Combined measurement of differential and total cross sections in the $H \rightarrow \gamma\gamma$ and the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channels at $\sqrt{s} = 13$ TeV with the ATLAS detector

A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb$^{-1}$ of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be $57.0^{+6.0}_{-5.9}$ (stat.) $^{+4.0}_{-3.3}$ (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions.
1 Introduction

Differential cross-section measurements are important studies of Higgs boson production, probing Standard Model (SM) predictions. Deviations from the predictions could be caused by physics beyond the SM [1, 2]. Both the ATLAS and CMS collaborations have measured differential cross sections in the $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$ (where $\ell = e, \mu$) and $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ decay channels [3–9].

This Letter describes the combination of two fiducial cross-section measurements in the $H \rightarrow \gamma\gamma$ [10] and $H \rightarrow ZZ^* \rightarrow 4\ell$ [11] decay channels, which were obtained using 36.1 fb$^{-1}$ of pp collision data produced by the Large Hadron Collider (LHC) in 2015 and 2016 with a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector [12]. The combined cross section is extracted for the total phase space, increasing the degree of model dependence compared to the individual measurements, which were performed in a fiducial phase space close to the selection criteria for reconstructed events in the detector. Despite the additional systematic uncertainties assigned to the extrapolation to the total phase space, the combination significantly reduces the measurement uncertainty compared to the results in the individual decay channels.

The measured observables include the total production cross section, the Higgs boson’s transverse momentum p_T^H, sensitive to perturbative QCD calculations, and the Higgs boson’s rapidity $|y^H|$, sensitive to the parton distribution functions (PDF). Furthermore the number of jets N_{jets} is measured in events with a Higgs boson and jet transverse momentum above 30 GeV, as well as the leading jet’s transverse momentum p_T^1. Both the N_{jets} and p_T^1 observables probe the theoretical modelling of high-p_T QCD radiation in Higgs boson production. The N_{jets} observable is also sensitive to the different Higgs boson production processes [13].

The cross sections are obtained from yields measured in the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channels, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. For each decay channel and each observable, the cross sections can be written as

$$\sigma_i = \frac{N_{\text{sig}}^i}{L \cdot B \cdot A_i \cdot C_i^*},$$

where i is the iterator over the bins of the observable of interest, σ_i is the cross section in bin i, N_{sig}^i is the number of measured reconstructed signal events following the analysis selection, L is the integrated luminosity and B is the branching fraction. The term C_i is the correction factor from the number of events reconstructed to the number of events at particle level produced in the respective fiducial phase space, and A_i is the acceptance factor extrapolating from the fiducial to the total phase space contained in the bin of interest.

Predicted branching ratios and production cross sections are obtained for $m_H = 125.09$ GeV [14], as described in Section 2. The number of signal events in each bin of a probed observable is extracted in the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ channels from fits to the $m_{\gamma\gamma}$ and $m_{4\ell}$ invariant mass distributions, respectively. The signal extraction and the correction factors are discussed in detail in Refs. [10, 11]. The correction factors are obtained from simulated events, assuming SM Higgs boson production. In order to harmonize the published $H \rightarrow \gamma\gamma$ fiducial measurement [10] with the $H \rightarrow ZZ^* \rightarrow 4\ell$ analysis [11], adjustments were made to the bin boundaries and the uncertainties of the correction factors due to the fractions of different Higgs boson production processes in the $H \rightarrow \gamma\gamma$ decay channel. To extrapolate to the total phase space, acceptance factors and uncertainties are calculated for the combination, as discussed in Section 3. Section 4 presents the combination methodology. The results are discussed in Section 5.
2 Higgs boson Monte Carlo samples, cross sections and branching fractions

Predictions of SM Higgs boson production are used in the calculation of the correction and acceptance factors, and are compared to the measured cross sections. The Monte Carlo (MC) event generators that were used to simulate gluon–gluon fusion (ggF), vector-boson fusion (VBF), associated Higgs boson production \((VH, V = W, Z) \), and Higgs boson production in association with a heavy-quark pair \((t\bar{t}H, b\bar{b}H) \) are listed in Table 1. The accuracy of the calculations and the PDF sets used are also given, with the abbreviations NLO for next-to-leading order, NNLO for next-to-next-to-leading order, and NNLL for next-to-next-to-leading logarithm. For ggF, VBF, \(VH, b\bar{b}H \) in both decay channels and \(t\bar{t}H \) in the \(H \rightarrow \gamma\gamma \) decay channel, Pythia8 \([15, 16]\) was used for the decay, parton shower, hadronization and multiple parton interactions. For \(t\bar{t}H \) in the \(H \rightarrow ZZ^* \rightarrow 4\ell \) decay channel, Herwig++ \([17, 18]\) was used.

Table 1: Monte Carlo samples used to simulate Higgs boson production, including the generators, accuracy of calculations in QCD, and PDF sets.

Process	Generator	Accuracy in QCD	PDF set		
ggF	POWHEG-BOX v2 (NNLOPS) \([19–22]\)	NNLO in \(y_H	\) \([23]\), \(p_T^H \) consistent with HoT (NNLO+NNLL) \([25, 26]\)	PDF4LHC \([24]\)
VBF	POWHEG-BOX v2 \([19–21, 27]\)	NLO	PDF4LHC		
VH	POWHEG-BOX v2 (MiNLO) \([19–21, 28]\)	NLO	PDF4LHC		
\(t\bar{t}H \)	MADGRAPH5_AMC@NLO (v.2.2.3) \([29]\)	NLO	CT10nlo \([30]\)		
\(b\bar{b}H \)	MADGRAPH5_AMC@NLO (v.2.3.3) \([29, 31]\)	NLO	NNPDF23 \([32]\)		

The samples are normalized to the cross-section predictions taken from Refs. \([13, 33–35]\). These predictions were obtained assuming a Higgs boson mass of 125.09 GeV \([14]\) to calculate cross sections and branching ratios. Details are given in Table 2, including the accuracy of the calculations, and the composition of the production modes in the SM. \(N^3\text{LO} \) is the abbreviation for next-to-next-to-next-to-leading order, and EW stands for electroweak.

Table 2: Cross-section predictions used to normalize the MC samples, the accuracy of the calculations (in QCD if not noted otherwise), and the composition of the production modes in the SM.

Process	Accuracy	Fraction [%]
ggF	\(N^3\text{LO}, \) NLO EW corrections \([36–49]\)	87.4
VBF	NLO, NLO EW corrections \([50–52]\) with approximate NNLO QCD corrections \([53]\)	6.8
VH	NNLO \([54, 55]\), NLO EW corrections \([56]\)	4.1
\(t\bar{t}H \)	NLO, NLO EW corrections \([57–60]\)	0.9
\(b\bar{b}H \) five-flavour: NNLO, four-flavour: NLO \([61]\)	0.9	

In addition to the NNLOPS sample (see Table 1) scaled to the \(N^3\text{LO} \) cross section with a \(K \)-factor of 1.1, further SM ggF predictions are compared with the measurements. If not mentioned otherwise, the cross sections predicted by the respective calculations are used. For the comparison with data, the non-ggF Higgs boson production processes are added using the samples and cross sections described above.
• The p_T^H distribution is compared with the predictions from HRes [62, 63], RADISH + NNLO-JET [64], and Madgraph5_aMC@NLO. HRes includes resummation to NNLL and computes fixed-order cross sections for ggF Higgs boson production up to NNLO in QCD. It describes the p_T^H distribution at NLO. Finite t, b, and c-quark masses are included at NLO accuracy. The RADISH + NNLOJET prediction includes resummation to NNLL and matching to the one-jet NNLO differential spectrum from NNLOJET [65, 66]. It includes corrections from the finite t- and b-quark masses. The predictions from Madgraph5_aMC@NLO are scaled to the NNLO cross section with a K-factor of 1.47. This generator provides NLO accuracy in QCD for zero, one, and two additional jets, merged with the FxFx scheme [67] and includes the finite top quark mass effects [29, 68, 69].

• The $|y^H|$ measurement is compared with predictions from Madgraph5_aMC@NLO merged with the FxFx scheme and SCETlib+MCFM8 [70, 71], which achieves NNLO+NNLL′ accuracy by applying a resummation of the virtual corrections to the gluon form factor. The underlying NNLO predictions are obtained using MCFM8 with zero-jettiness subtractions [72, 73].

• The p_{j1}^T measurement is compared with SCETlib, with NNLL′+NNLO0 accuracy [71, 74].

• Multiple predictions exist for different bins of the N_{jets} distribution. Considered here are the STWZ-BLPTW prediction [13, 74, 75], which includes NNLL′+NNLO resummation for the p_T of the leading jet, combined with a NLL′+NLO resummation for the subleading jet, and the JVE-N3LO prediction [76], which includes NNLL resummation of the p_T of the leading jet with small-R resummation and is matched to the N3LO total cross section. In addition, predictions from Madgraph5_aMC@NLO, are compared with the full N_{jets} distribution.

For ggF, VBF and VH, the PDF4LHC set is varied according to its eigenvectors [24], and the envelope of the variations is used as the systematic uncertainty. The effect of PDF uncertainties on $t\bar{t}H$ and $b\bar{b}H$ is negligible and not included. The renormalization and factorization scales are varied by factors of 2.0 and 0.5. For NNLOPS, instead of the internal scale uncertainties, the same scheme as in Refs. [10, 11, 77] is used: four parameters account for uncertainties in the cross sections for events with different jet multiplicities [13, 74, 75, 78], and three parameters account for the uncertainties in the modelling of the p_T^H distributions.

The predicted Higgs boson decay branching ratios are $(0.227 \pm 0.007)\%$ and $(0.0125 \pm 0.0003)\%$ for the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decays, respectively [13]. Both branching ratio calculations include the complete NLO QCD and EW corrections. For $H \rightarrow ZZ^* \rightarrow 4\ell$, the interference effects between identical final-state fermion pairs are included. The correlations of the branching ratio uncertainties and the dependence of the predicted branching ratios on the Higgs boson mass are taken into account in the combination. For the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel, which has the larger dependence, this corresponds to a relative variation of $\approx 2\%$ in the branching ratio when varying the assumed Higgs boson mass by ± 0.24 GeV [14].

3 Acceptance correction

The acceptance factors that extrapolate from the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ fiducial phase space to the full phase space are estimated using the MC samples and cross sections described in Section 2.

1. The prime indicates that important parts of the N3LL (next-to-next-to-next-to-leading logarithm) contribution are included along with the full NNLL corrections and the subscript φ indicates that resummation is applied to the gluon form factor.

2. NNLO$_0$ refers to the NNLO corrections relative to the LO $gg \rightarrow H$ process with 0 additional partons.
Their evaluation assumes SM Higgs boson production fractions and a Higgs boson mass of 125 GeV; the 90 MeV difference from 125.09 GeV has negligible impact on the Higgs boson kinematics and is covered by the systematic uncertainty from the Higgs boson mass measurement.

In the $H \rightarrow \gamma\gamma$ fiducial phase space [10], the selected events have two photons with pseudorapidity $|\eta| < 1.37$ or $1.52 < |\eta| < 2.37$ and $p_T^{\gamma_{1}} > 0.35m_{\gamma\gamma}$, $p_T^{\gamma_{2}} > 0.25m_{\gamma\gamma}$, where $p_T^{\gamma_{i}}$ refers to the transverse momentum of the (sub)leading photon and $m_{\gamma\gamma}$ is the invariant mass of the two photons. The photons are required to be isolated: the p_T of the system of charged generator-level particles within $\Delta R = 0.2$ of the photon is required to be less than 0.05 times the p_T of the photon. In the $H \rightarrow ZZ^{*} \rightarrow 4\ell$ fiducial phase space [11], the selected events have four muons, four electrons, or two electrons and two muons. The three leading leptons are required to have $p_T > 20, 15, 10$ GeV. The lowest-p_T muon (electron) has to fulfil $p_T > 5$ (7) GeV. The muons have to be within $|\eta| < 2.7$ and the electrons within $|\eta| < 2.47$.

Following the selection of events in data, requirements are placed on the masses of the two same-flavour opposite-charge pairs, on the ΔR of any two leptons, and the invariant mass of the four-lepton system, 115 GeV < $m_{4\ell}$ < 130 GeV.

In the total phase space, the quantities p_T^H and $|y^H|$ are computed directly from the simulated Higgs boson momentum instead of its decay products, as in the fiducial analyses. Simulated particle-level jets are built from all particles with $c\tau > 10$ mm excluding neutrinos, electrons and muons that do not originate from hadron decays. Photons are excluded from jet finding if they originate directly from the Higgs boson decay or are radiated off leptons from the Higgs boson decay. Jets are reconstructed using the anti-k_t algorithm [79] with a radius parameter $R = 0.4$, and are required to have $p_T > 30$ GeV.

Theory uncertainties in the signal acceptance related to the PDF, higher-order corrections, and the parton shower are considered for the acceptance factors and are correlated between the two channels. Uncertainties due to the PDF and scales are estimated as described in Section 2. Uncertainties due to the parton shower are evaluated by comparing the ggF default showering PYTHIA8 with HERWIG7. The Higgs boson mass is varied within the uncertainty of the ATLAS–CMS combined measurement [14]. To account for model dependence, the fractions of production modes are varied within the uncertainties from the dedicated measurements by the ATLAS and CMS collaborations [80]. For $t\bar{t}H$, the 13 TeV ATLAS results are used [81]. The total systematic uncertainties of the acceptance factors range between 0.4% and 5%, depending on the observable and bin. The parton shower uncertainty dominates.

The inclusive acceptance factors are 50% for the $H \rightarrow \gamma\gamma$ channel and 42% for the $H \rightarrow ZZ^{*} \rightarrow 4\ell$ channel (relative to the full phase space of $H \rightarrow ZZ^{*} \rightarrow 2\ell 2\ell'$, where $\ell, \ell' = e$ or μ). The acceptance is lower for $H \rightarrow ZZ^{*} \rightarrow 4\ell$ than for $H \rightarrow \gamma\gamma$ since it is less likely for four leptons to fulfil the fiducial requirements. Figure 1 shows the acceptance factors used for the differential observables and their systematic uncertainties. The fiducial acceptance falls off steeply as the Higgs boson rapidity increases, as both fiducial definitions include pseudorapidity requirements on the Higgs boson decay products.

3 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln\tan(\theta/2)$. Angular distance is measured in units of $\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2}$.
Figure 1: Acceptance factors for the extrapolation from the fiducial to the total phase space for the $H \rightarrow \gamma\gamma$ decay channel (red) and the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel (blue), for (a) Higgs boson transverse momentum p_T^H, (b) Higgs boson rapidity $|y^H|$, (c) number of jets N_{jets} with $p_T > 30$ GeV, and (d) transverse momentum of the leading jet p_T^{j1}, including systematic uncertainties. The first bin in the p_T^{j1} distribution corresponds to the 0-jet bin in the N_{jets} distribution, as indicated by the black vertical line.
4 Statistical procedure

The combined measurement is based on maximizing the profile-likelihood ratio [82]:

$$\Lambda(\sigma) = \frac{L(\sigma, \hat{\theta}(\sigma))}{L(\hat{\sigma}, \hat{\theta})}.$$

Here σ are the parameters of interest, θ are the nuisance parameters, and L represents the likelihood function. The $\hat{\sigma}$ and $\hat{\theta}$ terms denote the unconditional maximum-likelihood estimate of the parameters, while $\hat{\theta}(\sigma)$ is the conditional maximum-likelihood estimate for given parameter values.

The likelihood function L includes the signal extraction, the correction to particle level, and the extrapolation to the total phase space in each channel. Therefore, the total cross section as well as the cross sections in different bins for each observable can be derived directly as parameters of interest σ based on the combined data set from the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ channels.

The distribution shape and normalization systematic uncertainties of all components are included in the likelihood function as nuisance parameters θ with constraints from subsidiary measurements. This allows the uncertainties to be correlated between bins, decay channels, and correction and acceptance factors. The bin boundaries of all probed observables are consistent between the $H \rightarrow \gamma\gamma$ and the $H \rightarrow ZZ^* \rightarrow 4\ell$ analyses [10, 11]. Where one bin in one of the measurements corresponds to two bins in the other, the wider bin size is used. The sum of the cross sections in the finer bins is considered as the parameter of interest in these cases, and an additional unconstrained nuisance parameter that floats in the fit describes the difference between the merged bins. The normalization and shape uncertainties of the $H \rightarrow \gamma\gamma$ background estimate [10] are fit to the data as nuisance parameters without any initial constraint.

The test statistic $-2 \ln \Lambda$ is assumed to follow a χ^2 distribution for constructing confidence intervals [82]. This asymptotic assumption was tested with pseudo-experiments for bins with low numbers of events and found to be appropriate.

The level of agreement between the two channels in the total phase space is evaluated by using a profiled likelihood as a function of the difference of the cross sections in each bin i, $\sigma_{\gamma\gamma}^i - \sigma_{4\ell}^i$. The number of degrees of freedom is the same as the number of bins in the tested distribution. The probability that a measured differential cross section is compatible with a theoretical prediction is found by computing a p-value based on the difference between the value of $-2 \ln \Lambda$ at the unconditional maximum-likelihood estimate and the value obtained by fixing the cross sections in all bins to the ones predicted by the theory. The uncertainties in the theoretical predictions are ignored when calculating the p-values.

5 Results

The total cross section is measured to be $47.9^{+9.1}_{-8.6}$ pb in the $H \rightarrow \gamma\gamma$ decay channel and 68^{+11}_{-10} pb in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel. The result of the combined measurement is $57.0^{+6.0}_{-5.9}$ (stat.) $^{+4.0}_{-3.3}$ (syst.) pb, in agreement with the SM prediction of 55.6 ± 2.5 pb [13]. The results from the individual decay channels are compatible, with a p-value of 14%.

Figure 2 shows the differential cross sections in the total phase space measured in the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channels as well as the combined measurement as a function of p_T^H, $|y^H|$, etc.
Figure 2: Differential cross sections in the full phase space measured with the $H \to \gamma \gamma$ (red upward triangle) and $H \to ZZ^* \to 4\ell$ (blue downward triangle) decay channels, as well as the combined measurement (black circle) for (a) Higgs boson transverse momentum p_T^H, (b) Higgs boson rapidity $|y^H|$, (c) number of jets N_{jets} with $p_T > 30$ GeV, and (d) the transverse momentum of the leading jet p_T^{j1}. The first bin in the p_T^{j1} distribution corresponds to the 0-jet bin in the N_{jets} distribution, as indicated by the black vertical line. Different SM predictions are overlaid, their bands indicating the PDF uncertainties as well as uncertainties due to missing higher-order corrections. The ordering of the predictions is the same in the legend as in the figure. Predictions for the other production processes XH are added to the ggF predictions, and also shown separately as a shaded area. The dotted red line corresponds to the central value of the NNLOPS ggF prediction, scaled to the total N3LO cross section by the given K-factor, and added to the XH prediction. The uncertainties due to higher orders in the NNLOPS prediction are obtained as in Refs. [10, 11, 77]. The Madgraph5_aMC@NLO prediction is scaled to the total N3LO cross section by the given K-factor. For better visibility, all bins are shown as having the same size, independent of their numerical width. The panel on the bottom shows the ratio of the predictions to the combined measurement. The total uncertainties of the combined measurement are indicated by the black error bars.
Table 3: \(p \)-values in percent indicating the probabilities that the measured differential cross sections are compatible with various SM ggF predictions. The NNLOPS and Madgraph5_AMC@NLO predictions are scaled to the total N^3LO cross section by the given \(K \)-factors. The non-ggF predictions are added, as discussed in Section 2. The uncertainties in the theoretical predictions are ignored when calculating the \(p \)-values.

| \(p \)-values [%] | \(p^H_T \) | \(|y^H| \) | \(N_{\text{jets}} \) | \(p^H_T^{1\ell} \) |
|------------------|----------|---------|----------|----------------|
| NNLOPS \((K = 1.1)\) | 29 | 92 | 43 | 6 |
| HRes | 16 | – | – | – |
| RAISH + NNLOJET | 30 | – | – | – |
| SCETlib | – | 91 | – | 23 |
| Madgraph5_AMC@NLO \((K = 1.47)\) | 77 | 91 | 65 | – |

\(N_{\text{jets}} \), and \(p^H_T^{1\ell} \). Different SM predictions are overlaid. The uncertainties in the Madgraph5_AMC@NLO distribution are larger than for the other predictions, as this prediction is at NLO accuracy only.

For all differential observables and bins, the measurement is dominated by statistical uncertainties, which vary between 20\% and 30\%. Significant uncertainties affecting all observables, including the total cross section, include the uncertainty in the 2015 and 2016 integrated luminosity, which is 3.2\% \[83\], affecting the signal and simulated background estimates in the \(H \rightarrow ZZ^* \rightarrow 4\ell \) decay channel, with an impact of about 4\% on the measurement, and the background estimate in the \(H \rightarrow \gamma\gamma \) signal extraction \[10\], typically \(2\text{--}6\% \). For \(N_{\text{jets}} \) and \(p^H_T^{1\ell} \), the uncertainties in the reconstruction of the jet energy scale and resolution are important as well, typically \(3\text{--}6\% \) \((>10\% \text{ for } N_{\text{jets}} \geq 3) \[84\].

The level of agreement between the two channels in the total phase space is quantified by the corresponding \(p \)-values: 58\% for \(p^H_T \), 40\% for \(|y^H| \), 53\% for \(N_{\text{jets}} \) and 67\% for \(p^H_T^{1\ell} \).

Table 3 shows the \(p \)-values indicating reasonable agreement between the probed SM predictions and the measurement. The relatively low \(p \)-value for HRes can be explained by the lower computed total cross section, as this prediction is at NNLO+NNLL accuracy only. The lower \(p \)-values for \(p^H_T^{1\ell} \) reflect the lower predictions compared to the measurement for high jet \(p_T \). Compatibility checks of individual bins indicate less than 3\(\sigma \) local discrepancy.

6 Conclusion

A combined measurement of the total and differential cross sections in the \(H \rightarrow \gamma\gamma \) and \(H \rightarrow ZZ^* \rightarrow 4\ell \) decay channels was performed, using 36.1 fb\(^{-1}\) of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Good agreement is observed when comparing the results from the two channels, extrapolated to a common phase space. The total Higgs boson production cross section is measured to be \(57.0^{+6.0}_{-5.9} \text{ (stat.)} ^{+4.0}_{-3.3} \text{ (syst.)} \) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The larger data set and the combination of the two decay channels give measurement uncertainties that are significantly smaller than in previous results. The combined results agree with Standard Model predictions.
Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRF, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners isacknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [85].

References

[1] M. Grazzini, A. Ilnicka, M. Spira and M. Wiesemann,
Modeling BSM effects on the Higgs transverse-momentum spectrum in an EFT approach,
JHEP 03 (2017) 115, arXiv: 1612.00283 [hep-ph].

[2] ATLAS Collaboration,
Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the $H \rightarrow \gamma \gamma$ decay channel at $\sqrt{s} = 8$ TeV with the ATLAS detector,
Phys. Lett. B 753 (2016) 69, arXiv: 1508.02507 [hep-ex].

[3] ATLAS Collaboration,
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $\sqrt{s} = 8$ TeV with ATLAS,
JHEP 09 (2014) 112, arXiv: 1407.4222 [hep-ex].

[4] ATLAS Collaboration,
Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector,
Phys. Lett. B 738 (2014) 234, arXiv: 1408.3226 [hep-ex].
ATLAS Collaboration, Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ Decay Channels at $\sqrt{s} = 8$ TeV with the ATLAS Detector, Phys. Rev. Lett. 115 (2015) 091801, arXiv: 1504.05833 [hep-ex].

ATLAS Collaboration, Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to $WW^* \rightarrow e\nu\mu\nu$ with the ATLAS detector at $\sqrt{s} = 8$ TeV, JHEP 08 (2016) 104, arXiv: 1604.02997 [hep-ex].

CMS Collaboration, Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at $\sqrt{s} = 8$ TeV, Eur. Phys. J. C 76 (2016) 13, arXiv: 1508.07819 [hep-ex].

CMS Collaboration, Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at $\sqrt{s} = 7$ and 8 TeV, JHEP 04 (2016) 005, arXiv: 1512.08377 [hep-ex].

CMS Collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $\sqrt{s} = 13$ TeV, JHEP 11 (2017) 132, arXiv: 1708.02810 [hep-ex].

ATLAS Collaboration, Measurement of inclusive and differential cross sections in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP 10 (2017) 132, arXiv: 1708.02810 [hep-ex].

ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.

D. de Florian et al., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, 2016, arXiv: 1610.07922 [hep-ph].

ATLAS and CMS Collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803, arXiv: 1503.07589 [hep-ex].

T. Sjöstrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv: hep-ph/0603175.

T. Sjöstrand, S. Mrenna and P. Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv: 0710.3820 [hep-ph].

M. Bahr et al., Herwig++ physics and manual, Eur. Phys. J. C 58 (2008) 639, arXiv: 0803.0883 [hep-ph].

J. Bellm et al., Herwig++ 2.7 Release Note, (2013), arXiv: 1310.6877 [hep-ph].

P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040, arXiv: hep-ph/0409146.

S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070, arXiv: 0709.2092 [hep-ph].
[21] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043, arXiv: 1002.2581 [hep-ph].

[22] J. M. Campbell et al., NLO Higgs Boson Production Plus One and Two Jets Using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092, arXiv: 1202.5475 [hep-ph].

[23] K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP 10 (2013) 222, arXiv: 1309.0017 [hep-ph].

[24] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001, arXiv: 1510.03865 [hep-ph].

[25] G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73, arXiv: hep-ph/0508068 [hep-ph].

[26] D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064, arXiv: 1109.2109 [hep-ph].

[27] P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037, arXiv: 0911.5299 [hep-ph].

[28] G. Luisoni, P. Nason, C. Oleari and F. Tramontano, HW⁺HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, JHEP 10 (2013) 083, arXiv: 1306.2542 [hep-ph].

[29] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079, arXiv: 1405.0301 [hep-ph].

[30] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024, arXiv: 1007.2241 [hep-ph].

[31] M. Wiesemann et al., Higgs production in association with bottom quarks, JHEP 02 (2015) 132, arXiv: 1409.5301 [hep-ph].

[32] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244, arXiv: 1207.1303 [hep-ph].

[33] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka (Eds), Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, CERN-2011-002 (CERN, Geneva, 2011), arXiv: 1101.0593 [hep-ph].

[34] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka (Eds), Handbook of LHC Higgs Cross Sections: 2. Differential Distributions, CERN-2012-002 (CERN, Geneva, 2012), arXiv: 1201.3084 [hep-ph].

[35] LHC Higgs Cross Section Working Group, S. Heinemeyer, C. Mariotti, G. Passarino, R. Tanaka (Eds), Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, CERN-2013-004 (CERN, Geneva, 2013), arXiv: 1307.1347 [hep-ph].

[36] A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440.

[37] S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283.
[54] T. Han and S. Willenbrock, *QCD correction to the pp → WH and ZH total cross-sections*, Phys. Lett. B 273 (1991) 167.

[55] O. Brein, A. Djouadi and R. Harlander, *NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders*, Phys. Lett. B 579 (2004) 149, arXiv: hep-ph/0307206.

[56] M.L. Ciccolini, S. Dittmaier and M. Krämer, *Electroweak radiative corrections to associated WH and ZH production at hadron colliders*, Phys. Rev. D 68 (2003) 073003, arXiv: hep-ph/0306234.

[57] W. Beenakker et al., *Higgs radiation off top quarks at the Tevatron and the LHC*, Phys. Lett. B 579 (2004) 149, arXiv: hep-ph/0307206.

[58] M.L. Ciccolini, S. Dittmaier and M. Krämer, *Electroweak radiative corrections to associated WH and ZH production at hadron colliders*, Phys. Rev. D 68 (2003) 073003, arXiv: hep-ph/0306234.

[59] W. Beenakker et al., *NLO QCD corrections to t\bar{t}H production in hadron collisions*, Nucl. Phys. B 653 (2003) 151, arXiv: hep-ph/0211352.

[60] S. Dawson, L. Orr, L. Reina and D. Wackeroth, *Next-to-leading order QCD corrections to pp → t\bar{t}h at the CERN Large Hadron Collider*, Phys. Rev. D 67 (2003) 071503, arXiv: hep-ph/0211438.

[61] R. Harlander, M. Krämer and M. Schumacher, *Bottom-quark associated Higgs-boson production: Reconciling the four- and five-flavour scheme approach*, (2011), arXiv: 1112.3478 [hep-ph].

[62] D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, *Higgs boson production at the LHC: transverse momentum resummation effects in the H → γγ, H → WW → ℓνℓν and H → ZZ → 4ℓ decay modes*, JHEP 06 (2012) 132, arXiv: 1203.6321 [hep-ph].

[63] M. Grazzini and H. Sargsyan, *Heavy-quark mass effects in Higgs boson production at the LHC*, JHEP 09 (2013) 129, arXiv: 1306.4581 [hep-ph].

[64] P. F. Monni, E. Re and P. Torrielli, *Higgs Transverse-Momentum Resummation in Direct Space*, Phys. Rev. Lett. 116 (2016) 242001, arXiv: 1604.02191 [hep-ph].

[65] X. Chen, T. Gehrmann, E. W. N. Glover and M. Jaquier, *Precise QCD predictions for the production of Higgs + jet final states*, Phys. Lett. B 740 (2015) 147, arXiv: 1408.5325 [hep-ph].

[66] X. Chen, J. Cruz-Martinez, T. Gehrmann, E. W. N. Glover and M. Jaquier, *NNLO QCD corrections to Higgs boson production at large transverse momentum*, JHEP 10 (2016) 066, arXiv: 1607.08817 [hep-ph].

[67] R. Frederix and S. Frixione, *Merging meets matching in MC@NLO*, JHEP 12 (2012) 061, arXiv: 1209.6215 [hep-ph].

[68] R. Frederix, S. Frixione, E. Vryonidou and M. Wiesemann, *Heavy-quark mass effects in Higgs plus jets production*, JHEP 08 (2016) 006, arXiv: 1604.03017 [hep-ph].

[69] O. Mattelaer, *On the maximal use of Monte Carlo samples: re-weighting events at NLO accuracy*, Eur. Phys. J. C 76 (2016) 674, arXiv: 1607.00763 [hep-ph].
[70] M. A. Ebert, J. K. L. Michel and F. J. Tackmann,
Resummation improved rapidity spectrum for gluon fusion Higgs production,
JHEP 05 (2017) 088, arXiv: 1702.00794 [hep-ph].

[71] M. A. Ebert et al., SCETlib: A C++ Package for Numerical Calculations in QCD and Soft-Collinear Effective Theory, DESY-17-099, url: http://scetlib.desy.de.

[72] R. Boughezal et al., Color singlet production at NNLO in MCFM, Eur. Phys. J. C 77 (2017) 7, arXiv: 1605.08011 [hep-ph].

[73] J. Gaunt, M. Stahlhofen, F. J. Tackmann and J. R. Walsh,
N-jettiness Subtractions for NNLO QCD calculations, JHEP 09 (2015) 058, arXiv: 1505.04794 [hep-ph].

[74] I. W. Stewart, F. J. Tackmann, J. R. Walsh and S. Zuberi,
Jet p_T resummation in Higgs production at NNLL' + NNLO, Phys. Rev. D 89 (2014) 054001, arXiv: 1307.1808 [hep-ph].

[75] R. Boughezal, X. Liu, F. Petriello, F. J. Tackmann and J. R. Walsh,
Combining Resummed Higgs Predictions Across Jet Bins, Phys. Rev. D 89 (2014) 074044, arXiv: 1312.4535 [hep-ph].

[76] A. Banfi et al.,
Jet-vetoed Higgs cross section in gluon fusion at N^3LO+NNLL with small-R resummation, JHEP 04 (2016) 049, arXiv: 1511.02886 [hep-ph].

[77] ATLAS Collaboration, Measurement of the Higgs boson coupling properties in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel at $\sqrt{s} = 13$ TeV with the ATLAS detector, (2017), arXiv: 1712.02304 [hep-ex].

[78] X. Liu and F. Petriello,
Reducing theoretical uncertainties for exclusive Higgs-boson plus one-jet production at the LHC, Phys. Rev. D 87 (2013) 094027, arXiv: 1303.4405 [hep-ph].

[79] M. Cacciari, G. P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063, arXiv: 0802.1189 [hep-ph].

[80] ATLAS and CMS Collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s} = 7$ and 8 TeV, JHEP 08 (2016) 045, arXiv: 1606.02266 [hep-ex].

[81] ATLAS Collaboration, Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector, (2017), arXiv: 1712.08891 [hep-ex].

[82] G. Cowan, K. Cranmer, E. Gross and O. Vitells,
Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554, arXiv: 1007.1727 [physics.data-an], Erratum: Eur. Phys. J. C 73 (2013) 2501.

[83] ATLAS Collaboration,
Luminosity determination in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653, arXiv: 1608.03953 [hep-ex].

[84] ATLAS Collaboration, Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at $\sqrt{s} =13$ TeV with the ATLAS detector, (2017), arXiv: 1703.09665 [hep-ex].
[85] ATLAS Collaboration, *ATLAS Computing Acknowledgements*, ATL-GEN-PUB-2016-002, url: https://cds.cern.ch/record/2202407.
A.D. Sherman, P. Sherwood, L. Shi, S. Shimizu, C.O. Shimmin, M. Shimojima, I.P.J. Shipsey, S. Shirabe, M. Shiyakova, J. Shlomi, A. Shmleva, D. Shoualeh Saadi, M.J. Shoche, S. Shoajii, D.R. Shope, S. Shrestha, E. Shulgina, P. Sicho, A.M. Sickles, P.E. Sidebo, E. Sideras Haddad, O. Sidiroplugulou, A. Sidot, F. Siegenthaler, D. Sijacki, J. Silva, M.S. Silva Oliveira, S.B. Silverstein, L. Simc, S. Simion, E. Simionoi, M. Simon, P. Sinervo, N.B. Sinev, M. Sioli, G. Siragusa, I. Sirail, S.Y. Sivokool, J. Sjölin, M.B. Skinner, P. Skubic, M. Slater, T. Slavicek, M. Slawinska, K. Sliwa, J. Silva, Y. Sim, Y. Smirnov, Y. Smirnov, L.N. Smirnova, O. Smirnov, J. Smith, M.K. Smith, R.W. Smith, M. Smizanska, Y. Smolek, A.A. Snesarev, I.M. Snyder, S. Snyder, R. Sobie, A.M. Soh, A. Soffer, D.A. Soh, G. Sokhrannyi, C.A. Solans Sanchez, M. Solarz, I. Solomon, A. Solodkov, A. Soloshenko, O.V. Solovyanov, V. Solovyev, P. Sommer, H. Son, W. Song, A. Sopczak, F. Sopkova, D. Sosa, C.L. Sotiropoulou, S. Sottocornola, R. Soualah, A.M. Soukharev, D. South, B.C. Sound, S. Spagnolo, M. Spalla, M. Spangenberg, F. Spano, D. Sperlich, F. Spettel, T.M. Spieker, R. Spighi, G. Spigo, L.A. Spiller, D.P. Sputeri, M. Spusta, J. Stabile, E. Stanecka, R.W. Stanek, C. Stanescu, M.M. Stanitzkii, B.S. Staf, S. Stapnes, E.A. Starchenko, G.H. Stark, J. Stark, S.H. Stark, P. Staroba, P. Starovoitov, S. Stärz, R. Staszewski, M. Stiegler, P. Steinberg, B. Stelzer, H.J. Stelzer, O. Stelzer-Chilton, H. Stenzer, T.J. Stevenson, G.A. Stewart, M.C. Stockton, G. Stoica, P. Stolte, S. Stonjek, A. Straessner, J. Strapengard, S. Strapengard, M. Strauss, P. Strzenezewski, R. Ströhmer, D.M. Strom, R. Stroynowski, A. Strubig, S.A. Stucci, B. Stug, J. Stupak, N.A. Styles, D. Su, J. Su, S. Suche, H. Sugaya, M. Suk, V.V. Sulin, D.M. Sulton, S. Santusy, T. Sumida, S. Sun, X. Sun, K. Suruliz, C.J.E. Suster, M.R. Sutton, S. Suzuki, M. Svatos, M. Swiatlowski, S.P. Swift, A. Sydorenko, T. Sykora, D. Ta, K. Tackmann, J. Taenzer, A. Taffiard, R. Taffiard, E. Tahirovic, N. Taiblum, H. Takai, R. Takashima, E.H. Takasugi, T. Takeda, Y. Takubo, M. Talby, A.A. Talysheski, P. Tamiya, M. Tanaka, T. Tanaka, T. Tanioka, B.B. Tannenwald, S. Tapia Araya, S. Tapprogge, M. Tasevsky, M. Tasevsky, A. Tarek, A. Tarek Abouelfadl Mohamed, T. Tarem, G. Tarna, G.F. Tartarelli, P. Tas, M. Tasevsky, T. Tashiro, E. Tassi, A. Tavares Delgado, Y. Tayalati, A.C. Taylor, A.J. Taylor, G. N. Taylor, P.T.E. Taylor, W. Taylor, A.S. Tee, P. Teixeira-Dias, H. Ten Kate, P.K. Teng, J.J. Teoh, F. Tepel, S. Terada, K. Terashi, J. Terron, M. Testa, R.J. Teuscher, S.J. Thais, T. Thenevaux-Pelzer, F. Thiele, J.P. Thomas, A.S. Thompson, P.D. Thompson, L.A. Thomsen, E. Thomson, Y. Tian, R.C. Tice Torres, V.O. Tikhomirov, Yu.A. Tikhonov, S. Timoshenko, P. Tipton, T. Tisserant, K. Todome, S. Todorova-Nova, S. Todt, J. Tojo, S. Tokár, K. Tokuhski, E. Tolle, K.G. Tomiwa, M. Tomoto, L. Tompkins, K. Tomo, B. Tong, P. Torname, E. Torrente, H. Torres, E. Tórroró, C. Tosci, J. Toth, F. Touchard, D.R. Tovey, C.J. Treado, T. Trefzger, F. Tresoldi, A. Tricoli, I.M. Trigger, S. Trincar, M. Trincas-Duvoird, M.F. Tripiana, W. Trischuk, B. Trocmé, A. Trofymov, C. Troncon, M. Trovatielli, F. Trovato, L. Truong, M. Trzebinski, A. Trzupek, F. Tsai, J.C.-L. Tseng, P.V. Tsiarevshka, N. Tsirintanis, V. Tsiskaridze, E.G. Tskhadadze, I.I. Tsukerman, V. Tsuilaia, S. Tsuno, D. Tsbychev, Y. Tu, A. Tudorache, V. Tudorache, T.T. Tsurube, A.N. Tüna, S. Turchikhin, D. Turgeman, I. Turk Cakir, R. Turra, P.M. Tuts, E. Tzovara, G. Ucchielli, I. Ueda, M. Ughetto, F. Ukegawa, G. Urai, A. Undrus, G. Ueno, F.C. Ungaro, Y. Unno, K. Uno, J. Urban, P. Urquijo, P. Urrejola, G. Usaí, J. Usui,
Engineering Science, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg; South Africa.
33 Department of Physics, Carleton University, Ottawa ON; Canada.
34 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Énergie des Sciences Techniques Nucléaires (CNESTEN), Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohammed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat; Morocco.
35 CERN, Geneva; Switzerland.
36 Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.
37 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.
38 Nevis Laboratory, Columbia University, Irvington NY; United States of America.
39 Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.
40 (a) Dipartimento di Fisica, Università della Calabria, Rende; (b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy.
41 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.
42 Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.
43 Physics Department, Southern Methodist University, Dallas TX; United States of America.
44 Physics Department, University of Texas at Dallas, Richardson TX; United States of America.
45 (a) Department of Physics, Stockholm University; (b) Oskar Klein Centre, Stockholm; Sweden.
46 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.
47 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund; Germany.
48 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.
49 Department of Physics, Duke University, Durham NC; United States of America.
50 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.
51 Centre de Calcul de l’lnstitut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne; France.
52 INFN e Laboratori Nazionali di Frascati, Frascati; Italy.
53 Physikalisches Institut, Albert-Ludwigs Universität Freiburg, Freiburg; Germany.
54 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany.
55 Departement de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva; Switzerland.
56 (a) Dipartimento di Fisica, Università di Genova, Genova; (b) INFN Sezione di Genova; Italy.
57 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany.
58 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom.
59 LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France.
60 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America.
61 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; (b) School of Physics, Shandong University, Shandong; (c) School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai; (d) Tsung-Dao Lee Institute, Shanghai; China.
62 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany.
63 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan.
64 (a) Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced
Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.
65Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.
66Department of Physics, Indiana University, Bloomington IN; United States of America.
67(a)INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b)ICTP, Trieste; (c)Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine; Italy.
68(a)INFN Sezione di Lecce; (b)Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy.
69(a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano, Milano; Italy.
70(a)INFN Sezione di Napoli; (b)Dipartimento di Fisica, Università di Napoli, Napoli; Italy.
71(a)INFN Sezione di Pavia; (b)Dipartimento di Fisica, Università di Pavia, Pavia; Italy.
72(a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.
73(a)INFN Sezione di Roma; (b)Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.
74(a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy.
75(a)INFN Sezione di Roma Tre; (b)Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy.
76(a)INFN-TIFPA; (b)Università degli Studi di Trento, Trento; Italy.
77Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria.
78University of Iowa, Iowa City IA; United States of America.
79Joint Institute for Nuclear Research, JINR Dubna, Dubna; Russia.
80KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.
81Graduate School of Science, Kobe University, Kobe; Japan.
82Faculty of Science, Kyoto University, Kyoto; Japan.
83Kyoto University of Education, Kyoto; Japan.
84Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.
85Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.
86Physics Department, Lancaster University, Lancaster; United Kingdom.
87Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.
88Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.
89School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.
90Department of Physics, Royal Holloway University of London, Egham; United Kingdom.
91Department of Physics and Astronomy, University College London, London; United Kingdom.
92Louisiana Tech University, Ruston LA; United States of America.
93LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris; France.
94Fysiska institutionen, Lunds universitet, Lund; Sweden.
95Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain.
96Institut für Physik, Universität Mainz, Mainz; Germany.
97School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.
98CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
99Department of Physics, University of Massachusetts, Amherst MA; United States of America.
100Department of Physics, McGill University, Montreal QC; Canada.
101School of Physics, University of Melbourne, Victoria; Australia.
102Department of Physics, University of Michigan, Ann Arbor MI; United States of America.
103Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus.
Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus.
Group of Particle Physics, University of Montreal, Montreal QC; Canada.
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia.
Institute for Theoretical and Experimental Physics (ITEP), Moscow; Russia.
National Research Nuclear University MEPhI, Moscow; Russia.
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.
Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.
Nagasaki Institute of Applied Science, Nagasaki; Japan.
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands.
Department of Physics, Northern Illinois University, DeKalb IL; United States of America.
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk; Novosibirsk State University Novosibirsk; Russia.
Department of Physics, New York University, New York NY; United States of America.
Ohio State University, Columbus OH; United States of America.
Faculty of Science, Okayama University, Okayama; Japan.
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America.
Department of Physics, Oklahoma State University, Stillwater OK; United States of America.
Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic.
Center for High Energy Physics, University of Oregon, Eugene OR; United States of America.
LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.
Graduate School of Science, Osaka University, Osaka; Japan.
Department of Physics, University of Oslo, Oslo; Norway.
Department of Physics, Oxford University, Oxford; United Kingdom.
Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.
Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia.
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.
Laboratório de Instrumentação e Física Experimental de Partículas - LIP; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa; Departamento de Física, Universidade de Coimbra, Coimbra; Centro de Física Nuclear da Universidade de Lisboa, Lisboa; Departamento de Física, Universidade do Minho, Braga; Departamento de Física Teorica y del Cosmos, Universidad de Granada, Granada (Spain); Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica; Portugal.
Institute of Physics, Academy of Sciences of the Czech Republic, Prague; Czech Republic.
Czech Technical University in Prague, Prague; Czech Republic.
138 Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.
139 State Research Center Institute for High Energy Physics, NRC KI, Protvino; Russia.
140 Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.
141 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Departamento de
 Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; (c) Universidade Federal de
 Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao
 Paulo; Brazil.
142 DRF/IRFU, CEA Saclay, Gif-sur-Yvette; France.
143 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United
 States of America.
144 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de
 Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.
145 Department of Physics, University of Washington, Seattle WA; United States of America.
146 Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
147 Department of Physics, Shinshu University, Nagano; Japan.
148 Department Physik, Universität Siegen, Siegen; Germany.
149 Department of Physics, Simon Fraser University, Burnaby BC; Canada.
150 SLAC National Accelerator Laboratory, Stanford CA; United States of America.
151 Physics Department, Royal Institute of Technology, Stockholm; Sweden.
152 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of
 America.
153 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.
154 School of Physics, University of Sydney, Sydney; Australia.
155 Institute of Physics, Academia Sinica, Taipei; Taiwan.
156 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High
 Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.
157 Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.
158 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.
159 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.
160 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo,
 Tokyo; Japan.
161 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.
162 Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.
163 Tomsk State University, Tomsk; Russia.
164 Department of Physics, University of Toronto, Toronto ON; Canada.
165 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON;
 Canada.
166 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and
 Applied Sciences, University of Tsukuba, Tsukuba; Japan.
167 Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.
168 Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of
 America.
169 Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.
170 Department of Physics, University of Illinois, Urbana IL; United States of America.
171 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.
172 Department of Physics, University of British Columbia, Vancouver BC; Canada.
173 Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.
Department of Physics, University of Warwick, Coventry; United Kingdom.
Waseda University, Tokyo; Japan.
Department of Particle Physics, Weizmann Institute of Science, Rehovot; Israel.
Department of Physics, University of Wisconsin, Madison WI; United States of America.
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany.
Department of Physics, Yale University, New Haven CT; United States of America.
Yerevan Physics Institute, Yerevan; Armenia.
a Also at Borough of Manhattan Community College, City University of New York, New York City; United States of America.
b Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town; South Africa.
c Also at CERN, Geneva; Switzerland.
d Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
e Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain.
f Also at Departamento de Física Teorica y del Cosmos, Universidad de Granada, Granada (Spain); Spain.
g Also at Departement de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva; Switzerland.
h Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.
i Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.
Also at Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
k Also at Department of Physics, California State University, Fresno CA; United States of America.
l Also at Department of Physics, California State University, Sacramento CA; United States of America.
m Also at Department of Physics, King’s College London, London; United Kingdom.
n Also at Department of Physics, Nanjing University, Nanjing; China.
o Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.
p Also at Department of Physics, Stanford University, Stanford CA; United States of America.
q Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.
r Also at Department of Physics, University of Michigan, Ann Arbor MI; United States of America.
s Also at Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.
t Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow; Russia.
u Also at Georgian Technical University (GTU), Tbilisi; Georgia.
v Also at Giresun University, Faculty of Engineering; Turkey.
w Also at Graduate School of Science, Osaka University, Osaka; Japan.
x Also at Hellenic Open University, Patras; Greece.
y Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; Romania.
z Also at II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany.
aa Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.
ab Also at Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain.
ac Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.

af Also at Institute of Particle Physics (IPP); Canada.

ag Also at Institute of Physics, Academia Sinica, Taipei; Taiwan.

ah Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.

ai Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia.

aj Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.

ak Also at Louisiana Tech University, Ruston LA; United States of America.

al Also at Manhattan College, New York NY; United States of America.

am Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.

an Also at National Research Nuclear University MEPhI, Moscow; Russia.

ao Also at Near East University, Nicosia, North Cyprus, Mersin 10; Turkey.

ap Also at Physikalisches Institut, Albert-Ludwigs Universität Freiburg, Freiburg; Germany.

aq Also at School of Physics, Sun Yat-sen University, Guangzhou; China.

ar Also at The City College of New York, New York NY; United States of America.

as Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China.

at Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.

au Also at TRIUMF, Vancouver BC; Canada.

av Also at Universita di Napoli Parthenope, Napoli; Italy.

aw Also at Universiti of Malaya, Department of Physics, Kuala Lumpur; Malaysia.

* Deceased