Supplemental Information

CDK8 Kinase Phosphorylates Transcription Factor STAT1 to Selectively Regulate the Interferon Response

Joanna Bancerek, Zachary C. Poss, Iris Steinparzer, Vitaly Sedlyarov, Thaddäus Pfaffenwimmer, Ivana Mikulic, Lars Dölken, Birgit Strobil, Mathias Müller, Dylan J. Taatjes, and Pavel Kovarik

Figure S1. Analysis of Flavopiridol Effects on IFN- and Stress-Induced S727 Phosphorylation of STAT1 in Fibroblasts (A, B and C), of Flavopiridol Effects on STAT1 Promoter Recruitment (D), and of the Effects of Transcription Inhibition on S727 Phosphorylation of STAT1 (E)

(A) Flavopiridol inhibits IFN-γ- and IFN-β-induced S727 phosphorylation of STAT1 in fibroblasts. Mouse fibroblasts were stimulated for 40 min with IFN-γ or IFN-β after pretreatment or control treatment for 15 min with flavopiridol (FP) (500 nM). Cell extracts were analyzed by Western blotting using antibodies to phosphorylated S727 of STAT1 (pS727-STAT1), phosphorylated
Y701 of STAT1 (pY701-STAT1) and STAT1 C-terminal antibody (not recognizing the STAT1β isoform).

(B) Flavopiridol inhibits IFN-γ- but not stress-induced S727 phosphorylation of STAT1 in fibroblasts. Mouse fibroblasts were stimulated for 40 min with the stress inducer anisomycin (Aniso) or IFN-γ after pretreatment or control treatment for 15 min with flavopiridol (FP). Cell extracts were analyzed as in (A).

(C) Mouse fibroblasts were stimulated for 40 min with IFN-γ or left untreated followed 15 min-pretreatment with flavopiridol (FP) at indicated concentrations. Cell extracts were analyzed as in (A).

(D) STAT1 promoter recruitment is not impaired by flavopiridol. MEFs were stimulated for 30 min with IFN-γ after pretreatment or control treatment for 30 min with flavopiridol (FP). Chromatin recruitment of STAT1 was analyzed by ChIP using STAT1 antibody or unspecific IgG. A representative gel with PCR-amplified Irf1 promoter using immunoprecipitated DNA as template is shown. Total chromatin DNA was amplified for input control.

(E) Ongoing transcription is not required for IFN-γ-induced S727 phosphorylation of STAT1. MEFs were stimulated for 40 min with IFN-γ after pretreatment or control treatment for 15 min with actinomycin D (ActD). Cell extracts were analyzed by Western blotting using antibodies to phosphorylated S727 of STAT1 (pS727-STAT1), phosphorylated Y701 of STAT1 (pY701-STAT1) and total STAT1.
Figure S2. Effects of Cdk7, Cdk8 and Cdk9 Silencing and of Combined Cdk8 and Cdk9 Silencing on STAT1 S727 Phosphorylation (A, B, D and E), and Silver-Stained Gels of Purified Kinase Complexes Used for In Vitro Kinase Assays (C)

(A) Quantitative analysis of effects of Cdk7, Cdk8 and Cdk9 silencing on IFN-γ-induced STAT1 S727 phosphorylation. MEFs were treated for 48 h with siRNA to Cdk7, Cdk8, Cdk9 or control siRNA (Ctrl) and subsequently stimulated for 40 min with IFN-γ. Cell extracts of three experiments were analyzed by Western blotting using antibodies to phosphorylated S727 of STAT1 (pS727-STAT1), phosphorylated Y701 of STAT1 (pY701-STAT1) and total STAT1. The Western blot signal was quantified using the Odyssey Imager (LI-COR Biosciences), and the pS727 signals were normalized to total STAT1 signals. Values of the normalized pS727 signals
for the individual Cdk siRNA relative to control siRNA (Ctrl) are depicted. Error bars represent standard deviations (SDs) (n = 3).

(B) Combined silencing of Cdk8 and Cdk9 does not result in more efficient inhibition of IFN-γ-induced STAT1 S727 phosphorylation than silencing of Cdk8 alone. MEFs were treated for 48 h with siRNA to Cdk8, Cdk9, both Cdk8 + Cdk9 (Cdk8/9), or control siRNA (Ctrl) and subsequently stimulated for 40 min with IFN-γ or left unstimulated. Cell extracts were analyzed by Western blotting using antibodies to phosphorylated S727 of STAT1 (pS727-STAT1), phosphorylated Y701 of STAT1 (pY701-STAT1) and total STAT1. Silencing was confirmed by Western blotting of the same extracts using antibodies to CDK8 and CDK9. Equal loading was controlled by antibodies to ERK1/ERK2 (pan ERK).

(C) Silver stained gels of purified CDK8 module, TFIIH, and P-TEFb used for kinase assays.

(D) Stress-induced STAT1 S727 phosphorylation is not impaired in fibroblasts silenced for Cdk8. Fibroblasts silenced for the expression of Cdk8 or control-silenced cells were treated for 30 min with anisomycin (Aniso) or IFN-γ or left untreated. Cell extracts were analyzed using antibodies to phosphorylated S727 of STAT1 (pS727-STAT1), phosphorylated Y701 of STAT1 (pY701-STAT1) and total STAT1. Note that anisomycin does not cause Y701 phosphorylation.
Figure S3. Recruitment of S727-Phosphorylated STAT1 to Gbp2 (A, B) and Tap1 (C, D) Promoters and to Chromatin (F), STAT1-Dependent Recruitment of CDK8 to TSS and Gene Body of Irf1 (E) and Effect of Missing TAD on Recruitment of MED1 and RNAPII (G)

(A–D) Recruitment of STAT1 precedes accumulation of S727-phosphorylated STAT1 at the Gbp2 and Tap1 promoters. Mouse fibroblasts were treated for indicated times with IFN-γ or left untreated. Association of STAT1 and S727-phosphorylated STAT1 with the Gbp2 (A) and Tap1 (C) promoters was examined by ChIP using respective antibodies or unspecific IgG. A representative gel with PCR-amplified Gbp2 or Tap1 promoters using immunoprecipitated DNA as template is shown. Total chromatin DNA was amplified for input control. Quantitative analysis (using ImageJ) of data shown in (A) and (C) is depicted in (B) and (D), respectively: the pS727 signal was normalized to input DNA after subtracting the signals of IgG.

(E) IFN-γ induces STAT1-dependent CDK8 recruitment to the Irf1 transcription start site (TSS) but not to the gene body. WT and STAT1−/− MEFs (right panel) were treated for indicated times
with IFN-γ, and CDK8 recruitment to the TSS or the gene body of the *Irf1* gene was determined by ChIP. CDK8 increased after IFN-γ treatment at the start site but not at the gene body in WT cells. No increase of CDK8 was observed in STAT1−/− cells throughout the gene. CDK8 recruitment was determined by ChIP using CDK8 antibodies or unspecific IgG. Immunoprecipitated DNA was analyzed by qPCR for the *Irf1* TSS and gene body (8 kb downstream of TSS), carried out in triplicates. Signals were normalized to input DNA. Error bars represent standard deviations (SDs) (n = 3).

(F) Accumulation of S727-phosphorylated STAT1 on chromatin reaches a plateau at approximately 60 min of IFN-γ treatment. MEFs were treated for indicated times with IFN-γ and processed as for ChIP analysis. The chromatin fractions were analyzed by Western blotting using antibodies to phosphorylated S727 of STAT1 (pS727-STAT1), phosphorylated Y701 of STAT1 (pY701-STAT1) and total STAT1 (left panel), and quantitated using Image Studio (Odyssey system from LI-COR) by normalizing the pS727-STAT1 signal to the STAT1 signal (right panel).

(G) MED1 and RNAPII are less efficiently recruited by STAT1beta than by STAT1alpha. MEFs derived from mice expressing solely STAT1alpha or STAT1beta were treated for indicated times with IFN-γ. Association of MED1 (left panel) and RNAPII (right panel) with the *Irf1* TSS was examined by ChIP. Error bars represent SDs (n = 3).
Figure S4. Measurement of mRNA Stability (A), Total RNA Fractions from Analysis of Newly Transcribed mRNA (B) and Amounts of Primary Transcripts (C)

(A) *Irf1, Gbp2* and *Tap1* mRNA stability in STAT1 WT and S727A cells. STAT1 WT and S727A MEFs were treated with IFN-γ for 4 h and actinomycin D (act D) was added for the indicated times. RNA was isolated, and the amounts of *Irf1, Gbp2* and *Tap1* mRNA were determined by qRT-PCR. Relative values to *Hprt* are shown. Error bars represent standard deviations (SDs) (n = 3).
(B) 4sU was added to the cell culture medium simultaneously with IFN-γ, or 60 min and 210 min after IFN-γ stimulation, or without IFN-γ treatment. The labeling was performed in WT and S727A MEFs for 30 min followed by RNA isolation and separation to collect the 4sU-labeled RNA fractions and total RNA fractions. Total RNA representing accumulated RNA at 0, 30 min, 90 min and 240 min of IFN-γ treatment is shown for Irf1, Tap1, Gbp2, Irf8 and Isg15. mRNA was quantitated by qRT-PCR. ActB was used for normalization. Error bars represent SDs (n = 3).

(C) S727A mutation affects levels of primary transcripts. STAT1 WT and S727A MEFs were treated with IFN-γ for 4 h or left untreated. RNA was isolated, and the amounts of primary transcripts of Tap1 and Gbp2 genes were determined by qRT-PCR for intronic amplicons. Relative values to ActB are shown. Error bars represent standard deviations (SDs) (n = 3).
Figure S5. Schematic Representation of the \textit{Irf1}, \textit{Gbp2} and \textit{Tap1} Gene Loci (A) and Positions of ChIP Amplicons and Relative Abundance of S2-Phosphorylated RNAPII at the TSS and the Gene Body of \textit{Irf1} and \textit{Tap1} (C)

(A) Positions of the regulatory GAS and ISRE elements are marked. Note that GAS and ISRE in the Tap1 gene are downstream of the transcription start site. "Stop" marks the end of \textit{Irf1} (GenBank NM_001159393.1) and \textit{Tap1} (GenBank NM_013683.2) transcripts. Amplicons for ChIP analyses are depicted as TSS (transcription start site), GAS (GAS elements) and gene body with the approximate position relative to TSS.

(B) Ratios of S2-phosphorylated RNAPII to total RNAPII at TSS and the gene body of the \textit{Irf1} and \textit{Tap1} genes. WT MEFs treated for indicated times with IFN-\gamma were examined by ChIP using antibodies to RNAPII and pS2-RNAPII. Immunoprecipitated DNA was analyzed by qPCR for the both TSS and the gene body of \textit{Irf1} and \textit{Tap1}, normalized to input DNA, and the ratios S2-phosphorylated RNAPII to total RNAPII were calculated. Error bars represent SDs (n = 3).
Figure S6. Control Experiments Showing Silencing Efficiency for *Cdk8* and *CycC* (A and D), Fold Differences in Microarray (C) and no Effects of the Transfection Procedure (B and E)

(A) Silencing efficiency of *Cdk8* by siRNA in microarray experiments. Efficiency of silencing of *Cdk8* in STAT1 WT (left panel) or STAT1 S727A (right panel) cells stimulated with IFN-γ or left unstimulated was assessed with measurements of *Cdk8* mRNA levels using qRT-PCR. Relative values to *Hprt* are shown. Error bars represent standard deviations (SDs) of biological triplicates (n = 3).
(B) siRNA transfection procedure has no effect on Cdk8 expression. STAT1 WT and STAT1 S727A cells were left untreated (no transf.), treated with transfection reagent alone (transf. reagent), control siRNA (siCtrl), siRNA for Cdk8 (siCdk8), or siRNA for CycC (siCycC). Cdk8 mRNA levels were determined by qRT-PCR. Relative values to Hprt are shown. Error bars represent standard deviations (SDs) (n = 3).

(C) Differences in expression of Irf1, Tap1, Gbp2 and Irf8 observed in the microarray experiment shown in Figure 7A and 7B. Differences in IFN-γ-induced expression levels of the indicated genes between siCdk8- and siCtrl-treated WT and S727A cells are depicted. The values are antilog numbers extracted from Table S2.

(D) Silencing efficiency of CycC by siRNA in experiments showing similar effect of CycC and CDK8 on expression of IFN-γ-induced genes. Efficiency of silencing of CycC in STAT1 WT (left panel) or STAT1 S727A (right panel) cells stimulated with IFN-γ or left unstimulated was controlled by measurements of CycC mRNA levels using qRT-PCR. Relative values to Hprt are shown. Error bars represent standard deviations (SDs) (n = 3).

(E) The procedure of siRNA transfection does not alter sensitivity of cells to VSV infection. STAT1 WT cells were treated with control siRNA (siCtrl) or were left untreated. After 24 h of incubation with IFN-γ at indicated concentrations cells were infected with VSV (MOI = 0.1), and the cell survival was monitored as in (Figure 7F).
Table S1. IFN-γ-Induced Genes Significantly (p < 0.05) Downregulated at Least 2-fold by the STAT1 S727A Mutation

Genbank AC	Gene symbol	WT-g/WT-0	SA-g/WT-g
NM_001034859	Gm4841	9.8	-3.0
NM_001033767	Gm4951	8.7	-1.1
NM_010260	Gbp2	8.1	-1.8
NM_018734	Gbp3	7.0	-1.3
NM_194336	Mpa2l	6.8	-2.7
NM_001101475	F830016B08Rik	6.5	-2.0
NM_145545	Gbp6	6.3	-1.0
NM_001039647	Gbp11	6.3	-2.9
NM_001168294	Serpina3f	6.2	-1.1
NM_010724	Psmb8	6.1	-1.6
NM_013585	Psmb9	5.7	-2.1
NM_001135115	Gm12250	5.2	-1.1
NM_030738	Vmn1r65	5.2	-1.6
NM_001037713	Xaf1	4.9	-1.1
NM_194336	Mpa2l	4.8	-2.3
NM_013683	Tap1	4.8	-2.2
NM_001256005	Gbp4	4.6	-3.2
NM_008320	Irf8	4.6	-2.1
NM_009277	Trim21	4.2	-1.4
NM_009896	Socs1	3.6	-1.0
NM_001045540	Gm12185	3.5	-1.2
NM_011530	Tap2	3.2	-2.2
NM_177820	Apol10b	2.9	-1.9
NM_020557	Cmpk2	2.9	-2.1
NM_021443	Cci8	2.5	-2.0
NM_181545	Slfn8	2.5	-1.8
NM_020557	Cmpk2	2.5	-1.8
NM_023835	Trim12a	2.5	-1.5
NM_001199940	Serpina3i	2.3	-1.2
NM_001081083	Armc3	2.2	-1.6
NM_023835	Trim12a	2.1	-1.4
ENSMUST00000114230	Psmb9	1.9	-1.0
NM_199146	Trim30d	1.9	-2.4
NM_001037713	Xaf1	1.9	-1.3
XM_136331	Gm4955	1.9	-1.3
NM_001146007	9230105E10Rik	1.7	-1.6
NM_181542	Slfn10-ps	1.7	-1.3
NM_001146007	9230105E10Rik	1.7	-1.3
NM_001013828	Iligp1b	1.6	-1.0
XM_136331	Gm4955	1.6	-1.4
Genbank ID	Gene Symbol	SA	WT
---------------	-------------	-------	-------
NM_011333	Ccl2	1.6	-1.6
NM_029419	Apol7a	1.6	-1.8
NM_013819	H2-M3	1.6	-1.5
NM_001146007	9230105E10Rik	1.5	-1.3
NM_183087	Fam189a1	1.5	-3.3
NM_001039646	Gbp10	1.4	-1.3
NM_178745	Tmem229b	1.4	-1.6
NM_007987	Fas	1.4	-1.7
NM_025829	Eif4e3	1.4	-2.3
NM_013654	Ccl7	1.4	-2.3
NM_001190466	Dact1	1.3	-3.6
NM_053109	Clec2d	1.3	-1.1
NR_033577	Gm8221	1.3	-1.3
NM_010171	F3	1.3	-2.1
NM_175291	Dock10	1.3	-2.1
NM_001190466	Dact1	1.3	-3.2
NM_010555	Ii1r2	1.1	-1.3
NM_033541	Oas1c	1.1	-1.9
NM_001083925	Oas1b	1.1	-1.1
NM_008362	Ii1r1	1.0	-1.4
NM_029419	Apol7a	1.0	-1.0

Genes are ordered according to their induction (log 2-transformed) by IFN-γ in WT cells (column: WT-g/WT-0). Fold difference (log 2) between S727A (SA) and WT cells is shown in the column "SA-g/WT-g". Genes that appear more than once have different probe set IDs for each listing. Data are extracted from the Table S4.
Table S2. IFN-γ-Induced Genes Significantly (p < 0.05) Upregulated at Least 2-fold by the STAT1 S727A Mutation

Genbank AC	Gene symbol	WT-g/WT-0	SA-g/WT-g
NM_021274	Cxcl10	6.2	2.6
NM_029000	Gvin1	6.0	4.3
NM_009251	Serpina3g	5.3	1.2
NM_197986	Tmem140	4.4	1.1
NM_001045481	Ifi203	4.2	2.6
NM_028967	Batf2	4.1	1.7
NM_008329	Ifi204	4.0	2.8
NM_015783	Isg15	4.0	1.3
NM_015783	Isg15	3.9	1.5
NM_001033450	Mnda	3.7	2.3
NM_001004174	AA467197	3.6	4.0
BC010546	Ifi204	3.5	2.6
AK019325	Gm9706	3.4	1.3
NM_029000	Gvin1	3.3	3.9
NM_007609	Casp4	3.1	3.5
XM_001000891	Gm1966	3.0	4.2
NM_007609	Casp4	2.9	3.5
NM_001045481	Ifi203	2.9	2.5
NM_001204910	A607873	2.8	2.8
NM_001139519	Zbp1	2.7	1.6
XM_003084464	Gm16340	2.5	2.8
NM_178005	Lrtrm2	2.3	1.0
NM_033601	Bcl3	2.1	2.3
NM_178446	Rbm47	2.1	1.9
NM_172393	Aim1	2.0	3.6
NM_199015	D14Ertd668e	1.9	5.1
NM_023137	Ubd	1.9	1.3
ENSMUST00000104958	Psme2	1.8	2.3
AK087205	9530082P21Rik	1.7	1.1
NM_175475	Cyp26b1	1.7	1.9
AK156907	Cxcl10	1.5	2.1
NM_011019	Osmr	1.4	1.1
NM_013498	Crem	1.4	2.2
NM_008381	Inhb	1.4	1.9
NM_009344	Phlda1	1.3	1.9
NM_013498	Crem	1.3	2.0
NM_178446	Rbm47	1.2	1.8
NM_010392	H2-Q2	1.2	1.0
NM_010942	Nsg1	1.2	2.1
NM_178005	Lrtrm2	1.2	1.0
NM_172875	Adc	1.2	1.5
NM_026637	Ggct	1.1	1.5
Gene ID	Gene Symbol	WT-g/WT-0	SA-g/WT-g
------------	-------------	-----------	-----------
NM_009256	Serpinb9	1.1	2.1
NM_011580	Thbs1	1.1	1.5
NM_009780	C4b	1.0	1.9
NM_001033207	Nlr5	1.0	1.2
NM_008599	Cxcl9	1.0	2.2
NM_207648	H2-Q6	1.0	1.1

Genes are ordered according to their induction (log 2-transformed) by IFN-γ in WT cells (column: WT-g/WT-0). Fold difference (log 2) between S727A (SA) and WT cells is shown in the column "SA-g/WT-g". Genes that appear more than once have different probe set IDs for each listing. Data are extracted from the Table S4.
Table S3. IFN-γ-Induced Genes Not Significantly Affected by the STAT1 S727A Mutation

Genbank AC	Gene symbol	WT-g/WT-0
NM_001145164	Tgtp2	9.5
NM_018738	Igtp	8.6
NM_001146275	Igtp1	7.7
NM_019440	Irgm2	7.5
NM_001033207	Nlrc5	6.8
NM_011854	Oas1l2	6.7
NM_008330	Ifi47	6.1
NM_008326	Irgm1	5.8
NM_011579	Tgtp1	5.7
NM_021893	Cd274	5.7
NM_001145164	Tgtp2	5.5
NM_001039530	Parp14	5.4
NM_008326	Irgm1	5.2
ENSMUST00000073997	BC023105	5.2
NM_001168294	Serpina3f	5.0
NM_023386	Rtp4	5.0
NM_008331	Ifit1	4.7
NM_001146275	Igtp1	4.5
NM_008390	Ifit1	4.3
NM_030253	Parp9	4.2
NM_010501	Ifit3	4.1
NM_001013371	Dtx3l	4.1
NM_001163576	Parp10	3.8
AK034303	9330175E14Rik	3.8
NM_001005858	1830012O16Rik	3.7
NM_001168660	Apol9b	3.5
NM_001199940	Serpina3i	3.5
NM_009283	Stat1	3.3
NM_011909	Usp18	3.3
NM_019963	Stat2	3.3
NM_001163621	Apol6	3.2
NM_029219	Rnf19b	3.1
NM_173786	Apol9a	3.1
NM_173786	Apol9a	3.1
NM_013606	Mx2	3.0
NM_001114679	9930111J21Rik1	3.0
NM_001159417	Ifr9	3.0
NM_016850	Ifr7	2.9
NM_030684	Trim34a	2.9
NR_033332	Gm12216	2.8
AK135804	Gm10839	2.7
NM_023279	Tubb3	2.7
NM_027835	Ifih1	2.7
Gene ID	Gene Symbol	Expression
--------------	-------------	------------
NM_021394	Zbp1	2.7
NM_172729	Nod1	2.6
NM_008358	Il15rA	2.6
NM_010156	Samd9l	2.6
NM_023738	Uba7	2.6
NM_013640	Psmb10	2.5
NM_001005858	Il830012O16Rik	2.5
NM_145391	Tappbpl	2.5
NM_010156	Samd9l	2.4
NM_010821	Mpeg1	2.4
ENSMUST00000030584	Rnf19b	2.4
NM_029084	Slamf8	2.4
AK090152	Dtx3l	2.3
NM_025992	Herc6	2.2
NM_025992	Herc6	2.2
NM_198095	Bst2	2.2
NM_172893	Parp12	2.1
NM_001013371	Dtx3l	2.1
NM_010681	Lama4	2.1
ENSMUST000000102642	Ube2l6	2.1
NM_153564	Gbp5	2.0
NM_009396	Tnfaip2	2.0
NM_145227	Oas2	2.0
NM_172689	Ddx58	2.0
NM_172689	Ddx58	2.0
NM_009396	Tnfaip2	2.0
NM_175449	Fam26f	1.9
ENSMUST00000093902	Rnf213	1.9
NM_008223	Serpind1	1.9
NM_199252	Unc93a	1.8
AK017289	5430410E06Rik	1.8
NM_001141949	Nmi	1.8
NM_027320	Il15	1.8
NM_001025313	Tapbp	1.8
NM_009808	Casp12	1.7
NM_011486	Stat3	1.7
NM_001159393	Irf1	1.7
NM_011832	Insrr	1.6
NM_146125	IltpkA	1.6
NM_008357	Il15	1.6
NR_045032	Gdap10	1.6
NM_019949	Ube2l6	1.6
NM_001005748	Phactr1	1.6
NM_001005748	Phactr1	1.6
NM_198004	5133401N09Rik	1.6
NM_001177351	AW112010	1.5
Gene ID	Description	Fold Change
------------	-------------	-------------
NM_213659	Stat3	1.5
NM_126166	Tlr3	1.5
NM_145211	Oas1a	1.5
NM_009546	Trim25	1.5
NM_027383	Ilf1h1	1.5
ENSMUST00000170226	Plec	1.5
NM_183162	BC006779	1.5
ENSMUST00000112869	Prune2	1.5
NM_001005748	Phactr1	1.4
NM_011163	Eif2ak2	1.4
NM_010531	I18bp	1.4
NM_018851	Samhd1	1.4
NM_194346	Rnf31	1.4
NM_194346	Rnf31	1.3
NM_026913	Mitd1	1.3
NM_183426	Sbno2	1.3
NM_001033196	Znfx1	1.3
NM_011190	Psme2	1.3
NM_001139520	Samhd1	1.3
NM_009895	Cish	1.3
NM_028261	Tmem173	1.3
NM_001025208	LOC547349	1.3
NM_010398	H2-T23	1.3
NM_008230	Hdc	1.3
NM_011710	Wars	1.3
NM_011190	Psme2	1.3
NM_007707	Socs3	1.3
NM_001014996	Cenpj	1.3
NM_009834	Ccrn4l	1.3
NM_008744	Ntn1	1.3
ENSMUST000000100186	LOC100503847	1.2
NM_001199967	Gm11127	1.2
NM_001243760	Ciita	1.2
NM_001038587	Adar	1.2
NM_028035	Snx10	1.2
ENSMUST00000054384	Trim56	1.2
NM_001141981	Rbm43	1.2
NM_001164314	Wars	1.2
NM_028807	1200009i06Rik	1.2
NM_028035	Snx10	1.2
NM_030743	Rnf114	1.1
NM_201373	Trim56	1.1
NM_030711	Erap1	1.1
NM_001243916	Trim34b	1.1
NM_172767	Vwa5a	1.1
NM_172767	Vwa5a	1.1
Gene ID	Gene Symbol or Name	Induction
----------------	----------------------	-----------
NM_001001892	H2-K1	1.1
NM_145153	Oas1f	1.1
NM_011189	Psme1	1.1
NM_011390	Slc12a7	1.1
NM_010392	H2-Q2	1.1
NM_144830	Tmem106a	1.1
NM_011150	Lgals3bp	1.1
NM_001033136	Fam82a2	1.0
NM_181402	Parp11	1.0
NM_001081032	Gm8909	1.0
NM_010393	H2-Q5	1.0
NR_038025	4933412E12Rik	1.0

Genes are ordered according to their induction (log 2-transformed) by IFN-γ in WT cells (column: WT-g/WT-0). Genes that appear more than once have different probe set IDs for each listing. Data are extracted from the Table S4.
Table S4. Microarray Evaluation Showing the Effect of S727A Mutation and Cdk8 Silencing on Expression of IFN-γ-Induced Genes

Probe set ID	Genbank AC	Gene symbol	Gene name	WT-siCtrl-g/WT-siCtrl-0	SA-siCtrl-g/SA-siCtrl-0	SA-siCdk8-0/SA-siCtrl-0	WT-siCdk8-0/WT-siCtrl-0	SA-siCdk8-0/SA-siCtrl-0	p-value: WT-siCtrl-g/WT-siCtrl-0	p-value: SA-siCtrl-g/WT-siCtrl-0														
A_55_P1981461	AK017289	5430410E06Rik	RIKEN cDNA 5430410E06 gene	1.8	1.7	0.8	0.0	-0.1	0.0	0.3	0.00	0.00												
A_66_P101942	AK019325	Gm9706	predicted gene 9706	3.4	3.9	1.3	-0.2	-0.1	-0.1	-0.4	0.00	0.01												
A_55_P2276224	AK034303	9330175E14Rik	RIKEN cDNA 9330175E14 gene	3.8	2.7	-0.3	0.0	-0.2	-0.1	-0.4	0.00	0.45												
A_55_P2470474	AK087205	9530082P21Rik	RIKEN cDNA 9530082P21 gene	1.7	2.0	1.1	-0.2	0.0	-0.3	-0.3	0.00	0.00												
A_66_P106060	AK090152	Dtx3l	deltex 3-like (Drosophila)	2.3	1.8	0.4	-0.2	-0.1	0.0	-0.6	0.00	0.52												
A_55_P2079535	AK135804	Gm10839	predicted gene 10839	2.7	3.0	0.3	0.3	-0.1	0.1	0.2	0.00	0.48												
A_55_P2016459	AK156907	Cxcl10	chemokine (C-X-C motif) ligand 10	1.5	3.2	2.1	-0.2	-0.8	0.0	0.1	0.00	0.00												
A_55_P2066578	BC010546	Ifi204	interferon activated gene 204	3.5	2.7	2.6	0.1	0.0	0.9	0.0	0.00	0.00												
A_66_P124724	ENSMUST0000030584	Rnf19b	ring finger protein 19B	2.4	1.9	0.2	0.0	-0.4	0.1	0.1	0.00	0.48												
A_55_P2358679	ENSMUST0000054384	Trim56	tripartite motif-containing 56	1.2	1.1	0.2	-0.2	-0.2	0.0	-0.2	0.00	0.28												
A_52_P480044	ENSMUST0000073997	BC023105	cDNA sequence BC023105	5.2	4.7	-0.6	-1.1	-0.9	-0.1	0.2	0.00	0.08												
A_51_P159503	ENSMUST0000093902	Rnf213	ring finger protein 213	1.9	1.8	0.1	-0.4	-0.1	0.1	0.1	0.00	0.88												
A_55_P2035003	ENSMUST00000100186	LOC100503847	hypothetical LOC100503847	1.2	1.3	-0.3	0.0	0.4	-0.1	0.0	0.02	0.61												
A_55_P2141943	ENSMUST00000102642	Ube2l6	ubiquitin-conjugating enzyme E2L 6	2.1	2.4	-0.8	-0.3	-0.1	-0.5	-0.1	0.00	0.08												
A_55_P2025612	ENSMUST00000104958	Psme2	proteasome (prosome, macropain) 28 subunit, beta	1.8	0.6	2.3	-0.1	0.1	0.0	-0.1	0.00	0.00												
A_55_P2042096	ENSMUST00000112869	Prune2	prune homolog 2	1.5	2.2	0.8	-0.7	-0.5	-0.1	0.2	0.01	0.06												
Acc	Gene ID	Gene Name	Description	1.9	0.8	-1.0	-0.4	-0.1	0.1	-0.2	0.00	0.00												
-------	------------------	--------------------	--	-----	-----	-------	-------	-------	-----	-------	------	------												
A_55_P2038983	ENSMUST00000114230	Psm9	proteasome (prosome, macropain) subunit, beta type 9 (large multifunctional peptidase 2)	1.9	0.8	-1.0	-0.4	-0.1	0.1	-0.2	0.00	0.00												
A_55_P2006983	ENSMUST00000170226	Plec	plectin	1.5	1.4	0.0	0.0	0.1	0.2	0.2	0.0	0.98												
A_55_P2049647	NM_001001892	H2-K1	histocompatibility 2, K1, K region	1.1	0.6	0.9	-0.2	-0.2	0.1	0.0	0.00	0.00												
A_55_P2137049	NM_001004174	AA467197	expressed sequence AA467197	3.6	3.8	4.0	-1.1	-0.5	0.3	0.5	0.00	0.00												
A_52_P605517	NM_001005748	Phactr1	phosphatase and actin regulator 1	1.6	0.3	-0.4	-0.1	-0.3	-0.1	-0.9	0.00	0.29												
A_51_P182572	NM_001005748	Phactr1	phosphatase and actin regulator 1	1.6	0.3	-0.5	-0.3	-0.3	-0.2	-0.9	0.00	0.17												
A_55_P2068233	NM_001005748	Phactr1	phosphatase and actin regulator 1	1.4	0.4	-0.4	-0.1	-0.3	-0.2	-0.8	0.00	0.36												
A_66_P117933	NM_001005858	I830012O16Rik	RIKEN cDNA I830012O16 gene	3.7	3.5	3.6	-0.8	-0.5	-0.6	-0.7	0.00	0.36												
A_55_P1972872	NM_001005858	I830012O16Rik	RIKEN cDNA I830012O16 gene	2.5	2.8	0.4	-1.0	-0.3	-0.5	-0.2	0.01	0.72												
A_55_P2174541	NM_001013371	Dtx3l	deltax 3-like (Drosophila)	4.1	3.6	0.6	-0.2	-0.3	0.4	0.1	0.00	0.05												
A_55_P2059154	NM_001013371	Dtx3l	deltax 3-like (Drosophila)	2.1	2.4	0.5	-0.2	-0.2	0.0	0.2	0.00	0.06												
A_55_P2112787	NM_001013828	Ilgplb	interferon inducible GTPase 1B	1.6	0.8	-1.0	-0.7	-0.5	-0.1	0.1	0.00	0.01												
A_51_P174434	NM_001014996	Cenpj	centromere protein J	1.3	1.2	-0.3	-0.2	0.0	0.1	0.4	0.00	0.37												
A_55_P1966660	NM_001025208	LOC547349	similar to MHC class I antigen precursor	1.3	0.9	0.8	-0.3	-0.4	-0.4	-0.3	0.00	0.00												
A_55_P2149763	NM_001025313	Tappb	TAP binding protein	1.8	1.0	0.9	0.0	0.0	0.2	0.0	0.00	0.00												
A_51_P233027	NM_001033136	Fam82a2	family with sequence similarity 82, member A2	1.0	0.7	-0.2	0.0	0.0	0.3	0.1	0.01	0.72												
A_55_P2076757	NM_001033196	Znfx1	zinc finger, NFX1-type containing 1	1.3	1.4	-0.4	-0.1	-0.1	0.0	-0.1	0.00	0.11												
A_66_P113043	NM_001033207	Nlrc5	NLR family, CARD domain containing 5	6.8	5.3	0.1	-0.3	-0.4	0.2	0.0	0.00	0.88												
Gene ID	Annotation	Description	1	2	3	4	5	6	7	8	9	10	11	12										
--------	------------	-------------	---	---	---	---	---	---	---	---	---	---	---	---										
A_55_P2016034	NM_001033307	Nlrc5	1.0	1.9	1.2	0.0	0.0	0.2	-0.3	0.00	0.00													
A_55_P1962918	NM_001033450	Mnda	predicted gene 4951	8.7	7.3	-1.1	-1.1	-1.3	-0.2	-0.3	0.00	0.00												
A_55_P2015405	NM_001034859	Gm4841	predicted gene 4841	9.8	6.8	-3.0	-1.2	-2.0	-0.1	0.0	0.00	0.00												
A_55_P1968838	NM_001037713	Xaf1	predicted gene 1	4.9	5.1	-1.1	-0.3	-0.2	0.0	-0.2	0.00	0.01												
A_55_P1969078	NM_001038587	Adar	predicted gene 203	1.2	1.4	-0.1	-0.2	-0.3	-0.1	0.0	0.01	0.91												
A_51_P514712	NM_001039530	Parp14	predicted gene 203	5.4	4.7	0.2	-0.5	-0.5	0.0	0.0	0.00	0.68												
A_55_P1978521	NM_001039646	Gbp10	predicted gene 4951	2.2	7.3	-1.1	-1.1	-1.3	-0.2	-0.3	0.00	0.00												
A_55_P2045813	NM_001039647	Gbp11	predicted gene 4951	6.3	2.7	-2.9	-0.3	-0.2	0.0	-0.6	0.00	0.00												
A_55_P1959064	NM_0010398202	Ili203	predicted gene 4951	6.3	2.7	-2.9	-0.3	-0.2	0.0	-0.6	0.00	0.00												
A_52_P494730	NM_001045540	Gm12185	predicted gene 4951	3.5	1.4	-1.2	-1.0	-0.2	0.1	0.0	0.00	0.00												
A_55_P1956160	NM_001081032	Gm8909	predicted gene 4951	1.0	0.8	0.6	-0.2	-0.3	-0.3	0.03	0.08													
A_55_P2008016	NM_001081083	Arm3	predicted gene 4951	2.2	0.7	-1.6	0.1	0.0	0.1	-0.1	0.00	0.00												
A_55_P1959064	NM_001083925	Oas1	predicted gene 4951	1.1	0.1	-1.1	-0.1	0.0	0.0	-0.1	0.00	0.00												
A_66_P125389	NM_001011475	F830016B08Rik	predicted gene 4951	6.5	4.5	-2.0	-1.2	-1.5	-0.2	-0.2	0.00	0.00												
A_55_P2015405	NM_0011114679	9930111J21Rik1	predicted gene 4951	3.0	1.2	-0.3	-0.6	-0.2	0.1	0.0	0.00	0.37												
A_55_P2057986	NM_0011315115	Gm12250	predicted gene 4951	5.2	4.1	-1.1	-0.5	-0.6	-0.1	-0.1	0.00	0.01												
A_55_P1994042	NM_001139519	Zbp1	predicted gene 4951	2.7	4.2	1.6	0.1	-0.4	0.0	0.1	0.00	0.00												
A_55_P2019699	NM_001139520	Samhd1	SAM domain and HD domain, 1	1.3	1.5	0.5	-0.4	-0.3	-0.1	-0.1	0.00	0.16												
A_55_P2034705	NM_001141949	Nmi	N-myc (and STAT) interactor	1.8	1.5	0.3	-0.1	-0.1	0.2	0.0	0.00	0.23												
A_55_P2017491	NM_001141981	Rbm43	RNA binding motif protein 43	1.2	0.7	-0.1	0.1	0.2	0.2	0.0	0.00	0.79												
A_55_P2062246	NM_001145164	Tgtp2	T-cell specific GTPase 2	9.5	9.2	-0.6	-0.8	-0.8	1.1	0.0	0.00	0.07												
A_55_P1989225	NM_001145164	Tgtp2	T-cell specific GTPase 2	5.5	4.9	-0.6	-1.3	-0.5	-0.1	0.0	0.00	0.06												
A_55_P2039061	NM_001146007	9230105E10Rik	RIKEN cDNA 9230105E10 gene	1.7	0.8	-1.6	0.1	0.2	0.1	-0.1	0.00	0.00												
A_55_P2163857	NM_001146007	9230105E10Rik	RIKEN cDNA 9230105E10 gene	1.7	0.8	-1.3	-0.2	0.1	0.1	0.1	0.00	0.00												
A_55_P2064652	NM_001146007	9230105E10Rik	RIKEN cDNA 9230105E10 gene	1.5	0.5	-1.3	0.5	0.1	0.0	-0.2	0.01	0.00												
A_55_P1990633	NM_001146275	Iigp1	interferon inducible GTPase 1	7.7	7.3	-0.7	-1.3	-1.1	0.8	0.2	0.00	0.57												
A_55_P2410304	NM_001146275	Iigp1	interferon inducible GTPase 1	4.5	4.0	-0.7	-1.2	-1.2	-0.2	-0.4	0.00	0.06												
A_55_P2000067	NM_001159393	Irf1	interferon regulatory factor 1	1.7	1.7	-0.1	-0.3	-0.3	-0.1	0.1	0.00	0.87												
A_55_P2114938	NM_001159417	Irf9	interferon regulatory factor 9	3.0	2.1	-0.1	-0.3	-0.4	-0.2	-0.5	0.00	0.81												
A_55_P2130970	NM_001163576	Parp10	poly (ADP-ribose) polymerase family, member 10	3.8	2.9	0.0	-0.2	-0.2	0.7	0.1	0.00	0.99												
A_66_P104314	NM_001168294	Serpina3f	serine (or cysteine) peptidase inhibitor, clade A, member 3F	6.2	4.7	-1.1	-1.1	-1.5	-0.1	-0.3	0.00	0.01												
A_55_P2104975	NM_001168294	Serpina3f	serine (or cysteine) peptidase inhibitor, clade A, member 3F	5.0	3.1	-0.5	-1.2	-1.3	-0.2	-0.7	0.00	0.16												
A_66_P110633	NM_001168660	Apol9b	apolipoprotein L 9b	3.5	4.1	0.6	0.0	0.0	0.0	0.0	0.00	0.05												
A_52_P1020860	NM_001177351	AW112010	expressed sequence AW112010	1.5	1.2	-0.3	0.1	0.0	0.4	0.2	0.04	0.66												
A_51_P175567	NM_001190466	Dact1	dapper homolog 1,	1.3	1.6	-3.6	-0.5	0.0	0.2	0.3	0.00	0.00												
Gene Symbol	Gene Name	Description	Effect Size	Interferon	Histidine	Clade D, Member 1	Peptidase A, Member 31																	
------------	-----------	-------------	-------------	------------	-----------	------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------
A_55_P2177899	NM_001190466	Dact1	antagonist of beta-catenin (xenopus)	1.3	1.3	-3.2	-0.4	-0.1	0.3	0.3	0.00	0.00												
A_55_P1966774	NM_001199940	Serpina3i	serine (or cysteine) peptidase inhibitor, clade A, member 31	3.5	1.4	-1.0	-0.9	-1.0	-0.8	-1.4	0.01	0.37												
A_55_P2142232	NM_001199940	Serpina3i	serine (or cysteine) peptidase inhibitor, clade A, member 31	2.3	1.5	-1.2	-0.8	-0.7	-0.4	0.0	0.00	0.00												
A_55_P2125049	NM_001199967	Gm11127	predicted gene 11127	1.2	0.7	0.9	-0.3	-0.3	-0.2	-0.1	0.00	0.00												
A_55_P2081105	NM_001204910	Al607873	expressed sequence Al607873	2.8	3.7	2.8	0.8	0.2	0.5	0.6	0.00	0.00												
A_55_P2179074	NM_001243760	Ciita	class II transactivator	1.2	1.3	0.1	-0.2	-0.3	-0.2	0.0	0.02	0.90												
A_55_P1973229	NM_001243916	Trim34b	tripartite motif-containing 34B	1.1	0.7	-0.3	-0.2	0.1	0.2	-0.2	0.00	0.31												
A_55_P2103837	NM_001256005	Gbp4	guanylate binding protein 4	4.6	1.4	-3.2	-0.6	-0.6	0.0	-0.1	0.00	0.00												
A_55_P2091461	NM_007609	Casp4	caspase 4, apoptosis-related cysteine peptidase	3.1	2.0	3.5	0.3	-0.1	0.4	0.2	0.00	0.00												
A_55_P1984168	NM_007609	Casp4	caspase 4, apoptosis-related cysteine peptidase	2.9	2.0	3.5	0.3	0.0	0.3	0.3	0.00	0.00												
A_51_P474459	NM_007707	Soc53	suppressor of cytokine signaling 3	1.3	1.4	0.6	-0.2	-0.4	0.0	-0.2	0.00	0.01												
A_55_P2091676	NM_007987	Fas	Fas (TNF receptor superfamily member 6)	1.4	1.8	-1.7	0.3	-0.8	0.3	-0.6	0.01	0.00												
A_51_P468140	NM_008223	Serpind1	serine (or cysteine) peptidase inhibitor, clade D, member 1	1.9	1.8	0.0	-0.5	-0.1	0.0	0.0	0.00	0.95												
A_51_P254656	NM_008230	Hdc	histidine decarboxylase	1.3	0.8	-0.5	-0.3	0.2	0.0	0.2	0.00	0.03												
A_52_P354823	NM_008320	Irf8	interferon regulatory factor 8	4.6	2.7	-2.1	-0.9	-1.3	-0.1	0.0	0.00	0.00												
A_55_P1981479	NM_008326	Irgm1	immunity-related GTPase family M member 1	5.8	4.5	-0.4	-0.4	-0.2	0.3	-0.1	0.00	0.13												
A_51_P262171	NM_008326	Irgm1	immunity-related	5.2	4.3	-0.1	-0.3	-0.3	0.2	-0.2	0.00	0.70												
Gene ID	Accession	Description	IFI204	IL47	IFI15	IFI15RA	NTR1	CXCL9	SERPINA3G	TRIM21	STAT1	PHILDA1	TNAIP2	TNAIP2										
------------	------------	--	--------	-------	-------	---------	-------	--------	------------	--------	--------	---------	--------	--------										
A_55_P1975560	NM_008329	Ifi204 interferon activated gene 204	4.0	3.1	2.8	0.4	0.1	1.0	0.2	0.0	0.0	0.0	0.0	0.0										
A_55_P1998416	NM_008330	Ifi47 interferon gamma inducible protein 47	6.1	5.9	-0.3	0.0	0.0	0.6	0.2	0.0	0.0	0.68	0.0	0.68										
A_51_P327751	NM_008331	Ifit1 interferon-induced protein with tetraicosopeptide repeats 1	4.7	4.4	0.5	-0.5	-0.6	-0.3	-0.5	0.0	0.47	0.0	0.0	0.47										
A_52_P15461	NM_008357	Ifi15 interleukin 15	1.6	1.1	-0.4	0.0	0.4	-0.1	0.2	0.0	0.1	0.1	0.0	0.1										
A_55_P2041738	NM_008358	Ifi15ra interleukin 15 receptor, alpha chain	2.6	2.4	-0.2	-0.7	-0.7	-0.2	-0.3	0.0	0.59	0.0	0.0	0.59										
A_51_P271503	NM_008362	Il1r1 interleukin 1 receptor, type I	1.0	0.7	-1.4	0.2	-0.7	0.3	-0.2	0.0	0.0	0.0	0.0	0.0										
A_55_P2096422	NM_008381	Inhbb inhibin beta-B	1.4	-0.2	1.9	0.0	0.3	0.2	0.3	0.0	0.0	0.0	0.0	0.0										
A_55_P2000062	NM_008390	Irf1 interferon regulatory factor 1	4.3	3.8	0.0	-0.1	-0.1	0.1	0.1	0.0	0.95	0.0	0.0	0.95										
A_51_P461665	NM_008599	Cxcl9 chemokine (C-X-C motif) ligand 9	1.0	3.1	2.2	0.3	-0.7	-0.1	0.1	0.0	0.0	0.0	0.0	0.0										
A_55_P2162935	NM_008744	Ntn1 netrin 1	1.3	0.6	0.0	-0.1	-0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0										
A_51_P326191	NM_009251	Serpina3g serine (or cysteine) peptidase inhibitor, clade A, member 3G	5.3	4.0	1.2	-0.9	-1.1	-0.5	-1.1	0.0	0.0	0.0	0.0	0.0										
A_55_P2134246	NM_009256	Serpinb9 serine (or cysteine) peptidase inhibitor, clade B, member 9	1.1	0.6	2.1	-0.2	-0.2	-0.2	-0.2	0.0	0.0	0.0	0.0	0.0										
A_55_P1962344	NM_009277	Trim21 tripartite motif-containing 21	4.2	3.8	-1.4	-0.3	-0.2	0.3	0.1	0.0	0.0	0.0	0.0	0.0										
A_55_P1955906	NM_009283	Stat1 signal transducer and activator of transcription 1	3.3	2.9	-0.4	-0.5	-0.4	0.0	0.2	0.0	0.0	0.33	0.0	0.33										
A_51_P195958	NM_009344	Phlda1 pleckstrin homology-like domain, family A, member 1	1.3	0.1	1.9	-0.4	-0.1	-0.1	0.1	0.0	0.0	0.0	0.0	0.0										
A_55_P2098697	NM_009396	Tnfaip2 tumor necrosis factor, alpha-induced protein 2	2.0	0.7	-0.6	0.1	-0.2	0.3	0.2	0.0	0.0	0.0	0.0	0.0										
A_51_P364485	NM_009396	Tnfaip2 tumor necrosis factor, alpha-	2.0	0.7	-0.6	0.1	-0.2	0.3	0.2	0.0	0.0	0.0	0.0	0.0										
Accession	Gene ID	Gene Symbol	Gene Description	Fold Change	p-value	p-value																		
-----------	---------	-------------	------------------	-------------	-------------	-------------	-------------	-------------	-------------	---------	---------													
A_55_P2098071	NM_009546	Trim25	trimpartite motif-containing 25	1.5	1.4	-0.7	-0.2	-0.3	-0.4	0.00	0.01													
A_55_P2078633	NM_009780	C4b	complement component 4B (Childo blood group)	1.0	0.9	1.9	0.0	0.0	0.4	-0.2	0.04	0.00												
A_55_P1983853	NM_009808	Casp12	caspase 12	1.7	1.2	0.6	0.0	-0.1	0.2	-0.3	0.00	0.00												
A_55_P1968723	NM_009834	Ccrn4l	CCR4 carbon catabolite repression 4-like (S. cerevisiae)	1.3	1.2	0.8	0.1	0.0	0.1	0.4	0.00	0.01												
A_51_P470715	NM_009895	Cish	cytokine inducible SH2-containing protein	1.3	1.4	0.5	-0.1	-0.2	0.0	-0.2	0.00	0.01												
A_51_P279606	NM_009896	Socs1	suppressor of cytokine signaling 1	3.6	2.8	-1.0	-0.2	-0.2	-0.1	-0.2	0.00	0.00												
A_66_P121787	NM_010156	Samd9l	sterile alpha motif domain containing 9-like	2.6	2.7	0.1	0.0	-0.1	0.2	0.0	0.00	0.85												
A_55_P2151601	NM_010156	Samd9l	sterile alpha motif domain containing 9-like	2.4	2.6	0.2	0.1	0.0	0.1	0.0	0.00	0.56												
A_65_P08971	NM_010171	F3	coagulation factor III	1.3	1.0	-2.1	-0.2	-0.1	0.2	0.0	0.01	0.00												
A_51_P203955	NM_010260	Gbp2	guanylate binding protein 2	8.1	8.0	-1.8	-0.8	-1.1	-0.2	-0.2	0.00	0.00												
A_51_P425048	NM_010392	H2-Q2	histocompatibility 2, Q region locus 2	1.2	0.6	1.0	-0.3	-0.1	-0.1	-0.1	0.00	0.00												
A_51_P219789	NM_010392	H2-Q2	histocompatibility 2, Q region locus 2	1.1	0.6	0.9	-0.2	0.0	0.0	0.0	0.00	0.00												
A_51_P400752	NM_010392	H2-Q5	histocompatibility 2, Q region locus 5	1.0	0.6	0.8	-0.3	-0.1	0.0	0.0	0.00	0.00												
A_51_P237754	NM_010398	H2-T23	histocompatibility 2, T region locus 23	1.3	0.7	0.8	-0.3	-0.3	-0.2	-0.1	0.00	0.00												
A_51_P359570	NM_010501	Ilf3	interferon-induced protein with tetratricopeptide repeats 3	4.1	2.8	0.9	-0.6	-0.5	-0.2	-0.3	0.00	0.07												
A_52_P577384	NM_010531	Il18bp	interleukin 18 binding protein	1.4	0.9	0.2	0.1	0.1	0.1	0.1	0.00	0.41												
A_51_P470079	NM_010555	Il1r2	interleukin 1 receptor, type II	1.1	0.1	-1.3	0.8	0.1	0.4	-0.1	0.00	0.00												
Gene Name	Accession	Description	A_51_P212420	A_51_P345367	A_51_P390538	A_52_P467726	A_51_P319460	A_51_P359636	A_52_P559919	A_51_P101196	A_55_P1996862	A_55_P2025611	A_51_P288737	A_51_P421734	A_55_P1991219	A_55_P2017645								
--------------	-------------	---	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------								
Lama4	NM_010681	laminin, alpha 4	2.1	6.1	2.4	1.2	1.4	1.1	1.4	1.1	1.3	1.3	1.6	1.2	1.7	3.2								
Psmb8	NM_010724	proteasome (prosome, macropain) subunit, beta type 8 (large multifunctional peptidase 7)	1.2	5.2	2.7	0.3	1.1	1.1	1.4	1.0	1.0	0.9	2.7	0.3	0.7	3.3								
Mpeg1	NM_010821	macrophage expressed gene 1	0.4	-1.6	-0.4	-0.2	-0.1	-0.1	0.0	0.5	0.0	0.0	0.4	0.0	0.7	3.3								
Nsg1	NM_010942	neuron specific gene family member 1	0.6	-0.2	0.0	0.1	0.3	0.1	0.0	2.1	0.1	0.0	0.1	0.3	0.7	3.3								
Osmr	NM_011019	oncostatin M receptor	0.0	-0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Lgals3bp	NM_011150	lectin, galactoside-binding, soluble, 3 binding protein	0.4	0.7	0.4	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Eil2ak2	NM_011163	eukaryotic translation initiation factor 2-alpha kinase 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Psme1	NM_011189	proteasome (prosome, macropain) 28 subunit, alpha	0.2	-0.1	-0.1	-0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Psme2	NM_011190	proteasome (prosome, macropain) 28 subunit, beta	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Psme2	NM_011190	proteasome (prosome, macropain) 28 subunit, beta	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Ccl2	NM_011333	chemokine (C-C motif) ligand 2	0.4	-0.3	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Slc12a7	NM_011390	solute carrier family 12, member 7	0.5	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Stat3	NM_011486	signal transducer and activator of transcription 3	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0								
Tap2	NM_011530	transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)	0.2	-0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0							
Accession	NM_011579	Tgtp1	T-cell specific GTPase 1	5.7	5.3	-0.4	-1.0	-0.6	0.1	0.2	0.00	0.40												
-----------	------------	---------	--------------------------	-----	-----	------	------	------	-----	-----	------	------												
A_55_P2017636	NM_011580	Thbs1	thrombospondin 1	1.1	0.0	1.5	0.5	-0.7	0.8	-0.7	0.01	0.00												
A_55_P2082902	NM_011710	Wars	tryptophanyl-tRNA synthetase	1.3	1.0	-0.4	-0.3	0.1	0.2	0.2	0.00	0.23												
A_55_P1983708	NM_011832	Insrr	insulin receptor-related receptor	1.6	0.8	-0.6	-0.1	0.0	-0.1	-0.1	0.00	0.02												
A_51_P387123	NM_011854	Oasl2	2'-5' oligoadenylate synthetase-like 2	6.7	6.3	-0.1	-0.4	-0.2	-0.2	-0.2	0.00	0.93												
A_55_P2114953	NM_011909	Usp18	ubiquitin specific peptidase 18	3.3	3.8	0.8	-0.6	-0.3	-0.3	-0.1	0.00	0.19												
A_51_P423976	NM_013498	Crem	cAMP responsive element modulator	1.4	1.7	2.2	-0.4	-0.2	-0.2	0.1	0.00	0.00												
A_52_P460957	NM_013498	Crem	cAMP responsive element modulator	1.3	1.6	2.0	-0.3	-0.1	-0.3	0.0	0.00	0.00												
A_51_P369803	NM_013585	Psmb9	proteasome (prosome, macropain) subunit, beta type 9 (large multifunctional peptidase 2)	5.7	5.1	-2.1	-0.3	-0.1	0.1	0.1	0.00	0.00												
A_51_P514085	NM_013606	Mx2	myxovirus (influenza virus) resistance 2	3.0	3.6	0.6	0.0	0.0	0.1	0.0	0.00	0.27												
A_52_P570266	NM_013640	Psmb10	proteasome (prosome, macropain) subunit, beta type 10	2.5	2.2	0.4	-0.2	-0.2	0.0	-0.2	0.00	0.12												
A_51_P436652	NM_013654	Ccl7	chemokine (C-C motif) ligand 7	1.4	3.2	-2.3	0.8	-0.2	1.3	0.6	0.00	0.00												
A_51_P100327	NM_013683	Tap1	transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	4.8	4.3	-2.2	-0.5	-0.1	0.7	0.2	0.00	0.00												
A_51_P469968	NM_013819	H2-M3	histocompatibility 2, M region locus 3	1.6	1.6	-1.5	0.2	0.4	0.4	0.5	0.00	0.00												
A_66_P128537	NM_015783	Isg15	ISG15 ubiquitin-like modifier	4.0	4.4	1.3	-0.2	0.0	-0.2	-0.5	0.00	0.01												
A_55_P2103698	NM_015783	Isg15	ISG15 ubiquitin-like modifier	3.9	4.7	1.5	-0.1	-0.1	-0.2	-0.1	0.00	0.00												
A_51_P421876	NM_016850	Irf7	interferon regulatory factor 7	2.9	3.4	-0.2	-0.7	-0.1	-0.2	-0.1	0.00	0.72												
A_55_P2472435	NM_018734	Gbp3	guanylate binding protein 3	7.0	6.7	-1.3	-0.6	-0.6	-0.1	-0.2	0.00	0.00												
Accession	Gene ID	Description	Log2 Fold Change	1	2	3	4	5	6	7	8	9	10											
-----------	---------	-------------	-----------------	---	---	---	---	---	---	---	---	---	----											
A_51_P112355	NM_018738	Igtp	interferon gamma induced GTPase	8.6	8.8	-0.5	-0.4	-0.5	0.6	0.2	0.00	0.13												
A_52_P466090	NM_018851	Samhd1	SAM domain and HD domain, 1	1.4	1.5	0.7	-0.3	-0.2	0.1	0.0	0.00	0.01												
A_55_P2137611	NM_019440	Irgm2	immunity-related GTPase family M member 2	7.5	7.2	-0.8	-0.6	-0.5	0.2	-0.1	0.00	0.03												
A_55_P2031125	NM_019949	Ube2l6	ubiquitin-conjugating enzyme E2L 6	1.6	1.4	-0.9	-0.2	-0.2	-0.3	-0.4	0.00	0.00												
A_55_P2059606	NM_019963	Stat2	signal transducer and activator of transcription 2	3.3	2.5	-0.5	-0.3	-0.2	-0.1	-0.2	0.00	0.08												
A_55_P2158404	NM_020557	Cmpk2	cytidine monophosphate (UMP-CMP) kinase 2, mitochondrial	2.9	0.8	-2.1	-0.2	0.0	0.0	-0.5	0.00	0.00												
A_52_P186937	NM_020557	Cmpk2	cytidine monophosphate (UMP-CMP) kinase 2, mitochondrial	2.5	0.7	-1.8	-0.1	0.1	-0.1	-0.5	0.00	0.00												
A_55_P2016462	NM_021274	Cxcl10	chemokine (C-X-C motif) ligand 10	6.2	5.6	2.6	-0.6	-0.8	-0.5	-0.2	0.00	0.00												
A_66_P139683	NM_021394	Zbp1	Z-DNA binding protein 1	2.7	3.5	0.8	-0.5	-0.4	0.0	0.2	0.00	0.13												
A_51_P464703	NM_021443	Ccl8	chemokine (C-C motif) ligand 8	2.5	2.0	-2.0	0.0	-0.2	0.1	-0.1	0.00	0.00												
A_51_P248666	NM_021893	Cd274	CD274 antigen	5.7	4.4	-0.9	-0.8	-0.8	-0.2	0.1	0.00	0.04												
A_52_P338066	NM_023137	Ubd	ubiquitin D	1.9	3.2	1.3	0.3	0.2	-0.1	0.3	0.00	0.00												
A_55_P2041828	NM_023279	Tubb3	tubulin, beta 3	2.7	1.3	-0.6	-0.4	0.4	0.0	0.5	0.00	0.05												
A_51_P304170	NM_023386	Rtp4	receptor transporter protein 4	5.0	5.1	-0.1	-0.2	-0.1	0.0	-0.2	0.00	0.96												
A_55_P2026233	NM_023738	Uba7	ubiquitin-like modifier activating enzyme 7	2.6	1.3	0.0	-0.3	0.0	0.2	-0.4	0.00	0.98												
A_52_P267391	NM_023835	Trim12a	tripartite motif-containing 12A	2.5	2.5	-1.5	0.0	0.1	-0.1	0.1	0.00	0.00												
A_55_P2064659	NM_023835	Trim12a	tripartite motif-containing 12A	2.1	1.5	-1.4	-0.1	0.2	0.2	0.0	0.00	0.00												
A_51_P187842	NM_025829	Eif4e3	eukaryotic translation initiation factor 4E member 3	1.4	0.6	-2.3	0.1	0.4	0.0	0.0	0.00	0.00												
A_52_P679860	NM_025992	Herc6	hect domain and	2.2	2.1	0.4	-0.2	0.1	0.0	0.7	0.00	0.19												
Accession	Symbol	Description	RLD 6	2.2	2.0	0.6	-0.5	0.1	0.1	0.3	0.00	0.20												
-----------	----------	--	-------	-----	-----	-----	------	-----	-----	-----	------	------												
A_52_P64514	NM_025992	Herc6	hect domain and RLD 6	1.1	1.0	1.5	0.2	-0.6	0.5	-0.4	0.02	0.00												
A_52_P641758	NM_026637	Ggct	gamma-glutamyl cyclotransferase	0.6	0.5	-0.4	0.02	0.00	0.20															
A_66_P122110	NM_026913	Mtd1	MIT, microtubule interacting and transport, domain containing 1	0.5	0.4	-0.3	0.02	0.00	0.00															
A_51_P414889	NM_027320	Il35	interferon-induced protein 35	0.3	0.2	-0.2	0.00	0.00	0.00															
A_55_P1978987	NM_027835	Ifih1	interferon induced with helicase C domain 1	0.3	0.2	-0.2	0.00	0.00	0.00															
A_55_P2005783	NM_027835	Ifih1	interferon induced with helicase C domain 1	0.3	0.2	-0.2	0.00	0.00	0.00															
A_51_P120093	NM_028035	Snx10	sorting nexin 10	0.5	0.4	-0.3	0.02	0.00	0.00															
A_66_P110343	NM_028035	Snx10	sorting nexin 10	0.5	0.4	-0.3	0.02	0.00	0.00															
A_51_P240801	NM_028261	Tmem173	transmembrane protein 173	0.5	0.4	-0.3	0.02	0.00	0.00															
A_55_P2022604	NM_028807	1200009I06Rik	RIKEN cDNA 1200009I06 gene	0.5	0.4	-0.3	0.02	0.00	0.00															
A_51_P165182	NM_028967	Botf2	basic leucine zipper transcription factor, ATF-like 2	0.5	0.4	-0.3	0.02	0.00	0.00															
A_55_P1996973	NM_029000	Gvin1	GTPase, very large interferon inducible 1	0.5	0.4	-0.3	0.02	0.00	0.00															
A_52_P535484	NM_029000	Gvin1	GTPase, very large interferon inducible 1	0.5	0.4	-0.3	0.02	0.00	0.00															
A_51_P444290	NM_029084	Slamf8	SLAM family member 8	0.5	0.4	-0.3	0.02	0.00	0.00															
A_55_P2068607	NM_029219	Rnf19b	ring finger protein 19B	0.5	0.4	-0.3	0.02	0.00	0.00															
A_55_P1964262	NM_029419	Apol7a	apolipoprotein L 7a	0.5	0.4	-0.3	0.02	0.00	0.00															
A_51_P497724	NM_029419	Apol7a	apolipoprotein L 7a	0.5	0.4	-0.3	0.02	0.00	0.00															
A_55_P2142863	NM_030253	Parp9	poly (ADP-ribose) polymerase family, member 9	0.5	0.4	-0.3	0.02	0.00	0.00															
A_66_P105689	NM_030684	Trim34a	tripartite motif-	0.5	0.4	-0.3	0.02	0.00	0.00															
Accession	Gene ID	Gene Description	Fold Change	Log2 FC	p-value	Fold Change	Log2 FC	p-value	Fold Change	Log2 FC	p-value													
-----------	---------	--	-------------	---------	---------	-------------	---------	---------	-------------	---------	---------													
A_55_P04284	NM_030711	*Erap1* endoplasmic reticulum aminopeptidase 1	1.1	1.0	-0.7	0.2	0.4	0.5	0.5	0.00	0.00													
A_55_P2166049	NM_030738	*Vmn1r65* vomeronasal 1 receptor 65	5.2	3.1	-1.6	-0.9	-1.6	-0.2	-0.6	0.00	0.00													
A_55_P1958255	NM_030743	*Rnf114* ring finger protein 114	1.1	1.0	-0.1	-0.1	0.2	0.1	0.1	0.78														
A_55_P1998957	NM_033541	*Oas1c* 2'-5' oligoadenylate synthetase 1C	1.1	1.0	-1.9	0.2	0.5	0.3	0.2	0.00	0.00													
A_55_P2066116	NM_033601	*Bcl3* B-cell leukemia/lymphoma 3	2.1	1.5	2.3	-0.4	-0.2	-0.7	-0.2	0.00	0.00													
A_55_P2115442	NM_053109	*Clec2d* C-type lectin domain family 2, member d	1.3	2.2	-1.1	0.1	-0.3	-0.1	-0.4	0.03	0.01													
A_52_P85174	NM_126166	*Tlr3* toll-like receptor 3	1.5	1.4	0.1	-0.3	0.1	0.3	0.1	0.00	0.95													
A_55_P2037121	NM_144830	*Tmem106a* transmembrane protein 106A	1.1	0.9	0.0	-0.3	0.2	0.2	0.2	0.00	1.00													
A_51_P154842	NM_145153	*Oas1f* 2'-5' oligoadenylate synthetase 1F	1.1	1.2	-0.2	0.0	0.1	0.3	0.1	0.04	0.71													
A_55_P1998943	NM_145211	*Oas1a* 2'-5' oligoadenylate synthetase 1A	1.5	1.7	0.4	0.2	0.1	-0.1	-0.1	0.03	0.55													
A_55_P2019719	NM_145227	*Oas2* 2'-5' oligoadenylate synthetase 2	2.0	1.8	-0.3	-0.1	0.3	-0.1	-0.1	0.01	0.79													
A_51_P505795	NM_145391	*Tapbpl* TAP binding protein-like	2.5	1.9	-0.3	-0.2	-0.1	-0.1	-0.1	0.00	0.28													
A_51_P463846	NM_145545	*Gbp6* guanylate binding protein 6	6.3	6.3	-1.0	-0.8	-0.5	0.0	-0.1	0.00	0.03													
A_51_P273609	NM_146125	*Iltpka* inositol 1,4,5-trisphosphate 3-kinase A	1.6	1.5	0.3	-0.4	-0.1	0.0	0.1	0.00	0.39													
A_52_P327664	NM_153564	*Gbp5* guanylate binding protein 5	2.0	1.5	-0.3	0.0	-0.3	-0.1	-0.5	0.00	0.50													
A_55_P2116059	NM_172393	*Aim1* absent in melanoma 1	2.0	0.2	3.6	-0.4	0.0	-0.4	0.0	0.00	0.00													
A_52_P385536	NM_172689	*Ddx58* DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	2.0	2.4	0.4	-0.5	-0.3	-0.4	-0.6	0.00	0.22													
A_55_P1965000	NM_172689	*Ddx58* DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	2.0	2.5	0.1	-0.5	-0.2	-0.5	-0.3	0.00	0.92													
A_51_P234113	NM_172729	*Nod1* nucleotide-binding	2.6	2.7	0.7	-0.3	-0.8	-0.2	-0.3	0.00	0.10													
Gene ID	Accession ID	Gene Symbol	Description	Log2 Fold Change																				
----------------	--------------	-------------	--	------------------	------------------	------------------	------------------	------------------	------------------	------------------														
A_55_P2131088	NM_172767	Vwa5a	von Willebrand factor A domain containing 5A	1.1	1.1	-0.3	-0.5	-0.3	-0.4	0.04	0.62													
A_66_P131754	NM_172767	Vwa5a	von Willebrand factor A domain containing 5A	1.1	1.2	0.1	-0.4	-0.2	-0.3	-0.2	0.04	0.95												
A_66_P140742	NM_172875	Adc	arginine decarboxylase	1.2	0.5	1.5	0.0	0.0	0.2	-0.2	0.01	0.00												
A_51_P214747	NM_172893	Parp12	poly (ADP-ribose) polymerase family, member 12	2.1	2.1	-0.1	-0.6	-0.2	-0.2	0.1	0.00	0.94												
A_55_P2107775	NM_173786	Apol9a	apolipoprotein L 9a	3.1	3.8	0.5	-0.1	0.0	0.1	0.3	0.00	0.15												
A_55_P2043367	NM_173786	Apol9a	apolipoprotein L 9a	3.1	3.7	0.6	0.0	0.0	0.0	0.0	0.00	0.02												
A_52_P650028	NM_175291	Dock10	dedicator of cytokinesis 10	1.3	0.0	-2.1	0.5	0.0	0.8	0.2	0.01	0.00												
A_51_P100852	NM_175449	Fam26f	family with sequence similarity 26, member F	1.9	2.1	0.3	-0.2	0.0	0.0	-0.2	0.00	0.58												
A_51_P501844	NM_175475	Cyp26b1	cytochrome P450, family 26, subfamily b, polypeptide 1	1.7	0.4	1.9	0.4	-0.5	0.6	-0.5	0.00	0.00												
A_55_P2006494	NM_177820	Apol10b	apolipoprotein L 10b	2.9	2.1	-1.9	0.3	0.0	0.4	0.0	0.00	0.00												
A_55_P2084418	NM_178005	Lrtrm2	leucine rich repeat transmembrane neuronal 2	2.3	1.7	1.0	-0.4	-1.1	-0.4	-0.8	0.00	0.00												
A_55_P2084413	NM_178005	Lrtrm2	leucine rich repeat transmembrane neuronal 2	1.2	1.6	1.0	-0.5	-0.9	0.0	-0.2	0.00	0.00												
A_55_P1959303	NM_178446	Rbm47	RNA binding motif protein 47	2.1	0.5	1.9	-0.1	-0.1	-0.1	-0.2	0.00	0.00												
A_55_P1959305	NM_178446	Rbm47	RNA binding motif protein 47	1.2	0.5	1.8	0.2	0.0	0.2	0.4	0.04	0.00												
A_52_P220783	NM_178745	Tmem229b	transmembrane protein 229B	1.4	0.8	-1.6	-0.1	-0.1	0.1	-0.1	0.00	0.00												
A_55_P2113256	NM_181402	Parp11	poly (ADP-ribose) polymerase family, member 11	1.0	0.6	0.0	-0.1	0.0	0.3	0.0	0.01	0.00												
A_55_P2135200	NM_181542	Sifn10-ps	schlafen 10, pseudogene	1.7	0.6	-1.3	-0.2	0.2	-0.1	-0.3	0.03	0.01												
GenBank acc	NM acc	Gene	Description	EXP	FPKM																			
-------------	--------	------	-------------	-----	------	------	------	------	------	------	------													
A_55_P2117656	NM_181545	Slfn8	schlafen 8	2.5	0.8	-1.8	-0.2	0.1	0.1	0.6	0.00	0.00												
A_55_P2026572	NM_183087	Fam189a1	family with sequence similarity 189, member A1	1.5	0.8	-3.3	0.7	0.5	0.9	0.4	0.00	0.00												
A_55_P1959953	NM_183162	BC006779	cDNA sequence BC006779	1.5	1.6	0.2	-0.1	0.0	0.1	0.1	0.00	0.64												
A_52_P616392	NM_183426	Sbno2	strawberry notch homolog 2 (Drosophila)	1.3	0.9	0.2	0.0	-0.2	0.2	-0.3	0.00	0.68												
A_55_P2052385	NM_194336	Mpa2l	macrophage activation 2 like	6.8	4.3	-2.7	-0.6	-0.2	0.1	-0.1	0.00	0.00												
A_55_P2052380	NM_194336	Mpa2l	macrophage activation 2 like	4.8	2.3	-2.3	-0.9	-0.6	-0.4	-0.4	0.00	0.00												
A_55_P2165074	NM_194346	Rnf31	ring finger protein 31	1.4	1.1	0.0	0.1	0.0	0.2	0.0	0.00	0.95												
A_51_P191469	NM_194346	Rnf31	ring finger protein 31	1.3	1.1	0.0	0.1	0.0	0.1	0.0	0.00	1.00												
A_52_P463977	NM_197986	Tmem140	transmembrane protein 140	4.4	3.6	1.1	-0.4	-0.4	0.2	-0.1	0.00	0.01												
A_52_P335609	NM_198004	5133401N09Rik	RIKEN cDNA 5133401N09 gene	1.6	1.5	-0.9	-0.3	-0.4	-0.1	-0.2	0.00	0.00												
A_51_P169693	NM_198095	Bst2	bone marrow stromal cell antigen 2	2.2	1.6	0.5	0.1	0.2	0.6	0.2	0.00	0.03												
A_55_P2015687	NM_199015	D14Ertd668e	DNA segment, Chr 14, ERATO Doi 668, expressed	1.9	3.7	5.1	0.1	0.2	0.0	0.6	0.00	0.00												
A_52_P199633	NM_199146	Trim30d	tripartite motif-containing 30D	1.9	0.2	-2.4	-0.1	0.2	0.1	-0.2	0.00	0.00												
A_52_P326664	NM_199252	Unc93a	unc-93 homolog A (C. elegans)	1.8	1.8	-0.2	-0.6	-0.2	0.2	0.1	0.01	0.83												
A_55_P2139763	NM_201373	Trim56	tripartite motif-containing 56	1.1	1.0	-0.4	-0.2	-0.3	-0.1	-0.3	0.00	0.17												
A_55_P1978506	NM_207648	H2-Q6	histocompatibility 2, Q region locus 6	1.0	0.5	1.1	-0.2	-0.1	-0.1	0.0	0.00	0.00												
A_51_P201480	NM_213659	Stat3	signal transducer and activator of transcription 3	1.5	0.8	-0.1	-0.1	-0.3	0.0	-0.2	0.00	0.93												
A_55_P2100620	NR_033332	Gm12216	predicted gene 12216	2.8	2.1	-0.4	0.1	-0.2	0.0	-0.2	0.00	0.24												
A_52_P69558	NR_033577	Gm8221	apolipoprotein L, 3-like	1.3	0.6	-1.3	-0.2	0.3	0.2	0.0	0.00	0.00												
A_55_P2213828	NR_038025	4933412E12Rik	RIKEN cDNA 4933412E12 gene	1.0	1.2	0.1	-0.1	-0.2	-0.1	-0.2	0.00	0.87												
Accession	Record Name	Description	Fold Difference	Log2 Fold Difference	P-value																			
-------------	--------------	----------------------------------	-----------------	----------------------	----------																			
A_55_P2243431	NR_045032	Gdap10 - ganglioside-induced differentiation-associated-protein 10	1.6	-0.9	0.00																			
A_52_P431615	XM_001000891	Gm1966 - predicted gene 1966	3.0	2.8	0.40																			
A_55_P2173210	XM_003084464	Gm16340 - predicted gene 16340	2.5	3.3	0.00																			
A_55_P1972582	XM_136331	Gm4955 - predicted gene 4955	1.9	0.6	0.00																			
A_55_P2004007	XM_136331	Gm4955 - predicted gene 4955	1.6	0.2	0.00																			

Genes significantly (p-value < 0.05) induced at least 2-fold by IFN-γ are shown (in alphabetical order). Fold differences (log 2-transformed) and p-values derived from three biological replicates for each condition are depicted. Key: WT = WT MEFs; SA = S727A MEFs; siCtrl = sample treated with control siRNA; siCdk8 = sample treated with Cdk8 siRNA; g = sample stimulated for 4 h with IFN-γ; 0 = sample not stimulated with IFN-γ.
Table S5. Overlap of Genes Similarly Affected by S727A Mutation and Cdk8 Silencing

Genbank AC	Gene symbol	Type of change
NM_001146007	9230105E10Rik	down
NM_029419	Apol7a	down
NM_020557	Cmpk2	down
NM_020557	Cmpk2	down
NM_001190466	Dact1	down
NM_001190466	Dact1	down
NM_010171	F3	down
NM_001101475	F830016B08Rik	down
NM_001039646	Gbp10	down
NM_001039647	Gbp11	down
NM_010260	Gbp2	down
NM_018734	Gbp3	down
NM_001256005	Gbp4	down
NM_145545	Gbp6	down
NM_001045540	Gm12185	down
NM_001135115	Gm12250	down
NM_001034859	Gm4841	down
NM_001033767	Gm4951	down
XM_136331	Gm4955	down
XM_136331	Gm4955	down
NR_033577	Gm8221	down
NM_001013828	Iigp1b	down
NM_008320	Irf8	down
NM_194336	Mpa2l	down
NM_194336	Mpa2l	down
NM_001083925	Oas1b	down
NM_010724	Psmb8	down
ENSMUST00000114230	Psmb9	down
NM_013585	Psmb9	down
NM_001168294	Serpina3f	down
NM_001199940	Serpina3i	down
NM_181542	Slfn10-ps	down
NM_181545	Slfn8	down
NM_009896	Socs1	down
NM_013683	Tap1	down
NM_011530	Tap2	down
NM_178745	Tmem229b	down
NM_023835	Trim12a	down
NM_009277	Trim21	down
NM_199146	Trim30d	down
NM_030738	Vmn1r65	down
Gene ID	Gene Symbol	Change
-----------------	-------------	--------
NM_001037713	Xaf1	down
NM_175475	Cyp26b1	up
NM_199015	D14Ertd68e	up
NM_26637	Ggct	up
XM_003084464	Gm16340	up
NM_001045481	Ili203	up
NM_008329	Ili204	up
BC010546	Ili204	up
NM_011019	Osmr	up
NM_178446	Rbm47	up
NM_011580	Thbs1	up
NM_023137	Ubd	up
NM_001139519	Zbp1	up

IFN-γ-induced genes (in alphabetical order) either down-regulated by both, the S727A mutation and Cdk8 silencing, or up-regulated under the same conditions. Genes that appear more than once have different probe set IDs for each listing. Data are extracted from the Table S4.
Supplemental Experimental Procedures

RNAi-Mediated Silencing
Approx. 2x 10^5 (or 5x 10^5) MEFs were seeded in 3.5 cm (or 6 cm) format in DMEM supplemented with 10% FCS without antibiotics. Next day the medium was replaced with 2.5 ml (or 5 ml) fresh medium and cells were transfected with 50 pmol (or 100 pmol) ON-TARGET plus™ SMART pool siRNA (Dharmacon) using Lipofectamine™ RNAiMAX Reagent in Opti-MEM I (both Invitrogen). After 48 hours cells were used for whole cell extract preparation or RNA isolation.

Immunoblotting
Procedures for whole cell extracts, immunoprecipitation and immunoblotting were as described (Sadzak et al., 2008). Primary antibodies used to detect proteins are described in antibody list (below).

Chromatin Immunoprecipitation
Chromatin Immunoprecipitation assay (ChIP) was performed as in (Hauser et al., 2002) with the following modifications. To pull down the antibodies Protein G Dynabeads (Invitrogen) were used. The amount of immunoprecipitated DNA was quantified in qPCR using Kapa Sybr Fast qPCR Universal Mix (Peqlab) and primers described in the primer list (below). All qPCRs were run on Mastercycler ep realplex² (Eppendorf). Values of immunoprecipitated DNA were shown as % input. Antibodies used in ChIP assay are specified in the antibody list (below).

Purification of Recombinant Proteins
Plasmids encoding STAT1 GST fusion proteins (GST-STAT1-WT aa711-750 and the corresponding S727A mutant) were described (Kovarik et al., 1999). STAT3 and STAT5a GST fusion proteins (GST-STAT3-WT aa715-770 and the corresponding S727A mutant, GST-STAT5a-WT aa704-793 and the corresponding S725A and S779A single mutants and S725A/S779A double mutant) were obtained by cloning the TADs into pGEX-4T1 (Promega). Standard techniques for expression and purification of GST fusion proteins were used. The four protein CDK8 module was expressed and purified according to (Knuesel et al., 2009b). The TFIIH complex was purified from HeLa cells as described in (Knuesel et al., 2009a). P-TEFb was isolated following recombinant expression in insect cells. SF9 cells were co-infected with high-titer virus at a multiplicity of infection ratio of 1:2 (CDK9:Cyc T1) for 48 h at 27°C. P-TEFb was purified from SF9 cell pellets as described (Tahirov et al.).

Kinase Assays
Reactions were performed with 1 μl CDK8 module, 1 μl TFIIH, and 0.75 μl P-TEFb with 500 ng GST-RNAPII CTD and 750 ng of GST-STAT-TAD (STAT1, STAT3, STAT5a and the corresponding mutants) or GST only in kinase buffer (25 mM Tris pH 8.0, 100 mM KCl, 100 μM ATP, 10 mM MgCl₂, and 2 mM DTT) with 2.5 μCi [γ-32P]ATP at 30°C for 60 min. SDS-PAGE was used to separate proteins and the gels were subsequently silver stained, dried at 55°C for 60 min, exposed on a phosphor-imager screen for 18 h, and imaged using a Typhoon 9400 scanner. Quantitation of auto-rad bands was performed using ImageJ.

Microarray Analysis
STAT1 WT and STAT1 S727A MEFs were treated with siRNA as described above and stimulated with IFN-γ for 4 h or left untreated. Total RNA was isolated from cells using TRIzol reagent (Invitrogen) following the manufactures protocol and used for expression analysis using Agilent Whole Mouse Genome Microarrays, 8x60K. Standard protocols for labeling and hybridization were followed. In brief, fluorescent cRNA was generated using Low Input Quick
Amp Labeling Kit (Agilent). The amplified cyanine 3-labeled cRNA samples were then purified using SV Total RNA Isolation System (Promega) and hybridized to microarray slides. Microarray slides were washed and scanned with an Agilent Scanner. Information from probe features was extracted from microarray scan images using the Agilent Feature Extraction software v10.7.3. Further analyses were performed using R and Bioconductor (Gentleman et al., 2004). Arrays were assessed for quality, weighted and quantile normalized. Subsequently the data were log transformed and filtered for low expression. Residual variances were adjusted using an empirical bayes method (Smyth, 2004) to obtain approximately t-distributed differences in gene expression values. P-values were adjusted for multiple testing using the false discovery rate (Reiner et al., 2003). Microarray data have been deposited in Gene Expression Omnibus under the accession number GSE40728 (GEO, http://www.ncbi.nlm.nih.gov/geo/info/linking.html).

Quantitation of Gene Expression by Quantitative RT-PCR (qRT-PCR)
To measure mRNA expression total RNA was reverse transcribed using oligo (dT)18 primer and Mu-MLV reverse transcriptase (Fermentas). cDNA was amplified with GoTaq qPCR Master Mix (Promega) and primers described in the primer list (below). qRT-PCR was performed using Mastercycler ep realplex2 (Eppendorf). To measure the abundance of primary transcript RNA was digested with DNase I (Roche), purified with RNeasy MiniElute Cleanup Kit (Qiagen) and reverse transcribed using random primers (nonamers) and Superscript III Reverse Transcriptase (Invitrogen).

Metabolic labeling of RNA
Metabolic labeling, biotinylation and purification of nascent RNA were performed as described (Dolken et al., 2008). Briefly, 4-thiouridine (4sU) (100 µM) was added to the cell culture medium 30 min prior to IFN-γ stimulation, simultaneously with IFN-γ, or 60 min and 210 min after IFN-γ stimulation. Labeling was stopped after 30 minutes and total cellular RNA was isolated from cells using TRIzol reagent (Invitrogen) following manufacturer’s protocol. RNA was treated with recombinant RNase-free DNase I (Roche) 0.2 U/µl for 30 minutes at 37°C in order to remove genomic DNA contamination. Biotinylation was carried out in biotinylation buffer (10 mM Tris, 1 mM EDTA) and 0.2 mg/mL Biotin-HPDP at a final RNA concentration of 100 ng/µL for 2 h at 25°C with shaking. Unbound biotin was removed with chloroform/isoamylalcohol. RNA was precipitated at 16000g at 4°C with equal volume of isopropanol and 1:10 volume of 5M sodium chloride. Biotinylated RNA was captured using μMACS streptavidin beads and columns (Miltenyi). Nascent RNA was eluted from streptavidin beads by applying twice 100 µl of 100 mM dithiothreitol (DTT) to the column. RNA was recovered from eluates using the RNeasy MinElute Spin columns (Qiagen). RNA was reverse transcribed using SuperScript III (Invitrogen) and oligo-dT(18) primers following manufacturer’s instructions. For reverse transcription reaction 100 ng of nascent RNA or 1 µg of Total RNA was used. ActB was used for normalization. qRT-PCR was performed on Realplex system (Eppendorf) using GoTaq MasterMix (Promega).

mRNA Stability
Approx. 1x 10⁶ MEFs were seeded in 6 cm format were stimulated with IFN-γ for 4 h and actinomycin D (Sigma) was added (5 µg/ml). After 0, 15 30, 45 and 60 min of act D treatment RNA was isolated and processed for qRT-PCR analysis.

Antiviral Assay with Vesicular Stomatitis Virus
MEFs were seeded on 3.5 cm dishes at 30% confluence and 24 h later they were treated with Cyclin C siRNA, control siRNA or left untreated. siRNA transfection was performed using Lipofectamine RNAiMAX (Invitrogen) according the manufacturer protocol and 50 pmol siRNA
per dish. After 48 hours of siRNA transfection cells were seeded on 96 well plates in normal medium and 5 x 10^3 cells per well. Four hours after seeding the medium was replaced with new medium that was supplemented with fresh siRNA and IFN-γ in two-fold serial dilutions starting at 10 units. The medium was again replaced 24 h later with medium without siRNA and without IFN-γ. VSV was then added at the multiplicity of infection (MOI) of 0.1 and the cells were incubated for additional 39 h. The plates were then washed 2x with PBS (Dulbecco’s PBS, PAA) and surviving cells were stained for 1 h at room temperature in the dark with Crystal violet (40 ml 1% crystal violet and 80 ml methanol, 300 ml dH2O). Cells were then washed twice with PBS, air dried and subsequently incubated with 100 µl solubilization buffer (50/50 mixture of 0.1 M NaH2PO4, pH = 4.5 and 50% ethanol) per well. Crystal violet intensity, that was proportional to number of surviving cells, was determined at 595 nm using a microplate reader (BIO-RAD iMark).

List of Antibodies Used for Western Blotting

pS727 STAT1 (Kovarik et al., 1998), dilution 1:1000
pY701 STAT1 (Cell Signalling, Cat. Nr. 9171), dilution 1:1000
C-terminus STAT1 (Kovarik et al., 1998), dilution 1:1000
N-terminus STAT1 (BD Biosciences, Cat. Nr. 610115), dilution 1:1000
pS727 STAT3 (Cell Signaling Cat. Nr. 9134), dilution 1:500
pY705 STAT3, (Cell Signaling, Cat. Nr. 9131), dilution 1:1000
STAT3 (Cell Signaling, Cat. Nr. 9139), dilution 1:1000
pS722 STAT4 (Santa Cruz, Cat. Nr. sc-28296), dilution 1:500
pY694 STAT4 (Cell Signaling, Cat. Nr. 5267), dilution 1:1000
STAT4 (Cell Signaling, Cat. Nr. 2653), dilution 1:1000
pS725/730 STAT5a/b (Abcam, Cat. Nr. ab36153), dilution 1:1000
pY694/699 STAT5a/b (Upstate-Millipore, Cat. Nr. 05-886), dilution 1:1000
STAT5a/b (Santa Cruz, Cat. Nr. sc-835), dilution 1:1000
CDK7 (Santa Cruz, Cat. Nr. sc-529), dilution 1:1000
CDK8 (Santa Cruz, Cat. Nr. sc-1521), dilution 1:500
CDK8 (Santa Cruz, Cat. Nr. sc-5612), dilution 1:300
CDK9 (Santa Cruz, Cat. Nr. sc-484), dilution 1:1000
pan ERK (BD Biosciences, Cat. Nr. 610123), dilution 1:2000

List of Antibodies Used for Chromatin Immunoprecipitation (ChIP)

pS727 STAT1 (Kovarik et al., 1998), 5 µl serum/ChIP
C-terminus STAT1 (Kovarik et al., 1998), 5 µl serum/ChIP
RNAPII (Santa Cruz, Cat. Nr. sc-899), 4 µg/ChIP
pS2 RNAPII (Bethyl, Cat. Nr. A300-654A), 0,7 µg/ChIP
CDK8 (Santa Cruz, Cat. Nr. sc-1521), 5 µg/ChIP
MED1 (also called TRAP220) (Santa Cruz, Cat. Nr. Sc-5334X), 5 µg/ChIP
Control rabbit IgG (Santa Cruz, Cat. Nr. sc-2027), 4 µg/ChIP
Control goat IgG (Santa Cruz, Cat. Nr. sc-2028), 5 µg/ChIP
Pre-immune serum (Kovarik et al., 1998), 1-2 µl serum/ChIP

List of Primers Used for ChIP

Irf1 (GAS): Fwd- GGAGCAGACAGCTGCTTTGACTTT, Rev- CCCACTCGGCCTCATT
Irf1 (TSS): Fwd- TCCCGCTAAGTTTATGATTTC, Rev- TTCCGGTTTGCTTAGACTG
Irf1 (gene body): Fwd- TGGCTCTTGTCTTTGTCTCTC, Rev- CTCTGTGTTGCTGTGCTG
Tap1 (TSS): Fwd- GGTCAGGTCTGAAACTT, Rev- GCTGTTGCTGTTCTGCTCTCC
Tap1 (GAS): Fwd- AGGCCGTGCTAGTGATTTC, Rev- CGTGAGCTGCTCCAGAGTC
Tap1 (gene body): Fwd- TAGTGTTAGAAATCAGCCTTC, Rev- ATCGCTTCAGTTCGTTAC
List of Primers Used for Quantitation of Gene Expression (qRT-PCR)

Irf1: Fwd - CCGAAGACCTATGGAAGCTTCTGT, Rev - GCAATCTCCCTGACCCTCG
Tap1: Fwd - CTGGCAACCAGCTACGGT, Rev - TGAGAAGAGATGTGTTGG
Gbp2: Fwd - TGCTAACCCTGGAACAGG, Rev - GAGCTTGGCAGAGGTTTG
Irf8 (Ouyang et al., 2011): Fwd - GAGCGAAGTTCTGAGATGT, Rev - TGGGCTCCTTCTTGTCTACAT
Isg15 (Wood et al., 2012): Fwd - ATGGCCTGGGACCCTAAG, Rev - TAGGCACACTGGTCCCC
Hprt: Fwd - GGTGTTAATCTACGCTTGT, Rev - ACACCTGTAATTACTGGA
ActB: Fwd - CAACGAGCGGTTCGATG, Rev - GCCACAGGATTCCATCA

List of QuantiTect Primer Assays (Qiagen) for qRT-PCR

Cdk8: Mm_Cdk8_1_SG, Cat. Nr. QT00158697
CycC: Mm_Ccnc_1_SG, Cat. Nr. QT00161420

References

Dolken, L., Ruzsics, Z., Radle, B., Friedel, C.C., Zimmer, R., Mages, J., Hoffmann, R., Dickinson, P., Forster, T., Ghazal, P., and Koszinowski, U.H. (2008). High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14, 1959-1972.

Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome biology 5, R80.

Hauser, C., Schuettengruber, B., Bartl, S., Lagger, G., and Seiser, C. (2002). Activation of the mouse histone deacetylase 1 gene by cooperative histone phosphorylation and acetylation. Mol Cell Biol 22, 7820-7830.

Knuesel, M.T., Meyer, K.D., Bernecky, C., and Taatjes, D.J. (2009a). The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev 23, 439-451.

Knuesel, M.T., Meyer, K.D., Donner, A.J., Espinosa, J.M., and Taatjes, D.J. (2009b). The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol 29, 650-661.

Kovarik, P., Stoiber, D., Eyers, P.A., Menghini, R., Neininger, A., Gaestel, M., Cohen, P., and Decker, T. (1999). Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-gamma uses a different signaling pathway. Proc Natl Acad Sci U S A 96, 13956-13961.

Kovarik, P., Stoiber, D., Novy, M., and Decker, T. (1998). Stat1 combines signals derived from IFN-gamma and LPS receptors during macrophage activation [published erratum appears in EMBO J 1998 Jul 15;17(14):4210]. Embo J 17, 3660-3668.
Liu, B., Mink, S., Wong, K.A., Stein, N., Getman, C., Dempsey, P.W., Wu, H., and Shuai, K. (2004). PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol 5, 891-898.

Ouyang, X., Zhang, R., Yang, J., Li, Q., Qin, L., Zhu, C., Liu, J., Ning, H., Shin, M.S., Gupta, M., et al. (2011). Transcription factor IRF8 directs a silencing programme for TH17 cell differentiation. Nat Commun 2, 314.

Reiner, A., Yekutieli, D., and Benjamini, Y. (2003). Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics (Oxford, England) 19, 368-375.

Sadzak, I., Schiff, M., Gattermeier, I., Glinitzer, R., Sauer, I., Saalmuller, A., Yang, E., Schaljo, B., and Kovarik, P. (2008). Recruitment of Stat1 to chromatin is required for interferon-induced serine phosphorylation of Stat1 transactivation domain. Proc Natl Acad Sci U S A 105, 8944-8949.

Smyth, G.K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology 3, Article3.

Tahirov, T.H., Babayeva, N.D., Varzavand, K., Cooper, J.J., Sedore, S.C., and Price, D.H. (2010). Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465, 747-751.

Wood, L.M., Pan, Z.K., Seavey, M.M., Muthukumaran, G., and Paterson, Y. (2012). The ubiquitin-like protein, ISG15, is a novel tumor-associated antigen for cancer immunotherapy. Cancer Immunol Immunother. 61, 689-700.