Materials Research Express

PAPER

Size-dependent frequency of simply supported elastic ultra-thin films with surface effect under periodic vibration

Dianwu Huang1, Wei Wang1, Xiaohui Ni1, Yuanhai Jiang1, Hongfei Liu1 and Houren Xiong1

1 College of Civil Engineering and Architecture, Jiaxing University, Jiaxing, Zhejiang 314001, People’s Republic of China
2 Zhejiang Xingyuan Construction Co., Ltd, Jiaxing, Zhejiang 314003, People’s Republic of China
E-mail: dhwuang@ustc.edu.cn
Keywords: surface stress, forced vibration, size dependence, ultra-thin film

Abstract

Although surface effects play an important role in the mechanical properties of ultra-thin films, the nonlinear vibrations of ultra-thin films influenced by surface effects have not been fully understood. This paper develops an analytical framework for studying the nonlinear vibrations of simply supported ultra-thin films with surface effects. The framework is based on the modified Kirchhoff plate theory. The surface stress effects are treated by the Gurtin–Murdoch surface elasticity model and the motion equations include the effects of curvature and classical inertia. The dimensionless frequency of forcibly vibrated ultra-thin films with a simple support and surface effects is explicitly deduced through a series of perturbation procedure. Finally, the surface effects are evaluated in two numerical examples. In these demonstrations, the surface effects significantly influenced the dimensionless frequency when the film thickness reduced to one micrometer or less.

1. Introduction

Beams, plates and shells with rectangular geometry are key structural elements, and they have attracted an increasing share of attention owing to their singular structures, excellent properties, and potential applications as the general building blocks of microelectromechanical systems (MEMSs) and nanoelectromechanical systems (NEMSs). For example, they are used in radio-frequency switches, microscaled pumps, and electrostatic actuators [1–6]. Their bending, buckling and vibration of many MEMS/NEMS structures involving ultra-thin films (nano-scale thick) depend on their absolute geometrical parameters in the scale of submicron [7–13].

Surfaces effects caused by the atoms at or near the free surface of an ultra-thin film have different equilibrium requirements as compared to those within the bulk of material due to different environmental conditions. These surface effects of thin films are usually neglected in classical plate elasticity theory as the classical continuum theories neglect the size-depend property. Based on the classical continuum theories, the stress at a point is a function of strains at that point; thus, the elastic responses of a structure can be linear responses.

However, surface effects are demonstrated to be significant at high surface-to-bulk ratios [14–20], so they largely contribute to the elastic responses of ultra-thin films. In fact, as a type of nanostructure, ultra-thin film indeed has size-dependent properties and nonlinear mechanical properties. Modeling the size dependence of such nonlinear responses has attracted the interest of many researchers [21–27]. Experimental results indicate that nanoplates or free-standing films either become stiffer or softer than their bulk counterparts through surface reconstruction [28–32]. Also, atomistic simulations have shown that the elastic constants of ultra-thin films with surface effects can be larger or smaller than those of their bulk counterparts [33–35]. For example, Gurtin and Murdoch [36–38] formulated a generic continuum model of surface elasticity, which treats a solid surface as a two-dimensional elastic membrane with different material constants adhering without slipping to the underlying bulk material. When the surface constitutive constants are properly set, the continuum model incorporating surface elasticity can accurately predict the elastic responses of thin films, as can atomistic modeling [39–42]. Given the complex nonlinear response of ultra-thin films due to factors such as surface effect,
nonlinear vibration of different ultra-thin film structures like plates, beams and shells have attracted a wide research attention in recent years.

The present study investigates a nonlinear size-dependent vibration model of a simply supported elastic thin film subjected to harmonic forces and surface effects. The governing equations with the surface effect include membrane forces and bending moments incorporating the curvature term, planar inertia term, and rotational inertia as described in our previous study [22]. By incorporating the transverse periodic load, the model simultaneously considers the influences of the nonlinear strain terms, harmonic forces, and dynamic factor on the dimensionless frequency of the thin film. To verify the importance of the size-dependent surface effect on the dimensionless frequency, this study numerically investigates two thin films composed of different materials. Each film is less than one micrometer thick.

2. Problem formulation

Consider a rectangular thin film of dimensions a along the x axis and b along the y axis under a transverse load $P_3 = e^{i\omega P} \sin \pi x \sin \pi y$, as shown in figure 1. The four edges of the film are simply supported and free of boundary stresses. The simply supported plate problem is solved in this paper to demonstrate the new proposed formulation. This simply supported plate problem has been widely used in many studies, where ultra-thin film problems are studied. The boundary conditions along these edges are written as follows:

$$
\begin{align*}
 u_x &= w_{,xx} = 0 \quad \text{at } x = 0, a \\
 u_y &= w_{,yy} = 0 \quad \text{at } x = 0, b,
\end{align*}
$$

This paper assumes the Cartesian coordinate system $x_i (i = 1, 2, 3)$ in which the x_3 plane coincides with the undeformed midplane of the film. The upper surface S^+ and lower surface S^- of the film are defined by $x_3 = \pm h/2$, respectively. The usual summation convention for repeated indices is adopted, with Latin indices ranging from 1 to 3 and Greek indices taking values of 1 and 2. The subscript or superscript 0 denotes a stress or displacement parameter of the midplane. A comma represents differentiation with respect to the suffix index. The resultant forces and moments, denoted as N_{ab}^* and M_{ab}^*, respectively, satisfy the following governing equation (2). The upper and lower surface stresses satisfy equilibrium relations (Gurtin and Murdoch, 1978), which employ in the strain energy and kinetic energy. The material in the interior of the film obeys the usual three-dimensional Hooke’s law, which employ in the strain energy and kinetic energy. The generalized Lagrangian function of strain energy, kinetic energy and work done by external force is variational for displacement by using Hamilton’s principle. The following governing equations then derived in our previous study [22]

$$
\begin{align*}
 N_{\alpha\beta,\gamma}^{\gamma\nu} - \bar{I}u_\nu^{\bar{\alpha}} &= 0, \\
 M_{\alpha\beta,\gamma}^{\gamma\nu} + u_{\alpha\beta\gamma}N_{\alpha\beta} + P_3 + Iu_{\delta\gamma\alpha}u_\alpha - \bar{I}u_\gamma + f\bar{I}u_{\delta\gamma\alpha} &= 0.
\end{align*}
$$

where $I = \int_{-h/2}^{h/2} \rho \, dx_3$ and $J = \int_{-h/2}^{h/2} \rho \, x_3^2 \, dx_3$. The size-dependent membrane forces $N_{\alpha\beta}^*$ and bending moments M_{ab}^* include contributions from surface stresses and are written as...
where \(l_1, l_2, l_3 \) and \(l_4 \) have dimensions of length and are defined as \(l_1 = 4(1 + \nu)(\mu_0 - \tau_0)/E \), \(l_2 = 2(1 + \nu)(\lambda_0 + \tau_0)/E \nu \), \(l_3 = 2(1 + \nu)(2\mu_0 - \tau_0)/E \), and \(l_4 = 2(1 + \nu)\tau_0/E \). Later, we will introduce \(l_5 = h\nu/6(1 - \nu) \). The other terms in equation (3) are the curvature \(u_{\alpha\gamma}/N_{\alpha\beta} \) and the classical, planar, and rotational inertia terms \(J\nu\), \(\bar{u}_n^0 \), and \(J\bar{u}_{n\alpha\beta} \), respectively.

If the surface effect is neglected (i.e., the elastic material constants at the surface \(\tau_0 \to 0, \lambda_0 \to 0 \), and \(\mu_0 \to 0 \)), equation (3) reduces to the expressions of membrane forces and bending moments in classical plate theory.

To simplify the problem, we ignore the small contributions from the higher-order planar inertia \(u_{\alpha\beta}^0 \) and rotational inertia \(J\bar{u}_{n\alpha\beta} \). The motion equations are then expressed as

\[
\begin{align*}
N^*_{\alpha\beta\gamma\delta} &= 0 \\
M^*_{\alpha\beta\gamma\delta} + u_{\alpha\beta\gamma\delta}N_{\alpha\beta} &= P_3 - if_3 = 0
\end{align*}
\]

in which

\[
\begin{align*}
N^*_{\alpha\beta\gamma\delta} &= 2\tau_0(\delta_{\alpha\beta} + u_{\alpha\beta}^0) + D_1 \left[(1 - \nu) \left(1 + \frac{h_i}{h} \right) e_{\alpha\beta}^0 + \nu \left(1 + \frac{h_i}{h} \right) e_{\gamma\delta}^0 \right] \\
M^*_{\alpha\beta\gamma\delta} &= -D_2 \left[(1 - \nu) \left(1 + \frac{3h_i}{h} \right) u_{\alpha\beta\gamma\delta}^0 + \nu \left(1 + \frac{3h_i}{h} \right) u_{\gamma\delta\alpha\beta}^0 \right]
\end{align*}
\]

where \(D_1 = Eh/(1 - \nu^2) \) and \(D_2 = Eh^3/12(1 - \nu^2) \). The following dimensionless governing equation are obtained from equation (3):

\[
\begin{align*}
m_1 \dddot{U} + m_2 \dddot{V} + m_3 (V \dddot{\eta} + \dddot{\xi} \dot{\eta}) + m_4 \dddot{W} \dddot{\xi} + m_5 \dddot{U} \dddot{\xi} = 0 \\
m_1 \dddot{V} + m_2 \dddot{U} + m_3 (U \dddot{\eta} + \dddot{\xi} \dot{\eta}) + m_4 \dddot{W} \dddot{\eta} + m_5 \dddot{U} \dddot{\eta} = 0 \\
-\frac{k_1^2}{12} (k_1 + k_2) (U \dddot{\xi} + 2V \dddot{\eta} + 2W \dddot{\xi}) + [(k_1 + k_2) \dddot{W} \dddot{\xi} + k_2 \dddot{W} \dddot{\eta}] (U \dddot{\xi} + \frac{1}{2} \dddot{W} \dddot{\eta}) \\
+ (k_1 \dddot{V} \dddot{\xi} + k_2 \dddot{V} \dddot{\eta}) (V \dddot{\eta} + \frac{1}{2} \dddot{W} \dddot{\eta}) + k_1 (U \dddot{\xi} + V \dddot{\xi} + \dddot{W} \dddot{\eta}) \\
+ 2k_1 [U \dddot{W} \dddot{\xi} + V \dddot{W} \dddot{\eta} + \dddot{W} \dddot{\xi} + \dddot{W} \dddot{\eta} + (U \dddot{\eta} + V \dddot{\xi}) \dddot{\xi}] - \frac{k_2^2}{12} \dddot{W} \\
- \frac{\ddot{U}^2}{\partial \xi^2} + P_3 = 0
\end{align*}
\]

where \(k_1 = (1 - \nu) (1 + l_1/h) \), \(k_2 = \nu (1 + l_2/h) \), \(m_1 = D_1(k_1 + k_2 + 2k_3) \), \(m_2 = D_1(k_1 + 2k_3) \), \(m_3 = D_2(k_1 + k_2 + 2k_3) \), \(m_4 = D_1(k_1 + 2k_3) \), \(m_5 = D_2(k_1 + 2k_3) \), \(\xi = x/a \), \(\eta = y/a \), \(\dddot{\xi} = c_p \dot{t} \sqrt{\delta/2a} \), \(\delta = h/a \), \(\dddot{U} = \dddot{u}_n^0/a \), \(\dddot{V} = \dddot{u}_n^0/a \), \(\dddot{W} = \dddot{u}_n^0/a \), and \(P_3 = P_3(1 - \nu^2)/E \). The bending-wave speed of plate \(c_p \) is expressed as \(c_p = E/\rho (1 - \nu^2) \). The dimensionless boundary conditions of the simplified support film are written as

\[
\begin{align*}
U &= \dddot{W} = \dddot{U} = \dddot{W} = 0 \quad at \quad \xi = 0, 1 \\
V &= \dddot{W} = \dddot{W} = 0 \quad at \quad \eta = 0, 1/a
\end{align*}
\]

The dimensionless governing equations (6)–(8) with the surface effect can be solved by a perturbation method. The dimensionless planar displacements \(U \) and \(\dddot{V} \) and the deflection \(\dddot{W} \) are expressed as a series of a small parameter \(\delta \) that depends on the scale of the film and is independent of the mode of vibration. The midplane displacements \(u_n^0 \) and \(u_\delta^0 \), which are ignored in classical linear plate theory, are functions of the higher-order even terms of \(\delta \) while the deflection \(\dddot{W} \) is a function of the higher-order odd terms of \(\delta \). The perturbation series of the dimensionless planar displacements \(U \) and \(\dddot{V} \) and the deflection \(\dddot{W} \) are thus written as

\[
\begin{align*}
U &= U_2(\xi, \eta, \dddot{\xi}) \delta^2 + U_4(\xi, \eta, \dddot{\xi}) \delta^4 + \cdots \\
V &= V_2(\xi, \eta, \dddot{\xi}) \delta^2 + V_4(\xi, \eta, \dddot{\xi}) \delta^4 + \cdots \\
\dddot{W} &= \dddot{W}_2(\xi, \eta, \dddot{\xi}) \delta + \dddot{W}_3(\xi, \eta, \dddot{\xi}) \delta^3 + \cdots
\end{align*}
\]

Substituting the perturbation series (10) into the dimensionless governing equations (6)–(8) and considering the lowest order term of \(\delta \), the governing equations become
\[m_1 U_{2,\xi\xi} + m_2 U_{2,\eta\eta} + m_3 (V_{2,\xi\xi} + \bar{w}_{1,\xi\eta} \bar{w}_{1,\eta\xi}) + m_4 \bar{w}_{1,\xi \xi} \bar{w}_{1,\xi \xi} + m_5 \bar{w}_{1,\xi \eta} \bar{w}_{1,\eta \eta} = 0 \]
\[m_1 V_{2,\xi\xi} + m_2 V_{2,\eta\eta} + m_3 (U_{2,\xi\xi} + \bar{w}_{1,\xi\xi} \bar{w}_{1,\eta\eta}) + m_4 \bar{w}_{1,\xi\eta} \bar{w}_{1,\eta\xi} = 0 \]
\[\frac{1}{12} (k_1 + k_2) (\bar{w}_{1,\xi\xi\xi} + 2 \bar{w}_{1,\xi\eta\eta} + \bar{w}_{1,\eta\eta\eta}) + [(k_1 + k_2) \bar{w}_{1,\xi\xi} + k_2 \bar{w}_{1,\xi\eta}] \left(U_{2,\xi\xi} + \frac{1}{2} \bar{w}_{1,\xi\xi} \right) \]
\[+ (k_1 \bar{w}_{1,\xi\xi} + (k_1 + k_2) \bar{w}_{1,\xi\eta})(V_{2,\xi\xi} + \frac{1}{2} \bar{w}_{1,\xi\xi}) + k_4 (U_{2,\eta\eta} + V_{2,\eta\eta} + \bar{w}_{1,\eta\eta}) \]
\[+ 2k_5 [U_{2,\xi\xi} \bar{w}_{1,\xi\xi} + V_{2,\eta\eta} \bar{w}_{1,\eta\eta} + \bar{w}_{1,\xi\xi} \bar{w}_{1,\eta\eta} + (U_{2,\xi\xi} + V_{2,\xi\xi}) \bar{w}_{1,\xi\xi}] - \frac{1}{12} \partial^2 \bar{w}_{1,\xi\xi} + P_s^0 = 0 \]

where \(P_s^0 = P_s^0/\delta^3 \). Similarly, the boundary conditions with a simple support are written as
\[U_2 = \bar{w}_1 = \bar{w}_{1,\xi\xi} = 0 \quad \text{at} \quad \xi = 0, 1 \]
\[V_2 = \bar{w}_1 = \bar{w}_{1,\eta\eta} = 0 \quad \text{at} \quad \eta = 0, \frac{1}{\lambda} \]

Solving the governing equations (11)–(13) under the boundary conditions (14), we obtain the following separate forms:
\[U_2 = \frac{\pi W_m^* q_1}{16} \sin 2\pi \eta \cos 2\pi \xi + q_2 \sin 2\pi \xi \]
\[V_2 = \frac{\pi W_m^* q_3}{16} \sin 2\pi \eta \cos 2\pi \xi + q_4 \sin 2\pi \xi \]
\[w_1 = W_m T(t) \sin \pi \xi \sin \pi \eta \]

where \(W_m = w_m/h \) is the dimensionless maximum deflection and
\[q_1 = -m_4 (m_1 + m_2 - m_3) + (m_2 - m_3 + m_1 \lambda^2) (m_3 + m_5) \lambda^2, \]
\[q_2 = m_3 \lambda^2 - (m_2 + m_5) \lambda^2 (m_2 \lambda^2 + m_1) \]
\[q_3 = \frac{m_3}{m_5} \lambda^2 - (m_2 + m_5) \lambda^2 (m_2 \lambda^2 + m_1) \]
\[q_4 = \frac{m_3}{m_5} \lambda^2 - (m_2 + m_5) \lambda^2 (m_2 \lambda^2 + m_1) \]

There is a coupling term \(\cdot \) between the basic-order and higher-order modes. Substituting (15) into (13) and ignoring the effect of higher-order modes, the nonlinear second-order nonsingular ordinary differential equation is approximated as
\[T_{,\eta\eta} + \omega_0^2 T + \alpha^2 T^2 = Qe^{i\xi} \]

where \(\omega_0^2 = \pi^2 [24l_2 (1 + \lambda^2) + (k_1 + k_2) \pi^2 (2 + \lambda^2)] \), \(\alpha^2 = \frac{3}{2} (k_1 + k_2) \pi^2 W_m^* (1 + \lambda^2), \) and \(Q = 12P_s^0 \).

The function \(T(t) \) is solved as
\[T(t) = e^{i\xi} + \frac{\alpha^2 W_m^2}{32 (\omega_0^2 + \frac{3}{4} \alpha^2 W_m^2 - Q W_m^* \omega_0^2)} e^{i\xi} \]

The dimensionless frequency is related to the maximum deflection as follows:
\[\frac{\omega}{\omega_0} = \left[1 + \frac{3}{4} \left(\frac{\alpha}{\omega_0} W_m \right)^2 - \frac{Q W_m^* \omega_0^2}{W_m^* \omega_0^2} \right]^{\frac{1}{2}} \]

If the surface effect of the film is ignored, then \(\tau_0 \to 0, \lambda_0 \to 0 \) and \(\mu_0 \to 0 \). The relationship (18) between the dimensionless frequency \(\omega/\omega_0 \) and maximal deflection \(W_m \) is then independent of the absolute size of the film.

3. Case study

To analyze the relation between the frequency and surface effect, we demonstrate the solution (17) in numerical illustrations based on the calculated results of two sets of material parameters given by Gurtin and Murdoch [38].

Set I includes the parameters of a glass substrate with a 100-nm-thick iron coating deposited on its surface (Material 1):

\[E = 5.625 \times 10^{10} \text{ N m}^{-2}, \quad \nu = 0.25, \quad \rho = 3 \times 10^3 \text{ kg m}^{-3}, \quad \lambda_0 = 7 \times 10^3 \text{ N m}^{-1}, \]
\[\mu_0 = 8 \times 10^3 \text{ N m}^{-1}, \quad \tau_0 = 110 \text{ N m}^{-1}, \quad \rho_0 = 7 \times 10^{-4} \text{ kg m}^{-2}, \]

(19)

and

Set II includes the parameters of a freshly cleaved surface (Material 2):
\[E = 17.73 \times 10^{10} \text{ N m}^{-2}, \quad \nu = 0.27, \quad \rho = 7 \times 10^4 \text{ kg m}^{-3}, \]
\[\lambda_0 = -8 \text{ N m}^{-1}, \quad \mu_0 = 2.5 \text{ N m}^{-1}, \quad \tau_0 = 1.7 \text{ N m}^{-1}, \quad \rho_0 = 7 \times 10^{-6} \text{ kg m}^{-2}, \]

(20)

Note that coating may produce residual stress in ultra-thin film, while no residual stress is considered in Material I in this study as we focus on the surface effect due to different geometry features such as film thickness and other inherent properties such as film density and elastic modulus; thus, the size-dependent frequency of ultra-thin film is analyzed considering surface effect under forced vibration.

4. Results and discussion

Figures 2 and 3 plot the dimensionless frequency versus thickness curves of Material I with the same length–width ratio (\(\lambda = 3 \)) at maximal deflections of \(W_m = 1 \) and \(W_m = 2 \), respectively.

When the surface effect was neglected, the dimensionless frequency \(\omega/\omega_0 \) was independent of the film thickness. After incorporating the surface effect (i.e., after considering the contributions of the surface material constants \(\tau_0 \) and \(\lambda_0 \) in the constants \(\omega_0 \) and \(\alpha \) in equation (17)), the dimensionless frequency increases with the
film thickness exponentially and gradually stabilizes when the film thickness approaches up to 10^{-5}. The results also show that the dimensionless frequency predicted by the model is constant and independent to thin film thickness without considering the surface effect. When the film was less than approximately 10^{-6} m thick, its frequency deviated significantly from that calculated in this paper with considering the surface effect. In addition, the dimensionless frequency increases significantly when the maximal deflection increases from 1 to 2, as shown in figures 2 and 3.

Figures 4 and 5 plot the dimensionless frequency versus thickness curves of Material II with the same length–width ratio ($\lambda = 3$) at maximal deflections of $W_m = 1$ and $W_m = 2$, respectively. Similar to Material I, the dimensionless frequency increases exponentially with increasing thickness of the film, and it gradually stabilizes when the film thickness approaches up to 10^{-5}. When the surface effect was ignored (i.e., the surface material constants involved in ω_0 and α were set to zero), the frequency was again independent of the film thickness. When the film thickness reduced to approximately 10^{-7} m, the forced vibrational frequency deviated significantly from that predicted by the model without the surface effect.

Also, the comparison between figure 2 and figure 4 shows that, at the same size-dependent vibrational frequency, Material II needs less film thickness than material I. This is because surface-to-bulk constants ratio of material II is less than Material I. This observation indicates that the surface effect is more significant when the thin film has a larger thickness and larger surface-to-bulk constants ratio.

For both Material I and Material II, the dimensionless frequency exhibits the same trends and is extremely sensitive to film thickness regardless of maximal deflections. Consistently, the frequency depends not only on the film thickness but also on the maximal deflection caused by the harmonic force. To summarize, the different
surface-to-bulk constants ratios between Material I and Material II cause different size-dependent nonlinear properties of ultra-thin film.

5. Conclusion

We propose a large-deflection model for studying the nonlinear responses of ultra-thin (nano-scale thickness) elastic films. The modified model incorporates the surface stresses derived from surface elastic theory. The dimensionless frequency due to the surface effect was derived using the perturbation method. The exact frequency of a simply supported thin film includes additional terms associated with the surface stresses, which are omitted in the conventional solutions without surface stresses. The numerical results clearly showed the thickness dependence of the forced vibrations of nano-scale elements. This size-dependent response is more obvious when the thin film has a larger surface-to-bulk constants ratio.

The analytical solutions of the present model can guide the analysis and design of ultra-thin film MEMS and NEMS structures with linear constitutive relations on surfaces incorporating nonlinear strain terms and the surface stress effect. To more precisely predict the responses of ultra-thin films, the nonlinear surface relations should be reliably determined.

Acknowledgments

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. Y22E093503. The authors acknowledge Jiaxing science and technology projects (No.2020AD10014) for financial support.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Dianwu Huang 🏩 https://orcid.org/0000-0002-1743-5911

References

[1] Craighead HG 2000 Nanoelectromechanical systems Science 290 1532–5
[2] Duan G 2007 Mechanical integrity and behavior of thin films and their applications in MEMS PhD Thesis University of Missouri-Rolla
[3] Han J, Gobus A, Jaffe R and Deardorff G 1997 Molecular dynamics simulations of carbon nanotube-based gears Nanotechnology 8 95–102
[4] Papkova I V, Krysko A V and Krysko V A 2021 General Theory of NEMS Resonators in the Form of Nanobeams and Nanoplates 28th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS) 1–4
[5] Lin M-X and Chen CK 2021 Investigation of pull-in behavior of circular nanoplate actuator based on the modified couple stress theory Eng. Comput. 38 2648–65
[6] Ebrahimi F and Dabbagh A 2017 On flexural wave propagation responses of smart FG magneto-electroelastic nanoplates via nonlocal strain gradient theory Compos. Struct. 162 281–93
[7] Mohammadimehr M, Mehrabi M, Hadizadeh H and Hadizadeh H 2018 Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory Steel and Composite Structures 26 513–31
[8] Wang J, Huang Z, Duan H, Yu S, Feng X, Wang G, Zhang W and Wang T 2011 Surface stress effect in mechanics of nanostructured materials Acta Mech. Solida Sin. 24 32–42
[9] Wong E W, Sheehan P E and Lieber C M 1997 Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes Science 277 1971–5
[10] Kamali F and Shahabian F 2021 Analytical solutions for surface stress effects on buckling and post-buckling behavior of thin symmetric porous nano-plates resting on elastic foundation Arch. Appl. Mech. 91 2853–80
[11] Fan F, Lei B, Sahmani S and Safaei B 2020 On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates Thin-Walled Structures 154 106841
[12] Allahyari E, Asgari M and Jafari A A 2020 Nonlinear size-dependent vibration behavior of graphene nanoplatelet considering surfaces effects using a multiple-scale technique Mech. Adv. Mater. Struct. 27 697–706
[13] Zhu C, Fang X and Yang S 2019 Nonlinear free vibration of functionally graded viscoelastic piezoelectric doubly curved nanoshells with surface effects European Physical Journal Plus 134
[14] Cammarata R C 1994 Surface and interface stress effects in thin-films Prog. Surf. Sci. 46 1–38
[15] Reddy J N 1999 Theory and analysis of elastic plates (Philadelphia: Taylor & Francis)
[16] YU Y Y 1995 Vibrations of elastic plates (New York: Springer)
[17] Khorsam M M, Hosseini M and Shisheas M 2019 A concise review of nano-plates Journal of Computational Applied Mechanics 50 420–9
[18] Ghorbani K, Mohammad K, Rajapour A and Ghaed M 2019 Surface and size-dependent effects on the free vibration analysis of cylindrical shell based on Gurtin-Murdoch and nonlocal strain gradient theories J. Phys. Chem. Solids 129 149–50
[19] Lu L, Guo X and Zhao J 2018 On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy Int. J. Eng. Sci. 124 24–40
[20] Ansari R and Gholami R 2016 Size-dependent modeling of the free vibration characteristics of postbuckled third-order shear deformable rectangular nanoplates based on the surface stress elasticity theory Composites Part B Engineering 95 301–16
[21] Assadi A and Farshii B 2011 Size dependent vibration of curved nanobeams and rings including surface energies Physica E 43 975–8
[22] Huang D W 2008 Size-dependent response of ultra-thin films with surface effects Int. J. Solids Struct. 45 568–79
[23] Sharma P and Ganti S 2004 Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies J. Appl. Mech. T. Asme. 71 663–71
[24] Zhu C, Fang X and Liu J 2020 A new approach for smart control of size-dependent nonlinear free vibration of viscoelastic orthotropic piezoelectric doubly-curved nanoshells Appl. Math. Modell. 77 137–68
[25] Ebrahimi F and Barati M 2018 Vibration analysis of size-dependent flexoelectric nanoplates incorporating surface and thermal effects Mech. Adv. Mater. Struct. 25 611–21
[26] Barati M R and Shahverdi H 2017 Vibration analysis of multi-phase nanocrystalline silicon nanoplates considering the size and surface energies of nanograins/nanovoids Int. J. Eng. Sci. 119 128–41
[27] Cheng C-H and Chen T 2015 Size-dependent resonance and buckling behavior of nanoplates with high-order surface stress effects Physica E: Low-Dimensional Systems & Nanostructures 67 12–7
[28] Goudeau P, Renault P-O, Villain P, Coupeau C, Pelosin V, Boubeker B, Badawi K F, Thiaudière D and Gailhanou M 2001 Characterization of thin film elastic properties using x-ray diffraction and mechanical methods: application to polycrystalline stainless steel Thin Solid Films 398–399 496–500
[29] Renault P O, Bourhis E L, Villain P, Goudeau P, Badawi K F and Faurie D 2003 Measurement of the elastic constants of textured anisotropic thin films from x-ray diffraction data Appl. Phys. Lett. 83 473–5
[30] Sun C T and Zhang H T 2003 Size-dependent elastic moduli of platelike nanomaterials J. Appl. Phys. 93 1212–8
[31] Villain P, Goudeau P, Renault P-O and Badawi K F 2002 Size effect on intragranular elastic constants in thin tungsten films Appl. Phys. Lett. 81 1465–7
[32] Wolf D 1991 Surface-stress-induced structure and elastic behavior of thin films Appl. Phys. Lett. 58 2081–3
[33] Shim H W, Zhou L G, Huang H and Cale T S 2005 Nanoplate elasticity under surface reconstruction Appl. Phys. Lett. 86 151912
[34] Zhang H T and Sun C T 2004 Nanoplate model for platelike nanomaterials AIAA J. 42 2002–9
[35] Zhou L G and Huang H 2004 Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84 1940–42
[36] Gurtin M E and Murdoch A 1973 A continuum theory of elastic material surfaces Arch. Ration. Mech. Anal. 57 291–323
[37] Gurtin M E and Murdoch A 1 1975b Addenda to our paper A continuum theory of elastic material surfaces Arch. Ration. Mech. Anal. 59 389–90
[38] Gurtin M E and Murdoch A 1 1978 Surface stress in solids Int. J. Solids Struct. 14 431–40
[39] He L H, Lim C W and Wu B S 2004 A continuum model for size-dependent deformation of elastic films of nano-scale thickness Int. J. Solids Struct. 41 847–57
[40] Lim C W and He L H 2004 Size-dependent nonlinear response of thin elastic films with nano-scale thickness Int. J. Mech. Sci. 46 1715–26
[41] Miller R E and Shenoy V B 2000 Size-dependent elastic properties of nanosized structural elements Nanotechnology 11 139–47
[42] Assadi A 2013 Size dependent forced vibration of nanoplates with consideration of surface effects Appl. Math. Modell. 37 3575–88