Title
On the measurement of ecological novelty: scale-eating pupfish are separated by 168 my from other scale-eating fishes.

Permalink
https://escholarship.org/uc/item/59z3n5j7

Journal
PLoS One, 8(8)

Authors
Martin, Christopher
Wainwright, Peter

Publication Date
2013

DOI
10.1371/journal.pone.0071164

Peer reviewed
On the Measurement of Ecological Novelty: Scale-Eating Pupfish Are Separated by 168 my from Other Scale-Eating Fishes

Christopher H. Martin*, Peter C. Wainwright
Department of Evolution and Ecology and Center for Population Biology, University of California Davis, Davis, California, United States of America

Abstract

The colonization of new adaptive zones is widely recognized as one of the hallmarks of adaptive radiation. However, the adoption of novel resources during this process is rarely distinguished from phenotypic change because morphology is a common proxy for ecology. How can we quantify ecological novelty independent of phenotype? Our study is split into two parts: we first document a remarkable example of ecological novelty, scale-eating (lepidophagy), within a rapidly-evolving adaptive radiation of Cyprinodon pupfishes on San Salvador Island, Bahamas. This specialized predatory niche is known in several other fish groups, but is not found elsewhere among the 1,500 species of atherinomorphs. Second, we quantify this ecological novelty by measuring the time-calibrated phylogenetic distance in years to the most closely-related species with convergent ecology. We find that scale-eating pupfish are separated by 168 million years of evolution from the nearest scale-eating fish. We apply this approach to a variety of examples and highlight the frequent decoupling of ecological novelty from phenotypic divergence. We observe that novel ecology is not always tightly correlated with rates of phenotypic or species diversification, particularly within recent adaptive radiations, necessitating the use of additional measures of ecological novelty independent of phenotype.

Citation: Martin CH, Wainwright PC (2013) On the Measurement of Ecological Novelty: Scale-Eating Pupfish Are Separated by 168 my from Other Scale-Eating Fishes. PLoS ONE 8(8): e71164. doi:10.1371/journal.pone.0071164

Editor: Nadir Alvarez, University of Lausanne, Switzerland

Received February 12, 2013; Accepted July 3, 2013; Published August 19, 2013

Copyright: © 2013 Martin, Wainwright. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding was provided by an NSF Graduate Research Fellowship, an NSF doctoral dissertation improvement grant, a UC Davis Dissertation Year fellowship, the Northern California ARCS Foundation, the Center for Population Biology, student grants from the Gerace Research Centre (2008, 2011), and NSF grant DEB-1061981 to PCW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: chmartin@ucdavis.edu

Introduction

Novel ecology, independent of any phenotypic novelty, is rarely adequately addressed in discussions of evolutionary novelty, except in the very general sense of an increase in niche diversity ([1–4]; but see [5–9]). Here we define novel ecology as the adoption of resources and a way of life (sensu Simpson’s adaptive zones [10]) not only unique within a given community (i.e. niche diversity), but often unique across a clade’s global range and discontinuous with global niche diversity within that clade (Table 1). For example, only a single species of spider is known to be herbivorous, feeding on the Beltian bodies of an ant-plant [11]. Likewise, blood-feeding, folivory, and tool-use are unique to Darwin’s finches, despite the global abundance of these resources in all passerine communities [12,13]. Nonetheless, our perception of the novelty of any particular niche is still dependent on the size of the outgroup used for comparison and thus remains subjective (e.g. [5,9,14]).

There is currently no index for quantifying the rarity or novelty of an ecological niche within a clade, to our knowledge, despite the extensive literature on quantifying niche diversity (e.g. [15–20]). While approaches such as niche modeling have proven incredibly productive for measuring ecology [19,21], it is easy to overlook discontinuous resource use (i.e. novelty) when examining only shared resource axes among taxa (e.g. [6]). Thus, at the macroevolutionary level, ecological novelty is only described qualitatively [5,9,10,14] or phenotypic diversification is used as an indicator of ecological diversification (e.g. [22,23]), despite the fact that axes of organismal diversification are sometimes decoupled (e.g. [5,24–28]).

Foraging on the scales of other fishes is a specialized predatory niche surprisingly rare across the teleost tree of life despite the omnipresence of this resource in all fish communities. Specialized scale-eating has evolved at least 19 times independently (4–6 times in both African cichlids and South American characoids, plus examples in four additional freshwater families and seven marine families [29–32]) and is currently known in about 50 species of teleost [30] and the cookie-cutter shark (Isistius brasiliensis). Scale-eating is accomplished through a wide variety of morphological and behavioral solutions, including open-gaped ram feeding [33], one-sided lateral strikes with asymmetrical jaws or behavioral handedness [31,34–37], aggressive mimicry, rasping with external teeth, group hunting, cleaning and mucus-feeding (reviewed in [30]), and possibly deep-water pelagic ambush [32]. Tooth shape is also exceptionally variable among scale-eaters, even within scale-eating clades [30,38].

Despite the considerable diversity of morphological and behavioral strategies that underlie the scale-eating trophic specialization, there appear to be some universal features of this ecological strategy. First, all scale-eaters must be small relative to the size of their prey due to the high energy-to-resource ratio per strike [30]. For example, juvenile facultative scale-eaters switch to...
piscivory after they grow larger than their prey [30]. Conversely, the most specialized scale-eaters often switch completely to scales when they reach adult size and never grow larger than their prey [31,33]. Second, a corollary to this observation is that specialized scale-eaters never forage on both scales and whole fish (other than fish larvae, e.g. [39]) at the same time. Third, scale-eater populations always remain much smaller than their prey populations. Lastly, lateral jaw asymmetry has evolved in scale-eating specialists at least four times independently across a wide range of foraging strategies and habitats (from Amazonia to Lake Tanganyika to the mesopelagic ocean: [31,32,34,36]; but also see [40]). This suggests that laterally asymmetric jaws may be a universally adaptive trait for scale-eaters by allowing lateral attacks [40]). This suggests that laterally asymmetric jaws may be a

Here we document the rapid evolution of lepidophagy within this radiation and test for three convergent features of the scale-eating niche: 1) reduced adult size relative to prey, 2) absence of piscivory, and 3) low frequency relative to prey population. We then apply the phylogenetic novelty index to a variety of examples of ecological novelty in order to place our discovery of a scale-eating pupfish in context. This is an example of a dramatic ecological transition that is largely decoupled from phenotypic divergence, and like other similar examples, has thus been previously overshadowed by a focus on phenotype as a proxy for ecology. We propose further that many recent adaptive radiations contain a previously overlooked dimension of diversification: ecological novelty (Table 1). We identify a 168-million-year ecological novelty within a recent adaptive radiation of Cyprinodon pupfishes, use a phylogenetic-distance metric to quantify this novelty, and find that the ecological novelty index within this radiation far exceeds that of a second Cyprinodon adaptive radiation with nearly 3-fold higher rates of morphological diversification.

Note that only novel niches within adaptive radiations are listed (in nearly all cases, niche diversity observed in outgroups is also contained in adaptive radiations). doi:10.1371/journal.pone.0071164.t001

Table 1. In most classic examples of adaptive radiation in isolated, competitor-reduced environments, a few species have invaded novel ecological niches in which they exploit omnipresent resources for the first time relative to niche use within their much larger paraphyletic outgroup.

novel niches within adaptive radiation	outgroup niche use	references	
Darwin’s finches	blood and parasite-feeder, folivore, tool-using wood-probing insectivore	all other domed-nest tanagers: grani vores, nectar-feeders	[12,13]
Hawaiian honeycreepers	wood-probing insectivores, including beetle larvae and weevil specialists, cross-billed caterpillar specialists, host-specialized nectar-feeders, frugivores, insectivores	Cardueline finches: grani vores	[86,87,97]
Cuban Anolis lizards	Twig-giant facultative molluscivores as juveniles	all other Anolis: arboreal, stream, and terrestrial insectivores, rarely consuming molluscs	[9,98]
haplochromine cichlid fishes in Lakes Malawi and Victoria	scale-eaters, fry-stealing specialists, ambush and pursuit piscivores, zooplanktivores, shrimp-eaters, sand-sifters, parasite-feeders	all other haplochromine cichlids: algivores, detritivores, and omnivores	[29,99]
Lake Baikal sculpin	fully pelagic viviparous amphipod-feeders, deep-water specialists	other freshwater sculpin (Cottus): shallow-water benthic omnivores	[100,101]
Lake Baikal amphipods	pelagic mysidiform, brood parasites, egg parasites, burrowers, free-swimming predators with extensive gigantism and sexual dimorphism	all other freshwater amphipods (Gammarus): benthic detritivores	[102,103]
Hawaiian Drosophilidae	larval specialists on spider eggs, flowers, leaves, roots, stems, bark, tree sap, leaf-miners	continental Drosophilidae: larval specialists on fruits, fungi, plants	[104–106]
Hawaiian Tetragnatha spiders	web-less pursuit hunters, web-builders using new habitats in canopy and forest floor	continental Tetragnatha: riparian web-builders	[107–109]
Hawaiian silverswords	monocarpic and polycarpic rosette plants, trees, shrubs, lianas, cushion plants, mat plants	California tarweeds: annual and perennial herbs	[22,110]
Guianan Brocchilium bromeliads	insect carnivores, myrmecophytes, trees, mutualist with nitrogen-fixing cyanobacteria, fire-resistant species	other bromeliads: tank-forming epiphytes, terrestrial bushes	[5]

Note that only novel niches within adaptive radiations are listed (in nearly all cases, niche diversity observed in outgroups is also contained in adaptive radiations). doi:10.1371/journal.pone.0071164.t001
magnification under a stereoscope. Items were identified to class

Davis Animal Care and Use Committee (Protocols to animal care and were approved by the University of California,
surface, individuals were immediately euthanized in an overdose

Salvador Island, Bahamas. Adults were sampled from 0.3–2 m

lake populations, Crescent Pond (CP) and Little Lake (LL), on San

removed from each individual for stomach content analysis. Food

Gerace Research Centre.

Agriculture and Marine Resources (2008) with the support of the

Bahamas Environment, Science & Technology commission,
injection of 15% formalin, followed by fixing the whole specimen

15908). Further digestion was halted with an intra-peritoneal

species followed by dispersal among lakes [CHM

specialist species by dispersal among lakes [CHM pers. obs.

prey extraction ([7], CHM pers. obs.). Preliminary genomic-scale analyses of genetic

reproductively isolated due to strong ecological selection against

hybrids with intermediate phenotypes [55]. Initial field observations and laboratory trials also indicate that C. sp. ‘bulldog’ is further isolated by female mate choice for conspecific males [CHM pers. obs.]. Preliminary genomic-scale analyses of genetic structure among these species support a single origin of each specialist species followed by dispersal among lakes [CHM unpublished data]. Our initial results also indicate that C. sp. ‘bulldog’ individuals form a monophyletic clade across lakes, indicating strong reproductive isolation from C. variegatus and C. sp. ‘durophage’ [CHM unpublished data]. C. sp. ‘bulldog’ and C. sp. ‘durophage’ are currently being formally described as new species [Martin and Wainwright in revision].

In July 2008, all three Cyprinodon species were collected from two lake populations, Crescent Pond (CP) and Little Lake (LL), on San Salvador Island, Bahamas. Adults were sampled from 0.3–2 m depth using a hand net while snorkeling or by seine net. Censuses were repeated 4 times each in Crescent Pond, Little Lake, and Osprey Lake. Although population abundances vary seasonally and annually, these censuses estimate the relative abundance of scale-eaters and their prey.

In March and July 2011, adults (>2.0 cm) from all three species were collected from Crescent Pond and Little Lake for stable isotope analyses. After euthanasia, approximately 5 mg of muscle tissue was removed from the caudal peduncle of each specimen and dried at 60°C for 48 hours. Tissue samples were weighed and submitted to the UC Davis Stable Isotope Facility for measurement on a PDZ Europa ANCA-GSL elemental analyzer, interfaced to a PDZ Europa 20–20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK). For comparisons of standard length (SL), adults of each species from larger samples collected in 2008 and 2011 were measured using dial calipers.

We also performed a literature search to identify all Cyprinodontidae species with published data on stomach contents (reviewed in [7]). Additional species descriptions, field guides [56,57], data from FishTraits [58], and community knowledge (e.g. American Killifish Association) confirmed that no other atherinomorphs are known scale-eaters.

Phylogenetic novelty index

Ideally, the rarity of any ecological niche within a clade could be estimated from the transition rate among niche states across a distribution of time-calibrated phylogenies with near-complete sampling at the species level (e.g. see [39] for transition rates among dietary categories in 1/5 of all mammal species). This approach would incorporate much of the uncertainty in phylogenetic estimation and time-calibration (assuming adequate prior estimates of node ages) by summing over a posterior distribution of models and phylogenies [60,61]. However, studying rare ecological transitions across the tree of life is still limited by the lack of large trees with near-complete sampling at the species level (or even large trees with 50% sampling, as investigated by [62]). Thus, it is rarely possible to find one chronogram containing multiple species with rare, convergent ecology.

Due to the current lack of large chronograms connecting rare convergent ecology, we used parsimony to reconstruct the origin of rare ecological niches. Parsimony ignores uncertainty in ancestral estimation of niche evolution (e.g. [63]); however, this uncertainty is relatively minor for rare, recent events across the tree of life (e.g. blood-feeding most likely evolved within the adaptive radiation of Darwin’s finches). Furthermore, parsimony is not sensitive to incomplete lineage sampling (e.g. [64]).

We calculated phylogenetic novelty from the amount of time separating two lineages with convergent ecology minus the inferred origination times of the convergent niche in each clade:
subjective when the use of a novel resource varies across
history of the group and can only be decided on a case-by-case
identification of convergent ecology is still a subjective choice by
calculate the novelty index. For common ecological niches this is a
calibrated phylogeny connecting these species is necessary to
intervening species do not express the ecology (and therefore complete knowledge that all
classification of phylogenies. Thus, scale-eating pupfish are equally
this temporal measure of novelty is unaffected by relative lineage
independent among different taxa and genes [71], and often
application of our approach. Nonetheless, the exponential
available. These estimates should serve mainly to illustrate
from different chronograms to apply this index to the examples in
the adaptive radiation (Table 3). Thus, our current estimates of the
age estimates from the earliest known representative of a given
to [7]). In cases where chronograms were lacking, we used fossil
tree topology, and branch lengths (e.g. see supplemental methods
time-tree also provides a useful database for searching
expansion of molecular sequencing (e.g. [72]) and trend toward
they are dependent on the particular set of chronograms and fossils
estimates should be interpreted cautiously as
from different datasets, particularly given the known discrepancies among fossil calibration
points [69,70], uncorrelated relaxed-clock models estimated
independently among different taxa and genes [71], and often complex relationship among conflicting time-calibration priors,
tree topology, and branch lengths (e.g. see supplemental methods
to [7]). In cases where chronograms were lacking, we used fossil
age estimates from the earliest known representative of a given
clad. Due to the lack of a comprehensive chronogram containing
multiple ecologically novel species, we pieced together node ages
from different chronograms to apply this index to the examples in
Table 3. This is not ideal and can introduce considerable bias
when comparing node ages estimated from different datasets,
populations (e.g. the vampire finch), similar niches can be grouped
(e.g. is eye-biting a form of scale-eating or a different niche? [29]),
or different species exploit the same resource in different ways (e.g.
sawfish are piscivores [68]).

Due to the lack of a comprehensive chronogram containing
multiple ecologically novel species, we pieced together node ages
different chronograms to apply this index to the examples in
Table 3. This is not ideal and can introduce considerable bias
when comparing node ages estimated from different datasets,
populations (e.g. the vampire finch), similar niches can be grouped
(e.g. is eye-biting a form of scale-eating or a different niche? [29]),
or different species exploit the same resource in different ways (e.g.
sawfish are piscivores [68]).

Due to the lack of a comprehensive chronogram containing
multiple ecologically novel species, we pieced together node ages
different chronograms to apply this index to the examples in
Table 3. This is not ideal and can introduce considerable bias
when comparing node ages estimated from different datasets,
populations (e.g. the vampire finch), similar niches can be grouped
(e.g. is eye-biting a form of scale-eating or a different niche? [29]),
or different species exploit the same resource in different ways (e.g.
sawfish are piscivores [68]).

Due to the lack of a comprehensive chronogram containing
multiple ecologically novel species, we pieced together node ages
different chronograms to apply this index to the examples in
Table 3. This is not ideal and can introduce considerable bias
when comparing node ages estimated from different datasets,
populations (e.g. the vampire finch), similar niches can be grouped
(e.g. is eye-biting a form of scale-eating or a different niche? [29]),
or different species exploit the same resource in different ways (e.g.
sawfish are piscivores [68]).

Due to the lack of a comprehensive chronogram containing
multiple ecologically novel species, we pieced together node ages
different chronograms to apply this index to the examples in
Table 3. This is not ideal and can introduce considerable bias
when comparing node ages estimated from different datasets,
populations (e.g. the vampire finch), similar niches can be grouped
(e.g. is eye-biting a form of scale-eating or a different niche? [29]),
or different species exploit the same resource in different ways (e.g.
sawfish are piscivores [68]).
reconstruction methods (e.g. [63]) for estimating a range of times for the origin of novel ecology would be more appropriate for more recently diverged taxa or when clade membership is uncertain. Formal ancestral state reconstruction methods allow inference of niche origination times across a distribution of trees incorporating phylogenetic uncertainty [60]. Nonetheless, most of the uncertainty in estimation of the phylogenetic novelty index arises from the large variance in estimates of node age, even when comparing nodes ages estimated jointly within the same chronogram. Increasing sophistication of time-calibration methods (e.g. [79]) and increased incorporation of fossil data should greatly improve inference of clade ages.

We include common ecological niche transitions for comparison in Table 3; however, we stress that the use of parsimony for ancestral character reconstruction is never justified when considerable uncertainty is present and likelihood or Bayesian estimation of ancestral character states is needed. In practice, as a given niche becomes more commonly used across a clade (i.e. as niche transition rate increases), the phylogenetic novelty index rapidly goes to zero as uncertainty in reconstruction of ancestral states prevents robust inference of ancestral niche use. Common niche use also makes assignment of convergent ecology more subjective. Instead, we suggest this index is most useful for quantifying and comparing rare niche transitions which can be treated as discrete.

One weakness of this approach, common to all comparative phylogenetic analyses based only on extant taxa, is the lack of ecological knowledge of extinct lineages which may have also colonized the focal niche. This biases estimates of phylogenetic novelty upwards. In particular, very large estimates of phylogenetic novelty should be regarded with increased suspicion due to the greater probability of extinct lineages occupying the focal niche. However, if ecological inferences about extinct taxa are available, this information can easily be incorporated into the novelty index. For example, including fossil sawsharks and sawfishes substantially reduces the ecological novelty of this specialized mode of foraging relative to comparisons of only extant sawfish and sawsharks by increasing estimates of the origins (niche age) of this convergent foraging strategy within each lineage (Table 3).

Results

Lepidophagy

40–51% of stomach contents of *Cyprinodon* sp. ‘bulldog’ were comprised of scales from other *Cyprinodon* and possibly *Gambusia* fishes in two lakes (Fig. 2; Table 2). Not a single bulldog individual had ingested whole fish, despite the occurrence of piscivory in *Cyprinodon* sp. ‘normal’ (Table 2). Stable isotope analyses confirmed that *C*. sp. ‘bulldog’ occupied the highest trophic position (δ13N) relative to sympatric *Cyprinodon* species in both winter and summer seasons in two lakes (Fig. 2).

Scale-eating by *C*. sp. ‘bulldog’ was frequently observed in the wild and occurred approximately once per minute during daylight hours (CHM pers. obs.). Adult *C*. sp. ‘bulldog’ were slightly smaller (CP: 2.27±0.05 (mean ± SE; n = 17), LL: 2.63±0.04 cm SL (n = 21)) than their most common prey target, *C*. sp. ‘normal’ (CP: 3.03±0.07 (n = 39), LL: 3.01±0.06 cm SL (n = 62)). *C*. sp. ‘normal’ was, by far, the most abundant species in all three lakes surveyed (mean % ± SE: CP: 92.7±1.0; LL: 92.3±1.1; OL: 93.8±1.7). *C*. sp. ‘bulldog’ frequency ranged from 0.2–3.1% of all pupfishes across the three lakes surveyed (CP: 0.9±0.4; LL: 3.1±0.3; OL: 0.2±0.1).

Phylogenetic novelty index

The most recent maximum clade credibility ultrametric tree for *Ovalentaria* places cichlids + *Polycentrids* + *Polycentrids* as the sister group to atherinomorphs [73,74]. This node is weakly supported and blennioids may also be the most closely related group containing a scale-eating species, the mimic fangblenny (*Plagiotremus tapeinosoma*); however, this alternative phylogenetic hypothesis has little impact on the estimated novelty index. Under the phylogenetic hypothesis of cichlids + *Polycentrids* + *Polycentrids* as sister group to atherinomorphs, the most closely related specialized scale-eaters to *Cyprinodon* sp. ‘bulldog’ are found in several lineages of scale-eating cichlids within adaptive radiations in Lakes Victoria, Tanganyika, and Malawi [29,77]. Using the
Table 3. Application of the phylogenetic novelty index to examples of ecological novelty.

focal clade	focal ecology (a: niche age*)	nearest species/clade with convergent ecology (b: niche age*)	divergence time* (t)	novelty index* (2t-a-b)	references	
San Salvador Cyprinodon pupfishes	scale-eater: C. sp. 'bulldog' (0.005–0.015†)	Tanganyikan Perissodus spp. cichlids (1.5–2.2)	85	168	[44,73,77]	
Lake Chichancanab Cyprinodon pupfishes	piscivore: C. maya (0.008†)	Orestias cuvieri (0.06–1.5†)	21†	40	[7,111–113]	
	zooplanktivore: C. simus (0.008†)	Aphanius anatoliae splendens (5–10‡); Orestias ispi (0.06–1.5†)	21†	32		
Darwin's finches	blood-feeder: Geospiza difficilis septentinalis (2–3‡)	oxpecker Buphagus spp. (20–23)	23	20	[12,114,115]	
	seed-eater: Geospiza spp. (2–3‡)	Cocos Island finch Pinarolaxias inornata (1.9–2.4‡)	2–3‡	0		
Anolis lizards	twig-giant molluscivore: Anolis (Chameleolis) spp. (<15–20†)	Diplaleusus bibrioni (?)	145	<270	[116,117]	
Guianan Brochinia bromeliads	carnivory: Brochinia reducta (<9)	Catopsis bertoniana (<14)	19	<15	[5,118]	
	ant-plant: Brochinia acuminata (<9)	Tillandsia buttzi (<4)	19	<26		
Bagheera kiplingi	herbivore/ant-plant parasite (?)	Early Devonian arthropod† (398–416: first chelicerate fossil)	398–416	<398	[11,119]	
Sawfishes (Schlerorhynchidae and Pristidae)	piscivores with elongated, serrated rostrum: (130†)	Sawsharks (Pristiophoriformes) (72–66†)	251–374	300	[120–122]	
Tanganyikan Perissodus scale-eating cichlids	scale-eater: Tanganyikan Perissodus spp. (1.5–2.2)	Malawi cichlids: Genyodus inermis, Corematodus spp. (<1–2); Victorian cichlid Haplochromis wilcomrei (<0.1)	24	44	[29,77,123]	
Paxton Lake benthic stickleback	Benthivore: (0.01†)	Enos Lake benthic stickleback (0.01†)	0.01	0	[91]	

The novelty index is calculated by subtracting the niche ages of the focal ecology (a) and the most closely related lineage or clade with convergent ecology (b) from the time to the most recent common ancestor of the two convergent ecologies (divergence time, t) times 2 (the amount of time separating the two lineages). Lineage/clade ages and divergence times (in millions of years) were drawn from multiple chronograms, minimum age estimates from the fossil record (†), and geological ages of lake basins (‡) and should therefore be interpreted cautiously. To be conservative, we used ages which minimized the novelty index.

*Units in millions of years.
†Minimum divergence time or lineage/clade age estimated from earliest known fossil.
‡Lineage/clade age estimated from geological age of lake basin or archipelago which contains the adaptive radiation.

doi:10.1371/journal.pone.0071164.t003
stem age of the oldest of these scale-eating cichlid clades, the Tanganyikan *Perissodus* clade [77], we estimate that approximately 168 million years separates the San Salvador scale-eating pupfish from the origins of scale-eating in the *Perissodus* stem lineage (Fig. 1, Table 3). Several classic examples of adaptive radiation display astonishing levels of ecological novelty by this index (e.g. the vampire finch, the false Chameleon *Aloia*; Table 3), far exceeding their phenotypic novelty (e.g. [13]). Conversely, classic radiations which only partition a subset of their ancestral resource base do not show unusual levels of ecological novelty due to frequent parallel evolution of the same niche across similar environments (e.g. threespine sticklebacks, *Geospiza* seed-eating groundfinches, Chichancanab pupfishes; Table 3).

Discussion

We document the recent evolution of a scale-eating pupfish, a unique niche within over 1,500 atherinomorph species distributed globally (Fig. 2, Table 2). To place this novelty in perspective, we observe that the most closely related scale-eating specialist is separated by 168 million years of evolution from the scale-eating pupfish (Fig. 1). We propose this simple phylogenetic novelty index as a quantitative measure for comparing rare and novel ecological transitions across the tree of life and apply it to several classic and unusual niches (Table 3). This index generalizes estimates of novelty beyond the bias of restricting attention to a named clade or outgroup (e.g. Table 1; [47]) and complements qualitative descriptions of ecological novelty (e.g. [5,9,10]). Although identifying convergent ecology often remains subjective on a case-by-case basis, our approach provides a method for quantifying the rarity of unassailable examples of convergent ecology across the tree of life.

Lepidophagy

We document the evolution of a specialized scale-eating pupfish species, *Cyprinodon* sp. ‘bulldog’, within a sympatric adaptive radiation on San Salvador Island, Bahamas. 41–51% of its diet was composed of scales (Fig. 2, Table 2). The actual proportion was probably much higher as most of the remaining stomach contents in this species were detritus, which may consist mainly of digested skin and mucus tissue from scale-feeding (Table 2). Scale-eating was independently supported by the higher trophic position of *C.* sp. ‘bulldog’ across lakes and seasons as inferred from δ15N isotope ratios (Fig. 2). As predicted by the functional and ecological constraints on specialized scale-eating, C. sp. ‘bulldog’ was slightly smaller than its prey, never captured whole fish, and occurred at low frequency across all three populations surveyed.

Rates of morphological evolution in the San Salvador *Cyprinodon* radiation are exceptional outliers among *Cyprinodon* clades [7]. For example, jaw length and adductor mandibularis muscle mass are diversifying 51 and 47 times faster than background rates in allopatric species, respectively [7]. In a second, independent adaptive radiation of *Cyprinodon* pupfishes endemic to Laguna Chichancanab, rates of morphological diversification are two- to three-fold higher: tooth length and adductor muscle mass are diversifying 131 and 120 times faster than background rates, respectively [7]. These exceptional rates of morphological diversification are not only due to the young age of these clades, but rather the colonization of novel ecological niches: scale-eating and durophagy on San Salvador Island, Bahamas and piscivory and zooplanktivory in Laguna Chichancanab, Mexico [7].

We show that the ecological novelty of the San Salvador adaptive radiation is even more exceptional than its morphological diversification rate. A single species within this clade has recently colonized an ecological niche, scale-eating, that is approximately 168 million years removed from the most closely related species with convergent ecology (Fig. 1, Table 3). The phylogenetic novelty index does not account for extinct scale-eating taxa; however, the rarity and complete absence of this feeding specialization outside lacustrine adaptive radiations in atherinomorphs suggests this may be an accurate estimate of the novelty of this niche. Although the Laguna Chichancanab *Cyprinodon* radiation is diverging nearly three-fold faster for certain morphological traits, these species have invaded ecological niches that are not particularly novel for *Cyprinodontidae*, piscivory and zooplanktivory. Piscivory is common within nearly all fish groups and the most closely related specialized piscivore is most likely *Orestias cauveri*, the extinct top-predator from the Lake Titicaca adaptive radiation of *Orestias* pupfishes [80]. Specialized zooplanktivores are also known from the Lake Titicaca radiation (e.g. *O. ispi* [81] and Old World *Aphanius* pupfishes such as *Aphanius anatolica splendens* [82]). The phylogenetic novelty index highlights the exceptional ecological novelty of a scale-eating pupfish within the San Salvador radiation, despite the nearly 3-fold lower morphological diversification rates in this clade (Table 3).

On the evolution of ecological novelty

Application of the phylogenetic novelty index to several recent and classic examples of adaptive radiation (Table 3) illuminates dramatic examples of extremely rare, major ecological transitions which are easily overlooked when using morphological proxies for
ecology. For example, the beaks of Darwin’s finches are not
particularly diverse relative to other domed-nest clade finches in
the Caribbean [13]. However, the vampire finch (Geospiza difficilis
septentrionalis) has adopted a novel and extremely rare niche among
birds: blood-feeding. This resource forms a major part of the diet in
only one other specialized lineage of birds, the oxpeckers (Buphagus spp.),
which are also known to open wounds and drink blood [83,84]. Bill shapes of the vampire finch and other
ecollogically novel Darwin’s finches, such as the vegetarian finch
and tool-using woodpecker finch, are not particularly unusual
[12,13]. Conversely, the widely divergent beak shapes of Darwin’s
seed-eating ground finches (e.g. Geospiza magnirostra vs. Geospiza fuliginosa) correspond to specializations for eating seeds of various
sizes [12], a very common niche across the domed-nest clade ([13];
Table 2). Thus, Darwin’s finches provide an excellent example of
the decoupling of ecological novelty from dramatic morphological
diversification.

Once we are able to measure differences in ecological novelty
among taxa, the highly uneven distribution of ecological novelty
among clades and environments begs explanation. Ecological
novelty does not appear to be distributed randomly among clades,
but often reappears repeatedly within the same clades invading
similar environments and may be particularly common within
recent adaptive radiations (Table 1). Why are some populations
able to exploit these novel resources but not others? Are transitions
to novel niches necessary for population persistence or would
partitioning more common resource axes be sufficient? What
combination of environment and lineage-specific factors is
necessary to drive the evolution of novel ecology? These questions
are particularly clear when comparing similar lineages that have
speciated and adapted to the same environment, but display
exceptional differences in their propensity to evolve ecological
novelty: for nearly every compelling example of island adaptive
radiation, there are similar lineages that have colonized the same
environment and speciated to some extent, but fail to evolve novel
ecology, such as finches and mockingbirds in the Galapagos
[12,85], honeycreepers and thrushes in the Hawaiian Islands
[86,87], pupfishes and mosquitofish in Caribbean salt lakes [7,88]
and different lineages of cichlids within sympatric radiations
[89,90]. This pattern also occurs when the same lineage is
distributed across many similar environments: rapid ecological
diversification is often restricted to a few places [7,13].

The evolution of ecological novelty, a subset of many types of
niche divergence between populations, remains unexplained by
existing ecological divergence mechanisms (e.g. [91]); as with
phenotypic diversification, we have a solid theoretical and
empirical framework for microevolutionary change, but no clear
link between these processes and larger patterns of macroevolu-
tionary diversification and stasis (e.g. [92]). For example, why has
such an exceptionally rare trophic niche evolved only on San
Salvador Island in the Bahamas? One possibility is that adaptation
to novel ecological niches is strongly influenced by the location of
their corresponding fitness peaks on the adaptive landscape. Field
experiments on San Salvador Island measuring the fitness
landscape for thousands of F2 hybrids placed in field enclosures
support this idea [55]. Two fitness peaks for growth and survival
within the range of hybrid phenotypes measured corresponded to
the phenotypes of C. sp. ‘normal’ and C. sp. ‘dorphophage’ observed
in the wild. In contrast, hybrids resembling the scale-eater had low
growth and survival across two lakes at two different densities [55].
If a fitness peak for scale-eater exists in this environment, it may
require a highly specialized phenotype for successful performance
which was not recovered within the F2 hybrids used in this
experiment. Thus, rare novel niches may reflect distant, isolated,
or narrow fitness peaks surrounded by a large fitness valley on the
adaptive landscape.

More generally, how should the ecological novelty index be interpreted? This index is a quantitative measure of the rarity of a
niche. Alternatively, with complete lineage sampling, we could
estimate the transition rate into any niche from formal ancestral
state reconstructions as a quantitative measure of rarity: lower
transition rates correspond to rarer niches. However, with this
approach, transition rates also depend on lineage diversification
rates. Is a rare niche more novel within a clade of 100 species than
within a clade of 10 species? We think a more relevant measure
does not consider the minimum distance to a species with convergent
ercology, regardless of lineage diversification rates spanning this
time period.

Second, the niche is a complex and dynamic mapping of
population persistence onto a hyper-dimensional ecological space
[20,93] and an emergent property of both the evolving organism
and the shifting biotic and abiotic environments [10,94,95]. The
rarity of any ecological niche is a function of the global abundance
of its ecological space and the abundance of taxa able to persist
(‘fundamental niche’) and currently competing within that space
(‘ecological opportunity’). Thus, the novelty index can also be
interpreted as the ‘findability’ (see [96]) of a niche on the adaptive
landscape across the global biosphere, given these constraints of
abundance, persistence, and competition.

Conclusion

While evolutionary novelty is frequently addressed at other
levels of biological organization, here we provide a framework for
quantifying and comparing novelty at the ecological level. We
define ecological novelty as a major ecological transition to a new
adaptive zone, often unique across a clade’s global range (Table 1).
We use a phylogenetic novelty index for quantifying ecological
novelty: the time separating the inferred origin of the novelty from
the inferred origin of the most closely related species with convergent ecology (Fig. 1). A synthesis of previous scattered
observations reveals that ecological novelty is particularly common
within recent adaptive radiations in isolated environments
(Table 1) and that specialized species colonizing novel ecological
niches are not necessarily the most phenotypically divergent
(Table 3). In particular, we document the rapid evolution of a
scale-eating specialist within an incipient adaptive radiation of
Cyprinodon pupfishes endemic to San Salvador Island (Fig. 2,
Table 2). We estimate this species is separated by approximately
168 million years of evolution from the most closely related scale-
eating specialist (Table 3). The phylogenetic novelty index should
facilitate further comparative analyses of novelty across the tree of
life and illustrate the previously overlooked dimension of
exceptional ecological diversification.

Acknowledgments

Research permits were approved by the Bahamas Environment, Science &
Technology commission, Ministry of the Environment, and the Ministry of
Agriculture (2011); and by the Department of Marine Resources, Ministry
of Agriculture and Marine Resources (2008) with the support of the Gerace
Research Centre. We thank Samantha Price, Michael Turelli, and Thomas
Schoener for helpful comments on the manuscript.

Author Contributions

Conceived and designed the experiments: CHM. Performed the
experiments: CHM. Analyzed the data: CHM. Contributed reagents/
materials/analysis tools: CHM PCW. Wrote the paper: CHM. Commented
on the manuscript: PCW.
References

1. Moczek AP (2008) On the origins of novelty in development and evolution. BioEssays 30:432–47.
2. Lefebvre L, Reader SM, Sol D (2008a) Brains, innovations and evolution in birds and primates. Brain Behav Evol 63:233–46.
3. Muller GB, Wagner GP (1991) Novelty in evolution: restructuring the concept. Ann Rev Ecol Syst 22:229–256.
4. Nikoleta NH (1990) Evolutionary Innovations. University of Chicago Press, Chicago.
5. Givnish TJ, Sytsma KJ, Smith JF, Hahn WJ, Benzing DH, et al. (1997) Molecular evolution and adaptive radiation in Brachmia (Bromeliaceae: Puyaertiales) atop tepuis of the Guayana Shield. In: Molecular evolution and adaptive radiation (Givnish, TJ, Sytsma, KJ, eds), Cambridge University Press, Cambridge.
6. Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Nat Acad Sci USA 105:7899–906.
7. Martin CH, Wainwright PC (2011) Trophic novelty is linked to exceptional rates of morphological diversification in two adaptive radiations of Cypriodontid fish pupfishes. Evolution 65:2197–212.
8. Price SA, Holzman R, Near TJ, Wainwright PC (2011) Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecol Lett 14:462–469.
9. Leos JB (2009) Lizards in an evolutionary tree: ecology and adaptive radiation of Anoles. University of California Press, Berkeley.
10. Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York.
11. Meachan CJ, Olsen JJ, Reudink MW, Kyer TK, Curry RJ (2009) Herbivory in a spider through exploitation of an ant-plant mutualism. Curr Biol 19:R892–R893.
12. Grant PR, Grant BR (2000) How and why species multiply: the radiation of Darwin's finches. Princeton University Press, Princeton.
13. Burns KJ, Hacken SJ, Klein NK (2002) Phylogenetic relationships and diversification of scale-eating cichlid fish: its potential role in shaping morphological asymmetry. PLOS One 7:e44670.
14. Takahashi R, Moriwaki T, Hori M (2007) Foraging behaviour and functional morphology of two scale-eating cichlids from Lake Tanganyika. J Fish Bio 15:1458–1469.
15. Nishimbo M, Yangaiwa Y, Nagoshi M (1985) Scale-eating in Poeciliopsis smaragdina (Cichlidae) and change of its food habits with growth. Jpn J Ichthyol 32:66–73.
16. Hsieh H, Lee HJ, Meyer A (2012) Mouth asymmetry in the textbook example of scale-eating cichlid fish is not a discrete dimorphism after all. Proc R Soc Lond B 279:4715–4723.
17. Setiamarga D, Miyai M (2000) Interrelationships of Atherinomorph (mudkas, flyingfishes, killifishes, silversides, and their relatives): the first evidence based on whole mitogenome sequences. Mol Phylo Evol 49:601–605.
18. Holmeieer CO (2000) Morphological and trophic diversification among pupfishes (Cypriodontidae): dietary, genetic and ontogenetic effects. Doctoral dissertation, Cornell University.
19. Holmeieer CO (2001) Heterochromy, maternal effects, and phenotypic variation among sympatric pupfishes. Evolution 55:330–338.
20. Turner JH, Duvernell DD, Bunt TM, Barton MG (2008) Reproductive isolation among endemic pupfishes (Cypriodon) on San Salvador Island, Bahamans: microsatellite evidence. Proc Roy Soc Lond B 275:566–572.
21. Wiens JJ, Brandley MC, Reeder TW (2006) Why do traits evolve multiple times within a clade? Repeated evolution of snake-like body form in squamate reptiles. Evolution 60:1241–1249.
22. Wiens JJ (2011) Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s Law. Evolution 65:1281–1296.
23. Brandley MC, Hueslenbeck JP, Wiens JJ (2008) Rates and patterns in the evolution of snake-like body form in squamate reptiles: evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. Evolution 62:2042–64.
24. Beirz R, Conroy K (2009) Spectacular morphological novelty in a miniature cyprinid fish, Danioella daucea n. sp. Proc Roy Soc Lond B 265:1717–1719.
25. Rabinoff D, Schmitz P (2010) Multiple aquatic invasions by an endemic, terrestrial Hawaiian mud morh fish. Proc Nat Acad Sci USA 107:5903–5906.
26. Geick D (1800) Ingestion of host fish surface mucus by the Hawaiian cleaning wrasse, Labroides philippinensis (Labridae), and its effect on host species preference. Copeia 1800:863–868.
27. Winemiller KO, Yan HY (1989) Obligate mucus-feeding in a South American Trichomyctery catfish (Pisces: Ostariophysi). Copeia 1989:231–341.
28. Winemiller KO, Kelso-Winemiller LC, Brenkert AL (1995) Ecomorphological diversification and convergence in fluvial cichlid fishes. Evol Biol Fish 4:253–311.
29. Winemiller KO (1991) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol Monograph 61:343–365.
30. Grant PR, Grant BR (2009) The secondary contact phase of allopatric speciation in Darwin’s finches. Proc Nat Acad Sci USA 106:20411–20418.
31. Martin CH, Wainwright PC (2013) Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science 339:208–211.
32. Miller RR, Minckley WL, Norris SM (2005) Freshwater Fishes of Mexico. University of Chicago Press, Chicago.
33. Seegers L (2000) Killifishes of the World: New World Killies. Verlag A. C. S. Gmbh, Germany.
34. Frimpong EA, Angermeier P (2009) Fish traits: A database of ecological and life-history traits of freshwater fishes of the United States. Fisheries 34:487–495.
35. Price SA, Hopkins SR, Smith KK, Roth VL (2012) Tempo of trophic evolution and its impact on mammalian diversification. Proc Nat Acad Sci USA 109:7008–7012.
36. Hueslenbeck JP, Rannala B, Madly J (2000) Accommodating phylogenetic uncertainty in evolutionary studies. Science 288:2349–2350.
37. Frankham R, Groves DA, Ryman N, Meyer A, Wainwright PC (2001) Model selection and multi-modal inference. 2nd ed. Springer, New York.
38. FitzJohn RG, Maddison WP, Otto SP (2009) Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst Biol 58:605–611.
39. Hueslenbeck JP, Nielsen R, Bolbach JP (2003) Stochastic mapping of morphological characters. Syst Biol 52:131–138.
40. Li G, Steel M, Zhang L (2008) More taxa are not necessarily better for the reconstruction of ancestral character states. Syst Biol 57:647–653.
41. O’Meara BC, Ance C, Sanderson MJ, Wainwright PC (2006) Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922–933.
