Searching For Gravitational Waves From Cosmological Phase Transitions
With The NANOGrav 12.5-year dataset

Zaven Arzoumanian,1 Paul T. Baker,2 Harsha Blumer,3,4 Bence Bécsy,5 Adam Brazier,6,7 Paul R. Brook,3,4 Sarah Burke-Spolaor,3,4,8 Maria Charisi,9 Shami Chatterjee,9 Siyuan Chen,10,11,12 James M. Cordes,6 Neil J. Cornish,5 Fronesis Crawford,13 H. Thankful Cromartie,6 Megan E. DeCesar,14,15,∗ Paul B. Demorest,16 Timothy Dolch,17,18 Justin A. Ellis,19 Elizabeth C. Ferrara,20,21,22 William Fiore,3,4 Emmanuel Fonseca,23 Nathan Garver-Daniels,3,4 Peter A. Gentile,3,4 Deborah C. Good,24 Jeffrey S. Hatzloun,25,∗ A. Miguel Holgado,26,27 Kristina Islo,28 Ross J. Jennings,6 Megan L. Jones,28 Andrew R. Kaiser,3,4 David L. Kaplan,28 Luke Zoltan Kelley,29 Joey Shapiro Key,25 Nima Lali,30 Michael T. Lam,31,32 T. Joseph W. Lazio,33 Vincent S. H. Lee,34 Duncan R. Lorimer,3,4,35 Jing Luo,35 Ryan S. Lynch,36 Dustin R. Madison,3,4,∗ Maura A. McLaughlin,3,4 Chiara M. F. Mingarelli,37,38 Andrea Mitridate,34,† Cherry Ng,39 David J. Nice,14 Timothy T. Pennucci,40,41,∗ Nihan S. Pol,3,4,9 Scott M. Ransom,40 Paul S. Ray,42 Brent J. Shapiro-Albert,3,4 Xavier Siemens,30,28 Joseph Simon,33,43 Renée Spiewak,44 Ingrid H. Stairs,45 Daniel R. Stonebringer,45 Kevin Stovall,16 Jerry P. Sun,30 Joseph K. Swiggum,14,∗ Stephen R. Taylor,9 Jacob E. Turner,3,4 Michele Vallisneri,33 Sarah J. Vigeland,28 Caitlin A. Witt,3,4 and Kathryn M. Zurek34

(The NANOGrav Collaboration)

1X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771, USA
2Department of Physics and Astronomy, Widener University, One University Place, Chester, PA 19013, USA
3Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Morgantown, WV 26506, USA
4Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV 26505, USA
5Department of Physics, Montana State University, Bozeman, MT 59717, USA
6Cornell Center for Astrophysics and Planetary Science and Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
7Cornell Center for Advanced Computing, Cornell University, Ithaca, NY 14853, USA
8CIFAR Azrieli Global Scholars program, CIFAR, Toronto, Canada
9Department of Physics and Astronomy, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA
10Station de Radioastronomie de Nancay, Observatoire de Paris, Universite PSL, CNRS, Universite d’Orleans, 18330 Nancay, France
11FEMTO-ST Institut de recherche, Department of Time and Frequency, UBFC and CNRS, ENSMM, 25030 Besancon, France
12Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, LPC2E UMR7328, Universite d’Orleans, CNRS, 45071 Orleans, France
13Department of Physics and Astronomy, Franklin & Marshall College, P.O. Box 3003, Lancaster, PA 17604, USA
14Department of Physics, Lafayette College, Easton, PA 18042, USA
15George Mason University, Fairfax, VA 22030, resident at U.S. Naval Research Laboratory, Washington, D.C. 20375, USA
16National Radio Astronomy Observatory, 1003 Lopezville Rd., Socorro, NM 87801, USA
17Department of Physics, Hillsdale College, 33 E. College Street, Hillsdale, MI 49242, USA
18Eureka Scientific, Inc. 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017
19Infinia ML, 202 Rigsbee Avenue, Durham NC, 27701
20Department of Astronomy, University of Maryland, College Park, MD 20742
21Center for Research and Exploration in Space Science and Technology, NASA/GSFC, Greenbelt, MD 20771
22NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
23Department of Physics, McGill University, 3600 University St., Montreal, QC H3A 2T8, Canada
24Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
25University of Washington Bothell, 18115 Campus Way NE, Bothell, WA 98011, USA
26Department of Astronomy and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
27McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, Pittsburgh PA, 15213, USA
28Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
29Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208
30Department of Physics, Oregon State University, Corvallis, OR 97331, USA
31School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA
32Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, Rochester, NY 14623, USA

With The NANOGrav 12.5-year dataset
There are three PTA collaborations that currently haveensemble of precisely-timed Milky Way millisecond pulsars. They are synthesized into the International Array (PPTA; [9]), the European Pulsar Timing Array (EPTA; [8]), and the Parkes Pulsar Timing Observatories (NANOGrav; [7]). These pulsar-timing arrays (PTAs; [4–6]) aim to detect GWs through the presence of correlated deviations in radio-pulse arrival times across an ensemble of precisely-timed Milky Way millisecond pulsars. There are three PTA collaborations that currently have decadal-length timing data from an ensemble of pulsars: the North American Nanohertz Observatory for Gravitational Waves (NANOGrav; [7]), the European Pulsar Timing Array (EPTA; [8]), and the Parkes Pulsar Timing Array (PPTA; [9]). These three, in addition to the Indian PTA (InPTA; [10]), are synthesized into the International Pulsar Timing Array (IPTA; Perera et al. 11). There are also emerging efforts in China (CPTA; [12]), as well as some telescope-centered timing programs (MeerKAT; [13]; CHIME; [14]).

The dominant GW signals at such low frequencies frequencies are expected to be from a cosmic population of tightly-bound inspiralling supermassive binary black holes (SMBHBs; [15, 16]), producing an aggregate incoherent signal that we search for as a stochastic GW background (GWB), and also individual binary signals that we attempt to resolve out of this stochastic confusion background. However, other more speculative GW sources in the PTA frequency range include cosmic strings [17, 18], a primordial GWB produced by quantum fluctuations of the gravitational field in the early universe, amplified by inflation [19, 20], and cosmological phase transitions [21, 22], the latter of which is the subject this study.

The most recent PTA results are from NANOGrav’s analysis of 12.5 years of precision timing data from 47 pulsars [23, hereafter NG12], of which 45 exceeded a timing baseline of 3 years and were analysed in a search for a stochastic GWB [24, hereafter NG12gwb]. NANOGrav reported strong evidence for a common-spectrum low-frequency stochastic process in its array of 45 analyzed pulsars, where ∼ 10 of those pulsars are strongly supportive, most are ambivalent, and a few seem to disfavor the process (although not significantly). No evidence for the characteristic inter-pulsar correlation signature imparted by GWs was found. At low frequencies the shape of the characteristic strain spectrum was well matched to a power-law, with an amplitude and slope consistent with theoretical models of SMBHB populations. Under a model that assumes the origin of the GWB is a population of SMBHBs, the median characteristic strain amplitude at a frequency of 1/year is 1.92×10^{-15}. Interpretations of this common-spectrum process as a GWB from SMBHBs have since appeared in the literature, showing that, if it is indeed so, robust evidence of the distinctive inter-pulsar correlations should accrue within the next several years, followed by characterization of the strain spectrum and astrophysical probes of the underlying population [25, 26]. However, the Bayesian posterior probability distributions of the strain-spectrum amplitude and slope are broad enough to entertain a variety of different source interpretations, many of which have
In this Letter we consider gravitational waves produced by first-order cosmological phase transitions, both as an alternative origin of the common process measured in the NANOGrav 12.5 year Dataset [31–38], and as a subdominant signal to that produced by SMBHBs. The frequency range to which NANOGrav is sensitive corresponds to phase transitions at temperatures below the electroweak phase transitions of the Standard Model (i.e. $T \lesssim 100 \text{GeV}$). This has led many to consider higher frequency GW observatories, such as LISA and LIGO, as the dominant instruments to search for phase transitions. However, phase transitions may occur at much lower temperatures in particular in hidden sectors [39–41]. Hidden sectors/valleys feature rich dynamics, with multiple matter fields and forces, independent of the dynamics of the Standard Model. They appear generically in top-down constructions like string theory, and in some solutions to the so-called hierarchy problem. In many cases, they may be difficult to detect via their particle interactions with the Standard Model, but gravity is an irreducible messenger. In this regard, PTAs provide a powerful complementary probe to the dynamics of hidden sectors already being explored through many terrestrial, astrophysical and cosmological probes (see Ref. [42] for a recent summary).

Previous studies on cosmological first order phase transition in the context of the NANOGrav results were carried out in [36, 43, 44]. Our analysis presents two main novelties compared to these works: first, we properly include the relevant noise sources and discuss the impact of backgrounds (like the one generated by SMBHBs); second, we discuss how the results are affected by the theoretical uncertainties on the GW spectrum produced by first order phase transitions.

The outline of this Letter is as follows. In the next section we briefly summarize the signature of GWs from the dominant background of SMBH mergers. We then dive into the main subject of this Letter, GWs from a first-order phase transition, where we discuss the relevant parameters characterizing the signal. We then carry out an analysis with the NANOGrav 12.5 year dataset, finding that the data are well-fit by a strong phase transition with a transition temperature around 10 MeV. The dataset and data model for these analyses are exactly as described in NG12 and NG12gwb, respectively. All common processes (whether interpreted as being of SMBHB or phase-transition origin) are modeled within the five lowest sampling frequencies of the array time series, corresponding to $\sim 2.5–12\text{ nHz}$. Finally, we discuss theoretical uncertainties, and the need to disentangle the phase-transition signal from the SMBHB GW background.

GW from SMBHBs mergers — Regardless of origin, the energy density of GWs as a fraction of closure density is related to the GW characteristic strain spectrum by [45]

$$\Omega_{\text{GW}}(f) = \frac{2\pi^2}{3H_0^2} f^2 h_c^2(f),$$

where H_0 is the Hubble constant (set here to be 67 km/s/Mpc [46]), and the GWB characteristic strain spectrum $h_c(f)$ is often described by a power-law function for astrophysical and cosmological sources:

$$h_c(f) = A_{\text{GW}} \left(\frac{f}{\text{yr}^{-1}} \right)^\alpha,$$

where A_{GW} is the amplitude at a reference frequency of 1/year, and α is an exponent that depends on the origin of the GWB. For a population of inspiraling SMBHBs, this is $\alpha = -2/3$ [47]. The cross-power spectral density of GW-induced timing deviations between two pulsars a
\[\frac{f_s}{\beta} \equiv \frac{1}{1 + 0.07v_w + 0.69v_w^2} \]

Envelope	Semi-analytic	Numerical	
\(a \)	3	1 – 2.2	1.6 – 0.7
\(b \)	1	2.6 – 2.9	1.4 – 2.3
\(c \)	1.5	1.5 – 3.5	1

| \(f_s/\beta \) | 0.35 | 0.1 | 0.2 |

TABLE II. Comparison of the bubble spectral shape parameters derived using the envelope and thin wall approximation \([49]\) (left column), the semi-analytic approach of reference \([50]\) (middle column), and lattice simulations \([51]\) (right column). For numerical and semi-analytic results the values of the parameters depend on the choice of the scalar field potential, we report the range of values obtained for the different scalar field potentials considered in the above mentioned works.

and \(b \) can be written as

\[S_{ab}(f) = \Gamma_{ab} \frac{A_{2}^{2}}{12 \pi^{2}} \left(\frac{f}{y T - 1} \right)^{-\gamma} y r^{3}, \quad (3) \]

where \(\gamma \equiv 3 - 2 \alpha = 13/3 \) for SMBHBs, and \(\Gamma_{ab} \) is the Hellings-Downs \([48]\) correlation coefficient between pulsar \(a \) and pulsar \(b \).

GWs from first-order phase transition — A first-order phase transition (PT) occurs when the true minimum of a potential is separated from a false minimum by a barrier through which a field must locally tunnel. This can occur in either weakly coupled (where a scalar field tunnels) or strongly coupled (where a vacuum condensate corresponds to the scalar field) theory. Such transitions are known to proceed through nucleation of bubbles of true vacuum which, if sufficiently large, expand in the background plasma (still in the false vacuum). Collisions of these bubbles, as well as interactions between the expanding bubble walls and the surrounding plasma, can be efficient sources of GWs.

We characterize the phase transition in terms of four parameters:

- \(T_s \) – the Universe temperature at which the phase transition takes place.
- \(\alpha_* \) – the strength of the phase transition, defined as the ratio of the vacuum and relativistic energy density at the time of the phase transition.
- \(\beta/H_* \) – the bubble nucleation rate in units of the Hubble rate at the time of the phase transition, \(H_* \).
- \(\eta \) – the friction coefficient, which parametrizes the strength of the interactions between the bubble walls and the plasma.

The three main sources of GWs associated with a first-order phase transition are: (i) collisions of bubble walls, (ii) collisions of the sound waves generated in the background plasma by the bubbles expansion, and (iii) turbulence in the plasma generated by expansion and collisions of the sound-wave. These three contributions approximately sum together to give the total gravitational wave power spectrum:

\[\Omega_{GW}(f) = \Omega_{\phi}(f) + \Omega_{sw}(f) + \Omega_{turb}(f), \quad (4) \]

where, in general, each contribution has a different amplitude and peak frequency. (See Refs. \([52, 53]\) for a summary of the individual contributions). A suitable parametrization for the GW spectrum today, valid for all three contributions, is given by \([1-3]\)

\[h^2 \Omega(f) = R \Delta(v_w) \left(\frac{\kappa \alpha_*}{1 + \alpha_*} \right)^p \left(\frac{H_*}{\beta} \right)^q S \left(f/f_0 \right)^3, \quad (5) \]

where the parameter \(R \approx 7.69 \times 10^{-5} g_*^{-1/3} \) accounts for the redshift of the GW energy density, \(S(\cdot) \) parametrizes the spectral shape, and \(\Delta(v_w) \) is a normalization factor which depends on the bubble wall velocity, \(v_w \). The value of the peak frequency today, \(f_0^\star \), is related to the value of the peak frequency at emission, \(f_s \), by:

\[f_0^\star \approx 1.13 \times 10^{-10} \text{ Hz } \left(\frac{f_s}{\beta} \right) \left(\frac{\beta}{H_*} \right) \left(\frac{T_s}{\text{MeV}} \right) \left(\frac{g_*}{10} \right)^{1/6}, \quad (6) \]

where \(g_* \) denotes the number of relativistic degrees of freedom at the time of the phase transition. The values of the peak frequency at emission, the spectral shape, the normalization factor, and the exponents \(p \) and \(q \) are reported in Table 1 for all the three production mechanisms. Finally, we relate the bubble wall velocity, \(v_w \), and the efficiency factor, \(\kappa \), to the parameters \(\alpha_* \) and \(\eta \) following the results of Ref. \([54]\).

We conclude this section emphasizing that, despite recent progress \([2, 50, 51, 55, 56]\), large theoretical uncertainties still affect the prediction of the GW signal from cosmological phase transitions. The largest of these uncertainties is associated with the spectral shape of the bubble contribution. Assuming that the stress energy density of the expanding bubbles is localized in an infinitesimally thin shell near the bubble wall (thin shell approximation), and that it instantaneously decays to zero after two bubbles collide (envelope approximation), the bubble spectral shape can be derived analytically \([1]\). The spectral shape parameters obtained in this way are reported in the left column of Table II. To go beyond these approximations, 3D lattice simulations are needed. These simulations are extremely expensive given the hierarchy between the large simulation volume needed to include multiple bubbles, and the small lattice spacing needed to resolve the thin walls. Because of the relativistic contraction of the wall width, this separation of scales becomes increasingly large for increasing wall velocities, making it impossible to simulate ultra-relativistic walls.
However, the GW spectrum can be simulated at lower velocities and the results extrapolated to larger values. This is the approach taken in Refs. [51, 55], where the authors show that at high frequencies the GW spectrum is much steeper than predicted by the envelope approximation \((b \sim 1.4 - 2.3)\) depending on the form of the scalar field potential. An alternative approach to the problem has been taken by the authors of Refs. [50, 56]. In these works a parametric form for the evolution of the scalar field during bubble collisions is found by using two-bubble simulations. This parametric form is then used in many-bubble simulations to derive the GW spectrum. They also find a steeper high frequency slope \((b \sim 2.6 - 2.9)\) compared to the prediction of the envelope approximation. Similar discrepancies are found at low frequencies, where both the numerical and semi-analytic results find a shallower spectrum compared to the envelope approximation (see Fig. 2). To probe the theoretical uncertainty associated with each of these approximations, we will carry out a separate analysis utilizing each approach and compare the constraint on the phase transition temperature and strength.

Results — We now report our results for two separate analyses. In the first we search for a GWB spectrum produced by a cosmological phase transition, while in the second we search for the GWB given by the superposition of the SMBHB background and the contribution from a phase transition. This latter analysis will give an indication of how difficult it will be to disentangle a signal from a phase transition from the SMBHB background. As described previously, the first type of search has four model parameters, while the second type of search has five model parameters (four from phase transition and one from the SMBHB amplitude, fixing the spectral index from the latter). The prior distributions for all of these parameters, in addition to other noise characterization parameters, are listed in Table III.

The two parameters that we can constrain the most are the transition temperature, \(T_\ast\), and the phase transition strength, \(\alpha_\ast\). Their 2D posterior distributions for the PT-only search are shown in Fig. 1. To assess the impact of theoretical uncertainties, we report the results obtained by using the three different estimates of the GW spectrum described in the previous section (envelope, semi-analytic, and numerical). We can see that at the 1-\(\sigma\) (68\% posterior credible) level all the searches prefer a strong PT, \(\alpha_\ast \gtrsim 0.1\), with low transition temperature, \(T_\ast \lesssim 10\,\text{MeV}\). At 2-\(\sigma\) (95\% posterior credible) level the posteriors for the semi-analytical and numerical results have support at much higher temperatures, while the envelope results still prefer relatively low values. The preference for small values of \(T_\ast\) at the 1-\(\sigma\) level can be understood by noticing (see Fig. 2) that the data prefer GW spectra that are peaked at frequencies below the NANOGrav sensitivity window \((i.e. f^0 \lesssim 10^{-2}\,\text{Hz})\). And, by setting \(\beta/H_\ast = 1\) in (6), we see that this requirement corresponds to \(T_\ast \lesssim 10\,\text{MeV}\). The low-frequency part of the numerical and semi-analytical GW spectra is shallow enough that, at the 2-\(\sigma\) level, the data can be fitted also by spectra with peak frequencies above the NANOGrav sensitivity window. The same is not true for the envelope results, which have a much steeper low-frequency spectrum; this is the reason why the 2-\(\sigma\) levels of the envelope results deviate substantially from the other two.

In Fig. 2 we show the GWB spectrum predicted for the maximum likelihood parameters of PT-only searches. To better illustrate our results, and how the different parameters and theoretical uncertainties affect the GWB spectrum, we release an interactive version of Fig. 2 at
To understand how the inclusion of the SMBHB background affects our results, in Fig. 3 we show the posterior for the parameters \(\alpha_\ast \) and \(A_{\text{GWB}} \) obtained in the PT+SMBHB search. As expected, with the inclusion of the SMBHB background, the posteriors for \(\alpha_\ast \) stretch to lower values where most of the signal is provided by the SMBHB contribution. The Bayesian Information Criterion (BIC) [57], defined to be \(\text{BIC} = k \ln n - 2 \ln \hat{\mathcal{L}} \) where \(n = 5 \) is the number of data points in the frequency space, \(k \) is the number of parameters in the model and \(\hat{\mathcal{L}} \) is the maximum likelihood, is also computed. The differences in BIC between the PT+SMBHB and SMBHB only searches are found to be -1.64, 2.10 and 0.34 for the envelope, semi-analytic and numerical results respectively; similarly the BIC differences between the PT-only and SMBHB-only searches are 0.27, -2.19, -0.04. We can then conclude that that the PT+SMBHB and PT-only models were neither strongly favored nor disfavored compared to the SMBHB only model [58].

A complete set of posteriors for the parameters of the PT-only search (derived by using the semi-analytic spectrum) are shown in Fig. 4. As noted previously, at 1-\(\sigma \) level the data prefer a strongly first-order phase transition \((\alpha_\ast \gtrsim 0.1) \) taking place at temperature \(T_\ast \lesssim 10 \text{ MeV} \); while no strong constraints on \(\eta \) or \(H_\ast /\beta \) is observed. We can also notice that the higher values of \(T_\ast \) allowed in the 2-\(\sigma \) region are accompanied by slower nucleation rates (large \(H_\ast /\beta \)). Given the low value of \(T_\ast \), and the strong constraints on new physics at such low scales, we expect the phase transition to take place in a dark sector with only feeble interactions with the Standard Model (SM). In order to be consistent with the Hubble parameter constraints during the era of Big Bang Nucleosynthesis (BBN) [59], the energy of this dark sector must be transferred to the SM before the onset of BBN at \(T \sim 1 \text{ MeV} \). This leaves an allowed range of values for the transition temperature given by \(T_\ast \sim 1 \text{ MeV} - 100 \text{ GeV} \). The next data release, which adds multiple years of observations and extends the sensitivity window to lower frequency, should begin to resolve the peak of the spectrum or additionally shrink the range of allowed values for \(T_\ast \).

Conclusions — We performed a search for a stochastic gravitational wave background from first-order phase transitions in the 12.5 year NANOGrav dataset. While previous NANOGrav analysis found no evidence yet for the inter-pulsar correlation signature of a GWB, the evidence for a common-spectrum process was significant. Here we have interpreted this process as being a GWB of phase-transition origin. We found that the data are well modeled by a strong \((\alpha_\ast > 0.1) \) phase transition taking place at temperatures below the electroweak scale. The data do not show any strong preference between an SMBHB and a PT generated signal, but we expect to gain additional discriminating power with future datasets, improving the signal to noise ratio and extending the sensitivity window to lower frequencies. In particular, data from the International Pulsar Timing Array will allow the baseline of observations to be significantly extended, and the number of monitored pulsars to be greatly expanded. The present quality of the data is such that our results are not strongly affected by theoretical uncertainties on the GW spectral shape. However, methodological improve-

Parameter	Description	Prior	Comments
\(E_b \)	EFAC per backend/receiver system	Uniform \([0,10]\)	single-pulsar analysis only
\(Q_k [s] \)	EQUAD per backend/receiver system	log-Uniform \([-8.5, -5]\)	single-pulsar analysis only
\(J_k [s] \)	ECORR per backend/receiver system	log-Uniform \([-8.5, -5]\)	single-pulsar analysis only
\(A_{\text{red}} \)	red-noise power-law amplitude	log-Uniform \([-20, -11]\)	one parameter per pulsar
\(\gamma_{\text{red}} \)	red-noise power-law spectral index	Uniform \([0,7]\)	one parameter per pulsar
\(T_\ast [\text{GeV}] \)	phase transition temperature	log-Uniform \([-4, 3]\)	one parameter for PTA
\(\alpha_\ast \)	phase transition strength	log-Uniform \([-2, 1]\)	one parameter for PTA
\(H_\ast /\beta \)	bubble nucleation rate	log-Uniform \([-2, 0]\)	one parameter for PTA
\(\eta \)	friction coefficient	log-Uniform \([-2, 1]\)	one parameter for PTA
\(A_{\text{GWB}} \)	common process strain amplitude	log-Uniform \([-18, -14]\)	one parameter for PTA
\(\gamma_{\text{GWB}} \)	common process power-law spectral index	delta function \((\gamma_{\text{GWB}} = 13/3)\)	fixed

TABLE III. Priors distributions for the parameters used in all the analyses in this work.
ments on determining the origin of the GWB spectrum will be needed for future datasets in order to separate the signal from a first-order PT from the SMBHB background, as well as to constrain the microscopic origins of the PT.

Author contributions — An alphabetical-order author list was used for this paper in recognition of the fact that a large, decade timescale project such as NANOGrav is necessarily the result of the work of many people. All authors contributed to the activities of the NANOGrav collaboration leading to the work presented here, and reviewed the manuscript, text, and figures prior to the paper’s submission. Additional specific contributions to this paper are as follows. ZA, HB, PRB, HTC, MED, PBD, TD, JAE, RDF, ECF, EF, NG-D, PAG, DCG, MLJ, MTL, DRL, RSL, JL, MAM, CN, DJN, TTP, NSF, SMR, KS, IHS, RS, JKS, RS and SJV developed the 12.5-year dataset through a combination of observations, arrival time calculations, data checks and refinements, and timing model development and analysis; additional specific contributions to the dataset are summarized in NG12. KZ and SRT coordinated the writing of the paper. VL and AM performed all analyses presented in this paper. KZ, SRT, AM, and VL wrote the paper and collected the bibliography.

Acknowledgments — This work has been carried out by the NANOGrav collaboration, which is part of the International Pulsar Timing Array. The NANOGrav project receives support from National Science Foundation (NSF) Physics Frontiers Center award number 1430284. The Arecibo Observatory is a facility of the NSF operated under cooperative agreement (#AST-1744119) by the University of Central Florida (UCF) in alliance with Universidad Ana G. Méndez (UAGM) and Yang Enterprises (YEI), Inc. The Green Bank Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. A majority of the computational work was performed on the Caltech High Performance Cluster, partially supported by a grant from the Gordon and Betty Moore Foundation. This work made use of the Super Computing System (Spruce Knob) at WVU, which are funded in part by the National Science Foundation EPSCoR Research Infrastructure Improvement Cooperative Agreement #1003907, the state of West Virginia (WVEPSCoR via the Higher Education Policy Commission) and WVU. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Portions of this work performed at NRL were supported...
FIG. 4. Corner plot showing the 1D and 2D posterior distributions for the parameters of the PT-only search. In deriving these results we have used the semi-analytic bubble spectral shape with \((a, b, c) = (1, 2.61, 1.5)\).

by Office of Naval Research 6.1 funding. The Flatiron Institute is supported by the Simons Foundation. Pulsar research at UBC is supported by an NSERC Discovery Grant and by the Canadian Institute for Advanced Research. SRT acknowledges support from NSF grant AST-#2007993, and a Dean’s Faculty Fellowship from Vanderbilt University’s College of Arts & Science. JS and MV acknowledge support from the JPL RTD program. SBS acknowledges support for this work from NSF grants #1458952 and #1815664. SBS is a CIFAR Azrieli Global Scholar in the Gravity and the Extreme Universe program. TTP acknowledges support from the MTA-ELTE Extragalactic Astrophysics Research Group, funded by the Hungarian Academy of Sciences (Magyar Tudományos Akadémia), that was used during the development of this research. TD and ML acknowledge NSF AAG award number 2009468. This work is supported in part by NASA under award number 80GSFC17M0002.
VL, AM and KZ are supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Number DE-SC0021431 and a Simons Investigator award

Facilities — Arcibo,GBT

Software — ENTERPRISE [60], enterprise_extensions [61], HASASTIA [62], libstempo [63], matplotlib [64], PTMCMC [65], tempo [66], tempo2 [67], PINT [68]

*NANOGrav Physics Frontiers Center Postdoctoral Fellow

Corresponding author: amitri@caltech.edu

[1] R. Jinn통 and M. Takimoto, Gravitational waves from bubble collisions: An analytic derivation, Phys. Rev. D 95, 024009 (2017), arXiv:1605.01403 [astro-ph.CO].

[2] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order phase transition, Phys. Rev. D 96, 103520 (2017), [Erratum: Phys.Rev.D 101, 089902 (2020)], arXiv:1704.05571 [astro-ph.CO].

[3] C. Caprini, R. Durrer, and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP 12, 024, arXiv:0909.0622 [astro-ph.CO].

[4] R. S. Foster and D. C. Backer, Constructing a Pulsar Timing Array, ApJ 361, 300 (1990).

[5] S. Detweiler, Pulsar timing measurements and the search for gravitational waves, ApJ 234, 1100 (1979).

[6] M. V. Sazhin, Opportunities for detecting ultralong gravitational waves, Soviet Ast. 22, 36 (1978).

[7] S. Ransom, A. Brazier, S. Chatterjee, T. Cohen, J. M. Cordes, M. E. DeCesar, P. B. Demorest, J. S. Hazboun, M. T. Lam, R. S. Lynch, M. A. McLaughlin, S. M. Ransom, X. Siemens, S. R. Taylor, and S. J. Vigeland, The NANOGrav Program for Gravitational Waves and Fundamental Physics, in BAAS, Vol. 51 (2019) p. 195, arXiv:1908.05556 [astro-ph.IM].

[8] G. Desvignes, R. N. Caballero, L. Lentati, J. P. W. Verbiest, D. J. Champion, B. W. Stappers, G. H. Janssen, P. Lazarus, S. Oslowski, S. Babak, C. G. Bassa, P. Brem, M. Burgay, I. Cognard, J. R. Gair, E. Graikou, L. Guillemant, J. W. T. Hessels, A. Jessner, C. Jordan, R. Karuppusamy, M. Kramer, A. Lassus, K. Lazaridis, K. J. Lee, K. Liu, A. G. Lyne, J. McKee, C. M. F. Mingarelli, D. Perrodin, A. Petiteau, A. Possenti, M. B. Purver, P. A. Rosado, S. Sanidas, A. Sesana, G. Shaifullah, R. Smits, S. R. Taylor, G. Theureau, C. Tiburzi, R. van Haasteren, and A. Vecchio, High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array, MNRAS 458, 3341 (2016), arXiv:1602.08511 [astro-ph.HE].

[9] M. Kerr, D. J. Reardon, G. Hobbs, R. M. Shannon, R. N. Manchester, S. Dai, C. J. Russell, S. B. Zhang, W. van Straten, S. Oslowski, A. Parthasarathy, R. Spiewak, M. Bailes, N. D. R. Bhat, A. D. Cameron, W. A. Coles, J. Dempsey, X. Deng, B. Goncharov, J. F. Kaczmarek, M. J. Keith, P. D. Lasky, M. E. Lower, B. Preisig, J. M. Sarkissian, L. Toomey, H. Wang, J. Wang, L. Zhang, and X. Zhu, The Parkes Pulsar Timing Array Project: Second data release, arXiv e-prints, arXiv:2003.09780 (2020), arXiv:2003.09780 [astro-ph.IM].

[10] B. C. Joshi, P. Arumugam, M. Bagchi, D. Bandopadhyay, A. Basu, N. Dhand a Batra, S. Bethapudi, A. Choudhary, K. De, L. Dey, A. Gopakumar, Y. Gupta, M. A. Krishnakumar, Y. Maan, P. K. Manoharan, A. Naidu, R. Nandi, D. Pathak, M. Surnis, and A. Subrahmanyan, Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics, Journal of Astrophysics and Astronomy 39, 51 (2018).

[11] B. B. P. Perera, M. E. DeCesar, P. B. Demorest, M. Kerr, L. Lentati, D. J. Nice, S. Oslowski, S. M. Ransom, M. J. Keith, Z. Arzoumanian, M. Bailes, P. T. Baker, C. G. Bassa, N. D. R. Bhat, A. Brazier, M. Burgay, S. Burke-Spolaor, R. N. Caballero, D. J. Champion, S. Chatterjee, S. Chen, I. Cognard, J. M. Cordes, K. Crowter, S. Dai, G. Desvignes, T. Dolch, R. D. Federman, E. C. Ferrara, E. Fonseca, J. M. Goldstein, E. Graikou, L. Guillemot, J. S. Hazboun, G. Hobbs, H. Hu, K. Islo, G. H. Janssen, R. Karuppusamy, M. Kramer, M. T. Lam, K. J. Lee, K. Liu, J. Luo, A. G. Lyne, R. N. Manchester, J. W. McKee, M. A. McLaughlin, C. M. F. Mingarelli, A. P. Parthasarathy, T. T. Pennucci, D. Perrodin, A. Possenti, D. J. Reardon, C. J. Russell, S. A. Sanidas, A. Sesana, G. Shaifullah, R. M. Shannon, X. Siemens, J. Simon, R. Spiewak, I. H. Stairs, D. W. Stappers, J. K. Swiggum, S. R. Taylor, G. Theureau, C. Tiburzi, M. Vallisneri, A. Vecchio, J. B. Wang, S. B. Zhang, L. Zhang, W. W. Zhu, and X. J. Zhu, The International Pulsar Timing Array: second data release, MNRAS 490, 4666 (2019), arXiv:1909.04534 [astro-ph.HE].

[12] K. J. Lee, Prospects of Gravitational Wave Detection Using Pulsar Timing Array for Chinese Future Telescopes, in Frontiers in Radio Astronomy and FAST Early Sciences Symposium 2015, Astronomical Society of the Pacific Conference Series, Vol. 502, edited by L. Qin and D. Li (2016) p. 19.

[13] M. Bailes, E. Barr, N. D. R. Bhat, J. Brink, S. Buchner, M. Burgay, F. Camilo, D. J. Champion, J. Helsens, G. H. Janssen, A. Jameson, S. Johnston, A. Karastergiou, R. Karuppusamy, V. Kaspi, M. J. Keith, M. Kramer, M. A. McLaughlin, K. Moodley, S. Oslowski, A. Possenti, S. M. Ransom, F. A. Rasio, J. Sievers, M. Serylak, B. W. Stappers, I. H. Stairs, G. Theureau, W. van Straten, P. Weltevrede, and N. Wex, MeerTime - the MeerKAT Key Science Program on Pulsar Timing, arXiv e-prints, arXiv:1803.07424 (2018), arXiv:1803.07424 [astro-ph.IM].

[14] C. Ng, Pulsar science with the CHIME telescope, in Pulsar Astrophysics the Next Fifty Years, IAU Symposium, Vol. 337, edited by P. Weltevrede, B. B. Perera, L. L. Preston, and S. Sanidas (2018) pp. 179–182, arXiv:1711.02104 [astro-ph.IM].

[15] A. Sesana, P. Haardt, P. Madau, and M. Volonteri, Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies, ApJ 611, 623 (2004), astro-ph/0401543.

[16] S. Burke-Spolaor, S. R. Taylor, M. Charisi, T. Dolch, J. S. Hazboun, A. M. Holgado, L. Z. Kelley, T. J. W. Lazio, D. R. Madison, N. McMann, C. M. F. Mingarelli, A. Rasskazov, X. Siemens, J. J. Simon, and T. L. Smith, The astrophysics of nanohertz gravitational waves, A&A Rev. 27, 5 (2019), arXiv:1811.08826 [astro-ph.HE].
X. Siemens, V. Mandic, and J. Creighton, Gravitational-Wave Stochastic Background from Cosmic Strings, Phys. Rev. Lett. 98, 111101 (2007), arXiv:astro-ph/0610920 [astro-ph].

J. J. Blanco-Pillado, K. D. Olum, and X. Siemens, New limits on cosmic strings from gravitational wave observation, Physics Letters B 778, 392 (2018), arXiv:1709.02434 [astro-ph.CO].

C. Caprini, R. Durrer, and X. Siemens, Detection of gravitational waves from the QCD phase transition with pulsar timing arrays, Phys. Rev. D 82, 063511 (2010), arXiv:1007.1218 [astro-ph.CO].

A. Kobakhidze, C. Lagger, A. Manning, and J. Yue, Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays, The European Physical Journal C 77 (2017).

L. P. Grishchuk, Amplification of gravitational waves in an isotropic universe, Soviet Journal of Experimental and Theoretical Physics 40, 409 (1975).

P. D. Laszky, C. M. F. Mingarelli, T. L. Smith, J. T. Giblin, E. Thane, D. J. Reardon, R. Caldwell, M. Bailes, N. D. R. Bhat, S. Burke-Spaola, S. Dai, J. Dempsey, G. Hobbs, M. Kerr, Y. Levin, R. N. Manchester, S. Osłowski, V. Ravi, P. A. Rosado, R. M. Shannon, R. Spiewak, W. van Straten, L. Toomey, J. Wang, L. Wen, X. You, and X. Zhu, Gravitational-Wave Cosmology across 29 Decades in Frequency, Physical Review X 6, 011035 (2016), arXiv:1511.05994 [astro-ph.CO].

M. F. Alam, Z. Arzoumanian, P. T. Baker, H. Blumer, K. E. Bohler, A. Braizer, P. R. Brook, S. Burke-Spaola, K. Caballero, R. S. Camuccio, R. L. Chamberlain, S. Chatterjee, J. M. Cordes, N. J. Cornish, F. Crawford, H. T. Cromartie, M. E. DeCesar, P. B. Demorest, T. Dolch, J. A. Ellis, R. D. Ferdman, E. C. Ferrara, W. Fiore, E. Fonseca, Y. Garcia, N. Garver-Daniels, P. A. Gentile, D. C. Good, J. A. Guskov, D. Halmrast, J. Hazboun, K. Islo, R. J. Jennings, C. Jessup, M. L. Jones, A. R. Kaiser, D. L. Kaplan, L. Z. Kelley, J. Shapiro Key, M. T. Lam, T. J. W. Lazio, J. Luo, R. S. Lynch, D. R. Madison, A. McEwen, M. A. McLaughlin, C. M. F. Mingarelli, C. Ng, D. J. Nice, T. T. Pennucci, S. M. Ransom, P. S. Ray, B. J. Shapiro-Albert, X. Siemens, I. H. Stairs, D. R. Stinebring, J. K. Swiggun, M. Vassiliou, H. Wahl, and C. A. Witt, Astrophysics Milestones For Pulsar Timing Array Gravitational Wave Detection, arXiv e-prints , arXiv:2010.11950 [astro-ph.HE].

V. Vaikkonen and H. Veermäe, Did nanograv see a signal from primordial black hole formation?, Phys. Rev. Lett. 126, 051303 (2021).

V. De Luca, G. Franciolini, and A. Riotto, Nanograv data hints at primordial black holes as dark matter, Phys. Rev. Lett. 126, 041303 (2021).

J. Ellis and M. Lewicki, Cosmic string interpretation of nanograv pulsar timing data, Phys. Rev. Lett. 126, 041304 (2021).

S. Blasi, V. Brdar, and K. Schmitz, Has nanograv found first evidence for cosmic strings?, Phys. Rev. Lett. 126, 041305 (2021).

A. Brandenburg, E. Clarke, Y. He, and T. Kahnashvili, Can we observe the QCD phase transition-generated gravitational waves through pulsar timing arrays?, arXiv e-prints , arXiv:2102.12428 (2021), arXiv:2102.12428 [astro-ph.CO].

A. Neronov, A. R. Pol, C. Caprini, and D. Semikoz, NANOGraf signal from magnetohydrodynamic turbulence at the QCD phase transition in the early Universe, Phys. Rev. D 103, L041302 (2021), arXiv:2009.14174 [astro-ph.CO].

S.-L. Li, L. Shao, P. Wu, and H. Yu, NANOGrav Signal from First-Order Confinement/Deconfinement Phase Transition in Different QCD Matters, arXiv e-prints , arXiv:2101.08012 (2021), arXiv:2101.08012 [astro-ph.CO].

B. Barman, A. Dutta Banik, and A. Paul, Implications of NANOGrav results and UV freeze-in in a fast-expanding Universe, arXiv e-prints , arXiv:2012.11969 (2020), arXiv:2012.11969 [astro-ph.CO].

K. T. Abe, Y. Tada, and I. Ueda, Induced gravitational waves as a cosmological probe of the sound speed during the QCD phase transition, arXiv e-prints , arXiv:2010.06193 (2020), arXiv:2010.06193 [astro-ph.CO].

W. Ratzinger and P. Schwaller, Whispers from the dark side: Confronting light new physics with
NANOGrav data, arXiv e-prints, arXiv:2009.11875 (2020), arXiv:2009.11875 [astro-ph.CO].

[37] A. Addazi, Y.-F. Cai, Q. Gan, A. Marciano, and K. Zeng, NANOGrav results and Dark First Order Phase Transitions, arXiv e-prints, arXiv:2009.10327 (2020), arXiv:2009.10327 [hep-ph].

[38] Y. Nakai, M. Suzuki, F. Takahashi, and M. Yamada, Gravitational Waves and Dark Radiation from Dark Phase Transition: Connecting NANOGrav Pulsar Timing Data and Hubble Tension, arXiv e-prints, arXiv:2009.09754 (2020), arXiv:2009.09754 [astro-ph.CO].

[39] M. J. Strassler and K. M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651, 374 (2007), arXiv:hep-ph/0604261.

[40] Z. Chacko, L. J. Hall, and Y. Nomura, Acceleressenence: dark energy from a phase transition at the seesaw scale, JCAP 10, 011, arXiv:astro-ph/0405596.

[41] P. Schwaller, Gravitational Waves from a Dark Phase Transition, Phys. Rev. Lett. 115, 181101 (2015), arXiv:1504.07263 [hep-ph].

[42] M. Battaglieri, A. Belloni, A. Chou, P. Cushman, B. Echenard, R. Essig, J. Estrada, J. L. Feng, B. Flaugher, P. J. Fox, P. Graham, C. Hall, R. Harnik, J. Hewett, J. Incandela, E. Izaguirre, D. McKinsey, M. Pyle, N. Ragoni, G. Raffelt, J. Raffelt, N. Rattazzi, J. Rathsman, R. Renard, A. Rizzo, M. Rizzo, L. Rosenbauer, A. Rubbia, B. Rybolt, T. Saab, B. R. Safdi, E. Santopinto, A. Scarf, M. Schneider, P. Schuster, G. Seidel, H. Sekiya, I. Seong, G. Simi, V. Sipala, T. Slattery, O. Skone, P. F. Smith, J. Smolinsky, D. Snowden-Ifft, M. Solt, A. Sonnenschein, P. Sorensen, N. Spooner, B. Srivastava, I. Stancu, L. Strigari, J. Strube, A. O. Sushkov, M. Sydags, P. Tanedo, D. Tanner, R. Tayloe, W. Terrano, J. Thaler, B. Thomas, B. Thorpe, T. Thorpe, J. Tiffenberg, N. Tran, M. Trovato, C. Tully, T. Tyson, T. Vachaspati, S. Vahsen, K. van Bibber, J. Vandenbroucke, A. Villano, T. Volansky, G. Wang, T. Ward, W. Wester, A. Whitbeck, D. A. Williams, P. Windsch, B. Wojtsekhowski, H.-B. Yu, S.-S. Yu, T.-T. Yu, X. Zhang, Y. Zhao, and Y.-M. Zhong, US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, arXiv e-prints, arXiv:1707.04591 (2017), arXiv:1707.04591 [hep-ph].

[43] S.-L. Li, L. Shao, P. Wu, and H. Yu, NANOGrav Signal from First-Order Confinement/Deconfinement Phase Transition in Different QCD Matters, (2021), arXiv:2101.08012 [astro-ph.CO].

[44] L. Bian, R.-G. Cai, J. Liu, X.-Y. Yang, and R. Zhou, On the gravitational wave sources from the NANOGrav 12.5-yr data, (2020), arXiv:2009.13893 [astro-ph.CO].

[45] C. J. Moore, R. H. Cole, and C. P. L. Berry, Gravitational-wave sensitivity curves, Classical and Quantum Gravity 32, 015014 (2015), arXiv:1408.0740 [gr-qc].

[46] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J. P. Bernard, M. Bersanelli, P. Bielewicz, J. L. Bock, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R. C. Butler, E. Calabrese, J. F. Cardoso, J. Carron, A. Challinor, H. C. Chang, J. Chluba, L. P. L. Colombo, C. Combet, D. Contreras, B. P. Crill, F. Cuttaia, P. de Bernardis, G. de Zotti, J. Delabrouille, J. M. Delouis, E. Dhawan, Y. Dholakia, C. R. Dyer, M. Espinal, D. Fixsen, M. Forte, G. Franceschini, S. Frailis, M. Fraisse, S. Garnica, F. Giantomassi, M. Giraud, A. Gratton, L. Gruppuso, J. E. Gudmundsson, J. Hanany, W. Handley, F. K. Hansen, D. Herranz, S. A. Hinsley, R. Hoeft, M. Holcomb, B. Holzapfel, P. Honscheid, H.-B. Yu, S.-S. Yu, T.-T. Yu, X. Zhang, Y. Zhao, and Y.-M. Zhong, US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, arXiv e-prints, arXiv:1707.04591 (2017), arXiv:1707.04591 [hep-ph].
Official release (2017).

[66] D. Nice, P. Demorest, I. Stairs, R. Manchester, J. Taylor, W. Peters, J. Weisberg, A. Irwin, N. Wex, and Y. Huang, Tempo: Pulsar timing data analysis (2015), ascl:1509.002.

[67] G. Hobbs and R. Edwards, Tempo2: Pulsar Timing Package (2012), ascl:1210.015.

[68] J. Luo, S. Ransom, P. Demorest, R. van Haasteren, P. Ray, K. Stovall, M. Bachetti, A. Archibald, M. Kerr, J. Colen, and F. Jenet, PINT: High-precision pulsar timing analysis package (2019), ascl:1902.007.