Intramedullary granulomatous lesions. Systematic review of case reports

Lesões granulomatosas intramedulares. Revisão sistemática de relatos de caso

Paulo Henrique Pires de Aguiar¹,²,³
Fábio Jundy Nakasone¹
João Victor Amaro de Souza⁴

ABSTRACT

Introduction: Granulomatous inflammation tries to isolate and control a foreign substance considered hard to eliminate. Intramedullary granulomas are rare, but some can be deadly. Objective: To point out the initial reports, differential diagnosis and prognosis of these lesions. Material and Methods: A systematic review related to granulomatous spinal lesions was performed in the PubMed, MedLine (EBSCO), LILACS and Scielo database using the keywords “granulomatous”, “granuloma” and “intramedullary”. Results: Intramedullary granulomatous lesions most commonly are present in the thoracic spine (80% of cases). The most frequent cause of the lesion was tuberculosis, followed by sarcoidosis. Improvement of the symptoms was found in 78%, almost two thirds of this total. Most cases were treated with surgery and medication with 47% of total improvement of symptoms. Sixty seven percent of patients treated only with medications were fully recovered. None of the four patients that were submitted only to surgery fully recovered. Conclusion: Given the most frequent causes are tuberculosis and sarcoidosis, it is suggested to always investigate them. Although the combined treatment was the most used, the drug alone showed greater outcomes. However, more studies are needed to make it possible to confirm the efficacy of those treatments.

Keywords: Intramedullary; Granulomatous; Spinal cord

RESUMO

Introdução: A inflamação granulomatosa tenta isolar e controlar uma substância estranha considerada difícil de eliminar. Granulomas intramedulares são raros, mas alguns podem ser mortais. Este estudo foi realizado com o intuito de apontar as descrições descritas, o diagnóstico diferencial e o prognóstico dessas lesões. Metodologia: Uma revisão sistemática relacionada a lesões granulomatosas da medula foi realizada nas bases de dados PubMed, MedLine (EBSCO), LILACS e Scielo, utilizando como palavras-chave: granulomatoso, granuloma e intramedular. Resultados: Lesões granulomatosas intramedulares estão mais presentes na coluna torácica (80% dos casos). A causa mais frequente da lesão foi a tuberculose, seguida de sarcoidose. A melhora dos sintomas foi registrada em 78%, quase dois terços deste total. A maioria dos casos foi tratada com cirurgia e medicação com 47% de melhora total dos sintomas. Sessenta e sete por cento dos pacientes tratados apenas com medicamentos foram totalmente recuperados. Nenhum dos quatro pacientes que foram submetidos apenas à cirurgia se recuperou totalmente. Conclusão: Sendo a tuberculose e a sarcoidose as causas mais frequentes, sugere-se sempre investigá-las. Embora o tratamento combinado tenha sido o mais utilizado, somente o fármaco apresentou maiores desfechos. No entanto, mais estudos são necessários para tornar possível confirmar a eficácia desses tratamentos.

Palavras-chave: Intramedular; Granulomatosas; Medula espinhal

¹ Hospital Santa Paula, São Paulo, SP, Brazil
² Pontifícia Universidade Católica de São Paulo, PUC-SP, Campus Sorocaba, SP, Brazil
³ Faculdade de Medicina do ABC Paulista, FMABC, Santo André, SP, Brazil
⁴ Curso de Medicina, UNICESUMAR, Centro Universitário de Maringá, Paraná, Brazil

Received May 14, 2019
Accepted Sep 2, 2019
INTRODUCTION

Inflammation is the body response to strange bodies (infections) and aggression (tissue lesion). It starts as an acute mechanism, with a quick start and short duration, and the intention of eliminating the source of damage, aggression or infection. In case of no success, the inflammation process continues becoming a chronic mechanism. It is characterized by tissue damage, repairment attempt and mononuclear cells infiltration (each one with different functions). After chronification, the inflammatory process can take different paths, generating different forms, and within these, the granulomatous.

The form of inflammation, characterized by foci of macrophages actives, is a mechanism that tries to isolate and control a foreign substance considered hard to eliminate. Granulomas can still be divided into two types, differing in etiology and pathogenesis: immune and foreign bodies. The first one, caused mainly by persistent infections, is characterized by the T cell immune response which will release interleukins and other cytokines that will perpetuate the response and activate macrophages. Those can still unite with other macrophages, becoming giant multinuclear cells or grow its cytoplasm, becoming epithelioid cells. Foreign bodies granulomas, in the other hand, do not activate T cell-mediated response.

Few conditions cause this pattern, such as tuberculosis, sarcoidosis, Crohn’s disease, and syphilis. But the intramedullary involvement of these lesions is rare.

In order to give a better view of such presentation, this study gathered in the literature, reports of those, analyzing the most frequent causes, spinal levels, demographical proportion (age and gender), treatment opted and outcomes.

MATERIAL AND METHODS

A systematic review relational to granulomatous spinal lesions was performed from February 15 to 17, 2019 in the PubMed, MedLine (EBSCO), LILACS and Scielo databases using as keywords the association of “granulomatous” or “granuloma” and “intramedullary”. The filters “case reports” and “full text” were used to narrow the search.

After removal of duplicates, the authors screened the articles analyzing the following criteria: case reports; full article availability; occurred in human species; and in English, Portuguese, Spanish and French languages. Then, the authors used a modified Jadad’s Scale (Box 1) to select reports. Each article received a 0 to 6 grade (1 point for each positive answer) and only those with 6 points entered the study. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow chart summing the articles selection is exposed below at Figure 1 and the articles included are demonstrated at Table 1.

The search strategy resulted in 66 articles: 47 on PubMed, 8 on Medline, 4 on LILACS and 7 on Scielo database. Of those, 13 duplicates were removed, remaining 53, from which 4 were excluded as “not available”. Other 13 were excluded from the previous 49 because they didn’t fit the proposed criteria. Finally, thirty six articles were included, making a total of forty six cases.

Question	Yes	No
The lesion reported is granulomatous?		
The study defined the level of the lesion?		
The lesion was intramedullary?		
The study defined the diagnosis?		
The study exposed the treatment opted?		
The study exposed the outcome of the case?		
Total		

BOX 1. Modified Jadad’s Scale.
The cases were synthetized using a Microsoft Excel® sheet discriminating: age, gender, lesion location, lesion level, etiological diagnosis, treatment opted and outcomes. Also, gender proportion was analyzed.

In order to analyze the age stratification, the total range (ΔT) was calculated by subtracting the lower limit of the upper. Using one of Milone’s criteria the number of intervals (k) was determined. At the end, the range of classes was defined by dividing ΔT/k:

\[
\Delta T = 70 - 5 = 65 \\
k = \sqrt{n} = \sqrt{\frac{65}{7}} = 6.78 \approx 7 \text{ classes} \\
h = \frac{\Delta T}{k} = 9.28 \approx 10 \text{ years}
\]

The most frequent causes of the lesion were tuberculosis, followed by sarcoidosis, making together a total of 57%. Next to those there were 4 schistosomiases, 3 cryptococcoses, 3 paracoccidioidomycosis, and brucellosis. Other causes include: neurosphilis, cysticercosis, non-Hodgkin lymphoma, histoplasma, pilocytic astrocytoma, acanthamoebas, inflammatory miofibroblastic tumor and multiple cells granuloma.

RESULTS

Originally the cases were classified into seven age classes with a 10 years range, but in order to better analyze the cases, the authors reduced to 5 classes by uniting some of them. That leaded to the following classes: < 20 years old (4); 20-29 years old (10); 30-39 years (12); 40-49 years (12); and > 50 year-old (10) patients. In general, most of cases occurred on male patients (63%) and there was one transsexual patient.

When divided by age range, male prevalence over female varies: all patients < 20 years were male; 20-29 years, males still prevailed, with a 2.3:1 rate over females; in patients between 30 and 39, the sex distribution was more similar, with 50% of males, 40% females and 10% transsexual patients; in the range 40-49 years there was no incidence difference between genders; and in patients > 50 years old, a 2.3:1 male over female rate was found (Table 2).

Age range	Mean	Mode	Fm	Fm (%)	Fw	Fw (%)
0	6.33 (±1.54)	7 (2)	3	6%	3	6%
10	16 (±4)	16	1	2%	4	8%
20	24.1 (±2.9)	21, 26	10	22%	14	30%
30	34.1 (±1.79)	35 (3)	10	22%	24	52%
40	43.5 (±3.06)	40 (4)	12	26%	36	78%
50	55 (±2.28)	57	6	13%	42	91%
60	66.25 (±6.29)	63, 65, 67, 70	4	9%	46	100%
Total	37.69 (±15.76)	40	46	100%	–	–

Table 2. Age. Ranges and frequencies.
When divided by age, tuberculosis represented three quarters of cases of patients < 20 years (all male); it also represented the most frequent cause between 20 and 29 years, with 40% of cases (3:1 male over female rate). In patients from 30 to 39 years, tuberculosis was also the most frequent, with the same 40% of cases of the previous category, half of them being male, one quarter female and the other one, transsexual. Between patients of 40 to 49 years, sarcoidosis was most frequent, with 42% of cases (1.5 times more female than males), followed by tuberculosis (33%) with 3:1 male over female. However, patients > 50 years, showed no case of tuberculosis, and sarcoidosis was the most frequent (30%), with two times more male than female ones, followed closely by cryptococcosis and paracoccidioidomycosis, both with 20% and all males (Table 3).

Table 3. Patients with granulomatous spinal lesions: causes, frequencies and gender proportion.

Diagnosis	N (%)	Gender Proportion
Tuberculosis	15 (33%)	73% M / 20% F / 7% T
Sarcoïdosis	11 (24%)	55% M / 45% F
Schistosomiasis	4 (9%)	75% M / 25% F
Cryptococcosis	3 (7%)	100% M
Paracoccidioidomycosis	3 (7%)	67% M / 33% F
Brucellosis	2 (4%)	100% F
Cysticercosis	1 (2%)	100% F
Neosyphils	1 (2%)	100% F
Non-Hodgkin lymphoma	1 (2%)	100% F
Histoplasma	1 (2%)	100% M
Pilocytic astrocytoma	1 (2%)	100% M
Acanthamoebas	1 (2%)	100% M
Inflammatory miofibroblastic tumor	1 (2%)	100% M
Multiple cells granuloma	1 (2%)	100% M
Total	46 (100%)	63% M / 35% F / 2% T

The most common reported location of those lesions was in the thoracic spine (80% of cases). There were 15 cases reporting lesions on cervical level and 10 on the lumbar level. Although most frequently in only 1 region, some cases occurred on 2 of the 3 divisions and one even in all three. When divided by age ranges, there was 2 thoracic-exclusive cases and 2 thoracolumbar patients < 20 years, 3 thoracic-exclusive, 3 thoracolumbar, 2 cervicothoracic and 2 cervical-exclusive cases patients from 20 to 29 years. Those patients in the range 30-39 presented 5 thoracic-exclusive, 2 thoracolumbar, 1 cervical-exclusive, 1 cervicothoracic and 1 on all three divisions. In patients from 40-49 years range, 50% presented only on thoracic spine, 25% in thoracolumbar, one sixth in cervical spine and only 1 in cervicothoracic level. Those patients > 50 years, resulted in 50% on thoracic level only, 40% in cervical only and 1 case (10%) presented two lesions, one cervical and the other thoracic.

Of the four patients submitted only to surgery, 2 died due to worsening of the case and the other two had only partial recovery (one with the help of physical therapy). Twelve patients were treated only with medications and 67% of full recovery, one patient with partial improvement, one patient worsened and died and two worsened and then stabilized. Most cases were treated with a combination of surgery and medication (65%) with 83% of cases with total (47%) or partial (36%) improvement of symptoms.

Of the cases analyzed, 78% showed improvement of the symptoms, being almost two thirds of the total. Five patients died on the follow-up (one due to pulmonary infection, one due to chronic renal insufficiency, and the other 4 due to worsening of the case) and three patients had worsening of the case.

CONCLUSION

Based on the cases studied, the immense majority presented lesion on the thoracic portion of the spinal cord, followed by cervical and lumbar. Male patients presented as the majority, with almost two thirds of cases analyzed, as well as adult patients (20-49 years) representing 70% of cases. Given the most frequent causes being tuberculosis and sarcoidosis, it is
suggested to always investigate them. Although most of the patients were treated with both medical and surgical therapy, this review showed that medication only had greater outcomes over those with combined conduct. However, more studies are needed, mainly clinical trials to make it possible to confirm the efficacy of those treatments.

REFERENCES

1. Brasilheiro Filho G. Bogliolo: Patologia. 9 ed. Guanabara Koogan, 2016.

2. Kumar V, Abbas A, Aster JC. Robbins & Cotran Patologia - Bases Patológicas das Doenças. 9 ed. GEN Guanabara Koogan, 2016.

3. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1-12. doi: 10.1016/0197-2456(95)00134-4.

4. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.

5. Milone G. Estatística Geral e Aplicada. São Paulo: Pioneira Thomson Learning, 2004.

6. Augier A, Ould Hmeidi Y, Neves F, Bonnet D, Brauner M, Dumas JL. Myélopathie sarcoïdose associée à un canal cervical rétréci: aspects IRM [MRI features of spinal neurosarcoidosis associated with cervical spondylosis]. Rev Neurol (Paris). 2010;166(2):257-61. French. doi: 10.1016/j.neurol.2009.03.015.

7. Bingöl A, Yücelen N, Meço O. Medically treated intraspinal
“Brucella” granuloma. Surg Neurol. 1999;52(6):570-6. doi: 10.1016/s0090-3019(99)00110-x.

8. Beros V, Houra K, Rotim K, Kovac D, Cupiè H. Thoracic intramedullary sarcoidosis mimicking an intramedullary tumor. Coll Antropol. 2008;32(2):645-7.

9. Biasi PR, Balen M, Almeida TAL, Espanhol RA, Brunet MP, Souza WC. Intramedullary Tuberculoma after Tuberculous Meningitis – A Rare Case with an Uncommon Radiological Presentation. Arq Bras Neurocir. 2015;34:166–169. DOI: 10.1055/s-0035-1554901.

10. Boulaajaj FZ, Rafai MA, El Otmani H, El Moutawakkil B, Hakim K, Fadel H, Slassi I. Myelopathies subaiguës révélatrices de sarcoïdose systémique [Subacute myelopathy revealing systemic sarcoidosis]. Rev Neurol (Paris). 2007;163(11):1049-53. French. doi: 10.1016/s0035-3787(07)74177-2.

11. Chen XY, Ren ZC, Huang XJ. Sarcoïdose systémique liée à une infection par Cryptococcus neoformans [Subacute myelopathy revealing systemic cryptococcosis]. Rev Med Interne. 2005;26(5):403-8. doi: 10.1016/j.revmed.2004.12.005.

12. Chitoku S, Kawai S, Watabe Y, Nishitani M, Fujimoto K, Otsuka H, et al. Multiple Intramedullary Spinal Sarcoidosis: Case Report. Surgical Neurology. 1997;48(5):522–526. doi: 10.1016/S0090-3019(97)00170-5.

13. Despeyroux-Ewers M, Catalá I, Collin L, Cognard C, Loubes- Lacroix F, Manelle C. Inflammatory myofibroblastic tumour of the spinal cord: case report and review of the literature. Neuroradiology. 2003;45(11):812-7. doi: 10.1007/s00234-003-1069-y.

14. Dixon TL, Kransdorf MJ, Krishna M, O'Connor MI. Thigh pain and paraparesis from osseous pseudotumors with both brain and spinal cord involvement case report. Neuromed Chir (Tokyo). 2010;50(3):246-50. doi: 10.2176/nmc.50.246.

15. Drouet A, Amah Y, Pavic M, Gérome P, Meyer X, H. Thoracic meningoradiculomyeloencephalitis due to cryptococcosis. J Clin Neurosci. 2010;17(4):522–523. doi: 10.1016/j.jocn.2009.04.026.

16. Eby SA, Buchner EJ, Bryant MG. Presumed intramedullary spinal cord sarcoidosis in a healthy young adult woman. Am J Phys Med Rehabil. 2012;91(9):810-3. doi: 10.1097/PHM.0b013e31824121a8.

17. Galgano MA, Goulart CR, Chisholm K, Hazen M, Stone S. Rapid-Onset Thoracic Myelopathy due to an Epidural Sarcoid-Like Lesion in a Pediatric Patient. World Neurosurg. 2018;111:377-380. doi: 10.1016/j.wneu.2017.12.185.

18. Ghoolamrezae Zhad A, Mehta L. La 18F-FDG PET/CT ayuda a desenmascarar a la gran imitadora: un caso de neurosarcoidosis con implicación aislada en la médula espinal / 18F-FDG PET/CT helps in unmasking the great mimicmer: a case of neurosarcoidosis with isolated involvement of the spinal cord. Rev. esp. med. nucl. imagen mol. (Ed. impr.) 2017;37(3):172-174. doi: 10.1016/j.remn.2017.02.013.

19. Goldbach H, Wanat K, Rosenbach M. Multiple eruptive dermatofibromas in a patient with sarcoidosis. Cutis. 2016;98(2):E15-9.

20. Guirado VM, Welling LC, Meluzzi A, Santos MES, Figueiredo EG, Taricco MA, et al. Intramedullary granuloma suggestive of tuberculoma. Arq. Neuro-Psiquiatr. 2011;69(5):848-849. DOI: 10.1590/S0004-282X2011000600028.

21. Gültasli NZ, Erkan C, Orhun S, Albayrak S. MRI findings of intramedullary spinal cryptococcoma. Diagn Interv Radiol. 2007;13(2):64-7.

22. Gupta VK, Sharma BS, Khosla VK. Intramedullary tuberculoma: report of two cases with MRI findings. Surg Neurol. 1995;44(3):241-3; discussion 243-4. doi: 10.1016/0090-3019(95)00169-7.

23. Hanci M, Sarioglu AC, Uzan M, Işlak C, Kaynar MY, Oz B. Intramedullary tuberculoma: a case report. Spine (Phila Pa 1976). 1996;21(6):766-9. doi: 10.1097/00007632-199603150-00023.

24. Ishihara M, Izumo S, Iwatsuki K, Yoshimine T. Immunohistochemical study of multiple inflammatory pseudotumors with both brain and spinal cord involvement case report. NeuroMed Chir (Tokyo). 2010;50(3):246-50. doi: 10.2176/nmc.50.246.

25. Jaloo GI, Zagzag D, Lee M, Deletis V, Morota N, Epstein FJ. Intraspinal sarcoidosis: diagnosis and management. Surg Neurol. 1997;48(5):514-20. doi: 10.1016/s0090-3019(96)00440-5.

26. Jardin F, Stamatoulas A, Fruchart C, D’Anjou J, Clément JF, Tilly H. Atteinte de la moelle épinière et envahissement méningé lors d’une maladie de Hodgkin. À propos d’un cas et revue de la littérature. La Revue de Médecine Interne. 1999;20(3), 267–271. 10.1016/S0248-8663(99)83056-2.

27. Jhais S, Tuli S. Intrathecal catheter-tip inflammatory masses: an intraparenchymal granuloma. J Neurosurg Spine. 2008;9(2):196-9. doi: 10.3171/SPI/2008/9/8/196.

28. Jusué-Torres I, Alcázar-Vaquerizo L, Gómez-Angulo JC, Navarro-Torres R, López-Serrano R, García-Miralles N. Diseminación leptomeníngea de un astrocitoma pilocítico cervical en el adulto: publicación de un caso y revisión de la literatura. Neurocirugía. 2011;22(5), 445–452. doi: 10.1016/S1130-1473(11)70044-6.

29. Külling M, Ertürk IO, Uysal H, Birler K, Evrenkaya T, Akkalyoncu EG, Taricco MA, et al. Intramedullary granuloma suggestive of tuberculoma. Arq. Neuro-Psiquiatr. 2011;69(5):848-849. DOI: 10.1590/S0004-282X2011000600028.

30. Kumar CR, Sood S, Ham S. Complications of biodegradable fixation systems in pediatric neurosurgery. Childs Nerv Syst. 2005;21(5):205-10. doi: 10.1007/s00381-004-0997-0.

31. Kumar S, Handa A, Chavda S, Tiwari R, Abbey P. Intramedullary cysticercosis. J Clin Neurosci. 2010;17(4):522–523. doi: 10.1016/j.jocn.2009.04.026
32. Kwik MH, Barakate MS, Wong S, Tan L. Atypical presentation of intramedullary spinal cord lesion. Emerg Med (Fremantle). 2003;15(2):188-91. doi: 10.1046/j.1442-2026.2003.00437.x.

33. López JE, Marcano Torres M, López Salazar JE, López Salazar Y, Fasanella H, Urbanegra H, et al. Paraplejia producida por schistosomiasis de la médula espinal: Presentación de 4 pacientes con estudio histopatológico. Gac Méd Caracas. 2002;110(2):194-209.

34. Mahadewa TG, Nakagawa H, Watabe T, Inoue T. Intramedullary neurosarcoidosis in the medulla oblongata: a case report. Surg Neurol. 2004;61(3):283-7. Discussion 287. doi: 10.1016/S0090-3019(03)00398-7.

35. Malik N, Behari S, Ansari MS, Jaiswal AK, Gupta P, Jain M. An Intramedullary Tuberculous Abscess of the Conus in a 5-Year-Old Child Presenting with Urinary Dysfunction. World Neurosurg. 2011;76(6):592.e15-592.e18. doi: 10.1016/j.wneu.2011.01.045.

36. Mathieson CS, Mowle D, Ironside JW, O'Riordan R. Isolated cervical intramedullary sarcoidosis—a histological surprise. Br J Neurosurg. 2004;18(6):632-5. doi: 10.1080/02688690400022920.

37. Nas K, Tasdemir N, Cakmak E, Kemaloglu MS, Bukte Y, Geyik MF. Cervical intramedullary granuloma of Brucella: a case report and review of the literature. Eur Spine J. 2007;16 Suppl 3(Suppl 3):255-9. doi: 10.1007/s00586-006-0252-3.

38. Pacheco RAB, Arruda WO, Hunhevicz SC, Tsubouchi MH, Torres LFB. Thoracic intraspinal para coccidioidomycosis: case report. Arq. Neuro-Psiquiatr. 1996;54(3): 474-478. Doi: 10.1590/S0004-282X1996000300018.

39. Psalmao JF, Duarte F, Ancilon M, Paola F, Almeida Filho S. Esquistosomia medular: forma tumoral. Relato de um caso. Arq. Neuro-Psiquiatr. 1987;45(3):312-323. Doi:1590/S0004-282X1987000300012.

40. Piattelli A, Favia GF. Periosteal osteosarcoma of the jaws: report of 2 cases. J Periodontol. 2000;71(2):325-9. doi: 10.1016/S0036-5548(00)00126-4.

41. Kayaoglu CR, Tuzun Y, Boga Z, Erdogan F, Gorguner M, Aydin IH. Intramedullary spinal tuberculoma: a case report. Spine (Phila Pa 1976). 2000;25(17):2265-8. doi: 10.1097/00007632-200009010-00020.

42. Sahu SK, Giri S, Gupta N. Longitudinal extensive transverse myelitis due to tuberculosis: a report of four cases. J Postgrad Med. 2014;60(4):409-12. doi: 10.4103/0022-3859.143977.

43. Shen CC, Cheng WY, Yang MY. Isolated intramedullary cryptococcal granuloma of the conus medullaris: case report and review of the literature. Scand J Infect Dis. 2006;38(6-7):562-5. doi: 10.1080/00365540500434646.

44. Soto M, Bollar A, Astudillo E, Indacochea B, Lobo C. Esquistosomiasis medular. Presentación de un caso clínico. Neurocirugía. 2001;12(2):160–164. Doi: 10.1016/S1130-1473(01)70706-3.

45. Süzer T, Coşkun E, Tahta K, Bayramoğlu H, Düzcan E. Intramedullary spinal tuberculoma presenting as a conus tumor: A case report and review of the literature. Eur Spine J. 1998;7(2):168-171. https://doi.org/10.1007/s005860050050

46. Tanriverdi T, Kızılkılıç O, Hanci M, Kaynar MY, Ünal H, Öz B. Atypical intradural spinal tuberculosis: report of three cases. Spinal Cord. 2003;41:403–409. https://doi.org/10.1038/sj.sc.3101463.

47. Türeyn K. Tuberculoma of the conus medullaris: case report. Neurosurgery. 2002;50(3):651-2. doi: 10.1097/00006123-200203000-00043.

48. Uno H. Report of Two Cases of “Phaeochromoblastomatosis”. Pathology International, 1955;5(1):683–687. Doi: 10.1111/j.1440-1827.1955.tb01798.x

49. Velho V, Sharma GK, Palande DA. Cerebrospinal acanthamebic granulomas. Case report. J Neurosurg. 2003;99(3):572-4. doi: 10.3171/jns.2003.99.3.0572.

50. Verburg AD. Retrograde nailing of femoral fracture below a hip prosthesis: a case report. J Bone Joint Surg Br. 1998;80(2):282-3. doi: 10.1302/0301-620x.80b2.8084.

51. Vighetto A, Fischer G, Collet P, Bady B, Trillet M. Intramedullary sarcoidosis of the cervical spinal cord. J Neurol Neurosurg Psychiatry. 1985;48(5):477-9. doi: 10.1136/jnnp.48.5.477.

52. Voelker JL, Muller J, Worth RM. Intramedullary spinal Histoplasma granuloma. J Neurosurg. 1989;70(6):959–961. Doi: 10.3171/jns.1989.70.6.0959.

53. Yang C, Li G, Fang J, Liu H, Yang B, Xu Y. Spinal Intramedullary Syphilitic Gumma: An Unusual Presentation of Neurosyphilis. World Neurosurg. 2016;95:622.e17-622.e23. doi: 10.1016/j.wneu.2016.07.049.

João Victor Amaro de Souza
Curso de Medicina
UNICESUMAR, Centro Universitário de Maringá
Maringá, Paraná, Brazil
E-mail: joaovamaros@gmail.com

Conflicts of Interest: nothing to disclose.
Funding: nothing to disclose.