On γ-Regular-Open Sets and γ-Closed Spaces

SABIR HUSSAIN

Department of Mathematics, Islamia University Bahawalpur, Pakistan.

Present Address: Department of Mathematics, Yanbu University,
P. O. Box 31387, Yanbu Alsinaiah, Saudi Arabia.
E. mail: sabiriub@yahoo.com.

Abstract. The purpose of this paper is to continue studying the properties of γ-regular open sets introduced and explored in [6]. The concept of γ-closed spaces have also been defined and discussed.

AMS Subject Classification: 54A05, 54A10, 54D10, 54D99.

Keywords. γ-closed (open), γ-interior(closure), γ-regular-open(closed), γ-θ-open(closed), γ-extremally disconnected, γ-R-converge, γ-R-accumulate, γ-closed spaces.

1 Introduction

The concept of operation γ was initiated by S. Kasahara [7]. He also introduced γ-closed graph of a function. Using this operation, H. Ogata [8] introduced the concept of γ-open sets and investigated the related topological properties of the associated topology τ_γ and τ. He further investigated general operator approaches of close graph of mappings.

Further S. Hussain and B. Ahmad [1-6] continued studying the properties of γ-open(closed) sets and generalized many classical notions in their work. The purpose of this paper is to continue studying the properties of γ-regular open sets introduced and explored in [6]. The concept of γ-closed spaces have also been defined and discussed.

First, we recall some definitions and results used in this paper. Hereafter, we shall write a space
in place of a topological space.

2 Preliminaries

Throughout the present paper, X denotes topological spaces.

Definition [7]. An operation \(\gamma : \tau \to P(X) \) is a function from \(\tau \) to the power set of \(X \) such that \(V \subseteq V^\gamma \), for each \(V \in \tau \), where \(V^\gamma \) denotes the value of \(\gamma \) at \(V \). The operations defined by \(\gamma(G) = G \), \(\gamma(G) = \text{cl}(G) \) and \(\gamma(G) = \text{intcl}(G) \) are examples of operation \(\gamma \).

Definition [7]. Let \(A \subseteq X \). A point \(x \in A \) is said to be \(\gamma \)-interior point of \(A \), if there exists an open nbd \(N \) of \(x \) such that \(N^\gamma \subseteq A \) and we denote the set of all such points by \(\text{int}_\gamma(A) \). Thus

\[
\text{int}_\gamma(A) = \{ x \in A : x \in N \in \tau \text{ and } N^\gamma \subseteq A \} \subseteq A.
\]

Note that \(A \) is \(\gamma \)-open [8] iff \(A = \text{int}_\gamma(A) \). A set \(A \) is called \(\gamma \)-closed [1] iff \(X-A \) is \(\gamma \)-open.

Definition [1]. A point \(x \in X \) is called a \(\gamma \)-closure point of \(A \subseteq X \), if \(U^\gamma \cap A \neq \emptyset \), for each open nbd \(U \) of \(x \). The set of all \(\gamma \)-closure points of \(A \) is called \(\gamma \)-closure of \(A \) and is denoted by \(\text{cl}_\gamma(A) \). A subset \(A \) of \(X \) is called \(\gamma \)-closed, if \(\text{cl}_\gamma(A) \subseteq A \). Note that \(\text{cl}_\gamma(A) \) is contained in every \(\gamma \)-closed superset of \(A \).

Definition [7]. An operation \(\gamma \) on \(\tau \) is said to be regular, if for any open nbds \(U, V \) of \(x \in X \), there exists an open nbd \(W \) of \(x \) such that \(U^\gamma \cap V^\gamma \supseteq W^\gamma \).

Definition [8]. An operation \(\gamma \) on \(\tau \) is said to be open, if for any open nbd \(U \) of each \(x \in X \), there exists \(\gamma \)-open set \(B \) such that \(x \in B \) and \(U^\gamma \supseteq B \).

3 \(\gamma \)-Regular-Open Sets

Definition 3.1 [6]. A subset \(A \) of \(X \) is said to be \(\gamma \)-regular-open (resp. \(\gamma \)-regular-closed), if

\[
A = \text{int}_\gamma(\text{cl}_\gamma(A)) \quad \text{(resp. } A = \text{cl}_\gamma(\text{int}_\gamma(A))\text{)}.
\]

It is clear that \(\text{RO}_\gamma(X, \tau) \subseteq \tau_\gamma \subseteq \tau \) [6].

The following example shows that the converse of above inclusion is not true in general.

Example 3.2. Let \(X = \{a, b, c\} \), \(\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\} \). For \(b \in X \), define an operation \(\gamma : \tau \to P(X) \) by
\[
\gamma(A) = \begin{cases}
 A, & \text{if } b \in A \\
 cl(A), & \text{if } b \notin A
\end{cases}
\]

Calculations shows that \(\{a, b\}, \{a, c\}, \{b\}, X, \phi\) are \(\gamma\)-open sets and \(\{a, c\}, \{b\}, X, \phi\) are \(\gamma\)-regular-open sets. Here set \(\{a, b\}\) is \(\gamma\)-open but not \(\gamma\)-regular-open.

Definition 3.3[7]. A space \(X\) is called \(\gamma\)-extremally disconnected, if for all \(\gamma\)-open subset \(U\) of \(X\), \(cl_\gamma(U)\) is a \(\gamma\)-open subset of \(X\).

Proposition 3.4. If \(A\) is a \(\gamma\)-clopan set in \(X\), then \(A\) is a \(\gamma\)-regular-open set. Moreover, if \(X\) is \(\gamma\)-extremally disconnected then the converse holds.

Proof. If \(A\) is a \(\gamma\)-clopan set, then \(A = cl_\gamma(A)\) and \(A = int_\gamma(cl_\gamma(A))\), and so we have \(A = int_\gamma(cl_\gamma(A))\). Hence \(A\) is \(\gamma\)-regular-open.

Suppose that \(X\) is a \(\gamma\)-extremally disconnected space and \(A\) is a \(\gamma\)-regular-open set in \(X\). Then \(A\) is \(\gamma\)-open and so \(cl_\gamma(A)\) is a \(\gamma\)-open set. Hence \(A = int_\gamma(cl_\gamma(A)) = cl_\gamma(A)\) and hence \(A\) is \(\gamma\)-closed set. This completes the proof.

The following example shows that space \(X\) to be \(\gamma\)-extremally disconnected is necessary in the converse of above Proposition.

Example 3.5 Let \(X= \{a, b, c\}\), \(\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}\). Define an operation \(\gamma : \tau \to P(X)\) by \(\gamma(B) = int(cl(B))\). Clearly \(X\) is not \(\gamma\)-extremally disconnected space. Calculations shows that \(\{a\}, \{a, b\}, \{b\}, X, \phi\) are \(\gamma\)-open as well as \(\gamma\)-regular-open sets. Here \(\{a\}\) is a \(\gamma\)-regular-open set but not \(\gamma\)-clopan set.

Theorem 3.6. Let \(A \subseteq X\), then (a) \(\Rightarrow\) (b) \(\Rightarrow\) (c), where :

(a) \(A\) is \(\gamma\)-clopan.

(b) \(A = cl_\gamma(int_\gamma(A))\).

(c) \(X - A\) is \(\gamma\)-regular-open.

Proof. (a) \(\Rightarrow\) (b). This is obvious.

(b) \(\Rightarrow\) (c). Let \(A = cl_\gamma(int_\gamma(A))\). Then \(X - A = X - cl_\gamma(int_\gamma(A)) = int_\gamma(X - int_\gamma(A)) = int_\gamma(cl_\gamma(X - A))\), and hence \(X - A\) is \(\gamma\)-regular-open set. Hence the proof.
Using Proposition 3.4, we have the following Theorem:

Theorem 3.7. If X is a γ-extremally disconnected space. Then $(a) \Rightarrow (b) \Rightarrow (c)$, where :

(a) $X - A$ is γ-regular-open.

(b) A is γ-regular-open.

(c) A is γ-clopan.

Proof. $(a) \Rightarrow (b)$. Suppose X is γ-extremally disconnected space. From Proposition 3.4, $X - A$ is a γ-open and γ-closed set, and hence A is a γ-open and γ-closed set. Thus $A = int_\gamma(cl_\gamma(A))$ implies A is γ-regular-open set.

$(b) \Rightarrow (c)$. This directory follows from Proposition 3.4. This completes as required.

Combining Theorems 3.6 and 3.7, we have the following:

Theorem 3.8. If X is a γ-extremally disconnected space. Then the following statements are equivalent:

(a) A is γ-clopan.

(b) $A = cl_\gamma(int_\gamma(A))$.

(c) $X - A$ is γ-regular-open.

(d) A is γ-regular-open.

Theorem 3.9. Let $A \subseteq X$ and γ be an open operation. If $cl_\gamma(A)$ is a γ-regular-open set. Then A is a γ-open set in X. Moreover, if X is extremally γ-disconnected then the converse holds.

Proof. Suppose that $cl_\gamma(A)$ is a γ-regular-open sets. Since γ is open, we have $A \subseteq cl_\gamma(A) \subseteq int_\gamma(cl_\gamma(cl_\gamma(A))) = int_\gamma(cl_\gamma(A)) = int_\gamma(A)$. This implies that A is γ-open set.

Suppose that X is γ-extremally disconnected and A is γ-open set. Then $cl_\gamma(A)$ is a γ-open set, and hence γ-clopan set. Thus by Theorem 3.8, $cl_\gamma(A)$ is a γ-regular-open set. This completes the proof.

Corollary 3.10. Let X be a γ-extremally disconnected space. Then for each subset A of X, the set $cl_\gamma(int_\gamma(A))$ is γ-regular-open sets.
Definition 3.11. A point \(x \in X \) is said to be a \(\gamma\theta \)-cluster point of a subset \(A \) of \(X \), if \(\text{cl}_\gamma(U) \cap A \neq \emptyset \) for every \(\gamma \)-open set \(U \) containing \(x \). The set of all \(\gamma\theta \)-cluster points of \(A \) is called the \(\gamma\theta \)-closure of \(A \) and is denoted by \(\gamma\text{cl}_\theta(A) \).

Definition 3.12. A subset \(A \) of \(X \) is said to be \(\gamma\theta \)-closed, if \(\gamma\text{cl}_\theta(A) = A \). The complement of \(\gamma\theta \)-closed set is called \(\gamma\theta \)-open sets. Clearly a \(\gamma\theta \)-closed (\(\gamma\theta \)-open) is \(\gamma \)-closed (\(\gamma \)-open) set.

Proposition 3.13. Let \(A \) and \(B \) be subsets of a space \(X \). Then the following properties hold:

(1) If \(A \subseteq B \), then \(\gamma\text{cl}_\theta(A) \subseteq \gamma\text{cl}_\theta(B) \).

(2) If \(A_i \) is \(\gamma\theta \)-closed in \(X \), for each \(i \in I \), then \(\bigcap_{i \in I} A_i \) is \(\gamma\theta \)-closed in \(X \).

Proof. (1). This is obvious.

(2). Let \(A_i \) be a \(\gamma\theta \)-closed in \(X \) for each \(i \in I \). Then \(A_i = \gamma\text{cl}_\theta(A_i) \) for each \(i \in I \). Thus we have \(\gamma\text{cl}_\theta(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} \gamma\text{cl}_\theta(A_i) = \bigcap_{i \in I} A_i \subseteq \gamma\text{cl}_\theta(\bigcap_{i \in I} A_i) \).

Therefore, we have \(\gamma\text{cl}_\theta(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} A_i \) and hence \(\bigcap_{i \in I} A_i \) is \(\gamma\theta \)-closed. Hence the proof.

Theorem 3.14. If \(\gamma \) is an open operation. Then for any subset \(A \) of \(\gamma \)-extremally disconnected space \(X \), the following hold:

\[
\gamma\text{cl}_\theta(A) = \bigcap \{ V : A \subseteq V \text{ and } V \text{ is } \gamma\theta\text{-closed} \}
\]

\[
= \bigcap \{ V : A \subseteq V \text{ and } V \text{ is } \gamma\text{-regular-open} \}
\]

Proof. Let \(x \notin \gamma\text{cl}_\theta(A) \). Then there is a \(\gamma \)-open set \(V \) with \(x \in V \) such that \(cl_\gamma(V) \cap A = \emptyset \). By Theorem 3.9, \(X - cl_\gamma(V) \) is \(\gamma\theta\)-regular-open and hence \(X - cl_\gamma(V) \) is a \(\gamma\theta \)-closed set containing \(A \) and \(x \notin X - \gamma\text{cl}_\theta(V) \). Thus we have \(x \notin \bigcap \{ V : A \subseteq V \text{ and } V \text{ is } \gamma\theta\text{-closed} \} \).

Conversely, suppose that \(x \notin \bigcap \{ V : A \subseteq V \text{ and } V \text{ is } \gamma\theta\text{-closed} \} \). Then there exists a \(\gamma\theta \)-closed set \(V \) such that \(A \subseteq V \) and \(x \notin V \), and so there exists a \(\gamma \)-open set \(U \) with \(x \in U \) such that \(U \subseteq cl_\gamma(U) \subseteq X - V \). Thus we have \(cl_\gamma(U) \cap A \subseteq cl_\gamma(U) \cap V = \emptyset \) implies \(x \notin \gamma\text{cl}_\theta(A) \). The proof of the second equation follows similarly. This completes the proof.

Theorem 3.15. Let \(\gamma \) be an open operation. If \(X \) is a \(\gamma \)-extremally disconnected space and \(A \subseteq X \). Then the followings hold:

(a) \(x \in \gamma\text{cl}_\theta(A) \) if and only if \(V \cap A \neq \emptyset \), for each \(\gamma\theta\text{-regular-open} \) set \(V \) with \(x \in V \).
(b) A is γ-θ-open if and only if for each \(x \in A \) there exists a γ-regular-open set \(V \) with \(x \in V \) such that \(V \subseteq A \).

(c) A is a γ-regular-open set if and only if A is γ-θ-clopan.

Proof. (a) and (b) follows directly from Theorems 3.8 and 3.9.

(c) Let A be a γ-regular-open set. Then A is a γ-open set and so \(A = cl_\gamma(A) = cl_\theta(A) \) and hence A is γ-θ-closed. Since \(X - A \) is a γ-regular-open set, by the argument above, \(X - A \) is γ-θ-closed and A is γ-θ-open. The converse is obvious. Hence the proof.

It is obvious that γ-regular-open ⇒ γ-θ-open ⇒ γ-open. But the converses are not necessarily true as the following examples show.

Example 3.16. Let \(X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\} \). For \(b \in X \), define an operation \(\gamma : \tau \to P(X) \) by

\[
\gamma(A) = \begin{cases}
 A, & \text{if } b \in A \\
 cl(A), & \text{if } b \notin A
\end{cases}
\]

Calculations shows that \(\{a, b\}, \{a, c\}, \{b\}, X, \phi \) are γ-open sets as well as γ-θ-open sets and γ-regular-open sets are \(\{a, c\}, \{b\}, X, \phi \). Then the subset \(\{a, b\} \) is γ-θ-open but not γ-regular-open.

Example 3.17. Let \(X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\} \) be a topology on X. For \(b \in X \), define an operation \(\gamma : \tau \to P(X) \) by

\[
\gamma(A) = A^\gamma = \begin{cases}
 cl(A), & \text{if } b \in A \\
 A, & \text{if } b \notin A
\end{cases}
\]

Calculations shows that \(\{\phi, X, \{a\}, \{a, c\}\} \) are γ-open sets and \(\{\phi, X, \{a, c\}\} \) are γ-θ-open sets. The the subset \(\{a\} \) is γ-open but not γ-θ-open.

4 γ-Closed Spaces

Definition 4.1. A filterbase \(\Gamma \) in X, γ-R-converges to \(x_0 \in X \), if for each γ-regular-open set \(A \) with \(x_0 \in A \), there exists \(F \in \Gamma \) such that \(F \subseteq A \).

Definition 4.2. A filterbase \(\Gamma \) in X γ-R-accumulates to \(x_0 \in X \), if for each γ-regular-open set \(A \)
with \(x_0 \in A \) and each \(F \in \Gamma, F \cap A \neq \phi \).

The following Theorems directly follow from the above definitions.

Theorem 4.3. If a filterbase \(\Gamma \) in \(X \), \(\gamma \)-R-converges to \(x_0 \in X \), then \(\Gamma \) \(\gamma \)-R-accumulates to \(x_0 \).

Theorem 4.4. If \(\Gamma_1 \) and \(\Gamma_2 \) are filterbases in \(X \) such that \(\Gamma_2 \) subordinate to \(\Gamma_1 \) and \(\Gamma_2 \) \(\gamma \)-R-accumulates to \(x_0 \), then \(\Gamma_1 \) \(\gamma \)-R-accumulates to \(x_0 \).

Theorem 4.5. If \(\Gamma \) is a maximal filterbase in \(X \), then \(\Gamma \) \(\gamma \)-R-accumulates to \(x_0 \) if and only if \(\Gamma \) \(\gamma \)-R-converges to \(x_0 \).

Definition 4.6. A space \(X \) is said to be \(\gamma \)-closed, if every cover \(\{V_\alpha : \alpha \in I\} \) of \(X \) by \(\gamma \)-open sets has a finite subset \(I_0 \) of \(I \) such that \(X = \bigcup_{\alpha \in I} \text{cl}_\gamma(V_\alpha) \).

Proposition 4.7. If \(\gamma \) is an open operation, Then the following are equivalent:

1. \(X \) is \(\gamma \)-closed.
2. For each family \(\{A_\alpha : \alpha \in I\} \) of \(\gamma \)-closed subsets of \(X \) such that \(\bigcap_{\alpha \in I} A_\alpha = \phi \), there exists a finite subset \(I_0 \) of \(I \) such that \(\bigcap_{\alpha \in I_0} \text{int}_\gamma(A_\alpha) = \phi \).
3. For each family \(\{A_\alpha : \alpha \in I\} \) of \(\gamma \)-closed subsets of \(X \), if \(\bigcap_{\alpha \in I_0} \text{int}_\gamma(A_\alpha) \neq \phi \), for every finite subset \(I_0 \) of \(I \), then \(\bigcap_{\alpha \in I} A_\alpha \neq \phi \).
4. Every filterbase \(\Gamma \) in \(X \) \(\gamma \)-R-accumulates to \(x_0 \in X \).
5. Every maximal filterbase \(\Gamma \) in \(X \) \(\gamma \)-R-converges to \(x_0 \in X \).

Proof. (2) \(\iff \) (3). This is obvious.

(2) \(\Rightarrow \) (1). Let \(\{A_\alpha : \alpha \in I\} \) be a family of \(\gamma \)-open subsets of \(X \) such that \(X = \bigcup_{\alpha \in I} A_\alpha \). Then each \(X - A_\alpha \) is a \(\gamma \)-closed subset of \(X \) and \(\bigcap_{\alpha \in I} (X - A_\alpha) = \phi \), and so there exists a finite subset \(I_0 \) of \(I \) such that \(\bigcap_{\alpha \in I_0} \text{int}_\gamma(X - A_\alpha) = \phi \), and hence \(X = \bigcup_{\alpha \in I_0} (X - \text{int}_\gamma(X - A_\alpha)) = \bigcup_{\alpha \in I_0} \text{cl}_\gamma(A_\alpha) \). Therefore \(X \) is \(\gamma \)-closed, since \(\gamma \) is open.

(4) \(\Rightarrow \) (2). Let \(\{A_\alpha : \alpha \in I\} \) be a family of \(\gamma \)-closed subsets of \(X \) such that \(\bigcap_{\alpha \in I} A_\alpha = \phi \). Suppose that for every finite subfamily \(\{A_{\alpha_i} : i = 1, 2, ..., n\} \), \(\bigcap_{i=1}^n \text{int}_\gamma(A_{\alpha_i}) \neq \phi \). Then \(\bigcap_{i=1}^n (A_{\alpha_i}) \neq \phi \) and \(\Gamma = \{\bigcap_{i=1}^n A_{\alpha_i} : n \in N, \alpha_i \in I\} \) forms a filterbase in \(X \). By (4), \(\Gamma \) \(\gamma \)-R-
Proposition 4.11. Every filterbase F in X determines a net $(\xi_i)_{i \in D}$ in X.

Proposition 4.10. Let $(\xi_i)_{i \in D}$ be a net in X. For the filterbase $F((\xi_i)_{i \in D}) = \{\{x_i : i \leq j\} : j \in D\}$ in X,

(1) $F((\xi_i)_{i \in D})$ γ-converges to x if and only if $(\xi_i)_{i \in D}$ γ-converges to x.

(2) $F((\xi_i)_{i \in D})$ γ-accumulates to x if and only if $(\xi_i)_{i \in D}$ γ-accumulates to x.

Proposition 4.11. Every filterbase F in X determines a net $(\xi_i)_{i \in D}$ in X such that

Definition 4.8. A net $(x_i)_{i \in D}$ in a space X is said to be γ-converges to $x \in X$, if for each γ-open set U with $x \in U$, there exists i_0 such that $x_i \in cl_\gamma(U)$ for all $i \geq i_0$, where D is a directed set.

Definition 4.9. A net $(x_i)_{i \in D}$ in a space X is said to be γ-accumulates to $x \in X$, if for each γ-open set U with $x \in U$ and each i, $x_i \in cl_\gamma(U)$, where D is a directed set.

The proofs of following Propositions are easy and thus are omitted:

Proposition 4.10. Let $(\xi_i)_{i \in D}$ be a net in X. For the filterbase $F((\xi_i)_{i \in D}) = \{\{x_i : i \leq j\} : j \in D\}$ in X,
(1) F_{γ}-R-converges to x if and only if $(x_i)_{i \in D} \gamma$-R-converges to x.

(2) F_{γ}-R-accumulates to x if and only if $(x_i)_{i \in D} \gamma$-R-accumulates to x.

From Propositions 4.11 and 4.12, filterbses and nets are equivalent in the sense of γ-R-converges and γ-R-accumulates. Thus we have the following Theorem:

Theorem 4.13. For a space X, the following are equivalent:

1. X is γ-closed.
2. Each net $(x_i)_{i \in D}$ in X has a γ-R-accumulation point.
3. Each universal net in X γ-R-converges.

References

[1] B. Ahmad and S. Hussain: *Properties of γ-Operations on Topological Spaces*, *Aligarh Bull. Math.* 22(1) (2003), 45-51.

[2] B. Ahmad and S. Hussain: *γ-Convergence in Topological Space*, *Southeast Asian Bull. Math.*, 29(2005), 832-842.

[3] B. Ahmad and S. Hussain: *γ^*-Regular and γ-Normal Space*, *Math. Today.*, 22(1)(2006), 37-44.

[4] B. Ahmad and S. Hussain: *On γ-s-Closed Subspaces*, *Far East Jr. Math. Sci.*, 31(2)(2008), 279-291.

[5] S. Hussain and B. Ahmad: *On Minimal γ-Open Sets*, *Eur. J. Pure Appl. Maths.*, 2(3)(2009), 338-351.

[6] S. Hussain and B. Ahmad: *On γ-s-Closed Spaces*, *Sci. Magna Jr.*, 3(4)(2007), 89-93.

[7] S. Kasahara: *Operation-Compact Spaces*, *Math. Japon.*, 24(1979), 97-105.

[8] H. Ogata: *Operations on Topological Spaces and Associated Topology*, *Math. Japon.*, 36(1)(1991), 175-184.