Vitamin A Supplementation during Suckling and Post-weaning Periods Attenuates the Adverse Metabolic Effects of Maternal High Fat Diet Consumption in Sprague-Dawley Rats

Libo Tana,*, Yanqi Zhanga, Kristi M. Crowe-Whitea, Katelyn E. Senkusa, Maddy E. Erwinb, Hui Wanga

aDepartment of Human Nutrition, University of Alabama, Tuscaloosa, AL 35487
bDepartment of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487

RUNNING TITLE: Vitamin A on Metabolic Conditions in Neonatal Rats

NUMBER OF FIGURES: 7

NUMBER OF TABLES: 0

SUPPLEMENTARY MATERIAL: None

FOOTNOTES

Funding Source: Supported by National Institutes of Health Grant HD066982 Sub-award (L.T.). The authors (L.T., Y.Z, K.M.C.W., K.E.S., M.E.E., and H.W.) declare no conflict of interests.

Abbreviations: Adiposity index, AI; Adipose tissue, AT; Antioxidant capacity, AC; Vitamin A, VA; Body weight, BW; Brown adipose tissue, BAT; High fat diet, HFD; Interlukin-6, IL-6; Interlukin-10, IL-10; Malondialdehyde, MDA; Normal fat diet, NFD; Reactive oxygen species, ROS; Retinoic acid, RA; Ultra-performance liquid chromatography, UPLC; Uncoupling protein 1, UCP1; White adipose tissue, WAT

* To whom correspondence should be addressed: Libo Tan, 407 Russell Hall, 504 University Blvd, Tuscaloosa, AL 35487, 205-348-9255, ltan@ches.ua.edu
Abstract

Background: Vitamin A (VA) is demonstrated to be a regulator of adipose tissue (AT) development in adult obese models. However, little is known about the effect of VA on obesity-associated developmental and metabolic conditions in early life.

Objective: To assess the effects of dietary VA supplementation during suckling and post-weaning periods on the adiposity and metabolic health of neonatal and weanling rats from mothers consuming a high fat diet (HFD).

Methods: Pregnant Sprague-Dawley rats were fed a normal fat diet (NFD; 25% fat; n=2) or an HFD (50% fat; n=2) both with 2.6 mg/kg of VA. Upon delivery, half of rat mothers were switched to diets with supplemented VA at 129 mg/kg, while the other half remained at 2.6 mg/kg of VA. Four groups of rat pups were designated as NFD, NFD+VA, HFD, and HFD+VA, respectively. At postnatal day 14 (P14), P25, and P35, pups (n=4 or 3/group) were euthanized. Body weight (BW), visceral white AT (WAT) mass, brown AT (BAT) mass, uncoupling protein 1 mRNA expression in BAT, serum glucose, lipids, adipokines, and inflammatory biomarkers, as well as serum and AT redox status were assessed.

Results: Rat pups in the HFD group exhibited significantly higher BW, WAT mass, and serum glucose and leptin but reduced BAT mass compared with the NFD group. Without affecting the dietary intake, supplementing the HFD with VA significantly reduced the BW and WAT mass of pups but increased the BAT mass, significantly lowered the systemic and WAT oxidative stress, and modulated serum adipokines and lipids to some extent.

Conclusion: VA supplementation during suckling and post-weaning periods attenuated metabolic perturbations caused by excessive fat intake. Supplementing maternal or infant obesogenic diets with VA or establishing a higher recommended dietary allowance of VA for
specific populations should be studied further for managing overweight/obesity in early life.

Key words: adipose tissue; maternal obesity; neonate; neonatal obesity; oxidative stress; retinol; supplementation; metabolic health; vitamin A RDA

1. Introduction

According to the Centers for Disease Control and Prevention, since the 1970s, the number of children and adolescents affected by obesity in the U.S. has tripled, with the prevalence of obesity among 2- to 5-year-olds at approximately 14% (1). A joint analysis done by UNICEF, WHO, and the World Bank indicated that the number of overweight children < 5 years old is expected to reach a prevalence of 10% by the year 2025 (2). The upward trend in the number of overweight children is seen across high-income, middle-income, and low-income countries. Childhood obesity has also been reported to be closely related to maternal obesity. It was estimated that 30% of pregnant women in the U.S. are obese (3) and approximately 40% of women gain an excessive amount of weight during pregnancy (4), for both of which an unhealthy dietary pattern (5, 6), such as high fat diet (7), may be a significant contributor. Both maternal obesity and excessive gestational weight gain may program obesity and/or other chronic diseases in offspring during infancy, childhood, and later in life (8). As such, research exploring dietary or nutritional factors during gestation and/or lactation on adipose tissue (AT) development and associated metabolic conditions in the early life stage is of great importance.

Previous studies have well established that in adults, the essential micronutrient vitamin A (VA) is a key regulator of lipid metabolism and AT development (9-11). In adult obese rats, chronic dietary VA supplementation was found to reduce body weight (BW) gain, adiposity, and
AT mass (12, 13). VA supplementation was reported to increase fat mobilization from the white adipose tissue (WAT) while decreasing its accumulation (14). Using adult rodent models, it was shown that retinoic acid (RA), the active metabolite of VA, inhibited adipogenesis (14, 15) while stimulating angiogenesis and apoptosis (16) of WAT. In addition, RA increased the adaptive thermogenesis of brown adipose tissue (BAT) via regulating the expression of uncoupling proteins (17) and induced the browning of WAT (18) or remodeling of WAT to BAT (19). Moreover, both dietary VA supplement and acute RA treatment were found to modulate the levels of leptin and adiponectin in obese adult rats (20-23). Interestingly, it was reported that the “machinery” required for the action of VA, including retinoic acid receptors (RARs), retinoid X receptors (RXRs), and enzymes involved in VA metabolism, are all expressed in the AT (24), informing the potentially critical role of VA in AT metabolism.

Despite those remarkable findings in adult models, the effect of VA on obesity-associated developmental and metabolic conditions in the early life has scarcely been studied. In a recent study by Wang et al. (25), it was shown that maternal VA supplementation during pregnancy and lactation reduced the BW, WAT and BAT mass, and size of adipocytes in C57BL/6 mice offspring challenged with a high fat diet (HFD) from 1 month to 5 month-old. However, maternal obesity was not induced or considered in that study. Given the high prevalence of obesity or excessive weight gain in pregnant and lactating women, it is important to understand how VA may interact with maternal obesogenic diets.

Therefore, the objective of this exploratory study was to assess in neonatal and weanling rat offspring from mothers consuming a HFD, how VA supplementation will modulate their BW, adiposity, and obesity-associated metabolic conditions, including redox and inflammatory status, glucose, lipid profile, and adipokines. VA supplementation through enriching the maternal diet
was chosen as the supplementation route for neonates, because it was shown to have a significantly greater sustained effect on improving neonatal VA status as compared to VA treatment directly given to neonates (26). Considering its potential teratogenic effect, maternal VA supplementation was administered during lactation, but not gestational period. It was hypothesized that VA supplementation will significantly reduce the adiposity and improve the metabolic conditions of neonatal and weanling rats receiving excessive fat intake.

2. Materials and Methods

2.1 Animal Experiment

Animal protocols were approved by the Institutional Animal Use and Care Committee of the University of Alabama and followed through the study. Pregnant Sprague-Dawley rats were purchased from Charles River Laboratories (Wilmington, MA, USA) and arrived on their second day of gestation. Rats were housed individually with a 12-hour light/dark cycle with free access to food and water. After a 3-day acclimation period, rats were randomly assigned to either a normal fat diet (NFD, 25% kcal from fat; n=2) or a HFD (50% kcal from fat; n=2) both with 2.6 mg/kg of VA as retinyl acetate, which is adequate for the health maintenance of pregnant mothers and for fetal development. Upon delivery, pups were transferred among litters in the same cohort to achieve a same number per litter; half of rat mothers were switched to diets with supplemented VA at 129 mg/kg (designated as NFD+VA and HFD+VA group, respectively), while the other half remained at 2.6 mg/kg of VA (designated as NFD and HFD group, respectively). All the experimental diets were purchased from Research Diets, Inc (New Brunswick, NJ, USA).

At postnatal day 14 (P14) and P25, 4 pups/group were weighed and euthanized with carbon dioxide. Blood was collected from the vena cava. Visceral WAT, BAT, and liver were excised, weighed, and rapidly frozen in liquid nitrogen. Serum was obtained following centrifugation of
blood samples at 1,500 g for 20 minutes and stored at -80°C; tissue samples were stored at -80°C until analysis. The remaining weanling pups (n=3/group) started to receive the same diets of their respective mothers until they were euthanized at P35 with blood, liver, visceral WAT, and BAT harvested. In addition, at P14, stomach was also collected to obtain milk samples. Through the study, diets were administered once a day with daily food consumption recorded.

2.2 Serum and Tissue Analysis

2.2.1 Redox Status

Oxidative Stress

According to the thiobarbituric acid reactive substances assay (TBARS) as previously described (27), malondialdehyde (MDA), a product of lipid peroxidation and a biomarker of oxidative stress in serum, WAT, and BAT samples were quantified. Results are expressed as mM MDA.

Antioxidant Capacity

Serum, WAT, and BAT were deproteinated according to a published method using methanol/acetonitrile/acetone (1:1:1, v/v/v) added to samples in a ratio of 1:4 (v/v) (28). The oxygen radical absorbance capacity (ORAC) assay on a FLUOstar Optima plate reader (BMG Labtech) was applied to measure the antioxidant capacity (AC) (29). The compound 2,2-azobis(2-amidino-propane) dihydrochloride (AAPH) was used as the peroxyl radical generator and Trolox, a water-soluble analogue of vitamin E, served as the reference antioxidant standard. Results are expressed as µM Trolox equivalents (TE).

2.2.2 Serum Glucose, Lipids, Adipokines, and Inflammatory Biomarkers

Serum samples from P25 were assessed for glucose, lipids, leptin, adiponectin, and
inflammatory biomarkers. Glucose concentration was measured using glucose oxidase on a Stanbio Sirus analyzer (Boerne, TX). Concentrations of total cholesterol, triglycerides, HDL-C, and LDC-C were measured directly using a Stanbio Sirus analyzer. Adiponectin concentration was assessed using a Millipore Rat Adiponectin ELISA (Billerica, MA) and leptin was measured using a Millipore Rat Leptin ELISA. Concentrations of inflammatory biomarkers including interleukin-10 (IL-10), interleukin-6 (IL-6), KC/GRO, and TNF-α were measured using a MesoScale Discovery Rat Proinflammatory Panel 2 kit (Rockville, MD).

2.2.3 Uncoupling Protein 1 (UCP1) mRNA Expression in BAT

For UCP1 mRNA determination in rat pups’ BAT, samples from P25 and P35 euthanasia were used, but not those from P14 euthanasia due to inadequate tissue amount for analysis. Total RNA was extracted from BAT samples using Trizol (Invitrogen, Waltham, MA) and cDNA was prepared by using cDNA synthesis kit (QuantaBio, Beverly, MA). The equivalent of 1 µg RNA, as cDNA, was used for real-time qPCR analysis. The primer designed to detect UCP-1 mRNA expression was rat UCP-1 (NM_012682.2), 5’-AGAAGGATTGCCAAGACTGTAC-3’ (forward), and 5’-AGATCTTGCTTCCAAAGAGG-3’ (reverse). β-actin was used as the housekeeping gene. The 2^ΔΔCT method (30) was used to compare the relative UCP-1 mRNA expression among groups.

2.2.4 VA Concentration in Serum, Milk, WAT, and BAT

The total retinol concentration in pups’ serum, WAT, and BAT collected at all three time points as well as milk samples separated from pups’ stomach harvested at P14 was measured by ultra-performance liquid chromatography (UPLC) (Acquity UPLC System; Waters, Milford, MA). These data were published in an article that addressed a different research question (31). Part of these data will be cited in the Results session as supporting data.
2.3 Statistical Analysis

Data are reported as means ± SEM. Differences among groups, P value < 0.05, were determined by using one-way ANOVA followed by Bonferroni post test in Prism software (GraphPad, San Diego, CA). A Pearson correlation test in GraphPad Prism was applied to analyze the correlation among measures.

3. Results

3.1 Dietary Intakes

During pregnancy, the average daily food intake of rat mothers consuming the HFD was significantly lower than that of mothers on the NFD (17.19 ± 1.63 g/d vs. 24.17 ± 2.87 g/d; P < 0.01), but the daily fat intake was significantly higher (4.64 ± 0.44 g/d vs. 2.90 ± 0.34 g/d; P < 0.01). The differing dietary intakes did not result in significant differences in the birth weight of rat pups in two cohorts (6.76 ± 0.99 g in HFD cohort vs. 7.56 ± 0.88 g in NFD cohort).

During lactation, no significant difference in dietary intake was noted between VA-supplemented and non-supplemented dams. All groups had a daily food intake increasing from ~25 g/d on lactation day 1 to ~80 g/d on lactation day 22. Rat pups remaining after P25 were weaned and received the same diet that their respective mother consumed. During the post-weaning stage (P25-P35), no significant difference in the average daily food intake was noted (11.04 ± 0.70 g/d, 12.87 ± 0.18 g/d, 11.64 ± 1.94 g/d, and 12.45 ± 1.62 g/d for pups in NFD, NFD+VA, HFD, and HFD+VA, respectively).

3.2 Milk and Serum VA Concentration

As presented in our previous publication (31), the total retinol concentration in the milk separated from rat pups’ stomach was significantly higher in the NFD+VA and the HFD+VA
group compared with their respective control (~20 fold increase; P < 0.05), indicating that rat pups in VA-supplemented groups received significantly more VA. No significant difference was noted between the NFD and the HFD group or between the NFD+VA and the HFD+VA group. The serum total retinol concentration was also significantly (P < 0.01) higher in VA-supplemented groups than in non-supplemented groups at all three time points, confirming the effectiveness of VA supplementation in raising pups’ VA status.

3.3 Body Weight and Adiposity

At P14 and P25, the BW and visceral WAT mass of pups in the HFD group were significantly (P < 0.01) higher than those in the NFD group (Fig. 1A and B). Comparatively, those measures were significantly decreased in the HFD+VA group compared with the HFD group (P < 0.05 and P < 0.01 for BW and visceral WAT mass, respectively). At P35, a similar pattern of significant changes in visceral WAT mass was observed, while no significant difference in BW was noted among groups. Additionally, at P25, the BAT mass of pups was significantly (P < 0.05) reduced by maternal HFD consumption, but VA supplementation significantly (P < 0.01) increased the level to that in the NFD groups (Fig. 1C). No significant difference in BAT mass was seen among groups at P14 and P35.

The adiposity index (AI) was calculated as the ratio of the visceral WAT mass to the BW (Fig. 1D). At all three time points, the AI was dramatically (P < 0.001) higher in the HFD group than in NFD groups. VA supplementation added to HFD significantly (P < 0.05) lowered the index, bringing back the level to that in NFD groups. The data of BW, WAT mass, and BAT mass were presented in Table format in our previous publication that addressed a different research question (31).
3.4 UCP1 mRNA Expression in BAT

UCP1 is the protein responsible for adaptive thermogenesis in BAT. Its mRNA expression was measured using BAT samples from P25 and P35 (Fig. 2). Among four groups, no significant difference was observed at either P25 or P35, although pups in the HFD cohort showed a trend of decreased expression compared to those in the NFD cohort at both time points. The expression in pups from the HFD+VA group was significantly (P < 0.05) higher at P35 as compared to that at P25; such difference was not noted in the other groups.

3.5 Systemic and AT Redox Status

Oxidative Stress

At P25 and P35, the lipid peroxide concentration in WAT (Fig. 3A) was significantly lower in VA-supplemented groups as compared to their respective control (P < 0.0001 for NFD+VA vs. NFD; P < 0.05 for HFD+VA vs. HFD); the concentration was significantly (P < 0.01) higher in the HFD+VA group than in the NFD+VA group, which was also noted at P14.

Due to inadequate amount of given BAT samples for TBARS analysis, data from the three time points were combined for statistical analysis to ensure an adequate power (Fig. 3B). The NFD+VA group showed a significantly (P < 0.001) lower lipid peroxide concentration compared to the NFD group, while such effect of the VA supplementation was not observed in the HFD cohort.

Serum TBARS data from P14, P25, and P35 were also combined for analysis (Fig. 3C). The lipid peroxide concentration in the HFD+VA group was significantly (P < 0.05) lower than in the HFD group, indicating a reduced systemic oxidative stress, while such difference was not noted
in the NFD cohort.

Antioxidant Capacity

The lipophilic AC of WAT at P25 and P35 was significantly (P < 0.05) higher in the HFD group than in the NFD group (**Fig. 4A**). For BAT, a significantly (P < 0.05) higher lipophilic AC was noted in the HFD+VA group as compared to the NFD group (**Fig 4B**). No significant difference in serum lipophilic AC was observed among groups (**Fig 4C**).

Correlation with VA Status

Correlation tests were run between measures of redox status as reported above and the concentration or total mass of VA in the same tissue (data published in (31)). The mass of VA in WAT was found to have a significant positive correlation with the lipophilic AC of the tissue (r = 0.360; P = 0.046). In BAT, a positive trend between the mass of VA and the lipophilic AC was noted (r = 0.495; P = 0.061). A significantly negative correlation was found between the concentration of VA and that of lipid peroxides in serum (r = -0.679; P < 0.0001).

3.6 Serum Adiponectin and Leptin at P25

As shown in **Fig. 5**, a significantly (P < 0.05) higher serum adiponectin concentration was observed in the HFD+VA group as compared to the HFD group. Maternal HFD consumption significantly (P < 0.05) raised the serum leptin concentration, while VA supplementation showed a trend to reduce it.

3.7 Serum Glucose and Lipids at P25

Serum glucose concentration (**Fig. 6A**) was significantly (P < 0.05) higher in the HFD group compared to the NFD group; maternal VA supplementation to HFD showed a trend to decrease the concentration. The profile of serum lipids is shown in **Fig. 6 B-E**. Pups in HFD+VA group
possessed a significantly (P < 0.05) lower serum total cholesterol concentration than in NFD+VA group. A significantly (P < 0.01) higher concentration of serum triglycerides was noted in the NFD+VA group as compared to the other groups. There was no significant difference in serum concentration of LDL-C or HDL-C.

3.8 Serum Inflammatory Cytokines at P25

No significant differences in serum concentrations of IL-10, IL-6, TNF-alpha, or KC/GRO (Fig. 7) among groups were noted, except that in the NFD cohort, maternal VA supplementation significantly (P < 0.05) increased the concentrations of IL-6 and IL-10. The concentrations were also significantly (P < 0.05) higher in the HFD group as compared to the NFD group.

3.9 Correlation among Measures

Pearson correlation was conducted among measures of BW, visceral WAT mass, BAT mass, AI, glucose, lipids, adipokines, inflammatory cytokines, and measures of redox status at P25.

The lipophilic AC of WAT was positively correlated with BW (r = 0.644, P = 0.007), visceral WAT mass (r = 0.737, P = 0.001), and AI (r = 0.735, P = 0.001), while being negatively correlated with serum total cholesterol (r = -0.564, P = 0.036) and LDL-C concentration (r = -0.574, P = 0.032). Serum glucose concentration was found to be positively correlated with BW (r = 0.710, P = 0.007), visceral WAT mass (r = 0.665, P = 0.013), AI (r = 0.639, P = 0.019), and serum HDL-C concentration (r = 0.816, P = 0.001). Serum IL-10 and IL-6 were positively correlated with several measures including serum glucose (with IL-10: r = 0.815, P = 0.002; with IL-6: r = 0.664, P = 0.036), triglycerides (with IL-10: r = 0.765, P = 0.004; with IL-6: r = 0.640, P = 0.025), and HDL-C (with IL-10: r = 0.821, P = 0.001; with IL-6: r = 0.679, P = 0.015), while these two measures themselves are strongly correlated (r = 0.890, P < 0.0001). There was a
significant negative correlation between serum IL-6 and TNF-α concentration ($r = -0.611$, $P = 0.035$).

4. Discussion

In the present study, we focused on neonatal and weanling rat offspring from mothers consuming diets meeting and exceeding recommendations for fat intake in humans. Although VA is known to be critical for many aspects of neonatal development, such as immunity and lung maturation, little is known about its role in neonatal AT development and associated metabolic conditions. To our knowledge, the current study is the first of its kind to show that VA supplementation to the HFD significantly reduced the BW and WAT mass but increased the BAT mass of the offspring, greatly attenuated their systemic and WAT oxidative stress, and modulated the profile of serum adipokines and lipids to some extent.

Maternal HFD consumption dramatically increased the adiposity and compromised metabolic conditions of the offspring

It has been well established that maternal obesity or excessive gestational weight gain, including those induced by unhealthy dietary patterns, may increase the adiposity of the offspring as well as their risks of developing metabolic complications and/or diseases (8, 32). It was reported that neonates born to overweight/obese women were heavier than those of lean/average weight women because of increased adiposity (33). In the current study, maternal HFD consumption during gestation did not increase the birthweight of rat pups, and the short duration of pregnant mothers receiving the HFD (gestational day 5 – gestational day 21) may account for that. However, at P14, maternal HFD consumption during gestation and lactation had resulted in a dramatic increase in the BW and visceral WAT mass of the offspring by 13.5% and 7 folds, respectively. The differences became more significant at P25.
Dietary patterns high in fat may influence local and systemic oxidative stress through WAT accrual and increased reactive oxygen species (ROS) generation (34, 35). A previous study conducted in a mouse model showed that maternal consumption of a HFD was associated with increases in oxidative stress that contributed to vascular dysfunction (36). A human study also indicated a significant association between maternal overweight or obesity and increased systemic oxidative stress levels in offspring (37). In the present study, although no significant difference in the lipid peroxide concentration was noted between the HFD and the NFD group, the HFD+VA group consistently showed significantly higher lipid peroxide levels in WAT as compared to the NFD+VA group. It may indicate that maternal HFD consumption can potentially compromise the effects of antioxidants in improving redox status. Our previously published data (31) indicated that the HFD+VA group possessed significantly more VA than the NFD+VA group, supporting the potential role of WAT as a reservoir for dietary lipophilic antioxidants and micronutrients. This was further supported by the significantly positive correlation found between the lipophilic AC and the VA mass in the WAT. When sequestration of lipophilic antioxidants occurs at a rate proportional to WAT mass, excess storage may induce a pro-oxidant state and thus an increased oxidative stress (38), as was exhibited in the HFD+VA group compared to the NFD+VA group.

Significantly higher concentrations of serum glucose, leptin, IL-10, and IL-6 at P25 were also observed in pups of the HFD group compared to those in the NFD group, indicating a perturbation by maternal HFD consumption on glucose homeostasis, adipokine balance, and inflammatory status. The result of serum glucose is consistent with a recent study conducted by Zhang et al. (39), in which hyperglycemia in mice offspring was reported to be induced by maternal HFD consumption through gestation and lactation. IL-6 and IL-10 are two...
inflammatory cytokines that were reported to be higher in obese individuals in many studies (40, 41). The higher levels of these two cytokines associated with maternal HFD consumption observed in the current study may indicate a greater systemic inflammation caused by or related to excessive energy burden, higher WAT accrual, or increased oxidative stress. Serum IL-6 and IL-10 were also found to be correlated with multiple metabolic measures, including serum glucose, triglycerides, and HDL-C, indicating their potentially important roles in metabolic health. Investigation on the correlation between maternal HFD consumption and the comprehensive inflammatory profile of the offspring is warranted.

VA supplementation during suckling and post-weaning periods attenuated the metabolic disorders caused by the HFD consumption

The present study showed that VA supplementation greatly decreased the BW, visceral WAT mass, and the adiposity index of pups receiving excessive fat, as the effects of VA supplementation or RA treatment demonstrated in numerous studies with adult models (12, 13, 16-19, 22, 42-44). The neonatal stage is a critical period for WAT accumulation and development. In rat models, it is usually hard to find any WAT at birth (45). Around P14, visceral fat can be discerned and collected. Our results indicated a dramatic increase of visceral WAT mass from ~0.07 g to 0.86 g between P14 and P25 in the NFD group and from ~0.54 g to 3.03 g in the HFD group. In healthy human infants, the percentage of body fat doubles between birth and 6 weeks of age (46). Nutritional interventions during the neonatal period are, therefore, critical in preventing or attenuating potential over-growth or proliferation of adipocytes resulting from excessive energy intake. Our results showed that VA supplemented to the maternal HFD reduced the BW of the offspring by 10% measured at both P14 and P25 and decreased the visceral WAT mass by 54% measured at P14 and by 36% at P25. It is worthy to note that VA
supplemented to the maternal NFD did not affect the BW or the adiposity of the offspring, indicating that VA would not interfere with the normal growth or AT development of pups receiving normal energy intakes. It is postulated that VA may only exert its regulatory effect on AT metabolism and development when excessive adiposity is present or in an obesogenic environment.

BAT, the main site for adaptive thermogenesis, was analyzed for multiple measures in the present study. Adaptive thermogenesis is the production of large amounts of heat through UCP1 activation. The tissue is prominent in newborns and it makes up about 5% of the body mass in human neonates and about 0.5–1% in rat neonates (47). In humans, BAT is gradually lost with age but may still contain beige adipocytes that can be potentially reactivated. Therefore, the tissue retains the capacity to play a significant role in energy balance and is a primary target organ in obesity prevention and management (48). Data from P25 in the present study showed that maternal consumption of HFD significantly reduced the mass of BAT while VA supplementation restored the mass to that in NFD groups, thus potentially contributing to a higher level of adaptive thermogenesis and helping with weight control. This is in contrast to previous results in adults, which demonstrated that dietary VA supplementation or RA treatment either had no influence on BAT mass (12, 13, 18, 42, 49) or reduced the mass (19, 20, 43, 44).

In adult models, dietary VA supplement or RA treatment was also shown to induce the expression of UCP1 in BAT (12-14, 17, 19, 44, 50), implying an increased thermogenic potential of BAT. Also in contrast to that, no change in BAT UCP1 expression was observed in VA-supplemented pups in the current study. However, the expression in the HFD+VA group was significantly higher at P35 than at P25, while such a difference between the two time points was not noted in other groups. It is postulated that VA delivered through mother’s milk may not be
able to exert as strong enough effect as direct VA or RA treatment in regulating UCP1 expression. However, the favorable results of maternal VA supplementation significantly reducing WAT mass but increasing BAT mass still warrant further investigation on VA’s modulating role in AT development in the early life stage.

Although VA is not regarded as a traditional antioxidant, its effect on redox parameters has been explored in a few studies. Pasquali et al. observed an increased lipid peroxidation level in the lung of adult rats that received VA treatments at multiple therapeutic doses for 28 days (51). In another study, rats received daily VA doses in 2500, 12500, and 25000 international unit (IU)/kg during gestation and lactation; the treatments increased the serum level of lipid peroxide in male offspring, but decreased the level in female offspring (52). Despite the previous findings, the current study is the very first to explore the effects of maternal VA supplementation on both the AT and systemic redox status of offspring. VA supplementation was shown to improve both the systemic and WAT redox status of pups in dams consuming the HFD, as evidenced by the significantly lower lipid peroxide concentration in the HFD+VA group compared to the HFD group. VA supplementation also lowered the lipid peroxide concentration in both WAT and BAT of pups in dams consuming the NFD. In addition, the lipophilic AC of the WAT was positively correlated with the VA mass in the tissue, while a strong negative correlation was noted between the serum concentration of VA and that of lipid peroxide. All of these findings support the role of VA supplementation in attenuating oxidative stress, which plays an important role in obesity and other chronic diseases. The differences between results of the present study and of previous ones may be related to the dose and administration mode of VA as well as different tissues examined. It is worthy to note that VA supplementation reduced the oxidative stress of WAT but not BAT in pups of the HFD cohort. The results may be related to the greater contribution of
WAT in the generation of ROS than BAT, especially in an obesogenic environment. It is known that ROS is mainly generated in the mitochondria and WAT possesses a larger number of mitochondria and subsequent greater generation of oxidative stress due to higher tissue mass than BAT (53).

Leptin and adiponectin are two major adipokines that play significant roles in obesity and metabolic health. Leptin levels are increased with higher adiposity, while adiponectin levels are downregulated in obesity. In the present study, maternal VA supplementation was found to increase pups’ serum adiponectin level that was not altered by maternal HFD consumption and showed a trend to reduce the leptin level that was significantly increased by maternal intake of HFD. Previous studies in adult rodent models showed that chronic dietary VA supplementation at the same level as in the present study significantly suppressed serum leptin concentrations as well as leptin gene expression in WAT (17, 22). Acute RA treatment was shown to downregulate the gene expression of both leptin and adiponectin in WAT in adult rats (23) as well as suppressing leptin gene expression in BAT (21). It should be noted that the current serum leptin and adiponectin data was only obtained from P25. By that time, rat pups in supplemented groups primarily received additional VA from mothers’ milk. As compared to direct VA or RA administration as applied in aforementioned studies with adult models, the indirect route may have a weaker impact on the production and secretion of adipokines, as seen in the current study. However, maternal VA supplementation still showed a potential to restore the perturbed balance between leptin and adiponectin. Measuring the gene or protein expression of these two adipokines in future studies will provide more insights.

VA supplementation to the HFD was also found to influence several other metabolic measures of the offspring. It showed a trend to decrease serum glucose concentration that was
raised by maternal HFD intake and to decrease serum cholesterol concentration. Interestingly, VA supplement significantly increased the serum triglycerides concentration in the NFD cohort (NFD+VA vs. NFD). It was also reported in previous case studies that serum triglycerides concentration was elevated in patients receiving isotretinoin (13-cis-RA) for acne (54) or following a high dose VA treatment to patients with pityriasis rubra pilaris (55). The mechanism is unknown. However, VA was shown to promote lipolysis in WAT (56) and, therefore, increase the release of free fatty acids and glycerol, which may resynthesize triglycerides in the liver, packed into very low density lipoproteins, and secreted into the circulation, leading to a higher serum concentration.

Levels of VA in supplemented and control diets

The current dietary reference intakes (DRIs), including those for VA, were developed for the healthy general population. However, percent of adults aged 20 and over with overweight, including obesity, has reached ~70% (57). Therefore, it is of significance to consider developing DRIs for those population or for reducing chronic diseases, as being consiered by the National Academy of Medicine (58). Considering the high prevalence of maternal obesity as well as the upward trend in infant obesity, it is particularly important to look into modifying DRIs for overweight or obese lactating women.

In this study, the concentration of VA in the supplemented diets was 129 mg/kg, which was chosen based on previous studies (13, 22). On a body weight basis, the average daily VA intake of lactating rats in the supplemented groups (~6000 µg/d) is much higher than the dietary recommendation for lactating mothers (1300 µg/d). As observed, the average serum VA concentration in the supplemented groups was 5.5 µmol/L. This is much higher than the serum VA concentration regarded as normal, which is 0.7 – 1.75 µmol/L. However, no VA toxicity
sign or symptom was noted, including depressed growth, occasional bleeding from the nose, or partial paralysis of the legs. An even higher dosage of VA supplementation was used in a previous study (17) and no toxicity was observed. In addition, at P35, the serum VA concentration in supplemented groups was significantly decreased as compared to that at P25, indicating a possible regulation mechanism to maintain VA homeostasis once pups start to receive VA directly from their diet. However, high levels of VA supplementation should still be considered with caution to prevent toxicity, especially subtoxicity without clinical signs (59). This preclinical study lays the groundwork for future research to test doses of VA supplementation that are safer and are closer to dietary recommendations for humans, which will contribute to the establishment of VA DRIs for overweight/obese population.

The control diets (NFD and HFD) contained 2.6 mg/kg of VA, a level that is adequate to maintain a healthy pregnancy and fetal development, so that the VA status of control groups would mimic that of most pregnant women and healthy infants in the U.S. and other developed countries. The average serum retinol concentration of pups in control groups was ~1.2 µmol/L, which is in the normal range. However, it should be pointed out that VA deficiency is a significant public health problem in many developing countries, particularly in South Asia and Africa, affecting a high percentage of pregnant women (60). The dietary intake of preformed VA or provitamin A carotenoids of these women is usually low. At the same time, a growing number of women of child-bearing age in these areas have become overweight or obese due to unhealthy dietary patterns, creating the malnutrition problem encompassing both undernutrition and overnutrition (2). Therefore, future studies using a similar design of the present one but adopting a marginal or deficient level of VA in control diets will be of translational meaning to help with solving public health problems in the developing world.
Strengths and limitations

Using limited tissue samples that could be obtained from young rats, this study evaluated their metabolic conditions via multiple measures, allowing for a comprehensive understanding of the effects of VA supplementation and an exploration on the correlation among measures. Future studies are warranted to investigate the effects of maternal VA enrichment on genes or pathways involved in lipid metabolism, adipogenesis, angiogenesis, apoptosis, and WAT browning. Histological investigation on WAT and BAT will also provide valuable information. The adoption of multiple time points for tissue collection is another strength. P14, P25, and P35 are in the neonatal, weanling, and periadolescent phase for rats (61), respectively. The inclusion of these time points provided a dynamic picture of the BW change and AT development during early life. It also allowed for an exploration on the potentially differing effects of VA supplement at different developmental stages. Data from P35 provided insights on how direct VA supplementation to rat pups may alter their metabolic conditions differently from supplementing the maternal diet.

Limitations should also be noted. Due to the nature of a neonatal rat model, the amounts of serum or tissue samples harvested were quite limited. As a result, several measures could only be conducted on samples from P25 and/or P35, or results from different time points needed to be combined for statistical analysis. Also, future studies with a larger sample size of maternal rats are needed to minimize the non-independence of rat pups. However, the milk and serum VA concentration data confirmed that each individual rat pup in VA-supplemented groups received significantly more VA and showed significantly elevated VA status. Pups started to consume food from P18 and were totally weaned from P25; therefore, the effects of VA supplementation were not only attributed to the indirect maternal supplementation but also direct supplementation.
to rat pups. Lastly, milk samples were analyzed for the concentration of VA but not other nutrients. Future research should explore whether maternal VA supplementation would affect the mother's metabolism and change the nutritional status of the milk, which may alter the body weight gain and the adiposity of offspring as observed in the current study.

Conclusion and future directions

Results from the current study support the beneficial regulatory role of VA supplementation, especially through the enrichment of maternal diet, on the adiposity, metabolic profile, and potentially AT development of offspring from mothers consuming a HFD. It would be worthwhile to further explore supplementing maternal or infant obesogenic diets with VA or setting up a higher RDA of VA for obese lactating women as potential strategies in managing overweight/obesity in early life. Different levels of VA and various administration routes should be studied to find the safe and optimal dose and mode. A longer study period extended to adulthood can also be considered to gain insights on how VA may impact the fetal programming effects of maternal obesity or obesogenic diets consumption.

Acknowledgments and Statement of Authors’ Contributions to Manuscript

The authors would like to thank Dr. Matthew Jenny’s research group at the University of Alabama for their assistance on qPCR analysis. The authors also thank Dr. A. Catharine Ross at Pennsylvania State University for her comments and suggestions on this manuscript.

L.T. designed research; L.T., Y.Z., K.M.C.W., K.E.S., M.E.E., and H.W. conducted research; L.T. analyzed data; L.T., Y.Z., and M.E.E. wrote paper; L.T. had primary responsibility for final content. All authors have read and approved the final manuscript.
References

1. Center for Disease Control and Prevention. Childhood Obesity Facts. [cited January 8, 2020]; Available from: https://www.cdc.gov/obesity/data/childhood.html.

2. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R. Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet 2013;382:427-51.

3. Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA 2012;307(5):491-7.

4. Council NR. Weight gain during pregnancy: reexamining the guidelines: National Academies Press; 2010.

5. Danielewicz H, Myszczyszyn G, Dębińska A, Myszkal A, Boznański A, Hrnle L. Diet in pregnancy-more than food. Eur J Pediatr 2017;176(12):1573-9.

6. Uusitalo U, Arkkola T, Ovaskainen ML, Kronberg-Kippilä C, Kenward MG, Veijola R, Simell O, Knip M, Virtanen SM. Unhealthy dietary patterns are associated with weight gain during pregnancy among Finnish women. Public Health Nutr 2009;12(12):2392-9.

7. Wrottesley SV, Pisa PT, Norris SA. The Influence of Maternal Dietary Patterns on Body Mass Index and Gestational Weight Gain in Urban Black South African Women. Nutrients 2017;9(7).

8. Gaillard R. Maternal obesity during pregnancy and cardiovascular development and disease in the offspring. Eur J Epidemiol 2015;30(11):1141-1152.

9. Jeyakumar SM, Vajreswari A. Vitamin A as a key regulator of obesity & its associated disorders: evidences from an obese rat model. Indian J Med Res 2015;141(3):275.
10. Bonet M, Ribot J, Felipe F, Palou A. Vitamin A and the regulation of fat reserves. Cell Mol Life Sci 2003;60(7):1311-21.

11. Wang B, Yang Q, Harris CL, Nelson ML, Busboom JR, Zhu M-J, Du M. Nutrigenomic regulation of adipose tissue development—role of retinoic acid: a review. Meat Sci 2016;120:100-6.

12. Prashanth A, Jeyakumar SM, Singotamu L, Harishankar N, Giridharan NV, Vajreswari A. Mitochondriogenesis and apoptosis: possible cause of vitamin A-mediated adipose loss in WNIN/Ob-obese rats. Nutr Metab 2014;11(1):45.

13. Jeyakumar SM, Vajreswari A, Giridharan NV. Chronic dietary vitamin A supplementation regulates obesity in an obese mutant WNIN/Ob rat model. Obesity 2006;14(1):52-9.

14. Wang B, Fu X, Zhu M-J, Du M. Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation. J Mol Cell Biol 2017;9(4):338-49.

15. Berry DC, DeSantis D, Soltanian H, Croniger CM, Noy N. Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity. Diabetes 2012;61(5):1112-21.

16. Jeyakumar S, Vajreswari A, Sesikeran B, Giridharan N. Vitamin A supplementation induces adipose tissue loss through apoptosis in lean but not in obese rats of the WNIN/Ob strain. J Mol Endocrinol 2005;35(2):391-8.

17. Felipe F, Bonet M, Ribot J, Palou A. Up-regulation of muscle uncoupling protein 3 gene expression in mice following high fat diet, dietary vitamin A supplementation and acute retinoic acid-treatment. Int J Obes 2003;27(1):60.
18. Wang B, Fu X, Liang X, Deavila JM, Wang Z, Zhao L, Tian Q, Zhao J, Gomez NA, Trombetta SC. Retinoic acid induces white adipose tissue browning by increasing adipose vascularity and inducing beige adipogenesis of PDGFRα+ adipose progenitors. *Cell Discov* 2017;3:17036.

19. Mercader J, Ribot J, Murano I, Felipe F, Cinti S, Bonet ML, Palou A. Remodeling of white adipose tissue after retinoic acid administration in mice. *Endocrinology* 2006;147:5325-32.

20. Felipe F, Mercader J, Ribot J, Palou A, Bonet ML. Effects of retinoic acid administration and dietary vitamin A supplementation on leptin expression in mice: lack of correlation with changes of adipose tissue mass and food intake. *BBA-Mol Cell Biol L* 2005;1740(2):258-65.

21. Kumar M, Scarpace P. Differential effects of retinoic acid on uncoupling protein-1 and leptin gene expression. *J Endocrinol* 1998;157(2):237-44.

22. Kumar MV, Sunvold GD, Scarpace PJ. Dietary vitamin A supplementation in rats: suppression of leptin and induction of UCP1 mRNA. *J Lipid Res* 1999;40(5):824-9.

23. Zhang Y, Matheny M, Zolotukhin S, Tumer N, Scarpace PJ. Regulation of adiponectin and leptin gene expression in white and brown adipose tissues: influence of β3-adrenergic agonists, retinoic acid, leptin and fasting. *BBA-Mol Cell Biol L* 2002;1584:115-22.

24. Frey SK, Vogel S. Vitamin A metabolism and adipose tissue biology. *Nutrients* 2011;3(1):27-39.

25. Wang B, Fu X, Liang X, Wang Z, Yang Q, Zou T, Nie W, Zhao J, Gao P, Zhu M-J. Maternal retinoids increase PDGFRα+ progenitor population and beige adipogenesis in progeny by stimulating vascular development. *EBioMedicine* 2017;18:288-99.
26. Tan L, Babbs AE, Green MH, Ross AC. Direct and indirect vitamin A supplementation strategies result in different plasma and tissue retinol kinetics in neonatal rats. *J Lipid Res* 2016;57(8):1423-34.

27. Mohamadin AM, Hammad LN, El-Bab MF, Abdel Gawad HS. Attenuation of oxidative stress in plasma and tissues of rats with experimentally induced hyperthyroidism by caffeic acid phenylethyl ester. *Basic Clin Pharmacol Toxicol* 2007;100(2):84-90.

28. Crowe KM. Optimizing protein precipitation efficiency for assessing the contribution of low molecular weight compounds to serum antioxidant capacity. *Clin Biochem* 2014;47(15):116-8.

29. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. *J Agric Food Chem* 2003;51(11):3273-9.

30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. *Methods* 2001;25(4):402-8.

31. Zhang Y, Crowe-White K, Kong L, Tan L. Vitamin A Status and Deposition in Neonatal and Weanling Rats Reared by Mothers Consuming Normal and High-Fat Diets with Adequate or Supplemented Vitamin A. *Nutrients* 2020;12:1460.

32. Catalano Pa, Ehrenberg H. The short - and long - term implications of maternal obesity on the mother and her offspring. *Int J Gynaecol Obstet* 2006;113(10):1126-33.

33. Sewell MF, Huston-Presley L, Super DM, Catalano P. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. *Am J Obstet Gynecol* 2006;195(4):1100-3.
34. Keaney JF, Jr., Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, Massaro JM, Sutherland P, Vita JA, Benjamin EJ, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. *Arterioscler Thromb Vasc Biol* 2003;23(3):434-9.

35. Charradi K, Elkahoui S, Limam F, Aouani E. High-fat diet induced an oxidative stress in white adipose tissue and disturbed plasma transition metals in rat: prevention by grape seed and skin extract. *J Physiol Sci* 2013;63(6):445-55.

36. Torrens C, Ethirajan P, Bruce KD, Cagampang FR, Siow RC, Hanson MA, Byrne, CD, Mann GE, Clough GF. Interaction between maternal and offspring diet to impair vascular function and oxidative balance in high fat fed male mice. *PLoS One* 2012;7(12):e50671.

37. Negro S, Boutsikou T, Briana D, Tataranno M, Longini M, Proietti F, Bazzini F, Dani C, Malamitsi-Puchner A, Buonocore G. Maternal obesity and perinatal oxidative stress: the strength of the association. *J Biol Regul Homeost Agents* 2017;31(1):221-7.

38. Kurutas E. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. *Nutr J* 2016;15(1):71.

39. Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. A maternal high-fat diet induces DNA methylation changes that contribute to glucose intolerance in offspring. *Front Endocrinol (Lausanne)* 2019;10.

40. Nascimento MA, Galvão-Moreira L, Campos D, Brito H, do Nascimento J, do Nascimento F, do Carmo LBM, da Costa R, do Desterro SBNM, Dos Santos FM. Plasma Cytokine Levels in Overweight Versus Obese Disease-free Perimenopausal Women. *Endocr Metab Immune Disord Drug Targets* 2019.
41. Doğan GE, Toraman A, Şebin SÖ, Doğan Ç, Güngör A, Aksoy H, Asutay H. Salivary IL-6 and IL-10 levels in subjects with obesity and gingivitis. *Am J Dent* 2016;29(5):261-5.

42. Berry DC, Noy N. All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor β/δ and retinoic acid receptor. *Mol Cell Biol* 2009;29(12):3286-96.

43. Ribot J, Felipe F, Bonet ML, Palou A. Changes of adiposity in response to vitamin A status correlate with changes of PPARγ2 expression. *Obes Res* 2001;9(8):500-9.

44. Ribot J, Felipe F, Bonet ML, Palou A. Retinoic acid administration and vitamin A status modulate retinoid X receptor α and retinoic acid receptor α levels in mouse brown adipose tissue. *Mol Cell Biochem* 2004;266(1-2):25-30.

45. Hahn P, Novak M. Development of brown and white adipose tissue. *J Lipid Res* 1975;16(2):79-91.

46. Carberry AE, Colditz PB, Lingwood BE. Body composition from birth to 4.5 months in infants born to non-obese women. *Pediatr Res* 2010;68(1):84.

47. Gesta S, Tseng Y-H, Kahn CR. Developmental origin of fat: tracking obesity to its source. *Cell* 2007;131(2):242-56.

48. Symonds ME. Brown adipose tissue growth and development. *Scientifica* 2013;2013.

49. Jeyakumar SM, Sheril A, Vajreswari A. Chronic vitamin A - enriched diet feeding induces body weight gain and adiposity in lean and glucose - intolerant obese rats of WNIN/GR - Ob strain. *Exp Physiol* 2015;100(11):1352-61.

50. Scarpace P, Matheny M, Moore R, Kumar M. Modulation of uncoupling protein 2 and uncoupling protein 3; regulation by denervation, leptin and retinoic acid treatment. *J Endocrinol* 2000;164(3):331-8.
51. Pasquali MA, Gelain DP, Oliveira MR, Behr GA, Motta LL, Rocha RF, Klamt F, Moreira JC. Vitamin A supplementation induces oxidative stress and decreases the immunocontent of catalase and superoxide dismutase in rat lungs. *Exp Lung Res* 2009;35(5):427-38.

52. Schnorr CE, Morrone MDS, Weber MH, Lorenzi R, Behr GA, Moreira JCF. The effects of vitamin A supplementation to rats during gestation and lactation upon redox parameters: increased oxidative stress and redox modulation in mothers and their offspring. *Food Chem Toxicol* 2011;49(10):2645-54.

53. Murphy MP. How mitochondria produce reactive oxygen species. *Biochem J* 2009;417(1):1-13.

54. Dicken CH. Elevation of blood triglyceride levels secondary to administration of vitamin A. *Arch Dermatol* 1981;117(4):189-90.

55. Murray JC, Gilgor RS, Lazarus GS. Serum triglyceride elevation following high-dose vitamin A treatment for pityriasis rubra pilaris. *Arch Dermatol* 1983;119(8):675-6.

56. Bonet ML, Ribot J, Palou A. Lipid metabolism in mammalian tissues and its control by retinoic acid. *BBA-Mol Cell Biol L* 2012;1821(1):177-189.

57. Center for Disease Control and Prevention. Obesity and Overweight. [cited February 17, 2020]; Available from: https://www.cdc.gov/nchs/fastats/obesity-overweight.htm.

58. National Academies of Sciences, Engineering, and Medicine. Guiding principles for developing dietary reference intakes based on chronic disease: National Academies Press; 2017.

59. Penniston KL, Tanumihardjo SA. The acute and chronic toxic effects of vitamin A. *Am J Clin Nutr* 2006;83(2):191-201.
60. World Health Organization. Global prevalence of vitamin A deficiency in populations at risk 1995-2005: WHO global database on vitamin A deficiency. 2009.

61. Sengupta P. The laboratory rat: relating its age with human’s. *Int J Prev Med* 2013;4(6):624.
FIGURE 1. Body weights (A), visceral white adipose tissue mass (B), brown adipose tissue mass (C), and adiposity index (D; ratio of visceral white adipose tissue mass to body weight) of rat pups at postnatal day 14, postnatal day 25, and postnatal day 35. Bars show means ± SEM, n=4 or 3 per group. One-way ANOVA followed by Bonferroni post test was conducted at individual time point. Different letters at each time point indicate statistically significant differences, a>b>c, a’>b’>c’, a”>b”>c”, P < 0.05.
FIGURE 2. Brown adipose tissue UCP-1 mRNA expression in rat pups at postnatal day 25 and postnatal day 35. UCP-1 mRNA results were normalized to β-actin mRNA. Bars show means ± SEM, n=4 or 3 per group. One-way ANOVA followed by Bonferroni post test was conducted at individual time point. Groups sharing the same letter have no statistically significant difference. Student’s t-test was done to compare the expression in the same group at P25 vs. at P35. * indicates statistically significant difference, P < 0.05.
FIGURE 3. Concentrations of lipid peroxide in white adipose tissue of rat pups at postnatal day 14, postnatal day 25, and postnatal day 35 (A), and in brown adipose tissue (B) and serum (C).
combining data from the three time points. Bars show means ± SEM, n=4 or 3 per group for WAT and n=7-11 for BAT and serum. One-way ANOVA followed by Bonferroni post test was conducted at individual time point. Different letters at each time point indicate statistically significant differences, a>b, a’>b’>c’, a”>b”>c”, P < 0.05. Note: at P14, white adipose tissue samples in the NFD group were not adequate for analysis, and therefore the data is missing.
FIGURE 4. Lipophilic antioxidant capacity of white adipose tissue of rat pups at postnatal day 14, postnatal day 25, and postnatal day 35 (A), and of brown adipose tissue (B) and serum (C)
combining data from the three time points. Bars show means ± SEM, n=4 or 3 per group for WAT and n=7-11 for BAT and serum. One-way ANOVA followed by Bonferroni post test was conducted at individual time point. Different letters at each time point indicate statistically significant differences, a>b, a’>b’>c’, a”>b”, P < 0.05. Note: at P14, only one WAT sample in the NFD group was adequate for analysis, and therefore there is no error bar.
FIGURE 5. Concentrations of adiponectin (A) and leptin (B) in serum of rat pups at postnatal day 25. Bars show means ± SEM, n=4 per group. Different letters indicate statistically significant differences, a>b, P < 0.05.
FIGURE 6. Concentrations of glucose (A), total cholesterol (B), triglycerides (C), HDL-C (D), and LDL-C (E) in serum of rat pups at postnatal day 25. Bars show means ± SEM, n=4 per group. Different letters indicate statistically significant differences, a>b, P < 0.05.
FIGURE 7. Concentrations of interleukin-10 (A), interleukin-6 (B), KC/GRO (C), and TNF-α (D) in serum of rat pups at postnatal day 25. Bars show means ± SEM, n=4 per group. Different letters indicate statistically significant differences, a>b, P < 0.05.