B_s Mixing and B Hadron Lifetimes at CDF

Michael Milnik for the CDF Collaboration
20. July 2007
HEP 2007 Manchester
Tevatron & Lumi

- Proton-antiproton Synchrotron
- Run II:
 \[\sqrt{s} = 1.96 \text{ TeV} \]
 – Both experiments have now \(> 2.5 \text{ fb}^{-1} \) on tape.
 – Aim for 6-8 \(\text{ fb}^{-1} \) by 2009
CDF-Detector

- Tracking: Silicon Detector + Drift Chamber (COT)
- PID: Muon chambers
 - ToF
 - dEdx (COT)
 - Calorimeter
- Huge background: soft QCD 1000x larger → trigger to find secondary vertex
 - 2-track trigger (TTT):
 - Pt(trk)>2GeV/c
 - IP(trk)>100 µm
- Di-Muon Trigger
Mixing Introduction

- flavoured neutral mesons can turn into their antiparticle via box diagrams
 - measuring oscillation frequency
 - measure $|V_{ts}|$

- Δm ratio \rightarrow measure one side of unitarity triangle (many theoretical uncertainties cancel in ratio)

- new physics can influence oscillation frequency \rightarrow test of Standard Model

\[
\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}
\]
Mixing: Overview

- For mixing you need 3 ingredients:
 - Get flavour at decay
 - and at production

- good proper time resolution for decay vertex reconstruction → mixed or not mixed after a specific time
Decay Flavour and Channels

\[B_s \rightarrow D_s \, \pi \]
\[B_s \rightarrow D_s \, 3\pi \]
\[B_s \rightarrow D_s \, l^+ X \quad D_s \rightarrow \phi \, \pi \]
\[D_s \rightarrow K^* K \]
\[D_s \rightarrow 3\pi \]

- Flavour specific modes, to get b flavour at decay
Production Flavour: Flavour Tagging

- Estimate flavour at **production** from the rest of the event
 - Opposite side - NN combination: $\varepsilon D^2 = 1.8\%$
 - Lepton identification: $b \to Xl^-$, but cascade: $b \to c \to Xl^+$
 - Jet-Charge: inclusive charge of fragmentation
 - Kaon identification: $b \to c \to XK^-$
 - Same side: $\to \varepsilon D^2 = 3.5\%$ (hadronic) $- \varepsilon D^2 = 4.8\%$ (S.L.)
 - Kaon identification: the other s quark not in the B_s will create a K
Proper Time Resolution @ CDF

- Good proper time resolution requires excellent tracking as close as possible to the interaction point
 - Excellent tracking with large drift chamber (COT)
 - followed by the silicon detector with closest layer at about 1 cm from beam for good vertex resolution
Mixing Results

\[P_S(t, \xi, \sigma_t) \propto \frac{1 + \xi A D \cos(\Delta m t) \frac{1}{1 + |\xi|}}{\frac{1}{\tau}} e^{-t/\tau} \]

- fit only amplitude and fix frequency
- scan through frequencies
- Fourier Analysis which should have maximum at true oscillation frequency
- unbinned maximum likelihood fit >5\(\sigma\) significance:
 - \(\Delta m_s = 17.77 \pm 0.10 \pm 0.07\) ps\(^{-1}\)
 - \(|V_{td}/V_{ts}| = 0.2060 \pm 0.0007\) (exp)
 - \(|V_{td}/V_{ts}| = 0.2060 \pm 0.0007\) (theo.)
\[\Lambda_b \rightarrow J/\psi \Lambda \]

- Fully reconstructed decay channels
- Control channels with very similar topology:
 - \(B^0 \rightarrow J/\psi K_s \)
 - \(B^0 \rightarrow J/\psi K^* \)
 - \(B^+ \rightarrow J/\psi K^+ \)
 - \(B^0_s \rightarrow J/\psi \phi \)
- di-muon vertex used for lifetime measurement
- \(J/\psi \rightarrow \mu\mu \rightarrow \) di-muon Trigger:
 - \(2.7 \text{GeV/c}^2 < M(\mu\mu) < 4 \text{GeV/c}^2 \)
 - \(Q(\mu_1) \times Q(\mu_2) = -1 \)
 - \(p_t(\mu) > 1.5 \text{GeV/c} \)
Control Channels

\[N(J/\psi K^*) \sim 3600 \]

\[
cr(B^0) = 457.1 \pm 8.8\,(\text{stat}) \pm 3.2\,(\text{syst})\,\mu m
\]

\[
\tau(B^0) = 1.524 \pm 0.030\,(\text{stat}) \pm 0.011\,(\text{syst})\,ps
\]

07/20/07 Michael Milnik - HEP 2007
Control Channels

B^+ lifetime measurements

Experiment	B^+ lifetime [ps]
SLD (ABE 97J)	1.660±0.060±0.050 ps
L3 (ACCIARRI 98S)	1.660±0.060±0.030 ps
CDF (ABE 98Q)	1.637±0.058 (±0.045-0.043) ps
OPAL (ABBIENDI 99I)	1.643±0.037±0.025 ps
ALEP (BARATE 00R)	1.648±0.049±0.035 ps
BABR (AUBERT 0F1)	1.673±0.032±0.023 ps
CDF (ACOSTA 02C)	1.636±0.058±0.025 ps
DLPH (ABDALL. 04E)	1.624±0.014±0.018 ps
BELL (ABE 05B)	1.635±0.011±0.011 ps
CDF Run II Prelim.	1.630±0.016±0.011 ps
World Average	**1.638±0.011 ps**

B^0 lifetime measurements

Experiment	B^0 lifetime [ps]
BABR (AUBERT 01F)	1.546±0.032±0.022 ps
BABR (AUBERT 02H)	1.529±0.012±0.029 ps
CDF (ACOSTA 03C)	1.533±0.034±0.038 ps
BABEL (AUBERT 03H)	1.497±0.073±0.032 ps
D0 (ABAZOV 05W)	1.531±0.021±0.031 ps
CDF (ACOSTA 05)	1.540±0.050±0.020 ps
BELL (ABE 05B)	1.534±0.008±0.010 ps
BABR (AUBERT 06G)	1.530±0.043±0.023 ps
CDF Run II Prelim.	1.504±0.013 (+0.018-0.013) ps
World Average	**1.530±0.009 ps**
Control Channels

- All control channels provide excellent lifetime measurements
- Consistent with world average
Λ_{b} Results

\[N(J/\psi \Lambda) = 532 \]

\[
c\tau(\Lambda_{b}^0) = 473.8 \pm 23.1 \text{(stat)} \pm 3.5 \text{(syst)} \mu m
\]

\[
\tau(\Lambda_{b}^0) = 1.580 \pm 0.077 \text{(stat)} \pm 0.012 \text{(syst)} ps
\]
Λ_b Comparison

- 3σ deviation from WA
- Lifetime ratio:

\[\frac{\tau(\Lambda_b^0)}{\tau(B^0)} = 1.018 \pm 0.062 \text{(stat)} \pm 0.007 \text{(syst)} \]

- Theory prediction:

\[\tau(\Lambda_b^0)/\tau(B^0) = 0.88 \pm 0.05 \]
Summary

• First observation of $B_s^0 - \bar{B}_s^0$ Oscillations $>5\sigma$
 – very precise Δm_s measurement
 – Published: Phys. Rev. Lett., 97, 242003 (2006)

• Most precise single Λ_b lifetime measurement
 – other b-hadron lifetimes agree with world average
 – Λ_b lifetime is 3σ above world average and at the upper side of theoretical prediction
 – $\Lambda_b \rightarrow \Lambda_c \pi$ lifetime measurement in progress

• More info @:
 http://www-cdf.fnal.gov/physics/new/bottom/bottom.html