Increased Adhesion and Aggregation of Platelets Lacking Cyclic Guanosine 3',5'-Monophosphate Kinase I

By Steffen Massberg,* Matthias Sausbier,‡ Peter Klatt,§ Markus Bauer,§ Alexander Pfeifer,‡ Wolfgang Siess,§ Reinhard Fässler,‖ Peter Ruth,‡ Fritz Krombach,* and Franz Hofmann‡

From the *Institut für Chirurgische Forschung der Ludwig-Maximilians-Universität München, 81377 München, Germany; the ‡Institut für Pharmakologie und Toxikologie der Technische Universität München, 80802 München, Germany; the §Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum Innenstadt, Universität München, 80336 München, Germany; and the ‖Department of Experimental Pathology, Lund University, 221 85 Lund, Sweden

Summary

Atherosclerotic vascular lesions are considered to be a major cause of ischemic diseases, including myocardial infarction and stroke. Platelet adhesion and aggregation during ischemia-reperfusion are thought to be the initial steps leading to remodeling and reocclusion of the postischemic vasculature. Nitric oxide (NO) inhibits platelet aggregation and smooth muscle proliferation. A major downstream target of NO is cyclic guanosine 3',5'-monophosphate kinase I (cGKI). To test the intravascular significance of the NO/cGKI signaling pathway in vivo, we have studied platelet–endothelial cell and platelet–platelet interactions during ischemia/reperfusion using cGKI-deficient (cGKI2/2) mice. Platelet cGKI but not endothelial or smooth muscle cGKI is essential to prevent intravascular adhesion and aggregation of platelets after ischemia. The defect in platelet cGKI is not compensated by the cAMP/cAMP kinase pathway supporting the essential role of cGKI in prevention of ischemia-induced platelet adhesion and aggregation.

Key words: fluorescence microscopy • endothelial cell • microcirculation • nitric oxide • cyclic guanosine 3',5'-monophosphate–dependent protein kinase

Under physiological conditions, the endothelial cell layer acts as a nonthrombogenic surface. However, in response to pathological stimuli, both endothelial cells and platelets may become proadhesive/procoagulant, leading to platelet adhesion to the endothelium and to subsequent platelet aggregation. Nitric oxide (NO)1 is of major importance for the homeostasis of platelet–endothelium and platelet–platelet interactions under both physiological and pathophysiological conditions (1). NO regulates vascular tone (2) and, together with prostacyclin, inhibits adhesion, activation, and aggregation of platelets to injured endothelial cells (3, 4). Although most of the NO effects on platelets are thought to be mediated by activation of a soluble guanylyl cyclase and a subsequent rise in intracellular cyclic guanosine 3',5'-monophosphate (cGMP) (5), the exact pathway involved in mediating NO-dependent inhibition of platelet adhesion/aggregation remains controversial.

cGMP kinase I (cGKI) is one of the established downstream targets of the NO/cGMP signaling cascade. Platelets, as well as endothelial cells, express high concentrations of cGKI (6-8). In vitro cGMP acting via cGKI lowers cytosolic Ca2+ concentrations in platelets, inhibits platelet activation by potent agonists, and initiates phosphorylation of target proteins, including the vasodilator-stimulated phosphoprotein (VASP) and the thromboxane receptor (9-11). However, the in vivo importance of cGKI-dependent signaling for the homeostasis of platelet–endothelium interactions remains to be established, since an identical role has been assigned to the prostacyclin/cAMP/cAMP kinase (cAK) pathway (12).

Interactions between circulating platelets and the vascular wall are required for maintenance of vascular integrity and hemostasis. However, in certain pathophysiological processes, particularly ischemia/reperfusion (I/R), the adhesion and aggregation of platelets may also contribute to

1Abbreviations used in this paper: cAK, cAMP-dependent protein kinase; cGKI, cGMP-dependent protein kinase I; cGMP, cyclic guanosine 3',5'-monophosphate; I/R, ischemia/reperfusion; NO, nitric oxide; PRP, platelet-rich plasma; VASP, vasodilator-stimulated phosphoprotein.
vascular injury (13–16). After I/R, platelets are recruited to the postischemic vasculature early after the onset of reperfusion (17), leading to luminal narrowing and eventually reocclusion (18–20). To evaluate the biological role of cGKI in the homeostasis of platelet–endothelial cell and platelet–platelet interactions in vivo, we have analyzed platelet adhesion and aggregation during I/R using a cGKI negative mouse line (8).

Materials and Methods

Animals. cGKI-deficient (cGKI−/−) mice were generated as previously described (8) and bred and maintained at the animal facility of the Institut für Pharmakologie und Toxikologie (TU München). For experiments, 4-8-wk-old wild-type and cGKI−/− mice of either sex on 129sv background were used (litter- or age-matched animals). All experimental procedures performed on these mice were approved by the German legislation on protection of animals.

Western Blot Analysis and Immunoblotting. Western blot analyses of cGKI and cAK catalytic subunits cAKα and cAKβ in platelets of wild-type, heterozygous, and cGKI−/− mice were carried out as previously reported (21). To assess the effect of cAK and cGK activation on VASP phosphorylation, platelet-rich plasma (PRP) was prepared as described below and incubated for 20 min at room temperature in the presence of 0.1% DMSO (control), or the specific activators of cAK and cGK, cBIMPS (0.1 mM; Biolog Life Science) and 8-pCPT-cGMP (0.1 mM; Biolog Life Science) and cGKI-deficient (cGKI−/−) mice were generated as previously described (8) and bred and maintained at the animal facility of the Institut für Pharmakologie und Toxikologie (TU München). For experiments, 4-8-wk-old wild-type and cGKI−/− mice of either sex on 129sv background were used (litter- or age-matched animals). All experimental procedures performed on these mice were approved by the German legislation on protection of animals.

Preparation of Platelets for the Assessment of Aggregation, Shape Change, and Serotonin Release. 4-8-wk-old mice of either sex and genotype were anesthetized by chloroform inhalation and their chests were opened. After intracardiac injection of buffer A (75 μl buffer [138 mM NaCl, 1.0 mM MgCl2, 2.9 mM KCl, 0.36 mM NaN3, 20 mM Hepes, and 5 mM glucose, pH 7.4] containing heparin [300 U/ml]), blood was collected by cardiac puncture. Whole blood was diluted with buffer B (two parts buffer supplemented with 30 mg/ml BSA and 30 U/ml heparin), and centrifuged for 10 min at 100 g. PRP was carefully removed and replaced by an equal volume of buffer B. After mixing gently, samples were centrifuged again for 10 min at 100 g and PRP was removed. The resulting PRP fractions were pooled and centrifuged at 1,000 g for 10 min. The pellet was resuspended in buffer B to give a final density of 1–3×10^9 platelets/μl.

Measurement of Platelet Aggregation, Shape Change, and Serotonin Release In Vitro. To study the effect of cGKI−/− on the regulation of platelet aggregation, shape change, and serotonin release, platelet-rich plasma (PRP) was incubated for 20 min with 0.1% DMSO (control), or the specific activators of cAK and cGK, cBIMPS (0.1 mM; Biolog Life Science) and 8-pCPT-cGMP (0.1 mM; Biolog Life Science), respectively. Platelets were then pelleted and lysed in Laemmli buffer. VASP phosphorylation was assessed by Western blot analysis and immunoblotting using a VASP-specific antibody (Dianova). Western blot analyses of cGKI and cAK catalytic subunits cAKα and cAKβ in platelets of wild-type, heterozygous, and cGKI−/− mice were carried out as previously reported (21). To assess the effect of cAK and cGK activation on VASP phosphorylation, platelet-rich plasma (PRP) was prepared as described below and incubated for 20 min at room temperature in the presence of 0.1% DMSO (control), or the specific activators of cAK and cGK, cBIMPS (0.1 mM; Biolog Life Science) and 8-pCPT-cGMP (0.1 mM; Biolog Life Science), respectively. Platelets were then pelleted and lysed in Laemmli buffer. VASP phosphorylation was assessed by Western blot analysis and immunoblotting using a VASP-specific antibody (Dianova).

Preparation of Platelets for the Assessment of Aggregation, Shape Change, and Serotonin Release. 4-8-wk-old mice of either sex and genotype were anesthetized by chloroform inhalation and their chests were opened. After intracardiac injection of buffer A (75 μl buffer [138 mM NaCl, 1.0 mM MgCl2, 2.9 mM KCl, 0.36 mM NaN3, 20 mM Hepes, and 5 mM glucose, pH 7.4] containing heparin [300 U/ml]), blood was collected by cardiac puncture. Whole blood was diluted with buffer B (two parts buffer supplemented with 30 mg/ml BSA and 30 U/ml heparin), and centrifuged for 10 min at 100 g. PRP was carefully removed and replaced by an equal volume of buffer B. After mixing gently, samples were centrifuged again for 10 min at 100 g and PRP was removed. The resulting PRP fractions were pooled and centrifuged at 1,000 g for 10 min. The pellet was resuspended in buffer B to give a final density of 1–3×10^9 platelets/μl.

Measurement of Platelet Aggregation, Shape Change, and Serotonin Release In Vitro. To evaluate the biological role of cGKI in the regulation of platelet aggregation, shape change, and serotonin release, platelet-rich plasma (PRP) was incubated for 20 min with 0.1% DMSO (control), or the specific activators of cAK and cGK, cBIMPS (0.1 mM; Biolog Life Science) and 8-pCPT-cGMP (0.1 mM; Biolog Life Science), respectively. Platelets were then pelleted and lysed in Laemmli buffer. VASP phosphorylation was assessed by Western blot analysis and immunoblotting using a VASP-specific antibody (Dianova) (9) and detected by immunoblotting with a VASP-specific antibody (Dianova).

Preparation of Platelets for Intravital Microscopy. To study platelet adhesion/aggregation during I/R in vivo, fluorescent platelets were infused after intestinal I/R and visualized in the postischemic microcirculation by intravital fluorescence microscopy. 4-6-wk-old inbred 129sv mice of either genotype (five to nine litter- or age-matched animals per group) were anesthetized by inhalation of 37°C Ringer’s lactate. Segmental jejunal ischemia was induced for 60 min by occluding the supplying vessels with microsurgical clips. After reperfusion, the intestinal segment was exposed on a mechanical stage and platelet-platelet and platelet-endothelial cell interactions in the postischemic microvasculature were investigated by intravital microscopy. 15 min after the onset of the reperfusion, labeled platelets (5.4×10^7) of either genotype were infused as bolus via the venous catheter into the acceptor mouse of either genotype subjected to either I/R or sham operation. Platelet concentration in wild-type and cGKI−/− mice was 0.5±0.02×10^6 (n=36) and 0.5±0.06×10^6 (n=25)/μl blood, respectively. During the reperfusion, 10 nonoverlapping regions of interest from the submucosal vessels of the ischemic/reperfused segment were randomly selected in each mouse and observed for 30 s with a modified microscope (Leitz). The microscopic images with a final magnification on the video screen of 450× were recorded by a CCD camera (FK6990, Cohu; Prospective Measurements) connected to a video recording system (Sony Corp.). For analysis of platelet–platelet and platelet-endothelial cell interactions, a computer-assisted image analysis program (CAP IMAGE; Dr. Zent, University of Heidelberg, Heidelberg, Germany) and frame-to-frame analysis of the videotapes were used (23). All experiments were blinded, and adherence of platelets to the surface of arterioles and venules (vessel diameter, 15–85 μm) and formation of platelet aggregates in capillaries (diameter, 15 μm) arteries, and venules (vessel diameter, 15–85 μm) were quantified. The number of adherent platelets as
assessed by counting the platelets that did not move or detach from the endothelial surface within 15 s. Platelet adhesion is presented per square millimeter of endothelial surface. The number of occluding and nonoccluding aggregates was quantified within arterioles and venules and is presented per 100 vessels. To determine platelet aggregation in the capillary bed, the length (centimeter) of capillaries occluded by fluorescent platelets was measured and calculated per square centimeter of tissue cross-sectional area.

Preparation of Platelets for Flow Cytometry. To study the role of cGKI in the regulation of fibrinogen binding to agonist-stimulated wild-type and cGKI-/- platelets, blood (0.4–0.6 ml) was collected from wild-type (n = 7) and cGKI-/- (n = 5) mice by cardiac puncture. The platelets were separated as described above for intravital microscopy, with the exception that no rhodamine was added. The resultant pellet was resuspended in 6 ml of a solution containing equal parts PBS with and without Ca^{2+} and Mg^{2+} (PAN Systems). The purity and number of platelets were determined using the A^T Count. A suspension of Platelet Fibrinogen Binding In Vitro. The wild-type or cGKI-/- platelets were preincubated at room temperature for 2 min with either PBS (PAN Systems), the NO-donor DEA-NONO (100 nM final concentration; Alexis) or the stable prostacyclin-analogue iloprost (10 nM; ilomedin; Schering AG). After preincubation, the samples were stimulated with 0.2 U/ml mouse thrombin (Sigma-Aldrich) or PBS, and immediately collected from wild-type and mutant platelets. This indicates that the effects of cGMP are mediated predominantly via activation of cGKI, whereas other cGMP receptors, such as phosphodiesterases and cyclic nucleotide-gated ion channels, play a minor role in the cGMP-dependent inhibition of platelet aggregation in vitro. Therefore, it is very likely that NO, which is known to elevate platelet cGMP levels (29), inhibits platelet adhesion and aggregation acting via cGKI.

Cross-activation of cAK by cGMP does not appear to be operative in platelets. The reverse mechanism (i.e., activation of cGKI by cAMP, which has been postulated to mediate relaxation of smooth muscle cells (reference 25) is also not involved in the regulation of platelet function since the specific activator of cAK, C1BMPs, elicited a similar effect on both cGKI-/- (Fig. 1, C–G). In both wild-type and mutant platelets, collagen-induced shape change, aggregation, and serotonin release were prevented by activation of cAK by the cAK-specific cAMP-analogue CBIMPS (Fig. 1, C–G). In contrast, activation of cGKI by the cGMP-analogue 8-pCPT-cGMP inhibited collagen-induced shape change, aggregation, and serotonin release in wild-type platelets, but had no effects on cGKI-/- platelets. This indicates that the effects of cGMP are mediated predominantly via activation of cGKI, whereas other cGMP receptors, such as phosphodiesterases and cyclic nucleotide-gated ion channels, play a minor role in the cGMP-dependent inhibition of platelet aggregation in vitro. Therefore, it is very likely that NO, which is known to elevate platelet cGMP levels (5), inhibits platelet adhesion and aggregation acting via cGKI.

Results and Discussion

cGKI-/- Platelets Are Unresponsive to cGMP In Vitro. Deletion of the cGKI gene abolished immunoreactive cGKI protein without affecting the immunoreactive concentration of cAMP kinase (Fig. 1 A). Platelet activation in response to collagen was similar in wild-type and cGKI-/- mice (Fig. 1, C–G). In both wild-type and mutant platelets, collagen-induced shape change, aggregation, and serotonin release were prevented by activation of cAK by the cAK-specific cAMP-analogue CBIMPS (Fig. 1, C–G). In contrast, activation of cGKI by the cGMP-analogue 8-pCPT-cGMP inhibited collagen-induced shape change, aggregation, and serotonin release in wild-type platelets, but had no effects on cGKI-/- platelets. This indicates that the effects of cGMP are mediated predominantly via activation of cGKI, whereas other cGMP receptors, such as phosphodiesterases and cyclic nucleotide-gated ion channels, play a minor role in the cGMP-dependent inhibition of platelet aggregation in vitro. Therefore, it is very likely that NO, which is known to elevate platelet cGMP levels (5), inhibits platelet adhesion and aggregation acting via cGKI.

VASP Phosphorylation Is Dependent on Platelet Aggregation. Several mechanisms might be involved in cGMP/cGKI-dependent inhibition of platelet aggregation. In various cell types, including platelets and smooth muscle cells, cGMP/cGK lowers cytosolic Ca^{2+} concentrations after stimulation, thereby affecting a variety of Ca^{2+}-regulated processes (25–28). Yet the details of cGMP/cGKI-dependent regulation of platelet Ca^{2+} homoeostasis remain to be elucidated at the molecular level. Phosphorylation processes are likely to be involved in the antiaggregatory effects of cGMP/cGKI on platelets. To date, the only well-established substrate of cGK is VASP, a 46–50-kD vasodilator-stimulated protein, present in high concentrations in platelets (29). In the study reported here, VASP phosphorylation was assessed in wild-
type and cGKI−/− platelets using the mobility shift of phosphoVASP (9). In murine platelets, VASP is phosphorylated in response to both cBIMPS and 8-pCPT-cGMP (Fig. 1 B). The disruption of cGKI abolished cGMP-dependent in vivo phosphorylation of VASP in platelets without affecting VASP phosphorylation in response to the cAMP analogue cBIMPS. Although VASP phosphorylation correlates well with platelet inhibition, its precise functional role has not been established thus far. However, the subcellular location of VASP and the association with actin filaments and focal adhesions suggest a possible role in regulating platelet aggregation/adhesion (30). In fact, there is evidence to suggest that VASP phosphorylation is closely associated with the inhibition of the agonist-evoked activation of the fibrinogen-binding site of the glycoprotein IIb–IIIa (31, 32), supporting a role of cGKI/VASP signaling in the regulation of platelet adhesion/aggregation.

Figure 1. cGKI deletion affects platelet function. (A) Western blot analysis of cGKI and catalytic subunits of CaKα and CaKβ in platelets of wild-type (+/+), heterozygous (+/-), and cGKI-deficient (-/-) mice. (B) Phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in platelets in the absence (Ctr) and presence of 100 μM 8-pCPT-cGMP (cG) or cBIMPS (cA). (C−G) Effect of 100 μM 8-pCPT-cGMP (cG) and 100 μM cBIMPS (cA) on collagen-induced platelet aggregation. Representative traces of shape change and aggregation of wild-type (C) and cGKI−/− (D) platelets. The arrow indicates the addition of collagen (5 μg/ml). Summary of the effects of 8-pCPT-cGMP (CP-cGMP) and cBIMPS on shape change (E), aggregation (F), and secretion of 5-hydroxytryptamine (G) in cGKI+/+ and cGKI−/− platelets. Values are presented as mean ± SEM of four to six animals. *P < 0.05, Student’s t test.
reperfusion (17). Clinical and experimental studies have indicated that platelet adhesion and aggregate formation and the release of proinflammatory mediators from activated platelets in response to ischemia may impair restoration of nutritive blood supply during reperfusion (33, 34). Although activation of cGKI attenuates platelet aggregation in vitro, the significance of the NO/cGMP/cGKI pathway in the homeostasis of platelet adhesion/aggregate formation during I/R in vivo has not been clearly defined thus far. The biological role of cGKI might be questioned, since the deficit in cGKI could be compensated by endothelium-derived prostacyclin signaling through the unperturbed cAK pathway (12). Therefore, to study the physiological relevance of cGKI in vivo, we determined platelet adherence and aggregation within the microcirculation of an ischemic/reperfused segment of the jejunum using intravital video microscopy. Wild-type and cGKI$^{--}$ mice (acceptor) were subjected to intestinal ischemia (60 min). After reperfusion, fluorescent wild-type and cGKI$^{--}$ platelets were infused and visualized within the intestinal submucosa (arterioles, capillaries, and venules) by intravital fluorescence microscopy.

Since platelet adhesion to the injured vessel surface represents an early step in the process of platelet accumulation/aggregation, we first determined the number of adherent platelets within arterioles and postcapillary venules of the postischemic submucosal microcirculation. Under control conditions without I/R (sham), wild-type platelets did not interact with wild-type endothelium (Fig. 2). In contrast, numerous platelets were found firmly attached to the vascular wall of both arterioles and postcapillary venules in response to I/R (45 ± 18 and 43 ± 24 adherent platelets/mm2, respectively; Figs. 2 and 3, A and B). To assess the role of cGKI in the regulation of platelet function in vivo, cGKI$^{--}$ platelets were transfused into cGK-deficient mice after I/R. The loss of cGKI drastically enhanced postischemic platelet-endothelial cell interactions. Within both arterioles and venules, the number of adherent platelets was increased four- to sixfold when compared with wild-type animals. Under control conditions, no adhesion of cGKI$^{--}$ platelets to the vessel wall was observed, indicating that a pathological stimulus, such as I/R, is required to induce platelet adhesion in cGKI$^{--}$ mice.

Because platelets, endothelial cells, and smooth muscle cells express cGKI, we wanted to clarify whether cGKI expressed by platelets or present in the vascular wall is necessary to inhibit platelet adhesion during postischemic reperfusion. To determine the contribution of platelet cGKI, cGKI$^{--}$ platelets were infused into wild-type mice. The isolated loss of platelet cGKI dramatically enhanced I/R-induced platelet adhesion to the vascular wall of wild-type animals: 290 ± 45 and 181 ± 28 platelets were found firmly attached per square millimeter endothelial surface of arterioles and venules, respectively (Figs. 2 and 3, A and B). Therefore, platelet adhesion is enhanced to a similar extent, independent of whether platelets alone or both platelets and vascular wall lack cGKI. Accordingly, I/R-induced adhesion of wild-type platelets was not increased in cGKI null mutants as compared with wild-type recipients (Figs. 2

![Figure 2](image-url)
This demonstrates that the cGKI expressed in endothelium and smooth muscle cells plays a minor role in the regulation of platelet adhesion dynamics during I/R.

During reperfusion, adherent platelets may subsequently aggregate leading to luminal narrowing and complete vascular (re-)occlusion, resulting in additional ischemia of the supplied tissue (18–20). To evaluate the participation of cGKI in the regulation of platelet aggregation in vivo, we quantified the presence of platelet aggregates in arterioles and venules of the postischemic jejunal segment. The number of adherent platelets per square millimeter of endothelial surface, calculated from the diameter and length of the observed vessel segment, is presented. (A) Aggregates in capillaries (diameter < 10 μm) were quantified as length of occluded capillaries (centimeters) per square centimeter tissue cross-sectional area. (B) Occluding and (C) nonoccluding platelet aggregates per 100 arterioles (diameter, 15 μm) of a postischemic segment of the jejunum. (D and E) Aggregates in arterioles and venules (B) were quantified and defined as platelets that did not move or detach from the endothelial surface within 15 s. The number of adherent platelets per square millimeter of endothelial surface, calculated from the diameter and length of the observed vessel segment, is presented. (C) Aggregates in capillaries (diameter < 10 μm) were quantified as length of occluded capillaries (centimeters) per square centimeter tissue cross-sectional area. (D) Occluding and (E) nonoccluding platelet aggregates per 100 arterioles (diameter, 15 μm) of a postischemic segment of the jejunum.

(F) Accumulation of 111Indium-labeled platelets in the kidney after I/R. All values are mean ± SEM, derived from five to nine animals per group. *P < 0.05 by the Kruskal-Wallis test.

Platelet aggregation in cGKI mutants was not confined to arterioles and venules, but was also frequently observed in capillaries (diameter, 10 μm). To assess the extent of platelet aggregation in the capillary bed of the postischemic submucosa, the length (centimeters) of capillaries occluded by fluorescent platelets was measured and calculated per square millimeter of capillary bed per centimeter of tissue cross-sectional area (Fig. 3, D and E). Likewise, the absence of cGKI in platelets enhanced aggregation in postcapillary venules (not shown). In contrast, no occluding or nonoccluding aggregates were detected when both platelets and the vascular wall expressed cGKI (Fig. 3, D and E), indicating that cGMP/cGKI signaling pathways regulate both platelet adhesion and aggregation. To assess the role of cGKI present in endothelial cells and vascular smooth muscle, wild-type platelets were transfused into cGKI−/− mice (Fig. 3, D and E). However, the absence of cGKI in the vascular wall did not significantly enhance the aggregation of wild-type platelets in arterioles or venules, suggesting that endothelial cell and smooth muscle cGKI are not involved in the regulation of platelet aggregation in vivo.
centimeter tissue cross-sectional area (Figs. 2 and 3 C). Platelet aggregates in capillaries were nearly absent after transfection of wild-type platelets into wild-type mice or cGKI mutants. In contrast, aggregation of cGKI−/− platelets in postischemic capillaries was a prominent phenomenon, independent of whether or not the vascular wall expressed cGKI.

Hence, platelet adhesion and platelet aggregation in arterioles, capillaries, and venules are drastically enhanced when the platelets lack cGKI. In contrast, the absence of the endothelial/smooth muscle cell cGKI has no significant effects on homotypic platelet–platelet or heterotypic platelet–endothelium interactions in response to I/R. This indicates that under pathophysiological conditions, such as I/R, NO acts via the cGKI present in platelets to regulate platelet adhesion and aggregation in vivo. Although endothelial cells are considered to be the major source of NO, in particular under conditions associated with platelet activation, platelet-derived NO also plays an important role in regulating platelet aggregation and platelet recruitment (35). During aggregation, the NO release by platelets is significantly increased (35). This increase in NO formation can act via guanylyl cyclase to activate platelet cGKI. Therefore, platelets appear to have the ability to self-regulate their adhesion and aggregation upon activation by an autocrine/paracrine mechanism in which activated platelets release NO that acts on platelet cGKI to attenuate both adhesion and aggregation.

It appears noteworthy that, under physiological conditions without I/R, platelet aggregation in arterioles, capillaries, and venules was absent in both wild-type animals and cGKI−/− mutants (not shown). This indicates that both endothelial cells and platelets are in an antiadhesive/anticoagulant state under physiological conditions and acquire a proadhesive/procoagulant phenotype in response to I/R.

Increased Platelet Accumulation after Renal I/R In Vivo. To evaluate whether the observed increase in postischemic platelet adhesion and aggregation due to the loss of platelet cGKI is confined to the intestine or rather a more general defect in platelet function, we analyzed the accumulation of wild-type and cGKI−/− platelets after I/R of the kidney. Wild-type animals were laparotomized, and the left renal artery and vein were cross-clamped for 30 min using microsurgical clips. 5 min before reperfusion, washed 111In-labeled platelets were infused via a catheter implanted into the left jugular vein. After 25 min of reperfusion, the left kidney was excised and platelet accumulation was quantified as counts per minute per milligram wet weight. Renal I/R induced the accumulation of 111In-labeled wild-type platelets in the postischemic wild-type kidney. However, platelets lacking cGKI exhibited a 46% higher accumulation in the wild-type kidney after I/R when compared with wild-type platelets (Fig. 3 F; P < 0.05), suggesting that cGKI inhibits postischemic platelet accumulation independent of the organ studied.

cGKI Inhibits Fibrinogen Binding to Thrombin-stimulated Platelets. The molecular mechanisms underlying cGKI-dependent inhibition of platelet adhesion/aggregation during I/R in vivo are as yet unclear. There is growing evidence indicating that I/R is associated with an activation of the platelet fibrinogen receptor, the glycoprotein (GP) IIb-IIIa (36). Binding of fibrinogen to the activated form of the platelet GP IIb-IIIa integrin complex plays a critical role in the process of platelet adhesion/aggregation (37, 38). Although both NO and cGMP have been shown to interfere with agonist-evoked activation of the GP IIb-IIIa (31, 39), the exact role of cGKI in the inhibition of GP IIb-IIIa activation has not been identified thus far. To determine whether cGKI mediates NO/cGMP-dependent regulation of GP IIb-IIIa function, we have investigated the effects of NO on agonist-induced fibrinogen binding to wild-type and cGKI−/− platelets in vitro. In wild-type platelets, pre-treatment with NO decreased thrombin-induced fibrinogen binding by ~46% (Fig. 4). In contrast, in platelets lacking cGKI, the response to NO was nearly absent (P < 0.05). Hence, cGKI-dependent inhibition of the GP IIb-IIIa adhesion complex is involved in the regulation of platelet adhesion/aggregation by NO/cGMP in vivo. The loss of platelet cGKI does not affect the ability of platelets to respond to prostacyclin. Preincubation with iloprost reduced agonist-induced fibrinogen binding to both wild-type and cGKI−/− platelets by ~40%. Therefore, the inability of the endogenous cAMP kinase-activating system to compensate for the loss of cGKI in vivo is not due to alterations in the response of cGKI−/− platelets to exogenous prostacyclin.

In conclusion, we have demonstrated that platelet cGKI attenuates agonist-induced platelet activation, fibrinogen...
binding, and aggregation in vitro. Moreover, the loss of cGKI in platelets is associated (a) with an increase in platelet accumulation in the postischemic kidney and (b) with a significant enhancement of both platelet adhesion and aggregation in the postischemic intestinal microvasculature in vivo. The platelet CAM P/cA K signaling cascade does not compensate for the loss of cGKI under pathophysiological conditions. Platelets are known to release NO upon activation; therefore, an autocrine/paracrine signaling cascade, including platelet-derived NO and platelet cGKI, is likely to be involved in the regulation of platelet adhesion and aggregation under physiological and, in particular, pathophysiological conditions. Since the accumulation and aggregation of platelets after endothelial injury is a common pathophysiological mechanism underlying many of the most important diseases, including myocardial infarction, angina pectoris, thrombotic stroke, and peripheral vascular insufficiency, specific activators of platelet cGKI might present a powerful strategy aimed at the prevention of I/R injury.

We thank S. Münzing, M. Wöckner, and S. Kamm for excellent technical assistance.

This work was supported by grants from Deutsche Forschungsgemeinschaft, Biomed 2 (Contract No. BMH 4-CT 95-0875 [DG12-SSMA]), Bundesministerium für Bildung und Forschung, and Fond der Chemie.

Address correspondence to Franz Hofmann, Institut für Pharmakologie und Toxikologie der T U München, Biedeerste Str. 29, 80802 München, Germany. Phone: 49-89-4140-3260; Fax: 49-89-4140-3261; E-mail: pharma@ipt.med.tu-muenchen.de

Received for publication 3 November 1998 and in revised form 25 January 1999.

References

1. Loyd-Jones, D. M., and K. D. Bloch. 1996. The vascular biology of nitric oxide and its role in atherogenesis. Annu. Rev. Med. 47:365–375.
2. Huang, P. L., Z. Huang, H. Matsumoto, K. D. Bloch, M. A. Moskowitz, J. A. Bevan, and M. C. Fishman. 1995. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 377:239–242.
3. Zoldhelyi, P., J. McNatt, X. M. Xu, D. Loose-Mitchell, R. S. Meidell, F. J. Clubb, L. M. Buja, J. T. Willerson, and K. K. Wu. 1996. Prevention of arterial thrombosis by adenosine-inhibited transfer of cyclooxygenase gene. Circulation. 93:10–17.
4. Radomski, M. W., R. M. Palmer, and S. Moncada. 1987. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. ii:1057–1058.
5. Moro, M. A., R. J. Russe1, S. Cellek, I. Lizasoain, Y. Su, V. M. Darley-Ulsmar, M. W. Radomski, and S. Moncada. 1996. cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc. Natl. Acad. Sci. U.S.A. 93:1480–1485.
6. Waldmann, R., S. Bauer, C. Gobel, F. Hofmann, K. H. Jakobs, and U. Walter. 1986. Demonstration of cGMP-dependent protein kinase and cGMP-dependent phosphorylation in cell-free extracts of platelets. Eur. J. Biochem. 158:203–210.
7. Draiher, R., A. B. V anadragner, C. N olte, H. R. De Jonge, U. Walter, and V. W. van Hinsbergh. 1995. Expression of cGMP-dependent protein kinase I and phosphorylation of its substrate, vasodilator-stimulated phosphoprotein, in human endothelial cells of different origin. Circ. Res. 77:897–905.
8. Pfeifer, A., P. Klaft, S. M asberg, L. N y, B. Saubier, C. Hirems, G. K. W ang, M. K orth, A. A szodi, K. E. Anderson, et al. 1998. Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J. 17: 3045–3051.
9. Butt, E., K. Abel, M. Krieger, D. Palm, V. Hoppe, J. Hoppe, and U. Walter. 1994. cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J. Biol. Chem. 269:14509–14517.
10. Eigenthaler, M., H. Ullrich, J. Geiger, K. Horstrup, P. Hönig Liedl, D. Wiebecke, and U. Walter. 1993. Defective nitrosodilator-stimulated protein phosphorylation and calcium regulation in cGMP-dependent protein kinase-deficient human platelets of chronic myelocytic leukemia. J. Biol. Chem. 268:13526–13531.
11. Wang, G. R., Y. Zhu, P. V. Halushka, T. M. Lincoln, and M. E. Mendelsohn. 1998. Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 95:4888–4893.
12. Moncada, S., and J. R. Vane. 1978. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol. Rev. 30:293–331.
13. Chiba, Y., K. Moroika, R. M uraoka, A. Ishaya, T. Kimura, T. Usaka, T. O sada, and K. M atsuyama. 1998. Effects of depletion of leukocytes and platelets on cardiac dysfunction after cardiopulmonary bypass. Ann. Thorac. Surg. 65:107–113.
14. Rousseau, G., D. Hebert, D. L ibersan, A. Khalil, G. St. Jean, and J. G. Labour. 1993. Importance of platelets in myocardial injury after reperfusion in the presence of residual coronary stenosis in dogs. Am. J. Cardiol. 125:1553–1563.
15. Flores, N. A., N. Goulleimos, M. J. S eghanian, and D. J. Sheridan. 1994. Myocardial ischemia induces platelet activation with adverse electrophysiological and arrhythmogenic effects. Cardiovasc. Res. 28:1662–1671.
16. Kuroda, T., E. Shiohara, T. Homma, Y. Furukawa, and S. Chiba. 1994. Effects of leukocyte and platelet depletion on ischemia—reperfusion injury to dog pancreas. Gastroenterol. 107:1125–1134.
17. Mæsberg, S., G. Enders, R. Leiderer, S. Eisenmenger, D. Vestweber, F. Krombach, and K. Mesmer. 1998. Platelet-
endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. Blood. 92:507–515.

18. Schopp, J.F., E.M. Driscoll, D.X. Mu, S.C. Black, M.D. Pierschbacher, and B.R. Lucchesi. 1993. Inhibition of coronary artery reocclusion after thrombolysis with an RGD-containing peptide with no significant effect on bleeding time. Coron. Atery Dis. 4:809–817.

19. Kawasaki, T., K. Sato, K. Suzuki, Y. Sakai, Y. Taniuchi, S. Kaku, Y. Yano, O. Inagaki, K. Tomioka, Y. Masuno, et al. 1998. Enhancement of tissue-type plasminogen activator-induced thrombolysis and prevention of reocclusion by combination with a humanized anti-glycoprotein IIb/IIIa monoclonal antibody, YM 337, in a rhesus monkey model of coronary thrombosis. Thromb. Haemostasis. 79:663–667.

20. Adrie, C., K.D. Bloch, P.R. Moreno, W.E. Hurford, J.L. Guerero, R. Holt, W.M. Zapol, H.K. Gold, and M.J. Semik. 1996. Inhaled nitric oxide increases coronary artery patency after thrombolysis. Circulation. 94:1919–1926.

21. Massberg, S., S. Eisenmenger, G. Enders, F. Krombach, and M.S. Chintala. 1994. Cyclic nucleotides by inhibition of inositol 1,4,5-trisphosphate production. Proc. Natl. Acad. Sci. USA. 90:2623–2627.

22. Fiegel, J., B. Trockur, T. Ecker, W. Landgraf, and F. Hofmann. 1988. Regulation of cytosolic calcium by cAMP and cGMP in freshly isolated smooth muscle cells from bovine trachea. J. Biol. Chem. 263:16764–16771.

23. Walter, U., J. Geiger, C. Haffner, T. Markert, C. Nehr, R.E. Silber, and P. Schanzenbacher. 1995. Platelet-vessel wall interactions, focal adhesions and the mechanism of action of endothelial factors. Agents Actions Suppl. 45:255–268.

24. Holt, M.R., D.R. Critchley, and N.P.J. Brindle. 1998. The role of P-selectin. J. Biol. Chem. 273:2082–2086.

25. Szabo, C., K. de Quintana, and W. Siess. 1995. Platelet shape change induced by thrombin receptor activation. Rapid stimulation of tyrosine phosphorylation of novel protein kinase substrates through an integrin- and Ca(2+)-independent mechanism. J. Biol. Chem. 270:1057–1061.

26. Moosberg, S., S. Eisenmenger, G. Enders, F. Krombach, and K. Mesmer. 1998. Quantitative analysis of small intestinal microcirculation in the mouse. Res. Exp. Med. 198:23–35.

27. Chintala, M.S., V. Bernardino, and P.J. Chiu. 1994. Cyclic GMP but not cyclic AMP prevents renal platelet accumulation after ischemia-reperfusion in anesthetized rats. J. Pharmacol. Exp. Ther. 271:1203–1208.

28. Lincoln, T.M., T.L. Cornell, and A.E. Taylor. 1990. cGMP-dependent protein kinase mediates the reduction of Ca2+ by cAMP in vascular smooth muscle cells. Am. J. Physiol. 258:399–407.

29. Geiger, J., C. Nolte, E. Butt, S.O. Sage, and U. Walter. 1992. Role of cGMP and cGMP-dependent protein kinase in nitrovasodilator-stimulated phosphoprotein at Ser157 in intact human platelets to endothelial cells: evidence for a GP IIb-IIIa complex on platelets from patients undergoing thrombolytic therapy after acute myocardial infarction. Blood. 94:6395–6410.

30. Body, S.C. 1996. Platelet activation and interactions with the microvasculature. J. Cardiovasc. Pharmacol. 27:S13–S25.

31. Bombel, T., B.R. Schwartz, and J.M. Hilaire. 1998. Adhesion of activated platelets to endothelial cells evidence for a GP IIb-IIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphabeta3 integrin, and GP IIbalpha. J. Exp. Med. 187:329–339.

32. Michelson, A.D., S.E. Benoit, M.L. Furman, W.L. Breckwoldt, M.J. Rohrer, M.R. Barnard, and J. Loscalzo. 1996. Effects of nitric oxide/EDRF on platelet surface glycoproteins. Am. J. Physiol. 270:H1640–H1648.