Prediction of Vesicoureteral Reflux by Ultrasonography and Renal Scan in Children

Banafsheh Arad, MD, Abolfazl Mahyar, MD, Mahmoud Vandaie, MD, and Sonia Oveisi, MD

Abstract

Background. In recent studies, renal ultrasonography and dimercapto-succinic acid (DMSA) scan have a role in predicting vesicoureteral reflux in children with febrile urinary tract infection (UTI). Materials and Methods. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were defined for ultrasonography and DMSA scan to predict vesicoureteral reflux in 70 children with febrile UTI. Results. Renal ultrasonography sensitivity, specificity, PPV, NPV, PLR, and NLR for vesicoureteral reflux prediction was 0.57, 0, 1, 0, 0.57, and 0.47 and sensitivity, specificity, PPV, NPV, PLR, and NLR of DMSA scan for predicting vesicoureteral reflux was 0.75, 0.9, 0.33, 0.98, 7.5, and 0.27, respectively. Conclusions. Ultrasonography cannot predict the presence of VUR, but DMSA scan has a good sensitivity in this context. Therefore, by observation of DMSA scan results, it can be decided whether to perform VCUG or not.

Keywords

urinary tract infection, diagnostic imaging, vesicoureteral reflux, ultrasonography, 99m Tc DMSA

Received April 24, 2022. Accepted for publication May 30, 2022.

Introduction

Urinary tract infection (UTI) is one of the most common bacterial infections in children, accounts for 4% to 8% of childhood febrile illnesses. By the age of 7, 8.4% of girls and 1.7% of boys have symptomatic UTI once or more. Late diagnosis and inadequate treatment of UTI may lead to renal scarring, chronic renal failure and hypertension. The prevalence of renal scarring following acute pyelonephritis is between 15% and 38.2%. The most common risk factor for pyelonephritis in children is vesicoureteral reflux (VUR). Nearly half of the children with renal scars have VUR, also renal scar progression is more prevalent in VUR grade III-V. Voiding cystourethrogram (VCUG) is performed for VUR diagnosis, but it accompanied radiation exposure. VCUG is an invasive procedure and less than half of the children with UTIs have VUR, so researchers are looking for other ways to avoid unnecessary VCUG. One of these strategies is to use ultrasound and dimercapto-succinic acid (DMSA) renal scan for predicting of renal scars. This study was performed to determine the value of renal ultrasound and DMSA renal scan in predicting VUR in children with the first Febrile UTI.

Methods

In this cross-sectional study, we studied infants and children with febrile UTI hospitalized in Qazvin Children’s Hospital affiliated to Qazvin University of Medical Sciences (Qazvin-Iran) in 2018 to 2019. Sample size was calculated 70 febrile UTI children based on two-sided confidence level (1-alfa) equal to 0.95 and at 80% power. Sampling was performed sequentially until the required sample size was completed.

Infants and children aged over 1 month and less than 12 years with the following conditions were included in the study. Clinical and laboratory diagnosis of febrile UTI based on fever with axillary temperature greater than 38°C, symptoms of urinary irritation, abdominal and flank pain. In addition, with urine analysis including:

1. Children Growth Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Science, Qazvin, Iran

Corresponding Author:
Banafsheh Arad, Qazvin University of Medical Sciences, Children Hospital, Blvd. Shahid Beheshti, Qazvin 34159-1459, Iran.
Email: banafsheh.arad@gmail.com
white blood cell (WBC) more than 10/µl, positive nitrite and leukocyte esterase, positive urine culture (more than 100,000 colony forming unit (CFU)/ml of a single pathogen in a midstream urine sample or urine bag or 50,000 CFU/ml of a single pathogen via catheter). Exclusion criteria included congenital urinary anomalies in ultrasonography, history of previous UTI and existence of underlying comorbidities.

Ultrasoundography was performed for all patients by an ultrasound transducer (probe), Curve frequency 2.5 MHz, 730PRO, LBN Medical. Renal ultrasonography was reported abnormal when showing hydronephrosis, decreased cortical thickness, and decreased corticomedullary differentiation. Renal scans were performed using a dual-head gamma camera by 140 keV and 99m technetium. Values from anterior, posterior, left, and right views were obtained. All these children had one or more indications to perform VCUG in first febrile UTI (positive urine culture after 48 hours or fever lasted more than 72 hours despite proper antibiotic therapy, abnormal findings in kidney ultrasonography, microbial growth other than Escherichia Coli in urine culture).12

After recording patients’ information including demographic features, symptoms at admission, bacterial growth in urine culture, and antibiotic sensitivity in antibiogram, the results of specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were recorded in questionnaire prepared.

Statistical Methods

Data were analyzed using the SPSS software version 18.0 (IBM Corp., Armonk, NY, USA). Continuous variables were expressed by means and standard deviations while categorical variables were presented in frequencies and percentages. Findings were compared using the Mann-Whitney U test and Pearson’s correlation coefficient. Statistical test was two-tailed and was considered significant when \(P \) less than .05. Chi-squared analysis was used to determine differences of statistical significance between renal ultrasonography and renal scan with the results of VCUG. Logistic regression analysis showed statistically significant associations between renal scar and DMSA scan.

Ethical Consideration

This project was approved by the ethics committee of Qazvin University of Medical Sciences (IR.QUMS.REC.1398.114). All parents were provided information regarding the research method in simple language.

| Table 1. Demographic Features in 70 Children with Febrile UTI. |
Data	Patients
Age (months)	34.69 ± 3.23
Sex	
Female	65 (92%)
Male	5 (8%)
Symptoms at admission	
Fever	70 (100%)
Dysuria	18 (25.7%)
Vomiting	16 (22.9%)
Restlessness	15 (21.5%)
Poor feeding	14 (20%)
Abdominal pain	12 (17.1%)
Frequency	10 (14.3%)
Flank pain	4 (5.7%)
Seizure	4 (5.7%)
Incontinence	1 (1.4%)
Bacterial growth in urine culture	
Escherichia coli	60 (85.7%)
Klebsiella	4 (5.7%)
Enterococcus	3 (4.3%)
Proteus	2 (2.9%)
Gram positive bacillus	1 (1.4%)
Antibiotic sensitivity in antibiogram	
Imipenem	61 (87.1%)
Amikacin	58 (82.9%)
Ceftriaxone	25 (35.7%)
Cefotaxime	25 (35.7%)
Ceftazidime	23 (32.9%)
Gentamicin	15 (21.4%)
Ampicillin	13 (18.6%)

Children were included in the study after their parents agreed and signed the informed consent form.

Results

Of the 70 children with febrile UTI, 65 (92%) were female with the mean age of 34.69 ± 37.35 months. The range of patient’s age were 1 month to 12 years. Dysuria (18%) was the most common complaint. Escherichia coli 60 (85.7%) was the most common causing bacteria. The highest sensitivity in antibiogram was for imipenem (87.1%) (Table 1). Kidney ultrasound was normal in 40 children (58%) and abnormal in 30 children (42%). DMSA renal scan was normal in 9 children (13%) and shows dysplasia or scar in 61 (87%) patients. The frequency of normal VCUG in children with the first febrile UTI was 56 (80%). No significant relationship was observed between renal ultrasound and VCUG results (\(P > .05 \)) (Table 2). A significant correlation was
observed between DMSA scan and VCUG results ($P < .05$) (Table 2). There was no significant relationship between renal ultrasound and DMSA renal scan ($P > .05$) (Table 3). Kidney sonography sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), negative likelihood ratio (NLR), and positive likelihood ratio (PLR) for VUR prediction was 0.57, 0, 1, 0, 0.57, and 0.47, respectively, and of DMSA renal scan for VUR prediction was 0.75, 0.9, 0.33, 0.98, 7.5, and 0.27, respectively.

Discussion

This study showed that ultrasonography of the kidneys is not able to predict the presence of VUR. In contrast, DMSA renal scan has a good sensitivity to predict the presence of VUR. Therefore, by observing the results of DMSA renal scan, it can be decided whether to perform VCUG or not. Studies in this field are contradictory.13-17 A study by You et al on 38 children under 2 years of age with febrile urinary tract infections reported that normal renal ultrasonography indicates the absence of high-grade VUR and abnormal findings on renal ultrasonography such as: dilatation of the renal collecting system, wall thickening of the renal collecting system, and DMSA scans that was observed significantly the presence of high-grade VUR ($P = .38, .27, \text{and } .1$, respectively).

According to a report of Bayram et al, the normality of ultrasound of the kidney indicates the absence of high-grade VUR. The researchers suggested that VCUG should not be performed unless there is another risk factor. A study performed by Bayram et al14 on 228 patients with urinary tract infections showed that the sensitivity, specificity, positive predictive value, negative predictive value, and odds ratio of renal ultrasonography for predicting VUR were 68%, 80%, 38%, 93%, and 8.2% respectively. In Mohkam et al18 study on 2550 pyelonephritic children, the sensitivity (95% CI), specificity (95% CI), positive predictive value (PPV), and negative predictive value (NPV) of ultrasonography for prediction of renal cortical defect in compare with DMSA scan as gold standard test were 69.2 (62.1-72.6), 89.3 (80.2-94.9, 65.6-70.9), and 81.5 (75.9-84.7) respectively.

Sorkhi et al found that DMSA renal scan alone could not predict VUR by renal ultrasound. In the study of Sorkhi et al,16 the rates of NPV and PPV of DMSA scan or renal ultrasonography for predicting VUR were 44% and 56%, respectively. A study by Balestracci et al on 122 patients aged 3 to 18 years with a urinary tract infection showed that the sensitivity, specificity, negative predictive value, and positive predictive value of DMSA renal scan for the diagnosis of all VUR grades were 93.1%, 75%, 92.3%, and 77.1% and high-grade VUR had sensitivity and NPV 100%. In the study, the researchers found that kidney ultrasonography was abnormal in 53 (43.4%) and 58 patients (47.5%) had VUR. In this study, DMSA renal scan was abnormal in 70 patients (57.4%) and had a significant relationship with each grade of VUR ($P = .0001$) and high-grade VUR ($P = .0001$).17 Thus, the results of our study were similar to findings of Balestracci et al. A study by Sheu et al10 on 473 children with UTI showed that sensitivity and negative predictive value of ($99m$) Tc DMSA scan for predicting dilating VUR is 95.8% and 97.9%, respectively. The researchers referred to the predictive value ($99m$) of Tc DMSA for VUR diagnosis. The results of Lee et al’s study showed that the sensitivity, specificity, positive predictive value, and negative predictive value of DMSA Renal scan for predicting VUR were 88%, 37%, 63%, and 37% respectively. Findings of the study of Lee et al19 is consistent with the present study. The predictive value of DMSA Renal scan for the diagnosis of VUR in children with the first urinary tract infection has been confirmed in the Fouzas study and the findings of these researchers are the same as the present study.11 Jafarzadeh and Jafari20 have shown that the sensitivity and specificity of DMSA Renal scan in predicting VUR are 67% and 44%. A study by Zhang et al on 523 children equal to or less than 2 years of age with a urinary tract infection showed that DMSA scan was a good predictor of VUR and that normalization was likely to rule out VUR. The sensitivity and predictive properties of high-grade VUR in this study were reported to be 97% and 9%.21 In contrast, Mantadakis et al22 reported that it was not possible to decide whether or not to perform

Table 2. Relationship Between Renal Ultrasonography and DMSA with VCUG Results.
VCUG Results

Renal sonography
DMSA
VCUG to diagnose VUR based on the results of renal scanning DMSA.

Conclusions
This study showed that ultrasonography of the kidneys is not able to predict the presence of VUR. In contrast, DMSA renal scan has a good sensitivity to predict the presence of VUR. Therefore, by observing the results of DMSA renal scan, it can be decided whether to perform VCUG or not.

Author Contributions
Conceptualization and Supervision: Banafsheh Arad and Abolfazl Mahyar; data Collection: Mahmoud Vandaie; data Analysis: Sonia Oveisi; Writing Original Draft, review and editing: All authors.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Banafsheh Arad https://orcid.org/0000-0001-9939-5572

Table 3. Relationship Between Kidney Ultrasound Results and DMSA Results.

Renal sonography	Normal N (%)	Abnormal N (%)	P-value
DMSA	14 (53.8)	4 (46.2)	0.058
	66 (57.9)	56 (43.1)	

References
1. Korbel L, Howell M, Spencer JD. The clinical diagnosis and management of urinary tract infections in children and adolescents. Paediatr Int Child Health. 2017;37(4):273-279.
2. Hodson EM, Craig JC. Urinary tract infection. In: Avner ED, Harman WE, Niaudet P, Yoshikawa N, Emma F, Goldstein SL (eds) Pediatric Nephrology, 7th ed. Springer; 2016:1698-1701.
3. Shaikh N, Ewing AL, Bhatnagar S, Hoberman A. Risk of renal scarring in children with a first urinary tract infection: a systematic review. Pediatrics. 2010;126(6):1084-1091.
4. Roupakias S, Sinopidis X, Tsikopoulos G, Spyridakis I, Karatzas A, Varvarigou A. Dimercaptosuccinic acid-secreting challenges in childhood urinary tract infection, vesicoureteral reflux and renal scarring investigation and management. Minerva Urol Nefrol. 2017;69(2):144-152.
5. Pokrajac D, Sefic-Pasic I, Begic A. Vesicoureteral reflux and renal scarring in infants after the first febrile urinary tract infection. Med Arch. 2018;72(4):272-275. doi:10.5455/medarh.2018.72.272-275
6. Arlen AM, Cooper CS. New trends in voiding cystourethrography and vesicoureteral reflux: who, when and how? Internet J Urol. 2019;26(4):440-445. doi:10.1111/iju.13915
7. Swerkersson S, Jodal U, Sixt R, Stokland E, Hansson S. Urinary tract infection in small children: the evolution of renal damage over time. Pediatr Nephrol. 2017;32(10):1907-1913. doi:10.1007/s00467-017-3705-5
8. Tekgül S, Riedmiller H, Hoebeke P, et al. EAU guidelines on vesicoureteral reflux in children. Eur Urol. 2012;62:534-542.
9. Sithissarunkul N, Uthairat M, Dissaneewate P, McNeil E, Vachvanichsanong P. Characteristics and findings of childhood urinary tract infection in the last decade. Urol Int. 2019;102(4):456-461. doi:10.1159/000497443
10. Sheu JN, Wu KH, Chen SM, Tsai JD, Chao YH, Lue KH. Acute 99mTc DMSA scan predicts dilating vesicoureteral reflux in young children with a first febrile urinary tract infection: a population-based cohort study. Clin Nucl Med. 2013;38(3):163-168.
11. Fouzas S, Krikelli E, Vassilakos P, Gkentzi D, Papanastasiou DA, Salakos C. DMSA scan for revealing vesicoureteral reflux in children with urinary tract infection. Pediatr Nephrol. 2010;126(3):e513-e9.
12. Hewitt IK, Montini G. Pediatric urology: rapid uptake of guidelines for imaging after first febrile UTI. Nat Rev Urol. 2013;10:622-624.
13. You SK, Kim JC, Park WH, Lee SM, Cho HH. Prediction of high-grade vesicoureteral reflux in children younger than 2 years using renal sonography. J Ultrasound Med. 2016;35(4):761-765.
14. Bayram MT, Kavukcu S, Alaygut D, Soylu A, Cakmakci H. Place of ultrasonography in predicting vesicoureteral reflux in patients with mild renal scarring. Urology. 2014;83(4):904-908.
15. Subcommittee on Urinary Tract Infection, Steering Committee on Quality Improvement and Management, Roberts KB. Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics. 2011;128:595-610.
16. Sorkhi H, Nooreddini HG, Amiriz M, Osia S, Farhadi-Niakee S. Prediction of vesicoureteral reflux in children...
with first urinary tract infection by dimercaptosuccinic acid and ultrasonography. *Iran J Pediatr*. 2012;22:57-62.
17. Balestracci A, Montecuco M, Serviddio C, et al. Role of late DMSA renal scan in detecting high-grade vesicoureteral reflux. *Indian J Pediatr*. 2019;86(9):784-789.
18. Mohkam M, Mahdavi C, Arad B, et al. The sensitivity of ultrasonography in detecting renal cortical defects in pyelonephritic patients with or without vesicoureteral reflux. *J Ped. Nephrology*. 2013;1(1):28-31.
19. Lee HY, Soh BH, Hong CH, Kim MJ, Han SW. The efficacy of ultrasound and dimercaptosuccinic acid scan in predicting vesicoureteral reflux in children below the age of 2 years with their first febrile urinary tract infection. *Pediatr Nephrol*. 2009;24(10):2009-2013.
20. Jafarzadeh M, Jafari SA. Value of urine analysis in diagnosis of urinary tract infection in children. *Med J Mashhad Univ Med Sci*. 2007;50(95):49-53.
21. Zhang X, Xu H, Zhou L, et al. Accuracy of early DMSA scan for VUR in young children with febrile UTI. *Pediatrics*. 2014;133:e30-e38.
22. Mantadakis E, Vouloumanou EK, Georgantzi GG, Tsalkidis A, Chatzimichael A, Falagas ME. Acute Tc-99m DMSA scan for identifying dilating vesicoureteral reflux in children: a meta-analysis. *Pediatrics*. 2011;128:e169-e179.