Development strategy of the energy supply system for MPEI campus blocks based on green building

I.A. Sultanguzin¹, E.V. Zhigulina¹, Y.V. Yavorovsky¹, I.D. Kalyakin¹, A.V. Govorin¹, A.V. Fedyukhin¹, A.A. Krolin¹, S. V. Guzhov¹, O. Derevianko², L. Mukhamejto¹

¹National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia
²Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, Saint Petersburg, 195251 Russia
³Federal State Budgetary Educational Institution of Higher Education “Kazan State Power Engineering University”, Kazan, Krasnoselskaya street, 51

FedyukhinvA@yandex.ru

Abstract. The article presents the development strategy of the energy supply system for National Research University "Moscow Power Engineering Institute" (MPEI) buildings based on green building. The designing mathematical model of one of MPEI academic buildings connected with the Scientific and technical library of the University has been created in Passive House Planning Package and designPH software. The parameters of the building energy supply system with the lowest energy consumption are presented.

Energy-efficient buildings construction with minimum energy consumption in Russia is one of the basic tasks in solving of energy saving problems [1–14]. Here optimum solutions are to be estimated for north, moderate and south climate zones taking into account their specific characteristics [15–19].

The solution for the optimization task through a mathematical model allows one to determine optimum parameters of energy supply system at which power independence of the considered object would be reached. It will allow to use the renewable energy and to preserve fossil fuels that is urgent because of existing reserves exhaustion [20–24].

In accordance with Federal Law No. 261-FZ from 23.11.2009 "On energy saving and increasing energy efficiency and on amendments to certain legislative acts of the Russian Federation" starting from 01.01.2010 the state (municipal) institutions should ensure the reduction under comparable conditions the uptake of water, diesel and other fuels, natural gas, heat and electricity, coal for five years, not less than 15% of the volume actually consumed by them in 2009 each of these resources with the annual decrease this amount by at least 3%.

National Research University "Moscow Power Engineering Institute" is one of the largest technical universities of Russia. MPEI infrastructure consists of nine educational buildings that contain hundreds of academic and scientific laboratories, a training-experimental heat and power plant, five buildings of students hostel, pilot-production plant, health center, culture house, dining-hall, sports complex "Energia", swimming pool.
Being the main power engineering university in Russia National Research University of MPEI realizes its responsibility for students and for society to represent itself an example of the most energy efficient organization and to develop the energy-saving technologies. Despite the fact that MPEI regularly hosts energy survey (Fig. 1) [25,26] and there were implemented many of the energy efficiency measures, the conditions of all buildings of the campus are quite far from passive house or nearly zero energy building standards [1,12,18,27].

The author collective has developed and suggested the following strategy of the energy supply system for MPEI buildings based on green building.

Similar projects are being realized in Europe in the recent years. For example, the administrative building of Vienna Technical University [28,29], renovated in 2015 is the first high-rise building in Europe, which produces more energy than it consumes. This building operates as a public building which is visited by approximately 800 employees and up to 1800 students every day. In October 2015, Vienna Technical University, in whose ownership the building is, was awarded the Austrian state prize for outstanding achievements in the field of technologies of environmental protection and energy efficiency (category "Research and innovation"). Also there are similar examples among multi-store residential buildings, such as Aktiv-StadtHaus at Frankfurt am Main, with total living area of 10714 square meters, which was constructed in 2015 [30].

![Energy distribution and consumption of MPEI visualization subsystem](image)

Figure 1. Energy distribution and consumption of MPEI visualization subsystem

The main stages of the forthcoming work at MPEI are the following:

1. Reconstruction of the following MPEI blocks: E, M and Scientific and Technical Library (STL) of MPEI on the basis of implementation of green building strategy Passive House Planning Package (PHPP)
 1. Determination of the existing energy consumption and setup of mathematical models for buildings E, M and STL in the three-dimensional modeling software package, design PH and passive house design PHPP based on energy audit results.
 2. Development and implementation of the buildings thermal protection program through application of modern and advanced building materials and technologies
 - Thermal protection of external walls
 - Energy-saving windows and doors installation
 - Insulation of the roof and technical floor
 - Insulation of basements
 - The use of phase change materials (PCM)
3. Development of the energy supply system for buildings based on modern and advanced energy-saving technologies and materials [28–35]:

- Heating system
- Hot water system
- Ventilation system
- Air Conditioning system
- Lightning system
- Power supply system
- The automation system of the individual subsystems
- The system of monitoring and integrated management of the entire energy supply system

4. Implementation strategy of green technology through renewable energy sources usage:

- Solar collectors
- Solar panels
- The combined production of electric and thermal energy technology based on BIPV and BIPVT (Building Integrated PhotoVoltaic Thermal) solar batteries and collectors integration in the roof and the facades
- Trigeneration of electricity, heat and cold with the use of PVT technology and absorption chillers to provide air conditioning systems in summer
- Wind turbines
- Inverters and electric accumulators
- System daily, weekly and seasonal thermal energy storage

5. Economic evaluation of green building projects implementation

6. Analysis and choice of energy saving projects with minimal funding

7. Analysis and selection of green building projects with the necessary funding leading to nearly zero energy building

II. Reconstruction of other blocks of MPEI campus based on the implementation strategy for green building:

1. Academic and administrative buildings;
2. Residential buildings and dormitories;
3. Institutions of culture and medicine, buildings of public catering and shops.

By now the first point is being done. The mathematical models of buildings M and STL have been developed in the three-dimensional modeling software package, designPH and passive house design PHPP [31,32] based on energy audit results [25,26].

![Figure 2. Buildings of M block and the Scientific and Technical Library](image-url)
The model of M-block and of the Scientific and technical library is presented in Fig. 2. The results of modeling the buildings before the reconstruction are shown in table 1.

Table 1. The results of modeling the buildings at present

	Total heat losses (kWh/a)	Total free heat gains (kWh/a)	Utilization factor	Tracted Floor Area (m²)	Ann. Heat Demand (kWh/a)	Specific Ann. Heat Demand, Qₙ (kWh/m²)
M	360351.34	527391.10	1.00	17504.41	3136100.15	178.63

	Area Heighted U-value (kW/m²K)	Air Temp. Factor	Ann. Htg. Deg. Hours (kWh)	Heat capacity of air (kW)	Ann. Htg. Deg. Hour (kWh)	Ventilation heat Loss (kWh/a)	Qᵥ (kWh/m²)
M	24111.90	1.34	0.89	118.00	347180.82	33.03	2.14

	Air Ventilation volume (m³)	Eff. air exchange rate	Heat capacity of air (kW)	Ann. Htg. Deg. Hours (kWh)	Ventilation heat Loss (kWh/a)	Qᵥ (kWh/m²)
M	17566.41	45968.02	0.14	33.33	219192.52	13.21

Group	Area Group	Win. area (m²)	Glazing area (m²)	g-value	Reduction factor	Radiation, qₑ (kW/m²)	Solar heat gain (kWh/a)	Qₛ (kWh/m²)
2	East Windows	2108.01	194.84	0.58	0.49	146.15	3386.75	0.45
3	West Windows	398.83	277.24	0.58	0.50	322.19	9906.71	9.63
4	South Windows	2156.12	175.20	0.58	0.50	448.60	37069.61	2.14
5	Windows	2156.12	175.20	0.58	0.50	219.29	115588.12	0.57
6	Windows	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	Tracted Floor Area (m²)	Internal heat gain rate (kW/m²)	Heating period (days)	Heating period (kWh)	Internal heat gain (kWh/m²)	Qᵥ (kWh/m²)
M	17566.41	2.10	33.33	347180.82	219192.52	13.21

Energy audit showed that the buildings M and STL have high heat losses. Thermovision inspection has been carried out outside of building. The temperature defect of the building guarding construction (walls and windows) is watched in Fig. 3. It means that it is necessary to increase wall insulation and change some windows to energy-saving windows.

Figure 3. Thermovision inspection of outside of building M

Also, energy audit showed that inside temperature in building M was 22.5 – 25.2 °C in December 2016 – January 2017 when outside temperature was in the range from +1.5 to -26 °C. Indoor temperature is significantly higher than normal temperature 20 - 22 °C. It means that it is necessary to develop the heating automation system, that will allow one to get the essential energy saving for heating.

Just time ventilation system for building M and STL is used without recuperation of waste air.
Installation of ventilation units with 80–90% heat recovery efficiency and 50–80% humidity recovery efficiency allows decreasing loss of heat with exhaust air. According to Passive House Institute recommendations [27] the building envelope must be built in a very airtight way, $n_{50} < 0.6$ h$^{-1}$ is required and < 0.3 is recommended. Also, in the interest of justifiable operational costs, the ventilation systems in University buildings must be operated periodically or according to demand. Regulation of the air quantities according to demand should be strived for the CO$_2$ content of the air and depend on the occupancy density.

For decision problem of air conditioning system in summer it is necessary to select energy effective equipment for specific conditions. Here different schemes, including heat pumps could be analyzed and chosen.

Realization of energy saving program on building M and STL reconstruction allows one to decrease specific energy consumption for heating from 179 kW·h/(m2·year) to 25 kW·h/(m2·year) approximately. The results of preliminary modeling the buildings after reconstruction are shown in table 2.

Table 2. The results of modeling the buildings after reconstruction

Building	Area Group	Glazing area (m2)	Q-value	Reduction factor	Solar heat gain (kW/m2)	Q$_s$ (kW/m2)
M block	North Windows	216.10	1.05	1.50	123.15	80.59
STL	East Windows	210.91	1.04	1.50	122.16	80.59
	South Windows	338.83	0.60	0.65	446.00	383.76
	West Windows	2116.02	0.60	0.65	1174.52	1174.52
	Horizontal Windows	0.00	0.00	1.50	0.00	0.00

Building M and STL are located at Krasnokazarmennaya street, and from south side there are no buildings which cover facades and roofs for solar radiation. It means that it is possible to install building integrated photovoltaic panels on ventilated facades and BIPVT panels [33–35] on roofs of building M and STL.

Calculation with PHPP software [27,31] showed that it is possible to rebuild M block and STL with nearly zero energy balance like buildings in [28–30] cases with using BIPV and BIPVT technologies for good insulating energy saving buildings.

We hope that this will be a demonstrative project of energy saving green building in MPEI.

All other buildings of MPEI Campus could be reconstructed as green nearly zero energy buildings realized on the base of M block building and STL experience.

Conclusion
The present work proposes the development strategy of the energy supply system for MPEI campus blocks based on green building. Realization of this strategy is considered on the example of M block and Scientific and Technical Library modeling and further reconstruction.

References
[1] Perlova E. et al. Concept project of zero energy building // Procedia Engineering. 2015. Vol. 100, № January. P. 1505–1514.
[2] Zaborova D., Petrochenko M., Chernenkaya L. Thermal Stability Influence of the Enclosure Structure on the Building’s Energy Efficiency // MATEC Web of Conferences. 2016. Vol. 73.
[3] Murgul V. Methodology to Improve Energy Efficiency of Residential Historic Buildings in St. Petersburg // MATEC Web of Conferences. 2016. Vol. 53.
[4] Zadvinskaya T.O., Gorshkov A.S. Comprehensive method of energy efficiency of residential house // Advanced Materials Research. 2014. Vol. 953–954. P. 1570–1577.
[5] Nemova D. V., Bogomolova A.K., Kopylova A.I. The impact of green roofs on thermal protection and the energy efficiency of buildings // Advances and Trends in Engineering Sciences and Technologies II - Proceedings of the 2nd International Conference on Engineering Sciences and Technologies, ESaT 2016. P. 579–584.
[6] Vatin N.I. et al. The energy-efficient heat insulation thickness for systems of hinged ventilated facades // Advanced Materials Research. 2014. Vol. 941–944. P. 905–920.
[7] Starkov V., Ovchinnikov P., Dzampaev T. Optimization of Energy Performance of Windows by Applying Self-Adjustable Shadings // MATEC Web of Conferences. 2016. Vol. 73.
[8] Staritcyna A. et al. Energy efficiency in multi-story buildings // MATEC Web of Conferences. 2016. Vol. 73.
[9] Harmati N., Jakšić Z., Vatin N. Energy consumption modelling via heat balance method for energy performance of a building // Procedia Engineering. 2015. Vol. 117, № 1. P. 791–799.
[10] Penić M., Vatin N., Murgul V. Double skin facades in energy efficient design // Applied Mechanics and Materials. 2014. Vol. 680. P. 534–538.
[11] Zeb A. et al. LED Lightbulbs as a Source of Electricity Saving in Buildings // MATEC Web of Conferences. 2016. Vol. 73.
[12] Statsenko E. et al. Thermal Properties of the Building with Low Energy Consumption (LEB) // Advances in Intelligent Systems and Computing. 2018. Vol. 692. P. 417–421.
[13] Vatin N., Gamayunova O. Energy saving at home // Applied Mechanics and Materials. 2014. Vol. 672–674. P. 550–553.
[14] Mukhametova L.R., Akhmetova I.G., Akhmetov T.R. Evaluating the effectiveness of energy efficiency programs. Problems of energy saving in heating. Proceedings of the higher educational institutions. ENERGY SECTOR PROBLEMS. 2015,(9-10):12-21. https://doi.org/10.30724/1998-9903-2015-0-9-10-12-21.
[15] Baranova D. et al. Correlation of energy efficiency and thermal comfort depending on the ventilation strategy // Procedia Engineering. 2017. Vol. 205. P. 503–510.
[16] Zaychenko I., Gutman S., Kalinina O. Adjustment of Energy Strategy of Russia to Specific Nature of Far North: Analytic Hierarchy Process // Advances in Intelligent Systems and Computing. 2018. Vol. 692. P. 453–462.
[17] Pukhkhal V., Bieliatynskyi A., Murgul V. Designing energy efficiency glazed structures with comfortable microclimate in northern region // J. Appl. Eng. Sci. 2016. Vol. 14, № 1. P. 93–101.
[18] Pukhkhal V. et al. Studying humidity conditions in the design of building envelopes of “passive house” (in the case of Serbia). Elsevier Ltd, 2015. Vol. 117, № 1. P. 864–869.
[19] Aronova E., Vatin N., Murgul V. Design energy-plus-house for the climatic conditions of Macedonia. Elsevier Ltd, 2015. Vol. 117, № 1. P. 771–779.
[20] Arseniev D.G. et al. The model of intelligent Autonomous Hybrid Renewable Energy System based on Bayesian Network // 2016 IEEE 8th International Conference on Intelligent Systems, IS 2016 - Proceedings. 2016. P. 758–763.

[21] Malinina T., Shklyaruk M. Comparative evaluation of supporting systems for the use of renewable energy sources in the European Union and Russia. Technical University of Kosice, 2015. P. 420–421.

[22] Zubkova M. et al. Technological Decision to Renewable Energy Usage Biogas for Off-grid Systems Consumption // MATEC Web of Conferences. 2016. Vol. 73.

[23] Timerbaev N.F., Tuntsev D.V., Khairullina M.R., Kitaev S.V. Technologies and equipment for the production of electricity from wood waste. Proceedings of the higher educational institutions. ENERGY SECTOR PROBLEMS. 2017;19(1-2):102-107. https://doi.org/10.30724/1998-9903-2017-19-1-2-102-107

[24] Politaeva N A, Kuznetsova T A, Smyatskaya Y A, Trukhina E V and Atamanyuk I 2018 Energy Production from Chlorella Algae Biomass Under St. Petersburg Climatic Conditions Chem. Pet. Eng. 1–5

[25] Dragunov V.K. et al. The energy consumption, monitoring and energy saving measures in the University with the use of information systems // Sci. Methodol. Probl. new Educ. Technol. 2014. Vol. 6. P. 32–38.

[26] Krolin A.A., Guzhov S. V. MPEI — modern platform for the promotion of energy-saving technologies // Reg. energy energy Effic. 2015. Vol. special is. P. 4–5.

[27] Passive House schools – Requirements [Electronic resource]. URL: https://passipedia.org/planning/non-residential_passive_house_buildings/passive_house_schools/passive_house_schools_requirements.

[28] Bismarck M. Reconstruction of the Vienna technical University // Build. high Technol. 2016. Vol. 4. P. 18–21.

[29] Prize-winning energy-plus building in Vienna TU // SAUTER Facts. 2015. Vol. 33. P. 22–23.

[30] Elokhov A.E. An example implementation in Germany residential buildings with positive energy balance // EuroStroyProfi. 2016. № special issue on “Energy efficiency. Energy saving. Environment.” P. 28–33.

[31] Strogonov K. et al. Estimation of Practical Significance for Application of Composite Pipes in Comparison with Metal and Polymer Materials. Springer Verlag, 2018. Vol. 692. P. 1024–1035.

[32] Kharkov N.S. Nonstationary heat and mass transfer in the multilayer building construction with ventilation channels. Institute of Physics Publishing, 2017. Vol. 891, № 1.

[33] Shatornaya A. et al. Ventilated Facades: Insulation Materials of Different Manufacturers. EDP Sciences, 2016. Vol. 53.

[34] Olshesvycki V. et al. Moisture Transfer in Ventilated Facade Structures. EDP Sciences, 2016. Vol. 53.

[35] Petrichenko M. et al. Functionality of Ventilated Facades: Protection of Insulation. EDP Sciences, 2016. Vol. 53.

[36] Gorskikov A.S., Rymkevich P.P. A diagram method of describing the process of non-stationary heat transfer // Mag. Civ. Eng. St-Petersburg State Polytechnical University, 2015. Vol. 60, № 8. P. 68–82.

[37] Rudskoy A.I. et al. Advanced metallic materials and processes // Mater. Phys. Mech. Institute of Problems of Mechanical Engineering, 2016. Vol. 25, № 1. P. 1–8.

[38] Rudskoy A.I. et al. Key Engineering Materials: Preface // Key Engineering Materials. 2005. Vol. 291–292.

[39] Feist V. Basic provisions on design of passive houses. Moscow: KONTIPRINT, 2015. 144 p.

[40] Sultanguzin I. et al. No Title // INGENIERTAG 2016. Der Fakultat Maschinenbau, Electrround Energiesysteme Gus- und Osteuropatag. NESEFF-NETZWERKSTREFFEN 2016.
Tagungsband. Brandenburgische Technische Universität. Cottbus-Senftenberg. 14-15 November 2016. 2016. P. 8–12.

[41] Debbarma M., Sudhakar K., Baredar P. Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review // Renew. Sustain. Energy Rev. 2017. Vol. 73. P. 1276–1288.

[42] Biyik E. et al. A key review of building integrated photovoltaic (BIPV) systems // Eng. Sci. Technol. an Int. J. 2017. Vol. 20. P. 833–856.

[43] Lamnatou C. et al. Modelling and simulation of Building-Integrated solar thermal systems: Behavior of the system // Renew. Sustain. Energy Rev. 2015. Vol. 45. P. 36–51.