Effects of Four Local Species of Beans Consumed in South-eastern Nigeria on Selected Biochemical Indices of Wistar Albino Rats

Jonathan C. Ifemeje1,*, Chukwuebuka Egbona1,2, Chukwuemelie Zedeck Uche3, Michael Chinenedu Olisah4, Nebechi Jane Ezeofor5, Chukwudi Jude Chikwendu1, Udo Orukwowu6, Kingsley C. Patrick-Iwuanyanwu2,7, Andrew C. Nwaka1, Habibu Tijjani8, Lukong C. Banboye1, Celestine Nnagbogu1, Muhammad Akram9, Johra Khan10,11, Kaliyaperumal Saravanan12

1Department of Biochemistry, Faculty of Natural Sciences, Chukwuemeka Odumegwu Ojukwu University, Anambra State-431124, Nigeria.
2Nutritional Biochemistry/Toxicoetology Unit, World Bank Africa Centre of Excellence, Centre for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Rivers State, Nigeria.
3Department of Medical Biochemistry and Molecular Biology, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Nigeria.
4Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Chukwuemeka Odumegwu Ojukwu University, Anambra State- 431124, Nigeria.
5Department of Food Technology, School of Applied Science and Technology, Federal Polytechnic, Oko, Anambra State.
6Department of Nursing, Rivers State University, Nkpolu-Oworukwo, Port Harcourt, Rivers State, Nigeria.
7Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria.
8Natural Product Research Laboratory, Department of Biochemistry, Bauchi State University, Gadau.
9Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan.
10Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia.
11Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia.
12PG and Research Department of Zoology, Nehru Memorial College (Autonomous), Puthannampatti - 621 007 Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

*Corresponding authors: JCE: jc.ifemeje@coou.edu.ng; CE: egbonachukwuebuka@gmail.com; Phone: +2347039618485

Abstract

The chemical composition and the effects of four local species of beans on the liver and kidney function of Wistar albino rats were examined. The four bean species are Cajanus Cajan, Vigna unguiculata subsp. sesquipedalis, Phaseolus vulgaris L. ‘Red kidney’, and Phaseolus vulgaris ‘Black turtle’. The results obtained for the proximate composition analysis revealed that the protein content of the bean species was higher in P. vulgaris L. ‘Red kidney’ (18.54±0.01a %), and P. vulgaris ‘Black turtle’ (18.36±0.01b %) with no significant difference at P< 0.05. The phytochemical composition analysis revealed that the beans contain various phytochemicals including some anti-nutritional factors. The mineral composition analysis shows that V. u. subsp. Sesquipedalis had a higher level of minerals (4.80±4.43a mg/100g) followed by C. cajan (3.24±2.64b mg/100g). The experimental design comprises of 30 male Wistar albino rats distributed into 5 groups of 6 rats each. Each group except the control received 50g of normal rat feed + 100g of beans body weight. The effects of the beans species on the biochemical parameters suggest no adverse effects when compared to the control. Despite that, these beans contain high nutritional components that are of nutritional interest as well as some anti-nutritional factors.

Keywords: Phaseolus vulgaris, Cajanus Cajan, red kidney bean, black turtle bean, liver marker enzymes, kidney function

How to cite this paper: Ifemeje, J. C., Egbona, C., Uche, C. Z., Olisah, M. C., Ezeofor, N. J., Chikwendu, C. J., Orukwowu, U., Patrick-Iwuanyanwu, K. C., Nwaka, A. C., Tijjani, H., Banboye, L. C., Nnagbogu, C., Akram, M., Khan, J., & Saravanan, K. (2021). Effects of Four Local Species of Beans Consumed in South-eastern Nigeria on Selected Biochemical Indices of Wistar Albino Rats. IPS Interdisciplinary Journal of Biological Sciences, 1(1), 1–7. https://doi.org/10.54117/iijbs.v1i1.1

This work is published open access under the Creative Commons Attribution License 4.0 which permits free reuse, remix, redistribution and transformation provided due credit is given.
1. Introduction

The role of biodiversity in sustaining food, nutrition and health security with the growing world population and its resultant effect on the well-being of the people cannot be over emphasized. The need to balance the double burden of malnutrition and health especially in developing countries calls for nutrient profiling of local plant food species and varieties that can bring about the achievement of the Millennium Development Goals (Ogunlade et al., 2014).

A bean is a seed that belongs to the family of the flowering plant Fabaceae. Currently, there are over 40,000 varieties of beans and only a small fraction of this are mass-produced for regular consumption (Lauria and Suszkiew, 2006; Sarah, 2015). Beans are rich in proteins and are used as meat substitutes. In addition to its nutritional qualities, they are inexpensive and widely distributed along different geographical locations. Due to its wide variability and distribution, they form an important part of delicacies of people around the world especially in the developing country like Nigeria. Some of the bean types include Phaseolus, Vigna, Cajanus, Mucuna, Vicia etc.

Phaseolus is a genus in the family Fabaceae containing about 70 bean species, all native to the Americas, primarily Mesoamerica (Dalgado-Salinas et al., 2011). Varieties within this genus includes Common bean (Phaseolus vulgaris), French bean, black bean, kidney bean, pinto bean, green bean. Most prominent among these is the Common bean, which today is cultivated worldwide in tropical, semitropical, and temperate regions. In Nigeria, a species in this class called “Ndudu brown” (Red kidney beans) and “Ndudu black” (Black turtle beans) are consumed locally and sold by food vendors. The Red kidney bean is a variety of the Common bean, P. vulgaris. It is named for its visual resemblance in shape and colour to a kidney. Raw kidney beans contain relatively high amounts of phytocannaglutinin, and referred to as one of the most toxic bean varieties whose toxins are inactivated if pre-soaked and boiled (Rodhouse et al., 1990).

The black turtle bean is a small, shiny variety of the Common beans. Varieties of black turtle beans exist. Samples of black turtle beans were reported in 2006 to contain total anthocyanins in their dried seed coats of 0.2-7.8 mg/g (Choung et al., 2003).

Cajanus Cajan (L.) Millsp. (Leguminosae) is a perennial legume which is a native of India but now found across major continents of the world such as Asia, Africa and America. In Nigeria, C. cajan is called “jifio” among the Igbno ethnic group and “otili” in Yoruba language (Aiyeloja and Bello, 2006; Obuaguafor et al., 2013).

Black beans are locally called “Akidi” in Igo language and scientifically referred to as Vigna unguiculata sub sp. Sessussequipedalis. It is cultivated to be eaten as green pods and are best for vegetable use if picked before they reach full maturity. They differ from the Common beans. This study investigates the nutritional compositions, phytochemical compositions of four local species of beans (C. Cajan, V. unguiculata subsp. sessussequipedalis, P. vulgaris L. ‘Red kidney’, and P. vulgaris ‘Black turtle’) and their effects on the liver and kidney function of albino rats.

2. Materials and Methods

2.1 Materials

2.1.1 Plant Materials

The four species of beans, C. Cajan, V. unguiculata subsp. sessussequipedalis, P. vulgaris L. ‘Red kidney’, and P. vulgaris ‘Black turtle’ were obtained from a local market in Ihiala Local Government Area of Anambra State, Nigeria and were identified.

2.1.2 Animals

Thirty (30) Male Wistar albino rats weighing between 150-200g was used for the study. The rats was obtained from the Animal House of the Department of Zoology and Environmental Biology, University of Nigeria, Nsukka. The rats was fed with rat pellets and water ad libitum. Ethical clearance was obtained from the designated ethical committee.

2.1.3 Equipment

The equipment used are those of the Department of Biochemistry, Chukwuemeka Odumegwu Ojukwu University, Uli; Professor John I. Ihedioha Foundation for Education and Research on Health (FERH) Laboratory and Spring Board Research Laboratory, Awka, Nigeria. They were calibrated and was in a good working state.

2.1.4 Reagents

The chemicals and reagents used are of analytical grade and are products of British Drug House (BDH), England, Germany, Dermstadt, May and Baker, England, Sigma Aldrich, USA, and Quimica Clinica Applicada (QCA) HDL test kit (QCA, S.A. Spain).

2.2 Methods

2.2.1 Preparation of Bean Feed

Bean samples was sieved to remove stones and debris after which it was washed, dried and ground to flour. This was sieved and kept in an airtight container.

2.2.2 Proximate Composition Determination

The proximate composition of the samples was determined using the methods of the AOAC (1990); WHO (1973); Onyekele and Osuji (2003); Nwinuka et al. (2005); ASEAN (2011).

2.2.3 Phytochemical Studies

Phytochemical analysis was qualitatively and quantitatively determined following standard procedures as outlined by Harborne (1973), Trease and Evans (1989) and Sofowora (1993).

2.2.4 Trace Mineral Analysis

The trace mineral element concentration in the various beans samples was determined by the Atomic Absorption Spectrophotometric method.

2.2.5 Experimental Design

Thirty (30) male Wistar albino rats was used for the study. They were acclimatized for seven days with free access to feed and water. After acclimatization, they were randomly distributed into five (5) groups of 6 rats each and were fed for 3 weeks (21 days) in which analyses was done on the last day. The experimental design are illustrated below.

Group 1 (control group) was fed with 150 g of normal feed kg/body weight (b.w) each day

Group 2 was fed 50g of Normal rat feed + 100g of P. vulgaris L. ‘Red kidney’ kg/b.w.

Group 3 was fed 50g of Normal rat feed + 100g of P. vulgaris ‘Black turtle’ kg/b.w.

Group 4 was fed 50g of Normal rat feed + 100g of C. Cajan kg/b.w.

Group 5 was fed 50g of Normal rat feed + 100g of V. u. subsp. Sesquipedalis kg/b.w.

2.2.6 Liver Function Test

2.2.6.1 Determination of Liver Enzymes (ALT, AST, and ALP)

Serum ALT and AST was determined by the Reitman-Frankel colorimetric method (Reitman and Frankel, 1957). Phenolphthalein monophosphate method was used for the determination of alkaline phosphatase in serum (Klein et al., 1960; Babson et al., 1966).

2.2.6.2 Determination of Serum Total Bilirubin

Jendrassik-Grof method was adopted for the determination of total bilirubin in serum (Doumas et al., 1973).

2.2.6.3 Serum Protein determination (Total protein, Albumin, and Globulin)

The direct biuret method for the determination of total protein in serum was adopted (Lubran, 1978). Serum albumin was determined by the bromocresol green method (Doumas et al., 1971; Doumas and Peters, 1997). Globulin levels was obtained by subtracting the quantity of albums from that of total proteins.

2.2.7 Kidney function test (Urea and Creatinine Test)

Modified method of Berthelot-Searcy was used for the determination of urea in serum (Fawcet and Scott, 1960; Searcy et al., 1967), while the
modified Jaffe method for adopted for the determination of creatinine in serum, plasma or urine (Blass et al., 1974).

2.2.8 Statistical Analysis
Statistical analysis was carried out using the Statistical Package for Social Sciences (SPSS) version 19. One way analyses of variance were adopted for comparison, and the results were subjected to post hoc test using least square deviation (LSD). P < 0.05 was considered significant for all the results. The data obtained were expressed as mean±SD of triplicate determinations.

3. Results
Results obtained from the proximate composition analysis of C. Cajan, V. u. subsp. sesquipedalis, P. vulgaris L ‘Red kidney’, and P. vulgaris L ‘Black turtle’ were presented in Table 1. Moisture content was found in the following order V. u. subsp. Sesquipedalis (8.80±0.01 %), C. Cajan (3.31±0.01 %), with no significance difference between that of P. vulgaris L ‘Red kidney’ (0.12±0.02 %), and P. vulgaris L ‘Black turtle’ (0.10±0.00 %) at P<0.05. The protein content of the bean species was found highest P. vulgaris L ‘Red kidney’ (18.54±0.01 %) and P. vulgaris L ‘Black turtle’ (18.36±0.01 %) with no significance difference between the two. There was no significance difference observed in the crude fat content of the bean species. P. vulgaris L ‘Red kidney’ had the highest Ash content (8.43±0.03 %), while V. u. subsp. Sesquipedalis had the highest carbohydrate content (75.79±0.01 %).

Table 1: The proximate composition of four different species of beans.

Proximate Composition (%)	C. Cajan	V. u. subsp. sesquipedalis	P. vulgaris L ‘Red kidney’	P. vulgaris L ‘Black turtle’
Moisture	0.31±0.01	0.80±0.01	0.12±0.02	0.10±0.00
Protein	16.01±0.01	10.05±0.01	18.54±0.01	18.36±0.01
Fat	0.71±0.01	1.00±0.00	0.89±0.01	0.91±0.01
Ash	6.25±0.02	7.43±0.01	8.43±0.03	6.03±0.01
Fibre	4.02±0.02	4.93±0.02	5.04±0.02	4.75±0.02
Carbohydrate	73.70±0.01	75.79±0.01	66.98±0.15	69.85±0.01
Energy	316.53±0.51	352.40±0.53	338.39±0.53	360.69±0.57
Value (kcal)				

Values are mean ± standard deviations (n=3). Values within the same row bearing the same superscript letters are not significantly different at P < 0.05.

3.2 The Phytochemical Screening for the Four Species of Beans
Results obtained from the phytochemical screening of the four species of local beans C. Cajan, V. u. subsp. sesquipedalis, P. vulgaris L ‘Red kidney’, and P. vulgaris L ‘Black turtle’ were presented in Table 2. The findings shows that the beans species contained different phytochemicals but at different rates. The observable phytochemical presence was found in P. vulgaris L ‘Black turtle’ beans sample followed by different phytochemicals of P. vulgaris L ‘Red kidney’ beans, while C. Cajan exhibited lowest phytochemicals.

Table 2: The preliminary phytochemical screening for four different species of beans.

Phytochemicals	C. Cajan	V. u. subsp. sesquipedalis	P. vulgaris L ‘Red kidney’	P. vulgaris L ‘Black turtle’
Flavonoids	++	++	++	+
Alkaloids	+	+	+	+
Saponins	+	+	+	++
Phenols	++	+	+	++
Tannins	+	+	+	+
Cardiac glycosides	+	+	+	+

Key: + = Slightly present; ++ = Moderately present; - = Absent.

3.3 The Quantitative Phytochemical Analysis of the Four Species of Beans
Results obtained from the quantitative phytochemical analysis of the four beans species were presented in Table 3. The results revealed that P. vulgaris L ‘Red kidney’ had the highest flavonoids (4.44±0.11 %), Alkaloids (4.85±0.01 %), Cardiac glycosides (10.41±0.93 %) and Haemaglutinin (0.78±0.00 mg/l). The P. vulgaris L ‘Black turtle’ beans had the highest oxalate (0.54±0.00 mg/l). C. Cajan had the highest saponins (5.12±0.11 %), with no significance difference in its phenol content (1.42±0.01 %) and that of V. u. subsp. Sesquipedalis (1.47±0.00 %). From Table 3, V. u. subsp. Sesquipedalis retained the lowest level of phytochemicals.

Table 3: The phytochemical composition of four different species of beans.

Phytochemicals	C. Cajan	V. u. subsp. sesquipedalis	P. vulgaris L ‘Red kidney’	P. vulgaris L ‘Black turtle’
Flavonoids	3.21±0.02	2.23±0.05	4.44±0.11	4.03±0.00
Alkaloids	1.64±0.01	2.79±0.01	4.85±0.01	2.42±0.02
Saponins	5.13±0.11	2.17±0.01	3.24±0.06	2.28±0.23
Phenols	1.42±0.01	1.47±0.00	1.17±0.03	1.29±0.23
Tannins	1.49±0.01	2.21±0.01	2.08±0.02	2.23±0.02
Cardiac glycosides	5.06±0.05	6.11±0.12	10.41±0.93	7.08±0.07
Oxalate (mg/l)	0.22±0.01	0.27±0.01	0.37±0.01	0.54±0.00

Values are mean ± standard deviations (n=3). Values within the same row bearing the same superscript letters are not significantly different at P < 0.05.

3.4 The Trace Mineral Composition of the Four Species of Beans
The four species of beans analyzed for the trace mineral compositions revealed varying concentrations of antioxidant minerals (Table 4). V. u. subsp. Sesquipedalis had the highest Fe content (2.73±0.11 mg/100g), Zn content (12.06±0.06 mg/100g), Mn content (1.84±0.02 mg/100g) and Se content (7.17±0.01 mg/100g), while C. Cajan had the highest Cu content (1.04±0.03 mg/100g).

Table 4: The trace mineral composition of four different species of beans.

Mineral Composition (mg/100g)	C. Cajan	V. u. subsp. sesquipedalis	P. vulgaris L ‘Red kidney’	P. vulgaris L ‘Black turtle’
Fe	2.03±0.02	2.73±0.11	1.65±0.02	1.85±0.04
Zn	6.03±0.02	12.06±0.06	3.78±0.01	3.77±0.02
Cu	1.04±0.03	0.56±0.02	0.23±0.01	0.38±0.01
Mn	0.52±0.02	1.48±0.02	0.22±0.01	0.34±0.02
Se	6.58±0.01	7.17±0.01	6.22±0.03	5.63±0.24
Mean	3.24±2.64	4.80±4.43	2.42±2.38	3.99±2.20

Values are mean ± standard deviations (n=3). Values within the same row bearing the same superscript letters are not significantly different at P < 0.05.

3.5 Liver Function Test Results
The effects of P. vulgaris L ‘Red kidney’, P. vulgaris L ‘Black turtle’, C. Cajan, and V. u. subsp. Sesquipedalis on the liver functions (ALT, AST, ALP, Bilirubin, Serum total proteins, Albumin, Globulin) of Wistar albino rats were presented in Figures 1-7.

3.5.1 Effects of the Bean Species on Serum ALT Activity
The effects of the beans species on the serum ALT level revealed a decrease in serum ALT levels (IU/L) when compared to the control at P < 0.05 (Fig. 1). Similar response pattern was observed within the groups. The ALT levels of the control was found to be 11.82±1.30 IU/L while that of P. vulgaris L ‘Red kidney’, P. vulgaris L ‘Black turtle’, C. Cajan, and V. u. subsp. Sesquipedalis was found to be 7.15±0.42 IU/L, 7.31±0.20 IU/L, 8.05±0.63 IU/L, and 7.75±0.67 IU/L respectively.

Figure 1: Effects of the beans species on the serum ALT level in Wistar albino rats.
3.5.2 Effects of the Bean Species on Serum AST Activity

The effects of *P. vulgaris* `Red kidney`, *P. vulgaris`Black turtle`, *C. Cajan`, and *V. u. subsp. Sesquipedalis` on the serum AST levels of Wistar albino rats were presented in Figure 2. The result revealed that the control group fed normal rat feed had the highest level of AST (57.96±1.82 IU/L). This was followed by the group fed *V. u. subsp. Sesquipedalis` (55.11±3.08 IU/L), while group fed *C. Cajan` had 52.85±2.73 IU/L. *P. vulgaris` `Red kidney` group had 46.94±1.88 IU/L and the least AST activity was found in group fed *P. vulgaris` `Black turtle` (45.3±2.73 IU/L).

3.5.3 Effects of the Bean Species on Serum ALP Activity

The results for the effects of *P. vulgaris` `Red kidney`, *P. vulgaris` `Black turtle`, *C. Cajan`, and *V. u. subsp. Sesquipedalis` on serum ALP level (IU/L) of Wistar albino rats were presented in Figure 3. It was observed that the group fed *V. u. subsp. Sesquipedalis` had the highest ALP activity (174.30±10.48 IU/L) which was followed by group fed *P. vulgaris` `Red kidney` (135.78±12.27 IU/L). The lowest levels of ALP activity was observed in group fed *C. Cajan` (96.72±5.58 IU/L) while no significance difference existed between the control group (125.43±5.34 IU/L) and group fed *P. vulgaris` `Black turtle` (118.14±6.21 IU/L).

3.5.4 Effects of the Bean Species on Bilirubin level

The results obtained from the analysis of serum bilirubin levels were presented in Figure 4. The result indicates that there was no significant difference at *P* > 0.05 compared to the control and Wistar albino rats fed four different species of beans (*P. vulgaris` `Red kidney`, *P. vulgaris` `Black turtle`, *C. Cajan`, and *V. u. subsp. Sesquipedalis`). The levels of bilirubin are found in the following order: *V. u. subsp. Sesquipedalis` (6.36±0.57 µmol/L), *P. vulgaris` `Red kidney` (6.25±0.15 µmol/L), *C. Cajan` (6.22±0.57 µmol/L), *P. vulgaris` `Black turtle` (6.08±0.15 µmol/L) while the control group bilirubin levels was found to be 5.95±0.33 µmol/L.

3.5.5 Effects of the Bean Species on the Total Protein Level

The results obtained from the serum total protein level (g/L) analysis were presented in Figure 5. The result shows that there was no significant difference at *P* > 0.05 when compared to the control. The control group has the total serum protein of 73.88±4.26 g/L. This was closely followed by the group fed *P. vulgaris` `Red kidney` (72.82±5.30 g/L). Other groups had the following concentrations of serum total protein; *C. Cajan` (72.68±3.76 g/L), and *P. vulgaris` `Black turtle` (70.82±3.92 g/L).

3.5.6 Effects of the Bean Species on the Albumin Level

The albumin level (g/dl) observed for the various groups of Wistar albino rat different species of beans (*P. vulgaris` `Red kidney`, *P. vulgaris` `Black turtle`, *C. Cajan`, and *V. u. subsp. Sesquipedalis`) were presented in Figure 6. The result indicates that there was no significant difference at *P* > 0.05 compared to the control. The least levels was found in group fed *V. u. subsp. Sesquipedalis` (35.00±1.89 g/L). Other groups was found to exhibit different concentration of albumin in the following order: *P. vulgaris` `Black turtle` (38.58±2.90 g/L), control group (38.16±2.93 g/L), *P. vulgaris` `Red kidney` (37.42±2.37 g/L), and *C. Cajan` (37.20±3.09).

3.5.7 Effects of the Bean Species on the Globulin Level

The globulin level (g/L) observed from the various groups of Wistar albino rat different species of beans (*P. vulgaris` `Red kidney`, *P. vulgaris` `Black turtle`, *C. Cajan`, and *V. u. subsp. Sesquipedalis`) were presented in Figure 7. The result indicates that there was no significant difference at *P* > 0.05 compared to the control. The least globulin levels was found in group fed *P. vulgaris` `Black turtle` (32.34±2.50 g/L) followed by the group fed *C. Cajan` (35.34±1.91 g/L), while group fed *V. u. subsp. Sesquipedalis` has
the serum globulin levels of 33.58±1.07 g/L. There was no significance difference between the globulin levels of the control group (35.72±3.72 g/L), and group fed P. vulgaris L 'Red kidney' (35.72±1.42 g/L).

Figure 7: Effects of the beans species on the Globulin level in Wistar albino rats.

3.6 Kidney Function Test Results

The effects of P. vulgaris L 'Red kidney', P. vulgaris 'Black turtle', C. Cajan, and V. u. subsp. Sesquipedalis on the kidney functions (Urea and Creatinine) of Wistar albino rats were presented in Figure 13 and 14.

3.6.1 Effects of the Beans Species on Urea Level

The effects of the bean species on the serum urea level of Wistar albino rats was presented in Figure 13. The Urea level (mmol/L) showed slight decrease which is not significant when compared to the control at $P < 0.05$. The control group had the serum urea levels of 9.25±0.56 mmol/L. This was followed by the group fed C. cajan (8.69±0.54 mmol/L). The group fed P. vulgaris 'Black turtle' had the serum urea level of 8.14±0.27 mmol/L. This is followed by the group fed V. u. subsp. Sesquipedalis (7.99±0.53 mmol/L) while the least urea levels was found in the group fed P. vulgaris L 'Red kidney' (7.36±0.14 mmol/L).

Figure 13: Effects of the beans species on the Urea level in Wistar albino rats.

3.6.2 Effects of the Beans Species on the Creatinine Level

The effects of P. vulgaris L 'Red kidney', P. vulgaris 'Black turtle', C. Cajan, and V. u. subsp. Sesquipedalis on the serum creatinine level (µmol/L) was presented in Figure 14. The creatinine level showed slight decrease which is not significant compared to the control at $P < 0.05$. The control group had the highest serum creatinine levels of 57.30±5.81 µmol/L. This was followed by the group fed P. vulgaris 'Black turtle' (57.30±5.81 µmol/L), C. Cajan (55.88±4.61 µmol/L), V. u. subsp. Sesquipedalis (53.05±4.33 µmol/L), and the least as P. vulgaris L 'Red kidney' (51.64±1.48 µmol/L).

Figure 14: Effects of the beans species on the serum creatinine level in Wistar albino rats.

4. Discussion

Beans is one of the common classes of food that are widely consumed worldwide due to its high protein and nutritional contents. Many varieties of beans exists with dearth of scientific information concerning their compositions and most importantly their effects in the body viz. the vital organs (liver and kidney). There are notably over 40,000 species of beans out of which only a small fraction has been studied. The result obtained from the proximate composition analysis revealed that the protein content of the bean species was highest in P. vulgaris L 'Red kidney' (18.54±0.01%), and P. vulgaris 'Black turtle' (18.36±0.01%) with no significance difference at $P< 0.05$ between the two species (Table 1). V. u. subsp. Sesquipedalis (10.05±0.01%) had the least protein content while C. cajan had 15.01±0.01%. The result for the fibre content revealed that P. vulgaris 'Red kidney' had the highest fibre content with no significant difference between the fibre content of V. u. subsp. Sesquipedalis. The highest level of moisture and fat was found in V. u. subsp. Sesquipedalis. There was no significance difference observed in the crude fat content of the bean species. P. vulgaris L 'Red kidney' had the highest ash content (8.43±0.03%), while V. u. subsp. Sesquipedalis had the highest carbohydrate content (75.79±0.01%). The estimation of the energy levels shows that P. vulgaris 'Black turtle' had the highest energy level 360.69±0.57%, followed by V. u. subsp. Sesquipedalis (352.40±0.53%), P. vulgaris L 'Red kidney' (338.39±0.53%), and C. cajan (316.53±0.51%). The results suggests that beans is a good source of nutrient which correlates with the nutritional benefits for beans as discussed by Taub-Dix (2014), in which he noted that beans provide myriad health benefits, and this made it fit into several different food groups.

The result obtained for the preliminary phytochemicals screening revealed the presence of flavonoids, alkaloids, saponins, phenols, tannins, and cardiac glycosides in all the four beans aqueous extract (Table 2). The presence of these phytochemicals is an indication that these local bean species can serve as a valuable source for the discovery of novel bioactive compounds for drug discovery (Egbuna and Ifemeje, 2015; Egbuna and Ifemeje, 2017; Arul et al., 2018; Tijani et al., 2018; Ezzat et al., 2019; Kavitha et al., 2019; Nwosu et al., 2019; Srivastav et al., 2019). The quantitative analysis revealed that P. vulgaris L 'Red kidney' had the highest flavonoids (4.44±0.11%), alkaloids (4.85±0.01%), cardiac glycosides (10.41±0.93%) and haemaglutinin (0.78±0.00 mg/ml) (Table 3). The result suggests that P. vulgaris L 'Red kidney' although could be a potential source of antioxidant phytochemicals but care should be taken in its consumption due to the haemaglutinin content. Similarly, P. vulgaris 'Black turtle' beans had the highest oxalate (0.54±0.00 mg/ml), a phytochemical noted for the formation of kidney stone (Finkelstein and Goldfarb, 2006). C. cajan had the highest saponins (5.12±0.11%), with no significance difference in its phenol content (1.42±0.01%) and that of V. u. subsp. Sesquipedalis (1.47±0.00%). Among the four species of beans studied, there are no distinct beans with greatest or favored phytochemicals contents. For instance those with high level of antioxidant phytochemicals has some anti-nutritional factors which could be deleterious when the beans species is consumed in excess. To this vein, it will be advisable not to depend on only one beans. A mixed consumption pattern should be adopted in order to tap from the numerous phytochemicals present in the bean species. However, for preference, C. Cajan and V. u. subsp. Sesquipedalis has the least anti-nutrients which
makes them a better choice despite low antioxidant phytochemical contents.

The results obtained for the antioxidant minerals analyzed for the four species of beans suggests that V. u. subsp. Sesquipedalis had the highest level of total mean concentration of the minerals (4.80±4.43 mg/100g) followed by C. cajan (3.24±2.64 mg/100g), with no significance difference for P. vulgaris L. ‘Red kidney’ (2.42±2.38 mg/100g) and P. vulgaris ‘Black turtle’ (2.39±2.22 mg/100g) (Table 4). V. u. subsp. Sesquipedalis had the highest Fe content (2.73±0.11 mg/100g), Zn content (12.06±0.66 mg/100g), Mn content (1.48±0.02 mg/100g) and Se content (7.17±0.01 mg/100g). This suggests that V. u. subsp. Sesquipedalis could be a better beans in terms of mineral composition as compared to the rest 3 species studied. Similarly, C. cajan had the highest Cu content (1.04±0.03 mg/100g) which could be a good source of Cu for metalloproteins such as superoxide dismutase, quercetin 2,3-dioxygenase, polyphenol oxidase etc.

The results obtained as a measure to assess the liver function response were presented in Figures 1-7. The effects on serum ALT level (Fig. 1) revealed a decrease in serum ALT levels (IU/L) when compared to the control at *P < 0.05. The results suggest that the beans could be good to the liver as an elevated concentration of ALT in the serum suggests liver injury. Similar result was obtained for the serum AST level with no significance difference among the various groups. The decreases in the levels of ALT and AST in groups fed P. vulgaris, the red and black turtle beans is in line with the reports of Luka et al. (2013). In the ALP result, there was a significant increase (*P < 0.05) in the level of serum ALP in the group fed V. u. subsp. Sesquipedalis (174.30±4.88 IU/L) compared to the control (125.43±5.34 IU/L) (Fig. 3). ALP originates mainly from two sources: liver and bone (Pratt and Kaplan, 1999). High levels of ALP may indicate liver damage, blockage of the bile ducts, or a bone disease. Low ALP can caused by a variety of conditions, including zinc deficiency, malnutrition, and Wilson disease. The results obtained for the antioxidant minerals analyzed for the four species of beans is in line with the reports of Luka et al. (2013)

Conclusion
The results obtained from the in vitro and in vivo studies suggests that the beans (P. vulgaris L. ‘Red kidney’, P. vulgaris ‘Black turtle’, C. cajan, and V. u. subsp. Sesquipedalis) are good sources of nutrients with no significant adverse effects. Although with some exhibition of differences in the physiological responses among the rats which somewhat is unfavorable based on biochemical interpretation, it is advisable to moderate and alternate the consumption of various beans species. Also, the results from the biochemical studies gave insight why some beans could be good to the extent of beans are consumed more than the others. These species of beans contains high nutritional components that are of nutritional interest as evident in their effects in some biochemical parameters. The inclusion of these varieties of beans should be encouraged but should be moderated/alternated.

References
Aiyeloja, A.A. and Bello, O.A. (2006). Ethnobotanical potentials of common herbs in Nigeria: A case study of Enugu state. Edu. Rev., 1: 16-22.
Arul, P.R., Saravanan, K. Akbarsha, M.A., Umarani, B., and Egbugha, C. (2018). In vitro Anticancer Activity of Pusum sativum Seed against Breast Cancer Cell Line (MCF-7). International Journal of Scientific & Engineering Research. 9(6): 17-24.
ASEAN, (2011). ASEAN Manual of Food Analysis. 1st Edition. Regional centre of ASEAN Network of food Data System, Institute of Nutrition, Mahidol University, Thailand.
Babson, A.L., Greeley, S.J., Coleman, C.M. and Philips, G.E. (1966). Phenoxyphthalin monophosphate as a substrate for serum alkaline phosphatase. Clin. Chem. 12(18): 482 - 480. https://doi.org/10.1093/clinchem/12.8.482
Blass, K.G. Thiebert, R.J. and Lam, L.K. (1974). A study of the mechanism of the Jaffe reaction. J. of Clin. Chem. and Clini. Biochem., 12:336 - 343. https://doi.org/10.1515/9781974.12.7.336
Chuang, M.G., Choi, B.R., Ah, Y.N., Chi, Y.H. and Cho, Y.S. (2003). Anthocyanin profile of Korean cultivated kidney bean (Phaseolus vulgaris L.). J. Agric Food Chem., 51(24):7040-3. https://doi.org/10.1021/jf0304021
Delgado-Salinas, A., Thulun, M., Pasquet, R., Weeden, N. and Lavin, M. (2011). Vigna (Leguminosae) sensu lato: the names and identities of the American segregate genera. American Journal of Botany, 98 (10): 1694-715. https://doi.org/10.3732/ajb.1100069
Doumas, B.T and Peters, T. Jr. (1997). Serum and urine albumin: a progress report on their measurement and clinical significance. Clinica Chimica Acta, 258(1): 3 - 20. https://doi.org/10.1016/S0021-9927(96)00646-4
Doumas, B.T., Perry, B.W., Sasse, E.A. and Straumanford Jr. J.V. (1973). Standardization in bilirubin assays: evaluation of selected methods and stability of bilirubin solutions. Clinical Chem., 19:984 - 993. http://www.sciencedirect.com/science/article/pii/009158677391096X
Doumas, B.T., Watson, W.A. and Biggs, H.G. (1971). Albumin standards and the measurement of serum albumin with bromocresol green. Clinica Chimica Acta, 31: 87-96. https://doi.org/10.1016/S0021-9927(05)89817-1
Egbuna, C. and Ifemeje, J.C. (2015). Biological Functions and Anti-nutritional Effects of Phytochemicals in Living System. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS), 10(2), 10-19.
Egbuna, C. and Ifemeje, J.C. (2017). Oxidative Stress and Nutrition. Tropical Journal of Applied Natural Sciences, 2(1): 110-116. https://doi.org/10.25240/TJANS.2017.2.1.19
Ezzat, S.M., Jeevanandam, J., Egbugha, C., Kumar, S., Ifemeje, J.C. (2019). Phytochemicals as sources of drugs. In: Phytochemistry: in vitro and in silico updates. Kumar, S. and Egbugha, C. (Eds). Springer Nature: Singapore. Pp. 3-22. https://doi.org/10.1007/978-981-10-09365-2
Fawcett, J.K. and Scott, J.E. (1960). A rapid and precise method for the determination of the urea. Journal of Clin.Patho., 13: 156 - 159. https://doi.org/10.1136/jcp.13.2.156
Finkielstein, V. A. and Goldfarb, D. S. (2006). Strategies for preventing calcium oxalate stones. CMAJ : 174(10), 1407-1409. http://www1.cmaсорc.ca/10.1503/cmaj.051517
Harborne, J.B. (1973). Phytochemical methods. Chapman and Hall, Ltd. London. pp. 49-188.
Kavitha Raj V., Kumar, J.R., Egbugha, C. and Ifemeje, J.C. (2019). Phytochemicals as therapeutic interventions in neurodegenerative diseases. In: Phytochemicals as Lead Compounds for New Drug Discovery. Egbugha, C., Polgar, T., Kumar, S., Ezzat, S.M., Ifemeje, J.C. and Saravanan, K. Eds Elsevier: USA. ISBN: 9780128178903 breath of urea metabolism. Journal of Clin.Pathol., 13: 156 - 159. https://doi.org/10.1136/jcp.13.2.156
Klein, B., Read, P.A. and Babson, A.L. (1960). Rapid method for the quantitative determination of serum alkaline phosphatase. Clinical Chem., 6:269 - 275. https://doi.org/10.1093/clinchem/6.3.269
Lauria, M. and Suszkwi, A.R.S (2006). Breeding Better Beans. Agricultural Research magazine. Available: http://www.ars.usda.gov/AR/archive/jun06/beans0606.htm?pt=1: Retrieved: 16th November, 2017.
Labran, M.M. (1978). The measurement of total serum proteins by the Biuret method. Annals of Clinical Lab. Sci, 8(2): 106 - 110.
Nwinuka, N.M., Ibeh, G.O. and Ekeke, G.I. (2005). Proximate Composition and Levels of Some Toxicants in Four Commonly Consumed Spices. J. Appl. Sci. Environ. Mgt., 9(1): 150-155.
Ngwu, O., Keskın, M., Lohani, H., Egbugha, C. and Haider, S.Z. (2019). Bioactive lead compounds and molecular targets for the development of anti-inflammatory drugs. In: Phytochemicals as Lead Compounds for New Drug Discovery. Egbugha, C., Kumar,
Ogbunugafor, H.A., Igwo-Ezikpe, M.N., Igwilo, I.O., Salisu T., Ezekwesili, C.N. (2013). Cajanus cajan: Potentials as Functional Food. The Bioscientist, 1(2):119-126.

Ogunlade, I., Taiwo, R. and Osasona, I. (2014). Chemical Composition, Antioxidant Capacity and Total Phenolic Content of the Flours Obtained from Cow Pea (Vigna unguiculata) Varieties Commonly Consumed in Nigeria. British Journal of Applied Science & Technology, 4(12): 1729-1735. https://doi.org/10.9734/BJAST/2014/7501.

Onyeike, E.U. and Osuji, J.O. (2003) (editors). Research Techniques in Biological and Chemical Sciences. Springfield Publishers Ltd, Nigeria. Pp 228-229.

Pratt, D.S. and Kaplan, M.M. (1999). Laboratory tests. In: Schiff ER, Sorrell MF, Maddrey WC, eds. Schiff's diseases of the liver. 8th Ed. Vol 1. Philadelphia: Lippencott-Raven, 205-44.

Rodhouse, J.C., Haugh, C.A., Roberts, D. and Gilbert, R.J. (1990). Red kidney bean poisoning in the UK: an analysis of 50 suspected incidents between 1976 and 1989. Epidemiol. Infect., 105, 485-491. https://doi.org/10.1017/S0950268800004810X.

Sarah, L. (2015). 30 Heat-Tolerant Strains of beans identified. Scientific American. Available: https://www.sciencemag.org/article/30-heat-tolerant-strains-of-beans-identified/. Retrieved: 16th November, 2017.

Searcy, R.L., Reardon, J.E. and Foreman, J.A. (1967). A new photometric method for serum urea nitrogen determination. American Journal of Med. Tech., 33: 15 - 20.

Sofowora, A. (1993). Screening of plants for bioactive agents in medicinal plants and traditional medicine in Africa. Second edition, Spectrum Books Limited, Sunshine House, Ibadan, pp. 81-93, 135-156.

Srivastav, V.K., Egbuna, C. and Tiwari, M. (2019). Plant Secondary Metabolites as Lead Compounds for the Production of Potent Drugs. In: Phytochemicals as Lead Compounds for New Drug Discovery. Egbuna, C., Kumar, S., Ifemeje, J.C., Ezzat, S.M., and Saravanan, K. Eds. Elsevier: USA. ISBN: 9780128178911). https://doi.org/10.1016/B978-0-12-817890-4.00001-9.

Taub-Dix, B. (2014). 11 Health Benefits of Beans. Available: https://www.huffingtonpost.com/2012/08/16/beans-health-benefits_n_1792504.html. Retrieved: 04/03/2018.

Tijjani, H., Egbuna, C., and Luka D. Carrol. (2018). Biosynthesis of phytochemicals. In: Phytochemistry, volume 1: Fundamentals, Methods, and Applications. Egbuna, C. et al. (Eds). Apple Academic Press: New York. Pp. 37-78. https://doi.org/10.1201/9780429426223-2.

Trease, G.E. and Evans, W.C. (1989). A Textbook of Pharmacognosy. 13th Edition. Bailliese, Trindall. London, 397-453.

* Thank you for publishing with us.*