k-DISTANCE MAGIC LABELING AND LONG BRUSH GRAPHS

V. VILFRED KAMALAPPAN

ABSTRACT. We define a labeling $f : V(G) \to \{1, 2, \ldots, n\}$ on a graph G of order $n \geq 3$ as a k-distance magic (k-DM) if $\sum_{w \in \partial N_k(u)} f(w)$ is a constant and independent of $u \in V(G)$ where $\partial N_k(u) = \{v \in V(G) : d(u, v) = k\}$, $k \in \mathbb{N}$. Graph G is called a k-DM if it has a k-DM labeling (\mathcal{L}). k-DM is a generalization of DML or Σ-labeling of graphs defined by Vilfred. Long Brush, denoted by $LP_{n,m}$, is a graph with vertex set $\{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_m\}$, a path $P_n = u_1 u_2 \ldots u_n$ and edge set $E(P_n) \cup \{u_1 v_i : i = 1 \text{ to } m\} \cup E(<v_1, v_2, \ldots, v_m>)$ where $<v_1, v_2, \ldots, v_m>$ represents the induced subgraph on $\{v_1, v_2, \ldots, v_m\}$, $m + n \geq 3$ and $m, n \in \mathbb{N}$. Long Brush graphs are used to study existence of k-DM graphs. In this paper, using partition techniques, we obtain families of k-DM graphs and prove that (i) For $k, n \geq 3$, $m \geq 2$ and $k, m, n \in \mathbb{N}$, $LP_{n,m}$ is k-DM if and only if $m(m-1) \leq 2n$ and $k = n$; (ii) For every $k \in \mathbb{N}$ and a given $m \geq 2$, $LP_{m(m-1)+k,m}$ is a $(\frac{m(m-1)}{2} + k)$-DM graph; (iii) For $m \geq 3$, $LP_{1,m} = K_1(2) \cup K_{m1} \cup K_{m2} \cup \ldots \cup K_{mn}$, $x \geq 2$, $1 \leq m_1 \leq m_2 \leq \ldots \leq m_x$, $m_1 + m_2 + \ldots + m_x = m_1 + m_2 \geq 3$ and $m_1, m_2, \ldots, m_x, x \in \mathbb{N}$, $LP_{1,m}$ is 2-DM if and only if u_1 is assigned with a suitable j and $J_{m+1} \setminus \{j\}$ is partitioned into x constant sum partites of orders m_1, m_2, \ldots, m_x, $1 \leq j \leq m + 1$; (iv) For $m \geq 2$ if $LP_{2,m}$ contains two pendant vertices, then $LP_{2,m}$ is not a 2-DM graph; (v) For $m \geq 2$ and $n \geq 3$, if $LP_{n,m}$ contains three pendant vertices, then $LP_{n,m}$ is not a 2-DM graph; and (vi) for $m_1 = 1$ to 22, we obtain all possible values of m for which $LP_{1,m} = u_1 + (K_{m1} \cup K_{m2})$ is 2-DM, $m_1 \leq m_2$, $m = m_1 + m_2 \geq 3$ and $m_1, m_2 \in \mathbb{N}$.

1. INTRODUCTION

A vertex labelling of a graph G is an assignment of labels to the vertices of G, satisfying certain conditions. More than 200 types of labellings were defined and studied since 1960, by which labelling graphs has become a multidimensional problem. Despite the large number of papers, there are relatively few general results or methods on graph labellings. Labelled graphs serve as useful models for different applications such as Coding Theory, Radar, Astronomy, Circuit Design, X-ray crystallography and Communication Network Addressing [4].

Partition of numbers seems to be very simple but plays an important role in Combinatorics, Lie theory, representation theory, mathematical physics, and theory of special functions. Euler, Ramajuan, Rademacher and Paul Erodes revealed the beauty and uses of partitions [7]. In 1987, Vilfred [11][12] defined Σ-labeling, Σ-partition and Σ-labelled graphs. In 2003 [6], the same was independently defined as 1-distance magic vertex labeling and in a 2009 article [10] the term ‘Distance Magic Labeling’ was used for the same. The author got motivation to define sigma

[2010 Mathematics Subject Classification. 05C78, 05C15, 05C75.

Key words and phrases. 1-Distance Magic labeling, Σ-labeling, k-Distance Magic labeling, k-Distance Magic graph, Long Brush $LP_{n,m}$.]
labeling by noticing two similar situations - the numbers labeled on the faces of a dice and of magic squares [9]. The sum of the numbers assigned to each pair of opposite faces of a dice is 7 (See page 1 in [12]). Corresponding to an \(n \times n\) magic square with row sum, say \(M\), if we form a complete multipartite graph with each row of the square representing a partite set and if we label each vertex with the corresponding integers in the magic squares, then we find that the sum of labels of all vertices in the neighborhood set for each vertex is the same, equal to \((n-1)M\) (See page 97 in [12]). Since construction of Magic Squares motivated to define \(\Sigma\)-labeling, the author feels that it is good to use the term ‘Distance Magic Labeling’ (See page 97 in [12]). Since construction of Magic Squares motivated to define \(\Sigma\)-labeling, the author feels that it is good to use the term ‘Distance Magic Labeling’ (See page 97 in [12]). Since construction of Magic Squares motivated to define \(\Sigma\)-labeling, the author feels that it is good to use the term ‘Distance Magic Labeling’ (See page 97 in [12]). Since construction of Magic Squares motivated to define \(\Sigma\)-labeling, the author feels that it is good to use the term ‘Distance Magic Labeling’ (See page 97 in [12]). Since construction of Magic Squares motivated to define \(\Sigma\)-labeling, the author feels that it is good to use the term ‘Distance Magic Labeling’ (See page 97 in [12]).

Definition 1.1. A labeling \(f : V(G) \to \{1, 2, \ldots, n\}\) on a graph \(G\) of order \(n \geq 3\) is called a \(k\)-distance magic labeling \((k\text{-DML})\) if \(\sum_{w \in \partial N_k(u)} f(w)\) is a constant and independent of \(u \in V(G)\) where \(\partial N_k(u) = \{v \in V(G) : d(u,v) = k\}\), \(k \in \mathbb{N}\).

Graph \(G\) is called a \(k\)-distance magic \((k\text{-DML})\) if it has a \(k\)-DML.

Definition 1.2. Long Brush is defined as a graph \(G\) with \(V(G) = \{u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_m\}\), a path \(P_n = u_1v_2u_3u_n\) and edge set \(E(P_n) \cup E(< v_1, v_2, \ldots, v_m>)\) \cup \{u_i v_i : i = 1 to m\} where \(< v_1, v_2, \ldots, v_m >\) represents the induced subgraph on \{\(v_1, v_2, \ldots, v_m\}\}, \(m + n \geq 3\) and \(m, n \in \mathbb{N}\). We denote this graph by \(LP_{n,m}\).

In this paper, we define \(k\)-Distance Magic \((k\text{-DML})\) labeling, \(k\text{-DM}\) graphs and Long Brush graphs \(LP_{n,m}\). Using partition techniques, we obtain families of \(k\text{-DM}\) graphs. \(k\text{-DM}\) labeling is a generalization of \(1\text{-DML}\) labeling or \(DM\) labeling or \(\Sigma\)-labeling of graphs defined by Vilfred [11]-[13]. This paper contains 4 sections. Section 1 presents basic definitions and results which are required in the subsequent sections. In Section 2 results on \(k\)-DML of union of paths and union of cycles are presented. In Section 3, we define Long Brush graphs \(LP_{n,m}\) and prove that (i) For \(k, n \geq 3, m \geq 2\) and \(k, m, n \in \mathbb{N}\), \(LP_{n,m}\) is \(k\)-DM if and only if \(m(m-1) < 2n\) and \(k = n\); (ii) For a given \(m \geq 2\) and for every \(k \in \mathbb{N}_0\), \(LP_{\frac{m(m-1)}{2} + k, m}\) is a \(k\)-DML graph. In Sections 4, we use constant sum bipartition of \(J_n = \{1, 2, \ldots, n\}\) to derive results on \(2\)-DML of \(LP_{1,m}\) and prove that (i) For \(m \geq 3, x \geq 2\), \(LP_{1,m} = K_1(u_1) + (K_{m_1} \cup K_{m_2} \cup \ldots \cup K_{m_x})\), \(1 \leq m_1 \leq m_2 \leq \ldots \leq m_x, m_1 + m_2 + \ldots + m_x = m, m_1 + m_2 \geq 3\) and \(m_1, m_2, \ldots, m_x, x \in \mathbb{N}\), \(LP_{1,m}\) is \(2\)-DML if and only if \(u_1\) is assigned with a suitable \(j\) and \(J_{m+1} \setminus \{j\}\) is partitioned into \(x\) constant sum partites of orders \(m_1, m_2, \ldots, m_x, 1 \leq j \leq m + 1\); (ii) For \(m \geq 2\) if \(LP_{2,m}\) contains two pendant vertices, then \(LP_{2,m}\) is not a \(2\)-DM graph; (iii) For \(m \geq 2\) and \(n \geq 3\), if \(LP_{n,m}\) contains three pendant vertices, then \(LP_{n,m}\) is not a \(2\)-DM graph; and (iv) For \(m_1 = 1 to 22\), we calculate all possible values of \(m\) for which \(LP_{1,m} = u_1 + (K_{m_1} \cup K_{m_2})\) is \(2\)-DM, \(m_1 \leq m_1, m = m_1 + m_2 \geq 3\) and \(m_1, m_2 \in \mathbb{N}\).

Search for a more general case of DML is the motivation to define \(k\)-DML, \(k \in \mathbb{N}\). Through out this paper, we consider finite undirected simple graphs and for all basic ideas in graph theory, we follow [3].

Definition 1.3. Vertices \(u\) and \(v\) of a connected graph \(G\) are said to be anti-podal if their distance \(d(u,v) = \text{diameter of } G\).

A necessary condition for a graph \(G\) to be a \(k\)-distance magic is that \(G\) contains at least one component of diameter at least \(k\), and at least two distinct \(k\)-distance neighbourhoods, \(k \in \mathbb{N}\). These conditions need not be a sufficient one.
The following result is useful to identify certain graphs as non-k-distance magic (non-k-DM) graphs.

Lemma 1.4. For $k \in \mathbb{N}$ and graph G, if $u, v \in V(G)$ such that \[|\partial N_k(u) \setminus \partial N_k(v)| = 1\] \[= |\partial N_k(v) \setminus \partial N_k(u)|,\] then G is not a k-DM graph.

Proof. If possible, let G be k-DM and f be a k-DML of G. Let $\partial N_k(u) \setminus \partial N_k(v) = \{x\}$ and $\partial N_k(v) \setminus \partial N_k(u) = \{y\}$, $x, y \in V(G)$. This implies, $\partial N_k(u) = \partial N_k(v) \cup \{x\}$, $\partial N_k(v) = \partial N_k(u) \cup \{y\}$ and $x \neq y$.

Since f is a k-DML of G, we get,
\[
\sum_{w \in \partial N_k(u)} f(w) = \sum_{w \in \partial N_k(v)} f(w).
\]
\[
\Rightarrow f(x) + \sum_{w \in \partial N_k(v)} f(w) = f(y) + \sum_{w \in \partial N_k(u)} f(w).
\]
\[
\Rightarrow f(x) = f(y), \text{ which is a contradiction since } f \text{ is a } k\text{-DML of } G, \ x \neq y \text{ and } x, y \in V(G). \quad \square
\]

2. k-DML of Union of Paths and Union of Cycles

In this section, we study k-DML of union of paths and union of cycles, $k \in \mathbb{N}$.

Theorem 2.1. For $n \geq 2$ and $k, n \in \mathbb{N}$, path P_n is k-distance magic if and only if $k = 1$ and $n = 3$.

Proof. Let $P_n = u_1u_2\ldots u_n$, $n \geq 2$. Diameter of P_n is $n - 1$ and so for k-DML of P_n, $k \leq n - 1$, $k \in \mathbb{N}$. Let $n > k$ and $k, n \in \mathbb{N}$.

If possible, let P_n be a k-DM graph and f be a k-DML of P_n.
\[
\therefore \sum_{u \in \partial N_k(u_1)} f(u) = \sum_{u \in \partial N_k(u_n)} f(u). \Rightarrow f(u_{k+1}) = f(u_{n-k}).
\]
This is possible only when $f(u_{k+1}) = f(u_{n-k})$, $k \in \mathbb{N}$. That is when $n = 2k + 1$, $k \in \mathbb{N}$. When $k = 1$, $n = 3$ and in this case, $P_n = P_3 = u_1u_2u_3$ is DM and its DML is given by \{f(u_1), f(u_3)\} = \{1, 2\} and $f(u_2) = 3$. Graph P_3 and its DML are given in Figure 1. See Figure 1.

![Figure 1](image)

Figure 1.

When $k > 1$ and $n = 2k + 1$, $n \geq 5$, $P_n = P_{2k+1} = u_1u_2\ldots u_{2k+1}$, $\partial N_k(u_{k+2}) = \{u_2\}$, $\partial N_k(u_{k+3}) = \{u_3\}$ and
\[
\sum_{u \in \partial N_k(u_{k+2})} f(u) = \sum_{u \in \partial N_k(u_{k+3})} f(u). \Rightarrow f(u_2) = f(u_3)
\]
which is a contradiction and thereby k-DML doesn’t exist to P_n when $k > 1$ and $n = 2k + 1$. Thus from the above cases, we get the result. \quad \square
Theorem 2.2. For $n_i \geq 2$, $1 \leq i \leq m$ and $k, m, n_i \in \mathbb{N}$, graph $\bigcup_{i=1}^{m} P_{n_i}$ is k-DM if and only if $n_i = 3$ and $m = 1 = k$.

Proof. If $\bigcup_{i=1}^{m} P_{n_i}$ is k-DM, then by applying the same proof technique of Theorem 2.1 on each component P_{n_i}, we get $n_i = 3$ and $k = 1$ for each $i, 1 \leq i \leq m$. Let $P_{n_i} = u_1^{(i)} u_2^{(i)} u_3^{(i)}$, $n_i = 3$, $k = 1$. Also, n_i, the biggest number among the vertex labels, is assigned to a vertex, say $u_j^{(i)}$ such that $\partial N_k(u_j^{(i)}) = \partial N_1(u_j^{(i)}) = N(u_j^{(i)}) = \{u_j^{(i)}\}$ for some $u_j^{(i)}$ and $f(u_j^{(i)}) = n$, $k = 1$, $1 \leq i \leq m$ and $1 \leq j, l \leq 3$. This implies, $j = 2$, $l = 1$ or 3 and so $f(u_j^{(i)}) = n$, $\forall i, 1 \leq i \leq m$. This is possible only when $m = 1$ since f is a DML. Hence we get the result. □

Theorem 2.3. [Proposition 2.2.8 in [12]] Any component of a DM graph which is a cycle must be of length 4. □

Corollary 2.4. For $n_i \geq 3$, $1 \leq i \leq m$ and $m, n_i \in \mathbb{N}$, graph $\bigcup_{i=1}^{m} C_{n_i}$ is DM if and only if $n_i = 4$ for every i.

Proof. Here, we present a proof different from that of Proposition 2.2.8 in [12].

Let $C_{n_j} = (u_1^{(j)}, u_2^{(j)}, ... , u_{n_j}^{(j)}), 1 \leq j \leq m$. Let $G = \bigcup_{i=1}^{m} C_{n_i}$ be DM and f be a DML of G. Our aim is to prove that $n_i = 4$ for all $i, 1 \leq i \leq m$.

For $1 \leq j \leq m$, in C_{n_j},

$N(u_2^{(j)}) = \{u_1^{(j)}, u_3^{(j)}\}$ and $N(u_{n_j}^{(j)}) = \{u_1^{(j)}, u_{n_j-1}^{(j)}\}$.

$\Rightarrow f(u_1^{(j)}) + f(u_3^{(j)}) = f(u_1^{(j)}) + f(u_{n_j-1}^{(j)})$. $\Rightarrow f(u_3^{(j)}) = f(u_{n_j-1}^{(j)})$.

$\Rightarrow n_j - 1 = 3$ since f is a DML on G. This implies, $n_j = 4$.

This is true for every $C_{n_j}, 1 \leq j \leq m$. Thus $n_j = 4$ for every $C_{n_j}, 1 \leq j \leq m$.

Conversely, let $G = m.C_4$, $m \in \mathbb{N}$. Our aim is to prove that G is DM.

G is union of m disjoint copies of C_4. Let $C_4^{(j)} = (u_1^{(j)}, u_2^{(j)}, u_3^{(j)}, u_4^{(j)})$ be the j^{th} copy of C_4 in $G, 1 \leq j \leq m$. Let $f : \{(u_1^{(j)}, u_3^{(j)}), (u_2^{(j)}, u_4^{(j)}) : j = 1 \text{ to } m \} \rightarrow \{\{1, 4m\}, \{2, 4m-1\}, ..., \{2m, 2m+1\}\}$ be a bijective mapping. Clearly,

$$\sum_{v \in N(u_1^{(j)})} f(v) = \sum_{v \in N(u_4^{(j)})} f(v) = 4m + 1$$

since $f(u_2^{(j)}) + f(u_4^{(j)}) = k + (4m - k + 1)$ and $f(u_1^{(j)}) + f(u_3^{(j)}) = l + (4m - l + 1)$ for some l and $k, 1 \leq k, l \leq 2m$ and $j = 1 \text{ to } m$.

$\Rightarrow f$ is a DML on G and hence G is a DM graph.

Hence we get the result. □

Corollary 2.5. The number of distinct DMLs of the labeled graph $G = m.C_4$ is $2^{2m}(2m)!$, $m \in \mathbb{N}$.

Proof. The number of distinct DMLs of the labeled graph $m.C_4$ is same as the number of distinct bijective mappings f as defined in the proof of Corollary 2.3 since constant sum partition of $\{1, 2, ..., 4m\}$ with each partite of order 2 is $\{1, 4m\}$, $\{2, 4m-1\}$, ... , $\{2m, 2m+1\}$ only.

Here, after selecting a pair of labels, say $\{i, 4m - i + 1\}$ to a pair of non-adjacent vertices, say, $u_1^{(j)}$, $u_3^{(j)}$ in $C_{n_j} = C_4^{(j)} = (u_1^{(j)}, u_2^{(j)}, u_3^{(j)}, u_4^{(j)})$, there are two possible
ways to label vertices $u_1^{(j)}$ and $u_3^{(j)}$, $1 \leq j \leq m$. And number of bijective mappings from \{a_1, a_2, ..., a_{2m}\} \rightarrow \{b_1, b_2, ..., b_{2m}\}$ is \((2m)!\). Hence the total number of DMLs on the labeled graph $G = m.C_4$ is \(2^{2m}(2m)!\), $m \in \mathbb{N}$. \hfill \(\square\)

Theorem 2.6. Let $k \geq 2$, $n \geq 3$ and $k, n \in \mathbb{N}$. Then C_n is k-DM if and only if $n = 4k$.

Proof. Let $C_n = (u_1, u_2, ..., u_n)$, $n \geq 3$.

When $n = 4k$, $k \geq 2$ and $k, n \in \mathbb{N}$, $C_n = C_{4k} = (u_1, u_2, ..., u_{4k})$. Let

$$f : \{(u_i, u_{2k+i}) : i = 1 \to 2k\} \rightarrow \{(j, 4k+1-j) : j = 1 \to 2k\}$$

be a bijective mapping.

Clearly, for $i = 1 \to 2k$, under subscript modulo $4k$ and $u_0 = u_{4k}$,

$$\sum_{v \in \partial N_n(u_i)} f(v) = f(u_{k+1}) + f(u_{3k+1}) = j + (4k+1-j) \text{ for some } j, 1 \leq j \leq 2k.$$

Thus f is a k-DML on $C_{4k} = C_n$.

Conversely, let C_n be a k-DM graph and f be a k-DML of C_n. Our aim is to prove that $n = 4k$, $k \in \mathbb{N}$. We consider the following 3 cases of n.

Case 1. $n < 2k$, $k \geq 2$ and $k, n \in \mathbb{N}$.

This case, k-DML doesn’t exist since $\text{dia}(C_n) < k$ when $n < 2k$.

Case 2. $n = 2k$, $k \geq 2$ and $k, n \in \mathbb{N}$.

In this case, $C_n = C_{2k} = (u_1, u_2, ..., u_{2k})$, $\text{dia}(C_n) = \text{dia}(C_{2k}) = k$, $\partial N_k(u_1) = \{u_{k+1}\}$ and $\partial N_k(u_{k+1}) = \{u_1\}$ which implies, $f(u_{k+1}) = f(u_1)$ since C_n is k-DM graph and f is a k-DML of C_n. This implies, $u_{k+1} = u_1$ which is a contradiction since $u_{k+1} \neq u_1$. Thus, when $n = 2k$, C_n is not a k-DM graph.

Case 3. $n > 2k$, $k \geq 2$ and $k, n \in \mathbb{N}$.

In this case, $\text{dia}(C_n) \geq k$, $\partial N_k(u_{k+1}) = \{u_1, u_{2k+1}\}$ and $\partial N_k(u_{n-k+1}) = \{u_1, u_{n-2k+1}\}$.

Thus $f(u_1) + f(u_{n-2k+1}) = f(u_1) + f(u_{2k+1})$ since f is a k-DML of C_n.

Thus $f(u_{2k+1}) = f(u_{n-2k+1})$, $1 \leq n - 2k + 1 \leq n$.

Thus $u_{2k+1} = u_{n-2k+1}$ since f is a k-DML of C_n.

Thus $2k + 1 = n - 2k + 1$, $1 \leq n - 2k + 1 \leq n$.

Thus $n = 4k$ is the only possibility when $n > 2k$, $k \geq 2$ and $k, n \in \mathbb{N}$.

Hence we get the result. \hfill \(\square\)

Theorem 2.7. Let $G = \bigcup_{i=1}^{m} C_{n_i}$, $k \geq 2$, $n_i \geq 2k$, $\forall i$, $1 \leq i \leq m$ and $m, n_i \in \mathbb{N}$. Then G is k-DM if and only if $n_i = 4k$ for every i, $1 \leq i \leq m$.

Proof. Let $C_{n_j} = (u_1^{(j)}, u_2^{(j)}, ..., u_{n_j}^{(j)})$, $1 \leq j \leq m$.

Let $n_j = 4k$ for all j, $1 \leq j \leq m$ and $k \geq 2$. Thus $G = \bigcup_{i=1}^{m} C_{4k}$. Let $C_{4k}^{(j)} = (u_1^{(j)}, u_2^{(j)}, ..., u_{4k}^{(j)})$ be the j^{th} copy of C_{4k} in G, $1 \leq j \leq m$ and $j, m \in \mathbb{N}$.

Let

$$f : \{(u_{i}^{(j)}, u_{2k+i}^{(j)}) : i = 1 \to 2k \& j = 1 \to m\} \rightarrow \{(l, 4km+1-l) : l = 1 \to 2km\}$$

be a bijective mapping.
 Clearly, for \(i = 1 \) to \(2k \), \(1 \leq j \leq m \) and \(u^{(j)}_0 = u^{(j)}_{4k} \), under subscript modulo \(4k \),

\[
\sum_{v \in \partial N_i(u^{(j)})} f(v) = f(u^{(j)}_{k+i}) + f(u^{(j)}_{3k+i}) = l + (4km + 1 - l) \text{ for some } l, \ 1 \leq l \leq 2km
\]

\[
= 4km + 1 = \sum_{v \in \partial N_i(u^{(j)}_{2k+i})} f(v).
\]

\(\Rightarrow f \) is a \(k \)-DML on \(G = \cup_{i=1}^{m} C_{n_i}, k \geq 2, n_i = 4k, \forall i, 1 \leq i \leq m \) and \(k, m \in \mathbb{N} \).

\(\Rightarrow \) For \(k \geq 2, n_i = 4k, \forall i, 1 \leq i \leq m \) and \(k, m \in \mathbb{N} \), graph \(G = \cup_{i=1}^{m} C_{n_i} \) is a \(k \)-DM graph.

For the converse part, apply the same proof technique of Theorem 2.6 on each \(C_{n_i} \), we get \(n_j = 4k \) for all \(j, 1 \leq j \leq m \). Figure 2 shows relative positions of \(k \) distance points \(u^{(j)}_i, u^{(j)}_{k+i}, u^{(j)}_{2k+i}, u^{(j)}_{3k+i} \) of \(C_{n_i}, 1 \leq i \leq k \). See Figure 2.

Hence the result is proved. \(\square \)

Corollary 2.8. The number of distinct \(k \)-DMLs on the labeled graph \(\cup_{i=1}^{m} C_{4k} \) is \(2^{km}(2km)! \), \(k, m \in \mathbb{N} \).

Proof. Similar to the proof of Corollary 2.5 \(\square \)

3. LONG BRUSH GRAPHS \(LP_{n,m} \) AND THEIR \(k \)-DMLS

In this section, we study \(k \)-DML of Long Brush graphs \(LP_{n,m} \). Graph \(LP_{n,m} \) has vertex set \(\{u_1, u_2, ..., u_n, v_1, v_2, ..., v_m\} \), edge set \(E(P_n) \cup E(< v_1, v_2, ..., v_m>) \cup \{u_1v_i \ : \ i = 1 \text{ to } m\} \) and contains the path \(P_n = u_1u_2...u_n \). In \(LP_{n,m} \), the induced subgraph \(< u_1, v_1, v_2, ..., v_m > \) is called the brush and the path \(P_n = u_1u_2...u_n \) as the handle of the Long Brush \(LP_{n,m} \), \(m+n \geq 3 \) and \(m, n \in \mathbb{N} \).

For \(n \geq 2 \), in \(LP_{n,m} \), \(p = |V(LP_{n,m})| = m+n, q = |E(LP_{n,m})| = n-1+m + |E(< v_1, v_2, ..., v_m>)|, m+n-1 \leq q \leq m+n-1 + \left(\frac{m}{2} \right), \text{ dia}(LP_{n,m}) = n \)

and \(u_n \) and \(v_i \) are pair of antipodal vertices for every \(i, 1 \leq i \leq m \). Moreover, here \(q = m+n-1 \) when \(< v_1, v_2, ..., v_m > = K_m \) and \(q = m+n-1 + \left(\frac{m}{2} \right) \) when \(< v_1, v_2, ..., v_m > = K_m \).

When \(m = 1 \), \(LP_{n,m} = LP_{n,1} = P_{n+1} = v_1u_1u_2...u_n \) which is DM only when \(n+1 = 3 \). And for \(k \geq 2, P_{n+1} \) is not a \(k \)-DM graph by Theorem 2.4. Thus hereafter while discussing \(k \)-DML of \(LP_{n,m} \), we consider \(k, m \geq 2 \) and \(k, m, n \in \mathbb{N} \).

In this study, we consider long brush graphs \(LP_{n,m} \) with \(k, n \geq 3 \) and \(m \geq 2 \) at first and then we consider the case of \(k = 2 \) and \(m,n \geq 2, k, m, n \in \mathbb{N} \).
Theorem 3.1. For $k, n \geq 3$ and $m \geq 2$, $LP_{n,m}$ is k-DM if and only if $m(m - 1) \leq 2n$ and $k = n$, $k, m, n \in \mathbb{N}$.

Proof. Clearly, for $m \geq 2$ and $k, n \geq 3$, $\text{dia}(LP_{n,m}) = n$ and hence $k \leq n$ when $LP_{n,m}$ is a k-DM graph.

Let $LP_{n,m}$ be k-DM and f be a k-DML of $LP_{n,m}$, $k \geq 3$.

When $k \geq 3$, in $LP_{n,m}$, $d(v_i, v_j) \leq 2$, $\partial N_k(v_i) = \{u_k\}$ and $\partial N_k(u_k) = \{v_1, v_2, ..., v_m\}$ if $n < 2k$ and $= \{v_1, v_2, ..., v_m\} \cup \{u_{2k}\}$ if $n \geq 2k$, $\forall i, j, 1 \leq i \leq j \leq m$.

Let u_k be an element of $\partial N_k(u_k)$. When $k < n$, $\forall i, j, 1 \leq i \leq j \leq m$.

If possible, let $u_{2k} \in \partial N_k(u_k)$.

It is enough to prove that $LP_{n,m}$ is a k-DM graph.

Claim 1. $LP_{n,m}$ is not k-DM if possible, let $u_{k+1} \in \partial N_k(v_i)$ and $\partial N_k(\{u_k\}) = \{u_{k+1}\}$.

$k+1 \leq n, k, n \geq 3, m \geq 2$ and $1 \leq i \leq m$. This is a contradiction to the assumption that f is a k-DML of $LP_{n,m}$. Hence the claim is true.

Claim 2. For $k, n \geq 3, m \geq 2$ and $m(m - 1) \leq 2n$, $LP_{n,m}$ is n-DM and $k = n$.

It is enough to prove that $LP_{n,m}$ is n-DM when $m(m - 1) \leq 2n$, $n \geq 3$ and $m \geq 2$. Clearly, $\text{dia}(LP_{n,m}) = n$ and hence $\partial N_n(v_i) = \{u_n\}$ and $\partial N_n(u_n) = \{v_1, v_2, ..., v_m\}$.

Given that $m(m - 1) \leq 2n$ which implies, $\frac{m(m+1)}{2} \leq n + m$.

For $m \geq 2$, there are two possibilities now, (i) $m + 1 = \frac{m(m+1)}{2}$ or (ii) $m + 1 \leq \frac{m(m+1)}{2}$. Correspondingly, we consider the following two cases.

Case (i) $m \geq 2$ and $m + 1 = \frac{m(m+1)}{2}, m \in \mathbb{N}$.

In this case, we get $m = 2$ and so $m + n = n + 2 = |V(LP_{n,2})|$. Now, consider a bijective mapping $f: V(LP_{n,2}) \rightarrow \{1, 2, ..., n + 2\}$.

Case (ii) $m \geq 2$ and $m + 1 < \frac{m(m+1)}{2}, m \in \mathbb{N}$.
Case (ii) \(m \geq 2 \) and \(m + 1 < \frac{m(m+1)}{2}, m \in \mathbb{N} \)

In this case, \(m > 2 \) and \(m + 1 < \frac{m(m+1)}{2} \leq n + m \) using (a).

Consider a bijective mapping
\[
g : V(LP_{n,m}) \rightarrow \{1, 2, ..., m + n\} \ni
g(v_i) = i \text{ for } i = 1 \text{ to } m,
g(u_n) = \frac{m(m+1)}{2}
\]
\[
g(u_1, u_2, ..., u_{n-1}) = \{m + 1, m + 2, ..., \frac{m(m+1)}{2} - 1, \frac{m(m+1)}{2} + 1, \frac{m(m+1)}{2} + 2, ..., m + n\}.
\]

Clearly, \(g \) is an \(n \)-DML of \(LP_{n,m} \) with constant sum \(\frac{m(m+1)}{2} \) for \(m > 2 \) and \(n \geq 3 \). Thereby the claim is true in this case.

Thus for \(m \geq 2, k, n \geq 3 \) and \(k, m, n \in \mathbb{N} \), when \(m(m-1) \leq n+m, LP_{n,m} \) is \(k \)-DM and \(k = n \).

Hence, we get, for \(m \geq 2, k, n \geq 3 \) and \(k, m, n \in \mathbb{N} \), \(LP_{n,m} \) is \(k \)-DM if and only if \(k = n \) and \(m(m-1) \leq n+m \).

Structure of graph \(LP_{n,m} \) depends mainly on the structure of \(< v_1, v_2, ..., v_m > \).
The following theorems present results on \(2 \)-DM of \(LP_{n,m} \) when \(< v_1, v_2, ..., v_m > = K_m \) as well as it contains either one isolated vertex when \(n = 2 \) or two isolated vertices when \(n \geq 3 \).

Theorem 3.2. Let \(m, n \geq 2 \) and \(LP_{n,m} \) be \(2 \)-DM. Then
(i) if \(< v_1, v_2, ..., v_m > = K_m \), then \(m(m-1) \leq n+m \);
(ii) if \(< v_1, v_2, ..., v_m > \neq K_m \), then \(\forall v_i, v_j \exists d(v_i, v_j) = 2 \) and \(1 \leq i < j \leq m \),
\[
\sum_{v_x \in N[v_i]} f(v_x) = \sum_{v_x \in N[v_j]} f(v_x).
\]

Proof.
(i) When \(k = 2 \), if \(< v_1, v_2, ..., v_m > = K_m \), then similar to the Case 1 in the proof of Theorem 3.1, by applying \(k = 2 \), we get,
\[
\sum_{i=1}^{m} f(v_i) \geq 1 + 2 + ... + m = \frac{m(m+1)}{2} \quad \text{and } \partial N_2(v_j) = \{u_2\}, 1 \leq j \leq m.
\]

Also, for \(1 \leq i \leq m \) and \(k = 2 \),
\[
\sum_{u \in \partial N_2(v_i)} f(u) = f(u_2) \quad \text{and } f(u_2) = \begin{cases}
\sum_{i=1}^{m} f(v_i) & \text{if } n < 4 \\
\sum_{i=1}^{m} f(v_i) + f(u_4) & \text{if } n \geq 4.
\end{cases}
\]
This implies, \(f(u_2) \geq \sum_{i=1}^{m} f(v_i) \geq \frac{m(m+1)}{2} \). But \(f(u_2) \leq m + n = p = |V(LP_{n,m})| \). This implies, \(\frac{m(m+1)}{2} \leq m + n \) which implies, \(m(m-1) \leq 2n \).
Thus, for \(k = 2, m, n \geq 2 \) and \(<v_1, v_2, ..., v_m> = K_m\), if \(LP_{n,m} \) is 2-DM, then \(m(m-1) \leq 2n\).

(ii) When \(k = 2, m, n \geq 2, <v_1, v_2, ..., v_m> \neq K_m \) and \(LP_{n,m} \) is 2-DM with \(f \) as a 2-DML, then there exists \(v_i, v_j \in E(<v_1, v_2, ..., v_m>) \), \(1 \leq i < j \leq m \). Thus, for \(1 \leq i < j \leq m \) and \(v_i, v_j \in V(LP_{n,m}) \), \(v_i v_j \notin E(<v_1, v_2, ..., v_m>) \), in \(LP_{n,m} \),

\[
\partial N_2(v_i) = \{ u_2 \} \cup \{ v_x : d(v_i, v_x) = 2, 1 \leq x \leq m \}; \quad (1)
\]

\[
\partial N_2(v_j) = \{ u_2 \} \cup \{ v_y : d(v_j, v_y) = 2, 1 \leq y \leq m \}; \quad (2)
\]

\[
\partial N_2(u_2) = \begin{cases}
\{ v_i : i = 1 \text{ to } m \} & \text{if } n < 4 \\
\{ u_4, v_i : i = 1 \text{ to } m \} & \text{if } n \geq 4.
\end{cases} \quad (3)
\]

\[
\Rightarrow \sum_{v \in \partial N_2(u_2)} f(v) = \left\{ \sum_{i=1}^{m} f(v_i) \right\} \quad \text{if } n < 4, \quad (4)
\]

Since \(f \) is a 2-DML of \(LP_{n,m} \), we get,

\[
\sum_{v \in \partial N_2(u_2)} f(v) = \sum_{v \in \partial N_2(v_i)} f(v) \quad \text{if } n < 4
\]

\[
= \sum_{d(v_i, v_x) = 2, 1 \leq x \leq m} f(v_x) = f(u_2) + \sum_{d(v_j, v_x) = 2, 1 \leq x \leq m} f(v_x).
\]

\[
\Rightarrow \sum_{d(v_i, v_x) = 2, 1 \leq x \leq m} f(v_x) = \sum_{d(v_j, v_x) = 2, 1 \leq x \leq m} f(v_x),
\]

\[
1 \leq i < j \leq m \text{ and } d(v_i, v_j) = 2.
\]

\[
\Rightarrow \sum_{x=1}^{m} f(v_x) = \sum_{x=1}^{m} f(v_x), \quad 1 \leq i < j \leq m \text{ and } d(v_i, v_j) = 2.
\]

Hence we get the result. \(\square \)

Theorem 3.3.

(i) For \(m \geq 2 \), in \(LP_{2,m} \), if \(<v_1, v_2, ..., v_m> = K_1(v_1) \cup <v_2, v_3, ..., v_m>\), then \(LP_{2,m} \) is not a 2-DM graph.

i.e., \(LP_{2,m} \) is not a 2-DM graph when it contains one pendant vertex.

(ii) For \(m \geq 2 \) and \(n \geq 1 \), in \(LP_{n,m} \), if \(<v_1, v_2, ..., v_m> = K_1(v_1) \cup K_1(v_2) \cup <v_3, ..., v_m>\), then \(LP_{n,m} \) is not a 2-DM graph.

i.e., \(LP_{n,m} \) is not a 2-DM graph when it contains two pendant vertices.

Proof.
Here, \(v_1 \) is a pendant vertex in \(LP_{2,m} \) and \(d(v_1, u_2) = 2, \partial N_2(v_1) = \{u_2\} \cup \{v_i : d(v_i, v_1) = 2, 2 \leq i \leq m\} \cup \{v_1, v_2, \ldots, v_m\} \setminus \{v_1\} \) and \(\partial N_2(u_2) = \{v_j : j = 1 \text{ to } m\} = \{v_1, v_2, \ldots, v_m\}. \) If possible, let \(LP_{2,m} \) be 2-DM and \(f \) be a 2-DML of \(LP_{2,m}. \) Then, using the definition of \(k \)-DML, we get,

\[
\sum_{u \in \partial N_2(v_1)} f(u) = \sum_{u \in \partial N_2(u_2)} f(u).
\]

\[
\Rightarrow f(u_2) + f(v_2) + f(v_3) + \ldots + f(v_m) = f(v_1) + f(v_2) + \ldots + f(v_m).
\]

\[
\Rightarrow f(u_2) = f(v_1) \text{ which is a contradiction to the definition of } f \text{ being a 2-DML of } LP_{2,m}. \text{ Hence } LP_{2,m} \text{ is not a 2-DM graph in this case.}
\]

(ii) Here, \(v_1 \) and \(v_2 \) are pendant vertices in \(LP_{n,m} \) and so \(d(v_1, v_2) = 2, \partial N_2(v_1) = \{u_2\} \cup \{v_i : d(v_i, v_1) = 2, 2 \leq i \leq m\} \cup \{v_1\} \) and \(\partial N_2(v_2) = \{u_2\} \cup \{v_1, v_2, \ldots, v_m\} \cup \{v_1, v_2, \ldots, v_m\} \setminus \{v_1\}. \) If possible, let \(LP_{n,m} \) be 2-DM and \(f \) be a 2-DML of \(LP_{n,m}. \) Then, using property (ii) of Theorem 3.2, we get,

\[
\sum_{v_x \in \partial N[v_1]} f(v_x) = \sum_{v_x \in \partial N[v_2]} f(v_x).
\]

\[
\Rightarrow f(v_1) + f(u_1) = f(v_2) + f(u_1). \Rightarrow f(v_1) = f(v_2) \text{ which is a contradiction to the definition of } f \text{ being a 2-DML of } LP_{n,m}. \text{ Thus in this case also } LP_{n,m} \text{ is not a 2-DM graph.}
\]

Hence we get the result. \(\square\)

Corollary 3.4. For a given \(m \geq 2 \) and for every \(k \in \mathbb{N}_0, LP_{\frac{m(m-1)}{2}+k,m} \) is a \((\frac{m(m-1)}{2}+k)\)-DM graph.

Proof. This follows from a slight modification of the \(n \)-DM labeling \(f \) of \(V(LP_{n,m}) \) used in Theorem 3.1. In the modified labeling \(f, \) vertex \(u_{\frac{m(m-1)}{2}+k} \) of \(LP_{\frac{m(m-1)}{2}+k,m} \) takes the label \(\frac{m(m-1)}{2}, \) vertices \(v_1, v_2, \ldots, v_m \) take 1,2,\ldots,\(m \) and vertices \(u_1, u_2, \ldots, u_{\frac{m(m-1)}{2}+k-1} \) take the remaining elements of \(J_{\frac{m(m-1)}{2}+k}. \) Clearly, it is a \((\frac{m(m-1)}{2}+k)\)-DML of \(LP_{\frac{m(m-1)}{2}+k,m}, k \in \mathbb{N}_0. \) Hence we get the result. \(\square\)

Corollary 3.5. For given \(m \geq 2 \) and \(n \geq 3, \) the \(n \)-DM graph \(LP_{n,m} \) of least order is \(LP_{\frac{m(m-1)}{2}+n,m} \) where \(n = \frac{m(m-1)}{2}. \)

Proof. Using Theorem 3.1 for \(m \geq 2, \) and \(n \geq 3, \) \(LP_{n,m} \) is an \(n \)-DM graph when \(m(m-1) \leq 2n. \) The bijective mapping \(f \) defined on \(V(LP_{n,m}) \) in the proof of Theorem 3.1 is an \(n \)-DML of \(LP_{n,m} \) and thus the \(n \)-DML exists on \(LP_{n,m}. \) Here \(u_n \) can not take value less than \(\frac{m(m-1)}{2} \) and for the least order \(n \)-DM graph of \(LP_{n,m}, \) \(u_n \) has to the label \(\frac{m(m-1)}{2}, v_1, v_2, \ldots, v_m \) take labels 1,2,\ldots,\(m \) and all other labels should be less than \(\frac{m(m-1)}{2} \) and greater than \(m. \) Hence we get the result. \(\square\)

Remark 3.6. One can use Corollary 3.4 to obtain different \(n \)-DMLs of \(LP_{n,m}. \) Starting with \(\frac{m(m-1)}{2} \)-DM graph \(LP_{\frac{m(m-1)}{2}+h,m}, \) one can produce consecutive super graphs \(LP_{\frac{m(m-1)}{2}+h,m} \) which are \((\frac{m(m-1)}{2}+h)\)-DM for \(h = 1,2,\ldots.\)

Theorem 3.7. Let \(G \) be a graph of order \(p \geq 2 \) and \(u \) be a new vertex. Then \(u + G \) is a block if and only if \(G \) is connected.
Proof. Let G be connected. Then G has at least one spanning tree, say T_p. Clearly, $u + T_p$ is a block. This implies, $u + G$ is a block.

On the other hand, if G is disconnected, then let $G = G_1 \cup G_2 \cup \ldots \cup G_k$ where G_1, G_2, \ldots, G_k be connected components of G and $k \geq 2$. In this case, $u + G_1, u + G_2, \ldots, u + G_k$ are blocks in $u + G, k \geq 2$. And hence $u + G$ is not a block in this case.

Hence we get the result. □

Corollary 3.8. For $m \geq 2$, $LP_{1,m}$ is a block if and only if $< v_1, v_2, ..., v_m >$ is connected. □

4. On 2-DML of $LP_{1,m} = u_1 + (K_{m-i} \cup K_i), 1 \leq i \leq m - i$ and $m \geq 3$

In the previous section, we could observe that, in Corollary 3.3, for $k \geq 3$ and $m \geq 2$, once 3-DML of $LP_{3,m}$ is known (its 3-DM labeling mainly depends on the labelings of $v_1, v_2, ..., v_m$ and of u_3), then a $(3 + k)$-DML of $LP_{3+k,m}$ can be found easily by considering the same labeling of $v_1, v_2, ..., v_m$ in $LP_{3+k,m}$ and the labeling of u_{3+k} is same as of u_3 in 3-DM of $LP_{3,m}$ and the remaining labels are assigned to the remaining vertices, $u_1, u_2, ..., u_{2+k}$ for any $k \in \mathbb{N}$. Also, the structure of graph $LP_{n,m}$ depends on the structure of $LP_{1,m}$ whose structure depends on its induced subgraph $< v_1, v_2, ..., v_m >$ since $LP_{1,m} = u_1 + < v_1, v_2, ..., v_m >$, $m, n \in \mathbb{N}$. In this section, we concentrate our study on $LP_{1,m}, m \geq 3$.

Let G_i be a connected component of $< v_1, v_2, ..., v_m >$ and $< v_1, v_2, ..., v_m > = G_1 \cup G_2 \cup \ldots \cup G_x, 1 \leq i \leq x$. Clearly, $u_1 + G_i$ is a block in $LP_{1,m}, 1 \leq i \leq x, m, x \in \mathbb{N}$.

For $m \geq 2$, $|V(LP_{1,m})| = m + 1$ and $dia(LP_{1,m}) = 1$ or $2, m \in \mathbb{N}$. $dia(LP_{1,m}) = 1$ if and only if $LP_{1,m} = K_{m+1}$ and $LP_{1,m}$ is not DM when $dia(LP_{1,m}) = 1$.

Let $dia(LP_{1,m}) = 2, m \geq 2$ and $m \in \mathbb{N}$. If possible, let f be a DML or 2-DML of $LP_{1,m}$.

When $LP_{1,m} = P_3 = K_1(u_1) + (K_1(v_1) \cup K_1(v_2)) = v_1u_1v_2$, $dia(P_3) = 2$ and P_3 is DM but not 2-DM. A path of length 3 and a DML of it are given in Figure 1.

When $m \geq 2$ and $LP_{1,m}$ contains at least two pendant vertices, v_i and v_j, $1 \leq i, j \leq m$, then $dia(LP_{1,m}) = 2$, $LP_{1,m}$ is DM only when $m = 2$ and is not 2-DM, follows from Theorem 3.3.

Thus, in the rest of this section, while discussing 2-DML of $LP_{1,m}$, we consider $dia(LP_{1,m}) = 2$ and $m \geq 3$. Next theorem deals with 2-DML of $LP_{1,m}$ when $x \geq 2, < v_1, v_2, ..., v_m > = K_{m_1} \cup K_{m_2} \cup \ldots \cup K_{m_x}, 1 \leq m_1 \leq m_2 \leq \ldots \leq m_x, m_1 + m_2 + \ldots + m_x = m, m_1 + m_2 \geq 3$ (with at the most one pendant vertex in $LP_{1,m}$) and $m_1, m_2, ..., m_x, x \in \mathbb{N}$. In this case, each subgraph $K_1(u_1) + K_{m_i} = K_{m_{i+1}}$ is a block in $LP_{1,m}, 1 \leq i \leq x$.

Theorem 4.1. Let $m \geq 3$, $dia(LP_{1,m}) = 2, < v_1, v_2, ..., v_m > = K_{m_1} \cup K_{m_2} \cup \ldots \cup K_{m_x}, x \geq 2, 1 \leq m_1 \leq m_2 \leq \ldots \leq m_x, m_1 + m_2 + \ldots + m_x = m, m_1 + m_2 \geq 3$ and $m_1, m_2, ..., m_x, x \in \mathbb{N}$. Then $LP_{1,m}$ is 2-DM if and only if u_1 is assigned with a suitable j and $J_{m+1} \setminus \{j\}$ is partitioned into x constant sum partites of orders $m_1, m_2, ..., m_x, 1 \leq j \leq m + 1$.
Proof. Let \(V(K_{m_i}) = \{v_i : j = 1 \text{ to } m_i\}, 1 \leq i \leq x \). Then \(LP_{1,m} \) is 2-DM if and only if \(\exists \) 2-DML \(f \) on \(LP_{1,m} \) such that

\[
\sum_{u \in N_2(v_{i,j})} f(u) = \sum_{u \in N_2(v_{i,j})} f(u) = \ldots = \sum_{u \in N_2(v_{i,j})} f(u).
\]

\[
\Leftrightarrow \sum_{i=1}^{m+1} i - (f(u_1) + \sum_{u \in V(K_{m_1})} f(u)) = \sum_{i=1}^{m+1} i - (f(u_1) + \sum_{u \in V(K_{m_2})} f(u))
\]

\[
= \ldots = \sum_{i=1}^{m+1} i - (f(u_1) + \sum_{u \in V(K_{m_3})} f(u)).
\]

\[
\Leftrightarrow \sum_{u \in V(K_{m_1})} f(u) = \sum_{u \in V(K_{m_2})} f(u) = \ldots = \sum_{u \in V(K_{m_3})} f(u).
\]

Thus, under the given conditions, \(LP_{1,m} \) is 2-DM if and only if \(u_1 \) is assigned with a suitable \(j \) and \(J_{m+1 \setminus \{j\}} \) is partitioned into \(x \) constant sum partites of orders \(m_1, m_2, \ldots, m_x, 1 \leq j \leq m + 1 \). \(\square \)

The necessary condition for bipartition of \(J_{m+1 \setminus \{j\}} \) with constant sum partites \(S_1 \) and \(S_2 \) is that the number of odd numbers in \(J_{m+1 \setminus \{j\}} \) must be even, \(m = m_1 + m_2, m_1 = |S_1|, m_2 = |S_2|, 1 \leq j \leq m + 1 \) and \(m \geq 4 \). Accordingly, we select \(j \) and assign it to \(u_1 \) so that \(LP_{1,m} \) is 2-DM with \(m = m_1 + m_2, m_1 = |S_1|, m_2 = |S_2| \), if it exists, with constant sum \(M = \sum_{i \in S_1} i = \sum_{i \in S_2} i \).

Here, by choosing a suitable \(j \), we try to obtain possible \(x \) constant sum partition of \(J_{m+1 \setminus \{j\}} \), staring with \(x = 2, 1 \leq j \leq m + 1 \). That is we start with the case of \(x = 2 \). In this case, we consider \(LP_{1,m} \) such that \(\text{dia}(LP_{1,m}) = 2, <v_1, v_2, \ldots, v_m> = K_{m_1} \cup K_{m_2}, m_1 \leq m_2, m_1 + m_2 = m \geq 3 \) and \(m_1, m_2 \in \mathbb{N} \).

In particular, consider \(LP_{1,3} \) with \(m \geq 3, \text{dia}(LP_{1,3}) = 2, <v_1, v_2, \ldots, v_m> = K_1 \cup K_{m-1} \). Figure 3 represents \(LP_{1,3} \) with \(<v_1, v_2, v_3> = K_1 \cup K_2 \) which is 2-DM. The graph \(LP_{1,3} \) with its 2-DMLs are given in Figures 4 and 5.

![Figure 3. LP_{1,3} = K_1 + (K_1 \cup K_2)](image)

![Figure 4. 2-DML of LP_{1,3}](image)

![Figure 5. 2-DML of LP_{1,3}](image)

Theorem 4.2. Let \(m \geq 3 \) and \(<v_1, v_2, \ldots, v_m> = K_1 \cup K_{m-1} \). Then the graph \(LP_{1,m} \) is 2-DM only when \(m = 3 \).

Proof. If possible, let \(LP_{1,m} \) be 2-DM and \(f \) be a 2-DML of it when \(<v_1, v_2, \ldots, v_m> = K_{m-1}(v_1, v_2, \ldots, v_{m-1}) \cup K_1(v_m) \) where \(K_n(v_1, v_2, \ldots, v_n) \) represents complete graph of order \(n \) with the vertex set \(\{v_1, v_2, \ldots, v_n\}, m \geq 3 \).

Then, for \(1 \leq i \leq m - 1 \),

\[
\sum_{u \in N_2(v_i)} f(u) = \sum_{u \in N_2(v_m)} f(u).
\]
\[f(v_m) = \sum_{i=1}^{m-1} f(v_i), \quad m \geq 3. \]

This is possible only when either \(\sum_{i=1}^{m-1} i = m \) or \(\sum_{i=1}^{m-1} i = m + 1 \) since \(v_m \) has to take the biggest number after assigning a suitable value to \(u_1 \) and the remaining \(m - 1 \) smaller numbers of \(J_{m+1} \) are assigned to vertices \(v_i, 1 \leq i \leq m - 1 \).

This is possible only when \((m - 1)m = 2m \) or \((m - 1)m = 2(m + 1) \). That is when \(m - 1 = 2 \) or \(m^2 - 3m - 2 = 0 \). That is when \(m = 3 \) or \(m = \frac{3 \pm \sqrt{17}}{2} \). That is when \(m = 3 \) since \(\frac{3 \pm \sqrt{17}}{2} \notin \mathbb{N} \).

Hence the result. \(\square \)

Theorem 4.3. Let \(m \geq 4 \) and \(< v_1, v_2, ..., v_m > = K_2 \cup K_{m-2} \). Then the graph \(LP_{1,m} \) is 2-DM only when \(m \leq 7 \) and it is not 2-DM for \(m \geq 8, m \in \mathbb{N} \).

Proof. Let us see the result when \(m = 4, 5, 6, 7 \).

The necessary condition for bipartition of \(J_{m+1} \setminus \{j\} \) with constant sum partites is that the number of odd numbers in \(J_{m+1} \setminus \{j\} \) must be even, \(1 \leq j \leq m + 1 \) and \(m \geq 4 \). Accordingly, we select \(j \) and assign it to \(u_1 \) so that \(LP_{1,m} \) is 2-DM, if it exists, with constant sum \(M \).

Now, consider constant sum bipartition of \(J_{m+1} \setminus \{j\} \) for \(m = 4, 5, 6, 7, ... \). In each case of \(m \), the number \(j \) is identified (starting with biggest possible value of \(j \) and then with smaller values) and we represent it by bold font and the remaining numbers are checked for bipartition into constant sum partites \(S_1 \) and \(S_2 \) of \(J_{m+1} \setminus \{j\} \), \(|S_1| \leq |S_2|, 1 \leq j \leq m + 1 \).

1. For \(m = 4 \) and \(< v_1, v_2, ..., v_m > = K_2 \cup K_2 \).
 (i) \(J_5 = \{1, 2, 3, 4, 5\} \).
 Here, \(j = 5, S_1 = \{1, 4\}, S_2 = \{2, 3\} \) and \(M = 5 \). Corresponding 2-DML of \(LP_{1,4} \) is given in Figure 6. See Figure 6.
 (ii) \(J_5 = \{1, 2, 3, 4, 5\} \).
 Here, \(j = 3, S_1 = \{1, 5\}, S_2 = \{2, 4\} \) and \(M = 6 \). Corresponding 2-DML of \(LP_{1,4} \) is given in Figure 7. See Figure 7.
 (iii) \(J_5 = \{1, 2, 3, 4, 5\} \).
 Here, \(j = 1, S_1 = \{2, 5\}, S_2 = \{3, 4\} \) and \(M = 7 \). Corresponding 2-DML of \(LP_{1,4} \) is given in Figure 8. See Figure 8.

 2-DMLs of \(LP_{1,4} = u_1 + (K_2 \cup K_2) \) with constant sum \(M \)

 ![Fig. 6. 2-DML with \(M = 5 \).](image1)
 ![Fig. 7. 2-DML with \(M = 6 \).](image2)
 ![Fig. 8. 2-DML with \(M = 7 \).](image3)

2. For \(m = 5 \) and \(< v_1, v_2, ..., v_m > = K_2 \cup K_3 \).
 (i) \(J_6 = \{1, 2, 3, 4, 5, 6\} \).
 Here, \(j = 5, S_1 = \{2, 6\}, S_2 = \{1, 3, 4\} \) and \(M = 8 \). Corresponding 2-DML of \(LP_{1,5} \) is given in Figure 9. See Figure 9.
 (ii) \(J_6 = \{1, 2, 3, 4, 5, 6\} \).

![Fig. 6. 2-DML with \(M = 5 \).](image1)
![Fig. 7. 2-DML with \(M = 6 \).](image2)
![Fig. 8. 2-DML with \(M = 7 \).](image3)

![Fig. 6. 2-DML with \(M = 5 \).](image1)
![Fig. 7. 2-DML with \(M = 6 \).](image2)
![Fig. 8. 2-DML with \(M = 7 \).](image3)
Here, \(j = 3 \), \(S_1 = \{4, 5\} \), \(S_2 = \{1, 2, 6\} \) and \(M = 9 \). Corresponding 2-DML of \(LP_{1,5} \) is given in Figure 10. See Figure 10.

(iii) \(J_6 = \{1, 2, 3, 4, 5, 6\} \).

Here, \(j = 1 \), \(S_1 = \{4, 6\} \), \(S_2 = \{2, 3, 5\} \) and \(M = 10 \). Corresponding 2-DML of \(LP_{1,5} \) is given in Figure 11. See Figure 11.

2-DMLs of \(LP_{1,5} = u_1 + (K_3 \cup K_2) \) with constant sum \(M \)

3. For \(m = 6 \) and \(< v_1, v_2, ..., v_m > = K_2 \cup K_4 \).

(i) \(J_7 = \{1, 2, 3, 4, 5, 6, 7\} \).

Here, \(j = 6 \), \(S_1 = \{4, 7\} \), \(S_2 = \{1, 2, 3, 5\} \) and \(M = 11 \). Corresponding 2-DML of \(LP_{1,6} \) is given in Figure 12. See Figure 12.

(ii) \(J_7 = \{1, 2, 3, 4, 5, 6, 7\} \).

Here, \(j = 4 \), \(S_1 = \{5, 7\} \), \(S_2 = \{1, 2, 3, 6\} \) and \(M = 12 \). Corresponding 2-DML of \(LP_{1,6} \) is given in Figure 13. See Figure 13.

(iii) \(J_7 = \{1, 2, 3, 4, 5, 6, 7\} \).

Here, \(j = 2 \), \(S_1 = \{6, 7\} \), \(S_2 = \{1, 3, 4, 5\} \) and \(M = 13 \). Corresponding 2-DML of \(LP_{1,6} \) is given in Figure 14. See Figure 14.

2-DMLs of \(LP_{1,6} = u_1 + (K_4 \cup K_2) \) with constant sum \(M \)

4. For \(m = 7 \) and \(< v_1, v_2, ..., v_m > = K_2 \cup K_5 \).

\(J_8 = \{1, 2, 3, 4, 5, 6, 7, 8\} \) and \(S_1 = \{7, 8\} \) and \(S_2 = \{1, 2, 3, 4, 5\} \) are its constant sum bipartite subsets with \(M = 15 \). The corresponding 2-DML of \(LP_{1,7} \) is given in Figure 15. See Figure 15.

5. For \(m = 8 \) and \(< v_1, v_2, ..., v_m > = K_2 \cup K_6 \)
Thus from the above cases, we get, for \(m - 2 \geq 2 \), \(LP_{1,m} = u_1 + (K_2 \cup K_{m-2}) \) is 2-DM only for \(m = 4 \) to 7 and is not 2-DM when \(m \geq 8 \), \(m \in \mathbb{N} \). Hence we get the result.

Theorem 4.4. Let \(m \geq 6 \) and \(< v_1, v_2, ..., v_m > = K_3 \cup K_{m-3} \). Then the graph \(LP_{1,m} \) is 2-DM only when \(m \leq 10 \) and not 2-DM for \(m \geq 11 \), \(m \in \mathbb{N} \).

Proof. Let us consider \(LP_{1,m} \) for \(m \geq 6 \) with \(< v_1, v_2, ..., v_m > = K_3 \cup K_{m-3} \). Here, we start with \(m - 3 = 3 \), the smallest possible value of \(m - 3 \) when \(m - 3 \geq 3 \). The bold font number in each \(J_{m+1} \) indicates that it is the possible label \(j \) for \(u_1 \) in \(LP_{1,m} \) to obtain constant sum partites \(S_1 \) and \(S_2 \) of \(J_{m+1} \setminus \{ j \} \), \(|S_1| \leq |S_2| \) and \(M \) is the constant sum.

1. For \(m = 6 \) and \(< v_1, v_2, ..., v_m > = K_3 \cup K_3 \).
 (i) \(J_7 = \{1, 2, 3, 4, 5, 6, 7\} \).
 Here, \(j = 6 \), \(S_1 = \{1, 3, 7\} \), \(S_2 = \{2, 4, 5\} \) and \(M = 11 \).
 (ii) \(J_7 = \{1, 2, 3, 4, 5, 6, 7\} \).
 Here, \(j = 4 \), \(S_1 = \{1, 5, 6\} \), \(S_2 = \{2, 3, 7\} \) and \(M = 12 \).
 (iii) \(J_7 = \{1, 2, 3, 4, 5, 6, 7\} \).
 Here, \(j = 2 \), \(S_1 = \{1, 5, 7\} \), \(S_2 = \{3, 4, 6\} \) and \(M = 13 \).

2. For \(m = 7 \) and \(< v_1, v_2, ..., v_m > = K_3 \cup K_4 \).
 (i) \(J_8 = \{1, 2, 3, 4, 5, 6, 7, 8\} \).
 Here, \(j = 8 \), \(M = 14 \) and possible values of \(S_1 \) and \(S_2 \) are
 \(S_1 = \{1, 6, 7\} \), \(S_2 = \{2, 3, 4, 5\} \);
 \(S_1 = \{2, 5, 7\} \), \(S_2 = \{1, 3, 4, 6\} \);
 \(S_1 = \{3, 5, 6\} \), \(S_2 = \{1, 2, 4, 7\} \).
 (ii) \(J_8 = \{1, 2, 3, 4, 5, 6, 7, 8\} \).
 Here, \(j = 6 \), \(M = 15 \) and possible values of \(S_1 \) and \(S_2 \) are
 \(S_1 = \{2, 5, 8\} \), \(S_2 = \{1, 3, 4, 7\} \);
 \(S_1 = \{3, 4, 8\} \), \(S_2 = \{1, 2, 5, 7\} \);
 \(S_1 = \{3, 5, 7\} \), \(S_2 = \{1, 2, 4, 8\} \).
 (iii) \(J_8 = \{1, 2, 3, 4, 5, 6, 7, 8\} \).
 Here, \(j = 4 \), \(M = 16 \) and possible values of \(S_1 \) and \(S_2 \) are
 \(S_1 = \{1, 7, 8\} \), \(S_2 = \{2, 3, 5, 6\} \);
 \(S_1 = \{2, 6, 8\} \), \(S_2 = \{1, 3, 5, 7\} \);
 \(S_1 = \{3, 6, 7\} \), \(S_2 = \{1, 2, 5, 8\} \).
 (iv) \(J_8 = \{1, 2, 3, 4, 5, 6, 7, 8\} \).
 Here, \(j = 2 \), \(M = 17 \) and possible values of \(S_1 \) and \(S_2 \) are
 \(S_1 = \{4, 6, 7\} \), \(S_2 = \{1, 3, 5, 8\} \);
 \(S_1 = \{3, 6, 8\} \), \(S_2 = \{1, 4, 5, 7\} \);
 \(S_1 = \{4, 5, 8\} \), \(S_2 = \{1, 3, 6, 7\} \).

3. For \(m = 8 \) and \(< v_1, v_2, ..., v_m > = K_3 \cup K_5 \).
 (i) \(J_9 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \).
 Here, \(j = 9 \), \(M = 18 \) and possible values of \(S_1 \) and \(S_2 \) are
$S_1 = \{3, 7, 8\}, S_2 = \{1, 2, 4, 5, 6\};$
$S_1 = \{4, 6, 8\}, S_2 = \{1, 2, 3, 5, 7\};$
$S_1 = \{5, 6, 7\}, S_2 = \{1, 2, 3, 4, 8\}.$

(ii) $J_9 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
Here, $j = 7$, $M = 19$ and possible values of S_1 and S_2 are
$S_1 = \{2, 8, 9\}, S_2 = \{1, 3, 4, 5, 6\};$
$S_1 = \{4, 6, 9\}, S_2 = \{1, 2, 3, 5, 8\};$
$S_1 = \{5, 6, 8\}, S_2 = \{1, 2, 3, 4, 9\}.$

(iii) $J_9 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
Here, $j = 5$, $M = 20$ and possible values of S_1 and S_2 are
$S_1 = \{3, 8, 9\}, S_2 = \{1, 2, 4, 6, 7\};$
$S_1 = \{4, 7, 9\}, S_2 = \{1, 2, 3, 6, 8\}.$

(iv) $J_9 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
Here, $j = 3$, $M = 21$ and possible values of S_1 and S_2 are
$S_1 = \{4, 8, 9\}, S_2 = \{1, 2, 5, 6, 7\};$
$S_1 = \{5, 7, 9\}, S_2 = \{1, 2, 4, 6, 8\};$
$S_1 = \{6, 7, 8\}, S_2 = \{1, 2, 4, 5, 9\}.$

4. For $m = 9$ and $<v_1, v_2, ..., v_m> = K_3 \cup K_6$.

(i) $J_{10} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$
Here, $j = 9$, $M = 23$ and possible values of S_1 and S_2 are
$S_1 = \{5, 8, 10\}, S_2 = \{1, 2, 3, 4, 6, 7\};$
$S_1 = \{6, 7, 10\}, S_2 = \{1, 2, 3, 4, 5, 8\}.$

(ii) $J_{10} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$
Here, $j = 7$, $M = 24$ and possible values of S_1 and S_2 are
$S_1 = \{5, 9, 10\}, S_2 = \{1, 2, 3, 4, 6, 8\};$
$S_1 = \{6, 8, 10\}, S_2 = \{1, 2, 3, 4, 5, 9\}.$

(iii) $J_{10} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$
Here, $j = 5$, $M = 25$ and possible values of S_1 and S_2 are
$S_1 = \{6, 9, 10\}, S_2 = \{1, 2, 3, 4, 7, 8\};$
$S_1 = \{7, 8, 10\}, S_2 = \{1, 2, 3, 4, 6, 9\}.$

(iv) $J_{10} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$
Here, $j = 3$, $S_1 = \{7, 9, 10\}, S_2 = \{1, 2, 4, 5, 6, 8\}$ and $M = 26$.

(iv) $J_{10} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$
Here, $j = 1$, $S_1 = \{8, 9, 10\}, S_2 = \{2, 3, 4, 5, 6, 7\}$ and $M = 27$.

5. For $m = 10$ and $<v_1, v_2, ..., v_m> = K_3 \cup K_7$.

(i) $J_{11} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.$
Here, $j = 10$, $S_1 = \{8, 9, 11\}, S_2 = \{1, 2, 3, 4, 5, 6, 7\}$ and $M = 28$.

(ii) $J_{11} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.$
In this case, $\frac{2}{11} = \frac{1}{\sum_{i=1}^{11} i - 8} = 29$ and sum of any 3 distinct numbers
of $J_{11} \setminus \{8\} \neq 29$ and so constant sum bipartition doesn’t exist and
thereby S_1 and S_2 doesn’t exist.

(iii) $J_{11} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.$
Here, $j = 6$, $S_1 = \{9, 10, 11\}, S_2 = \{1, 2, 3, 4, 5, 7, 8\}$ and $M = 30$.

(iv) $J_{11} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.$
In this case, sum of 7 smallest numbers = 32 which is greater than 30 = 11+10+9, sum of 3 biggest numbers in $J_{11} \setminus \{4\}$ and hence S_1 and S_2 doesn’t exist.

6. For $m = 11$ and $< v_1, v_2, ..., v_m > = K_3 \cup K_8$.

(i) $J_{12} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$.

In this case, $\frac{S}{m} = \frac{1}{2}(\sum_{i=1}^{12} i - 12) = 33$ and sum of 8 smallest numbers of $J_{11} = 36$ which is greater than $30 = 11+10+9$, sum of 3 biggest numbers in J_{11} and hence S_1 and S_2 doesn’t exist.

The above also implies, when m is greater than 11, sum of $m - 3$ smallest numbers of J_{m+1} will be greater than sum of 3 biggest numbers and thereby constant sum bipartition doesn’t exist for $J_{m+1} \setminus \{j\}$, $1 \leq j \leq m + 1$.

Hence we get the result. □

For $m_1 = |S_i| = 1$, $m = 3$ is the only possible value of m for which $LP_{1,3} = u_1 + (K_1(v_1) \cup K_2(v_2))$ is 2-DM. The graph and its two 2-DMLs are given in Figures 3, 4, 5.

For $m_1 = 2$, $m = 4, 5, 6, 7$ are the possible values of m for which $LP_{1,m} = u_1 + (K_2 \cup K_{m-2})$ is 2-DM and the corresponding 2-DM labeled graphs are given in Figures 6 to 14.

For $m_1 = 3$, $m = 6, 7, 8, 9, 10$ are the possible values of m for which $LP_{1,m} = u_1 + (K_3 \cup K_{m-3})$ is 2-DM. In each case, we provide constant sum bipartition sets.

For $m_1 = 4$ to 22, we calculate possible values of m for which $LP_{1,m} = u_1 + (K_4 \cup K_{m-4})$ is 2-DM and these values are presented in Table 1. Detailed calculations for obtaining these values of m are given in the Annexure.

Theorem 4.5. For $n \geq 3$, J_n is constant sum bipartite if and only if $n \equiv 0, 3 \pmod{4}$ if and only if J_n contains even number of odd numbers.

Proof. Consider the case, $n \equiv 0 \pmod{4}$. Let $n = 4m$ and $A_i = \{i, 4m + 1 - i\}$ for $i = 1$ to $2m$. The two elements of A_i are odd and even, $i = 1$ to $2m$ and $m \in \mathbb{N}$. Take union of any m elements of A_i sets as S_1 and union of the remaining m sets as S_2. Clearly, S_1 and S_2 partition the set J_{4m} into constant sum bipartition with constant sum $M = m(4m + 1)$. Moreover, the number of odd numbers in J_{4m} is $2m$, an even number.

Consider the case, $n \equiv 3 \pmod{4}$. Let $n = 4m + 3$, $A_i = \{i, 4m + 3 - i\}$ for $i = 1$ to $2m + 1$, and $A_{2m+2} = \{4m + 3\}, m \in \mathbb{N}$. Here, there are $2m + 2$ number of A_i such that sum of the elements in each A_i is a constant equal to $4m + 3$, $1 \leq i \leq 2m + 2$. Take S_1 as union of any $m + 1$ sets of A_i and union of the remaining $m + 1$ sets as S_2. Then, S_1 and S_2 are constant sum bipartites of J_{4m+3} with constant sum $M = (m + 1)(4m + 3)$. Moreover, the number of odd numbers in J_{4m+3} is $2m + 2$, an even number.

Thus, in these two cases constant sum bipartition exists on J_n and the number of odd numbers in each case is even.

On the other hand, when $n \equiv 1, 2 \pmod{4}$, the number of odd numbers in $J_n = J_{4m+1}$ as well as in J_{4m+2} is $2m + 1$ which is an odd number and so the elements of J_{4m+1} as well as of $J_n = J_{4m+2}$ can not be partitioned into S_1 and S_2 such that sum of the elements in S_1 is same as the sum of the elements in S_2. Thus, in these two cases constant sum bipartition of J_n is not possible.

Combining the above cases, we get the result. □
To find m when m_1 is given in 2-DM graph $LP_{1,m} = K_1(u_1) + (K_{m_1} \cup K_{m_2})$, $m = m_1 + m_2 \geq 3$ and $1 \leq m_1 \leq m_2$.

Theorems 4.1 and 4.2 ensures existence of 2-DM graphs $LP_{1,m} = K_1(u_1) + (K_{m_1} \cup K_{m_2})$ but not for all possible values of m_1 and m_2, $m = m_1 + m_2 \geq 3$ and $1 \leq m_1 \leq m_2$. Here, we try to find out the possible values of $m_1 = |S_1|$ and $m_2 = |S_2|$ for which $LP_{1,m} = K_1(u_1) + (K_{m_1} \cup K_{m_2})$ is 2-DM. Let f be a 2-DML of $LP_{1,m} = u_1 + (K_{m_1} \cup K_{m_2})$, $m = m_1 + m_2 \geq 3$ and $1 \leq m_1 \leq m_2$. Let $j = f(u_1) \in J_{m+1}$ be a suitable value such that $J_{m+1} \setminus \{j\}$ can be partitioned into constant sum parts S_1 and S_2, $m_1 = |S_1|$ and $m_2 = |S_2|$, $m_1 \leq m_2$ and $1 \leq j \leq m + 1$. Such S_1 and S_2 exist by Theorems 4.1 and 4.2. Here, we obtain S_1 and S_2 of $J_{m+1} \setminus \{j\}$, starting with the smallest possible m and assigning $f(u_1) = m + 1 = j$ when $m + 1 = 0, 1 \ (mod\ 4)$ or $f(u_1) = m = j$ when $m + 1 = 2, 3 \ (mod\ 4)$, $m \geq 3$. For $m_1 = 1$ to 22, Table 1 presents possible such values of m for which $LP_{1,m} = u_1 + (K_{m_1} \cup K_{m_2})$ is 2-DM, $m = m_1 + m_2$ and $1 \leq m_1 \leq m_2$. Detailed calculations for obtaining these values of m (which are presented in Table 1) are given in the Annexure. From these values of S_1 and S_2 of $J_{m+1} \setminus \{j\}$, we obtain 2-DM graphs $LP_{1,m} = u_1 + (K_{m_1} \cup K_{m_2})$ by assigning the elements of S_1 as the vertex labels of K_{m_1}, the elements of S_2 as the vertex labels of K_{m_2} and $f(u) = j$, $m = m_1 + m_2 \geq 3$ and $1 \leq m_1 \leq m_2$. It is also noted that a general formula to obtain such values of m seems to be difficult.

Open Problem 4.6. For a given value of m_1, find a general formula for m for which $LP_{1,m} = u_1 + (K_{m_1} \cup K_{m_2})$ is 2-DM, $1 \leq m_1 \leq m_2$, $m = m_1 + m_2 \geq 3$ and $m_1, m_2 \in \mathbb{N}$.

Conclusion It is clear that unlike DM labeling or Σ-labeling, k-DM labeling covers more families of graphs and has a lot of scope for further research.

Declaration of competing interest There is no competing interest.

Acknowledgements We express our sincere thanks to the Central University of Kerala, Kasaragod, Kerala for providing facilities to do this research work.

References
[1] S. Arumugam, D. Froncek and N. Kamatchi, Distance magic graphs - a survey, J. Indones. Math. Soc., Special Edition (2011), 11-26.
[2] S. Beena, On \sum and \sum' labelled graphs, Discrete Math. 309 (2009), 1783-1787.
[3] Douglas B. West, Introduction to Graph Theory, Second Edition, Pearson Education Inc., Singapore, 2001.
[4] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 24 (Dec. 2021), DS6.
[5] Kiki Ariyanti Sugeng, Magic and Antimagic Labeling of Graphs, Ph.D. Thesis, University of Ballarat (2005).
[6] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin., 28 (2003), 305-315.
[7] Scott Ahlgren, and Ken Ono, Addition and Counting: The Arithmetic of Partitions, AMS Notices 48 (2001), 978-984.
[8] S. B. Rao, Sigma Graphs - A survey, In Labelings of Discrete Structures and Applications, eds. B.D. Acharya, S. Arumugam and A. Rosa, Narosa Publishing House, New Delhi, 2008, pages 135-140.
[9] W.W. Rouse ball, Mathematical Recreations and Essays, MacMillan and Co. Ltd. (1967), 215-221.
[10] K. A. Sugeng, D. Froncek, M. Miller, J. Ryan, and J. Walker, On distance magic labelings of graphs, J. Combin. Math. Combin. Comput., 71 (2009), 39-48.
Table 1. Value(s) of m when $LP_{1,m} = u_1 + (K_{m_1} \cup K_{m_2})$ and is 2-DM.

m_1	$m_2 = m - m_1 \geq m_1$	Possible value(s) of m
1	$m - 1$	$m = 3$
2	$m - 2$	$m = 4$ to 7
3	$m - 3$	$m = 6$ to 10
4	$m - 4$	$m = 8$ to 13
5	$m - 5$	$m = 10$ to 16
6	$m - 6$	$m = 12$ to 20
7	$m - 7$	$m = 14$ to 23
8	$m - 8$	$m = 16$ to 26
9	$m - 9$	$m = 18$ to 30
10	$m - 10$	$m = 20$ to 33
11	$m - 11$	$m = 22$ to 37
12	$m - 12$	$m = 24$ to 40
13	$m - 13$	$m = 26$ to 43
14	$m - 14$	$m = 28$ to 47
15	$m - 15$	$m = 30$ to 50
16	$m - 16$	$m = 32$ to 54
17	$m - 17$	$m = 34$ to 57
18	$m - 18$	$m = 36$ to 60
19	$m - 19$	$m = 38$ to 64
20	$m - 20$	$m = 40$ to 67
21	$m - 21$	$m = 42$ to 70
22	$m - 22$	$m = 44$ to 74

[11] V. Vilfred, Perfectly regular graphs or cyclic regular graphs and Σ labeling and partition, Srinivasa Ramanujan Centenary Celebration - International Conference on Mathematics, Anna University, Chennai, Tamil Nadu, India. Abstract A23 (1987).

[12] V. Vilfred, Σ-labelled Graphs and Circulant Graphs, Ph.D. Thesis, University of Kerala, Thiruvananthapuram, Kerala, India (March 1994). (V. Vilfred, Sigma Labeling and Circulant Graphs, Lambert Academic Publishing, 2020. ISBN-13: 978-620-2-52901-3.)

[13] V. Vilfred, Sigma Partition and Sigma Labeled Graphs, J. of Decision and Math. Sci. 10 (2005), 1-12.
ANNEXURE

Calculation of m for a given $m_1 = |S_1|$.

1. $m_1 = 4$.
 When $m_1 = 4$, $m_2 = m - 4 \geq m_1 = 4$, $m = m_1 + m_2 \geq 8$, $m + (m - 1) + (m - 2) + (m - 3) = 4m - 6$ and $\sum_{i=1}^{m-4} i = \frac{(m-4)(m-3)}{2}$.
 Let us see how far $\sum_{i=1}^{m_1} m - i + 1 \geq \sum_{i=1}^{m_2} i$ for $m_1 = 4$ and $m \geq 8$. See Table 2.

2. $m_1 = 5$.
 When $m_1 = 5$, $m_2 = m - 5 \geq m_1 = 5$, $m = m_1 + m_2 \geq 10$, $m + (m - 1) + (m - 2) + (m - 3) + (m - 4) = 5m - 10$ and $\sum_{i=1}^{m-5} i = \frac{(m-5)(m-4)}{2}$.
 See how far $\sum_{i=1}^{m_1} m - i + 1 \geq \sum_{i=1}^{m_2} i$ for $m_1 = 5$, $m \geq 10$. See Table 3.

3. $m_1 = 6$.
 When $m_1 = 6$, $m_2 = m - 6 \geq m_1 = 6$, $m = m_1 + m_2 \geq 12$, $\sum_{i=1}^{m_1} m - i + 1 = \sum_{i=1}^{m} m - i + 1 = 6m - 15$ and $\sum_{i=1}^{m_2} i = \sum_{i=1}^{m-6} i = \frac{(m-6)(m-5)}{2}$.
 See how far $\sum_{i=1}^{m_1} m - i + 1 \geq \sum_{i=1}^{m_2} i$ for $m_1 = 6$, $m \geq 12$. See Table 4.

4. $m_1 = 7$.
 When $m_1 = 7$, $m_2 = m - 7 \geq m_1 = 7$, $m = m_1 + m_2 \geq 14$, $\sum_{i=1}^{m_1} m - i + 1 = \sum_{i=1}^{m} m - i + 1 = 7m - 21$ and $\sum_{i=1}^{m_2} i = \sum_{i=1}^{m-7} i = \frac{(m-7)(m-6)}{2}$.
 See how far $\sum_{i=1}^{m_1} m - i + 1 \geq \sum_{i=1}^{m_2} i$ for $m_1 = 7$, $m \geq 14$. See Table 5.

5. $m_1 = 8$.
 When $m_1 = 8$, $m_2 = m - 8 \geq m_1 = 8$, $m = m_1 + m_2 \geq 16$, $\sum_{i=1}^{m_1} m - i + 1 = \sum_{i=1}^{m} m - i + 1 = 8m - 28$ and $\sum_{i=1}^{m_2} i = \sum_{i=1}^{m-8} i = \frac{(m-8)(m-7)}{2}$.
 See how far $\sum_{i=1}^{m_1} m - i + 1 \geq \sum_{i=1}^{m_2} i$ for $m_1 = 8$, $m \geq 16$. See Table 6.

6. $m_1 = 9$.
 When $m_1 = 9$, $m_2 = m - 9 \geq m_1 = 9$, $m = m_1 + m_2 \geq 18$, $\sum_{i=1}^{m_1} m - i + 1 = \sum_{i=1}^{m} m - i + 1 = 9m - 36$ and $\sum_{i=1}^{m_2} i = \sum_{i=1}^{m-9} i = \frac{(m-9)(m-8)}{2}$.
 See how far $\sum_{i=1}^{m_1} m - i + 1 \geq \sum_{i=1}^{m_2} i$ for $m_1 = 9$, $m \geq 18$. See Table 7.

7. $m_1 = 10$.
 When $m_1 = 10$, $m_2 = m - 10 \geq m_1 = 10$, $m = m_1 + m_2 \geq 20$, $\sum_{i=1}^{m_1} m - i + 1 = \sum_{i=1}^{m} m - i + 1 = 10m - 45$ and $\sum_{i=1}^{m_2} i = \sum_{i=1}^{m-10} i = \frac{(m-10)(m-9)}{2}$.
 Let us see how far $\sum_{i=1}^{m_1} m - i + 1 \geq \sum_{i=1}^{m_2} i$ for $m_1 = 10$ and $m \geq 20$. See Table 8.

8. $m_1 = 11$.
 When $m_1 = 11$, we have to compare $11m - 55$ and $\frac{(m-11)(m-10)}{2}$ for $m \geq 22$, $m \in \mathbb{N}$. See Table 9.

9. $m_1 = 12$.
 When $m_1 = 12$, we have to compare $12m - 66$ and $\frac{(m-12)(m-11)}{2}$ for $m \geq 24$, $m \in \mathbb{N}$. See Table 10.

10. $m_1 = 13$.

Table 2. Comparing $4m - 6$ and $\frac{(m-4)(m-3)}{2}$ for $m \geq 8$, $m \in \mathbb{N}$.

m	$4m - 6$	$\frac{(m-4)(m-3)}{2}$	$4m - 6 \geq \frac{(m-4)(m-3)}{2}$ True or False
8	26	10	
9	30	15	T
10	34	21	T
11	38	28	T
12	42	36	T
13	46	45	T
14	50	55	F

When $m_1 = 13$, we have to compare $13m - 78$ and $\frac{(m-13)(m-12)}{2}$ for $m \geq 26$, $m \in \mathbb{N}$. See Table 11.

11. $m_1 = 14$.
 - When $m_1 = 14$, we have to compare $14m - 91$ and $\frac{(m-14)(m-13)}{2}$ for $m \geq 28$, $m \in \mathbb{N}$. See Table 12.
12. $m_1 = 15$.
 - When $m_1 = 15$, we have to compare $15m - 105$ and $\frac{(m-15)(m-14)}{2}$ for $m \geq 30$, $m \in \mathbb{N}$. See Table 13.
13. $m_1 = 16$.
 - When $m_1 = 16$, we have to compare $16m - 120$ and $\frac{(m-16)(m-15)}{2}$ for $m \geq 32$, $m \in \mathbb{N}$. See Table 14.
14. $m_1 = 17$.
 - When $m_1 = 17$, we have to compare $17m - 136$ and $\frac{(m-17)(m-16)}{2}$ for $m \geq 34$, $m \in \mathbb{N}$. See Table 15.
15. $m_1 = 18$.
 - When $m_1 = 18$, we have to compare $18m - 153$ and $\frac{(m-18)(m-17)}{2}$ for $m \geq 36$, $m \in \mathbb{N}$. See Table 16.
16. $m_1 = 19$.
 - When $m_1 = 19$, we have to compare $19m - 171$ and $\frac{(m-19)(m-18)}{2}$ for $m \geq 38$, $m \in \mathbb{N}$. See Table 17.
17. $m_1 = 20$.
 - When $m_1 = 20$, we have to compare $20m - 190$ and $\frac{(m-20)(m-19)}{2}$ for $m \geq 40$, $m \in \mathbb{N}$. See Table 18.
18. $m_1 = 21$.
 - When $m_1 = 21$, we have to compare $21m - 210$ and $\frac{(m-21)(m-20)}{2}$ for $m \geq 42$, $m \in \mathbb{N}$. See Table 19.
19. $m_1 = 22$.
 - When $m_1 = 22$, we have to compare $22m - 231$ and $\frac{(m-22)(m-21)}{2}$ for $m \geq 44$, $m \in \mathbb{N}$. See Table 20.

Department of Mathematics, Central University of Kerala, Kasaragod, India.

Email address: vilfredkamalv@cukerala.ac.in
Table 3. Comparing $5m - 10$ and $\frac{(m-5)(m-4)}{2}$ for $m \geq 10$, $m \in \mathbb{N}$.

m	$5m - 10$	$\frac{(m-5)(m-4)}{2}$	$5m - 10 \geq \frac{(m-5)(m-4)}{2}$ is True or False
10	40	15	T
15	65	55	T
16	70	66	T
17	75	78	F

Table 4. Comparing $6m - 15$ and $\frac{(m-6)(m-5)}{2}$ for $m \geq 12$, $m \in \mathbb{N}$.

m	$6m - 15$	$\frac{(m-6)(m-5)}{2}$	$6m - 15 \geq \frac{(m-6)(m-5)}{2}$ is True or False
12	57	21	T
19	99	91	T
20	105	105	T
21	111	120	F

Table 5. Comparing $7m - 21$ and $\frac{(m-7)(m-6)}{2}$ for $m \geq 14$, $m \in \mathbb{N}$.

m	$7m - 21$	$\frac{(m-7)(m-6)}{2}$	$7m - 21 \geq \frac{(m-7)(m-6)}{2}$ is True or False
14	77	28	T
22	133	120	T
23	140	136	T
24	147	153	F

Table 6. Comparing $8m - 28$ and $\frac{(m-8)(m-7)}{2}$ for $m \geq 16$, $m \in \mathbb{N}$.

m	$8m - 28$	$\frac{(m-8)(m-7)}{2}$	$8m - 28 \geq \frac{(m-8)(m-7)}{2}$ is True or False
16	100	36	T
25	172	153	T
26	180	171	T
27	188	190	F
Table 7. Comparing $9m - 36$ and $\frac{(m-9)(m-8)}{2}$ for $m \geq 18$, $m \in \mathbb{N}$.

m	$9m - 36$	$\frac{(m-9)(m-8)}{2}$	$9m - 36 \geq \frac{(m-9)(m-8)}{2}$ is True or False
18	126	45	T
29	225	210	T
30	234	231	T
31	243	253	F

Table 8. Comparing $10m - 45$ and $\frac{(m-10)(m-9)}{2}$ for $m \geq 20$, $m \in \mathbb{N}$.

m	$10m - 45$	$\frac{(m-10)(m-9)}{2}$	$10m - 45 \geq \frac{(m-10)(m-9)}{2}$ is True or False
20	155	55	T
32	275	253	T
33	285	276	T
34	295	300	F

Table 9. Comparing $11m - 55$ and $\frac{(m-11)(m-10)}{2}$ for $m \geq 22$, $m \in \mathbb{N}$.

m	$11m - 55$	$\frac{(m-11)(m-10)}{2}$	$11m - 55 \geq \frac{(m-11)(m-10)}{2}$ is True or False
22	187	66	T
36	341	325	T
37	352	351	T
38	363	378	F

Table 10. Comparing $12m - 66$ and $\frac{(m-12)(m-11)}{2}$ for $m \geq 24$, $m \in \mathbb{N}$.

m	$12m - 66$	$\frac{(m-12)(m-11)}{2}$	$12m - 66 \geq \frac{(m-12)(m-11)}{2}$ is True or False
24	222	78	T
40	414	406	T
41	426	435	F

Table 11. Comparing $13m - 78$ and $\frac{(m-13)(m-12)}{2}$ for $m \geq 26$, $m \in \mathbb{N}$.

m	$13m - 78$	$\frac{(m-13)(m-12)}{2}$	$13m - 78 \geq \frac{(m-13)(m-12)}{2}$ is True or False
26	260	91	T

43	481	465	T
44	494	496	F

Table 12. Comparing $14m - 91$ and $\frac{(m-14)(m-13)}{2}$ for $m \geq 28$, $m \in \mathbb{N}$.

m	$14m - 91$	$\frac{(m-14)(m-13)}{2}$	$14m - 91 \geq \frac{(m-14)(m-13)}{2}$ is True or False
28	301	105	T

47	567	561	T
48	581	595	F

Table 13. Comparing $15m - 105$ and $\frac{(m-15)(m-14)}{2}$ for $m \geq 30$, $m \in \mathbb{N}$.

m	$15m - 105$	$\frac{(m-15)(m-14)}{2}$	$15m - 105 \geq \frac{(m-15)(m-14)}{2}$ is True or False
30	345	120	T

50	645	630	T
51	660	666	F

Table 14. Comparing $16m - 120$ and $\frac{(m-16)(m-15)}{2}$ for $m \geq 32$, $m \in \mathbb{N}$.

m	$16m - 120$	$\frac{(m-16)(m-15)}{2}$	$16m - 120 \geq \frac{(m-16)(m-15)}{2}$ is True or False
32	392	136	T

53	728	703	T
54	744	741	T
55	760	780	F

Table 15. Comparing $17m - 136$ and $\frac{(m-17)(m-16)}{2}$ for $m \geq 34$, $m \in \mathbb{N}$.

m	$17m - 136$	$\frac{(m-17)(m-16)}{2}$	$17m - 136 \geq \frac{(m-17)(m-16)}{2}$ is True or False
34	442	153	T

57	833	820	T
58	850	861	F
Table 16. Comparing $18m - 153$ and $\frac{(m-18)(m-17)}{2}$ for $m \geq 36$, $m \in \mathbb{N}$.

m	$18m - 153$	$\frac{(m-18)(m-17)}{2}$	$18m - 153 \geq \frac{(m-18)(m-17)}{2}$ is True or False
36	495	171	T
...
60	927	903	T
61	945	946	F

Table 17. Comparing $19m - 171$ and $\frac{(m-19)(m-18)}{2}$ for $m \geq 38$, $m \in \mathbb{N}$.

m	$19m - 171$	$\frac{(m-19)(m-18)}{2}$	$19m - 171 \geq \frac{(m-19)(m-18)}{2}$ is True or False
38	190		T
...
63	1026	990	T
64	1045	1035	T
65	1064	1081	F

Table 18. Comparing $20m - 190$ and $\frac{(m-20)(m-19)}{2}$ for $m \geq 40$, $m \in \mathbb{N}$.

m	$20m - 190$	$\frac{(m-20)(m-19)}{2}$	$20m - 190 \geq \frac{(m-20)(m-19)}{2}$ is True or False
40	610	210	T
...
67	1150	1128	T
68	1170	1176	F

Table 19. Comparing $21m - 210$ and $\frac{(m-21)(m-20)}{2}$ for $m \geq 42$, $m \in \mathbb{N}$.

m	$21m - 210$	$\frac{(m-21)(m-20)}{2}$	$21m - 210 \geq \frac{(m-21)(m-20)}{2}$ is True or False
42	672	231	T
...
70	1260	1225	T
71	1281	1275	F

Table 20. Comparing $22m - 231$ and $\frac{(m-22)(m-21)}{2}$ for $m \geq 44$, $m \in \mathbb{N}$.

m	$22m - 231$	$\frac{(m-22)(m-21)}{2}$	$22m - 231 \geq \frac{(m-22)(m-21)}{2}$ is True or False
44	737	253	T
...
74	1397	1378	T
75	1419	1431	F