1. Introduction

In 1952, Carlitz [1] introduced the definition of equidistribution modulo 1 in the formal power series case which reveals profitable; it uses Weyl’s criterion [1], the generalisation of van der Corput inequality by Dijksma [2], and the theorem of Koksma by Mathan [3].

Car in [4], inspired by equidistribution modulo 1 of the sequence \((n^a)_{n \in \mathbb{N}}\) where \(0 < \alpha < 1\), characterised equidistribution modulo 1 of the sequences \((L_n^{(1)})\) and \((P_n^{(1)})\), where \(L\) describes the sequence of irreducible polynomials in \(F_q[X]\) (resp. \(P\) describes the sequence of irreducible polynomials in \(F_q[X]\)) with an \(l\)-th root \((L_n^{(1)})\) (resp. \((P_n^{(1)})\)) in the field of formal power series.

In 2013, Mauduit and Car studied in [5] the \(Q\)-automaticity of the set of \(k\)-th power of polynomials in \(F_q[X]\). Moreover, they calculated the number of polynomials \(K \in F_q[X]\) with degree \(N\) such that the sum of digits of \(K^k\) in base \(Q\) is fixed. In the same subject, Madritsch and Thuswaldner in [6] called the maps \(f : F_q[X] \rightarrow G\), where \(G\) is the group of \(Q\)-additives satisfying \(f(AQ + B) = f(A) + f(B)\) for all polynomials \(A, B \in F_q[X]\) with \(\deg(B) < \deg(Q)\). They proved the equidistribution of the sequence \(h(W_i)\), where \(h \in F_q((X^{-1}))\) is a polynomial with coefficients in the field of formal power series and \((W_i)\) is an ordered sequence of polynomials in \(\mathcal{E}(f) = \{A \in L_\mathbb{N} : f(A) \equiv f \mod M\}\) if and only if one of the coefficients of \(h(Y) - h(0)\) is irrational.

In this article, we are interested in the subsequences \((L_n^{(1)})\) of \((L_n)\) and \((P_n^{(1)})\) of \((P_n)\) of polynomials in arithmetic progression having an \(l\)-th root. We will prove that the sequences \((L_n^{(1/l)})\) and \((P_n^{(1/l)})\) are equidistributed modulo 1.

2. Preliminary

Let \(F_q\) be a finite field of characteristic \(p\) with \(q\) elements. We consider \(F_q[X], F_q(X),\) and \(F_q((X^{-1}))\) as analogues of \(\mathbb{Z}, \mathbb{Q},\) and \(\mathbb{R}\), respectively.

An element \(f \in F_q((X^{-1}))\) is of the form \(f = \sum_{i=0}^{\infty} a_i X^{-i}\), with \(a_i \in F_q\) \(n_i \in \mathbb{Z}\), and \(a_{n_0} \neq 0\). We define \(v(f) = \deg(f) = -n_0\) and \(|f| = q^{\deg(f)}\). We note \(\lfloor f \rfloor\) the polynomial part of \(f\) and \(\{f\}\) its fractional part. Let \(\text{Res}(f) = a_i\) if \(f \neq 0\), and \(\text{sgn}(f) = a_{n_0}\). Let \(\psi : F_q \rightarrow \mathbb{C}\) be a nontrivial additive character. For all \(f \in F_q((X^{-1}))\), we suppose that \(E(f) = \psi(\text{Res}(f))\).

Let \(l\) be a positive integer >2 which is not divisible by the characteristic \(p\) of the field \(F_q\). We introduce \(\mathcal{L} = \{a_1, \ldots, a_r\}\) as the set of the \(r\)-th elements having an \(l\)-th root in \(F_q^\times\), and we have

\[
 r = \frac{q - 1}{(l, q - 1)} \tag{1}
\]

Then, for \(f, g \in F_q^\times((X^{-1}))\), \(g\) is called an \(l\)-th root of \(f\); we note \(f = g^f\) if and only if \(\nu(f) \equiv 0 \mod l\) and
Journal of Mathematics

2

\texttt{Journal of Mathematics}

(see [1]; Weyl’s criterion)

Lemma 1. We denote by \(L \) the set of polynomials with an \(l \)-th root in \(F_q((X^{-1})) \):

\[L = \{ A \in F_q[X] \setminus \{0\} : \deg(A) \equiv 0 \mod l \text{ and } \text{sgn}(A) \in \mathcal{L} \}, \]

and if \(\mathcal{I} \) is the set of irreducible polynomials over \(F_q[X] \), we define \(\mathcal{P} = \mathcal{I} \cap \mathcal{I} \).

If \(n = \sum_{i=1}^{\infty} n_i q^i \), where \(n_i \in \{0, \ldots, q - 1\} \) for all \(i \in \{0, \ldots, s\} \), is the representation in base \(q \) of the integer \(n \geq 1 \), then let

\[H_n = \chi_{n_1} + \cdots + \chi_{n_s} X^s, \]

where \(\chi_{n_i} \) are given by the bijection \(n_i \mapsto \chi_{n_i} \) from \(\{0, \ldots, q - 1\} \) to \(F_q \). For \(n = 0 \) and 1, it is convenient to suppose that \(\chi_0 = 0 \) and \(\chi_1 = 1 \). We define the order in \(F_q \) by \(\chi_{n_i} < \chi_{n_i+1} \), for all \(n_i \in \{0, \ldots, q - 1\} \), and in \(\mathbb{Z} \) by

\[m < n \iff \deg(H_n) < \deg(H_m). \]

Then, we order \(F_q \) by posing for all natural numbers \(n \):

\[H_n < H_{n+1}. \]

This paper is devoted to the study of equidistribution modulo 1 of a certain sequence in the field of Laurent formal power series. In 1952, Carlitz introduced and characterised equidistribution modulo 1 in the field of Laurent formal power series and obtained the following result.

Lemma 1 (see [1]; Weyl’s criterion). For sequence \(\Theta = (\theta_n) \) with values in \(F_q((X^{-1})) \) is equidistributed modulo 1 if and only if

\[\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} E(H\theta_n) = 0, \]

for all \(H \in F_q[X]^* \).

Finally, we enounce a result which concerns a class of irreducible polynomials given by Artin in [7], which will be very useful later.

Theorem 1 (see [7]). Let \(C, B \in F_q[X] \) be coprime polynomials. If \(\pi(m; C, B) \) denotes the number of monic irreducible polynomials with degree \(m \) which are congruent to \(B \) modulo \(C \), then

\[\pi(m; C, B) = \frac{1}{\Phi(C)} \cdot \frac{q^m}{m} + O \left(\frac{q^m}{m} \right), \]

where \(\theta \) is a constant \(< 1 \). This theorem is analogous to the theorem of prime numbers in arithmetic progression.

3. Results

Let \(l \geq 2 \) be an integer nondivisible by the characteristic \(p \) of the field \(F_q \), we order the set of the \(l \)-th powers of \(\mathcal{L} \) under

the increasing order of \(F_q \), and we fix a polynomial \(C \) with degree \(c \). For all \(B \in F_q[X] \), we denote by \(L' \) the subset of \(L \) defined in (2),

\[L' = L_{C,B} = \{ A \in L : A \equiv B \mod C \}, \]

and \(\mathcal{P}' \) the subset of \(\mathcal{P} = \mathcal{I} \cap \mathcal{I} \):

\[\mathcal{P}' = \mathcal{P}_{C,B} = \{ A \in \mathcal{I} \cap \mathcal{I} : A \equiv B \mod C \text{ with } (B, C) = 1 \}. \]

We ordered the elements of \(L' \) and \(\mathcal{P}' \) with the order relation defined in (2); hence,

\[L' = \{ L'_1, \ldots, L'_{s'} \} \] and \(\mathcal{P}' = \{ P'_1, \ldots, P'_{s'} \} \).

The aim of this paper is to prove the following theorems.

Theorem 2. Let \((L'_n) \) be the sequence of polynomials of \(L' \) indexed under the increasing order of \(F_q[X] \). Then, for \(l \geq 2 \), the sequence \((L_{n^{(l)}})\) is equidistributed modulo 1.

Theorem 3. Let \((P'_n) \) be the sequence of polynomials \(\mathcal{P}' \) indexed under the increasing order of \(F_q[X] \). Then, the sequence \((P_{n^{(l)}})\) is equidistributed modulo 1 for \(\ell > (1/(1 - \theta)) \), and \(\theta \) is a constant defined in Theorem 1. In particular, if \(X^q - X \) does not divide \(C \), then let \(l \geq 3 \).

4. Proofs of Theorems 2 and 3

4.1. Tools. A generalisation of Theorem 1 was proved in 1965 by Hayes introducing the arithmetic progression.

Lemma 2 (see [8]). Let \(C \in F_q[X] \) be a polynomial with degree \(c \). Then, for all polynomials \(B \), \(c \) monic polynomials with degree \(m \) which are congruent to \(B \) modulo \(C \) if \(m \geq c \).

Theorem 4 (see [8]). Let \(k \geq 1 \) be a positive integer, \(u = (u_1, \ldots, u_k) \) be a sequence of \(k \) elements in \(F_q \), and \(C_b \in F_q[X] \) be coprime polynomials. If \((m; u, C, B) \) is the number of irreducible and monic polynomials \(P \) with degree \(m \) which are congruent to \(B \) modulo \(C \) such that deg \((P - X^m - u_1 X^{m-1} - \cdots - u_k X^{m-k} \) \(< m-k) \)

then

\[\pi(m; u, C, B) = \frac{q^{m-k}}{m \Phi(C)} + O \left(\frac{q^m}{m} \right), \]

where \(\theta \) is a constant \(< 1 \).\]

Remark 1. In particular, if \(X^q - X \) does not divide \(C \), then (11) is verified for \(\theta = (1/2) \).

The proofs of Theorems 2 and 3 are based on Corollary 1 whose proof needs the following lemmas.

Lemma 3 (see [9], Lemma II.1.1). Let \(k \in \mathbb{N} \), \(H \in F_q[X]^* \) with degree \(h \), and \(A \in \mathcal{L} \) with degree \(lk \). Then, for all \(Z \in F_q[X] \) such that deg \((Z) = z < (l - 1)k - h - 1 \), we have...
\[(1) \ (A + Z) \in \mathcal{I} \]
\[(2) \ \text{Res}(HA^{(1/\theta)}) = \text{Res}(H(A + Z)^{1/\theta}) \]

Lemma 4 (see [9], Lemma II.1.2). Let \(H \in \mathbb{F}_q[X]^* \) with degree \(h \) and \(k \in \mathbb{N} \) such that \((l - 1)k \geq h\). Then, for all \(a \in \mathcal{L} \), all \(\xi \in \mathbb{F}_q^* \), and all \(Y \in \mathbb{F}_q[X] \) with degree \(< k + h \), there exists unique \(\eta = \eta(a, Y) \in \mathbb{F}_q^* \) such that, for all \(Z \in \mathbb{F}_q[X] \) with degree \(< (l - 1)k - h - 1 \), we obtain
\[
\xi = \text{Res}\left(H(aX^{lk} + YX^{(l-1)k-h} + \eta X^{(l-1)k-h-1} + Z)^{(1/\theta)}\right).
\]
(12)

Corollary 1. Let \(H \in \mathbb{F}_q[X]^* \) with degree \(h \) and \(k \in \mathbb{N} \) such that \((l - 1)k \geq h\). For all \(a \in \mathcal{L} \), we have

(i) \[\sum_{A \in \mathcal{A}} \psi(\text{Res}(HA^{(1/\theta)})) = 0, \quad \text{where } \mathcal{A} = A \in \mathcal{L}, \deg(A) = lk, \text{ and } \text{sgn}(A) = a \]

(ii) \[\sum_{A \in \mathcal{A}} \psi(\text{Res}(HA^{(1/\theta)})) = O(q^{(lk)h+k+h}/lk), \quad \text{where } \mathcal{A} = A \in \mathcal{P}, \deg(A) = lk, \text{ and } \text{sgn}(A) = a, \quad \theta \text{ is a constant } < 1 \]

Proof. For \(H = \mathcal{A} \) or \(\mathcal{F} \), we note
\[
\sigma(\mathcal{A}; k, a) = \sum_{A \in \mathcal{A}} \psi(\text{Res}(HA^{(1/\theta)})) = \sum_{\xi \in \mathbb{F}_q} \psi(\xi)\pi(\xi),
\]
(13)
where \(\pi(\xi) \) is the number of polynomials \(A \in \mathcal{A} \) such that \(\text{Res}(HA^{(1/\theta)}) = \xi \), but with Lemma 4, for \(Y \in \mathbb{F}_q[X] \) with degree \(< k + h \), there exists \(\eta \in \mathbb{F}_q^* \) such that the polynomial
\[K = K(a, Y, \xi) = aX^{lk} + YX^{(l-1)k-h} + \eta X^{(l-1)k-h}, \]
(14)
satisfying
\[\text{Res}(HK^{(1/\theta)}) = \xi. \]
(15)

Let \(Z = A - K \); we denote by \(\pi(lk; Y, \xi) \) the number of polynomials \(A \in \mathcal{A} \) such that
\[\deg(Z) < (l - 1)k - h - 1. \]
(16)

We obtain
\[
\sigma(\mathcal{A}; k, a) = \sum_{\xi \in \mathbb{F}_q} \psi(\xi) \sum_{\{Y \in \mathbb{F}_q[X] \mid \deg(Y) < k+h\}} \pi(lk; Y, \xi).
\]
(17)

(i) If \(\mathcal{A} = \mathcal{A} \), then by Lemma 2, we have \(\pi(lk; Y, \xi) = q^{(l-1)k-h-c-1} - 1 \). With the orthogonality criterion of \(\psi \), it results in
\[
\sigma(L'; k, a) = q^{k+h} \left(q^{(l-1)k-h-c-1} - 1 \right) \sum_{\xi \in \mathbb{F}_q} \psi(\xi) = 0.
\]
(18)

(ii) If \(\mathcal{A} = \mathcal{F} \), then by Theorem 4, we have
\[
\pi(lk; Y, \xi) = q^{(l-1)k-h-1} + O\left(\frac{q^{k+h}}{lk} \right), \quad \theta < 1.
\]
(19)

We deduce that
\[
\sigma(P'; k, a) = \frac{q^{k-1}}{lk\Phi(C)} \sum_{\xi \in \mathbb{F}_q} \psi(\xi) + \sum_{\xi \in \mathbb{F}_q} O\left(\frac{q^{k+h+c}}{lk} \right).
\]
(20)

Finally, with the orthogonality criterion, we obtain
\[
\sigma(P'; k, a) = O\left(\frac{q^{k+h+c}}{lk} \right), \quad \text{with } \theta < 1.
\]
(21)

4.2. Proof of Theorem 2. In \(\mathbb{F}_q[X] \), there are \(q^{m+c} \) monic polynomials which are congruent to \(B \) modulo \(C \) with degree \(m \), and let \(c = \deg(C) \). We denote by \(a_m \) (resp. \(b_m \)) the number of polynomials in \(\mathcal{L} \) with degree \(lm \) (resp. \(\leq lm \)). It is sufficient to verify that
\[
a_m = r q^{m-c},
\]
(22)
\[
b_m = a_1 + \ldots + a_m = \frac{r(q^{m+1-c} - q^{l-c})}{q - 1},
\]
where \(r \) is defined in (1). Let \(H \in \mathbb{F}_q[X]^* \) with degree \(h \), and \(N \) is an integer such that
\[N > b_{\lfloor 1+(h+1)/(l-1) \rfloor}, \]
(23)
where \(\lfloor x \rfloor \) defines the least integer \(\geq x \). The sequence \((b_m) \) is strictly increasing, and there exists a unique integer \(t \) such that
\[b_{t-1} \leq N < b_t. \]
(24)

Moreover, there exists a unique integer \(s \in 0, \ldots, r - 1 \), such that
\[b_{t-1} + s q^{l-1} \leq N < b_{t-1} + (s + 1) q^h. \]
(25)

Let
\[W(N) = \sum_{n=1}^{N} E\left(H^{(1/\theta)}\right). \]
(26)

To prove Theorem 2, we have to show that
\[\lim_{N \to \infty} \frac{1}{N} |W(N)| = 0. \]
(27)

Using relations (24) and (25), we rewrite the sum \(W(N) \) to obtain
\[W(N) = W_1 + W_2 + W_3, \]
(28)
with
\[W_1 = \sum_{n=1}^{b_{-1}} E\left(H_{n}^{(*)}\right). \]
\[W_2 = \sum_{j=0}^{t-1} \sum_{n=0}^{b_{-1}+j+1} \sum_{l=0}^{p} E\left(H_{n}^{(*)}\right). \]
\[W_3 = \sum_{n=b_{-1}+1}^{N} E\left(H_{n}^{(*)}\right). \]

We start by giving an estimation of the sum \(W_1 \) which concerns the polynomials of \(L^1 \) with degree \(\leq (t-1) \). We have

\[W_1 = \sum_{k=1}^{b_{-1}} \sum_{L \leq \mathcal{L}(\mathcal{L})} E\left(H_{n}^{(*)}\right). \]

\[= \sum_{k=1}^{b_{-1}} \sum_{L \leq \mathcal{L}(\mathcal{L})} E\left(H_{n}^{(*)}\right) + \sum_{k=1}^{t-1} \sum_{L \leq \mathcal{L}(\mathcal{L})} E\left(H_{n}^{(*)}\right). \]

We have to just major the first part of the sum by the number of polynomials with degree \(< ((l(h+c))/(l-1)) \), and we apply Corollary 1 on the second part to obtain

\[|W_1| \leq q^{((l(h+c))/(l-1))}. \]

We apply the same Corollary 1 on \(W_2 \) that represents the sum of polynomials with degree \(lt \) and with \(a_1, \ldots, a_{l-1} \), then

\[W_2 = \sum_{j=1}^{t-1} \sum_{L \leq \mathcal{L}(\mathcal{L})} E\left(H_{n}^{(*)}\right) = 0. \]

The polynomials in \(W_3 \) can be written in the form

\[L_i = a_i X^l + H_{n_i}, \quad j \leq i \leq N, \]

where \(j = 1 + b_{-1} + sa_1 \) and the sequence \((H_{n_i})_{j \leq i \leq N} \) is strictly increasing in \(F_q[X] \).

By the order relation on \(\mathcal{F}_q[X] \) (4), if

\[n_N = c_0 + c_1 q + \cdots + c_m q^m \]

and is the presentation in base \(q \) of the integer \(n_N \), we have

\[H_{n_N} = \chi_{c_0} + \chi_{c_1} X + \cdots + \chi_{c_m} X^m. \]

To estimate \(W_3 \), we will distinguish two cases: when the degree of \(H_{n_N} \) is up to the integer \((l-1)t - h - c - 1 \) and when it is not:

1st case: \(m \leq (l-1)t - h - c - 1 \). Using (34) and the fact that the sequence \((n_i)_{j \leq i \leq N} \) is strictly increasing, we obtain

\[N - j \leq n_N - n_j \leq q^{m+1} - 1. \]

Thus,

\[|W_3| \leq N - j + 1 \leq q^{((l-1)t - h - c - 1 - 1}). \]

2nd case: \(m > (l-1)t - h - c - 1 \). The polynomials \(H_{n_i} \) defined in (33) are of the form

\[H_{n_i} = y_n + y_0 X + \cdots + y_m X^m \leq H_{n_i} = \chi_{c_0} + \chi_{c_1} X + \cdots + \chi_{c_m} X^m. \]

Let \(\mathcal{Y} \) be the set of polynomials of the form

\[Y = y^{(l-1)t - h - c} + y_{(l-1)t - h - c+1} X + \cdots + y_m X^{m-(l-1)t + h + c} \]

such that, for every polynomial \(Z \) with degree \(< (l-1)t - h - c \), we have

\[YX^{(l-1)t - h - c} + Z \leq H_{n_N} \]

If \(k \) is the greatest integer \(i \in j, \ldots, N \) for which \(L_i \) are written in the form

\[L_i = a_i X^l + YX^{(l-1)t - h - c} + Z, \]

with \(Y \in \mathcal{Y} \) and \(Z \) being a polynomial with degree \(< (l-1)t - h - c \), then we rewrite the sum \(W_3 \):

\[W_3 = W_4 + W_5, \]

with

\[W_4 = \sum_{j=k+1}^{N} E\left(H_{n_j}^{(*)}\right) \]

\[W_5 = \sum_{j=k+1}^{N} E\left(H_{n_j}^{(*)}\right). \]

We have

\[W_3 = \sum_{\xi \in \mathcal{F}_q} \psi(\xi) \pi(\xi), \]

where \(\pi(\xi) \) is the number of couples \((Y, Z) \) such that \(Y \in \mathcal{Y} \), \(Z \in \mathcal{F}_q[X] \) with degree \(< (l-1)t - h - c \), and \(\text{Res}(H(a_i X^l + YX^{(l-1)t - h - c} + Z)^{((l-1)t - h - c)}) = \xi \). Moreover, we have

\[\pi(\xi) = \sum_{\xi \in \mathcal{Y}} \pi(\xi). \]

where \(\pi(L; Y, \xi) \) denotes the number of polynomials \(L \in L \) such that

\[\text{deg}(L - K) < (l-1)k - h - c - 1, \]

with

\[K = K(a,Y,\xi) = aX^{(l-1)k - h - c - 1} + \eta X^{(l-1)k - h - c - 1}, \]

which gives the same arguments presented in the proof of Corollary 1, and then we deduce that

\[W_3 = 0. \]
In (34), let v be the least index $>(I - 1)t - h - c$ such that $c_v \neq 0$; then, we have
\[n_N = c_m q^m + \cdots + c_0. \tag{49} \]

Since all polynomial L' of the form
\[L' = a_1 X_1^m + y_m X_m^m + \cdots + y_{v-1} X_v^m + \cdots + y_v, \]
which coefficients satisfy the condition:
\[y_m \leq X_m, y_{m-1} \leq X_m, \ldots, y_v \leq X_v, y' \leq X_{v'}, \tag{51} \]
is less then L'_N, we obtain
\[n_k \geq c_m q^m + \cdots + c_{v-1} q^{v-1} + (q - 1) q^v + \cdots + (q - 1), \]
\[n_k \geq (I - 1)t - h - c, \tag{52} \]
which leads to
\[|W_5| \leq N - k \leq n_N - n_k \leq q^{(I - 1)t - h - c}. \tag{53} \]

Then, with (48) and (53), it results in
\[|W_3| \leq q^{(I - 1)t - h - c}. \tag{54} \]

With (31), (32), and (54), we obtain
\[\left| \frac{1}{N} \sum_{n=1}^{N} E(HL'_{(1)}) \right| \leq \frac{1}{N} \left(q^{(I(h+c))(l-1)} + q^{(I-1)(t-h-c)} \right), \tag{55} \]
and finally, with (24), we obtain
\[|W| = O\left(\frac{q^{b+h+t+1}}{l(t)} \right). \tag{62} \]

\[\left| W'_{\text{sgn}} \right| = \sum_{n=1}^{h-1} E\left(H_{P_{n}} \right) \leq q^{(I(h+c))(l-1)} + O\left(\frac{q^{(I-1)((h+1)h+1)}}{l(h+c)} \right), \tag{61} \]
and then
\[W'_{2} = \sum_{j=0}^{b-1} \sum_{h=b+1}^{b+j} E\left(H_{P_{j}} \right) = \sum_{j=0}^{b-1} \sum_{k=0}^{b+j} E\left(H_{P_{j}} \right). \tag{63} \]
where W'_{2} is the sum defined in (42) concerning the polynomials in P'. Finally, we treat the sum
\[W'_{5} = \sum_{j=k+1}^{N} E\left(H_{P_{j}} \right). \tag{64} \]

With Theorem 4, for all polynomials
\[Y = a_1 X_1^l + y_m X_m^m + \cdots + y_v X_v^v + \cdots + y_{(I-1)t-h-c} X_{(I-1)t-h-c}, \tag{56} \]
in which coefficients satisfy condition (51), there exists
\[\pi(l; Y, C, B) = \frac{q^{(l-1)t-h-c}}{l\Phi(C)} + O\left(\frac{q^{l\theta}}{lt}\right), \quad \theta < 1. \]

(66)

Irreducible polynomials \(P' \) are congruent to \(B \) modulo \(C \) such that \(\deg(P' - Y) < (l-1)t - h - c \). Such polynomials \(P' \) are in \(\Pi' \), and we have

\[n_k \geq c_n q^m + \cdots + c_{q-1} q^{t-1} + \cdots + (q-1) q^{(l-1)t-h-c} \]

\[n_\pi - 2q^{(l-1)t-h-c} + 1. \]

(67)

Finally, from (61), (62), and (69), we have

\[\left| W'_n \right| \leq \left| W'_n + W''_n \right| \leq 2q^{(l-1)t-h-c} + O\left(\frac{q^{l\theta t+h}}{lt}\right). \]

(69)

Then,

\[\left| W'_n \right| \leq N - k \leq 2q^{(l-1)t-h-c} - 1. \]

(68)

With (63 and 68), it results in

\[\left| W'_n \right| = \left| W'_n + W''_n \right| \leq 2q^{(l-1)t-h-c} + O\left(\frac{q^{l\theta t+h}}{lt}\right). \]

(69)

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

The author gratefully acknowledges the approval and the support of this research study from the Deanship of Scientific Research at Northern Border University, Arar, KSA (Grant no. SCI-2017-1-8-F-7504).

References

[1] L. Carlitz, “Diophantine approximation in fields of characteristic \(p \),” Transactions of the American Mathematical Society, vol. 72, pp. 187–208, 1952.

[2] A. Dijksma, “Uniform distribution of polynomials over \(GF_{q^n} \),” Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, vol. 73, pp. 175–190, 1970.

[3] D. de Mathan, “Approximations diophantiennes dans un corps local,” Bulletin de la Société Mathématique de France, vol. 21, 1970.

[4] M. Car, “Distribution des polynômes irréductibles dans \(F_q[T] \),” Acta Arithmetica, vol. 88, pp. 141–153, 1999.

[5] M. Car and C. Mauduit, “Sur les puissances des polynômes sur un corps fini,” Uniform Distribution Theory, vol. 8, pp. 171–182, 2013.

[6] M. G. Madritsch and J. M. Thuswaldner, “Weyl sums in \(F_q[x] \) with digital restrictions,” Finite Fields and Their Applications, vol. 14, pp. 877–896, 2008.

[7] E. Artin, “Quadratische Körper im Gebiete der höheren Kongruenzen 2,” Mathematische Zeitschrift, vol. 19, pp. 207–246, 1924.

[8] D. R. Hayes, “The distribution of irreducibles in \(GF_{q^n} \),” Transactions of the American Mathematical Society, vol. 117, pp. 101–127, 1965.

[9] M. Car, “Repartition modulo 1 dans un corps de series formelles sur un corps fini,” Acta Arithmetica, vol. 49, pp. 229–242, 1995.