Long-Term X-ray Monitoring of 1E 1740.7–2942 and GRS 1758–258

D. S. Main¹, D. M. Smith¹, W. A. Heindl², J. Swank³, M. Leventhal⁴, I. F. Mirabel⁵, L. F. Rodriguez⁶

ABSTRACT

We report on long-term observations of the Galactic-bulge black hole candidates 1E 1740.7–2942 and GRS 1758–258 with the Rossi X-Ray Timing Explorer. 1E 1740.7–2942 has been observed 77 times and GRS 1758–258 has been observed 82 times over the past 1000 days. The flux of each object has varied by no more than a factor of 2.5 during this period, and the indices of the energy spectra have varied by no more than 0.4. The power spectra are similar to other black-hole candidates: flat-topped noise, breaking to a power law. Each object has exhibited a brightening that lasted for several months, and we have found a time lag between the photon power-law index and the count rate. In both sources, the spectrum is softest during the decline from the brightening. This behavior can be understood in the context of thin-disk and advection-dominated accretion flows coexisting over a wide range of radii, with the implication that both sources have low-mass companions and accrete via Roche-lobe overflow.

Subject headings: accretion, accretion disks — black hole physics — x-rays:stars — stars.individual:(1E 1740.7-2942) — stars.individual:(GRS 1758-258)

¹Space Sciences Laboratory, University of California Berkeley, Berkeley, CA 94720
²Center for Astrophysics and Space Sciences, Code 0424, University of California San Diego, La Jolla, CA 92093
³NASA Goddard Space Flight Center, Code 666, Greenbelt, MD 20771
⁴Dept. of Astronomy, University of Maryland College Park, College Park, MD 20742
⁵CEN-CEA Saclay, Service d’ Astrophysique, 91191 Gif-Sur-Yvette Cedex, France
⁶Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-264, DF04510 Mexico City, Mexico
1. Introduction

1E 1740.7–2942 and GRS 1758–258 are by far the brightest persistent sources in the Galactic bulge above \(\sim 50 \text{ keV} \) (Sunyaev et al. 1991). Their spectra are typical of a black hole low (hard) state (Heindl et al. 1993; Sunyaev et al. 1991). Although variable over times of days to years, they spend most of their time near their brightest observed level. Both have a core-and-jet structure in the radio (Heindl, Prince, & Grunsfeld 1994; Mirabel et al. 1992; Rodriguez, Mirabel, & Martí 1992) and have therefore been described as microquasars. These characteristics make this pair of objects a subclass among the black hole candidates.

This subclass shares features with other black hole candidates. Radio jets also appear in the much brighter, and spectacularly variable objects more usually called microquasars: GRS 1915+105 and GRO J1655-40 (Greiner, Morgan & Remillard 1996; Zhang et al. 1997a), whose jets, too, are brighter and more variable. Maximum luminosities around \(3 \times 10^{37} \text{ ergs sec}^{-1} \) are shared with Cyg X-1 and the recently discovered transient GRS 1737-31 (Cui et al. 1997). The property of being in the hard state at fairly high luminosities half the time or more is shared only with Cyg X-1. The property of having been observed only in the hard state is shared with GRS 1737-31, GS 2023+338, GRO J0422+32, and GRO J1719-24, although the total amount of time devoted to these objects varies widely (Zhang, Cui, & Chen 1997; Tanaka & Lewin 1995).

Despite the hard spectra of the two objects, there has been some preliminary evidence of state changes: changes in the spectral shape of 1E 1740.7–2942 above 20 keV from BATSE data (Zhang et al. 1997b), and the detection of weak soft components from GRS 1758–258 (Mereghetti, Belloni, & Goldwurm 1994; Heindl & Smith 1998; Lin et al. 1999) and, with marginal significance, from 1E 1740.7–2942 (Heindl & Smith 1998).

Both sources were observed by SIGMA and ART-P to vary between observations separated by 6 months from a hard X-ray flux of about 130 mcrab (40 mcrab in the 8-20 keV ART-P band) to a level less than 10 mcrab and consistent with zero (Churazov et al. 1994; Pavlinsky et al. 1994). BATSE has also observed both 1E 1740.7–2942 and GRS 1758–258 at a near-zero flux level (Zhang et al. 1997b). Day-to-day variability is also seen in these data, including a 1 day jump in ART-P flux from 1E 1740.7–2942 from \(\sim 3 \) to \(\sim 18 \) mcrab. Both sources show rapid variability with a flat-topped power spectrum, behavior typical of the hard states of both black holes and neutron stars (Smith et al. 1997).

1E 1740.7–2942 and GRS 1758–258 have high Galactic extinction in the optical, and counterparts have not been identified; only O stars and red supergiants have been ruled out as companions (Chen, Gehrels, & Leventhal 1994). There have therefore been no mass
determinations; it has even been suggested (Bally & Leventhal 1991) that 1E 1740.7–2942
does not need a companion and could be accreting directly from a nearby molecular cloud. However, it has also been suggested that the lack of a 6.4 keV emission line in the spectrum of 1E 1740.7–2942 strongly constrains the amount of gas immediately surrounding the
textource (Churazov, Gilfanov, & Sunyaev 1996).

2. Observations

We have observed 1E 1740.7–2942 and GRS 1758–258 in ∼1500 second intervals with
the Rossi X-Ray Timing Explorer (RXTE). From 1996 February through 1996 October the
observations were spaced one month apart. We have observed weekly since 1996 November.
This report is based on data obtained through 1998 September. Because RXTE cannot
point near the Sun, from late November to late January observations were not taken. All
data reported here were taken with the Proportional Counter Array (PCA).

The PCA (Jahoda et al. 1996) consists of five xenon proportional counters of
~1300 cm² each, for a total of 6500 cm², that are sensitive from 2 to 60 keV and share a 1°
FWHM passively collimated field of view. We calculate instrumental background with the
standard “Q6” model for consistency in a data set that spans the whole mission. Although
this is not the most current model, we have found the differences among models to be
negligible for these moderately bright sources. Our response matrices are those standard
to FTOOLS release 4.1, including the time dependences of the gain and of the diffusion of
xenon into the propane layer.

The pointing directions were offset to avoid other nearby X-ray sources: A1742-294
and other Galactic Center sources near 1E 1740.7–2942 and GX 5-1 near GRS 1758–258.
The instrumental effective areas resulting from the offsets were 43% and 46% of on-axis
values for 1E 1740.7–2942 and GRS 1758–258, respectively. Since both sources lie in
the Galactic plane, background observations were made to determine the Galactic diffuse
emission. For 1E 1740.7–2942, the background field is opposite in Galactic longitude and
equal in Galactic latitude to the source field. For GRS 1758–258, the background fields are
at the same Galactic latitude as the source field and on either side in Galactic longitude.
The source and background fields are shown along with some bright sources in the region
in Figure 1. The coordinates of these pointings are given in Smith et al. (1997).

For the spectral analyses, we used only the top layer of the PCA detectors, in the
energy range 2.5 to 25 keV. In this mode, the diffuse X-ray background from the Galactic
plane is 77 counts sec⁻¹ for 1E 1740.7–2942 and 32 counts sec⁻¹ for GRS 1758–258. The
instrumental background is about 20 counts sec$^{-1}$. Typical source count rates for both sources are about 100 counts sec$^{-1}$. Although 1E 1740.7–2942 is somewhat brighter than GRS 1758–258 in the 2.5 to 25 keV band, it is also more absorbed below a few keV.

All the background-subtracted energy spectra were fitted with an absorbed power law. The time histories of the PCA count rate, the rms variability, and the photon power-law index (PLI) are shown in Figure 2. Gaps from November to January of each year are due to the RXTE solar pointing constraint. A few observations of each source have been removed due to very high background when the observation was made immediately after exiting the South Atlantic Anomaly. This condition occurred more often for 1E 1740.7–2942. After removing one observation of 1E 1740.7–2942 which was contaminated by the new transient XTE J1739-302 (Smith et al. 1998), we present a total of 77 observations of 1E 1740.7–2942 and 82 observations of GRS 1758–258.

3. Subtle Changes and Hysteresis

The histories of both 1E 1740.7–2942 and GRS 1758–258 in Figure 2 clearly show that neither source turned off during the past 3 years. The count rate has ranged from about 60 counts sec$^{-1}$ to 140 counts sec$^{-1}$ in both sources.

This result is in conflict with a recent preliminary report on GRS 1758–258 by Cocchi et al. (1999) using data from the BeppoSAX Wide Field Camera. They report that on three occasions (1996 September, 1997 October, and 1998 March) the flux dropped by roughly a factor of 5, becoming so low as to be undetectable. No such large drops appear in the RXTE data at these times, which are marked by triangles in Figure 2. Although neither the BeppoSAX nor the RXTE data are continuous, the RXTE dataset has 59 short pointings during the range of time covered by the 16 short BeppoSAX observations in Cocchi et al. (1999). It is therefore highly unlikely that RXTE would miss the large variations reported by BeppoSAX if they occurred with a random distribution in time.

The RXTE spectra show that both sources have remained in the hard state during the past 3 years, even though the PLI has occasionally softened slightly. All the variations discussed below are subtle changes within the hard state.

Both sources exhibit events of brightening and softening in early 1998 (see Figure 2). The softening clearly lags the brightening. By using the cross-correlation function, we found that there is a \sim58 day lag between PLI and count rate in 1E 1740.7–2942 and a \sim36 day lag in GRS 1758–258. In both sources, we used only the data around the peaks in the count rate and PLI for computing the cross-correlation function. The peaks occurred
between 22 January 1998 and 11 September 1998. The brightest periods are approximately from 2 February 1998 to 28 May 1998 for 1E 1740.7–2942 and 22 January 1998 to 12 March 1998 for GRS 1758–258.

Figure 3 shows scatter plots of PLI vs. count rate for both GRS 1758–258 and 1E 1740.7–2942 during these events. When the points on the scatter plots are connected, a circle is clearly evident, showing hysteresis between the two parameters; i.e., the time lags described above can also be thought of as a phase lag of \(\sim 90^\circ \). Because of this hysteresis effect, our data show that the time lag could hide real correlations in scatter plots using data taken over long periods.

We have considered the possibility that these events were instrumental. This is unlikely for two reasons: 1) the events are not simultaneous and 2) they are much greater changes than the known time evolution of the instrument parameters, such as efficiency and gain.

The brightening/softening event in 1E 1740.7–2942 was preceded by a period in which the PLI was gradually hardening, beginning in March 1997 and lasting for \(\sim 250 \) days. In GRS 1758–258 there was also a period of gradual hardening before the similar event, lasting \(\sim 150 \) days.

4. Timing Results and Analysis

The counts for each observation were summed into 31.25 ms bins for the timing analysis. The individual observation times ranged from 1000 to 1500 seconds. Typical power spectra for GRS 1758–258 and 1E 1740.7–2942 are shown in Figure 4. The full energy range of the PCA (2-60 keV) was used for all the power spectra, but the contribution above 20 keV is small.

We fitted the power spectra with a broken power law (index 0 below the break and free above it). Typical values of the break frequency range from 0.1 to 0.8 Hz for both GRS 1758–258 and 1E 1740.7–2942. Typical values of the index above the break frequency are around -1. The rms variability integrated from 0.004 to 15.8 Hz ranged from 21.5% to 30.5% for GRS 1758–258 and from 13.9% to 28.6% for 1E 1740.7–2942.

In these short observations, the statistics were insufficient to observe any quasi-periodic oscillations (QPOs). However, in longer duration observations, QPOs have been observed in both GRS 1758–258 and 1E 1740.7–2942 (Smith et al. 1997). Figure 5 shows the average power spectrum of 77 observations for 1E 1740.7–2942 and 82 for GRS 1758–258, and Figure 6 shows the results from Smith et al (1997). There are no obvious QPOs in
our results. Since the QPOs exist in the long observations but do not appear when the short observations are summed, one may conclude that either the deep observations found a rare appearance of the QPOs, or that the QPOs drift in frequency with time. Wijnands & van der Klis (1998) have shown a correlation between the break frequency and QPO frequency in both neutron stars and black hole candidates. Since the break frequencies of GRS 1758–258 and 1E 1740.7–2942 are variable, then the QPO frequencies may also be variable.

5. Energy Spectra

We fitted the energy spectra of GRS 1758–258 and 1E 1740.7–2942 with a power law absorbed by a column of neutral interstellar gas. The variations in PLI were shown in Figure 2. For 1E 1740.7–2942, the column depth varied between 7.4×10^{22} and 11×10^{22} atoms cm$^{-2}$ and the average value was 9.2×10^{22} atoms cm$^{-2}$. For GRS 1758–258, the absorption column varied between 0.71×10^{22} and 2.3×10^{22} atoms cm$^{-2}$ with an average value of 1.4×10^{22} atoms cm$^{-2}$. Sheth et al. (1996), measured the column depth for 1E 1740.7–2942 at $(8.1 \pm 0.1) \times 10^{22}$ atoms cm$^{-2}$ with ASCA, which is consistent with the range we obtained. Another ASCA measurement (Mereghetti et al. 1997) measured the column depth for GRS 1758–258 at $(1.5 \pm 0.1) \times 10^{22}$ atoms cm$^{-2}$, again consistent with our range.

The column depth is mostly determined by the spectral shape below ~ 4 keV, and the PLI mostly by the higher-energy part of the spectrum. At the lowest energies, we are most vulnerable to uncertainties about the influence of diffuse emission and soft sources on the edges of both fields of view (see §2). We therefore do not claim that the range of absorption columns obtained is evidence of real variability. There is no correlation between the column depth and PLI in either source, and we are confident that the variations in PLI are real.

The PLI ranged from 1.37 to 1.76 for 1E 1740.7–2942 and from 1.45 to 1.86 for GRS 1758–258. The values found by Heindl and Smith (1998) for the PLI of GRS 1758–258 and 1E 1740.7–2942, using their deep pointings to both sources in August and March of 1996, were 1.54 and 1.53, respectively. These values included HEXTE data and were derived with a model which included an exponential cutoff at high energies. With the simpler power-law model used here, the indices from the monitoring observations just before and after each deep pointing average to 1.67 and 1.68 for GRS 1758–258 and 1E 1740.7–2942, respectively. This is consistent with the expectation that, in the absence of a cutoff in the model, the effect of the cutoff will appear in a softening of the fitted PLI. The statistics in individual monitoring observations are not good enough to measure the cutoff and PLI
6. Comparison to Cygnus X-1

The similarities between Cyg X-1 and 1E 1740.7–2942 and GRS 1758–258 suggest that these three sources are similar objects. Some of these similarities were mentioned in §1: the x-ray luminosities, hard spectra, and persistent activity of all three sources. Another similarity is the shape of the power spectra. When in the hard state, all three sources show white noise up to ~ 1.5 Hz (see §4) and break to a power law, with an index above the break of ~ -1. Cyg X-1 displays a relationship between the break frequency and the rms variability integrated over frequency. This behavior was first illustrated by Belloni and Hasinger (1990). They showed that the low-state power spectrum for Cyg X-1 always had the same normalization above the break frequency, which varied. Miyamoto et al. (1992) noted that this held true from one black hole candidate to another. We searched for the same effect in GRS 1758–258 and 1E 1740.7–2942. We divided our data into three groups, those with the largest, smallest, and near-average rms and averaged the power spectra in each group. Because of this averaging, the break frequencies are more rounded than Belloni & Hasinger showed for Cyg X-1, but otherwise Figure 7 shows that GRS 1758–258 and 1E 1740.7–2942 are similar to Cyg X-1 in this respect.

Unlike 1E 1740.7–2942 and GRS 1758–258, Cyg X-1 has been observed in a true soft state, in which a soft thermal component was dominant (e.g. Cui et. al. 1997b). When Cyg X-1 was in the soft state, the PLI was -2.2. A similar index was seen by BATSE above 20 keV in 1E 1740.7–2942 while that source was faint in the BATSE band (Zhang et al. 1997b). Simultaneous observations at lower energies during another occurrence of this state are needed to confirm that it is a soft state similar to that in Cyg X-1 and other black-hole candidates.

7. Discussion

7.1. Dynamical model for hysteresis

We can qualitatively explain the hysteresis or time lag between brightening and softening in 1E 1740.7-2942 and GRS 1758-258 in the context of some recent models of black-hole accretion. These models (e.g. Chakrabarti & Titarchuk 1995, Esin et al. 1998) have two components in the outer regions of the flow: a standard Keplerian disk, physically thin and optically thick, and an optically thin, physically thick halo or corona. The mass independently.
in the halo is nearly in radial free-fall, and it advects most of its accretion energy into the black hole rather than radiating it as the Keplerian disk does (Ichimaru 1977; Rees et al. 1982; Narayan & Yi 1995; Abramowicz et al. 1995).

In early disk-plus-corona models, the corona was produced locally by the Keplerian disk, and did not accrete independently and advectively (e.g. Liang & Price 1977, Bisnovatyi-Kogan & Blinnikov 1977). In the newer models, it is an equally valid and independent solution of the hydrodynamic equations.

Within a certain radius, the Keplerian disk is unstable, and only a very hot solution remains (an advection-dominated flow in the model of Esin et al. 1998, and a shocked flow in the model of Chakrabarti & Titarchuk (1995)). The soft, thermal component of black-hole-candidate spectra is attributed to the inner part of the Keplerian disk, near this boundary. The hard, power-law component is attributed to inverse Comptonization of these soft photons in the very hot inner parts of the advective flow.

While matter in the advective flow is nearly in free-fall, matter in the thin disk only accretes after a gradual loss of angular momentum via viscous torques. The timescale for this process is approximately (Frank, King & Raine 1992)

\[t_{\text{visc}} \sim 3 \times 10^5 \alpha^{-4/5} \left(\frac{\dot{M}}{10^{16} \text{g/s}} \right)^{-3/10} \left(\frac{M}{M_\odot} \right)^{1/4} \left(\frac{R}{10^{10} \text{cm}} \right)^{5/4} \text{s}, \]

where \(M \) is the black-hole mass, \(\dot{M} \) the accretion rate, \(R \) the disk radius, and \(\alpha \) the viscosity parameter (0 < \(\alpha \) < 1). Chakrabarti & Titarchuk (1995) pointed out that if the mass accretion rate were increased at the outer edge of both flows simultaneously, it would arrive at the central regions of the advective flow first. Thus the hard component would brighten first, with the soft component only brightening after a delay approximately equal to the viscous time. We offer this delay as one explanation for the hysteresis we observe between brightening and softening. If we use \(M = 10M_\odot \), \(\dot{M} = 10^{17} \text{g/s} \), \(t_{\text{visc}} \) equal to the measured delays (see \S3), and \(\alpha = 0.3 \) (Esin et al. 1998) to solve equation (1) for \(R \), we find \(R = 5 \times 10^{10} \text{cm} \) \((3 \times 10^4 \text{GM}/c^2) \) for 1E 1740.7–2942 and \(R = 3 \times 10^{10} \text{cm} \) \((2 \times 10^4 \text{GM}/c^2) \) for GRS 1758–258. These disk sizes are typical of low-mass x-ray binaries accreting by Roche-lobe overflow, and are larger than the disks expected in systems accreting winds from massive companions (Frank et al. 1992).

7.2. Disk-evaporation model for hysteresis

An alternative explanation for the lag between brightening and softening is quasi-static rather than dynamic: the flows can be allowed to reach an equilibrium configuration after
every infinitesimal increase in accretion rate. This explanation relies on a characteristic common to the models of Esin et al. (1998) and Chakrabarti & Titarchuk (1995): as the accretion rate rises, the inner edge of the Keplerian disk moves inwards. If this edge were sufficiently far out to begin with, the spectral changes due to its inward advance would at first be restricted to the EUV and soft x-ray ranges, which are not observable for sources deep in the Galactic bulge. The only effect on the hard x-rays of increasing the accretion rate would be a brightening. Eventually, the disk would move in so far that it would begin to replace the hard-x-ray-emitting region of the advective or shocked flow, resulting in a spectral softening.

If the response to the reduction in accretion rate back to the normal level were equally quasi-static, one would expect to see a bright and hard phase on the decline, i.e. the peaks in Figure 2 would be symmetric in time. However, it may be that the thin disk, once established at smaller radii, takes a significant amount of time to evaporate.

It has been noted that there is hysteresis in the hard/soft/hard transitions of soft x-ray transients (Miyamoto et al. 1995). In a typical outburst of this class of black-hole candidate, the system remains in the hard state as the luminosity rises quickly from quiescence to near maximum, then switches to the soft state, then returns to the hard state only when the luminosity is of order 1% of maximum. The quick rise in accretion rate and quick transition to the soft state are thought to be due to the rapid propagation of a thermal-ionization instability in the disk (Cannizzo et al. 1985). This mechanism is not relevant to 1E 1740.7–2942 and GRS 1758–258, since their usual accretion rates are high enough that the disk would remain ionized by the x-rays from the central regions of the accretion flow.

The return of the transients to the hard state, however, may be relevant to our observations. Mineshige (1996) interpreted this return as a transition from a Keplerian disk to an advective flow. Both the disk and advective flows are stable over most of the accretion rates traversed during the decline, but the transition doesn’t take place until the disk solution becomes unstable at very low accretion rates. In other words, the disk, once it is established, tends to persist in regimes where both solutions are stable.

The typical luminosity of both 1E 1740.7–2942 and GRS 1758–258 is 2×10^{37} erg s$^{-1}$ from 1-200 keV (Heindl & Smith 1998). Our data never deviate by more than about 50% from this value. This is roughly 1-7% of Eddington luminosity for black holes of 3-20 M_\odot, and is orders of magnitude higher than the luminosity where the idealized transient of Mineshige (1996) is forced to return to the hard state. Nonetheless, if the added regions of inner disk in the transients persist for a month or more at accretion rates where the advective flow would also be stable, then the more modest inward extensions of the disk
which occur when 1E 1740.7–2942 and GRS 1758–258 brighten might persist as long. The time asymmetry in our data, in this interpretation, would be due to the evaporation time of the inner disk being longer than the time in which the accretion rate returns to normal.

8. Conclusions

We have presented the most detailed long-term coverage of these black hole candidates to date. In this 3 year period, we have never seen either source at a flux level less than half its maximum. Although neither source has entered the soft (high) state in this time, we have seen variations in spectral index within the range usually associated with the hard or low state (photon PLI < 2.0).

There is hysteresis when GRS 1758–258 and 1E 1740.7–2942 brighten and soften within the hard state, with the softening lagging the brightening by 1-2 months. This hysteresis could be due to the different propagation times in a disk and halo of an increase in \dot{M} (§7.1), or else to a persistence of the thin disk after \dot{M} returns to normal (§7.2). If the former is the correct interpretation, the lag time implies accretion disks of the size usually associated with accretion from a low-mass companion overflowing its Roche lobe.

We find that the weekly observations of GRS 1758–258 and 1E 1740.7–2942 reveal no QPOs when summed up over many weeks. This leads us to the conclusion that either our deep observations observed rare appearances of the QPOs, or, more likely, that they drift in frequency with time, consistent with the behavior described by Wijnands & van der Klis (1998) for other sources. Both objects show the same relationship between the break frequency of the power spectrum and the total rms variability as other hard-state sources.

We would like to thank Ann Esin, Lars Bildsten, and Lev Titarchuk for useful discussions on the interpretation of the hysteresis results. This work was supported by NASA grants NAG5-4110, NAG5-7522, and NAG5-7265.

REFERENCES

Abramowicz, M. A., Chen, X., Kato, S., Lasota, J. P., & Regev, O. 1995, ApJ, 438, L37
Bally, J. & Leventhal, M. 1991, Nature, 353, 234
Belloni, T., & Hasinger, G. 1990, A&A, 227, L33
Bisnovaty-Kogan, G. S & Blinnikov, S. I 1977, A&A, 59, 111
Cannizzo, J. K., Wheeler, J. C., & Ghosh, P. 1985, in *Proceedings of the Cambridge Workshop on Cataclysmic Variables and Low-Mass X-ray Binaries*, ed. D. Q. Lamb & J. Patterson (Reidel, Dordrecht), p. 307

Chakrabarti, S. K. & Titarchuk, L. G. 1995, ApJ, 455, 623

Chen, W., Gehrels N., & Leventhal, M. 1994, ApJ, 426, 586

Cocchi, M. et al. 1999, to appear in *Proceedings of the 3rd INTEGRAL Workshop, “The Extreme Universe”*

Churazov, E., et al. 1994, ApJS, 92, 381

Churazov, E., Gilfanov, M., & Sunyaev, R. 1996, ApJ, 464, L71

Cui, W., Heindl, W. A., Swank, J. H., Smith, D. M., Morgan, E. H., Remillard, R., & Marshall, F. E. 1997 ApJ, 487, L73

Cui, W., Zhang, S. N., Focke, W., Swank, J. H. 1997 ApJ, 484, 383

Esin, A., Narayan, R., Cui, W., Grove, J. E., & Zhang, S. N. 1998, ApJ, 505, 854

Frank, J., King, A., & Raine, D. 1992, *Accretion Power in Astrophysics*, 2nd ed. (Cambridge: Cambridge Univ. Press), p. 99

Greiner, J., Morgan, E.H., & Remillard, R.A. 1996, ApJ, 473, L107

Heindl, W. A. et al. 1993, ApJ, 408, 503

Heindl, W. A., Prince, T., & Grunsfeld, J. 1994, ApJ, 430, 829

Heindl, W. A. & Smith, D. M. 1998, ApJ, 506, L35

Ichimaru, S. 1977, ApJ, 214, 840

Jahoda, K. et al. 1996, SPIE, 2808, 59

Liang, E. P. T. & Price, R. H. 1997, ApJ, 218, 247

Lin, D. et al. 1999, ApJ, in press

Mereghetti, S., Belloni, T., & Goldwurm, A. 1994, ApJ, 433, L21

Mereghetti, S., Cremonesi, D. I., Haardt, F., Murakami, T., Belloni, T., & Goldwurm, A. 1997 ApJ, 476, 829

Mineshige, S. 1996, PASJ, 48, 93

Mirabel, I. et al. 1992, Nature, 358, 215

Miyamoto, S., Kitamoto, S., Iga, S., Negoro, H., & Terada, K. 1992, ApJ, 391, L21

Miyamoto, S., Kitamoto, S., Hayashida, K., & Egoshi, W. 1995, ApJ, 442, L13

Narayan, R. & Yi, I. 1995, ApJ, 452, 710
Pavlinsky, M. N. et al. 1994, ApJ, 425, 110
Rees, M. J., Begelman, M. C., Blandford, R. D., & Phinney, E. S. 1982, Nature, 275, 17
Rodriguez, L.F., Mirabel, I.F., & Martí, J. 1992, ApJ, 401, L15
Sheth, S., Liang, E., Luo, C., & Murakami, T. 1996, ApJ, 468, 755
Smith, D. M., Heindl, W. A., Swank, J., Leventhal, M., Mirabel, I. F., & Rodriguez, L. F. 1997, ApJ, 489, L51
Smith, D. M. et al. 1998, ApJ, 501, L181
Sunyaev, R. et al. 1991, ApJ, 383, L49
Tanaka, Y., & Lewin, W. H. G. 1995, in X-Ray Binaries, ed. W. H. G. Lewin, J. van Paradijs, & E. P. J. van den Heuvel, Cambridge University Press, p. 126
Wijnands, R. & van der Klis, M. 1998, ApJ, submitted
Zhang, S. N., Cui, W. & Chen W. 1997, ApJ, 482, L155
Zhang, S. N. et al. 1997a, ApJ, 479, 381
Zhang, S. N. et al. 1997b, in Proceedings of the Fourth Compton Symposium, AIP Conf. Proc., 410, 873
Fig. 1.— The Galactic Center region showing bright sources and the RXTE pointings used for this work. The circles shown have a radius of 1°, near the 0% response contour for both the PCA and HEXTE instruments. The 1E 1740.7–2942 background pointing is above the 1E 1740.7–2942 source pointing on this plot; the GRS 1758–258 pointing and its backgrounds on either side are clustered near the top.
Fig. 2.— For caption, see Figure 2b, next page.
Fig. 2.— Time histories of count rate, PLI, and fractional rms variability integrated over frequency for 1E 1740.7–2942 and GRS 1758–258. In each source, the count rate and the PLI each peak at the beginning of 1998, with the PLI lagging the count rate. The approximate dates that BeppoSax observed drops to near zero flux in GRS 1758–258 are marked with triangles (see §3); the drops are not seen here.
Fig. 3.— Hysteresis in 1E 1740.7–2942 and GRS 1758–258. The arrow shows the sequence of the sources' evolution. For both the PCA count rate and PLI, only the data around the peaks were used.
Fig. 4.— Typical power spectra for one 1500 second observation of 1E 1740.7–2942 and GRS 1758–258. It is apparent that the statistics are not good enough to observe any QPOs of the sort shown in figure 5. Power due to Poisson statistics has been subtracted.
Fig. 5.— Average power spectrum of 77 observations for 1E 1740.7–2942 and 82 observations for GRS 1758–258.
Fig. 6.— Power spectra from deep observations of 1E 1740.7–2942 and GRS 1758–258 (Smith et al. 1997). Note the QPO pairs in both black hole candidates. These QPOs are absent in the summed weekly observations (Figure 4).
Fig. 7.— Belloni and Hasinger (1990) first found a relationship between power spectrum break frequency and integrated rms variability in Cyg X-1. This same relationship is displayed in 1E 1740.7–2942 and GRS 1758–258: the normalization is fixed above the break frequency. The power spectra with the highest frequency-integrated rms were averaged to form the top curve, the spectra with the middle rms were averaged to form the middle curve, and the spectra with the lowest rms were averaged to form the bottom curve.