Low-Intensity Pulsed Ultrasound Accelerates Differentiation of Osteoblastic Cells on Roughened Titanium Surface

Kazuo Takeuchi1,2, Daisuke Yamaguchi3, Atsuko Ueno2, Daisuke Kato2, Shin Miyamae2,3 and Hiroshi Murakami4

1 Department of Gerodontontology and Home Care Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
2 Division of Implant Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan

Abstract: Use of low-intensity pulsed ultrasound (LIPUS) as a clinical tool is expected to accelerate bone-titanium integration in dental implant therapy. This study aimed to evaluate the effects of LIPUS treatment on bone marrow cells cultured under osteogenic conditions on the roughened surface of titanium disks in vitro. Bone marrow cells, obtained from the femora of 8-wk-old rats, were suspended in osteogenic-inducing medium. Cells were cultured on acid-etched titanium disks and exposed to LIPUS of 3.0 MHz sine wave frequency, repeated at 100 Hz with a spatial average intensity of 40 mW/cm² for 15 min/d from day 3 after primary seeding (LIPUS group). The control group was cultivated in the same manner. Cell proliferation, expression of osteoblastic genes, synthesis of collagen, and mineralization were compared between the 2 groups. No significant difference was observed in the cell number between the LIPUS and the control groups on days 5 and 7. The expression of osteocalcin and osteopontin genes were upregulated in the LIPUS group compared with that in the control group. The production of collagen, assessed by Sirius Red staining on day 14, and mineralization, assessed with Alizarin Red S staining on day 14 and 21, were both increased in the LIPUS group relative to the control group. Treatment with LIPUS did not affect the proliferation of osteoblastic cells cultured on roughened titanium disks, whereas it affected the acceleration of osteoblastic differentiation, synthesis of collagen, and calcification.

Key words: Cell culture, Low-intensity pulsed ultrasound, Osteoblastic cell, Titanium

Introduction

Dental implant therapy is a commonplace treatment for replacing missing teeth nowadays3, although a healing period of 3 and 6 mo for the mandible and maxilla, respectively, is required between the primary and secondary surgeries in the conventional 2-stage implant protocol4. This healing time is the main reason for the discomfort of patients and the long duration of the total implant therapy5. To reduce the healing period after implantation, many strategies were performed or proposed, such as reducing the period of placing the superstructures after implantation as immediate6 or early loading7, implant design8, and surface modification of the implant9.

The application of low-intensity pulsed ultrasound (LIPUS) has been reported to reduce the healing period after bone fractures in the orthopedic field10. The U.S. Food and Drug Administration (FDA) approved the LIPUS equipment for healing fresh bone fractures in 1994 and for non-unions in 200011. High healing success rates were reported for fractures, including delayed unions and non-unions12, with the time of third cortical bridging being earlier after LIPUS therapy in fresh fractures13. In implant-related studies, noninvasive low-intensity ultrasound was demonstrated to significantly affect bone ingrowth into porous titanium implants in an in vivo animal model14 and bone formation was reported to be stimulated around titanium implants in dog mandibles15. We demonstrated that the application of LIPUS enhanced differentiation and mineralization of osteoblastic cells cultured in polystyrene cell-culture dishes16 and promoted the expression of genes in the extracellular matrix and the differentiation of osteoblast-like cells into osteocytes in an in vitro cell culture model17. In in vivo studies, LIPUS was shown to accelerate bone formation around titanium implants and enhance the strength of bone-titanium integration in rat femora18. In this study, we hypothesized that culturing osteoblastic cells on rough titanium surface with LIPUS treatment would enhance osteogenic differentiation. To test this hypothesis, we examined the effects of exposing osteoblastic cells cultured on the surface of roughened titanium disks to LIPUS.

Materials and Methods

Preparation of experimental titanium disks

Commercial pure titanium rods and disks were prepared using a lathe. Three commercial pure titanium rods (1.0 mm in diameter and 1.7 mm length, JIS grade 2, Nishimura Metal Co., Fukui, Japan), welded up equidistantly around each commercial pure titanium disks (20 mm in diameter and 1 mm in thickness, JIS grade 2, Nishimura Metal Co., Fukui, Japan), were used to prepare the 3-legged titanium disks. Disks were acid-etched in 48% sulfuric acid (Kanto Chemical Co., Tokyo, Japan) at 60°C for 10 min19, washed in ultra-pure water 3 times, and sterilized at 200°C in a drying oven (DV400, Yamato Scientific Co., Tokyo, Japan) for 30 min (Fig. 1A). All disks were etched and sherardized 1 d before seeding of primary cultures. The morphology of the surface was examined using a scanning electron microscopy (SEM) (EVO 40, Carl Zeiss, Cambridge, UK) and 3D microstructures were investigated using atomic force microscopy (AFM) (SPM-9500J3, Shimadzu Corporation, Kyoto, Japan), force microscopy (AFM) (SPM-9500J3, Shimadzu Corporation, Kyoto, Japan).
Japan) at a contact mode over square areas of $5.0 \times 5.0 \mu m^2$. The obtained AFM data were analyzed using the software for topographical parameters: the arithmetic average height (Ra), the largest peak to valley height (Ry), and ten points of height (Rz).

Bone marrow cell culture

The study protocol was approved by the Institutional Committee for Animal Care, Aichi Gakuin University (AGUD 069). The experimental design and analytical time points are shown in Fig. 2. Bone marrow cells were obtained from the femora of five rats (8-wk-old male Sprague-Dawley rats; Japan SLC, Hamamatsu, Japan) and suspended at a concentration of 5.6×10^6 cell/ml in alpha-modified Eagle’s medium (41061-029, Gibco, CA, USA) supplemented with 15% fetal bovine serum (SFBM31, Equitech-Bio, TX, USA), 10^{-8} M dexamethasone (D2915, Sigma-Aldrich Inc., MO, USA), 10 mM Na-β-glycerophosphate (G9422, Sigma-Aldrich Inc., MO, USA), 50 µg/ml L-ascorbic acid 2-phosphate (A8960, Sigma-Aldrich Inc., MO, USA), and an antibiotic-antimycotic solution including 100 units/ml of Penicillin G sodium, 100 µg/ml of Streptomycin sulfate, and 250 ng/ml of Amphotericin B (15240-062, Gibco, CA, USA). The suspension was directly poured onto the titanium disks placed in 12-multiwell cell culture plates (3513, Corning, AZ, USA) and cultured at 37ºC in an atmosphere with 5% CO2. The culture medium was changed every 3 d.

Low-intensity pulsed ultrasound (LIPUS) treatment

LIPUS was generated using a therapeutic ultrasound device with 3 connected piezoelectric transducers (BR-sonic Pro, ITO Co., Tokyo, Japan). Each transducer can generate a pulsed ultrasound (2 msec burst and 8 msec off) of 3.0 MHz sine wave frequency, repeated at 100 Hz with a spatial average intensity of 40 mW/cm². These transducers were placed in a mini incubator and cell cultures were exposed to LIPUS from the bottom of the cell culture plates via an ultrasound coupling gel (Ultrasound Gel, ITO Co., Tokyo, Japan). The transducers were 36 mm in diameter and their effective radiating area was 4.5 cm². The attenuation of the ultrasound power through the cell culture plate was under 35%, which was confirmed using a hydrophone (Specialty Engineering Associates, CA, USA). The control group was exposed to LIPUS for 15 min/d from day 3 after primary seeding (LIPUS group). Titanium disks were placed upside-down during the period of exposure to LIPUS (Fig. 3). The control group without treatment with LIPUS was also cultivated in the same manner.

Cell Proliferation Assay

We measured the number of cells on day 5 and 7 after seeding using the WST-8 cell proliferation reagent (CCK-8, Dojindo Laboratories, Kumamoto, Japan). Briefly, cell cultures were rinsed with phosphate-buffered saline (PBS) without calcium ions (D8537, Sigma-Aldrich Inc., MO, USA) and 100 µl of WST-8 solution and 900 µl of cell culture medium were added into each well and incubated at 37ºC for a further 20 min. Then, 200 µl of each supernatant was transferred into a 98-multiwell plate and quantified through measurement of the optical density (OD) at 460 nm using a multi-well plate reader (Model 680, BIORAD, CA, USA). The number of cells was estimated using a linear regression equation made from a serial dilution of cell suspensions and their respective OD numbers. Three independent cultures were analyzed at each time point.

Reverse-transcription / Polymerase chain reaction (RT-PCR)

We performed RT-PCR analysis to examine the expressions of osteoblastic genes. Total RNA was extracted from each cell culture using a hybrid method of TRizol (Invitrogen, CA, USA) and purification column (RNaseasy, QIAGEN, MD, USA). Contaminating DNA was removed by treatment with DNase (TURBO DNA-free, Invitrogen, CA, USA). The reverse transcription reaction was performed at 42ºC for 50 min us-
Collagen synthesis colorimetry

The Sirius Red staining-based colorimetric assay was used to quantify the total collagen deposition. This method specifically detects type I and III collagen molecules without identifying other components of the bone extracellular matrix. Cell cultures were gently rinsed with PBS and fixed with 1 ml of Bouin’s fluid (Polysciences Inc., PA, USA) for 1 h. Cultures were washed by running tap water for 15 min before staining with 1 ml Sirius Red dye (Polysciences Inc., PA, USA) dissolved in saturated aqueous picric acid (Kanto Chemical Co., Inc., Tokyo, Japan) at a concentration of 100 mg/100 ml for 1 h with mild shaking. Cultures were washed with 0.01 M HCl (Kanto Chemical Co., Inc., Tokyo, Japan) to remove the unbound dye, and the staining was dissolved in 0.6 ml 0.1 M NaOH (Kanto Chemical Co., Inc., Tokyo, Japan) using a microplate shaker for 30 min at 25°C. The OD of the dye solution was measured using a spectrophotometer (Model 680, BIORAD, CA, USA) equipped with a 550 nm optical filter against a 0.1 N NaOH solution equipped as blank in 3 independent cultures. Results were reported as OD data were expressed as mean ± SD. Differences in cell proliferation, collagen synthesis, and calcification were statistically evaluated by means of two-way analysis of variance (ANOVA) performed using the factors “culture day” and “with or without LIPUS”. When two-way ANOVA showed a significant interaction between 2 factors, a one-way ANOVA was performed for each level of the factor “culture day”. Statistical significance was accepted at p < 0.05. All analyses were performed using JMP Pro 15 (SAS Institute Japan, Tokyo, Japan).

Statistical analysis

For each assay, all samples were cultured in disks in triplicate and data were expressed as mean ± SD. Differences in cell proliferation, collagen synthesis, and calcification were statistically evaluated by means of two-way analysis of variance (ANOVA) performed using the factors “culture day” and “with or without LIPUS”. When two-way ANOVA showed a significant interaction between 2 factors, a one-way ANOVA was performed for each level of the factor “culture day”. Statistical significance was accepted at p < 0.05. All analyses were performed using JMP Pro 15 (SAS Institute Japan, Tokyo, Japan).

Table 1. Primers and conditions for RT-PCR analysis

Genes	Acc #	Upstream primer	Downstream primer	Annealing Temperature	Number of Cycles	Size of PCR Products (bp)
Osteocalcin (Rat)	M23637	5-GTCCCAACAGCAACTCGG-3	5-CCAAAGGTGAAGCTGCCG-3	61	25	287
Osteopontin (Rat)	M14656	5-GCTGCTCTACTACAATG-3	5-GGATACATGTATGGAG-3	43	19	380
GAPDH	M17701	5-TGAGGTGGGTGCAACGGATTTTGC-3	5-CATAGGCGCATAGGTACCAC-3	67	27	983
for the expression levels of these genes with the factors of cultivation duration with/without LIPUS treatment.

Expression of osteocalcin gene

The expression levels of the osteocalcin gene were found to differ significantly depending on the time points (p < 0.01) and treatments with LIPUS (p < 0.01). In addition, a significant interaction was noted for the combination of these factors (time × treatment) (p < 0.05). Results of one-way ANOVA on independent time points revealed that the expression levels of the osteocalcin gene in the LIPUS group on days 7 and 14 were significantly higher compared with those in the control group (p < 0.01), whereas no significant difference was found on day 21 (Fig. 5).

Expression of osteopontin gene

Similarly, the expression levels of the osteopontin gene were found to be significantly different depending on the time points (p < 0.01) and treatments with LIPUS (p < 0.01), as well as the combination of the factors of time and treatment (p < 0.05). One-way ANOVA of independent time points revealed that the expression levels of the osteopontin gene in the LIPUS group on days 7 and 14 were significantly higher compared with those in the control group, whereas no significant difference was found on day 21 (Fig. 6).

Synthesis of collagen

Two-way ANOVA revealed that there were no significant differences observed in the duration of cultivation, whereas a significant difference...
was only noted on day 14 between the LIPIUS and control groups (Scheffé’s multiple comparison, p<0.01). In addition, we did not observe any significant interaction between the 2 factors (Fig. 7).

Deposition of calcium

We found that the calcification in the LIPIUS group was increased on days 14 and 21 compared with that in the control group (Fig. 8). The Alizarin Red-S stained area was found to be significantly larger on days 14 and 21 in the LIPIUS treated group (p<0.01). Moreover, we observed a significant factorial interaction between the 2 factors (p<0.01). Alizarin Red S stained experimental disks are demonstrated in Fig. 8.

Discussion

Bone marrow cell culture as a tool for implant study

Osseointegration is a unique phenomenon, which was observed and identified using a light microscope in an animal study, and defined as the direct contact between living bone and the surface of titanium without the interposition of nonbone tissue19. The establishment of osseointegration involves complex biological processes20,21. Although bone formation around titanium implants has been reported to occur via both contact and distance osteogenesis, the importance of the former is crucial in osseointegration. Contact osteogenesis relies upon osteoconductance, or the recruitment and migration of differentiating osteogenic cells to the surface of the implant, together with de novo bone formation by those cells on the surface of the implant20. To investigate the mechanisms of osseointegration, in vitro studies have been conducted, attempting to elucidate the biological and molecular roles of osteoblastic cells to titanium22,23. In this study, we seeded bone marrow cells in a cell culture medium with osteogenic supplements24, then poured the mixture of bone marrow cells and osteogenic medium directly onto experimental titanium disks. Bone marrow cells are known to contain mesenchymal stem cells (MSCs) and thus, the addition of osteogenic supplements in the cell culture medium would initiate the differentiation of MSCs into osteoblastic cells25.

Preparation of titanium disks

The topography of the titanium surface is a significant property for controlling cellular and tissue responses around titanium implants. Roughened titanium surface is known to promote stiffer and harder biomechanical characteristics of osteoblastic mineralized cultures21,23. Titanium is an osteoconductive material, but the time-dependent biological degradation of its surface from bioactive to bioinert state was observed via both in vivo and in vitro experiments20. To prevent the degradation of the osteoconductivity of titanium disks, we performed an acid-etched treatment of the disks on the day before seeding the mixture of bone marrow cells. The topography of the experimental disk surface resembled commercially available acid-etched titanium implants26 (Fig. 1), indicating that the titanium disks in this study had potential osteoconductivity. Thus, we could assess the effect of the LIPIUS treatment without biological degradation of the titanium surface.

Treatment with LIPIUS

Ultrasound is an acoustic wave of frequencies above the range of human audition. The thermal and nonthermal effects of ultrasound in living tissues are known to be the basis of therapeutic applications27,28. Briefly, LIPIUS is a very low-power pulsed ultrasound minimizing the thermal effect and providing a nonthermal effect, which has been widely used in the medical field for diagnostic29 and therapeutic purposes30. In the orthopedic field, LIPIUS has been used to accelerate the process of bone fractures healing31,32. Although, the biological processes involved in accelerating the repair of the bone fracture when treated with LIPIUS are not still fully understood30, it was reported that the production of cyclooxygenase 2 (COX-2) in cells was enhanced; this in turn stimulated molecules for enhanced fracture repair33 through not only increasing the levels of osteogenic molecules, such as bone morphogenetic proteins (BMPs)32,34, insulin-like growth factor 1 (IGF-1)35, stromal cell-derived factor 1 (SDF-1)36, and Prostaglandin E2 (PGE2)37, but also through promoting the apoptosis of osteoclasts38.

Cell proliferation

Cell proliferation was shown to be suppressed on the roughened titanium disk compared with the machined surfaced disk39. The cell number on the surface of polystyrene culture plates on day 7 was observed to be decreased in the LIPIUS group compared with the control group40. In this study, the cell number on days 5 and 7 did not show any statistical difference between the LIPIUS and control groups. Akagi et al. also reported that LIPIUS had no effect on cell proliferation41. In contrast, LIPIUS was shown to have a positive effect in the proliferation of osteoblastic cells42,43. As such, the effect of the treatment with LIPIUS in the proliferation of osteoblasts has been controversial.

Expressions of bone-related genes

Osteopontin and osteocalcin are important in coordinating the organic matrix and bone mineral44. Osteocalcin, which accounts for approximately 20% of the non-collagenous protein content of the bone matrix, is produced by mature osteoblasts and deposited in the extracellular matrix (ECM) of the bone tissue42. Osteopontin is considered to bind to osteoblasts and osteoclasts localized on bone surfaces and to promote bone resorption by osteoclasts45. The expression levels of osteocalcin and osteopontin were observed to be highly upregulated in the LIPIUS group compared with the control group on days 7 and 14, with the maximal upregulation being observed on day 14 in both genes. These results suggested that stimulation with LIPIUS enhanced the osteoblastic differentiation from day 7 to 14 in this study (Figs. 5 and 6).

Synthesis of collagen

Sirius Red staining enables sensitive and quantitative detection of type I and type III collagen46. Type I collagen accounts for approximately 90% of the ECM in bone, while type III collagen is detected in preosteoblasts47. We noted that the density of Sirius Red staining was significantly higher in the LIPIUS group compared with that in control cultures on day 14. Yamaguchi et al., using a microarray analysis, concluded that exposure to LIPIUS increased the expression of collagen related gene molecules and promoted the differentiation of osteoblastic cells into osteocytes43. Collagen is a key determinant in bone for fortifying bone strength45. The production of collagen in the LIPIUS group was found to be significantly higher than that in control cultures on day 14, indicating that exposure to LIPIUS promoted the high strength of the osteoblastic cell culture on a titanium surface.

Calcification of cell culture on titanium

The areas of Alizarin Red S stained calcified nodules were shown to be significantly larger in the LIPIUS group than in the control group on days 14 and 21 of cell culture (Fig. 8). Regarding bone strength, the mineral content is mainly involved in determining bone stiffness48. These results indicated that exposure to LIPIUS might contribute to the increased stiffness of the osteoblastic cell culture.

In conclusion, treatment with LIPIUS did not affect the cell prolifera-
tion of osteoblastic cells cultured on roughened titanium surface, whereas it accelerated cell differentiation, deposition of collagen, and calcification.

Conflict of Interest
The authors have declared that no COI exists.

References
1. Derks I, Schaller D, Håkansson J, Wennström JL, Tomasi C and Berglundh T. Effectiveness of implant therapy analyzed in a Swedish population: prevalence of peri-implantitis. J Dent Res 95: 43-49, 2016
2. Albrektsson T, Brånemark PI, Hansson HA and Lindström J. Osseo-integrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52: 155-170, 1981
3. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O and Öhman A. Osseo-integrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 16: 1-132, 1977
4. Gapski R, Wang HL, Mascarenhas P and Lang NP. Critical review of immediate implant loading. Clin Oral Implants Res 14: 515-527, 2003
5. Ericsson I, Randow K, Nilner K and Peterson A. Early functional loading of Brånemark dental implants: 5-year clinical follow-up study. Clin Implant Dent Relat Res 2: 70-77, 2000
6. Baggi L, Cappellini I, Di Girolamo M, Maceri F and Vairo G. The influence of implant diameter and length on stress distribution of osseo-integrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent 100: 422-431, 2008
7. Le Guéhéneuc L, Soueidan A, Layrolle P and Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23: 844-854, 2007
8. Poolman RW, Agoritsas T, Siemieniuk RA, Harris IA, Schipper IB, Mollon B, Smith M, Albin A, Nador S, Sasges W, Schandelmaier S, Lytvyn L, Kuijpers T, van Beers LW, Verhofstad MH and Vandvik PO. Low intensity pulsed ultrasound (LIPUS) for bone healing: a clinical practice guideline. BMJ 356: j376, 2017
9. Rubin C, Bolander M, Ryaby JP and Hadjiargyrou M. The use of low-intensity ultrasound to accelerate the healing of fractures. J Bone Joint Surg Am 83: 259-270, 2001
10. Romano CL, Romano D and Logoluso N. Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review. Ultrasound Med Biol 35: 529-536, 2009
11. Bashardoust Tajali S, Houghton P, Mac Dermid JC and Grewal R. Effects of low intensity pulsed ultrasound therapy on fracture healing: a systematic review and meta-analysis. Am J Phys Med Rehabil 91: 349-367, 2012
12. Tanzer M, Harvey E, Kay A, Morton P and Bobyn JD. Effect of noninvasive low intensity ultrasound on bone growth into porous-coated implants. J Orthop Res 14: 901-906, 1996
13. Fuji S, Kajimoto T, Nagahara K and Yamamoto K. Usefulness of low-intensity pulsed ultrasound in reducing the healing period of dental implant therapy. J Jpn Soc Oral Implant 17: 183-195, 2004
14. Kidokoro T, Takeuchi K, Murakami H and Hattori M. Effects of low-intensity pulsed ultrasound on osteoblastic cells derived from rat bone marrow cells. J Jpn Soc Oral Implant 20: 450-458, 2007
15. Yamaguchi D, Takeuchi K, Furuta H, Miyamae S, Murakami H and Hattori M. Gene expression in response to low-intensity pulsed ultrasound treatment of bone marrow cells under osteogenic conditions in vitro. J Hard Tissue Biol 25: 137-148, 2016
16. Li Y. Acceleration of bone-titanium integration by low-intensity pulsed ultrasound. Aichi Gakuin J Dent Sci 51: 31-37, 2013
17. Ban S, Iwaya Y, Kono H and Sato H. Surface modification of titanium by etching in concentrated sulfuric acid. Dent Mater 22: 1115-1120, 2006
18. Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM and Soliman HH. Roughness parameters. J Mater Process Technol 123: 133-145, 2002
19. Brånemark PI, Breine U, Adell R, Hansson BO, Lindström J and Ohlsson A. Intra-Osseous Anchorage of Dental Prostheses: I. Experimental Studies, Scand J Plast Reconstr Surg, 3: 81-100, 1969
20. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 67: 932-949, 2003
21. Shah FA, Thomsen P and Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater 84: 1-15, 2019
22. Davies JE. Lowenberg B and Shiga A. The bone-titanium interface in vitro. J Biomed Mater Res 24: 1289-1306, 1990
23. Takeuchi K, Saruwatari L, Nakamura HK, Yang JM and Ogawa T. Enhanced intrinsic biomechanical properties of osteoblast mineralized tissue on roughened titanium surface. J Biomed Mater Res A 72: 296-305, 2005
24. Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassini- nari MS, Kennedy MB, Pockwinse S, Lian JB and Stein GS. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143: 420-430, 1999
25. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mor- ca JD, Moorman MA, Simonetti DW, Craig S and Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147, 1999
26. Att W, Hori N, Takeuchi M, Ouyang J, Yang Y, Anpo M and Ogawa T. Time-dependent degradation of titanium osteococonductivity: an implication of biological aging of implant materials. Biomaterials 30: 5352-5363, 2009
27. Izadifar Z, Babyn P and Chapman D. Mechanical and biological effects of ultrasound: A review of present knowledge. Ultrasound Med Biol 43: 1085-1104, 2017
28. Szabo TL. Diagnostic ultrasound imaging: Inside out, Second Edition (Biomedical Engineering). Academic Press. 1-549, 2004
29. Miller DL, Smith NB, Bailey MR, Czarnotka GI, Hynynen K and Makin IR. Bioeffects Committee of the American Institute of Ultrasound in Medicine. Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 31: 623-34, 2012
30. Padilla F, Puts R, Vico L and Raun K. Stimulation of bone repair with ultrasound: A review of the possible mechanical effects. Ultras- sound 54: 1125-1145, 2014
31. Bashardoust Tajali S, Houghton P, MacDermid JC and Grewal R. Effects of low-intensity pulsed ultrasound therapy on fracture healing: a systematic review and meta-analysis. Am J Phys Med Rehabil 91: 349-367, 2012
32. Suzuki A, Takayama T, Suzuki N, Sato M, Fukuda T and Ito K. Dai- dosics in vitro. Aichi Gakuin J Dent Sci 51: 31-37, 2013
33. Huang W, Hasegawa T, Imai Y, Takeda D, Akashi M and Komori T.
Low-intensity pulsed ultrasound enhances bone morphogenetic protein expression of human mandibular fracture haematoma-derived cells. Int J Oral Maxillofac Surg 44: 929-935, 2015

34. Akagi H, Nakanishi Y, Nakanishi K, Matsubara H, Hirose Y, Wang PL and Ochi M. Influence of low-intensity pulsed ultrasound stimulation on expression of bone-related genes in rat bone marrow cells. J Hard Tissue Biol 25: 1-5, 2016

35. Naruse K, Mikuni-Takagaki Y, Azuma Y, Ito M, Oota T, Kameyama K and Itoman M. Anabolic response of mouse bone-marrow-derived stromal cell clone ST2 cells to lowintensity pulsed ultrasound. Biochem Biophys Res Commun 268: 216-220, 2000

36. Wang Y, Li J, Qiu Y, Hu B, Chen J, Fu T, Zhou P and Song J. Low-intensity pulsed ultrasound promotes periodontal ligament stem cell migration through TWIST1-mediated SDF-1 expression. Int J Mol Med. 42: 322-330, 2018

37. Iwabuchi S, Ito M, Chikanishi T, Azuma Y and Haro H. Role of the tumor necrosis factor-α, cyclooxygenase-2, prostaglandin E2, and effect of low-intensity pulsed ultrasound in an in vitro herniated disc resorption model. J Orthop Res 26: 1274-1278, 2008

38. Suzuki N, Hannoto T, Yano S, Furusawa Y, Ikegame M, Tabuchi Y, Kondo T, Kitamura K, Endo M, Yamamoto T, Sekiguchi T, Urata M, Mikuni-Takagaki Y and Hattori A. Low-intensity pulsed ultrasound induces apoptosis in osteoclasts: Fish scales are a suitable model for the analysis of bone metabolism by ultrasound. Comp Biochem Physiol A Mol Integr Physiol 195: 26-31, 2016

39. Katiyar A, Duncan RL and Sarkar K. Ultrasound stimulation increases proliferation of MC3T3-E1 preosteoblast-like cells. J Ther Ultrasound 2: 1: 2014

40. Tassinary JAF, Lunardelli A, Basso BS, Stülp S, Pozzobon A, Pedrazza L, Bartrons R, Ventura F, Rosa JL, Melo DAS, Nunes FB, Donadio MVF and Oliveira JR. Therapeutic ultrasound stimulates MC3T3-E1 cell proliferation through the activation of NF-κB1, p38α, and mTOR. Lasers Surg Med 47: 765–772, 2015

41. Blair HC, Larroture QC, Li Y, Lin H, Beer-Stoltz D, Liu L, Tuan RS, Robinson LJ, Schlesinger PH and Nelson DJ. Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng Part B Rev 23: 268-280, 2017

42. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A and Karsenty G. Increased bone formation in osteocalcin deficient mice. Nature 382: 448-452, 1996

43. Butler WT. The nature and significance of osteopontin. Connect Tissue Res 23: 123-136, 1989

44. Tullberg-Reinert H and Jundt G. In situ measurement of collagen synthesis by human bone cells with a sirius redbased colorimetric microassay: effects of transforming growth factor β2 and ascorbic acid 2-phosphate. Histochem Cell Biol 112: 271-276, 1999

45. Viguet-Carrin S, Garnero P and Delmas PD. The role of collagen in bone strength. Osteoporos Int 17: 319-336, 2006
