Medical monitoring of asbestos-exposed workers: experience from Poland

Beata Świątkowska,¹ Neonila Szeszenia-Dąbrowska¹ & Urszula Wilczyńska¹

Abstract In Poland, the use of asbestos was banned in 1997 and asbestos plants have been closed since then. Despite their closure, cases of asbestos-related occupational diseases among former asbestos workers are still being recorded in the Central Register of Occupational Diseases. Between 2001 and 2014, there were 2726 asbestos-related illnesses, classified and reported as diseases associated with occupational exposure to asbestos. In 2000, Poland introduced a programme called Amiantus, targeted at former asbestos-processing plant workers. The programme provided periodic medical examinations to workers and free access to medications for treatment of asbestos-related illnesses. Introduction of the programme provided additional data to generate a reliable estimation of the number of asbestos-related occupational diseases, including cancer. The average latency period for asbestosis, lung cancer and mesothelioma is about 40 years so there may still be some health impact to former workers necessitating follow-up. We present the Polish experience of implementing a medical examination programme for asbestos-exposed workers and provide a list of activities to consider when planning for such a programme.

Introduction

Poland banned the use of crocidolite asbestos in the mid-eighties and in 1997 introduced a parliamentary Act banning the use, import and production of asbestos and asbestos-containing products.¹ Despite the ban, delayed adverse health effects of past exposure from asbestos use and at asbestos-containing material-production sites, continue to be an issue. Some of the health effects include lung cancers and mesothelioma. These biological effects of asbestos on health – which may manifest many years after occupational exposure – necessitate that former asbestos plant workers undergo a medical examination and regular monitoring of related illnesses.

Due to the long latency period – that is the period of time between the first exposure to asbestos and a disease diagnosis – the health effects of occupational exposure to asbestos dust remain subjects of research interest.² In previous studies, the reported mean latency period for asbestos-related diseases, including mesothelioma, is about 30 years.³–⁵

Because of its carcinogenic nature and pneumoconiosis-generating properties, asbestos dust is considered one of the most dangerous types of dust for workers’ health. The World Health Organization (WHO) estimates that globally about 125 million people are exposed to asbestos in their workplace and each year more than 107,000 deaths are attributable to occupational exposure to asbestos.⁶

WHO and the International Labour Organization (ILO) have taken joint action to improve workers’ health and oblige the Member States of the European Region of WHO to develop national programmes for elimination of asbestos-related diseases by 2015.⁷–⁹ The joint action by WHO and the ILO is an important milestone in the implementation of the 2010 Parma Declaration on Environment and Health adopted at the Fifth Ministerial Conference on Environment and Health.¹⁰ The declaration specifies that a national programme for elimination of asbestos-related diseases should include: a policy; a national asbestos profile; directions for awareness raising and capacity building an institutional framework; and a national plan of action for elimination. A national asbestos profile would include the prevalence of asbestosis and the incidence of lung cancer and mesothelioma among exposed workers.¹¹ The European Parliament resolution of 14 March 2013 on “asbestos-related occupational health threats and prospects for abolishing all existing asbestos” obliges its Member States to establish a formal, systematic registration of all asbestos-related diseases. Registration systems for such diseases in many European countries are either poor or non-existent.¹²

Evidence from ecological studies shows that national asbestos consumption, reported as average per capita asbestos use, predicts the incidence of asbestos-related diseases in different populations.¹³ However, comparing asbestos use and asbestos-related disease burden between countries is difficult due to differences in national reporting of such diseases. For example, a 2014 study on asbestos use and asbestos-related diseases in the WHO European Region reported that countries that have banned asbestos reported more asbestos-related deaths, compared to those that have not.¹⁴ The difference in reporting is most likely due to misdiagnosis and underreporting of asbestos-related diseases in the latter group of countries.¹⁵

In addition, insufficient knowledge about asbestos-related diseases, lack of information on the negative health effects of past exposure to asbestos, lack of motivation and fear of the consequences of reporting by former workers, as well as lack of specialized knowledge among treating physicians, may constitute reasons for underreporting in countries that have not banned asbestos use. Most cases of mesothelioma are found in low- and middle-income countries that use asbestos-containing products, which are also the same countries where affected populations are less likely to have access to diagnostic tests and regular health care.¹⁶ In this paper, we present the Polish experience in implementing a prophylactic medical examination programme for asbestos-exposed workers.

¹ Department of Occupational and Environmental Epidemiology, Reference Center for Asbestos Exposure & Health Risk Assessment, Nofer Institute of Occupational Medicine, Sw. Teresy 8, 91–348 Lodz, Poland.
Correspondence to Beata Świątkowska (email: beata_sn@imp.lodz.pl).
(Submitted: 3 June 2015 – Revised version received: 1 February 2016 – Accepted: 1 February 2016 – Published online: 2 June 2016)
Level of asbestos exposure

In Poland, until the mid-seventies, various tasks in most asbestos processing plants were performed manually. The highest concentrations of asbestos dust and fibre were found at textile plants, slightly lower concentrations in insulation product plants and the lowest in asbestos-cement plants and friction product plants. Based on archival data from asbestos-processing plants, it is estimated that over 43,600 individuals have been occupationally exposed to asbestos dust. It is also estimated that after World War II, 2 million tonnes of asbestos were used by manufacturing plants that produce asbestos-containing products, of which 90% were chrysotile and about 10% crocidolite. The amount of imported asbestos, which represents annual consumption, was about 1.7 kg per capita, during the period of the highest consumption to date. This ranks Poland among countries of low-level asbestos consumption.

Eight large state-owned plants processed about 82% of the total asbestos imported to Poland. Production of asbestos-cement was the largest activity for the sector and the main material used for its manufacturing was chrysotile. Until the mid-eighties, considerable quantities of crocidolite and small amounts of amosite were used to produce pressure pipes. The highest concentrations of asbestos dust were reported in preparation departments, at workstations to bury material, crushing wheels and where products are cut and polished.

Definition, diagnosis and reporting

Polish regulations specify the procedure for diagnosis and medical certification of an occupational disease and provide a list of the relevant occupational diseases covered. According to these regulations, a disease is classified as an occupational disease if it has been caused by a health hazard(s), is present in the work environment and if it is included in the list of occupational diseases. The list of asbestos-related occupational diseases includes: asbestosis; diseases of the pleura or pericardium induced by asbestos dust (diffuse thickening of the pleura, diffuse plaques of the pleura or pericardium, diffuse plaques of the pleura or asbestos dust (diffuse thickening of the pleura); chronic obstructive pulmonary disease; malignant neoplasms (lung cancer or bronchus cancer, and pleural and peritoneal mesothelioma).

Asbestosis is the main occupational disease diagnosed among Polish workers exposed to asbestos dust. In Poland, asbestosis is diagnosed in one of two ways: (i) based on X-ray changes in the lungs according to the International Labour Organization 1980 classification system, ILO category 1/1 and existing pleural abnormalities or a higher category; or (ii) based on radiological and clinical criteria (radiological findings ILO category 1/1 and existence of at least one other clinical manifestation, for example, crackles at the base of the lungs, restrictive or mixed ventilatory impairment, reduction of oxygen pressure, reduced diffusion capacity or reduction in the static lung compliance). The procedure of certification of an occupational disease case comprises three stages: (i) reporting the suspected case; (ii) assigning a diagnosis to the case; and (iii) certifying the case as an occupational disease. Depending on the workplace location, the employer, an occupational physician or a labour inspector is required to report the case to a local sanitary inspector. Once the certification is completed, the local sanitary inspector documents each occupational disease case on a special form and refers them all to the Central Register of Occupational Diseases located at the Nofer Institute of Occupational Medicine in Lodz. The register provides the government with a comprehensive national database of asbestos-related occupational diseases. Systematic collection of the data on asbestos-related diseases is important for well-informed occupational policies, prevention and compensation.

Amiantus programme

In 2000, the Polish Ministry of Health introduced the Amiantus programme of prophylactic medical examination for former workers of 28 asbestos-processing plants. The passing of the Act on the ban on use of asbestos-containing products from 1997 was the basis to start the programme. Under the programme, former workers of the Polish asbestos-processing plants specified in the Act are entitled to periodic medical examination and free access to medications for treatment of asbestos-related illnesses. The raw material used at an asbestos processing plant where a former employee worked is the criterion to get into the programme. Because of lack of accurate information on the status of periodic exposure to asbestos, industries such as construction and shipyards were not included in the programme. In addition, the Amiantus programme provides additional data for measuring the incidence of asbestos-related diseases and for epidemiological research on the long-term effects of occupational exposure to asbestos. The funds to cover the costs of the programme come from the state budget.

Thirteen regional occupational medicine units are implementing the programme. All units are required to perform clinical, radiometric, spirometric and histologic examination according to the 1997 Helsinki criteria for diagnosing asbestos-related diseases. Once a year, employees undergo a medical examination made up of: a general medical examination; chest X-ray imaging; and resting spirometry and supplementary testing such as resting gasometry and computed tomography scan. The Nofer Institute of Occupational Medicine coordinates and supervises the Amiantus programme. Data from the programme are recorded in the Reference Center for Asbestos Exposure and Health Risk Assessment. More information about the Amiantus medical monitoring programme and the associated data collection system is available elsewhere.
Medical monitoring of asbestos-exposed workers in Poland

Beata Świątkowska et al.

has increased the number of reported cases to the Central Register of Occupational Diseases and the detection of pathologies associated with asbestos exposure. However, it is estimated that during the 14 years of the programme’s duration, only about 20% of eligible former asbestos workers were examined.

During the same period, there were 2726 asbestos-related illnesses classified and reported in the Central Register of Occupational Diseases as

Years	Asbestosis	Lung cancer	Mesothelioma	Diseases of pleura or pericardium	Other neoplasms	Other non-malignant diseases	Total
1971–1980	13.8	0.4	0.2	Not recorded	0.1	0	14.5
1981–1990	77.1	5.4	1.5	Not recorded	2.9	1.3	88.2
1991–2000	70.2	17.3	6.8	Not recorded	8.2	5.4	107.9
2001–2010	122.2	30.6	19.5	42.7	1.7	1.2	217.9
2011–2014	57.7	23.0	23.2	32.7	0	0	136.6

a Five cases are peritoneal mesothelioma.

b Listed as an occupational disease since 2002 and recorded by the Central Register of Occupational Diseases since 2003.

c Includes nine cases of chronic obstructive bronchitis and three cases of chronic atrophic, hypertrophic rhinitis and allergic rhinitis, pharynx, larynx and trachea, which are induced by strong irritant and sensitizing substances, and since 2002 are no longer on the list of occupational diseases.

Data source: Nofer Institute of Occupational Medicine, Lodz, Poland.

Box 1. List of activities to consider when planning a medical examination programme for asbestos-exposed workers

Policy formulation
- Stakeholder dialogue.
- Intersectoral collaboration between relevant ministries, such as health and labour.
- Implementing public awareness campaigns.
- Providing information to employees of companies where asbestos-containing material production has been terminated.
- Providing information to affected employees about their entitlement to prophylactic medical examination.

Legislation
- Introduction of legislation focused on minimizing exposure to hazardous material and allowing early retirement for asbestos-exposed workers.
- Creation of a national compensation fund and procedures which recognize work-related asbestos cases as an occupational disease.
- Making the documentation of employment history a legal obligation before the closure of an asbestos-containing product-producing plant.
- Making documentation of additional information mandatory, including: the profile of the asbestos-containing product-producing plants; a list of people who have ever been employed at the plants; asbestos exposure assessment history of the plants; production, type and usage of asbestos in the plants.
- Developing and implementing a prophylactic examination programme for former workers of closed plants.

Coordination
- Establishing national registers of workers exposed to asbestos.
- Developing a national asbestos-related diseases register.
- Establishing a coordination centre. Tasks may include standardization of medical records and creating a database of key information for epidemiological analysis.

Monitoring
- Defining asbestos-related pathology under study, for example, having a criterion for diagnosis of asbestos-related diseases and assessment of asbestos exposure.
- Periodically reviewing and updating the list of asbestos-related diseases under surveillance.
- Developing a questionnaire for a comprehensive medical examination which includes radiological criteria to determine early diagnosis of radiological changes caused by asbestos exposure.
- Harmonizing medical protocols used to examine affected workers.

Training
- Introducing the list of asbestos-related diseases to medical practitioners.
- Upgrading physicians’ skills in chest X-ray reading.

Research
- Epidemiological research on the long-term effects of occupational exposure to asbestos.
- A cohort study among asbestos-exposed workers to determine health effects and to assess death risk.
Medical monitoring of asbestos-exposed workers in Poland

Beata Świątkowska et al.

Table 1 - programme allowed

When comparing data from the register for the period 2001 to 2010 with data from before the Amiantus programme (1991–2000), the number of recorded asbestos-related diseases increased almost twofold and in the case of mesothelioma, almost threefold during the implementation of the programme (Table 1). The high reported number of cases for the period between 2001 and 2010 could be because of two factors: (i) the long latency period of the reported diseases; and (ii) increased surveillance by the Amiantus programme, which increased their detectability. The high number of reported cases coded as “other non-malignant diseases” and “other neoplasms” could be explained by changes to the relevant list of occupational diseases, which has occurred over time (Table 1). Before the introduction of the programme in 2001, asbestos processing plant workers constituted less than 70% of the diagnosed asbestos cases and by 2014, they constituted 80%. The programme has contributed to improving the level of awareness about the consequences of asbestos dust exposure and reporting from asbestos processing plants, as well as raising the competency of physicians diagnosing asbestos-related diseases. In addition, providing education to workers that participate in the programme about the risk of tobacco use and the importance of smoking cessation may result in reducing the risk of respiratory diseases in this group over time.

Between 2001 and 2013, work-related mesotheliomas constituted about 9% (260/2808) of the nationally diagnosed mesothelioma cases. As seen in other countries, the incidence of occupational mesothelioma can be underestimated due to difficulties associated with diagnostics and linking the disease to workplace exposure.

Lack of in-depth interviews with concerned patients about their occupational history constitutes the main reason for the low incidence of mesotheliomas in former asbestos workers.

Follow-up of all asbestos-exposed workers in the country, even after they stopped working, is needed to ensure complete reporting of asbestos-related diseases. Based on the experience gained through the Amiantus programme, we provide a list of activities to consider when planning for such a programme in Box 1.

Conclusion

Despite asbestos plant closures, cases of asbestos-related occupational diseases among former asbestos workers are still recorded in Poland. Introduction of the Amiantus programme allowed the Polish Ministry of Health to provide former asbestos-plant workers with periodic medical examinations and free access to medications for treatment of asbestos-related illnesses. Introduction of the programme also allowed the government to generate a reliable estimate of the number of asbestos-related occupational diseases, including cancer. Having national legislation that bans asbestos use and mandates access to medical examination for former workers who are exposed to harmful working conditions resulted in the identification of people with known occupational exposure to asbestos and with a developed asbestos-related disease. The detailed exposure information obtained during the examination process has contributed to improved diagnosis of asbestos-related diseases. Lengthening the period of medical observation has allowed identification of asbestos-related diseases among individuals who are of retirement age. A follow-up of all asbestos-exposed workers in the country, even after they have stopped working, is needed to ensure complete reporting of asbestos-related diseases.

Funding: This study was performed by the Nofer Institute of Occupational Medicine, a WHO Collaborating Centre for Occupational and Environmental Health, under the task: “Nofer Institute of Occupational Medicine 10.14: Risk assessment of the incidence and mortality due to asbestos-related diseases among workers occupationally exposed to asbestos on the basis of long-term epidemiological observation.”

Competing interests: None declared.
Resumen

Supervisión médica de trabajadores expuestos al amianto: experiencia de Polonia

En Polonia, el uso del amianto se prohibió en 1997 y, desde entonces, las plantas de tratamiento del amianto están cerradas. A pesar de su cierre, es necesario seguir registrándose casos de enfermedades laborales relacionadas con el amianto, incluido el cáncer. La introducción del programa proporcionó información adicional para generar una estimación fiable del número de enfermedades laborales relacionadas con el amianto, incluido el cáncer. El periodo de latencia medio para el cáncer pulmonar y la mesotelioma es de unos 40 años, por lo que aún puede existir cierto impacto para la salud de los trabajadores antiguos. Los autores describen la experiencia polaca con la implementación del programa y los desafíos a los que se enfrentan, incluyendo el seguimiento de casos adicionales y la necesidad de generar información adicional para poder formular recomendaciones sólidas en el futuro.
References

1. The Act of 19 June 1997 on the ban of the use of asbestos-containing products [unified text]. J Laws 2004, No. 3, item 20 as amended. Polish.
2. A review of human carcinogens: arsenic, metals, fibres, and dusts [Monogr Eval Carcinog Risk Human]. Lyon: International Agency for Research on Cancer, 2012. Available from: http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C-11.pdf [cited 2016 May 4].
3. Lanphear BP, Buncher CR. Latent period for malignant mesothelioma of occupational origin. J Occup Med. 1992 Jul;34(7):718–21. PMID: 1494965
4. Szegernia-Dabrowska N, Urszula W, Szymczak W, Szelczecka A. Mortality study of workers compensated for asbestosis in Poland, 1970–1997. Int J Occup Med Environ Health. 2002;15(3):267–78. PMID: 12462454
5. Delgermaa V, Takahashi K, Park EK, Le GV, Hara T, Sorahan T. Global mesothelioma deaths reported to the World Health Organization between 1994 and 2008. Bull World Health Organ. 2011 Oct;1(90):716–24, 724A–724C. doi: http://dx.doi.org/10.2471/BLT.11.086678 PMID: 22084509
6. Asbestos: elimination of asbestos-related diseases [Fact sheet N°343]. Geneva: World Health Organization, 2014. Available from: http://www.who.int/mediacentre/factsheets/fs343/en [cited 2016 May 4].
7. National programmes for the elimination of asbestos-related diseases: review and assessment. Copenhagen: World Health Organization Regional Office for Europe, 2011. Available from: http://www.euro.who.int/__data/assets/pdf_file/0003/194133/RB-Asbestos-Mtg-Report-Bonn-2012.pdf [cited 2016 May 4].
8. The human and financial burden of asbestos in the WHO European Region [Meeting report]. 2012 Nov 5–6, Bonn, Germany. Copenhagen: World Health Organization Regional Office for Europe; 2013. Available from: http://www.euro.who.int/__data/assets/pdf_file/0003/194133/RB-Asbestos-Mtg-Report-Bonn-2012.pdf [cited 2016 May 4].
9. Parma declaration on environment and health. Copenhagen: World Health Organization Regional Office for Europe, 2010. Available from: http://www.euro.who.int/__data/assets/pdf_file/0001/78608/ES6618.pdf [cited 2016 May 4].
10. Outline for the development of national programmes for the elimination of asbestos-related diseases. Geneva: International Labour Organization / World Health Organization, 2007. Available from: http://www.who.int/occupational_health/publications/Out_NP6AD_ENG.pdf [cited 2016 May 4] [cited 2016 May 4].
11. European Parliament resolution of 14 March 2013 on asbestos-related occupational health threats and prospects for abolishing all existing asbestos [2012/0665(INI)]. Strasbourg: European Parliament; Dec 2014. Available from: http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P7-TA-2013-0093+0+DOC+XML+V0/EN [cited 2016 May 4].
12. Kameda T, Takahashi K, Kim R, Jiang Y, Movahed M, Park EK, et al. Asbestos: use, bans and disease burden in Europe. Bull World Health Organ. 2014 Nov 1;92(11):790–7. doi: http://dx.doi.org/10.2471/BLT.13.132118 PMID: 25378740
13. Ogundesin OA. The asbestos paradox: global gaps in the translational science of disease prevention. Bull World Health Organ. 2015 May 1;93(5):359–60. doi: http://dx.doi.org/10.2471/BLT.14.142307 PMID: 26229210
14. Szegernia-Dabrowska N, Sziatkowska B. Asbestos in Poland. Environment contamination, health effects, rules of safe asbestos management. Łódź: Nofer Institute of Occupational Medicine; 2016. Polish.
15. Szegernia-Dabrowska N, Sziatkowska B, Sobala W, Szubert Z, Wilczyńska U. Asbestos related diseases among workers of asbestos processing plants in relation to type of production and asbestos use. Med Pr. 2015;66(1):1–9. doi: http://dx.doi.org/10.2471/BLT.14.142307 PMID: 26016040
16. Regulation of the Council of Ministers of 30 June 2009 on occupational diseases. J Laws 2009, No. 105, item 869, Jun 30, 2009. Polish.
17. Szegernia-Dabrowska N, Sziatkowska B, Szubert Z, Wilczyńska U. Asbestos in Poland: occupational health problems. Int J Occup Med Environ Health. 2011 Jun;24(2):142–52. doi: http://dx.doi.org/10.2478/s13382-011-0020-4 PMID: 21537890
18. Guidelines for the use of ILO international classification of radiographs of dust diseases. Geneva: International Labour Office; 1980.
19. The Helsinki Declaration on management and elimination of asbestos-related diseases. Rome: International Commission on Occupational Health, 2014. Available from: http://www.ichohealthweb.org/site_new/multimedia/news/pdf/20140301Final%20Declaration%20for%20website.pdf [cited 2016 May 4].
20. Asbestos, asbestosis, and cancer: Helsinki criteria for diagnosis and attribution 2014. Helsinki: Finnish Institute of Occupational Health, 2014. Available from: http://www.ifi.fi/en/publications/Electronic_publications/Documents/Asbestos_web.pdf [cited 2016 May 4].
21. Asbestos, asbestosis, and cancer: the Helsinki criteria for diagnosis and attribution. Scand J Work Environ Health. 1997 Aug;23(4):311–6. PMID: 9322824
22. Okello C, Treasure T, Nicholson AG, Petö J, Müller H. Certified causes of death in patients with mesothelioma in south east England. BJC Cancer. 2009. 01 23;9(1):28. doi: http://dx.doi.org/10.1186/1471-2407-9-28 PMID: 19166594
23. Robinson BM. Malignant pleural mesothelioma: an epidemiological perspective. Ann Cardiothorac Surg. 2012 Nov;1(4):491–6. http://www.annalscts.com/article/view/1053/1582
24. Van den Borre L, Deboosere P. Asbestos in Belgium: an underestimated health risk. The evolution of mesothelioma mortality rates (1969–2009). Int J Occup Environ Health. 2014 Apr-Jun;20(2):134–40. doi: http://dx.doi.org/10.1179/2049396714Y.0000000058 PMID: 24999848