Essential Oils Bearing Plants of Cameroon – An Update

Vougmo Fogang 1,2, Filiz Meriçlı 1*, Dudu Özkum Yavuz 3*, Talla Clovis 2, Kenfack Fogang 4,5 and Tagne Mamno 6

1 Department of Phytotherapy, Faculty of Pharmacy, Near East University, ZIP: 99138 Nicosia / TRNC Mersin 10, Turkey.
2 Department of Pharmaceutical Sciences, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Cameroon.
3 Department of Pharmaceutical Botany, Faculty of Pharmacy, Near East University, ZIP: 99138 Nicosia / TRNC Mersin 10, Turkey.
4 Institut of Agricultural Research for Development (IRAD), P.O Box 2123, Yaoundé, Cameroon.
5 Laboratory of Zoology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
6 Department of Nutrition and Dietetics, Faculty of Health Sciences, Near East University, ZIP: 99138 Nicosia / TRNC Mersin 10, Turkey.

Authors’ contributions

All authors have contribute equitably, read and agreed to the published version of the manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i42A32397
(1) Dr. Sawadogo Wamtinga Richard, Ministry of Higher Education, Scientific Research and Innovation, Burkina Faso. Reviewers:
(1) Worapan Sitthithaworn, Srinakharinwirot University, Thailand.
(2) S. V. Bakiya Lakshmi, A. V. V. M Sri Pushpam College (Autonomous), India.
Complete Peer review History: https://www.sdiarticle4.com/review-history/72567

Received 12 June 2021
Accepted 17 August 2021
Published 28 August 2021

ABSTRACT

In Cameroon, several plants are used both for their medicinal properties and as food. Many of them contain essential oils as one of their secondary metabolites. Although traditional healers rarely, if ever, use essential oils as the basis for their treatments, it is thought that the latter would be found in their products in view of the preparation processes used. And therefore several activities attributed to their drugs are linked to the presence of essential oils. Many studies have revealed the presence of essential oils in several plants found in Cameroon, and validated their traditional use. The purpose of this study is to identify these plants on the basis of studies carried out in order to

*Corresponding authors: E-mails: filiz.mericli@neu.edu.tr, dudu.ozkum@neu.edu.tr;
make a review which will serve as support for future studies. This work reviewed available and accessible original articles in EBSCO, Ovid MEDLINE®, PubMed®, ScienceDirect™, Scopus® and Web of Science™ databases on Cameroon plants studied for their essential oils. We have identified ninety plants that have been the subject of proven studies and scientific publication. They are mainly distributed in the families of Lamiaceae (14: 16%), Annonaceae (11: 12%), Rutaceae (10: 11%), Asteraceae (10 : 11%) and Myrtaceae (09 : 10%). We believe that an important work remains to be done in the search for new essential oils in Cameroon, because the country is endowed with a very great botanical diversity.

Keywords: Essential oils; medicinal plants; ethnobotany; traditional medicine; Cameroon.

1. INTRODUCTION

Covered, for its southern half, by the forest of the Congo Basin, Cameroon is an important reserve of global biodiversity and is home to hundreds of endemic species. The country has one of the most important biological diversity in Africa in terms of variety, quantity, ecosystem and genetic resources. With a high rate of endemism, Cameroon ranks 7th in the world in terms of flora richness [1]. The country is home to 92% of Africa’s ecosystems and the rich biodiversity contains 8260 identified plant species including 156 endemic species [2]. Plants play an essential role in the life of the Cameroonian populations. Either consumed or sold, they represent a significant part of their income. In Cameroon, several plants are used both for their medicinal properties and as food. Many of them contain essential oils as one of their secondary metabolites. Although traditional healers rarely, if ever, use essential oils as the basis for their treatments, it is thought that the latter would be found in their products in view of the preparation processes used. And therefore several activities attributed to their drugs could be linked to the presence of essential oils. Many studies have revealed the presence of essential oils in several plants found in Cameroon, and validated their traditional use.

Essential oils are complex mixtures of volatile compounds produced by living organisms and isolated by physical means only (pressing and distillation) from a whole plant or plant part of known taxonomic origin [3]. They are important aromatic components of herbs and spices and their biological activities have been known and utilised since ancient times in perfumery, food preservation, flavouring, and medicine. They act biologically according to several mechanisms that justify their use as an antibiotic, anti-inflammatory, antioxidant and many others.

The market value of essential oils worldwide is expected to grow from around 17 billion U.S. dollars in 2017 to about 27 billion dollars by 2022 [4]. The five major producers of essential oils across the world are China, India, Indonesia, Sri Lanka and Vietnam [5]. The production and sales in Africa are not very important. Nevertheless, some African countries are recognised worldwide as essential oils producers. In 2019, the major African countries producers of essential oils were Egypt, Madagascar, South Africa, Morocco, Tunisia, Comoros, Kenya, Ethiopia, Tanzania and Eswatini [6]. In this ranking, Cameroon is far behind. The Cameroon trade of essentials oils are as follow; 111000 dollars of exportation versus 346000 dollars of importation, with therefore a loss of trade value of 335,000 dollars [6]. Knowing the floristic richness of Cameroon as well as its climate favorable to the growth of numerous species of plants, we believe that a concise inventory of essential oils bearing plants would make it possible to identify the most important ones in order to develop their production on a large scale and thus rank in the first ranks of African and world producers of essential oils. It is a real part of the national economy which remains very underexploited.

2. MATERIALS AND METHODS

This work reviewed available and accessible original articles in EBSCO, Ovid MEDLINE®, PubMed®, ScienceDirect™, Scopus® and Web of Science™ databases on recent literature, which cover the years 2000 and 2021 on Cameroon plants studied for their essential oils.

3. RESULTS AND DISCUSSION

A review of scientific journals and databases such as Science Direct, PubMed, and many others, enabled us to identify 90 species of essential oil bearing plants found in Cameroon that have been subject of studies. These plants belong to 22 families and two of them are endemic in Cameroon. The following table shows our findings.
Table 1. Essential oils bearing plants of Cameroon

Families	Species	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
Amaranthaceae	Dysphania ambrosioides(L.) Mosyakin & Clemants	Elog minsom	Aerial parts	p-Cymene (29.2%), limonene (0.2%), allyl hexanoate (0.3%), p-cymene (fr), p-methyl acetoephene (fr), p-cymen-β-ol (0.3%), α-terpineol (fr), dihydroascaridole (0.7%), cis-ascaridol (35.4%), cis-piperitone epoxide (0.1%), trans-piperitone epoxide (0.4%), trans-ascaridole glycol (1.7%), cis-ascaridole glycol (2.1%), carvacrol (0.1%), trans-ascaridole (26.0%), 4-hydroxy-cryptone (0.1%).	Traditional Medicine: Diuretic, antifungal, wound healing, and in the treatment of respiratory and inflammatory disorders.	[7]
Annonaceae	Annona senegalensis Pers.	Doukouhi (fd)	Leaves	α-Thujene (2.12%), α-Pinene (8.3%), p-cymene (36.0%), Limonene (4.8%), Z-β-Ocimene (2.0%), Linalool (1.6%), Z-Sabinol (6.9%), Thymol (0.4%), α-Cubebene (0.5%), β-Cubebe (0.4%), α-Copaene (0.9%), β-Caryophyllene (0.17%), E-α-Bergamotene (0.5%), α-Humulene (0.4%), β-Ionone (0.2%), Germacrene D (1.0%), α-Murolene (1.0%), β-Cadinene (0.4%), α-Cadinene (0.2%), α-Murolol (0.4%), α-Cadinol (0.6%)	Bioactivity: insecticidal (worm expelling) and insecticidal. Traditional Medicine: the seeds are used to eliminate lice the stem bark to kill intestinal worms and the root bark to treat cancer. In Congo, the plant is prescribed as an additive in medicine for asthma and adecoction of the stem barks is used to cure cephalgia	[9][10]
Cananga odorata	(Lam.) Hook.f. & Thomson	Salt-and-oil tree (English); Wombo (Pygmies Bakola), Avom (Ewondo and Bulu)	Fruits	α-Thujene (2.8%), α-Pinene (11.1%), Sabinene (34.3%), β-Pinenene (3.4%), Myrcene (24.7%), α-Phellandrene (0.2%), α-Terpinene (3.7%), p-Cymene (fr), Limonene (0.9%), (Z)-β-Ocimene (2.0%), (E)-β-Ocimene (0.3%), γ-Terpinene (5.6%), Terpinolene (0.8%), 1, 6-Cineole (0.7%), Thujanol (0.2%), Terpin-4-01 (8.0%), α-Terpineol (fr), β-Caryophyllene (0.2%), α-Humulene (fr), Germacrene D (0.2%), γ-Murolene (0.2%), β-Pinene (0.28%), γ-terpinene (0.24%), linalool (0.65%), δ-elemene (2.44%), α-cubebe (1.33%), α-ylangene (0.42%), α-copaene (16.90%), β-eleme (2.44%), cyperene (1.66%), (Z)-α-b ergamotene (0.43%), β-caryophyllene (2.58%), γ-eleme + β-cubebe (2.91%), (E)-α-bergamotene (1.10%), (E)-β-farnesene (0.80%), α-humulene (0.90%), alloaromadendrene (0.80%), γ-murolene (1.80%), germacrene D (3.80%), α-murolene (1.19%), β-bisabolene (0.94%), (Z)-γ-bisabolene	Bioactivity: insecticidal Antibacterial, antimi crobial; antioxidant, antifungal; anti- Aedes aegypti and Anopheles dirus activity	[11]
Cleistopholis patens	Engler& Diels	Salt-and-oil tree (English); Wombo (Pygmies Bakola), Avom (Ewondo and Bulu)	Stem bark, leaves	Small amounts of α-pinene, β-pinene, γ-terpinene, α-cubebene, γ-ylangene, α-copaene, β-ele- mence, α-murolene, γ-murolene, germacrene D, and β-caryophyllene were also found.	Traditional Medicine: Febrifuge and vermifuge	[13]

165
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References	
Duguetia confinis (Engl. & Diels) Chatrou	Stem bark		0.87%, γ-cadinene (0.33%), bicyclogermacrene (2.81%), δ-cadinene (28.70%), (E,Z)-germacrene B (4.91%), germacrene B (7.40%), spathulenol (2.52%), caryophyllene oxide (2.90%), cubenol (2.46%), _epi-α-muurolol (1.92%), α-cadinol (0.30%), α-Thujene (0.59%), sabinene (0.59%), δ-3-carene (1.1%), α-terpinene (0.48%), p-cymene (0.32%), (E)-β-ocimene (1.93%), terpinolene (0.4%), linalool (0.22%), fenchol (0.18%), (E)-pinocarvyl (0.31%), pinocarvone (3.16%), terpinen-4-ol (0.16%), δ-elemene (0.53%), α-cubebene (0.52%), α-copaene (7.06%), β-elemene (0.73%), cyperene (15.54%), α-cedrene (6.02%), α-gurjunene (1.86%), β-caryophyllene (0.28%), (E)-α-bergamotene (0.18%), α-humulene (5.04%), γ-muurolene (0.35%), germacrene D (0.84%), γ-cadinene (3.51%), bicyclogermacrene (2.41%), β-selinene (0.28%), (E,E)-α-farnesene (2.66%), α-selinene (1.41%), δ-cadinene (8.06%), (Z)-calamenene (2.32%), α-cadinene (1.01%), elemol (1.24%), (E)-nerolidol (2.42%), spathulenol (2.16%), caryophyllene oxide (7.24%), globulol (2.38%), humulene oxide (3.17%), cubenol (3.23%), T-muurolol + torreyol (2.1%), _epi-α-cadinol (1.25%), α-muurolol (0.64%), α-cadinol (1.16%), farnesol (0.35%), eugenyl acetate (1.78%), 2,4,5-trimethoxy-styrene (0.43%), benzyl benzoate (0.21%), camphene (0.13%), β-pinene (0.12%), terpinen-4-ol (0.13%), δ-elemene (0.21%), α-cubebene (0.36%), α-ylangene (0.33%), α-copaene (13.27%), β-elemene (1.92%), cyperene (11.53%), iso-caryophyllene (0.75%), β-caryophyllene (1.30%), aromadendrene (1.08%), α-humulene (1.76%), allostigmamenol (8.52%), γ-muurolene (1.93%), germacrene D (2.62%), α-muurolene (1.29%), γ-cadinene (2.53%), β-selinene (2.20%), α-selinene (3.37%), δ-cadinene (10.07%), calacorene (7.82%), (Z)-calamenene (1.09%), cadalene (1.58%), (E)-nerolidol (2.82%), spathulenol (1.97%), caryophyllene oxide (2.54%), γ-eudesmol (0.99%), humulene oxide (1.38%), _epi-α-cadinol (7.34%), 10-dih-_epi-cabeno (1.30%), β-eudesmol (1.08%), α-cadinol (1.41%), α-eudesmol (1.61%), _epi-α-bisabolol (1.47%).	Anti-Plasmodium falciparum	[14]	
Hexalobus crispiflorus A.Rich. Chungé (Pyba) Epota (Pybi) Ewo (Ewondo) Léoué (Bassa) Mom panda Owé (Bulu et Ewondo)	Bark		(0.87%), γ-cadinene (0.33%), bicyclogermacrene (2.81%), δ-cadinene (28.70%), (E,Z)-germacrene B (4.91%), germacrene B (7.40%), spathulenol (2.52%), caryophyllene oxide (2.90%), cubenol (2.46%), _epi-α-muurolol (1.92%), α-cadinol (0.30%), α-Thujene (0.59%), sabinene (0.59%), δ-3-carene (1.1%), α-terpinene (0.48%), p-cymene (0.32%), (E)-β-ocimene (1.93%), terpinolene (0.4%), linalool (0.22%), fenchol (0.18%), (E)-pinocarvyl (0.31%), pinocarvone (3.16%), terpinen-4-ol (0.16%), δ-elemene (0.53%), α-cubebene (0.52%), _epi-α-cadinol (1.25%), α-cadinol (0.30%), farnesol (0.35%), eugenyl acetate (1.78%), 2,4,5-trimethoxy-styrene (0.43%), benzyl benzoate (0.21%), camphene (0.13%), β-pinene (0.12%), _epi-α-cadinol (1.25%), α-cadinol (0.30%), farnesol (0.35%), eugenyl acetate (1.78%), 2,4,5-trimethoxy-styrene (0.43%), benzyl benzoate (0.21%), camphene (0.13%), β-pinene (0.12%), terpinen-4-ol (0.13%), δ-elemene (0.21%), α-cubebene (0.36%), α-ylangene (0.33%), α-copaene (13.27%), β-elemene (1.92%), cyperene (11.53%), iso-caryophyllene (0.75%), β-caryophyllene (1.30%), aromadendrene (1.08%), α-humulene (1.76%), allostigmamenol (8.52%), γ-muurolene (1.93%), germacrene D (2.62%), α-muurolene (1.29%), γ-cadinene (2.53%), β-selinene (2.20%), α-selinene (3.37%), δ-cadinene (10.07%), calacorene (7.82%), (Z)-calamenene (1.09%), cadalene (1.58%), (E)-nerolidol (2.82%), spathulenol (1.97%), caryophyllene oxide (2.54%), γ-eudesmol (0.99%), humulene oxide (1.38%), _epi-α-cadinol (7.34%), 10-di-_epi-cabeno (1.30%), β-eudesmol (1.08%), α-cadinol (1.41%), α-eudesmol (1.61%), _epi-α-bisabolol (1.47%).	Traditional Medicine : purgative and emetic.	Bioactivity : Antiplasmodial	[14]
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References	
--------	------------	------------	----------------	---	------------	
Families	**Species**					
Monodora myristica (Gaertn)	Medic, Mendak in Bamiléké, Bikoma in Bassa, Pêbe in Duala, Feb in Bulu and Ndîng in Beti	Fruits	α-Thujene (1.4%), **α-phellandrene (67.1%)**, α-pinene (4.2%), sabine (0.1%), β-pinene (0.3%), myrcene (3.8%), α-terpinene (0.1%), p-cymene (tr), limonene (1.8%), β-phellandrene (3.05%), (Z)-β-ocimene (0.3%), (E)-β-ocimene (0.2%), γ-terpinene (tr), terpinolene (tr), linalool (2.1%), cis-p-menth-2-en-1-ol (tr), trans-p-menth-2-en-1-ol (tr), α-terpinolene (0.6%), trans-thujen-3-ol (0.7%), β-elemene (0.1%), β-caryophyllene (0.3%), α-humulene (0.3%), γ-murolene (0.4%), trans-murola-4(14)-5-diene (0.3%), α-murolene (0.4%), β-cadinene (1.7%), δ-cadinene (3.2%), germacrene D-4-ol (1.3%), epi-α-cadinol (0.9%), α-cadinol (0.9%), shoybunol (0.3%), (2Z, 6Z)-farnesol (1.1%).	stimulants, stomachic, headaches, sores and also as insect repellent.	[16]	
Pachypodanthium conifera Engl. & Diels	Ntombe, Ntoma, Molombo, N'tom [17]	stem bark	α-Thujene (0.59%), Sabine (0.59%), δ-3-Carene (1.1%), α-Terpinene (0.48%), p-Cymene (0.32%), (E)-β-Ocimene (1.93%), Terpinolene (0.4%), Linalool (0.22%), Fenchol (0.18%), (E)-Pinocarveol (0.31%), Pinocarvone (3.16%), Terpin-4-ol (0.16%), δ-Elemene (0.53%), α-Cubebene (0.52%), α-Copaene (7.06%), β-Elemene (0.73%), **Cyperene (15.54%)**, α-Cedrene (6.02%), α-Gurjunene (1.18%), δ-Caryophyllene (0.28%), (E)-α-Bergamotene (0.18%), α-Humulene (5.04%), γ-Murolene (0.35%), Germacrene D (0.84%), β-Cadinene (3.51%), Bicyclogermacrene (2.41%), β-Selinene (0.28%), (E,E)-α-Farnesene (2.66%), α-Selinene (1.41%), δ-Cadinene (8.06%), (Z)-Calamenene (2.32%), α-Cadinene (1.01%), Elemol (1.24%), (E)-Nerolidol (2.42%), Spathulenol (2.16%), Caryophyllene oxide (7.24%), Globulol (2.38%), Humulene oxide (3.17%), Cubenol (3.23%), T-Murolol-torreyol (2.1%), epi-α-Cadinol (1.25%), α-Murolol (0.64%), α-Cadinol (1.16%), Farnesol (0.35%), Eugenyl acetate (1.78%), 2,4,5-Trimethoxy-styrene (0.43%), Benzyl benzoate (0.21%), α-Copaene (5.7%), β-elemene (0.1%), (Z)-α-bergamotene (5.20%), α-cedrene (1.00%), α-santalene (4.50%), β-caryophyllene (0.90%), (E)-α-bergamotene (0.00%), (E)-β-farnesene (3.00%), α-humulene (0.10%), α-farnesene (5.70%), ar-curcumene (8.60%), β-bisabolene (28.20%), δ-cadinene (0.70%), (Z)-calamenene (3.00%), β-sesquiphellandrene	Traditional Medicine : Against body lice.	[14]	
Uvariastrum pierreanum (Engl. & Diels)	stem bark, leaves			Bioactivity : Antiplasmodial	[13]	
Families	Species	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
----------	---------	------------	------------	----------------	---	------------
Xylopia aethiopica (Dunal) A. Rich	Bikui in Beti	Dried fruits	-	α-Thujene (1.92%), α-pinene (7.39%), α-fenchene (0.12%), β-pinene (32.16%), α-pherllandrene (6.8%), α-terpinene (0.61%), p-cymene (0.44%), β-pherllandrene+1,8-cineole (0.03%), Z-b-cocimene (1.12%), limonene (0.68%), β-Phellandrene (10.71%), cis-β-ocimene (2.37%), γ-terpinene (2.09%), Camphenilone (0.18%), p-cymene (1.94%), terpinene (0.39%), β-thujone (0.46%), cis-p-menth-2-en-1-ol (0.22%), Nopinone (0.19%), myroxide E (0.02%), p-menth-1,5-dien-8-ol (0.44%), terpinene-4-ol (0.11%), cryptone (0.03%), α-terpeneol (0.05%), myrtenal (0.13%), methyl chavicol (0.04%), verbene (4.67%), trans-carveol (0.06%), (R)-(−)-beta citronellol (0.74%), (E)-citral (0.21%), cuminol (0.2%), Carvone (0.12%), Perylaldehyde (0.33%), bornyl acetate (0.04%), thymol (0.35%), 2E,4Z-decadienal (0.05%), longycyclene (1.37%), α-copaene (0.2%), β-bourbonene (0.63%), α-cubebene (0.04%), cyperene (0.13%), β-elemene (0.49%), Z-caryophyllene (0.47%), cis-prenyl limonene (0.6%), β-copaene (0.08%), aromadendrene (0.21%), α-humulene (0.95%), trans-prenyl limonene (0.09%), aromadend-9-ene (0.2%), gercmacrene D (0.19%), Z-γ-bisabolene (10.07%), δ-cadinene (0.13%), E-γ-bisabolene (0.87%), α-cadinene (0.12%), α-calacorene (0.14%), selina-3,7(11)-diene (0.56%), Germacrene-B (0.04%), elemol (0.04%), caryophyllene oxide (0.1%), thujopsan-2-a-ol (0.56%), neryl isovalerate (0.19%), epi-globulol (0.16%), epoxy-allo alloaromadendrene (0.06%), isopathulénol (0.04%), α-eudesmol (0.25%), vélérianol (0.11%), α-cadinol (0.14%), E-apritone (0.08%).	Traditional Medicine: treatment of a cough, stomachache, dizziness, amenorrhea, bronchitis, dysentery, headache, neuralgia, carminative, female fertility, purgative, biliousness and skin infections, fever, tapeworm, stomach ache, stomach ulcer, spice [15]	[18]
Xylopia parviflora (A. Rich) Benth	mbatou’ou in Bangangté	Fruits	α-Pinene (10.80%), sabinen (3.00%), β-pinene (32.90%), p-cymene (2.80%), limonene (0.50%), β-pherllandrene (0.70%), 1,8-cineole (2.00%), (Z)-β-ocimene (tr), (E)-β-ocimene (8.00%), linalool (0.70%), trans-pinocarveol (3.20%), trans-verbenol	Sore groin in women, abscesses, lung infections, body aches, headache, fever [20]	[16]	
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References	
-------------------------------	------------	------------	---	--	------------	
Apiaceae						
Xylopia phloiodora Mildbr.	odjobbo	Stem bark,	(0.40%), pinocarvone (0.70%), borneol (0.60%), terpinen-4-ol (0.70%), p-cymen-8-ol (0.70%), α-terpineol (1.70%), myrtenol (5.20%), bornyl acetate (0.40%), δ-elemene (tr), α-cubebeene (tr), α-ylangene (0.60%), α-copaene (0.50%), β-elemene (0.40%), β-caryophyllene (tr), β-copaene (1.10%), γ-muurolene (0.50%), germacrene D (2.00%), trans-muurola-4(14),5-diene (1.80%), α-muurolene (0.80%), 5-cadinene (3.70%), cubehol (1.70%), elemol (2.00%), carophyllene oxide (2.00%), epi-α-cadinol (2.40%), α-muurol (2.90%), germacra-4(15),5,10(14)-triene-1-diol (1.50%), α-Pinene (0.58%), camphene (1.38%), β-pinene (0.68%), p-cymene (0.35%), linalool (0.31%), nopinone (0.28%), (E)-pinocarvol (1.23%), p-cymen-8-ol (1.58%), myrtenal (0.28%), verbenone (2.23%), thymol (0.28%), δ-elemene (3.29%), α-copaene (0.53%), cytosativene (2.07%), β-elemene (0.58%), cypene (0.34%), (E)-α-bergamotene (0.04%), epi-bicyclo-sesquiphyllandrene (3.00%), germacrene D (1.02%), γ-cadinene (11.27%), bicyclogeranone (1.43%), α-selinene (21.92%), δ-cadinene (15.11%), calacorene (0.89%), cadalene (7.65%), elemol (2.04%), (E)-nerolidol (0.64%), spathulenol (1.02%), carophyllene oxide (5.07%), fesenol (0.76%), globulol (1.93%), humulene oxide (0.68%), T-muurol + turroyl (3.7%), epi-α-cadinol (0.95%), α-muurol (0.58%), α-cadinol (0.5%), farnesol (0.37%), ethyl benzoate (0.25%), methoxy cinnamaldehyde (1.47%), benzyl benzoate (0.83%).	Bioactivity : Antiplasmodial [14]	[21]	
Eryngium foetidum L. (Mexican Coriander)	Megnebili	aerial part	2-dodecanol (50.62%), 2,4,5-trimethyl-benzaldehyde (11.08%), n-Dodecanal (10.29%), 1-(2-Methylbutyl)-1-(1-methylpropyl)-cyclopropane (5.94%), α-Pinene (3.49%), Decanal (2.59%), Cyclopropane-carboxamidine (1.09), Prircocine I (1.01%), Z-2-Dodecenol (0.94%), Gamma terpinene (0.84%), 2,7-Dimethyl-2,7-octadien-1-amine (0.87%), Tetradecanal (0.79%), 2,4,6-trimethyl-benzaldehyde (0.75%), p-Cymene (0.67%), (Z)-3-Heptadec-5-yno (0.53%), Cyclocdecane (0.52%), Carotol (0.48%), 1,2,3,6-Tetramethyl-bicyclo[2.2.2]oct-2-ene (0.44%), Dodecanoic acid (0.43%), β-Caryophyllene (0.37%), Ethyl benzoate (0.25%), Methoxy cinnamaldehyde (1.47%), Benzyl benzoate (0.83%).	Spice. Treatment of pneumonia, diabetes, constipation, fevers, vomiting, diarrhea [22]	[23]	

Fogang et al.; JPRI, 33(42A): 163-207, 2021; Article no.JPRI.72567
Families	Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
Asteraceae	Ageratum conyzaïdes L.	Mré guefah [24]. Tchouamo’ [25].	Entire plant	(0.41%), Beta myrcene (0.27%), 1-Imidazol-1-yf-3-methylbut-2-en-1-one (0.25%), Nerolidol (0.24%), Undecane (0.23%), 3-Methyl-2-butenolic acid, tridec-2-ynyl ester (0.21%), 1,4-Diethyl-1,4-dimethyl-2,5-cyclohexadiene (0.18%), (R)-(z)-Limonone (0.16%), N,N-Dimethylcetylamine (0.16%), Undecanal (0.15%), Butylated hydroxytoluene (0.13%), 1-Methyl-7-oxabicyclo[4.1.0]heptane (0.13%), Verbenol (0.13%), (Z)-β-Farnesene (0.10%), Pinane (0.10%), 1,7,7-Trimethylbicyclo[2.2.1]hept-5-en-2-one (0.09%), 2-Undecenal (0.09%), Beta-bisabolene (0.09%), Safranal (0.08%), β-Chamigrene (0.07%), Furfuryl ester (0.07%), (z)-β-Farnesene (0.07%), Sabine (0.07%), 3-Isopropenyl-5,5-dimethylcyclopentene (0.06%), Phenylacetaldehyde (0.06%), 3-Methylenecyclopentane (0.06%), Nonanal (0.06%), n-Nonane (0.05%), α-Pinene oxide (0.05%), 6-(4-Morpholyl)-N-(5-methyl-3-isoxazolyl)-hexanamide (0.05%), a-Campholenal (0.05%) and four not identified components.	Antibacterial Protective fetish; purgative, febrifuge; headaches; treat skin deseases, pain; gynecological diseases. amnionitis affecting the newborn, placenta retention; gastritis, quick delivery; postpartum remedy, lung disease; typhoid fever [26].	
	Ageratum houstonianum	Flowers		Demethoxyageratocromene (Preoccene I) (48.01%), ageratocromene (Preoccene II) (36.55%), β-caryophyllen (8.37%), germacrene D (2.34%), bornyl acetate (2.29%), β-cubebene (1.22%), β-farnesene (0.66%).	Antitick [27].	
	Bidens pilosa L.	Yayet or tseutsé’ lezeuk [25]. Okpadi [28].	Leaves	1-Hexanol (1.1%), α-pinene (14.7%), β-myrcene (1.9%), 5-3-carene (1.3%), β-octimene (12.8%), limonene (2.3%), p-cymene-8-ol (3.6%), α-terpinolene (2.5%), γ-terpinene (0.1%), trans-linalool oxide (1.6%), cis-linalool oxide (1.4%), linalool (4.4%), terpinene-4-ol (0.3%), bourbounene (3.9%), δ-elemene	Antioxidant, antimicrobial [29].	
Families	Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
-------------------	------------------------------------	---------------------------------	----------------	--	---	------------
	Chromolaena odorata (L.)	Siam weed, Triffid weed	Leaves	α-Pinene (9.36%), β-pinene (3.77%), α-terpinene (3.69%), p-cymene (1.49%), limonene (0.78%), cis-p-mentha-2,8-dien-1-ol (0.72%), borneol (0.03%), α-terpineol (0.13%), carvacrol (2.63%), α-elemene (2.80%), (Z)-β-farnesene (9.98%), α-humulene (0.09%), bicyclogermacrene (12.55%), cadina-1,4-dien (4.60%), α-humulene oxide (5.62%), geijerene (11.85%), pregeijerene (1.29%).	Anti-tick skin infections, mycosis, urinary infections and inf infection [30].	[31]
	Echinops giganteus A.Rich.	Roots		α-Pinene (tr), mycrene (tr), δ-3-carene (tr), limonene (tr), terpinolene (tr), silephiperfol-5-ene (2.1%), presilpherfol-7-ene (7.8%), silephine (1.7%), 7-epi-silephiperfol-5-ene (3.5%), modeph-2-ene (3.0%), silephiperfol-6-ene (23.0%), α-isocoumarone (2.4%), iso-longifolene (tr), β-isocoumarone (2.1%), α-gurjunene (tr), (E)-carphol (6.3%), α-humulene (2.0%), (E)-β-farnesene (tr), germacrene D (0.3%), ar-curcumene (0.1%), epi-cubeol (0.1%), silephiperfolan-6-α-ol (1.0%), cameroonan-7-α-ol (7.1%), β-cadinene (0.3%), silephiperfolan-7-β-ol (2.5%), silephiperfolan-6-β-ol (1.7%), prenopsan-8-ol (3.2%), presilpherfolan-8-ol (22.7%), 1,1-diepi-cubeol (0.1%), caraphylla-(4,12),8-(13)-dien-5-ol (tr), epi-α-murolol (0.4%), α-murolol (0.1%), α-cadinol (0.4%), curcuphenol (0.4%).	Spice, heart and gastric troubles, stomach ache, carminative help and reduce the effects of alcohol, and reduces asthma attacks [32].	[32]
	Erigeron floribundus (Kunth) Sch.Bip.	Mré gam, aerial part		butyl methyl ketone (tr), hexanol (0.1%), (3E)-hexenol (0.2%) n-hexanal (0.1%), 1-(2-methyl-2-cyclopenten-1-yl)-ethanone (tr)-pinene (0.2%), sabine (tr) β-pinene (2.1%), myrcene (0.1%), 2-pentyl furan (0.1%), p-cymene (tr), limonene (8.8%), (E)-β-ocimene (0.1%), γ-terpinene (tr), terpinolene (tr), linalool (0.1%), n-nonanal (tr), (E)-4,8-dimethyl-1,3,7-nonatriene (tr), trans-p-mentha-2,8-dien-1-ol (tr), trans-pinocarveol (0.1%), nerol oxide (tr), pinocarvone (0.1%), linalool (0.1%), terpinen-4-ol (0.1%), trans-isocarveol (tr), α-terpineol (0.2%), myrtenal (0.1%), myrtenol (0.1%), β-cyclocitrinal (0.1%), nerol (0.4%), carvone.	Traditional Medicine : angina, female infertility, AIDS, dental pain, headache and various diseases of microbial and non-microbial origin. [33].	[33]
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References	
-----------	------------	------------	--	---	------------	
Helichrysum cameroonense Hutch. & Dalziel (endemic[34])	Flowers	Octen-3-ol (1.2%), α-thujene < (0.1%), α-pinene (46.4%), verbene (2.6%), sabi- nene (1.1%), β-pinene (2.0%), myrcene < (0.1%), p-cymene < (0.1%), δ-3-carene (1.5%), (E)-β-octimene (1.1%), campholenal (1.0%), pinocarveol (3.2%), camphor (11.5%), α-phellandrol (5.3%), terpinen-4-ol (3.3%), α-terpinol (1.3%), myrtenol (1.8%), p-cymen-8-ol (4.1%), myrtenyl acetate (3.3%), α-caryophyllene (1.3%), caryophyllene oxide (2.2%), δ-guaienol (5.4%).	infectious diseases	[35]		
Helichrysum cymosum (L.) D.Don ex G.Don	Mba’a [36]	Leaves	Bornyfene (2.7%), α-pinene (6.8%), camphene (7.4%), β-pinene (0.6%), α-terpinene (1.6%), p-cymene (0.6%), δ-3-carene (16.1%), limonene (1.7%), (Z)-β-octimene < (0.1%), (E)-β-octimene < (0.1%), terpinolene < (0.1%), 1,8-cineole (1.7%), l	Traditional Medicine : Flatulence, Weak bones [36]. Bioactivity : Antifungal	[35]	
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References	
------------------------------	------------	------------	--	---	------------	
Helichrysum globosum Sch.Bip.	Mba’a [36]	Leaves	3-en-3-ol < (0.1%), α-pinene (38.6%), verbene < (0.1%), sabine < (0.1%), myrcene < (0.1%), δ-3-carene (7.2%), terpinolene (2.5%), α-terpinolene (1.3%), β-caryophyllene (3.8%), α-humulene (3.0%), γ-selinene (4.1%), β-selinene (6.0%), γ-cadinene (2.9%), α-selinene (8.6%), nerolidol (5.0%), α-cadinol (3.0%), δ-guaienol (1.8%), valerianone (10.9%).	Antifungal Osteomalakia (Rickets)[36]	[35]	
Laggera pterodonta (DC.) Sch.Bip. ex Oliv.	mamataba	Leaves and flowers	α-thujene (0.1%), α-pinene (0.4%), sabine (tr), β-pinene (2.2%), α-phellandrene (0.1%), δ-3-carene (0.1%), α-terpinene (0.2%), p-cymene (0.2%), limonene (1.1%), β-terpinene (0.7%), terpinolene (0.4%), 1,8-cineole (0.9%), Linalool (0.1%), cis-p-menth-2-en-1-ol (1.0%), trans-p-menth-2-en-1-ol (0.1%), camphor (1.7%), borneol (0.1%), terpinen-4-ol (1.3%), α-terpinol (0.3%), trans-chrysanthyl acetate (0.1%), thymol methyl ether (0.2%), thymol (tr), 2,5-dimethoxy-p-cymene (28.2%), α-copaene (0.1%), β-bourbonene (0.1%), β-elemene (0.2%), β-caryophyllene (7.8%), precocene I (0.1%), β-gurjunene (0.2%), α-humulene (4.1%), (E)-β-farnesene (0.8%), γ-muurolene (4.7%), δ-guaiaene (tr), δ-cadinene (0.1%), β-selinene (0.1%), cis-calamene (0.1%), β-caryophyllene oxide (2.2%), γ-eudesmol (26.2%), t-cadinol (0.5%), β-eudesmol (0.2%), α-eudesmol (3.5%), juniper camphor (4.7%), α-bisabolol (2.6%), α-Thujene (0.2%), α-pinene (29.3%), camphene (0.6%), sabine (0.3%), β-pinene (0.8%), menthene (1.6%), α-phellandrene (30.9%), δ-3-carene (2.3%), α-terpinene (2.4%), p-cymene (9.2%), limonene (0.4%), γ-pinene (0.3%), terpinolene (4.6%), 1,8-cineole (9.0%), camphor (0.8%).	Traditional Medicine : sexual disorders,	[37]	
Burseraceae	Aucoumea klaineana Pierre.	Okoumé Resin	3-en-3-ol < (0.1%), α-cym a catate (1.6%), borneol < (0.1%), terpinen-4-ol < (0.1%), α-terpinol (0.6%), δ-elemene (1.9%), α-copaene (0.5%), β-elemene (0.8%), β-caryophyllene (12.0%), aromadendrene (3.6%), methyl hexyl bourgine (7.2%), α-humulene (5.6%), γ-selinene (1.2%), germacrene D (0.6%), β-selinene (5.7%), germacrene B (2.3%), α-selinene (6.8%), spathulenol (0.9%), caryophyllene oxide (1.1%), humulene oxide (0.9%), β-eudesmol (2.7%), α-eudesmol (1.3%), valerianone (1.4%).	Antiradical and antioxidant	[38]	
Families	Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
-----------------------	-------------------------------------	------------------	------------	--	--	------------
Caesalpiniaeae (Canarium schweinfurthii Engl.	Abel [28]	Resin	terpinen-4-ol (2.5%), α-terpineol (3.1%), carveol (0.3%), α-Pinene (1.7%), β-Pinene (2.0%), β-pinene (0.4%), α-phellandrene (1.1%), β-3-carene (0.3%), α-terpineol (0.5%), p-cymene (9.8%), limonene (42.7%), γ-terpinene (1.9%), terpinolene (1.5%), 1,8-cineole (0.3%), terpinen-4-ol (2.3%), α-terpineol (34.4%)	Antiradical and antioxidant	[38]
(Leguminosae -	Scorodophloa zenkeri Harms	tropical garlic	Seeds	2,4-Dithiapentane (tr), 2,3,4-Trithiapentane (0.6%), 1,2,4-Trithiolane (tr), 1,3,5-Trithiaclyclohexane (tr), 2,3,5,7-Trithialhexane (24.2%), 3-Methyl-2,4,5-Trithialhexane (0.1%), Dimethyltetrasulfide (0.1%), Tris(methylthio)methane (0.5%), 2,3,4,6-Tetraethylhexane (6.2%), 2,3,5,7-Tetraethyloctane (0.3%), 2,4,5,7-Tetraethylacete (51.5%), 3,6-Dimethyl-2,4,5,7-tetraethylacete (0.3%), 2,4,5,6,8-Pentathianonane (9.0%), 2,4,5,7,9-Pentathiadecane (2.3%), 2,4,5,7,8,10-Hexathiaundecane (tr), α-Pinene (0.1%), Limonene (0.2%), (Z)-β-Ocimene (tr), (E)-β-Ocimene (0.2%), Eugenol (1.6%), 2,4-Bis(1,1-dimethylpheryl)phenol (tr).	treatment of headache, cough, rheumatism, and constipation	[39]
Caesalpinioideae)	Capparidaceae	Pentadiplandra	Roots	Benzoaldehyde (0.4%), benzylcyanide (17.0%), benzylmethylate (0.1%), p-anisaldehyde (0.9%), p-methoxybenzy alcohol (0.2%), benzylisothiocyanate (78.0%), 4-methoxypentylacetone (2.5%), β-caryophylene (0.1%), 4-methoxybenzyisothiocyanate (0.1%), 3-methoxybenzyisothiocyanate (tr)	Food flour preservation, edble because of their sweet taste. Traditional Medicine : Preventing and treating cellulite [40].	[40]
Capparidaceae	Pentadiplandra brazzeanaBaill.	Difeuh in	Sapin (french)	α-Thujene (0.6%), β-pinene (7.4%), sabine (1.0%), β-pinene (0.2%), myrcene (1.2%), β-3-carene (0.1%), α-terpine (0.6%), p-cymene (0.5%), limonene (3.5%), γ-terpinene (1.0%), terpinolene (0.9%), 1,8-cineole (0.4%), cis-linalool oxide (0.1%), trans-linalool oxide (furanoid) (0.1%), linalool (1.3%), umbellulone (18.3%), cryptone (0.2%), terpinen-4-ol (2.6%), p-cymen-8-ol (0.2%), α-terpineol (0.5%), bornyl acetate (0.1%), thymol (1.6%), cis-acetoxylnaol oxide (0.9%), terpin-4-yl acetate (0.4%), α-terpinyl acetate (1.3%), 2-heptyl acetate (0.4%), heptyl propanoate (3.3%), hexyl butanoate (0.5%), 2-heptyl butyrate (0.2%), α-copaene (0.2%), β-elemene (0.1%), α-	Traditional Medicine : haemorrhoids, rheumatism, whooping cough and styptic problems. Protect stored grains from insect infestation, cure skin diseases [43].	[42] [43]
Capparidaceae	Cupressus lusitanica Mill.	Sapin (french)	Leaves	α-Thujene (0.6%), β-pinene (7.4%), sabine (1.0%), β-pinene (0.2%), myrcene (1.2%), β-3-carene (0.1%), α-terpine (0.6%), p-cymene (0.5%), limonene (3.5%), γ-terpinene (1.0%), terpinolene (0.9%), 1,8-cineole (0.4%), cis-linalool oxide (0.1%), trans-linalool oxide (furanoid) (0.1%), linalool (1.3%), umbellulone (18.3%), cryptone (0.2%), terpinen-4-ol (2.6%), p-cymen-8-ol (0.2%), α-terpineol (0.5%), bornyl acetate (0.1%), thymol (1.6%), cis-acetoxylnaol oxide (0.9%), terpin-4-yl acetate (0.4%), α-terpinyl acetate (1.3%), 2-heptyl acetate (0.4%), heptyl propanoate (3.3%), hexyl butanoate (0.5%), 2-heptyl butyrate (0.2%), α-copaene (0.2%), β-elemene (0.1%), α-	Traditional Medicine : haemorrhoids, rheumatism, whooping cough and styptic problems. Protect stored grains from insect infestation, cure skin diseases [43].	[42] [43]
Families	Species	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
---------------	-----------------------------	------------	-----------------------	---	---	------------
Cyperaceae	Cyperus articulatus L	Ndfu	roots and rhizomes	Cedrene (1.7%), β-caryophyllene (0.7%), β-copaene (0.2%), cis-murola-3,5-diene (4.2%), α-humulene (0.6%), α-acradiene (0.5%), germacrene D (8.2%), γ-curcumene (3.0%), γ-amorphene (0.5%), alaskenea (0.8%), epi-zonarene (5.0%), bicyclogermacrene (0.3%), α-murolene (0.9%), cuparene (tr), β-bisabolene (0.2%), β-curcumene (1.1%), γ-cadinene (0.1%), trans-calamenene (3.8%), 5-cadinene (tr), cis-calamenene (0.6%), α-calacorene (0.2%), β-calacorene (0.2%), β-acradiene (1.6%), cedrol (1.6%), epi-α-cubanol (0.9%), α-acoreol (6.0%), β-acoreol (0.9%), epi-α-cadinol (0.3%), epi-α-murolol (0.2%), α-murolol (0.1%), α-cadinol (1.2%), cis-14-nor-murol-5-en-4-one (1.1%), (Z)-nuciferol (0.2%) [42]. α-Pinene (9.9%), sabinene (14.8%), δ-3-carene (4.2%), myrcene (2.3%), α-terpinene (4.2%), limonene (3.9%), α-phellandrene (1.5%), terpine ne (5.7%), p-cymene (cymol) (3.8%), terpineolene (2.4%), terpinen-4-ol (11.4%), bicyclosquestiphelandrene (2.3%), terpineol (2.7%), α-terpinyl-acetate (3.3%), eucumene (1.4%), cis-calamenene (1.7%), α-cadinene (1.9%), cedrol (3.3%).		[44]
	Cypress sempervirens L.	Cypress	Leaves	Traditional Medicine : treatment of onchocerciasis		[45]

References:

[44] Fogang et al.; JPRI, 33(42A): 163-207, 2021; Article no.JPRI.72567
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
Families	Species		hexahydro-α,α,4a,8-tetramethyl- [2R(2a,4aα,8aα)]-cycloisolongifolene, 8,9-dehydro-caryophyllene oxide, longipinocarvone-3-isopropyl-6,7-dimethyltricyclo[4.4.0.0(2,8)]decane-9,10-diol; cis-Z-α-bisabolene epoxide, longiverbenone, 2,2,7,7-tetramethyltricyclo[6.2.1.0(1,6)]undec-4-ene-3-one, acetic acid, 3-hydroxy-6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydronaphthalen-2-yl ester, 5(1H)-azulene-2,4,6,7,8,8a-hexahydro-3,8-dimethyl-4-(1-methylethylidene) (8S-cis)-perhydrocycloprop[a]azulene-4,5,6-triol, 1,1,4,6-tetramethyl-1H-cyclop propane[azulen-7-01, decahydro-1,1,7-trimethyl-4-methylene-[1ar-(1aα,4aα,7aα,7bα)], (+)-spathulenol, corymboline, ketoalcohol, spiro[4.5]decan-7-one, 1,8-dimethyl-8,9-epoxy-4-isopropyl-9H-cycloisolongifolene, 8-oxo-2(1H)naphthalenone, 3,5,6,7,8,8a-hexahydro-4,8adimethyl-6-(1-methylthienyl)-E-15-heptadecenal, 6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene-2,3-diol, 2(1H)-naphthalenone, 4a,5,6,7,8,8a-hexahydro-6-{1-(hydroxymethyl)ethenyl}-4,8adimethyl-[4ar-(4aα,6α,8aα)]-1-naphthalenol, decahydro-1,4a-dimethyl-7-(1-methylethylidene)-[1R-(1α,4α,8αα)]-cyclodecasioxane, eicosamethyl-		
Tetracosamethyl-cyclododecasiloxane 2,6-dimethyl-1,3,5,7-octatetraene- E,E-benzene, 1-methyl-3-(1-methylethyl)-1H-cycloprop[a]azulene, 1a,2,3,4,4a,5,6,7-bicyclo[2.1.1]hexane-2,4,5,6,7,8,8a-hexahydro-1,4,9-tetramethyl-[3αR-(3αa,4αa,7aα)]-benzene, 1-{(1,5-dimethyl-4-hexenyl)-4-methyl-benzene, 1-methyl-4-(1,2,3-trimethylcyclopentyl)-(R)-azulene, 1,2,3,5,6,7,8a-octahydro-1,4-dimethyl-7-(1-methylethynyl)-[1S-(1α,7aα,8aα)]-α-calamorone, octacosane oodecanoic acid, n-hexadecanoic acid, ([Z],9,12-octadecadienoic acid, cis-13-octadecenoic acid, (Z,Z)-9,12,15-octadecatrienoic acid, cis-13-octadecenoic acid, octadecanoic acid, eicosanoic acid, isophthalic acid, di(2-methylprop-2-en-1-yl)ester, myrtenyl					
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
--------	------------	------------	---------------	---	------------
Euphorbiaceae (APG: Phyllanthaceae)	Antidesma laciniatum Müll. Arg.	Bark	acetate, trichloroacetic acid, hexadecyl ester, bis(2-ethylhexyl)phthalate, oodecanoic acid, dodecyl ester, (-)-trans-pinocarvyl acetate, undecanonic acid, tetradecyl ester, oodecanoic acid, hexadecyl ester.	Traditional Medicine : Aphrodisiac	[14]
Drypetes gossweileri S. Moore	Kodé in Pygmées of Zingui Bolya in Pygmées of Bibaya Oleieng in Ewondo [46]	Barks	Linalool (9.4%), geranial (0.5%), geranyl acetate (14.9%), α-copaene (2.2%), β-bourbonene (0.5%), β-caryophyllene (5.2%), α-copaene (0.3%), α-humulene (2.1%), γ-muurolene (0.7%), germacrene D (8.5%), α-muurolene (1.5%), γ-cadinene (0.3%), (E,E)-α-farnesene (0.5%), β-cadinene (1.3%), α-cadinene (0.3%), germacrene D-4-ol (0.4%), sathapalenol (1.4%), caryophyllene oxide (8.5%), humulene oxide (3.5%), epi-α-cadinol (0.2%), epi-α-muurolol (2.5%), α-muurolol (1%), α-cadinol (3%), (E,E)-farnesol (2%), (E,E)-farnesyl acetate (1.3%), p-methyl anisol (2.1%), methyl benzoate (0.5%), benzyl acetate (1.5%), (E)-anethole (0.6%), (E)-cinnamyl acetate (0.6%), benzyl benzoate (19.1%), benzyl salicylate (3%).	Traditional Medicine : toothache, dysentery, gonorrhoea, corzya, sinustis, boils and swellings [47].	[48]
Euphorbia golondrina L.C.W heeler	Leaves		2,4-Dimethylthiophene (0.03%), dialyl sulphide (0.11%), allyl methyl disulphide (0.01%), N,N'-dimethyl thiourea (0.01%), benzaldehyde (0.28%), phenylacetaldehyde (0.06%), 2-propenyl propyl disulphide (0.02%), terpinolene (0.02%), phenylmethanol (0.01%), campholenol (0.03%), benzylcyanide (35.72%), dimethyl tetrasulfide (0.02%), benzylisothiocyanate (63.19%), germacrene D (0.02%), β-sesquiphellandrene (0.05%), benzyl sulfide (0.06%), methyl linolenate (0.06%).	Bioactivity : Anti inflammatory	
			Benzoquinoline (1.76%), indole (1.18%), camphor (9.41%), eucalyptol (2.92%), caryophyllene oxide (14.18%), panasinsene (0.9%), selinene (4.94%), (-)-spathulenol (1.29%), phytol (5.75%), 2,6-disopropynaphthalene (3.75%), 2(1H)-naphthalene (0.9%), 1,3-disopropynaphthalene (2.39%), 1,4-disopropynaphthalene (4.31%), furan (3.04%), trans-2-(2-penteny)furum (0.9%), dibutylphthalate (2.75%), nonanal (3.32%), 2,4-decadienal (0.75%), 5-pyrimidinecarbonitrile (1.38%), α-glucopyranoside (1.15%), 3,4-dimethylinisole (2.3%), furazan-3-carboxamidine (0.9%), 1-naphthalenol (1.48%), oxirane (2.4%), 2-pentadecanone	Antioxidant, antibacterial, antifungal	[49]
Plants

Families	Species	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
Fabaceae	Phyllanthus muellerianus	stem bark	Phyllanthus	(13.78%), 2-(2-fluorophenyl)isilane (1.25%), 2,4-dimethylthiosemicarbazide (1.76%), 2-ethylacidine (4.38%), octasiloxane (4.38%); Phenylethyl alcohol (0.05%), octanoic acid (0.08%), anisaldehyde (0.12%), 2-isopropylbenzoic acid (2.64%), p-propylanesole (0.16%), methyl p-anisat (0.43%), 2-cubebene (0.11%), 2-ethylacridine (1.16%), 2-E-isoeugenol (0.40%), α-humulene-4 (0.67%), 2-E-methyl isoeugenol (1.05%), β-bisabolene (0.13%), 2-ethylacridine (0.31%), α-copaen-11-ol (0.25%), elemicin (0.74%), 2-E-norerylodol (0.24%), spathulenol (0.19%), caryophyllene oxide (22.54%), salvial-4(14)-en-1-one (0.32%), ledol (0.35%), humulene epoxide II (2.04%), junenol (1.51%), isoelemicin (36.40%), α-cadinol (11.23%), epi-β-bisabolol (0.97%), oplopanone (0.26%), 6-methylanthranilic acid methyl ester (0.09%);	Traditional Medicine : tetanus	[50]
Fabaceae	Dichrostachys cinerea(L.) Wight & Arn.	Seeds	Dichrostachys	β-Pinene (0.1%), myrcone (0.3%), p-cymene (0.1%), limonene (0.1%), 1,8-cineole (2.3%), ethylene (0.2%), cis-linalool oxide (0.1%), ligustrac (5.1%), linalool (4.0%), cis-p-menth-2-en-1-ol (0.3%), α-campholenal (0.1%), trans-pinocarveol (0.7%), trans-p-menth-2-en-1-ol (0.3%), cis-verbenol (0.2%), trans-pinocamphone (0.4%), pinocarvone (0.1%), borrel (0.7%), cis-pinocamphone (0.8%), umbellulone (3.8%), terpinen-4-ol (7.5%), p-cymen-8-ol (0.3%), α-terpineol (3.3%), myrtenal (0.2%), myrtenol (1.1%), trans-piperitol (0.1%), trans-carveol (0.2%), nerol (0.2%), citronellol (0.3%), nerlal (0.2%), pipertone (0.3%), geraniol (18.2%), thymol (0.9%), methyl myrtenate (2.0%), carvacrol (0.7%), α-terpinyl acetate (0.3%), decanoic acid (2.8%), geranyl acetone (1.2%), elemicin (3.0%), isoaromadendrene epoxide (1.8%), caryophyllene oxide (1.1%), α-acoreol (1.0%), epi-α-murolol (0.7%), α-cadinol (1.4%), ageratocromene (0.8%), 3-oxo-β-ionone (0.9%), cypertundone (0.9%), (2E,6E)-farnesol (2.4%), (2E,6E)-farnesal (1.0%), (2E,6E)-farnesal (1.7%);	Spice	[32]
Gramineae /	Cymbopogon citratus (DC.)	Fipagrass in	Cymbopogon	Myrcene (11.43%), Limonene (0.04%), (Z)-β-ocimene (0.27%), γ-terpinene (0.22%), 1,8-cineole (0.22%), Linalool (0.72%);	Traditional Medicine : Stomach ache, toothache, fever, sore nerves.	[53]
Poaceae		Bandjoun				

In Kenya, South Africa and Tanzania, the decoctions of the leaves and roots are used against venereal disease, eye injury, skin rash and pimple, snake bite, wound and as astringent, detoxifying, antalgic and aphrodisiac. The root is used for chest complaints and the twigs for gonorrhoea and syphilis. The smoke of the leaf and the root are used for pulmonary tuberculosis.
Families	Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
Lamiaceae	Aeollanthus	aerial	3,6,6-trimethyl-2-Norpinene (0.5%), α-pinène (0.1%), Limonene	Traditional Medicine : spice in stomach, nausea, vomiting, fever, diarrhea, appendicitis, dysentery, ulcers, bowel, kidney infections	[56]	
Huaceae	Afrostyrax lepidophyllus	‘bush onion’	‘bush onion’	1,2,4-Trithiolane (0.4%), 2,3,5-Trithialhexane (8.0%), Tris(methylthio)methane (0.1%), 2,3,4,6-Tetraithiheptane (1.2%), 2,3,5,7-Tetraithioactone (1.6%), 2,4,5,7-Tetraithiactone (52.9%), 3,6-Dimethyl-2,4,5,7-tetraithioactone (1.6%), 2,4,5,6,8-Pentathianonane (2.4%), 2,4,5,7,9-Pentathiadeacne (11.7%), 6-Methyl-2,4,5,7,9-Pentathiadeacne (10.8%), 2,4,5,7,8,10-Hexathiadeacne (0.2%), Eugenol (1.2%), Tetradec-1-ene (0.1%), n-Tetradecane (0.2%), 2,4-Bis(1,1-dimethylthyle)phenol (1.4%)	Spice remedy for child’s cough, heart rate, worms, constipation, hernia abscesses, and boils.	[39]
					Bioactivity : Antibacterial	
	Cymbopogon giganteus Chiiov.	Flowers, leaves,	Isocitrinal (0.30%), (E)-chrysanthenal (0.17%), Citronellal (0.15%), (Z)-chrysanthenol (1.17%), (E)-chrysanthenol (1.62%), Neral (30.21%), Geraniol (8.19%), Geranial (32.82%), Neryl acetate (0.86%), β-caryophyllene (0.06%), trans-a-bergamotene (0.07%), Eugenol (0.13%), 6-methyl-hept-5-en-2-one (0.96%), Undecan-2-one (0.17%), Tridecan-2-one (0.10%) [51].	herpes, headache, bleeding, hyperglycemia, insect bites, cleaning blood, kidney infections [52]		
		stems		Trans-p-methan-1(7),8-dien-2-ol (24.9%), terpinen-4-ol (0.4%), α-terpineol (0.2%), isopulegone (1.3%), isopiperitenol I (1.8%), p-methen-9-al (0.4%), isopiperitenol II (0.9%), verbeneone (0.2%), trans-carveol (4.8%), cis-p-methan-1(7),8-dien-2-ol (22.8%), cis-carveol (0.2%), carvone (1.8%), pipertone (0.1%), isomamy hexanoate (0.5%), carveone (0.2%), thymol (0.3%), isopiperitenone (0.3%), perillaldehyde (0.7%), perillyl alcohol (0.3%), β-caryophyllene (0.2%), α-humulene (0.1%), germacrene D (0.2%), carvyphylène oxide (0.1%), (E)-nerolidol (0.1%), (E,E)-farnesol (0.1%) [54].	Traditional Medicine : rheumatism, fever, cough, skin disorders (decoctions of leaves and flowers) and arterial hypertension.	[54]
					Bioactivity : Antibacterial	[55]
				1,2,4,6-Tetrathioheptane (0.1%), 2,3,4,6-Tetrathioheptane (1.2%), 2,3,5,7-Tetraithioactone (1.6%), 2,4,5,7-Tetraithioactone (52.9%), 3,6-Dimethyl-2,4,5,7-tetraithioactone (1.6%), 2,4,5,6,8-Pentathianonane (2.4%), 2,4,5,7,9-Pentathiadeacne (11.7%), 6-Methyl-2,4,5,7,9-Pentathiadeacne (10.8%), 2,4,5,7,8,10-Hexathiadeacne (0.2%), Eugenol (1.2%), Tetradec-1-ene (0.1%), n-Tetradecane (0.2%), 2,4-Bis(1,1-dimethylthyle)phenol (1.4%).		

References:
JPRI, 33(42A): 163-207, 2021; Article no.JPRI.72567
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
*Heliotropioide*¹ *Oliv*	parts	(0.1%), α-ocimene (0.1%), α-terpinene (0.1%), Amylvinylcarbinol (0.1%), Eucalyptol (0.1%), *Linalool* (38.5%), P-menth-1-en-8-ol (1.9%), Cis geraniol (0.3%), Trans geraniol (1.0%), Formate de linalol (0.1%), 3-allyl-6-methoxy (0.1%), Phenylethyl valerate (0.1%), 4-methyl-5-(2-methyl-2-propenyl) 2(5H)-furane (0.9%), (R)-massoia lactone (4.5%), Tetrahydro-6-pentyl 2H-Pyra-2-one (0.2%), Iso-caryophylylene (3.6%), Trans α-Bergamotene (0.2%), (2)-α-Farnesene (25.1%), α-caryophylene (0.2%), Germacrene D (2.0%), α-amorphene (0.1%), d-cadinene (0.1%), Cadina-1(10)-4-diene (0.3%), Spathulenol (0.1%), Nerolidol (0.1%), Isooromadendrene epoxide (0.1%), Cubenol (0.1%), α-cadinol (0.6%), (Z,E)-farnesol (0.1%), β-caryophylylene oxide (0.5%), 9-nonadecenol (0.2%), 9-E-hexadecen-1-01 (13.9%), 3,7,11-trimethyl-1,6,10-dodecatrien-3-ol (0.9%), 3,7,11-trimethyl-2,6,10-dodecatren-1-01 (0.2%), Farnesol (0.5%), Cis, trans farnesal (0.3%), 9-(3,3-Dimethyloxiran-2-yl)-2,7-dimethylnona-2,6-dien-1-01 (0.1%), 1,5,5,8-tetramethyl-12-oxabicyclo[9.1.0]dodeca-3,7-diene (0.1%), Oeledehyde (0.1%)	treatment of traditional soup and for seasoning meat, fish and maize against trypanosomiases and diarrhea	Bioactivity : Antifungal	\[57\]
Hoslundia opposita Vahl	Leaves, roots	α-Pinene (0.2%), Sabine (1.2%), β-Pinene (0.7%), Myrcene (0.2%), α-Phellandrene (<0.1%), Limonene (1.2%), (Z)-β-Ocimene (1.2%), (E)-β-Ocimene (<0.1%), Linalol (2.1%), Terpinen-4-0l (0.3%), α-Terpineol (0.6%), Thymol (1.2%), δ-Elemene (2.1%), α-Cubebebe (2.0%), α-Copaene (12.3%), β-Elemene (6.5%), α-Gurjumene (1.3%), β-Caryophylylene (10.3%), β-Gurjumene (1.8%), α-Humulene (1.7%), Germacrene D (15.1%), Bicyclogermacrene (4.3%), δ-Cadinene (10.5%), Germacrene B (6.6%), Spathulenol (1.2%), Caryophylylene epoxide (1.0%), Humulene epoxide (1.0%), T-Muurol (0.9%), T-Cadinol (1.6%), α-Cadinol (2.0%)[57].	Antimalarial[58]	\[57\]	
Hyptis lanceolata Poit.	fresh whole plant	α-Thujene (0.3%), α-Pinene (1.6%), Sabine (8.4%), β-Pinene (9.6%), α-Phellandrene (0.1%), α-Terpine (0.5%), p-Cymene (0.3%), Limonene (1.0%), (Z)-β-Ocimene (0.4%), (E)-β-Ocimene (1.9%), γ-Terpine (1.0%), Terpinolene (0.2%), (E)-Sabine hydrate (<0.1%), Linalol (1.0%), Camphor (0.1%), Terpinen-4-0l	treatment of respiratory tract infections	\[57\]	
Plants

Families	Species	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
Hyptis pectinata						
(L.) Poit	Leaves		(2.0%), α-Terpineol (0.5%), Thymol (<0.1%), α-Cubenene (0.2%), α-Copaene (0.7%), β-Bourbonene (2.1%), β-Elemene (7.2%), β-Caryophyllene (10.2%), Aromadendrene (0.4%), Amorphene (1.2%), (E)-β-Farnesene (0.3%), α-Humulene (1.7%), allo-Aromadendrene (1.0%), Guaiene (1.4%), γ-Muurolene (1.5%), Germacrene D (19.1%), Bicyclogermacrene (3.1%), (E,E)-β-Farnesene (0.4%), γ-Cadinene (1.6%), δ-Cadinene (3.7%), Nerolidol (0.4%), Spathulenol (1.5%), Caryophyllene epoxide (2.3%), Humulene epoxide (0.3%), T-Muurolol (0.6%), T-Cadinol (1.4%), Torreyol (1.1%), α-Cadinol (1.8%).	Insecticidal		
Traditional Medicine: protect cowpeas and sorghum against insects infestation. Infusions prepared with leaves are used against cough, bronchitis and headaches. Soaps, lotions, and perfumes made from the flowers, by the people of northern Nigeria, are part of baths or decoctions for the treatment of various skin diseases. In Central and eastern Africa, and also in Guinea, *H. spicigera* is cultivated and the oleaginous seeds are used.	[59]					
Hyptis spicigera Lam	Flowers		α-Pinene (14.0%), sabine + β-pinene (6.0%), α-phellandrene (4.0%), α-terpinene (0.2%), p-cymene (2.6%), β-phellandrene + 1,8-cineole (14.8%), terpinolene (0.3%), isoamyl isovalerate (2.0%), α-campholenal (0.2%), nopinone (0.1%), cis-sabinol (1.3%), α-phellandren-8-ol (0.5%), terpinen-4-ol (0.4%), p-cymen-8-ol (0.6%), α-terpinol (0.3%), myrtenal + myrtenol (0.7%), verbenone (0.1%), cuminaldehyde (0.4%), phellandral (0.3%), thymol (0.1%), carvacrol (0.4%), α-ylangene (0.3%), α-copaene (0.1%), β-bourbonene (0.1%), β-cubebene (0.2%), isocaryophyllene (0.2%), β-caryophyllene (23.4%), γ-elemene (0.2%), guai-6,9-diene (0.2%), α-humulene (1.3%), germacrene D (0.2%), bicyclosesquiphellandrene (0.1%), γ-cadinene (2.2%), δ-cadinene (0.6%), α-cadinene (0.2%), α-calacorene (0.5%), caryophyllene oxide (10.9%), 1-epi-cubenol (0.3%)		[60]	
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities		
-----------------------------	------------	------------	--	--		
Families	**Species**	**Type**	**Constituents**	**References**		
Hyptis	suaveolens	fresh leaves	α-Thujene (0.5%), α-Pinene (1.3%), Camphene (0.7%), Sabinene (16.4%), β-Pinene (5.2%), Myrcene (1.3%), α-Phellandrene (<0.1%), 5-3-carenne (0.3%), α-Terpine (2.1%), p-Cymene (0.6%), Limonene (3.1%), (E)-β-Ocimene (<0.1%), γ-Terpine (3.7%), Terpinolene (8.4%), 1,8-Cineole (0.1%), Linalol (0.3%), Fenchol (0.3%), Camphor (0.3%), Terpinen-4-ol (7.8%), α-Terpineol (0.5%), β-Copaene (<0.1%), β-Elemene (0.6%), β-Caryophyllene (20.3%), Aromadendrene (3.5%), α-Humulene (0.4%), allo-Aromadendrene (1.3%), α-Selinene (1.2%), Bicyclogermacrene (2.5%), 5-Cadinene (0.2%), Spathulenol (1.0%), Caryophyllene epoxide (0.3%), Humulene epoxide (0.3%), T-Murolol (0.8%), T-Cadinol (0.5%), α-Cadinol (0.5%), α-Bisabolol (0.2%), Bergamotol (6.2%), (Z)-β-ocimene (0.11%), (E)-β-epoxyocimene (2.04%), 1,8-cineole (<29.04%), 5-isopropyl-2-methylbicyclo[3.1.0]hexan-2-ol (0.80%), fenchone (2.87%), trans-linalool oxide (furanoïd) (0.07%), linalool (19.07%), camphor (2.00%), terpinen-4-ol (7.53%), α-terpinol (2.31%), fenchyl acetate (endo) (0.12%), isobornyl acetate (0.17%), α-copaene (0.21%), β-elemene (0.67%), β-caryophyllene (0.42%),	are eaten like sesame. It is also recognized as a valuable biopesticide.		
Mentha	piperita	Leaves	α-Pinene (0.3%), sabine (0.4%), β-pinene (0.7%), p-cymene (tr), β- phellandrene (5.8%), limonene (0.7%, neo-menthol (0.3%), menthol (10.0%), pulegone (0.6%), carvacrol methyl ether (2.3%), pipertone (67.5%), α-terpineol acetate (0.2%), β-cubebene (0.5%), α-bourbonene (0.6%), β-caryophyllene (1.9%), β-copaene (0.35%), α-Guaiane (0.2%), γ-cadinene (0.2%), 5-cadinene (0.1%), α-copaene (0.35%), Caryophyllene oxide (1.7%).	cure gastric disorder, toothache and muscular pains		
Ocimum	americanum	Leaves	α-Thujene (0.17%), α-pinene (1.66%), camphene (0.27%), sabine (0.49%), β-pinene (1.94%), myrcene (0.97%), α-terpine (0.32%), p-cymene (0.95%), limonene (~3%), (2)-β-ocimene (0.11%), (E)-β-ocimene (2.44%), δ-terpinene (0.70%), terpinolene (0.38%), perillene (0.14%), (E)-β-epoxyocimene (2.04%), 1,8-cineole (<29.04%), 5-isopropyl-2-methylbicyclo[3.1.0]hexan-2-ol (0.80%), fenchone (2.87%), trans-linalool oxide (furanoïd) (0.07%), linalool (19.07%), camphor (2.00%), terpinen-4-ol (7.53%), α-terpinol (2.31%), fenchyl acetate (endo) (0.12%), isobornyl acetate (0.17%), α-copaene (0.21%), β-elemene (0.67%), β-caryophyllene (0.42%),	anti- Anopheles funestus activity; anti - Plasmodium falciparum activity		

Fogang et al.; JPRI, 33(42A): 163-207, 2021; Article no.JPRI.72567

182
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
Ocimum basilicum L.	Zwitefua (Babungo) Cotimagin [8]	Leaves	*trans*-α-bergamotene (3.49%), aromadendrene (0.22%), α-humulene (0.51%), epi-bicyclesquiphellandrene (0.17%), germacrene-D (0.76%), bicyclogermacrene (0.30%), δ-guaiene (0.31%), α-cadinene (0.70%), calamenene (0.07%), δ-cadinene (0.30%), (E)-α-bisabolene (0.97%), spathulenol (0.12%), eugenol (8.01%), 1,2-dimethoxy-4-propenylbenzene (0.24%), (Z)-3-hexen-1-ol (0.17%), oct-1-en-3-ol (0.15%), (Z)-3-hexen-1-yl acetate (0.2%), octyl acetate (0.11%)	[51]	
Ocimum gratissimum L.	Ossim in Bulu, Ewondo and Etion Masepu (south west)	dry leaves	Eugenol (0.1%), *thymol* (30.5%), *δ*-terpinene (33.0%), (Z)-β-ocimene (1.0%), α-thujene (4.8%), α-pinene (1.2%), sabine (0.6%), β-pinene (0.4%), myrcene (4.0%), α-phellandrene (0.4%), α-terpinene (4.5%), p-cymene (7.0%), limonene (1.1%), (E)-α-cadinene (0.3%), cis-sabinene hydrate (0.1%), p-cymene (1.0%), linalool (0.1%), borneol (0.1%), terpinen-4-ol (1.3%), α-terpineol (0.1%), carvacrol (0.3%), α-copaene (0.4%), β-caryophyllene (3.5%), α-humulene (0.3%), germacrene D	[64], [67], [66]	

Bioactivities

- **Spice**
 - Traditional Medicine: A decoction of the leaves is used to bath children who cry at night [65].
 - Bioactivity: Antibacterial
 - Anti-*Anopheles funestus* activity; anti-*Plasmodium falciparum* activity [51], antioxidant; antifungal; activity in cancer cells; anti-*Vibrio*; Toxic to crop weevils [63]

- **Bioactivities**
 - Pulmonary antisepticum, antitussivum and antispasmodicum [67]

- **Bioactivity**: Acaricidal, antibacterial, Antifungal, toxic to crop weevils [63]

- **Spice**
 - Traditional Medicine: A decoction of the leaves is used to bath children who cry at night [65].
 - Bioactivity: Antibacterial
 - Anti-*Anopheles funestus* activity; anti-*Plasmodium falciparum* activity [51], antioxidant; antifungal; activity in cancer cells; anti-*Vibrio*; Toxic to crop weevils [63]

- **Bioactivities**
 - Pulmonary antisepticum, antitussivum and antispasmodicum [67]

- **Bioactivity**: Acaricidal, antibacterial, Antifungal, toxic to crop weevils [63]

References

[51], [63], [64], [65], [66], [67]
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
Ocimum urticaefolium Roth	Leaves		(0.1%), β-selinene (1.1%), α-selinene (0.3%), δ-cadinene (0.3%).	Bioactivity: Acaricidal Spice	[64]
Plectranthus glandulosus Hook.f.	Leaves		β-Pinene (0.6%), myrcene (2.2%), β-phellandrene (0.7%), β-3-carene (1.5%), β-terpine (0.8%), limonene (3.2%), trans-β-ocimene (0.6%), terpinolene (25.2%), β-thujone (30.8%), neral (0.8%), fenchol (1.5%), trans-p-menth-2-en-ol (0.5%), borneol (0.5%), p-cymene-8-ol (3.6%), oxide cis-piperitone (3%), oxide trans-piperitone (0.5%), thymol (0.4%), trans-2-hydroxyfiperitone (0.6%), 4-hydroxyfiperitone (0.7%), piperitenone (1.3%), piperitenone oxide (10.9%), isopulegone (1.8%), germacrene (1.4%).	[68]	
Thymus vulgaris L. Thym	dry leaves		α-Thujene (0.9%), α-pinene (0.9%), camphene (0.9%), β-pinene (0.7%), myrcene (1.0%), α-terpinene (1.2%), p-cymene (30.9%), limonene (0.9%), δ-tapine (5.9%), trans-sabinene hydrate (0.7%), linalool (3.2%), camphor (1.6%), borneol (2.1%), terpinen-4-ol (1.2%), thymol (28.1%), carvacrol (2.6%), bornyl acetate (3.5%), α-copaene (0.5%), β-caryophyllene (4.6%), α-amorphone (0.3%), α-selinene (0.2%), δ-cadinene (0.7%), α-caryophyllene (0.7%)	Traditional Medicine: Antitussive action, infectious diseases, expectorant, antibrorncholic, antispasmodic, antismastic, antihelminthic, carminative, diuretic properties	[53] [71]
Vitex rivularis Gürke	Melomeba Munjelenjékie (Pygmees of Bipindi)	Aerial part	1-Octen-3-ol (2.2%), linalool (2.6%), 1-octen-3-yl acetate (0.2%), α-terpineol (0.3%), δ-elemene (0.4%), α-cubebe (0.3%), α-ylangene (0.4%), α-copaene (6.4%), β-bourbonene (0.6%), β-cubebe (0.2%), β-elemene (0.5%), isalatine (0.3%), cis-α-bergamotene (1.1%), β-caryophyllene (7.3%), δ-elemene (0.4%), trans-α-bergamotene (2.6%), α-humulene (2.6%), β-farnesene (2.4%), δ-murolene (3.2%), ar-curcumene (9.1%), δ-curcumene (7.8%), germacrene D (12.6%), β-selinene (0.8%), δ-selinene (0.8%), valencene (0.9%), α-selinene (0.6%), α-	Traditional Medicine: Tonic for newborns and in cases of epilepsy	[72]

References:
- [64] Bioactivity: Acaricidal Spice
- [68] Traditional Medicine: Against influenza, cough and chest complaints. Treatment of colds and sore throat. Bioactivity: Strong antifungal; strong insecticidal; anti-Aedes aegypti and anti-Anopheles gambiae activity
- [53] Traditional Medicine: Antitussive action, infectious diseases, expectorant, antibrorncholic, antispasmodic, antismastic, antihelminthic, carminative, diuretic properties
- [71] Bioactivity: Antibacterial Antifungal
- [72] Traditional Medicine: Tonic for newborns and in cases of epilepsy Bioactivity: Antifungal
| Families | Species | Local name | Used parts | Main Compounds | Traditional Medicine usages and Bioactivities | References |
|--------------|--------------------------|------------|------------|--|---|------------|
| Lauraceae | Cinnamomum zeylanicum Blume | Leaves | | α-Pinene (0.36%), camphene (0.15%), myrcene (0.18%), δ-3-carene (0.27%), limonene (1.21%), (Z)-β-ocimene (0.45%), linalol (0.31%), iso-geraniol (0.14%), myrtenal (0.55%), linalol acetal (0.76%), hydroxy cinnomellal (1.25%), neryl acetone (1.11%), ethyl cinnamate (0.22%), hydro-cinnamaldehyde (0.62%), verbene (0.43%), β-cubebene (78.10%), botrydiol (0.11%), *phenethyl alcohol* (13.04%), *p*-tolualdehyde (0.14%). | anti-Anophelles gambiae activity [73]; antifungal [74]. | [73] [74] |
| Liliaceae | Allium cepa L. | Onion | Red bulbs | Diallyl sulfide (1.38 %), 2,5-dimethyl thiophene (0.82%), Octyl aldehyde (2.26%), phenylacetaldehyde (2.69%), 2-propenyl propyl disulfide (0.15), Trans-propenyl propyl disulfide (2.86%), Dipropyl disulfide (2.71%), 1-propenyl propyl disulfide (3.77%), 3,5-dimethyl-1,2,4-trithiolane (1.81%), Methyl propyl trisulfide (8.14%), Benzylcyanide (2.52%), Dimethyl tetrasulfide (1.32%), 2,5-Dimethylfuran (4.62%), *diallyl trisulfide* (22.17 %). | Spice [48] Diabetes, cough, rhumatism, filariosis, Hypertension, headache, asthma, infections, asthenia, goiter, gout, insect venom, cholestérol problem,… [52]. Bioactivity : Anti inflammatory. | [48] [52] |
| | Allium sativum L. | Garlic | Red bulbs | Phenolic compounds 2,4-dimethylthiophene (0.63%), Diallyl sulfide (7.10 %), Methyl propyl disulfide (1.19%), dimethyl trisulfide (0.58%), 2-Phenyl furan (0.48%), Limonene (0.62%), 2-propenyl propyl disulfide (0.20%), 2,5-dimethyl-1,3,4-thiadiazole (0.74%), *diallyl disulfide* (19.74 %) Linalool (0.88%), Dipropyl disulfide (0.62%), allyl methyl trisulfide (12.95 %), 3,4-Dihydro-3-vinyl-1,2-dithin (1.37%), Dimethyl tetrasulfide (1.59%), diallyl trisulfide (41.62 %), 3-Methoxyoctane (0.62%), Allyl propyl sulfide (1.30%), Di-1-propenyl sulfide (2.08%), p-methoxybenzylcyanide (0.85%), B- | Spice [48] Cough, Hypertension, asthma, infections, asthenia, goiter, gout, insect venom, cholestérol problem,… [52]. Bioactivity : Anti inflammatory. | [48] [52] |
| Families | Species | Local name | Used parts | Main Compounds | Traditional Medicine usages and Bioactivities | References |
|------------------|--------------------------|------------|------------|--|---|------------|
| Meliaceae | Azadirachta indica A. Juss. | leaves | Phenolic compounds | caryophyllene (0.23%), γ-cadinene (0.39%), diallyl tetrasulfide (4.22%) | Anti-trypansomia [55] | [75] |
| Myrtaceae | Callistemon citrinus (Curtis) Skeels | Leaves | δ-Elemene (0.1%), α-copaene (0.2%), bourbonene (0.3%), β-elemene (0.9%), (E)-caryophyllene (2.4%), γ-elemene 1 (18.3%), α-humulene (0.4%), germacene D (0.5%), (E)-β-ionone (0.5%), δ-cadinene (0.2%), selina-3,7(11)-dieno (0.2%), germacrene B 2 (74%), (3Z)-hexenyl benzoate (0.3%) | Antibacterial Insecticide [76] | |
| | Callistemon rigidus R.Br. | Leaves | α-pinene (16.3%), myrcene (0.2%), p-cymene (0.5%), γ-terpinene (0.2%), 1,8 cineole (73.8%), linalool (0.3%), trans-pinocarveol (0.4%), borneol (0.2%), terpinen-4-ol (0.5%), α-terpineol (4.8%), alcohol (M 152) (0.4%), δ-bisabolene (0.2%), δ-cadinene (0.3%) | Anti-fungal, antimalarial [76] | |
| | Callistemon viminalis (Sol. ex Gaertn.) G.Don | Bottlebrushor «rince» bouteille | Leaves | δ-3-Carene (8.61%), 2-methylpropylisobutyrate (0.44%), β-pinene (0.93%), isoamylacetate (0.12%), limonene (7.01%), 1,8 cineole 4 (58.49%), α-pinene (0.38%), ocimene (0.81%), β-linalool (11.00%), 4-terpinenol (0.79%), ociminenol (0.18%), α-terpinol (5.83%), eugenol (0.17%). | Traditional Medicine : Insecticidal, Bronchitis. Bioactivity : Antibacterial [77] | |
| Eucalyptus | Eucalyptus camaldulensis Dehn. | Leaves | α-Thujene (0.12%), α-Pinen (5.47%), Camphene (0.03%), β-Pinen (0.21%), β-Mycene (0.30%), 1,8-Cineole (69.46%), β-Ocimene (0.01%), γ-terpinene (15.10%), Terpinolene (0.53%), 1-Terpinenol (0.03%), Limonene Oxide (cis) (0.01%), α-Terpineol (1.29%), trans-Carveol (0.02%), Geraniol (0.13%), Geranial (0.04%), α-Terpineol Acetate (1.31%), α-Gurjune (0.34%), β-Gurjunene (0.10%), Aromadendrene (1.72%), β-Selinene | Insecticidal, Antimalarial [78] | |
Plants

Families	Species	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
Eucalyptus citriodora Hook.	Leaves			(0.06%), γ-Cadinene (0.05%), Δ-Cadinene (0.07%), α-Calacorene (0.03%), Epi Globulol (0.29%), Globulol (2.00%), Viridiflorol (0.61%), β-Eudesmol (0.23%), α-Cadinol (0.05%), α-Pinene (0.13%), β-Pinene (0.30%), Myrcene (0.11%), Limonene (0.09%), 1,8-cineole (0.17%), Linalool (0.17%), Neo-isopulegol (1.90%), Isopulegol (4.40%), Citronellal (83.50%), Iso-isopulegol (Tr), Neo-isopulegol (Tr), Phenylethyl acetate (0.11%), Citronellol (1.85%), p-Mentha-3,8-diol (0.08%), Citronellyl acetate (1.10%), Methyleneugon (2.20%), Geranyl acetate (0.30%), γ-elemene (0.25%), Trans-caryophyllene (0.50%).	Insecticidal	[79]
Eucalyptusglobulus Labill.	Leaves			α-Pinene(20%), globulol (7.6%), caryophyllene oxide(16.2%), α-sesquiphellandrene (11.1%), camphor (10.3%), eucalyptol (10.2%).	Antioxidant, antifungal	[80]
Eucalyptus saligna Sm.	Leaves			α-Pinene(39.4%),limonene (2.1%), 1,8-cineole (eucalytol) (9.8%), γ-terpinene (9.5%), p-cymene (31.1%),terpinen-4-ol (0.6%), α-terpinene (3.7%), carvacrol (1.7%).	Insecticidal, fungicidal	[44]
Psidium guajavaL Guava tree	Leaves			1-Hexanol (0.1%), α-Pinene (0.8%), Camphene (tr), β-Pinene (0.1%), Myrcene (0.6%), α-Phellandrene (tr), p-Cymene (0.1%), Limonene (42.1%), E-β-cimene (0.5%), γ-terpinene (0.2%), β-Cymene (tr), Terpinolene (tr), Terpinen-4-ol (0.2%), α-Terpineol (0.4%), E-piperitol (tr), Thymolmethyl ether (tr), Bornyl acetate (tr), Neryl acetate (0.1%), α-Longipinene (tr), α-Copaeno (2.2%), 2,6-Dimethoxyxymene (0.7%), Isoxycarophyllene (1.2%), β-Caryophyllene (21.3%), Aromadendrene (0.1%), α-Humulene (2.4%), allo-Aromadendrene (0.6%), 4,5-Di-epi-aristolochene (tr), γ-Murolene (0.1%), β-Selinene (3.7%), α-Selinene (3.6%), β-Bisabolene (0.1%), γ-Cadinene (0.04%), trans-Calamenene (1.1%), 5-Cadinene (0.8%), Cadina-1,4-diene (0.9%), α-Calacorene (0.2%), (E)-Nerolidol (2.3%), Caryophyllene oxide (2.2%), Viridiflorol (0.5%), 1-epi-Cubenol (0.1%), α-Cadinol (0.05%), α-Copaene (0.1%), 2,6-Dimethoxyxymene (0.7%), Isoxycarophyllene (1.2%), β-Caryophyllene (21.3%), Aromadendrene (0.1%), α-Humulene (2.4%), allo-Aromadendrene (0.6%), 4,5-Di-epi-aristolochene (tr), γ-Murolene (0.1%), β-Selinene (3.7%), α-Selinene (3.6%), β-Bisabolene (0.1%), γ-Cadinene (0.04%), trans-Calamenene (1.1%), 5-Cadinene (0.8%), Cadina-1,4-diene (0.9%), α-Calacorene (0.2%), (E)-Nerolidol (2.3%), Caryophyllene oxide (2.2%), Viridiflorol (0.5%), 1-epi-Cubenol (0.1%), α-Cadinol (0.05%), α-Copaene (0.1%), 2,6-Dimethoxyxymene (0.7%), Isoxycarophyllene (1.2%), β-Caryophyllene (21.3%), Aromadendrene (0.1%), α-Humulene (2.4%), allo-Aromadendrene (0.6%), 4,5-Di-epi-aristolochene (tr), γ-Murolene (0.1%), β-Selinene (3.7%), α-Selinene (3.6%), β-Bisabolene (0.1%), γ-Cadinene (0.04%), trans-Calamenene (1.1%), 5-Cadinene (0.8%), Cadina-1,4-diene (0.9%), α-Calacorene (0.2%), (E)-Nerolidol (2.3%), Caryophyllene oxide (2.2%), Viridiflorol (0.5%), 1-epi-Cubenol (0.1%), α-Cadinol (0.05%), α-Copaene (0.1%), 2,6-Dimethoxyxymene (0.7%), Isoxycarophyllene (1.2%), β-Caryophyllene (21.3%), Aromadendrene (0.1%), α-Humulene (2.4%), allo-Aromadendrene (0.6%), 4,5-Di-epi-aristolochene (tr), γ-Murolene (0.1%), β-Selinene (3.7%), α-Selinene (3.6%), β-Bisabolene (0.1%), γ-Cadinene (0.04%), trans-Calamenene (1.1%), 5-Cadinene (0.8%), Cadina-1,4-diene (0.9%), α-Calacorene (0.2%), (E)-Nerolidol (2.3%), Caryophyllene oxide (2.2%), Viridiflorol (0.5%), 1-epi-Cubenol (0.1%), α-Cadinol (0.05%), α-Copaene (0.1%), 2,6-Dimethoxyxymene (0.7%), Isoxycarophyllene (1.2%), β-Caryophyllene (21.3%), Aromadendrene (0.1%), α-Humulene (2.4%), allo-Aromadendrene (0.6%), 4,5-Di-epi-aristolochene (tr), γ-Murolene (0.1%), β-Selinene (3.7%), α-Selinene (3.6%), β-Bisabolene (0.1%), γ-Cadinene (0.04%), trans-Calamenene (1.1%), 5-Cadinene (0.8%), Cadina-1,4-diene (0.9%), α-Calacorene (0.2%), (E)-Nerolidol (2.3%), Caryophyllene oxide (2.2%), Viridiflorol (0.5%), 1-epi-Cubenol (0.1%), α-Cadinol (0.05%), α-Copaene (0.1%), 2,6-Dimethoxyxymene (0.7%), Isoxycarophyllene (1.2%), β-Caryophyllene (21.3%), Aromadendrene (0.1%), α-Humulene (2.4%), allo-Aromadendrene (0.6%), 4,5-Di-epi-aristolochene (tr), γ-Murolene (0.1%), β-Selinene (3.7%), α-Selinene (3.6%), β-Bisabolene (0.1%), γ-Cadinene (0.04%), trans-Calamenene (1.1%), 5-Cadinene (0.8%), Cadina-1,4-diene (0.9%), α-Calacorene (0.2%), (E)-Nerolidol (2.3%), Caryophyllene oxide (2.2%), Viridiflorol (0.5%), 1-epi-Cubenol (0.1%), α-Cadinol (0.05%), α-Copaene (0.1%), 2,6-Dimethoxyxymene (0.7%), Isoxycarophyllene (1.2%), β-Caryophyllene (21.3%)	Bioactivity : Antiradical, Antibacterial	[83]
Syzygiumaromaticum(L.) Merr. & Clove buds			p-Cymene (0.01%), terpinolene (0.03%), 1,8-cineole (0.03%), fenchone (0.03%), campholen (0.03%), carveal (0.01%),	Traditional Medicine : Increase of sperms density and motility[55]. Sore throat, laryngitis and swelling of the mouth, and it is used externally for skin ulcers, vaginal irritation and discharge. pain killer, against pulmonary and stomach troubles, as laxative, as well as against diarrhea, dysentery and hemorrhoids. It is furthermore used for the treatment of cutaneous and subcutaneous parasitic infections, to improve the menstrual cycle and against small pox, chicken pox and measles.	[81,82]	
Families	Species	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
---------------	--------------------------------	------------	---------------------------------	--	---	------------
	L.M.Perry			geraniol (0.35%), eugenol (87.62%), dihydrouugenol (0.21%), isoeugenol (0.67%), eugenylacetate (0.05%), δ-elemene (0.09%), β-caryophyllene (5.88%), ep()-caryophyllene (0.05%), α-gurjunene (0.02%), germacrene D (0.02%), β-selinene (0.08%), β-bisabolene (4.41%), δ-cadinene (0.05%), elemol (0.02%), spathulenol (0.14%), gaiolol (0.02%), cubenol (0.04%), γ-eudesmol (0.01%), β-bisabolol (0.04%), 3(E)-hexenol (0.01%), 4-heptanol (0.02%).		
Piperaceae	Piper capense L.f.	Fruits, leaves, stems	α-Thujene (0.1%), α-pinene (10.5%), camphene (0.3%), sabine (14.7%), β-pinene (59.3%), myrcene (1%), δ-3-carene (tr), α-terpinene (0.1%), p-cymene (1.2%), (Z)-β-ocimene (0.1%), (E)-β-ocimene (0.2%), γ-terpinene (0.1%), terpinolene (0.1%), sabine hydrate (0.1%), linalol (0.1%), camphor (0.1%), borneol (tr), terpinene-4-ol (0.3%), α-terpinol (0.2%), thymol (0.5%), bornyl acetate (0.1%), α-Cubebeene (tr), α-copaene (0.2%), β-cubebeene (0.1%), β-caryophyllene (3.4%), (E)-β-farnesene (tr), α-humulene (0.1%), valencene (0.1%), germacrene D (2.5%), β-bisabolene (0.3%), γ-cadinene (tr), δ-cadinene (0.1%), (E,E)-α-farsenene (0.6%), germacrene B (0.1%), (E)-nerolidol (0.2%), spathulenol (tr), epia-bisabolol (1.4%), α-cadinol (tr).	Bioactivity: Antifungal	[84]	
	Jove, Il [85]	Leaves, fruits, seeds	α-Pinene (1.8%), Camphene (4.8%), β-Pinene (9.2%), β-Phellandrene (2.3%), 3-Carene (2.2%), D-Limonene (0.9%), p-Cymene (1.2%), α-Copaene (1.5%), Camphor (2%), Linalool (41.8%), β-Elemene (2.1%), Caryophyllene (3.6%), Aromadendrene (1.5%), Isoborneol (2.4%), α-Humulene (1.4%), α-Terpineol (4.1%), γ-Elemene (1.2%), 3,5-Dimethoxytoluene (10.9%), Safrole (1.6%), Caryophyllene oxide (1.6%), Elemol (0.9%), Guaiol (1%) [86].	Traditional Medicine: Tooth decay, fontanelle [52] Respiratory infections, female infertility, aphrodisiac [15], bronchite, gastrointestinal diseases, venereal diseases and rheumatism Bioactivity: Antifungal, anticancer.	[86]	
				pinene (6.7%), myrcene (2.5%), α-phellandrene (4.5%), δ-3-carene (18.5%), β-terpine (0.9%), p-cymene (0.7%), limonene (14.7%), (E)-β-ocimene (0.1%), γ-terpinene (1%), terpinolene (1.2%), sabine hydrate (0.3%), linalool (0.7%), terpinene-4-ol (2%), α-terpinol (0.2%), δ-elemene (1.7%), β-cubebeene (0.2%), α-copaene (1.4%), β-cubebeene (1.3%).	Spice	[84]
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References	
--------	------------	------------	----------------	---	------------	
Piper umbellatum L.	Ekongo (Oroko), Dibakubokula wonja (Douala) [8]	Fruits	α-Thujene (tr), α-pinene (12.3%), camphene (0.7%), β-pinene (21.2%), myrcene (1.7%), α-Fellandrene (tr), p-cymene (0.5%), Limonene (5.5%), (Z)-β-ocimene (0.3%), (E)-β-ocimene (tr), γ-terpinene (0.3%), terpinene (0.8%), linalol (14.4%), camphor (1.4%), borneol (1.9%), terpinen-4-ol (1.4%), α-terpinol (2.1%), α-Cubebecene (0.2%), β-cubebepe (1.0%), β-caryophyllene (4.2%), α-Gurjunene (tr), (Z)-β-farnesene (0.1%), α-humulene (0.9%), Allo-Aromadendrene (7.5%), γ-Muurolene (tr), α-Curcumene (0.9%), β-Zingiberene (0.8%), Bicyclogermacrene (0.9%), β-Selinene (2.0%), γ-cadinene (0.3%), δ-cadinene (0.9%), (E.E)-farnesol (0.1%), α-cadinol (0.6%), Myristicine (1.5%).	Spice	[84]	
Rutaceae	Citrus aurantifolia L.	Leaves and epicarp	LEAVES α-pinene (0.49%), Sabine (0.52%), Myrcene (3.14%), Octen-3-ol (1.49%), Limonene (48.96%), (E)-β-ocimene (2.99%), Isoctammene (0.77%), α-pinene oxde (1.48%), terpinen-4-ol (0.54%), Terpineol (0.03%), Myrtenal (0.42%), Neral (2.99%), Geraniol (10.53%), Geranial (3.93%), Bornyl acetate (14.18%), Geranyl acetate (2.45%), α-cedrene (2.6%), Aromadendrene (0.38%), Bicyclogerumacere (0.7%), Cadina-1,4-diene (0.03%), Germacrene B (0.53%).	Traditional Medicine : Some farmers use leaves of Citrus sp. to protect stored food products against undesirable microorganisms [87]. Bioactivity: Antifungal Anticancer, Antimalarial, antimicrobial [55]	[87]	
			EPICARP α-thujene (0.31%), α-pinene (2.44%), Camphene (0.21%), Octen-3-ol (1.45%), Δ3-carene (0.5%), Limonene (59.09%), Δ-terpinene (0.59%), Terpinolene (1.22%), Cis-hydrate sabineine (7.53%), α-pinene oxde (1.45%), Borneol (0.41%), terpinen-4-ol (3.48%), Myrtenol (5.00%), Myrtenal (0.35%), Nerol (0.82%).			
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References	
--------	------------	------------	----------------	--	------------	
Citrus grandis (L.) Osbeck	Leaves	Neral (4.15%), Geraniol (0.98%), Geranial (5.61%), α-cedrene (0.83%), β-caryophyllene (0.83%), Cis-β-guaiene (0.08%), Bicyclogermacrene (1.01%), Germacrene D (1.20%)	Antimicrobial, antimalarial	[73]		
Citrus limon (L.) Osbeck	Pericarp	Methylnaphthalene/eugenol (0.07%), α-thuyene (0.12%), α-pinene (0.30%), δ-3-carene (0.17%), sabinen (4.23%), β-pinene (0.03%), β-phellandrene (0.08%), Z=β-ocimene (1.06%), α-terpinene (0.23%), E-sabinene hydrate (0.12%), linalool I oxide (0.03%), linalool (0.02%), limonene I oxide (0.06%), myrtenal (0.34%), α-pinene oxide (0.07%), γ-terpinol (0.37%), carvone (0.27%), carveol (0.11%), neral (0.08%), nerol (0.12%), linalyl acetate (0.06%), geraniol (0.04%), bornyl acetate (0.05%), β-elemene (0.23%), β-caryophyllene (0.14%), (E,E)-α-bergamotene (0.08%), bicyclogermacrene (0.05%), γ-cardinene (0.23%), globulol (0.06%), octanal (2.07%)	Bioactivity: Anthelmintic, Anticancer, Antimalarial, antimicrobial [55]	[88]		
Citrus medica L. lime, lamassì (Bangangte) [8]	Leaves	α-pinene (0.43%), furfuryl acetate (3.49%), α-terpinene (0.25%), Z-β-ocimene (33.03%), α-fenchocamphorone (2.76%), citronellal (0.22%), pinocarvone (1.76%), iso-geranial (1.23%), bornyl acetate (4.49%), geraniol (13.36%), sabinyl acetate (5.23%), nerlyl formate (20.52%), isobomyl propanoate (5.01%), β-silphiperfolan-6-ol (0.2%), juniperol (0.63%), α-cubebene (2.04%), cyperene (0.45%), coumarin (2.34%), decanal (0.01%), dodecanol (0.36%)	Bioactivity: Antimicrobial, antimalarial	[73]		
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References	
--------	------------	------------	----------------	---	------------	
Citrus reticulata Blanco	Pericarp of the fruit	Methyl-naphthalene I (0.07%), α-thuyene (0.44%), α-pinene (1.31%), sabinene (0.16%), β-pinene (1.10%), myrcene (1.10%), β-phellandrene (0.29%), δ-3-carene (0.06%), α-terpinene (0.32%), limonene (76.14%), linalool-1-oxide (0.23%), linalool (0.71%), α-pinene oxide (0.05%), myrtenyl (0.44%), γ-terpinene (0.80%), carveol (0.09%), nerol (0.12%), bornyl acetate (0.08%), thymol (0.16%), santalene (0.80%), β-caryophyllene (0.06%), γ-cardinene (0.15%), octanal (1.54%), octanol (14.14%) [90].	Bioactivity: Antheminhic Antimicrobial, antimalarial [55]	[90]		
Citrus sinensis L.	Leaves, Pericarps from ripe fruits	3-methyl cyclohexan-1-ol (1.21%), α-pinene (0.11%), β-pinene (20.69%), α-terpinene (7.45%), limonene (5.02%), E-β-ocimene (5.02%), α-fenchocamphorone (18.62%), campholenaldehyde (0.99%), α-terpinol (12.1%), α-terpinol (0.13%), citronellol (3.52%), genarol (1.37%), geranial (3.02%), nonenal (2.77%), thymol (0.65%), nonenal acetate (0.3%), 3-methylpentenol (0.48%), Z-trimetal (2.96%), fokienol (0.25%), α-copaene (0.85%), β-copaene (1.22%), acoradiene (0.55%), δ-cadinene (0.76%), α-corocalene (0.14%), isomyl geranate (0.4%), acorenol B (0.95%), eugenol (1.62%), saphthulencol (0.21%), α-eudesmol (0.57%), β-bisabolonol (0.2%), pentyl-benzene (2.46%), cinnamyl-acetate (0.25%), meta-toluoldehyde (1.51%).	Bioactivity: Antimicrobial, antimalarial [73]	[73]		
Clausena anisata (Willd.) Saman Hook.f. ex Benth.	Fresh leaves	α-thujene (0.1%), α-pinene (0.2%), sabinene (0.6%), β-pinene (0.3%), myrcene (2.0%), α-terpinene (tr), p-cymene (2.9%), limonene (0.4%), 1,8-cineole (0.2%), (Z)-β-ocimene (0.4%), (E)-β-ocimene (2.2%), α-pinene oxide (0.05%), myrtenyl (0.44%), γ-terpinene (0.80%), borneol (0.09%), nerol (0.12%), bornyl acetate (0.08%), thymol (0.16%), santalene (0.80%), β-caryophyllene (0.06%), γ-cardinene (0.15%), octanal (1.54%), octanol (14.14%) [90].	Bioactivity: Antimalarial protection against insects [7]	[7]		
Families	Species	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
----------	---------	------------	------------	----------------	---	-----------
Vepris heterophylla (Engl.) Letouzey	Kounikoutcho um (Guiziga, Mofou), Hohoum (Zoulgo), Gougouvetche (Mafa), Kotokolhi (fulfulde)	Leaves	(0.1%), β-sesquiphellandrene (tr), germacrene B (0.3%), spathurolen (0.1%), humulene epoxide II (tr), epi-α-muurolol (tr), α-cadinol (tr) [75], α-Thujene (0.4%), α-pinene (0.1%), sabinene (14.0%), β-pinene (0.3%), myrcene (4.2%), α-phellandrene (0.1%), α-terpinene (0.8%), cyrene (0.5%), limonene (4.3%), (Z)-β-ocimene (0.7%), (E)-β-ocimene (14.0%), γ-terpinene (1.3%), terpinolene (1.6%), allo-ocimene (0.3%), pregeijerene (0.2%), cis-sabinene hydrate (0.11%), linalool (0.9%), cis-p-menth-2-en-1-ol (0.1%), trans-p-menth-2-en-1-ol (tr), terpine-4-ol (3.3%), α-terpineol (1.7%), α-thujene (0.4%), α-pinene (0.1%), sabinene (14.0%), β-pinene (0.3%), myrcene (4.2%), α-phellandrene (0.1%), α-terpinene (0.8%), cyrene (0.5%), limonene (4.3%), (Z)-β-ocimene (0.7%), (E)-β-ocimene (14.0%), γ-terpinene (1.3%), terpinolene (1.6%), allo-ocimene (0.3%), pregeijerene (0.2%), cis-sabinene hydrate (0.11%), linalool (0.9%), cis-p-menth-2-en-1-ol (0.1%), trans-p-menth-2-en-1-ol (tr), terpine-4-ol (3.3%), α-terpineol (1.7%), methyl salicylate (0.2%), safrole (3.0%), neryl acetate (tr), geranyl acetate (tr), ethyl eugenol (0.3%), bicycloelemene (tr), α-cubebene (tr), γ-lyangene (0.4%), α-copaene (0.3%), β-bourbonene (tr), β- elemene (0.8%), (E)-caryophyllene (3.1%), β-copalene (0.3%), γ-elemene (0.1%), 10-epi-γ-eudesmol (0.11%), γ-eudesmol (1.26%), β-eudesmol (0.73%), α-eudesmol + valerianol (1.78%), bulnesol (1.7%)	Traditional Medicine : Malaria, edematous disorders and hypertension[91], Bioactivity : Antiparasitic, antimicrobial	[92]	
Zanthoxylum leprieurii Guill. & Perr.	Bongo Elongo Djanelang, Melan (Bamiléké) Fasa kuwari, Melen (Bafou)	Fruits	β-Mycene (0.16%), α-phellandrene (0.10%), δ-3-carene (0.11%), p-cymene (0.29%), limonene (0.26%), (Z)-β-ocimene (0.73%), (E)-β-ocimene (77.36%), γ-terpinene (0.07%), linalool oxide cis (0.14%), p-cresol (0.27%), terpinolene (0.84%), linalool (0.53%), cis-thujone (1.06%), fenchol endo (0.3%), alloocimene (0.07%), limonene oxide (0.24%), sabirol trans (0.56%), borneol (0.28%), pinocamphenol (0.26%), menthol (0.09%), terpinen-4-ol (0.12%), α-terpineol (0.16%), methylchavicol (0.32%), trans pulegol (0.12%), nerol (0.12%), isobornylformate (0.08%), isogeijerene C (0.17%), geraniol (0.28%), carvacrol (0.59%), terpinyl acetate trans-dihydro-α (0.16%), α-cubebene (0.24%), eugenol (0.14%), β-cubebeene (0.33%), β elemene (0.16%), α-gurjunene (0.20%), α-cis bergamotene (0.18%), γ-elemene	Traditional Medicine : stomach disorders, gonorrhrea, intestinal parasites and sterility sickle cell anemia [94], Bioactivity : Some components were found to be moderately active against lung carcinoma cells (A549), colorectal adenocarcinoma cells (DLD-1) and normal cells (WS1) [15]	[94]	
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References	
-----------------------------	--------------------	------------	---	--	------------	
Zanthoxylum zanthoxyloides	Gah-tchou	Fruits, Roots, Seeds, bark and leaves	(0.14%), β-humulene (0.27%), (Z)-β-farnesene (0.26%), α-humulene (0.16%), γ-muurolene (0.20%), germacrene D (0.07%), β-selinene (0.11%), α-selinene (0.10%), α-bulnesene (0.07%), γ-cadinene (0.22%), cadina-1,4-diene (0.75%), α-(E)-nerolidol (0.07%), spathulenol (0.13%), globulol (0.44%), viridiflorol (0.11%), guaiol (0.10%), γ-eudesmol (0.15%), α-cadinol (0.14%), bulnesol (0.10%), caladene (0.09%), apiole (0.12%), n-octadecane (0.12%) [94].	α-Thujene (0.24%), camphene (0.11%), sabinenene (0.23%), β-pinenene (0.08%), β-myrcene (0.50%), α-phellandrene (0.10%), α-cymene (2.00%), myrcenol (2.00%), limonene (1.00%), 1,8-cineole (0.07%), (Z)-β-octimene (0.26%), (E)-β-octimene (0.35%), γ-terpinene (0.40%), terpinolene (0.11%), linalool (1.50%), cis-thujone (0.12%), fenchol endo (2.50%), pinene hydrateciscis (0.06%), alloocimene (2.00%), limonene oxide (0.10%), trans-sabinol (0.35%), isopulegol (3.00%), citronellal (2.25%), isoborneol (2.22%), borneol (0.09%), pinocampheol (0.19%), menthol (0.27%), terpinen-4-ol (2.00%), α-terpineol (0.09%), myrtenol (0.27%), methylchavicol (0.41%), trans-pulegol (0.15%), nerol (0.07%), β-citronellol (40.00%), nerol (1.00%), geranial (9.00%), safrone (0.07%), pregeijerene (0.20%), thymol (0.22%), carvacrol (0.12%), eugenol (0.08%), nerylacetate (0.80%), α-ylangene (0.09%), α-copaene (0.28%), β-bourbonene (0.70%), β-elemene (0.22%), longifolene (0.08%), α-cis-bergamotene (10.07%), β-gurjunene (0.07%), (Z)-β-farnesene (10.08%), α-humulene (0.10%), alloaromadendrene (0.07%), γ-muurolene (0.16%), germacrene D (0.16%), β-selinene (0.16%), α-selinene (0.12%), α-bulnesene (1.20%), β-bisabolene (0.11%), γ-cadinene (0.12%), δ-cadinene (1.00%), cadina-1,4-diene (0.08%), α-cadinene (0.14%), elemol (0.14%), (E)-nerolidol (1.00%), spathulenol (1.00%), globulol (0.54%), viridiflorol (0.13%), guaiol (0.21%), humulene epoxide (0.29%), 10-epoxy-eudesmol (0.50%), dill apiole (0.11%), γ-eudesmol (0.40%), hinesol (0.13%), cubenol (0.42%), α-muurolol (0.42%), α-cadinol (1.00%), bulnesol (0.10%), caladene (0.30%), apiole	[94]	

References: [94], [95]
Families	Species	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References
Verbenaceae	Lantana camara L.	Flowers and leaves	(3.00%), epi-α-bisabolol (0.19%), carophyllene acetate (0.21%), trans farnesol (0.40%), n-octadecane (0.10%), (Z,E) farnesyl acetate (0.11%), totarene (0.17%)	Traditional Medicine: Rheumatism, coughs and colds, relieve dyspnoea and suffocation. The whole plant shows antimalarial activity.	[96]	
				α-Pinene (0.3%), Camphene (tr), β-Pinene (0.6%), Sabinene (0.1%), Myrcene (tr), α-Phellandrene (tr), Limonene (0.1%), 1,8-Cineole (0.1%), γ-Terpine (tr), (E)-β-Ocimene (tr), p-Cymene (0.1%), Terpinolene (tr), Bourbonene (tr), Linalool (0.3%), β-Cubebene (0.2%), Sesquihulene (1.1%), α-Cedrene(0.6%), β-Elemene (1.3%), β-Caryophyllene (13.3%), Aromaderene (0.3%), (E)-β-Farnesene (0.9%), α-Humulene (1.4%), γ-Curcumene (2.2%), Germacrene-D (0.9%), Zingiberene (2.7%), β-Bisabolene (0.7%), α-Murololene (0.4%), β-Curcumene (1.4%), δ-Cadinene (0.3%), ar-Curcumene (24.7%), Geraniol (0.5%), Cubebol (0.3%), Caryophyllene epoxide I (2) (1.5%), Caryophyllene epoxide II (2) (7.1%), Nerolidol (0.2%), Humulene epoxide (0.7%), Zingiberenal (1.8%), Spathulenol (1.5%), T-Cadinol (1.0%), T-Murolol (0.2%), α-Bisabolol (0.3%)	[96]	
				α-Pinene (0.404%), α-Thuiene (1.138%), β-Pinene (tr), Sabinene (0.312%), 3-carene (0.107%), α-Phellandrene (tr), α-Terpine (1.327%), Limonene (3.212%), β-Phellandrene (0.361%), α-Terpine (6.419%), Z-ocimene (0.082%), p-Cymene (13.854%), terpinolene (0.079%), Fenchone (0.099%), 1-octen-3-ol (0.071%), E-limonen oxide (0.180%), Z-β-Terpineole (0.190%), Camphor (0.002%), Linalool (0.377%), 3-Aminopyrazole (3.304%), Caryophyllene (3.508%), TeRpinen-4-ol (0.628%), Umbellulone (0.126%), β-Farnesene (2.640%), α-Caryophyllene (0.076%), M-tet-butylphenol (1.186%), β-Cubebene (0.112%), Verbeneone (0.722%), Carvone (1.883%), Thymol Acetate (15.207%), Para-thymol (0.955%), Piperitone (0.077%), Caryophyllene oxide (0.389%), Triacetin (9.131%), Eugenol (0.079%), Thymol (22.0147%), Carvacrol (3.264%).	Insecticidal, Antimicrobial	[99]
Lippia adoensis Hochst. ex Walp.	*Ligi or Gossolli* (in Fulfulde language) or “Fever Tea” in northern Cameroon [98].	Leaves		Traditional Medicine: indigestion, rheumatism, fever, cough and jaundice [100].	[10]	
Lippia rugosa A.Chev.	Gossolhi (Adamaoua)	Leaves, Flowers	(Z)-3-hexanol (0.02%), (E)-1-hexen-3-ol (0.02%), Hexanol (0.08%), 1-octen-3-ol (0.07%), Camphene (0.05%), β-Pinene (0.01%), Myrcene (1.59%), p-Cymene (0.01%), Limonene (0.04%), (Z)-β-Ocimene (0.03%), (E)-β-Ocimene (0.02%)	Insecticidal, Antimicrobial	[10]	

References:
[96] Fogang et al.; JPRI, 33(42A): 163-207, 2021; Article no. JPRI, 72567
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References	
Zingiberaceae	Aframomum citratum (J.Pereira) K.Schum.	Seeds	terpinene (tr), terpinolene (0.02%), 1,8-cineole (0.04%), (Z)-linalool oxide (furanoid) (0.03%), (E)-linalool oxide (furanoid) (0.06%), (E)-sabinene hydrate (tr), citronellal (0.15%), linalool (4.56%), linalyl acetate (0.09%), citronellyl formate (0.24%), citronellyl acetate (0.06%), nerol (1.14%), geranyl formate (0.08%), borneol (tr), nerol (18.6%), geranial (10.4%), α-terpinene (0.08%), nerol acetate (0.14%), geranyl acetate (1.35%), citronellol (0.03%), geraniol (51.5%), isogeraniol (0.16%), β-bourbonene (0.04%), β-elemene (0.04%), β-caryophyllene (0.76%), (E)-β-farnesene (3.43%), α-cubenene (0.05%), bicyclogermacrene (0.09%), α-cadinene (tr), germacrene D (1.16%), isocaryophyllene oxide (0.28%), Caryophylyene oxide (0.12%), nerolidol (0.15%), α-murolol (0.29%), farnesol (0.25%) [100].	Traditional Medicine: sterility in women, schizophrenia, believed to have a positive effect on the sympathetic nervous system. a general agreement between local Cameroonian populations that the plant brings strength and peace to families with twins [101]. Fruits, bark and leaves are applied against fever, intercostals pains, as tonic and as aphrodisiac [55]. Bioactivity: Antimicrobial Traditional Medicine: sterility in women, schizophrenia, believed to have a positive effect on the sympathetic nervous system. a general agreement between local Cameroonian populations that the plant brings strength and peace to families with twins [101].	[11]	
	Aframomum dalzielii Hutch. (Endemic [102])	Seeds, Pericarp, Rhizome, Leaves	Myrcene (0.1%), β-phellandrene (0.1%), (Z)-β-ocimene (0.4%), (E)-β-ocimene (0.4%), 1,8-cineole (0.1%), linalool (0.1%), α-terpineol (0.3%), dihydrocarveol acetate (neosiclo) (0.1%), (Z)-β-farnesene (0.3%), ar-curcumene (0.1%), (E,E)-α-farnesene (0.2%), β-bisabolene (0.1%), (E)-nerolidol (91.2%), α-bisabolol oxide (0.4%), α-bisabolol (0.3%), (2E,6E)-farnesyl acetate (0.1%), O-guaiacol (0.2%), 2-phenylethyl acetate (0.5%), (E)-cinnamyl acetate (0.3%), 2-heptanol (0.1%), 2-heptylacetate (2.8%), acetyl acetate (0.1%),		[101]	
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References	
--------	------------	------------	----------------	---	------------	
Families	**Species**					
Aframomum	*daniellii* (Hook.f.)	‘African cardamom’	Seeds	decyl acetate (0.7%). α-Thujiene (tr), α-pinene (2.9%), camphene (tr), sabinene (0.5%), β-pinene (11.2%), dehydro-1,8-cineole (0.3%), myrcele (0.3%), α-phellandrene (0.1%), α-terpine (0.1%), p-cymene (0.7%), limonene (1.5%), 1,8-cineole (48.8%), (E)-β-ocimene (0.1%), y-terpine (1.0%), terpinolene (0.1%), 2-methyl butyl-2-methyl butyrate (tr), trans-pinocarveol (tr), bornol (tr), δ-terpineol (0.4%), p-mentha-1,5-dien-8-ol (0.4%), terpinen-4-ol (0.3%), α-terpinene (10.8%), myrtenol (0.1%), thymol, methyl ether (tr), carvacrol, methyl ether (0.4%), thymol (tr), carvacrol (0.1%), α-terpinyl acetate (0.2%), α-copaene (0.3%), β-cubebene (tr), β-elemene (1.1%), cyperene (0.1%), (E)-caryophyllene (0.7%), α-trans-bergamotene (0.8%), α-guaiene (0.8%), α-humulene (0.3%), (E)-β-farnesene (0.1%), γ-gurjunene (0.7%), selina-4,11-diene (1.0%), β-selinene (1.0%), γ-muurolene (0.6%), α-bulnesene (1.2%), β-bisabolene (3.2%), δ-cadinene (tr), (E)-nerolidol (88.0%), guaiol (tr), 10-epi-γ-eudesmol (0.7%), eremoligenol (0.2%), β-eudesmol (1.3%), eudesmol (0.2%), neo-intermedeol (0.2%), intermedeol (0.4%).	Spices Traditional Medicine : the seeds are used as laxative and anthelmintic, and the root as purgative	[32]
	letestuanum Gagnep.	Seeds, Pericarp	1,8-Cineole (tr), linalool (2.2%), β-cubebene (0.5%), (E)-β-caryophyllene (0.2%), β-cadinene (0.2%), (E)-nerolidol (88.0%), caryophyllene oxide (1.1%), humulene epoxide II (1.3%), α-bisabolol oxide (1.0%), (2E,6E)-farnesol (tr), (2E,6E)-farnesyl acetate (tr), 2-phenylethyl acetate (0.3%), 2-heptyl acetate (0.7%), octyl acetate (0.8%).	Spices Traditional Medicine : the seeds are used as laxative and anthelmintic, and the root as purgative	[101]	
	melegueta K.Schum.	Alligator pepper; Ketchou (Bangante) Ndôn (Bassa) Ndondo’a	Seeds	Isopentyl acetate (tr), 2-methyl butyl acetate (tr), 2-heptanone (tr), 2-heptanol (0.2%), α-thujene (tr), α-pinene (2.0%), α-fenchene (0.1%), camphene (0.3%), sabinene (tr), β-pinene (7.1%), dehydro-1,8-cineole (0.1%), myrcene (0.2%), α-phellandrene (0.3%), α-terpine (0.3%), p-cymene (1.1%), limonene (1.5%), 1,8-cineole (58.5%), (E)-β-ocimene (0.1%), y-	Spices Traditional Medicine : the seeds are used as laxative and anthelmintic, and the root as purgative	[75]
Plants	Local name	Used parts	Main Compounds	Traditional Medicine usages and Bioactivities	References	
--------	------------	------------	----------------	---	------------	
Families	Species					
			terpinene (0.9%), terpinolene (0.8%), α-cymenene (0.2%), 2-nonenone (tr), linalool (tr), n-nonanal (tr), endo-fenchol (0.3%), α-campholenal (tr), trans-pinocarveol (0.2%), cis-β-terpineol (tr), pinocarvone (tr), borneol (0.2%), p-mentha-1,5-dien-8-ol (1.1%), terpinene-4-ol (1.4%), cis-pinocarveol (tr), cryptone (tr), p-cymen-8-ol (tr), α-terpineol (19.4%), myrtenal (0.2%), myrtelon (0.2%), γ-terpineol (tr), trans-carveol (tr), cis-carveol (tr), thymol methyl ether (tr), carveone (tr), carvacrol methyl ether (tr), (E)-cinnamaldehyde (tr), phellandral (0.1%), thymol (0.1%), carvacrol (0.5%), α-terpinyl acetate (tr), (E)-caryophyllene (tr), isoamyl benzoate (tr), α-humulene (tr), β-selinene (tr), 7-epi-α-selinene (tr), 10-epi-γ-eudesmol (tr), γ-eudesmol (tr), β-eudesmol (0.2%), α-bisabolol (tr), n-tricosane (0.1%)			
Aframomum	pruninum	Gagnep.	Seeds,		Traditional Medicine : sterility in women, schizophrenia, and is believed to have a positive effect on the sympathetic nervous system. There is a general agreement between local Cameroonian populations that the plant brings strength and peace to families with twins [101].	[101]
			Pericarp,			
			Leaves,			
			Rhizome			
Curcuma	longaL	Curcuma	Rhizome	α-Phellandrene (3.95%), p-cymene (0.58%), terpinolene (0.43%), 1,8-cineole (2.79%), (Z)-α-farnesene (0.7%), ar-curcumene (0.3%), (E,E)-α-farnesene (0.3%), β-bisabolene (0.3%), (E)-nerolidol (95.1%), α-bisabolol (0.5%), (2E, 6E)-farnesol (0.3%), octyl acetate (0.2%).		
Zingiber	officinale	Roscoe	Ginger	α-pinene (4.1%), camphene (11.9%), 2,6-pinene (0.3%), 6-methyl-5-hepten-2-one (1.1%), B-myrcene (1.7%), 1-phellandrene (0.6%), sabinenol (12.0%), 1,8-cineole (5.3%), α-terpinolene (0.4%), 2-nonanone (0.6%), α-terpineolene (1.7%), citronellal (0.4%), endo-borneol (1.9%), β-fenchyl alcohol (0.8%), 6-octen-1-ol, 3,7-dimethyl (0.9%), z-citral (8.21%), Geraniol (2.6%), geranial (10.0%), 2-undecanone (0.8%), citronellyl		

Bioactivities	References
Antibacterial	[103]
Antimicrobial	
Anti-inflammatory, anticancer, and antioxidant	
Antimicrobial, anti-inflammatory, antioxidant, immunomodulatory	
Plants	Local name
--------	------------
Families	Species
Fig. 1. Distribution of plants per family

Fig. 2. Percentages of usage of plants
Fig. 1 shows the proportions of the families of plants. We noticed that the Lamiaceae were the most represented with 16%, followed by Annonaceae (12%), Rutaceae (11%), Asteraceae (11%), Myrtaceae (10%), and Zingiberaceae (9%). These 6 families alone represent 75% of all the listed plants.

The Table 1 also presents the main traditional uses of these plants as well as the demonstrated biological activities. We have identified 84 situations (diseases, symptoms, syndromes and food) for which these plants are used. Fig. 2 shows the percentage of 25 recurrent situations for which these plants are used or for which biological activities have been demonstrated. Infectious diseases occupy the first rank of uses with 12.62%, followed by spices (6.46%), fungal infections (6.15%) and malaria (5.85%). These four uses alone represent 31.08%.

4. CONCLUSION

This review presented an exhaustive report of essential oil plants found in Cameroon, as well as their use in traditional medicine and their demonstrated biological activities. However, many of them remain extremely underexploited in terms of their essential oil content. The latter represent a real advantage, both medicinal and economic, for the populations in particular and for Cameroon in general. A good selection of the most important plants from the point of view of the composition of their essential oils, with the objective of cultivating them on a large scale, would allow Cameroon to rank among the African and world producers of essential oils and develop its pharmacopoeia.

DATA AVAILABILITY STATEMENT

The data presented in this study are available on request from the corresponding authors.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Countries ranked by Plant species (higher), threatened [Internet]. [Cité 1 déc 2020]. Disponible sur:https://www.indexmundi.com/facts/indicators/EN.HPT.THRD.NO/rankings
2. Wildlife of Cameroon. In: Wikipedia [Internet]; 2020 [Cité 1 déc 2020]. Disponible sur:https://en.wikipedia.org/w/index.php?title=Wildlife_of_Cameroon&oldid=969786630
3. Başer KHC, Buchbauer G, éditeurs. Handbook of essential oils: Science, technology, and applications. Boca Raton: CRC Press/Taylor & Francis; 2010;975.
4. Cycles T text provides general information S assumes no liability for the information given being complete or correct D to varying update, Text SCDM up to DDTR in the. Topic: Essential Oils [Internet]. Statista; 2020 [Cité 18 févr 2021]. Disponible sur:https://www.statista.com/topics/5174/essential-oils/
5. El-Shemy H. Potential of essential oils. BoD – Books on Demand; 2018;198.
6. Essential oils (HS: 3301) product trade, exporters and importers [Internet]. [Cité 18 apr 2021]. Disponible sur:https://oec.world/en/profile/hs92/essential-oils
7. Pavela R, Maggi F, Lupidi G, Mbuncha H, Woguem V, Womeni HM, et al. Clausena anisata and Dysphania ambrosioides essential oils: From ethno-medicine to modern uses as effective insecticides. Environ Sci Pollut Res. 2018;25(11):10493-503.
8. Jiofack T, Fokunang C, Guedje N, Kemeuze V, Fongnzoossie E, Nkongmeneck BA, et al. Ethnobotanical uses of medicinal plants of two ethnobiological regions of Cameroon. 2010;20.
9. Khallouki F, Younos C, Soulimani R, Bessière J-M. Chemical composition of the essential oils of Annona cuneata L. and Annona senegalensis Pers. stem barks.
Flavour and Fragrance Journal. 2002;17:398-400.

10. Ngamo Tinkeu LS, Gondoum A, Ngassoum MB, Mapongmetsem PM, Kouninki H, Hance T. Persistence of the insecticidal activity of five essential oils on the maize weevil Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae). Commun Agric Appl Biol Sci. 2004 ;69(3):145-7.

11. Chalchat JC, Garry RP, Menut C, Lamaty G, Malhuret R, Chopineau J. Correlation between chemical composition and antimicrobial activity. VI. Activity of Some African Essential Oils. Journal of Essential Oil Research. 1997;9(1):67-75.

12. Frausin G, Lima RBS, Hidalgo A de F, Maas P, Pohlit AM. Plants of the Annonaceae traditionally used as antimalarials: a review. Rev Bras Frutic. 2014;36(spe1):315-37.

13. Boyom FF, Ngouana V, Kemgne EAM, Zollo PHA, Menut C, Bessiere JM, et al. Antiplasmodial volatile extracts from Cleistopholis patens Engler & Diels and Uvariastrum pierreanum Engl. (Engl. & Diels) (Annonaceae) growing in Cameroon. Parasitol Res. 2011 ;108(5):1211-7.

14. Boyom FF, Ngouana V, Zollo PHA, Menut C, Bessiere JM, Gut J, et al. Composition and anti-plasmodial activities of essential oils from some Cameroonian medicinal plants. Phytochemistry. 2003;64(7):1269-75.

15. Kuete V, Kruschke B, Youns M, Voukeng I, Fankam AG, Taneko S, et al. Cytotoxicity of some Cameroonian spices and selected medicinal plant extracts. Journal of Ethnopharmacology. 2011;134(3):803-12.

16. Bakarnga-Via I, Hzounda JB, Fokou PVT, Tchokouaha LRY, Gary-Bobo M, Gallud A, et al. Composition and cytotoxic activity of essential oils from Xylopia aethiopica (Dunal) A. Rich, Xylopia parviflora (A. Rich) Benth.) and Monodora myristica (Gaertn) growing in Chad and Cameroon. BMC Complement Altern Med. 2014;14:125.

17. N`tom (Pachypodanthium confine) [Internet]. ITTO. [Cité 8 févr 2020].

Disponible sur: http://www.tropicaltimber.info/specie/ntom-pachypodanthium-confine/

18. Sokamte Tegang A, Ntsamo Beumo TM, Jazet Domingo PM, Tatsadjieu Ngoune L. Essential oil of Xylopia aethiopica from Cameroon: Chemical composition, antiradical and in vitro antifungal activity against some mycotoxicogenic fungi. Journal of King Saud University - Science. 2018;30(4):466-71.

19. Xylopia parviflora (Fruitiers du Cameroun) — PlantUse Français [Internet]. [Cité 10 janv 2020]. Disponible sur:https://uses.plantnet-project.org/fr/Xylopia_parviflora_(Fruitiers_du_Cameroun)

20. Tsabang N, Fokou PVT, Tchokouaha LRY, Nguem B, Bakarnga-Via I, Nguepi MSD, et al. Ethnopharmacological survey of Annonaceae medicinal plants used to treat malaria in four areas of Cameroon. Journal of Ethnopharmacology. 2012 ;139(1):171-80.

21. Xylopia phloiodora Mildbraed, Notizbl. Bot. Gart. Berlin-Dahlem. 1921;8:55-56. [Internet]. [Cité 27 févr 2020]. Disponible sur:https://www.gbif.org/species/14369389

22. Tchuenguem RT, Kechia FA, Kuiate JR, Dzoyem JP. Ethnopharmacological survey, antioxidant and antifungal activity of medicinal plants traditionally used in Baham locality (Cameroon) to treat fungal infections. Archives of Medical and Biomedical Research. 2017;3(2):91-103.

23. Essia Ngang JJ, Nyegue MA, Ndoye FC, Tchuenschieu Kamgain AD, Sado Kamdem SL, Lanciotti R, et al. Characterization of mexican coriander (Eryngium foetidum) essential oil and its inactivation of listeria monocytogenes In vitro and during mild thermal pasteurization of pineapple juice. Journal of Food Protection. 2014;77(3):435-43.

24. Telefo PB, Lienou LL, Yemele MD, Lemfack MC, Mouokeu C, Goka CS, et al. Ethnopharmacological survey of plants used for the treatment of female infertility in Baham, Cameroon. Journal of Ethnopharmacology. 2011;136(1):178-87.
25. Yemele MD, Telefo PB, Lienou LL, Tagne SR, Foduop CSP, Goka CS, et al. Ethnobotanical survey of medicinal plants used for pregnant women’s health conditions in Menoua division-West Cameroon. Journal of Ethnopharmacology. 2015;160:14-31.

26. Voundi SO, Nyegue M, Lazar I, Raducanu D, Ndoye FF, Stamate M, et al. Effect of essential oils on germination and growth of some pathogenic and spoilage spore-forming bacteria. Foodborne Pathogens and Disease. 2015;12(6):551-9.

27. Pamo T, Fernand T, Jean Raphaël K, Tenekou G, Tapondjou A, Payne V. The acaricidal effect of the essential oil of Ageratum houstonianum Mill. flowers on ticks (Rhipicephalus lunulatus) in Cameroon. South African Journal of Animal Sciences. 2004;34.

28. Noumi E, Yomi A. Medicinal plants used for intestinal diseases in mbalmayo region, central province, Cameroon. Fitoterapia. 2001;72(3):246-54.

29. Goudoum A, Abdou boub a A, Ngamo L, Martin N, Mboufoung C. Antioxidant activities of essential oil of Bidens pilosa (Linn. Var. Radita) used for the preservation of food qualities in North Cameroon. Food Science & Nutrition. 2016;4.

30. Ngono Ngane A, Ebelle Etame R, Ndifor F, Biyiti L, Amvam Zollo PH, Bouchet P. Antifungal activity of Chromolaena odorata (L.) king & robinson (Asteraceae) of Cameroon. Chemotherapy. 2006;52(2):103-6.

31. Tedonkeng PE, Zollo PHA, Fernand T, Jean Raphaël K, Fangang MD, Tapondjou A. Chemical composition and acaricide effect of the essential oils from the leaves of Chromolaena odorata (L.) king and robins. and Eucalyptus saligna Smith., on ticks (Rhipicephalus lunulatus Neumann) of the West African Dwarf goat in West Cameroon. Livestock Research for Rural Development. 2004;16.

32. Pavela R, Maggi F, Mbuntha H, Woguem V, Fangang HPD, Womeni HM, et al. Traditional herbal remedies and dietary spices from Cameroon as novel sources of larvicides against filariasis mosquitoes? Parasitol Res. 2016;115(12):4617-26.

33. Petrrelli R, Orsomando G, Sorci L, Maggi F, Ranjarbian F, Biapa Nya PC, et al. Biological activities of the essential oil from erigeron floribundus. Molecules. 2016;21(8).

34. Junior Baudoin W, Avana-Tientcheu ML, Moksia F, Yougouda H, Mbouc G, Ngueotsp VF, et al. Savannas highlands of Cameroon: Floristic composition, functional traits and conservation status. 2020;4:81-99.

35. Francois T, Sameza ML, Jazet Dongmo PM, Michel P, Mbanjo N, Gaby E, et al. Composition, radical scavenging and antifungal activities of essential oils from 3 Helichrysum species growing in Cameroon against Penicillium oxalici a yam …. African Journal of Agricultural Research. 2010;4:121-7.

36. Focho DA, Tacham W, Fonge B. Medicinal plants of agaumbu-bamumbu in the lebialem highlands, Southwest Province of Cameroon. African Journal of Pharmacy and Pharmacology. 2009;3:301-13.

37. Ngassoum MB, Jirovetz L, Buchbauer G, Fleischhacker W. Investigation of the Essential oil and headspace of laggera pterodonta (DC.) Sch. Bip. ex Oliv., a Medicinal Plant from Cameroon. Journal of Essential Oil Research. 2000;12(3):345-9.

38. Dongmo PMJ, Tchoumboungang F, Ndongsom B, Agwanande W, Sandjon B, Zollo PHA, et al. Chemical characterization, antiradical, antioxidant and anti-inflammatory potential of the essential oils of Canarium schweinfurthii and Aucoumea klaineana (Burseraceae) growing in Cameroon. 2010;6.

39. Fanang HPD, Maggi F, Tapondjou LA, Womeni HM, Papa F, Quassinti L, et al. In vitro biological activities of seed essential oils from the Cameroonian spices Afrostryx lepidophyllus MILDBR. and Scorodophloeus zenkeri HARMS rich in sulfur-containing compounds. Chem Biodivers. 2014;11(1):161-9.

40. Nyegue M, Ndoey F, Zollo P-HA, Etoa F-X, Agnaniet H, Menut C. Essential and biological evaluation of essential oil of Pentadiplandra brazzeana (bail.) roots from Cameroon. 18.

41. Tapondjou LA, Adler C, Bouda H, Fontem DA. Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six-stored product beetles. Journal of Stored Products Research. 2002;38(4):395-402.
42. Kuiate JR, Bessière JM, Vilarem G, Zollo PHA. Chemical composition and antidermatophytic properties of the essential oils from leaves, flowers and fruits of Cupressus lusitanica Mill. from Cameroon. Flavour and Fragrance Journal. 2006;21(4):693-7.

43. Teke GN, Elisée KN, Roger KJ. Chemical composition, antimicrobial properties and toxicity evaluation of the essential oil of Cupressus lusitanica Mill. leaves from Cameroon. BMC Complement Altern Med. 2013;13:130.

44. Tapondjou AL, Adler C, Fontem DA, Bouda H, Reichmuth C. Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. Journal of Stored Products Research. 2005;41(1):91-102.

45. Metuge JA, Nyongbela KD, Mbah JA, Samje M, Fotso G, Babiaka SB, et al. Anti-onchocerca activity and phytochemical analysis of an essential oil from Cyperus articulatus L. BMC Complement Altern Med. 2014;14:223.

46. Données statistiques des produits forestiers non ligneux du Cameroun [Internet]. [Cité 9 janv 2020]. Disponible sur:http://www.fao.org/3/a-x6699f.pdf

48. Silvere N, Ngoupayo J, Noungou E, Tsamou J, Connolly J. Gossweilone: A new podocarpane derivative from the stem bark of Drypetes gossweileri (Euphorbiaceae). Bulletin of the Chemical Society of Ethiopia. 2003:17.

49. Ndoco Foe FM-C, Tchinang TFK, Nyeuge AM, Abdou J-P, Yaya AJG, Tchinda AT, et al. Chemical composition, in vitro antioxidant and anti-inflammatory properties of essential oils of four dietary and medicinal plants from Cameroon. BMC Complementary and Alternative Medicine. 2016;16(1):117.

50. Brusotti G, Cesari I, Gilardoni G, Tosi S, Grisoli P, Picco AM, et al. Chemical composition and antimicrobial activity of Phyllanthus muellerianus (Kuntze) Excel essential oil. Journal of Ethnopharmacology. 2012;142(3):657-62.

51. Nguefack J, Dongmo JBL, Dakole CD, Leth V, Vissmer HF, Torp J, et al. Food preservative potential of essential oils and fractions from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against mycotoxigenic fungi. Int J Food Microbiol. 2009;131(3):151-6.

52. Emmanuel M. Traditional knowledge on medicinal plants use by ethnic communities in douala, Cameroon. EJMP. 2012;2(2):159-76.

53. Titanji VP, Zofou D, Ngemenya MN. The antimalarial potential of medicinal plants used for the treatment of malaria in cameroonian folk medicine. Afr J Tradit Complement Altern Med. 2008;5(3):302-21.
59. Tchoumbougnang F, Zollo PHA, Boyom FF, Nyegue MA, Bessière JM, Menut C. Aromatic plants of tropical Central Africa. XLVIII. Comparative study of the essential oils of four Hyptis species from Cameroon: H. lanceolata Poit., H. pectinata (L.) Poit., H. spicigera Lam. and H. suaveolens Poit. Flavour and Fragrance Journal. 2005;20(3):340-3.

60. Noudjou F, Kouninki H, Ngamo LST, Maponmestsem PM, Ngassoum M, Hance T, et al. Effect of site location and collecting period on the chemical composition of hyptis spicigera lam. insecticidal Essential Oil from North-Cameroon. Journal of Essential Oil Research. 2007;19(6):597-601.

61. Nyegue MA, Ndoyet-Foe FC, Essama SR, Hockmeni TC, Etoa FX, Menut C. Chemical composition of essential oils of Eugenia caryophylla and Mentha sp cf. Piperita and their in vitro antifungal activities on six human pathogenic fungi. African Journal of Traditional, Complementary and Alternative Medicines. 2014;11(6):40-6.

62. Ngassoum MB, Ousalemia H, Ngamo LT, Maponmetsem PM, Jirovetz L, Buchbauer G. Aroma compounds of essential oils of two varieties of the spice plant Ocimum canum Sims from northern Cameroon. Journal of Food Composition and Analysis. 2004;17(2):197-204.

63. Wansi JD, Sewald N, Nahar L, Martin C, Sarker SD. Bioactive essential oils from the Cameroonrain forest: A review - Part I. Trends in Phytochemical Research. 2018;2(4):187-234.

64. Hüe T, Caquil L, Fokou JBH, Dongmo PMJ, Bakarnga-Via I, Menut C. Acaricidal activity of five essential oils of Ocimum species on Rhipicephalus (Boophilus) microplus larvae. Parasitol Res. 2015;114(1):91-9.

65. Simbo DJ. An ethnobotanical survey of medicinal plants in Babungo, Northwest Region, Cameroon. J Ethnobiology Ethnomedicine. 2010;6(1):8.

66. Nguefack J, Budde BB, Jakobsen M. Five essential oils from aromatic plants of Cameroon: Their antibacterial activity and ability to permeabilize the cytoplasmic membrane of Listeria innocua examined by flow cytometry. Letters in Applied Microbiology. 2004;39(5):395-400.

67. Ngassoum MB, Essiah-Ngang JJ, Tatsadjiue LN, Jirovetz L, Buchbauer G, Adjoudi O. Antimicrobial study of essential oils of Ocimum gratissimum leaves and Zanthoxylum xanthoxyloides fruits from Cameroon. Fitoterapia. 2003;74(3):284-7.

68. Tatsadjiue NL, Etoa FX, Mbofung CMR, Ngassoum MB. Effect of Plectranthus glandulosus and Ocimum gratissimum essential oils on growth of Aspergillus flavus and aflatoxin B1 production. Tropicultura. 2008;26(2):78-83.

69. Nukenine EN, Adler C, Reichmuth C. Bioactivity of fenchone and Plectranthus glandulosus oil against Prostephanus truncatus and two strains of Sitophilus zeamais. Journal of Applied Entomology. 2010;134(2):132-41.

70. Mpondo E, Yinyang J, Dibong S. Valorisation des plantes médicinales à coumarines des marchés de Douala Est (Cameroun). Journal of Applied Biosciences. 2015;85:7804.

71. Nguefack J, Tamgue O, Dongmo JBL, Dakole CD, Leth V, Vismer HF, et al. Synergistic action between fractions of essential oils from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against Penicillium expansum. Food Control. 2012;23(2):377-83.

72. Cabral C, Gonçalves MJ, Cavaleiro C, Sales F, Boyom F, Salgueiro L. Composition and anti-fungal activity of the essential oil from Cameroonian Vitex rivularis Gürke. Natural Product Research. 2009;23(16):1478-84.

73. Akono PN, Mbida JAM, Jazet PM, Tonga C, Tchamga LAD, Magne GT, et al. Chemical composition and Insecticidal activity of essential oils of Cinnamomum zeylanicum, Citrus grandis, Citrus medica and Citrus sinensis leaves from Cameroon on Anopheles gambiae Giles, 1902. Journal of Entomology and Zoology Studies. 2016;7.

74. Agwanande Ambindei W, Pierre MDJ, Leopold NT, Priya P, Manilal V, Krishnakumar B, et al. Effect of the essential oils of Thymus vulgaris, Cinnamomum zeylanicum and Mentha piperita on fungal growth and morphology. Afr J Biotechnol. 2017;16(9):388-99.
Kamte SLN, Ranjbarian F, Campagnaro GD, Nya PCB, Mbuntcha H, Woguem V, et al. Trypanosoma brucei Inhibition by essential Oils from Medicinal and aromatic plants traditionally used in Cameroon (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea and Echinops giganteus). International Journal of Environmental Research and Public Health. 2017;14(7):737.

Tatsadjieu Ngoune L, Ndongson Dongmo B, Kuate J, Zollo P, Menut C. Correlation between chemical composition and antifungal properties of essential oils of Callistemon rigidus and Callistemon citrinus of Cameroon against Phaeoramularia angolensis. Journal of Medicinal Plants Research. 2009;3.

Ndomo AF, Tapondjou AL, Tendonkeng F, Gbaguidi F, et al. Evaluation des propriétés insecticides des feuilles de Callistemon viminalis (Myrtaceae) contre les adultes d’Acanthoscelides obtectus (Say) (Coleoptera; Bruchidae). 2009;7.

Medhi SM, Reza S, Mahnaz K, Reza AM, Abbas H, Fatemeh M, et al. Phytochemistry and larvicidal activity of Eucalyptus camaldulensis against malaria vector, Anopheles stephensi. Asian Pacific Journal of Tropical Medicine. 2010 ;3(11):841‑5.

Gbenou JD, Ahounou JF, Akakpo HB, Laleye A, Yayi E, Gbaguidi F, et al. Phytochemical composition of Cymbopogon citratus and Eucalyptus citriodora essential oils and their anti-inflammatory and angesic properties on Wistar rats. Mol Biol Rep. 2013 ;40(2):1127‑34.

Nyegue MA, Moni Ndedi EDF, Ndoye Foe F, Etoa F-X, Menut C. Bioactivity of essential oils from medicinal plants of cameroon and their combination against infant diarrhea induced by bacteria. AJTCAM. 2017;16(4):27‑37.

Ogunwande IA, Olawore NO, Adeleke KA, Ekundayo O, Koenig WA. Chemical composition of the leaf volatile oil of Psidium guajava L. growing in Nigeria. Flavour and Fragrance Journal. 2003;18(2):136‑8.

Ngoula F, Guemdjio Tekam M, Kenfack A, Tandonjou Tchingo CD, Nouboudem S, Ngoumtsoh H, et al. Effects of heat stress on some reproductive parameters of male caviar (Cavia porcellus) and mitigation strategies using guava (Psidium guajava) leaves essential oil. Journal of Thermal Biology. 2017;64:67‑72.

Fankem PM, Kwang SN, Sameza ML, Tchoumboungang F, Ngouné LT, et al. Antioxidant and antifungal activities of cocoa butter (Theobroma cacao), essential oil of syzygium aromaticum and a combination of both extracts against three dermatophytes. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS). 2017;37(1):255‑72.

Tchoumboungang F, Jazet DPM, Sameza ML, Fombolist N, Vry WNA, Henri AZP, et al. Comparative essential oils composition and insecticidal effect of different tissues of Piper capense L., Piper guineense Schum. et Thonn., Piper nigrum L. and Piper umbellatum L. grown in Cameroon. African Journal of Biotechnology [Internet]; 2009 [Cité 24 mars 2021];8(3). Disponible sur:https://www.ajol.info/index.php/ajb/article/view/59831

Sandberg F, Perera-Ivarsson P, El-Seedi HR. A Swedish collection of medicinal plants from Cameroon. Journal of Ethnopharmacology. 2005;102(3):336‑43.

Tankam JM, Ito M. Inhalation of the essential oil of Piper guineense from Cameroon shows sedative and anxiolytic-like effects in mice. Biol Pharm Bull. 2013;36(10):1608‑14.

Tchameni SN, Mbiakeu SN, Sameza ML, Jazet PMD, Tchoumboungang F. Using citrus aurantifolia essential oil for the potential biocontrol of Colocasia esculenta (taro) leaf blight caused by Phytophthora colocasiae. Environ Sci Pollut Res. 2018 ;25(30):29929‑35.

Akono PN, Tonga C, Dongmo PMJ, Kekeunou S, Tedongmo NL, Gustave L. Influence of urbanization on the sensitivity of female adults of the Anopheles gambiae complex to essential oils of some plants from the Littoral region of Cameroon. 2016;9.

Ndjonka D, Djafsia B, Liebau E. Review on medicinal plants and natural compounds as anti-Onchocerca agents. Parasitol Res. 2018;117(9):2697‑713.
90. Akono PN, Dongmo PMJ, Tonga C, Kouotou S, Kekeunou S, Magne GT, et al. Larvicidal activity of essential oils from pericarps of ripe Citrus fruits cultivated in Cameroon on pyrethroids sensitive and resistant strains of Anopheles gambiae Giles, 1902. Journal of Entomology and Zoology Studies. 2015;6.

91. Ntchapda F, Bonabe C, Kemeta Azambou DR, Talla E, Dimo T. Diuretic and antioxidant activities of the aqueous extract of leaves of Vepris heterophylla (Engl.) R. Let (Rutaceae) in rats. BMC Complementary and Alternative Medicine. 2016;16(1):516.

92. Ngamo Tinkeu LS, Noudjou ME, Ngassoum MB, Mapongmetsem PM, Boubakary ABA, Malaise F, et al. Investigations on the chemical composition and insecticidal activities of essential oils of Vepris heterophylla (Rutaceae) from two localities of northern Cameroon towards Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Res J Biol Sci. 2007;2(1):57-61.

93. Vivien J, Faure J-J. Fruitiers sauvages du Cameroun. Correspondance des noms vernaculaires ou communs et des noms scientifiques. Fruits. 1989;44(9):477-90.

94. Misra LN, Wouatsa NAV, Kumar S, Venkatesh Kumar R, Tchoumbougnang F. Antibacterial, cytotoxic activities and chemical composition of fruits of two Cameroonian Zanthoxylum species. Journal of Ethnopharmacology. 2013;148(1):74-80.

95. Tsabang N, Yedjou CG, Tchounwou PB. Phytotherapy of high blood pressure in three phytogeographic regions of cameroon. pharm anal acta [Internet]; 2017. [Cité 11 janv 2020]. Disponible sur:https://www.omicsonline.org/open-access/phytotherapy-of-high-blood-pressure-in-three-phytogeographic-regions-of-cameroon-2153-2435-1000530.php?aid=86386

96. Ngassoum MB, Yonkeu S, Jirovetz L, Buchbauer G, Schmaus G, Hammerschmidt FJ. Chemical composition of essential oils of Lantana camara leaves and flowers from Cameroon and Madagascar. Flavour and Fragrance Journal. 1999;14(4):245-50.

97. Bouda null, Tapondjou null, Fontem null, Gumedzoe null. Effect of essential oils from leaves of Ageratum conyzoides, Lantana camara and Chromolaena odorata on the mortality of Sitophilus zeamais (Coleoptera, Curculionidae). J Stored Prod Res. 2001;37(2):103-9.

98. Akami M, Njintang NY, Gbaye OA, Andongma AA, Rashid MA, Niu CY, et al. Gut bacteria of the cowpea beetle mediate its resistance to dichlorvos and susceptibility to Lippia adoensis essential oil. Scientific Reports. 2019;9(1):6435.

99. Akami M, Niu C, Chakira H, Chen Z, Vandi T, Nukenine EN. Persistence and comparative pesticidal potentials of some constituents of lippia adoensis (Hochst. ex Walp.) (Lamiales: Verbenaceae) essential oil against three life stages of callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae). Biotechnology Journal. 2016;1:1-16.

100. Tatsadjieu NL, Dongmo PMJ, Ngassoum MB, Etoa FX, Mbofung CMF. Investigations on the essential oil of Lippia rugosa from Cameroon for its potential use as antifungal agent against Aspergillus flavus Link ex. Fries. Food Control. 2009;20(2):161-6.

101. Nguikwie SK, Nyegue MA, Belinga FN-F, Ngane RAN, Romestand B, Kouzayha A, et al. The chemical composition and antibacterial activities of the essential oils from three aframomum species from cameroon, and their potential as sources of (E)-(R)-nerolidol. Nat Prod Commun. 2013;8(6):829-34.

102. Ageratum conyzoides. Flavour and Fragrance Journal. 2017;32(1):48-53.

103. Gardini F, Belletti N, Ndagiijimana M, Guerzoni ME, Tchoumbougnang F, Zollo PHA, et al. Composition of four essential oils obtained from plants from Cameroon, and their bactericidal and bacteriostatic activity against Listeria monocytogenes, Salmonella enteritidis and Staphylococcus aureus. AJMR. 2009;3(5):264-71.
104. Herve T, Raphaël KJ, Ferdinand N, Laurine Vitrice FT, Gaye A, Outman MM, et al. Growth performance, serum biochemical profile, oxidative status, and fertility traits in male japanese quail fed on ginger (Zingiber officinale, roscoe) essential oil. Veterinary Medicine International. 2018;2018:e7682060.

105. Dieumou FE, Teguia A, Kuiate JR, Tamokou JD, Fonge NB, Dongmo MC. Effects of ginger (Zingiber officinale) and garlic (Allium sativum) essential oils on growth performance and gut microbial population of broiler chickens. 2009;10.

© 2021 Fogang et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle4.com/review-history/72567