Biogeographical ancestry is associated with socioenvironmental conditions and infections in a Latin American urban population

Thiago Magalhães da Silva, Rosemeire L. Fiaccone, Fernanda S.G. Kehdy, Eduardo Tarazona-Santos, Laura C. Rodrigues, Gustavo N.O. Costa, Camila A. Figueiredo, Neusa Maria Alcantara-Neves, Maurício L. Barreto

Institute of Collective Health, Federal University of Bahia, Salvador, Bahia, Brazil
Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié 45206-190, Bahia, Brazil
Departamento de Estatística, Instituto de Matemática, Universidade Federal da Bahia, Salvador, Bahia, Brazil
Center of Data and Knowledge Integration for Health, Instituto Gonçalo Muniz, Fundação Oswaldo Cruz, Salvador, Brazil
Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Department of Infectious Disease Epidemiology, Faculty of Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil

A R T I C L E I N F O

Keywords:
Biogeographical ancestry
Racial inequalities
Socioeconomic status
Infections

A B S T R A C T

Racial inequalities are observed for different diseases and are mainly caused by differences in socioeconomic status between ethnoracial groups. Genetic factors have also been implicated, and recently, several studies have investigated the association between biogeographical ancestry (BGA) and complex diseases. However, the role of BGA as a proxy for non-genetic health determinants has been little investigated. Similarly, studies comparing the association of BGA and self-reported skin colour with these determinants are scarce. Here, we report the association of BGA and self-reported skin colour with socioenvironmental conditions and infections. We studied 1246 children living in a Brazilian urban poor area. The BGA was estimated using 370,539 genome-wide autosomal markers. Standardised questionnaires were administered to the children’s guardians to evaluate socioenvironmental conditions. Infection (or pathogen exposure) was defined by the presence of positive serologic test results for IgG to seven pathogens (Toxocara spp, Toxoplasma gondii, Helicobacter pylori, and hepatitis A, herpes simplex, herpes zoster and Epstein-Barr viruses) and the presence of intestinal helminth eggs in stool samples (Ascaris lumbricoides and Trichuris trichiura). African ancestry was negatively associated with maternal education and household income and positively associated with infections and variables, indicating poorer housing and living conditions. The self-reported skin colour was associated with infections only. In stratified analyses, the proportion of African ancestry was associated with most of the outcomes investigated, particularly among admixed individuals. In conclusion, BGA was associated with socioenvironmental conditions and infections even in a low-income and highly admixed population, capturing differences that self-reported skin colour miss. Importantly, our findings suggest caution in interpreting significant associations between BGA and diseases as indicative of the genetic factors involved.

Introduction

Racial inequalities in health are observed for different outcomes, with race and ethnicity being traditionally considered a fundamental axis for the study of health inequalities in Europe and the United States, and more recently in Brazil (Chiavegatto Filho, Beltran-Sanchez & Kawachi, 2014; Hussey, Anderson & Berthelot, 2008). Although the socioeconomic status (SES) accounts for much of this difference, racial discrimination and putative genetic factors, in some cases, may also be involved (Collins, 2004). In Brazil, whose mixed population results from more than 500 years of physical, social and commercial contact between Europeans, Africans and Native Americans (Salzano, 2004), the classification based on skin colour is closely associated with the concept of race, and race and skin colour are used as interchangeable terms in epidemiological studies (Kabad, Bastos & Santos, 2012). Indeed, since the mid-20th century, the Brazilian Institute of Geography...
and Statistics (IBGE) classifies individuals by self-reported “cor” (a Portuguese word used in Brazil) or race, a concept that involves a mix of perceptions that include ancestry, morphological traits (including skin colour) and cultural issues (Telles, 2002). However, the racial definition is dependent on a myriad of factors, such as self-perception, ascription by others, and institutional and cultural contexts (Brusma, 2005; Jenkins, 1994). Moreover, the way individuals define themselves about their race/skin colour may not match the classification made by a third party (Telles & Lim, 1998).

Despite the issues involved with self-reported skin colour, in Brazil, as in other countries, it has traditionally been used in epidemiological studies as a proxy for biogeographical ancestry (BGA) (Pena, Di Pietro & Fuchshuber-Moraes, 2011), which is defined as proportions of the individual genome inherited from each of the continental groups that contribute to the formation of the admixed population (Royal, Novembre & Fullerton, 2010). In turn, the advent of high-throughput genotyping technologies and cataloguing of human genetic diversity in public databases have enabled the selection of ancestry informative markers (AIMs), which are used to estimate the geographical origins of one’s ancestors and the proportion of individual genome inherited from each of these ancestors (Shriver, Parra & Dios, 2003). This approach provides a more objective estimate of the ancestral origins of individuals than self-reported skin colour. Furthermore, because BGA is related to self-reported skin colour, although the magnitude of this correlation varies among different populations (Lima-Costa, Rodrigues & Barreto, 2015; Parra, Kittles & Shriver, 2004), it can be used as a surrogate for genetic factors underlying the ethnorracial differences to disease risk. Indeed, in recent years, there has been increasing interest in association studies between individual ancestry inferred by genetic markers and complex diseases (Via, Ziv & Burchard, 2009). However, given the multifactorial nature of many of these outcomes, knowledge about the relationship between BGA and social determinants of health is essential to avoid being attributed to genetic variants differences to the risk of diseases that are due to non-genetic determinants that covariate with BGA (Risch, Burchard & Ziv, 2002). However, studies of the relationship between the individual BGA and SES, indicator variables of housing and living conditions and infections are scarce. Similarly, the comparison between BGA and self-reported skin colour as proxies for these factors has also been poorly investigated. The Social Changes, Asthma and Allergies in Latin America (SCAALA) cohort has a range of information on social and environmental factors that play an essential role in the development of asthma and allergies among children and adolescents (Barreto, Cunha & Alcantara-Neves, 2006). This information offers an opportunity to investigate and compare the association of BGA and self-reported skin colour with different variables. Thus, the present study aimed to 1) to study the association of BGA with SES, environmental conditions and infection by pathogens; and 2) to compare the association between BGA and self-reported skin colour with these different factors.

Methods

Study population and data collection

This study was performed in the city of Salvador in Northeastern Brazil, which has 2.8 million inhabitants, of which more than 80% are self-declared admixed or black according to the last official census conducted in 2010 (SIDRA, 2016). The design of this study has been reported elsewhere (Barreto et al., 2006). Briefly, the study population consists of 1246 children previously studied to evaluate the effect of a sanitation programme and enrolled when they were 0–3 years old from 1996 to 2003 (Barreto, Genser & Strina, 2007). Standardised questionnaires were administered to the children’s guardians between 1997 and 2003 (baseline), and data were collected on housing, sanitation, and socioeconomic conditions (Strina, Cairncross & Barreto, 2003). Data collection was repeated in 2005 when the children were aged 4–11 years, at which time blood samples were collected, and serological and parasitological tests were performed. Concerning tap water and household sewage systems, we obtained data from two different time points: early life (i.e., < 3 years old) and later childhood (age range, 4–11 years).

Infection (or pathogen exposure) was defined by the presence of positive serologic test results for IgG to seven pathogens (Toxocara spp, Toxoplasma gondii, Helicobacter pylori, and hepatitis A, herpes simplex, herpes zoster and Epstein-Barr viruses) and the presence of intestinal helmint eggs in stool samples (Ascaris lumbricoides and Trichuris trichiura). We used a threshold of 3 or fewer infections to distinguish light from heavy infection, as reported elsewhere (Janson, Ashjornsdottir & Birgisdottir, 2007).

To compare the observed associations of self-reported skin colour and BGA with the different outcomes evaluated in childhood, as well as to evaluate the concordance between BGA and self-reported skin colour, a subsample of 878 individuals with BGA information and aged between 12 and 19 years during the most recent SCAALA-Salvador survey (year 2013) was used. In this case, African BGA was categorised using tertiles. These 878 individuals answered the question “What is their skin colour/colour?” with five response options (white, admixed, black, yellow, and indigenous or “branco”, “pardo”, “preto”, “amarelo” and “indigena” in Portuguese, respectively) and 69 self-reported white, 377 self-reported admixed, 432 self-reported blacks and no respondents self-reported yellow or indigenous. No statistically significant differences were observed between individuals with and without skin colour information regarding the proportions of ancestry as well as the different outcomes investigated (Supplementary Table 1). Ethical approval for this study was obtained from the Brazilian National Ethical Council, and written informed consent was obtained from the guardian of each child. Moreover, research has been conducted according to the principles outlined in the Declaration of Helsinki.

Genotyping and BGA estimation

DNA was extracted from peripheral blood using a commercial kit (Gentra* Puregene* Blood Kit (Qiagen)), and samples were successfully genotyped using Illumina platforms (San Diego, California) with the Omni 2.5 M array. To estimate the contribution from Africans, Europeans and Native Americans to each individual in the study population, we used the ADMIXTURE software (Alexander, Novembre & Lange, 2009). We performed unsupervised tri-hybrid (k = 3) ADMIXTURE analyses based on 370,539 SNPs shared by samples from the HapMap Project, Human Genome Diversity Project (HGDP) (Li, Absher & Tang, 2008; Altshuler, Gibbs & Peltonen, 2010) and the study population. We did not perform the tests for association with Amerindian ancestry, as the proportion of Amerindian ancestry in our population was too low (median 5.92%, interquartile range 4.26% - 7.91%) for such tests to be meaningful.

Statistical analyses

Due to the measurement scale of BGA, all initial analyses were performed using a non-parametric approach, such as the Pearson chi-square test and Mann–Whitney test. Medians were used as a descriptive measure to characterise the distribution of BGA as a function of the different outcomes investigated. To estimate the magnitude of the association between the proportion of African/European ancestry and the different outcomes, bivariate analyses were performed using binary or multinomial logistic regression (for the polimomic variables Mother Education and Income). Odds Ratio (OR) measures and their 95% confidence intervals were calculated for each 20% increase in individual BGA, using the formula e^β, where e is the base of the natural logarithms and β is the coefficient of binary or multinomial logistic regression. The concordance between the self-declared skin colour and African ancestry tertiles was estimated using the kappa
coefficient. A level of significance of 5% ($\alpha = 0.05$) was adopted. The analyses were performed using Stata software, version 12.0 (StataCorp, College Station, TX, USA).

Results

The majority of the study population consisted of boys (52.6%). The median distribution of BGA in the overall study population was African 50.74%, European 42.34% and Amerindian 5.92%. The general characteristics of the study population and median proportion of BGA according to socioeconomic status, environmental variables and infections are presented in Supplementary Table 2.

The OR of different outcomes investigated due to a continuum of BGA is shown in Table 1. Each 20% increase in African ancestry was negatively associated with higher maternal education (OR for “More than elementary education” = 0.78; 95% CI 0.64 - 0.97, and OR for “More than high school” = 0.58; 95% CI 0.46 - 0.73) and household income (OR for “1-2 minimum wage” = 0.74; 95% CI 0.61-0.89, and OR for “> 2 minimum wage” = 0.59; 95% CI 0.47–0.74). Regarding environmental variables, each increment of 20% in individual African ancestry increased the chance of never having tap water in the household or, at most, having it at one time-point (OR = 1.52; 95% CI 1.24–1.86) as well the chance of a reported presence of rodents in the home (OR = 1.45; 95% CI 1.23–1.71). A negative association, in turn, was observed between African ancestry and the absence of a sewage system at home (OR for “never have sewage system or at most have in one time point” = 0.84; 95% CI 0.72–0.99). A greater chance of heavy infection burden (OR = 1.65; 95% CI 1.34–1.92) and helminth infections (OR = 1.43; 95% CI 1.18–1.71) was also observed with an increase in African ancestry proportion in children. European ancestry was strongly and negatively correlated with African ancestry ($\rho = -0.97$), and thus opposite results were observed for the association of European ancestry with the outcomes investigated (Table 1). An exception was the outcome sewer system at home, for which no association was found with European ancestry. The association between BGA and these different outcomes remained relatively unchanged in logistic models adjusted for sex and age (data not shown).

The results of the association between self-reported skin colour and BGA with the different outcomes are shown in Table 2. Self-reported skin colour and African ancestry were significantly associated with infection burden and helminth infections. Maternal education and income were significantly associated with African ancestry but not with the self-reported skin colour. African ancestry was also associated with the presence of rodents in the household, and a significant association was observed comparing admixed versus whites, but not blacks versus whites for this outcome. None of the other variables was significantly associated neither with self-reported skin colour nor with African ancestry. Although significant, concordance between the African ancestry tertiles and self-reported skin colour was low (kappa = 0.171; p < 0.001) (Table 3).

The results of the association between African ancestry (continuous) and the different outcomes according to the skin colour categories are shown in Fig. 1. Among the self-declared blacks, African ancestry was positively associated with the presence of rodents in the home (OR = 1.48; 95% CI 1.07 - 2.05) only. Among the self-declared admixed, in turn, every 20% increase in the proportion of African ancestry significantly increased the chances of the presence of rodents at home (OR = 1.99; 95% CI 1.40–2.82), heavy infection burden (OR = 1.56; 95% CI 1.09–2.25) and helminth infections (OR = 1.50; 95% CI 1.03–2.20).
In addition, African ancestry was negatively associated with higher levels of income (OR for "> 2 minimum wage" = 0.55; 95% CI 0.34–0.87) and higher maternal education (OR for "More than high school" = 0.49; 95% CI 0.31–0.78 and OR for "More than elementary education" = 0.58; 95% CI 0.38–0.89).

Discussion

Our study has shown that individual African ancestry was negatively associated with SES, as measured by maternal education and household income and the inverse occurred when European ancestry was considered. The lower socioeconomic status of those with an increasing proportion of individual ancestry derived from groups that were dominated and enslaved by Europeans during the colonial period (Amerindians and Africans) was previously reported to other admixed populations (Campbell, Parra & Duque, 2012; Florez, Price & Campbell, 2009; Sanchez, Rasmussen & Riba, 2012; Via, Gignoux & Roth, 2011).

In our study, African ancestry was also associated with poor environmental conditions (not having had tap water and having rodent infestation in the home) and with a high burden of infections. These findings demonstrated the persistence of a social stratification related to BGA. Individuals with higher African ancestry occupied more disadvantageous positions and suffered from prejudice compared to those with less African ancestry. Interestingly, the population of the city of Salvador, where the current study was performed, is highly admixed, with everyone having some level of admixture (Lima-Costa et al., 2015).

Although self-reported skin colour was associated with income and educational attainment in studies that analysed samples from national surveys in Brazil (Arias, Yamada & Tejerina, 2004; Bailey, Loveman & Muniz, 2013; Marteleto, 2012), in the present study, no association was observed between SES and self-reported skin colour. Furthermore, self-reported skin colour was significantly associated with infections but not with variables indicating exposure to dirt and poor environmental conditions. Otherwise, even when African ancestry was categorised based on tertiles of a continuous distribution, significant associations were observed for most of the outcomes investigated in the subsample of individuals with data for self-reported skin colour. In addition, when BGA was used as a continuous variable in this same universe of 878 individuals, the same pattern of association with outcomes was observed as in the global sample (Supplementary Table 3). These results can be explained by some hypotheses discussed below.

First, because the income gap between whites and non-whites in Brazil is more prominent at the upper ends of the wage distribution (Bailey et al., 2013), the observed lack of association between skin colour and SES may be because most of our study population has low-income and therefore is in the bottom of the distribution. Second, skin colour self-identification can be a less appropriate proxy for how others classify one’s race (Telles & Lim, 1998). Because racial discrimination and damages resulting from it are more dependent on the way in which others classify people regarding their race/colour (Telles & Steele, 2012), self-reported skin colour could attenuate the differences between whites and non-whites for the outcomes investigated here. Indeed, different studies have shown that racial inequities to income, for instance, are higher when the skin colour rating is performed by an external observer (hetero-classification) compared to the differences in income based on self-reported skin colour (Telles & Lim, 1998; Bailey et al., 2013).

In sequence, the important question raised by our findings is why BGA but not self-reported skin colour was associated with most outcomes investigated. An additional issue of the official system of racial classification used in Brazil is that it ignores potential phenotypic intra-group heterogeneity (Telles & Steele, 2012). Once the skin colour phenotype encompasses a much more diverse continuum of variation than that captured by racial categories, individuals with different complexion can be classified in the same category but have different

Table 3

Self-reported skin color, n (%)	African ancestry	P-value	Kappa		
	1st tertile	2nd tertile	3rd tertile		
White	49 (71.0)	15 (21.7)	5 (7.2)	< 0.0001	0.171
Admixed	181 (48.0)	125 (33.2)	71 (18.8)		
Black	56 (13.0)	155 (35.9)	221 (51.2)		

Fig. 1. Association of African biogeographical ancestry with the different outcomes investigated according to self-reported skin color. OR: Odds Ratio for each 20% increase in individual African ancestry.
life chances due to their skin tone. Indeed, different studies performed in African-American and Latino populations in the US and based on interviewer-rated skin colour have shown that lighter-skinned individuals enjoyed higher income and educational attainment compared to their darker-skinned counterparts (Gómez, 2004; Keith & Herringshaw, 1991; Murguia & Telles, 1996; Espino & Franz, 2002). Reported experiences of discrimination by whites were also more common among Latinos who were dark-skinned than among those of lighter skin in the US (Arce, Murguia & Telles, 1987). A recent and, to the best of our experiences of discrimination by whites were also more common among interviewer-rated skin colour have shown that lighter-skinned in-

skin colour classi among those individuals self-reported as whites. Third, information on sample size impaired an evaluation of the investigated associations with differential social origin and present speci phenotypes, such as darker skin colour and thus have greater chances of exposure to poverty, precarious living conditions, and infections. According to our data, it seems to be particularly important among the people who self-declared as admixed, which appears logical when one considers that this is a group inter-

mediary between whites and blacks representing a diverse range of products of admixture (Osório, 2008). However, although not statistically significant, these same trends were observed among self-reported blacks, requiring further investigation in more empowered studies.

The present study has some limitations. First, the sample consisted of adolescents and young adults 12 to 19 years of age who are less likely to have experienced racial discrimination in the labour and educational markets. This may have led some black individuals to self-declared as admixed or white, which could neutralise potential differences between these groups for the analysed outcomes. Second, the relatively small sample size impaired an evaluation of the investigated associations among those individuals self-reported as whites. Third, information on skin colour classification made by a third person (hetero-classification) or on skin pigmentation as measured by reflectometry were not available. This precluded some of the hypotheses discussed here from being tested for our population. Finally, caution should be taken to the generalisation of the results reported here to other populations with distinct historical and sociodemographic backgrounds.

In conclusion, we observed that in an urban and low-income popu-

lation of Latin America, an increased proportion of individual African ancestry was significantly associated with poverty, poor environmental conditions and infections by pathogens. An inverse association was observed when the proportion of individual European ancestry was considered. Finally, our results indicate the need for caution when in-

terpreting results from associations between BGA and any diseases. As shown, BGA is strongly associated with factors belonging to the most different environmental and social dimensions that can potentially af-

fect individual health status. Failure to observe and take into account these factors can lead to confounders in these studies, attributing to genetic factor differences that result from socio-historical processes, which covariates with BGA.

Acknowledgments and contributors

This work was supported by the Department of Science and Technology (DECIT, Ministry of Health) and National Fund for Scientific and Technological Development (FNDCT, Ministry of Science and Technology), Funding of Studies and Projects (FINEP, Ministry of Science and Technology, Brazil) Project number: 403629/1425411/ 2750. TMS, RLF and MLB conceived the study. MLB is the cohort co-

ordinator, providing samples and data. FSGK and ET-S coordinated the genetical analyses. TMS wrote the manuscript. All the authors con-

tributed with discussion on the results and on the manuscript. The authors GNOC, LCR, CAF and NMA-N contributed with data, bioinfor-
matic resources or statistical analyses.

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

The project was approved by the ethics committees at the Federal University of Bahia (register 003–05/CEP-ISC) and National Council for Ethics in Research (CONEP, resolution number 15 895/2011). Moreover, the research has been conducted according to the principles expressed in the Declaration of Helsinki.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.ssmph.2018.03.006.

References

Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655–1664.

Altbuehler, D. M., Gibbo, R. A., Peltonen, L., et al. (2010). Integrating common and rare genetic variation in diverse human populations. Nature, 467, 52–58.

Arce, C. H., Murguia, E., & Telles, E. (1987). Phenotype and life chances among Chicanos. Hispanic Journal of Behavioral Sciences, 9, 19–32.

Arias, O., Yamada, G., & Tejera, L. (2004). Education, family background and racial earnings inequality in Brazil. International Journal of Manpower, 25, 355–374.

Bailey, S. R., Loveman, M., & Muniz, J. O. (2013). Measures of “Race” and the analysis of racial inequality in Brazil. Social Science Research, 42, 106–119.

Barreto, M. L., Cunha, S. S., Alcantara-Nieves, N., et al. (2006). Risk factors and immuno- logical pathways for asthma and other allergic diseases in children: Background and methodology of a longitudinal study in a large urban center in Northeastern Brazil (Salvador-SCAAL study). BMC Pulmonary Medicine, 6, 15.

Barreto, M. L., Genser, K., Strina, A., et al. (2007). Effect of city-wide sanitation pro-

gramme on reduction in rate of childhood diarrhoea in northeast Brazil: Assessment by two cohort studies. Lancet, 370, 1622–1628.

Brumana, D. L. (2005). Interracial families and the racial identification of mixed-race children: Evidence from the Early Childhood Longitudinal Study. Social Forces, 84, 1131–1157.

Campbell, D. D., Parra, M. V., Duque, C., et al. (2012). Amerind ancestry, socioeconomic status and the genetics of type 2 diabetes in a Colombian population. PLoS One, 7,
Keith, V. M., & Herring, C. (1991). Skin tone and stratification among Mexican Americans. Sociology of Education, 64, 185–198.

Espino, R., & Frantz, M. M. (2002). Latino phenotypic discrimination revisited: The impact of skin color on occupational status. Social Science Quarterly, 83, 612–623.

Florez, J. C., Price, A. L., Campbell, D., et al. (2009). Strong association of socioeconomic status with genetic ancestry in Latinos: Implications for admixture studies of type 2 diabetes. Diabetologia, 52, 1528–1536.

Osrini R (2008). Is all socioeconomic inequality among racial groups in Brazil caused by racial discrimination? International Poverty Centre Working Paper.

Parra, E. J., Kittles, R. A., & Shriver, M. D. (2004). Implications of correlations between skin color and genetic ancestry for biomedical research. Nature Genetics, 36, S54–S60.

Pena, S. D., Di Pietro, G., Fachhuber-Moraes, M., et al. (2011). The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS One, 6, e17063.

Risch, N., Burchard, E., Ziv, E., et al. (2002). Categorization of humans in biomedical research: Genes, race and disease. Genome Biology, 3 (comment2007).

Royal, C. D., Novembre, J., Fullerton, S. M., et al. (2010). Inferring genetic ancestry: Opportunities, challenges, and implications. American Journal of Human Genetics, 86, 661–673.

Salzano, F. M. (2004). Interethnic variability and admixture in Latin America-social implications. Revista de Biología Tropical, 52, 405–415.

Sanchez, E., Rasmussen, A., Ribá, L., et al. (2012). Impact of genetic ancestry and sociodemographic status on the clinical expression of systemic lupus erythematosus in American Indian-European populations. Arthritis and Rheumatism, 64, 3687–3694.

Shriver, M. D., Parra, E. J., Díaz, S., et al. (2003). Skin pigmentation, biogeographical ancestry and admixture mapping. Human Genetics, 112, 387–399.

SIDRA (2016). IBdgeE-S.

Strina, A., Cairncross, S., Barreto, M. L., et al. (2003). Childhood diarrhea and observed hygiene behavior in Salvador, Brazil. American Journal of Epidemiology, 157, 1032–1038.

Telles, E., Flores, R. D., & Urrea-Giraldo, F. (2015). Pigmentocracies: Educational inequality, skin color and census ethnoracial identification in eight Latin American countries. Research in Social Stratification and Mobility, 40, 39–58.

Telles, E., & Steele, L. (2012). Pigmentocracy in the Americas: How is educational attainment related to skin color? Americas Barometer Insights, 2012.

Telles, E. E. (2002). Racial ambiguity among the Brazilian population. Ethnic and Racial Studies, 25, 415–441.

Telles, E. E., & Lim, N. (1998). Does it matter who answers the race question? Racial classification and income inequality in Brazil. Demography, 35, 465–474.

Via, M., Gignoux, C. R., Roth, L. A., et al. (2011). History shaped the geographic distribution of genomic admixture on the island of Puerto Rico. PLoS One, 6, e16513.

Via, M., Ziv, E., & Burchard, E. G. (2009). Recent advances of genetic ancestry testing in biomedical research and direct to consumer testing. Clinical Genetics, 76, 225–235.

Chiavegatto Filho, A. D., Beltran-Sanchez, H., & Kawachi, I. (2014). Racial disparities in life expectancy in Brazil: Challenges from a multiracial society. American Journal of Public Health, 104, 2156–2162.

Collins, F. S. (2004). What we do and don’t know about ‘race’, ‘ethnicity’, genetics and health at the dawn of the genome era. Nature Genetics, 36, S13–S15.