Back to Basics: Efficient Network Compression via IMP

Max Zimmer
Department for AI in Society, Science, and Technology
Zuse Institute Berlin
Berlin, Germany
zimmer@zib.de

Christoph Spiegel
Department for AI in Society, Science, and Technology
Zuse Institute Berlin
Berlin, Germany
spiegel@zib.de

Sebastian Pokutta
Institute of Mathematics and Department for AI in Society, Science, and Technology
Technische Universität Berlin and Zuse Institute Berlin
Berlin, Germany
pokutta@zib.de

Abstract
Network pruning is a widely used technique for effectively compressing Deep Neural Networks with little to no degradation in performance during inference. Iterative Magnitude Pruning (IMP) (Han et al., 2015) is one of the most established approaches for network pruning, consisting of several iterative training and pruning steps, where a significant amount of the network's performance is lost after pruning and then recovered in the subsequent retraining phase. While commonly used as a benchmark reference, it is often argued that a) it reaches suboptimal states by not incorporating sparsification into the training phase, b) its global selection criterion fails to properly determine optimal layer-wise pruning rates and c) its iterative nature makes it slow and non-competitive. In light of recently proposed retraining techniques, we investigate these claims through rigorous and consistent experiments where we compare IMP to pruning-during-training algorithms, evaluate proposed modifications of its selection criterion and study the number of iterations and total training time actually required. We find that IMP with SLR (Le and Hua, 2021) for retraining can outperform state-of-the-art pruning-during-training approaches without or with only little computational overhead, that the global magnitude selection criterion is largely competitive with more complex approaches and that only few retraining epochs are needed in practice to achieve most of the sparsity-vs.-performance tradeoff of IMP. Our goals are both to demonstrate that basic IMP can already provide state-of-the-art pruning results on par with or even outperforming more complex or heavily parameterized approaches and also to establish a more realistic yet easily realisable baseline for future research.

1 Introduction
Modern Neural Network architectures are commonly highly over-parameterized (Zhang et al., 2016), containing millions or even billions of parameters, resulting in both high memory requirements as well as computationally intensive and long training and inference times. It has been shown however (LeCun et al., 1989; Hassibi and Stork, 1992; Han et al., 2015; Gale et al., 2019; Lin et al., 2020; Blalock et al., 2020) that modern architectures can be compressed dramatically by pruning, i.e., removing redundant structures such as individual weights, entire neurons or convolutional filters. The resulting sparse models require only a fraction of storage and floating-point operations (FLOPs) for inference, while experiencing little to no degradation in predictive power compared to the dense model. It has also been observed that pruning can have a regularizing effect and be beneficial to the generalization capacities (Blalock et al., 2020; Hoefler et al., 2021).
There is of course an inherent tradeoff between sparsity and model performance; a very heavily pruned model will normally be less performant than its dense (or moderately pruned) counterpart. To obtain optimal performance while benefiting from the advantages of a pruned network at inference, two different algorithmic paradigms have emerged. The first is characterized by pruning after training (Han et al., 2015): the network is pruned after a standard training process, seemingly losing most of its predictive performance, and then retrained to compensate for that pruning-induced loss. This can be done either once (One Shot), or the process of pruning and retraining can be repeated iteratively until the desired level of sparsity is reached. Although dating back to the early work of Janowsky (1989), this approach was most notably proposed by Han et al. (2015) in the form of Iterative Magnitude Pruning (IMP).

The second paradigm is defined by its ability to find a well-performing pruned model during the training procedure. This can either be achieved by gradual pruning during training (Zhu and Gupta, 2017; Gale et al., 2019; Lin et al., 2020), i.e., extending the pruning mask dynamically, or by employing regularization- and constraint-optimization techniques (Louizos et al., 2017; Carreira-Perpinán and Idelbayev, 2018; Ding et al., 2019; Savarese et al., 2020; Kusupati et al., 2020) to learn an almost sparse structure throughout training such that the actual ‘hard’ pruning, i.e., the ultimate removal of certain parameters, induces almost no drop in accuracy. Methods of this class reach a sparse model at the end of training, ideally eliminating the need for further training.

Because it is arguably one of the simplest pruning algorithms, IMP has been widely applied as a baseline comparison for approaches that learn the sparsity pattern throughout training (Carreira-Perpinán and Idelbayev, 2018; Ding et al., 2019; Savarese et al., 2020; Siegel et al., 2020; Hoefler et al., 2021). As such, it is often subject to criticism, with the most commonly made claims arguing against the efficacy of IMP being the following:

1. Throughout the initial training process, IMP is designed to be agnostic of the desired sparsity, that is it does not have any impact on the solution the optimizer converges to. Many proposed improvements claim that the sparsification should be part of the training to reduce the impact of the actual ‘hard’ pruning, which results in a “failure to properly recover the pruned weights” (Liu et al., 2020). Especially not requiring additional retraining epochs is frequently proposed as an advantage, e.g., Ding et al. (2019) advertise that there is “no need for a time consuming re-training”, but it is also argued that IMP achieves sub-optimal states since learning the pruning set throughout training “helps find a better subset and hence prune more weights with no or little loss degradation” (Carreira-Perpinán and Idelbayev, 2018).

2. IMP determines a single numerical threshold for pruning and applies it globally to every parameter, potentially resulting in very different levels of sparsity among the layers of the network. This behavior is often considered to be sub-optimal and it is argued that pruning should be layer-dependent (Liu et al., 2020), so more complex saliency criteria have been proposed (Gale et al., 2019; Lee et al., 2020). Kusupati et al. (2020) for example claim that “uniform or heuristic non-uniform sparsity budgets (...) have sub-optimal layer-wise parameter allocation resulting in a) lower prediction accuracy or b) higher inference cost (FLOPs)”.

3. While only the iterative approach, that is repeatedly removing only a small fraction of the parameters followed by extensive retraining, is said to achieve results on the Pareto frontier (Renda et al., 2020), its iterative nature is also considered to be computationally tedious, if not impractical: “iterative pruning is computationally intensive, requiring training a network 15 or more times consecutively for multiple trials” (Frankle and Carbin, 2018), leading Liu et al. (2020) to trying to “avoid the expensive pruning and fine-tuning iterations”.

Our interest lies in exploring these claimed disadvantages of IMP through rigorous and consistent computational experimentation with a focus on recent advancements concerning the retraining phase, see the results of Renda et al. (2020) and Le and Hua (2021). This comparative study is in fact intended to complement both of these works, which focused on improving the sparsity vs. performance of IMP through improved learning rate schemes during training, by putting an additional spotlight on the total computational cost of IMP in a direct comparison with methods that are commonly assumed to outperform IMP in that aspect by
Contributions. We empirically find that, using an appropriate learning rate scheme, only few retraining epochs are needed in practice to achieve most of the sparsity vs. performance tradeoff of IMP. We also find that the global selection criterion not only finds sparsity distributions on par with but, somewhat surprisingly, often better than those of more sophisticated layer-dependent pruning criteria. Finally, we conclude that, using an appropriate learning rate scheme, IMP is on par with state-of-the-art approaches that incorporate sparsity into the training without or with only little computational overhead. That is, not only can IMP find some of the best performing architectures at any given sparsity level, but due to the compressed retraining time it does so without needing to leverage a longer running time.

Outline. Section 2 contains a complete overview over related works, including a brief summary of all pruning methods and approaches considered here. In Section 3 we then provide the computational results and their interpretation. We conclude with some discussion in Section 4 including aspects that might be of interest for future research.

2 Overview of Pruning methods and Methodology

While the sparsification of Neural Networks includes a wide variety of approaches, we will focus on Model Pruning, i.e., the removal of redundant structures in a Neural Network. More specifically, our results will be limited to unstructured pruning, that is the removal of individual weights, as opposed to its structured counterpart, where entire groups of elements, such as neurons or convolutional filters, are removed. We will also focus on approaches that start with a dense network and then either prune the network during training or after training as already discussed in the introduction. Following Bartoldson et al. (2020), we will also refer to methods of the former category as pruning stable, since the final pruning should result in a negligible decrease in performance, where methods of the latter category are referred to as unstable. For a full and detailed survey of Pruning algorithms we refer the reader to Hoefler et al. (2021).

Pruning unstable methods are exemplified by Iterative Magnitude Pruning (IMP) (Han et al., 2015). In its original form, it first employs standard network training, adding a common ℓ_2-regularization term on the objective, and then removes all weights from the network whose absolute values are below a certain threshold. The network at this point commonly loses some or even all of its learned predictive power, so it is then retrained for a fixed number of epochs. This prune-retrain cycle is usually repeated a number of times; the threshold at every pruning step is determined as the appropriate percentile such that, at the end of given number of iterations, a desired target sparsity is met. In the following we will first discuss two particular details of IMP that have been the focus of recent research: the questions of (a) how to select the parameters to be pruned and (b) how to retrain. We will then conclude this section by briefly outlining the set of pruning stable methods we have chosen for this comparison and establish how to fairly compare them to IMP.

Retraining approaches. Let us first consider the learning rate scheme used during retraining. The original approach by Han et al. (2015) is commonly referred to as Fine Tuning (FT): suppose we train for T epochs using the learning rate schedule $(\eta_t)_{1 \leq t \leq T}$ and retrain for T_{rt} epochs per prune-retrain-cycle, then FT retrain the pruned network for T_{rt} epochs using a fixed constant learning rate, most commonly η_T. It was first noticed by Renda et al. (2020) that the precise learning rate schedule during retraining can have a dramatic impact on the predictive performance of the pruned network. Motivated by Weight Rewinding (WR) (Frankle et al., 2019), they proposed Learning Rate Rewinding (LRW), where one retrain the pruned network for T_{rt} epochs using the last $T - T_{rt}$ learning rates $\eta_{T-T_{rt}+1}, \ldots, \eta_T$. Le and Hua (2021) argued that

\[\text{There is another way to view this relation: one can fix a given percentile to be pruned in every iteration and then simply repeat the prune-retrain cycle until either a desired level of sparsity is reached or the performance degradation exceeds a given threshold. This is in fact how it appears to be used by Han et al. (2015) and how it is for example presented by Renda et al. (2020). While this reframing may appear trivial, it in fact highlights a strength of IMP that we will further emphasize when contrasting it with pruning stable approaches.} \]
the reason behind the success of LRW is the usage of large learning rates and proposed Scaled Learning Rate Restarting (SLR), where the pruned network is retrained using a proportionally identical learning schedule, i.e., by compressing \((\eta_t)_{t \leq T}\) into the retraining time frame of \(T_{rt}\) epochs with a short warm-up phase. They also introduced Cyclic Learning Rate Restarting (CLR) based on the the 1-cycle learning rate schedule of Smith and Topin (2017).

While One Shot IMP, that is IMP with a single prune-retrain cycle, is a viable approach to model pruning, only the iterative approach (with multiple prune-retrain cycles) has been shown to achieve state-of-the-art accuracy-vs.-sparsity tradeoffs (Han et al., 2015; Renda et al., 2020). This iterative approach however commonly consists of a significant amount of prune-retrain cycles, each needing the full original training time, that is \(T = T_{rt}\), resulting in several thousand epochs worth of total training time. Renda et al. (2020) for example suggested the following approach: train a network for \(T\) epochs and then iteratively prune 20% percent of the weights and retrain for \(T_{rt} = T\) epochs using LRW, i.e., use the same learning rate scheme as during training, until the desired sparsity is reached. We note that for \(T = T_{rt}\) the learning rate scheme of SLR becomes essentially identical to that of LRW. For a goal sparsity of 98% and \(T = 200\) original training epochs, the algorithm would therefore require 18 prune-retrain-cycles for a massive 3800 total retrain epochs. In Subsection 3.1 we will study the effect of the number of prune-retrain cycles, the number of retraining epochs and the learning rate scheme on the performance of the pruned network to establish whether IMP truly requires this massive amount of computational investment to develop its full potential.

Pruning approaches. IMP in its original form treats all trainable parameters as a single vector and computes a global threshold below which parameters are removed, independent of the layer they belong to. This simple approach, which we will refer to as GLOBAL, has been subject to criticism for not determining optimal layer-dependent pruning rates and for being inconsistent (Liu et al., 2020). Fully-connected layers for example have many more parameters than convolutional layers and are therefore much less sensitive to weight removal (Han et al., 2015; Carreira-Perpinán and Idahoev, 2018). Further, it has been observed that the position of a layer can play a role in whether that layer is amenable to pruning: often first and last layers are claimed to be especially relevant for the classification performance (Gale et al., 2019). On the other hand, in which layers pruning takes place significantly impacts the sparsity-induced theoretical speedup (Blalock et al., 2020). Lastly, the non-negative homogeneity of modern ReLU-based neural network architectures (Neyshabur et al., 2015) would also seem to indicate a certain amount of arbitrariness to this heuristic selection rule, or at least a strong dependence on the network initialization rule and optimizer used, as weights can be rescaled to force it to fully remove all parameters of a layer, destroying the pruned network without having affected the output of the unpruned network.

Determining which weights to remove is hence crucial for successful pruning and several methods have been designed to address this fact. Zhu and Gupta (2017) introduced the Uniform allocation, in which a global sparsity level is enforced by pruning each layer to exactly this sparsity. Gale et al. (2019) extend this approach in the form of Uniform+ by (a) keeping the first convolutional layer dense and (b) pruning at most 80% of the connections in the last fully-connected layer. Evci et al. (2019) propose a reformulation of the Erdős-Rényi Kernel (ERK) (Mocanu et al., 2018) to take the layer and kernel dimensions into account when determining the layerwise sparsity distribution. In particular, ERK allocates higher sparsity to layers with more parameters. Finally, Lee et al. (2020) propose Layer-Adaptive Magnitude-based Pruning (LAMP), an approach which takes an \(\ell_2\)-distortion perspective by relaxing the problem of minimizing the output distortion at time of pruning with respect to the worst-case input. We note that we follow the advice of Evci et al. (2019) and Dettmers and Zettlemoyer (2019) and do not prune biases and batch-normalization parameters, since they only amount to a negligible fraction of the total weights, however keeping them has a very positive impact on the performance of the learned model.

We will compare these approaches in Subsection 3.2 with a focus on the impact of the retraining phase. Since Le and Hua (2021) found that SLR can be used to obtain strong results even when pruning convolutional filters randomly, i.e., by assigning random importance scores to the filters instead of using the magnitude criterion or others, we are interested in understanding the importance of the retraining technique when considering different sparsity distributions.
A fair comparison to pruning stable methods. Pruning stable algorithms induce a strong implicit bias during training. For example, **LEARNING COMPRESSION** (LC) by Carreira-Perpinán and Idelbayev (2018) and **GLOBAL SPARSE MOMENTUM** (GSM) by Ding et al. (2019) both employ a modification of weight decay and force the k weights with the smallest score more rapidly towards zero, where k is the number of parameters that will eventually be pruned and the score is the parameter magnitude or its product with the loss gradient. Similarly, **DISCOVERING NEURAL WIRINGS** (DNW) by Wortsman et al. (2019) zeroes out the smallest k weights in the forward pass while still using a dense gradient. **CONTINUOUS SPARSIFICATION** (CS) by Savarese et al. (2020), **SOFT THRESHOLD WEIGHT REPARAMETERIZATION** (STR) by Kusupati et al. (2020) and **DYNAMIC SPARSE TRAINING** (DST) (Liu et al., 2020) all rely on the creation of additional trainable threshold parameters, which are applied to sparsify the model while being regularly trained alongside the usual weights. Here, the training objectives are modified via penalty terms to control the sparsification. **GRADUAL MAGNITUDE PRUNING** (GMP) (Zhu and Gupta, 2017) follows a tunable pruning schedule which sparsifies the network throughout training by dynamically extending and updating a pruning mask. Based on this idea, **DYNAMIC PRUNING WITH FEEDBACK** (DPF) by Lin et al. (2020) maintains a pruning mask which is extended using the pruning schedule of Zhu and Gupta (2017), but allows for error compensation by modifying the update rule to use the (stochastic) gradient of the pruned model while updating the dense parameters.

The first claimed advantage of pruning stable methods is the lack of a need for retraining, as they produce a sparse and well-performing model at the end of regular training. This however comes at a price: the implicit biases in pruning stable algorithms result in computational overhead when compared to the usual network training, i.e., to find a sparse solution throughout training through extensive regularization, masking or other methods, the per-iteration computational cost is increased. An overview of the computational overhead of the previously introduced methods can be found in Table 3 in the appendix. Neither training epochs nor iterations are therefore an appropriate measure when comparing algorithms, since what matters is the total time required to obtain a sparse network. Gale et al. (2019), Evci et al. (2019) and Lin et al. (2020) consider this when presenting their results. The second claimed advantage of pruning stable methods is that they find a better pruning set that cannot recover mistakenly pruned weights (Liu et al., 2020) and whose heuristic selection mechanism is disadvantaged compared to methods that learn the pruning thresholds (Kusupati et al., 2020). While it seems reasonable to believe that the less performance lost at pruning, the better, Bartoldson et al. (2020) showed that this rationale might not be entirely sound: pruning seems to behave similar to noise injection and there exists a generalization-stability-tradeoff indicating that less stability can actually be beneficial to generalization.

Especially given the previously discussed recent advancements in better recovering pruning-induced losses during retraining, both the narrative that the need for retraining is a clear computational disadvantage and that pruning stable methods find better pruning sets stand to be reevaluated. We will do so in Subsection 3.3.

3 Experimental results

Let us outline the general methodological approach to computational experiments in this section, including datasets, architectures, metrics and optimization strategies used. Experiment-specific details are found in the respective subsections. We note that, given the surge of interest in pruning, Blalock et al. (2020) proposed experimental guidelines in the hope of standardizing the experimental setup. We aim to follow these guidelines whenever possible and encourage others to do so as well. All experiments performed throughout this computational study are based on the PyTorch framework (Paszke et al., 2019), using the original code of the methods whenever possible. All results and metrics were logged and analyzed using **Weights & Biases** (Biewald, 2020). We have made our code and general setup available at github.com/ZIB-IOL/IMP for the sake of reproducibility.

We restrict ourselves to the task of image recognition on the publicly available **CIFAR-10** and **CIFAR-100** (Krizhevsky et al., 2009) datasets as well as **ImageNet** (Russakovsky et al., 2015). All experiments are performed using deep convolutional neural network architectures, in particular on **Residual Networks** (He et al., 2015), **Wide Residual Networks** (WRN) (Zagoruyko and Komodakis, 2016) and **VGG-16** (Simonyan and
Table 1: Exact training configurations used throughout the experiments for IMP. For pruning stable methods we use the same settings, with the following exceptions: (1) since momentum plays a crucial part in the justification of GSM, we tune it over 0.9, 0.99 and 0.995 and (2) any additional hyperparameters of the respective methods as well as weight decay were tuned as indicated in Subsection A.2.

Dataset	Network (number of weights)	Epochs	Batch size	Momentum	Learning rate \((t = \text{training epoch}) \)	Unpruned test accuracy
CIFAR-10	ResNet-56 (850 K) VGG-16 (138 Mio)	200	128	0.9	\(\eta_t = \begin{cases} 0.1 & t \in [1, 90], \\ 0.01 & t \in [91, 180], \\ 0.001 & t \in [181, 200] \end{cases} \)	93.5% ±0.3% 93.8% ±0.2%
CIFAR-100	WRN28x10 (37 Mio)	200	128	0.9	\(\eta_t = \begin{cases} 0.02 & t \in [61, 120], \\ 0.004 & t \in [121, 160], \\ 0.0008 & t \in [161, 200] \end{cases} \)	76.7% ±0.2%
ImageNet	ResNet-50 (26 Mio)	90	256	0.9	\(\eta_t = \begin{cases} 0.01 & t \in [31, 60], \\ 0.001 & t \in [61, 80], \\ 0.0001 & t \in [81, 90] \end{cases} \)	76.17% ±0.03%

Zisserman, 2014). We use Stochastic Gradient Descent (SGD) with momentum as an optimizer throughout the experiments and exclusively use stepped learning rate schedules. We therefore also decided to forego CLR in favor of SLR despite the recommendations of Le and Hua (2021). Exact parameters can be found in Table 1.\(^2\)

The focus of our analysis will be the tradeoff between the model sparsity and the final test accuracy. As a secondary measure, we will also consider the theoretical speedup (Blalock et al., 2020) induced by the sparsity, which is defined as the ratio of the FLOPs needed to evaluate the sparse over the dense model assuming a theoretical matrix multiplication algorithm capable of taking full advantage of unstructured sparsity, see Subsection A.1 for full details. We decided to include it since it can help to give a more differentiated picture of the inherent tradeoffs.

3.1 The Computational Cost of IMP

In this part we will treat the number of retrain epochs per prune-retrain cycle \(T_{rt} \) as well as the total amount of such cycles \(J \) as tunable hyperparameters for IMP and try to determine the tradeoff between the predictive performance of the final pruned network and the total number of retrained epochs \(J \cdot T_{rt} \). As a baseline performance for a pruned network, we will use the approach suggested by Renda et al. (2020) as it serves as a good benchmark for the current potential of IMP. We will use the original global pruning criterion of Han et al. (2015) throughout this part.

In Figure 1 we present the results of our computations for ResNet-56 trained on CIFAR-10 with a moderate and high target sparsity of respectively 90% and 98%. The parameters for the retrain phase were optimized using a grid search over \(T_{rt} \in \{10, 15, 20, ..., 60\} \) and \(J \in \{1, 2, ..., 6\} \) and we consider both FT and SLR as learning rate schemes during retraining. The weight decay values, including those used for the pruned and unpruned baselines, were individually tuned for each datapoint using a grid search over 1e-4, 2e-4 and 5e-4. All of our results are averaged over 2 seeds with max-min-bands indicated.

Summarizing the results, we find that SLR significantly outperforms FT at both levels of sparsity. Furthermore, SLR comes within half a percentage point of the pruned baseline within a mere 100 retraining epochs. This stands in stark contrast to the full 2000 and 3600 retraining epochs required to establish the

\(^2\)Others have reported an accuracy of around 80% for WRN28x10 trained on CIFAR-100 that we were unable to replicate. The discrepancy is most likely due to an inconsistency in PyTorch’s dropout implementation.
respective baseline. IMP achieves most of its respective potential with significantly less than the total number of retraining epochs usually budgeted for its full iterative form. Unlike commonly assumed, it therefore seems at least competitive with other methods not just with respect to the predictive power of the pruned network it obtains but also with respect to its total computational cost. We also note that we found IMP with SLR and a shortened retrain phase to benefit from significantly larger weight decay values than the baseline method, see extended results in Subsection B.1 in the appendix.

![ResNet-56 on CIFAR-10](image)

Figure 1: Test accuracy achieved by IMP in relation to the total number of epochs required for retraining using either FT or SLR. For each point on the x-axis, we show the highest mean accuracy achieved by any configuration of a grid search using up to this many total retraining epochs. Note that the baselines established using the approach by Renda et al. (2020) need a number of 2000 total retraining epochs in the case of a sparsity of 90% and 3600 in the 98% sparsity case.

3.2 The importance of the Sparsity Distribution

We compare the original global pruning criterion of IMP to the previously introduced proposed alternatives. Figure 2 reports the test accuracy in relation to the level of sparsity in the One Shot setting for CIFAR-100, where the network is retrained for 30 epochs, and ImageNet, where it is retrained for 10 epochs. We tested both FT (Han et al., 2015) and SLR (Le and Hua, 2021) to see if the learning rate scheme during retraining has any impact on the performance of the pruning selection scheme. The CIFAR-100 results are averaged over three seeds and max-min-bands are indicated. Extended plots including the CIFAR-10 dataset as well as the pruning-induced theoretical speedups can be found in Subsection B.2 in the appendix. For ImageNet, the results are based on a single seed.

Surprisingly the simple global selection criterion performs at least on par with the best out of all tested methods at any sparsity level for every combination of dataset and architecture tested here. Using SLR during retraining compresses the results by equalizing performance, but otherwise does not change the overall picture. We note that the results on CIFAR-100 using FT largely track with those reported by Lee et al. (2020), with the exception of the strong performance of the global selection criterion. Apart from slightly different network architectures, we note that they used significantly more retraining epochs, e.g., 100 instead of 30, and that they use AdamW (Loshchilov and Hutter, 2019) instead of SGD. Comparing the impact different optimizers can have on the pruning selection schemes seems like a potentially interesting direction for future research.

The global selection criterion has previously been reported to suffer from a pruning-induced collapse at very high levels of sparsity in certain network architectures. This phenomenon has been coined layer-collapse by Tanaka et al. (2020), who hypothesize that it can be avoided by using smaller pruning steps since gradient descent restabilizes the network after pruning by following a layer-wise magnitude conservation law. To verify this, we trained a VGG-16 network on CIFAR-10, as also done by Lee et al. (2020), both in the One Shot and in the iterative setting. In the One Shot setting the model is retrained for 30 epochs...
Figure 2: Performance-vs.-sparsity tradeoffs for the One Shot setting on CIFAR-100 (top) and ImageNet (bottom). We compare the sparsity allocation methods w.r.t. the different retraining techniques FT (left) and SLR (right).

after pruning and the iterative setting consists of 3 prune-retrain cycles with 10 epochs each. The results using SLR are reported in Figure 3 and results using FT largely show the same behavior and can be found in Subsection B.2 in the appendix.

Interpreting the results, layer collapse is clearly occurring here for the global selection criterion at sparsity levels above 99% in the One Shot setting, but disappears entirely when pruning iteratively. Note that the total amount of retraining epochs between the two settings is identical here. This indicates that layer collapse, while a genuine potential issue, can be avoided even using the global selection criterion.

3.3 Comparing IMP to Pruning Stable Approaches

Using the lessons from the previous two sections, we finally compare IMP to recent pruning stable approaches. Given the high computational demand of tuning ten different methods, we limit ourselves to ResNet-56 networks trained on CIFAR-10. For IMP we employ the global selection criterion and retrain using SLR, where the number of prune-retrain-cycles J as well as the number of retraining epochs per cycle T_{rt} were tuned using a grid search over $T_{rt} \in \{10, 15, 20, 25\}$ and $J \in \{1, 2, 3, 4\}$. We will also consider a restricted version of IMP, where we impose the additional constraint $J \cdot T_{rt} \leq 30$ to obtain a method that will be largely comparable to pruning stable methods w.r.t. its total runtime. In the following, we denote the restricted version by IMP and the unrestricted version, which can use up to 100 retraining epochs, by IMP+.

The hyperparameters of each of the pruning stable methods were likewise tuned using manually defined grid searches, resorting to the recommendations of the original publications whenever possible, see Subsection A.2 for exact details. Whenever possible, that is for GMP, GSM, DNW, DPF, and LC, we give the methods
Figure 3: Performance-vs.-Sparsity tradeoffs for VGG-16 on CIFAR-10 for IMP in the One Shot (left) and iterative (right) setting using SLR. For One Shot we observe layer-collapse while the iterative splitting into less severe pruning steps avoids the problem.

One of the main intentions behind pruning stability is to eliminate the need for computationally expensive retraining. We start by verifying this assumption using the pruning stable approaches and allowing them to be retrained for further 30 epochs using FT. Figure 11 in the appendix shows the increase in accuracy of the pruned networks after retraining. We observe that LC is often unable to find an actually sparse model throughout training and hence greatly benefits from retraining. The remaining methods however mostly stay true to their claimed pruning stability, but nevertheless can profit from retraining. In particular, CS sometimes gains up to two percentage points in accuracy and DNW, while usually gaining less than one percentage point, exhibits some instability at the 99% sparsity level, where it gains more than five percentage points in accuracy. For the sake of a fair comparison, we will therefore use the accuracy reached after retraining when it exceeds the original one for all pruning stable methods in this section while only referring to the original train time when comparing runtimes for all methods except LC and of course IMP.

Table 2 reports the computational cost, final test performance, theoretical speedup and actually achieved sparsity of all ten methods. The results show that IMP with SLR and a tuned retrain phase is able to perform on par with the best pruning stable methods considered here. Only CS, GMP and DPF clearly exceed the test accuracy achieved by restricted IMP at several levels of sparsity and are about matched by its ‘unrestricted’ version. However, both GMP and DPF fail to perform on par with both IMP variants in the extremely high sparsity regime, see extended results in Subsection B.3. Note that CS received significantly more attention during tuning as previously mentioned, which needs to be taken into consideration when viewing these results. Somewhat surprisingly, IMP is also able to get excellent theoretical speedups, performing on par with DPF. Most importantly, IMP manages to obtain these results without a strong computational overhead: the second column in the table indicates the total runtime required to obtained a pruned model in relation to the usual runtime required to train a dense version. Only DPF, GMP and DNW are faster than the restricted version of IMP and even the unrestricted version still has a computational cost only about 30% higher, resulting in runtimes on par with CS.

Finally, we note that there are also some more subtle practical differences between IMP and the pruning stable methods considered here, that are difficult to explore in experiments. We have already noted that
Table 2: Table listing the results of the comparison between IMP and pruning stable methods for the goal sparsities 90\%, 95\% and 98\%, denoted in the main columns. Each subcolumn denotes the Top-1 accuracy, the theoretical speedup and the actual sparsity achieved by the method. Each row corresponds to one method, where we denote the time needed when compared to regular training next to the method’s name. All results include standard deviations where zero or near-zero values are omitted. The two highest accuracy values are highlighted for each sparsity level. Full tables and plots can be found in Subsection B.3.

Method	Time	90%	95%	98%
IMP	1.15x	91.94 ±0.37	90.89 ±0.28	87.79 ±0.28
IMP+	1.50x	92.70 ±0.12	91.77 ±0.29	89.46 ±0.47
GMP	1.05x	92.29 ±0.43	91.46 ±0.09	89.37 ±0.82
GSM	1.17x	90.43 ±0.05	88.41 ±0.17	84.91 ±0.46
DPF	1.03x	92.64 ±0.26	91.11 ±0.39	86.55 ±1.89
DNW	1.05x	89.73 ±0.92	91.46 ±0.34	82.84 ±39.57
LC	1.31x	86.94 ±2.03	85.32 ±2.66	78.22 ±3.63
STR	1.35x	90.31 ±0.72	88.49 ±0.24	87.73 ±1.41
CS	1.52x	91.87 ±0.30	91.36 ±0.23	90.04 ±0.36
DST	2.41x	90.98 ±0.36	88.17 ±0.82	88.50 ±0.05

some pruning stable methods can be quite difficult to tune compared to the simplicity of IMP. Furthermore, the fact that IMP can be applied to an already trained model allows one to quickly iterate over hyperparameter configurations, while pruning stable methods need to start from scratch every time, resulting in much longer hyperparameter searches. Finally, IMP can in fact derive many different models along the sparsity-vs.-performance tradeoff spectrum from just a single run, by simply storing the different models after each prune-retrain cycle. Pruning stable methods on the other hand need would need to fully train a network for every given level of sparsity. In practice, these aspects can make a massive computational difference, reversing the traditional narrative.

4 Discussion

The goal of this work is to demonstrate that IMP can provide state-of-the-art pruning results on par or outperforming more complex or heavily parameterized approaches without or with only little computational overhead. It is not self-evident that imposing an implicit bias during training has any benefits besides not requiring retraining, which is in and of itself neither an argument for nor against a method. While we believe that our results demonstrate this, we acknowledge a clear limitation of the study: our experiments were limited to image recognition tasks on particular network architectures. Extending the results to include, e.g., NLP as well as a wider variety of network architectures would help paint a more complete picture. Regardless, we think that IMP with SLR and a moderate retrain phase should serve as a realistic yet easily realisable baseline for future research.

References

B. Bartoldson, A. Morcos, A. Barbu, and G. Erlebacher. The generalization-stability tradeoff in neural network pruning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 20852–20864. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/ef2ee09ea9551de88bc11fd7e3ea93b0-Paper.pdf.

L. Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/. Software available from wandb.com.

D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag. What is the state of neural network pruning? In I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Proceedings of Machine Learning and Systems, volume 2, pages 129–146, 2020. URL https://proceedings.mlsys.org/paper/2020/file/d2d8a18f00665be8623e36bd4e3c7c5-Paper.pdf.
M. A. Carreira-Perpinán and Y. Idelbayev. “learning-compression” algorithms for neural net pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8532–8541, 2018.

T. Dettmers and L. Zettlemoyer. Sparse networks from scratch: Faster training without losing performance. July 2019.

X. Ding, g. ding, X. Zhou, Y. Guo, J. Han, and J. Liu. Global sparse momentum sgd for pruning very deep neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/f34185c4ca5d58e781d4f14173d41e5d-Paper.pdf.

U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen. Rigging the lottery: Making all tickets winners. Proceedings of the 37th International Conference on Machine Learning (2020) 471-481, Nov. 2019.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. ICLR 2019, Mar. 2018.

J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin. Stabilizing the lottery ticket hypothesis. Mar. 2019.

T. Gale, E. Elsen, and S. Hooker. The state of sparsity in deep neural networks. arXiv preprint arXiv:1902.09574, 2019.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain surgeon. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information Processing Systems 5, [NIPS Conference, Denver, Colorado, USA, November 30 - December 3, 1992], pages 164–171. Morgan Kaufmann, 1992. URL http://papers.nips.cc/paper/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2015.

T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste. Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. Jan. 2021.

S. A. Janowsky. Pruning versus clipping in neural networks. Phys. Rev. A, 39:6600–6603, Jun 1989. doi: 10.1103/PhysRevA.39.6600.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

A. Kusupati, V. Ramanujan, R. Somani, M. Wortsman, P. Jain, S. Kakade, and A. Farhadi. Soft threshold weight reparameterization for learnable sparsity. In H. D. III and A. Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 5544–5555. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/kusupati20a.html.

D. H. Le and B.-S. Hua. Network pruning that matters: A case study on retraining variants. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=Cb54AMqHQFP.

Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado, USA, November 27-30, 1989], pages 598–605. Morgan Kaufmann, 1989. URL http://papers.nips.cc/paper/250-optimal-brain-damage.

J. Lee, S. Park, S. Mo, S. Ahn, and J. Shin. Layer-adaptive sparsity for the magnitude-based pruning. Oct. 2020.
T. Lin, S. U. Stich, L. Barba, D. Dmitriev, and M. Jaggi. Dynamic model pruning with feedback. In *International Conference on Learning Representations*, 2020.

J. Liu, Z. Xu, R. Shi, R. C. C. Cheung, and H. K. So. Dynamic sparse training: Find efficient sparse network from scratch with trainable masked layers. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=SJ1bGJrtDB.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019.

C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural networks through l_0 regularization. Dec. 2017.

D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and A. Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. *Nature Communications*, 9(1), June 2018. doi: 10.1038/s41467-018-04316-3.

B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in neural networks. In *Conference on Learning Theory*, pages 1376–1401, 2015.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/53f99f2bfa9f7012727740-Paper.pdf.

A. Renda, J. Frankle, and M. Carbin. Comparing rewinding and fine-tuning in neural network pruning. *arXiv preprint arXiv:2003.02389*, 2020.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. *International Journal of Computer Vision (IJCV)*, 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

P. Savarese, H. Silva, and M. Maire. Winning the lottery with continuous sparsification. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 11380–11390. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/83004190b1793d7a15f8d0d49a13eba-Paper.pdf.

J. W. Siegel, J. Chen, and J. Xu. Training sparse neural networks using compressed sensing. Aug. 2020.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. Sept. 2014.

L. N. Smith and N. Topin. Super-convergence: Very fast training of neural networks using large learning rates. Aug. 2017.

H. Tanaka, D. Kunin, D. L. K. Yamins, and S. Ganguli. Pruning neural networks without any data by iteratively conserving synaptic flow. *Advances in Neural Information Processing Systems 2020*, June 2020.

M. Wortsman, A. Farhadi, and M. Rastegari. Discovering neural wirings. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/d010396ea8abf6ead8cacc2c2f2f26c7-Paper.pdf.

S. Zagoruyko and N. Komodakis. Wide residual networks. May 2016.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethinking generalization. Nov. 2016.

M. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of pruning for model compression. Oct. 2017.
A Technical details and Training Settings

A.1 Technical details

We define pruning stability as follows.

Definition A.1 (Bartoldson et al. (2020)). Let \(t_{\text{pre}} \) and \(t_{\text{post}} \) be the test accuracy before pruning and after pruning the trained model, respectively. We define the pruning stability of a method as

\[
\Delta_{\text{stability}} := 1 - \frac{t_{\text{pre}} - t_{\text{post}}}{t_{\text{pre}}} \in [0, 1].
\]

Pruning stable methods are sparsification algorithms that learn a sparse solution throughout training such that \(\Delta_{\text{stability}} \approx 1 \). For example, methods that perform the forward-pass using an already sparsified copy of the parameters (e.g. DNW by Wortsman et al., 2019), will have \(\Delta_{\text{stability}} = 1 \), since the ‘hard’ pruning step only consists of an application of the present pruning mask, which has no further effect. Methods that actively drive certain parameter groups towards zero more rapidly (such as Carreira-Perpinán and Idelbayev, 2018; Ding et al., 2019) will have a pruning stability close to 1, since the projection of (magnitude) pruning at the end of training will perturb the parameters only slightly.

Crucial to our analysis are the tradeoffs between the model sparsity, the final test accuracy and the theoretical speedup induced by the sparsity (Blalock et al., 2020). Theoretical speedup is a metric measuring the ratio in FLOPs needed for inference comparing the dense and sparse model. More precisely, let \(F_d \) be the number of FLOPs the dense model needs for inference, and let similarly be \(F_s \) the same number for the pruned model, given some sparsity \(s \). The theoretical speedup is defined as \(\frac{F_d}{F_s} \) and depends solely on the position of the zero weights within the network and layers, not on the numerical values of non-zero parameters. While we focused on the model sparsity in the main body of the text, we include plots regarding the theoretical speedup here in the appendix, as suggested by Blalock et al. (2020).

A.2 Training settings and hyperparameters

Table 3: Overview of sparsification methods. CS, STR and DST control the sparsity implicitly via additional hyperparameters. IMP is the only method that is pruning instable by design, i.e., it loses its performance right after the ultimate pruning. Further, IMP is the only method that is sparsity agnostic throughout the regular training; the sparsity does not play a role while training to convergence. All other methods require training an entire model when changing the goal sparsity. The computational overhead refers to the per-iteration overhead during regular training. We denote by \(n \) the number of trainable parameters, while \(k \leq n \) is the number of parameters that remain after pruning to the goal sparsity.

Method	Sparsity specifiable	Pruning stable	Sparsity agnostic training	Overhead during Training
IMP	✓	✗	✓	N/A
GMP	✓	✓		\(O(n) + O(n \log n) \) every time the mask is updated
GSM	✓	✓	✗	\(O(n + n \cdot \min(k, n-k)) \)
LC	✓	✓	✗	\(O(n \cdot \min(k, n-k)) \)
DPF	✓	✓	✗	\(O(n) + O(n \log n) \) every 16 iterations
DNW	✓	✓	✗	\(O(n \cdot \min(k, n-k)) \)
CS	✗	✓	✗	\(O(n) + \text{add. backprop} \)
STR	✗	✓	✗	\(O(n) + \text{add. backprop} \)
DST	✗	✓	✗	\(O(n) + \text{add. backprop} \)

We list the hyperparameter grids used for each pruning stable method taking part in the comparative study. For each method (including IMP) we tune weight decay over 1e-4, 5e-4, 1e-3 and 5e-3 and keep momentum fixed at 0.9. Since momentum plays a crucial part in the justification of GSM, we tune it over 0.9, 0.99 and 0.995. Otherwise, we used the following grids.

\(^3\)To compute the number of FLOPs, we sample a single batch from the test set. The code to compute the theoretical speedup has been adapted from the repository of the ShrinkBench framework (Blalock et al., 2020).
GMP
Equally distributed pruning steps: \{20, 100\}.

GSM
Momentum: \{0.9, 0.95, 0.99\}.

LC
We only tune the weight decay and, similar to the recommendation by Carreira-Perpinán and Idelbayev (2018), increase it over time as $\lambda_0 \cdot 1.1^j$, where j is increased over time and λ_0 is the initial weight decay. For the retraining phase we deactivate weight decay.

DPF
As for GMP, we tune the number of pruning steps, i.e., \{20, 100\}, and the weight decay.

DNW
We only tune the weight decay, since there are no additional hyperparameters.

CS
As recommended by Savarese et al. (2020), we fix the temperature β at 300. Otherwise, we perform the following grid search. We set the mask initialization $s_0 \in \{-0.3, -0.25, -0.2, -0.1, -0.05, 0, 0.05, 0.1, 0.2, 0.25, 0.3\}$ and the ℓ_1 penalty λ to \{1e-8, 1e-7\}.

STR
We tune the initial threshold value $s_{\text{init}} \in \{-100, -50, -5, -2, -1, 0, 5, 100\}$. In an extended grid search, we also used weight decays in \{5e-05, 1e-4\} and varied $s_{\text{init}} \in \{-40, -30, -20, -10\}$.

DST
We tune the sparsity-controlling regularization parameter $\alpha \in \{5e-6, 1e-5, 5e-5, 1e-4, 5e-4\}$. In an extended grid search, we used weight decays in \{0, 1e-4\} and tuned α over \{1e-7, 5e-7, 1e-6\}.
B Additional plots

B.1 The Computational Cost of IMP

Figure 4: Test accuracy achieved by IMP in relation to the total number of epochs required for retraining using either FT or SLR. Each row of the plots shows a different weight decay as indicated in the title. The pruned baselines were established by using the approach of Renda et al. (2020) using the respective weight decay.

The plots of Figure 4 show the results of Figure 1 for each of the three weight decay factors 1e-4, 2e-4 and 5e-4 independently. Clearly, the choice of the weight decay affects both the accuracy of the dense model as well as the accuracy of the pruned model when using the approach by Renda et al. (2020). For the dense models with weight decays 1e-4, 2e-4 and 5e-4 we obtain respective average performances of 92.01%
Clearly, we see that SLR benefits from a larger weight decay, while the approach by Renda et al. (2020) is suffering from an increased penalty on the weights. Although SLR is not able to reach the pruned baseline in the case of a 1e-4 weight decay within the given retraining time frame, we note that SLR easily outperforms the LRW-based proposal by Renda et al. (2020) when considering the weight decays that also lead to the best performing dense model, which is a strong indicator that it is preferable to use SLR and a shortened retraining timeframe.

B.2 The Importance of the Sparsity Distribution

In the case of ResNet-56 on CIFAR-10 and VGG-16 on CIFAR-10, we report the weight decay config with highest accuracy, where we optimized over the values 1e-4, 5e-4 and 1e-3. For WideResNet on CIFAR-100 and ResNet-50 on ImageNet we relied on a weight decay value of 1e-4 for both architectures.

Figure 5, Figure 6 and Figure 7 compare the different sparsity allocation methods with respect to the retraining strategy for ResNet-56 on CIFAR-10, WideResNet on CIFAR-100 and ResNet-50 on ImageNet. Similarly, Figure 8 shows the accuracy vs. theoretical speedup tradeoffs on a logarithmic scale. These plots also show that some methods sparsify convolutional layers more aggressively than the global approach, resulting in higher theoretical speedups. However, despite its simplicity, the global approach performs on par with respect to managing the accuracy vs. speedup tradeoff, where we observe that for ResNet-50 on ImageNet it even outperforms methods such as LAMP and ERK regarding both objectives, performance and speedup.

Figure 5: Performance vs. Sparsity tradeoffs for ResNet-56 on CIFAR-10 for IMP in the One Shot setting for FT (left) and SLR (right) as retraining methods. The plot includes max-min confidence intervals.
WideResNet on CIFAR-100

Figure 6: Performance vs. Sparsity tradeoffs for WideResNet on CIFAR-100 for IMP in the One Shot setting for FT (left) and SLR (right) as retraining methods. The plot includes max-min confidence intervals.

ResNet-50 on ImageNet

Figure 7: Performance vs. Sparsity tradeoffs for ResNet-50 on ImageNet for IMP in the One Shot setting for FT (left) and SLR (right) as retraining methods.
Figure 8: Performance-vs.-theoretical speedup tradeoffs for ResNet-56, WideResNet and ResNet-50 on the respective datasets. All plots depict the one shot setting.
Figure 9: Performance-vs.-Sparsity tradeoffs for VGG-16 on CIFAR-10 for IMP in the One Shot (above) and Iterative (below) setting for FT (left) and SLR (right) as retraining methods.
B.3 Comparing IMP to Pruning Stable Approaches

Table 4 extends Table 2 by showing the results of the full sparsity range between 90% and 99.5%. The same results can be seen visualized in Figure 12. As described in the main section, Figure 11 shows the actual pruning stability and increase in accuracy after retraining with FT. Apart from LC, all methods can be considered pruning stable with a pruning stability close to 100%. However, we note that some methods can benefit from retraining. To allow a fair comparison, we hence always considered the maximum of the performances before and after retraining, while measuring the computational time needed only for the regular training time, ignoring the time needed for retraining.
Figure 11: Increase in accuracy after retraining (above) as well as pruning stability (below) for ResNet-56 trained on CIFAR-10 using different pruning stable methods. Each method was retrained for 30 epochs using FT. Each datapoint corresponds to the hyperparameter config with highest accuracy directly after pruning when considering 0.5% sparsity intervals between 88% and 100%. The confidence bands indicate the min-max-deviation around the mean with respect to different initialization seeds.
Figure 12: Test accuracy (above) and theoretical speedup (below) of IMP in comparison to different pruning stable methods when training a ResNet-56 network on CIFAR-10. All methods were trained to achieve sparsity levels of 90%, 93%, 95%, 98%, 99% and 99.5% with the exception of CS and STR, where additional hyperparameter searches were necessary to obtain the curves shown here. Each datapoint corresponds to the hyperparameter config with highest accuracy when considering .5% sparsity intervals between 88% and 100%. This holds similarly for the theoretical speedup, where points are selected by highest accuracy as well. The confidence bands indicate the min-max-deviation around the mean with respect to different initialization seeds.
Table 4: Results of the comparison between IMP and pruning stable methods for the sparsity range between 90% and 99.5%. The columns are structured as follows: First the method is stated, where IMP+ denotes the unrestricted version of IMP. Secondly, we denote the time needed when compared to regular training of a dense model, e.g. LC needs 1.14 times as much runtime as regular training. The following columns are substructured as follows: Each column corresponds to one goal sparsity and each subcolumn denotes the Top-1 accuracy, the theoretical speedup and the actual sparsity reached. All results include standard deviations, where we omit zero or close to zero results. Missing values (indicated by —) correspond to cases where we were unable to obtain results in the desired sparsity range, i.e., there did not exist a training configuration with average final sparsity within a .25% interval around the goal sparsity and the closest one is too far away or belongs to another column.

Method	Time	Accuracy	Speedup	Sparsity	Accuracy	Speedup	Sparsity
IMP	1.15x	91.94 ±0.37	9 ±1.1	90.00	91.57 ±0.23	12 ±1.4	93.00
IMP+	1.50x	**92.70 ±0.12**	9 ±1.2	90.00	**92.44 ±0.27**	12 ±1.6	93.00
GSM	1.05x	92.29 ±0.43	10	90.00	**92.10 ±0.25**	14	93.00
GMP	1.17x	90.43 ±0.05	5 ±0.4	90.24	89.38 ±0.19	6 ±0.6	93.24
DPF	1.03x	**92.64 ±0.26**	8 ±0.2	90.00	91.71 ±0.13	13 ±1.1	93.00
DNW	1.05x	89.73 ±0.92	7 ±0.8	90.00	91.97 ±0.20	5 ±0.2	93.09
LC	1.31x	86.94 ±2.03	3 ±0.7	90.00	87.13 ±2.27	4 ±1.0	93.00
STR	1.35x	90.31 ±0.72	11 ±1.2	88.49 ±0.24	—	—	—
CS	1.52x	91.87 ±0.30	13 ±0.3	90.52 ±0.76	89.64 ±1.43	16 ±2.9	92.78 ±0.18
DST	2.41x	90.98 ±0.36	8 ±0.3	88.17 ±0.82	—	—	—

Method	Time	Accuracy	Speedup	Sparsity	Accuracy	Speedup	Sparsity
IMP	1.15x	90.89 ±0.28	16 ±1.9	95.00	87.79 ±0.28	34 ±4.4	98.00
IMP+	1.50x	**91.77 ±0.29**	16 ±2.2	95.00	**89.46 ±0.47**	35 ±4.6	98.00
GSM	1.05x	91.11 ±0.45	20	95.00	89.19 ±0.98	50	98.00
GMP	1.17x	88.41 ±0.17	8 ±0.3	95.24	84.91 ±0.46	20 ±0.4	98.24
DPF	1.03x	91.11 ±0.39	15 ±1.0	95.00	86.55 ±1.89	38 ±7.2	98.00
DNW	1.05x	**91.46 ±0.34**	8 ±1.4	95.09	32.84 ±39.57	28 ±0.5	98.10
LC	1.31x	85.32 ±2.66	5 ±1.2	95.00	78.22 ±3.63	10 ±1.3	98.00
STR	1.35x	88.55 ±0.34	24 ±2.6	94.37 ±0.72	87.73 ±1.41	34 ±6.7	96.53 ±0.58
CS	1.52x	91.36 ±0.23	21 ±2.9	95.38 ±0.19	**90.04 ±0.36**	50 ±7.2	98.12 ±0.06
DST	2.41x	89.17	18	94.42	88.50 ±0.05	34 ±6.1	96.37 ±0.47

Method	Time	Accuracy	Speedup	Sparsity	Accuracy	Speedup	Sparsity
IMP	1.15x	83.11 ±0.47	62 ±7.9	99.00	75.85 ±1.10	106 ±14.5	99.50
IMP+	1.50x	**85.62 ±0.93**	63 ±7.7	99.00	**79.83 ±0.51**	120 ±18.3	99.50
GSM	1.05x	62.03 ±1.19	100	99.00	35.59 ±1.08	197	99.50
GMP	1.17x	80.16 ±0.22	35 ±2.7	99.24	73.26 ±0.81	63 ±7.0	99.74
DPF	1.03x	79.79 ±0.93	68 ±19.1	99.00	68.81 ±3.69	122 ±16.9	99.50
DNW	1.05x	83.12 ±0.31	15 ±0.1	99.17	10.00	35 ±4.7	99.67
LC	1.31x	71.57 ±7.93	21 ±4.3	99.00	63.71 ±10.13	46 ±10.2	99.50
STR	1.35x	—	—	—	**77.34 ±2.68**	420 ±167.4	99.66 ±0.09
CS	1.52x	**86.55 ±0.92**	69 ±7.1	98.90 ±0.02	—	—	—
DST	2.41x	—	—	—	—	—	—