Optimal geometric parameters selection of walking rig individual elements

E Kolotvin
Bauman Moscow State Technical University, 5 Second Baumanskaya Street, Moscow, 105005, Russian Federation

E-mail: egor.kolotvin.95@gmail.com

Abstract
The main types of rigs with which it is possible to conduct geological exploration under water are listed. Their disadvantages are indicated. For geological exploration of the seabed surface, it is proposed to use the double-support drilling rig with stepper propulsion engine developed in 2016. A technique for selecting the optimal geometric parameters of the cantilever sections of the walking rig bearing frame is presented.

1. Introduction
Caterpillar, wheel and auger thrusters can be used as vehicles on the bottom. The study and industrial development of the seabed resources is impossible without technical means - primarily without underwater mining equipment. An important role among underwater vehicles is assigned to bottom units that carry mining and exploration working bodies in the form of suction tips, rippers, buckets, pick-ups, dumps, soil pumps, airlift heads, probes, drilling rigs. [1] - [5].

It is known that the passability of the wheel is limited by a ledge with a height of one third of its radius and a trajectory width of two thirds. The wheel, the auger and the caterpillar deform the soil, creating a continuous gauge, which in turn leads to environmental damage and additional energy consumption. The walking propulsor is most suitable for operation in the seabed conditions, which allows overcoming obstacles while leaving a discrete gauge. [6] - [10].

The underwater platform is known, which includes a sampler connected to a floating cable, mounted on a vertical frame movably, which, in turn, is rigidly mounted on the frame (see certificate of authorship USSR 920438, E 02 D 1/04, 1984). The main disadvantage of the known technical solution is the possibility of its overturning during a storm and the drift of the craft, which leads to the loss of the device.

A device for rotary underwater drilling is known, comprising a support frame, a rotator including a shaft-drum with a rope wound on the drill pipe, an actuator and a tension mechanism (certificate of authorship SU 1139818 A, Bull. No. 6, 15.02.85). The disadvantage of the considered device is that it cannot independently move from the drilled well to a new drilling site.

Known drilling machine, including a support frame, on which is installed the drive of the core pipe, made in the form of a coil with coils wound on it of a flexible element. One end of the flexible element is connected to the float of the other element with the lifting mechanism of the maintenance vessel. The coil has a profile axial bore to accommodate the driving rod, which is rigidly connected to the core tube (certificate of authorship N 1701884, M. Kl6, E 21 B 7/12, 1990). The disadvantages of this
underwater drilling machine is the impossibility of its use at great depths, large energy costs when embedding the float when lifting a flexible element on the vessel.

It is also known machine for underwater drilling exploration wells (Russian Federation Patent No. 2260664; E21B 7/124 publ. September 20, 2005, Bull. No. 26). The disadvantage of this device is inaccurate positioning of the machine when setting on the point of drilling.

To carry out geological exploration on the seabed, it is proposed to use a two-support walking unit (utility model patent No. 166446 “Walking drilling rig”, utility model priority: 07/04/2016). (Figure 1). The installation includes a farm, supports with platforms, hydraulic cylinders of supports, working body, control system. The support frame is made of two parallel tubes with longitudinal guides and is equipped with earrings pivotally connected to the platforms of the supports, while transverse beams rigidly interconnect the ends of the tubes with blocks placed on them. The working body is made in the form of a trolley with rollers that interact with the longitudinal guides of the truss, with a drilling machine rigidly attached to it and two winches equipped with flexible traction elements enclosing blocks of transverse beams, one end of which is fixed on the winch drum and the other on the worker's trolley body. [11]; [12].

![Figure 1. Constructive scheme of the walking rig][12].

2. Methods
To determine the minimum weight of the machine, it is necessary to build the dependence of the counterweight on the length of the cantilever section of the supporting frame. The equation of moments of forces acting on the installation relative to point A [13] - [16] was compiled (Figure 2).
Figure 2. Design scheme.

\[M_A = G_{PL}K + 2q \frac{K^2}{2} + 2q \frac{(L + K)^2}{2} + G_{ST}L; \]

\[G_{PL}K = q(L + K)^2 + G_{ST}L - qK^2; \]

\[G_{PL}K = q((L + K)^2 - K^2) + G_{ST}L; \]

\[G_{PL} = q \frac{(L + K)^2 - K^2}{K} + G_{ST}L; \]

\[G_{PL} = q \frac{(L^2 + 2LK + K^2 - K^2)}{K} + G_{ST}L; \]

\[G_{PL} = q \frac{L(L + 2K)}{K} + G_{ST}L; \]

\[G_{PL} = q \frac{L(L + 2K)}{K} + G_{ST}L; \]

\[\Gamma_{oe} \text{ : } q \text{ is the pipe linear mass, (kg/m);} \]

\[K \text{ is the length of the cantilever frame, (m);} \]

\[L \text{ is the section length between pts. A and B, (m);} \]

\[G_{PL} \text{ is the platform weight (counterweight), (kg);} \]

\[G_{CT} \text{ is the weight of the sup port table, (kg);} \]

\[G_{PL} = \alpha_{PL}q + \beta_{PL}G_{ST} \text{.} \text{[17]} \]

Where: \(\alpha_{PL} \) is the angular equation coefficient*;

\(\beta_{PL}G_{ST} \) is the initial ordinate.

\[\gamma_{PL} = \frac{\alpha_{PL}}{L}; \]

\[\alpha_K = \frac{K}{L}; \]

\[G_{PL} = \gamma_{PL}qL + \beta_{PL}G_{ST} \frac{1}{L}; \]

\[g_{PL} = \gamma_{PL}q + \beta_{PL}G_{ST}; \]

\[\gamma_{PL} = \frac{1 + 2\alpha_K}{2\alpha_K}; \]

\[\beta_{PL} = \frac{1}{\alpha_K} \text{.} \]

\(g_{PL} \) and \(g_{PL} \) are specific gravity values of the counterweight and the support table per unit length of the working section of the bearing frame;

\(\alpha_K \) is the console coefficient, which characterizes consoles length relative to the length of the working section of the frame (when \(\alpha_K = 0 \) there are no consoles, when \(\alpha_K = 1 \) the length of the console is equal to the length of the working section). [18] - [20].

\[g_{PL} = q \frac{1 + 2\alpha_K}{\alpha_K} + 5q \frac{1}{\alpha_K}; \]

\[q = 276,4 \text{ (kg/m); } L = 10 \text{ (m).} \]

\[g_{PL} = q \frac{1 + 2\alpha_K}{\alpha_K} + 5q \frac{1}{\alpha_K}; \]

\[g_{PL} = q \frac{1 + 2\alpha_K}{\alpha_K}; \]

\[g_{PL} = q(2 + \frac{6}{\alpha_K}); \]

\[G_{PL} = qL(2 + \frac{6}{\alpha_K}). \]
Specific gravity of the counterweight depending on the console coefficient.

With an increase in the length of the cantilevers (α_k coefficient), the counterweight decreases sharply. The specific mass of the counterweight should be selected depending on the ratio of the length of the console to the length of the working section of the supporting frame. The criterion for choosing the coefficient α_k is the minimum of the drilling rig mass:

$$G_{Total} = 2G_{ST} + G_{Frame} + G_{PL};$$
$$K = \alpha_k L;$$
$$G_{Total} = 10qL + 2qL + 4\alpha_k qL + qL(2 + \frac{6}{\alpha_k});$$
$$G_{Total} = qL(14 + 4\alpha_k + \frac{6}{\alpha_k}).$$

3. Results
Dependencies \(G_{Total}(\alpha_K) \) show that the minimum mass of the installation is achieved with the following \((\alpha_K)\) values:

\[
G_{Total}(\text{Min}) = 65783,2 \text{ (kg)} \quad \text{when} \quad \alpha_K = 1,2
\]

\[
G_{Total(1,2)} = qL(14 + 4\alpha_{K(1,2)} + \frac{6}{\alpha_{K(1,2)}}) = 2764 \cdot 23,8 = 65783,2 \text{ (kg)}.
\]

Table 1.

\(\alpha_K\)	\(G_{Frame}, \text{kg}\)	\(G_{PL}, \text{kg}\)	\(G_{Total}, \text{kg}\)
0,1	6633,6	171368	205641,6
0,2	7739,2	88448	123827,2
0,3	8844,8	60808	97292,8
0,4	9950,4	46988	84578,4
0,5	11056	38696	77392
0,6	12161,6	33168	72969,6
0,7	13267,2	29219,43	70126,63
0,8	14372,8	26258	68270,8
0,9	15478,4	23954,67	67073,07
1,0	16584	22112	66336
1,1	17689,6	20604,36	65933,96
1,2	18795,2	19348	65783,2
1,3	19900,8	18284,92	65825,72
1,4	21006,4	17373,71	66020,11
1,5	22112	16584	66336
1,6	23217,6	15893	66750,6
1,7	24323,2	15283,29	67246,49
1,8	25428,8	14741,33	67810,13
1,9	26534,4	14256,42	68430,82

4. Conclusions
To determine the minimum weight of the rig, the mass of the counterweight was determined as a function of the cantilever section length of the bearing frame. Counterweights and carrier frames weights were determined for different console coefficients. The rig total mass depending on the console coefficient shows that the minimum mass is achieved when the value \(\alpha_K = 1.2\). It is economically feasible to choose console sections with a coefficient equal to 1.2.

The walking rig is important to use for geological exploration at the sea bed and ocean bed because of economic feasibility, high efficiency, high permeability and environmental friendliness.

References
[1] Grigoriev S N, Romanov R I, Fominski V Y, Volosova M A and Zhukova E A 2014 Structure and tribological behavior of nanocomposite C-Ti-WSex coatings Journal of Friction and Wear 35 (4) pp 263–9;
[2] Kalashnikov I E, Bolotova L K, Bykov P A, Kobeleva L I, Katin I V, Mikheev R S and Kobernik N V 2016 Tribological properties of the babbit B83–based composite materials fabricated by powder metallurgy Russian Metallurgy (Metally) (7) pp 669–74;

[3] Kovalchuk A K, Kulakov D B and Semenov S E 2008 Block-matrix equations of robots executive mechanisms with tree-like kinematic structure Izvestiyavuzov.ysshikhuchebnykhzavedeniymashinostroenie — Proceedings of Higher Educational Institutions. Machine Building 5-21 in Russian;

[4] Kulakov D B, Semenov S E, Kulakov B B, Shcherbachev P V and Tarasov O I 2015 Hydraulic Bipedal Robots Locomotion Mathematical Modeling Procedia Engineering 106 62-70;

[5] Semenov S E 2015 Mathematical modeling of the electro-hydraulic actuation systems of the machines with tree-like kinematic structure Proceedings of 2015 International Conference on Fluid Power and Mechatronics, FPM 2015 583-92 article no 7337184;

[6] Semenov S E, Kovalchuk A K and Kulakov D B 2010 Mathematical modeling of mechanisms with a tree-arborescence kinematic structure Drive Technology;

[7] S Semenov and D Kulakov 2019 Mathematical modeling of the mechanisms of volumetric hydraulic machines;

[8] Borisov B P 2018 Volumetric hydraulic machines: study guide (Moscow: BMSTU Publ.) 237 p;

[9] Nikolenko I V and Zheglova V M 2018 Design and calculation of axial piston hydraulic machines: monograph (Simferopol: ARIAL Publ.) 300 p;

[10] Fomin M V 2015 Seating selection for slip bearings with hydrodynamic lubrication Russian Engineering Research 35 (1) pp 25–9;

[11] Russian Federation Patent № 2648365, 13.06.2017. Timofeev I.P., Sokolova G.V., Bolshunov A.V., Vasilyev N.I., Ignatiev S.A., Kolotvin E.V., Avdeev A.M. Shagayushchayaburoayaustanovka [Walking drilling rig];

[12] Russian Federation Patent № 166446, 04.07.2016. I.P. Timofeev, G.V. Sokolova, G.A. Colton, I.A. Korolev, E.V. Kolotvin. Shagayushchayaburoayaustanovka [Walking installation for transportation and laying of oil and gas pipes on the seabed];

[13] Kobernik N V, Mikheev R S, Kalashnikov I E, Kobeleva L I and Bolotova LK 2017 Tribological properties of Babbitt alloy coatings modified with carbon nanotubes Inorganic Materials: Applied Research 8 (3) pp 428–33;

[14] Berta G L, Casoli P and Vacca A 2002 Proceedings of Fluid Power Systems and Technology Division (FPSTD) ASME International Mechanical Engineering Congress and Exposition [Conference] Simulation mode od axial piston pumps inclusive of cavitation (New Orleans, Louisiana, USA : [s.n.], 2002, November 17–22);

[15] Hao M and Qi X Y2012 Modeling Analysis and Simulation of Hydraulic Axial Piston Pump Advanced Materials Research 430–432 pp 1532–35;

[16] Zalogin O V, Noskova S and Cherevatova G 2016 Experimental study of the dynamics of regulation of an axial piston pump with proportional electric control Hydraulics (2) Available at: http://hydrojournal.ru/item/43-eksperimentalnoe-issledovanie-dinamikiregulirovaniya-aksialno-porshevogo-nasosa-s-proportionalnym-elektroprivravljeniem;

[17] Deeken M 2003 Simulation of the tribological contacts in an axial piston machine Ölhydraulik und Pneumatik 47 Nr 11–12;

[18] Zlot T 2017 Simulation of the Hydrostatic Load of the Valve Plate-cylinder Block System in an Axial Piston Pump Procedia Engineering 177 pp 247–54;

[19] Wayne D, Milestone S A and Olsen G. 1983 The kinematic analysis of axial piston pumps Mechanism and Machine Theory 16 (6) pp 475–479;

[20] Perfilev A V and Mukhin A A 2018 Improving the energy efficiency of aircraft pumping installations Hydraulics(6) Available at: http://hydrojournal.ru/item/84-povyshenieeffektivnosti-aviatsionnykh-nasosnyh-ustanovok.