Failure of mean-field approach in out-of-equilibrium Anderson model

B. Horváth\textsuperscript{1}, B. Lazarovits\textsuperscript{1,2}, O. Sauret\textsuperscript{1}, G. Zarán\textsuperscript{d}\textsuperscript{1}

\textsuperscript{1}Theoretical Physics Department, Institute of Physics, Budapest University of Technology and Economics, Budafoki út 8, H-1521 Hungary

\textsuperscript{2}Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary

To explore the limitations of the mean field approximation, frequently used in \textit{ab initio} molecular electronics calculations, we study an out-of-equilibrium Anderson impurity model in a scattering formalism. We find regions in the parameter space where both magnetic and non-magnetic solutions are stable. We also observe a hysteresis in the non-equilibrium magnetization and current as a function of the applied bias voltage. The mean field method also predicts incorrectly local moment formation for large biases and a spin polarized current, and unphysical kinks appear in various physical quantities. The mean field approximation thus fails in every region where it predicts local moment formation.

PACS numbers: 73.63.Kv, 75.20.Hr, 71.23.An, 73.23.-b

The Anderson impurity model\textsuperscript{4} (AIM) has been the subject of great theoretical and experimental interest in the past decades (for a review see Ref.\textsuperscript{[2]})\textsuperscript{5}. There is a number of experimental systems including quantum dots, or single atoms and molecules contacted by leads, which provide experimental realizations of various versions of the AIM under out-of-equilibrium conditions. These systems are not just prototypes of out of equilibrium systems but a theoretical understanding of them would be crucial for future molecular electronics and mesoscopic applications.

Anderson constructed his famous model in Ref.\textsuperscript{[3]} to describe local moment formation and solved it within the mean-field (MF) approximation. Within this approximation, he found a phase transition to a state where magnetic moments are formed. Further work revealed that, in reality, quantum fluctuations of this local moment lead to the formation of a Kondo-singlet between the impurity and conduction electrons\textsuperscript{4} at low temperature, where the impurity spin is thus completely screened. The spontaneous symmetry breaking found by Anderson is thus an artifact of the mean field approximation. Nevertheless, the MF treatment indicates clearly the regions of strong correlations, and it can also serve as a starting point for accurate approximations as in the local moment approach\textsuperscript{4} (LMA) or interpolative perturbation theory\textsuperscript{4} (IPT). The latter approach can easily be generalized to non-equilibrium situations\textsuperscript{6,7} using Keldysh formalism\textsuperscript{6,8}.

In lack of more accurate methods, the mean field approximation is also used in molecular electronics calculations, where LDA or eventually Hartree-Fock equations are solved in a scattering state or Keldysh approach\textsuperscript{4} to describe moment formation.\textsuperscript{4} However, it is not clear at all, how reliable these approximations are. The purpose of this paper is to shed some light on the weaknesses of the non-equilibrium mean field approach on the simplest possible test case, the out of equilibrium Anderson model, and to show where usual ab initio calculations should fail. Our conclusion is that the mean field approach fails qualitatively and quantitatively essentially everywhere where it predicts local moment formation. Our study, which is based on the scattering state formalism, is complementary to the recent work of Konnik and Gogolin\textsuperscript{9,10}, who used a Green’s function formalism to study the mean field equations of the non-equilibrium Anderson model. As we shall see, in the strongly correlated regions several artifacts emerge such as non-equilibrium driven spontaneous symmetry breaking as well as multiple stable solutions which lead to the appearance of hysteresis. These instabilities are probably also parts of the reasons, why non-equilibrium IPT suffers from all kinds of instabilities. These instabilities were avoided in previous works by applying spin-independent approximations\textsuperscript{11,12} or using an interpolative self-energy\textsuperscript{5} or both\textsuperscript{13}.

The non-equilibrium AIM Hamiltonian consists of four parts. The first part describes a single impurity level with energy $\varepsilon_d$ and an on-site Coulomb interaction ($U$)

$$H_d = \sum_{\sigma=\uparrow,\downarrow} \varepsilon_d d_{\sigma}^{\dagger} d_{\sigma} + U n_{\uparrow} n_{\downarrow},$$

where $d_{\sigma}^{\dagger}$ and $d_{\sigma}$ are the creation and annihilation operators of the impurity electrons corresponding to spin state $\sigma$ and $n_{\sigma} = d_{\sigma}^{\dagger} d_{\sigma}$. The second and third terms describe the left (L) and right (R) leads which we model by tight-binding chains,

$$H_{\alpha} = \sum_{k,\sigma} \left(-2i \cos k + \mu_{\alpha}\right) c_{k\alpha\sigma}^{\dagger} c_{k\alpha\sigma}. \quad (2)$$

Here $\alpha \in \{L, R\}$, $c_{k\alpha\sigma}^{\dagger}$ and $c_{k\alpha\sigma}$ are the creation and annihilation operators of a conduction electron of wave number $k \in \{0, \pi\}$ in lead $\alpha$, $t$ is the hopping along the leads, and $\mu_{\alpha}$ is the chemical potential of the left or the right lead. The chemical potentials of the two leads are different due to a finite bias voltage leading to a non-equilibrium situation. The fourth part, $H_t$, describes the tunneling between the leads and the impurity

$$H_t = V \sum_{\sigma} \left[ d_{\sigma}^{\dagger} (V_- c_{-1\sigma} + V_+ c_{1\sigma}) + h.c. \right]. \quad (3)$$

Here $V_{\pm}$, $c_{-1\sigma}$ and $c_{1\sigma}$ are the creation and annihilation operators of a conduction electron of wave number $k \in \{0, \pi\}$ in lead $\alpha$, $t$ is the hopping along the leads, and $\mu_{\alpha}$ is the chemical potential of the left or the right lead. The chemical potentials of the two leads are different due to a finite bias voltage leading to a non-equilibrium situation. The fourth part, $H_t$, describes the tunneling between the leads and the impurity

$$H_t = V \sum_{\sigma} \left[ d_{\sigma}^{\dagger} (V_- c_{-1\sigma} + V_+ c_{1\sigma}) + h.c. \right]. \quad (3)$$
Here $V_\pm$ are the hybridization matrix elements between the impurity and the left and the right leads, and $c_{l=\pm1\sigma}$ denote the conduction electron annihilation operators on the sites next to the impurity; sites along the left and right chains are labelled by $l = \{-\infty, \ldots, -1\}$ and $l = \{1, \ldots, \infty\}$, respectively. For the sake of simplicity, here we study a symmetrical situation, $V_- = V_+ = V$, but our conclusions are rather independent of this assumption.

To study the Hamiltonian above we used a mean-field approximation and replaced the impurity term as

$$H_d \rightarrow H_d^{MF} = \sum_{\sigma} (\varepsilon_d + U \langle n_{-\sigma} \rangle) d_\sigma^\dagger d_\sigma .$$

The non-equilibrium expectation value of the occupation numbers, $\langle n_\sigma \rangle$, in Eq. (4) can be obtained by solving self-consistent equations discussed later. The expression $\varepsilon_d + U \langle n_{-\sigma} \rangle$ can be regarded as an effective energy level of spin-\(\sigma\) electron. The hybridization between impurity and conduction electrons gives rise to a finite lifetime for impurity states, reflected in the broadening of the effective impurity levels with a finite width, $\Gamma = 2\pi V^2 \rho_0 = V^2/\tilde{t}$ where $\rho_0$ is the density of states (DOS) of the conduction electrons at the Fermi-level of the half-filled leads.

To evaluate the non-equilibrium expectation values, $\langle n_\sigma \rangle$, we shall use a scattering formalism. The annihilation operator of the left-coming scattering state of energy $\varepsilon$ and spin $\sigma$ can be expressed as

$$c_\sigma(\varepsilon) = \sum_{l<0} c_{l\sigma} e^{ikR_l} + \alpha_\sigma(\varepsilon) \sum_{l<0} c_{l\sigma} e^{-ikR_l} + \beta_\sigma(\varepsilon) \sum_{l>0} c_{l\sigma} e^{ik'_{l\sigma}} + \gamma_\sigma(\varepsilon) d_\sigma .$$

Here $c_{l\sigma}$ is the annihilation operator of the $l$th site and $\alpha_\sigma(\varepsilon)$, $\beta_\sigma(\varepsilon)$ and $\gamma_\sigma(\varepsilon)$ are the reflection, transmission and dot coefficients, respectively, which we obtain by solving the corresponding Schrödinger equation. Since the energy is conserved in course of the scattering process, the wave numbers $k$ and $k'$ are connected by the dispersion relation $\varepsilon = -2\tilde{t} \cos k + \mu_L = -2\tilde{t} \cos k' + \mu_R$. Waves coming from the right hand side can be constructed in a similar way. The occupation numbers are then calculated from the dot coefficients, $\gamma_\sigma(\varepsilon)$ and $\gamma_\sigma'(\varepsilon)$ corresponding to the states coming from the left and the right, respectively,

$$\langle n_\sigma \rangle = \rho_0 \int_{-\infty}^\infty \varepsilon \left( |\gamma_\sigma(\varepsilon)|^2 f_L(\varepsilon) + |\gamma_\sigma'(\varepsilon)|^2 f_R(\varepsilon) \right) ,$$

where the DOS of leads is approximated by its value at Fermi-level, and $f_\sigma(\varepsilon) \equiv f(\varepsilon - \mu_\sigma)$ is the Fermi function.

In the large bandwidth approximation ($\tilde{t} \rightarrow \infty$, $\Gamma = V^2/\tilde{t}$ finite) the occupation numbers become

$$\langle n_\sigma \rangle = \frac{\Gamma}{2\pi} \int_{-\infty}^\infty \frac{f_L(\varepsilon) + f_R(\varepsilon)}{(\varepsilon - \varepsilon_d - U \langle n_{-\sigma} \rangle)^2 + \Gamma^2} d\varepsilon ,$$

which simplifies further for zero temperature as

$$\langle n_\sigma \rangle = \sum_{\alpha \in \{L,R\}} \frac{1}{2\pi} \cot^{-1} \left( \frac{\varepsilon_d + U \langle n_{-\sigma} \rangle - \mu_\alpha}{\Gamma} \right) .$$

These self-consistent equations can also be obtained using the Keldysh formalism. Eqs. (4) or (5) are solved iteratively by assuming that the applied bias is symmetric $\mu_L = \mu/2$ and $\mu_R = -\mu/2$. In these calculations the bias voltage is increased or decreased gradually and the local stability of the solutions is always checked.

First, let us discuss the bias-dependence of the occupation numbers at $T = 0$. In the inset of Fig. 1 the magnetization $m = \langle n_\uparrow \rangle - \langle n_\downarrow \rangle$ is plotted both for increasing and decreasing bias voltage at a fixed ratio of $\Gamma/U = 0.05$ for the symmetric Anderson model ($\varepsilon_d/U = -0.5$). In equilibrium, at zero bias, the impurity possesses a finite magnetic moment for the chosen parameter set, while in case of high bias voltages ($\mu > 0.5$) the stable solution is paramagnetic. Between the two limiting cases a region appears, $\mu_{c1} < \mu < \mu_{c2}$, where both the magnetic and the non-magnetic solutions are stable. We shall refer to this region as a coexistence region. The existence of multiple stable solutions for the occupation numbers in this region is reflected in the hysteresis of the magnetization too. The sharp decay of the magnetization shown in the inset of Fig. 1 and the existence of a hysteresis between the critical fields indicate clearly a first order transition, predicted incorrectly by the MF solution.

The parameter space can thus be divided into magnetic (M), paramagnetic (P) and coexistence (C) regions. In the paramagnetic regions a single stable solution exists only ($\langle n_\uparrow \rangle = \langle n_\downarrow \rangle$), while in the magnetic one two stable magnetic (corresponding to magnetizations $\pm m$) and an unstable paramagnetic solution can be found. In the coexistence region two magnetic and one paramagnetic
stable solutions and two unstable magnetic solutions exist. Therefore, these regions can be distinguished by the number of the solutions of Eq. (5). In the symmetric case when \((n_1^\uparrow + n_1^\downarrow) = 1\), the easiest way to construct a "phase diagram" is to sweep possible values of \((n_1^\uparrow - n_1^\downarrow)\) pairs, substitute them into Eq. (8) and count the number of solutions for different parameter sets.

In the paramagnetic region one can exploit the fact that Eq. (5) has a non-magnetic solution for every possible parameter set. Therefore one can substitute \((n_1) = (n_1^\downarrow)\) into Eq. (8) and search only for non-magnetic states. The region of stability for this solution can then be determined through a linear stability analysis.\(^{10,11}\)

Fig. 1 shows a typical a magnetic "phase diagram" as a function of \(\mu/U\) and \(\Gamma/U\) for the symmetric non-equilibrium AIM at \(T = 0\). At the "upper critical line" \(\mu_{c1}\) the magnetic solution becomes unstable. In the magnetic case, the effective levels corresponding to different spins are not equally occupied and lie at different energies. The magnetic solution becomes unstable when the value of the bias voltage reaches approximately the effective energy of one of the two different occupied levels.

The critical line \(\mu_{c1}\) in Fig. 1 marks, on the other hand, the border of stable paramagnetic solutions. In the special case, \(\varepsilon_d = -U/2\) the two spin occupations are \((n_{1,1}) = 0.5\) in the whole symmetric region, and the magnetic boundary equation simplifies to \(\mu\Gamma^2 + 16\Gamma^2 - 8U\pi = 0\). This analytical result is nicely reproduced by our numerical stability analysis (see Fig. 1).

The values of \(\mu_{c1}\) and \(\mu_{c2}\) are functions of \(\Gamma/U\) and \(\varepsilon_d/U\); for increasing \(\Gamma/U\), the coexistence and magnetic regions disappear and only the non-magnetic solution survives. In Fig. 2 the "phase diagrams" can be seen as a function of \(\mu/U\) and \(\Gamma/U\) at \(T = 0\). Depending on the value of \(\varepsilon_d\) we can distinguish four different regions: empty regime (\(\varepsilon_d > 0\)), mixed valence regime (\(\varepsilon_d \approx 0\)), local moment regime (\(-U \leq \varepsilon_d \leq 0\)) and a doubly occupied regime (\(\varepsilon_d < -U\)) which behaves similarly to the empty regime by particle-hole symmetry.

In the local moment regime, shown in Fig. 1 and Fig. 2, for \(\varepsilon_d \approx -U/2\), there is approximately one electron on the impurity forming a local spin moment. In equilibrium, this finite magnetic moment is predicted on the dot below a critical value of \(\Gamma/U\), and this moment is destroyed by a large enough bias voltage. The coexistence region only appears in this local moment regime and vanishes above \(\varepsilon_d \approx -U/4\) (see Fig. 2).

In the empty regime (\(\varepsilon_d \geq 0\)), shown in Figs. 2 and 3, the equilibrium magnetization completely disappears. However, surprisingly, the MF solution predicts the appearance of local moments for small \(\Gamma\)'s and \(2\varepsilon_d \leq \mu \leq 2\varepsilon_d + U\) biases. This intriguing local moment formation has a simple physical meaning: For large values of \(U/\Gamma\) and \(2\varepsilon_d \leq \mu \leq 2\varepsilon_d + U\), the bias voltages are large enough to inject an electron to the empty level, however, they are not large enough to overcome the Coulomb energy of injecting a second electron to the local level. Therefore, electrons pass through the dot one by one, and a fluctuating magnetic moment appears on the dot. Note that in this regime, the magnetization is induced exclusively by the finite bias voltage.

The overall effect of the temperature in the applied MF-approximation is to destroy the magnetic moment on the impurity and drive the system to be paramagnetic. Fig. 3 shows the temperature dependence of the "phase diagram" in the symmetric case. The coexistence region gradually vanishes for increasing temperatures, while the magnetic and paramagnetic regions get larger. Increasing the temperatures further the magnetic region disappears too.

The overall effect of the temperature in the applied MF-approximation is to destroy the magnetic moment on the impurity and drive the system to be paramagnetic. Fig. 3 shows the temperature dependence of the "phase diagram" in the symmetric case. The coexistence region gradually vanishes for increasing temperatures, while the magnetic and paramagnetic regions get larger. Increasing the temperatures further the magnetic region disappears too.

The previous results are summarized in Fig. 3 for a fixed ratio \(\Gamma/U = 0.05\) that is already sufficiently small to find the coexistence and magnetic regions in the local moment regime. The whole "phase diagram" is symmetric to \(\varepsilon_d/U = -0.5\) due to the electron-hole symmetry. Note that the coexistence region only exists close to the electron-hole symmetry, \(\varepsilon_d/U \approx -0.5\). For large asymmetries (double or zero equilibrium occupation) a non-

---

**FIG. 2:** "Phase diagrams" as a function of \(\mu/U\) and \(\Gamma/U\) for \(T = 0\) and different \(\varepsilon_d\) values, a) \(\varepsilon_d/U = -0.35\) b) \(-0.25\), c) 0 and d) \(0.25\). Notation of the regions and the lines are the same as Fig. 1.

**FIG. 3:** "Phase diagrams" as a function of \(\mu/U\) and \(\Gamma/U\) for \(\varepsilon_d/U = -0.5\). The temperature a) \(T/U = 0.051\) b) \(0.101\) c) \(0.151\) and d) 0.201. Notation of the regions and the lines are the same as Fig. 1.
equilibrium magnetic solution appears, while in equilibrium only the paramagnetic solution exists. This magnetic region has also been observed although not discussed in detail in Ref. 10.

The mean-field solution also leads to the appearance of non-physical features in the transport properties of the impurity. We calculated the transport properties within the MF approximation using the Landauer-Büttiker formalism, but similar results can be obtained applying the Keldysh formalism. The current can be evaluated as

\[
I_\sigma = \frac{e}{h} \int_{-\infty}^{\infty} d\varepsilon (f_L(\varepsilon) - f_R(\varepsilon)) |t_\sigma(\varepsilon)|^2.
\]  (9)

Here the transmission coefficient \( t_\sigma = \beta_\sigma \sqrt{v_{kL}/v_k} \) is normalized to the flux, with \( v_k \) and \( v_{kL} \) the velocities of incident and transmitted electrons with wave numbers \( k \) and \( k' \). Applying the large bandwidth approximation again, the current can be written for finite temperatures as

\[
I_\sigma = \frac{e}{2\pi h} \int_{-\infty}^{\infty} d\varepsilon \frac{\Gamma^2(f_L(\varepsilon) - f_R(\varepsilon))}{(\varepsilon - \varepsilon_d - U\langle n_{-\sigma}\rangle)^2 + \Gamma^2},
\]  (10)

with \( \langle n_\sigma \rangle \) the non-equilibrium occupation numbers obtained from Eq. (7). This integral can be trivially evaluated at \( T = 0 \) temperature.

Fig. 4 shows the current as a function of bias for two different level positions in the strongly correlated regime. For \( \varepsilon_d/U = -0.5 \) we find hysteresis in the current. For \( \varepsilon_d/U = 0.25 \), on the other hand, no hysteresis appears but the current shows a two-step behavior as a function of bias voltage. In this empty regime, the MF equations thus account qualitatively correctly for the charging of the local level, but the kinks appearing in the \( I(\mu) \) curve are due to the incorrectly predicted symmetry breaking and are thus again artifacts of the MF solution.

In the inset of Fig. 5 we have plotted the polarization of the current, \( P_I \equiv (I_\uparrow - I_\downarrow)/(I_\uparrow + I_\downarrow) \), as a function of \( \mu \). In the symmetric case the current is not polarized due to the electron-hole symmetry, but for small electron-hole asymmetries, a hysteresis appears in the polarization too. In general, the polarization is finite whenever a local moment appears on the impurity and there is no electron-hole symmetry.

To conclude, we have studied the Anderson model out of equilibrium in the framework of the scattering formalism combined with a mean-field approximation. This method, frequently used in molecular transport calculations, incorrectly predicts a magnetic phase transition as well as a bias-induced magnetic moment formation, accompanied by hysteresis in various physical quantities and the coexistence of multiple solutions. The MF approach thus fails whenever correlations become important. These artifacts of the mean field approach should alert physicists who study transport through strongly correlated and magnetic molecules, and urge one to use more sophisticated methods that avoid spontaneous symmetry breaking and account for dynamical effects.

Acknowledgment. We are grateful László Szunyogh for valuable discussions and remarks. This research has been supported by Hungarian Grants No. OTKA NF061726, T046303, and F68726.

1 P.W. Anderson, Phys. Rev. 124, 41 (1961).
2 A. C. Hewson, in The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, England, 1993).
3 D. E. Logan, M. P. Eastwood, and M. A. Tusch, J. Phys.: Condens. Matter 10, 2673 (1998).
4 A. Martín-Rodero, M. Baldó, F. Flores, and R. Pucci, Solid State Commun. 44, 911 (1982).
5 A. A. Aligia and L. A. Salguero, Phys. Rev. B 70, 075307.
A. L. Yeyati, A. Martín-Rodero, and F. Flores, Phys. Rev. Lett. 71, 2991 (1993).

A. A. Aligia, Phys. Rev. B 74, 155125 (2006).

J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

D. Waldron, L. Liu and H. Guo, Nanotechnology 18, 424026 (2007) and references therein; D. Waldron, P. Haney, B. Larade, A. MacDonald and H. Guo, Phys. Rev. Lett. 96, 166804 (2006); K. Palotás, B. Lazarovits, L. Szunyogh and P. Weinberger, Phys. Rev. B 70, 134421 (2004).

A. Komnik and A. O. Gogolin, Phys. Rev. B 69, 153102 (2004).

B. Horvatic, D. Sokcevic and V. Zlatic, Phys. Rev. B 36, 675 (1987).

H. Kajueter and G. Kotliar, Phys. Rev. Lett. 77, 131 (1996).

B. Horváth, Diplome thesis (Budapest University of Technology and Economics, Budapest, Hungary) (2006).

M. Büttiker, Y. Inry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).