MiR-429 Determines Poor Outcome and Inhibits Pancreatic Ductal Adenocarcinoma Growth by Targeting TBK1

Bin Song Kailian Zheng Hongyun Ma Anan Liu Wei Jing Chenghao Shao
Gang Li Gang Jin

Department of Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China

Key Words
MiR-429 • PDAC • MyD88 • Patients survival • Cancer growth

Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) ranks fourth on the list of cancer-related causes of death and its prognosis has not improved significantly over the past decades. Deregulation or dysfunction of miRNAs contribute to cancer development. Previous data indicates that miR-429 is involved in the pathogenesis of PDAC. However, the role of miR-429 in PDAC remained unknown. Methods: MiR-429 levels in sample tissues of 78 patients and in PANC1 and SW1990 cell lines were quantified by real-time PCR. MiR-429 expression was modulated using specific pre- and anti-miRNAs and cell growth was assayed by MTT analysis. Bioinformatics prediction of the miR-429 putative target genes was performed and luciferase assays confirmed TBK1 as a direct target gene. TBK1 levels in PDAC tissues were analyzed by immunohistochemistry. Results: MiR-429 was remarkably decreased in PDAC tissues and cell lines. Lower miR-429 expression in PDAC tissues significantly correlated with shorter survival of PDAC patients. Overexpression of miR-429 inhibited PDAC cell lines growth in vitro and vice versa. TBK1 was found to be the direct target gene of miR-429. Higher TBK1 protein level in PDAC tissues correlated with shorter survival of PDAC patients. Overexpression of TBK1 partly restored cell proliferation. Conclusions: Low level of miR-429 and high level of TBK1 in PDAC promoted PDAC cells growth which might be related to the low survival rate of PDAC patients. MiR-429 play its role in PDAC by targeting TBK1.

B. Song, K. Zheng and H. Ma contributed equally to this work.
Introduction

Pancreatic ductal adenocarcinoma (PDAC) ranked 13th on the list of most commonly diagnosed cancers and was the fifth most common cause of cancer death in China in 2006 [1]. The prognosis of PDAC has not improved significantly over the past decades. Surgical resection, for which only a minority (<20%) of patients qualify due to advanced stage of disease at the time of diagnosis, is currently the only chance for cure. Surgical resection was found to improve five-year survival rates from <4% if left untreated to 25-30% after resection [2, 3]. Due to the fact that cancer is a complex disease involving numerous genetic and epigenetic changes, a better understanding of the molecular mechanism of PDAC is urgently needed to develop an effective diagnosis and treatment.

MiRNAs are a class of small RNAs approximately 18-22 nucleotides in length. MiRNAs suppress protein expression by inhibiting translation or inducing mRNA degradation by binding to the 3'-untranslational region (3'UTR) of target mRNAs [4]. Deregulation or dysfunction of miRNAs contribute to cancer development [4-9]. The miRNAs expression profiles in pancreatic tumor tissues were different from those identified in a normal pancreas or in chronic pancreatitis [10]. MiRNAs were also involved in the pathogenesis of PDAC. For example, the miR-200 family appeared to have important roles in PDAC and have been shown to regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 [11, 12].

Mees et al. have classified 16 human PDAC cell lines into three hierarchical groups according to their metastatic potential, and profiled their mRNA and miRNAs expression. The highly metastatic PDAC cell lines, when compared to the non-metastatic cell lines, have shown decreased mRNA and protein expression of EP300, which is related to significant up-regulation of EP300-targeting mRNAs (miR-194, miR200b, miR-200c and miR-429) [13].

In the study, we focused on the role of miR-429 in PDAC. We found lower miR-429 level in 78 PDAC tissues correlated with low patients survival rate. Next, we investigated the role of miR-429 by up or down regulation of miR-429 levels in PDAC cell lines. At this point, the target genes of miR-429 were predicted. TANK binding kinase 1 (TBK1) was selected for further study because it has been shown to play an important role in angiogenesis, transformation, and cell survival [14, 15]. However, the biological function of TBK1 in PDAC remains unknown.

In all, our data showed that low level of miR-429 in PDAC promoted PDAC growth via TBK1.

Materials and Methods

Patients and sample

Surgical specimens from 78 PDAC patients and matched tumor-adjacent normal tissues were obtained postoperatively in 2009 from the Department of General Surgery, Changhai Hospital, Second Military Medical University (Shanghai, China). All patients gave signed, informed consent for their tissues to be used for scientific research. Ethical approval for the study was obtained from Changhai Hospital, Second Military Medical University (Shanghai, China). All diagnoses were based on pathological and/or cytological evidence. The histological features of the specimens were evaluated by senior pathologists according to the World Health Organization classification criteria. Tissues were obtained prior to chemotherapy and radiotherapy and were immediately frozen and stored at −80 °C prior to qRT-PCR assay. Matched tumor-adjacent normal tissues were used as control. 78 patients had been followed-up for 50 months and complete clinical data was electronically recorded. Readers can acquire the clinical information via E-mail jingangle@gmail.com.

Cell culture and reagent

HEK293, PANC1 and SW1990 were obtained from the Cell Bank of Chinese Academy of Science (Shanghai, China) and cultured in DMEM medium (Hyclone, South Logan, UT, USA) supplemented with 10% fetal bovine serum (Hyclone), 2 mM L-glutamine and 100 μg/mL penicillin/streptomycin (Bio Light,
Shanghai, China) as described in previous studies [16, 17]. Amlexanox were obtained from Shengong company (Shanghai, China).

Quantitative real-time PCR (qRT-PCR)

The qRT-PCR analysis for miR-429 was performed by Shengong Company (Shanghai) using standard protocols on an Applied Biosystem’s 7500 HT sequence Detection System. This assay includes a reverse-transcription step performed using a High-Capacity complementary DNA Archive Kit (Applied Biosystems), in which a stem-loop reverse-transcription primer specifically hybridizes with an miRNA and then is reverse-transcribed with MultiScribe reverse transcriptase. miR-429 expression was assessed using a mirVana™ qRT-PCR miRNA Detection Kit (Ambion, USA). The primers were designed and synthesized by Shengong Company (Shanghai, China). miR-429 sense strand UUAUACUGUCUGUUACAAAAACGU; miR-429 antisense strand CAAGAUCGGAUCUACGGGUUU; NC sense strand UUCUCCGAACGUUCAGCAGUTT; NC antisense strand ACGUGACGCGUCCGAAGATT. MiRNA-U6 was used as an internal control.

MTT assay

For MTT assay, 5×10³ cells per well were seeded in triplicate in a 96-well plate with complete growth medium. The viability of the cells was measured over 5 days using the MTT assay (Promega, Fitchburg, WI, USA) as described previously [7, 18, 19]. The data was read by Microtiter plate reader 570-nm filters (Promega, Fitchburg, WI, USA).

MiRNAs antisense, miRNAs mimics, oligonucleotides, siRNA and pcDNA3.1-TBK1

MiRNAs mimics (miR-429 mimics) and miRNAs antisense oligonucleotides (miR-429-ASO) were obtained from GenePharma (GenePharma, China). MiRNAs ASO, miRNAs mimics, and negative control (NC) were transfected into cells at a concentration of 50 nM using Lipofectamine 2000 (Invitrogen, Canada) transfection reagent according to the manufacturer’s instructions. 48 h later, the cells were collected for further experiments [20]. siRNA and pcDNA3.1-TBK1 were designed by standard methods by Shengong company (Shanghai, China) according to previous studies [21, 22].

Bioinformatic prediction of putative targets for miR-429

TargetScanHuman (http://www.targetscan.org/vert_61/) [23-26] is applied to identify the potential target of miR-429.

TBK1 3’UTR reporter analysis

The TBK1 3’UTR reporter plasmids (pRL-TBK1) were constructed by Shengong Company (Shanghai, China). Mutation in the miR-429 seed regions of the TBK1 3’UTR were generated using QuikChang Multi site-directed mutagenesis kit (Promega, Fitchburg, WI, USA). RL reporter plasmids (3.6fmol) and pGL3-control (500ng for normalization; Promega, Fitchburg, WI, USA) were transfected with Lipofectamine 2000 (Invitrogen, Canada) into HEK293 (6×10⁴ cells per well). Cells were collected after 48 h for assay using the Dual Luciferase reporter assay system (Promega, Fitchburg, WI, USA) [27].

Western blot and antibodies

Tumor tissues were collected, lysed, and blotted as described previously [6]. Membranes were blocked with blocking solution (5% skim milk in TBST) and incubated with primary antibody, followed by the incubation with appropriate HRP-conjugated secondary antibody. The TBK1 antibody (anti-TBK1) was purchased from Santa Cruz Biotechnology, Inc [28]. The densitometry of Western blot results was measured using ImageJ software.

Immunohistochemistry

Briefly, 4-µm thick sections were cut and anti-TBK1 antibody [28] (Santa Cruz, CA, USA) was applied. Subsequent counterstaining was performed with hematoxylin. Immunostaining results for TBK1 were evaluated using a semi-quantitative scoring system, which was previously described [29], which calculated the staining intensity and the percentage of positive cells. IHC staining was scored according to the following criteria: –, 0–10% of the nucleated cells stained, +, 10–40% stained, ++, 40–70% stained and ++++, 70–100% stained. TBK1 expression was considered to be observed when score ≥ +. Alternatively, IHC score of TBK1 expression was (– ~ +) and (++ ~ +++), which represented low and high expression, respectively.
Song et al.: The Role of miR-429 in PDAC

TBK1 mRNA expression in PDAC analysis

The data of TBK1 mRNA in PDAC was queried from Gene Expression Omnibus (GSE15471).

Statistical Analysis

Data was presented as the mean ± s.d from at least three independent experiments. The difference between the groups was analyzed using two-tailed Student’s t test when only two groups were compared. The difference between the groups was analyzed using ANOVA when three or more groups were compared. The Wilcoxon matched-pairs signed rank test was used to determine if there was a statistically significant difference in the expression of miR-429 between matched pairs. A two-tailed Mann-Whitney U test was used to determine if there was a statistically significant difference in the expression of miR-429 between any two groups. Correlation analysis was performed by two-tailed Pearson’s correlation coefficient analysis. Patients survival was determined by The Kaplan-Meier analysis. Statistical analyses were performed using SPSS software (version 17.0). P<0.05 was considered significantly different.

Results

Expression of miR-429 in PDAC

Initially, the miR-429 level in PDAC tissues and matched tumor-adjacent normal tissues were assayed by qRT-PCR. We found in the 61 of 78 pairs, miR-429 level in PDAC and in matched tumor-adjacent normal tissues were assayed by qRT-PCR. The difference of miR-429 expression between PDAC and in matched tumor-adjacent normal tissues were compared (A). Box-plot of miR-429 expression in 78 pairs PDAC and matched tumor-adjacent normal tissues, the mean expression of miR-429 in 78 pairs PDAC and matched tumor-adjacent normal tissues were compared (B). The Kaplan-Meier plot of overall survival in PDAC patients post-operation according to the expression of miR-429 (C). All qRT-PCR experiments were performed for three times. Data are mean±s.d. of three separate experiments. *P<0.05.

Fig. 1. Low miR-429 level in PDAC tissues was correlated with low survival rate. The miR-429 expression in 78 pairs PDAC and in matched tumor-adjacent normal tissues were assayed by qRT-PCR. The difference of miR-429 expression between PDAC and in matched tumor-adjacent normal tissues were compared (A). Box-plot of miR-429 expression in 78 pairs PDAC and matched tumor-adjacent normal tissues, the mean expression of miR-429 in 78 pairs PDAC and matched tumor-adjacent normal tissues were compared (B). The Kaplan-Meier plot of overall survival in PDAC patients post-operation according to the expression of miR-429 (C). All qRT-PCR experiments were performed for three times. Data are mean±s.d. of three separate experiments. *P<0.05.
significantly longer overall survival than patients with low miR-429 levels (39 cases) (Fig. 1C).

Up-regulation of miR-429 inhibited PDAC cell lines growth

We then investigated the role of miR-429 in PDAC cell lines. We initially measured the miR-429 level in PANC1 and SW1990 cell lines. We found the level of miR-429 in PDAC cell lines was lower than in normal pancreas and HEK293 cell lines (Fig. 2A). Next we up-regulated the level of miR-429 by miR-429 mimics transfection in PANC1 and SW1990 cell lines. The effectiveness of transfection was verified by qPCR (Fig. 2B). 48 h after miR-429 mimics transfection, PANC1 proliferation was assayed by MTT analysis at the indicted time points (C). Similarly, SW1990 proliferation was assayed by MTT (D). All data are mean±s.d. of three separate experiments. *P<0.05.

Down-regulation of miR-429 promoted PDAC cell lines growth

We then down-regulated the level of miR-429 by miR-429 ASO (anti-miR-429) transfection in PANC1, SW1990 and HEK293 cell lines. We found miR-429 ASO transfection down-regulated the miR-429 level in the three cell lines. As PANC1, SW1990 cell lines showed a low level of miR-429, miR-429 ASO transfection did not show dramatic effects (Fig. 3A). Then cellular proliferation was assayed by MTT analysis. We found miR-429 ASO transfection mildly promoted cells growth in PANC1, SW1990 cells (Fig. 3B, C), and greatly promoted cells growth in HEK293 cells (Fig. 3D).
TBK1 was targeted by miR-429

To explore the potential target genes of miR-429, we applied bioinformatics algorithms to predict. Many genes were predicted including TANK binding kinase 1 (TBK1) (Fig. 4A). TBK1 is a noncanonical IκB kinase (IKK) family member that mediates the innate immune response [30]. For cancer, emerging evidence demonstrates that TBK1 plays an important role in angiogenesis, transformation, and cell survival [14, 15]. Therefore, TBK1 was chosen for further investigation. The binding sites and mutated sites in TBK1 are shown in Fig. 4A. 3’UTR and its mutated version of TBK1 were cloned into luciferase reporter plasmids. MiR-429 (or anti-miR-429) and the reporter plasmids were co-transfected into HEK293 cells. We found that in wild type 3’ UTR, miR-429 reduced the luciferase activity; anti-miR-429 increased the luciferase activity, while in mutated version, the difference between experiment group and control was not significant (Fig. 4B). Consequently, we tried to confirm the relation between miR-429 and TBK1 in protein level. Data from Western blot showed that 48 h after miR-429 mimics transfection, TBK1 protein level was inhibited. Therefore, this data indicates that TBK1 was targeted by miR-429 (Fig. 4C).

High TBK1 protein level in PDAC tissues was correlated with low survival rate

To investigate the role of TBK1 in PDAC, the TBK1 level in 78 PDAC tissues and matched tumor-adjacent normal tissues were examined by IHC. Six representative cases were shown. The first three cases showed significantly higher TBK1 expression (Fig. 5A). In 78 pairs of PDAC tissues and matched tumor-adjacent normal tissues, there were 66 of 78 pairs with...
higher TBK1 level in PDAC tissues than in normal control (Fig. 5B). We calculated the mean expression of the 78 PDAC tissues, and found the mean expression of TBK1 in PDAC tissues was higher than that of matched tumor-adjacent normal tissues (Fig. 5C). To evaluate the clinical significance of TBK1 over-expression in PDAC, we investigated whether the levels of TBK1 were associated with overall survival in PDAC. 78 PDAC patients were followed up for 50 months. The Kaplan-Meier curves indicated that patients with high TBK1 expression had a significantly shorter overall survival ($p=0.0015$) than those with low TBK1 expression. The median value of all 78 cases was chosen as the cutoff point for separating TBK1 high expression cases from TBK1 low expression cases (Fig. 5D). Next we explored Gene Expression Omnibus (GEO) for analysis of TBK1 mRNA expression in PDAC. We found TBK1 expression in tumor tissues was higher than in adjacent normal tissue (GSE15471) ($p=5.7 \times 10^{-8}$)(Fig. 5E). Next we investigated the correlation between miR-429 and TBK1, we found there were only 18 of 78 patients with high miR-429 level, and about 70% of the sample with high TBK1 level showed low miR-429 levels. And as expected, the TBK1 levels and miR-429 levels in the 78 samples was negatively correlated (Fig. 5F).
Down-regulation of TBK1 reduced cell proliferation ability and overexpression of TBK1 restore the cell proliferation ability

To further confirm the role of TBK1 in PDAC, we down-regulated the TBK1 expression in PANC1 and SW1990 by siRNA targeting TBK1 (si-TBK1) and amlexanox. Amlexanox is a specific inhibitor of TBK1 [28]. 48 h after siRNA transfection and 24 h after amlexanox treatment, we found that si-TBK1 and amlexanox both reduced the PANC1 and SW1990 cell viability (Fig. 6A). Cell proliferation revealed by MTT analysis also confirmed the inhibitory effect of si-TBK1 (Fig. 6B). Next we performed the rescue experiment by transfecting TBK1 overexpression plasmid (pcDNA.3-TBK1, abbr. p-TBK1). We found that p-TBK1 transfection
can partly restore the cell proliferation ability as comparing with only miR-429 treated group (Fig. 6C).

Discussion

In this study, we found that low miR-429 level and high TBK1 protein in PDAC tissues both correlated with low survival rate. We found that up-regulation of miR-429 inhibited PDAC cell lines growth and vice versa. 3’UTR of TBK1 was targeted by miR-429. Therefore, we concluded that low miR-429 level in PDAC promoted tumor cells growth which contributed to the low PDAC patients survival rate. It was also revealed that miR-429 exerted its role by targeting TBK1.

Our data highlights the role of miR-429 in the growth of PDAC cells. Our finding may be the first time to reveal the role of miR-429 in PDAC. It was apparent that low miR-429 promoted PDAC growth which contributed low survival rate of PDAC patients. To confirm this causal chain, further in vivo experiments will be required. MiR-429 was prove to be down-regulated in many cancers [31, 32]. These findings coincide favorably with our data. As an interesting incidental finding, the miR-429 expression in endometrial carcinoma and bladder cancer were also up-regulated [33, 34]. In addition, higher expression levels of miR-429 was correlated with a poor prognosis in patients with serious ovarian carcinoma [35]. The different role of miR-429 was possibly due to the fact that miRNAs could down-regulate numerous targets, including oncogenes and tumor suppressor genes.

Here we focused on the effect of miR-429 on growth, however, miR-429 showed multiple functions in other studies. Previous studies have shown that ectopic overexpression of miR-429 in mesenchymal-like ovarian cancer resulted in reversal of the mesenchymal phenotype (mesenchymal-epithelial transition, MET) [36]. Therefore, other potential roles of miR-429 in PDAC needed further investigation.

Fig. 6. Down-regulation of TBK1 reduced cell proliferation ability and overexpression of TBK1 restore the cell proliferation ability. PANC1 and SW1990 cells were treated with si-TBK1 transfection and amlexanox (1μM), 48 h after siRNA transfection and 24 h after amlexanox treatment, cell viability was assayed by MTT (A). After si-TBK1 transfection, PANC1 and SW1990 cells proliferation was assayed by MTT at the indicted time points (B). PANC1 and SW1990 cells were treated miR-429 mimics transfection and p-TBK1 transfection separately or co-transfection of miR-429 and p-TBK1, then the cells proliferation was assayed by MTT at the indicted time points (C). Data are mean±s.d. of three separate experiments. *P<0.05.
Our data showed that high TBK1 protein in PDAC tissues was correlated with low survival rate. The reasons behind this correlation will require further investigation. TBK1 plays a central role in innate immunity: TBK1 acts as an integrator of multiple signals induced by receptor-mediated pathogen detection and as a modulator of IFN levels [37]. In addition, TBK1 was an activator of the oncogenic AKT kinase and an activator of the KRAS-driven cancer [38, 39]. Consequently, it seems that TBK1 was a linker of cancer pathogenesis and inflammation. Therefore, the role of TBK1 in PDAC requires further investigation.

In conclusion, we found low miR-429 level and high TBK1 level in PDAC promoted tumor cell growth, which contributed to low survival rate for patients with PDAC. MiR-429 exerted its role by targeting TBK1. We anticipate our results of our study provide invaluable information and provide a basis for further studies.

Disclosure Statement

The authors have declared that no competing interests exist. This work was supported by the grants from Natural Science Foundation of Shanghai, China (No. 12ZR1453900).

Reference

1. Song F, He M, Li H, Qian B, Wei Q, Zhang W, Chen K, Hao X: A cancer incidence survey in tianjin: The third largest city in china-between 1981 and 2000. Cancer Causes Control 2009;19:443-450.
2. Yeo TP, Hruban RH, Leach SD, Wientz RE, Sohn TA, Kern SE, Iacobuzio-Donahue CA, Maitra A, Goggins M, Canto M, Abrams RA, Laheur D, Jaffe EM, Hidalgo M, Yeo CJ: Pancreatic cancer. Curr Probl Cancer 2002;26:176-275.
3. Maitra A, Kern SE, Hruban RH: Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol 2006;20:211-226.
4. Ambros V: The functions of animal microRNAs. Nature 2004;431:350-355.
5. Garzon R, Calin GA, Croce CM: MicroRNAs in cancer. Annu Rev Med 2009;60:167-179.
6. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, Qin L, Wu X, Zheng Y, Yang Y, Tian W, Zhang Q, Wang C, Zhuang SM, Zheng L, Liang A, Tao W, Cao X: Identification of microRNAs in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011;19:232-243.
7. Li D, Liu X, Lin L, Hou J, Li N, Wang C, Wang P, Zhang Q, Zhang P, Zhou W, Wang Z, Ding G, Zhuang SM, Zheng L, Tao W, Cao X: MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. J Biol Chem 2011;286:36677-36685.
8. Mendell JT, Olson EN: MicroRNAs in stress signaling and human disease. Cell 2012;148:1172-1187.
9. Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009;10:704-714.
10. Park JY, Helm J, Coppola D, Kim D, Malafa M, Kim SJ: MicroRNAs in pancreatic ductal adenocarcinoma. World J Gastroenterol 2011;17:817-827.
11. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykyn A, Farshid G, Vadas MA, Khow-Goodall Y, Goodall GJ: The mir-200 family and mir-205 regulate epithelial to mesenchymal transition by targeting zeb1 and sip1. Nat Cell Biol 2008;10:593-601.
12. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier D, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schuler J, Stemmler MP, Herzberger C, Hoep U, Keck T, Brabetz S, Brabetz T: The emt-activator zeb1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009;11:1487-1495.
13. Mees ST, Mardin WA, Wendel C, Baeumler N, Willscher E, Senninger N, Haier J: Ep300--a mirna-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas. Int J Cancer 2010;126:114-124.
14. Shen RR, Hahn WC: Emerging roles for the non-canonical Ikks in cancer. Oncogene 2011;30:631-641.
15. Baldwin AS: Regulation of cell death and autophagy by IkK and NF-kappab: Critical mechanisms in immune function and cancer. Immunol Rev 2012;246:327-345.
16. Wu N, Liu C, Bai C, Han YP, Cho WC, Li Q: Over-expression of deubiquitinating enzyme USP14 in lung adenocarcinoma promotes proliferation through the accumulation of beta-catenin. Int J Mol Sci 2013;14:10749-10760.
Song et al.: The Role of miR-429 in PDAC

	17 Wu N, Zhang C, Bai C, Han YP, Li Q: Mir-478-3p inhibited non-small cell lung cancer growth via usp14. Cell Physiol Biochem 2014;33:457-467.
18 van Meerloo J, Kaspers GJ, Cloos J: Cell sensitivity assays: The mtt assay. Methods Mol Biol 2011;731:237-245.	
---	---
19 Han ZB, Yang Z, Chi Y, Zhang L, Wang Y, Ji Y, Wang J, Zhao H, Han ZC: Microrna-124 suppresses breast cancer cell growth and motility by targeting cd151. Cell Physiol Biochem 2013;31:823-832.	
---	---
20 Sun T, Wang C, Xing J, Wu D: Mir-429 modulates the expression of c-myc in human gastric carcinoma cells. Eur J Cancer 2011;47:2552-2559.	
---	---
21 Chien Y, Kim S, Bumeister R, Loo YM, Kwon SW, Johnson CL, Balakireva MG, Romeo Y, Kopelovich L, Gale M, Jr, Yeaman C, Camonis JH, Zhao Y, White MA: Ralb gtpase-mediated activation of the ikappab family kinase tbk1 couples innate immune signaling to tumor cell survival. Cell 2006;127:157-170.	
---	---
22 Chariot A, Leonardi A, Muller J, Bonif M, Brown K, Siebenlist U: Association of the adaptor tank with the i kappa b kinase (ikk) regulator nemo connects ikk complexes with ikk epsilon and tbk1 kinases. The Journal of biological chemistry 2002;277:37029-37036.	
---	---
23 Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 2005;120:15-20.	
---	---
24 Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mrnas are conserved targets of micrnas. Genome Res 2009;19:92-105.	
---	---
25 Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim P, Bartel DP: Microrna targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell 2007;27:91-105.	
---	---
26 Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP: Weak seed-pairing stability and high target-site abundance decrease the proficiency of isy-6 and other micrnas. Nat Struct Mol Biol 2011;18:1139-1146.	
---	---
27 Greentzmann G, Ingram JA, Kelly PJ, Gesteland RF, Bartel DP: Microrna targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell 2007:91-105.	
---	---
28 Reilly SM, Chiang SH, Decker SJ, Chang L, Uhm M, Larsen MJ, Rubin JR, Mowers J, White NM, Hochberg I, Downes M, Yu RT, Liddle C, Evans RM, Oh D, Li P, Olefsky JM, Saltiel AR: An inhibitor of the protein kinases tbk1 and ikk-varepsilon improves obesity-related metabolic dysfunctions in mice. Nature medicine 2013;19:313-321.	
---	---
29 Lv T, Yuan D, Miao X, Lv Y, Zhan P, Shen X, Song Y: Over-expression of lsd1 promotes proliferation, migration and invasion in non-small cell lung cancer. PLoS One 2012;7:e35065.	
---	---
30 Kawai T, Akira S: Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011;34:637-650.	
---	---
31 Calin GA, Croce CM: Microrna signatures in human cancers. Nat Rev Cancer 2006;6:857-866.	
---	---
32 Mattick JS, Makunin IV: Small regulatory rnas in mammals. Hum Mol Genet 2005;14 Spec No 1:R121-132.	
---	---
33 Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J: Endogenous human micrornas that suppress breast cancer metastasis. Nature 2008;451:147-152.	
---	---
34 Tie J, Fan D: Big roles of micrornas in tumorigenesis and tumor development. Histol Histopathol 2011;26:1353-1361.	
---	---
35 Uhmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, Burmester S, Ward A, Korf U, Wiemann S, Sahin 0: Mir-200bc/429 cluster targets plcgamma1 and differentially regulates proliferation and egf-driven invasion than mir-200a/141 in breast cancer. Oncogene 2010;29:4297-4306.	
---	---
36 Chen J, Wang L, Matyunina LV, Hill CG, McDonald JF: Overexpression of mir-429 induces mesenchymal-to-epithelial transition (met) in metastatic ovarian cancer cells. Gynecol Oncol 2011;121:200-205.	
---	---
37 Ma X, Helgason E, Phung QT, Quan CL, Iyer RS, Lee MW, Bowman KK, Starovasnik MA, Dueber EC: Molecular basis of tank-binding kinase 1 activation by transautophosphorylation. Proc Natl Acad Sci U S A 2012;109:9378-9383.	
---	---
38 Chen H, Sun H, You J, Sun W, Zhou X, Chen L, Yang J, Wang Y, Tang H, Guan Y, Xia W, Gu J, Ishikawa H, Gutman D, Barber G, Qin Z, Jiang Z: Activation of stat6 by string is critical for antiviral innate immunity. Cell 2011;147:436-446.	
---	---
39 Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, Frohlich S, Chan EM, Sos ML, Michel K, Mermel C, Silver SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB, Wadlow RC, Le H, Hoersch S, Wittner BS, Ramaswamy S, Livingston DM, Sabatini DM, Meyerson M, Thomas RK, Lander ES, Mesirov JP, Root DE, Gilliland DG, Jacks T, Hahn WC: Systematic rna interference reveals that oncogenic kras-driven cancers require tbk1. Nature 2009;462:108-112.	