Photo-Electrochemical Reduction of CO₂ to Methanol on Quaternary Chalcogenide Loaded Graphene-TiO₂ Ternary Nanocomposite Fabricated via Pechini Method

Zambaga Otgonbayar¹ · Won-Chun Oh¹,²

Received: 4 February 2022 / Accepted: 21 March 2022 / Published online: 8 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Nano-sized catalysts have been widely studied for CO₂ reduction to hydrocarbon fuels. Herein, we study the new-modeled ternary nanocomposite that can use in photocatalytic and electrochemical CO₂ reduction. In order to adjust the energy of the catalyst band and the characteristics of the effective charge carrier, we firstly synthesized the AgFeNi₂S₄ quaternary nanocomposite and then used it to model the ternary nanocomposites, and all the nanocomposites were synthesized using the Pechini method. The activity of the nanocomposites is directly related to the output of methanol productions. The highest methanol yields were found after 48 h of irradiation under the UV light, and the yields were 8.679%, 6.349%, and 4.136%. The methanol yields were less, such as 6.291%, 4.738%, and 2.339%, after 48 h of Visible-light irradiation. The stability and reusability of the catalysts are the main factors that can define the sturdiness of a photocatalyst in practical applications. The sturdiness of the catalyst has been tested four times by recycling tests, and as a result, the yield of the final product (methanol) has not decreased, confirming the stability of the catalyst. The methanol reaction rate and Faraday efficiency value were calculated on all working electrodes. The Faraday efficiency of the AgFeNi₂S₄-Graphene-TiO₂ ternary nanocomposite was 44.25%; this is an increase in the value of the Faraday efficiency, which proves that the design of the new nanocomposite successfully increases the activity of the working electrode and has a positive effect on the electrochemical reduction of CO₂. The photocatalytic and electrochemical CO₂ reduction data show that the preparation method, morphological state, and charge carrier properties of the photocatalyst are important for the catalytic activity and efficiency of the methanol evolution pathway.

Keywords Quaternary semiconductor · Graphene · Ternary nanocomposite · Photocatalytic · Electrochemical · Faraday efficiency

1 Introduction

Industrial development is increasing both the use of fossil fuels and the amount of carbon dioxide and air pollution [1–5]. The simplest and most commonly used solution to these problems is a photocatalyst-based process.

The catalytic activity and structure of the nanomaterial mainly depending on the synthesis method [6–8], and there are several methods used such as the sol–gel, hydrothermal, combustion and ultrasonic-assisted methods [9–15]. Among them, the Pechini method, which is a type of modified sol–gel method, allows control of the particle size and stoichiometry. The basic process is chelation based on alpha-hydroxide carboxylic acid and organic solvents to form a metal chain by creating chemical interactions between metals and organic molecules [16]. The transition metal chalcogenide is mainly used in the practical application field because it has unique properties, such as WS₂, CoS, MoS₂, CuS and NiS₂ [17–20]. Recently, the quaternary-structured nanocomposite are attracting attention because it offers to lead the adjustments of bandgap energy levels. Based on this phenomenon, NiS₂ was uniformly combined with Ag and Cu-transition metals by a Pechini method to form

¹ Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si 356-706, Chungnam, South Korea
² Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, Huainan 232001, People’s Republic of China
the quaternary nanocomposites. Ag metal can apply as an electron-capture and that can enhance the light-absorption feature and partial current density with significant effect on Faradaic efficiency [21]. The copper has high conductivity and it is competent to produce the hydrocarbons, such as CO [22], CH₄ [23] and alcohol [24] that mainly depend on the potential.

The synergic effect between the two or more different metals have been determined to be important in chalcogenide which have high catalytic activity and selectivity. In addition, the transient metal chalcogenides (TMCs) have high electronic conductivity compared to metal oxides, making them highly efficient, durable, inexpensive, and competitive with precious metals in reducing CO₂. Quaternary chalcogenide material included four different ions, and it formed the large class of materials. Quaternary material had complex electronic and structural properties due to the construction of different type of elements [25, 26].

2D graphene and titanium oxide (TiO₂) photocatalysts are widely studied in CO₂ reduction due to their physical and chemical properties. Compared with 0D and 1D nanomaterials, 2D-structured graphene has better catalyst activity and it has high surface area and charge transfer capacity to support the potential of the nanocomposites [27–30]. Meanwhile, the TiO₂ offers a strong oxidizing ability and good physical stability, but this semiconductor material is only activated in the UV region (<387 nm) and is subject to the rapid convergence of electrons and holes due to its band gap energy (3.20 eV) [31]. On top of that, combinations of two or more semiconductors offer to adjust the band structure, efficient charge transport, and activity; these properties have allowed nanomaterials to find a range of new applications [32, 33]. Based on this uniqueness, our research study proposes a new modeled ternary nanocomposite that consisted with 2D-graphene, TiO₂, and AgFeNi₂S₄. The catalytic activity of the ternary nanocomposite was evaluated based on the conversion of CO₂ to hydrocarbon fuels.

In our previous study, we reported the solvothermal method on AgFeNi₂S₄-Graphene-TiO₂ ternary nanocomposite and used for the photocatalytic CO₂ reduction to methanol. Due to the morphology state and synthesis method, the ternary nanocomposite exhibited the high methanol production rates (8.62% and 7.23%) under the UV-light irradiations. In this study, the AgFeNi₂S₄-Graphene-TiO₂ ternary nanocomposite was prepared by the Pechini method. The prepared nanocomposite used for the CO₂ reduction, such as photocatalytic and electrochemical. This two methods have been shown to be effective due to its simplicity and ability to operate under ambient circumstances [34]. Photocatalytic CO₂ reduction processes require catalysts, sacrificial electron donors, and light sources. The electron-donor scavenger allows combining the CO₂ with water and can provide sufficient cyclic electrons to the CO₂ conversion process [35], thus supporting the production yields of methanol. Electrochemical CO₂ reduction process mainly depend on the capability of the catalyst to stabilize different reaction intermediated on the catalyst surface during the electrochemical process.

Herein, the ternary nanocomposite exhibited the higher methanol production yield under UV-light and had sturdiness during the long time recycling test. Moreover, AgFeNi₂S₄-Graphene-TiO₂ NCs showed that it is suitable for the methanol production from electrochemical CO₂ reduction at low potential rate with high current density value (mA/cm²).

2 Experimental

2.1 Materials

Silver nitrate (AgNO₃, ≥ 98%), Iron (III) nitrate nonahydrate (Fe(NO₃)₃·9H₂O, 99.9%), Nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O, ≥ 99%), Sodium thiosulfate (Na₂S₂O₃, ≥ 99%), Citric acid (C₆H₈O₇, ≥ 99.5%) and Titanium n-butoxide (TNB, C₁₆H₃₅O₄Ti, ≥ 98%) were procured from Duksan Pure Chemical Co. Ltd (Korea). Hydrochloric acid (HCl, 36 wt%), Sulfuric acid (H₂SO₄, ≥ 97%), and Sodium sulfite (Na₂SO₃, 97%) were procured from Samchun Pure Chemical Co. LTD (Korea). Natural graphite powder is a precursor of graphene. All chemical reagents were of analytical grade and organic solvents were used with deionized water.

2.2 Synthesis

2.2.1 Preparation of AgFeNi₂S₄ Quaternary Nanoparticles (AFNS NPs)

The quaternary nanoparticles were synthesized by the Pechini method. The precursor solution was prepared using a 3:2 ratio of ethylene glycol (C₂H₄O₂) and chelate-cationic citric acid (C₆H₈O₇). The precursor agents of the Ag, Fe, Ni and S, in a mmol ratio of 0.02:0.03:0.04:0.08, were dispersed into the citric acid solvent and stirred at 60°C for 6 h until it became viscous. The process of preparing the mortar is called chelating, and its main function is to establish a chemical bond between the transition metal and the organic molecules in order to adjust the metal chain. The mixture was transferred into 100 ml Teflon-lined clave and heated at 150°C for 15 h, then allowed to cool to room temperature (25°C). The final product was washed with DI water and dried at 100°C, then the powder was calcined at 700°C for 2 h. The final nanoparticles were denoted as AFNS NPs. Under the same experiment conditions, Ag₂NiS₂ and FeNiS₂.
were also obtained for comparison without adding the Ag or Fe, and labeled as ANS and FNS, respectively.

2.2.2 Preparation of Binary and Ternary Nanocomposite

The binary and ternary composites were synthesized by following the Pechin method with heat treatment. The graphene was prepared by Hummer and Offerman’s method [36], the details of which were described previously [37]. First, the organic solvent was prepared using absolute ethanol and DI water (volume ratio = 5:4) with continuous stirring at room temperature. Then, 0.1 g of AFNSG was added to the solvent and stirred for 1 h. Graphene (0.1 g) was added to the mixture, which was stirred at 120°C for 6 h, then transferred to a 100 ml Teflon-lined stainless-steel autoclave and heat-treated at 180°C for 15 h before being cooled to 25°C. The final product was rinsed with DI water, dried completely at 90°C, and then calcined at 700°C for 2 h. The prepared sample was denoted AFNSG NCs. In the next step, TiO₂ was combined with AFNSG. The reactants were combined in a molar ratio of ethanol to H₂O to TNB of 30:15:4 and stirred continuously for 1 h. One-half gram of AFNSG nanocomposite was added to the prepared solution, which was stirred at room temperature for 6 h, then transferred to an autoclave and kept in an electric oven at 150°C for 15 h. The obtained product was rinsed with DI water and dried until it became a powder and calcined under the same conditions. The final sample was renamed as AFNSGT NCs. The morphology state and electrochemical analysis method was detail explained in the supplementary material.

2.3 Reduction Process

2.3.1 Photocatalytic CO₂ Reduction

The photoreduction of CO₂ was conducted in a three-part closed reactor under light irradiation (Scheme S1). The electron-donor scavenger was used in this experiment, which provided a supply of cyclic electrons to increase the catalytic activity of the photocatalyst. First, a 0.04 M NaHCO₃ solution was prepared. Then, 0.1 g of photocatalyst and scavenger were dispersed in solvent and stirred for 1 h. A high pure input gas (CO₂, 99.99%) was purged into the mixture to obtain a gas/solvent mixture; the gas was controlled by the mass flow controller and the total gas-purging time was 30 min. Next, pure nitrogen was purged into the mixture to remove the gas from the glass reactor. The lamp was then switched on and the light source (500 W halide lamp) was placed at the top of the reactor at a distance of about 10 cm. In detail, 100 mg of photocatalyst and 0.3 g scavenger were dispersed in 0.04 M NaHCO₃ containing 50 ml solvent and stirred for 1 h. The pure input gas was controlled by the mass flow controller and the total gas-purging time was 30 min. The total reaction time was 48 h; every 12 h, a certain volume of solution was withdrawn from the reactor using a syringe, and the solution was filtered through a membrane filter with a pore size of 0.45 μm and a diameter of 47 mm. The amount of alcohol in the solution was analyzed using a “Quantitative analysis of alcohol” method. In this method, 10 ml of 0.1 M CrO₃ was added to a 1 ml sample and agitated for 15 min, then the suspension was centrifuged (10,000 ppm/15 min). The concentration of the acquired solution was examined by a UV spectrophotometer (Optizen POP, Korea) using a quartz cell (1×4.5 cm). The functional group of the final methanol was analyzed by a FTIR spectrometer (FTIR iS5, Thermoscientific).

2.3.2 Electrochemical CO₂ Reduction

The electrochemical CO₂ reduction process was conducted on a PGP201 Potentiostat (A41A009) using a three-electrode system. Ag/AgCl and platinum were used as the reference and counter electrode, respectively. The as-prepared binary and ternary nanocomposites were used for the working electrode (WE) preparation. The WE were prepared by following the “Doctor blade” method [38]. Ethyl cellulose was used as a binding material and mixed with the as-prepared nanocomposite in a 1:3 ratio. Then, a few drops of pure ethanol were added, and the resulting mixture was ground and used to veneer the top of the Ni foil. The electrode preparation process is presented in Scheme S2. The current density determines the amount of electric current per unit cross-section of the material. The input CO₂ gas-purging speed and the amount of gas were controlled by the mass-flow controller and 50 ml of 0.04 M NaHCO₃ solvent was used as the electrolyte solution. The cyclic voltammetry (CV) measurement was conducted in a potential range of (-1.2 to 1.5 V vs. Ag/AgCl) at a scan rate of 100 mV s⁻¹. After electrolysis, a voltammogram was obtained for the final product cycle considering the highest oxidation peak current. In a reaction that reduces the electrochemical composition of CO₂, the catalyst can direct a specific reaction to produce a certain amount of product. In CO₂RR, the following equation considers the Faraday efficiency (FE) to confirm the selected product during the reaction [39].

\[
FE\% = \frac{n_{\text{methanol}} \times n \times F}{\int_{0}^{t} Idt} \times 100
\]

where, \(n_{\text{methanol}}\) is the number of moles of formate and \(n\) represents the number of electrons transferred from CO₂ to produce one molecule of methanol. In this case, \(n = 6\), \(F\) is Faraday’s constant (96,485 C mol⁻¹ of electrons), and \(I\) is the circuit current (measured by the Potentiostat). Reaction time (\(t\)) is measured in s.
3 Result and Discussion

3.1 XRD Analysis and Raman Spectra

Figure 1a and b show the crystal structure of the AFNS NPs, AFNSG NCs and AFNSGT NCs. In the XRD pattern of AFNS, the peaks generally revealed a decent crystal structure and phase. The diffraction peaks were located at 2θ = 15.63°, 31.32°, 37.96°, and 49.85°, which are respectively assigned to the (111), (113), (004) and (115) crystal planes of FNS (JCPDS, 96–900-0979). After combining with graphene, the diffraction peak becomes sharp; the diffraction peak of graphene was observed at 2θ = 12.63°, corresponding to the (100) crystal plane. The peak intensity was low because the quantity was low. In the AFNSGT nanocomposite, the XRD peaks of TiO2 were observed at 2θ = 25.28°, 38.05°, and 55.02°, which were assigned to the (011), (004) and (121) crystal planes of anatase TiO2 (JCPDS № 0.21–1272). The reference XRD data of anatase TiO2 is shown in Fig. 1a and the catalytic activity of the anatase phase is more active than that of the rutile phase, and the electron–hole pair life of anatase is favorable for the surface reaction. The crystallinity state, intensity and the peak location specified that Pechini method was well-suitable for the preparation of chalcogenide loaded ternary nanocomposite. Figure 1b shows the XRD patterns of the ANS (Ag2NiS2), FNS (FeNiS2) and AFNS NPs, which helps to demonstrate the difference between ternary and quaternary semiconductors. The peaks of NiS, Ag2S, and FeS were observed in this XRD pattern, as shown in Fig. 1b. The XRD peaks of AFNS were clear and distinct.

The crystallite sizes of each nanocomposite were calculated using the Debye–Scherrer equation; these were found to be 3.37, 6.31, and 3.68 nm. The average crystallite size of the new-structured ternary nanocomposite is 3.68 nm, which is higher than the previously studied result of 1.61 nm. This change underscores the importance of the Pechini method and its advantages in integrating fine nanocomposites. A change in the average crystallite size can affect the catalytic activity of the AgFeNi2S4-Graphene-TiO2 ternary nanocomposite. Several previous research papers [40, 41] have analyzed the effect of crystallite size on photocatalytic performance.

The state of the carbon material (D- and G-band) and molecular interactions between AgFeNi2S4, graphene, and TiO2 were confirmed by the results of Raman spectroscopy. The full Raman data of the binary and ternary nanocomposites are shown in detail in Fig. 1c. In AFNSG, graphene had two sharp peaks in the 1348.6 and 1588.2 cm⁻¹ shift region, which indicates A1g and E2g symmetry (D- and G-mode). The two types of feature peaks were observed at 1390 and 1583 cm⁻¹ [42]. The peak position shifted from the lower to the higher region or vice versa. The quaternary semiconductor had one wide and sharp peak in the 551.5 cm⁻¹ region. According to previous studies, chalcogenide-based semiconductors have characteristic
peaks in the 100 – 600 cm$^{-1}$ region [43]. Some main peaks were not observed in the current study due to modification of the crystal lattice vibrations of the nanomaterial. AFNSGT included five main peaks, which were assigned to TiO$_2$ and graphene. The Raman band of anatase-structured TiO$_2$ was obtained in the 100 – 700 cm$^{-1}$ shift region, which included the E_g, B_{1g}, and A_{1g} modes [44]. The E_g mode peak appeared at 613.5 cm$^{-1}$, the B_{1g} mode peak was observed at 420.4 cm$^{-1}$, and the last peak, SEO, appeared at 292.6 cm$^{-1}$, which indicates the motions of atoms. The characteristic peaks of the quaternary semiconductors were not present in AFNSGT because the symmetric motion of quaternary semiconductors was distorted and the peak intensity of TiO$_2$ was sharp and strong. The peak position of the D- and G-band was shifted from the higher to the lower shift regions. Shifting of peaks towards a lower or higher wave number is related to chemical bond length. If the chemical bond length of the molecules changes for any internal or external reasons, the wave number may shift. Based on the above theory, the chemical bond length of graphene changed due to the bonding interaction between graphene and TiO$_2$. The I_D/I_G ratio was 0.85 in AFNSG and 0.84 in AFNSGT. The change in the value indicated the presence of lattice defects, which arise from the interfacial combination between metal chalcogenide, graphene, and TiO$_2$ that derived from the Pechini-method. Because the Pechini method allowed the formation of a metal chain by creating chemical interactions between the metals and organic molecules.

3.2 Morphological Analysis

The surface of the photocatalyst was analyzed via SEM. Figure 2a and b show the SEM analysis of the quaternary semiconductors, which were wrinkled and elliptical. The preparation of the quaternary semiconductor based on the Pechini method helped to establish a chemical bond between the transition metal and the organic molecules in order to adjust the metal chain. This could demonstrate successful fabrication of the metal chalcogenide semiconductor. After combining with graphene, all particles agglomerated on the graphene exterior owing to the functional group on the graphene surface. The variously structured particles were irregularly agglomerated, as
shown in Fig. 2c, d. In the SEM image of AFNSGT, the TiO$_2$ particle showed a white, wrinkled and oval structure. Figure 2e and f demonstrate the successful fabrication of AgFeNi$_2$S$_4$-Graphene-TiO$_2$. Furthermore, the successful interconnection of AgFeNi$_2$S$_4$, graphene and TiO$_2$ can be helpful for formation of the hetero-junction structure with good charge carrier properties. The role of graphene is as a bridge and electron acceptor that can support the photogenerated charge carrier and increase the photocatalytic capacity. Figure 2 shows the 3D surface plot, which reveals the roughness of each sample. The surface of AFNS was uneven and sharp, while that of AFNSG was convex. The surface of AFNSGT was smooth and convex.

The internal structure and crystallographic facet of each nanocomposite were analyzed by TEM and HRTEM. Figure 3a shows the presence of the quaternary semiconductor as an elliptical structure on the graphene, which indicates the successful interaction between AFNS and graphene. The morphology of graphene was clear and provided the large surface needed for growth of the metal compound, as shown in Fig. S1a, b. As shown in Fig. 3d, the pentagonal TiO$_2$ appeared as a dark black entity that was uniformly spread on the graphene exterior in the AFNSGT ternary nanocomposite. The TiO$_2$ and quaternary semiconductors were evenly distributed on the surface of graphene. The oxygenated functional group on the graphene exterior prevents the formation

Fig. 3 a, d TEM images, b, e HRTEM images of AFNSG and AFNSGT NCs, c, f, g nanoparticle size histogram of AFNS NPs and TiO$_2$ in binary and ternary nanocomposites (followed by Pechini method)
of metal or metal oxide agglomerates. Figure 3b and e show the HRTEM findings of the crystallographic facets of each nanocomposite. The lattice fringes show the d-spacing values of the quaternary semiconductor and TiO$_2$, 0.235 nm and 0.351 nm, respectively, corresponding to the AFNS (201) and TiO$_2$ (101) crystal planes, as shown in Fig. 3b and e. The average particle size histograms of the binary, ternary and quaternary semiconductors are shown in Fig. 3c, f and g. The average particle sizes were 3.08 (AFNS in AFNSG), 2.75 (AFNS in AFNSGT), and 3.08 nm (TiO$_2$ in AFNSGT). Additionally, quantitative element analysis was done using an EDX instrument. Figure 4 shows the microanalyses of all as-synthesized samples, which reveal the presence of the main elements. Ag, Fe, Ni, S, Ti, and O were obtained from the metal and metal-oxide component, and C was derived from the main adsorbent material, graphene, in the ternary photocatalyst. Each element had its own Kα and Kβ values in the appropriate region. These elemental analyses are summarized in the 3D pie graph.

![Fig. 4 EDX spectrum of AFNS NPs, AFNS NCs and AFNSGT NCs (followed by Pechini method)](image)

![Fig. 5 FTIR spectra of the samples](image)
3.3 FTIR and XPS Analysis

FTIR was used to identify the presence of the functional groups of the nanocomposites. Figure 5 shows the FTIR results of the nanocomposites. The adsorption band of the carbonyl group (C=O) appeared at 1582.9 cm⁻¹, the carboxylic acid group (-COOH) observed at 1412.1 cm⁻¹, and asymmetric and symmetric stretching of C=O–C appeared at the wave number regions of 1089.7 and 617.3 cm⁻¹. All of those peaks corresponded to graphene [45]. The blue line reveals the adsorption peaks for AFNS at 2917.8, 1433.0, 1117.9, 998.0, 665.2, and 622.9 cm⁻¹, which were ascribed to the (R–C(O)-OH), (C(O)-OH), S = O, CH₂ rocking, Fe–O and S–O vibration mode [46]. Most of the peaks were ascribed to the citric acid and the adsorption bands, confirming the successful chemical bonding state of the metal chalcogenide semiconductor. After combination with graphene, the peak intensity and vibration mode changed due to the interaction between graphene and AFNS. In the FTIR spectra of AFNSGT, the wide adsorption band of the Ti–O-Ti of TiO₂ appeared at 1079.49 and 584.5 cm⁻¹ [47].

XPS was used to analyze the chemical states and interactions among AgFeNi₂S₄, graphene, and TiO₂. Figure 6 shows the XPS spectrum of each element. The binding energy depends on the chemical interactions and form of the samples. Figure 6a shows the XPS survey spectra, which indicated the existence of each element and confirmed the successful formation of AFNSGT. Figure 6b shows two peaks at the 368.35 and 374.37 eV binding regions, which are related to the Ag3d₅/₂ and Ag3d₃/₂ spectra of Ag (I) in AGENG [48]. The XPS spectrum of Fe2p (Fig. 6c) displayed four deconvoluted peaks at 711.14, 714.89, 724.76, and 731.75 eV. The photoelectron peak at 711.14 eV corresponds to the binding energy of Fe³⁺ 2p₃/₂, while the peak at 724.76 eV can be assigned to Fe²⁺ 2p₃/₂. The peak at 731.75 eV corresponds to the 2p₁/₂ of Fe (II) and Fe (III) ions [49]. The last peak, at 714.89 eV, is a satellite peak that indicates the coexistence of Fe (II) and Fe (III) in the quaternary semiconductor. Figure 6d shows that the Ni2p XPS spectrum was deconvoluted into two spin–orbit doublets. The photoelectron peaks at 856.52 and 873.72 eV indicate the 2p₃/₂ and 2p₁/₂ spin orbitals of Ni³⁺. The other two peaks are assigned to the high-spin divalent state (satellite peaks) of Ni²⁺ [50]. The S2p XPS spectrum consisted of four peaks, located at 163.86, 165.04, 169.29, and 170.35 eV, as shown in Fig. 6e. These four peaks can be assigned to monosulfide (S²⁻) and disulfide (S₄²⁻) [51]. The XPS peaks of sulfide were observed at 158 – 161 eV, and the disulfide peaks were located in the 162 – 168 eV region.

The electron configuration of C1s consists of three peaks, which correspond to the C–C (aliphatic), C–O–C, and C=O groups, as shown in Fig. 6f [52]. The high-resolution Ti2p spectrum of AFNSGT displayed two peaks at 459.42 and 465.18 eV, which are related to Ti⁴⁺+2p ₃/₂ and Ti⁴⁺+2p ₁/₂. In addition, the 2p₃/₂ spin-orbitals clearly indicate the presence of Ti (IV); the ratio of these two peaks is 2:1, as shown in Fig. 6g [53]. The O1s spectrum is composed of four peaks, located at 530.7, 532.65, 532.69 and 535.34 eV. The first peak is related to the C-O group, whereas the second peak is assigned to the metal-carbonate forms (O-Me), as shown in Fig. 6h [54]. The existence of the metal carbonate forms confirms the interaction between metal and oxygen. The next two peaks correspond to the carbonyl and carboxyl groups. FTIR and XPS analysis of the sample confirmed that the AgFeNi₂S₄-Graphene-TiO₂ triple nanocomposite had a successful interface connection using the Pechini method.

3.4 PL, Photocurrent Response, Nyquist Plot and DRS Analysis

The charge transfer and interactions among AFNS, TiO₂, and graphene were studied using the DRS, photocurrent response, PL, and EIS methods. The charge separation capacity of AFNSGT NCs was analyzed by the PL-method. The intensity of PL depends on the recombination rate of the electron–hole pairs; a decrease in PL intensity indicates that the charge carrier has a long lifetime. All photocatalysts showed a light response under the 514 nm laser, as shown in Fig. 7a. The emission peaks of the samples appeared in the 540 – 660 nm range, in the visible light region. In the PL spectra, two sharp emission peaks appeared, at wavelengths of 546.51 and 551.95 nm. Additionally, pure AFNS NPs and AFNSGT NPs had wide emission peaks near 604.66 nm. The wide-emission peak area and shape changed after the addition of TiO₂ to yield AFNSGT NCs. The emission peak of the metal-based composite was classified in two sectors: (1) UV emission (NBE) and (2) visible emission (DF defect) [55]. The rapid charge recombination rate of AFNS is confirmed by the high-intensity PL peak. The low PL intensity reflected the recombination rate of electron and holes, which is related to rapid conversion from CO₂ into hydrocarbon fuel. The PL peak intensity was reduced in AFNSGT due to the high conductivity and charge transfer capacity of the 2D-structured graphene. In AFNSGT NCs, the intensity of the peak was somewhat reduced due to the efficient interfacial contact between each part, which bolstered the charge carrier separation. The results of the above analysis show that the proposed ternary nanocomposite, consisting of a metal chalcogenide, graphene and TiO₂, has a high charge carrying capacity.

The photocurrent response of all samples showed repeatable signals in five-times on–off cycles, as shown in Fig. 7b. All nanocomposites had a prompt and stable photocurrent response for each cycle. The photocurrent response decayed in the dark but recuperated within 60 s once the light was turned on. The above procedure can be described in terms
Fig. 6 a XPS survey spectra and the high-resolution XPS spectra of AFNSGT NCs (synthesized by Pechini method), b Ag3d, c Fe2p, d Ni2p, e S2p, f C1s, g Ti2p and h O1s
of the presence of charge transmission from VB to CB under light irradiation. The 2D-structured graphene had a low current value ($2.156 \times 10^{-6} \text{ mA/cm}^2$) in each cycle. The pure quaternary nanoparticles (AFNS NPs) had a lower current value ($2.818 \times 10^{-6} \text{ mA/cm}^2$) in every cycle, which indicated the low separation efficiency of the photo-generated charges. AFNSG NCs had a good photocurrent response ($1.091 \times 10^{-5} \text{ mA/cm}^2$), a result that depends on the combination between graphene and AFNS NPs, which supports the charge separation and electron flow when the light is on. Among the as-prepared nanocomposites, AFNSGT NCs showed a higher photocurrent response ($1.272 \times 10^{-5} \text{ mA/cm}^2$) during six on–off cycles of light irradiation. The successful interfacial contact between AFNS NPs, graphene, and TiO$_2$ leads to efficient separation of photo-generated charges and better catalytic activity for the CO$_2$-reduction process. The obtained photocurrent response result also supported by the Nyquist plot curves, as expressed in Fig. 7c.
The EIS profile is identical to the charge transfer resistance across the electrode/electrolyte, and the semicircle profile exhibit the conductivity. The Nyquist plot of all samples at room temperature for the frequency range from 5 to 1 mHz with a half-cell. The diameter of the semicircle of AFNSGT NCs was significantly reduced that implying the lower charge transfer resistance and assign to efficient separation and transfer of photogenerated charges. Moreover, the semicircular profile of the AFNSG binary nanocomposite is located between that of AFNS and AFNSGT, depending on the electrical conductivity and interfacial connection of AFNS and graphene. Above photo-electrochemical results substantiated that junction between new-modeled AFNS quaternary nanoparticles, 2D-graphene and TiO2 led to advance the charge carrier properties and construction of new-labeled photocatalyst for the CO2-reduction.

Figure 7e expresses the bandgap energy value of the unary, binary and ternary nanocomposites. The band gap energy value of each nanocomposite was computed by UV–vis DRS, using Eq. (1) [56]:

\[[hvF(R_{\infty})]^{1/n} = A(hv E_g) \]

where \(E_g \) is the energy of the band gap, \(F(R) (1/R^2/R) \) is the Kubelka–Munk function, \(A \) is the constant of proportionality, and \(F(R) \) is the absorption coefficient. \(hv = hc/\lambda \) is the energy of the incident photon. The calculated band gaps of the three nanocomposites were 2.67, 2.59, and 1.95 eV; the band gap value of AFNSGT was lower than that of AFNS and AFNSG. The band gap energy analysis confirmed that AFNSGT had high catalytic activity and efficiently reduced CO2 into methanol. Nickel sulfide-based or quantum dot united carbonaceous materials or semiconductor photocatalysts are generally used for H2 evolution [17, 18]. The one-spot and seed-mediated hydrothermal methods and a sol–gel method are commonly used to prepare NiS photocatalysts. The structure of the photocatalyst is the main factor that determines catalytic activity. Recently, ternary structured nanocomposites have become popular in the catalytic field because of their advantages over binary materials, which include strong light absorption rates and enhanced photocatalytic potency. In the last decade, several studies have reported on use of NiS-based photocatalysts for CO2 reduction under light illumination [17–20].

According to our analysis, the ternary nanocomposite formed successfully with the chain structure offered from the Pechini method and showed a high degree of interconnectivity, highly efficient charge transfer, and suppression of the photogenerated e- and h+ recombination rate. Also, the combination of 2D graphene and TiO2 with a metal semiconductor showed more intimate contact, superior electronic coupling, and a more sensitive photosensitizer, which may lead to better CO2 reduction under light irradiation. Based on the results of both previous studies and the current study, we assume that the ternary nanocomposite has high photocatalytic activity for CO2 reduction. Currently, ternary chalcogenide photocatalyst materials are commonly used in CO2 evolution, including ZnO/ZnSe [57], WO3-TiO2/Cu2ZnSnS4 [58], and NiS/CQDs/ZnIn2S4 [59, 60] nanomaterials. AgFeNi2S4-Graphene-TiO2 exhibits higher photocatalytic CO2 conversion activities than did the other ternary chalcogenide photocatalysts. Therefore, a noble metal joined quaternary chalcogenide catalyst can still achieve high-efficiency CO2 reduction. The utility of TiO2 in the CO2 photoreduction test is due to the band gap and the location of the energy band, which is comparable to the CO2 reduction capacity and H2O oxidation capacity. Theoretically, redox reactions could be occurring on TiO2 due to its conduction band energy and valence band energy being available to reduce CO2 to formic acid and methanol, and to oxidize H2O to form H+. In addition, an NiS-based photocatalyst has p-type semiconductor properties, which are favorable to water oxidation and do not strongly affect CO2 reduction. The combination of TiO2 and AgFeNi2S4 was evenly spread across the graphene exterior and the successful interaction of those nanocomposites can determine the band structure and photocatalytic potency of the newly modeled ternary nanocomposite.

3.5 Evolution of CO2 into Methanol

The conversion of CO2 to methanol was carried out by two different experimental methods, photocatalytic and electrochemical. According to the test results, the newly modeled ternary nanocomposite had high catalytic activity and successfully reduced CO2 into methanol. Figure 8a, c and e shows the quantification of the final methanol yield under different light conditions. The unary, binary, and ternary nanocomposites were used for the photocatalytic reduction of CO2 to methanol. The entire test process was carried out under two different conditions, with-scavenger and without-scavenger. The final concentration of methanol was analyzed by the "Quantitative Analysis of Alcohol" method using CrO3 as a strong oxidizing agent. During the experiment, the final methanol was oxidized, and the oxidation state of CrO3 decreased. The color of the base solution changed – as the methanol concentration increased, the oxidation state of CrO3 decreased, and the color of the base solution changed accordingly. Figure 8a shows the final methanol yield over the AFNS unary photocatalyst under different types of light irradiation for 48 h. Under visible light, the highest methanol yield was 2.339%, in the with-scavenger condition. During UV radiation, the methanol yield increased to 4.136%; this increase in yield was directly related to the effect of
ultraviolet photon energy. The band gap value of the AFNS was 2.67 eV, which confirms that the newly modelled quaternary semiconductor showed a light response for both visible and UV light.

Figure 8b shows the cyclic voltammogram of the AFNS working electrode in the CO₂-dissolved solution and the final product at a scan rate of 100 mV s⁻¹. A 0.04 M NaHCO₃ solution was used in the CO₂ reduction test and used as an electrolyte for electrochemical tests to enhance the catalytic current and lessen the overpotential and as a hydrogen generator for photocatalytic tests.

The CV graph occurred in a negative potential range (-0.9 to -0.05 V) on the AFNS working electrode system.

The results of the post-electrolysis test show that the highest oxidation peak appeared around 1.20 V (vs. Ag/AgCl). The cyclic voltammogram was performed under pure methanol conditions using the as-prepared working electrodes, and the highest oxidation peaks were found in the potential range of 0.39 to 1.20 V (V vs. Ag/AgCl), as shown in Fig. S2. The abovementioned results suggest that unary nanomaterials play an important role in reducing carbon dioxide to methanol. Figure 8c and d show the results of methanol production with the AFNSG nanocomposites. The experimental results confirm that the CO₂ conversion efficiency of this catalyst is better than that of the AFNS quaternary nanocomposite. The methanol yields were 3.592% and 4.845% in the without-scavenger condition. The methanol yields were increased to 4.738% and 6.349% in the system with the electron-donor scavenger. In the cyclic voltammogram, the highest oxidation peak
appeared at a potential of approximately 1.2 V (vs. Ag/AgCl) and the current density increased.

Compared to the unary and binary composites, the ternary composite showed high conversion efficiency for the CO2 evolution reaction. Continuous production of CH3OH was obtained using all types of samples, but there was an increasing trend in the evolution of CH3OH that was directly related to the properties of the photocatalyst. The methanol yields were increased when AFNSGT was used due to the properties of 2D-structured graphene. The graphene increases the light absorption rate and conductivity, which strongly enhances the photocatalytic potency of the AFNSGT ternary nanocomposite. The highest methanol yields were obtained when using AFNSGT nanocomposite; the yields were 5.504 and 5.971% under the without-scavenger condition. The methanol yields increased by approximately 1.5-fold and the highest yields were obtained when using the AFNSGT nanocomposite under light irradiation. The highest methanol evolution of 6.291 and 8.679% was achieved over AFNSGT in the with-scavenger condition. The CV graph appeared in a negative potential range (-0.9 to -0.76 V) in a CO2-dissolved solution. In addition, AFNSGT showed a high CO2 conversion efficiency in the electrochemical reduction process. In the cyclic voltammogram data, the highest oxidation peaks appeared at 1.18 V (V vs. Ag/AgCl), as shown in Fig. 8f. The abovementioned CV graph location is the same as that shown in Fig. S2. This result suggests that ternary nanomaterials play an important role in reducing carbon dioxide to methanol. The results of the abovementioned photocatalytic experiments imply that the best CO2 reduction was obtained in the UV light region, because UV light can supply efficient photon energy which can activate the photocatalyst.

Additionally, we checked the catalytic activity of the TiO2, G-TiO2, and AFNS-TiO2 nanocomposite in photocatalytic and electrochemical CO2 reduction. The photocatalytic reduction datas were summarized in Fig. S3. In detail, the pure TiO2 had poor methanol production from CO2 reduction due to the own unmatched CB potential to drive the CO2 reduction and only UV-light response with high bandgap energy. After the combination with 2D-graphene and AFNS, the methanol production rate significantly increased due to the interfacial connection between two semiconductor, as well, it provided the condition to adjust the bandgap energy and potential of the CB and VB. The methanol production rate on G-TiO2, and AFNS-TiO2 nanocomposite raised 2-times. In electrochemical CO2 reduction, we analyzed the electrochemical activity of the pure TiO2, Graphene-TiO2, and AFNS-TiO2 nanocomposite. The CV graphs were well-expressed in Fig. S4. As seen in CV graphs, the current density variations of the working electrodes were changed in the CO2-dissolved electrolyte and after the CO2-electrolysis process, which indicated that all nanocomposites were well-reacted with CO2 and reduced to methanol by using electric energy. The activity of those samples is still limited, compared with AgFeNi2S4-Graphene-TiO2 ternary nanocomposite. Above mentioned results indicated that the construction of a two-more semiconductor to make the ternary-structured led to an enhanced catalytic activity derived from successful interfacial connections, and effective charge carrier and separation between the semiconductors.

To increase the CO2 reduction and catalytic activity of the nanocomposite, the electron-donor scavenger (Na2SO3) was used because it allows CO2 to combine with water. There are two reasons for this phenomenon: (i) an increase in the amount of dissolved CO2, and (ii) a reduction in recombination of hole-electron pairs, leading to a longer decay time of surface electrons and facilitation of CO2 reduction.

Prior to the electrochemical procedure, a 0.04 M NaHCO3 solution was placed in a sealed three-electrode glass cell and a CO2-saturated electrolyte was prepared by
blowing CO₂ at a pressure of 0.2 kg/cm² for 30 min. Three different types of electrodes were used during the experiment, and the CO₂-dissolved solution was electrolyzed. After electrolysis, a voltammogram was obtained for the final product, considering the highest oxidation peak current. The cyclic voltammogram test was performed under two different conditions: (i) CO₂-dissolved solution before electrolysis, and (ii) methanol solution after electrolysis.

The electrochemical mechanism of CO₂ reduction was determined by analyzing the Faraday efficiency of the final product. According to Eq. (1), thermodynamically, 6 electrons are required for the conversion of CO₂ to methanol:

\[
\text{CO}_2 + 6\text{H}^+ + 6\text{e}^- = \text{CH}_3\text{OH} + \text{H}_2\text{O} \quad (1)
\]

The Faraday efficiency of the quaternary nanocomposite was 25.46%. The value of the Faraday efficiency increased in the AFNSG binary nanocomposite due to the junction of 2D-structured graphene and metal chalcogenide quaternary photocatalyst, and the final calculated efficiency was around 39.97%. The value of the Faraday efficiency for the AFNSGT ternary nanocomposite increased to 44.25%, proving that the successful design of the newly modeled nanocomposite increases the activity of the working electrode and has a positive effect on the electrochemical reduction of CO₂. The peak separation and peak current state depend on the electron transfer properties of the working electrode. For the electrochemical approach, a solution of 0.04 M NaHCO₃ saturated with CO₂ was electrolyzed on working electrode (vs. Ag/AgCl) and the methanol concentration in the electrolyte solution was determined during a half-time test afterward using a calibration curve via the cyclic voltammetry technique, as shown in in Fig. 9.

Stability and reusability are the main factors that define the sturdiness of a photocatalyst in practical applications. As beforementioned, the ternary nanocomposites have been successfully synthesized using the Pechini method, which offers a stable chain bonding structure. In the recycling test, the photocatalyst (AFNSGT) was used four times (192 h) under light irradiation with (0.3 g) and without scavengers in the CO₂ evolution reaction. The ternary photocatalyst was very sturdy during four cycles, with no significant deactivation towards methanol production, as shown in Fig. 10. According to the recycling test, the ternary photocatalyst can be considered for generation of solar fuels in practical applications. The recombination rate of the hole-electron pairs is the main parameter that defines the catalytic activity of the photocatalyst. The electron-donor scavenger (sodium sulfite) can reduce the recombination rate of the pairs and increase the number of electrons, while also acting as a sufficient cyclic electron donor. Together, these factors produce a photocatalyst with excellent activity.

FTIR was used to identify the presence of the final products and semi-product. The final methanol product (after 1 and 4 cycles) and commercial methanol solution were used in this FTIR analysis. The FTIR spectrum of methanol, which is shown in Fig. S5, consisted of four characteristic peaks located at the theoretical peak region. All key data are summarized in Table S1. The FTIR spectrum of all samples was exhibited in a range of 600 – 3900 cm⁻¹. The peak location and intensity of the reference and methanol products were the same, which confirms that the ternary photocatalyst reduced the CO₂ into methanol. During the test, the semi-product was withdrawn from the reactor and analyzed by FTIR. The results suggest that the chemical structure of
CO₂ had changed and confirmed that carbon dioxide can be reduced to methanol. The CO₂ reduction pathway can be described by a chemical reaction, given below.

\[\text{CO}_2 + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \]

The consequences on the charge carriers and type of the composite material were evaluated by drawing the Mott-Schottky plot of the AFNS and TiO₂. The slope graph was expressed in Fig. S6. The flat band potential (E_{fb}) is roughly equal to the VB potential for p-type semiconductors. Using the Nernst equation (Eqs. 3–5), the E_{fb} could be altered into a normal hydrogen electrode (NHE).

\[E_{fb}(\text{vs. NHE}) = E_{fb}(\text{pH 0, vs. Ag/AgCl}) + E_{\text{AgCl}} + 0.059 \times \text{pH} \]

(2)

\[E_{\text{fb}} = E_{\text{CB}} + E_g \]

(3)

\[E_{\text{CB}} = E_{\text{VB}} - E_g \]

(4)

hence the E_{fb} potentials for the p-type were found to be -0.62 V (TiO₂) and 0.051 V (AFNS) with respect to Ag/AgCl, whereas respect to NHE these values were -0.036 eV and 0.661 eV. The bandgap energy of the samples were obtained from UV-DRS measurements. The TiO₂ had positive slop that indicated the TiO₂ had n-type properties. conductivity band potential of n-type semiconductor is more negative 0.1 or 0.2 that its flat band potential. In the case of p-type semiconductor, the flat band potential (E_{fb}) is roughly equal to the VB potential. The calculated all datas were used for the schematic illustration of the charge separation mechanism of the AgFeNi₂S₄-Graphene-TiO₂ nanocomposite, which expressed in Scheme 1.

As seen in Table S2, the CB potential of TiO₂ and AFNS were calculated to be -0.236 eV and -2.009 eV. The CB potential of AFNS is negative than the standard potential of the CO₂/CH₃OH redox potential (-0.38 V vs NHE at pH = 7 (or 0.03 V vs NHE at pH = 0), while the valence band (VB) potential of TiO₂ is 2.964 eV which is positive than the standard potential of the H₂O/O₂ reduction potential (1.23 V vs. NHE) and *OH/H₂O (2.3 V vs. NHE). Based on those obtained potential value of the AFNS and TiO₂ crated the perfect redox capability on AgFeNi₂S₄-Graphene-TiO₂ nanocomposite. in addition, Z-scheme heterojunction is suitable for the reaction of the CO₂-reduction, and the Fermi-level was equilibrated at the interfaces between the AgFeNi₂S₄, Graphene and TiO₂.

![Scheme 1](image)
In detail, the reduction of \(\text{CO}_2 \) requires a more negative potential level in the conduction band (CB), while water oxidation needs a more positive level in the valence band (VB), thereby increasing the number of protons and enhancing the reduction of carbon dioxide. Under light irradiation, the nanocomposite is activated and electrons will be excited. All photogenerated electrons moved from CB of TiO\(_2\) to the VB of AFNS through the 2D-graphene. 2D-structured graphene has a role to be a bridge between two semiconductors that led to effective charge transfer. The photogenerated electrons humiliated in the CB of TiO\(_2\) which is the active site of the \(\text{CO}_2 \) reduction to methanol. Meantime, photoexcited holes are enriched in the VB of TiO\(_2\) which is the active site of the water oxidation and generated the \(\text{O}_2 \) and \(\text{H}^+ \) species. This whole charge transfer expressed the establishment of Z-scheme mechanism on the ternary nanocomposite.

Equations (6)–(9) describe the activation states of AgFeNi\(_2\)S\(_4\), TiO\(_2\), and graphene that enable them to produce photoexcited electron–hole pairs. Equations (10)–(14) describe the redox reaction, in which the holes are used for oxidation and the electrons are used for reduction.

\[
\text{TiO}_2 + \text{hv} \rightarrow \text{e}^- (\text{TiO}_2) + \text{h}^+ (\text{TiO}_2) \tag{5}
\]

\[
\text{AgFeNi}_2\text{S}_4 + \text{hv} \rightarrow \text{e}^- (\text{AgFeNi}_2\text{S}_4) + \text{h}^+ (\text{AgFeNi}_2\text{S}_4) \tag{6}
\]

\[
\text{e}^- (\text{TiO}_2) + \text{Graphene} \rightarrow \text{TiO}_2 + \text{e}^- (\text{Graphene}) \tag{7}
\]

\[
\text{e}^- (\text{Graphene}) + \text{AgFeNi}_2\text{S}_4 \rightarrow \text{Graphene} + \text{e}^- (\text{AgFeNi}_2\text{S}_4) \tag{8}
\]

\[
\text{H}_2\text{O} + \text{h}^+ \rightarrow \text{H}^+ + \text{OH}^- \tag{9}
\]

\[
\text{CO}_2 + \text{e}^- \rightarrow \text{CO}_2^- \tag{10}
\]

\[
\text{CO}_2^+ + 2\text{H}^+ + 2\text{e}^- = \text{HCO}_2\text{H} \text{ (Formic acid)} \tag{11}
\]

\[
\text{CO}_2 + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{CO} + \text{H}_2\text{O} \text{ (Carbon monoxide)} \tag{12}
\]

\[
\text{CO}_2 + 4\text{H}^+ + 4\text{e}^- \rightarrow \text{HCHO} + \text{H}_2\text{O} \text{ (Formaldehyde)} \tag{13}
\]

\[
\text{CO}_2 + 6\text{H}^+ + 6\text{e}^- \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \text{ (Methanol)} \tag{14}
\]

The positively charged holes reacted with water to form hydrogen, and this hydrogen source favored the formation of methanol. Meanwhile, the purged \(\text{CO}_2 \) was adsorbed on the surface of the photocatalyst, so the photo-excited electrons on the surface can reduce/convert the \(\text{CO}_2 \) into methanol. The conversion of \(\text{CO}_2 \) into \(\text{CH}_3\text{OH} \) required \(6\text{e}^-/6\text{H}^+ \).

4 Conclusion

In conclusion, we successfully synthesized a new ternary nanocomposite by using the Pechini method. The advantage of the Pechini method is that it allows us to create a chemical interaction between the transition metal and organic molecules to form a metal chain. The morphology, functional groups and electrochemical properties of the unary, binary and ternary nanocomposites were analyzed by spectroscopic techniques. The ternary structured nanocomposite had more stable properties and charge carrier separation due to the presence of 2D-structured graphene, TiO\(_2\) and the quaternary semiconductor. 2D-structured graphene can act as a bridge between the semiconductor (TiO\(_2\)) and a quaternary semiconductor that increases light absorption and enhances photo-generated charge transfer. The conduction band structure of TiO\(_2\) makes it available to reduce carbon dioxide to methanol under light irradiation, thus enhancing the catalytic activity of the ternary nanocomposite. The \(\text{CO}_2 \) reduction process was conducted through photocatalytic and electrochemical methods. The highest methanol evolutions of 6.291 and 8.679% were achieved over AFNSGT, while methanol yields of 4.738 and 6.349% were achieved over the AFNSG nanocomposite in the photocatalytic process. The ternary catalyst was reusable after four cycles, which confirmed that the newly modeled nanocomposite will be useful for practical applications. In electrochemical \(\text{CO}_2 \) reduction, the Faraday efficiency is the main parameter that defines the performance of the working electrode and the evolution of methanol. The Faraday efficiency of AFNSGT increased to 44.25%, which proves that that the successful design of the newly modeled nanocomposite increases the activity of the working electrode and has a positive effect on the electrochemical reduction of \(\text{CO}_2 \). In this work, we synthesized the AgFeNi\(_2\)S\(_4\)-Graphene-TiO\(_2\) ternary nanocomposite by the Pechini method. The photocatalytic and electrochemical \(\text{CO}_2 \) reduction data confirmed that the preparation method, morphological state, and charge carrier properties of the photocatalyst are important for the catalytic activity and efficiency of the methanol evolution pathway. This work confirms that the new structured nanomaterial can be applied to reduce environmental pollution and fabricate hydrocarbon fuels.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10904-022-02319-8.

Acknowledgements This work was supported by the Research Foundation of Hanseo University in 2021. The authors are grateful to the staff of the University for financial support.
Authors Contributions We understand that the Corresponding Author (WCO) is the sole contact for the Editorial process Oh WC (he) is responsible for communicating with the other authors about experimental progress, submissions of revisions, and final approval of proofs. Conceptualization, methodology, formal analysis, and writing process are held by ZO. We confirm that we have provided a correct email address that is accessible by the Corresponding Author, and which has been configured to accept email from.

Funding For the publication, there has been no significant financial support for this work that could have influenced its outcome.

Availability of Data and Materials We the undersigned declare that this manuscript is original with new data and synthesized novel materials, has not been published before and is not currently being considered for publication elsewhere.

Declarations

Competing interests We wish to confirm that there are no known conflicts of interest associated with this publication.

Ethical Approval We had kept the Ethical fields in all of terms. In this research process, we did not use any illegal and inhibited human test, drug and instrument.

Consent to Participate We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed.

Consent to Publish We further confirm that the order of authors listed in the manuscript has been approved for this publication by all of us.

References

1. F. Xu, J. Zhang, B. Zhu, CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. J. Appl. Catal. B 230, 194–202 (2018)
2. S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. J. Angew. Chem. Int. Ed. 52(29), 7372–7408 (2013)
3. C.D. Windle, R.N. Perutz, Advances in molecular photocatalytic and electrocatalytic CO2 reduction. Coordinator. Chem. Rev. 256, 2562 (2012)
4. Q. Qu, X.F. Duan, One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion. J. Mater. Chem. 22, 16171–16181 (2012)
5. F.H. Thomas, T.C. Timothy, H.F. Nicholas, Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage. Energy Environ. Sci. 5, 7132 (2012)
6. Y. Yiaguo, L. Jingxiang, X. Wei, Z. Peng, J. Mietek, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by Co exposed 001 and 101 facets. Am. Chem. Soc. 136(25), 8839–8842 (2014)
7. Q. Xiang, B. Cheng, J. Yu, Graphene-based photocatalysts for solar-fuel generation. Angew. Chem. Int. Ed. 54, 11350 (2015)
8. E.V. Kondratenko, M. Guido, J. Baltrusaitis, G. Larrañagal, J. Pérez-Ramírez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. J. Energy Environ. Sci. 6, 3112 (2013)
9. J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8(3), 1701503 (2018)
10. W.H. Wang, Y. Himeda, J.T. Muckerman, G.F. Manbeck, E. Fujita, CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115, 12936–12973 (2015)
11. J. Low, J. Yu, W. Ho, Graphene-based photocatalysts for CO2 reduction to solar fuel. J. Phys. Chem. Lett. 6, 4244–4251 (2015)
12. W. Tu, Y. Zhou, Z. Zou, Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26, 4607–4626 (2014)
13. J. Jin, T. He, Facile synthesis of Bi2S3 nanoribbons for photocatalytic reduction of CO2 into CH3OH. Appl. Surf. Sci. 39, 364–370 (2017)
14. W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Appl. Catal. B 21, 693–704 (2017)
15. T. Di, B. Zhu, B. Cheng, J. Yu, J. Xu, A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J. Catal. 352, 532–541 (2017)
16. T. Xinyong, C. Xiaorong, X. Yang, H. Hui, G. Yongping, W. Rui, C. Feng, Z. Wenkui, Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium–sulfur batteries. J. Mater. Chem. A 1, 3295 (2013)
17. Y. Min, G. He, Q. Xu, Y. Chen, Dual-functional MoS2 sheet-modified CdS branch-like heterostructures with increased photostability and photocatalytic activity. J. Mater. Chem. A 2, 2578–2584 (2014)
18. S. Devi, P. Korake, S.N. Achary, N.M. Gupta, Genesis of increased photoactivity of CdS/Ni2 O4 nanocomposites for visible-light-driven splitting of water. Int. J. Hydrogen Energy 39, 19424–19433 (2014)
19. W. Zhang, R. Xu, Surface engineered active photocatalysts without noble metals: CuS-ZnxCd1−xS nanospheres by one-step synthesis. Int. J. Hydrogen Energy 34, 8495–8503 (2009)
20. X. Zong, J. Han, G. Ma, H. Yan, G. Wu, C. Li, Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J. Phys. Chem. C 115, 12202–12208 (2011)
21. Q. Lu, J. Rosen, Y. Zhou et al., A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014)
22. P.K. Kendra, R.C. Etosha, N.A. David, F.J. Thomas, New insight into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012)
23. F.S. Roberts, K.P. Kuhl, A. Nilsson, High selectivity for Ethylene from carbon dioxide reduction over Copper nanocube electrocatalyst. Angew. Chem. Int. Ed. 54, 5179–5182 (2015)
24. A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electrolyreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010)
25. H. Liu, F.X. Ma, C.Y. Xu, L. Yang, Y. Du, P.P. Wang, S. Yang, L. Zhen, Sulfurizing-induced hollowing of Co9S8 microplates with nanosheet units for highly efficient water oxidation.ACS Appl. Mater. Interfaces 9, 11634 (2017)
26. X. Han, W. Zhang, X. Ma, C. Zhong, N. Zhao, W. Hu, Y. Deng, Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid photocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 31, 1808281 (2019)
27. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008)
28. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Khilhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)
29. H. Tian, C. Wan, X. Xue, X. Hu, X. Wang, Effective electron transfer pathway of the ternary TiO₂/RGO/Ag nanocomposite with increased photocatalytic activity under visible light. Catalysts 7, 156 (2017)

30. H. Tian, K. Shen, X. Hu, L. Qiao, W.N. Zheng, S co-doped graphene quantum dots-graphene-TiO₂ nanotubes composite with increased photocatalytic activity. J. Alloys Compd. 691, 369–377 (2017)

31. H. Huang, K. Liu, Y. Zhang, K. Chen, Y. Zhang, N. Tian, Tunable 3D hierarchical graphene-BiO₃I nanoarchitectonics: Their in-situ preparation, and highly improved photocatalytic performance and photoelectrochemical properties under visible light irradiation. RSC Adv. 4, 49386–49394 (2014)

32. R. Rajendran, L.K. Shrestha, K. Minami, M. Subramanian, R. Jayavel, K. Ariga, Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/Co₃O₄ ternary nanocomposites with electrochemical performance. J. Mater. Chem. A 2, 18480–18487 (2014)

33. Y. Yan, S. Sun, Y. Song, X. Yan, W. Guan, X. Liu, W. Shi, Micro-wave-assisted in situ synthesis of reduced graphene oxide–BiVO₄ composite photocatalysts and their increased photocatalytic performance for the degradation of ciprofloxacin. J. Hazard. Mater. 250, 106–114 (2013)

34. D. Stefan, C.A. del Marla, P. Elena, G. Gonzalo, Electrochemical reduction of carbon dioxide on graphene-based catalysts. Molecules 26(3), 572 (2021)

35. O. Zambaga, Y.C. Kwang, W.C. Oh, Enhanced photocatalytic activity of CO₂ reduction to methanol through the use of a novel-structured CuCaAg₅Se–graphene–TiO₂ nanocomposite. New J. Chem. 44, 16795–16809 (2020)

36. W.C. Oh, F.J. Zhang, Preparation, and characterization of graphene oxide reduced from a mild chemical method. Asian J. Chem. 23, 875 (2011)

37. O. Zambaga, Y.C. Kwang, W.C. Oh, Novel micro and nano-structure of AgCuInS₂–graphene-TiO₂ ternary composite for photocatalytic CO₂ reduction for methanol fuel. ACS Omega 5, 26389–26401 (2020)

38. Y. Ya-hui, X. Ren-rui, L. Hang, L. Can-jun, L. Wen-hua, Z. Fa-qi, Photoelectrocatalytic reduction of CO₂ into formic acid using WO₃–x/TiO₂ film as novel photoanode. Trans. Nonferrous Met. Soc. China 26(9), 2390–2396 (2016)

39. A.A. Ensafi, H.A. Alinajafi, B. Rezaei, Pt-modified nitrogen doped graphene quantum dots-graphene-TiO₂ nanotubes composite with increased photocatalytic activity. J. Alloys Compd. 691, 369–377 (2017)

40. A. Md. Estak, M. Sumit, M. Biswajit, K.S. Shyamal, Amorphous molybdenum sulfide quantum dots: an efficient hydrogencrivation, and photocatalytic activity. Int. J. Photoenergy (2012). https://doi.org/10.1155/2012/548158

41. X. Zhou, H. Sun, H. Zhang, W. Tu, One-pot hydrothermal synthesis of CdS/NiS photocatalyst for high H₂ evolution from water under visible light, Int. J. Hydrogen Energy. 42, 11199–11205 (2017)

42. S. Kumar, S. Bhunia, J. Singh, A.K. Ojha, Absence of room temperature ferromagnetism in Fe stabilized ZrO₂ nanostructures and effect of Fe doping on its structural, optical and luminescence properties. J. Alloy. Compd. 649, 348–356 (2015)

43. Z. Shuangfang, Y. Xiaohong, Z. Yinan, Increased photocatalytic reduction of CO₂ to methanol by ZnO nanoparticles deposited on ZnSe nanosheets. Chem. Phys. Lett. 693, 170–175 (2018)

44. S. Mathias, P. Murilo, A.S. Fernando, J.M. de Souza e Silva, O.M. Italo, Singular effect of crystalline size on the charge carrier generation and photocatalytic activity of nano-TiO₂. Appl. Surf. Sci. 319, 151–157 (2014)

45. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)

46. M. Pandiraraman, N. Soundararajan, Micro-Raman studies on thermally evaporated Ag₃Se thin films. J. Theor. Appl. Phys. 6, 7 (2012)

47. M.K. Pierre, D. Simon, M. Malik, P.L. Chuan, M.R. Mohamed, A.R. Diaa, W.M. Bronx, Strain and grain size of TiO₂ nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method. Results Phys. 9, 628–635 (2018)

48. A.H. Mohammad, M. Shahryar, E. Nesa, The analysis of linear dose-responses in gamma-irradiated graphene oxide: Can FTIR analysis be considered a novel approach to examining the linear dose-responses in carbon nanostructures? Radiat. Phys. Chem. 176, 109067 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.