Supplemental Information: Metric Learning for Enzyme Active-Site Search

Tsuyoshi Kato and Nozomi Nagano

July 17, 2010

Notation

Vectors are denoted by boldfaced lower-case letters, and matrices by boldfaced upper-case letters. Elements of vectors and matrices are not bold-faced. The transpose of a matrix \(A \) is denoted by \(A^\top \); the inverse of \(A \) is denoted by \(A^{-1} \). The \(n \times n \) identity matrix is denoted by \(I_n \). We use \(E_{ij} \) to denote a matrix in which the \((i, j)\) element is one and all others are zero. The \(n \)-dimensional vector, all of whose elements are one, is denoted by \(1_n \). The \(n \)-dimensional vector, all of whose elements are zero, is denoted by \(0_n \). Herein, \(\mathbb{R} \) is used to denote the set of real numbers, \(\mathbb{R}^n \) is used to denote the set of \(n \)-dimensional real vectors, and \(\mathbb{R}^{m \times n} \) is used to denote the set of \(m \times n \) real matrices. The set of real nonnegative numbers is denoted by \(\mathbb{R}_+ \). The set of \(n \)-dimensional nonnegative vectors is denoted by \(\mathbb{R}_+^n \). We use \(O_n \) to denote the set of \(n \times n \) rotation matrices. The definition of rotation matrices is given later. The symbol \(\Delta^n \) is used to denote the probability simplex in \(\mathbb{R}^n \) and is defined as

\[\Delta^n \equiv \left\{ x \in \mathbb{R}_+^n \mid \sum_{i=1}^n x_i = 1 \right\} . \]

Therein, \(\mathbb{N} \) is the set of natural numbers; \(\mathbb{N}_n \) is a subset of \(\mathbb{N} \) defined as \(\mathbb{N}_n \equiv \{ i \in \mathbb{N} \mid i \leq n \} \). Symbols \(\leq \) and \(\geq \) are used to denote not only the standard inequalities between scalars, but also the component-wise inequalities between vectors.

Rigid-Body Transformation

Rigid-body transformation is a class of transformations that consists of a rotation and a translation. The map from point \(x \) in three-dimensional space is expressed as

\[x \mapsto Rx + v , \]

which describes a rotation determined by the rotation matrix \(R \in O^3 \) followed by a translation determined by translation vector \(v \in \mathbb{R}^3 \). The symbol \(O^3 \) denotes the set of rotation matrices. We say that that square matrix \(R \in \mathbb{R}^{3 \times 3} \) is a rotation matrix if matrix \(R \) is orthonormal (i.e., \(R^\top R = I_3 \)) and the product of the three singular values is positive. If the product of singular values were negative, then the transformation would permit an inappropriate reflection for the comparison of protein structures discussed in this work.

Proof of Theorem 1

Define matrix \(D \in \mathbb{R}^{\ell \times n} \) such that the \((i, j)\)th element is given as

\[D_{ij} = \| x_{i,j} - \hat{R} x'_{i,j} - \hat{v}_i \|^2 . \]

The matrix clarifies that the constraint for deviations in (3), described in the ‘2.2 Metric learning’ section, is linear as

\[\text{diag}(y) Dw - \theta y - \xi \leq 0_n . \]
where $y = [y_1, \ldots, y_\ell]^\top$. The operator diag makes a diagonal matrix with y on the diagonal. Let c be an ℓ-dimensional vector such that the i-th element is equal to $1/|I_+|$ if $y_i = +1$; otherwise, $1/|I_-|$. The problem in (3) is thereby reduced to

$$\begin{align*}
\min \quad & c^\top \xi \\
\text{wrt} \quad & \theta \in \mathbb{R}_+, \quad \xi \in \mathbb{R}_+^\ell, \quad w \in \mathbb{R}_+^n, \\
\text{subj to} \quad & \text{diag}(y)Dw - \theta y - \xi \leq 0_n, \\
& 1_\ell^\top w = 1, \quad w \leq C1_\ell.
\end{align*}$$

(4)

This is a linear program. Consequently, the theorem is established.
Table 2: Prediction performance on the template 1acb with different numbers of residues.

# of residues	Common sites #mtch #mis	AUC EMR MLR	Sensitivity EMR MLR
4	557 4,584	0.996 0.998	0.987 0.998
3	502 4,039	0.987 0.998	0.958 0.994

#mtch and #mis respectively denote the numbers of site matches and mismatches.

Figure 4: Weights for four templates: 1psa (a), 1qk2 (b), 1arg (c), and 3daa (d).
Table 3: Datasets generated using the LSS algorithm. This table lists the number of samples that were detected using the LSS algorithm. In column #mc/#in, the number of inner atoms in the mainchains and the number of all inner atoms are shown. In the column #mc/#out, the number of outer atoms in the mainchains and the number of all outer atoms are indicated; “#mtch” denotes the number of site matches, whereas “#mis” denotes the number of mismatches.

pdb	#mc/#inner	#mc/#outer	#mtch	#mis	Reaction type			
1acb	4 / 16	4 / 4	557	6300	trypsin-type			
1bcs	4 / 16	4 / 4	7	3001	Serine carboxypeptidase 2-type			
1tyf	4 / 16	4 / 4	5	3000	ATP-dependent Clp protease proteolytic subunit-type			
1bls	4 / 18	4 / 10	10	143	chelatase-type			
2ace	6 / 18	6 / 7	43	528	Proteome component PPI-type			
1fnt	4 / 12	4 / 8	6	2881	serralysin-type			
1af0	0 / 29	16 / 18	19	39	Zinc metalloprotease atelosin-D-type			
1atl	0 / 22	12 / 13	8	280	Neutrophil collagenase-type			
1kfs	0 / 23	16 / 18	11	33	carboxypeptidase-type			
1rpa	0 / 31	0 / 6	14	8	acid phosphatase-type			
1vce	0 / 24	0 / 4	29	13	RNase-type			
2dhe	4 / 36	4 / 6	13	15	dehalogenase-type 1			
1g12	4 / 31	4 / 6	14	23	dehalogenase-type 2			
1kd1	0 / 15	0 / 5	22	1361	polygalacturonase-type			
2bvw	0 / 8	0 / 0	21	72809	lysozyme-type			
1qk2	0 / 8	0 / 0	16	77359	lysozyme-type			
1bg9	0 / 13	0 / 0	49	12973	α-amylase-type			
1fh	0 / 13	0 / 0	48	12987	α-amylase-type			
1lsw	0 / 18	0 / 2	27	864	xylanase type-A-type			
1emh	0 / 10	0 / 0	13	32573	Uracil-DNA glycosylase-type			
1e59	0 / 30	0 / 5	8	4	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase-type			
1dgy	7 / 18	5 / 8	5	707	Adenosine kinase-type			
1gjo	8 / 25	0 / 2	14	632	receptor-tyrosine kinase-type			
1lzo	0 / 26	4 / 15	11	22	adenylyl kinase-type			
1equ,2	2 / 19	2 / 8	12	104	Glutaminyl-tRNA synthetase-type2			
1c2t	0 / 14	0 / 0	8	12020	Phosphoribosylglycinamide formyltransferase-type			
1e51	0 / 6	0 / 4	57	34908	Delta-aminoimidazolecarboxamide hydratase-type			
1h7p	0 / 8	0 / 2	48	33996	Delta-aminoimidazolecarboxamide hydratase-type			
1eh3	3 / 14	9 / 9	58	650	Delta-aminoimidazolecarboxamide hydratase-type			
1arg	4 / 21	0 / 0	61	7676	aminotransferase-type 14			
1eq7	4 / 21	0 / 0	61	7524	aminotransferase-type 12			
1ahy	0 / 21	4 / 4	46	2387	aminotransferase-type 14			
1arg,2	0 / 21	4 / 4	43	2504	aminotransferase-type 12			
1map	0 / 13	4 / 4	88	26986	aminotransferase-type 14			
1ams	0 / 13	4 / 4	38	29143	aminotransferase-type 12			
1ahg	0 / 21	4 / 4	35	2413	aminotransferase-type 14			
4tim	0 / 15	0 / 0	64	6319	TIM-type 12			
6tim	0 / 16	0 / 0	63	4630	TIM-type 14			
Method	EMR	MLR	MLR-CIE	MLR-CE	EMP	MLP	MLP-CIE	
---------	-----	-----	---------	--------	-----	-----	---------	-----
1.000	0.997 (0.004)	0.999 (0.001)	0.999 (0.001)	0.999 (0.001)	0.999 (0.001)	0.999 (0.001)	0.999 (0.001)	
1.000	0.997 (0.004)	0.999 (0.001)	0.999 (0.001)	0.999 (0.001)	0.999 (0.001)	0.999 (0.001)	0.999 (0.001)	
1.000	0.997 (0.004)	0.999 (0.001)	1.000 (0.000)	0.999 (0.001)	0.997 (0.002)	0.995 (0.001)	0.995 (0.001)	
1.000	0.997 (0.004)	0.999 (0.001)	1.000 (0.000)	0.999 (0.001)	0.997 (0.002)	0.995 (0.001)	0.995 (0.001)	
1.000	0.997 (0.004)	0.999 (0.001)	1.000 (0.000)	0.999 (0.001)	0.997 (0.002)	0.995 (0.001)	0.995 (0.001)	
1.000	0.997 (0.004)	0.999 (0.001)	1.000 (0.000)	0.999 (0.001)	0.997 (0.002)	0.995 (0.001)	0.995 (0.001)	
1.000	0.997 (0.004)	0.999 (0.001)	1.000 (0.000)	0.999 (0.001)	0.997 (0.002)	0.995 (0.001)	0.995 (0.001)	
1.000	0.997 (0.004)	0.999 (0.001)	1.000 (0.000)	0.999 (0.001)	0.997 (0.002)	0.995 (0.001)	0.995 (0.001)	
1.000	0.997 (0.004)	0.999 (0.001)	1.000 (0.000)	0.999 (0.001)	0.997 (0.002)	0.995 (0.001)	0.995 (0.001)	
1.000	0.997 (0.004)	0.999 (0.001)	1.000 (0.000)	0.999 (0.001)	0.997 (0.002)	0.995 (0.001)	0.995 (0.001)	
1.000	0.997 (0.004)	0.999 (0.001)	1.000 (0.000)	0.999 (0.001)	0.997 (0.002)	0.995 (0.001)	0.995 (0.001)	
1.000	0.997 (0.004)	0.999 (0.001)	1.000 (0.000)	0.999 (0.001)	0.997 (0.002)	0.995 (0.001)	0.995 (0.001)	

Table 4: AUC of ROC curves.

Prediction performance of seven conditions on 45 templates using an evaluation criterion: AUC. Bold red figures in the table represent the best AUC. Underlined blue figures in the table show that the outer atoms are not significantly different from the best AUC. Templates that contain the outer atoms are shown in blue.
Method	EMR	MLR	MLR-CI	MLR-CE	EMP	MLP	MLP-CE
TNRd	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TNRd	1.000	1.000	1.000	1.000	1.000	1.000	1.000
FNRd	0.987	0.987	0.987	0.987	0.987	0.987	0.987
FNRd	0.987	0.987	0.987	0.987	0.987	0.987	0.987
FPRd	0.013	0.013	0.013	0.013	0.013	0.013	0.013
FPRd	0.013	0.013	0.013	0.013	0.013	0.013	0.013
AUCd	0.999	0.999	0.999	0.999	0.999	0.999	0.999
AUCd	0.999	0.999	0.999	0.999	0.999	0.999	0.999

Table 5: Sensitivities at specificity 0.95.

Prediction performance of seven conditions on 45 templates using an evaluation criterion: sensitivity. Bold red figures in the table represent the best sensitivity. Underlined blue figures in the table show that the performance is not significantly different from the best sensitivity.
Figure 5: Results of template 1jfh. Weights of template atoms (a) and (b); distributions of unweighted and weighted RMSD (b), (c), (d) and (e); the distributions of distance for each atom (g); and the list of template atoms (h). The weight of each atom obtained by metric learning is shown in (b), but those values obtained without metric learning are shown in (a). For plots (a) and (b), carbon, oxygen, and nitrogen atoms are shown in gray, red, and blue, respectively. Plot (c) portrays the distributions of unweighted RMSD for site matches and mismatches in the training dataset, whereas the distributions of weighted RMSD are shown in (d). Distributions of unweighted/weighted RMSD in the test dataset are shown in (e) and (f), respectively. Box-plot (g) shows the distributions of distances for each atom. In (b)–(g), red and blue bars respectively show site matches and mismatches. Panel (h) describes the atom name, the residue id, and the chain id, and the computed weight for each atom in the template.
Figure 6: Results of template Imap. Weights of template atoms (a) and (b); distributions of unweighted and weighted RMSD (b), (c), (d) and (e); the distributions of distance for each atom (g); and the list of template atoms (h). The weight of each atom obtained by metric learning is shown in (b), but those values obtained without metric learning are shown in (a). For plots (a) and (b), carbon, oxygen, and nitrogen atoms are shown in gray, red, and blue, respectively. Plot (c) shows the distributions of unweighted RMSD for site matches and mismatches in the training dataset, whereas the distributions of weighted RMSD are shown in (d). Distributions of unweighted/weighted RMSD in the test dataset are shown in (e) and (f), respectively. Boxplot (g) shows the distributions of distances for each atom. In (b)–(g), red and blue bars respectively show site matches and mismatches. Panel (h) presents the atom name, the residue id, and the chain id, and the computed weight for each atom in the template.