From Sticky-Hard-Sphere to Lennard-Jones-Type Clusters

Lukas Trombach,1 Robert S. Hoy,2 David J. Wales,3 and Peter Schwerdtfeger1,4,*

1Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0632 Auckland, New Zealand
2Department of Physics, University of South Florida, Tampa, Florida 33620, USA
3University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK
4Centre for Advanced Study (CAS) at the Norwegian Academy of Science and Letters, Drammensveien 78, NO-0271 Oslo, Norway

(Dated: September 23, 2018)

A relation $M_{\text{SHS-LJ}}$ between the set of non-isomorphic sticky hard sphere clusters M_{SHS} and the sets of local energy minima M_{LJ} of the (m,n)-Lennard-Jones potential $V_{\text{LJ}}^m(n) = \frac{r_s \epsilon}{n} (m r_s^n - n r_s^m)$ is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both m and n, and increases exponentially with increasing cluster size N for $N \geq 10$. While the map from $M_{\text{SHS}} \rightarrow M_{\text{SHS-LJ}}$ is non-injective and non-surjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to $N = 13$, and most of the missing structures correspond to energetically unfavourable minima even for fairly low (m,n). Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a $(6,12)$-Lennard-Jones potential.

I. INTRODUCTION

The nucleation of atoms and molecules in the gas phase, or liquid, to the solid state is still an active research field [1–8]. Rowland noted in 1949 that “The gap between theory and the experimental approaches to nucleation has been too wide” and “the subject [nucleation] is still in the alchemical stage” [9]. Recent experimental approaches to nucleation has been too wide” and the mapping is therefore only surjective. From the Gregory-Newton kissing-number argument proved in 1953 by Schütte and van der Waerden [40], no sphere can be surrounded by more than 12 spheres of equal radius [41]. For small clusters, graph-theoretic arguments dictate $\max(N_c) \leq N(N - 1)/2$. Thus a loose bound on the maximum contact number $N_c(N)$ is

$$N_c^{\max}(N) \leq \min\{N(N - 1)/2, f(N)\}$$

with $f(N) = 6N$. This upper bound has been tightened several times, most recently by Bezděk and Reid [42] to

$$f(N) = 6N - 3(18)^{1/3} \pi^{2/3} N^{2/3}.$$

In Refs. [47, 38] it was shown that $N_c^{\max}(N) = \{6, 9, 12, 15, 18, 21, 25, 29, 33, 36, 40, 44, 48, 52, 56, 60\}$ for $4 \leq N \leq 19$. While determining $N_c^{\max}(N)$ for arbitrary N is

* Email: p.a.schwerdtfeger@massey.ac.nz
used in cluster physics relate to more physically relevant, few such studies have been performed, e.g. recent studies of \([37, 38]\). Unfortunately, such precise calculations are very act enumeration studies employing geometric rejection rules (LJ form):

\[|M| \]

Here \(N \) is the number of structures in \(M \) under certain conditions \(\lim_{N \to \infty} |M(N)| \propto \exp(\alpha N) \) \[44\]. For SHS clusters, the complete set \(M_{\text{SHS}}(N,N_e) \) has been exactly determined for \(N \leq 14 \) and \(3N - 6 \leq N_e \leq N_{\text{max}}(N) \) via exact enumeration studies employing geometric rejection rules \[37\] \[38\]. Unfortunately, such precise calculations are very difficult for finite-ranged potentials since exhaustive searches for energy minima are computationally intensive \[46\]. Only a few such studies have been performed, e.g. recent studies of \(N \leq 19 \) clusters interacting via short-range Morse potentials \[13\] \[15\] \[47\].

It remains unclear how the HCR-SRA models commonly used in cluster physics relate to more physically relevant, softer interaction potentials such as the \((m,n)-\text{Lennard-Jones (LJ)}\) form:

\[
V_{m,n}^{LJ}(r) = \frac{\varepsilon}{n-m} \left[m \left(\frac{r_c}{r} \right)^n - n \left(\frac{r_c}{r} \right)^m \right] \quad (\text{with } n > m). \tag{4}
\]

Here \(\varepsilon > 0 \) is the dissociation energy and \(r_c \) the equilibrium two-body interparticle distance. To simplify the presentation, we (without loss of generality) adopt reduced units (\(\varepsilon = 1, r_c = 1 \)) below. For \(m,n \to \infty \), \(V_{m,n}^{LJ}(r) \to V_{\text{SHS}}(r) \) (Fig. 1); the energy landscapes of the two potentials converge in this limit. However, real systems are not in this limit. For example, for \(N = 13 \), there are \(|M_{\text{SHS}}| = 97,221 \) stable SHS clusters \[37\] \[38\], but only \(|M_{\text{LJ}}| = 1,510 \) stable \((m,n) = (6,12)\) LJ clusters \[49\]. This difference is understood qualitatively – energy landscapes are well known to support more local minima as the range of the interaction potential decreases \[50\] \[51\]. There are several effects that will cause the set of stable LJ clusters to increasingly deviate from the set of stable SHS clusters as interactions become longer ranged. As \(n \) and \(m \) decrease, second-nearest-neighbor attractions become increasingly important, producing stable structures with \(r_{ij} \leq 1 \). Fold catastrophes \[51\] \[52\] progressively eliminate stable SHS clusters, and several stable SHS structures may collapse into a single stable LJ cluster. However, detailed quantitative understanding of such effects remains rather limited.

In this paper, we quantitatively examine how stable \(N \leq 14 \) LJ cluster structures evolve away from the SHS limit as \((m,n)\) decrease. We focus on both the topography of the energy landscape (decreasing \(|M_{\text{LJ}}(N)|\)) and the evolving topologies of the stable cluster sets. We examine these changes in further detail for specific \(N = 13 – 14 \) clusters discussed by Gregory and Newton in the 1600s in the context of the kissing number problem \[40\], and also for a more realistic two-body potential that has been shown to accurately model rare-gas clusters \[23\].

II. COMPUTATIONAL METHODS

The \textit{pele} program \[53\] was used to generate putatively complete sets of local minima for \((m,n)-\text{Lennard-Jones potentials} V_{m,n}^{LJ}(r)\) as defined in Eq. (4). This program applies a basin-hopping algorithm that divides the potential energy surface into basins of attraction, effectively mapping each point in configuration space to a local minimum structure \[54\] \[56\]. The results confirmed the number of local minima reported in previous work \[57\]. Finite computer time limited our search to clusters of size \(N \leq 13 \).

Starting from the sticky hard sphere packings up to \(N = 14 \), with Cartesian coordinates given by the exact enumeration algorithm \[35\] including rigid hypostatic clusters \((N_e < 3N – 6)\) \[38\], we carried out geometry optimisations with \((m,n)\)-Lennard-Jones potentials using the multidimensional function minimiser from the C++ library \textit{dlib} \[58\]. The optimisation scheme was either the Broyden-Fletcher-Goldfarb-Shanno (BFGS) or the conjugate gradient (CG) algorithm. The optimisations were terminated when the change in energy (in reduced units) over the course of one optimization cycle was smaller than \(10^{-15}\). Subsequently, the eigenvalues of the Hessian were checked for all stationary points. If negative eigenvalues were found, the affected structures were reoptimized following displacements in both directions along the corresponding eigenvectors to locate true local minima. This procedure assures that the floppy SHS packings are successfully mapped into LJ minima.

As the optimisations often result in many duplicates, especially for small values of \(n \) and \(m \) where we have \(|M_{(m,n)-LJ}| \ll |M_{\text{SHS}}|\), the final structures were further analysed and sorted. Nonisomorphic SHS clusters can be distinguished (apart from permutation of the particles) by their different adjacency matrices for \(N \leq 13 \) \[38\]. This is not the case for soft potentials like the LJ potential since drawing edges (bonds) between the

FIG. 1: Lennard-Jones potentials for different exponents \((m,n)\) with fixed \(n = 2m \). As the exponents grow larger the well of attraction becomes narrower and its shape approaches the SHS potential. The dashed line shows the extended LJ potential for the xenon dimer \[48\].
vertices (atoms) becomes a matter of defining the distance cut-off criterion for a bond to be drawn. Therefore, we compare the interparticle distances \(r_{ij} \) instead: two clusters are isomorphic (structurally identical) if they have the same ordered set of inter-particle distances \(r_{ij} \). While enantiomers cannot be separated using this methodology, permutation-inversion isomers are usually lumped together, since the number of distinct minima is analytically related to the order of the corresponding point group \([52]\). To verify the number of distinct structures we introduced a second ordering scheme using the energy and moment of inertia tensor eigenvalues.

Two sets of structures are obtained from our optimization procedure: the first set contains all possible LJ minima \(M_{\text{LJ}} \) from the basin-hopping algorithm, while the second set \(M_{\text{SHS} \rightarrow \text{LJ}} \) contains the LJ minima obtained using only the \(M_{\text{SHS}} \) sticky-hard-sphere cluster structures as starting points for the geometry optimization. To compare and identify corresponding structures between the two sets, the \(N(N−1)/2 \) inter-particle distances \(r_{ij} \) were again used as an identifying fingerprint.

Two-body “extended Lennard-Jones” (ELJ) potentials that accurately model two-body interactions in rare-gas clusters can be written as expansions of inverse-power-law terms \([23]\):

\[
V_{\text{ELJ}}(r) = \sum_n c_n r^{-n},
\]

where in reduced units the condition \(\sum_n c_n = -1 \) holds. For comparison to the simple \((6,12)\)-LJ potential, we used the ELJ potential derived from relativistic coupled-cluster theory applied to the xenon dimer, with the following coefficients for the ELJ potential (in reduced units):

\[
\begin{align*}
c_6 &= -1.0760222355; & c_8 &= -1.4078314494; \\
c_9 &= -185.6149933139; & c_{10} &= +1951.8264493941; \\
c_{11} &= -8734.2286559729; & c_{12} &= +22292.320327203; \\
c_{13} &= -35826.8689874832; & c_{14} &= +37676.9744744424; \\
c_{15} &= -25859.2842295062; & c_{16} &= +11157.4331408911; \\
c_{17} &= -2745.9740079192; & c_{18} &= +293.9003309498 [48].
\end{align*}
\]

The ELJ potential for xenon is shown in Figure 1 (dashed line).

III. RESULTS

A. Exploring the limits of Lennard-Jones

To study the convergence behavior of the number of distinct (nonisomorphic) LJ minima in the SHS limit, we performed geometry optimisations, starting from all nonisomorphic SHS structures. We will show later that the number of unique minima obtained in this procedure \(|M_{\text{SHS} \rightarrow \text{LJ}}| \) only misses out on a small portion of minima obtained from the more exhaustive basin-hopping approach, i.e. \(|M_{\text{SHS} \rightarrow \text{LJ}}| \approx |M_{\text{LJ}}| \). The results for a constant chosen ratio of LJ exponents \(n/m = 2 \) are shown in Figure 2 (top).

\(|M_{\text{SHS} \rightarrow \text{LJ}}| \) smoothly converges towards the SHS limit (dashed line, values in Table 1) from below, thus demonstrating that for LJ systems the number of distinct minima does not grow faster than exponentially. The \((48,96)\)-LJ potential has \(\Delta M \equiv |M_{\text{LJ}}| - |M_{\text{SHS} \rightarrow \text{LJ}}| = (1, 1, 7, 91, 1019, 14890, 209938) \) fewer stable minima than the SHS potential. The fractions of missing minima \(\Delta M/|M_{\text{SHS}}| \) for this potential grow with increasing \(N \) and are respectively \((7.69, 1.92, 2.67, 5.46, 6.82, 9.15, 73.44)\%). Note that for \(N \geq 10 \) most of these missing minima correspond to high energy \((N_c < N^\text{max}) \) structures.

If the exponent \(n \) for the repulsive part of the LJ potential is increased with \(m \) kept constant, the LJ potential becomes equivalent to the SHS potential in the repulsive range but remains attractive at long range. Figure 2 (bottom) shows the convergence of the number of unique structures with respect to \(n \), at set \(m = 6 \) towards the SHS limit. Here, the number of distinct minima converges towards a number that is much smaller than the total number of SHS packings demonstrating that (as expected) the attractive part of the potential contributes significantly to the decrease of the number of local
minima compared to the rigid SHS model.

To see if the asymptotic increase in the number of distinct minima $|M(N)| \sim e^{\alpha N}$ is indeed exponential, we use Stillinger’s expression for the asymptotic exponential rise rate parameter \[\alpha = \lim \limits_{N \to \infty} \left(N^{-1} \ln |M(N)| \right). \] Figure 3 shows the number of distinct minima for SHS clusters obtained from the data shown in Table 1. The $N \geq 12$ SHS data gives $\alpha_{\text{SHS}} \approx 2.21$. Figure 3 also shows the (6,12)-LJ results obtained using basin-hopping; these yield $\alpha_{\text{LJ}} \approx 1.1$, which is close to the $\alpha = 0.8$ value estimated by Wallace [59] or to the recently given value of 1.04 by Forman and Cameron [45]. Note that the rapid increase of $|M_{\text{SHS}}|/|M_{\text{LJ}}|$ with N is explained by the much larger values of α for the SHS compared to the LJ clusters.

Using the results for $N \geq 13$ from Figure 3 we can calculate how α depends on the LJ range parameter n. As shown in Figure 4, a general function of the form
\[\alpha(n) = \alpha_{\text{max}} + \frac{a}{(n-n_0)^p} \] fits the results nicely, allowing the prediction of growth behaviour for different LJ potentials. For $|M_{(n/2,n)-\text{LJ}}|$, α_{max} is equivalent to $\alpha_{\text{SHS}} = 2.207$. The other adjusted parameters are $a = -66.588$, $n_0 = -3.386$ and $p = 1.473$ (Figure 4). We also show the ratio $\alpha(|M_{\text{SHS}-(n/2,n)-\text{LJ}}|)/\alpha(|M_{\text{SHS}-(6,n)-\text{LJ}}|)$ between the two different LJ asymptotic exponential rise rate parameters, which shows that larger clusters sizes need to be studied to correctly describe the asymptotic limit.

The distribution of minima as a function of (free) energy was suggested to be Gaussian [60]. Figure 5 shows the energy distribution of minima for different LJ $(n/2,n)$ potentials derived from SHS initial structures. We do not see a Gaussian type of distribution; this result does not change if we take the free energy at finite temperatures. The results indicate a “phase transition” in the potential energy landscape away from low-energy to high energy minima as n increases. The transition occurs at fairly small n. Results for the (9,18)-LJ potential indicate two HCR-SCA-like maxima that are not present for the (6,12)-LJ potential; these are associated with the $N_c = 34$ and $N_c = 35$ SHS clusters, respectively. It is also clear that (as expected) the distributions narrow with increasing n.

It is well known that the global minimum for rare gas clusters with 13 atoms is the ideal Mackay icosahedron [61][63]. Simple geometric considerations imply that such a symmetric
TABLE I: Number of distinct local minima $|\mathcal{M}_{\text{SHS}}|$ for cluster size N (from Refs. [56-58]) and contact number N_c from the exact enumeration, compared to the number of different structures obtained from a geometry optimisation starting from the set $\mathcal{M}_{\text{SHS-LJ}}(N,N_c)$ for a (6,12)-LJ potential. The overall number of unique minima $|\mathcal{M}_{\text{SHS-LJ}}(N,N_c)| = \sum_{N_c} |\mathcal{M}_{\text{SHS-LJ}}(N_c)|$ is shown in the following column. This result can be compared to the number of unique minima found using the basin-hopping method ($|\mathcal{M}_{\text{LJ}}|$). The difference $\Delta M = |\mathcal{M}_{\text{LJ}}| - |\mathcal{M}_{\text{SHS-LJ}}|$ is also listed.

| N | N_c | $|\mathcal{M}_{\text{SHS}(N_c)}|$ | $|\mathcal{M}_{\text{SHS-LJ}(N_c)}|$ | $|\mathcal{M}_{\text{SHS-LJ}}|$ | $|\mathcal{M}_{\text{LJ}}|$ | ΔM |
|-----|-----|-----------------|-----------------|-----------------|-----------------|-------|
| 8 | 8 | 18 | 13 | 8 | 8 | 8 |
| 9 | 21 | 52 | 20 | 20 | 21 | 0 |
| 10 | 23 | 1 | 6 | 62 | 64 | 2 |
| 11 | 25 | 2 | 2 | 158 | 170 | 5 |
| 12 | 28 | 11 | 6 | 504 | 515 | 11 |
| 13 | 31 | 87 | 23 | 1418 | | |
| 14 | 33 | 1221 | 100 | | | |
| 15 | 34 | 95816 | 483 | | | |
| 16 | 35 | 131431 | 293 | | | |
| 17 | 36 | 96 | 49 | 1476 | 1510 | 34 |
| 18 | 37 | 10537 | 410 | | | |
| 19 | 38 | 872992 | 3939 | | | |
| 20 | 39 | 10280 | 1002 | | | |
| 21 | 40 | 878 | 237 | | | |
| 22 | 41 | 79 | 42 | | | |
| 23 | 42 | 4 | | | | |

a The largest value for $|\mathcal{M}_{\text{SHS}}|$ has been taken from Refs. [56,58].

b Estimated.

We also explored a more realistic extended LJ potential (Eq. 5, Figure 4) for one of the rare gas dimers (xenon) in comparison with other LJ potentials. We see that the repulsive part agrees nicely with the conventional (6,12)-LJ potential, while for $r > 1$ the extended LJ potential is slightly less attractive. This change should lead to an increase in the number of local minima compared to the conventional (6,12)-LJ potential. We find that this is indeed the case, i.e. $|\mathcal{M}_{\text{SHS-LJ}}| = \{8, 21, 74, 205, 685, 2179, 6863\}$ for $N = \{8, 9, 10, 11, 12, 13, 14\}$. For $N = 13$ the number of distinct minima is 44% larger than it is for the simple (6,12)-LJ potential, which shows that $|\mathcal{M}(N)|$ is rather sensitive to the potential chosen. Hence, to correctly describe the topology of real systems, one has to take care of the correct form of the 2-body contribution (as well as higher n-body contributions) [25].

B. (6,12)-Lennard-Jones clusters from basin-hopping

Table I shows the number of distinct minima found by our cluster geometry optimisation procedure using the (6,12)-LJ potential compared to results from exact enumeration for SHS clusters and from basin-hopping for the (6,12)-LJ potential. As the SHS clusters for a specific N value can be grouped by their contact number N_c, the geometry optimisations were carried out separately for each group of $\mathcal{M}_{\text{SHS}}(N_c)$. Hoy [36,37] and Holmes-Cerfon [38] reported slightly different results for $N = 11$ and $N = 13$; we find that upon geometry optimisation, their datasets yield the same final clusters $|\mathcal{M}_{\text{SHS-LJ}}(N_c)|$. As identical LJ clusters appear in multiple groups with different contact numbers, we remove the duplicates to create the set $\mathcal{M}_{\text{SHS-LJ}}$ of distinct minima, which can be directly compared to the set of LJ minima \mathcal{M}_{LJ} obtained from the basin-hopping method. It should be noted that including the hypostatic clusters and the different $|\mathcal{M}_{\text{SHS}}|$ for $N = 11$ and $N = 13$ from Ref. [38] did not change our results, implying that hypostatic clusters are not an important feature for the LJ energy landscape.

Interestingly, our gradient-based minimisation procedure starting from the SHS packings does not in general lead to a complete set of LJ minima; the mapping from SHS minima to LJ minima is non-injective and non-surjective. Clearly, some structural motifs found in LJ clusters are not found in SHS clusters and vice versa, and the topology of the hypersurface changes in a non-trivial fashion from SHS to LJ. However, it is surprising that the fraction of structures that are missed by this optimisation procedure is so small (see Table III). To gain further insight, we analysed the energetics and structure of the unmatched clusters in more detail.

Figure 6 shows an analysis of the difference between the longest to the shortest bond lengths $d_\Delta = d_{\text{max}} - d_{\text{min}}$ obtained for the largest clusters in \mathcal{M}_{LJ} with $N = \{11, 12, 13\}$. The histograms show that the clusters most commonly have a d_Δ of about 0.03. In contrast, as shown by the orange bars, the unmatched structures have significantly larger d_Δ values of at least 0.05, with most of them having $d_\Delta \approx 0.06$. This is a first indication of why these structures are not found by starting from SHS packings. The latter only form bonds of length...
TABLE II: Range $[E_0, E_{\text{max}}]$ of the energy spectrum of all LJ minima, position of the second lowest minimum structure E_1 and position of the first unmatched (UM) structure E_0^UM relative to the respective global minimum (in reduced units and $E_0 = 0$).

N	E_{max}	E_1	E_0^UM
8	1.04	0.06	-
9	2.08	0.84	1.19
10	3.13	0.87	2.22
11	4.22	0.85	2.27
12	6.16	1.62	3.38
13	9.26	2.85	6.14

one, and a large variation in bond length could imply that a SHS packing similar to the LJ structure does not exist as the SHS boundary conditions are not satisfied. The data in Table II show that the unmatched (UM) structures for a specific N value have much higher energies compared to the one of the global minimum (which is set to zero, i.e. $E_0 = 0$). They are always positioned in the upper half of the energy spectrum, making them energetically unfavorable. However, we could not find any correlation between d_Δ and the energetic position of the LJ clusters.

Last, we checked the geometries of the missing structures in more detail. As it turns out, almost all of the missing stable LJ clusters can be created from a smaller set of missing clusters by capping some of their triangular faces. Therefore, these groups of clusters can be referred to as “seeds” [34, 35]. The corresponding starting structures of each seed are shown in Figure 7. None of these structures are stable SHS packings. For example, structure (d) can be described as three octahedra connected via triangular faces sharing one edge. Geometric considerations [35, 36] immediately show that this structure cannot be a stable SHS packing; the dihedral angle in an octahedron is approximately 109.5°, which means three octahedra only fill 328.5° of a full circle, leaving a gap between two faces. Table III shows the number of missing minima belonging to each seed. Over 60 % of the unmatched structures belong to seeds (a) and (b). From a graph theoretical point of view [34, 35], grouping structures into seeds means that all structures belonging to the same seed contain the graph of the starting structures as a subgraph in their respective connectivity matrix. This approach simplifies the analysis to a great extent, as the feature that prevents the structures from being found by geometry optimisation is the same for each of the structures arising from a specific seed. The smallest unmatched structures that cannot be associated with any of seeds (a)-(f) have $N = 13$; these could be the starting structures for two new seeds.

Finally, we note that the starting SHS minima in our optimisation procedure are not stationary points on the LJ hypersurface, and we therefore optimise to most but not all local and available LJ minima. This observation explains why some high-energy structures were not found by our optimisation procedure. For a smooth change in the topology of the

TABLE III: Number of missing structures after optimisation belonging to the same “seed” (Fig. 7). $N = 8$ is excluded because all LJ minima were found starting from the SHS model.

seed	$N = 9$	$N = 10$	$N = 11$	$N = 12$	$N = 13$
a	1	1	-	3	8
b	-	1	3	4	11
c	-	-	1	-	-
d	-	-	-	1	5
e	-	-	-	-	6
f	-	-	-	-	1
remaining	-	-	-	-	2
total	1	2	5	11	34
%	4.76	3.13	2.94	2.14	2.25

* Some structures do not resemble a perfect capped cluster, but undergo a slight rearrangement. Specifically, two structures belonging to seed (b) and one structure belonging to seed (c) were found to deviate slightly from the perfect arrangement, but minor rearrangements of these structures lead to the desired geometry and they can be reasonably associated with these seeds.

FIG. 6: Histograms of the difference between the longest and shortest bond distances $d_\Delta = d_{\text{max}} - d_{\text{min}}$ for the complete set of distinct LJ minima $M_{\text{LJ}}(N)$ for $N = \{11, 12, 13\}$. Orange bars give the number of distinct structures not contained in M_{LJ} as obtained from the basin-hopping algorithm.

Table III shows the number of missing minima belonging to each seed. Over 60% of the unmatched structures belong to seeds (a) and (b). From a graph theoretical point of view [34, 35], grouping structures into seeds means that all structures belonging to the same seed contain the graph of the starting structures as a subgraph in their respective connectivity matrix. This approach simplifies the analysis to a great extent, as the feature that prevents the structures from being found by geometry optimisation is the same for each of the structures arising from a specific seed. The smallest unmatched structures that cannot be associated with any of seeds (a)-(f) have N = 13; these could be the starting structures for two new seeds.

Finally, we note that the starting SHS minima in our optimisation procedure are not stationary points on the LJ hypersurface, and we therefore optimise to most but not all local and available LJ minima. This observation explains why some high-energy structures were not found by our optimisation procedure. For a smooth change in the topology of the
on a sphere evenly (there is no triangulation of a sphere with 13 vertices of degree 5 and 6 [2]), we used the Fibonacci sphere algorithm [73, 74] to find an approximate distribution of points on a sphere and added a center sphere. By optimising the coordinates for this $N = 14$ cluster with different LJ exponents and calculating the distance of every sphere to the center sphere, we can deduce at which “softness” a 13th sphere is (perhaps) allowed to enter the first coordination shell, i.e. to touch the center sphere.

Figure 8 shows the difference between the largest and the smallest center-to-outter (COS) distances in relation to the LJ exponents m and n. Interestingly, none of the (m,n)-LJ potentials lead to equal distances around a central sphere. While this result could be due to the lack of symmetry, one sphere is clearly further away from the central sphere even for the softest “Kratzer” (1,2)-LJ potential [75]. For this potential the largest and smallest COS distances are $r_{\text{max}} = 0.882$ and $r_{\text{min}} = 0.804$, respectively. While the longest distance only shows up once, the shortest distance appears twice. All other 10 distances fall in the range between $r = 0.845$ and $r = 0.861$. The $r_{\text{max}}/r_{\text{min}}$ ratio is 1.097 and much shorter compared to $r_{\text{max}}/r_{\text{min}} = \sqrt{2}$ for the closed packed lattice, or the shortest distance possible for the SHS system which is $r_{\text{max}}^{14} = 1.347$ (see discussion below). Hence the 13th sphere “almost” touches the center sphere.

Note that all COS distances for the $N = 14$ (1,2)-LJ cluster are significantly shorter than $r = 1$, due to the $N(N - 1)/2$ attractive two-body interactions and the softness of the potential. For infinite (e.g. body-centered cubic or close-packed) lattices of particles interacting via $V_{\text{LJ}}(r)$ with $n > m > 3$, one can prove [23] that the nearest neighbor distance is

$$r_{\text{NN}}(m,n) = \left(L_n L_m^{-1}\right)^{1/m}.$$ \hspace{1cm} (8)

Here L_n is the Lennard-Jones-Ingham lattice coefficient for a specific lattice determined from 3D lattice sums. Since $L_n < L_m$ for $n > m$, we see that $r_{\text{NN}} < 1$, and $\lim_{n,m \to \infty} r_{\text{NN}}(m,n) = 1$.

The shortest distances found in (6,12)-LJ clusters $r_{\text{min}}(N)$ are: $r_{\text{min}}(8) = 0.986767$, $r_{\text{min}}(9) = 0.964404$, $r_{\text{min}}(10) = 0.964382$, $r_{\text{min}}(11) = 0.956345$, $r_{\text{min}}(12) = 0.947842$, and $r_{\text{min}}(13) = 0.952179$. Surprisingly, $r_{\text{min}}(12)$ is smaller than $r_{\text{NN}}(6,12)$ for typical crystalline lattices; $r_{\text{NN}}(6,12)$ values are 0.95060, 0.95186 and 0.97123 for simple cubic, body-centered cubic and close-packed lattices, respectively. This result shows that stable clusters do not necessarily have longer bonds compared to the solid state, where we expect a maximum in interaction energy per atom.

Finally, we relate the above results back to the motifs present in the HCR-SRA limit by focusing on $N = 13$ and $N = 14$ SHS clusters from Ref. [38]. This set contains all nonisomorphic SHS structures that can be considered GN clusters $(N = 13)$ and the $N = 14$ structures that can be derived from them by attaching a 14th sphere. We find a surprisingly large number (737) of nonisomorphic $N = 13$ GN-SHS structures ((724,10,1,2) for $N_c = (33,34,35,36))$, that all optimise to the ideal icosahedral arrangement (I_h symmetry) if a (6,12)-LJ potential is applied. An even larger number of clusters exists for $N = 14$ (14529), which is $\approx 0.105/14^{14}$. All of these
structures optimise to just one of two possible (6,12)-LJ minima of GN type. The first is the Mackay icosahedron capped at one of its triangular faces, and the second is an elongated pentagonal bipyramid (belonging to the class of Johnson solids) with the 14th sphere capping a square face.

Most of these $N = 14$ clusters are minimally rigid ($N_c = 3N - 6 = 36$), while only a few are hyperstatic ($N_c > 3N - 6$) and none are hypostatic ($N_c < 3N - 6$). There are {14369, 144, 8, 6, 2} such clusters with $N_c = \{36, 37, 38, 39, 40\}$ and $N = 14$. The clusters with $N_c = 40$ are hcp and fcc core-shell structures capped at a square face; these arrangements maximise N_c. Most of the clusters with $N_c = \{38, 39\}$ are deformed versions of the elongated pentagonal bipyramid mentioned above, indicating that this arrangement is a favored route to these intermediate-energy structures. However, $N_c = 39$ also contains hcp and fcc structures capped at a triangular face. The first example of a cluster derived from a perfect icosahedral symmetry shows up at lower value $N_c = 37$ (!). Representative examples for clusters with high contact numbers are depicted in Figure 9.

Surprisingly, the $N = 14$ cluster with the closest central-to-outer sphere (COS) distance $r_{\text{COS}}^{\text{min}}$ was not known. Here we close this gap by determining the COS distance for all Gregory-Newton type clusters. We find one single cluster with $r_{\text{COS}}^{\text{min}} = 1.3471506281091$. Its structure [Fig. 9(a)] is similar to the elongated pentagonal bipyramid (a Johnson solid) with one of the square faces stretched to form a regular rectangle. The 14th sphere caps this deformed face, becoming the vertex of a deformed octahedron and allowing the outer sphere to get closer to the central sphere. The next-smallest-r_{COS} cluster ($r_{\text{COS}} = 1.37515$) is shown in Fig. 9(b). It does not belong to the category of the clusters derived from the elongated pentagonal bipyramid, but instead can be described as being

![Graphical representations of SHS packings with $N = 14$, where a center sphere is maximally contacting.](image)

FIG. 9: Graphical representations of SHS packings with $N = 14$, where a center sphere is maximally contacting. The orange sphere in each cluster is the 14th outer sphere, not able to touch the center sphere (in black). (a) distorted elongated pentagonal bipyramid (Johnson solid); (b) distorted icosahedron; (c) hcp capped on a square; (d) hcp capped on a triangle.

FIG. 10: Frequency of distances from the cluster center to the most distant sphere for all Gregory-Newton-like clusters contained in the structures from Ref. [38]. The width of the bars is 0.01.
The short distance is achieved by attaching the 14th sphere to 3 spheres that do not form a face of the cluster (because they are separated by a distance larger than 1.)

As shown in Figure 10, the distribution of r^{\cos} values for the full set of GN clusters is shown in Figure 10. Motifs with larger r^{\cos} are far more prevalent. For example, the peak at $r^{\cos} = 1.41$ corresponds to structures where the 14th sphere is touching 4 other spheres that are part of a tetragonal pyramid, therefore forming a regular octahedron with a tip-to-tip distance of $\sqrt{2}$ (Fig. 9c). The maximum r^{\cos} value (1.63) corresponds to capping triangular faces, so that the most distant sphere is part of a regular trigonal bipyramid with a height of $\sqrt{8/3}$ (Fig. 9d). The structures in the bars at 1.60, 1.58 and 1.55 are derived from the regular trigonal bipyramid and result from breaking its axial bonds. In these structures, the more bonds are broken, or the further the axial spheres are separated, the shorter the center-to-outer sphere distance becomes.

IV. CONCLUSIONS

We have characterized the sets of (m,n)-LJ-potential minima obtained using complete sets of nonisomorphic SHS packings with $8 \leq N \leq 14$ as initial states for energy minimization. The number of distinct minima (i.e. excluding permutation-inversion isomers) is far smaller than the number of SHS packings for the standard Lennard-Jones exponents $(m,n) = (6,12)$, but approaches the SHS limit from below as (m,n) increase. We characterized how the number of distinct minima $\mathcal{M}(N)$ increases with cluster size N by determining Stillinger’s rise rate parameter α (Eq. 6 [44]). The increase of α from ≈ 1.1 for $(6,12)$-LJ clusters to ≈ 2.2 for SHS clusters is described by a simple functional form (Eq. 7). All these results can be understood in terms of a smooth progression of the (m,n)-LJ energy landscape towards the SHS energy landscape as (m,n) increase.

Using a more realistic extended LJ potential obtained from coupled cluster calculations for the xenon dimer [23, 48] leads to M values close to those obtained for the $(6,12)$-Lennard-Jones potential, but our results indicate the the topology of the energy hypersurface is very sensitive to the model potential applied. For softer potentials, we showed that it is still unfavourable for a 13th outer sphere to touch the center sphere. Indeed, the Gregory-Newton argument still holds true for even the softest $(m,n) = (1,2)$ potential.

Finally, we compared our optimisation results to the previously published results for the $(6,12)$-LJ potential. The mapping from M_{SHS} to $M_{\text{SHS-LJ}}$ is non-injective and non-surjective, however, the number of structures missed by the optimisation procedure is relatively small. The unmatched structures belong to the high energy region of the potential energy hypersurface and possess rather large variations in their bond lengths. An analysis of their geometries revealed that most of the larger structures can be constructed from a smaller cluster by capping some of the triangular faces. This procedure effectively sorts almost all unmatched structures into six seeds for clusters up to $N = 13$.

V. ACKNOWLEDGEMENTS

We acknowledge financial support by the Marsden Fund of the Royal Society of New Zealand (MAU1409). DJW gratefully acknowledges financial support from the EPSRC. PS acknowledges financial support by the Centre for Advanced Study at the Norwegian Academy of Science and Letters (Molecules in Extreme Environments Research Program). We thank Drs. Lukas Wirz and Elke Pahl for useful discussions.

[1] F. H. Stillinger and T. A. Weber, Science 225, 983 (1984).
[2] T. Martin, Phys. Rep. 273, 199 (1996).
[3] J. P. K. Doye and D. J. Wales, Science 271, 484 (1996).
[4] E. Vlieg, M. Deij, D. Kaminski, H. Meekes, and W. van Enckevort, Faraday Discuss. 136, 57 (2007).
[5] G. Meng, N. Arkus, M. P. Brenner, and V. N. Manoharan, Science 327, 560 (2010).
[6] C. R. A. Catlow, S. T. Bromley, S. Hamad, M. Mora-Fonz, A. A. Sokol, and S. M. Woodley, Phys. Chem. Chem. Phys. 12, 786 (2010).
[7] S. Karthika, T. K. Radhakrishnan, and P. Kaliaichelu, Crystal Growth & Design 16, 6663 (2016).
[8] M. Holmes-Cerfion, Ann. Rev. Cond. Matt. Phys. 8, 77 (2017).
[9] F. R. Rowland, Discuss. Faraday Soc. 5, 364 (1949).
[10] P. R. Unwin, Faraday Discuss. 156, 409 (2007).
[11] A. R. Oganov and C. W. Glass, The Journal of Chemical Physics 124, 244704 (2006).
[12] C. P. Massen and J. P. K. Doye, Phys. Rev. E 75, 037101 (2007).
[13] D. J. Wales, ChemPhysChem 11, 2491 (2010).
[14] A. R. Oganov, A. O. Lyakhov, and M. Valle, Accounts of Chemical Research 44, 227 (2011) pMID: 21361336, http://dx.doi.org/10.1021/ar1001318.
[15] F. Calvo, J. P. K. Doye, and D. J. Wales, Nanoscale 4, 1085 (2012).
[16] D. J. Wales, J. Chem. Phys. 142, 130901 (2015).
[17] B. W. van de Waal, J. Chem. Phys. 90, 3407 (1989).
[18] C. L. Cleveland and U. Landman, J. Chem. Phys. 94, 7376 (1991).
[19] B. W. van de Waal, Phys. Rev. Lett. 76, 1083 (1996).
[20] J. P. K. Doye, D. J. Wales, and R. S. Berry, J. Chem. Phys. 103, 4234 (1995).
[21] B. W. van de Waal, G. Torchet, and M. F. de Feraudy, Chem. Phys. Lett. 331, 57 (2000).
[22] N. V. Krainyukova, R. E. Boltev, E. P. Bernard, V. V. Khmelevko, D. M. Lee, and V. Kiyukhin, Phys. Rev. Lett. 109, 245505 (2012).
[23] F. Schwertfeger, N. Gaston, R. P. Krawczyk, R. Tonner, and G. E. Moyano, Phys. Rev. B 73, 064112 (2006).
