An Adaptive Multi-Objective Evolutionary Algorithm with Two-Stage Local Search for Flexible Job-Shop Scheduling

Yingli Li, Jiahai Wang*, Zhengwei Liu

School of Mechanical Engineering, Tongji University, Shanghai, 201804, China

ABSTRACT

An adaptive evolutionary algorithm with two-stage local search is proposed to solve the multi-objective flexible job-shop scheduling problem (MOFJSP). Adapting and efficient solving ability are the two main features. An autonomous selection mechanism of crossover operator is designed, which divides individuals into different levels and selects the appropriate one according to the both sides’ levels to improve the self-adaptation. In parameter setting, the autonomous determination and adjustment mechanism is proposed, and parameters are adjusted autonomously according to the job scale and iteration number, so as to reduce the complexity of parameter setting and further improve the adaptivity. For improving solving ability, two-stage local search mechanism is designed. The first stage is performed before the evolution operation, so that each individual has more good genes to participate in the following operation. The second stage is performed after the evolution operation to further search the optimal solutions. Finally, a large number of comparative numerical tests are carried out, compared with other excellent algorithms, the proposed algorithm has fewer parameters to be set and stronger solving ability.

1. INTRODUCTION

Job-shop scheduling problem (JSP) is a branch of production scheduling and one of the most arduous combinatorial optimization problems [1]. In the classical JSP, a set of n jobs must be processed on m machines where each job i consists of n_i operations that should be performed on the predefined machines while satisfying precedence constraints [2]. However, in order to increase market competitiveness, flexible job-shop has become an inevitable choice for modern enterprises. This leads to a modified version of JSP called flexible JSP [3].

Flexible job-shop scheduling problem (FJSP) is an extension of the classical JSP. Unlike JSP issue, FJSP breaks the restriction of unique resources, operations are allowed to be processed on any among a set of available machines. Therefore, compared with JSP, FJSP is closer to the actual production situation. Because of the additional need to determine the assignment of operations on the machines, FJSP is more complex than JSP, and incorporates all the difficulty and complexity of JSP [4].

Brucker and Schlie [5] were the first to address the FJSP. They proposed a polynomial algorithm for solving the FJSP with two jobs, in which the machines capable of performing one operation have the same processing time. Commonly there are two methods for solving FJSP: hierarchical approach and integrated approach. Hierarchical approach was first proposed by Brandimarte [6]. Its basic idea is decomposing the complex problem into some sub-problems in order to decrease the complexity, i.e., it considered the assigning sub-problem and the sequencing sub-problem separately. However, in integrated approach, the assigning sub-problem and the sequencing sub-problem are solved simultaneously.

There have been many single-objective studies on FJSP, but the multi-objective flexible job-shop scheduling problem (MOFJSP) is more in line with the need of actual production. MOFJSP has been studied by many researchers in past decades. Xia and Wu [7] proposed a hierarchical solution approach by using a particle swarm optimization algorithm to assign operations on each machine. Zhang et al. [8] proposed an effective hybrid approach for the MOFJSP, hybridizing the two optimization algorithms, particle swarm optimization and tabu search algorithm. Baykasgolu et al. [9] presented a linguistic-based meta-heuristic modeling and multi-objective tabu search algorithm to solve the MOFJSP. Ho and Tay [10] studied a hybrid evolution algorithm combined with a guided local search and external Pareto archive set (AS).

Evolutionary algorithm (EA) is an intelligent optimization algorithm inspired by biology, which has been widely used in solving MOFJSP. The existing algorithms have poor self-adaptability. Specifically, the evolutionary operation does not consider the differences of individuals, and cannot make dynamic adjustment according to the individuals’ differences. Also, the parameter setting process is complex and lacks flexibility. When the test case is replaced, parameters need to be reoptimized. In addition, how to
In this paper, an adaptive evolutionary algorithm with two-stage local search is proposed. First, the individual coding scheme was improved. To adapt to the scheme, new methods of individual crossover, mutation and selection were designed. In terms of crossover operation, considering the differences between individuals, different crossover operators are designed. Individuals of different levels can select the appropriate crossover operator, thereby improving the algorithm's adaptive ability and solving ability. Second, an adaptive parameter adjustment mechanism is designed to further improve the adaptive ability. The algorithm can autonomously adjust the parameters according to the scale of the jobs and the number of iterations, thus reducing the complexity of parameter setting. Finally, a two-stage local search is embedded in the algorithm. The first stage is before the evolution operation to allow individuals to have more good genes, and the second stage is after the evolution operation to search for more superior solutions, consequently further improve the solving ability of the algorithm.

The remainder of the paper is organized as follows: In Section 2, the assumptions and formulations of MOFJSP are described in detail. In Section 3, the scheme of the proposed algorithm for MOFJSP is elaborated. In Section 4, the computational results and the comparison with other approaches are presented. The final conclusions are given in Section 5.

2. PROBLEM FORMULATION

2.1. MOFJSP Description

The MOFJSP is described as follows [11]: there are \(n \) jobs \(\{J_i, i \in \{1, 2, \ldots, n\}\} \) and \(m \) machines \(\{M_k, k \in \{1, 2, \ldots, m\}\} \). Job \(J_i \) consists of one or more operations \(\{O_{ij}, j \in \{1, 2, \ldots, n_i\}\} \), \(n_i \) is the total number of operations for \(J_i \). Operation \(O_{ij} \) is allowed to be executed by one machine from a given set \(M_{ij} \), which is consisted of all the capable machines of the \(j \)th operation for job \(J_i \). If \(M_{ij} = M_k \), it is called total flexible, otherwise it is partially flexible. The task of scheduling is to assign each operation to a suitable machine and to sequence the operations on all the machines, so as to optimize some objectives. In addition, some restrictions must be met:

- One machine can only process one job at a time, and one job can only be processed only on one machine at a time.
- There is a priority restriction between every two different operations of the same job, i.e., only after the previous operation is completed, the next one can be processed.
- The operations of different jobs do not have precedence constraints.
- All jobs have equal priorities, all machines are independent and each machine is ready at zero time.
- Once one operation is started, it will not be interrupted until the process is finished.
- Moving time between operations and setting up time of machines are negligible.

The notation used in this paper is summarized in the follows:

\[\begin{align*}
- i, h & \quad \text{Index of jobs} \\
- j, g & \quad \text{Index of operations} \\
- k & \quad \text{Index of machines} \\
- n & \quad \text{Total number of jobs} \\
- m & \quad \text{Total number of machines} \\
- n_i & \quad \text{Total number of operations of job } i \\
- O_{ij} & \quad \text{The } j \text{th operation of job } i \\
- O_{hg} & \quad \text{The } g \text{th operation of job } h \\
- M_{ij} & \quad \text{The set of available machines for the operation } O_{ij} \\
- F_1 & \quad \text{Makespan (the maximal completion time)} \\
- F_2 & \quad \text{Critical machine workload (the machine with the biggest workload)} \\
- F_3 & \quad \text{Total workload of machines (the total working time of all machines)} \\
- P_{ijk} & \quad \text{Processing time of } O_{ij} \text{ on machine } k \\
- x_{ijk} & \quad \text{Decision variable} \\
- x_{hgk} & \quad \text{Decision variable} \\
- C_i & \quad \text{Completion time of job } i \\
- C_{ij} & \quad \text{Completion time of operation } O_{ij} \\
- C_{hg} & \quad \text{Completion time of operation } O_{hg}
\end{align*} \]

In this paper, three objectives will be optimized simultaneously, as follows [12]:

\[F_1 = \min \left(\max \{C_i | i = 1, 2, \ldots, n\} \right). \quad (1) \]

\[F_2 = \min \left[\max \left\{ \sum_{j=1}^{n_i} \sum_{k=1}^{n} p_{ijk} x_{ijk} | k = 1, 2, \ldots, m \right\} \right]. \quad (2) \]

\[F_3 = \min \left(\sum_{i=1}^{n} \sum_{j=1}^{n_i} \sum_{k=1}^{m} p_{ijk} x_{ijk} \right). \quad (3) \]

Subject to:

\[x_{ijk} = \begin{cases}
1, & \text{if } O_{ij} \text{ is processed on machine } k \\
0, & \text{otherwise}
\end{cases}. \quad (4) \]

\[x_{hgk} = \begin{cases}
1, & \text{if } O_{hg} \text{ is processed on machine } k \\
0, & \text{otherwise}
\end{cases}. \quad (5) \]
The definition of Pareto dominance and Pareto optimal-nondominated solutions, which are referred to as Pareto-optimal solutions. The goal of Pareto dominance-based approach is to obtain all the non-dominated solutions. The objective vector of operations and related machines should be encoded in the same chromosome. Two encoding schemes are commonly used to solve MOFJSP [15]: A-B string [8,16,17] and 3-tuple scheme [18–20].

Both schemes represent the same information, and the difference is only in the implementation. In 3-tuple scheme, a gene includes three elements which are the job number, the operation number and the assigned machine. However, in A-B string, two genes are needed to represent the same information. So, 3-tuple scheme is simpler and more intuitive than A-B string in the manner of representation, and the chromosome length of 3-tuple is only half of A-B strings. In this paper, a new encoding scheme, called 2-tuple, is designed for MOFJSP, which is improved on the basis of 3-tuple, and it is more concise than 3-tuple because a gene goes from three elements to two.

Each chromosome is a sequence of genes. A gene is a 2-tuple (i, k), in which i and k denote job number and assigned machine separately. The jth occurrence of i, from left to right of chromosome, represents the jth operation of job i. Taking Figure 2 as an example, this chromosome encodes the sequence of six operations, three of job1 and three of job2. The first gene (2, 1) of chromosome represents that the 1st operation of job2 will be executed on machine M1, the third gene (2, 3) denotes that the 2nd operation of job2 will be processed on machine M3, and the rest can be interpreted in the same manner.

Decoding is the process of converting each chromosome to a scheduling solution. Schedules are grouped into three types by [21]: non-delay schedule, semi-schedule and active schedule. It has been proved that active schedule contains the optimal schedule. In an active schedule, no operation can be processed in advance except putting off another operation's start time or changing the order of operations [22]. In order to obtain active schedule, this paper introduces the left-shift greedy decoding scheme [23]. The advantage of this scheme is that it has a self-repairing mechanism, always searching a sufficient and suitable idle time interval for each operation on the processing machine without delaying any other operations, so as to shift the operation to the left as compact as possible. The detailed procedures are shown as follows:

The proposed algorithm optimizes assigning sub-problem and sequencing sub-problem simultaneously, and thus the information of operations and related machines should be encoded in the same chromosome. Two encoding schemes are commonly used to solve MOFJSP [15]: A-B string [8,16,17] and 3-tuple scheme [18–20]. Both schemes represent the same information, and the difference is only in the implementation. In 3-tuple scheme, a gene includes three elements which are the job number, the operation number and the assigned machine. However, in A-B string, two genes are needed to represent the same information. So, 3-tuple scheme is simpler and more intuitive than A-B string in the manner of representation, and the chromosome length of 3-tuple is only half of A-B strings. In this paper, a new encoding scheme, called 2-tuple, is designed for MOFJSP, which is improved on the basis of 3-tuple, and it is more concise than 3-tuple because a gene goes from three elements to two.

Each chromosome is a sequence of genes. A gene is a 2-tuple (i, k), in which i and k denote job number and assigned machine separately. The jth occurrence of i, from left to right of chromosome, represents the jth operation of job i. Taking Figure 2 as an example, this chromosome encodes the sequence of six operations, three of job1 and three of job2. The first gene (2, 1) of chromosome represents that the 1st operation of job2 will be executed on machine M1, the third gene (2, 3) denotes that the 2nd operation of job2 will be processed on machine M3, and the rest can be interpreted in the same manner.

Decoding is the process of converting each chromosome to a scheduling solution. Schedules are grouped into three types by [21]: non-delay schedule, semi-schedule and active schedule. It has been proved that active schedule contains the optimal schedule. In an active schedule, no operation can be processed in advance except putting off another operation’s start time or changing the order of operations [22]. In order to obtain active schedule, this paper introduces the left-shift greedy decoding scheme [23]. The advantage of this scheme is that it has a self-repairing mechanism, always searching a sufficient and suitable idle time interval for each operation on the processing machine without delaying any other operations, so as to shift the operation to the left as compact as possible. The detailed procedures are shown as follows:

![Figure 2](image-url)
Step 1: Read gene sequence of a chromosome from left to right successively. Assuming a gene \((i, k)\) is currently obtained, it denotes operation \(O_{ij}\) will be executed on machine \(k\).

Step 2: Search the first idle time interval \([t^p_k, t^q_k]\) on machine \(k\), where \(t^p_k\) and \(t^q_k\) represents the beginning time and the ending time of the interval separately.

Step 3: Identify the beginning time of operation \(O_{ij}\). Due to the precedence constrains among operations, operation \(O_{ij}\) can be started only after its immediate job predecessor \(O_{ij-1}\) being completed. The starting time \(S_{ij}\) of \(O_{ij}\) can be calculated through Eq.(14), where \(C_{ij-1}\) is the completion time of \(O_{ij-1}\). If the operation has no predecessor, \(C_{i-1}\) is replaced with 0.

\[
S_{ij} = \max\{t^p_k, C_{ij-1}\}.
\]

Step 4: Evaluate the condition of left-shift. If there is enough time from \(S_{ij}\) to \(t^q_j\), i.e., \(S_{ij} + p_{ijk} \leq t^q_j\), where \(p_{ijk}\) is the processing time of \(O_{ij}\) on machine \(k\), then the interval \([t^p_k, t^q_k]\) is available for \(O_{ij}\). That is, \(O_{ij}\) can be left shifted, and the completion time of \(O_{ij}\) is \(S_{ij} + p_{ijk}\). Otherwise, search the next idle time interval. If there is no interval satisfy the condition of left-shift, then \(O_{ij}\) will be appended in the rear of the sequence of operations that has already been scheduled before \(O_{ij}\) on machine \(k\).

Step 5: Update chromosome. Due to the employ of the left-shift greedy decoding scheme, operation \(r\) may be processed earlier than another operation \(v\), which appears before \(r\) in the chromosome. Hence an update operation should be performed according to the result of decoding instead of the original chromosome, so as to keep the uniformity of encoding and decoding.

3.2. Population Initialization

The quality of initial population is very important for accelerating convergence speed and avoiding premature convergence. It has been proved that utilizing a hybrid multi-approach to generate initial population is better than using single one in the performance [20]. Thus, in this paper, an approach of integrating strategies is employed for generating initial population. It includes five assignment rules and four sequencing rules.

i. Assignment rules

- Random rule: It assigns each operation to a capable machine randomly.
- Minimum processing time rule [20]: For every operation, the machine with the minimum processing time will be selected in the corresponding operation's candidate machine set. If there are multi-machines with the same minimum processing time, select one from them randomly, then assign the operation to the selected machine.
- Global minimum processing time rule [20]: From the processing time table, find the minimum processing time among all operations, fix the assignment, then add the selected processing time to every other entry in the same column, and conduct the next time selecting, until all operations are assigned. If there are multi-global minimum processing time, select one randomly.
- Local minimum processing time rule [23]: Find the minimum processing time from the first operation of the first job to the last operation of the last job successively. For each operation, the selected time will be added to other entry in the same column for conducting next time selecting, and each operation will be assigned to the corresponding selected machine. If there are multi-local minimum processing time, select one randomly.
- Permutation rule: Shuffle the order of operations in processing time table randomly. Take the operation in the first row as the starting operation to select the machine with minimum processing time, fix the assignment, then add the selected processing time to every other entry in the same column for conducting next time's selecting. If there are multi-machines have the same minimum processing time, randomly select one.

ii. Sequencing rules

- Random rule: It places the operations into a chromosome in a random order.
- Most work remaining rule [6]: One operation is selected according to the remaining work time of all jobs and be placed into a chromosome. The larger the remaining work time is, the earlier the operation of corresponding job can be selected. If there are multi-jobs have the same remaining work time, select one randomly.
- Most number of operations remaining rule [20]: This rule select operation according to the remaining number of operations, the more the remaining number of operations is, the earlier the operation of corresponding job can be selected. If there are multi-jobs have the same remaining number of operations, select one randomly.
- Shortest processing time rule [8]: The first operations of the remaining operations from each job are compared, the operation with the minimum processing time will be selected preferentially.

In the researches that utilizing hybrid multi-strategies to generate initial population, commonly a percentage-based approach, allocating different percentages for each approach to generate the required initial population, is adopted. In this paper, a new loop-based method is designed to generate initial population, and the difference is percentage allocation is not needed for each strategy compared with some other excellent algorithm, e.g., EPABC proposed in [13], AIA proposed in [18], etc. The utilization of loop-based method helps to increase the diversity of population and to extend the search space. The detailed procedure is described as follows:

Step 1: Place 20 \((5 \times 4)\) combinations of the assignment and sequencing rules in the set CH.

Step 2: A combination is successively selected in the manner of loop from CH to generate an individual. Assuming that the combination selected is \((A, S)\). First, employ strategy \(A\) to complete operation assignment. Second, utilize strategy \(S\) to complete operation sequencing. Finally, combine the result of operation assignment and operation sequencing to generate a chromosome.

Step 3: Repeat perform step 2 until the number of initial individuals reaching \(N_{pop}\).
time of current machine will be shortened and the scheduling will be more compact.

3.4. Crossover Operators

The goal of crossover is to obtain two offsprings which inherit the gene information from their parent’s chromosomes and generate new superior gene sequences. In this algorithm, crossover includes two parts: crossover for operation sequence and crossover for machine assignment. These two parts are implemented separately, and the terminal condition is that the amount of offspring equals \(N_{\text{pop}} \), where \(N_{\text{pop}} \) is the amount of the initial population.

i. Crossover for operation sequence

Many effective approaches are developed for operation sequence's crossover in the past decades, such as order crossover employed by [16], HCO proposed by [12], IPOX designed by [11]. In this paper, considering the chromosome structure, IPOX is adopted. In addition, a new crossover approach, called RPOX, is proposed on the basis of IPOX, so the proposed algorithm can adaptively select one from the two crossover approaches according to the quality of the parent’s chromosomes to generate good offspring. The details of IPOX and RPOX are shown as follows:

Step 1: Fast nondominated sorting [24] is performed for initial population which is divided into different ranks \(R_{\alpha} (\alpha \in \{1,2, \ldots, l, \ldots, r\}) \). If \(\sum_{\alpha=1}^{l-1} N_{R_{\alpha}} < 0.7N_{\text{pop}} \) and \(\sum_{\alpha=1}^{l} N_{R_{\alpha}} \geq 0.7N_{\text{pop}} \), the individuals in \(R_1 \) to \(R_l \) are called excellent population and the remained individuals are called inferior population, where \(N_{R_{\alpha}} \) represents the amount of individuals in rank \(R_{\alpha} \).

Step 2: Randomly select two individuals (\(P_1 \) and \(P_2 \)) from initial population as parent’s chromosomes, and let \(C_1 \) and \(C_2 \) be their children’s chromosomes by crossover. All the jobs are randomly divided into two sets \(J_1 \) and \(J_2 \).

Step 3: Copy the elements of \(P_1 \) that are included in \(J_1 \) to \(C_1 \) in the same position and copy the elements of \(P_2 \) that are included in \(J_2 \) to \(C_2 \) in the same position.

Step 4: If the elements of \(P_2 \) that are included in \(J_2 \)’s rest position in the same order and the elements of \(P_1 \) that are included in \(J_1 \)’s rest position in the same order, this method is called IPOX. If the elements of \(P_2 \) that are included in \(J_2 \)’s rest position in the reverse order and the elements of \(P_1 \) that are included in \(J_1 \)’s rest position in the reverse order, this method is called RPOX. At this moment, keep the machine associated with operation is empty. A simple example about these two crossover methods is shown in Figure 4.

Step 5: If the parent’s chromosomes are in the inferior population, RPOX is adopted. Otherwise, IPOX is adopted. Because the chromosomes selected from the inferior population always possess few good gene information, only with the large change, the offspring can possibly generate useful gene sequence. On the contrary, the chromosomes selected from the excellent population possess good gene sequence, so small change should be made to keep the good gene information to the next generation.
ii. Crossover machine assignment
After operation sequence's crossover is completed, crossover
for machine assignment should be performed to determine the
machine for each operation in children's chromosomes C1 and
C2. Two-point crossover method, called ITP, is used, and the
details are described as follows:
Step 1: Two integers I1 and I2 are selected from the range of
[2, L − 1], where L is the length of one chromosome.
Step 2: The genes of C1 between position I1 and I2 inherit the
operation's machine information from P1, the remained genes
inherit from P2. The genes of C2 between position I1 and I2
inherit the operation's machine information from P2, the rem-
ained genes inherit from P1. A simple example is shown in
Figure 5.

3.5. Mutation Operators
Mutation is one of the key technologies for avoiding premature and
increasing the diversity of population. A substitution method is
adopted in this paper. For operation sequence's mutation, two genes
that do not belong to the same job are selected randomly, then their
position will be swapped and the corresponding machine informa-
tion will be updated.
For machine assignment's mutation, the machine Mi in a randomly
selected gene is replaced by a new one that is reselected from its
candidate machine set. This reselection must meet a rule. If a subset,
consisted by the machines with the processing time shorter than Mi,
exists, select the new machine from this subset. Otherwise, select
randomly from the candidate set but except Mi. The terminal time
is controlled by mutation rate β.5

3.6. Environment Selection
Environment selection is to select certain amounts of individu-
als, called new initial population or survived individuals, from
the population of parent and children. The survived individuals
will be participated in the next time's genetic operation. For envir-
onment selection, fitness-based [7] and dominance-based [25]
selection methods have been developed and widely used in schedul-
ning problem. Due to the advantage of dominance-based method
in term of considering the tradeoff among multi-objectives, it is
adopted in this paper.
In dominance-based method, crowding distance [25] is commonly
used to select certain individuals from the subpopulation with the
same rank. It is effective to the optimization problem with two
objectives, but with three objectives it is insufficient to some extent.
In order to keep the diversity of the new initial population, a parti-
tion selection method is designed to replace crowding distance. The
details of environment selection are described as follows:
Step 1: Fast nondominated sorting is performed for all individuals
and divided them into different levels Rα (α ∈ {1, 2, … , l, … , r}).
Step 2: If \(\sum_{\alpha=1}^{l-1} N_{R\alpha} < N_{pop} \) and \(\sum_{\alpha=1}^{l} N_{R\alpha} > N_{pop}\), go to step
3. If \(\sum_{\alpha=1}^{l} N_{R\alpha} = N_{pop}\), all individuals in R1 to Rl will survive to
the next generation, and go to step 4. Here N_{R\alpha} is the number of individuals in rank R\alpha.
Step 3: All individuals in R1 to R{l-1} survive to the next generation
directly. The task of environment selection is to determine the sur-
vived individuals in Rl. Let N_{R\alpha} represents the number of individuals
need to be selected from N_{R\alpha}, where \(N_{R\alpha} = N_{pop} - \sum_{\alpha=1}^{l-1} N_{R\alpha}\). First,
if two objectives are called a sort operator, six sort operators can
be consisted by three objectives (F1, F2 and F3), and it is denoted by
number 1 to 6 separately. For example, (F1, F2) is denoted by num-
ber 1. Second, a number is selected randomly from 1 to 6. Assuming
the selected number is 1 and it represents the sort operator (F1, F2).
Sort all individuals of Rl in ascending order based on F1, if F1 of
multi-individuals are the same, sort the multi-individuals based on
F2. Third, according to the equation \(n_l = \land \left(N_{R\alpha}/N_{R\alpha} \right) \), divide N_{Rl}
individs into N_{R\alpha} parts, each part except the last one has n_1 individs,
where \land presents taking lower bound value. For example, if
N_{Rl}/N_{R\alpha} = 2.6, n_l is 2. The individual number of the last part may be
larger than n_l. The individual in the first position of each part will
be selected to the next generation.
Step 4: An external AS is imbedded in the proposed algorithm. The
individuals in R1 will be added into the AS when the environment
selection procedure is performed at first time. Otherwise, this step
can be negligible.
3.7. Local Search II (LS-II)

The purpose of LS-I mentioned in Section 3.3 is to make the chromosome carry more superior genes in a short time. However, a new local search method, called LS-II, based on the critical path is purposed to find more promising solutions. The emphasis of the two methods are different, LS-I pursues speed, LS-II pursues quality.

In this paper, a concept, called full sequence, is proposed. If no time interval exists between every two adjacent operations on the same machine, this state is called a full sequence, e.g., M2 is under a full sequence in Figure 3. If a machine is under a full sequence and makespan belongs to this machine, it cannot reduce the makespan no matter how to shift the critical operation, unless reassign some operations to other machines.

In order to optimize three objectives simultaneously, the local search method based on critical path is extended. It includes two parts: reassignment and shifting critical operations. Compared with some methods that only shifting critical operations, LS-II not only reduce the makespan (F1), but also balance the critical machine workload and the total workload (F2,F3). The details of LS-II are described as follows:

Step 1: According to the result of fast nondominated sorting in Section 3.6, the individuals in R1 will be local searched. The goal of this is to reduce the load of calculation.

Step 2: Take out a chromosome c, exam whether the chromosome has the full sequence and the full sequence belongs to the machine with makespan. If no, go to step 3, else, go to step 4.

Step 3: Shifting critical operation. First, identify the critical paths and the critical blocks on the chromosome. Let Oij represents one critical operation of a critical block, and Oij cannot be the head operation of this critical block. Left-shift Oij to the front of every operation in the critical block successively and calculate the corresponding objective value. If the solution is better, the chromosome after shift and this time’s shift will be recorded. Repeat this process, until every critical operation except the head one in every critical block are performed. Multi-critical paths may possess some public critical blocks, so if recorded shift appears, it will be negligible. After shifting critical operations is performed, a new population Nij based on c is formed, the best one in Nij will be selected to replace c. This step can realize reducing the makespan (F1ij).

Step 4: Reassignment. In all full sequences, if an operation has at least one candidate machine and the candidate machine's processing time is not larger than the current one, this operation is called reassignment operation and these candidate machines compose the replacement machine subset. Select one reassignment operation randomly, select the machine that has the minimum workload from the replacement machine subset, and move the selected operation to the selected machine. If some machines have the same minimum total workload, select one randomly. Repeat performing reassignment until the number of performing equals to the total sum of reassignment operations. If the new chromosome is better than the old one, the chromosome will be recorded. The best one in all new chromosomes will replace the old chromosome. This step can realize reducing the makespan (F1ij), balancing the critical machine workload and the total workload (F2,F3ij).

Step 5: Repeat step 1 to step 4, until all the individuals in R1 are performed. Compare the individuals in R1 to AS. If some individuals in AS are dominated by one individual in R1, they will be removed and the better individual will be added. If one individual in R1 and individuals in AS are not in the dominance relationship, the individual in R1 will be added into AS.

3.8. Main Algorithm

The framework of the proposed algorithm for MOFJSP can be shown in Figure 6.

Step 1: Initialization. Loop-based method (Section 3.2) is used to generate initial population Npop.

Step 2: Apply LS-I (Section 3.3) to optimize all individuals in Npop. Update Npop to Newpop.

Step 3: Perform crossover operators (Section 3.4) and mutation operators (Section 3.5) to generate offspring populations Ncpop and Nmpop.

Step 4: Merge Newpop, Ncpop and Nmpop. Remove duplicate individuals. Perform environment selection (Section 3.6) to generate the survive individuals Nspop.

Step 5: Apply LS-II (Section 3.7) to search more promising solutions, update Nspop, and AS.

Step 6: If the terminating condition is satisfied, the algorithm ends. else, go to step 2.

Figure 6 | The flowchart of the proposed algorithm.
4. EXPERIMENTAL RESULTS

4.1. Parameter Setup

The process of determining the feasible parameter is complex in some researches. To simplify the process, in our algorithm, very few parameters are needed, and an adaptive parameter setup method is designed. The amount of initial population N_{pop} is determined by Eq. (15), where n is the amount of jobs. The mutation rate β is calculated by Eq. (16), where iter is the number of iterations. The terminal condition is that the AS members remain unchanged after 30 consecutive times iteration.

$$N_{pop} = \begin{cases} 100, & \text{if } n \leq 10 \\ 15 \times n, & \text{if } n > 10 \end{cases} \quad (15)$$

$$\beta = 1.5 - \frac{1}{e^{(\text{iter}/N_{pop})}} \cdot (16)$$

4.2. Result and Comparison

To test the performance of the proposed algorithm, the algorithm procedure was implemented in python and run through the PyCharm software on a PC with AMD A-8 6410 2.0 GHz CPU 4.0 G RAM and Windows 10 operating system. Four representative instance sets based on the practical data have been selected. The first one is taken from [26], which includes 10 small size problem instances (SFJS01:10) and 10 medium and large size problem instances (MFJS01:10). The second one is taken from [27] without release time, which includes five problem instances (problem 4 × 5, 8 × 8, 10 × 7, 10 × 10, 15 × 10), where problem 4 × 5 denotes four jobs and five machines, other four problem instances are interpreted in the same manner. The third one is taken from [6], which includes ten problem instances (Mk01-10). The last one is taken from [28], which includes eighteen problem instances (01a–18a). These four instance sets are the most commonly adopted benchmark instances in the researches on MOFJSP.

The algorithm's advantage is that very few parameters setup is needed. Table 1 gives a comparison of several state-of-the-art algorithms' number of parameters, including Li et al. [17,29], Wang et al. [11] and Xing et al. [30]. From this table, the number of parameters needed in the proposed algorithm is the least, which is three.

In order to test the effect of improved coding, crossover, mutation, population generation and environment selection methods on the performance of the proposed algorithm, the two-stage local search was removed from the proposed algorithm, and the remaining part (IEEA) was tested together with the traditional EA through the same case. The proposed algorithm is called IEA. The test case set

Table 1 | Compare in the number of parameters.

Author	Framework	Fitness Assignment	Number of Parameters
Li and Pan	ABC	Dominance	4
Li	TS	Weighted sum	6
Wang	GA	Dominance	4
Xing	LS	Weighted sum	13
Proposed	GA + LS	Dominance	3

Table 2 | The test result of SFJS01-10 and MFJS01-10.

Item	C (EA, IEA)	C (IEEA, EA)	C (IEEA, IEA)
SFJS01	0.00	1.00	0.00
SFJS02	0.00	1.00	0.00
SFJS03	0.00	1.00	0.00
SFJS04	0.00	1.00	0.00
SFJS05	0.00	1.00	0.00
SFJS06	0.00	1.00	0.00
SFJS07	0.00	1.00	0.00
SFJS08	0.00	1.00	0.00
SFJS09	0.00	0.78	0.00
SFJS10	0.00	1.00	0.00
MFJS01	0.00	0.88	0.00
MFJS02	0.07	0.44	0.00
MFJS03	0.50	0.10	0.00
MFJS04	0.00	0.24	0.00
MFJS05	0.00	0.73	0.00
MFJS06	0.00	0.94	0.00
MFJS07	0.68	0.08	0.14
MFJS08	0.00	1.00	0.00
MFJS09	0.00	1.00	0.00
MFJS10	0.00	1.00	0.00

It can be seen from Table 2 that in the 20 problem instances, IEEA is superior to EA except MFJS03 and MFJS07. Compared with IEEA, IEA does not show obvious advantage in 10 small size problem instances, indicating that for small size problem instances IEA can find the optimal solution without local search, while for 10 medium and large size problem instances, IEA has shown obvious advantage. In addition, the frontier of EA, IEEA and IEA on MFJS02, MFJS03, MFJS05 and MFJS10 are given, as shown in Figure 7. It can also be seen from the figure that IEEA is better than EA, and IEA is better than IEEA.

In order to test the overall performance of the proposed algorithm, it was tested on other three instance sets with several state-of-the-art algorithms.

For five problem instances, four state-of-the-art algorithms in Table 1 are also used to compare with the proposed algorithm. The reason of doing this is that the four algorithms are powerful, and it has been proved that it is better than other well-known algorithms (e.g., PSO+SA proposed by [7], AL+CGA proposed by [31], etc.). Hence, if the proposed algorithm is better than the four powerful algorithms, it is also better than PSO+SA and AL+CGA, etc.

Before comparison, some terms should be clarified. Optimal solutions in this paper refer to the nondominated solutions obtained
by each algorithm. Pareto front is constructed by the optimal solutions of all compared algorithms and Pareto solutions refer to the solutions in Pareto front. All solutions in the Pareto front are called overall Pareto solutions. If some optimal solutions in a compared algorithm’s optimal solutions are the Pareto solutions simultaneously, they are called partial Pareto solutions.

First, compare the amount of optimal solutions. Table 3 is the result of optimal solutions’ amount. From this table, the proposed algorithm can obtain the best results for all problem instances. In problem 4×5, the amount of optimal solutions obtained by the proposed algorithm is more than other four. In problem 8×8, the proposed algorithm obtains more optimal solutions than others, and it equals to Xing. However, one solution $(16, 13, 73)$ in the proposed algorithm’s result dominates one solution $(17, 13, 73)$ in Xing’s. In problem 10×7, the proposed algorithm obtains more optimal solutions only than Li, equals to other two. But one solution $(11, 11, 61)$ in the proposed algorithm dominates two solutions $(12, 11, 61)$ and $(11, 11, 63)$ of Li and Pan. In problem 10×10, Li and Pan, Li and Xing all obtain three optimal solutions, the proposed algorithm can achieve four solutions. Compared with Wang, though the optimal solutions’ amount is the same, one solution $(7, 5, 45)$ in Wang is dominated by one solution $(7, 5, 43)$ in the proposed algorithm. In problem

![Figure 7](image_url)

Table 3 The optimal solutions of each algorithm for five problem instances.

Size	Method	Li and Pan	Li	Wang	Xing	Proposed
4×5	f_1	11 12 13	11 12 –	11 11 12 –	11 11 12 –	11 11 12 13
	f_2	10 8 7	10 8 –	10 9 8 –	10 9 8 –	10 9 8 7
	f_3	32 32 33	32 32 –	32 34 32 –	32 34 32 –	32 34 32 33
8×8	f_1	14 15 16	14 15 –	15 15 16 –	14 15 16 17	14 15 16 16
	f_2	12 12 13	12 12 –	11 12 13 –	12 12 11 13	12 12 11 13
	f_3	77 75 73	77 75 –	81 75 73 –	77 75 77 73	77 75 77 73
10×7	f_1	12 11 12	11 11 –	– – –	– – –	– – –
	f_2	11 11 12	11 10 –	– – –	– – –	– – –
	f_3	61 63 60	61 62 –	– – –	61 62 60 –	62 61 60 –
10×10	f_1	8 7 8	7 7 8	8 7 8 7	7 8 8 –	7 7 8 8
	f_2	7 5 5	5 6 5	5 6 7 5	6 7 5 –	6 5 7 5
	f_3	41 43 42	43 42 42	42 42 41 45	42 41 42 –	42 43 41 42
15×10	f_1	12 11 –	11 11 –	11 12 11 –	– – –	– – –
	f_2	11 11 –	11 10 –	11 10 10 –	– – –	– – –
	f_3	91 93 –	91 93 –	91 95 98 –	– – –	91 93 –
15 × 10, the proposed algorithm’s optimal solutions amount is only more than Xing, is fewer than Wang, and equals to Li and Pan and Li. But one solution (11, 11, 91) in the proposed algorithm dominates all solutions in Li and Pan, and one solution (11, 10, 93) dominates two solutions (12, 10, 95) and (11, 10, 98) in Wang. Therefore, it can be concluded that our algorithm has a strong search ability on MOJFSP.

Second, compare the quality of optimal solutions. Table 4 gives an overall perspective of optimal solutions’ quality. In this table, \(H \) denotes the number of the overall Pareto solutions, \(N \) represents the number of optimal solutions, \(M \) represents the number of partial Pareto solutions. \(Q \), calculated by Eq. (18), represents the percentage of partial Pareto solutions \(M \) in optimal solutions \(N \). \(R \), calculated by Eq. (19), represents the percentage of partial Pareto solutions \(M \) in overall Pareto solutions \(H \). For example, in problem 8 × 8, the proposed algorithm obtains four optimal solutions (i.e., \(N = 4 \)), and the Pareto front includes five solutions (i.e., \(H = 5 \)), all optimal solutions are Pareto solutions (i.e., \(M = N = 4 \)), the percentage \(Q \) of partial Pareto solutions \(M \) in the optimal solutions \(N \) is 100%, and the percentage \(R \) of partial Pareto solutions \(M \) in overall Pareto solutions \(H \) is 80%.

\[
Q = \frac{\text{count}\{H \cap N\}}{\text{count}\{N\}} \times 100\%. \quad (18)
\]

\[
R = \frac{\text{count}\{H \cap N\}}{\text{count}\{H\}} \times 100\%. \quad (19)
\]

From Table 4, all the optimal solutions obtained by the proposed algorithm in the five problem instances are Pareto solutions, and, in each problem instance except problem 8 × 8, the number of the optimal solutions are equal to the number of overall Pareto solutions. Compared with other four algorithms, only Xing in problem 10×7 and Li in problem 15×10 achieve the same effectiveness. The last row gives a statistic result in the term of \(H, N, M, Q \) and \(R \). In order to best show the statistics result, corresponding value is made into Figure 8. From Figure 8 the proposed algorithm can obtain the best result both in solutions’ amount and solutions’ quality.

Table 4 The quality of optimal solutions I.

Size	Li and Pan	Li	Wang	Xing	Proposed											
	\(N/M \)	\(Q \)	\(R \)	\(N/M \)	\(Q \)	\(R \)	\(N/M \)	\(Q \)	\(R \)	\(N/M \)	\(Q \)	\(R \)	\(N/M \)	\(Q \)	\(R \)	
4 × 5	4	3/3	100	75	2/2	100	50	3/3	100	75	3/3	100	75	4/4	100	100
8 × 8	5	3/3	100	75	3/3	100	60	3/3	100	60	3/3	100	60	4/4	100	80
10 × 7	3	3/1	33.3	33.3	3/3	100	40	3/3	100	40	–	–	–	3/3	100	100
10 × 10	4	3/3	100	75	4/3	75	75	3/3	100	75	4/3	75	75	3/3	100	100
15 × 10	2	2/0	0	0	2/2	100	100	3/1	33.3	50	1/1	100	50	2/2	100	100
Sum	18	14/10	71.4	55.6	11/11	100	61.1	13/10	76.9	55.6	14/13	92.9	72.2	17/17	100	94.4

Figure 8 Statistic result on \(N, M, Q \) and \(R \).
but from Tables 3 and 4, the proposed algorithm can achieve more optimal solutions. So, it can be also concluded that the proposed algorithm is more superior than others compared algorithm.

In addition, the distribution and convergence of optimal solutions is analyzed. One metric called inverted generational distance (IGD) is used. It is calculated by Eq. (20), where \(P^* \) denotes the Pareto front, which consists of optimal solutions, \(|P^*| \) denotes the number of Pareto solutions, \(d(x,y) \) is the Euclidean distance between points \(x \) and \(y \). The smaller IGD \((A,P^*)\) is, the closer \(A \) is to the Pareto front. Besides that, the objectives of all chromosomes are normalized by Eq. (21), where \(f_{\text{min}}^i \) and \(f_{\text{max}}^i \) are the minimum and maximal values of the \(i \)th objective among all solutions. Table 6 is the calculating result. From this table, the proposed algorithm is closer to Pareto front than other compared algorithms.

\[
\text{IGD}(A,P^*) = \frac{1}{|P^*|} \sum_{y \in P^*} \min_{x \in A} d(x,y). \tag{20}
\]

\[
f(x) = \frac{f_i(x) - f_{\text{min}}^i}{f_{\text{max}}^i - f_{\text{min}}^i}, \quad i = 1, 2, 3. \tag{21}
\]

For MK01-10, two-state-of-the-art algorithms, Bagheri et al. [18] and Xing et al. [30] are selected to compare with the proposed algorithm. The reason of selecting these two algorithms is that they have strong searching capability and give three objective values rather than other popular algorithms’ only giving one value. Because the number of nondominated solutions obtained by each algorithm is usually large, it is difficult to judge the algorithms’ superiority by the number of solutions. In order to verify the superiority of the proposed algorithm, like the methods used in other papers, this article only compares optimal solution with minimum makespan.

Table 7 lists the optimal solutions with the minimum makespan of each algorithm. In this table, \(LB \) is the best-known lower bound of makespan [32]. \(\text{Dev} \) is the relative deviation, calculated by Eq. (22), where \(C_{\text{pro}} \) is the best makespan obtained by the proposed algorithm, \(C_{\text{par}} \) is the best makespan of the algorithm that compares to the proposed algorithm.

According to \(\text{Dev} \) of this table, the proposed algorithm’s result is better than Bagheri et al’s in five problem instances (MK05, MK06, MK07, MK09 and MK10) and is better than Xing et al’s in eight problem instances (M01-MK10 except MK03 and MK08). For all optimal solutions of each algorithm in ten problem instances, metric \(C \) is used to evaluate the performance of the proposed algorithm, and the calculating result is shown in Table 8, where \(P \) represents the proposed algorithm.

\[
\text{Dev} = \left(\frac{C_{\text{par}} - C_{\text{pro}}}{C_{\text{par}}} \right) \times 100\%. \tag{22}
\]

Table 5 | The quality of optimal solutions II.
Size	Li and Pan (A1)	Li (A2)	Wang (A3)	Xing (A4)				
C (A1, B)	C (B, A1)	C (A2, B)	C (B, A2)	C (A3, B)	C (B, A3)	C (A4, B)	C (B, A4)	
4 × 5	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
8 × 8	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
10 × 7	0.000000	0.666667	0.000000	0.000000	–	–	0.000000	0.000000
10 × 10	0.000000	0.000000	0.000000	0.000000	0.000000	0.250000	0.000000	0.000000
15 × 10	0.000000	0.666667	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Table 6 | The calculating results of IGD.
Size	Li and Pan	Li	Wang	Xing	Proposed
4 × 5	0.263523	0.458957	0.195434	0.195434	0.000000
8 × 8	0.286518	0.416689	0.203518	0.186852	0.120185
10 × 7	0.422531	0.388889	–	0.000000	0.000000
10 × 10	0.139754	0.257694	0.125000	0.139754	0.000000
15 × 10	0.642857	0.000000	0.357143	0.520008	0.000000

From Table 8, eight optimal solutions obtained by Bagheri et al. are dominated by some optimal solutions obtained by the proposed algorithm, and no optimal solution of the proposed algorithm is dominated by Bagheri et al’s. Three optimal solutions obtained by Xing et al are dominated by the proposed algorithm’s, but only two of the proposed algorithm’s are dominated by Xing et al’s.

In order to further test the performance of the proposed algorithm, the 01a–18a problem instances were used. Two state-of-the-art algorithms, MG designed in [11] and BEG proposed in [33], are selected to compare with the proposed algorithm, because these two algorithms list all solutions in their literature. Metric \(C \) is used to evaluate the performance of the proposed algorithm and the calculation results are shown in Table 9.

Compared with MG, IEA has 10 instances better than MG, and MG has 3 better ones in all 18 instances. Compared with BEG, IEA has 16 better ones, while BEG has none. Therefore, it is also concluded that the proposed algorithm has superior solution performance.

5. CONCLUSIONS

MOFJSP is a kind of NP-hard problem. There are many excellent intelligent algorithms can solve the problem. For example, monarch butterfly optimization (MBO) [34,35], earthworm optimization algorithm (EWA) [36], elephant herding optimization (EHO) [37,38] and moth search (MS) [39,40]. In this paper, we put forward an adaptive multi-objective EA with two-stage local search for solving MOFJSP. We use a new encoding scheme, improve the initial population generating method, design effective crossover and mutation operators to adapt the special chromosome structure, propose a new environment selection approach. In the selection of crossover operators, individual differences are considered, and different crossover operators are selected according to individual differences, which improve the adaptive ability of the algorithm. Meanwhile, the parameter setting adopts an adaptive mechanism, which reduces the complexity of parameter setting and further improve the algorithm adaptive capabilities. In order to improve the solution performance of the algorithm, a two-stage local search is
Table 7 | The solving result for MK01-10.

Instance	n × m	LB	Bagheri et al.	Xing et al.	Proposed									
			F1	Dev	F2	F3	F1	Dev	F2	F3	F1	Dev	F2	F3
MK01	10 × 6	36	40	0	36	171	42	+4.8	42	162	40	36	171	
MK02	10 × 6	24	26	0	26	154	28	+7.1	28	155	26	26	154	
MK03	15 × 8	204	204	0	204	1207	204	0	204	852	204	204	1207	
MK04	15 × 8	48	60	0	60	403	68	+11.8	67	352	60	60	352	
MK05	15 × 4	168	173	+0.6	173	686	177	+2.8	177	702	172	172	687	
MK06	10 × 5	60	53	0	52	2723	523	0	523	2524	523	523	2524	
MK07	10 × 15	165	214	+0.9	206	2121	227	+6.6	221	1989	212	199	1992	

Table 8 | The number of being dominated solutions.

Item	Bagheri et al. (Ba)	Xing et al. (X)
	C (P, Ba)	C (Ba, P)
	C (P, X)	C (X, P)
Value	0.8	0.0
	0.3	0.2

Table 9 | The calculating results of metric C for 01a–18a.

Item	C (MG, P)	(P, MG)	(BEG, P)	(P, BEG)
01a	0.000000	0.666667	0.000000	0.666667
02a	0.000000	0.000000	0.000000	0.333333
03a	0.000000	0.000000	0.428571	0.500000
04a	0.000000	0.250000	0.000000	0.888889
05a	0.000000	0.200000	0.000000	1.000000
06a	0.000000	0.428571	0.013699	0.600000
07a	0.000000	0.000000	0.000000	0.600000
08a	0.333333	0.000000	0.000000	0.666667
09a	0.750000	0.000000	0.333333	0.333333
10a	0.000000	0.125000	0.000000	0.833333
11a	0.000000	0.428571	0.000000	0.000000
12a	0.000000	0.100000	0.000000	0.000000
13a	0.000000	0.000000	0.000000	1.000000
14a	0.000000	0.000000	0.000000	0.500000
15a	0.600000	0.000000	0.100000	0.833333
16a	0.000000	0.222222	0.000000	1.000000
17a	0.000000	0.666667	0.000000	0.615385
18a	0.000000	0.666667	0.000000	1.000000

designed. The numerical experiments and comparison indicate that the proposed algorithm is effective and a few parameters need to be set.

For future work, we will focus on adaptive scheduling based on machine learning and big data mining to increase the intelligent of algorithm.

CONFLICTS OF INTEREST

The authors declare that they have no competing interests.

AUTHORS’ CONTRIBUTIONS

The study was conceived and designed by Yingli Li and Jiahai Wang and experiments performed by Zhengwei Liu. All authors read and approved the manuscript.

ACKNOWLEDGMENTS

This research is supported by the National Key R&D Program of China—Construction, Reference Implementation and Verification Platform of Reconfigurable Intelligent Production System (Grant No.2017YFE0101400).

REFERENCES

[1] H. Ding, X. Gu, Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem, Comput. Oper. Res. 121 (2020), 104951.
[2] D. Gao, G. Wang, W. Pedrycz, Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism, IEEE Trans. Fuzzy Syst. (2020).
[3] G.H. Zhang, Y.F. Hu, J.H. Sun, W.Q. Zhang, An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints, Swarm Evol. Comput. 54 (2020), 100664.
[4] C. Soto, B. Dorronsoro, H. Fraire, L. Cruz-Reyes, C. Gomez-Santillan, N. Rangel, Solving the multi-objective flexible job shop scheduling problem with a novel parallel branch and bound algorithm, Swarm Evol. Comput. 53 (2020), 100632.
[5] P. Brucker, R. Schlie, Job-shop scheduling with multi-purpose machines, Computing. 45 (1990), 369–375.
[6] P. Brandimarte, Routing and scheduling in a flexible job shop by tabu search, Ann. Oper. Res. 41 (1993), 157–183.
[7] W.J. Xia, Z.M. Wu, An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems, Comput. Ind. Eng. 48 (2005), 369–425.
[8] G.H. Zhang, X.Y. Shao, P.G. Li, L. Gao, An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem, Comput. Ind. Eng. 56 (2009), 1309–1318.
[9] A. Baykasoglu, L. Ozbakir, A. Sonmez, Using multiple objective tabu search and grammars to model and solve multi-objective flexible job shop scheduling problems, J. Intell. Manuf. 15 (2004), 777–785.
[10] N.B. Ho, I.C. Tay, Solving multiple-objective flexible job shop problems by evolution and local search, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38 (2008), 674–685.
[11] X.J. Wang, Gao L, C.Y. Zhang, X.Y. Shao, A multi-objective genetic algorithm based on immunity and entropy principle for flexible
job-shop scheduling problem, Int. J. Adv. Manuf. Technol. 51 (2010), 757–767.

[12] G.L. Gong, Q.W. Deng, R.M. Chiong, X.R. Gong, H.Z.Y. Huang, An effective memetic algorithm for multi-objective job-shop scheduling, Knowl. Based Syst. 182 (2019), 104840.

[13] L. Wang, G. Zhou, Y. Xu, M. Liu, An enhanced Pareto-based artificial bee colony algorithm for the multi-objective flexible job-shop scheduling, Int. J. Adv. Manuf. Technol. 60 (2012), 1111–1123.

[14] H.C. Cheng, T.C. Chiang, L.C. Fu, A two-stage hybrid memetic algorithm for multiobjective job shop scheduling, Expert Syst. Appl. 38 (2011), 10983–10998.

[15] T.C. Chiang, H.J. Lin, A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling, Int. J. Prod. Econ. 141 (2013), 87–98.

[16] J. Gao, L.Y. Sun, M. Gen, A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems, Comput. Oper. Res. 35 (2008), 2892–2907.

[17] J.Q. Li, Q.K. Pan, K.Z. Gao, Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems, Int. J. Adv. Manuf. Technol. 55 (2011), 1159–1169.

[18] A. Bagheri, M. Zandieh, I. Mahdavi, M. Yazdani, An artificial immune algorithm for the flexible job-shop scheduling problem, Futur. Gener. Comput. Syst. 26 (2010), 533–541.

[19] F.M. Defersha, M.Y. Chen, A parallel genetic algorithm for a flexible job-shop scheduling problem with sequence dependent setups, Int. J. Adv. Manuf. Technol. 49 (2010), 263–279.

[20] F. Pezzella, G. Morganti, G. Ciaschetti, A genetic algorithm for the flexible job-shop scheduling problem, Comput. Oper. Res. 35 (2008), 3202–3212.

[21] L.P. Michael, Scheduling: Theory, Algorithms, and Systems, Springer, New York, NY, USA, 2018.

[22] K.Z. Gao, P.N. Suganthan, Q.K. Pan, T.J. Chua, T.X. Cai, C.S. Chong, Pareto-based grouping discrete harmony search algorithm for multi-objective flexible job shop scheduling, Inf. Sci. (Ny). 289 (2014), 76–90.

[23] J.Q. Li, Q.K. Pan, P.N. Suganthan, T.J. Chua, A hybrid tabu search algorithm with an efficient neighborhood structure for the flexible job shop scheduling problem, Int. J. Adv. Manuf. Technol. 52 (2011), 683–697.

[24] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, in: M. Schoenauer, et al. (Eds.), Parallel Problem Solving from Nature PPSN VI, PPSN 2000, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, Germany, 2000, pp. 849–858.

[25] A. Teymourifar, G. Ozturk, O. Bahadir, A Comparison between two modified NSGA-II algorithms for solving the multi-objective flexible job shop scheduling problem, Univers. J. Appl. Math. 6 (2018), 79–93.

[26] P. Fattahi, M. Saidi Mehrabad, F. Jolai, Mathematical modeling and heuristic approaches to flexible job shop scheduling problems, J. Intell. Manuf. 18 (2007), 331–342.

[27] I. Kacem, S. Hammadi, P. Borne, Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic, Math. Comput. Simul. 60 (2002), 245–276.

[28] S. Dauzère-Pérès, J. Paulill, An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search, Ann. Oper. Res. 70 (1997), 281–306.

[29] J.Q. Li, Q.K. Pan, Y.C. Liang, An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems, Comput. Ind. Eng. 59 (2010), 647–662.

[30] L.N. Xing, Y.W. Chen, K.W. Yang, An efficient search method for multi-objective flexible job shop scheduling problems, J. Intell. Manuf. 20 (2009), 283–293.

[31] I. Kacem, S. Hammadi, P. Borne, Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32 (2002), 1–13.

[32] M. Mastroilli, L.M. Gambardella, Effective neighborhood functions for the flexible job shop problem, J. Sched. 3 (2000), 3–20.

[33] Q.W. Deng, G.L. Gong, X.R. Gong, L.K. Zhang, W. Liu, Q.H. Ren, A bee evolutionary guiding nondominated sorting genetic algorithm ii for multiobjective flexible job-shop scheduling, Comput. Intell. Neurosci. 2017 (2017), 1–20.

[34] Y.H. Feng, X. Yu, G.G. Wang, A novel monarch butterfly optimization with global position updating operator for large-scale 0-1 Knapsack problems, Mathematics. 7 (2019), 1056.

[35] Y.H. Feng, G.G. Wang, W.B. Li, N. Li, Multi-strategy monarch butterfly optimization algorithm for discounted (0-1) Knapsack problem, Neural Comput. Appl. 30 (2018), 3019–3036.

[36] G.G. Wang, S. Deb, L.D.S. Coelho, Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems, Int. J. Bio-Inspired Comput. 12 (2018), 1–22.

[37] G.G. Wang, S. Deb, L.D.S. Coelho, Elephant herding optimization, in 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), Bali, Indonesia, 2015, pp. 1–5.

[38] G.-G. Wang, S. Deb, X.-Z. Gao, L.D.S. Coelho, A new metaheuristic optimisation algorithm motivated by elephant herding behaviour, Int. J. Bio-Inspired Comput. 8 (2016), 394–409.

[39] G.G. Wang, Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems, Memetic Comput. 10 (2018), 151–164.

[40] Y.H. Feng, G.G. Wang, Binary moth search algorithm for discounted 0-1 Knapsack problem, IEEE Access. 6 (2018), 10708–10719.