Dual-fusion Active Contour Model with Semantic Information for Saliency Target Extraction of Underwater Images

Shudi Yang
University of Science and Technology Beijing

Zhehan Chen (✉ chenzh_ustb@163.com)
University of Science and Technology Beijing

Jiaxiong Wu
University of Science and Technology Beijing

Zhipeng Feng
University of Science and Technology Beijing

Research Article

Keywords: underwater image, target contour extraction, active contour model, semantic information, saliency target

Posted Date: December 6th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1132555/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Dual-fusion Active Contour Model with Semantic Information for Saliency Target Extraction of Underwater Images

Shudi Yang1, Zhehan Chen1,*, Jiaxiong Wu1, Zhipeng Feng1

*Zhehan Chen, E-mail: chenzh_ustb@163.com

(1. School of Mechanical Engineering, University of Science and Technology, Beijing, 100083, China)

Abstract: Underwater vision research is the foundation of marine-related disciplines. The target contour extraction is of great significance to target tracking and visual information mining. Aiming at the problem that conventional active contour models cannot effectively extract the contours of salient targets in underwater images, we propose a dual-fusion active contour model with semantic information. First, the saliency images are introduced as semantic information, and extract salient target contours by fusing Chan–Vese and local binary fitting models. Then, the original underwater images are used to supplement the missing contour information by using the local image fitting. Compared with state-of-the-art contour extraction methods, our dual-fusion active contour model can effectively filter out background information and accurately extract salient target contours.

Keywords: underwater image, target contour extraction, active contour model, semantic information, saliency target.

1 Introduction

In recent years, the development and utilization of the ocean have gradually become an important development direction. Since underwater vision research is the basis of marine-related disciplines, the rapid development of underwater image processing technology is inevitable\cite{1-2}. Image segmentation is a basic method of target extraction, which aims to partition an image into several meaningful and constituent regions and each region has coherent features such as intensities, colors, and textures\cite{3}.

Now, some results have been achieved in underwater image segmentation. Liu et al.\cite{4} have proposed an improved level set algorithm based on the gradient descent method, and applied to segment underwater biological image. Wei et al.\cite{5} have improved the K-means algorithm to segment underwater image background, and addressed the issue of improper K value determination. And then this algorithm can minimize the impact of initial centroid position of grayscale image. SM et al.\cite{6} have used canny edge detection algorithm to segment underwater images, whereas canny edge detection algorithm was greatly affected by background noise. Sun et al.\cite{7} and Li et al.\cite{9} have used fuzzy C-means algorithm to segment underwater images. Rajeev et al.\cite{8} have used K-means algorithm to segment underwater images. However, the aforesaid clustering algorithms have been greatly affected by local gray unevenness of underwater images. Also, clustering algorithms had local convergence errors and were only suitable for underwater images with a single background gray level.

Some investigators have segmented underwater images based on optical properties and achieved results. For example, Chen et al.\cite{10} have proposed an optical feature extraction, calculation, and decision
method to identify the collimated region of artificial light, and employed a level set method to segment
the objects within the collimated region. This method could better identify the target region, but level set
method could not filter out background noise when the target region contains background information.
Xuan[11] et al. have proposed a RGB color channel fusion segmentation method for underwater images.
The proposed method obtained the grayscale image with high foreground-background contrast and
employed thresholding segmentation method to conduct fast segmentation. However, the disadvantage
of this method is that when the color of the background region is similar to the foreground region, the
target cannot be segmented.

Active contour model have also been used for underwater image segmentation. Zhu et al.[12] used
the cluster-based algorithm for co-saliency detection, and made salient region in the underwater images
be highlighted. And then the local statistical active contour model was used to extract the target contours
of underwater images. Qiao et al.[13] proposed an improved method based on active contour model. The
method used the RGB color space and the contrast limited adaptive histogram equalization(CLAHE)
method to increase the contrast of the sea cucumber thorns and body, respectively. Then, the method
extracted the edge of the sea cucumber thorns by active contour model. Li et al[14] have improved the
traditional level set methods by avoiding the calculation of signed distance function (SDF) to segment
underwater images. The improved method could speed up the computational complexity without re-
initialisation. Bai et al.[15] proposed a method based on morphological component analysis (MCA) and
adaptive level set evolution to segment underwater images. The MCA was used to sparse decompose the
image into texture and cartoon parts. The new adaptive level set evolution method combined the threshold
piecewise function with variable right coefficient and halting speed function and was used to obtain the
edges of the cartoon part. Shelei et al.[16] segmented underwater grayscale images by fusing the geodesic
active contour model (GAC) and the Chan–Vese (CV) model. However, this method required that the
target region of the underwater image has uniform grayscale. Chen et al.[17] integrated the transmission
map and the saliency map into a unified level set formulation to extract the salient target contours of the
underwater images.

As a new technology of image processing, neural network has also been used for underwater image
segmentation. O’Byrne et al.[18] have proposed the use of photorealistic synthetic imagery for training
deep encoder–decoder network. This method synthesized virtual underwater images and each rendered
image had a corresponding ground truth per-pixel label map. Then established the mapping relationship
between the underwater images and the segmented images by training the encoder–decoder network.
Zhou et al.[19] have proposed a deep neural network architecture for underwater scene segmentation. The
architecture extracted feature by pre-training VGG-16 and learned to expand the lower resolution feature
maps by the decoder. The neural network has achieved certain results in underwater image segmentation,
but the lack of underwater data sets with corresponding functions is still a problem.

In general, most of the existing underwater image segmentation methods are used to segment images
with high foreground-background contrast and single background grayscale. When the underwater
images with varying background grayscale and the targets have complex texture, the segmentation results
of the above methods are not satisfactory. To address the above problem, we propose a novel dual-fusion
model with semantic information for salient object segmentation of underwater images with complex
background. In summary, the contributions of our model are as follows:

- We introduce saliency maps as semantic information to segment foreground information and
background information;
- The dual-fusion energy equation is proposed to extract the contours of saliency targets by integrating
local and global intensity fitting term;
- For the missing saliency target information, we propose the correction module to correct the saliency
target contour error by introducing the original image contour information.

This paper is organized as follows. Section 2 reviews related works. In Section 3, we introduce in
detail the derivation process of the dual-fusion model. Section 4 shows the experimental process and we
compare the proposed method with state-of-the-art segmentation methods, and the results demonstrate
the superiority of the proposed methods. Section 5 presents the discussion about the parameters of
proposed model. The conclusion of this paper is shown in Section 6.

2 Related works

2.1 The C–V model

The Chan–Vese (CV) model[20] is initially derived from the Mumford–Shah (MS) functional[21]. The
MS functional aims to find an optimal piecewise smooth approximation image \(I : \Omega \subset R^2 \) from the
original image \(I_0 : \Omega \subset R^2 \), the energy functional of MS can be expressed as follows:

\[
E_{MS}(I,C) = \int_{\Omega} (I_0 - I)^2 \, dx + \mu \int_{\partial C} |\nabla I| \, dx + \nu |C|
\]

(1)

where \(\mu, \nu \geq 0 \) are positive weighting constants, \(|C|\) is the length of the contour \(C \). However, the non-
convexity of the above energy functional make it difficult to be minimized, so the CV model has been
proposed to simplify and modify the above functional. The energy functional of the CV model can be
defined as follows:

\[
E_{CV}(C,c_1,c_2) = \lambda_1 \int_{\text{in}(C)} (I_0 - c_1)^2 \, dx + \lambda_2 \int_{\text{out}(C)} (I_0 - c_2)^2 \, dx + \nu \cdot \text{len}(C) + \mu \cdot \text{area}(\text{in}(C))
\]

(2)

where \(\mu, \nu, \lambda_1, \lambda_2 \geq 0 \) are positive parameters, \(\text{in}(C) \) and \(\text{out}(C) \) represent the region inside and outside
of the contour \(C \), \(c_1 \) and \(c_2 \) are two constants that approximate the image intensity in \(\text{in}(C) \) and \(\text{out}(C) \),
respectively. The Euclidean length term \(\text{len}(C) \) is used to regularize the contour. The first two terms in
Eq. (2) are the global binary fitting energy. This energy can be represented by a level set formulation, and
then the energy minimization problem can be converted to solving a level set evolution equation, the
evolution equation can be expressed as follows:

\[
c_1 = \frac{\dot{\phi} \cdot I_0 \times H(f) \, dx}{\dot{\phi} \cdot H(f) \, dx}, c_2 = \frac{\dot{\phi} \cdot I_0 \times (1 - H(f)) \, dx}{\dot{\phi} \cdot (1 - H(f)) \, dx}
\]

(3)

\[
\frac{\partial \phi}{\partial t} = \delta(\phi) \left[\nu \text{div} \left(\frac{\nabla \phi}{|\nabla \phi|} \right) - \mu - \lambda_1 (I_0 - c_1)^2 + \lambda_2 (I_0 - c_2)^2 \right]
\]

(4)
where \(H(\bullet) \) is the Heaviside function, and \(\delta(\bullet) \) is the Delta function which is derivative of the Heaviside function. For Eq. (4), \(\nu \) is a scaling parameter. If the \(\nu \) is small enough, the small targets are likely to be extracted; if the \(\nu \) is large, the large targets can be detected.

Whereas the global fitting will not be accurate if the image intensities are inhomogeneous. Therefore, the CV model is not suitable for inhomogeneous images and the segmentation results are affected by the position of the initial level set\(^{[3]}\). But the CV model has better robustness to noise.

2.2 The LIF model

The local image fitting\(^{[22]}\) (LIF) energy functional is defined as follows:

\[
\frac{\partial \phi}{\partial t} = \left(I(x) - I^{\text{LIF}}(x) \right) \left(m_1 - m_2 \right) \delta_\varepsilon(\phi) \tag{5}
\]

where \(I^{\text{LIF}}(x) \) is a local fitted image:

\[
I^{\text{LIF}}(x) = m_1 H_\varepsilon(\phi(x)) + m_2 (1 - H_\varepsilon(\phi(x))) \tag{6}
\]

where \(m_1 \) and \(m_2 \) are averages of image intensities of Gaussian window inside and outside the contour, respectively. \(m_1, m_2 \) can be expressed as follows:

\[
\begin{align*}
m_1 &= \text{mean}\{ I \in \{ x \in \Omega_x \mid \phi(x) < 0 \} \cap W_x(x) \} \\
m_2 &= \text{mean}\{ I \in \{ x \in \Omega_x \mid \phi(x) > 0 \} \cap W_x(x) \}
\end{align*} \tag{7}
\]

where \(W_x(x) \) is a truncated Gaussian window or a constant window.

And then, the LIF model used the variation calculus and the steepest descent method to minimize \(E^{\text{LIF}}(\phi) \), and the level set evolution equation can be expressed as follows:

\[
\frac{\partial \phi}{\partial t} = \left(I(x) - I^{\text{LIF}}(x) \right) \left(m_1 - m_2 \right) \delta_\varepsilon(\phi) \tag{8}
\]

3 Dual-fusion Active Contour Model

In this section, we propose a dual-fusion active contour model with semantic information to extract target contours of underwater images. Without the semantic information, the existing methods cannot individually extract the target contour from the background. So it is necessary to introduce semantic information and roughly extract the saliency target contour from the complex background. To avoid the extraction error of saliency target, we introduce the original image contour to correct and supplement the missing contour information. By semantic information and correction module, the proposed model can accurately extract the saliency target contour from the complex background.

3.1 Saliency image fitting energy

In this paper, we used the pyramid feature attention network\(^{[23]}\) to acquire the saliency images. However, due to the low contrast of underwater images, there were some errors in the saliency detection results such as local inhomogeneous intensity, background noise, and missing contour information. In view of the local inhomogeneous intensity of the saliency images, we preliminarily employ the local binary fitting to construct the energy functional \(E_{\text{sal}} \):
where S is the saliency images, C is a contour in the image domain Ω, f_1 and f_2 are image local fitting intensities near the point x. The local fitting intensities f_1, f_2 can be expressed as follows:

$$f_1(x) = \frac{K_s(x) * H_s(\phi(x))S}{K_s(x) * H_s(\phi(x))}$$

$$f_2(x) = \frac{K_s(x) * [(1-H_s(\phi(x)))S]}{K_s(x) * [1-H_s(\phi(x))]}$$

where $K_s(x)$ is the Gaussian kernel, S is the saliency images, H_s is the Heaviside function $H(\bullet)$ and can be expressed as:

$$H_s(x) = \frac{1}{2} \left[1 + \frac{2}{\pi} \arctan \left(\frac{x}{\epsilon} \right) \right]$$

However, the local binary fitting may introduce some local minimums and is sensitive to noise. Affected by the accuracy of saliency detection, saliency map of underwater images will inevitably have background noise. Also the initialization curve greatly affects the segmentation results. To solve the aforesaid problems, we introduce the global fitting term from the CV model into the energy functional E_{sal}. The local-global fitting intensities can be expressed as follows:

$$\begin{cases}
I_1 = \omega c_1 + (1-\omega) f_1 \\
I_2 = \omega c_2 + (1-\omega) f_2
\end{cases}$$

where I_1 and I_2 are mixed intensity, c_1 and c_2 are two constants derived from Eq.(3), ω is a weight coefficient ($0 \leq \omega \leq 1$). According to the test images in this paper, the value of ω can be taken from 0.5 to 0.9. And the more inhomogeneous the image intensity, the smaller the value of ω.

With the level set representation, the energy functional can be expressed as follows:

$$E_{sal}(\phi, I_1(x), I_2(x)) = \lambda_1 \int_{\Omega} (S - I_1(x))^2 H(\phi(x))dx + \lambda_2 \int_{\Omega} (S - I_2(x))^2 (1-H(\phi(x)))dx$$

The improved fitting energy E_{sal} not only take local intensity information into account but also avoid the local minimization. Therefore, for the saliency images of underwater images, the improved energy functional can extract the contour of the inhomogeneous images more accurately.

3.2 Original image fitting energy

The problems of local inhomogeneous intensity and noise can be solved by fusing the local intensity fitting and CV model. However, the missing contour information of saliency image still needs to be solved. Therefore, the original underwater images be used to make up the missing contour information.

In this paper, we used the local image fitting model (LIF)[22] to extract the contour of original underwater images. The energy functional E_{org} can be expressed as:

$$E_{org}(\phi) = \frac{1}{2} \int_{\Omega} \left| I(x) - I^{LIF}(x) \right|^2 dx, x \in \Omega,$$
where \(I^{LF}(x) \) is a local fitted image, as shown in Eq. (6). Although the models such as \(\text{LBF}^{[24-25]} \), \(\text{RMPCM}^{[3]} \), and \(\text{LGIF}^{[26]} \) can extract the target contours of underwater images very well, as shown in Fig. 1, the LIF model has higher efficiency. The higher efficiency is because that the energy functional of the LIF model does not include a kernel function. Also, the LIF model can well fit the original image, while reducing the noise significantly by minimizing the difference between the fitted image and the original image.

(a) LBF
(b) LGIF
(c) LIF
(d) RMPCM

Fig. 1 (a)-(d) shows the segmentation results of the LBF, LGIF, LIF, and RMPCM model, respectively. In Fig. 1, LBF, LGIF, and LIF models could better extract the target contour, but LBF was more sensitive to the initial contour curve. The energy functional of LGIF and RMPCM both involved kernel function. The kernel function performs more than one convolution operations for each iteration step, so the evolution speed is slow. The running time of the above models are shown in Table 1.

Model	Iterations	Time (s)
LBF	200	93.2969
LGIF	200	55.5938
LIF	200	38.5469
RMPCM	200	63.3052

Table 1 Iterations and CPU time (in seconds)

Fig. 1 and Table 1 intuitively show that LIF model has advantages in both speed and contour extraction results. So we use the LIF model to extract the original image contour to correct the contour information of the salient target.

3.3 Dual-fusion Active Contour Model

To take smaller fitting energy at target contours than at other locations, we use an edge indicator function\[^{[27]}\]. The function can be expressed as follows:

\[
g @ \frac{1}{1 + \| \nabla G \ast I \|^2}
\]

(16)

Then we define the dual-fusion intensity fitting energy functional as follows:

\[
E^{DIF}(\phi) = g \left[\omega_1 E_{\text{sur}} + (1 - \omega_1) E_{\text{sal}} \right]
\]

(17)
where ω_1 is a weight coefficient ($0 \leq \omega_1 \leq 1$), E_{org} and E_{sal} are the original images fitting energy functional and the saliency images fitting energy functional, respectively.

Finally, the dual-fusion intensity fitting energy functional $E_{DFIF}(\phi)$ can be expressed as:

$$E_{DFIF}(\phi, I_1, I_2) = g \left[\omega_1 E_{org} + (1 - \omega_1) E_{sal} \right]$$

$$= g \left[\omega_1 \frac{1}{2} \int_{\Omega} [I(x) - I^{\text{org}}(x)]^2 \, dx + (1 - \omega_1) \left(\lambda_1 \int_{\Omega} (S - I_1(x))^2 H_1(\phi(x)) \, dx, \right. \right. \right.$$
$$+ \lambda_2 \int_{\Omega} (S - I_1(x))^2 (1 - H_1(\phi(x))) \, dx \bigg] \right)$$
$$, (18)$$

And then we minimize $E_{DFIF}(\phi, I_1, I_2)$ with respect to ϕ to get the corresponding gradient descent flow$^{[24-26]}$:

$$\frac{\partial \phi}{\partial t} = g \delta_i (\phi) \left[\omega_1 e_1 + (1 - \omega_1) e_2 \right]$$
$$, (19)$$

where

$$\begin{align*}
e_1 &= (I - m_1 H_1(\phi(x)) - m_2 (1 - H_1(\phi(x))))(m_1 - m_2) \\
e_2 &= -\lambda_1 (S - I_1(x))^2 + \lambda_2 (S - I_2(x))^2
\end{align*}$$
$$, (20)$$

where I, S are the original images and the saliency images, respectively. $I_1(x)$ represents the integrated local and global intensities, m_1 and m_2 are averages of the image intensities in a Gaussian window inside and outside the contour.

3.4 Regularize the level set function

As pointed out by Ref.$^{[22]}$, Gaussian filtering can replace the traditional regularized term to regularize the level set function. Therefore, the smoothing process of the level set function can be expressed as:

$$\phi^{t+1} = G_\eta \ast \phi^t \ast \eta > \sqrt{\Delta t}$$
$$, (21)$$

where η is the standard deviation, and Δt is the time-step.

In fact, the smoothing effect of the level set function by Gaussian filtering is slightly worse than the traditional regularized term and is greatly affected by the time-step. However, the computing efficiency of Gaussian filtering is much higher than the traditional regularized term.

4 Experimental analysis and results

In this section, the proposed method was tested on several underwater images with intensity inhomogeneity. Also, the method compared with some state-of-the-art contour extraction methods in efficiency and accuracy. In order to ensure the fairness of the comparison results, all contour extraction results were produced on the same computer. And the computer was configured as Intel(R) Core(TM) i7-8650U CPU @ 2.11 GHz, 16.00 GB memory, Windows 10 system, and x64 processor. MatlabR2017a is software platform. We use the same parameters $\eta^2 = 6, \sigma = 2, \varepsilon = 1, \lambda_1 = 3, \lambda_2 = 1$ and time-step $\Delta t = 0.1$. The initial level set function is defined by
where \(c_x > 0 \) is a constant (in our experiments, \(c_x = 1 \)), \(\text{in}(C) \) and \(\text{out}(C) \) represent the region inside and outside of the contour \(C \), respectively.

4.1 The benefits of local-global intensity fitting

A comparative experiment was performed to prove the effectiveness of the local-global intensity fusion in Section 3.1. We conducted different experiments, as shown in Table 2.

Experiments	local intensity	global intensity
A	\(\checkmark\)	
B		\(\checkmark\)
C (our fusion intensity)	\(\checkmark\)	\(\checkmark\)

In Experiment A, the fitting intensity of energy functional is local intensity. In Experiment B, the fitting intensity of energy functional is global intensity. And the energy functional with fusion local-global intensity is shown in Experiment C. The contour extraction results of experiments are shown in Fig. 2.

![Fig. 2 The contour extraction results. (a) result of the local intensity fitting. (b) result of the global intensity fitting. (c) result of our method.](image)

As shown in Fig. 2, Experiment A could extract the target contour in intensity inhomogeneity region, but the result was greatly affected by the initial contour curve (blue circled area) and was sensitive to noise (green circled area). And the method of Experiment A also extracts the contours of non-boundary regions. Experiment B could extract the target contour in intensity homogeneity region and was not disturbed by noise, but the target contour in intensity inhomogeneity region cannot be extracted. Our method could not only extract the target contour in intensity homogeneity region and inhomogeneity region, but also not be disturbed by noise.

4.2 The effect of original image correction

Fig. 3 shows the result of our method on the underwater images segmentation. As shown in Fig. 3 (b) and (c), the coordinate points \([X, Y] = [77, 41]\) and \([X, Y] = [152, 57]\) located at the saliency target edge in Fig. 3 (b). But in Fig. 3 (c), the coordinate point at the same position is inside the target instead of on the target edge. This error is caused by the deviation of saliency detection. Therefore, it is necessary...
to use the original image to supplement the missing information. This paper used the local image fitting method to extract the contour information of the original image, and then used the contour information to correct the deviation caused by saliency detection. The result of the correction is shown in Fig. 3 (e). As shown in Fig. 3 (e), the missing contour information of saliency image is accurately supplemented, and the background information is filtered out.

![Fig. 3](image)

Fig. 3 The results of our method. (a) the original underwater image with initial zero level contour. (b) the contour extraction result of saliency target. (c) the contour extraction result without correction. (d) the final level set function. (e) the result of our method.

4.3 Performance of Dual-fusion active contour model

Fig.4 shows the performance of our method. It can be seen from the Fig.4 (d) that our method can filter out the background information and accurately extract the target contour. Fig.4 (b) are the saliency images of the original underwater images, the red circled represent the intensity inhomogeneity region, the yellow circled represent the noise region, and the green circled represent the missing region of target. For the regions of intensity inhomogeneity and noise, our method can still extract the target contour well by the local-global intensity fitting term. Also, the saliency image of the first image obviously lacks part of the target information (green circled region), our method can still extract the complete target contour by integrating the original image contour information.
Fig. 4 The results of our method. (a) original underwater images with initial zero level contour. (b) final level set function. (c) results of our method.

4.4 Qualitative comparison

4.4.1 Compare the segmentation results with other models

To verify the effectiveness of the proposed method, we compared the segmentation results with other classic models such as LBF\cite{24,25}, LGIF\cite{26}, LIF\cite{22}, and RMPCM\cite{3}, respectively. The comparison results are shown in Fig.5.
Fig. 5. Comparison of our method with LBF, LGIF, LIF, RMPCM. (a) results of the LBF model. (b) results of the LGIF model. (c) results of the LIF model. (d) results of the RMPCM model. (e) results of our method.

It can be seen from Fig. 5 that the LBF model is limited by the initial contour curve and cannot completely extract the target contour. The LGIF model is minimally affected by local background noise due to the fusion of global intensity fitting, but it still cannot accurately extract the target contour. LIF and RMPCM models can extract target contour relatively completely, but they are greatly affected by background noise and target local features. Our model introduces semantic information, so it can filter out background noise very well. And because of the global-local intensity fitting, our method can handle local inhomogeneous regions without being interfered by the local target features. In addition, the target contour of original image perfectly complements the missing semantic information.

Also, we compared the segmentation results with the methods in Ref. [12] and Ref. [17], which also introduced saliency images as semantic information. Since we cannot get the source codes of Ref. [12]...
and Ref. [17], to ensure the fairness of the comparison results, we use the segmentation results in Ref. [12] and Ref. [17] as the comparison images. The comparison results are shown in Fig. 6.

As can be seen in Figure 6, even though our method, Ref. [12] and Ref. [17] all introduce semantic information, our method can extract the target contour more accurately than Ref. [12] and Ref. [17]. As shown in the blue circle region of Fig. 6(a) and Fig. 6(b), our method extracted the target contour in the detail region more accurately. This is because we have added the local-global fitting term to better extract the contours of local inhomogeneous regions, and the original image correction module can correct errors in semantic information. As shown in the green circle region of Fig. 6(c) and Fig. 6(d), our method can filter out background noise better than Ref. [17] and is more robust.

4.4.2 Compare the saliency segmentation results with other models

To further verify the superiority of the proposed method, we also compared the contour extraction results of the underwater image with the saliency image as the input of several classic models. In order to test the robustness of the proposed method, we only selected low-quality saliency images (inhomogeneous local intensity and incomplete saliency information) for comparison experiments. As shown in Fig. 7, the segmentation results of LBF are severely affected by the initial contour curve and are disturbed by the inhomogeneous regions inside the target. The LGIF model can avoid the influence of the initial contour curve, but cannot extract complete contour information, as shown in the green dotted region in Fig. 7(2). The LIF model can extract the target contour relatively completely, but it is easy to fall into the local optimum and is also affected by the initial contour curve. The RMPAM model avoids the local optimum error, but it also has the problem that the contour information cannot be extracted completely, as shown in the green dotted region in Fig. 7(2). Our method can not only effectively avoid local optimum, but also supplement the missing contour information through the original image, so the results of our method are more accurate and complete than other methods.
Fig. 7 Comparison of our method with LBF, LGIF, LIF, RMPCM. (a), (b), (c), (d) and (e) are results of LBF, LGIF, LIF, RMPCM, and our method. The upper rows of (1), (2), (3) are the segmentation results of the saliency images, and the lower rows are the segmentation results of the corresponding original images.

4.5 Quantitative comparison

In the following experiment, we compare the proposed method with aforementioned methods using several evaluation index to conduct a quantitative analysis. Here, three evaluation indicators namely the mean absolute error(MAE), the error rate(ER), and the detection rate(DR) are employed for quantitative comparison. The MAE, ER and DR can be expressed by the following equations:

\[
MAE = \frac{1}{m \times n} \sum_{x=1}^{m} \sum_{y=1}^{n} |Det_{(x,y)} - gt_{(x,y)}|
\]
\[ER = \frac{1}{m \times n} \sum_{x=1}^{m} \sum_{y=1}^{n} \left(\frac{|Det_{(x,y)} - gt_{(x,y)}|}{\sum_{x=1}^{m} \sum_{y=1}^{n} Det_{(x,y)} \ast gt_{(x,y)}} \right)
\]
\[DR = 1 - \frac{1}{m \times n} \sum_{x=1}^{m} \sum_{y=1}^{n} \left(\frac{(Det_{(x,y)} \ast gt_{(x,y)} + (Det_{(x,y)} - gt_{(x,y)}))}{\sum_{x=1}^{m} \sum_{y=1}^{n} (Det_{(x,y)} + gt_{(x,y)})} \right)
\]

where \(m\) and \(n\) represent the length and width of the image, \(Det\) is the result of image segmentation, \(gt\) is the hand-crafted ground truth. So \(Det_{(x,y)} \ast gt_{(x,y)}\) represents the contour that are accurately extracted by the model. The larger the \(Det_{(x,y)} \ast gt_{(x,y)}\), the more contour that are correctly extracted. \(Det_{(x,y)} - gt_{(x,y)}\) represents the pixels that are incorrectly extracted, so the larger the \(Det_{(x,y)} - gt_{(x,y)}\), the more pixels are incorrectly extracted. So the smaller the value of \(ER\), the more accurate the result of contour extraction.
And a large value of DR can indicate that the contour extraction result of the model is accurate. The evaluation results of the aforementioned five methods are shown in Table. 3, Table. 4 and Table. 5.

Table 3 The MAE results of LBF, LGIF, LIF, RMPCM and our method

Method	Fig.5(1)	Fig.5(2)	Fig.5(3)	Fig.5(4)	Fig.5(5)	Fig.5(6)	Fig.5(7)	Fig.5(8)
LBF	9.5723	3.6588	3.0737	12.8131	2.1789	4.4882	6.9886	5.3132
LGIF	7.9119	3.7481	3.4620	9.6148	2.2546	4.1299	7.4210	6.3514
LIF	6.0811	4.0945	2.5343	7.4206	2.9782	4.2036	10.2057	4.9874
RMPCM	10.5081	4.3048	5.1594	12.9181	2.3604	6.0406	7.9683	3.9875
Our method	2.3695	3.2604	1.9161	4.5302	1.2455	2.7715	5.9417	2.9702

Table 4 The ER results of LBF, LGIF, LIF, RMPCM and our method

Method	Fig.5(1)	Fig.5(2)	Fig.5(3)	Fig.5(4)	Fig.5(5)	Fig.5(6)	Fig.5(7)	Fig.5(8)
LBF	0.7434	0.5195	0.0510	0.7863	0.2585	0.2769	0.3403	0.2386
LGIF	1.0012	0.5978	0.1414	0.7304	0.1237	0.2283	0.2092	0.3109
LIF	0.8355	0.4713	0.0761	0.3578	0.1209	0.2938	0.5013	0.1483
RMPCM	1.1478	0.3300	0.0962	1.0167	0.1167	0.2137	0.3200	0.9286
Our method	0.2709	0.2649	0.0452	0.3411	0.0776	0.2007	0.2060	0.0571

Table 5 The DR results of LBF, LGIF, LIF, RMPCM and our method

Method	Fig.5(1)	Fig.5(2)	Fig.5(3)	Fig.5(4)	Fig.5(5)	Fig.5(6)	Fig.5(7)	Fig.5(8)
LBF	1.3148	1.7739	13.9989	1.2499	3.5065	3.4029	2.7005	3.9709
LGIF	0.9778	1.5494	6.0806	1.3423	6.7686	4.0834	4.1945	3.0709
LIF	1.1707	1.9462	10.1875	2.6965	6.9244	3.2240	1.8872	6.1722
RMPCM	0.8569	2.7046	8.6031	0.9690	7.0274	4.2727	2.8823	1.0500
Our method	3.4725	3.3199	15.3967	2.7586	10.3096	4.6516	4.3053	14.0682

A smaller value of MAE represents a higher contour extraction accuracy. According to Table. 3, the contour extracted by the proposed model obtain the smallest MAE value, which shows that the proposed model can extract target contours more accurately than the other four models. Table 4 shows the error rate(ER) of five methods. The values of ER between the target contour extracted by the proposed method and ground truth are the smallest, so the proposed method has the highest accuracy. Table 5 shows the detection rates of the above five methods. The detection rate represents how many contour pixels are correctly extracted. Therefore, our model with the highest detection rate can extract the target contour more accurately.

5 Discussion

In this paper, the parameter ω_1 is a constant, which controls the influence of the saliency image fitting energy and original image fitting energy. When the missing information of saliency target contour is severe, ω_1 should be relatively larger; otherwise ω_1 should be taken to a small value. Also, ω should be should be taken smaller when the intensity inhomogeneity of saliency image is severe. This is because that the local intensity fitting can better segment target in intensity inhomogeneity region and the results of contour extraction relies on the local intensity fitting. Otherwise, ω should be taken larger to suppress the noise interference. In the experiment, we need to choose appropriate values for ω and ω_1 according to the degree of inhomogeneity and the degree of saliency detection deviation. In the experiment of this paper, the value of ω can be taken from 0.5 to 0.9, and the value of ω_1 can be taken from 0.1 to 0.8.
6 Conclusions

Aiming at the problem of saliency target contour extraction of underwater images, we propose a dual-fusion active contour model with semantic information. The proposed method extracted the saliency target contour by fusing local intensity and global intensity, and extracted the original image contour information by the local image fitting model to correct the saliency information deviation. We verified the effectiveness of the dual-fusion active contour model with semantic information by comparative experiments. The experimental results show that the local-global intensity fitting term can effectively suppress the interference of noise, and can more accurately extract the contour of the intensity inhomogeneity region. We also verified that the missing saliency target contour can be effectively corrected by the contour information of original image. The results of qualitative analysis and quantitative analysis show that our method can effectively filter out the background information and extract the saliency target contour more accurately.

References

[1] Xiao Z L, Zhang M, Chen L S & Jin H Y. Detection and segmentation of underwater CW-like signals in spectrum image under strong noise background. J. Journal of Visual Communication and Image Representation, 60, 287-294(2019).

[2] Hou G J. et al. A novel dark channel prior guided variational framework for underwater image restoration. J. Journal of Visual Communication and Image Representation, 66, 102732(2020).

[3] Wu Y F, Li M, Zhang Q F & Liu Y. A retinex modulated piecewise constant variational model for image segmentation and bias correction. J. Applied Mathematical Modelling, 54, 697-709(2018).

[4] Y. Liu, H. Li. Design of Refined Segmentation Model for Underwater Images. C. 2020 5th International Conference on Communication, Image and Signal Processing (CCISP), 282-287(2020), doi: 10.1109/CCISP51026.2020.9273503.

[5] Chen. W, He. C Y , Ji. C L, Zhang M Y & Chen S Y . An improved K-means algorithm for underwater image background segmentation. J. Multimedia Tools and Applications, 80, 21059–21083(2021). https://doi.org/10.1007/s11042-021-10693-7.

[6] SM A R A J, Jose C & MH S. Hardware realization of canny edge detection algorithm for underwater image segmentation using field programmable gate arrays. J. Journal of Engineering Science and Technology, 12(9), 2536-2550(2017).

[7] Sun Y T & Luan X L. An Underwater Optical Image Segmentation Algorithm Based on Fuzzy C-means Model. J. Journal of Physics: Conference Series. IOP Publishing, 1087(5): 052007(2018).

[8] Rajeev A A, Hiranwal S & Sharma V K. Improved Segmentation Technique for Underwater Images Based on K-means and Local Adaptive Thresholding. C. Information and Communication Technology for Sustainable Development. Springer, Singapore, 443-450(2018).

[9] Li X, Song J D, Fan Z, Ouyang X G & Samee U.Khan. Map Reduce-based fast fuzzy c-means algorithm for large-scale underwater image segmentation. J. Future Generation Computer Systems,
[10] Chen Z. et al. Underwater object segmentation based on optical features. *J. Sensors*, 18(1), 196(2018).

[11] Xuan L & Zhang M J. Underwater color image segmentation method via RGB channel fusion. *J. Optical Engineering*, 56(2), 023101(2017).

[12] Zhu Y. et al. Underwater image segmentation with co-saliency detection and local statistical active contour model. *C. OCEANS 2017-Aberdeen. IEEE*, 1-5(2017).

[13] Qiao X, Bao J H, Zeng L H, Zhou J & Li D L. An automatic active contour method for sea cucumber segmentation in natural underwater environments. *J. Computers and Electronics in Agriculture*, 135, 134-142(2017).

[14] Li Y J, Xu H L, Li Y, Lu H M & Seiichi Serikawa. Underwater image segmentation based on fast level set method. *C. International Journal of Computational Science and Engineering*, 19(4): 562-569(2019).

[15] Bai J S, Pang Y J, Zhang Q & Zhang Y H. Underwater Image Segmentation Methods Based on MCA and Adaptive Level Set Evolution. *C. 2016 3rd International Conference on Information Science and Control Engineering (ICISCE). IEEE*, 734-738(2016).

[16] Li S L & Mengxing H. Research of Underwater Image Segmentation Algorithm Based on the Improved Geometric Active Contour Models. *C. 2018 International Conference on Intelligent Autonomous Systems (ICoIAS). IEEE*, 44-50(2018).

[17] Chen Z. et al. Underwater object segmentation integrating transmission and saliency features. *J. IEEE Access*, 7, 72420 – 72430(2019).

[18] O'Byrne M, Pakrashi V, Schoefs F & Bidisha Ghosh. Semantic Segmentation of Underwater Imagery Using Deep Networks Trained on Synthetic Imagery. *J. Journal of Marine Science and Engineering*, 6(3), 93(2018).

[19] Zhou Y. et al. Underwater scene segmentation by deep neural network. *J. UK Robotics and Autonomous Systems*, 2019.

[20] T. Chan & L. Vese. Active contours without edges. *J. IEEE Trans. Image Process*, 10 (2), 266–277(2001).

[21] D. Mumford & J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems. *J. Commun. Pure Appl. Math*, 42 (5), 577–685(1989).

[22] Zhang K H, Song H H & Zhang L. Active contours driven by local image fitting energy. *J. Pattern Recognition*, 43(4), 1199–1206(2010).

[23] Zhao T & Wu X. Pyramid Feature Attention Network for Saliency Detection. *C. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 3085-3094(2019).

[24] Li C M, Kao C Y, Gore J C & Ding Z H. Implicit active contour driven by local binary fitting energy. *C. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 1, 1–7(2007).

[25] Li C M, Kao C Y, Gore J C & Ding Z H. Minimization of region-scalable fitting energy for image segmentation. *J. IEEE Trans. Image Process.*, 17(10), 1940–1949(2008).

[26] Wang L, Li C M, Sun Q S, Xia D S & Kao C Y. Active contours driven by local and global intensity
fitting energy with application to brain MR image segmentation. *J. Computerized medical imaging and graphics*, 33(7), 520-531(2009).

[27] Li C M, Xu C Y, Gui C F & Martin D. Fox. Distance regularized level set evolution and its application to image segmentation. *J. IEEE transactions on image processing*, 19(12), 3243-3254(2010).

[28] Li C M, Xu C Y, Gui C F & Martin D. Fox. Level set evolution without re-initialization: A new variational formulation. *C. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 1, 430–436(2005).

Acknowledgment: The authors thanks the National Key R&D Program of China(2018YFC0810500) for helping identifying collaborators for this work.

Author contributions: Shudi Yang contributed the innovative content and experimental verification of the method in this paper. Zhehan Chen completed the preliminary review and revision of the manuscript and he is the corresponding author. Jiaxiong Wu completed the writing and language revision of the manuscript. Zhipeng Feng is responsible for the overall coordination of the manuscript writing process.

Competing interests statement: The author(s) declare no competing interests.

Figure legends

Figure-1 (a)-(d) shows the segmentation results of the LBF, LGIF, LIF, and RMPCM model, respectively.

Figure-2 The contour extraction results. (a) result of the local intensity fitting. (b) result of the global intensity fitting. (a) result of our method.

Figure-3 Results of our method. (a) original underwater image with initial zero level contour. (b) contour extraction result of saliency target. (c) contour extraction result without correction. (d) final level set function. (e) result of our method.

Figure-4 The contour extraction results of our method. (a) original underwater images with initial zero level contour. (b) saliency images of the original underwater images (c) final level set function. (d) results of our method.

Figure-5 Comparison of our method with LBF, LGIF, LIF, RMPCM. (a) results of the LBF model. (b) results of the LGIF model. (c) results of the LIF model. (d) results of the RMPCM model. (e) results of our method.

Figure-6 Comparison of our method with the methods of Ref. [12] and Ref. [17]. The first row are the original underwater images, the second row are the segmentation results in Ref. [12]((a) and (b)) and Ref. [17]((c) and (d)). The third row are the results of our method.

Figure-7 Comparison of our method with LBF, LGIF, LIF, RMPCM. (a), (b), (c), (d) and (e) are results of LBF, LGIF, LIF, RMPCM, and our method. The upper rows of (1), (2), (3) are the segmentation results of the saliency images, and the lower rows are the segmentation results of the corresponding original images.
Table 1 Iterations and CPU time (in seconds)

	LBF	LGIF	LIF	RMPCM
Iterations	200	200	200	200
Time (s)	93.2969	55.5938	38.5469	63.3052

- **1239 × 731 pixels**

Table 2 The comparative experiment of local-global intensity

Experiments	local intensity	global intensity
A	✓	
B		✓
C (our fusion intensity)	✓	✓

Table 3 The MAE results of LBF, LGIF, LIF, RMPCM and our method

	Fig.5(1)	Fig.5(2)	Fig.5(3)	Fig.5(4)	Fig.5(5)	Fig.5(6)	Fig.5(7)	Fig.5(8)
LBF	9.5723	3.6588	3.0737	12.8131	2.1789	4.4882	6.9886	5.3132
LGIF	7.9119	3.7481	3.4620	9.6148	2.2546	4.1299	7.4210	6.3514
LIF	6.0811	4.0945	2.5343	7.4206	2.9782	4.2036	10.2057	4.9874
RMPCM	10.5081	4.3048	5.1594	12.9181	2.3604	6.0406	7.9683	3.9875
Our method	2.3695	3.2604	1.9161	4.5302	1.2455	2.7715	5.9417	2.9702

Table 4 The ER results of LBF, LGIF, LIF, RMPCM and our method

	Fig.5(1)	Fig.5(2)	Fig.5(3)	Fig.5(4)	Fig.5(5)	Fig.5(6)	Fig.5(7)	Fig.5(8)
LBF	0.7434	0.5195	0.0510	0.7863	0.2585	0.2769	0.3403	0.2386
LGIF	1.0012	0.5978	0.1414	0.7304	0.1237	0.2283	0.2092	0.3109
LIF	0.8355	0.4713	0.0761	0.3578	0.1290	0.2938	0.5013	0.1483
RMPCM	1.1478	0.3300	0.0962	1.0167	0.1167	0.2137	0.3200	0.9286
Our method	0.2709	0.2649	0.0452	0.3411	0.0776	0.2007	0.2060	0.0571

Table 5 The DR results of LBF, LGIF, LIF, RMPCM and our method

	Fig.5(1)	Fig.5(2)	Fig.5(3)	Fig.5(4)	Fig.5(5)	Fig.5(6)	Fig.5(7)	Fig.5(8)
LBF	1.3148	1.7739	13.9989	1.2499	3.5065	3.4029	2.7005	3.9709
LGIF	0.9778	1.5494	6.0806	1.3423	6.7686	4.0834	4.1945	3.0709
LIF	1.1707	1.9462	10.1875	2.6965	6.9244	3.2240	1.8872	6.1722
RMPCM	0.8569	2.7046	8.6031	0.9690	7.0274	4.2727	2.8823	1.0500
Our method	3.4725	3.3199	15.3967	2.7586	10.3096	4.6516	4.3053	14.0682