EXAMPLES OF RICCI-MEAN CURVATURE FLOWS

HIKARU YAMAMOTO

Abstract. Let \(\pi : \mathbb{P}(\mathcal{O}(0) \oplus \mathcal{O}(k)) \to \mathbb{P}^{n-1} \) be a projective bundle over \(\mathbb{P}^{n-1} \) with \(1 \leq k \leq n-1 \). In this paper, we show that lens space \(L(k; 1)(r) \) with radius \(r \) embedded in \(\mathbb{P}(\mathcal{O}(0) \oplus \mathcal{O}(k)) \) is a self-similar solution, where \(\mathbb{P}(\mathcal{O}(0) \oplus \mathcal{O}(k)) \) is endowed with the \(U(n) \)-invariant gradient shrinking Ricci soliton structure. We also prove that there exists a pair of critical radii \(r_1 < r_2 \) which satisfies the following. The lens space \(L(k; 1)(r) \) is a self-shrinker if \(r < r_2 \) and self-expander if \(r_2 < r \), and the Ricci-mean curvature flow emanating from \(L(k; 1)(r) \) collapses to the zero section of \(\pi \) if \(r < r_1 \) and to the \(\infty \)-section of \(\pi \) if \(r_1 < r \). This gives explicit examples of Ricci-mean curvature flows.

1. Background

Let \(M \) and \(N \) be manifolds, \(\mathcal{G} = \{ g_t \mid t \in [0, T) \} \) be a smooth 1-parameter family of Riemannian metrics on \(N \) and \(\mathcal{F} = \{ F_t : M \to N \mid t \in [0, T') \} \) be a smooth 1-parameter family of immersions with \(T' \leq T \).

Definition 1.1. The pair \((\mathcal{G}, \mathcal{F}) \) is called a Ricci-mean curvature flow if it satisfies
\[
\begin{align*}
\frac{\partial g_t}{\partial t} &= -2 \text{Ric}(g_t) \\
\frac{\partial F_t}{\partial t} &= H_{g_t}(F_t),
\end{align*}
\]
where \(H_{g_t}(F_t) \) denotes the mean curvature vector field of \(F_t \) calculated with the ambient metric \(g_t \) at each time \(t \).

The first equation of (1) is just the Ricci flow equation on \(N \) and it does not depend on existence of \(\mathcal{F} \). The second equation of (1) is the mean curvature flow equation though it is affected by the evolution of ambient metrics \(g_t \). This is a coupled flow of the Ricci flow and the mean curvature flow.

The Ricci-mean curvature flow equation has been already appeared in some contexts. For example, Smoczyk \[10\], Han-Li \[4\] and Lotay-Pacini \[7\] consider the Lagrangian mean curvature flow coupled with the Kähler-Ricci flow, and generalize several results which hold in Calabi-Yau manifolds to this moving ambient setting. Other contexts appear in, for example, Lott \[8\] and Magni-Mantegazza-Tsatis \[9\]. There is a monotonicity formula for a mean curvature flow in a Euclidean space introduced by Huisken \[5\]. They generalized it to a Ricci-mean curvature flow coupled with a Ricci flow constructed by a gradient shrinking Ricci soliton.

A gradient shrinking Ricci soliton is a pair of a Riemannian manifold \((N, g) \) and a function \(f \) on \(N \), called a potential function, which satisfies
\[\text{Ric}(g) + \text{Hess} f = g. \]

2010 Mathematics Subject Classification. 53C42, 53C44.
Key words and phrases. mean curvature flow, self-similar solution, Ricci flow, Ricci soliton.
From a given gradient shrinking Ricci soliton \((N, g, f)\) and an arbitrary fixed time \(T \in (0, \infty)\) the solution of Ricci flow which survives on \([0, T)\) is constructed by \(g_t = 2(T - t)^2 \Phi_t^* g\), where \(\Phi_t\) is the 1-parameter family of diffeomorphisms of \(N\) generated by \(\frac{1}{2(T - t)} \nabla f\) with \(\Phi_0 = \text{id}\).

Motivated by their works, the author generalized the rescaling procedure due to Huisken to a Ricci-mean curvature flow in [11]. It states that if a Ricci-mean curvature flow coupled with a Ricci flow \(g_t = 2(T - t)^2 \Phi_t^* g\) develops singularities of type I at the same time \(T\), its rescaling limit is a self-shrinker. The definition of self-shrinkers is the following.

Definition 1.2. An immersion \(F : M \to N\) to a gradient shrinking Ricci soliton \((N, g, f)\) is called a self-similar solution with coefficient \(\lambda \in \mathbb{R}\) if it satisfies

\[
H_g(F) = \lambda \nabla f^\perp.
\]

If \(\lambda < 0\) or \(\lambda > 0\), it is called a self-shrinker or self-expander, respectively.

If \(\lambda = 0\), it is a minimal immersion. Moreover, it also holds that a self-similar solution with coefficient \(\lambda\) is a minimal immersion in \(N\) with respect to a conformally rescaled metric \(e^{2\lambda f/m}\cdot g\), where \(m = \text{dim} M\). Hence, self-similar solutions can be considered as a kind of generalization of minimal submanifolds. When \((N, g, f)\) is the Gaussian soliton, that is, the Euclidean space with the standard metric and potential function \(f = \frac{|x|^2}{2}\), the equation (2) is written as \(H(F) = \lambda x^\perp\). Thus, Definition 1.2 coincides with the ordinary notion of self-similar solutions in the Euclidean space. The original form of Definition 1.2 for general Ricci solitons has been appeared in [8].

It is well-known that a mean curvature flow in a fixed Riemannian manifold is a backward \(L^2\)-gradient flow of the volume functional, and a Ricci flow can be regarded as a gradient flow of Perelman's \(W\)-entropy functional. As mentioned above, Ricci-mean curvature flows have some common properties with mean curvature flows in Euclidean spaces or more generally Ricci flat spaces. However, it becomes unclear that a Ricci-mean curvature flow can be considered as a backward \(L^2\)-gradient flow of some functional. To the authors knowledge, a problem to find an appropriate functional such that its gradient flow is a Ricci-mean curvature flow is still open.

If \(M\) and \(N\) are compact, for any Riemannian metric \(g\) on \(N\) and immersion \(F : M \to N\), the short-time existence and uniqueness of the Ricci-mean curvature flow equation (1) with initial condition \((g, F)\) are assured. Actually, first, construct a unique short-time solution of Ricci flow on \(N\) with initial metric \(g\), and next, solve the second equation of (1) for short-time with initial immersion \(F\). Hence, there are infinitely many examples of Ricci-mean curvature flows.

However, explicit examples of Ricci-mean curvature flows are not known, so far. In this paper, we consider a lens space \(L(k:1)(r)\) embedded in \(\mathbb{P}(\mathcal{O}(0) \oplus \mathcal{O}(k))\) endowed with a gradient shrinking Ricci soliton structure, and investigate how it moves along the Ricci-mean curvature flow. The analysis is done by reducing PDE (1) to ODE (20). This example shows how the evolution of the ambient metrics affects the motion of submanifolds. To the authors knowledge, this gives a first non-trivial explicit example of Ricci-mean curvature flow, and the author hopes that this example inspires further research of Ricci-mean curvature flows.
Organized of this paper. Section 1 is a background of a study of Ricci-mean curvature flows, and definitions of Ricci-mean curvature flows and self-similar solutions are given in it. In Section 2 we briefly summarize main results of this paper. In Section 3 we review a construction of a gradient shrinking Kähler Ricci soliton structure on \(\mathbb{P}(\mathcal{O}(0) \oplus \mathcal{O}(k)) \). In Section 4 we see that lens spaces \(L(k;1)(r) \) with radius \(r \) are naturally embedded in \(\mathbb{P}(\mathcal{O}(0) \oplus \mathcal{O}(k)) \) and these are self-similar solutions. In Section 5 we investigate the motion of the Ricci-mean curvature flow emanating from \(L(k;1)(r) \). In Section 6 we compare it to the ordinary mean curvature flow emanating from \(L(k;1)(r) \).

2. Main Results

We give a summary of results of this paper in the following. An ambient space is the \(k \)-twisted projective-line bundle \(\mathbb{P}(\mathcal{O}(0) \oplus \mathcal{O}(k)) \) over \(\mathbb{P}^{n-1} \), where \(n \geq 2 \) and \(1 \leq k \leq n-1 \), and we denote it by \(N^n_k \). It can be shown that \(N^n_k \) contains \((\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k \) as an open dense subset, and its complement is the disjoint union of \(S_0 \) and \(S_\infty \), where these denote the image of 0-section and \(\infty \)-section respectively. The eliminated \(\{0\} \) and the point at infinity of \(\mathbb{C}^n \setminus \{0\} \) are replaced by \(S_0 \) and \(S_\infty \) respectively. See Figure 1.

It is known, by Cao [1] and Koiso [6], that there exists a unique \(U(n) \)-invariant gradient shrinking Kähler Ricci soliton structure on \(N^n_k \). We denote its Riemannian metric and potential function by \(g \) and \(f \), respectively.

For \(0 < r < \infty \), we consider the \(\mathbb{Z}_k \) quotient of \(S^{2n-1}(r) \), the sphere with radius \(r \) in \(\mathbb{C}^n \), and denote it by \(L(k;1)(r) \). Actually, it is a lens space and embedded in \(N^n_k \). We denote its inclusion map by
\[
\iota_r : L(k;1)(r) \hookrightarrow N^n_k.
\]
Then, the first theorem states that these are self-similar solutions, and whether it is a self-shrinker or self-expander is distinguished by whether its radius is smaller or larger than a critical radius \(r_2 \).

Theorem 2.1. For each \(0 < r < \infty \), the inclusion map \(\iota_r : L(k;1)(r) \hookrightarrow N^n_k \) is a compact self-similar solution. Furthermore, there exists a unique radius \(r_2 \) which satisfies the following.
If \(r < r_2 \), \(\tau_r : L(k;1)(r) \leftrightarrow N_k^n \) is a non-minimal self-shrinker.

- If \(r = r_2 \), \(\tau_r : L(k;1)(r) \leftrightarrow N_k^n \) is a minimal embedding.
- If \(r > r_2 \), \(\tau_r : L(k;1)(r) \leftrightarrow N_k^n \) is a non-minimal self-expander.

Remark 2.2. Especially, Theorem 4.3 claims that there exists a compact self-expander in \(N_k^n \). To contrast with the case that the ambient space is a Euclidean space, we remark that there exists no compact self-expander in \(\mathbb{R}^n \). It can be proved by several ways, for instance, see Proposition 5.3 in [2]. In \(\mathbb{R}^n \), the sphere \(S^{n-1}(r) \) is a self-shrinker for every radius \(r \). However, intuitively, we get a self-expander in \((N_k^n, \omega, f) \) by taking the radius sufficiently large because of bending and compactifying the neighborhood of \(\{\infty\} \) of \((\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k \).

Fix a time \(0 < T < \infty \). Then, we will check that the 1-parameter family of diffeomorphisms \(\Phi_t \) generated by \(\frac{1}{2(T-t)} \nabla f \) with \(\Phi_0 = \text{id} \) is given by

\[
\Phi_t(z) := \left(\frac{T}{T-t} \right)^{\frac{c}{2}} z
\]

for \(t \in [0, T) \) on \((\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k \). Here, \(c \) is a positive constant defined in the process to construct the soliton structure, and we skip its explanation here. Then, we obtain a Ricci flow

\[
g_t := 2(T-t)\Phi_t^* g
\]

which survives on the time interval \([0, T) \). We remark that, since \(c \) is positive, \(\Phi_t \) is expanding and \(\Phi_t(z) \) converges to a point in \(S_\infty \) as \(t \to T \) if \(z \) is not contained in \(S_0 \). See Figure 1.

For a fixed radius \(r \), we take the solution of Ricci-mean curvature flow \(F_t : L(k;1)(r) \to N_k^n \) along \(g_t \) with initial condition \(F_0 = \tau_r \). We assume that \(F_t \) exists on \([0, T') \) and \(T'(= T'(r)) \) is the maximal time of existence of the solution. Note that \(T' \leq T \) in general. Then, the following is a summary of Theorem 5.5.

Theorem 2.3. There exists a unique radius \(r_1 \) with \(r_1 < r_2 \) which satisfies the following.

- \(T' = T \) if and only if \(r = r_1 \).
- If \(r < r_1 \), \(F_t : L(k;1)(r) \to N_k^n \) collapses to \(S_0 \) as \(t \to T' \).
- If \(r > r_1 \), \(F_t : L(k;1)(r) \to N_k^n \) collapses to \(S_\infty \) as \(t \to T' \).

Theorem 5.5 contains further information about the blow up rate of the solution. Actually, we see that the blow up rate is type I in each case. The above theorem reveals how a lens space \(L(k;1)(r) \) moves and what it converges to by a Ricci-mean curvature flow along the Ricci flow \(g_t \). On the other hand, in section 6, we investigate the evolution of \(L(k;1)(r) \) by the ordinary mean curvature flow in the fixed Riemannian manifold \((N_k^n, g) \). Then, we prove that if \(r < r_2 \) (\(r > r_2 \)) it collapses to \(S_0 \) (\(S_\infty \)) in finite time and its blow up rate is also type I. Of course, if \(r = r_2 \), \(L(k;1)(r) \) does not move since \(L(k;1)(r) \) is minimal. Thus, the critical radius \(r_1 \) which determine whether a lens space tends to \(S_0 \)-side or \(S_\infty \)-side under the Ricci-mean curvature flow is smaller than the minimal radius \(r_2 \). See Figure 1.

Here we summarize the situation on Table 1.

3. Quick Review of Cao’s Construction

The first example of non-trivial compact gradient shrinking Ricci soliton was found by Koiso [3] and independently by Cao [1], and it is actually a Kähler Ricci
soliton. In this section, we quickly review the construction of it following Section 4 in [1] and also Section 7.2 in [3]. Fix integers \(n, k \) with \(n \geq 2 \) and \(1 \leq k \leq n - 1 \), and consider the \(k \)-twisted projective-line bundle

\[
\pi : \mathbb{P}(O(0) \oplus O(k)) \to \mathbb{P}^{n-1}
\]

over \(\mathbb{P}^{n-1} \), where \(O(k) \) denotes the \(k \)-th tensor power of the hyperplane bundle \(O(1) \) over \(\mathbb{P}^{n-1} \). The gradient shrinking Kähler Ricci soliton is constructed on \(\mathbb{P}(O(0) \oplus O(k)) \). Let \((z^1, \ldots, z^n) \) be the homogeneous coordinates on \(\mathbb{P}^{n-1} \), and put \(U_j := \{ z^j \neq 0 \} \subset \mathbb{P}^n \) for \(j = 1, \ldots, n \). Then \(\{U_1, \ldots, U_n\} \) gives an open covering of \(\mathbb{P}^{n-1} \), and the transition functions of \(O(k) \) are given by

\[
\psi(z^1, \ldots, z^n) := ((z^1, \ldots, z^n), (1 : (z^j)^k)) \in U_j \times \mathbb{P}^1 \cong \pi^{-1}(U_j).
\]

This definition is compatible for \((z^1, \ldots, z^n) \in \mathbb{C}^n \setminus \{0\} \) with \(z^j \neq 0 \) and \(z^j \neq 0 \) since \((1 : (z^j)^k) \in \mathbb{P}(\mathbb{C} \oplus \mathbb{C}) \) in the fiber over \(U_j \) is identified with \((1 : (z^j)^k) \in \mathbb{P}(\mathbb{C} \oplus \mathbb{C}) \) in the fiber in \(U_i \) by the relation \((3)\). Hence we have a smooth map

\[
\psi : \mathbb{C}^n \setminus \{0\} \to \mathbb{P}(O(0) \oplus O(k)).
\]

It is clear that \(\psi(z^1, \ldots, z^n) = \psi(z^1, \ldots, z^n) \) if and only if \(z' = e^{2\pi i \ell}z \) for some \(\ell \in \mathbb{Z} \). Hence \(\psi \) induces an open dense embedding

\[
\hat{\psi} : (\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k \hookrightarrow \mathbb{P}(O(0) \oplus O(k)),
\]

where the \(\mathbb{Z}_k \)-action on \(\mathbb{C}^n \setminus \{0\} \) is defined by \([\ell], z \mapsto e^{2\pi i \ell}z\), and the complement of the image of \(\hat{\psi} \) is \(S_0 \cup S_{\infty} \), where \(S_0 \) and \(S_{\infty} \) denote the image of 0-section and \(\infty \)-section of \(\pi \), respectively.

From now on, we denote \(\mathbb{P}(O(0) \oplus O(k)) \) by \(N_k^n \), and we identify \((\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k \) with its image of \(\hat{\psi} \). Thus, we have an open dense subset

\[
(\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k \subset N_k^n.
\]
The Kähler Ricci soliton structure is constructed on \((\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k\), and it actually extends smoothly to \(S_0\) and \(S_\infty\). Let \(u : \mathbb{R} \to \mathbb{R}\) be a smooth function which satisfies

\[
(4) \quad u'(s) > 0 \quad \text{and} \quad u''(s) > 0,
\]

and has the following asymptotic expansions

\[
(5) \quad u(s) = (n - k)s + a_1 e^{ks} + a_2 e^{2ks} + \cdots \quad (s \to -\infty)
\]

\[
(5) \quad u(s) = (n + k)s + b_1 e^{-ks} + b_2 e^{-2ks} + \cdots \quad (s \to \infty)
\]

with \(a_1 > 0\) and \(b_1 > 0\). Define a \(U(n)\)-invariant smooth function \(\Phi : \mathbb{C}^n \setminus \{0\} \to \mathbb{R}\) by

\[
\Phi(z) := u(s) \quad \text{with} \quad s = \log |z|^2.
\]

Since \(\Phi\) is \(\mathbb{Z}_k\)-invariant, it induce a smooth function on \((\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k\), and we continue to denote it by \(\Phi\). By the positivity conditions (4), we get a Kähler form

\[
(6) \quad \omega = \sqrt{-1} \frac{\partial^2 \Phi}{\partial z^\alpha \partial \bar{z}^\beta} dz^\alpha \wedge d\bar{z}^\beta
\]

on \((\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k\), where \((z^1, \ldots, z^n)\) is the \((k\text{-to-one})\) global holomorphic coordinates. By the asymptotic conditions (5), Kähler form \(\omega\) extends smoothly to \(S_0\) and \(S_\infty\), and we get a global Kähler structure on \(N^*_k\). The Ricci form of \(\omega\) is

\[
\text{Ric}(\omega) = -\sqrt{-1} \frac{\partial^2 \log \det(g)}{\partial z^\alpha \partial \bar{z}^\beta} dz^\alpha \wedge d\bar{z}^\beta;
\]

where \(g = (g_{\alpha \bar{\beta}})\) is a matrix given by

\[
(7) \quad g_{\alpha \bar{\beta}} = \frac{\partial^2 \Phi}{\partial z^\alpha \partial \bar{z}^\beta} = e^{-s} u'(s) \delta_{\alpha \bar{\beta}} + e^{-2s} z^\alpha \bar{z}^\beta (u''(s) - u'(s))
\]

for \(s = \log |z|^2\). One can easily check that

\[
g^{\alpha \bar{\beta}}(z) = \frac{e^s}{u'(s)} \delta^{\alpha \bar{\beta}} + z^\alpha \bar{z}^\beta \left(\frac{1}{u''(s)} - \frac{1}{u'(s)} \right),
\]

\[\det(g(z)) = e^{-ns} (u'(s))^{n-1} u''(s).\]

Define a real valued smooth function \(P : \mathbb{R} \to \mathbb{R}\) by

\[
(8) \quad P(s) := \log \left(e^{-ns} (u'(s))^{n-1} u''(s) \right) + u(s) = -ns + (n - 1) \log u'(s) + \log u''(s) + u(s),
\]

and a \(U(n)\)-invariant real valued smooth function \(f : \mathbb{C}^n \setminus \{0\} \to \mathbb{R}\) by

\[
(9) \quad f(z) := P(s) = \log \det(g(z)) + \Phi(z) \quad \text{with} \quad s = \log |z|^2.
\]

Since \(f\) is \(\mathbb{Z}_k\)-invariant, it induce a smooth function on \((\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k\), and we continue to denote it by \(f\). Then, we have

\[
\text{Ric}(\omega) + \sqrt{-1} \partial \bar{\partial} f = \omega.
\]

This equation is just the \((1,1)\)-part of the gradient shrinking Ricci soliton equation

\[
(10) \quad \text{Ric} + \text{Hess} f = g,
\]
where \(g \) is the associated Riemannian metric of \(\omega \) and \(\text{Ric} \) is the Ricci 2-tensor of \(g \). Thus, the property that \(f \) satisfies (10) is equivalent to that \(\nabla f \) is a holomorphic vector field. The coefficient of \(\partial/\partial z^\alpha \) of \(\nabla f \) is given by

\[
g^{\alpha\beta} \frac{\partial f}{\partial \overline{z}^\beta} = g^{\alpha\beta} \left(P'(s)e^{-s} \overline{z}^\beta \right) = \frac{P'(s)}{u''(s)} \overline{z}^\alpha.
\]

Hence, \(\nabla f \) is holomorphic if and only if

\[
P'(s) = cu''(s)
\]

for some constant \(c \in \mathbb{R} \). Substituting (9) into (11), we have the following third order ODE:

\[
\frac{u'''}{u''} + \left(\frac{n-1}{u'} - c \right) u'' = n - u'.
\]

Hence, we get a \(U(n) \)-invariant gradient shrinking Kähler Ricci soliton structure on \(N_k^n \) when we find a solution \(u \) of (12) which satisfies condition (4) and (5) for some \(c \in \mathbb{R} \). Then, Cao [1] proved the following.

Theorem 3.1 ([1]). There exists one and only one pair \((u, c)\) so that \(u \) and \(c \) satisfies \((4), (6) \) and \((12)\). Additionally, it follows that \(0 < c < 1 \).

Thus, there exists a unique \(U(n) \)-invariant gradient shrinking Kähler Ricci soliton structure on \(N_k^n \), and Kähler form \(\omega \) and potential function \(f \) are written as \((6)\) and \((9)\) on \((\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k\), respectively.

4. Lens spaces in \(N_k^n \) as self-similar solutions

In this section we see that a lens space \(L(k; 1)(r) \) with radius \(r \) is embedded in \((N_k^n, \omega, f)\) as a self-similar solution, and whether it is a self-shrinker or self-expander is determined by its radius \(r \). Actually, we prove that there exists the specific radius \(r_2 \) such that \(L(k; 1)(r) \) is a self-shrinker or self-expander if \(r < r_2 \) or \(r > r_2 \), respectively.

Let \(p, q_1, \ldots, q_n \) be integers such that \(q_i \) are coprime to \(p \), and \(r \) be a positive constant. Then, the lens space \(L(p; q_1, \ldots, q_n)(r) \) with radius \(r \) is the quotient of \(S^{2n-1}(r) \subset \mathbb{C}^n \), the sphere with radius \(r \), by the free \(\mathbb{Z}_p \)-action defined by

\[
[f] \cdot (z^1, \ldots, z^n) := (e^{2\pi i f \frac{1}{p} z^1}, \ldots, e^{2\pi i f \frac{1}{p} z^n}).
\]

We restrict ourselves to the case that given integers \(n \) and \(k \) satisfy \(n \geq 2 \) and \(1 \leq k \leq n - 1 \). We write

\[
L(k; 1)(r) := L(k; 1, \ldots, 1)(r),
\]

for short. It is clear that \(L(k; 1)(r) \) is embedded in \((\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k\), and \(U(n) \) acts on \(L(k; 1)(r) \) transitively, since \(\mathbb{Z}_k \)-action defined by

\[
[f] \cdot (z^1, \ldots, z^n) := (e^{2\pi i f \frac{1}{k} z^1}, \ldots, e^{2\pi i f \frac{1}{k} z^n})
\]

and \(U(n) \)-action commute.

Let \((N_k^n, \omega)\) be the unique \(U(n) \)-invariant gradient shrinking Kähler Ricci soliton with potential function \(f \) given in Theorem 3.1. As explained in Section 3, we have an open dense subset

\[
(\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k \subset N_k^n.
\]
Via this identification, we embed \(L(\lambda; 1)(r) \) into \(N^p_k \), and denote its inclusion map by

\[
\iota_r : L(\lambda; 1)(r) \hookrightarrow N^p_k.
\]

Actually, \(L(\lambda; 1)(r) \) is given as a level set of potential function \(f \).

Lemma 4.1. We have

\[
L(\lambda; 1)(r) = \{ f = \gamma \},
\]

where \(\gamma := P(\log r^2) \) and \(P \) is given by \([3]\).

Proof. It is clear that \(L(\lambda; 1)(r) \) is contained in \(\{ f = \gamma \} \) by a relation \(f(z) = P(s) \) with \(s = \log |z|^2 \). To show the converse inclusion, it is sufficient to see that \(P \) is strictly increasing. This is true since \(P' > 0 \) by the equality \([11]\), the positivity condition \([11]\) and a fact that \(0 < c < 1 \) stated in Theorem 3.1. \(\square \)

Since \(L(\lambda; 1)(r) \) is a level set of \(f \), the second fundamental form \(A \) and the mean curvature vector field \(H \) of \(\iota_r : L(\lambda; 1)(r) \hookrightarrow N^p_k \) are given by

\[
A(\iota_r) = -\frac{\nabla f}{|\nabla f|^2} \text{Hess } f \quad \text{and} \quad H(\iota_r) = -\frac{\nabla f}{|\nabla f|^2} \text{tr}^T \text{Hess } f,
\]

where \(\nabla f \) and \(\text{Hess } f \) is the gradient and the Hessian of \(f \) with respect to the ambient Riemannian metric \(g \), and \(\text{tr}^T \) is the trace restricted on \(T_p L(\lambda; 1)(r) \) at each point \(p \) in \(L(\lambda; 1)(r) \). Since \(L(\lambda; 1)(r) \) and the Kähler structure on \(N^p_k \) are invariant under \(U(n) \)-action and it acts transitively on \(L(\lambda; 1)(r) \), a function

\[
-\frac{1}{|\nabla f|^2} \text{tr}^T (\text{Hess } f)
\]

on \(L(\lambda; 1)(r) \) is actually a constant, and we denote the constant by \(\lambda(r) \). Thus, the embedding \(\iota_r : L(\lambda; 1)(r) \hookrightarrow N^p_k \) is a self-similar solution with

\[
H(\iota_r) = \lambda(r)\nabla f^\perp.
\]

Here we used that \(\nabla f \) is normal to \(L(\lambda; 1)(r) \), that is, \(\nabla f^\perp = \nabla f \) actually. The reminder is to determine the sign of \(\lambda(r) \). By the \(U(n) \)-invariance, it suffices to compute

\[
-\frac{1}{|\nabla f|^2} \text{tr}^T (\text{Hess } f)
\]

at a point \(p = (r, 0\ldots, 0) \) in \(L(\lambda; 1)(r) \). Put \(s := \log r^2 \) and

\[
v_1 := e^{\frac{\bar{z}}{2u''(s)}} \frac{\partial}{\partial y^1} = \sqrt{-1} e^{\frac{\bar{z}}{2u''(s)}} \left(\frac{\partial}{\partial z^1} - \frac{\partial}{\partial \bar{z}^1} \right).
\]

Furthermore, put

\[
w_\alpha := e^{\frac{\bar{z}}{2u''(s)}} \frac{\partial}{\partial x^\alpha} = e^{\frac{\bar{z}}{2u''(s)}} \left(\frac{\partial}{\partial z^\alpha} + \frac{\partial}{\partial \bar{z}^\alpha} \right)
\]

and

\[
Jw_\alpha := e^{\frac{\bar{z}}{2u''(s)}} \frac{\partial}{\partial y^\alpha} = \sqrt{-1} e^{\frac{\bar{z}}{2u''(s)}} \left(\frac{\partial}{\partial z^\alpha} - \frac{\partial}{\partial \bar{z}^\alpha} \right),
\]

with \(u''(s) = 2s \).
for $\alpha = 2, \ldots, n$. Then, by (7), one can check that $\{v_1, w_2, Jw_2, \ldots, w_n, Jw_n, \}$ is an orthonormal basis of $T_p L(k; 1)(r)$ at $p = (r, 0, \ldots, 0)$. Here, we have

$$\text{Hess } f(v_1, v_1) = e^s \frac{\partial^2 f}{u''(s)} \frac{\partial z^1 \partial z^2}{x} (p) = \frac{P''(s)}{u''(s)}$$

(14)

$$\text{Hess } f(w_\alpha, w_\alpha) = \text{Hess } f(Jw_\alpha, Jw_\alpha) = e^s \frac{\partial^2 f}{u''(s)} \frac{\partial z^\alpha \partial z^\alpha}{x} (p) = \frac{P'(s)}{u'(s)}.$$

Thus, we have

$$\text{tr}^\top \text{Hess } f = \text{Hess } f(v_1, v_1) + \sum_{\alpha=2}^n \text{Hess } f(w_\alpha, w_\alpha) + \sum_{\alpha=2}^n \text{Hess } f(Jw_\alpha, Jw_\alpha)$$

$$= \frac{P''(s)}{u''(s)} + 2(n-1) \frac{P'(s)}{u'(s)}.$$

By $P' = cu''$, we have

$$\frac{P''}{u''} + 2(n-1) \frac{P'}{u'} = c \frac{u'''}{u''} + 2c(n-1) \frac{u''}{u'}$$

$$= c \left(\frac{u'''}{u''} + (n-1) \frac{u''}{u'} \right) + (n-1) \frac{u'''}{u'}$$

$$= c \left(n - u' + cu'' + (n-1) \frac{u'''}{u'} \right),$$

where we used ODE (12) in the last equality. Furthermore, It is clear that

$$\nabla f = ce^s \frac{\partial}{\partial x^i} \text{ and } |\nabla f|^2 = 2e^s u''(s).$$

at $p = (r, 0, \ldots, 0) \in L(k; 1)(r)$. Thus, we have

$$\lambda(r) = \frac{-1}{2cu''(s)} \left(n - u'(s) + cu''(s) + (n-1) \frac{u''(s)}{u'(s)} \right),$$

where $s = \log r^2$.

To capture the behavior of $\lambda(r)$, we need the following lemma. The radius r_2 in the statement (2) of the following lemma is needed to determine whether $L(k; 1)(r)$ is a self-shrinker or a self-expander, and r_1 determines whether the Ricci-mean curvature flow of $L(k; 1)(r)$ converges to S_0 or S_∞.

Lemma 4.2.

1. It holds that

$$\lambda(r) \to -\infty \text{ and } \lambda(r) = O(r^{-2k}) \text{ as } r \to 0,$$

$$\lambda(r) \to \infty \text{ and } \lambda(r) = O(r^{2k}) \text{ as } r \to \infty.$$

2. There exists a unique pair of radii $r_1 < r_2$ which satisfies the following.

- $\lambda(r) \in (-\infty, -1)$ for $r \in (0, r_1)$.
- $\lambda(r_1) = -1$.
- $\lambda(r) \in (-1, 0)$ for $r \in (r_1, r_2)$.
- $\lambda(r_2) = 0$.
- $\lambda(r) \in (0, \infty)$ for $r \in (r_2, \infty)$.

Proof. By the asymptotic conditions (5), we have
\[
\begin{align*}
n - u'(s) + cu''(s) + (n - 1) \frac{u''(s)}{u'(s)} &\to k \quad (s \to -\infty) \\
n - u'(s) + cu''(s) + (n - 1) \frac{u''(s)}{u'(s)} &\to -k \quad (s \to \infty),
\end{align*}
\]
and also have
\[
\begin{align*}
u''(s) &\to 0 \quad \text{and} \quad u''(s) = O(e^{ks}) \quad (s \to -\infty) \\
u''(s) &\to 0 \quad \text{and} \quad u''(s) = O(e^{-ks}) \quad (s \to \infty).
\end{align*}
\]
Thus, we have proved the statement (1).

To prove the statement (2), we will prove that the derivative of \(\lambda(r)\) at \(r\) such that \(\lambda(r) = -1\) or \(\lambda(r) = 0\) is positive. Then, combining the statement (1), this implies immediately that \(\lambda(r)\) takes the value \(-1\) and \(0\) only once.

Define \(\Lambda(s)\) by
\[
\Lambda(s) := \lambda(r) = -\frac{1}{2cu''(s)} \left(n - u'(s) + cu''(s) + (n - 1) \frac{u''(s)}{u'(s)} \right)
\]
with \(s = \log r^2\). Then, we have
\[
\frac{d}{dr} \lambda(r) = 2e^{-s} \frac{d}{ds} \Lambda(s).
\]
Hence, the positivity of \(d\lambda/dr\) is equivalent to the positivity of \(d\Lambda/ds\). By a straightforward computation, we have
\[
\frac{d}{ds} \Lambda(s) = -\frac{1}{2cu''(s)} \left(-u''(s) + cu'''(s) \\
+ (n - 1) \frac{u'''(s)}{u'(s)} - (n - 1) \frac{(u''(s))^2}{(u'(s))^2} \right) - \Lambda(s) \frac{u'''(s)}{u''(s)}
\]
\[
= \frac{1}{2c} + \frac{(n - 1)u''(s)}{2c(u'(s))^2}
+ \frac{1}{2cu'(s)} \left(-c \left(1 + 2\Lambda(s) \right) u'(s) - (n - 1) \frac{u'''(s)}{u'(s)} \right).
\]
By ODE (12), we have
\[
\frac{u'''(s)}{u''(s)} = n - u'(s) - \left(\frac{n - 1}{u'(s)} - c \right) u''(s)
\]
\[
= \left(n - u'(s) + cu''(s) + (n - 1) \frac{u''(s)}{u'(s)} \right) - 2(n - 1) \frac{u''(s)}{u'(s)}
\]
\[
= -2cu''(s) \Lambda(s) - 2(n - 1) \frac{u''(s)}{u'(s)}
\]
\[
= 2 \left(-c\Lambda(s)u'(s) - (n - 1) \right) \frac{u''(s)}{u'(s)}.
\]
Substituting (17) into (16), we have
\[
\frac{d}{ds} \Lambda(s) = \frac{1}{2c} + \frac{(n-1)u''(s)}{2c(u'(s))^2} + \frac{1}{c} \left(-c(1+2\Lambda(s)) u'(s) - (n-1) \right) \frac{u''(s)}{(u'(s))^2}.
\]

We remark that since \(c, u'' > 0\),
\[
\frac{1}{2c} + \frac{(n-1)u''(s)}{2c(u'(s))^2} > 0.
\]
Since \(\Lambda(s) \to -\infty\) as \(s \to -\infty\) and \(\Lambda(s) \to \infty\) as \(s \to \infty\), there exists an \(s \in \mathbb{R}\) such that \(\Lambda(s) = 0\), and for such \(s\) we have
\[
\frac{1}{c} \left(-c(1+2\Lambda(s)) u'(s) - (n-1) \right) \frac{u''(s)}{(u'(s))^2} = \frac{n-1}{c} \left(cu'(s) + (n-1) \right) \frac{u''(s)}{(u'(s))^2} > 0,
\]
since \(c, u', u'' > 0\). Thus, we have proved that
\[
\frac{d}{ds} \Lambda(s) > \frac{1}{2c} + \frac{(n-1)u''(s)}{2c(u'(s))^2} > 0
\]
for \(s\) such that \(\Lambda(s) = 0\). Similarly, there exists another \(s \in \mathbb{R}\) such that \(\Lambda(s) = -1\), and for such \(s\) we have
\[
\frac{1}{c} \left(-c(1+2\Lambda(s)) u'(s) - (n-1) \right) \frac{u''(s)}{(u'(s))^2} = \frac{1}{c} \left(cu'(s) + (n-1) \right)^2 \frac{u''(s)}{(u'(s))^2} \geq 0
\]
since \(c, u'' > 0\). Thus, we have proved that
\[
\frac{d}{ds} \Lambda(s) \geq \frac{1}{2c} + \frac{(n-1)u''(s)}{2c(u'(s))^2} > 0
\]
for \(s\) such that \(\Lambda(s) = -1\). Consequently, we have proved that
\[
\frac{d}{dr} \lambda(r) > 0
\]
for \(r\) such that \(\lambda(r) = 0\) or \(\lambda(r) = -1\). By this property and the statement (1), the statement (2) follows. \(\square\)

By Lemma 4.2, we have proved the following. This is the same as Theorem 2.1.

Theorem 4.3. For every \(0 < r < \infty\), the embedding
\[
\iota_r : L(k; 1)(r) \leftrightarrow N_k^n
\]
is a compact self-similar solution with
\[
H(\iota_r) = \lambda(r) \nabla f^\perp,
\]
and there exists the unique radius \(r_2\) such that \(\iota_r : L(k; 1)(r) \leftrightarrow N_k^n\) is a non-minimal self-shrinker, minimal submanifold or non-minimal self-expander when \(r < r_2\), \(r = r_2\) or \(r_2 < r\), respectively.
For the following sections, here we compute the norm of $A(t_r)$. It is easy to see that $A(t_r)$ is diagonalized by the orthonormal basis $\{v_1, w_2, \ldots, w_n, Jw_n\}$. Hence, we have

$$|A(t_r)|^2 = |A(v_1, v_1)|^2 + \sum_{\alpha=2}^n |A(w_\alpha, w_\alpha)|^2 + \sum_{\alpha=2}^n |A(Jw_\alpha, Jw_\alpha)|^2.$$

By (13), (14) and (15), with $s = \log r^2$, we have

$$|A(t_r)|^2 = \frac{1}{2c^2 u''(s)} \left(\left(\frac{P''(s)}{u''(s)} \right)^2 + 2(n-1) \left(\frac{P'(s)}{u'(s)} \right)^2 \right).$$

By a similar argument of the proof of the statement (1) of Lemma 4.2, we can prove the following.

Lemma 4.4. It holds that

- $|A(t_r)|^2 \to \infty$ and $|A(t_r)|^2 = \mathcal{O}(r^{-2k})$ as $r \to 0$,
- $|A(t_r)|^2 \to \infty$ and $|A(t_r)|^2 = \mathcal{O}(r^{2k})$ as $r \to \infty$.

5. The motion by Ricci-mean curvature flow of a lens space in N^n_k

In this section we observe how a lens space $L(k; 1)(r)$ in N^n_k moves by Ricci-mean curvature flow and what it converges to. Continuing Section 4, let (N^n_k, ω) be a unique $U(n)$-invariant gradient shrinking Kähler Ricci soliton with potential function f given in Theorem 5.1. Then we have

$$\nabla f = cr \frac{\partial}{\partial r},$$

where $r = |z|$. Fix $T \in (0, \infty)$. One can easily see that

$$\Phi_t : (\mathbb{C}^n \setminus \{0\})/Z_k \to (\mathbb{C}^n \setminus \{0\})/Z_k$$

defined by

$$\Phi_t(z) := \kappa(t) z \quad \text{with} \quad \kappa(t) := \left(\frac{T}{T - t} \right)^{\frac{2}{n}},$$

for $t \in [0, T)$ is the 1-parameter family of automorphisms of N^n_k generated by $\frac{1}{2(T-t)} \nabla f$ with $\Phi_0 = \text{id}$. Then, it follows that $g_t := 2(T-t)\Phi_t^*g$ satisfies the Ricci flow equation:

$$\frac{\partial}{\partial t} g_t = -2\text{Ric}(g_t).$$

Fix $r \in (0, \infty)$ and let $t_r : L(k; 1)(r) \hookrightarrow N^n_k$ be a lens space with radius r and

$$F_t : L(k; 1)(r) \to N^n_k \quad (t \in [0, T'))$$

be the solution of Ricci-mean curvature flow along $g_t = 2(T-t)\Phi_t^*g$ with initial condition $F_0 = t_r$. We assume that $T'(= T'(r))$ is the maximal time of existence of the solution. By rotationally symmetry of $L(k; 1)(r) \subset N^n_k$, the solution F_t is written as

$$F_t(p) := h(t)p,$$
by some positive smooth function $h : [0, T') \to \mathbb{R}$. Then the Ricci-mean curvature flow equation for F_t is reduced to an ODE for $h(t)$.

Proposition 5.1. The 1-parameter family of immersions F_t is the solution of the Ricci-mean curvature flow coupled with g_t with initial condition $F_0 = \iota_r$ if and only if the positive smooth function $h : [0, T') \to \mathbb{R}$ satisfies the following ODE with initial condition:

$$
\begin{align*}
 h(0) &= 1 \\
 \frac{h'(t)}{h(t)} &= \frac{c}{2(T - t)} \lambda(\kappa(t)h(t)r), \\
 \end{align*}
$$

where λ and κ are given functions.

Proof. Recall that the Ricci-mean curvature flow equation is

$$
\frac{\partial}{\partial t} F_t = H_{g_t}(F_t),
$$

where $H_{g_t}(F_t)$ is the mean curvature vector field of F_t computed with the Riemannian metric $g_t = 2(T - t)\Phi^{*}_t g$. It is easy to see that

$$
H_{g_t}(F_t) = \frac{1}{2(T - t)} H(t_\kappa(t)h(t)r) = \frac{c}{2(T - t)} \lambda(\kappa(t)h(t)r) \left(r \frac{\partial}{\partial r} \right),
$$

where H without subscript g_t denotes the mean curvature vector field with respect to the original ambient metric g. Since

$$
\frac{\partial}{\partial t} F_t = \frac{h'(t)}{h(t)} \left(r \frac{\partial}{\partial r} \right),
$$

the proposition is proved. \square

Put

$$
R(t) := \kappa(t)h(t)r = \left(\frac{T}{T - t} \right)^{\frac{\kappa}{2}} h(t)r.
$$

Then, we have

$$
\frac{R'(t)}{R(t)} = \frac{c}{2(T - t)} + \frac{h'(t)}{h(t)}.
$$

Thus, we have the following.

Lemma 5.2. The ODE \((18)\) for $h(t)$ with initial condition is equivalent to the following ODE for $R(t)$ with initial condition:

$$
\begin{align*}
 R(0) &= r \\
 \frac{R'(t)}{R(t)} &= \frac{c}{2(T - t)} \left(\lambda(R(t)) + 1 \right). \\
 \end{align*}
$$

Therefore, analysis of the motion of Ricci-mean curvature flow emanating from $L(k : 1)(r)$ is reduced to the analysis of $R(t)$. Let r_1 be the specific radius introduced in Lemma \[5.2\] Then, we have the following.

Lemma 5.3.

1. If $r < r_1$, then $T' < T$ and the solution $R(t)$ of \((20)\) satisfies $R(t) \to 0$ and $h(t) \to 0$ as $t \to T'$. Furthermore, we have

$$
(R(t))^{-2k} = \mathcal{O}\left(\frac{1}{T' - t} \right) \quad \text{as} \quad t \to T'.
$$
(2) If $r = r_1$, then $T' = T$ and $R(t) = r_1$ is the stationary solution of (20) and $h(t) = \kappa^{-1}(t) \to 0$ as $t \to T$.

(3) If $r_1 < r$, then $T' < T$ and the solution $R(t)$ of (20) satisfies $R(t) \to \infty$ and $h(t) \to \infty$ as $t \to T'$. Furthermore, we have

$$(R(t))^{2k} = \mathcal{O}\left(\frac{1}{T'-t}\right) \quad \text{as} \quad t \to T'.$$

Proof. The proof is done by an ordinary argument for the bifurcation phenomenon of an ODE. First, we prove the statement (1). Assume that $r < r_1$. In this case, by Lemma 4.2, there exists a constant $\alpha = \alpha(r) < -1$ such that $\lambda(r) \leq \alpha$ for all $r \in (0, r_0]$. At $t = 0$, we have $R'(0) < 0$ by ODE (20). If there exists some $t_0 \in (0, T')$ such that $R(t_0) = r$, it follows that

$$R'(t_0) = \frac{c}{2(T-t_0)}(\lambda(r) + 1)r < 0.$$

This means that $R(t) \in (0, r]$ for all $t \in [0, T')$ and $R(t)$ is monotonically decreasing. By ODE (20), we have

$$(21) \quad \frac{R'(t)}{R(t)(\lambda(R(t)) + 1)} = \frac{c}{2(T-t)},$$

and integrating both sides from $t = 0$ to $t = T' - 0$ we have

$$(22) \quad \int_r^{R(T' - 0)} \frac{1}{R(\lambda(R) + 1)} dR = \int_0^{T' - 0} \frac{c}{2(2(T-t))} dt.$$

By (1) of Lemma 4.2, we have

$$(23) \quad \frac{1}{R(\lambda(R) + 1)} = \mathcal{O}(R^{2k-1}) \quad \text{as} \quad R \to 0.$$

Thus, the left hand side of (22) is integrable, and we have proved that $T' < T$. If $\lim_{t \to T'} R(t) > 0$ then $R'(t)$ is bounded as $t \to T'$ by ODE (20), and this contradicts that T' is the maximal time of existence of the solution. Thus, it holds that $R(t) \to 0$ as $t \to T'$. Integrating both sides of (21) from t to T' and combining the estimate of order (23) and $R(t) \to 0$ as $t \to T'$, we have

$$C(R(t))^{2k} \geq \int_t^{T'} \frac{c}{2(T-t)} dt \geq \frac{c}{2T}(T'-t)$$

with some constant $C > 0$ and t sufficiently close to T'. Thus, we have

$$(R(t))^{-2k} = \mathcal{O}\left(\frac{1}{T'-t}\right) \quad \text{as} \quad t \to T'.$$

Since $R(t) = \kappa(t)h(t)r$, $R(t) \to 0$ as $t \to T'$ and $\kappa(t)$ is bounded on $[0, T')$, it holds that $h(t) \to 0$ as $t \to T'$. Hence, we have proved the statement (1).

The statement (2) is clear since $\lambda(r_1) + 1 = 0$.

Finally, we prove the statement (3). The argument is very similar to the proof of the statement (1). Assume that $r_1 < r$. In this case, by Lemma 4.2, there exists a constant $\alpha = \alpha(r_0) > -1$ such that $\lambda(r) \geq \alpha$ for all $r \in [r_0, \infty)$. At $t = 0$, we have $R'(0) > 0$ by ODE (20). If there exists some $t_0 \in (0, T')$ such that $R(t_0) = r$, it follows that

$$R'(t_0) = \frac{c}{2(T-t_0)}(\lambda(r) + 1)r > 0.$$
This means that $R(t) \in [r, \infty)$ for all $t \in [0, T')$ and $R(t)$ is monotonically increasing. By (1) of Lemma 4.2 we have

$$\frac{1}{R(\lambda(R)) + 1} = O(R^{-2k-1}) \text{ as } R \to \infty. \tag{24}$$

Thus, the left hand side of (22) is integrable, and we have proved that $T' < T$. If $\lim_{t \to T'} R(t) < \infty$ then $R'(t)$ is bounded as $t \to T'$ by ODE (20), and this contradicts that T' is the maximal time of existence of the solution. Thus, it holds that $R(t) \to \infty$ as $t \to T'$. Integrating both sides of (24) from t to T' and combining the estimate of order (24) and $R(t) \to \infty$ as $t \to T'$, we have

$$C(R(t))^{2k} \geq \int_{t}^{T'} \frac{c}{2(T-t)} dt = \frac{c}{2T}(T' - t)$$

with some constant $C > 0$ and t sufficient close to T'. Thus, we have

$$(R(t))^{2k} = O\left(\frac{1}{T' - t}\right) \text{ as } t \to T'.$$

Since $R(t) = \kappa(t)h(t)r$, $R(t) \to \infty$ as $t \to T'$ and $\kappa(t)$ is bounded on $[0, T')$, it holds that $h(t) \to \infty$ as $t \to T'$. Hence, we have proved the statement (3). \qed

Remark 5.4. In the case $r < r_1$, by integrating both sides of (24) from $t = 0$ to $t = T'$ and straightforward computation, the maximal time $T' (= T'(r))$ is explicitly given as

$$T' = T - T \exp\left(\frac{-2}{c} \int_{0}^{r} \frac{1}{R(\lambda(R)) + 1} dR\right).$$

Similarly, in the case $r_1 < r$, the maximal time T' is explicitly given as

$$T' = T - T \exp\left(\frac{-2}{c} \int_{r}^{\infty} \frac{1}{R(\lambda(R)) + 1} dR\right).$$

By Lemma 5.3 we can prove the following theorem. This contains Theorem 2.3.

Theorem 5.5.

1. If $r < r_1$, then $T' < T$ and $F_i : L(k;1)(r) \to N^0_k$ converges pointwise to S_0 as $t \to T'$. Furthermore, we have $|A_{g_i}(F_i)|^2_{g_i} \to \infty$ as $t \to T'$ and there exists some constant $C > 0$ such that

$$|A_{g_i}(F_i)|^2_{g_i} \leq \frac{C}{T' - t} \text{ on } [0, T').$$

2. If $r = r_1$, then $T' = T$ and $F_i : L(k;1)(r) \to N^0_k$ is given by $F_i(p) = \kappa^{-1}(t)p$ and converges pointwise to S_0 as $t \to T$. Furthermore, we have $|A_{g_i}(F_i)|^2_{g_i} \to \infty$ as $t \to T$ and there exists some constant $C > 0$ such that

$$|A_{g_i}(F_i)|^2_{g_i} = \frac{C}{T' - t} \text{ on } [0, T').$$

3. If $r_1 < r$, then $T' < T$ and $F_i : L(k;1)(r) \to N^0_k$ converges pointwise to S_∞ as $t \to T'$. Furthermore we have $|A_{g_i}(F_i)|^2_{g_i} \to \infty$ as $t \to T'$ and there exists some constant $C > 0$ such that

$$|A_{g_i}(F_i)|^2_{g_i} \leq \frac{C}{T' - t} \text{ on } [0, T').$$
Proof. It is easy to see that
\begin{equation}
|A_{g_t}(F_t)|^2_{g_t} = \frac{1}{2(T-t)} |A(t_{R(t)}h(t)r)|^2 = \frac{1}{2(T-t)} |A(t_{R(t)})|^2,
\end{equation}
where \(|A_{g_t}|_{g_t}\) and \(|A|\) is the norm of the second fundamental form with respect to the ambient metric \(g_t\) and \(g\), respectively. In the case (1), we have \(h(t) \to 0\) as \(t \to T'\) by Lemma 5.3. Let \(p = (z^1, \ldots , z^n)\) be a point in \(L(k; 1)(r) \subset (\mathbb{C}^n \setminus \{0\})/\mathbb{Z}_k\) and assume that \(z^j \neq 0\) for some \(j\). Then, \(F_t(p) = h(t)p\) is identified with
\[((h(t)z^1 : \cdots : h(t)z^n), (1 : (h(t)z^j)^k)) = ((z^1 : \cdots : z^n), (1 : (h(t)z^j)^k)) \]
in \(U_j \times \mathbb{P}^1\) via \(\psi\). Hence, it is clear that \(F_t : L(k; 1)(r) \to N_k^n\) converges pointwise to \(S_0\), the 0-section, as \(t \to T'\). By the formula (25) and Lemma 4.4 and Lemma 5.3, the remaining of the statement (1) is clear. The proof of (3) is similar. In the case (2), it is enough to put \(C := 2|A(t_{\tau_1})|^2\).

Remark 5.6. Consider the standard Hopf fibration \(S^{2n-1}(r) \to \mathbb{P}^{n-1}\). When \(r \to 0\), the total space \(S^{2n-1}(r)\) collapses to \(\mathbb{P}^{n-1}\) and this collapsing is just caused by degeneration of \(S^1\)-fiber. From this viewpoint, the picture of the collapsing of \(L(k; 1)(r)\) to \(S_0\) or \(S_\infty\) (these are diffeomorphic to \(\mathbb{P}^{n-1}\)) is considered as a \(\mathbb{Z}_k\)-quotient analog of the collapsing of the Hopf fibration.

6. The Motion by Mean Curvature Flow of a Lens Space in \(N_k^n\)

In this section, we observe how a lens space in \(N_k^n\) moves by mean curvature flow. As in Section 5, let \((N_k^n, \omega)\) be a unique \(U(n)\)-invariant gradient shrinking Kähler-Ricci soliton with potential function \(f\) given in Theorem 3.1 and for a given \(r > 0\) let \(\tau_r : L(k; 1)(r) \to N_k^n\) be a lens space with radius \(r\). Then, by rotationally symmetry, the solution
\[F_t : L(k; 1)(r) \to N_k^n \]
of the mean curvature flow equation
\[\frac{\partial}{\partial t} F_t = H(F_t) \]
is given by
\[F_t(p) = h(t)p \]
with some positive smooth function \(h : [0, T') \to \mathbb{R}\) which satisfies the following ODE with initial condition:
\begin{equation}
\begin{aligned}
&h(0) = 1 \\
&\frac{h'(t)}{h(t)} = c\lambda(h(t)r).
\end{aligned}
\end{equation}
We remark that this is an autonomous differential equation. We assume that \(T' = T'(r)\) is the maximal time of existence of the solution. Let \(r_2\) be the specific radius introduced in Lemma 4.2. Then, by similar arguments as the proof of Lemma 5.3 one can prove the following.

Lemma 6.1.

(1) If \(r < r_2\), then \(T' < \infty\) and the solution \(h(t)\) of (26) satisfies
\[h(t) \to 0 \quad \text{and} \quad (h(t))^{-2k} = O \left(\frac{1}{T' - t} \right) \quad \text{as} \quad t \to T'. \]

(2) If \(r = r_2\), then \(T' = \infty\) and \(h(t) = 1\) is the stationary solution of (26).
If $r < r_2$, then $T' < \infty$ and the solution $h(t)$ of (26) satisfies
\[h(t) \to \infty \text{ and } (h(t))^{2k} = O\left(\frac{1}{T' - t}\right) \text{ as } t \to T'. \]

Furthermore, as the proof of Theorem 5.5, combining Lemma 4.4 and Lemma 6.1, we can prove the following.

Theorem 6.2.

1. If $r < r_2$, then $T' < \infty$ and $F_t : L(k; 1)(r) \to N^k_\infty(r)$ converges pointwise to S_0 as $t \to T'$. Furthermore, we have $|A(F_t)|^2 \to \infty$ as $t \to T'$ and there exists some constant $C > 0$ such that $|A(F_t)|^2 \leq \frac{C}{T' - t}$ on $[0, T')$, that is, F_t develops singularities of type I.

2. If $r = r_2$, then $F_t \equiv F_0 : L(k; 1)(r) \to N^k_\infty(r)$ ($t \in [0, \infty)$) is the stationary solution of the mean curvature flow since F_0 is a minimal immersion.

3. If $r_2 < r$, then $T' < \infty$ and $F_t : L(k; 1)(r) \to N^k_\infty(r)$ converges pointwise to S_∞ as $t \to T'$. Furthermore we have $|A(F_t)|^2 \to \infty$ as $t \to T'$ and there exists some constant $C > 0$ such that $|A(F_t)|^2 \leq \frac{C}{T' - t}$ on $[0, T')$, that is, F_t develops singularities of type I.

Remark 6.3. As Remark 5.4, the maximal time $T' (= T'(r))$ is explicitly given as follows. When $r < r_2$,
\[T' = -\frac{1}{c} \int_0^r \frac{1}{r \lambda(r)} dr, \]
and when $r_2 < r$,
\[T' = \frac{1}{c} \int_r^\infty \frac{1}{r \lambda(r)} dr. \]

References

[1] H.-D. Cao. Existence of gradient Kähler-Ricci solitons. *Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994)*, 1–16, A K Peters, Wellesley, MA, 1996.

[2] H.-D. Cao and H. Li. A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension. *Calc. Var. Partial Differential Equations* 46 (2013), no. 3-4, 879–889.

[3] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni. The Ricci flow: techniques and applications. Part I. Geometric aspects. *Mathematical Surveys and Monographs*, 135. American Mathematical Society, Providence, RI, 2007.

[4] X. Han and J. Li. The Lagrangian mean curvature flow along the Kähler-Ricci flow. *Recent developments in geometry and analysis*, 147–154, Adv. Lect. Math. (ALM), 23, Int. Press, Somerville, MA, 2012.

[5] G. Huisken. Asymptotic behavior for singularities of the mean curvature flow. *J. Differential Geom.*, 31(1):285–299, 1990.

[6] N. Koiso. On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics. *Recent topics in differential and analytic geometry*, 327–337, Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA, 1990.

[7] J. D. Lotay and T. Pacini. Coupled flows, convexity and calibrations: Lagrangian and totally real geometry. [arXiv:1404.4227](http://arxiv.org/abs/1404.4227)

[8] J. Lott. Mean curvature flow in a Ricci flow background. *Comm. Math. Phys.* 313 (2012), no. 2, 517–539.
[9] A. Magni, C. Mantegazza, and E. Tsatis. Flow by mean curvature inside a moving ambient space. *J. Evol. Equ.* 13 (2013), no. 3, 561–576.

[10] K. Smoczyk. The Lagrangian mean curvature flow. Univ. Leipzig (Habil.-Schr.), 2000.

[11] H. Yamamoto. Ricci-mean curvature flows in gradient shrinking Ricci solitons. arXiv:1501.06256

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, TOKYO UNIVERSITY OF SCIENCE, 1-3 KAGURAZAKA, SHINJUKU-KU, TOKYO 162-8601, JAPAN

E-mail address: hyamamoto@rs.tus.ac.jp