Genetic parameters for growth traits in pigs estimated using third degree polynomial functions

Marja-Liisa Sevón-Aimonen
Department of Animal Science, P.O. Box 28, FIN-00014 University of Helsinki, Finland. Current address: Agricultural Research Centre of Finland, Institute of Animal Production, FIN-31600 Jokioinen, Finland.
e-mail: marja-liisa.sevon-aimonen@mtt.fi

Kristina Sternberg
Department of Animal Science, P.O. Box 28, FIN-00014 University of Helsinki, Finland. Current address: Finnish Animal Breeding Association, P.O. Box 40, FIN-01301 Vantaa, Finland.

Matti Ojala
Department of Animal Science, P.O. Box 28, FIN-00014 University of Helsinki, Finland

A total of 8745 purebred Yorkshire and Landrace pigs extracted from Finnish progeny test station data was analysed. The pigs were weighed weekly during the test. A third degree polynomial function, age = f(weight), was fitted separately for each pig and was used to describe the growth patterns of individual pigs.

Their live weight at the inflection point (LW\textsubscript{ip}) was 72 kg, age at the inflection point (AGE\textsubscript{ip}) 126 d, and maximum daily gain (DG\textsubscript{\text{max}}) 1111 g/d, on average. The average daily gain from 30 to 90 kg (ADG\textsubscript{30-90}) was 957 g/d and in the smaller weight ranges (30 to 50, 50 to 70 and 70 to 90 kg) the average daily gains were 829, 1042 and 1046 g/d, respectively.

Genetic parameters for growth and carcass traits were estimated using REML with an animal model. The heritability estimates (h2) for LW\textsubscript{ip}, AGE\textsubscript{ip} and ADG\textsubscript{30-90} were 0.08, 0.33 and 0.23, respectively, and for smaller weight ranges from 0.14 to 0.21. Fast growing and lean animals had higher LW\textsubscript{ip} than others and the r\textsubscript{g} between LW\textsubscript{ip} and ADG\textsubscript{30-90}, DG\textsubscript{\text{max}} and M\% was 0.58, 0.73 and 0.57, respectively. The r\textsubscript{g} between ADG\textsubscript{30-90} and M\% was close to zero.

Key words: growth curve, growth patterns, daily gain, carcass composition, heritability, genetic correlations

Introduction

Growth performance of slaughter pigs is among the most fundamental factors determining the profitability of pig production. It is therefore important to understand the growth process as fully as possible. Growth is usually considered as the rate of growth during a defined growing period. This rate gives information about the
average level of growth performance but not about changes in in rate during the growing period. To be able to examine these changes, we need growth curves for individual pigs.

The mathematical functions most often used to describe and predict growth are the Richards function (Richards 1959) and its special cases (e.g. logistic, Gompertz (Laird 1966)) and polynomial functions. The main reason for the popularity of the Richards function and its special cases is the good biological interpretability of parameters. However, with these functions, observations are needed on a wide age and weight range of growth, otherwise the risk of false results is increased. In pigs, the weighing data are usually only from a short period, from about 25 kg to 100 kg live weight. Such short periods of growth can be described accurately with polynomial functions (Kanis 1988). The degree of the polynomial function determines how many inflection points can exist in the curve. With a polynomial of the third degree, there can be one inflection point in the curve, and the maximum daily gain can be estimated. A polynomial of the fifth degree or higher would permit the detection of multiphasic growth curves, as suggested by Koops and Grossmann (1991). However, when weighing records are available for only a short period or the number of observations is insufficient, polynomials of a high degree might just picture random environmental fluctuations in growth.

Live weight growth is that it is traditionally viewed as a continuous process that results in a single, smooth, S-shaped growth curve with an inflection point at about 30% of the mature weight (Brody 1945). Environment obviously causes some alteration in growth patterns. Whitemore (1986, 1987), for example, argued that the shape of the growth curve depends on animal management and feeding practices more than on any biological age or weight-related rule. Studies of Vangen (1977), Cöp and Butting (1977) and Krieter (1986) have, however, indicated that there is also genetic variation in changes in growth traits during the growing period. The growth curve is usually presented as a function, \(y = f(x) \), where \(x \) is time and \(y \) is size (Walstra 1980). In some cases, weight has been chosen to be x-variable (e.g. Kanis 1988, Schmidt 1991). Functionally growth processes seem to be associated with body weight more than with age (Kanis 1988, Timon and Eisen 1970).

The purpose of our study was to describe the shape of the growth curve and the factors affecting the growth pattern in Finnish test station pigs. We also sought to estimate heritabilities for and correlations among traits describing the growth pattern, growth rate and carcass composition.

Material and Methods

Data and test procedure

The data were obtained from the Finnish Animal Breeding Association and included weighing records and carcass measurements of all Yorkshire and Landrace pigs that arrived at test stations between August 1990 and July 1992. There was a total of 8745 animals with complete records in the data set. The proportions of the two breeds and sexes (castrated males and gilts) were about equal. The pigs were raised in groups of four fullsibs and were weighed weekly. They were hand-fed twice a day, according to a scale based on the mean weight of the fullsib group (Table 1). The feed mixture contained 1.0 FU/kg (FU = feed unit, 0.7 kg starch equivalent; Salo et al. 1990), 15% digestible crude protein and 0.96% lysine. The average growing period was from 23 to 97 kg live weight, and the age of the pigs was 71 days at arrival and 152 days at slaughter.

Fitting and classification of polynomial functions

A polynomial of the third degree was chosen because it enabled us to obtain the position of the inflection point of the curve and estimate the
maximum daily gain. Age was chosen as the y-variable and weight as the x-variable because the growth of pigs is normally considered within a weight rather than an age range. The function, y=f(x), was fitted individually to each animal’s longitudinal age-weight data:

\[y_{ij} = b_0 + b_1 x_{ij} + b_2 x_{ij}^2 + b_3 x_{ij}^3 + e_{ij} \]

where \(y_{ij} \) is the observation of age of the \(i^{th} \) pig at the \(j^{th} \) weighing time, \(i=1,\ldots,k \), \(k = 12 \) on an average for a pig, \(x_{ij} \) is the weight of the \(i^{th} \) pig at the \(j^{th} \) weighing time, \(b_0, b_1, b_2 \) and \(b_3 \) are polynomial regression coefficients for the weight of the \(i^{th} \) pig and \(e_{ij} \) is a residual term. Fitting resulted in a polynomial function

\[y_i = b_0 + b_1 x_i + b_2 x_i^2 + b_3 x_i^3 \quad \text{(function 1)} \]

for every pig, which was the least squares approximation of the observed data.

The fitted curves were classified according to the combinations of the signs of the coefficients from the polynomial regression (function 1).

Traits

The eight traits studied were: live weight at the point of inflection (\(LW_{ip} \), kg), age at the point of inflection (\(AGE_{ip} \), d), daily gain at the point of inflection (\(DG_{max} \), g/d), average daily gains from 30 to 50, 50 to 70, 70 to 90 and 30 to 90 kg live weight (\(ADG_{weight1-weight2} \), g/d) and percentage of lean meat with bone in high value cuts (back, shoulder, loin and ham) in carcass with head (M%, %).

The \(LW_{ip} \) of individual pigs was obtained by equating the second derivative of the fitted function 1 to zero. \(AGE_{ip} \) was obtained by placing \(LW_{ip} \) into function 1. \(DG_{max} \) was estimated by placing \(LW_{ip} \) into the first derivate of function 1, which results in \(d(age)/d(weight) \) at the given weight; the corresponding estimate of daily gain was obtained by taking the inverse of it. The average daily gains in the given weight range were estimated by calculating age at the lower and upper weight limits using function 1 and dividing the weight difference by the age difference. For the figures, daily gain values at given weights (Figs 1, 2) were obtained as \(DG_{max} \).

When daily gains and inflection point parameters were examined, only those animals having an inflection point within their real weighing period were included in the data. A total of 7419 animals fulfilled this condition.

Statistical methods

The data were analysed by the restricted maximum likelihood (REML) method (Patterson and Thompson 1971). The statistical analyses were made using PEST software package (Groeneveld 1990), which includes a variance component estimation program (Groeneveld 1993), based on the derivate-free procedure. Heritabilities were
Fig. 1. Average trend of daily gain curves of pigs in curve types 1–6 presented in Table 2. Daily gains at given weights were estimated using first derivative of third degree polynomials fitted to age-weight data of each pig (for details see section Material and methods).

Fig. 2. Daily gain curves in castrates and gilts. Daily gains at given weights were estimated using first derivative of third degree polynomials fitted to age-weight data of each pig (for more details see section Material and methods).
estimated using a univariate model; genetic and phenotypic correlations using a bivariate model.

The model assumed was:

\[y_{ijklmno} = \mu + br_i + sb_j + s_k + sr_l + fg_m + a_n + \varepsilon_{ijklmno} \]

where

\[y_{ijklmno} = \text{an observation} \]
\[\mu = \text{population average} \]
\[br_i = \text{fixed effect of the } i^{th} \text{ breed (Yorkshire, Landrace)} \]
\[sb_j = \text{fixed effect of the } j^{th} \text{ test station-batch subclass (} j = 1, \ldots, 114) \]
\[s_k = \text{fixed effect of the } k^{th} \text{ sex (castrates, gilts)} \]
\[sr_l = \text{fixed effect of the } l^{th} \text{ ratio of sexes in the group} (l = 1, \ldots, 5) \]
\[fg_m = \text{random effect of the } m^{th} \text{ litter/fullsib group with expected value zero and variance } \sigma_g^2 \]
\[a_n = \text{additive genetic effect of the } n^{th} \text{ animal with expected value zero and variance } \sigma_a^2 \]
\[\varepsilon = \text{random residual effect with expected value zero and variance } \sigma_\varepsilon^2 \]

When the heritability of M% was estimated, slaughter weight was added to the model as a covariate. Breeds were analysed together to ensure there where were enough animals in each test station-batch subclass. Because of computing limitations the pedigree information was limited to three generations, the tested animals included.

Results and discussion

Accuracy of the function

The coefficient of determination (R²) was 0.998 on average, so the third degree polynomial function fitted in the individual age-weight data very well. Before classification of curves, animals with R² more than three standard deviations below the average were excluded from the data (1.5% of all animals); 8618 animals then remained in the growth curve type data.

Growth curve types

Six different combinations of polynomial regression coefficients of function 1 appeared with the frequencies given in Table 2. The shapes of the corresponding curves for daily gain are presented in Figure 1. Curve types 1 and 2 resemble the traditional view of growth, according to which daily gain first increases and then, after reaching the inflection point, slowly decreases. The majority of animals, 93.2%, had type 1 or 2 curves (Table 2, Figure 1). For 5.0% of the animals (curve types 3, 4 and 5) the growth rate slowed in the middle of the test period and then increased again towards the end. In curve type 5, daily gain increased and in type 6 decreased throughout the test period. The proportion of typical growth curves was higher here than in the studies of Kanis (1988) and Schmidt et al. (1991).

Curve types seemed to differ slightly between sexes. Castrates had a greater number of typical curves than gilts (95.8 vs 90.8%). The sex effect, along with the feeding regime, may explain some of the differences in the proportion of typical growth curves observed between our study and studies of Kanis (1988) and Schmidt et al. (1991). In the study of Kanis (1988) there were

Growth curve type	Combination of coefficients	n	%
1	+++	7736	89.8
2	+----	291	3.4
3	++++	401	4.7
4	+++++	26	0.3
5	++++	157	1.8
6	+++++	7	0.1
Table 3. Means, standard deviations (sd), coefficient of variation (v%), minimum and maximum for traits studied.

Trait	mean	sd	v%	min	max
LW, kg	71.9	8.6	12.0	27.1	103.4
AGE, d	126	11.7	9.3	71	176
DG, g/pv	1111	121.1	10.9	712	1675
ADG, g/d	829	81.4	9.8	493	1188
ADG, g/d	1042	101.0	9.7	691	1479
ADG, g/d	1046	135.8	13.0	401	1522
ADG, g/d	956	84.6	8.9	591	1267
M%	56.5	2.1	3.7	47.1	64.4

n=7419

1) LW = live weight at point of inflection in fitted polynomial
AGE = age at point of inflection in fitted polynomial
DG = maximum daily gain
ADG = average daily gain within period of given live weights
M% = percentage of lean meat with bone of high value cuts (back, shoulder, loin and ham) in carcass with head

The effect of sex on DG max, AGE, all average daily gains within different weight ranges and M% was statistically highly significant. There was, however, no difference between sexes in LW. Castrates were three days younger than gilts at the time of DG max. The average of DG max was 112 g higher in castrates than in gilts (Figure 2) and ADG 0-90 was 79 g better in castrates. The sex difference in daily gain increased towards the end of the test period, being 48 g/g from 30 to 50 kg, 96 g/d from 50 to 70 kg and 107 g/d from 70 to 90 kg. The difference in growth rate was largest around the inflection point, at about 72 kg live weight. In M% the sex difference was 1.9 percentage units, in favour of gilts.

The results of sex effects on LW reported elsewhere are contradictory. In studies of Walstra (1980) and Kanis (1988), maximum gain was reached at a lower body weight in castrates than in gilts. In the study of Schneider (1974), the inflection point was at a lower body weight in gilts than in castrates. The higher growth rate and lower leanness of castrates at feeding levels roughly the same as those used here has been widely documented (e.g. Richmond and Berg
The sex ratio in the test group of fullsibs had no effect on either LW\textsubscript{ip} or AGE\textsubscript{ip}. The effect of sex ratio on DG\textsubscript{max} and on average daily gains in all weight ranges examined was, however, statistically highly significant. The smaller the number of castrates in the test group, the better was the average daily gain of both castrates and gilts. In ADG\textsubscript{30–90} the difference between the extreme groups (four castrates vs four gilts) was 50 g/d. In castrates the effect was most marked before 70 kg live weight and in gilts after 70 kg live weight. In the test group the sex ratio had no effect on M\%. These results are consistent with those of Ollivier (1977), who suggested that sex ratio within a pen may have an important effect on growth. It has been reported that castrates tend to dominate gilts in restricted feeding systems (Cöp and Buiting 1977, Johansson et al. 1987b).

Heritabilities

The weight at which the pig reaches its maximum daily gain (LW\textsubscript{ip}) was determined only slightly by additive genetic components (Table 4). Heritability for AGE\textsubscript{ip} was moderate, but this was probably due to the marked effect of the herd on age at arrival at the test station and thus also on age at the point of inflection. In the study of Schmidt et al. (1991), heritability estimates for weight and age at the point of inflection were 0.22 and 0.38, respectively.

Estimates of heritability for the average daily gain at different weight ranges varied from 0.14 to 0.23. The estimate of heritability for short weight ranges was lowest for ADG\textsubscript{30–50} and highest for ADG\textsubscript{70–90}, possibly because of the diminishing relative magnitude of maternal and herd effects. The estimate of heritability for ADG\textsubscript{30–90} was higher than observed in any of the short weight ranges. Thus, a wider weight range enables an animal to compensate for short term environmental fluctuations in growth.

Phenotypic and genetic correlations

The phenotypic and genetic correlations between LW\textsubscript{ip} and ADG\textsubscript{30–90} were positive (Table 5), implying that fast growing animals reach their point of inflection at a later stage than animals growing at a slower rate. This result is the opposite of that obtained by Schmidt et al. (1991). In their study, the genetic correlation between weight at the point of inflection and growth rate (between

Table 4. Estimates of heritability (h2) and permanent environmental effects (c2).

Trait\(1)\)	h2	c2
LW\textsubscript{ip}	0.08	0.08
AGE\textsubscript{ip}	0.33	0.17
DG\textsubscript{max}	0.19	0.05
ADG\textsubscript{30–50}	0.14	0.08
ADG\textsubscript{30–70}	0.17	0.05
ADG\textsubscript{70–90}	0.21	0.05
ADG\textsubscript{30–90}	0.23	0.03
M\%	0.60	0.05

\(1)\) LW\textsubscript{ip} = live weight at point of inflection in fitted polynomial
AGE\textsubscript{ip} = age at point of inflection in fitted polynomial
DG\textsubscript{max} = maximum daily gain
ADG\textsubscript{weight1-weight2} = average daily gain within period of given live weights
M\% = percentage of lean meat with bone of high value cuts (back, shoulder, loin and ham) in carcass with head
30 and 100 kg) was negative (-0.30). In growth curve studies on laboratory animals (Timon and Eisen 1970, Aumann and Butler-Wemken 1992), however, the results have been in agreement with those obtained here.

The correlation between LWip and M% was phenotypically slightly and genetically clearly positive (Table 5). Thus, animals increasing their growth rate up to a high live weight were also lean. In the study of Schmidt et al. (1991) the corresponding genetic correlation was negative (-0.28).

The genetic correlations among average daily gains in different weight ranges were fairly high, indicating that mainly the same genetic factors regulate growth throughout the growing period. However, the correlations were not close to unity, and thus some genetic differences in growth patterns may exist. The correlation between ADG30-50 and ADG50-70 was lower than the correlation between ADG50-70 and ADG70-90. One explanation for this might be that growth rate is affected by other genetic factors besides those directly regulating growth, especially in the first weight range. For example, animals with stress susceptibility might, as a consequence of changes in their environment, feed etc., grow slowly at the beginning of the test, even if they have good genetic potential for growth. On the other hand, as mentioned before, the symmetry of the daily gain curve hampers interpretation of the results somewhat. Many researchers have concluded that in general, growth is mainly regulated by the same genetic factors at all stages (Fredeen and Mikami 1986, Johansson et al. 1987a, Rydhmer et al. 1989).

The phenotypic correlations between average daily gain and M% were negative (Table 5), i.e. fast growing animals had a higher percentage of fat than slow growing animals. The negative correlation was largest between ADG30-50 and M%. The genetic correlation between average daily gain in the first weight range and M% was also clearly negative. The genetic correlation between ADG50-70 and M% was close to zero and between ADG70-90 and M% clearly positive. The results are somewhat contradictory, since growth in at the beginning of the growing period has usually been attributed to growth of muscles and at the end of the growing period increasingly to growth of fat tissue. The phenomenon we observed may be associated with the protein content of the feed and the feeding scale used. The amount of lysine in feed was obviously a restrictive factor in lean growth for the best animals at the beginning of test period. In general, the results indicated that there is no significant antagonistic relationship between M% and the aver-
age daily gain during the whole growing period. In the literature, the results of correlations between growth and leanness vary. With ad libitum feeding, correlations tend to be unfavourable (e.g. Kennedy et al. 1985, Schmidt et al. 1991). With restricted feeding, however, the correlations can be close to zero (e.g. Bryner et al. 1992) or even positive (e.g. Johansson et al. 1987b).

Conclusions

Most animals had a typical growth curve with an inflection point at about 72 kg live weight. Growth rate seemed to be clearly affected by the ratio of sexes in the test group. More research would be needed to clarify the importance of the effect of the sex ratio on testing results.

The feeding system may have been the main reason for the limited genetic variation in the growth pattern. The relatively high genetic correlations between average daily gain at different weight ranges indicated that growth at all stages is regulated mainly, but not entirely, by the same genetic effects. However, the measures of daily gains at different weight ranges were obtained from the same fitted polynomial, and hence were not independent measures. No major antagonistic relationship between growth rate and leanness was observed.

References

Aumann, J. & Butler-Wemken, I. von. 1992. Einfluss antagonistischer Körpergewichtsselection und Kreuzung auf den Wachstumsverlauf einer Mäusepopulation. Archiv für Tierzucht 35: 201–210.

Bereskin, B. & Steele, N.C. 1988. Estimates of genetic parameters for carcass measures of body composition and growth in swine. Journal of Animal Science 66: 2498–2507.

Brody, S. 1945. Bioenergetics and growth. New York, Reinhold Publication corporation. 1023 p. (ref. Walstra 1980).

Bryner, S.M., Mabry, J.W., Bertrand, J.K., Benyshek, L.L., Cóp, W.A.G. & Buiting, G.A.J. 1977. Feed intake in six lines of pigs and its influence on growth and carcass traits. Animal Production 25: 291–304.

Fitzhugh, H.A. Jr. 1976. Analysis of growth curves and strategies for altering their shape. Journal of Animal Science 42: 1036–1051.

Fredeen, H.T. & Mikami, H. 1986. Mass selection in a pig population: correlated responses in preweaning growth. Journal of Animal Science 62: 1533–1545.

Geri, G., Franci, O., Zappa, A., Campodonî, G. & Poli, B.M. 1990. Relationships between adipose tissue characteristics of newborn pigs and subsequent performance: I. Characteristics at 8 days of age and growth rate until slaughter. Journal of Animal Science 68: 1922–1928.

Groeneveld, E. 1990. PEST user's manual. Institute of Animal husbandry and Animal Behaviour, Federal Agricultural Research Centre, Germany. 73 p. – 1993. A multivariate multimodel REML package. Preliminary user's guide. Institute of Animal Husbandry and Animal Behaviour, Federal Agricultural Research Centre, Germany. 9 p.

Johansson, K., Andersson, K. & Lundheim, N. 1987a. Evaluation of station testing of pigs. I. Genetic parameters for feed measurements and selection effects on voluntary feed intake. Acta Agricultura Scandinavica 37: 93–107.

Johansson, K., Andersson, K. & Sigvardsson, J. 1987b. Evaluation of station testing of pigs. III. The genetic parameters for carcass measurements of partially dissected pigs. Acta Agriculturae Scandinavica 37: 120–129.

Kanis, E. 1988. Food intake capacity in relation to breeding and feeding of growing pigs. Wageningen Agricultural University, The Netherlands. 129 p. Doctoral thesis.

Kennedy, B.W., Johansson, K. & Hudson, G.F.S. 1985. Heritabilities and genetic correlation for backfat and age at 90 kg in performance-tested pigs. Journal of Animal Science 61: 78–82.

Koops, W.J. & Grossmann, M. 1991. Applications of a multiphasic growth function to body composition of pigs. Journal of Animal Science 69: 3265–3273.

Laird, A.K. 1966. Postnatal growth of birds and mammals. Growth 30: 349. (Ref. Fitzhugh 1976).

Lundheim, N., Johansson, K. & Andersson, K. 1980. Estimated phenotypic and genetic parameters based on data from the Swedish pig progeny testing stations. Acta Agriculturae Scandinavica 30: 183–188.

McKay, R.M. & Garnett, I. 1986. Prenatal and postnatal influences on growth and fat measurements in swine. Journal of Animal Science 63: 1095–1100.

Ollivier, L. 1977. Note: Effet défavorable du mélage des
Sevón-Aimonen, M.-L. et al. Genetic parameters for growth traits in pigs

sexes dans l'engaisissement des porcs en groupe. Annales de Zootecohique 26: 615–619.
Patterson, H.D. & Thompson, R. 1971. Recovery of in-
terblock information when block sizes are unequal. Biometrika 58: 427–436.
Richards, J.F. 1959. A flexible growth function for em-
pirical use. Journal of Experimental Botanic 10: 290. (Ref. Fitzhugh 1976).
Richmond, R.J. & Berg, R.T. 1971. Tissue development
in swine as influenced by liveweight, breed, sex and rational. Canadian Journal of Animal Science 51: 31–39.
Rydhmer, L., Eliasson, L., Stern, K., Andersson, K. & Ei-
narsson, S. 1989. Effects of piglet weight and frater-
nity size on performance, puberty and farrowing re-
results. Acta Agriculturae Scandinavica 39: 397–406.
Salo, M.-L., Tuori, M. & Kiiskinen, T. 1990. Rehutauulukot
ja ruokintanormit. 70 p. Yliopistopaino,Helsinki. (In Finnish: Feed tables and feeding allowances).
Schmidt, E. von., Krieter, J. & Kalm, E. 1991. Wachstum
beim Schwein: Vergleich von Funktionen sowie Ver-
lauf von Tageszunahme und Futteraufnahme und
deren Beziehung zum Schlachtökerwert. Züchtungs-
skunde 63: 306–316.
Schneider, A. 1974. Die Züchterischen Möglichkeiten un-
ter ad libitum Fütterung beim Schwein. Eidgenö-
sichem Technischen Hochschule. Zürich. 93 p. Doc-
toral thesis.
Stern, S., Rydhmer, L., Johansson, K. & Andersson, K.
1990. Selection for lean tissue growth rate in Swed-
ish Yorkshire pigs on low or high protein diets. Pro-
ceedings of the 4th World Congress on Genetics
applied to Livestock Production. Edingburgh, UK: XV: 450–453.
Timon, V.M. & Eisen, E.J. 1970. Comparisons of restrict-
ed feeding of mice selected and unselected for post-
weaning gain. 1. Growth, feed consumption and feed
efficiency. Genetics 64:41.
Vangen, O. 1977. Studies on a two trait selection exper-
iment in pigs. I. Growth, feed consumption and feed
conversion ratio after 10 years of selection for growth
rate and backfat thickness. Acta Agriculturae Scandi-
avica 27: 331–340.
Walstra, P. 1980. Growth and carcass composition from
birth to maturity in relation to feeding level and sex
in Dutch Landrace pigs. Mededelingen Landbouwho-
gesschool Wageningen. The Netherlands. 206 p. Doc-
toral Thesis.
Whitlemore, C.T. 1986. An approach to pig growth mod-
elling. Journal of Animal Science 63: 615–621.
– 1987. Elements of pig science. Harlow, Essex Long-
man Scientific & Technical. 181 p.

SELOSTUS
Sian kasvuominaisuksien perinnölliset tunnusluvut arvioituna kolmannen asteen
polinomifunktion avulla

Marja-Liisa Sevón-Aimonen, Kristina Sternberg ja Matti Ojala

Helsingin yliopisto

Tutkimuksessa selvitettiin joidenkin sian kasvua ku-
vaavien muuttujien periytyvyyttä. Suomen koteliläin-
jalostusosuskunnan kantakoeaineistosta poimittiin
yhteenä 8745 yorkshire- ja maatiasrotuisen sian tie-
dot. Kokeen aikana eläimet oli pannut viikoittain.
Jokaisen sian punnitustietoihin sovittiin kolmannen
asteen polinomifuntio i(ä=paino), jota käytettiin
kuvamaan yksittäisen sian kasvuryyttiä ja kasvun-
peutta. Kasvuominaisuksien ja ruohon laadun periy-
tymisasteet ja ominaisuuksien väliset korrelaatiot es-
timoitiin käyttäen REMLiä ja eläimällä.

Sovitetun polinomifunktion selitysaste (R²) oli 98,5%-lta siosta yli 0,99. Sikojen paino funktion
käännepisteissä eli maksimikasvun kohdalla oli kas-
kimäärin 72 kg, ikä 126 vrk ja päiväkasvu 1111 g/vrk.

Keskimääräinen päiväkasvu painovälillä 30–90 kg
oli 957 g/vrk. Lyhyillä painoväileillä 30–50 kg, 50–
70 kg ja 70–90 kg keskimääräiset päiväkasvut olivat
vastaavasti 829 g/vrk, 1042 g/vrk ja 1046 g/vrk.
Käännepisteen elopainon periytymisastearvio oli 0,08
ja kasvuominaisuksien periytyymisasteet vaihte-
livat alkukasvun 0,14-stä koko jakson 0,23:een.

Geneetiset korrelaatiot eri painovälillä keskimäärä-
räisten kasvujen välillä olivat 0,45–0,95. Nopea-
kasvusten ja lihakkaiden eläinten kasvun hidastui suu-
remmassa elopainossa kuin hidaskasvusten eläinten.
Ruhon laadun ja kasvunopeuden välillä ei ollut epä-
suotuisia geneetistä yhteyttä. Vähäinen perinnöllinen
vaihtelu funktion käännepisteen sijainnissa saattaa
johtua noudatetusta rajoitetusta ruokintanormista.