The probability that \(n \) random points in a disk are in convex position

Jean-François Marckert

a,1

a CNRS, LaBRI, Université de Bordeaux

Abstract. Pick \(n \) random points \(x_1, \ldots, x_n \) uniformly and independently in a disk and consider their convex hull \(C \). Let \(P_{D}^{n,m} \) be the probability that exactly \(m \) points among the \(x_i \)'s are on the boundary of the convex hull of \(\{x_1, \ldots, x_n\} \) (so that \(P_{D}^{n,n} \) is the probability that the \(x_i \)'s are in a convex position).

In the paper, we provide a formula for \(P_{D}^{n,m} \).

1 Introduction

All the random variables are assumed to be defined on a common probability space \((\Omega, \mathcal{A}, \mathbb{P})\). The expectation is denoted by \(\mathbb{E} \). The plane will be sometimes viewed as \(\mathbb{R}^2 \) or as \(\mathbb{C} \) and we will pass from the real notation (e.g. \((x, y)\)) to the complex one \((\rho e^{i\theta})\) without any warning. For a set \(A \) in \(\mathbb{R}^2 \), \(|A| \) denotes the Lebesgue measure of \(A \). We denote by \(\partial B \) the boundary of a set \(B \). For any \(n \geq 1 \), any \(z \), notation \(z[n] \) stands for the \(n \) tuple \((z_1, \ldots, z_n)\) and \(z\{n\} \) for the set \(\{z_1, \ldots, z_n\} \). For \(H \) a compact convex domain in \(\mathbb{R}^2 \) with non empty interior and for any \(n \geq 0 \), \(\mathbb{P}_H^n \) denotes the law of \(n \) i.i.d. points \(z[n] \) taken under the uniform distribution over \(H \). An \(n \)-tuple of points \(x[n] \) of the plane is said to be in convex position if the \(x_i \)'s all belong to \(\partial \text{ConvexHull}(x\{n\}) \). Further we define

\[
\text{CP}_{n,m} = \{ x[n] : \#\{i : x_i \in \partial \text{ConvexHull}(x\{n\}) \} = m \}
\]

the set of \(n \) tuples \(x[n] \) for which exactly \(m \) are on the boundary of \(\text{ConvexHull}(x\{n\}) \). Hence \(\text{CP}_n := \text{CP}_{n,n} \) is the set of \(n \)-tuples of points in convex position. Finally, we let

\[
\begin{align*}
P_H^n &= \mathbb{P}_H^n(z[n] \in \text{CP}_n), \\
P_H^{n,m} &= \mathbb{P}_H^n(z[n] \in \text{CP}_{n,m}).
\end{align*}
\]

The aim of the paper is to establish a formula for \(P_{D}^n \), the probability that \(n \) i.i.d. random points taken under the uniform distribution in a disk \(D \) are in convex position; we will also compute \(P_{D}^{n,m} \) the probability that exactly \(m \) points among these \(n \) points are on \(\partial \text{ConvexHull}(z\{n\}) \) in other words the distribution of the number of points on the convex hull boundary. To compute \(P_{D}^n \) we need and obtain a result more general than the disk case only, a result for what we will call

1Part of this work is supported by ANR blanc PRESAGE (ANR-11-BS02-003)

MSC 2010 subject classifications: Primary 52A22, 60D05

Keywords and phrases. Random convex chain, Sylvester’s problem, random polygon, geometrical probability
bi-pointed segments (BSEG). This will play somehow the role of the bi-pointed triangle (see (12)) as studied by Bárany & al [3], central also in the approach of Buchta [7] of the computation of $P_{T}^{n,m}$ and $P_{S}^{n,m}$ where T stands for triangle, and S for square (see (13)).

For $\theta \in [0, 2\pi]$, $R > 0$, the arc of circle $AC(\theta, R)$ is defined by

$$AC(\theta, R) = \{Re^{i\nu}, \nu \in [-\theta/2, \theta/2]\}.$$

We denote by SEG(θ, R) the segment corresponding to the convex hull of $AC(\theta, R)$ (see Fig. 1),

which coincides with

$$SEG(\theta, R) = \{\lambda Re^{i\nu_1} + (1 - \lambda)Re^{i\nu_2}, \lambda \in [0, 1], \nu_1, \nu_2 \in [-\theta/2, \theta/2]\}.$$

Now consider $w_1(\theta, R) = Re^{-i\theta/2}$ and $w_2(\theta, R) = Re^{i\theta/2}$ the two extremities of the special border $[w_1(\theta, R), w_2(\theta, R)]$ of SEG(θ, R). Let z_1, \ldots, z_n be i.i.d. and uniform in SEG(θ, R). Set

$$Z[n, \theta, R] = [w_1(\theta, R), w_2(\theta, R), z_1, \ldots, z_n],$$

and define the crucial bi-pointed segment case (BSEG) function

$$B_{n,m}(\theta) := \mathbb{P}(Z[n, \theta, R] \in \mathbb{C}P_{n+2,m+2}), \quad \theta \in (0, 2\pi), 1 \leq m \leq n.$$

The value of R has no importance (since there exists a dilatation sending SEG(θ, R) to SEG(θ, R'), and dilatations conserve convex bodies and uniform distribution) but it will be useful to have the two parameters (θ, R) for subsequent computations. Again, we write B_n instead of $B_{n,n}$ and below L_n instead of $L_{n,n}$. Clearly, for any $\theta \in (0, 2\pi)$, $B_0(\theta) = B_1(\theta) = 1$. Now for any $n \geq 0$, $\theta \in (0, 2\pi)$ define

$$L_{n,m}(\theta) = \frac{B_{n,m}(\theta)(\theta - \sin(\theta))^{n}\sin(\theta/2)}{n!}$$

(4)
Hence

\[L_0(\theta) = \sin(\theta/2), \quad L_1(\theta) = \sin(\theta/2)(\theta - \sin(\theta)). \] (5)

Notice that 0 as well as 2\(\pi\), which corresponds respectively to the flat case and the disk case, are excluded from definitions (3) and (4). The main contribution of this paper is the following theorem which allows us to compute \(P_{D}^{n,m}\).

Theorem 1

(i) For any \(n \geq 1\),

\[P_{D}^{n} = \lim_{t \to 2\pi^{-}} B_{n-1}(t). \]

(ii) For any \(n \geq 2\),

\[P_{D}^{n} = \frac{(n-2)!}{2^{n-2}\pi^{n-1}} \int_{0}^{2\pi} \sum_{k=0}^{n-2} L_{k}(\phi)L_{n-2-k}(2\pi - \phi) d\phi \]

(ii) For any \(\theta \in (0, 2\pi)\) and any \(n \geq 1\),

\[\frac{L_{n}(\theta)}{2} = \int_{0}^{\theta} \frac{\sin(\theta/2)^{2n+1}}{\sin(\phi/2)^{2n+1}} \int_{0}^{\phi} \sum_{k=0}^{n-1} L_{k}(\eta)L_{n-1-k}(\phi - \eta) d\eta d\phi. \] (6)

Analogous results can be obtained for \(P_{D}^{n,m}\):

(iii) For any \(\theta \in (0, 2\pi)\) any \(k\), and any \(l \geq k + 1\), \(L_{k,l}(\theta) = 0\). For any \(\theta \in (0, 2\pi)\), any \(n \geq 1\) and any \(1 \leq m \leq n\)

\[\frac{L_{n,m}(\theta)}{2} = \int_{0}^{\theta} \int_{0}^{\phi} \frac{\sin(\theta/2)^{2n+1}}{\sin(\phi/2)^{2n+1}} \sum_{n_{1}+n_{2}+n_{3}=n-1}^{n_{1}+n_{2}+n_{3}=n-1} \frac{\left(\sin(\eta) + \sin(\phi - \eta) - \sin(\phi)\right)^{n_{3}}}{n_{3}!} \]

\[\times L_{n_{1},m_{1}}(\eta)L_{n_{2},m_{2}}(\phi - \eta) d\eta d\phi \]

An alternative form can be given using

\[\sin(\eta) + \sin(\phi - \eta) - \sin(\phi) = 4\sin\left(\frac{\phi - \eta}{2}\right)\sin(\phi/2)\sin(\eta/2). \]

(iii') For any \(n \geq 2\) and any \(1 \leq m \leq n\)

\[P_{D}^{n,m} = \frac{(n-2)!}{2^{n-2}\pi^{n-1}} \int_{0}^{2\pi} \sum_{n_{1}+n_{2}=n-1}^{n_{1}+n_{2}=n-1} L_{n_{1},m_{1}}(\phi)L_{n_{2},m_{2}}(2\pi - \phi) d\phi. \]

(iv) For any \(n \geq 1\) and any \(1 \leq m \leq n\),

\[P_{D}^{n,m} = \lim_{t \to 2\pi^{-}} B_{n-1,m-1}(t). \]
From (ii), one can compute successively the $L_j(\theta)$’s, and by (4), this allows one to compute the $B_j(\theta)$’s. By (i) it suffices then to take the limit when $\theta \rightarrow 2\pi$.

Despite great effort we were not able to find a simpler formula for B_n than that presented in the Theorem. Nevertheless, explicit computation can be done but closed formula for the first L_j given below shows a rapid growth in complexity (L_{10} would need one page to be written down). The effective computation of the first L_n is complex and very few can be computed by hand. In particular the singularity apparent in (6) is difficult to handle since the terms in the sum need to be combined to compensate the singularity.

In Section 3 we present an algorithm allowing one to compute the L_j’s. With this algorithm we have computed the first 32 values of L_n, before running out of computer memory, which allows the computation of $(P^n_D, 1 \leq n \leq 33)$. They can be found at [13]. This is just a matter of power of computer/computer algebra system, or code optimization, to go further. L_0 and L_1 have been given in (5); writting for short S and C instead of $\sin(\theta/2)$ and $\cos(\theta/2)$ respectively, one founds

$$L_2(\theta) = -\frac{2}{3} S^5 - 2 S^3 + \frac{1}{2} S \theta^2$$

$$L_3(\theta) = \frac{2}{27} C S^6 + \frac{7}{27} S^4 C + \frac{35}{9} C S^2 + \frac{1}{2} S^3 \theta + \frac{35}{6} S \theta^2$$

$$L_4(\theta) = -\frac{10}{9} C S^2 \theta + \frac{S^9}{270} + \frac{S^7}{81} + \frac{S^5}{216} + \frac{S^4 \theta}{24} + \frac{155 S^3}{24} - \frac{305 S \theta^2}{288}$$

$$L_5(\theta) = \frac{-105 S^2 \theta}{10125} + \frac{17 S^8 C}{40500} - \frac{73 C S^6}{81000} + \frac{4427 S^4 C}{64800} + \frac{C S^2 \theta^2}{16} - \frac{473473 C S^2}{43200} + \frac{S^5 \theta}{108} + \frac{S \theta^5}{120}$$

We can also compute $L_{m,n}(\theta)$ for small values of m, n (they are available at [13], for all $n \leq 12$).

For any $n \geq 2$, $\sum_{k=1}^{n} B_{n,k}(\theta) = 1$. Since $B_{2,2} = B_2$ is known, so do $B_{2,1}$. The next ones are

$$L_{3,1}(\theta) = \frac{2}{3} C S^6 - 5 S^4 C - 2 S^3 \theta + \frac{5}{2} S^3 \theta$$

$$L_{3,2}(\theta) = \frac{i}{54} \left(32 S^6 + 54 i S^2 \theta + 168 S^4 - 54 S^2 \theta^2 - 105 i \theta - 302 S^2 + 27 \theta^2 + 105\right) S$$

$$+ \frac{S (16 S^4 + 92 S^2 - 27 \theta^2 - 105)}{108 i S^2 + 108 S C - 54 i}$$

$$L_{4,1}(\theta) = \frac{4}{3} C S^6 \theta - \frac{7}{3} S^4 \theta C + \frac{4 S^9}{15} - \frac{38 S^7}{9} + \frac{14}{3} S^5.$$
By Theorem 1, we can also compute the first values of $P_{n,m}^n$ presented in the array below.

$n\backslash m$	3	4	5	6	7	8	
4	$\frac{35}{12\pi^2}$	P_6^4	0	0	0	0	
5	$\frac{15}{16\pi^2}$	P_6^5	0	0	0	0	
6	$\frac{1001}{320\pi^2}$	$\frac{15}{8n^2} + \frac{19019}{1280\pi^2}$	P_6^6	0	0	0	
7	$\frac{35}{32\pi^2}$	$\frac{777}{40\pi^2}$	$\frac{105}{32\pi^2} + \frac{109099}{7680\pi^2}$	$\frac{455}{24\pi^2}$	$\frac{3102211}{1152\pi^2}$	P_6^7	0
8	$\frac{13857}{35840\pi^2}$	$\frac{875}{192\pi^2} + \frac{110821}{64512\pi^2}$	$\frac{7413}{160\pi^2} + \frac{203739679}{268800\pi^2}$	$\frac{21}{4\pi^2} + \frac{830747}{864\pi^2} - \frac{22301758193}{25078000\pi^2}$	$\frac{91}{32\pi^2} + \frac{457751}{864\pi^2} + \frac{1231200111}{518400\pi^2}$	P_6^8	

We have computed $P_{n,m}^n$ for all (n,m) such that $n \leq 13$ (they are available at [13]).

Some explicit results for bi-pointed half disk:

$$1 - B_n(\pi) = \frac{1}{3\pi^2} - \frac{16}{26\pi^2} + \frac{26}{3\pi^2} - \frac{305}{12\pi^2} - \frac{20992}{135\pi^2} + \frac{305}{6\pi^2} - \frac{97091}{240\pi^2} + \frac{2135}{24\pi^2} - \frac{31021}{1440\pi^2} + \frac{960925696}{70875\pi^6}.$$ \hfill (9)

again, the method we have provide all the results till $n = 33$.

The value $P_{4,4}^4 = 1 - 35/(12\pi^2)$ is due to Woolhouse in 1867.

The values $P_{5,3}^5$, $P_{5,4}^5$ and $P_{5,5}^5$ as well as the values $P_{6,3}^6$ for arbitrary n are due to Miles [14]. Buchta [5] computed the expected area V_n of the convex hull of n uniform and independent points in a disk with unit area, and found

$$V_5 = \frac{175 \pi}{192\pi^2} - \frac{23023}{6912\pi^4}.$$ \hfill (10)

By Efron [9],

$$3P_{D}^{6,3} + 4P_{D}^{6,4} + 5P_{D}^{6,5} + 6P_{D}^{6,6} = 6(1 - V_5) = 6 - \frac{175}{12\pi^2} + \frac{23023}{6912\pi^4}$$

and since $P_{D}^{6,3} + P_{D}^{6,4} + P_{D}^{6,5} + P_{D}^{6,6} = 1$ and Miles’ result $P_{6,3} = \frac{1001}{320\pi^2}$ the following relations hold

$$P_{D}^{6,4} = P_{D}^{6,6} - 1 + \frac{175}{12\pi^2} - \frac{151151}{5760\pi^4}$$

and

$$P_{D}^{6,5} = 2 - \frac{175}{12\pi^2} + \frac{133133}{5760\pi^4} - 2P_{D}^{6,6}.$$

\hfill (11)

\hfill (12)

\hfill (13)

\hfill (14)

\hfill (15)

\hfill (16)
Of course, the result (8) we obtained are compatible with these relations.

Besides these results and those exposed in Theorem 1, the only explicit results in the literature concern triangles and parallelograms (we here discuss only results known for any \(n \), in 2D). Valtr [18] (1995) showed that if \(S \) is a square (or a non flat parallelogram) then, for \(n \geq 1 \),

\[
P^n_S = \left(\frac{(2n-2)}{n!} \right)^2,
\]

and in a second paper, [19] (1996) he proved that if \(T \) is a (non flat) triangle then, for \(n \geq 1 \),

\[
P^n_T = \frac{2^n(3n-3)!}{(n-1)!3(2n)!}.
\]

Buchta [7] goes further and gives an expression for \(P_{S}^{n,m} \) and \(P_{T}^{n,m} \) as a finite sum of explicit terms.

For the bi-pointed triangle, Bárány, Rote, Steiger, Zhang [3] (2000) have shown the following. Let \(T = (A, B, C) \) be a (non flat) triangle, and let \((z_1, \ldots, z_n)\) be \(\mathbb{P}^n_T \) distributed, and let \(\overline{z[n]} = (A, B, z_1, \ldots, z_n) \) be the \(n+2 \) tuple obtained by adding \(A, B \) to \(z[n] \). For any \(n \geq 0 \),

\[
\mathbb{P}^n_T(\overline{z[n]} \in \text{CP}_{n+2}) = \frac{2^n}{n!(n+1)!}.
\]

These results are at the start of several works concerning limit shape for convex bodies in a domain ([3], Bárány [1]) and for the evaluation of the probability that \(n \) points chosen in a convex domain \(H \) are in convex position (see Bárány [1]).

Buchta (2007) [6] proved the following fact : For any \(n \geq 1 \), any \(1 \leq m \leq n \),

\[
\mathbb{P}^n_T(\overline{z[n]} \in \text{CP}_{n+2,m+2}) = \sum_{C \in \text{Comp}(n,m)} 2^m \prod_{i=1}^{m} \frac{C_i}{SC_i(1+SC_i)}
\]

where \(SC_i = C_1 + \cdots + C_i \) and \(\text{Comp}(n,m) \) is the set of compositions of \(n \) in \(m \) non empty parts (Examples : \(\text{Comp}(2,3) = \emptyset \), \(\text{Comp}(4,2) = \{(1,3), (3,1), (2,2)\} \)).

Additional references The literature concerning the question of the number of points on the convex hull for i.i.d. random points taken in a convex domain is huge. We won’t make a survey here but refer to Reitzner [16], Hug [12] and to the papers cited in the present paper. We will focus on what concerns the disk.

Blaschke (1917) [4] proves that for the 4 points problem (the so-called problem of Sylvester), for any convex \(K \),

\[
\frac{2}{3} \leq P^4_T \leq P^4_K \leq P^4_D = 1 - \frac{35}{12\pi^2}.
\]
Báróny (1999) [1] has shown that
\[
\lim_{n \to +\infty} n^2(P_n^D)^{1/n} = e^2 A^3(K)/4
\]
(14)
where \(A^3(K) \) is the supremum of the affine perimeter of all convex sets \(S \subset K \). For the disk one gets
\[
\log(P_n^D) = -2n \log n + 2n \log(2\pi e^2) - 2\varepsilon_0 (3\pi^4 n)^{1/5} + \ldots
\]
(15)
where the last term, not really proved in the mathematical sense, has been obtained by Hilhorst & al. [11]. Central limit theorems exists also for the number of points on \(\partial \text{ConvexHull}(x^n) \) under \(P_n^D \) (and for more general domain, under the uniform or Poisson distribution), see Groeneboom [10], Buchta [8], Pardon [15], Báróny and Reitzner [2].

2 Proof of Theorem 1

Beyond the appearances, the proof of Theorem 1 is quite simple and it relies on a paradigm of combinatorics that can be stated as follows: always try to decompose the structure you are studying! But how can we decompose \(P_n^D \)? The two main ideas of the paper are the following:
– \(B_n(\theta) \) can be decomposed,
– with \(B_n(\theta) \) one can compute \(P_n^D \).

2.1 Proof of (i)

Throughout this section \(n \geq 1 \) is fixed. Take a closed disk \(B = B((0,0), R_c) \), with center \((0,0)\) and radius \(R_c = 1/\sqrt{\pi} \), that is with area 1, and pick \(n \) i.i.d. uniform points \(U_1,\ldots,U_n \) in \(B \). Now consider the smallest disk \(B((0,0), R_n) \) that contains all the \(U_i \)'s. Clearly
\[
R_n = \inf\{r : \#(B(0,r) \cap \{U_1,\ldots,U_n\}) = n\}.
\]

Proposition 2 Conditionally on \(R_n = r \), there is a.s. exactly one index \(J \in \{1,\ldots,n\} \) such that \(U_J \) belongs to the circle \(\partial B((0,0), r) \). Conditionally on \(\{J = j, R_n = r\} \), \(U_j \) and \((U_1,\ldots,U_{j-1},U_{j+1},\ldots,U_n) \) are independent, \(U_j \) has the uniform law on the circle \(\partial B((0,0), r) \), and \(U_1,\ldots,U_{j-1},U_{j+1},\ldots,U_n \) are uniform in \(B((0,0), r) \).

Proof. A.s. the points \(U_1,\ldots,U_n \) belong to different circles with center \((0,0)\), and by symmetry conditionally on \(R_n = r \) and \(J = j \), \(U_j \) is uniform on \(B((0,0), r) \). Now, conditionally on \(R_n = r \) and
\[J = j, \] each variable \(U_\ell \) (for \(\ell \neq j \)) are just conditioned to satisfy \(\|U_\ell\|_2 \leq r \), and this conditioning conserves the uniform distribution. \(\square \)

Proof of Theorem 1(i). Theorem 1(i) is \(\ldots \) intuitively obvious, taking into account Proposition 2. But of course, a formal argument is needed. Consider the three following models:

- (a) \(n \) points i.i.d. uniform in a disk \(B((0,0), R) \),
- (b) one point uniform on the circle \(\partial B((0,0), R) \) and, independently, \(n - 1 \) i.i.d. uniform inside the disk \(B((0,0), R) \)
- (c) one point is placed at \((-R,0) \) and \(n - 1 \) are taken uniformly and independently in \(B((0,0), R) \).

We claim that these three models are equivalent with respect to the probability to be in convex position.

The equivalence between (a) and (b) follows Proposition 2. Indeed, dilatation conserves uniform distribution and convexity. Therefore, conditionaly on \(R_n = r \), and \(J = j \), since \(U_j \) is uniform on \(\partial B((0,0), r) \) and the other \(U_i' \)'s are i.i.d. uniform inside \(B((0,0), r) \), by a dilatation, the probability that these \(n \) points are in a convex position is the same as in the case where \(U_j \) is taken on \(\partial B((0,0), R) \), and the other ones taken independently and uniformly inside \(B((0,0), R) \) and this is true for any fixed \(R \) and \(j \).

Now (b) and (c) are equivalent for the following reason: Consider the rotation \(\psi \) with center \((0,0) \) which sends \(U_j \) on \((-R,0) \). This rotation conserves convexity, and the uniform distribution on \(B((0,0), R) \). Hence the random variables \(\psi(U_i)'s \) for \(i \neq j \) are independent and uniform on \(B((0,0), R) \).

Hence, we have establish that the probability that \(n \) points are in a convex position is the same in the model (a), and in the model (c). We will then work on this third model.

Now if we come back to the BSEG considerations, when \(\theta \to 2\pi \), the points \(w_1(R_c, \theta) \) and \(w_2(R_c, \theta) \) become closer and closer, and the line passing by these points lets all the other points in one of the half plane it defines. It is intuitively clear that replacing \(w_1(R_c, \theta) \) and \(w_2(R_c, \theta) \) by a single point close to them (for example, at position \((-R_c,0) \)) will not dramatically change the model nor the probability to be in convex position. This is the essence of Theorem 1(i).

For sake of completeness, let us give a formal proof. Take \(R > 0 \) and consider the two sets \(S(\varepsilon) = \text{SEG}(2\pi - \varepsilon, R) \) and \(S = \text{SEG}(2\pi, R) = \overline{B}((0,0), R) \). These two sets are closed for the Hausdorff topology when \(\varepsilon \) is small. We always have \(S(\varepsilon) \subset S \), and \(|S \setminus S(\varepsilon)| \) goes to 0. This property implies that if we fix \(\varepsilon' > 0 \), for \(\varepsilon \) small enough, for \(z_1, \ldots, z_n \) chosen uniformly and
independently under \(P_S \),

\[P(\{z_1, \ldots, z_n\} \subset S(\varepsilon)) \geq 1 - \varepsilon'. \]

(16)

Conditionally on the event \(\Lambda_\varepsilon := \{ \{z_1, \ldots, z_n\} \subset S(\varepsilon) \} \), the \(z_i \)'s are i.i.d. uniform in \(S(\varepsilon) \). Let \(w_1(\varepsilon) = w_1(R_c, 2\pi - \varepsilon), w_2(\varepsilon) = w_2(R_c, 2\pi - \varepsilon), w = -R. \)

We want to show that \(P((z_1, \ldots, z_n, w_1^\varepsilon, w_2^\varepsilon) \in CP_{n+2} | \Lambda_\varepsilon) \rightarrow P((z_1, \ldots, z_n, w) \in CP_{n+1}). \) Consider the following sets (subsets of \(S^n \)):

\[E_1(\varepsilon) := \{(t_1, \ldots, t_n) \in S(\varepsilon) : (t_1, \ldots, t_n, w_1(\varepsilon), w_2(\varepsilon)) \in CP_{n+2} \} \]

\[E_2 := \{(t_1, \ldots, t_n) \in S : (t_1, \ldots, t_n, w) \in CP_{n+1} \}. \]

It suffices to prove that \(|E_1(\varepsilon)| \rightarrow 0 \) as \(\varepsilon \rightarrow 0 \). First \(E_1(\varepsilon) \subset E_2 \) since if \((t_1, \ldots, t_n, w_1(\varepsilon), w_2(\varepsilon)) \) belongs to \(CP_{n+2} \) and since the segments \([w_1(\varepsilon), w] \) and \([w_2(\varepsilon), w] \) are chords, then \((z_1, \ldots, z_n, w_1(\varepsilon), w_2(\varepsilon), w) \) is in \(CP_{n+3} \) from what we deduce that \(E_2 \) is in \(CP_{n+1}. \)

To end the proof take \((t_1, \ldots, t_n) \in E_2. \) We show that when \(\varepsilon \) is small enough, it is in \(E_1(\varepsilon). \) More precisely, we will see that it is not the case only if the \(t_i \) belongs to a null set (for Lebesgue measure). We assume that \(n \geq 2 \) since for \(n = 1 \) the result is clear.

First, for \(\varepsilon > 0 \) small enough, if the \(t_i \)'s are different and different to \(-R \), all the \(t_i \) belongs to \(S(\varepsilon). \) Since \((t_1, \ldots, t_n, w) \in CP_{n+1} \) draw the convex polygon \(p \) passing by these points, and relabel the \(t_i \)'s as \(t_1^*, \ldots, t_n^* \) clockwise around \(p \) so that the neighbours of \(w \) are \(t_1^* \) and \(t_n^* \). Again, up to null set, the angles \((w, t_1^*, t_2^*) \) and \((t_{n-1}^*, t_n^*, w) \) are not 0, and it appears clearly that for \(\varepsilon \) small enough, \((t_1, \ldots, t_n, w_1(\varepsilon), w_2(\varepsilon)) \in CP_{n+2}. \) We then have \(E_2 = \cup_z E_1(\varepsilon) \) and the \(E_1(x) \cup E_1(x') \) if \(x' < x \), so \(|E_1(\varepsilon)| \rightarrow |E_2| \) when \(\varepsilon \) goes to 0. \(\Box. \)

2.2 Proof of (ii)

For any \(\theta \in [0, 2\pi], R > 0, \)

\[|SEG(\theta, R)| := \frac{R^2}{2} (\theta - \sin(\theta)) \]

(17)

and then for

\[R_\theta = \sqrt{\frac{2}{\theta - \sin(\theta)}}, \]

(18)

the area \(|SEG(\theta, R_\theta)| = 1. \) Fix \(\theta \) and denote for abbreviation by \(SEG_\theta \) the segment \(SEG(\theta, R_\theta) \) with unit area. The size \(L_\theta \) of the special border \([w_1(\theta, R_\theta), w_2(\theta, R_\theta)]\) for this segment is

\[L_\theta = 2R_\theta \sin(\theta/2). \]

(19)
In this section we fix $\theta \in (0, 2\pi)$ and search to express $B_n(\theta)$ with some combinations of $B_j(\nu)$, for $\nu < \theta$ and $j < n$. To get the decomposition we will “push the arc of circle” $AC(\theta, R)$ inside $SEG(\theta, R\theta)$ till it touches one of the z_i’s doing something similar to the Buchta’s method (for the computation of P_n^S and P_T^n). Here it is a bit more complex: we need the arc of circle to stay an arc of circle during the operation in order to get a nice decomposition, and also we need to keep the bi-pointed elements. The arc angle and radius will change during the operation. This will lead to a quadratic formula for B_n. Almost all quantities appearing in this section should be indexed by θ.

Figure 2 Representation of the family F_θ. The angle $\phi < \theta$ and $SEG[\phi] \leq SEG[\theta]$. The angles are taken at the center of the circle that defines the segments.

In order to avoid heavy notation we won’t do this. Draw SEG_θ in the plane. We consider the family of segments

$$ F_\theta := (SEG[\phi], 0 \leq \phi \leq \theta) $$

having as special border the special border of SEG_θ, that is $[w_1(\theta, R\theta), w_2(\theta, R\theta)]$, and lying at its right, such that the angle of $SEG[\phi]$ is ϕ (see Fig. 2).

When ϕ goes from θ to 0, the center $O[\phi]$ of (the circle which defines) $SEG[\phi]$ moves on the x-axis from $O[\theta] = 0$ to $(-\infty, 0)$. Comparing the distance from $O[\phi]$ to the special border, we can compute the coordinate of $O[\phi]$:

$$ O[\phi] = \frac{L_\theta}{2} \left(\cot\left(\frac{\theta}{2}\right) - \cot\left(\frac{\phi}{2}\right) \right) $$

(20)

and the radius of $SEG[\phi]$,

$$ R[\phi] = R_\theta \frac{\sin(\theta/2)}{\sin(\phi/2)}. $$

(21)

Since the special border of all the $SEG[\phi]$ is the same one sees that if $\phi < \phi'$ then $SEG[\phi] \subset SEG[\phi']$. When ϕ goes to 0, $SEG[\phi]$ goes to $[w_1(\theta, R\theta), w_2(\theta, R\theta)]$ (for the Hausdorff topology). One also sees
that \(\text{SEG}[\theta] = \text{SEG}_\theta \), and for \(\phi < \theta \), by (17) and (18),
\[
|\text{SEG}[\phi]| = \left(\frac{\sin(\theta/2)}{\sin(\phi/2)} \right)^2 \frac{\phi - \sin(\phi)}{\theta - \sin(\theta)}
\]
and then the other segments of the family \(\mathcal{F}_\theta \) have area smaller than 1 (see Fig. 2).

Again \(\theta \) is fixed. Let \(z_1, \ldots, z_n \) be \(n \geq 1 \) i.i.d. uniform random points in \(\text{SEG}_\theta \). Denote by
\[
\Phi = \min \{ \phi : \#(\{z_1, \ldots, z_n\} \cap \text{SEG}[\phi]) = n \},
\]
and let \(J \) the (a.s. unique) index of the variable \(z_j \) on \(\partial \text{SEG}[\phi] \). Finally let \(\Gamma \) be the (signed) angle \((+\infty, 0), O[\Phi], z_J\) formed by the \(x \)-axis and the line \((0[\Phi], z_J)\) (see Fig. 2). We have

Proposition 3 The distribution of \((\Phi, \Gamma)\) admits the following density \(f(\Phi, \Gamma) \) with respect to the Lebesgue measure
\[
f(\Phi, \Gamma)(\phi, \gamma) = n \frac{\sin(\theta/2)^{2n}}{(\theta - \sin(\theta))^n} \frac{\phi - \sin(\phi)^{n-1}}{\sin(\phi/2)^{2n+1}} (\cos(\gamma) - \cos(\phi/2)) 1_{0 \leq \phi \leq \theta} 1_{|\gamma| \leq \phi/2}.
\]

Proof. First, the density of \(z_J = (x, y) \) with respect to the Lebesgue measure on \(|\text{SEG}_\theta| \) is
\[
dx\,\dy|\text{SEG}_{x,y}|^{n-1}
\]
where \(|\text{SEG}_{x,y}|^{n-1} \) is the area of the unique element of the family \(\mathcal{F}_\theta \) whose border contains \((x, y)\) (indeed \(z_J = (x, y) \) if (a.s.) all the points \(z_1, \ldots, z_n \) are inside \(\text{SEG}_{x,y} \) except one of them, which lies exactly at \((x, y)\)). We then just have to make a change of variables in this formula!

We search the unique pair \((\phi, \gamma)\) such that
\[
x + iy = R[\phi]e^{i\gamma} + O[\phi].
\]
Since by (22) and (20) everything is explicit, we can compute the Jacobian
\[
\left| \begin{array}{ccc}
\frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \gamma} \\
\frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \gamma}
\end{array} \right| = \frac{\sin(\theta/2)^2 (\cos(\gamma) - \cos(\phi/2))}{\sin(\phi/2)^3 (\theta - \sin(\theta))}.
\]
From what we deduce the wanted formula, using (22). \(\square \).

Now, it remains to end the decomposition of our problem. Conditionally on \((\Phi, \Gamma, J) = (\phi, \gamma, j)\), the points \(z_1, \ldots, z_{j-1}, z_{j+1}, \ldots, z_n \) are i.i.d. uniform in \(\text{SEG}[\phi] \).

The triangle \(T := (w_1(\theta, R_\theta), w_2(\theta, R_\theta), z_j) \) is inscribed in \(\text{SEG}[\phi] \) and \(\text{SEG}[\phi] \setminus T \) produces two segments \(S_1 \) and \(S_2 \). Since we may rescale \(\text{SEG}[\phi] \) to be \(\text{SEG}_\phi \) (to get area 1), the question now is that of the area of the two rescaled segments. After rescaling, \(S_1 \) and \(S_2 \) appear to be \(\text{SEG}[\phi/2 + \gamma, R_\phi] \) and \(\text{SEG}[\phi/2 - \gamma, R_\phi] \) by identification of the angles. Using (17)
\[
|\text{SEG}[\alpha, R_\phi]| = \frac{\alpha - \sin(\alpha)}{\phi - \sin(\phi)}.
\]

(23)
We keep temporarily notation S_1 and S_2 instead of $\text{SEG}[\phi/2 + \gamma, R_\phi]$ and $\text{SEG}[\phi/2 - \gamma, R_\phi]$ for short. The following Proposition is a consequence of the fact that uniform distribution is preserved by conditioning. It is the “combinatorial decomposition” of the computation of $B_n(\theta)$, illustrated on Fig. 3.

Proposition 4

(i) Conditionally on $(\Phi, \Gamma, J) = (\phi, \gamma, j)$, the respective number (N_1, N_2, N_3) of points of $z\{n\} \setminus \{z_j\}$ in S_1, S_2 and $\text{SEG}_\phi - (S_1 \cup S_2)$ is

\[
\text{Multinomial}(n - 1, \|S_1\|, \|S_2\|, 1 - \|S_1\| - \|S_2\|).
\]

(ii) Conditionally on $(\Phi, \Gamma, J) = (\phi, \gamma, j)$ and $(N_1, N_2, N_3) = (k_1, k_2, k_3)$ the points z_1, \ldots, z_n are in convex position with probability $1_{k_3 = 0, k_1 + k_2 = n - 1}B_{k_1}(\phi/2 + \gamma)B_{k_2}(\phi/2 - \gamma)$.

\[
\begin{align*}
\text{Figure 3} & \quad \text{Decomposition of the computation of } B_n(\theta), \text{ and definition of the two sub-segments appearing in the decomposition.}
\end{align*}
\]

Putting everything together we have obtained

\[
B_n(\theta) = \int_0^\theta \int_{-\phi/2}^{\phi/2} f(\Phi, \Gamma)(\phi, \gamma) \sum_{k=0}^{n-1} \binom{n-1}{k} |S_1|^{k} |S_2|^{n-1-k} B_k(\phi/2 + \gamma) B_{n-1-k}(\phi/2 - \gamma) d\gamma d\phi
\]

Set $\eta = \phi/2 + \gamma$, $d\eta = d\gamma$, η goes from 0 to ϕ (and $\phi/2 - \gamma = \phi - \eta$), giving

\[
B_n(\theta) = \int_0^\phi \int_0^{\phi - \eta} f(\Phi, \Gamma)(\phi, \eta - \phi/2) \sum_{k=0}^{n-1} \binom{n-1}{k} d\eta d\phi
\]

\[
\times |\text{SEG}[\eta, R_\phi]|^k |\text{SEG}[\phi - \eta, R_\phi]|^{n-1-k} B_k(\eta) B_{n-1-k}(\eta - \phi) d\eta d\phi
\]

from which we get

\[
B_n(\theta) = \int_0^\phi \int_0^{\phi} \frac{\sin(\theta/2)^{2n}}{\sin(\phi/2)^{2n+1}} \frac{\cos(\eta - \phi/2) - \cos(\phi/2)}{\sin(\phi/2)^{2n+1}} \sum_{k=0}^{n-1} \binom{n-1}{k} d\eta d\phi
\]

\[
\times (\eta - \sin(\eta))^k B_k(\eta)((\phi - \eta) - \sin(\phi - \eta))^{n-1-k} B_{n-1-k}(\phi - \eta) d\eta d\phi.
\]
Now, \(\cos(\eta - \phi/2) - \cos(\phi/2) = 2 \sin(\eta/2) \sin((\phi - \eta)/2) \). Finally setting \(L_n(\theta) \) as done in (4), we obtain Formula 1(ii).

2.3 Proof (i')

Recall Proposition 2. To compute \(P^D_n \) we can work under the model where \(n-1 \) points \(z_1, \ldots, z_{n-1} \) are picked independently and uniformly inside the disk \(B((0,0), R_c) \) (with \(R_c = \pi^{-1/2} \)) and one point on the boundary. We place this last point at position \(-R_c\) which is allowed since rotation keeps convex bodies and the uniform distribution.

Now take a family of circles \(\mathcal{G} = \{B[r], 0 \leq r \leq R_c\} \) such that \(B[r] \) as radius \(r \), its center at position \(-R_c + r\), implying that \(-R_c\) belongs to all these circles (see Fig. 4).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure4.png}
\caption{Decomposition of the computation of \(P^D_n \). The big cross is the center of the initial circle, the small one, the center of the smallest circle containing all the points.}
\end{figure}

If \(r' < r \), \(B[r'] \subset B[r] \). Let \(r^* \) be the largest circle such that exists \(1 \leq k \leq n-1 \), \(z_k \in \partial B[r^*] \).

Denote then by \(\phi \) the angle such that \(z_k = (-R_c + r) + re^{i(-\pi + \phi)} \). If we denote by \((X,Y)\) the (Euclidean) position of \(z_k \), the density of the distribution of \((x,y)\) is

\[
(n-1)1_{(x,y) \in B((0,0), R_c)} |B[r]|^{n-2} dxdy
\]

where \(B[r] \) is the unique circle in the family \(\mathcal{G} \) which passes by \((x,y)\). We can then compute the Jacobian and find the distribution of \((r, \phi)\) to be with density \(1_{0 \leq r \leq R_c, 0 \leq \phi \leq 2\pi}(1 - \cos(\phi)) (\pi r^2)^{-n-2} drd\phi \).

Once \(z_k \) is given, we can once again normalise the problem, and come back on a circle of area \(R_c \).

We then get, using \(1 + \cos(\phi) = 2 \sin^2(\phi/2) \)

\[
P^D_n = (n-1) \int_0^{R_c} \int_0^{2\pi} \sum_{k=0}^{n-2} \binom{n-2}{k} 2 \sin^2(\phi/2) r (\pi r^2)^{-n-2} \]
\[
\times B_k(\phi) B_{n-k-2}(2\pi - \phi) |\text{SEG}(\phi, R_c)|^k |\text{SEG}(2\pi - \phi, R_c)|^{n-2-k} d\phi dr
\]
The integration with respect to dr gives

$$P^n_D = \frac{1}{\pi} \int_0^{2\pi} \sum_{k=0}^{n-2} \binom{n-2}{k} \sin^2(\phi/2) B_k(\phi) B_{n-2-k}(2\pi - \phi) \times \left(\frac{\phi - \sin(\phi)}{2\pi} \right)^k \left(\frac{2\pi - \phi + \sin(\phi)}{2\pi} \right)^{n-2-k} d\phi$$

since once ϕ is known, the convexity follows that on the pair of bi-pointed segments with angles ϕ and $2\pi - \phi$, and the number of elements in these segments is binomial $(n-2, |\text{SEG}(\phi, R_c)|)$.

2.4 Proof of (iii)

The proof is the same as that of (ii) except that in Proposition 4 we need to follow the number of points falling in the triangle. We then get

$$B_{n,m}(\theta) = \int_0^\theta \int_0^\phi f(\phi, \Gamma)(\phi, \eta - \phi/2) \sum_{n_1 + n_2 + n_3 = n-1 \atop m_1 + m_2 = m-1} \binom{n-1}{n_1, n_2, n_3} \times |\text{SEG}[\eta, R_\phi]|^{n_1} |\text{SEG}[\phi - \eta, R_\phi]|^{n_2} (1 - |\text{SEG}[\eta, R_\phi]| - |\text{SEG}[\phi - \eta, R_\phi]|)^{n_3} \times B_{n_1, m_1}(\eta) B_{n_2, m_2}(\phi - \eta) d\eta d\phi$$

Using the notation introduced in (4) we get (iii).

2.5 Proof of (iii')

Copy the arguments in Section 2.3. In the same way, for $n \geq 2, 1 \leq m \leq n$

$$P^{n,m}_D = \frac{1}{\pi} \int_0^{2\pi} \sum_{k=0}^{n-2} \sum_{1 \leq m_1 \leq n-2} \binom{n-2}{k} \sin^2(\phi/2) \times B_{k,m_1}(\phi) B_{n-2-k,m-m_1-2}(2\pi - \phi) \left(\frac{\phi - \sin(\phi)}{2\pi} \right)^k \left(\frac{2\pi - \phi + \sin(\phi)}{2\pi} \right)^{n-2-k} d\phi$$

with the condition that $B_{k,k+l} = 0$. (iii') follows.

2.6 Proof of (iv)

The same proof of (i) does the job.

3 Effective computation of L_n

We explain in this part how to effectively compute the sequences L_n and $L_{n,m}$. There exist maybe some “simple close formulae” for these functions that can be proved by recurrence, but
even with the 30 first L_n in hand, we were not able to find one. So, the method we propose allows one to make the successive computations of the L_j’s with a computer algebra system as Maple, Mathematica or Sage: additionally to standard polynomial computations, the needed operations are: Laplace transforms, inverse Laplace transforms, and integration. We wrote a program for Maple helped by Bruno Salvy [17] (the code of the program is available at [13]). Here are the main lines of the algorithm.

Instead of computing $L_n(\theta)$ we compute $M_n(\theta) = L_n(2\theta)$ which satisfies a simpler recurrence:

$$M_n(t) = 8 \int_0^t \frac{\sin(t)^{2n+1}}{\sin(\phi)^{2n+1}} \int_0^\phi \sum_{k=0}^{n-1} M_k(\eta)M_{n-1-k}(\phi - \eta) d\eta d\phi.$$

Since $B_1(\theta) = B_0(\theta) = 1$, $L_0(\theta)$ and $L_1(\theta)$ are known by (4), and thus $M_0(\theta)$ and $M_1(\theta)$ too.

Denote by $J_n(t) = \int_0^t \sum_{k=0}^{n-1} M_k(u)M_{n-1-k}(t-u) du$, and by $T J_n$, $T M_n$ the Laplace transform of J_n and M_n. We have

$$T J_n(s) = \sum_{k=0}^{n-1} T M_k(s)T M_{n-k-1}(s).$$

A computation of J_n by integration seems difficult to the computer algebra system, but $T J_n$ can be computed easily, and the computation of the Laplace inversion of $T J_n$ which gives J_n works without any harm with Maple. Maple provides $J_n(t)$ under the form of a polynomial of $\cos(kt)$, $\sin(kt)$, t (for a fixed n, several k are involved). We linearize $\cos(kt)$ and $\sin(kt)$ (replacing them by some polynomials in $\cos(t), \sin(t)$). Using $\cos(t)^2 + \sin(t)^2 = 1$, it is possible to rewrite J_n as polynomial of degree at most 1 in $\cos(t)$ (for this, we take the rest of $J_n(t)$ by the division by $\cos(t)^2 + \sin(t)^2 - 1$). This reduction step is important as it provides much shorter formulae for J_n, and allows one to compute L_n for larger n.

It remains to compute $M_n(t)/\sin(t)^{2n+1}$ which is equal to $8 \int_0^t J_n(v)/\sin(v)^{2n+1} dv$. Again, Maple is not able to make this integration directly, and needs some help. We then observe that M_n is solution to the following ordinary differential equation:

$$\sin(t)M_n'(t) - (2n + 1) \cos(t) - 8 \sin(t)J_n(t) = 0, \quad \lim_{t \to 0} \frac{M_n(t)}{\sin(t)^{2n+1}} = 0. \quad (28)$$

the last equation following from (4). Now, the form of M_n can be guessed: this is a polynomial in $\sin(t), \cos(t), t$. The degree in $\cos(t)$ can be taken equal to 1, and some bounds on the degrees of $\sin(t)$, and t can be guessed (by trial and error, for example). Plugging $M_n(t) = \sum_{k_1,k_2,k_3} a_{k_1,k_2,k_3} \sin(t)^{k_1} \cos(t)^{k_2} t^{k_3}$ into (28), replacing $\cos(t)$ by C, $\sin(t)$ by S, and again taking the rest by the division by $C^2 + S^2 - 1$, we get the nullity of a polynomial in C,S,t. This
provides a linear system on the coefficients a_{k_1,k_2,k_3}, easy to solve. This provides a close form for M_n.

The method is a bit demanding in computer resources mainly because M_n becomes more and more complex as n grows, which implies that Laplace transform and inverse Laplace transform devours the memory resources of the computer.

A similar change of variable provides a formula for $M_{n,m}(\theta) = L_{n,m}(2\theta)$. The computation of $M_{n,m}$ is possible using the same algorithm, except that some complications arise since some polylogarithm terms (of the type $\text{polylog}(n,e^{i\theta}) + \text{polylog}(n,-e^{i\theta})$) appears in some intermediate computations. We are able to compute $L_{n,m}$ for $n \leq 12$ (which provides the values of $P_{D,n+1,m+1}$ for the pairs (n,m) such that $n \leq 13$). Here, the computation are slow, and we renounced to go further for a matter of time (several hours are needed to compute the case $n = 13$).

Acknowledgments

I thank both referees for their suggestions, comments and corrections, and to bring to my intention [5, 14, 8, 10] not cited in the first version of this paper. They also give me the motivation to improve the maple program we made, which provides now the 30 first values of P_D^0 (instead of 12).

References

[1] I. Bárány. Sylvester’s question: The probability that n points are in convex position. *Ann. Probab.*, 27(4):2020–2034, 1999.

[2] I. Bárány and M. Reitzner. Poisson polytopes. *The Annals of Probability*, 38(4):1507–1531, 07 2010.

[3] I. Bárány, G. Rote, W. Steiger, and C. Zhang. A central limit theorem for random convex chains. *Discrete Comput. Geom.*, 30:35–50, 2000.

[4] W. Blaschke. Über affine geometrie xi: Lösung des ’vierpunktproblems’ von sylvester aus der theorie der geometrischen wahrscheinlichkeiten. *Ber. Verh. Sachs. Akad. Wiss. Leipzig Math.-Phys*, 69:436–453, 1917.

[5] C. Buchta. Das volumen von zufallspolyedern im ellipsoid. *Anz. Österreich. Akad. Wiss. Math.-Naturwiss.*, 121:1–5, 1984.

[6] C. Buchta. The exact distribution of the number of vertices of a random convex chain. *Mathematika*, 53(2):247–254 (2007), 2006.

[7] C. Buchta. On the number of vertices of the convex hull of random points in a square and a triangle. *Anz. Österreich. Akad. Wiss. Math.-Naturw. Kl.*, 143:3–10, 2009/10.

[8] C. Buchta. Exact formulae for variances of functionals of convex hulls. *Adv. in Appl. Probab.*, 45(4):917–924, 12 2013.

[9] B. Efron. The convex hull of a random set of points. *Biometrika*, 52(3/4):pp. 331–343, 1965.

[10] P. Groeneboom. Convex hulls of uniform samples from a convex polygon. *Adv. in Appl. Probab.*, 44(2):330–342, 06 2012.
[11] H. Hilhorst, P. Calka, and G. Schehr. Sylvester’s question and the random acceleration process. *Journal of Statistical Mechanics: Theory and Experiment*, 2008(10):P10010, 2008.

[12] D. Hug. Random polytopes. In *Stochastic geometry, spatial statistics and random fields*, volume 2068 of *Lecture Notes in Math.*, pages 205–238. Springer, Heidelberg, 2013.

[13] J.-F. Marckert. Maple program and first values for $p_d^{n,m}$, 2015. http://www.labri.fr/perso/marckert/data.tar.

[14] R. E. Miles. Isotropic random simplices. *Advances in Applied Probability*, 3(2):pp. 353–382, 1971.

[15] J. Pardon. Central limit theorems for uniform model random polygons. *Journal of Theoretical Probability*, 25(3):823–833, 2012.

[16] M. Reitzner. *New perspectives in stochastic geometry, Molchanov, I., and Kendall, W. edts*, chapter Random polytopes (survey.), pages 45–76. Oxford University Press, Oxford., 2010.

[17] B. Salvy. How to compute t_n. Personal communication, 2013.

[18] P. Valtr. Probability that n random points are in convex position. *Discrete & Computational Geometry*, 13:637–643, 1995.

[19] P. Valtr. The probability that n random points in a triangle are in convex position. *Combinatorica*, 16(4):567–573, 1996.

CNRS, LaBRI, Université de Bordeaux
351 cours de la Libération
33405 Talence cedex, France.
E-mail: marckert−at−labri.fr