ASSESSMENT OF KNOWLEDGE, ATTITUDE, AND PRACTICE REGARDING HYPOTHYROIDISM AMONG INFERTILE WOMEN WITH HYPOTHYROIDISM

VIMALA DEVA PRASANNA G1, SHARUMATHI SM1, SHANMUGA SUNDARAM R2*

1Department of Pharmacy Practice, J. K. K. Nattraja College of Pharmacy, Namakkal, Tamil Nadu, India. 2Department of Pharmacology, J. K. K. Nattraja College of Pharmacy, Namakkal, Tamil Nadu, India. Email: mailshan34@gmail.com

Received: 18 May 2020, Revised and Accepted: 30 June 2020

INTRODUCTION

Hypothyroidism is still the most commonly diagnosed endocrine disorder in India, with a prevalence of 3.9–10.95% [1]. It occurs mainly in women of 21–40 years age [2]. Thyroid disease varies by geographic location, environmental factors, major radio nuclear activities, factors affecting the incidence and duration of iodine deficiency, the excess dietary iodine, and the population studied [3]. Hypothyroidism is among the severest disorders characterized by a broad medical continuum ranging from open myxedema, end-organ symptoms; and multisystem failure to an asymptomatic sub clinical disorder with normal thyroid and triiodothyronine levels and slightly elevated serum thyrotropin levels [4-6]. Adding more a low-functioning thyroid gland is prevalent in females, resulting in a significant percentage of infertility, repeated miscarriages, preterm delivery, placenta previa, irregular menstrual cycles, and unexplained weight loss or gain [7,8]. The majority of infertile women have hypothyroidism and hyperprolactinemia that may correlate with infertility [9]. Research shows that hypothyroidism may contribute to the morbidity of osteoporosis, hyperlipidemia, hypercholesterolemia, cardiac disease, asthma, and neuropsychiatric disorder [10]. The general knowledge of hypothyroidism in India has been recognized as weak and in a significant proportion of patients is associated with inadequate knowledge, misconceptions, and practices [11]. The lacunae found in hypothyroid patients regarding information and procedures resulted in a number of misunderstandings, inadequate adherence, and suboptimal management [11,12]. One of several important factors that contribute to this observed gap is the lack of qualified doctors to treat hypothyroidism. Another contributing factor is the inadequate amount of time doctors spend on patient education. Many kinds of research were conducted to assess the patient’s knowledge regarding hypothyroidism among the general hypothyroid population. This research aims to analyze the knowledge gaps, faulty practices, and myths of hypothyroidism, especially in a subpopulation called infertile women with hypothyroidism because this subpopulation should be more concerned about hypothyroidism for the success of infertility treatment.

METHODS

The research was performed over a span of 6 months in a private hospital. It obtained ethical clearance from the Institutional Ethical Committee for the study. Infertile female patients of fertility age with hypothyroidism were chosen for analysis. Patients who underwent thyroid surgery and radio ablation therapy were excluded from the study.

- A separate questionnaire was prepared to record patient details such as name, age, sex, educational status, family history, medical history, and prescribed drugs. It also included questions for assessing their hypothyroidism knowledge, attitude, and practice (KAP).
- After obtaining an informed consent form from the patient, the demographic data such as age, gender, educational status, diagnosis, and prescriptions were collected along with answers for KAP regarding hypothyroidism.
- The questionnaires from 120 patients for their KAP of hypothyroidism were collected, evaluated, and scored.
- The rating evaluations of the three KAP domains were performed as follows:
 1. For the sake of knowledge, each correct answer ("Yes" for positive statements and "No" for negative statements) was given 1 point and an incorrect response ("No" for positive statements and "Yes" for negative statements) was given 0 points including "Don’t know". Based on the overall score, the knowledge level
Table 1: Demographic data of participants (n=120)

Variables/characteristics	Frequency, n (%)
Age group	
20–25	18 (15)
25–30	22 (18)
30–35	34 (28)
35–40	34 (28)
40–45	12 (10)
Education level	
School	46 (38)
Diploma	8 (6)
Undergraduate	36 (30)
Postgraduate	30 (25)

Table 2: Responses to knowledge-based questions regarding hypothyroidism

Questions	Patient response (n=120)		
Thyroid gland is a butterfly-shaped gland, located in the neck	Yes, n (%)	No, n (%)	Do not know, n (%)
Hypothyroidism is a medical condition due to low-thyroid hormone levels	52 (43)	2 (01)	66 (55)
Hypothyroidism is not related to increased TSH levels	60 (50)	0 (00)	60 (50)
Hypothyroidism may cause cold intolerance	26 (21)	24 (20)	70 (58)
Hypothyroidism may cause dry skin	32 (26)	10 (08)	78 (65)
Hypothyroidism may cause fatigue	62 (51)	6 (05)	52 (43)
Hypothyroidism may cause muscle aches/pain	58 (48)	8 (06)	54 (45)
Hypothyroidism may cause constipation	38 (31)	14 (11)	68 (56)
Hypothyroidism may cause weight gain	80 (66)	4 (3)	36 (30)
Hypothyroidism may cause abnormal menstruation	82 (68)	4 (3)	34 (28)
Iodine deficiency in diet may lead to hypothyroidism	36 (30)	4 (03)	80 (66)
Patients with hypothyroidism may be at an increased risk of having depression	38 (31)	8 (06)	74 (61)
Patients with hypothyroidism might have more risk of having increased cholesterol levels	44 (36)	12 (10)	64 (53)
Thyroid disorders run in families	66 (55)	8 (06)	46 (38)
Patients with swelling or abnormality in the neck may be suffering from hypothyroidism	56 (46)	6 (05)	48 (40)
Certain medications may increase the risk for developing hypothyroidism	18 (15)	12 (10)	90 (40)
Hypothyroidism does not occur in pregnancy	20 (16)	26 (21)	74 (61)
Hypothyroidism is diagnosed by measuring TSH levels in blood	52 (33)	4 (03)	64 (53)
Hypothyroidism is treatable	40 (33)	20 (16)	40 (30)
Alternative forms of medicine, such as Ayurveda and Homopathy, may be useful to treat hypothyroidism	20 (16)	12 (10)	88 (73)

Table 3: Evaluation of association of different levels of knowledge with age group and educational qualification

Parameter	Different levels of the knowledge domain (n = 120) n (%)	p-value		
Age in years	Low level (≤12 points)	Moderate level (13–15 points)	High level (≥16 points)	
20–25	18 (15)	00 (00)	00 (00)	<0.0001
25–30	14 (11)	8 (06)	00 (00)	
30–35	28 (23)	12 (10)	6 (5)	
35–40	16 (13)	00 (00)	6 (5)	
40–45	12 (10)	00 (00)	00 (00)	
Educational qualification	Low level	Moderate level	High level	
Others	40 (33)	4 (3)	2 (1)	0.099
Diploma	4 (03)	2 (1)	2 (1)	
Undergraduate	22 (18)	8 (6)	6 (5)	
Postgraduate	22 (18)	6 (5)	2 (1)	

Chi-square test was used at a 5% level of significance to evaluate the association of different levels of knowledge with age group and educational qualification. n: Total number of patients available with the data.
Table 4: Responses to attitude-based questions

Questions	Strongly agree	Agree	Neutral	Disagree	Strongly disagree
Women are at a greater risk of developing hypothyroidism and should	20 (16)	60 (50)	40 (33)	00 (00)	00 (00)
be tested at regular intervals for hypothyroidism					
People above the age of 35 years should be tested frequently for	18 (15)	46 (38)	56 (46)	00 (00)	00 (00)
hypothyroidism					
Pregnant women should be tested for hypothyroidism	30 (25)	48 (40)	42 (35)	00 (00)	00 (00)
People with relatives/family members diagnosed with hypothyroidism	18 (15)	52 (43)	50 (41)	00 (00)	00 (00)
should be tested for hypothyroidism					
Treatment for hypothyroidism should be initiated after consultation	36 (30)	32 (26)	52 (43)	00 (00)	00 (00)
with a physician only					

n: 120; n: Total number of patients available with the data, n (%)

Table 5: Evaluation of association of different levels of attitude with age groups and educational qualification

Parameter	Extremely concerned (5 points)	Quite concerned (3–4 points)	Little concerned (1–2 points)	Not concerned (0 points)	P-value
Age in years					
20–25	2 (01)	10 (08)	00 (00)	6 (05)	0.0011
25–30	6 (05)	8 (06)	00 (00)	8 (06)	
30–35	10 (08)	8 (06)	6 (05)	10 (08)	
35–40	20 (16)	6 (05)	00 (00)	8 (06)	
40–45	6 (05)	4 (03)	00 (00)	2 (01)	
Educational qualification					
Diploma	6 (05)	00 (00)	00 (00)	2 (01)	<0.0001
Undergraduate	24 (20)	8 (06)	00 (00)	4 (03)	
Postgraduate	6 (05)	16 (13)	2 (01)	6 (05)	
Others	8 (06)	12 (10)	4 (03)	22 (18)	

Chi-square test was used at a 5% level of significance for the evaluation of the association of different levels of attitude with age groups and educational qualification.

n: Total number of patients available with the data

Table 6: Response to practice questions

Questions	Yes n (%)	No n (%)
Do you take your medication for hypothyroidism daily?	118 (98)	02 (01)
Do you miss any doses of your medication for hypothyroidism?	82 (68)	38 (31)
Do you take your medication 3060 min before breakfast on empty stomach?	112 (93)	08 (06)
Do you take your thyroid medicine with any other medicines?	72 (60)	48 (40)
As advised by your physician, do you get your TSH level tested regularly?	70 (58)	50 (41)
Do you look for information on hypothyroidism on the internet/smartphone?	14 (11)	106 (88)
Did you ask your doctor for more information/counseling on how to manage hypothyroidism?	20 (16)	100 (83)
Do you avoid eating cabbage, cauliflower, and soya?	66 (55)	54 (45)

n: 120; n: Total number of patients available with the data. TSH: Thyroid-stimulating hormone

Medications. However, 68% responded saying that they occasionally skip medications. About 58% of patients regularly tested TSH levels. About 60% said they had taken other medicines with hypothyroid medicines. A considerable number of patients (88%) did neither look for information from online sources, nor did they (83%) seek additional information from their doctors. Nearly half of the study patients (45%) did not avoid cabbage, cauliflower, or soya. According to Table 7, there is no statistical evidence for the association of knowledge with either age or educational qualification.

Discussion

In nearly three-fourth (72%) of a treatment-experienced hypothyroid population, this KAP study identified a low level of understanding. Similar
results were found by Sethi et al., Kumar et al., and Singh et al. [13-15]. Over half of the population (55%) consisted of undergraduates or postgraduates, similar to an analysis by Kumar et al. [13]. Lack of knowledge about the disease in educated individuals is a disturbing aspect of the management of hypothyroidism. About 50% of respondents had knowledge about the meaning of hypothyroidism; a study by Rai et al. also shows similar results [12]. Symptoms of hypothyroidism are non-specific and likely to overlap with other conditions of the disease. Fatigue is the most common symptom and could be the greatest misleading one too, but in our study, half of the participants identified fatigue as a symptom of hypothyroidism. Similarly, in a study conducted by Sethi et al., a good number of the participants identified fatigue as a clinical symptom of hypothyroidism [14]. Knowledge of disease symptoms is essential for patients to identify treatment effects, disease progression, and to tell a doctor about their clinical experiences during follow-up visits. About 55% of the study subjects believe hypothyroidism may run through families, but this is in contrast to a study conducted by Kumar et al. where only 12% believe the genetic cause of hypothyroidism [10]. Likewise, only 21% of patients were aware of pregnancy hypothyroidism, possibly because they were not conscious that pregnancy hypothyroidism would occur; this is in accordance with a study by Kumar et al. [13]. Complications linked to untreated pregnancy hypothyroidism are diverse and intense, with a higher risk of maternal morbidity, perinatal disease, and death. In this present study, 98% of the patients are adherent to thyroxine therapy. This result is similar to a study conducted by Sethi et al. [14]. Half of the population believes cabbage, cauliflower, and soya should be avoided. It is been found that 44% of the study subjects were extremely concerned about hypothyroidism, which was neither influenced by the age nor the educational qualification. It was observed that nearly 80% of the study subjects found to be practicing with moderate levels of precaution, irrespective of their age, and educational qualification, which was similar to a study done by Sethi et al. [14].

Overall, this study shows that although patients were more aware of symptoms, they were less aware of the risks associated with hypothyroidism, the value of laboratory testing and dietary precautions. Medication compliance and regular thyroid function testing can only be influenced if patients are aware of the effects of their conditions of disease. Therefore, this aspect can be emphasized in programs for patient awareness. About three-fourths of patients were seeking information from healthcare experts rather than the Internet. It illustrated the need for ongoing doctor therapy and expanded appointment healthcare experts’ time for patient education.

This research could be constrained by the cross-sectional layout of the sample. As this study was conducted at a single center; the results may not be representing a large population. And therefore, a multicentric study to get to the impact of various demographic patterns and sociocultural differences on KAP in patients with hypothyroidism could reveal more insights on thyroid disorder.

CONCLUSION

Our study highlighted the significance of investing appropriate time to provide patients with a comprehensive education to bridge the gaps in patient care. The findings also indicated that it be better for the understanding of the patients if health-care providers could provide patients with data sheets explaining the disease or having some pictorial/pamphlets about the disease’s reality and myths.

ACKNOWLEDGMENT

We thank the Management and Faculties of all the departments and other staff for suggestions and support for completing this work.

AUTHORS’ CONTRIBUTIONS

VDPG and SSM contributed to data collection and manuscript writing, SSR contributed to designing the study, follow-up, and final review.

CONFLICTS OF INTEREST

There are no conflicts of interest.

AUTHORS’ FUNDING

No special grant has been obtained from any state, private, or supporting organization for this study.

REFERENCES

1. Unnikrishnan AG, Kalra S, Sahay RK, Bantwal G, John M, Tewari N. Prevalence of hypothyroidism in adults: An epidemiological study in eight cities of India. Indian J Endocrinol Metab 2013;17:647-52.
2. Swathi N, Kumar VV, Farjana M, Vardhan MV, Munendra M, Kumar GV. A prospective observational study on prevalence of hypothyroidism in a tertiary care teaching hospital. Int J Pharm Pharm Sci 2018;10:23-5.
3. Deepthi G, Sajeev C. Prevalence of thyroid disorders in patients in two tertiary care hospitals at Palakkad: A prospective study. Int J Pharm Biol 2013;8:33-7.
4. Cooper DS. Clinical practice. Subclinical hypothyroidism. N Engl J Med 2001;345:260-5.
5. Roberts OG, Ladenson PW. Hypothyroidism. Lancet 2004;363:793-803.
6. Krassas GE, Poppe K, Glinoer D. Thyroid function and human reproductive health. Endocr Rev 2010;31:702-55.
7. Sood A, Pandav CS, Anand K, Sankar R, Karmarkar MG. Relevance and importance of universal salt iodization in India. Nal Med J India 1997;6:290-3.
8. Hebbbar S, Kumar S, Amin S, Dozidez S. Subclinical hypothyroidism in pregnancy; is there a need for pharmacological intervention? Int J Pharm Pharm Sci 2017;9:186-91.
9. Kataria J, Gill GK, Kaur M. Interrelationship of thyroid hormones, obesity, and prolactin in infertile women. Asian J Pharm Clin Res 2018;11:136-7.
10. Menon VU, Sundaram KR, Unnikrishnan AG, Jayakumar RV, Nair V, Kumar H. High prevalence of undetected thyroid disorders in an
iodine sufficient adult South Indian population. J Indian Med Assoc 2009;107:72-7.

11. Nimmy NJ, Aneesh PM, Narmatha MP, Udupi RH, Binu KM. A survey on the prevalence of thyroid disorder induced by demography and food habits in South Indian population. Indian J Pharm Pract 2012;5:49-52.

12. Rai S, Sirohi S, Khatri AK, Dixit S, Saroshe S. Assessment of knowledge and awareness regarding the thyroid disorders among women of a cosmopolitan city of Central India. Natl J Community Med 2016; 7:219-22.

13. Kumar P, Khandelwal D, Mittal S, Dutta D, Kalra S, Katiyar P, et al. Knowledge, awareness, practices and adherence to treatment of patients with primary hypothyroidism in Delhi. Indian J Endocrinol Metab 2017;21:429-33.

14. Sethi B, Khandwal D, Vyas U. A cross sectional survey to assess knowledge, attitude, and practices in patients with hypothyroidism in India. Thyroid Res Pract 2018;15:15-22.

15. Singh A, Sachan B, Malik NP, Sharma VK, Verma N, Singh CP. Knowledge awareness and practices (KAP) among patients with thyroid swelling attending cytology clinic in a medical college, Meerut. Indian J Clin Pract 2014;24:753-5.