The flavonoid galangin is an inhibitor of CYP1A1 activity and an agonist/antagonist of the aryl hydrocarbon receptor

HP Ciolino and GC Yeh

Cellular Defense and Carcinogenesis Section, Basic Research Laboratory, Division of Basic Sciences, National Cancer Institute–Frederick Cancer Research and Development Center, NIH, Frederick, MD 21702-1201, USA

Summary The effect of the dietary flavonoid galangin on the metabolism of 7,12-dimethylbenz[a]anthracene (DMBA), the activity of cytochrome P450 1A1 (CYP1A1), and the expression of CYP1A1 in MCF-7 human breast carcinoma cells was investigated. Galangin inhibited the catabolic breakdown of DMBA, as measured by thin-layer chromatography, in a dose-dependent manner. Galangin also inhibited the formation of DMBA-DNA adducts, and prevented DMBA-induced inhibition of cell growth. Galangin caused an increase in the level of CYP1A1 mRNA, indicating that it may be an agonist of the aryl hydrocarbon receptor, but it inhibited the induction of CYP1A1 mRNA by DMBA or by 2,3,5,7-tetrachlorodibenzo-p-dioxin (TCDD). Galangin also inhibited the DMBA- or TCDD-induced transcription of a reporter vector containing the CYP1A1 promoter. Thus, galangin is a potent inhibitor of DMBA metabolism and an agonist/antagonist of the AhR, and may prove to be an effective chemopreventive agent.

Keywords: galangin; flavonoid; DMBA; CYP1A1; EROD

Numerous epidemiological studies have demonstrated that diets rich in fruits and vegetables are protective against several forms of cancer (Steinmetz and Potter, 1996), and much attention has been focused on whether naturally occurring dietary components can modify the mutagenic and carcinogenic effects of environmental carcinogens. 7,12-dimethylbenz[a]anthracene (DMBA), a model compound which induces mammary tumorigenesis in rodents (Huggins et al, 1961), is a member of one such class of carcinogen, the aryl hydrocarbons. Aryl hydrocarbons bind and activate the aryl hydrocarbon receptor (AhR), which induces the transcription of a number of genes (Rowlands and Gustafsson, 1997), including the cytochrome P450 1A (CYP1A1) enzyme family. CYP1As mediate the oxidative catabolism of aryl hydrocarbons, generating genotoxic metabolites which can bind specific residues of DNA, introducing mutations in key genes and resulting in cellular transformation (Dipple, 1995). Inhibition of the metabolic activation of carcinogens, either through inhibition of the AhR-mediated signal transduction pathway or direct enzyme inhibition, is believed to be an important mechanism in chemoprevention.

Flavonoids are among the most abundant of phytochemicals and much attention has been focused recently on the effect of flavonoids on chemically induced in vivo models of carcinogenesis. Flavonoids consist of a diverse group of polyphenolic derivatives of benzo-γ-pyrene that are ubiquitous in foods of plant origin such as vegetables, fruit, tea and wine (Formica and Regelson, 1995). Dietary intake of flavonoids has been estimated at 1 g per day (Kuhnau, 1976), but recent studies have indicated that consumption varies widely (Hollman and Katan, 1997; Hollman et al, 1997). In vivo studies have shown that some flavonoids are effective in preventing chemically induced cancer in rodents, including DMBA-induced mammary cancer (Verma et al, 1988; Lamartiniere et al, 1995). Flavonoids exert a multiplicity of biochemical actions that are believed to be an important part of the chemopreventive effect of plant-based diets. Various flavonoids are potent antioxidants (Kono et al, 1997; Noda et al, 1997), inhibit lipoxygenase and cyclooxygenase (Mirzoeva and Calder, 1996), affect the activity of several hepatic enzymes involved in activation and detoxification of carcinogens (Canivenc-Lavier et al, 1996), inhibit cellular proliferation (Tsyrlov et al, 1994; Siess et al, 1995; Moon et al, 1998), and induce apoptosis of tumour cells (Csokay et al, 1997). Galangin, a member of the flavonol class of flavonoids, is present in high concentrations in Alpina officinarum (common name: China or India root), which has been used as a spice and as a herbal medicine for a variety of ailments in Asia for centuries. Galangin has been shown to inhibit the proliferation of breast tumour cells (So et al, 1996, 1997), and to inhibit the cytochrome P450-dependent hydroxylation of the aryl hydrocarbon benzo[α]pyrene in human liver microsomes (Buening et al, 1981).

For this report we have examined the effects of galangin on the carcinogen activation pathway mediated by the AhR. We have used the MCF-7 human breast carcinoma cell line because it is derived from the target tissue of DMBA, the mammary epithelium, and because AhR function and carcinogen activation has been well characterized in these cells (Christou et al, 1994; Moore et al, 1994; Dohr et al, 1995; Wang et al, 1995). Furthermore, a recent study has demonstrated that MCF-7 cells are similar to normal human mammary epithelial cells with regard to AhR...
expression and CYP1A1 activity (Larson et al, 1998). We demonstrate that galangin inhibits the activation of DMBA by inhibiting AhR function and CYP1A1 enzyme activity, and thus may be a promising candidate for in vivo chemoprevention study.

MATERIALS AND METHODS

Materials

Except as noted, all chemicals were from Sigma (St Louis, MO, USA). All culture vessels were from CoStar (Cambridge, MA, USA). Galangin (Aldrich, Milwaukee, WI, USA) was dissolved in dimethylsulphoxide (DMSO) and stored at –20°C.

Cell culture

MCF-7 cells (American Type Culture Collection, Rockville, MD, USA) were grown in RPMI-1640 supplemented with 2 mM glutamine and 10% fetal bovine serum (all from BioFluids, Rockville, MD, USA). Cells were sub-cultured weekly using 0.25% trypsin/0.05% EDTA (BioFluids). All experiments were carried out at 37°C and 5% carbon dioxide on confluent cells in growth medium, except where indicated.

Measurement of DMBA metabolism

All steps were carried out in the dark or under yellow light. MCF-7 cells in 175 cm² flasks were incubated in 12 ml of growth medium containing 0.1 μg ml⁻¹ [³H]DMBA (Amersham, Arlington Heights, IL, USA) in the presence of DMSO (control), 1 μM, or 10 μM galangin. After 24 h, 1 ml of the medium was removed and extracted with 1 ml ethyl acetate. [³H]DMBA was separated from metabolites by thin-layer chromatography. A total of 5 μl of the organic phase was applied to a 20 × 20 cm² silica thin-layer chromatography sheet with fluorescent indicator (Kodak, Rochester, NY, USA). Chromatography was performed in n-hexane for 80 min. The sheet was dried and 12 1.7-cm strips were cut, placed in 20 ml BSC-NA organic scintillation fluid (Amersham) and counted. The parent compound migrated to the origin, while the metabolites were separated by thin-layer chromatography. The amount of metabolites in the cell-free extracts was determined by incubating flasks without cells under the same conditions. The amount of metabolites formed was calculated from the area under the peak using a computer program (Kodak). The results were expressed as the percentage of DMBA metabolized.

Measurement of DMBA-DNA adduct formation

Confluent cultures of MCF-7 cells in 75 cm² flasks were exposed to 0.1 μg ml⁻¹ [³H]DMBA in the presence of the indicated concentrations of galangin for 8 h. The cells were washed twice with cold phosphate-buffered saline (PBS), trypsinized and pelleted. Nuclei were isolated by incubating the cells for 10 min on ice in 10 mM Tris-HCl, pH 7.5, with 320 mM sucrose, 5.0 mM magnesium chloride and 1% Triton X-100. The nuclei were pelleted by centrifugation at 800 g for 10 min at 4°C, and this digestion was repeated once. Nuclei were then lysed with 1% sodium dodecyl sulphate (SDS) in 0.5 M Tris, 20 mM EDTA and 10 mM NaCl, pH 9.0, followed by treatment with 20 mg ml⁻¹ proteinase K for 6 h at 48°C. Protein and peptides were precipitated by the addition of NaCl to final concentration of 1 M and centrifuged at 500 g for 30 min at 4°C. Genomic DNA was then isolated from supernatant by repeated ethanol precipitation as described in Miller et al (1988). DNA isolated by this method exhibited a 260/280 ratio of > 1.9. The amount of DNA was measured by spectrophotometry and the adducts were quantified by liquid scintillation counting in Ecoscint A (National Diagnostics, Atlanta, GA, USA).

Measurement of cell growth

MCF-7 cells were plated out in 24-well plates at 25 000 cell per well and allowed to attach for 24 h. DMBA was added at the indicated concentrations with either DMSO (control) or 5.0 μM galangin in fresh media. Total cell growth was assayed after 3 days using sulphorhodamine (Rubinstein et al, 1990).

CYP1A1 activity in intact MCF-7 cells

MCF-7 cells in 24-well plates were treated with 1 μM DMBA for 24 h in the presence of DMSO or the indicated concentrations of galangin. At the end of the incubation, the medium was removed and the wells were washed twice with fresh medium. Ethoxyresorufin-O-de-ethylase (EROD) activity, which is a specific assay of the bioactivation capacity of CYP1A1, was determined in intact cells as described in Kennedy and Jones (1994) using 5 μM ethoxyresorufin (ETRF) in growth medium as a substrate in the presence of 1.5 mM salicylaldehyde to inhibit conjugating enzymes (Lubinski et al, 1994). The assay was carried out at 37°C. The fluorescence of resorufin generated by the conversion of ETRF by CYP1A1 was measured every 10 min for 60 min in a CytoFlor II multiwell fluorescence plate reader (PerSeptive Biosystems, Framingham, MA, USA), with an excitation of 530 nm and emission at 590 nm.

Microosomal CYP1A1 activity

MCF-7 cells were treated with 1 μM DMBA for 24 h to induce CYP1A1 EROD activity. Microsomes were isolated as follows: the cells were washed once with PBS, trypsinized and pelleted by centrifugation at 800 g for 10 min at 4°C. The pellet was washed in PBS, pelleted, then resuspended in 0.25 mM Tris-HCl, pH 7.5, with protease inhibitors (100 μg ml⁻¹ phenylmethylsulphonylfluoride, 300 μg ml⁻¹ EDTA, 0.5 μg ml⁻¹ leupeptin, 0.5 μg ml⁻¹ aprotinin and 0.7 μg ml⁻¹ Pepstatin A). The cells were sonicated for 30 s on ice using a Branson Sonifier at setting 2. The sonicate was centrifuged at 10 000 g for 10 min at 4°C and the supernatant was centrifuged at 500 000 g for 15 min at 4°C. The resulting microsomal pellet was resuspended in the above buffer and the protein assayed by the Bradford method (1976). Aliquots of microsomes were stored at –80°C. CYP1A1 activity was determined by EROD assay in the following manner: for Figure 5A, 10 μg of microsomes were brought up to 100 μl with PBS, pH 7.2, 400 mM ETRF was added, along with DMSO or the indicated concentrations of galangin. The reaction was initiated by the addition of 250 μM NADPH. The reaction mixture was transferred to a 96-well plate and EROD activity was determined in a CytoFlor II Fluorescence Plate Reader as described above. For Figure 5B, 250 μM NADPH and 100–1600 nM ETRF were added to 3 ml of PBS, pH 7.2, 410 μl aliquots were removed to which DMSO or the indicated concentration of galangin were added and the final concentration in the ETRF reaction was 0.58%; n = 3) was subtracted from the other incubations.
added. The reaction was initiated by the addition of 45 μg of microsomal protein (final volume was 450 μl) and gently vortexed. Four 100-μl aliquots (10 μg per assay) of each were placed in a 96-well plate and assayed as above. A standard curve was constructed using resorufin.

Reverse transcription polymerase chain reaction (RT-PCR)

Confluent MCF-7 cells were treated with a combination of galangin and 1 mM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 250 nM DMBA for 6 h, or with galangin alone for 24 h. The cells were washed twice with PBS and total RNA was isolated using Trizol reagent (GibcoBRL, Gaithersburg, MD, USA). Semi-quantitative RT-PCR for CYP1A1 and glyceraldehyde-3-phosphate dehydrogenase (GPDH) was performed in the presence of 1.5 μCi [3H]dATP (DuPont/NEN, Wilmington, DE, USA) using the primer sequences and conditions of Dohr et al (1995). cDNA was synthesized from 10 μg total RNA using a Stratagene RT-PCR kit (LaJolla, CA, USA) as instructed. The optimum cycle number that fell within the exponential range of response for both CYP1A1 (23 cycles) and GPDH (19 cycles) was used. Following PCR, 5 μl of high-density sample buffer was added to the samples and they were subjected to electrophoresis on a 10% Tris–borate–EDTA (TBE) gel in 1 × TBE running buffer (all components from Novex, San Diego, CA, USA). The gel was dried and the results were visualized and quantified on a BioRad GS-363 Molecular Imaging System (Hercules, CA, USA). Graphs of the resulting data were generated by normalizing CYP1A1 to GPDH.

CAT–β-galactosidase assays

MCF-7 cells were plated at 60 000 cells per well in 24-well plates. After 24 h the cells were transiently transfected with 12.0 μg of a chloramphenicol acetyltransferase (CAT) reporter vector containing the full length rat CYP1A1 promoter (pMC6.3K; Sogawa et al, 1986) using LipofectAmine (GibcoBRL) as directed. To control for transfection efficiency, the cells were co-transfected with 1.0 μg of pCMZ vector containing β-galactosidase (Clonetech Labs, Palo Alto, CA, USA). After a further 24 h, the cells were treated with 1 mM TCDD or 250 nM DMBA in the presence of DMSO (control) or galangin for 6 h. The amount of CAT transcription was determined using an ELISA assay (Boehringer Mannheim, Indianapolis, IN, USA) as directed. Activity of β-galactosidase was determined by the method of Rosenthal (1987). The amount of CAT transcription was normalized to β-galactosidase transcription.

Statistical analysis

Statistical analyses were performed using StatView Statistical Analysis software (SAS Institute, San Francisco, CA, USA). Differences between group mean values were determined by a one-factor analysis of variance (ANOVA), followed by Fisher PSLD post-hoc analysis for pair wise comparison of means.

RESULTS

Effect of galangin on the metabolism of [3H]DMBA

MCF-7 cells were incubated with [3H]DMBA in the presence or absence of galangin for 24 h and the catabolism of DMBA was determined by thin-layer chromatography. After 24 h, 65 ± 2.1% (3.1 ± 0.1 nmoles of DMBA per flask per 24 h) of the parent compound had been converted to metabolites in untreated cells. Galangin caused a dose-dependent inhibition of [3H]DMBA catabolism (Figure 1).

The effect of galangin on the formation of adducts between metabolites of DMBA and DNA in MCF-7 cells was examined. In control cultures, exposure to 0.1 μg ml⁻¹ [3H]DMBA for 8 h resulted in the formation of 3035 ± 168 fmoles adducts per mg DNA. Exposure of the cells to [3H]DMBA in the presence of galangin inhibited DMBA-DNA adduct formation in a dose-dependent manner (Figure 2).

We measured the growth of MCF-7 cells after 3 days of incubation with increasing concentrations of DMBA in the presence or

![Figure 1](image1.png)
Figure 1 Effect of galangin on the metabolic catabolism of [3H]DMBA. MCF-7 cells were exposed to 0.1 μg ml⁻¹ [3H]DMBA in the presence of DMSO (vehicle control), 1 μM, or 10 μM galangin for 24 h. [3H]DMBA and metabolites were extracted and analysed by thin-layer chromatography. Each bar represents the mean of 3 determinations ± standard error (s.e.). DMBA metabolism in cultures treated with galangin was statistically different from controls (P < 0.05).

![Figure 2](image2.png)
Figure 2 Effect of galangin on [3H]DMBA-DNA adduct formation. MCF-7 cells were incubated with 0.1 μg ml⁻¹ [3H]DMBA in the presence of DMSO, or the indicated concentrations of galangin for 8 h. DNA was extracted and analysed for incorporation of [3H]DMBA metabolites as described. Each bar represents the mean of 4 determinations ± s.e. Adduct formation in all galangin-treated samples was statistically different from controls (P < 0.05).
absence of 5 μM galangin. Galangin completely inhibited DMBA-induced cytotoxicity at the concentrations tested (Figure 3). Galangin at the tested concentration had no effect on cell growth by itself (data not shown).

Effect of galangin on CYP1A1 activity

We measured the activity of CYP1A1 using the EROD assay, which is specific for the CYP1A1 enzyme family. There was no EROD activity in MCF-7 cells in the absence of DMBA treatment. Treatment of cells with DMBA caused a dose-dependent increase in EROD activity (data not shown). We measured the EROD activity in intact cells which had been exposed to 1 μM DMBA in the presence of galangin. Galangin caused a dose-dependent inhibition of EROD activity with an IC₅₀ of less than 1 μM (Figure 4).

The EROD activity in microsomes isolated from cells treated with 1 μM DMBA was potently inhibited by galangin in a dose-dependent manner, with an IC₅₀ of approximately 30 nM (Figure 5A). Microsomal EROD activity with or without galangin was also measured in the presence of different substrate concentration and the kinetics of enzyme inhibition by galangin were analysed by double-reciprocal (Lineweaver-Burk) analysis (Figure 5B). The V₅₀ of the enzyme shifted from 5.55 pmol/min per 10 μg microsomes in the absence of galangin to 2.56 or 1.67 pmol/min per 10 μg in the presence of 25 or 50 nM galangin, while the Kₘ remained unchanged, indicating a non-competitive type of inhibition.

Effect of galangin on CYP1A1 expression

Treatment of MCF-7 cells with 1 nM of the known AhR ligand TCDD for 6 h resulted in a 40-fold increase in CYP1A1 mRNA compared to DMSO control, as determined by semi-quantitative RT-PCR. This increase was inhibited by galangin in a dose-dependent manner (Figure 6A). Treatment of the cells with 250 nM
DMBA resulted in a tenfold increase in CYP1A1 mRNA, which was also inhibited by galangin (Figure 6B).

The effect of galangin on the transcription of a CAT reporter vector controlled by the CYP1A1 promoter was determined by transient transfection studies. Treatment of transfected cells for 6 h with 1 nM TCDD caused a sevenfold increase in CAT transcription. This was inhibited in the presence of galangin in a dose-dependent manner (Figure 7). DMBA at 250 nM induced a threefold increase in transcription that was also inhibited by galangin.

Treatment of MCF-7 cells with galangin alone for 24 h resulted in a dose-dependent increase in CYP1A1 mRNA (Figure 8). This increase was blocked by the RNA polymerase inhibitor actinomycin D, indicating that the increase in mRNA was the result of transcriptional activation (data not shown).

DISCUSSION

Current cancer prevention strategy is based on the growing awareness of the powerful anti-carcinogenic activities of plant-based diets. The central tenet of this strategy is that minor dietary constituents inhibit carcinogenesis through different mechanisms of action. The steps between exposure to a procarcinogen and the transformation of a normal cell to a cancer cell begin with the activation of the procarcinogen by cytochrome P450 enzyme(s). This generates metabolites which may be converted to easily excreted forms by Phase II enzymes, but also generates epoxides which are highly electrophilic and carcinogenic, capable of reacting with DNA and causing mutations. One mechanism of action of the so-called ‘blocking’ type of chemopreventive agent, as classified by Wattenburg (1985), is the inhibition of the procarcinogen activation step. In the present study we have investigated the effect of the dietary flavonoid galangin on the carcinogen activation pathway mediated by the AhR. Galangin is of particular interest because its effects on other in vitro mechanisms relevant to chemoprevention has been extensively studied (Critchfield et al., 1994; Eaton et al., 1996; Kao et al., 1998), but there is, to our knowledge, no study which has examined its effect on the AhR and the pathway it regulates.

We assessed the effect of galangin on the activation of DMBA. Galangin inhibited the catabolic breakdown of DMBA (Figure 1). Since the parent compound does not react with DNA, we hypothesized that galangin would decrease DMBA-DNA adduct formation, which proved true (Figure 2). In the tissue culture setting, DMBA inhibits cell growth because of DNA adduct formation. We reasoned that decreased adduct formation would therefore reduce the cytotoxicity of DMBA in vitro. In fact, at the concentration tested, galangin completely abolished the cytotoxic effect of DMBA (Figure 3). Galangin itself was not cytotoxic at the tested concentration. These experiments indicate that galangin inhibits the activation of DMBA to genotoxic metabolites. There is, to our knowledge, no study assessing the physiologically relevant concentrations that galangin may achieve, but other flavonoids have been measured in the plasma and some tissues of humans in the range of concentrations used in this study (Morton et al., 1997; Hollman and Katan, 1998). Moreover, these concentrations correspond to plasma concentrations found in rats fed with a flavonoid-enriched diet (Manach et al., 1995).
We next examined the mechanism(s) of galangin’s action. The activity of CYP1A1 was measured by EROD assay, a specific indicator of the CYP1A1 bioactivation capabilities. Under conditions of AhR activation, the major DMBA activating isozyme in MCF-7 cells is CYP1A1 (Christou et al., 1994). These cells also express CYP1B1, but it is unclear whether this isozyme can metabolize DMBA (Shimada et al., 1997), or whether CYP1B1 possess significant EROD activity (Dohr et al., 1995; Shimada et al., 1997). Co-treatment of the cells with DMBA and increasing concentrations of galangin resulted in a dose-dependent inhibition of DMBA-induced EROD activity in intact cells (Figure 4). We could not determine, from this experiment, whether galangin’s effect was as a result of inhibition at the enzyme level or through a disruption of the signal transduction pathway leading to the transcriptional activation of the CYP1A1 gene. We therefore performed EROD assays on microsomes isolated from DMBA-treated cells. Galangin proved to be a potent inhibitor of microsomal EROD activity (Figure 5A). Previous studies have shown that the related flavonol quercetin inhibits EROD activity in rat hepatic microsomes in a competitive fashion (Sousa and Marletta, 1985), a result we confirmed in MCF-7 microsomes (data not shown). Analysis of the kinetics of inhibition by galangin, however, revealed that galangin inhibits EROD activity in a non-competitive manner (Figure 5B). Thus, the interaction of galangin with CYP1A1 is different than the structurally similar quercetin.

DMBA causes the transcriptional activation of the CYP1A1 gene through the AhR. Although the results of the microsomal EROD assays indicate that direct enzyme inhibition by galangin can account for the decrease in DMBA-induced EROD activity in intact cells, we also tested the hypothesis that galangin may disrupt the transcriptional activation of CYP1A1. When MCF-7 cells were treated with 250 nM DMBA for 6 h, there was an approximately tenfold increase in CYP1A1 mRNA compared to DMSO control. Co-treatment with galangin caused a dose-dependent inhibition of the DMBA-induced increase in CYP1A1 mRNA (Figure 6B).

Galangin also inhibited the increase in CYP1A1 mRNA by the prototypical AhR ligand TCDD (Figure 6A). Galangin also inhibited the DMBA- or TCDD-induced transcription of CAT in a reporter vector controlled by the CYP1A1 promoter (Figure 6). We also observed that treatment of the cells with galangin alone for a longer period of time (24 h) could induce a mild increase (compared to DMBA or TCDD) in CYP1A1 mRNA (Figure 8). This increase was blocked by the RNA polymerase inhibitor actinomycin D, which prevents de novo RNA synthesis resulting from transcriptional activation (data not shown). These results are consistent with the hypothesis that galangin is a weak ligand of the AhR and is able to compete for the AhR with traditional activators of the receptor, resulting overall in a decrease in CYP1A1 mRNA caused by other, more potent AhR ligands. The induction of CYP1A1 mRNA and the inhibition of CYP1A1 EROD activity by galangin may indicate that it is a natural substrate of this metabolic pathway in MCF-7 cells, but this was not examined in the present study.

Known ligands of the AhR are, for the most part, man-made chemicals; natural ligands have been postulated but, with the exception of indolo[2,3]-carbazole (Jellinck et al., 1993), remain unidentified. We have hypothesized elsewhere (Ciolino et al., 1998) that dietary polyphenolic compounds are natural ligands of the AhR and galangin appears to be such a compound. These experiments demonstrate that galangin inhibits carcinogen activation in MCF-7 cells at two levels: through direct inhibition of CYP1A1 enzyme activity and by inhibiting the increase in CYP1A1 transcription caused by AhR ligands. There is no study, to our knowledge, on the chemopreventive effect of galangin in animal models of carcinogenesis. Based on our data, galangin may be a promising candidate for in vivo chemoprevention studies.
ACKNOWLEDGEMENTS

The authors wish to thank Dr Thomas Barlow and Dr Anthony Dipple for their help in measuring DMBA metabolism, and Dr Robert Clarke for his critical reading of this manuscript.

REFERENCES

Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

Buening M, Chan R, Huang M, Fortner J, Wood A and Conney A (1981) Activation and inhibition of benzphetamine and alfatoxin B1 metabolism in human liver microsomes by naturally occurring flavonoids. Cancer Res 41: 67–72

Canivenc-Lavier M, Verneaux M, Tots M, Siess M, Magdalou J and Suschetet M (1996) Comparative effects of flavonoids and model inducers on drug metabolizing enzymes in rat liver. Toxicology 114: 19–27

Christou M, Savas U, Spink D, Gierthy J and Jefcoate C (1994) Co-expression of human CYP1A1 and a human analog of cytochrome P450 EF in response to 2,3,7,8,-cells. tetrachlorodibenzo-p-dioxin in the human mammary carcinoma-derived MCF-7 cell. Carcinogenesis 15: 725–732

Ciolo H, Daschner P, Wang T and Yeh G (1998) The effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem Pharmacol 56: 197–206

Crittfield J, Welsh C, Phang J and Yeh G (1994) Modulation of adriamycin catalytic activity and total protein concentration with a fluorescence plate reader. Effects on the human tumor cell lines. J Natl Cancer Inst 86: 223–237

Dipple A (1995) DNA adducts of chemical carcinogens. Carcinogenesis 16: 437–441

Doehr O, Vogel C and Abel J (1995) Different response of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-sensitive genes in human breast cancer MCF-7 and MDA-MB 231 cells. Arch Biochem Biophys 321: 405–412

Eaton E, Walle U, Lewis A, Hudson T, Wilson A and Walle T (1996) Flavonoids, potent inhibitors of the human P-forms phenoloxidase. Potential role in drug metabolism and chemoprevention. Drug Metab Dispos 24: 232–237

Fornaca J and Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33: 1061–1080

Hollman P and Katan M (1997) Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother 51: 305–310

Hollman P and Katan M (1998) Bioavailability and health effects of dietary flavonoids in man. Arch Toxicol Suppl 20: 237–248

Hollman P, van Trijp J, Mengelers M, de Vries J and Katan M (1997) Bioavailability of the dietary antioxidant flavonol quercetin in man. Cancer Lett 119: 134–140

Huggins C, Grand L and Brantlles F (1961) Mammary cancer induced by a single feeding of polynuclear hydrocarbons, and its suppression. Nature 189: 204–207

Jellinick P, Forkert P, Riddick D, Okey A, Michnovicz J and Bradlow H (1993) Ah receptor binding properties of indole carbinols and induction of hepatic estradiol hydroxylation. Biochem Pharmacol 45: 1129–1136

Kao Y, Zhou C, Sherman M, Laughlin C and Chen S (1998) Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: a site-directed mutagenesis study. Environ Health Perspect 106: 85–92

Kennedy S and Jones S (1994) Simultaneous measurement of cytochrome P450 1A catalytic activity and total protein concentration with a fluorescence plate reader. Anal Biochem 222: 217–223

Kono Y, Kobayashi K, Tagawa S, Adachi K, Ueda A, Sawa Y and Shibata H (1997) Inhibition of human cytochrome P450 1A1 activity in rat liver microsomes by naturally occurring flavonoids: structure-activity relationships. Xenobiotica 28: 117–126

Kono Y, Kao Y, Zhou C, Sherman M, Laughton C and Chen S (1998) Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: a site-directed mutagenesis study. Environ Health Perspect 106: 85–92

Larsen MC, Angus WG, Brake PB, Elton SE, Sukow KA and Jefcoate CR (1998) Characterization of CYP1B1 and CYP1A1 expression in human mammary epithelial cells: role of the aryl hydrocarbon receptor in poly cyclic aromatic hydrocarbon metabolism. Cancer Res 58: 2366–2374

Lubinski J, Flint O and Durman S (1994) In vivo and in vitro studies of rat liver cytochrome P450 induction: II. In vitro induction by phenobarbitol and 3-methylcholanthrene measured in an automated 24-well plate assay for cytochrome P450-dependent activity (pentoxysorfin-O-deethylase and ethoxyresorfin-O-deethylase) In Vitro Toxicol 7: 13–23

Manach C, Morand C, Texier O, Favier M, Aguillo G, Demigne C, Regerat F and Remy C (1995) Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. J Nutr 125: 1911–1922

Miller S, Dykes D and Polesky H (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16: 1215

Mirzoeva O and Calder P (1996) The effect of propolis and its components on eicosanoid production during the inflammatory response. Prostaglandins Leukot Essent Fatty Acids 55: 441–449

Moon JY, Lee DW and Park KH (1998) Inhibition of 7-ethoxyconzourin O-deethylase activity in rat liver microsomes by naturally occurring flavonoids: structure-activity relationships. Xenobiotica 28: 117–126

Moore M, Wang X, Liu Y, Wormke M, Craig A, Gerlach J, Burghardt R, Barhoumi R and Safe S (1994) Benz[a]pyrene-resistant MCF-7 human breast cancer cells. A unique aryl hydrocarbon-nonresponsive clone. J Biol Chem 269: 11751–11759

Morton M, Chan P, Cheng C, Blacklock N, Matos-Ferreira A, Abranches-Monteiro L, Correia R, Lloyd S and Griffiths K (1997) Lignans and isoflavonoids in plasma and prostastic fluid in men: samples from Portugal, Hong Kong, and the United Kingdom. Prostate 32: 122–128

Noda Y, Anzai K, Mori A, Kohno M, Shinmii M and Packer L (1997) Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidants using the computerized JES-FR30 ESR spectrometer system. Biochem Mol Biol Int 42: 35–44

Rosenthal N (1987) Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol 152: 704

Rowlands J and Gustafsson J (1997) Aryl hydrocarbon receptor-mediated signal transduction. Crit Rev Toxicol 27: 109–134

Rubinstein L, Shoemaker R, Pauli K, Simon R, Tosin P, Scudiero D, Monks A and Boyd M (1990) Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst 82: 1113–1118

Suzama T, Gillas EM, Sutter TR, Strickland PT, Guengerich FP and Yamazaki H (1997) Oxidation of xenobiotics by recombinant human cytochrome P450 1B1 Drug Metab Dispos 25: 617–622

Siess M, Leclerc J, Canivenc-Lavier M, Rat P and Suschetet M (1995) Heterogenous effects of natural flavonoids on monoxygenase activities in human and rat liver microsomes. Toxicol Appl Pharmacol 130: 73–78

So F, Guthrie N, Chambers A, Moussa M and Carroll K (1996) Inhibition of human breast cancer cell proliferation and delay of mammary tumourigenesis by flavonoids and citrus juices. Nutr Cancer 26: 167–181

So F, Guthrie N, Chambers A and Carroll K (1997) Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett 112: 127–133

Sogawa K, Fujisawa-Sehara A, Yamane M and Fujii-Kuriyama Y (1986) Location of the regulatory elements responsible for drug induction in the rat cytochrome P450 gene. Proc Natl Acad Sci USA 83: 8044–8048

Sousa R and Marletta M (1985) Inhibition of cytochrome P450 activity in rat liver microsomes by the naturally occurring flavonoid, quercetin. Proc Natl Acad Sci USA 83: 8044–8048

Steinmetz K and Potter J (1996) Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc 96: 1027–1039

Tsyrolov IB, Mkhiaklenko VM and Gelbion HV (1994) Isozyme- and species-specific susceptibility of cDNA-expressed CYPIA P450s to different flavonoids. Biochim Biophys Acta 1205: 325–335

Verma A, Johnson J, Gould M and Tanner M (1988) Inhibition of 7,12-dimethylbenz[a]anthracene and N-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin. Cancer Res 48: 5754–5758

Wang X, Thomsen J, Santostefano M, Rosengren R, Safe S and Perdew G (1995) Comparative properties of the nuclear aryl hydrocarbon (Ah) receptor complex from several human cell lines. Eur J Pharmacol 293: 191–205

Wattenberg L (1985) Chemoprevention of cancer. Cancer Res 45: 1–8