Constitutive expression of transcription factor SirZ blocks pathogenicity in *Leptosphaeria maculans* independently of sirodesmin production

Andrew S. Urquhart¹,², **Candace E. Elliott**¹,³, **Wei Zeng**¹,⁴, **Alexander Idnurm**¹

¹ School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia, ² Applied BioSciences, Macquarie University, Macquarie Park, New South Wales, Australia, ³ Biosecurity Operations Division, Department of Agriculture, Water and the Environment, Post Entry Quarantine, Mickleham, Victoria, Australia, ⁴ Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China

alexander.idnurm@unimelb.edu.au

Abstract

Sirodesmin, the major secondary metabolite produced by the plant pathogenic fungus *Leptosphaeria maculans* in vitro, has been linked to disease on *Brassica* species since the 1970s, and yet its role has remained ambiguous. Re-examination of gene expression data revealed that all previously described genes and two newly identified genes within the *sir* gene cluster in the genome are down-regulated during the crucial early establishment stages of blackleg disease on *Brassica napus*. To test if this is a strategy employed by the fungus to avoid damage to and then detection by the host plant during the *L. maculans* asymptomatic biotrophic phase, sirodesmin was produced constitutively by overexpressing the *sirZ* gene encoding the transcription factor that coordinates the regulation of the other genes in the *sir* cluster. The *sirZ* over-expression strains had a major reduction in pathogenicity. Mutation of the over-expression construct restored pathogenicity. However, mutation of two genes, *sirP* and *sirG*, required for specific steps in the sirodesmin biosynthesis pathway, in the *sirZ* over-expression background resulted in strains that were unable to synthesise sirodesmin, yet were still non-pathogenic. Elucidating the basis for this pathogenicity defect or finding ways to overexpress *sirZ* during disease may provide new strategies for the control of blackleg disease.

Introduction

Leptosphaeria maculans is the most significant biological threat to the global canola industry [1]. This fungal pathogen displays a complex hemibiotrophic life cycle, which begins with an initial biotrophic infection of cotyledons or young leaves followed by lesion formation. The fungus travels via the petiole into the stem, and down the plant to the base of the stem where it causes cankering, and hence the common name of the disease blackleg [2].
Like many filamentous ascomycetes involved in plant disease [3], *L. maculans* produces secondary metabolites of which the best studied is a related set of epipolythiodioxopiperazines, the sirodesmins. Sirodesmin PL is the prominent product, and here for simplicity (unless stated) this has been abbreviated to sirodesmin. Sirodesmin is produced by the actions of proteins encoded by a cluster of 18 reported *sir* genes [4]. Disruption of one of these genes, encoding the two-module non-ribosomal peptide synthase SirP, blocks sirodesmin biosynthesis [4]. While it was initially hypothesized that SirP catalyzed the first step in the pathway to join together tyrosine and serine [4], other experiments suggest that SirD first produces 4-O-demethylallyl-L-tyrosine to which SirP then adds serine [5]. In either scenario, SirP acts in the early steps of the pathway (Fig 1).

The role of a second enzyme, SirG, in sirodesmin synthesis has not been experimentally determined. Gardiner *et al.* 2004 proposed a role in self-protection; however, based on the function of the homologous *gliG* gene, found in the gene cluster for the biosynthesis of the epipolythiodioxopiperazine gliotoxin in *Aspergillus fumigatus* [6], SirG is hypothesized to act after the synthesis of the precursor phomamide [7] (see Fig 1). The third gene studied here encodes the putative transcription factor SirZ, which is required for regulating the expression of the genes in the *sir* cluster [8, 9].

The finding that purified sirodesmin causes chlorotic lesions on canola leaves led to the hypothesis that sirodesmin was important for blackleg disease progression [10]. However, isolates in which sirodesmin production is disrupted are still able to cause normal disease on cotyledons, suggesting that these phytotoxic properties of sirodesmin are not required for early disease symptoms [4, 8, 11]. The fact that sirodesmin is indeed produced by the fungus and is stable in *B. napus* raised the possibility that perhaps sirodesmin was required for causing stem canker; however, inoculation of *B. napus* with strains carrying the *sirP* gene mutation resulted in mildly reduced stem canker symptoms with an associated 50% reduction in fungal biomass [12]. Sirodesmin triggers the synthesis of antifungal phytoalexins when applied to *Brassica* species [13], including brassilexin, which is a plant defense compound known to be active against fungi. Hence, how sirodesmin may be involved in the pathogenicity of *L. maculans* is unclear.

Transcriptomic studies have found that the expression levels of a large number of *L. maculans* genes change at different stages of the disease cycle, including genes that are markedly down-regulated during the early stages when the fungus grows as a biotroph [14–17]. Here, we discover that the genes comprising the *sir* gene cluster responsible for the production of sirodesmin are repressed to a very low level during the early stages of disease relative to *in vitro*. We thus formulated the hypothesis that the down-regulation of this gene cluster *in planta* may be required to avoid detection by the plant. To address this hypothesis, we constitutively expressed the SirZ transcription factor and analyzed this strain and those derived from it for their ability to cause blackleg disease.

![Abbreviated pathway for sirodesmin synthesis to illustrate where the enzymes SirG and SirP are predicted to function. Double arrows indicate multiple enzymatic reactions.](https://doi.org/10.1371/journal.pone.0252333.g001)
Materials and methods

Growth of *L. maculans* strains, pathogenicity and competition testing

L. maculans strains were cultured in 10% cleared V8 juice (Campbell’s) that had been adjusted to pH 6 using NaOH prior to autoclaving (CV8). 2% agar was added to produce solid media. Cultures on solid media were kept at 22°C with a 12 h light-dark cycle to induce sporulation while liquid cultures were grown at 22°C in the dark. The wild type strain used was D5. This strain was isolated in Penshurst, Victoria, in 1988 and is part of the International Blackleg of Crucifers Network collection (strain IBCN18, also called M1).

The ability of strains to cause disease was conducted on canola *Brassica napus* cv. Westar or *B. juncea* cv. Aurea, with lesion areas measured 14 days post inoculation, as described previously [18]. These are two *Brassica* cultivars routinely used for assessing blackleg symptoms; the seed used were obtained from previous bulking production in the laboratory. Antimicrobial activity in the strains was tested against bacterium *Bacillus subtilis* and fungus *Leptosphaeria biglobosa* as described in detail previously [12].

RNA-sequencing expression analysis

Previously generated RNA-sequencing data were used to examine the expression of genes in the sirodesmin biosynthesis cluster. As in Urquhart and Idnurm [19], raw RNA-sequencing reads from two studies comparing *L. maculans* transcript levels *in vitro* and *in planta* [14, 15] were obtained from the sequence read archive at NCBI, and mapped to the *L. maculans* strain JN3 genome sequence [20] using Geneious version 11 software. The TPM (Transcripts Per Kilobase Million) values were calculated for the 3’ exon of each gene to minimize bias effects of long transcripts.

Generation of strains to over-express sirZ during plant disease

The recombinant strains created in this study, starting in the wild type strain D5, are listed in Table 1. Oligonucleotide primers used to make constructs for transformation were synthesized by Sigma-Aldrich, Australia, with the sequence details provided in S1 Table. A construct to constitutively express SirZ was developed by cloning the coding region of the *sirZ* gene, amplified using primers AU226 and AU227, into the BglII site of plasmid PLAU2 [21] to produce plasmid PLAU50. This resulted in the *sirZ* gene being expressed under the control of the *L. maculans* actin promoter. Similarly, genes encoding green fluorescent protein (GFP) and the avirulence protein AvrLm6 were amplified using primer pairs AU24 and AU27; and AU28

Table 1. Genetically modified strains of *Leptosphaeria maculans* developed in this study.

Strain name	Construct introduced	Strain background
D5+sirZOE#2-6A/B	PLAU50, for SirZ overexpression	D5 (wild type)
D5+AvrLm6	PLAU14, for AvrLm6 overexpression	D5 (wild type)
D5+GFP	PLAU17, for GFP expression as a control	D5 (wild type)
D5+sirZOE#6+cas9#2	pMA123, expresses Cas9	D5+sirZOE#6
sirZ CRISPR	sirZ gRNA	D5+sirZOE#6+cas9#2
sirP CRISPR	sirP gRNA	D5+sirZOE#6+cas9#2
sirG CRISPR	sirG gRNA	D5+sirZOE#6+cas9#2

https://doi.org/10.1371/journal.pone.0252333.t001
and AU31, respectively, and cloned into the BglII site of PLAU2 for the transformation of *L. maculans* to create control strains. Cloning used Gibson assembly and subsequent transformation into *Escherichia coli* strain NEB® 5-alpha (New England Biolabs, USA).

The constructs were transformed by electroporation into Agrobacterium tumefaciens strain EHA105 as described previously [18]. Strain EHA105 is a commonly used host for subsequent transformation of plants and fungi [22]. Fungal transformation was conducted on *Agrobacterium* induction medium, followed by an overlay with 200 μg/ml of hygromycin and 200 μg/μl of cefotaxime in CV8 medium [23]. Multiple independent transformants were isolated onto selection medium, and then assessed for their pathogenicity on canola.

Generation of gene disruption strains by CRISPR-Cas9 mutations

One of the SirZ over-expression strains (6B) was selected for the construction of additional mutations. To enable genes in the sirodesmin biosynthesis pathway to be disrupted in this strain using the CRISPR-Cas9 system it was first transformed with an *Agrobacterium*-mediated T-DNA from plasmid pMAI23 that expresses a modified form of the *Streptomyces pyogenes* Cas9 gene [21], using selection on 100 μg/ml G418. Three guide RNA constructs, for targeting the Cas9 endonuclease to the *L. maculans* sirP, sirG and sirZ genes, were produced. These were made by cloning the oligonucleotides “SirP”, “SirG” and “SirZ” (sequences in S1 Table) into the *Xho*I site of plasmid pMAI75 by Gibson assembly (NEBuilder HiFi Assembly Cloning Kit, New England Biolabs), and then by subcloning the gRNA constructs using restriction enzymes *Nhe*I and *Spe*I into the *Xba*I site of the plasmid pPZPnat1 [24], which confers resistance to nourseothricin when the T-DNA is transformed into *L. maculans*.

The T-DNAs that express the CRISPR guide RNA constructs were transformed into a sir-ZOE-Cas9 strain, using 100 μg/ml nourseothricin as the selective agent. In this system, incorrect repair of the Cas9 endonuclease damage introduces mutations into the target regions. Transformants were screened by PCR and restriction enzyme digests to identify those with mutations at the target sites of the three genes. Transformants were then cultured through a step of isolating a colony from a single spore to ensure nuclear homogeneity, and the gene regions amplified and analyzed using Sanger sequencing of PCR amplicons to define the mutations.

Extraction of secondary metabolites, and their separation by thin layer chromatography or high performance liquid chromatography

25 ml CV8 liquid were inoculated with approximately 10⁶ spores of *L. maculans* strains. After culturing for seven days at 22°C in darkness, mycelia were removed by filtration through miracloth and the culture filtrate solution (volume approximately 20 ml) was extracted once with 20 ml ethyl acetate. The extracts were dried under a stream of nitrogen gas and the residue suspended in 200 μl pure ethanol.

For thin layer chromatography (TLC), extracts were resolved on silica gel 60 F254 aluminium sheets (Merck) using a 1:1 ratio of chloroform to ethyl acetate, and visualized using UV light, as in [25].

For high performance liquid chromatography (HPLC), 10 μl of each sample was injected into an Agilent 1100 machine that was run with an H₂O-acetonitrile gradient using a Synergi 4u Fusion-RP 80A column (250 × 4.60 mm; C18; Phenomenex) as described previously [4]. Molecules eluting from the column were detected by absorbance of 240 nm UV light. Mass spectrometry was used to confirm the identity of relevant peaks on the HPLC chromatogram. Samples peaks were manually collected and analyzed on a Thermo Q Exactive Orbitrap mass spectrometer in the positive mode.
Results

The genes for sirodesmin biosynthesis are down-regulated during the foliar stages of blackleg disease

If a protein is important for a function, its gene should be expressed when needed: two previously published RNA-seq data sets [14, 15] were re-examined for the expression of the sir gene cluster. All 18 annotated genes in the cluster are down-regulated during pathogenesis on cotyledons relative to in vitro at all time points. For example, the in planta data of Sonah et al. at 11 dpi or Lowe et al. at 14 dpi on cotyledons, conducted in two different countries, show the same pattern of low gene expression of the sir genes (Fig 2).

Mapping the transcriptomic data back to the genome sequence of L. maculans revealed two additional genes within the sir cluster that were not previously identified, which we name sirK and sirX. The predicted protein sequence for SirK shows homology to GliK encoded in the Aspergillus fumigatus gene cluster and gliK is essential for the synthesis of gliotoxin [26]. SirX does not show clear homology to any proteins in GenBank based on BLAST searches. Both sirK and sirX are also down-regulated during the early stages of disease, consistent with the trend of the other sir genes. The sequences of the two genes have been deposited in GenBank as accessions MK609857 and MK609858.

The L. maculans actin promoter can be used to drive protein expression in planta

If the sir genes are down regulated during infection, the question was what would happen if they were expressed constitutively in strains? A candidate promoter region is actin, used in numerous gene expression studies as a standard for constitutive and strong gene expression.

To assess the ability of the L. maculans actin promoter to drive expression of proteins during early pathogenesis on cotyledons, two proteins were expressed; green fluorescent protein (GFP) and the avirulence factor AvrLm6. GFP was clearly visible as green fluorescence in vitro (not shown) and in planta (Fig 3A). Expression of AvrLm6 resulted in a loss of pathogenicity on Brassica juncea cv. Aurea, which contains the Rlm6 resistance gene that recognizes AvrLm6 (Fig 3B), while the wild type, which has a mutation in the AvrLm6 avirulence gene, causes lesions. The avirulence genes are amongst those most highly expressed during the early stages of infection relative to in vitro, and hence these results indicate that using the actin promoter has the ability to drive expression to the levels able to impact plant disease.

Expression of transcription factor SirZ during the early biotrophic disease stage results in a loss of pathogenicity

All five independent transformants expressing the actin promoter-sirZ construct that were tested showed a loss of pathogenicity phenotype (Fig 4). To rule out a possible inadvertent gene silencing effect of the construct, secondary metabolites were extracted from culture filtrates of the untransformed wild type and one over-expression strain (D5+sirZOE#6), resolved by thin layer chromatograph, and visualized under ultraviolet light. The over-expression strain still produced sirodesmin (data not shown). Next, to establish if the loss of pathogenicity is due to the synthesis of sirodesmin or some other effect, three genes required for sirodesmin synthesis were targeted for mutation in one representative of the over-expression strain background (i.e. strain D5+sirZOE#6). CRISPR-Cas9 constructs were transformed into this strain, and candidate mutations identified by PCR analysis. Sanger sequencing of the gene regions in these sirZ, sirP and sirG mutants made in the SirZ overexpressing background identified frameshift mutations indicative of loss-of-function alleles (Fig 5).
Fig 2. The genes for sirodesmin biosynthesis are down-regulated in planta. (A) The sir gene cluster consists of 20 genes, 18 of which were previously annotated (solid arrows) and two additional genes annotated as sirK and sirX (speckled arrows). (B and C) All genes in the cluster are down-regulated in planta compared to in vitro, both in the data of (B) Sonah et al. at 11 dpi and (C) Lowe et al. at 14 dpi in comparison to the actin house-keeping gene that is expressed highly in planta and in vitro.

https://doi.org/10.1371/journal.pone.0252333.g002
Fig 3. The *L. maculans* actin promoter can drive protein expression in planta. (A) Expression of GFP during colonization of plants 14 days post infection. Scale bar: 200 microns. (B) A strain expressing the avirulence protein AvrLm6 was unable to cause disease of *Brassica juncea* cv. Aurea (+Rlm6), while retaining pathogenicity on *Brassica napus* cv. Westar (no resistance genes).

https://doi.org/10.1371/journal.pone.0252333.g003

Fig 4. Overexpression of the SirZ transcription factor reduces pathogenicity of *L. maculans*. Strains were inoculated on *B. napus* cv. Westar and lesions analyzed 14 days later. Introduction of a construct expressing SirZ under the control of the actin promoter reduced pathogenicity of all five independent transformants tested. Disruption in one of these transformants of sirZ, but not sirP or sirG, restored pathogenicity. (A) Photographs of representative lesions on a single cotyledon inoculated with each strain. (B) Quantitative comparisons of lesion areas. Bars represent the average lesion size of >14 replicate inoculation points. Error bars represent +/- one standard deviation.

https://doi.org/10.1371/journal.pone.0252333.g004
Disruption of the introduced sirZ allele via CRISPR-Cas9 mutation resulted in a restoration of pathogenicity (Fig 4). On the other hand, disruption of either the sirP or sirG genes, that encode enzymes for the synthesis of sirodesmin (Fig 1), did not restore pathogenicity.

Sirodesmin has other activities, such as an inhibitor of bacterial and fungal growth. We therefore tested the strains for their ability to inhibit growth of bacterium Bacillus subtilis or close relative of L. maculans, Leptosphaeria biglobosa. All strains tested maintained some level of inhibition of bacterial or fungal growth, and which was variable between different experiments (data not shown).

Over-expression of SirZ results in a decreased growth rate that does not account for the loss in pathogenicity

The five actin promoter-sirZ transformants showed a slight reduction in growth rate and darkening of colony color (Fig 6). Disruption of sirZ as well as sirG and sirP reversed this effect.
suggesting that this phenotype is attributed to the production of sirodesmin. Because the growth defect is reverted in the sirG or sirP mutants, yet these strains remain non-pathogenic, this indicates that the loss of pathogenicity caused by sirZ overexpression is not simply due to slower growth.

HPLC analysis of secondary metabolites in wild type and mutant strains confirms gene functions

HPLC analysis revealed that the sirZ and sirP mutants produced neither sirodesmin nor its precursor phomamide, thus confirming the function of these genes had been abolished (Fig 7A). The sirG mutant produced phomamide but not sirodesmin, and the sirG mutant produced a number of additional products. This is consistent with the position of where the enzymes SirP and SirG act in the pathway for sirodesmin synthesis (Fig 1). Mass-spectra obtained from selected HPLC fractions confirmed that the 11.5 min peak represents phomamide and the 17.5 min peak represents sirodesmin PL (Fig 7B).

Discussion

The transcription factor SirZ, which regulates the synthesis of the major secondary metabolite produced by *L. maculans* [8, 9], was constitutively expressed and this blocked pathogenicity in cotyledon infection assays (Fig 4). Because the strain is no longer pathogenic, the transcript levels of sirZ itself during infections could not be measured due to the limited amount of fungal biomass. However, as a control the same promoter used to drive expression of GFP or the avirulence factor AvrLm6 both led to the functional expression of high levels of these proteins. Disruption of the SirZ overexpression allele, via CRISPR/Cas9, restored pathogenicity, indicating that the loss of pathogenicity was related to the expression of SirZ.

In vitro the SirZ constitutive expression strains had slower radial growth rates compared to the wild type, which may reflect autotoxicity (Fig 6). However, this growth rate is not the cause of the reduction in pathogenicity. First, *L. maculans* wild isolates exhibit a range of growth rates yet cause equal lesion sizes on cotyledons (A.P. Van de Wouw, pers. commun). Second, we have isolated mutants with vegetative growth defects yet remain fully pathogenic [19]. Third, disruption of either sirP or sirG resulted in restoration back to wild type growth rate but not to wild type pathogenicity. Hence, the overexpression of sirZ leads to a true pathogenicity defect rather than a general reduction in strain fitness.

To explore the mechanism behind the loss of pathogenicity when sirZ is overexpressed, we selected two genes in the sirodesmin biosynthesis cluster for disruption using CRISPR/Cas9: sirP and sirG. The sirP gene was chosen because it has previously been shown to be required for sirodesmin production and is expected to act early in the biosynthetic pathway, which agrees with the fact we did not detect sirodesmin or phomamide production in the sirP mutant. The sirG gene was chosen because this gene has not previously been demonstrated to be essential for sirodesmin production, although homology to gliG in the gliotoxin biosynthetic pathway of *A. fumigatus* suggested that it was responsible for adding the sulfur atoms to the molecule by acting downstream of phomamide [6]. The phytotoxicity of sirodesmin (as well as other epipolythiodioxopiperazines) has been attributed to the disulfide bridge that enables these toxins to cross-link proteins via cysteine residues [27]. The HPLC chromatograph of the sirG disrupted strain supports such a role as phomamide, but not sirodesmin, was present in the culture filtrates. In addition to phomamide, a number of novel peaks were observed in the sirG mutant. This is similar to the gliG deletion strain of *A. fumigatus* that produced compounds not observed in either the wild type or gliP (homologous to *L. maculans* sirP) deletion strain [6].
Given that the strains in which sirG and sirP were mutated in the sirZ overexpression background remained non-pathogenic we conclude that the loss of pathogenicity due to SirZ overexpression is not due to the over-production of sirodesmin. Two possible explanations for this unexpected finding are that expression of one of the sirodesmin biosynthesis pathway genes is causing the loss of pathogenicity or that SirZ regulates additional targets outside of the cluster. The possibility of the second explanation is supported by the fact that regulatory cross talk between biosynthetic gene clusters has been reported previously in other fungi. A number of variations have been observed. These can be situations in which a transcription factor can regulate two gene clusters, as for ScpR and the RsmA-AflR regulon in Aspergillus nidulans [28, 29] or FapR in A. fumigatus [30]. Some transcription factors within a cluster can have
widespread influence on secondary metabolism, such as Tri6 in *Trichoderma arundinaceum* that regulates numerous secondary metabolite clusters although this may also be via alteration of the mevalonate biosynthetic genes [30]. The consequences of overexpression can thus be complex, e.g. if a transcriptional regulator also influences the availability of the substrates for secondary metabolites. Or, another curious situation is the transcription factor HasA that regulates hexadecahydroastechrome synthesis yet also controls genes involved in iron homeostasis. The consequences of overexpression of HasA, most likely mediated via changes in metal homeostasis, then impacts the expression of 14 gene clusters in addition to the *has* cluster [31]. One final example worth noting is the case of the synthesis of azaphilones, which requires the activities of two separate gene clusters in *Aspergillus terreus*. In this case, a transcription factor in one of the clusters acts to induce the expression of two other transcription factors each found in the two clusters [32]. In light of these examples, in either the case of another *sir* gene or secondary metabolite being involved, these findings from *L. maculans* are another caution against assuming that phenotypes due to overexpression of putative pathway specific transcription factors can be solely attributed to increased metabolite production.

Discovering which genes, other than those in the sirodesmin gene cluster, are regulated when *sirZ* is over-expressed should reveal new genes required for disease development. A bioinformatic analysis of the genes in the epipolythiodioxopiperazine synthesis gene clusters from three species revealed a consensus motif of TCGGNNNCCGA is in the promoters of eight of the *L. maculans* *sir* genes [8], and it is hypothesized that SirZ binds to this motif. We therefore examined the secondary metabolite core enzymes and surrounding associated genes in the *L. maculans* genome, as defined in the MycoCosm database [33], by searching manually for the relaxed motif of CGGNNNCCG. The genome is predicted to encode 13 non-ribosomal peptide synthases, 12 polyketide synthases, and two terpene synthases [20]. Eight motifs were found in the *sir* cluster, as previously reported [8]. A single candidate motif was associated with six other gene clusters. Four weaker candidates were in the gene promoter of the putative major facilitator superfamily transporter for the 'NPS3 cluster', between a fatty acid transporter and hypothetical protein in the NPS11 cluster, the monoxygenase in the NPS2 cluster, and between the major facilitator superfamily transporter and NPS1. The two most conserved motifs were for the monoxygenase in the PKS1 cluster and between a hypothetical protein and NPS4. None of these gene clusters have defined functions. Hence, the identification of other SirZ-regulated genes may require RNA-sequencing comparisons or could also be addressed by a mutant screen seeking a restoration to wild type pathogenicity.

Sirodesmin is the best characterized secondary metabolite of *L. maculans*, and yet this study further complicates its possible functions in the biology of this and other fungi. The metabolite is produced during *in vitro* growth and in stem lesions, yet *sir* gene expression is turned down during the early stages of plant infection. These findings tend to support a hypothesis that the fungus produces the metabolite for competition with other microbes as part of its saprotrophic growth. Sirodesmin has other activities, such as inhibition of bacteria or fungi [12, 34]. The strains created here all still maintained the ability to inhibit bacterial or fungal growth. However, these types of studies on living cultures, rather than using purified metabolites, can be problematic in cases whereby bacterial-fungal or fungal-fungal interactions trigger the production of secondary metabolites potentially in both organisms [35]. Similarly to *L. maculans*, the ‘primary’ functions of other ETPs have been difficult to assess. For instance, gliotoxin was isolated as an antifungal agent, is immunosuppressive, has anti-tumor properties and in specific conditions contributes to the virulence of *A. fumigatus* (the inconsistent findings are reviewed in [36]). Roles for gliotoxin are well illustrated in *Trichoderma virens*, where the gliP mutant loses its mycoparasitic activity against the oomycete *Pythium ultimum* and the fungus *Sclerotinia sclerotiorum*, and is less pathogenic against the insect *Galleria mellonella* [37].
This study suggests a promising new direction for future studies on L. maculans on the investigation of genes that are not normally expressed during disease. Most previous work on L. maculans has focused on either avirulence genes or on pathogenicity genes, which are two groups of genes that are normally expressed during disease. However, RNA-sequencing data [14, 15] show that a large number of genes are expressed at a high level during in vitro growth but at a very low level during the early biotrophic stages of disease. Despite having been probed for a role in pathogenicity [4, 8, 12, 24] the genes of the sirodesmin biosynthetic cluster fall into this group. It is possible that many such genes are not only dispensable at this stage of disease but moreover that their expression during this stage would be deleterious. We have demonstrated this to be the case for SirZ. If strategies can be developed to cause pathogenic fungi to miss-express such genes this would be a powerful tool in the fight against plant disease.

Supporting information
S1 Table. Oligonucleotide primers used in this study. (PDF)

Acknowledgments
WZ and AI thank the China 111 Project (D18008) in promoting this collaboration.

Author Contributions
Conceptualization: Andrew S. Urquhart, Candace E. Elliott, Wei Zeng, Alexander Idnurm.
Data curation: Andrew S. Urquhart.
Formal analysis: Andrew S. Urquhart, Wei Zeng.
Funding acquisition: Andrew S. Urquhart, Alexander Idnurm.
Investigation: Andrew S. Urquhart, Candace E. Elliott, Wei Zeng, Alexander Idnurm.
Methodology: Andrew S. Urquhart, Candace E. Elliott, Wei Zeng, Alexander Idnurm.
Project administration: Alexander Idnurm.
Resources: Wei Zeng.
Supervision: Alexander Idnurm.
Writing – original draft: Andrew S. Urquhart.
Writing – review & editing: Andrew S. Urquhart, Candace E. Elliott, Wei Zeng, Alexander Idnurm.

References
1. Fitt BDL, Brun H, Barbetti MJ, Rimmer SR. World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol. 2006; 114(1):3–15.
2. Hammond KE, Lewis BG, Musa TM. A systemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans. Plant Pathol. 1985; 34(4):557–565.
3. Keller NP. Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol. 2019; 17(3):167–180. https://doi.org/10.1038/s41579-018-0121-1 PMID: 30531948
4. Gardiner DM, Cozijnse AJ, Wilson LM, Pedras MSC, Howlett BJ. The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol Microbiol. 2004; 53(5):1307–1318. https://doi.org/10.1111/j.1365-2958.2004.04215.x PMID: 15387811
1. Over expression of SirZ prevents blackleg disease

2. Over expression of SirZ prevents blackleg disease

3. Over expression of SirZ prevents blackleg disease

4. Over expression of SirZ prevents blackleg disease

5. Kremer A, Li SM. A tyrosine O-prenyltransferase catalyses the first pathway-specific step in the biosynthesis of sirodesmin PL. Microbiology. 2010; 156:278–286. https://doi.org/10.1099/mic.0.033886-0 PMID: 19762440

6. Davis C, Carberry S, Schrettl M, Singh I, Stephens JC, Barry SM, et al. The role of glutathione S-transferase GltG in glutathione biosynthesis in Aspergillus fumigatus. Chem Biol. 2011; 18(4):542–552. https://doi.org/10.1016/j.chembiol.2010.12.022 PMID: 21513890

7. Welch TR, Williams RM. Epithidiodioxopiperazines. occurrence, synthesis and biogenesis. Nat Product Rep. 2014; 31(10):1376–1404. https://doi.org/10.1039/c3np70097f PMID: 24816491

8. Fox EM, Gardiner DM, Keller NP, Howlett BJ. A Zn(II)$_2$Cys$_6$ DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans. Fungal Genet Biol. 2008; 45(5):671–682. https://doi.org/10.1016/j.fgb.2007.10.005 PMID: 18023597

9. Elliott CE, Fox EM, Jarvis RS, Howlett BJ. The cross-pathway control system regulates production of the secondary metabolite toxin, sirodesmin PL, in the ascomycete, Leptosphaeria maculans. BMC Microbiol. 2011; 11:169. https://doi.org/10.1186/1471-2180-11-169 PMID: 21791055

10. Rouxel T, Chpeau Y, Fritz R, Kollmann A, Bousquet JF. Biological effects of sirodesmin PL, a phyto-toxin produced by Leptosphaeria maculans. Plant Sci. 1988; 57(1):45–53.

11. Sock J, Hoppe HH. Pathogenicity of sirodesmin-deficient mutants of Phoma lingam. J Phytopathol. 1999; 147(3):169–173.

12. Elliott CE, Gardiner DM, Thomas G, Cozijnse A, Van de Wouw AP, Howlett BJ. Production of the toxin sirodesmin PL by Leptosphaeria maculans during infection of Brassica napus. Mol Plant Pathol. 2007; 8(6):791–802. https://doi.org/10.1111/j.1364-3703.2007.00433.x PMID: 20507539

13. Pedras MSC, Khalaf I. Molecular interactions of the phytotoxins destruxin B and sirodesmin PL with crucifers and cereals: Metabolism and elicitation of plant defenses. Phytochemistry. 2012; 77:129–139. https://doi.org/10.1016/j.phytochem.2012.02.010 PMID: 22414311

14. Lowe RGT, Cassin A, Grandaubert J, Clark BL, Van de Wouw AP, Rouxel T, et al. Genomes and transcriptomes of partners in plant-fungal interactions between canola (Brassica napus) and two Leptosphaeria species. PLoS One. 2014; 9(7):e103098. https://doi.org/10.1371/journal.pone.0103098 PMID: 25068644

15. Sonah H, Zhang XH, Deshmukh RK, Borhan MH, Fernando WGD, Belanger RR. Comparative transcriptomic analysis of virulence factors in Leptosphaeria maculans during compatible and incompatible interactions with canola. Front Plant Sci. 2016; 7:1784. https://doi.org/10.3389/fpls.2016.01784 PMID: 27990146

16. Becker MG, Zhang XH, Walker PL, Wan JC, Millar JL, Khan D, et al. Transcriptome analysis of the Brassica napus-Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance. Plant J. 2017; 90(3):573–586. https://doi.org/10.1111/tpj.13514 PMID: 28222234

17. Gay EJ, Soyer JL, Lapalu N, Linglin J, Fudal I, Da Silva C, et al. Large-scale transcriptomics to dissect 2 years of the life of a fungal phytopathogen interacting with its host plant. BMC Biol. 2021; 19(1):55. https://doi.org/10.1186/s12915-021-00989-3 PMID: 33757516

18. Urquhart AS, Idnurm A. Sit4-associated protein is required for pathogenicity of Leptosphaeria maculans on Brassica napus. Curr Microbiol. 2017; 74(12):1438–1446. https://doi.org/10.1007/s00284-017-1338-3 PMID: 28840344

19. Urquhart A, Idnurm A. Limitations of RNA-sequencing based prediction of pathogenicity genes in the plant pathogen Leptosphaeria maculans. FEMS Microbiol Lett. 2019; 366(7):fnz080. https://doi.org/10.1093/femsle/fnz080 PMID: 30998236

20. Rouxel T, Grandaubert J, Hane JK, Hoede C, Van de Wouw AP, Couloux A, et al. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat Commun. 2011; 2:202. https://doi.org/10.1038/ncomms1189 PMID: 21326234

21. Idnurm A, Urquhart AS, Vummadi DR, Chang S, Van de Wouw AP, Lopez-Ruiz FJ. Spontaneous and CRISPR/Cas9-induced mutation of the osmosensor histidine kinase of the canola pathogen Leptosphaeria maculans. Fungal Biol Biotechnol. 2017; 4(1):12. https://doi.org/10.1186/s40694-017-0043-0 PMID: 29270298

22. Hood EE, Gelvin SB, Melchers LS. Hoekema A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 1993; 2(4):208–218.

23. Gardiner DM, Howlett BJ. Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Curr Genet. 2004; 45(4):249–255. https://doi.org/10.1007/s00294-004-0488-6 PMID: 14749893

24. Gardiner DM, Jarvis RS, Howlett BJ. The ABC transporter gene in the sirodesmin biosynthetic gene cluster of Leptosphaeria maculans is not essential for sirodesmin production but facilitates
self-protection. Fungal Genet Biol. 2005; 42(3):257–263. https://doi.org/10.1016/j.fgb.2004.12.001 PMID: 15707846

25. Badawy HMA, Hoppe HH. Nonspecific phytotoxic effects of Sirodesmins on host and nonhost plants of Leptosphaeria maculans. J Phytopathol. 1989; 127(2):137–145.

26. Gallagher L, Owens RA, Dolan SK, O’Keeffe G, Schrettl M, Kavanagh K, et al. The Aspergillus fumigatus protein GliK protects against oxidative stress and is essential for gliotoxin biosynthesis. Eukaryot Cell. 2012; 11(10):1226–1238. https://doi.org/10.1128/EC.00113-12 PMID: 22903976

27. Gardiner DM, Waring P, Howlett BJ. The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology. 2005; 151:1021–1032. https://doi.org/10.1099/mic.0.27847-0 PMID: 15817772

28. Bergmann S, Funk AN, Scherlach K, Schroechk V, Shelest E, Horn U, et al. Activation of a silent fungal polyketide biosynthesis pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase gene cluster. Appl Environ Microbiol. 2010; 76(24):8143–8149. https://doi.org/10.1128/AEM.00113-12 PMID: 20952652

29. Yin WB, Amaike S, Wohlbach DJ, Gasch AP, Chiang YM, Wang CCC, et al. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through altR. Mol Microbiol. 2012; 83(5):1024–1034. https://doi.org/10.1111/j.1365-2958.2012.07986.x PMID: 22283524

30. Wiemann P, Guo CJ, Palmer JM, Sekonyela R, Wang CCC, Keller NP. Prototype of an intertwined secondary-metabolite supercluster. Proc Natl Acad Sci USA. 2013; 110(42):17065–17070. https://doi.org/10.1073/pnas.1313258110 PMID: 24082142

31. Wiemann P, Lechner BE, Baccile JA, Velk TA, Yin WB, Bok JW, et al. Perturbations in small molecule synthesis uncovers an iron-responsive secondary metabolite network in Aspergillus fumigatus. Front Microbiol. 2014; 5:530. https://doi.org/10.3389/fmicb.2014.00530 PMID: 25386169

32. Huang X, Zhang W, Tang S, Wei S, Lu X. Collaborative biosynthesis of a class of bioactive azaphilones by two separate gene clusters containing four PKS/NRPSs with transcriptional crosstalk in fungi. Angew Chem. 2020; 59(11):4349–4353. https://doi.org/10.1002/anie.201915514 PMID: 31908094

33. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Ottlir R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014; 42(D1):D699–D704. https://doi.org/10.1093/nar/gkt1183 PMID: 24297253

34. Boudart G. Antibacterial activity of Sirodesmin-PL phytotoxin—application to the selection of pytoxin-deficient mutants. Appl Environ Microbiol. 1989; 55(6):1555–1559. https://doi.org/10.1128/aem.55.6.1555-1559.1989 PMID: 16347949

35. Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, et al. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol. 2015; 6:299. https://doi.org/10.3389/fmicb.2015.00299 PMID: 25941517

36. Scharf DH, Brakhage AA, Mukherjee PK. Gliotoxin—bane or boon? Environ Microbiol. 2015; 18(4):1096–1109. https://doi.org/10.1111/1462-2920.13080 PMID: 26443473

37. Vargas WA, Mukherjee PK, Laughlin D, Wiest A, Moran-Diez ME, Kenerley CM. Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology. 2014; 160:2319–2330. https://doi.org/10.1099/mic.0.079210-0 PMID: 25082950