Investigation of Therapeutic Effects of Erdosteine on Polycystic Ovary Syndrome in a Rat Model

Atilla Karatekea Recep Dokuyucub Hatice Doganc Tumay Ozgurd

Zeynel Abidin Tasd Okan Tutukc Gokhan Agturkc Cemil Tumerc

aDepartment of Obstetrics and Gynecology, Reyhanli Sevgi Hospital, Hatay, Turkey; bDepartment of Physiology, Medical Specialty Training Center, Ankara, Turkey; cDepartment of Physiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey; dDepartment of Pathology, School of Medicine, Mustafa Kemal University, Hatay, Turkey

Significance of the Study

- Important treatment options that influence hyperandrogenism and insulin sensitivity are available for PCOS, while long-term treatment options for PCOS are still controversial. This study investigated the therapeutic and protective effects of erdosteine and treatment with metformin in an experimental rat model of PCOS. The results suggest that the therapeutic and protective effect of erdosteine could be due to suppression of biosynthesis of ovarian androgens. Thus, erdosteine may have therapeutic potential in the treatment of PCOS.

Keywords
Polycystic ovary syndrome · Metformin · Erdosteine · Letrozole

Abstract

Objective: Polycystic ovary syndrome (PCOS) is a serious endocrine disorder. In the present study, we investigated the therapeutic effects of erdosteine in letrozole-induced PCOS in rats. Methods: Thirty-two Wistar albino female rats were grouped as control group (C), PCOS group (PCOS), PCOS-metformin group (PCOS+MET), and PCOS-erdosteine group (PCOS+Erd). PCOS was induced by administering letrozole; such rats presented with sex hormone disorder, abnormal estrous cycles determined by daily vaginal smear, large cystic follicles, and increasing fasting insulin levels. After induction of PCOS, metformin (500 mg/kg/day) and erdosteine (100 mg/kg/day) were given orally to the treatment groups for 30 days. Serum concentrations of glucose, total cholesterol, low- and high-density lipoprotein, triglyceride, as well as the total oxidant and antioxidant status, oxidative stress index, circulating estrone (E\textsubscript{1}), estradiol (E\textsubscript{2}), testosterone, and androstenedione were evaluated. The ovaries were graded histologically. Results: Weights of ovarian tissues \((p<0.05)\) and the number of atretic follicles \((p<0.001)\) and cystic follicles \((p<0.001)\) decreased in the PCOS+Erd group; the corpus luteum number was significantly higher in the PCOS+Erd group \((p<0.01)\) as compared with the PCOS group. Lipid parameters (total-C, LDL-C, and TG), E\textsubscript{1} (estrone), E\textsubscript{1}/E\textsubscript{2} ratio, testosterone, and androstenedione significantly decreased, while HDL-C and E\textsubscript{2} (estradiol) significantly increased in the PCOS+Erd group as compared with...
the PCOS group. Moreover glucose, insulin, and HOMA-IR were reduced with treatment of erdosteine \(p > 0.05, p < 0.001, \) and \(p < 0.001 \), respectively). **Conclusion:** It is suggested that erdosteine may be used in the treatment of PCOS as an alternative to metformin. It appears that our findings might be supported by clinical and molecular studies.

© 2018 The Author(s)
Published by S. Karger AG, Basel

Introduction

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age [1]. As far as different diagnostic criteria are concerned, the prevalence of PCOS ranges from 6 to 15% [2]. Though the etiology and pathogenesis of PCOS has not been explained fully, it is characterized by anovulation, hyperandrogenism findings, and abnormal ovarian morphology [3, 4]. Furthermore, PCOS is associated with obesity, metabolic syndrome, hyperinsulinemia, type 2 diabetes, dyslipidemia, and cardiovascular syndrome [5, 6]. Thus, PCOS is an endocrine disorder that presents long-term health risks [7, 8].

Important treatment options that influence hyperandrogenism and insulin sensitivity are available for PCOS, while long-term treatment options for PCOS are still controversial [9]. The aim of treatment of PCOS is to decrease hyperandrogenism and improve insulin sensitivity [9]. Insulin-sensitizers, oral contraceptive pills, and anti-androgenic agents are used commonly for the treatment of PCOS [10, 11]. Treatment with metformin, an insulin sensitizer, increases insulin sensitivity and improves ovulatory function in PCOS [12]. In addition, treatment with metformin improves hyperinsulinemia and menstrual irregularity and reduces androgen levels in women with PCOS [13]. Metformin not only reduces inflammation, it also has an effect on steroidogenesis in ovarian theca cells and granulosa cells [14].

Several agents are used to investigate treatment of PCOS in distinctive experimental and clinical models. Erdosteine \(\text{N}-(\text{carboxymethyl})\text{thiocetyl_thiolactone} \) is a mucoactive agent with antioxidant activity that involves a thiol group [15]. Erdosteine has been reported to protect against hepatic, renal, retinal, and cardiotoxicity [16]. In addition, it is used in clinical practice as a mucolytic drug. Erdosteine is absorbed from the intestine, and after entering the circulation, it is transformed into three metabolites in hepatic circulation. As erdosteine includes thiol groups, it inhibits free radicals present in the circulation. It brings about strong antioxidant effects by increasing the activities of antioxidant enzymes [17].

Although several drugs have been used for the treatment of PCOS, the effectiveness of metformin and erdosteine in PCOS has not been compared. Experimental animal models may help shed light on the pathophysiology of this syndrome. To the best of our knowledge, this is the first study to investigate the therapeutic and protective effect of erdosteine and treatment with metformin in an experimental rat model of PCOS. The main objective of this study was to investigate the potential protective effects of erdosteine in PCOS.

Materials and Methods

Animals

The experimental protocol used in this study was confirmed by the Institutional Animal Care and Ethics Committee of Mustafa Kemal University and performed in accordance with the National Institute of Health Guide for Care and Use of Laboratory Animals (publication No 86-23, revised 1996).

Female adult Wistar albino rats (10 weeks old; weight 275–325 g) were obtained from the Experimental Animal Laboratory of Mustafa Kemal University, Hatay. Rats were caged individually in temperature-controlled steel cages (20–22 °C; 55–65% humidity) with a 12-hour light/dark cycle and were provided with standard rat feed without phytoestrogen and water ad libitum. Rats were allowed to acclimatize for 5 days before the experiments. All animals were subjected to daily collection of vaginal secretions for 7 consecutive days in order to evaluate ovarian function; the estrous cycles of rats were evaluated by using vaginal smear method as described by Biswal [18]. Subsequently, only rats with regular estrous cycles were included in the study. Thirty-two rats were randomly classified as four groups with 8 animals in each group. Groups were control group (C), PCOS group, PCOS-metformin treatment group (PCOS+MET), and PCOS-erdosteine treatment group (PCOS+Erd).

Reagents

Erdosteine (erdosteine suspension) was obtained from Sandoz Pharmaceuticals (Istanbul-Turkey), metformin was obtained from Bilim Pharmaceuticals (Istanbul-Turkey) and letrozole was obtained from Femara-Novartis Pharmaceuticals (Istanbul, Turkey). Ketamine hydrochloride (Ketalar 80 mg/mL) was purchased from Pfizer (Turkey) and xylazine hydrochloride (Rompun 12 mg/mL) was purchased from Bayer (Turkey).

Experimental Animal Model of PCOS

Animal model of PCOS was induced in 24 rats by oral gavage with letrozole once daily at a concentration of 1 mg/kg dissolved in DMSO for 21 consecutive days [19, 20]. Subsequently, the PCOS model evaluation with an anovulatory estrous cycle was verified by analysis of vaginal smear, for which the first one-third of the vaginal wall was taken daily to evaluate the stage of the 4-day ovarian cycle during the examination of the study period. Following the induction of PCOS, 8 rats with PCOS were included in the PCOS
Therapeutic Effects of Erdosteine in PCOS

Therapeutic Effects of Erdosteine in PCOS

Rats in the PCOS+MET group \((n = 8)\) were treated orally with 500 mg/kg/day of metformin, while rats in the PCOS+Erd group \((n = 8)\) were treated orally with 100 mg/kg/day of erdosteine for 30 days [15]. Animals in the control group received 1 mL/kg/day of saline solution orally for 30 days.

Collection of Tissue and Blood Samples

All animals were weighed at the beginning and end of study. The rats were anesthetized with a single intraperitoneal injection of ketamine (80 mg/kg) and xylasine (12 mg/kg). The blood samples were obtained by cardiac puncture and transferred to EDTA-containing tubes. Plasma was separated by cold-centrifugation \((4 \, ^\circ\mathrm{C})\) at 3,000 rpm for 10 min. Ovarian tissues were excised for histological analysis and fixed in 10% formaldehyde (PBS 10 mM, pH 7.4). Plasma samples were stored in a freezer at \(-80 \, ^\circ\mathrm{C}\) for biochemical analysis.

Histopathological Analyses

Ovaries and uteruses of rats were removed and weighed prior to histological examination. After cutting through at the longest lengthwise dimension, ovarian tissues were fixed in 10% neutral formalin for 24 h. Then all samples were cleaned, dehydrated, and embedded in paraffin. Four-millimeter-thick sections were prepared using a microtome (Leica RM 2145 RTS, Nussloch, Germany) and stained with hematoxylin and eosin. A light microscope (Olympus Clinical Microscope BX53, Tokyo, Japan) was used to evaluate all samples according to the methods of Ergenoglu et al. [21] and Atis et al. [22]. All histological slides were examined in a blinded fashion by an experienced pathologist. Follicles containing an oocyte with a nucleus were counted and described as healthy. Follicles were grouped according to the following definitions:

- **Preantral follicle**: a follicle with an intact, enlarged oocyte with a visible nucleus and a single layer of cuboidal granulosa cells.
- **Antral follicle**: a follicle with two or more layers of cuboidal granulosa cells, whether the cavity was apparent or not.
- **Atretic follicle**: a follicle containing a degenerating ovum or pyknotic granulosa cells.
- **Cystic follicle**: a follicle that is a large fluid-filled structure with an attenuated granulosa cell layer and a thickened theca intern cells layer.

For each group, the number of corpus luteum, preantral, antral, atretic, and cystic follicles of ovaries were evaluated and counted. The thickness of the tunica albuginea, hyperplasia of the theca intern cells, reduction in corpus luteum, and sub-capsular follicular cysts in the control group and PCOS groups were analyzed (Fig. 1).

Fig. 1. Control (a): section of ovary from a control rat showing follicles at various stages. prf, preantral follicle; antf, antral follicle; cl, corpus luteum; af, atretic follicle (H&E, ×40). PCOS (b): section of ovary from a PCOS rat showing cystic, atretic, and antral follicles and decreased corpus luteum. cf, cystic follicle (H&E, ×40). Metformin (c) and erdosteine (d): decrease in numbers of atretic and cystic follicles with increase in antral follicles and corpus luteum in the sections of ovaries of the erdosteine and metformin groups (H&E, ×40).
Measurement of TOS in Serum
Oxidants present in a sample oxidize the ferrous ion-o-dianisidine complex to ferric ion. The oxidation reaction is enhanced by abundant glycerol molecules in the reaction medium. The ferric ion forms a colored complex with xylenol orange in an acidic medium. The color intensity, which can be measured spectrophotometrically, is related to the total amount of oxidant molecules in the sample. The assay was calibrated with hydrogen peroxide. The results are expressed in terms of micromolar hydrogen peroxide equivalent per liter (μmol H₂O₂ Eq/L).

Measurement of TAS in Serum
This was done by the new automated measurement technique described by Erel [25]. This technique measures the antioxidant effect of the sample against the potent free radical reactions initiated by hydroxyl radicals. The assay had sensitivity of < 3%. The findings are expressed as mmol Trolox Eq/L [25].

Statistical Analyses
The normality of the distribution of variables was analyzed by the Kolmogorov-Smirnov normality test. Normally distributed data was analyzed by one-way analysis of variance, and also non-parametric variables between different groups were compared using Kruskal-Wallis test. The data were analyzed by one-way ANOVA followed by Tukey’s post hoc test for multiple comparisons. Also, Wilcoxon test was used for comparison between initial and last rat weights. All values were reported as mean ± SEM. Statistical significance was considered to be p < 0.05. The analyses were performed using Graph Pad Prism software (La Jolla, CA, USA).

Results
Histopathological Analyses
The average value of uterine and ovarian weights and histopathological parameters is shown in Table 1 and Figure 1. Histopathological analysis of PCOS-only ovaries appeared to be substantially increasing in subcapsular cyst formation, capsular thickness, and theca cell hyperplasia in addition to a reduced corpus luteum. There was no difference between groups in terms of average of preantral and antral follicle counts, despite the fact that preantral follicles were statistically lower in the PCOS+Erd group as compared to the PCOS+MET group (p < 0.05), and antral follicles seem to be higher in the PCOS+Erd group when compared to the PCOS group (Table 1). Statistically significant differences between groups were seen in terms of average counts of atretic and cystic follicles (Table 1). The cystic follicle count of the PCOS group was significantly higher when compared with the control, PCOS+MET, and PCOS+Erd groups (p < 0.01, p < 0.01, and p < 0.01, respectively). The atretic follicle counts were significantly lower in the control, PCOS+MET, and

Table 1. Comparison of the histopathological scores in groups

	Control	PCOS	PCOS+MET	PCOS+Erd
Uterine weight, mg	1.0±0.1	0.5±0.0**	3.7±0.4***	4.4±0.6***
Ovary weight, mg	1.00±0.1	1.81±0.2**	1.08±0.1*	1.11±0.2*
Preantral Fc	3.62±0.7	2.62±0.6	3.22±0.7	1.55±0.3**
Antral Fc	5.87±0.7	5.37±0.3	5.55±0.7	6.88±0.6
Atretic Fc	4.75±0.2	6.25±0.6**	2.11±0.3***	1.88±0.2***
Cystic Fc	0.5±0.3	3.1±0.7***	0.55±0.3***	0.66±0.2**
Corpus luteum	13.00±1.4	8.87±1.1**	14.56±1.4**	15.22±1.6**

Mean ± SEM. PCOS, polycystic ovary syndrome; MET, metformin; Erd, erdosteine; Fc, follicle count. * p < 0.05; ** p < 0.01; *** p < 0.001. a PCOS versus control; b PCOS+MET versus PCOS; c PCOS+Erd versus PCOS; d PCOS+Erd versus PCOS+MET.
Therapeutic Effects of Erdosteine in PCOS

Table 2. Comparison of the biochemical parameters in groups

Parameter	Control	PCOS	PCOS+MET	PCOS+Erd
Initial rat weight, g	274.1±6.4	282.7±6.0	280.5±9.9	275.8±10.7
Last weight, g	291.5±6.6	323.5±4.2	311.5±10.8	314.0±11.2
Glucose, mg/dL	232.7±7.8	353.0±15.9	306.8±16.7	342.8±8.4
Insulin, μIU/mL	0.9±0.00	3.2±0.00	2.5±0.01	2.3±0.01
HOMA-IR	0.52±0.03	2.77±0.12	1.76±0.01	1.66±0.28
Total-C	49.25±1.8	60.65±1.2	55.01±1.5	57.06±3.3
TG	48.03±5.2	63.85±3.2	55.18±2.3	53.77±2.9
LDL-C	4.37±0.3	8.37±0.82	5.11±0.4	4.75±0.3
HDL-C	13.84±1.1	12.79±1.1	17.55±0.7	17.56±1.1
TAS, mmol/L	1.106±0.22	0.713±0.03	0.856±0.06	0.950±0.06
TOS, μmol/L	24.70±5.2	104.80±12.4	65.87±12.6	45.69±4.4
OSI (TOS/TAS)	22.41±8.0	146.90±15.7	78.38±13.5	48.18±9.8

* Mean ± SEM. HOMA-IR, homeostasis model assessment of insulin resistance; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol. TAS, total antioxidant status; TOS, total oxidant status; OSI, oxidative stress index. * p < 0.05; ** p < 0.01; *** p < 0.001.
† Initial versus last; a PCOS versus control; b PCOS+MET versus PCOS; c PCOS+Erd versus PCOS; d PCOS+Erd versus PCOS+MET.

PCOS+Erd groups when compared with the PCOS group (p < 0.05, p < 0.01, and p < 0.001, respectively). There was no significant difference between the PCOS+MET and PCOS+Erd group with respect to numbers of cystic and atretic follicles (p > 0.05). Corpus luteum numbers were lower in the PCOS group as compared with the control, PCOS+MET, and PCOS+Erd groups (p < 0.05, p < 0.01, and p < 0.01, respectively). There was no significant difference between the PCOS+MET and PCOS+Erd groups with respect to corpus luteum number (p > 0.05).

Biochemical Analyses

Biochemical parameters and weights of rats are presented in Table 2. The final weights of rats in the PCOS, PCOS+MET, and PCOS+Erd groups were statistically higher than their initial weights (p < 0.001, p < 0.05, and p < 0.05, respectively). Fasting glucose levels were higher in the PCOS group than in the control and metformin groups (p < 0.001 and p < 0.05, respectively). There was no significant difference in the PCOS+MET group as compared to the control and PCOS groups. HOMA-IR was substantially higher in the PCOS group as compared to the control, PCOS+MET, and PCOS+Erd groups (p < 0.001, p < 0.01, and p < 0.001, respectively). However, there were no substantial differences in HOMA-IR levels between the PCOS+MET and PCOS+Erd groups. Total cholesterol levels were higher in the PCOS group as compared to the control and PCOS+MET groups (p < 0.01 and p < 0.05, respectively). Triglyceride levels were also substantially higher in the PCOS group as compared to the control, PCOS+MET, and PCOS+Erd groups (p < 0.05, p < 0.05, and p < 0.05, respectively). LDL-C levels were statistically lower in the control, PCOS+MET, and PCOS+Erd groups as compared to the PCOS group (p < 0.01, p < 0.05, and p < 0.01, respectively). On the other hand, HDL-C levels were lower in the PCOS group as compared to the PCOS+MET and PCOS+Erd groups (p < 0.05 and p < 0.05, respectively). Levels of TAS were not substantially different between groups. TOS was statistically lower in the control, PCOS+MET, and PCOS+Erd groups as compared to the PCOS group (p < 0.0001, p < 0.05, and p < 0.01, respectively). Furthermore, OSI was statistically lower in the control, PCOS+MET, and PCOS+Erd groups as compared to the PCOS group (p < 0.0001, p < 0.01, and p < 0.0001, respectively). There was a significant difference between the PCOS+MET and PCOS+Erd group with respect to OSI (p < 0.05).

Hormone Parameters

A statistically significant reduction was seen in levels of estrone in the control, PCOS+MET, and PCOS+Erd groups as compared to the PCOS group (p < 0.001, p < 0.05, and p < 0.001, respectively); estradiol levels were lower in the PCOS group as compared to the control, PCOS+MET, and PCOS+Erd groups (p < 0.01, p < 0.001, and p < 0.001, respectively). The E1/E2 ratio was signifi-
significantly higher in the PCOS group as compared to the control, PCOS+MET, and PCOS+Erd groups (p < 0.001, p < 0.001, and p < 0.001, respectively). Likewise, levels of testosterone and androstenedione were substantially higher in the PCOS group as compared to the control, PCOS+MET, and PCOS+Erd groups (Table 3).

Discussion

This study shows that erdosteine ameliorates lipid profile, insulin resistance, hormone profiles, and follicle counts in PCOS. Women with PCOS are in need of long-term treatment because PCOS is a lifelong endocrinopathy. Even though several drugs have been used to treat PCOS, the effectiveness of erdosteine in PCOS has not been investigated. Previous experimental studies have shown that erdosteine could be used at a wide range of dose without any side effects; however, metformin induces many side effects after long-term use.

Metformin and oral contraceptive pills have been used to treat the symptoms experienced by women with PCOS [13]. When metformin is administered as an insulin sensitizer, substantial reductions in serum insulin levels and insulin resistance are observed and it also improves ovulatory functions. Although metformin and oral contraceptive pills have been beneficial in treating PCOS symptoms, their efficacy and safety are still not entirely elucidated [13, 26]. The observed effects of drugs used for PCOS are usually not significant enough for treatment. Furthermore, previous studies have indicated that metformin produces many side effects after prolonged usage [27]. These observations made us interested in exploring new therapeutic options for the therapy of PCOS.

Erdosteine is associated with a low incidence of adverse events, most of which are gastrointestinal and generally mild. The LD_{50} (median lethal dose) is very high, 3,500–5,000 mg/kg [28]. PCOS is a low-grade chronic inflammatory oxidative state [29]. In this study, we compared the effects of erdosteine and metformin. There was a significant reduction in the numbers of atretic and cystic follicles in both metformin and erdosteine groups. Furthermore, there was a substantial reduction in the number of preantral follicles in the erdosteine group as compared to the metformin group, probably due to its antioxidant effects. Our histological analysis indicates that erdosteine may benefit follicular development in the rat model of PCOS.

There was a substantial difference in ovarian and uterine weights between groups; while uterine weights were low, ovarian weights were high in the PCOS group. Similar findings regarding ovarian and uterine weights were reported in letrozole-induced PCOS models [19]. Uterine weights in the metformin and erdosteine groups are higher than in the PCOS group, probably due to an increase in estrogen levels.

In addition to morphological improvements in the ovaries, we observed that levels of total testosterone in the metformin and erdosteine groups were significantly lower than in the PCOS group. There have been different findings on E1, E2, and androstenedione concentrations in letrozole-induced PCOS rat models [30]. In our study, it appears that erdosteine substantially affected levels of E1, E2, and androstenedione. These findings may be considered as a reflection of histopathological amelioration brought about by erdosteine. However, the histological data does not reveal the mechanism by which erdosteine decreases the appearance of PCOS in ovaries. Erdosteine may affect androgen levels. On the other hand, it seems that the precise effect of metformin on androgen levels compared to the erdosteine treatment group was not studied. This may be due to the possible effect of metformin.

Table 3. Comparison of the hormone parameters in groups

	Control	PCOS	PCOS+MET	PCOS+Erd
Estrone (E1), pg/mL	113.9±3.2	277.6±7.7\(a, ***\)	209.4±25.4\(b, *\)	147.7±23.9\(c, ***\)
Estradiol (E2), pg/mL	109.0±3.9	76.3±10.0\(a, **\)	155.5±14.5\(b, ***\)	125.8±4.7\(c, ***\)
E1/E2	1.05±0.03	4.01±0.44\(a, ***\)	1.34±0.08\(b, ***\)	1.17±0.17\(c, ***\)
Testosterone, ng/mL	3.55±0.59	9.01±0.93\(a, ***\)	4.63±0.69\(b, **\)	4.12±0.85\(c, ***\)
Androstenedione, ng/mL	0.43±0.09	1.11±0.14\(a, ***\)	0.71±0.09\(b, *\)	0.62±0.07\(c, **\)

Mean ± SEM. \(a\) p < 0.05; \(**\) p < 0.01; \(***\) p < 0.001. \(a\) PCOS versus control; \(b\) PCOS+MET versus PCOS; \(c\) PCOS+Erd versus PCOS.
Therapeutic Effects of Erdosteine in PCOS

Erdosteine has been shown to be associated with several forms of dyslipidemia with low levels of HDL-C, high levels of triglycerides, total cholesterol, and LDL-C [24]. In our study, levels of HDL-C were significantly higher in metformin-treated and erdosteine-treated animals than in untreated rats with PCOS. Furthermore, levels of triglycerides, total cholesterol, and LDL-C were significantly lower in metformin-treated and erdosteine-treated rats than in the PCOS group.

The etiology of insulin resistance in PCOS is still not clear. Insulin resistance was described as HOMA-IR [32]. In our study, we observed that HOMA-IR is significantly lower in the PCOS+MET and PCOS+Erd groups compared to the PCOS group. Glucose also is significantly lower in the PCOS+MET group as compared to the untreated PCOS group. In previous studies, it was indicated that hypovitaminosis D may contribute to worsen insulin resistance, which is a feature of women with PCOS [33]. Therefore, vitamin D replacement therapy is given to PCOS patients. In terms of the same effect of vitamin D, erdosteine may have a beneficial effect on insulin resistance in women with PCOS [34].

We suggest that these clinical results are associated with the antibacterial, antioxidant, and mucolytic effects of erdosteine [35, 36]. The positive effect of erdosteine in PCOS is likely to be associated with the thiol groups in its structure. Erdosteine has been used to ameliorate ischemia reperfusion injury in several organs [15]. Erdosteine may also protect against ovarian ischemia/reperfusion with the release of oxidant free radicals and prevention of pro-inflammatory processes [15]. Also, erdosteine, due to its antioxidant effects, may reduce the adverse effects caused by increased levels of reactive oxygen species (ROS). We chose to test erdosteine because of its antioxidant effects, because it has been used successfully in clinical and experimental studies, and because it is cheap and is easily available. Taken together, our analysis supports a protective role of erdosteine in a rat model of letrozole-induced PCOS.

Conclusions

This study shows that erdosteine treatment increases the numbers of antral follicle and corpus luteum, and reduces the numbers of atretic and cystic follicles. In addition, it decreases levels of total testosterone, E2, and androstenedione. This study also shows that the therapeutic effect of erdosteine could be due to suppression of biosynthesis of ovarian androgens. Thus, erdosteine may have therapeutic potential in the treatment of PCOS.

Disclosure Statement

The authors have no conflicts of interest to disclose.

Author Contributions

A.K. and R.D. designed and conducted the study; R.D. provided the rats for the experiments. H.D., O.T., and G.A. performed the application of treatment agents. O.T., H.D., R.D., and G.A. performed together surgical technique. R.D. and A.K. wrote the manuscript. C.T. provided supervision. O.T. and Z.A.T. evaluated histological analysis. All of the authors participated in the interpretation of the studies and analysis and also approved the final version of the manuscript for submission.

References

1 van Houten EL, Visser JA. Mouse models to study polycystic ovary syndrome: a possible link between metabolism and ovarian function? Reprod Biol. 2014 Mar;14(1):32–43.
2 Amsterdam E; Amsterdam ESHRE/ASRM Sponsored 3rd PCOS Consensus Workshop Group. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS). Hum Reprod. 2012 Jan;27(1):14–24.
3 Ruan X, Dai Y. Study on chronic low-grade inflammation and influential factors of polycystic ovary syndrome. Med Princ Pract. 2009;18:118–22.
4 Norman RJ, DeWailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet. 2007 Aug;370(9588):685–97.
5 Bagir GS, et al. Body Mass Index below Obesity Threshold Implies Similar Cardiovascular Risk among Various Polycystic Ovary Syndrome Phenotypes. Med Princ Pract. 2016;25:61–6.
6 Goodarzi MO, Dumesic DA, Chazenbalk G, Aziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol. 2011 Apr;7(4):219–31.
7 Alphan Z, et al. Increased total Renin levels but not Angiotensin-converting enzyme activity in obese patients with polycystic ovary syndrome. Med Princ Pract. 2013;22:475–9.
8 Wild RA. Long-term health consequences of PCOS. Hum Reprod Update. 2002 May-Jun;8(3):231–41.
9 Glinkborg D, Altimok ML, Mumm H, Hermann AP, Ravn P, Andersen M. Body composition is improved during 12 months’ treatment with metformin alone or combined with oral contraceptives compared with treatment with oral contraceptives in polycystic ovary syndrome. J Clin Endocrinol Metab. 2014 Jul;99(7):2584–91.
10 Conway G, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Franks S, Gambineri A, et al.; ESE PCOS Special Interest Group. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur J Endocrinol. 2014 Oct;171(4):1–29.
11 Domecq JP, Prutsky G, Mullan RJ, Sundaresh V, Wang AT, Erwin PJ, et al. Adverse effects of the common treatments for polycystic ova-
ry syndrome: a systematic review and meta-
analysis. J Clin Endocrinol Metab. 2013 Dec;
98(12):4646–54.

12 Costello M, Shrestha B, Eden J, Sjoblom P, John-
son N. Insulin-sensitising drugs versus the com-
bined oral contraceptive pill for hir-
sutism, acne and risk of diabetes, cardiovascu-
lar disease, and endometrial cancer in polycy-
cistic ovary syndrome. Cochrane Database Syst Rev. 2007 Jan;(1):CD003552.

13 Yang YM, Choi EJ. Efficacy and safety of met-
formin or oral contraceptives, or both in poly-
cystic ovary syndrome. Ther Clin Risk Man-
age. 2015 Sep;11:1345–53.

14 Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, et al. Metformin inhibits proinflammatory responses and nuclear fac-
tor-kappaB in human vascular wall cells. Ar-
terioscler Thromb Vasc Biol. 2006 Mar;26(3):
611–7.

15 Dokuyucu R, Karateke A, Gokce H, Kurt RK, Ozcan O, Ozturk S, et al. Antioxidant effect of erdosteine and lipoic acid in ovarian isch-
emia-reperfusion injury. Eur J Obstet Gynecol Reprod Biol. 2014 Dec;183:23–7.

16 Tutanc M, Arica V, Yilmaz N, Yildirim AG, Ye-
niolo O, Erbas O, Yavasoglu A, et al. Effects of Resveratrol on Ovarian Morphology, Plasma Anti-Mullerian Hormone, IGF-1 Levels, and Oxidative Stress Parameters in a Rat Model of Polycystic Ovary Syndrome. Reprod Sci. 2015 Aug;22(8):942–7.

17 Fadillioğlu E, Erdoğan H, Söğüt S, Kuku I. Protective effects of erdosteine on cyclosporin-A-induced nephrotoxicity. Hum Exp Toxicol. 2012 Jun;31(6):565–73.

18 Balli F, Bergamini B, Calistru P, Ciofu EP, Doc-
salini R, Doros G, et al. Clinical effects of metformin in the treatment of acute respira-
tory tract diseases in children. Int J Clin Phar-
macol Ther. 2007 Jan;45(1):16–22.

19 Du DF, Li XL, Fang F, Du MR. Expression of anti-Mullerian hormone in letrozole rat mod-
el of polycystic ovary syndrome. Gynecol En-
docrinol. 2014;30(12):885–9.

20 Gozukara I et al.: Histopathologic and meta-
bolic effect of 1,25-dihydroxyvitamin D3 on diabetes-induced liver complications in a rat model. Exp Ther Med. 2016 Jan;11(6):
2284–92.

21 Erel O. A novel automated method to mea-
sure total antioxidant response against potent free radical reactions. Clin Biochem. 2004 Feb;37(2):112–9.

22 Atis A, Aydin Y, Ciftci F, Sakiz D, Arslan A, Toklu AS, et al. Hyperbaric oxygen increases atresia in normal & steroid induced POCO rat ovaries. Reprod Biol Endocrinol. 2012 Feb; 10(1):11.

23 Liu L, Lv G, Ning C, Yang YE, Zhu J. Thera-
peutic effects of 1,25-dihydroxyvitamin D3 on diabetes-induced liver complications in a rat model. Exp Ther Med. 2016 Jun;11(6):
2284–92.

24 Pasquali R, Stener-Victorin E, Yildiz BO, Duleba AJ, Hoeger K, Mason H, et al. PCOS Forum: research in polycystic ovary syn-
drome today and tomorrow. Clin Endocrinol (Oxf). 2011 Apr;74(4):424–33.

25 Erel O. A novel automated method to mea-
sure total antioxidant response against potent free radical reactions. Clin Biochem. 2004 Feb;37(2):112–9.

26 Palomba S, Falbo A, Zullo F, Orrio F Jr. Evi-
dence-based and potential benefits of metfor-
mim in the polycystic ovary syndrome: a com-
prehensive review. Endocr Rev. 2009 Feb;
30(1):1–50.

27 Kurtzhaler D, Hadziomerovic-Pekic D, Wildt L, Seebor BE. Metformin induces a prompt decrease in LH-stimulated testosterone re-
sponse in women with PCOS independent of its insulin-sensitizing effects. Reprod Biol Endo-
crinol. 2014 Oct;12(1):98.

28 Eliasson S, Heimdal A, Nordenram A. Path-
ological changes related to long-term impac-
tation of third molars. A radiographic study. Int J Oral Maxillofac Surg. 1989 Aug;18(4):210–
2.

29 Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012 Jun;10(1):49.

30 Wu C, Lin F, Qiu S, Jiang Z. The characterization of obese polycystic ovary syndrome rat model suitable for exercise intervention. PLoS One. 2014 Jun;9(6):e99155.

31 Li X, Cui P, Jiang HY, Guo YR, Pishdari B, Hu M, et al. Reversing the reduced level of endo-
metrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action. Am J Transl Res. 2015 Mar;7(3):574–86.

32 Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004 Jun;27(6):1487–95.

33 Muscogiuri G, Policola C, Prisoletta A, Sorice G, Mezza T, Lassandro A, et al. Low levels of 25(OH)D and insulin-resistance: 2 unrelated features or a cause-effect in PCOS? Clin Nutr. 2012 Aug;31(4):476–80.

34 Selimoglu H, Duran C, Kiyici S, Ersoy C, Gu-
culu M, Ozkaya G, et al. The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J Endocrinol Invest. 2010 Apr;33(4):234–8.

35 Moretti M. Erdosteine: its relevance in COPD treatment. Expert Opin Drug Metab Toxicol. 2009 Mar;3(3):333–43.

36 Balli F, Bergamini B, Calistrut P, Ciofu EP, Do-
menici R, Doros G, et al. Clinical effects of erdosteine in the treatment of acute respira-
tory tract diseases in children. Int J Clin Phar-
macol Ther. 2007 Jan;45(1):16–22.