Increasing Hospitalization Rates for Cirrhosis: Overrepresentation of Disadvantaged Australians

Elizabeth E. Powell, Richard Skoien, Tony Rahman, Paul J. Clark, James O’Beirne, Gunter Hartel, Katherine A. Stuart, Steven M. McPhail, Rohit Gupta, Peter Boyd, Patricia C. Valery

Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
Department of Gastroenterology, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
Gastroenterology & Hepatology Department, The Prince Charles Hospital, Chermside, QLD, Australia
Department of Gastroenterology and Hepatology, Mater Hospitals, Brisbane, QLD, Australia
Sunshine Coast University Hospital, Sunshine Coast, QLD, Australia
QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
Centre for Functioning and Health Research, Queensland Health and the School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
Cairns Base Hospital, Cairns, QLD, Australia
Logan Hospital, Meadowbrook, QLD, Australia
Centre for Liver Disease Research, Translational Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
Department of Gastroenterology and Hepatology, Mater Hospitals, Brisbane, QLD, Australia
Centre for Liver Disease Research, Translational Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia

ABSTRACT

Background: Limited information is available about hospitalization rates for cirrhosis in Australia.

Methods: Using information on all hospital episodes of care for patients admitted to Queensland hospitals during 2008–2016, we report age-standardized hospitalization rates/10,000 person-years, in-hospital case-fatality rate among these admissions (n = 30,327), and examine the factors associated with hospital deaths using logistic regression analyses.

Findings: Hospitalization rates increased from 8.50/10,000 (95% confidence interval (CI) 8.18–8.82) to 11.21/10,000 (95%CI 10.87–11.54) between 2008 and 2016, and peaked in men aged 55–59 years (34.03/10,000) and in Indigenous Australians (32.79/10,000). The number of admissions increased by 61.7% from 2701 admissions in 2008 to 4367 in 2016. During the same period, the percentage increase varied by socioeconomic disadvantage (3.2%/year in the most affluent vs. 9.4%/year in the most disadvantaged quintile; p < 0.001). Alcohol misuse was a contributing factor for cirrhosis in 55.1% of admissions, and socioeconomic disadvantage in 26.8%. The overall in-hospital case-fatality rate was 9.7% for males and 9.3% for females, and decreased in males (p < 0.001). Predictors of in-hospital mortality included hepatorenal syndrome (adjusted odds ratio (AOR) = 1.63, 95% CI 1.38–1.92), jaundice (AOR = 1.82, 95% CI 1.20–2.63), hepatic encephalopathy (AOR = 1.94, 95% CI 1.61–2.34), acute peritonitis (AOR = 1.93, 95% CI 1.61–2.33), jaundice (AOR = 1.82, 95% CI 1.20–2.75), age ≥ 70 years (AOR = 1.63, 95% CI 1.38–1.92), a higher comorbidity index (p = 0.021), and residence outside of a “major city” (p < 0.001).

Interpretation: The increasing healthcare use by Australians with cirrhosis has resource and economic implications. Our data highlight the disproportionate impact of cirrhosis on Indigenous Australians and people from the most socioeconomically disadvantaged areas.

Funding: Brisbane Diamantina Health Partners.

© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Chronic liver diseases (CLDs) are a major global public health problem [1,2], due largely to obesity-related non-alcoholic fatty liver disease (NAFLD), hazardous alcohol consumption and chronic viral hepatitis B (HBV) and C (HCV). Regardless of etiology, most of the morbidity and mortality from CLDs occur among people with cirrhosis, who are at risk of developing hepatocellular cancer (HCC) and decompensation events including ascites, hepatic encephalopathy (HE) and variceal hemorrhage.

CLD has a long latency period, during which affected individuals remain asymptomatic despite progressive hepatic fibrosis and development of cirrhosis. The occurrence of ascites is usually the first sign that cirrhosis has progressed to a decompensated phase. Optimal care of decompensated cirrhosis is complex and associated with very high use of hospital services due to frequent admissions that are often unplanned [3]. Patients often have comorbidities that increase the burden of illness and use of healthcare resources [4]. Despite the fact that much of the burden of clinical care occurs in patients with cirrhosis, there is a paucity of literature describing hospitalization rates for cirrhosis.

In the United Kingdom, the poorest and most vulnerable members of society have the highest incidence of liver disease [5]. In the United States, patients with CLD have higher rates of hospitalization than other chronic diseases [2]. In Australia, availability of health services generally decreases with increase in remoteness [6]. For many chronic diseases, higher rates of disease burden are experienced by populations in regional and remote areas or in the most socioeconomically disadvantaged areas, compared to people living in major cities and areas of least socioeconomic disadvantage [7]. Health inequalities are also seen for the Indigenous population who have a chronic disease burden rate 2.3 times the non-Indigenous rate [8]. The impact of these sociodemographic factors on cirrhosis health outcomes in Australia remains unknown.

We report population-based hospitalization rates for cirrhosis in the large state of Queensland, Australia and examine the sociodemographic and clinical factors associated with hospital deaths.

2. Methods

2.1. Setting

Queensland is a large state in the north-east of Australia with a population of 4.9 million and an area approximately equivalent to Western Europe. The primary data for this study includes information on all hospital episodes of care for patients admitted to Queensland hospitals during 2008–2016.

2.2. Case Ascertainment

We identified all hospital admissions for cirrhosis for patients who were aged 20 years or older. The study cohort was identified via a comprehensive list of diagnosis (based on ICD-10 AM codes) and procedure codes provided to the Statistical Analysis Linkage Unit (see online supplementary material for further details). We excluded hospital admissions where the patient’s age was less than 20 years or residential location at time of admission was unknown as well as people whose primary residence was interstate or overseas.

An admission for cirrhosis was defined by hospitalization in any given year from 1 January 2008 to 31 December 2016 with any one of the following as the primary diagnosis: alcoholic fibrosis and sclerosis of liver, alcoholic cirrhosis of liver, alcoholic hepatic failure, chronic hepatic failure, fibrosis and cirrhosis of liver, primary biliary cirrhosis/cholangitis, secondary biliary cirrhosis, biliary cirrhosis, unspecified, other and unspecified cirrhosis of liver, portal hypertension, hepatorenal syndrome, gastroesophageal varices with without bleeding, and hepatocellular carcinoma (HCC) (referred to here as ‘classic diagnosis’).

To minimize the potential of missing cases, we extended the definition to include hospitalization with any of the abovementioned codes as ‘other’ diagnosis and: (i) any of the following ICD-codes as primary diagnosis: alcoholic hepatitis, alcoholic liver disease unspecified, toxic liver disease with fibrosis and cirrhosis of liver, hepatic failure unspecified, hepatic sclerosis, hepatic fibrosis with hepatic sclerosis, acute pancreatitis, alcoholic encephalopathy, encephalopathy unspecified, ascites, unspecified jaundice, and hyponatremia; or (ii) a procedure code for cirrhosis, namely: abdominal paracentesis, endoscopic banding of esophageal varices, endoscopic banding of gastric varices, or transjugular intrahepatic portosystemic shunt.

We also considered an admission for cirrhosis as any hospitalization with: (iii) a procedure code for HCC (radio-frequency ablation (RFA), trans-arterial chemoembolization (TACE), or liver resection) and a diagnosis of HCC; (iv) a primary diagnosis of alcoholic hepatitis or alcoholic liver disease unspecified and ascites, varices or HCC as other diagnosis; (v) a primary diagnosis of gastrointestinal hemorrhage and gastroesophageal varices with bleeding; (vi) a primary diagnosis of gastrointestinal hemorrhage and rectal varices with portal hypertension.

2.3. Measures

Sociodemographic, clinical data and health service identity (data not provided for private hospitals) were obtained from Queensland...
Hospital Admitted Patient Data Collection (referred to here as hospital admissions database). Health sector was categorized as public hospital or private hospital. Place of residence was mapped according to the level of remoteness [9] and socioeconomic advantage and disadvantage [10]. Indigenous status for an individual may vary across records for the same individual as it is based on self-identification. Patients were coded as Indigenous if identified in at least one of their records within the study period. As medical records were not reviewed, the specific etiology of liver disease was determined based on recorded primary or other diagnosis. Comorbidity at the time of hospital admission was measured using the Charlson Comorbidity Index (CCI) [11]. All diseases listed in the CCI as primary or other diagnosis were analyzed (excluding liver disease). Although hepatocellular carcinoma is included in the Charlson comorbidity index as a cancer, it largely occurs as a complication of cirrhosis, rather than as a comorbidity. For this reason, we conducted a sensitivity analysis by excluding HCC from the Charlson Index.

The study was approved by the Human Research Ethics Committee of the QIMR Berghofer Medical Research Institute (P2209) and Metro South Hospital and Health Services (HREC/17/QPAH/23).

3. Results

3.1. Patient Population and Admission Rates

During 2008–2016, there were 30,327 hospital admissions from 10,254 unique individuals, in Queensland, Australia that were identified as an admission for cirrhosis, with 77% occurring in the public sector and 23% in the private sector. The majority (97.4%) of cirrhosis admissions had at least one diagnosis (primary or other) from the ‘classic diagnosis’ list. The remaining admissions were included based on the extended definitions (iii) to (vi) (see online supplementary material for further details). Of the 30,327 admissions, 29,820 (98.3%) had at least one ICD-10 code for cirrhosis or its complications (varices, ascites, HE and HCC) listed in a recent cirrhosis code validation study [14]; 78.2% had at least two ICD-10 codes and 507 (1.2%) had none of these ICD-10 codes.

Overall, the age-adjusted hospitalization rate for cirrhosis was 9.54 (95%CI 9.43–9.65) per 10,000 person-years. However, admission rates were substantially different based on gender and age (Fig. 1), with 2.5-fold higher admission rates in men that peaked at 34.03 per 10,000 person years in the 55–59 year age group. There was a striking increase in the number of cirrhosis admissions per year for both men and women over the study period, and this temporal pattern was also seen when age-adjusted hospitalization rates were computed for each calendar year ranging from 8.50 (95%CI 8.18–8.82) per 10,000 person-years in 2008 to 11.21 (95%CI 10.87–11.54) per 10,000 person-years in 2016 (Fig. 2).

The number of cirrhosis admissions increased by 61.7% from 2701 admissions in 2008 to 4367 in 2016. The percentage increase in the number of cases varied by socioeconomic disadvantage (Fig. 3); for the same period there was a 3.2% (95%CI 1.2%–5.2%) increase in the number of cases per year in the most affluent quintile compared to 9.4% (95%CI 7.3%–11.6%) in the most disadvantaged quintile (comparison of slopes in regression, p < 0.001). The number of admissions classified as “Indigenous” increased from 201 in 2008 to 341 in 2016, an increase of 8.8% (95%CI 6.7%–11.0%) vs. 5.9% (95%CI 3.8%–8.0%) per year for non-Indigenous (comparison of slopes in regression, p = 0.058).

Table 1 summarizes the clinical and demographic characteristics of the cirrhosis admissions; 7.4% of admissions were classified as “Indigenous”, and the age-standardized admission rate was 3-fold higher for Indigenous Australians (32.79 (95%CI 31.28–34.31) per 10,000 person-years) than the overall rate. Over one-quarter of cirrhosis admissions (26.8%) were from patients residing in most socioeconomically disadvantaged areas. Co-morbid conditions were present in 40% of admissions, with 12.7% having a Charlson comorbidity index ≥3 (reflecting a greater number and severity of comorbidities). While the presence of type 2 diabetes was recorded in 20.5% of admissions, obesity was not consistently documented (recorded for only 3.1% of admissions).

Regarding etiology of liver disease, an admission may have had more than 1 liver disease diagnosis (e.g. HCV infection and alcohol misuse). Table 2 summarizes the overall prevalence of specific liver diseases
that were coded for during the admissions. Alcohol-related liver disease was diagnosed in 55.1% of admissions followed by chronic HCV in 23.8%, NAFLD/NASH in 4.9% and chronic HBV in 4.3%.

Ascites was the most frequent complication of cirrhosis (42.3% of admissions), followed by gastrointestinal bleeding (34.5%), HCC (14.6%) and hepatic encephalopathy (4.3%) (Table 2). This is reflected in the procedures performed, with abdominal paracentesis performed in 36.6% of admissions, endoscopic banding in 10.5% and TACE in 3.5%.

In 40% of admissions (Table 1), the length of stay was one day. Moreover, the proportion of 1-day admissions did not change over time; there was an average 41.2% of 1-day admissions in 2008–2010 and 40.5% in 2008–2014 (Z test for differences in proportions, p = 0.311). The primary diagnoses reported for these one day admissions were ascites in 25.1%, varices in 24.4%, unspecified cirrhosis of liver in 14.7%, alcoholic cirrhosis in 11.3%, and HCC in 8.3%. In the remaining admissions, length of stay varied widely from 2 to 4 days in 21.4%, 5 to 9 days in 18.6%, 10 to 19 days in 11.4% and ≥20 days in 8.6%.

3.2. Case-fatality Rate

The overall in-hospital case-fatality rate among male admissions during the study period was 9.69% (95%CI 9.30–10.10), and decreased over time from a peak of 11.69 in 2009 (95%CI 10.35–12.02) to 9.26 in 2014 (95%CI 8.66–9.90). The in-hospital case-fatality rate among female admissions during the study period was 9.26% (95%CI 8.66–9.90), and decreased progressively over time (Z test for differences in proportions, p < 0.001). The in-hospital case-fatality rate among female admissions during the study period was 9.69% (95%CI 9.30–10.10), and decreased progressively over time (Z test for differences in proportions, p < 0.001). The in-hospital case-fatality rate among female admissions during the study period was 9.26% (95%CI 8.66–9.90), and decreased progressively over time (Z test for differences in proportions, p < 0.001).

3.3. Predictors of In-hospital Mortality

Characteristics of the cirrhosis-related admissions by discharge status (live discharge vs. hospital death) are summarized in Table 1. A higher proportion of hospital deaths occurred in the older age groups (≥60 years) and in admissions with a longer length of stay (≥5 days). The presence of comorbidities was also important, with a higher proportion of hospital deaths in admissions with a Charlson comorbidity index ≥2. Socioeconomic disadvantage and a marital status of “no partner” were also associated with a greater risk of in-hospital mortality. Discharge status differed according to rurality of residence and hospital sector: greater risk of in-hospital mortality was observed in hospitals outside of “major city” and in the “public” hospital sector.

Of the sociodemographic data obtained at point of entry to care, and the clinical factors obtained during admission, ten independent risk factors were identified (Table 3). The highest adjusted odds ratios (AOR) were for hepatorenal syndrome (AOR = 7.24, 95%CI 5.99–8.75), followed by HCC (AOR = 2.53, 95%CI 2.20–2.91), hepatic encephalopathy (AOR = 1.94, 95%CI 1.61–2.34), acute peritonitis (AOR = 1.93, 95%CI 1.61–2.33), jaundice (AOR = 1.82, 95%CI 1.20–2.75) and age ≥70 years (AOR = 1.63, 95%CI 1.38–1.92). For every 1 unit increase in the Charlson index, the likelihood of in-hospital mortality increased by 1.13 times (95%CI 1.09–1.17). Longer LOS was significantly associated with in-hospital mortality; patients who were in hospital for 30+ days were 5.61 times as likely to die in hospital (95%CI 4.85–6.50) and patients admitted for one day were less likely to die in hospital (AOR = 0.32, 95%CI 0.27–0.37) compared to patients admitted for 2–4 days. Having a cirrhosis- or HCC-related procedure was negatively associated with in-hospital mortality.

While 1-day admissions are hospital admissions strictly speaking, their clinical significance is likely different from that of longer admissions (e.g. diagnostic or therapeutic procedures versus management of disease complications). We have therefore also analyzed the data excluding 1-day admissions. The results were very similar to the main analysis, the direction of the associations was unchanged and, with the exception of length of stay, AORs changed by 15% or less.

3.4. Sensitivity Analysis

With the exclusion of HCC from the Charlson index, comorbidities were present in 9618 (31.8%) admissions, and the CCI score was strongly associated with in-hospital mortality. For every 1 unit increase in the Charlson index, the likelihood of in-hospital mortality increased by 1.10 times (95%CI 1.05–1.15; see further details in Supplementary Table 2).

4. Discussion

Although chronic liver disease is often a “silent” condition, the impact of decompensated cirrhosis and its associated complications is not, with 4367 cirrhosis-related hospital admissions in 2016, in the single state of Queensland, Australia alone. Our longitudinal, population-based state-wide study has shown that the number of cirrhosis admissions has increased 1.6-fold over the last eight years, and alcohol misuse was a cause or contributing factor for cirrhosis in over half of these admissions. Indigenous Australians and patients residing in most socioeconomically disadvantaged areas were overrepresented among patients admitted. While overall the hospitalization rates in Australia vary by socioeconomic disadvantage (e.g. in 2015–16, 21.7% of hospitalizations were from patients residing in the most socioeconomically disadvantaged quintile vs. 18.6% for the most affluent quintile) [15], in our

![Fig. 1. Average annual age-specific hospitalization rate per 10,000 person years for liver cirrhosis by gender in Queensland, Australia, during 2008 to 2016.](image-url)
cohort of cirrhosis admissions, there was a greater discrepancy between areas most disadvantaged (26.8% of admissions) and most affluent (15.5%).

Limited information is available in the literature to compare the hospitalization rates observed in this study with those from other Australian states or data sources. In a report commissioned by the Gastroenterological Society of Australia, the total number of Australian hospital separations for diseases of the liver in 2009–10 was 13,555 [16]. This statistic was based only on the principal diagnosis chiefly responsible for the patient’s episode of care in hospital. These statistics likely substantially underrepresent cirrhosis-related hospital admissions as they only used the principal diagnostic code, and may not have captured admissions due to decompensation events, complications or procedures such as abdominal paracentesis for cirrhosis-related ascites. Comparable to our data, a study in the US found the age-adjusted incidence rate for admission for complications of cirrhosis was 10.01 (95%CI 9.03, 10.98) per 10,000 population [17].

The reason for hospitalization in patients with cirrhosis is usually due to consequences of portal hypertension and decompensation events [18]. In our study, the most frequently reported cirrhosis complications during admission were ascites (in 42.3% of admissions) and gastroesophageal bleeding (34.5%), requiring abdominal paracentesis (36.6%) and endoscopic variceal ligation (10.5%). However, HCC was the third most common indication, accounting for 14.6% of admissions, with cancer-related procedures (TACE, RFA, liver resection) performed in 4.9%. Liver cancer is reported to be the fastest growing cause of cancer death in Australia and has a very poor prognosis (5-year survival of 16%) [7,19]. This is particularly troubling since the majority of HCC is potentially preventable if the cause of chronic liver disease is identified and interventions are undertaken (e.g. treatment of viral hepatitis, interventions for alcohol misuse and dependence, and optimization of metabolic risk factors such as obesity and diabetes).

Our data highlight the key role of alcohol as a significant causative factor, since it was recorded in 55% of cirrhosis-related hospital admissions.
admissions. Despite policies and regulations to reduce alcohol-related harm, alcoholic misuse remains a major health and social problem in Australia [20]. Chronic HCV was also an important etiological factor (19.2% of admissions). It will be important to repeat this analysis in Australia [20]. Chronic HCV was also an important etiological factor for many of the cases of cirrhosis (27.8% and 15.4% of admissions respectively). A recent large primary care study from the UK and Europe found that recorded rates of NAFLD were a great deal lower than expected, implying widespread under-diagnosis and under-recording [21].

Table 1
Characteristics of cirrhosis-related hospital admissions in Queensland during 2008–2016 by discharge status.

Characteristic	All admissions N = 30,327	Live discharges N = 27,425	In-hospital deaths N = 2902	p-value*
Age group (years)				
20–29	296 (1.0%)	285 (1.0%)	11 (0.4%)	<0.001
30–39	1380 (4.6%)	1296 (4.7%)	84 (2.9%)	
40–49	4493 (14.8%)	4153 (15.1%)	340 (11.7%)	
50–59	10,246 (33.8%)	9392 (34.2%)	854 (29.4%)	
60–69	8189 (27.0%)	7361 (26.8%)	828 (28.5%)	
70 and over	5723 (18.9%)	4938 (18.0%)	785 (27.1%)	
Gender				
Male	21,620 (71.3%)	19,524 (71.2%)	2096 (72.2%)	0.240
Female	8707 (28.7%)	7901 (28.8%)	806 (27.8%)	
Indigenous status				
Indigenous	2249 (7.4%)	2036 (7.4%)	213 (7.4%)	0.920
Non-Indigenous	28,040 (92.6%)	25,366 (92.6%)	2674 (92.6%)	
Marital status				<0.001
Married or De Facto	15,405 (52.0%)	14,112 (52.3%)	1383 (49.0%)	
No partner	14,138 (48.0%)	12,879 (47.7%)	1435 (51.0%)	
Country of birth				
Overseas	6469 (22.5%)	5862 (22.5%)	607 (22.1%)	
Major city	18,726 (61.7%)	17,090 (62.3%)	1636 (56.4%)	<0.001
Inner regional	6595 (21.7%)	5917 (21.6%)	678 (23.4%)	
Socioeconomic advantage and disadvantage				
Rurality of residence				
Remote	4360 (14.4%)	3848 (14.0%)	512 (17.6%)	
Very remote	457 (1.5%)	407 (1.5%)	50 (1.7%)	
Q1 most affluent	4680 (15.5%)	4314 (15.8%)	366 (12.7%)	<0.001
Q2	5171 (17.2%)	4706 (17.3%)	465 (16.1%)	
Q3	5762 (19.1%)	5196 (19.1%)	566 (19.6%)	
Q4	6419 (21.3%)	5784 (21.2%)	655 (22.0%)	
Q5 most disadvantaged	8081 (26.8%)	7225 (26.5%)	856 (29.6%)	
Public	23,345 (77.0%)	21,033 (76.7%)	2132 (77.9%)	<0.001
Hospital sector				
Private	6982 (23.0%)	6392 (23.3%)	590 (20.3%)	
Charlson comorbidity index (median; interquartile range)	1 (0–2)	1 (0–2)	2 (1–5)	<0.001
Charlson comorbidity group				<0.001
CCI = 0	18,187 (60.0%)	17,162 (62.6%)	1025 (35.3%)	
CCI = 1	2900 (9.6%)	2623 (9.6%)	277 (9.5%)	
CCI ≥ 2	5395 (17.8%)	4706 (17.2%)	689 (23.7%)	
CCI ≥ 3	3845 (12.7%)	2934 (10.7%)	911 (31.4%)	
1	12,149 (40.1%)	11,853 (43.2%)	296 (10.2%)	<0.001
2–4	6483 (21.4%)	6007 (21.9%)	476 (16.4%)	
5–9	5631 (18.6%)	4994 (18.2%)	637 (22.0%)	
10–19	3456 (11.4%)	2748 (10.0%)	708 (24.4%)	
20–29	1189 (3.9%)	841 (3.1%)	348 (12.0%)	
≥30	1419 (4.7%)	982 (3.6%)	437 (15.1%)	

Data are presented as number (%) unless specified.

* p-value by Chi square testing for comparisons between live discharges vs. in-hospital deaths.

† Indigenous status missing for 38 admissions.

‡ Marital status missing for 514 admissions.

§ Country of birth not stated for 1538 admissions.

d Socioeconomic advantage and disadvantage missing for 214 admissions.

Includes 582 admissions that were a mix of private and public.

The US where the mortality rate of patients admitted for cirrhosis complications varied from 12% to 7.4% [4,26,27] and has declined over the last decade [4,27,28]. This has been attributed to improved liver-specific interventions such as variceal bleeding management, early diagnostic paracentesis and use of albumin for spontaneous bacterial peritonitis, along with the publication and implementation of evidence-based practice guidelines. No curative treatments are available; however, for patients with decompensated cirrhosis (if ineligible for liver transplantation) and reduced mortality is likely to lead to more admissions. Not unexpectedly, there was a greater likelihood of in-hospital mortality in older patients (≥70 years), a higher Charlson index, a greater length of hospitalization, and admissions associated with HCC and hepatorenal syndrome.

Our data show that residence outside of a major city was associated with an increase in hospital deaths. Australians in rural and remote areas commonly have less access to health services, with shortages in health professions and health-related infrastructure [6]. In addition, hepatology services are largely limited to tertiary and large regional hospitals and the care of cirrhosis patients is usually complex, requiring a multidisciplinary approach [29]. In other settings such as the US, cirrhosis mortality has been shown to differ greatly between hospitals [30]. Higher hospital resource intensity and high cirrhosis volume were factors associated with lower cirrhosis mortality, prompting the
authors to speculate that development of “care networks” between resource-intensive and resource-poor institutions may improve the quality of cirrhosis care [30]. While greater socioeconomic disadvantage and hospitalization in the public sector were also associated with an increase in hospital deaths in the univariable analysis, these factors were not independently associated with in-hospital mortality.

Conducting this study in Queensland (the second largest and third most populous Australian state, with a greater proportion of its population in regional areas than the states of New South Wales and Victoria, and the second largest population of Indigenous Australians) allowed the inclusion of relatively large numbers of patients from regional areas and Indigenous Australians [12]. The study includes near complete population-based data for hospital admissions for cirrhosis and a reliable source of clinical and sociodemographic data. While the hospital admissions database provides valuable information about a patient’s diagnosis and use of hospital services, data are collected for administrative purposes rather than to address research questions. Our study relied on the accuracy and completeness of hospital coded data. Whereas hospital services follow strict guidelines for the collection of demographic and clinical data, and for monitoring accuracy through validation audits, data quality is reliant on the accuracy of coding and the clinical information recorded in patients’ medical notes and hospital discharge reports.
Table 3
Predictors of in-hospital mortality among 30,327 admissions (main analysis) and excluding 1-day admissions (N = 18,178).

Socio-demographic factors	N = 30,327	N = 18,178		
	OR (95%CI)	AOR (95%CI)	OR (95%CI)	AOR (95%CI)
Age group				
20–29 years	0.47	0.26–0.87	0.58	0.29–1.17
30–39 years	0.79	0.62–1.01	0.74	0.56–0.97
40–49 years	ref⁴	ref⁴	ref⁴	ref⁴
50–59 years	1.11	0.97–1.27	1.07	0.92–1.24
60–69 years	1.37	1.20–1.57	1.25	1.07–1.45
70 years and over	1.94	1.70–2.22	1.63	1.38–1.92
Gender				
Female (vs. male)	0.95	0.87–1.03	n/s	0.95
Indigeneous status⁴	0.09	0.86–1.15	0.90	0.75–1.08
Marital status⁵	No partner (vs. Married/De Facto)	1.14	1.06–1.23	1.06
Country of birth⁶	Overseas (vs. Australia)	0.98	0.89–1.07	0.10
	Major city	ref⁴	ref⁴	ref⁴
	Inner regional	1.20	1.09–1.32	1.15
	Outer regional	1.39	1.25–1.54	1.17
	Remote	1.28	0.95–1.73	1.23
	Very remote	1.67	1.10–2.53	1.01
	Q1 most affluent	ref⁴	ref⁴	ref⁴
	Q2	1.16	1.01–1.34	1.09
	Q3	1.28	1.12–1.47	1.08
	Q4	1.29	1.13–1.48	1.01
	Q5 most disadvantaged	1.40	1.23–1.59	1.10
Hospital sector⁷	Private (vs. public)	0.84	0.76–0.92	0.13
Clinical factors				
Charison comorbidity index				
CCI = 0	1.29	1.27–1.31	1.13	1.09–1.17
CCI = 1	1.77	1.54–2.03	1.18	1.01–1.39
CCI = 2	2.45	2.21–2.71	1.24	1.07–1.43
CCI ≥ 3	5.20	4.72–5.73	1.29	1.02–1.64
Presumed etiology⁸				
Alcohol	1.41	1.30–1.52	1.47	1.32–1.64
Cryptogenic or unspecified cirrhosis of liver	0.74	0.68–0.81	0.73	
Chronic HBV	1.07	0.89–1.29	n/s	0.90
Chronic HCV	0.88	0.80–0.96	n/s	0.74
NAFLD/NASH	0.88	0.73–1.06	0.69	0.56–0.86
Metabolic liver disease⁹	1.94	1.44–2.63	n/s	1.40
Autoimmune liver disease⁹	0.91	0.70–1.19	n/s	1.14
Inflammatory liver disease unspecified	1.49	1.04–2.13	n/s	1.27
No etiology recorded	0.89	0.80–0.99	n/s	1.66
Factors obtained during hospital admission				
Complications of cirrhosis⁹	Ascites	1.40	1.30–1.51	1.43
	Gastrintestinal bleeding	0.68	0.63–0.74	0.87
	Hepatic encephalopathy	4.17	3.67–4.73	1.94
	Jaundice	3.61	2.51–5.16	1.82
	Hepatorenal syndrome	12.05	10.52–13.79	7.24
	Hepatocellular carcinoma	2.58	2.37–2.82	2.53
	Acute peritonitis	3.41	2.92–3.98	1.93
	1 day	0.43	0.37–0.51	0.32
	2–4 days	ref⁴	ref⁴	ref⁴
	5–9 days	1.43	1.25–1.64	1.61
	10–19 days	2.69	2.34–3.10	3.25
	20–29 days	4.21	3.52–5.04	5.22
	30 + days	3.81	3.21–4.52	5.61
Procedures⁸	Abdominal paracentesis	1.11	1.03–1.20	0.54
	Endoscopic banding	0.52	0.44–0.61	0.67
	Transjugular intrahepatic portosystemic shunt	0.89	0.41–1.94	n/s
	Trans-arterial chemoembolization	0.21	0.14–0.32	0.10
	Liver resection	0.47	0.25–0.88	0.12
	Liver transplant	0.31	0.17–0.56	0.13

n/s, variable not selected as a predictor; ref, reference category; p-values by logistic regression Chi square testing; ϒ p < 0.001; ϒ p = 0.555; € p = 0.021; € p = 0.063; b p = 0.525; a p = 0.139.

⁴ Indigenous status missing for 38 admissions.
⁵ Marital status missing for 514 admissions.
⁶ Country of birth not stated for 1538 admissions.
⁷ Socioeconomic advantage and disadvantage missing for 214 admissions.
⁸ Includes SR2 admissions that were a mix of private and public.
⁹ Could not calculate ORs for Budd-Chiari syndrome, and RFA.
⁰ Reference category is no exposure.
¹ Metabolic liver disease included haemochromatosis, Wilson's disease and Alpha-1 antitrypsin deficiency.
² Autoimmune liver disease included primary biliary cholangitis, primary sclerosing cholangitis, and autoimmune hepatitis.
E.E. Powell et al. / EClinicalMedicine 11 (2019) 44–53

[31]. Therefore, variability in data capture is inevitable, potentially leading to misclassification of presumed etiology, co-factors and comorbidities. Moreover, data accuracy is strongly dependent on clinicians’ coding practices and performs worse when the diagnoses are either less overt or considered relatively less “important”. With 29% of Australian men and 44% of women obese [7], and obesity being a significant contributing factor in cirrhosis [32], our report of 3.1% patients with a recorded diagnosis of obesity is perhaps an extreme example of failure to capture patient data. The low proportion of admissions associated with hepatic encephalopathy (4.3%) compared to other previous studies where prevalence ranged from 8.8% to 48.8% [3,14,17] is another example of possible inaccurate capture of patient data. There is also the potential for changes in the accuracy of coding and in hospital record coverage over time. However, misclassification and changes over time, if any, are unlikely to be differentially biased when comparing live discharges vs. in hospital deaths. ICD-10 codes for cirrhosis and related complications were validated in the US Department of Veteran Affairs (VA) administrative databases, with positive predictive values for cirrhosis, ascites, varices and HCC ranging from 87.5% to 98.2% [14]. Although the findings may differ in non-VA databases, the validation data suggest high coding accuracy and that these codes reliably identified cirrhosis-related hospital admissions and complications. Furthermore, although HCC can occur without cirrhosis, it typically develops in the presence of advanced liver disease and indicates cirrhosis [14]. Data obtained from the hospital admissions database is inadequate for the assessment of cause of admission or whether it was an urgent vs. planned admission, as it does not provide enough granular detail. Identification of the cause of admission can only be obtained through careful review of a patient’s medical records. The available data also do not permit an assessment of the severity of chronic liver disease using the MELD or Child-Pugh scores. This is an important limitation as MELD or Child–Pugh scores are strong predictors of a patient’s prognosis [33]. Nevertheless, the data were appropriate for addressing the study aims and demonstrated that healthcare use by patients with cirrhosis is increasing, and this has major resource and economic implications.

Although an assessment of healthcare burden and economic impact was beyond the scope of this study, it is clear that management of the hospitalized cirrhotic patient is expensive as treatment of complications usually requires highly specialized and resource intensive care [2,34]. Thirty-nine percent of admissions required a length of stay greater than four days, and admission rates were highest in males of working age, further reflecting the significant social and economic impacts of decompensated cirrhosis. The latest (fourth) account of the Lancet Standing Commission on Liver Disease in the UK reports that liver disease will soon overtake ischemic heart disease as the leading cause of years of working life lost [35]. Our data highlight the need for greater awareness and emphasis on preventive care in order to reduce the increasing prevalence of cirrhosis and the personal, social and economic burden of its complications. It also highlights the disproportionate impact of liver disease on Indigenous Australians and people from the most socioeconomically disadvantaged areas. Specific plans for prevention (e.g. public health policies discouraging harmful alcohol consumption) and diagnosis of cirrhosis in these groups should be designed by governments to reduce the burden of liver diseases. Our findings from a geographically vast country with a universal healthcare system that does not provide uniform care across rural, regional and metropolitan areas, provide an important contribution to the global perspective on the impact of chronic liver disease.

Acknowledgments/Funding

Brisbane Diamantina Health Partners funded data acquisition. PC Valery was supported by a NHMRC Career Development Fellowship (#1083090). SM McPhail is supported by a NHMRC fellowship (#1090440). The funders had no role in study design, data collection, data analysis, interpretation, or writing of the manuscript. We thank Ms Chris Moser, Principal Statistical Data Quality Officer, Statistical Services Branch, Queensland Health for advice on the coding of hospital admitted patient data by Queensland hospitals.

Contributors

PCV and EP contributed to the conception and design of the study. EP, RS, PC, and TR assisted with the preparation of coding algorithms for identification of admissions for cirrhosis and etiological factors. PCV and GH performed the data analysis and take responsibility for the integrity and the accuracy of the data. EP drafted the report. All authors contributed to the interpretation of data, revising draft critically for important intellectual content, and approved the final version.

Declaration of Competing Interest

There are no financial disclosures.

Appendix A. Supplementary Data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eclinm.2019.05.007.

References

[1] Marcellin P, Kutala BK. Liver diseases: a major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int 2018;38(Suppl. 1):2–6.
[2] Asrani SK, Koznutzova M, Ogola G, et al. Increasing health care burden of chronic liver disease compared with other chronic diseases, 2004–2013. Gastroenterology 2018; 155(3): 719–29 e4.
[3] Fagan KJ, Zhao YF, Horsfall UJ, et al. Burden of decompensated cirrhosis and ascites on hospital services in a tertiary care facility: time for change? Intern Med J 2014;44(9):865–72.
[4] Vergara M, Cleries M, Vela E, Bustinis M, Miquel M, Campo R. Hospital mortality over time in patients with specific complications of cirrhosis. Liver Int 2013;33(6):828–33.
[5] Williams R, Aspinall R, Bells M, et al. Addressing liver disease in the UK: a blueprint for attaining excellence in health care and reducing premature mortality from lifestyle-style issues of excess consumption of alcohol, obesity, and viral hepatitis. Lancet 2014;384(9958):1953–57.
[6] National Rural Health Alliance. The health of people living in remote Australia. http://www.ruralhealth.org.au/factsheets/thumbs; 2016, Accessed date: 25 June 2018.
[7] Australian Institute of Health and Welfare (AIHW). Australia’s health 2018. Canberra: AIHW; 2018.
[8] Australian Institute of Health and Welfare (AIHW). Australian burden of disease study: impact and causes of illness and death in aboriginal and Torres Strait islander people 2011. Canberra: AIHW; 2016.
[9] Australian Institute of Health and Welfare (AIHW). Rural, regional and remote health: a guide to remoteness classifications. Canberra, Australia: AIHW; 2004.
[10] Australian Bureau of Statistics (ABS). Census of population and housing: socio-economic indexes for areas (SEIFA), Australia, 2006, Canberra, Australia: ABS; 2006.
[11] Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic severity of chronic disease. J Chronic Dis 1987;40(5):373–83.
[12] Australian Bureau of Statistics (ABS). Australian demographic statistics. Canberra: ABS; 2018.
[13] Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc B Methodol 2005;67:301–20.
[14] Macapagal S, Kramer JR, Richardson P, El-Serag HB, Kanwal F. Positive predictive value of international classification of diseases, 10th revision, codes for cirrhosis and its related complications. Clin Gastroenterol Hepatol 2018;16(10):1677–8.
[15] Australian Institute of Health and Welfare (AIHW). Admitted patient care 2015–16: Australian hospital statistics. Canberra: AIHW; 2017.
[16] Deloitte Access Economics. The economic cost and health burden of liver disease in Australia. Sydney: Gastroenterological Society of Australia/Australian Liver Association; 2013.
[17] Chirapongasathorn S, Krittananuwong C, Enders FT, et al. Incidence and cost analysis of hospital admission and 30-day readmission among patients with cirrhosis. Hepatol Commun 2018;2(2):188–98.
[18] Tapper EB, Halbert B, Mellinger J. Rates of and reasons for hospital readmissions in patients with cirrhosis: a multistate population-based cohort study. Clin Gastroenterol Hepatol 2016;14(8):1181–8 [e2].
[19] Australian Institute of Health and Welfare (AIHW). Cancer in Australia 2017. Canberra: AIHW; 2017.
[20] Commonwealth of Australia (Department of Health). National alcohol strategy–2018–2026 Canberra; 2017.
[21] Alexander M, Loomis AK, Fairburn-Beech J, et al. Real-world data reveal a diagnostic gap in non-alcoholic fatty liver disease. BMC Med 2018;16(1):130.
[22] Wang OJ, Wang Y, Chen J, Krumholz HM. Recent trends in hospitalization for acute myocardial infarction. Am J Cardiol 2012;109(11):1589–93.

[23] Downing A, Lansdown M, West RM, Thomas JD, Lawrence G, Forman D. Changes in and predictors of length of stay in hospital after surgery for breast cancer between 1997/98 and 2004/05 in two regions of England: a population-based study. BMC Health Serv Res 2009;9:202.

[24] Lorenzoni G, Azzolina D, Lanera C, et al. Time trends in first hospitalization for heart failure in a community-based population. Int J Cardiol 2018;271:1959.

[25] Hahn EJ, Rayens MK, Adkins S, Simpson N, Frazier S, Mannino DM. Fewer hospitalizations for chronic obstructive pulmonary disease in communities with smoke-free public policies. Am J Public Health 2014;104(6):1059–65.

[26] Di Pascoli M, Ceranto E, De Nardi P, et al. Hospitalizations due to cirrhosis: clinical aspects in a large cohort of Italian patients and cost analysis report. Dig Dis 2017; 35(5):433–8.

[27] Schmidt ML, Barritt AS, Orman ES, Hayashi PH. Decreasing mortality among patients hospitalized with cirrhosis in the United States from 2002 through 2010. Gastroenterology 2015; 148(5): 967–77 e2.

[28] Allen AM, Kim WR, Moriarty JP, Shah ND, Larson JJ, Kamath PS. Time trends in the health care burden and mortality of acute on chronic liver failure in the United States. Hepatology 2016;64(6):2165–72.

[29] Mellinger JL, Volk ML. Multidisciplinary management of patients with cirrhosis: a need for care coordination. Clin Gastroenterol Hepatol 2013;11(3):217–23.

[30] Mathur AK, Chakrabarti AK, Mellinger JL, et al. Hospital resource intensity and cirrhosis mortality in United States. World J Gastroenterol 2017;23(10):1857–65.

[31] Queensland Health. Queensland hospital admitted patient data collection (QHAPDC) manual 2015–2016 collection year. Brisbane, Queensland: Queensland Health; 2015.

[32] Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019;70(1):151–71.

[33] Peng Y, Qi X, Guo X. Child-Pugh versus MELD score for the assessment of prognosis in liver cirrhosis: a systematic review and meta-analysis of observational studies. Medicine (Baltimore) 2016;95(8):e2877.

[34] European Association for the Study of the Liver (EASL). EASL clinical practice guidelines for the management of patients with decompensated cirrhosis. J Hepatol 2018; 69(2):406–60.

[35] Williams R, Alexander G, Armstrong I, et al. Disease burden and costs from excess alcohol consumption, obesity, and viral hepatitis: fourth report of the lancet standing commission on liver disease in the UK. Lancet 2018;391(10125):1097–107.