Foreign Language Listening Anxiety Factors Affecting Listening Performance of Chinese EFL Learners

Shu-Yan Wang
Chung-Ang University, Korea

Kyung-Whan Cha
Chung-Ang University, Korea

Foreign language listening anxiety (FLLA), which consists of various factors influencing listening performance, has been extensively investigated in English as a foreign language (EFL) contexts. However, little attention has been given to the effects of FLLA factors in different listening proficiency levels. This paper investigated 78 English majors from a Chinese university to examine the differences between and the effects of FLLA factors on listening performance in low (n = 20) and high-proficient (n = 19) EFL listeners. The participants were required to complete a 25-item FLLA questionnaire and take a listening test. The Mann-Whitney U test revealed that the two groups were significantly different in their self-belief in listening proficiency. Sequential multiple regression analyses showed that the listening-anxiety factor was a negative predictor, and the (lack of) self-belief factor was a positive predictor, for less proficient listeners. However, the three factors (including the decoding-skills factor) had no explanatory power in the high-proficient group’s listening performance. Additionally, dissatisfaction with one’s current listening proficiency may facilitate the less proficient listeners’ performance but has a considerably detrimental impact on higher proficient listeners. Finally, pedagogical implications of FL listening anxiety and research suggestions are included.

Keywords: Listening anxiety factors, listening performance, facilitating anxiety, self-belief, Chinese EFL learners

Introduction

Foreign language (FL) anxiety is the feeling of tension accompanying FL learning, such as nervousness, tension, and intimidation, which has been extensively explored as an important affective variable of FL learners’ performance (e.g., Dewaele & Ip, 2013; Guo, 2010; Horwitz, Horwitz, & Cope, 1986; Kim, 2009; Liu, 2006; Liu & Huang, 2011; Luo, 2018; MacIntyre & Gardner, 1994; Trang, Moni, & Baldauf Jr, 2013). High anxiety in particular interferes with mental thinking and cognitive behaviors, making learning performances less effective (MacIntyre & Gardner, 1994). Many researchers view FL anxiety as a situation-specific phenomenon, which consistently and differently occurs in certain contexts (e.g., target languages, language skills, using purposes) (e.g., Guo, 2010; Horwitz et al., 1986; Kim, 2002; Luo, 2018; MacIntyre & Gardner, 1994; Zhang, 2013). However, this issue on the effects of FL anxiety has not been fully studied yet. From a multidimensional perspective, FL anxiety is a complex variable that should not be restricted within detrimental influences (Liu & Huang, 2011; Trang et al., 2013; Vandergrift & Goh, 2012). That is, FL anxiety “can be so high as to be debilitating; however, a certain level of anxiety can be
facilitating” (Vandergrift & Goh, 2012, p. 71). There is a general consensus that foreign language listening anxiety (FLLA) has negative effects on English as a foreign language (EFL) learners’ listening performance (Elkhafaifi, 2005; Golchi, 2012; Kim, 2002; Mills, Pajares, & Herron, 2006; Serraj & Noordin, 2013; Wang, 2010; Xu & Huang, 2018; Zhang, 2013). The previous literature highlighted an anxiety-free listening environment in EFL classrooms with little doubt; however, other latent facets of FLLA in affecting listening proficiency are urgent to be further understood.

Moreover, the consideration of FLLA factors (e.g., Chang, 2008; Kim, 2002; Kimura, 2008; Marzec-Staw, 2013; Vogley, 1998; Zhang, 2013) and FLLA variances regarding individual differences (e.g., strategy use, gender) (e.g., Golchi, 2012; Kim, 2002; Kimura, 2008; Liu, 2016; Mills et al., 2006) has also received extensive attention in EFL contexts. However, to the researchers’ best knowledge, very few attempts have been made at comparing FLLA factor levels among FL listeners in different proficiency levels. Besides, language proficiency may play an important role in mediating general FL anxiety (Dewaele & Ip, 2013; Liu, 2006, 2016). Little is known regarding the influences of FLLA factors on FL listeners in different proficiency levels. To this end, the present study aimed to examine the variances and the effects of FLLA factors on listening performance, targeting Chinese low- and high-proficient EFL listeners, expecting to supplement one piece of the entire picture of studies on FLLA. In this line of research, we addressed two research questions:

1. Is there any difference in overall FLLA level and in each FLLA factor between low- and high-proficient EFL listeners?
2. How do overall FLLA and three FLLA factors correlate with and predict low- and high-proficient EFL listeners’ performance?

Literature Review

Foreign Language Listening Anxiety (FLLA)

FLLA is conceptualized as situation-specific and refers to the tendency that FL listeners become anxious in listening-related tasks (Liu, 2016; Zhang, 2013). Ample studies have provided evidence that FLLA is related to, but distinguishable from general FL anxiety (Elkhafaifi, 2005; Golchi, 2012; Kim, 2002; Wang, 2010). Current literature has also paid attention to the variances of FLLA in terms of learners’ characteristics, such as self-efficacy, strategy use, gender, private education, and majors (e.g., Chang, 2008; Golchi, 2012; Kim, 2002; Kimura, 2008; Liu, 2016; Mills et al., 2006). Researchers found that those learners with high self-efficacy to their listening capabilities seem to become less anxious while listening to FL (Kim, 2002; Mills et al., 2006). The reasons may result from that lower anxious listeners tended to use more metacognitive strategies than higher anxious listeners (Golchi, 2012). The mediating effects of listening strategy use were also confirmed by Liu (2016) in which FLLA had no longer explanatory power in listeners’ test performance when taking listening strategy use into consideration. In addition, Golchi (2012) reported that Iranian female listeners were found to be more anxious than male listeners, whereas others did not find the evidence supporting the difference in gender (e.g., Elkhafaifi, 2005; Kimura, 2008; Mills et al., 2006). Kim (2002) observed that those students who did not go to an English-language academy nor hired a private tutor showed higher listening anxiety due to a lack of confidence. And math majors in Japan may experience greater fear of EFL listening than social science students (Kimura, 2008).

Generally, there is little doubt that FLLA has a significantly negative association with FL learners’ listening performance (Elkhafaifi, 2005; Golchi, 2012; Kim, 2002; Liu, 2016; Mills et al., 2006; Serraj & Noordin, 2013; Wang, 2010; Xu & Huang, 2018; Zhang, 2013). For instance, Elkhafaifi (2005) investigated the effects of general FL learning anxiety on students’ achievement and the effects of FLLA on listening comprehension scores. A total of 233 postsecondary students studying Arabic as an FL were
enrolled from six American universities. The results showed that FL learning anxiety and FLLA were separate, and both of them were negatively and significantly associated with learners’ FL listening performance. Similarly, Serraj, and Noordin (2013) studied 210 adult EFL learners from a private language institute in Isfahan, Iran. They found FLLA and general FL anxiety were moderately correlated with each other, and both of them were negatively associated with learners’ listening comprehension proficiency. Such causal effects of FLLA on listening proficiency are confirmed as systematical (Zhang, 2013), which indicates that creating a low-anxiety listening environment plays an important role in facilitating listeners’ performance.

However, anxiety is not always detrimental. Some researchers hypothesized that anxiety may facilitate learning performance when learners consciously increase their efforts to compensate for the interference (MacIntyre & Gardner, 1994). Although being limited in the quantity, some prior studies have indeed mentioned the facilitating impacts of FL anxiety. For instance, Liu and Huang (2011) investigated 980 freshmen from three universities in China and found that the fear of being negatively evaluated was a positive predictor of their achievement in English. This finding has also been confirmed in the study of Trang et al. (2013) in which almost all of 67 Vietnamese university students reported in their interviews or autobiographies that they perceived benefits from some degree of FL anxiety. To be specific about EFL listening, based on listening logs from twenty-five students, Kim and Cha (2013) observed a motivating effect of FLLA from more demanding listening input, which motivated some students to listen more. Given the widespread studies on the effects of FLLA on language learners, to the researchers’ best knowledge, little research has found statistical supports for such a facilitating impact of FLLA in EFL contexts.

Factors of FLLA

To investigate the effects of FLLA on listening performance, it is necessary to ascertain the sources of FLLA in the first place. For instance, Kim and Cha (2013) revealed several sources increasing university students’ listening anxiety, including listening materials with accents/dialects, prolonged sounds, or unfamiliar vocabulary/topics or presented in a fast speed. By using a 53-item questionnaire, Marzec-Staw’s (2013) found that, of the 38 possible causes of FLLA, the most anxiety-provoking causes were poor marks, fast speech, being evaluated, and minds drifting away.

Aiming to categorize the causes of FLLA, Vogley (1998) conducted a qualitative study based on responses to an open-ended questionnaire from 140 students of Spanish. In her study, four factors emerged: an input-related factor (e.g., level of difficulty, repetition of input), a process-related factor (e.g., inappropriate strategies, lack of processing time), an instructional factor (e.g., test, uncomfortable environment), and a personal factor (e.g., fear of failure, nervousness). A majority of participants reported the first two factors, input- and process-related factors, were more stress-inducing. Marzec-Staw (2013) detailed the taxonomy by adding three more factors: a knowledge-related factor (e.g., unfamiliar words/topics), an output-related factor (e.g., test anxiety, negative social evaluation), and the type of tasks (e.g., writing a composition). Based on the self-reports of 71 proficient EFL learners, this study also revealed that the output-related factor was the most powerful stressor, including being evaluated and the possibility of receiving a poor mark.

Drawing on factor analysis, other researchers categorized a cluster of causes into generalized FLLA factors (Chang, 2008; Kim, 2002; Kimura, 2008; Zhang, 2013). For instance, Kim (2002) researched 245 EFL learners from three Korean universities and reported two factors of FLLA: Tension and Worry over English listening, which are reflective of listeners’ negative emotions; and Lack of Self-confidence, which is indicative of satisfaction with listening proficiency or experiences with failure in listening activities. Chang (2008) yielded three components of FLLA based on the questionnaire responses of 160 EFL learners from Taiwan PRC: Low Confidence of comprehending spoken English, Taking English listening courses as a requirement, and Worrying about Test Difficulty. Kimura (2008) investigated 452 first year college students at a Japanese university and labeled three FLLA factors: Emotionality includes dislike,
discomfort, annoyance, alienation, and intimidation, as well as a lack of confidence; Worry is indicative of cognitive perceptions involved in monitoring and evaluating learners’ performance in listening tasks; and Anticipatory Fear is reflective of anxious feelings about possible negative outcomes. Among these factors, self-confidence served as a strong predictor of listening performance (Chang, 2008; Kim, 2002).

The present study employed Zhang’s (2013) taxonomy of FLLA factors: Listening-anxiety reflects nervousness, upset or distress, and stressful feelings accompanying the listening tasks; Self-belief indicates one’s confidence and satisfaction with listening proficiency; Decoding Skills describes learners’ cognitive ability involving memory, attention and understanding. Although it is impossible to isolate clear-cut anxiety factors during continuous learning, these three FLLA factors seem to consist of distinct features. In Zhang’s (2013) study, he investigated 300 first-year English majors by administering an FLLA survey and the IELTS listening test twice, three and a half month apart. Based on his analysis of the causal models to estimate the relations between FLLA and listening performance, listening-anxiety and self-belief factors were confirmed as stable constructs of FLLA.

Method

Participants

The participants consisted of 78 English majors from a university in North China. The original sample included 92 students from four classes across four grades. Finally, 78 students (36 freshmen, 10 sophomores, 12 juniors, and 20 seniors) who submitted their responses to the questionnaire and also took the English listening comprehension test became the final sample. The participants included 75 females and 3 males, whose ages ranged from 18 to 24 ($M = 20.6, SD = 1.38$). The present study was conducted in the second semester of the 2017-2018 academic year (which began in September of 2017 in China). The English Listening Course was required for freshmen and sophomores as a basic skill-training class, but no longer for juniors and seniors. As English majors in Chinese universities, sophomores and seniors must take the TEM4/8 (Test for English Majors Band 4/8), respectively. For the requirements of listening comprehension in the TEM4, students should be able to understand conversations or lectures in English-speaking countries, which are about daily life, the society or study. They should get the gist as well as speakers attitudes and their actual intents. They should also distinguish English varieties (e.g., American English, British English) while listening. For the TEM8, students should understand conversations in various occasions and academic lectures involving politics, economics, history, culture, education, language, literature, and science. Supposedly, the participants in this study quite varied in their listening proficiency.

Instruments

Two instruments were utilized in the present study, including the 25-item Foreign Language Listening Anxiety Scale (FLLAS) (Horwitz et al., 1986; Wang, 2010; Zhang, 2013) and a listening comprehension test. All the items in the FLLAS were related to English (L2) listening and were presented in Chinese (L1) (see the back-translation in Appendix 1). Following Zhang (2013), three FLLA factors were assigned in the FLLAS: Listening-anxiety (FLLA1), Self-belief (FLLA2) and Decoding-skills (FLLA3). The responses were coded based on the participants’ choices on a 5-point Likert scale and included six reverse-coded items (items 6, 9, 15, 17, 24, 25). The higher scores suggest that students are more likely to be anxious in English listening contexts, and less confident with their listening proficiency. The FLLAS showed a high internal consistency in this study (Table 1).
The listening comprehension test items were chosen from the Cambridge English Language Assessment (www.cambridgeenglish.org). The item difficulty was balanced by arranging separate four parts from B1 (lower-intermediate) to C1 (lower-advanced) levels of the CEFR (Common European Framework of Reference for Languages). The first part consisted of five multiple-choice items which required students to choose correct pictures according to simple conversations. In the second part, students heard a monologue from a woman who talked about her job and they need to complete ten sentences with no more than three words. In the third part, while listening to five extracts from different speakers, students need to choose both the reasons why they changed jobs and their feelings about new jobs simultaneously. Finally, the fourth part asked students to give correct options of five multiple-choice items after listening to short conversations or monologues. A total of 30 items were included in the test, and each correct response was marked as 1 point ($M = 10.24$, $SD = 4.22$, range $= 20$). The item difficulty ranges from .2 to .7, and the test reliability was .70 for the final sample, which was indicative of validity of the test.

Procedures

Four teachers, including two instructors of the participants, collected the data. The listening test was conducted separately in four classes. The freshmen and sophomores completed the listening test in a quiet multimedia-classroom with earphones. The juniors and seniors took the test in a common classroom with a loudspeaker. Students heard each part of the test twice, and the speed was around 160 word per minute (wpm). The test lasted forty minutes including half an hour for listening and ten more minutes to copy their answers to the question paper. The FLLAS was distributed through an online questionnaire website (https://www.wenjuan.com, in which only Chinese is available presently) after the listening comprehension test. The participants received the web page link provided by their teachers and submitted their responses through smart phones within that week.

Data Analysis

The data were analyzed with SPSS (22.0) software. According to the analysis of the listening test, students in the first and fourth quartiles were marked as low- and high-proficient listeners, respectively, and the rest of the participants were in the medium-proficient group. The Mann-Whitney U test was utilized as a nonparametric alternative to the independent-samples t-test to explore the differences in overall FLLA level and the three FLLA factors between the low- and high-proficient groups. The effect size r for nonparametric tests were calculated by using the equation $r = Z / \sqrt{N}$, where Z refers to a z-score, and N is the total number of observations (Rosenthal, as cited in Larson-Hall, 2010, p. 378). Separate Pearson r correlation tests were performed to analyze the relations between listening anxiety variables and listening comprehension test scores in the final sample, as well as in the low- and high-proficient groups. After checking all assumptions, sequential regression analyses were conducted to examine the predicting effects of FLLA factors on listening comprehension. The effect sizes of each added factor were calculated according to the formula $f^2 = R^2 / (1-R^2)$, where R^2 refers to the variance explained by a dependent variable in the multiple regression. The r family of effect sizes were reported in the present
study, including those with nonstatistical association but “still have large enough effect sizes to be interesting and warrant future research” (Larson-Hall, 2010, p. 117).

Results

According to the analyses of the listening comprehension test scores, the participants were divided into low- (\(n = 20\), 2 ≤ scores ≤ 7), medium- (\(n = 39\), 8 ≤ scores ≤ 12), and high-proficient (\(n = 19\), 13 ≤ scores ≤ 22) groups. The sample sizes in the low- and high-proficient groups were adequate at \(\alpha = .05\) and a 65% power level for multiple regression (Cohen, Cohen, West & Aiken, 2003, p. 93).

The Differences between Low- and High-Proficient Listeners

The means of the overall FLLA and the three FLLA factors in the low-proficient group were higher than those in their high-proficient peers (Table 2). Besides, the means of all the three FLLA factors in the low-proficient group were relatively high (\(M = 3.42\)-3.62). In contrast, in the high-proficient group, the mean of FLLA2 (\(M = 3.02\)) was comparatively lower than the means of the other two factors (\(M = 3.23\)-3.53).

TABLE 2

| The Differences between the Low- and High-Proficient Groups |
|------------------|------------------|------------------|------------------|
| | Low-proficient group | High-proficient group | Mann-Whitney test results |
| | (\(n = 20\)) | (\(n = 19\)) | \(Z\) | \(p\) | Effect size \(r\) |
| FLLA | 3.48 .51 | 3.26 .49 | -1.251 | .211 | .200 |
| FLLA1 | 3.43 .61 | 3.23 .56 | -915 | .360 | .147 |
| FLLA2 | 3.42 .40 | 3.02 .57 | -2.276* | .023 | .364 |
| FLLA3 | 3.62 .59 | 3.53 .58 | -705 | .481 | .113 |

Note: \(p^* < .05\). The effect sizes \(r = .2, .5, \text{ and } .8\) are for a small, medium, and large effect, respectively (Cohen, as cited in Larson-Hall, 2010, p. 119). The effect size with a statistically significant association is shown in bold.

From the results of the Mann-Whitney U test, the low- and high-proficient groups were found to be not significantly different in the overall FLLA level, although the comparison was with a small effect (\(Z = -1.251, p = .211, r = .200\)). Additionally, no significant difference was found in the FLLA1 (listening-anxiety) (\(Z = -.915, p = .360, r = .147\)) and FLLA3 (decoding skills) (\(Z = -.705, p = .481, r = .113\)) factors. However, in the second factor of FLLA (self-belief), the low-proficient group reported significantly higher anxiety than the high-proficient group with a comparatively medium effect (\(Z = -2.276, p = .023, r = .364\)). The results suggest that the low-proficient listeners were more anxious during listening and less confident in their listening proficiency than their high-proficient peers.

The Correlations between FLLA and Listening Test Performance

TABLE 3

| The Correlations between FLLA and Listening Test Performance |
|------------------|------------------|------------------|
| | Listening Comprehension Test |
| | \(M\) | \(SD\) | \(r\) | \(p\) | \(R^2\) |
| FLLA | 3.45 .56 | -2.246* | .030 | .061 |
| FLLA1 | 3.42 .65 | -2.227* | .045 | .052 |
| FLLA2 | 3.28 .65 | -2.279* | .013 | .078 |
| FLLA3 | 3.64 .61 | -1.333 | .245 | .018 |

Note: \(*p < .05\). The correlation coefficient \(r\) is an effect size itself, which indicates a small, medium and large effect when \(r = .10, .30, \text{ and } .50\). The squared \(r (R^2)\) refers to the percentage of variance of the dependent variable, which is a small, medium, and large effect when \(r = .01, .09, \text{ and } .25\), respectively (Cohen, as cited in Larson-Hall, 2010, p. 119).
For the final sample, the Pearson r test found a low correlation between the overall FLLA and listening test scores with a medium effect size ($n = 78$, $r = -.246$, $p = .030$, $R^2 = .061$), indicating that the overall FLLA decreased with students’ listening proficiency. Similarly, negative associations between FLLA factors and listening performance were found for the FLLA1 ($r = -.227$, $p = .045$, $R^2 = .052$) and FLLA2 factors ($r = -.279$, $p = .013$, $R^2 = .078$) with consistently moderate effects. The correlation between the FLLA3 factor and listening performance was not statistically significant.

Moreover, the results indicated that the overall FLLA had no significant association with listening test performance in either low- or high-proficient groups (Table 4). However, FLLA1 in the low-proficient group was significantly negatively related to the listening test performance with a considerable effect ($r = -.480$, $p = .032$, $R^2 = .230$). FLLA2 was found to be positively correlated with low-proficient students’ listening comprehension scores with a noticeable effect, although the association has no statistically significant meaning ($r = .218$, $p = .356$, $R^2 = .048$). In contrast, FLLA2 in the high-proficient group was significantly negatively correlated with listening comprehension scores with a strong effect ($r = -.519$, $p = .023$, $R^2 = .269$). The results revealed that FLLA2 had bidirectional effects in the two groups. Additionally, the relationship between FLLA3 and listening performance was closer in the low-proficient group ($r = -.412$, $p = .071$, $R^2 = .170$) than in the high-proficient group ($r = -.044$, $p = .856$, $R^2 = .002$), although neither association was statistically significant. This means that less proficient EFL listeners tended to feel anxiety when decoding auditory information, whereas the effect of FLLA3 in high-proficient listeners was negligibly small.

TABLE 4

The Correlations between FLLA and Listening Test Performance in the Two Groups

	Listening Comprehension Test	r	p	R^2
Low-proficient group ($n = 20$)	FLLA	-.370	.108	.137
	FLLA1	-.480*	.032	**.230**
	FLLA2	.218	.356	.048
	FLLA3	-.412	.071	.170
High-proficient group ($n = 19$)	FLLA	-.335	.160	.112
	FLLA1	-.332	.178	.110
	FLLA2	-.519*	.023	**.269**
	FLLA3	-.044	.859	.002

Note. $p^* < .05$.

Predicting the Effects of FLLA Factors on Listening Performance

Sequential regression analyses were performed to examine the predicting effects of three FLLA factors in the low- and high-proficient groups (Table 5). The three FLLA factors were entered into the models in order in both groups. For the low-proficient group, the first FLLA factor accounts for 23% of the variance in listening test performance with a considerable effect ($\Delta R^2 = .23$, FLLA1 unstandardized coefficient $B = -.088$, $f^2 = .299$). FLLA1 and FLLA2 together account for 48% of the variance, while FLLA2 alone explains 25% of the variance in listening comprehension scores with a large effect ($\Delta R^2 = .25$, FLLA2 $B = .312$, $f^2 = .333$). In Model 3, FLLA3 added a little explanatory power into the equation with no statistically significant meaning ($\Delta R^2 = .04$, FLLA3 $B = -.205$, $f^2 = .042$). Briefly, FLLA1 was a negative predictor, whereas FLLA2 was a positive one in lower proficient listeners.

For the high-proficient group, none of the models had a statistically meaningful predicting effect on the listening performance, although the three FLLA factors together accounted for 31% of the variance in listening comprehension test scores. Among these three factors, FLLA2 was the comparatively stronger one with a noticeable effect in model 2 ($\Delta R^2 = .17$, FLLA2 $B = -.444$, $f^2 = .205$), followed by FLLA1 in model 1 ($\Delta R^2 = .10$, FLLA1 $B = -.129$, $f^2 = .111$), and FLLA3 in model 3 ($\Delta R^2 = .04$, FLLA3 $B = .160$, $f^2 = .042$) with smaller effects. FLLA2 had no explanatory power for higher proficient listeners in the present study, but its negative impact should not be neglected.
TABLE 5
Sequential Regression Analyses in Low- and High-Proficient Groups

	R²	ΔR²	FLLA1 B	FLLA2 B	FLLA3 B	Cohen’s f^2
Low-proficient group (n = 20)						
Model 1	.23*	.23*	-.088*			.299
Model 2	.48*	.25*	-.135**	.312*		.333
Model 3	.52	.04	-.042	.392**	-.205	.042
High-proficient group (n = 19)						
Model 1	.10	.10	-.129			.111
Model 2	.27	.17	.024	-.444		.205
Model 3	.31	.04	-.043	-.429	.160	.042

Note: *p < .05, **p < .01. The Cohen’s f^2 column shows effect sizes of each added factor, and the effect size f^2 = .02, .15, and .35 are for a small, medium, and large effect, respectively (Cohen, 1992).

Discussion and Implications

The two research questions in this study were raised independently; however, the results revealed a large degree of overlap. The following section will discuss these two research questions by emphasizing the differences of FLLA factors between low- and high-proficient groups and the effects of FLLA factors within the two groups, respectively.

The Differences Between Low- and High-Proficient Listeners

The present study revealed that low-proficient listeners were more anxious than their high-proficient peers in overall FLLA level and in each FLLA factor, although they were only significantly different in the self-belief (FLLA2) factor. This means that low-proficient listeners were more anxious and less confident in their listening proficiency, as found in previous studies (Chang, 2008; Kim, 2002; Liu, 2016). The two groups were not significantly different in the listening-anxiety (FLLA1) and decoding skills (FLLA3) factors.

The first factor (listening-anxiety) was labeled to reflect consistently stressful feelings, such as nervousness, upset/distress, and intimidation, when students were listening to English materials and facing listening tasks. These listening tasks involve handling diverse listening contexts, such as conversation/lectures and individual/collaborative tasks, as well as listening tests/courses. The participants in the present study should have been more skilled in English listening, since they had been intensively trained to develop listening skills for at least one semester to two years as English majors. Hence, abundant exposure to English listening materials and rich listening experiences may facilitate the ease of intimidation in terms of the listening-anxiety (FLLA1) factor. This may account for the inconsistency between the results of the present study and Liu’s (2016) study in which low-proficient students had significantly higher scores in the listening-anxiety (EFLLA1) factor than the high-proficient group (as first-year non-English majors).

The second factor (self-belief) is reflective of confidence and satisfaction with learners’ listening proficiency. A higher score in FLLA2 was an indicator of lower self-reported FL listening proficiency, leading to a more anxious listener. Generally, listeners with a high self-belief are more able to manage challenges in listening situations since they feel confident about their ability (Vandergrift & Goh, 2012), which accounts for their better listening performance. A lack of confidence in studying FL has been regarded as a better predictor of anxiety than learners’ actual performance, as reported in the current literature on FLLA (Chang, 2008; Kim, 2002) and general FL anxiety (Luo, 2018). As shown in the present study, self-belief was a distinguishing feature in the comparison between less and higher proficient listeners. Moreover, interestingly, a dissatisfaction with one’s current listening proficiency was found to facilitate less proficient listeners’ performance, but was detrimental to higher proficient students.
(which will be further discussed later).

The third factor (decoding skills) is related to cognitive abilities to deal with auditory input as well as linguistic knowledge, and these skills involve attention, understanding and memory (Zhang, 2013). As Field (2008) stated, listening decoding involves “translating the speech sounds, words and clauses, and finally into a literal meaning” (p. 125). As shown in the present study, the less proficient listeners were likely to be influenced by this factor more deeply than their higher proficient peers. Their FL listening proficiency may account for the difference, since the more skilled listeners are, the more automatic the decoding process will be, and the less anxiety from the decoding skills (FLLA3) they should experience. However, the sequential multiple regression analyses indicate that the anxiety accompanying cognitive ability had little explanatory power in listeners’ performance. The reason may lie in the relatively high-anxiety in the FLLA3 factor in both groups, which means the factor’s negative impacts barely decreased with the students’ listening proficiency. Furthermore, inasmuch as the decoding skills (FLLA3) might lead misunderstanding of causal effects of FLLA on listening proficiency, Zhang (2013) recommended that the following studies could not consider it as an FLLA factor.

The Effects of FLLA on Listening Performance

The students’ listening comprehension test scores were significantly negatively correlated with the overall FLLA, which was consistent with previous studies (Elkhafaifi, 2005; Golchi, 2012; Mills et al., 2006; Serraj & Noordin, 2013; Wang, 2010; Zhang, 2013). As found in the present study, significantly negative associations between listening performance and FLLA factors were found in listening-anxiety (FLLA1) as well as (lack of) self-belief (FLLA2), but not in the decoding skills (FLLA3) factor.

Surprisingly, correlation tests revealed that the overall FLLA was not significantly associated with listening performance in either group. The listening-anxiety (FLLA1) factor was negatively correlated with listeners’ comprehension scores, but statistical significance was found only for less proficient listeners. Interestingly, a visibly positive association of the self-belief (FLLA2) factor was found in the low-proficient group, which means that dissatisfaction with one’s current listening proficiency stimulates these students’ motivation to learn. However, a lack of self-belief strongly impedes the development of listening performance in higher proficient students. Figure 1 demonstrates that statistical pitfalls may mislead us over the negative effects of FLLA, which result in overlooking individual differences (e.g., listening proficiency). Additionally, the relation between anxiety with learners’ cognitive ability (FLLA3) and listening test performance was found to be negligibly small in the high-proficient group, while the latent detrimental impact of such a factor should not be neglected for less proficient listeners.

![Figure 1. A scatterplot of negative correlation between FLLA2 and listening test performance in the final sample (n=78, left side) and positive correlation between FLLA2 and listening test performance in lower proficient listeners (n=20, right side).](image-url)
As to predicting effects of FLLA factors, listening-anxiety (FLLA1) was a negative predictor, and self-belief (FLLA2) was a positive predictor in less proficient students’ listening performance, but no powerful predictor was found for the higher proficient group. This confirms the assumption that FL listening proficiency plays an important role in mediating FLLA, as shown in previous studies on general FL anxiety (Dewaele & Ip, 2013; Liu, 2006). In addition, self-belief (FLLA2) or self-confidence has been confirmed as a major stressor in FL listeners (Chang, 2008; Kim, 2002). As found in this study, the FLLA2 (self-belief) factor had a statistically powerful effect on the low-proficient listeners, but not on the high-proficient ones. It implies that less proficient listeners may benefit the most from dissatisfaction with their current FL listening proficiency, whereas higher proficient listeners can improve themselves by becoming bolder in self-rated listening proficiency.

To summarize, FLLA negatively influences Chinese EFL learners’ listening performance. EFL teachers can draw on our results to assist their students in the teaching context. Firstly, sufficient exposure to English and activities can make listeners get used to diverse listening contexts, therefore the decrease of listening-anxiety factor might be predictable. As mentioned previously, listening materials with accents/dialects (e.g., British accent, Indian accent), unfamiliar vocabulary/topics or presented in different speed are necessary for English learners. Thanks to the internet, endless authentic listening resources are available for free, such as news/talk shows from online radio (e.g., VOA, BBC, CNN), formal lectures on TED (https://www.ted.com/talks), and academic open classes in famous universities all around the world. Secondly, lower proficient listeners may benefit from the anxiety from the gap between their perceived listening proficiency and that they expected, which means more challenging tasks at “i-plus 1” level (Krashen, 1985) can stimulate their learning. In contrast, higher proficient listeners more likely need a stress-free environment and teachers’ encouragement. Based on this finding, listening texts at “i-minus 1” level (i.e., extensive listening, Gilliland, 2015) should maximize higher proficient listeners’ proficiency, in which students listen for pleasure and focus on meaning. Additionally, the negligible difference of decoding-skills factor between low- and high-proficient listeners may indicate cognitive interference from anxiety per se. It is worth mentioning that Chinese EFL teachers prefer a bottom-up approach in listening instruction and stress importance of developing students’ lower level skills such as vocabulary recognition (Wang & Renandya, 2012). Students should also be instructed to strategically regulate their behaviors while listening to English from top-down processing, i.e., the metacognitive approach. As Xu and Huang (2018) found, metacognitive awareness plays an important role in mediating the relationship between FLLA and listening test scores in less proficient listeners. Such a metacognitive instruction has been confirmed that it could promote greater listening achievement and regulation of cognitive, in particular for lower proficient listeners (Kobayashi, 2018). To date, how students improve their listening performance by being instructed to manage their cognitive processes with FLLA factors remains unanswered. Further research is expected to tap this issue.

Summary and Limitations

This study explored the differences between and the effects of overall FLLA and FLLA factors on listening performance in low- and high-proficient EFL listeners, targeting English majors at the university level. As findings, the two groups did not differ in the overall FLLA, the listening-anxiety factor or the decoding skills factor levels, but they were statistically different in their self-belief in listening proficiency. That is, the low-proficient listeners were more anxious and less confident in their listening proficiency. Nevertheless, the finding that listening proficiency decreased the FLLA factors remains true. Secondly, the listening-anxiety factor was a negative predictor and the (lack of) self-belief factor a positive predictor for less proficient listeners, but the two factors had no statistically explanatory power in the high-proficient group’s listening performance. In addition, the effects of the decoding skills factor on listening performance were negligible for both groups, which was probably due to relatively higher anxiety in this factor in all students. It is worth mentioning that the lack of self-belief in listening
proficiency had bidirectional impacts for the two groups. That is, dissatisfaction with one’s current listening proficiency motivates less proficient students, but strongly impedes their higher proficient peers’ improvement.

As pedagogical implications, sufficient listening input with different English varieties and topics, and presented in different speed are highly recommended in listening instruction. Additionally, EFL teachers had better gain a better understanding of FLLA in terms of students’ listening proficiency. More demanding tasks should promote a certain degree of gains in lower proficient listeners’ achievement when they perceive less confidence. On the contrary, a stress-free environment should optimize higher proficient listeners’ performance. Finally, the traditional bottom-up approach that gives priority to lower level listening skills must be insufficient in decreasing learners’ anxiety. The metacognitive approach, as many researchers underscored (Kobayashi, 2018; Vandergrif & Gho, 2012; Xu & Huang, 2018), should receive more attention as future listening instruction in Chinese EFL classroom.

One limitation of the present study is that participants were unbalanced in their demographic distributions, such as in gender and years of study. Current literature seems inconsistent in their claims about the variances of FLLA between female and male EFL learners (e.g., Golchi, 2012; Elkhafaifi, 2005; Kimura, 2008; Mills et al., 2006). In Chinese universities, female English majors generally account for a significant proportion (96% as in our study), which makes it unrealistic to compare them in similar settings. Besides, our study originally aimed to ascertain the effects of years of study on learners’ FLLA, which seems to be difficult to achieve due to small sample sizes. These issues should be taken into consideration in the following studies. Another limitation lies in the unsettled question on the potential changes of FLLA factors. As a one-time study, our findings are relatively weak to provide overwhelming evidence that FLLA factors differ in terms of listening proficiency. Just as Larsen-Freeman mentioned in one of her interviews (Ji, 2008), statistical mean values of groups may mislead us in the field of second language acquisition, because individual differences are the normal state instead of any other issue. Thus, creating a learning environment which is suitable for everyone is also unrealistic. Further qualitatively longitudinal studies can be considered to explore the changes of FLLA factors in individuals with deep analyses.

Acknowledgments

We appreciate the two anonymous reviewers for their constructive comments. We are also thankful to Professor Jun-Ping Wang, lecturers Jian-Sheng Ma, Yi-Hao Zhang, Lei Wang, Jun-Hua Chen, Jian-Ping Wang of Shanxi Normal University, China for their generous supports. Finally, our gratitude goes to all students who kindly participated in our study.

The Authors

Shu-Yan Wang is currently a doctoral student in the Dept. of English Education, Chung-Ang University in Seoul, Korea. She received Master’s degree in English Education from Tianjin Normal University in Tianjin, China.

Department of English Education
Chung-Ang University
84 Heukseok-ro, Dongjak-gu, Seoul, Korea
Email: nancy_2017@foxmail.com

Kyung-Whan Cha (corresponding author) is professor in the Dept. of English Education, Chung-Ang University in Seoul, Korea. His areas of interest include teaching EFL listening. He received his Doctoral degree in TESL from the University of Kansas.
References

Chang, A. C. S. (2008). Sources of listening anxiety in learning English as a foreign language. *Perceptual and Motor Skills, 106*(1), 21-34.

Cohen, J. (1992). A power primer. *Psychological Bulletin, 112*(1), 155-159.

Cohen, J., & Cohen, P., West, S. G., & Aiken, L. S. (2003). *Applied multiple regression/correlation analysis for the behavioral sciences*. Mahwah, NJ: Lawrence Erlbaum.

Dewaele, J. M., & Ip, T. S. (2013). The link between foreign language classroom anxiety, second language tolerance of ambiguity and self-rated English proficiency among Chinese learners. *Studies in Second Language Learning and Teaching (SSLLT), 3*(1), 47-66.

Elkhafi, H. (2005). Listening comprehension and anxiety in the Arabic language classroom. *The Modern Language Journal, 89*(2), 206-220.

Field, J. (2008). *Listening in the language classroom*. Cambridge, UK: Cambridge University Press.

Gilliland, B. (2015). Listening logs for extensive listening practice. In D. Nunan & J. C. Richards (Eds.), *Language learning beyond the classroom* (pp. 13-22). New York: Routledge.

Golchi, M. M. (2012). Listening anxiety and its relationship with listening strategy use and listening comprehension among Iranian IELTS learners. *International Journal of English Linguistics, 2*(4), 115-128.

Guo, Y. (2010). The stability of general foreign language classroom anxiety across languages among Chinese undergraduate foreign language learners. *The Journal of Asia TEFL, 7*(2), 69-89.

Horwitz, E. K., Horwitz, M. B., & Cope, J. (1986). Foreign language classroom anxiety. *The Modern Language Journal, 70*(2), 125-132.

Ji, X.-T. (2008). Complexity theory and applied linguistics: An interview with Larsen-Freeman (Guanyu fuza xitong yu yingyong yuyanxue: Larsen-Freeman fangtan). *Foreign Language Teaching and Research, 40*(5), 376-379.

Kim, E.-J., & Cha, K.-W. (2013). The effects of intensive English-medium listening course on learners’ anxieties. *Korean Journal of English Language and Linguistics, 13*(2), 237-264.

Kim, J.-H. (2002). Anxiety and foreign language listening. *English Teaching, 57*(2), 3-34.

Kim, S.-Y. (2009). Questioning the stability of foreign language classroom anxiety and motivation across different classroom context. *Foreign Language Annals, 42*(1), 138-157.

Kimura, H. (2008). Foreign language listening anxiety: Its dimensionality and group differences. *Japan Association for Language Teaching (JALT) Journal, 30*(2), 173-196.

Kobayashi, A. (2018). Investigating the effects of metacognitive instruction in listening for EFL learners. *The Journal of Asia TEFL, 15*(2), 310-328.

Krashen, S. D. (1985). *The input hypothesis: Issues and implications*. New York: Longman.

Larson-Hall, J. (2010). *A guide to doing statistics in second language research using SPSS*. New York: Routledge.

Liu, M.-H. (2006). Anxiety in Chinese EFL students at different proficiency levels. *System, 34*(3), 301-316.

Liu, M.-H. (2016). Interrelations between foreign language listening anxiety and strategy use and their predicting effects on test performance of high-and low-proficient Chinese university EFL learners. *The Asia-Pacific Education Researcher, 25*(4), 647-655.

Liu, M.-H., & Huang, W. (2011). An exploration of foreign language anxiety and English learning motivation. *Education Research International, 2011*, 1-8.

Luo, H. (2018). Predictors of foreign language anxiety: A study of college-level L2 learners of...
Chinese. *Chinese Journal of Applied Linguistics, 41*(1), 3-24.

MacIntyre, P. D., & Gardner, R. C. (1994). The subtle effects of language anxiety on cognitive processing in the second language. *Language Learning, 44*(2), 283-305.

Mills, N., Pajares, F., & Herron, C. (2006). A reevaluation of the role of anxiety: Self-efficacy, anxiety, and their relation to reading and listening proficiency. *Foreign Language Annals, 39*(2), 276-295.

Marzec-Staw, M. (2013). Causes and symptoms of foreign language listening anxiety: A case study of proficient students about to graduate with an MA in teaching EFL. *Linguistic Silesana, 34*, 335-356.

Serraj, S., & Noordin, N. (2013). Relationship among Iranian EFL students’ foreign language anxiety, foreign language listening anxiety and their listening comprehension. *English Language Teaching, 6*(5), 1-15.

Trang, T., Moni, K., & Baldauf Jr, R. B. (2013). Foreign language anxiety: Understanding its sources and effects from insiders’ perspectives. *The Journal of Asia TEFL, 10*(1), 95-131.

Vandergrift, L., & Goh, C. M. (2012). *Teaching and learning second language listening: Metacognition in action*. New York: Routledge.

Vogely, A. J. (1998). Listening comprehension anxiety: Students’ reported sources and solutions. *Foreign Language Annals, 31*(1), 67-80.

Wang, L., & Renandya, W. A. (2012). Effective approaches to teaching listening: Chinese EFL teachers’ perspectives. *The Journal of Asia TEFL, 9*(4), 79-111.

Wang, S.-L. (2010). An empirical study of Chinese English major students’ listening anxiety of classroom learning activity at the university level. *Journal of Language Teaching and Research, 1*(5), 562-568.

Xu, J., & Huang, Y.-T. (2018). The mediating effect of listening metacognitive awareness between listening test anxiety and listening test performance. *The Asia-Pacific Education Researcher, 27*(4), 313-324.

Zhang, X. (2013). Foreign language listening anxiety and listening performance: Conceptualizations and casual relationships. *System, 41*, 1-14.
Appendix

Back-Translation of Foreign Language Listening Anxiety Scale

Directions. We appreciate your help in answering following questions. This survey is not a test, so there are no “right” or “wrong” answers. Please indicate the degree to which you fit with each statement below by indicating the appropriate number (1 = strongly disagree, 2 = disagree, 3 = neither disagree nor agree, 4 = agree, 5 = strongly agree).

1. I feel nervous if English listening test passages are read just once.
2. I have difficulty in understanding speakers with English accents that are different from mine.
3. I worry that I might not be able to understand when English speakers talk too fast.
4. I am nervous when I am listening to a passage in English when I am not familiar with the topic.
5. I feel relaxed if there are pictures or videos provided when I listen to English.
6. I think it is easy to guess what I have missed when I listen to English.
7. It is easier to comprehend spoken English than English lectures.
8. I have difficulty in comprehending English passages when there is background noise.
9. I feel relaxed when I listen to English lectures.
10. I worry that I might miss important information if my mind drifts while listening to English.
11. I feel intimidated if I don’t have time to read the test questions before listening to the passages in English.
12. In English listening class, I worry that I might not be able to comprehend the teacher’s questions if I am called on to answer alone.
13. I worry that I might fail my English listening tests.
14. I feel more intimidated in cooperative English listening tasks than in individual ones.
15. I feel confident when I listen to English.
16. When listening to English, I can’t remember what I have heard because of nervousness.
17. I am satisfied with the level of listening comprehension in English that I have achieved so far.
18. I feel upset when I don’t understand what I heard in English.
19. My minds drifts when I am listening to English.
20. I feel that I am the only one who cannot understand in English listening class.
21. I feel nervous when I am required to answer questions in English listening class.
22. I think other students’ listening proficiency are higher than mine.
23. I worry that other students in English listening class will laugh at me if my answers are wrong.
24. I enjoy listening to English.
25. Once you finish enough exercises, listening to English is not difficult.