Transcriptomic analyses provide insight into adventitious root formation of *Euryodendron excelsum* H. T. Chang during ex vitro rooting

Yuping Xiong1,2 · Shuangyan Chen3,4 · Zhenpeng Wei5 · Xiaohong Chen1,2 · Beiyi Guo1,2 · Ting Zhang1,2 · Yuying Yin1,2 · Xincheng Yu5 · Jinhui Pang1,2 · Meiyun Niu1,2 · Xinhua Zhang1 · Yuan Li1 · Kunlin Wu1 · Lin Fang1 · Jaime A. Teixeira da Silva6 · Guohua Ma1 · Songjun Zeng1

Received: 13 October 2021 / Accepted: 29 December 2021 / Published online: 21 January 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

Euryodendron excelsum H. T. Chang, a critically endangered species endemic to China, is a source of valuable material for the furniture and construction industries. However, this species has some challenges associated with rooting during in vitro propagation that have yet to be resolved. In this study, we optimized rooting and conducted a transcriptomic analysis to appreciate its molecular mechanism, thereby promoting the practical application of in vitro propagation of *E. excelsum*, and providing technical support for the ecological protection of this rare and endangered species. Results showed that ex vitro rooting performed the highest rooting percentage with 98.33% at 25 days. During ex vitro rooting, there was a wide fluctuation of endogenous levels of indole-3-acetic acid (IAA) and hydrogen peroxide (H2O2) at the stage of root primordia formation. Transcriptome analysis revealed multiple differentially expressed genes (DEGs) involved in adventitious root (AR) development. DEGs involved in plant hormone signal transduction, such as genes encoding auxin-induced protein, auxin-responsive protein, and auxin transporter-like protein, and in response to H2O2, oxidative stress, abiotic and biotic stimuli were significantly up- or down-regulated by ex vitro treatment with 1 mM indole-3-butyric acid (IBA). Our results indicate that ex vitro rooting is an effective method to induce AR from *E. excelsum* plantlets during micropropagation. DEGs involved in the plant hormone signal transduction pathway played a crucial role in AR formation. H2O2, produced by environmental stimulation, might be related to AR induction as a result of the synergistic action with IBA, ultimately regulating the level of endogenous IAA.

Key message

Under ex vitro rooting, a synergistic action between H2O2 produced by environmental stimulation and IBA played crucial role in the regulation of AR formation from *E. excelsum* plantlets during micropropagation.

Keywords *Euryodendron excelsum* H. T. Chang · Transcriptome · Adventitious roots · Hydrogen peroxide

Introduction

Adventitious root (AR) system is one of plant roots systems that arises from parts of the plant rather than from the roots of the embryo (Barlow 1986). ARs derived from non-root tissues, are the main path by which new plantlets root in vegetative propagation, and usually generated during normal development or stress conditions (Steffens and Rasmussen 2016). In vitro propagation via tissue culture has become an important technology in plant conservation strategies given its advantages, such as high propagation coefficient,
freedom from restrictions imposed by season, especially for rare and endangered species (Bhardwaj et al. 2018; Khater and Benbouza 2019; Rameshkumar et al. 2017). However, in some in vitro propagation systems, plants may display rooting-recalcitrance problems, for example by Juniperus thurifera L. (Khater and Benbouza 2019), Zeyheria montana Mart. (Cardoso and Teixeira da Silva 2013), Elegia capensis (Burm. f.) Schelpe (Verstraeten and Geelen 2015), and Cariniana legalis (Lerin et al. 2021). Rooting-related problems limit the application of in vitro propagation for plant breeding and conservation efforts. Therefore, AR formation during plant in vitro culture is a top research objective for plant asexual propagation breeders.

Plant growth regulators (PGRs) are commonly AR inducers used in in vitro culture, such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), but these tend to show species- and concentration-dependent AR induction efficiency. For Laburnum anagyroides Medic., a low concentration of IAA, IBA or NAA induced AR normally, but high concentrations induced callus formation in shoot tips and subsequently, plant death (Timofeeva et al. 2014). 0.25 or 0.5 μg/L of NAA promoted rooting during in vitro culture of Cornus alba L., while IBA had an adverse effect on root growth and even inhibited AR induction at 1.0 μg/L (Ilczuk and Jacygrad 2016). Moreover, in vitro rooting and ex vitro rooting also display some differences in AR formation. In vitro rooting to induce AR is always performed under aseptic conditions (Barpet et al. 2014; Guo et al. 2019; Nourissier and Monteuuius 2008). In contrast, ex vitro rooting employs unrooted plantlets that are removed from aseptic in vitro conditions culture to induce AR in an open environment (Revathi et al. 2018; Shekhawat and Manokari 2016). Although the two culture methods are affected by various factors, ex vitro rooting can enhance rooting percentage and survival during plant acclimatization, and reducing limiting factors in micropropagation (Benmahoul et al. 2012; Yan et al. 2010). For example, Ceratonia siliqua L. plantlets treated with 4.8 μM IBA displayed a 46.3% rooting response, forming a fragile root system when rooted in vitro whereas the induction of AR from ex vitro shoots treated with 14.4 μM IBA showed significantly higher rooting percentage (91.7%), and a normal morphological appearance, and were successfully acclimatized, showing more than 90% survival (Lozzi et al. 2019).

The mechanism of AR induction involves various key genes, proteins, and pathways (Chen et al. 2020a; Qi et al. 2020; Stevens et al. 2018). Most PGRs promote AR development by regulating the level of endogenous IAA, thus genes and pathways related to the biosynthesis and transport of IAA are considered to play a significant role in AR formation (Lakehal and Bellini 2019). Transcriptome sequencing revealed that candidate genes involved in AR formation of Mangifera indica L. cv. Zihua cotyledon segments were predicted to encode polar auxin transport carriers, auxin-regulated proteins and cell wall remodeling enzymes (Li et al. 2017). In Arabidopsis thaliana, IBA induced AR formation in thin cell layers by conversion into IAA involving nitric oxide activity, and by positive action on IAA transport and biosynthesis (Fattorini et al. 2017). Genes related to the synthesis, transport, metabolism and recognition of plant hormone were involved in the in vitro induction and elongation of ARs in Populus euramerica (Zhang et al. 2019b). However, knowledge of the molecular aspects of adventitious rooting in plants, especially in woody species that are recalcitrant to rooting, remains scanty. Understanding the mechanism of AR formation is of great importance to strategize plant breeding and conservation efforts to maximize the marketable yield and research value, especially of rare and endangered plants.

Euryodendron excelsum H. T. Chang, a monotypic genus endemic to China, is fine-textured and colorful, making it a source of valuable material for the furniture and construction industries (Chang 1963). However, mainly as a result of habitat destruction and deforestation caused by human activity, only a single population of E. excelsum can now be found at Bajia Zhen, Yangchun County, Guangdong Province, in southern China (Shen et al. 2008; Ye et al. 2002). E. excelsum is naturally propagated only by seeds, but seed germination and seedling growth toward adulthood are fragile stages that limit natural recruitment and regeneration (Shen et al. 2009, Wang et al. 2002). Based on the categorization of the International Union for Conservation of Nature and Natural Resources (IUCN), E. excelsum has been listed as a critically endangered plant since 1998, and continues to maintain this status and faces a high risk of extinction, implying that some strategies were put forward for the conservation of E. excelsum populations (Barstow 2020).

In our previous study, a micropropagation system for E. excelsum was established by in vitro culture. When treated with either IBA or NAA, in vitro E. excelsum showed lower rooting percentage in agarized woody plant medium (WPM) (Lloyd and McCown 1980) than in agar-free vermiculite-based WPM after culture for 2 months, and callus formed at the base of stems in these media, hampering the successful transplantation of plantlets (Chen et al. 2020b). We inferred from that there may be other factors that can stimulate AR formation in E. excelsum when cultured in vitro, or that enhance the induction efficiency of PGRs. Thus, the objectives of this study were to improve the micropropagation system of E. excelsum by optimizing the AR induction conditions, and to reveal the key influencing factors and related genes and processes underlying AR formation by transcriptomic analysis. By better elucidating the mechanism of AR formation of E. excelsum in vitro, research on biological
conservation and genetic engineering of *E. excelsum* can be promoted and advanced.

Materials and methods

Culture of plantlets

The basic micropropagation system for *E. excelsum* that was previously established (Chen et al. 2020b), was employed in this study. In vitro plantlets were maintained and propagated on WPM supplemented with 4.44 μM BA (Solarbio, Beijing, China) and 0.53 μM NAA (Macklin, Shanghai, China). Single shoots with more than four leaves and two nodes cut from multiple shoots were inoculated on PGR-free WPM for 30 days. During this period, AR was not induced. All media contained 20 g/L sucrose and 0.5% (w/v) agar, and pH was adjusted to 5.8–6.0, then autoclaved at 116 °C for 30 min. Culture jars (140 cm high; 90 cm diameter; 550 mL) were placed in an air-conditioned culture room at 25 ± 2 °C with a 12-h photoperiod under 100 μM m⁻² s⁻¹ fluorescent light (Philips, Tianjing, China) and 50–70% relative humidity.

Adventitious root induction

For the in vitro rooting treatment, 2 mm of the base of single shoots cultured on PGR-free WPM for 30 days were cut and trimmed shoots were inoculated on WPM supplemented with 0, 0.05, 0.5, and 5 μM NAA, IBA or IAA (Macklin). Shoots in the control group were inoculated on PGR/auxin-free WPM. Ten shoots were placed in each jar, and four jars were prepared for each treatment. Three replicates were performed for each treatment (n = 12 jars; 120 shoots in total).

For the ex vitro rooting treatment, single shoots cultured on PGR-free WPM for 30 days were removed from culture jars, and about 2 mm was trimmed from the base. Trimmed shoots were treated with 0, 1, 2, and 3 mM NAA, IBA or IAA for 10 min, then transferred to plates (5 cm in height; 27 cm in width; 47 cm in length) for raising seedlings supplemented with vermiculite and perlite (v/v, 1:1). Trimmed shoots cultured on PGR/auxin-free WPM served as the control. Forty shoots were planted in each plate, and three replicate plates were prepared for each treatment (n = 3 plates; 120 shoots in total).

Rooting percentage as well as average root number and root length were calculated for each treatment. After one-way analysis of variance (ANOVA), treatment means were compared by Duncan’s multiple range test (DMRT) in SPSS Statistics version 20.0 (IBM, New York, USA) and were considered to be significant difference between the designated treatments at *P* < 0.05.

Histological analysis

The base of shoots (0.5–1.0 cm) was collected at 0, 2, 4, 6, 8, 10 and 12 days after the optimum treatment method under ex vitro rooting and fixed for 24 h in formalin/acetic acid/alcohol at 25 ± 2 °C. At least 15 bases were collected for each time point. Fixed material was dehydrated in a 70–100% alcohol dehydration series followed by infiltration with molten paraffin (Macklin), and embedded in paraffin wax. Sections (8–10 μm thick) were made with a rotary microtome (KEDEE, Zhejiang, China) and stained in 0.02–0.05% toluidine blue (Macklin). Sections were viewed with a Nikon Eclipse E200 microscope (Nikon, Tokyo, Japan) and micrographs were captured using a HQimage C630 digital camera (Hengqiao, Hangzhou, China).

Determination of endogenous IAA and hydrogen peroxide (H₂O₂) content

To analyze IAA and H₂O₂ content, the same method and growth conditions were employed as for histological analysis. Material was stored at −80 °C. Three biological replicates of 10 cut stem bases were harvested as 0.1 g fresh weight (FW) to assess endogenous IAA and H₂O₂ content, according to the instructions of an IAA Enzyme Linked Immunosorbent Assay kit (Dogesce, Beijing, China) (Zhang et al. 2017) and Hydrogen Peroxide Assay kit (Solarbio, Beijing, China) (Wang et al. 2019). After one-way ANOVA, treatment means were assessed by DMRT in SPSS Statistics version 20.0 and were considered to be significantly different between the designated treatments at *P* < 0.05.

Isolation of RNA and cDNA library construction

The same samples used to analyze IAA and H₂O₂ content were employed for RNA-seq analysis. Samples collected from 0, 2, 4, 6, 8, 10, and 12 days were marked as ER0, ER2, ER4, ER6, ER8, ER10, ER12, respectively, and stored at −80 °C. The Column Plant RNAOUT Extraction kit (Tianz, Beijing, China) was used to isolate total RNA from each sample, using the methods suggested by the manufacturer. The concentration and quality of all RNA samples was examined by agarose electrophoresis on an Agilent 2100 bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). Sequencing libraries were generated using the TruSeq RNA Sample Preparation Kit (Illumina, San Diego, CA, USA). Magnetic beads with oligo (dT) were used to purify mRNA, which was fragmented into short fragments (200–300 bp). Cleaved mRNA fragments were primed with a random hexamer primer for first-strand and second-strand cDNA
synthesis. After purification, end repair, and ligation to sequencing adapters, 21 cDNA libraries of three biological replicates for each treatment were prepared and sequenced using the Illumina Novaseq 6000 platform by Personal Biotechnology Co., Ltd. (Shanghai, China).

Sequencing and functional annotation

The raw reads were filtered to include only those with a median Phred quality score of R20 and trimmed with Cutadapt v2.7 to remove adapter sequences. Clean reads were obtained from the raw reads after adapter sequences and low-quality reads discarded. The de novo assembly of high-quality reads was performed by Trinity software with default parameters (version 2.5.1, https://github.com/trinityrnaseq/trinityrnaseq/wiki). The quality of the assembled transcript was examined by BUSCO v5.2.2. Assembled transcripts were aligned to NCBI non-redundant protein sequences (NR, http://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/), Gene Ontology (GO, https://www.blast2go.com/), Kyoto Encyclopedia of Genes and Genomes (KEGG, KAAS, http://kobas.cbi.pku.edu.cn/), evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG, http://egg-nog.embl.de/version_3.0), Swiss-Prot (http://www.uniprot.org/help/uniprotkb) and Pfam (http://pfam.xfam.org/) using BLASTX with a significance threshold of $E \leq 10^{-5}$.

Identification and functional annotation of differentially expressed genes (DEGs)

Gene expression level was calculated with the fragments per kilobase per transcript per million mapped reads method (FPKM). In comparisons between libraries, genes showing $|\log 2(\text{FoldChange})| > 1$ and a P value < 0.05 were identified as DEGs by DEseq software 1.32.0 (http://www.bioconductor.org/packages/release/bioc/html/DESeq.html). The expression pattern of DEGs in the ER0, ER2, ER4, ER6, ER8, ER10 and ER12 libraries were analyzed by hierarchical clustering using Pheatmap software 1.0.12 with default parameters (https://cran.r-project.org/web/packages/pheatmap/index.html). The significantly enriched GO terms examined by topGO v2.4.0, as well as significantly enriched KEGG pathways by ClusterProfiler v3.16.1 software, of all DEGs (up- and down-regulated genes) were detected with a corrected P value < 0.05 by the hypergeometric test method (Eden et al. 2009; Mao et al. 2005).

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis

For qRT-PCR analysis, ten candidate DEGs (Six DEGs, TRINITY_DN11736_c0_g1, TRINITY_DN14475_c0_g1, TRINITY_DN299_c1_g1, TRINITY_DN4858_c0_g2 and TRINITY_DN5423_c0_g2 were identified as log2(FC) > 5; three DEGs, TRINITY_DN5577_c0_g1, TRINITY_DN2748_c0_g1 and TRINITY_DN5577_c0_g2, were enriched in “plant hormone signal transduction”; One DEGs, TRINITY_DN7281_c1_g1, was enriched in “tryptophan metabolism” pathway) were randomly chosen to validate the transcriptomic data. qRT-PCR was performed with the LightCycler 480 System (Roche Diagnostics, Mannheim, Germany) using PerfectStart Green qPCR Supermix (TransGen Biotech, Beijing, China). E. excelsum actin was used as the internal control and the $2^{-\Delta\Delta C_t}$ method (Livak and Schmittgen 2001) was used to analyze the differential expression of candidate DEGs. Gene-specific primers were designed by Primer Premier 5.0 and are listed in Table S1. Three biological replicates and three technical replicates were performed for each candidate gene.

Results

Adventitious root formation during in vitro and ex vitro rooting

During in vitro rooting, compared with the control group, NAA did not induce ARs whereas IBA or IAA could. High concentrations of IBA and IAA inhibited rooting percentage (Fig. 1a), root number (Fig. 1c) and root length (Fig. 1e). Highest rooting percentage (72.50%) was obtained by 0.5 μM IAA at 60 d after treatment. During ex vitro rooting, NAA, IBA and IAA significantly increased rooting percentage (Fig. 1b), root number (Fig. 1d) and root length (Fig. 1f) compared with the control group. A low concentration of IBA (1 mM) most effectively induced rooting, resulting in the highest rooting percentage (72.50%) and root length (2.72 cm) at 25 d after treatment.

Ex vitro rooting induced the highest rooting percentage (98.33%) at 25 days, while highest rooting percentage during in vitro rooting was 72.50% at 60 days. Thus, ex vitro rooting induced AR from E. excelsum plantlets earlier (faster) than in vitro rooting. The samples collected from ex vitro rooting were used for the next analysis. 8 days after the 1 mM IBA ex vitro rooting treatment, AR primordia were evident, and ARs emerged from the epidermis after 10 days (Fig. 2a, b). ARs elongated, rooting percentage was almost 100% by 25 days, and plantlet survival reached 100%.

IAA and H2O2 content analysis

In the 1 mM IBA treatment during ex vitro rooting, IAA content in stem bases increased gradually from 0 to 8 days,
then dropped at 10 and 12 days. A sharp increase in IAA content was observed at 8 days (Fig. 3a). The trend of H$_2$O$_2$ content was different from that of IAA content (Fig. 3b). H$_2$O$_2$ accumulated rapidly after treatment, peaked at 2 days, then sharply decreased at 8 days. The highest content of IAA and lowest content of H$_2$O$_2$ at 8 days corresponded to the timing of AR primordia formation.

De novo assembly and sequence analysis

To identify genes involved in AR induction of *Euryodendron excelsum* plantlets during ex vitro rooting, 21 cDNA libraries were prepared from three repeat mRNA samples collected from 0 (ER0), 2 (ER2), 4 (ER4), 6 (ER6), 8 (ER8), 10 (ER10) and 12 (ER12) days after 1 mM IBA treatment (Table 1). The total number of raw reads produced for each library ranged from 42,845,192 to 52,575,518 with Q20 > 97.48% and Q30 > 93.42%. After filtering, the clean reads per library ranged from 39,721,158 to 49,142,018 with the percentage of clean reads > 91.07% (Table 1). Trinity software v2.5.1 was used to assemble clean reads and obtain transcripts and unigenes for subsequent analysis. The quality and length distribution of transcripts and unigenes are shown in Table 2 and Fig. S1, respectively.

The unigenes were processed in six databases to perform best hits by Blast with E values < 10$^{-5}$, and inferred putative functions of the sequences were assigned. A total of 52,188 (40.15%) unigenes were matched to known genes in the NR database, 23,159 (17.82%) sequences to Pfam and 37,827 (29.10%) sequences in the Swiss-Prot database (Table 3). The NR database queries revealed that the annotated unigenes were assigned with a best score to sequences from
the top seven species (Fig. 4): *Vitis vinifera* (21.76%), *Theobroma cacao* (4.34%), *Coffea canephora* (4.01%), *Nelumbo nucifera* (3.88%), *Sesamum indicum* (3.13%), *Ziziphus jujuba* (2.67%) and *Manihot esculenta* (2.25%).

The annotation of GO terms revealed that 24,939 unigenes (19.19%) were assigned to biological processes, molecular functions, and cellular components (Fig. S2). Most annotated unigenes in biological processes were involved in “cellular process”, “metabolic process”, and “single-organism process”. In the cellular component category, most annotated unigenes were annotated as “cell”, “cell part” and “membrane”. In the molecular functions, most annotated unigenes were categorized as “binding”, “catalytic activity” and “transporter activity”.

A total of 22,160 unigenes (17.05%) and 33 pathways were assigned based on metabolism, genetic information processing, environmental information processing, cellular processes and organismal systems pathway (Fig. S3). On the basis of KEGG analysis, most unigenes were annotated into “carbohydrate metabolism” of metabolism, “translation” of genetic information processing, “signal transduction” of environmental information processing, “transport and

![Adventitious root development of *Euryodendron excelsum* shoots from 0 to 12 days after 1 mM IBA treatment during ex vitro rooting. a Phenotypic changes between 0 and 12 days after treatment. Red bars = 1 cm. b Anatomy of adventitious root development from 0 to 12 days after treatment. Red bars = 0.1 mm. Red arrows indicate the root primordium (8 days) and adventitious roots (10 days and 12 days).](image-url)
The possible functions of unigenes were predicted and classified by alignment to the eggNOG database. A total of 50,632 unigenes (38.95%) were distributed into 25 categories (Fig. S4). Among them, the NOG category “general function prediction only” represented the largest group, followed by “function unknown”, “signal transduction mechanisms”, and “posttranslational modification, protein turnover, chaperones”.

DEGs in response to IBA-induced ex vitro rooting

Hierarchical clustering was used to analyze the expression patterns of DEGs in ER0, ER2, ER4, ER6, ER8, ER10 and ER12 libraries with three biological replicates. These DEGs were divided into nine main clusters (Fig. S5). DEGs in cluster 1, 2, 3 and 4 always showed high expression in the ER0 library with different trends in the other five libraries. The remaining five clusters represented DEGs with high expression levels induced by IBA treatment. The highest number of up-regulated genes was observed in the ER2 library (7364) and fewest in the ER8 library (5649) (Fig. 5a). Upset plot diagram analysis showed that 4635 unigenes maintained differential expression after IBA-induced treatment from 2 to 12 days (Fig. 5b).

GO enrichment analysis

According to GO enrichment analysis, the degree of enrichment was measured based on the rich factor (higher rich factor represents greater enrichment), the FDR value (range from 0 to 1; a score close to 0 indicates more significant enrichment) and the number of genes enriched to a GO term. The significant enrichment GO terms of DEGs showed a few differences in the six libraries (Fig. S6). In the ER2 library, the significantly enriched terms were “monooxygenase activity”, “response to auxin”, “oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen” and “oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen”. More enrichment terms were categorized into biological processes (BP) and molecular functions (MF). In the ER4 library, more enrichment terms were categorized into cellular component (CC) and MF, and the significantly enriched terms were the same as the ER2 library, but the term “response to auxin” was replaced by “photosynthesis, light reaction”. In the ER6 and ER8 libraries, more enrichment terms were categorized into CC and MF, and “oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen” and “oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen”. More enrichment terms were categorized into biological processes (BP) and molecular functions (MF). In the ER10 library, more enrichment terms were categorized into CC and MF, and “photosynthesis, light harvesting”, “chlorophyll binding” and “photosystem I” represented the main significantly enriched terms. In the ER12 library, more enrichment terms were categorized into BP and MF, and the significantly enriched terms were “hydrogen peroxide metabolic process”, “hydrogen peroxide catabolic process” and “phenylpropanoid metabolic process”.

Besides “hydrogen peroxide metabolic process” and “hydrogen peroxide catabolic process”, several terms related to adversity stress were also identified in the GO enrichment analysis (Fig. 6). The terms “hydrogen peroxide metabolic process” and “hydrogen peroxide catabolic process” shared the same number and type of DEGs, most of which, including DEGs for the “response to oxidative stress” term, were up-regulated at 8 days after ex vitro treatment with IBA (Table S2). Most DEGs were associated with the term “response to abiotic stimulus”, followed by “response to oxidative stress” and “response to biotic stimulus”, while...
the fewest DEGs were associated with the term “response to hydrogen peroxide” (Fig. 6a). Most of the DEGs in the terms “response to abiotic stimulus” and “response to biotic stimulus” were up-regulated throughout the entire process of AR formation (Table S2). The terms “hydrogen peroxide metabolic process”, “hydrogen peroxide catabolic process” and “response to oxidative stress” encompassed 43 DEGs simultaneously (Fig. 6b), and these were mainly identified

Table 1 Statistics of output sequencing in *Euryodendron* *excelsum*

Sample	Reads (No.)	Bases (bp)	N (%)	Q20 (%)	Q30 (%)	Clean reads (No.)	Clean reads (%)
ER0_1	47083132	7062469800	0.002104	98.07	94.92	43334844	92.03
ER0_2	44698062	6704709300	0.000692	98.24	95.35	4296590	92.39
ER0_3	45235036	6785255400	0.002107	98.09	94.96	41952686	92.74
ER2_1	44745678	6711851700	0.002111	98.2	95.26	41351042	92.41
ER2_2	49277870	7391680500	0.002107	98.18	95.21	45604282	92.54
ER2_3	46538306	6980745900	0.002089	98.16	95.17	43051642	92.5
ER4_1	47269062	6709035300	0.002118	98.2	95.24	41605118	93.02
ER4_2	44666182	669927300	0.002123	98.02	94.72	41816772	93.62
ER4_3	51150578	7672586700	0.002111	98.11	95.02	46585956	91.07
ER6_1	50692118	7603817700	0.002105	98.15	95.05	47493452	93.69
ER6_2	43673982	6551097300	0.000688	97.48	93.42	40191318	92.02
ER6_3	52517348	7877602200	0.002118	98.11	94.95	49142018	93.57
ER8_1	49461254	7419188100	0.002101	98.08	94.96	45752154	92.5
ER8_2	48366196	7254929400	0.000691	98.01	94.79	44634278	92.28
ER8_3	52162670	782400500	0.00214	98.03	94.81	48470818	92.92
ER10_1	43526700	652900500	0.001406	97.53	93.51	40019246	92.94
ER10_2	44338864	600829600	0.001386	97.55	93.57	39914282	92.09
ER10_3	48691108	7303666200	0.001384	97.52	93.58	44741570	91.88
ER12_1	52575518	7886327700	0.002102	98.14	95.1	48722638	92.67
ER12_2	42845192	6426778800	0.002116	98.12	95.08	39721158	92.7
ER12_3	46393152	6950872800	0.002147	98.07	94.93	42861146	92.49

Table 2 The quality of transcripts and unigenes in *Euryodendron* *excelsum*

Transcripts	Unigenes
Total Length (bp)	465,361,382
Sequence Number	298,338
Max. Length (bp)	17,458
Mean Length (bp)	1559.85
N50 (bp)	2401
N50 Sequence No	60,916
N90 (bp)	684
N90 Sequence No	196,779
GC%	40.07

Transcripts	Unigenes
Total Length (bp)	148,606,377
Sequence Number	129,987
Max. Length (bp)	17,458
Mean Length (bp)	1143.24
N50 (bp)	1780
N50 Sequence No	23,462
N90 (bp)	467
N90 Sequence No	90,195
GC%	39.25

N50 (bp)—All sequences are arranged from long to short, and the sequence length are added in this order. When the added length reaches 50% of the total length of the sequence, the length of the last sequence is N50, N90 (bp)—All sequences are arranged from long to short, and the sequence length are added in this order. When the added length reaches 90% of the total length of the sequence, the length of the last sequence is N90, N50 Sequence No.—The total number of sequences that the length is greater than N50, N90 Sequence No.—The total number of sequences that the length is greater than N90, GC%—The proportion of guanidine and cytosine nucleotides among total nucleotides.

Table 3 The results of annotation of unigenes in *Euryodendron* *excelsum*

Database	Number	Percentage (%)
NR	52,188	40.15
GO	24,939	19.19
KEGG	22,160	17.05
Pfam	23,159	17.82
eggNOG	50,632	38.95
Swissport	37,827	29.10
In all databases	8022	6.17

The fewest DEGs were associated with the term “response to hydrogen peroxide” (Fig. 6a). Most of the DEGs in the terms “response to abiotic stimulus” and “response to biotic stimulus” were up-regulated throughout the entire process of AR formation (Table S2). The terms “hydrogen peroxide metabolic process”, “hydrogen peroxide catabolic process” and “response to oxidative stress” encompassed 43 DEGs simultaneously (Fig. 6b), and these were mainly identified
KEGG enrichment analysis

KEGG pathway enrichment analysis was performed in addition to GO enrichment analysis, and the pathways significantly enriched in each stage were similar (Fig. S7). DEGs were extremely enriched in “photosynthesis–antenna proteins”, “diterpenoid biosynthesis”, “brassinosteroid biosynthesis”, “flavone and flavanol biosynthesis”, “flavonoid biosynthesis”, and “tryptophan metabolism”, et al., pathways in the ER2, ER4, ER6, ER8, ER10 and ER12 libraries. Most DEGs were enriched in “plant hormone signal transduction” and “phenylpropanoid biosynthesis” pathways.

DEGs enriched in plant hormone signal transduction pathway

KEGG pathway enrichment analysis showed that many DEGs were enriched in the “plant hormone signal transduction” pathway, and 132 up-regulated DEGs involved in auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinosteroids, jasmonic acid and salicylic acid signal transduction were identified, including genes encoding auxin-induced protein (AUX), auxin-responsive proteins (SMALL AUXIN UP RNA, SAUR; Auxin/Indole-3-Acetic Acid, AUX/IAA; Indole-3-acetic acid-amido synthetase Gretchen Hagen3, GH3), auxin transporter-like protein (AUX1/LAX), ethylene-responsive transcription factor (ERF), and others (Table S3). The up-regulated expression of 24 DEGs was maintained after the IBA-induced ex vitro treatment, mainly SAUR50, SAUR32, SAUR36, IAA11, IAA13, IAA16, GH3.1, GH3.3, GH3.5, GH3.6, and ERF.

A total of 42 up-regulated genes related to auxin-responsive proteins, including 13 IAA, 19 SAUR and 10 GH3 genes, were identified in the significantly enriched pathway “plant hormone signal transduction” (Fig. 7). Most of those genes were differentially expressed in early response to IBA treatment, at 2 and 4 days. Four IAA and three SAUR genes sustained up-regulated expression after IBA-induced treatment. IAA1 (TRINITY_DN5977_c2_g1) showed high expression with log2(FC) > 4 at ER2, ER4, ER6, ER8, and ER10 stages, and even with log2(FC) > 8 at the ER2 stage. IAA30 (TRINITY_DN1790_c2_g1) showed high expression with log2(FC) > 4 at all stages, and even with log2(FC) > 8 at the ER2 and ER4 stages. Some DEGs were specifically differentially expressed at certain stages, such as TRINITY_DN14445_c0_g2 at ER2, TRINITY_DN58019_c0_g2 at ER10, and TRINITY_DN1958_c1_g2, TRINITY_DN25899_c0_g1, TRINITY_DN58019_c0_g1 and TRINITY_DN9289_c0_g1 at ER12. Five GH3 genes were up-regulated at all stages, demonstrating log2(FC) > 4 for TRINITY_DN2748_c0_g1 and TRINITY_DN2800_c0_g1, and log2(FC) > 8 for TRINITY_DN5152_c0_g1.

The 12 up-regulated genes related to auxin-induced proteins, identified as AX6B, AX10A, A10A5, AX15A, AX22, AUX22D, and AUX28, were sharply enriched in the “plant hormone signal transduction” pathway (Fig. 8a). Most of those genes were also differentially expressed at an early stage (2, 4 days) after IBA treatment. Among these genes, TRINITY_DN39834_c0_g1 and TRINITY_DN31248_c0_g1 were extremely highly differentially expressed with log2(FC) > 8 in the ER0 vs ER2 and ER0
vs ER4 comparisons. Four DEGs were up-regulated with log2(FC) > 1 by IBA treatment under ex vitro rooting in the ER0 vs ER2, ER0 vs ER4, ER0 vs ER6 and ER0 vs ER8 comparisons while TRINITY_DN5677_c0_g1 maintained up-regulated expression at all stages.

In addition, five up-regulated LAX genes (Fig. 8b) were significantly enriched in the “plant hormone signal transduction” pathway. Only TRINITY_DN9654_c0_g1 was up-regulated at all stages while the other four LAX genes were up-regulated at ER10 and ER12, except for TRINITY_DN380_c4_g1, which was up-regulated at ER6.

QRT-PCR analysis of gene expression

To further validate the results from the RNA-seq data, 10 candidate DEGs related to adventitious root formation were selected for qRT-PCR analysis of E. excelsum samples that were collected 0, 2, 4, 6, 8, 10 and 12 days after 1 mM IBA treatment during ex vitro rooting. In the seven time points, the expression trend of the unigenes from qRT-PCR and RNA-seq analysis were largely consistent (Fig. 9). These results demonstrate that the transcriptome data accurately reflects the ex vitro response of IBA-induced AR formation of E. excelsum plantlets.
Discussion

AR development is a vital step in plant vegetative propagation, such as in vitro propagation and cuttings. Rooting recalcitrance is a critical factor limiting the application and further development of vegetative propagation (Diaz-Sala 2020; Stevens et al. 2018). IBA is the most frequently used plant hormone for clonal propagation in horticulture and forestry. Although IAA is a primarily native auxin in plants, IBA is more stable and effective in promoting ARs (Ludwig- Müller et al. 2005; Quan et al. 2017; Rout 2006). It is necessary to screen PGRs to find the optimal species-concentration ratio for AR induction during in vitro culture. In this study, IBA and IAA treatment significantly promote AR formation of *E. excelsum*, especially during ex vitro rooting. Furthermore, ex vitro rooting was more suitable for *E. excelsum* plantlets, with a higher rooting percentage and earlier rooting than in vitro rooting. Ex vitro rooting of shoots has also been applied to many difficult-to-root woody plant species, such as pistachio (Benmahioul et al. 2012), *Dalbergia sissoo* Roxb. (Vibha et al. 2014) and *Bauhinia racemosa* Lam (Sharma et al. 2017). In general, the chances of root damage during transplantation to substrates are less during ex vitro rooting, and plantlets tend to be more vigorous, allowing them to cope with environmental stresses during hardening (Arya et al. 2003; Vengadesan and Pijut 2009). Thus, ex vitro rooting is an obvious choice for AR induction during the micropropagation of woody species with further improvement in the choice of PGRs, substrates and other factors.

E. excelsum plantlets experienced a radical environmental change from in vitro aseptic conditions to open ex vitro rooting conditions, which may constitute an adversity stress. In the annotation and enrichment analysis of GO terms, we identified multiple DEGs involved in H$_2$O$_2$-related biological activities, oxidative stress, abiotic and biotic stimulus. AR formation is also a stress response of plants under adversity stress, and plays a key function in the adaptation of plants to abiotic and biotic stresses (Bellini et al. 2014; Steffens and Rasmussen 2016). The external environmental change may stimulate oxidative damage and increase the production of reactive oxygen species in plants (You and Chan 2015). H$_2$O$_2$ is viewed mainly as a type of reactive oxygen species and a signaling messenger of many biological processes in plants, such as fruit growth and development (Khandaker et al. 2012), leaf senescence (Lin et al. 2019), stomatal closure (Zhang et al. 2019a), and root growth (Xiong et al. 2019). H$_2$O$_2$ and IBA may also act synergistically to regulate adventitious rooting, dependent on the auxin pathway, in marigold explants (Liao et al. 2011). The exogenous application of H$_2$O$_2$ to cucumber plants significantly increased the emergence of ARs (Li et al. 2016b). In this study, the wide fluctuation of endogenous IAA and H$_2$O$_2$ content in *E. excelsum* plantlets were observed at the stage of root primordia formation. And most DEGs involved in significantly enriched pathway of “plant hormone signal transduction” were up-regulated at the stage corresponded to the timing of H$_2$O$_2$ accumulation. Those results indicate that adversity stress may have a positive effect on AR induction of *E. excelsum* plantlets under the synergistic action of

![Graph and Venn diagram](image-url)
H$_2$O$_2$ and PGRs. The synergistic action of H$_2$O$_2$ and PGRs on AR induction from *E. excelsum* plantlets will be revealed by additional research.

AR formation involves a series of responses by genes, proteins and metabolites. Multiple biological activities and pathways have specific roles during AR development (de Almeida et al. 2020; Wei et al. 2014). In mungbean seedlings, KEGG pathway enrichment during transcriptomic analysis showed that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA-induced AR formation, indicating their potential contribution to adventitious rooting (Li et al. 2016a). For apple rootstocks, the most heavily enriched KEGG pathways involved in AR formation were metabolic, biosynthesis of secondary metabolites, plant hormone signal transduction, phenylpropanoid biosynthesis and phenylalanine metabolism pathways, etc. (Li et al. 2018). In sugarcane shoots, DEGs associated with plant hormone signaling, flavonoid and phenylpropanoid biosynthesis, cell cycle, and cell wall modification, and transcription factors were involved in AR formation (Li et al. 2020). During AR development of *E. excelsum*, we found that more DEGs were enriched in “plant hormone signal transduction” and “phenylpropanoid
biosynthesis” pathways, similar to a number of previous studies. Therefore, we conclude that these two pathways have a vital influence on AR formation in *E. excelsum* plants.

IAA is the most abundant natural auxin, and endogenous IAA is closely related to the development of ARs in plants. The conversion of exogenous hormones to endogenous auxin and the synthesis of auxin are key factors regulating AR development (Olatunji et al. 2017). Tissue that produces ARs requires high levels of auxin, and the enrichment of high concentrations of auxin depends on polar auxin transport (Ahkami et al. 2013; Garrido et al. 2002). Thus, genes related to the synthesis, signaling and polar transport of auxin, like *AUX*, *LAX*, and *PIN*, are closely related to plant adventitious rooting (Druege et al. 2016). For example, auxin influx carriers *MiAUX3* and *MiAUX4* might play important roles during AR formation in mango cotyledon segments, and the expression levels of *MiAUX3* and *MiAUX4* resulted in a significant promotive effect of IBA on adventitious rooting (Li et al. 2012). Papaya plantlets not exposed to IBA could not form ARs and displayed a low expression of all auxin transporter genes in stem base tissues whereas IBA-treated plants were able to produce ARs and showed significantly increased expression of most auxin transporter genes, especially *CpLAX3* and *CpPIN2* (Estrella-Maldonado et al. 2016). In *E. excelsum*, DEGs for *AUX* and *LAX*, which were significantly enriched in plant hormone signal transduction, showed a high fold change during AR development. This implies that the expression patterns of those genes were linked to AR induction from *E. excelsum* plantlets.

AUX/IAA protein is an early auxin response protein that always participates in the auxin signaling pathway by interacting with auxin response factor (ARF) protein or other genes (Salehin et al. 2015). During AR formation in petunia cuttings, the expression of genes of the Aux/IAA family showed strong temporal variation, supporting their important role in the induction and transition to subsequent root formation phases (Druege et al. 2014). The auxin receptor (TRANSPORT INHIBITOR1) TIR1 homolog gene, *PagFBL1*, interacted strongly with both *PagIAA28.1* and *PagIAA28.2* in the presence of NAA to regulate AR induction in poplar stem segments (Shu et al. 2019). In *Arabidopsis thaliana*, Aux/IAA proteins, IAA6, IAA9, and IAA17, interacted with ARF6 and/or ARF8 and likely repressed their activity in AR development, and complexed with TIR1 and (AUXIN-SIGNALLING F-BOX) AFB2 to form specific sensing to modulate jasmonic acid homeostasis and control AR initiation (Lakehal et al. 2019). In this study, 13 IAA genes were significantly enriched in the plant hormone signal transduction pathway, suggesting a significant relationship between AUX/IAA and AR formation in *E. excelsum*. The mechanism and interaction with other IAA genes would need to be revealed in future research.

SAUR, the largest family of early auxin response genes in plants, mediate the regulation of several aspects of plant growth and development (Ren and Gray 2015). SAUR proteins showed positive or negative effects on primary, lateral and adventitious root development. In *A. thaliana*, plants overexpressing *SAUR41* exhibited increased...
primary root growth and a higher number of lateral roots (Kong et al. 2013). AtSAUR15 acts downstream of the auxin response factors ARF6,8 and ARF7,19 to regulate auxin signaling-mediated lateral root and AR formation, and plants overexpressing AtSAUR15 exhibit more lateral roots and ARs (Yin et al. 2020). In contrast to AtSAUR41 and AtSAUR15, overexpression of OsSAUR39 in rice resulted in reduced root elongation and lateral root development (Kant et al. 2009). SAUR proteins may display a species- or type-dependent positive function in AR formation. In E. excelsum, three SAUR genes maintained up-regulated expression after IBA-induced treatment, indicating a close association with AR formation.

We also found several highly up-regulated GH3 genes at all stages of AR formation in E. excelsum. GH3 proteins are also an early auxin response protein, play a crucial role in conjugating IAA to amino acids, and are critical in maintaining auxin homeostasis (Brunoni et al. 2020). Three GH3 genes, GH3.3, GH3.5, and GH3.6, were required for fine-tuning AR initiation in A. thaliana hypocotyls (Gutierrez et al. 2012). In cucumber hypocotyls, salicylic acid plays an inducible role in AR formation through competitive inhibition of the auxin conjugation enzyme CsGH3.5, and salicylic acid-induced IAA accumulation was also associated with the enhanced expression of CsGH3.5 (Dong et al. 2020). In apple plants, overexpression of MsGH3.5 significantly reduced the content of free IAA and increased the content of some IAA-amino acid conjugates, and MsGH3.5-overexpressing lines produced fewer ARs than the control (Zhao et al. 2020). Those results demonstrated that GH3 proteins were intricately involved in AR development, but did not only perform a positive role.

Conclusion

Here, we confirmed that ex vitro rooting was an obvious choice for AR formation during the micropropagation of E. excelsum plantlets. DEGs enriched in the pathway of plant hormone signal transduction played a crucial role in AR formation. H2O2 produced by environmental stimulation might be related to AR induction in E. excelsum ex vitro by the synergistic action with IBA, ultimately regulating the level of endogenous IAA. The knowledge gained from this study will help researchers understand the molecular traits of IBA-based regulation of adventitious rooting of E. excelsum plantlets. These results will provide technical support for the ecological protection of this rare and endangered species and are important for research and commercial applications aimed at overcoming rooting recalcitrance in plant species of economic value, in difficult-to-root woody plants, or in rare or endangered plants.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11240-021-02226-9.

Acknowledgements We thank Personal Biotechnology Co., Ltd. for their skilful support of RNA-sequencing.

Author contributions XHZ, YL, KLW, FL, JATdS, GHM and SJZ designed the experiment and provided guidance on the study. YPX and SYC prepared samples for AR induction and RNA-seq analysis. XHC, TZ, BYG and MYN performed the statistical analysis on the determination of IAA and H2O2 content, and RNA-seq data. ZPW, YYY, XCY and JHP participated in the experiment of AR induction and anatomical analysis. YPX, JATdS and SYC were involved in statistical analyses and co-wrote the manuscript. All authors wrote, read and approved the manuscript.

Funding This work was supported by the National Natural Science Foundation of China Youth Fund (32100311), National Key Research Plan of China (Grant No.: 2016YFC0503104) and Guangdong Science and Technology Program (Number: 2015B020231008).

Data availability All data generated or analyzed during this study are included in this published article and its supplementary information files. The RNA-seq data has been deposited in the Sequence Read Archives Database (https://www.ncbi.nlm.nih.gov/sra/) under accession number PRJNA723111 (http://www.ncbi.nlm.nih.gov/bioproject/723111).

Declarations

Conflict of interest The authors declare that they have no competing interests.

Ethical approval Specific permission was not required for plant collection at the mentioned locations.

Consent for publication Not applicable.

References

Ahkami AH, Melzer M, Ghaffari MR, Pollmann S, Javid MG, Shahninna F, Hajirezaei MR, Druege U (2013) Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta 238:499–517

Arya V, Shekhawat NS, Singh RP (2003) Micropropagation of Leptadenia reticulata—a medicinal plant. In Vitro Cell Dev Biol—Plant 39:180–185
Barlow PW (1986) Adventitious roots of whole plants: their forms, functions, and evolution. In: Jackson MB (ed) New root formation in plants and cuttings. Springer, Netherlands, Dordrecht, pp 67–110

Barpete S, Khawar KM, Özcan S (2014) Differential competence for in vitro adventitious rooting of grass pea (Lathyrus sativus L.). Plant Cell Tiss Organ Cult 119:39–50

Barstow M (2020) Euryodendron excelsum (amended version of 2017 assessment). The IUCN red list of threatened species. Plant Cell Tiss Organ Cult 119:39–50

Bellini C, Pacurar DL, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65:639–667

Benmahiol B, Dorion N, Kaid-Harche M, Daguin F (2012) Micropropagation and ex vitro rooting of pistachio (Pistacia vera L.). Plant Cell Tiss Organ Cult 108:353–358

Bhardwaj AK, Singh B, Kaur K, Roshan P, Sharma A, Dolker D, Naryal A, Saxena S, Pati PK, Chaurasia OP (2018) In vitro propagation, clonal fidelity and phytochemical analysis of Rhodiola imbricata Edgew.: a rare trans-Himalayan medicinal plant. Plant Cell Tiss Organ Cult 135:499–513

Brenuni F, Collani S, Casanova-Saez R, Simura J, Karady M, Schmid M, LJung K, Bellini C (2020) Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytol 226:1753–1765

Cardoso JC, Teixeira da Silva JA (2013) Micropropogation of Zeyheria montana mart. (Bignoniacaeae), an endangered endemic medicinal species from the Brazilian cerrado biome. In Vitro Cell Dev Biol Plant 49:710–716

Chang HT (1963) Euryodendron, a new genus of Theaceae. Acta Sci Natur Univ Sunyatseni (04):126–130

Chen QJ, Deng BH, Gao J, Zhao ZY, Chen ZL, Song SR, Wang L, Chang HT (1963) Euryodendron, a new genus of Theaceae. Acta Sci Natur Univ Sunyatseni (04):126–130

Chen SY, Xiong YP, Wu T, Wu KL, Teixeira da Silva JA, Xiong YH, Zeng SJ, Ma GH (2020b) Axillary shoot proliferation and plant regeneration in Euryodendron excelsum H T Chang, a critically endangered species endemic to China. Sci Rep 10:14402

Chen SY, Xiong YP, Wu T, Wu KL, Teixeira da Silva JA, Xiong YH, Zeng SJ, Ma GH (2020b) Axillary shoot proliferation and plant regeneration in Euryodendron excelsum H T Chang, a critically endangered species endemic to China. Sci Rep 10:14402

Dong CJ, Liu XY, Xie LL, Wang LL, Shang QM (2020) Salicylic acid regulates adventitious root formation via competitive inhibition of the auxin conjugation enzyme CsGH3.5 in cucumber hypocotyls. Planta 252:75

Druege U, Franken P, Lischewski S, Ahkami AH, Zerche S, Hause B, Hajirezaei MR (2014) Transcriptomic analysis reveals ethylene as a stimulator and auxin as a regulator of adventitious root formation in petunia cuttings. Front Plant Sci 5:494

Druege U, Franken P, Hajirezaei MR (2016) Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front Plant Sci 7:381

Eden E, Navon R, Steinfeld I, Lipson D, Yahkini Z (2009) GOrrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform 10:48

Estrella-Maldonado H, Ortiz GF, León ACC, Zapata LCR, May CT, Gil FEY, Pool FB, Espín FMI, Santamaría JM (2016) The papaya CpAux1/LAX and CpPIN genes: structure, phylogeny and expression analysis related to root formation on in vitro plantlets. Plant Cell Tiss Organ Cult 126:187–204

Fattorini L, Velocci A, Della Rovere F, D’Angeli S, Falasca G, Altamura MM (2017) Indole-3-butryic acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of antranilate synthase activity. BMC Plant Biol 17:121

Garrido G, Guerrero JR, Cano EA, Acosta M, Sánchez-Brago J (2002) Origin and basipetal transport of the IAA responsible for rooting of carnation cuttings. Physiol Plant 114(2):303–312

Guo YX, Zhao YY, Zhang M, Zhang LY (2019) Development of a novel in vitro rooting culture system for the micropropagation of highbush blueberry (Vaccinium corymbosum) seedlings. Plant Cell Tiss Organ Cult 139:615–620

Gutierrez L, Mongelard G, Floková K, Pacurar DI, Novák O, Staswick P, Kowalczyk M, Pacurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–2527

Ilczuk A, Jacygrad E (2016) In vitro propagation and assessment of genetic stability of acclimated plantlets of Cornus alba L. using RAPD and ISSR markers. In Vitro Cell Dev Biol Plant 52:379–390

Kant S, Bi YM, Zhu T, Rothstein SJ (2009) SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151:691–701

Khandaker MM, Boyce AN, Osman N (2012) The influence of hydrogen peroxide on the growth, development and quality of wax apple (Syzygium samarangense, [Blume] Merrill & L.M. Perry var. jambu madu) fruits. Plant Physiol Biochem 53:101–110

Khafter N, Benouha B (2019) Preservation of Juniperus thurifera L.: a rare endangered species in Algeria through in vitro regeneration. J for Res 30:77–86

Kong YY, Zhu YB, Gao C, She WJ, Lin WQ, Chen Y, Han N, Bian HW, Zhu MY, Wang JH (2013) Tissue-specific expression of SMALL AUXIN UP RNA1 differentially regulates cell expansion and root meristem patterning in Arabidopsis. Plant Cell Physiol 54:609–621

Lakehal A, Bellini C (2019) Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiol Plant 165:90–100

Lakehal A, Chaabouni S, Cavel E, Le Hir R, Ranjan A, Raneshan Z, Novák O, Pacurar DI, Perrone I, Jobert F, Gutierrres L, Bakó L, Bellini C (2019) A molecular framework for the control of adventitious rooting by TIR1/AFB2-Aux/IAA-dependent auxin signaling in Arabidopsis. Mol Plant 12:1499–1514

Lerner L, Ribeiro YRD, de Oliveira TD, Silveira V, Santa-Catarina C (2021) Histomorphology and proteomics during rooting of in vitro shoots in Cariniana legalis (Lecythidaceae), a difficult-to-root endangered species from the Brazilian Atlantic forest. Plant Cell Tiss Organ Cult 144:325–344

Li YH, Zou MH, Feng BH, Huang X, Zhang Z, Sun GM (2012) Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments. Plant Physiol Biochem 55:33–42

Li SW, Shi RF, Leng Y, Zhou Y (2016) Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings. BMC Genomics 17:43

Li XP, Xu QQ, Liao WB, Ma ZJ, Xu XT, Wang M, Ren PJ, Niu LJ, Jin X, Zhu YC (2016) Hydrogen peroxide is involved in asbicsic acid-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress. J Plant Biol 59:536–548

Li YH, Zhang HN, Wu QS, Muday GK (2017) Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments. Planta 245:1193–1213

Li K, Liang YQ, Xing LB, Mao JP, Liu Z, Dong F, Meng Y, Han MY, Zhao CP, Bao L, Zhang D (2018) Transcriptome analysis reveals
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression

Liao WB, Huang GB, Yu JH, Zhang ML, Shi XL (2011) Nitric oxide propagation, micromorphological studies and ex vitro rooting of cannon ball tree (Couroupita guianensis Aubl.): a multipurpose threatened species. Physiol Mol Biol Plants 22:131–142

Shen SK, Ma HY, Wang YH, Wang BY, Shen GZ (2008) The structure and dynamics of natural populations of the endangered plant Euryodendron excelsum H T Chang. Acta Ecol Sin 28:2404–2412

Shen SK, Wang YH, Wang BY, Ma HY, Shen GZ, Han ZW (2009) Distribution, stand characteristics and habitat of a critically endangered plant Euryodendron excelsum H. T. Chang (Theaceae): implications for conservation. Plant Species Biol 24:133–138

Shu WB, Zhou HJ, Jiang C, Zhao ST, Wang LQ, Li QZ, Yang QZ, Groover A, Lu MZ (2019) The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus. Plant Biotechnol J 17:338–349

Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170:603–617

Stevens ME, Woeste KE, Pijut PM (2018) Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.). Tree Physiology 38:877–894

Timofeeva SN, Elkonin LA, Tyrnov VS (2014) Micropropagation of Laburnum anagyroides Medic. through axillary shoot regeneration. In Vitro Cell Dev Biol—Plant 50:561–567

Vengadesan G, Pijut PM (2009) In vitro propagation of northern red oak (Quercus rubra L.). In Vitro Cell Dev Biol—Plant 45:474–482

Verstraeten I, Geelen D (2015) Adventitious rooting and browning are differentially controlled by auxin in rooting-recalcitrant Elegia capensis (Burm. f.) Schelp. J Plant Growth Regul 34:475–484

Vibha JB, Shekhawat NS, Mehandra P, Dinesh R (2014) Rapid multiplication of Dalbergia sissoo Roxb.: a timber yielding tree legume through axillary shoot proliferation and ex vitro rooting. Physiol Mol Biol Plants 20:81–87

Wang YH, Min TL, Hu XL, Cao LM, He H (2002) The ecological and reproduction characteristics of Euryodendron excelsum, a critically endangered plant from Theaceae. Acta Bot Yunnanica 24:725–732

Wang YN, Liang CZ, Meng ZG, Li YY, Abid MA, Askari M, Wang PL, Wang Y, Sun GQ, Cai YP, Chen SY, Lina Y, Zhang R, Guo SD (2019) Leveraging Atriplex hortensis choline monooxygenase to improve chilling tolerance in cotton. Environ Exp Bot 162:364–373

Wei K, Wang LY, Wu YZ, Zhang CC, Li HL, Tan LQ, Cao HL, Cheng H (2014) Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.). PLoS ONE 9(9):e107201

Xiong J, Yang YJ, Fu GF, Tao LX (2015) Novel roles of hydrogen peroxide (H₂O₂) in regulating pectin synthesis and demethylsterification in the cell wall of rice (Oryza sativa) root tips. New Phytol 206:118–126

Yan HB, Liang CX, Yang LT, Li YR (2010) In vitro and ex vitro rooting of Siratia grossenovii, a traditional medicinal plant. Acta Physiol Plant 32:115–120

Ye HG, Wang FG, Zhou LX, Ye YS, Huang S (2002) Euryodendron excelsum, an endangered plant in Theaceae. Chin J Bot 4:3

Yin HJ, Li MZ, Lv MH, Hepworth SR, Li DD, Ma CF, Li J, Wang SM (2020) SAUR15 promotes lateral and adventitious root development via activating H₂O₂-ATPasens and auxin biosynthesis. Plant Physiology 184:837–851

You J, Chan ZL (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

Zhang CX, Feng BH, Chen TT, Zhang XF, Tao LX, Fu GF (2017) Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regul 83:313–323

Zhang LS, Shi X, Zhang YT, Wang JJ, Yang JW, Ishida T, Jiang WQ, Han XY, Kang JK, Wang XN, Pan LX, Lv S, Cao B, Zhang YH, Wu JB, Han HB, Hu ZB, Cui LJ, Sawa S, He JM, Wang GD (2019) CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant Cell Environ 42:1033–1044
Zhang Y, Xiao ZA, Zhan C, Liu MF, Xia WX, Wang N (2019) Comprehensive analysis of dynamic gene expression and investigation of the roles of hydrogen peroxide during adventitious rooting in poplar. BMC Plant Biol 19(1):99
Zhao D, Wang YT, Feng C, Wei Y, Peng X, Guo X, Guo XW, Zhai ZF, Li J, Shen XS, Li TH (2020) Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. Plant J 103:166–183

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Yuping Xiong1,2 · Shuangyan Chen3,4 · Zhenpeng Wei5 · Xiaohong Chen1,2 · Beiyi Guo1,2 · Ting Zhang1,2 · Yuying Yin1,2 · Xincheng Yu5 · Meiyun Niu1,2 · Xinhua Zhang1 · Yuan Li1 · Kunlin Wu1 · Lin Fang1 · Jaime A. Teixeira da Silva6 · Guohua Ma1 · Songjun Zeng1

Yuping Xiong
13838553436@163.com
Shuangyan Chen
2831716403@qq.com
Zhenpeng Wei
1076819258@qq.com
Xiaohong Chen
512740674@qq.com
Beiyi Guo
294471191@qq.com
Ting Zhang
1790994058@qq.com
Yuying Yin
15617188299@163.com
Xincheng Yu
604675055@qq.com
Jinhui Pang
191901552@qq.com
Meiyun Niu
497362954@qq.com
Xinhua Zhang
xhzhang@scib.ac.cn
Yuan Li
24459755@qq.com
Kunlin Wu
wkl8@scib.ac.cn
Lin Fang
fllm1@hotmail.com
Jaime A. Teixeira da Silva
jaimetex@yahoo.com

1 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou 510650, China
2 University of Chinese Academy of Sciences, Beijing 100039, China
3 Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong 510316, China
4 Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Zhanjiang 524300, Guangdong, China
5 Zhongkai University of Agriculture and Engineering, Guangzhou 510650, China
6 Independent researcher, P.O. Box 7, Miki-cho, Ikenobe 3011-2, Kagawa-ken, Takamatsu 761-0799, Japan