Carbon cycling in coastal sediments: 1. A quantitative estimate of the remineralization of organic carbon in the sediments of Buzzards Bay, MA*

ANN P. MCNICHOL1†, CINDY LEE2 and ELLEN R. M. DRUFFEL1
1Woods Hole Oceanographic Institution, Woods Hole, MA 02543, U.S.A.
2Marine Sciences Research Center, SUNY at Stony Brook, Stony Brook, NY 11794, U.S.A.

(Received June 12, 1987; accepted in revised form July 7, 1988)

Abstract—Seasonal remineralization rates of organic carbon are calculated in the top 20–30 cm of biologically irrigated, organic-rich sediments of Buzzards Bay, MA. Six cores were collected over a period of two years, and the pore water concentrations of the following species were measured: dissolved inorganic carbon (ΣCO2), PO43-, ΣH2S, Alk, and Ca2+. Overall, these constituents showed large gradients with depth, which are larger in summer than in winter.

Remineralization rates in the sediments were estimated by applying a non-local exchange, vertical molecular diffusion, reaction model to the ΣCO2 depth profiles. The major processes affecting the pore water concentration of ΣCO2 described in the model are diffusion, irrigation, and the oxidation of organic carbon. The calculated remineralization rates varied seasonally with the high of 7.5 × 10^-9 mol/L·sec observed in August 84 and the low (0.6 × 10^-9) in December 82. The remineralization rates were dependent on the amount of irrigation in the sediments. It was possible to calculate remineralization rates between 0 and 20 cm because the amount of irrigation was well-characterized at this site. We calculated that 69 gC/m² are oxidized annually and 5–33 gC/m²-yr are buried. It appears that there is a highly reactive portion of organic matter which is oxidized at the sediment water interface. Examination of the Alk and dissolved Ca²⁺ profiles indicates that there was significant production of acid which dissolved CaCO₃ in the spring and early summer.

INTRODUCTION

The CARBON CYCLE plays a dominant role in controlling many biological and chemical processes in the marine environment. Many reactions and processes in the water column and sediments are related to the fixation of CO₂ to organic carbon and the subsequent degradation of this organic matter. Thus, it is important to quantify the rates of carbon fixation and remineralization. In this study, we investigate the seasonality of the remineralization of organic carbon in coastal sediments.

The concentration of dissolved inorganic carbon (ΣCO₂) in marine sediment interstitial solutions reflects the remineralization of organic carbon to CO₂ in marine sediments. In coastal environments where there is relatively little CaCO₃, seasonal ΣCO₂ depth profiles and a knowledge of irrigation rates can be used to calculate the amount of carbon oxidized to CO₂. The overall oxidation of sedimentary organic carbon is summarized in the following equation:

\[(CH_2O)_x(NH_3)_y(H_2PO_4)_z + EA → \text{reduced EA}\]

\[+ xCO_2 + yHNO_3 \text{ (or N}_2, NH_3) + zH_2PO_4 + bH_2O \quad (1)\]

The electron acceptors (EA) and the order in which they are used are: O₂, NO₃⁻ and MnO₂, Fe₂O₃, SO₄²⁻, and CO₂ and low molecular weight organic compounds (FROELICH et al., 1979).

The remineralization of organic carbon has been studied in a variety of coastal environments (e.g. ALLER, 1980a; MARTENS and KLUMP, 1984; JØRGENSEN, 1977a,b). In most nearshore marine sediments, oxygen and sulfate appear to be the quantitatively important electron acceptors. In sediments at water depths of 20 m or less, sulfate can account for 50 to 70% of the total sediment respiration (HOWARTH, 1984). Oxygen reduction is limited by its ability to diffuse into the sediments across the sediment water interface or through burrow walls in the sediments (JØRGENSEN and REVSBECH, 1985). Nitrate is available, although its concentration is so low relative to other oxidants that it is not quantitatively important in a carbon budget. The importance of iron and manganese as oxidants in nearshore environments is uncertain. Solid-phase and pore water analyses indicate that both iron and manganese are available and are used to oxidize organic matter, either directly or indirectly (REEBURGH, 1983; MARTIN, 1985; ALLER and RUDE, 1986).

However, the amount of organic matter remineralized by these oxidants is difficult to assess because of their solid-phase chemistry. Both iron and manganese are present as reactants and products in numerous solids, e.g. iron oxides, pyrite, and iron monosulfides.

In previous studies, the determination of oxidation rates and the construction of carbon budgets were made using benthic flux measurements (MARTENS and KLUMP, 1984; BALZER, 1984; ANDERSON et al., 1986), pore water constituents (GOLDBERGER et al., 1977), and measured oxidation rates (JØRGENSEN, 1977a; WESTRICH, 1983; MARTENS and KLUMP, 1984). The modelling of pore water profiles or benthic fluxes of electron acceptors, such as SO₄²⁻, or degradation products, such as NH₄⁺, requires the use of a stoichiometric assumption that defines the ratio of carbon produced to sulfate oxidized or the ratio of carbon to nitrogen in the oxidized material and may be complicated by other reactions, such as adsorption in the case of NH₄⁺. Stoichiometric models have been applied to alkalinity (Alk), ΣCO₂, and dissolved Ca²⁺ data from deep-sea sediments (EMERSON et al., 1980; SAYLES, 1981). These models assume that organic
Studying Transport Processes in Sediments

The research reported here was conducted at Site M in Buzzards Bay, MA. The use of the concentration of ΣCO$_2$ provides a direct measure of the amount of organic carbon oxidized to CO$_2$ and requires no stoichiometric assumption in modeling. It also reflects the remineralization by a variety of electron acceptors, from O$_2$ to SO$_4^{2-}$. This paper demonstrates that, in an environment where the effects of irrigation on pore water are well-defined, depth profiles of the concentration of ΣCO$_2$ are described accurately by a model accounting for diffusion, irrigation, and the remineralization of organic carbon. This study shows that the most important contribution of ZCO$_2$ to pore water comes from the oxidation of organic carbon. Another source of inorganic carbon to pore water, bottom water carbonate ion, is discussed in McNichol (1986).

STUDY SITE

The research reported here was conducted at Site M in Buzzards Bay, MA (41°31.25'N, 70°45.7'W), shown in Fig. 1. The sediments in Buzzards Bay range from coarse sands to silty clays; the coarsest sediments are closest to the edges of the bay. Site M has been used for a variety of biogeochemical studies. It is the same location used by Martin and Sayles (1987) for their study of transport rates in sediments and by Brownawell (1986) as part of his study of PCB-colloidial organic matter interactions in pore water. Site M is the same as station 49 of Moore's bottom sediment study (Moore, 1963), lies between stations K and L of Sanders' benthic community study (Sanders, 1958), and is near station 31 of a 1982-83 hydrographic study (Rosenfeld et al., 1984). The sampling site is in 15 m of water and has predominantly silty-clay sediments (17% silt and 93% clay; Sanders, 1958; Moore, 1963). The faunal assemblage at this site is a community of Nephys incisa and Nucul a proxima deposit feeders that find their food on or in the sediment (Sanders, 1958, 1960). The sediments contain approximately 20 mg/gdw organic carbon and are primarily sulfate-reducing. However, the SO$_4^{2-}$ concentration in the top 30 cm of the sediments at this site is never more depleted than 10-15% below bottom water values (Martin, 1985). The overlying water is oxic throughout the year.

Particle and solute transport parameters are well-characterized at this site. A laboratory study of artificially laminated sediments from Buzzards Bay indicated that extensive biogenic reworking of the sediments occurred to depths of 2-3 cm (Rhoads, 1967). This observation was substantiated at Site M by 210Th studies which showed that the maximum depth of penetration of 210Th was 3.0 cm (Martin and Sayles, 1987).

METHODS

Sampling strategies

The pore water chemistry of six cores was analyzed in this study. The dates of collection and bottom water temperature at time of collection are listed in Table 1. The results from a seventh core collected in September 1983 as part of another study at this site are used also (Martin, 1985). All cores were collected by SCUBA divers. In October 1983, an 8 cm diameter PVC core liner was used to collect the core; all the other cores were collected with a 20 cm diameter PVC core liner. The tops of the core liners were sealed under water and the bottoms were sealed tightly on deck after retrieval. The cores were transported to the laboratory within three hours of collection. In a N$_2$-filled glove bag, the cores were sectioned in consecutive 0.5 cm intervals to 3 or 4 cm depth in the core and at selected 1 cm intervals below this depth in all months except October 1983. In this month, the core was sectioned in consecutive 1 cm intervals to 4 cm and in consecutive 2 cm intervals to 30 cm. Sectioning was always completed within 12-15 hours of core collection.

In the glove bag, mud was transferred to 50 ml centrifuge tubes, sealed, removed from the glove bag, and centrifuged at 3000-3500 rpm for 15-20 min to isolate the pore water. No attempt was made to maintain the in situ temperature during either sectioning or centrifugation. The laboratory temperature was essentially the same as the in situ temperature in the summer and fall; however, there was up to a 16 °C difference between laboratory and in situ temperatures in the cold months. After spinning down, the centrifuge tubes were returned to the glove bag, opened, and pore water was drawn into 10 ml syringes. All pore water was passed through a 0.45 μm Nuclepore polycarbonate filter. The first 1-2 ml of pore water were discarded and the next aliquot was filtered directly into a 1 ml syringe and analyzed within the hour for ΣCO$_2$. In October 1983, instead of measuring ΣCO$_2$, pH was measured on the first aliquot of pore water collected. The pH electrode was inside the glove bag and pH was measured immediately after collecting the sample. For the March
Carbon cycling in coastal sediments

Table 1. The dates on which cores were collected for this study. Also listed are the measured bottom water temperatures at the time of collection and the calculated sediment diffusion coefficients for DCO2. All data are from the 1985 core. Sediment diffusion coefficients are those reported in Martin and Sayles (1987).

Core Date	Water Temp, °C	Dco2 x 10^4 cm^2/sec		
Sept. 7, 83	16	6.5	4.2	6.9
Oct. 17, 83	15	6.4	4.1	6.7
Dec. 16, 83	3	5.3	3.4	5.4
June 20, 84	16	6.5	4.2	6.9
Aug. 30, 84	21	7.1	4.6	7.7
March 24, 85	5	5.0	3.2	4.9
Oct. 30, 85	14	6.2	4.0	6.5

A gravity core was taken near the study site for the analysis of CO2. A 1-meter aliquot of the filtered sample was stored in a poisoned (HgCl2) 2-ml septum vial. The samples were analyzed defined the sampling site.

A high precision EGTA [ethylene-glycol-bis(2-aminoethyl-ether)-N,N,N',N'-tetra-acetic acid] titration described by SHILLER and GIESKES (1980) was used to measure calcium. The precision of the Ca2+ titration was ±0.2%; this precision was obtained only when the sample was pre-titrated to >99% with EGTA. The EGTA solution was standardized each day against IAPSO seawater, and Ca2+ concentrations were calculated assuming a Ca/Cl ratio of 0.02109 g Ca/ % Cl for the IAPSO seawater.

RESULTS

Profiles of solid-phase organic carbon concentration vs. depth are shown in Fig. 2. In general, the concentration of organic carbon is about 20-24 mg C/gdw in the surface sediments and decreases to a value of about 15-16 mg C/gdw by 30 cm. The top 4 cm of the December 1983 core were approximately 10 mg C/gdw higher in organic carbon concentration than in any other core. The 14C age measured in the sediment is shown in Fig. 3; it increases from 1330 yr (0 to 6 cm) to 2970 yr (102 to 106 cm). Depth profiles of DCO2, Alk, Ca2+, H2S, and PO43- for each month are shown in Fig. 4. The concentration of DCO2, Alk, H2S, and PO43- in bottom water collected at the same time as the cores remained essentially constant throughout the year (DCO2, 2.0 mM; Alk, 2.1 meq/L; H2S, not detectable; PO43-, not detectable; McNICHL, 1986; MARTIN, 1985). The bottom water Ca2+ concentration was measured in December 1983, June 1984, and March 1985 and varied from 9.04 in June 1984 to 9.47 mM in March 1985 (average = 9.22 ± 0.22). It is likely that some of the variation is related.
to observed seasonal salinity fluctuations in Buzzards Bay.
In a hydrographic study of a station near Site M, the bottom
water salinity ranged from a high of 31.876% in October
1982 to a low of 31.236% in May 1983 (ROSENFIELD et al.,
1984); this could account for approximately one-half of
the observed change in \(\text{Ca}^{2+} \) concentration.

The concentration of \(\Sigma \text{CO}_2 \) measured in the pore water
is always greater than that in bottom water. The highest
concentration measured in the pore waters is 6.09 mM between
3.5 and 4 cm in June 1984. In general, the concentrations
measured in warm months are greater than those measured
in cold months. The data from October 1985 are an exception
and will be discussed later. In most months, the \(\Sigma \text{CO}_2 \)
concentration increases rapidly in the upper 2–4 cm, reaches a
maximum value between 4 and 10 cm, and is followed by a
region of either decreasing concentration or of no change.
Below 20 cm, the concentration begins to increase again.

In all months, the Alk profiles below 4 cm are qualitatively
similar to the \(\Sigma \text{CO}_2 \) profiles, i.e., in the zones where \(\Sigma \text{CO}_2 \)
increases, Alk also increases. The highest concentration mea-
sured is 5.74 meq/L between 3.5 and 4 cm in June 1984,
and, again the concentrations measured in the warm months
are greater than those measured in cold months. The Alk
data from June 1984 and March 1985 exhibit minima in the
profiles between 0 and 4 cm. In June 1984, the concentration
of Alk measured between 0 and 0.5 cm (1.90 meq/L) is less
than that in bottom water (2.20 meq/L); and, in March
1985, a minimum is observed between 2.5 and 3 cm. Similar
features may be evident between 1 and 1.5 cm in August
1984 and October 1985. In December 1983, the pore water
concentration of Alk is greater than bottom water in all sam-
ples. The concentration remains fairly constant between 0
and 4 cm; below this, it increases. In October 1983, there
were not enough samples in the surface sediments to observe
a minimum.

Dissolved \(\text{Ca}^{2+} \) concentrations were measured in all
months except October 1985. The measured concentration
of dissolved \(\text{Ca}^{2+} \) in the pore water is greater than the average
bottom water value in every core except for one sample in
December 1983. In June 1984 and March 1985, there is a
maximum in the \(\text{Ca}^{2+} \) profile above 10 cm. There may be
a similar feature in October 1983, but there were not enough
samples taken to show this feature conclusively. Below 10
cm, the \(\text{Ca}^{2+} \) concentration reaches a constant value of 9.34
\pm 0.07 mM.

Dissolved sulfide and phosphate were measured in order
to correct total Alk to carbonate Alk. Dissolved sulfide is
absent or only present at background levels in the top 4 cm
of all the cores in which it was measured. Below this depth,
sulfide increases to values as great as 1 mM (August 1984).
Dissolved phosphate profiles usually exhibit a maximum in
the top 4 cm. Below this depth, the concentration approaches
a constant value at depth except in December 1983.

DISCUSSION

The data collected in this study were used to calculate
seasonal rates of remineralization of organic carbon to \(\text{CO}_2 \).
In general, the concentration of degradation products such
as \(\Sigma \text{CO}_2 \) and \(\text{H}_2\text{S} \) reach their highest concentrations in the
warmest months. Exceptions to this trend do exist and are
discussed later in the text. The rate of oxidation of organic
matter was determined by modelling the seasonal profiles
of \(\Sigma \text{CO}_2 \) at Site M.

Organic carbon oxidation model

The concentration of \(\Sigma \text{CO}_2 \) in pore waters is affected
mainly by the oxidation of organic carbon, the dissolution
or precipitation of \(\text{CaCO}_3 \), and mixing with bottom water
through irrigation. In this section, a model is developed to
describe quantitatively the profiles of \(\Sigma \text{CO}_2 \); the model is
shown schematically in Fig. 5.

The oxidation of organic carbon is described as a \(\text{CO}_2-
production rate, \(R_c(z) \), which is controlled by the quality
of the organic matter in the sediment column, the location and
size of the microbial population, and the temperature. \(R_c(z) \)
is assumed to decrease exponentially with depth; in this
model, \(R_c(z) \) may be described by two exponential functions.
WESTRICH and BERNER (1984) have shown that the remains
of phytoplankton from Long Island Sound consist of 2 “me-
tabolizable” fractions, of very different reactivities, and a non-
degradable fraction. The two reactive fractions decompose
at different rates that decrease exponentially over time. Thus,
the functions describing \(R_c(z) \) are:

\[
R_c = R_0 \exp(-\beta_c z) \quad \text{from } 0 \text{ to } z_b
\]

\[
R_c = R_\infty \exp(-\beta_c (z - z_b)) \quad \text{from } z_b \text{ to } \infty
\]

where \(z_b \) is the length at which the rapidly degradable material
is exhausted and \(R_\infty \approx R_0 \exp(-\beta_c z_b) \).

There is no assumption in this model concerning the elec-
tron acceptor used to produce \(\text{CO}_2 \). As defined, \(R_c \) can
describe the oxidation of organic carbon in these sediments by
a variety of electron acceptors. The absence of dissolved sul-
fide in the surface sediments suggests that sulfate is not the
only oxidant available in these sediments. It is likely that the
absence of dissolved sulfides is the result of oxidation to sulfate.
FIG. 4. Pore water profiles collected at Site M. ΣCO$_2$ is reported in mmol/L, Alk in meq/L, Ca in mmol/L, H$_2$S in μmol/L, and PO$_4$ in μmol/L.
The importance of R_{CaCO_3} is discussed later.

Enhanced transport of ΣCO_2 due to biological irrigation can be described using the non-local source model of Emerson et al. (1984). The irrigation parameter, $\alpha(z)$, was estimated from $\alpha_{\text{be}}(z)$, the irrigation parameter calculated at this site by Martin and Sayles (1987) using 223Rn/226Ra disequilibrium. The value of $\alpha(z)$ used in the ΣCO_2 model has been calculated from $\alpha_{\text{be}}(z)$ assuming that transport across burrow walls is by molecular diffusion, and that there are no chemical reactions in the burrow walls and linings that impede ΣCO_2 transport. Thus, it is assumed here that the irrigation transport of 223Rn and ΣCO_2 differ only because of the difference in their molecular diffusion coefficients; i.e., $\alpha = \alpha_{\text{be}}(D_C/D_Rn)$, where D_C and D_Rn are the sediment diffusion coefficients for ΣCO_2 and Rn, respectively.

The sediment diffusion coefficient (D_i) was assumed to be constant with depth. Sediment diffusion coefficients were corrected for tortuosity and porosity at this site (Martin and Sayles, 1987). Values of D_i calculated for each month are listed in Table 1. These values were calculated using the molecular diffusion coefficients for HCO_3^- and Ca by Lee and E. R. M. Druffel

![Diagram of diffusion](image)

Fig. 5. Model used to describe the ΣCO_2 profiles in the warm months. The model is described in the text.

by oxygen or precipitation as iron sulfides. The sediments at this site are overlain by a fully oxygenated water column and at certain times of the year there is significant irrigation of the surface sediments. Oxygen and nitrate can diffuse across the sediment water interface and across burrow walls. The presence of microenvironments in sediments (Jørgensen, 1977b) may make it possible for oxygen and sulfate reduction to occur in the same sediment layer even though sulfate reducers are obligate anaerobes. Nitrate was present in pore water from Station P in Buzzards Bay in a winter core, and absent in a summer core (Henrichs, 1980). Dissolved iron and manganese profiles indicate that organic matter is oxidized by MnO$_2$ and Fe$_2$O$_3$ in the sediments between 0 and 1.5 cm (Martin, 1985). The depth to which these oxidants are important varies seasonally, with the shallower depths occurring in warmer months. Thus, R_i most likely reflects the oxidation of organic carbon by a variety of electron acceptors in the surface sediments and primarily by sulfate in the deeper sediments.

As defined, R_i is a combination of two processes—the net production of inorganic carbon from the oxidation of organic carbon and from the dissolution or precipitation of CaCO$_3$, i.e.,

$$R_i = R_{\text{org}} + R_{\text{CaCO}_3}.$$

The importance of R_{CaCO_3} is discussed later.

The dissolved Ca$^{2+}$ profile in sediments may also be affected by adsorption to clay surfaces; under certain conditions, consideration of this process may significantly change the effective diffusion coefficient (see Carbon budget). The sediments are assumed to have a constant porosity. Values actually vary in the upper 4 cm (Martin and Sayles, 1987), but neglecting this change will not affect the results of the model.

Given the above assumptions, the equation defining the change of ΣCO_2 with time is:

$$\frac{\partial C}{\partial t} = D_C \left(\frac{\partial^2 C}{\partial z^2} \right) - \alpha(z)(C - C_0) + R_i(z).$$

To solve Eqn. (2), the observed ΣCO_2 profile was assumed to be in steady state, i.e., $\partial C/\partial t = 0$. Since seasonal changes are seen in the ΣCO_2 profiles, the validity of this assumption must be examined. In his study of sediment diagenesis in Long Island Sound, Aller (1980b) used a radial diffusion model to interpret his pore water data. He found that the short diffusion distance from sediment to burrow channel in the radial diffusion model coupled with the rapid reaction rates observed in nearshore sediments led to the rapid re-establishment of steady-state. The description of irrigation in the non-local source model of Emerson et al. (1984) is analogous to the radial diffusion model (Boudreau, 1984).

Thus, the above argument is valid for the model presented here, too. Finally, McNichol (1986) solved Eqn. (2) without assuming steady-state using a depth averaged value of $\alpha(z)$ and a single exponential function for $R_i(z)$ appropriate for Site M. Reaction rates are rapid enough in warmer months for pore water to achieve steady state on shorter time scales than those of seasonal values in parameter values. This will be demonstrated further by comparing model-calculated rates to independently estimated rates.

Using the steady-state assumption and a centered-difference approximation for $\partial^2 C/\partial z^2$, a numerical approximation of Eqn. (2) is:

$$C_{i+1} + A_i C_i + C_{i-1} = B_i (\Delta z)^2$$

where

$$A_i = -2 + (\Delta z)^2 \alpha_i / D$$

$$B_i = -(\alpha_i C_0 + R_i) / D$$

$$R_i = R_i(z)$$

$$\alpha_i = \alpha(z)$$

$$C_0 = \text{bottom water concentration}.$$

To apply the model to the observed data the following boundary conditions were used:

1) $i = 0, z = 0, C = C_0$

2) $i = n + 1, z = z_m, C = C_m$.

where the subscript 'm' refers to the maximum depth sampled. The model was fit to data from the warm months with $\Delta z = 0.05$ cm, using the values for $\alpha(z)$ and $R_i(z)$ discussed below. The model fits to the data are shown in Fig. 6. The parameters used to fit the data are listed in Table 2. The data from October 1985 were not fit with the steady-state model and will be discussed later.

The second boundary condition ($z = z_m, C = C_m$) forces the calculated profile through the deepest observed data point.
However, in most months, the CO$_2$ production term is very small at this depth (<1% of R_0 at the surface of the sediments for all the months modelled) and cannot account for the increase observed in the CO$_2$ profile below 20 cm. The increase must be due to production deeper in the sediment column. Based on the observed flux of CO$_2$ at 25–30 cm, we calculate that 1.6 gC/m2-yr are oxidized below this depth. As will be shown later, this is a very small part of the annual carbon budget for the sediments. Comparison of the observed gradients in CO$_2$ and SO$_4$ (this study; Martin, 1985) at 30 cm suggests that SO$_4$ is not depleted entirely until a depth of approximately 5 m in the sediment column. Assuming that sediment has been accumulating in Buzzards Bay since the last glacial period at 0.05 cm/yr (calculated later in the paper using 14C data), we calculate that the sediment column in Buzzards Bay is approximately 5 m, also. Thus, the observed increase in CO$_2$ below 30 cm is most likely due to continued sulfate reduction in these sediments. It is unlikely that methanogenesis is important at this site because sulfate is still present.

Application of the model

To use this model to calculate $R_e(z)$, the irrigation parameter, $\alpha(z)$, must be known independently. The results of the Martin and Sayles (1987) study of 222Rn/228Ra disequilibria at Site M were used to define $\alpha(z)$. They found that irrigation was an important transport mechanism for dis-
solved species in warm months up to depths of at least 20 cm, their maximum sampling depth. In the warmer months, they used an exponentially decreasing function to describe the observed 222Rn profiles in October 1982, June 1983 and September 1983 and a constant function for \(\alpha_R(z) \) in June 1984. In colder months (December through March), their 222Rn profiles were adequately described by considering molecular diffusion as the only transport process. MARTIN (pers. commun.) has estimated that the calculated values of \(\alpha(z) \) are known to ±20%.

We modelled the \(\Sigma CO_2 \) data from September 1983, October 1983, June 1984, and August 1984 using \(\alpha_R(z) \) reported in MARTIN and SAYLES (1987) for the months of September 1983, October 1983, June 1984, and September 1983, respectively. The data were fit by correcting \(\alpha_R(z) \) to \(\alpha(z) \) and by subsequently varying \(R_c(z) \) to optimize the fit to the data using a grid-search method (BEVINGTON, 1969) and four adjustable parameters, \(R_0, \beta_1, \beta_2, \) and \(z_b \). A grid-spacing (\(\Delta z \)) of 0.05 was used to obtain the fits. The fits obtained for September 1983, October 1983, June 1984, and August 1984 are in Fig. 6: the parameters used to fit the data are listed in Table 2. The model-calculated values of \(R_0 \), the CO2-production rate at the sediment water interface, range from a low of \(5.1 \times 10^{-7} \) mol/L-sec in June 1984 to a high of \(7.5 \times 10^{-9} \) mol/L-sec in August 1984. The variation of \(R_c(z) \) with depth for each month is shown in Fig. 7. The calculated values of \(R_c(z) \) are known as well as the values of \(\alpha(z) \); thus, \(R_c \) is known to ±20%.

In general, the data are well-fit using this model. However, in every month, the measured \(\Sigma CO_2 \) concentrations between 0 and 1 cm are greater than that predicted by the model. If the data are real they suggest that there is an extremely active zone of remineralization near the sediment water interface and that the CO2-production rate near the sediment water interface is much greater than that calculated for the remainder of the sediment column. WESTRICH and BERNER (1984) identified two reactive portions of coastal phytoplanktonic organic matter, whose reactivity differs by about an order of magnitude. Their study of \(SO_4^{2-} \) reduction in sediments suggested that very little of the highly reactive portion of the organic matter reaches depths of 2–6 cm in the coastal sediment column. The \(\Sigma CO_2 \) data collected here suggest that if a highly reactive portion of organic matter does reach the sediments, most of it is oxidized at the sediment water interface. It is also possible that the data observed between 0 and 1 cm are an artifact of the sampling procedure. The production of CO2 between 0 and 0.5–1 cm may be rapid enough for the \(\Sigma CO_2 \) concentration to increase from the time sampled to the time analyzed. Based on the highest calculated \(R_c \) at the sediment surface (7.5 \(\times 10^{-9} \) mol/L-sec), it would take approximately 18 hours for the \(\Sigma CO_2 \) to increase 0.5 mM. All \(\Sigma CO_2 \) analyses were complete within less than 18 hours of sampling. However, sample handling may artificially increase the CO2-production rate by an uncertain amount. Thus, it is not possible to distinguish unequivocally whether the elevated \(\Sigma CO_2 \) concentrations at the sediment surface are real without further study.

The values of \(R_0, \beta_1, \beta_2, \) and \(z_b \) used to fit the data for each month are listed in Table 2. In all months except August 1984, \(R_c(z) \) is described best using two exponential functions. The exponential factors \(\beta_1 \) and \(\beta_2 \) are not significantly different in August 1984. The calculated functions indicate that there is a more reactive form of organic matter present in the sediments between 0 and 3–5 cm. This is somewhat deeper than the surface sediment mixing depth of 2.5–3 cm predicted based on \(^{234}Th \) measurements made in warm months at Site M (MARTIN and SAYLES, 1987).

The depth dependence of \(R_c(z) \) is shown in Fig. 7a. In general, the profiles indicate that, based on the \(\Sigma CO_2 \) profiles, the production of CO2 is most rapid at the sediment water interface and decreases rapidly to very low values by ap-

![Fig. 7. a) Profiles of \(R_c \) with depth. b) Profiles of \(R_{SO_4} \) for December 1983 (squares) and June 1984 (circles) with depth.](image-url)
approximately 10 cm. The values of R_s below 10 cm suggest that CO$_2$ production is insignificant at this depth. In October 1983, R_s is essentially zero at 8 cm. This is most likely because irrigation was more important at depth in this core than it was in October 1982, the month for which $a_{re}(z)$ was defined. If the irrigation term used to model the October 1983 data does not account for the actual amount of irrigation at depth in the sediments, R_s is forced to be very small in order for the model to describe the observed concentrations of ΣCO$_2$ at depth. It is likely that in October 1983, the profile observed at depth in the sediments is less representative of the average Site M sediment profile than the other profiles. A much smaller diameter core liner (8 vs. 20 cm) was used in this month and the burrow of a very large organism was present between 8 and 26 cm. Similar burrows were observed in other cores sampled in warm months, although usually only one per core was observed (this study; MARTIN, 1985).

Thus, in October 1983, the effects of irrigation at depth are maximized because a small area which contained a large burrow was sampled.

Two cores were sampled in low temperature months, December 1983 and March 1985. Using Eqn. (3), MCNICHOL (1986) showed that a steady-state assumption was not valid for the conditions typical of the low temperature months. However, the ZCO$_2$ data from December 1983 could be used to calculate a value of R_s for the low temperature months because 222Rn/226Ra disequilibrium measurements set time limitations on the observed concentration of ΣCO$_2$. Transport parameters were not measured for March 1985, but 222Rn/226Ra measurements in December 1983 could be explained without invoking irrigation (MARTIN and SAYLES, 1987). However, the concentrations of ZCO$_2$ in December 1983 were very low compared to values observed at this site in nine other months (this study; MARTIN, 1985); the data from October 1985 are the only ones that are similarly low. The December 1983 core was sampled a few days after several large storms had passed through Buzzards Bay, and the October 1985 core was sampled one month after Hurricane Gloria and one week after a stormy period. Both these cores appear to have had pore water constituents washed out by a storm-related mechanism and had not had time to re-establish steady-state concentrations. In order for the 222Rn/226Ra system to have re-established equilibrium in December 1983, the irrigating event discussed above must have occurred at least two weeks prior to sampling. If it is assumed that the pore water ΣCO$_2$ between 0 to 20 cm was diluted to the bottom water ΣCO$_2$ concentration and that it took two weeks to establish a constant final concentration of 2.75 mM, an estimate of the maximum R_s can be calculated from:

$$R_s = \frac{\Delta C}{\Delta t}.$$

The rate calculated for December 1983 is 0.6×10^{-9} mol/L-sec and is listed in Table 3 along with the surface values of R_s calculated from model fits for September 1983, October 1983, June 1984, and August 1984.

In December 1983 and June 1984, 35SO$_4^{2-}$-sulfate reduction rates were measured at Site M in conjunction with the pore water sampling (R. W. HOWARTH, pers. commun.). The measured sulfate reduction rates can be converted to CO$_2$ production rates by assuming that two moles of CO$_2$ are produced for each mole of SO$_4^{2-}$ reduced (WESTRICH, 1983). The depth profiles of the CO$_2$-production rates calculated from the sulfate reduction rates (\dot{R}_{SO_4}) are shown in Fig. 7b. In December 1983, the depth-averaged value of \dot{R}_{SO_4} is $1.0 \pm 0.25 \times 10^{-9}$ mol/L-sec which is similar to, but slightly greater than, R_s ($0.6 \pm 0.12 \times 10^{-9}$). In June 1984, the depth-averaged value of R_s ($2.5 \pm 0.5 \times 10^{-9}$ mol/L-sec) is the same as the depth-averaged value of \dot{R}_{SO_4} ($2.5 \pm 0.7 \times 10^{-9}$), but the shapes of the depth profiles are completely different. The value of R_s at the surface of the sediments in June 1984 may be higher than \dot{R}_{SO_4}, at the surface because O$_2$, as well as SO$_4^{2-}$, may be an important electron acceptor in the surface sediments. JORGENSEN (1977a) has estimated that as much as 50% of the CO$_2$ produced at the surface of reducing sediments overlain by an oxic water column may be from O$_2$ reduction. If the Mn profile from June 1984 (MARTIN, 1985) is used to define an O$_2$ zero depth of 0.25 cm, it can be shown that approximately 10% of the total organic carbon oxidized may be oxidized by O$_2$. This is a minimum estimate because a linear gradient was assumed for the O$_2$ profile, and irrigation as a source of O$_2$ was ignored. The value of \dot{R}_{SO_4} ($2.5 \pm 0.7 \times 10^{-9}$) at 10 cm is higher than the value of R_s ($0.75 \pm 0.1 \times 10^{-9}$) at this depth. It is likely that the calculated value of R_s is closer to the correct value, because it is based on calculations made from observed pore water concentrations, rather than incubations of sediment. Finally, in general, some of the discrepancy between R_s and \dot{R}_{SO_4} observed in December 1983 and June 1984 may be due to spatial heterogeneity. Because the values of R_s calculated in this study represent an average over a larger area of sediment than the \dot{R}_{SO_4}, R_s is a better indicator of the average remineralization occurring at a given site.

Table 3. Calculated values of R_s and \dot{R}_{SO_4} and the associated error at the sediment surface and calculated values of \dot{C}_{CO_2}. \dot{R}_{SO_4} refers to the CO$_2$-production rate that is calculated from the measured sulfate-reduction rate. The units of the rate are mol/L-sec; \dot{C}_{CO_2} is expressed in gC/m2-yr.

Month	$R_s \times 10^9$	$\dot{R}_{SO_4} \times 10^9$	\dot{C}_{CO_2}
Sept. 83	5.4 ± 1.1	94	
Oct. 83	5.8 ± 1.2	76	
Dec. 83*	4 ± 1	1.0 ± 0.2	
June 84	5.1 ± 1.0	$2.7 \pm 0.7**$	107
Aug. 84	7.5 ± 1.5	$--$	89
Annual	**97**	**107**	**69**

*Values reported for December 83 are depth-averaged over the surface 10 cm, not surface values.

Note: no replicates reported; error assumed to be the same relative magnitude as December 83.

CaCO$_3$ in the sediments

As stated earlier, the calculated value of R_s measured the net production of ΣCO$_2$ from the oxidation of organic carbon

1539
and from the dissolution or precipitation of CaCO₃. Dissolution of CaCO₃ appears to be controlled by seasonal processes and was of importance in only one of the months modelled here; precipitation of CaCO₃ does not appear to be important in these sediments. Figure 8 shows the calculated values of the ion concentration product (ICP) of [Ca][CO₃]²⁻ with depth as well as the equilibrium ICP values for calcite and aragonite. It is evident that the surface sediments are undersaturated with respect to CaCO₃ at least two months of the year. Undersaturation with respect to CaCO₃ in the surface sediments at Site M has been shown for other months (Martin, 1985). Below 4 cm, it appears that the pore waters are in equilibrium with some phase of CaCO₃. Disequilibrium in the surface sediments is not necessarily evidence that dissolution occurs; it indicates only that conditions are favorable for dissolution. However, there is visual evidence for the dissolution of CaCO₃ in the sediments. Small clam shells taken from cores are obviously pitted and microscopic examination of the surface sediments reveals some severely eroded foraminifera shells. In addition, dissolved Ca²⁺ concentrations provide direct evidence that dissolution of CaCO₃ occurs in these sediments. It is assumed that the dissolution of CaCO₃ is the major source of dissolved Ca²⁺ to the pore water at Site M. The concentrations of Ca²⁺ in the pore waters of the surface sediments are always greater than those in the bottom water; these data indicate that there is dissolution of CaCO₃ at or near the sediment water interface.

In June 1984 and March 1985, a large maximum was observed in the dissolved Ca²⁺ profile, indicating the dissolution of CaCO₃ within the sediment column. In March 1985, there is a minimum observed in the Alk profile in the upper 4 cm, and in June 1984, the Alk measured in the surface interval was less than bottom water Alk. In both these cores there appears to be significant dissolution of CaCO₃ at the same time that there is net consumption of Alk. This is surprising because the dissolution of CaCO₃ is a source of Alk. It is most likely that these cores were sampled at a time when benthic activity was just beginning to increase as temperatures increased in the spring. Animals would start turning the sediment over much more quickly and bringing solid-phase sulfides (e.g., FeS) from depth in the sediment to the surface where they could be oxidized with O₂. This process can produce a large amount of acid which can dissolve CaCO₃. Based on the Alk and Ca²⁺ profiles, it appears that, in June 1984, the oxidation of sulfides is important very close to the sediment water interface, while the data from March 1985 indicate that the oxidation occurs deeper in the sediments—between 2 and 4 cm. This means that O₂ must be introduced to the sediments to a depth of 4 cm, presumably through irrigation. Further evidence for oxidation of sulfides is shown by the dissolved iron measured in June 1984 (Martin, 1985). The maximum Fe concentration of 600 µM is observed at 0.25 cm and is the highest measured at this site. The oxidation of solid-phase sulfides has been proposed as one mechanism for the removal of reduced sulfur from coastal sediments (Aller, 1982; Howarth, 1984). The data from March 1985 and June 1984 are consistent with this mechanism.

The Ca²⁺ data from June 1984 and March 1985 (Fig. 2) indicate that there was a loss of dissolved Ca²⁺ at depth in the sediments. While some of this loss is to bottom water through biological irradiation, it appears that either the sediment system is not at steady-state with respect to dissolved Ca²⁺ or that there is precipitation of some Ca mineral. It is possible that the system is not at steady-state and that the observed maxima are transient spikes due to seasonal dissolution of CaCO₃. However, if the system is at steady-state, then there must be precipitation of a Ca mineral in the sediments. In June 1984, based on the curvature of the Ca²⁺ profile, the zone of Ca²⁺ consumption is between 2 and 4 cm. As this is a region that is undersaturated with respect to CaCO₃, CaCO₃ could not be precipitating. Instead, a calcium phosphate phase may be forming as the zone of Ca²⁺ consumption is coincident with a zone of PO₄³⁻ consumption. This would be consistent with the suggestion by Jahnke et al. (1983) that apatite is formed by the precipitation of amorphous calcium phosphate under reducing conditions in recent sediments of the Mexican continental margin.

Carbon budget

The calculated rates of remineralization can be used with the other data collected in this study to construct a carbon budget for the sediments at Site M. To do this, it is necessary to know the amount of carbon in the sediments and its rate of burial, as well as the rate at which it is oxidized. The amount of carbon oxidized in the sediments annually can be calculated from \(R_c(z) \). The amount of \(\Sigma \)CO₂ produced is:

\[
\Sigma \text{CO}_2 = \phi F \int_0^z R_c(z) dz
\]

where

\(F = \text{concentration conversion factor} \)
\(\phi = \text{porosity at depth} > 30 \text{ cm} \) (assumed to be 0.737 based on equation of Martin and Savis, 1987)

\(\Sigma \text{CO}_2 \) corresponds primarily to carbon produced from the oxidation of organic carbon. Of the months for which the \(\Sigma \text{CO}_2 \) calculation can be made, the dissolution of CaCO₃ was important only in the month of June 1984. Its effect was
removed in the following manner. A curve-fitting routine was used to calculate a polynomial function that describes the concentration of Ca\(^{2+}\) with depth. Under a steady-state assumption, the net amount of CO\(_3\) added due to dissolution can be calculated from:

\[
\Sigma C_{Ca} = \int_{z_1}^{z_2} R_{Ca} dz = \int_{z_1}^{z_2} [D_{Ca}d^2Ca/dz^2 - \alpha(Ca - Ca_0)]
\]

where \(D\) is the adsorption-corrected sediment diffusion coefficient. Under a steady-state assumption, the sediment diffusion coefficient for Ca\(^{2+}\) needs to be corrected for adsorption only if the solid-phase mixing coefficient is of the same order as the adsorption corrected sediment diffusion coefficient (Berner, 1980). In June 1984, this is the case in the top 2–3 cm. The corrected diffusion coefficient is:

\[
D_{Ca} = (1 + \phi K_d)D_1 + D_0 = 5.4 \times 10^{-6} \text{ cm}^2/\text{sec}
\]

where \(D_1\) is the solid-phase mixing coefficient in the surface sediments. 52 \(\times 10^{-6}\) cm\(^2\)/sec (Martin and Sayles, 1987) and \(K_d\) is the distribution coefficient for red clays, 1.7, from Li and Gregory (1974). The amount of carbon oxidized in the sediments is thus:

\[
\Sigma C_{Ca} = \Sigma C_p - \Sigma C_s,
\]

The amount of carbon oxidized has been calculated on an annual basis and is listed in Table 3. In June, the dissolution of CaCO\(_3\) accounts for only 2% of the \(\Sigma CO_3\) produced.

Assuming that remineralization in September 1984 returns to a rate similar to that in September 1983, the area under the curve of \(\Sigma C_{Ca}\) vs. time represents an annual average of the carbon oxidized in the sediments. The amount of carbon oxidized to CO\(_2\) in one year in the sediments is thus 69 gC/m\(^2\). This is similar to the amount of organic carbon oxidized by sulfate at NWC in Long Island Sound and less than that at Cape Lookout Bight in North Carolina. Westrich et al. (1983) calculated that sulfate reduction in the sediments oxidized 100 gC/m\(^2\)-yr at NWC, a site similar to Site M. Martens and Klimp (1984) calculated that 360 gC/m\(^2\)-yr of organic carbon are oxidized to CO\(_2\) in Cape Lookout Bight sediments, an area of unusually high organic carbon input. However, the value of 69 gC/m\(^2\)-yr is significantly greater than the value of 14 gC/m\(^2\)-yr calculated by Henrichs and Farrington (1987) at another site in Buzzards Bay. While it is possible that the difference is due to spatial heterogeneity in the rates of remineralization and supply of organic carbon to the sediments in Buzzards Bay, the calculations made here may be more appropriate for measuring the amount of carbon remineralized in coastal sediments. The calculation by Henrichs and Farrington (1987) was made by modelling the profiles of solid-phase organic carbon. They assumed the profiles were at steady-state concentrations and that mixing had a negligible effect on the observed profiles. Data on the concentration of solid-phase organic carbon collected as part of this study show that the largest gradient in organic carbon is in the surface 2 to 4 cm (Fig. 2). This is the region shown by Martin and Sayles (1987) to be mixed rapidly and, by the modelling in this paper, to be the region where most of the remineralization occurs. Accurate estimates of carbon remineralization from solid-phase profiles must take the solid-phase mixing into account. Also, the uncertainty in sediment mixing rates between 2 and 20 to 30 cm discussed in the next section make it extremely difficult to model solid-phase profiles in coastal sediments well.

Finally, it should be kept in mind that the amount of carbon remineralized annually that is calculated in this study is based on results from 5 cores. The 5 cores provided us with data representative of the winter and summer extremes (December 1983 and August 1984) and the developing and waning summer conditions (June 1984, September 1983, and October 1983). We believe that we have provided a good estimate of the carbon remineralized in one year, but realize that a more accurate estimate could be obtained by sampling more frequently throughout the year. The carbon budget has been presented to demonstrate the utility of the remineralization model developed in this paper. Also, we are aware that interannual variability in remineralization and irrigation rates exist at coastal sites. Thus, a more detailed sampling over a longer period of time would provide the best estimate of carbon remineralization at Site M.

Burial of organic carbon

The amount of organic carbon buried in the sediments (\(C_b\)) at site M is calculated from the sedimentation rate (\(\omega\)) and the concentration of sedimentary organic carbon below the mixed zone (\([OC]_d\)) with the following equation:

\[
C_b = \omega[OC]_d(1 - \phi) = 5.5 \text{ gC/m}^2\text{-yr}
\]

where

- \(\rho = \text{density of solids} = 2.62 \text{ g/cm}^3\), and
- \(\phi = \text{porosity at depth greater than 30 cm} = 0.737\) (Martin and Sayles, 1987);

\([OC]_d = 16.0 \text{ mg C/gdw}\).

To calculate the amount of carbon buried, we assume that the oxidation of organic carbon in the sediments at depths greater than 1 m does not affect the amount of carbon preserved in the sediments. Oxidation rates calculated in this paper confirm this assumption. Additionally, the \(\Sigma CO_2\) and SO\(_4^{2-}\) gradients observed in these sediments (this study; Martin, 1985) indicate that, if mixing and irrigation are minimal below 30 cm, there will be negligible changes in the solid-phase organic carbon profile.

The most difficult parameter to define in Eqn. (6) is the sedimentation rate. Determination of coastal sedimentation rates is complicated by the possibility of extensive mixing in the surface sediments. Martin and Sayles (1987) used \(^{234}\text{Th}\) profiles to show that sediment at this site is rapidly mixed to depths of 2 to 3 cm. Brownawell (1986) studied mixing and sedimentation at Site M with \(^{210}\text{Pb}\) and concluded that rapid mixing was important to 10 cm. Using the data below 10 cm, he calculated a sedimentation rate of 0.3 cm/yr. However, this value was inconsistent with solid-phase PCB penetration and Brownawell suggested that mixing was important to depths greater than 10 cm. Examination of the \(^{14}C\) ages presented in Fig. 3 suggests that mixing is important to a depth of 20 to 30 cm. Thus, the sedimentation rate cal-
culated from 210Pb data is most likely an overestimate. A sedimentation rate can be calculated from the 14C ages calculated from data collected at depths greater than 25 cm. It is assumed that below this depth sediment mixing has a negligible effect on the 14C profile and that the input of 14C has remained constant over the time period mentioned. With these assumptions, the calculated sedimentation rate is 0.05 cm/yr and is shown by the dotted line in Fig. 3. This value is similar to that reported for site NWC in Long Island Sound, a site similar to Station M, using 14C data (BENOIT et al., 1979) and sediment accumulation arguments (BOKUNIEWSZ et al., 1976). However, based on this sedimentation rate, the sediment used to calculate the sedimentation rate was deposited more than 500 years ago. It is likely that the sedimentation rate in Buzzards Bay has increased in recent times due to agricultural and industrial activity. Thus, currently, the sedimentation rate at Site M is most likely greater than 0.05 cm/yr and less than 0.3 cm/yr. Using this range of values in Eqn. (6) we calculate C_b to be between 5.5 and 33.1 gC/m2-yr. This range is less than the 36 gC/m2-yr buried reported for a different site in Buzzards Bay by HENRICHES and FARRINGTON (1987). The value they report was calculated using a sedimentation rate of 0.3 cm/yr, the same as the upper limit for the sedimentation rate for Site M. When the amount of carbon oxidized at Site M is added to the amount preserved in the sediments, we calculate that a total of 74–107 g C/m2 reaches the sediments annually.

SUMMARY AND CONCLUSIONS

In this paper, we have shown that profiles of ΣCO$_2$ can be modelled to calculate the rate of remineralization of organic carbon in coastal sediments. The most important processes affecting the profiles of ΣCO$_2$ are the remineralization of organic carbon, immigration of the pore water by benthic organisms, and diffusion to overlying water. Most of the remineralization in coastal sediments similar to Site M occurs in the surface sediments between 0 and 3–5 cm. This is an active, well-mixed region which appears to contain the most labile organic matter.

The values of R_c calculated from the steady-state model in the warm months for the surface sediment range from a low of $5.1 \pm 1.0 \times 10^{-9}$ mol/L-sec in June 1984 to a high of $7.5 \pm 1.5 \times 10^{-9}$ mol/L-sec in August 1984. Values of R_c at 5 and 10 cm are 20–40% and 0–15% of the surface remineralization rates, respectively. The model-calculated values of R_c are dependent on the values chosen for the irrigation parameter, α. This dependence emphasizes the importance of a knowledge of the mechanisms and magnitude of pore water transport in a nearshore environment when modelling pore water profiles. At this study site the enhanced transport of solutes by irrigation was well-characterized using 222Rn (MARTIN and SAYLES, 1987). During colder months, the pore water parameters measured were not at steady-state concentrations and the rate of remineralization was slow. It was possible to calculate a CO$_2$ production term for only one of these winter months (December 1983). The value of R_c was $0.6 \pm 1 \times 10^{-9}$ mol/L-sec, significantly lower than those calculated in the summer months.

Modelling the ΣCO$_2$ profile provides an estimate of the remineralization by all electron acceptors from O$_2$ to SO$_4^{2-}$. It may be possible to use models of ΣCO$_2$ profiles in conjunction with measured oxidation rates to calculate the relative importance of the various electron acceptors used in the oxidation of organic carbon. The role of DOC in the overall remineralization has not been discussed in this paper. It is assumed that solid-phase organic carbon is oxidized to both DOC and CO$_2$, and that DOC may be an important component of the organic carbon cycle in sediments. Its role needs to be further investigated.

Acknowledgements—We wish to thank those who helped with collection of the cores, in particular, Dick Colburn, captain of the Astoria, and the divers, Charlie Olson, Lary Ball, Sue Wakeham, and Hovey Clifford, and, for 14C analyses and other technical assistance, Sheila Griffin. The manuscript benefited from reviews by Bill Martin, Fred Sayles, John Farrington, David Burdige, and an anonymous reviewer. This research was supported in part by NSF-OCE83-15412, NSF-OCE84-2179, NSF-OCE84-16632, the Education Program at WHOI/MIT Joint Program, and the Coastal Research Center of WHOI.

REFERENCES

ALLER R. C. (1980a) Diagenetic processes near the sediment water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry. (S. N. P.), Advances Geophys. 22, 237–350.

ALLER R. C. (1980b) Quantifying solute distributions in the bioturbated zone of marine sediments by defining and average microenvironment. Geochim. Cosmochim. Acta 44, 1955–1965.

ALLER R. C. (1982) Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. J. Geol. 90, 79–95.

ALLER R. C. and RUDE P. D. (1986) Anoxic oxidation of sulfides in marine sediments. Eos 67, 996.

ANDERSON L. G., HALL P. O. J., IVERFELDT A., RUTGERS VAN DER LOEFF M. M., SUNDBY B. and WESTERLUND S. F. G. (1986) Benthic respiration measured by total carbonate production. Limnol. Oceanogr. 31, 319–329.

BALZER W. (1984) Organic matter degradation and biogenic element cycling in a nearshore sediment (Kiel Bight). Limnol. Oceanogr. 29, 1231–1246.

BENOIT G. J., TURFKIAN K. K. and BENNINGER I. K. (1979) Radiocarbon dating of a core from Long Island Sound. Est. Coast. Mar. Sci. 9, 171–180.

BERGER A. R. (1980) Early Diagenesis: A Theoretical Approach Princeton University Press, 241p.

BENVINGTON P. R. (1969) Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, Inc., 336p.

BOKUNIEWSZ H. J., GEBERT J. and GORDON R. B. (1976) Sediment mass balance of a large estuary. Long Island Sound. Est. Coast. Mar. Sci. 4, 522–536.

BOUVEREAU B. P. (1984) On the equivalence of nonlocal and radial-diffusion models for porewater irrigation. J. Mar. Res. 42, 731–735.

BROWNWELL B. (1986) The role of colloidal organic matter in the marine geochemistry of PCBs. Ph.D. dissertation, WHOI/MIT.

EMERSON S., JAHNKE R. and HEGGIE D. (1984) Sediment-water exchange in shallow water estuarine sediments. J. Mar. Res. 42, 709–730.

FONSELUS (1976) Determination of hydrogen sulfide in Methods of Seawater Analysis (ed. K. GRASSHOF), Verlag Chemie, Weinheim.

FROELICH P. N., KLINKHAMMER G. P., BENDER M. L., LUDEKTE N. A., HEATH G. R., CULLEN D., DAAUPHIN P., HAMMOND D.,
HARTMAN B. and MAYNARD V. (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. *Geochim. Cosmochim. Acta* 43, 1075-1091.

GILDA-GARDER (1971) Direct spectrophotometric determination of inorganic sulfide in biological materials and in other complex materials. *Anal. Biochem.* 43, 129-133.

GOLDHABER M. B., ALLER R. C., COCHRAN J. K., ROSENFELD J. K., MARTENS C. S. and BERNER R. A. (1977) Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: Report of the FOAM group. *Amer. J. Sci.* 277, 193-237.

GRIFFIN S. M. and DRUFFEL E. R. M. (1985) Woods Hole Oceanographic Institution Radiocarbon Laboratory: Sample treatment and gas preparation. *Radiocarbon* 27, 43-51.

HENRICH S. M. (1980) The biogeochemistry of dissolved free amino acids in marine sediments. Ph.D. dissertation, MIT/WHOI, WHOI-80-39.

HENRICH S. M. and FARRINGTON J. W. (1987) Early diagenesis of amino acids and organic matter in two coastal marine sediments. *Geochim. Cosmochim. Acta* 51, 1-15.

HOWARTH R. W. (1984) The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. *Biochem. 1*, 5-27.

INGLE S. E. (1975) Solubility of calcite in the ocean. *Mar. Chem.* 3, 301-319.

JAHNKE R. A., EMERSON S. R., RIE K. K. and BURNETT W. C. (1983) The present day formation of apatite in Mexican continental margin sediments. *Geochim. Cosmochim. Acta* 49, 259-266.

JØRGENSEN B. B. (1977a) The sulfur cycle of a coastal marine sediment (Limfjorden, Den.). *Limnol. Oceanogr.* 22, 814-832.

JØRGENSEN B. B. (1977b) Bacterial sulfate reduction within reduced micromiches of oxidized marine sediments. *Mar. Biol.* 41, 7-17.

JØRGENSEN B. B. and REVSBECH N. P. (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus. *Limnol. Oceanogr.* 30, 111-122.

LI Y. H. and GREGORY S. (1974) Diffusion of ions in seawater and in deep-sea sediments. *Geochim. Cosmochim. Acta* 38, 703-714.

MARTENS C. S. and KLUMP J. V. (1984) Biogeochemical cycling in an organic-rich coastal marine basin. 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. *Geochim. Cosmochim. Acta* 48, 1987-2004.

MARTIN W. R. (1985) Transport of trace metals in nearshore sediments. Ph.D. dissertation, WHOI/MIT, WHOI-85-18.

MARTIN W. R. and SAYLES F. L. (1987) Seasonal cycles of particle and soluble transport processes in nearshore sediments: 222Rn/218Rn and 234Th/238U disequilibrium at a site in Buzzards Bay, MA. *Geochim. Cosmochim. Acta* 51, 927-943.

MCDONALD J. F. (1986) A study of the remineralization of organic carbon in nearshore sediments using carbon isotopes. Ph.D. dissertation, WHOI/MIT, WHOI-86-27.

MOORE J. R. (1953) Bottom sediment studies, Buzzards Bay. *J. Sediment. Petrol.* 33, 511-558.

REEBURGH W. S. (1983) Rates of biogeochemical processes in anoxic sediments. *Ann. Rev. Earth Planet. Sci.*, 269-298.

RHOADS D. C. (1967) Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, MA. *J. Geol.* 75, 461-476.

ROSENFIELD L. K., SIGNELL R. P. and Gawarkiewicz G. G. (1984) Hydrographic study of Buzzards Bay, 1982-1983. Tech. Report, WHOI-84-5.

SANDERS H. L. (1958) Benthic studies in Buzzards Bay. I. Animal-sediment relationships. *Limnol. Oceanogr.* 3, 245-258.

SANDERS H. L. (1960) Benthic studies in Buzzards Bay. III. The structure of the soft-bottom community. *Limnol. Oceanogr.* 5, 138-153.

SAYLES F. L. (1981) The composition and diagenesis of interstitial solutions—II. Fluxes and diagenesis at the water-sediment interface in the high latitude N. and S. Atlantic. *Geochim. Cosmochim. Acta* 45, 1061-1086.

SHILLER A. M. and GIEKES J. M. (1980) Processes affecting the oceanic distribution of dissolved Ca and alkalinity. *J. Geophys. Res.* 85, 2719-2727.

STRICKLAND J. D. H. and PARSONS T. R. (1972) *A Practical Handbook of Seawater Analysis*, 2nd edn., Fisheries Research Board of Canada, Ottawa.

WESTRICH J. T. (1983) The consequences and controls of bacterial sulfate reduction in marine sediments. Ph.D. dissertation, Yale University.

WESTRICH J. T. and BERNER R. A. (1984) The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. *Limnol. Oceanogr.* 29, 236-249.