Identification of protein tyrosine phosphatase 1B and casein as substrates for 124-v-Mos

Tassula Proikas-Cezanne¹,², Silvia Stabel² and Dieter Riethmacher*²,³

Address: ¹Temple University, Fels Institute for Cancer Research and Molecular Biology, Philadelphia PA USA, ²Max-Delbrueck-Laboratory, Max-Planck-Institute, Cologne Germany and ³Zentrum fuer Molekulare Neurobiologie, Universitaet Hamburg, Hamburg Germany

E-mail: Tassula Proikas-Cezanne - alexandropolis@yahoo.com; Silvia Stabel - sistabel@web.de; Dieter Riethmacher* - drieth@zmnh.uni-hamburg.de

*Corresponding author

Abstract

Background: The mos proto-oncogene encodes a cytoplasmic serine/threonine-specific protein kinase with crucial function during meiotic cell division in vertebrates. Based on oncogenic amino acid substitutions the viral derivative, 124-v-Mos, displays constitutive protein kinase activity and functions independent of unknown upstream effectors of mos protein kinase. We have utilized this property of 124-v-Mos and screened for novel mos substrates in immunocomplex kinase assays in vitro.

Results: We generated recombinant 124-v-Mos using the baculovirus expression system in Spodoptera frugiperda cells and demonstrated constitutive kinase activity by the ability of 124-v-Mos to auto-phosphorylate and to phosphorylate vimentin, a known substrate of c-Mos. Using this approach we analyzed a panel of acidic and basic substrates in immunocomplex protein kinase assays and identified novel in vitro substrates for 124-v-Mos, the protein tyrosine phosphatase 1B (PTP1B), alpha-casein and beta-casein. We controlled mos-specific phosphorylation of PTP1B and casein in comparative assays using a synthetic kinase-inactive 124-v-Mos mutant and further, tryptic digests of mos-phosphorylated beta-casein identified a phosphopeptide specifically targeted by wild-type 124-v-Mos. Two-dimensional phosphoamino acid analyses showed that 124-v-mos targets serine and threonine residues for phosphorylation in casein at a 1:1 ratio but auto-phosphorylation occurs predominantly on serine residues.

Conclusion: The mos substrates identified in this study represent a basis to approach the identification of the mos-consensus phosphorylation motif, important for the development of specific inhibitors of the Mos protein kinase.

Background

Mos belongs to a small family of cytoplasmic protein serine/threonine kinases having oncogenic activity [1,2]. It is highly expressed in germ cells but barely detectable in a variety of somatic tissues [3–5]. Studies in Xenopus oocytes have established a role for c-mos in a) initiation of the maturation process and the meiosis I / meiosis II transition and b) in metaphase II arrest in mature oocytes [6–12]. In mouse c-Mos is apparently not required for in-

Published: 4 April 2002

BMC Biochemistry 2002, 3:6

Received: 1 February 2002

Accepted: 4 April 2002

This article is available from: http://www.biomedcentral.com/1471-2091/3/6

© 2002 Proikas-Cezanne et al; licensee BioMed Central Ltd. Verbatim copying and redistribution of this article are permitted in any medium for any purpose, provided this notice is preserved along with the article’s original URL.
Itiation of maturation, however, like in Xenopus it is absolutely essential for the metaphase II arrest [13,14].

The 124-v-mos oncogene represents one of several transforming gene isolates of the moloney murine sarcoma virus [15,16] and shows unique constitutive protein kinase activity and enhanced transforming activity when compared to other v-Mos proteins or to c-Mos [2,17–19]. The transforming mechanism of Mos involves signalling through the MAP kinase pathway as phosphorylation of MEK by c-Mos has been demonstrated [20–23] and mapping analyses have shown that Mos and Raf phosphorylate identical sites on MEK [16,24]. The upstream events of the Mos/MEK/MAPK signalling cascade have not as yet been identified. In earlier studies we have shown that an activating mechanism of c-Mos is likely to involve a conformational change which is mimicked when a single amino acid is exchanged in the α-helix C loop of the kinase domain (Arg145-Gly) resulting in constitutive active c-Mos [19]. Recently Fisher and co-workers proposed an activating mechanism of c-Mos by sequential association with Hsp70 and Hsp90, in addition to phosphorylation [25,26]. Presence of the activating Arg145-Gly amino acid substitution in 124-v-Mos does not change kinase specificity but is sufficient for constitutive kinase activity [19]. Hence the kinase activity of 124-v-Mos is independent of upstream effectors and we have used this oncogenic Mos derivative to identify substrates for the Mos protein kinase in vitro. Using the baculovirus expression system we have expressed active 124-v-Mos protein kinase, as demonstrated by its ability to auto-phosphorylate, predominantly on serine residues, and to phosphorylate vimentin in vitro. We have analysed a panel of acidic and basic substrates in immunocomplex protein kinase assays and identified two novel in vitro substrates for 124-v-Mos, the protein tyrosine phosphatase 1B and α/β-casein.

Results

Three tryptic 124-v-Mos peptides include target sites for auto-phosphorylation

We have expressed 124-v-Mos with the baculovirus system in Sf9 insect cells and immunopurified 124-v-Mos using the anti-Mos N13 antiserum [19]. As a control, a Mos-unrelated protein, a synthetic kinase-inactive construct of PKC, PKCγ³⁸⁸⁰R[27], was expressed in Sf9 cells. Mos kinase assays, completed in the presence of [γ-³²P]ATP, were resolved using SDS-PAGE and the Coomassie blue staining of the protein gel showed visible amounts of immunopurified 124-v-Mos (fig. 1B, arrowhead). The corresponding autoradiograph in figure 1A demonstrates that 124-v-Mos is expressed as a constitutive active protein kinase indicated by its ability to auto-phosphorylate in vitro. Further, a parallel kinase reaction was used for phosphoamino acid analyses which confirmed that 124-v-Mos auto-phosphorylation occurred predominantly on serine residues (fig. 1C) and a two-dimensional resolution of a tryptic digest of auto-phosphorylated 124-v-Mos showed that three tryptic peptides include auto-phosphorylation target sites (fig. 1D), demonstrating that auto-phosphorylation occurs on multiple sites of the Mos protein [28].

124-v-Mos phosphorylates vimentin but not tubulin in vitro

Initially, we tested the kinase activity of 124-v-Mos using previously identified Mos substrates. It has been shown that 124-v-Mos, derived from mos-transformed fibroblasts, phosphorylates vimentin in vitro [29] and as presented here in figure 2C, in vitro kinase assays using immunopurified 124-v-mos from Sf9 insect cells showed strong vimentin phosphorylation. In contrast, tubulin...
which has been shown to be phosphorylated in vivo and in vitro by Xenopus c-Mos [30] was not a substrate for 124-v-Mos in vitro (fig. 2A). We have tested tubulin purified from various organs (mouse brain, testis and spleen) either polymerised, unpolymerised or pretreated with phosphatases but in none of these states found tubulin to be phosphorylated by 124-v-Mos (data not shown). The possibility that factors other than 124-v-Mos in the immunoprecipitate might be responsible for the observed casein phosphorylation was eliminated by including a synthetic kinase-inactive construct of 124-v-Mos, 124-v-MosK1218R [19], as a control in addition to the Mos-unrelated protein, PKCγK380R. A comparison of background phosphorylation on β-casein in the immunoprecipitates of both controls and 124-v-Mos specific phosphorylation showed that 124-v-Mos phosphorylates β-casein 7fold relative to background (fig. 3B). Critically, a tryptic digest of phosphorylated β-casein revealed that 124-v-Mos phosphorylates a specific tryptic peptide in β-casein which shows no background phosphorylation in either controls (fig. 3C, arrowhead) strongly supporting that 124-v-Mos is able to phosphorylate β-casein. Further, a two-dimensional phosphoamino acid analysis (fig. 3D) showed that 124-v-Mos phosphorylates α- and β-casein on serine and threonine residues at a ratio of 1:1.

The protein tyrosine phosphatase 1B is a novel in vitro substrate for 124-v-Mos
Protein tyrosine phosphatases constitute a diverse family of enzymes that can be divided into several subgroups, including receptor and non-receptor PTPs [31]. The non-transmembrane protein tyrosine phosphatase PTP-1B, a major intracellular PTP is widely expressed. PTP-1B has been demonstrated to be phosphorylated on multiple sites in a cell cycle specific manner whereby mitotic hyper-phosphorylation occurs, reflected by a protein mobility shift in SDS-PAGE analyses [32]. Using purified PTP-1B as a substrate, we show here that 124-v-Mos can phosphorylate PTP-1B in vitro (fig. 4A). We controlled this result by using immunoprecipitates from Sf9 cells expressing the synthetic kinase-inactive 124-v-Mos construct or purified PTP-1B alone in parallel kinase assays (fig. 4A). Other kinases such as PKC and CKII that phosphorylate PTP-1B in vitro are unable to induce a mobility shift of PTP-1B as observed in mitotic cells [32]. Likewise, as shown in figure 4B, a Mos-dependent phosphorylation did not result in a mobility shift of PTP-1B.

Discussion
In this study we have expressed constitutive active 124-v-Mos using the baculovirus expression system and identified novel in vitro substrates for Mos by immunocomplex kinase assays. It has been shown that 124-v-Mos from mos-transformed mouse fibroblasts phosphorylates vimentin in vitro [29] and that v-Mos is physically associated with vimentin in transformed cells [33]. We have used vimentin as a positive control for 124-v-Mos kinase assays in vitro to demonstrate protein kinase activity of baculovirus expressed 124-v-Mos (fig. 2). It is known that the kinase activity of c-Mos is regulated by cellular factors and therefore we have chosen the oncogenic variant of c-Mos, 124-Mos, in our study since it is independent of activat-
ing mechanisms. Recently it has been shown that Hsp70 and Hsp90 physically interact with c-Mos in Xenopus oocytes and are required for c-Mos activation [25,26]. An-other factor controlling c-Mos kinase activity in Xenopus oocytes was identified by Chen and colleagues [34,35] to be CKII, a tetrameric holoenzyme composed of two cata-lytic α-subunits and two regulatory β-subunits [36]. In
Xenopus oocytes c-Mos kinase activity is inhibited by binding to the C-terminus of CKII β-subunit and by over-expression of the α-subunit of CKII this effect can be neutralized suggesting a binding competition between c-Mos and the α-subunit of CKII [34]. Another protein that inter-
acts with c-Mos in Xenopus oocytes is tubulin. Tubulin not only co-precipitates with c-Mos but also serves as an
substrate for 124-v-Mos only. Further, two-
dimensional phosphoamino acid analyses of 124-v-Mos phos-
phorylated α-casein (D, left panel) and β-casein (D, right panel) were completed, the arrowheads indicating the origins of sample application.

Having established that our recombinant 124-v-Mos protein is active in vitro, we tested a variety of molecules in immunocomplex kinase assays and identified α- and β-casein as very good substrates in vitro (fig. 3). This phospho-
rylation was specific to active 124-v-Mos as the overall phospho-
ylation on casein was significantly reduced using the synthetic kinase-inactive construct 124-v-MosK121R and more importantly, a tryptic peptide of casein was identified to be phosphorylated by 124-v-Mos only and not by either of the controls used in this study. As expected, casein phosphorylation occured on serine and threonine residues. The Mos-specific consensus phos-
phorylation site has not as yet been identified and only the mos-phosphorylation sites on MAP kinase kinase have been mapped revealing them to be identical to raf-phosphorylation sites [24]. Using the mos substrates

Figure 3
124-v-Mos phosphorylates α- and β-casein in vitro. Mos kinase assays, in the presence of α- and β-casein, were resolved using 10% SDS-PAGE; the Coomassie stained protein gel shown in 3A, right panel and the corresponding auto-
radiograph on the left panel. Arrowheads indicate the position of 124-v-Mos, α- and β-casein and the antibody. Using two control immunoprecipitates of SF9 cells expressing the synthetic kinase-inactive constructs, 124-v-MosK121R or PKCγK380R, Mos-specific β-casein phosphorylation was demon-
strated in 3B and 3C: Mos kinase assays were blotted on nylon-membrane, the phospho-β-casein bands (B, arrowhead) excised and 32p-Cerenkov counts recorded (B). Alterna-
tively, the excised phospho-β-casein bands were digested with trypsin and electrophoresed using 16% SDS-PAGE (C). The arrowhead in 3C indicates the tryptic β-casein peptide phosphorylated by wild-type 124-v-Mos only. Further, two-
dimensional phosphoamino acid analyses of 124-v-Mos phos-
phorylated α-casein (D, left panel) and β-casein (D, right panel) were completed, the arrowheads indicating the origins of sample application.
identified in this study, it may be possible to determine the specific consensus phosphorylation site for the mos protein kinase as a basis for developing Mos-specific inhibitors.

We have also identified protein tyrosine phosphatase 1B (PTP-1B) as a substrate for 124-v-mos in vitro (fig. 4A). PTP-1B is phosphorylated on multiple sites in vivo and during mitosis becomes hyper-phosphorylated resulting in a mobility shift in SDS-PAGE [32]. Protein kinase C and CKII phosphorylate PTP-1B in vitro but neither is responsible for the observed mitotic hyper-phosphorylation in vivo [32]. We show here that likewise PTP-1B phosphorylation by 124-v-mos is insufficient to effect a mobility shift (fig. 4B). PTP-1B phosphorylation occurs on serine 386, a phosphoacceptor site for Cdc2/cyclin B in vitro and serine 352, phosphorylated by an unknown kinase. The serine 352 phosphorylation site either might not be a target for Mos in vitro or PTP-1B may be sequentially phosphorylated by multiple kinases in vivo. Interestingly, it has been shown that PTP-1B hyper-phosphorylation does not occur uniquely in mitosis but also during osmotic shock and is induced by several other stress stimuli [37]. Given that activation of c-Mos is dependent on its interaction with the heatshock proteins, Hsp70 and Hsp90, it is tempting to speculate that the Mos kinase may phosphorylate PTP-1B also in vivo.

Conclusions
The crucial biological functions of c-mos during meiosis have been analysed by antisense experiments in Xenopus laevi and by generating mos-deficient mice establishing mos as the main player in metaphase II arrest. In contrast, not much is known about activating mechanisms of mos and biochemical properties such as the mos-specific consensus phosphorylation site. In this study we immunopurified an oncogenic and constitutive active variant of mos, 124-v-Mos, and identified novel phosphorylation substrates, PTP1B and α- and β-casein. Our substrates represent a basis to determine the consensus mos-specific phosphorylation site and further, to analyze this phosphorylation ability functionally in vivo.

Materials and Methods

Protein expression and in vitro immunocomplex protein kinase assays

The construction and isolation of recombinant baculoviruses expressing active 124-v-Mos and the synthetic kinase-inactive variant of 124-v-Mos, 124-v-MosK121R, is described in detail elsewhere [19]. According to the standard procedure published by Summers & Smith [38], recombinant proteins were expressed at 27°C in Sf9 cells for 48 hrs. and mos was immunopurified using the anti-Mos N13 antiserum as stated in [19]. Mos kinase assays were carried out in 50 l kinase reaction buffer (10 mM HEPES pH 7.3, 150 mM NaCl, 0.1% Triton X-100, 2 mM DTT, 15 mM MnCl₂, 5 mM MgCl₂, 2.5 mM β-glycerophosphate, 2.5 mM NaF, 20 μM ATP/ 10 μCi [γ³²P]ATP), incubated for 20 min. at 25°C and stopped by the addition of Laemmli buffer. For in vitro substrate kinase assays, 2 μg of substrate was added to each kinase reaction. Phosphoproteins were resolved using 10% SDS-PAGE, Coomassie stained, dried and compared with the corresponding autoradiograph. Immunodetection of western blots were performed using the ECL system and protocol (Amer sham).

Substrates for in vitro immunocomplex kinase assays

α- and β-casein (dephosphorylated, bovine origin) were purchased from Sigma and vimentin from Roche. Purified PTP-1B and the PTP-1B-specific antiserum FG6 were provided by N. Tonks, Cold Spring Harbor [32]. Tubulin was purified from either mouse brain, testis or spleen by F. Propst, Vienna.

Two-dimensional phosphoamino acid analyses

Two-dimensional phosphoamino acid analyses were completed according to Boyle and colleagues [39]. Briefly, phosphoproteins were separated using SDS-PAGE, blotted on nylon-membrane and the desired protein bands excised. The membrane strips were washed sequentially with 100% methanol and water and the phosphoproteins hydrolysed for 60 min. at 110°C in 5.7 N HCl. The hydrolysed samples were lyophilised, resuspended in 2.5% formic acid, 7.8% acetic acid and mixed at 15:1 with a non-radioactive amino acid standard (1 mg/ml of each phospho-serine, -threonine, -tyrosine; Sigma). Finally, samples were spotted on thin-layer chromatography plates and separated in two dimensions using the HTLE-7000 apparatus and manufacture’s procedure (Two-Dimensional Peptide Mapping And Phosphoamino Acid Analysis, Featuring The Hunter Thin Layer Plate Electrophoresis System, B. Boyle & T. Hunter, C.B.S. Scientific Company, Del Mar, USA). First dimension: 20 min. electrophoresis at 0.8 bar, 1 kV in 2.5% formic acid, 7.8% acetic acid. Second dimension: 16 min. at 0.8 bar, 1.3 kV in 5% acidic acid, 0.5 % pyridine. The phosphoamino acids were fixed for 10 min. at 65°C and the standard non-radioactive amino acids visualised by spraying the chromatography plates with 0.25% ninhydrin followed by incubation for 15 min. at 65°C. The phosphoamino acids were located by comparing the autoradiograph with the stained standard amino acids.

Tryptic digests and one- or two-dimensional separation of tryptic phosphopeptides

According to Boyle and colleagues [39] phosphorylated proteins were proteolytically digested with trypsin by incubating twice for 2 hrs. at 37°C, on each occasion with 10 μg trypsin (Promega, modified trypsin, sequencing grade)
in 200 µl 50 mM NH₄HCO₃ and a two-dimensional separation of tryptic phosphopeptides was completed using the HTLE-7000 apparatus and manufacture's protocol: electrophoretic separation was performed on thin layer chromatography plates for 25 min. at 0.8 bar and 1 kV, followed by conventional chromatography in 39.25% n-butanol, 30.25% pyridine, 6.1% acetic acid. One-dimensional separation of tryptic phosphopeptides was achieved using 16% SDS-PAGE according to Schägger and von Jagow [40].

List of Abbreviations used

SP, Spodoptera frugiperda cell line; MAPK, mitogen-activated protein kinase; MEK, MAP and erk kinase; Hsp, heat-shock protein; PTP, protein tyrosine phosphatase; MBP, myelin basic protein; PKC, protein kinase C; CKII, casein kinase II.

Acknowledgements

We are most grateful to Friedrich Propst for purifying tubulin and generating the anti-Mos N13 antisemur.

References

1. Maxwell SA, Arlinghaus RB: Serine kinase activity associated with Maloney murine sarcoma virus-124-encoded p37mos. Virology 1985, 143:321-333.
2. Singh B, Wittenberg C, Hannink M, Reed SI, Donoghue DJ, Arlinghaus RB: The histidine-221 to tyrosine substitution in v-mos abolishes its biological function and its protein kinase activity. Virolology 1988, 164:114-120.
3. Propst F, Vande Woude GF: Expression of c-mos proto-oncogene transcripts in mouse tissues. Nature 1985, 315:516-518.
4. Propst F, Rosenberg MP, Iyer A, Kaul K, Vande Woude GF: c-mos proto-oncogene RNA transcripts in mouse tissues: structural features, developmental regulation, and localization in specific cell types. Mol Cell Biol 1987, 7:1629-1637.
5. Paules RS, Bucconne R, Moschel RC, Vande Woude GF, Eppig JJ: Mouse Mos protooncogene product is present and functions during oogenesis. Proc Natl Acad Sci USA 1989, 86:5395-5399.
6. Masui Y, Markert CL: Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 1971, 177:129-145.
7. Sagata N, Oskarsson M, Copeland T, Brumbaugh J, Vande Woude GF: Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 1988, 335:19-25.
8. Sagata N, Watanabe N, Vande Woude GF, Ikawa Y: The c-mos proto-oncogene product is a cytosatic factor responsible for meiotic arrest in vertebrate eggs. Nature 1989, 342:512-518.
9. Sagata N, Daar I, Oskarsson M, Showalter SD, Vande Woude GF: The product of the mos proto-oncogene as a candidate "initiator" for oocyte maturation. Science 1989, 245:643-646.
10. O’Keefe SJ, Wolfs H, Kiessling AA, Cooper GM: Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol 1997, 9:193-204.
11. Kanki JP, Donoghue DJ: Progression from meiosis I to meiosis II in Xenopus oocytes requires de novo translation of the mos protooncogene. Proc Natl Acad Sci U S A 1991, 88:5794-5798.
12. Yew N, Melling ML, Vande Woude GF: Meiotic initiation by the mos protein in Xenopus. Nature 1992, 355:649-652.
13. Colledge WH,Carlton MB, Udy GB, Evans MJ: Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature 1994, 370:65-68.
14. Hashimoto N, Watanabe N, Furuta Y, Tamemoto H, Sagata N, Yokoyama M, Okazaki K, Nagayoshi M, Takeda N, Ikawa Y, et al: Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature 1994, 370:68-71.
15. van Beveren C, van Straaten F, Galleschaw JA, Verma IM: Nucleotide sequence of the genome of a murine sarcoma virus. Cell 1981, 27:97-108.
16. van Beveren C, Galleschaw JA, Jonas V, Berns AJ, Doolittle RF, Donoghue D, Verma IM: Nucleotide sequence and formation of the transforming gene of a mouse sarcoma virus. Nature 1989, 289:258-262.
17. Blair DG, Oskarsson M, Wood TG, McMenemy WL, Fischinger PJ, Vande Woude GF: Activation of the transforming potential of a normal cell sequence: a molecular model for oncogenesis. Science 1981, 212:941-943.
18. Yew N, Oskarsson M, Daar I, Blair DG, Vande Woude GF: mos gene transducing efficiencies correlate with oocyte maturation and cytoytic factor activities. Mol Cell Biol 1991, 11:604-610.
19. Puls A, Prokais-Ceannane T, Marquardt B, Propst F, Stabel S: Kinase activities of c-Mos and v-Mos proteins: a single amino acid exchange is responsible for constitutive activation of the 124 v-serine kinase. Oncogene 1995, 10:1149-1157.
20. Nebreda AR, Hill C, Gomez N, Cohen P, Hunt T: The protein kinase Mos activates MAP kinase in vitro and stimulates the MAP kinase pathway in mammalian somatic cells in vivo. FEBS Lett 1993, 333:183-187.
21. Shibuya KE, Ruderman JV, Mos induces the in vitro activation of mitogen-activated protein kinases in lyses of frog oocytes and mammalian somatic cells. Mol Cell Biol 1993, 4:781-790.
22. Posada J, Yew N, Ahn NG, Vande Woude GF, Cooper JA: Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase in vitro. Mol Cell Biol 1993, 13:2546-2553.
23. Okazaki K, Sagata N: MAP kinase activation is essential for oncogenic transformation of NIH3T3 cells by Mos. Oncogene 1995, 10:1149-1157.
24. Resing KA, Mansor SJ, Hermann AS, Johnson RS, Cadinja JM, Fukasawa K, Vande Woude GF, Ahn NG: Determination of v-Mos-catalyzed phosphorylation sites and autophosphorylation sites on MAP kinase by ESI/MS. Biochemistry 1995, 34:2610-2620.
25. Fisher DL, Mandart E, Doree M, Hsp90: Requirement for c-Mos activation and bidirectional MAP kinase activation in Xenopus oocytes. Embo J 2000, 19:1516-1524.
26. Liu H, Vuyyuru VB, Pham CD, Yang Y, Singh B: Evidence of an interaction between Mos and Hsp70: a role of the Mos residue 33 in mediating Hsp70 association. Oncogene 1999, 18:3461-3470.
27. Freisewinkel I, Riethmacher D, Stabel S: Downregulation of protein kinase C-gamma is independent of a functional kinase domain. FEBS Lett 1992, 280:262-266.
28. Papkoff J, Verma IM, Hunter T: Detection of a transforming gene product in cells transformed by Moloney murine sarcoma virus. Cell 1982, 29:417-426.
29. Singh B, Arlinghaus RB: Vimentin phosphorylation by p37mos protein kinase in vitro and generation of a 58-kDa cleavage product in v-mos-transformed cells. Virology 1989, 173:144-156.
30. Zhou RP, Oskarsson M, Paules RS, Schui N, Cleveland D, Vande Woude GF: Ability of the c-mos protein to associate with and phosphorylate tubulin. Science 1991, 251:671-675.
31. Neel BG, Tonks NK: Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol 1997, 9:193-204.
32. Flint AJ, Gębíkín MF, Franza BR, Jr, Hill DE, Sonks NK: Multi-site phosphorylation of the protein tyrosine phosphatase, PTP1B: identification of cell cycle regulated and phorbol ester stimulated sites of phosphorylation. Embo J 1993, 12:1937-1946.
33. Bai W, Arlinghaus RB, Singh B: Association of v-Mos with soluble vimentin in vitro and in transformed cells. Oncogene 1993, 8:2207-2212.
34. Chen M, Li D, Krebs EG, Cooper JA: The casein kinase II beta subunit binds to Mos and inhibits Mos activity. Mol Cell Biol 1997, 17:904-912.
35. Chen M, Cooper JA: The beta subunit of CKII negatively regulates Xenopus oocyte maturation. Proc Natl Acad Sci USA 1997, 94:9136-9140.
36. Guerra B, Issinger OG: Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis 1999, 20:391-408.
tion of a common signaling pathway during mitosis and stress response in mammalian cells. J Biol Chem 1997, 272:2957-2962

38. Summers MD, Smith GE: A manual of Methods for baculo virus vectors and insect cell culture procedures. Tex. Agic. ep. Stn. Bull. 1997

39. Boyle WJ, van der Geer P, Hunter T: Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol 1991, 201:110-149

40. Schagger H, von Jagow G: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 1987, 166:368-379