Dynamics of a Stochastic COVID-19 Epidemic Model with Jump-Diffusion

Almaz Tesfaya,b,*, Tareq Saeedc, Anwar Zebd, Daniel Tesfaya,b, Anas Khalafa, James Brannane

aSchool of Mathematics and Statistics & Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
bDepartment of Mathematics, Mekelle University, P.O.Box 231, Mekelle, Ethiopia
cDepartment of Mathematics, King Abdulaziz University, Jeddah, 41206, Kingdom of Saudi Arabia
dDepartment of Mathematics, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
eDepartment of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634, USA

Abstract
For a stochastic COVID-19 model with jump-diffusion, we prove the existence and uniqueness of the global positive solution. We also investigate some conditions for the extinction and persistence of the disease. We calculate the threshold of the stochastic epidemic system which determines the extinction or permanence of the disease at different intensities of the stochastic noises. This threshold is denoted by ξ which depends on the white and jump noises. The effects of these noises on the dynamics of the model are studied. The numerical experiments show that the random perturbation introduced in the stochastic model suppresses disease outbreak as compared to its deterministic counterpart. In other words, the impact of the noises on the extinction and persistence is high. When the noise is large or small, our numerical findings show that the COVID-19 vanishes from the population if $\xi < 1$; whereas the epidemic can’t go out of control if $\xi > 1$. From this, we observe that white noise and jump noise have a significant effect on the spread of COVID-19 infection, i.e., we can conclude that the stochastic model is more realistic than the deterministic one. Finally, to illustrate this phenomenon, we put some numerical simulations.

Keywords: Brownian motion; Lévy noise; stochastic COVID-19 model; extinction; persistence.
2020 MSC: 39A50, 45K05, 65N22.

1. Introduction
Infectious diseases are the public enemy of the human population and have brought a great impact on mankind. In the present time, the novel coronavirus is the major disease in the world. This new strain of coronavirus is called COVID-19 or SARS-Cov2. COVID-19 has been declared by the World Health Organization as a global emergency in January 2020, and a pandemic on March 2020 [1]. Since the first breakout of the pandemic, according to the data released by World barometer [3], there are more than 52 million confirmed (from which 17 million are active) cases, 1.29 million deaths and 33.5 million recoveries from the disease.

Preprint submitted to AIDE October 17, 2024
Researchers are working around the clock to understand the nature of the disease deeply. Scientists are also battling to produce a vaccine for this new virus.

Numerous scholars have conducted investigation to predict the spread of COVID-19 in order to seek the best prevention measures. For example [3–8] studied mathematical models of COVID-19 to describe the spread of the coronavirus. Stochastic transition models were established in [9–11] to evaluate the spread of COVID-19. The importance of isolation and quarantine was also emphasized in those articles. Dalal et al. [12] studied the impact of the environment in the AIDS model using the method of parameter perturbation. In papers [13–20] fractal-fractional differentiation and integration is discussed. This approach is very important in investigating the stochastic COVID-19 model.

Stochastic dynamical systems are widely used to describe different complex phenomena. The random fluctuations in complex phenomena usually portray intermittent jumps i.e., the noises are non-Gaussian. In other words, epidemic models are inevitably subject to environmental noise and it is necessary to reveal how the environmental noise influences the epidemic model. In the natural world, there are different types of random noises, such as the well known white noise, the Lévy jump noise which considers the motivation that the continuity of solutions may be inevitably under severe environmental perturbations, such as earthquakes, floods, volcanic eruptions, SARS, influenza [21–23] and a jump process should be introduced to prevent and control diseases, and so on. Mathematically, several authors [24–27] used the Lévy process to describe the phenomena that cause a big jump to occur occasionally.

Recently, Zhang et al. [28] investigated the stochastic COVID-19 mathematical model driven by Gaussian noise. The authors assumed that environmental fluctuations in the constant β, so that \(\beta \rightarrow \beta + \lambda B_t \) where \(B_t \) is a one dimensional Brownian motion [29]. The stochastic COVID-19 model which they consider is

\[
\begin{align*}
 dS_t &= (\Lambda - \beta S_t I_t - \sigma S_t R_t)dt - \lambda S_t I_t dB_t, \\
 dI_t &= (\beta S_t I_t - (\nu + \gamma) I_t)dt + \lambda S_t I_t dB_t, \\
 dR_t &= (\gamma I_t - (\nu + \sigma) R_t)dt,
\end{align*}
\]

(1)

where the variables \(S_t, I_t, \) and \(R_t \) represent the susceptible population, infectious population, and recoverable (removed) population, respectively. The parameters \(\Lambda, \beta, \nu, \gamma \) and \(\sigma \) are all positive constant numbers, and they represent the joining rate of the population to susceptible class through birth or migration, the rate at which the susceptible tend to infected class (like social distancing \(\beta \in (0, 1) \)), due to natural cause and from COVID-19, the recovery rate, and the rate of health deterioration, respectively. \(B_t \) is standard Brownian motion defined on the complete probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})\) and \(\lambda \) is the intensity of the Gaussian noise. The researchers proved the existence and uniqueness of the non-negative solution of the system (1), and they also showed the extinction and persistence of the disease. But they did not consider the jump noise.

Since, the stochastic model (1) that does not take randomness can not efficiently model these phenomena. The Lévy noise, which is more comprehensive, is a better candidate [30].

Here, we consider that the environmental Gaussian and non-Gaussian noises are directly proportional to the state variables \(S_t, I_t, \) and \(R_t \). Several scholars used this approach, for instance, we refer to [31–33] and references therein. The system which we consider has the following form:

\[
\begin{align*}
 dS_t &= (\Lambda - \beta S_t I_t - \nu S_t I_t - \sigma R_t - \nu S_t R_t)dt + \lambda_1 S_t \xi d\overline{N}(dt, dy), \\
 dI_t &= (\beta S_t I_t - (\nu + \gamma) I_t - \sigma R_t - \nu S_t I_t)dt + \lambda_2 I_t \xi dB_t + \int \eta(y) I_t \bar{N}(dt, dy), \\
 dR_t &= (\gamma I_t - (\nu + \sigma) R_t - \nu S_t I_t)dt + \lambda_3 R_t \xi dB_t + \int \eta(y) R_t \bar{N}(dt, dy),
\end{align*}
\]

(2)
where S_{t-} is the left limit of S_t. The description of the parameters $\Lambda, \beta, \nu, \gamma$ and σ are the same as in the model \cite{[1]}. For $j = 1, 2, 3$, $\epsilon_j(y)$ is a bounded function satisfying $\epsilon_j(y) + 1 > 0$ on the intervals $|y| \geq 1$ or $|y| < 1$. $N(t, dy)$ is the independent Poisson random measure on $\mathbb{R}^+ \times \mathbb{R} \setminus \{0\}$, $\tilde{N}(t, dy)$ is the compensated Poisson random measure satisfying $\tilde{N}(t, dy) = N(t, dy) - \pi(dy)dt$, where $\pi(.)$ is a δ-finite measure on a measurable subset \mathcal{Y} of $(0, \infty)$ and $\pi(\mathcal{Y}) < \infty$, \cite{[30],[34]}. B^j_t are mutually independent standard Brownian motion and λ_j stand for the intensities of the Gaussian noise, \cite{[35]}. To the best of our knowledge, this model is not studied before.

In this study, we are going to investigate the stochastic COVID-19 model with jump-diffusion \cite{[2]}. The existence of the solution of the stochastic model \cite{[2]} is analyzed. We use the Euler Maruyama (EM) method, which is proposed in \cite{[36],[37]}, after revising and changing it a bit to fit our model. The consistency, convergence, and stability of this numerical method is also proved in the afore-mentioned papers. This method helps to evaluating explanations based on the notion of adversarial robustness. Using numerical simulations, we study the impact of the deterministic parameters and noise intensities on the proposed system. We think this is a better tool to demonstrate the interactions between the epidemic system and its complex surrounding. Especially, we focus on the extinction and persistence of the SARS-Cov2 and present the biological interpretations. The evaluation criteria further allows us to derive new explanations which capture pertinent features qualitatively and quantitatively. From the plotted figures, we can observe that the noise intensities have a great impact on the systems \cite{[4]} and \cite{[2]}. More details are given in Sections \cite{[4]} and \cite{[5]}

The goal of the present work is to make contributions to understand the dynamics of the novel disease (COVID-19) epidemic models with both Gaussian and non-Gaussian noises, i.e., we aspire to study the effect of Gaussian noise and jumps intensities on COVID-19 epidemic.

The rest of the paper is constituted as follows. In Section \cite{[2]} we recall some important notations and lemmas. In section \cite{[3]} we discuss the dynamical behaviour of the deterministic COVID-19 model. Section \cite{[4]} has two subsections. The existence and uniqueness of the solution of the stochastic COVID-19 model \cite{[2]} is given in subsection \cite{[4.1]} While in Subsection \cite{[4.2]} by finding the value of the threshold, we show the conditions for the extinction and persistence to COVID-19. The discussion and numerical experiments of our work are given in Section \cite{[5]} Finally, we put conclusion of our study in Section \cite{[6]}

2. Preliminaries

In this section, we will introduce some basic notations and lemmas. Throughout this paper, we have

a. $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})$ denotes a complete filtrable probability space;

b. $\mathbb{R}^3_+ := \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_j \geq 0, \ j = 1, 2, 3\}, \ \mathbb{R}_+ = (0, \infty)$;

c. For the jump-diffusion, let $n \geq 0$, there is a positive constant L_n such that

(i.) $\int_{\mathcal{Y}} |H_j(x, y) - H_j(\bar{x}, y)|^2 \pi(dy) \leq L_n |x - \bar{x}|^2$ where $H_j(x, y) = \epsilon_j(y)X_j, \ j = 1, 2, 3$. For more details we refer to \cite{[38], P. 78}, \cite{[39]};

(ii.) $1 + \epsilon_j(y) \geq 0, y \in \mathcal{Y}, j = 1, 2, 3$, there exists $C > 0$ such that $\int_{\mathcal{Y}} (ln(1 + \epsilon_j(y)))^2 \pi(dy) < C$;

d. $< M > := \frac{1}{t} \int_0^t M_s dr, \quad < M >_t := \underset{t \rightarrow \infty}{\text{lim}} \inf \frac{1}{t} \int_0^t M_s dr, \quad < M >_{t+} := \underset{t \rightarrow \infty}{\text{lim}} \sup \frac{1}{t} \int_0^t M_s dr$;

e. For $j = 1, 2, 3$, $\varphi_j = \frac{x_j^2}{2} + \int_{\mathcal{Y}} (\epsilon_j(y) - ln(1 + \epsilon_j(y))) \pi(dy), \ j = 1, 2, 3$;

f. $\psi_j = \frac{1}{t} \int_{\mathcal{Y}} (ln(1 + \epsilon_j(y))) \tilde{N}(dt, dy), \quad < \psi_j, \psi_j > := t \int_{\mathcal{Y}} (ln(1 + \epsilon_j(y))) \pi(dy) < tC$;

3
g. For some positive \(m > 2 \), \(M = v - \frac{m-1}{m} \bar{\Lambda}^2 - \frac{1}{m} \bar{\epsilon} \), where \(\bar{\Lambda} = \max\{\lambda_1^2, \lambda_2^2, \lambda_3^2\} \), and \(\bar{\epsilon} = \int_y (1 + \bar{\epsilon})^m - 1 - m \bar{\epsilon} \pi(dy) \), where \(\bar{\epsilon} = \max\{\epsilon_1(y), \epsilon_2(y), \epsilon_3(y)\} \), and \(\epsilon = \min\{\epsilon_1(y), \epsilon_2(y), \epsilon_3(y)\} \)

h. \(\inf\emptyset = \infty \) where \(\emptyset \) denotes empty set.

Remark 1. For some positive \(x \), the following is true, \(x - 1 - \ln x > 0 \).

Lemma 1. (The one dimensional Itô formula). Here we will give Itô formula for the following \(n \)-dimensional stochastic differential equation (SDE) with jump noise \[33\]

\[
dY(t) = G(Y(t))dt + F(Y(t))dB_t + \int_{|y|<1} H(Y(t),y)\tilde{N}(dt,dy)\quad t \geq 0,
\]

where \(G : \mathbb{R}_+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n \), \(F : \mathbb{R}_+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n \times \mathbb{R}^d \), \(H : \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \), for \(n \geq 2 \) are considerable as measurable.

Assume \(Y \) be a solution of the SDE \[3\]. Then, for each \(W \in C^2(\mathbb{R}^n), t \in [0, \infty) \), with probability one, we have \[38\]

\[
W(Y(t)) - W(Y(0)) = \int_0^t \partial_j W(Y_s(r))dY^j_s + \frac{1}{2} \int_0^t \partial_j \partial_i W(Y_s(r))d[Y^j_s, Y^i_s](r) + \int_{|y|<1} \left[W(Y(r^-) + \epsilon Y(r, y)\right) - W(Y(r^-))\right] \tilde{N}(dr,dy)
\]

where \(Y_c \) is the continuous part of \(Y \) given by \(Y^i_c(t) = \int_0^t F^i_k(s)dB^k(s) + \int_0^t G^i(s)ds, \quad 1 \leq i \leq n, 1 \leq k \leq m, t \geq 0 \). The proof of this lemma is given in \[39\], P. 226.

Next, let us denote \(LW : [0, \infty) \times \mathbb{R}^n \rightarrow \mathbb{R} \) as the linear function associated to the SDE \[3\] which is given by

\[
(LW)(\eta) = G^i(\eta)(\partial_i W)(\eta(0)) + \frac{1}{2} \left[F(\eta)(F(\eta)^T \partial^T \partial_i \partial_k W)(\eta(0))
\right.
+
\left. \int_{|y|<1} \left[W(\eta(0) + H(\eta, y)) - W(\eta(0)) - H^i(\eta, y)(\partial_i W)(\eta(0))\right] \pi(dy),
\]

where \(\eta \in [0, \infty) \times \mathbb{R}^n \).

Lemma 2. Assume (c) holds. The stochastic model \[2\] has a unique non-negative solution \(\mathbf{S}_t, \mathbf{I}_t, \mathbf{R}_t \in \mathbb{R}^3_+ \) for any given initial value \(\mathbf{S}_0, \mathbf{I}_0, \mathbf{R}_0 \in \mathbb{R}^3_+ \) on time \(t \geq 0 \) almost surely (a.s.). Under (g), the solution of model \[2\] satisfies the following conditions:

(i) \(\lim_{t \rightarrow \infty} \left(\frac{S}{I} + \frac{I}{R} + \frac{R}{I} \right) = 0 \) a.s. Moreover, \(\lim_{t \rightarrow \infty} \left(\frac{S}{I} \right) = 0 \), \(\lim_{t \rightarrow \infty} \left(\frac{I}{R} \right) = 0 \), \(\lim_{t \rightarrow \infty} \left(\frac{R}{I} \right) = 0 \),

(ii) \(\lim_{t \rightarrow \infty} \left(SdI_t / I \right) = 0 \), \(\lim_{t \rightarrow \infty} \left(IdB^1_t / I \right) = 0 \), \(\lim_{t \rightarrow \infty} \left(R dB^1_t / I \right) = 0 \), \(\lim_{t \rightarrow \infty} \left(\int_t^\infty S(\mathbf{e}_2(y) \tilde{N}(dr,dy) \right) = 0 \), \(\lim_{t \rightarrow \infty} \left(\frac{1}{t} \int_0^t S(\mathbf{e}_2(y) \tilde{N}(dr,dy) \right) = 0 \) a.s.

Proof 1. The proof of this lemma is similar to \[33\] and hence is omitted.
3. Dynamical analysis of deterministic COVID-19 model

The deterministic version of systems (1) and (2) is

\[
\frac{dS_t}{dt} = \Lambda - \beta S_t I_t - \nu S_t + \sigma R_t, \\
\frac{dI_t}{dt} = \beta S_t I_t - (\nu + \gamma) I_t, \\
\frac{dR_t}{dt} = \gamma I_t - (\nu + \sigma) R_t,
\]

(4)

and

\[
\frac{dX}{dt} = \frac{dS_t}{dt} + \frac{dI_t}{dt} + \frac{dR_t}{dt} = \Lambda - \nu X,
\]

(5)

where \(X = S_t + I_t + R_t\). For \(\Lambda = \nu X\), Equation (5) shows \(X\) is the total constant population with initial value \(X_0 = S_0 + I_0 + R_0\). This equation has analytical solution

\[
X = \frac{\Lambda}{\nu} + X_0 e^{-\nu t}.
\]

(6)

Since, the initial values are non-negative, we have \(S_t \geq 0, I_t \geq 0, R_t \geq 0\, and\, \lim_{t \to \infty} X = \frac{\Lambda}{\nu}\). One can easily conclude that \(0 < X \leq \frac{\Lambda}{\nu}\). Therefore, Eq. (6) has a positivity property. Thus the deterministic COVID-19 model (4) is biologically meaningful and bounded in the domain

\[
\mathbb{D} = \left\{(S_t, I_t, R_t) \in \mathbb{R}_+^3 : 0 < X \leq \frac{\Lambda}{\nu}\right\}.
\]

The equilibrium point of system (4) satisfies the following:

\[
\Lambda - \beta S_t I_t - \nu S_t + \sigma R_t = 0, \\
\beta S_t I_t - (\nu + \gamma) I_t = 0, \\
\gamma I_t - (\nu + \sigma) R_t = 0,
\]

having the equilibria:

\[
E^0 = (S^0, I^0, R^0) = \left(\frac{\Lambda}{\nu}, 0, 0\right),
\]

\[
E^1 = (S^1, I^1, R^1) = \left(\frac{\nu + \gamma}{\beta}, \frac{\beta \Lambda - \nu (\nu + \gamma)}{\nu + \gamma}, 0\right),
\]

\[
E^2 = (S^2, I^2, R^2) = \left(\frac{\nu + \gamma}{\beta}, 0, \frac{\nu (\nu + \gamma) - \beta \Lambda}{\beta \sigma}\right),
\]

\[
E^3 = (S^3, I^3, R^3) = \left(\frac{\nu + \gamma}{\beta}, \frac{\nu (\nu + \gamma) - \beta \Lambda}{\beta \sigma}, \frac{\gamma (\Lambda - \nu S^3)(\nu + \sigma)}{\beta S^3 (\nu + \sigma) - \gamma \sigma}
ight),
\]

where \(S^3 = \frac{\nu + \gamma}{\beta}\).

\(E^0\) is called disease-free equilibrium point (free virus equilibrium point). Because there are no infectious
individuals in the population, which indicates that $I = 0$ and $R = 0$. E^3 is known as endemic equilibrium point (the positive virus point) of the model (4).

From the expressions of I^1 and I^3, noting that $\frac{\Lambda}{\nu} > \frac{\nu + \gamma}{\beta}$, the deterministic system (4) has unique positive equilibrium E^1 and E^3. From this the reproductive number of the system (4) is given by

$$\xi_0 = \frac{\beta \Lambda}{(\nu + \gamma) \nu}$$

Similarly, at equilibrium point E^3, all the eigenvalues are non-positive if $\xi_0 > 1$. Hence the proposed model is globally stable if $\xi_0 > 1$.

Theorem 1. The deterministic system (4) has
(i) a unique stable ‘disease-extinction’ (disease-free equilibrium) equilibrium point E^j for $j = 0, 1, 2, 3$ if $\xi_0 < 1$. This indicates the extinction of the disease from the population.
(ii) a stable positive equilibrium E^j for $j = 0, 1, 2, 3$ exists if $\xi_0 > 1$ that shows the permanence of the disease.

Proof 2. The Jacobian matrix of the system (4) is

$$J = \begin{pmatrix} -\beta I - \nu & -\beta S & \sigma \\ \beta I & \beta S - (\nu + \gamma) & 0 \\ 0 & \gamma & -(\nu + \sigma) \end{pmatrix}.$$

Now let us show for $j = 0$ (E^0), then similarly can show for $j = 1, 2, 3$.

The Jacobian of the system (4) at E^0 obtains

$$J^0 = \begin{pmatrix} -\nu & -\beta \frac{\Lambda}{\nu} & \sigma \\ \beta \frac{\Lambda}{\nu} - (\nu + \gamma) & 0 & 0 \\ 0 & \gamma & -(\nu + \sigma) \end{pmatrix}.$$

The eigenvalues are calculated as follows:

$$J^{E^0} = \begin{vmatrix} -\nu - \bar{\lambda} & -\beta \frac{\Lambda}{\nu} & \sigma \\ \beta \frac{\Lambda}{\nu} - (\nu + \gamma) - \bar{\lambda} & 0 & 0 \\ 0 & \gamma & -(\nu + \sigma) - \bar{\lambda} \end{vmatrix}. \quad (7)$$

The characteristic polynomial of equation (7) is

$$(-\nu - \bar{\lambda})(\beta \frac{\Lambda}{\nu} - (\nu + \gamma) - \bar{\lambda})(-(\nu + \sigma) - \bar{\lambda}) = 0,$$

so the eigenvalue is

$$\bar{\lambda} = \beta \frac{\Lambda}{\nu} - (\nu + \gamma).$$
From the stability theory, E^0 is stable if and only if

$$\bar{\lambda} < 0,$$

or equivalently

$$\beta \frac{\Lambda}{\nu} - (\nu + \gamma) < 0,$$

implies

$$\xi_0 = \beta \frac{\Lambda}{\nu (\nu + \gamma)} < 1. \quad \square$$

Figure 1: Sample path of $\frac{dI}{dt}$ (a) when $\xi_0 = 1.0286$ and $\xi_0 = 0.0103$. (b) The phaseline of dI/dt at different values of ν. (c) When the reproduction number $\xi_0 < 1$.
4. Dynamics of the stochastic COVID-19 system

4.1. Existence and uniqueness of the solution

To study the dynamical behaviour of dynamic biological system, the main concern is to check whether the solution of the system is unique global and positive. A dynamical system has a uniquely global solution, if it exhibits no explosion in a given finite time. To have a uniquely global solution, the coefficients of the system must satisfy the following two conditions: (i) local Lipschitz condition, (ii) linear growth condition; see [30, 35]. However, the coefficients of the stochastic COVID-19 model (2) do not satisfy the second condition (linear growth condition), so the solution \((S_t, I_t, R_t)\) of system (2) can explode in a finite time \(t\). The following Theorem helps us to show that there exists a unique positive solution \((S_t, I_t, R_t) \in \mathbb{R}_+^3\) to COVID-19 system (2).

Theorem 2. For any given initial condition \((S_0, I_0, R_0) \in \mathbb{R}_+^3\), there is a unique non-negative solution \((S_t, I_t, R_t) \in \mathbb{R}_+^3\) of the model (2) for time \(t \geq 0\).

Proof. The differential equation (2) has a locally Lipschitz continuous coefficient, so the model has a unique local solution \((S_t, I_t, R_t)\) on \(t \in [0, t_e)\) where \(t_e\) is the time for noise for the explosion. In order to have a global solution, we need to show that \(t_e = \infty\) almost surely. To do this, assume that \(k_0\) is very large positive number \((k_0 > 0)\) so that the initial condition \((S_0, I_0, R_0) \in \left[\frac{1}{k_0}, k_0\right]\). For every integer \(k \geq k_0\), the stopping time is defined as:

\[
\tau_e = \inf \{t \in [0, t_e) : \min(S_t, I_t, R_t) \leq \frac{1}{k_0}, \text{ or } \max(S_t, I_t, R_t) \geq k\}.
\]

As \(k\) goes to \(\infty\), \(\tau_k\) increases. Define \(\lim_{k \to \infty} \tau_k = \tau_\infty\) with \(\tau_\infty \leq \tau_e\). If we can prove that \(\tau_\infty = \infty\) almost surely, then \(\tau_e = \infty\). If this is false, then there are two positive constants \(T > 0\) and \(\delta \in (0, 1)\) such that

\[
\mathbb{P}[\tau_\infty \leq T] > \delta.
\]

Thus there is \(k_1 \geq k_0\) that satisfies

\[
\mathbb{P}[\tau_k \leq T] \geq \delta, \quad k \geq k_1.
\]

Now, let us define a \(C^2\)-function \(W : \mathbb{R}_+^3 \to \mathbb{R}_+\) by

\[
W(S, I, R) = (S - \alpha - \alpha \frac{\ln S}{\alpha}) + (I - 1 - \ln I) + (R - 1 - \ln R).
\]

Applying Itô formula in Lemma 11 to Eq. (8) yields,

\[
dW(S, I, R) = (1 - \alpha/I) dS + \frac{(dS)^2}{2S^2} + (1 - 1/I) dI + \frac{(dI)^2}{2I^2} + (1 - 1/S) dS + \frac{(dR)^2}{2R^2}
\]

\[
:= LW dt + \tilde{W},
\]

where \(L\) is a differential operator, [30].
and

\[LW : \mathbb{R}_+^3 \to \mathbb{R}_+ \] is defined as

\[LW = \Lambda - \nu S + \sigma R - \alpha \frac{\Lambda}{S} + \alpha \nu - \alpha \frac{\sigma R}{S} + \frac{\lambda_1^2}{2} + \int_{\mathcal{Y}} \epsilon_1^2(y) \pi(dy) - (\nu + \gamma) I - \beta S + (\nu + \gamma) + \frac{\lambda_1^2}{2} + \int_{\mathcal{Y}} \epsilon_1^2(y) \pi(dy) \]

\[+ \int_{\mathcal{Y}} \epsilon_1^2(y) \pi(dy) + \gamma I - (\nu + \sigma) R - \gamma + (\nu + \sigma) + \frac{\lambda_2^2}{2} + \int_{\mathcal{Y}} \epsilon_3^2(y) \pi(dy) \]

\[\leq \Lambda + \alpha \nu + (\alpha \beta - (\nu + \gamma)) I + (\nu + \gamma) - \gamma + (\nu + \sigma) + \frac{\lambda_1^2}{2} + \frac{\lambda_2^2}{2} + \frac{\lambda_3^2}{2} \]

\[+ \int_{\mathcal{Y}} \epsilon_1^2(y) \pi(dy) + \int_{\mathcal{Y}} \epsilon_2^2(y) \pi(dy) + \int_{\mathcal{Y}} \epsilon_3^2(y) \pi(dy). \]

By plugging in \(\alpha = \frac{\nu + \gamma}{\beta} \), we get

\[LW \leq \Lambda + \alpha \nu + (\nu + \gamma) - \gamma + (\nu + \sigma) + \frac{\lambda_1^2}{2} + \frac{\lambda_2^2}{2} + \frac{\lambda_3^2}{2} + \int_{\mathcal{Y}} \epsilon_1^2(y) \pi(dy) + \int_{\mathcal{Y}} \epsilon_2^2(y) \pi(dy) + \int_{\mathcal{Y}} \epsilon_3^2(y) \pi(dy) \]

\[:= C. \]

where the parameter \(C \) is a positive constant. The rest of the proof follows Cai et al. [40, Lemma 2.2], and Zhu et al. [41, Theorem 1].

4.2. Extinction and persistence of the disease

Since this paper is considering the epidemic dynamic systems, we are focused in prevail and persist of the COVID-19 in a population.

4.2.1. Extinction of the disease

In this subsection, we give some conditions for the extinction of COVID-19 in the stochastic COVID-19 system (2). Since the extinction of disease (epidemics) in small populations has the major challenges in population dynamics [42]. So it is important to study the extinction of COVID-19.

Define a parameter \(\xi \) as

\[\xi = \frac{\beta \Lambda}{\nu} \frac{1}{\gamma + \nu + \varphi_2}, \]

where \(\varphi_2 = \frac{1}{\nu} \lambda_2 + \int_{\mathcal{Y}} [\epsilon_2(y) - \ln(1 + \epsilon_2(y))] \pi(dy) \). Here \(\xi \) is the basic reproduction number for stochastic COVID-19 model (2).

Remark 2. From (e) and Remark 1, we have

\[\varphi_2 = \frac{\lambda_2^2}{2} + \int_{\mathcal{Y}} [\epsilon_2(y) - \ln(1 + \epsilon_2(y))] \pi(dy) \]

\[= \frac{\lambda_2^2}{2} + \int_{\mathcal{Y}} [1 + \epsilon_2(y)] - 1 - \ln(1 + \epsilon_2(y))] \pi(dy) \]

\[\geq \frac{\lambda_2^2}{2}. \]
Definition 1. For the stochastic model (2) if \(\lim_{t \to \infty} I_t = 0 \), then the disease \(I_t \) is said to be extinct, a.s.

Theorem 3. Assume that (g) holds. Then for any initial condition \((S_0, I_0, R_0) \in \mathbb{R}_+^3 \), the solution \((S_t, I_t, R_t) \in \mathbb{R}_+^3 \) of the stochastic COVID-19 model (2) has the following properties:

\[
\lim_{t \to \infty} \sup \frac{\ln I_t}{t} \leq \beta \frac{\Lambda}{\nu} \left(1 - \frac{1}{\xi}\right), \quad \text{a.s.}
\]

If \(\xi < 1 \) holds, then \(I_t \) can go to zero with probability one.

Moreover,

\[
\lim_{t \to \infty} S_t = \frac{\Lambda}{\beta} = S_0, \quad \lim_{t \to \infty} R_t = 0, \quad \text{a.s.}
\]

Proof 4. Integrating both sides of model (2) and dividing by \(t \), gives

\[
\frac{S_t - S_0}{t} = \Lambda - \beta < S_t >_t - \nu < S >_t + \sigma < R >_t + \frac{\lambda_1}{t} \int_0^t S_r dB^1_r + \frac{1}{t} \int_0^t \int_\gamma e_1(y) S_r \bar{N}(dr, dt),
\]

\[
\frac{I_t - I_0}{t} = \beta < S_t >_t - \nu >_t - \gamma + \frac{\lambda_2}{t} \int_0^t I_r dB^2_r + \frac{1}{t} \int_0^t \int_\gamma e_2(y) I_r \bar{N}(dr, dt),
\]

\[
\frac{R_t - R_0}{t} = \gamma < I_t >_t - (\nu + \sigma) < R >_t + \frac{\lambda_3}{t} \int_0^t R_r dB^3_r + \frac{1}{t} \int_0^t \int_\gamma e_3(y) R_r \bar{N}(dr, dt).
\]

Multiplying both side of Eq. (12) by \(\frac{\sigma}{\nu + \sigma} \), we have

\[
\frac{\sigma}{\nu + \sigma} \frac{R_t - R_0}{t} = \frac{\sigma}{\nu + \sigma} \gamma < I_t >_t - \sigma < R >_t + \frac{\sigma}{\nu + \sigma} \frac{\lambda_3}{t} \int_0^t R_r dB^3_r + \frac{\sigma}{\nu + \sigma} \frac{1}{t} \int_0^t \int_\gamma e_3(y) R_r \bar{N}(dr, dt).
\]

Adding Eqs. (10), (11), and (13), we obtain

\[
\frac{S_t - S_0}{t} + \frac{I_t - I_0}{t} + \frac{\sigma}{\nu + \sigma} \frac{R_t - R_0}{t} = \Lambda - \nu < S >_t + \frac{\lambda_1}{t} \int_0^t S_r dB^1_r + \frac{1}{t} \int_0^t \int_\gamma e_1(y) S_r \bar{N}(dr, dt)
\]

\[
- (\gamma + \nu) < I >_t + \frac{\lambda_2}{t} \int_0^t I_r dB^2_r + \frac{1}{t} \int_0^t \int_\gamma e_2(y) I_r \bar{N}(dr, dt)
\]

\[
\frac{\sigma}{\nu + \sigma} \gamma < I_t >_t + \frac{\sigma}{\nu + \sigma} \frac{\lambda_3}{t} \int_0^t R_r dB^3_r + \frac{\sigma}{\nu + \sigma} \frac{1}{t} \int_0^t \int_\gamma e_3(y) R_r \bar{N}(dr, dt)
\]

\[
= \Lambda - \nu < S >_t - (\gamma + \nu) + \frac{\lambda_1}{t} \int_0^t S_r dB^1_r + \frac{1}{t} \int_0^t \int_\gamma e_1(y) S_r \bar{N}(dr, dt)
\]

\[
+ \frac{\lambda_2}{t} \int_0^t I_r dB^2_r + \frac{1}{t} \int_0^t \int_\gamma e_2(y) I_r \bar{N}(dr, dt)
\]

\[
+ \frac{\sigma}{\nu + \sigma} \frac{\lambda_3}{t} \int_0^t R_r dB^3_r + \frac{\sigma}{\nu + \sigma} \frac{1}{t} \int_0^t \int_\gamma e_3(y) R_r \bar{N}(dr, dt).
\]
Rewrite Eq. (14) as
\[
<S>_t = \frac{\Lambda}{\nu} - \left(\frac{\gamma + \nu + \sigma}{\nu + \sigma}\right) < I>_t + \Phi_t,
\]
where
\[
\Phi_t = -\frac{1}{\nu} \left(S_t - S_0 + \frac{I_t - I_0}{t} + \frac{\sigma}{\nu + \sigma} R_t - R_0\right) + \frac{1}{\nu} \left(\int_0^t S_r dB_r^1 + \frac{1}{t} \int_0^t \phi(y) S_r \bar{N}(dr, dt)\right)
\]
\[
+ \frac{1}{\nu} \left(\int_0^t \frac{\Lambda}{t} dI_r + \frac{1}{t} \int_0^t \phi(y) I_r \bar{N}(dr, dt)\right) + \frac{1}{\nu} \left(\int_0^t R_r dB_r^2 + \frac{\sigma}{\nu + \sigma} \int_0^t \phi(y) R_r \bar{N}(dr, dt)\right).
\]

From Lemma 2 (i-ii),
\[
limit_{t \to \infty} \Phi_t = 0, \quad a.s.
\]
Therefore, Eq. (15) becomes
\[
<S>_t = \frac{\Lambda}{\nu} - \left(\frac{\gamma + \nu + \sigma}{\nu + \sigma}\right) < I>_t.
\]
Setting \(Z = \ln I_t\) and applying Itô formula to \(Z\) yields,
\[
dZ = d\ln I_t = \frac{1}{t} dI_t - \frac{1}{2t^2} [dI_t]^2 = (\beta S_t - (\nu + \gamma) - \varphi_2) dt + \lambda_2 I_t dB_t^2 + \int_{\gamma} \ln(1 + \epsilon_2(y)) \bar{N}(dr, dy).
\]
Integrating both sides of Eq. (18) and dividing by \(t\), gives
\[
\frac{\ln I_t}{t} = \beta < S>_t - (\nu + \gamma) - \varphi_2 + \frac{\lambda_2 I_t dB_t^2}{t} + \frac{1}{t} \int_{\gamma} \ln(1 + \epsilon_2(y)) \bar{N}(dr, dy) + \frac{\ln I_0}{t}.
\]
Upon plugging in \(< S>_t\) of Eq. (17) into Eq. (19), we get
\[
\frac{\ln I_t}{t} = \beta \left(\frac{\Lambda}{\nu} - \left(\frac{\gamma + \nu + \sigma}{\nu + \sigma}\right) < I>_t\right) - (\nu + \gamma) - \varphi_2 + \frac{\lambda_2 I_t dB_t^2}{t} + \frac{1}{t} \int_{\gamma} \ln(1 + \epsilon_2(y)) \bar{N}(dr, dy) + \frac{\ln I_0}{t}
\]
\[
= \beta \left(\frac{\Lambda}{\nu} - (\nu + \gamma) - \varphi_2 - \beta \left(\frac{\gamma + \nu + \sigma}{\nu + \sigma}\right) < I>_t\right) + \frac{\lambda_2 I_t dB_t^2}{t} + \frac{1}{t} \int_{\gamma} \ln(1 + \epsilon_2(y)) \bar{N}(dr, dy) + \frac{\ln I_0}{t}
\]
\[
= \beta \left(\frac{\Lambda}{\nu} - (\nu + \gamma + \varphi_2) - \beta \left(\frac{\gamma + \nu + \sigma}{\nu + \sigma}\right) < I>_t\right) + \frac{\lambda_2 I_t dB_t^2}{t} + \frac{\psi_2(t)}{t} + \frac{\ln I_0}{t}
\]
\[
\leq \beta \left(\frac{\Lambda}{\nu} - (1 - \frac{1}{\xi}) - \beta \left(\frac{\gamma + \nu + \sigma}{\nu + \sigma}\right) < I>_t\right) + \frac{\lambda_2 I_t dB_t^2}{t} + \frac{\psi_2(t)}{t} + \frac{\ln I_0}{t}, \quad since \quad \frac{\gamma + \nu + \sigma}{\nu + \sigma} < \frac{\gamma + \nu}{\nu + \sigma}.
\]
From (f) and theorem of large numbers \[43\]

\[\lim_{t \to \infty} \frac{\psi_2(t)}{t} = 0, \ a.s. \tag{21} \]

and

\[\lim_{t \to \infty} \frac{B_t}{t} = 0 \ a.s. \tag{22} \]

By applying superior limit \(\lim_{t \to \infty} \sup \) on both sides of to Eq. (20), gives

\[\lim_{t \to \infty} \sup \frac{\ln I_t}{t} \leq \beta \frac{\Lambda}{\nu} \left(1 - \frac{1}{\xi} \right), \ a.s. \tag{23} \]

If \(\xi < 1 \) holds, then \(\beta \frac{\Lambda}{\nu} \left(1 - \frac{1}{\xi} \right) < 0 \).

Therefore,

\[\lim_{t \to \infty} I_t = 0. \tag{24} \]

From Definition \[7\] this implies that \(I_t \) can tends to zero with probability one. Similarly, we can show that

\[\lim_{t \to \infty} R = 0. \tag{25} \]

Recall Eq. \[6\].

\[X = \frac{\Lambda}{\nu} + X_0 e^{-\nu t}. \]

Using Eqs. \[24\] and \[25\], and

\[\lim_{t \to \infty} X = \lim_{t \to \infty} (S_t + I_t + R_t) = \frac{\Lambda}{\nu}, \]

we obtain

\[\lim_{t \to \infty} < S >_t = \frac{\Lambda}{\nu} = S_0. \tag{26} \]

4.2.2. Persistence of the disease

This section deals with the persistence in mean of the disease in the model \[2\]. Before we state the theorem, we define persistence in mean.

Definition 2. If \(\lim_{t \to \infty} < S >_t > 0, \lim_{t \to \infty} < I >_t > 0, \lim_{t \to \infty} < R >_t > 0 \), almost surely, then we can say system \[2\] is persistence in mean.

Theorem 4. For given initial values \((S_0, I_0, R_0) \in \mathbb{R}_+^3 \), the solution \((S_t, I_t, R_t) \in \mathbb{R}_+^3 \) of model \[2\] exists when \(\xi > 1 \),

\[\lim_{t \to \infty} < S >_t = \tilde{S}, \quad \lim_{t \to \infty} < I >_t = \tilde{I}, \quad \lim_{t \to \infty} < R >_t = \tilde{R}, \ a.s., \]

where

\[S = \frac{\Delta}{\nu} - \frac{\sigma}{\gamma + \nu} \frac{\Delta}{\nu} \left(1 - \frac{1}{\xi} \right), \quad I = \frac{\nu + \sigma}{\gamma + \nu} \frac{\Delta}{\nu} \left(1 - \frac{1}{\xi} \right), \quad R = \frac{\gamma + \nu}{\gamma + \nu} \frac{\Delta}{\nu} \left(1 - \frac{1}{\xi} \right). \]
Proof 5. Recall Eq. (20)

$$\frac{\ln I_t}{t} = \beta \frac{\Lambda}{\nu} \left(1 - \frac{1}{\xi} \right) - \beta \frac{\nu + \sigma}{\nu + \sigma} - I_t > 1 - \frac{\lambda_2 I_t dB_t^2}{t} + \frac{\psi_2(t)}{t} + \frac{\ln I_0}{t},$$

or equivalently,

$$\beta \frac{\nu + \sigma}{\nu + \sigma} - I_t > 1 = -\frac{\ln I_t}{t} + \beta \frac{\Lambda}{\nu} \left(1 - \frac{1}{\xi} \right) + \frac{\lambda_2 I_t dB_t^2}{t} + \psi_2(t) + \frac{\ln I_0}{t}.$$ (27)

From Lemma 2 and Eqs. (16), (21) and (22), we get

$$\lim_{t \to \infty} < I_t >_1 = \frac{\nu + \sigma}{\nu + \nu} \frac{\Lambda}{\nu} \left(1 - \frac{1}{\xi} \right) = \tilde{I}, \text{ a.s.}$$ (28)
Substituting Eq. (28) into Eq. (17), and taking limit on both sides, yields

$$\lim_{t \to \infty} <S>_t = \frac{\Lambda}{\nu} - \frac{\gamma + \nu + \sigma}{\gamma + \nu} \left(1 - \frac{1}{\xi}\right) = \tilde{S}.$$ \hfill (29)

Furthermore, applying \(\lim_{t \to \infty}\) to Eq. (12) and replacing \(<I>_t\) by Eq. (28), yields

$$\lim_{t \to \infty} <R>_t = \frac{1}{\gamma + \nu} \frac{\Lambda}{\nu} \left(1 - \frac{1}{\xi}\right) = \tilde{R}.$$ \hfill (30)

The proof is complete. \(\square\)

Remark 3. From the Theorems 3 and 4 above, we can take the value of \(\xi\) as the threshold of the system (2). The value of \(\xi\) indicates the prevalence and extinction of the COVID-19. Here, we can observe that the Gaussian and jump noises have a significant effect on the behavior of the system (2).
5. Discussion and numerical experiments

This section deals with the theoretical results of the investigated deterministic and stochastic epidemic systems by applying numerical simulations. Here to find out the impact of Gaussian and non-Gaussian noises intensities on this epidemic dynamics, we compare the trajectories of the deterministic and stochastic systems. We choose the initial value \((S_0, I_0, R_0) = (70, 50, 20)\), \(\Lambda = 0.0072\), \(\beta = 0.002\), \(\nu = 0.001\), \(\sigma = 0.01\), \(\gamma = 0.02\), \(\xi = 0.9284 < 1\), \(j = 1, 2, 3\).

Figure 4 plots the numerical simulation of the deterministic epidemic model (4). Fig. 1a shows the results of Theorem 1. We can easily see from the results, the infectious disease of system (4) goes to extinction for \(\xi_0 < 1\), almost surely, whereas the disease persists if \(\xi_0 > 1\). The parameter \(\nu\) will lead to a decrease in \(\xi_0\). This tells us the extinction of the disease is very fast as the \(\nu\) increases, this phenomena is plotted in Fig. 1b. As \(\nu\) increases the value of \(\xi_0\) is less than one, thus according to Theorem 1 asymptotically results into extinction of the COVID-19 in the population i.e., \(I_t\) can go to zero with probability one. The phase line of COVID-19 epidemic model (4) is given in Fig. 1c.
when $\xi_0 < 1$ and $\nu = 0.01$.

In Figures 2 and 3 we fixed the parameters $\nu = 0.001$, $\epsilon_j(y) = 0.004$, for $j = 1, 2, 3$, and $\gamma = (0, \infty)$, $\pi(\gamma) = 1$. Here, the value of the basic reproductive number ξ_0 is 1.0286, and $\xi = 0.9349$. Having these values, the solution (S_t, I_t, R_t) of the system (2) satisfies the property in Theorem 3, i.e.,

$$\lim_{t \to \infty} \frac{\ln I_t}{t} \leq \beta \frac{\Lambda}{\nu} \left(1 - \frac{1}{\xi} \right) = -0.0015 < 0 \quad a.s.$$

This shows the I_t can vanish as t goes to infinity. This happens because of the Lévy noise effect. When $\lambda_2 = 0.019$ and $\xi = 1.0093$, the solution (S_t, I_t, R_t) of Model (2) satisfies the condition in Theorem 4. This scenario means that

$$\lim_{t \to \infty} <S>_t = 7.1025,$$

$$\lim_{t \to \infty} <I>_t = 0.0346,$$

and

$$\lim_{t \to \infty} <R>_t = 3.1460, \quad a.s.$$

This numerical experiment shows that the COVID-19 will prevail. Noting that, Fig. 2 and Fig. 3 only differ by the value of λ_2. The relationship of the variables S_t, I_t, and R_t is plotted in Figure 4. When the reproductive number is ξ_0 less than 1, the stochastic reproductive number ξ is also less than 1. For this case, the sample paths of the stochastic COVID-19 model is plotted in Figs.4b, 4c and 4d.

The numerical solutions imply that blackucing contact rate, washing hands, improving treatment rate, and environmental sanitation are the most crucial activities to eradicate COVID-19 disease from the community.

6. Conclusion

The non-Gaussian noise plays a significant role in evolution of the epidemic dynamical processes, like HIV, SARS, avian influenza, and so on. In this work, we have studied the stochastic COVID-19 epidemic model driven by both Gaussian and non-Gaussian noises. In Theorem 2, we proved that the model (2) has a unique non-negative solution. We also investigated some conditions for the extinction and persistence during the COVID-19 epidemic. We have applied a matlab program to study the behavior of the solution of the model. We have illustrated from numerical results the changing impact of the noise intensities and the parameter ν on the size of infectious individuals. The results established in the present study can be used to examine dynamical behaviors for COVID-19, HIV, SARS, and so on.

By using the Euler Maruyama (EM) method [36, 37], we gave some numerical solutions to illustrate the extinction and persistence of the disease in the deterministic system and stochastic counterparts for comparison. We also obtained and compared the basic reproduction numbers for the deterministic model as well as the stochastic model. From the comparison, we observed that the basic reproduction number of the stochastic COVID-19 model is much smaller than that of the deterministic COVID-19 model, this shows that the stochastic approach is more realistic than the deterministic one. In other words, the jump noise and white noise can change the behaviour of the model. The noises can force COVID-19 (disease) to go out extinct.
Furthermore, we showed that the disease can go to extinction if $\xi < 1$. While the COVID-19 becomes persistent for $\xi > 1$; see Theorems 3 and 4.

From the findings, we concluded that if $\xi < 1$, it is possible that the spread of the disease can be controlled, but for $\xi > 1$, COVID-19 can be persistent. $\frac{\beta \Lambda}{\nu} \geq \varphi_2$ implies that the Gaussian and non-Gaussian noises are small. From this result, we conclude that efforts should be encouraged in order to achieve a disease-free population.

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the articles cited therein.

Acknowledgment

This research was supported by King Abdulaziz University Jeddah Saudi Arabia and partially supported by the NSFC grants 12001213.

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Authors Contribution

Authors have equally contribution in preparing this manuscript.

Funding

Supported by King Abdulaziz University Jeddah KSA.

References

[1] Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., and Agha, R. World health organization declares global emergency: A review of the 2019 novel coronavirus (covid-19). Int J surgery 76(2020), 71–76.
[2] WHO Covid-19 weekly epidemiological update. https://www.who.int/publications/m/item/weekly-epidemiological-update10-november-2020, (2020).
[3] Chen, T. M., Rui, J., Wang, Q. P., Zhao, Z. Y., Cui, J. A., and Yin, L. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty 9(2020).
[4] Hou, C., Chen, J., Zhou, Y., Hua, L., Yuan, J., He, S., Guo, Y., Zhang, S., Jia, Q., Zhao, C., et al. The effectiveness of quarantine of Wuhan city against the corona virus disease 2019 (covid-19): A well-mixed seir model analysis. J Med.virology (2020).
[5] Kucharski, A. J., Russell, T. W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R. M., Sun, F., Jit, M., Munday, J. D., et al. Early dynamics of transmission and control of covid-19: a mathematical modelling study. The lancet inf. diseases(2020).
[6] Okuonghae, D., and Oname, A. Analysis of a mathematical model for covid-19 population dynamics in Lagos, Nigeria. Chaos, Solitons & Fractals 139(2020), 110032.
[7] Sher, M., Shah, K., Khan, Z.A., Khan, H., Khan, A.: Computational and theoretical modeling of the transmission dynamics of novel COVID-19 under Mittag-Leffler power law. Alex. Eng. J. (2020). https://doi.org/10.1016/j.aej.2020.07.014.
[8] Yang, C., and Wang, J. A mathematical model for the novel coronavirus epidemic in Wuhan, China. Math. Biosci. Engineering 17, 3 (2020), 2708–2724.
[9] Chen, T.-M., Rui, J., Wang, Q.-P., Zhao, Z.-Y., Cui, J.-A., and Yin, L. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty. 9, 1 (2020), 1–8.
[10] Wang, H., Wang, Z., Dong, Y., Chang, R., Xu, C., Yu, X., Zhang, S., Tsamlag, L., Shang, M., Huang, J., et al. Phase-adjusted estimation of the number of coronavirus disease 2019 cases in Wuhan, China. *Cell discovery* 6, 1 (2020), 1–8.

[11] Khalaf, A.D., Abouagwa, M., Almushaira, M., Wang, X.J.: Stochastic Volterra integral equations with jumps and the Strong superconvergence of Euler–Maruyama approximation. *J. Comput. Appl. Math.* 382, 113071 (2021).

[12] Dalal, N., Greenhalgh, D., and Mao, X. A stochastic model for internal HIV dynamics. *J Math Anal Appl.* 341, 2 (2008), 1084–1101.

[13] Abdou Atangana, Blind in a commutative world: Simple illustrations with functions and chaotic attractors, *Chaos, Solitons & Fractals*, Volume 114, September 2018, Pages 347-363; https://doi.org/10.1016/j.chaos.2018.07.022

[14] Abdou Atangana, Fractional discretization: The African’s tortoise walk, *Chaos, Solitons & Fractals*, Volume 130, January 2020, 109399. https://doi.org/10.1016/j.chaos.2019.109399

[15] Abdou Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to pblockct complex system, *Chaos, Solitons & Fractals*, Volume 102, September 2017, Pages 396–406.

[16] B. Ghanbari and A. Atangana, Some new edge detecting techniques based on fractional derivatives with non-local and non-singular kernels, *Adv. Differ. Equations* volume 2020.

[17] Yildirim A., Kokc, H., Sunil Kumar: A fractional model of gas dynamics equation by using Laplace transform - Z. Natur-forsch vol:67a pp:389-396 (2012).

[18] B. Ghanbari, S. Kumar, R. Kumar, A Study of behaviour for immune and tumor cells in immunogenic tumor model with non-singular fractional derivative, *Chaos Solitons and Fractals* 133(2020):109619.

[19] Kumar S., Kumar R., Citani C., Samet B., Chaotic behaviour of fractional pblackator-prey dynamical system, *Chaos Solitons and Fractals* 135 (2020):109811.

[20] Kumar S., Kumar A., Samet B., Gomez - Aguilar J. F., Osman M. S., A chaos study of tumor and effector cells in fractional tumor immune model for cancer treatment, *Chaos Solitons and Fractals* 141 (2020): 110321.

[21] Bao, J., and Yuan, C. Stochastic population dynamics driven by Lévy noise. *J Math Anal Appl.* 391, 2 (2012), 363–375.

[22] Liu, Q., Jiang, D., Hayat, T., and Ahmad, B. Analysis of a delayed vaccinated sir epidemic model with temporary immunity and Lévy jumps. *Nonlinear Anal. Hybrid Syst.* 27 (2018), 29–43.

[23] Zhang, X., Jiang, D., Hayat, T., and Ahmad, B. Dynamics of a stochastic sis model with double epidemic diseases driven by Lévy jumps. *Phys. A Statal Mech. its Appl.* 471 (2017), 767–777.

[24] Sun, F. Dynamics of an imprecise stochastic holling ii one-pblackator two-prey system with jumps. arXiv preprint arXiv:2006.14943 (2020).

[25] Sun, F. Dynamics of an imprecise stochastic multimolecular biochemical reaction model with Lévy jumps. arXiv preprint arXiv:2004.14163 (2020).

[26] Tesfay, D., Wei P., Zheng Y., Duan J., and Kurths J., “Transitions between metastable states in a simplified model for the thermohaline circulation under random fluctuations,” *Appl. Math. Comput.* vol. 369, p. 124868, 2020

[27] Tesfay D., Serdukova L, Zheng Y., Wei P., Duan J., and Kurths J., Influence of extreme events modeled by Lévy flight on global thermohaline circulation stability. *Nonlinear Pro. Geophysics.* https://doi.org/10.5194/npg-2020-31 (2020).

[28] Zhang, Z., Zeb, A., Hussain, S., and Alzahrani, E. Dynamics of covid-19 mathematical model with stochastic perturbation. *Adv. Differ. Equations* 2020, 1 (2020), 1–12.

[29] Tesfay, A., Tesfay, D., Brannan, J., and Duan, J. A logistic-harvest model with alllee effect under multiplicative noise. *Stochastics Dyn.* (2021), 2150044.

[30] Applebaum, D. Lévy processes and stochastic calculus. Cambridge university press, 2009

[31] Berhahz, B.-e., ElFatini, M., CaraballoGarrido, T., and Pettersson, R. A stochastic SIRI epidemic model with Lévy noise. *Discret. Contin. Dyn. Syst. B.* 23 (9), 3645-3661. (2018).

[32] Kiouach, B.-e., ElFatini, M., CaraballoGarrido, T., and Pettersson, R. A stochastic SIR epidemic model with distributed delay and multidimensional Lévy jumps. arXiv preprint arXiv:2003.08219 (2020).

[33] Zhou, Y., and Zhang, W. Threshold of a stochastic SIR epidemic model with Lévy jumps. *Phys. A Statal Mech. its Appl.* 446 (2016), 204–216.

[34] Tesfay, A., Tesfay, D., Khalaf, A., and Brannan, J. Mean exit time and escape probability for the stochastic logistic growth model with multiplicative α-stable Lévy noise. *Stochastics Dyn.* (2020), 2150016.

[35] Duan, J. *An introduction to stochastic dynamics*, vol. 51, Cambridge University Press, 2015.

[36] Higham, D. J. An algorithmic introduction to numerical simulation of stochastic differential equations. *SIAM review* 43, 3(2001), 525–546.

[37] Kloeden, P. E., and Platen, E. Higher-order implicit strong numerical schemes for stochastic differential equations. *J. Stat. Phys.* 66, 1-2 (1992), 283–314.

[38] Siakalli, and Michailina. Stability properties of stochastic differential equations driven by Lévy noise. PhD thesis, *Sc. Math.Stat., University of Sheffield*, 2009.

[39] Khalaf, A. D., Tesfay, A., and Wang, X. Impulsive stochastic volterra integral equations driven by Lévy noise. *Bull. Iran.Math.*
Soc.(2020), 1–19.

[40] Cai, Y., Kang, Y., and Wang, W. A stochastic SIRS epidemic model with nonlinear incidence rate. Appl. Math. Comput. 305(2017), 221–240.

[41] Zhu, L., and Hu, H. A stochastic SIR epidemic model with density dependent birth rate. Adv. Differ. Equations 2015, 1 (2015), 33.

[42] Chen, H., Huang, F., Zhang, H., and Li, G. Epidemic extinction in a generalized susceptible-infected-susceptible model. J Stat Mech-Theory E , 1 (2017), 013204.

[43] Mao, X. Stochastic differential equations and applications. Elsevier, 2007.