Застосування електрохімічної детоксикації у онкологічних хворих після мультиорганних операцій з вираженою ендогенною інтоксикацією

Крутько Є. М., Пилипенко С. О., Павлюченко О. С.
Державна установа «Інститут медичної радіології та онкології ім. С. П. Григор’єва Національної академії медичних наук України», Харків, Україна

Для цитування:
Крутько Є. М., Пилипенко С. О., Павлюченко О. С. Застосування електрохімічної детоксикації у онкологічних хворих після мультиорганних операцій з вираженою ендогенною інтоксикацією. Український радіологічний та онкологічний журнал. 2021. Т. XXIX. № 2. С. 52–61. DOI: https://doi.org/10.46879/ukroj.2.2021.52-61

РЕЗЮМЕ
Актуальність. Синдром ентеральної недостатності супроводжує розвиток багатьох гострих захворювань органів черевної порожнини. Згідно зі статистичними даними, у результаті розширених та мультиорганних операцій у онкології за 2019–2020 рр., ентеральна недостатність стала ускладненням у 39 % усіх випадків, незалежно від анатомо-фізіологічної ділянки, а ускладнення у вигляді синдрому ендогенної інтоксикації – у 68% випадків.

Мета роботи – вивчити ефективність лікування синдрому ентеральної недостатності на тлі вираженої ендогенної інтоксикації в онкологічних хворих після мультиорганних операцій з використанням непрямої електрохімічної детоксикації за допомогою розчину гіпохлориту натрію.

Матеріали і методи. Було обстежено 71 пацієнта з онкопатологією, яким виконані мультиорганні операції на різних анатомо-фізіологічних ділянках. Хворі були розподілені на дві групи: основна група (n=36), в якій проводилась непряма електрохімічна детоксикація за допомогою розчину гіпохлориту натрію у концентрації 0,06 %, група порівняння (n=35) – проведено лікування за стандартними схемами.

Результати та їх обговорення. Для лікування хворих з ентеральною недостатністю використовували методику електрохімічної детоксикації за допомогою гіпохлориту натрію, що знижує показники, які відображають токсичність крові та ступінь інтоксикації. Про це свідчить зниження концентрації білірубіну на 23,1%, сечовини на 91,6%, креатиніну на 99,4% і синдрому ендогенної інтоксикації – на 43,2%.

Висновки. За результатами комплексового дослідження онкологічних хворих після мультиорганних операцій з вираженою ендогенною інтоксикацією показана доцільність включення натрію гіпохлориту в комплексну післяоперативну терапію при синдромі ентеральної недостатності. Доведено, що використання натрію гіпохлориту при притомній інтоксикації ефективно знижує показники крові, нормалізує реологічні властивості крові.
ABSTRACT

Background. Enteral insufficiency syndrome accompanies the development of many acute diseases of the abdominal cavity. According to the statistics, advanced and multi-organ surgical intervention in oncosurgery within the period from 2019 to 2020 resulted in enteral insufficiency being a complication in 39% of all cases, regardless of anatomical and physiological area, while complications in the form of endogenous intoxication syndrome made up 68% of cases.

Purpose – studying the effectiveness of treatment of enteral insufficiency syndrome in cancer patients after multiorgan surgery with severe endogenous intoxication by means of indirect electrochemical detoxification with sodium hypochlorite solution.

Materials and methods. The study involved 71 cancer patients who underwent multi-organ surgery on different anatomical and physiological areas. The patients were divided into 2 groups: treatment group (n=36) provided with indirect electrochemical detoxification by means of sodium hypochlorite solution at a concentration of 0.06%, comparison group (n=35) undergoing treatment according to standard schemes. The groups were comparable in age and anatomical and physiological areas that were operated on (surgery was performed on the chest and mediastinum as well as abdominal organs).

Results. The method of electrochemical detoxification with sodium hypochlorite reducing the indicators that reflect blood toxicity and intoxication level was used for treating patients with enteral insufficiency. This was evidenced by decreased concentration of bilirubin by 23.1%, urea by 91.6%, creatinine by 99.4%, LII (leukocytal intoxication index) by 47.2% and procalcitonin by 68.2%. Being applied this method has made it possible to achieve a detoxifying effect early on day one.

Conclusions. The findings of complete physical examination of cancer patients after multiorgan surgery with severe endogenous intoxication have shown a practical significance of sodium hypochlorite being included in comprehensive post-surgery treatment in enteral insufficiency syndrome cases. Infusions of 0.06% NaClO solution within 24 hours have been proved to provide a detoxifying effect: they significantly reduce elevated concentrations of bilirubin, creatinine, urea, LII and improve blood rheology. Administering sodium hypochlorite in the suppression of antioxidant defense mechanisms leads to the activation of oxidative processes. Including sodium hypochlorite in comprehensive post-surgery treatment in enteric insufficiency syndrome has shown a high efficiency.
Вступ

Синдром ентеральної недостатності (СЕН) є ключовим фактором виникнення ендогенної інтоксикації та поліорганної недостатності [1 – 3]. У деяких випадках ентеральна недостатність стає одним із основних патогенетичних факторів, які загрожують життю пацієнта [4, 5]. Отже, розуміння механізмів розвитку ентеральної недостатності (ЕН) важливе для високоефективного лікування всіх захворювань, що супроводжуються розвитком такого явища. Клінічна онкологічна практика останнім часом активно розвивається у напрямку поліпшення якості життя хворих на фоні протипухлинного лікування та після його завершення. Велика низка клініко-морфологічних форм злікісних новоутворень відрізняється досить істотно вираженими явищами ендогенної інтоксикації за рахунок посилення процесів катаболізму та накопичення токсичних продуктів обміну. Якість життя пацієнтів з онкопатологією помітно погіршується [7].

Останнім часом відмічається збільшення кількості розширенних та мультиорганних оперативних утручань в окхохірургії. Згідно зі статистичними даними, оперативні втручання на органах грудної клітки у 2018–2019 pp. складали 47 %, на черевній порожнині – 51 %. Незалежно від локалізації оперативного втручання на різних анатомо-фізіологічних ділянках ентеральна недостатність проявляється в 39 % усіх оперативних утручань. Летальність при ентеральній недостатності складає приблизно 46 %, ускладнення у вигляді синдрому поліорганної недостатності (СПОН) – 78 % випадків. Компенсована та субкомпенсована ЕН у післяоперативному періоді зустрічається в 95 % випадків. Виявлення синдрому ентеральної недостатності у хворих, які оперували на органах грудної клітки та середостінні, пояснюється порушенням кровообігу під час операцій та гіпоксією, а при операціях на органах черевної порожнини (ОЧП), в більшості випадків, обумовлено трансплазмо- і бактеріальною флорою, що спричиняє зниження ендотоксикозу і відновлення природної імунореактивності організму [8]. Тому все більше уваги привертає на себе детоксикація та кінцево на суттєво впливає на розвиток ендогенної інтоксикації, зокрема на ендотоксиноз. А саме на ендотоксиноз залучені кожні гранулоцити, лімфоцити, еозіноліти, макрофаги, а також у великому кількісному співвідношенні на ендотоксиноз залучені ендотоксинорезистентні відновлювальні клітини [9].

INTRODUCTION

Enteral insufficiency syndrome (EIS) is a crucial factor in occurring endogenous intoxication and multiorgan failure [1–3]. In some cases, enteral insufficiency becomes one of the key pathogenetic factors threatening the life of a patient [4, 5]. Thus, understanding the mechanisms of enteral insufficiency is essential in order to provide highly effective treatment of all diseases accompanying the development of this phenomenon. In recent years, clinical oncological practice has been actively developing in the direction of improving the quality of life of patients associated with antitumor treatment and after its completion. A great number of clinical and morphological forms of malignancies differ substantially by obvious endogenous intoxication. Due to intensifying the catabolic processes and accumulating toxic metabolic products, the quality of life of cancer patients significantly deteriorates [7].

Up to date, the number of advanced and multi-organ surgical interventions in oncology is increasing. According to the statistics, surgeries involving the chest in 2018–2019 made up 47%, the abdomen – 51%. Regardless of the location of surgery on different anatomical and physiological areas, enteral insufficiency manifests itself in 39% of all surgeries. Mortality from enteral insufficiency is approximately 46%, complications in the form of multiple-organ-failure syndrome (MOFS) – 78% of cases. Compensated EI in the postoperative period occurs in 95%.

Detecting enteral insufficiency syndrome in patients operated on the chest and mediastinum stems from circulatory disorders during surgery and hypoxia, while in surgeries on the abdominal organs (AO), in most cases, it is due to translocation of bacteria resulting in enteral insufficiency.

As effenter therapy and resuscitation develop, there are opportunities for corrective influence on one or another body detoxification component. Studies in recent years have been focused on improving the effectiveness of detoxification using extracorporeal hemo-, plasma and lymphocorrection methods. However, in clinical presentation, there is no significant increase in the effect of the measures, which to some extent leads to the search for new effective methods aimed at reducing endotoxicosis and restoring the body’s natural immunoreactivity [8]. Therefore, in recent years, more and more attention is drawn to electrochemical oxidation of biologically active substances, based on biochemical processes and processes occurring in wildlife. Recently, among the tools and methods of effenter therapy, the method of indirect electrochemical detoxification, carried out by means of sodium hypochlorite solution, has become widespread. The main idea of the method is that oxidation by active oxygen underlines the vast majority of the body’s vital processes associated with excretion of toxic components of endogenous or endogen origin. Sodium hypochlorite has an oxidizing potential almost completely similar.
електрохімічної детоксикації, здійснюваний за допомогою розчину мультиорганних операцій з використанням непрямої ендогенної інтоксикації в онкологічних хворих після синдрому ентеральної недостатності на тлі вираженої процесів життєдіяльності організму, пов’язаних з кисню лежить в основі абсолютної більшості, яка полягає в тому, що окиснення за допомогою активного розчину гіпохлориту натрію як основа для його застосування є здатність трансформувати токсичні метаболіти, аналогічно процесу монооксигеназного окиснення в печінці на цитохром P-450, з перетворенням гідрофібних токсичних продуктів на гідрофільні та наступним виведенням осталих з організму. Виходячи з механізму дії, сфера застосування гіпохлориту натрію в медицині достатньо широка та охоплює практично всі критичні стани, пов’язані з гострими та хронічними токсикозами різного походження.

Метод інфузійного введення розчинів гіпохлориту натрію вельми перспективний при лікуванні екс- і ендотоксикозу. Зокрема, розчини NaClO здійснюють прямою і непрями антиагрегаційну дію на тромбоцити, інгібують агрегацію лейкоцитів, посилюють пероксидне окиснення в нейтрофілах.

До теперішнього часу для корекції СЕІ в клініку впроваджено багато методів екстракорпоральної детоксикації, заснованих на виведені ендогенних токсинів (ET) шляхом очищення плазми крові, лімфі фі и інших середовищ організму як безпосередньо, так і опосередковано. Однак ці методи здебільшого представляють способи, які не забезпечують комплексного впливу на ET. Найбільшу сумарну детоксикаційну властивість мають плазмоферез, гемодіализ, гемофільтрація, гемосорбція, лімфосорбція. Найкращу детоксикаційну дію дають плазмоферез і еритрофільтрація, а імунокоригувальна – плазмоферез та лейкоцитоферез [9, 10]. Проте реалізація цих процедур супроводжується порушенням електролітного балансу і гормонального профілю крові, травмою формених елементів крові, травмою зорганічних компонентів крові, необхідністю катетеризації двох центральних формених елементів крові, порушенням згортання і гормонального профілю крові, травмою лейкоцитоферезу, а імунокоригувальну – плазмоферез та лейкоцитоферез [9, 10]. Проте реалізація цих процедур супроводжується порушенням електролітного балансу і гормонального профілю крові, травмою формених елементів крові, травмою зорганічних компонентів крові, необхідністю катетеризації двох центральних формених елементів крові, порушенням згортання і гормонального профілю крові, травмою лейкоцитоферезу, а імунокоригувальную – плазмоферез та лейкоцитоферез [9, 10]. Проте реалізація цих процедур супроводжується порушенням електролітного балансу і гормонального профілю крові, травмою формених елементів крові, травмою зорганічних компонентів крові, необхідністю катетеризації двох центральних формених елементів крові, порушенням згортання і гормонального профілю крові, травмою лейкоцитоферезу, а імунокоригувальную – плазмоферез та лейкоцитоферез [9, 10]. Проте реалізація цих процедур супроводжується порушенням електролітного балансу і гормонального профілю крові, травмою формених елементів крові, травмою зорганічних компонентів крові, необхідністю катетеризації двох центральних формених елементів крові, порушенням згортання і гормонального профілю крові, травмою лейкоцитоферезу, а імунокоригувальную – плазмоферез та лейкоцитоферез [9, 10]. Проте реалізація цих процедур супроводжується порушенням електролітного балансу і гормонального профілю крові, травмою формених елементів крові, травмою зорганічних компонентів крові, необхідністю катетеризації двох центральних формених елементів крові, порушенням згортання і гормонального профілю крові, травмою лейкоцитоферезу, а імунокоригувальную – плазмоферез та лейкоцитоферез [9, 10]. Проте реалізація цих процедур супроводжується порушенням електролітного балансу і гормонального профілю крові, травмою формених елементів крові, травмою зорганічних компонентів крові, необхідністю катетеризації двох центральних формених елементів крові, порушенням згортання і гормонального профілю крові, травмою лейкоцитоферезу, а імунокоригувальную – плазмоферез та лейкоцитоферез [9, 10]. Проте реалізація цих процедур супроводжується порушенням електролітного балансу і гормонального профілю крові, травмою формених елементів крові, травмою зорганічних компонентів крові, необхідністю катетеризації двох центральних формених елементів крові, порушенням згортання і гормонального профілю крові, травмою лейкоцитоферезу, а імунокоригувальную – плазмоферез та лейкоцитоферез [9, 10]. Проте реалізація цих процедур супроводжується порушенням електролітного балансу і гормонального профілю крові, травмою формених елементів крові, травмою зорганічних компонентів крові, необхідністю катетеризації двох центральних формених елементів крові, порушенням згортання і гормонального профілю крові, травмою лейкоцитоферезу, а імунокоригувальную – плазмоферез та лейкоцитоферез [9, 10]. Проте реалізація цих процедур супроводжується порушенням електролітного балансу і гормонального профілю крові, травмою формених елементів крові, травмою зорганічних компонентів крові, необхідністю катетеризації двох центральних формених елементів крові, порушенням згортання і гормонального профілю крові, травмою лейкоцитоферезу, а імунокоригувальную – плазмоферез та лейкоцитоферез [9, 10].
установи «Інститут медиичної радиології та онкології ім. С. П. Григор’єва Національної академії медичних наук України» в період 2019–2020 років, було включене 71 пацієнта віком 18–90 років (середній вік пацієнтів склав 54,2 ± 2,8 р.). Жінок було 40 (54,6 %), чоловіків – 31 (45,4 %). У дослідженні вибірці налічувалося 35 (48,9 %) хворих похилого віку, лікування яких в післяопераційному періоді було найбільш складним через закономірні біологічні, вікові зміни та супутні патології.

Дослідження проведено відповідно до етичних стандартів Гельсінської декларації Всесвітньої медичної асоціації про етичні принципи проведення наукових медичних досліджень за участю людини (1964–2008 рр.), директив Європейського товариства 86/609 про участь людей у медико-біологічних дослідженнях, а також наказу Міністерства охорони здоров’я України № 690 від 23.09.2009 р. Пациєнти дали свою інформовану згоду на участь у дослідженні, яке схвалене Комісією з біоетики Державної установи «Інститут медиичної радиології та онкології ім. С.П. Григор’єва Національної академії медичних наук України».

Усі дослідження проводились в атестованих підрозділах ДУ «ІМРО НАМУ Україна»: лабораторія клінічної діагностики, свід. про атестацію № 01-0014/2019 від 05.02.2019 р., чинне до 08.02.2022 р.; клініка Державної установи «Інститут медиичної радиології та онкології ім. С. П. Григор’єва Національної академії медичних наук України» пройшла акредитацію, акредитаційний сертифікат на відому категорію № 014402, серія МЗ України, від 25.05.2019 р., чинний до 24.05.2022 р.

Критеріями включення пацієнтів в дослідження було проведення її мультиорганних операцій на органах грудної клітки і середостінні та на органах черевної порожнини, з розвитком синдрому ендогенної інтоксикації.

Критерієві виключення з дослідження: вік менше 18 років, проведення операцій тільки на одному анатомо-морфологічному ділянці, небажання пацієнта брати участь у дослідженні, а також наказу Міністрів охорони здоров’я України № 690 від 23.09.2009 р. Пацієнти дали свою інформовану згоду на участь у дослідженні, яке схвалене Комісією з біоетики Державної установи «Інститут медиичної радиології та онкології ім. С.П. Григор’єва Національної академії медичних наук України».

Залежно від схеми лікування хворі були розподілені на дві групи: основна група (n=36) – проводилась непряма електрохімічна детоксикація розчином гіпохлориту натрію у концентрації 0,06 %, група порівняння (n=35) – непряма електрохімічна детоксикація розчином гіпохлориту натрію у концентрації 0,06 %, група порівняння (n=35) – проводилась детоксикація за стандартною схемою.

Пациенти основної групи та групи порівняння на початку дослідження були зіставлені за віком, статтю, рівнем оперативного втручання. Дослідження проводили на трьох етапах: І етап – до інфузії NaClO, ІІ етап – через 1 годину після інфузії NaClO, ІІІ етап – через 4–6 годин після інфузії NaClO.

Хворим основної групи проводилася непряма електрохімічна детоксикація (НЕХД) розчином гіпохлориту натрію у концентрації 0,06 % шляхом інтрavenousozної інфузії. Інфузію здійснювали в одну з центральних вен (підключичну, яремну, стетну) через катетер зі швидкістю 50–70 крапель за 1 хв. Об’єм введеного розчину не перевищував 1/10 ОЦК за одну інфузію.

Дослідники показали, що відображають токсичність крові та ступінь інтоксикації при лікуванні
інтоксикаційного синдрому за допомогою непрямої електрохімічної детоксикації. В якості параметрів токсемії обирали специфічні показники, які характеризують види обміну та функції життєво важливих органів (кислотно-лужний баланс: pH, парциальний тиск вуглекислого газу у крові (P_{CO2}), парциальний тиск кисню у крові (P_{O2})), креатинін, сечовину, загальний білок, білірубін, глюкозу, осмолярність, час згортання крові, прокальцитонін та лейкоцитарний індекс інтоксикації. Лейкоцитарний індекс інтоксикації (LII) розраховували за формулой Кальф-Каліф [6]. Критеріями відміни лікування відповідали: нормалізація температури тіла, зниження індексу лейкоцитарної інтоксикації (за Я. Я. Кальф-Каліфом), нормалізація рівня прокальцитоніну, креатиніну, залишкового азоту, сечовини та інших досліджуваних показників. Критерії ефективності лікування оцінювали за ступенем тяжкості ендотоксикозу, використовуючи ті ж самі тести, що і для його діагностики.

Статистичну обробку результатів дослідження проводили за допомогою загальноприйнятих у медико-біологічних дослідженнях методів статистичного аналізу з використанням програмних продуктів STATISTICA 13.3 EN та Microsoft Excel 2016. Для опису і порівняння масивів даних використовували середнє арифметичне та його стандартну похибку (M ± m). Достовірність відмінностей між середніми значеннями показників вважали значущими при p < 0,05.

РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

На першому етапі дослідження спостерігали підвищення показників, що відображають токсичність крові: креатинін, сечовину, загальний білок, білірубін, глюкозу, осмолярність, час згортання крові, прокальцитонін та лейкоцитарний індекс інтоксикації (за Я. Я. Кальф-Каліфом). Встановлено, що в основній групі та групі порівняння показник ЛП на I етапі був зівставним та довіряв 4,60 ± 0,10 та 4,80 ± 0,20 відповідно, що можна пояснити формуванням СЕН вже в перші години після операції. З таблиці 1 видно, що на II етапі (через годину після введення розчину гіпохлориту натрію у концентрації 0,06 %), спостерігалась нормалізація показників кислотно-лужної рівноваги (основна група), знижувалася концентрація глюкози на 17–18%, подовжувалася час згортання крові на 40–60%, осмолярність крові знижувалася в середньому на 22–24 мосм/л. У групі порівняння достовірних змін не спостерігали. Застосування NaClO з метою детоксикації в зазначеному обсязі та концентрації на II етапі викликало гіпокоагуляцію. Розвиток гіпокоагуляції у першу годину (II етап) після інфузії NaClO свідчить про те, що він має властивості антикоагулянт прямої дії. Спочатку знижувалася в середньому на 22–24 мосм/л.

As toxemia parameters, specific indicators were chosen that characterize the types of metabolism and functions of vital organs (acid-base balance: pH, partial pressure of carbon dioxide in the blood (P_{CO2}), partial pressure of oxygen in the blood (P_{O2})), creatinine, urea, total protein, bilirubin, glucose, osmolality, coagulation time, procalcitonin and leukocyte intoxication index). Leukocyte intoxication index (LII) was calculated according to Ya. Kalf-Kalif formula [6]. Treatment discontinuance criteria included normalization of body temperature, reduction of leukocyte intoxication index (according to Ya.Ya. Kalf-Kalif), normalization of procalcitonin creatinine, residual nitrogen, urea and other indicators under study. Criteria for the effectiveness of treatment were assessed by severity of endotoxosis, using the same tests as for its diagnosis.

Statistical processing of the study findings was performed by means of accepted methods of statistical analysis in medical and biological studies using STATISTICA 13.3 EN and Microsoft Excel 2016. To describe and compare data sets, the arithmetic mean and its standard error (M ± m) were used. Accuracy of differences between mean values was considered to be significant at p <0.05.

RESULTS AND DISCUSSION

Blood toxicity parameters were assessed: creatinine, urea, total protein, bilirubin, glucose, osmolality, blood clotting time, procalcitonin and leukocyte intoxication index. At stage I of the study, all above parameters were increased in both groups. It was ascertained that in treatment group and comparison group, LII index at stage I was comparable and equal to 4.60 ± 0.10 and 4.80 ± 0.20, respectively, which could be explained by forming enteral insufficiency syndrome within the first hours after surgery.

Table 1 shows that at stage II (an hour after administering sodium hypochlorite solution, at concentration of 0.06%), improved acid-base balance (treatment group), decreased glucose concentration by 17–18%, prolonged blood clotting time by 40–60%, blood osmolality decreased on average by 22–24 mosm/l are observed. In comparison group, no significant changes were observed (Table 2). Using NaClO in order to detoxicate in the specified volume and concentration at stage II caused hypocoagulation. The development of hypocoagulation within the first hour (stage II) after NaClO infusion indicates that it has direct anti-coagulant properties. This should definitely be kept in mind by clinicians due to the risk of postoperative bleeding.

Indicators reflecting blood toxicity and intoxication degree mainly changed in treatment group at stage III of the study (4–6 hours after infusion of hypochlorite). This was evidenced by a significant (p <0.05) decrease in bilirubin concentrations from 36.50 ± 0.30 to 16.10 ± 0.35; urea from 103.00 ± 0.20 to 89.00 ± 0.20; total protein from 59.10 ± 0.30 to 50.60 ± 0.40 and creatine from 100.00 ± 0.01 to 0.045 ± 0.01 after administering NaClO.
Таблиця 1. Динаміка досліджуваних показників крові в онкологічних хворих із синдромом ентеральної недостатності на тлі ендотоксикозу в основній групі (n=36)

Показник/Parameters	Stage I	Stage II	Stage III
pH	7,29 ± 0,02	7,45 ± 0,02	7,40 ± 0,02*
P_CO2 (мм рт. ст.)/P_CO2 (mmHg)	29,50 ± 0,10	33,60 ± 0,50	35,50 ± 0,50*
P_O2 (мм рт. ст.)/P_O2 (mmHg)	70,30 ± 0,40	75,00 ± 0,60*	78,00 ± 0,60
Глюкоза (ммоль/л)/Glucose (mmol/l)	6,6 ± 0,20	5,20 ± 0,15*	4,2 ± 0,5*
Загальний білок (г/л)/Total protein (g/l)	59,10 ± 0,30	58,60 ± 0,40	50,60 ± 0,40**
Креатинин (ммоль/л)/Creatinine (mmol/l)	100,00 ± 0,01	0,10 ± 0,02	0,045 ± 0,01**
Сечовина (ммоль/л)/Urea (mmol/l)	103,00 ± 0,20	90,00 ± 0,10	89,00 ± 0,20**
Білірубін (ммоль/л)/Bilirubin (μmol/l)	36,50 ± 0,30	21,70 ± 0,70	16,10 ± 0,35**
Осмоляльність (мосм/l)/Osmolarity (mosm/l)	309,00 ± 1,20	283,00 ± 1,60*	286,00 ± 1,20**
Час згортання крові (хв)/Blood clotting time (min)	4,60 ± 0,50	10,50 ± 0,20*	9,50 ± 0,30**
LII (ум.од.)/LII (d.d.)	4,60 ± 0,10	3,90 ± 0,60	1,60 ± 0,20**
Прокальцитонін (нг/мл)/Procalcitonin (ng/ml)	5,60 ± 0,02	5,00 ± 0,03	4,30 ± 0,20**

Примітки:
* – різниця достовірна між показниками до інфузії та через 1 годину після інфузії NaClO (p <0,05);
** – різниця достовірна між показниками через 1 годину після інфузії та через 4–6 годин після інфузії NaClO (p<0,05).

Notes:
* – the difference is significant between the params before infusion and 1 hour after NaClO infusion (p <0.05);
** – the difference is significant between the params 1 hour after infusion and 4–6 hours after NaClO infusion (p <0.05).

до 89,00± 0,20; загального білка з 59,10 ± 0,30 до 50,60 ± 0,40 та креатинину з 100,00 ± 0,01 до 0,045 ± 0,01 після введення NaClO в основній групі (табл. 1). У групі порівняння зміни концентрації білірубіну, сечовини, загального білка та креатиніну на III етапі не спостерігали (табл. 2).

В основній групі на III етапі спостерігали достовірне зниження LII з 4,60 ± 0,10 до 1,60 ± 0,20 ум.од. У групі порівняння цей показник майже не змінювався. ЛІІ є одним з критеріїв функціонального стану лімфоцитарної системи, що вказує на співвідношення лімфоцитів до сегментоядерних нейтрофілів, тобто взаємозв'язку гуморальної та клітинної частини імунної системи [9]. Одним з найбільш важливих та найпростіших, з точки зору визначення параметрів для оцінки інтоксикації, є індекс співвідношення нейтрофіли/лімфоцити, який відображує співвідношення клітин неспецифічного та специфічного захисту організму [10].

Міняється в газовому складі венозної крові в основній групі свідчить про активізацію дихання з достовірним підвищенням рівня P_CO2 з 73,30 ± 0,40 до 78,00 ± 0,60 мм рт.ст. венозної крові на III етапі. У групі порівняння зміни в газовому складі венозної крові практично були відсутні (табл. 2).

Очевидно, що застосування NaClO з метою детоксикації в зазначеній концентрації в перші 4–6 год. викликає гіпокоагуляцію, гіпоглікемію та поліпшення реологічних властивостей крові.

Аналізуючи ефективність корекції метаболічних порушень, слід зазначити, що корекція метаболічного ацидозу здійснюється значно швидше (через 1 годину після інфузії гіпоклориту), ніж при використанні...
стадартних схем лікування синдрому ентеральної недостатності на тлі ендотоксикозу, забезпечуючи при цьому плазмозбереженість, збереження формених елементів крові та нормалізацію pH крові.

Таким чином, аналізуючи отримані дані можна зробити висновок, що використання терапевтичної дози гіпохлориту натрію (0,06 %) сприяє гіпокоагуляції та поліпшенню реологічних властивостей крові, а також має виражений детоксикаційний ефект (достовірно зниження рівнів креатиніну, сечовини, загального білка, білірубіну, глюкози, прокальцитоніну та лейкоцитарного інтоксикації), що ефективно коригує метаболічні порушення та викликає опосередковану імунокорекцію.

Подальше вивчення проблеми, пошук оптимальних концентрацій залежно від клінічного стану та лабораторних показників онкологічних хворих після мультиорганних операцій в період відновлення, розробка алгоритму використання є актуальною проблемою сучасної онкохірургії та інтенсивної терапії в цілому.

ВИСНОВКИ
1. За результатами комплексного дослідження онкологічних хворих після мультиорганних операцій з вираженою ендогенною інтоксикацією показана доцільність включення натрію гіпохлориту в комплексну післяопераційну терапію при синдромі ентеральної недостатності.
2. Доведено, що використання інфузій 0,06% розчину NaClO проявляє детоксикаційний ефект: достовірно знижує підвищені концентрації білірубіну, креатиніну, сечовини, ЛІІ, покращує реологічні властивості крові.
3. Виявлено, що використання натрію гіпохлориту при пригніченні механізмів антиоксидантного захисту, приводить до активації окиснювальних процесів.

Таблиця 2. Динаміка досліджуваних показників крові в онкологічних хворих зі синдромом ентеральної недостатності на тлі ендотоксикозу в групі порівняння (n=35)

Показник	Parameters	Stage I	Stage II	Stage III
pH		7,30 ± 0,01	7,32 ± 0,02	7,34 ± 0,02
PO2 (mm рт. ст./P O2 (mmHg))		32,00 ± 0,20	32,60 ± 0,20	32,80 ± 0,15
PCO2 (мм рт. ст./P CO2 (mmHg))		71,10 ± 0,60	72,80 ± 0,50	73,90 ± 0,60
Глюкоза (ммоль/л)/Glucose (mmol/l)	6,10 ± 0,10	5,90 ± 0,20	6,10 ± 0,20	
Загальний білок (г/л)/Total protein (g/l)	58,30 ± 0,30	57,9 ± 0,40	58,60 ± 0,40	
Креатинін (ммоль/л)/Creatinin (mmol/l)	102,00 ± 0,02	101,00 ± 0,03	102,00 ± 0,03	
Сечовина (ммоль/л)/Urea (mmol/l)	10,20 ± 0,40	9,90 ± 0,40	10,30 ± 0,40	
Білірубін (ммоль/л)/Bilirubin (μmol/l)	24,60 ± 0,30	23,10 ± 0,40	24,80 ± 0,30	
Осмолярність (мосм/л)/Osmolarity (mosm/l)	300,00 ± 3,00	290,00 ± 3,00	300,00 ± 4,00	
Час згортання крові (хв)/Blood clotting time (min)	4,80 ± 0,30	4,90 ± 0,20	4,70 ± 0,30	
ЛІІ (ум.од.)/LII (d.d.)	4,80 ± 0,20	4,90 ± 0,30	4,60 ± 0,30	
Прокальцитонін (нг/мл)/Procalcitonin (ng/ml)	1,80 ± 0,02	1,90 ± 0,03	1,90 ± 0,02	

ВИСНОВКИ
1. За результатами комплексного дослідження онкологічних хворих після мультиорганних операцій з вираженою ендогенною інтоксикацією показана доцільність включення натрію гіпохлориту в комплексну післяопераційну терапію при синдромі ентеральної недостатності.

Thus, analyzing the obtained data, it follows that administering a therapeutic dose of sodium hypochlorite (0.06%) enhances hypocoagulation and improves the rheological blood properties blood, as well as has a pronounced detoxifying effect (significant reduction in creatinine, urea, total protein, bilirubin, glucose, procalcitonin and leukocyte intoxication index) effectively correcting metabolic disorders and resulting in indirect immunocorrection.

Further studying the issue, search for effective concentrations depending on the clinical condition and laboratory parameters of cancer patients after multi-organ surgery in the postoperative period, the development of the algorithm of use are of high priority in modern oncosurgery and intensive care in general.

CONCLUSIONS
1. The findings of complete physical examination of cancer patients after multiorgan surgery with severe endogenous intoxication have shown a practical significance of sodium hypochlorite being included in comprehensive post-surgery treatment in enteral insufficiency syndrome cases.
2. Infusions of 0.06% NaClO solution within 24 hours have been proved to provide a detoxifying effect: they significantly reduce elevated concentrations of bilirubin, creatinine, urea, LII and improve blood rheology.
3. Administering sodium hypochlorite in the suppression of antioxidant defense mechanisms leads to the activation of oxidative processes.
4. Показано, що включення натрію гіпохлориту в комплексну післяоперативну терапію при синдромі ентеральної недостатності вже з першої доби має високу ефективність.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. Teloken P.E., Spilsbury K., Levitt M. et al. Outcomes in patients undergoing urgent colorectal surgery. ANZ journal of surgery. 2014; Vol. 15, № 2. Р. 45–50. DOI: https://doi.org/10.1111/ans.12580

2. Schmid-Schonbein G.W. The Autodigestion Hypothesis for Shock and Multi-organ Failure. Annals of biomedical engineering. 2014. Vol. 42(2). Р. 405–414. DOI: https://doi.org/10.1007/s10439-013-0891-6

3. Nesvaderani M., Eslick G.D., Cox M. R. Acute pancreatitis: update on management. The Medical journal of Australia. 2015. Vol. 8, № 202. Р. 420–423. DOI: https://doi.org/10.5694/mja14.01333

4. Mireille F.M., Korkic-Halilovic I., Marjan Bakker S.M., van der Ploeg T. Preoperative Nutrition Status and Postoperative Outcome in Elderly General Surgery Patients: A Systematic Review. Journal of parenteral and enteral nutrition. 2013. Vol. 37, Р. 37–43. DOI: https://doi.org/10.1177/0148607112445900

5. Топчев М. А., Париш Д. С., Мириков М. К. К вопросу о лечении синдрома кишечной недостаточности у больных с разлитым перитонитом. Кубанский научный медицинский вестник. 2015. № 6(155). С. 113–117.

6. Стеч В. В., Панова А. Е., Шестопалов В. А., Зырянов С. Г., Половников М. Д., Любимов Н. Г. Эффективность энтерального введения фармаконутриентов в коррекции метаболических нарушений и разрешении синдрома кишечной недостаточности у больных, перенесших расширенные гастропанкреатодуоденальные резекции. Эффективная фармакотерапия. 2015; № 12. С. 30–35.

7. Соловьев И. А., Кабанов М. Ю., Луф В. М., Колунов А. В., Лапинский А. В., Алексеев В. В., Василенко М. В. Современный подход к комплексной терапии послеоперационного пареза кишечника у хирургических больных. Vestnik Национального медико-хирургического Центра им. Н.И. Пирогова. 2013. Т. 8, № 4. С. 42–44.

8. Дубякова Е. Ю. Коррекция энтеральной недостаточности как метод борьбы с эндотоксикозом при панкреонекрозе. Бюллетень медицинских интернет-конференций. 2015. Т. 5, № 12. 1797 с.

9. Вольков Д. В., Тарасенко В. С., Красиков С. И., Шарапова Н. В., Чукина О. В., Корнилов С. А. Коррекция синдрома энтеральной недостаточности у больных с кишечной непроходимостью. Астраханский медицинский журнал. 2013. № 1. С. 53–56.

10. Vaz Rodriguez J. A., Diaz E. A. Administration of enteral nutrition. Use of infusion pumps. Revista de enfermeria. 2015. № 38(9). Р. 23–28.

REFERENCES

1. Teloken PE, Spilsbury K, Levitt M et al. Outcomes in patients undergoing urgent colorectal surgery. ANZ journal of surgery. 2014;15(2):45–50. (In English). DOI: https://doi.org/10.1111/ans.12580

2. Schmid-Schonbein GW. The Autodigestion Hypothesis for Shock and Multi-organ Failure. Annals of biomedical engineering.2014;42(2):405–14. (In English). DOI: https://doi.org/10.1007/s10439-013-0891-6

3. Nesvaderani M, Eslick GD, Cox MR. Acute pancreatitis: update on management. The medical journal of Australia. 2015;8(202):420–3. (In English). DOI: https://doi.org/10.5694/mja14.01333

4. Mireille FM, Korkic-Halilovic I, Marjan Bakker SM, van der Ploeg T. Preoperative Nutrition Status and Postoperative Outcome in Elderly General Surgery Patients: A Systematic Review. Journal of parenteral and enteral nutrition. 2013;37:37–43. (In English). DOI: https://doi.org/10.1177/0148607112445900

5. Topchive MA, Parshin DS, Misrikanov MK. On the treatment of intestinal insufficiency syndrome in patients with diffuse peritonitis. Kaban scientific medical bulletin. 2015;6(155):113–7. (In Russian).

6. Stets VV, Panova AE, Shestopalov VA, Zyrayan SG, Polovnikov MD, Lyubinov NG. The effectiveness of enteral administration of pharmacounitrients in the correction of metabolic disorders and resolution of intestinal insufficiency syndrome in patients who have undergone enlarged gastropancreato-duodenal resection. Effective pharmacotherapy. 2015;2:30–5. (In Russian).

7. Soloviev IA, Kabanov MYu, Luft VM, Kulanov AV, Lavskiy VV, Aleksseev BB, Vasilenko MV. Modern approach to complex therapy of postoperative intestinal paresis in surgical patients. Bulletin of the National Medical and Surgical Center. N.I. Pirogov. 2013;8(4):42–4. (In Russian).

8. Dubyakova EYu. Correction of enteral insufficiency as a method to combat endotoxicosis in pancreatic necrosis. Bulletin of medical Internet conferences. 2015;5(12):1797. (In Russian).

9. Volkov DV, Tarasenko VS, Krasikov SI, Sharapova NV, Chukina OV, Kornilov SA. Correction of the syndrome of enteric insufficiency in patients with intestinal obstruction. Astrakhan medical journal. 2013;1:53–6. (In Russian).

10. Vaz Rodriguez JA, Diaz EA. Administration of enteral nutrition. Use of infusion pumps. Revista de enfermeria. 2015;38(9):23–8. (In English).
Перспективи подальших досліджень

Надалі є необхідним продовжити дослідження щодо вибору оптимальних доз гіпохлориту натрію та супровідної терапії, аналіз ранніх та пізніх ускладнень внаслідок НЕХД, а також проводити періодичний моніторинг міжнародних рекомендацій.

Конфлікт інтересів

Автори заявляють про відсутність конфлікту інтересів.

Інформація про фінансування

Фінансування видатками Державного бюджету України.

ВІДОМОСТІ ПРО АВТОРІВ

Крутько Євген Миколайович – доктор медичних наук, завідувач відділення анестезіології з ліжками для інтенсивної терапії Державної установи «Інститут медичної радіології та онкології ім. С. П. Григор’єва Національній академії медичних наук України»; вул. Пушкінська, буд. 82, м. Харків, Україна, 61024;
e-mail: ekrutko00@gmail.com
моб.:+38 (067) 93-14-314.
Внесок автора: корегування виконаної роботи та аналіз отриманих результатів

Пилипенко Сергій Олександрович – кандидат медичних наук, лікар-анестезіолог відділення анестезіології з ліжками для інтенсивної терапії Державної установи «Інститут медичної радіології та онкології ім. С. П. Григор’єва Національній академії медичних наук України»; вул. Пушкінська, буд. 82, м. Харків, Україна, 61024;
e-mail: doctorpilipenco@gmail.com
моб.:+38 (099) 601-93-22.
Внесок автора: статистична обробка даних.

Павлюченко Олексій Сергійович – лікар-анестезіолог відділення анестезіології з ліжками для інтенсивної терапії Державної установи «Інститут медичної радіології та онкології ім. С. П. Григор’єва Національній академії медичних наук України»; вул. Пушкінська, буд. 82, м. Харків, Україна, 61024;
e-mail: 0978131551a@gmail.com,
моб.:+38 (066) 855-53-37.
Внесок автора: статистичне опрацювання отриманих даних, написання тексту статті.

Prospects for further research

Further research in terms of selecting effective doses of sodium hypochlorite and concomitant therapy, analysis of early and late complications resulting from indirect electrochemical detoxification as well as periodic monitoring of international guidelines are essential.

Conflict of interest

The authors state no conflict of interest.

Funding information

Financed by the state budget of Ukraine

INFORMATION ABOUT AUTHORS

Krutko Yevhen Mykolayovych – Doctor of Medical Science, Head of Anesthesiology Department with Intensive Care Beds of SO “Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine”, 82, Pushkinskaya Str., Kharkiv, Ukraine, 61024;
e-mail: ekrutko00@gmail.com
ph: +38 (067) 93-14-314.
Author contributions: adjusting the study and analysis of the obtained results.

Pylypenko Serhiy Oleksandrovych – Candidate of Medical Science, Anesthesiologist at Anesthesiology Department with Intensive Care Beds of SO “Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine”, 82, Pushkinskaya Str., Kharkiv, Ukraine, 61024;
e-mail: doctorpilipenco@gmail.com
ph: +38 (099) 601-93-22.
Author contributions: statistical data processing.

Pavluchenko Oleksii Serhiiovych – Anesthesiologist at Anesthesiology Department with Intensive Care Beds of SO “Grigoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine”, 82, Pushkinskaya Str., Kharkiv, Ukraine, 61024;
e-mail: 0978131551a@gmail.com
ph: +38 (066) 855-53-37.
Author contributions: statistical processing of the received data, writing the article.