A subset of Euclidean space with large Vietoris-Rips homology

Jean-Marie Droz

May 3, 2014

1 Introduction

In this article, we construct a compact subset K of the four dimensional Euclidean space with the following property: For all values of the parameter a in an interval, the Vietoris-Rips complex $Rips(K, a)$ has first homology $H_1(Rips(K, a))$ uncountable. To fix notation, we state the definition of the Vietoris-Rips complex. This answers a question that arose in work on persistent homology published in [1] in a discussion between authors of [1] and S. Smale.

2 Acknowledgements

We would like to thank Frédéric Chazal for introducing us to the question treated here and for helpful discussions.

3 Main theorem

Definition 1. Given a pseudometric space (M, d) and a number $a \in \mathbb{R}^+$, we define the Vietoris-Rips complex of (M, d) at a, $Rips(M, a)$, as the simplicial complex with, as k-simplexes (for $k \in \mathbb{N}$), the sets of $k+1$ distinct points of M with diameter $\leq a$.

Definition 2. A function $f : A \rightarrow B$ between pseudometric spaces (A, δ_A) and (B, δ_B) is C-close-expanding if $\forall x, y \in B \delta_B(f(x), f(y)) \geq C \cdot \sqrt{\delta_A(x, y)}$.

Definition 3. We define the distance $\delta_3 : \{0, 1, 2\}^N \times \{0, 1, 2\}^N \rightarrow \mathbb{R}$ between two ternary sequences as $\delta_3((s_i)_{i \geq 0}, (t_j)_{j \geq 0}) = 3^{-\min\{k|s_k \neq t_k\}}$. We call ternary ultrametric distance the function δ_3.

Definition 4. Two pseudometrics d_1 and d_2 over a space S are called equivalent when there are real constants $c_1, c_2 > 0$ such that $\forall x, y \in S c_1 \cdot d_1(x, y) \geq d_2(x, y) \geq c_2 \cdot d_1(x, y)$.

We denote by I_{many} the product of the interval $[0, 1]$ with a set D of cardinality 2^{\aleph_0}. We equip I_{many} with the pseudometric induced by the absolute value metric on the interval.

Lemma 5. There is a $\frac{1}{483}$-close-expanding injective function $e : I_{many} \rightarrow [0, 1]^3$, where the unit cube is equipped with the Euclidean metric.

Proof. We consider points in I_{many} as pairs of a ternary sequence and a binary sequence, the ternary sequence corresponding to the expansion in base 3 of a number from the unit interval and the binary sequence to an element of D. If a number has two representations in base 3 we simply choose one arbitrarily. In the following, we will often ignore the distinction between a number in the unit interval and the sequence representing it in base 3.
For $i \in \{0, 1, 2\}$, let e_i be the function $I_{\text{many}} \to [0, 1]$ mapping $p = ((t_0, t_1, \ldots), (b_0, b_1, \ldots)) \in I_{\text{many}}$ to the number represented by the sequence
\[
(t_{2i}, t_{2i+1}, b_0, \ldots, t_{6k+2i}, t_{6k+2i+1}, b_k, t_{6(k+1)+2i}, t_{6(k+1)+2i+1}, b_{k+1}, \ldots).
\]
We define the function e as mapping an element $p \in I_{\text{many}}$ to $(e_0(p), e_1(p), e_2(p)) \in [0, 1]^3$.

It remains to prove that e has the properties claimed. We begin by observing that in the images of e_i, the absolute value metric is equivalent to the natural ultrametric. This is implied by the fact that the representation in base 3 of coordinates of points in the images cannot have a 2 at places numbered $3k + 2$ for $k \in \mathbb{N}$. (The image look like a product of asymmetric versions of the Cantor set.) The construction then straightforwardly implies that e is injective, because no “information” is lost going from $p = ((t_0, t_1, \ldots), (b_0, b_1, \ldots))$ to $e(p)$, all the t_k and b_k appearing somewhere in the sequences corresponding to $(e_0(p), e_1(p), e_2(p))$.

To prove that e is close-expanding, we must show that if $|x - y| > \epsilon$, then $\|e(x) - e(y)\|_2 > c \cdot \sqrt{\epsilon}$ for a fixed constant $c > 0$. This is a consequence of four facts.

1. For $x, y \in [0, 1]$, $|x - y| \leq \delta_3(x', y')$ holds, where x' and y' are representations in base 3 of x and y.

2. For $x, y \in \{0, 1, 2\}^\mathbb{N}$ and $x', y' \in I_{\text{many}}$ projecting to x and y,
\[
\sqrt{\delta_3(x, y)} \leq 3 \cdot \max(\delta_3(e_0(x'), e_0(y'))), \delta_3(e_1(x'), e_1(y'))), \delta_3(e_2(x'), e_2(y'))).
\]

3. On the image of e, the maximum metric is equivalent to the maximum of the ternary ultrametric on the coordinates. In particular, we have:
\[
\|e(x) - e(y)\|_\infty \geq 3^{-4} \cdot \max(\delta_3(e_0(x), e_0(y)), \delta_3(e_1(x), e_1(y)), \delta_3(e_2(x), e_2(y))).
\]

4. The maximum metric is a lower bound for the Euclidean metric.

The first fact is a direct consequence of the definitions. Statement number two is established by observing that if x and y differ at the n-th place, then, for some i, $e_i(x)$ and $e_i(y)$ will differ at worse at the $\lfloor n/2 + 1 \rfloor$-th place. The third inequality is implied by the impossibility for the expansion in base 3 of coordinates of points in the image of e to have a 2 at places numbered $3k + 2$ for $k \in \mathbb{N}$. Number 4 is well-known.

Combining the four inequalities sequentially, we obtain $\|e(x) - e(y)\|_2 > 3^{-5} \cdot \sqrt{\epsilon}$, so that e is close expanding with constant $\frac{1}{2\sqrt{3}}$.

Lemma 6. For $x \in [-r, r]$ and $r \in (0, \infty)$, $r - \sqrt{r^2 - x^2} \geq \frac{r^2}{2r}$. In other words, a circle of radius r, tangent at 0 with the parabola of equation $\frac{x^2}{2r}$ is completely above the parabola.

Let T be the set $\{(\frac{x}{2 \cdot 243^r}, e((x, y)) | x \in [0, 1], y \in D\}$ and \overline{T} its closure, which is bounded and hence compact.

Theorem 7. The compact subset $K = \overline{T} \cup \{0\} \times [0, 1]^3 \cup \{1\} \times [0, 1]^3$ considered as a subset of the four dimensional Euclidean space has $H_1(\text{Rips}(K, a))$ uncountably generated for $a \in [1 - \frac{1}{2 \cdot 243^r}, 1]$.

Proof. Let us fix an arbitrary $a \in [1 - \frac{1}{2 \cdot 243^r}, 1]$. A 1-simplex of length a in $\text{Rips}(K, a)$ between a point of $\{1\} \times [0, 1]^3$ and a point of \overline{T} will be called a rigid 1-simplex.

2
Let $X \in \{1\} \times [0,1]^3$ and $Y \in \overline{T}$ be the two endpoints of a rigid 1-simplex. Since the distance from Y to X is equal to the distance from Y to $\{1\} \times [0,1]^3$, there is only one line segment of length inferior or equal to a between Y and $\{1\} \times [0,1]^3$.

Lemma 6 shows that if there is another point $Y' \in \overline{T}$ at distance less or equal to a from X, the relation $\epsilon > \frac{l^2}{2}$ would hold between the length ϵ of the projection on the first coordinate of the vector $Y\overrightarrow{Y'}$ and the length l of the projection of $Y\overrightarrow{Y'}$ on the $\{1\} \times [0,1]^3$ plane. We would then have $\sqrt{2} \cdot \epsilon > l$, contradicting that the function e is $\frac{1}{243}$-close-expanding and therefore $l \geq \frac{1}{243} \sqrt{2} \cdot 243^2 \epsilon$. Thus, a rigid 1-simplex is not contained in any non-trivial 2-simplex of $\text{Rips}(K, a)$.

For each a, we have 2^a rigid 1-simplexes coming from the choice of a point of D to generate the points in \overline{T} of first coordinate $1 - a$. Moreover, any two rigid 1-simplex can be completed to a 1-cycle of $\text{Rips}(K, a)$, using 1-simplexes of small length. This implies that $\text{H}_1(\text{Rips}(K, a))$ has uncountable rank.

The set $\text{Rips}(K, a)$ is compact because by Lemma 5 it is a union of finitely many compact sets.

References

[1] F. Chazal, V. de Silva, S. Oudot, Persistence stability for geometric complexes, arXiv:1207.3885 [math.AG], 2012.