Mechanical properties of Fly ash reinforced Aluminium matrix composites

M Ravichandran*, M Balasubramanian, C Anand Chairman, S Marichamy, V Dhinakaran and B Stalin

1 Department of Mechanical Engineering, K.Ramakrishnan College of Engineering, Tiruchirappalli -621 112, Tamil Nadu, India.
2Department of Mechanical Engineering, University College of Engineering, Ramanathapuram Campus, Anna University, Ramanathapuram-623 513, Tamil Nadu, India.
3Department of Mechanical Engineering, K.Ramakrishnan College of Engineering, Tiruchirappalli -621 112, Tamil Nadu, India.
4Department of Mechanical Engineering, Sri Indu College of Engineering and Technology, Hyderabad-501 510, Telangana, India
5 Centre for Applied Research, Department of Mechanical Engineering, Chennai Institute of Technology, Kundrathur, Chennai-600 069, Tamil Nadu, India.
6 Department of Mechanical Engineering, Anna University, Regional Campus Madurai, Madurai-625 019, Tamil Nadu, India.

* Corresponding author: smravichandran@hotmail.com

Abstract The present work aims to develop Fly ash (FA) reinforced Aluminium Alloy (AA6063) matrix composites using stir casting route and reporting their mechanical properties. The FA content is applied in the ranges of 0-9 weight percentage with the step of 3 % each. The mechanical properties such as hardness, tensile strength (UTS) and compressive strength (CS) of the composite and alloy samples have been studied. Results showed that addition of FA content up to 6 wt.% improved the mechanical properties and then decreased.

1. Introduction
Aluminium matrix composites (AMC) are widely used materials since they have better mechanical, physical and thermal properties [1-11]. Aluminium matrix composites have been reinforced by various reinforcement materials such as titanium carbide, titanium oxide, aluminium oxides, Silicon carbide, Silicon dioxide, Boron carbide, molybdenum trioxide, Aluminium nitride, Titanium diboride, graphite, Silicon nitride, Zirconium oxide, Zirconium diboride, Tungsten carbide and carbon nanotubes [12-19]. Recently FA content has been used as reinforcement materials for fabrication of different composites [20]. Ramachandra and Radhakrishna reported the impact of FA in the AMCs on the wear property and reported that wear resistance improved for the increase in the content of FA but the corrosion resistance decreased [21]. Soorya Prakash Kumarasamy et al. investigated the machining behaviour of FA reinforced AMCs and they produced this composite using compo casting. They also concluded that the mechanical property of the composites has been improved because of reinforcement inclusion [22]. Rajesh et al. studied the wear and mechanical property of the Graphite and FA reinforced AMCs and reported that FA improves the properties of the composites. They used stir casting route to
manufacture the composites for testing [23]. Pramod Kumar et al. made an attempt to produce Aluminium composites with FA content and reported that the addition of FA improved the hardness property. But the tensile and impact strength has been decreased due to FA. They used stir casting route for fabricating this composite samples [24]. Sathishkumar et al. produced SiC and FA reinforced composite using stir casting route and reported that reinforcement addition improved the properties. The forging process further improved the properties of the composites [25]. Devanathan et al. developed AMCs with the inclusion of FA. SiC and Coconut ash and reported that the mechanical properties have been improved due to these reinforcements in the matrix materials [26]. Vipin Sharma et al. fabricated AMCs with FA content and studied the wear behaviour of the composite. They reported that less wear is observed for the FA reinforced samples. Stir casting route can be the right choice for fabricating the composites [27]. AMCs can be manufactured by various methods such as solid-based and liquid-based methods. But stir casting is the widely used method since it has an economical advantage [28,29]. Ezatpour et al. used stir casting process to produce the alumina reinforced AMCs and reported the mechanical properties and the metallurgy structure of the AMCs [30]. Suswagata Poria et al. reported the wear behaviour of the AMCs which has been reinforced by titanium diboride particles. They suggested stir casting is the choice for producing AMCs with good properties [31].

2. Experimental details

Aluminium alloy (AA6061) is used as a matrix material for the present work. The composition of the matrix is Al: 98.6, Cr: 0.04-0.35, Cu: 0.15-0.4, Fe: Max 0.7. Stir casting method is used for the fabrication of composite samples. FA is used as reinforcement materials. The content is added with the matrix in the step of 3% up to 9%. The matrix is heated up to the molten stage and then preheated FA added into the matrix. The stirring was done for 10 mts and stirrer was motor controlled. Then the molten metal is poured in to suitable die and samples were used for further testing. The tensile test was conducted at computerized UTM to find the UTS and compressive strength of the samples. Vickers hardness test was used to find the hardness for the prepared samples. Three readings were taken for each sample and the average value was taken. The complete experimental detail is provided in Fig. 1.

![Experimental Details Diagram](image)

Figure 1. Experimental details

3. Results and discussion

3.1. Hardness

Figure 2 shows the effect of FA content on the hardness in the AA6061 matrix. The increase in FA content increases the hardness of the composite. Reasonable improvement in hardness is observed. This is due to the hard nature of FA content in the soft matrix. Highest hardness was obtained for the sample contains 9 weight percentage of FA content. This is due to the high amount of FA content in the matrix distributed in the matrix. The indenter penetrates very hard when it faces the FA content rather than the AA6061 matrix. Many researchers found that the addition of ceramic or oxide particles improves the hardness of the composite samples than the unreinforced aluminium matrix [20].
3.2. Tensile strength
Figure 3 expresses the outcome of FA content on the UTS in AA6061 matrix. The increase in FA content increases the UTS of the composite. Judicious improvement in strength is observed. This is due to the uniform distribution of hard nature of FA content in the soft matrix. Maximum strength was obtained for the sample contains 6 weight percentage of FA content. The decrease in strength was observed after the 6 wt.% of FA content. This is due to the high amount of FA content in the matrix might not distributed properly in the matrix. The addition of ceramic or oxide particles improves the strength of the composite samples than the unreinforced aluminium matrix. The reason is that the load is transferred by the reinforced particles to the matrix. Hence the high strength FA particles act as load-bearing element [32]. Matrix– FA interfacing, bonding also the reason for the improvement in strength [33].

3.3 Compressive strength
Figure 4 displays the effect of FA content on the CS in AA6061 matrix. The rise in FA content rises the CS of the FA reinforced composite samples. Low CS was observed for the 9 FA content samples. This is due to the improper mixing of FA content in the matrix. High CS was obtained for the sample
contains 6% FA content in the AA6061. This is due to the even distribution of FA content in the soft matrix [22]. The improvement in strength is up to 6% only further decreases. The improvement in strength is due to the grain refinement and secondary particle strengthening mechanism [34].

![Figure 4](image_url)

Figure 4 Effect of FA content on CS

4. Conclusions
- AA6061-FA composite with 0, 3, 6, and 9 weight percentages have been produced by using stir casting method.
- The hardness of the composite was increased up to 9 weight percentage of addition of the FA content in the matrix. Vickers hardness testing machine was used to find the hardness of the samples.
- The UTS was increased up to 6 weight percentage and then decreased in the AA6061 matrix.
- The CS of the composite samples increased up to 6 weight percentage of FA addition and then decreased in the AA6061 matrix.

5. References
[1] X. Hong and R. Jiping (2015), Mechanical Property and Corrosion Behavior of SiCp / 2A50 Composites Prepared by Liquid Forging, *Rare Met. Mater. Eng.* **44** 1307–1313. https://doi.org/10.1016/S1875-5372(15)30080-1.
[2] B.Stalin, G.T.Sudha, C. Kailasanathan, M.Ravichandran (2020), Effect of MoO₃ ceramic oxide reinforcement particulates on the microstructure and corrosion behaviour of Al alloy composites processed by P/M route, *Materials Today Communications*, Vol. **25**, 101655. https://doi.org/10.1016/j.mtcomm.2020.101655
[3] M.Ravichandran, M.Meignanamoorthy, G.P.Chellasivam, J.Vairamuthu, A.Senthil Kumar, B.Stalin (2020), ”Effect of Stir Casting Parameters on Properties of Cast Metal Matrix Composite, *Materials Today: Proceedings*, Vol. **22**, pp. 2606–2613.
[4] B.Stalin, G.T.Sudha and M. Ravichandran (2018), “Investigations on Characterization and Properties of Al-MoO₃ Composites Synthesized Using Powder Metallurgy Technique”, *Silicon*, Vol.**10**, no.6, pp. 2663–2670. DOI: 10.1007/s12633-018-9803-6.
[5] S.V. Alagarsamy, M. Ravichandran, P. Raveendran, B. Stalin (2019) ”Evaluation of Microhardness and Optimization of Dry Sliding Wear Parameters on AA7075 (Al-Zn-Mg-Cu) Matrix Composites”, *Journal of the Balkan Tribological Association*, Vol. **25**,
no. 3, pp. 730-742. ISSN: 1310-4772.

[6] J. Vairamuthu, A. Senthil Kumar, B. Stalin, M. Ravichandran (2020), “Optimization of powder metallurgy parameters of TiC and B. C reinforced aluminium composites by Taguchi method”, Transactions of the Canadian Society for Mechanical Engineering, https://doi.org/10.1139/tcsme-2020-0091.

[7] G.Baskaran, I. Daniel Lawrence, C. Ramesh Kannan and B. Stalin (2015), “Characterization of Aluminium Based Metal Matrix Composite Reinforced with TiC and TiO2”, International Journal of Applied Engineering Research, Vol. 10, No. 51, pp. 682–687.

[8] B. Stalin, P. Ramesh Kumar, M. Ravichandran (2020), "Investigations on characterization and properties of AA6063-Si3N4 composites fabricated through stir casting route", Materials Today: Proceedings, Vol. 22, pp. 2631–2637.

[9] S. Raja, M. Ravichandran, B. Stalin, V. Anandakrishnan (2020), "A Review on Tribological, Mechanical, Corrosion and Wear Characteristics of Stir Cast AA6061 Composites", Materials Today: Proceedings, Vol. 22, pp. 2614–2621.

[10] B. Stalin, G. T. Sudha, M. Ravichandran (2020), "Optimization of Powder Metallurgy Parameters for AA7072-MoO3 Composites through Taguchi Method", Materials Today: Proceedings, Vol. 22, pp. 2622–2630. https://doi.org/10.1016/j.matpr.2020.03.393

[11] D. Prithima, J. Vairamuthu, P. Gopi Krishnan, S. Marichamy, B. Stalin, S. Sheeba Rani (2020), Response analysis on synthesized aluminium-scandium metal matrix composite using unconventional machining processes, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.07.672

[12] V. Mohanavel, K. Rajan, M. Ravichandran (2016), Synthesis, characterization and properties of stir cast AA6351-aluminium nitride (AlN) composites, J. Mater. Res. 31 (24) pp. 3824-3831 https://doi.org/10.1557/jmr.2016.460.

[13] M. Ravichandran, V. Anandakrishnan (2016), Hot Upset Studies on Sintered (Al-TiO2-Gr) Powder Metallurgy Hybrid Composite, Strength Mater. 48 pp.450–459. https://doi.org/10.1007/s11223-016-9784-x.

[14] B. Stalin, M. Meignanamoorthy and M. Ravichandran (2018), “Synthesis of metal matrix composites and alloys by mechanical alloying: A Review”, IOP Conf. Series: Materials Science and Engineering, Vol. 402, pp.1-6, 012097. DOI: 10.1088/1757-899X/402/1/012097.

[15] S. Arivukkarasan, V. Dhanalakshmi, B. Stalin and R. Balaji (2015), “Performance of Mechanical Properties of Hybrid Aluminium Based Metal Matrix Composites”, International Journal of Applied Engineering Research, Vol. 10, No. 50, pp.13684–13689. (ISSN: 0973-4562)

[16] B. Stalin, S. Arivukkarasan and C. Selva Ganesan (2015), “Evaluation of Mechanical Properties of Boron Carbide and Titanium Dioxide Reinforced with Aluminium Alloy Metal Matrix Composites”, International Journal of Applied Engineering Research, Vol. 10, No. 55, pp. 3988–3993.

[17] B. Stalin, S. Arivukkarasan and G. Ashwin Prabhu (2015), “Microstructure and Mechanical Properties Evaluation of Aluminium Matrix Reinforced with Tungsten Carbide and Silicon Carbide”, International Journal of Applied Engineering Research, Vol. 10, No. 55, pp. 3994–3999.

[18] S. Arivukkarasan, V. Dhanalakshmi, B. Stalin and M. Ravichandran (2017), “Mechanical and Tribological Behaviour of Tungsten Carbide Reinforced Aluminium LM4 Matrix Composites”, Particulate Science and Technology, Vol. 36, no. 8, pp. 967-973.

[19] B. Stalin, M. Ravichandran, S. Arivukkarasan and V. Mohanavel (2018), “Weight Loss Corrosion Studies of Aluminium-LM4 Reinforced With Alumina Silicate (Al2O3SiO2) Particulates Composites in Sodium Chloride (NaCl) Solution”, International Journal of Mechanical and Production Engineering Research and Development, Special Issue, June 2018, pp.329-336. ISSN: 2249-6890

[20] R. Satheesh Raja, K. Manisekar, Experimental and statistical analysis on mechanical properties of nano fly ash impregnated GFRP composites using central composite design
method, Mater. Des. 89 (2016) 884–892. https://doi.org/10.1016/j.matdes.2015.10.043.

[21] M. Ramachandra, K. Radhakrishna, Effect of reinforcement of fly ash on sliding wear, slurry erosive wear and corrosive behavior of aluminium matrix composite, Wear 262 (2007) 1450–1462. https://doi.org/10.1016/j.wear.2007.01.026.

[22] S.P. Kumarasamy, K. Vijayananth, T. Thankachan, G. Pudhupalayam Muthukutti, Investigations on mechanical and machinability behavior of aluminium/fly ash cenosphere/Gr hybrid composites processed through compocasting, J. Appl. Res. Technol. 15 (2017) 430–441. https://doi.org/10.1016/j.jart.2017.05.005.

[23] K. Rajesh, K.V. Mahendra, N. Mohan, T.S. Sachit, M. AkshayPrasad, Studies on mechanical and dry sliding wear behaviour of graphite/fly ash reinforced aluminium (Al6Mg) MMCs, Mater. Today Proc. 27 (2019) 2434–2440. https://doi.org/10.1016/j.matpr.2019.09.211.

[24] P. Kumar, S. Sharma, B.C. Kandpal, Synthesis and mechanical characterization of biomass fly ash strengthened aluminium matrix composites, Mater. Today Proc. 26 (2019) 266–272. https://doi.org/10.1016/j.matpr.2019.11.236.

[25] K. Sathishkumar, R. Soundararajan, N.S. Sivakumar, G. Shanthosh, C. Pradeep, Investigation of A413 alloy with reinforcement of SiC and fly ash hybrid composites by stir cast cum forged process on electric vehicle In-wheel motor casing, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.03.048.

[26] V.K. Sharma, R.C. Singh, R. Chaudhary, Effect of fly ash particles with aluminium melt on the wear of aluminium metal matrix composites, Eng. Sci. Technol. an Int. J. 20 (2017) 1318–1323. https://doi.org/10.1016/j.jestch.2017.08.004.

[27] S. Poria, P. Sahoo, G. Sutradhar, Tribological Characterization of Stir cast Aluminium (AA6063) Metal Matrix Composites, Silicon 8 (2016) 591–599. https://doi.org/10.1007/s12633-016-9437-5.

[28] C.S. Ramesh, S. Pramod, R. Keshavamurthy, A study on microstructure and mechanical properties of Al 6061-TiB2 in-situ composites, Mater. Sci. Eng. A. 528 (2011) 4125–4132. https://doi.org/10.1016/j.msea.2011.02.024.

[29] K. Ravi Kumar, T. Pridhav, V.S. Sree Balaji, Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash(CSA) reinforced aluminium (Al 6082) matrix hybrid composite, J. Alloys Compd. 765 (2018) 171–179. https://doi.org/10.1016/j.jallcom.2018.06.177.

[30] G.T. Sudha, B. Stalin, M. Ravichandran, Optimization of powder metallurgy parameters to obtain low corrosion rate and high compressive strength in Al-MoO3 composites using SN ratio and ANOVA analysis, Mater. Res. Express 6 (2019) 096520. https://doi.org/10.1088/2053-5073/ab2cef.