New dammarane-type triterpenoid saponins from *Panax notoginseng* saponins

Qian Li1,2,3, Mingrui Yuan1,2,3, Xiaohui Li1,2,3, Jinyu Li1,2,3, Ming Xu1,2,3, Di Wei1,2,3, Desong Wu1,2,3, Jinfu Wan1,2,3, Shuangxi Mei1,2,3, Tao Cui1,2,3, Jingkun Wang1,2,3,* Zhaoyun Zhu1,2,3,**

1Yunnan Institute of Materia Medica, Kunming, China
2Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
3Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China

1. Introduction

Panax notoginseng (Burk.) F.H. Chen (*P. notoginseng*), commonly called “Sanqi” or “Tianqi” in Chinese is a species of the genus *Panax*, family Araliaceae [1]. *P. notoginseng* is one of the most widely used Chinese herbal drugs for the treatment of cardiovascular diseases, such as occlusive vasculitis, coronary diseases, atherosclerosis, and cerebral infarction in China, Korea, and Russia for a long time [2]. There are about 200 chemical compositions that have been isolated from *P. notoginseng*, including saponins, flavonoids, and cyclopeptides [3]. Dammarane triterpenoidal saponins are the major bioactive ingredients of *P. notoginseng* [4].

Panax notoginseng saponin (PNS) is developed into the traditional Chinese medicine agents with the trademarks of Xuesaitong injection, Xuesuantong injection, and Xuesaitong tablet, which are all bestselling prescriptions used for treatment of cardiovascular and cerebrovascular diseases in China [5,6]. Notoginsenoside R1 and ginsenoside Rg1, Rd, Re, and Rb1 are regarded as the main active constituents of PNS, but a systematic research on the rare saponin compositions has not been conducted. The objective of this study was to conduct a systematic chemical study on PNS and establish the HPLC fingerprint of PNS to provide scientific evidence in quality control. In addition, the cytotoxicity of the new compounds was tested.

Methods: Pure saponins from PNS were isolated by means of many chromatographic methods, and their structures were determined by extensive analyses of NMR and HR-ESI-MS studies. The fingerprint was established by HPLC-UV method. The cytotoxicity of the compounds was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.

Results and Conclusion: Three new triterpenoid saponins (1–3) together with 25 known rare saponins (4–28) were isolated from PNS, except for the five main compounds (notoginsenoside R1 and ginsenoside Rg1, Rd, Re, and Rb1). In addition, the HPLC fingerprint of PNS was established, and the peaks of the isolated compounds were marked. The study of chemical constituents and fingerprint was useful for the quality control of PNS. The study on antitumor activities showed that new Compound 2 exhibited significant inhibitory activity against the tested cell lines.

© 2019 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
established the HPLC fingerprint and marked the compounds isolated. In addition, we tested the cytotoxic activity of the three new compounds against three human cancer cell lines.

2. Materials and methods

2.1. General experimental procedures

UV spectra: Shimadzu UV-2401A spectrophotometer (Shimadzu Instruments Co., Ltd, Tokyo, Japan); IR spectra: Nicolet FT-IR-360 spectrometer (Thermo Nicolet, Inc., Waltham, MA, USA). NMR spectra: Bruker ARX-400 spectrometers (Bruker Ltd, Karlsruhe, Germany). High resolution electrospray ionization mass spectrum (HR-ESI-MS) were taken using an Agilent G6230 instruments (Agilent Germany). High resolution electrospray ionization mass spectrum: Bruker ARX-400 spectrometer (Thermo Nicolet, Inc., Waltham, MA, USA). NMR, nuclear magnetic resonance; s, singlet; d, doublet; t, triplet; m, multiplet. The assignment was based on DEPT, correlation spectroscopy (COSY), HSQC, and HMBC experiments.

2.2. Plant material

The PNS was provided by Yunnan Baiyao Group Co., Ltd.

2.3. Extraction and isolation

The PNS (2 kg) was separated by silica gel column using a gradient of CH₂Cl₂:CH₃OH (100:1→50:1→25:1→10:1→5:1→2:1→1:1, v/v) to obtain eight fractions (Fr1→Fr8). Fr1 (10 g) was chromatographed subsequently over silica gel chromatography with CHCl₃:MeOH (30:1→20:1→10:1, v/v) to get five major compounds.

Table 1

Position	δC	δH	Position	δC	δH	Position	δC	δH
1	39.9	1.70 (1H, m)	39.7	1.65 (1H, m)	40.0	1.71 (1H, m)		
2	28.4	1.94 (1H, m)	28.2	1.91 (1H, m)	28.4	1.95 (1H, m)		
3	79.0	3.55 (1H, m)	78.7	3.52 (1H, m)	79.0	3.55 (1H, m)		
4	61.8	1.46 (1H, m)	61.7	1.43 (1H, m)	61.8	1.46 (1H, m)		
5	80.5	4.46 (1H, m)	80.2	4.45 (1H, m)	80.6	4.45 (1H, m)		
6	45.8	2.59 (1H, m)	45.6	2.57 (1H, m)	45.8	2.55 (1H, m)		
7	41.7	1.59 (1H, m)	41.5	1.59 (1H, m)	41.7	1.59 (1H, m)		
8	51.1	1.59 (1H, m)	50.9	1.59 (1H, m)	51.1	1.58 (1H, m)		
9	40.1	1.50 (2H, m)	32.8	1.88 (1H, m)	31.5	1.98 (1H, m)		
10	11.2	3.51 (2H, d, J = 12.5)	11.3	5.29 (2H, d, J = 12.5)	108.4	5.15 (1H, s)		
11	77.0	4.52 (1H, m)	91.3	4.71 (1H, t, J = 7.1)	33.1	2.77 (1H, m)		
12	36.3	2.73 (1H, m)	31.3	2.60 (1H, m)	33.2	2.06 (1H, m)		
13	42.0	3.05 (1H, m)	38.6	2.91 (1H, m)	48.7	2.29 (1H, m)		
14	12.4	5.42 (1H, t, J = 6.9)	121.1	5.34 (1H, t, J = 6.9)	75.5	4.46 (1H, m)		
15	132.4	133.4	25.4	1.71 (3H, s)	26.1	1.65 (3H, s)		
16	18.6	1.65 (3H, s)	18.3	1.59 (3H, s)	18.7	1.91 (3H, s)		
17	32.2	2.10 (3H, s)	30.6	2.08 (3H, s)	32.2	2.10 (3H, s)		
18	16.8	1.63 (3H, s)	16.7	1.60 (3H, s)	16.8	1.63 (3H, s)		
19	17.1	0.88 (3H, s)	16.9	0.82 (3H, s)	17.2	0.82 (3H, s)		
6-O-sugar	106.5	5.07 (1H, d, J = 8.0)	106.3	5.04 (1H, d, J = 7.8)	106.4	5.05 (1H, d, J = 7.8)		
2	73.0	3.99 (1H, m)	73.2	3.93 (1H, m)	73.0	3.91 (1H, m)		
3	78.7	3.99 (1H, m)	78.5	3.96 (1H, m)	78.6	3.98 (1H, m)		
4	72.3	4.26 (1H, m)	72.1	4.22 (1H, m)	72.3	4.27 (1H, m)		
5	75.9	4.13 (1H, m)	75.7	4.10 (1H, m)	75.9	4.13 (1H, m)		
6	63.5	4.57 (1H, m)	63.4	4.54 (1H, m)	63.5	4.54 (1H, m)		

NMR, nuclear magnetic resonance; s, singlet; d, doublet; t, triplet; m, multiplet

1) Measured in pyridine- d₅, 500 MHz for ¹H, 125 MHz for ¹³C. The assignment was based on DEPT, correlation spectroscopy (COSY), HSQC, and HMBC experiments.
fractions (Fr.1-1–Fr.1-5) based on thin-layer chromatography (TLC) analysis. Fr.1-2 was purified by ODS eluted with MeOH–H2O (40:60 → 55:45 → 70:30, v/v) to provide Compounds 2 (5.1 mg) and 4 (7.5 mg). Fr.1-3 was then separated into three major fractions (Fr.1-3a–Fr.1-3c) by silica gel chromatography with CHCl3–MeOH (15:1 and 13:1, v/v) as eluent. Fr.1-3a and Fr.1-3b were further separated by preparative HPLC (p-HPLC) eluting with MeCN–H2O (28:72, v/v). Compound 6 (3.6 mg) was prepared from Fr.1-3c with MeCN–H2O (28:72, v/v) as a solvent system, whereas Fr.2-1–Fr.2-10. Fr.2-3 was subjected to chromatography on silica gel to yield Compounds 7 (7.7 mg). Compounds 7 (5.3 mg) and 14 (3.6 mg) were isolated from Fr.2-6 by p-HPLC with MeCN–H2O (30:70, v/v), and Fr.1-3 was further fractionated by ODS eluted with MeOH–H2O (40:60 → 60:40 → 80:20, v/v) to afford five major fractions (Fr.2-4-1–Fr.2-4-5). The analysis of a combined fraction of Fr.2-4-1–Fr.2-4-5 was performed by HPLC. Compound 27 (9.5 mg) was isolated from Fr.2-4-1 by HPLC system of MeCN–H2O (28:72, v/v). Compounds 10 (8.5 mg) and 15 (3.3 mg) were prepared from Fr.2-4-2 with MeCN–H2O (20:80, v/v) as a solvent system, whereas 9 (11.2 mg) and 12 (3.5 mg) were obtained from Fr.2-4-2 with MeCN–H2O (37:63, v/v) as a solvent system. Compounds 11 (3.8 mg) and 28 (2.2 mg) were got from Fr.2-4-3 by HPLC system of MeCN–H2O (43:57 and 35:65, v/v). Fr.5 (23.5 mg) was subjected to chromatography on ODS gel to provide ten factions (Fr.5-1–Fr.5-10). Compound 5 (1115.8 mg) was purified by recrystallizing from Fr.5-1. The analysis of other compounds isolated from Fr.5 was performed by p-HPLC: Compound 22 (mg) was purified from Fr.5-2, and Compounds 17 (511 mg) and 21 (12.7 mg) were isolated from Fr.5-3 by HPLC system of MeCN–H2O (30:70, v/v). Compound 13 (13.4 mg) were obtained from Fr.5-5 HPLC system of MeCN–H2O (34:66, v/v). Compounds 1 (4.3 mg) and 26 (8.5 mg) were prepared from Fr.5-7 with MeCN–H2O (27:73, v/v) as a solvent system, whereas 23 (36.7 mg) and 24 (8.9 mg) were prepared from Fr.5-8 with MeCN–H2O (37:63, v/v) as a solvent system.

2.4. Notoginsenoside Ab1 (1)

\[3\beta,6\alpha,12\beta,22S-tetrahydroxy-dammar-20(21),24-diene-6-O-\beta-D-glucopyranoside: \text{white amorphous powder; } [\alpha]D^0 : +10.5, (c = 0.20, MeOH); IR \nu_{\text{max}} 3420, 2931, 1634, 1545, 1384, 1074, 1032 \text{ cm}^{-1}; ^1H \text{ and } ^13C \text{ NMR: see Table 1}; \text{HR-ESI-MS } m/z 659.4130 \text{ [M+Na}^+\text{] (calculated for C}_{36}\text{H}_{60}\text{O}_{10}\text{Na 659.4135).}

2.5. Notoginsenoside Ab2 (2)

\[22S-hydroperoxyl-\beta,6\alpha,12\beta,tri hydroxy-dammar-20(21),24-diene-6-O-\beta-D-glucopyranoside: \text{white amorphous powder; } [\alpha]D^0 : +11.6, (c = 0.18, MeOH); IR \nu_{\text{max}} 3422, 2933, 1637, 1452, 1384, 1075, 1031 \text{ cm}^{-1}; ^1H \text{ and } ^13C \text{ NMR: see Table 1}; \text{HR-ESI-MS } 675.4077 \text{ [M + Na}^+\text{] (calculated for C}_{36}\text{H}_{60}\text{O}_{10}\text{Na 675.4084).}

2.6. Notoginsenoside Ab3 (3)

\[3\beta,6\alpha,12\beta,24R-tetrahydroxy-dammar-20(21),25-diene-6-O-\beta-D-glucopyranoside: \text{white amorphous powder; } [\alpha]D^0 : -3.4, (c = 0.25, MeOH); IR \nu_{\text{max}} 3416, 2941, 1636, 1452, 1386, 1163, 1076, 1041 \text{ cm}^{-1}; ^1H \text{ and } ^13C \text{ NMR: see Table 1}; \text{HR-ESI-MS } 659.4132 \text{ [M+Na}^+\text{] (calculated for C}_{36}\text{H}_{60}\text{O}_{10}\text{Na 659.4135).}

2.7. Acid hydrolysis and HPLC analysis

The absolute configurations of the sugar moieties in Compounds 1–3 were determined by the method of literature reported [9]. Compounds 1–3 (2.0 mg/sample) were refluxed with 10 mL of 60% aqueous dioxane with 5% HCl for 2 h. The reaction mixture was evaporated under vacuum and then suspended in H2O and extracted with CHCl3. After drying in vacuum, the residue of aqueous layer was melted in 0.2 mL of CH3OH with 2 mg of L-cystine methyl ester hydrochloride followed by warming at 60 °C for 1 h. After that, 5 mL of o-tolylisothiocyanate is added and warmed up at 60 °C for another hour. The reaction mixture was analyzed directly by reversed-phase HPLC on a Thermo C18 column (250 × 4.6 mm, 5 μm), with 20% CH3CN at a flow rate of 1.0 mL/min at 30 °C, and the detection wavelength was 254 nm. The analysis of standard monosaccharide, D-glucose, followed the same procedure. The value of δ of the standard monosaccharide derivatives was 17.8 min, and the derivatives of 1–3 gave peaks at δ 17.7–17.9 min, respectively.

2.8. Computational studies

Conformational searches were performed with Gaussian 09W program (Gaussian Inc., USA). The geometry of each conformer in the energy window of the conformational search was optimized with Gaussian 09W in vacuum, at the B3LYP–6–31g (d,p) level. Imaginary vibrational frequency of each conformer was checked, and no such frequency indicates true energy minima. Isotropic magnetic shielding was calculated with the GIAO (gauge-independent atomic orbital) method at the B3LYP/6–31G (d,p) level by using Gaussian 09W [10,11].

2.9. Fingerprint analysis

Chromatographic conditions: Waters 1525 HPLC system (Waters Corp., Milford, Massachusetts, USA); Chromatographic column: VP ODS C18 (250 mm × 4.6 mm, 5 μm; Agilent Technologies, Santa Clara, CA, USA); volume flow: 1.0 mL/min; column temperature: 30 °C; detection wavelength: 203 nm; injection volume: 10 μL. The samples were eluted with the mixture of Solvent A (water) and Solvent B (acetonitrile). The elution rate using Solvent B was 20–45% for 0–60 min.

Preparation of samples: Accurately weighed 25 mg of powder sample was diluted with 10 mL of 70% methanol. Before injection, the samples were filtered through a 0.45-μm membrane filter.

2.10. Cell line

HepG-2 (human hepatic cancer cell line), NCI-H460 (human lung cancer cell), and MCF-7 (human breast cancer cell) were purchased from Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (Shanghai, China). The HepG-2 and NCI-H460 cancer cells were maintained in Roswell Park Memorial Institute 1640 medium, and MCF-7 cancer cells were maintained in high-glucose Dulbecco’s minimum essential medium, supplemented with 10% fetal bovine serum. The cells grew in a 5% CO2 incubator at 37 °C. The cells were routinely digested and passaged every 3 days.

2.11. Cell viability assay

The cells were plated in 96-well plates (1 × 10^4 cells/well) overnight, then 1–3 at various concentrations of 0.01, 0.1, 1, 10, and
100 μg/mL and the positive control cisplatin at concentrations of 0.5, 1, 2, 4, and 8 μg/mL were treated in the plates for 72 h. Subsequently, 20 μL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reagent (5 mg/mL) was added to each well for 4 h, and then 100 μL of triple liquid containing 10 mg SDS (sodium dodecyl sulfate), 1.2 μL of 36–37% concentrated hydrochloric acid, and 50 μL of isobutanol were added. After the coculture for 12 h, the reduction of cell viability was determined at 570 nm using a microplate reader (Bio-Rad, USA). The cell proliferation inhibition rate was calculated according to the following formula: Inhibition rate (%) = (Acontrol – Asample)/Acontrol × 100 [12].

3. Result and discussion

Compound 1 was obtained as white amorphous powder. The molecular formula of 1 was deduced to be C_{36}H_{60}O_{9} by positive
mass spectrometry (HR-ESI-MS) data at m/z 659.4130 [M+Na]+ (calculated for C_{36}H_{60}O_{9}Na, 659.4135). The 13C NMR (Table 1) showed 36 carbon signals. The distortionless enhancement by polarization transfer (DEPT) spectrum exhibited 7 methyls, 9 methylenes, 14 methines, and 6 quaternary carbons signals. Four olefinic carbon signals at δ_{C} 160.2, 132.8, 122.4, and 111.2 ppm suggested two double bonds in the molecule. The ^{1}H NMR showed signals of seven methyl groups at δ_{H} 0.88 (3H, s), 1.04 (3H, s), 1.25 (3H, s), 1.63 (3H, s), 1.65 (3H, s), 1.71 (3H, s), and 2.10 (3H, s); four oxygen substituted protons at δ_{H} 3.55 (1H, m), 4.29 (1H, m), 4.46 (1H, m), and 4.52 (1H, m); and one anemic proton at δ_{H} 5.07 (1H, d, $J = 8.0$). The ^{1}H and ^{13}C signals were fully assigned according to heteronuclear signal quantum correlation (HSQC) spectra (Table 1). Methylene carbon signal at δ_{C} 111.2 ppm showed correlation spots with protons at δ_{H} 5.18 (H-21) and 4.52 (H-21) ppm in HSQC spectrum. These two proton signals showed connections with carbon signals at δ_{C} 160.2 (C-20), 77.0 (C-22), and 40.2 (C-17) ppm in heteronuclear multiple bond correlation (HMBC) spectrum, and δ_{H} 4.52 (H-22) showed connection with δ_{C} 111.2 (C-20), 122.4 (C-24), and 40.2 (C-17) (Fig. 2). Thus, the signals at δ_{C} 160.2, 111.2, and 77.0 ppm were assigned to be the signals of C-20, C-21, and C-22, respectively. δ_{H} 5.42 (H-24) showed connections with δ_{C} 132.8 (C-25), 26.4 (C-26), and 18.6 (C-27). Therefore, it was concluded that the two double bonds were at $\Delta 20(21)$ and $\Delta 24(25)$. The signals of Compound 1 were quiet similar to those of ginsenoside Rk3, except for the chemical shift of C-20, C-22, and C-23, which were at δ_{C} 160.2, 77.0, and 36.3 of Compound 1 but were at δ_{C} 155.4, 33.7, and 27.0 of ginsenoside Rk3, respectively [13].
downfield of C-20 (−4.8 ppm), C-22 (−43.3 ppm), and C-23 (−9.3 ppm) indicated that C-22 of 1 was linked to hydroxyl. In addition, the β configuration was prompted by the large coupling constant observed for the anomeric proton δH 5.07 (1H, d, J = 8.0). The absolute configurations of sugar was elucidated as D-glucose through acid hydrolysis and HPLC analysis. Moreover, the linkages between H-1' (δH 5.07) and C-6 (δC 80.5) were determined by HMBC correlations. The configuration of OH at C-6 was α based on the correlations between H-6 with H-18i, 19β in rotating frame overhauser effect (ROESY) spectrum. In addition, H-17 was deduced as α-forms by correlations between H-17 and Me-30 in the ROESY spectrum. The configuration of C-22 was identified by the comparison of the calculated and experimental chemical shifts of 13C. The calculated chemical shifts of C-22 about (22S-hydroperoxyl-3-saccharide was determined to be D-glucose by HPLC analysis of notoginsenoside Ab1. The conformation of C-22 was determined as notoginsenoside Ab1. The compound 2 was isolated as white amorphous powder. The HR-ESI-MS spectrum showed [M+Na]+ at m/z 657.4077 (calcd. for C35H46O12Na 675.4135). It was proposed to possess a hydroperoxyl group at the result of positive response to 5-(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The n-ginsenoside ST2 (22S)-3 and (22S)-1 were δC 72.0 and δC 77.8, whereas the experimental result was δC 77.0. Therefore, the configuration of C-22 was identified as S. On the basis of the aforementioned analyses, Compound 1 could be deduced to be 3β,6α,12β,22S-tetrahydroxy-dammar-20(21),24-diene-6-O-β-D-glucopyranoside and named as notoginsenoside Ab1. The compound 2 was isolated as white amorphous powder. The HR-ESI-MS spectrum showed [M+Na]+ at m/z 657.4077 (calcd. for C35H46O12Na 675.4135). It was proposed to possess a hydroperoxyl group at the result of positive response to 5-(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The n-ginsenoside ST2 (22S)-3 and (22S)-1 were δC 72.0 and δC 77.8, whereas the experimental result was δC 77.0. Therefore, the configuration of C-22 was identified as S. On the basis of the aforementioned analyses, Compound 1 could be deduced to be 3β,6α,12β,22S-tetrahydroxy-dammar-20(21),24-diene-6-O-β-D-glucopyranoside and named as notoginsenoside Ab1. The compound 2 was isolated as white amorphous powder. The HR-ESI-MS spectrum showed [M+Na]+ at m/z 657.4077 (calcd. for C35H46O12Na 675.4135). It was proposed to possess a hydroperoxyl group at the result of positive response to 5-(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The n-ginsenoside ST2 (22S)-3 and (22S)-1 were δC 72.0 and δC 77.8, whereas the experimental result was δC 77.0. Therefore, the configuration of C-22 was identified as S. On the basis of the aforementioned analyses, Compound 1 could be deduced to be 3β,6α,12β,22S-tetrahydroxy-dammar-20(21),24-diene-6-O-β-D-glucopyranoside and named as notoginsenoside Ab1. The compound 2 was isolated as white amorphous powder. The HR-ESI-MS spectrum showed [M+Na]+ at m/z 657.4077 (calcd. for C35H46O12Na 675.4135). It was proposed to possess a hydroperoxyl group at the result of positive response to 5-(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The n-ginsenoside ST2 (22S)-3 and (22S)-1 were δC 72.0 and δC 77.8, whereas the experimental result was δC 77.0. Therefore, the configuration of C-22 was identified as S. On the basis of the aforementioned analyses, Compound 1 could be deduced to be 3β,6α,12β,22S-tetrahydroxy-dammar-20(21),24-diene-6-O-β-D-glucopyranoside and named as notoginsenoside Ab1.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jgr.2018.12.001.

References

[1] Park HJ, Kim DH, Park SJ, Kim JM, Ryu JH. Ginseng in traditional herbal pre-criptions. J Ginseng Res 2012;36:225–41.
[2] Zhao GR, Yang XW, Li FF, Zhou SW. Panax notoginseng: a novel dammarane-type triterpenoid saponin from the leaves of Panax notoginseng. J Nat Prod Res 2014;6:143–54.
[3] Wang T, Guo RX, Zhou GH, Zhou X, Jia Q, Wei P, Zhang TL. New dammarane-type triterpenoid saponins from Panax notoginseng. J Asian Nat Prod Res 2015;17:621–6.
[4] Wang HD, Choi SY, Kim YC, Lee YC, Cho CW. Rapid determination of ginsenesides Rb1, Rf, and Rg1 in Korean ginseng using HPLC. J Ginseng Res 2009;33:9–12.
[5] Li Lan-Jie, Jin Yong-Ri, Wang Xiao-Zhong, Liu Ying, Wu Qian, Shi Xiao-Lei, Li Xu-Wen. Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection. J Sep Sci 2015;38:3055–62.
[6] Wang L, Li Z, Zhao X, Liu W, Liu Y, Guo Z, Xu F, Fan X, Cheng Y. A network study of Chinese medicine Xuesaitong injection to elucidate a complex mode of action with multipricipant, multitarget, and multipathway. Evid. Based Complement. Alternat Med 2013;2013:652573.
[7] Liu SJ, Zhou SW. Panax notoginseng saponins attenuated cisplatin-induced nephrotoxicity. Acta Pharmac Sin 2000;21:257–60.
[8] Ma LY, Xiao PG. Effects of Panax notoginseng Saponins on platelet aggregation in rats with middle cerebral artery occlusion or in vitro and on lipid fluidity of platelet membrane. Phytherother Res 1998;12:138–40.
[9] Li XH, Li RH, Zhao Q, Lu LH, Li YB, Wu DS, Fu DH, Mei SX, Cui T, Wang JG, et al. Iridoids from Flavonol extracts with a carbonate ester Substituent. Tetra-hedron Lett 2017;58:3112–8.
[10] Prevetti D, Nardini V, Rosa ME, Palairetti V, Silva GVJ. A radioactive chemical assignment of four diastereoisomers of a maculalactone derivative by computational NMR calculations. J Mol Struct 2019;1178:467–78.
[11] Liu DZ, Wang F, Liao TG, Tang JG, Steglich W, Zhi HJ, Liu JK. Vibralactone: a lipase inhibitor with an unusual fused lactone produced by cultures of the basidiomycote boreostereum vibrans. Org Lett 2006;8(25):5749–52. GANC.
[12] Mosmann TJ. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.
[13] Park BH, Kim SY, Han SB, Kim JM, Kwon SW, Kim HJ, Park MK, Park JH. Three new dammarane glycosides from heat processed ginseng. Arch Pharm Res 2002;25(4):428–32.
[14] Knapp E, Peters D. Thin-layer chromatographic identification of organic peroxides. Z Anal Chem 1962;190:386–9.
[15] Seikou N, Sachiko S, Hishida, Masayuki Y. Medicinal flowers. XVII.1 new dammarane-type triterpene glycosides from flower buds of American ginseng, Panax quinquellorum. J Pharm. Biol. Chem. 2007;55(9):1342–8.
[16] Tung NH, Song CY, Minh CV, Kiem PV, Jie JG, Bao HJ, Kung HK, Kim YH. Steamed ginseng-leaf samples enhance cytotoxic effects on human leu-kemia HL-60 cells. Chem Pharm Bull 2010;58(8):1111–5.
[17] Wang JR, Yamashita Y, Takano T, Kouno I, Jiang ZH. Dammarane-type tri-terpene saponins from the flowers of Panax notoginseng. Molecules 2009;14:2087–94.
[18] Yang XW, Li KK, Zhou QL, Dang RS, Gastrov-Rf2, a novel triterpenoid saponin from stems and leaves of Panax ginseng. Chin Tradit Herb Drugs 2015;46:3137–45.
[19] Dou DQ, Ren J, Chen Y, Pei YP, Chen YJ. Study on the chemical constituents of the roots of commercial ginseng. China J Chin Mater Med 2003;28:522–4.
[20] Han BH, Park MH, Han YN, Woo IK, Sankawa U, Yahara S, Tanaka O. Degradation of ginseng saponins under mild acidic conditions. Planta Med 1982;44:493.
[21] Yang XW, Li YY, Tian JM, Zhang ZW, Ye JM, Gu WF. Ginsenoside-Rg6, a novel triterpenoid saponin from the stem-leaves of Panax ginseng C. A. Mey. Chin Chem Lett 2000;11:909–12.
[22] Cheng LQ, Na JR, Bang MH, Kim MK, Yang DC. Conversion of major ginsen-aside Rb1 to 20(S)-ginsenoside Rg3 by microbacterium sp. G5514. Phytochemistry 2008;69:218–24.
[23] Liu LM, Zhang XQ, Wang H, Ye WC, Zhao SX. Minor saponins constituents from Panax Notoginseng tap root. J Chin Pharmaceutic Univ 2011;42:115–8.
[24] Besso HM, Kasai R, Wei JX, Wang JF, Sunawarutthi YH, Fuwa T, Tanaka O. Further studies on dammarane-saponins of American ginseng, roots of Panax quinquellorum L. Chin Pharm Bull 1982:30:4534–8.
[25] Duc XM, Kasisi R, Okti I, Aito A, Nham NT, Yamashita Y. A Novel minor saponin from Vietnamese Ginseng, Panax vietnaminensis HA ET GRUSHV. Collected in Central Vietnam. IL Chem Pharm Bull 1994;42:115–22.
[26] Yuan C, Xu FX, Huang XJ, Li SF, Zhang QW. A novel 12, 23-epoxy dammarane saponin from Panax notoginseng. Chin J Nat Med 2015;13:303–6.
[27] Chen J, Zhao R, Zeng YM, Meng H, Zuo WJ, Li X, Wang JH. Three new tri-terpene saponins from the leaves and stems of Panax quinquellorum. J Asian Nat Prod Res 2009;11:195–201.
[28] Teng RW, Li HZ, Chen JT, Wang DZ, He YN, Yang CR. Complete assignment of 1H and 13C NMR data for nine protopanaxatriol glycosides. Mag Reson Chem 2002;40:483–8.
[29] Dou DQ, Wen Y, Pei YP, Yao XS, Chen YJ, Kawai H, Fukushima H, Ginesienside J-A Novel minor saponin from the leaves of Panax ginseng. Planta Med 1996;62:179–81.
[30] Han LF, Sakah XJ, Liu LL, Kojo A, Wang T, Zhang Y, Yaponins from roots of Panax notoginseng. Chin Pharm Bull 2014;6:98–103.
[31] Ma LY, Yang XW. 20(R)-Ginsenoside-Rh19, a novel ginsenoside from alkaline hydrolysates of total saponins in stems-leaves of Panax ginseng. Chin Tradit Herb Drugs 2016;47:6–134.
[32] Song JP, Zeng J, Cui XM, Dai Y, Jiang ZY, Zhang XM, Zhou JM, Ma YB, Chen JJ. Studies on chemical constituents from rhizomes of Panax notoginseng (NLP). J Yunnan Univ 2007;29:287–90.
[33] Li KK, Yang XW. A new triterpene natural product from stems and leaves of Panax ginseng. Chin Tradit Herb Drugs 2015;46:65–73.
[34] Chen GT, Yang M, Lu QZ, Zhang JQ, Huang HL, Liang Y, Guan SH, Song Y, Wu LJ, Guo DA, Microbial transformation of 20(S)-Protopanaxatriol-Type saponins by aspergillus coerulea. J Nat Prod 2007;70:203–6.
[35] Liu LM, Zhang XQ, Wang H, Wen-cai YE, Shou-xun ZHAO. Minor saponins constituents from Panax Notoginseng tap root. J Chin Pharm Univ 2011;42:115–8.
[36] Qo SJ, Tan J, Cai JG, Ling YP, Zhang SF, Tan CH, Zhi DY. Minor dammarane saponins from the longsheng extract of Shenmai injection. J Asian Nat Prod Res 2011;13:178–81.
[37] Nakamura Seikou, Sugimoto Sachiko, Matsuda Hisashi, Yoshikawa Masayuki. Medicinal flowers. XVII.1 new dammarane-type triterpene glycosides from flower buds of American ginseng, Panax quinquellorum L. Chem Pharm Bull 2007;55(9):1342–8.
[38] Li KK, Yao CM, Yang XW. Four new dammarane-type triterpene saponins from the stems and leaves of Panax ginseng and their cytotoxicity on HL-60 cells. Planta Med 2012;78:189–92.
[39] Komakine N, Okasaka M, Takashi Y, Kawaoz K, Murakami K. A new dammarane-type saponin from roots of Panax notoginseng. J Nat Med 2006;60:135–7.
[40] Murakami T, Uno T, Hirokawa N, Yashiro K, Murakami N, Yamahara J, Matsuda H, Saijoh R, Tanaka O. Bioactive saponins and glycosides. IX. Neuroseng (2) structures of five new dammarane-type triterpenoid saponins from Korean ginseng, Panax ginseng. Phytochemistry 2015;101:5106–22.
[41] Sakah XJ, Wang T, Liu LL, Chen Y, Han LF, Zhang Y. Eight dammarane-type saponins isolated from the roots of Panax notoginseng. Acta Pharm Sin B 2013;3:381–4.