admission, mechanical ventilation (MV), parenteral/tube feeding, inpatient rehab, or intracranial pressure monitoring. Single variable and multivariate analyses were performed to determine factors predictive of disease severity.

Results. Of the 140 patients, 76 (54%) males with a median age of 8 years (10 month–16 years), were identified with LACV-ND. Symptoms at presentation, laboratory findings, echocardiography, and outcomes are shown in Table 1. Fifty-seven (41%) patients met criteria for severe disease, notably for PICU admission (n = 41), status epilepticus (n = 35), MV (n = 13), and inpatient rehab (11). No in-patient deaths were observed. Exploratory analysis revealed that patients with severe disease were significantly younger at presentation, had higher rates of altered mental status (AMS) and seizures. Elevated serum white blood cell counts (WBC) and polymorphonuclear cell (PMN) predominance in serum and cerebrospinal fluid (CSF) were observed more frequently in severe disease. Multivariate analysis revealed presentation with seizures (OR 4.7, 95% CI 1.7–12.6; P = 0.001), elevated serum WBC (OR 1.7 [95% CI 1.2–2.5]; P = 0.004), and a higher CSF PMN% (OR 1.03 [95% CI 1.01–1.06, P = 0.003) to be independent predictors of severe disease.

Conclusion. At presentation, patients with severe disease tended to be younger, have greater rates of new neurologic symptoms, and leukocytosis with PMN predominance in blood and CSF. These clinical and laboratory findings may serve as useful biomarkers to predict disease severity.

Table 1: Clinical, Laboratory, Radiographic Findings, and Outcomes with Pediatric Lassa Fever

Neuroimmunologic	Cohort	Severe	Non-severe	P-value
Clinical Findings at Presentation				
Age, in days, median (IQR)	8 [6–11]	7 [6–11]	8 [6–11]	0.44
Age ≥ 5 years, n (%)	34 (19)	13 (39)	21 (18)	0.046
Duration of symptoms, in days, median (IQR)	4 (3–5)	3 (2–4)	4 (3–5)	0.0004
Fever, n (%)	128 (67)	40 (69)	88 (70)	0.055
AMS, n (%)	84 (60)	47 (82)	37 (65)	<0.0001
Seizures, n (%)	32 (20)	38 (60)	14 (77)	<0.0001
Laboratory Values				
Serum ANC (k/μL), median (IQR)	14.0 (11.5–21.8)	17.3 (12.1–35.1)	13.3 (10.5–26.9)	0.0005
Serum SFC (k/μL), median (IQR)	31.7 (25.5–54.5)	30.9 (25.9–56.5)	35.6 (31.5–57.7)	0.11
CSF WBC (k/μL), median (IQR)	130 (62–252)	116 (42–267)	182 (27–246)	0.25
CSF SFC (k/μL), median (IQR)	14.1 (10–50)	7.2 (13–65)	25 (21–54)	<0.0001
CSF Lymphs, n (%)	40 (26–79)	35 (40–63)	56 (57–63)	<0.0003
Hypoalbuminemia at presentation, n (%)	36 (26)	11 (19)	25 (30)	0.16
Hypokalemia at any time, n (%)	42 (26)	33 (52)	24 (26)	0.74
Radiographic/EEG Results, n/total n (%)				
Abnormal chest CT	15/20 (75)	9/5 (95)	6/13 (46)	0.58
Abnormal brain MRI	50/62 (80)	35/42 (83)	24/60 (40)	0.0007
Outcomes, n (%)				
Death or death in hospital	5/11 (55)	4/7 (57)	1/4 (25)	0.46
Seizure or death in hospital	13/3 (38)	0/4 (0)	9/3 (30)	0.0001
Seizure or death at any time, n (%)	60/13 (43)	44/77 (57)	16/19 (89)	0.003
SFC, multiple serious organ involvement	38/60 (63)	47 (79)	10/12 (83)	<0.0001
AMS, altered mental status; WBC, white blood count; ANC, absolute neutrophil count; CSF, cerebrospinal fluid; IQR, interquartile range; PMN, polymorphonuclear cells; EEG, electroencephalography; CT, computed tomography; MRI, magnetic resonance imaging.				

Disclosures. All Authors: No reported Disclosures.

1878. A Hepacivirus-Like Protein Is Targeted by the Antibody Response to Kawasaki Disease (KD)

Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina

Friday, October 4, 2019: 3:15 PM

Background. Infection is a leading cause of admission to intensive care units (ICU), with critically ill patients often receiving a high volume of empiric broad-spectrum antibiotics. Nevertheless, a dedicated infectious diseases (ID) consultation and stewardship team is not routinely implemented. An ID-Critical Care Medicine (ID-CCM) pilot program was designed at a large tertiary hospital in which an ID attending was assigned to participate in daily rounds with the ICU team, as well as provide an ID consult on select patients. We sought to evaluate the impact of this dedicated ID consultation and stewardship program on antibiotic utilization in the ICU.

Methods. This is an IRB-approved single-site retrospective study. We analyzed antibiotic utilization in the ICU during the post-intervention period from January 1, 2017 to December 31, 2017 and compared it to antibiotic utilization in the same ICU during the pre-intervention period from January 1, 2015 to December 31, 2015. Using Poisson regression analysis, we evaluated antibiotic utilization of each agent, expressed as days of therapy (DOT) per 1,000 patient-days, between the two groups.

Results. The six most commonly used broad-spectrum antibiotic agents were included in the final analysis. During the intervention period, statistically significant reductions were seen in cephalosporins (131 vs. 101 DOT per 1,000 patient-days, P = 0.01), piperacillin-tazobactam (268 vs. 251 DOT per 1,000 patient-days, P = 0.02) and vancomycin (265 vs. 228 DOT per 1,000 patient-days, P = 0.01). The utilization of other antibiotics including daptomycin, linezolid, and meropenem did not differ significantly (Figure 1).

Conclusion. With this multidisciplinary intervention, we saw a decrease in the use of the most frequently administered broad-spectrum antibiotics. Our study shows that the implementation of an ID-CCM service is a feasible way to promote antibiotic stewardship in the ICU and can be used as a strategy to reduce unnecessary patient exposure to broad-spectrum agents.

Disclosures. All Authors: No reported Disclosures.

Figure 1. Antimicrobial Utilization Rates of Most Frequently Used Broad-spectrum Agents Pre- and Post-Intervention. *Statistically significant*, p Value calculated using Poisson regression analysis. DOT = Days of therapy.

1879. Title: Impact of Antibiotic Stewardship Rounds in the Intensive Care Setting: A Prospective Cluster-Randomized Crossover Study

Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina

Friday, October 4, 2019: 3:30 PM

Background. The impact of formalized, interdisciplinary antimicrobial stewardship program (ASP) rounds in the intensive care unit (ICU) setting has not been well described.

Disclosures. All Authors: No reported Disclosures.

Figure 1. Antimicrobial Utilization Rates of Most Frequently Used Broad-spectrum Agents Pre- and Post-Intervention. *Statistically significant*, p Value calculated using Poisson regression analysis. DOT = Days of therapy.