Salah A.M. Said et al. (2017), Ivabradine in Takotsubo Cardiomyopathy. Int J clinical&case studies. 1:1, 9-16. DOI:10.25141/2472-102X-2017-1.0009

Ivabradine in Takotsubo Cardiomyopathy
Salah A.M. Said¹, Marc Hartmann², Ali Agool³

¹Department of Cardiology, Hospital Group Twente, Almelo-Hengelo, 7555 DL, Hengelo, Netherlands
² Marc Hartmann, Department of Cardiology, Thorax Center Twente, 7500 KA, Enschede, Netherlands
³Ali Agool, Department of Radiodiagnosics and Nuclear Medicine, Hospital Group Twente, Almelo-Hengelo, 7555 DL, Hengelo, Netherlands

Corresponding Author: Salah A.M. Said, Department of Cardiology, Hospital Group Twente, Geerdinksweg 141, 7555 DL Hengelo, Netherlands. Tel : + 31 88 7085 286, Fax : + 31 88 7085 289, E-mail: salah.said@gmail.com

Citation: Salah A.M. Said et al. (2017), Ivabradine in Takotsubo Cardiomyopathy. Int J clinical&case studies. 1:1, 9-16. DOI:10.25141/2472-102X-2017-1.0009

Copyright: ©2017 Salah A.M. Said et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Received: March 29, 2017; Accepted: April 12, 2017; Published: May 23, 2017

Author contributions: Salah AM Said, Marc Hartmann and Ali Agool, contributed equally to the manuscript

Ethics approval: No formal approval was required

Informed consent: Study participant provided informed consent

Conflict-of-interest: The authors declare no conflict of interest

Funding: None

Abstract:
AIM: The aim of this review is to present a case report of Takotsubo cardiomyopathy and to review the current literature. The second aim is to describe the role of ivabradine in the management of Takotsubo cardiomyopathy when intolerance for beta blockers occurs.

MATERIALS: Case report and literature review of Takotsubo cardiomyopathy.

RESULTS: A 52-year-old Caucasian female presented with Takotsubo cardiomyopathy triggered by severe emotional stress. Admission electrocardiogram mimicked acute ST-segment elevation myocardial infarction, coronary angiography excluded significant coronary stenosis and left ventriculogram showed a typical Takotsubo cardiomyopathy apical ballooning appearance. Due to beta blocker intolerance, “off-label” treatment with ivabradine was initiated because of symptomatic sinus tachycardia. Echocardiography revealed normalization of the ejection fraction at outpatient follow-up. In the recent literature, ivabradine has been used in the management of different entities such as stable angina pectoris, congestive heart failure, inappropriate sinus tachycardia syndrome, postural tachycardia syndrome and Takotsubo cardiomyopathy.

CONCLUSION: Takotsubo cardiomyopathy may be induced by witnessing a robbery. The patient was intolerant for beta blockers and had a favorable response to treatment with ivabradine. Ivabradine may be an alternative choice in cases where there is an intolerance of beta blockers. We present an exceedingly rare case of Takotsubo cardiomyopathy induced by uncommon severe emotional stress, catching her colleague stealing money from the cash register, which was associated with sinus tachycardia in a female patient with intolerance for beta blockers. The patient responded well to treatment with oral ivabradine. The literature is briefly reviewed

Keywords: Takotsubo Cardiomyopathy, Stress Cardiomyopathy, Coronary Angiography, Ventriculography, Ivabradine
Introduction:

Recently, the incidence of Takotsubo cardiomyopathy (TTC) has been estimated to be 29.8 per million inhabitants [1]. TTC has been recognized since 1990 and is characterized by chest pain, the elevation of cardiac markers, dynamic ECG changes characterized by negative T-waves [2] or mimicking ST-segment elevation myocardial infarction in some cases, transient apical and mid-ventricular wall-motion abnormality, and the absence of significant obstructive coronary artery disease. TTC is highly related to and triggered by sudden severe psychological or physical stress. TTC may occur in Asian and Caucasian subjects [3] and may be subsequent to aneurysmal subarachnoid hemorrhage (SAH) [4], or triggered by paroxysmal supraventricular tachycardia [5] and following uncomplicated pacemaker implantation [6]. Medical therapy is only supportive with beta blockers and angiotensin-converting enzyme inhibitors [7;8]. TTC has a good long-term prognosis and recovery as the systolic left ventricular function occurs in the majority of cases. Increased awareness of the condition is also witnessed by the increased number of publications in 2013 (n=1879) [9]. We present here a female patient with TTC triggered by severe emotional stress and treated with off-label ivabradine (procoralan) due to intolerance for beta-blockers. The current literature is briefly reviewed.

Clinical case:

A 52-year-old Caucasian female was admitted to our cardiac care unit because of acute chest pain. Her medical history contained percutaneous coronary intervention (PCI) of the left circumflex coronary artery (LCx) due to Non ST-elevation myocardial infarction (Non STEMI) 2-years earlier with normal ejection fraction. Her cardiac medication included a statin, metoprolol (which was discontinued on admission due to extreme fatigue), aspirin, and perindopril. One day prior to the chest pain she had caught her younger colleague stealing money from the cash register, which led to disturbed emotional status during that day. Physical examination was unremarkable, beside symptomatic tachycardia. Admission ECG showed sinus tachycardia of 112 beats per minute with minimal ST-segment elevation in the infero-lateral leads suggestive of STEMI. Blood tests revealed increased levels of creatine kinase (CK) (283 U/l, normal range < 170) and hs-troponin T (565 ng/l, normal range < 14). An emergent coronary angiography (CAG, video 1 and 2) excluded significant coronary stenosis and showed a patent stent in the LCx. Contrast ventriculogram (Fig. 1, video 3) revealed a severely depressed left ventricular function (Ejection Fraction (EF) around 20%) with severe hypokinesia of the antero-lateral, apical and infero-posterior aspects of the left ventricle.

![Figure 1: Left ventricular angiogram: (A) during diastole, (B) mid-systole and (C) systole showing akinesia of the apical region with basal sparing and demonstrating the typical TTC features denoting apical ballooning with apical hypokinesia.](image-url)
Ivabradine in Takotsubo Cardiomyopathy. Int J clinical&case studies. 1:1, 9-16. DOI:10.25141/2472-102X-2017-1.0009

segments with hyperkinesia of the basal segments. Because of beta-blocker intolerance (extreme fatigue) and persistent, symptomatic sinus tachycardia during the clinical course, off-label ivabradine (5 mg twice daily) was prescribed. The patient had a favourable response to treatment with ivabradine. The clinical condition stabilized after the initiation of treatment. Finally, follow-up transthoracic echocardiography after several months showed complete recovery of left ventricular function (EF, 0.63%) and the patient remained well.

Discussion:

TTC is a transient condition, with a high prevalence in post-menopausal women, with depressed systolic LV function, which may occur classically following psychological and emotional stressors or after surgical interventions and medical conditions or physical trauma [10;11]. Reports of TTC associated with opioid withdrawal [14] or cocaine use [15], acute respiratory failure [16], following pulmonary resection [17], after cholecystectomy [18], related to motor vehicle accidents [19] or associated with pheochromocytoma [20] have recently been published. TTC may be precipitated by eclampsia during pregnancy [21]. Rarely, TTC may have the tendency to be recurrent [22].

TTC is responsible for 1.2-2.2% of total hospital admissions for suspected acute coronary syndrome [23;24]. TTC is not only common complication (25%) in the critically ill patients and in intensive care population [13;25-28] but also in subarachnoidal hemorrhage (33%) subjects [26;29;30]. It has been observed during epileptic seizures and may be the cause of sudden death in some cases [31].

A recent publication has suggested that TTC is an acute heart failure syndrome associated with a significant in-hospital death that is comparable with acute coronary syndrome patients [32].

Criteria required for establishing the diagnosis TTC:

The following criteria are required for establishing the diagnosis of classic TTC: transient left systolic ventricular dysfunction frequently emerging following a stressful trigger, not associated with significant obstructive coronary artery disease, novel and dynamic ECG changes with ST-segment elevation or T-wave inversion [2;33], usually accompanied with the slight elevation of cardiac markers and no signs of myocarditis or pheochromocytoma and in the absence of cerebrovascular accident, head trauma and intracranial hemorrhage [8;34-37]. The current patient fulfilled the above-mentioned criteria. Recently, pericardial effusion has been reported in the setting of TTC [38].

Diagnostic work-up:

The diagnostic work-up of TTC may include history, ECG, echocardiography, coronary angiography (CAG), ventriculography and, less frequently, cardiac magnetic resonance imaging (MRI) [39]. It recognized that TTC predominantly affects post-menopausal women [37]. Recent study have shown that emotional stress was more prevalent in women and physical triggers were more common in men. In our current case, an emotional trigger played a pivotal role and coronary angiography was distinctive for the diagnosis illustrating an apical type. The apical type is most common (81.7%) in TTC followed by mid-ventricular configuration (14.6%), basal form (2.2%) and finally focal presentation (1.5%) [32]. When the basal segments are involved, TTC is defined as inverted stress-induced cardiomyopathy [40].

Acute performed CAG reveals either normal epicardial coronary arteries [41] or, as was the case in our presenting patient, may show insignificant lesions [42;43].

Postulated etiopathogenetic mechanisms of TTC: The exact pathogenesis of TTC is unknown, but various hypotheses have been suggested, among these catecholamine-induced cardiotoxicity and microvasculature dysfunction are the most supported ones [8].

While the pathogenesis of TTC is not fully understood and remains to be elucidated, several hypotheses, including first multivessel epicardial coronary artery spasm [41], second acute microvascular spasm and micro-vascular dysfunction with subsequent myocardial apical stunning [44-46], third storm of catecholamine excess and release of cardiac catecholamine [47;48] associated with catecholamine-induced myocardial stunning and effects mediated by epinephrine on β-2 adrenoreceptors [49-51] and fourth spontaneous coronary thrombus lysis of occlusive coronary artery thrombus [52-54], have been proposed. It has been postulated that whatever the etiology of TTC, reversible coronary microvascular dysfunction occurs as a common pathophysiological determinant [55]. Recently it was suggested that “there is a brain-heart connection in TTC, which contributes to the disease mechanism” [32] and other studies have shown that mental stress may cause endothelial dysfunction and impairment of the coronary microcirculation [56;57].

Management and prognosis of TTC:

Reversible TTC cases have been reported [58;59]. Observed complications associated with TTC are, among others, acute heart failure [40], LV thrombus [60;61], significant arrhythmias [62] are uncommon in TTC accounting for 5.7% found in a retrospective study by Dib et al. [63]. None of these complications was found in our patient who had sinus tachycardia. Generally, this transient condition has a good prognosis and may recover spontaneously without the need for pharmacological or intra-vascular device interventions, but, in some cases, invasive supportive management including inotropic agents, intra-aortic balloon pump (IABP) and left ventricular assist devices (LVADs) may be indicated.

Initial pharmacological support including angiotensin-receptor blockers, angiotensin-converting enzyme inhibitors, diuretics and beta blockers may be required in the short-term (weeks-months) [7;24;33]. Recently, the findings of the International Takotsubo registry have indicated a favorable outcome with improved survival when angiotensin-receptor blockers and angiotensin-converting enzyme inhibitors are used [32]. Anticoagulation for the prevention of thromboembolism may be added [64]. β-blockers and non-dihydropyridine calcium channel blockers (diltiazem and verapamil) reduce heart rate effectively, but their use may be limited by adverse reactions, intolerance or contraindications. In the case of intolerance to β-blockers, ivabradine, with the selective lowering of heart rate and cardiac oxygen consumption, has emerged.

Mechanisms of action of ivabradine:

Ivabradine (caused no hypotension and has no negative inotropism)
decelerates the gradient of diastolic depolarization, causing a reduction of the intrinsic pacemaker activity in the sinoatrial node; it counteracts dobutamine-induced sinus tachycardia [65], and may be advantageous through more than one mechanism: first, by counteracting sinus tachycardia, second, by possible modulating role in perivascular and interstitial inflammatory reactions in MI and acute myocarditis [66,67], and third, by acting as a vasodilator to abolish microvascular vasospasm postulated as one of the pathogenic mechanisms of TTC [68,69]. TTC may be caused by microvascular vasoconstriction with subclinical coronary microvascular dysfunction [69].

Profile of ivabradine: Ivabradine obtained a European marketing authorization on 25th October 2005, and is available in 102 countries. Ivabradine is a selective If current blocker with heart rate-reducing effects [70], which has been indicated for chronic stable angina pectoris in patients with normal sinus rhythm who are not able to tolerate β-blocker therapy and for congestive heart failure.

Ivabradine is a selective If channel blocker [71]. It has no negative inotropic or lusitropic effects, reduces resting heart rate, heart rate during exercise and rate-pressure product without affecting resting and exercise blood pressure. It provides a reduction of cardiac workload and energy consumption that may be beneficial in patients with ischemic heart disease [72], stable angina pectoris [70] and/or congestive heart failure [73]. Furthermore, it has no negative dromotropic consequences, does not influence the QT interval [70] and causes no coronary vasoconstriction [74]. As it has been postulated that vasospasm is one of the pathogenic mechanisms of TTC [68], ivabradine may act as a vasodilator and/or spasmolytic.

Clinical trials:

Ivabradine has a proven efficacy for the treatment of stable angina pectoris [72] and congestive heart failure [73]. Ivabradine treatment demonstrated a reduction of the incidence of cardiovascular death and hospitalization in a heart failure population in the Systolic Heart Failure Treatment with If inhibitor Ivabradine (SHIFT) trial [72] and of coronary events in a subgroup of chronic stable angina pectoris with heart rates ≥ 70 bpm in the ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL) study [73]. On the contrary, the SIGNIFY trial (including 12,049 patients with activity-limiting angina randomly assigned to placebo or ivabradine (Procoralan), at a dose of up to 10 mg twice daily), showed that a subgroup of patients had a significant increase (3.4% vs 2.9% yearly incidence rates) in the combined end-points of risk of cardiovascular death or non-fatal myocardial infarction compared with placebo [75]. Furthermore, the data indicated a higher risk of bradycardia with ivabradine (Procoralan) compared with placebo (18.0% vs. 2.3%, P <0.001) [75].

Ivabradine use in different disorders:

Ivabradine has been prescribed for the treatment of inappropriate sinus tachycardia [76-79], postural tachycardia syndrome (PoTS) [79-82] and takotsubo cardiomyopathy [83]. In a retrospective study (n= 20), McDonald et al. reported symptomatic improvement in 60% of PoTS patients [80]. Recently, it has been demonstrated in a single center trial that ivabradine has improved the quality of life in patients undergoing coronary artery bypass grafting associated with conduction abnormalities (first degree atrioventricular block or bundle branch block) or left ventricular dysfunction with relative or absolute contraindications to β-blockers [84].

In acute heart failure due to myocarditis: In a few cases [65], ivabradine was administered as an adjuvant off-label to patients with acute heart failure and multiorgan failure due to myocarditis; it has proven to be beneficial in supporting hemodynamic stabilization [66]. Furthermore, in cardiac allograft recipients, ivabradine showed a reduction of left ventricular mass index by significant heart rate reduction [85].

In the current case, TTC symptoms recovered during ivabradine use; however, a causal relation between ivabradine and left ventricular recovery cannot be proven as the recovery of TTC-induced left ventricular dysfunction may occur spontaneously; however, the condition-related symptoms showed good clinical response.

Profile of Ivabradine: Electrophysiological properties:

Ventricular arrhythmias: In experimental animal studies, ivabradine reduced the incidence of reperfusion ventricular tachycardia (VT) by 50% and ventricular fibrillation (VF) by 70% following regional ischemia. These antiarrhythmic effects were produced due to its selective influence on heart rate reduction [86].

Atrial fibrillation (AF): Martin et al. performed a meta-analysis of 21,571 patients which demonstrated that ivabradine treatment was associated with a relative risk of 15% of developing AF [87]. On the other hand, Ivabradine in combination with Metoprolol was more effective (7.6%) than ivabradine (17.1%) or metoprolol (11.5%) alone in the prevention of postoperative atrial fibrillation in patients undergoing coronary artery bypass surgery [84]. Currently, guidelines regarding the treatment recommendations and follow-up of TTC are lacking. No randomized clinical trials on treatment of TTC have been conducted.

Acknowledgement: The authors wish to thank Mrs. J. Wissink and the librarians of Hospital Group Twente Mrs. A. Geerdink and Mrs. L. Gerritsen for the assistance during the preparation of the manuscript.

References:

1. Taylor J: Tako-Tsubo cardiomyopathy. Eur. Heart J. 2014, 35:1227-1228.

2. Said SA, Bloo R, de NR, Slootweg A: Cardiac and non-cardiac causes of T-wave inversion in the precordial leads in adult subjects: A Dutch case series and review of the literature. World J Cardiol 2015, 7:86-100.

3. Merchant EE, Johnson SW, Nguyen P, Kang C, Mallon WK: Takotsubo cardiomyopathy: a case series and review of the literature. West J Emerg Med 2008, 9:104-111.

4. Kumar MA, Nakajl P, Radhakrishnan P, Sue R: Tako-tsubo cardiomyopathy occurring 12 days after aneurysmal subarachnoidal hemorrhage. Chest 2012, 142:393-395.

5. Hartmann M, van Houwelingen GK, Lambregts HP, Verhorst PM,
von BC: Tako-Tsubo Cardiomyopathy Triggered by Paroxysmal Supraventricular Tachycardia in an Octogenarian. Neth.Heart J. 2011, 19:52-54.

6. Postema PG, Wiersma JJ, van der Bilt IA, Dekkers P, van Bergen PF: Takotsubo cardiomyopathy shortly following pacemaker implantation-case report and review of the literature. Neth.Heart J. 2014, 22:456-459.

7. Buja P, Zuin G, Di PF, Madalosso M, Grassi G, Celestre M, Millosevich P, Rigo F, Raviele A: Long-term outcome and sex distribution across ages of left ventricular apical ballooning syndrome. J.Cardiовasc.Med.(Hagerstown.) 2008, 9:905-909.

8. Komamura K, Fukui M, Iwasaku T, Hirotani S, Masuyama T: Takotsubo cardiomyopathy: Pathophysiology, diagnosis and treatment. World J.Cardiol. 2014, 6:602-609.

9. Ghadri JR, Ruschitzka F, Luscher TF, Templin C: Takotsubo cardiomyopathy: still much more to learn. Heart 2014.

10. Sato M, Fujita S, Saito A, Ikeda Y, Kitazawa H, Takahashi M, Ishiguro J, Okabe M, Nakamura Y, Nagai T, Watanabe H, Kodama M, Aizawa Y: Increased incidence of transient left ventricular apical ballooning syndrome (so-called ‘Takotsubo’ cardiomyopathy) after the mid-Niigata Prefecture earthquake. Circ.J 2006, 70:947-953.

11. Rivera JM, Locketz AJ, Fritz KD, Horlocker TT, Lewallen DG, Prasad A, Bresnahan JF, Kinney MO: “Broken heart syndrome” after separation (from OxyContin). Mayo Clin.Proc 2006, 81:825-828.

12. Bruder O, Hunold P, Jochims M, Waltering KU, Sabin GV, Barkhausen J: Reversible late gadolinium enhancement in a case of Takotsubo cardiomyopathy following high-dose dobutamine stress MRI. Int.J Cardiol 2008, 127:e22-e24.

13. Park JH, Kang SJ, Song JK, Kim HK, Lim CM, Kang DH, Koh Y: Left ventricular apical ballooning due to severe physical stress in patients admitted to the medical ICU. Chest 2005, 128:296-302.

14. Sarcon A, Ghadri JR, Wong G, Luscher TF, Templin C, Amsterdam E: Takotsubo cardiomyopathy associated with opiate withdrawal. QJM. 2014, 107:301-302.

15. Arora S, Alfayoumi F, Srinivasan V: Transient left ventricular apical ballooning after cocaine use: is catecholamine cardiotoxicity the pathologic link? Mayo Clin.Proc 2006, 81:829-832.

16. Ghadri JR, Bataisou RD, Diekmann J, Luscher TF, Templin C: First case of atypical takotsubo cardiomyopathy in a bilateral lung-transplanted patient due to acute respiratory failure. Eur Heart J Acute.Cardiovase Care 2014.

17. Toyooka S, Akagi S, Furukawa M, Nakamura K, Soh J, Yamane M, Oto T, Miyoshi S: Takotsubo cardiomyopathy associated with pulmonary resections after induction chemoradiotherapy for non-small cell lung cancer. Gen.Thorac Cardiovase Surg 2012, 60:599-602.

18. Jensen JB, Malouf JF: Takotsubo cardiomyopathy following cholecystectomy: a poorly recognized cause of acute reversible left ventricular dysfunction. Int.J.Cardiol. 2006, 106:390-391.

19. Patankar GR, Choi JW, Schussler JM: Reverse takotsubo cardiomyopathy: two case reports and review of the literature. J Med Case Rep. 2013, 7:84.

20. Sanchez-Recalde A, Costero O, Oliver JM, Iborra C, Ruiz E, Sobrino JA: Images in cardiovascular medicine. Pheochromocytoma-related cardiomyopathy: inverted Takotsubo contractile pattern. Circulation 2006, 113:e738-e739.

21. Karamchandani K, Bortz B, Vaid A: Acute Pulmonary Edema in an Eclamptic Pregnant Patient: A Rare Case of Takotsubo Syndrome. Am J Case.Rep. 2016, 17:682-685.

22. Hefner J, Csef H, Frantz S, Glatter N, Warrings B: Recurrent Tako-Tsubo cardiomyopathy (TTC) in a pre-menopausal woman: late sequelae of a traumatic event? BMC.Cardiovase.Disord. 2015, 15:3.

23. Azzarelli S, Galassi AR, Amico F, Giacoppo M, Argentino V, Tomasello SD, Tamburino C, Fiscella A: Clinical features of transient left ventricular apical ballooning. Am J Cardiol 2006, 98:1273-1276.

24. Roshanzamir S, Showkathali R: Takotsubo cardiomyopathy a short review. Curr.Cardiol.Rev. 2013, 9:191-196.

25. Brinjikji W, El-Sayed AM, Salka S: In-hospital mortality among patients with takotsubo cardiomyopathy: a study of the National Inpatient Sample 2008 to 2009. Am.Heart J. 2012, 164:215-221.

26. Redfors B, Shao Y, Omerovic E: Stress-induced cardiomyopathy (Takotsubo)--broken heart and mind? Vasc.Health Risk Manag. 2013, 9:149-154.

27. Kosugie M, Ebina T, Hibi K, Tsukahara K, Iwahashi N, Gohbara M, Matsuazawa Y, Okada K, Morita S, Umemura S, Kimura K: Differences in negative T waves among acute coronary syndrome, acute pulmonary embolism, and Takotsubo cardiomyopathy. Eur. Heart J.Acute.Cardiovase.Care 2012, 1:349-357.

28. Redfors B, Shao Y, Omerovic E: Is stress-induced cardiomyopathy (takotsubo) the cause of elevated cardiac troponins in a subset of septic patients? Intensive Care Med. 2014, 40:757-758.

29. Lee VH, Connolly HM, Fulgham JR, Manno EM, Brown RD, Jr., Wijdicks EF: Tako-tsubo cardiomyopathy in aneurysmal subarachnoid hemorrhage: an underappreciated ventricular dysfunction. J.Neurosurg. 2006, 105:264-270.

30. Mayer SA, LiMandri G, Sherman D, Lennihan L, Fink ME, Solomon RA, DiTullio M, Klebanoff LM, Beckford AR, Homma S: Electrocardiographic markers of abnormal left ventricular wall motion in acute subarachnoid hemorrhage. J.Neurosurg. 2006, 105:264-270.

31. Shimizu M, Kagawa A, Takano T, Masai H, Miwa Y: Neurogenic stunned myocardium associated with status epilepticus. Intern.Med. 2008, 47:269-273.

32. Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, Cammann VL, Sarcon A, Geyer V, Neumann CA, Seifert B, Hellermann J, Schwyyzer M, Eisenhardt K, Jenewein J, Franke J, Katus HA, Burgdorf C, Schunkert H, Moeller C, Thiele H, Bauersachs J, Tschope C, Schultheiss HP, Laney CA, Rajan L, Michaels G, Pfister R, Ukena C, Bohm M, Erbel R, Cuneo A, et al.: Tako-Tsubo cardiomyopathy associated with pheochromocytoma: inverted Takotsubo contractile pattern. Circulation 2006, 113:e738-e739.

33. Ghadri JR, Bataisou RD, Diekmann J, Luscher TF, Templin C: First case of atypical takotsubo cardiomyopathy in a bilateral lung-transplanted patient due to acute respiratory failure. Eur Heart J Acute.Cardiovase Care 2014.
Kuck KH, Jacobshagen C, Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC, Cuculi F, Banning A, Fischer TA, Vasankari T, Airaksinen KE, Fijalkowski M, Rynkiewicz A, Pawlak M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C, Osswald S, Galuato L, Crea F, Dichtl W, Franz WM, Emken K, Felix SB, Delmas C, Lairez O, Erne P, Bax JJ, Ford I, Rutschitzka F, Prasad A, Luschter TF: Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy. N. Engl. J Med 2015, 373:929-938.

33. Cacciotti L, Passaseo I, Marazzi G, Camasta G, Campolongo B, Beni S, Lupparelli F, Ansalone G: Observational study on Takotsubo-like cardiomyopathy: clinical features, diagnosis, prognosis and follow-up. BMJ Open. 2012, 2.

34. Sharkey SW, Lesser JR, Maron MS, Maron BJ: Why not just call it tako-tsubo cardiomyopathy: a discussion of nomenclature. J Am Coll Cardiol 2011, 57:1496-1497.

35. Akashi YJ, Goldstein DS, Barbaro G, Ueyama T: Takotsubo cardiomyopathy: a new form of acute, reversible heart failure. Circulation 2008, 118:2754-2762.

36. Madhavan M, Rihal CS, Lerman A, Prasad A: Acute heart failure in apical ballooning syndrome (Tako-Tsubo/stress cardiomyopathy): clinical correlates and Mayo Clinic risk score. J Am Coll Cardiol 2011, 57:1400-1401.

37. Kawai S, Kitabatake A, Tonomori H: Guidelines for diagnosis of takotsubo (ampulla) cardiomyopathy. Circ J 2007, 71:990-992.

38. Fisher P, Sidhu R, Behuria S, Rachko M: Pericardial effusion in the setting of Takotsubo cardiomyopathy. J Integr Cardiol 2015, 1:218-219.

39. Fritz J, Wittstein IS, Lima JA, Bluemke DA: Transient left ventricular apical ballooning: magnetic resonance imaging evaluation. J Comput Assist Tomogr. 2005, 29:34-36.

40. Ledakowicz-Polak A, Bartodziej J, Majos A, Zielinska M: Inverted stress-induced cardiomyopathy as a unusual variant of acute heart failure after cesarean delivery- a case report. BMC Cardiovasc Disord. 2016, 16:76.

41. Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, Yoshiyama M, Miyazaki S, Haze K, Ogawa H, Honda T, Hase M, Kai R, Morii I: Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan. J Am Coll Cardiol 2001, 38:11-18.

42. Gianni M, Dentali F, Grandi AM, Sumner G, Hiralal R, Lonn E: Apical ballooning syndrome or takotsubo cardiomyopathy: a systematic review. Eur Heart J 2006, 27:1523-1529.

43. Bybee KA, Kara T, Prasad A, Lerman A, Barsness GW, Wright RS, Rihal CS: Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction. Ann Intern Med 2004, 141:858-865.

44. Hassan S: Acute cardiac sympathetic disruption and left ventricular wall motion abnormality in takotsubo syndrome. Acute Card Care 2015, 17:24-25.

45. Zorzi A, Migliore F, Perazzolo MM, Tarantini G, Iliceto S, Corrado D: Electrocardiographic J waves as a hyperacute sign of Takotsubo syndrome. J Electrocardiol. 2012, 45:353-356.

46. Sadamatsu K, Tashiro H, Maehira N, Yamamoto K: Coronary microvascular abnormality in the reversible systolic dysfunction observed after noncardiac disease. Jpn Circ J 2000, 64:789-792.

47. Kurisu S, Sato H, Kawagoe T, Ishihara M, Shimatani Y, Nishioka K, Kono Y, Umemura T, Nakamura S: Tako-tsubo-like left ventricular dysfunction with ST-segment elevation: a novel cardiac syndrome mimicking acute myocardial infarction. Am Heart J 2002, 143:448-455.

48. Kume T, Kawamoto T, Okura H, Toyota E, Neishi Y, Watanabe N, Hayashida A, Okahashi N, Yoshimura Y, Saito K, Nezu S, Yamada R, Yoshida K: Local release of catecholamines from the hearts of patients with tako-tsubo-like left ventricular dysfunction. Circ J 2008, 72:106-108.

49. Lyon AR, Rees PS, Prasad S, Poole-Wilson PA, Harding SE: Stress (Takotsubo) cardiomyopathy—a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat Clin Pract Cardiovasc Med. 2008, 5:22-29.

50. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC: Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 2005, 352:539-548.

51. Ellison GM, Torella D, Karakikes I, Purushothaman S, Curcio A, Gasparri C, Indolfi C, Cable NT, Goldspink DF, Nadal-Ginard B: Acute beta-adrenergic overload produces myocyte damage through calcium leakage from the ryanodine receptor 2 but spares cardiac stem cells. J Biol Chem. 2007, 282:11397-11409.

52. Ibanez B, Benezet-Mazuecos J, Navarro F, Farre J: Takotsubo syndrome: a Bayesian approach to interpreting its pathogenesis. Mayo Clin Proc. 2006, 81:732-735.

53. Kurisu S, Inoue I, Kawagoe T, Ishihara M, Shimatani Y, Nishioka K, Umemura T, Nakamura S, Yoshida M, Sato H: Myocardial perfusion and fatty acid metabolism in patients with tako-tsubo-like left ventricular dysfunction. J Am Coll Cardiol 2003, 41:743-748.

54. Bybee KA, Prasad A, Barsness GW, Lerman A, Jaffe AS, Murphy JG, Wright RS, Rihal CS: Clinical characteristics and thrombolysis in myocardial infarction frame counts in women with transient left ventricular apical ballooning syndrome. J Am Coll Cardiol 2004, 94:343-346.

55. Galiuto L, de Caterina AR, Porfidia A, Paraggio L, Barchetta S, Locorotondo G, Rebuzzi AG, Crea F: Reversible coronary microvascular dysfunction: a common pathogenetic mechanism in Apical Ballooning or Tako-Tsubo Syndrome. Eur Heart J 2010, 31:1319-1327.

56. Spieker LE, Hurlimann D, Ruschitzka F, Corti R, Enseleit F, Shaw S, Hayoz D, Deane FE, Luscher TF, Noll G: Mental stress induces prolonged endothelial dysfunction via endothelin-A receptors. Circulation 2002, 105:2817-2820.

57. Ghiadoni L, Donald AE, Cropsey M, Mullen MJ, Oakley G, ...
Taylor M, O'Connor G, Betteridge J, Klein N, Steptoe A, Deanfield JE: Mental stress induces transient endothelial dysfunction in humans. Circulation 2000, 102:2473-2478.

58. Jonkmann JK, van Tol CA, Nienhuis MB, Debrauwere J, San WJ, Elvan A: [Takotsubo cardiomyopathy; reversible cardiomyopathy induced by stress]. Ned.Tijdschr.Geneeskd. 2009, 153:B363.

59. Barbaryan A, Bailuc SL, Patel K, Raqueem MW, Thakur A, Mirrakhimov AE: An Emotional Stress as a Trigger for Reverse Takotsubo Cardiomyopathy: A Case Report and Literature Review. Am J Case.Rep. 2016, 17:137-142.

60. Tibrewala AV, Moss BN, Cooper HA: A rare case of takotsubo cardiomyopathy complicated by a left ventricular thrombus. South.Med J 2006, 99:70-73.

61. Sasaki N, Kinugawa T, Yamawaki M, Furuse Y, Shimoyama M, Ogino K, Igawa O, Hisatome I, Shigemasa C: Transient left ventricular apical ballooning in a patient with bicuspid aortic valve created a left ventricular thrombus leading to acute renal infarction. Circ J 2004, 68:1081-1083.

62. Matsuoka K, Okubo S, Fujii E, Uchida F, Kasai A, Aoki T, Makino K, Omichi C, Fujimoto N, Ohta S, Sawai T, Nakano T: Evaluation of the arrhythmogeneity of stress-induced “Takotsubo cardiomyopathy” from the time course of the 12-lead surface electrocardiogram. Am J Cardiol 2003, 92:230-233.

63. Dib C, Prasad A, Friedman PA, Ahmad E, Rişal CS, Hammill SC, Asvirtham SJ: Malignant arrhythmia in apical ballooning syndrome: risk factors and outcomes. Indian Pacing Electrophysi. 2008, 8:182-192.

64. Wan SH, Liang JJ: Takotsubo cardiomyopathy: etiology, diagnosis, and optimal management. Research Reports in Clinical Cardiology 2014, 5:297-303.

65. Link A, Reil JC, Selejan S, Bohm M: Effect of ivabradine in dobutamine induced sinus tachycardia in a case of acute heart failure. Clin.Res.Cardiol. 2009, 98:513-515.

66. Franke J, Schmahl D, Lehrke S, Pribe R, Bekerendjian R, Doesch AO, Ehlernann P, Schnabel P, Katus HA, Zugeck C: Adjuvant Use of Ivabradine in Acute Heart Failure due to Myocarditis. Case. Rep.Med. 2011, 2011:203690.

67. Dedkov EI, Zheng W, Christensen LP, Weiss RM, Mahllberg-Gaudin F, Tomanek RJ: Preservation of coronary reserve by ivabradine-induced reduction in heart rate in infarcted rats is associated with decrease in perivascular collagen. Am J.Physiol. Heart Circ.Physiol 2007, 293:H590-H598.

68. Satoh H, Tateishi H, Uchida T, et al.: Takotsubo-type cardiomyopathy due to multivessel spasm. In:Kodama K, Haze K, Hon M, editors. Clinical aspects of myocardial injury. From ischemia to heart failure (in Japanese). Tokyo: Kagakuhyouronsya Co; 1990:56-64.

69. Crea F, Cambiagi PG, Bairey Merz CN: Coronary microvascular dysfunction: an update. Eur.Heart J. 2014, 35:1101-1111.

70. Sulfi S, Timmis AD: Ivabradine -- the first selective sinus node (f) channel inhibitor in the treatment of stable angina. Int.J.Clin. Pract. 2006, 60:222-228.

71. Thollon C, Campbarrat C, Vian J, Prost JF, Peglon JL, Vilaine JP: Electrophysiological effects of S 16257, a novel sino-atrial node modulator, on rabbit and guinea-pig cardiac preparations: comparison with UL-FS 49. Br.J.Pharmacol. 1994, 112:37-42.

72. Swedberg K, Komajda M, Bohn M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L: Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 2010, 376:875-885.

73. Fox K, Ford I, Steg PG, Tenda M, Ferrari R: Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet 2008, 372:807-816.

74. Rosano GMC, Vitale C, Spoletini L, Volterrani M: Clinical utility of ivabradine in cardiovascular disease management: current status. Research Reports in Clinical Cardiology 2014,183-187.

75. Khan S, Hamid S, Rinaldi C: Treatment of inappropriate sinus tachycardia with ivabradine in a patient with postural orthostatic tachycardia syndrome and a dual chamber pacemaker. Pacing Clin.Electrophysiol. 2009, 32:131-133.

76. Cappato R, Castelvecchio S, Ricci C, Bianco E, Vitali-Serdot L, Gneccchi-Ruscone T, Pittalis M, De AL, Barusco M, Gaeta M, Furlanello F, Di FD, Lupo PP: Clinical efficacy of ivabradine in patients with inappropriate sinus tachycardia: a prospective, randomized, placebo-controlled, double-blind, crossover evaluation. J.Am.Coll.Cardiol. 2012, 60:1323-1329.

77. Benezet-Mazuecos J, Rubio JM, Farre J, Quinones MA, Sanchez-Borque P, Macia E: Long-term outcomes of ivabradine in inappropriate sinus tachycardia patients: appropriate efficacy or inappropriate patients. Pacing Clin.Electrophysiol. 2013, 36:830-836.

78. Nwazue VC, Paranjape SY, Black BK, Biaggioni I, Diedrich A, Sanchez-Borque P, Macia E: Lack of impact of ivabradine on the heart rate of patients with inappropriate sinus tachycardia: a prospective randomized trial. Pacing Clin Electrophysiol 2010, 3:e00700.

79. Sanchez-Borque P, Macia E: Long-term outcomes of ivabradine in inappropriate sinus tachycardia patients: appropriate efficacy or inappropriate patients. Pacing Clin.Electrophysiol. 2013, 36:830-836.

80. McDonald C, Frith J, Newton JL: Single centre experience of ivabradine in postural orthostatic tachycardia syndrome. Europace. 2011, 13:427-430.

81. Hersi AS: Potentially new indication of ivabradine: treatment of a patient with postural orthostatic tachycardia syndrome. Open. Cardiovasc.Med.J. 2010, 1:e00153.

82. Ewan V, Norton M, Newton JL: Symptom improvement in postural orthostatic tachycardia syndrome and inappropriate sinus tachycardia: role of autonomic modulation and sinus node automaticity. J.Am.Heart Assoc. 2014, 3:e000700.

83. Munzel T, Knoor M, Schmidt F, von BS, Gori T, Schulz E: Airborne disease: a case of a Takotsubo cardiomyopathy as a
consequence of nighttime aircraft noise exposure. Eur.Heart J 2016.

84. Iliuta L, Enache R: Ivabradine versus beta-blocker in patients with conduction abnormalities or left ventricular dysfunction undergoing coronary artery bypass grafting. In Perioperative considerations in cardiac surgery. Edited by Cuneyt Narin. Rijeka, Croatia: InTech Europe; 2012:355-368.

85. Doesch AO, Ammon K, Konstandin M, Celik S, Kristen A, Frankenstein L, Buss S, Hardt S, Sack FU, Katus HA, Dengler TJ: Heart rate reduction for 12 months with ivabradine reduces left ventricular mass in cardiac allograft recipients. Transplantation 2009, 88:835-841.

86. Ng FS, Shadi IT, Peters NS, Lyon AR: Selective heart rate reduction with ivabradine slows ischaemia-induced electrophysiological changes and reduces ischaemia-reperfusion-induced ventricular arrhythmias. J.Mol.Cell Cardiol. 2013, 59:67-75.

87. Martin RI, Pogoryelova O, Koref MS, Bourke JP, Teare MD, Keavney BD: Atrial fibrillation associated with ivabradine treatment: meta-analysis of randomised controlled trials. Heart 2014, 100:1506-1510.