AN UNCERTAINTY PRINCIPLE, WEGNER ESTIMATES AND
LOCALIZATION NEAR FLUCTUATION BOUNDARIES

ANNE BOUTET DE MONVEL*, DANIEL LENZ†, AND PETER STOLLMANN‡

Abstract. We prove a simple uncertainty principle and show that it can be applied to prove Wegner estimates near fluctuation boundaries. This gives new classes of models for which localization at low energies can be proven.

Introduction

Starting point of the present paper was the lamentable fact that for certain random models with possibly quite small and irregular support there was a proof of localization via fractional moment techniques (at least for $d \leq 3$) but no proof of Wegner estimates necessary for multiscale analysis. The classes of models include models with surface type random potentials as well as Anderson models with displacement (see [1]) but actually much more classes of examples could be seen in the framework established there which was labelled “fluctuation boundaries”. Actually, the big issue in the treatment of random perturbations with small or irregular support is the question, whether the spectrum at low energies really feels the random perturbation. This is exactly what is formalized in the fluctuation boundary framework.

In the present paper we establish the necessary Wegner estimates by using the method from Combes, Hislop, and Klopp [6] so that we get the correct volume factor and the modulus of continuity of the random variables. One of the main ideas we borrow from the last mentioned work is to show that spectral projectors are “spread out”, a property we call “uncertainty principle”.

The solution to the above mentioned problem is now quite simple in fact. In an abstract framework we show that such an uncertainty principle of the form

$$P_t(H_0)W P_t(H_0) \geq \kappa P_t(H_0), \quad (0.1)$$

where $W \geq 0$ is bounded and $P_t(H_0)$ denotes the spectral projection, is in a sense equivalent to the mobility of

$$\lambda(t) := \inf \sigma(H_0 + tW). \quad (0.2)$$

This is done in Section 1.

That fits perfectly with the fluctuation boundary concept and gives the appropriate Wegner estimates. Actually, if the integrated density of states exists, it then must be continuous, provided the distribution of the random variables has a common modulus of continuity. We will prove this in Section 2.

Finally, in Section 3 we show how to exploit these Wegner estimates for a proof of localization. It lies in the nature of these different methods that we thus get localization under
less restrictive conditions than what was needed in [1]. One main point is the dimension restriction of the latter paper, \(d \leq 3 \), which certainly is not essential but is essential for a proof of digestable length. Clearly, the estimates one gets via the fractional moment method are more powerful.

Acknowledgement. Fruitful discussions with G. Stolz are gratefully acknowledged. Part of this work was done at a stay of D.L. and P.S. at Paris, financial support by the DFG (German Science Foundation) and the University Paris Diderot Paris 7 are gratefully acknowledged.

1. **An uncertainty principle and mobility of the ground state energy**

In this section we fix a rather abstract setting: \(\mathcal{H} \) is a Hilbert space, \(H_0 \) is a selfadjoint operator in \(\mathcal{H} \) with
\[
\lambda(0) := \inf \sigma(H_0) > -\infty.
\]
(1.1)
Moreover, \(W \) is assumed to be bounded and nonnegative.

The uncertainty principle we want to study is the existence of a positive \(\kappa \) such that
\[
P_I WP_I \geq \kappa P_I
\]
where \(I \subset \mathbb{R} \) is some compact interval, \(I = [\min I, \max I] \) and \(P_I = P_I(H_0) = \chi_I(H_0) \) is the corresponding spectral projection.

It is reasonable to call \((\star)\) an uncertainty principle as a state in the range of \(P_I \) cannot be “concentrated where \(W \) vanishes”.

In our main application, \(H_0 \) will be a Schrödinger operator so that \((\star)\) is in fact a variant of the usual uncertainty principle, at least for \(H_0 = -\Delta \).

The use of \((\star)\) for the proof of Wegner estimates is due to Combes, Hislop, and Klopp, see [5, 6]. Its importance lies in the fact that it takes care of random potentials with small support. Our purpose here is to prove a simple criterion that implies \((\star)\) and can be checked rather easily.

1.1. **Theorem.** Let for \(t \geq 0 \)
\[
\lambda(t) := \inf \sigma(H_0 + tW)
\]
and assume that \(\lambda(t_0) > \max I \) for some \(t_0 > 0 \). Then
\[
P_I WP_I \geq \left[\sup_{t>0} \frac{\lambda(t) - \max I}{t} \right] P_I.
\]
(1.3)
Of course, the assumption in the theorem is merely there to guarantee that the square bracket is positive!

Proof. Assume that \((\star)\) does not hold for some \(\kappa > 0 \). Then we find \(g \in \text{Ran} \ P_I \) with \(\|g\| = 1 \) and
\[
\langle Wg, g \rangle = \langle P_I WP_I g, g \rangle < \kappa.
\]
Since \(\langle H_0 g, g \rangle \leq \max I \), by the functional calculus, we get, for any \(t > 0 \),
\[
\lambda(t) \leq \langle (H_0 + tW)g, g \rangle < \max I + t \kappa,
\]
which implies
\[
\kappa > \frac{\lambda(t) - \max I}{t}.
\]
By contraposition, we get the assertion. □

Remarks. (1) One particularly nice aspect of the above result is that the important constant is controlled in a simple way.

(2) Once the ground state energy is pushed up by W we get an uncertainty principle (2) at least for intervals I near $\lambda(0)$.

(3) The corresponding uncertainty result in [5] for periodic Schrödinger operators does not follow from the preceding theorem.

There is a kind of converse to Theorem 1.1.

1.2. Lemma. If (2) holds for I with $\min I = \lambda(0) = \inf \sigma(H_0)$ and $\max I > \min I$, then

$$\lambda(t) > \lambda(0)$$

for all $t > 0$.

Proof. We only need to consider small $t > 0$ since $W \geq 0$. For $f \in D(H_0)$, $\|f\| = 1$, let $f_1 := P_I f$ and $f_2 := P_{I^c} f$ so that $\|f_1\|^2 + \|f_2\|^2 = 1$. We consider

$$\langle (H_0 + tW) f, f \rangle = \langle H_0 f_1, f_1 \rangle + \langle H_0 f_2, f_2 \rangle + t \langle W f, f \rangle$$

$$\geq (\max I) \|f_2\|^2 + \lambda(0) \|f_1\|^2 + t \kappa \|f_1\|^2 - 2t \|W\| \|f_1\| \|f_2\|$$

$$\geq \lambda(0) \|f\|^2 + (\max I - \lambda(0)) \|f_2\|^2 - 2t \|f_1\| \|f_2\| \|W\| + t \kappa \|f_1\|^2.$$

A knowing smile at the last quadratic (!) expression in t reveals that it is strictly larger than $\lambda(0)$ for t small enough. □

2. Continuity of the IDS near weak fluctuation boundaries

The main result here is, in fact, rather an “optimal” Wegner estimate meaning that we recover at least the modulus of continuity of the random variables in the Wegner estimate as well as the correct volume factor. The models we consider needn’t have a homogeneous background so that the integrated density of states, IDS need not exist. See [12] for a recent survey on how to prove the existence of the IDS in various different settings. We show that a straightforward application of Theorem 1.1 above gives the necessary input to perform the analysis of [6] in a rather general setting which we are going to introduce now.

(A1) The background potential $V_0 \in L^p_{\text{loc, unif}}(\mathbb{R}^d)$ with $p = 2$ if $d \leq 3$, and $p > \frac{d}{2}$ if $d > 3$.

(A2) The set $I \subset \mathbb{R}^d$, where the random impurities are located, is uniformly discrete, i.e.,

$$\inf_{\alpha, \beta \in I} |\alpha - \beta| =: r_I > 0.$$

(\hat{A}3) For the probability measure \mathbb{P} on $\Omega = \prod_{\alpha \in I} [0, \eta_{\max}]$ we use conditional probabilities to define the following uniform bound

$$s(\varepsilon) = \sup_{\alpha} \sup_{E \in \mathbb{R}} \sup_{(\omega_\beta)_{\beta \neq \alpha}} \mathbb{P}\{\omega_\alpha \in [E, E + \varepsilon] \mid (\omega_\beta)_{\beta \neq \alpha}\}.$$
Let \(E_0 := \inf \sigma(H_0) \) and let

\[
H_F := H_0 + \eta_{\max} \sum_{\alpha \in \mathcal{I}} U_\alpha
\]

the subscript \(F \) standing for “full coupling”. The single site potentials \(U_\alpha, \alpha \in \mathcal{I} \) are measurable functions on \(\mathbb{R}^d \) that satisfy

\[
c_{U} \chi_{\Lambda_{U}(\alpha)} \leq U_\alpha \leq C_{U} \chi_{\Lambda_{R_U}(\alpha)}
\]

for all \(\alpha \in \mathcal{I} \), with \(c_U, C_U, r_U, R_U > 0 \) independent of \(\alpha \). Here, \(\Lambda(\beta) \) denotes the box with sidelength \(2s \) and center \(\beta \).

\[
V_\omega(x) = \sum_{\alpha \in \mathcal{I}} \omega_\alpha U_\alpha(x)
\]

and

\[
H := H(\omega) := H_0 + V_\omega \text{ in } L^2(\mathbb{R}^d).
\]

Assume that \(E_0 \) is a weak fluctuation boundary in the sense that \(E_F := \inf \sigma(H_F) > E_0 \).

Remarks. (1) In [1] (A3) and (A4) are stronger than their counterparts (\(\tilde{A}3 \)) (which actually isn’t an assumption at all) and (\(\tilde{A}4 \)) here.

(2) The modulus of continuity \(s(\cdot) \) from (A3) also appears in [6], where, however, the variables appearing in the conditional probabilities are not displayed correctly. For a detailed discussion of regular conditional probabilities see, e.g., [9].

We consider a box \(\Lambda \subset \mathbb{R}^d \) and denote by \(H_\Lambda(\omega) \) the restriction of \(H(\omega) \) to \(L^2(\Lambda) \) with Dirichlet boundary conditions and with \(H_0^\Lambda \) the restriction of \(H_0 \) to \(L^2(\Lambda) \) with Dirichlet boundary conditions. Here comes our main application of Theorem 1.1:

2.1. Theorem. Assume (A1)-(A2) and (\(\tilde{A}3 \))-(\(\tilde{A}4 \)). Then, for every \(\delta > 0 \) there exists a constant \(C_W = C_W(\delta) \) such that for any interval \(I = [E_0, E_F - \delta] \) we have:

\[
P\{\sigma(H_\Lambda(\omega)) \cap I \neq \emptyset\} \leq \mathbb{E}\{\text{tr} P_I(H_\Lambda(\omega))\} \leq C_W \cdot |\Lambda| \cdot s(\varepsilon).
\]

Clearly, any application will need some further assumptions on \(s(\cdot) \) for which we a priori just know that \(0 \leq s(\varepsilon) \leq 1 \) for all \(\varepsilon > 0 \).

Proof. We rely on the analysis from [6]. The main point is to find an estimate

\[
P_I(H_0^\Lambda W_\Lambda P_I(H_0^\Lambda)) \geq \kappa P_I(H_0^\Lambda)
\]

with a constant \(\kappa \) independent of \(\Lambda \) and \(I \) (as long as \(I \subset [E_0, E_F - \delta] \)), and

\[
W_\Lambda := \left(\sum_{\alpha \in \mathcal{I}} U_\alpha \right) \cdot \chi_\Lambda.
\]
Once (19) is established, the proof of [6, Theorem 1.3] takes over, with minor modifications of notation.

But (19) follows easily from Theorem 1.1 and (A4): As Dirichlet boundary conditions shift the spectrum up, for any $t \geq \eta_{\text{max}}$:

$$\lambda(t) = \inf \sigma(H_0^\Lambda + tW_\Lambda) \geq \inf \sigma(H_0 + tW) \geq E_F.$$

For $I \subset [E_0, E_F - \delta]$ we see that

$$\lambda(\eta_{\text{max}}) - \max I > \delta$$

so that we get an uncertainty inequality with

$$\kappa = \frac{\delta}{\eta_{\text{max}}}.$$

\[\square \]

Remark. We should point out that the input from [6] is rather substantial. While the uncertainty principle is important to deal with possibly small support, there is also the issue of the correct volume factor which is settled in [6].

Like in the latter paper, if we assume on top that the IDS $N(\cdot)$ of the random operator H exists, then the preceding theorem implies that $N(\cdot)$ is as continuous as $s(\cdot)$ is.

2.2. Corollary. Assume (A1)-(A2) and (A3)-(A4), and, additionally that the IDS $N(\cdot)$ of H exists. Then there exists a locally bounded $c_W(\cdot)$ on $[E_0, E_F]$ such that

$$N(E + \varepsilon) - N(E) \leq c_W(E) \cdot s(\varepsilon)$$

for ε small enough. In particular, $N(\cdot)$ is continuous on $[E_0, E_F)$, whenever $s(\varepsilon) \to 0$ as $\varepsilon \to 0$.

3. Localization near fluctuation boundaries

As mentioned already in the introduction, the validity of a Wegner estimate was missing for a proof of localization via multiscale analysis. Due to Theorem 2.1 this is now resolved. The assumptions we need to make now are weaker than what is found in [1] but stronger than what we needed in the preceding section.

(A3) The random variables $\eta_\alpha: \Omega \to \mathbb{R}$, $\omega \mapsto \omega_\alpha$ are independent, supported in $[0, \eta_{\text{max}}]$ and the modulus of continuity

$$s(\varepsilon) := \sup_{\alpha \in I} \sup_{E \in \mathbb{R}} \mathbb{P}\{\eta_\alpha \in [E, E + \varepsilon]\}$$

satisfies

$$s(\varepsilon) \leq (-\ln \varepsilon)^{-\alpha}$$

for some $\alpha > \frac{4d}{2 - m}$ where $m \in (0, 2)$ is as in (A4).

(A4) Additionally to (A4) assume that there exists $m \in (0, 2)$ and L^* such that for some $\xi > 0$, all $L \geq L^*$ and all $x \in \mathbb{Z}^d$:

$$\mathbb{P}\{\sigma(H_{\Lambda_L(x)}(\omega)) \cap [E_0, E_0 + L^{-m}] \neq \emptyset\} \leq L^{-\xi}.$$

Remark. Clearly, the assumptions (A1)-(A4) from [1] imply (A1)-(A2) and (A3)-(A4) so that the localization result below extends the localization result from the latter paper.
3.1. **Theorem.** Assume (A1)-(A2) and (A3)-(A4). Then there is a $\delta > 0$ such that in $[E_0, E_0 + \delta]$ the spectrum of $H(\omega)$ is pure point \mathbb{P}-a.s. Moreover, for p small enough and $\eta \in L^\infty$ with $\text{supp} \eta \subset [E_0, E_0 + \delta]$ it follows that
\[
\mathbb{E}\{ \|X^p \eta(H(\omega)) \cdot \chi_K\| \} < \infty
\]
for every compact $K \subset \mathbb{R}^d$.

Remarks.

(1) Maybe one can strengthen the estimate of Theorem 3.1 in the sense of [7]. Note, however, that in the latter paper a stronger Wegner estimate is supposed to hold.

(2) The theorem provides an extension to $d \geq 4$ of the main result of [1]. Moreover, there is no technique at the moment to include single site distributions as singular as the ones allowed here in the fractional moment methods. In these aspects, our result considerably extends the main result of [1].

(3) At the same time, the estimates that come out of our analysis are weaker than those in the latter paper.

Sketch of the proof. We use the multiscale setup from [11]. By now it is quite well understood that homogeneity doesn’t play a major role so that multiscale analysis goes through without much alterations if we can verify the necessary input, i.e., Wegner estimates and initial length scale estimates.

Let us begin with the latter: Combes–Thomas estimates give that (A4) implies an initial estimate of the form
\[
G(I, \ell, \gamma, \xi) = \ell^\beta - \frac{m}{2}
\]
so that the exponent is of the form $\gamma_\ell = \ell^{\beta - 1}$ with $\beta = \beta_m = \frac{2}{4} - m$.

We have to check that an appropriate Wegner estimate is valid as well, i.e., that, for some $q > d$, $\theta < \frac{\beta}{2}$ we have that
\[
\mathbb{P}\{ \text{dist}(\sigma(H_\Lambda(\omega)), E) \leq \exp(-L^\theta) \} \leq L^{-q}
\]
for L large enough. We check that
\[
\mathbb{P}\{ \text{dist}(\sigma(H_\Lambda(\omega)), E) \leq \exp(-L^\theta) \} \leq s(2 \exp(-L^\theta))
\]
\[
\leq (-\ln(2 \exp(-L^\theta)))^{-\alpha}
\]
\[
= (-\ln 2 + L^\theta)^{-\alpha}
\]
\[
\sim L^{-\theta \alpha} \leq L^{-\theta \frac{4d}{2-m}}
\]
\[
= L^{-\theta \frac{2-m}{4} + \kappa \frac{4d}{2-m}} = L^{-d - \kappa \frac{4d}{2-m}}
\]
where we have chosen $\theta = \frac{\beta}{2} - x = \frac{2-m}{4} - \kappa$ with positive κ. Then, the Wegner estimate is fulfilled for $q = d + \kappa \frac{4d}{2-m}$.

The appropriate p in the strong dynamical localization estimate can be chosen at most
\[
\inf\{ \kappa \frac{4d}{2-m}, \xi \} \text{ with } \xi \text{ from (A3)}.
\]

An appeal to [11] Theorems 3.2.2 and 3.4.1 gives the result. □

References

[1] A. Boutet de Monvel, S. Naboko, P. Stollmann, and G. Stolz. Localization near fluctuation boundaries via fractional moments and applications. *J. Anal. Math.*, 100:83–116, 2006.
[2] V. Chulaevsky. Wegner-Stollmann type estimates for some quantum lattice systems. In Adventures in mathematical physics, volume 447 of Contemp. Math., pages 17–28. Amer. Math. Soc., Providence, RI, 2007.

[3] V. Chulaevsky. A Wegner-type estimate for correlated potentials. Math. Phys. Anal. Geom. 11(2): 117–129, 2008.

[4] V. Chulaevsky and Y. Suhov. Wegner bounds for a two-particle tight binding model. Comm. Math. Phys. 283(2): 479–489, 2008.

[5] J.-M. Combes, P. D. Hislop, and F. Klopp. Hölder continuity of the integrated density of states for some random operators at all energies. Int. Math. Res. Not., 2003(4):179–209, 2003.

[6] J.-M. Combes, P. D. Hislop, and F. Klopp. An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators. Duke Math. J., 140(3):469–498, 2007.

[7] F. Germinet and A. Klein. Bootstrap multiscale analysis and localization in random media. Comm. Math. Phys. 222(2): 415–448, 2001.

[8] D. Hundertmark, R. Killip, S. Nakamura, P. Stollmann and I. Veselić. Bounds on the spectral shift function and the density of states. Comm. Math. Phys. 262(2): 489–503, 2006.

[9] A. Klenke. Probability theory. Universitext. Springer-Verlag London Ltd., London, 2008. A comprehensive course, Translated from the 2006 German original.

[10] M. Krishna. Continuity of integrated density of states— independent randomness. Proc. Indian Acad. Sci. Math. Sci., 117(3):401–410, 2007.

[11] P. Stollmann. Caught by disorder, volume 20 of Progress in Mathematical Physics. Birkhäuser Boston Inc., Boston, MA, 2001.

[12] I. Veselić. Existence and regularity properties of the integrated density of states of random Schrödinger operators, volume 1917 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2008.

[13] F. Wegner. Bounds on the density of states in disordered systems. Z. Phys. B, 44(1-2):9–15, 1981.

*Institut de Mathématiques de Jussieu, Université Paris Diderot Paris 7, 175 rue du Chevaleret, 75013 Paris, France

E-mail address: *\staraboutet@math.jussieu.fr*

URL: http://www.math.jussieu.fr/~aboutet/

†Mathematisches Institut, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany

E-mail address: daniel.lenz@uni-jena.de

‡Fakultät für Mathematik, Technische Universität, 09107 Chemnitz, Germany

E-mail address: peter.stollmann@mathematik.tu-chemnitz.de