New bounds for the b-chromatic number of vertex deleted graphs

Renata DEL-VECCHIO and Mekkia KOUIDER

Abstract. A b-coloring of a graph is a proper coloring of its vertices such that each color class contains a vertex adjacent to at least one vertex of every other color class. The b-chromatic number of a graph is the largest integer k such that the graph has a b-coloring with k colors. In this work we present lower bounds for the b-chromatic number of a vertex-deleted subgraph of a graph, particularly regarding two important classes, quasi-line and chordal graphs. We also get bounds for the b-chromatic number of $G - \{x\}$, when G is a graph with large girth.

Key words: b-coloring, quasi-line graph, chordal graph, girth

Mathematics Subject Classification: 05C15.

1 Introduction

All graphs considered in this work are simple and undirected. Let $G = (V(G), E(G))$ be an undirected graph where $V(G)$ and $E(G)$ are the sets of its vertices and edges, respectively. If $A \subseteq V(G)$, we denote by $\langle A \rangle$ the induced subgraph generated by A. For any vertex x of a graph G, the neighborhood of x is the set $N(x) = \{y \in V(G) | xy \in E(G)\}$. The degree of a vertex x is the cardinality of $N(x)$ and it is denoted by $d(x)$. We denote by $\Delta(G)$ the maximum degree of G. If $x, y \in V(G)$, the distance between x and y (that is, the length of the shortest x–y-path) is represented by $d(x, y)$ and $N^2(x) = \{y \in V(G) | d(x, y) = 2\}$. The girth of G is the length of its shortest cycle, and is denoted by $g(G)$.

Let G be a graph with a proper vertex coloring. Let us denote by C_i the set of vertices of color i, herein called the class of color i. Let x_i denote a vertex x of color i; x_i is said a color-dominating vertex (or, b-dominating vertex) if x_i is adjacent to at least one vertex in each of the other classes. A
color i is a \textit{dominating color} if there is at least one vertex x_i that is color-dominating. If y_i is a vertex which is not color-dominating, at least one color $j \neq i$ does not appear in $N(y_i)$. The color j is said a \textit{missing color} in $N(y_i)$ or simply a missing color of y_i.

A \textit{b-coloring} is a proper coloring of its vertices such that each color class contains a color-dominating vertex.

The b-chromatic number $b(G)$ is the largest integer k such that G admits a b-coloring with k colors. Since this parameter has been introduced by R. W. Irving and D. F. Manlove \cite{6}, it aroused the interest of many researchers as we can see in \cite{5}, \cite{2} and \cite{3} and, more recently, in \cite{7}.

For a vertex x of G, let $G - \{x\}$ be the vertex-deleted subgraph of G obtained by deleting x and all edges incident to x. It is known that the chromatic number of $G - \{x\}$ can have a maximum variation of one unit compared to the chromatic number of G. However, this is not true for the b-chromatic number - the difference between $b(G)$ and $b(G - \{x\})$ can be arbitrarily large. This fact motivates the search for bounds to the b-chromatic number (see \cite{1} and \cite{8}). For general graphs S.F.Raj and R.Balakrishnan proved that:

\textbf{Theorem 1} \cite{1} \textit{For any connected graph of order $n \geq 5$, and for any vertex $x \in V(G)$,}
\[b(G) - \left(\lceil n/2 \rceil - 2\right) \leq b(G - \{x\}) \leq b(G) + \left(\lfloor n/2 \rfloor - 2\right) \]

The bounds are sharp.

In \cite{9}, some upper bounds of $b(G - \{x\})$ have been established in some classes of graphs as quasi-line graphs, graphs of large girth and chordal graphs. A \textit{chordal} graph is a graph such that every cycle of length at least 4 has a chord. A graph is a \textit{quasi-line} graph if the neighborhood of each vertex is covered by at most two cliques. In particular, claw-free graphs (i.e. graphs without induced $K_{1,3}$) are quasi-line graphs. The following results have been shown.

\textbf{Theorem 2} \cite{9} \textit{Let $G = (V, E)$ a graph.}
1) If G is a quasi-line-graph, then for each vertex x,
\[b(G - \{x\}) \leq b(G) + 2 \]
2) If G is any graph of girth at least 5, then for each vertex x,
\[b(G - \{x\}) \leq b(G) + 1 \]
Theorem 3 Let $G = (V, E)$ be a chordal graph of clique-number ω and b-chromatic number $b(G)$. Then, for each vertex x,

$$b(G - \{x\}) \leq b(G) + 1 + \sqrt{d(x)} - 1$$

$$b(G - \{x\}) \leq b(G) + 1 + \sqrt{\omega - 1}$$

In this work we present lower bounds for $b(G - \{x\})$ in terms of $b(G)$, particularly regarding two important classes of graphs, quasi-line and chordal graphs. We also obtain a lower bound for $b(G - \{x\})$ for graphs of large girth.

Besides this introduction we have three more sections. In the second one we present a lower bound for $b(G - \{x\})$, when G is a general graph and another bound for quasi-line graphs. The third section is devoted to the study of chordal graphs, obtaining also a lower bound for $b(G - \{x\})$ in this class. Finally, in the last section, we analyse graphs with girth at least 5, presenting also here a lower bound for $b(G - \{x\})$.

2 General bound and quasi-line graphs

We begin this section with a lower bound for the b-chromatic number of a vertex deleted subgraph of any graph.

Proposition 1 For every vertex $x \in V(G)$, $b(G - \{x\}) \geq b(G) - d(x)$.

Proof. Let $x \in V(G)$ be a fixed vertex. For a b-coloring of G, let i be the color of x. We consider two cases. First suppose that each color has at least one color-dominating vertex in $G - \{x\}$; then the b-coloring of G is also a b-coloring of $G - \{x\}$, so $b(G - \{x\}) \geq b(G)$. Now, let us consider that there is a color with no color-dominating vertices in $G - \{x\}$. We have then two possibilities:

- There is no color-dominating vertex of color i in $G - \{x\}$, that is, C_i has no color-dominating vertex then; for each vertex z in C_i, there is at least one color missing in $N(z)$. We can change the color of each vertex z in C_i by a missing color in $N(z)$, eliminating the color i. As C_i is a stable set, the new coloring is proper. For this case we have $b(G - \{x\}) \geq b(G) - 1 \geq b(G) - d$.

• There is a vertex $y \in N(x)$ such that y was the color-dominating vertex of color s, $s \neq i$ in G and there is no more color-dominating vertex of color s in $G - \{x\}$. As C_s has no color-dominating vertices, we then change the color s of y by i and, for each other vertex z in C_s, we change the color s for a missing color of z, eliminating the color s. As C_s is a stable set, the new coloring is proper. We repeat this process for all vertices in $N(x)$ in the same conditions as y. We do this for at most $d(x)$ vertices. In this case we obtain $b(G - \{x\}) \geq b(G) - d(x)$.

If $\Delta(G) < \lceil \frac{n}{2} \rceil - 2$, this bound is better than the lower bound in [1].

Note that there exist chordal (resp. quasi-line) graphs G such that $b(G - \{x\})$ is strictly less than $b(G)$. For example, let G_0 be a chordal graph obtained from a chordal graph H and a new vertex x joined to every vertex of H. Then $b(G_0 - x) = b(G_0) - 1$.

Theorem 4 If G is a quasi-line graph then, for every vertex $x \in V(G)$, $b(G - \{x\}) \geq b(G) - 2$.

Proof. Let $x \in V(G)$ be a fixed vertex. $N(x)$ is covered by at most two cliques K_1 and K_2. Let i be the color of x.

Considering a b-coloring of G, there is at most two vertices $u_k, u'_k \in N(x)$ with the same color k. Again, by the fact that G is quasi-line, $N^2(x) \cap N(u_k)$ is a clique as it is independent from the neighbour x of u_k. Analogously $N^2(x) \cap N(u'_k)$ is a clique.

We delete the vertex x. If in $G - \{x\}$ each color is dominating, then $b(G - \{x\}) \geq b(G)$. Let i be the color of x in G. We may suppose that $G - \{x\}$ has a color-dominating vertex of color i otherwise we color each vertex of color i by a missing color and we get a b-coloring of $G - \{x\}$ by $b(G) - 1$ colors.

We choose a color s that is no more dominating, which means that there is no more color-dominating vertices of color s. Each vertex of color s has a missing color.

If the color s had more than one color-dominating vertex in G, then it had exactly two color-dominating vertices $w_s \in K_1$ and $w'_s \in K_2$. We recolor both of them by i. We then recolor each other vertex of color s by a missing color. In this way we obtain a b-coloration of $G - \{x\}$, eliminating one color.
If in G, there was only one color-dominating vertex w_s of color s in $N(x)$, say in K_1, we recolor w_s by i. We eliminate the color s by coloring each vertex of C_s by a missing color. If there is a color t no more dominating we choose one, then the color-dominating vertex w_t was necessarily in K_2. We color w_t by i. We color any other vertex of C_t by a missing color. Necessarily all the remaining colors are dominating. We conclude that $b(G - \{x\}) \geq b(G) - 2$.

Note that there exists a quasi-line graph G such that $b(G - x) = b(G) - 1$ for at least a vertex x. We give an example. Let $\omega \geq 3$ be an integer, and let $p = 2\omega - 1$. Let $P = \{x_0, x_1, \ldots, x_p, x_{p+1}\}$ be a path. We consider the graph G_1 obtained by replacing each edge $[x_i, x_{i+1}]$ by a clique K_i of order ω. The graph G_1 is a claw-free graph; we have $b(G_1) = p$ and $b(G_1 - \{x\}) = b(G_1) - 1$.

3 Chordal graphs

We want to show the following result.

Theorem 5 Let G be a chordal graph and x be a fixed vertex of G. Then $b(G - \{x\}) \geq b(G) - \omega_G$ where ω_G is the clique number of G.

We will need first the next lemma, about the adjacencies in chordal graphs.

Lemma 1 Let G be a chordal graph, and a, x, b, be three consecutive vertices of a cycle Γ of G. Suppose that the vertex x of G has no neighbours in $\Gamma - \{a, b\}$. Then a and b are adjacent in G.

Proof. The proof is by contradiction. We suppose a and b independent. Suppose Γ is a shortest cycle containing the path axb. If the length of Γ is at least 4, then as G is chordal, and by minimality of Γ, it contains a chord incident with x whose second endvertex is distinct from a and b, a contradiction.
In what follows, consider a b-coloring of G, with $b = b(G)$ colors. Let $x \in V(G)$ be a fixed vertex and let i be the color of x. Let I_a be the set of colors without color-dominating vertices in $G - \{x\}$ and let J_a be their set of color-dominating vertices in G. We remark that $J_a \subset N(x)$ and no vertex in J_a is neighbour of a vertex of color i in $G - \{x\}$.

Before proving our main result, we introduce a necessary definition.

Definition 1 Let x'_i be a fixed color-dominating vertex of color i, different from x. Let $W = \{w \mid w \notin C_i, w$ color-dominating vertex in $G\}$. Let $k \leq b$ be a fixed integer. We denote by W_k the set of color-dominating vertices of color k. A path P of $G - \{x\}$ is said a pseudo-alternating path of $G - \{x\}$, and denoted by $P_k[x'_i, z]$, if it is a path of endvertices x'_i and z, such that:

- $V(P_k) \subset C_i \cup C_k \cup W \cup \{z\}$
- each $w \in W \cap V(P_k)$, $w \neq x'_i$ and $w \neq z$, is preceded by a vertex of color C_k (resp. of C_i) and succeeded by a vertex of C_i (resp. of C_k).
- $V(P_k - \{z\}) \cap N(x) = \emptyset$.

A pseudo-alternating path $P[x'_i, z]$ is an alternating path if z is neighbour of x in G. We remark that if $z \notin C_i \cup C_k$, z is necessarily preceded by a vertex of $C_i \cup C_k$ and, if P is maximal, z has neighbours in C_i and C_k, belonging to P or $z \in I_a$.

Proof of the Theorem 5

We consider a b-coloring of G, with $b(G)$ colors. Suppose $x \in C_i$. We may assume that:

There is no b-coloring of $G - \{x\}$ by $b(G) - 1$ colors (a) otherwise we have the inequality of the theorem. If $C_i - \{x\}$ contains no color-dominating vertex, we recolor each vertex of that set by a missing color in its neighborhood. We get a b-coloring of $G - \{x\}$ by $b(G) - 1$ colors, a contradiction with assumption (a).

We may suppose from now that $C_i - \{x\}$ has color-dominating vertices $x'_i, x''_i, \ldots, x'^r_i$. Let us take k in I_a. We recolor each vertex of C_k by a missing color. We eliminate color k. In this new coloring, if there is a color k' with no color-dominating vertex, then $k' \in I_a$. We recolor $C_{k'}$ and we eliminate color k'. Repeating this process, we get finally a b-coloring by at least $b(G) - |I_a|$.
In view to establish the bound of the theorem, we want to bound $|I_a|$. The bound will be established by three claims.

We denote by $Q[y, v]$ any path of $G - \{x\}$ such that $V(Q) \cap N(x) = \{v\}$. Let v^- be the neighbour of v in that path. Let x_i be a color-dominating vertex.

Let $F(x_i)$ be the set of neighbours z of x such that z is extremity of an alternating path $P_k[x_i, z]$ and k is the color of z. i.e., $F(x_i) = F_1(x_i) \cup F_2(x_i)$, where $F_1(x_i)$ and $F_2(x_i)$ are defined below:

$F_1(x_i) = \{z \in N(x)|z = z_k \text{ and in some } P_k[x_i, z_k], z_k^- \text{ in } C_i \}$

and

$F_2(x_i) = \{z \in N(x)|z = z_k \text{ and in some } P_k[x'_i, z_k], z_k^- \text{ in } W \} \setminus F_1(x_i)$.

Let G be a component of $G - (\{x\} \cup N(x))$ Consider X_i the set of color-dominating vertices of color i contained in G.

Let $F'(x_i) = \{v \in N(x)|\text{there exists } Q[x_i, v]\}$. Let $F' = \{v \in N(x)|\text{there exists } x_i \text{ in } X_i \text{ and } Q[x_i, v]\}$. Note that for any x_i, we have $F'(x_i) = F' = N(x) \cap N(G)$. Let $F_1 = \cup \{F_1(x'_i), x'_i \in G\}$. It is a subset of F'.

By assumption (a) there exists a component G for which there is no recoloring of G by $\{1, ..., b_G\} - \{i\}$ such that all the colors of $W \cap (G \cup N(x))$ have a color-dominating vertex in $G - x$. From now we use such a component.

We get the following assertion as corollary of Lemma 1.

Claim 1: For vertex x_i of X_i, $F'(x'_i)$ is a clique containing F_1.

Proof of claim 1: It is sufficient to note that $F'(x_i)$ is not empty, otherwise there is no alternating path, we choose $k \neq i$ and we exchange colors k and i in the pseudo-alternating paths. No color-dominating vertex loses a color. $X_i = \{x'_i, \ldots, x'_r\}$ is recolored by k. A contradiction with the definition of G. $F'(x_i)$ is a clique by Lemma 1.

At this moment we need to introduce another definition.

Let $P_s[x'_i, z_1]$ be an alternating path for $s \neq i, s \neq 1$, with $z_1 \in F_1(x'_i)$. An extension of P_s, denoted by $R_s[x'_i, z']$, is a path of the form $P_s[x'_i, z_1] \cup [z_1, y_i] \cup L(y_i, z')$, where

- $V(L) \subset C_i \cup C_s \cup W$; $(V(L) - \{z'\}) \cap N(x) \subset W$.

• For each \(z \in V(L) - \{z'\} \),

• if \(z = z_k \in N(x) \), then \(z \in W \) a color-dominating vertex of color \(k \) and \(W_k \subset N(x) \); \(z_k \) is preceded in \(R_s \) by a vertex of \(C_s \), followed by a vertex \(y_i(k) \). If \(z \in F_i(x^i) \), then \(y_i(k) \in P_k(x^i, z_k) \)

• if \(z \in W - N(x) \) then \(z \) is preceded by a vertex of \(C_r \), followed by a vertex of \(C_r' \), where \(\{r, r'\} = \{i, s\} \)

• If \(z' \in W \), \(z' \) is preceded by a vertex of \(C_i \cup C_s \).

And now, we have two claims:

Let \(\mathcal{K}(A) \) be the set of colors which appear in the subset \(A \) of \(V \).

Claim 2: Let \(P_s[x_i', z'] \) be an alternating extended path. Then \(V(L) \cap N(x) \) is a subset of \(F_1 \). So if \(z' \in W \) then \(z' \notin J_a \). If \(s \notin \mathcal{K}(F') \), then \(z' \in W - J_a \).

Proof of claim 2:

Let \(z_1, z_2, ..., z_t, ..., z_p \) be the successive vertices of \(V(R_s) \cap N(x) \) and \(z' = z_p \). We show by induction on \(t \), that \(z_t \) is in \(F_1 \). Suppose that \(z_{t-1} \in F_1 \) for some \(t \). So there is a path \(P_{t-1}[x_i^t, y_i^{(t-1)}] \). Composing it with \(R_s(y_i^{(t-1)}, z_t) \), we get a path \(Q[x^{(t)}, z_t] \). If \(z_t \notin F_1 \), we do \(\tau(i, t) \) from \(x^t \) for any \(t ' \), where \(\tau(i, t) \) means exchanging the colors \(i \) and \(t \) in \(G \). No color-dominating vertex loses color \(t \) even if it is an extremity of an alternating path \(P_i \) in this later case it is neighbour of \(z_t \). Some color-dominating neighbours of \(N_t(x) \) may lose color \(i \). We recolor each \(v \in X_i \) by a missing color. No color-dominating vertex of color \(i \) is created by uniqueness of the color-dominating of color \(t \). We get a coloring by \(b(G) - 1 \) colors. A contradiction. So \(z_t \in F_1 \) and \(z_t \notin J_1 \).

If \(s \notin \mathcal{K}(F') \), then no vertex of \(C_s \) is in \(F_1 \). So \(z' \in W \). As \(F_1 \cap J_a = \emptyset \), then \(z' \in W - J_a \).

Claim 3: \(\mathcal{K}(F') \) contains \(I_a \)

Proof of claim 3:

It is by contradiction. We suppose that there is a color \(s \) such that \(s \in I_a \ \setminus \mathcal{K}(F') \). Thus no vertex of color \(s \) belongs to \(F_1 \).

Case 1: There is no path \(P_s[x_i^t, z] \) with \(x_i^t \in G \) and \(z \in N(x) \).

We do \(\tau(i, s) \) along the pseudo-alternating paths \(P_s[x_i^t, u] \), \(u \notin N(x) \) simul-
taneously. No color-dominating vertex loses color. We recolor the remaining vertices of C_i in G and this leads to a contradiction with the assumption.

Case 2: There exists x_i^r in G and a path $P_s[x_i^r, z_t]$ with $z_t \in N(x), x_i^r \in G$.

This case will be divided in two sub-cases:

Case 2.1: There exists $P_s[x_i^l, z_t]$ with $z_t / \in F^1$. By claim 1, F' does not contain z_t', with $z_t' \neq z_t$. We do $\tau(i, t)$ simultaneously in all alternating $P_t[x_i^l, z]$ with x_i^l in G. As $z_t \in F'$ by Claim 1, the color-dominating vertices contained in F' do not lose color t, they may lose color i. The color-dominating vertices which may lose a color are the color-dominating vertices preterminal in $P_t[x_i^l, z_t]$; these color-dominating vertices may lose color i. We recolor C_i by missing colors in G.

Case 2.2: For any P_s, the extremity contained in $N(x)$ is in F_1. So this extremity does not belong to J_a.

If for any $x_i^l \in X_i$, there is no alternating path $P_s[x_i^l, z]$ with color s preceding z, then we do $\tau(i, s)$ in all the pseudo-alternating paths and the paths P_s. We have the same conclusion as in case 2.1.

If for some l, z is preceded by a vertex of color s in $P_s[x_i^l, z]$ we consider the extended paths R_s. We do $\tau(i, s)$ simultaneously in all alternating and pseudo-alternating paths P_s and the extended paths R_s. The color-dominating vertices which may lose a color are either in $N(x)$ or in $N^2(x)$, they are among terminal vertices and preterminal vertices of the alternating paths P_s and R_s; and they may lose color i. We then recolor each remaining vertex of $C_i \cap G$ by a missing color.

In each case we have a contradiction with the definition of the component G. So $I_a \subset K(F')$.

By claim 1 and claim 3 there is a clique containing x and F'. So we have $\omega(G) \geq |F'| + 1 \geq |I_a| + 1$, and this finishes the proof of the theorem.

\[\blacksquare\]

4 Graphs with large girth

The m-degree of a graph G, denoted by $m(G)$, is the largest integer m such that G has m vertices of degree at least $m - 1$. It is known that, for any graph G, $b(G) \leq m(G)$ (see [6]).
Note that A. Campos et al. [4] have shown that graphs of girth at least 7 have high b-chromatic number; for each such a graph G this number is at least $m(G) - 1$.

We can verify that $m(G - \{x\}) \geq m(G) - 1$. Indeed, we have three possibilities to consider: x is one of the m vertices of degree $m - 1$; x is a neighbor of one of the m vertices of degree $m - 1$, or x is not in any of the previous situations. In the first case, there remain $m - 1$ vertices of degree at least $m - 2$ and, thus $m(G - \{x\}) \geq m(G) - 1$. In the second case, there remain m vertices of degree at least $m - 2$, and again, $m(G - \{x\}) \geq m(G) - 1$. In the latter case the m-degree does not change, that is, $m(G - \{x\}) = m(G)$.

So $b(G - \{x\}) \geq b(G) - 2$ for graphs of girth at least 7. No particular bound is known for graphs of girth 5 or 6. In this work we show the following.

Theorem 6 Let G be a graph of girth at least 5. For each vertex x, $b(G - \{x\}) \geq b(G) - 2$

Proof. Let B be a b-coloring of G and let i be the color of the deleted vertex x. Let W be the set of color-dominating vertices of colors different from i in G. Let W_k be the subset of those of color k.

We may suppose that there is a set of color-dominating vertices X_i of color i, different from x. For each vertex u let $K_1(u)$ be the set of colors with at least a color-dominating vertex in $N(u)$, let us set $K_2(u) = \{1, 2, ..., b\} - (K_1(u) \cup \{i\})$.

We use the notations of the previous section. We may suppose $|I_1| \geq 3$. Note that for $u \neq x$, as the girth is at least 5, $K_1(u)$ does not contain I_1. So $K_2(u)$ is not empty as it intersects I_1. By definition of I_1, the color i is a missing color for each vertex of J_1 in $G - \{x\}$. So for any $x' \in X_i$, $K_1(x')$ does not intersect I_1.

(a) Let $x' \in X_i$. Let $k \in K_2(x')$ be fixed.

$$(P_a)$$ If $G - N(N_k(x'))$ intersects W_p for each color p different from i, we color x' by k, each vertex of $N_k(x')$ by a missing color. So $|X_i|$ decreases. The color-dominating vertices of $K_1(x')$ may lose color i in their neighborhood.

(b) As long as there exists a vertex x'' of X_i satisfying (P_a) we do a re-coloring.

From now we may suppose that X_i is not empty and no vertex of X_i satisfies (a).
Lemma 2 Let x' be a fixed vertex of X_i. For each $k \in K_2(x')$ there exists exactly one j_k such that W_{j_k} is contained in $N(N_k(x'))$ and $N(N_k(x')) \cap W_j = \emptyset$ for any other j.

Proof. We know that the property (a) is not satisfied. As $g(G) \geq 5$, if a vertex w_j is in $N(N_k(x'))$ then w_j is not neighbour of $N_r(x')$ for r different from k. As (a) is not satisfied, it follows that for each $k \in K_2(x')$, $N_k(x')$ is neighbour of any vertex of a set W_j for some j. As $g(G) \geq 5$, j is in $K_2(x')$ and W_j is not neighbour of $N_t(x')$ for $t \neq k$. It follows that for k fixed, j is unique. This finishes the proof of the lemma.

Let s be a fixed element of I_1. Let $x' \in X_i$. We know that the set I_1, by definition, is a subset of $K_2(x')$. By the precedent Lemma there is exactly one k such that $W_s \subset N(N_k(x'))$. We color each vertex of $N_k(x')$ by a missing color and x' by k. If $N_k(x')$ meets $N_k(x'')$ for some $x'' \in X_i$, by the precedent Lemma, we have $W_s \subset N(N_k(x''))$; we color x'' by k as well and we recolor $N_k(x'')$ by missing colors different from i. We recolor so each vertex of X_i. Then we recolor each vertex of color i by a missing color. If, finally, the color s has no vertex dominating the colors $\{1, ..., b\} - \{i\}$, we recolor each vertex u_s by a missing color different from i.

After this recoloring of color i and eventually color s, we get a b-coloring of G by at least $b(G) - 2$ colors.

The first author acknowledges partial support by CAPES and CNPq.

References

[1] R. Balakrishnan and S. Francis Raj. Bounds for the b-chromatic number of vertex deleted subgraphs and the extremal graphs Eletron. Notes Discrete Math, 34 (2009) 353-358.

[2] F. Bonomo, G. Duran, F. Maffray, J. Marenco and M. Valencia-Pabon, On the b-coloring of cographs and P_4-sparse graphs Graphs and Combinatorics 25 n.2 (2009) 153-167.
[3] C V. Campos, C. Lima, N.A. Martins, L. Sampaio, M.C. Santos and A. Silva. *The b-chromatic index of graphs* Discrete Math., **338** (2015) 2072-2079.

[4] C V. Campos, A. Silva and G.C Lima. *Graphs of girth at least 7 have high b-chromatic number* European Journal of Combinatorics **48**(2015) 154-164.

[5] C. T. Hoang and M. Kouider. *On the b-dominating coloring of graphs* Discrete Applied Math., **152** (2005) 176-186.

[6] I. W. Irving and D. F. Manlove, *The b-chromatic number of a graph* Discrete Applied Math., **91** (1999) 127-141.

[7] M. Jakovac and I. Peterin *b-chromatic number and related topics-A survey* Discrete Applied Math., **235** (2018) 184-201.

[8] M. Kouider and M. Zaker, *Bounds for the b-chromatic number of some families of graphs* Discrete Math. **306** (2006) 617-623.

[9] M. Kouider, *On quasi-monotonous graphs* Discrete Applied Math. **198** (2016) 155-163.

Renata Del-Vecchio
renata@vm.uff.br
Instituto de Matematica,
Universidade Federal Fluminense
Niteroi, RJ, Brazil

Mekkia Kouider
km@lri.fr
Universite Paris-Sud
Paris, France.