Acute hip fracture surgery anaesthetic technique and 30-day mortality in Sweden 2016 and 2017: A retrospective register study [version 1; peer review: 1 approved, 1 approved with reservations]

Caroline Gremillet, Jan G. Jakobsson

Department of Anaesthesia & Intensive Care, Institution for Clinical Sciences, Danderyds University Hospital, Karolinska Institutet, Stockholm, 18288, Sweden

Abstract

Background: Hip fractures yearly affect 1.6 million patients worldwide, often the elderly with complex comorbidity. Mortality following surgery for acute hip fracture is high. The high mortality rate is multifactorial; high age, comorbidities and complication/deterioration in health following surgery. Whether the anaesthesia technique affects the 30-day mortality rate has been studied widely without reaching a consensus. The primary aim of this study was to determine anaesthetic techniques used in Sweden and their impact on the 30-day mortality rate in the elderly, who underwent acute hip fracture surgery. Other aims were to study the impact of age, gender, ASA class, fracture type and delay in surgery on the 30-day mortality rate.

Methods: Data from 13,649 patients ≥50 years old who had undergone acute hip fracture surgery and been reported to Swedish perioperative register (SPOR) between 2016 and 2017 were analysed.

Results: The most commonly used anaesthetic technique was neuraxial anaesthesia (NA; 11,257, 82%), followed by general anaesthesia (GA; 2,190, 16%) and combined general and neuraxial anaesthesia (CA; 202, 1.5%) out of the 13,649 studied. The 30-day mortality rate was 7.7% for the entire cohort; GA 7.8%, NA 7.7% and CA 7.4%. Mortality was higher in elderly patients, those with a high ASA class, pertrochanteric fracture and males.

Conclusions: The present study showed that NA is by far the most common anaesthetic technique for acute hip fracture surgery in Sweden. However, the anaesthetic technique used during this type of surgery had no impact on the 30-day mortality rate of patients. Increasing age, ASA class and male gender increased the 30-day mortality.
Keywords
acute hip fracture, anaesthetic technique, neuraxial anaesthesia;
spinal, epidural, general anaesthesia, 30-day mortality
Introduction

Hip fractures yearly affect 1.6 million patients worldwide and the incidence is raising, often the elderly with comorbidities\(^1\). There are annually approximately 17,500 patients with hip fracture in Sweden, the majority being females and the elderly (http://rikshoft.se - /rikshoft_rapport2016.pdf). The search for safe and effective anaesthetic techniques for the management of the elderly patient with fracture is still on-going. There are several techniques possible, all with various benefits and potential negative effects. Neuraxial techniques (spinal and epidural) have the benefit in avoiding the need for airway management and only minor effects on cerebral function. However, blood pressure may drop, which is associated with spinal bupivacaine, and there are data showing a drop in blood pressure being a major risk factor\(^2\). Neuraxial anaesthesia and oral anticoagulants is also a matter of discussion\(^3\). Delay surgery to await the anticoagulant elimination may not be optimal\(^4\). The most recent meta-analysis has not been able to show any clear benefit comparing neuraxial and general anaesthesia\(^5\).

The aim of the present study was to assess the choice of main anaesthetic technique for acute hip fracture surgery in patients ≥50 years old and the impact of main anaesthetic technique on the 30-day mortality in Sweden. The primary outcome was the impact of anaesthetic technique, general vs. neuraxial, on 30-day mortality. Secondary outcomes were effects of age, sex, ASA class, fracture type and surgery within and after 24 hours on the 30-day mortality.

Methods

This is a retrospective register study. Ethical permission for the study was obtained from The Regional Ethical Review Board in Stockholm (Dnr: 2017/1915-31; approved 2017-11-08, Annika Sandström). Patient informed consent is not required for register studies in accordance with Swedish research regulations.

The Swedish Perioperative Register (SPOR) data for January 1\(^{st}\) 2016 and December 31\(^{st}\) 2017 was reviewed. A diagnosis of acute hip fracture (fracture on the femur as collum fracture (S72.0), pertrochanteric fracture (S72.10) and subtrochanteric fracture (S72.2)), age above 50 years, emergent surgery and information around 30-day mortality was inclusion criteria for analysis.

The data-sheets retrieved from SPOR for the study analysis were based on the above inclusion criteria and SPOR had helped to categorise anaesthesia into three groups: neuraxial anaesthesia with and without sedation (NA); general anaesthesia (GA); and combined general and neuraxial anaesthesia (CA).

Statistics

All data is presented as mean and standard deviation. Category data is presented as frequencies and presented as numbers and percent. Difference in mortality was studied by Chi-square test. Continuous variables were analysed by ANOVA and Student-t-test. A p-value < 0.05 was considered statistically significant. Odds ratio and confidence intervals non-adjusted and adjusted were calculated for the primary study variable and the main confounding factors. This is a retrospective register study; thus, no power analysis has been conducted. All statistical analyses were performed using IBM\(^\text{®}\) SPSS Statistics\(^\text{®}\) for Macintosh version 24 (Armonk, New York, USA) and Microsoft Excel © 2017 version 16.9.

Results

A total of 13,649 patients were included in the analysis (Figure 1); 4,601 males and 9,048 females with a mean age of 82 ± 9.6 years. Patients’ demographics are presented in Table 1.

NA (spinal, epidural and combine spinal/epidural) was the most common anaesthetic technique used (82.5% of patients), GA was used in 16% and CA in 1.5% of patients. Mean age was similar between the anaesthetic techniques studied, the proportion of age class 75–84 years and >85 years was however higher among NA compared to GA (79 vs 75%; p<0.0001). Sex was evenly distributed: 64 and 67% of GA and NA were female patients, respectively. Collum type fracture was the dominating fracture 56 and 54% of GA and NA patients, respectively. ASA class 3 was the most common functional class with more than 50% of all patients. The proportion of ASA classes 3–5 was higher among GA compared to NA (73 vs 59%; p<0.0001).

The 30-day mortality for the entire study cohort was 7.7%, with no significant difference between the three anaesthetic techniques studied (GA 7.8%, CA 7.4% and NA 7.7%; Table 1).

Most patients had surgery within 24 hours and there was no difference in delay to surgery between anaesthetic techniques (Table 2). Duration of anaesthesia, surgery or PACU stay was similar for GA and NA, but somewhat longer CA. There was no clear difference in registered blood loss except for the CA group of patients (Table 2).

The 30-day mortality was higher among males (10.6%) compared to females (6.2%) and increased for each age class; from 2% among 50–64 years old patients to 11.6% in patients above 85 years of age (see Table 3). There was also significant difference in 30-day mortality between fracture type and with increasing ASA class (Table 3). The odds ratio for mortality in relation to anaesthetic technique did not change when adjusted for age, sex, type of fracture and ASA class (Table 4). There was no difference in 30-day mortality between patients that had surgery with 24-hours or later; however the number of patients having surgery beyond 24-hours was small (Table 5). No differences were seen in duration of anaesthesia, surgery or PACU stay between patients that died compared to survive at day-30 (Table 5).

Discussion

We found NA being by far the most common anaesthetic technique used for acute hip surgery in patients above 50 years of age. However, anaesthetic technique did not impact the 30-day mortality in this retrospective register study in patients having surgery for acute hip fracture. The 30-day mortality increased with age and ASA class. The 30-day mortality was also higher
in males as compared to females, fracture type also impacted mortality (pertrochanteric fracture was associated to higher mortality).

Our results are in line with previous studies suggesting that anaesthetic technique per se does not have a major impact on mortality\(^2,3\). Our overall mortality is also in line with the mortality described in a recent study from the US, including 107,317 hip fracture patients. That study found a 30-day mortality of 8.5\(^\%\). Our mortality rate is however somewhat higher than that described by Neuman et al. in study published in 2014 from New York\(^1\). This study was likewise unable to show any difference in 30-day mortality between general and regional anaesthesia. They did however find a 0.6 day shortened hospital stay in the spinal/epidural group of patients.

There are several limitations of this study. This is a retrospective register study, data derived from the relatively new Swedish perioperative register, SPOR-register\(^7\). Registers are dependent on input and data-management, and we are aware that a number of patients were excluded in the analysis of outcome due to missing information. It should also be acknowledged that there are numerous potential alternative anaesthetic techniques for hip fracture surgery. We merely investigated, sorted into three main techniques: neuraxial, general and combined anaesthesia. Peripheral blocks and light anaesthesia/sedation may indeed be an option\(^10,11\). We have not considered this surgical technique in the present study.

There are without doubt huge differences in the surgical trauma between merely a screw fixation and a joint prosthesis. We did not explicitly study the impact on anticoagulation, or patients having anticoagulation therapy. A recent paper from the US did not find major differences in complications or death when comparing cohorts of patient without and with anticoagulation therapy; patients having anticoagulation therapy more commonly received GA (84 vs 62\%)\(^12\). Combined technique was associated with longer perioperative times and more blood loss than GA.

Figure 1. Study flow diagram displaying exclusions for the study cohort.
Table 1. Primary outcome measures and patient characteristics for GA, NA and CA.

Age is presented in years. For age, results are presented as mean (SD), for age subgroups results are presented as number of patients (percentage). For all other categories results are presented as number of patients (percentage between rows) (percentage between columns). P-value with 95% CI.

	All n = 13,649	GA n = 2,190	CA n = 202	NA n = 11,257	p-value
Deceased	1,050 (7.7)	171 (7.8)	15 (7.4)	864 (7.7)	0.967
Age	81.7 ± 9.6	80.3 ± 9.8	79.4 ± 11.2	82 ± 9.5	
50–64	785	169 (7.7)(21.5)	25 (12.4)(3.2)	591(5.3)(75.3)	
65–74	2,176	373 (17)(17.1)	37 (18.3)(1.7)	1,766(15.7)(81.2)	
75–84	4,539	776 (35.4)(17.1)	57 (28.2)(1.3)	3,706(32.9)(81.6)	
85	6,149	872 (39.8)(14.2)	83 (41.1)(1.2)	5,194(46.1)(84.5)	
Sex					
Female	9,048	1,397 (63.8)(15.4)	116 (57.4)(1.3)	7,535 (66.9)(83.3)	
Male	4,601	793 (36.2)(17.2)	86 (42.6)(1.9)	3,722 (33.1)(80.9)	
Fracture					
Col.	7,365	1,233 (56.3)(16.7)	100 (49.5)(1.4)	6,032 (53.6)(81.9)	
Per.	5,263	784 (35.8)(14.9)	81 (40.1)(1.5)	4,398 (39.1)(83.6)	
Sub.	1,021	173 (7.9)(16.9)	21 (10.4)(2.1)	827 (7.3)(81)	
ASAPS					
1	525	30 (1.5)(5.7)	10 (5.1)(1.9)	485 (4.5)(92.4)	
2	4,489	519 (25.3)(11.6)	77 (38.9)(1.7)	3,893 (36.4)(86.7)	
3	6,933	1,293 (62.9)(18.6)	100 (50.5)(1.4)	5,540 (51.8)(79.9)	
4	988	210 (10.2)(21.3)	10 (5.1)(1)	768 (7.2)(77.7)	
5	15	3 (0.1)(20)	1 (0.5)(6.7)	11 (0.1)(73.3)	
Unknown	699	135	4	560	
Surgery					
Within 24 h	13,108	2078 (94.9)(15.9)	191 (94.6)(1.5)	10,839 (96.3)(82.7)	
Over 24 h	504	98 (4.5)(19.4)	11 (5.4)(2.2)	395 (3.5)(78.4)	
Unknown	37	14	0	23	

Abbreviations: GA = general anesthesia, CA = combined general plus neuraxial anesthesia, NA = neuraxial anesthesia, deceased = 30-day mortality, col = collum femoris fracture, per = pertrochanteric fracture, sub = subtrochanteric fracture, unknown = missing data on variable, ASAPS = American society of Anesthesiologists physical status.

Table 2. Outcome measures for subgroup analyzes.

Time to surgery, anesthesia time, surgery time and PACU time are presented as means in hours:minutes. Blood loss are presented as means in milliliters.

	All n = 13,649	GA n = 2,190	CA n = 202	NA n = 11,257	p-value
Time to surgery	18:29	20:02	20:01	18:09	
Anesthesia time	2:10	2:17	2:49	2:08	
Surgery time	1:09	1:09	1:30	1:09	
PACU time	4:17	4:17	4:33	4:16	
Blood loss (ml)	185.7	199.5	249.8	181.6	

Abbreviations: PACU = post anesthesia care unit, GA = general anesthesia, CA = combined general plus neuraxial anesthesia, NA = neuraxial anesthesia.
Table 3. Baseline characteristics and outcome measures for patients undergoing acute hip fracture surgery. Age is presented in years as mean (SD). Age was categorized into subgroups and results are presented as number of patients (percentage). For all other categories results are presented as number of patients (percentage between rows) (percentage between columns). P-value with 95% CI.

All	Deceased	Survivors	p-value			
	(n = 13,649)	(n = 1,050)	(n = 12,599)			
Age						
50–64	81.7 (9.6)	86.7 (7.8)	81.3 (9.6)	0.000		
65–74	785 (5.8)	16 (1.5)	66 (6.3)	(3) 769 (6.1)	(98) 2,110 (16.7)	(97)
75–84	4,539 (33.3)	255 (24.3)	(5.6) 2,484 (34)	(94.4)		
85	6,149 (45.1)	713 (67.9)	(11.6) 5,436 (43.1)	(88.4)		
Sex						
Female	9,048 (66.3)	563 (53.6)	(6.2) 8,485 (67.3)	(93.8)		
Male	4,601 (33.7)	487 (46.4)	(10.6) 4,114 (32.7)	(89.4)		
Fracture type						
Collum	7,365 (54)	521 (49.6)	(7.1) 6,844 (54.3)	(92.9)		
Pertrochanteric	5,263 (38.6)	444 (42.3)	(8.4) 4,819 (38.2)	(91.6)		
Subtrochanteric	1,021 (7.5)	85 (8.1)	(8.3) 936 (7.4)	(91.7)		
ASAPS						
1	525 (4.1)	3 (0.3)	(0.6) 522 (4.4)	(99.4)		
2	4,489 (34.7)	124 (12.5)	(2.8) 4,365 (36.6)	(97.2)		
3	6,933 (53.5)	639 (64.4)	(9.2) 6,294 (52.6)	(90.8)		
4	988 (7.6)	219 (22.1)	(22.2) 769 (6.4)	(77.8)		
5	15 (0.1)	8 (0.8)	(53.3) 7 (0.1)	(46.7)		
Unknown	699	57	642			
Surgery						
Within 24 h	13,108(96.3)	1,011(96.4)	(7.7) 12,097 (96.3)	(92.3)		
Above 24 h	504 (3.7)	38 (3.6)	(7.5) 466 (3.7)	(92.5)		
Unknown	37	1	36			

Abbreviations: GA = general anesthesia, CA = combined general plus neuraxial anesthesia, NA = neuraxial anesthesia, deceased = 30-day mortality, Collum = collum femoris fracture, unknown = missing data on variable, ASAPS = American society of Anesthesiologists physical status.

and NA. This may be an effect that combined spinal and epidural anaesthesia was chosen for more complex procedures; however, this is merely speculation. Tight haemodynamic control maintaining blood pressure and heart rate within minimal deviation from preoperative values have been suggested to have a major impact, and studies assessing its effect are on their way13. Optimising haemodynamics by ultrasound monitoring may also facilitate the perioperative course14. Temperature control is also of importance15. We cannot comment on the anaesthetic protocol performed in the patients included in this study or be more explicit about what drugs were used, nor the handling of any deviation in vital signs. The available register-data does unfortunately not contain information on quality of postoperative care, the occurrence of delirium, postoperative pain and nausea in sufficient fashion for analysis. The postoperative course, mobilisation, ambulation, intake of food and drink, discharge from hospital should indeed be assessed in future studies. Active rehabilitation and physiotherapy is of huge importance16. Age, comorbidities and increased ASA class are known risk factors for complications after hip fracture surgery17,18. Nutritional status, malnourishment, as well as obesity, may also have an effect in increasing risk for complications19. The International Fragility Fracture Network has recently provided
Table 4. Odds ratios and confidence intervals for survival unadjusted and adjusted for age, sex, type of fracture and ASA class. Combined anaesthesia, age class 50-64, female collum fracture and ASA 1 was set as reference.

	Deceased	Survivors
	Unadjusted odds ratio (CI)	Adjusted odds ratio (CI)
CA	0.95 (0.54-1.64)	0.98 (0.55-1.74)
GA	0.97 (0.56-1.64)	1.14 (0.94-1.37)
NA	0.83 (0.46-1.49)	0.88 (0.76-1.02)
Age		
50–64	0.67 (0.38-1.16)	0.83 (0.46-1.49)
65–74	0.35 (0.21-0.58)	0.48 (0.28-0.82)
75–84	0.16 (0.09-0.27)	0.23 (0.13-0.39)
85	0.83 (0.72-0.95)	0.88 (0.76-1.02)
Sex		
Female	0.56 (0.49-0.64)	0.58 (0.50-0.67)
Male		
Fracture type		
Collum	0.84 (0.66-1.07)	0.84 (0.65-1.09)
Pertrochanteric		
Subtrochanteric	0.83 (0.72-0.95)	0.88 (0.76-1.02)
ASAPS		
1	0.20 (0.06-0.64)	0.28 (0.08-0.90)
2	0.06 (0.01-0.18)	0.1 (0.03-0.31)
3	0.02 (0.00-0.07)	0.04 (0.01-0.12)
4	0.01 (0.00-0.03)	0.01 (0.00-0.05)
5		

Abbreviations: GA = general anesthesia, CA = combined general plus neuraxial anesthesia, NA = neuraxial anesthesia, deceased = 30-day mortality, Collum = collum femoris fracture, unknown = missing data on variable, ASAPS = American society of Anesthesiologists physical status.

Table 5. Number of patients and means for secondary outcomes. Perioperative times are calculated as means and presented as hours:minutes. Blood loss is calculated as means and presented as milliliters. P-value with 95% CI.

	All (n = 13,649)	Deceased (n = 1,050)	Survivors (n = 12,599)
Time to surgery	18:29	20:01	18:21
Anesthesia time	2:10	2:10	2:10
Surgery time	1:09	1:06	1:09
PACU time	4:17	5:05	4:13
Blood loss (ml)	185.7	180	186.1

Abbreviations: PACU = post anesthesia care unit, h = hours.

extensive guidelines based on consensus[10]. Still further studies are indeed warranted to improve the understanding on how to best care for elderly patients with acute hip fracture.

Conclusion
We found in this retrospective SPOR study that neuraxial anaesthesia was by far the preferred anaesthetic technique in
Sweden for acute hip fracture surgery in patients’ aged 50 years or more. However, anaesthetic technique (general vs. neuraxial vs. combined) per se did not have any influence on the 30-day mortality in this fragile patient group. Age above 75 years, ASA class 4 and 5, male gender and per trochanteric fracture was more frequent among patient that died within the 30-days following surgery. Further studies are warranted determining the an aesthesiologic impact on morbidity and mortality following high risk orthopaedic surgery.

Data availability
The data has been retrieved from the Swedish Perioperative Register (SPOR). This is a national database supported by the The National Board of Health and Welfare, Swedish Society for Anaesthesia & Intensive Care and Swedish Association of Local Authorities and Regions and data is thus protected. The data can be retrieved by request from SPOR (http://www.spor.se/) following Ethical Review board approval via application (https://www.epn.se/en/start/).

Competing interests
No competing interests were disclosed.

Grant information
This study was supported by the Department of Anaesthesia & Intensive Care, Danderyds Hospital. No external funding was provided.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Dhanwal DK, Dennison EM, Harvey NC, et al.: Epidemiology of hip fracture: Worldwide geographic variation. Indian J Orthop. 2011; 45(1): 15–22. PubMed Abstract | Publisher Full Text
2. White SM, Moppett IK, Griffiths R, et al: Secondary analysis of outcomes after 11,085 hip fracture operations from the prospective UK Anaesthesia Sprint Audit of Practice (ASAP-2). Anaesthesia. 2016; 71(5): 506–14. PubMed Abstract | Publisher Full Text
3. Cappelleri G, Farelli A: Use of direct oral anticoagulants with regional anesthesia in orthopedic patients. J Clin Anesth. 2016; 32: 224–35. PubMed Abstract | Publisher Full Text
4. Ginsel BL, Taher A, Whitehouse SL, et al: Effects of anticoagulants on outcome of femoral neck fracture surgery. J Orthop Surg (Hong Kong). 2015; 23(1): 29–32. PubMed Abstract | Publisher Full Text
5. Smith LM, Coozowicz C, Uda Y, et al: Neuraxial and Combined Neuraxial/General Anesthesia Compared to General Anesthesia for Major Truncal and Lower Limb Surgery: A Systematic Review and Meta-analysis. Anesth Analg. 2017; 125(6): 1931–1945. PubMed Abstract | Publisher Full Text
6. Van Waesberge J, Stevanovic A, Rossaint R, et al: General vs. neuraxial anaesthesia in hip fracture patients: a systematic review and meta-analysis. BMJ Anaesth. 2017; 117(1): 87. PubMed Abstract | Publisher Full Text | Free Full Text
7. Molisaac DI, Wijersundersa DN, Huang A, et al.: Association of Hospital-level Neuraxial Anaesthesia Use for Fracture Surgery with Outcomes: A Population-based Cohort Study. Anaesthesiology. 2018; 128(3): 480–491. PubMed Abstract | Publisher Full Text
8. Neuman MD, Rosenbaum PR, Ludwig JM, et al: Anesthesia technique, mortality, and length of stay after hip fracture surgery. JAMA. 2014; 311(24): 2508–17. PubMed Abstract | Publisher Full Text | Free Full Text
9. Chew MS, Mangelus C, Endrud G, et al: Swedish Perioperative Register. Surgery was successful—but how did it go for the patient? Experiences from and hopes for the Swedish Perioperative Register. Eur J Anaesthesiol. 2015; 32(7): 453–4. PubMed Abstract | Publisher Full Text
10. Johnston DF, Stafford M, McKinney M, et al: Peripheral nerve blocks with sedation using propofol and alfentanil target-controlled infusion for hip fracture surgery: a review of 6 years in use. J Clin Anesth. 2016; 29: 33–9. PubMed Abstract | Publisher Full Text
11. Almeida CR, Francisco EM, Pinho-Oliveira V, et al: Fascia iliaca block associated only with deep sedation in high-risk patients, taking P2Y12 receptor inhibitors, for intramedullary femoral fixation in intertrochanteric hip fracture: a series of 3 cases. J Clin Anesth. 2016; 35: 339–345. PubMed Abstract | Publisher Full Text
12. Lott A, Høgløn J, Belayneh R, et al: Does Use of Oral Anticoagulants at the Time of Admission Affect Outcomes Following Hip Fracture. Geriatr Orthop Surg Rehabil. 2018: 9; 2151459318764151. PubMed Abstract | Publisher Full Text | Free Full Text
13. Moppett IK, White S, Griffiths R, et al: Tight intra-operative blood pressure control versus standard care for patients undergoing hip fracture repair - Hip Fracture Intervention Study for Prevention of Hypotension (HIP-HOP) trial: study protocol for a randomised controlled trial. Trials. 2017; 18(1): 505. PubMed Abstract | Publisher Full Text | Free Full Text
14. Canty DJ, Heiberg J, Yang Y, et al: Pilot multi-centre randomised trial of the impact of pre-operative focused cardiac ultrasound on mortality and morbidity in patients having surgery for femoral neck fractures (ECHONOF-2 pilot). Anaesthesia. 2018; 73(4): 428–437. PubMed Abstract | Publisher Full Text
15. Gunarathne U, Storelli C, Fulbrook P: Perioperative hypothermia during hip fracture surgery: An observational study. J Eval Clin Pract. 2017; 23(4): 762–766. PubMed Abstract | Publisher Full Text
16. Morri M, Forni C, Marchioni M, et al: Which factors are independent predictors of early recovery of mobility in the older adults’ population after hip fracture? A cohort prognostic study. Arch Orthop Trauma Surg. 2018; 138(1): 35–41. PubMed Abstract | Publisher Full Text
17. Fitzweeet ER, Wendt KW, Diereck RL, et al: Complications after hip fracture surgery: are they preventable? Eur J Trauma Emerg Surg. 2017; 1–8. PubMed Abstract | Publisher Full Text
18. Folbert EC, Hegeman JH, Gierveld R, et al: Complications during hospitalization and risk factors in elderly patients with hip fracture following integrated orthogeriatric treatment. Arch Orthop Trauma Surg. 2017; 127(4): 507–515. PubMed Abstract | Publisher Full Text
19. Zhang JC, Matelski J, Gandhi R, et al: Can Patient Selection Explain the Obesity Paradox in Orthopaedic Hip Surgery? An Analysis of the ACS-NSQIP Registry. J Clin Orthop Rel Res. 2018; 478(3): 864–873. PubMed Abstract | Publisher Full Text
20. White SM, Alternatt F, Barry J, et al: International Fragility Fracture Network Delphi consensus statement on the principles of anaesthesia for patients with hip fracture. Anaesthesia. 2018; 73(7): 863–874. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ???

Reviewer Report 02 August 2018

https://doi.org/10.5256/f1000research.16742.r36429

© 2018 Royse C. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Colin F. Royse

Ultrasound Education Group, Department of Surgery, The University of Melbourne, Melbourne, Vic, Australia

This review examines a specific question of whether general or neuraxial anaesthesia for fractured hip surgery affects 30 day mortality. The paper is well written with appropriate methods and analysis.

The deficiency of the paper is that it only addresses 30-day mortality and not any metric of quality of survival and quality of recovery. However, these variables may not be available in the SPOR.

1. The data source is not open, but can be obtained with permission from the Swedish Perioperative Registry.
2. Add to the narrative review

The study identifies that the majority of fractured hip surgery is performed under spinal anaesthesia in Sweden. Only around 20% of patients undergo general anaesthesia. This could introduce bias. However, the groups appear well matched and the sample size remains large enough for meaningful comparisons. Propensity matching would have increased the fidelity of comparisons but was not performed. The research adds to the current literature identifying that there is no difference in mortality according to the type of anaesthetic administered.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 26 July 2018

https://doi.org/10.5256/f1000research.16742.r36430

© 2018 Nellgård B. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Bengt Nellgård

Department of Anaesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

First of all it is interesting that the authors use the newly started SPOR registry.

1. The paper needs language improvement. I have at least 50 changes in abstract, introduction, methods and results sections. Write in past sense etc Use neutral Words when describing results
2. Patients less than 65 years are normally not included in studies on hip fracture as they are normally a different entity. Trauma and pathological fractures!!! Are they included? More statistics; GA group is; 2190; C is 202 and; NA is 11247. Can they really get results when comparing the Groups?
3. Have they excluded pathological fracture? Reoperations?
4. In results and figures p values are not clear!!! Does pertrochanteric fractures have higher mortality rate?
5. Do they have any results on cemented prothesis in cervical fractures? Mortality rate.
6. Time to surgery. Cut off at 24 h. What do they know about delay 24-36h which is considered ok in f.ex. UK?
7. ASA is a crude preoperative scale, not capturing low hemoglobin, dementia, malignancy and living conditions. Nottingham hip fracture score captures these please comment
8. Discussion; are there any previous reports from Scandinavia or Sweden addressing the topic? The routine in Sweden seems to be neuraxial anesthesia. This is not the case f.ex. in the USA. Discuss differences?

Is the work clearly and accurately presented and does it cite the current literature?

Yes
Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response (F1000Research Advisory Board Member) 01 Aug 2018

Jan Jakobsson, Clinical Sciences, Karolinska Institutet, Stockholm, Sweden

Responses from the authors;
Dear Referee,
Thank you for valuable comments.
First of all, it is interesting that the authors use the newly started SPOR registry.
1. The paper needs language improvial. I have at least 50 changes in abstract, introduction methods and results sections. Write in past sense etc Use neutral Words when describing results

Response: We will revise language and use past sense and neutral wordings of results.

2. Patients less than 65 years are normally not included in studies on hip fracture as they are normally a different entity. Trauma and pathological fractures!!! Are they included? More statistics; GA group is; 2190; C is 202 and; NA is 11247. Can they really get results when comparing the Groups?

Response: The focus of our study was to assess the impact of anaesthetic technique on mortality among elderly, patient 65 and older. Different age limits have been used. We limited our analysis to the 65 and 65+ age as pathophysiology reasonably is different; both fracture type/cause and patients' general health/fragility. The traditional Chi-2-tests should compensate for different in group size and we do believe that bust unadjusted and adjusted results are statistically sound.

3. Have they excluded pathological fracture? Reoperations?

Response: No: All hip fracture undergoing surgery with general, or neuraxial anaesthesia aged 65 and 65+ are included regardless of cause; we have not subgroup patients on trauma energy or bone density or similar.
4. In results and figures p values are not clear!!! Does pertrochanteric fractures have higher mortality rate?

Response: The mortality did differ within each fracture cohort, it was highest among pertrochanteric (8.4%) and lowest among the collum fracture patients (7.1%). We are not able to comment on cause of death, or whether the pertrochanteric patients had more extensive surgery.

5. Do they have any results on cemented prothesis in cervical fractures? Mortality rate.

Response: No we have no data related to surgical technique e.g. use of cement.

6. Time to surgery; Cut off at 24 h. What do they know about delay 24-36h which is considered ok in f.ex. UK?

Response: As opposed to the findings in this study, some have found a significantly higher risk of 30-day mortality for surgery later than 24 hours (41, 42). Some studies even suggest an increased mortality when surgical delay is more than 12 hours (38, 39) while other suggest 48 hours (36, 43). In a study adjusting for potential confounders, no difference in mortality was found in patients receiving surgery within 3 days as compared to those above 3 days (44). Swedish guidelines advise surgery within 36 to 48 hours and suggest adequate care of the patient and competent staff as equally crucial, although surgery within 24 hours is recommended (5). The results of this study should be interpreted with caution considering only 4% of the patients waited more than 24 hours for surgery. There are differences in the studies potentially explaining difference in result, such as variation in characteristics and size of study population, country and time-period for collection of data and outcome definitions.

7. ASA is a crude preoperative scale, not capturing low hemoglobin, dementia, malignancy and living conditions. Nottingham hip fracture score captures these please comment,

Response: Most valid comment, we did not use the Nottingham score, and there is without doubt several patient factors that may have contributed to outcome.

8. Discussion; are there any previous reports from Scandinavia or Sweden addressing the topic? The routine in Sweden seems to be neuraxial anesthesia. This is not the case f.ex. in the USA. Discuss differences?

Response: The aim of the study was to use the PSOR register to assess what anaesthetic techniques that are used and whether we from retrospective data could see any difference in 30-day mortality between anaesthetic techniques used. We are not aware of any previous Swedish study assessing anaesthetic techniques independent impact on 30-day mortality.

Competing Interests: Author of the paper
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com