Search for a Higgs boson decaying into a Z and a photon in pp collisions at $\sqrt{s} = 7$ and 8 TeV

The CMS Collaboration

Abstract

A search for a Higgs boson decaying into a Z boson and a photon is described. The analysis is performed using proton-proton collision datasets recorded by the CMS detector at the LHC. Events were collected at center-of-mass energies of 7 TeV and 8 TeV, corresponding to integrated luminosities of 5.0 fb$^{-1}$ and 19.6 fb$^{-1}$, respectively. The selected events are required to have opposite-sign electron or muon pairs. No excess above standard model predictions has been found in the 120–160 GeV mass range and the first limits on the Higgs boson production cross section times the H \rightarrow Zγ branching fraction at the LHC have been derived. The observed limits are between about 4 and 25 times the standard model cross section times the branching fraction. The observed and expected limits for $m_{\ell\ell\gamma}$ at 125 GeV are within one order of magnitude of the standard model prediction. Models predicting the Higgs boson production cross section times the H \rightarrow Zγ branching fraction to be larger than one order of magnitude of the standard model prediction are excluded for most of the 125–157 GeV mass range.

Published in Physics Letters B as doi:10.1016/j.physletb.2013.09.057.
1 Introduction

The observation of a new resonance decaying to two bosons and with decay modes and properties consistent with those of the standard model (SM) Higgs boson has been reported by the ATLAS [1, 2] and CMS [3, 4] collaborations. Measurements of the basic properties of this resonance, such as the mass [5] and the coupling strength to vector bosons and fermions [1–4, 6], have been reported. Within the SM, the partial width for the $H \rightarrow Z\gamma$ decay channel ($\Gamma_{Z\gamma}$) is rather small, resulting in a branching fraction between 0.11% and 0.25% in the 120–160 GeV [7, 8] mass range. A measurement of $\Gamma_{Z\gamma}$ provides important information on the underlying dynamics of the Higgs sector because it is induced by loops of heavy charged particles, just as for the $H \rightarrow \gamma\gamma$ decay channel. The contributing diagrams to $\Gamma_{Z\gamma}$ are shown in Fig. 1. $\Gamma_{Z\gamma}$ is sensitive to physics beyond the SM, and could be substantially modified by new charged particles without affecting the gluon-gluon fusion Higgs boson production cross section [9], such as derived from an extended Higgs sector [10], or by the presence of new scalars [11, 12].

This paper describes the first search for a Higgs boson in the $H \rightarrow Z\gamma$ final state at the LHC in the 120–160 GeV mass range, with the Z boson decaying into an electron or a muon pair. This is a clean final-state topology with an effective mass peak resolution of about 1-3%. To improve the sensitivity of the search, the selected dilepton-plus-photon events are subdivided into classes according to their mass resolution and the signal-to-background ratio, for both the electron and muon channels. The dominant backgrounds consist of the irreducible contribution from the SM Z\gamma production, and the reducible backgrounds from final-state-radiation in Drell–Yan or Z decays, and Z plus jets, where a jet is misidentified as a photon. A previous search for $H \rightarrow Z\gamma$ has been performed at the Tevatron for masses above 140 GeV [13].

Results are based on data samples recorded by the CMS experiment corresponding to integrated luminosities of 5.0 fb$^{-1}$ at 7 TeV and 19.6 fb$^{-1}$ at 8 TeV in proton-proton collisions.

2 The CMS detector

A detailed description of the CMS detector can be found in Ref. [14]. The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic field of 3.8 T. Within the field volume there are several particle detection systems. Charged-particle trajectories are measured by silicon pixel and strip trackers, covering $0 \leq \phi \leq 2\pi$ in azimuth and $|\eta| < 2.5$ in pseudorapidity, where η is defined...
as $-\ln|\tan(\theta/2)|$ and θ is the polar angle of the trajectory of the particle with respect to the counterclockwise proton beam direction. A lead tungstate crystal electromagnetic calorimeter is distributed in a barrel region $|\eta| < 1.48$ and two endcaps that extend up to $|\eta| = 3$. A brass and scintillator hadron calorimeter surround the tracking volume and cover the region $|\eta| < 3$. Iron forward calorimeters with quartz fibers, read out by photomultipliers, extend the calorimeter coverage up to $|\eta| = 5$. They provide measurements of the energy of photons, electrons, and hadron jets. A lead and silicon-strip preshower detector is located in front of the endcap electromagnetic calorimeter. Muons are identified and measured in gas-ionization detectors embedded in the steel return-yoke outside the solenoid. The detector is nearly hermetic, allowing energy balance measurements in the plane transverse to the beam direction. A two-tier trigger system selects proton-proton collision events of interest for use in physics analysis.

3 Event selection

Events with two opposite-sign, same-flavor leptons (e or μ) and a photon are selected: $e^+e^-\gamma$, $\mu^+\mu^-\gamma$. All particles must be isolated and have transverse momentum, p_T, greater than 20 (10) GeV for the highest-p_T (next to highest-p_T) lepton and 15 GeV for the photon. The electrons (muons) and the photon must have $|\eta| < 2.5$ (2.4). Photons in the barrel-endcap transition region $1.44 < |\eta| < 1.57$ of the electromagnetic calorimeter are excluded. Events are required to pass at least one of the dielectron or dimuon triggers. The trigger efficiency for events containing two leptons satisfying the offline event selection requirements are measured to be between 60% and 98% for the $ee\gamma$ channel depending on the electron transverse momenta and 91% for the $\mu\mu\gamma$ channel.

Events are required to have at least one primary vertex, with the reconstructed longitudinal position (z) within 24 cm of the geometric center of the detector and the transverse position (x-y) within 2 cm of the beam interaction region. In the case of multiple reconstructed vertices associated with additional interactions (pileup), the one with the highest scalar sum of the p_T^2 of its associated tracks is chosen as the primary vertex. The leptons are required to originate at the same primary vertex. Electron (muon) tracks are required to have the transverse and longitudinal impact parameters with respect to the primary vertex to be smaller than 2 (2) mm and 2 (5) mm, respectively.

The observables used in the photon selection are: isolation variables based on the particle-flow (PF) algorithm [15], the ratio of the energy in the hadron calorimeter towers behind the supercluster to the electromagnetic energy in the supercluster, the transverse width of the electromagnetic shower, and a pixel tracker veto to avoid misidentifying an electron as a photon. In the barrel region, superclusters are formed from five crystal strips in η, centered on the most energetic crystal, and have a variable extension in ϕ [4,16]. In the endcaps, where the crystals are arranged according to an x-y rather than an η-ϕ geometry, matrices of 5×5 crystals around the most energetic crystals are merged if they lie within a narrow ϕ road. The efficiency of the photon identification is measured from $Z \rightarrow ee$ data using a tag-and-probe technique [17] by treating the electrons as photons [4], and found to be 76% (88%) at a transverse energy of 15 (above 50) GeV. These efficiencies include the effects of the pixel tracker veto, estimated with $Z \rightarrow \mu\mu\gamma$ data, where the photon is produced via final-state radiation.

The electron selection criteria are optimized for background rejection using a multivariate approach, while maintaining a combined identification and isolation efficiency of approximately 60% at low transverse momentum (10 GeV) and 90% at high transverse momentum (50 GeV) for electrons from W or Z boson decays as described in [18]. The training of the multivariate elec-
tron reconstruction is performed using simulated events, while the performance is validated using data. In addition, the electron energy resolution is improved by using a multivariate regression technique [5] resulting in improvements of 10% and 30% in the mass resolution for $Z \rightarrow ee$ events over the standard CMS electron reconstruction in the barrel and endcap, respectively, as described in [18].

Muon candidates are reconstructed with a global trajectory fit using hits in the tracker and the muon system. Muon combined identification and isolation efficiencies of better than 95% have been maintained [4, 5] after improving the pileup corrections with respect to those used in [19] for low luminosity data.

Electrons and muons from Z boson decays are expected to be isolated from other particles. A cone of size $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$ is constructed around the momentum direction of each considered lepton candidate [18, 19]. The relative isolation of the lepton is quantified by summing the transverse momentum of all photons, charged and neutral hadrons PF objects within this cone, excluding the lepton and charged particles associated with the pileup vertices, and then dividing by the lepton transverse momentum. The resulting quantity, corrected for additional underlying event activity due to pileup events [4], is required to be less than 0.4 for both $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$. This requirement rejects misidentified leptons and background arising from hadronic jets. Similarly, to reduce the background from misidentified jets in the photon reconstruction, photon clusters are required to be isolated from other particles within a cone size of $\Delta R = 0.3$. Their absolute isolation from charged hadrons, neutral hadrons and photons is required to be smaller than 1.5 (1.2), 1.0 (1.5), and 0.7 (1.0) GeV, respectively, for photons in the barrel (endcap) region. These requirements are applied after correcting for pileup effects.

The $\ell^+\ell^-$ pair invariant mass is required to be greater than 50 GeV. No upper dilepton mass condition is needed as the events are found to be dominated by processes containing a Z boson. The minimum dilepton mass requirement rejects contributions from $pp \rightarrow \gamma\gamma^*$ and $H \rightarrow \gamma\gamma^*$ where an internal conversion of the photon produces a dilepton pair [20]. If two dilepton pairs are present, the one with the invariant mass closest to the Z boson mass is taken. The final set of requirements combines the information from the photon and the leptons: (i) the invariant mass of the $\ell^+\ell^-\gamma$ system, $m_{\ell\ell\gamma}$, is required to be between 100 and 190 GeV; (ii) the ratio of the photon transverse energy to $m_{\ell\ell\gamma}$ must be greater than 15/110; this requirement suppresses backgrounds due to misidentification of photons without significant loss in signal sensitivity and without introducing a bias in the $m_{\ell\ell\gamma}$ spectrum; (iii) the ΔR separation between each lepton and the photon must be greater than 0.4 in order to reject events with final-state radiation (Drell–Yan or Z decays); and (iv) the remaining final-state radiation events are rejected by requiring the sum of $m_{\ell\ell\gamma}$ and $m_{\ell\ell}$ to be at least 185 GeV.

Jets used in the dijet-tagged event selection defined below are built by clustering the PF candidates with the anti-k_T clustering algorithm [21] with distance parameter of 0.5. Jets with a significant fraction of energy coming from pileup interactions or not associated with the primary vertex are rejected [4]. The pileup energy in jets is subtracted using the FASTJET technique [22–24]. Calibrated and corrected jets [25] are required to have $E_T > 30$ GeV, $|\eta| < 4.7$, and to be separated by at least 0.5 in ΔR from leptons passing the selection requirements described above.

The observed yields for the basic event selection described above are listed in Table 1. The total yield for all channels combined is shown in Fig. 2.
Table 1: Observed and expected event yields for a 125 GeV SM Higgs boson.

Sample	Integrated luminosity (fb$^{-1}$)	Observed event yield for $100 < m_{\ell\ell\gamma} < 190$ GeV	Expected number of signal events for $m_H = 125$ GeV
2011 ee	5.0	2353	1.2
2011 $\mu\mu$	5.1	2848	1.4
2012 ee	19.6	12899	6.3
2012 $\mu\mu$	19.6	13860	7.0

Figure 2: The $m_{\ell\ell\gamma}$ spectrum in the electron and the muon channels for the 7 and 8 TeV data combined, without weighting by the expected signal to background ratio of the individual data samples. Also shown is the expected signal due to a 125 GeV standard model Higgs boson, scaled by 75, and the sum of the individual fits made to the data for each channel and event class described in section 4. The uncertainty band reflects the statistical uncertainty from the fits to the data.

4 Event classes

The sensitivity of the search is enhanced by 20–40% by dividing the selected events into mutually-exclusive classes according to the expected mass resolution and the signal-to-background ratio, and then combining the results from each class.

As shown in Table 2, a significant fraction of the signal events are expected to have both leptons and the photon in the barrel, while less than a fifth of the signal events are expected to have a photon in the endcap. This is in contrast with the background, where around one third of the events are expected to have a photon in the endcap. In addition, events where the photon does not convert into an e^+e^- pair have less background and better resolution in m_H. For these reasons, the events are classified according to the pseudorapidity of the leptons, the pseudorapidity of the photon and the shower shape of the photon for events with the two leptons in the barrel. The shower shape of the photon (R_9) is characterized by the energy sum of 3×3
Table 2: Definition of the four untagged event classes and the dijet-tagged event class, the fraction of selected events for a signal with $m_H = 125$ GeV produced by gluon-gluon fusion at $\sqrt{s} = 8$ TeV, and data in a narrow region in the $m_{\ell\ell\gamma}$ phase space centered at 125 GeV. The width of this region is equal to two times the effective standard deviation (σ_{eff}), where σ_{eff} is defined as half-the-width of the narrowest window containing 68.3% of the distribution. The expected full width at half maximum (FWHM) for the signal is also listed.

Event class	$e^+e^-\gamma$	$\mu^+\mu^-\gamma$				
Photon	$0 <	\eta	< 1.44$	$0 <	\eta	< 1.44$
Data	17%	20%				
Signal	29%	33%				
σ_{eff} (GeV)	1.9 GeV	1.6 GeV				
FWHM (GeV)	4.5 GeV	3.7 GeV				
Event class 1	$R_9 > 0.94$	$R_9 > 0.94$				
Data	26%	31%				
Signal	27%	30%				
σ_{eff} (GeV)	2.1 GeV	1.9 GeV				
FWHM (GeV)	5.0 GeV	4.6 GeV				
Event class 2	$0 <	\eta	< 1.44$	$0 <	\eta	< 1.44$
Data	26%	31%				
Signal	27%	30%				
σ_{eff} (GeV)	2.1 GeV	1.9 GeV				
FWHM (GeV)	5.0 GeV	4.6 GeV				
Event class 3	At least one electron $	\eta	< 1.44$	Both muons in $	\eta	> 0.9$
Data	26%	20%				
Signal	27%	26%				
σ_{eff} (GeV)	3.1 GeV	2.1 GeV				
FWHM (GeV)	7.3 GeV	5.0 GeV				
Event class 4	$1.57 <	\eta	< 2.5$	$1.57 <	\eta	< 2.5$
Data	31%	26%				
Signal	19%	17%				
σ_{eff} (GeV)	3.3 GeV	3.2 GeV				
FWHM (GeV)	7.8 GeV	7.5 GeV				
Dijet tagged class	No requirement on R_9	No requirement on R_9				
Data	0.1%	0.2%				
Signal	1.8%	1.7%				
σ_{eff} (GeV)	2.6 GeV	2.2 GeV				
FWHM (GeV)	4.4 GeV	3.8 GeV				

crystals centered on the most energetic crystal in the supercluster divided by the energy of the supercluster. A requirement of a high value of $R_9 > 0.94$ is used to identify unconverted photons. Using this information, the first four event classes are defined as shown in Table 2. In these four event classes, the best signal-to-background ratio is obtained for the event class 1, which is composed of events with both leptons and the photon in the barrel and high R_9.

It is possible to define an additional class of events with an expected signal-to-background ratio that is more than an order of magnitude larger than events in the four classes defined above. This is achieved by requiring two forward jets with large pseudorapidity separation, to enhance the selection of Higgs bosons produced via vector boson fusion. The dijet-tagged event class requirements are: (i) the difference in pseudorapidity between the two jets is greater than 3.5;
Background and signal modeling

Based on simulated events, the dominant background in untagged events is expected to be due to initial-state-radiation SM $Z\gamma$ production. The background fraction due to final-state-radiation in Drell–Yan or Z decays is only 5%, while for some event classes the contribution from Z plus jets can be as large as 40%. This is in contrast to dijet-tagged events, where it is found that the background due to Z plus jets is slightly higher than from $Z\gamma$.

The background model is obtained by fitting the observed $m_{\ell\ell\gamma}$ mass distributions for each of the five event classes in the electron and the muon channels at a center-of-mass energy of 7 and 8 TeV separately. Because of the limited number of events at 7 TeV for the dijet-tagged event class, the electron and muon channels are combined for this sample. The fitting is unbinned and is performed over the 100–190 GeV mass range. The $m_{\ell\ell\gamma}$ distribution peaks around 110–115 GeV, with a steeply rising turn-on to the left and a gradually falling tail to the right. These characteristics are fitted to the convolution of a Gaussian with a step function multiplied by a polynomial. The mean of the Gaussian is fixed to zero in the convolution and the step position and the width of the Gaussian are left floating in the fit. The background fits based on the $m_{\ell\ell\gamma}$ data distributions for the electron and muon channels in the untagged event classes are shown in Fig. 3 and Fig. 4, while Fig. 5 shows the dijet-tagged class. The quality of the fits is good, with reduced χ^2 between 0.49 and 1.8 for the untagged event classes and 0.16 and 0.28 for the dijet-tagged classes. Even though the $H \rightarrow Z\gamma$ search is limited to the mass range where the branching fraction is expected to be at least 0.1% (i.e. 120–160 GeV), the wide $m_{\ell\ell\gamma}$ fitting range in the background modeling is found to be needed using the bias studies described below.

The potential bias on the background measurement is studied by using pseudo-data generated from background-only fits to the observed $m_{\ell\ell\gamma}$ spectrum. These pseudo-data sets are fitted to a signal combined with a polynomial background model. The results of these fits are used to determine an appropriate degree of polynomial model for background, such that the bias introduced on the limit of the signal strength measurement is smaller than a fifth of the background statistical uncertainty. This is the same method used in the search for the Higgs boson decaying to $\gamma\gamma$ and described in detail in [4]. A third-order polynomial is chosen for the dijet-tagged event class, a fourth-order polynomial is chosen to fit the event classes where both leptons and the photon are in the barrel, while a fifth-order polynomial is chosen to fit the event classes where the photon and at least one lepton are in the endcap.

The description of the Higgs boson signal used in the search is obtained from simulated events produced by the next-to-leading order matrix-element generator POWHEG 1.0 [27, 28] interfaced with PYTHIA 6.4 [29] for the gluon-gluon fusion and vector boson fusion process. The parton distribution functions (PDF) used to produce these samples is CT10 [30]. Associated production with a vector boson and associated production with a $t\bar{t}$ pair are simulated at leading-order using PYTHIA 6.4 and the CTEQ6L [31] PDF. The SM Higgs boson cross sections and branching fractions used are taken from Refs. [32, 33]. The simulated signal events are weighted by taking into account the difference between data and simulated events so that
6 Results

A statistical analysis to test the significance of any potential signal-like excess is performed in terms of the local p-value, the probability of observing an excess under the background-only hypothesis. The local p-value is expressed as a number of standard deviations using the one-sided Gaussian tail convention. No significant excess above background is observed, with a maximum excess of less than two standard deviations in the full mass range. The data are used to derive upper limits on the Higgs boson production cross section times the $H \to Z\gamma$ branching fraction, $\sigma(pp \to H) \times B(H \to Z\gamma)$. The limits are evaluated using a modified frequentist approach taking the profile likelihood as a test statistic [34-36]. An unbinned evaluation of the likelihood over the full mass range of data is used. In addition, the limit on the inclusive cross section times the branching fraction is also provided. No theoretical uncertainties on the production cross sections are included in the latter result. The uncertainty on the limit is dominated by the size of the data sample and systematic uncertainties have a negligible impact.

The systematic uncertainty in the limits is only due to the signal description, as the background
is obtained from data and biases are avoided in the fitting procedure. The uncertainty arises from the uncertainty in the luminosity measurement (2.2% [37], 4.4% [38]), the trigger efficiency (0.5–3.5%), the effects of the choice of parton distribution functions on the signal cross section (0.3–12.5%) [39–43], the uncertainty in the Higgs boson branching fraction prediction (6.7–9.4%) [32, 33], the event pileup modeling for the signal samples (0.4–0.8%), the corrections applied to the simulation to reproduce the performance of the lepton (0.7–1.4%), photon (0.5–1.0%), and dijet selections (8.8–28.5%), event migration caused by the requirements on the photon shower shape in the event classification (5.0%), the event migration between dijet-tagged and untagged event classes due to the jet energy scale (5.1–9.8%), and the signal modeling (1.0–5.0%). The uncertainty in the signal modeling takes into account a potential 5% contamination from final-state radiation in the H → µµ decay, assuming the SM branching fraction. Based on the fit bias studies performed in the 120–160 GeV mass range, the uncertainty on the background estimation due to the chosen functional form is shown to be negligible.

The expected and observed limits are shown in Fig. The limits are calculated at 0.5 GeV intervals in the 120–160 GeV mass range. The expected exclusion limits at 95% confidence level (CL) are between 5 and 16 times the SM cross section and the observed limit ranges between about 4 and 25 times the SM cross section. The observed and expected limits for m_H at 125 GeV are within one order of magnitude of the SM prediction. The data excludes models predicting σ(pp → H) × B(H → Zγ) to be larger than one order of magnitude of the SM prediction for most of the 125–157 GeV mass range. Hence, models predicting significant enhancements for Γ_{Zγ} [44] with respect to the SM expectations due to a pseudoscalar admixture, already strongly disfavoured from the analysis of the angular distributions of the lepton pairs in H →
Figure 5: The $m_{\ell\ell\gamma}$ spectrum in the electron and the muon channels combined (separately) for the 7 (8) TeV data for the dijet-tagged event class. The expected signal from a 125 GeV standard model Higgs boson has been scaled by a factor of 10.

ZZ decays [5], are now excluded.

7 Summary

A search has been performed for a Higgs boson decaying into a Z boson and a photon. The analysis used a dataset from proton-proton collisions at a center-of-mass energy of 7 and 8 TeV, corresponding to an integrated luminosity of 5.0 and 19.6 fb$^{-1}$, respectively. No excess above standard model predictions has been found and the first limits on the Higgs boson production cross section times the $H \rightarrow Z\gamma$ branching fraction at the LHC have been derived. The expected exclusion limits at 95% confidence level are between 5 and 16 times the standard model cross section in the 120–160 GeV mass range and the observed limit ranges between about 4 and 25 times the standard model cross section. The observed and expected limits for $m_{\ell\ell\gamma}$ at 125 GeV are within one order of magnitude of the standard model prediction. Models predicting $\sigma(pp \rightarrow H) \times B(H \rightarrow Z\gamma)$ to be larger than one order of magnitude of the standard model prediction, for most of the 125–157 GeV mass range, are excluded.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
References

[1] ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, *Phys. Lett. B* 716 (2012) 1, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.

[2] ATLAS Collaboration, “Evidence for the spin-0 nature of the Higgs boson using ATLAS data”, arXiv:1307.1432. Submitted to *Phys. Lett. B*.

[3] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, *Phys. Lett. B* 716 (2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

[4] CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at √s = 7 and 8 TeV”, *JHEP* 6 (2013) 81, doi:10.1007/JHEP06(2013)081, arXiv:1303.4571.

[5] CMS Collaboration, “Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs”, *Phys. Rev. Lett.* 110 (2013) 81803, doi:10.1103/PhysRevLett.110.081803, arXiv:1212.6639.

[6] ATLAS Collaboration, “Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC”, (2013). Submitted to *Phys. Lett. B*.

[7] R. N. Cahn, M. S. Chanowitz, and N. Fleishon, “Higgs Particle Production by Z to H Gamma”, *Phys. Lett. B* 82 (1979) 113, doi:10.1016/0370-2693(79)90438-6.

[8] L. Bergstrom and G. Hulth, “Induced Higgs couplings to neutral bosons in e+ e- collisions”, *Nucl. Phys. B* 259 (1985) 137, doi:10.1016/0550-3213(85)90302-5.

[9] M. Carena, I. Low, and C. E. M. Wagner, “Implications of a modified Higgs to diphoton decay width”, *JHEP* 8 (2012) 60, doi:10.1007/JHEP08(2012)060, arXiv:1206.1082.

[10] C.-W. Chiang and K. Yagyu, “Higgs boson decays to γγ and Zγ in models with Higgs extensions”, *Phys. Rev. D* 87 (2013) 33003, doi:10.1103/PhysRevD.87.033003, arXiv:1207.1065.

[11] I. Low, J. Lykken, and G. Shaughnessy, “Singlet scalars as Higgs boson imposters at the Large Hadron Collider”, *Phys. Rev. D* 84 (2011) 35027, doi:10.1103/PhysRevD.84.035027.

[12] C.-S. Chen, C.-Q. Geng, D. Huang, and L.-H. Tsai, “New Scalar Contributions to h → Zγ”, *Phys. Rev. D* 87 (2013) 75019, doi:10.1103/PhysRevD.87.075019, arXiv:1301.4694.

[13] D0 Collaboration, “Search for a scalar or vector particle decaying into Zγ in pp collisions at √s=1.96 TeV”, *Phys. Lett. B* 671 (2009) 349, doi:10.1016/j.physletb.2008.12.009, arXiv:0806.0611.

[14] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
[15] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_{T}^{miss}”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, (2009).

[16] CMS Collaboration, “Search for the standard model Higgs boson decaying into two photons in pp collisions at $\sqrt{s} = 7$ TeV”, Phys. Lett. B 710 (2012) 403, doi:10.1016/j.physletb.2012.03.003.

[17] CMS Collaboration, “Measurement of the inclusive W and Z production cross sections in pp collisions at $\sqrt{s} = 7$ TeV with the CMS experiment”, JHEP 10 (2011) 132, doi:10.1007/JHEP10(2011)132.

[18] S. Baffioni et al., “Electron reconstruction in CMS”, Eur. Phys. J. C 49 (2007) 1099, doi:10.1140/epjc/s10052-006-0175-5.

[19] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002.

[20] A. Firan and R. Stroynowski, “Internal conversions in Higgs decays to two photons”, Phys. Rev. D 76 (2007) 57301, doi:10.1103/PhysRevD.76.057301, arXiv:0704.3987.

[21] M. Cacciari and G. P. Salam, “Dispelling the N3 myth for the k_t jet-finder”, Phys. Lett. B 641 (2006) 57, doi:10.1016/j.physletb.2006.08.037, arXiv:hep-ph/0512210.

[22] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, Phys. Lett. B 659 (2008) 119, doi:10.1016/j.physletb.2007.09.077, arXiv:0707.1378.

[23] M. Cacciari, G. P. Salam, and G. Soyez, “The Catchment Area of Jets”, JHEP 804 (2008) 5, doi:10.1088/1126-6708/2008/04/005, arXiv:0802.1188.

[24] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet User Manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[25] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, JINST 6 (2011) 11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

[26] D. L. Rainwater, R. Szalapski, and D. Zeppenfeld, “Probing color singlet exchange in $Z +$ two jet events at the CERN LHC”, Phys. Rev. D 54 (1996) 6680, doi:10.1103/PhysRevD.54.6680, arXiv:hep-ph/9605444.

[27] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO Higgs boson production via gluon fusion matched with shower in POWHEG”, JHEP 4 (2009) 2, doi:10.1088/1126-6708/2009/04/002, arXiv:0812.0578.

[28] P. Nason and C. Oleari, “NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG”, JHEP 2 (2010) 37, doi:10.1007/JHEP02(2010)037, arXiv:0911.5299.

[29] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, JHEP 5 (2006) 26, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[30] M. Guzzi et al., “CT10 parton distributions and other developments in the global QCD analysis”, (2011), arXiv:1101.0561.
References

[31] J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, doi:10.1088/1126-6708/2002/07/012.

[32] LHC Higgs Cross Section Working Group Collaboration, “Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables”, (2011). arXiv:1101.0593.

[33] A. Denner et al., “Standard model Higgs-boson branching ratios with uncertainties”, Eur. Phys. J. C 71 (2011) 1753, doi:10.1140/epjc/s10052-011-1753-8, arXiv:1107.5909.

[34] A. L. Read, “Presentation of search results: the CL_s technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[35] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[36] ATLAS and CMS Collaboration, “Procedure for the LHC Higgs boson search combination in summer 2011”, Technical Report ATL-PHYS-PUB-2011-011, CMS-NOTE-2011/005, (2011).

[37] CMS Collaboration, “Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update”, CMS Physics Analysis Summary CMS-PAS-SMP-12-008, (2012).

[38] CMS Collaboration, “CMS Luminosity Based on Pixel Cluster Counting - Summer 2012 Update”, CMS Physics Analysis Summary CMS-PAS-LUM-12-001, (2012).

[39] M. Botje et al., “The PDF4LHC Working Group Interim Recommendations”, (2011). arXiv:1101.0538.

[40] S. Alekhin et al., “The PDF4LHC Working Group Interim Report”, (2011). arXiv:1101.0536.

[41] H.-L. Lai et al., “New parton distributions for collider physics”, Phys. Rev. D 82 (2010) 74024, doi:10.1103/PhysRevD.82.074024, arXiv:1007.2241.

[42] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC”, Eur. Phys. J. C 63 (2009) 189, doi:10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002.

[43] NNPDF Collaboration, “Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology”, Nucl. Phys. B 849 (2011) 296, doi:10.1016/j.nuclphysb.2011.03.021, arXiv:1101.1300.

[44] B. Coleppa, K. Kumar, and H. E. Logan, “Can the 126 GeV boson be a pseudoscalar?”, Phys. Rev. D 86 (2012) 075022, doi:10.1103/PhysRevD.86.075022, arXiv:1208.2692.
Figure 6: (a) The exclusion limit on the cross section times the branching fraction of a Higgs boson decaying into a Z boson and a photon divided by the SM value. (b) Exclusion limit on the inclusive cross section alone, where the theoretical uncertainties on the cross section have been excluded in the limit setting.
The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan\(^1\), M. Friedl, R. Frühwirth\(^1\), V.M. Ghete, N. Hörmann, J. Hrubec, M. Jeitler\(^1\), W. Kiesenhofer, V. Knünz, M. Krammer\(^1\), I. Krätschmer, D. Liko, I. Mikulec, D. Rabady\(^2\), B. Rahbaran, C. Rohringer, H. Rohringer, R. Schönbeck, J. Strauss, A. Taurrok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz\(^1\)

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, A. Kalogeropoulos, J. Keaveney, M. Maes, A. Olbrechts, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, L. Favart, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, A. Mohammadi, L. Perniè, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Dildick, G. Garcia, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi\(^3\), G. Beluffi, R. Castello, A. Caudron, L. Ceaud, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco\(^4\), J. Hollar, P. Jez, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, A. Popov\(^5\), M. Selvaggi, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Bely, T. Caebbergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, J. Chinellato\(^6\), A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo, L. Mundim, H. Nagima, W.L. Prado Da Silva, A. Santoro, A. Szajjder, E.J. Tonelli Manganote\(^6\), A. Vilela Pereira

Universidade Estadual Paulista\(^a\), Universidade Federal do ABC\(^b\), São Paulo, Brazil
C.A. Bernardes\(^b\), F.A. Dias\(^b,7\), T.R. Fernandez Perez Tomei\(^a\), E.M. Gregores\(^b\), C. Lagana\(^a\), P.G. Mercadante\(^b\), S.F. Novaes\(^b\), Sandra S. Padula\(^a\)
The CMS Collaboration

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev2, P. Iaydjiev2, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, C.A. Carrillo Montoya, L.F. Chaparro Sierra, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina8, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim9, Y. Assran10, S. Elgammal9, A. Ellithi Kamel11, M.A. Mahmoud12, A. Radi13,14

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, M. Titov
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, M. Blu15, P. Busson, C. Charlot, N. Daci, T. Dahms,
M. Dalchenko, L. Dobrzynski, A. Florent, R. Granier de Cassagnac, M. Haguenauer, P. Miné,
C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois,
C. Veelken, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute
Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram16, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte16,
F. Drouhin16, J.-C. Fontaine16, D. Gelé, U. Goerlach, C. Goetzmann, P. Juillot, A.-C. Le Bihan,
P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules,
CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique
Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, G. Boudoul, S. Brochet, J. Chasserat, R. Chierici, D. Contardo,
P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier,
L. Mirabito, S. Perries, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi,
Georgia
Z. Tsamalaidze17

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, B. Calpas, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs,
K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber,
B. Wittmer, V. Zhukov18

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth,
T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer,
M. Merschmeyer, A. Meyer, M. Olschewski, K. Padeken, P. Papacz, H. Pieta, H. Reithler,
S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teysnier, S. Thömer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle,
B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann2, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth,
A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A.J. Bell,
M. Bergholz18, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell,
S. Choudhury, F. Costanza, C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein,
G. Flucke, A. Geiser, I. Glushkov, A. Grebenyuk, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig,
D. Horton, H. Jung, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge, M. Krämer, D. Krücker,
E. Kuznetsova, W. Lange, J. Leonard, K. Lipka, W. Lohmann18, B. Lutz, R. Mankel,
I. Martin, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme,
O. Novgorodova, F. Nowak, J. Olzem, H. Perrey, A. Petruchkin, D. Pitzl, R. Placakyte,
A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron, M.O. Sahin, J. Salfeld-Nebgen,
R. Schmidt18, T. Schoerner-Sadenius, N. Sen, M. Stein, R. Walsh, C. Wissing
University of Hamburg, Hamburg, Germany
V. Blobel, H. Enderle, J. Erfle, E. Garutti, U. Gebbert, M. Görner, M. Gosselink, J. Haller,
K. Heine, R.S. Höing, G. Kaussen, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange,
I. Marchesini, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper,
E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, M. Seidel, J. Sibille, V. Sola, H. Stadie,
G. Steinbrück, J. Thomsen, D. Troendle, E. Usai, L. Vanelderen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm,
M. Feindt, M. Guthoff2, F. Hartmann2, T. Hauth2, H. Held, K.H. Hoffmann, U. Husemann,
I. Katkov5, J.R. Komaragiri, A. Kornmayer2, P. Lobelle Pardo, D. Martschei, Th. Müller,
M. Niegel, A. Nürnberg, O. Oberst, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, F-P.
Schilling, G. Schott, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler,
M. Zeise

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi,
Greece
G. Anagnostou, G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, A. Markou,
C. Markou, E. Ntomari, I. Topsis-giotis

University of Athens, Athens, Greece
L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos,
E. Paradas

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath20, F. Sikler, V. Veszpremi, G. Vesztergombi21,
A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain22

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu,
L.K. Saini, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra,
M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana,
A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan, A.P. Singh

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty2, L.M. Pant, P. Shukla, A. Topkar
Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, R.M. Chatterjee, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu, G. Kole, S. Kumar, M. Maity, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Afshari, H. Bakhshiansohi, S.M. Etesami, A. Fahim, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbrì, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, M. Meneghelli, A. Montanari, F.L. Navarria, F. Odorici, A. Perrotta, F. Primavera, A.M. Rossi, T. Rovelli, G.P. Sirolì, N. Tosi, R. Travaglini

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbrì, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, M. Meneghelli, A. Montanari, F.L. Navarria, F. Odorici, A. Perrotta, F. Primavera, A.M. Rossi, T. Rovelli, G.P. Sirolì, N. Tosi, R. Travaglini

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbagli, V. Ciullì, C. Civinini, R. D’Alessandro, E. Focardi, S. Frosali, E. Gallo, S. González, V. Gori, P. Lenzini, M. Meschini, S. Paolotti, G. Squazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbrì, D. Piccolo

INFN Sezione di Genova, Università di Genova, Genova, Italy
P. Fabbricatore, R. Musenich, N. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Benaglia, F. De Guio, M.E. Dinardo, S. Fioretti, S. Gennai, A. Ghezzi, P. Govoni, M.T. Lucchini, S. Malvezzi, R.A. Manzonì, A. Martelli, D. Menasce, L. Moroni, M. Paganoni, D. Pedrì, S. Ragazzi, N. Redaelli, T. Tabarelli de Fatis

INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Università della Basilicata (Potenza), Università G. Marconi (Roma), Napoli, Italy
S. Buontempo, N. Cavallo, A. De Cosà, F. Fabozzi, A.O.M. Iorio, L. Lista, S. Meola, M. Merola, P. Paolucci

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy
P. Azzi, N. Bacchetta, M. Bellato, D. Bisello, A. Branca, R. Carlin, P. Checchia,
T. Dorigoa, U. Dossellia, M. Galantia,b,2, F. Gasparinia,b, U. Gasparinia,b, P. Giubilatoa,b, A. Gozzelinoa, K. Kanishcheva,c, S. Lacapraraa, I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, N. Pozzobona,b, P. Ronchesea,b, M. Sgaravattoa, F. Simonettoa,b, E. Torassaa, M. Tosia,b, S. Vaninia,b, S. Venturaa, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b

INFN Sezione di Pavia a, Universit\`a di Pavia b, Pavia, Italy
M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Vituloa,b

INFN Sezione di Perugia a, Universit\`a di Perugia b, Perugia, Italy
M. Biasinia,b, G.M. Bileia, L. Fana,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, A. Nappia,b,t, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b

INFN Sezione di Pisa a, Universit\`a di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androssova,30, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia, M.A. Cioccia, R.T. D'Agnoa,c,2, R. Dell'Orsoa, F. Fioria,c, L. Foa,c, A. Giassia, M.T. Grippoa,30, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martinia,30, A. Messineoa,b, C.S. Moona, F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,31, A.T. Serbana, P. Spagnoloa, P. Squillaciotia, R. Tenchinia, G. Tonellia,b, A. Venturea, P.G. Verdinia, C. Vernieria,c

INFN Sezione di Roma a, Universit\`a di Roma b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, M. Grassia,b, E. Longoa,b, F. Margarolia,b, P. Meridiania, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, C. Rovellia, L. Soffia,b

INFN Sezione di Torino a, Universit\`a di Torino b, Universit\`a del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Armeodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, S. Casassoa,b, M. Costaa,b, A. Deganoa,b, N. Demariaa, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia,2, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Santocchiaa,b, A. Schizzia,b, A. Solanoa,b, A. Staianoa, U. Tamponia

INFN Sezione di Trieste a, Universit\`a di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisa,b, M. Casarsaa, F. Cossuttaa,2, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Penzoa, A. Schizzia,b, A. Zucchettaa,b

Kangwon National University, Chunchon, Korea
S. Chang, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, D.C. Son

Chonnam National University, Institute for Unverse and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu
P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, A. Kaminskiy, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, S. Petrushanko, V. Savrin

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, D. Krpic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. García-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, C. Jorda, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Curbaitart

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, J.F. Benitez, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, S. Colafranceschi, D. d’Enterria, A. Dabrowski, A. David, A. De Roeck, S. De Visscher, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, S. Gowdy, R. Guida, J. Hammer, M. Hansen, P. Harris, C. Hartl, A. Hinzmann, V. Innocente, P. Janot, E. Karavakis, K. Kousouris, K. Krajczar, P. Lecoq, Y.-J. Lee, C. Lourenço, N. Magini, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, R. Moser, M. Mulders, P. Musella, E. Nesvold, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimià, D. Piparo, M. Plagge, L. Quertenmont, A. Racz, W. Reece, G. Rolandi, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni,
S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas, D. Spiga, M. Stoye, A. Tsirou, G.I. Veres, J.R. Vlimant, H.K. Wöhri, S.D. Worm, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dürrer, P. Eller, K. Freudenreich, C. Grab, D. Hits, P. Lecomte, W. Lustermann, M. Mangano, A.C. Marini, P. Martinez Ruiz del Arbol, D. Meister, N. Mohr, F. Moortgat, C. Nägeli, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov, B. Stieger, M. Takahashi, L. Tauscher, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler, V. Chiocchia, C. Favaro, M. Ivova Rikova, B. Kilminster, B. Millan Mejias, P. Robmann, H. Snoek, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, S.W. Li, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, M. Wang

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturt, A. Polatou, K. Sogut, D. Sunar Cerci, B. Tali, H. Topakli, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, G. Karapinar, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, K. Cankocak, Y.O. Günaydın, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, Z. Meng, S. Metson, D.M. Newbold, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder,
The CMS Collaboration

S. Harper, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Gumeratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Sparrow, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie

Brunel University, Uxbridge, United Kingdom
M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazz, J. Rohlfs, D. Sperka, J. West

Brown University, Providence, USA
J. Alimena, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, T. Miceli, D. Pellett, J. Pilot, F. Ricci-Tam, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, S. Erhan, P. Everaerts, C. Farrell, M. Felcini, J. Hauser, M. Ignatenko, C. Jarvis, G. Rakness, P. Schlein, E. Takasugi, P. Traczyk, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, P. Jandir, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, A. Shrinivas, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, A. Holznner, R. Kelley, M. Lebougeois, J. Letts, I. Macneill, S. Padhi, C. Palmer, G. Petruccianii, M. Pieri, M. Sanin, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, C. George, F. Golf, J. Incandela, C. Justus, D. Kovalskyi, V. Krutelyov, S. Lowette, R. Magaña Villalba, N. Mccoll, V. Pavlunin, J. Richman, R. Rossin, D. Stuart, W. To, C. West
California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, D. Kcira, Y. Ma, A. Mott, H.B. Newman, C. Rogan, M. Spiropulu, V. Timciuc, J. Veverka, R. Wilkinson, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, W. Hopkins, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstone, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, O. Gutsche, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, S. Kunori, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, O. Prokofyev, N. Ratnikova, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, J.C. Yun

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskii, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, R. Remington, A. Rinkevicius, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, O. Evodikimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, F. Lacroix, D.H. Moon, C. O’Brien, C. Silkworth, D. Strom, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, K. Dilsiz, F. Duru, S. Griffiths, J.-P. Merlo,
H. Mermerkaya59, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, H. Ogul, Y. Onel, F. Ozok51, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin60, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, G. Giurgiu, A.V. Gritsan, G. Hu, P. Maksimovic, C. Martin, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, R.P. Kenny III, M. Murray, D. Noonan, S. Sanders, R. Stringer, J.S. Wood

Kansas State University, Manhattan, USA
A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Peterman, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, V. Dutta, G. Gomez Ceballos, M. Goncharov, D. Gulhan, Y. Kim, M. Klute, Y.S. Lai, A. Levin, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, F. Stöckli, K. Sumorok, D. Velicanu, R. Wolf, B. Wyslouch, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, J. Haupt, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, L.M. Cremaldi, R. Kroeger, S. Oliveros, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, M. Eads, R. Gonzalez Suarez, J. Keller, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S. Rappoccio, Z. Wan

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D. Nash, T. Orimoto, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, K.A. Hahn, A. Kubik, L. Lusito, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
D. Berry, A. Brinkerhoff, K.M. Chan, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf
The Ohio State University, Columbus, USA
L. Antonelli, B. Bysma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, C. Vuosalo, B.L. Winer, H. Wolfe

Princeton University, Princeton, USA
E. Berry, P. Elmer, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, S.C. Zenz, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
E. Alagoz, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, K. Jung, O. Koybasi, M. Kress, N. Leonardo, D. Lopes Pegna, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, F. Wang, W. Xie, L. Xu, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
N. Parashar

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demaria, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, K. Rose, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
O. Bouhali, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, K. Kovitanggoon, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska
University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA
D.A. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, E. Friis, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, R. Loveless, A. Mohapatra, M.U. Mozer, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, A. Savin, W.H. Smith, J. Swanson
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Zewail City of Science and Technology, Zewail, Egypt
10: Also at Suez Canal University, Suez, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at National Centre for Nuclear Research, Swierk, Poland
16: Also at Université de Haute Alsace, Mulhouse, France
17: Also at Joint Institute for Nuclear Research, Dubna, Russia
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at The University of Kansas, Lawrence, USA
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at Eötvös Loránd University, Budapest, Hungary
22: Also at Tata Institute of Fundamental Research - EHEP, Mumbai, India
23: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
24: Now at King Abdulaziz University, Jeddah, Saudi Arabia
25: Also at University of Visva-Bharati, Santiniketan, India
26: Also at University of Ruhuna, Matara, Sri Lanka
27: Also at Isfahan University of Technology, Isfahan, Iran
28: Also at Sharif University of Technology, Tehran, Iran
29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Purdue University, West Lafayette, USA
32: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
33: Also at INFN Sezione di Padova; Università di Padova; Università di Trento (Trento), Padova, Italy
34: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
35: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
36: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
37: Also at University of Athens, Athens, Greece
38: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
39: Also at Paul Scherrer Institut, Villigen, Switzerland
40: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
41: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
42: Also at Gaziosmanpasa University, Tokat, Turkey
43: Also at Adiyaman University, Adiyaman, Turkey
44: Also at Cag University, Mersin, Turkey
45: Also at Mersin University, Mersin, Turkey
46: Also at Izmir Institute of Technology, Izmir, Turkey
47: Also at Ozyegin University, Istanbul, Turkey
48: Also at Kafkas University, Kars, Turkey
49: Also at Suleyman Demirel University, İsparta, Turkey
50: Also at Ege University, Izmir, Turkey
51: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
52: Also at Kahramanmaras Sütçü İmam University, Kahramanmaraş, Turkey
53: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
54: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
55: Also at Utah Valley University, Orem, USA
56: Also at Institute for Nuclear Research, Moscow, Russia
57: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
58: Also at Argonne National Laboratory, Argonne, USA
59: Also at Erzincan University, Erzincan, Turkey
60: Also at Yildiz Technical University, Istanbul, Turkey
61: Also at Texas A&M University at Qatar, Doha, Qatar
62: Also at Kyungpook National University, Daegu, Korea