SENSITIVITY, PROXIMAL EXTENSION AND HIGHER ORDER ALMOST AUTOMORPHY

XIANGDONG YE AND TAO YU

ABSTRACT. Let \((X, T)\) be a topological dynamical system, and \(\mathcal{F}\) be a family of subsets of \(\mathbb{Z}_+\). \((X, T)\) is strongly \(\mathcal{F}\)-sensitive, if there is \(\delta > 0\) such that for each non-empty open subset \(U\), there are \(x, y \in U\) with \(\{n \in \mathbb{Z}_+: d(T^n x, T^n y) > \delta\} \in \mathcal{F}\). Let \(\mathcal{F}_r\) (resp. \(\mathcal{F}_{ip}\), \(\mathcal{F}_{fip}\)) be consisting of thick sets (resp. IP-sets, subsets containing arbitrarily long finite IP-sets).

The following Auslander-Yorke’s type dichotomy theorems are obtained: (1) a minimal system is either strongly \(\mathcal{F}_{fip}\)-sensitive or an almost one-to-one extension of its \(\infty\)-step nilfactor. (2) a minimal system is either strongly \(\mathcal{F}_{ip}\)-sensitive or an almost one-to-one extension of its maximal distal factor. (3) a minimal system is either strongly \(\mathcal{F}_r\)-sensitive or a proximal extension of its maximal distal factor.

1. INTRODUCTION

Throughout this paper \((X, T)\) denotes a topological dynamical system (t.d.s. for short), where \(X\) is a compact metric space, and \(T : X \to X\) is continuous and surjective. In this section, we first discuss the motivations of our research and then state the main results of the article.

The notion of sensitivity (sensitive dependence on initial conditions) was first used by Ruelle [31]. It is in the kernel of the definition of Devaney’s chaos. According to Auslander and Yorke [5] a t.d.s. \((X, T)\) is called sensitive if there exists \(\delta > 0\) such that for every \(x \in X\) and every neighborhood \(U_x\) of \(x\), there exist \(y \in U_x\) and \(n \in \mathbb{N}\) with \(d(T^n x, T^n y) > \delta\). For a t.d.s. \((X, T)\), \(\delta > 0\) and an open (open and non-empty) subset \(U \subset X\), put

\[
N(\delta, U) = \{n \in \mathbb{N} : \exists x, y \in U \text{ with } d(T^n x, T^n y) > \delta\} = \{n \in \mathbb{N} : \text{diam}(T^n(U)) > \delta\}.
\]

Then it is easy to see that \((X, T)\) is sensitive if and only if there exists \(\delta > 0\) such that \(N(\delta, U) \neq \emptyset\) for each open subset \(U\). A t.d.s. \((X, T)\) is called equicontinuous if for every \(\varepsilon > 0\) there is a \(\delta > 0\) such that whenever \(x, y \in X\) with \(d(x, y) < \delta\), then \(d(T^n x, T^n y) < \varepsilon\) for \(n \in \mathbb{N}\). Auslander and Yorke [5] proved the following dichotomy theorem: a minimal system is either equicontinuous or sensitive. A similar result obtained by Glasner and Weiss [17] states that: a transitive system is either almost equicontinuous or sensitive.

There are several attempts to generalize the notion of sensitivity. Akin and Kolyada [1] introduced the notion of Li-Yorke sensitivity, combining the two well known notions (sensitivity and Li-Yorke chaos) together. The study of sensitivity related to families of non-negative integers was initiated by Moothathu in [30]. Let \(\mathcal{F}\) be a family. Recall that

2010 Mathematics Subject Classification. Primary 37B05; Secondary 54H20.
Key words and phrases. Sensitivity, minimality, infinite step nilfactor, distal factor.
The authors were supported by NNSF of China (11371339, 11431012, 11571335).
according to [30] \((X,T)\) is \(\mathcal{F}\)-sensitive if there is \(\delta > 0\) such that for any open subset \(U, N(\delta, U) \subseteq \mathcal{F}\). \(\mathcal{F}\)-sensitivity for some families were discussed in [30, 7, 25, 28, 21, 27]. It is known that for a minimal system \(\{\text{thick}\}\)-sensitivity is equivalent to \(\{\text{thickly syndetic}\}\)-sensitivity [28]. Very recently, a striking result obtained by Huang, Kolyada and Zhang [21, Theorem 3.1] states that: a minimal system is either \(\{\text{thick}\}\)-sensitive or an almost one-to-one extension of its maximal equicontinuous factor.

It is clear that when \((X,T)\) is \(\mathcal{F}\)-sensitive, then for \(n \in N(\delta, U)\), there are \(x_n, y_n \in U\) such that \(d(T^n x_n, T^n y_n) > \delta\). If we require all \(x_n\) (resp. \(y_n\)) are equal, then it leads the notion of strong \(\mathcal{F}\)-sensitivity which will be studied in detail in the paper. Recall that \((X,T)\) is strongly \(\mathcal{F}\)-sensitive, if there is \(\delta > 0\) such that for each non-empty open subset \(U\), there are \(x, y \in U\) with \(\{n \in \mathbb{Z}_+: d(T^n x, T^n y) > \delta\} \in \mathcal{F}\), where \(\mathcal{F}\) is a family of subsets of \(\mathbb{Z}_+\).

We remark that some notions of sensitivity similar with the strong sensitivity were studies in [26, 7], which appear naturally when studying mean equicontinuity. It was shown that a minimal system is either mean-sensitive, or mean equicontinuous.

When investigating strong sensitivity we find that for some families \(\mathcal{F}\) the requirement of all \(x_n\) or \(y_n\) being equal is too strong. So in this paper we also introduce a notion of sensitivity related to a family \(\mathcal{F}\), called block \(\mathcal{F}\)-sensitivity. Roughly speaking, in this definition we require \(x_n\) (resp. \(y_n\)) are equal for a sequence of arbitrarily long finite segments from the family \(\mathcal{F}\). For example, a t.d.s. \((X,T)\) is called block \(\{\text{thick}\}\)-sensitive (resp. block \(\{\text{IP}\}\)-sensitive) if there is \(\delta > 0\) such that for each \(x \in X\), every neighborhood \(U_x\) of \(x\) and \(l \in \mathbb{N}\) there are \(y_l \in U_x\) with \(\{n \in \mathbb{Z}_+: d(T^n x, T^n y_l) > \delta\}\) containing \(\{m+1, \ldots, m+l\}\) for some \(m = m(l) \in \mathbb{N}\) (resp. a finite IP-set of length at least \(l\)). Thus

strong \(\mathcal{F}\)-sensitivity \(\subseteq\) block \(\mathcal{F}\)-sensitivity \(\subseteq\) \(\mathcal{F}\)-sensitivity.

In this paper first we investigate \(\mathcal{F}\)-sensitivity to warm up. Then we study block \(\mathcal{F}\)-sensitivity and some related strong \(\mathcal{F}\)-sensitivity notions for some families. Finally we will focus on strong \(\mathcal{F}\)-sensitivity. Note that for a minimal system we use \(X_{eq}, X_\infty\) and \(X_D\) to denote the maximal equicontinuous factor, the maximal \(\infty\)-step nilfactor and the maximal distal factor of \(X\) respectively (for the definitions see Section 2). It is very interesting that for some well known families strong sensitivity for the family is closely related to other well known dynamical properties.

The main results of the paper are:

Theorem A. Let \((X,T)\) be a minimal system. Then the following conditions are equivalent:

1. \((X,T)\) is block \(\mathcal{F}_t\)-sensitive;
2. \(\pi: X \rightarrow X_{eq}\) is not proximal.

Theorem B. Let \((X,T)\) be an invertible minimal system. Then the following statements are equivalent.

1. \((X,T)\) is strongly \(\mathcal{F}_{t_{ip}}\)'sensitive;
2. \((X,T)\) is block \(\mathcal{F}_{ip}\)-sensitive;
3. \(\pi: X \rightarrow X_\infty\) is not almost one-to-one.
Theorem C. Let \((X, T)\) be a minimal system. Then the following conditions are equivalent:

1. \((X, T)\) is strongly \(\mathcal{F}_{ip}\)-sensitive;
2. \(\pi: X \to XD\) is not almost one-to-one.

Theorem D. Let \((X, T)\) be a minimal system. Then the following conditions are equivalent:

1. \((X, T)\) is strongly \(\mathcal{F}_{t}\)-sensitive;
2. \(\pi: X \to XD\) is not proximal.

From Theorem B it is natural to ask if we can find some family \(\mathcal{F}\) such that strong \(\mathcal{F}\)-sensitivity is related to a \(d\)-step almost automorphy (see Section 5.2 for the definitions of the families appeared below), \(d \in \mathbb{N}\). This leads us to study strong \(\mathcal{F}_{Poin}d\)-sensitivity (where \(\mathcal{F}_{Poin}d\) is the family of all \(d\)-step Poincaré sequences) for \(d \in \mathbb{N}\). We show that if a minimal t.d.s. \((X, T)\) is strongly \(\mathcal{F}_{Poin}d\)-sensitive, then \(\pi: X \to X_d\) is not an almost one-to-one extension (Theorem 5.19), where \(X_d\) is the maximal \(d\)-step nilfactor of \(X\). Examples show that the converse statement does not hold (see Example 5.22). It is an interesting open question to find a family \(\mathcal{F}\) such that for any minimal system \((X, T)\), \((X, T)\) is strongly \(\mathcal{F}\)-sensitive if and only \(\pi: X \to X_\infty\) is not proximal.

For a minimal system, Table 1 gives the details of results obtained in the paper (the results related to sensitivity are essentially obtained in [21]).

\(\mathcal{F}\)	not strongly sensitive	not block sensitive	not sensitive
\(\mathcal{F}_t\)	proximal extension of the maximal distal factor	proximal extension of maximal equi. factor	almost automorphy
\(\mathcal{F}_{ip}\)	almost 1-1 extension of maximal distal factor	\(\infty\)-step almost automorphy	almost automorphy
\(\mathcal{F}_{fip}\)	\(\infty\)-step almost automorphy	\(\infty\)-step almost automorphy	almost automorphy

We remark that when defining strong sensitivity, except for the definition given before one may define strong \(\mathcal{F}\)-sensitivity as follows: if there is \(\delta > 0\) such that for each \(x \in X\) and each neighborhood \(U\) of \(x\), there is \(y \in U\) with \(\{n \in \mathbb{Z}^+: d(T^n x, T^n y) > \delta\} \in \mathcal{F}\). It is easy to see that the two definitions coincide when \(\mathcal{F}\) has the Ramsey property. We also remark that since any sensitive minimal system is strongly \(\{syndetic\}\)-sensitive [30], we know that if a family \(\mathcal{F}\) contains the set of all syndetic subsets then for a minimal system strong \(\mathcal{F}\)-sensitivity is equivalent to sensitivity. This fact restricts the families when we consider strong \(\mathcal{F}\)-sensitivity and try to obtain new results, and also explains the reason why we choose \(\mathcal{F}_t, \mathcal{F}_{ip}\) and \(\mathcal{F}_{fip}\) et al to consider strong \(\mathcal{F}\)-sensitivity in this paper.

We also remark that for a transitive system, we may investigate the same problem. As the restriction of the length of the paper we leave this study to readers.

The paper is organized as follows: In Section 2, we recall some definitions and some related theorems. In Section 3, we discuss sensitivity. In Section 4, we study block
sensitivity and some related notions of strong sensitivity, and prove Theorem A, Theorem B and Theorem C. In Section 5, we investigate strong sensitivity and show Theorem D.

Acknowledgments. The authors would like to thank Wen Huang, Song Shao for very useful discussions; and Jian Li and Guohua Zhang for very careful reading.

2. Preliminaries

In this section we will recall some basic notions and theorems we need in the following sections.

2.1. Topological dynamical systems. In the article, sets of integers, nonnegative integers and natural numbers are denoted by \mathbb{Z}, \mathbb{Z}_+ and \mathbb{N} respectively. By a topological dynamical system we mean a pair (X, T), where X is a compact metric space with a metric d and $T : X \to X$ is continuous and surjective. A non-vacuous closed invariant subset $Y \subseteq X$ defines naturally a subsystem (Y, T) of (X, T). A system (X, T) is called minimal if it contains no proper subsystem. Each point belonging to some minimal subsystem of (X, T) is called a minimal point. The orbit of a point $x \in X$ is the set $\text{Orb}(x, T) = \{T^n x : n \in \mathbb{Z}_+\}$.

For $x \in X$ and $U, V \subseteq X$, put

$$N(x, U) = \{n \in \mathbb{Z}_+ : T^n x \in U\} \text{ and } N(U, V) = \{n \in \mathbb{Z}_+ : U \cap T^{-n} V \neq \emptyset\}.$$ Recall that a dynamical system (X, T) is called topologically transitive (or just transitive) if for every two open subsets U, V of X the set $N(U, V)$ is infinite. Any point with dense orbit is called a transitive point. Denote the set of all transitive points by $\text{Trans}(X, T)$. It is well known that for a transitive system, $\text{Trans}(X, T)$ is a dense G_δ subset of X.

Let $M(X)$ be the set of all Borel probability measures on X. We are interested in those members of $M(X)$ that are invariant measures for T, denote by $M(X, T)$. This set consists of all $\mu \in M(X)$ making T a measure-preserving transformation of $(X, \mathcal{B}(X), \mu)$, where $\mathcal{B}(X)$ is the Borel σ-algebra of X. By the Krylov-Bogolyubov Theorem, $M(X, T)$ is nonempty. The support of a measure $\mu \in M(X)$, denoted by $\text{supp}(\mu)$, is the smallest closed subset C of X such that $\mu(C) = 1$. We say that a measure has full support or is fully supported if $\text{supp}(\mu) = X$. If (X, T) is a minimal system, every T-invariant measure has full support.

2.2. Distal, proximal, regionally proximal. Let (X, T) and (Y, S) be two dynamical systems. If there is a continuous surjection $\pi : X \to Y$ with $\pi \circ T = S \circ \pi$, then we say that π is a factor map, the system (Y, S) is a factor of (X, T) or (X, T) is an extension of (Y, S). If π is a homeomorphism, then we say that π is a conjugacy and dynamical systems (X, T) and (Y, S) are conjugate. Conjugate dynamical systems can be considered the same from the dynamical point of view.

Let (X, T) be a dynamical system. A pair $(x_1, x_2) \in X \times X$ is said to be proximal if for any $\varepsilon > 0$, there exists a positive integer n such that $d(T^n x_1, T^n x_2) < \varepsilon$. Let $P(X, T)$ denote the collection of all proximal pairs in (X, T), P is a reflexive symmetric T invariant relation, but is in general not transitive or closed. If (x, y) is not proximal, it is said to be a distal pair. A system (X, T) is called distal if any pair of distinct points in (X, T) is a distal pair.

Recall that the regionally proximal relation $Q(X, T)$ is the set of all points $(x_1, x_2) \in X \times X$ such that for each $\varepsilon > 0$ and each open neighborhood U_i of x_i, $i = 1, 2$, there are
induce a transformation T invariant closed relation, but is in general not transitive. However for each minimal system $(X, T), Q(X)$ is a closed invariant equivalence relation.

Every topological dynamical system (X, T) has a maximal distal factor (X_D, T) and a maximal equicontinuous factor (X_{eq}, T). That is, (X_D, T) is distal and every distal factor of (X, T) is a factor of (X_D, T). (X_{eq}, T) has the corresponding property for equicontinuous factors. Thus there are closed T-invariant equivalence relations S_D and S_{eq} such that $X / S_D = X_D$ and $X / S_{eq} = X_{eq}$. S_D is the smallest closed T-invariant equivalence relation containing $P(X)$, and X_{eq} is the smallest closed T invariant equivalence relation containing $Q(X)$.

An extension $\phi : (X, T) \to (Y, S)$ is proximal if $R_\phi \subset P(X, T)$ and is distal if $R_\phi \cap P(X, T) = \Delta_X$, where $R_\phi = \{ (x, y) \in X^2 : \phi(x) = \phi(y) \}$. Observe that when Y is trivial (reduced to one point) the map ϕ is distal if and only if (X, T) is distal. An extension $\phi : (X, T) \to (Y, T)$ is almost one-to-one if the G_5 set $X_0 = \{ x \in X : \phi^{-1}(\phi(x)) = x \}$ is dense.

2.3. Nilmanifolds and nilsystems. Let G be a group. For $g, h \in G$, we write $[g, h] = ghg^{-1}h^{-1}$ for the commutator of g and h and we write $[A, B]$ for the subgroup spanned by $\{ [a, b] : a \in A, b \in B \}$. The commutator subgroups G_j, $j \geq 1$, are defined inductively by setting $G_1 = G$ and $G_{j+1} = [G_j, G]$. Let $k \geq 1$ be an integer. We say that G is a k-step nilpotent if G_{k+1} is the trivial subgroup.

Let G be a k-step nilpotent Lie group and Γ a discrete cocompact subgroup of G. The compact manifold $X = G/\Gamma$ is called a k-step nilmanifold. The group G acts on X by left translations and we write this action as $(g, x) \mapsto gx$. The Haar measure μ of X is the unique probability measure on X invariant under this action. Let $\tau \in G$ and T be the transformation $x \mapsto \tau x$ of X. Then (X, T, μ) is called a basic k-step nilsystem. When the measure is not needed for results, we omit it and write that (X, T) is a basic k-step nilsystem.

We also make use of inverse limits of nilsystems and so we recall the definition of an inverse limit of systems (restricting ourselves to the case of sequential inverse limits). If $(X_i, T_i)_{i \in \mathbb{N}}$ are systems with $\text{diam}(X_i) \leq M < \infty$ and $\phi_i : X_{i+1} \to X_i$ are factor maps, the inverse limit of the systems is defined to be the compact subset of $\prod_{i \in \mathbb{N}} X_i$ given by $\{(x_i)_{i \in \mathbb{N}} : \phi_i(x_{i+1}) = x_i, i \in \mathbb{N}\}$, which is denoted by $\lim\{X_i\}_{i \in \mathbb{N}}$. It is a compact metric space endowed with the distance $\rho_j(x, y) = \sum_{i \in \mathbb{N}} 1/2^i d_i(x_i, y_i)$. We note that the maps $\{T_i\}$ induce a transformation T on the inverse limit. Let $(X_i, T_i) = (X, T)$ and $\phi_i = T$, then the inverse limit of systems $(\overline{X}, \overline{T})$ is called the natural extension of (X, T).

If (X, T) is an inverse limit of basic $(d - 1)$-step minimal nilsystems. (X, T) is called a $(d - 1)$-step nilsystem or a system of order $(d - 1)$.

2.4. Regionally proximal relation of order d, RP^d. Let (X, T) be a t.d.s. and let $d \geq 1$ be an integer. A pair $(x, y) \in X \times X$ is said to be regionally proximal of order d if for any $\delta > 0$, there exist $x', y' \in X$ and a vector $n = (n_1, \ldots, n_d) \in \mathbb{Z}^d$ such that $\rho(x, x') < \delta, \rho(y, y') < \delta$, and $\rho(T^n x', T^n y') < \delta$ for any $\varepsilon \in \{0, 1\}^d, \varepsilon \neq (0, \ldots, 0)$.
where $n \cdot e = \sum_{i=1}^{d} e_{i} h_{i}$. The set of regionally proximal pairs of order d is denoted by $\text{RP}^{d}(X)$, is called the regionally proximal relation of order d.

This notion was first introduced by Host-Kra-Maass in [19]. It is clear that

$$P(X) \subseteq \ldots \subseteq \text{RP}^{d+1} \subseteq \text{RP}^{d} \subseteq \ldots \subseteq \text{RP}^{2} \subseteq \text{RP}^{1} = Q(X). \quad (2.1)$$

It was shown [19, 32] that for each minimal system (X, T), $\text{RP}^{d}(X)$ is a closed invariant equivalence relation for any $d \in \mathbb{N}$. When $d = 1$, $\text{RP}^{d}(X)$ is nothing but the classical regionally proximal relation which determines the maximal equicontinuous factor for any minimal system. We remark that recently Glasner-Gutman-Ye [16] define a new regionally proximal relation of order d for any group G (coinciding with the previous definition when G is abelian) and show that it is an equivalence relation for any minimal system (X, G).

Now we state a proposition from [19, 32] which we need in the sequel.

Proposition 2.1. Let (X, T) be minimal systems and $d \in \mathbb{N}$. Then the following statements are equivalent:

1. (X, T) is a d-step nilsystem;
2. $\text{RP}^{d}(X) = \Delta_{X}$.

Let $\text{RP}^{[\infty]}(X) = \bigcap_{d=1}^{\infty} \text{RP}^{d}(X)$, then $\text{RP}^{[\infty]}(X)$ is a closed invariant equivalence relation.

Definition 2.2. A minimal system (X, T) is an ∞-step nilsystem or a system of order ∞, if the equivalence relation $\text{RP}^{[\infty]}$ is trivial, i.e. coincides with the diagonal.

The following proposition was proved in [8].

Proposition 2.3. A minimal system is an ∞-step nilsystem if and only if it is an inverse limit of minimal nilsystems.

Let (X, T) be a t.d.s. and $d \in \mathbb{N}$, put $X_{d} = X/\text{RP}^{[d]}(X)$ and $X_{\infty} = X/\text{RP}^{[\infty]}(X)$.

Definition 2.4. Let (X, T) be a minimal system and $d \in \mathbb{N} \cup \{\infty\}$. A point $x \in X$ is called a d-step almost automorphic point (or d-step AA point for short) if $\text{RP}^{d}(X)[x] = \{x\}$. A minimal system (X, T) is called d-step almost automorphic (d-step AA for short) if it has a d-step almost automorphic point.

d-step almost automorphic systems were studied systematically in [23], in particular we have

Proposition 2.5. [23, Theorem 8.13] Let (X, T) be a minimal system. Then (X, T) is a d-step almost automorphic system for some $d \in \mathbb{N} \cup \{\infty\}$ if and only if it is an almost one-to-one extension of its maximal d-step nilfactor (X_{d}, T).

2.5. **Families.** Let $\mathcal{P} = \mathcal{P}(\mathbb{Z}_{+})$ be the collection of all subsets of \mathbb{Z}_{+}. A subset \mathcal{F} of \mathcal{P} is a family if it is hereditary upwards, i.e. $F_{1} \subseteq F_{2}$ and $F_{1} \in \mathcal{F}$ imply $F_{2} \in \mathcal{F}$. A family \mathcal{F} is proper if it is a proper subset of \mathcal{P}, i.e. neither empty nor all of \mathcal{P}. It is easy to see that \mathcal{F} is proper if and only if $\mathbb{Z}_{+} \in \mathcal{F}$ and $\emptyset \notin \mathcal{F}$. A family \mathcal{F} has the Ramsey property if $F \in \mathcal{F}$ and $F = F_{1} \cup F_{2}$ imply that $F_{i} \in \mathcal{F}$ for some $i \in \{1, 2\}$. Any subset A of \mathcal{P} generates a family $[A] = \{F \in \mathcal{P} : F \supseteq A \text{ for some } A \in A\}$.
If a proper family \mathcal{F} is closed under finite intersection, then \mathcal{F} is called a filter. For a family \mathcal{F}, the dual family is

$$\mathcal{F}^* = \{ F \in \mathcal{P} : \mathbb{Z}_+ \setminus F \notin \mathcal{F} \} = \{ F \in \mathcal{P} : F \cap F' \neq \emptyset \text{ for all } F' \in \mathcal{F} \}.$$

\mathcal{F}^* is a family, proper if \mathcal{F} is. It is well known that a proper family has the Ramsey property if and only if its dual \mathcal{F}^* is a filter [12]. Clearly, for a family \mathcal{F}

$$(\mathcal{F}^*)^* = \mathcal{F} \text{ and } \mathcal{F}_1 \subset \mathcal{F}_2 \Rightarrow \mathcal{F}_2^* \subset \mathcal{F}_1^*.$$

We say that a subset F of \mathbb{Z}_+ is

1. thick if it contains arbitrarily long blocks of consecutive integers, that is, for every $d \geq 1$ there is $n \in \mathbb{N}$ such that $\{n, n+1, \ldots, n+d\} \subset F$;
2. syndetic if it has bounded gaps, that is, for some $N \in \mathbb{N}$ and every $k \in \mathbb{N}$ we have $\{k, k+1, \ldots, k+N\} \cap A \neq \emptyset$;
3. piecewise syndetic if it is the intersection of a syndetic set with a thick set;
4. thickly syndetic if it has non-empty intersection with every piecewise syndetic set.

The collection of all syndetic (resp. thick) subsets is denoted by \mathcal{F}_s (resp. \mathcal{F}_t). Note that $\mathcal{F}_t = \mathcal{F}_t^*$ and $\mathcal{F}_s^* = \mathcal{F}_s$. The collection of all piecewise syndetic (resp. thickly syndetic) subsets is denoted by \mathcal{F}_{ps} (resp. \mathcal{F}_{ts}).

Let $\{b_i\}_{i \in I}$ be a finite or infinite sequence in \mathbb{Z}_+. One defines

$$FS(\{b_i\}_{i \in I}) = \{ \sum_{i \in \alpha} b_i : \alpha \text{ is a finite non-empty subset of } I \}.$$

F is an IP-set if it contains some $FS(\{p_i\}_{i=1}^n)$ where $p_i \in \mathbb{N}$. The collection of all IP-sets is denoted by \mathcal{F}_{ip}. A subset of \mathbb{Z}_+ is called an IP*-set, if it has non-empty intersection with any IP-set. IP-sets are important in the study of dynamical properties, see [12, 6].

If I is finite, then one says $FS(\{p_i\}_{i \in I})$ is an finite IP set of length $|I|$. The collection of all sets containing finite IP sets with arbitrarily long lengths is denoted by \mathcal{F}_{fip}.

Let E be a finite or infinite set in $\mathcal{P}(\mathbb{Z}_+)$, One defines

$$\Delta(E) = \{ a - b : a \geq b, a, b \in E \}.$$

A subset F of \mathbb{Z}_+ is called a difference set if it contains some $\Delta(E)$ with $|E|$ infinite. The collection of all difference sets is denoted by \mathcal{F}_Δ. A subset of \mathbb{Z}_+ is called a Δ^*-set, if it has non-empty intersection with any difference set.

If E is a finite set, then one says that $\Delta(E)$ is a finite difference set of length $|E|$. The collection of all sets containing finite difference sets with arbitrarily long lengths is denoted by $\mathcal{F}_{f\Delta}$.

2.6. Technical lemmas. Note that a factor map is semi-open if it sends any opene set to a set containing an opene set. To end the section we state an easy lemma which follows from the continuity of π.

Lemma 2.6. Let $\pi : (X, T) \longrightarrow (Y, S)$ be a semi-open factor map between two t.d.s. and \mathcal{F} be a family. If (Y, S) is \mathcal{F}-sensitive (resp. block \mathcal{F}-sensitive, strongly \mathcal{F}-sensitive), so is (X, T).

The following lemma is easy to check.
Lemma 2.7. Let \((X, T)\) be a dynamical system, and \((\tilde{X}, \tilde{T})\) be the natural extension of \((X, T)\). Then \((X, T)\) is \(\mathcal{F}\)-sensitive (resp. block \(\mathcal{F}\)-sensitive, strongly \(\mathcal{F}\)-sensitive) if and only if \((\tilde{X}, \tilde{T})\) is \(\mathcal{F}\)-sensitive (resp. block \(\mathcal{F}\)-sensitive, strongly \(\mathcal{F}\)-sensitive).

The next lemma is from [21, Proposition 4.4] or [10, Lemma 2.4]

Lemma 2.8. Let \(\pi : (X, T) \rightarrow (Y, S)\) be a factor map with \((X, T)\) minimal and \((Y, S)\) invertible. If \(\pi\) is not almost one-to-one, then \(l = \inf_{y \in Y} \text{diam}(\pi^{-1}(y)) > 0\).

3. Sensitivity for Families

To start our research we begin to study \(\mathcal{F}\)-sensitivity. The goal is to show the notion of \(\mathcal{F}\)-sensitivity is rough, meaning that for many families the notions are equivalent in the minimality setup.

Recall that the authors in [21] proved that: a minimal system is either \(\mathcal{F}_r\)-sensitive or an almost one-to-one extension of its maximal equicontinuous factor. Moreover, they showed in [20] that for minimal systems all of the following notions: \(\mathcal{F}_{is}\)-sensitivity, multi-sensitivity (see [30] for a definition) and \(\mathcal{F}_r\)-sensitivity are equivalent. In this section, we prove that for minimal systems all of the following notions: \(\mathcal{F}_{is}\)-sensitivity, \(\mathcal{F}_{ip}\)-sensitivity, \(\mathcal{F}_{flip}\)-sensitivity and \(\mathcal{F}_{f\Delta}\)-sensitivity are equivalent (the equivalence to \(\mathcal{F}_{Poin}\)-sensitivity will be given in Section 5).

First we need a proposition which is basically due to Furstenberg [12, Proposition 9.8]. Let \((X, T)\) be a t.d.s. and \(\mathcal{F}\) be a family. Note that we say that \(x \in X\) is \(\mathcal{F}\)-recurrent if and only if \(x\) is \(\mathcal{F}\)-sensitive (resp. block \(\mathcal{F}\)-sensitive) if and only if each point of \(\mathcal{F}\) is \(\mathcal{F}\)-recurrent.

Proposition 3.1. Let \((X, T)\) be a minimal equicontinuous system. Then \((X, T)\) is \(\mathcal{F}_{f\Delta}\)-recurrent.

Proof. Since \((X, T)\) is minimal and equicontinuous, we can assume that \((X, T)\) is a Kronecker system. That is, \(X = G\), an abelian compact group, and \(Tx = ax\) for a fixed \(a \in G\). Let \(x_0\) be any point of \(X\) and \(U\) be any open neighborhood of \(x_0\). Let \(V\) be any neighborhood of \(x_0\) such that \(VV^{-1}x_0 \subseteq U\). Since \(X\) is minimal, there are \(l_1, \ldots, l_k \in \mathbb{N}\) such that \(\{d^{l_1}V, d^{l_2}V, \ldots, d^{l_k}V\}\) is a cover of \(X\).

Let \(\{S_n\}_{n=1}^m\) be any finite sequence with \(m > k\), then there are \(a^{S_n}, a^{S_k}\) contained in the same subset \(d^{l_k}V\). Then \(a^{S_n - S_k}x_0 \in U\), which implies that \((X, T)\) is \(\mathcal{F}_{f\Delta}\)-recurrent.

Using Proposition 3.1 and some theorem in [21], we have the following result.

Theorem 3.2. Let \((X, T)\) be minimal. Then the following statements are equivalent:

1. \((X, T)\) is \(\mathcal{F}_{is}\)-sensitive.
2. \((X, T)\) is \(\mathcal{F}_r\)-sensitive.
3. \((X, T)\) is \(\mathcal{F}_{ip}\)-sensitive.
4. \((X, T)\) is \(\mathcal{F}_{flip}\)-sensitive.
5. \((X, T)\) is \(\mathcal{F}_{f\Delta}\)-sensitive.
6. there exists \(\delta > 0\) such that for every \(x \in X\) there is \(y \in X\) such that \((x, y)\) is regional proximal and \(d(x, y) > \delta\).
7. \((X, T)\) is not an almost one-to-one extension of \(X_{eq}\).
Proof. It is clear that $\mathcal{T}_{ts} \subset \mathcal{T}_i \subset \mathcal{T}_{ip} \subset \mathcal{T}_{fip} \subset \mathcal{T}_{f\Delta}$. By [21, Theorem 3.1], it remains to show (5) \Rightarrow (7) and (7) \Leftrightarrow (6).

(5) \Rightarrow (7) Assume that (X, T) is $\mathcal{T}_{f\Delta}$-sensitive with a sensitive constant $\delta > 0$ and $\pi : (X, T) \to (X_{eq}, T_{eq})$ is almost one-to-one. Since (X_{eq}, T_{eq}) is a minimal equicontinuous system, there is a compatible metric d' such that $d'(T_{eq}x, T_{eq}y) = d'(x, y)$, for all $x, y \in X_{eq}$. Let $y_0 \in X_{eq}$ with $\pi^{-1}(y_0)$ singleton. We take an open set $W \subset X$ containing $\pi^{-1}(y_0)$ such that $\text{diam}(W) < \delta$, and then there is an open set $V \subset X_{eq}$ containing y_0 such that $\pi^{-1}V \subset W$.

Let $B(y_0, \varepsilon) \subset V$ for some $\varepsilon > 0$ and $U = \pi^{-1}(V_1)$ with $V_1 = B(y_0, \varepsilon/2)$. By Proposition 3.1, $N(y_0, V_1) \in \mathcal{T}_{f\Delta}$.

For $n \in N(y_0, V_1)$, we have $d'(T^n_{eq}y_0, y_0) < \varepsilon/2$. Since $d'(T^n_{eq}y, T^n_{eq}y_0) < \varepsilon/2$ for all $m \in \mathbb{N}$ and $y \in V_1$, we deduce that $T^n_{eq}(V_1) \subset V$ for $n \in N(y_0, V_1)$. For $U = \pi^{-1}(V_1)$ and $n \in N(y_0, V_1)$ we get

$$T^n(U) = T^n\pi^{-1}(V_1) \subset \pi^{-1}(T^n_{eq}V_1) \subset \pi^{-1}(V) \subset W.$$

This means that $N(U, \delta) \cap N(y_0, V_1) = \emptyset$, which implies $N(U, \delta) \notin \mathcal{T}_{f\Delta}$.

(6) \Rightarrow (7) is obvious.

(7) \Rightarrow (6) follows from Lemma 2.8. □

4. Block sensitivity and strong \mathcal{T}_{fip}, \mathcal{T}_{ip}-sensitivity

In this section we study block sensitivity and some related notions of strong sensitivity, and prove Theorems A, B and C. This will be done in the following three subsections.

4.1. Block \mathcal{T}_i-sensitivity. In this subsection, we discuss block \mathcal{T}_i-sensitivity and give a proof of Theorem A.

Recall that a t.d.s. (X, T) is called block \mathcal{T}_i-sensitive if there is $\delta > 0$ such that for each $x \in X$, every neighborhood U_x of x and $l \in \mathbb{N}$ there are $y_i \in U_x$ with $\{ n \in \mathbb{Z}_+ : d(T^n x, T^n y_i) > \delta \}$ containing $\{m + 1, \ldots, m + l\}$ for some $m \in \mathbb{N}$. In fact we will show the following theorem which covers Theorem A.

Theorem 4.1. Let (X, T) be a minimal dynamical system. Then the following conditions are equivalent:

1. (X, T) is block \mathcal{T}_i-sensitive;
2. there exists $\delta > 0$ such that for every $x \in X$ there exists $y \in X$ such that (x, y) is regional proximal and $\inf_{n \in \mathbb{Z}_+} d(T^n x, T^n y) > \delta$;
3. $\pi : X \to X_{eq}$ is not proximal.

We start with

Proposition 4.2. Let (X, T) be a t.d.s. and $\pi : (X, T) \to (X_{eq}, T_{eq})$ be the factor map. If (X, T) is block \mathcal{T}_i-sensitive then π is not proximal.

Proof. Let d, d' be the compatible metrics of X, X_{eq} respectively. Let $\varepsilon_k > 0$ with $\varepsilon_k \to 0$. Then for each $k \in \mathbb{N}$, there is $0 < \tau_k, \tau'_k < \varepsilon_k$ such that if $d'(w_1, w_2) < \tau_k$ with $w_1, w_2 \in X_{eq}$ then $d'(T^n_{eq}w_1, T^n_{eq}w_2) < \varepsilon_k$ for any $i \in \mathbb{Z}_+$; and if $w_1, w_2 \in X$ with $d(w_1, w_2) < \tau'_k$ then $d'(\pi(w_1), \pi(w_2)) < \tau_k$.

Pick $x \in X$ and put $U_k = B(\tau_k, x)$. By the assumption (X, T) is block \mathcal{F}_t-sensitive, thus for each $j \in \mathbb{N}$, there is $y^j_k \in U_k$ such that $F = \{n \in \mathbb{Z}_+ : d(T^n x, T^n y^j_k) > \delta\}$ containing $\{a^j_k, a^j_k + 1, \ldots, a^j_k + j\}$ (with δ the sensitive constant).

Without loss of generality we assume that $T^{a^j_k} x \to z^1_k$ and $T^{a^j_k} y^j_k \to z^2_k$ when $j \to \infty$. It is clear that $d(T^n z^1_k, T^n z^2_k) \geq \delta$ for each $i \in \mathbb{Z}_+$. Now let $z_1 = \lim_{k \to \infty} z^1_k$ and $z_2 = \lim_{k \to \infty} z^2_k$. We have $d(T^n z_1, T^n z_2) \geq \delta$ for each $i \in \mathbb{Z}_+$.

Now we show that $\pi(z_1) = \pi(z_2)$. Since $y^j_k \in U_k$, it is clear that $d'(\pi(x), \pi(y^j_k)) < \tau_k$ and thus we have $d'(T^n_{eq} \pi(x), T^n_{eq} \pi(y^j_k)) < \epsilon_k$ for each $i \in \mathbb{Z}_+$. Particularly,

$$d'(T^n_{eq} \pi(x), T^n_{eq} \pi(y^j_k)) < \epsilon_k$$

for each $j \in \mathbb{N}$. This implies that $d'(\pi(z^1_k), \pi(z^2_k)) \leq \epsilon_k$, and hence $d'(\pi(z_1), \pi(z_2)) = 0$. We have proved that $\pi(z_1) = \pi(z_2)$. This indicates that π is not proximal, finishing the proof.

Proof of Theorem 4.1. (1)\Rightarrow(3) follows from the above proposition.

(3)\Rightarrow(2) There exists a regional proximal pair (z_1, z_2) which is not proximal. Let $\delta = \frac{1}{4} \inf_{n \in \mathbb{Z}_+} d(T^n z_1, T^n z_2) > 0$. Fix a point $x \in X$. As z_1 is a minimal point of (X, T), there exists a sequence of positive numbers $\{\epsilon_i\}$ such that $\lim_{i \to \infty} T^n z_1 \to x$. By the compactness of X, without loss of generality, assume that $\lim_{i \to \infty} T^n z_2 \to y$. Then (x, y) is regional proximal, since $Q(X, T)$ is closed and $T \times T$-invariant. We also have $\inf_{n \in \mathbb{Z}_+} d(T^n x, T^n y) \geq \inf_{n \in \mathbb{Z}_+} d(T^n z_1, T^n z_2) > \delta$.

(2)\Rightarrow(1) Fix $x \in X$ and a neighborhood U of x and $l \in \mathbb{N}$. There exists $y \in X$ such that (x, y) is regional proximal and $\inf_{n \in \mathbb{Z}_+} d(T^n x, T^n y) > \delta$. Choose small enough neighborhood $V \subset U$ of x and neighborhood W of y such that $\min_{0 \leq i \leq l} d(T^i V, T^i W) > \frac{1}{2} \delta$.

As (x, y) is regional proximal, $N(x, W)$ is a Δ-set [21, Proposition 4.7]. We also have that $N(V, V)$ is a Δ-set [12, Page 177]. Then $N(x, W)$ intersects $N(V, V)$. Pick $n \in N(x, W) \cap N(V, V)$ and $x' \in V \cap T^{-n} V$. Then $T^n x \in W$, $T^n x' \in V$. This implies that $d(T^{n+i} x, T^{n+i} x') \geq \min_{0 \leq i \leq l} d(T^i V, T^i W) > \frac{1}{2} \delta$ for $i = 0, 1, \ldots, l$. Therefore, (X, T) is block \mathcal{F}_t-sensitive.

We have the following corollary.

Corollary 4.3. There is a minimal system which is \mathcal{F}_t-sensitive and not strongly \mathcal{F}_t-sensitive.

Proof. There is a minimal system such that $\pi : X \to X_{eq}$ is a proximal extension and not almost one-to-one extension [18]. Then (X, T) is \mathcal{F}_t-sensitive by [21, Theorem 3.1], and is not strongly \mathcal{F}_t-sensitive by Proposition 4.2.

4.2. **Block \mathcal{F}_{ip}-sensitivity and strong \mathcal{F}_{fip}-sensitivity.** In this subsection, we investigate block \mathcal{F}_{ip}-sensitivity, strong \mathcal{F}_{fip}-sensitivity and show Theorem B. In this subsection we assume that T is a homeomorphism (since some results we use are stated for homeomorphisms and it will take some pages to show they are true for continuous and surjective maps).

Recall that a t.d.s. (X, T) is called **block \mathcal{F}_{ip}-sensitive** if there is $\delta > 0$ such that for each $x \in X$, every neighborhood U_x of x and $l \in \mathbb{N}$ there is $y_l \in U$ such that $\{n \in \mathbb{Z}_+:
$d(T^n x, T^n y_l) > \delta$} contains a finite IP-set of length l. By the Ramsey property of \mathcal{F}_{fip}, an equivalent definition can be stated as follows: there is $\delta > 0$ such that for any open U of X and $l \in \mathbb{N}$ there are $y_l, z_l \in U$ such that \{ $n \in \mathbb{Z}^+ : d(T^n y_l, T^n z_l) > \delta$} contains a finite IP-set of length l. As before we will show the following theorem which covers Theorem B.

Theorem 4.4. Let (X,T) be a minimal system. Then the following statements are equivalent.

1. (X,T) is strongly \mathcal{F}_{fip}-sensitive;
2. (X,T) is block \mathcal{F}_{fip}-sensitive;
3. there exists $\delta > 0$ such that for every $x \in X$ there exists $y \in X$ such that $(x,y) \in \text{RP}[\infty]$ with $d(x,y) \geq \delta$;
4. $\phi : X \rightarrow X_\infty$ is not almost one-to-one.

To prove Theorem 4.4 we need some preparation. The following lemma is from [14].

Lemma 4.5. Let (X, \mathcal{B}, μ) be a probability space, and \{ E_i \}$_{1}^{\infty}$ be a sequence of measurable sets with $\mu(E_i) \geq a > 0$ for some constant a. Then for any $k \geq 1$ and $\epsilon > 0$ there is $N = N(a,k,\epsilon)$ such that for any tuple \{ $s_1 < s_2 < \cdots < s_n$ \} with $n \geq N$ there exist $1 \leq t_1 < t_2 < \cdots < t_k \leq n$ with

\begin{equation}
\mu(E_{s_1} \cap E_{s_2} \cap \cdots \cap E_{s_k}) \geq a^k - \epsilon.
\end{equation}

We will use the next lemma derived from Lemma 4.5.

Lemma 4.6. Let (X,T) be a t.d.s. with $\mu \in M(X,T)$. Let $U \in \mathcal{B}_X$ with $a = \mu(U) > 0$. Then there is $n = n(a)$ such that for any finite IP-set $FS(\{p_i\}_{1}^{n})$ there is $q \in FS(\{p_i\}_{1}^{n})$ such that $\mu(U \cap T^{-q}U) \geq \frac{1}{2}a^2$.

Proof. Apply Lemma 4.5 to $k = 2$, $\epsilon = \frac{1}{4}a^2$ and consider the finite tuple

$T^{-p_1}U, \ldots , T^{-p_1-\cdots-p_n}U$.

\square

The notion of central set was introduced in [12]. It is known that a central set contains an IP-set [12, Proposition 8.10].

Proposition 4.7. Let (X,T) and (Y,S) be minimal. If $\pi : X \rightarrow Y$ is proximal and not almost one-to-one, then (X,T) is strongly \mathcal{F}_{fip}-sensitive.

Proof. By Lemma 2.8, $l = \inf_{y \in Y} \text{diam}(\pi^{-1}(y)) > 0$. For each $y \in Y$, choose $x_1(y), x_2(y) \in \pi^{-1}(y)$ with $d(x_1(y), x_2(y)) = l(y) \geq l$.

For $x \in X$, let $y = \pi(x)$. Then we have $d(x, x_1(y)) \geq \frac{l}{2}$ or $d(x, x_2(y)) \geq \frac{l}{2}$. Without loss of generality, we assume that $d(x, x_1(y)) \geq \frac{l}{2}$. Then $(x_1(y))$ is proximal.

Let $\delta = \frac{l}{8}$ and U', V be open neighborhoods of $x, x_1(y)$ with $\text{diam}(U')$, $\text{diam}(V) < \frac{l}{8}$ respectively. Then $d(U', V) > \delta$. Choose a smaller U with the same properties and $U' \supset U$. We know that $N(x, V)$ is a central set and hence it contains an IP-set $FS(\{p_i\}_{1}^{n})$. We are going to show that there is $z \in U'$ such that $d(T^{l}x, T^{l}z) > \delta$ for all l in a sub IP-set of $FS(\{p_i\}_{1}^{n})$.

To do this let $\mu \in M(X,T)$, then $a = \mu(U) > 0$. Applying Lemma 4.6 to U there are n_1 and $q_1 \in FS(\{p_i\}_{i=1}^{n_1})$ such that $\mu(U \cap T^{-q_1}U) \geq \frac{1}{2}a^2$.

Let $U_1 = U \cap T^{-q_1}U$ and apply Lemma 4.6 to U_1 there are n_2 and $q_2 \in FS(\{p_i\}_{i=n_1+1}^{n_2})$ such that $\mu(U_1 \cap T^{-q_2}U_1) \geq \frac{1}{2}a^4$. Note that we have $U \cap T^{-q_1}U \cap T^{-q_2}U_1 \cap T^{-q_1-q_2}U \neq \emptyset$.

Inductively for any $k \in \mathbb{N}$ we obtain $n_1, \ldots, n_k, U_1, \ldots, U_k$ and q_1, \ldots, q_k such that $q_{j+1} \in FS(\{p_i\}_{i=n_j+1}^{n_{j+1}})$, $U_{j+1} = U_j \cap T^{-q_{j+1}}(U_j)$ with $\mu(U_{j+1}) \geq C_j > 0$ for $j = 0, \ldots, k-1$ (set $U_0 = U$ and $n_0 = 0$). This implies that

$$\mu(U \cap \bigcap_{l \in FS(q_i^k)} T^{-l}U) > 0.$$

Thus, for each $k \in \mathbb{N}$ there is $z_k \in U$ such that $T^l(z_k) \in U$ for all $l \in FS(q_i^k)$. Without loss of generality, assume that $z = \lim_{k \to \infty} z_k$, then $T^l(z) \in cl(U) \subset U'$ for $l \in FS(q_i^\infty)$. We know $d(T^l x, T^l z) > \delta$ for $l \in FS(q_i^\infty)$. Since $FS(q_i^\infty) \subseteq FS(p_j^\infty)$, this implies that (X,T) is strongly \mathcal{F}_{fp}-sensitive.

By [32, Theorem 3.2] we know that for any $d \in \mathbb{N}$ and any minimal t.d.s. (X,T), $(x,y) \in \text{RP}^d(X)$ if and only if for any neighborhood V of y, $N(x,V)$ contains a finite IP-set of length $d + 1$. As $\text{RP}^\infty(X) = \bigcap_{d=1}^\infty \text{RP}^d(X)$, so we have

Lemma 4.8. Let (X,T) be minimal and $(x,y) \in X \times X$. Then $(x,y) \in \text{RP}^\infty(X)$ if and only if for any neighborhood V of y, $N(x,V) \in \mathcal{F}_{fp}$.

With the help of the above lemma and Lemma 4.6 we are able to show

Proposition 4.9. Let (X,T) be minimal and $\pi : X \to X_\infty$ is not proximal. Then (X,T) is strongly \mathcal{F}_{fp}-sensitive.

Proof. Since π is not proximal, there are $(x_1, x_2) \in R_\pi$ which is a distal pair. It follows that $(x_1, x_2) \in \text{RP}^\infty = \bigcap_{d=1}^\infty \text{RP}^d$ and $d(T^n x_1, T^n x_2) \geq l$ for any $n \in \mathbb{N}$. Let U, V be closed neighborhoods of x_1, x_2 with $\text{diam}(U), \text{diam}(V) < \frac{1}{4}$ respectively. Then $d(U, V) > \frac{1}{4}$ and we let $\delta = \frac{1}{2}$. By Lemma 4.8, $N(x_1, V) \in \mathcal{F}_{fp}$. We are going to show that there is $z \in U$ such that $d(T^l x_1, T^l z) > \delta$ for all $l \in \mathcal{F}_{fp}$ with $F \subset N(x_1, V)$.

For $k = 1$. Using the same argument in the of Proposition 4.7, we get $n_1^1 \in \mathbb{N}$ such that for any finite IP set of length n_1^1 with $FS(p_1^1)_{i=1}^{n_1^1} \subset N(x_1, V)$, there is $q_1^1 \in FS(p_1^1)_{i=1}^{n_1^1}$ such that $\mu(U \cap T^{-q_1^1}U) \geq \frac{1}{2}a^2$. Set $U^1 = U \cap T^{-q_1^1}U$.

For $k = 2$. Using the same argument in the of Proposition 4.7 (with respect to U^1), we get $n_2^2 \in \mathbb{N}$ such that for any finite IP set of length n_2^2 with $FS(p_2^2)_{i=1}^{n_2^2} \subset N(x_1, V)$, there are $q_2^1, q_2^2, q_2^3 + q_2^2 \in FS(p_2^2)_{i=1}^{n_2^2}$ such that if we set $U^2 = U^1 \cap T^{-q_2^2}U \cap T^{-q_2^1}U \cap T^{-q_2^3}U \cap T^{-q_2^2} \cap U^1$ then $\mu(U^2) > 0$. So we have

$$\mu(U \cap T^{-q_1^1} \cap T^{-q_2^2} \cap U \cap T^{-q_2^3} \cap T^{-q_2^2} \cap U \cap T^{-q_2^3} \cap U^2) > 0.$$
Inductively, for any $k \in \mathbb{N}$ we obtain $n_j^1, \ldots, n_j^l, U^1, \ldots, U^j$ and q_j^1, \ldots, q_j^l for $1 \leq j \leq k$ such that

- for $0 \leq m \leq j - 1$, $q_{m+1}^j \in FS(\{p_i^j\}_{i=m+1}^{n_{m+1}}) \subset N(x_1, V)$ (set $n_0^j = 0$).
- $U^{j+1} = U^j \cap \bigcap_{l \in FS(q_l^j)} T^{-1}U^j$ for $0 \leq j \leq k - 1$ satisfies that $\mu(U^{j+1}) > 0$ (set $U^0 = U$).

So we have $\mu(A_k) > 0$, where

$$A_k = U \cap \bigcap_{j=1}^k \bigcap_{l \in FS(q_l^j)} T^{-1}U.$$

Set $F = \cup_{k=1}^\infty FS(q_k^1)$. Then $F \subset N(x_1, V)$ and $F \in \mathcal{F}_{fip}$. Take $z \in \cap_{k=1}^\infty A_k$, then $T^iz \in U$ for all $i \in F$. This implies that $d(T^ix_1, T^iz) > \delta$ for all $i \in F \in \mathcal{F}_{fip}$.

For $u \in X$ there is a sequence $\{n_i\}$ such that $T^{2n_i}x_1 \to u$ and $T^{2n_i}x_2 \to v$. Then $(u, v) \in \mathbb{RP}^\infty$ and (u, v) is a distal pair with $d(T^nu, T^nv) \geq 1$. Let W, W' be closed neighborhoods of u and v respectively with $\text{diam}(W), \text{diam}(W') < \frac{\delta}{4}$. By the proof above, we know that there is $w \in W$ such that $d(T^n(u, T^nW)) > \delta$ for all $n \in F$, where $F \in \mathcal{F}_{fip}$ with $F \subset N(u, W') \in \mathcal{F}_{fip}$. So we have proved that (X, T) is strongly \mathcal{F}_{fip}-sensitive.

The following lemma is well known.

Lemma 4.10. Let F be a finite IP-set of length n and $F = F_1 \cup F_2$. Then there is $i \in \mathbb{N}$ such that F_i is a finite IP-set of length $l(n)$ with $l(n) \to \infty$ when $n \to \infty$. This also implies that \mathcal{F}_{fip} has the Ramsey property.

To end the proof we need another proposition.

Proposition 4.11. Let (X, T) be a minimal block \mathcal{F}_{fip}-sensitive t.d.s. with the sensitive constant 10δ. Assume that $x \in X$ and U is any neighborhood of x. Then there are $z \in U$ and $y \in X$ such that $(y, z) \in \mathbb{RP}^\infty$ with $d(z, y) \geq \delta$.

Proof. Since (X, T) is block \mathcal{F}_{fip}-sensitive, there is $\delta > 0$ such that for any $x_0 \in X$, any neighborhood V of x_0 and any $n \in \mathbb{N}$ there is $y_0, z_0 \in V$ such that $\{m \in \mathbb{N} : d(T^ny_0, T^nz_0) > 10\delta\}$ contains a finite IP-set of length n.

Let $U_0 = B(x, 4\delta)$ and $U_1 = B(x, \delta)$. Without loss of generality, we assume $U \subset U_1$. Then for $n_1 \in \mathbb{N}$ large enough there are $x_1^1, x_1^2 \in U$ such that $F_1 = \{n \in \mathbb{N} : d(T^nx_1^1, T^nx_1^2) > 10\delta\}$ contains a finite IP-set of length n_1. By the method of Proposition 4.7, there is $z_1 \in U$ satisfying $T^{n_1}z_1 \in U$ for $n \in F_1 \subseteq F_1$, where F_1 is a finite IP-set of length $k(n_1)$. Then $d(T^nx_1^1, T^nz_1) > 5\delta$ or $d(T^nx_1^2, T^nz_1) > 5\delta$ for $n \in F_1$. Without loss of generality, we assume that $d(T^nx_1^1, T^nz_1) > 5\delta$ for $n \in F_1 \subseteq F_1'$, where F_1' is a finite IP-set of length $l(k(n_1))$ (Lemma 4.10). Then $T^nx_1^1 \not\in U_0$ for $n \in F_1'$. Let $U_2 \subset U$ an open neighborhood of x_1^1 with diameter small enough such that $T^nU_2 \cap U_0 = \emptyset$ for $n \in F_1$.

Then for $n_1 \ll n_2 \in \mathbb{N}$ large enough there are $x_2^1, x_2^2 \in U_2$ such that $F_2 = \{n \in \mathbb{N} : d(T^nx_2^1, T^nx_2^2) > 10\delta\}$ contains a finite IP-set of length n_2. By the method of Proposition 4.7 again, there is $z_2 \in U_2$ satisfying $T^{n_2}z_2 \in U_2$ for $n \in F_2 \subseteq F_2$, where F_2 is a finite IP-set of length $k(n_2)$. Then $d(T^nx_2^1, T^nz_2) > 5\delta$ or $d(T^nx_2^2, T^nz_2) > 5\delta$ for $n \in F_2$. Without loss of generality, we assume that $d(T^nx_2^1, T^nz_2) > 5\delta$ for $n \in F_2 ' \subseteq F_2 '$, where $F_2 '$ is a finite IP-set of length $k(n_2)$. Then $d(T^nx_2^1, T^nz_2) > 5\delta$ for $n \in F_2 ' \subseteq F_2 '$, where $F_2 '$ is a finite IP-set of length $k(n_2)$. Then $d(T^nx_2^1, T^nz_2) > 5\delta$ for $n \in F_2 ' \subseteq F_2 '$, where $F_2 '$ is a finite IP-set of length $k(n_2)$. Then $d(T^nx_2^1, T^nz_2) > 5\delta$ for $n \in F_2 ' \subseteq F_2 '$, where $F_2 '$ is a finite IP-set of length $k(n_2)$.
Let $I(k(n))$. Then $T^n x_1^2 \notin U_0$. Let $U_3 \subset U_2$ an open neighborhood of x_1^2 with diameter small enough such that $T^n \overline{U_3} \cap U_0 = \emptyset$ for $n \in F_2''$. Thus, we get $F_k \supseteq F_k' \supseteq F_k''$, z_k, n_k and U_k with $diam(U_k) \to 0$ as $k \to \infty$. We have

1. $d(T^n z_k, T^n x_k^i) \geq 5\delta$ for $n \in F_k''$ with $z_k \in U_k$, $x_k^i \in U_{k+1} \subseteq U_k$;
2. $T^n \overline{U_{k+1}} \cap U_0 \neq \emptyset$ for $n \in F_k''$.

Assume that $\lim_{k \to \infty} z_k = z$ then $\lim_{k \to \infty} x_k^i = z$. Since $z \in \bigcap_{k=1}^{\infty} \overline{U_k}$, we have $T^n z \notin U_0$ for $n \in F_k''$. Thus, $N(z, U_{0}^c) \in \mathcal{F}_{lip}$ for $I(k(n)) \to \infty$ as $n \to \infty$.

Let $W = B(x, 3\delta)$. Since U_0^c is compact, we can cover U_0^c by finitely many closed balls $\{V_1^1, V_2^1, \ldots, V_l^1\}$ with diameter less than 1 and $\bigcup_{k=1}^{l_1} V_k^1 \subset W^c$. By the Ramsey property of \mathcal{F}_{lip}, there is $1 \leq m_1 \leq l_1$ such that $N(z, V_{m_1}^1) \in \mathcal{F}_{lip}$. Since $V_{m_1}^1$ is compact, we can cover $V_{m_1}^1$ by finitely many closed balls $\{V_{1}^2, V_{2}^2, \ldots, V_{l_2}^2\}$ with diameter less than $\frac{1}{2}$. Then $\bigcup_{k=1}^{l_2} V_k^2 \subset W^c$. By the Ramsey property of \mathcal{F}_{lip} again, there is $1 \leq m_2 \leq l_2$ such that $N(z, V_{m_2}^2) \in \mathcal{F}_{lip}$. Continue the process, we get $V_{m_k}^k$ such that $N(z, V_{m_k}^k) \in \mathcal{F}_{lip}$, $diam(V_{m_k}^k) \leq \frac{1}{k}$ and $V_{m_k}^k \subset W^c$.

Let $y \in \bigcap_{k=1}^{\infty} V_{m_k}^k$. Then for any open neighborhood W' of y, we have $N(z, W') \in \mathcal{F}_{lip}$ since W' contains $V_{m_k}^k$ for some $k \in \mathbb{N}$. Lemma 4.8 implies that $(y, z) \in \mathcal{R}P^{[\infty]}$. Since $y \in W^c$ and $z \in \overline{U_1}$, we conclude that $d(z, y) \geq 2\delta > \delta$. This ends the proof. \square

Proof of Theorem 4.4. (1) \Rightarrow (2) is obvious.

(2) \Rightarrow (3) Assume that (X, T) is block \mathcal{F}_{lip}-sensitive. Fix $x \in X$. By Proposition 4.11 for every $n \in \mathbb{N}$, there exists $x_n \in B(x, \frac{1}{n})$ and $y_n \in X$ such that $d(x_n, y_n) \geq \delta$ and $(x_n, y_n) \in \mathcal{R}P^{[\infty]}(X)$. Without loss of generality, assume that $y_n \to y$. Then $d(x, y) \geq \delta$ and $(x, y) \in \mathcal{R}P^{[\infty]}(X)$ as $\mathcal{R}P^{[\infty]}(X)$ is closed.

(3) \Rightarrow (4) is obvious.

(4) \Rightarrow (1) Since ϕ is not almost one-to-one, ϕ is either not proximal, or proximal and not almost one-to-one. If $\phi : X \to X_\infty$ not proximal, then by Proposition 4.9 we get that (X, T) is strongly \mathcal{F}_{lip}-sensitive. If $\phi : X \to X_\infty$ is proximal, not almost one-to-one, by Proposition 4.7 we get (X, T) is strongly \mathcal{F}_{lip}-sensitive. \square

4.3. Strong \mathcal{F}_{lip}-sensitive. In this subsection, we study strong \mathcal{F}_{lip}-sensitivity and give the proof of Theorem C. Recall that we say a t.d.s. (X, T) is strongly \mathcal{F}_{lip}-sensitive if there is $\delta > 0$ such that for each open subset U of X, there are $x, y \in U$ with $\{n \in \mathbb{Z}_+ : d(T^n x, T^n y) > \delta\} \in \mathcal{F}_{lip}$. In fact we will show a stronger form of Theorem C.

Theorem 4.12. Let (X, T) be a minimal system. Then the following conditions are equivalent:

1. (X, T) is strongly \mathcal{F}_{lip}-sensitive;
2. there is $\delta > 0$ such that for every non-empty open subset U of X there exists a proximal pair (x, y) with $x \in U$ and $d(x, y) > \delta$;
(3) $\pi: X \to X_D$ is not almost one-to-one, where (X_D, T) is the maximal distal factor of (X, T).

We say that x is strongly proximal to y if and only if for every neighborhood U of y, N \(x \in N \) is strongly proximal to y. We need two results from [24].

Lemma 4.13 ([24, Lemma 4.8]). Let (X, T) be a dynamical system and $x, y \in X$. Then x is strongly proximal to y if and only if for every neighborhood U of y, $N(x, U) \cap N(y, U)$ contains an IP-set.

Proposition 4.14 ([24, Proposition 5.9]). Let (X, T) be a dynamical system, $x \in X$ and $Y \subset X$ be a closed subset of X. If $N(x, Y)$ contains an IP set, then there exists $y \in Y$ such that x is strongly proximal to y.

Now we show a proposition.

Proposition 4.15. Let (X, T) be a minimal system. Then (X, T) is strongly \mathcal{F}_{ip}-sensitive if and only if there is $\delta > 0$ such that every non-empty open subset U of X, there is $x \in U$ and $y \in X$ with $d(x, y) > \delta$ and x is strongly proximal to y.

Proof. First assume that (X, T) is strongly \mathcal{F}_{ip}-sensitive with sensitive constant $8\delta > 0$. Fix a non-empty open subset U of X. Pick $z \in U$ and let $V = U \cap B(z, \delta)$. There are $x_1, x_2 \in V$ such that $F = \{n \in \mathbb{Z}_+: d(T^n x_1, T^n x_2) > 8\delta\}$ contains an IP-set. Let $W = X \setminus B(z, 2\delta)$. By the Ramsey property of \mathcal{F}_{ip}, there exist $N(x_1, W)$ or $N(x_2, W)$ contains an IP-set. By Proposition 4.14 there exists $y \in W$ such that either x_1 or x_2 is strongly proximal to y. It is clear that $d(x_1, y) > \delta$ and $d(x_2, y) > \delta$.

Now we show the sufficiency. Fix a non-empty open subset U of X. There is $x \in U$ and $y \in X$ with $d(x, y) > \delta$ and x is strongly proximal to y. By Lemma 4.13, $N(x, B(y, \delta/3))$ contains an IP-set $FS([p_i]_{i=1}^\infty)$. By the method of Proposition 4.7, there exist $z \in B(x, \delta/3)$ and an IP subset $FS([q_j]_{j=1}^\infty)$ such that $FS([q_j]_{j=1}^\infty) \subset N(z, B(x, \delta/3))$ and $FS([p_i]_{i=1}^\infty) \subset FS([q_j]_{j=1}^\infty)$. Then $FS([q_j]_{j=1}^\infty) \subset \{n \in \mathbb{Z}_+: d(T^n x, T^n z) > \delta/3\}$, which implies that (X, T) is strongly \mathcal{F}_{ip}-sensitive with the sensitive constant $\delta/3$. \hfill \square

We are in the position to give:

Proof of Theorem 4.12. (1)\Rightarrow(2) follows from the Proposition 4.15.

(2)\Rightarrow(3) For any point $x \in X$, there exists a sequence y_n and z_n such that $\lim_{n \to \infty} y_n = x$ and (y_n, z_n) is proximal and $d(y_n, z_n) > \delta$. Without loss of generality, assume that $\lim_{n \to \infty} z_n = z$. Then $d(x, z) \geq \delta$. Note that $(x, z) \in S_D$, where S_D is the distal relation, $X/S_D = X_D$. Let $\pi: X \to X_D$. Then $(x, z) \in \pi^{-1}(\pi(x))$. So π is not almost one-to-one.

(3)\Rightarrow(1) If π is proximal, then by Proposition 4.7, (X, T) is strongly \mathcal{F}_{ip}-sensitive. So we assume that π is not proximal. This implies that $P(X)$ is not closed. So there is a distal pair (y, z) and proximal pairs (y_i, z_i) such that $(y_i, z_i) \to (y, z)$. Let $\inf_{n \in \mathbb{Z}_+} d(T^n y, T^n z) = 4\delta$.

Fix a non-empty open subset U of X. As y is a minimal point, there exists $k \in \mathbb{N}$ such that $T^k y \in U$. There exists $n \in \mathbb{N}$ such that $T^k y_n \in U \cap B(T^k y, \delta)$ and $d(T^k z_n, T^k z) < \delta$. Let $x_1 = T^k y_n$ and $x_2 = T^k z_n$. Then $x_1 \in U$, $d(x_1, x_2) > \delta$ and (x_1, x_2) is proximal. As x_2 is a minimal point, x_1 is strongly proximal to x_2. Then the result follows from Proposition 4.15. \hfill \square
5. **Strong Sensitivity for Other Families**

In this section we study strong sensitivity for other families and shall prove Theorem D. Namely, we will investigate the properties of strong \mathcal{F}_T and strong \mathcal{F}_{Poin}-sensitivity.

5.1. **Strong \mathcal{F}_T-sensitivity.** In this subsection, we discuss strong \mathcal{F}_T-sensitivity, and prove Theorem D. Recall that for a t.d.s. (X, T), we say (X, T) is strongly \mathcal{F}_T-sensitive if there is $\delta > 0$ such that for each opene subset U of X, there are $x, y \in U$ with $\{n \in \mathbb{Z}_+: d(T^n x, T^n y) > \delta\} \in \mathcal{F}_T$. We say that (X, T) is strongly \mathcal{F}_T-sensitive if there are $\delta_n \rightarrow 0$ and opene subsets U_n such that for any $x_n, y_n \in U_n$, there is a syndetic subset F of \mathbb{Z}_+ with $d(T^{m_n} x_n, T^{m_n} y_n) \leq \delta_n$ for all $m \in F$.

To prove Theorem D, we first show that strong \mathcal{F}_T-sensitivity passes through proximal extensions.

Proposition 5.1. Let $\pi : (X, T) \rightarrow (Y, S)$ be a proximal extension of minimal systems. If (Y, S) is not strongly \mathcal{F}_T-sensitive, then neither is (X, T).

Proof. Let d, d' be the compatible metrics of X, Y respectively. Since (Y, S) is not strongly \mathcal{F}_T-sensitive, there are $\delta_k \rightarrow 0$ and opene subsets U_k of Y such that if $x_k, y_k \in U_k$ then there is a syndetic subset F (depends on x_k, y_k) with $d'(S^n x_k, S^n y_k) < \delta_k$ for every $n \in F$.

Assume the contrary that (X, T) is strongly \mathcal{F}_T-sensitive with a sensitive constant $\delta > 0$. Then for each opene subset U, there are $x, y \in U$ such that $\{n \in \mathbb{Z}_+: d(T^n x, T^n y) > \delta\} \in \mathcal{F}_T$. Thus, there are $u_k, v_k \in \pi^{-1}(U_k)$ such that $F_k := \{n \in \mathbb{Z}_+: d(T^n u_k, T^n v_k) > \delta\} \in \mathcal{F}_T$. Note that $E_k := \{n \in \mathbb{Z}_+: d'(S^n \pi(u_k), S^n \pi(v_k)) < \delta_k\}$ is a syndetic set. This implies that there exists $b_k \in \mathbb{N}$ such that

$$d'(S^{b_k} \pi(u_k), S^{b_k} \pi(v_k)) < \delta_k$$

for $j \in [b_k - k, b_k + k]$. Without loss of generality, assume that $T^{b_k} u_k \rightarrow u, T^{b_k} v_k \rightarrow v$. Then $d(T^n u, T^n v) \geq \delta, \forall n \in \mathbb{Z}_+$. Since $\pi(T^{b_k} u_k) \rightarrow \pi(u), \pi(T^{b_k} v_k) \rightarrow \pi(v)$ and $d'(S^{b_k} \pi(u_k), S^{b_k} \pi(v_k)) < \delta_k$, we conclude that $\pi(u) = \pi(v)$, a contradiction. This indicates that (X, T) is not strongly \mathcal{F}_T-sensitive, ending the proof. \qed

Proposition 5.2. Let (X, T) be a minimal system. If $\pi : X \rightarrow X_D$ is proximal, then (X, T) is not strongly \mathcal{F}_T-sensitive.

Proof. By Proposition 5.1 and Theorem 4.7. \qed

To prove the converse of Theorem D, we need the structure theorem. So we assume that T is a homeomorphism first. When (X, T) is not invertible, we use natural extension to prove Theorem D.

Recall that an extension $\pi : X \rightarrow Y$ of minimal systems is a relatively incontractible (RIC) extension if it is open and for every $n \geq 1$ the minimal points are dense in the relation

$$R^0 : \{x_1, \ldots, x_n \in X^n : \pi(x_i) = \pi(x_j), \forall 1 \leq i \leq j \leq n\}.$$

We say that a minimal system (X, T) is a strictly PI system if there is an ordinal η (which is countable when X is metrizable) and a family of systems $\{(W_t, W_t)\}_{t \leq \eta}$ such that (i) W_0 is the trivial system, (ii) for every $t < \eta$ there exists a homomorphism $\phi_t : W_{t+1} \rightarrow W_t$ which is either proximal or equicontinuous, (iii) for a limit ordinal $\nu < \eta$ the system W_ν is the inverse limit of the systems $\{W_t\}_{t < \nu}$, and (iv) $W_\eta = X$. We say that
(X, T) is a PI-system if there exists a strictly PI system X and a proximal homomorphism θ : X → X.

We have the following structure theorem for minimal systems

Lemma 5.3 (Structure theorem for minimal systems, [11]). Given a homomorphism π : X → Y of minimal dynamical system, there exists an ordinal η (countable when X is metrizable) and a canonically defined commutative diagram (the canonical PI-Tower)

\[
\begin{array}{cccccccc}
X & \xrightarrow{\theta_0} & X_0 & \xrightarrow{\theta_1} & X_1 & \cdots & X_Y & \xleftarrow{\theta_{v+1}} & X_{v+1} & \cdots & X_\eta = X_\infty \\
\pi & \downarrow & \pi_0 & \downarrow & \pi_1 & \cdots & \pi_Y & \downarrow & \pi_{v+1} & \cdots & \pi_\eta \\
Y & \xrightarrow{\theta_0} & Y_0 & \xrightarrow{\rho_1} & Z_1 & \cdots & Y_Y & \xleftarrow{\rho_{v+1}} & Z_{v+1} & \cdots & Y_\eta = Y_\infty
\end{array}
\]

where for each ν ≤ η, π_ν is RIC, ρ_ν is isometric, θ_ν, θ_ν are proximal and π_ω is RIC and weakly mixing of all orders. For a limit ordinal ν, X_ν, Y_ν, π_ν etc. are the inverse limits (or joins) of X_ν, Y_ν, π_ω etc. for i < ν.

Thus if Y is trivial, then X_ω is a proximal extension of X and a RIC weakly mixing extension of the strictly PI-system Y_ν. The homomorphism π_ω is an isomorphism (so that X_ω = Y_ω) if and only if X is a PI-system.

Lemma 5.4. [9, Lemma 7.16] Let π : X → Y be a weakly mixing and RIC extension of minimal systems. Then there is a dense G_δ subset Y_0 of Y such that, for each y ∈ Y_0 and each x ∈ π^(-1)(y), P_π[x] is dense in π^(-1)(y), where P_π[x] = {z ∈ π^(-1)(π(x)) : (x, z) ∈ P(X)}.

Theorem 5.5. Let (X, T) be minimal. If (X, T) is not strongly T_0-sensitive, then (X, T) is PI.

Proof. First we claim: if (X, T) is minimal, and there is x ∈ X such that (x, y) is a distal pair, and y is proximal to z_i ∈ X with z_i → x, z_i ≠ x, i ∈ N, then (X, T) is strongly T_0-sensitive.

Let δ = \frac{1}{3} \inf_{n \in \mathbb{N}} d(T^n(x), T^n(y)) and fix an open set U of X. Then there is l ∈ \mathbb{N} with T^l x ∈ U by the minimality of X. This implies that (T^l x, T^n y) is a distal pair and T^l y is proximal to T^l z_i with T^l z_i → T^l x, T^l z_i ≠ T^l x. There is i ∈ N such that T^l z_i ∈ U. Since (T^l y, T^l z_i) is proximal, we get that \{n ∈ \mathbb{N} : d(T^{n+l} y, T^{n+l} z_i) < δ\} ∈ F_0. This implies that \{n ∈ N : d(T^{n+l} x, T^{n+l} y) > δ\} ∈ F_0. We conclude that (X, T) is strongly T_0-sensitive, finishing the proof of the claim.

Assume that (X, T) is not PI. By Lemma 5.3, θ^* : X_ω → X is proximal, π_ω : X_ω → Y_ω is weakly mixing, RIC and not an isomorphism. By Lemma 5.4, there are s ∈ Y_ω and u ∈ π_ω^(-1)(s) such that P_π[u] is dense in the π_ω^(-1)(s). Since π_ω is not proximal, there is v ∈ X_ω such that (u, v) is distal and π_ω(v) = π_ω(u). Since θ^* is proximal, we know that (θ^*(v), θ^*(u)) is distal. As P_π[u] is dense in the π_ω^(-1)(s), there are v_i → v such that v_i ≠ v and (v_i, u) is proximal. This implies that (θ^*(v_i), θ^*(u)) is proximal. It is clear that θ^*(v_i) ≠ θ^*(v) and θ^*(v_i) → θ^*(v). Applying the claim we just proved, we conclude that (X, T) is strongly T_0-sensitive, a contradiction.

Before proving the following key result for Theorem D we need two well known lemmas.
Lemma 5.6. Let $\pi : X \longrightarrow Y$ be an open factor map between two t.d.s. Assume that $y \in Y$ and $y_i \rightarrow y$. Then for any $z \in \pi^{-1}(y)$ there are $z_i \in \pi^{-1}(y_i)$ such that $\lim z_i = z$.

Let $E(X, T)$ be the enveloping semigroup of (X, T).

Lemma 5.7. Let $\pi : X \longrightarrow Y$ be a distal factor map between two minimal t.d.s. Then π is open and $\pi^{-1}(py) = p\pi^{-1}(y)$ for any $y \in Y$ and any $p \in E(X)$.

Theorem 5.8. Let (X_3, T) be minimal and $X_1 \overset{\pi_1}{\longrightarrow} X_2 \overset{\pi_2}{\longrightarrow} X_3$, where π_1 is a non-trivial proximal extension, π_2 is a non-trivial distal extension and X_1 is distal. If $P(X_3)$ is not closed then X_3 is strongly F_t-sensitive.

Proof. Since $P(X_3)$ is not closed, there are a distal pair $(x_1, x_2) \in X_3 \times X_3$ and proximal pairs $(x_1(i), x_2(i)) \in X_2 \times X_2$ for all $i \in \mathbb{N}$ such that $(x_1(i), x_2(i)) \rightarrow (x_1, x_2)$. Let $\pi = \pi_1 \pi_2$. It is clear that $\pi(x_1(i)) = \pi_1(x_2(i))$ since X_1 is distal. This implies that $\pi(x_1) = \pi(x_2)$. Moreover, we may assume that (x_1, x_2) is a minimal point. As $(\pi_2(x_1), \pi_2(x_2))$ is proximal and minimal we know that $\pi_2(x_1) = \pi_2(x_2)$. Let $\delta = \inf_{n \in \mathbb{Z}_+} d(T^n x_1, T^n x_2)$ and U_i be an open neighborhood of x_i with $\text{diam}(U_i) < \delta/6$, $1 \leq i \leq 2$.

Set $y = \pi_2(x_1)$ and $y_i = \pi_2(x_1(i))$, $i \in \mathbb{N}$. Then $\lim_{i \rightarrow \infty} y_i = y$. Let

$$M = \text{orb}((x_1, x_2), T \times T)$$

and $K = \{ x \in X_3 : (x_1, x) \in M \} \subset \pi_2^{-1}(y)$.

It is clear that $x_2 \in K$. Moreover, M is a minimal subsystem of $X_3 \times X_3$ and for any $(z_1, z_2) \in M$ we have that $\pi_2(z_1) = \pi_2(z_2)$. Let $p : M \longrightarrow X_3$ be the projection to the first coordinate. Then $p^{-1}(x_1) = \{ x_1 \} \times K$ and p is a distal extension. Put $p^{-1}(x_1(i)) = \{ x_1(i) \} \times K_i$, $i \in \mathbb{N}$.

Since $M \cap (U_1 \times U_2)$ is an open neighborhood of (x_1, x_2) and p is open, by Lemma 5.6 there are $x'_2(i) \in K_i$ such that $(x_1(i), x'_2(i)) \in M \cap (U_1 \times U_2)$ since $\lim_{i \rightarrow \infty} x_1(i) = x_1$. Note that $x'_2(i) \in K_i$ and thus $\pi_2(x'_2(i)) = y_i$.

We can choose a sequence $\{ \eta_i \}$ such that $T^{\eta_i}(x_1) \rightarrow (x_1(i))$. Then there is $z \in K$ such that $T^{\eta_i}(x_1, z) \rightarrow (x_1(i), x'_2(i)) \in M \cap (U_1 \times U_2)$ by Lemma 5.7 using the distality of p.

As $(x_1(i), x_2(i))$ is proximal, $(x_1(i), x'_2(i))$ (in the orbit closure of (x_1, x_2)) is distal and $x_2(i), x'_2(i) \in U_2$ we know that

$$\{ n \in \mathbb{Z}_+ : d(T^n x_1(i), T^n x_2(i)) < \delta/6 \} \in F_t.$$

By the definition of δ we get $\inf_{k \in \mathbb{Z}_+} d(T^{k x_1(i)}, T^{k x'_2(i)}) \geq \delta$ which implies that

$$\{ n \in \mathbb{Z}_+ : d(T^n x_1(i), T^n x'_2(i)) > \delta/6 \} \notin F_t.$$

Since this holds for each neighborhood of x_2, we conclude that X_3 is strongly F_t-sensitive.

\[\square\]

Lemma 5.9. Let (Z_{n+1}, T) be minimal and consider the strictly PI tower $Z_1 \overset{\theta_1}{\longrightarrow} Y_1 \overset{\rho_1}{\longrightarrow} Z_2 \overset{\theta_2}{\longrightarrow} Y_2 \overset{\rho_2}{\longrightarrow} Z_3 \overset{\theta_3}{\longrightarrow} \ldots \overset{\rho_{n}}{\longrightarrow} Y_n \overset{\theta_{n+1}}{\longrightarrow} Z_{n+1}$, where θ_i is a non-trivial proximal extension, ρ_i is a non-trivial distal extension and Z_1 is distal. If (Z_{n+1}, T) is not strongly F_t-sensitive, then $P(Z_{n+1})$ is closed.

Proof. We prove this lemma by induction on n. For $n = 1$ it is just Theorem 5.8. Now we assume that the theorem holds for $n \leq k - 1$, we prove it still hold for $n = k$. Let Z_D be the
Let \(\pi: X \rightarrow Y \) be a factor map between minimal systems.

(1) If \(P(X) \) is closed, then \(P(Y) \) is closed.

(2) If \(\pi \) is proximal and \(P(Y) \) is closed, then \(P(X) \) is closed.

Proof. (1) follows from Lemma 2 in [4].

(2) Let \((x_i, x'_i)\) be proximal pairs in \(P(X) \) such that \((x_i, x'_i) \rightarrow (x, x')\). Then \((\pi(x_i), \pi(x'_i))\) are proximal pairs in \(P(Y) \) such that \((\pi(x_i), \pi(x'_i)) \rightarrow (\pi(x), \pi(x'))\). Since \(P(Y) \) is closed, \((\pi(x), \pi(x')) \in P(Y)\). So there exists \(p \in E(X) \) (where \(E(X) \) is the Ellis semigroup of \(X \)) such that \(p \pi(x) = p \pi(x')\), i.e. \(\pi(p \pi(x)) = \pi(p \pi(x'))\). Since \(\pi \) is proximal, there exists \(q \in E(X) \) such that \(q \pi x = q \pi x'\), i.e., \((x, x') \in P(X)\). So \(P(X) \) is closed.

Lemma 5.10. Let \(\pi: X \rightarrow Y \) be a factor map between minimal systems.

(1) If \(P(X) \) is closed, then \(P(Y) \) is closed.

(2) If \(\pi \) is proximal and \(P(Y) \) is closed, then \(P(X) \) is closed.

Proof. (1) follows from Proposition 5.2.

(2) Assume that \((X, T)\) is invertible first. Then \((\pi(x), \pi(x')) \in P(Y)\).

By Proposition 5.5 \((X, T)\) is PI. Consider the strictly PI-tower in the structure theorem,

\[
Z_1 \xleftarrow{\theta_1} Y_1 \xleftarrow{\rho_1} Z_2 \xleftarrow{\theta_2} Y_2 \xleftarrow{\rho_2} Z_3 \xleftarrow{\theta_3} \ldots X_\infty.
\]

By Proposition 5.1 \(X_\infty\) is not strongly \(\mathcal{F}_T\)-sensitive. So each finite tower

\[
Z_1 \xleftarrow{\theta_1} Y_1 \xleftarrow{\rho_1} Z_2 \xleftarrow{\theta_2} Y_2 \xleftarrow{\rho_2} Z_3 \xleftarrow{\theta_3} \ldots Z_n \xleftarrow{\theta_n} Y_n \xleftarrow{\rho_n} Z_{n+1}
\]

is not strongly \(\mathcal{F}_T\)-sensitive.

Then By Lemma 5.9, \(P(Z_{n+1})\) is closed. So \(P(Y_n)\) is closed by Lemma 5.10. By Lemma 5.11, \(P(X_\infty)\) is closed. By Lemma 5.10, \(P(X)\) is closed. So \(P(X)\) is an equivalence relation [29], then \(\pi: X \rightarrow X_D\) is proximal.

When \((X, T)\) is not invertible, let \((\tilde{X}, \tilde{T})\) be the natural extension of \((X, T)\). If \(P(X, T)\) is not closed, then by Lemma 5.10 \(P(\tilde{X}, \tilde{T})\) is not closed. Since \((\tilde{X}, \tilde{T})\) is an invertible minimal system, \((\tilde{X}, \tilde{T})\) is strong \(\mathcal{F}_T\)-sensitive. So by Proposition 2.7, \((X, T)\) is strong \(\mathcal{F}_T\)-sensitive, a contradiction. So \(P(X, T)\) is closed, then \(\pi: X \rightarrow X_D\) is proximal.

To get a better understanding of Theorem 5.8, we give a well know example which is strongly \(\mathcal{F}_T\)-sensitive.

To do so, first we give some other criteria of strongly \(\mathcal{F}_T\)-sensitivity.

Proposition 5.12. Let \((X, T)\) be minimal and invertible. If there are \(x \neq y\) such that \(x, y\) is proximal for \(T^{-1}\) and \(\inf_{n \in \mathbb{Z}^+} d(T^n x, T^n y) > 0\), then \((X, T)\) is strongly \(\mathcal{F}_r\)-sensitive.

Proof. Let \(\inf_{n \in \mathbb{Z}^+} d(T^n x, T^n y) = 2\delta > 0\), \(U\) be any open set of \(X\) and \(l \in \mathbb{N}\) with \(T^l x \in U\). Put \(x_1 = T^l x\) and \(y_1 = T^l y\), then \((x_1, y_1)\) is proximal for \(T^{-1}\) and \(\inf_{n \in \mathbb{Z}^+} d(T^n x_1, T^n y_1) \geq 2\delta\). Since \(U\) is a neighborhood of \(x_1\), there is \(\varepsilon > 0\) such that \(B_\varepsilon(x_1) \subset U\) for \(\varepsilon < \frac{\delta}{2}\). Set \(V = B_\varepsilon(y_1)\). Since \(x_1, y_1\) is proximal for \(T^{-1}\), \(\{n < 0 : d(T^n x_1, T^n y_1) < \varepsilon/2\}\) is thick in \(\mathbb{Z}^-\). As \((X, T)\) is minimal, we know that \((X, T^{-1})\) is minimal. Thus, \(\{n < 0 : T^n x_1 \in V\}\) is syndetic in \(\mathbb{Z}^-\). There is \(s < 0\) such that \(T^s x_1 \in V\) and \(d(T^s x_1, T^s y_1) < \varepsilon/2\). This implies that \(T^s x_1, T^s y_1 \in U\). Set \(z_1 = T^s x_1\) and \(z_2 = T^s y_1\). Then \(\{m \in \mathbb{Z}_+ : d(T^m z_1, T^m z_2) > \delta\} = [-s, \infty)\) is thick. So \((X, T)\) is strongly \(\mathcal{F}_r\)-sensitive. \(\square\)

We will give an application of Proposition 5.12, namely we shall show that the Morse minimal system is strongly \(\mathcal{F}_r\)-sensitive. The following results related to Morse system are basic and well known, see for example [15].

The Morse sequence \(\omega(n)\):

\[
0110100110010110\ldots
\]

can be described by the following algorithms.
\[
\omega(0) = 0, \, \omega(2n) = \omega(n), \, \omega(2n + 1) = 1 - \omega(n) (n \in \mathbb{N}).
\]
Considering \(\omega\) as an element of \(\Omega = \{0, 1\}^\mathbb{Z}\) where \(\omega(-n) = \omega(n - 1)\), let \(X \subset \Omega\) be its orbit closure under the shift \(\sigma\) with \(\sigma \xi(n) = \xi(n + 1)\). Then \((X, \sigma)\) is a minimal flow called the Morse minimal set.

The homeomorphism \(\varphi : \xi \mapsto \overline{\xi}\) where \(\overline{\xi}(n) = \xi(n)\) (and \(\overline{0} = 1, \overline{1} = 0\)) preserves \(X\) and commutes with \(\sigma\). The quotient space \(Y\), of \(X\) modulo the group \(\{\varphi, \varphi^2 = id\}\) is a factor of \((X, \sigma)\) in the sense that the natural projection \(\pi_1 : X \rightarrow Y\) satisfies \(\pi_1 \sigma = \sigma \pi_1\). For every \(\xi \in X\) there exists a sequence \(k_i\) such that \(\sigma^{k_i} \rightarrow \overline{\xi}\) and we can associate with \(\xi\) the dyadic sequence \(\{a_n\} : 0 \leq a_n \leq 2^n - 1\), according to the rule \(a_n = \lim\{k_i(n \mod 2^n)\}\). It is easy to check that this limit exists and is independent of the particular choice of the sequence \(\{k_i\}\).

Clearly also the dyadic sequences corresponding to \(\xi\) and \(\overline{\xi}\) coincide, so that we can consider the map \(\pi_2 : Y \rightarrow G\) where \(G\) is the compact group of sequences \(\{\{a_n\} : 0 \leq a_n \leq 2^n - 1, a_{n+1} = a_n (\mod 2^n)\}\). Moreover \(\pi_2 \sigma y = (\pi_2 y) + 1\) where \(1 = (1, 0, 0, \ldots) \in G\). In fact it is not hard to describe \(\pi_2\) explicitly. If \(\eta \in \Omega\) is defined by \(\eta(n) = \omega(n)\) for \(n \geq 0\) and \(\eta(n) = \overline{\omega(n)}\) for \(n < 0\) then \(\eta \in X\) and denoting \(y_1 = \pi_1(\omega), y_2 = \pi_1(\eta)\) we have for all \(n \in \mathbb{Z}\), \(\pi_2^{-1}(n \cdot 1) = \{\sigma^{n} y_1, \sigma^{n} y_2\}\) while \(\pi_2^{-1}(g)\) is a singleton for every \(g \in G \setminus \{n \cdot 1 : n \in \mathbb{Z}\}\). The map \(\pi_2\) is therefore almost one to one hence proximal.

Example 5.13. The Morse minimal system is strongly \(\mathcal{F}_r\)-sensitive.

Proof. Let \(X\) be the Morse minimal system. Then \(\pi_1 : X \rightarrow Y\) is a group extension and \(\pi_2 : Y \rightarrow G\) is an almost one-to-one extension. It is easy to see that \(\inf_{n \in \mathbb{Z}^+} d(\sigma^{n} \overline{\omega}, \sigma^n \eta) > 0\) and \((\overline{\omega}, \eta)\) is asymptotic for \(\sigma^{-1}\). By Proposition 5.12, we conclude that the Morse minimal system is strongly \(\mathcal{F}_r\)-sensitive. \(\square\)

5.2. Strong \(\mathcal{F}_{poind}\) and \(\mathcal{F}_{d,\alpha}\)-sensitivity. In this subsection, we discuss strong \(\mathcal{F}_{poind}\) and \(\mathcal{F}_{d,\alpha}\)-sensitivity. In this subsection we assume that \(T\) is a homeomorphism.
Definition 5.14. Let \((X, T)\) be a t.d.s. We say \((X, T)\) is strongly \(\mathcal{F}_{\text{Poin}}\)-sensitive if there is \(\delta > 0\) such that for each open subset \(U\) of \(X\), there are \(x, y \in U\) with \(\{n \in \mathbb{Z} : d(T^n x, T^n y) > \delta\} \in \mathcal{F}_{\text{Poin}}\) (resp. \(\mathcal{F}_{\text{Poin}}^*\)).

We state some basic notations, definitions and results related to \(\mathcal{F}_{\text{Poin}}\), \(\mathcal{F}_{\text{Poin}}^*\) first. We say that \(S \subset \mathbb{Z}\) is a set of \(d\)-recurrence if for every measure preserving system \((X, \mathcal{F}, \mu, T)\) and for every \(A \in \mathcal{F}\) with \(\mu(A) > 0\), there exists \(n \in S \setminus \{0\}\) such that \(\mu(A \cap T^{-n} A \cap \cdots \cap T^{-dn} A) > 0\). Let \(\widetilde{\mathcal{F}}\) be the family consisting of all sets of \(d\)-recurrence. By Furstenberg’s multiple ergodic theorem the definition is reasonable. A striking result due to Furstenberg and Katznelson [13, Theorem C] in our terms is that \(\mathcal{F}_{\text{Poin}} \subset \mathcal{F}_{\text{Poin}}\). So we have

Proposition 5.15. If a minimal system \((X, T)\) is not strongly \(\mathcal{F}_{\text{Poin}}\)-sensitive, then it is an almost one-to-one extension of its maximal \(\infty\)-step nilfactor.

Proof. It follows from the fact \(\mathcal{F}_{\text{Poin}} \subset \mathcal{F}_{\text{Poin}}\) and Theorem B. \(\square\)

A subset \(A\) of \(\mathbb{Z}\) is a \(\text{Nil}_d\) \(\text{Bohr}_0\)-set if there exist a \(d\)-step nilsystem \((X, T), x_0 \in X\) and an open neighborhood \(U\) of \(x_0\) such that \(N(x_0, U) := \{n \in \mathbb{Z} : T^n x_0 \in U\}\) is contained in \(A\). Denote by \(\mathcal{F}_{d,0}\) the family consisting of all \(\text{Nil}_d\) \(\text{Bohr}_0\)-sets. Let \(\mathcal{F}_{GP_d}\) be the family generated by the sets of forms

\[\bigcap_{i=1}^{k} \{n \in \mathbb{Z} : P_i(n) \mod \mathbb{Z} \in (-\varepsilon_i, \varepsilon_i)\},\]

where \(k \in \mathbb{N}\), \(P_1, \ldots, P_k\) are generalized polynomials of degree \(\leq d\), and \(\varepsilon_i > 0\). For the definition of generalized polynomials, see [23, Page 21]. We have [23, Proposition 7.21, Proposition 7.24] for each \(d \in \mathbb{N}\), \(\mathcal{F}_{d,0}\) is a filter, and \(\mathcal{F}_{\text{Poin}}\) has the Ramsey property.

The following two lemmas will be used in the next theorem.

Lemma 5.16. [23, Theorem E] \((X, T)\) be a minimal system and \(x, y \in X\). Then the following statements are equivalent for \(d \in \mathbb{N} \cup \{\infty\}\):

1. \((x, y) \in \mathbb{RP}^d\).
2. \(N(x, U) \in \mathcal{F}_{d,0}\) for each neighborhood \(U\) of \(y\).
3. \(N(x, U) \in \mathcal{F}_{\text{Poin}}\) for each neighborhood \(U\) of \(y\).

Lemma 5.17. [23, Theorem F] \((X, T)\) be a minimal system, \(x \in X\) and \(d \in \mathbb{N} \cup \{\infty\}\). Then the following statements are equivalent:

1. \(x\) is a \(d\)-step AA point.
2. \(N(x, V) \in \mathcal{F}_{d,0}\) for each neighborhood \(V\) of \(x\).
3. \(N(x, V) \in \mathcal{F}_{\text{Poin}}\) for each neighborhood \(V\) of \(x\).

Using Lemma 5.17 instead of using Proposition 3.1 we have the following result by the same proof of Theorem 3.2.

Theorem 5.18. Let \((X, T)\) be a minimal system and \(d \in \mathbb{N}\). Then \((X, T)\) is \(\mathcal{F}_{\text{Poin}}\)-sensitive if and only if \(\pi : X \rightarrow X_{eq}\) is not almost one-to-one.

Using the idea of the proof of Proposition 4.7 and Proposition 4.11, we obtain the following result.
Theorem 5.19. If \((X, T)\) is a strongly \(\mathcal{F}_{\text{Poin}}\)-sensitive minimal system, then \(\pi : X \to X_d\) is not an almost one-to-one extension.

Proof. Suppose that \((X, T)\) is strongly \(\mathcal{F}_{\text{Poin}}\)-sensitive with the sensitive constant \(10\delta\) and \(\pi : X \to X_d\) is an almost one-to-one extension. Then there is \(x \in X\) such that \(\mathbb{R}P^{[d]}[x] = x\).

Let \(\delta' < \delta\) and \(U = B(x, \delta')\), then there are \(y, z \in U\) such that
\[
F = \{n \in \mathbb{Z} : d(T^n y, T^n z) > 10\delta\} \in \mathcal{F}_{\text{Poin}}.
\]
By the Ramsey property of \(\mathcal{F}_{\text{Poin}}\), \(F_1 = \{n \in \mathbb{Z} : d(T^n x, T^n u) > 5\delta\} \in \mathcal{F}_{\text{Poin}}\), where \(u = y\) or \(u = z\). As \(\mathbb{R}P^{[d]}[x] = x\), by Lemma 5.16 we have \(F_2 = N(x, U) \in \mathcal{F}^\ast_{\text{Poin}}\). So
\[
F_3 = F_1 \cap F_2 \subseteq \{n \in \mathbb{Z} : d(x, T^n u) > 5\delta - \delta'\} \in \mathcal{F}_{\text{Poin}}.
\]
Then by the Ramsey property of \(\mathcal{F}_{\text{Poin}}\) and using the same argument as in the proof of Proposition 4.11, we deduce that there are \(v \in X\) with \(d(u, v) \geq \delta\) and for each neighborhood \(V\) of \(v\), \(N(u, V) \in \mathcal{F}_{\text{Poin}}\). It is clear that \((u, v) \in \mathbb{R}P^{[d]}(X)\) by Lemma 5.16. Moreover, we know that \(\pi(u) = \pi(v)\) since \(\mathbb{R}P^{[d]}(X_d) = \Delta\). This contradicts to the fact that \(\mathbb{R}P^{[d]}[x] = x\), showing that \(\pi\) is not almost one-to-one.

\(\square\)

Corollary 5.20. If \((X, T)\) is strongly \(\mathcal{F}^\ast_{d,0}\)-sensitive minimal system, then \(\pi : X \to X_d\) is not an one-to-one extension.

Proof. The proof is similar with Theorem 5.19. \(\square\)

It is unexpected that the converse of Theorem 5.19 fails. To give a counter-example we need

Lemma 5.21. [23, Theorem B, Corollary D] For \(d \in \mathbb{N}\), \(\mathcal{F}_{d,0} = \mathcal{F}_{\text{GP}_{d}}\) and \(\mathcal{F}_{\text{Poin}} \subset \mathcal{F}_{d,0}^\ast\).

Example 5.22. There is a minimal system which is not an almost one-to-one extension of the maximal \((d - 1)\)-step nilfactor and the system is not strongly \(\mathcal{F}_{\text{Poin}_{d-1}}\)-sensitive.

Proof. For \(d \geq 2\) define \(T_{\alpha,d} : \mathbb{T}^d \to \mathbb{T}^d\) by
\[
T_{\alpha,d}(\theta_1, \theta_2, \cdots, \theta_d) = (\theta_1 + \alpha, \theta_2 + \theta_1, \cdots, \theta_d + \theta_{d-1})
\]
where \(\alpha \in \mathbb{R}\). When \(\alpha \in \mathbb{R} \setminus \mathbb{Q}\), \((\mathbb{T}^d, T_{\alpha,d})\) is minimal. A simple computation yields that
\[
T_{\alpha,d}^n(\theta_1, \theta_2, \cdots, \theta_d) = (\theta_1 + n\alpha, \theta_2 + n\theta_1 + \frac{1}{2} n(n-1)\alpha, \cdots, \sum_{i=0}^{d-n} (\frac{n}{d})\theta_i)
\]
where \(\theta_0 = \alpha, n \in \mathbb{Z}\) and \(\binom{n}{i} = 1, \binom{n}{i} = \frac{\prod_{j=0}^{i-1} (n-j)}{i!}\) for \(i = 1, 2, \cdots, d\).

\((\mathbb{T}^d, T_{\alpha,d})\) is a \(d\)-step nilsystem, so we have \(\mathbb{R}P^{[d]}(\mathbb{T}^d) = \Delta_{\mathbb{T}^d}\), and for \(s < d\)
\[
\mathbb{R}P^{[s]}(\mathbb{T}^d) = \{(x, y) : \text{the first } s \text{ coordinates of } x, y \text{ are the same}\}.
\]

When \(\alpha \in \mathbb{R} \setminus \mathbb{Q}\), \((\mathbb{T}^d, T_{\alpha,d})\) is minimal and not an almost one-to-one extension of its maximal \((d - 1)\)-step nilfactor. We will prove that \(\mathbb{T}^d\) is not strongly \(\mathcal{F}_{\text{Poin}_{d-1}}\)-sensitive.

Assume the contrary that it is strongly \(\mathcal{F}_{\text{Poin}_{d-1}}\)-sensitive. That is, there is \(\delta > 0\) such that for any \(x \in \mathbb{T}^d\) and \(\varepsilon \in \mathbb{R}\), there is \(y \in \mathbb{T}^d\) such that \(\|x - y\| < \varepsilon\) and \(\{n \in\)
\[Z : d(T^n_{\alpha,d}x, T^n_{\alpha,d}y) > 2\delta \in \mathcal{F}_{\text{Poin}d^{-1}}. \] We can choose \(x = 0 \) and \(\varepsilon = \delta \), then we have \(y = (y_1, y_2, \cdots, y_d) \) with

\[\{ n \in \mathbb{Z} : d(T^n_{\alpha,d}0, T^n_{\alpha,d}y) > 2\delta \} \in \mathcal{F}_{\text{Poin}d^{-1}} \]

and \(\|y\| < \delta \). A simple computation yields that \(T^n_{\alpha,d}y - T^n_{\alpha,d}0 = (y_1, 0, \cdots, 0) + (0, T^n_{y_1,d-1}(y_2, y_3, \cdots, y_d)) \)

We know that

\[\mathbb{Z} : d(T^n_{\alpha,d}0, T^n_{\alpha,d}y) > 2\delta \in \mathcal{F}_{\text{Poin}d^{-1}} \]

So we have

\[F_1 = \{ n \in \mathbb{Z} : \|T^n_{y_1,d-1}(y_2, y_3, \cdots, y_d)\| \geq \delta \} \in \mathcal{F}_{\text{Poin}d^{-1}} \]

since \(F_1 \supset \{ n \in \mathbb{Z} : d(T^n_{\alpha,d}0, T^n_{\alpha,d}y) > 2\delta \} \).

Define

\[F_2 = \{ n \in \mathbb{Z} : \text{the absolute value of each coordinate of } T^n_{y_1,d-1}(y_2, y_3, \cdots, y_d) \text{ is less than } \delta \}. \]

We know that \(F_2 \in \mathcal{F}_{GPd^{-1}} \) by the definition of generalized polynomials. Moreover, we have

\[F_2 \subset F_3 = \{ n \in \mathbb{Z} : \|T^n_{y_1,d-1}(y_2, y_3, \cdots, y_d)\| < \delta \}. \]

Thus, \(F_1 \cap F_3 = F_2 \) which implies that \(F_1 \cap \mathcal{F}_{GPd^{-1}} = \mathcal{F}_{d^{-1},0} \). So \(F_1 \notin \mathcal{F}_{d^{-1},0} \) which implies that \(F_1 \notin \mathcal{F}_{\text{Poin}d^{-1}} \) by Lemma 5.21, a contradiction.

\[\square \]

REFERENCES

[1] E. Akin and S. Kolyada, *Li-Yorke sensitivity*, Nonlinearity **16** (2003), no. 4, 1421–1433.

[2] J. Auslander, *On the proximal relation in topological dynamics*, Proc. Amer. Math. Soc., **11**(1960), 890-895.

[3] J. Auslander, *Minimal flows and their extensions*, North-Holland Mathematics Studies 153, Elsevier, 1988.

[4] J. Auslander and B. Horelick, *Regular minimal sets. II. The proximally equicontinuous case*, Compositio Math., **22**(1970), 203-214.

[5] J. Auslander and J. A. Yorke, *Interval maps, factors of maps, and chaos*, Tôhoku Math. J. (2) **32** (1980), no. 2, 177–188.

[6] V. Bergelson, *Ultrafilters, IP sets, dynamics, and combinatorial number theory*, Ultrafilters across mathematics, 23C47, Contemp. Math., 530, Amer. Math. Soc., Providence, RI, 2010.

[7] F. García-Ramos, *Weak forms of topological and measure theoretical equicontinuity: relationships with discrete spectrum and sequence entropy*, Ergod. Th. and Dynam. Sys., to appear.

[8] P. Dong, S. Donoso, A. Maass, S. Shao and X. Ye, *Infinite-step nilsystems, independence and complexity*, Ergod. Th. and Dynam. Sys., **33**(2013), 118-143.

[9] P. Dong, S. Shao and X. Ye, *Product recurrent properties, disjointness and weak disjointness*, Israel J. of Math., **188**(2012), 463-507.

[10] T. Downarowicz and E. Glasner, *Isomorphic extension and applications*, arXiv:1502.06999[math.DS], TMNA, to appear.

[11] R. Ellis, S. Glasner and L. Shapiro, *Proximal-Isometric Flows*, Adv. in Math., **17**(1975), 213-260.

[12] H. Furstenberg, *Recurrence in ergodic theory and combinatorial number theory*, M. B. Porter Lectures. Princeton University Press, Princeton, N.J., 1981.

[13] H. Furstenberg and Y. Katznelson, *An ergodic Szemerédi theorem for IP-systems and combinatorial theory*, J. d’anal. Math., **45**(1985), 117-168.

[14] J. Gillis, *Notes on a property of measurable sets*, J. Lon. Math. Soc., **11**(1936), 139-141.

[15] E. Glasner, Book reviews, Bull. (New Series) of Amer. Math. Soc., **21**(1989), 316-319.
[16] E. Glasner, Y. Gutman and X. Ye, Higher order regionally proximal equivalence relations for general group actions, preprint, 2016.
[17] E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity 6 (1993), no. 6, 1067–1075.
[18] E. Glasner and B. Weiss, On the construction of minimal skew-product, Israel J. of Math., 34(1979), 321-336.
[19] B. Host, B. Kra and A. Maass, Nilsequences and a structure theory for topological dynamical systems, Adv. in Math., 224 (2010) 103-129.
[20] W. Huang, D. Khilko, S. Kolyada and G.H. Zhang, Dynamical compactness and sensitivity, J. Differential Equation, 260 (2016), no. 9, 6800-6827.
[21] W. Huang, S. Kolyada and G.H. Zhang, Analogues of Auslander-Yorke theorems for multi-sensitivity, arXiv:1509.08818[math.DS], Ergod. Th. and Dynam. Sys., to appear.
[22] W. Huang, P. Lu, and X. Ye, Measure-theoretical sensitivity and equicontinuity, Israel J. Math. 183 (2011), 233–283. MR 2811160
[23] W. Huang, S. Shao and X. Ye, Nil Bohr-sets and almost automorphy of higher order, arXiv:1407.1179[math.DS], Memoirs of Amer. Math. Soc., v. 241, No: 1143, 2016.
[24] J. Li, Dynamical characterization of C-sets and its application, Fund. Math., 216 (2012), 259–286.
[25] R. Li and Y. Shi, Stronger forms of sensitivity for measure-preserving maps and semiflows on probability spaces, Abstr. Appl. Anal., Art. ID 769523, 10 pages (2014).
[26] J. Li, S. Tu and X. Ye, Mean equicontinuity and mean sensitivity, Ergod. Th. and Dynam. Sys., 35(2015), 2587-2612.
[27] J. Li and X. Ye, Recent development of chaos theory in topological dynamics, Acta. Math. Sinica, English Series, 32(2016), no. 1, 83-114.
[28] H. Liu, L. Liao and L. Wang, Thickly syndetical sensitivity of topological dynamical system, Discrete Dyn. Nat. Soc., Art. ID 583431, 4 pages (2014).
[29] L. Shapiro, Proximality in minimal transformation groups, Proc.of the Amer. Math. Soc., 26(1970), 521-525.
[30] T. K. Subrahmonian Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity 20 (2007), no. 9, 2115-2126.
[31] D. Ruelle, Dynamical systems with turbulent behavior, Mathematical problems in theoretical physics (Proc. Internat. Conf., Univ. Rome, Rome, 1977), Lecture Notes in Phys., vol. 80, Springer, Berlin-New York, 1978, pp. 341-360.
[32] S. Shao and X. Ye, Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence, Adv. Math., 231 (2012), 1786–1817.

(X. Ye, T. Yu) WU WEN-TSUN KEY LABORATORY OF MATHEMATICS, USTC, CHINESE ACADEMY OF SCIENCES, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEBEI, ANHUI, 230026, P.R. CHINA
E-mail address: yexd@ustc.edu.cn
E-mail address: ytnuo@mail.ustc.edu.cn