Superparamagnetic Iron Oxide Nanoparticles Labeling of Bone Marrow Stromal (Mesenchymal) Cells Does Not Affect Their “Stemness”

Arun Balakumaran1,*, Edyta Pawelczyk2, Jiaqiang Ren3, Brian Sworder1, Aneeka Chaudhry2, Marianna Sabatino3, David Stroncek3, Joseph A. Frank2,4, Pamela G. Robey1

1 Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America, 2 Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America, 3 Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America, 4 National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America

Abstract

Superparamagnetic iron oxide nanoparticles (SPION) are increasingly used to label human bone marrow stromal cells (BMSCs, also called “mesenchymal stem cells”) to monitor their fate by in vivo MRI and by histology after Prussian blue (PB) staining. SPION-labeling appears to be safe as assessed by in vitro differentiation of BMSCs, however, we chose to resolve the question of the effect of labeling on maintaining the “stemness” of cells within the BMSC population in vivo. Assays performed include colony forming efficiency, CD146 expression, gene expression profiling, and the “gold standard” of evaluating bone and myelosupportive stroma formation in vivo in immunocompromised recipients. SPION-labeling did not alter these assays. Comparable abundant bone with adjoining host hematopoietic cells were seen in cohorts of mice that were implanted with SPION-labeled or unlabeled BMSCs. PB+ adipocytes were noted, demonstrating their donor origin, as well as PB+ pericytes, indicative of self-renewal of the stem cell in the BMSC population. This study confirms that SPION labeling does not alter the differentiation potential of the subset of stem cells within BMSCs.

Citation: Balakumaran A, Pawelczyk E, Ren J, Sworder B, Chaudhry A, et al. (2010) Superparamagnetic Iron Oxide Nanoparticles Labeling of Bone Marrow Stromal (Mesenchymal) Cells Does Not Affect Their “Stemness”. PLoS ONE 5(7): e11462. doi:10.1371/journal.pone.0011462

Editor: Stefan Wölf, Universität Heidelberg, Germany
Received January 19, 2010; Accepted May 7, 2010; Published July 7, 2010

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: This study was supported by the Intramural Research Program of the National Institute of Dental and Craniofacial Research and the Clinical Center, IRP, NIH, Department of Health and Human Services. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: balakumaran@nidcr.nih.gov
† These authors contributed equally to this work.

Introduction

Two FDA-approved agents, ferumoxides (Fe), a suspension of superparamagnetic iron oxide nanoparticles (SPION), and protamine sulfate (Pro), a drug used to reverse heparin anticoagulation, have been combined (FePro) and used to magnetically label cells, including stem and progenitor cells [1,2]. Labeling stem cells with SPION allows for the non-invasive monitoring by MRI in both animal and human trials [3–7]. SPION-labeled cells can also be detected using Prussian blue (PB) stain to correlate histology to MRI. Such non-invasive and sensitive imaging techniques in the future will be valuable for optimizing cell therapy, especially stem or progenitor cells, by tracking labeled cells after infusion. Multiple reports have documented safety of this labeling technique, such as no short- or long-term toxic effects, no production of reactive oxygen species, no modification in the viability and proliferation and cellular function or phenotype of SPION-labeled compared to unlabeled BMSCs [8,9]. However, in order for labeled stem cell trial therapies to be effective, this technique must not alter the “stemness” (their ability to regenerate a tissue and to self-renew). We have shown that FePro labeling does not alter the in vitro differentiation capacity of CD34 positive hematopoietic stem cells (HSCs) or bone marrow stromal cells (BMSC) to osteogenic or adipogenic cells [9,10]. SPION labeling was also shown not to inhibit cartilaginous differentiation, [10] but another group found a decrease in cartilaginous differentiation when higher concentrations of the SPION were used [11]. None of the studies have performed an in vivo differentiation assay.

The current assay to establish stem cell function of differentiation and self-renewal, is exemplified by the capacity of a single prospectively isolated HSC to reconstitute, serially and long term, multilineage hematopoiesis in lethally irradiated recipient mice. Progress has been made towards developing an equivalent “gold standard” assay for human BMSCs. Multipotency of BMSCs is commonly assessed by in vitro differentiation assays. However, these assays correlate poorly with results of in vivo differentiation assays, even when conducted in parallel on the same cell strain [12,13]. Furthermore, multipotency [a property of a single cell] cannot be determined based on assays conducted on non-clonal cell strains in culture. In vivo generation of alizarin red deposits (osteogenesis), oil red O-stainable cells (adipogenesis), and alcian blue-stainable matrix (chondrogenesis) in parallel cultures of non-clonal strains of BMSCs, or any strain of cells, does not predict multipotency of a single cell [12]. The ability of BMSCs mixed
with appropriate carrier to make donor-derived bone and hematopoietic-supporting stroma, frequently called an “ossicle” in a immunocompromised mouse, establishes the stem cell potential of the tested BMSC population [14]. Colony forming efficiency of the BMSCs and their CD146 expression are an indirect measure of the stem cell content of a BMSC population even though they do not replace the in vivo assay [14]. In this study, we examined whether FePro labeling affects the “stemness” of BMSCs, as defined by their ability to differentiate and self-renew, by determining the ability of labeled BMSCs to make ossicles, colony forming efficiency, CD146 expression in addition to gene profiling of labeled versus unlabeled cells.

Results

FePro labeling of BMSCs resulted in approximately 100% of cells being labeled after counting Prussian blue positive cells.

Equivalent Colony forming efficiency after FePro labeling

FePro labeling did not lead to an alteration in the colony forming ability of BMSCs in assays with varying plating density and when conducted independently by at least two of the authors. The number of colonies was higher for both FePro labeled and unlabeled BMSCs when plated at clonal density compared to high-density plating (see Figure 1A and 1B).

Lack of difference in CD146 expression after SPION labeling

FePro labeling did not alter the CD146 expression in any of the 5 donors tested (see Figure 2). A large percentage of the BMSCs both in labeled and unlabeled cells in different donors were CD146 positive cells.

Concordant gene expression profiles

Recently, gene expression profiling has been used to determine stem cells and to test the potency of cellular therapies [15]. We used global transcriptional profiling to evaluate the potential effect of FePro labeling on BMSCs. As a control to FePro-labeled cells, we labeled BMSCs with gold nanoparticles. SPIONs, once internalized by the cell undergo progressive degradation [9], while gold nanoparticles are inert. Among more than 36,000 probes in the array, only those genes that were expressed by greater than 80% of BMSCs and whose fold change more than 1.5 were selected for analysis. The resulting 8,506 genes were analyzed by unsupervised hierarchical clustering and multidimensional scaling analysis. The 15 samples were grouped into 3 clusters: one with all 3 hES cells, one with the 3 adult cells: fibroblasts, smooth muscle cells and endothelial cells, and another with all BMSCs. Among the BMSC samples, there was no segregation of samples according to the labeling method. Similarly, a multidimensional scaling analysis classified the 3 hES samples into one group, the 3 adult cells into a second group, and the 12 BMSC samples into the third group (Figure 3). The BMSC samples did not cluster according to the labeling method (Figure 3B). Only 72 differentially expressed genes were identified among the three groups. Among the genes that were changed (at least 2 fold, F-test, $P<0.01$) in FePro-labeled BMSCs compared to unlabeled BMSCs or gold nanoparticle labeled BMSCs were gene families related to ion binding, ion or vesicle transport, cytoskeleton related genes or genes involved in the signal transduction pathways associated with cytoskeletal changes. With regard to genes involved in iron metabolism, ferritin and iron storage proteins were upregulated in FePro-labeled BMSCs and transferrin receptor was not changed.

![Figure 1. Colony forming efficiency in FePro-labeled BMSCs.](image-url)

Secondary colony forming efficiency of BMSCs plated at clonal density (A) or high density (B) from 5 donors. Data are represented as mean +/- S.D. of colony forming units for each donor done in triplicates. Note the lack of a statistically different change in number of colonies in SPION-labeled BMSCs (solid colored bars), Student t test, $P>0.5$. A similar lack of a statistically different change in the number of colonies were found when the secondary colony forming efficiency experiments from 5 donors were repeated independently by two other scientists.

doi:10.1371/journal.pone.0011462.g001
Comparable ability of labeled BMSCs to form a bone/marrow organ in vivo

After 8 weeks, abundant bone formation supporting hematopoiesis was found in the transplants of FePro-labeled BMSCs (see Figure 4A), GFP-labeled BMSCs (see Figure 4A), both FePro- and GFP-labeled, or non-labeled BMSCs. The bone formation scores were similar between the four groups for each of the donors. In transplants of FePro- or GFP-labeled cells or both, PB or GFP positive cells were readily detectable (see Figure 4C and figure 5A). They appeared as stromal/fibroblast-like cells within areas of fibrous tissue and over carrier surfaces.

Discussion

The closest approximation to estimating the frequency of stem cells is derived from the primary colony forming efficiency (CFE) assay, which enumerates the number of Colony Forming Units-Fibroblast, approximately 1 in 5 of which are stem cells [16]. Since the only way of establishing ex vivo expanded BMSCs is after adherence, we used CFE assays on passaged cells at both clonal and high densities. The increased CFE when cells are plated at a clonal density is intriguing and further studies are needed to prove that the colonies formed at clonal density are also an indication that some of these are stem cells. Although it is unclear if CFE assays performed on passaged BMSCs are an estimate for the frequency of stem cells, we nevertheless, did not see any significant differences after FePro labeling.

In human bone marrow, CD146 positivity marks adventitial reticular cells, [14] a stromal cell type residing in a subendothelial position over the abluminal surface of BM sinusoids [17]. CD146 appears to be a marker for the in situ counterpart of the primary colony forming unit fibroblast, [14] and thus, possibly an indirect estimate of the stem cells in BMSCs. No differences in CD146 positivity were observed with labeling.

The results of gene profiling after unsupervised hierarchical clustering and multidimensional scaling analysis suggested that there are only minor differences in gene expression profiles between SPION-labeled, gold nanoparticles labeled and unlabeled control BMSCs [18]. No substantial change in FePro-labeled BMSCs was observed on any of the genes thought to be critical for “stemness” of embryonic and adult stem cells such WNT pathway genes, when compared to unlabeled BMSCs. The changes in genes involved in iron metabolism are consistent with our previously published study [9].

Figure 2. CD 146 expression in FePro-labeled BMSCs. (A) Representative flow cytometry histogram with overlay of the two groups showing no difference in CD146 expression after SPION labeling of BMSCs. (B) Bar graph showing mean CD146 expression in FePro labeled and unlabeled BMSC. Note the lack of statistically significant difference in CD146 expression after SPION labeling (solid colored bars), Student t test, p>0.5. Data shown as mean +/- S.D. of CD 146 expression in 5 donors.

doi:10.1371/journal.pone.0011462.g002
FePro-labeling of BMSCs does not affect their ability to differentiate into bone, marrow adipocytes, fibroblasts and hematopoietic supporting stroma in vivo.

The donor (human) origin of osteocytes and myelosupportive stroma have been determined by various methods, whereas the donor origin of marrow adipocytes has long been suspected and
even assumed, but never proven owing to their large cytoplasmic to nuclear ratio, making detection with nuclear markers difficult. Unlike nuclear markers, labeled SPION, internalized by macropinocytosis, accumulate within endosome/lysosome compartment. Ossicles created with SPION-labeled cells show several Prussian blue positive adipocytes (see Figure 5C), strongly suggesting their origin from human BMSCs, although electron microscopy would be needed to be definitive. Prussian blue negative, GFP+ osteocytes (see Figure 4C) are probably the result of dilution of SPION label during the proliferation and subsequent differentiation of BMSCs. Labeled SPION are internalized by macropinocytosis, which accumulate within endosome/lysosome compartment. The label is diluted after a few passages of BMSCs (see figure 6). The intense proliferation of BMSCs necessary for bone formation in vivo possibly resulted in dilution of SPION label in the osteocytes.

The other distinct property of a stem cell is its capacity to self-renew and the only system for which stem cell self-renewal is considered to be solidly proven is the hematopoietic system [19–21]. Evidence for self-renewal of the subset of multipotent BMSCs has only very recently started to emerge and is thought to be related to CD146 positivity [14]. It is beyond the scope of our objective to study self-renewal by serial passage of stroma from the “ossicles.” However, there is no data indicating that SPION labeling will alter the self-renewal capacity of BMSCs as PB+ pericytes were seen in the ossicles (see figure 5D) and CD146 expression is not different between FePro-labeled and unlabeled BMSCs (Figure 2). Ex vivo expanded labeled BMSCs reformed myelosupportive stroma.

In conclusion, our study shows that FePro-labeling of BMSCs does not affect their “stemness” in any of the four assays that were utilized.

Methods
Harvest and expansion of human bone marrow stromal cells (BMSCs)
Briefly, bone marrow biopsies were obtained from volunteers after obtaining written informed consents under IRB of the National Institute of Dental and Craniofacial Institute approved procedures, and processed as described previously [12]. Fragments of trabecular bone and marrow were scraped gently with a steel blade into cold modified Minimum Essential Medium [alpha] MEM, (Life Technologies, Grand Island, NY). Released cells were pipetted, passed through 16- and 20-gauge needles and filtered through a 70-μm pore size nylon cell strainer (Becton Dickinson, Franklin Lakes, NJ). Single cell suspensions were plated at 1.0×10⁷ nucleated cells per 75-cm² flask (Becton Dickinson, Lincoln Park, NJ). Cells were incubated at 37°C in a 95% air/5% CO₂ atmosphere in growth medium containing [alpha]-MEM, 2 mM l-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin sulfate (Invitrogen, CA), and lot selected 20% fetal bovine serum. Medium was replaced on day 6 or 7. The cultures were passaged on day 12 with two consecutive applications of 1x trypsin-EDTA (Life Technologies, Gaithersburg, MD) for 5–10 min each at room temperature. Subsequent passages were performed at 4 to 7 day intervals. BMSCs were used at passages 3 or 4 for this study.

Labeling of BMSC with Ferumoxides/Protamine Sulfate
Ferumoxides (Fe, Feridex IV, Berlex Laboratories, Wayne, NJ) are dextran coated SPIO nanoparticles approximately 120–150 nm in size and are provided at a total iron content of 11.2 mg/ml. Protamine sulfate (Pro, American Pharmaceuticals Partner, Schaumburg, IL), supplied at 10 mg/ml, was prepared as a fresh stock solution of 1 mg/mL in sterile distilled water immediately before labeling. Ferumoxides at a concentration of

Figure 5. Prussian blue staining of ossicles derived from FePro or unlabeled BMSCs. Prussian blue (PB) staining of a representative ossicle derived from BMSCs labeled with FePro (A) and control unlabeled BMSCs (B). PB staining of a representative ossicle derived from BMSCs labeled with FePro showing PB+ adipocytes (C). PB staining of a representative ossicle derived from labeled BMSCs showing PB+ pericytes (D).

doi:10.1371/journal.pone.0011462.g005
100 µg/ml were put into a 50 ml conical tube containing serum-
free RPMI 1640 (Biosource, Camarillo, CA) with 25 mM HEPES,
MEM nonessential amino acids, sodium pyruvate, and L-
glutamine. Protamine sulfate was added to the solution at 6µg/
ml and mixed for 2 minutes with intermittent hand shaking.
Culture medium was aspirated from the flasks containing BMSCs
and replaced with media containing FePro complexes. After
2 hours of incubation at 37°C, an equal amount of complete
medium was added for a final concentration of Fe to Pro, 50µg/
ml to 3µg/ml, respectively. Cells were incubated overnight
(~16 hours), and washed three times with sterile PBS containing
10 U/mL heparin sulfate (American Pharmaceuticals Partner,
Schaumburg, IL). Complete medium was added to each flask and
labeled cells were kept in culture for 2 days to ensure all FePro
complexes were endocytosed.

Labeling of BMSC with Gold nanoparticles

BMSCs were labeled in serum-free RPMI medium containing
2.25×10^7 gold nanoparticles/mL (British Biocell International,
Wales, U.K, particle size-250 nm) and 10 ng/mL protamine
sulfate at 37°C. After four hours, an equal volume of complete
medium was added, and the cells were incubated overnight.
The next day, the cells were washed three times with heparinized
HBSS (10 U/mL) and returned to the incubator in normal
medium. Gold nanoparticle labeling was performed for in vitro
studies to evaluate alterations in gene expression as a result of cell
labeling.

Prussian Blue Staining and FePro Labeling Efficiency

To visualize the iron within FePro labeled cells, Prussian blue
(PB) staining was performed. After 2 days post-labeling, BMSCs
were trypsinized and transferred to cytopin slides. Cells were fixed
with 4% glutaraldehyde, washed, and incubated for 30 minutes
with 2% potassium ferric-ferrocyanide (Perl’s reagent for staining,
Sigma, St. Louis, MO) in 3.7% hydrochloric acid. Cells were
ashed again, counterstained with nuclear fast red and evaluated
for iron staining using light microscopy (Axioplan Imaging II;
Zeiss, Oberkochen, Germany) at 40× objective lens and Axiovision 4.4 software (Zeiss, Oberkochen, Germany). FePro
labeling efficiency was determined by manual counting of PB
stained and unstained cells at 100× magnification using a 100×/
1.30 oil immersion objective lens. The percentage of labeled cells
was determined from the average of 5 high-powered fields.
BMSCs labeled with gold nanoparticles were evaluated by
generating optical differential interference contrast images (DIC)
using Olympus BX-UCB microscope attached to a DP70 camera
(Olympus, Center Valley, PA) at ×40/0.75 objective lens and
MicroSuite 3™ Biological Suite software (Olympus, Center Valley,
PA). The gold nanoparticle labeling efficiency was determined as
described for FePro labeling.

BMSCs transduction with lentivirus

BMSCs were transduced with lentivirus encoding for copepod
green fluorescent protein (copGFP, pShH1-siLac-copGFP lentivi-
rus, System Biosciences, Mountain View, CA) by replacing the
medium with fresh medium containing viral particles and incubating overnight at 37°C in a 95% air per 5% CO₂ atmosphere. After overnight incubation, media was replaced and cells incubated for 48 hours. The transfection efficiency was evaluated by flow cytometry and cells expressing the GFP transgene were sorted using the MoFlow cell sorter (Dako Cytomation, Fort Collins, CO).

Colony Forming Efficiency

BMSCs at passage 2 or 3 were plated at concentrations of 41 (clonal density) or 500 (non-clonal density) nucleated cells in 23 cm² flasks along with 6 ml of growth medium in order to determine secondary colony forming efficiency (CFE). The colony forming efficiency assay was performed by at least 2 of the authors independently for each of the donor BMSCs. After incubation for 10–14 days without medium change, cultures were washed with HBSS, fixed with 100% methanol and stained with an aqueous solution of saturated methyl violet. Using a dissecting microscope, colonies with greater than 50 cells are counted, and the CFE is determined per nucleated cells plated.

Assay for bone formation and hematopoietic support in vivo

BMSCs of 3rd or 4th passages from 5 donors were used for the in vivo transplantation assay. The transplantation technique was performed as described in detail elsewhere [22]. Briefly, trypsinized and pelleted BMSCs were resuspended in 1 ml of standard medium. The cell suspensions were mixed with 40 mg of hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic powder (particle size 0.5–1.0 mm, generously provided by Zimmer, Inc., Warsaw, IN), and the mixtures were incubated at 37°C for 90 min with slow rotation (25 rpm) prior to implantation.

Eight- to 15-week-old immunodeficient female beige mice (bg-nu/nu-xid, Charles River Laboratories, Raleigh, NC, or Harlan Sprague Dawley, Indianapolis, IN) were used as transplant recipients. All research involving animals were conducted according to the National Institutes of Health Animal Care and Use Guidelines. Animal experiments were performed according to a protocol approved by National Institute of Dental and Craniofacial Research’s Animal Care and User Committee (ACUC) of National Institutes of Health. Animals were maintained under ad libitum diet supplied by Harlan Laboratories. Every effort was made to minimize the number of animals used and their suffering. Procedures were performed in accordance to specifications of an approved small animal protocol under anesthesia achieved with isoflurane in an induction chamber. Mid-lentgitudinal skin incisions of 1 cm length was made on the dorsal surface of each mouse, and up to four subcutaneous pockets were formed by blunt dissection. A single transplant was placed into each pocket. The incisions were closed with surgical staples.

The transplants were recovered 8 weeks post transplantation, fixed and decaclified in 0.25 M EDTA (Sigma-Aldrich, St. Louis, MO), cut into halves, embedded in paraffin blocks and sectioned. Deparaffinization and rehydration of the 10-µm paraffin sections was followed by incubation of endogenous peroxidase and antigen retrieval. Sections were incubated for 2 hours with 10% bovine serum albumin in PBS and then incubated overnight with the primary anti-GFP antibody (0.5 µg/ml, Millipore, Billerica, MA). The sections were incubated in the biotinylated secondary antibody (anti-rat-IgG peroxidase conjugate, Sigma, St. Louis, MO, 1:200), treated with ABC reagent (Elite Vector Kit, Vector Laboratories, Burlingame, CA) and the tissue-bound peroxidase was developed was developed using diaminobenzidine.

Gene microarrays and statistical analyses

Total RNA from BMSCs of three donors (FePro labeled, gold nanoparticle labeled and unlabeled control) was extracted using Trizol reagent and amplified into anti-sense RNA (aRNA) as previously described [24]. For comparison, total RNA extracted from human embryonic stem cells (hES) WA (H9) and adult cells: fibroblasts, endothelial cells and smooth muscle cells was amplified using the same procedure. Total RNA from peripheral blood mononuclear cells (PBMCs) pooled from six normal donors was amplified into aRNA to serve as the reference. Both reference and test aRNA (6 µg of each sample) were directly labeled using ULS aRNA Fluorescent Labeling kit (Kreatech, Salt Lake City, UT) and co-hybridized to a custom-made 36K oligo-based microarray platform encompassing the whole human genome. The arrays were printed in the Infectious Disease and Immunogenetics Section ofTransfusion Medicine, Clinical Center, NIH (Bethesda, MD) using a commercial probe set which contains 35,035 oligonucleotide probes, representing approximately 25,100 unique genes and 39,600 transcripts (Oporon Human Genome ArrayReady Oligo Set version 4.0, Huntsville, AL). Hybridization was carried out at 42°C for 18 to 24 hours and the arrays were then washed and scanned on a GenePix scanner Pro 4.0 (Molecular Devices, Downingtown, PA).

The resulting jpeg and gene expression data files were deposited in a microarray database (mAdb) (http://niairarray.ncbi.nlm.nih.gov) and further analyzed using BRBArrayTools developed by the Biometric Research Branch, National Cancer Institute (http://linus.nci.nih.gov/BRB-ArrayTools.html). Briefly, the raw data set was filtered according to standard procedure to exclude spots with minimum intensity and size. The filtered data was normalized using Lowess Smoother. Differentially expressed genes were identified using F-tests with a P-value cutoff of 0.01; P-values
were adjusted for multiple comparisons by False Discovery Rate < 0.05. Clustering and visualization of expression profiles was preformed with Cluster and Treeview software (http://rana.lbl.gov/EisenSoftware.htm) [25]. All the data is MIAME compliant. The entire microarray dataset is available at http://www.ncbi.nlm.nih.gov/geo/(GSE20431).

References

1. Arbab AS, Yocum GT, Kalish H, Jordan EM, Anderson SA, et al. (2004) Efficient magnetic cell labeling with protonate sulfate complexed to ferumoxides for cellular MRI. Blood 104: 1217–1223.
2. Frank JA, Anderson SA, Kalish H, Jordan EM, Lewis BK, et al. (2004) Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotechnology 6: 621–629.
3. Anderson SA, Glod J, Arbab AS, Noel M, Ashari P, et al. (2005) Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovascularity in a glomeroma model. Blood 103: 420–425.
4. Arbab AS, Pandit SD, Anderson SA, Yocum GT, Bar M, et al. (2006) Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells 24: 671–678.
5. de Vries JJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, et al. (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23: 1407–1413.
6. Zhu J, Zhou L, Xing Wu F (2006) Tracking neural stem cells in patients with brain trauma. N Engl J Med 355: 2376–2386.
7. Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, et al. (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci U S A 101: 10903–10906.
8. Arbab AS, Jordan EM, Wilson LB, Yocum GT, Lewis BK, et al. (2004) In vivo trafficking and targeting of magnetically labeled stem cells. Hum Gene Ther 15: 351–360.
9. Pavletic E, Arbab AS, Pandit S, Hu E, Frank JA (2006) Expression of transferrin receptor and ferritin following ferumoxides-protonate sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed 19: 581–592.
10. Arbab AS, Yocum GT, Rad AM, Khakoo AY, Fellores V, et al. (2005) Labeling of cells with ferumoxides-protonate sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 18: 533–539.
11. Kostura L, Krebsbach PH, Kuznetsov SA, Avila NA, Kingman A, Robey PG (1997) Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63: 1059–1069.
12. Bianco P, Kuznetsov SA, Riminucci M, Gehron Robey P (2000) Postnatal skeletal stem cells. Methods Enzymol 419: 117–148.
13. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells revisiting history, concepts, and assays. Cell Stem Cell 2: 313–319.
14. Sacchetti B, Finardi A, Michienzi S, Di Cesare S, Persani S, et al. (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131: 324–336.
15. Stroence DF, Jin F, Wang E, Ren J, Sabatino M, Marincola FM (2009) Global transcriptional analysis for biomarker discovery and validation in cellular therapies. Mol Diagn Ther 13: 181–193.
16. Kuznetsova SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, et al. (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 12: 1335–1347.
17. Westen H, Bainfont DF (1979) Association of alkaline-phosphatase-positive reticulum cells in bone marrow with granulocytic precursors. J Exp Med 150: 919–937.
18. Lee ES, Chan J, Shuter B, Chong MS, Ramachandra DL, et al. (2009) Microgel Iron Oxide Nanoparticles for Tracking Human Fetal Mesenchymal Stem Cells Through Magnetic Resonance Imaging. Stem Cells 27: 1921–1931.
19. Osaka M, Hamada K, Hamada H, Nakachi H (1990) Long-term lymphohematopoietic reconstitution by a single CD34+low/negative hematopoietic stem cell. Science 273: 242–245.
20. Spanghuai GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241: 58–62.
21. Weissman IL (2000) Stem cell: units of development, units of regeneration, and units in evolution. Cell 100: 157–168.
22. Krebsbach PH, Kuznetsova SA, Satomura K, Emmons RV, Rowe DW, Robey PG (1997) Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 65: 1059–1069.
23. Mankani MH, Kuznetsova SA, Avila NA, Kingman A, Robey PG (2004) Bone formation in transplants of human bone marrow stromal cells and hydroxypap-}
