Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins

Lu Liu1,2,4, Simon Parkinson2,3, Matthew Gidden2, Edward Byers2, Yusuke Satoh2, Keywan Riahi2, and Barton Forman1

1 Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States of America
2 International Institute for Applied Systems Analysis, Laxenburg, Austria
3 Institute for Integrated Energy Systems, University of Victoria, Victoria, BC, Canada
4 Author to whom any correspondence should be addressed.

E-mail: liuemma2@umd.edu

Keywords: reliability, storage-yield curve, global change, reservoir capacity expansion, long-term strategic water resources planning

Abstract

Surface water reservoirs provide us with reliable water supply, hydropower generation, flood control and recreation services. Yet reservoirs also cause flow fragmentation in rivers and lead to flooding of upstream areas, thereby displacing existing land-use activities and ecosystems. Anticipated population growth and development coupled with climate change in many regions of the globe suggests a critical need to assess the potential for future reservoir capacity to help balance rising water demands with long-term water availability. Here, we assess the potential of large-scale reservoirs to provide reliable surface water yields while also considering environmental flows within 235 of the world’s largest river basins. Maps of existing cropland and habitat conservation zones are integrated with spatially-explicit population and urbanization projections from the Shared Socioeconomic Pathways to identify regions unsuitable for increasing water supply by exploiting new reservoir storage. Results show that even when maximizing the global reservoir storage to its potential limit (∼4.3–4.8 times the current capacity), firm yields would only increase by about 50% over current levels. However, there exist large disparities across different basins. The majority of river basins in North America are found to gain relatively little firm yield by increasing storage capacity, whereas basins in Southeast Asia display greater potential for expansion as well as proportional gains in firm yield under multiple uncertainties. Parts of Europe, the United States and South America show relatively low reliability of maintaining current firm yields under future climate change, whereas most of Asia and higher latitude regions display comparatively high reliability. Findings from this study highlight the importance of incorporating different factors, including human development, land-use activities, and climate change, over a time span of multiple decades and across a range of different scenarios when quantifying available surface water yields and the potential for reservoir expansion.

1. Introduction

Surface water reservoirs help dampen flow variability in rivers while playing a critical role in flood mitigation, securing water supplies, and ensuring reliable hydropower generation. In 2011, total global storage capacity of the largest reservoirs was approximately 6197 km³ and affected the flow in almost half of all major river systems worldwide (Lehner et al 2011). Changes in natural flow patterns can disrupt local ecosystems (Poff and Schmidt 2016, Richter et al 2012), and inundation of upstream areas during reservoir development can cause conflicts with existing land-uses (Richter et al 2010). Reservoirs also require a significant amount of resources to plan, build and operate, with implications for long-term water supply costs and affordability (Wiberg and Strzepek 2005). Quantifying exploitable reservoir capacity is therefore crucial for strategic planning of water, energy and food supplies in the coming decades, particularly with...
anticipated population growth and exacerbating impacts on hydrological variability due to climate change (Boehlert et al 2015, Kundzewicz and Stakhiv 2010, Soundharajan et al 2016, Stillwell and Webber 2013, Vorosmarty et al 2009).

Storage-yield (S-Y) analysis is often used by water resource planners to determine the reservoir storage capacity required to provide firm yield (Rippl 1883, Turner and Galelli 2016). The firm yield represents the maximum volume of water that can be supplied from the reservoir for human purposes (e.g. irrigation, municipal supply, etc.) under a stated reliability. A number of previous studies evaluate different algorithms for modeling the S-Y relationship (Carty and Cunnane 1990), and have included storage-dependent losses (Lele 1987) and generalized functional forms for broader scale application (Kuria and Vogel 2015, Vogel et al 2007, Vogel and Stedinger 1987). For example, McMahon et al (2007) developed six empirical equations to calculate reservoir capacities for 729 unregulated rivers around the world. A number of other previous studies employ S-Y algorithms to provide insight into various water security challenges moving forward. Wiberg and Strzepek (2005) developed S-Y relationships and associated costs for major watershed regions in China accounting for the effects of climate change. Similarly, Boehlert et al (2015) computed S-Y curves for 126 major basins globally under a diverse range of climate models and scenarios to estimate the potential scale of adaptation measures required to maintain surface water supply reliability. Gaupp et al (2015) calculated S-Y curves for 403 large-scale river basins to examine how existing storage capacity can help manage flow variability and transboundary issues. Basin scale S-Y analysis provides estimates on hypothetical storage capacity required to meet water demand, and hence, such analysis helps to identify the need for further infrastructure investments to cope with water stress on a global scale (Gaupp et al 2015). Even though previous analyses of both global and regional energy systems suggest that evaporative losses from reservoirs used for hydropower play a significant role in total consumptive water use (Fricko et al 2016, Grubert 2016), such evaporative impacts are missing from existing global-scale assessments of surface water reservoir potential that consider climate change. Increasing air temperatures and variable regional precipitation patterns associated with climate change will ultimately affect evaporation rates. Moreover, competing land-uses and environmental flow regulations play an important role in large-scale reservoir siting and operations, but have yet to be considered concurrently as part of a global-scale assessment of the ability of future reservoirs to provide sustainable firm yields under climate change. Additional constraints on reservoir operation and siting will reduce firm yields, but these effects could be offset in basins where runoff is projected to increase under climate warming (van Vliet et al 2016). Development of new, long-term systems analytical tools to disentangle the tradeoffs between potential reservoir firm yield, climate change, and competing land-use options is therefore a critical issue to address from the perspective of water resources planning.

The purpose of this study is to assess the aggregate potential for reservoirs to provide surface water yields in 235 of the world’s largest river basins, including consideration of climate change impacts on basin-wide runoff and net evaporation (i.e. the difference between estimated evaporation from the reservoir surface and the incident precipitation), as well as constraints on reservoir development and operation due to competing land-uses and environmental flow requirements. Improved basin-scale S-Y analysis tools enabling global investigation are developed for this task, including a linear programming (LP) framework that contains a reduced-form representation of reservoir evaporation and environmental flow allocation as endogenous decision variables. The framework incorporates additional reservoir development constraints from population growth, human migration, existing irrigated cropland, and natural protected areas. We further consider a range of future global change scenarios and measure reservoir performance in terms of yield and corresponding reliability as to maintain a given yield across global change scenarios. The scope of this analysis thus covers a number of important drivers of water supply sustainability neglected in previous global assessments while also providing new insight into the following research questions:

- In which basins are surface water withdrawals from reservoirs most affected by future climate change? And how might achieving climate change mitigation targets limit such impact?
- What are the impacts of competing land-use activities and environmental flow constraints on the potential of expanded reservoirs to secure freshwater yields?

2. Method

This study assesses aggregate reservoir storage potential and surface water firm yields at the river basin-scale. River basins represent the geographic area covering all land where any runoff generated is directed towards a single outlet (river) to the sea or an inland sink (lake). The approach builds on previous work that combines basin-averaged, monthly runoff data with a simplified reservoir representation to derive the S-Y relationships for different basins in a computationally efficient way (Wiberg and Strzepek 2005, Boehlert et al 2015, Gaupp et al 2015). Wiberg and Strzepek (2005) tested a similar basin-scale approach to S-Y analysis using a number of simplified geometries for cascaded reservoir systems in the southwest United States and
showed relatively good agreement with management strategies simulated with a more complicated model. The resulting basin-scale S-Y relationships quantify the storage capacity needed to achieve a specified firm yield but do not prescribe locations for reservoirs within each river basin, which would require location-specific S-Y analysis. The basin-scale S-Y relationships provide a metric for understanding how changes in precipitation, evaporation, and land-use across space and time translate into changes in required storage needed at the basin-level to ensure a specified volume of freshwater is available for human use (e.g. irrigation, municipal supply, etc.). The basin-level S-Y indicators enable comparison across regions, and hence, identification of basins with the greatest challenges in terms of adapting to future climate change (Wiberg and Strzepek 2005, Boehlert et al 2015).

A linear programming (LP) model computes the S-Y characteristics (section 2.2) and is applied to the 235 basins delineated in HydroSHEDS used by the Food and Agriculture Organization of the United Nations (www.fao.org/geonetwork/srv/en/metadata.show?id=38047). The LP model calculates the minimum reservoir capacity required to provide a given yield based on concurrent 30 year average monthly runoff sequences within each basin. This timeframe is selected to mimic existing regional water resource planning practices, which typically take a multi-decadal perspective to include analysis of long-lived infrastructure investments such as reservoir development (Gaupp et al 2015).

Return of extracted groundwater to rivers and long-distance inter-basin transfers via conveyance infrastructure are important parts of the surface water balance in some regions (McDonald et al 2014, Wada et al 2016), but are not included in this current study due to lack of consistent observational data on a global scale and computational challenges preventing application of the LP framework at higher spatial resolutions. The approach also does not consider streamflow routing within basins. Omitting routing in basin-scale S-Y analysis has been adopted in previous studies (Gaupp et al 2015). It is also important to note that in some of the largest basins the hydraulic residence time is on the order of several months, and hence, our analysis is unable to reflect the effects of this time-lag on storage reliability. Similarly, our assessment is unable to address capacity decisions focused on addressing floods, which usually requires assessing flow patterns at higher frequencies (Naden 1992).

In this study, we assume an upper boundary for the maximum reservoir expansion scenario which is defined by the limited availability of land to be flooded due to various restrictions. Availability of land is defined following a spatially-explicit analysis of existing and future land-use in each basin (section 2.3). It is important to emphasize that additional reservoir development constraints not readily quantifiable with existing methods (e.g. soil stability, future habitat conservation, cultural preferences, etc.) are likely to further reduce available area for reservoir expansion.

The overall approach of the global scale assessment is shown in figure 1. The historical period of 1971–2000 and a simulation period of 2006–2099 were analyzed for each of the 235 basins. The 30 year monthly runoff sequences were generated for each decade resulting in eight decadal runoff sequences for each climate scenario. Additionally, the impacts of net evaporative losses from the reservoir surface are estimated for each climate scenario and included in the reservoir capacity calculations.

Figure 1. Framework for assessing impacts of climate change and human development constraints on the reservoir potential in 235 large-scale river basins.
2.1. Model inputs

For this study, we utilized runoff from a state-of-the-art global hydrological model (GHM) entitled PCR-GLOBWB (Wada et al 2014). Similarly, we used climate inputs from an advanced general circulation model (GCM) entitled HadGEM2-ES (Jones et al 2011), provided by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) Fast Track (Hempel et al 2013). PCR-GLOBWB estimates of daily runoff are, to the first-order, driven by climate inputs from bias-corrected HadGEM2-ES (Hempel et al 2013). The GHM is well-validated over most of the large rivers at both monthly and daily time scales (van Beek et al 2011, 2012). Hydrologic outputs from the GHM driven by a GCM have been applied in global scale studies (Schewe et al 2014, Veldkamp et al 2016, Wanders et al 2015). In this study, the monthly runoff statistics are given based on daily runoff.

Similarly, net evaporative loss from the reservoir is forced by climate input from the GCM using the general approach of Shuttleworth (1993) (appendix A section 2). This approach originated from the Penman equation (Penman 1948) and is widely used to estimate the potential evaporation of open water and fully-saturated land surfaces (Harwell 2012). Net evaporation is therefore the difference between estimated potential evaporation from reservoir surface and precipitation on reservoir surface.

All model inputs are provided as gridded data at 0.5° spatial resolution (approximately 50 km by 50 km in the mid-latitudes). Data for each of the four future climate change scenarios from the Representative Concentration Pathways (RCPs) (van Vuuren et al 2011) are available. The four RCPs (2.6, 4.5, 6.0 and 8.5) describe a possible range of radiative forcing values by the year 2100 relative to pre-industrial values, which are consistent with a wide range of possible changes in global climate patterns. For example, the RCP2.6 scenario represents a low-carbon development pathway consistent with limiting the global mean temperature increase to 2°C by 2100 (van Vuuren et al 2011). Conversely, RCP8.5 represents a world with high population, energy demand, and fossil intensity, and thus the highest carbon emissions (Riahi et al 2011). The inclusion of different global emission scenarios in the S-Y analysis provides insight into the potential interactions with climate change mitigation policy.

Similar to previous research, a simplified geometry for the representative reservoir in each basin is assumed (Wiberg and Strzepek 2005, Boehlert et al 2015, Gaupp et al 2015) (appendix A section 1). The simplification is crucial in the current study for facilitating the long-term global-scale perspective needed to assess impacts of climate change across multiple scenarios. The Global Reservoir and Dam (GRanD) database (Lehner et al 2011) reports the maximum storage capacity and surface area for existing reservoirs with a storage capacity of more than 0.1 km3. These data are used to derive an average surface area-volume relationship for each basin (appendix A section 1).

2.2. Reservoir storage-yield relationship

Reservoir capacity is defined in this study as the minimum storage capacity c capable of providing a firm yield y across a set of N discrete decision-making intervals, $T = \{t_1,...,t_N\}$. Considering average monthly runoff q_t, releases for environmental purposes r_t and net evaporative losses v_t a simple water balance across basin-wide inflows and managed outflows at the representative basin reservoir results in the following continuity equation for the storage level:

$$s_{t+1} = s_t + q_t - v_t - r_t - y \forall t \in t_1,...,t_{N-1}$$

where s is the storage level. Evaporation and precipitation are important processes to parameterize in the reservoir water balance due to the feedback with management strategies (Wiberg and Strzepek 2005). Level-dependent net evaporative losses are estimated assuming a linearized relationship between surface area and storage level (Lelé 1987):

$$v_t = e_t \cdot A_t = \frac{1}{2} \cdot e_t \cdot a \cdot (s_t + s_{t+1})$$

$$= a_t \cdot (s_t + s_{t+1}) \forall t \in T$$

where e is the net evaporation (as equivalent depth), A is the reservoir surface area, a is the surface area per unit storage volume (appendix A section 2), and $a = 1/2 \cdot e \cdot a$. The net evaporation and reservoir geometry parameters represent basin-averages.

Combining (1) and (2) generates a continuity equation for the reservoir storage level that incorporates level-dependent net evaporative losses in a simplified way (appendix A section 1). The continuity equation is joined with a number of operational constraints to form the following LP model:

$$\text{Min } c$$

s.t. $$(1 - a_t) \cdot s_t - (1 + a_t) \cdot s_{t+1} - r_t - y \forall t \in t_1,...,t_{N-1}$$

$$s_t \leq s_{t+N}$$

$$\rho \cdot c \leq s_t \leq \varphi \cdot c \forall t \in T$$

$$r_{min} \leq r_t \leq r_{max} \forall t \in T$$

$$0 \leq c \leq e_{max}$$

where the management variables are defined by the set $X = \{s, r, c\}$. The objective function (3a) seeks to minimize the no-failure storage capacity given a certain firm yield. Constraint (3b) is the continuity equation incorporating level-dependent net evaporative losses. Constraint (3c) prevents pre-filling and draining of the
reservoir in the model by ensuring the storage level at the final time-step, \(t_f \), does not exceed the storage level at the initial time step, \(t_i \). Constraint (3d) ensures the reservoir storage level stays within a maximum fraction of storage capacity, \(\phi \) (assumed to be 1), and a minimum dead-storage limit of the installed capacity, \(\rho \). Gaupp et al (2015) adopted \(\rho \) of 20% in their study and this value can be as high as 30%–40% (Wiberg and Strzepek 2005). In this study, we assumed a smaller fraction of 15%.

Constraint (3e) ensures the release is maintained between the maximum and minimum environmental flow requirements, \(r_{\min} \) and \(r_{\max} \), which are computed by applying an augmentation factor on monthly natural streamflow. We adopted the environmental flow approach of Richter et al (2012) where the environmental flow allocation is determined by an allowable augmentation from presumed naturalized conditions. We experimented with an augmentation factor of 10%–90% of the naturalized conditions. Results are shown with an augmentation factor of 90%, which serves as a lower bound for illustrative purposes. Hence, \(r_{\min} \) and \(r_{\max} \) is 10% and 190% of monthly natural streamflow, respectively. Constraint (3f) limits installed storage capacity to \(c_{\max} \) and ensures the capacity remains positive. The maximum volume is set based on an assessment of within-basin land-use, which is further discussed in section 2.3.

Solving (3) identifies the minimum storage capacity required to provide the given firm yield subject to the operational constraints. The S-Y relationship is obtained by solving the model for incrementally increasing firm yields. From the S-Y curve, the maximum storage capacity for the reservoir within each basin occurs at the maximum firm yield, i.e. where the marginal gains in firm yield under reservoir expansion approach zero. Maximum reservoir storage potential is therefore equivalent to the maximum storage capacity derived from the S-Y relationship unless such storage capacity is constrained by available land, which is explained in section 2.3. The maximum gain in firm yield is thus the difference between the current firm yield and the maximum firm yield identified from the generated S-Y curve.

An ensemble of S-Y curves is generated for each basin using the climate scenarios and multi-decadal simulations described in section 2.1. The ensemble is assessed to calculate the number of S-Y curves in each basin that reach a given firm yield. This analysis provides an additional reliability-based performance metric that incorporates a measure of climate change uncertainty. Note that to accurately represent the reliability of reservoirs, behaviour simulation of reservoirs with assumptions of operating policy should be implemented (Kuria and Vogel 2015). However, given the computational intensity of behaviour analysis, the reliability in this study represents the probability a certain firm yield can be obtained across the climate scenarios and multi-decadal planning horizons. That is, we assessed reliability in terms of reservoir potential and firm yields across different climate scenarios and decision-making periods.

2.3. Exclusion zones

Reservoir expansion, and the associated gains in firm yield, are constrained by the availability of land since not all areas can realistically be used for reservoir expansion. \(r_{\max} \) in equation 3g is derived for each basin by calculating the storage volume associated with the total available land area (see appendix A section 1). We followed the approach of a number of previous studies on renewable energy potentials (de Vries et al 2007, Zhou et al 2015) and define reservoir exclusion zones using maps of the following drivers: (1) population (Jones et al 2016); (2) irrigated cropland (Siebert et al 2013); and (3) protected areas (figure S1 and table S1 available at stacks.iop.org/ERL/13/044026/mmedia) (Deguignet et al 2014). We adopted dynamic population trajectories under two Shared Socioeconomic Pathways (SSPs) - SSP1 and SSP3. These scenarios were selected due to their opposing storylines about population growth and urbanization, which introduces human migration uncertainties into the analysis. SSP1 describes a future world with high urbanization and low population growth whereas lower urbanization and higher population growth define SSP3 (O’Neill et al 2014). Total available land area for reservoir expansion in each basin is thus the remaining area outside the exclusion zones. Further discussion of the exclusions zones and the derivation is provided in appendix A section 3.

Other than population, agriculture, and protected land, other physical limitations such as elevation, slope and seismic risk will also constrain the available area for reservoir expansions. It is important to further emphasize that this work does not prescribe actual sites for new reservoirs within basins, which requires a more detailed treatment of the local geography and stakeholder needs. Non-physical constraints such as economic incentives, institutional capacity, and infrastructure readiness would also limit the ability of reservoir capacity expansion. To fully characterize exclusion zones, future work should consider direct use of high-resolution digital elevation model data and alternative metrics for limiting land availability. Without considering non-physical constraints that are difficult to quantify, this study serves as a first-order estimation of reservoir storage and surface water yield expansion potential at global scale.

3. Results

Figure 2 depicts the combined impacts of climate change and competing land-use activities on reservoir storage potential and reliability in the 2050s under a maximum reservoir expansion scenario. There are two layers of information embedded in figure 2: storage
expansion potential (vertical color) and the likelihood of maintaining current firm yields under future climate change (horizontal color). There are large disparities in the potential for reservoir expansion to provide firm yields across basins. For example, the majority of basins in Europe display greater than 2500 m3 of storage potential per capita, but relatively low reliability ($<50\%$) for maintaining current firm yields due to the projected lower water availability under climate change. Basins in Asia show high reliability ($>50\%$) for maintaining current firm yield yet relatively low storage potential (<2500 m3) per capita associated with large projections in population growth. Basins located at higher latitudes generally display abundant storage potential (>12000 m3/capita), but these regions are not usually highly populated or water demanding; hence, there will likely be less of an incentive to plan for reservoir expansion in these regions. To quantify the necessity of building reservoirs to relieve regional water stress, it is necessary to integrate water demand from different sectors into this framework so that the reservoir expansion planning will take into account the severity of water scarcity as well as environmental and socioeconomic development factors.

Maximizing the additional amount of reservoir storage (~ 4.3--~ 4.8 times greater) results in only a $\sim 50\%$ increase in firm yield worldwide due to the nonlinear shape of the S-Y curve (ex. figure S3 and S4). Figure 3 shows the marginal gains vary substantially across basins. Gains in storage/firm yield are defined as the ratio between estimated maximum reservoir storage/firm yield and current reservoir storage/firm yield and are computed by analyzing the S-Y curve for each basin of interest. The majority of basins in North America have limited gain in firm yield by maximizing storage as these basins have already been highly developed. Basins in parts of India and Southeast Asia, on the other hand, display relatively greater marginal gain in firm yield by maximizing storage capacity.

By comparing the two types of map products in figure 2 and figure 3, we can identify regions where reservoir expansion will be particularly challenging. For example, current total reservoir storage capacity in the Missouri River Basin, United States is 133 km3. There is very little room for further expansion for the Missouri River Basin as the estimated storage potential is almost identical with current reservoir storage (figure S3). Fully utilizing potential storage leads to negligible increases in firm yield, and with a reliability of less than 50\% due to the relative instability of future water availability under the tested scenarios (figure S2). In Asia, current total storage capacity in the Mekong Basin is 19 km3, and the storage potential is about 300 km3 (~ 16 times current storage) (figure S3(b)). In contrast, additional storage per capita for the Mekong Basin is 4200 m3/capita. By maximizing the potential storage, firm yield increases from 235 km3 to ~ 500 km3, which is approximately 2 times the current firm yield. However, the reliability is estimated to be very low due to the projected lower reservoir inflows under climate change (figure S2). As figure 2 and figure 3 illustrate, there exists large regional heterogeneity in marginal gain of firm yield when we fully utilize potential storage and the reliability of maintaining current firm yield varies from basin to basin. In addition to physical feasibility, there are other factors that constrain storage potential and hence gain in firm yield. Additional global maps are included in Supplementary section to help understand current yields for each basin (figure S7) and additional storage needed to maintain current firm yields (figure S8).
Figure 3. Bivariate map showing gains in firm yield/storage (unitless) for each basin under the SSP1 population trajectory in the 2050s (blank regions indicate insufficient GRanD data).

Table 1. Percentage of basins overdeveloped with respect to environmental flow requirements.

Environmental flow requirements (% of natural streamflow)	Percentage of basins overdeveloped (%)
10%	7
20%	11
50%	20
70%	98
90%	98

In this study, we experimented with different augmentation factors for environmental flow to show how many basins have already installed a storage capacity that exceeds presumed environmental guidelines. Table 1 shows the percentage of basins that would be overdeveloped if higher environmental flow requirements were assumed.

Results suggest that even at ‘poor or minimum’ environmental flow condition (Tennant 1976) of 10%, a small portion of the world’s largest rivers already have an installed storage capacity that puts river’s ability to provide environmental services at risk. With increasing environmental flow guidelines, more river basins would be considered ‘overdeveloped’ even with current storage capacity. This shows that existing reservoirs are partially causing the deterioration of ecosystem services, and reservoir storage potential would be further constrained by more stringent environmental flow requirements.

4. Discussions and conclusions

This paper quantified the global potential for surface water reservoirs to provide a firm yield across four different climate change scenarios and two socioeconomic development pathways under a maximum reservoir expansion scenario. Competing land-use activities are found to pose a nontrivial impact on reservoir storage potential worldwide. Approximately 4%–13% of the estimated maximum storage capacity is unavailable due to human occupation, existing irrigated cropland, and protected areas. In addition, net evaporation is non-trivial (∼2.3% of total annual firm yield) and it is anticipated to increase ∼3%–4% under the most extreme climate warming scenario (RCP8.5). Importantly, the impact of climate change on reservoirs differs immensely from basin-to-basin, but the results of this analysis show agreement in terms of its negative role in reservoir reliability. International policies aimed at reducing greenhouse gas emissions would help to reduce this uncertainty, and therefore point to additional co-benefits of climate change mitigation in terms of improving long-term water supply reliability.

Two types of bivariate map products were generated from this study to help decision makers understand the potential benefits of reservoir expansion at the basin-scale and help define regional adaptation measures needed for water security. By linking this framework with anthropogenic water demand for various activities in each basin (e.g. agriculture, electricity, industry, domestic, manufacturing, mining, livestock), regions where water is severely in deficit, and thus, expanding reservoirs would potentially relieve regional water scarcity could be identified. Other than demand for water, alternative metrics that could presumably affect reservoir expansions include, but are not limited to, economic incentives, institutional capacity, and infrastructure readiness.

This paper should not be seen as a call for more large dams, but rather an assessment of where policies and infrastructure investments are needed to sustain
and improve global water security. In fact, dam removal activities have become more prominent in the United States since the 2000s, partly due to concerns of deteriorating river ecosystems and degraded environmental services (Oliver 2017). A recent study by the Mekong River Commission tested a scenario of completing 78 dams on the tributaries between 2015–2030, the results of which suggested that it would have catastrophic impacts on fish productivity and biodiversity (Ziv et al 2011). Therefore, it is critical to consider the trade-offs between socioeconomic progress and sustainable development when interpreting results with the tools built from this study.

This study serves as a valuable input to future work connecting water, energy, land, and socioeconomic systems into a holistic assessment framework. Future effort will include other metrics described above to further constrain reservoir storage potential. Future work could also examine sensitivity of the results to a wider range of GHMs and GCMs to better capture model uncertainty. Finally, the results of this study provide planners with important quantitative metrics for long-term water resource planning and help explore the implications through integrated modeling of water sector development.

Acknowledgments

Part of this research was developed during the Young Scientists Summer Program at the International Institute for Applied Systems Analysis (IIASA), with financial support from the IIASA Annual Fund. The authors acknowledge the Global Environment Facility (GEF) for funding the development of this research as a part of the ‘Integrated Solutions for Water, Energy, and Land (ISWEL)’ project (GEF Contract Agreement: 6993), and the support of the United Nations Industrial Development Organization (UNIDO). We also acknowledge the Coupled Model Intercomparison Project Phase 5 (CMIP5) and the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) for providing the climate and hydrological data. We also thank Nils Johnson for his input during the earlier formulations of this research.

ORCID iDs

Lu Liu https://orcid.org/0000-0002-4939-5432
Simon Parkinson https://orcid.org/0000-0002-4753-5198
Matthew Gidden https://orcid.org/0000-0003-0687-414X
Edward Byers https://orcid.org/0000-0003-0349-5742
Yusuke Satoh https://orcid.org/0000-0001-6419-7330

Keywan Riahi https://orcid.org/0000-0001-7193-3498
Barton Forman https://orcid.org/0000-0001-6410-9978

References

Boehlert B, Solomon S and Strzepek K M 2015 Water under a changing and uncertain climate: lessons from climate model ensembles J. Clim. 28 9381–82
Carry J G and Cunnane C 1990 An evaluation of some methods for determining storage yield relationships for impounding reservoirs J. IWEM 53 570–2
de Vries B J M, van Vuuren D P and Hoogwijk M M 2007 Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach Energy Policy 35 2590–610
Deguignet M, Jufle-Bignoli D, Harrison J, Macsharry B, Burgess N and Kingston N 2014 2014 United Nations list of Protected Areas (Cambridge: UNEP-WCMC)
Fricko O, Parkinson S, Johnson N, Strubegger M, Vliet M T and van Riahi K 2016 Energy sector water use implications of a 2°C climate policy Environ. Res. Lett. 11 034011
Gaupp F, Hall J and Dadoson S 2015 The role of storage capacity in coping with intra-annual runoff variability on a global scale Environ. Res. Lett. 17 3943
Grubert E A 2016 Water consumption from hydroelectricity in the United States Adv. Water Resour. 96 88–94
Harwell G R 2012 Estimation of evaporation from open water—A review of selected studies, summary of US Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas, US Geological Survey Scientific Investigations Report 2012–5202
Hempel S, Frieder K, Warszawski L, Schewe J and Piontek F 2013 A trend-preserving bias correction—the ISIMIP approach Earth Syst. Dyn. 4 219–36
Jones B et al 2016 Spatially explicit global population scenarios consistent with the shared socioeconomic pathways Environ. Res. Lett. 11 8
Jones C D et al 2011 The HadGEM2-ES implementation of CMIP5 centennial simulations Geosci. Model Dev. 4 543–70
Kundzewicz Z W and Stakhiv E Z 2010 Are climate models ‘ready for prime time’ in water resources management applications, or is more research needed? Hydrol. Sci. J. 55 1085–9
Kuria F W and Vogel R M 2013 Global storage-reliability-yield relationships for water supply reservoirs Water Resour. Manage. 29 1591–605
Lehner B et al 2011 High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management Front. Ecol. Environ. 9 494–502
Lele S M 1987 Improved algorithms for reservoir capacity calculation incorporating storage dependent losses and reliability norm Water Resour. Res. 23 1819–23
McDonald R I et al 2014 Water on an urban planet: Urbanization and the reach of urban water infrastructure Glob. Environ. Change 27 96–105
McMahon T A, Vogel R M, Pegram G G S, Peel M C and Etkin D 2007 Global streamflows—Part 2: Reservoir storage-yield performance J. Hydrol. 347 260–71
Naden P S 1992 Spatial variability in flood estimation for large catchments: the exploitation of channel network structure Hydrol. Sci. J. 37 53–71
O’Neill B C et al 2014 The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century Glob. Environ. Change 42 169–80
Oliver M and Grant G 2017 Liberated Rivers: Lessons from 40 years of dam removal PNW Sci. Find. 1–4
Penman H L 1948 Natural evaporation from open water, bare soil and grass Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 193 120–145

Poff N L and Schmidt J C 2016 How dams can go with the flow Science 353 1099–1100

Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N and Rafaj P 2011 RCP 8.5-A scenario of comparatively high greenhouse gas emissions Clim. Change 109 33–57

Richter B D, Davis M M and Knorad C 2012 A presumptive standard for environmental flow protection River Res. Appl. 28 1312–21

Richter B D, Postel S, Revenga C, Lehner B and Churchill A 2010 Lost in development’s shadow: The downstream human consequences of Dams Water Altern. 3 14–42

Rippl W 1883 The capacity of storage-reservoirs for water supply M. P. Civil Eng. 71 270–8

Schewe J et al 2014 Multimodel assessment of water scarcity under climate change Proc. Natl Acad. Sci. USA 111 3245–50

Shuttleworth W J 1993 Evaporation Handbook of Hydrology, Civil Engineering ed D R Maidment (New York: McGraw-Hill)

Siebert S, Henrich V, Frenken K and Burke J 2013 Global Map of Irrigation Areas version 5

Soundharajan B S, Adeloye A J and Remesan R 2016 Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment J. Hydrol. 538 625–39

Stillwell A S and Webber M E 2013 Evaluation of power generation operations in response to changes in surface water reservoir storage Environ. Res. Lett. 8 25014

Tennant D L 1976 Instream flow regimes for fish, wildlife, recreation, and related environmental resources, in Instream flow needs Volume II. Boise, ID Proceedings of the Symposium and Specialty Conference on Instream Flow Needs (Bethesda, MD: American Fisheries Society) pp 359–73

Turner S W and Galleli S 2016 Water supply sensitivity to climate change: An R package for implementing reservoir storage analysis in global and regional impact studies Environ. Model. Softw. 76 11–9

van Beek L P H, Eekelboom T, van Vliet M T H and Bierkens M F P 2012 A physically based model of global freshwater surface temperature Water Resour. Res. 48 W09530

van Beek L P H, Wada Y and Bierkens M F P 2011 Global monthly water stress: 1. Water balance and water availability Water Resour. Res. 47 W07517

van Vliet M T H, van Beek L P H, Eisner S, Flore M, Wada Y and Bierkens M F P 2016 Multi-model assessment of global hydropower and cooling water discharge potential under climate change Glob. Environ. Change 40 156–70

van Vuuren D P et al 2011 The representative concentration pathways: An overview Clim. Change 109 5–31

Veldkamp T I E, Wada Y, Aerts J C J H and Ward P J 2016 Towards a global water scarcity risk assessment framework: incorporation of probability distributions and hydro-climatic variability Environ. Res. Lett. 11 24006

Vogel R M, Sieber J, Archfield S A, Smith M P, Apse C D and Huber-Lee A 2007 Relations among storage, yield, and instream flow Water Resour. Res. 43 1–12

Vogel R M and Steding J R 1987 Generalized storage-reliability-yield relationships J. Hydrol. 89 303–27

Vörösmarty C I, Green P, Salisbury J and Lammers R 2000 Global water resources: Vulnerability from climate change and population growth Science 289 284–88

Wada Y, Lo M-H, Yeh P J-F, Reager J T, Famiglietti J S, Wu R-J and Tseng Y-H 2016 Fate of water pumped from underground and contributions to sea-level rise Nat. Clim. Change 6 777–80

Wada Y, Wisser D and Bierkens M F P 2014 Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources Earth Syst. Dyn. 5 15–40

Wanders N, Wada Y and Van Lanen H A J 2015 Global hydrological droughts in the 21st century under a changing hydrological regime Earth Syst. Dyn. 6 1–15

Wiberg D and Strzepek K M 2005 Development of Regional Economic Supply Curves for Surface Water Resources and Climate Change Assessments: A Case Study of China IIASA Research Report (Laxenburg, Austria: IIASA) RR-05-001

Zhou Y, Hejazi M, Smith S, Edmonds J, Li H, Clarke L, Calvin K and Thomson A 2015 A comprehensive view of global potential for hydro-generated electricity Energy Environ. Sci. 8 2622–33

Ziv G, Baran E, Nam S, Rodríguez-Iturbe I and Levin S A 2011 Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin Proc. Natl Acad. Sci. 109 5609–14