The embedding tensor of Scherk-Schwarz flux compactifications from eleven dimensions

Hadi Godazgar⋆, Mahdi Godazgar† and Hermann Nicolai‡

⋆,†DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK

‡Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Potsdam, Germany

⋆H.M.Godazgar@damtp.cam.ac.uk, †M.M.Godazgar@damtp.cam.ac.uk, ‡Hermann.Nicolai@aei.mpg.de

May 11, 2014

Abstract

We study the Scherk-Schwarz reduction of $D = 11$ supergravity with background fluxes in the context of a recently developed framework pertaining to $D = 11$ supergravity. We derive the embedding tensor of the associated four-dimensional maximal gauged theories directly from eleven dimensions by exploiting the generalised vielbein postulates, and by analysing the couplings of the full set of 56 electric and magnetic gauge fields to the generalised vielbeine. The treatment presented here will apply more generally to other reductions of $D = 11$ supergravity to maximal gauged theories in four dimensions.
1 Introduction

Recently, a reformulation \[1\] of \(D = 11\) supergravity \[2\] that emphasises the exceptional \(E_{7(7)}\) duality symmetry \[3\] and is based on the \(SU(8)\) invariant reformulation of \(D = 11\) supergravity \[4\], has been constructed. The central object in this reformulation is an \(E_{7(7)}\) 56-bein in eleven dimensions, which can be thought of as the eleven dimensional ancestor of the 56-bein in four dimensions containing the 70 scalars of the reduced maximal theory. The four generalised vielbeine \[4, 5, 1\] that comprise the 56-bein in eleven dimensions are derived by analysing the supersymmetry transformations of the 56 vector fields in the \(SU(8)\) invariant reformulation, generalising and completing the construction of \[4\] (similar new structures also appear in the \(SO(16)\) invariant formulation of \(D = 11\) supergravity where the relevant vielbein belongs to \(E_{8(8)}\) \[6, 7\]). The emphasis on supersymmetry as the origin of the generalised exceptional geometry obtained in this way is the main distinctive feature in comparison with other approaches to generalised geometry. \[1\] The 56-bein satisfies certain differential identities called ‘generalised vielbein postulates’ \[4, 1\] due to their similarities with the usual vielbein postulate in differential geometry, and these relations will be at the center of our construction.

The very nature of the reformulation in that it emphasises structures in eleven dimensions that become apparent upon reduction to four dimensions makes it a useful framework in which to study questions regarding four-dimensional maximal gauged theories from a higher dimensional perspective. This feature extends the attributes of the \(SU(8)\) invariant reformulation, which leads to a non-linear metric ansatz \[10\] and a proof \[11, 12\] of the consistency of the \(S^7\) reduction \[13\] of \(D = 11\) supergravity. In particular, the new structures found in \[5, 1\] give rise to non-linear ansätze for the internal components of the three-form \[5\] (see also \[14\]) and six-form \[15\] potentials. In fact, ansätze can be given for the full uplift to eleven dimensions for any solution (and, in particular, the stationary points of the potential) of the four-dimensional theory; the possibility to perform such non-trivial tests of all formulae is another distinctive feature of the present approach. Furthermore, the generalised vielbein postulates reduce to the consistency requirements of the four dimensional maximal gauged theory. In particular, there is a direct relation \[1, 15\] between the set of generalised vielbein postulates with derivatives along four dimensions and the \(E_{7(7)}\) Cartan equation of the maximal gauged theory \[16, 17, 18\], in which the gauging is defined via the embedding tensor \[19, 20, 16\].

The formalism developed in \[1\] has already been applied to an extensive study of the \(S^7\) reduction \[15\]. In particular, nonlinear ansätze are given for the uplift of four-dimensional solutions of \(SO(8)\) gauged maximal supergravity \[21\] to eleven dimensions, including dual fields. In addition, the embedding tensor of \(SO(8)\) gauged maximal supergravity is recovered directly by reducing the generalised vielbein postulates with derivatives along four dimensions. While the \(S^7\) reduction is highly non-trivial from the perspective of the non-linearity of uplift ansätze and the field content in four dimensions, the gauging, and therefore the embedding tensor, is relatively simple in that the gauging only involves electric vectors, and moreover is uniform.

In this paper, we study Scherk-Schwarz \[22, 1\] reductions of \(D = 11\) supergravity with background flux \[25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35\] within the context of the formalism developed in \[1\]. The Scherk-Schwarz flux compactification has principally been studied from a four-dimensional gauge algebra perspective by associating background fields to particular representations in the \(GL(7)\) decomposition of the \(912\) representation of \(E_{7(7)}\) in which the embedding tensor lives. Here, we concentrate on obtaining the embedding tensor of such theories directly from eleven dimensions by analysing the couplings of the 56 vector fields (28 electric and 28 magnetic vectors) via the

1 For a summary of recent developments and a complete bibliography see \[8, 9\].

2 In fact, the essential idea of reducing on a group manifold appears in \[23\]; for a useful historical account of Kaluza-Klein theory see \[24\].
generalized vielbein postulates. Hence, our approach should be contrasted with recent work [36, 37, 38, 39] aiming to construct the embedding tensor for non-geometric compactifications obtained by generalised Scherk-Schwarz reductions of extended generalised geometries.

While the Scherk-Schwarz reduction is much simpler than the S^7 reduction, the novelty of the Scherk-Schwarz reduction as far as we are interested in is the potential for gaugings involving a combination of electric and magnetic vectors leading to a more complicated embedding tensor [28, 32]. We derive the embedding tensor of Scherk-Schwarz flux compactifications directly and explicitly from the $D = 11$ generalised vielbein postulates. This constitutes a further non-trivial demonstration of the utility of the formalism developed in Ref. [1] and gives further credence to the interpretation of the generalised vielbein postulates as the higher dimensional origin of the embedding tensor. More generally, the results of Ref. [1] can be applied to any compactification of $D = 11$ supergravity to maximal gauged theories in four dimensions yielding non-linear uplift ansätze and the embedding tensor.

The outline of the paper is as follows: In section 2 we present a self-contained review of Scherk-Schwarz reductions with background flux including a discussion of the background field equations (section 2.1), which to the best of our knowledge does not appear in previous literature. The Jacobi-like constraints on the background fluxes as well as the background field equations form the complete set of equations that must be satisfied for a bona fide Scherk-Schwarz flux compactification. The non-triviality of these constraints, particularly the background field equations, illustrates the difficulty of providing a complete classification of such compactifications.

In section 3 we briefly review the embedding tensor formalism [19, 20, 16, 17, 18] and give a general solution of the linear constraint satisfied by the embedding tensor. The reduction ansätze defined in section 2 are applied to the generalised vielbein postulates in section 4 yielding the embedding tensor of Scherk-Schwarz flux compactifications. This embedding tensor can be cast in the form of the general solution of the linear constraint given in section 3. Furthermore, in appendix B we verify that the quadratic constraints are satisfied. Finally, in section 5 we demonstrate explicitly in the simple example of a flat group reduction that indeed less than or equal to 28 electric or magnetic vectors are gauged as is expected from general results of the embedding tensor formalism [35]. We make concluding remarks in section 6.

Conventions: In this paper, we reserve the use of ϵ for an alternating tensor with respect to some metric structure, while we use η to denote the tensor density, alias the alternating symbol. It is important to note that all objects denoted with a caret ($\hat{\cdot}$) above them depend only on the external coordinates, that is, are only x-dependent.

2 Scherk-Schwarz reduction

Consider a reduction of $D = 11$ supergravity such that the elfbein takes the form

$$E_{M}^{A}(z) = \begin{pmatrix} \hat{\Delta}^{-1/2}(x) \hat{e}_{\mu}^{\alpha}(x) & \hat{B}_{\mu}^{m}(x) \hat{e}_{m}^{a}(x) \\ 0 & U_{m}^{n}(y) \hat{e}_{n}^{a}(x) \end{pmatrix},$$

(1)

where the eleven dimensional coordinates have been split as $\{z^{M}\} \equiv \{x^{\mu}, y^{m}\}$, and where

$$\hat{e} = \det(\hat{e}_{\mu}^{\alpha}), \quad \hat{\Delta} = \det(\hat{e}_{m}^{a})$$

(2)

(recall that all hatted quantities depend only on the four-dimensional coordinates x^{μ}). The matrices $U_{m}^{n}(y)$ depend only on the internal coordinates and satisfy the property that

$$\partial_{[m} U_{n]}^{p} = -\frac{1}{2} f_{rs}^{p} U_{m}^{r} U_{n}^{s}.$$

(3)
The y-independent structure constants f importantly satisfy a unimodularity property, viz.

$$f^m_{\ mn} = 0,$$

which is equivalent to

$$\partial_n \left[U(U^{-1})_m^n \right] = 0,$$

where

$$U \equiv \det(U_m^n).$$

The condition of unimodularity, emphasised in [22] ensures that the measure is invariant under seven-dimensional diffeomorphisms.\(^3\)

Furthermore, the following integrability condition is satisfied

$$f^q_{\ [mn} f^r_{\ p]q} = 0.$$

This is equivalent to the Jacobi identity for the associated Lie algebra.

Specifically, in terms of the following parametrisation of the elfbein

$$E_M^A = \begin{pmatrix} \Delta^{-1/2} e^\mu_\alpha & B^e_{\ mn} e^a_n \\ 0 & e^a_m \end{pmatrix},$$

where $\Delta = \det e_n^a = U \hat{\Delta}$, we assume the following reduction ansätze for the elfbein components

$$e^\mu_\alpha(x, y) = U^{1/2} \hat{e}^\mu_\alpha(x),$$

$$B^e_{\ mn}(x, y) = (U^{-1})^m_n \hat{B}^e_{\ mn}(x),$$

$$e^a_n(x, y) = U_m^a \hat{e}^a_n(x).$$

In general, the reduction ansätze for fields is such that all seven-dimensional covariant tensor indices are contracted with U, which contains all the y-dependence, while seven-dimensional contravariant tensor indices are contracted with U^{-1}, as should be clear from the ansätze for $B^e_{\ mn}$ and e^a_n given above.

The reduction ansatz for the 3-form potential is similarly defined, except that some components have background contributions as well.

$$A^\mu_{\ \rho\nu}(x, y) = \hat{A}^\mu_{\ \rho\nu}(x) + \hat{\zeta}^\mu_{\ \rho\nu}(x),$$

$$A^\mu_{\ \mu\nu}(x, y) = U_m^\nu \hat{A}^\mu_{\ \mu\nu}(x),$$

$$A^\mu_{\ \mu\mu}(x, y) = U_m^\nu U_n^q \hat{A}^\mu_{\ \mu\nu}(x),$$

$$A^\mu_{\ \mu\nu\mu}(x, y) = A^\nu_{\ \mu\nu\mu}(x, y) + a_{\ \mu\nu\mu}(y),$$

where

$$A^\mu_{\ \mu\nu\mu}(x, y) = U_m^q U_n^r U_p^s \hat{A}^\mu_{\ \mu\nu\nu}(x)$$

and $\hat{\zeta}^\mu_{\ \rho\nu}$ and $a_{\ \mu\nu\mu}$ are defined such that

$$4! \partial_{[\mu} \hat{\zeta}^\nu_{\ \rho\sigma]} = i \int \hat{\Omega} \Delta^{-3} \hat{\epsilon}_{\mu\nu\rho\sigma},$$

$$4! \partial_{[\mu} a_{\nu\rho\sigma]} = g_{\mu\nu\rho\sigma} U_m^r U_n^s U_p^t U_q^u,$$

\(^3\)The importance of unimodularity was discussed in the context of Bianchi cosmology by Sneddon [40] slightly before Scherk and Schwarz, and shown to be required for consistency of the reduction to a homogeneous cosmology.
for some constant f_{RR} and totally antisymmetric constant g_{mnpq}. The above equations give the background values of the field strength $F_{\mu\nu\rho\sigma}$ and F_{mnpq}, respectively. We will see later that the special y-dependence with constant g_{mnpq} in (18) is required for the consistency of both the equations of motion and the generalised vielbein postulates.

The exterior derivative of equation (18), which corresponds to the closure of the background field strength, implies the following constraint [34]

$$\epsilon_{m_1\ldots m_7\mu\nu\rho\sigma} = U\hat\Delta^{-1}\epsilon_{\mu\nu\rho\sigma}\eta_{m_1\ldots m_7}$$

We will find later that this constraint plays a crucial role in defining a consistent gauge algebra. In fact, this constraint was first found by considering the consistency of the gauge algebra, in particular the Jacobi identity [25].

In order to determine the form of the dual six-form under this reduction, we consider its defining equation

$$\frac{i}{4!}F_{M_1\ldots M_6}F^{M_8\ldots M_{11}} = 7!\partial_{[M_1}A_{M_2\ldots M_7]} + \frac{7!\sqrt{2}}{2}A_{[M_1\ldots M_3}\partial_{M_4}A_{M_5\ldots M_7]},$$

where it is important to note that indices on F_{MNPQ} have been raised using the eleven-dimensional metric, and where we have ignored fermion bilinear contributions. Consider the $m_1\ldots m_7$ components of the above equation. Using the fact that

$$\epsilon_{m_1\ldots m_7\mu\nu\rho\sigma} = U\hat\Delta^{-1}\epsilon_{\mu\nu\rho\sigma}\eta_{m_1\ldots m_7}$$

the left hand side of equation (20) simplifies to

$$\frac{i}{4!}\epsilon_{m_1\ldots m_7\mu\nu\rho\sigma}F^{\mu\nu\rho\sigma} = -Uf_{RR}\eta_{m_1\ldots m_7} + U(x\text{-dependent terms}),$$

where $\eta_{m_1\ldots m_7}$ is defined with respect to a flat seven-dimensional metric and the x-dependent terms in the remainder of the expression have contributions from $\hat A_{\mu\nu\rho\sigma}$, $\hat A_{\mu\mu\nu\mu}$, $\hat A_{\mu\nu\nu\mu}$, $\hat A_{\mu\nu\nu\nu}$ and g_{mnpq} as well as $f_{p\mu\nu\rho}$. This is due to the fact that the inverse metric is not diagonal. We stress once more that the indices on the 4-form F in equation (22) have been raised with the eleven-dimensional metric.

The right hand side of equation (20) reduces to

$$7!\partial_{[m_1}(A_{m_2\ldots m_7]} + \frac{\sqrt{2}}{2}A'_{m_2m_3m_4}a_{m_5m_6m_7})$$

$$+ \frac{7!\sqrt{2}}{2}(A'_{[m_1m_2m_3}\partial_{m_4}(A'_{m_4m_5m_6m_7]} + 2a_{m_5m_6m_7}) + a_{[m_1m_2m_3}\partial_{m_4}a_{m_5m_6m_7]}].$$

Now, defining an ansatz for $A_{m_1\ldots m_6}$ of the form

$$A_{m_1\ldots m_6} = A'_{m_1\ldots m_6}(x,y) + \frac{\sqrt{2}}{2}a_{m_1m_2m_3}A'_{m_4m_5m_6} + a_{m_1\ldots m_6}(y),$$

where

$$A'_{m_1\ldots m_6}(x,y) = U_{m_1}^{n_1} \ldots U_{m_6}^{n_6}\hat A_{n_1\ldots n_6}(x),$$

and $a_{m_1\ldots m_6}$ is such that

$$7!\partial_{[m_1}a_{m_2\ldots m_7]} = -Uf_{RR}\eta_{m_1\ldots m_7} - \frac{7!\sqrt{2}}{2}a_{m_1m_2m_3}\partial_{m_4}a_{m_5m_6m_7],$$

equation (20) reduces to a purely x-dependent, rather complicated, relation between $\hat A_{m_1\ldots m_6}$ and components of the three-form potential $\hat A$. Note that duality relation (26) is the duality relation satisfied by the background solution.
2.1 Background solution

In the context of formulating a well-defined reduction, an important consideration is the background field equations and the constraints these imply on the background fields. The background of the Scherk-Schwarz reduction is given by

\[E_M^A = \left(\varepsilon^\alpha_\mu(x) \ 0 \right), \quad A_{mnp} = a_{mnp}, \quad F_{\mu\nu\rho\sigma} = i\varepsilon_{\mu\nu\rho\sigma}. \] (27)

Thus, the internal metric is

\[g_{mn} = U_m^p U_n^q \delta_{pq}, \quad g_{mn} = (U^{-1})^m_p (U^{-1})^n_q \delta_{pq}. \] (28)

The field equations of eleven-dimensional supergravity are

\[R_{MN} = \frac{1}{72} g_{MN} F_{PQRS}^2 - \frac{1}{6} F_{MPQR} F_N^{PQR}, \] (29)

\[E^{-1} \partial_M (EF^{MNPQ}) = \sqrt{2} \eta^{NPQR_{1...R_4}S_{1...S_4}} F_{R_1...R_4} F_{S_1...S_4}. \] (30)

For the background solution, the component of these equations along the internal directions are

\[\frac{1}{6} g_{mpqr} g_{n}^{pqrs} = \frac{1}{4} (\delta_{mp} \delta_{nq} \delta^{rs} \delta^{tu} f^p_{\nu\gamma} f^q_{\nu\beta} - 2 \delta_{pq} \delta^{rs} f^p_{\nu\gamma} f^q_{\nu\beta} f^{ns} - 2 f^p_{\nu\gamma} f^q_{\nu\beta} f^{np}) \]

\[- \frac{1}{3} \delta_{mn} \varepsilon_{R}^{R} + \frac{1}{72} \delta_{mn} g_{pqrs} g_{pqrs}, \] (31)

\[f^{[m_1}_{pq} g^{m_2 m_3]}_{m_4...m_7} = - \frac{\sqrt{2}}{72} \varepsilon_{R}^{R} \eta^{m_1...m_7}_{m_4...m_7} g_{mnpq}, \] (32)

where the indices on \(g_{mnpq} \) are raised with the Kronecker \(\delta \) symbol. We note that by putting the theory on-shell, this operation breaks the \(GL(7) \) symmetry to \(SO(7) \) or a subgroup thereof, in the same way as the rigid SU(8) symmetry of maximal supergravity is broken to (a subgroup of) SO(8) in any given vacuum\(^4\). The special dependence on \(U(y) \) in \((18) \) is now seen to be necessary for the ‘Maxwell equation’ \((30) \) to become \(y \)-independent, and thus to reduce to an equation relating the constant tensors \(f^m_{np} \) and \(g_{mnpq} \).\(^5\) We note that, while the background constraints for the case with no flux appear already in Ref. [22], the constraints implied on the background of a Scherk-Schwarz reduction with flux have never been fully spelled out in the literature to the best of our knowledge. In particular, equation \((32) \) is a non-trivial restriction on the class of viable Scherk-Schwarz reductions. These constraints, which are imposed by the background field equations are independent of the constraints imposed by the consistency of the gauge algebra \[(25) \] (see also \[35 \]).

The components of the Einstein equation along the four-dimensional spacetime directions fixes the radius of the four-dimensional Anti-de Sitter space

\[\hat{R}^\nu_\mu = (\frac{2}{\hat{R}} \hat{R}^2 + \frac{1}{72} g_{mnpq} g_{mnpq}) \delta^\nu_\mu. \] (33)

All other equations of motion are trivially satisfied.

\(^4\)We thank Henning Samtleben for a discussion on this point.
3 The embedding tensor formalism

The embedding tensor formalism\(^5\), which was initially developed in the context of three-dimensional maximal gauged supergravities \(^{19, 20}\) and later developed in the context of four-dimensional maximal gauged supergravities \(^{16, 17, 18}\) is the most efficient framework in which to understand gaugings. The embedding tensor formalism uses the fact that the ungauged supergravity, of which the gauged theory is a deformation, is controlled by a global symmetry group that is larger than what one would naively expect—an observation first made in the context of the four dimensional maximal theory \(^3\).

In four dimensions, the scalars, which parametrise the $E_{7(7)}$ vielbein V satisfy the following equation

$$\partial \mu V_{\mu j} + q^k_{\mu j} V_{\mu j} - p_{\mu jkl} V_{\mu j} - g A_\mu \mathcal{P} X_{\mathcal{P},\mathcal{M}}^N V_{\mathcal{N},ij} = 0. \tag{34}$$

Objects that are of particular interest in the above equation are $(X^\alpha, \Theta^\alpha)$. These generate the gauge algebra and are related to the embedding tensor via the $E_{7(7)}$ generators t_α, viz.

$$X_{\mathcal{M}} = \Theta^\alpha_{\mathcal{M}} t_\alpha. \tag{35}$$

The embedding tensor satisfies two algebraic constraints. The first, linear constraint, comes from the four-dimensional maximal gauged supergravity, of which the ungauged supergravity, of which the gauged theory is a deformation, is controlled by a global symmetry group that is larger than what one would naively expect—an observation first made in the context of the four dimensional maximal theory \(^3\).

In four dimensions, the scalars, which parametrise the $E_{7(7)}$ vielbein V satisfy the following equation

$$\partial \mu V_{\mu j} + q^k_{\mu j} V_{\mu j} - p_{\mu jkl} V_{\mu j} - g A_\mu \mathcal{P} X_{\mathcal{P},\mathcal{M}}^N V_{\mathcal{N},ij} = 0. \tag{34}$$

Objects that are of particular interest in the above equation are $(X^\alpha, \Theta^\alpha)$. These generate the gauge algebra and are related to the embedding tensor via the $E_{7(7)}$ generators t_α, viz.

$$X_{\mathcal{M}} = \Theta^\alpha_{\mathcal{M}} t_\alpha. \tag{35}$$

The general solution of the linear constraint is given by

$$X_{\mathcal{MN}} = \Theta^\alpha_{\mathcal{M}} \Theta^\beta_{\mathcal{N}} t_\alpha t_\beta. \tag{36}$$

The embedding tensor satisfies two algebraic constraints. The first, linear constraint, comes from the four-dimensional maximal theories, this translates to the statement that the embedding tensor lives in the representation of $E_{7(7)}$

$$\Theta^\alpha_{\mathcal{M}} + 2(t_\beta)_{\mathcal{M}}^N (t_\alpha)^P_\mathcal{N} \Theta^\beta_P = 0, \tag{36}$$

where the $E_{7(7)}$ index α is raised with the inverse Killing-Cartan form κ^{-1}, which is given in appendix \(^A\). More specifically, the above relation follows by requiring that the projectors P_{56} and P_{6480} annihilate $\Theta^\alpha_{\mathcal{M}}$ \(^{19}\). In terms of the gauge group generators, the linear constraint is

$$X_{\mathcal{MN}} + 2X_{\mathcal{M}}^\mathcal{Q} (\kappa^{-1})^{\alpha\beta} (t_\alpha)_\mathcal{Q} (t_\beta)_{\mathcal{N}} = 0. \tag{37}$$

The general solution of the linear constraint is given by

$$X_{\mathcal{MN}}^{pq} = \delta_{\mathcal{R}}^{\mathcal{P}} \delta_{\mathcal{S}}^{\mathcal{Q}} \delta_{\mathcal{M}}^{\mathcal{N}}, \quad X_{\mathcal{MN}}^{pq} = -\delta_{\mathcal{P}}^{\mathcal{R}} \delta_{\mathcal{Q}}^{\mathcal{S}} \delta_{\mathcal{M}}^{\mathcal{N}},$$

\[X_{\mathcal{MN}}^{pq} = -2\delta_{\mathcal{P}}^{\mathcal{R}} \delta_{\mathcal{Q}}^{\mathcal{S}} \delta_{\mathcal{M}}^{\mathcal{N}}, \quad X_{\mathcal{MN}}^{pq} = -\delta_{\mathcal{R}}^{\mathcal{P}} \delta_{\mathcal{S}}^{\mathcal{Q}} \delta_{\mathcal{M}}^{\mathcal{N}},\]

\[X_{\mathcal{MN}}^{pq} = -2\delta_{\mathcal{R}}^{\mathcal{P}} \delta_{\mathcal{Q}}^{\mathcal{S}} \delta_{\mathcal{M}}^{\mathcal{N}}, \quad X_{\mathcal{MN}}^{pq} = -\delta_{\mathcal{P}}^{\mathcal{R}} \delta_{\mathcal{Q}}^{\mathcal{S}} \delta_{\mathcal{M}}^{\mathcal{N}},\]

where

$$T_{\mathcal{NPQ}} = -\frac{3}{4} A_{2N}^{\mathcal{P}} A_{2Q}^{\mathcal{P}} - \frac{3}{2} \delta_{\mathcal{P}}^{\mathcal{R}} A_{2Q}^{\mathcal{P}1}, \quad T_{\mathcal{MN}}^{\mathcal{NPQ}} = -\frac{3}{4} A_{2N}^{\mathcal{P}} A_{2Q}^{\mathcal{P}} - \frac{3}{2} \delta_{\mathcal{P}}^{\mathcal{R}} A_{2Q}^{\mathcal{P}1}. \tag{39}$$

Note that the solution above applies more generally to other compactifications. Structures $A_{1\mathcal{MN}}$, $A_{1\mathcal{NM}}$, $A_{2N}^{\mathcal{NPQ}}$, and $A_{2M}^{\mathcal{NPQ}}$ satisfy the following properties

$$A_{1\mathcal{MN}} = 0, \quad A_{1\mathcal{NM}} = 0, \quad A_{2}^{\mathcal{NPQ}} = A_{2}^{\mathcal{NPQ}}, \quad A_{2}^{\mathcal{NPQ}} = 0, \quad A_{2}^{\mathcal{NPQ}} = A_{2}^{\mathcal{NPQ}}, \quad A_{2}^{\mathcal{NPQ}} = 0. \tag{40}$$

\(^5\)See Ref. \(^{35}\) for a lucid account of the embedding tensor formalism.

\(^6\)Indices $\alpha, \beta, \ldots = 1, \ldots, 133$ label the $E_{7(7)}$ generators and are not to be confused with the four-dimensional tangent space indices, which are also labelled by lower Greek letters from the beginning of the alphabet.
Equivalently,

$$
(\Theta_{MN})_{P_1}^{P_2} = \frac{1}{2} \delta^{P_2}_{P_1} T_{P_1 P_2}^{MN},
(\Theta^{MN})_{P_1}^{P_2} = \frac{1}{2} T_{P_1 P_2}^{MN},
(\Theta_{MN})_{P_1}^{P_2} = -\frac{1}{2} T_{P_1 P_2}^{MN},
(\Theta^{MN})_{P_1}^{P_2} = -\frac{1}{2} T_{P_1 P_2}^{MN},
\]

The corresponding objects $(\Theta_{MN})_{P_1...P_4}$ and $(\Theta^{MN})_{P_1...P_4}$ are obtained by contracting $(\Theta_{MN})_{P_1...P_4}$ and $(\Theta^{MN})_{P_1...P_4}$ with the permutation symbol in accordance with the equations in appendix A.

It is important to note at this point that T_{MNPQ} and T_{MNPQ} are real and completely independent. This is because they are written in terms of SL(8) indices and there is no relation between an upper SL(8) index and a lower one. This is in contrast to objects with SU(8) indices where upper and lower indices are related to one another via conjugation. The T-tensor, which has SU(8) indices can be derived by dressing the T-tensors above with the $E_7(7)$ vielbein V_{Mij}

$$
T_{ij}^{j_1 j_2 k_1 k_2} = -\Omega^M Q^N R^P V_{i j_1 i_2} V_{R j_2 k_1 k_2} X_{MNP}^P,
$$

where

$$
T_{ij}^{j_1 j_2 k_1 k_2} = \delta^{[j_1}_{[i} T^{j_2]}_{j_2]_{k_1} k_2},
$$

and

$$
T^{ijkl} = \frac{3}{4} A_2^{i j k l} - \frac{3}{2} \delta^{[i}_{[k} A^{l] j].
$$

Since the T-tensor has SU(8) indices, T_{ijkl} is simply the complex conjugate of T_{ijkl}. Note that this is in contrast to the properties satisfied by the T-tensors which satisfy no such relation, as pointed out above.

Furthermore, the embedding tensor satisfies a quadratic constraint, which is necessary for the gauge algebra generated by X_M to close

$$
X_M R^Q X_N R^P - X_N R^Q X_M R^P + X_M R^Q X_R Q^P = 0.
$$

However, notice that the above constraint is stronger than the closure of the algebra since $X_{(MN)}^P$ does not trivially vanish. In fact, the quadratic condition comes from the requirement that the embedding tensor be invariant under the action of the gauge group

$$
\delta_M \Theta_X^\alpha = \Theta_M^\beta \delta_M \Theta_X^\alpha = 0.
$$

Equivalently, given that the embedding tensor satisfies the linear constraint and lives in the 912 representation of $E_7(7)$, the quadratic constraint is

$$
\Omega^{MN} \Theta_M^\alpha \Theta_N^\beta = 0.
$$

In this form, it is clear to see that viewed as a matrix, the row rank of the embedding tensor is at most half-maximal. Therefore, we are guaranteed that only at most 28 out of the possible 56 vectors will be gauged.

4 Generalised vielbein postulates and the embedding tensor

The generalised vielbein postulates provide an understanding of various aspects of the reduction. In particular, for the case of the S^7 compactification, they are a necessary ingredient in the proof of
the consistency of the reduction. Specifically, the \(d = 4 \) generalised vielbein postulates reduce to the \(\mathrm{E}_7(7) \) Cartan equation of gauged maximal supergravity in that case \[11, 15\].

The generalised vielbeine combine the would-be scalar degrees of freedom originating from the siebenbein, the 3-form and the 6-form into a single object, and are explicitly given by \[1\]:

\[
e^m_{AB} = i \Delta^{-1/2} \Gamma^m_{AB}, \tag{48}
\]

\[
e_{mn,AB} = -\frac{\sqrt{2}}{12} i \Delta^{-1/2} \left(\Gamma_{mn,AB} + 6 \sqrt{2} A_{mn} \Gamma^p_{AB} \right), \tag{49}
\]

\[
e_{m_1...m_5,AB} = \frac{1}{6! \sqrt{2}} i \Delta^{-1/2} \left[\Gamma_{m_1...m_5,AB} + 60 \sqrt{2} A_{[m_1m_2m_3} \Gamma_{m_4m_5]AB} - 6! \sqrt{2} \left(A_{pm_1...m_5} - \frac{\sqrt{2}}{4} A_{[p}[m_1m_2A_{m_3m_4m_5]} \right) \Gamma^p_{AB} \right], \tag{50}
\]

\[
e_{m_1...m_7,n,AB} = -\frac{2}{9!} i \Delta^{-1/2} \left[\left(\Gamma_{m_1...m_7} \Gamma_n \right)_{AB} + 126 \sqrt{2} A_{[m_1m_2} \Gamma_{m_3...m_7]}_{AB} + 3 \sqrt{2} \times 7! \left(A_{m_1...m_5} + \frac{\sqrt{2}}{4} A_{m_1m_2A_{m_3m_4m_5}} \right) \Gamma_{m_6m_7}]_{AB} + \frac{9!}{2} \left(A_{[m_1m_2} \Gamma_{m_3m_4m_5]} A_{m_6m_7]}_{p} \Gamma^p_{AB} \right) \right]. \tag{51}
\]

We emphasize again that these objects depend on all eleven coordinates. By virtue of their definition, they satisfy certain differential constraints, the so-called generalised vielbein postulates. Along the external \(d = 4 \) directions these are of the form

\[
\mathcal{D}_\mu e^m_{AB} + \frac{1}{2} \partial_\mu B^p_{\mu} e^n_{AB} + \partial_\mu B^m_{\mu} e^n_{AB} + Q^C_{\mu} [A e^m_{BC}] + \mathcal{P}_{\mu ABCDE} e^m_{CD} = 0, \tag{52}
\]

\[
\mathcal{D}_\mu e_{mn,AB} + \frac{1}{2} \partial_\mu B^p_{\mu} e_{mn,AB} + 2 \partial_{[m} B^p_{\mu]} e^n_{n,pAB} + 3 \partial_{[m} B^p_{\mu]} e^n_{n,pAB} + Q^C_{\mu} [A e_{mnBC}] + \mathcal{P}_{\mu ABCDE} e_{mn}^{CD} = 0, \tag{53}
\]

\[
\mathcal{D}_\mu e_{m_1...m_5,AB} + \frac{1}{2} \partial_\mu B^p_{\mu} e_{m_1...m_5,AB} - 5 \partial_{[m_1} B^p_{\mu]} e_{m_2...m_5]pAB} + \frac{3}{\sqrt{2}} \partial_{[m_1} B^p_{\mu]} e_{m_2m_3m_4m_5]}AB - 6 \partial_{[m_1} B^p_{\mu]} e_{m_2m_3m_4m_5]}AB + Q^C_{\mu} [A e_{m_1...m_5BC}] + \mathcal{P}_{\mu ABCDE} e_{m_1...m_5}^{CD} = 0, \tag{54}
\]

\[
\mathcal{D}_\mu e_{m_1...m_7,n,AB} - \frac{1}{2} \partial_\mu B^p_{\mu} e_{m_1...m_7,n,AB} - \partial_\mu B^p_{\mu} e_{m_1...m_7,p,AB} + 5 \partial_{[m_1} B^p_{\mu]} e_{m_2m_3m_4m_7]}nAB - 2 \partial_{[m_1} B^p_{\mu]} e_{m_2m_3m_4m_7]}nAB + Q^C_{\mu} [A e_{m_1...m_7,nBC}] + \mathcal{P}_{\mu ABCDE} e_{m_1...m_7,n}^{CD} = 0, \tag{55}
\]

where

\[
\mathcal{D}_\mu = \partial_\mu - B^m_{\mu} \partial_m. \tag{56}
\]
and the connection coefficients are of the form
\[Q_{\mu B}^A = -\frac{1}{2} \left[e^m_a \partial_m B^\mu_n e_{nb} - (e^p_a D_\mu e_{pb}) \right] \Gamma_{AB}^{CB} - \frac{\sqrt{2}}{8} e_\mu^\alpha (F_{\alpha a b c} \Gamma_{AB}^{CB} - \eta_{\alpha \beta \gamma \delta} F_{\beta \gamma \delta a} \Gamma_{aAB}) , \]

\[P_{\mu ABCD} = \frac{3}{4} \left[e^m_a \partial_m B^\mu_n e_{nb} - (e^p_a D_\mu e_{pb}) \right] \Gamma_{AB}^{CD} - \frac{\sqrt{2}}{8} e_\mu^\alpha F_{\alpha a b c} \Gamma_{[AB]}^{CD} \Gamma_{b(CD]} \Gamma_{aAB}^{CB} - \frac{\sqrt{2}}{48} e_\mu^\alpha \eta_{\alpha \beta \gamma \delta} F_{\beta \gamma \delta a} \Gamma_{aAB}^{CB} \Gamma_{b(CD]} \Gamma_{aAB}^{CB} . \]

Below we will consider and analyse these equations in the context of Scherk-Schwarz reduction.

Note the general triangular feature of the equations, whereby certain generalised vielbeine and vectors appear more frequently than others. More specifically, as one moves through equation (52) to (55), as well as the generalised vielbeine and vectors that appeared before, a new generalised vielbein and vector contribute in turn. This pattern is broken in equation (55), where \(B_{\mu m1...m7,n} \), which is associated with dual gravity degrees of freedom and the supersymmetry transformation of which gives generalised vielbein \(e_{m1...m7,nAB} \) does not contribute. This is a completely general feature of the eleven-dimensional theory and, therefore, applies to any compactification. An important consequence of this seems to be that any four-dimensional gauged theory obtained as a consistent reduction of \(D = 11 \) supergravity cannot have gauge vectors associated with the gauging of these particular seven vectors. This implies an additional constraint on the embedding tensor of any theory that is obtained from a reduction of \(D = 11 \) supergravity. However, we know that one can take a full set of 28 magnetic vectors in four dimensions and gauge these to obtain an SO(8) gauged maximal supergravity \([11]\). While it is true \([41]\) (see also \([5]\)) that this theory is equivalent to the original SO(8) gauged maximal supergravity \([21]\), the very fact that a full set of magnetic vectors can be gauged in four dimensions and that this has no corresponding higher dimensional original is significant in understanding the extent to which the deformed SO(8) gauged maximal supergravities of \([41]\) can be realised as a reduction from \(D = 11 \) supergravity. 7

Let us first consider the connection coefficients \(Q_{\mu} \) and \(P_{\mu} \). The \(y \)-dependence in both connection coefficients come from the same three terms, \(\text{viz.} \)
\[[e^m_a \partial_m B^\mu_n e_{nb} - (e^p_a D_\mu e_{pb})] , \quad e_\mu^\alpha F_{\alpha a b c} , \quad e_\mu^\alpha \eta_{\alpha \beta \gamma \delta} F_{\beta \gamma \delta a} . \]

Using the ansatz for \(B^m_\mu \) and \(e^m_a \), equations (10) and (11) and property (3) satisfied by \(U \), it is simple to show that
\[e^m_a \partial_m B^\mu_n e_{nb} - (e^p_a D_\mu e_{pb}) = -\hat{e}^p_a \left(\partial_\mu \hat{e}_{pb} - f^m_{pq} \hat{B}_\mu^p \hat{e}_{nb} \right) . \]

Hence, the \(y \)-dependence drops out. Now, consider
\[e_\mu^\alpha F_{\alpha a b c} = (F_{\mu p q} - B^r_\mu F_{r p q}) e^n_a e^p_b e^q_c . \]

Notice that curved 7d indices enter only as dummy indices. Furthermore, from equation (18) we note that the \(y \)-dependence of the field strength in the second term is cancelled by the \(y \)-dependence

7An interesting question is whether a deformation of the \(D = 11 \) 56-bein \(\mathcal{V} \) of the form
\[\mathcal{V} \rightarrow \begin{pmatrix} e^{i\omega} & 0 \\ 0 & e^{-i\omega} \end{pmatrix} \begin{pmatrix} \mathcal{V}^\alpha \\ \mathcal{V}_m \end{pmatrix} , \]
in analogy with the rotation introduced in Ref. \([5]\), allows the possibility of further gauging of magnetic vectors. This would clearly point to the existence of a genuine deformation of \(D = 11 \) supergravity. Such a consistent deformation could then provide a higher dimensional origin of the deformed maximal SO(8) gauged supergravities of Ref. \([11]\).
of \(B_\mu^r\) and the inverse siebenbein. Therefore, the only potential obstacle to the dropping out of the \(y\)-dependence in the expression above is when a 7d derivative acts on the potential. However, the 7d derivative always acts as an exterior derivative. Hence, using equation (3) and (18), we will always obtain a \(y\)-independent piece along with the appropriate \(U\) contractions. However, these \(U\) factors will be cancelled for the same reason as stated above: that there is no free curved 7d index. The same argument can be used to show the \(y\)-independence of the third term. Therefore, we conclude that the connection coefficients are \(y\)-independent.

The eleven-dimensional fields enter the generalised vielbein postulates via the four generalised vielbeine and three of the vectors. The reduction ansätze for the generalised vielbeine can be found using the ansätze for the fields that define them, equations (18)–(51). They are as follows:

\[
e_{AB}^m = U^{-1/2}(U^{-1})_n^m \tilde{e}_{AB}^n(x),
\]

\[
e_{mnAB} = U^{-1/2}U_m^pU_n^q\tilde{e}_{pqAB}(x) - a_{mn}e_{AB}^p,
\]

\[
e_{m_1...m_5AB} = U^{-1/2}U_{m_1}^{m_1}...U_{m_5}^{m_5}\tilde{e}_{n_1...n_5AB}(x) - \frac{\sqrt{2}}{2}a_{[m_1m_2m_3e_{m_4m_5}]AB}
- \left(a_{pm_{1...m_5}} + \frac{\sqrt{2}}{4}a_{p[m_1m_2a_{m_3m_4m_5}]}\right)e_{AB}^p,
\]

\[
e_{m_1...m_7,nAB} = U^{1/2}U_n^p\tilde{e}_{m_1...m_7,nAB}(x) - a_{[m_1m_2e_{m_3...m_7}]AB}
+ \left(a_{n[m_1...m_5]} - \frac{\sqrt{2}}{4}a_{n[m_1m_2a_{m_3m_4m_5}]}\right)e_{m_6m_7|AB}
+ \left(a_{n[m_1...m_5]} - \frac{\sqrt{2}}{12}a_{n[m_1m_2a_{m_3m_4m_5}]}\right)a_{m_6m_7}e_{AB}^p,
\]

where \(\tilde{e}_{AB}^m, \tilde{e}_{pqAB}, \tilde{e}_{n_1...n_5AB}\) and \(\tilde{e}_{m_1...m_7,nAB}\) are the generalised vielbeine that appear in the torus reduction and are therefore directly related to the four-dimensional scalars.

The reduction ansätze for the vectors are found by using the fact that the supersymmetry transformation of the vectors [1],

\[
\delta B_\mu^m = \frac{\sqrt{2}}{8}e_{AB}^m \left[2\sqrt{2}\epsilon^A_{\chi^B} + \chi_A^B \gamma^A_{\mu} \chi^C\right] + \text{h.c.,}
\]

\[
\delta B_{\mu n} = \frac{\sqrt{2}}{8}e_{mnAB} \left[2\sqrt{2}\epsilon^A_{\chi^B} + \chi_A^B \gamma^A_{\mu} \chi^C\right] + \text{h.c.,}
\]

\[
\delta B_{\mu m_1...m_5} = \frac{\sqrt{2}}{8}e_{m_1...m_5AB} \left[2\sqrt{2}\epsilon^A_{\chi^B} + \chi_A^B \gamma^A_{\mu} \chi^C\right] + \text{h.c.,}
\]

\[
\delta B_{\mu m_1...m_7,n} = \frac{\sqrt{2}}{8}e_{m_1...m_7,nAB} \left[2\sqrt{2}\epsilon^A_{\chi^B} + \chi_A^B \gamma^A_{\mu} \chi^C\right] + \text{h.c.,}
\]

should reproduce the respective generalised vielbeine. The reduction ansatz for \(B_\mu^m\) is give in

\[\text{[6]}\]
where in the first line we have used equation (5), while the reduction ansatz for $B_{\mu m}$ and $P_{\mu m_1...m_5}$ are listed below:

\[
B_{\mu m} = U_m^p U_n^q \hat{B}_{pq}(x) - (U^{-1})_p^q \hat{B}_\mu^p a_{qm},
\]

\[
B_{\mu m_1...m_5} = U_m^{n_1} \ldots U_m^{n_5} \hat{B}_{\mu m_1...m_5}(x) - \frac{\sqrt{2}}{2} a_{m_1m_2m_3} \hat{B}_{|\mu|m_4m_5}(x)
\]

\[\ldots \left(a_{pm_1...m_5} - \frac{\sqrt{2}}{4} a_p m_2 a_{m_3m_4m_5}\right) (U^{-1})_q^p \hat{B}_\mu^q. \]

Substituting the above ansätze into the generalised vielbein postulates \([52]-[55]\), a straightforward yet tedious calculation shows that the y-dependence in all the equations factorises out. Importantly, we find that the two terms that vanished due to properties of Killing spinors on S^7 in the case of the S^7 compactification \([15]\), i.e.

\[\partial_m \hat{B}_\mu^m \quad \text{and} \quad \partial_{[m}B_{|\mu|n]},\]

do not vanish in this case. In particular,

\[
\partial_m \hat{B}_\mu^m = \partial_m (U^{-1})_l^m \hat{B}_\mu^n = (U^{-1})_n^m \partial_m \log U \hat{B}_\mu^n,
\]

\[
\partial_{[m}B_{|\mu|n]} = U_m^{q} U_n^{r} U_p^{s} \hat{B}_{\mu st} - \partial_m (a_{np} q (U^{-1})_r^q) \hat{B}_\mu^r,
\]

where in the first line we have used equation (5).

The generalised vielbein postulates reduce to the following equations

\[
\partial_\mu \hat{e}_{AB}^m - f_{pq}^m \hat{B}_\mu^p \hat{e}_{AB}^q + Q_\mu^C [A \hat{e}_{AB}^m] + P_\mu ABCD \hat{e}^{mCD} = 0,
\]

\[
\partial_\mu \hat{e}_{mnAB} - 2 f_{pq}^m \hat{B}_\mu^p \hat{e}_{AB}^q + 3 f_{mn}^q \hat{B}_\mu^p \hat{e}_{AB}^q + \frac{1}{6} g_{mnpq} \hat{B}_\mu^p \hat{e}_{AB}^q
\]

\[+ Q_\mu^C [A \hat{e}_{mnAB}^m] + P_\mu ABCD \hat{e}^{mCD} = 0,
\]

\[
\partial_\mu \hat{e}_{m1...m5AB} + 5 f_{pq}^m \hat{B}_\mu^p \hat{e}_{AB}^q - \frac{3 \sqrt{2}}{2} f_{m1m2} \hat{B}_{\mu p} \hat{e}^p_{m3m4m5} AB
\]

\[+ 15 f_{m1m2} \hat{B}_{|\mu|p} \hat{e}^p_{m3m4m5} AB + \frac{\sqrt{2}}{12} \hat{B}_\mu^p g_{m1m2m3m4m5} \hat{e}^p_{AB} + \frac{\sqrt{2}}{8} \hat{B}_{|\mu|m2m3m4} g_{m5m6m7} \hat{e}^p_{AB}
\]

\[- \frac{1}{6!} \hat{B}_{|\mu|pq mn} \hat{B}_\mu^p \hat{e}^q_{AB} + Q_\mu^C [A \hat{e}_{m1...m5B}^m] + P_\mu ABCD \hat{e}^{mCD} = 0,
\]

\[
\partial_\mu \hat{e}_{m1...m7,nAB} + f_{pq}^m \hat{B}_\mu^p \hat{e}_{mnAB} - 5 f_{m1m2} \hat{B}_{|\mu|p} \hat{e}^p_{m3m4m5m6m7n} AB
\]

\[+ 5 f_{m1m2} \hat{B}_{|\mu|p} \hat{e}^p_{m3m4m5m6m7n} AB + \frac{5}{18} \hat{B}_\mu^p g_{m1m2m3m4m5m6m7} \hat{e}^p_{nAB} + \frac{\sqrt{2}}{24} \hat{B}_{|\mu|m2m3m4m5m6} g_{m7n} \hat{e}^p_{m7nAB}
\]

\[+ \frac{1}{3} \cdot 7! \hat{B}_{|\mu|pq mn} \hat{B}_\mu^p \hat{e}^q_{AB} + Q_\mu^C [A \hat{e}_{m1...m7,nB}^m] + P_\mu ABCD \hat{e}^{mCD} = 0.
\]

As emphasised before, the y-independent, hatted generalised vielbein and vectors in the generalised vielbein postulates above are directly related to the respective four-dimensional quantities. In particular, since the reduction of these eleven-dimensional quantities is taken to be that of a simple
toroidal nature, the conversion of ‘curved’ SU(8) indices A, B, C, \ldots to flat SU(8) indices i, j, k, \ldots is trivial.

With this in mind, define an $E_{7(7)}$ vielbein

$$v_M^{ij} = \left(v_M^{m8}, v_M^{mn} \right)$$

(78)

that is related to the hatted generalised vielbeine via the following relations:

$$v_m^{m8} = \frac{\sqrt{2}}{8} \hat{e}_m^{m}, \quad v_m^{mn} = -\frac{3}{2} i \hat{e}_{mn}$$

(79)

As expected v satisfies the $E_{7(7)}$ properties, as can be checked explicitly using equations (78)–(81) and (79),

$$v_{Mij} v_N^{ij} - v_{Mij} v_N^{ij} = i \Omega_{MN},$$

$$\Omega^{MN} v_{Mij} v_{Nkl} = i \delta_{kl}^{ij},$$

$$\Omega^{MN} v_{Mij} v_{Nkl} = 0$$

(80)

where the symplectic form Ω is such that

$$\Omega^{MN} = \delta^{MN}, \quad \Omega^{MN} = -\delta^{MN},$$

$$\Omega^{MN} = 0, \quad \Omega^{MN} = 0$$

(81)

Similarly, we combine the vectors into a 56 of $E_{7(7)}$ defined by

$$a_{\mu}^M = (a_{\mu}^m, a_{\mu}^{mn})$$

(82)

where

$$a_{\mu}^{m8} = \frac{1}{2} \hat{B}_\mu^m, \quad a_{\mu}^{mn} = -3\sqrt{2} \hat{B}_{\mu mn},$$

$$a_{\mu}^{mn} = -3\sqrt{2} \eta^{mnp1...p5} \hat{B}_{\mu p1...p5}, \quad a_{\mu}^{m8} = -18 \eta^{n1...n7} \hat{B}_{\mu n1...n7,m}.$$

(83)

In the notation introduced above, the supersymmetry transformations of the generalised vielbeine and vectors takes a very compact form

$$\delta v_{Mij} = \sqrt{2} \Sigma_{ijkl} v_{Mkl}$$

(84)

$$\delta a_{\mu}^M = i \Omega^{MN} v_{Nij} \left(2\sqrt{2} \epsilon^{\mu \nu} \gamma_\nu + \epsilon^{k \ell \mu} \chi^{ijk} \right) + \text{h.c.}$$

(85)

In order to relate our results for the Scherk-Schwarz reduction with the four-dimensional understanding of gaugings as embodied in the embedding tensor formalism, we need to rewrite the reduced generalised vielbein postulates (74)–(77) in terms of the notation introduced above, that is

⁹Strictly speaking, V is not an $E_{7(7)}$ group element because it is acted upon by SU(8) transformations on the right, whereas the indices on the left are to be regarded as SL(8) indices. The true $E_{7(7)}$ group element is obtained by a complex rotation of this matrix (see, for example, Ref. [42] for more details).
in terms of $E_{7(7)}$ objects \mathcal{V} and \mathcal{A}. A straightforward calculation shows that upon substitution of \mathcal{V} and \mathcal{A} components, as defined by equation (79) and (83), equations (74)–(77) become

\begin{equation}
\partial_\mu \mathcal{V}^m_{ij} + Q^k_\mu[i \mathcal{V}^m_{jkl}] - P_\mu ijkl \mathcal{V}^{mlk} + 2 A_\mu^p f^m_{pq} \mathcal{Y}^q_{ij} = 0, \tag{86}
\end{equation}

\begin{equation}
\partial_\mu \mathcal{V}^{mn}_{ij} + Q^k_\mu[i \mathcal{V}^{mn}_{jkl}] - P_\mu ijkl \mathcal{V}^{mnlk} + 4 A_\mu^p \delta^{[r}_{[m} f_{s]} p][n] \mathcal{V}^r_{ij} + 6 A_\mu^p q[n f]_{mn} \mathcal{V}^q_{ij} + 2 \sqrt{2} A_\mu^p g_{mnpq} \mathcal{Y}^q_{ij} = 0, \tag{87}
\end{equation}

\begin{equation}
\partial_\mu \mathcal{V}^{mn}_{ij} + Q^k_\mu[i \mathcal{V}^{mn}_{jkl}] - P_\mu ijkl \mathcal{V}^{mnlk} - 4 A_\mu^p \delta^{[r}_{[m} f_{s]} p][n] \mathcal{V}^r_{ij} + \frac{1}{2} A_\mu^p \eta^{mnturs}[p f] \mathcal{V}^q_{ij} = 0,
\end{equation}

\begin{equation}
- 2 A_\mu^p \delta^{[m} f_{n]} p q \mathcal{Y}^r_{ij} + \frac{\sqrt{2}}{6} A_\mu^p \eta^{mnqrst} g_{pqrs} \mathcal{V}_{tu ij} - \frac{\sqrt{2}}{12} A_{\mu pq} \delta^{[m} \eta^{n]} p q r s t u \mathcal{V}^{ij} + 4 \sqrt{2} f_{IR} A_\mu^p \delta^{mn} p q \mathcal{Y}^q_{ij} = 0, \tag{88}
\end{equation}

\begin{equation}
\partial_\mu \mathcal{V}^m_{ij} + Q^k_\mu[i \mathcal{V}^m_{jkl}] - P_\mu ijkl \mathcal{V}^m_{kl} - 2 A_\mu^p f^q_{pmn} \mathcal{V}^q_{ij} + 3 A_\mu^p q[p \delta^{[r}_{[m} f_{s]} r] \mathcal{V}^r_{ij} + A_\mu^p \delta^{[r}_{[m} f_{s]} p q \mathcal{V}^r_{ij} + \sqrt{2} A_\mu^p g_{pqm} \mathcal{Y}^q_{ij} - \frac{\sqrt{2}}{24} A_{\mu pq} \eta^{pqrs} \mathcal{V}^{ij} - \sqrt{2} f_{IR} A_\mu^p \delta^{m} p q m \mathcal{V}^{rs ij} = 0. \tag{89}
\end{equation}

Now, the components of X_M in terms of $GL(7)$ indices can be simply read off by comparing equation (34) and equations (86)–(89) listed above.

\begin{align*}
X_{m8}^p r^8_8 &= -X_{m8}^r s^8_8 = -\frac{1}{2} f^p_{mr}, \quad X_{m8}^p q^8 r^8 s^8 = -X_{m8}^p q^8 r^8 s^8 = -\sqrt{2} \delta_{m8}^p f_{IR}, \\
X_{m8}^p q^8 s^8 &= -X_{m8}^p q^8 r^8 = 2 \delta_{[m}^p f_{s]} [r], \\
X_{m8}^p r^8 s^8 &= X_{r8}^m p^8 s^8 = 3 \delta_{[m}^p f_{s]} [r], \quad X_{m8}^m p^8 q^8 r^8 = -\frac{1}{2} \eta^{pqrs} \mathcal{V}^{ij}, \\
X_{m8}^m r^8 s^8 &= -X_{m8}^m r^8 s^8 = -\frac{\sqrt{2}}{24} \delta^{[m} \eta^{p q r s t u} g_{tuvw}, \quad X_{m8}^m q^8 p^8 r^8 = -\frac{\sqrt{2}}{12} \eta^{pqrst} g_{tuvw}, \\
X_{m8}^m p^8 r^8 &= X_{m8}^m q^8 s^8 = -\sqrt{2} \delta_{m8}^p f_{IR}, \quad X_{m8}^m p^8 q^8 s^8 = -\sqrt{2} \delta_{m8}^p f_{IR}, \tag{90}
\end{align*}

The components of X_M presented above agree in their general form with the components given already in the literature. Written in terms of $SL(8)$ indices, they take the form of the general solution given in equations (34) with

\begin{equation}
A_{188} = -\frac{8 \sqrt{2}}{3} f_{IR}, \quad A_2^{m p q s} = -8 \frac{f^m}{3}, \quad A_2^{mnp} = -\frac{\sqrt{2}}{9} \eta^{mnpqrst} g_{tuvw}, \tag{91}
\end{equation}

and all other components vanishing. The appearance of these structures can be understood from a group-theoretic point of view by considering the branching of the 912 representation of $E_{7(7)}$ in

\footnote{For brevity, we have left out a factor of the gauge coupling g in these expressions.}

\footnote{There are some discrepancies in numerical factors (see equation (4.16) of Ref. [32]). In any case, here we verify that both the linear and quadratic constraints are satisfied for the components of X_M given in equation (86).}
which the embedding tensor lives with respect to $\text{GL}(7)$ \cite{28, 32, 35}.

\begin{equation}
912 \rightarrow 1_{+7} + 3\bar{5}_{+5} + (7 + 140)_{+3} + (2\bar{1} + 28 + 224)_{+1} + (21 + 28 + 224)_{-1} + (\bar{7} + 140)_{-3} + 3\bar{5}_{-5} + 1_{-7},
\end{equation}

where the subscript represents the charge under $\text{GL}(1) \subset \text{GL}(7)$. Hence \cite{28, 32}

\begin{align*}
&f_{RR} \leftrightarrow 1_{+7} \\
g_{mnpq} \leftrightarrow 3\bar{5}_{+5} \\
f_{pm} \leftrightarrow 140_{+3} \\
f_{pm} \leftrightarrow 7_{+3}.
\end{align*}

Of course, $f_{pm} = 0$, so 7_{+3} does not contribute.

Note that we have used

\begin{equation}
\eta_{m_1...m_7m_8} = \eta_{m_1...m_7}.
\end{equation}

The quadratic constraint \cite{15} is satisfied for the X_M derived from the generalised vielbein postulates. The constraints must be verified for each component and they are shown to be satisfied using Schouten identities, the unimodularity property \cite{11}, the Jacobi identity \cite{17} and the background Bianchi identity \cite{19}. We refer the reader to appendix \cite{13} for details.

The calculations involved in the verification of the quadratic constraint are highly non-trivial. However, the fact that X_M as derived from the \textit{eleven-dimensional} generalised vielbein postulates not only satisfy the linear constraint, but also the more non-trivial quadratic constraint shows that there is indeed a \textit{bona fide} gauge algebra for the gauging in the reduction. More generally, it points yet again to the deep relation between our \textit{eleven-dimensional} formalism, developed in Refs. \cite{1, 15}, and the embedding tensor formalism \cite{19, 20, 16, 17, 18} that describes gauged supergravity.

Note that the verification of the linear and quadratic constraints did not require the use of the background consistency equations (31) and (32). These are extra constraints that must be satisfied by the background solution if the reduction is to be consistent.

5 Scherk-Schwarz reduction with no flux

An object Θ_M^α, satisfying the embedding tensor constraints is guaranteed to have at most half-maximal row-rank \cite{35} as was explained in section \textit{3}. However, even though we have shown that Θ_M^α as derived from the generalised vielbein postulates satisfies the embedding tensor constraints, it is not immediately obvious that always less than 28 vectors will be gauged, as is required by consistency. In fact a naive counting suggests that 49 vectors contribute, since this is the number of vectors that remain in the generalised vielbein postulates after the reduction ansätze are substituted in. This is in contrast to the case of the S^7 reduction considered in \cite{15}. There it is clear from the onset that $B_{\mu mn}$ drop out of the generalised vielbein postulates because of properties of Killing vectors. This leaves A_μ^m and A_μ^{mn}, which are indeed the 28 vectors that are gauged in the S^7 reduction.

The fact that general results of the embedding tensor formalism guarantee that less than or equal to 28 vectors are gauged means that our naive counting of the contributing vectors is oversimplified and that constraints such as those placed on structure constants f_{pm} for consistency of the reduction will conspire to reduce the number of gauged vectors to less than 28.

In this section, we explicitly demonstrate this for the simplifying case corresponding to the original reduction considered in \cite{22}, where there is no flux, i.e.

\begin{equation}
f_{RR} = 0, \quad g_{mnpq} = 0.
\end{equation}
The background equation (33) implies that the four dimensional spacetime is Minkowski and that the group under consideration is “flat” [22], i.e.

$$2\delta_{pq}\delta^{rs} f^p_{\ mu} f^q_{\ ns} + 2 f^p_{\ mq} f^q_{\ np} - \delta_{mp}\delta_{nq}\delta^{rs}\delta_{\ mu}\ f^p_{\ rt} f^q_{\ su} = 0. \quad (95)$$

In this case the generalised vielbein postulates (74)–(77) take a simpler form

\[
\partial_\mu \hat{e}^{m}_{AB} - f^m_{\ pq} \hat{B}_\mu \hat{e}^q_{AB} + Q^C_{\ \mu} [A \hat{e}^m_{B}] + P_{\mu ABCD} \hat{e}^{m}_{CD} = 0, \quad (96)
\]

\[
\partial_\mu \hat{e}^{mn}_{AB} - 2 f^p_{q[m} \hat{e}^q_{\ n]p} \hat{B}_\mu q + 3 f^p_{\ [mn} \hat{B}_{\mu p]} q \hat{e}^p_{AB} + Q^C_{\ \mu} [A \hat{e}^{mn}_{B}] + P_{\mu ABCD} \hat{e}^{mn}_{CD} = 0, \quad (97)
\]

\[
\partial_\mu \hat{e}^{m1\ldots m5}_{AB} + 5 \hat{B}_\mu q f^p_{q[m1} \hat{e}^{m2\ldots m5]}_{pAB} - \frac{3\sqrt{2}}{2} f^p_{m1m2} \hat{B}_{\mu p[m3} \hat{e}^{m4m5]}_{mAB}
\]

\[
+ 15 f^p_{m1m2} \hat{B}_{\mu p[m3m4m5]} \hat{e}^q_{AB} + Q^C_{\ \mu} [A \hat{e}^{m1\ldots m5}_{B}] + P_{\mu ABCD} \hat{e}^{m1\ldots m5}_{CD} = 0, \quad (98)
\]

\[
\partial_\mu \hat{e}^{m1\ldots m7}_{AB} + f^p_{qmn} \hat{B}_\mu q \hat{e}^{m1\ldots m7}_{pAB} - 5 f^p_{m1m2} \hat{B}_{\mu p[m3} \hat{e}^{m4\ldots m7]}_{mAB}
\]

\[
+ 5 f^p_{m1m2} \hat{B}_{\mu p[m3m4m5]} \hat{e}^{m6m7]}_{nAB} + Q^C_{\ \mu} [A \hat{e}^{m1\ldots m7}_{B}] + P_{\mu ABCD} \hat{e}^{m1\ldots m7}_{CD} = 0. \quad (99)
\]

A simple example of a flat group is given by [22]

$$U_m^\ n = (\exp My^1)_{m}^\ n, \quad (100)$$

where the seven-dimensional coordinates $y^m = (y^1, y^{\tilde{m}})$ with $\tilde{m} = 2, \ldots, 7$ and M is a constant traceless matrix with zeros in the first row and column, i.e.

$$M_{\\tilde{m}^\tilde{n}} = \begin{pmatrix} 0 & 0 \\ 0 & M_{\\tilde{m}^\tilde{n}} \end{pmatrix}. \quad (101)$$

Using the fact that

$$\partial_\mu U_n^p = \delta^1_n U_n^q M_q^p, \quad (102)$$

we find that

$$f^p_{mn} = 2M_{[m}^\ p \delta^1_{n]} \quad (103)$$

In particular, we find that the only non-zero components of the structure constant are $f^\mu_{1\tilde{m}}$. Inspecting the generalised vielbein postulates (96)–(99) we find that $\hat{B}_{\mu mn}$ and $\hat{B}_{\mu m1\ldots m5}$ enter the equations in the form

$$f^p_{[mn} \hat{B}_{\mu p]} q \quad \text{and} \quad f^p_{[m1m2} \hat{B}_{\mu m3\ldots m6]p}.$$

Hence, only

$$\hat{B}_{\mu \tilde{m}\tilde{n}} \quad \text{and} \quad \hat{B}_{\mu \tilde{m}1\ldots \tilde{m}5}$$

contribute. Along with $\hat{B}_{\mu 1}$ and $\hat{B}_{\mu \tilde{m}}$ this gives a total of

$$28 = 1 + 6 + 6 + 15 = 13 \text{ electric} + 15 \text{ magnetic}$$

vectors appearing in the generalised vielbein postulates, which is kinematically consistent. Of course, one should here distinguish between the kinematics of the gauge couplings and the dynamics of the theory, which determines the vacuum and thus decides which vectors will remain as massless gauge bosons, and which will acquire a mass through spontaneous symmetry breaking. Indeed, for generic
Scherk-Schwarz compactifications, the majority of the candidate 28 vectors fields will become massive in the reduction and can therefore not be gauged. In fact, \hat{B}_{μ}^1 is the only vector that becomes gauged in the reduced theory. An analysis of all possible gaugings from a Scherk-Schwarz reduction with no background flux is given in Ref. [43]. It is shown that only electric vectors become gauged in this case.

In general, the Scherk-Schwarz reduction with background fluxes will have less than or equal to 28 gauge vectors contributing, kinematically, as is expected from general arguments. However, the distribution between electric and magnetic vectors can be varied—although as pointed out before, no more than 21 magnetic vectors can be gauged in this symplectic frame. In the context of Scherk-Schwarz flux compactifications this has already been observed in [28].

6 Concluding remarks

In this paper, we have investigated the Scherk-Schwarz reduction of $D = 11$ supergravity with background flux. In this case, the reduction ansatz immediately gives a relation between the 56-bein in eleven dimensions and the 56-bein that parametrises the scalars in four dimensions, equations (62)–(65). In this form, the reduction ansatz is applied to the generalised vielbein postulates yielding the embedding tensor of the respective gauged maximal theories in four dimensions. Furthermore, the reduction ansatz written in the form (62)–(65) is suggestive of the fact that Scherk-Schwarz flux reductions can be thought of as an E7(7) generalised Scherk-Schwarz reduction of the form

$$V_{\mathcal{M}AB}(x,y) = U_{\mathcal{M}N}(y) \dot{V}_{\mathcal{N}AB}(x),$$

(104)

$$\mathcal{B}_{\mu\mathcal{M}}(x,y) = U^{1/2} U_{\mathcal{M}\mathcal{N}}(y) A_{\mu\mathcal{N}}(x),$$

(105)

where

$$V_{\mathcal{M}AB} = \begin{pmatrix} V_{m8AB} \\ V_{mnAB} \\ V_{mnAB} \\ V_{m8AB} \end{pmatrix}, \quad \mathcal{B}_{\mu\mathcal{M}} = \begin{pmatrix} B_{\mu m8} \\ B_{\mu mn} \\ B_{\mu mn} \\ B_{\mu m8} \end{pmatrix},$$

(106)

and $\dot{V}_{\mathcal{M}AB}$ and $A_{\mu\mathcal{N}}$ (similarly defined) are the 56-bein and the set of 56 vectors appropriate for the torus reduction, respectively. Moreover, $U(y)$ is an E7(7) matrix of the form

$$\begin{pmatrix} U^{1/2} U_m^p & 3\sqrt{2} U^{1/2} a_{mrs}(U^{-1})_{p}^{r}(U^{-1})_{q}^{s} & U^{-1/2} S_{m}^{pq} U_{r}^{p} U_{s}^{q} & U^{-1/2} S_{m}^{pq} U_{r}^{p} U_{s}^{q} & U^{-1/2} S_{m}^{pq} U_{r}^{p} U_{s}^{q} \\ 0 & U^{1/2}(U^{-1})_{m}^{m} & U^{-1/2} S_{mn}^{pq} U_{r}^{p} U_{s}^{q} & -2 U^{-1/2} S_{mn}^{pq} U_{r}^{p} U_{s}^{q} & 6 \sqrt{2} U^{-1/2} a_{mrs}(U^{-1})_{p}^{r} \\ 0 & 0 & U^{-1/2} U_{m}^{m} U_{n}^{q} & 6 \sqrt{2} U^{-1/2} a_{mrs}(U^{-1})_{p}^{r} \\ 0 & 0 & 0 & U^{-1/2}(U^{-1})_{p}^{m} \end{pmatrix},$$

(107)

where

$$S_{m}^{pq} = 3 \sqrt{2} \eta_{mnr1...r5} \left(a_{sr1...r5} + \frac{\sqrt{2}}{4} a_{sr1r2} a_{r3r4r5}\right),$$

(108)

$$S_{mn} = -36 \eta_{r1...r7} a_{mr1r2} \left(a_{mr3...r7} - \frac{\sqrt{2}}{4} a_{mr3r4} a_{r5r6r7}\right),$$

(109)

$$S_{mn}^{pq} = \sqrt{2} \eta_{mnpr} r_{s} r_{3} a_{r1r2r3},$$

(110)
Equation (104) is to compared with equation (64) of Ref. [1]:

\[V_{MAB}(x, y) = V_{MA}^A(x, y) \Gamma_{AAB}, \]

where

\[\Gamma_{AAB} = \begin{pmatrix} \Gamma_a_{AB} \\ \Gamma_{ab}^{AB} \\ i\Gamma_{abAB} \\ i\Gamma_a^{AB} \end{pmatrix}. \]

In this case, one finds that the form of matrix \(U(y) \) is exactly the same as the form of \(V_{MA}^A \) with the following identifications

\[U_{m}^{\, n} \leftrightarrow e_m^{\, a}, \quad a_{mnp} \leftrightarrow A_{mnp}, \quad a_{m_1...m_6} \leftrightarrow A_{m_1...m_6}. \]

In particular, in Ref. [1], \(V_{MA}^A \) is identified with the \(E_7(7) \) coset element constructed in Ref. [44].

An interesting question is whether new reductions can be found by considering an ansatz of the form (104), (105). A direction related to this is pursued in [37, 38, 39] in the context of extended generalised geometry, where \(U_{MN}^{\, N} \) is assumed to depend on all extended coordinates. One should, however, keep in mind that (107) is already the most general \(E_7(7) \) matrix (albeit in a triangular gauge), which does not leave much room for more exotic possibilities.

Acknowledgments: We are grateful to Bernard de Wit and Henning Samtleben for stimulating discussions. H.G. and M.G. would like to thank the Max-Planck-Institut für Gravitationsphysik (AEI) and ENS, Lyon and in particular H.N. and Henning Samtleben for their generous hospitality while this project was being carried out. H.G. and M.G. are supported by King’s College, Cambridge. H.N. was supported by the Gay-Lussac-Humboldt Prize during his stay at ENS, Lyon where this work was completed.
A E\(_7(7)\) algebra and identities

In this appendix we review the SL(8) decomposition of the E\(_7(7)\) algebra. In such a decomposition, the generators in the adjoint representation can be written

\[
(t^N_{\ PQRSTUV})_{T_1\ldots T_4} = \frac{1}{8} \delta^N_{PQRSTUV},
\]

\[
(t^N_{\ PQ})_{RS} = -2 \left(\delta^N_{[PQRS]} - \frac{1}{8} \delta^N_{PQRS} \right),
\]

\[
(t^N_{\ PQ})_{RS} = -2 \left(\delta^N_{PQRS} - \frac{1}{8} \delta^N_{PQRS} \right),
\]

\[
(t^N_{\ PQ})_{RS} = -2 \left(\delta^N_{PQRS} - \frac{1}{8} \delta^N_{PQRS} \right),
\]

\[
(t^N_{\ PQ})_{RS} = -2 \left(\delta^N_{PQRS} - \frac{1}{8} \delta^N_{PQRS} \right),
\]

\[
(t^N_{\ PQ})_{RS} = -2 \left(\delta^N_{PQRS} - \frac{1}{8} \delta^N_{PQRS} \right),
\]

It can be explicitly checked that the generators satisfy the following familiar commutation relations

\[
[t^N_{\ PQ}, t^M_{\ RS}] = \delta^M_{[PQRS]} - \frac{1}{8} \delta^M_{PQRS},
\]

\[
[t^N_{\ PQRSTUV}, t^M_{\ RSTU}] = \frac{1}{2} \eta^{MNPQRSTUV}_{[RSTU]} (\eta^{MNPQRSTU}_{[RSTU]} - \eta^{MNPQRSTU}_{[MNPQRSTU]}).
\]

It is sometimes convenient to also define coset generators with upper indices

\[
t^N_{\ PQRSTUV} = \frac{1}{4!} \eta^{MNPQRSTUV}_{N_{\ PQRSTUV}}
\]

keeping in mind that these are not independent generators. Furthermore, the components of the Killing metric are

\[
\kappa^N_{\ PQRSTUV} = \frac{1}{12} \left(\delta^N_{PQRSTUV} - \frac{1}{8} \delta^N_{PQRSTUV} \right),
\]

\[
\kappa^N_{\ PQRSTUV} = \frac{2}{4!} \eta^{MNPQRSTUV}_{N_{\ PQRSTUV}},
\]

\[
(k^{-1})^N_{\ PQRSTUV} = \frac{1}{2} \cdot 4! \eta^{MNPQRSTUV}_{N_{\ PQRSTUV}}.
\]

B The quadratic constraint

The quadratic constraint on the embedding tensor is required in order for the algebra of the gauge group to close

\[
[X_M, X_N] = -X_{[MN]}^P X_P,
\]

or equivalently,

\[
X_M Q^R X_{N^R}^P - X_{N^Q}^R X_M R^P = -X_{[MN]}^R X_{RQ}^P.
\]

Note that this constraint is highly non-trivial even to the extent that the left hand side of the above equations is manifestly antisymmetric under the interchange of indices \(M\) and \(N\), whereas

\[
X_{[MN]}^P
\]

is not in general antisymmetric under such an operation. We can therefore split this object into two tensors, \(viz.\)

\[
X_{[MN]}^P = X_{[MN]}^P + Z_{MN}^P,
\]

where the components of \(X_{[MN]}^P\) in a GL(7) decomposition is given in (90) and

\[
Z_{MN}^P \equiv X_{[MN]}^P.
\]
In (90) we had already derived all the components of X_{MN}^{P} from the generalised vielbein postulates, so we can now explicitly exhibit the non-zero components of the symmetric tensor Z_{MN}^{P} as

\[
Z_{m8}^{p8} r8 = Z_{m8}^{p8} r8 = -\frac{1}{4} f_{mr}^{p}, \quad Z_{m8}^{pq} r8 = Z_{m8}^{pq} r8 = -\frac{1}{4} \delta^{pq}_{mr} f_{fr},
\]

\[
Z_{m8}^{pq} r8 = Z_{m8}^{pq} r8 = -\frac{1}{2} \delta^{[pq]}_{m} f^{]rs}_{r}, \quad Z_{m8}^{pq} r8 = Z_{m8}^{pq} r8 = -\frac{3}{2} \delta^{[pq]}_{m} f^{]mn}_{r},
\]

\[
Z_{mn}^{pq} r8 = Z_{mn}^{pq} r8 = -\delta^{[pq]}_{m} f^{]n}_{r}, \quad Z_{m8}^{pq} r8 = Z_{rs} m8 r8 = \frac{\sqrt{2}}{2} g_{mprs},
\]

\[
Z^{mn}_{m8} p8 r8 = Z^{mn}_{m8} p8 r8 = -\frac{\sqrt{2}}{16} \delta^{[m} p^{s] mn tuvw} g_{tuvw},
\]

\[
Z^{mn}_{m8} r8 = Z^{rs} m8 p8 = \frac{\sqrt{2}}{48} (\delta^{[m} p^{n]} tuvw + \delta^{[m} p^{n]} tuvw) g_{ntuw},
\]

\[
Z^{mn}_{m8} p8 rs = Z^{pq} mn r8 = \frac{1}{4} (\eta^{pqrs} m f_{ntu} + \eta^{mrstuv} f_{ntu}).
\] (123)

The contraction given on the right hand side of equation (121) is indeed symmetric under the interchange of \mathcal{M} and \mathcal{N} (18).

The components of X_{MN}^{P} as derived from the generalised vielbein postulates, (90), satisfy the linear constraint since they can be put into a form compatible with the general solution of the linear constraint (38) (see section 3). However, the quadratic constraint is not necessarily satisfied by the general solution (38) and equation (121) must be considered for the particular solution given by equations (90).

The components of X, given in (90), satisfy

\[
X_{M}^{PQR} = -X_{MRSP}, \quad X_{M}^{PQRS} = X_{M}^{RSPQ}, \quad X_{MPQRS} = X_{MRSPQ}.
\] (124)

We will verify equation (121) for each component in turn:

1. \[
X_{MN}^{P} T_{iu} T_{vw} - X_{TUPQ}^{R} X_{MN}^{R} vw = X_{MN}^{P} T_{iu} T_{vw} = X_{MN}^{P} T_{iu} T_{vw}.
\] (125)

The only components for which both sides of the above equation are non-trivial are

\[
(MN, PQ, TU, VW) = (m8, p8, t8, v8) \quad \text{or} \quad (m8, pq, t8, v8).
\]

The latter case above is equivalent to the former, since from equation (124) both sides of equation (125) are symmetric under the interchange of PQ and VW. Therefore, we only need to consider

\[
X_{m8}^{p8} r8 X_{t8}^{r8} vw - X_{t8}^{r8} X_{m8}^{r8} vw + X_{m8}^{t8} r8 X_{R}^{r8} vw
\]

\[
= [2 X_{m8}^{p8} r8 X_{t8}^{r8} vw + X_{m8}^{p8} r8 X_{t8}^{r8} vw - (m \leftrightarrow t)] + X_{m8}^{t8} r8 X_{r8}^{p8} vw + X_{m8}^{t8} r8 X_{r8}^{p8} vw,
\]

\[
= -\left[\frac{\sqrt{2}}{2} f_{r m p} g_{v w} + \frac{\sqrt{2}}{2} g_{m p} f_{r m p} g_{v w} - (m \leftrightarrow t) \right] - \frac{\sqrt{2}}{2} f_{r m} g_{p w} r - \frac{3 \sqrt{2}}{2} f_{r [v w]} g_{p t m r},
\]

\[
= - \frac{3 \sqrt{2}}{2} f_{m p} g_{v w} r t - \frac{\sqrt{2}}{4} f_{r m} g_{p w} r t - \frac{3 \sqrt{2}}{4} f_{r [v w]} g_{p t m r} - (m \leftrightarrow t),
\]

\[
= -5 \sqrt{2} f_{r [m p g v w]} r t.
\]
which vanishes by equation (19).

\[X_{\mathcal{MNPQR}} X_{\mathcal{TURvw}} - X_{\mathcal{TUPQR}} X_{\mathcal{MNvw}} = -X_{\mathcal{KNTU}} X_{\mathcal{RPQvw}}. \]

(126)

The components of the above equation where both sides of the equation are non-trivial are given by

\[(\mathcal{MN}, \mathcal{PQ}, \mathcal{TU}, \mathcal{VW}) = \begin{cases}
(m_8, p_8, t_8, v_8) \\
(m_8, p_8, t_8, v_8) \\
(m_8, t_8, v_8) \\
(m, p_8, t_8, v_8) \end{cases} \]

(127)

In the first case, we have

\[X_{\mathcal{m}8_\mathcal{p}8_\mathcal{R}} X_{\mathcal{t}8_\mathcal{R}} \mathcal{v}_\mathcal{8} - X_{\mathcal{t}8_\mathcal{p}8_\mathcal{R}} X_{\mathcal{m}8_\mathcal{R}} \mathcal{v}_\mathcal{8} + X_{\mathcal{m}8_\mathcal{t}8_\mathcal{R}} X_{\mathcal{R} p_\mathcal{8}} \mathcal{v}_\mathcal{8} = -f^s_{\mathcal{p}[t]} f^v_{\mathcal{s}[\mathcal{m}]} + \frac{1}{2} f^s_{\mathcal{tm}} f^v_{\mathcal{ps}}, \]

\[= \frac{3}{2} f^s_{\mathcal{tm}} f^v_{\mathcal{ps}}, \]

which vanishes by equation (7). Similarly, the second case also vanishes by equation (7).

Consider the third case in (127),

\[X_{\mathcal{m}8_\mathcal{p}8_\mathcal{R}} X_{\mathcal{t}8_\mathcal{R}} \mathcal{v}_\mathcal{w} - X_{\mathcal{t}8_\mathcal{p}8_\mathcal{R}} X_{\mathcal{m}8_\mathcal{R}} \mathcal{v}_\mathcal{w} + X_{\mathcal{m}8_\mathcal{t}8_\mathcal{R}} X_{\mathcal{R} p_\mathcal{8}} \mathcal{v}_\mathcal{w} = \frac{1}{6} \eta^{vw1...v_5} g_{[m[r_1 r_2 r_3 g[t|r_4 r_5 p]} + \frac{1}{24} \delta^{[v} \eta^{w]r_1...r_6} g_{mtr_1 r_2 g r_3...r_6}, \]

\[= \frac{1}{6} \eta^{vw1...v_5} g_{[m[r_1 r_2 r_3 g[t|r_4 r_5 p]} + \frac{1}{6} \delta^{[v} \eta^{w]r_1...r_6} g_{mtr_1 r_2 g r_3...r_6} - \frac{1}{8} \eta^{vw1...v_5} g_{mtr_1 r_2 g r_3...r_6}, \]

\[= \frac{1}{6} \eta^{vw1...v_5} g_{mtr_1 r_2 g r_3...r_6} - \frac{7}{24} \eta^{vw1...v_5} g_{mtr_1 r_2 g r_3...r_6}. \]

Both of the terms above vanish because they contain antisymmetrisations over 8 indices. Moreover, it is simple to show that equation (126) is satisfied for the fourth case, as in this case both sides of equation (121) are equal to

\[\delta^{[v} f^w_{\mathcal{t}8} f^s_{\mathcal{m}8}. \]

3.

\[X_{\mathcal{MN} pqR} X_{\mathcal{TU}vw} - X_{\mathcal{TU} pqR} X_{\mathcal{MN}vw} = -X_{\mathcal{KNTU}} X_{\mathcal{RP} vw}. \]

(128)

Using the identities given in (124), the above equation reduces to

\[X_{\mathcal{MN} pqR} X_{\mathcal{TU}vw} - X_{\mathcal{TU} pqR} X_{\mathcal{MN}vw} = X_{\mathcal{MNTU}} X_{\mathcal{RP} vw}, \]

(129)

which is equivalent to equation (126).

4.

\[X_{\mathcal{MN} pqR} X_{\mathcal{TU}vw} - X_{\mathcal{TU} pqR} X_{\mathcal{MN}vw} = -X_{\mathcal{KNTU}} X_{\mathcal{RP} vv}. \]

(130)
There is only one component of equation \([130]\) for which both sides of the above equation are non-vanishing:

\[
X_{m8} pq R X_{t8} R vw = - X_{ts} pq R X_{m8} R vw + X_{m8ts} R X R pq vw
\]

\[
= - \frac{\sqrt{2}}{3} \eta^{pq1...4[r} g_{[m|r1r2r3} f^w_{]r4]} - \frac{\sqrt{2}}{3} \eta^{uvw1...4[p} g_{[m]r1r2r3} f^{q]}_{]r4]} + \frac{\sqrt{2}}{12} \eta^{pqvwu1u2u3} f^s_{u1u2} g_{mu3s} + \frac{\sqrt{2}}{12} \eta^{pqvwu1u2u3} f^s_{u1[t} g_{mu2u3]},
\]

\[
= - \frac{2 \sqrt{2}}{3} \eta^{r1...4[p} g_{[m]r1r2r3} f^w_{]r4]} + \frac{5 \sqrt{2}}{6} \eta^{pqvwu1u2u3} f^s_{[mtu1u2u3]} + \frac{\sqrt{2}}{6} \eta^{pqvwu1u2u3} f^s_{u1[t} g_{mu2u3]},
\]

\[
= - \frac{4 \sqrt{2}}{3} \eta^{r1...4[p} g_{[m]r1r2r3} f^w_{]r4]} + \frac{\sqrt{2}}{6} \eta^{pqvwu1u2u3} f^s_{[mtu1u2u3]} + \frac{5 \sqrt{2}}{6} \eta^{pqvwu1u2u3} f^s_{[mtu1u2u3]},
\]

which vanishes by unimodularity, (4), and equation (19).

5.

\[
X_{MNpq} R X_{TU R vw} = - X_{MNpq} R X_{MN R vw} = - X_{MN} tu R X_{R pq vw}
\] \(131\)

The only non-trivial components to consider in this case are

\[
(MN, PQ, TU, VW) = (m8, p8, tu, vw) \text{ or } (m8, pq, tu, v8)
\] \(132\)

Both cases reduce to the same equation, hence we only consider the first case:

\[
X_{m8 p8} R X_{tu R vw} = - X_{tu p8} R X_{m8 R vw} + X_{m8 tu R p8 vw}
\]

\[
= 6 \delta^s_{[w[v} f^s_{w]} g_{[p]f^t_{u]} m^t_{r]} + 3 f^r_{pm} \delta^t_{[v]} f^t_{tu} - 6 \delta^r_{[v]} f^s_{[p]} g_{[tu]} m^t_{sw},
\]

\[
= 3 \delta^t_{[v]} f^r_{pm} g_{[u]} m^t_{sw} - 3 \delta^t_{[v]} f^s_{[pm]} g_{[u]} m^t_{sw} + 3 \delta^t_{[v]} f^s_{[vw]} g_{[u]} m^t_{sw},
\]

which vanishes by equation (7).

6.

\[
X_{MNpq} R X_{TU R vw} = - X_{MNpq} R X_{MN R vw} = - X_{MN} tu R X_{R pq vw}
\] \(133\)

It is straightforward to see that all terms in the above equation vanish trivially unless

\[
(MN, PQ, TU, VW) = (m8, p8, tu, vw).
\] \(134\)

In this case,

\[
X_{m8 p8} R X_{tu R vw} = - X_{tu p8} R X_{m8 R vw} + X_{m8 tu R p8 vw}
\]

\[
= - \frac{\sqrt{2}}{24} f^w_{mpq} g_{s1...s4} g_{s1...s4} - \frac{\sqrt{2}}{4} f^t_{s1s2} g_{tuv1...4} g_{mpq3s4} = - \frac{\sqrt{2}}{12} \delta^w_{[w[v} g_{[u]} m^t_{sw} + 3 \delta^t_{[v]} f^t_{tu} - 6 \delta^r_{[v]} f^s_{[p]} g_{[tu]} m^t_{sw},
\]

\[
= - \frac{\sqrt{2}}{4} \delta^t_{[v]} f^r_{pq} g_{s1...q3} g_{m1...q3} - \frac{\sqrt{2}}{12} \delta^t_{[v]} f^t_{sw} m^t_{pq} g_{s1...q4} g_{q1...q4},
\]

\[
+ \frac{\sqrt{2}}{12} \delta^w_{[w[v} f^w_{tr} g_{s1...q3} g_{m1...q3}.
\]
Using Schouten identities, the first, third and fifth terms in the expression on the right hand side reduce to
\[
\frac{\sqrt{2}}{6} \delta_p^q \eta^{[u} \varepsilon_{w]t u r_1 \ldots r_4} f^{s}_{m r_1 g r_2 \ldots r_4 s}
\]
and similarly the second and fourth term simplify to
\[
- \frac{\sqrt{2}}{6} f^{[t}_{r_1 r_2} \eta^{u}[v| r_1 \ldots r_5] \delta_{p}^{[w]} g_{m r_3 \ldots r_5}.
\]
Therefore,
\[
X_{m p q}^R X_{t u}^R X_{v w}^R - X_{t u}^R X_{m p q}^R X_{v w}^R + X_{m t u}^R X_{p q}^R v w = \frac{\sqrt{2}}{6} \delta_p^q \eta^{[u} \varepsilon_{w]t u r_1 \ldots r_4} f^{s}_{m r_1 g r_2 \ldots r_4 s},
\]
where we have again used Schouten identities. It is now clear that equation (133) holds as a result of equations (4) and (19).

7.
\[
X_{m p q}^R X_{t u}^R v w = -X_{t u p q}^R X_{m R v w}^R - X_{m t u}^R X_{R pq v w} = 3 \frac{\sqrt{2}}{24} \delta_p^q \eta^{[u} \varepsilon_{w]t u r_1 \ldots r_4} f^{s}_{m r_1 g r_2 \ldots r_4 s},
\]
Using the relations in (124), this equation is equivalent to equation (133), which we have already verified.

8.
\[
X_{m p q}^R X_{t u}^R R v w = X_{t u p q}^R X_{m R v w}^R = -X_{m t u}^R X_{R pq v w}.
\]
The only non-trivial equation to consider in this case is
\[
X_{m p q}^R X_{t u}^R v w = X_{t u p q}^R X_{m R v w}^R + X_{m t u}^R X_{R pq v w} = \frac{3}{2} \eta^{ [p q r u w s_1 s_2] [t f] R [m f] s_1 s_2},
\]
where we have used Schouten identities. Therefore, equation (138) is satisfied.

9.
\[
X_{m p q}^R X_{t u}^R R p = X_{t u p q}^R X_{m R}^R = -X_{m t u}^R X_{R q p}.
\]
Note that the left hand side of this equation is of the same form as the left hand side of cases 5–8. Therefore, it remains to show that
\[
- X_{m t u}^R X_{R q p} = X_{t u}^{m R} R X_{R q p} = X_{t u}^{m R} X_{R q p}.
\]
This can be simply verified using Schouten identities and equations (4), (7) and (19) for all components.

10.
\[
X_{m p q}^R X_{t u}^R R v w = X_{t u p q}^R X_{m R v w}^R = -X_{m t u}^R X_{R pq v w}.
\]
This equation is trivially satisfied.
The only non-trivial components to consider is

\[X^{\hat{m}\hat{n}}_{\hat{p}\hat{q}} \, ^\mathcal{R} \, X^{\mathcal{T}}_{\mathcal{U}} \, ^\mathcal{R} \, ^{\mathcal{V} \mathcal{W}} - X^{\mathcal{T}}_{\mathcal{U}} \, ^\mathcal{R} \, X^{\hat{m}\hat{n}}_{\hat{p}\hat{q}} \, ^\mathcal{R} \, ^{\mathcal{V} \mathcal{W}} = -X^{\hat{m}\hat{n} \mathcal{T} \mathcal{U}} \, ^\mathcal{R} \, ^{\mathcal{V} \mathcal{W}} \mathcal{P} \mathcal{Q} \, ^\mathcal{R} \, ^{\mathcal{V} \mathcal{W}}. \] \tag{142} \]

Using equations (124), this case is equivalent to case 11, which we have already verified.

The above equation is trivially satisfied.
References

[1] H. Godazgar, M. Godazgar, and H. Nicolai, “Generalised geometry from the ground up,” arXiv:1307.8295 [hep-th].
[2] E. Cremmer, B. Julia, and J. Scherk, “Supergravity theory in eleven-dimensions,” Phys.Lett. B76 (1978) 409–412.
[3] E. Cremmer and B. Julia, “The N=8 supergravity theory. 1. The Lagrangian,” Phys.Lett. B80 (1978) 48.
[4] B. de Wit and H. Nicolai, “d = 11 supergravity with local SU(8) invariance,” Nucl.Phys. B274 (1986) 363.
[5] B. de Wit and H. Nicolai, “Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions,” JHEP 1305 (2013) 077, arXiv:1302.6219 [hep-th].
[6] H. Nicolai, “D = 11 supergravity with local SO(16) invariance,” Phys.Lett. B187 (1987) 316.
[7] K. Koepsell, H. Nicolai, and H. Samtleben, “An exceptional geometry for D = 11 supergravity?,” Class.Quant.Grav. 17 (2000) 3689–3702, arXiv:hep-th/0006034 [hep-th].
[8] D. S. Berman and D. C. Thompson, “Duality symmetric string and M-theory,” arXiv:1306.2643 [hep-th].
[9] O. Hohm and H. Samtleben, “Exceptional Field Theory I: E_{6(6)} covariant Form of M-Theory and Type IIB,” arXiv:1312.0614 [hep-th].
[10] B. de Wit, H. Nicolai, and N. P. Warner, “The embedding of gauged N=8 supergravity into d = 11 supergravity,” Nucl.Phys. B255 (1985) 29.
[11] B. de Wit and H. Nicolai, “The consistency of the S**7 truncation in D=11 supergravity,” Nucl.Phys. B281 (1987) 211.
[12] H. Nicolai and K. Pilch, “Consistent truncation of d = 11 supergravity on AdS_4 × S^7,” JHEP 1203 (2012) 099, arXiv:1112.6131 [hep-th].
[13] M. J. Duff and C. N. Pope, “Kaluza-Klein supergravity and the seven sphere,” in Supersymmetry and supergravity 82, S. Ferrara, J. G. Taylor, and P. van Nieuwenhuizen, eds. World Scientific, 1983.
[14] H. Godazgar, M. Godazgar, and H. Nicolai, “Testing the non-linear flux ansatz for maximal supergravity,” Phys.Rev. D87 (2013) 085038, arXiv:1303.1013 [hep-th].
[15] H. Godazgar, M. Godazgar, and H. Nicolai, “Non-linear Kaluza-Klein theory for dual fields,” arXiv:1309.0266 [hep-th].
[16] B. de Wit, H. Samtleben, and M. Trigiante, “On Lagrangians and gaugings of maximal supergravities,” Nucl.Phys. B655 (2003) 93–126, arXiv:hep-th/0212239 [hep-th].
[17] B. de Wit, H. Samtleben, and M. Trigiante, “Gauging maximal supergravities,” Fortsch.Phys. 52 (2004) 489–496, arXiv:hep-th/0311225 [hep-th].
[18] B. de Wit, H. Samtleben, and M. Trigiante, “The maximal D=4 supergravities,” JHEP 0706 (2007) 049, arXiv:0705.2101 [hep-th].
[19] H. Nicolai and H. Samtleben, “Maximal gauged supergravity in three-dimensions,”
Phys.Rev.Lett. 86 (2001) 1686–1689. [arXiv:hep-th/0010076 [hep-th]]

[20] H. Nicolai and H. Samtleben, “Compact and noncompact gauged maximal supergravities in
three-dimensions,” JHEP 0104 (2001) 022. [arXiv:hep-th/0103032 [hep-th]]

[21] B. de Wit and H. Nicolai, “N=8 supergravity,” Nucl.Phys. B208 (1982) 323.

[22] J. Scherk and J. H. Schwarz, “How to get masses from extra dimensions,”
Nucl.Phys. B153 (1979) 61–88.

[23] B. S. DeWitt, “Dynamical theory of groups and fields,” in Relativity, groups and topology (Les
Houches 1963), C. DeWitt and B. S. Dewitt, eds. Gordon and Breach, 1964.

[24] M. Cvetic, G. Gibbons, H. Lu, and C. Pope, “Consistent group and coset reductions of the
bosonic string,” Class.Quant.Grav. 20 (2003) 5161–5194. [arXiv:hep-th/0306043 [hep-th]].

[25] G. Dall’Agata and S. Ferrara, “Gauged supergravity algebras from twisted tori
compactifications with fluxes,” Nucl.Phys. B717 (2005) 223–245.
[arXiv:hep-th/0502066 [hep-th]].

[26] L. Andrianopoli, M. Lledo, and M. Trigiante, “The Scherk-Schwarz mechanism as a flux
compactification with internal torsion,” JHEP 0505 (2005) 051.
[arXiv:hep-th/0502083 [hep-th]].

[27] G. Dall’Agata, R. D’Auria, and S. Ferrara, “Compactifications on twisted tori with fluxes and
free differential algebras,” Phys.Lett. B619 (2005) 149–154.
[arXiv:hep-th/0503122 [hep-th]].

[28] R. D’Auria, S. Ferrara, and M. Trigiante, “E(7(7)) symmetry and dual gauge algebra of
M-theory on a twisted seven-torus,” Nucl.Phys. B732 (2006) 389–400.
[arXiv:hep-th/0504108 [hep-th]].

[29] R. D’Auria, S. Ferrara, and M. Trigiante, “Curvatures and potential of M-theory in D=4 with
fluxes and twist,” JHEP 0509 (2005) 035. [arXiv:hep-th/0507225 [hep-th]].

[30] G. Dall’Agata and N. Prezas, “Scherk-Schwarz reduction of M-theory on G2-manifolds with
fluxes,” JHEP 0510 (2005) 081. [arXiv:hep-th/0509052 [hep-th]].

[31] P. Fré, “M-theory FDA, twisted tori and Chevalley cohomology,”
Nucl.Phys. B742 (2006) 86–123. [arXiv:hep-th/0510068 [hep-th]].

[32] R. D’Auria, S. Ferrara, and M. Trigiante, “Supersymmetric completion of M-theory 4D-gauge
algebra from twisted tori and fluxes,” JHEP 0601 (2006) 081.
[arXiv:hep-th/0511158 [hep-th]].

[33] P. Fré and M. Trigiante, “Twisted tori and fluxes: A no go theorem for Lie groups of weak
G(2) holonomy,” Nucl.Phys. B751 (2006) 343–375. [arXiv:hep-th/0603011 [hep-th]].

[34] C. Hull and R. Reid-Edwards, “Flux compactifications of M-theory on twisted Tori,”
JHEP 0610 (2006) 086. [arXiv:hep-th/0603094 [hep-th]].

[35] H. Samtleben, “Lectures on gauged supergravity and flux compactifications,”
Class.Quant.Grav. 25 (2008) 214002. [arXiv:0808.4076 [hep-th]].
[36] M. Grana and D. Marques, “Gauged double field theory,” *JHEP* **1204** (2012) 020, arXiv:1201.2924 [hep-th].

[37] D. S. Berman, E. T. Musaev, D. C. Thompson, and D. C. Thompson, “Duality invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions,” *JHEP* **1210** (2012) 174, arXiv:1208.0020 [hep-th].

[38] E. T. Musaev, “Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz reductions,” *JHEP* **1305** (2013) 161, arXiv:1301.0467 [hep-th].

[39] G. Aldazabal, M. Graña, D. Marqus, and J. Rosabal, “Extended geometry and gauged maximal supergravity,” *JHEP* **1306** (2013) 046, arXiv:1302.5419 [hep-th].

[40] G. E. Sneddon, “Hamiltonian cosmology: a further investigation,” *Journal of Physics A Mathematical General* **9** (Feb., 1976)

[41] G. Dall'Agata, G. Inverso, and M. Trigiante, “Evidence for a family of SO(8) gauged supergravity theories,” *Phys.Rev.Lett.* **109** (2012) 201301, arXiv:1209.0760 [hep-th].

[42] G. Bossard, C. Hillmann, and H. Nicolai, “E_{7(7)} symmetry in perturbatively quantised N = 8 supergravity,” *Journal of High Energy Physics* **12** (Dec., arXiv:1007.5472 [hep-th].

[43] L. Andrianopoli, R. D’Auria, S. Ferrara, and M. Lledo, “Gauging of flat groups in four-dimensional supergravity,” *JHEP* **0207** (2002) 010, arXiv:hep-th/0203206 [hep-th].

[44] C. Hillmann, “Generalized E(7(7)) coset dynamics and D=11 supergravity,” *JHEP* **0903** (2009) 135, arXiv:0901.1581 [hep-th].