Exponential Bounds for Random Sums.
Migdashiev B.M., Ostrovsky E.I.

Abstract. We construct a non-improved exponential bounds for distribution of normed sums of i.i.d. random variables with random numbers of summand.

Key words: Random sum, exponential estimation, Orlicz spaces, martingales, saddle-point method.

1. Introduction.
Let (Ω, F, μ) be a probability space, $\{\xi(i)\}, i = 1, 2, \ldots$ be a sequence of independent identical distributed (i.i.d) centered: $E \xi(i) = 0$ random variables (r.v) with finite non-trivial variance $\sigma^2 = D \xi(i) \in (0, \infty)$, and let $\eta, \eta \geq 1$ be an integer r.v. with finite first moment $E \eta = A$, where $A \in [2, \infty)$. We assume at first that the r.v. η and the sequence $\{\xi(i)\}$ are independent.

We will denote for arbitrary r.v. τ and $x = const \geq 0$ the tail function

$$T(\tau, x) = \max(P(\tau \geq x), P(\tau \leq -x)),$$

will write for the r.v. $\xi(1) \ R(x) = T(\xi(1), x)$, and we define the so-called normed random sum and corresponding uniform tail function

$$S = \sum_{i=1}^{\eta} \xi(i)/(\sigma \sqrt{A}),$$

$$V(x) = V(Law(\eta), Law(\xi(i)), x) = \sup_{A \geq 2} T(S, x).$$

In the case if the r.v. $\eta - 1$ has a Poisson distribution $Pois(A)$ with parameter $A : \ P(\eta - 1 = n) = A^n \exp(-A)/n!, \ n = 0, 1, 2, \ldots$ and $Law(\eta - 1) \in \cup_{A \geq 2}\{Pois(A)\}$ we will write $V(Pois; Law(\xi(i)), x) = V(\cup_{A \geq 2}\{Pois(A)\}, Law(\xi(i)), x)$; if the r.v. η has a geometrical distribution $G(A) : \ P(\eta = n) = A^{-1}(1 - 1/A)^{n-1}, n = 1, 2, \ldots, A \geq 2$ and $Law(\eta) \in \cup_{A \geq 2}\{G(A)\}$ we will write $V(G; Law(\xi(i)), x) =$
\[V(\cup_{A \geq 2} \{G(A)\}, \text{Law}(\xi(i)), x); \text{for the case of all distribution r.v. } \eta \text{ under the condition that } E\eta = A, \exists A \geq 2 \text{ we will use the notations correspondently } \text{Dis}(A), \text{Dis} = \cup_{A \geq 2} \{\text{Dis}(A)\} \text{ and } V(\text{Dis}, \text{Law}(\xi(i)), x) = V(\cup_{A \geq 2} \{\text{Dis}(A)\}, \text{Law}(\xi(i)), x). \]

Our goal is the bide - side exponential estimating \(V(x) \) **at** \(x \to \infty, x \geq 2 \text{ in the terms of distributions } \text{Law}(\xi(i)), \text{Law}(\eta).**

We have for all distribution \(\xi(i) \) under the conditions \(E\xi(i) = 0, \text{D}\xi(i) \in (0, \infty) \), since \(E\xi(i) = 0, \text{D}\xi(i) \in (0, \infty) \):

\[
V(\text{Dis}, \text{Law}(\xi(i)), x) \leq \min \left(1, x^{-2}\right)
\]

by virtue of Chebyshev inequality; this estimation is called trivial.

There are many publications about the moment estimations \(E|S|^p \) and statistical applications of those estimations (see, for example, (Gut A., 1988), (Gut A., 2003):

\[
|S|^p \leq B(p) |\eta|_{p/2}^{1/2} |\xi(1)|_p, \quad p \geq 2,
\]

where \(B(p) \) is a constant in the famous Burkholder inequality for martingales. Here and further for arbitrary r.v. \(\zeta \)

\[
|\zeta|^p = E^{1/p} |\zeta|^p = ||\zeta||_{L_p(\Omega, \mathbf{P})}.
\]

It is proved in (Hitczenko, 1990) that the best boundary for \(B(p) \) at \(p \geq 2, p \to \infty \) is \(B(p) \leq C p / \log p, C \) is an absolute constant. Note that the estimation (0) is proved in the case if r.v. \(\eta \) is the stopping time for the sequence \(\{\xi(i)\} \), for example, if \(\forall n = 1, 2, \ldots \text{ r.v.'s } \xi(1), \xi(2), \ldots, \xi(n) \) and the event \(\{\eta = n\} \) are independent.

We have for the function \(T(x) \) under the conditions:

\[
T(0) = 1, T(\infty) = 0, \text{monotonically non - increasing and right continuous with finite second moment } |\int_0^\infty x^2 dT(x)| < \infty \text{ the operator }
\]

\[
W[T](x) = \min \left(1, 4 \inf_{z>0} \left[\exp(-x^2/(8z^2)) - \int_z^\infty x^2 dT(x) \right] \right).
\]
Further, put
\[\varphi(\lambda) = \max_{\pm} \log \mathbb{E} \exp(\pm \lambda \xi(i)) . \]

This definition is non-trivial only if the variable \(\xi(1) \) satisfies the so-called Kramer condition:
\[\exists \lambda_0 \in (0, \infty), \forall \lambda \in (-\lambda_0, \lambda_0) \Rightarrow \varphi(\lambda) < \infty ; \]
in other case we set \(\varphi(\lambda) = \infty \forall \lambda \neq 0. \)

Let us introduce the function \(\chi(\lambda) = \sup_{n=1,2,...} n \varphi(\lambda/\sqrt{n}) , \chi^*(x) = \sup_{\lambda} (\lambda x - \chi(\lambda)) , \)
\[Q[R](x) = \min \{ W[R](x) , \exp(-\chi^*(x)) \} . \]

Lemma 1. (Buldygin at al., 1992), (Lesign at al., 2001).
\[\sup_n T \left(n^{-1/2} \frac{1}{n} \sum_{i=1}^{n} \xi(i) , x \right) \leq Q[R](x) , \quad x \geq 0 . \] (1)

Let us introduce the Orlicz spaces \(G(m,r) \) (in order to describe the examples) of random variables as the set of all r.v. \(\{ \tau \} \) with finite norm
\[||\tau||_{m,r} = \sup_{p \geq 2} |\tau|_p p^{-1/m} \log^r/m p . \]

Here \(m = \text{const} > 0, \ r = \text{const} \in R^1 . \) It is easy to verify that \(G(m,r) \) is isomorphic to the Orlicz space with \(N- \) function
\[N(u) = \exp(|u|^m \log^r |u|) , \quad |u| \geq 2 , \]
and that \(\tau \in G(m,r) \) if and only if
\[T(\tau, x) \leq \exp (-C_1(m,r)x^m \log^r (C_2(m,r) + x)) . \] (2)

See (Buldygin at al, 1992, p.351).

For example, assume that the r.v. \(\tau \) has Poisson distribution with parameter \(A; \ A \geq 2 . \) Then for some non-trivial positive absolute constants \(C_1, C_2 \) and all \(p, x \geq 2 \)
\[|\tau - A|_p \leq C_1 \sqrt{A} p/ \log p , \]
or
\[\mathbf{P}(|\tau - A|/\sqrt{A} > x) \leq \exp(-C_2 x \log x) . \]
Let us suppose, for example, that for some $m = \text{const} > 0, r \in \mathbb{R}^1$ $\xi(1) \in G(m, r)$. We define the following functions $M = M(m, r), L = L(m, r)$: at $m \in (0, 1)$ or $m = 1, r < 0 \Rightarrow M = 2m/(m + 2), L = 2r/(m + 2)$; at $m = 1, r \geq 0$ or $m \in (1, 2), r < 0 \Rightarrow M = m, L = r$; at $m = 2, r \geq 0$ or $m > 2 \Rightarrow M = 2, L = 0$. We can define formally in the case $m = +\infty, r \in \mathbb{R} \Rightarrow M = 2, L = 0$.

It follows from (1)

$$\sup_n T \left(\sum_{i=1}^{n} \xi(i)/\sqrt{n}, \ x \right) \leq \exp \left(-C_3 \ x^M \ \log^L(C_2 + x) \right), \quad (3)$$

$C_{2,3} = C_{2,3}(m, r)$, or, equally,

$$\sup_{n \geq 1} \left| \sum_{i=1}^{n} \xi(i)/\sqrt{n} \right|_{M,L} \leq C(m, r) \left| \xi(1) \right|_{m,r}.$$

It is proved in (Ostrovsky, 1999, p. 34) that in the case $m > 1$ the estimation (2) is exact at $x \to \infty$.

In this paper, the letter $C, C_j(\cdot)$ will denote positive finite various non-essentially constant which may differ from one formula to the next and which does not depend upon x, n. We make no attempt to obtain the best values for these constants.

2. Main result. Upper bound. Examples.

Theorem 1.

$$V(Law(\eta), Law(\xi(i)), \eta, x) \leq E \ Q[R](\sigma \ x/\sqrt{A/\eta}). \quad (4)$$

Proof. We will assume without loss of generality $\sigma = 1$. We receive from (1), using the formula of full probability and denoting $q_n = q_n(A) = P(\eta = n) : V(x) =$

$$P \left(\sum_{i=1}^{n} \xi(i) > x\sqrt{A} \right) = \sum_{n=1}^{\infty} q_n P \left(\sum_{i=1}^{n} \xi(i)/\sqrt{n} > x\sqrt{A/n} \right) \leq$$

$$\sum_{n} q_n \ Q[R](x\sqrt{A/n}) = E \ Q[R](x\sqrt{A/\eta}).$$

Example 1. Let us suppose here that the r.v. η has a geometric distribution $G(A)$ with parameter $A, A \geq 2$, and that $\exists m > 0, \exists r \in \mathbb{R} L(\xi(1)) \in G(m, r)$. We assert that at $x \geq 2 \Rightarrow \sup_{A \geq 2} V(G(A), G(m, r), x) \leq$

$$C_3(m, r) \exp \left(-C(m, r)x^{2M/(M+2)} (\log x)^{2L/(M+2)} \right)$$
\[
J(M, L; x) = J(x).
\]

Proof. We have using theorem 1:

\[
V(G(A), G(m, r), x) \leq \sum_{n=1}^{\infty} (A - 1)^{-1} \exp(n[\log(1 - 1/A)]) - \\
C x^M n^{-M/2} A^{M/2} n^{-M/2}(\log^L(C_2 + x\sqrt{A/n})) \leq (A - 1)^{-1} \times \\
C_1 \sum_{n=2}^{\infty} \exp \left(-C(n/A + x^M(A/n))^{M/2}(\log^L(C_2 + x\sqrt{A/n})\right) \overset{\text{def}}{=} \\
\sum_{n=2}^{\infty} a(n; A, x).
\]

We denote

\[
N_0 = N_0(A, x) = \arg\max_{n \geq 2} a(n; A, x) = A \, n_0(x),
\]

where at \(x \to \infty \Rightarrow \)

\[
N_0/A \sim C_2(M, L) \, x^{2M/(M+2)} \, (\log x)^{2L/(M+2)}.
\]

Since the function \(n \to a(n; A, x) \) is monotonic in the intervals \([1, N_0]\) and \([N_0, \infty)\), we can estimate

\[
C_2 \, (A - 1) \, V(G, G(m, r), x) \leq \\
\int_1^{\infty} \exp \left(-C \left((y/A) + x^M(\sqrt{A/y})^M \, \log^L(C_2 + x \sqrt{A/y})\right)\right) \, dy = \\
C_3 A \, \int_{1/A}^{\infty} \exp \left(-C \left(z - x^M z^{-M/2} \, \log^L(C_2 + x / \sqrt{z})\right)\right) \, dz \leq \\
C_3 \, A \, \int_0^{\infty} \exp \left(-C(z - x^M z^{-M/2} \, \log^L(C_2 + x / \sqrt{z})\right) \, dz.
\]

Let us denote \(\beta = 2M/(2 + M) \),

\[
R(x, v) = v + (2/M) \, v^{-M/2} \, \log^L \left(C_2 + x^{2/(M+2)} \, v^{-1/2}\right),
\]
\[U(x, v) = v + (2/M)v^{-M/2} \log^L x, \ x \geq 2, v > 0; \]

\[S(x, v) = x^\beta \left(v + (2/M)v^{-M/2} \log^L \left(C_2 + x^{2/(M+2)}v^{-1/2} \right) \right). \]

Let \(\Delta = \Delta(M, L) \) be the arbitrary function on \(M, L \) so that \(\Delta > 2|L|/(M + 2) \). After the substitution \(z = x^\beta v \) we receive:

\[\sup_{A \geq 2} \| S \|_{2M/(M+2), 2L/(M+2)} \leq C_6 \| \xi(1) \|_{m, r}. \]
Example 2. Let us now suppose again that $L\{\xi(i)\} \in G(m, r)$ for some $m > 0, r \in R$ and assume that the r.v. $\eta - 1$ has a Poisson distribution with parameter $B = A - 1$; $A \geq 2$. It follows from theorem 1 and Stirling’s formula that $V(Pois(A), G(m, r), x) \leq$

$$C \sup_{B \geq 1} \sum_{n=1}^{\infty} \exp(-B + n \log B - \log n! -$$

$$C x^M B^{M/2} n^{-M/2} (\log^L (C_2 + x\sqrt{B/n})) \leq$$

$$C \sup_{B \geq 1} \sum_{n=1}^{\infty} \exp(-B - n \log n +$$

$$n - C x^M B^{M/2} n^{-M/2} (\log^L (C_2 + x\sqrt{B/n})) \leq$$

$$C \sup_{n=1}^{\infty} \sup_{B \geq 1} \exp(-B - n \log n + n +$$

$$C x^M B^{M/2} n^{-M/2} (\log^L (C_2 + x\sqrt{B/n})).$$ \hfill (6)

It is easy to verify that the maximum of arbitrary member of the right-hand side (6) over $B \geq 1$ for sufficiently greater values $x \geq x_0$, $x_0 = const \geq 2$ is achieved at $B = 1$. Therefore $V(Pois(A), G(m, r), x)/C \leq$

$$\leq \sum_{n=2}^{\infty} \exp(-1 - n \log n + n - C x^M n^{-M/2} \log^L (C_2 + x/\sqrt{n})).$$

Since for $x \geq 2$

$$\sum_{n \geq x^2} \exp(-n \log n + n) \leq \exp(-C x^2 \log x),$$

we have:

$$V(Pois(A), G(m, r), x)/C \leq \exp(-C x^2 \log x) +$$

$$\sum_{n \in [1, x^2]} \exp(n - n \log n - C x^M n^{-M/2} \log^L (C_2 + x/\sqrt{n})).$$

Let us denote $N_1 = N_1(x) =$

$$\argmax_{n \in [1, x^2]} (n - n \log n - C x^M n^{-M/2} \log^L (C_2 + x/\sqrt{n}));$$
it is easy to calculate:

\[N_1(x) \asymp C(M, L)x^{2M/(M+2)}(\log x)^{(2L-2)/(M+2)}, \quad x \to \infty. \]

We obtain for values \(x \geq 2 \):

\[
V(Pois, G(m, r), x)/C(m, r) \leq \exp \left(-Cx^2 \log x\right) + \\
(x^2 + 1) \exp \left(N_1 - N_1 \log N_1 - Cx^M N_1^{-M/2} \log^L(C_2 + x/\sqrt{N_1})\right) \leq \\
C_3 \exp \left(-C(m, r)x^{2M/(M+2)}(\log x)^{(2L+M)/(M+2)}\right). \tag{7}
\]

In the case \(m = \infty \), i.e. if the variable \(\xi(1) \) is bounded (mod P), then \(2M/(M + 2) = 1, (2L + M)/(M + 2) = 1/2 \).

We can rewrite (7) in the considered case \(Law(\eta - 1) = Pois, Law(\xi(i) \in G(m, r) \text{ in the terms of } G(m, r) \text{ spaces:} \\
\sup_{A \geq 2} ||S||_{2M/(M+2), (M+2L)/(M+2)} \leq C(m, r)||\xi(1)||_{m, r}. \)

In the case if \(Law\{\xi(i)\} \in \cup_{m>1}\{G(m, r)\} \) the estimation (7) improves some result of (Gine at al, 2003). For instance, if \(m \in (1, \infty), r = 0 \), then from (7) it follows the inequality: \(p \geq 2 \Rightarrow \\
\sup_{A \geq 2} |S|_p \leq C_1 p^{1/2+1/\min(m,2)}/\sqrt{\log p}, \ p \geq 2, \)

but we receive from (Gine at all, 2003):

\[
\sup_{A \geq 2} |S|_p \leq C_2 p^{1+1/m}/\log p,
\]

and we obtain from (Gut, 1988), (Gut, 2003):

\[
\sup_{A \geq 2} |S|_p \leq C_3 p^{1+1/m} \log^{-1/2} p.
\]

3. Low bounds. We will prove further that our estimations are non - improved in general case, for example, even for normal distribution of values \(\{\xi(i)\} \).

Theorem 2. We assert that for all values \(m > 1 \) and sufficiently larges \(x, x \geq x_0 = \text{const} \geq 2 \) : \(V(G, G(m, r), x) \geq \\
C_6(m, r)\exp\left(-C_7(m, r)x^{2M/(M+2)}(\log x)^{2L/(M+2)}\right), \tag{8}
\]

\[3. \text{Low bounds.} \text{ We will prove further that our estimations are non} \]
\[\text{- improved in general case, for example, even for normal distribution of} \]
\[\text{values } \{\xi(i)\}. \]

Theorem 2. We assert that for all values \(m > 1 \) and sufficiently larges \(x, x \geq x_0 = \text{const} \geq 2 \) : \(V(G, G(m, r), x) \geq \\
C_6(m, r)\exp\left(-C_7(m, r)x^{2M/(M+2)}(\log x)^{2L/(M+2)}\right), \tag{8}
\]

\[\text{3. Low bounds. We will prove further that our estimations are non} \]
\[\text{- improved in general case, for example, even for normal distribution of} \]
\[\text{values } \{\xi(i)\}. \]

Theorem 2. We assert that for all values \(m > 1 \) and sufficiently larges \(x, x \geq x_0 = \text{const} \geq 2 \) : \(V(G, G(m, r), x) \geq \\
C_6(m, r)\exp\left(-C_7(m, r)x^{2M/(M+2)}(\log x)^{2L/(M+2)}\right), \tag{8}
\]
\[V(\text{Pois}, G(m, r), x) \geq C_8(m, r) \exp \left(-C_9(m, r)x^{2M/(M+2)} (\log x)^{(2L+M)/(M+2)} \right). \] (9)

Proof is very simple. It is enough to prove the inequality (8); the proposition (9) is proved analogously. Let \(\xi(i) \) be independent symmetrically distributed r.v. with distributions

\[P(|\xi(i)| > x) = \exp \left(-x^m \left[\log(C(m, r) + x) \right]^r \right), \quad x \geq 0, \]

and let us introduce the even smooth convex function \(\varphi_{m,r}(\lambda) = \log \mathbb{E} \exp(\lambda \xi(i)), \lambda \in (-\infty, \infty). \) It is proved in (Buldygin at al., 1992, p.341), (Ostrovsky, 1999, p.34) that

\[C_1 \varphi_{m,r}(\lambda) \leq \psi_{m,r}(\lambda) \leq C_2 \varphi_{m,r}(\lambda), \]

where \(\psi_{m,r}(\lambda) = \lambda^2, \lambda \in [-2, 2]; \)

\[\psi_{m,r}(\lambda) = C_3 |\lambda|^{m/(m-1)} \left[\log(C_4 + |\lambda|) \right]^{-r/(m-1)} \]

in the case \(|\lambda| > 2\). Since the r.v. \(\{\xi(i)\} \) are i., i.d., we have for the non-random sum:

\[\log \mathbb{E} \exp \left(\lambda n^{-1/2} \sum_{i=1}^{n} \xi(i) \right) = n \varphi_{m,r}(\lambda/\sqrt{n}) \asymp \]

\[n \psi_{m,r}(\lambda/\sqrt{n}), \text{ where the symbol } \asymp \text{ is understood uniformly on } n; \lambda \in R: \]

\[0 < C_1(m, r) \leq \inf_{n \geq 1} \inf_{\lambda \in R} \frac{n \varphi_{m,r}(\lambda/\sqrt{n})}{n \psi_{m,r}(\lambda/\sqrt{n})} \leq \]

\[\sup_{n \geq 1} \sup_{\lambda \in R} \frac{n \varphi_{m,r}(\lambda/\sqrt{n})}{n \psi_{m,r}(\lambda/\sqrt{n})} \leq C_2(m, r) < \infty. \]

We conclude at \(x \geq 2, A \geq 2: \)

\[P(S > x) = \sum_{n=1}^{\infty} A^{-1}(1 - 1/A)^{n-1} P \left(\sum_{i=1}^{n} \xi(i)/\sqrt{n} > x\sqrt{A/n} \right). \]

We deduce, choosing again in this sum only the member with \(n = N_0 \) (recall that \(N_0 = N_0(x) \)) and using the main result of paper (Bagdasarov at al, 1995):

\[P \left(n^{-1/2} \sum_{i=1}^{n} \xi(i) > u \right) \geq \exp \left(-C_1 u^M \log^L(C_2 + u) \right), \]
where $C_1, C_2 = C_1(m,r), C_2(m,r); \ u = u(n) \geq 2$:

$$
P(S > x) \geq (A - 1)^{-1}(1 - 1/A)^N \mathbf{P} \left(\sum_{i=1}^{N_0} \xi(i)/\sqrt{N_0} > x\sqrt{A/N_0} \right) \geq C_6(m) \exp \left(-C_7(m)x^{2M/(M+2)} \left[\log x \right]^{2L/(M+2)} \right).
$$

Theorem 3. For all values $x \geq 3$

$$
V(\text{Dis}, N(0,1), x) \geq C \ x^{-2}.
$$

Here $N(0,1)$ denotes the normal distribution with parameters $0,1$; and C is an absolute constant.

Proof. We suppose now $L(\xi(i)) = N(0,1)$, i.e.

$$
P(\xi(i) > x) = \Psi(x) = (2\pi)^{-1/2} \int_{x}^{\infty} \exp(-y^2/2)dy.
$$

We define $\alpha = 1/\text{Ent}[x^2], \text{Ent}[z]$ denotes the integer part of z, for $x \geq 3$ and choose the r.v. η by the following way: $P(\eta = 2) = 1 - 1/\alpha$, $P(\eta = 1/\alpha) = \alpha$. Then $A = E\eta = 3 - 2\alpha \geq 25/9 > 2$;

$$
P(S > x) > \alpha \mathbf{P} \left(\sum_{i=1}^{1/\alpha} \xi(i) > x\sqrt{A} \right) = (1/[x^2]) \Psi \left(x\sqrt{3 - 2/[x^2]\sqrt{1/[x^2]} \right) \geq x^{-2} \Psi \left(3\sqrt{3}/8 \right) = Cx^{-2}.
$$

4. **Upper exponential bound for stopping time.** In this section we will obtain the exponential bounds for the tails of distribution r.v. S in the case if η is the stopping time for the sequence $\{\xi(i)\}$, in addition to the moment estimations of S in (Gut, 1988), (Gut, 2003). Recall that again $E S = 0$ and $D S = 1$.

Theorem 4. Assume that the r.v. η belong to the space $G(m,r)$ for some $m > 0, r \in R: \ \eta \in G(m,r)$ and is the stopping time for the sequence $\{\xi(i)\}$, where $\xi(1) \in G(a,b), a = \text{const} > 0, b = \text{const}: \ \forall x \geq 2$

$$
T(\eta, x) \leq \exp \left(-C \ x^m \log^r x \right), \ T(\eta, x) \leq \exp \left(-C \ x^a \log^b x \right).
$$
Denote
\[
q = \frac{2am}{2am + 2a + m}, \quad w = \frac{2am + mb + 2am}{2am + 2a + m}.
\]
We assert that at \(x \geq 2 \)
\[
\sup_{A \geq 2} \sup_{\eta : E\eta = A} T(S, x) \leq \exp \left(-C(a, b, m, r)x^q \log w \right).
\]
(11)

Proof of theorem 4. It follows from our conditions and the theory of \(G \) – spaces (2) that for all \(p \geq 2 \)
\[
|\xi(1)|_p \leq C_1 p^{1/m} \log^{-r/m} p, \quad |\eta|_p \leq C_2 p^{1/a} \log^{-b/a} p.
\]
We obtain using the inequality (0) with optimal constant \(B(p) \):
\[
|S|_p \leq C_3 p^{1+(1/2a)+1/m} \log^{-1-(b/(2a)-(r/m))} p = C_3 p^{1/q} \log^{-w/q} p.
\]
The last inequality is equivalent to (11), see (2).
References

Bagdasarov D.R., Ostrovsky E.I., 1995. Reversion of Chebyshev’s Inequality. Probab. Theory Appl., v. 40 4, 737 - 742.

Buldygin V.V., Mushtary D.I., Ostrovsky E.I., Puchalsky M.I., 1992. New Trends in Probability Theory and Statistic. Mokslas; Amsterdam, New York.

Gine E., Mason D.M., Zaitsev A.Yu., 2003. The L_1- norm Density Estimation Process. Annals Probab., v. 31, 2, 719 - 768.

Gut A., 1988. Stopped Random Walks. Springer Verlag, Berlin - Heidelberg - New York.

Gut A., 2003. On the Moment Problem for Random Sums. Journal of Appl. Probab., v. 40 No 3, 707 - 802.

Hitczenko P., 1990. Best constant in martingale version of Rozental’s Inequality. 1990. Annals Probab., v. 18, 1656 - 1668.

Lesign Emm., Dalibor, 2001. Large deviations for martingales. Stochastic Process. Appl;., 96, 143 - 159.

Ostrovsky E.I., 1999. Exponential Estimations for the Random Fields. OINPE, Moscow (in Russian).
Ben - Gurion University, Department of Mathematic.

ISRAEL, Beer - Sheva city, 84105, Ben - Gurion street, 4. P.O.Box 61.

e-mail: Galaostr@cs.bgu.ac.il