Merging of matrix elements and parton showers at NLO accuracy

Marek Schönherr*
Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, UK

Stefan Höche
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

Frank Krauss
Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, UK

Frank Siegert
Institut für Kern- und Teilchenphysik, TU Dresden, D–01062 Dresden, Germany

The merging of matrix elements and parton showers is an established calculational tool for the description of multi-jet final states at hadron colliders. These methods have recently been promoted to next-to-leading order accuracy in the description of hard well separated jets. This talk introduces such a method and discusses its application to phenomenologically relevant signal and background processes. The systematic assessment of its theoretical uncertainty is a prime focus.

The European Physical Society Conference on High Energy Physics -EPS-HEP2013
18-24 July 2013
Stockholm, Sweden

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/
1. Introduction

Many experimentally important observables at recent and present particle colliders are dominated by final states of (multiple) large multiplicities of not necessarily well separated leptons, photons, hadrons and/or jets. Thus, achieving an accurate theoretical description of such observables necessitates not only matching higher terms in an expansion in terms of α_s, such as a next-to-leading order calculation, improving the description of short-distance physics, to a parton shower resummation, accurately describing parton evolution at small scales, for a process of fixed parton multiplicity, but also merging such matched calculations for subsequent multiplicities without the loss of their respective accuracies.

In the CKKW [1] type of formalisms a few approaches have been formulated recently [2, 3, 4, 5, 6] differing in their choice of tools and treatment of the overlap of the individual input calculations. The following reviews recent results with the implementation of this so-called MePS@NLO method in the event generator SHERPA.

2. Recent results

In this section a few results obtained recently with the implementation of the MePS@NLO method in the SHERPA [7] event generator are exhibited. They use SHERPA’s tree-level matrix element generators AMEGIC++ [8, 9] and COMIX [10], its Catani-Seymour dipole subtraction implementation [11, 12] and SHERPA’s CS-dipole shower, CSS, [13]. For all processes shown here, one-loop matrix elements were provided by BLACKHAT [14] or OPENLOOPS [15]. SHERPA further comprises modules to compute the effects of multi-parton interactions [16], hadronisation corrections [17], hadron decays and higher-order QED corrections [18].

The shown MePS@NLO calculations are constructed from NLOPs calculations for the individual parton multiplicities, matched using the methods of [19], according to the algorithm developed in [3, 4, 23, 24]. The MENLOPs technique – the presented results use an implementation according to [4, 25, 26] – is a special case of a MePS@NLO calculation where only the lowest multiplicity is calculated at NLOPs accuracy and all higher multiplicities are merged at leading order accuracy.

Fig. 1 displays results obtained with the afore mentioned calculations for $pp \rightarrow W + \text{jets}$ production [3]. The $pp \rightarrow W$, $pp \rightarrow Wj$ and $pp \rightarrow Wjj$ contributions were calculated at NLOPs accuracy. Additionally, the processes $pp \rightarrow Wjjj$ and $pp \rightarrow Wjjjj$ were merged on top of that at leading-order accuracy. The results are compared to experimental data from the ATLAS collaboration [27]. Good agreement is found and, of equal importance, the theoretical uncertainty is reduced using next-to-leading order merging. Similar observations are made when comparing a MePS@NLO simulation for $e^+e^- \rightarrow \text{jets}$ [4] to data taken by the ALEPH collaboration [28], as displayed in Fig. 2. This calculation computes $e^+e^- \rightarrow jj$, $e^+e^- \rightarrow jjj$ and $e^+e^- \rightarrow jjjj$ at next-to-leading order accuracy, again merging two more jets on top of that at leading order accuracy.

Finally, Figs. 3 and 4 show results for MePS@NLO calculations for $pp \rightarrow \ell^+\ell^- + E_\perp + X$ production [24], merging $pp \rightarrow \ell^+\ell^-\nu\nu$ and $pp \rightarrow \ell^+\ell^-\nu\nu j$ at NLOPs accuracy. Included are also the loop-induced processes $gg \rightarrow \ell^+\ell^-\nu\nu$, $gg \rightarrow \ell^+\ell^-\nu\nu g$ and $gg \rightarrow \ell^+\ell^-\nu\nu q$. Emphasis here is put of course onto observables relevant for Higgs boson measurements as used by ATLAS and

\footnote{The applicability of this method to processes of most general colour structures was demonstrated in [20, 21, 22].}
Figure 1: Transverse momentum of the leading (left) and subleading (right) jet in \(pp \rightarrow W + \text{jets} \) events with at least one, two or three jets compared to ATLAS data [27]. Displayed are the results of a MePS@NLO (red), MENLOPS (blue) and MC@NLO (black dotted) simulation of the inclusive process. For both multijet merged predictions the renormalisation and factorisation uncertainties are shown.

Figure 2: Thrust (left) and total jet broadening (right) in \(e^+e^- \rightarrow \text{jets} \) events compared to ALEPH data [28]. Displayed are the results of a MePS@NLO (red), MENLOPS (blue) and MC@NLO (black dotted) simulation of the inclusive process. For both multijet merged predictions the renormalisation and factorisation uncertainties are shown.
Figure 3: Azimuthal separation of the lepton pair in $pp \rightarrow \ell^+\ell^- + E_T + X$ in the exclusive zero (left) and one (right) jet selection under typical cuts used in Higgs searches. Displayed are the MePS@NLO (black) prediction, with its associated renormalisation and factorisation scale uncertainties as well as the resummation scale uncertainty, the inclusive MC@NLO prediction and the fixed-order NLO prediction. The lower panel shows the contribution of loop induced processes to the total result.

Figure 4: Invariant mass of the lepton pair in $pp \rightarrow \ell^+\ell^- + E_T + X$ in the exclusive zero (left) and one (right) jet selection under typical cuts used in Higgs searches. Displayed are the MePS@NLO (black) prediction, with its associated renormalisation and factorisation scale uncertainties as well as the resummation scale uncertainty, the inclusive MC@NLO prediction and the fixed-order NLO prediction. The lower panel shows the contribution of loop induced processes to the total result.
CMS, as usual divided into bins of exclusive jet multiplicity. The distributions show that both an improved central value and a small theoretical uncertainty, as compared to pure fixed-order NLO or an inclusive MC@NLO (generated according to [19]), can be achieved.

3. Conclusions

The method for merging multiple matrix elements of successive jet multiplicities at next-to-leading order accuracy implemented in the SHERPA event generator is a versatile tool that has been shown to be applicable to a multitude of processes. It describes the respective jet multiplicities at next-to-leading order accuracy which is reflected not only in an improved central value but also in smaller theoretical uncertainties. At the same time it also preserves the resummation of emission scale hierarchies provided by the parton shower. This allows to use the SHERPA Monte Carlo event generator to calculate inclusive multijet observables and study their uncertainty due to the truncation of the perturbative series in a systematic way.

References

[1] S. Catani, F. Krauss, R. Kuhn and B. R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001), 063, [hep-ph/0109231].
[2] N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP 12 (2008), 070, [arXiv:0811.2912 [hep-ph]].
[3] S. Höche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP 1304 (2013), 027, [arXiv:1207.5030 [hep-ph]].
[4] T. Gehrmann, S. Höche, F. Krauss, M. Schönherr and F. Siegert, NLO QCD matrix elements + parton showers in $e^+e^- \rightarrow$hadrons, JHEP 1301 (2013), 144, [arXiv:1207.5031 [hep-ph]].
[5] S. Plätzer, Controlling inclusive cross sections in parton shower + matrix element merging, JHEP 1308 (2013), 114, [arXiv:1211.5467 [hep-ph]].
[6] L. Lönnblad and S. Prestel, Merging Multi-leg NLO Matrix Elements with Parton Showers, JHEP 1303 (2013), 166, [arXiv:1211.7278 [hep-ph]].
[7] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert and J. Winter, Event generation with SHERPA 1.1, JHEP 02 (2009), 007, [arXiv:0811.4622 [hep-ph]].
[8] F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A Matrix Element Generator In C++, JHEP 02 (2002), 044, [hep-ph/0109036].
[9] T. Gleisberg, F. Krauss, K. T. Matchev, A. Schälicke, S. Schumann and G. Soff, Helicity formalism for spin-2 particles, JHEP 09 (2003), 001, [hep-ph/0306182].
[10] T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP 12 (2008), 039, [arXiv:0808.3674 [hep-ph]].
[11] S. Catani and M. H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B485 (1997), 291–419, [hep-ph/9605323].
[12] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C53 (2008), 501–523, [arXiv:0709.2881 [hep-ph]].
Merging of matrix elements and parton showers at NLO accuracy

Marek Schönherr

[13] S. Schumann and F. Krauss, *A parton shower algorithm based on Catani-Seymour dipole factorisation*, JHEP 03 (2008), 038, [arXiv:0709.1027 [hep-ph]].

[14] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres-Cordero, D. Forde, H. Ita, D. A. Kosower and D. Maître, *Automated implementation of on-shell methods for one-loop amplitudes*, Phys. Rev. D78 (2008), 036003, [arXiv:0803.4180 [hep-ph]].

[15] F. Cascioli, P. Maierhofer and S. Pozzorini, *Scattering Amplitudes with Open Loops*, Eur.Phys.J. C72 (2012), 1889, [arXiv:1111.5206 [hep-ph]].

[16] S.-Alekhin et al., *HERA and the LHC - A workshop on the implications of HERA for LHC physics: Proceedings Part A*, hep-ph/0601012.

[17] J.-C. Winter, F. Krauss and G. Soff, *A modified cluster-hadronisation model*, Eur. Phys. J. C36 (2004), 381–395, [hep-ph/0311085].

[18] M. Schönherr and F. Krauss, *Soft photon radiation in particle decays in SHERPA*, JHEP 12 (2008), 018, [arXiv:0810.5071 [hep-ph]].

[19] S. Höche, F. Krauss, M. Schönherr and F. Siegert, *A critical appraisal of NLO+PS matching methods*, JHEP 09 (2012), 049, [arXiv:1111.1220 [hep-ph]].

[20] S. Höche, F. Krauss, M. Schönherr and F. Siegert, *W+n-jet predictions with MC@NLO in Sherpa*, Phys.Rev.Lett. 110 (2013), 052001, [arXiv:1201.5882 [hep-ph]].

[21] S. Höche and M. Schönherr, *Uncertainties in next-to-leading order plus parton shower matched simulations of inclusive jet and dijet production*, Phys.Rev. D86 (2012), 094042, [arXiv:1208.2815 [hep-ph]].

[22] F.-Cascioli, P.-Maierhoefer, N.-Moretti, S.-Pozzorini and F.-Siegert, *NLO matching for t\bar{t}bb production with massive b-quarks*, arXiv:1309.5912 [hep-ph].

[23] S. Höche, J. Huang, G. Luisoni, M. Schönherr and J. Winter, *Zero and one jet combined NLO analysis of the top quark forward-backward asymmetry*, Phys.Rev. D88 (2013), 014040, [arXiv:1306.2703 [hep-ph]].

[24] F.-Cascioli, S.-Höche, F.-Krauss, P.-Maierhofer, S.-Pozzorini et al., *Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0,1 jet production*, arXiv:1309.0500 [hep-ph].

[25] S. Höche, F. Krauss, M. Schönherr and F. Siegert, *Automating the POWHEG method in Sherpa*, JHEP 1104 (2011), 024, [arXiv:1008.5399 [hep-ph]].

[26] S. Höche, F. Krauss, M. Schönherr and F. Siegert, *NLO matrix elements and truncated showers*, JHEP 08 (2011), 123, [arXiv:1009.1127 [hep-ph]].

[27] G. Aad et al., ATLAS Collaboration collaboration, *Study of jets produced in association with a W boson in pp collisions at \sqrt{s} = 7 TeV with the ATLAS detector*, Phys.Rev. D85 (2012), 092002, [arXiv:1201.1276 [hep-ex]].

[28] A. Heister et al., ALEPH collaboration, *Studies of QCD at e^+e^- centre-of-mass energies between 91 and 209 GeV*, Eur. Phys. J. C35 (2004), 457–486.