F/OH ratio in a rare fluorine-poor blue topaz from Padre Paraíso (Minas Gerais, Brazil) to unravel topaz’s ambient of formation

N. Precisvalle1, A. Martucci1*, L. Gigli2, J. R. Plaisier2, T. C. Hansen3, A. G. Nobre4 & C. Bonadiman1*

Topaz [Al2SiO4(F,OH)2] is one of the main fluorine-bearing silicates occurring in environments where variably acidic (F)/aqueous (OH) fluids saturate the silicate system. In this work we fully characterized blue topaz from Padre Paraíso (Minas Gerais, Brazil) by means of in situ synchrotron X-Ray and neutron powder diffraction measurements (temperature range 298–1273 K) combined with EDS microanalyses. Understanding the role of OH/F substitution in topaz is important in order to determine the hydrophilicity and the exchange reactions of fluorine by hydroxyl groups, and ultimately to characterize the environmental redox conditions (H2O/F) required for mineral formation. The fluorine content estimated from neutron diffraction data is ~ 1.03 a.f.u (10.34 wt%), in agreement with the chemical data (on average 10.0 wt%). The XOH [OH/(OH + F)] (0.484) is close to the maximum XOH value (0.5), and represents the OH- richest topaz composition so far analysed in the Minas Gerais district. Topaz crystallinity and fluorine content sharply decrease at 1170 K, while mullite phase starts growing. On the basis of this behaviour, we suggest that this temperature may represent the potential initial topaz’s crystallization temperature from supercritical fluids in a pegmatite system. The log(fH2O/fHFfluid) (1.27 (0.06)) is coherent with the fluorine activity calculated for hydrothermal fluids (pegmatitic stage) in equilibrium with the forming mineral (log(fH2O/fHF)fluid = 1.2–6.5) and clearly different from pure magmatic (granitic) residual melts [log(fH2O/fHF)fluid < 1]. The modelled H2O saturated fluids with the F content not exceeding 1 wt% may represent an anomalous water-dominant / fluorine-poor pegmatite lens of the Padre Paraíso Pegmatite Field.

Topaz is one of the principal fluorine-bearing silicates that occurs as an accessory mineral in fluorine-rich silicate rocks (rhyolites and granites) associated with pneumatolytic/hydrothermal events, and in ultrahigh-pressure rocks1–2. Its composition ranges from a nearly OH-free end member, Al2SiO4F2, in acid igneous rocks, to Al2SiO4F1.4(OH)0.6, with XOH = OH/(OH + F) = 0.30, in hydrothermal deposits3. Higher OH content was reported for topaz found in ultrahigh-pressure (UHP)-rich Topaz–Kyanite quartzites from Hushan (west of Dongai), (XOH = 0.35), and southern Sulu (XOH = 0.40–0.55), eastern China4. A series of hydroxyl-rich topaz (OH-topaz) from XOH = 0.22 up to the pure end-member Al2SiO4(OH)2, were synthesized5 at high-pressure/high temperature conditions (pressure from 5.5 to 10 GPa, temperature up to 1000 °C) in the Al2O3–SiO2–H2O system. For this reason, the study of the OH/F ratio plays a key role to understand the topaz’s formation ambient.

Usually, natural topaz with OH/(OH + F) < 0.5, crystallizes in the space group Pbnm, with one independent H-site, whereas in synthetic Al2SiO4(OH)2, displays two non-equivalent H-sites. The existence of an upper limit to the OH content is rationalized in terms of hydrogen located in two partially occupied sites whose occupancy limits the OH substitution for F to 50% (“proton-proton avoidance rule”)6. Conflicting results about the exact space group were reported for the synthetic end-member “topaz-OH”7–9. Northrup et al.7 found that in topaz-OH hydrogen atoms are spread over two independent crystallographic sites; one of these is not found in naturally occurring fluorine-bearing topaz. Both sites lie close to the mirror plane in the space group Pbnm, but their short distance (1.7 Å) prevents their simultaneous occupancy.

1Physics and Earth Sciences Department, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy. 2Elettra - Sincrotrone Trieste, ss 14, km 163.5, 34149 Basovizza, Trieste, Italy. 3Institut Laue-Langevin (ILL), 71 avenue des Martyrs, 38000 Grenoble, France. 4Geosciences Institute, University of São Paulo Rua do Lago, 562 - Butantã, São Paulo 05508-080, Brazil. *email: mrs@unife.it; bdc@unife.it
The proton environment in the topaz-OH was recently depicted by first principle simulations on periodic systems, using the Hartree–Fock and Kohn–Sham self-consistent field method. As a result, two space groups, were reported: higher energy orthorhombic form $Pbnm$ and a lower energy monoclinic form $P2_1/c$.

The structural and elastic properties of topaz are strongly related to the fluoride content which determines the compressional behaviour of topaz; this causes polyhedral tilting and contraction as well as hydrogen bonding. After ex situ heating at 950 °C for 18 h, the symmetry of topaz deviates from orthorhombic, suggesting $P1$ as a possible space group. The structural data were not reported in the paper, only the H-site coordinates (derived from the difference Fourier map) in the $Pbnm$ and $P1$ space groups were given. The response to increasing pressure and temperature of natural topaz from Gilgit division, Pakistan, was described by structure refinements from single crystal X-ray diffraction data. Consequently, Al-O bond distances and the OH/F ratio controlling the sure and temperature of natural topaz from Gilgit division, Pakistan, was described by structure refinements from $Pbnm$ to $P1$ due to the local F/OH ordering in opposite sites of the structure were distinguishable. Upon compression, the v(OH) shifted to a lower frequency in topaz-OH and to a higher frequency in F-rich ones. With increasing temperature, two phase transitions were detected: the first from $P1$ to $Pbn2_1$ ($\sim 135^\circ$C), involving only the H atoms; the second ($\sim 160^\circ$C), from $Pbn2_1$ to $Pbnm$ due to local F/OH ordering in the crystal structure. Consequently, the real concentration and distribution of F and OH in natural topaz crystals can help to understand how the hydrogen bond geometry influences the OH behaviour with temperature, but not with any certainty. Understanding these mechanisms is important in order to determine the hydrophilicity and the exchange reactions of fluorine by hydroxyl groups, and ultimately to characterize the environmental redox conditions ($\text{H}_2\text{O}/\text{F}$) required for the formation of topaz.

In spite of a large number of studies, as briefly reviewed above, no detailed thermal structural investigations on natural topaz have been conducted so far, preventing a rigorous modelling of the OH/F substitution in these minerals. Therefore, uncertainty about the $\text{H}_2\text{O}/\text{F}$ partitioning with the environment remains.

The aim of this work is therefore to investigate in depth the OH/F substitution in topaz in order to highlight the relationships between major element composition, structural features and geological environments. To this end, natural topaz from Minas Gerais (Brazil) were initially characterized by conventional chemical analyses by energy dispersive X-ray spectroscopy (EDS). These data provided important preliminary information about the composition of this group of topaz.

However, due to the light nature of the major elements forming this mineral (Si, Al, OH and F), which notoriously affect the analysis with EDS, the chemical characteristics of this mineral need a more accurate determination in order to propose a robust chemical-physical model for crystal structure and crystallization conditions. Two selected crystals were subsequently investigated using a combination of unconventional X-Ray sources and neutron powder diffraction.

In situ synchrotron X-ray powder diffraction (XRPD) was selected to obtain powder patterns of higher accuracy and precision, because of the high intensity, angular resolution and beam collimation being considerably higher than those of conventional laboratory diffractometers. Additionally, horizontal polarization and tuneable X-ray wavelength reduced the fall in intensity as a function of 2θ as well as the high background level due to the sample fluorescence.

Compared to X-ray powder diffraction, neutron powder diffraction is the best technique to detect light atoms (e.g., H, C and N), as well as discriminate between those with a similar Z atomic number because the scattering powder is independent of the atomic number, the momentum transfer Q and the θ angle. The complementarity of X-ray and neutron data combined with the high flexibility of the experimental set-up of non-conventional radiation offers several advantages, such as the possibility to fully understand the nature of bonding and monitor in real-time the different processes taking place at the atomic level upon heating, even when light elements (i.e. H) or neighbouring elements (Si/Al and O/F) of the periodic table are present.

Temperature-dependent variation of the unit cell parameters and transient structural modifications upon heating were highlighted in the 298–1273 K temperature range combining synchrotron X-ray and neutron diffraction data.

To complete the information, the Rietveld refinement of powder diffraction data collected on samples heated in situ at selected temperatures was performed in order to observe: (a) the real symmetry of the selected topaz and its proton environment; (b) the concentration and distribution of F and OH in the selected sample; (c) the correlation as a function of temperature between thermal expansion, fluoride content and the unit cell parameters; (d) the T-(P) conditions for topaz formation in the natural environment.

Sample description and geological setting. Coloured topaz from Padre Paraíso (North-East of Minas Gerais State in Brazil) (Fig. 1), from now on called PadPar, was studied. This locality is renowned for the production of gemstones associated with granitic magmatism and pegmatitic events of the Eastern Brazilian Pegmatite Province (EBP).

The pegmatite body is related to granitic residual melts crystallized between 630 and 480 Ma (zircon–U–Pb dating). Pegmatite events followed the “G5 granites and charnockites” unit of the Eastern Brazilian Pegmatite Province. The G5 supersuite is a magmatic event of post-collisional origin related to the gravitational collapse of the Araçuaí orogen. Zircon and monazite U–Pb ages and zircon Pb–Pb ages constrain the evolution of the G5 supersuite from 520 to 480 Ma. The G5 unit is a porphyritic biotite granitoid, classified as a Type-I granite that is metaluminous and K-rich. Associated to the “G5 granite” is the Padre Paraíso charnockite, which is a porphyritic biotite rich granitoid that has a greenish colour. Its primary mineral assemblage is composed of...
K-feldspar, plagioclase, biotite, hornblende and hypersthene. Our topaz present a clear to intense light blue colouration, with no fades or colour flaws in all the samples collected. All crystals have good transparency with medium–high clarity. They are poorly to very poorly included, some solid inclusions of quartz and micas are recognizable. Some liquid or biphasic inclusions are also present probably due to their pegmatitic origin. All the liquid inclusions are iso-orientated. The refractive index is high, ranging from 1.620–1.631 to 1.634–1.642. For this work, only samples without inclusions were selected.

Methods

Scan electron microscopy and EDS microanalysis. For this study a CAMSCAN MX 2500 Scan Electron Microscope (SEM) with an EDAX system for Energy Dispersive Analyses were used. The SEM was equipped with a high brightness LaB6 cathode, operating in a high vacuum. The samples were coated with carbon. For quantitative purposes, a set of natural minerals was used as standards for their specific elements: augite (Si and Ca), fluorite (F), gahnite (Al) and olivine (Mg, Fe). Relative analytical errors (1σ) of major elements were below 1.00% for Si and for Al; and 3.00–6.00% for F.

Images were collected both in SEI (secondary electron imaging) and BEI (backscattered electron imaging). The parameters used for the analyses were EHT 20 kV, EMI 71µA, FIL 1.80A with a working distance of 25 mm. Imaging and measurements were performed at the Microscopy Laboratory of the University of Padua.

X-ray and neutron powder diffraction measurements and structure determination. The Pad-Par powdered samples were poured into a thin-walled boron capillary (diameter 0.5 mm) and then collected in transmission geometry (monochromatic wavelength of 0.827 Å (15 keV) and 1 × 0.3 mm² spot size at the MCX beamline22,27 of Elettra—Synchrotron Trieste, (Italy). They were then mounted on a standard goniometric head, and spun during data collection. Powder diffraction patterns were collected in 10°–65° 2θ range with a step size of 0.008° and an exposure time of 1 s.

Each sample was subjected to the same heat treatment; samples were heated from room temperature to 1273 K with a heating rate of 5 K/min using a hot gas blower directing a hot air flux onto the spinning quartz-capillary. Diffraction data were collected every 50 K. The temperature was continuously measured by a thermocouple, and calibrated using the quartz thermal expansion and phase transition.

Neutron Powder Diffraction (NPD) experiments were then carried out on the high-flux two-axis neutron powder diffractometer D20 at the Institut Laue Langevin (ILL, Grenoble, France) using the same topaz sample. Useful data were collected between 6° and 142°, of which 22° to 142° were treated as follow. The samples were heated in situ under flowing gas (5% H₂/He), from room temperature to 1273 K (heating rate 2 K/min). Data sets were collected for 2 min, thus covering 4 K. A wavelength of 1.54 Å was chosen, from a germanium- (115) monochromator at 90° take-off angle. The sample was poured into a 4 mm diameter vanadium cylinder, placed in the centre of the furnace’s vacuum vessel and heated by a 30 mm diameter vanadium resistor28. A type-K thermocouple was located in the centre of the furnace in order to calibrate the temperature. The same configuration was maintained during all data collection.

A set of diffraction patterns were obtained with this procedure as a function of temperature. All data processing was carried out by the full profile Rietveld analysis using the GSAS package29 with the EXPGUI interface30. The profile was modelled by a pseudo-Voigt function which uses an accurate description of the reflection asymmetry due to axial divergence described by31 as an implementation of the peak shape function described by32. The background was empirically fitted using a Chebyschev polynomial with 20 and 14 polynomial coefficients.
for synchrotron and neutron refinements, respectively. The scale factor, 2θ-zero shift, unit-cell parameters and thermal displacement parameters were accurately refined. Final crystal and refinement data for four selected temperatures (298, 776, 1073 and 1273 K) are reported in Tables 1 and 2. The thermal expansion coefficients were investigated for both samples from 298 to 1273 K (Table 3) by the EosFit7-GUI software. Positional and thermal parameters, fractions at four selected temperatures (298, 776, 1073 and 1273 K) can be found in Supplementary Tables S1 and S2, for synchrotron and neutron refinements, respectively.

Table 1. Refinement details of the synchrotron data collection and unit cell parameters of topaz at 298, 776, 1073 and 1273 K. Rp = Σ[Yio − Yic]/ΣYio; Rwp = [Σwi(Yio − Yic)2/ΣwiYio2]0.5; RF2 = Σ|Fo2 − Fc2|/|Fo2|.

Temperature	Space Group	a (Å)	b (Å)	c (Å)	V (Å³)	2θ range (°)	Rp (%)	Rwp (%)	RF2 (%)
298 K	Pbnm	4.65237 (2)	4.66991 (2)	4.68036 (2)	4.68413 (1)	10–55	5.89	7.81	5.16
776 K	Pbnm	4.8049 (3)	8.83312 (4)	8.85117 (4)	8.85763 (1)	10–55	5.89	7.81	5.16
1073 K	Pbnm	8.39836 (3)	8.42725 (1)	8.44936 (4)	8.45630 (1)	343.655 (2)	5.89	7.81	5.16
1273 K	Pbnm	347.623 (3)	350.029 (3)	350.851 (6)	343.655 (2)	5.89	7.81	5.16	

Table 2. Refinement details of the neutron data collection and unit cell parameters of topaz at 298, 776, 1073 and 1273 K. Rp = Σ[Yio − Yic]/ΣYio; Rwp = [Σwi(Yio − Yic)2/ΣwiYio2]0.5; RF2 = Σ|Fo2 − Fc2|/|Fo2|.

Temperature	Space Group	a (Å)	b (Å)	c (Å)	V (Å³)	2θ range (°)	Rp (%)	Rwp (%)	RF2 (%)
298 K	Pbnm	4.65237 (2)	4.66991 (2)	4.68036 (2)	4.68413 (1)	10–55	5.89	7.81	5.16
776 K	Pbnm	4.8049 (3)	8.83312 (4)	8.85117 (4)	8.85763 (1)	10–55	5.89	7.81	5.16
1073 K	Pbnm	8.39836 (3)	8.42725 (1)	8.44936 (4)	8.45630 (1)	343.655 (2)	5.89	7.81	5.16
1273 K	Pbnm	347.623 (3)	350.029 (3)	350.851 (6)	343.655 (2)	5.89	7.81	5.16	

Table 3. Thermal expansion coefficient for all crystallographic values calculated from synchrotron and neutron diffraction data, respectively. Thermal expansion coefficients were calculated by EosFit7-GUI software.

Temperature	a (Å)	b (Å)	c (Å)	V(Å³)
298-1300 K	4.65241	4.68048	8.3894 (1)	343.66 (1)
Synchrotron	a₁ = 0.64 (2)	a₂ = 0.51 (2)	a₃ = 0.83 (3)	a₄ = 1.96 (6)
Neutron	a₁ = 0.12 (3)	a₂ = 0.19 (2)	a₃ = 0.04 (5)	a₄ = 0.36 (9)
298-1300 K	4.64416	4.68781	8.3738 (13)	341.77 (14)
Synchrotron	a₁ = 0.57 (11)	a₂ = 0.45 (10)	a₃ = 0.60 (12)	a₄ = 1.50 (30)
Neutron	a₁ = 0.26 (15)	a₂ = 0.29 (12)	a₃ = 0.42 (16)	a₄ = 1.20 (40)

scientificreport | (2021) 11:2666 | https://doi.org/10.1038/s41598-021-82045-2 | naturereport
Results

Mineral chemistry. The two Padre Paraíso topaz samples show compositional homogeneity, with a very low fluorine content (F = 9.95–10.00 wt%), SiO₂ = 33.18–33.58 wt% and Al₂O₃ = 56.42–56.87 wt%. The OH/(OH + F) ratio ranges from 0.474 to 0.476. Recalculation on the basis of three cations, indicate an almost ideal Si and Al occupancy, which suggests that the hydroxyl site possibly contain small amount of waters to balance the scarceness of F in the site. Detailed chemical analyses are provided as Supplementary Tables S3.

Crystal structure models at room temperature. The topaz structure consists of [SiO₄]⁴⁻ groups linking octahedral chains of Al[O₄(F, OH)₂] in a zig-zag arrangement parallel to the c-axis. Four out of the six anions surrounding the Al³⁺ ion belong to [SiO₄]⁴⁻ tetrahedra; and two form F − or OH − groups (Fig. 2a,b). Natural topaz crystallizes in the orthorhombic Pbnm space group; pronounced sectoral textures with growth planes {hkl} optically triclinic, {0kl}, {k0l}, and {hk0} optically monoclinic, and {100}, {010}, and {001} optically orthorhombic are also well documented34,35.

As expected, synchrotron X-ray powder diffraction of PadPar topaz yields higher quality powder diffraction patterns than when compared to diffraction, hence this data set was chosen for the initial structural investigation. The indexing process performed by EXPO2014 via the N-TREOR09 program36 unambiguously suggested the Pbnm space group. Consequently, PadPar structural refinements of data collected at room temperature were carried out in the space group Pbnm starting from the atomic coordinates reported by11 without the proton position and using only the (neutral) atomic scattering factors of Al, Si, and O. When the convergence was achieved, no peaks larger than ± 0.32 e−/Å³ were present in the final difference Fourier map. Lattice parameters refined from synchrotron X-ray are:
a = 4.652373(18) Å, b = 8.804789(34) Å, c = 8.389362(32) Å, V = 343.6548(23) Å³.

The structural refinement with the neutron diffraction data collected at room temperature was performed in the space group Pbnm, starting with the atomic coordinates obtained from the X-ray structural refinement. The F-amount of our sample refined on the basis of the neutron diffraction data is 1.032 a.f.u; this correspond to 10.94 wt% (Table 4), in agreement with the EDS microanalysis. When convergence was achieved, the final difference Fourier map revealed the occurrence of a peak at x = 0.020, y = 0.707, z = 0.141 which was then refined with the H scattering length. The O–H bond distance was initially fixed and the constrain was completely removed in the last cycles of refinement (O4-H 0.979 (4) difference < 2σ) whereas the proton occupancy factor was fixed as a function of the oxygen at the F/O₄ site (for the F/O₄ site, %O = 100 − %F).

The bond distances and angles between the proton site and the surrounding anions revealed the occurrence of potential H–O/F interactions (Fig. 3a,b). Two of them (H–O1 and H–O2) are slightly stronger than the others (Table 4). This OH topological configuration reveals shorter H–O/F bond distances and longer H–H bond distances longer (H–H 1.715(6) Å) than those previously described (1.463(5) Å11) (Fig. 3a,b; Table 4).

Figure 2. Projection of the topaz structure along the a (a) and c axes (b), respectively. The tetrahedral [SiO₄]⁴⁻ groups, in blue, are linked to octahedral chains of Al[O₄(F,OH)₂], in grey, in a zig zag fashion parallel to the c-axis. The smaller red, grey and white atoms are O, F and H, respectively. The structure image has been obtained using VESTA Version 3 (https://jp-minerals.org/vesta/en/download.html).
Temperature-dependent variation of the unit cell parameters and structural modifications. The XRPD temperature ramp (Fig. 4a,b) analysis revealed that topaz maintains its crystallinity and symmetry up to the highest investigated temperature (T = 1273 K). Instead in neutron data (Fig. 4c,d), a progressive broadening peak was observed from ~ 1170 K, thus highlighting a progressive loss of crystallinity. This result can be explained by the different heating rate used during the data collection, as discussed below. The evolution of the cell parameters of the PadPar samples during the in situ heating process in the 298–1273 K range from both synchrotron and neutron data are reported in Fig. 5a and b, respectively. To better understand these differences and to allow a better comparison between the two systems and among their whole cell parameters, we reported normalized dimensionless values defined as $V(T)/V_0$, $a(T)/a_0$, $b(T)/b_0$, and $c(T)/c_0$, being the reference values obtained in the refinement of the first recorded pattern (T) 298 K.

In both samples a, b, and c increase as the temperature increases up to 1010 K, indicating that the thermal expansion is the physical mechanism dominating this stage of the experiment. Unit-cell axes refined from synchrotron data do not show any other modifications until the maximum temperature is reached. A strong change in the unit cell parameters evolution is detected from neutron data. In particular, up to this temperature a and b cell-axes have a similar expansion rate while the c-axis undergoes a significant increase up to about 1273 K. These variations are reflected in the evolution of the unit-cell volume, V_s ($\delta V = 2\%$) and V_n ($\delta V = 2.65\%$).

The thermal expansion coefficients were investigated for both samples from 298 to 1273 K using the EosFit7-GUI software. The temperature evolution was properly described using a polynomial expression:

$$\alpha = \alpha_0 + \alpha_1 T + \alpha_2 T^{-1}$$

(1)

where the mean thermal expansion coefficient α is expressed in K$^{-1}$, and constants α_0, α_1, and α_2, derived from the experimental data are expressed in K$^{-1}$, K$^{-2}$, and K, respectively.

The PadPar coefficients along the crystal axes are $\alpha_a = 6.40(20) \times 10^{-6}$ K$^{-1}$, $\alpha_b = 5.09(17) \times 10^{-6}$ K$^{-1}$, $\alpha_c = 8.30(30) \times 10^{-6}$ K$^{-1}$, $\alpha_v = 1.96(6) \times 10^{-5}$ K$^{-1}$, then the ratio of thermal expansion coefficients $\alpha_a:\alpha_b:\alpha_c$ is

Table 4. The refined neutron bond distances between the proton site and the surrounding anions. The corresponding values refined by11 are reported for comparison.

Bond Distance	This work	Previous Work
F/O4···F/O4 (Å)	3.262 (7)	3.195 (3)
H···O1 (Å)	2.204 (9)	2.307 (6)
H···O2 (Å)	2.186 (7)	2.216 (5)
H···O3 (Å)	2.432 (7)	2.380 (5)
H···F/O4 (Å)	0.979 (7)	0.989 (5)
H···H (Å)	1.715 (7)	1.463 (5)

Figure 3. Hydrogen-bond system of topaz. Schematic representation of hydrogen bonding (green lines) at room temperature. Colours as in Fig. 2. The main interactions between H atoms and the surrounding polyhedral environment are viewed along the a (a) and c axes (b). The bond distance and angle between the proton site and the surrounding anions revealed the occurrence of potential H···O/F interactions, where two of them (H···O1 and H···O2) are slightly stronger than the others. The H sphere appears partially green coloured due to the OH/F substitution, according to the refined occupancies from neutron diffraction data. The structure image has been obtained using VESTA Version 3 (https://jp-minerals.org/vesta/en/download.html).
Figure 4. Cascade plots of PadPar topaz from Synchrotron (a, b) and Neutron (c, d) diffraction data. The samples were heated from room temperature to 1273 K (heating rate 5 K and 2 K/min for Synchrotron and Neutron data collection, respectively). Powder diffraction patterns recorded every 100 K are also shown. In neutron analyses, the rapid decomposition of the sample upon heating revealed the formation of mullite \(\text{Al}_2\text{Si}_{2-2x}\text{O}_{10-x} \). This image has been obtained with WinPLOTR from FullProf Suite (https://www.ill.eu/sites/fullprof/index.html).\(^7\)

Figure 5. Evolution of unit cell parameters normalized with respect to room temperature values \((a/a_0, b/b_0, c/c_0, V/V_0)\) from in situ synchrotron (a) and neutron diffraction (b) data. A strong change in the unit cell parameters evolution is detected from neutron data (b), in particular, up to 1075 K \(a \) and \(b \) cell-axes have a similar expansion rate while the \(c \)-axis undergoes an increase up to about 1273 K. Standard deviation errors are within the symbol size.
These values are in very good agreement with those reported by Tennakoon et al.38. For neutron data the coefficients are $\alpha_a = 5.70(11) \times 10^{-6}$ K$^{-1}$, $\alpha_b = 4.50(10) \times 10^{-6}$ K$^{-1}$, $\alpha_c = 6.00(12) \times 10^{-6}$ K$^{-1}$, $\alpha_V = 1.50(3) \times 10^{-5}$ K$^{-1}$, then the ratio of thermal expansion coefficients $\alpha_a:\alpha_b:\alpha_c$ is $0.95:0.75:1$. These coefficients have been compared in Fig. 6a,b. PadPar coefficients are in-line with those reported by39 showing a significant anisotropy due to the presence of a strong cleavage along $\{001\}$40. These changes are reflected on $[\text{SiO}_4]^{4-}$ tetrahedra and $\text{Al}[\text{O}_4(\text{F,OH})_2]$ octahedra. In fact, Si–O and Al–O distances and angles refined from synchrotron data increase linearly until the maximum temperature is reached, resulting in a positive expansion of the polyhedra (Fig. 7).

A very different situation was encountered for in situ neutron data where the octahedral expansion is regularly counterbalanced by a tetrahedral contraction, up to 1170 K. Above this temperature, the fluorine loss induced a structural modification that suddenly change this trend. More details are reported in Fig. 8. Standard deviation errors are within the symbol size.

In neutron analyses, the main diffraction peaks associated with the topaz phase declined rapidly with continued heating, indicating a rapid decomposition of the sample. A second phase appeared to grow at the same rate as the peak from the previous phase declined thus revealing the formation of mullite $\text{Al}_{4+2x}\text{Si}_{2-2x}\text{O}_{10-x}$ ($\{120\}$ and $\{210\}$ reflections, at 25.90 and 26.09 2θ°, respectively). Mullite occurrence is well known in literature40,41, but always at higher temperature. When the highest temperature was reached, the Rietveld refinement indicated ~30 and 70% in weight of topaz and mullite, respectively. At the same time, the fluorine content decreased from 0.77 to 0.63 a.f.u (Fig. 9).

Figure 6. Thermal expansion model for in situ heating of the PadPar topaz, obtained from synchrotron (a) and neutron diffraction (b) analyses in the temperature range of 298 to 1273 K. Orange, yellow, green and blue symbols refer to Temperature vs Volume data selected for the EoS fitting (see text for details). Standard deviation errors are within the symbol size.

Figure 7. Polyhedral evolution of topaz expressed as V/V_0, with V–Al and V–Si indicating octahedral and tetrahedral volume respectively, as obtained from synchrotron (red symbols) and neutron (grey symbols) data. For in situ neutron data the octahedral expansion is regularly counterbalanced by a tetrahedral contraction, up to 1170 K. Above this temperature, the fluorine loss induced a structural modification that suddenly change this trend. More details are reported in Fig. 8. Standard deviation errors are within the symbol size.
Discussion

Combined synchrotron and neutron diffraction data collected in this study allowed us for the first time with a rigorous analytical strategy, to infer, that the real symmetry of PadPar topaz is orthorhombic \(\text{Pbnm} \) (Tables 1 and 2). Hydrogen atoms are hosted in only one site in good agreement with those reported for a natural topaz, with differences < 2σ\(^{1,42}\). On the basis of the neutron diffraction data, the \(F \)-amount gives rise to ~ 1.03 a.p.f.u. so the chemical composition can be inferred as being \(\text{Al}_{1.92}\text{Si}_{0.96}\text{O}_{4.00}\text{F}_{1.032}\text{OH}_{0.968} \) (\(\text{OH}/(\text{OH} + \text{F}) = 0.484 \)). The fluorine content (10.94 wt\%) appears to be in very good agreement with that measured by EDS, but extremely low with respect to the value obtained with the correlation equation (~ 18.5% wt) proposed by\(^2\). This last correlation is widely used to estimate the fluorine content in topaz, but our results, as well as those reported by\(^{11}\) reveal that the empirical correlation between \(F \) contents and lattice parameters is not always satisfactory.
Unit cell parameters increase as the temperature increases (Fig. 5b) up to 1010 K, indicating a positive thermal expansion that dominate this stage of the experiment. Above this temperature, both fluorine content and topaz crystallinity decrease, and mullite starts its growth over topaz. According to null mullite nuclei form randomly on the surface of topaz particles from the very beginning thus protecting it from further decomposition. This reaction is self-catalysed by SiF₄, and its occurrence is strongly dependent on several factors such as air flow, heating rate and fluorine concentration.

The analytical strategy applied here, therefore, was successful in determining the fluorine content in topaz, and its behaviour with increasing temperature. The F/OH ratio in this phase is crucial not only for the forming gem process, but also to better understand the circulation of fluids (H₂O/F) in the forming environment.

Variation of \(\log(\frac{H_{2}O}{H_{2}F})_{\text{fluid}} \) of the inferred fluid based on F–OH concentrations of topaz. The topaz forming system is H₂O saturated peraluminous, melt or/and fluid(s) with low calcium and F contents > 1 wt%34,44. In the late and post-magmatic evolution of any intrusive events, the residual melts (volatile—saturated in composition) and fluids tend to escape to higher structural levels, or lose their identity due to the interaction with the already crystallized phases, or due to a continuous interaction with the host rock (i.e. 45–46). For the sake of clarity, in the following sections we use the equilibrium equations and formalism applied to the fluid state.

The OH–F substitution in the topaz solid solution was estimated to not exceed \(X_{OH} \leq 0.5 \) \(\{X_{OH} = OH/(OH + F)\} \) due to proton–proton avoidance4. However, OH–rich topaz with \(X_{OH} = 0.54 \) occurred in samples from ultrahigh-pressure rocks of the Sulu terrane, eastern China5, as well as in high pressure experimental products, indicating that depending on the P–T–X-conditions, topaz might be stable along the complete (OH,F)-solid solution series35. The effective ionic radius and electronegativity of F- and OH are very close36,37, therefore it is reasonable to assume an ideal site mixing of F and OH in various F-OH minerals, including topaz38.

Biotite is the most widely used mineral to estimate the halogen content of fluids in various magmatic-hydrothermal systems, according to the experimentally well calibrated exchange reaction36:

\[
x_{Bio}(OH)_{2} + 2HX = x_{Bio}(X)_{2} + H_{2}O
\]

where \(x = F \) and Cl and \(x_{Bio} = Mg \) cation numbers/sum octahedral cation numbers in biotite. Various empirical equations are thus proposed to estimate the halogens fugacity for the fluids in equilibrium with biotite32–34, and the application of this method facilitated the investigation of the F–Cl–OH partitioning between biotite and fluids in various magmatic-hydrothermal systems33–61. Following the same line of reasoning, we calculated the fluorine fugacity [expressed as the ratio \(\log(\frac{H_{2}O}{H_{2}F}) \)] of possible fluids (or H₂O–F saturated) coexisting with PadPar topaz. The refinement of F/OH occupancy from neutron data, allowed the consolidation of the chemical data for the F contents in the PadPar topaz. This is an anomalous fluorine-poor topaz, with \(X_{OH} \) (0.456–0.476), close to the physical proton–proton avoidance. As mentioned above, the low to very low fluorine content (\(X_{OH} = 0.54 \)) of natural topaz is observed in ultrahigh pressure metamorphic terrains4 but is rarely observed in the topaz of late or post magmatic origin from Minas Gerais fields6.

Notwithstanding, it is worth noting that among the worldwide late or post magmatic topaz62–65, those from the Padre Paraíso pegmatite are undoubtedly a fluorine poor type (PadPar: F ~ 10.0–10.94 wt% versus worldwide late or post magmatic origin from Minas Gerais61).

Notwithstanding, it is worth noting that among the worldwide late or post magmatic topaz62–65, those from the Padre Paraíso pegmatite are undoubtedly a fluorine poor type (PadPar: F ~ 10.0–10.94 wt% versus worldwide average F ~ 18 wt%) and, to the authors knowledge, this topaz type of the Minas Gerais pegmatites has never been investigated before. Therefore, it is intriguing to determine the fluid activity in the PadPar pegmatite body and the fluorine and OH topaz contents (as determined by the proposed analytical protocol) can be utilized as indicators of the F (and OH) contents of fluids in equilibrium with this gem.

It is high challenging to extrapolate the ambient of mineral formation from the crystal itself, since it is often doubtful that collected samples truly represent the in situ conditions at which minerals formed. However, due to the fairly constant major-element composition of this mineral species, the OH/F concentration ratio and fully characterized crystal structure (site occupancy) may reflect the nature of the fluid composition from which topaz formed.

The \((\frac{H_{2}O}{H_{2}F})_{\text{fluid}} \) are calculated from the concentrations of F and OH on the mixed site in topaz octahedra using the empirical equations proposed by36, relating the equilibrium constants of F-OH exchange in topaz:

\[
Al_{2}SiO_{4}(OH)_{2} + 2HF = Al_{2}SiO_{4}(F)_{2} + H_{2}O
\]

The thermodynamic properties describing the partitioning of F-(Cl)-OH between minerals and late or post magmatic fluids are from36,62.

We do not know the final temperature of equilibration with the coexisting fluid(s) for the single crystals, so we calculated \((\frac{H_{2}O}{H_{2}F})_{\text{fluid}} \) for a range of potential temperatures of equilibration in a 298–1273 K range. However, following the results obtained with synchrotron and neutron data and temperature-dependent structural modelling, which reveal that PadPar topaz maintain its crystallinity and symmetry up to 1170 K, we can argue that PadPar topaz started its nucleation at this temperature. This value is coherent with the topaz stability field23–26, which reveal that depending on the P–T–X-conditions, topaz might be stable along the complete (OH,F)-solid solution series35.

According to a previous experimental work1, the pressure effects on \((\frac{H_{2}O}{H_{2}F})_{\text{fluid}} \) at constant topaz composition (6.24/T in units of kbar⁻¹) is negligible given the uncertainty in the thermodynamic data, therefore calculations were made at constant \(P = 1 \) kbar. The approach that we used is validated by several investigations on the fluorine activity in the magmatic-hydrothermal systems53–58.

Log \((\frac{H_{2}O}{H_{2}F})_{\text{fluid}} \) slightly decrease at increasing temperature (Fig. 10), at constant topaz composition. It is relevant to observe that the log \((\frac{H_{2}O}{H_{2}F})_{\text{fluid}}/\text{temperature} \) curve becomes independent of temperature in
the proximity of the suggested limit of topaz stability. Two PadPar topaz crystals in Tables 1 and 2 have similar F–OH occupancy (XOH = 0.474–0.476) on the hydroxyl site, powdered crystal 2 analysed by neutron diffraction shows a slightly higher fluorine content (XOH = 0.456) with respect to in situ chemical data. This variability is reflected in the calculated \((f_{H_2O}/f_{HF})_{fluid} \) (Fig. 10). For an assumed crystallization temperature of 1170 K the \(\log(f_{H_2O}/f_{HF})_{fluid} \) is 1.28, 1.33 and 1.21 of fluids in equilibrium with crystal 2, crystal 3 and the neutron model, respectively. Averaging these values, we can estimate that the fluid activity that formed the PadPar topaz has \(\log(f_{H_2O}/f_{HF})_{fluid} \sim 1.27 \) (0.06). This value is higher with respect to the values calculated by pegmatite topaz sampled in various sites of the Proterozoic Eastern Brazilian Pegmatite province and approaches the Sulu topaz system (Fig. 10). Topaz from quartzite in Sulu terrane that, to the authors’s knowledge; represent the OH-richest natural topaz so far recorded (\(F = 9.50 - X_{OH} = 0.54 \)), is calculated to be in equilibrium with fluids with \(\log(f_{H_2O}/f_{HF})_{fluid} = 1.80 \).

All together the PadPar topaz type is stabilized by \(H_2O \) saturated fluids with an F content not exceeding 1 wt%42. This suggests that among the various topaz-bearing pegmatites of Minas Gerais, the PadPar pegmatite system is a water-dominant fluid lens61,74,75.

Conclusion
We applied a multi analytical strategy to fully characterize the gem quality of coloured topaz from pegmatites of the early Proterozoic Eastern Brazilian Pegmatite Province. The relative simplicity of the topaz chemistry is complicated by the light nature of the major elements forming this mineral (Si, Al, OH and F), therefore gaining chemical-physical information about the crystallization condition was challenging. The successful strategy to combine EDS microanalyses with synchrotron X-Ray and neutron powder diffraction measurements allowed us to accurately determine the mineral structure.

On the basis of neutron diffraction data, the fluorine content is estimated to be \(\sim 1.03 \) a.f.u, corresponding to 10.34 wt%, perfectly in agreement with the chemical data (on average 10.0 wt%). The chemical formula is \(Al_{12.96}Si_{9.96}O_{44.04}F_{1.03}OH_{0.98} \) with \(X_{OH} = 0.484 \). Unit cell parameters indicate a positive thermal expansion up to 1010 K, followed by a phase of octahedral expansion regularly counterbalanced by a tetrahedral contraction, up to 1170 K. Above this temperature, both fluorine content and topaz crystallinity decrease, and mullite starts its growth over topaz. This maximum temperature is interpreted as the potential initial crystallization temperature of topaz in the pegmatite fluid system.

The F/OH ratio in this phase is crucial not only for the forming gem process, but also to better understand the circulation of fluids (\(H_2O/F \)) in the forming environment. The fluorine content, expressed as the ratio \(\log(f_{H_2O}/f_{HF})_{fluid} \) of possible fluids (or \(H_2O-F \) saturated) coexisting with the PadPar topaz, was modelled on the basis of the partitioning of F--(Cl)--OH behaviour between fluorine bearing minerals and late- post magmatic
pegmatitic fluids. In doing so, we are confident to conclude that the PadPar fluorine-poor topaz was formed in a lens of fluorine poor/water saturated pegmatitic fluids/ in the large early Proterozoic Eastern Brazilian Pegmatite province.

References

1. Zhang, Z. M. et al. Fluid–rock interactions during UHP metamorphism: a review of the Dabie–Sulu orogen, east-central China. J. Asian. Earth. Sci. 42(3), 316–329 (2011).
2. Alberico, A., Ferrando, S., Ivaldi, G. & Ferraris, G. X-ray single-crystal structure refinement of an OH-rich topaz from Sulu UHP terrane (Eastern China)—structural foundation of the correlation between cell parameters and fluorine content. Eur. J. Mineral. 15, 875–881 (2003).
3. Barton, M. D. The thermodynamic properties of topaz solid solutions and some petrologic applications. Am. Min. 67(9–10), 956–974 (1982).
4. Zhang, R. Y., Liu, J. G. & Shu, J. F. Hydroxyl-rich topaz in high-pressure and ultrahigh-pressure kyanite quartzites, with retrograde woodhouseite, from the Sulu terrane, eastern China. Am. Mineral. 87, 445–453 (2002).
5. Wunder, B., Andrut, M. & Wirth, R. High-pressure synthesis and properties of OH-rich topaz. Eur. J. Mineral. 11(5), 803–813 (1999).
6. Parise, J. B., Cuff, C. & Moore, F. H. A neutron diffraction study of topaz: evidence for a lower symmetry. Mineral. Mag. 43(331), 943–944 (1980).
7. Northrup, P. A., Leinenweber, K. & Parise, J. B. The location of H in the high-pressure synthetic Al₂SiO₄(OH)₂ topaz analogue. Am. Mineral. 79(3–4), 401–404 (1994).
8. Chen, J., Lager, G. A., Kunz, M., Hansen, T. C. & Umen, P. A. Rietveld refinement using neutron powder diffraction data of a fully deuterated topaz, Al₂SiO₄(OD)₂. Acta Crystallogr. E 61(11), 253–255 (2005).
9. Komatsu, K. et al. Pressure dependence of the hydrogen-bond geometry in topaz-OD from neutron powder diffraction. Am. Mineral. 93(1), 217–227 (2008).
10. Mookherjee, M., Tsuchiya, J. & Hariharan, A. Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al₂SiO₄(OH)₂) at high pressures. Phys. Earth Planet. Int. 251, 24–35 (2016).
11. Gatta, G. D., Nestola, F., Bromiley, G. D. & Loose, A. New insight into crystal chemistry of topaz: A multi-methodological study. Am. Mineral. 91(11–12), 1839–1846 (2006).
12. Ulian, G. & Valdrè, G. Effects of fluorine content on the elastic behaviour of topaz [Al₂SiO₄(F, OH)₂]. J. Miner. Petrol. Sci. 29(1), 87–98 (1977).
13. Bradbury, S. E. & Williams, Q. Contrasting bonding behaviour of two hydroxyl-bearing metamorphic minerals under pressure: Clinozoisite and topaz. Am. Mineral. 89(7–8), 915–925 (2004).
14. Komatsu, K., Komatsu, Y. & Sato, T. Pressure dependence of the OH-stretching mode in F-rich natural topaz and topaz-OH. Am. Mineral. 90(1), 266–270 (2005).
15. Lutz, H. D. Structure and strength of hydrogen bonds in inorganic solids. J. Mol. Struct. 646(1–3), 227–236 (2003).
16. Peterson, V. K., Auckett, J. E. & Pang, W. K. Real-time powder diffraction studies of energy materials under non-equilibrium conditions. J. Cryst. Growth 4(5), 540–554 (2017).
17. Komatsu, K., Kuribayashi, T. & Kudoh, Y. Effect of pressure and temperature on the crystal structure of topaz, Al₂SiO₄(OH, F, Cl). J. Miner. Petrol. Sci. 98(5), 167–180 (2003).
18. Pinheiro, M. V. B. et al. OH/F substitution in topaz studied by Raman spectroscopy. Phys. Rev. B 65(10), 104301 (2002).
19. Bradley, S. E. & Williams, Q. Constraining bonding behaviour of two hydroxyl-bearing metamorphic minerals under pressure: Clinozoisite and topaz. Am. Mineral. 88(10), 1460–1470 (2003).
20. Komatsu, K. et al. Pressure dependence of the OH-stretching mode in F-rich natural topaz and topaz-OH. Am. Mineral. 90(1), 266–270 (2005).
21. Lutz, H. D. Structure and strength of hydrogen bonds in inorganic solids. J. Mol. Struct. 646(1–3), 227–236 (2003).
22. Wattenpul, A. & Wunder, B. Temperature dependence of the OH-stretching frequencies in topaz-OH. Phys. Chem. Miner. 37, 65–70 (2010).
23. Newbury, D. E. & Ritchie, N. W. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SSD-EDS). J. Mater. Sci. 50(2), 493–518 (2015).
24. Hansen, T. C. et al. The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometer. Meas. Sci. Technol. 19(3), 034001 (2008).
25. Plasier, J. R. et al. The X-ray diffraction beamline MCX at Elettra: a case study of non-destructive analysis on stained glass. Acta Imnecro 6(3), 71 (2017).
26. Ferreira, M. S. F., Fonseca, M. A. & Pires, F. R. M. Pegmatites mineralized in aqua marine and topaz of ponto do Marambaia, Minas Gerais: Tipology and relationships with the Caladão granite. Rev. Bras. Geoci. 35(4), 463–473 (2005).
27. Pedroso-Soares, A. C. Late Neoproterozoic-Cambrian granitic magmatism in the Araçuaí orogen (Brazil), the Eastern Brazilian Pegmatite Province and related mineral resources. Geol. Soc. Lond. Mem. 350(1), 25–51 (2011).
28. Mendes, J. C., Medeiros, S. R., McReath, I. & De Campos, C. Cambro-Ordovician magmatism in SE Brazil: U-Pb and Rb–Sr ages, combined with Sr–Nd isotopic data of charnockitic rocks from the Várzea Alegre Complex. Geomorphology 141(1–2), 97–111 (2016).
29. Rebuffi, L. et al. MCX: A synchrotron radiation beamline for x-ray diffraction line profile analysis. Z. Anorg. Allg. Chem. 640(15), 3100–3106 (2014).
30. Martucci, A., Hansen T. C. Exploring the role of OH/F substitution in topaz: Relationships between structural features and chemical environments. Instutit Laue-Langevin (ILL) (2019).
31. Von Dreue, R. B. & Larson, A. C. General structure analysis system (GASAS). Los Alamos Natl. Lab. Rep. LAUR 748, 86–748 (2004).
32. Toby, R. H. EXPGUI, a graphical user interface for GASAS. J. Appl. Cryst. 34(2), 210–213 (2001).
33. Finger, L. W., Cox, D. E. & Jephcoate, A. P. A correction for powder diffraction peak asymmetry due to axial divergence. J. Appl. Cryst. 27(6), 892–900 (1994).
34. Van Laar, B. & Yelon, W. B. The peak in neutron powder diffraction. J. Appl. Cryst. 17(2), 47–54 (1984).
35. Gonzalez-Platas, J., Alvaro, M., Nestola, F. & Angel, R. EosFit7-GUI: A new graphical user interface for evaluation of state calculations, analyses and teaching. J. Appl. Cryst. 49(4), 1377–1382 (2016).
36. Ginne, F. X. I. I. I. Comment on optical anomalies within a topaz from Brazil. Z. Krist. Crist. Mater. 63(1–6), 236–246 (1926).
37. Akizuki, M., Hampar, M. S. & Zussman, J. An explanation of anomalous optical properties of topaz. Mineral. Mag. 43(326), 237–241 (1979).
38. Altmann, A. et al. EXPO2009: Structure solution by powder data in direct and reciprocal space. J. Appl. Cryst. 42, 1197–1202 (2009).
39. Fei, Y. Thermal expansion in Mineral Physics and Crystallography: A Handbook of Physical Constants vol. 2 (ed. T. J. Ahrens) 29–44 (AGU, Washington, DC, 1995).
40. Tennakoon, S. et al. Single crystal elasticity of natural topaz at high-temperatures. Sci. Rep. 8(1), 1–9 (2018).
Acknowledgements
The present study was granted by the “PRIN2017-2017L83S77” project of the Italian Ministry for Education, University and Research (MIUR) (B.C.). M.A. and B.C. acknowledge financial support from “Fondi di Ateneo University of Ferrara, 2019–2020”. Thanks to Barbara Galassi and Steve Deforie (Brighton, UK) for the revisions of the English language.

Author contributions
G.L. and P.J. performed the in situ powder X-ray diffraction measurements. H.T.C. performed the in situ powder neutron diffraction measurements. N.A.G. performed the crystal sampling and selection. P.N., M.A. and B.C., contributed to data elaboration, the research, and to the writing-reviewing and editing of the manuscript. All authors discussed the results. M.A. and B.C. took the lead in conceiving the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-82045-2.

Correspondence and requests for materials should be addressed to A.M. or C.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021