The Interplay of Host Lysosomes and Intracellular Pathogens

Kuldeep Sachdeva and Varadharajan Sundaramurthy*
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India

Lysosomes are an integral part of the intracellular defense system against microbes. Lysosomal homeostasis in the host is adaptable and responds to conditions such as infection or nutritional deprivation. Pathogens such as *Mycobacterium tuberculosis* (*Mtb*) and *Salmonella* avoid lysosomal targeting by actively manipulating the host vesicular trafficking and reside in a vacuole altered from the default lysosomal trafficking. In this review, the mechanisms by which the respective pathogen containing vacuoles (PCVs) intersect with lysosomal trafficking pathways and maintain their distinctness are discussed. Despite such active inhibition of lysosomal targeting, emerging literature shows that different pathogens or pathogen derived products exhibit a global influence on the host lysosomal system. Pathogen mediated lysosomal enrichment promotes the trafficking of a sub-set of pathogens to lysosomes, indicating heterogeneity in the host-pathogen encounter. This review integrates recent advancements on the global lysosomal alterations upon infections and the host protective role of the lysosomes against these pathogens. The review also briefly discusses the heterogeneity in the lysosomal targeting of these pathogens and the possible mechanisms and consequences.

Keywords: lysosomes, *M. tuberculosis*, *Salmonella*, heterogeneity, transcription factor EB, lysosomal homeostasis

BIOLOGY OF LYSOSOME

Lysosomes are membrane-bound acidic, catabolic subcellular organelles present in eukaryotic cells. Lysosomes were first discovered by Christian René de Duve in 1955 (Appelmans et al., 1955; De Duve et al., 1955). Subsequent work from de Duve clarified that even though lysosomes are in a continuum with endocytic and biosynthetic pathways, they are distinct organelles (De Duve, 1963; Kornfeld and Mellman, 1989). Lysosomes are the terminal station for trafficking from degradative endocytosis, autophagy and phagocytosis, and consequently receive diverse cargo from these pathways. Lysosomes contain many types of hydrolytic enzymes including lipases, proteases, glycosidases, nucleases and sulfatases. These enzymes enable lysosomes to digest complex and diverse cargos (Luzio et al., 2017; Münz, 2017; Naslavsky and Caplan, 2018; Inpanathan and Botelho, 2019) into their constituent building blocks (Baggiolini, 1985; Kornfeld and Merriman, 1989; Casciola-Rosen and Hubbard, 1991; Rohrer and Kornfeld, 2001; Kolter and Sandhoff, 2005; Xu and Ren, 2015), which are released into the cytoplasm and recycled via the anabolic pathways of the cell (Luzio et al., 2017; Sabatini, 2017; Lawrence and Zoncu, 2019). Lysosomal acid hydrolases, which are synthesized in the endoplasmic reticulum, are tagged with mannose-6-phosphate (M6P) in the Golgi-network and then traffic to lysosomes via the endocytic system (Chao et al., 1990; Pohlmann et al., 1995; Saftig and Klumperman, 2009; Pohl and Hasilik, 2015; Luzio et al., 2017;
Bhamidimarri et al., 2018). M6P receptor independent delivery of lysosomal proteins through sortilin and lysosomal integral membrane proteins (LIMPs) has also been reported (Glickman and Kornfeld, 1993; Storch and Braulke, 2005; Reczek et al., 2007; Braulke and Bonifacino, 2009; Saftig and Klumperman, 2009; Blanz et al., 2015; Markmann et al., 2015). Thus, the biogenesis of lysosomes requires the integration of endocytic and biosynthetic pathways (Kornfeld and Mellman, 1989; Saftig and Klumperman, 2009).

LYSOSOMAL ADAPTATION AND BIOGENESIS UPON SIGNALS

Long considered as the “garbage bin” of the cell, the role of lysosomes has undergone tremendous revisions over the last few years. Lysosomes play an important role in maintaining homeostasis of several cellular processes including cellular clearance, metabolism, plasma membrane repair, pathogen defense, bone remodeling and act as signaling platform (Baron et al., 1985; Reddy et al., 2001; McNeil, 2002; Kurz et al., 2011; Settembre and Ballabio, 2011; Lacombe et al., 2013; Xu and Ren, 2015; Diez-Roux and Ballabio, 2016; Erkhembaatar et al., 2017; Palmieri et al., 2017; Thelen and Zoncu, 2017; Tsukuba et al., 2017; Corrotte and Castro-Gomes, 2019; Lawrence and Zoncu, 2019). An adaptive and dynamic lysosomal response upon ever-changing cellular environment is critical for the maintenance of cellular homeostasis, one such response being the biogenesis of lysosomes itself (Settembre et al., 2013; Inpanathan and Botelho, 2019). A major environmental trigger for lysosomal biogenesis is infections with intracellular pathogens such as *M. tuberculosis* and Salmonella (Figure 1).

Endo-lysosomal proteins such as Rab7 and Lamp proteins play crucial roles in maintenance of lysosomal homeostasis. Rab7 GTPase plays a key role in trafficking of lysosomal enzymes from endosomes to lysosomes, as expression of dominant negative Rab7 impairs lysosomal delivery of acid hydrolases (Press et al., 1998), acidification and ultimately degradation of cargo in lysosomes (Bucci et al., 2000; Guerra and Bucci, 2016). Similarly, trafficking of a subset of lysosomal enzymes and recycling of M6P receptors is altered upon Lamp2 deficiency (Eskelinen et al., 2002), showing its essential nature.

The mechanisms regulating cellular lysosomal biogenesis are becoming clear in the recent years. Transcription factor EB (TFEB), a basic helix-loop-helix-leucine zipper transcription factor of the microphthalmia family, regulates transcription of the lysosomal genes and subsequently lysosomal biogenesis in cell. Multiple kinases including mTORC1, ERK2, AKT, GSKβ and PKCβ phosphorylate TFEB at different residues and regulate its subcellular localization (Settembre et al., 2011; Parr et al., 2012; Ferron et al., 2013; Li et al., 2016; Palmieri et al., 2017; Puertollano et al., 2018). In nutrient rich conditions, activated mTORC1 on the lysosomal membrane phosphorylates TFEB at Ser142 and Ser211, which promotes the binding of TFEB with the 14-3-3 cytosolic chaperon and favors its cytoplasm retention. Conversely, mTORC1 inactivation upon starvation leads to nuclear translocation of TFEB (Figure 2) (Settembre and Ballabio, 2011; Rocznik-Ferguson et al., 2012; Settembre et al., 2012; Puertollano et al., 2018). Dephosphorylation of TFEB by calcium-activated calcineurin and protein phosphatase 2A also induces nuclear translocation of TFEB (Medina et al., 2015; Zhang et al., 2016; Martina and Puertollano, 2018; Najibi et al., 2019). In the nucleus, TFEB binds to Coordinated Lysosomal Expression and Regulation (CLEAR) element in promoter region of the lysosomal genes and subsequently induces their transcription (Sardiello and Ballabio, 2009). Thus, signals from different cascades integrate at TFEB to regulate the lysosomal biogenesis and homeostasis in cells (Figure 2). Emerging evidence indicate that infection by pathogens influence these lysosomal signaling pathways in the cells (Campbell et al., 2015; Najibi et al., 2019; Sachdeva et al., 2020a). In the following sections, we will explore the intracellular trafficking of two specific pathogens and their intersection with lysosomal pathways.

DYNAMICS OF PCV AND HOST TRAFFICKING ALTERATIONS

In the host cell, several innate immune elements such as reactive oxygen and nitrogen species (ROS, RNS), lysosomal acid hydrolases, xenophagy, inflammasome, septin caging, and...
proteasomal degradation are employed to neuter the pathogens (Radtke and O’Riordan, 2006; Deretic and Levine, 2009; Kaufmann and Dorhoi, 2016). But most pathogens manipulate these host mechanisms and generate an intracellular milieu conducive for their survival. One common strategy employed by many pathogens is to avoid trafficking to lysosomes (Méresse et al., 1999b; Duclos and Desjardins, 2000; Alix et al., 2011; Tang, 2015; Martinez et al., 2018). Several pathogens secrete effectors that target key host factors such as Rab GTPases (Deretic et al., 1997; Via et al., 1997; Fratti et al., 2001; Vergne et al., 2003b; Smith et al., 2007; Seto et al., 2011; Sherwood and Roy, 2013; Pradhan et al., 2018), cytoskeleton and motor protein (Dramsi and Cossart, 1998; Bearer and Satpute-Krishnan, 2002; Rottner et al., 2005; Henry et al., 2006b; Haglund and Welch, 2011; Shimono et al., 2016; Anes, 2017; Zhou et al., 2018) and block the fusion with lysosomes (Via et al., 1997; Russell, 2001; Pieters, 2008; Pradhan et al., 2018), instead residing in a modified phagosome, often called the pathogen containing vacuole (PCV) (Haas, 2007).

Mycobacteria and Salmonella are two well-studied pathogens that intersect with and manipulate the endo-lysosomal system of the host for their survival. Intracellular trafficking alteration of the PCV and escape from lysosomal delivery is well studied in both these pathogens (Méresse et al., 1999b; Duclos and Desjardins, 2000; Hashim et al., 2000; Gorvel and Méresse, 2001; Fratti et al., 2003; Vergne et al., 2003b; Chua et al., 2004; Smith et al., 2005; Deghmane et al., 2007; Smith et al., 2007; Alix et al., 2011; Vergne et al., 2014; Tang, 2015; Martinez et al., 2018). In this review, we will focus on the interaction of these pathogens with the functioning of the host lysosomes (Figure 1). We will discuss the molecular mechanisms by which the two pathogens intersect with lysosomal trafficking to establish and sustain their respective PCV’s (Figure 3). While these mechanisms are well known, and other reviews have documented them extensively (Russell, 2001; Holden, 2002; Pieters, 2008; Steele-Mortimer, 2008; Lahiri et al., 2010; Queval et al., 2017; Upadhyay et al., 2018) less is known about the impact of these infections on the lysosomal homeostasis of the infected cell. We will discuss emerging evidence from literature on the impact of these intracellular pathogens on the lysosomal system globally in the infected cells, beyond the confines of the PCV’s and explore their consequences (Figure 4). Finally, we will briefly explore the emerging role of heterogeneity in shaping the outcomes of host-pathogen encounters, and examine the role of lysosomes in this context (Figure 5).

MYCOBACTERIA CONTAINING VACUOLE TRAFFICKING AND MATURATION

While inert particles such as beads undergo the process of phagosomal maturation and eventually fuse with the lysosomes, *Mtb* employs several virulence factors such as PknG, PtPA, SapM, LpdC, ManLAM, Ndk, ESAT6, CFP10 (Figure 3A) (Via et al., 1997; Fratti et al., 2001; Fratti et al., 2003; Vergne et al., 2003b; Chua et al., 2004; Vergne et al., 2004; Vergne et al., 2005; Deghmane et al., 2007; MacGurn and Cox, 2007; Bach et al., 2008; Wong et al., 2011; Simeone et al., 2012; Mehra et al., 2013; Shukla et al., 2014; Pradhan et al., 2018) that impede its vacuolar maturation and fusion with the lysosomes (Armstrong and Hart, 1971; Russell, 2001; Pieters, 2008; Cambier et al., 2014; Awuh and Flo, 2016). These effectors modulate several host factors such as PI3Kinase (Fratti et al., 2003; Vergne et al., 2003a; Chua and Deretic, 2004; Zulauf et al., 2018), V-ATPase (Bach et al., 2008), EEA1, Rab7, Lamp2 (Via et al., 1997; Fratti et al., 2001; Seto et al., 2011; Hu et al., 2015; Pradhan et al., 2018), coronin-1 (Ferrari et al., 1999; Deghmane et al., 2007) and
SALMONELLA CONTAINING VACUOLE TRAFFICKING AND MATURATION

Salmonella is another fascinating pathogen whose intracellular lifestyle intersects extensively with the endo-lysosomal system of host cells. *Salmonella* can infect non-phagocytic cells by secreting effectors in the host (Brumell et al., 1999; Fu and Galán, 1999; Zhou et al., 1999; Galán and Zhou, 2000). In non-phagocytic cells, *Salmonella* containing vacuoles (SCVs) acquire early and late endosomal markers e.g. lysosomal membrane glycoproteins, V-ATPases and acquire NADPH oxidase (Vazquez-Torres et al., 2000; Gallois et al., 2001) but do not fuse with lysosomes (Garcia-del Portillo and Finlay, 1995; Méresse et al., 1999a; Uchiya et al., 1999; Duclos and Desjardins, 2000; Gorvel and Méresse, 2001) (Figure 3B). The limited lysosomal hydrolytic activity in SCV could also be because of the rapid dilution of these enzymes in larger area of SCV (Krieger et al., 2014; Liss and Hensel, 2015; Knuff and Finlay, 2017). *Salmonella* effectors such as PipB2, SifA, SipA, SopB, SopD2, SseJ, SseF, and SseG etc., target several host factors e.g. cytoskeleton, motor proteins, ESCRT machinery (Dukes et al., 2006), SNAREs (Singh et al., 2018), Rab GTPases (Smith et al., 2007) and phosphoinositide levels (Dukes et al., 2006) to maintain juxta-nuclear positioning and the integrity of the SCV (Beuzón et al., 2000; Salcedo and Holden, 2003; Guignot et al., 2004; Kuhle et al., 2004; Boucrot et al., 2005; Abrahams and Hensel, 2006; Abrahams et al., 2006; Henry et al., 2006a; Brawn et al., 2007; Ramsden et al., 2007; Steele-Mortimer, 2008; Wasylnka et al., 2008; Lau et al., 2019), *Salmonella* induced Sifs (Sifs) formation (Stein et al., 1996; Waterman and Holden, 2003; Boucrot et al., 2005; Rajashekar et al., 2008; Szeto et al., 2009; Dumont et al., 2010; Leone and Méresse, 2011; Krieger et al., 2014; Rajashekar et al., 2014; Liss et al., 2017; Gao et al., 2018) and to inhibit fusion with lysosomes (Garcia-del Portillo and Finlay, 1995; Méresse et al., 1999a; Uchiya et al., 1999; Duclos and Desjardins, 2000; Gorvel and Méresse, 2001) (Figure 3B). Interestingly, SCVs are differentially modulated in epithelial cells and macrophages indicating potential cell type specific mechanisms (Reuter et al., 2020).

Altogether, these studies demonstrate that *Mtb* and *Salmonella* containing vacuoles are substantially transformed compared to bead containing phagosomes and these alterations have an astounding influence on the intracellular trafficking of these vacuoles along the lysosomal pathway.

While phagosome maturation arrest mediated by *Mtb* is well-studied in cultured macrophages in vitro, emerging evidence suggest that under in vivo infections, *Mycobacterium* could encounter acidic conditions and indeed be delivered to and adapt to lysosomal conditions (Levitte et al., 2016; Sundaramurthy et al., 2017). Indeed *Mtb* infected cells and tissues show higher lysosomal content in vivo (Sundaramurthy et al., 2017; Sachdeva et al., 2020a), and *Mtb* are delivered rapidly to lysosomes in a susceptible mouse model (Sundaramurthy et al., 2017). Lysosomal delivery however does not result in the elimination of *Mycobacteria*, rather a reduced growth rate (Levitte et al., 2016; Sundaramurthy et al., 2017). Using elegant photobleaching experiments in zebrafish infected with *M. marinum* (*Mm*), Ramakrishnan group showed that the bacteria residing in lysosomes have slower growth compared to the ones that are not fused to lysosomes (Levitte et al., 2016). These studies suggest that additional facets of *Mycobacterium* interaction with the lysosomal trafficking system could be...
FIGURE 4 | Alteration in the host lysosomal system upon intracellular infections. The host lysosomal alterations in four different pathogenic infections are shown. Lysosomes are shown in red. Mtb and Staphylococcus aureus infection increases the host cellular lysosomes levels compared to uninfected condition, whereas Salmonella infections leads to formation of late endosome/lysosome derived filamentous structures. In Trypanosoma infection, lysosomes move toward cell periphery at the site of pathogen entry and fuse with the plasma membrane to facilitate pathogen entry in the host cell. In these infectious condition, i.e Mtb, Salmonella, Staphylococcus and Trypanosoma, transcription factor EB (TFEB) is translocated to nucleus as compared to the uninfected state.

FIGURE 5 | Lysosomal heterogeneity influencing intracellular Mycobacterium tuberculosis (Mtb) trafficking. (A) Heterogeneity in lysosomal targeting of pathogens in the host cells could be driven by pre-existing heterogeneity of host cells where some cells intrinsically have more lysosomes and are more efficient in trafficking Mtb (green) to lysosomes (red), or it could also be driven by pathogen diversity, where some pathogens cells are less capable of resisting lysosomal delivery. (B) Other model proposes the idea of induced heterogeneity where post-infection the heterogeneity is induced in the host and pathogen e.g. lysosomal levels and lysosomal delivery of Mtb in cells becomes heterogeneous. Existing literature suggests that these events are not mutually exclusive and pre-existing heterogeneity in the pathogen cells can induce diversity in the host cell response. Similarly, heterogeneity of the host cells can generate diversity in the pathogens upon infection.
manifest during in vivo infection, which warrants further investigations.

PATHOGENS AFFECTING HOST LYSOSOMAL HOMEOSTASIS

While extensive work, as described above, has uncovered the mechanisms by which pathogens avoid lysosomal delivery, if and how these pathogens globally influence the host lysosomal homeostasis is not very well understood. Documenting the global manipulations in the host cell by pathogens, beyond the confines of the PCV, is important to gain a complete appreciation of the influence of infection on the host, which further opens the possibilities to better design the counter-strategies against the pathogens. Recent work from several groups, including ours, have systematically addressed this question.

ESX-1 secretion system is known to play a role in impacting cellular lysosomes in different ways. Mtb and M. marinum (Mm) induces exocytosis of lysosomes upon infection in a ESX-1 dependent manner (Koo et al., 2008a). Esat-6, one of the well-studied substrates of the ESX-1 secretion system, has been recently shown to play a role in permeabilization of lysosomal membrane and release of mature cathepsin B into the cytosol, resulting in inflammasome activation and secretion of pro-inflammatory cytokines such as IL-1B (Amaral et al., 2018). Our recent work shows that Mtb infection alters the host lysosomal homeostasis and globally elevates the cellular lysosomal content of the infected macrophages under both in vitro and in vivo infections in mouse model. Mtb lipids, predominantly Sulfolipid-1, play a major role in lysosomal expansion. Correspondingly, a Sulfolipid-1 deficient Mtb mutant (MtbΔpks2) showed attenuated lysosomal rewiring. Sulfolipid-1 induces lysosomal biogenesis in macrophages in a mTORC1-TFEB dependent manner (Sachdeva et al., 2020a). Other bacterial components such as peptidoglycan from Staphylococcus aureus and lipopolysaccharide (LPS) induce lysosomal expansion using TFEB dependent as well as independent pathways. However, the role of peptidoglycan and LPS on lysosomes in an infection context remains to be validated. These studies show that bacterial membrane components have an influence on the signaling pathways regulating lysosomal homeostasis of the host cells (Hipolito et al., 2019; Najibi et al., 2019; Sachdeva et al., 2020a), and exert an effect on lysosomes globally in the infected cell, beyond the confines of the PCV’s.

Salmonella infection depletes acidic and catalytically active lysosomes in the host cells (Eswarappa et al., 2010; McGourty et al., 2012; Najibi et al., 2019). Salmonella effector PipB2 instigate tubulations of late endosome (LE)/lysosomes to form Sifs. Ectopic expression of PipB2 induces the dispersal of LE/lysosomes toward the cell periphery by increasing their net anterograde movement (Knodler and Steele-Mortimer, 2005). In addition, ectopic expression of SifA, SpiC, and SodP2 in mammalian cells also induces aggregation of LE/lysosomes (Brumell et al., 2001b; Boucrot et al., 2003; Brumell et al., 2003; Shotland et al., 2003). Few other studies have also reported remodeling of the endosomal system in Salmonella infection and propose that it facilitates the nutrient acquisition for the bacteria (Rajashekar et al., 2008; Liss and Hensel, 2015). Furthermore, Salmonella-effector SifA makes a stable complex with the host SKIP and Rab9 in infected cells and subverts the retrograde trafficking of mannose-6-phosphate receptors (MPRs). Subsequently, subverted MPR trafficking leads to misrouting of the lysosomal enzymes in the cell, which ultimately abolishes lysosomal catalytic activity (McGourty et al., 2012). Ectopic expression of SifA is enough to alter MPR trafficking and lysosomal function in HeLa cells (McGourty et al., 2012).

Other than Mtb and Salmonella, few other pathogens such as Staphylococcus aureus, Plasmodium and Trypanosoma alter lysosomal homeostasis in the host cells. Similar to Mtb, Staphylococcus aureus infection increases the levels of lysosomes in the host cells in a TFEB dependent manner (Visvikis et al., 2014; Najibi et al., 2016; Najibi et al., 2019). Infections by protozoan parasites such as Plasmodium and Trypanosoma alter lysosomal homeostasis by increasing lysosomes and inducing lysosomal exocytosis, which facilitates the entry of the pathogen in the host cells (Tardieux et al., 1992; Hissa et al., 2012; Vijayan et al., 2019). These reports suggest that different pathogens impose distinct alterations in the host lysosomal system beyond the confines of the pathogen containing vacuoles by influencing the signaling cascades regulating lysosomal homeostasis (Figure 4). Some of the factors from individual pathogens modulating lysosomal processes is summarized in Table 1, while much work remains to be done in this exciting and emerging area.

ROLE OF THE GLOBAL LYSOSOMAL ALTERATIONS IN PATHOGENESIS MECHANISMS

The lysosomal system is modulated in response to the physiological state of the cells and signal integration at the level of TFEB to regulate the lysosomal homeostasis in the cell. Gray et al reported that phagocytosis of Escherichia coli induces lysosomal biogenesis in cells in a TFEB dependent manner and this lysosomal enrichment enhances the bactericidal properties of the host cell (Gray et al., 2016). Our recent work with Mtb mediated lysosomal enrichment shows that the increased lysosomal levels in Mtb infected cells have a host-protective role against pathogenic Mtb (Sachdeva et al., 2020a). MtbΔpks2, the SL-1 mutant Mtb strain, shows attenuated lysosomal rewiring and corresponds to a phenotype of enhanced intracellular Mtb survival (Sachdeva et al., 2020a). Lysosomal proteins such as Lamp1 and 2 are necessary for phagosomal fusion with lysosomes (Huynh et al., 2007). Importantly, they are regulated by TFEB (Palmieri et al., 2011; Vural et al., 2018). Hence, it is suggested that TFEB mediated lysosomal enrichment

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6 November 2020 | Volume 10 | Article 595502
TABLE 1 | Different pathogen and their effectors affecting host lysosomal homeostasis.

S. no	Pathogen	Effector	Effect on host lysosomes	References
1	Mtb, Mm	Exs-1 secretion system	Increases lysosomal exocytosis	(Koo et al., 2008b)
2	Mtb	ESAT-6	Increased lysosomal permeabilization	(Amaral et al., 2018)
3	Mtb	Sulfolipid-1	Increased lysosomal content of the host cell	(Sachdeva et al., 2020a)
4	Mtb	pks2 mutant	Increases lysosomal content of the host cell	(Sachdeva et al., 2020a)
5	Salmonella	SPI-2 T3SS effector	Depletes acidic lysosomes in the host cell	(Eswarappa et al., 2010; Najibi et al., 2019)
6	Salmonella	Sia	Impairs acidic lysosomes and thereby lysosome function	(McGourty et al., 2012)
7	Salmonella	PipB2	Instigates tubulations of late endosome/lysosomes	(Knodler and Steele-Mortimer, 2005)
8	Salmonella	Sia, SpiC and SopD2	Induce aggregation of late endosome/lysosomes	(Brunell et al., 2001a; Boucrot et al., 2003; Shotland et al., 2003)
9	Staphylococcus aureus	Peptidoglycan	Increases lysosomal content of the host cell	(Najibi et al., 2019)
10	Plasmodium yoelii	Secretory effector(s)	Lysosomal exocytosis	(Vijayan et al., 2019)
11	Trypanosoma cruzi (metacyclic)	gp82 protein	Lysosome biogenesis/scattering	(Cortez et al., 2016)

enhances the fusion of bacterial vacuoles with lysosomes and augments the lysosomal targeting of pathogens in the host cell (Vural et al., 2018). Interestingly phagosome maturation rate is accelerated during SL-1 mediated lysosomal expansion (Sachdeva et al., 2020a), suggesting that enhanced lysosomal function influences phagosome maturation and subsequently bacterial survival. In line with this, chemical inhibition of lysosomal acidification by bafilomycin and cathepsin D using pepstatin in primary macrophages increased the intracellular growth of Mtb (Welin et al., 2011). Similarly, blocking lysosomal enzyme β-hexosaminidase enhanced the intracellular survival of M. marinum suggesting lysosomal hydrolases mediated restriction mechanisms (Koo et al., 2008b). Thus, lysosomal enrichment in macrophages promotes the lysosomal targeting of a proportion of Mtb and consequently limits the intracellular replication of Mtb (Vural et al., 2018; Sachdeva et al., 2020a). Further lysosomal enrichment by chemical treatment of autophagy modulators nortriptyline and prochlorperazine edisylate (Sundaramurthy et al., 2013) or gefitinib (Sogi et al., 2017) in macrophages increased lysosomal targeting of Mycobacteria and suppressed the intracellular bacterial replication. Treatment with Interferon-gamma (IFN-γ), a cytokine of adaptive immunity, substantially decreases mycobacterial survival in the host (Flynn and Chan, 2001). Several findings suggest that the IFN-γ treatment substantially increases the anti-mycobacterial capacity of the host cells by enhancing lysosomal targeting of Mycobacteria (Schaible et al., 1998; Via et al., 1998). These studies suggest that pharmacologically increasing lysosomes influences the lysosomal delivery of Mtb and limits the growth of Mtb in cells, thus playing a protective role against Mtb. Thus either enrichment or depletion of lysosomal content has the respective opposite effect on intracellular Mtb survival, arguing for a reciprocal relationship between macrophage lysosomal content and intracellular Mtb survival.

The depletion of functional lysosomes upon Salmonella infection also facilitates the survival of the pathogen in the host (Eswarappa et al., 2010). Further, genetic or chemical modulation of the host lysosomes correspondingly affected the intracellular survival of Salmonella suggesting that the intracellular growth of Salmonella is affected by the lysosomes (McGourty et al., 2012). Several other studies have also reported that the chemical or genetic enrichment of lysosomes enhances bactericidal properties and bacterial clearance of other pathogens such as Burkholderia cenocepacia, methicillin-resistant Staphylococcus aureus and enteroinvasive Escherichia coli (Sogi et al., 2017; Vural et al., 2018; Liu et al., 2019). These studies show an emerging consensus with these limited examples of the global content of lysosomes in cells having a growth inhibitory effect on intracellular pathogens.

While these studies show the relevance of global alteration of lysosomes to the infection, our recent study also throws light on lysosomal heterogeneity influencing intracellular Mtb trafficking in a non-perturbed macrophage population, i.e a higher proportion of Mtb are delivered to lysosomes in cells with higher lysosomal content (Sachdeva et al., 2020a; Sachdeva et al., 2020b).

HETEROGENEITY IN HOST-PATHOGEN INTERACTION

It is important to point out that lysosomal enrichment in cells, while restricting the intracellular growth of these pathogens, is not sufficient to completely eradicate the pathogen from the host cell. In fact, only a proportion of the intracellular Mtb population is targeted to lysosomes in response to the lysosomal enrichment in cells. Subcellular localization analysis in different studies shows that approximately 20-40% of Mtb are targeted to lysosomes (Welin et al., 2011; Sogi et al., 2017; Sachdeva et al., 2020a). When the lysosomal rewiring is attenuated, such as in MtbΔpks2 mutant, even less Mtb are delivered to lysosomes (Sachdeva et al., 2020a). It would be interesting to see if

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7 November 2020 | Volume 10 | Article 595502
physiological state of the bacteria such as redox potential, metabolic activity or antibiotic sensitivity of this subpopulation is different from the rest of the *Mtb* population that is not delivered to lysosomes.

Recent studies reveal substantial heterogeneity in the pathogen and host cells at single cell level that impacts the outcome of host-pathogen encounters (Avraham et al., 2015; Avraham and Hung, 2016). Heterogeneity could be either pre-existing or infection induced. Avraham et al. showed that varying PhoPQ activity on LPS modification in a subset of *Salmonella* generates a heterogeneous population of the pathogens (Avraham et al., 2015). This heterogeneous *Salmonella* population upon infection further drives variable type 1 IFN response in the host cells, thus promoting diversity in the host cells (Avraham et al., 2015). This study is an elegant example of pathogen heterogeneity shaping the outcome of infection. Recent work from our laboratory reveals pre-existing endocytic heterogeneity in the macrophages that determine their susceptibility to infections (Sachdeva et al., 2020b). The study shows considerably high intrinsic heterogeneity in the endocytic capacity of individual cells in a population, which governs the subsequent phagocytic events, including intracellular infections and subcellular trafficking within macrophages (Sachdeva et al., 2020b). Interestingly, the cells with higher endocytosis also have high levels of lysosomes suggesting a co-regulation of the endosomal and lysosomal numbers (Sachdeva et al., 2020b). In line with this, a recent study indicates the transcription regulation of endocytic genes such as Rab5A and Rab7A by TFEB, a known regulator of lysosomal biogenesis (Nnah et al., 2018). However, the exact mechanisms determining the spread and extent of endo-lysosomal heterogeneity in cells are not known, although it is quite likely that fluctuations in the expression and subcellular localization of TFEB could play a role. Importantly, *Mtb* trafficking to lysosomes is different in cells with different lysosomal content, i.e., a higher proportion of *Mtb* are delivered to lysosomes in cells with higher lysosomal content, even in the same non-perturbed macrophage cell population (Sachdeva et al., 2020b), an effect that averages out at a population level. Thus, the lysosomal content in *Mtb* infected cells can be a combination of pre-existing heterogeneity (Sachdeva et al., 2020b) and infection induced lysosomal biogenesis (Sachdeva et al., 2020a) (Figure 5). Importantly, differential subcellular trafficking of *Mtb* in these heterogeneous host cells could potentially generate diversity in the pathogen as well, since reports indicate that the physiological state of *Mtb* such as its redox potential is influenced depending on whether the bacterium is in lysosomes, or not (Bhaskar et al., 2014).

Similarly, a recent study shows another instance of pre-existing heterogeneity in the host primary human vascular endothelial cells (HUVEC), where susceptibility to *Listeria monocytogenes* infection is determined at the level of bacterial adhesion to cells (Rengarajan and Theriot, 2020). These studies demonstrate that heterogeneity, whether pre-existing or generated upon infection has a substantial impact on the pathogen-host encounters at multiple levels including uptake, sub-cellular trafficking and downstream responses such as gene expression changes. Further work and development of novel pathogen reporter strains are required to delineate between infection induced vs pre-existing heterogeneity in different contexts and gain quantitative insights into the consequences of encountering heterogeneous sub-cellular environments for the bacteria.

Overall, the role of heterogeneity in host-pathogen interactions at a single cell level – host or pathogen mediated and pre-existing or infection induced – determining population outcomes is emerging as a major theme in infection biology. How the heterogeneity in lysosome function and importantly composition influences, and is influenced by, infection events will be exciting area to explore in the future.

CONCLUSION

In this review on intracellular pathogens and host lysosomal landscape, we show that pathogens such as *Mtb* and *Salmonella* impose global alteration on the host lysosomal system by manipulating the lysosomal signaling cascades in cells. These pathogens impose diverse kind of alterations in the host lysosomal landscape including enrichment, depletion and redistribution of the lysosomes. Importantly, lysosomes play a host protective role in the host-pathogen encounter and lysosomal enrichment in cells promotes delivery of pathogens such as *Mtb* and *Salmonella* to lysosomes, limiting the intracellular pathogen growth. Conversely, depletion of the host lysosomes promotes the intracellular survival of these pathogens. However, the lysosomal system does not completely eradicate pathogens such as *Mtb* and trafficking of only a subpopulation of these pathogens is influenced by the lysosomal system. In future, it will be important to understand the determinant(s) of the heterogeneous lysosomal targeting of these pathogen and its consequence for the bacteria. Such studies could lead to development of better host lysosomal targeted therapeutics against these dreaded infectious diseases.

AUTHOR CONTRIBUTIONS

KS and VS conceived, wrote, and edited the review. All authors contributed to the article and approved the submitted version.

FUNDING

VS is supported by core funding from NCBS-TIFR.

ACKNOWLEDGMENTS

The authors thank Manisha Goel and Bishal Basak for critical reading of the manuscript.
REFERENCES

Abrahms, G. L., and Hensel, M. (2006). Manipulating cellular transport and immune responses: dynamic interactions between intracellular Salmonella enterica and its host cells. Cell. Microbiol. 8, 728–737. doi: 10.1111/j.1462-5822.2006.00706.x

Abrahms, G. L., Müller, P., and Hensel, M. (2006). Functional dissection of SseF, a type III effector protein involved in positioning the salmonella-containing vacuole. Traffic Cph. Den. 7, 950–965. doi: 10.1111/j.1600-0854.2006.00454.x

Alix, E., Mukherjee, S., and Roy, C. R. (2011). Subversion of membrane transport potential of Mycobacterium tuberculosis during infection. Mol. Biol. Cell. 22, 1127–1136. doi: 10.1093/mcb/jjr12313

Boucrot, E., Beuzon, C. R., Holden, D. W., Gorvel, J.-P., and Méresse, S. (2003). Salmonella typhimurium Sifa effector protein requires its membrane-anchoring C-terminal hexapeptide for its biological function. J. Biol. Chem. 278, 14196–14202. doi: 10.1074/jbc.M207901200

Boucrot, E., Henry, T., Borg, J.-P., Gorvel, J.-P., and Méresse, S. (2005). The intracellular fate of Salmonella depends on the recruitment of kinase. Science 308, 1174–1178. doi: 10.1126/science.1110225

Braulke, T., and Bonifacino, J. S. (2009). Sorting of lysosomal proteins. Biochem. Biophys. Acta - Mol. Cell Res. 1793, 605–614. doi: 10.1016/j.bbamcr.2008.10.016

Brawn, L. C., Hayward, R. D., and Koronakis, V. (2007). Salmonella SPI1 Effector SipA Persists after Entry and Cooperates with a SPI2 Effector to Regulate Phagosome Maturation and Intracellular Replication. Cell Host Microbe 1, 63. doi: 10.1016/j.chom.2007.02.001

Brumell, J. H., Steele-Mortimer, O., and Finlay, B. B. (1999). Bacterial invasion: Force feeding by Salmonella. Curr. Biol. 9, R277–R280. doi: 10.1016/S0960-9822(99)01817-x

Brumell, J. H., Rosenberger, C. M., Gotto, G. T., Marcus, S. L., and Finlay, B. B. (2001a). Sifa permits survival and replication of Salmonella typhimurium in murine macrophages. Cell Microbiol. 3, 75–84. doi: 10.1046/j.1462-5822.2001.00087.x

Brumell, J. H., Tang, P., Mills, S. D., and Finlay, B. B. (2001b). Characterization of Salmonella-induced filaments (Sifs) reveals a delayed interaction between Salmonella-containing vacuoles and late endocytic compartments. Traffic Cph. Den. 2, 643–653. doi: 10.1111/j.1600-0854.2001.20907.x

Campbell, G. R., Rawat, P., Bruckman, R. S., and Spector, S. A. (2015). Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration. PloS Pathog. 11, e1005018. doi: 10.1371/journal.ppat.1005018

Chao, H. H., Waheed, A., Pohlmann, R., Hille, A., and von Figura, K. (1990). Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes. J. Biol. Chem. 265, 1178. doi: 10.1016/s0021-9258(15)59897-9

Cho, H. H., Waheed, A., Pohlmann, R., Hille, A., and von Figura, K. (1990). Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes. EMBO J. 9, 3507–3513. doi: 10.1002/j.1460-2075.1990.tb07559.x

Chua, J., Vergne, I., Master, S., and Deretic, V. (2004). A tale of two lipids: Phosphatidylinositol 3-phosphate on phagosomal organelles. J. Biol. Chem. 279, 36992–36999. doi: 10.1074/jbc.M405082200

Corrotte, M., and Castro-Gomes, T. (2019). Lysosomes and plasma membrane repair. Curr. Top. Membr. 84, 1–16. doi: 10.1007/bs.ctm.2019.08.001

Cortez, C., Real, F., Yoshida, N., Paulo, F. D. S., and Toledo, R. P. D. (2016). Lysosome biogenesis / scattering increases host cell susceptibility to invasion by Trypanosoma cruzi metacyclic forms and resistance to tissue culture trypomastigotes. Cell. Microbiol. 18, 748–760. doi: 10.1111/cmi.12548

De Duve, C., Papavinasasundaram, K. G., Dong, W., Hnana, Z., and Av-Gay, Y. (2008). Mycobacterium tuberculosis Virulence Is Mediated by PtpA Dephosphorylation of Human Vacular Protein Sorting 33B. Cell Host Microbe 3, 316–322. doi: 10.1016/j.chom.2008.03.008

Deretic, V., and Levine, B. (2009). Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5, 527–549. doi: 10.1016/j.chom.2009.05.016

Dharmage, A.-E., Soulline, H., Soulline, H., Bach, H., Sendide, K., Itoh, S., et al. (2007). Lipoamide dehydrogenase mediates retention of coronin-1 on BCG vacuoles, leading to arrest in phagosome maturation. J. Cell Sci. 120, 2796–2806. doi: 10.1242/jcs.006221

Deretic, V., and Levine, B. (2009). Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5, 527–549. doi: 10.1016/j.chom.2009.05.016

Duffy, C., Via, L. E., Fratti, R. A., and Deretic, D. (1997). Mycobacterial phagosome maturation, rab proteins, and intracellular trafficking. Electrophoresis 18, 2542–2547. doi: 10.1002/elps.1150181409
Glickman, J. N., and Ballabio, A. (2016). "TFEB, Master Regulator of Cellular Clearance," in Lysosomes: Biology, Diseases, and Therapeutics (NJ, USA: John Wiley & Sons, Ltd), 101–114. doi: 10.1002/9781118978320.ch7

Dramsi, S., and Cossart, P. (1998). Intracellular Pathogens and the Actin Cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 137–166. doi: 10.1146/annurev.cellbio.14.1.137

Duclos, S., and Desjardins, M. (2000). Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell. Microbiol. 2, 365–377. doi: 10.1046/j.1462-5822.2000.00066.x

Dukes, J. D., Lee, H., hagen, R., Barbara J, R., Abigail N, L., Eduoard E, G., et al. (2000). Subversion of a young phagosome: the Cytoskeleton. Annu. Rev. Cell Dev. Biol. 16, 329–342. doi: 10.1146/annurev.cellbio.16.1.329

Eskelinen, E.-L., Illert, A. L., Tanaka, Y., Schwarzmann, G., Blanz, J., von Figura, K., et al. (2002). Role of LAMP-2 in Lysosome Biogenesis and Autophagy. J. Biol. Chem. 277, 3353–3368. doi: 10.1016/S0021-9258(01)01490-3

Erkhembaatar, M., Gu, D. R., Lee, S. H., Yang, Y.-M., Park, S., Muallem, S., et al. (2010). SKIP, the host target of the Salmonella virulence factor SifA, promotes kinesin-1-dependent vacuolar membrane exchanges. Traffic Cph. Den. 11, 899–911. doi: 10.1111/j.1600-0854.2010.01069.x

Eskelinen, E.-L., Illert, A. L., Tanaka, Y., Schwarzmann, G., Blanz, J., von Figura, K., et al. (2002). Role of LAMP-2 in Lysosome Biogenesis and Autophagy. Mol. Biol. Cell 13, 3353–3368. doi: 10.1091/mbc.e02-02-0114

Eswarappa, S. M., Negi, V. D., Chakraborty, S., Sagar, B. K. C., Chakravortty, D., Chandrasekhar Sagar, B. K., et al. (2010). Division of the Salmonella-Containing Vacuole and Depletion of Acidic Lysosomes in Salmonella-Infected Host Cells Are Novel Strategies of Salmonella enterica To Avoid Lysosomes. Infect. Immun. 78, 68–79. doi: 10.1128/IAI.00668-09

Ferrari, G., Langen, H., Naito, M., and Pieters, J. (1999). A coat protein on Mycobacterium avium Intersect Transferrin in the Rab11 + Recycling Endocytic Pathway and Avoid Lipocin 2 Trafficking the Lysosomal Pathway. J. Infect. Dis. 201, 783–792. doi: 10.1086/350493

Hashim, S., Mukherjee, K., Basu, S. K., Chem, J. B., and Mukhopadhyay, A. (2000). TRANSDUCTION: Live Salmonella Modulate Expression of Rab Proteins to Persist in a Specialized Compartment and Escape Transport to Lysosomes Live Salmonella Modulate Expression of Rab Proteins to Persist in a Specialized Compartment and Escape Transport to Lysosomes. J. Biol. Chem. 275, 16281–16288. doi: 10.1074/jbc.275.21.16281

Henry, T., Coullault, C., Rockenfeller, P., Boucrot, E., Dumont, A., Schroeder, N., et al. (2006a). The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc. Natl. Acad. Sci. U. S. A. 103, 13497–13502. doi: 10.1073/pnas.0605443103

Henry, T., Gorvel, J.-P., and Méresse, S. (2006b). Molecular motors hijacking by intracellular pathogens. Cell. Microbiol. 8, 23–32. doi: 10.1111/j.1462-5822.2005.00649.x

Hipolito, V. E. B., Diaz, J. A., Tandoc, K. V., Oertlin, C., Ristau, J., Chauhan, N., et al. (2019). Enhanced translation expands the endo-lysosome size and promotes antigen presentation during phagocyte activation. PloS Biol. 17, e3000355. doi: 10.1371/journal.pbio.3000355

Hissa, B., Duarte, J. G., Kelles, I. F., Santos, F. P., del Puerto, H. L., Gazzinelli-Guimarães, P. H., et al. (2012). Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells. PloS Negl. Trop. Dis. 6, e1583. doi: 10.1371/journal.pntd.0001583

Holden, D. W. (2002). Trafficking of the Salmonella Vacuole in Macrophages. Traffic 3, 161–169. doi: 10.1034/j.1600-0854.2002.03031.x

Hu, D., Wu, J., Wang, W., Ma, M., Zhao, R., Xu, X., et al. (2015). Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7. Biochem. Biophys. Res. Commun. 461, 401–407. doi: 10.1016/j.bbrc.2015.04.051

Huynh, K. K., Eskelinen, E.-L., Scott, C. C., Malevanets, A., Saftig, P., and Grinstein, S. (2007). LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J. 26, 313–324. doi: 10.1038/sj.emboj.7601511

Inpanathan, S., and Botelho, R. J. (2019). The Lysosome Signaling Platform: Adapting With The Times. Front. Cell Dev. Biol. 7, 113. doi: 10.3389/fcell.2019.00113

Jayachandran, R., Sundaramurthy, V., Combaluzier, B., Mueller, P., Korf, H., Huynh, K. K., et al. (2017). What the SIF Is Happening - Intracellular Salmonella-Induced Filaments. Front. Cell. Infect. Microbiol. 8, 574–579. doi: 10.3389/fcimb.2017.00335

Kolter, T., and Sandhoff, K. (2005). PRINCIPLES OF LYSOSOMAL MEMBRANE DIGESTION: Stimulation of Sphingolipid Degradation by Sphingolipid

Dize-Roux, G., and Ballabio, A. (2016). "TFEB, Master Regulator of Cellular Clearance," in Lysosomes: Biology, Diseases, and Therapeutics (NJ, USA: John Wiley & Sons, Ltd), 101–114. doi: 10.1002/9781118978320.ch7

Gray, M. A., Choy, C. H., Dayam, R. M., Escobar, E. O., Somerville, A., Xiao, X., et al. (2016). Phagocytosis enhances lysosomal and bactericidal properties by activating the transcription factor TFEB. Curr. Biol. CB 26, 1955–1964. doi: 10.1016/cub.2016.05.070

Guerra, F., anducci, B. (2016). Multiple Roles of the Small GTPase Rab7. Cells 5, 34. doi: 10.3390/cells0500303

García-del Portillo, F., and Finlay, B. B. (1995). Targeting of Salmonella enterica serovar Typhimurium to Lysosomes Causes Phagosome Maturation Arrest. J. Cell Biol. 129, 81–97. doi: 10.1083/jcb.129.1.81

Garcia-del Portillo, F., and Finlay, B. B. (1995). Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors. J. Cell Biol. 129, 191–199. doi: 10.1083/jcb.129.1.191

Glorioso, A., Klein, J. R., Allen, L. A., Jones, B. D., and Nauseef, W. M. (2001). Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J. Immunol. Baltim. Md 1950 166, 5741–5748. doi: 10.4049/jimmunol.166.9.5741

Gao, Y., Spahn, C., Heilemann, M., and Kenney, L. J. (2018). The Pearing Transition Provides Evidence of Force-Driven Endosomal Tubulation during Salmonella Infection. mBio 9, e01083-18. doi: 10.1128/mBio.01083-18

Garcia-del Portillo, F., and Finlay, B. B. (1995). Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors. J. Cell Biol. 129, 81–97. doi: 10.1083/jcb.129.1.81

Glickman, J. N., and Kornfeld, S. (1993). Mannose 6-phosphate-independent targeting of lysosomal enzymes in 1-cell disease B lymphoblasts. J. Cell Biol. 123, 99–108. doi: 10.1083/jcb.123.1.99
Puertollano, R., Ferguson, S. M., Brugarolas, J., and Ballabio, A. (2018). The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. *EMBO J.* 37, e98804. doi: 10.15252/embj.201798804

Quevedo, C. J., Brosch, R., and Simone, R. (2017). The Macrophage: A Disputed Fortress in the Battle against Mycobacterium tuberculosis. *Front. Microbiol.* 8, 2284. doi: 10.3389/fmicb.2017.02284

Radkte, A. L., and O’Riordan, M. X. D. (2006). Intracellular innate resistance to bacterial pathogens. *Cell. Microbiol.* 8, 1720–1729. doi: 10.1111/j.1462-5822.2006.00795.x

Rajasekhar, R., Liebl, D., Seitz, A., and Hensel, M. (2008). Dynamic Remodeling of the Endosomal System During Formation of Salmonella-Induced Filaments by Intracellular Salmonella enterica. *Traffic* 9, 2100–2116. doi: 10.1111/j.1600-0854.2008.00821.x

Rajasekhar, R., Liebl, D., Chikkaballal, D., Liss, V., and Hensel, M. (2014). Live Cell Imaging Reveals Novel Functions of Salmonella enterica SPI2-T3SS Effector Proteins in Remodeling of the Host Cell Endosomal System. *PloS One* 9, e115423. doi: 10.1371/journal.pone.0115423

Ramsden, A. E., Holden, D. W., and Mota, L. J. (2007). Membrane dynamics and spatial distribution of Salmonella-containing vacuoles. *Trends Microbiol.* 15, 516–524. doi: 10.1016/j.tim.2007.10.002

Recevic, D., Schware, M., Schröder, J., Hughes, H., Blanz, J., Jin, X., et al. (2007). LIMP-2 Is a Receptor for Lyosomal Mannose-6-Phosphate-Independent Targeting of β-Glucocerebrosidase. *Cell.* 131, 770–783. doi: 10.1016/j.cell.2007.10.018

Reddy, A., Caler, E. V., and Andrews, N. W. (2001). Plasma Membrane Repair Is Mediated by Ca2+-Regulated Exocytosis of Lysosomes. *Cell.* 106, 157–169. doi: 10.1002/0092-8674(20010101)106:1<157::AID-C cel9>3.0.CO;2-4

Rengarajan, M., and Theriot, J. A. (2020). Rapidly dynamic host cell heterogeneity in bacterial adhesion governs susceptibility to infection by Listeria monocytogenes. *Mol. Biol. Cell.* 31, 2097–2106. doi: 10.1091/mbc.E19-08-00795.x

Reuter, T., Vorwerk, S., Liss, V., Chao, T.-C., Hensel, M., and Hansmeier, N. (2020). Proteomic analysis of Salmonella-modified membranes reveals adaptations to macrophage hosts. *Mol. Cell. Proteomics* 19, 900–912. doi: 10.1074/mcp.MA119.001841

Rocznia-Feurgson, A., Petit, C. S., Freehlich, F., Qian, S., Ky, J., Angarola, B., et al. (2012). The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. *Sci. Signal.* 5, ra42. doi: 10.1126/scisignal.2007290

Rohrer, J., and Kornfeld, R. (2001). Lyosomal Hydrolase Mannose 6-Phosphate Uncovering Enzyme Resides in the trans-Golgi Network. *Mol. Biol. Cell* 12, 1623–1631. doi: 10.1091/mbc.12.6.1623

Rottner, K., Straßl, T. E. B., and Wehland, J. (2005). Bacteria-Host-Cell Interactions at the Plasma Membrane: Stories on Actin Cytoskeleton Subversion. *Dev. Cell.* 9, 3–17. doi: 10.1016/j.devcel.2005.06.002

Russell, D. G. (2001). Mycobacterium tuberculosis: here today and here tomorrow. *Plant Physiol.* 128, 171, 2239–2255. doi: 10.1104/pp.1204592

Russell, D. G., Lu, Y. J., Porter, K., Kvitko, B. H., Henty-Ridilla, J., Creason, A., et al. (2016). The Pseudomonas syringae Type III Effector HopG1 Induces Actin Remodeling to Promote Symptom Development and Susceptibility during Infection. *Plant Physiol.* 171, 2239–2255. doi: 10.1104/pp.16.01593

Shatland, Y., Krämer, H., and Grosisman, E. A. (2003). The Salmonella SpIC protein targets the mammalian Hook3 protein function to alter cellular trafficking. *Mol. Microbiol.* 49, 1565–1576. doi: 10.1046/j.1365-2958.2003.03668.x

Shukla, S., Richardson, E. T., Athman, J. J., Shi, L., Wearsch, P. A., McDonald, D., et al. (2014). Mycobacterium tuberculosis Lipoprotein LprG Binds Lipoarabinomannan and Determines Its Cell Envelope Localization to Control Phagolysosomal Fusion. *PloS Pathog.* 10, e1004471. doi: 10.1371/journal.ppat.1004471

Simeone, R., Bobard, A., Lippmann, J., Bitter, W., Majlessi, L., Brosch, R., et al. (2012). Phagosomal Rupture by Mycobacterium tuberculosis Results in Toxicity and Host Cell Death. *PloS Pathog.* 8, e1002507–e1002507. doi: 10.1371/journal.ppat.1002507

Singh, P. K., Kapoor, A., Lomash, R. M., Kumar, K., Kamerkar, S. C., Pucadyil, T. J., et al. (2018). Salmonella SipA mimics a cognate SNARE for host Syntaxin8 to promote fusion with early endosomes. *J. Cell Biol.* 217, 4199–4214. doi: 10.1083/jcb.201802155

Smith, A. C., Ciriulis, J. T., Casanova, J. E., Scidmore, M. A., and Brumell, J. H. (2005). Interaction of the Salmonella-containing Vacuole with the Endocytic Recycling System. *J. Biol. Chem.* 280, 24634–24641. doi: 10.1074/jbc.M500358200

Smith, A. C., Heo, W. D., Braun, V., Jiang, X., Macrae, C., Casanova, J. E., et al. (2007). A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium. *J. Cell Biol.* 176, 263–268. doi: 10.1083/jcb.200611056

Sogi, K. M., Lien, K. A., Johnson, J. R., Krogan, N. J., and Stanley, S. A. (2017). The Tyrosine Kinase Inhibitor Gefitinib Restricts Mycobacterium tuberculosis Growth Through Increased Lyosomal Biogenesis and Modulation of Cytokine Signaling. *ACS Infect. Dis.* 3, 564–574. doi: 10.1021/acsinfecdis.7b00046

Steele-Mortimer, O. (2008). The Salmonella-containing Vacuole – Moving with the Times. *Curr. Opin. Microbiol.* 11, 38–45. doi: 10.1016/j.mib.2008.01.002

Stein, M. A., Leung, K. Y., Zwick, M., Portillo, F. G., and Finlay, B. B. (1996). Identification of a Salmonella virulence gene required for formation of filamentous structures containing lyosomal membrane glycoproteins within epithelial cells. *Mol. Microbiol.* 20, 151–164. doi: 10.1046/j.1365-2958.1996.tb02497.x

Storch, S., and Braulke, T. (2005). “Transport of Lyosomal Enzymes,” in *Lysosomes Medical Intelligence Unit*. Ed. P. Saifig (Boston, MA: Springer US), 17–26. doi: 10.1007/0-387-28957-7_2
Sachdeva and Sundaramurthy

Lysosomal Alterations During Intracellular Infections

Sundaramurthy, V., Barsacchi, R., Samusik, N., Marsico, G., Gilleron, J., Kalaidzidis, I., et al. (2013). Integration of chemical and RNAi multiparametric profiles identifies triggers of intracellular mycobacterial killing. Cell Host Microbe 13, 129–142. doi: 10.1016/j.chom.2013.01.008

Sundaramurthy, V., Korf, H., Singla, A., Scherr, N., Nguyen, L., Ferrari, G., et al. (2017). Survival of Mycobacterium tuberculosis and Mycobacterium bovis BCG in lysosomes in vivo. Microbes Infect. 19, 515–526. doi: 10.1016/j.micinf.2017.06.008

Szeto, J., Namolovan, A., Osborne, S. E., Coombes, B. K., and Brumell, J. H. (2009). Salmonella-Containing Vacuoles Display Centrifugal Movement Associated with Cell-to-Cell Transfer in Epithelial Cells. Infect. Immun. 77, 996–1007. doi: 10.1128/IAI.01275-08

Tang, B. L. (2015). Bacteria-Containing Vacuoles: Subversion of Cellular Membrane Traffic and Autophagy. Crit. Rev. Eukaryot. Gene Expr. 25, 163–174. doi: 10.1615/CritRevEukaryotGeneExpr.2015013572

Tardieux, I., Webster, P., Ravesloot, J., Boron, W., Lunn, J. A., Heuser, J. E., et al. (1992). Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 71, 1117–1130. doi: 10.1016/s0092-8674(05)80061-3

Thelen, A. M., and Zoncu, R. (2017). Emerging Roles for the Lysosome in Lipid Metabolism. Trends Cell Biol. 27, 833–850. doi: 10.1016/j.tcb.2017.07.006

Tsukuba, T., Sakai, E., Nishishita, K., Kadowaki, T., and Okamoto, K. (2017). New Mechanisms of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 114, 13326–13331. doi: 10.1073/pnas.1411096112

Via, L. E., Fratti, R. A., McFalone, M., Pagan-Ramos, E., Deretic, D., and Deretic, V. (1998). Effects of cytokines on mycobacterial phagosome maturation. J. Cell Biol. 140, 897–905.

Vijayan, K., Costari, I., Mast, F. D., Glennon, E. K. K., McDermott, S. M., Kain, H. S., et al. (2019). Plasmid Secretion Induces Hepatocyte Lysosome Exocytosis and Promotes Parasite Entry. Science 362, 603–611. doi: 10.1126/sci.19410.504

Visvikis, O., Iuegibu, N., Labed, S. A., Luhachack, L. G., Alves, A.-M. F., Wollenberg, A. C., et al. (2014). Innate host defense requires TFF3-mediated transcription of cytoprotective and antimicrobial genes. Immunity 40, 896–909. doi: 10.1016/j.immuni.2014.05.002

Vural, A., Al-khorod, S., Cheung, G. Y. C., Shi, C., Srinivasan, L., McQuiston, T. J., et al. (2018). Activator of G-Protein Signaling 3 – Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection. J. Immunol. 196, 846–856. doi: 10.4049/jimmunol.1501595

Wasylnka, J. A., Bakowski, M. A., Szeto, J., Ohlson, M. B., Trimble, W. S., Miller, S. I., et al. (2008). Role for myosin II in regulating positioning of Salmonella-containing vacuoles and intracellular replication. Infect. Immun. 76, 2722–2735. doi: 10.1128/IAI.00152-08

Waterman, S. R., and Holden, D. W. (2003). Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell. Microbiol. 5, 501–511. doi: 10.1046/j.1462-5822.2003.00294.x

Welin, A., Raftedesor, J., Eklund, D., Stendahl, O., and Lerm, M. (2011). Impairment of Phagosomal Functionality for Growth Restriction of Mycobacterium tuberculosis in Primary Human Macrophages. J. Innate Immun. 3, 508–518. doi: 10.1159/000325292

Wong, D., Bach, H., Sun, J., Hmama, Z., and Av-Gay, Y. (2011). Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc. Natl. Acad. Sci. U. S. A. 108, 19371–19376. doi: 10.1073/pnas.1109210118

Xu, H., and Ren, D. (2015). Lysosomal physiology. Annu. Rev. Physiol. 77, 57–80. doi: 10.1146/annurev-physiol-021014-071649

Zhang, X., Cheng, X., Yu, L., Yang, J., Calvo, R., Patnaik, S., et al. (2016). MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat. Commun. 7, 12109. doi: 10.1038/ncomms12109

Zhou, D., Mooseker, M. S., and Galain, J. E. (1999). An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc. Natl. Acad. Sci. 96, 10176–10181. doi: 10.1073/pnas.96.18.10176

Zhou, J., Scherer, J., Yi, J., and Vallee, R. B. (2018). Role of kinesins in directed adenosine transport and cytoplasmic exploration. PLoS Pathog. 14, e1007055. doi: 10.1371/journal.ppat.1007055

Zulauf, K. E., Sullivan, J. T., and Brauinstein, M. (2018). The SecA2 pathway of Mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation. PLoS Pathog. 14, e1007011. doi: 10.1371/journal.ppat.1007011

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Sachdeva and Sundaramurthy. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.