Clinical observation on the effect of Wuzhi soft capsule on FK506 concentration in membranous nephropathy patients

Zhu Zhang, MDa,∗, Xiaobei Lu, MSb, Leipeng Dong, MSc, Jiwei Ma, MSd, Xiaoguang Fan, MSe

Abstract

The current research aimed to investigate the correlation between the effect of Wuzhi soft capsule (WZC) on FK506 concentration and CYP3A5 gene polymorphism in patients with membranous nephropathy (MN).

Seventy-five patients with idiopathic MN were enrolled and divided according to the expression of CYP3A5 gene metabolic enzyme into group A (CYP3A5 metabolic enzyme function expression types CYP3A5*1/*1 type and CYP3A5*1/*3 type), and group B (non-expression type CYP3A5*3/*3 type). All patients were given oral administration of tacrolimus capsule at the initial dose of 1 mg for twice a day 1 hour before breakfast and dinner. Afterwards, the oral administration of WZC was added at the dose of 0.5 g for 3 times a day within half an hour after 3 meals.

The blood concentrations of FK506 in groups A and B were significantly higher than those before administration. Compared with that before administration, the FK506 blood concentration was increased by 3.051 ± 0.774 ng/ml after adding the WZC. Besides, the blood concentrations of FK506 in group A were lower than those in group B before and after administration; meanwhile, the 24 hours total urine protein and the biochemical indexes in both groups displayed no statistically significant difference. Only 1 case of diarrhea was observed, which was relieved after the reduction of tacrolimus.

Wuzhi soft capsule can significantly increase the blood concentration of FK506 in MN patients. Moreover, the CYP3A5 genotyping should be considered when WZC is used to increase the blood concentration of FK506.

Abbreviations: CNI = calcineurin inhibitor, CYP = cytochrome P450, CYP3A = P4503A, FK506 = tacrolimus, MN = membranous nephropathy, NS = nephrotic syndrome, P-gp = P-glycoprotein, WZC = Wuzhi soft capsule.

Keywords: CYP3A5 gene polymorphism, membranous nephropathy, tacrolimus, Wuzhi soft capsule

1. Introduction

Tacrolimus (FK506), which belongs to the Calcineurin inhibitor (CNI), is a kind of macrolide antibiotic extracted from the fermentation liquid of Steptomyces tsukubaensis. It is the representative drug in the second generation immunosuppressors. FK506 can prevent and treat immune reaction, which has been increasingly used to treat some autoimmune diseases in recent years, such as rheumatoid arthritis, atopic dermatitis and membranous nephropathy (MN).[1] However, FK506 is associated with the disadvantages of narrow therapeutic index, obvious individual differences in pharmacokinetics and toxicology, and high price, which have brought certain economic burdens on the long-term clinical application of patients. In the body, FK506 is mainly absorbed, excreted and re-absorbed through the translocator P-glycoprotein (P-gp) in the liver and small intestine; moreover, it is metabolized and decomposed through the cytochrome P450.[2] Thus, it can be figured out that, the cytochrome P4503A (CYP3A) and P-gp gene polymorphism are the important factors affecting the blood concentration of FK506.[3]

Wuzhi soft capsule (WZC) is the mixture of the active ingredients (deoxyschizandrin) prepared from the kadsura longepedunculata through the alcohol extraction method, including schizandrin, schisandrol and schisandrin.[4] It is verified in study through constructing the Caco-2 cell model that, deoxyschizandrin, schisandrol and schisandrin can suppress the P-gp mediated FK506 excretion, among which, deoxyschizandrin has the most potent effect on suppressing P-gp.[5] Some scholars confirm in their study that[6] WZC can inhibit the metabolism of P-gp and CYP3A to enhance the FK506 concentration. At present, some research reports that CYP3A5 gene polymorphism will affect the blood concentration of FK506 in patients undergoing renal transplantation.[7–9] However, no in-depth study is reported on the role of MN patients and CYP3A5 gene polymorphism in the influence of WZC on enhancing the FK506 blood concentration. Thus, this study aimed to observe the correlation of early WZC administration on enhancing the FK506 blood concentration and the CYP3A5 gene...
polymorphism in MN patients, so as to provide foundation for individualized treatment in clinic.

2. Methods

2.1. Objects of study

Patients visiting at the Nephrology Department of the First Affiliated Hospital of Henan University of Traditional Chinese Medicine from January 2017 to January 2018, manifesting as nephrotic syndrome (NS) and pathologically confirmed as MN through renal biopsy were selected. A total of 75 patients were enrolled in this study, including 37 males and 38 females, with the age of 18 to 75 years and the body weight of 43 to 80 kg. The inclusion criteria were as follows:

1. patients aged between 18 and 75 years, with Han nationality, regardless of male or female;
2. patients confirmed as MN through renal biopsy pathological examination;
3. Scr < 140.0 μmol/L;
4. patients that had not taken any agent that might affect CYP3A enzyme (including diltiazem, ketoconazole, berberine and biphenyl diester) and P-gp at least within 1 month prior to the administration of FK506; and
5. those who were willing to participate in the experiment and had signed the informed consent.

The exclusion criteria were as follows:

1. patients with secondary MN, diabetes and diabetic nephropathy (DN);
2. patients with severe infection, liver and kidney impairment (ALT or AST is more than 5 times the upper limit of the normal range, renal creatinine clearance < 20 m L/min, respectively), gastrointestinal bleeding as well as other complications, and were immunosuppressors intolerant;
3. pregnant women, breast-feeding women and females with fertility demand; and
4. those allergic to drugs.

This study conformed to the ethics standard from the Ethics Committee of the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, and all patients were informed and had signed the informed consent to participate in the experiment.

2.2. Treatment methods

Participants in this study first underwent genetic testing and were then divided into 2 groups according to the CYP3A5 metabolic enzyme genotypes, which resulted in the different metabolic rates of FK506. FK506 was metabolized faster in CYP3A5*1/*1 and CYP3A5*1/*3, and the FK506 concentration could not be maintained in these 2 CYP3A5 genotypes. Whereas the FK506 concentration could be maintained in CYP3A5*3/*3 type due to the low metabolic rate. Therefore, group A included CYP3A5*1/*1 type and CYP3A5*1/*3 type, and group B included CYP3A5*3/*3 type. Afterwards, the patients were given oral administration of tacrolimus capsule at the initial dose of 1 mg for twice a day 1 hour before breakfast and dinner (at an interval of 12 hours) on an empty stomach. 1 week later, the oral administration of WZC was added at the dose of 0.5 g for 3 times a day within half an hour after 3 meals. FK506 (Astellas Pharma Co. Limited, Ireland, Registration number: J20150101, specification: 0.5 mg) was given orally at the initial dose was 1 mg for twice a day (generally, the initial dose of tacrolimus was 0.05 mg/kg/d) on an empty stomach 1 hour before breakfast and dinner, respectively (at an interval of 12 hour). The tacrolimus dose was adjusted according to the FK506 blood concentration, so that the latter was maintained within the treatment window of 4 to 8 ng/mL. WZC (Sichuan Hezheng Pharmaceutical, approval number: Z10983013, specification: each capsule contained 11.25 mg of deoxyxchizandrin) was given orally at the initial dose of 0.5 g within half an hour after 3 meals (generally, the normal initial dose of WZC was 3 g/d), and the dose was not adjusted during the treatment. Corbin capsule was also given orally at the dose of 1.5 g 30 minutes after three meals. No other immunosuppressors or cytotoxic drug was allowed during the treatment (Fig. 1).

2.3. FK506 concentration detection and gene polymorphism detection

The 2 ml fasting venous blood was collected from patients before taking WZC, as well as in the morning on the following day after 1 week of WZC treatment (12 hours after the last administration), and the blood samples were sent to the Kidney Disease Diagnostic and Treatment Center Laboratory to detect the tacrolimus blood concentration. The data were derived from the Kidney Disease Diagnostic and Treatment Center Laboratory of the First Affiliated Hospital of Henan University of Traditional Chinese Medicine.

2.4. Statistical method

The SPSS22.0 analysis software was adopted for statistical processing. The quantitative data were expressed as mean ± standard deviation (M ± s), intergroup data conforming to normal distribution were analyzed using independent sample t test, while those not conforming to normal distribution were analyzed by rank sum test. Intragroup data were compared through paired t test. A difference of P < .05 was deemed as statistically significant.

3. Results

3.1. General clinical data

A total of 75 patients were enrolled in this study, including 6 of CYP3A5*1/*1 type, 37 of CYP3A5*1/*3 type, and 32 of CYP3A5*3/*3 type. In addition, there were 43 cases in group A (CYP3A5*1/*1 type and CYP3A5*1/*3 type), and 32 in group B (CYP3A5*3/*3 type), including 37 males and 38 females. The age of patients ranged from 18 to 75 years, and the average age in group A was (49.42 ± 14.29) years, while that in group B was (45.22 ± 12.82) years. The body weight of patients ranged from 43 to 80 kg, and the average body weight in group A was (49.42 ± 14.29) years, while that in group B was (45.22 ± 12.82) kg.

Among the 75 patients, 22 cases were at the age group of 40 to 49 years, which had accounted for the highest proportion (29.33%), 32.56% patients in group A were at the age group of 40 to 49 years, while that in group B was 25.00%. With regard to staging, 15 cases in group A were at stage I, 24 at stage II, 4 at stage III, and 0 at stage IV; meanwhile, 10 in group A were at stage I, 21 at stage II, 1 at stage III, and 0 at stage IV. Patients at pathological stage II had taken up the highest proportion.
Differences in the general data (sex, age and body weight), as well as general clinical indexes, such as 24 hours urine protein quantification, ALB, Scr, AST, ALT and GLU, between two groups were not statistically significant ($P > .05$) (Tables 1 and 2).

3.2. Genotype distribution
Among the 75 patients, 6, 37 and 32 cases had the genotypes of CYP3A5*1/*1, CYP3A5*1/*3 and CYP3A5*3/*3, respectively, resulting in the genotype frequencies of 8.0%, 49.3% and 42.7%, respectively, which conformed to the Hardy-Weinberg equilibrium ($P > .05$). (Table 3).

3.3. Effect of WZC on the FK506 blood concentration in both groups
Changes in the FK506 blood concentration before and after administration of WZC in groups A and B were compared. The results suggested that, the FK506 blood concentration in group A before taking WZC was (3.19 ± 0.73) ng/ml, while that was increased to (5.37 ± 0.81) ng/ml after taking WZC. In group B, the FK506 blood concentration before taking WZC was (6.43 ± 1.12) ng/ml, while that was increased to (8.19 ± 1.76) ng/ml after taking WZC. Such findings indicated that, the FK506 blood concentration was markedly elevated 1 week after taking WZC, and the difference before and after administration was statistically significant ($P < .05$) (Table 4).

3.4. Correlation of WZC on enhancing the early FK506 concentration in MN patients and the CYP3A5 gene polymorphism
Difference in the FK506 blood concentration between groups A and B was compared, and the results suggested that, the FK506 blood concentration in group A before oral administration of WZC was lower than that in group B ($P < .05$). Meanwhile, the FK506 blood concentration in group A after oral administration of WZC was also lower than that in group B ($P < .05$), and the difference between two groups was statistically significant ($P < .05$) (Fig. 2).

4. Discussion

4.1. Effect of WZC on the FK506 blood concentration and general laboratory indexes
The blood concentration of patients enrolled in this study remained low after increasing the dose of tacrolimus. The difference in blood concentration between group A (CYP3A5 gene expression types, CYP3A5*1/*3 and CYP3A5*1/*1) and group B (CYP3A5 gene non-expression type (CYP3A5*3/*3) was
Table 2

Comparisons of general condition in both groups before and after administration ($\pm s$).

Groups	Before or after administration	Group A	P value	Group B	P value
		Before		After	
Cases		43	.13	32	.48
24 h urine protein quantification (g/24h)	Before	7.40±0.32	.13	7.05±1.66	.48
	After	6.84±0.37		6.79±1.33	
ALB (g/L)	Before	28.65±8.59	.44	29.28±10.62	.45
	After	29.00±8.10		29.68±10.30	
AST (U/L)	Before	25.33±7.90	.21	24.67±4.78	.74
	After	25.63±8.06		24.79±5.21	
ALT (U/L)	Before	25.16±9.73	.35	27.63±7.13	.81
	After	25.35±8.96		27.07±8.49	
Scr (umol/L)	Before	84.50±12.56	.61	74.05±12.61	.47
	After	83.31±13.69		73.85±13.22	
GLU (mmol/L)	Before	4.92±0.77	.17	4.84±0.71	.09
	After	5.00±0.76		4.93±0.74	

Comparison, which suggested that, the FK506 blood concentration in group A before taking WZC was (3.19±0.73) ng/ml, while that was increased to (5.37±0.81) ng/ml after taking WZC. In group B, the FK506 blood concentration before taking WZC was (6.43±1.12) ng/ml, while that was increased to (8.19±1.76) ng/ml after taking WZC, and the difference before and after administration was statistically significant ($P<.05$) (Table 4). Of them, 10 patients had the FK506 blood concentration of ≥8.0 ng/ml 1 week after taking WZC, while 6 patients had that of ≥10 ng/ml. Thus, it could be observed that, WZC could effectively improve the FK506 blood concentration. Such conclusion was consistent with the results from existing studies. Tacrolimus can not only prevent the incidence of immune reaction, but also treat the immune disease. Tacrolimus is a substrate of P-gp, which is located in the CYP3A metabolic enzyme in liver and small intestine. Drug interaction can induce and suppress the P-gp and CYP3A enzyme to affect the bioavailability and metabolism. It is reported that, both tacrolimus and deoxyschizandrin, the main active ingredient of WZC, are the substrates of CYP3A enzyme; moreover, WZC has contained multiple active ingredients that can suppress the activities of CYP450, P-gp and PXR. Compared with tacrolimus, deoxyschizandrin shows stronger affinity to CYP3A enzyme, which can competitively bind with CYP3A3 enzyme, reduce the binding of tacrolimus with CYP3A enzyme, reduce the transport of tacrolimus, and thus elevate the blood concentration of tacrolimus. Existing literature has proposed that, the metabolic process of midazolam is similar to that of tacrolimus in the body; before taking WZC, the CYP3A enzyme can metabolize midazolam into 1-hydroxyl midazolam to reduce its bioavailability; however, its bioavailability is markedly improved after taking WZC. Thus, WZC can suppress the CYP3A3 enzyme activity. In this study, differences in the 24 hours urine protein, ALB, Scr, ALT and AST in two groups [group A (CYP3A5 gene expression types, CYP3A5*1/*3 and CYP3A5*1/*1) and group B (CYP3A5 gene non-expression type (CYP3A5*3/*3)] were compared. The results revealed that, the 24 hours protein urine in groups A and B 1 week after administration was slightly reduced compared with that before administration, the ALB level was slightly increased, but the differences before and after administration were not statistically significant ($P>.05$). Meanwhile Scr, ALT and AST were not markedly changed before and after administration, and the differences were not statistically significant before and after administration ($P>.05$). As for GLU, it was slightly elevated after administration compared with that before administration, which might be related to the side effect of tacrolimus, but the difference before and after administration was not statistically significant ($P>.05$). Nonetheless, only the early clinical changes after taking WZC were observed in this study, which required further observation. Thus, it could be seen that, WAC combined with tacrolimus showed no obvious effect on the liver and kidney function.

Table 3

Genotype distribution and the proportion of 2 groups (%).

Genotype	Group A (1/1/1 and 1/1/3)	Group B (3/*3/*3)
Cases	43 (6 + 37)	32
Percentage	57.3% (8.0% + 49.3%)	42.7%

Table 4

Comparison of FK506 blood concentration in both groups before and after administration ($\pm s$).

Groups	Group A (1/*1/1 and 1/*3/3)	Group B (3/*3/3)
n	43 (6 + 37)	32
FK506 blood concentration before administration	3.19±0.73	6.34±1.12a
FK506 blood concentration after administration	5.37±0.81b	8.19±1.70c

The unit of FK506 blood concentration was ng/ml.

a $P=.00$, compared with FK506 blood concentration before administration in group A.

b $P=.00$, compared with FK506 blood concentration before administration in group A.

c $P=.00$, compared with FK506 blood concentration after administration in group B.

d $P=.00$, compared with FK506 blood concentration before administration in group B.
have reported that, CYP3A5 gene polymorphism will affect the blood concentration of tacrolimus.[27–30] Our results conformed to those reported at home and abroad before.

As found in this study, the blood concentration of tacrolimus in patients with CYP3A5 gene expression types (*1/*1 type and *1/*3 type) was lower than that in patients with CYP3A5 gene non-expression type (*3/*3) after taking the same dose of tacrolimus (mg/kg) orally. In other words, patients with CYP3A5*1/*1 and *1/*3 types have to take tacrolimus at a higher dose than patients with CYP3A5*3/*3 to achieve the same blood concentration of tacrolimus. A variety of factors and drugs will have certain influence on the metabolism of tacrolimus, apart from CYP3A5 gene polymorphism and WZC, such as CYP3A4 and MDR1 gene polymorphisms, as well as the commonly used glucocorticoid and calcium channel blocker in clinic. However, the mechanism has not been illustrated yet. In addition, the observation time in this experiment is relatively short, and only early clinical observation is carried out. Therefore, the influence of the above several factors on tacrolimus in clinic will be further examined in future studies. Besides, this is a single-center study, with a small sample size and short follow-up length. Thus, in future studies, large sample size, long-term and multi-center experimental research will be carried out.

5. Conclusion

The gene polymorphism of CYP3A5*3 can affect the metabolism of tacrolimus, and a typing shows lifelong benefits. When WZC is used in combined with tacrolimus, the FK506 blood concentration can be markedly improved. The FK506 concentration in patients with CYP3A5*1/*1 and CYP3A5*1/*3 types is lower than that in patients with CYP3A5*3/*3 type, when equivalent doses of tacrolimus are given.

Author contributions

Data curation: Xiaobei Lu.
Formal analysis: Xiaobei Lu.
Funding acquisition: Zhu Zhang.
Methodology: Zhu Zhang, Leipeng Dong.
Project administration: Zhu Zhang.
Resources: Xiaoguang Fan.
Software: Leipeng Dong, Jiwei Ma.
Writing – original draft: Zhu Zhang, Jiwei Ma.
Writing – review & editing: Zhu Zhang, Xiaoguang Fan.
Zhu Zhang orcid: 0000-0002-3359-3995.

References

[1] Praga M, Barrío V, Juárez GF, et al. Grupo Español de Estudio de la Neftropatía M. Tacrolimus monotherapy in membranous nephropathy: a randomized controlled trial. Kidney Int 2007;71:924–30.
[2] Hesselink DA, van Schaik RH, van der Heiden IP, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003;74:245–54.
[3] Albengres E, Le Louet H, Tillement JP. Systemic antifungal agents. Drug interactions of clinical significance. Drug Saf 1998;18:83–97.
[4] Anglicheau D, Legendre C, Beaune P, et al. Cytochrome P450 3A polymorphisms and immunosuppressive drugs: an update. Pharmacogenomics 2007;8:835–49.
[5] Qin XL, Chen X, Zhong GP, et al. Effect of Tacrolimus on the pharmacokinetics of bioactive lignans of Wutzi tablet (Schisandra sphenanthera extract) and the potential roles of CYP3A and Pgp. Phytomedicine 2014;21:766–72.
[6] Iwata H, Tezuka Y, Kadota S, et al. Identification and characterization of potent CYP3A4 inhibitors in Schisandra fruit extract. Drug Metab Dispos 2004;32:1351–8.

[7] Uetrecht KN, Hiles JJ, Kolesar J. Effects of genetic polymorphisms on the pharmacokinetics of calcineurin inhibitors. Am J Health Syst Pharm 2006;63:2340–8.

[8] Wu P, Ni X, Wang M, et al. Polymorphisms in CYP3A5*3 and MDR1, and haplotype modulate response to plasma levels of tacrolimus in Chinese renal transplant patients. Ann Transplant 2011;16:54–60.

[9] Provenzani A, Notarbartolo M, Labbozzetta M, et al. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients. Int J Mol Med 2011;28:1093–102.

[10] Qin XL, Bi HC, Wang XD, et al. Mechanistic understanding of the different effects of Wuzhi Tablet (Schisandra sphenanthera extract) on the absorption and first-pass intestinal and hepatic metabolism of Tacrolimus (FK506). Int J Pharm 2010;389:114–21.

[11] Qin XL, Yu T, Li LJ, et al. Effect of long-term co-administration of Wuzhi tablet (Schisandra sphenanthera extract) and prednisone on the pharmacokinetics of tacrolimus. Phytomedicine 2013;20:375–9.

[12] Xin HW, Wu XC, Li Q, et al. Effects of Schisandra sphenanthera extract on the pharmacokinetics of tacrolimus in healthy volunteers. Br J Clin Pharmacol 2007;64:469–75.

[13] Iwasaki K. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab Pharmacokinet 2007;22:328–35.

[14] Patel N, Cook A, Greenhalgh E, et al. Overview of extended release calcineurin inhibitors: Part I. Clin Pharmacokinet 2010;49:141–5.

[15] Xin HW, Li Q, Wu XC, et al. Effects of Schisandra sphenanthera extract on the blood concentration of tacrolimus in renal transplant recipients. Eur J Clin Pharmacol 2011;67:1309–11.

[16] Tong W, Wang CK, Zhu GY, et al. Schisandrol A from Schisandra chinensis reverses P-glycoprotein-mediated multidrug resistance by affecting Pgp-substrate complexes. Planta Med 2007;73:212–20.

[17] Provenzani A, Santeusano A, Marthi E, et al. Pharmacogenetic considerations for optimizing tacrolimus dosing in liver and kidney transplant patients. World J Gastroenterol 2013;19:9156–73.

[18] Zhao Y, Song M, Guan D, et al. Genetic polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus. Transplant Proc 2005;37:178–81.