REVIEW

Molecular chaperones: guardians of the proteome in normal and disease states [version 1; peer review: 2 approved]

Wilson Jeng¹, Sukyeong Lee¹, Nuri Sung¹, Jungsoon Lee¹, Francis T.F. Tsai¹-³

¹Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
²Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
³Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA

Abstract

Proteins must adopt a defined three-dimensional structure in order to gain functional activity, or must they? An ever-increasing number of intrinsically disordered proteins and amyloid-forming polypeptides challenge this dogma. While molecular chaperones and proteases are traditionally associated with protein quality control inside the cell, it is now apparent that molecular chaperones not only promote protein folding in the "forward" direction by facilitating folding and preventing misfolding and aggregation, but also facilitate protein unfolding and even disaggregation resulting in the recovery of functional protein from aggregates. Here, we review our current understanding of ATP-dependent molecular chaperones that harness the energy of ATP binding and hydrolysis to fuel their chaperone functions. An emerging theme is that most of these chaperones do not work alone, but instead function together with other chaperone systems to maintain the proteome. Hence, molecular chaperones are the major component of the proteostasis network that guards and protects the proteome from damage. Furthermore, while a decline of this network is detrimental to cell and organismal health, a controlled perturbation of the proteostasis network may offer new therapeutic avenues against human diseases.

Keywords

molecular chaperones, chaperones, proteases, protein folding, misfolding, aggregation, ATP-dependent molecular chaperones

Open Peer Review

Approval Status ✔ ✔

1 2

version 1
15 Dec 2015

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Jose Barral, University of Texas Medical Branch, Galveston, USA
2. Hays Rye, Texas A&M University, College Station, USA

Any comments on the article can be found at the end of the article.
Corresponding author: Francis T.F. Tsai (ftsai@bcm.edu)

Competing interests: The authors declare there were no competing interests.

Grant information: Research in the Francis T.F. Tsai and Sukyeong Lee laboratory is supported by grants from the National Institutes of Health (R01-GM111084 and R01-GM104980) and the Robert A. Welch Foundation (Q-1530). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2015 Jeng W et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Jeng W, Lee S, Sung N et al. Molecular chaperones: guardians of the proteome in normal and disease states [version 1; peer review: 2 approved] F1000Research 2015, 4(F1000 Faculty Rev):1448 https://doi.org/10.12688/f1000research.7214.1

First published: 15 Dec 2015, 4(F1000 Faculty Rev):1448 https://doi.org/10.12688/f1000research.7214.1
Introduction

The vast majority of proteins must fold correctly in order to gain functional activity. While the protein folding information is encoded within the nascent polypeptide chain, newly synthesized polypeptides (or those imported into organelles) are prone to misfolding, causing aggregation and formation of other toxic species. Consequently, maintaining protein homeostasis (proteostasis) is essential for cell and organismal health. To accomplish this, cells have evolved a sophisticated network of protein quality control machines, consisting of molecular chaperones and proteases, which monitor the folding of proteins and their assembly into functional complexes, and selectively remove excess and damaged proteins from the cell. Challenging the capacity of this proteostasis network increases the risk of human diseases associated with protein misfolding and aggregation.

While most proteins adopt a defined three-dimensional structure, several exceptions are known to exist. Notable examples include prions that can adopt multiple, distinct, three-dimensional structures, and an ever-increasing number of intrinsically disordered proteins (IDPs), which feature large regions of random coil or lack a defined structure altogether. At least in yeast, it is now widely accepted that molecular chaperones play an essential role in prion replication by governing the inheritance and maintenance of yeast prions, and in some cases their elimination by chaperone overexpression. However, concrete evidence of an involvement of molecular chaperones in mammalian prion replication, although proposed, is missing, and whether molecular chaperones play a role in the stabilization and/or protection of IDPs remains uncertain.

What is a molecular chaperone? A molecular chaperone can be generally defined as any protein that assists other macromolecules in folding and/or assembling into higher order structures, without it being a component of these final structures. Thus, while their main function inside the cell is to assist in the folding and maturation of unfolded or partially folded macromolecules and to prevent their misfolding and aggregation, it was widely assumed that molecular chaperones involved in de novo protein folding do not recover functional protein once aggregation has occurred. This concept was challenged by the discovery of a novel stress-inducible molecular chaperone known as Hsp104, which functions as an ATP-dependent protein disaggregase that rescues stress-damaged proteins from a previously aggregated state. The discovery of Hsp104 has since expanded our definition of molecular chaperones to include those that promote the forward folding or prevent the aggregation of proteins on one hand, and those that recover functional protein from aggregates on the other hand.

At the molecular level, molecular chaperones come in diverse shapes and sizes, and can be broadly separated into two groups: those that depend on metabolic energy to fuel their chaperone activity, and those that do not. Examples of the former include all ATP-dependent molecular chaperones, while the latter include small heat shock proteins, protein disulfide isomerase, ribosome-associated chaperones such as trigger factor, and conditionally activated chaperones.

The focus of this review is on ATP-dependent molecular chaperones that harness the energy from ATP binding and/or hydrolysis to assist protein folding and unfolding (i.e., disaggregation). Their cellular expression can be either constitutive in order to perform vital housekeeping functions, or inducible by short exposure to elevated temperatures or other forms of stress that cause protein denaturation. Those that are stress-inducible are also known as heat-shock proteins or HSPs, while those that are constitutively active are termed heat-shock cognates or HSCs. Different members of both groups are classified according to their molecular weight, for example, HSP of 60-kDa (Hsp60), 70-kDa (Hsp70), 90-kDa (Hsp90), and 100-kDa (Hsp100), although many are better known by their common name that is used to designate each chaperone homolog from eubacteria, for example, GroEL (Hsp60), DnaK (Hsp70), HtpG (Hsp90), and ClpB (Hsp100) (Figure 1). All of these aforementioned HSPs bind adenine nucleotide and hydrolyze ATP. Furthermore, another common feature is their cooperation with other proteins, termed co-chaperones, which regulate the ATPase and/or chaperone activity, or reset the functional cycle.

The Hsp60 family

Hsp60 chaperones are known as chaperonins, and can be divided into two subgroups. Group I chaperonins are sevenfold symmetric and assemble into a barrel-like structure composed of two rings of seven identical subunits. Notable examples include bacterial GroEL and Hsp60 from mitochondria and chloroplasts. Each GroEL subunit consists of an equatorial, intermediate, and apical domain (Figure 1a). ATP binding triggers a conformational rearrangement of the apical domains followed by GroES binding. The latter is a GroEL-co-chaperone that assembles into a heptamer ring, and caps one side of the GroEL barrel (the cis ring) to encapsulate the substrate, and to promote protein folding. The prevailing model suggests that GroEL-ES promotes folding through repetitive binding, encapsulation, and release of the substrate protein. Group II chaperonins are homo- or hetero-oligomers forming an eightfold double barrel structure composed of sixteen subunits, and include the eukaryotic chaperonin containing TCP1 complex (CCT), also known as the TCP-1 Ring Complex (TRiC), and the thermosome and Methanococcus maripaludis chaperonin (Mm-Cpn) from Archaea. Unlike Group I chaperonins, group II members do not function together with a GroES-like co-chaperone, but instead contain a built-in lid that undergoes an iris-like motion to promote protein folding.

Much of our current understanding of chaperonin function comes from seminal work on Escherichia coli GroEL. E. coli GroEL is essential since many vital proteins, including metabolic enzymes and components of the transcription-translation machinery, depend on the GroE system for folding. While GroEL’s essential housekeeping function is beginning to be understood, an emerging question is the recent appreciation of multiple copies of GroEL in some bacterial genomes, as seen in actinobacteria, which includes Mycobacterium tuberculosis, the causative agent of Tuberculosis (TB). TB accounts for ~2 million deaths annually and is a major public health problem exacerbated by the emergence and rapid spread of new multidrug-resistant M. tuberculosis strains. M. tuberculosis encodes two copies of groEL in its genome.
Figure 1. Molecular architecture and domain organization of ATP-dependent molecular chaperones. Protein is shown as ribbon diagram with the bound nucleotide as red CPK model. For each chaperone, the domains of one subunit are shown in different colors in order of green, orange, and blue from N- to C-termini. Bound co-chaperones are colored cyan. (a) Hsp60/GroEL: Architecture and domain organization of the E. coli GroEL tetradecamer bound to ADP with a GroES heptamer capping the GroEL cis ring (PDB: 1AON)\(^3\). (b) Hsp70/DnaK: Architecture and domain organization of the E. coli DnaK monomer in the ATP-bound state (PDB: 4JNE)\(^5\). (c) Hsp90/HtpG: Architecture and domain organization of the ATP-bound yeast Hsp90 dimer in the closed-state conformation, and its stabilization by p23/Sba1 (PDB: 2CG9)\(^8\). (d) Hsp104/ClpB: Architecture and domain organization of a yeast Hsp104 hexamer bound to ATP (PDB: 1QVR; EMD-1631)\(^9\). The Hsp104 M-domain that mediates the species-specific interaction with Hsp70 is colored in magenta.
M. tuberculosis GroEL2 is essential for viability, the function of the non-essential GroEL1 paralog remains less clear. The crystal structures of **M. tuberculosis** GroEL2 and a GroEL1 fragment showed that the apical domains have nearly identical three-dimensional structures. While GroEL2 is believed to be the housekeeping chaperonin similar to **E. coli** GroEL, GroEL1 may function as a specialized chaperonin with a more limited substrate spectrum. Consistent with this notion, it has been proposed that mycobacterial GroEL1 is a dedicated chaperone for biofilm formation, which is presumed to confer the extraordinary starvation survival and resistance of **M. tuberculosis** to known antibiotics.

The Hsp70 family

Members of the Hsp70 chaperone family are found in all three surviving domains of life. At the molecular level, Hsp70 is a two-domain protein consisting of a nucleotide-binding domain connected by a long and flexible hydrophobic linker to the substrate-binding domain that can be subdivided into a β-sandwich domain and an α-helical domain (Figure 1b). Furthermore, cytosolic eukaryotic Hsp70s feature a Glu-Glu-Val-Asp or “EEVD” motif at the extreme C-terminus, which is required for the interaction with Hsp70 co-chaperones that regulate the Hsp70 ATPase activity and its ability to bind substrate. It has been shown that bacterial Hsp70 recognizes diverse polypeptides mostly in an unfolded or partially unfolded form by binding to a four to five residue stretch of hydrophobic amino acids flanked by regions enriched in basic amino acids, which occur on average every 30–40 residues in most proteins. Since Hsp70 binding motifs are typically buried within the correctly folded protein, it provides a means to selectively seek out and bind proteins that are in a non-native conformation. However, Hsp70 chaperones rarely, if ever, function on their own and require the assistance of co-chaperones, which include nucleotide exchange factors, such as bacterial GrpE and eukaryotic Hsp110, and the large family of J-domain-containing Hsp40 co-chaperones, which accelerate ATP hydrolysis, serve as substrate targeting factors, and stabilize Hsp70-substrate interaction.

Over the last decade, high-resolution structural information on full-length Hsp70 chaperones has become available, providing new insight into the Hsp70 conformational cycle and its allosteric regulation by nucleotide. Hsp70 function is controlled by nucleotide binding with ATP, promoting an open-conformation with low substrate-binding affinity, and ADP, promoting a closed-conformation required for tight binding of substrates.

In addition to Hsp70’s known role in protein folding, Hsp70 also has other non-chaperone functions. For instance, it was recently shown that Hsp70 functions as an activator of the ring-forming Hsp104 protein disaggregate and is required to unleash the potent protein disaggregating activity. While no Hsp104 homolog is known to exist in metazoans, the discovery of a mammalian protein disaggregate, composed of Hsp70, Hsp110, and Hsp40, is exciting and supports functional conservation of a protein disaggregating activity in animal cells. However, despite its nomenclature, Hsp110 is not an Hsp100 homolog, but instead belongs to an Hsp70 subfamily that is activated by nucleotide, shares structural and perhaps functional conservation with Hsp70, and functions as an Hsp70 nucleotide exchange factor.

The Hsp90 family

Hsp90 belongs to a conserved group of ATP-dependent molecular chaperones, which, together with Hsp70 and a cohort of co-chaperones, facilitates the late-stage folding and maturation of proteins. Since Hsp90 substrates are mostly substantially folded proteins, they are known as “client proteins” to distinguish them from other chaperone substrates that lack a defined structure. More than 400 different clients are known to depend on Hsp90 for folding or maturation, and include protein kinases, transcription factors, and E3 ubiquitin ligases. The large number of signaling and tumor promoting proteins amongst Hsp90 clients has made Hsp90 a promising drug target.

Apart from Hsp90 chaperones in the eukaryotic cytosol, Hsp90 homologs are found in bacteria (HtpG) and eukaryotic organelles, including the endoplasmic reticulum (Grp94), mitochondrion (TRAP1), and chloroplast. Interestingly, Hsp90-like domains with chaperone activity have also been found in Sacsin, a 521-kDa protein associated with an autosomal recessive form of spastic ataxia. However, an Hsp90 homolog has not been found in Archaea.

Hsp90 chaperones share a similar domain structure consisting of an N-terminal (N-) nucleotide-binding domain, a middle (M-) domain, and a C-terminal (C-) dimerization domain (Figure 1c). The N-domain is connected to the M-domain via a flexible linker that is often highly charged and, in human Hsp90, is over 60 residues in length. While important to cytosolic eukaryotic Hsp90 function, the charged-linker is not universally conserved and is essentially absent in both bacterial and mitochondrial Hsp90s. Crystal structures are now available for full-length members of all Hsp90 subfamilies mostly with bound nucleotide, including the recent structure of an asymmetric TRAP1 dimer in the ATP-bound state. The latter lends supports for a sequential ATP hydrolysis mechanism, although asymmetric binding of nucleotide was not observed. Consistent with the prevailing notion, the available structures confirmed that all Hsp90 chaperones form homodimers with the N-domain mediating nucleotide binding. Strikingly, however, apo Hsp90 forms a wide-open, V-shaped dimer with the N-domains separated by over 100 Å, while Hsp90 in the ATP-bound state adopts an intertwined, N-terminally closed dimer. Since the N-domains are too far apart in the open-state to signal the nucleotide status between neighboring subunits, how ATP-binding induces the closed-state conformation remains an open question. One model suggests that Hsp90 chaperones sample different three-dimensional conformations with different adenine nucleotides stabilizing distinct Hsp90 dimer conformations. While not mutually exclusive, the crystal structures of intact Grp94, which were determined in the ATP- and ADP-bound state, revealed a very similar Hsp90 dimer conformation irrespective of the nature of the bound nucleotide. Hence, further in vitro and in vivo studies are needed to address the exact roles of ATP and ADP for Hsp90 chaperone function.

The Hsp100 family

Members of the Hsp100 family were first discovered as the protein-activated ATPase components of the protease Ti from **E. coli**, now better known as the ClpAP protease. Members of
the Hsp100/Clp family belong to the large superfamily of ATPases associated with diverse cellular activities (AAA+). Hsp100/Clp members form a hexameric ring structure and function as the protein-unfolding component of chambered proteases. The discovery of yeast Hsp104 that facilitates protein disaggregation, as opposed to targeting proteins for degradation, established Hsp104 as the founding member of a new family of ATP-dependent molecular chaperones. In addition to yeast Hsp104, Hsp104 homologs were found subsequently in bacteria (ClpB), plants (Hsp101), and most recently in Dictyostelium discoideum (Hsp104).

Like all Hsp100/Clp proteins, Hsp104 forms an oligomer, with the homohexamer being the functionally active form. Hsp104 features two canonical Walker-type ATP-binding domains, known as AAA domains, in addition to several other structural elements that define members of the AAA+ superfamily and include the so-called arginine-finger and the sensor 1 and 2 motifs. While the Hsp104 hexamer is stabilized by nucleotide and is an active ATPase in vitro, it requires the cooperation of the cognate Hsp70 chaperone system, consisting of Hsp70 and Hsp40 in yeast and DnaK, DnaJ, and GrpE in eubacteria, to recover functional protein from aggregates.

At the molecular level, Hsp104 consists of an N-terminal domain, and two tandem AAA+ domains, termed AAA-1 and AAA-2 (Figure 1d). The AAA-1 domain features an 85-Å long coiled-coil insertion, known as the M-domain, which is located on the outside of the hexamer and distinguishes Hsp104 members from other Hsp100/Clp ATPases. The M-domain is essential for protein disaggregation by mediating the interaction between Hsp104 and Hsp70, and may function as a molecular toggle to allosterically control the ATPase and mechanical activities of the Hsp104 motor.

How Hsp104 facilitates protein disaggregation has been revealed by the combined efforts of several groups. It is now widely accepted that, inside the cell, the Hsp70 system targets the Hsp104 motor to both amorphous and ordered aggregates, from which Hsp104 extracts polypeptides using an ATP-driven power stroke involving pore loops present in the AAA-1 and AAA-2 domains, and threading the polypeptide through the central channel of the Hsp104 hexamer.

While we are beginning to understand the function of the M- and AAA domains, the role of the N-domain is less clear. It was shown that the N-domain is dispensable for Hsp104 function in vitro and in vivo. However, others found that the N-domain is essential for bacterial Hsp104 and mediates substrate interaction. Consistently, the N-domain of yeast Hsp104 enhances protein disaggregation in vitro, mediates prion interaction in yeast, and is essential for yeast prion dissolution and curing by Hsp104 overexpression.

In addition to Hsp104’s role in yeast stress responses and yeast prion replication, new roles are emerging, including the asymmetric distribution of oxidative damaged proteins, facilitating the sorting of tail-anchored proteins to the endoplasmic reticulum membrane, and septin folding and assembly. Hence, future studies will provide a more complete picture as to the extent of Hsp104's cellular function.

Future perspectives

It is now widely appreciated that molecular chaperones are intimately linked to proteostasis maintenance and are essential to cell and organismal health. Perturbation of the proteostasis network, for instance by “chaperone overload” or polyglutamine expansion, invariably disrupts the balance of the protein folding landscape triggering protein misfolding and the formation of aggregates that are hallmarks of neurodegenerative diseases, prion-mediated infections, and amyloidosis. At the same time, a controlled perturbation of the functional interaction between molecular chaperones and proteases could provide new avenues for therapeutic intervention. This could be achieved by using small molecule compounds, or by RNA interference, or restoring the proteostasis network in disease states, for instance with chemical chaperones or by induced chaperone expression.

Author contributions

Wilson Jeng, Sukyeong Lee, Nuri Sung, Jungsoon Lee, and Francis T.F. Tsai conceived the study. Wilson Jeng, Sukyeong Lee, and Francis T.F. Tsai prepared the first draft of the manuscript. All authors were involved in the revision of the draft manuscript and have agreed to the final content.

Competing interests

The authors declare there were no competing interests.

Grant information

Research in the Francis T.F. Tsai and Sukyeong Lee laboratory is supported by grants from the National Institutes of Health (R01-GM111084 and R01-GM104980) and the Robert A. Welch Foundation (Q-1530).

I confirm that the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

We sincerely apologize to all those colleagues whose important work was not cited in this review. We also wish to thank all present and past members of the Francis T.F. Tsai and Sukyeong Lee laboratory for their intellectual contributions towards providing a better mechanistic understanding of molecular chaperone structure and function.
DnaK chaperone determined by screening cellulose-bound peptide libraries. *EMBO J.* 1997; 16(7): 1561–7.

Liu G, Hendrickson WA: Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 See1. *Cell.* 2007; 131(1): 106–20.

Bertelsen EB, Chang L, Gestrwicki JE, et al.: Structure of the 70-kDa heat shock proteins in domain disjoining conformation. *J Biol Chem.* 2008; 283(23): 15502–11.

Chang YH, Sun YJ, Wang C, et al.: Crystal structures of the 70-kDa heat shock proteins in domain disjoining conformation. *J Biol Chem.* 2008; 283(23): 15502–11.

Lee J, Kim JH, Biter AB, et al.: Heat shock protein (Hsp) 70 is an activator of the Hsp90 chaperone ATPase. *PLoS One.* 2011; 6(10): e26319.

Mishra P, Bolon DN: Sequence analysis of the AAA protein family. *Nucleic Acids Res.* 2007; 35(13): 4403–10.

Jahn M, Rehn A, Pelz B, et al.: Hsp90 in solution: insights into the conformational dynamics of Hsp90. *Cell.* 2008; 131(4): 786–97.

Saksin is a molecular chaperone. *Proc Natl Acad Sci U S A.* 2008; 105(2): 369–74.

Anderson JF, Siller E, Barral JM: Heat shock protein (Hsp) 70 is a nucleotide-activated ATPase. *Cell.* 2014; 158(6): 1273–85.
93. Neuwald AF, Aravind L, Spounge JL, et al.: AAA: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. *Genome Res.* 1999; 9(1): 27–43. PubMed Abstract

94. Sauer RT: Translocating AAA+ proteases: ATP-fueled machines of protein destruction. *Annu Rev Biochem.* 2001; 70: 587–612. PubMed Abstract | Publisher Full Text

95. Alexopoulos JA, Guarné A, Ortega J: AAA+ chaperone activity regulated by ATP-binding proteins. *J Struct Biol.* 2012; 179(2): 202–10. PubMed Abstract | Publisher Full Text

96. Malmovská L, Palm S, Gibson K, et al.: Dicytostelium discoideum has a highly QNi-rich proteome and shows an unusual resilience to protein aggregation. *J Biol Chem.* 2015; 28(15): 112(20): E2620–9. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

97. Lee S, Sowa ME, Watanabe YH, et al.: The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. *Cell.* 2003; 115(2): 229–40. PubMed Abstract | Publisher Full Text

98. Lee S, Choi J, Tsai FT: Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. *Mol Cell.* 2007; 25(2): 261–71. PubMed Abstract | Publisher Full Text | Free Full Text

99. Lee S, Siewal B, Lee J, et al.: CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. *Proc Natl Acad Sci U S A.* 2010; 107(19): 8135–40. PubMed Abstract | Publisher Full Text | Free Full Text

100. Carron M, Kummer E, Oguchi Y, et al.: Head-to-tail interactions of the coiled-coil domains of ClpA activity and cooperation with Hsp70 in protein disaggregation. *eLife.* 2013; 3: e02481. PubMed Abstract | Publisher Full Text | Free Full Text

101. Hattendorf DA, Lindquist SL: Cooperative kinetics of ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. *EMBO J.* 2002; 21(1–2): 12–21. PubMed Abstract | Publisher Full Text | Free Full Text

102. Hattendorf DA, Lindquist SL: Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding. *Proc Natl Acad Sci U S A.* 2002; 99(9): 7273–7. PubMed Abstract | Publisher Full Text | Free Full Text

103. Mogk A, Schleier C, Strub C, et al.: Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. *J Biol Chem.* 2003; 278(20): 17615–24. PubMed Abstract | Publisher Full Text | Free Full Text

104. Yamazaki T, Nakazaki Y, Yoshida M, et al.: Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus. *FEBS J.* 2011; 278(13): 2395–403. PubMed Abstract | Publisher Full Text

105. Biter AB, Lee J, Sung N, et al.: Functional analysis of conserved cis- and trans-elements in the Hsp104 protein disaggregating machine. *J Struct Biol.* 2012; 178(2): 172–80. PubMed Abstract | Publisher Full Text | Free Full Text

106. Zeyer C, Fischer S, Reinstein J: trans-Acting arginine residues in the AAA+ chaperone ClpB allosterically regulate the activity through inter- and intradomain communication. *J Biol Chem.* 2014; 289(47): 32965–76. PubMed Abstract | Publisher Full Text | Free Full Text

107. Parsell DA, Kowal AS, Lindquist S: Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP-induced structural changes. *J Biol Chem.* 1994; 269(6): 4480–7. PubMed Abstract

108. Watanabe YH, Nakazaki Y, Yoshida M, et al.: Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. *Cell.* 2004; 119(3): 653–65. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

109. Winkler J, Teymiers J, Bukau B, et al.: Chaperone networks in protein disaggregation and prion propagation. *J Struct Biol.* 2012; 179(2): 152–60. PubMed Abstract | Publisher Full Text | Free Full Text

110. Malinovská L, Palm S, Gibson K, et al.: The yeast AAA+ proteases: ATP-fueled machines of protein disaggregation. *FEBS Lett.* 2003; 538(1): 17–23. PubMed Abstract | Publisher Full Text | Free Full Text

111. Lum R, Tkach JM, Vierling E, et al.: Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. *Cell.* 2004; 119(3): 653–65. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

112. Malinovská L, Palm S, Gibson K, et al.: Transformation of the bacterial heat shock protein ClpB/Hsp100 contributes to development of thermotolerance in the cyanobacterium *Synechococcus* sp. strain PCC 7942. *J Bacteriol.* 2000; 182(24): 7092–9. PubMed Abstract | Publisher Full Text | Free Full Text

113. Winkler J, Teymiers J, Bukau B, et al.: Chaperone activity. *Cell* 2002; 109(3): 3139–50. PubMed Abstract | Publisher Full Text | Free Full Text

114. Neuwald AF, Zolkiewska A, Zolkiewski M: Structure and activity of ClpB from *E. coli*. Role of the amino- and carboxy-terminal domains. *J Biol Chem.* 2000; 275(48): 37565–71. PubMed Abstract | Publisher Full Text | Free Full Text

115. Barnett ME, Zolkiewska A, Zolkiewski M: AAA+ chaperones: ATP-fueled machines of protein disaggregation. *Mol Cell.* 2007; 9(3): 229–40. PubMed Abstract | Publisher Full Text | Free Full Text

116. Lum R, Niggemann M, Glover JR: Peptide and protein binding in the axial channel of Hsp104. *Insights into the mechanism of protein unfolding.* *J Biol Chem.* 2006; 281(3): 1611–20. PubMed Abstract | Publisher Full Text | Free Full Text

117. Beinke P, Schleier S, Groemping Y, et al.: The N terminus of ClpB from *Thermus thermophilus* is not essential for the chaperone activity. *J Biol Chem.* 2002; 277(49): 47160–6. PubMed Abstract | Publisher Full Text | Free Full Text

118. Hung GC, Masson DC: N-terminal domain of yeast Hsp104 chaperone is dispensable for thermotolerance and prion propagation but necessary for curing prions by Hsp104 overexpression. *Genetics.* 2006; 173(2): 611–20. PubMed Abstract | Publisher Full Text | Free Full Text

119. Barnett ME, Nagy M, Kedzierska S, et al.: The amino-terminal domain of ClpB supports binding to strongly aggregated proteins. *J Biol Chem.* 2005; 280(41): 43490–5. PubMed Abstract | Publisher Full Text | Free Full Text

120. Park SK, Kim KJ, Woo KM, et al.: Site-directed mutagenesis of the dual translational initiation sites of the clpB gene of *Escherichia coli* and characterization of its gene products. *J Biol Chem.* 1993; 268(27): 20170–4. PubMed Abstract | Publisher Full Text | Free Full Text

121. Liu J, Sha B: Crystal structure of the E. coli Hsp100 ClpB N-terminal domain. *Structure.* 2003; 11(3): 323–8. PubMed Abstract | Publisher Full Text

122. Tanaka N, Teray H, Hattori H, et al.: Interaction of the N-terminal domain of *Escherichia coli* heat-shock protein ClpB and protein aggregates during chaperone activity. *Protein Sci.* 2004; 13(12): 3214–21. PubMed Abstract | Publisher Full Text | Free Full Text

123. Chow IT, Barnett ME, Zolkiewski M, et al.: The N-terminal domain of *Escherichia coli* ClpB enhances chaperone function. *FEBS Lett.* 2005; 579(20): 4342–9. PubMed Abstract | Publisher Full Text

124. Winkler J, Teymiers J, Bukau B, et al.: Hsp70 targets Hsp104 chaperones to substrates for protein disaggregation and prion fragmentation. *J Cell Biol.* 2012; 198(3): 387–404. PubMed Abstract | Publisher Full Text | Free Full Text

125. Erjavec N, Larsson L, Grantham J, et al.: *Saccharomyces cerevisiae* Ypd11 and Ypd12: Members of the AAA+ chaperone superfamily, each with distinct functions. *Mol Cell.* 2009; 40(1): 159–71. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
136. Johnson CR, Weems AD, Brewer JM, et al.: Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast. *Mol Biol Cell.* 2015; 26(7): 1323–44. PubMed Abstract | Publisher Full Text | Free Full Text

137. Csermely P: Chaperone overload is a possible contributor to ‘civilization diseases’. *Trends Genet.* 2001; 17(12): 701–4. PubMed Abstract | Publisher Full Text

138. Gidalevitz T, Ben-Zvi A, Ho KH, et al.: Progressive disruption of cellular protein folding in models of polyglutamine diseases. *Science.* 2006; 311(5766): 1471–4. PubMed Abstract | Publisher Full Text | F1000 Recommendation

139. Balch WE, Morimoto RI, Dillin A, et al.: Adapting proteostasis for disease intervention. *Science.* 2008; 319(5865): 916–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation

140. Lindquist SL, Kelly JW: Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. *Cold Spring Harb Perspect Biol.* 2011; 3(12): pii: a004507. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. **Hays Rye**
 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
 Competing Interests: No competing interests were disclosed.

2. **Jose Barral**
 Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com