A NEW APPLICATION
OF THE REPRODUCING KERNEL METHOD

ALI AKGÜL*

Siirt University
Art and Science Faculty Department of Mathematics 56100 Siirt, Turkey

ABSTRACT. We give a new implementation of the reproducing kernel method to investigate difference equations in this paper. We obtain the solutions in terms of convergent series. The method of obtaining the approximate solution in form of an algorithm is presented. We demonstrate some experiments to prove the accuracy of the technique.

1. Introduction. Difference equations depend to differential equations as discrete mathematics depends to continuous mathematics. Difference equations come to exist naturally as discretised analogues of differential equations, and they also seem in their own right, e.g., in the recurrence formulae for special functions and orthogonal polynomials [5].

We investigate difference equations by reproducing kernel method in this work. A reproducing kernel Hilbert space approach in meshless collocation method has been investigated in [6]. Piecewise reproducing kernel method for linear impulsive delay differential equations with piecewise constant arguments has been worked in [14]. Numerical solution of integro-differential equations of high-order Fredholm has been found by the simplified reproducing kernel method in [16]. Application of reproducing kernel Hilbert space method for solving second-order fuzzy Volterra integro-differential equations has been given in [10]. Reproducing kernel method for solving nonlinear fractional fredholm-integrodifferential Equation has been searched in [12]. For more details see [3, 9, 2, 11, 15, 4].

We prepare the paper as: Section 2 introduces several reproducing kernel spaces for differential equations. Section 3 is devoted to some reproducing kernel functions for difference equations. The acting in \((V,\langle \cdot , \cdot \rangle_3)\) and a linear operator are given in Section 4. Section 5 presents the main results. Some examples are shown in Section 6. Some conclusions are presented in the final section.

2. Reproducing kernel Hilbert spaces for differential equations.

Definition 2.1. We describe \(G_2^1[0, 1]\) as:
\[
G_2^1[0, 1] = \{ u \in AC[0, 1] : u' \in L^2[0, 1] \}.
\]

The inner product and the norm in \(G_2^1[0, 1]\) are defined by
\[
\langle u, g \rangle_{G_2^1} = u(0)g(0) + \int_0^1 u'(x)g'(x)dx, \quad u, g \in G_2^1[0, 1],
\]

2020 Mathematics Subject Classification. Primary: 47B32, 46E22, 39A10; Secondary: 65K15.

Key words and phrases. Hilbert spaces, difference equation, reproducing kernel functions.

* Corresponding author: Ali Akgül.
Lemma 2.2. \(G_2^1[0,1] \) is a reproducing kernel space. We obtain the reproducing kernel function \(A_y \) of this space as [7, page 17]:

\[
A_y(x) = \begin{cases}
1 + x, & x \leq y, \\
1 + y, & x > y.
\end{cases}
\]

Definition 2.3. We describe the space \(H_2^2[0,1] \) as:

\[
H_2^2[0,1] = \{ u \in AC[0,1] : u', u'' \in AC[0,1], u^{(3)} \in L^2[0,1] \}.
\]

We have the inner product and the norm as:

\[
\langle u, g \rangle_{H_2^2} = u(0)g(0) + \int_0^1 u''(x)g''(x)dx, \quad u, g \in H_2^2[0,1],
\]

and

\[
\|u\|_{H_2^2} = \sqrt{\langle u, u \rangle_{H_2^2}}, \quad u \in H_2^2[0,1].
\]

Lemma 2.4. \(H_2^2[0,1] \) is a reproducing kernel space. We obtain the reproducing kernel function \(T_y \) of this space as [7, page 17]:

\[
T_y(x) = \begin{cases}
1 + xy + \frac{x^2}{2} - \frac{x^3}{6}, & x \leq y, \\
1 + xy + \frac{x^2}{2} - \frac{x^3}{6}, & x > y.
\end{cases}
\]

Definition 2.5. We describe the space \(W_2^3[0,1] \) by

\[
W_2^3[0,1] = \{ u \in AC[0,1] : u', u'' \in AC[0,1], u^{(3)} \in L^2[0,1] \}.
\]

The inner product and the norm in \(W_2^3[0,1] \) are given as:

\[
\langle u, g \rangle_{W_2^3} = \sum_{i=0}^2 u^{(i)}(0)g^{(i)}(0) + \int_0^1 u^{(3)}(x)g^{(3)}(x)dx, \quad u, g \in W_2^3[0,1],
\]

and

\[
\|u\|_{W_2^3} = \sqrt{\langle u, u \rangle_{W_2^3}}, \quad u \in W_2^3[0,1].
\]

Lemma 2.6. The space \(W_2^3[0,1] \) is a reproducing kernel space, and its reproducing kernel function \(R_y \) is given by [7, page 17]

\[
R_y(x) = \begin{cases}
1 + xy + \frac{x^2}{4} + \frac{x^3}{12} - \frac{x^4}{24} + \frac{x^5}{120}, & x \leq y, \\
1 + xy + \frac{x^2}{4} + \frac{x^3}{12} - \frac{x^4}{24} + \frac{x^5}{120}, & x > y.
\end{cases}
\]

3. Reproducing kernel functions for difference equations.

Definition 3.1. We describe the space \(V \) as:

\[
V = \{ u : [0, N] \cap \mathbb{Z} \rightarrow \mathbb{R} \}.
\]

The inner product and the norm in \(\langle V, \langle \cdot, \cdot \rangle_1 \rangle \) are presented as:

\[
\langle u, g \rangle_1 = u(0)g(0) + \sum_{x=0}^{N-1} \Delta u(x) \Delta g(x), \quad u, g \in V, \quad N \in \mathbb{N},
\]
\[\|u\|_1 = \sqrt{\langle u, u \rangle_1}, \quad u \in V. \]

Lemma 3.2. \((V, \langle \cdot, \cdot \rangle_1)\) is the reproducing kernel space. We obtain the reproducing kernel function \(B_y\) of this space as [1]:

\[B_y(x) = \begin{cases}
1 + y, & y \leq x, \\
1 + x, & y > x.
\end{cases} \]

Proof. Note that

\[\Delta B_y(x) = \begin{cases}
0, & y \leq x, \\
1, & y > x.
\end{cases} \]

Let \(u \in V\) and \(y \in [0, N] Z\). Then by Definition 3.1 we have

\[
\langle u, B_y \rangle_1 = u(0)B_y(0) + \sum_{x=0}^{N-1} \Delta u(x) \Delta B_y(x)
\]

\[
= u(0) + \sum_{x=0}^{y-1} \Delta u(x)
\]

\[
= u(0) + u(y) - u(0)
\]

\[
= u(y).
\]

\[\square \]

Definition 3.3. The inner product and the norm in \((V, \langle \cdot, \cdot \rangle_2)\) are given by [1]:

\[
\langle u, g \rangle_2 = u(0)g(0) + \Delta u(0)\Delta g(0) + \sum_{x=0}^{N-2} \Delta^2 u(x)\Delta^2 g(x), \quad u, g \in V, \quad N \in \mathbb{N}, \quad N \geq 1,
\]

and

\[\|u\|_2 = \sqrt{\langle u, u \rangle_2}, \quad u \in V, \]

for any real \(x\)

\[
x^2 = x(x-1), \quad x^3 = x(x-1)(x-2).
\]

Lemma 3.4. \((V, \langle \cdot, \cdot \rangle_2)\) is a reproducing kernel space. We obtain the reproducing kernel function \(M_y\) of this space as [1]:

\[M_y(x) = \begin{cases}
1 + xy + \frac{y^2(x-1)}{2} - \frac{y^3}{6}, & y \leq x, \\
1 + yx + \frac{x^2(y-1)}{2} - \frac{x^3}{6}, & y > x.
\end{cases} \]

Proof. First note that

\[\Delta M_y(x) = \begin{cases}
y + \frac{y^2}{2}, & y \leq x, \\
y + x(y-1) - \frac{x^2}{2}, & y > x,
\end{cases} \]

\[\Delta^2 M_y(x) = \begin{cases}
0, & y \leq x, \\
y - 1 - x, & y > x.
\end{cases} \]
Let $u \in V$ and $y \in [0, N - 1] \mathbb{Z}$. Then by Definition 3.3, we have

$$
\langle u, M_y \rangle_2 = u(0)M_y(0) + \Delta u(0)\Delta M_y(0) + \sum_{x=0}^{N-2} \Delta^2 u(x)\Delta^2 M_y(x)
$$

$$
= u(0) + y\Delta u(0) - \sum_{x=0}^{y-1} (x - y + 1)\Delta^2 u(x)
$$

$$
= u(0) + y\Delta u(0) - \sum_{x=0}^{y-1} \Delta (x - y)\Delta u(x) + \sum_{x=0}^{y-1} \Delta u(x)
$$

$$
= u(0) + y\Delta u(0) - 0\Delta u(y) - y\Delta u(0) + u(y) - u(0)
$$

$$
= u(y).
$$

\[\square\]

Definition 3.5. We describe the inner product and the norm in $(V, \langle \cdot, \cdot \rangle_3)$ as:

$$
\langle u, g \rangle_3 = \sum_{i=0}^{2} \Delta^i u(0)\Delta^i g(0) + \sum_{x=0}^{N-3} \Delta^3 u(x)\Delta^3 g(x), \quad u, g \in V, \quad N \in \mathbb{N}, \quad N \geq 2
$$

and

$$
\|u\|_3 = \sqrt{\langle u, u \rangle_3}, \quad u \in V,
$$

for any real x

$$
x^4 = x(x-1)(x-2)(x-3), \quad x^5 = x(x-1)(x-2)(x-3)(x-4).
$$

Lemma 3.6. $(V, \langle \cdot, \cdot \rangle_3)$ is a reproducing kernel space. We obtain the reproducing kernel function F_y of this space as [1]:

$$
F_y(x) = \begin{cases}
1 + xy + \frac{x^2}{4} + \frac{x^3}{12} - \frac{y^4}{24} + \frac{y^5}{120}, & y \leq x, \\
1 + xy + \frac{x^2}{4} + \frac{x^3}{12}y - \frac{x^4}{24} + \frac{x^5}{120}, & y > x.
\end{cases}
$$

Proof. Note that

$$
\Delta F_y(x) = \begin{cases}
y + \frac{y^2}{2} + \frac{(x-1)y^3}{6} - \frac{y^4}{24}, & y \leq x, \\
y + \frac{y^2}{2} + \frac{x^2}{4} - \frac{y^4}{24} + \frac{x^5}{24}, & y > x,
\end{cases}
$$

$$
\Delta^2 F_y(x) = \begin{cases}
\frac{y^2}{2} + \frac{y^3}{6}, & y \leq x, \\
\frac{y^2}{2} + \frac{x(y-1)(y-2)}{2} - \frac{x^2}{2} + \frac{x^3}{6}, & y > x,
\end{cases}
$$

$$
\Delta^3 F_y(x) = \begin{cases}
0, & y \leq x, \\
\frac{(y-1)(y-2)}{2} - x(y - 2) + \frac{x^2}{2}, & y > x.
\end{cases}
$$
Let $u \in E$ and $y \in [0, N - 2]_Z$. Then by Definition 3.5 we have
\[
\langle u, F_y \rangle_3 = u(0)F_y(0) + \Delta u(0)\Delta F_y(0) + \Delta^2 u(0)\Delta^2 F_y(0) + \sum_{x=0}^{N-3} \Delta^3 u(x)\Delta^3 F_y(x)
\]
\[
= u(0) + y\Delta u(0) + \frac{y(y - 1)}{2} \Delta^2 u(0)
+ \sum_{x=0}^{y-1} \left(\frac{(y - 1)(y - 2)}{2} - (y - 2)x + \frac{x(x - 1)}{2} \right) \Delta^3 u(x)
= u(0) + y\Delta u(0) + \frac{y(y - 1)}{2} \Delta^2 u(0)
+ \sum_{x=0}^{y-1} \Delta \left(\left(\frac{(y - 1)(y - 2)}{2} - (y - 2)(x - 1) + \frac{(x - 1)(x - 2)}{2} \right) \Delta^2 u(x) \right)
- \sum_{x=0}^{y-1} (x - y + 1) \Delta^2 u(x)
= u(0) + y\Delta u(0) + \frac{y(y - 1)}{2} \Delta^2 u(0)
+ \left(\frac{(y - 1)(y - 2)}{2} - (y - 2)(y - 1) + \frac{(y - 1)(y - 2)}{2} \right) \Delta^2 u(y)
- \left(\frac{y(y - 1)}{2} - (y - 2)(0 - 1) + \frac{(0 - 1)(0 - 2)}{2} \right) \Delta^2 u(0)
- \sum_{x=0}^{y-1} \Delta ((x - y)\Delta u(x)) + \sum_{x=0}^{y-1} \Delta u(x)
= u(0) + y\Delta u(0) - (y - y)\Delta u(y) + (0 - y)\Delta u(0) + u(y) - u(0)
= u(y).
\]

4. **Solutions in** $(V, \langle \cdot, \cdot \rangle_3)$. The solutions of the following problem is considered in the reproducing kernel space $(V, \langle \cdot, \cdot \rangle_3)$.
\[\Delta^2 u(x) + \Delta u(x) - u(x) = 0.\]
(3)
We describe the linear operator $L : (V, \langle \cdot, \cdot \rangle_3) \to (V, \langle \cdot, \cdot \rangle_1)$ as:
\[Lv = \Delta^2 v + \Delta v - v.\]
(4)
We have the following problem.
\[\Delta^2 u(x) + \Delta u(x) - u(x) = 0,\]
(5)
with the boundary conditions
\[u(0) = u(1) = 1.\]
(6)
This problem changes to the following problem by homogenizing the boundary conditions.

\[
\begin{cases}
Lv = 1, \\
v(0) = v(1) = 0,
\end{cases}
\]

where

\[v(x) = u(x) - 1.\]

Lemma 4.1. \(L\) is a bounded operator.

Proof. We should prove

\[\|Lu\|_1^2 \leq M \|u\|_3^2,\]

where \(M\) is a positive constant. By (1) and (2) we get

\[\|Lu\|_1^2 = \langle Lu, Lu \rangle_1 = [Lu(0)]^2 + \sum_{x=0}^{N-1} [\Delta Lu(x)]^2.\]

(8)

We have

\[u(x) = \langle u(\cdot), F_x(\cdot) \rangle_3\]

and

\[Lu(x) = \langle u(\cdot), LF_x(\cdot) \rangle_3,\]

by reproducing property. So, we get

\[|Lu| \leq \|u\|_3 \|LF_x\|_3 = M_1 \|u\|_3,\]

thus

\[[Lu(0)]^2 \leq M_3^2 \|u\|_3^2.\]

Since

\[\Delta Lu(x) = \langle u(\cdot), \Delta F_x(\cdot) \rangle_3,\]

we get

\[|\Delta Lu| \leq \|u\|_3 \|\Delta F_x\|_3 = M_2 \|u\|_3,\]

so we have

\[[\Delta Lu]^2 \leq M_2^2 \|u\|_3^2,\]

that is,

\[\|Lu\|_1^2 = [Lu(0)]^2 + \sum_{x=0}^{N-1} [\Delta Lu(x)]^2 \leq \left(M_3^2 + NM_2^2\right) \|u\|_3^2,\]

where \(M = M_3^2 + NM_2^2\) is a positive constant.

\[\square\]

In similar way one can show that \(L : (V, \langle \cdot, \cdot \rangle_2) \to (V, \langle \cdot, \cdot \rangle_1)\) is a bounded linear operator.
5. The main results. From Eq. (4) it is clear that $L : (V, \langle \cdot , \cdot \rangle_3) \rightarrow (V, \langle \cdot , \cdot \rangle_1)$ is a bounded linear operator. Put $\varphi_i = B_{x_i}$ and $\psi_i = L^* \varphi_i$, where L^* is conjugate operator of L. The orthonormal system $\{ \hat{\Psi}_i \}_{i=1}^N$ of $(V, \langle \cdot , \cdot \rangle_3)$ can be derived from Gram-Schmidt orthogonalization process of $\{ \psi_i \}_{i=1}^N$,

$$\hat{\psi}_i = \sum_{k=1}^i \beta_{ik} \varphi_k, \quad (\beta_{ii} > 0, \ i = 1, 2, \ldots). \quad (9)$$

Theorem 5.1. For Eq. (4) $\{ \Psi_i \}_{i=1}^N$ is a complete system in $(V, \langle \cdot , \cdot \rangle_3)$, and $\Psi_i = LF_{x_i}(x)$.

Proof. We have

$$\Psi_i = L^* \varphi_i = \langle L^* \varphi_i, F_x \rangle_3$$
$$= \langle \varphi_i, LF_x \rangle_1$$
$$= \langle LF_x, B_{x_i} \rangle_1$$
$$= LF_x(x_i)$$
$$= LF_{x_i}(x).$$

Clearly $\Psi_i \in (V, \langle \cdot , \cdot \rangle_3)$. For each fixed $u \in (V, \langle \cdot , \cdot \rangle_3)$, if

$$\langle u, \Psi_i \rangle_3 = 0, \ i = 1, 2, \ldots,$$

then

$$0 = \langle u, \Psi_i \rangle_3$$
$$= \langle u, L^* \varphi_i \rangle_3$$
$$= \langle Lu, \varphi_i \rangle_1$$
$$= \langle Lu, B_{x_i} \rangle_1$$
$$= Lu(x_i), \ i = 1, 2, \ldots.$$

Hence, $Lu = 0$. From the existence of L^{-1}, it follows that $u = 0$. □

Theorem 5.2. If u is the exact solution of (7), then

$$u = \sum_{i=1}^N \sum_{k=1}^i \beta_{ik} \hat{\Psi}_i. \quad (10)$$

Proof. By Theorem (5.1) $\{ \Psi_i \}_{i=1}^N$ is a complete system in $(V, \langle \cdot , \cdot \rangle_3)$. Thus

$$u = \sum_{i=1}^N \langle u, \hat{\Psi}_i \rangle_3 \hat{\Psi}_i$$
$$= \sum_{i=1}^N \sum_{k=1}^i \beta_{ik} \langle u, \Psi_k \rangle_3 \hat{\Psi}_i$$
$$= \sum_{i=1}^N \sum_{k=1}^i \beta_{ik} \langle u, L^* \varphi_k \rangle_3 \hat{\Psi}_i$$
$$= \sum_{i=1}^N \sum_{k=1}^i \beta_{ik} \langle Lu, \varphi_k \rangle_1 \hat{\Psi}_i$$
\[u_n = \sum_{i=1}^{N} \sum_{k=1}^{i} \beta_{ik} \widehat{\Psi}_i, \quad n \leq N. \]

The approximate solution \(u_n \) can be found as:

\[u_n = \sum_{i=1}^{n} \sum_{k=1}^{i} \beta_{ik} \widehat{\Psi}_i, \quad n \leq N. \]

(11)

Obviously

\[\|u_n - u\|_3 \to 0, \quad n \to N. \]

\[\|u_n - u\|_3 \to 0, \quad n \to N. \]

\[\|u_n - u\|_3 \to 0, \quad n \to N. \]

Theorem 5.3. If \(u \in (V, \langle \cdot, \cdot \rangle_3) \), then

\[\|u_n - u\|_3 \to 0, \quad n \to N. \]

A sequence \(\|u_n - u\|_3 \) is monotonically decreasing in \(n \).

Proof. From (10) and (11), it follows that

\[\|u_n - u\|_3 = \left\| \sum_{i=n+1}^{N} \sum_{k=1}^{i} \beta_{ik} \widehat{\Psi}_i \right\|_3. \]

Thus

\[\|u_n - u\|_3 \to 0, \quad n \to N. \]

In addition

\[\|u_n - u\|_3^2 = \left\| \sum_{i=n+1}^{N} \sum_{k=1}^{i} \beta_{ik} \widehat{\Psi}_i \right\|_3^2. \]

Clearly, \(\|u_n - u\|_3 \) is monotonically decreasing in \(n \).

6. **Numerical results.**

Example 1. We take into consideration the first-order difference equation

\[\Delta u(x) - u(x) = 1, \]

(12)

with the boundary conditions

\[u(0) = 0, \quad u(1) = 1. \]

(13)

The exact solution of (12)–(13) is presented by [13]

\[u(x) = 2^x - 1. \]

We show our results in Table 1.
Example 2. We research the Beverton–Holt difference equation
\[u(x + 1) = \frac{vK(x)u(x)}{K(x) + (v - 1)u(x)}. \] (14)
The exact solution of (14) is presented by [8]
\[u(x) = \frac{1}{(\frac{1}{2})^x \frac{1}{u(0)} + \sum_{i=0}^{x-1} (\frac{1}{2})^{x-i} \frac{1}{K(i)}}. \]
Taking \(v = 2 \) and using the above method we obtain Table 2.

Example 3. We investigate the logistic difference equation
\[u(x + 1) = ru(x) \left(1 - \frac{u(x)K(x)}{K(x)} \right). \] (15)
Exact solution for different value of \(x \) is found by recursive formulae. Taking \(r = \frac{1}{2} \) and using the above method we obtain Table 3.

Example 4. We take into consideration the Airy difference equation
\[u(x + 1) = (x + 2)u(x) - u(x - 1). \] (16)
with the boundary conditions
\[u(0) = 0, \quad u(1) = 1. \] (17)
Exact solution for different value of \(x \) is found by recursive formulae. After homogenizing the boundary conditions and using the above method we obtain Table 4.

Example 5. Let us consider the second-order difference equation
\[\Delta^2 u(x) + \Delta u(x) - u(x) = 0, \] (18)
with the boundary conditions
\[u(0) = u(1) = 1. \] (19)
The exact solution of (18)–(19) is given as [13]
\[u(x) = \frac{\sqrt{5}}{5} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^x - \left(\frac{1 - \sqrt{5}}{2} \right)^x \right). \]
We obtain Table 5 by reproducing kernel method.

Example 6. Let us consider the second-order difference equation
\[\Delta^2 u(x) + u(x + 1) = 0, \] (20)
with the boundary conditions
\[u(0) = 0, \quad u(1) = 1. \] (21)
Exact solution for different value of \(x \) is found by recursive formulae. We get Table 6 after homogenizing the boundary conditions.
x	ES	AS	AE	RE	CPU time(s)
50	$1.125899907 \times 10^{15}$	$1.125899907 \times 10^{15}$	0.0	0.0	0.078
100	1.2676506×10^{10}	1.2676506×10^{10}	0.0	0.0	0.032
150	$1.427247693 \times 10^{45}$	1.42721×10^{45}	0.0	0.0000264095715	0.094
200	$1.606938044 \times 10^{90}$	$1.606938044 \times 10^{90}$	0.0	0.0	0.031
250	$1.809251394 \times 10^{75}$	$1.809251394 \times 10^{75}$	0.0	0.0	0.063
300	$2.037035976 \times 10^{90}$	$2.037035976 \times 10^{90}$	0.0	0.0	0.078

Table 1. Numerical results for Example 1.

x	ES	AS	AE	RE	CPU time(s)
10	39.88315482	39.88315374	1.08×10^{-6}	2.707910156 $\times 10^{-8}$	0.344
20	19.999998093	19.99998111	1.8×10^{-7}	9.000008582 $\times 10^{-9}$	0.421
30	39.999999989	39.99999960	2.9×10^{-7}	7.25000002 $\times 10^{-9}$	0.344
40	20.000000000	19.99999629	3.8×10^{-6}	1.9×10^{-7}	0.390
50	40.000000000	39.99999340	6.6×10^{-6}	1.65×10^{-7}	0.437
100	20.000000000	19.99999843	1.57×10^{-6}	7.85×10^{-8}	0.405

Table 2. Numerical results for Example 2.

x	ES	AS	AE	RE	CPU
10	0.004173544379	0.004173091	4.53379 $\times 10^{-7}$	0.000108631647	0.046
20	0.000004074670078	0.000003549	5.25670078 $\times 10^{-7}$	0.1290092371	0.078
30	3.979168669 $\times 10^{-9}$	6.56 $\times 10^{-7}$	6.520208313 $\times 10^{-7}$	163.8585558	0.063
40	3.885060902 $\times 10^{-12}$	1.66 $\times 10^{-7}$	1.659661141 $\times 10^{-7}$	4.2717.47067	0.031
50	3.794830960 $\times 10^{-15}$	3.68 $\times 10^{-7}$	3.679999962 $\times 10^{-7}$	9.697401546 $\times 10^{-7}$	0.032
60	3.705889610 $\times 10^{-18}$	9.72 $\times 10^{-7}$	9.720000000 $\times 10^{-7}$	2.622852007 $\times 10^{-11}$	0.078
70	3.705889610 $\times 10^{-18}$	6.891 $\times 10^{-7}$	6.891000000 $\times 10^{-7}$	1.859472549 $\times 10^{-11}$	0.078
80	3.53421174 $\times 10^{-24}$	1.675 $\times 10^{-7}$	1.675 $\times 10^{-7}$	4.739387799 $\times 10^{-16}$	0.078
90	3.451378652 $\times 10^{-27}$	7.3 $\times 10^{-8}$	7.3 $\times 10^{-8}$	2.115096817 $\times 10^{-19}$	0.047
100	3.370486965 $\times 10^{-30}$	0.00000104	0.000001048	3.109342985 $\times 10^{-21}$	0.031

Table 3. Numerical results for Example 3.
7. **Conclusion.** In this paper, we investigated the reproducing kernel method for investigating the difference equations. For illustration purposes, we considered six examples which were selected to show the computational accuracy. It may be concluded that, the reproducing kernel method is very powerful and efficient in finding approximate solution for wide classes of problem. The approximate solution obtained by the present method is uniformly convergent. As seen in the tables the results were obtained in a very short time. Furthermore, the obtained results are very accurate. Clearly, the series solution methodology can be applied to much more complicated nonlinear difference equations.

x	ES	AS	AE	RE	CPU time(s)
10	1.543083500 × 10^7	1.543083500 × 10^7	0.0	0.0	0.063
20	1.890687562 × 10^19	1.890687562 × 10^19	0.0	0.0	0.140
30	2.996465452 × 10^33	2.996465452 × 10^33	0.0	0.0	0.094
40	1.209470191 × 10^49	1.209470191 × 10^49	0.0	0.0	0.031
50	1.240894842 × 10^64	1.240894842 × 10^64	0.0	0.0	0.016
60	4.047603113 × 10^81	4.047603113 × 10^81	0.0	0.0	0.125
70	6.76635157 × 10^99	6.76635157 × 10^99	0.0	0.0	0.046
80	4.604129154 × 10^118	4.604129154 × 10^118	0.0	0.0	0.078
90	1.072315597 × 10^138	1.072315597 × 10^138	0.0	0.0	0.109
100	7.467889258 × 10^157	7.467889258 × 10^157	0.0	0.0	0.047

Table 4. Numerical results for Example 4.

x	ES	AS	AE	RE	CPU time(s)
50	1.258626873 × 10^10	1.258626873 × 10^10	0.0	0.0	2.465
100	3.542248316 × 10^20	3.542248316 × 10^20	0.0	0.0	2.386
150	9.969215980 × 10^30	9.969215980 × 10^30	0.0	0.0	2.512
200	2.805711470 × 10^41	2.805711470 × 10^41	0.0	0.0	2.247
250	7.896324908 × 10^51	7.896324908 × 10^51	0.0	0.0	2.340
300	2.222322136 × 10^62	2.222322136 × 10^62	0.0	0.0	2.168
350	6.254448414 × 10^72	6.254448414 × 10^72	0.0	0.0	2.247
400	1.760236480 × 10^83	1.760236480 × 10^83	0.0	0.0	2.262

Table 5. Numerical results for Example 5.
\(x \)	ES	AS	AE	CPU time(s)
10	-1	-0.9999995	5 \times 10^{-7}	0.094
20	1	0.999992593	9.7407 \times 10^{-5}	0.109
30	0	0.000006701	6.701 \times 10^{-7}	0.110
40	-1	-0.999991867	8.133 \times 10^{-6}	0.062
50	1	0.999997854	2.146 \times 10^{-6}	0.063
60	0	0.000008068	8.068 \times 10^{-6}	0.15
70	-1	-0.999983411	1.6589 \times 10^{-5}	0.062
80	1	0.999969194	3.0806 \times 10^{-5}	0.062
90	0	0.000008144	8.144 \times 10^{-6}	0.78
100	-1	-0.999917201	8.2799 \times 10^{-5}	0.047

Table 6. Numerical results for Example 6.

REFERENCES

[1] A. Akgül, On the solution of higher-order difference equations, *Mathematical Methods in the Applied Sciences*, 40 (2017), 6165–6171.
[2] A. Akgül and E. Bonyah, Reproducing kernel hilbert space method for the solutions of generalized kuramoto-sivashinsky equation, *Journal of Taibah University for Science*, 13 (2019), 661–669.
[3] A. Akgül, M. Inc and E. Karatas, Reproducing kernel functions for difference equations, *Discrete & Continuous Dynamical Systems-Series S*, 8 (2015), 1055–1064.
[4] O. A. Arqub, Computational algorithm for solving singular fredholm time-fractional partial integrodifferential equations with error estimates, *Journal of Applied Mathematics and Computing*, 59 (2019), 227–243.
[5] F. V. Atkinson, *Discrete and Continuous Boundary Problems*, Mathematics in Science and Engineering, Vol. 8. Academic Press, New York, 1964.
[6] B. Azarnavid, M. Emamjome, M. Nabati and S. Abbasbandy, A reproducing kernel hilbert space approach in meshless collocation method, *Computational and Applied Mathematics*, 38 (2019), Art. 72, 19 pp.
[7] M. Cui and Y. Lin, *Nonlinear Numerical Analysis in the Reproducing Kernel Space*, Nova Science Publishers Inc., New York, 2009.
[8] M. De la Sen, The generalized beverton–holt equation and the control of populations, *Applied Mathematical Modelling*, 32 (2008), 2312–2328.
[9] M. Foroutan, R. Asadi and A. Ebadian, A reproducing kernel hilbert space method for solving the nonlinear three-point boundary value problems, *International Journal of Numerical Modelling: Electronic Networks, Devices and Fields*, 32 (2019), e2573.
[10] G. N. Gumah, M. F. M. Naser, M. Al-Smadi and S. K. Al-Omari, Application of reproducing kernel hilbert space method for solving second-order fuzzy volterra integro-differential equations, *Advances in Difference Equations*, 2018 (2018), Paper No. 475, 15 pp.
[11] F. T. Isfahani and R. Mokhtari, A numerical approach based on the reproducing kernel hilbert space for solving a class of boundary value optimal control problems, *Iranian Journal of Science and Technology, Transactions A: Science*, 42 (2018), 2309–2318.
[12] B. S. H. Kashkari and M. I. Syam, Reproducing kernel method for solving nonlinear fractional fredholm integrodifferential equation, *Complexity*, 2018 (2018), 7pp.
[13] W. G. Kelley and A. C. Peterson, *Difference Equations*, Academic Press Inc., Boston, MA, 1991. An introduction with applications.

[14] X. Li, H. Li and B. Wu, Piecewise reproducing kernel method for linear impulsive delay differential equations with piecewise constant arguments, *Applied Mathematics and Computation*, 349 (2019), 304–313.

[15] S. H. Sababe and A. Ebadia, Some properties of reproducing kernel banach and hilbert spaces, *Sahand Communications in Mathematical Analysis*, 12 (2018), 167–177.

[16] Y.-L. Wang, Y. Liu, Z. Li and H. zhang, Numerical solution of integro-differential equations of high-order fredholm by the simplified reproducing kernel method, *International Journal of Computer Mathematics*, 96 (2019), 585–593.

Received April 2019; revised June 2019.

E-mail address: aliakgul100727@gmail.com