Degradation of sulfamethoxazole by chlorination in water distribution systems: Kinetics, toxicity, and antibiotic resistance genes

Luo Xu 1 | Cong Li 1 | Guozijian Wei 1 | Jie Ji 1 | Eric Lichtfouse 2 | Andreina García 3 | Yunshu Zhang 1

1School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
2Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France
3Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago, Chile

Correspondence
Cong Li, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200433, China.
Email: congil@aliyun.com

Abstract
Sulfamethoxazole (SMX) is one of veterinary drugs and food additives, which has been frequently detected in surface waters in recent years and will cause damage to organisms. Therefore, SMX was selected as a target to be investigated, including the degradation kinetics, evolution of toxicity, and antibiotic resistance genes (ARGs) of SMX during chlorination in batch reactors and water distribution systems (WDS), to determine the optimal factors for removing SMX. In the range of investigated pH (6.3–9.0), the SMX degradation had the fastest rate at close to neutral pH. The chlorination of SMX was affected by the initial total free chlorine concentration, and the degradation of SMX was consistent with second-order kinetics. The rate constants in batch reactors are $(2.23 \pm 0.07) \times \times 10^2 \ M^{-1} \ s^{-1}$ and $(5.04 \pm 0.30) \times 10 \ M^{-1} \ s^{-1}$ for HClO and ClO$^-$, respectively. Moreover, the rate constants in WDS are $(1.76 \pm 0.07) \times \times 10^2 \ M^{-1} \ s^{-1}$ and $(4.06 \pm 0.62) \times 10 \ M^{-1} \ s^{-1}$, respectively. The degradation rate of SMX was also affected by pipe material, and the rate followed the following order: stainless-steel pipe (SS) > ductile iron pipe (DI) > polyethylene pipe (PE). The degradation rate of SMX in the DI increased with increasing flow rate, but the increase was limited. In addition, SMX could increase the toxicity of water initially, yet the toxicity reduced to the level of tap water after 2-h chlorination. And the relative abundance of ARGs (sul1 and sul2) of tap water samples was significantly increased under different chlorination conditions.

Practitioner Points:
- The degradation rate of SMX in batch reactor and WDS is different, and they could be described by first- or second-order kinetics.
- The degradation of SMX had the fastest rate at neutral pH.
- The degradation rate of SMX was also affected by pipe material and flow velocity.
- SMX increased the toxicity of water initially, yet the toxicity reduced after a 2-h chlorination.
- SMX increased the relative abundance of antibiotic resistance genes sul1 and sul2.

Received: 13 March 2022 | Revised: 20 October 2022 | Accepted: 15 November 2022
DOI: 10.1002/wer.10817
INTRODUCTION

Since penicillin by Alexander Fleming was discovered in 1928, antibiotics have been widely used to prevent human and animal infectious diseases (Huang et al., 2020; Wang et al., 2020; Zhang, Ying, et al., 2015). However, 60–80% of antibiotics are not absorbed after entering human and animal bodies but directly discharged from the body through feces or urine (Chen et al., 2017), which has become the main source of antibiotic residues in the environment. In addition, aquaculture industry (Tian et al., 2013), medical and pharmaceutical wastewater (Gobel et al., 2005; Lindberg et al., 2004) is also an important source of environmental antibiotic residue. Antibiotics are considered to be “pseudo persistent” pollutants because they continue to enter the ecosystem (Gulkowska et al., 2008), which has aroused great concern because they may impose a potential risk to the nontarget species (Chen et al., 2011).

Sulfonamides (SAs) are one of the most widely used antibiotics in the world (Gaffney et al., 2016), with more than 20,000 tons of SAs (excluding drugs used as herbicides) introduced into the biosphere each year (Qiu et al., 2016). As a kind of fairly water-soluble polar compound, SAs are weakly degraded in the nature, thus they can easily enter surface runoff or be leached into the groundwater. Luo et al. (2011) reported that the concentration of trimethoprim, trimethoprim, sulfamethoxazole, and sulfachloropyridazine in the Haihe River was (1.2 ± 0.8) × 10² ng/L, (1.2 ± 0.8) × 10² ng/L, (1.7 ± 1.0) × 10² ng/L, and (1.8 ± 1.4) × 10² ng/L, respectively. A survey (Jiang et al., 2011) of the Huangpu River found that the concentration of trimethoprim, sulfadiazine, sulfamethoxazole, and sulfachloropyridazine was 62.39, 40.55, 623.27, and 58.29 ng/L, respectively. Li, Ho, et al. (2017) reported that the concentration of oxytetracycline reached 600 ng/L in tap water in Hong Kong. Therefore, the existence of antibiotics is not only limited to the environmental water of nature but also exists in the drinking water related to human beings. SA concentrations in natural water are quite low, ranging from nanograms to micrograms per liter (ng/L to µg/L) (Zhang, Dong, et al., 2018), but it still has ecotoxicity at this level (Fent et al., 2006). For example, SAs can damage the human immune system, pose skin allergic reactions (Choquet-Kastylevsky et al., 2002) and even carcinogen risk (Shao et al., 2005), inhibit the germination of plants (Migliore et al., 2003), and case ecological bioaccumulation in aquatic organisms (Peiris et al., 2017). Furthermore, they can promote the microbial genetic variation (Jeong et al., 2010), which may lead to the emergence of ARGs and antibiotic-resistant bacteria (Zheng et al., 2017). Guo et al. (2014) investigated the ARGs levels in the Yangtze River Delta of China and detected the existence of 10 ARGs in the source waters of the seven water treatment plants, among which the relative abundance of ARGs sul1, sul2, tet (c), and tet (g) is the highest, total concentrations of ARGs were above 10⁵ copies/ml. The sul1 and sul2 were also the most frequently detected sulfonamide ARGs in surface waters in Germany and Australia (Stoll et al., 2012). ARGs and antibiotic-resistant bacteria could enhance the potential for both new and old diseases to emerge (Mulvey & Simor, 2009).

Various technologies were used to remove or degrade SAs in water, including biodegradation (Chen & Xie, 2018; Yu et al., 2018), activated carbon and porous resin adsorption (Choi et al., 2008; Yang et al., 2011), membrane filtration (Rosman et al., 2018), free chlorination (Gaffney et al., 2016), and advanced oxidation (Beltran et al., 2008; Cai et al., 2022; Guo, Yin, et al., 2015). Among these methods, free chlorination is regarded as one of the most effective technologies due to its low price, continuous disinfection, wide application scope, and high oxidation efficiency for a variety of organic compounds (Dong et al., 2017, 2019). Nassar et al. (2018) have shown that free chlorine can react with SAs in the first-order. Dodd and Huang (2004) established a degradation model of SMX by chlorine under different pH based on pseudo second-order kinetics, and detected the chlorination products by using GC-MS and LC-MS derivatization methods and proposed the degradation pathway (Dodd & Huang, 2004; Gaffney et al., 2016). However, most SA chlorination studies were generally conducted under lab-scale static conditions (e.g., beakers with buffered water or deionized). The SA chlorination and the potential influence of chlorination on ARGs in dynamic water distribution system (WDS) has been scarcely studied.

Sulfamethoxazole (SMX, CAS Number 723-46-6) is a typical SA (Yao et al., 2018), which is mainly used as a veterinary drug and feed additive and its selected chemical properties were showed in Figure S1. This study mainly includes the following aspects: (1) Investigate the relationship between the SMX chlorination and the concentrations of free chlorine, pH, flow rate, and pipe materials in batch reactor and WDS; (2) determine the kinetics of SMX...
chlorination by free chlorine and analyze the difference between its degradation in batch reactor and WDS; (3) evaluate the evolution of toxicity during the SMX chlorination in WDS; (4) investigate the production of antibiotic resistance genes of pipeline bacteria under the exiting condition of only use SMX, chlorination products of SMX, or pretreatment with SMX followed by chlorination.

MATERIALS AND METHODS

Experimental materials

SMX (AR, ≥98%) was purchased from TCI (Shanghai, China), and free chlorine stock solutions were prepared by dilution of commercial 5.5–6.5% sodium hypochlorite solution from Aladdin (Shanghai, China). N,N-diethyl-p-phenylenediamine (DPD) was purchased from Hach Company (Loveland, Colorado, USA), and it was used to measure chlorine concentration. HPLC-grade acetonitrile (ACN), methanol (MeOH), and phosphoric acid (H₃PO₄) were purchased from Sigma Aldrich (Shanghai, China). Other reagents, including dibasic sodium phosphate (Na₂HPO₄, AR grade), sodium dihydrogen phosphate (NaH₂SO₄, AR grade), and sodium thiosulfate (Na₂S₂O₃, CP grade), were purchased from Sinopharm Chemical Reagent (Shanghai, China). The bacteria and reactivation reagents were from Hamamatsu Photonics (Beijing, China) and were used to evaluate the toxicity. The purified water was obtained from a Millipore Milli-Q apparatus and tap water obtained from Hangzhou City.

Batch reactor and WDS

The degradation experiments of SMX were conducted in a batch reactor and WDS with the use of sodium hypochlorite (NaClO) as a disinfectant. Batch experiments were conducted in 500-ml brown glass beakers to exclude the influence of potential light (Figure S2a). The WDS system had three separate loops (each loop is 150 mm in diameter and 80 m in length), made of polyethylene pipe (PE), ductile iron pipe (DI), and stainless-steel pipe (SS). Each loop was equipped with an online monitoring system, circulation pump (which can adjust the flow rate), chemical injection ports, and sampling tap, and each loop could be operated independently (Figure S2b,c,d).

Degradation experiments of SMX

Using fresh tap water, each WDS loop was washed at a speed of 1 m/s for 20 min before WDS experiments. In the WDS experiments, experimental water was the tap water and its characteristics are shown in Table S1. The initial concentration of SMX was 200 μg/L, and experiment temperature was stabilized at 25°C by an automatic control system. A 5% sodium hypochlorite solution was added in loops through chemical injection ports until ultimately the concentration of free chlorine reached the required values (0.4, 0.6, 0.8, and 1.0 mg/L). The pH levels (6.6, 7.0, 7.4, 7.8, and 8.2) and flow rates (0.7, 1.0, 1.3, and 1.5 m/s) were adjusted by phosphate buffer and circulation pump, respectively. In addition, the effects of pipe materials were examined by using three kinds of pipes (PE, DI, SS) because they were commonly used in drinking water distribution system in China. In the batch reactors experiments, the pH levels were set as 6.3, 6.6, 6.9, 7.2, 7.5, 7.8, 8.1, 8.4, 8.7, and 9.0, and other conditions were consistent with WDS experiments; 10-ml samples were collected at 0, 5, 10, 15, 20, 25, 30, 35, and 40 min, respectively, and then 1 ml of 100 mg/L Na₂S₂O₃ (as quenching agent) was immediately added to stop further reaction.

Determination of antibiotic concentration

The SMX in each sample was quantified by an Agilent 1200 Series HPLC, which equipped with a Zorbax Eclipse XDB-C18 column (4.6 mm × 150 mm, 5 μm) and a UV detector (G1314B, Agilent Technologies, Santa Clara, CA, USA). The column temperature was set at 30°C and injection sample volume was 20 μl. The detection wavelength was set at 270 nm. Pure acetonitrile and 1‰ (v/v) phosphoric acid with the ratio of 80:20 was the mobile phase, and the flow was 0.8 ml/min.

Toxicity assessment of SMX degradation

DI pipe material is the most widely used in China, and about 75% of water distribution systems is made of DI pipe material (He et al., 2016); thus, the section experiment was carried out in DI. Microtox method (the international procedure ISO 11348-3) (Buysse et al., 1989) was used to evaluate the toxic evolution of a SMX solution during chlorination in WDS (DI), which was based on the inhibition of the luminescence by Vibrio fischeri (Barhoumi et al., 2016) marine bacteria with 15-min exposure. A multiscan spectrum M200 PRO (Tecan, Austria) was used. In order to prevent the inactivation of V. fischeri by free chlorine, the free chlorine in each water sample was quenched with 0.2 mol/L Na₂S₂O₃, and Na₂S₂O₃ itself did not inhibit V. fischeri (Wei et al., 2011). The calculation formula of the
inhibition of light emissions was as follows: inhibition = \(\frac{I_0 - I}{I_0} \), where \(I \) and \(I_0 \) was the luminescent intensity of samples at different times and the luminescent intensity of the blank solution, respectively.

DNA extraction

Four group experiments were set up in this section, which were carried out in WDS (DI). A group represented the tap water samples that were placed for 6 days, as blank control; B group represented the tap water samples that were added SMX for 6 days; C group represented the tap water samples that were added the chlorinated products of SMX (obtained by solid phase extraction) for 6 days; D group represented the tap water samples that were pretreatment with SMX followed by chlorination for 6 days.

Five hundred milliliters of water samples were concentrated by 0.22-μm sterile filter membranes until the membrane was clogged to capture bacteria. Then, the membranes were cut up with clean scissors and stored at \(-20^\circ\text{C}\) in 50-ml centrifuge tubes. The total DNAs were extracted using an EZNA Water DNA Kit (Omega Bio-tek, Georgia, USA) and the extraction steps followed the manufacturer’s instructions. The DNA concentration and purity were determined by 1.5% agarose gel electrophoresis and spectrophotometer analysis (NanoDrop ND-2000c, Thermo, USA), as previous reported by Chen and Zhang (2013).

DNA quantification by real-time quantitative polymerase chain reaction (qPCR)

Two sulfonamide resistance genes (\textit{sul1} and \textit{sul2}) and an integron gene (\textit{intI1}, used to reflect the transfer potential of horizontal gene) were selected for quantitative detection by StepOnePlus real-time PCR system (Applied Biosystems, CA, USA). In addition, 16S rRNA was also monitored to reflect relative abundance, and the calculation formula of RAs was as follows: \(\text{RAs} = \frac{\text{ARG copies}}{\text{16S rRNA copies}} \). The detailed primer information and the procedure of qPCR is shown in Table S2. Following previous research (Chen & Zhang, 2013; Li, Sheng, et al., 2017), the plasmids containing target genes were obtained by molecular cloning, and plasmids carrying target genes (serially 10-fold dilution) were used to generate standard curves (including 5 or 6 points).

The qPCRs were conducted in 96-well plates with a final volume of 20-μl mixture, containing 10-μl SYBR Premix Ex Taq (TaKaRa, Bio, Shiga, Japan), 7.2-μl DNA-free water, 2-μl template DNA, and 0.2-μM forward and reverse primers. The temperature procedure was as follows: Initial denaturation step for 180 s at 95°C and then 35 cycles of amplification containing denaturation for 30 s at 94°C, annealing for 30 s at 55°C, and extension for 60 s at 72°C, with a final extension step for 600 s at 72°C.

FIGURE 1 Degradation of SMX at different chlorine concentration in batch reactor (a) and WDS (c), and the first-order kinetics plot of SMX degradation in batch reactor (b) and WDS (d). Experimental conditions: ductile iron pipe, 25°C, pH = 7.0 ± 0.2, flow rate = 1.0 m/s, initial SMX = 200 μg/L.
RESULTS AND DISCUSSION

Kinetics of SMX degradation

Effect of free chlorine

Figure 1a,c showed the SMX degradation at different free chlorine (0.4–1.0 mg/L); it can be seen that when free chlorine \(\geq 0.6 \) mg/L and reaction time was more than 30 min, the SMX was almost completely degraded in both the batch and WDS tests. However, the degradation of SMX in the batch reactor was faster than that in WDS. At the concentration of 1.0 mg/L free chlorine, it took about 15 min for the removal of SMX to reach 100% in WDS and only 10 min in batch test. In addition, the degradation rate of the two reaction systems increased monotonously with the increase of initial free chlorine concentration (Figure 1b,d). At the concentration of 0.4, 0.6, 0.8, and 1.0 mg/L of free chlorine, the removal ratio of SMX in batch reactor increased from 52.9% to 75.3%, 100%, and 100%, and in WDS increased from 56.5% to 66.5%, 85.7%, and 92.6%, respectively, in 10 min.

In order to better describe the correlation between reaction times and \(\ln(SMX_t/SMX_0) \) at different free chlorine concentration, the first-order model (Equation 1, Supporting Information) was used. The \(k_1 \) and goodness of fit (\(R^2 \)) of each initial free chlorine concentration in batch reactor was bigger than those in WDS (Table S3). The difference was caused by complex conditions of the WDS including pipe contains scale (Lytle & Liggett, 2016) at pipe wall (Figure S3), which consumed some free chlorine (Dong et al., 2019). On the contrary, the conditions in the batch reactor were relatively stable, thus the linear correlation in backer tests was better than in WDS. However, the linear correlation in WDS was still satisfactory (all \(R^2 \geq 0.966 \)); thus, the SMX degradation by various initial free chlorine concentrations in both the batch reactor and WDS were followed the first-order kinetics.

Previous studies have found that the degradation of sulfadiazine the pipe network follows a second-order kinetics.
kinetics (Dodd & Huang, 2004; Dong et al., 2019), so this possibility was also studied. The second-order rate kinetics constants \(k_2 \) could be calculated by Equations (2) and (3) (Supporting Information). Figure S5a,b showed that the relationship between \(k_2 \) and free chlorine concentration was satisfactory linear correlation in both the batch reactor \((R^2 = 0.995) \) and WDS \((R^2 = 0.960) \). Therefore, the degradation of SMX in both the batch reactor and WDS also could be described by second-order model.

Effect of pH

In the batch reactor (Figure 2a), after 40 min, the degradation amount of SMX by free chlorine remained at 100% during pH 6.3 to pH 7.2 and decreased from 100% to 73.08% during pH 7.2 to pH 9.0. Figure 2d showed that the SMX degradation in the WDS and its results were similar to the batch tests, indicating that their highest efficiency of SMX degradation occurred at pH close to neutral (pH \(\approx 7.0 \)). The first-order rate constants \(k \) of reactions between SMX and free chlorine were obviously dependent on the pH value, as shown in Figure 2b,e. As shown in Table S4, \(k \) increased from 0.117 to 0.139 min\(^{-1}\) in batch experiment and from 0.097 to 0.107 min\(^{-1}\) in WDS when the solution pH value increased from 6.3 to 7.0; yet \(k \) decreased from 0.139 to 0.027 min\(^{-1}\) in batch experiment and from 0.107 to 0.045 min\(^{-1}\) in WDS when the solution pH value increased from 7.0 to 9.0. Therefore, the fastest rate of SMX degradation also occurred at pH close to neutral. In addition, all \(R^2 \) of batch experiment were bigger than that of WDS when the set pH value was similar, and the reason had been discussed in Section 3.1.1.

In the range of investigated pH, the acid-base equilibrium (Equations 1–3) of HClO and the SMX may be used to explain the pH dependence behavior in the reaction of free chlorine and SMX.

\[
HClO \rightleftharpoons H^+ + ClO^- \quad pK_a = 7.54 \tag{1}
\]

\[
HSMX^+ \rightleftharpoons H^+ + SMX^+ \quad pK_{a1} = 1.8 \tag{2}
\]

\[
SMX \rightleftharpoons H^+ + SMX^- \quad pK_a = 5.6 \tag{3}
\]

The two species of free chlorine (i.e., HClO and ClO\(^-\)) and the three species of SMX (i.e., HSMX\(^+\), SMX\(^+\), and SMX\(^-\)) could be considered to react with each other; thus, the dependence of \(k_{app} \) on solution pH can be modeled by Equations (4) and (5):

\[
-\frac{d[SMX_{all}]}{dt} = k_{app}[SMX_{all}][\text{free chlorine}_{all}] \tag{4}
\]

\[
k_{app} = \sum_{i=1, 2, 3} k_{ij} \alpha_i \beta_j \tag{5}
\]

where \([\text{free chlorine}]_{all} = [HClO] + [ClO^-]; [SMX]_{all} = [HSMX^+] + [SMX] + [SMX^-]; k_{ij} \) is the species-specific second-order rate constants for reaction of \([\text{free chlorine}]_{all} \) species \(i \) with \([SMX]_{all} \) species \(j \). \(\alpha_i \) and \(\beta_j \) represent the equilibrium distribution coefficients of \([\text{free chlorine}]_{all} \) and \([SMX]_{all} \) species, respectively, and they can be calculated at different pH by the following equation (Equations 6–10):

\[
\alpha_1 = [HClO]/[\text{free chlorine}]_{all} = [H^+]/([H^+] + 10^{-7.54}) \tag{6}
\]

\[
\alpha_2 = [ClO^-]/[\text{free chlorine}]_{all} = 10^{-7.54}/([H^+] + 10^{-7.54}) \tag{7}
\]

\[
\beta_1 = [HSMX^+]/[SMX]_{all} = ([H^+]^2)/([H^+]^2 + [H^+] \times 10^{-1.8} + 10^{-1.8} \times 10^{-5.6}) \tag{8}
\]

\[
\beta_2 = [SMX]/[SMX]_{all} = ([H^+] \times 10^{-1.8})/([H^+]^2 + [H^+] \times 10^{-1.8} + 10^{-1.8} \times 10^{-5.6}) \tag{9}
\]

\[
\beta_3 = [SMX^-]/[SMX]_{all} = (10^{-1.8} \times 10^{-5.6})/([H^+]^2 + [H^+] \times 10^{-1.8} + 10^{-1.8} \times 10^{-5.6}) \tag{10}
\]

The \(k_{ij} \) was calculated by L-M (Levenberg–Marquardt) regressions of experimental \(k_{app} \) according to Equation (5), using MATLAB. While there were six possible reactions from Equation (5), fitting of the experimental data of Figure 2c,f showed that only the following two reactions (Equations 11 and 12) could reasonably fit the experimental data (a solid line), \(R^2 \geq 0.974 \) and \(R^2 \geq 0.972 \) in batch reactor and water distribution systems, respectively. The reason for this is may be that [HSMX\(^+\)] and [SMX] have little effect in the reaction system due to their extremely low mole fraction at pH 6.3–9.0 (Figure S6). In addition, contribution of the individual reactions to the rate constant \(k_{app} \) is also shown in Figure 2c,f (dashed lines). This result indicated that the HClO reacts faster with deprotonated SMX (SMX\(^-\)) than ClO\(^-\) (i.e., in batch reactor: \(k_{13} = (2.23 \pm 0.07) \times \))
$10^2 > k_{23} = (5.04 \pm 0.30) \times 10^1 \text{ M}^{-1} \text{s}^{-1}$; in WDS: $k_{13} = (1.76 \pm 0.07) \times 10^2 > k_{23} = (4.06 \pm 0.62) \times 10^1 \text{ M}^{-1} \text{s}^{-1}$.

At pH 6.3–8.2, reaction 11 mainly contributed to the k_{app}. In contrast, the k_{app} at pH from 8.2 to 9.0 could be attributed to reaction 12. At nearly neutral pH, the comprehensive effect of reaction 11 and reaction 12 is the best; the subsequent experiments can thus be carried out at a nearly neutral pH.

\[[\text{HClO}] + [S^-] \rightarrow \text{products} \]
\[[\text{ClO}^-] + [S^-] \rightarrow \text{products} \] (11) (12)

Effect of flow rate

As shown in Figure 3, the change of flow rate had little effect on the SMX degradation. The degradation rate constants for SMX were 0.129, 0.190, 0.211, and 0.201 min$^{-1}$ under the condition of 0.7, 1.0, 1.3, and 1.5 m/s, respectively (Table S5). The WDS used in the experiment is a circulating system, each group of experiments is sampled at a fixed reaction time, so their hydraulic retention time is the same. Therefore, the possible reason for this difference is that flow rate could change the hydraulic conditions in WDS, thereby affecting mass transfer coefficient. The Reynolds number (Re) was used to evaluate this behavior, $Re = \frac{\rho \cdot v \cdot d}{\mu}$, where ρ, v, d, and μ represent the density, flow rate, pipe diameter, and viscosity coefficient of fluid ($0.895 \times 10^{-3} \text{ Pa} \cdot \text{s}, 25^\circ \text{C}$), respectively. All Re that are more than 4300 (Table S5) indicate that turbulent flow conditions exist in WDS. Mass transfer coefficient increased with increasing Re under turbulent flow conditions, which ultimately improves mixing and this may make the rate of SMX degradation enhanced when the flow rate is from 0.7 to 1.0 m/s. However, when the flow rate is from 1.0 to 1.5 m/s, the degradation rate hardly increased because the effect of mass transfer on degradation has reached the limit.

Effect of pipe materials

As shown in Figure 4, after 15 min of reaction, the removal of SMX reached 100%, 87.8%, and 94.4% in PE, DI, and SS, respectively. Table S6 summarized the calculated first-order rate constants; these data showed that the order of degradation rate was SS (0.358 min^{-1}) > DI (0.191 min^{-1}) > PE (0.139 min^{-1}). Metal ions and corroded metal might contribute to this phenomenon; DI were better protected because they have lined with a layer of cement, but SS is more prone to rust due to poor welding (Dong et al., 2017). Consequently, compared with DI and PE, the SS has the most metal ions and corroded metal. As discussed in the Section 3.1.3, when the flow rate was 1.0 m/s, these experiments were conducted with turbulent flows ($Re > 4300$); consequently, the metal ions and corroded metal in solder joints were easily transferred to the water. The concentrations of total iron in the three pipes were detected, which was 0.8 mg/L in SS and less than 0.1 mg/L in DI and PE. Fe$^{2+}$ could be oxidized to Fe$^{3+}$ by free chlorine, and the process produced some free radicals that enhanced the SMX degradation.
degradation (Dong et al., 2019; Perez-Moya et al., 2010). In addition, Fe$^{3+}$ might be oxidized to higher valence iron in hypochlorite solution system, such as a way to prepare ferrate (VI) is to oxidize Fe$^{3+}$ with sodium hypochlorite solution under alkaline condition (Li et al., 2005). The higher valence iron has stronger oxidation ability, and it could promote the degradation of SMX. In addition, by analyzing the crystal structure of iron precipitation (Figures S3 and S4), it is found that the main forms of precipitation are Fe$_3$O$_4$ and α-FeOOH, and they have certain adsorption. Therefore, the high reaction rate of SMX in DI was also related to the adsorption of iron precipitation.

Toxicity assessment of SMX degradation

As shown in Figure 5, compared with the inhibition of bioluminescence rate of tap water close to 0, the presence of SMX can significantly increase the toxicity of water. In the first 10 min of reaction, with the degradation of SMX, the toxicity showed a downward trend. Within 10 to 90 min of the reaction, the toxicity showed an upward trend, indicating that the intermediate products of the reaction were also toxic. However, within 90 to 120 min of the reaction, the toxicity showed a downward trend until it was the same as that of tap water, which indicated that SMX could be completely degraded by free chlorine within 2 h, and the toxicity of chlorinated products was low.

Comparison of ARGs in WDS

The comparison of ARGs contents and relative abundance of water samples under different treatments are shown in Figure 6. In general, compared with group A, the number and relative abundance of sul1, sul2, and intI1 genes in group B, C, and D were significantly increased. However, the number of 16S rRNA did not change significantly, indicating that the total number of bacteria changed little. Previous studies have shown that the variation of ARGs relative abundance is mainly caused by two aspects: One is the change of host bacteria abundance and the other is the horizontal transfer of ARGs in bacteria (Jia et al., 2015; Su et al., 2015), and the increase of ARGs in drinking water was the result of two factors (Jia et al., 2015). Therefore, the following analysis mainly consider these two aspects.

In group B, although the total number of bacteria decreased slightly, the number of sul1 and sul2 increased. SMX inhibited the growth of other bacteria and increased antibiotic-resistant bacterial community. In addition, SMX as an environmental pressure could promote the replication of sul1 and sul2, which was the main reason for the increase of sul1 and sul2. On the other hand, the increase of sul1 and sul2 was also caused by the transfer of ARGs (because the number of intI1 has increased). In group C, the increase of 16S rRNA genes number reflected the increase of total bacterial count, indicating that chlorination products had no inhibitory effect on total bacterial count. These results showed that even if SMX was chlorinated in water, its chlorination products would still lead to the production of resistance genes. The reason may be that chlorination cannot completely open the aromatic ring in SMX molecule, and some products
can only replace one H atom by the electrophilic reaction of chlorine to form Cl-SMX, which may also have the properties of sulfonamide antibiotics. High concentration of free chlorine (>10 mg/L) can effectively degrade the concentration of ARGs in the water environment (Zhang, Zhuang, et al., 2015), but the results of group D under the experimental conditions of low concentration of free chlorine are opposite, and the same results were observed in the study of Jia et al. (2015) and Shi et al. (2013). The reason is that under the condition of high free chlorine value, free chlorine can directly kill bacteria, whereas under the condition of low free chlorine value, the growth of non-chlorine-resistant bacteria is inhibited, and chlorine-resistant bacteria can not only survive but also increase the copy number and relative abundance of ARGs through gene replication. Our team has found that Pseudomonas and Mycobacterium are the main bacteria in the WDS (Zhang, Cao, et al., 2018), which have the function of chlorine resistance. Pseudomonas is the host bacteria of the trans ARGs (Zhang et al., 2019), and its growth and replication will lead to the increase of its relative abundance and quantity, which will lead to the increase of the relative abundance and copy number of sul1 and sul2. In addition, under the external pressure of active chlorine, the permeability of bacterial cell membrane changes, and the frequency of intI1 binding and transferring ARGs increases. However, the probability of binding and transferring ARGs is small when the bacteria in pipe network are less than 10,000 CFU/ml (Guo, Yuan, & Yang, 2015), so the number and relative abundance of ARGs are also affected by the external pressure of active chlorine, but its contribution rate is low. ARGs in group C increased more than that in other groups; this suggests that the chlorinated products of SMX can promote the production of ARGs in WDS (DI), but how chlorination products caused the increase remains to be further studied.

CONCLUSION

1. The degradation rate of SMX in batch reactor was faster than that in WDS, and the rate was positive correlation with the initial concentration of free chlorine.
2. Whether in batch reactor or WDS, the SMX chlorination could be described by the first or the second-order kinetics.
3. When the pH value was from 6.3 to 9.0, the degradation efficiency of SMX first increased and then decreased, and the efficiency reached a maximum at nearly neutral pH. In addition, the fastest rate of SMX degradation also occurred at pH close to neutral, and the relationship between the second-order rate constants and pH values were explained by using the species-specific rate constants of free chlorine with SMX.
4. Under different pipe materials conditions, the SMX degradation rate followed the order: SS > DI > PE, and high flow rate led to the rate increased in DI, but the increase was limited.
5. SMX could increase the toxicity of water initially, but the toxicity reduced after 2-h chlorination.
6. The chlorination products of SMX can significantly promote the production of ARGs in WDS (DI), but which chlorination products lead to the increase remains to be further studied.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of Shanghai (No. 20ZR1438200) and National Natural Science Foundation of China (No. 51778565).

CONFLICTS OF INTEREST

The authors declare no competing interests.

AUTHOR CONTRIBUTIONS

All authors contributed to the study conception and design. Material preparation, data collection, and detection were performed by Luo Xu, Guozijian Wei, and Jie Ji. The first draft of the manuscript was written by Luo Xu, and data analysis were contributed by Luo Xu, Yunshu Zhang, and Kai Zhang. Search activity planning and direction were contributed by Cong Li, Eric Lichtfouse, and Andreina Garcia.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

ORCID

Cong Li https://orcid.org/0000-0003-0020-4663

REFERENCES

Barhoumi, N., Oturan, N., Olivera-Vargas, H., Brillas, E., Gadri, A., Ammar, S., & Oturan, M. A. (2016). Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. Kinetics, mechanism and toxicity assessment. Water Research, 94, 52–61. https://doi.org/10.1016/j.watres.2016.02.042
Beltran, F. J., Aguinaco, A., Garcia-Araya, J. F., & Oropesa, A. L. (2008). Ozone and photocatalytic processes to remove the antibiotic sulamethoxazole from water. Water Research, 42, 3799–3808. https://doi.org/10.1016/j.watres.2008.07.019
Gobel, A., Thomsen, A., McArdell, C. S., Joss, A., & Giger, W. (2005). Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. *Environmental Science & Technology*, 39, 3981–3989. https://doi.org/10.1021/es048550a

Gulkowska, A., Leung, H. W., So, M. K., Taniyasu, S., Yamashita, N., Yeung, L. W. Y., Richardson, B. J., Lei, A. P., Giesy, J. P., & Lam, P. K. S. (2008). Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. *Water Research*, 42, 395–403. https://doi.org/10.1016/j.watres.2007.07.031

Guo, M. T., Yuan, Q. B., & Yang, J. (2015). Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater. *Environmental Science & Technology*, 49, 5771–5778. https://doi.org/10.1021/acs.est.5b00644

Guo, W. Q., Yin, R. L., Zhou, X. J., Du, J. S., Cao, H. O., Yang, S. S., & Ren, N. Q. (2015). Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: Kinetics, mechanisms, and pathways. *Ultrasonics Sonochemistry*, 22, 182–187. https://doi.org/10.1016/j.ulsonch.2014.07.008

Guo, X. P., Li, J., Yang, F., Yang, J., & Yin, D. Q. (2014). Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. *Science of the Total Environment*, 493, 626–631. https://doi.org/10.1016/j.scitotenv.2014.06.035

He, G. L., Li, C., Dong, F. L., Zhang, T. Q., Chen, L., Cizmas, L., & Sharma, V. K. (2016). Chloramines in a pilot-scale water distribution system: Transformation of 17 beta-estradiol and formation of disinfection byproducts. *Water Research*, 106, 41–50. https://doi.org/10.1016/j.watres.2016.09.047

Huang, J. S., Zimmerman, A. R., Chen, H., & Gao, B. (2020). Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater. *Environmental Pollution*, 258, 113809. https://doi.org/10.1016/j.envpol.2019.113809

Jeong, J., Song, W. H., Cooper, W. J., Jung, J., & Greaves, J. (2010). Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes. *Chemosphere*, 78, 533–540. https://doi.org/10.1016/j.chemosphere.2009.11.024

Jia, S. Y., Shi, P., Hu, Q., Li, B., Zhang, T., & Zhang, X. X. (2015). Bacterial community shift drives antibiotic resistance promotion during drinking water chlorination. *Environmental Science & Technology*, 49, 12271–12279. https://doi.org/10.1021/acs.est.5b03521

Jiang, L., Hu, X. L., Yin, D. Q., Zhang, H. C., & Yu, Z. Y. (2011). Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. *Chemosphere*, 82, 822–828. https://doi.org/10.1016/j.chemosphere.2010.11.028

Li, C., Li, X. Z., & Graham, N. (2005). A study of the preparation and reactivity of potassium ferrate. *Chemosphere*, 61, 537–543. https://doi.org/10.1016/j.chemosphere.2005.02.027

Li, N., Sheng, G. P., Lu, Y. Z., Zeng, R. J., & Yu, H. Q. (2017). Removal of antibiotic resistance genes from wastewater...
Shi, P., Jia, S. Y., Zhang, X. X., Zhang, T., Cheng, S. P., & Li, A. M. (2013). Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Research, 47, 111–120. https://doi.org/10.1016/j.watres.2012.09.046

Stoll, C., Sidhu, J. P. S., Tiehm, A., & Toze, S. (2012). Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environmental Science & Technology, 46, 9716–9726. https://doi.org/10.1021/es302020s

Su, J. Q., Wei, B., Ou-Yang, W. Y., Huang, F. Y., Zhao, Y., Xu, H. J., & Zhu, Y. G. (2015). Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environmental Science & Technology, 49, 7356–7363. https://doi.org/10.1021/acs.est.5b01012

Tian, Y., Gao, B., Morales, V. L., Chen, H., Wang, Y., & Li, H. (2013). Removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns. Chemosphere, 90, 2597–2605. https://doi.org/10.1016/j.chemosphere.2012.11.010

Wang, B., Yan, J. Q., Li, G. M., Zhang, J., Zhang, L. H., Li, Z., & Chen, H. H. (2020). Risk of penicillin fermentation dregs: Increase of antibiotic resistance genes after soil discharge. Environmental Pollution, 259, 113956. https://doi.org/10.1016/j.envpol.2020.113956

Wei, M. C., Wang, K. S., Hsiao, T. E., Lin, I. C., Wu, H. J., Wu, Y. L., Liu, P. H., & Chang, S. H. (2011). Effects of UV irradiation on humic acid removal by ozonation, Fenton and Fe3+/air treatment: THMFP and biotoxicity evaluation. Journal of Hazardous Materials, 195, 324–331. https://doi.org/10.1016/j.jhazmat.2011.08.044

Yang, W. B., Zheng, F. F., Xue, X. X., & Lu, Y. P. (2011). Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents. Journal of Colloid and Interface Science, 362, 503–509. https://doi.org/10.1016/j.jcis.2011.06.071

Yao, Y., Zhang, Y., Gao, B., Chen, R. J., & Wu, F. (2018). Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environmental Science and Pollution Research, 25, 25659–25667. https://doi.org/10.1007/s11356-017-8849-0

Yu, Z. H., Zhang, X. B., Ngo, H. H., Guo, W. S., Wen, H. T., Deng, L. J., Li, Y. J., & Guo, J. B. (2018). Removal and degradation mechanisms of sulfonamide antibiotics in a new integrated aerobic submerged membrane bioreactor system. Bioresource Technology, 268, 599–607. https://doi.org/10.1016/j.biortech.2018.08.028

Zhang, J., Lin, H., Ma, J. W., Sun, W. C., Yang, Y. Y., & Zhang, X. (2019). Compost-bulking agents reduce the reservoir of antibiotics and antibiotic resistance genes in manures by modifying bacterial microbiota. Science of the Total Environment, 649, 396–404. https://doi.org/10.1016/j.scitotenv.2018.08.212

Zhang, K. J., Cao, C., Zhou, X. Y., Zheng, F. F., Sun, Y. M., Cai, Z. Q., & Fu, J. (2018). Pilot investigation on formation of 2,4,6-trichloroanisole via microbial O-methylation of 2,4,6-trichlorophenol in drinking water distribution system: An insight into microbial mechanism. Water Research, 131, 1–21. https://doi.org/10.1016/j.watres.2017.12.013

Zhang, Q. Q., Ying, G. G., Pan, C. G., Liu, Y. S., & Zhao, J. L. (2015). Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 49, 6772–6782. https://doi.org/10.1021/acs.est.5b00729
Zhang, T. Q., Dong, F. L., Luo, F., & Li, C. (2018). Degradation of sulfonamides and formation of trihalomethanes by chlorination after pre-oxidation with Fe(VI). *Journal of Environmental Sciences, 73*, 89–95. https://doi.org/10.1016/j.jes.2018.01.016

Zhang, Y. Y., Zhuang, Y., Geng, J. J., Ren, H. Q., Zhang, Y., Ding, L. L., & Xu, K. (2015). Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. *Science of the Total Environment, 512*, 125–132.

Zheng, J., Su, C., Zhou, J. W., Xu, L. K., Qian, Y. Y., & Chen, H. (2017). Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. *Chemical Engineering Journal, 317*, 309–316. https://doi.org/10.1016/j.cej.2017.02.076

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Xu, L., Li, C., Wei, G., Ji, J., Lichtfouse, E., García, A., & Zhang, Y. (2022). Degradation of sulfamethoxazole by chlorination in water distribution systems: Kinetics, toxicity, and antibiotic resistance genes. *Water Environment Research, 94*(12), e10817. https://doi.org/10.1002/wer.10817