LETTER TO THE EDITOR

Management of chronic lymphocytic leukemia in Italy during a one year of the COVID-19 pandemic and at the start of the vaccination program. A Campus CLL report

1 | INTRODUCTION

Twelve months after the outbreak of COVID-19, the Campus CLL network that involves hematology centers throughout Italy completed a survey (Tables 1 and 2) aimed at collecting information on the treatment of chronic lymphocytic leukemia (CLL) patients in the different phases of the pandemic - that is, phase 1 (February–May 2020), phase 2 (June–September 2020) and phase 3 (October 2020–January 2021), as well as on the vaccination program.

During the year of the pandemic, 494 cases of COVID-19 infection were diagnosed among 15,039 CLL cases followed at 47 hematology centers, with a 12-month incidence of 3.3%. This value is comparable with that of the general population in Italy. The majority of CLLs with COVID-19 infection (64%) was observed in the phase 3, with northern regions observing fewer cases than in the phase 1 due to the high incidence observed during the outbreak of the pandemic.1

The age of the patients and the type of anti-CLL treatment did not change significantly in the different phases of the pandemic. Because CLL is a disease affecting predominantly the elderly, it comes as no surprise that the median age of CLL patients with COVID-19 infection did not change over time, even though the infection in our country affected the younger population more frequently during the phase 3 (54.6% of the positive cases) than in the phase 1 (28.6%).

The 25% mortality rate did not change significantly in the different phases of the pandemic and appears comparable with that observed previously.2 We also documented a similar frequency of admissions requiring invasive oxygen support in the high incidence periods, with 21.4% and 20.2% of patients admitted to intensive care units in the phases 1 and 3, respectively.

Our data documented that a higher proportion of patients was followed at home in the summer period (phase 2) compared to those managed during the phase 1 of the pandemic (65% of cases vs. 33.8%, \(p = 0.0096 \)) and also during the phase 3 (39.9% vs. 33.8%, \(p = ns \)). These observations suggest that the implementation of outreach services with home care and mobile clinics3 allowed to release the pressure in hospitals without negatively impacting on survival, especially in the summer period when the low prevalence of the disease enabled an accurate home care follow-up.

2 | MANAGEMENT OF CLL THERAPY

Fifty-five percent of centers reported that the pandemic had not impacted significantly on the choice of anti-CLL treatment. Forty-five % of centers felt instead that treatment choices were influenced by the patients’ risk of being infected during the travel to the hospital, or by organization issues. Interestingly, the percentage of patients treated with chemo-immunotherapy (CIT) at the time of the COVID-19 infection did not change in the phase 1 (15%) compared to the phase 3 (15.7%), suggesting that this treatment modality maintained its role in a distinct minority of CLL patients. Overall, these findings are likely to reflect the balance between the need of offering the best treatment option to each individual patient and the indication to adopt, as much as possible, treatment regimens that require fewer visits to the clinic.4,5

CIT and phosphatidylinositol-3-δ-kinase (PI3KD) inhibitors were withheld at the time of COVID-19 infection. Bruton tyrosine kinase inhibitors (BTKi) and venetoclax were withheld in 53.6% and 66.6% of patients, and the proportion of patients who stopped treatment did not change significantly in the different phases of the pandemic.

The heterogeneous reports by the Campus CLL network on how to treat CLL patients during the reflects the lack of prospective studies. While a prudential treatment hold until recovery has been recommended for patients who develop a COVID-19 infection,4 no treatment modification for patients with mild symptoms has been recommended in an online forum, where it was also reported that it is common practice to continue BTKIs and withhold venetoclax in CLL patients diagnosed with COVID-19.5 Interestingly, in a prospective study of CIT versus venetoclax-based regimens, 7 patients were diagnosed with COVID-19 and 5 recovered.6

3 | VACCINATION

In Italy the vaccination policy for patients with hematologic malignancies is heterogeneous, with some hematology centers organizing the vaccination of their patients in the clinic and others

Antonio Cuneo and Gian Matteo Rigolin contributed equally.

570 | Hematological Oncology. 2021;39:570-574. wileyonlinelibrary.com/journal/hon © 2021 John Wiley & Sons Ltd.
referring patients to dedicated facilities serving a large population. Being aware that vaccination was recommended in patients with hematologic malignancies, we elected to poll the participating centers on their intentions on possible temporary treatment hold before and after vaccination. The majority of centers reported that they planned to advice vaccination to patients undergoing targeted agents without stopping treatment. Nonetheless, 12.2%, 20.5% and 9.5% of centers preferred to withhold BTKis, PI3KD or venetoclax prior to vaccination for at least 1 week and 54.5% of them felt appropriate to offer the vaccination after at least 4 months from the last anti-CD20-containing cycle. Furthermore, 22.7%, 34% and 23% of centers stated that they preferred to hold BTKis, PI3KD or venetoclax treatment for <1 month after vaccination, to ensure a better immunization.

TABLE 1 Baseline characteristics, impact on treatment management and outcome of COVID-19 infection in 494 CLL patients by phase of the pandemic in Italy

Question	No. of COVID-19+ CLL patients	Feb 2020–Jan 2021	Phase 1 (Feb–May 2020) (%)	Phase 2 (Jun–Sep 2020) (%)	Phase 3 (Oct 2020–Jan 2021) (%)	p
No. of COVID-19+ CLL patients	494	147 (29.7)	28 (5.7)	319 (64.6)		
Age at COVID-19 infection						
<50	26 (5.3)	3 (2.0)	0 (0)	23 (7.2)	0.075	
50-65	144 (29.1)	48 (32.7)	12 (42.9)	84 (26.3)		
65-75	171 (34.6)	47 (32.0)	10 (35.7)	114 (35.8)		
>75	153 (31.0)	49 (33.3)	6 (21.4)	98 (30.7)		
Treatment status at COVID-19 infection						
Naïve	236 (47.8)	62 (42.2)	17 (60.7)	157 (49.2)		
Pre-treated	104 (21.0)	37 (25.2)	7 (25.0)	60 (18.8)	0.138	
On treatment	154 (31.2)	48 (32.6)	4 (14.3)	102 (32.0)		
Ongoing anti-CLL treatment at the time of COVID-19 infection						
CIT	23 (15.0)	6 (12.5)	1 (25.0)	16 (15.7)		
BTKi	82 (53.2)	22 (45.8)	1 (25.0)	59 (57.8)	0.155	
PI3KD	8 (5.2)	4 (8.3)	0	4 (3.9)		
V	27 (17.5)	14 (29.2)	1 (25.0)	12 (11.8)		
VR	14 (9.1)	2 (4.2)	1 (25.0)	11 (10.8)		
Anti-CLL treatment withheld because of COVID-19 infection (no. of patients/therapy)						
CIT	22/23 (95.6)	6/6	1/1	15/16		
BTKi	44/82 (53.6)	14/22	0/1	30/59		
PI3KD	7/8 (87.5)	4/4	0	3/4	0.395	
V	18/27 (66.6)	10/14	1/1	7/12		
VR	10/14 (71.4)	2/2	1/1	7/11		
No. of COVID-19+ CLL						
Followed at home without O2 support	187 (39.5)	49 (33.8)	17 (65.4)	121 (39.9)		
Required non-invasive O2 support	192 (40.5)	65 (44.8)	6 (23.1)	121 (39.9)	0.053	
No. of deaths/total no. of COVID-19+ CLL	122/494 (25)	44/147 (29.9)	5/28 (17.9)	73/319 (22.9)	0.180	

Abbreviations: BTKi, Bruton tyrosine kinase inhibitors; CIT, chemoimmunotherapy; CLL, chronic lymphocytic leukemia; H, hospital; NA, not applicable; PI3KD, phosphatidylinositol-3-δ-kinase; Tx, treatment; V, venetoclax; VR, venetoclax and rituximab.

*Data available in 474 pts.

*p = 0.003 for the probability to withhold therapy by treatment.
CONCLUSIONS

The results of this 12-months analysis documented the overall low incidence of COVID-19 infection in CLL patients (3.3%), similar to that of the normal population in Italy. Patients’ age and severity of the disease did not vary significantly in the two high-incidence phases, confirming that CLL patients with COVID-19 are at a relatively high risk of intensive oxygen support despite improvement in the diagnostic tracing and definition of anti-COVID-19 treatment protocols.8

Remarkably, 55% of centers did not report a significant impact of the pandemic on treatment choices, a finding that reflects an efficient organization effort allowing a safe access of patients to the outpatient department. The policy of withholding anti-CLL treatment did not change significantly in the different phases of the pandemic possibly due to the adoption of guidelines shared by treating physicians at each center.4

Lastly, the differences in the recommendations on possible anti-CLL treatment holds before and after COVID 19 vaccination reported in this survey reflect uncertainties in the scientific community pointing to the need of evidence-based recommendations, especially in view of recent published data showing that CLL patients under treatment have a low likelihood of mounting an immune response after vaccination.9,10

KEYWORDS
chronic lymphocytic leukemia, COVID-19, targeted agents, vaccination

TABLE 2 Vaccination policy in the Campus CLL centers

Anti CLL treatment	No. of centers that would recommend to withhold therapy before vaccination/total no. of centers which responded to the question (%)	Length of treatment break before vaccination (months)	% of centers that would recommend to withhold therapy after vaccination	Months between vaccination and restart of treatment
CIT	13/44 (29.5) 11/44 (25.0) 20/44 (45.5)	1-2 3-4 >4	NA	NA
BTKi	36/41 (87.8) 3/41 (7.3) 2/41 (4.9)	No break	22.7	<1m
PI3KD	31/39 (79.5) 5/39 (12.8) 3/39 (7.7)	No break	34	<1m
V	38/42 (90.5) 3/42 (7.1) 1/41 (2.4)	No break	23	<1m

Abbreviations: BTKi, Bruton tyrosine kinase inhibitors; CIT, chemoimmunotherapy; CLL, chronic lymphocytic leukemia; NA, not applicable; PI3KD, phosphatidylinositol-3-δ-kinase; V, venetoclax; VR, venetoclax and rituximab.

4 CONCLUSIONS
LETTER TO THE EDITOR

Hematology Section, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
Division of Hematology, AOU Città della Salute e della Scienza di Torino, Torino, Italy
USC Ematologia, ASST Papa Giovanni XXIII, Bergamo, Italy
Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milano, Italy
Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
S.C. Ematologia, ASST Spedali Civili, Brescia, Italy
Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Italy
UOC Ematologia Azienda Socio Sanitaria Territoriale dei Sette Laghi, Ospedale di Circolo di Varese, Varese, Italy
Hematology, Fondazione Universitaria Policlinico A. Gemelli, Rome, Italy
U.O.C. Ematologia, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milano, Italy
Hematology, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
Hematology, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
Division of Hematology, SC di Ematologia, Ospedale Civile SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
Hematology and Bone Marrow Transplant, Policlinico San Martino, Genova, Italy
Hematology, Azienda ULS 8 Berica Dipartimento Strutturale Oncologia Clinica Vicenza, Vicenza, Italy
Department of Hematology and Oncology “L. and A. Seràgnoli”, Bologna, Italy
Hematology, Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
Clinical and Experimental Medicine, Hematology Section, University of Pisa, Pisa, Italy
Hematology Unit, Azienda Ospedaliero Universitaria Santa Maria della Misericordia, Udine, Italy
SC Ematologia e CTMO Ospedale Oncologico A. Businco, ARNAS “G. Brotzu”, Cagliari, Italy
UOC Ematologia AO Cosenza, Cosenza, Italy
Hematology Unit, Azienda Ospedaliero Universitaria Careggi Firenze, Firenze, Italy
Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese Siena, Siena, Italy
Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
Oncohematology Division, IEO European Institute of Oncology IRCCS, Milan, Italy
SOC Ematologia, Dipartimento di Ematologia Oncologia Azienda Ospedaliera Pugliese Ciaccio Catanzaro, Catanzaro, Italy
SC Ematologia, AOU Città della Scienza e della Salute di Torino, Torino, Italy
UOC Ematologia Policlinico Universitario di Messina, Messina, Italy
Divisione di Ematologia con Trapianto di Midollo Osseo, Azienda Ospedaliera Universitaria Policlinico “G.Rodolico-S.Marco”, Catania, Italy

1Hematology, University of Parma, Parma, Italy
16SCDU Ematologia AOU Maggiore della Carità, Novara, Italy
17SC Ematologia Azienda Ospedaliera Santa Croce e Carle, Cuneo, Italy
18Hematology—Department of Emergency and Organ Transplantation, Azienda Ospedaliero Universitaria Policlinico, Bari, Italy
19Hematology—Azienda Ospedaliera Nazionale Santi Antonio e Biagio e Cesare Arrigo Alessandria, Alessandria, Italy
20 Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
21Hematology, S. Eugenio Hospital, University of Tor Vergata, Rome, Italy
22Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
23Hematology Unit, University of Naples Federico II, Naples, Italy
24Hematology Unit, University of Modena and Reggio Emilia, Modena, Italy
25UOC Ematologia e Centro trapianti AORMN Pesaro, Pesaro, Italy
26Hematology and Bone Marrow Transplant, Policlinico San Martino, Genova, Italy
27Hematology, Azienda ULSS 8 Berica Dipartimento Strutturale Oncologia Clinica Vicenza, Vicenza, Italy
28Department of Hematology and Oncology “L. and A. Seràgnoli”, Bologna, Italy
29Hematology, Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
30Clinical and Experimental Medicine, Hematology Section, University of Pisa, Pisa, Italy
31Hematology Unit, Azienda Ospedaliero Universitaria Santa Maria della Misericordia, Udine, Italy
32SC Ematologia e CTMO Ospedale Oncologico A. Businco, ARNAS “G. Brotzu”, Cagliari, Italy
33UOC Ematologia AO Cosenza, Cosenza, Italy
34Hematology Unit, Azienda Ospedaliero Universitaria Careggi Firenze, Firenze, Italy
35Hematology Unit, University of Siena, Azienda Ospedaliera Universitaria Senese Siena, Siena, Italy
36Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
37SCDU Ematologia Ospedale Mauriziano, Torino, Italy
38Oncohematology Division, IEO European Institute of Oncology IRCCS, Milan, Italy
39SOC Ematologia, Dipartimento di Ematologia Oncologia Azienda Ospedaliera Pugliese Ciaccio Catanzaro, Catanzaro, Italy
40SC Ematologia, AOU Città della Scienza e della Salute di Torino, Torino, Italy
41UOC Ematologia Policlinico Universitario di Messina, Messina, Italy
42Divisione di Ematologia con Trapianto di Midollo Osseo, Azienda Ospedaliera Universitaria Policlinico “G.Rodolico-S.Marco”, Catania, Italy
Antonio Cuneo and Gian Matteo Rigolin contributed equally.

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

ORCID
Antonio Cuneo https://orcid.org/0000-0003-2001-1308
Gian Matteo Rigolin https://orcid.org/0000-0002-8370-5190
Luca Laurenti https://orcid.org/0000-0002-8327-1396
Alessandro Gozzetti https://orcid.org/0000-0003-0769-6891

TRANSPARENT PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1002/hon.2899.

REFERENCES
1. Cuneo A, Scarpò L, Reda G, et al. Chronic lymphocytic leukemia management in Italy during the COVID-19 pandemic: a Campus CLL report. Blood. 2020;136(6):763-766.
2. Scarpò L, Chatzikonstantinou T, Rigolin GM, et al. COVID-19 severity and mortality in patients with chronic lymphocytic leukemia: a joint study by ERIC, the European Research Initiative on CLL, and CLL Campus. Leukemia. 2020;34(9):2354-2363.
3. Nacoti M, Ciocca A, Brambillasca P, et al. A community-based model to the COVID-19 humanitarian crisis. Front Cell Infect Microbiol. 2021;11:639579. https://doi.org/10.3389/fcimb.2021.639579
4. Rossi D, Shadman M, Condoluci A, et al. How we manage patients with chronic lymphocytic leukemia during the SARS-CoV-2 pandemic. Hemasphere. 2020;4(4):e432. https://doi.org/10.3389/fcimb.2021.639579
5. American Society of Hematology. COVID-19 and CLL: Frequently Asked Questions (Version 4.1; last updated February 2, 2021). https://www.hematology.org/covid-19/covid-19-and-cll
6. Fürstenau M, Langerbeins P, De Silva N, et al. COVID-19 among fit patients with CLL treated with venetoclax-based combinations. Leukemia. 2020;34(8):2225-2229.
7. Desai A, Gainor JF, Hegde A, et al. COVID19 and Cancer Clinical Trials Working Group. COVID-19 vaccine guidance for patients with cancer participating in oncology clinical trials. Nat Rev Clin Oncol. 2021;18(5):313-319.
8. Berlin DA, Gulick RM, Martinez FJ. Severe covid-19. N Engl J Med. 2020;383(25):2451-2460.
9. Roeker LE, Knorr DA, Thompson MC, et al. COVID-19 vaccine efficacy in patients with chronic lymphocytic leukemia. Leukemia. 2021;13:1-3 [Epub ahead of print].
10. Herishanu Y, Avivi I, Aharon A, et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood. 2021;137(23):3165-3173 [Epub ahead of print]. https://doi.org/10.1182/blood.2021011568