Review Article

Synanthropic rodents as virus reservoirs and transmitters

Mara Lucia Gravinatti[1], Carla Meneguin Barbosa[2], Rodrigo Martins Soares[1] and Fábio Gregori[1]

[1]. Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo, São Paulo, SP, Brazil.
[2]. Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.

Abstract

This review focuses on reports of hepatitis E virus, hantavirus, rotavirus, coronavirus, and arenavirus in synanthropic rodents (Rattus rattus, Rattus norvegicus, and Mus musculus) within urban environments. Despite their potential impact on human health, relatively few studies have addressed the monitoring of these viruses in rodents. Comprehensive control and preventive activities should include actions such as the elimination or reduction of rat and mouse populations, sanitary education, reduction of shelters for the animals, and restriction of the access of rodents to residences, water, and food supplies.

Keywords: Viruses. One health. Urban environment. Rat.

INTRODUCTION

Rodents (Order: Rodentia) are distributed on all continents except for Antarctica1. Their heterogeneous and cosmopolitan distribution expands as their interaction with humans increases2. Some species are better able to adapt to urban environments (synanthropism).

In a study conducted in Buenos Aires (Argentina), black rats (Rattus rattus) were found in residential and industrial areas, while house mice (Mus musculus) and brown rats (Rattus norvegicus) were captured in green areas and shantytowns3, where their presence was favored by easy access, availability of shelter, and large food supply4.

These animals are natural reservoirs of infectious diseases5,6, and are involved in the emergence and dissemination of viruses, bacteria, and protozoa. The transmission of these agents can occur through both direct (bite, contact) and indirect (urine, feces) means, through vectors (ticks, fleas, and mites) that infest rodents, or when they are predated by other species1,7,8.

Although little information is currently available on the size of the population of synanthropic rats, some indicators allow the subjective estimation of their presence, such as the presence of excrement, marks on walls, trails on the ground, food sources, or the visual observation of rodents and/or the damage caused by them9-11.

To evaluate the size of rodent populations, the concept of the ‘minimum known number’ is used12, where individuals have to be captured and recaptured to estimate the infestation rate. This statistical formula can be simplified by multiplying the number of animals caught in a trap in a single catch by 10011,13.

A survey carried out in 1529 dwellings in a low-income region of São Paulo (Brazil) showed an initial synanthropic rodent infestation rate of 40%, which was reduced to 14.4% after the implementation of sanitary education and pest control13. Similarly, in Pau de Lima (Bahia, Brazil), 62% of households (137/221) presented signs of active rodent infestations14.

Besides synanthropic species, other rodents can cocirculate in rural environments and wild and urban interface areas, where they contact other animals and people10,15. Wild rodents are reservoirs for hantavirus, vaccinia virus, and Lassa virus, among others16-19.

Fernandes et al. (2019)20 investigated rural settlements in Goiás (Brazil), and found 2.57% (n=12) positive rate for Orthohantavirus, equally distributed between women and men (n=6). In contrast, similar studies showed higher frequency in middle-aged men due to their risk behaviors21,22.

Refugee camps accommodate large number of people and consequently there is accumulation of food and residues, attracting rodents (synanthropic and wild). In Africa, studies have revealed the circulation of Mastomys natalensis infected by Lassa virus in...
these camps, which is facilitated by the dissemination routes of the virus (urine, fomites, consumption of rodents as food)32. Bonner et al. (2007)24 investigated communities of up to 9,000 people and determined that the quality of housing, external hygiene, and the visualization of rodent burrows were the main epidemiological factors associated with the spread of Lassa virus.

Aircrafts and ships may also contribute to the introduction of rodents and even dissemination of diseases in new areas35,20. Consequently, the World Health Organization (WHO) has implemented rodent control measures at airports and ports, including periodic surveys to verify the absence of rodents onboard vessels. According to reports, 24.7% (270/1093) of moored ships at the port of Shanwei (China) were infested with rats25. In Heilongjiang, another Chinese port area, 4.47% of the 649 collected rats tested positive for hantavirus27.

Therefore, this article aims to review important viral agents disseminated by synanthropic rodents (M. musculus, R. rattus, and R. norvegicus), and thereby contribute to a better understanding of disease epidemiology and prevention.

SEARCH STRATEGY AND SELECTION CRITERIA

Scientific texts in English and Portuguese were retrieved from the PubMed, Scopus, Web of Science, and Scielo research platforms using the search term “virus” in combination with “disease” and “rat or rodent or murine”. Additionally, a second more refined research was performed with the terms “Hepatitis E,” “Hantavirus,” “Rotavirus,” “Coronavirus”, or “Arenavirus” associated with “rat or rodent or murine.”

Among the resulting studies mainly related to synanthropic rodents (M. musculus; R. rattus; R. norvegicus) collected in the field were selected, excluding the studies restricted to animal experimentation.

Thus, hepatitis E, hantavirus, rotavirus, coronavirus, and arenavirus are the focus of this review, as they are neglected diseases transmitted by rodents.

HEPATITIS E (HEV)

The hepatitis E virus (HEV) has a single-stranded RNA genome of approximately 7 kb length29. As a member of the Hepeviridae family, the genus Orthohepevirus has four species (from A to D)29, among which Orthohepevirus A and C have already been described in rodents10.

Infection occurs via the fecal-oral route through the consumption of water contaminated with excrement or the consumption of raw/undercooked meat and the viscera of infected animals31. The prevalence rate in humans reaches 40% in industrialized countries, and the virus has been detected in blood banks32. Socially vulnerable people may be an important epidemiological group at risk, along with patients who depend on blood transfusions33,14.

The virus shows tropism to digestive system and is eliminated in stool after 4 to 23 days of infection35, remaining in this state for additional 5 weeks36,37.

The symptoms are mainly nonspecific, and include fever, headaches, abdominal pain, but these infections may also be asymptomatic (depending on the HEV dose to which the patient was exposed), hindering the detection, and potentiating the agent’s spread38-40.

Mortality rates are higher among infected people presenting previous liver disease, immunocompromised patients, and pregnant women, as they present higher chances of renal failure leading to death31,41,42.

The role of black rats (R. rattus) and brown rats (R. norvegicus) as reservoirs and transmitters of this viral agent and its prevalence rate remains unknown10.

Orthohepevirus A has seven different genotypes (HEV1-7) defined by the concatenated amino acid distance between the open reading frames of ORF1 (nonstructural proteins) and ORF2 (capsid proteins)43. HEV-1 and HEV-2 occur only in humans; HEV-3 has been isolated from humans and several animal species; HEV-4 has been isolated from humans and pigs; HEV-5 and HEV-6 have been identified only in wild boars; and HEV-7 has only been found in camels44.

The presence of anti-HEV IgG30,45, and the detection of viral particles in the feces of these rodents (with or without seroconversion) have been demonstrated37,46,47. However, only a single study has shown similarities between rodent (R. norvegicus) strains with regard to the HEV-3 genotype, which is most closely related to the genotypes found in rabbits37.

On the other hand, rat HEV (genotype C1), belonging to the Orthohepevirus C group, has been reported in R. norvegicus and R. rattus, although its potential to cause disease in humans is still questioned37,47.

In Vietnam, animals captured at bus stations and hospitals have tested positive for rat HEV48. These findings are supported by serological evidence from domestic animals and rodents in other studies45,49,50.

Detection methods for HEV include serological (specific IgG), histopathological, and molecular (RT-PCR) techniques41. Commercially, there are no specific prophylatic measures available on the market, although Chinese researchers have developed the HEV p239 vaccine from the HEV1 genotype51. Its efficacy is considered high (> 90%), requiring three doses (0, 1 and 6 months), and it may be used even in pregnant women52.

HANTAVIRUS (HV)

Hantaviruses, belonging to the Hantaviridae family, are divided into four genera: Loanvirus, Mobatvirus, Thottimivirus, and Orthohantavirus8. These enveloped viruses have a negative-sense RNA genome segmented into three fragments: Large - L (6.8-12 kb), Middle - M (3.2-4.9 kb), and Small - S (1-3 kb). They encode four proteins; the L segment encodes viral polymerase, while the M and S segments encode the precursor (GPC) of two viral surface glycoproteins (G1 and G2, alternatively called Gn and Gc), and the nucleocapsid (N) protein, respectively44.

More than 50 species of hantaviruses have been reported worldwide45; however, some of them do not cause diseases, including the Prospect Hill virus86. Rodents, bats, and moles are
reservoirs of these agents57; transmission occurs through bites (saliva), and especially via the inhalation of viral particles from the feces and urine of these animals58. Despite a report of transmission between humans, this form is rare59.

The Orthohantavirus genus includes the greatest number of pathogenic species of public health importance60. Its presence is associated with the geographic distribution of rodents (Murinae, Avicolinae, and Sigmodontinae families), which can harbor distinct forms of the disease.

The earliest reports of hemorrhagic fever with renal syndrome (HFRS), caused by viruses known as Old World hantaviruses (Europe and Asia), come from Chinese writings dating from 960 BC. Later, in the Korean War (1951-1954), these diseases caused the death of over 3,000 soldiers61. The *Hantaan* virus (HTNV) species was related to this outbreak. HTNV was isolated for the first time in 197862 and was linked to the rodent *Apodemus agrarius*; the virus was detected in blood, urine, feces, and respiratory tract samples. In humans, this species causes a severe form of HFRS, which has thus far been restricted to rural areas of China, Korea, and Russia63,64.

Dobrava virus (DOBV) is also associated with HFRS syndrome, for which men are accidental hosts65. Mortality rates vary according to the genotype, ranging from 0.5% (DOBV - Kurkino) to 12% (DOBV - Dobrava and DOBV - Sochi)66,67.

The most commonly detected viral agent of this group in Western Europe, *Puuvola* virus (PUUV), is disseminated by *Myodes glareolus*, whose proliferation is favored by the underbrush vegetation in this region, and the spread of the virus is further affected by virus-host coevolution68. In humans, it causes moderate nephropathy, and can lead to subclinical infections59.

Seoul virus usually causes mild infections and without medical care the mortality rates reach 1%. The host of this virus (*R. norvegicus*) is found in urban areas, leading to a cosmopolitan distribution of the disease, in contrast to those caused by other Old World hantaviruses60,69. The incubation period varies from 2-3 weeks, and the endothelial cell tropism of the virus70 produces nonspecific symptomatology (fever, headaches, muscle pain, nausea, vomiting), in addition to respiratory problems, dizziness, and diarrhea. Thrombocytopenia entails the development of petechias, and decreased blood pressure affects kidney function, causing renal failure followed by disseminated intravascular coagulation72.

Hantavirus cardiopulmonary syndrome (HCPS) is another pathology associated with agents of the genus New World hantaviruses (Americas), and appears to be related to climatic phenomena such as El Niño78.

The first report of hantavirus in Brazil dates from 1993, when *Juquitiba* virus, transmitted by *Oligoryzomys nigripes*, was detected by Silva et al. (1997)73. To date, the following viruses have been identified in the country: (a) *Araraquara* virus (transmitted by *Necromys lasiurus* rodents); (b) *Castelo dos Sonhos* virus (*Oligoryzomys utiaritensis*); (c) *Laguna Negra* virus (*Calomys calliidus*); (d) *Anajatuba* virus (*Oligoryzomys maccollinsi*); and (e) *Rio Mamore* virus (*Oligoryzomys microtis*), among others74.

The incubation period of HCPS ranges between 16-24 days, with initial nonspecific HFRS-like symptomatology differentiated by pulmonary edema and lymphoid organ impairment74, which may cause cardiovascular shock and death72. Studies indicate that this pulmonary phase lasts approximately 1 week, but long-lasting sequelae have been reported, such as dyspnea and weakness91. According to available data from the Brazilian Ministry of Health, 2061 people had been infected in the country as of 2017, with a lethality rate of 40.1%75.

In rodents, this virus causes a chronic infection with mild symptomatology such as decreased growth76 and renal problems77, although it is usually asymptomatic. This can be explained by the coevolution of rodents with the virus over millions of years67. Hantavirus can be diagnosed by associating the patient’s history with the presence of wild or synanthropic rodents. Tests for hantavirus include specific serological detection using ELISA (IgM or IgG) or viral detection using RT-PCR or real-time PCR77.

The occurrence of HFRS has not yet been reported in Brazil, despite serologically positive human and rodent samples78. For example, in an urban area in Salvador, Brazil, *Seoul* virus antibodies were found in *R. norvegicus* serum samples81. A molecular survey conducted in Madagascar detected the *Anjoroze* virus (Thailand Orthohantavirus) strain in *R. rattus* and *M. musculus*, suggesting viral spillover82.

To our knowledge, there is no licensed vaccine available on the market that prevents hantavirus infections. Several clinical trials at different stages are ongoing to test inactivated (monovalent and bivalent), DNA, and live attenuated vaccines for both HFRS and HCPS, with effectiveness of approximately 93.77-100% being reported83,85. Additionally, studies have demonstrated that the use of antiviral ribavirin increases the survival rate in hantavirus-infected rats86,88.

ROTAVIRUS (RV)

Rotavirus (RV) belongs to the Rotavirus genus within the *Sedoreovirinae* subfamily of the *Reoviridae* family53. These nonenveloped viruses have a double-stranded RNA genome of approximately 18550 bp in length, fragmented into 11 segments. The genome encodes six structural (VP1, VP2, VP3, VP4, VP6, and VP7) and six nonstructural (NSP1, NSP2, NSP3, NSP4, and NSP5/6) proteins, as the NSP5/6 gene is bicistronic89,90.

The genome encodes six structural (VP1, VP2, VP3, VP4, VP6, and VP7) and six nonstructural (NSP1, NSP2, NSP3, NSP4, and NSP5/6) proteins, as the NSP5/6 gene is bicistronic89,90.

Myriad mechanisms of viral variability occur in RVs, such as point mutations, rearrangements, reassortments, and intragenic recombination, conferring great genetic diversity91,92. This genus is divided into nine different groups (RVA-RVII) based on the antigenic properties and nucleotide sequences of the VP6 protein93,94, and there is a potential candidate tenth group, RVIII95.

For the RVA group, it is necessary to adopt the notation of Gx-P[x]-I[x]-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx, which considers all the variability presented by the coding genes of the VP7-VP4-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 proteins, respectively96. To date, this group has at least 36 known G genotypes and 51 known P genotypes in humans and animals97,98.

Although rotaviruses are considered species-specific, heterologous infections may occur100. Wa-like and DS1-like (RVA)
strains primarily cause disease in humans, and infections caused by genotypes and serotypes common to animals have also been documented\(^\text{100,101}\).

Synanthropic rodents are usually not associated with RVs, however, their efficiency in disease transmission and their close contact with other animals and people highlight their importance to the epidemiology of these viruses\(^\text{101,102}\).

Transmission initially occurs through the fecal-oral route, via particles present in the soil and water, causing diarrhea due to the loss of absorptive capacity of injured intestinal cells during viral replication\(^\text{103}\). Diarrhea is a leading cause of infant mortality worldwide, and rotavirus infections are responsible for more than 35% of these cases\(^\text{104}\).

RVs are widely distributed in Brazil, and have been described in animals (both young and adults) such as cattle\(^\text{105}\), birds\(^\text{106}\), and pigs\(^\text{107,108}\). In rodents, there is a single report of RVA associated with swine production\(^\text{109}\).

A metagenomic analysis of *R. norvegicus* in Germany characterized a sample of RVA, revealing close identity between the identified strain and other animal and human strains, namely, genotypes G3, P[3], and N2\(^\text{110}\).

In Italy, 40 fecal samples from *R. rattus* collected on swine farms were analyzed, and a sample of RVA was characterized (G3-P[3]-I1-R11-C11-M10-A22-N18-T14-E18-H13), demonstrating an atypical combination of genotypes\(^\text{102}\).

As the associated symptomatology is mainly nonspecific, the diagnosis can easily be misleading\(^\text{111}\). Commercial ELISA kits, RT-PCR (single or multiplex), and qPCR assays\(^\text{99,102,110}\) are available for the detection of these infections.

To control this disease, animal vaccination (swine and cattle) should be carried out, mainly in females in the late gestation period. In production animals, prevalence rates may be higher than 90% in adults\(^\text{103}\). For humans, two vaccines are authorized by the WHO: (a) Rotarix® (GlaxoSmithKline Biologicals, Rixensart, Belgium, an attenuated strain of G1P [8] RVA) and (b) RotaTeq® (Merck & Co., Whitehouse Station, NJ, with five strains of genotypes G1P [5], G2P [5], G3P [5], G4P [5] and G6P [8]).

CORONAVIRUS (COV)

Coronaviruses are enveloped, nonsegmented, positive, single-stranded RNA viruses associated with the structural N-phosphoprotein in a nucleocapsid with helical symmetry\(^\text{112,113}\). They are found in a wide variety of animals causing respiratory, enteric, hepatic, and neurological diseases of varying severity\(^\text{114}\). According to the International Committee on Taxonomy of Viruses, two subfamilies belong to the *Coronaviridae* family; *Letovirinae*, which has one subgenus, *Mileovirus*, found only in frogs and a sea hare thus far\(^\text{115}\), and *Orthocoronavirinae*, which is found in birds and mammals, and is divided into four genera due to the antigenic and genetic characteristics of the viruses\(^\text{53,116}\).

Phylogenetic studies indicate that bats are the gene source for *Alpha* and *Betacoronaviruses*, while birds are the gene source for *Gama* and *Deltacoronaviruses*\(^\text{117}\). Thus, *Alpha* and *Betacoronaviruses* are found mainly in mammals, such as humans, dogs, cats, pigs, bats, mice, rats, horses, and cattle\(^\text{114,118-123}\), while *Gama* and *Deltacoronaviruses* infect mainly birds, with exceptions such as the white whale *Gammacoronavirus* (*Delphinapterus leucas*)\(^\text{114}\) and the porcine *Deltacoronavirus*\(^\text{124}\).

Among the *Alpha* and *Betacoronaviruses*, six are of public health importance, causing mild (HCoV-229E, NL63, OC43, and HKV1) to severe respiratory syndromes (SARS and MERS)\(^\text{120,126,127}\).

Despite the many uncertainties about the epidemiology and reservoirs of severe acute respiratory syndrome (SARS) and Middle Eastern respiratory syndrome (MERS), bats have been identified as the most likely reservoirs, while palm civets (*Paguma larvata*)\(^\text{128}\) and dromedary camels (*Camelus dromedarius*)\(^\text{129,130}\) act as intermediary hosts before dissemination to humans\(^\text{120,131,132}\).

Both diseases have caused worldwide health problems, affecting 27 countries and causing hundreds of deaths in 2002 (SARS) and 2012 (MERS), aggravated by nosocomial transmission or transmission by family members\(^\text{126}\).

In general, the virion contains at least three proteins: the spike (S), membrane (M), and envelope (E) proteins. In addition, some coronaviruses include hemagglutinin esterase (HE)\(^\text{133}\). Proteins M and E are related to viral assembly\(^\text{134}\), while the S protein show antigenicity and pathogenicity of the virus\(^\text{122,136}\).

The S protein, which shows great variability, is responsible for host specificity because its S1 and S2 subunits are used for binding the virus to host cell receptors, and are associated with the antigenicity and pathogenicity of the virus\(^\text{122,136}\).

Many similarities exist between the CoVs of rats and bats\(^\text{119,120,140,141}\), suggesting that rodents could act as important reservoirs\(^\text{142}\). A survey conducted on 330 intestinal content samples from rodents (*Apodemus sp.*, *Myodes glareolus*, *Arvicola terrestris*, and *Microtus sp.*), collected between 2014 and 2016 in different regions of France\(^\text{121}\), revealed positivity of 6.3% (21 samples), all belonging to *Alphacoronavirus* groups. This study also revealed *Alpha* and *Betacoronavirus* in bats, rabbits, and hedgehogs from the same area\(^\text{111}\).

An investigation conducted in China\(^\text{129}\), analyzed 177 rodent intestinal samples from three different species (*Apodemus chevrieri*, *Apodemus iles*, and *Eothenomys fidelis*), and found *Alpha* and *Betacoronavirus* in 13% (23 samples).

Besides field investigations, rodent CoV also has an important role as Murine hepatitis virus (MHV)\(^\text{137}\), and has been used for experimental infections, mostly for the identification of potential viruses showing interspecies transmission\(^\text{119}\). Although there is little information about the prevalence and diversity CoV in rodents\(^\text{128,139}\), many new species of *Alpha* and *Betacoronaviruses* (*LRNV*, *LAMV*, *LRLV*, and *HKU24*) have been identified in rodents in China and Europe\(^\text{119,120,140,141}\).

Some vaccine candidates are being developed only for MERS-CoV, including whole-virus, vectored virus, DNA, and protein-based vaccines, however, lack of investment is delaying their development\(^\text{143}\).
ARENAVIRUS (AV)

Arenaviruses (genus *Arenavirus*, family *Arenaviridae*) are enveloped viruses with an RNA genome segmented in two ambisense single stranded molecules: small (S) and large (L)(53). The S portion encodes nucleocapsid protein and envelope glycoproteins, while L segment contains RNA dependent RNA polymerase (RdRp) and zinc-binding protein genes. Both S and L intergenic regions may potentially form one or more hairpins, which regulate mRNA transcription53,144-146.

This viral family has four genera, based on phylogenetic analysis involving pairwise sequence comparisons (PASC) of complete genomes13,147. *Antennavirus* genus includes viruses that infect frogfish148, *Hartmanivirus* and *Reptarenavirus* infect snakes, and *Mammarenavirus*, which have been reported in bats, ticks, rodents, and primates, including humans146,147.

Mammarenaviruses are correlated to the geographical location where their hosts are found147; currently classified as: (a) Old World (OW) (*Lassa* virus, *Lujo* virus, among others), and found mainly in Africa in rodents of the *Murinae* family as natural hosts49. Although *Lymphocytic choriomeningitis* virus (LCMV) belongs to this category, it circulates globally146. Approximately 5% of the human population have been exposed to LCMV, due to the ubiquity of the virus host, *M. musculus*150; (b) New World (NW), found in the American continent, are divided into four clades (A-D)151. Examples of NW viruses are *Junin* virus - *Argentina*152, *Machupo* virus - *Bolivia*153, *Sabia* virus - *Brazil*154, and *Guararito* virus - *Venezuela*155. *Sigmodontinae* rodents are the main hosts of this class, even though *Tacaribe* virus has already been described in bats156 and *Amblyomma americanum* ticks157.

Members of both OW and NW arenaviruses can cause hemorrhagic fever and severe human diseases affecting the central nervous system159. Zoonotic transmission is through contact with rodents’ urine or feces, and human-to-human transmission is possible160. Because of their impact on human health and rapid spread, they are potential bioterrorism agents159.

In Colombia, a study conducted with *M. musculus*, collected from residential areas, detected 10% (8/80) of positives in serological analysis for LCMV. When brain samples of the same animals were submitted to RT-PCR, serologically negative individuals showed positive results in this second analysis, highlighting the importance of parallel diagnosis160. It can be justified by the vertical transmission among rodents that may deactivate cytotoxic T-lymphocytes, generating immune-complexes that may lead to misdiagnosis of ELISA reactions160.

A research conducted in French Guiana sampled 37 animals (*M. musculus*) of which two were positive for LCMV by heminested PCR (from lung and kidney samples)161; another inquiry in Argentina reported that 9.4% of the mice collected were positive for arenavirus, and the serological rate was 4.6% and 2.6% for men and women, respectively162. In Baltimore (USA), 9% of the mice were seropositive for LCMV163, and 4.7% of the people were analyzed164. In Brazil, to our knowledge, there are no serological records on the prevalence of LCMV in rodents or humans.

Lassa virus (OW) is endemic in African countries, with seroprevalence reaching about 50% of the human population; this disease causes about 5,000 deaths every year165. *Mastomys natalensis* is considered the main reservoir of the virus166, but it can also be found in *Hyalomyscus panfai* and *Mastomys erythroleucus*167.

Surveys conducted in Nigeria reported positive animals for *Lassa* virus in *M. natalensis* and *M. erythroleucus*, *R. rattus*166, and *M. musculus*169. In China, RT-PCR performed organs of *R. rattus* and *R. norvegicus* showed positive rates of 75% and 17%, respectively, and a new viral species, the *Wenzhou* virus, was isolated145.

Junin virus is considered endemic in Argentina170 and sporadic outbreaks have been reported171. There are several promising vaccinal prototypes being developed for this virus, most are in the preclinical stage172 and one, based on plasmidial DNA, has already reached human test phase173.

In Brazil, the most remarkable arenavirus is *Sabia* virus, reported in São Paulo (Brazil) in 1994. Initial symptoms were described as flu-like (fever, sickness, headaches, and lethargy), quickly leading to hemorrhage and death (within 3 days)174,174. There have been two reports of this virus, caused by occupational exposure in a laboratory environment, one in Pará (Brazil) and the other in Connecticut (USA), both with non-fatal courses175,176. The 4th case was described in São Paulo (Brazil) in 1999177 and the 5th, on January 2020 in Sorocaba (São Paulo, Brazil)178 as a natural infection with lethal outcome.

A new arenavirus, namely *Pinhal* virus, has been characterized as a New World arenavirus (line C), first isolated from vesper mice (*Calomys tener*) in São Paulo (Brazil), but there is still no evidence that this viral strain causes disease to humans177,179. Besides *Pinhal* virus, other arenaviruses have been reported in Brazil: *Xapuri* virus was recently isolated from rodents (*Neacomys musseri*); *Amapari* virus (*Neacomys guianae*); *Cupixi* virus (*Oryzomys megacephalus*); *Flexal* virus (unidentified *Oryzomyini* rodent); *Oliveros* virus (*Necromys lasiurus*); *Latino* virus (*Calomys callosus* and *Calomys callidus*) and *Aporé* virus (*Oligoryzomys mattogrossae*)180.

Arenaviruses can be diagnosed using: (a) RT-PCR (fluids, feces, and tissues) followed by viral RNA sequencing for differentiation; (b) serology, through detection of specific IgG and IgM employing immunofluorescence and/or ELISA tests; (c) viral isolation in cell culture.

Recommended treatment is support therapy that can be combined with the antiviral ribavirin, which should be administered during the first 7-10 days after infection. Despite its efficacy, there are significant side effects, such as hemolytic anemia, progressive weight loss, respiratory difficulty, insomnia, and dermatitis, among others180-182. Alternative drugs with less side effects have been tested, such as favipiravir183 and triarylmethane clotrimazole184. Cocktails using multiple antiviral drugs that target different steps of the viral life cycle appear to be the best strategy to limit viral multiplication with lower risk of drug resistance185.

In literature we find description of viral rodent-infections, usually from within the context of biological models or experimentation. In this review, we focus on rodents within an urban environment, especially *R. rattus*, *R. norvegicus*, and *M. musculus*, although with the advancement of human populations, the interaction with

5/11
wild rodents increases, and different viruses can emerge. There are relatively few studies addressing the monitoring of viruses in these hosts, favoring the occurrence of outbreaks.

Control and preventive activities should go beyond the elimination or reduction of the populations of these hosts and involve sanitary education to aid the human population in the reduction of shelters for the hosts, the restriction of rodent access to residences, and the reduction of their water and food supply. Basic sanitation actions are a generic but effective measure in the reduction of rodents and, consequently, the propagation of diseases.

AUTHORS’ CONTRIBUTION

MLG and FG: revision design, participated in data analysis, discussion, writing draft and review; CMB and RMS: participated in data analysis, discussion, writing draft and review.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

FINANCIAL SUPPORT

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES).

REFERENCES

1. Meerburg BG, Singleton GR, Kijlstra A. Rodent-borne diseases and their risks for public health. Crit Rev Microbiol. 2009;35(3):221-70.

2. Costa F, Carvalho-Pereira T, Begon M, Riley L, Childs J. Zoonotic and Vector-Borne Diseases in Urban Slums: Opportunities for Intervention. Trends Parasitol. 2017;33(9):660-2.

3. Cavia R, Cueto GR, Suárez OV. Changes in rodent communities according to the landscape structure in an urban ecosystem. Landsc Urban Plan. 2009;90(1-2):11-9.

4. Johnston RF. Synanthropic birds of North America. In: Marzluff JM, Bowman R, Donnelly R. Avian ecology and conservation in an urbanizing world. Boston: Springer; 2001.49-67.

5. McFarlane R, Sleigh A, McMichael T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth. 2012;9(1):24-35.

6. Chagas CRF, Gonzalez IHL, Favoretto SM, Ramos PL. Parasitological surveillance in a rat (Rattus norvegicus) colony in São Paulo Zoo animal house. Ann Parasitol. 2017;63(4):291-7.

7. Firth C, Bhat M, Firth MA, Williams SH, Frye MJ, Simmonds P, et al. Detection of Zoonotic Pathogens and Characterization of Novel Viruses Carried by Commensal Rattus norvegicus in New York City. Mbio. 2014;5(5):e01673.

8. Rabiee MH, Mahmoudi A, Siahsarvie R, Krystufek B, Mostafavi E. Rodent-borne diseases and their public health importance in Iran. Plos Negl Trop Dis. 2018;12(4):e0006256.

9. Reis RB, Ribeiro GS, Felzemburgh RDM, Santana FS, Mohr S, Melendez AXTO, et al. Impact of Environment and Social Gradient on Leptospirosis Infection in Urban Slums. PLoS Negl Trop Dis. 2008;2(4):e00228.

10. Cavia R, Cueto GR, Suárez OV, Techniques to Estimate Abundance and Monitoring Rodent Pests in Urban Environments. In: Larramendy ML & Soloneski S. Integrated pest management and pest control - current and future tactics. Croatia: InTech; 2012.147-72.
the non-structural polyprotein of hepatitis E virus: Delineation of an additional group of positive-strand RNA plant and animal viruses. Proc Natl Acad Sci USA. 1992;89(17):8259-63.

29. Purdy MA, Harrison TJ, Jameel S, Meng X-J, Okamoto H, Van der Poel WHM, et al and ICTV Report Consortium. ICTV Virus Taxonomy Profile: Hepeviridae. J Gen Virol. 2017; 98:2645-6.

30. Simonavicius M, Juskaite K, Verbiackite A, Jasulionis M, Tomasuniaus PL, Petraitute-Burneikiene R, et al. Detection of rat hepatitis E virus, but not human pathogenic hepatitis E virus genotype 1-4 infections in wild rats from Lithuania. Vet Microbiol. 2018;221:129-33.

31. Li TC, Chijiwa K, Sera N, Ishibashi T, Etoh Y, Shinohara Y, et al. Hepatitis E Virus Transmission from Wild Boar Meat. Emerg Infect Dis. 2005;11(12):1958-60.

32. Marrone G, Biolato M, Mercurio G, Capobianchi MR, Garbuglia AR, Ligouri A, et al. Acute HEV hepatitis: clinical and laboratory diagnosis. Eur Rev Med Pharmacol Sci. 2019;23(2):764-70.

33. Howard CM, Handzel T, Hill VR, Grytdal SP, Blanton C, Kamili S, et al. Novel Risk Factors Associated with Hepatitis E Virus Infection in a Large Outbreak in Northern Uganda: Results from a Case-Control Study and Environmental Analysis. Am J Trop Med Hyg. 2010;83(5):1170-7.

34. Vollmer T, Diekmann J, Johne R, Eberhardt M, Knabbe C, Drejer I. A novel approach for the detection of Hepatitis E virus infection in German blood donors. J Clin Microbiol. 2012;50(8):2708-13.

35. Karetnyĭ IUV, Dzhumalieva DI, Usmanov RK, et al. Detection of rat hepatitis E virus infection in wild rats from Lithuania. Zh Mikrobiol Epidemiol Immunobiol. 1993;(4):52-6.

36. Chauhan A, Jameel S, Dilawari JB, Chwala YK, Kaur U, Ganguly NK. Hepatitis E virus transmission to a volunteer. Lancet. 1993;341:149-150.

37. Ryll R, Bernstein S, Heuser S, Schlegel M, Dremsek P, Zupke M, et al. Detection of rat Hepatitis E virus in wild Norway rats (Rattus norvegicus) and Black rats (Rattus rattus) from 11 European countries. Vet Microbiol. 2017;208:58-68.

38. Jothikumar N, Cromeans TL, Robertson BH, Meng XJ, Hill VR. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of Hepatitis E virus. J Virol Method. 2006;131(1):65-71.

39. Johne R, Dremsek P, Kindler E, Schielke A, Plenge-Bönig A, Gregersen H, et al. Rat Hepatitis E virus: geographical clustering within Germany and serological detection in wild Norway rats (Rattus norvegicus) and Black rats (Rattus rattus) from 11 European countries. Vet Microbiol. 2017;208:58-68.

40. Jothishky N, Cromeans TL, Robertson BH, Meng XJ, Hill VR. A novel reactive one-step real-time RT-PCR assay for rapid and sensitive detection of Hepatitis E virus. J Virol Method. 2006;131(1):65-71.

41. Park WJ, Park BJ, Ahn HS, Lee JB, Park SY, Song CS, et al. Hepatitis E virus as an emerging zoonotic pathogen. J Vet Sci. 2016;17(3-4):275-80.

42. Gupta E, Agarwala P. Hepatitis E virus infection: An old virus with a new story! Zoonoses Public Health. 2018;36(3):317-23.

43. Smith DB, Simmonds P, Izopet J, Oliveira-Filho EF, Ulrich RG, Johne R, et al. Proposed reference sequences for Hepatitis E virus subtypes. J Gen Virol. 2016;97(3):537-42.

44. Park WJ, Park BJ, Ahn HS, Lee JB, Park SY, Song CS, et al. Hepatitis E virus as an emerging zoonotic pathogen. J Vet Sci. 2016;17(1):1-11.

45. Vitrail CL, Pinto MA, Lewis-Ximenex LL, Khudyakov YE, dos Santos DR, Gaspar AMC. Serological evidence of Hepatitis E virus infection in different animal species from the Southeast of Brazil. Mem Inst Oswaldo Cruz. 2005;100(2):117-22.

46. Johne R, Heckel G, Plenge-Bönig A, Kindler E, Maresch C, Reetz J, et al. Novel Hepatitis E virus genotype in Norway rats. Ger. Emerg Infect Dis. 2010;16(9):1452-5.

47. Johne R, Plenge-Bönig A, Hess M, Ulrich RG, Reetz J, Schielke A. Detection of a novel Hepatitis E-like virus in faeces of wild rats using a nested broadspectrum RT-PCR. J Gen Virol. 2010;91(3):750-8.

48. Obana S, Shimizu K, Yoshimatsu K, Hasebe F, Hotta K, Isozumi R, et al. EpiZootological study of rodent-borne Hepatitis E virus HEV-C1 in small mammals in Hanoi, Vietnam. J Vet Med Sci. 2017;79(1):76-81.

49. Huang F, Li Y, Yu W, Jing S, Wang J, Long F, et al. Excretion of infectious Hepatitis E virus into milk in cows imposes high risks of zoonosis. Hepatology. 2016;64(2):350-8.

50. Zeng MY, Gao H, Yan XX, Qu WJ, Sun YK, Fu GW, et al. High Hepatitis E virus antibody positive rates in dogs and humans exposed to dogs in the south-west of China. Zoonoses Public Health. 2017;64(8):684-8.

51. Zhao T, Wang X, Wei H, Yang M, Zeng F, Zhou H. Molecular and functional characterization of grass carp squint/nodal-related 1: a potential regulator of activin signaling in teleost pituitary cells. Domest Anim Endocrinol. 2012;42(4):239-48.

52. Cooper BS, White LJ, Siddiqui R. Reactive and pre-emptive vaccination strategies to control hepatitis E infection in emergency and refugee settings: A modelling study. PLoS Negl Trop Dis. 2018;12(9):e0066078.

53. International Committee on Taxonomy of Viruses (ICTV). International Committee on Taxonomy of Viruses (ICTV) [Internet]. 2019 [cited 2019 Oct 10]. Available from: https://talk.ictvonline.org/.

54. Muyangwa M, Martynova EV, Khaiboullina SF, Morzunov SP, Rizvanov AA. Hantaviral proteins: structure, functions, and role in Hantavirus infection. Front Microbiol. 2015;6:1326.

55. Zuo S-Q, Fang L-Q, Zhan L, Zhang P-H, Jiang J-F, Wang L-P, et al. Geo-spatial hotspots of hemorrhagic fever with renal syndrome and genetic characterization of Seoul Variants in Beijing, China. PLoS Negl Trop Dis. 2011;5(1):e945.

56. Spiropoulou CF, Albarrino CG, Ksiazek TG, Rollin PE. Andes and Prospect Hill hantaviruses differ in early induction of interferon although both can downregulate interferon signaling. J Virol. 2007;81(6):2769-76.

57. Oliveira RC, Guterres A, Fernandes J, D'Andrea OS, Bonvicino CR, Lemos ERS. Hantavirus reservoirs: current status with an emphasis on data from Brazil. Viruses. 2014;6(5):1929-73.

58. Guterres A, Lemos ERS. Hantaviruses and a neglected environmental determinant. One Health. 2018;5:27-33.

59. Wells RM, Sosa ES, Yadon ZE, Enria D, Padula P, Pini N, et al. An unusual hantavirus outbreak in southern Argentina: person-to-person transmission? Emerg Infect Dis. 1997;3(2):171-4.

60. Hjelle B, Torres-Pérez F. Hantaviruses in the Americas and Their Role in Transmission of Haemorrhagic Fever with Renal Syndrome in China, Korea, 2006 - 2010. Am J Trop Med Hyg. 2018;99(2):470-6.

61. Kim HC, Kim WK, No JS, Lee SH, Gu SH, Chong ST, et al. Urban rodent surveillance, climatic association, and genomic characterization of Seoul Virus collected at US. Army Garrison, Seoul, Republic of Korea, 2006 - 2010. Am J Trop Med Hyg. 2018;99(2):470-6.

62. Hjelle B, Torres-Pérez F. Hantaviruses in the Americas and Their Role as Emerging Pathogens. Viruses. 2010;2(12):2559-86.

63. Lee HW, Lee PW, Baek LJ, Song CK, Seong IW, et al. Features and Pathologic Diagnosis of Hepatitis E in Liver Specimens. Adv Anat Pathol. 2018;25(4):273-81.

64. Smith DB, Simmonds P, Izopet J, Oliveira-Filho EF, Ulrich RG, Johne R, et al. Proposed reference sequences for Hepatitis E virus subtypes. J Gen Virol. 2016;97(3):537-42.

65. Park WJ, Park BJ, Ahn HS, Lee JB, Park SY, Song CS, et al. Hepatitis E virus as an emerging zoonotic pathogen. J Vet Sci. 2016;17(1):1-11.

66. Vitrail CL, Pinto MA, Lewis-Ximenex LL, Khudyakov YE, dos Santos DR, Gaspar AMC. Serological evidence of Hepatitis E virus infection in different animal species from the Southeast of Brazil. Mem Inst Oswaldo Cruz. 2005;100(2):117-22.

67. Johne R, Heckel G, Plenge-Bönig A, Kindler E, Maresch C, Reetz J, et al. Novel Hepatitis E virus genotype in Norway rats. Ger. Emerg Infect Dis. 2010;16(9):1452-5.
Sea region of Turkey: a cross-sectional study. Vector Borne Zoonotic Dis. 2013;13(2):111-8.

66. Hofmann J, Meier M, Enders M, Führer A, Ettinger J, Klempa B, et al. Hantavirus disease in Germany due to infection with Dobrava-Belgrade virus genotype Kurkino. Clin Microbiol Infect. 2010;20(10):O648-55.

67. Witkowski PT, Bourquain D, Bankov K, Auste B, Dabrowski PW, Nitsche A, et al. Infection of human airway epithelial cells by different subtypes of Dobrava-Belgrade virus reveals gene expression patterns corresponding to their virulence potential. Virology. 2016;493:189-201.

68. Laenen L, Vergote V, Vanmeechelen B, Tersago K, Baele G, Lemey P, et al. Identifying the patterns and drivers of Puumala hantavirus enzootic dynamics using reservoir sampling. Virus Evolution. 2019;5(1):vez009.

69. Reil D, Rosenfeld UM, Immohl C, Schmidt S, Ulrich RG, Eecard JA, et al. Puumala hantavirus infections in bank vole populations: host and virus dynamics in Central Europe. BMC Ecol. 2017;17(1):9.

70. Ling J, Verner-Carlsson J, Eriksson P, Plyusnina A, Löhmus M, Järhult JD, et al. Genetic analyses of Seoul hantavirus genome recovered from rats (Rattus norvegicus) in the Netherlands unveils diverse routes of spread into Europe. J Med Virol. 2019;91(5):724-30.

71. Krautkrämer E, Zeier M. Old World hantaviruses: aspects of pathogenesis and clinical evidence of acute renal failure. Virus Res. 2014;187:59-64.

72. Jiang H, Zheng X, Wang L, Du H, Wang P, Bai X. Hantavirus infection: a global zoonotic challenge. Virol Sin. 2017;32(1):32-43.

73. Silva MV, Vasconcelos MJ, Hidalgo NTR, Veiga AP, Canzian M, Marotto PCF, et al. Hantavirus pulmonary syndrome: Report of the first three cases in São Paulo, Brazil. Rev Inst Med Trop S Paulo. 1997;39(4):231-4.

74. Ferres M, Vial P, Marco C, Yanez L, Godoy P, Castillo C, et al. Andes virus household contacts study group. Prospective evaluation of household contacts of persons with Hantavirus Cardiopulmonary Syndrome in Chile. J Infect Dis 2007;195(11):1563-71.

75. Ministério da Saúde [Internet]. Brasil: Ministério da Saúde. INC. Situação epidemiológica - dados hantivírus. [update 2019 Sep 15; cited 2019 Oct 01]. Available from: http://portais.saude.gov.br/saude-de-a-z/hantivaroce/11304-situacao-epidemiologica-dados.

76. Childs JE, Glass GE, Korch GW, Leduc JW. Effects of hantaviral infection on survival, growth and fertility in wild rat (Rattus norvegicus) populations of Baltimore, Maryland. J Wildl Dis. 1989;25(4):69-76.

77. Yanagihara R, Goldgaber D, Gajdusek DC. Propagation of nephropathia epidemica virus in Mongolian gerbils. J Virol. 1985;55(3):973-5.

78. Plyusnin A, Vapalahti O, Vaheri A. Hantaviruses: genome structure, virus dynamics in Central Europe. BMC Ecol. 2017;17(1):9.

79. Jonsson CB, Figueiredo LT, Vapalahti O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev. 2010;23(2):412-41.

80. de Oliveira RC, Guteres A, Fernandes J, D'Andrea PS, Bonvicino CR, de Lemos ERS. Hantavirus Reservoirs: Current Status with an Emphasis on Data from Brazil. Viruses. 2014;6(5):1929-73.

81. Costa F, Porter FH, Rodrigues G, Farias H, de Faria MT, Wunder EA, et al. Infections by Leptospira interrogans, Seoul virus, and Bartonella spp. Among Norway rats (Rattus norvegicus) from the urban slum environment in Brazil. Vector Borne Zoonotic Dis. 2014;14(1):33-40.

82. Raharinosy V, Olive MM, Andriamiriamanana FM, Andriamandimby SF, Ravalohey JP, Andriamamonjy S, et al. Geographical distribution and relative risk of Anjozorobe virus (Thailand orthohantavirus) infection in black rats (Rattus rattus) in Madagascar. Virol J. 2018;15(1):83.

83. Maes P, Clement J, Van Ranst M. Recent approaches in Hantavirus vaccine development. Expert Rev Vaccines. 2009;8(1):67-76.

84. Kruger DH, Schonrich G, Klempa B. Human pathogenic hantaviruses and prevention of infection. Hum Vaccin. 2011;7(6):685-93.

85. Valdivieso F, Gonzalez C, Najera M, Olea A, Cuiza A, Aguilar X, et al. Knowledge, attitudes, and practices regarding hantavirus disease and acceptance of a vaccine trial in rural communities of southern Chile. Hum Vaccin Immunother. 2017;13(4):808-15.

86. Huggins JW, Hsiang CM, Cosgriff TM, Guang MY, Smith JJ, Wu ZO, et al. Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome. J Infect Dis. 1991;164(6):1119-27.

87. Maes P, Clement J, Gavrilovskaya I, Van Ranst M. Hantaviruses: immunology, treatment, and prevention. Viral Immunol. 2004;17(4):481-97.

88. Jonsson CB, Hooper J, Mertz G. Treatment of hantavirus pulmonary syndrome. Antiviral Res. 2008;78(1):162-169.

89. Attoui H, Mertens PPC, Becnel J, Belaganahalli S, Bergoin M, Brassaard CP, et al. Orthoreovirus, Reoviridae. In: Virus taxonomy. Classification and nomenclature of viruses: ninth report of the International Committee on the Taxonomy of Viruses. London: Elsevier Academic Press; 2011. 546-54.

90. Estes M, Greenberg HB. Rotaviruses. In: Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Roizman B, Racaniello VR, Fields virology. 6th ed. Pennsylvania: Lippincott Williams; 2013.1547-401.

91. Parra GI, Bok K, Martinez M, Gomez JA. Evidence of rotavirus intragenic recombination between two sublineages of the same genotype. J Gen Virol. 2004;85(6):1713-6.

92. Holmes EC, Worobey M, Rambaut A. Phylogenetic evidence for recombination in dengue virus. Mol Biol Evol.1999;16(3):405-9.

93. Matthijssens J, Otto P, Ciarlet M, Desselberger U, Johnke J, Yang Y. VP6 sequence-based cut-off values as a criterion for rotavirus species demarcation. Arch Virol. 2011;156(7):1177-82.

94. Mihalov-Kovács E, Gellért A, Marton S, Fehér E, Oldal M, et al. Candidate new rotavirus species in sheltered dogs, Hungary. Emerg Infect Dis. 2015, 21(4):660-3.

95. Bányai K, Kemenesi G, Budinski I, Földe F, Zana B, Marton S, et al. Candidate new rotavirus species in Schreiber's bats, Serbia. Infect Genet Evol. 2017;48:19-26.

96. Matthijssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonalD SM, et al. Classification of Rotavirus Reveals a Common Origin between Human Wa-Like and Porcine Rotavirus Strains and Human DS-1-Like and Bovine Rotavirus Strains. J Virol. 2008;82(7):3204-19.

97. Guo D, Liu J, Lu Y, Sun Y, Yuan D, Jiang Q, et al. Full genomic analysis of rabbit rotavirus G3P[14] strain N5 in China: identification of a novel VP6 genotype. Infect Genet Evol. 2012;12(7):1567-76.

98. Trojnar E, Sachsenroder J, Twardziok S, Jochen R, Otto PH, Johne R. Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J Gen Virol. 2013;94(1):136-42.

99. Joshi MS, Deore SG, Walimbe AM, Ranshing SS, Chitambar SD. Identification of a novel VP7 genotype. Infect Genet Evol. 2012;12(7):1567-76.

100. Furrer A, Scheuchzer D, Twardziok S, Jochen R, Otto PH, Johne R. Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J Gen Virol. 2013;94(1):136-42.

101. Joshi MS, Deore SG, Walimbe AM, Ranshing SS, Chitambar SD. Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J Gen Virol. 2013;94(1):136-42.

102. Joshi MS, Deore SG, Walimbe AM, Ranshing SS, Chitambar SD. Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J Gen Virol. 2013;94(1):136-42.
101. Li K, Lin X-D, Huang K-Y, Zhang B, Shi M, Guo W-P, et al. Identification of novel and diverse rotaviruses in rodents and insectivores, and evidence of cross-species transmission into humans. Virol. 2016;494:168-77.

102. Ianiro G, Di Bartolo I, De Sabato L, Pampiglione G, Ruggeri FM, et al. Detection of uncommon G3P[3] rotavirus A (RVA) strain in rat possessing a human RVA-like VP6 and a novel NSP2 genotype. Infect Genet Evolut. 2017; 53: 206-11.

103. Vlasova AN, Amimo JO, Saif LJ. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses. 2017;9(3):48.

104. Rigo-Adrover MDM, Knipping K, Garssen J, van Limpt K, Knol J, Franch A, et al. Prevention of Rotavirus Diarrhea in Suckling Rats by a Specific Fermented Milk Concentrate with Prebiotic Mixture. Nutrients. 2019;11(1). pii:E189.

105. Rocha TG, Silva FDF, Gregori F, Alfieri AA, Buzinaro MG, Fagliari JJ. Longitudinal study of bovine rotavirus group A in newborn calves from vaccinated and unvaccinated dairy herds. Trop Anim Health Prod. 2017;49(4):783-90.

106. Beserra LAR, Gregori F. Description of Rotavirus F in Broilers from Brazilian Poultry Farms. Avian Dis. 2014;58(3):458-61.

107. Molinari BLD, Possatia F, Lorenzetti E, Alfieri AF, Alfieri AA. Unusual outbreak of post-weaning porcine diarrhea caused by single and mixed infections of rotavirus groups A, B, C, and H. Vet Microbiol. 2016;193:125-32.

108. Silva FDF, Gregori F, McDonald SM. Distinguishing the genotype 1 genes and proteins of human Wa-like rotaviruses vs. porcine rotaviruses. Infect Genet Evolut. 2016;43:6-14.

109. Tonietti PO, Dahora AS, Silva FDF, Ferrari KL, Brandão PE, Richtzenhain LJ, et al. Simultaneous Detection of Group A Rotavirus in Swine and Rat on a Pig Farm in Brazil. Scientific World Journal. 2013;2013:648046.

110. Sachsenröder J, Braun A, Machnowska P, Ng TF, Deng X, Guenther S, et al. Metagenomic identification of novel enteric viruses in urban wild rats and genome characterization of a group A rotavirus. J Gen Virol. 2014;95(12):2734-47.

111. Memon AM, Bhuyan AA, Chen F, Guo X, Menghwar H, Zhu Y, et al. Development and Validation of Monoclonal Antibody-Based Antigen Capture ELISA for Detection of Group A Porcine Rotavirus. Viral Immunol. 2017;30(4):264-70.

112. Holmes KV, Lai MMC. Coronaviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM., Virology. 3 ed. Philadelphia: Lippincott-Raven Publisher; 1996.1075-93.

113. Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1-100.

114. Wang W, Lin XD, Guo WP, Zhou RH, Wang MR, Wang CQ, et al. Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China. Virol. 2015;474:19-27.

115. Ge XY, Yang WH, Zhou JH, Li B, Zhang W, Shi ZL, et al. Detection of alpha- and betacoronaviruses in rodents from Yunnan, China. Virol J. 2017;14:98.

116. Monchatre-Leroy E, Boué F, Boucher JM, Renault C, Moutou F, Gouill MA, et al. Identification of Alpha and Beta Coronavirus in Wildlife Species in France: Bats, Rodents, Rabbits, and Hedgehogs. Viruses. 2017;9(12):364.

117. Pann Y, Tianb X, Qin P, Wang B, Zhao P, Yang YL, et al. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Vet. Microbiol. 2017;211:15-21.

118. Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC, Burbelo PD, et al. Middle East Respiratory Syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio. 2014;5(2):e00884-14.

119. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-92.

120. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019;11(1):59.

121. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439-50.

122. Belouard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011-33.

123. Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC, Burbelo PD, et al. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio. 2014;5(2):e00884-14.

124. Guan Y, Zheng BJ, He YQ, Liu ZX, Cheung CL, et al. Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States. J Clin Microbiol. 2015;53(5):1537-48.

125. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2018;16(4):523-34.

126. Guan Y, Zheng BJ, He YQ, Liu ZX, Cheung CL, et al. Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States. J Clin Microbiol. 2015;53(5):1537-48.

127. Guan Y, Zheng BJ, He YQ, Liu ZX, Cheung CL, et al. Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States. J Clin Microbiol. 2015;53(5):1537-48.

128. Guan Y, Zheng BJ, He YQ, Liu ZX, Cheung CL, et al. Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States. J Clin Microbiol. 2015;53(5):1537-48.

129. Hemida MG, Perera RA, Wang P, Alhammadi MA, Siu LY, Li M, et al. Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013. Euro Surveill. 2013;18(50):20659.

130. Abyssoviridae.

131. Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC, Burbelo PD, et al. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio. 2014;5(2):e00884-14.

132. Guan Y, Zheng BJ, He YQ, Liu ZX, Cheung CL, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302(5643):276-8.

133. Hemida MG, Perera RA, Wang P, Alhammadi MA, Siu LY, Li M, et al. Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013. Euro Surveill. 2013;18(50):20659.

134. Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC, Burbelo PD, et al. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio. 2014;5(2):e00884-14.

135. Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC, Burbelo PD, et al. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio. 2014;5(2):e00884-14.

136. Alagaili AN, Briese T, Mishra N, Kapoor V, Sameroff SC, Burbelo PD, et al. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio. 2014;5(2):e00884-14.
137. Cheever FS, Daniels JB, Pappenheimer AM, Bailey OT. A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. J Exp Med. 1949;90(3):181-210.

138. Lane TE, Hosking MP. The pathogenesis of murine coronavirus infection of the central nervous system. Crit Rev Immunol. 2010;30(2):119-30.

139. Funk CJ, Manzer R, Miura TA, Groshong SD, Ito Y, et al. Rat respiratory coronavirus infection: replication in airway and alveolar epithelial cells and the innate immune response. J Gen Virol 2009;90(12):2956-64.

140. Lau SK, Woo PC, Li KS, Tsang AK, Fan RY, Luk HK, et al. Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A. J Virol. 2015;89(6):3076-92.

141. Tsoleridis T, Onianwa, Horncastle E, Dayeman E, Zhu M, Danjitrroth T, et al. Discovery of Novel Alphacoronaviruses in European Rodents and Shrews. Viruses. 2016;8(3):84.

142. Phan MVT, Tri TN, Anh PH, Baker S, Kellam P, Cotton M. Identification and characterization of Coronaviridae genomes from Vietnamese bats and rats based on conserved protein domains. Viruses. 2018;10(2):v035.

143. Okba N MA, Raj VS, Haagans BL. Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches. Curr Opin Chem Biol. 2017;23:49-58.

144. Gonzalez JP, Emonet S, de Lamballerie X, Charrel R. Arenaviruses. Curr Top Microbiol Immunol. 2007;315:253-88.

145. Li K, Lin XD, Wang W, Shi M, Guo WP, Zhang XH, et al. Isolation and characterization of a novel coronavirus harbored by Rodents and Shrews in Zhejiang province, China. Virology. 2015;476:37-42.

146. Hallam SJ, Koma T, Maruyama J, Paessler S. Review of Mammarenavirus Biology and Replication. Front Microbiol. 2018;9:1751.

147. Radoshitzky SR, Buchmeier MJ, Charrel RN, Clegg JCS, Gonzalez JPI, Günther S, et al, and the ICTV Report Consortium. ICTV Virus Taxonomy Profile: Arenaviridae. J Gen Virol. 2019;100:1200-1.

148. Garry CE, Garry RF. Proteomics Computational Analyses Suggest that Betacoronavirus vaccines: current status and novel approaches. Curr Top Microbiol Immunol. 2007;315:253-88.

149. Li K, Lin XD, Wang W, Shi M, Guo WP, Zhang XH, et al. Isolation and characterization of a novel Arenavirus harbored by Rodents and Shrews in Zhejiang province, China. Virology. 2015;476:37-42.

150. Ly H. Differential Immune Responses to New World and Old World Alphacoronaviruses in Zhejiang province, China. Virology. 2015;476:37-42.

151. Ly H. Differential Immune Responses to New World and Old World Mammalian Alphacoronaviruses. Int J Mol Sci. 2017;18(5):1040.

152. Lu C, Lin XD, Wang W, Shi M, Guo WP, Zhang XH, et al. Isolation and characterization of a novel Arenavirus harbored by Rodents and Shrews in Zhejiang province, China. Virology. 2015;476:37-42.

153. Hallam SJ, Koma T, Maruyama J, Paessler S. Review of Mammarenavirus Biology and Replication. Front Microbiol. 2018;9:1751.

154. Radoshitzky SR, Buchmeier MJ, Charrel RN, Clegg JCS, Gonzalez JPI, Günther S, et al, and the ICTV Report Consortium. ICTV Virus Taxonomy Profile: Arenaviridae. J Gen Virol. 2019;100:1200-1.

155. Radu P, Gisbert A, Charrel RN, Radojitzky SR, Buchmeier MJ. Identification of a novel Betacoronavirus in Zhejiang province, China. Virology. 2015;476:37-42.

156. Gerrard DL, Hawkinson A, Sherman T, Modahl CM, Hume G, Campbell CL et al. Transcriptomic Signatures of Tacaribe virus-Infected Jamaican Fruit Bats. mSphere. 2017;2(5):e00245-17.
175. Vasconcelos PFC, Travassos da Rosa APA, Rodrigues SG, Tesh RB, Travassos da Rosa JFS, Travassos da Rosa ES. Infecção humana adquirida em laboratório causada pelo vírus SP H 114202 (Arenavirus: família Arenaviridae) - Aspectos clínicos e laboratoriais. Rev Inst Med Trop São Paulo. 1993;35(6):521-5.

176. Centers for Disease Control and Prevention (CDC). Arenavirus infection - Connecticut. MMWR Morb Mortal Wkly Rep. 1994;43(34):635-6.

177. Ellwanger JH, Chies JAB. Keeping track of hidden dangers - The short history of the Sabiá virus. Rev Soc Bras Med Trop. 2017;50(1):3-8.

178. Ministério da Saúde. Boletim epidemiológico - Secretaria de Vigilância em Saúde. Identificação de um caso de febre hemorrágica brasileira no estado de São Paulo, janeiro de 2020.[Internet] 2020; 51(3) [update 2020 Jan 20; cited 2020 Jan 21]. Available from: http://portalarquivos2.saude.gov.br/images/pdf/2020/janeiro/20/Boletim-epidemiologico-SVS-03.pdf

179. Bisordi I, Levis S, Maeda AY, Suzuki A, Nagasse-Sugahara TK, de Souza RP, et al. Pinhal Virus, a New Arenavirus Isolated from Calomys tener in Brazil. Vector Borne Zoonotic Dis. 2015;15(11):694-700.

180. Fernandes J, Gutierrez A, de Oliveira RC, Jardim R, Dávila AMR, Hewson R, et al. Aporé virus, a novel mammarenavirus (Bunyavirales: Arenaviridae) related to highly pathogenic virus from South America. Mem Inst Oswaldo Cruz. 2019;114:e180586.

181. Barry M, Russi M, Armstrong L, Geller DL, Tesh R, Dembry L, et al. Treatment of laboratory-acquired Sabiá virus infection. N Engl J Med. 1995;333(5):294-6.

182. Kochhar DM, Penner JD, Knudsen TB. Embryotoxic, teratogenic, and metabolic effects of ribavirin in mice. Toxicol Appl Pharmacol. 1980;52(1):99-112.

183. Westover JB, Sefing EJ, Bailey KW, Wettere AJ, Jung K-H, Dagley A, et al. Low-dose ribavirin potentiates the antiviral activity of favipiravir against hemorrhagic fever viroses. Antiviral Res. 2016;126:62-68.

184. Torriani G, Trofimenko E, Mayor J, Fedeli C, Moreno H, Michel S, et al. Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion. J Virol. 2019; 93(6): e01744-18.

185. Lee AM, Rojek JM, Spiropoulou CF, Gundersen AT, Jin W, Shaginian A, et al. Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J Biol Chem. 2008; 283(27):18734-42.