts. Second International Congress on the Systematics and Ecology of Myxomycetes: 129.

Camino, M. 1998a. Myxomycetes de Cuba. II. Orden Stemoni- tales. Revista Jardín Botánico Nacional 19: 147-152.

Camino, M. 1998b. Los Myxomycetes del Hoyo de Bonet, Sierra de Cubitas, Camagüey. Revista Jardín Botánico Nacional 19: 161-162.

Camino, M. & Eliasson, U. 2002. Biodiversity of Myxomycetes in the Ecological Reserve “Alturas de Banao”, Sancti Spiritus. Cuba. Scripta Botanica Belgica 22: 10.

Camino, M. & Moreno, G. 2002. The family Stemonitaceae in Cuba: current state of studies. Scripta Botanica Belgica 22: 11.

Camino, M. & Pérez, J.M. 2000. El género Arcyria Wiggers (Trichiales, Myxomycetes) en Cuba. Revista Jardín Botánico Nacional 21: 115-126.

Camino, M. & Pérez, J.M. 2001. Los Myxomycetes de la Reserva Ecológica “Alturas de Banao” (El Naranjal), Sancti Spiritus. Revista Jardín Botánico Nacional 22: 109-117.

Camino, C. & Rodríguez, M. 2002. Nuevos registros de la familia Stemonitaceae (Myxomycetes) para Cuba. Lamproderma scin- tillans & Stemonitis smithii. In: Guzmán, G. & Mata, G. (eds.), Estudios sobre los hongos latinoamericanos. Resumen IV Congreso Latinoamericano de Mycología: 251.

Camino, M., Moreno, G. & Castillo, A. 2005. Taxonomic revision of the myxomycetes from Cuba deposited in the Farlow Herbarium (USA). Mycotaxon 93: 379-400.

Camino, M., Moreno, G. & Castillo, A. 2007. Taxonomic revision of the myxomycetes from Cuba deposited in three reference collections: U.S. National Fungus Collections (BPI-USA). British Museum (BM-UK) and Kew (K-UK). Mycotaxon 100: 349-396.

Camino, M., Stephenson, S.L., Krivomaz, T., Wriley of Basanta, D., Lado, C. & Estrada-Torres, A. (in press). Biodiversity survey for myxomycetes in the mountains of central Cuba. Revista Mexicana de Micología.

Capelari, M. & Maceze, R., R. 1988. Fungos macroscópicos do Estado de Rondônia, região dos rios Jaru e Ji-Paraná. Hoenea 15: 28-36.

Capello-García, S. & Hernández-Trejo, H. 1990. Lista preliminar de los hongos (Macroomicetes) y Myxomycetes de Tabasco, México. Universidad y Ciencia 7(13): 15-21.

Castillo, A., Illana, C. & Moreno, G. 1996. Badhamia melanospo- ra Speg. A species wrongly interpreted. Mycotaxon 57: 163-170.

Cavalcanti, L.H. 1970. Colección de Mixomicetes del Museo Paraense Emilio Goeldi. Boletim Museo Paraense Historia Natural 35: 1-5.
Eliasson, U.H. & Nannenga-Bremekamp, N.E. 1983. Myxomycetes auf lebenden Blättern im tropischen Regenwald in der Neuen Provinz Brasiliens. "Proceedings of the 7th World Congress on Mycology, July 25-29, 1983, New York. New York Botanical Garden, New York."

Eliasson, U.H. 2000. Myxomycetes auf dem Herbarmaterial höherer Pflanzen. "Scripta Botanica Belgica 22: 27-28."

Deschamps, J.R. 1972. El género Stemonitis (Myxomycetidae) en Argentina. "Boletín de la Sociedad Argentina de Botánica 14(3): 139-153."

Deschamps, J.R. 1974. Una nueva especie de Comatricha (Stemonitaceae-Myxomycetidae). "Boletín de la Sociedad Argentina de Botánica 15(4): 340-342."

Deschamps, J.R. 1975. Los Myxomycetes de la Argentina. Catálogo crítico, distribución y clave de las especies. "Physis (Buenos Aires) 34: 159-178."

Deschamps, J.R. 1976a. Los Myxomycetes de la Argentina. Catálogo crítico, distribución y clave de las especies. (Continuación). "Physis (Buenos Aires) 35: 147-171."

Deschamps, J.R. 1976b. Los Myxomycetes de la Argentina. Catálogo crítico, distribución y clave de las especies. (Continuación). "Physis (Buenos Aires) 35: 319-339."

Digilio, A.P.L. 1946. Contribución al catálogo de los "Myxomycetes" argentinos. I. "Lilloa 12: 177-203."

Digilio, A.P.L. 1950. Myxomycetes de Tucumán. "Lilloa 23(4): 365-414."

Duss, A. 1903. Enumeration méthodique des champignons recueillis à la Guadeloupe & à la Martinique. Impr. et lithographie L. Duclume, Lons-les-Saunier.

Duss, A. 1904. Flore cryptogamique des Antilles françaises, Champignons. Impr. et lithographie L. Duclume, Lons-les-Saunier.

Edmunds, A. & Stephenson, S.L. 1996. Myxomycetes associated with the litter microhabitat in tropical forests of Costa Rica. "Proceedings of the West Virginia Academy of Sciences 68: 23-24."

Eliasson, U.H. 1971. A Collection of Myxomycetes from the Galápagos Islands. "Svensk Botanisk Tidkrift 65: 105-111."

Eliasson, U.H. 2000. Myxomyceten auf lebenden Blättern im tropischen Regenwald Ecuadors; eine Untersuchung basierend auf dem Herbmateriel höherer Pflanzen. "Stafija 73: 81-84."

Eliasson, U.H. & Nannenga-Bremekamp, N.E. 1983. Myxomycetes of the Scalesia forest, Galápagos Islands. "Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 86: 143-153."

Emoto, Y. 1933. Myxomyceten von Argentinien und Bolivia. "Arkiv för Botanik 2(1): 57-70."

Estrada-Torres, A., Rodríguez-Ortega, J.M. & Lado, C. 2003. Calomyxa pavonina sp. nov., a new species of Calomyxa from subtropical Mexico. "Mycologia 95: 354-359."

Estrada-Torres, A., Wrigley de Basanta, D., Conde, E. & Lado, C. (in press). Myxomycetes associated with dryland ecosystems of the Tehuacán–Cuicatlán Valley Biosphere Reserve, Mexico. "Fungal Diversity."

Farr, M.L. 1957. A Checklist of Jamaican Slime-Moulds (Myxomycetes). "Bulletin Institute Jamaica, Sciences Serie 7: 1-67."

Farr, M.L. 1958. Taxonomic studies in the Myxomycetes I. The Trichia favoginea complex. "Mycoologia 50(3): 357-369."

Farr, M.L. 1959. Stemonitis brasiliensis and Badhamia Iowensis-A correction. "Mycoologia 51(4): 598."

Farr, M.L. 1960. The Myxomycetes of the IMUR herbarium, with special reference to Brazilian species. "Instituto Micológico Universidad de Recife 184: 1-54."

Farr, M.L. 1967. Notes on Myxomycetes. "Mycopathologia et Mycologia Applicata 31(3/4): 305-313."

Farr, M.L. 1968. An illustrated key to the Myxomycetes of South America, with special reference to Brasil. "Rickia 3: 45-88."

Farr, M.L. 1969. Myxomycetes from Dominica. "Contributions U. S. National Herbarium 37(6): 397-440."

Farr, M.L. 1971. Two undescribed Myxomycetes from Argentina. "Mycoologia 63(3): 634-639."

Farr, M.L. 1973. An annotated list of Spegazzini’s fungus taxa. "Bibliotheca Mycologica 35, 2 vols."

Farr, M.L. 1974. Some new Myxomycete records for the Neotropics and some taxonomic problems in the Myxomycetes. "Proceedings of the Iowa Academy of Sciences 81: 37-40."

Farr, M.L. 1976. Flora Neotropical Monograph No. 16 (Myxomycetes). New York Botanical Garden, New York.

Farr, M.L. 1985. Notes on Myxomycetes. IV. Species collected in Brazil and Japan. "Nova Hedwigia 41: 167-176."

Farr, M.L. & Kowalski, D.T. 1974. A new species of Calomyxa from the Andes. "Mycologia 66: 884-886."

Farr, M.L. & Martin, G.W. 1958. Two new Myxomycetes from Brazil. "Broteria 27(4): 153-158."

Farr, M.L., Eliasson, U. & Dumont, K.P. 1979. Myxomycetes from Ecuador. "Mycotaxon 8: 127-134."

Fidalgo, O., Fidalgo, M.E.K. & Furtado, J.S. 1965. Fungi of the Guayanas. "Add. Ser. 3. Royal Botanic Gardens, Kew."

Fries, R.E. 1903. Myxomyceten von Argentinien und Bolivia. "Arkiv för Botanik 1: 57-70."

Fries, R.E. 1920. Die Myxomyceten der Juan Fernandez Inseln. In: Skottsberg, C. (ed.), The natural history of Juan Fernandez and Easter Islands. Upsala 2(1): 55-58.
Galindo-Flores, G.L., Hernández-Cuevas, L., Rodríguez-Palma, G., & Gams, W. 2005. Report of the Committee for Fungi: 13.

Guzmán, G. 1983. Los hongos de la Península de Yucatán. II.

Guzmán, G. 1972. Algunos macromicetos, líquenes y mixomicetos

Gottsberger, G., Nannenga-Bremekamp, N.E. & Meijer, A.R. 1987. Myxomycetes

Gottsberger, G. & Villarreal, L. 1984. Estudio sobre los hongos, líquenes y mixomicetos del Cofre de Perote, Veracruz I. Introducción a la Micoflora de la región. Boletín de la Sociedad Mexicana de Micología 19: 107-124.

Hagelstein, R. 1927. Mycetozoa from Porto Rico. Mycologia 19(1): 35-37.

Hagelstein, R. 1932. Revision of the Myxomycetes. In Seaver & Chardon, Scientific survey of Porto Rico and the Virgin Islands. New York Academy of Sciences Annual 8(2): 241-248.

Hagelstein, R. 1944. The Mycetozoa of North America. Hagelstein, Mineola, New York.

Harling, G. 1967. Notes on Myxomycetes. II. Species collected in Ecuador 1958-59. Svensk Botanisk Tidskrift 61(1): 139-144.

Hashimoto, G. 1953. Myxomycetes da Serra do Diabo. Revista Ceres 9(31): 194-201.

Heim, R. 1928. Champignons recueillis par M. Mayeul Grisol dans le haut Oréen. Annales de Cryptogamie Exotique 1(3): 266-278.

Hennings, P. 1896. Beiträge zur Pilzflora Südamerikas I. Myxomyzetaceae, Phycomycetes, Ustilagineae und Uredinae. Hedwigia 35: 202-262.

Hennings, P. 1902a. Fungi paraenses. (II). Beibl. Hedwigia 41(1): 15-18.

Hennings, P. 1902b. Fungi costaricenses I. Beibl. Hedwigia 41(3): 101-105.

Heredia, G. 1989. Estudio de los hongos de la reserva de la Biosfera El Cielo, Tamaulipas. Consideraciones sobre la distribución y ecología de algunas especies. Acta Botánica Mexicana 7: 1-18.

Hernández-Crespo, J.C. & Lado, C. 2005. Some new species of Didymium from Brazil. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 101(1): 15-25.

Hernández-Cuevas, L., Rodríguez-Palma, M., & Estrada-Torres, A. 1991a. Estudio de los hongos de la reserva de la Biosfera El Cielo, Tamaulipas. Consideraciones sobre la distribución y ecología de algunas especies. Acta Botánica Mexicana 7: 1-18.

Hernández-Cuevas, L. & Estrada-Torres, A. 1993a. Distribución espacio-temporal de las especies del género Physarum en el Volcán La Malintzin, Tlaxcala. In: XII Congreso Mexicano de Botánica. Libro de resúmenes: 124.

Hernández-Cuevas, L. & Estrada-Torres, A. 1993b. El género Badhmania en el estado de Tlaxcala. In: XII Congreso Mexicano de Botánica. Libro de resúmenes: 125.

Hernández-Cuevas, L. & Estrada-Torres, A. 1997. Myxomycetes from Porto Rico. Mycologia 89(1): 3-18.

Hertel, R.J.G. 1954a. Myxomycetes do Brasil I. Dusenia 5(2): 117-124.

Hertel, R.J.G. 1954b. Myxomycetes do Brasil II. Paradiaechosporaceae curithana Hertel, n. gen. e n. sp. de Lamprodermae. Dusenia 5(3-4): 191-192.

Hertel, R.J.G. 1955. Myxomycetes do Brasil III. Dusenia 5(1-2): 47-48.
Hertel, W.G. 1907. Hongos coleccionados en la República Oriental del Uruguay. Revista Agronómica Universidad de Montevideo 2: 144-152.

Hertel, W.G. 1933. Flora Uruguayaensis. Plantae avasculares. Ostenia 7: 84.

Hertel, W.G. 1939. Plantae Uruguayensis novae vel criticae. Pars II. Revista Sudamericana de Botánica 63(4): 69-107.

Hochgesand, E. & Gottsberger, G. 1989. Arcyriatella congregata, a new genus and species of the Trichiaceae (Myxomycetes). Nova Hedwigia 48: 485-489.

Hochgesand, E. & Gottsberger, G. 1996. Myxomycetes from the State of São Paulo, Brazil. Boletim Instituto de Botânica 10: 1-46.

Hochgesand, E., Gottsberger, G. & Nannenga-Bremekamp, N.E. 1989. A new species and a new variety of Didymium from São Paulo State, Brazil. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 92: 73-79.

Höhnelt, F. von. 1907. Ergebnisse der botanischen Expedition der Kaiserlichen Akademie der Wissenschaften nach Südbrasilien 1901. Eumycetes et Myxomycetes. Denkschriften der Kaiserlichen Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Klasse 83: 1-45.

Illana, C. 1996. Myxomycetes de Baja California. In: Lado, C. & Hernández, J.C. (eds.), Abstract Volume. Second International Congress on the Systematics and Ecology of Mycocytes: 125.

Illana, C., Moreno, G. & Lizárraga, M. 2000. Catálogo de Myxomycetes. Phytosociology of the Succulenticolous Myxomycetes from arid zones of Mexico. Scripta Botanica Belgica 22: 58.

Illana, C., Estrada-Torres, A., Ramírez, M. & Conde, E. 2002a. A study of the succulenticolous Myxomycetes from arid zones of Mexico. Scripta Botanica Belgica 22: 58.

Ing, B. 1994. The phytosociology of Myxomycetes. A Monograph of the Mycetozoa. Österreichische Zeitschrift für Pilzkunde 8: 63-70.

Ing, B. 1967. Notes on Myxomycetes. II. Transactions British Mycological Society 50(4): 555-562.

Ing, B. 1994. The phytosociology of Myxomycetes. New Phytologist 126: 175-201.

Ing, B. 1999. The Myxomycetes of Britain and Ireland. An identification handbook. The Richmond Publishing Co. Ltd. Slough, England.

Ing, B. & Haynes, C. 1999. Corticolous myxomycetes from Belize. New Bulletin 54: 723-730.

Jahn, E. 1904. Myxomycetenstudien.2. Arten aus Blumenau (Brasilien). Berichte der Deutschen Botanischen Gesellschaft 20: 268-280.

Jahn, E. 1904. Myxomyceten aus dem State of São Paulo, Brazil. Boletín Instituto de Botânica 10: 1-46.

Jahn, E. 1904. Myxomycetenstudien.2. Arten aus Blumenau (Brasilien). Berichte der Deutschen Botanischen Gesellschaft 20: 268-280.

Jahn, E. 1904. Myxomycetes from Amazonas. Gesammelt von E.Ule. Hedwigia 43: 300-305.

Johow, F.R.A. 1896. Estudios sobre la flora de las Islas de Juan Fernández. Imprenta Cervantes. Santiago de Chile.

Keller, H.W. & Brooks, T.E. 1976. Corticolous Myxomycetes IV: Observations on the genus Elchinostemum. Mycologia 68: 1204-1220.

Klotzsch, J.F. 1852. Fungi Portoricenses quos Schwanecce, Hortulanus, collegit et cl. Dr. Klotzsch examinavit. In: Schlechtendal, D.F.L. Beitrag zur Flora der Insel Portorico. Anlage No. 3. Linnaea 25(3): 364-366.

Krivomaz, T.I. 2003. Addition to Cuban Myxomycetes from international collaboration. XIV Congress of European Mycologist, abstracts.

Lado, C. 1994. A checklist of Myxomycetes of the Mediterranean countries. Mycotaxon 52: 117-185.

Lado, C. 2001. NOMENMYX. A nomenclatural taxabase of Myxomycetes. Cuadernos de Trabajo de Flora Micológica Ibérica 16: 1-221.

Lado, C. 2008. Eumycetoza.com: nomenclatural Database of Eumycetoza (Myxomycota) (Oct 2007 version). In Species 2000 & ITIS Catalogue of Life: 2008 Annual Checklist (Bisby FA, Roskov YR, Orrell TM, Nicolson D, Paglinawan LE, Bailly N, Kirk, PM, Bourgoin T van Hertum J, eds). CD-ROM; Species 2000: Reading, U.K.

Lado, C., Licea, S.L., Estrada-Torres, A. & Schnittler, G. 2005. (1688-1691) Proposals to conserve the names Amaurochaete against Lachnobolus, Ceratiumyxa against Famintzia, Cribraria Pers. against Cribraria Schrad. ex J.F. Gmel. and Hemitrichia against Hyporhamma (Myxomycetes). Taxon 54(2): 543-545.

Lado, C., Estrada-Torres, A., Ramírez, M. & Conde, E. 2002a. A study of the succulenticolous Myxomycetes from arid zones of Mexico. Scripta Botanica Belgica 22: 58.

Lado, C., Estrada-Torres, A., Schnittler, G., Wrigley, D. & Stephenson, S.L. 2002b. Rapid biodiversity assessment of the Myxomycetes from the Yasuni Biosphere Reserve (Ecuador). Scripta Botanica Belgica 22: 59-60.

Lado, C., Estrada-Torres, A. & Stephenson, S.L. 2007a. Myxomycetes collected in the first phase of a north-south transect of Chile. Fungal Diversity 25: 81-101.

Lado, C., Mosquera, J. & Beltrán-Tejera, E. 1999a. Cribrariazonitispora, development of a new myxomycete with unique spores. Mycologia 91: 157-165.

Lado, C., Mosquera, J., Estrada-Torres, A., Beltrán-Tejera, E. & Wrigley de Basanta, D. & Schnittler, G. 2003. Biodiversity assessment of myxomycetes from two tropical forest reserves in Mexico. Fungal Diversity 12: 67-110.

Lado, C., Rodríguez-Palma, M. & Estrada-Torres, A. 1999b. Myxomycetes from a seasonal tropical forest on the Pacific coast of Mexico. Mycotaxon 71: 307-321.

Lazo, W.R. 1966. Notes and illustrations of Myxomycetes from Chile and other countries. Mycologia 58(1): 67-79.

Léveillé, J.H. 1863. Fungi. In: Triana, J. & Planchon, J.E. Prodroma Florae Novo-Granatensis. Annales des Sciences Naturelles IV Botanique 20(5): 282-300.

Ling, H. & Collins, O.R. 1970. Control of plasmodial fusion in a myxomycete in the state of Sinaloa, Mexico. Mycologia 62: 602-611.

Lister, A. 1898b. Mycetozoa of Antigua. Journal of Botany 12: 67-110.

Lister, A. 1898a. Mycetozoa of Antigua and Dominica. Journal of Botany 36: 113-122.

Lister, A. 1898b. Mycetozoa of Antigua. Journal of Botany 36: 378-379.

Lister, A. 1911. A monograph of the Mycetozoa. 2ª ed. Revisada por G. Lister. Printed by order of the Trustees. London.

Lister, A. 1894. A monograph of the Mycetozoa. Printed by order of the Trustees. London.

Lister, A. 1898a. Mycetozoa of Antigua and Dominica. Journal of Botany 36: 113-122.

Lister, A. 1898b. Mycetozoa of Antigua. Journal of Botany 36: 378-379.

Lister, A. 1925. A monograph of the Mycetozoa, 3ª ed. Revisada por G. Lister. Printed by order of the Trustees. London.

Lizárraga, M., Illana, C. & Moreno, G. 1998. Didymium subreticulatum, a new species for America. Mycologia 90(4): 673-676.

Lizárraga, M., Lizárraga, C., Castellanos, M., Delgado, C., Díaz, M., Herre, L., Pérez, M. & Rincón, S. 2002. Myxomycetes of Chihuahua I. In: Guzmán, C. & Núñez, R. (eds.), Cuadernos de Trabajo de Flora Micológica Ibérica 16: 1-221.
Lizarra, M., Illana, C. & Moreno, G. 1999b. SEM studies of the myxomycete from the Peninsula of Baja California (Mexico). I. Arcyria to Fuligo. Anales Botánica Feniçia 35: 287-306.

Lizarra, M., Illana, C. & Moreno, G. 1999e. SEM studies of the myxomycete from the Peninsula of Baja California (Mexico). II. Hemitrichia to Trichia. Anales Botánica Feniçia 36: 187-210.

Lizarra, M., Illana, C. & Moreno, G. 2004a. Contribución al estudio de los Myxomycetes de la península de Baja California, México. Boletín de la Sociedad Micológica de Madrid 28: 45-53.

Lizarra, M., Moreno, G. & Illana, C. 1997. The myxomycetes from Baja California (Mexico). I. Myxocyston. 63: 287-300.

Lizarra, M., Moreno, G. & Illana, C. 2005a. Myxomycetes from Chihuahua, Mexico. 2. Österreichische Zeitschrift für Pilzkunde 14: 105-121.

Lizarra, M., Moreno, G. & Illana, C. 2006. Macbrideola hererae sp. nov., a new myxomycete from Mexico. Boletín de la Sociedad Micológica de Madrid 30: 265-269.

Lizarra, M., Moreno, G., Esqueda, M. & Coronado, M.L. 2008. Myxomycetes in the State of Sinaloa (Mexico). Myxomycetes of Sonora, Mexico. 3: National Forest Reserve and Wildlife Refuge, Ajos-Bavispe. Myxocyston 99: 291-301.

Lizarra, M., Moreno, G., Illana, C. & Castillo, A. 1996. Two new species of Myxomycetes from Mexico. In: Lado, C. & Hernández, J.C. (eds.), Abstract Volume. Second International Congress on the Systematics and Ecology of Myxomycetes: 56.

Lizarra, M., Moreno, G., Illana, C. & Singer, H. 2004b. Calonema foliicola, a myxomycete with a difficult taxonomic position. Micología Vegetacione Mediterranea 19(1): 38-42.

Lizarra, M., Moreno, G., Illana, C. & Singer, H. 2005b. Myxomycetes from Chihuahua, Mexico III. Myxocyston 93: 75-88.

Lazarra, M., Moreno, G., Illana, C. & Solis, F. 2003a. Myxomycetes in the State of Sinaloa (Mexico) II. Myxocyston 88: 425-432.

Lazarra, M., Moreno, G., Singer, H. & Illana, C. 2003b. Myxomycetes from Chihuahua, Mexico. Myxocyston 88: 409-424.

López, A. & García, J. 1996a. Didymium squamulosum (Alb. & Schw.) Fries. Funga Veracruzanana 10.

López, A. & García, J. 1996b. Physarella oblonga (Berk. & Curt.) Morgan. Funga Veracruzanana 11.

López, A. & García, J. 1996c. Didymium verrucosporum Welden. Funga Veracruzanana 12.

López, A. & García, J. 1996d. Didymium ovoideum Nann.-Brem. Funga Veracruzanana 13.

López, A. & García, J. 1996e. Didymium nigripes (Link) Fr. Funga Veracruzanana 14.

López, A. & García, J. 1996f. Didymium minus (A. Lister) Morgan. Funga Veracruzanana 15.

López, A. & García, J. 1996g. Didymium clavus (Alb. & Schw.) Rab. Funga Veracruzanana 16.

López, A. & García, J. 1996h. Didymium megalosporum Berk. & Curt. Funga Veracruzanana 17.

López, A. & García, J. 1996i. Didymium leoninum Berk. & Br. Funga Veracruzanana 18.

López, A. & García, J. 1996j. Didymium iridis (Ditmars) Fries. Funga Veracruzanana 19.

López, A. & García, J. 2001a. Dictyridium cancellatum. Funga Veracruzanana 30.

López, A. & García, J. 2001b. Physarum pezizoides. Funga Veracruzanana 32.

López, A. & García, J. 2001c. Hemitrichia serpula. Funga Veracruzanana 48.

López, A. & García, J. 2001d. Trichia scabra. Funga Veracruzanana 49.

López, A. & García, J. 2002a. Physarum compressum. Funga Veracruzanana 51.

López, A. & García, J. 2002b. Hemitrichia calyculata. Funga Veracruzanana 53.

López, A. & García, J. 2002c. Lycogala epidendrum. Funga Veracruzanana 55.

López, A. & García, J. 2002d. Didymium ovoideum Nann.-Brem. Funga Veracruzanana 65.

López, A. & García, J. 2002e. Arcyria nigella. Funga Veracruzanana 66.

López, A. & García, J. 2002g. Arcyria incarnata. Funga Veracruzanana 73.

López, A. & García, J. 2005a. Physarum virescens. Funga Veracruzanana 85.

López, A. & García, J. 2005b. Didymium anellus. Funga Veracruzanana 90.

López, A. & Sosa, A. 1982. Myxomycetes del estado de Quintana Roo. 1er Congreso Nacional de Micología. Xalapa, Veracruz. Libro de Resúmenes: 7.

López, A., Sosa, A. & Villarreal, L. 1979. Estudio sobre los hongos myxomycetes del Estado de Veracruz. I. Boletín de la Sociedad Mexicana de Micología 13: 127-144.

López, A., Sosa, A. & Villarreal, L. 1981a. Estudio sobre los hongos myxomycetes del Estado de Veracruz. II. Biótica 6: 43-56.

López, A., Sosa, A. & Villarreal, L. 1982. Estudios sobre los Myxomycetes de Veracruz. IV. 1er Congreso Nacional de Micología. Xalapa, Veracruz. Libro de Resúmenes: C-95.

López, A., Villarreal, L. & Sosa, A. 1981b. Estudio sobre los hongos myxomycetes del Estado de Veracruz. III. Boletín de la Sociedad Mexicana de Micología 16: 77-94.

López, A., Villarreal, L. & Sosa, A. 1981c. Estudio sobre los hongos myxomycetes del Estado de Veracruz. V. Los myxomycetes mexicanos registrados en la literatura. Boletín de la Sociedad Mexicana de Micología 16: 95-104.

Machado, T.H. 1893. Nicaraguan myxomycetes. Bulletin of the Laboratories of Natural History, Iowa State University 2(2): 277-283.

Machado, T.H. 1899. The North American slime-moulds. Macmillan and Co., Ltd. New York.

Machado, T.H. 1922. The North American slime-moulds (ed. 2). Macmillan and Co., Ltd. New York.

Macbride, T.H. & Smith, C.L. 1896. The Nicaraguan Myxomycetes. With notes on certain Mexican species (continued). Bulletin of the Laboratories of Natural History, Iowa State University 41(1): 73-75.

Maimoni-Rodella, R.C. 2002. Biodiversidade e distribuição de mixomicetos em ambientes naturais e antropogênicos no Brasil: espécies ocorrentes nas Regiões Sudeste e Centro-Oeste. In: Araújo, E.L., Moura, A.N., Sampaio, E.V.S.B., Gestinari, L.M.S. & Carneiro, J.M.T. (eds.), In: Araújo, E.L., Moura, A.N., Sampaio, E.V.S.B., Gestinari, L.M.S. & Carneiro, J.M.T. (eds.), Biodiversidade, conservação e uso sustentável da flora do Brasil. pp. 217-220. Universidade Federal Rural de Pernambuco, Sociedade Botânica do Brasil, Recife.

Maimoni-Rodella, R.C. & Cavalcanti, L.H. 2006. Myxomycetes sobre florescências e folhas vivas de lírio-do-brejo (Hedychium coronarium Koenig, Zingiberales): registro de um novo substrato. Revista Brasileira de Botanica 29(2): 331-333.

Maimoni-Rodella, R.C. & Gottsberger, G. 1980. Myxomycetes from the forest and the cerrado vegetation in Botucatu, Brazil: A comparative ecological study. Nova Hedwigia 34: 207-246.
Nannenga-Bremekamp, N.E. 1961. Notes on Myxomycetes III. A new species from Suriname. Acta Botanica Neerlandica 10: 54-55.
Nannenga-Bremekamp, N.E. 1989. Notes on Myxomycetes XXIII. Seven new species of Myxomycetes. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, series C, 92: 505-515.
Nannenga-Bremekamp, N.E. 1991. A guide to temperate Myxomycetes. Biopress Limited. Bristol.
Nieves-Rivera, A.M. 2003. Mycological survey of Río Camuy Caves Park, Puerto Rico. Journal Cave Karst Studies 65(1): 23-28.
Nieves-Rivera, A.M. & Darrah, R.G. 2002a. The search for Myxomycetes and Protostelids in Puerto Rico. Inoculum 53(2): 8-10.
Nieves-Rivera, A.M. & Darrah, R.G. 2002b. Further studies of slime molds in Puerto Rico. Inoculum 53(5): 2-5.
Novozhilov, Y.K., Schnittler, M., Rollins, A.W. & Stephenson, N.L. 2000. Myxomycetes from different forest types in Puerto Rico. Mycotaxon 77: 285-299.
Ogata, N. & Andrade-Torres, A. 1996. Los Myxomycetes de la Reserva Ecológica “El Edén” Quintana Roo, México. web www.ucr.edu
Ogata, N., Nestel, D., Rico-Gray, V. & Guzmán, G. 1994. Los Myxomycetes citados de México. Acta Botánica Mexicana 27: 39-52.
Ogata, N., Rico-Gray, V. & Nestel, D. 1996. Abundance, richness, and diversity of Myxomycetes in a Neotropical Forest Ravine. Biotropica 28: 627-635.
Pando, F. 1997. Catálogo preliminar de los Micomicetes del Parque Nacional de Coiba (Panamá). In: Castroviejo, S. (ed.), Flora y fauna del Parque Nacional de Coiba (Panamá), pp. 191-204. Agencia Española de Cooperación Internacional. Madrid.
Patouillard, N. & Gaillard, A. 1888. Champignons du Venezuela et du Haut-Orenouque. Recoltes en 1887 par M.A. Gaillard (suite). Bulletin de la Société Mycologique de France 4: 92-129.
Patouillard, N. & Lagerheim, G. de. 1891. Champignons de l’Equateur. Bulletin de la Société Mycologique de France 7: 158-184.
Patouillard, N. & Lagerheim, G. de. 1892. Champignons de l’Equateur. Bulletin de la Société Mycologique de France 8: 113-140.
Patouillard, N. & Lagerheim, G. de. 1893. Champignons de l’Equateur (Pogilus III). Bulletin de la Société Mycologique de France 9(2): 124-165.
Patouillard, N. & Lagerheim, G. de. 1895a. Champignons de l’Equateur (Pogilus IV). Bulletin de l’Herbier Boissier 3: 53-74.
Patouillard, N. & Lagerheim, G. de. 1895b. Champignons de l’Equateur (Pogilus V). Bulletin de la Société Mycologique de France 11: 205-234.
Paszchke, O. 1986. Verzeichnis brasilianischer von E. Ule gesammelter Pilze. Hudsugia 35: 50-55.
Pérez, J.M. & Camino, M. 2000. Riqueza micológica en un sitio natural del Jardín Botánico Nacional. Revista del Jardín Botánico Nacional 21(1): 133-137.
Pérez-Moreno, J. & Villarreal, L. 1988. Los hongos y Myxomycetes del estado de Chiapas, México. Estado actual de conocimiento y nuevos registros. Micología Neotropical Aplicada 1: 97-133.
Pérez-Silva, E. 1979. Primer registro del mixomicete Physarum flavicomum en México. Boletín de la Sociedad Mexicana de Micología 13: 239-242.
Pérez-Silva, E. & Aguırlte-Acosta, E. 1985. Micolofía del Estado de Durango, México. Revista Mexicana de Micología 1: 315-329.
Pérez-Silva, E. & Bárcenas, E. 1999. Nuevos registros de myxomycetes para el Estado de México. Ciencia Ergo Sum 6: 165-167.
Pérez-Silva, E., Herrera, T., Esqueda, M., Illana, C. & Moreno, G. 2001. Myxomycetes of Sonora, México I. Mycotaxon 77: 181-192.
Phillips, O. & Miller, J.S. 2002. Global patterns of plant diversity: Alwyn H. Gentry’s Forest transect data set. Monographs of Systematic Botany Missouri Botanical Garden 89.
Ponte, M.P.M., Cavalcanti, L.H. & Mobin, M. 2003. Myxomycetes do Parque Zoobotânico de Teresina, Piauí, Brasil. Acta Botanica Brasileira 17: 1-18.
Pórto, K.C. & Cavalcanti, L.H. 1984. Myxomycetes da Floresta Estacional Perenifólia costeira (Recife – PE) I. Influência dos fatores climáticos. In: Congresso Nacional de Botânica, 1984, Porto Alegre. Anais. Porto Alegre.
Pórto, K.C. & Cavalcanti, L.H. 1986. Trichiaeae (Myxomycetes) da floresta pluvial tropical I. Arcyria Wiggers. 36º Congresso Brasileiro de Botânica, 1986, Curitiba. Anais. pp. 867.
Pórto, K.C., Cavalcanti, L.H. & Correia, A.M.S. 1982. Incidência de Myxomycetes em Palmeas. Anais XXXIII Congresso Nacional de Série Botânica, Macaé, 1982, pp. 181-187.
Putzke, J. 1996. Myxomycetes do Brasil. Cuadernos de Pesquisa, Série Botânica 6: 3-133.
Putzke, J. 2002. Myxomycetes na Região Sul do Brasil. In: Araújo, E.L., Moura, A.N., Sampaio, E.V.S.B., Gestinari, L.M.S. & Carneiro, J.M.T. (eds.), Biodiversidade, conversão e uso sustentável da flora do Brasil, pp. 221-223. Universidade Federal Rural de Pernambuco, Sociedade Botânica do Brasil, Recife.
Raunkiaer, C. 1928. Myxomycetes from the West Indian Islands St. Croix, St. Thomas and St. Jan. Dansk Botanisk Arkiv 51(16): 1-9.
Real Jardín Botánico, Madrid: MA-Fungi (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1518, 2008-06-24).
Reid, D.A., Pegler, D.N. & Spooner, B.M. 1981. An annotated list of the fungi of the Galapagos Islands. Kew Bulletin 35: 847-891.
Rodrigues, C.L.M. & Guerrero, R.T. 1990. Myxomycetes do morro Santana, Porto Alegre, Rio Grande do Sul. Boletim do Instituto de Bioecologia 46: 1-102.
Rodrigues, K.F. 1985. Contribuição ao estudo dos mixomicetos do Estado do Rio de Janeiro. Rodriguésia 37: 46-47.
Rodriguez, G. 1955. Adiciones a los Myxomycetes de Venezuela. Boletín del Museo de Ciencias Naturales 11(1): 83-88.
Rodriguez, G. 1957. Nuevas adiciones a los Myxomycetes de Venezuela. Acta Biológica Venezuela 2(13): 135-138.
Rodriguez-Palma, M. 1998. Myxomycetes del estado de Tlaxcala. Melcalinea 13: 25-32.
Rodriguez-Palma, M. & Estrada-Torres, A. 1996a. Some Stemonitales (Myxomycetes) from the state of Tlaxcala, Mexico. Mycotaxon 60: 79-102.
Rodriguez-Palma, M. & Estrada-Torres, A. 1996b. Distribution and biogeographic affinities of the Liceales community of the Abies-Pinus forests from the Malintzi volcano, Mexico. In: Lado, C. & Hernández, J.C. (eds.), Abstract Volume. Second International Congress on the Systematics and Ecology of Myxomycetes: 99.
Rodriguez-Palma, M., Estrada-Torres, A. & Hernández-Cuevas, L. 2005. Myxomycetes (Protistas). In: Fernández, J.A. & López, J.C. (eds.), Biodiversidade do Parque Nacional Malinche. Tlaxcala. Mexico.
Rodriguez-Palma, M., Lado, C. & Estrada-Torres, A. 1996. Myxomycetes from a seasonal tropical forest in the Pacific coast of Mexico. In: Lado, C. & Hernández, J.C. (eds.), Abstract Volume. Second International Congress on the Systematics and Ecology of Myxomycetes: 136.
Rodriguez-Palma, M., Varela-García, A. & Lado, C. 2002. Corticolous Myxomycetes associated with four tree species in Mexico. Mycotaxon 81: 345-355.
Rogerson, C.T., Harris, R.C. & Samuels, G.J. 1990. Fungi collected by Basset Magazine and collaborators in the Guayana highland, 1944-1983.
Rojas, C. & Stephenson, S.L. 2007. Distribution and ecology of myxomycetes in the high-elevation oak forest of Cerro Bellavista, Costa Rica. *Mycologia* 99(4): 534-543.

Rojas, C. & Stephenson, S.L. 2008. Myxomycete ecology along a elevation gradient on Cocos Island, Costa Rica. *Fungal Diversity* 29: 117-127.

Rorer, J.B. 1911. *A preliminary list of Trinidad fungi*. Dept. Agriculture Trinidad -Tobago Circ. 4: 37-44.

Rudolph, F. 1829. Plantarum vel novarum vel minus cognitarum descripiones. *Linnæa* 4: 114-120.

Rufino, M.U.L. & Cavalcanti, L.H. 2007. Alterations in the lignicolous myxomycete biota over two decades at the Dois Irmãos Ecologic State Reserve, Recife, Pernambuco, Brazil. *Fungal Diversity* 24: 159-171.

Rzedowski, J. 1991. El endemismo en la flora fanerogámica mexicana: una apreciación analítica preliminar. *Acta Botánica Mexicana* 15: 47-64.

Saccardo, P.A. 1892. *Sylloge fungorum*. Ed. Sumptibus auctoris typis Seminarii 18: 208-214.

Saccardo, P.A. 1895. *Sylloge fungorum*. Ed. Sumptibus auctoris typis Seminarii 19: 61-64.

Saccardo, P.A. & Saccardo, D. 1906. *Sylloge fungorum*. Ed. Sumptibus auctoris typis Seminarii 18: 208-214.

Saccardo, P.A. & Saccardo, D. 1906. *Sylloge fungorum*. Ed. Sumptibus auctoris typis Seminarii 19: 61-64.

Saccardo, P.A. & Sydow, P. 1899. *Sylloge fungorum*. Ed. Sumptibus auctoris typis Seminarii 14: 831-840.

Saccardo, P.A. & Sydow, P. 1902. *Sylloge fungorum*. Ed. Sumptibus auctoris typis Seminarii 16: 819-824.

Schnittler, M. 2001. Foliicolous liverworts as a microhabitat for Neotropical myxomycetes. *Fungal Diversity* 637.

Schnittler, M. & Stephenson, S.L. 2002a. Inflorescences of Neotropical myxomycetes. *Fungal Diversity* 9: 114-126.

Schnittler, M. & Stephens, S.L. 2002b. Myxomycetes from inflorescences of giant herbs and lignicolous liverworts. *Scripta Botanica Belgica* 22: 83.

Schnittler, M., Lado, C. & Stephenson, S.L. 2002. Rapid biodiversity assessment of a tropical myxomycete assemblage - Maquipucuna Cloud Forest Reserve, Ecuador. *Fungal Diversity* 9: 135-167.

Seaver, F.J. & Chardón, C.E. 1926. Scientific survey of Porto Rico and the Virgin Islands. *New York Academy of Sciences Annual* 8(1): 3-9.

Silva, M.I.L. & Cavalcanti, L.H. 1988. Myxomycetes oocertentes nos brejos de Pernambuco. I. *Boletim de Micologia* 4: 31-55.

Spegazzini, C. 1880a. Fungi argentini. Pugillus primus. *Anales de Sociedad Científica Argentina* 9(4): 158-192.

Spegazzini, C. 1880b. Fungi argentini. Pugillus secundus (continuación). *Anales de Sociedad Científica Argentina* 10: 5-33.

Spegazzini, C. 1880c. Fungi argentini. Pugillus tertius. *Anales de Sociedad Científica Argentina* 10: 145-168.

Spegazzini, C. 1881. Fungi argentini. Pugillus quartus. Additis nonnullis Brasiliensibus Montevideensibusque. *Anales de Sociedad Científica Argentina* 12: 241-258.

Spegazzini, C. 1882. Fungi argentini additis non nullis Brasiliensibus Montevideensibus que. *Revue Mycologique Tolouse* 4(14): 121-123.

Spegazzini, C. 1886. Fungi guaranitici. Pugillus I. *Anales de Sociedad Científica Argentina* 22: 186-224.

Spegazzini, C. 1887a. Fungi patagonici. *Boletín de la Academia Nacional de Ciencias*. Córdoba 11(1): 5-64.

Spegazzini, C. 1887b. Fungi fuegianii. *Boletín de la Academia Nacional de Ciencias*. Córdoba 11: 335-308.

Spegazzini, C. 1888. Fungi guaranitici. Pugillus II. *Anales de Sociedad Científica Argentina* 26(1): 5-74.

Spegazzini, C. 1889. Fungi puiggariani. *Boletín de la Academia Nacional de Ciencias*. Córdoba 11: 381-622.

Spegazzini, C. 1890b. Contribución al estudio de la flora de la Sierra de la Ventana (Fungi). *Min. Obras Publ. Buenos Aires*.

Spegazzini, C. 1890b. Hongos de la cana de azúcar. *Revista de la Facultad de Agronomía Veterinaria de La Plata* 2(18): 227-258.

Spegazzini, C. 1899a. Mycetes argentinenses. *Anales de Sociedad Científica Argentina* 47(6): 262-279.

Spegazzini, C. 1899b. *Mycetes argentinenses* (Series.IV). *Anales del Museo Nacional de Historia Natural de Buenos Aires* 6(3): 81-367.

Spegazzini, C. 1909a. Fungi in ilice paraguariensis vigentes. *Anales del Museo Nacional de Historia Natural de Buenos Aires* 10: 114-133.

Spegazzini, C. 1909b. Mycetes argentinenses. (Series.IV). *Anales del Museo Nacional de Historia Natural de Buenos Aires* 19: 237-458.

Spegazzini, C. 1912. Mycetes argentinenses. (Series.VI). *Anales del Museo Nacional de Historia Natural de Buenos Aires* 23: 1-146.

Spegazzini, C. 1913. Mycetes argentinenses. *Anales del Museo Nacional de Historia Natural de Buenos Aires* 24: 167-186.

Spegazzini, C. 1917. Algunos hongos chilenos. *Revista chilena de Historia Natural* 21(4-5): 117-126.

Spegazzini, C. 1919a. Los hongos de Tucumán. Iª Reunión Nacional de Historia Natural de Córdoba 23: 635-609.

Spegazzini, C. 1919b. Relquiae mycologicae tropicae et fung Costaricensis nonnulli. *Boletín de la Academia Nacional de Ciencias*. Córdoba 23: 635-609.

Spegazzini, C. 1921. Mycetes chilenenses. *Boletín de la Academia Nacional de Ciencias*. Córdoba 25: 1-124.

Spegazzini, C. 1923. Fungi paraguayenses. *Anales del Museo Nacional de Historia Natural de Buenos Aires* 31: 335-450.

Spegazzini, C. 1926. Algunas especies de Myxomycetas de la Argentina. *Physis (Buenos Aires)* 8: 417-419.

Spegazzini, C. 1927. Contribución al conocimiento de la flora micológica de las Sierras de Córdoba. *Boletín de la Academia Nacional de Ciencias*. Córdoba 29(3-4): 113-190.

Staatliche Naturwissenschaftliche Sammlungen Bayerns, The Myxomycetes Collections at the Botanische Staatssammlung
München - Collection of Martin Schnittler (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1444, 2008-06-25, and Collection of Hermann Neubert (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1443, 2008-06-25)

Standley, P.C. 1927. The flora of Barro Colorado Island, Panama. Smithsonian Miscellaneous Collection 78(8): 417-419.

Standley, P.C. 1933. The flora of Barro Colorado Island, Panama. Contributions from the Arnold Arboretum 5: 5-159.

Stephenson, S.L. & Mitchell, D. 1994. Notes on tropical Myxomycetes. Contributions from the Arnold Arboretum 12: 20-27.

Stephenson, S.L. & Stempen, H., 1994. Protostelids, myxomycetes. I. Collections from Ecuador and Peru. Micología Neotropical Aplicada 17: 17-21.

Stephenson, S.L. & Stempen, H., 1994. Myxomycetes A Handbook of Slime molds. Timber Press, Portland, Oregon.

Stephenson, S.L., Estrada-Torres, A., Schnittler, M., Lado, C., Wrigley de Basanta, D. & Landolt, J.C. 1999. Protostelids, myxomycetes. II. Collections from Brazil. Mycological Research 103: 209-214.

Stephenson, S.L., Schnittler, M. & Lado, C. 2004a. Ecological characterization of a tropical myxomycete assemblage - Maquipucuna Cloud Forest Reserve, Ecuador. Mycologia 96: 485-497.

Stephenson, S.L., Schnittler, M., Lado, C., Estrada-Torres, A., Wrigley de Basanta, D., Landolt, J., Novozhilov, Y.K., Clark, J., Moore, D.L. & Spiegel, F.W. 2004b. Studies of neotropical mycetozoans. Systematics and Geography of Plants 74: 87-108.

Stephenson, J.A. 1971. An account of Fungus exsiccati containing University of Arkansas, Planetary Biodiversity Inventory Eumycetezoan Databank (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1515, 2008-06-24).

Uribe-Meléndez, J. 1995. Catálogo de los Myxomycetes registrados para Colombia. Caldasia 18: 23-26.

Utah State University, USU-UTC Specimen Database (accessed through GBIF data portal, http://data.gbif.org/datasets/resource/1508, 2008-06-25).

Verde de Millán, L. & Jaimes, F. 1987. Contribución al conocimiento de los Myxomycetes de Venezuela. I. Estado de Sucre. Boletín de la Sociedad Micológica de Madrid 11(2): 195-201.

Villarreal, L. 1983. Algumas especies de myxomycetes no registradas del Estado de Veracruz. Boletín de la Sociedad Mexicana de Micología 18: 153-164.

Villarreal, L. 1985. Nuevos registros de Myxomycetes en el Estado de Veracruz. Revista Mexicana de Micología 1: 363-378.

Welden, A.L. 1990. Estudios sobre los Myxomycetes de México. I. Nuevos registros. Micología Neotropical Aplicada 3: 67-79.

Welden, A.L. & Guzmán, G. 1978. Lista preliminar de los hongos, líquenes y myxomycetes de las regiones de Uxpanapa, Coatzacoalcos, Los Tuxtlas, Papaloapan y Xalapa (parte de los estados de Veracruz y Oaxaca). Boletín de la Sociedad Mexicana de Micología 12: 59-102.

Welden, A.L. & Lemke, P.A. 1961. Notas sobre algunos hongos mexicanos. Boletín de la Sociedad Botánica Mexicana 26: 1-24.

Welden, A.L., Dávalos, L. & Guzmán, G. 1979. Segunda lista de los hongos, líquenes y mixomicetos de las regiones de Uxpanapa, Coatzacoalcos, Los Tuxtlas, Papaloapan y Xalapa (México). Boletín de la Sociedad Mexicana de Micología 13: 151-161.

Weston, W.H. Jr. 1933. The fungi of Barro Colorado. Scientific Monthly 36(5): 387-407.

Wheeler, Q.D. 1980. Studies on Neotropical slime mold / Beetle relationships, part I: Natura, history and description of a new species of Anisotoma from Panama (Coleoptera: Leiodidae). Proceedings of the Entomological Society of Washington 82(3): 493-498.

Wright, J.E. & Albertó, E. 2006. Guía de los hongos de la Región Pampeana. II. Hongos sin laminillas. Ed. L.O.L.A., Buenos Aires.

Wrigley de Basanta, D. & Lado, C. 2005. A taxonomic evaluation of the stipitate Licea species. Fungal Diversity 20: 261-314.

Wrigley de Basanta, D., Lado, C. & Estrada-Torres, A. (in press). Description and culture of a new species of Didymium (Mycetozoa) from arid areas of Mexico. Mycologia.

Wrigley de Basanta, D. & Stephenson, S.L. 2005. Mycetozoa in tropical forests. Inoculum 56 (2): 5-6.

Wrigley de Basanta, D., Estrada-Torres, A. & Lado, C. 2003. Biodiversity Surveys for Neotropical Mycetozoa in Cuba and Mexico. Inoculum 54(1): 1-2.

Wrigley de Basanta, D., Lado, C., Stephenson, S.L. & Estrada-Torres, A. 2002. Myxomycetes from moist chamber cultures of Neotropical substrates. Scripta Botanica Belgica 22: 100.

Yamamoto, Y., Hagiwara, H. & Kawakami, S. 2000. Brazilian Myxomycetes in the Herbarium of the National Science Museum, Tokyo. Bulletin of the National Science Museum, Tokyo. Ser. B 26(4): 123-133.

Associate Editor: F. Pando

Received: 27-V-2008
Accepted: 7-VII-2008

Anales del Jardín Botánico de Madrid 65(2): 211-254, julio-diciembre 2008. ISSN: 0211-1322