On Convex Lower-Level Black-Box Constraints in Bilevel Optimization with an Application to Gas Market Models with Chance Constraints

Holger Heitsch, René Henrion, Thomas Kleinert, Martin Schmidt
December 1, 2021 — PGMO Days, Paris
Overview

General Setting and Some Obstacles

A “First-Relax-Then-Reformulate” Approach

A European Gas Market Model with Chance Constraints

Numerical Results
General Setting and Some Obstacles
Bilevel Optimization

\[
\min_{x,y} \quad F(x, y) \\
\text{s.t.} \quad G(x, y) \leq 0 \\
x \in \mathbb{R}^{n_x}, \quad y \in \mathbb{R}^{n_y} \\
y \in S(x)
\]
Bilevel Optimization

\[
\begin{align*}
\min_{x,y} & \quad F(x,y) \\
\text{s.t.} & \quad G(x,y) \leq 0 \\
& \quad x \in \mathbb{R}^{n_x}, \quad y \in \mathbb{R}^{n_y} \\
& \quad y \in S(x)
\end{align*}
\]

\(S(x)\) is the solution set of the convex lower-level problem

\[
S(x) = \arg\min_y \{ f(x,y) : g(x,y) \leq 0, \quad y \in \mathbb{R}^{n_y} \}
\]

- NP-hard problem in general (Hansen, Jaumard, Savard 1992)
- Optimistic variant (Dempe 2002)
Bilevel Optimization

\[
\begin{align*}
\min_{x,y} & \quad F(x,y) \\
\text{s.t.} & \quad G(x,y) \leq 0 \\
& \quad x \in \mathbb{R}^{n_x}, \quad y \in \mathbb{R}^{n_y} \\
& \quad y \in S(x)
\end{align*}
\]

\(S(x)\) is the solution set of the convex lower-level problem

\[S(x) = \arg\min_y \{f(x,y) : g(x,y) \leq 0, \ y \in \mathbb{R}^{n_y}\}\]

• NP-hard problem in general (Hansen, Jaumard, Savard 1992)
• Optimistic variant (Dempe 2002)
A “small” extension

\[S(x) = \arg \min_y \{ f(x, y) : g(x, y) \leq 0, \ b(y) \leq 0, \ y \in \mathbb{R}^n \} \]
A “small” extension

\[S(x) = \underset{y}{\text{arg min}} \{ f(x, y) : g(x, y) \leq 0, \ b(y) \leq 0, \ y \in \mathbb{R}^n \} \]

Assumption

The black-box function \(b \) is convex and for all \((x, y) \in \{ (x, y) : G(x, y) \leq 0, \ g(x, y) \leq 0 \} \) ...

1. we can evaluate the function \(b(y) \),
2. we can evaluate the gradient \(\nabla b(y) \),
3. the gradient is bounded, i.e., \(\| \nabla b(y) \| \leq K \) for a fixed \(K \in \mathbb{R} \).
Some Notation & Single-Level Reformulation

• Shared constraint set

\[\Omega := \{(x, y): G(x, y) \leq 0, \ g(x, y) \leq 0, \ b(y) \leq 0\} \]
Some Notation & Single-Level Reformulation

- Shared constraint set
 \[\Omega := \{ (x, y) : G(x, y) \leq 0, \ g(x, y) \leq 0, \ b(y) \leq 0 \} \]

- Projection onto the decision space of the leader
 \[\Omega_u := \{ x : \exists y \text{ with } (x, y) \in \Omega \} \]
Some Notation & Single-Level Reformulation

- Shared constraint set
 \[\Omega := \{(x, y): G(x, y) \leq 0, \ g(x, y) \leq 0, \ b(y) \leq 0\} \]

- Projection onto the decision space of the leader
 \[\Omega_u := \{x: \exists y \text{ with } (x, y) \in \Omega\} \]

- Feasible set of the lower-level problem for a fixed leader decision \(x = \bar{x} \)
 \[\Omega_\ell(\bar{x}) := \{y: g(\bar{x}, y) \leq 0, \ b(y) \leq 0\} \]
Some Notation & Single-Level Reformulation

• Shared constraint set

$$\Omega := \{(x,y): G(x,y) \leq 0, \ g(x,y) \leq 0, \ b(y) \leq 0\}$$

• Projection onto the decision space of the leader

$$\Omega_u := \{x: \exists y \text{ with } (x,y) \in \Omega\}$$

• Feasible set of the lower-level problem for a fixed leader decision $x = \bar{x}$

$$\Omega_\ell(\bar{x}) := \{y: g(\bar{x},y) \leq 0, \ b(y) \leq 0\}$$

• Optimal value function of the lower level

$$\varphi(x) = \min_y \{f(x,y): g(x,y), \ b(y) \leq 0, \ y \in \mathbb{R}^{n_y}\}$$
Some Notation & Single-Level Reformulation

- Shared constraint set
 \[\Omega := \{(x, y) : G(x, y) \leq 0, \ g(x, y) \leq 0, \ b(y) \leq 0\} \]

- Projection onto the decision space of the leader
 \[\Omega_u := \{x : \exists y \text{ with } (x, y) \in \Omega\} \]

- Feasible set of the lower-level problem for a fixed leader decision \(x = \bar{x} \)
 \[\Omega_\ell(\bar{x}) := \{y : g(\bar{x}, y) \leq 0, \ b(y) \leq 0\} \]

- Optimal value function of the lower level
 \[\varphi(x) = \min_y \{f(x, y) : g(x, y), \ b(y) \leq 0, \ y \in \mathbb{R}^{n_y}\} \]

- Single-level reformulation
 \[\min_{x, y} \ F(x, y) \]
 \[\text{s.t. } G(x, y) \leq 0, \ g(x, y) \leq 0, \ b(y) \leq 0 \]
 \[f(x, y) \leq \varphi(x) \]
 \[x \in \mathbb{R}^{n_x}, \ y \in \mathbb{R}^{n_y} \]
Obstacles and Pitfalls

- **Main challenge:** black-box constraint $b(y) \leq 0$
- **Not given explicitly** → optimality conditions are not given explicitly as well
Obstacles and Pitfalls

- **Main challenge**: black-box constraint $b(y) \leq 0$
- **Not given explicitly** → optimality conditions are not given explicitly as well
- **Possible remedies**
 - Cutting plane techniques (Kelley 1960)
 - Outer approximation (Duran, Grossmann 1986; Fletcher, Leyffer 1994)
Obstacles and Pitfalls

- **Main challenge**: black-box constraint \(b(y) \leq 0 \)
- **Not given explicitly** → optimality conditions are not given explicitly as well
- **Possible remedies**
 - Cutting plane techniques (Kelley 1960)
 - Outer approximation (Duran, Grossmann 1986; Fletcher, Leyffer 1994)
- **But**: \(b(y) \leq 0 \) can only be satisfied up to a prescribed tolerance
- **Specifying the quality of solutions via \(\varepsilon\)-\(\delta \)-optimality**
 - Global optimization (Locatelli, Schoen 2013)
 - Bilevel optimization (Mitsos, Lemonidis, Barton 2008)
Definition
For \(\delta = (\delta_G, \delta_g, \delta_b, \delta_f) \in \mathbb{R}_{\geq 0}^{mu+mf+2} \), a point \((\bar{x}, \bar{y}) \in \mathbb{R}^{nx} \times \mathbb{R}^{ny}\) is called \(\delta \)-feasible for the bilevel problem, if \(G(\bar{x}, \bar{y}) \leq \delta_G \), \(g(\bar{x}, \bar{y}) \leq \delta_g \), \(b(y) \leq \delta_b \), and \(f(x, y) \leq \varphi(x) + \delta_f \) hold. Moreover, for \(\varepsilon \geq 0 \), a point \((x^*, y^*) \in \mathbb{R}^{nx} \times \mathbb{R}^{ny}\) is called \(\varepsilon-\delta \)-optimal for the bilevel problem, if it is \(\delta \)-feasible and if \(F(x^*, y^*) \leq F^* + \varepsilon \) holds, with \(F^* \) denoting the optimal objective function value of the bilevel problem.
\(\varepsilon, \delta\)-Optimality

Definition
For \(\delta = (\delta_G, \delta_g, \delta_b, \delta_f) \in \mathbb{R}^{m_u + m_e + 2}\), a point \((\bar{x}, \bar{y}) \in \mathbb{R}^{n_x} \times \mathbb{R}^{n_y}\) is called \(\delta\)-feasible for the bilevel problem, if \(G(\bar{x}, \bar{y}) \leq \delta_G, g(\bar{x}, \bar{y}) \leq \delta_g, b(y) \leq \delta_b,\) and \(f(x, y) \leq \varphi(x) + \delta_f\) hold. Moreover, for \(\varepsilon \geq 0\), a point \((x^*, y^*) \in \mathbb{R}^{n_x} \times \mathbb{R}^{n_y}\) is called \(\varepsilon, \delta\)-optimal for the bilevel problem, if it is \(\delta\)-feasible and if \(F(x^*, y^*) \leq F^* + \varepsilon\) holds, with \(F^*\) denoting the optimal objective function value of the bilevel problem.

- A \(\delta\)-feasible point \((\bar{x}, \bar{y})\) is \(\delta_f\)-(\(\delta_g, \delta_b\))-optimal for the lower level with fixed \(x = \bar{x}\)
- Assume \(f\) and \(g\) pose no challenges \(\rightarrow\) choose \(\delta_f = \delta_g = 0\)
- Assume \(F\) and \(G\) pose no challenges \(\rightarrow\) we can obtain 0-\(\delta\)-optimal solutions with \(\delta = (0, 0, \delta_b, 0)\)
0-\(\delta\)-optimal solutions with \(\delta = (0, 0, \delta_b, 0)\)?
0-δ-optimal solutions with $\delta = (0, 0, \delta_b, 0)$?

- Consider the relaxed lower-level problem
 $$\min_{y \in \mathbb{R}^n} f(\bar{x}, y) \quad \text{s.t.} \quad g(\bar{x}, y) \leq 0, \quad b(y) \leq \delta_b$$

- Denote the optimal value function by $\bar{\varphi}(x)$

- Relaxation property yields $\bar{\varphi}(x) \leq \varphi(x)$ for all feasible $x \in \Omega_u$

- It is not clear whether and how ε-δ-optimality can be guaranteed

Can we hope for the δ-feasible points with $\delta = (0, 0, \delta_b, 0)$?
0-\(\delta\)-optimal solutions with \(\delta = (0, 0, \delta_b, 0)\)?

- Consider the relaxed lower-level problem

\[
\min_{y \in \mathbb{R}^n} \quad f(\bar{x}, y) \quad \text{s.t.} \quad g(\bar{x}, y) \leq 0, \quad b(y) \leq \delta_b
\]

- Denote the optimal value function by \(\bar{\varphi}(x)\)
- Relaxation property yields \(\bar{\varphi}(x) \leq \varphi(x)\) for all feasible \(x \in \Omega_u\)
- First-relax-then-reformulate leads to a single-level problem with \(f(x, y) \leq \bar{\varphi}(x)\)
- If \(\bar{\varphi}(x) < \varphi(x)\) holds for any \(x \in \Omega_u\), this single-level reformulation is not a relaxation of the original single-level reformulation
0-δ-optimal solutions with \(\delta = (0, 0, \delta_b, 0) \)?

- Consider the relaxed lower-level problem

\[
\min_{y \in \mathbb{R}^n} \quad f(\bar{x}, y) \quad \text{s.t.} \quad g(\bar{x}, y) \leq 0, \quad b(y) \leq \delta_b
\]

- Denote the optimal value function by \(\bar{\varphi}(x) \)
- Relaxation property yields \(\bar{\varphi}(x) \leq \varphi(x) \) for all feasible \(x \in \Omega_u \)
- First-relax-then-reformulate leads to a single-level problem with \(f(x, y) \leq \bar{\varphi}(x) \)
- If \(\bar{\varphi}(x) < \varphi(x) \) holds for any \(x \in \Omega_u \), this single-level reformulation is not a relaxation of the original single-level reformulation
- It is not clear whether and how \(\varepsilon-\delta \)-optimality can be guaranteed
0-\(\delta\)-optimal solutions with \(\delta = (0, 0, \delta_b, 0)\)?

- Consider the relaxed lower-level problem

\[
\min_{y \in \mathbb{R}^{n_y}} f(\bar{x}, y) \quad \text{s.t.} \quad g(\bar{x}, y) \leq 0, \ b(y) \leq \delta_b
\]

- Denote the optimal value function by \(\bar{\varphi}(x)\)
- Relaxation property yields \(\bar{\varphi}(x) \leq \varphi(x)\) for all feasible \(x \in \Omega_u\)
- First-relax-then-reformulate leads to a single-level problem with \(f(x, y) \leq \bar{\varphi}(x)\)
- If \(\bar{\varphi}(x) < \varphi(x)\) holds for any \(x \in \Omega_u\), this single-level reformulation is not a relaxation of the original single-level reformulation
- It is not clear whether and how \(\varepsilon-\delta\)-optimality can be guaranteed

Can we hope for the \(\delta\)-feasible points with \(\delta = (0, 0, \delta_b, 0)\)?
A “First-Relax-Then-Reformulate” Approach
A “First-Relax-Then-Reformulate” Approach

- Block-box constraint $b(y) \geq 0$ is convex
- Construct a sequence of linear outer approximations $(E^r, e^r)_{r \in \mathbb{N}}$ of the black-box constraint $b(y) \leq 0$ with the property

$$\{y \in \mathbb{R}^{ny} : b(y) \leq 0\} \subseteq \{y \in \mathbb{R}^{ny} : E^{r+1}y \leq e^{r+1}\} \subseteq \{y \in \mathbb{R}^{ny} : E^ry \leq e^r\}$$
A “First-Relax-Then-Reformulate” Approach

- Block-box constraint $b(y) \geq 0$ is convex
- Construct a sequence of linear outer approximations $(E^r, e^r)_{r \in \mathbb{N}}$ of the black-box constraint $b(y) \leq 0$ with the property

$$\{y \in \mathbb{R}^{n_y} : b(y) \leq 0\} \subseteq \{y \in \mathbb{R}^{n_y} : E^{r+1}y \leq e^{r+1}\} \subseteq \{y \in \mathbb{R}^{n_y} : E^r y \leq e^r\}$$

- For a given upper-level solution $\bar{x} \in \Omega_u$ and $r \in \mathbb{N}$, the adapted lower-level problem reads

$$\min_{y \in \mathbb{R}^{n_y}} f(\bar{x}, y) \quad \text{s.t.} \quad g(\bar{x}, y) \leq 0, \ E^r y \leq e^r$$

- This is a relaxation of the original lower-level problem
A “First-Relax-Then-Reformulate” Approach

- Block-box constraint $b(y) \geq 0$ is convex
- Construct a sequence of linear outer approximations $(E^r, e^r)_{r \in \mathbb{N}}$ of the black-box constraint $b(y) \leq 0$ with the property

$$\{y \in \mathbb{R}^{n_y} : b(y) \leq 0\} \subseteq \{y \in \mathbb{R}^{n_y} : E^{r+1}y \leq e^{r+1}\} \subseteq \{y \in \mathbb{R}^{n_y} : E^ry \leq e^r\}$$

- For a given upper-level solution $\bar{x} \in \Omega_u$ and $r \in \mathbb{N}$, the adapted lower-level problem reads

$$\min_{y \in \mathbb{R}^{n_y}} f(\bar{x}, y) \quad \text{s.t.} \quad g(\bar{x}, y) \leq 0, \quad E^ry \leq e^r$$

- This is a relaxation of the original lower-level problem
- $\bar{\varphi}^r(x)$: optimal value function
- Assumption: Slater’s constraint qualification holds
A “First-Relax-Then-Reformulate” Approach

- Block-box constraint \(b(y) \geq 0 \) is convex
- Construct a sequence of linear outer approximations \((E^r, e^r)_{r \in \mathbb{N}}\) of the black-box constraint \(b(y) \leq 0 \) with the property

\[
\{ y \in \mathbb{R}^{ny} : b(y) \leq 0 \} \subseteq \{ y \in \mathbb{R}^{ny} : E^{r+1}y \leq e^{r+1} \} \subseteq \{ y \in \mathbb{R}^{ny} : E^ry \leq e^r \}
\]

- For a given upper-level solution \(\bar{x} \in \Omega_u \) and \(r \in \mathbb{N} \), the adapted lower-level problem reads

\[
\min_{y \in \mathbb{R}^{ny}} f(\bar{x}, y) \quad \text{s.t.} \quad g(\bar{x}, y) \leq 0, \ E^ry \leq e^r
\]

- This is a relaxation of the original lower-level problem
- \(\varphi^r(x) \): optimal value function
- Assumption: Slater’s constraint qualification holds

Proposition

For every \(r \in \mathbb{N} \) and every upper-level decision \(x \in \Omega_u \), it holds

\[
\varphi^r(x) \leq \varphi^{r+1}(x) \leq \varphi(x)
\]
A “First-Relax-Then-Reformulate” Approach

Modified variant of the single-level reformulation

\[
\begin{align*}
\min_{x,y} & \quad F(x, y) \\
\text{s.t.} & \quad G(x, y) \leq 0, \quad g(x, y) \leq 0 \\
& \quad E^r y \leq e^r \\
& \quad f(x, y) \leq \varphi^r(x) \\
& \quad x \in \mathbb{R}^{n_x}, \quad y \in \mathbb{R}^{n_y}
\end{align*}
\]
A “First-Relax-Then-Reformulate” Approach

Modified variant of the single-level reformulation

\[
\begin{align*}
\min_{x,y} & \quad F(x, y) \\
\text{s.t.} & \quad G(x, y) \leq 0, \quad g(x, y) \leq 0 \\
& \quad E^r y \leq e^r \\
& \quad f(x, y) \leq \varphi^r(x) \\
& \quad x \in \mathbb{R}^{n_x}, \quad y \in \mathbb{R}^{n_y}
\end{align*}
\]

Feasibility problem

\[
\begin{align*}
\min_{x,y,s} & \quad s \\
\text{s.t.} & \quad G(x, y) \leq 0, \quad g(x, y) \leq 0 \\
& \quad E^r y \leq e^r \\
& \quad f(x, y) \leq \varphi^r(x) + s \\
& \quad x \in \mathbb{R}^{n_x}, \quad y \in \mathbb{R}^{n_y}
\end{align*}
\]
Algorithm 1 “First-Relax-Then-Reformulate”.

1: Choose $\delta_b > 0$, set $r = 0$, $s = 0$, $\chi = \infty$, $E^0 = [0 \ldots 0] \in \mathbb{R}^{1 \times ny}$, $e^0 = 0 \in \mathbb{R}$.
2: while $\chi > \delta_b$ or $s > 0$ do
3: Construct E^{r+1} and e^{r+1}
4: if the modified variant of the single-level reformulation is feasible then
5: Solve this problem to obtain (x^{r+1}, y^{r+1}) and set $s = 0$.
6: else if the feasibility problem is feasible then
7: Solve this problem to obtain (x^{r+1}, y^{r+1}, s).
8: else
9: Return “The original problem is infeasible.”.
10: end if
11: Set $r \leftarrow r + 1$ and $\chi = b(y^r)$.
12: end while
13: Return $(\bar{x}, \bar{y}) = (x^r, y^r)$.

Theorem: If Algorithm 1 terminates, then (\bar{x}, \bar{y}) is $(0, 0, \delta_b, 0)$-feasible for original bilevel problem.
Algorithm 2 “First-Relax-Then-Reformulate”.

1: Choose $\delta_b > 0$, set $r = 0$, $s = 0$, $\chi = \infty$, $E^0 = [0 \ldots 0] \in \mathbb{R}^{1 \times ny}$, $e^0 = 0 \in \mathbb{R}$.
2: while $\chi > \delta_b$ or $s > 0$ do
3: Construct E^{r+1} and e^{r+1}
4: if the modified variant of the single-level reformulation is feasible then
5: Solve this problem to obtain (x^{r+1}, y^{r+1}) and set $s = 0$.
6: else if the feasibility problem is feasible then
7: Solve this problem to obtain (x^{r+1}, y^{r+1}, s).
8: else
9: Return “The original problem is infeasible.”.
10: end if
11: Set $r \leftarrow r + 1$ and $\chi = b(y^r)$.
12: end while
13: Return $(\bar{x}, \bar{y}) = (x^r, y^r)$.

Theorem: If Algorithm 1 terminates, then (\bar{x}, \bar{y}) is $(0, 0, \delta_b, 0)$-feasible for original bilevel problem.
A European Gas Market Model with Chance Constraints
Level 4 TSO cost-optimally transports the given nominations
Level 3 Traders nominate at a day-ahead market
Level 2 Traders book, i.e., sign mid- to long-term capacity contracts
Level 1 TSO announces technical capacities and booking price floors
Level 4 TSO cost-optimally transports the given nominations
Level 3 Traders nominate at a day-ahead market
Level 2 Traders book, i.e., sign mid- to long-term capacity contracts
Level 1 TSO announces technical capacities and booking price floors

Grimm, Schewe, S., Zöttl (2019)
- Four-level modeling of the European entry-exit gas market
- Identification of assumptions that allow to simplify the model
- Perfect competition → reduction to a bilevel model
Bilevel Modeling Under Perfect Competition: Upper Level

$$\max_{q^U, q^W, \pi^U, \pi^W} \varphi^u(q^\text{nom}, q) = \sum_{t \in T} \left(\sum_{i \in \mathcal{P}_-} \int_0^{q^\text{nom}_{i,t}} p_{i,t}(s) \, ds - \sum_{i \in \mathcal{P}_+} c_i \varphi^\text{var}_{q^\text{nom}_{i,t}} \right) - \sum_{t \in T} \sum_{a \in \mathcal{A}} c^\text{trans}(q_{a,t})$$

s.t. $0 \leq q^U_w, 0 \leq \pi^U_w$ for all $u \in V_+ \cup V_-$

$$\sum_{u \in V_+ \cup V_-} \sum_{i \in \mathcal{P}_u} \pi^\text{book}_u q^\text{book}_i = \sum_{t \in T} \sum_{a \in \mathcal{A}} c^\text{trans}(q_{a,t})$$

$$(\pi, q) \in \mathcal{F}(q^\text{nom})$$

$$(q^\text{book}, q^\text{nom}) \in \arg \max \{ \text{lower-level problem} \}$$
Bilevel Modeling Under Perfect Competition: Lower Level

\[
\begin{align*}
\max_{q^{\text{book}, q^{\text{nom}}}} \quad & \sum_{t \in T} \left(\sum_{i \in P_-} \int_0^{q_{i,t}^{\text{nom}}} P_i(t(s)) \, ds - \sum_{i \in P_+} c_i\var q_{i,t}^{\text{nom}} \right) - \sum_{u \in V_+ \cup V_-} \sum_{i \in P_u} \pi^u_{\text{book}} q_i^{\text{book}} \\
\text{s.t.} \quad & \sum_{i \in P_u} q_i^{\text{book}} \leq q_u^{\text{TC}} \quad \text{for all } u \in V_+ \cup V_- \\
& 0 \leq q_{i,t}^{\text{nom}} \leq q_{i,t}^{\text{book}} \quad \text{for all } i \in P_- \cup P_+, \ t \in T \\
& \sum_{i \in P_-} q_{i,t}^{\text{nom}} - \sum_{i \in P_+} q_{i,t}^{\text{nom}} = 0 \quad \text{for all } t \in T
\end{align*}
\]
• In reality, exit players $i \in \mathcal{P}_-$ nominate quantities $q_{i,t}^{\text{nom}}$ without exactly knowing the actual load $\xi_{i,t}$

• Load vector $\xi = (\xi_{i,t})_{i \in \mathcal{P}_-, t \in T}$ with log-concave cumulative distribution function

• In particular: $\xi \sim \mathcal{N}(m, \Sigma)$

• Modeling assumption: the TSO imposes a fee μ on the exit players $i \in \mathcal{P}_-$ to ensure that the realized loads are covered up to a specified safety level $p \in [0, 1]$

• Joint (over all times and exit players) probabilistic constraint

$$\mathbb{P} (\xi_{i,t} \leq q_{i,t}^{\text{nom}} \text{ for all } i \in \mathcal{P}_-, t \in T) \geq p$$

• Log-concavity of the Gaussian distribution function implies that the log-transformed probabilistic load coverage constraint

$$h(q_-^{\text{nom}}) := \log p - \log \mathbb{P} (\xi_{i,t} \leq q_{i,t}^{\text{nom}} \text{ for all } i \in \mathcal{P}_-, t \in T) \leq 0$$

is convex
In iteration r, the lower-level relaxation reads

$$
\max_{q_{\text{book}}, q_{\text{nom}}} \sum_{t \in T} \left(\sum_{i \in \mathcal{P}} \int_{0}^{q_{i,t}^{\text{nom}}} P_{i,t}(s) \, ds - \sum_{i \in \mathcal{P}_+} c_{i}^{\text{var}} q_{i,t}^{\text{nom}} \right) - \sum_{u \in V_+ \cup V_-} \sum_{i \in \mathcal{P}_u} \pi_{u}^{\text{book}} q_{i}^{\text{book}}
$$

s.t. \quad \sum_{i \in \mathcal{P}_u} q_{i}^{\text{book}} \leq q_{u}^{\text{TC}}, \quad u \in V_+ \cup V_-

\begin{align*}
0 & \leq q_{i,t}^{\text{nom}} \leq q_{i}^{\text{book}}, \quad i \in \mathcal{P}_+ \cup \mathcal{P}_- , \quad t \in T \\
\sum_{i \in \mathcal{P}_-} q_{i,t}^{\text{nom}} - \sum_{i \in \mathcal{P}_+} q_{i,t}^{\text{nom}} & = 0, \quad t \in T \\
h(q_{-}^{j}) + \nabla_{q_{\text{nom}}} h(q_{-}^{j})^{T} (q_{\text{nom}}^{j} - q_{-}^{j}) & \leq 0, \quad j = 1, \ldots, r
\end{align*}
Back to the “First-Relax-Then-Reformulate” Approach

• This lower-level problem is convex and satisfies Slater’s CQ
• Take its KKT conditions → MPCC as a single-level reformulation
• Linearize the KKT complementarity conditions using binary variables and big-Ms
• Single-level reformulation is a mixed-integer and concave maximization problem with bilinear (and thus nonconvex) equality constraints
• Can be solved with spatial branching …
• ... but it’s challenging!
• See the paper for the details
 • Verification of Slater’s CQ
 • Provably correct big-Ms
 • Further quantile and other cuts
 • Further bounding techniques to obtain ex-post optimality certificates
Numerical Results
The Test Network

\[
\begin{align*}
\text{Entry 1} & \quad \text{Exit 1} \\
\text{Node 2} & \quad \text{Node 3} \\
\text{Node 1} & \quad \text{Node 4} \\
\text{Node 5} & \quad \text{Entry 1} \\
\end{align*}
\]

Variables:

\[
\begin{align*}
\text{var}_1 &= 274.8 \\
\text{var}_2 &= 270.4 \\
\text{var}_3 &= 250.3 \\
\end{align*}
\]

Pipe Lengths (La):

\[
\begin{align*}
\text{Pipe 1} &: \quad \text{La} = 190 \\
\text{Pipe 2} &: \quad \text{La} = 180 \\
\text{Pipe 3} &: \quad \text{La} = 90 \\
\text{Pipe 4} &: \quad \text{La} = 190 \\
\text{Pipe 5} &: \quad \text{La} = 130 \\
\text{Pipe 6} &: \quad \text{La} = 110 \\
\text{Pipe 7} &: \quad \text{La} = 70 \\
\text{Pipe 8} &: \quad \text{La} = 80 \\
\text{Pipe 9} &: \quad \text{La} = 210 \\
\text{Pipe 10} &: \quad \text{La} = 150 \\
\text{Pipe 11} &: \quad \text{La} = 130 \\
\end{align*}
\]

Pipe Variances (b):

\[
\begin{align*}
b_1 &= -16.60 \\
b_2 &= -13.80 \\
b_3 &= -20.70 \\
\end{align*}
\]
Numerical Results

p	Bisection	Bounding	δ-Feasibility	Total
	Runtime	#Iter.	Runtime	
0.60	12.13	32	36.80	77.9
0.65	14.15	28	32.00	86.86
0.70	11.13	26	29.70	80.53
0.75	9.04	25	28.55	51.78
0.80	7.98	25	29.06	43.3
0.85	11.08	21	24.01	42.5
0.90	11.05	23	26.34	64.91
0.95	5.96	24	27.99	48.09
0.96	7.56	22	24.56	36.29
0.97	6.94	21	23.96	40.10
0.98	4.63	25	93.68	204.62
0.99	6.96	26	29.76	1287.37

	#Iter.	Runtime	#Iter.	Runtime	Gap
0.60	10	28.97	42	77.9	0.001
0.65	16	40.71	44	86.86	0.001
0.70	13	39.70	39	80.53	0.001
0.75	6	14.19	31	51.78	0.002
0.80	4	6.26	29	43.3	0.005
0.85	3	7.41	24	42.5	0.006
0.90	8	27.52	31	64.91	0.017
0.95	6	14.14	30	48.09	0.010
0.96	3	4.17	25	36.29	0.011
0.97	4	9.20	25	40.10	0.015
0.98	9	106.31	34	204.62	0.032
0.99	10	1250.65	36	1287.37	0.187
Total Welfare and Price of Load Coverage
• Bilevel problems with black-box constraint in the lower level
• Algorithm to compute δ-feasible points
• Relevant application for chance-constrained modeling of the EU gas market
• High-quality solutions in practice
Bilevel problems with black-box constraint in the lower level
Algorithm to compute δ-feasible points
Relevant application for chance-constrained modeling of the EU gas market
High-quality solutions in practice
Algorithms for ϵ-δ-optimal points?
Black-box functions that depend on the leader’s decision?
• Bilevel problems with black-box constraint in the lower level
• Algorithm to compute \(\delta \)-feasible points
• Relevant application for chance-constrained modeling of the EU gas market
• High-quality solutions in practice
• Algorithms for \(\varepsilon-\delta \)-optimal points?
• Black-box functions that depend on the leader’s decision?

Stay healthy!