BACKGROUND

Stroke is the leading cause of disability, as well as the second leading cause of death worldwide. Ischemic stroke (IS), in particular, accounts for 85% of strokes. Due to the death of brain cells following the permanent or transient blockage of blood vessels, IS imposes a heavy economic and health burden on society. Following the failure of several decades of large scale neuroprotective clinical trials, the focus of stroke treatment shifted from a neuroprotective approach to neurovascular protection. The concept of the neurovascular unit (NVU), comprised of neurons, astrocytes, smooth muscle cells (SMCs), endothelial cells (ECs), pericytes (PCs), and the basal lamina matrix, emphasizes the unique cross talk between neurons and the cerebral vasculature, and ultimately, the pivotal role the NVU plays in IS progression. With effective reperfusion strategies implemented, intravenous thrombolysis and thrombectomy have become the most common treatments administered to IS patients. Nowadays, the usage of tissue-type plasminogen activator (tPA) consists a widely accepted treatment, that is most effective when administered within 4.5 h after acute ischemic stroke (AIS).

Abstract

Ischemic stroke (IS), a common cerebrovascular disease, results from a sudden blockage of a blood vessel in the brain, thereby restricting blood supply to the area in question, and making a significantly negative impact on human health. Unfortunately, current treatments, that are mainly based on a recanalization of occluded blood vessels, are insufficient or inaccessible to many stroke patients. Recently, the profound influence of the neurovascular unit (NVU) on recanalization and the prognosis of IS have become better understood; in-depth studies of the NVU have also provided novel approaches for IS treatment. In this article, we review the intimate connections between the changes in the NVU and IS outcomes, and discuss possible new management strategies having practical significance to IS. We discuss the concept of the NVU, as well as its roles in IS blood-brain barrier regulation, cell preservation, inflammatory immune response, and neurovascular repair. Besides, we also summarize the influence of noncoding RNAs in NVU, and IS therapies targeting the NVU. We conclude that both the pathophysiological and neurovascular repair processes of IS are strongly associated with the homeostatic state of the NVU and that further research into therapies directed at the NVU could expand the range of treatments available for IS.

KEYWORDS

Ischemia, MicroRNAs, Neurovascular unit, Stroke, Therapy
Unfortunately, it is only applicable to a limited number of patients because of the strict time window of tPA treatment. Thus, the provision of other effective treatments is urgently required.13

In this review, we discuss the effects of the NVU on blood-brain barrier (BBB) regulation, cell preservation, inflammatory immune response, and neurovascular repair during or after IS, as well as the regulation of the NVU by noncoding RNAs (ncRNAs). Lastly, we review existing therapeutic approaches and prospects for IS treatments targeting the NVU.

\section{The Concept of the Neurovascular Unit}

The neurovascular unit (NVU), a groundbreaking concept consisting of multiple components, includes neurons, glial cells, vascular cells (endothelial cells or ECs, pericytes or PCs, and smooth muscle cells or SMCs), and the basal lamina matrix within the brain vasculature.15,16 The concept emerged from the first Stroke Progress Review Group meeting of the National Institute of Neurological Disorders and Stroke of the National Institutes of Health represents a conceptual framework incorporating neurons and the adjacent vasculature.10

It is now recognized that the interactions between various components of the NVU are highly important.15 The BBB and cerebral blood flow (CBF) are precisely controlled by the NVU, thus maintaining a homeostatic brain microenvironment.16,17 Endothelial cells form a highly specialized membrane around blood vessels.17 Pericytes in the central nervous system (CNS) contribute to both neurogenesis and vasculogenesis, and PCs localized within blood vessels may act as multipotent vascular stem cells.17-22 The loss of PCs leads to reduced expression of specific tight junction (TJ) proteins and subsequent BBB disruption.23 Astrocytes extend end feet to PCs and SMCs to regulate their constriction and relaxation, thereby adjusting CBF.24,25 Astrocytes also regulate the balance of synaptic glutamate partly via Ca2+ oscillations as a timely response to changes in ions and metabolism in neuronal cells.25 Although the classic definition of NVU does not include microglia and oligodendrocytes, structurally and functionally they are closely related to the NVU. Oligodendrocytes not only produce neurotrophic factors, but also form myelin sheaths that support the transmission of action potentials.26 Furthermore, they may also serve as antigen-presenting cells.27 As immune cells in the CNS, microglia can modulate the innate immunity of astrocytes by releasing various signaling molecules.28,29 In summary, all the NVU components are closely related in structure, and integral in function to preserve brain homeostasis.

\section{The Roles of the NVU in IS}

The pathophysiological process of IS consists of three stages in time and space: a) the hyperacute phase (minutes to 6 h); b) the acute and subacute phase (hours to 7 d); and c) the chronic phase. During the course of injury and inflammation, endogenous protective and repair mechanisms are activated simultaneously, and the ratio of these activities determines the outcome of IS.30 The roles NVU plays in IS are crucial, which we summarize in four parts: BBB regulation, cell preservation, inflammatory immune response, and repair during or after IS.

\subsection{BBB regulation during IS}

The function of the BBB depends on the TJs between ECs and the perivascular microenvironment. In the acute phase following the initiation of ischemia, NVU dysfunction directly promotes the breakdown of the BBB. For example, the reduction of expression of certain proteins (such as occludin, claudin-5, and ZO-1) enhances BBB permeability and increases the risk of inducing vasogenic cerebral edema.30,31 In addition, PCs further promote the development of cerebral edema by transforming into a proinflammatory phenotype.30 Glial cells may contribute to BBB destruction via matrix metalloproteinases (MMPs), such as MMP-9, which digest BBB matrix proteins.32,33 To date, tPA is the only therapeutic agent that has been approved for the treatment of patients with AIS.12,34,35 However, tPA itself activates MMPs, further exacerbating the destruction of the BBB, which not only promotes the development of neuroinflammation and edema, but also increases the risk of cerebral hemorrhage in patients treated with thrombolysis.26,37

Therefore, in order to prevent the further development of IS, BBB protection must be a top priority; BBB repair can assist with the treatment of IS. Perlecanc is a major protein of the basement membrane, with upregulated expression after IS in mice. The core protein of Perlecanc called DV attaches to PC and EC, and promotes pericyte migration through the integral protein α5β1 via PDGFRβ signaling, subsequently regulating BBB repair.38 The permeability of the BBB is increased in mice through CLEC14A knockdown ECs, in which TJ proteins are attenuated.41 The PDGFRβ signaling also regulates the recruitment of PCs into injury lesions to promote BBB recovery.40

\subsection{Cell preservation}

Endothelial cells are the first to be damaged in ischemic brain regions. The integrity of the TJ between ECs can be enhanced by PCs via the secretion of glial cell-derived neurotrophic factor (GDNF) and angiopoietin-1 (Ang-1), which ultimately protects ECs from necrosis.41 Pretreatment with neutralizing antibodies of Ang-1 blocks the PC-induced upregulation of TJ proteins.41 A variety of neurotrophic factors are expressed by pericytes, including the brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3, which provide neuroprotective effects and facilitate neuronal and axonal regeneration in response to IS.42,43 After pericyte ablation with diptheria toxin, the loss of pleiotrophin, a pericyte-secreted growth factor enriched in PCs to provide neurotrophic support, leads to both rapid neuron and CBF loss, and results in BBB damage in mice.44 Astrocyte-specific Swell1 deletion
mice exhibited remissive glutamate-dependent neuronal excitability and brain damage after IS. Additionally, reactive astrocytes restrict neuronal migration toward the IS brain lesion through direct contact, while new neurons positioned close to the lesion promote functional recovery via increased Slit-Robo signaling.

3.3 | Inflammatory immune response

Glia cells are key components of the CNS. At the onset of stroke, astrocytes are activated immediately by molecules released from the site of injury. They secrete proinflammatory factors and MMPs that destroy the BBB, as well as neurotrophic factors that protect ischemic sites. In cerebral ischemia-reperfusion mouse models, the overexpression of IL-15 in astrocytes enhances the effector functions of CD8+ T and NK cells, and thus aggravates ischemic brain injury. In response to stroke, the number of Treg cells and astrocyte-derived levels of IL-33 and CCL1 increase. Elevated levels of amphiregulin secreted by Treg cells further regulate the IL-6 and STAT3 pathways, thereby improving neurological functional defects. Microglia also display both pro- and anti-inflammatory phenotypes (named M1 and M2, respectively) and respond rapidly to ischemia during IS. Within one day after IS, the proliferation and activation of microglia induced a strong inflammatory response (upregulation of TNF, IL-1β, and IL-6), causing severe damage to the CNS. Protective cytokines, such as neurotrophic IGF-1, are secreted by microglia cells several days after the onset of IS, contributing to nerve repair and survival. The inhibition of microglia activation by complement inhibitors can protect stressed neurons and reduce neuroinflammation in a mouse model. On the contrary, if treatment with CSF1R antagonist reduces microglia and increases the number of neutrophils, the brain damage in mice IS brain tissue becomes even more serious. Interferon regulatory factors (IRF) are regulators of macrophage activation. The downregulation of IRF4 leads to the increased expression of IRF5, which in turn enhances the activation of M1, leading to enhanced proinflammatory response and poor stroke prognosis. On the contrary, the decrease of IRF5 helps to enhance M2 activation, inhibits the proinflammatory response, and aids functional recovery. Activated microglia and their fragmented mitochondria induce astrocyte transformation into reactive A1 astrocytes. These lack most of the normal astrocyte functions and are neurotoxic to neurons and maturely differentiated oligodendrocytes. Interestingly, astrocytes also secrete the cytokine interleukin-33, which in turn promotes microglial synaptic remodeling.

3.4 | Neurovascular repair

Following the acute phase of IS, the inflammatory response in the infarcted area starts to decrease and tissue repair begins to intensify. Although reactive glial cells are harmful in the early stage, reactive astrocytes also play a role as a phagocytic phenotype in engulfing cell debris to aid the recovery of brain damage via the ABCA1-mediated pathway. The subsequently formed glial scars may still hinder the axonal bud bulging through the extensive expression of axon regeneration inhibitors (such as chondroitin sulfate proteoglycans). On the other hand, normal brain tissue is isolated from the damaged area to minimize the magnification of lesions and inflammation. The morphology of astrocytes after 2 h of transient middle cerebral artery occlusion in mice showed that the deterioration of astrocyte ultrastructure is much slower than that of neurons, indicating that, under ischemic conditions, astrocytes are more resistant to injury than adjacent neurons. In the absence of astrocytes, glutamate neurotoxicity occurs at lower concentrations in the cerebral cortex of mice. Pericytes serve as critical regulators during angiogenesis after IS via various signaling pathways, including the Ang/Tie system, VEGF signaling, the PDGF-β/PDGFR-β system, and RGS5 signaling. The upregulation of ephrinB2 acted beneficially on neurovascular repair after IS by increasing pericyte recruitment and endothelial-pericyte cell interaction. On the contrary, the inhibition of ephrinB2 expression in ECs or PCs leads to worse outcomes. Furthermore, the vascular endothelial growth factor isoform-B also stimulates neurovascular repair following IS by promoting the function of PCs via VEGFR-1. After a reasonable decline of pericyte-derived fibrosis, the number of raphespinal and corticospinal tract axons was increased, which was proportional to the degree of functional recovery after CNS injury. In summary, the NVU is able to regulate BBB integrity, cell preservation, inflammatory immune response, and repair during or after IS. It secretes a variety of proteins to prevent BBB from breakdown and to promote its functional recovery. The integrity of the NVU provides strong support to cell preservation through a subtle regulation of neurotrophic factors and subsequent signaling pathways. Interestingly, it plays its critical role as a two-edged sword in inflammatory immune responses to IS, with both the pro- and anti-inflammatory phenotypes of the NVU responding rapidly to ischemia. The inhibition of microglia activation can protect the CNS from microglia related inflammatory immune response; however, the use of antagonists inhibiting microglia activation will block subsequent functional recovery. The increased recruitment of PCs and ECs is beneficial to neurovascular repair after IS, while a reasonable decrease of pericyte-derived fibrosis promotes the outcome of CNS injury.

4 | REGULATION OF THE NVU BY NCRNAS IN IS

Mechanisms through which NVU plays a role in IS are highly complicated, with several genes involved in relevant regulatory pathways. In addition to the large number of immuno-inflammatory molecules discussed above, a growing number of studies have begun to recognize the important roles ncRNAs play in NVU, though no relevant
work to summarize these roles exists in this regard. Therefore, a discussion on the involvement of ncRNAs in IS through NVU is detailed herein, which helps to deepen the understanding of the pathophysiological process of IS, thereby opening up possible new directions for treatment.\(^{30}\)

Firstly, microRNAs (miRNAs) regulate gene or protein expression by inhibiting translation.\(^{70}\) In an established ischemia/reperfusion (I/R) rat model, exosomal mir-26b-5p inhibits M1 polarization of microglia via targeting CH25H and inactivating the TLR pathway, leading to reduced nerve injury after cerebral I/R. A reduction of exosomal mir-26b-5p has the opposite effect.\(^{71}\) Recently, it was shown that expression levels of inflammatory cytokines elevate, whereas anti-inflammatory cytokines (IL-4, IL-10) and mir-30d-5p decrease in AIS patients compared with normal control. In addition, adipose-derived stem cell-derived exosomes enriched with mir-30d-5p have a protective effect on AIS via autophagy-mediated microglia M1 polarization reduction.\(^{72}\)

Long noncoding RNAs (lncRNAs) serve as miRNA sponges or antagonoms.\(^{73}\) They contribute greatly to the pathophysiological process of IS, for example, the lncRNA Malat1 is capable of sponging...
mir-26b, mir-30a, mir-145, mir-205-3p, and mir-200c-3p from pro-
tecting cerebral microvascular endothelial cells, and attenuating
neuronal cell death following IS.74-76 The expression of IncRNA
Nespas is significantly upregulated after IS in an MCAO mice model.
While the silencing of Nespas accelerates the apoptosis of microglia,
increased Nespas expression alleviates ischemic brain lesion by in-
hbiting NF-κB activation and TRIM8-induced K63-linked polyubiq-
utination of TAK1 in microglia.77

Emerging evidence suggests that multiple circular RNAs (cir-
cRNAs) serve as novel biomarkers and important regulators, or even
triggers in various cancers.78-81 Using circRNA microarray and ge-
ome-wide bioinformatic analysis to study ischemic responses in
mice subjected to transient middle cerebral artery occlusion (tMCAO)
and to plasma samples from AIS patients, Han et al reported that circhectd1, a mir-142 sponge, downregulates mir-142 activity and
thus leads to lower TCDD inducible poly[ADP-ribose] polymerase
(TIPARP) expression. This subsequently results in the inhibition of
astrocyte activation via autophagy, while the downregulation of cir-
chectd1 expression decreases infarct areas. In addition, circhectd1
is expressed at higher levels in AIS tissues and plasma than in control
samples. These findings indicate that circhectd1 could be used as a
novel type of biomarker and potential therapeutic target for IS.82

Additional, relevant studies are summarized in Table 1.

5 | IS THERAPIES TARGETING THE NVU

The aims of the current review are to overcome the limitations of the
existing treatment strategies for IS and pursue faster recovery times
and better recovery results. Three treatment methods targeting the
NVU are summarized here cell-based therapies, neuronal regenera-
tion, and NVU protection.

5.1 | Cell-based therapies

Cell-based therapy is an exciting emergent approach. Results of
studies demonstrating that bone marrow stromal cells (MSCs) work
well for promoting positive outcomes in IS models are promising.83
Indeed, the exogenous transplantation of MSCs initiates the repair
steps of angiogenesis, axonal remodeling, and synaptic formation.
The expression of neurotrophic factors is stimulated by MSCs in ast-
rocytes, thereby enhancing neuron survival and the expression of
Cx43, which promotes the gap junction of astrocytes.84 Furthermore,
the inhibition of nerve scar formation by MSC transplantation after
stroke may also promote axonal regeneration, thus enhancing the ca-
pacity for nerve repair.85 MicroRNAs in the miR-17-92 cluster, which
are enriched in exosomes derived from MSCs, accelerate the recon-
struction of axon-myelin and thus recovery from IS.86 Many types
of stem cells, including but not limited to adipose stem cells (ADSC),
MSCs and pluripotent stem cells, can differentiate into functional
PCs.87-89 However, the issue of how to transfer sufficient numbers of
fungal transplanted cells to specific sites remains to be addressed.

In this aspect, a scaffold-free cell sheet has been used to transplant
sufficient numbers of allogeneic adipose-derived mesenchymal stem
cells in a rat stroke model.90 Transplanted stem cells not only replace
dead neurons, but also secrete a variety of nutritional and growth
factors to promote NVU regeneration and repair.91 Unfortunately,
even though the transplantation of the stem cells has been achieved
successfully, their subsequent survival, proliferation, migration, and
differentiation still encounter a series of challenges.91

5.2 | Neuronal regeneration

Neuroplasticity influences rehabilitation and recovery of the injury
site affected by stroke. Cultured human cortical astrocytes trans-
planted into mice have been reprogrammed into functional neurons
through retroviral expression of NeuroD1.92 Endothelial progeni-
tor cells (EPCs) secrete growth factors, including FGF-b, VEGF, and
PDGF-BB, into cell-free conditioned media (CM). This was utilized
in an IS mouse model, where both angiogenesis and neurogenesis are
enhanced in mice treated with CM rich in growth factors from
EPC cultures.93 In the infarct region of brain, Caveolin-1 (Cav-1) up-
regulates to accelerate neovascularization in wild-type mice, while
Cav-1 knockout mice display the inverse effects.94 Electrical stimu-
lation (ES) based on nanomaterials has a positive effect on the fate
of neural stem cells (NSCs) in vitro. Hence, ES treatment could be
a potential complementary noninvasive therapy during NSCs trans-
plantation.95,96 Moreover, the combination of ADSC, sodium feru-
late, and n-butylidenephthalide yields improve neovascularization
and neurogenesis compared with single stem cell treatment.97

5.3 | NVU protection

Reperfusion injury further leads to deterioration following IS.98 With
pretreatment of 4-methoxybenzyl alcohol in rats subjected to reper-
fusion injury, the ratio of surviving neurons increases compared
with controlled groups via the regulation of Bcl-2, caspase-3, and
Bax, while the ultrastructure of glial cells is significantly protected.99
β-Caryophyllene maintains BBB integrity and prevents neuronal ap-
optosis by reducing proinflammatory factors and oxidative stress
damage.100 Pericytes, though, are more vulnerable than neurons
in an ischemic environment.101 Mitochondrial metabolism in astro-
cyes is enhanced by the purinergic ligand 2-methylthioladenosine
5′ diphosphate via increased inositol trisphosphate-dependent Ca2+
release, which provides protective benefits from IS.102 After tert-
butylhydroquinone treatment following permanent distal middle
cerebral artery occlusion in mice, the activation of astrocytes, and
angiogenesis are significantly enhanced.103 Cilostazol is a commonly
used antiplatelet drug, which prevents the pathological detachment
of astrocyte foot processes or PCs and also stimulates VEGFR2 ex-
pression and PC proliferation, thereby protecting the NVU integrity
and promoting neurovascular protection.104 Notch-Jagged signaling
in astrocytes is increased in seleagine-treated MCAO rats compared
with control, helping to preserve the capillary network after IS.105 Treatment with tPA inhibits the secretion of glial cell-derived trophic factors and damages PCs, but edaravone can reverse the damage, and maintains NVU integrity after tPA treatment.106 In a mouse model where ECs, SMCs, and PCs partly lack guanylyl cyclase B, the endothelial C-type natriuretic peptide acts on PCs, thereby regulating microcirculatory flow and blood pressure.107 Additionally, teriflunomide improves pericyte coverage and survival, resulting in decreased TJ protein breakdown and BBB leakage.108 A recent study has shown that novel interpericyte tunneling nanotubes could build a

NVU components	ncRNAs	Regulated Molecules /Pathways	Effect	References
Astrocytes	Mir-29b	AQP4	Protection against ischemia-reperfusion injury	112
	Mir-133b	TGF-β (mir-206/RABEPK)	Regulation of neurovascular plasticity	113
Endothelial cells (ECs)	Mir-27b	AMPK	Regulation of tube formation and migration	114
	Mir-383	Peroxisome proliferator-activated receptor gamma	Promotion of neurotroph and inhibition of abnormal apoptosis	115
	Mir-140-5p	Vascular endothelial growth factor A (VEGFA)	Cell proliferation, migration and tube formation	116
	Mir-155	TGF-β/BMP, SMAD5, mTOR, NO	Improvement of CBF and supporting microvasculature	117
	Mir-107	Dicer-1	Angiogenesis	118
	Mir-24-1-5p	HIF-1α	Angiogenesis	119
	Mir-191	NF-Kb	Angiogenesis	120
	Mir-181a	IL-6/TNF-α	Inhibition of the oxidized low-density lipoprotein (ox-LDL)-induced immune inflammatory response	121
	Mir-126-3p/-5p	IL-1β, TNF-α, VCAM-1, E-selectin	Maintenance of BBB integrity	122
	Mir-194-1	TGF-β/SMAD	Reduction of the inflammatory response and EC permeability	123
Neurons	Mir-106b-5p	Mcl-1/Bcl-2	Inhibition of apoptosis and oxidative stress	124
	Mir-149-5p	PS3/Caspase-3	Regulation of cell survival and apoptosis	125
	Mir-455	TRAF3	Inhibition of neuronal cell death	126
	Mir-365	OXR1	Activation of antioxidant signals	127
Neurons, Astrocytes	Mir-19a-3p	Polyclonal Antibody to Adiponectin Receptor 2 (ADIPOR2)	Modulation of glucose metabolism and neuronal apoptosis	128
Microglia	Mir-124	Increase of M2-like polarized microglia number	Neuroprotection and functional improvement	129
	Mir-26b-5p	TLR	Regulation of microglia M1 polarization	71
	Mir-30d-5p	Autophagy	Regulation of microglia M1 polarization	72
Endothelial cells (ECs)	LncRNA-H19	NF-κB	Inhibition of EC apoptosis in the ASO model	130
	Malat1	Mir-26b, mir-30a, mir-145, mir-205-3p and mir-200c-3p sponge	Protection of the NVU	74,76
Vascular smooth muscle cells (SMCs)	LncRNA-MEG3	ABCA1	Regulation of proliferation and apoptosis in VSMCs	131
	LncRNA-BANCR	NK	Facilitation of SMC proliferation and migration	132
Astrocytes	CircHECTD1	Mir-142 sponge	Inhibition of astrocytic activation via autophagy	82
Pericytes (PCs)	CPWWP2A	Mir-579 sponge, angiopoietin 1, occludin and SIRT1	Decrease in vascular dysfunction	133
functional network to regulate neurovascular coupling through linking two separate PCs on different capillaries in the mouse retina.109

Under hypothermic conditions, the isolation between basement membrane and pericytes is not observable at the ultrastructural level, indicating a well-preserved BBB.110 Hypothermia can be attained in mice by HPI-201 injection. Following severe stroke, HPI-201 treated C57BL/6 mice recover with lower neurological severity scores, decreased expression levels of inflammatory factors, higher BBB integrity, and more complete conservation of the NVU compared with the controls.111 Thus, hypothermic protection could be a potential method to protect the NVU from IS.

6 | FINAL REMARKS AND CONCLUSION

Undoubtedly, the NVU plays a leading role in the pathophysiological process of IS, with profound effects on the BBB, cell preservation, inflammatory immune response, and neurovascular repair. Both cell-based and pharmacological therapies targeting the NVU can fight against deleterious outcomes following an ischemic stroke. The IS therapeutic philosophy has moved from the neuronal era to the neurovascular era; therefore, we must consider the entire framework of the NVU and conduct thorough investigations on the multiple interactions between its cells to further explore the therapeutic potential of the NVU in clinical settings.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

AUTHORS’ CONTRIBUTIONS

LY Wang and LY Zhang read literatures and prepare the manuscript; Chao Zhang collect literatures; XX Xiong and Jian Shen prepare the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Liyun Wang https://orcid.org/0000-0001-7608-3787

REFERENCES

1. Owoyomi AO, Akarolot-Akinyemi R, Akinyemi R, et al. The burden of stroke in Africa: a glance at the present and a glimpse into the future. Cardiovasc J Afr. 2015;26(2 Suppl 1):S27-S38.
2. Smith M, Reddy U, Robba C, Sharma D, Citerio G. Acute ischemic stroke: challenges for the intensivist. Intensive Care Med. 2019;45(9):1177-1189.
3. Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab. 2015;35(6):888-901.
4. Johnson W, Onuma O, Owoyomi A, Owoyomi M, Sachdev S. Stroke: a global response is needed. Bull World Health Organ. 2016;94(9):634-634A.
5. Sun Z, Gu L, Wu KE, et al. VX-765 enhances autophagy of human umbilical cord mesenchymal stem cells against stroke-induced apoptosis and inflammatory responses via AMPK/mTOR signaling pathway. CNS Neurosci Ther. 2020;26(9):952-961.
6. Sarvari S, Moakled F, Hone E, Simpkins JW, Ren X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis. 2020;35(6):851-868.
7. Zorowitz RD, Chen E, Tong KB, Lauori M. Costs and rehabilitation use of stroke survivors: a retrospective study of Medicare beneficiaries. Top Stroke Rehabil. 2009;16(5):309-320.
8. Ayer A, Hwang BY, Appelboom G, Connolly ES Jr. Clinical trials for neuroprotective therapies in intracerebral hemorrhage: a new roadmap from bench to bedside. Transl Stroke Res. 2012;3(4):401-417.
9. Lo EH, Broderick JP, Moskowitz MA. tPA and proteolysis in the neurovascular unit. Stroke. 2004;35(2):354-356.
10. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96(1):17-42.
11. Leigh R, Knutsson L, Zhou J, van Zijl PC. Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke. J Cereb Blood Flow Metab. 2018;38(9):1500-1516.
12. Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317-1329.
13. Lamberts K, Finsen B, Clausen BH. Post-stroke inflammation-targetor or tool for therapy? Acta Neuropathol. 2019;137(5):693-714.
14. Sun M, Chen X, Yin Y-X, et al. Role of pericyte-derived SENP1 in neuronal injury after brain ischemia. CNS Neurosci Ther. 2020;26(8):815-828.
15. Lo EH, Rosenberg GA. The neurovascular unit in health and disease: introduction. Stroke. 2009;40(3 Suppl):S52-S53.
16. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12(12):723-738.
17. Armulik A, Genové G, Mæe M, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557-561.
18. Nakagomi T, Molnár Z, Nakano-Doi A, et al. Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction. Stem Cells Dev. 2011;20(12):2037-2051.
19. Karow M, Sánchez R, Schichor C, et al. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell. 2012;11(4):471-476.
20. Ahmed TA, Shoousa WG, Abd SM, Mohamed IK, El-Badri N. Human adipose-derived pericytes: biological characterization and reprogramming into induced pluripotent stem cells. Cell Physiol Biochem. 2020;54(2):271-286.
21. Tachibana M, Yamazaki Y, Liu CC, Bu G, Kaneko Y. Pericyte implantation in the brain enhances cerebral blood flow and reduces amyloid-β pathology in amyloid model mice. Exp Neurol. 2018;300:13-21.
22. Nakagomi T, Kubo S, Nakano-Doi A, et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells. 2015;33(6):1962-1974.
23. Bell RD, Winkler EA, Sagare AP, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and to differentiate into neural and vascular lineage cells. Stem Cells. 2015;33(6):1962-1974.
24. Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature. 1987;325(6101):253-257.
25. Zonta M, Angulo MC, Gobbo S, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;6(1):43-50.
26. Kühn S, Gritti L, Crooks D, Dombrowski Y. Oligodendrocytes in development, myelin generation and beyond. Cells. 2019;8(11):1424.
27. Harrington EP, Bergles DE, Calabresi PA. Immune cell modulation of oligodendrocyte lineage cells. *Neurosci Lett*. 2020;715:134601.

28. Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB. Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. *J Neuroinflammation*. 2017;14(1):99.

29. Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ. Interaction of microglia and astrocytes in the neurovascular Unit. *Front Immunol*. 2020;11:1024.

30. Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF, Andjelkovic AV. Involvement of epigenetic mechanisms and non-coding RNAs in blood-brain barrier and neurovascular unit injury and recovery after stroke. *Front Neurosci*. 2019;13:864.

31. Sladojevic N, Stamatovic SM, Johnson AM, et al. Claudin-1-dependent destabilization of the blood-brain barrier in chronic stroke. *J Neurosci*. 2019;39(4):743-757.

32. Mun-Bryce S, Rosenberg GA. Matrix metalloproteinases in cerebrovascular disease. *J Cereb Blood Flow Metab*. 1998;18(11):1163-1172.

33. Seo JH, Miyamoto N, Hayakawa K, et al. Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury. *J Clin Invest*. 2013;123(2):782-786.

34. Emberson J, Lees KR, Lyden P, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. *Lancet*. 2014;384(9958):1929-1935.

35. Li Y, Zhu Z-Y, Lu B-W, et al. Rosiglitazone ameliorates tissue plasminogen activator reperfusion therapy for ischemic stroke. *CNS Neurosci Ther*. 2019;25(12):1343-1352.

36. Shi Z-S, Duckwiler GR, Jahan R, et al. Early blood-brain barrier disruption after mechanical thrombectomy in acute ischemic stroke. *J Neuroimaging*. 2018;28(3):283-288.

37. Wang W, Li M, Chen Q, Wang J. Hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke: mechanisms, models, and biomarkers. *Mol Neurobiol*. 2015;52(3):1572-1579.

38. Nakamura K, Ikeuchi T, Nara K, et al. Perlecanc regulates pericyte dynamics in the maintenance and repair of the blood-brain barrier. *J Cell Biol*. 2019;218(10):3506-3525.

39. Kim Y, Lee S, Zhang H, et al. CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. *J Neuroinflammation*. 2020;17(1):48.

40. Shen J, Xu G, Zhu R, et al. PDGFRβ restores blood-brain barrier functions in a mouse model of focal cerebral ischemia. *J Cereb Blood Flow Metab*. 2019;39(8):1501-1515.

41. Wang YL, Hui YN, Guo B, Ma JX. Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. *J Neuroinflammation*. 2017;14(1):99.

42. Shimizu F, Sano Y, Saito K, et al. Pericyte-derived glial cell line-derived neurotrophic factor increase the expression of claudin-5 in the blood-brain barrier and the blood-nerve barrier. *Neurochem Res*. 2012;37(2):401-409.

43. Arimura K, Ago T, Kamouchi M, et al. PDGFR receptor β signaling in pericytes following ischemic brain injury. *Curr Neurovasc Res*. 2012;9(1):1-9.

44. Nikolakopoulos AM, Montagne A, Kisler K, et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. *Nat Neurosci*. 2019;22(7):1089-1098.

45. Yang J, Vitery MDC, Chen J, Osei-Owusu J, Chu J, Qiu Z. Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. *Neuron*. 2019;102(4):813-27.e6.

46. Kaneko N, Herranz-Pérez V, Otsuka T, et al. New neurons use Slit-Robo signaling to migrate through the glial meshwork and approach a lesion for functional regeneration. *Sci Adv*. 2018;4(12):eaav0618.

47. von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. *J Comp Neurol*. 2016;524(18):3865-3895.

48. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B. Neocortical glial cell numbers in human brains. *Neurobiol Aging*. 2008;29(11):1754-1762.

49. Amantea D, Micieli G, Tassorelli C, et al. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. *Front Neurosci*. 2015;9:147.

50. Lee GA, Lin T-N, Chen C-Y, et al. Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. *Brain Behav Immun*. 2018;73:562-570.

51. Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial cells: role of the immune response in ischemic stroke. *Front Immunol*. 2020;11:294.

52. Ito M, Komai K, Mise-Omata S, et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. *Nature*. 2019;565(7738):246-250.

53. Wen R-X, Shen H, Huang S-X, et al. P2Y6 receptor inhibition aggravates ischemic brain injury by reducing microglial phagocytosis. *CNS Neurosci Ther*. 2020;26(4):416-429.

54. Liu Z-J, Ran Y-Y, Qie S-Y, et al. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. *CNS Neurosci Ther*. 2019;25(12):1353-1362.

55. Wang Q-S, Ding H-G, Chen S-L, et al. Hypertonic saline mediates the NLRP3/IL-1β signaling axis in microglia to alleviate ischemic blood-brain barrier permeability by downregulating astrocyte-derived VEGF in rats. *CNS Neurosci Ther*. 2020;26(10):1045-1057.

56. Lalancette-Hébert M, Gowin G, Simard A, Weng YC, Kritz J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. *J Neurosci*. 2007;27(10):2596-2605.

57. Alawieh A, Langley EF, Tomlinson S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. *Sci Transl Med*. 2018;10(441).

58. Otzoo-de-Amezaga A, Miró-Mur F, Pedragosa J, et al. Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. *Acta Neuropathol*. 2019;137(2):321-341.

59. Al Mamun A, Chauhan A, Qj S, et al. Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. *Acta Neuropathol*. 2019;137(2):321-341.

60. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Weinreb RN. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. *J Neurosci*. 2007;27(10):2596-2605.

61. Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotrophic reactive astrocytes are induced by activated microglia. *Nature*. 2017;541(7638):481-487.

62. Joshu AU, Minhas PS, Liddelow SA, et al. Fragmented mitochondrial released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. *Nat Neurosci*. 2019;22(10):1635-1648.

63. Vainchtein ID, Chin G, Cho FS, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. *Science*. 2018;359(6381):1269-1273.

64. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. *J Neurosci*. 2004;24(9):2143-2155.

65. Görür G, Gursoy-Ozdemir Y, Eredemli E, Can A, Dalkara T. Astrocytes are more resistant to focal cerebral ischemia than neurons and die by a delayed necrosis. *Brain Pathol*. 2009;19(4):630-641.

66. Rosenberg PA, Aizenman E. Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. *Neurosci Lett*. 1989;103(2):162-168.

67. Cai W, Liu H, Zhao J, et al. Pericytes in brain injury and repair after ischemic stroke. *Trans Stroke Res*. 2017;8(2):107-121.

68. Ghorì A, Freimann FB, Nieminen-Kelhä M, et al. EphrinB2 activation enhances vascular repair mechanisms and reduces brain...
swelling after mild cerebral ischemia. *Arterioscler Thromb Vasc Biol*. 2017;37(5):867-878.

68. Jean LeBlanc N, Guruswamy R, ElAli A. Vascular endothelial growth factor isoform-B stimulates neurovascular repair after ischemic stroke by promoting the function of pericytes via vascular endothelial growth factor receptor-1. *Mol Neurobiol*. 2018;55(5):3611-3626.

69. Dias DO, Kim H, Holl D, et al. Reducing pericyte-derived scarring promotes recovery after spinal cord injury. *Cell*. 2018;173(1):153-65.e22.

70. Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. *Proc Natl Acad Sci U S A*. 2006;103(11):4034-4039.

71. Li G, Xiao L, Qin H, et al. Exosomes-carried microRNA-26b-5p regulates microglia M1 polarization after cerebral ischemia/reperfusion. *Cell Cycle*. 2020;19(9):1022-1035.

72. Jiang M, Wang H, Jin M, et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization. *Cell Physiol Biochem*. 2018;47(2):864-878.

73. Alishahi M, Ghaedrahmati F, Kolagar TA, et al. Long non-coding RNAs and cell death following ischemic stroke. *Metab Brain Dis*. 2019;34(5):1243-1251.

74. Li Z, Li J, Tang N. Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. *Neuroscience*. 2017;354:1-10.

75. Wang S, Han X, Mao Z, Xin Y, Maharjan S, Zhang B. MALAT1 in-cRNA induces autophagy and protects brain microvascular endothelial cells against oxygen-glucose deprivation by binding to miR-200c-3p and upregulating SIRT1 expression. *Neuroscience*. 2019;397:116-126.

76. Guo D, Ma JI, Yan L, et al. Down-regulation of LncRNA MALAT1 attenuates neuronal cell death through suppressing beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke. *Cell Physiol Biochem*. 2017;43(1):182-194.

77. Deng Y, Chen D, Wang L, et al. Silencing of long noncoding RNA nespas aggravates microglial cell death and neuroinflammation in ischemic stroke. *Stroke*. 2019;50(7):1850-1858.

78. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. *RNA*. 2013;19(2):141-157.

79. Zhang S, Zhang JY, Lu L, Wang CH, Wang LH. MiR-630 promotes epithelial ovarian cancer proliferation and invasion via targeting KLF6. *Eur Rev Med Pharmacol Sci*. 2017;21(20):4542-4547.

80. Chen Q, Liu T, Bao YI, et al. CircRNA cRAPGEF5 inhibits the circRNA induces autophagy and protects brain microvascular endothelial cells against oxygen-glucose-deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. *Neuroscience*. 2017;354:1-10.

81. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. *Cell Stem Cell*. 2014;14(2):188-202.

82. Rosell A, Morancho A, Navarro-Sobrino M, et al. Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice. *PLoS One*. 2013;8(9):e73244.

83. Blochet C, Buscemi L, Clément T, Gehri S, Badaut J, Hirt L. Inactivation of caveolin-1 in cardiovascular and neovascular remodeling after stroke: Effects on neovascularization and astroglisization. *J Cereb Blood Flow Metab*. 2020;40(1):163-176.

84. Zhu R, Sun Z, Li C, Ramakrishna S, Chiu K, He L. Electrical stimulation affects neural stem cell fate and function in vitro. *Exp Neurol*. 2019;319:112963.

85. Cho YW, Kim DS, Suhito IR, Han DK, Lee T, Kim TH. Enhancing neurogenesis of neural stem cells using homogeneous nanohole pattern-modified conductive platform. *Int J Mol Sci*. 2019;21(1):191.

86. Zhao YH, Liu NW, Ke CC, et al. Combined treatment of sodium ferrulate, n-butylenephthalide, and ADSCs rehabilitates neurovascular unit in rats after photothermal stroke. *J Cell Mol Med*. 2019;23(1):126-142.

87. Yamashita T, Kiami T, Deguchi K, et al. Dissociation and protection of the neurovascular unit after thrombolysis and reperfusion in ischemic rat brain. *J Cereb Blood Flow Metab*. 2009;29(4):715-725.

88. He F, Dai R, Zhou X, et al. Protective effect of 4-Methoxy benzyl alcohol on the neurovascular unit after cerebral ischemia reperfusion injury. *Biomed Pharmacother*. 2019;118:109260.

89. Tian X, Peng J, Zhong J, et al. p-Caryophyllene protects in vitro neurovascular unit against oxygen-glucose deprivation and roxogenation-induced injury. *J Neurochem*. 2016;139(5):757-768.

90. Tachibana M, Ago T, Wakisaka Y, et al. Early reperfusion after brain ischemia has beneficial effects beyond rescuing neurons. *Stroke*. 2017;48(8):2222-2230.

91. Zheng W, Watts LT, Holstein DM, et al. Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria. *PLoS One*. 2010;5(12):e14401.

92. Luo C, Yi B, Fan W, et al. Enhanced angiogenesis and astrocyte activation by ec dysolone treatment in a focal cerebral ischemia rat model. *Acta Neurochir Suppl*. 2011;110(Pt 1):151-155.
104. Omote Y, Deguchi K, Kono S, et al. Neurovascular protection of cilostazol in stroke-prone spontaneous hypertensive rats associated with angiogenesis and pericyte proliferation. J Neurosci Res. 2014;92(3):369–374.

105. Nardai S, Dobolyi A, Pál G, et al. Selegiline promotes NOTCH-JAGGED signaling in astrocytes of the peri-infarct region and improves the functional integrity of the neurovascular unit in a rat model of focal ischemia. Restor Neuro Neurosci. 2015;33(1):1-14.

106. Nardai S, Dobolyi A, Pál G, et al. Selegiline promotes NOTCH-JAGGED signaling in astrocytes of the peri-infarct region and improves the functional integrity of the neurovascular unit in a rat model of focal ischemia. Restor Neuro Neurosci. 2015;33(1):1-14.

107. Špiranec K, Chen W, Werner F, et al. Endothelial C-type natriuretic peptide acts on pericytes to regulate microcirculatory flow and blood pressure. Circulation. 2018;138(5):494-508.

108. Lu Z, Zhang D, Cui K, et al. Neuroprotective action of teriflunomide in mouse model of transient middle cerebral artery occlusion. Neuroscience. 2020;428:228-241.

109. Alarcon-Martinez L, Villafranca-Baughman D, Quintero H, et al. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature. 2020;585(7823):91-95.

110. Duzu B, Oztas E, Erdogan E, Gonul E. The effect of moderate hypothermia in acute ischemic stroke on pericyte migration: an ultrastructural study. Cryobiology. 2007;55(3):279-284.

111. Zhao Y, Wei ZZ, Lee JH, et al. Pharmacological hypothermia induced neurovascular protection after severe stroke of transient middle cerebral artery occlusion in mice. Exp Neurol. 2020;325:111133.

112. Zheng Y, Pan C, Chen M, Pei A, Xie L, Zhu S. miR-29a ameliorates ischemic injury of astrocytes in vitro by targeting the water channel protein aquaporin 4. Oncol Rep. 2019;41(3):1707-1717.

113. Xin H, Wang F, Li Y, et al. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from MicroRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant. 2017;26(2):243-257.

114. Yuan Y, Zhang Z, Wang Z, Liu J. miRNA-27b regulates angiogenesis by targeting AMPK in mouse ischemic stroke model. Neuroscience. 2019;398:12-22.

115. Pei L, Meng S, Yu W, Wang Q, Song F, Ma L. Inhibition of microRNA-383 ameliorates injury after focal cerebral ischemia via targeting PPARγ. Cell Physiol Biochem. 2016;39(4):1339-1346.

116. Sun J, Tao S, Liu L, Guo D, Xia Z, Huang M. miR-140-5p regulates angiogenesis following ischemic stroke by targeting VEGFA. Mol Med Rep. 2016;13(5):4499-4505.

117. Caballero-Garrido E, Pena-Philippides JC, Lordkipanidze T, et al. In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci. 2015;35(36):12446-12464.

118. Li Y, Mao L, Gao Y, Baral S, Zhou Y, Hu B. MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1. Sci Rep. 2015;5:13316.

119. Cui H, Yang A, Zhou H, et al. Thrombin-induced miRNA-24-1-5p upregulation promotes angiogenesis by targeting prolyl hydroxylase domain 1 in intracerebral hemorrhagic rats. J Neurosurg. 2020;1-12.

120. Gu Y, Ampofo E, Menger MD, Laschke MW. miR-191 suppresses angiogenesis by activation of NF-κB signaling. Faseb j. 2017;31(8):3321-3333.

121. Zhu J, Yao K, Wang Q, et al. Circulating miR-181a as a potential novel biomarker for diagnosis of acute myocardial infarction. Cell Physiol Biochem. 2016;40(6):1591-1602.

122. Pan J, Qu M, Li Y, et al. MicroRNA-126-3p/-5p overexpression attenuates blood-brain barrier disruption in a mouse model of middle cerebral artery occlusion. Stroke. 2020;51(2):619-627.

123. Qu S, Yang L, Liu Z, MicroRNA-194 reduces inflammatory response and human dermal microvascular endothelial cells permeability through suppression of TGF-β/SMAD pathway by inhibiting THBS1 in chronic idiopathic urticaria. J Cell Biochem. 2020;121(1):111-124.

124. Li P, Shen M, Gao F, et al. An antagonist to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress. Mol Neurobiol. 2017;54(4):2901-2921.

125. Teertam SK, Jha S, Prakash BP. Up-regulation of Sirt1/miR-149-5p signaling may play a role in resveratrol induced protection against ischemia via p53 in rat brain. J Clin Neurosci. 2020;72:402-411.

126. Yao S, Tang B, Li G, Fan R, Cao F. miR-455 inhibits neuronal cell death by targeting TRAF3 in cerebral ischemic stroke. Neuropsychiatr Dis Treat. 2016;12:3083-3092.

127. Mo J-L, Pan Z-G, Chen X, et al. MicroRNA-365 knockdown prevents ischemic neuronal injury by activating oxidation resistance 1-mediated antioxidant signals. Neurosci Bull. 2019;35(5):815-825.

128. Ge XL, Wang JL, Liu X, Zhang J, Liu C, Guo L. Inhibition of miR-19a protects neurons against ischemic stroke through modulating glucose metabolism and neuronal apoptosis. Cell Mol Biol Lett. 2019:24:37.

129. Hamzei Taj S, Kho W, Riou A, Wiedermann D, Hoehn M. miRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials. 2016;91:151-165.

130. Li ZF, Shu XJ, Chang YW, Liu SY, Wang WH. Effect of IncRNA H19 on the apoptosis of vascular endothelial cells in arteriosclerosis obliterans via the NF-κB pathway. Eur Rev Med Pharmacol Sci. 2019;23(10):4491-4497.

131. Wang M, Li C, Zhang Y, Zhou X, Liu Y, Lu C. LncRNA MEG3-derived miR-361-5p regulate vascular smooth muscle cells proliferation and apoptosis by targeting ABCA1. Am J Transl Res. 2019;11(6):3600-3609.

132. Li H, Liu X, Zhang L, Li X. LncRNA BANCR facilitates vascular smooth muscle cell proliferation and migration through JNK pathway. Oncotarget. 2017;8(70):114568-114575.

133. Liu C, Ge H-M, Liu B-H, et al. Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction. Proc Natl Acad Sci U S A. 2019;116(15):7455-7464.