Deciphering Evolutionary Dynamics of WRKY I Genes in Rosaceae Species

Lan Jiang1,2, Yu Chen3,4, De Bi5, Yunpeng Cao3,6* and Jiucui Tong1*

1 Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China, 2 Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China, 3 Anhui Provincial Engineering Technology Research Center for Development and Utilization of Regional Characteristic Plants, Anhui Agricultural University, Hefei, China, 4 Anhui Zhifei Longcom Biopharmaceutical Co., Ltd., Hefei, China, 5 Suzhou Polytechnic Institute of Agriculture, Suzhou, China, 6 Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China

WRKY transcription factors participate in various regulation processes at different developmental stages in higher plants. Here, 98 WRKY I genes were identified in seven Rosaceae species. The WRKY I genes are highly enriched in some subgroups and are selectively expanded in Chinese pear [Pyrus bretschneideri (P. bretschneideri)] and apple [Malus domestica (M. domestica)]. By searching for intra-species gene microsynteny, we found the majority of chromosomal segments for WRKY I-containing segments in both P. bretschneideri and M. domestica genomes, while paired segments were hardly identified in the other five genomes. Furthermore, we analyzed the environmental selection pressure of duplicated WRKY I gene pairs, which indicated that the strong purifying selection for WRKY domains may contribute to the stability of its structure and function. The expression patterns of duplication PbWRKY genes revealed that functional redundancy for some of these genes was derived from common ancestry and neo-functionalization or sub-functionalization for some of them. This study traces the evolution of WRKY I genes in Rosaceae genomes and lays the foundation for functional studies of these genes in the future. Our results also show that the rates of gene loss and gain in different Rosaceae genomes are far from equilibrium.

Keywords: microsynteny, molecular evolution, WRKY, Rosaceae, WGD

INTRODUCTION

Rosaceae species, such as black raspberry [Rubus occidentalis (R. occidentalis)], strawberry [Fragaria vesca (F. vesca)], peach [Prunus persica (P. persica)], sweet cherry [Prunus avium (P. avium)], Chinese plum [Prunus mume (P. mume)], Chinese pear [Pyrus bretschneideri (P. bretschneideri)], and apple [Malus domestica (M. domestica)], constitute the most important resources for commercial fruits. The botanical family Rosaceae can be divided into 91 genera and includes approximately 4,828 species distributed throughout the world (Christenhusz and Byng, 2016). According to previous studies, the genomes of F. vesca (Shulaev et al., 2011) and R. occidentalis (Vanburen et al., 2016; Libran et al., 2018) (X = 7), P. persica (Verde et al., 2013), P. avium (Shirasawa et al., 2017), and P. mume (Zhang et al., 2012) (X = 8), and P. bretschneideri (Wu et al., 2013) and

Abbreviations: qRT-PCR, real-time PCR; Ka, non-synonymous; Ks, synonymous, NJ, neighbor joining; WGD, whole genome duplication.
clusters and extensive synteny remains in the homologous these seven species. We also investigate the putative orthologous describe the gene duplication and evolution of (Ishiguro and Nakamura, 1994). According to comparative genomics, evolutionary analysis of the subgroup have been studied for (Qiu et al., 2004), poplar (Populus trichocarpa (P. trichocarpa)) (Duan et al., 2015), Arabidopsis (Arabidopsis thaliana (A. thaliana)) (Dong et al., 2003). Additionally, large-scale systematic analyses of WRKY gene family have been studied for A. thaliana (Wang et al., 2011), O. sativa (Ross et al., 2007), P. bretschneideri (Qiao et al., 2015), P. trichocarpa (He et al., 2012), and Cucumis sativus (Ling et al., 2011).

The previous studies have shown that the members of WRKY subgroup I appear to be functionally different from each other (Ishiguro and Nakamura, 1994). According to comparative genomics, evolutionary analysis of the WRKY subgroup has been reported in some model plants (Coulthart and Singh, 1988), but the specific evolutionary relationships of the WRKY subgroup are still unknown in Rosaceae genomes. To improve our understanding of the WRKY subgroup I in the sequenced genomes of Rosaceae family—F. vesca, R. occidentalis, P. persica, P. avium, P. mume, P. bretschneideri, and M. domestica—we describe the gene duplication and evolution of WRKY I genes in these seven species. We also investigate the putative orthologous or paralogous gene models. In the current study, 12 orthologous clusters and extensive synteny remains in the homologous regions were identified in Rosaceae genomes. Remarkably, we found that most WRKY genes could be traced to ancient whole genome duplication (WGD) or recent WGD, which is shared by both P. bretschneideri and M. domestica genomes. However, the gene loss and duplication rates of the WRKY gene family differ greatly among the separate lineages of Rosaceae. The current study provides the first systematic analysis and may help to push the function of the WRKY gene from one lineage to another.

MATERIALS AND METHODS

Identification of WRKY I Genes in Rosaceae Species

The protein, cDNA, and genome sequences of seven Rosaceae were obtained from the respective genome sequence sites as follows: both P. avium and R. occidentalis from Genome Database for Rosaceae, F. vesca from Phytozome database, P. persica from Joint Genome Institute, P. mume from GigaDB Dataset, P. bretschneideri from Nanjing Agricultural University, and M. domestica from Plant Genome Duplication Database. The Hidden Markov Model (HMM) profiles of the WRKY-domain (PF03106) were extracted from Pfam HMM library and were used to query each search these seven genomes by HMMER 3.0 software (e-value < 0.001) (Mistry et al., 2013). The overlapping genes were manually removed, and then the Pfam database (Finn et al., 2013), InterPro database (Zdobnov and Apweiler, 2001), and SMART software (Letunic et al., 2012) were used to verify the proteins that have two WRKY domains (Figure 1), namely, WRKY I proteins.

Gene Structure Analysis

The gene structures of WRKY I genes were determined by the alignment of its genomic DNA sequence with the coding sequence. The conserved motif structures of WRKY I proteins were generated by Local MEME software (Bailey et al., 2015) with the following parameters: -protein, -motifs 20, -minw 5, and -maxw 200. The TBtools software was used to visualize the conserved motifs and gene structures. The WebLogo was used to generate the sequence logos of the first WRKY domain (a) and the second WRKY domain.

Phylogenetic Analysis of WRKY I Genes

To further understand their evolutionary history, all 98 WRKY I genes from these seven Rosaceae species were used in phylogenetic analysis. The MAFFT software was used to perform the WRKY I gene alignments with default parameters (Katoh and Standley, 2013). The IQ-TREE software was used to

1http://www.rosaceae.org/
2https://phytozome.jgi.doe.gov/pz/portal.html
3http://www.jgi.doe.gov/
4ftp://climb.genomics.cn/
5http://peargenome.njau.edu.cn/
6http://chibba.agtec.uga.edu/
7https://github.com/CJ-Chen/TBtools/
8http://weblogo.berkeley.edu/logo.cgi
build the maximum-likelihood (ML) phylogenetic tree with a bootstrap test for 1,000 replicates, an Shimodaira Hasegawa-approximate likelihood ratio test (SH-aLRT) for 1,000 random addition replicates (Nguyen et al., 2014), and the best nucleotide substitution model (HKY $+ F + I + G4$) was also chosen by this software independently. The FigTree software and iTOL online were used to display the phylogenetic trees (Letunic and Bork, 2006). The Rosaceae species tree was built according to the phylogeny relationships from the NCBI taxonomy database (Federhen, 2012). To estimate the number of WRKY I genes in the ancestral species, the Notung software was used to calculate gene losses and gene gains during evolution (Chen et al., 2000).

Microsynteny Analysis

To classify and expand WRKY I gene family in *F. vesca*, *R. occidentalis*, *P. persica*, *P. avium*, *P. mume*, *P. bretschneideri*, and *M. domestica*, we examined the chromosome locations of all members of this family. Subsequently, a strategy similar to that of the previously published manuscripts was executed to detect large-scale duplication events (Maher et al., 2006; Cao et al., 2016c). If two WRKY I genes were duplicated by large-scale duplication events (e.g., WGD), the two regions containing these two WRKY I genes were expected to retain some other gene duplicates, which show relatively high sequence similarity at the amino acid level (Maher et al., 2006; Jing et al., 2016). First, all WRKY I genes from *F. vesca*, *R. occidentalis*, *P. persica*, *P. avium*, *P. mume*, *P. bretschneideri*, and *M. domestica* were employed as the original anchor points. Next, to detect duplicated genes between two independent regions, we compared all protein-coding sequences 100-kb upstream and downstream of each anchor point by pairwise the Basic Local Alignment Search Tool (BLASTP) analysis, based on the previously published articles (Deleu et al., 2007; Cao et al., 2016c). Finally, the total number of protein-coding genes flanking the anchor point (i.e., WRKY I gene) that contained the best non-self-match (cut-off e-value = 10^{-10}) was counted (Sato et al., 2008). According to previously published articles (Coulthart and Singh, 1988; Cao et al., 2016c), such two regions, which contained four or more gene pairs with syntentic relationships, were considered to have evolved from large-scale duplication events.

Analysis of Orthologous Relationship and Selective Pressure

The orthologous relationships were detected in the proteomes of seven Rosaceae species using the OrthoMCL software (Li et al., 2003) with e-value $< 1e^{-10}$. The ratio between non-synonymous (Ka) and synonymous (Ks) was calculated using the DnaSP software (Librado and Rozas, 2009) on protein-coding genes to detect selective pressure acting on WRKY I genes. The ratios of Ka/Ks > 1, < 1, and $= 1$ indicate the positive selection, negative selection, and neutral selection, respectively.

To further understand the particular amino acid sites under positive selection, we carried out a sliding window analysis of Ka/Ks ratios with parameters: step size, 9 bp; window size, 150 bp (Cao et al., 2016a).

Expression Analysis

To detect the expression patterns of WRKY I genes in seven Rosaceae species, we retrieved the RNA-seq data from Sequence Read Archive (SRA) and European Bioinformatics Institute (EBI) database, and accession numbers for these RNA-seq data are presented in the “Data Availability Statement” section. The SRA toolkit software was used to decompress raw data into the
RNA Extraction and Quantitative Real-Time PCR
This experiment was performed in 2017 on pear trees (P. bretschneideri cv. Dangshan Su’) planted in the experimental orchard of the farm in Dangshan, Anhui, China. Three biological replicates of fruit samples were collected from spring to summer 2017 during P. bretschneideri fruit developmental stages. The first sampling was performed on 18 April (15 days). Subsequently, remaining samples were taken on 13 May (39 days after flowering, DAF), 20 May (47 DAF), 29 May (55 DAF), 5 June (63 DAF), 21 June (79 DAF), 14 July (102 DAF), and 28 August (145 DAF) in 2017 after flowering (DAF). We used the guanidine thiocyanate extraction method to extract the total RNAs by RNA Plus (Takara, Dalian). The first-strand cDNAs were synthesized from DNasel-treated total RNA using reverse transcriptase (Takara, Dalian) based on the instructions of the manufacturer. The CFX96 TouchTM Real-Time PCR Detection System (Bio-Rad) was used to conduct the quantitative real-time PCR (qRT-PCR) experiment. We designed the primers of PbWRKY genes for qRT-PCR using Primer Premier 6.0 software (Applied Biosystems, Takara, Dalian). The relative expression level was calculated as a $2^{-\Delta\Delta C_{T}}$ method and normalized against the P. bretschneideri Actin gene (NCBI ID AF386514) as described previously (Livak and Schmittgen, 2001; Cao et al., 2016a). For each sample, we conducted three technical replicates in our study. The SPSS v24 was used to detect the analysis of statistical significance.

The experiments did not involve endangered or protected species. No specific permits were required for these locations/activities because the P. bretschneideri genes used in this study were obtained from the tissue culture room of Anhui Agricultural University.

RESULTS
Identification of WRKY I Genes in Rosaceae Species
To identify all full-length WRKY I proteins in seven Rosaceae species, HMM searches were carried out against the annotated genomes of F. vesca, R. occidentalis, P. persica, P. avium, P. mume, P. bretschneideri, and M. domestica. A total of 6, 9, 10, 11, and 13 WRKY I genes were detected in P. avium, P. persica, P. mume, R. occidentalis, and F. vesca, respectively, while 20 and 28 WRKY I genes were identified in P. bretschneideri and M. domestica, respectively (Table 1). Subsequently, we detected the exact chromosomal locations of all WRKY I genes through a blast search of the genome sequences using TBtools software. The distribution of WRKY I genes among the chromosomes in these seven Rosaceae genomes was random and unbalanced (Supplementary Figure 1). For example, in the M. domestica genome, WRKY I genes are mainly distributed in chromosome 12, followed by chromosomes 3 (4) and 6 (4), and the others are located among chromosomes 2, 4, 11, 13, 14, 15, 16, and 17. However, in the P. bretschneideri genome, the WRKY I genes were scattered across chromosomes 2, 3, 5, 6, 8, 9, 11, 12, 13, 14, and 17.

Phylogenetic Analysis of the WRKY I Genes
To investigate the WRKY I genes from seven Rosaceae species, we constructed a phylogenetic tree based on the nucleotide sequence alignment (Figure 2). This tree was built according to comparisons of the full-length nucleotide sequence between the Rosaceae species by the ML method with 1,000 bootstrap replicates. The ML tree was divided into 12 subgroups (A–M), which belong to four groups (i.e., class I–IV) with higher bootstrap values. Subgroup I contained the fewest WRKY I gene members (3), but the subgroup I had the most gene members (11), followed by subgroup K (10) and subgroup M (10).

The short branch lengths at the tips of the clad confirmed the strong conservation of nucleotide or amino acid sequence, indicating that the evolutionary relationship between these gene members was close. In each subgroup, branches with the lack of WRKY I gene in some species might be due to gene losses, whereas more than one WRKY I genes from the same species were likely to have experienced gene duplication events. In most subgroups, WRKY I genes from the P. bretschneideri and M. domestica were more abundant than WRKY I genes from the other Rosaceae species (Figure 2). Remarkably, we found that in almost every subgroup, at least one extra copy of the WRKY I genes from P. bretschneideri and M. domestica was present. In addition, the WRKY I gene members of different species in each subgroup might be due to evolving from a common ancestral gene by the divergence of the lineage. According to the ML tree, the WRKY I genes from P. bretschneideri and M. domestica have shown close pairwise relationships; the genes of F. vesca and R. occidentalis, and the genes of P. persica, P. avium and P. mume were also the most similar based on genetic distance, which consistent with the species tree of the seven Rosaceae plants (Figure 3C).

To further identify the orthologous relationships and evolutionary origins in the WRKY I gene family of Rosaceae, we carried out interspecies microsynteny analysis (Figure 3). These data presented that high-level microsynteny was maintained among these Rosaceae genomes. The PaWRKY01 was used as an example to present the high-level microsynteny of different species (Figure 3B). Subsequently, a total of 67 WRKY I genes (nine from F. vesca, 10 R. occidentalis, nine P. persica, one P. avium, four P. mume, 14 P. bretschneideri, and 20 M. domestica) were shown in the 10 orthologous groups (Supplementary Table 1). As shown in Figure 3, the orthologous groups also allowed us to confirm the 12 gene lineages inferred from the above phylogenetic analysis. There was a one-to-one correspondence between gene lineages and syntenic orthologous
Name	Gene Model	5’ End	3’ End	Chr	Name	Gene Model	5’ End	3’ End	Chr
FvWRKY01	gene10079	281288	284149	Chr1	PbrWRKY01	Pbr007354.1	20482684	20485914	Chr2
FvWRKY02	gene21591	3591920	3593898	Chr3	PbrWRKY02	Pbr041407.1	6402597	6408622	Chr3
FvWRKY03	gene03549	14487626	14495950	Chr3	PbrWRKY03	Pbr023119.1	17946880	17949940	Chr3
FvWRKY04	gene28174	20524762	20527524	Chr3	PbrWRKY04	Pbr013092.1	22591240	22593819	Chr3
FvWRKY05	gene01197	28842077	28845292	Chr6	PbrWRKY05	Pbr028604.1	935	3171	Chr4
FvWRKY06	gene16678	802048	808355	Chr6	PbrWRKY06	Pbr035120.1	10928796	10931914	Chr6
FvWRKY07	gene16807	1447575	1451329	Chr6	PbrWRKY07	Pbr021938.1	13509306	13513606	Chr8
FvWRKY08	gene18152	4327714	4320593	Chr7	PbrWRKY08	Pbr021930.1	13779160	13783511	Chr8
FvWRKY09	gene13803	7284991	7287320	Chr7	PbrWRKY09	Pbr005253.2	14848537	14850595	Chr8
FvWRKY10	gene15798	21741467	21754337	Chr6	PbrWRKY10	Pbr034115.1	25165450	25168245	Chr11
FvWRKY11	gene04391	33441504	33444478	Chr6	PbrWRKY11	Pbr015144.2	25228841	25236113	Chr11
FvWRKY12	gene03900	9804380	9813690	Chr7	PbrWRKY12	Pbr008278.1	9510957	9516935	Chr12
FvWRKY13	gene21370	18263740	18277966	Chr7	PbrWRKY13	Pbr029927.2	4767037	4771076	Chr13

Malus domestica

Name	Gene Model	5’ End	3’ End	Chr
MdpWRKY01	MD00002393456	1463114	1466139	Chr2
MdpWRKY02	MD0000431358	4155681	4158746	Chr3
MdpWRKY03	MD0000648338	4161709	4164777	Chr3
MdpWRKY04	MD0000514115	5212258	5214802	Chr6
MdpWRKY05	MD0000507805	5214648	5216866	Chr6
MdpWRKY06	MD0000169621	10893937	10896214	Chr7
MdpWRKY07	MD0000708692	16750826	16752798	Chr4
MdpWRKY08	MD0000144203	22672804	22676168	Chr4
MdpWRKY09	MD0000154734	677443	680156	Chr9
MdpWRKY10	MD0000242596	3537891	3546179	Chr9
MdpWRKY11	MD0000179145	3568378	3571919	Chr9
MdpWRKY12	MD00002526105	8888150	8880196	Chr9
MdpWRKY13	MD0000935996	5219008	5221576	Chr11
MdpWRKY14	MD0000283937	21845938	2185053	Chr11
MdpWRKY15	MD0000268364	17810858	17813522	Chr12
MdpWRKY16	MD0000201945	17825194	17826756	Chr12
MdpWRKY17	MD0000296025	25272427	25274387	Chr12
MdpWRKY18	MD0000195385	25273072	25275034	Chr12
MdpWRKY19	MD0000184044	31340923	31345960	Chr12
MdpWRKY20	MD0000125782	4152851	4155121	Chr12
MdpWRKY21	MD0000849514	4205206	4207916	Chr13
MdpWRKY22	MD0000729088	8495422	8497092	Chr13
MdpWRKY23	MD0000176224	6054931	6059446	Chr14
MdpWRKY24	MD0000131218	8129660	8129999	Chr15
MdpWRKY25	MD0000258522	2725244	2727834	Chr16
MdpWRKY26	MD0000260803	9013295	9015664	Chr17
MdpWRKY27	MD0000184361	9258377	9263739	Chr17
MdpWRKY28	MD0000294943	98677186	98679778	NA

Prunus persica

Name	Gene Model	5’ End	3’ End	Chr
PpWRKY01	ppa004312m	27443164	27446022	Chr1
PpWRKY02	ppa04509m	15682525	15685261	Chr3
PpWRKY03	ppa03809m	19419766	19423127	Chr3
PpWRKY04	ppa03305m	14951801	14956955	Chr4
PpWRKY05	ppa03333m	1828828	1831501	Chr6
PpWRKY06	ppa01924m	2468104	2471544	Chr6
PpWRKY07	ppa05152m	2236216	22339034	Chr6
PpWRKY08	ppa04009m	24639069	24641627	Chr6
PpWRKY09	ppa04042m	22197495	22201494	Chr7

Chromosome indicates chromosome, NA suggests this gene is not distributed on chromosome.

Frontiers in Ecology and Evolution | www.frontiersin.org
FIGURE 2 | Maximum-Likelihood tree based on sequences of WRKY I genes from *P. avium, P. persica, P. mume, R. occidentalis,* *F. vesca,* *P. bretschneideri,* and *M. domestic.* The IQ-tree software was used to perform maximum likelihood (ML) phylogenetic analysis with a bootstrap test for 1,000 replicates and an SH-aLRT test for 1,000 random addition replicates. Based on the evolutionary distances and bootstrap support, this tree was divided into 12 subgroups. The tree is rooted to the *A. thaliana* WRKY I gene (AT1G13980).
groups, except for the subgroups E and J (Figure 3A). These results indicated that these WRKY I genes from the E and J subgroups may be species-specific genes.

Gains and Losses Analysis of WRKY I Genes

Gene families can evolve either by gene gains or by gene losses. To gain insight into the evolutionary mechanism of the WRKY I gene family in Rosaceae genomes, we compared a species tree and a bootstrap condensed gene tree based on previously published manuscripts (Nam and Nei, 2005). Subsequently, the modified reconciled-tree method was used to estimate the member of WRKY I genes in the most recent common ancestor (MRCA) of the seven plants and gene gains and losses during the evolution of the Rosaceae genomes. As shown in Figure 3C, there are 20 WRKY I genes in the MRCA, and then the Rosoideae WRKY I genes have undergone gene loss events (seven genes lost), reducing its number to 13. Subsequently, F. vesca and R. occidentalis have gained one and one, and lost one and three genes, respectively, since their divergence. In contrast, Maloideae experienced only one gene loss during the long evolutionary period resulting in the current 19 WRKY I genes in the process of evolution (Figure 3C). The number of WRKY I genes was increased to 22, with eight genes gained and five lost since the MRCA of P. bretschneideri and M. domestica. Finally, P. bretschneideri and M. domestica have gained three and eight and lost five and two genes, respectively, since their divergence. Clearly, the WRKY I gene family of P. persica, P. avium, and P. mume has only experienced the gene loss events. Remarkably, the members of genes gained by P. bretschneideri and M. domestica were higher than those lost, resulting in abundant WRKY I gene in these genomes compared to the other Rosaceae genomes (Figure 3C).

Gene Structure Analysis of WRKY I Genes

The mechanism of multigene family evolution may be the diversity of gene structure. At the same time, exon gain or loss can be a key step in producing structural complexity and diversity. To better understand the structural diversity and functional evolution of WRKY I genes, exon-intron organization maps were generated from the coding sequence (CDS) with corresponding genome sequences of the WRKY I gene in seven Rosaceae species. The number of different exons, ranging from 2 (MdWRKY16) to 21 (FvWRKY13), was found in 98 WRKY I gene members. Furthermore, most WRKY I gene members contained four or five exons, and the members in the same subgroup had similar exon-intron structures, such as the members of subgroups B and C contained four exons. Additionally, in some subgroups, we found that different members showed significant structural diversity. For example, in subgroup J, the PbWRKY14 contained seven exons, FvWRKY10 had 11 exons, while FvWRKY13 contained 21 exons (Supplementary Figure 2). These results might explain the diversity of closely related WRKY I gene members, because these genes might have occurred exons losses with significantly higher or lower frequency during evolution.

In addition to the exon-intron structure described above, other conserved motifs may be important for the diverse functions of WRKY I proteins, as reported in previous articles (Wang et al., 2015; Jing et al., 2016). Therefore, the local MEME
software was used to capture the conserved motifs, and this map is displayed in Supplementary Figures 2, 3. As expected, the motifs 1, 2, and 3 indicate WRKY domain and distribute in most all WRKY I proteins, affirm its major functional role. We also detect other well-conserved motifs outside the WRKY domain. Noteworthy, several conserved motifs were present in almost all WRKY I proteins, such as motifs 7, 8, 15, and 16 (Supplementary Figure 2). The remaining motifs were scanned to be specific in the different subgroups of the WRKY I ML tree. The members of WRKY I protein in subgroup B share motif 10, in subgroup share motif 12, and in subgroup I share motif 6, indicating that these conserved motifs might have specific functions in these subgroups. Additionally, in some subgroups, we found that the motifs present a certain degree of diversity, such as subgroup J. Most of the WRKY I members from the seven Rosaceae species that clustered together with orthologous and/or paralogous gene pairs in the same subgroup contain more than one motif outside the WRKY I domain (Supplementary Figure 2). In the current study, we considered the new motifs, which identified subgroup-specific motifs, were novel. Because these new motifs have no significant similarity to any possible function assignments or known motifs by searching Pfam and SMART databases.

Gene Duplication Analysis of WRKY I Genes

To survey the relationship between the expansion patterns in each Rosaceae WRKY I gene family and the corresponding genetic divergences, the gene duplication events were investigated in these Rosaceae WRKY I gene families. Rosaceae genomes have been confirmed to have undergone one or two WGD events. Therefore, we believe that the large-scale duplication events might contribute to the expansion of the WRKY I gene family. To detect this possibility, the gene similarity of the WRKY I flanking regions was searched. These two WRKY I genes were considered to be conserved and evolved from large-scale duplication events, when at least three of 100 kb downstream and upstream genes flanking two WRKY I genes achieved the best non-self-match by the Blast program. To avoid the possibility that the WRKY I gene pairs were located within more divergent blocks, we also defined a set of relaxed criteria for gene gathering based on the flanking regions of a WRKY I gene pair containing two conserved genes (Cao et al., 2016c, 2017b).

In these seven Rosaceae genomes, the gene duplication events of the WRKY I gene family were only identified in both P. bretschneideri and M. domestica, indicating gene duplication events might contribute to the expansion of the WRKY I gene family. The M. domestica genome had 28 WRKY I gene family members, 24 of which (account for 85.7%) were identified in the duplication region of the genome (Supplementary Table 2). Among them, four gene pairs were identified as tandem duplication events, such as MdW RKY04/MdWRKY05, MdWRKY02/MdWRKY03, MdWRKY15/MdWRKY16, and MdWRKY17/MdWRKY18, (Supplementary Table 2). Twelve gene pairs were found to be located in the duplicated segments of chromosomes, and these pairs were identified to be evolved from segmental duplication or WGD events (Figure 4A). As these genes, (MdWRKY25/MdWRKY10, MdWRKY21/MdWRKY25, MdWRKY20/MdWRKY25, MdWRKY20/MdWRKY10, MdWRKY13/MdWRKY04, MdWRKY24/MdWRKY01, MdWRKY19/MdWRKY08, MdWRKY16/MdWRKY06, MdWRKY17/MdWRKY07, MdWRKY26/MdWRKY12, and MdWRKY27/MdWRKY12), were distributed on the high syntenic regions, suggesting that these gene pairs might have evolved from large-scale duplication events. Twenty WRKY I gene family members were included in the P. bretschneideri genome, and 10 of which (account for 50%) were found in the duplicated segments of chromosomes. The synteny of seven gene pairs (PbWRKY15/PbWRKY01, PbWRKY11/PbWRKY17, PbWRKY11/PbWRKY04, PbWRKY12/PbWRKY18, PbWRKY12/PbWRKY19, PbWRKY18/PbWRKY19, and PbWRKY13/PbWRKY16) was significant in the duplicated region of the genome and speculated to evolve from large-scale duplication events (Figure 4B). The flanking sequences of the gene pair PbWRKY04/PbWRKY17 contained weak synteny, with only two conserved genes (Figure 4B).

Strong Purifying Selection for WRKY I Genes in Pyrus bretschneideri and Malus domestica

As we know, both P. bretschneideri and M. domestica genomes have been expanded by two WGD events. To further insight into the evolutionary constraints acting on the WRKY I gene family, the ratios of Ka/Ks were estimated for all the duplicated gene pairs in PbWRKY12 and M. domestica genome, and 10 of which (account for 50%) were found in the duplicated segments of chromosomes. The synteny of seven gene pairs (PbWRKY15/PbWRKY01, PbWRKY11/PbWRKY17, PbWRKY11/PbWRKY04, PbWRKY12/PbWRKY18, PbWRKY12/PbWRKY19, PbWRKY18/PbWRKY19, and PbWRKY13/PbWRKY16) was significant in the duplicated region of the genome and speculated to evolve from large-scale duplication events (Figure 4B). The flanking sequences of the gene pair PbWRKY04/PbWRKY17 contained weak synteny, with only two conserved genes (Figure 4B).
Microsynteny maps of WRKY I genes in M. domestica (A) and P. bretschneideri (B). The relative positions of all flanking protein-coding genes were defined by the anchored WRKY I genes, highlighted in orange. The flanking genes and their transcriptional orientations were indicated by arrows.

or negative selection, as expected from the basic Ka/Ks analysis (Figure 6). The Ka/Ks ratios of the conserved WRKY domains (i.e., the first WRKY domain and the second WRKY domain) were < 1, suggesting these regions were evolving by strong purifying selection, and these sites were subjected to strong functional constraints. Additionally, the second WRKY domain of PbWRKY04/-11 contained slightly higher Ka/Ks ratios (i.e., Ka/Ks ratios > 1), implying this region was subjected to positive selection, and indicating PbWRKY04/-11 underwent somewhat different selective pressure, which reveals that this domain either displaying a higher evolutionary rate or hidden in the mean of the Ka/Ks ratio (Figure 6). At the same time, we also found that positive selection might help increase Ka/Ks ratio, but it does not guarantee that the average Ka/Ks ratio of the gene exceeds 1. Our data suggested that the WRKY I gene family members were highly conserved and have evolved by purifying selection during evolution.

Expression Pattern Analysis of WRKY I Genes
To further understand the possible functions of WRKY I genes, we examined the expression patterns of all WRKY I genes using publicly available transcriptome data from the SRA database, such as tissue-specific expression, pooled organs, fruit development, and developmental biology. In P. persica, we examined the expression of WRKY I genes in four different tissues (Supplementary Figure 4). In the data, we found that
most of the WRKY I genes exhibited tissue-specific expression patterns, with one, three, and four genes were highly expressed in embryos, fruits, and root, respectively, indicating that these genes might play essential roles in the process of plant development and growth. In *P. avium*, the expression of WRKY I genes was detected in five growth stages of floral buds: January floral buds, February floral buds, March floral buds, June floral buds, and December floral buds (*Supplementary Figure 5*). From these results, it was apparent that a few WRKY I genes were relatively higher expressed in *P. avium* floral buds, such as *PaWRKY07* was highly expressed in January floral buds, and *PaWRKY04* was highly expressed in March floral buds. In *P. mume*, we obtained the public RNA-seq data for 10 different tissues (Pollen_grains, Pollen, bud, leaf, root, stem, fruit, Cross_pollinated_pistils, Self_pollinated_pistils, and Unpollinated_pistils) of *P. mume* (*Supplementary Figure 6*). Among these WRKY I genes, only one gene (*PmWRKY09*) exhibited tissue-specific expression patterns, while the remaining WRKY I genes showed express at least two tissues, indicating these genes essential roles in these *P. mume* tissues. In *R. occidentalis*, *RoWRKY09* and *RoWRKY11* exhibited tissue-specific expression patterns, while the remaining WRKY I genes showed express at least two tissues (*Supplementary Figure 7*). In *M. domestica*, we analyzed the abundance of WRKY I gene transcripts in leaf, fruit_flesh, root_tip, growing_apex, stem, seed, flower, and during fruit development (*Supplementary Figure 8*). Our data indicate that 15 of the detected *MdWRKYs* were expressed differentially in all sampled organs. In *F. vesca*, we also created a heat map to characterize the expression patterns of WRKY I genes in different representative tissues (*Supplementary Figure 9*). Based on the heat map, we found that many *FvWRKY* genes (such as *FvWRKY05*, *FvWRKY12*, and *FvWRKY08*) were expressed and showed high expression levels in most analyzed tissues, implying a possible role in constitutive regulate processes of WRKY I genes throughout the *F. vesca* plant.

In *P. bretschneideri*, all WRKY I genes showed express at least two tissues, indicating these genes have essential roles in these *P. bretschneideri* tissues (*Supplementary Figure 10*). To
there were many mutations during long evolutionary history. Although the structures of WRKY in plants were very conserved, genes were old and divergent (i.e., Ks value was relatively high). However, most duplication events are the main driving force for the expansion of gene families in plants, such as the growth-regulating factor (GRF) gene family (Cao et al., 2016c), peroxidase (PRX) gene family (Cao et al., 2016b), B-BOX family (Cao et al., 2016a), and MYB gene family in pear (Cao et al., 2016a), and WRKY I gene family (Jing et al., 2016) and CHS gene family in maize (Han et al., 2016). In both P. bretscheideri and M. domestica, most WRKY I genes could be distributed to the duplicated segments, which indicate that large-scale duplications (i.e., segmental duplication or WGD) might help the expansion of the WRKY I gene family in these two species. After sharing the ancient WGD event and following divergence from the other Rosaceae genomes, the lineage leading to present-day both P. bretscheideri and M. domestica are known to have experienced the recent WGD about 30–45 million years ago (MYA). This duplication did not occur in P. avium, P. persica, P. mume, R. occidentalis, F. vesca, or/and other Rosaceae genomes (Velasco et al., 2010; Zhang et al., 2012; Wu et al., 2013). Two WGDS in the ancestor of both P. bretscheideri and M. domestica lead to the expectation of up to four duplicated genes in these two genomes. As shown in Figure 2, WRKY I genes doubled twice in both P. bretscheideri and M. domestica, and formed two duplicated gene pairs, accordingly (Figure 4). Remarkably, we also noted that these four homologous WRKY I blocks were retained, such as MdWRKY25, MdWRKY20, MdWRKY10, and MdWRKY21 were distributed in four homologous blocks, respectively. Compared to the duplicated WRKY I-containing blocks derived from the ancient WGD, these gene pairs contained more conserved flanking protein-coding genes, which derived from the recent WGD. These results suggested that there are high

DISCUSSION

WRKY I genes participate in various biological processes, such as regulating plant growth and development, responding to environmental conditions, and plant resistance to abiotic and biotic stresses (Dong et al., 2003; Ross et al., 2007; Wang et al., 2011; Yin et al., 2013). By searching the local genome database, we identified 6, 9, 10, 11, 13, 20, and 28 WRKY I genes in P. avium, P. persica, P. mume, R. occidentalis, F. vesca, P. bretscheideri, and M. domestica, respectively. The ML tree could divide the WRKY I genes into four clades (i.e., clades I, II, III, and VI) and noted that orthologous gene pairs of P. bretscheideri and M. domestica WRKY I genes were more widespread, suggesting some ancestor WRKY I genes have appeared before the divergence of P. bretscheideri and M. domestica. By comparing a species tree and a bootstrap condensed gene tree, we analyzed the gene gains and gene losses. We found that the gene gains and gene losses were shown by a large fraction of variability in the clades. For example, compared with the P. avium, P. persica, P. mume, R. occidentalis, and F. vesca, WRKY I genes from P. bretscheideri and M. domestica were present in at least an extra copy in almost every subgroup. At the same time, we also noted that the extra copy was very close to its potential paralogous. Our data were consistent with the proven results that both P. bretscheideri and M. domestica have experienced an extra WGD which not shared with by the other five Rosaceae genomes (Velasco et al., 2010; Wu et al., 2013). Remarkably, the number of WRKY I genes in both P. bretscheideri and M. domestica was not simply two twice compared to other Rosaceae WRKY I genes, indicating that differential gene gain or/and gene loss events might have occurred in different species. For instance, compared with the number of the most recent common ancestor genes, the number of WRKY I genes was nearly halved in P. avium, P. persica, P. mume, R. occidentalis, and F. vesca, but increased approximately 1.4-fold in M. domestica. These data largely reflect the complex evolutionary history of the WRKY I family in the Rosaceae genomes.

Gene duplication events, such as large-scale duplication and tandem duplication, are the main driving forces to generate novel genes. The previous studies have confirmed that these two duplication events are the main driving force for the expansion of gene families in plants, such as the growth-regulating factor (GRF) gene family (Cao et al., 2016c), peroxidase (PRX) gene family (Cao et al., 2016b), B-BOX gene family (Cao et al., 2017a), and MYB gene family in pear (Cao et al., 2016a), and WRKY I gene family (Jing et al., 2016) and CHS gene family in maize (Han et al., 2016). In both P. bretscheideri and M. domestica, most WRKY I genes could be distributed to the duplicated segments, which indicate that large-scale duplications (i.e., segmental duplication or WGD) might help the expansion of the WRKY I gene family in these two species. After sharing the ancient WGD event and following divergence from the other Rosaceae genomes, the lineage leading to present-day both P. bretscheideri and M. domestica are known to have experienced the recent WGD about 30–45 million years ago (MYA). This duplication did not occur in P. avium, P. persica, P. mume, R. occidentalis, F. vesca, or/and other Rosaceae genomes (Velasco et al., 2010; Zhang et al., 2012; Wu et al., 2013). Two WGDS in the ancestor of both P. bretscheideri and M. domestica lead to the expectation of up to four duplicated genes in these two genomes. As shown in Figure 2, WRKY I genes doubled twice in both P. bretscheideri and M. domestica, and formed two duplicated gene pairs, accordingly (Figure 4). Remarkably, we also noted that these four homologous WRKY I blocks were retained, such as MdWRKY25, MdWRKY20, MdWRKY10, and MdWRKY21 were distributed in four homologous blocks, respectively. Compared to the duplicated WRKY I-containing blocks derived from the ancient WGD, these gene pairs contained more conserved flanking protein-coding genes, which derived from the recent WGD. These results suggested that there are high...
levels of sequence conservation between the recent WGD blocks in both *P. bretschneideri* and *M. domestica*, which is consistent with the previous observations (Velasco et al., 2010; Wu et al., 2013).

The intensity and type of selection can be speculated by comparing the ratio of synonymous (silent; Ks) and non-synonymous (amino-acid altering; Ka) substitution rates (Yang, 2007). Sites with Ka/Ks more than one are regarded as undergoing positive selection with adaptive evolution. Sites showing Ka/Ks < 1 are indicative of purifying selection, suggesting that they may play key roles in structure and function (Yang, 2007). In the current study, the Ka/Ks of both *P. bretschneideri* and *M. domestica* *WRKY I* duplicated gene pairs was < 1, except for *MdWRKY20/MdWRKY10*, indicating that this gene family underwent slow evolutionary non-diversification following duplication. Because all the characteristic WRKY proteins have clear binding preferences for the same DNA motif, the WRKY domain has been assumed to be the only conservative structural feature to constitute the DNA-binding domain. These genes continue to reveal DNA-binding factors that are involved in the transcriptional regulation of key developmental processes. The WRKY I protein sequences contain two type WRKY domains, each of which has a C2-H2-motif (Figure 1), which is known as a zinc finger structure (Rushton et al., 1995).
This sequence motif can be specifically bound to W box [(T)(T)TGAC(C/T)] (De Pater et al., 1996; Hara et al., 2000). These data show that the WRKY domain is very conservative. By a sliding-window analysis, we found that the WRKY domains from WRKY I proteins have experienced strong purifying or selective negative selection, which may provide evidence for the stability of the WRKY domain during evolution.

Previous manuscripts have confirmed that gene duplication may affect their expression patterns (Cao et al., 2017a, 2018). The fate of the gene pairs may change after the duplication event. Retention of duplicates might also be due to sub-functionalization (Force et al., 1999; Lynch and Conery, 2000), and a half or more of duplicated genes exhibited differential expression in rice, poplar, *A. thaliana*, and soybean. In the present study, we performed the correlation analysis of *PbWRKY* duplication and their expression to reveal the relationship between gene duplication and expression divergence. The expression levels of duplication *PbWRKY* gene pairs suggested that the majority of these gene pairs were differentially expressed during fruit development in *P. bretschneideri*. These results indicated that the significant functional divergence was detected in duplication *PbWRKY* genes, and further revealed sub-functionalization or neo-functionalization for their derived from a duplication event.

CONCLUSION

In the present study, a total of 97 WRKY I genes were detected in seven Rosaceae genomes, such as *P. avium*, *P. persica*, *P. mume*, *R. occidentalis*, *F. vesca*, *P. bretschneideri*, and *M. domestica*. Subsequently, we carried out an integrative analysis of WRKY I genes in Rosaceae, which lay the foundation for functional studies of these genes in the future. This study also shows that the rates of gene loss and gain in different Rosaceae genomes are far from equilibrium.

DATA AVAILABILITY STATEMENT

The protein, cDNA, and genome sequences of seven Rosaceae were obtained from the respective genome sequence sites as follows: both *P. avium* and *R. occidentalis* from Genome Database for Rosaceae (http://www.rosaceae.org/), *F. vesca* from Phytozome database (https://phytozome.jgi.doe.gov/pz/portal.html), *P. persica* from Joint Genome Institute (http://www.jgi.doe.gov/), *P. mume* from GigaDB Dataset (ftp://climb.genomics.cn/), *P. bretschneideri* from Nanjing Agricultural University (http://peargenome.njau.edu.cn/), and *M. domestica* from Plant Genome Duplication Database (http://chibba.agtec.uga.edu/). RNA-seq data for *F. vesca* used in this study were available in Strawberry Genomic Resources (http://bioinformatics.towson.edu/strawberry/Default.aspx). RNA-seq data for *P. bretschneideri* used in this study were available in the SRA database with accession numbers SRR8119895, SRR8119890, SRR8119892, SRR8119907, SRR8119893, SRR8119894, SRR8119906, SRR8119900, SRR8119901, SRR8119896, and SRR8119897. RNA-seq data for *M. domestica* used in this study were available in the SRA database with accession numbers SRR767660, SRR767668 to SRR767674, and SRR768127 to SRR768137. RNA-seq data for *P. mume* used in this study were available in the SRA database with accession numbers DRR002283, DRR002284, DRR013975 to DRR013977, and SRR542478 to SRR542482. RNA-seq data for *P. persica* used in this study were available in the SRA database with accession numbers SRR1556451, SRR1559275, SRR1561576, and SRR531862 to SRR531865. RNA-seq data for *P. avium* in this study were available in the SRA database with accession numbers SRR531862, SRR531863, SRR531864 and SRR531865. RNA-seq data for *R. occidentalis* used in this study were available in the SRA database with accession numbers SRR7274846, SRR7274864, SRR7274865, SRR7274866, SRR7274867, SRR7274868, SRR7274869, SRR7274870, and SRR7274871.

ETHICS STATEMENT

The experiments did not involve endangered or protected species. No specific permits were required for these locations/activities because the *P. bretschneideri* used in this study were obtained from the tissue culture room of Anhui Agricultural University.

AUTHOR CONTRIBUTIONS

YPC conceived and supervised the research and wrote the manuscript. YPC and LJ designed the experiments. YPC, LJ, DB, JT, and YC performed the experiments and analyzed the results. All authors have read and approved the final manuscript.

FUNDING

This study was supported by the Natural Science Fund Youth Project of Hunan Province (grant no. 2021J41067), the Outstanding Youth of the Education Department of Hunan Province (grant no. 20B624), the Talent Scientific Research Start-up Foundation of Yijishan Hospital, Wannan Medical College (grant no. YR202001), the Opening Foundation of Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (grant no. RNA202004), and the Key Projects of Natural Science Research of Universities in Anhui Province (grant no. KJ2020A0622). The Funding bodies were not involved in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

ACKNOWLEDGMENTS

We would like to thank the reviewers and editors for their careful reading and helpful comments on this manuscript.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fevo.2021.801490/full#supplementary-material

Supplementary Figure 1 | Chromosomal location of WRKY I genes among *P. avium, P. persica, P. mume, R. occidentalis, F. vesca, P. bretschneideri* and *M. domestica*. The distribution of WRKY I genes among the chromosomes in each species is diverse. The chromosome number is indicated at the top of each chromosome.

Supplementary Figure 2 | Phylogenetic relationship, the exon-intron structure, and the motif analysis of WRKY I genes from *P. avium, P. persica, P. mume, R. occidentalis, F. vesca, P. bretschneideri* and *M. domestica*. The exons and introns are indicated by green rectangles and thin lines, respectively.

Supplementary Figure 3 | The logos of the twenty motif sequences among *P. avium, P. persica, P. mume, R. occidentalis, F. vesca, P. bretschneideri* and *M. domestica*. The bit score indicates the information content for each position in the sequence.

Supplementary Figure 4 | Expression profiles of *P. persica* WRKY I genes in different tissues. Blue and red colors correspond to downregulation and upregulation, respectively.

Supplementary Figure 5 | Expression profiles of *P. avium* WRKY I genes in different tissues. Blue and red colors correspond to downregulation and upregulation, respectively.

Supplementary Figure 6 | Expression profiles of *P. mume* WRKY I genes in different tissues. Blue and red colors correspond to downregulation and up-regulation, respectively.

Supplementary Figure 7 | Expression profiles of *R. occidentalis* WRKY I genes in different tissues. Blue and red colors correspond to downregulation and upregulation, respectively.

Supplementary Figure 8 | Expression profiles of *M. domestica* WRKY I genes in different tissues. Blue and red colors correspond to downregulation and upregulation, respectively.

Supplementary Figure 9 | Expression profiles of *F. vesca* WRKY I genes in different tissues. Blue and red colors correspond to downregulation and upregulation, respectively.

Supplementary Figure 10 | Expression profiles of *P. bretschneideri* WRKY I genes in different tissues. Blue and red colors correspond to downregulation and upregulation, respectively.

Supplementary Table 1 | Synteny data in *P. avium, P. persica, P. mume, R. occidentalis, F. vesca, P. bretschneideri* and *M. domestica*.

Supplementary Table 2 | Duplicated WRKY I gene pairs in *P. bretschneideri* and *M. domestica*.

Supplementary Table 3 | The divergence between duplicated WRKY I gene pairs in *P. bretschneideri* and *M. domestica*.

Supplementary Table 4 | Primers in this study.

REFERENCES

Bailey, T. L., Johnson, J., Grant, C. E., and Noble, W. S. (2015). The MEME Suite. *Nucleic Acids Res.* 43, W39–W49.

Blanc, G., and Wolfe, K. H. (2004). Widespread paleopolyploidy in model plant genomes inferred from age distributions of duplicate genes. *Plant Cell* 16, 1667–1678. doi: 10.1105/tpc.021345

Cao, Y., Han, Y., Li, D., Jin, Q., and Cai, Y. (2016a). B-BOX genes: Structural, Evolutionary, and Functional Analysis of the Class III Peroxidase Gene Family in Chinese Pear (*Pyrus bretschneideri*). *Front. Plant Sci.* 7:1874. doi: 10.3389/fpls.2016.01874

Cao, Y., Han, Y., Meng, D., Li, D., Jin, Q., Lin, Y., et al. (2016b). Expansion and evolutionary patterns of GDSL-type esterases/lipases in Rosaceae genomes. *Int. J. Biol. Macromole.* 85, 271–280. doi: 10.1016/j.ijbiomac.2016.02.017

Cao, Y., Han, Y., Meng, D., Li, D., Jin, Q., Lin, Y., and Cai, Y. (2016c). Comparative genomic analysis of the GRF genes in Chinese pear (*Pyrus bretschneideri* Rehd), poplar (*Populous*), grape (*Vitis vinifera*) Arabidopsis and rice (*Oryza sativa*). *Front. Plant Sci.* 7:1750. doi: 10.3389/fpls.2016.01750

Cao, Y., Han, Y., Meng, D., Abdullah, M., Yu, J., Li, D., et al. (2018). Expansion and evolutionary patterns of GDSL-type esterases/lipases in Rosaceae genomes. *Front. Integr. Genom.* 18, 673–684. doi: 10.1007/s10142-018-0620-9

Coulthur, M., and Singh, R. S. (1988). High level of divergence of male-reproductive-tract proteins, between Drosophila melanogaster and its sibling species, *D. simulans*. *Mole. Biol. Evolut.* 5, 182–191.

Coulthur, M., and Singh, R. S. (1988). High level of divergence of male-reproductive-tract proteins, between Drosophila melanogaster and its sibling species, *D. simulans*. *Mole. Biol. Evolut.* 5, 182–191.

De Pater, S., Greco, V., Pham, K., Memelink, J., and Kijne, J. W. (1996). Characterization of a Zinc-Dependent Transcriptional Activator from Arabidopsis. *Nucleic Acids Res.* 24, 4624–4631. doi: 10.1093/nar/24.23.4624

Deluc, W., González, V., Monfort, A., Bendahmane, A., Puigdomènech, P., Arius, P., et al. (2007). Structure of two melon regions reveals high microsynteny with sequenced plant species. *Mole. Genet. Genomics Mgg* 278, 611–622. doi: 10.1007/s00438-007-0277-2

Dong, J., Chen, C., and Chen, Z. (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. *Plant Mole. Biol.* 51, 21–37.

Duan, Y., Jiang, Y., Ye, S., Karim, A., Ling, Z., He, Y., et al. (2015). PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. *Plant Cell Rep.* 34, 831–841. doi: 10.1007/s00299-015-1745-5

Eulgem, T., Rushton, P. J., Robatzek, S., and Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. *Trends Plant Sci.* 5, 199–206. doi: 10.1016/s1360-1385(00)01606-9

Federhen, S. (2012). The NCBI Taxonomy database. *Nucleic Acids Res.* 40, 136–143.

Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., et al. (2013). Pfam: the protein families database. *Nucleic Acids Res.* 42, D222–D230.

Forrest, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y.-L., and Postlethwait, J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. *Genetics* 151, 1531–1545. doi: 10.1093/genetics/151.4.1531

Gong, X., Zhang, J., Hu, J., Wang, W., Wu, H., Zhang, Q., et al. (2015). *FcWRKY70*, a WRKY protein of *Fortunella cassiifolia*, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene. *Plant Cell Environ.* 38, 2248–2262. doi: 10.1111/pce.12539

Han, Y., Ding, T., Su, B., and Jiang, H. (2016). Genome-Wide Identification, Characterization and Expression Analysis of the Chalcone Synthase Family in *Maize*. *Int. J. Mole. Sci.* 17:161. doi: 10.3390/ijms17020161

Harah, K., Yagi, M., Kusano, T., and Sano, H. (2000). Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. *Plant Cell Environ.* 17:156. doi: 10.1046/j.1365-3040.1999.00532.x

Hara, K., Yagi, M., Kusano, T., and Sano, H. (2000). Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. *Plant Cell Environ.* 17:156. doi: 10.1046/j.1365-3040.1999.00532.x

Hara, K., Yagi, M., Kusano, T., and Sano, H. (2000). Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. *Plant Cell Environ.* 17:156. doi: 10.1046/j.1365-3040.1999.00532.x

He, H., Dong, Q., Shao, Y., Jiang, H., Zhu, S., Cheng, B., et al. (2012). Genome-wide survey and characterization of the WRKY gene family in...
Ishiguro, S., and Nakamura, K. (1994). Characterization of a cDNA encoding a Jibran, R., Dzierzon, H., Bassil, N., Bushakra, J. M., Edger, P. P., Sullivan, S., Letunic, I., Doerks, T., and Bork, P. (2012). SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 40, D302–D305.

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi: 10.1093/molbev/mst010

Letunic, I., and Bork, P. (2006). Interactive Tree Of Life (iTOl): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128.

Likos, N. C., and Moller, R. (2003). Identification and comparative analysis of the heat shock transcription factor genes, GmWRKY13, GmWRKY21, GmWRKY28 and GmWRKY30 in Cucumis sativus. BMC Genomics 4, 10.

Lynch, M., and Conery, J. S. (2000). The evolutionary fate and consequences of the large soybean WRKY TF family expanded by segmental duplication events. Mol. Genet. Genomics 263, 237–247.

Nam, J., and Nei, M. (2005). Evolutionary Change of the Numbers of Homeobox Groups for Eukaryotic Genomes. Genome Res. 15, 2378–2386.

Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A., and Minh, B. Q. (2014). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenetic tree display and annotation. Bioinformatics 30, 96–103. doi: 10.1093/bioinformatics/btt634

Sherry, S. (2012). “NCBI SRA toolkit technology for next generation sequence data,” in Plant and Animal Genome XX Conference (San Diego: Plant and Animal Genome).

Shirasawa, K., Isuzugawa, K., Ikenna, M., Saito, Y., Yamamoto, T., Hirakawa, H., et al. (2017). The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res. 24, 499–508. doi: 10.1093/dnares/dsx020

Shulaev, V., Sargent, D. J., Crowhurst, R. N., Mockler, T. C., Folktors, O., Delcher, A. L., et al. (2011). The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109–116.

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., et al. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562. doi: 10.1038/nprot.2012.016

Vanburen, R., Bryant, D., Bushakra, J. M., Vining, K. J., Edger, P. P., Rowley, E. R., et al. (2016). The genome of black raspberry (Rubus occidentalis). Plant J. Cell Mol. Biol. 87, 535–547.

Vanholme, B., Verharen, T., Blein, M., Cheng, H., He, X., Hu, L., et al. (2014). Genome-wide analysis of WRKY transcription factors in Arabidopsis thaliana. Nat. Genet. 46, 833–839.

Verde, I., Abbott, A. G., Scalabrini, S., Jung, S., Shu, S., Marroni, F., et al. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genetics 45, 487–494. doi: 10.1038/ng.2586

Vilanova, S., Sargent, D. J., Arús, P., and Monfort, A. (2008). Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry). BMC Plant Biol. 8:67. doi: 10.1186/1471-2229-8-67

Wang, Q., Wang, M., Zhang, X., Hao, B., Kaushik, S., and Pan, Y. (2011). WRKY gene family evolution in Arabidopsis thaliana. Genetica 139, 973–983.

Wang, Y., Feng, L., Zhu, Y., Li, Y., Yan, H., and Xiang, Y. (2015). Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice. Biol. Direct 10:48. doi: 10.1186/s13062-015-0076-3

Wu, J., Wang, Z., Shi, Z., Zhang, S., Ming, R., Zhu, S., et al. (2013). The genome of the pear (Pyrus brentschienderi Rehd.). Genome Res. 23, 396–408.

Wu, K., Guo, Z., Wang, H., and Li, J. (2005). The WRKY Family of Transcription Factors in Rice and Arabidopsis and Their Origins. DNA Res. 12, 9–26.

Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1588–1591. doi: 10.1093/molbev/msm088

Yim, W. C., Lee, B.-M., and Jang, C. S. (2009). Expression diversity and evolutionary dynamics of rice duplicate genes. Mol. Genetics Genomics 281, 483–493. doi: 10.1007/s00438-009-0425-y

Yin, G., Xu, H., Xiao, S., Qin, Y., Li, Y., Yan, Y., et al. (2013). The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups. BMC Plant Biol. 13:1–19. doi: 10.1186/1471-2229-13-19

Zdobnov, E. M., and Apweiler, R. (2001). InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 848–848. doi: 10.1093/bioinformatics/17.9.847

Zhang, Q., Chen, W., Sun, L., Zhao, F., Huang, B., Yang, W., et al. (2012). The genome of Prunus mume. Nat. Commun. 3:3138.

Zhou, Q. Y., Tian, A. G., Zou, H. F., Xie, Z. M., Lei, G., Huang, J., et al. (2008). Soybean WRKY—type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol. J. 6, 486–503. doi: 10.1111/j.1467-7652.2008.00336.x

Conflict of Interest: YC was employed by the company Anhui Zhifei Longcom Biopharmaceutical Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.