Estimation of Genetic Parameters of Biomass Production and Composition Traits in *Miscanthus sinensis* Using a Staggered-Start Design

Raphaël Raverdy¹ · Emilie Mignot² · Stéphanie Arnoult² · Laura Fingar¹ · Guillaume Bodineau³ · Yves Griveau⁴ · Solenne Volant¹ · Maryse Brancourt-Hulmel¹

Received: 22 March 2021 / Accepted: 21 April 2022 / Published online: 12 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Traits for biomass production and composition make *Miscanthus* a promising bioenergy crop for different bioconversion routes. They need to be considered in miscanthus breeding programs as they are subjected to genetic and genetic × environment factors. The objective was to estimate the genetic parameters of an *M. sinensis* population grown during 4 years in two French locations. In each location, the experiment was established according to a staggered-start design in order to decompose the year effect into age and climate effects. Linear mixed models were used to estimate genetic variance, genotype × age, genotype × climate interaction variances, and residual variances. Individual plant broad-sense heritability means ranged from 0.42 to 0.62 for biomass production traits and were more heritable than biomass composition traits with means ranging from 0.26 to 0.47. Heritability increased through age for most of the biomass production and composition traits. Low genetic variance along with large genotype × age and genotype × climate interaction variances tended to decrease the heritability of biomass production traits for young plant ages. Most of the production traits showed large interaction variances for age and climate in both locations, while biomass composition traits highlighted large interaction variances due to climate in Orléans. The genetic and phenotypic correlations between biomass production and composition traits were positive, while hemicelluloses were negatively correlated with all traits. Selection is difficult on young plants as the heritability is too low. The joint improvement of biomass production and composition traits would help provide a better response of miscanthus to selection.

Keywords Broad-sense heritability · Variance components · Age effect · Climate effect · Genetic and phenotypic correlations

Abbreviations

Abbreviation	Description
ABM_tDMha	Aboveground biomass yield
ADF_%DM	Acid detergent fiber
ADL_%DM – ADL_%CW	Acid detergent lignin
Ash_%DM	Ash
CH cm	Canopy height
CGDD	Cumulated growing degree-days
CL_%DM – CL_%CW	Cellulose
CW	Cell wall
C50_cm	Plant circumference
DM	Dry matter
ETPP	Penman potential evapotranspiration
GBFOr	Unité expérimentale Génétique Biomasse Forêtières Orléans
GCIE	Unité expérimentale Grandes Cultures Innovation Environnement
GnpIS	Multispecies integrative information system
GWAS	Genome-wide association study

Maryse Brancourt-Hulmel
maryse.hulmel@inrae.fr

¹ BioEcoAgro Joint Research Unit, INRAE AgroImpact, University of Liège, University of Lille, University of Picardie Jules Verne, 80203 Estrées-Mons, France
² GCIE-Picardie, INRAE, 80203 Estrées-Mons, UE, France
³ GBFOr, INRAE, Ardon, UE, France
⁴ Institut Jean-Pierre Bourgin, INRAE, CNRS, Université Paris-Saclay, 78000 Versailles, AgroParisTech, France
Introduction

High-yielding crops with low-nutrient inputs and minimal negative environmental impacts are required for sustainable agriculture [1, 2]. As such, species from the Miscanthus genus are perennial C4 grasses native to East Asia and identified as a promising lignocellulosic biomass crop in Europe and North America [3–6]. Therefore, this crop is a feedstock for a broad range of applications: heat and electricity production, gardening and animal bedding, as well as recent applications such as biofuel and biomaterial production [7–9].

Miscanthus × giganteus (M. × giganteus) [10], an interspecific hybrid between M. sacchariflorus and M. sinensis, is currently being used for most biomass production in Europe and North America with a single clone [11, 12]. This clone can be grown for 20–25 years in the field, for the oldest plantations [4]. However, growing this single clone is risky, because pests and diseases could spread in non-native areas and economically threaten the overall biomass production. Moreover, the narrow genetic base of this interspecific hybrid [13] and the sterility of the cultivated clone hampers its breeding. Therefore, the development of new miscanthus cultivars is targeted with a wide adaptation to a range of different environments [14, 15].

The diploid Miscanthus sinensis and the tetraploid Miscanthus sacchariflorus represent substantial genetic and undomesticated diversity, making them capable of adapting and growing in various geographic areas [16, 17]. M. sinensis has a high yield potential and is adapted to drained soils, while M. sacchariflorus develops long rhizomes with an ability to spread, especially in wetland areas [16, 18], which is not desirable due to the risk of it becoming invasive. For these reasons, M. sinensis is more suitable for improving biomass production in arable lands. The genetic improvement of M. sinensis will thus serve to enhance its own potential biomass production as well as M. × giganteus yield, while preserving the sterility of the new varieties in order to prevent potential invasiveness [14, 19]. The breeding of M. sinensis can be indeed targeted as a high-yielding crop or as a good parent.

M. sinensis exhibits considerable intraspecific variability, with major genetic groups originating from regions across China, Korea, and Japan [20–22]. The breeding of new miscanthus cultivars would make it possible to extend the genetic base in miscanthus breeding programs of western countries where it is mainly obtained from ornamental accessions originating from Japan [19, 21]. This would be possible by crossing distinct ornamental cultivars or exploiting wild available germplasm [14, 19, 23].

To target miscanthus end-uses such as heat, biofuel, biomaterial, or animal bedding, high-yielding cultivars are needed with a quality well suited for each application targeted [14]. Regarding biomass production-related traits, some key traits such as plant height, stem diameter, latency at panicle emergence or flowering, and growth rate are positively related to biomass production [24]. The consideration of plant stem number is also of interest as the above-ground volume—calculated as the product between plant height, plant stem number, and stem section—is shown to be a good predictor of the aboveground biomass [25, 26]. Plant biomass is mostly composed of the cell wall (CW). Plant cell walls contain fibrils of cellulose deeply inserted in a network of structural polysaccharides (hemicelluloses and pectins), lignins, and proteins [27]. Biomass production and biomass composition traits have to be evaluated across contrasted environments. The phenotype or expression of each trait differs according to the available genetic variability, itself determined by the genetic material studied. It also differs according to the environmental variability, determined for the years and locations considered. As miscanthus is a perennial crop, this effect of year is composed of a climatic condition effect confounded with an age effect.

Many studies have evaluated M. × giganteus, M. sinensis, or M. sacchariflorus genotypes (accessions, hybrids, etc.) for yield and morphological traits. For these traits,
The objectives of this study were to estimate the genetic parameters, genetic and phenotypic correlations in terms of biomass production and composition traits together, during four consecutive years in a diploid biparental *M. sinensis* population in two contrasted locations. In a perennial crop such as miscanthus, environmental variability is itself determined by specific conditions such as location and year, and the year encompasses the age and climate effects. If we already know that the genetic parameters and correlations vary according to genetic and environmental variability, the extent to which this variation is due to specific conditions such as age, year, and location is not yet known in miscanthus as the previous studies did not decompose the year effect into age and climatic condition effects. In particular, is the selection of young plants during the yield-building phase equivalent to old plants which reached their full growth potential? Are the age effects on the genetic parameters of the same magnitude of climatic condition effects? Does the trend vary between locations? For that purpose, the population was tested according to a staggered-start design [49] that established the population twice in 2014 and 2015 in both locations. With such a design, the “year” effect can be decomposed into an “age” effect and a “climate” effect [50, 51]. To date, it is the first study in miscanthus which estimates the genetic parameters and correlations when considering both biomass production and composition traits and distinguishes within the year, age, and climate effects. This will substantially broaden knowledge of the genetic evaluation of biomass traits, according to the effects of age, climate, or location.

Materials and Methods

Plant Material

The mapping population was generated by crossing two diploid ornamental *M. sinensis* cultivars, “Malepartus” (Mal) and “Silberspinne” (Sil), to obtain an F1 progeny. These two parents were purchased in a French nursery for a previous study [24] and their initial provenance was identified to be from central and southern Japan [21, 22]. They were then evaluated in the field within a set of 21 miscanthus clones [24, 31]. They were selected for their highly contrasted plant stem numbers, and then reciprocally crossed in isolated greenhouses during the fall of 2007, at the INRAE BioEco-Agro research center of Estrées-Mons in Northern France. All the seeds resulting from the cross were then stored in the refrigerator in suitable packaging at 4 °C. From 2012 to 2015, each seed was germinated in vitro and the corresponding plant was propagated in vitro according to a protocol of shoot organogenesis and regeneration [52]. This provided clonal replicates of each single genotype originating from a

BioEnergy Research (2022) 15:735–754
seed. Then, all seedlings were planted in a greenhouse that offered suitable growing conditions and grew in the greenhouse for a year before being transplanted to a field. An average of four replicates was finally obtained per genotype, with variations for some genotypes due to variable genotype ability for in vitro propagation.

Experimental Design and Planting

The experimental design of the trial was a staggered-start design [49], established in two different French locations primarily contrasted by their soil and climatic conditions and approximately 290 km apart. The first site was located at the INRAE GCIE experimental unit of Estrées-Mons (Somme, 49° 53′ N, 3° 00′ E) and characterized by a deep loam soil (Orthic Luvisol, WRB) while the second one was located at the INRAE GBFo experimental unit in Orléans (Loiret, 47° 49′ N, 1° 54′ E) and offered a sandy soil (Dystric Cambisol, WRB). For each location, the field trial consisted in a staggered-start design where two groups of genotypes were established in two subsequent years. These different years were planted side-by-side according to two adjacent plots in the field (one plot per year). The first group of genotypes was established in 2014 and coded G1, while the second group of genotypes was established in 2015 and coded G2 (Fig. 1a). The first group G1 was observed for a 4-year period and the second group G2 for a 3-year period. In Estrées-Mons, 159 replicated genotypes, including the parents, were distributed across each plot, with most genotypes being common between the two establishment years (Fig. 1a). In Orléans, 106 replicated genotypes, including the parents, were established in each plot, with in addition a set of genotypes common to the two establishment years (Fig. 1a). In both locations, the staggered-start designs were composed of two incomplete randomized block designs, with genotypes being replicated in four of the five blocks of each on average. They were organized with single plants equally spaced within and between rows 1 m apart, which led to a plant density of 1 plant per m². To ensure an equal competition effect between plants along the trial, a border row was planted on each side of the plots that contained repeated genotypes of the population. After transplanting, the field trial was watered and drip irrigation was installed, in both years and locations, thus supplying sufficient water for the overall duration of the trial. No fertilizers were applied and weed management was carried out using a hoe whenever necessary. Plants that did not survive the first year were replaced by plants of the same age that were kept in a nursery near the trial.

The strength of the staggered-start design made it possible to decompose the “year” effect into “age” and “climate” effects (Fig. 1b). For example, when considering the “year” 2017 in one location, G1 and G2 were contrasted by

Fig. 1
A staggered-start design was established in each of the two locations, Estrées-Mons and Orléans. For each staggered-start design, the number of *M. sinensis* genotypes per group (G1 and G2) are displayed, as well as the field plan. Common genotypes between groups within each location are also detailed.

a) Description of the two staggered-start designs

b) Description of the data subsets for statistical Model 2 and Model 3 applied for each location

(i) the year 2017 was considered for G1 and G2, with the age effect modeled according to 3-year-old genotypes in G1 and 2-year-old in G2. In this case, plants of different ages grew in the same climatic conditions during a single year. While for example (ii), 3-year-old genotypes were considered, according to genotypes of G1 which grew in year 2017 and genotypes of G2 which grew in year 2018. For this case, plants of the same age grew in different climatic conditions, related to each year considered for each group. Below each group name, the year of establishment is specified between brackets.
the “age” effect, because G1 plants were 3 years old while G2 plants were only 2 years old. Thus, the age effect was decomposed based on the year considered, in which a given climatic condition occurred. Plants with the same “age” of 3-year-old genotypes were then considered, for instance, with G1 observed in 2017 and G2 in 2018: G1 and G2 were now distinguished by the “climate” effect, because G1 plants were evaluated during the year 2017 and G2 plants during 2018. Therefore, each climatic condition that occurred in each of the 2 years was considered using plants of the same “age.” The effect of the soil, another environmental factor, was not substantial as the two plots of the staggered-start design were adjacent in the field (in a given location). All these decompositions were applied in each location to all biomass production and composition traits in order to assess the corresponding genetic parameters, genetic and phenotypic correlations. It can be noted that the analysis of these two kinds of data required two different statistical models as described later in the statistical analysis section.

Climatic Conditions According to Plant Cycle
Determined Per Year and Location

As reported previously, the staggered-start design was established in two different locations, each one characterized by specific soil and climatic conditions. Weather variables were calculated according to five periods of the plant cycle determined on Malepartus which is one parent of the population. These periods were determined for each year in which the population grew, by considering each location separately (Tables S2a and S2b). Due to the destruction of plants for the floral transition stage determination by apex dissections, the Malepartus clone was established in 2014 in a specific trial not far from the population trial, at a plant density of 2 plants/m² [53]. The pre-emergence phase was coded as Period 1 and lasted from senescence in the fall of year N − 1 to shoot emergence in year N (and accordingly, this period was not available for the first year). Period 2 lasted from shoot emergence to floral transition, i.e., which corresponded to the differentiation of the terminal vegetative apex into a panicle and was determined as the date of the first stem that showed the transition to floral stage. This date was determined according to Hou et al. [54]. Period 3 lasted from floral transition to panicle heading and Period 4 from panicle heading to senescence. Period 5 slightly contrasted with the other periods that were identically determined in both locations: in Estrées-Mons, it started with senescence and ended on the date of the first winter frost, while it ended on the harvest date in Orléans. This was due to the fact that winter frost always occurred after senescence in Estrées-Mons and therefore shortened the plant cycle, while no winter frost occurred in Orléans for all the years observed.

Based on the widely used BBCH scale or “Biologische Bundesanstalt, Bundessortenamt, CHemische Industrie” scale [55], it can be noted that the shoot emergence, panicle heading, and senescence dates corresponded to 09, 51, and 99 stages, respectively. Moreover, the floral transition was determined as the date of the first floral transition appearance. It corresponded to the widely used “double ridge stage” in winter wheat [56]. It was based on extensive apex observations made in Malepartus in 2018 [54] and on assessments for the other years. As for maize [57], the use of a degree-day model implying constant degree-day durations must predict the floral transition and flowering: the ratio between the growing degree-days (GDD) for the emergence-to-floral transition period and the GDD for the emergence-to-flowering period was calculated for Malepartus in 2018 and reached 0.17, this ratio was then applied for the estimations of the other years. A base temperature of 8 °C was used for the estimation of GDD, as refined for Malepartus [54].

In each location, weather variables were initially recorded daily in a meteorological station located at a short distance from the trial and downloaded from the CLIMATIK database (INRAE AGROCLIM, 2020). The weather variables were as follows: air minimum temperature (MinT), air maximum temperature (MaxT), air mean temperature (MeanT), soil minimum temperature (MinTs), precipitation (Prec_M), mean humidity (MeanH), vapor-pressure deficit (VPD), maximum vapor-pressure deficit (VPD_M), Penman potential evapotranspiration (ETPP), photosynthetically active radiation (PAR), cumulated growing degree-days (CGDD). Their mean was then summarized for each year in each location according to the five periods of the plant cycle previously defined (Tables S3a and S3b). In addition, cumulated precipitation (Prec_S) was also determined.

Phenotyping of Biomass Production
and Composition Traits

Five biomass production traits were phenotyped. The following morphological traits related to biomass production were evaluated. Canopy height (CH_cm) was phenotyped in October using a measuring rod from the ground to the ligule of the last ligulated leaf. Plant maximum height (HMax_cm) was measured in October from the ground to the highest panicle of the plant (if the plant flowered), or to the horizontal flexion of the highest leaf (if the plant did not flower). The plant stem number (PSNb) was determined in October on each plant, by considering all stems with at least one ligulated leaf. Plant circumference (C50_cm) corresponded to the measurement, just before harvest, of the plant circumference 50 cm from the ground. The aboveground biomass yield (ABM_tDMha) or aboveground dry matter (DM) yield, expressed in tDM/ha, was calculated based on the fresh weight and dry weight of one plant (dry matter per
ha) after the winter harvest late February. It can be noted that the traits related to flowering time were published by Hou et al. [54].

Six biomass composition traits were measured from a representative sample of approximately 500 g of fresh matter for each plant. Each sample was dried at 55 °C for 4 days in a well-ventilated oven and ground using a hammer mill grinder for it to pass through a 1-mm grid. The following traits were considered, according to the total dry matter content (%DM) or cell wall content (%CW): neutral detergent fiber, which corresponded to the cell wall content (coded NDF_%DM), acid detergent fiber (ADF_%DM), cellulose (CL_%DM; CL_%CW), hemicelluloses (HEM_%DM; HEM_%CW), acid detergent lignin (ADL_%DM; ADL_%CW), and ash (Ash_%DM).

In each location, all the traits were phenotyped over a 4-year period, from 2014 for G1 and 2015 for G2. Each trait was named according to a miscanthus ontology, developed at the INRAE BioEcoAgro research unit of Estreés-Mons, thanks to the GnpIS multispecies integrative information system [58] from the INRAE URGI of Versailles (https://urgi.versailles.inra.fr/ephesis/ephesis/ontologyportal.do).

As too many samples were available (about 4500), a high-throughput method based on near-infrared spectroscopy had to first be developed for the measurement of biomass composition traits to reduce the cost of the analyses by using a fraction of the dry powder samples (called calibration sample). NIR spectra were measured using an Antaris II – Thermo spectrometer and expressed in absorbance with a wave number range between 4000 cm⁻¹ and 10,000 cm⁻¹ and a resolution of 4 cm⁻¹. In order to determine a representative calibration sample, the spectra of all samples of a given year were first analyzed using a principal component analysis (PCA). About 10% of the genotypes were then selected based on their position on the two first principal components of the PCA in order to best reflect the whole population for the year under consideration. Every year, the calibration sample was then biochemically analyzed in order to determine the six biomass composition traits NDF, ADF, CL, HEM, ADL, and Ash in the Laboratoire Agronomique de Normandie (LANO), using an adaptation [59] of the Van Soest method [60]. Considering all sample calibrations of all years together, a partial least square (PLS) regression was carried out on each biomass composition trait (used as a single Y quantitative response variable) while the near-infrared absorption spectra were used as an X matrix of predictors. The validation of the PLS predictions was then carried out based on independent samples. The calibration and validation parameters showed good predictions of all biomass composition traits by near-infrared absorption spectra with correlations above 0.89 between measures and predictions (Table 1). Once the predictors were obtained by PLS, the biomass composition traits of all available samples were finally predicted.

Statistical Analysis

Phenotyping data were analyzed for each location separately. Linear mixed models [61] were carried out for the unbalanced datasets: for the age effect modeling according to each year and for the climate effect modeling according to each age. For the staggered-start design in Estreés-Mons, 159 genotypes were included, with 82 in common between the G1 and G2 groups of genotypes. As for the staggered-start design in Orléans, 106 genotypes were considered, with 59 in common between G1 and G2.

All production and composition traits were normally distributed and no data transformations were thus required prior to analysis. The statistical analysis carried out per location for each trait considered the age effect and the climate effect. The age and the climate were modeled as fixed effects, and the genotype was modeled as a random effect.

Table 1: Characteristics of NIRS calibrations developed for composition traits in miscanthus

Traits	Range	Calibration	Validation			
		n	r	n	r	SEP
NDF_%DM	70–90.2	244	0.89	40	0.89	1.72
ADF_%DM	35.5–60.4	244	0.93	40	0.94	1.62
CL_%DM	31–49.5	244	0.92	40	0.93	1.47
HEM_%DM	27.3–40.6	244	0.89	40	0.91	1.32
ADL_%DM	3.4–12.1	244	0.89	40	0.90	0.85
CL_%CW	41.2–50.1	244	0.90	40	0.90	1.35
HEM_%CW	31.4–50	244	0.93	40	0.93	1.68
ADL_%CW	4.4–14.3	244	0.87	40	0.89	0.99
Ash_%DM	1.2–7.8	244	0.94	40	0.93	0.45
to the analysis. To account for the age effect modeling, an initial linear mixed model (Model 1) was applied to each trait studied, considering each location and each year in which the progeny grew (2016-year, 2017-year, or 2018-year data subsets in Fig. 1b). It initially consisted of a full statistical model which took into account block and spatial effects using the “breedR” package implemented in the R software [62]. It accounted for the environment heterogeneity within each trial among the blocks and diagnosed spatially distributed patterns of remaining residual variations using variograms. The remlf90 function of the package, based on restricted maximum likelihood estimations, was used to estimate all variance components of the progeny.

\[
Y_{ijkl} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \delta_l + \epsilon_{ijkl} \tag{1}
\]

where \(Y_{ijkl}\) represents the phenotypic value measured on plant \(k\) of genotype \(i\) at age \(j\) in block \(l\); \(\mu\) is the overall mean; \(\alpha_i\) is the random effect of genotype \(i\); \(\beta_j\) is the fixed effect of age \(j\); \((\alpha \beta)_{ij}\) is the random interaction between genotype \(i\) and age \(j\); \(\delta_l\) is the effect of block \(l\) and \(\epsilon_{ijkl}\) is the random residual for plant \(k\) of genotype \(i\) at age \(j\) in block \(l\). An autoregressive spatial component was included in the model based on \(x\) and \(y\) coordinates in each plot in order to decompose the residual \(\epsilon_{ijkl}\) into a spatially dependent parameter, \(\theta_{ijkl}\), for plant \(k\) of genotype \(i\) in block \(l\), and an independent remaining residual [63].

This full model was compared with a sub-model with no decomposition of the residual term into spatially dependent and independent effects. It was also compared with another sub-model with no block effect but with the decomposition of the residual term into spatially dependent and independent effects. Based on the Akaike information criterion (AIC) [64] of each of the three models, the last one which dropped the block effect but took into account the spatial effect was found to have a lower AIC (i.e., better performance) in all datasets (Fig. S1) and was retained afterwards. In addition, each model detailed hereafter was initially tested on balanced datasets by considering the 82 common genotypes between G1 and G2 in Estrées-Mons. Then, each model was tested on unbalanced datasets using all genotypes, which were common and non-common between G1 and G2. As models applied to balanced and unbalanced datasets yielded very similar results, all the analyses were finally carried out on unbalanced datasets, thus including more genotypes. The Model 2 finally used was written as follows and used for 2016-year, 2017-year, or 2018-year data subsets (Fig. 1b):

\[
Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk} \tag{2}
\]

where all the terms are described as previously without taking into account the block effect.

To account for the climate effect modeling (Model 3), the following linear mixed model was applied to each studied trait, considering each location and each age of the progeny (age 1, age 2, or age 3 data subsets in Fig. 1b):

\[
Y_{ikl} = \mu + \alpha_i + \gamma_l + (\alpha \gamma)_{il} + \epsilon_{ikl} \tag{3}
\]

where each term is similar to Model 2 except that age effect \(\beta_j\) is replaced by climate effect \(\gamma_l\) of year \(l\), and the interaction between genotype \(i\) and age \(j\) \((\alpha \beta)_{ij}\) by the interaction between genotype \(i\) and climate effect of year \(l\) \((\alpha \gamma)_{il}\). Note that the terms \(\alpha_i\), \(\beta_j\), \(\gamma_l\), and \(\epsilon_{ikl}\) were different from the terms given by the previous Model 2 because the corresponding effects were estimated based on different datasets (Fig. 1b).

The ratio of the genetic variance to the genotype \(\times\) age interaction variance and the ratio of the genetic variance to the genotype \(\times\) climate interaction variance were respectively computed based on corresponding variance components estimated using Model 2 and Model 3. For each trait, these ratios made it possible to determine the part of genetic determinism mainly due to stable genetic effect or genotype \(\times\) age and genotype \(\times\) climate interaction effects.

According to the two previous models, individual plant broad-sense heritability sensu lato values \(H^2_{sl}\) were estimated using the following formulas:

For the age effect modeling according to each year (Model 2),

\[
H^2_{sl} = \frac{\sigma^2_{\alpha}}{\sigma^2_{\alpha} + \sigma^2_{\alpha \beta} + \sigma^2_{\epsilon}} \tag{4}
\]

where \(\sigma^2_{\alpha}\) is the variance attributed to the genotype, \(\sigma^2_{\alpha \beta}\) is the variance of the genotype \(\times\) age interaction and \(\sigma^2_{\epsilon}\) is the residual variance.

For the climate effect modeling according to each age (Model 3),

\[
H^2_{sl} = \frac{\sigma^2_{\alpha'}}{\sigma^2_{\alpha'} + \sigma^2_{\alpha' \gamma} + \sigma^2_{\epsilon'}} \tag{5}
\]

Here, each term is similar to the previous formula, except \(\sigma^2_{\alpha' \gamma}\), which is the variance of the genotype \(\times\) climate interaction.

According to the two previous models again, progeny-mean broad-sense heritability values [40, 65] were also estimated for the age effect modeling (Model 2) and the climate effect modeling (Model 3), respectively, as:

\[
H^2_{pi} = \frac{\sigma^2_{\alpha}}{\sigma^2_{\alpha} + \sigma^2_{\alpha \beta} + \sigma^2_{\epsilon}} \tag{6}
\]

\[
H^2_{pi} = \frac{\sigma^2_{\alpha'}}{\sigma^2_{\alpha'} + \sigma^2_{\alpha' \gamma} + \sigma^2_{\epsilon'}} \tag{7}
\]
where \(J \) is the number of ages considered, \(L \) is the number of years with associated climates, and \(K \) is the mean number of replicates per genotype.

Genetic and phenotypic correlations between traits were then assessed, considering a given year with the age effect modeling (Model 2) or a given age with the climate effect modeling (Model 3). Genetic correlations were estimated using the equation described in Howe et al. [66] which was coded “Eq. 9” in their paper. To calculate phenotypic correlations with individual values, Pearson correlation coefficients were computed using R package “stats” and visualized using the “corrplot” R package [67]. In order to characterize the climatic conditions over the years of the experiment, an initial principal component analysis (PCA) considered the weather variables determined for the five periods of the growing season for each year and location: weather variables were considered as variables and the individuals were composed of the combinations of period \(\times \) year. Each principal component corresponded to a linear combination of the weather variables. Then, a subsequent Hierarchical Clustering on Principal Components (HCPC) was carried out. For this hierarchical classification, the method used the coordinates of the individuals (combinations of period \(\times \) year) on the principal components, which distinguished the combinations of period \(\times \) year on their climatic conditions. PCA and HCPC were performed by using the “FactoMineR” R package [68].

Results

Biomass Composition Traits Were Generally Less Heritable than Biomass Production Traits with Substantial Variations According to Climatic Conditions and Ages for All Traits

For each trait, the means of individual plant broad-sense heritability (\(H_{pi}^2 \)) and the means of progeny-mean broad-sense heritability (\(H_{pi}^2 \)) were computed based on heritability values determined using each age effect for each year, or each climatic effect for each age, with Model 2 or Model 3, respectively. Each location was considered separately (Table S1). This made it possible to know how much a trait was heritable, before analyzing their evolution while considering the age effect throughout the years or the climate effect throughout the ages. In Estrées-Mons, the biomass production traits were moderately to highly heritable, with means of individual plant broad-sense heritability ranging from 0.42 to 0.62 for estimates of Model 2 and from 0.43 to 0.52 for estimates of Model 3 (Table 2). Biomass composition traits were generally less heritable, ranging from 0.29 to 0.44 for estimates of Model 2 and from 0.26 to 0.47 of Model 3. In Orléans, the ranges were similar to those in Estrées-Mons, for estimates of both models and trait types (Table 2).

By considering the means of progeny-mean broad-sense heritability (\(H_{pi}^2 \)), which were more meaningful at clonal level, traits were highly heritable for both models and both locations, with the corresponding means ranging from 0.60 to 0.88 (Table S1). According to those means, the progeny-mean broad-sense heritability was around 1.5 to 2.5 higher than individual plant broad-sense heritability, most often with a higher difference for composition traits.

Lower Genetic Variances Along with Larger Interaction Variances Explained the Lower Heritability Values for Biomass Production Traits at Young Plant Ages

According to Model 2 which considered the age effect for successive years, lower genetic variances were observed for most of the production traits in 2016 than for the subsequent years in both locations (Fig. 2a). This year corresponded to younger plants that were 2 years old and 1 year old according to G1 and G2, respectively. The corresponding genotype \(\times \) age interaction variance (i.e., age effect) was larger for these young plant ages (Fig. 2a) as highlighted by the lower ratio of the genetic variance to genotype \(\times \) age interaction variance (Table 2). This ratio was even lower than 1 for aboveground biomass yield and lower than 2 for plant stem number and plant circumference in Orléans, respectively meaning that the extent of the genotype \(\times \) age interaction variance was higher than the genetic variance or corresponded to more than 50% of it (Fig. 2a; Table 2). Accordingly, the resulting individual plant broad-sense heritability values (\(H_{pi}^2 \)) of production traits were generally lower in 2016 while they increased throughout the years. Canopy height, plant maximum height, and aboveground biomass yield continuously increased until they reached a maximal heritability level above 0.50 in 2018 for both locations (Fig. 2a; Table S1). However, plant stem number in both locations and plant circumference in Estrées-Mons reached a maximum level one year earlier, in 2017, with values of 0.45, 0.56, and 0.49, for each case respectively (Fig. 2a; Table S1). When comparing the individual plant broad-sense heritability values obtained in 2018 to those obtained in 2016 in Estrées-Mons, the increase varied from 10 to 30% except for the plant stem number. In Orléans, this increase ranged from 30 to 80% (Table S1). Biomass composition traits were not so highly subjected to genotype \(\times \) age interaction: consequently, the heritability values were higher in 2018 for Orléans, mainly because of an increase in genetic variance (Fig. 2b; Fig. S2a; Table 2; Table S1).

Model 3 was used to model the climate effect for successive ages: lower genetic variances were highlighted for a major part of production traits at age 1 than at older plant
Table 2 For each trait in each year, Model 2 was used to determine the genetic variance (σ^2_α), the genotype × age interaction variance ($\sigma^2_{\alpha \beta}$), and the associated ratio was then computed and displayed $\sigma^2_\alpha / \sigma^2_{\alpha \beta}$. Mean individual broad-sense heritability (H^2_{sl}) was assessed according to the heritability in each year. For each trait and each age, Model 3 was then used to determine the genetic variance,(σ^2_α') the genotype × climate interaction variance ($\sigma^2_{\alpha' \gamma}$) and the associated ratio was also computed and displayed ($\sigma^2_\alpha' / \sigma^2_{\alpha' \gamma}$). Bold values are used to highlight results found for young ages. The mean individual broad-sense heritability was determined for each age. Nb. Y Number of years, Nb. A number of ages. See “Materials and Methods” for trait name.

Traits	Nb. Y	Trait Mean	$\sigma^2_\alpha / \sigma^2_{\alpha \beta}$ Mean H$^2_{sl}$	Trait Mean	$\sigma^2_\alpha' / \sigma^2_{\alpha' \gamma}$ Mean H$^2_{sl}$							
CH$_{cm}$	3	122.1	5.0	9.5	15.8	0.50	108.1	NA	8.3	6.5	0.55	
HMax$_{cm}$	3	188.6	4.6	10.3	24.5	0.62	190.9	6.0	17.9	21.9	0.61	
PSNb	3	246.8	2.1	2.7	1.9	0.42	190.7	1.6	3.6	2.8	0.49	
C50$_{cm}$	3	24.9	4.5	6.1	4.3	0.46	21.5	1.5	1.8	2.8	0.46	
ABM$_{tDMha}$	3	7.8	2.8	4.6	5.8	0.46	6.8	0.9	1.6	2.0	0.41	
CL$_{\%DM}$	2	37.4	-	29.1	13.7	0.39	37.5	-	-	11.4	17.3	0.44
HEM$_{\%DM}$	2	37.1	-	14.1	18.8	0.40	37.1	-	-	4.1	3.3	0.34
ADL$_{\%DM}$	2	5.0	-	3.6	4.1	0.31	4.9	-	-	5.2	8.3	0.34
NDF$_{\%DM}$	2	79.2	-	6.3	5.2	0.29	79.1	-	-	7.7	267.8	0.38
ADF$_{\%DM}$	2	42.5	-	23.5	12.0	0.37	42.4	-	-	15.9	15.0	0.40
Ash$_{\%DM}$	2	4.4	-	5.5	3.9	0.34	4.1	-	-	16	144.9	0.38
CL$_{\%CW}$	2	47.0	-	43.6	20.6	0.44	47.3	-	-	6.4	6.2	0.45
HEM$_{\%CW}$	2	46.2	-	32.5	14.5	0.40	46.3	-	-	8.5	6.2	0.40
ADL$_{\%CW}$	2	6.5	-	3.0	3.4	0.31	6.3	-	-	3.7	7.5	0.35

Traits	Nb. A	Trait Mean	$\sigma^2_\alpha' / \sigma^2_{\alpha' \gamma}$ Mean H$^2_{sl}$									
CH$_{cm}$	3	112.5	2.2	5.0	10.6	0.43	104.4	NA	4.1	0.54		
HMax$_{cm}$	3	178.6	4.4	3.9	8.8	0.52	187.5	5.9	3.8	35.2	0.54	
PSNb	3	233.7	1.9	2.8	1.9	0.43	182	2.9	3.1	3.6	0.50	
C50$_{cm}$	3	24.5	NA	5.5	4.1	0.46	21.3	NA	2.3	1.9	0.46	
ABM$_{tDMha}$	3	6.9	2.8	5.3	3.8	0.45	6.4	1.2	2.5	0.43		
CL$_{\%DM}$	2	37.3	-	24.8	16.2	0.39	38.1	-	-	2.4	4.7	0.35
HEM$_{\%DM}$	2	36.5	-	3.3	74.7	0.35	36.8	-	-	1.0	2.5	0.27
ADL$_{\%DM}$	2	5.1	-	3	14.8	0.33	5.2	-	-	2.0	3.8	0.27
NDF$_{\%DM}$	2	78.6	-	9.6	3.2	0.26	79.7	-	-	11.7	2.8	0.29
ADF$_{\%DM}$	2	42.4	-	17.8	44.2	0.38	43.2	-	-	2.9	4.7	0.32
Ash$_{\%DM}$	2	4.5	-	3.2	4.8	0.31	3.9	-	-	5.7	5.4	0.32
CL$_{\%CW}$	2	47.2	-	14	45.2	0.47	47.7	-	-	1.9	5.4	0.39
HEM$_{\%CW}$	2	45.9	-	12	97.6	0.43	45.6	-	-	2.0	5.1	0.34
ADL$_{\%CW}$	2	6.7	-	2.7	10.8	0.32	6.6	-	-	1.9	3.5	0.29
ages in both locations (Fig. 3a). For this age, the genotype × climate interaction variance (i.e., climate effect) was evaluated according to G1 plants observed in 2015 and G2 plants in 2016: the associated ratio of genetic variance to genotype × climate interaction variance was often lower than for other ages, meaning that young plants were the most subjected to climate variations (Table 2). Thus, the related individual plant broad-sense heritability values (\(H^2_{sl}\)) were generally higher at age 2 or age 3. They increased to reach a maximum level above 0.50 at age 3 for canopy height and plant maximum height in both locations (Fig. 3a; Table S1). For the plant stem number and aboveground biomass yield, the maximal heritability was reached at age 3 in Orléans, with values of 0.56 and 0.53, respectively. In Estrées-Mons, these traits showed the highest values, 0.47 and 0.50 respectively, at age 2. When comparing the individual plant broad-sense heritability values obtained at age 3 to those obtained at age 1, the increase ranged from 20 to 100% in each location, except for the plant stem number in Estrées-Mons (Table S1).

Most of the Production Traits Showed Large Interaction Variances According to Age and Climate in Both locations While All Composition Traits Showed Large Interaction Variances According to Climate in Orléans

The ratio of the genetic variance to genotype × age interaction variance, determined according to Model 2, was relatively low for most of the production traits evaluated from
2016 to 2018 in both locations. For the plant stem number, plant circumference and aboveground biomass yield, this ratio ranged from 1.9 to 6.1 in Estrées-Mons and from 0.9 to 3.6 in Orléans (Table 2). The lower the ratio values, the more genotype × age interaction variance was associated to the genetic determinism of a trait, which meant that genotype × climate interaction variances were substantial for these traits and conditions (Fig. 2a; Table 2).

The ratio of the genetic variance to genotype × climate interaction variance, determined using Model 3, was also generally low for the production traits evaluated from age 1 to age 3 and for both locations. In Estrées-Mons, it ranged from 2.2 to 5.0 when considering canopy height and plant maximum height at age 1 and age 2, while it ranged from 1.9 to 5.5 for plant stem number, plant circumference and aboveground biomass yield when considering all ages. In Orléans, the ranges of this ratio were relatively similar concerning the same traits (Table 2).

In contrast to Estrées-Mons, the biomass composition traits evaluated in Orléans showed large interaction variances according to the climate effect (Fig. 3b; Fig. S2b), as highlighted by the ratio ranging from 1.0 to 5.7 (Table 2). This ratio was especially low in 2017, which contributed to a decrease in heritability values compared to 2018 (Fig. 3b; Fig. S2b; Table 2; Table S1).

Accordingly, most of the production traits showed large interaction variances according to age and climate in both locations, while all composition traits showed large interaction variances according to climate in Orléans. Therefore, the corresponding heritability values were lowered.
Years Reflected Differences in the Climatic Conditions that Occurred During the Growing Season

For each location, a principal component analysis (PCA) was conducted to identify the weather variables that describe the climatic conditions over time. In Estrées-Mons, the first two principal components (PCs) accounted for 87.5% of the total variation in the correlation matrix, with PC1 explaining 75.2% and PC2 explaining 12.3%. In Orléans, those values were respectively 91.9%, 78.8%, and 13.1% (Fig. 4a, c).

For both locations, eight weather variables had high positive loadings (>0.9) on the right-hand position of the PC1 first principal component (Fig. 4a, c). Those indicators were related to temperature (MinT, MeanT, MaxT for the air, and MinTs for the soil), Penman potential evapotranspiration (ETPP), photosynthetically active radiation (PAR), and vapor-pressure deficit (VPD and maximal VPD_M). They were also highly correlated with each other. MeanH had a high negative loading (<−0.9), on the left-hand position of the PC1 first principal component (Fig. 4a, c). For both PCA, the PC2 second principal component was explained by the sum of precipitation calculated for each period and each year (Prec_S) as well as by the corresponding mean precipitation (Prec_M). Apart from irrigation (not taken into account in the calculation of the indicators), there was no real effect of climate as precipitation explained only 12 to 13% of the variability in climatic conditions.

As for Estrées-Mons, the clustering of the coordinates on the first two PCA components of the individuals (i.e., periods according to year) divided them into six distinct clusters (Fig. 4b). Cluster 2 and cluster 4 were the only ones

Fig. 4 a, c Principal component analysis (PCA) plots of the weather variables for both locations, according to the first and the second principal components, PC1 and PC2, respectively. b, d Clustering of the coordinates on the two first PCA components of the individuals, for five periods according to 4 years in two locations. The following variables were used: air minimum temperature (MinT), air maximum temperature (MaxT), air mean temperature (MeanT), soil minimum temperature (MinTs), mean precipitation (Prec_M), cumulated precipitation (Prec_S), mean humidity (MeanH), vapor-pressure deficit (VPD), maximum vapor-pressure deficit (VPD_M), Penman potential evapotranspiration (ETPP), photosynthetically active radiation (PAR), and cumulated growing degree-days (CGDD)
to include 4 years of a single period, which corresponded to Period 5 (from senescence to the date of the first frost day of the year) and Period 2 (from emergence to floral transition), respectively. Cluster 1 included the three available years for Period 1 before emergence. The year 2018 was very warm for Period 2, Period 4 and Period 5, which contrasted with all other years for each of these periods, especially in 2017 (Fig. 4b). This was particularly observed for two weather variables related to air and soil temperatures (Table S3a). Therefore, these contrasted climatic conditions between those years, for most of the periods related to the yield-building phase, partially accounted for the higher genotype × climate interaction variances observed for plant stem number, plant circumference, and aboveground biomass yield.

In Orléans, the years of Period 1 and Period 5 were spread over two clusters (Fig. 4d). There was indeed an overlap in the definition of the two periods: Period 5 of year \(N \) was defined from senescence in year \(N \) to winter harvest in year \(N + 1 \) while Period 1 in \(N + 1 \) from senescence in year \(N \) to emergence in year \(N + 1 \). Three clusters included the 4 years of a single period. The climatic conditions that occurred in 2015 were relatively rainy before floral transition and after panicle heading, and very warm and dry during the floral transition (i.e., Period 3) (Table S3b). Such conditions during the floral transition were highly contrasted with the year 2016, for which lower temperatures and higher precipitation were observed than for other years. For Period 5, the year 2016 also contrasted with years 2015 and 2017, with lower precipitation and temperatures (Fig. 4d, Table S3b). Thus, the climatic variations between 2016 and other years were likely to affect plant growth differently and contributed to explaining the genotype × climate interaction, which was especially highlighted for plant stem number, plant circumference and aboveground biomass yield.

Except for Hemicelluloses, Strong Correlations Were Positive Within Biomass Production Traits and Biomass Composition Traits, while They Were Intermediate Between Both Types of Traits.

The genetic and phenotypic correlations were calculated in both locations, for each year—using age effect modeling (Model 2)—and each age—using climate effect modeling (Model 3). As they were relatively similar in all cases, they were illustrated in two cases: in the first case with year 2017 in Estrées-Mons (Fig. 5), the correlations corresponded to the relationships between the traits according to the age effect modeling (between age 3 for G1 and age 2 for G2) and in the second case, with age 3 in Orléans (Fig. 6), they...
corresponded to the relationships between the traits according to the climate effect modeling (2017 for G1 and 2018 for G2).

The biomass production traits were positively correlated with each other, whether at a genetic or at a phenotypic level (Figs. 5 and 6). The strongest correlations were observed between both plant heights, canopy height and maximum height (above 0.6), between the canopy height and aboveground biomass yield (above 0.7), and above all, between the plant circumference (C50_cm) and aboveground biomass yield (above 0.9).

The biomass composition traits were positively correlated with each other, except hemicelluloses and ash (Figs. 5 and 6). Relatively strong correlations (above 0.49) were mainly highlighted, except for lignin (%CW) which was less correlated with NDF, cellulose in %DM, and cellulose in %CW (from 0.29 to 0.49). The correlations were sometimes lower when the biomass composition traits were expressed in %CW.

Most of the biomass production traits were moderately and positively correlated with the biomass composition traits, the threshold of 0.5 never being exceeded for phenotypic correlations. The relationships were sometimes stronger at a genetic level than at a phenotypic level, especially with NDF, ADF, and cellulose (%DM and %CW), for which they were sometimes just above the threshold of 0.5. Excepting ash content, the hemicellulose content (in %DM or %CW) was negatively correlated with all the other traits, including biomass production traits.

Discussion

The genetic parameters of biomass production and composition traits estimated for the *M. sinensis* population, highlighted intermediate to high individual plant broad-sense heritability values (H^2) according to the age effect per year and the climate effect per age, for each location considered. These values mainly increased over age, depending on genetic, genotype × age, and genotype × climate interaction variances as well as residual variances. Contrasted climatic conditions between the years and identified throughout the plant cycle for each year made it possible to explain the high genotype × climate interaction variance highlighted for some traits. Finally, genetic and phenotypic correlations between biomass production and composition traits were assessed according to specific years and ages. Strong and positive correlations were observed within biomass production traits and within biomass composition traits, except for
hemicelluloses, while intermediate correlations were highlighted between these two types of traits.

Therefore, three main points will be discussed in this section: (1) the contrast between young and old plant ages for genetic parameters thanks to the staggered-start design and its consequences on the miscanthus breeding cycle, (2) higher heritability values for biomass production traits than biomass composition traits, and (3) the intermediate correlations observed between biomass production and composition traits.

The Contrast Between Young and Old Plant Ages for Genetic Parameters Thanks to the Staggered-Start Design and Its Consequences on Breeding Cycle Duration

Using our staggered-start design, the genotypic and environmental variability was assessed based on genetic variance, genotype × age, and genotype × climatic condition interaction variances and residual variance. For most traits in both locations, the genetic variance was generally lower for the first year of evaluation according to the age effect (Model 2) or for the first age of evaluation according to the climatic condition effect (Model 3). This first age corresponded to young plants. The genetic variance often increased throughout the years and ages; this can be due to the fact that, while genotypes grow, their differences increase, resulting in higher genetic variability for each trait studied. According to each model, genotype × age and genotype × climate interaction variances were highlighted and were larger for young plant ages than for older plant ages, especially for biomass production traits. This was illustrated by the lower ratios of genetic variance to genotype × age interaction variance and the lower ratios of genetic variance to genotype × climate interaction variance. Moreover, the competition effects decreased with age while the genetic effects increased (Fig S1). However, most of the production traits, especially plant stem number, plant circumference, and aboveground biomass yield, also showed large genotype × age interaction variances for successive years and large genotype × climate interaction variances for successive ages, in both locations. The population was indeed composed of genotypes showing different growth strategies: for instance, some may have more small stems, while others fewer large stems. Besides that, their strategies can vary according to the ages and climatic conditions. The presence of greater genotype × age interaction variances for successive years means that we observed an age effect and that this age effect varied among genotypes. Moreover, these variations were more pronounced for successive years. This was observed for plant stem number, plant circumference, and aboveground biomass yield. This means that the values of these variables did not increase in the same manner for the genotypes in the population. The presence of large genotype × climate interaction variances for successive ages implies that differences among progeny were amplified by the more pronounced climatic conditions in 2017–2018. We indeed found that the year 2018 was very warm for most of the growing season (Period 2, Period 4, and Period 5), which contrasted with all other years for each of these periods, especially in 2017. Biomass composition traits showed large genotype × climate interactions for ages 2 and 3 studied in Orléans. These interaction variances rarely overtook the genetic variances in our study, meaning that genetic determinism is mainly led by stable genetic effects for each trait. Nevertheless, those interactions revealed that some genotypes evaluated in the population responded differently: (1) for different plant ages (i.e., the age effect) in the same year, with corresponding climatic condition or (2) in different climatic conditions (i.e., the climate effect) for the same age. Segura et al. [50] dissected apple tree architecture into ontogenetic and environmental effects: by using a staggered-start design, they related genotype × age interactions to ontogenetic effects and genotype × year interactions to climate effects. We found results in accordance with their approach. Dong et al. [47] considered the genotype × year interaction to assess the broad-sense heritability of miscanthus production traits and found a substantial effect for plant height, plant circumference, and culm-associated traits in one of their mapping populations. Kar et al. [69] evaluated the broad-sense heritability of miscane production traits (i.e., hybrids between sugarcane and miscanthus) and found substantial genotype × year variances, especially for the stem length and number of stems. Our study is consistent with their findings, even the genotype × year interaction variances presented in these last studies were not decomposed into age and climate effects as in the present study.

Intermediate to high individual plant broad-sense heritability values and high progeny-mean broad-sense heritability values were found for biomass production and composition traits in both locations. The low genetic variances found for the first year or first age evaluated, in combination with large genotype × age interactions or large genotype × climate interactions, tend to decrease associated heritability values. Thus, trait heritability values mostly increase throughout years and ages. These observations throughout years or ages were made possible thanks to the staggered-start design established in each location. Each single year was evaluated with its corresponding climate (i.e., climatic conditions that occurred during the year considered), and the age effect was modeled based on the different ages between G1 and G2 groups. Moreover, each age was evaluated and the climate effect was modeled according to the different climatic conditions between the year considered for G1 and the year considered for G2 (G1 and G2 having the same age). Our results are consistent with the majority of previous studies: Slavov et al. [41, 42] evidenced an increase in broad-sense...
heritability values for most biomass production and composition traits, by studying an *M. sinensis* population during 3 years. Clark et al. [45] evaluated accessions from different miscanthus species in six locations: an increase in broad-sense heritability values was observed for most biomass production traits, when considering broad-sense heritability for all locations between the second and third year. Gifford et al. [46] and Dong et al. [47] also reported higher broad-sense heritability values from year 2 to year 3 after establishment, when considering biomass production traits in *M. sinensis* biparental populations. However, Van der Weijde et al. [48] found that the broad-sense heritability values of biomass composition traits decreased between the second and third year after the establishment on an *M. sinensis* biparental population. The evolution of heritability estimates is specific to each population and environment tested [37]. As a perennial crop, miscanthus is subjected to changes in conditions from one year to the next, depending on each environment considered. However, such changes highlighted between years can be due to plant age or climatic conditions: to our knowledge, the present study is the first to allow the assessment of the broad-sense heritability of traits throughout years (i.e., each year with its corresponding climate when the age effect was taken into account) or throughout ages (i.e., each age when the climate effect was taken into account). Broad-sense heritability values are important to consider in a plant-breeding program, in order to start initial selections and provide genetic progress [40]. Because higher broad-sense heritability values were highlighted throughout years and ages, progress through selection would be greater as plants got older, especially for biomass production traits. Accordingly, this increases the duration of the selection process.

This study highlights the advantage of the staggered-start design in decomposing the year effect into climate and age effects to efficiently assess the genetic parameters in the perennial *Miscanthus sinensis*. In particular, it shows that the genotype × age and genotype × climate interaction variances are larger for young plant ages than for old plant ages, especially for biomass production traits. In addition, genetic variance as well as broad-sense heritability values increases across age spectrums. Such information must therefore be considered as important to miscanthus breeding.

Higher Heritability Values Were Observed for Biomass Production Compared to Biomass Composition Traits

Broad-sense heritability values and their means over years or ages were mainly higher for biomass production traits than biomass composition traits. For individual plant broad-sense heritability means over years or ages, biomass production traits were moderately to highly heritable, ranging from 0.42 to 0.62, while biomass composition traits were moderately heritable and ranged from 0.26 to 0.47. According to the progeny-mean broad-sense heritability means, both types of traits were highly heritable and the trends between them were similar to those of individual plant broad-sense heritability: means ranged from 0.67 to 0.88 for biomass production traits and from 0.60 to 0.80 for biomass composition traits. Contrary to our study, previous studies generally showed that biomass composition traits were more heritable than biomass production traits. According to their *M. sinensis* population evaluated over the course of 3 years, Slavov et al. [41] found higher broad-sense heritability means for biomass composition traits than biomass production traits, with means of 0.67 and 0.60, respectively. Petit et al. [70] studied the genetic variability of morphological, flowering, and biomass quality traits in hemp (*Cannabis sativa*) in three locations during one season: biomass composition traits were generally more heritable than biomass production traits.

Thus, the lower broad-sense heritability values observed for the biomass composition traits in our study are probably due to lower variability caused by genetic differences among the progeny (i.e., genetic variance) than for biomass production traits. In addition, it appears that biomass composition traits are frequently more affected by environmental effects (especially when focusing on the residual variance compared to other variances).

According to the staggered-start design, the means of heritability values over years and ages are higher for biomass production traits than for composition traits. This shows that the potential genetic improvement of biomass production traits is greater in the present study. Biomass composition traits are more affected by multiple-environment effects, which hamper the expression of the genetic effect in both locations studied. Thus, the improvement of biomass composition traits has to be carefully considered in breeding programs, in order to meet the specific requirements of each bioconversion routes.

Intermediate Correlations Were Highlighted Between Biomass Production and Composition Traits

The genetic and phenotypic correlations showed that biomass production and composition traits were moderately correlated in both locations. Even positive and strong correlations were highlighted within the biomass production traits and within most of the biomass composition traits, for each year according to the age effect (Model 2) or each age according to the climate effect (Model 3), the correlations between both types of traits were intermediate. In accordance with our study, Slavov et al. [42] reported intermediate correlations between most of the biomass production
and composition traits, considering each evaluated year of their *M. sinensis* population. Petit et al. [70] also found intermediate correlations between biomass production and composition traits in hemp. While it would be possible to easily improve biomass production traits or most of the biomass composition traits separately, the improvement of both types of traits together would be challenging due to their intermediate correlations. In addition, hemicelluloses would be difficult to improve with the other biomass production and composition traits, due to their negative correlations (in %DM and %CW). This was also reported by Slavov et al. [42] and Van der Weijde et al. [48]. This would interfere with downstream processing of biomass, as hemicellulose concentrations influence the conversion processes, including conversion into bioethanol or polymer composites: in miscanthus, Brancourt-Hulmel et al. [71] showed that the best composite performances were obtained with stems that showed the lowest concentrations of hemicellulose in association with higher concentrations of cell wall, lignin, p-coumaric acid, and cellulose. In contrast, Belmokhtar et al. [59] found that more digestible genotypes contained higher amounts of hemicellulose and lower amounts of cellulose and lignin.

Morphological traits contribute to the improvement of biomass production in order to enhance yield, regardless of the age or climate effect considered. However, the improvement of biomass yield for newly bred plants is not concomitant of the improvement of their biomass hemicellulose content. The improvement of biomass production traits does not generate a substantial increase in the other desirable components, due to the intermediate genetic correlations observed. Thus, the adjustment of biomass composition traits regarding age and climatic conditions must be carefully considered by miscanthus breeders, in order to select a biomass that is suited to the end-use targeted.

Conclusion

In this study, intermediate to high individual plant broad-sense heritability and high progeny-mean broad-sense heritability values were assessed for biomass production and composition traits. These heritability values changed in relation to the variance components estimated for each year according to the age effect modeling (Model 2) or each age according to the climate effect modeling (Model 3), when considering each staggered-start design per location. Lower genetic variances associated with substantial genotype × age and genotype × climate variances were observed for young plant ages, which tended to decrease heritability values, especially for biomass production traits. Such large interaction variances, compared to genetic variances, were highlighted according to the ratio of genetic variance to genotype × age interaction variance and the ratio of genetic variance to genotype × climate interaction variance. Heritability values generally increased through successive ages and years for most of the traits, which suggested an improved genetic progress when plants get older and implied an increase in the duration of the selection process. However, these values were sometimes lowered by large genotype × age interaction variances for successive years, especially in the case of the plant stem number, plant circumference, and above-ground biomass yield in both locations. Similarly, large genotype × climate interactions for successive ages were found for most biomass production traits in both locations and biomass composition traits in Orléans.

Overall, biomass production traits were more heritable than biomass composition traits, which means that the response to selection would be better for biomass production traits in our population. Also, even high genetic and phenotypic correlations were highlighted among biomass production and composition traits separately, intermediate correlations were diagnosed between biomass production and composition. In contrast, hemicelluloses and ash contents were negatively correlated with other traits. Thus, miscanthus breeders have to consider these parameters in order to design breeding programs that follow the requirements of each bioconversion route. The next step of this study will be QTL detection for biomass production and composition traits, while considering the age and climate effects evaluated thanks to the staggered design in each location.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12155-022-10459-5.

Acknowledgements The authors wish to acknowledge each member of the staff who worked for the establishment and phenotyping of each trial in INRAE experimental stations: GCIE–Picardie team in Estrées-Mons, GBFor team in Orléans, and IIPB team in Versailles. The authors thank Rebecca James and Andrea Rau who edited the English text.

Author Contribution MB-H carried out the conception and the design of the study, EM, SA, LF, GB, and RR prepared the material and carried out phenotyping data management and collection. YG realized NIRS data collection and predictions. RR, MB-H, and SV contributed to the analysis of the data. RR wrote the manuscript and all authors commented the manuscript.

Funding This work has benefited from the support of the Investments for the Future program (grant ANR-11-BTBR-0006-BFF) managed by the French National Research Agency (Agence Nationale de la Recherche, ANR).

Data Availability This work was performed with the facilities of the Plant Bioinformatics Facility of INRAE-URGI (https://doi.org/10.15454/1.5572414581735654E12) and (https://doi.org/10.15454/INVRNJ) for datasets related to phenotyping resources.
These data are common to those of paper [72].

Code Availability Not applicable.

Declarations

Competing interests The authors declare no competing interests.

References

1. Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452
2. Gabrielle B, Bamière L, Caldes N et al (2014) Paving the way for sustainable bioenergy in Europe: technological options and research avenues for large-scale biomass feedstock supply. Renew Sustain Energy Rev 33:11–25. https://doi.org/10.1016/j.rser.2014.01.050
3. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenerg 19:209–227. https://doi.org/10.1016/S0961-9534(00)00325-2
4. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25:335–361. https://doi.org/10.1016/S0961-9534(03)00030-8
5. Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Chang Biol 10:509–518. https://doi.org/10.1111/j.1523-1739.2003.00749.x
6. Hastings A, Clifton-Brown JC, Wattenbach M et al (2009) Future energy potential of Miscanthus in Europe. GCB Bioenergy 1:180–196. https://doi.org/10.1111/j.1523-1739.2009.00102.x
7. Jones M, Walsh M (2001) Miscanthus for energy and fibre. James & James, Science Publishers, London.
8. Heaton EA, Clifton-Brown JC, Voigt TB et al (2004) Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig Adapt Strateg Glob Chang 9:433–451. https://doi.org/10.1023/B:MITI.0000038849.94134.be
9. Giriones J, Vo L, Arnout S et al (2016) Miscanthus stem fragment – reinforced propylene composites: development of an optimized preparation procedure at small scale and its validation for differentiating genotypes. Polym Test 55:166–172. https://doi.org/10.1016/j.polymertesting.2016.08.023
10. Gref J, Deuter M (1993) Taxonomy of Miscanthus × giganteus Greed et Deu. Angew Bot 67:87–90
11. Acikel H (2011) The use of miscanthus (Giganteus) as a plant fiber in concrete production. Sci Res Essays 6:2660–2667. https://doi.org/10.5897/SRE10.1139
12. Anderson E, Arundale R, Maughan M et al (2011) Growth and agronomy of Miscanthus × giganteus for biomass production. Biofuels 2:167–183. https://doi.org/10.4155/bfs.10.80
13. Hodkinson TR, Klaas M, Jones MB et al (2015) Miscanthus: a case study for the utilization of natural genetic variation. Plant Genet Resour Characterisation Util 13:219–237. https://doi.org/10.1017/S147926211400094X
14. Arnout S, Brancourt-Hulmel M (2015) A review on miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. Bioenergy Res 8:502–526. https://doi.org/10.1007/s12155-014-9524-7
15. Clifton-Brown JC, Harfouche A, Casler MD et al (2019) Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GCB Bioenergy 11:118–151. https://doi.org/10.1111/gcbb.12566
16. Sacks EJ, Juvik JA, Lin Q et al (2013) The gene pool of miscanthus species and its improvement. In: Paterson A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY, pp 73–101. https://doi.org/10.1007/978-1-4419-5947-8_4
17. Hodkinson TR, Petrunenko E, Klass M, Münich C (2015b) New breeding collections of Miscanthus sinensis, M. sacchariflorus and hybrids from Primorsky Krai, Far Eastern Russia. In: Proceedings of the Biomass 2015: Perennial biomass crops for a resource constrained world, Springer, Cham., pp 105–118. https://doi.org/10.1007/978-3-319-44530-4_10
18. Chae WB, Hong SJ, Gifford JM et al (2014) Plant morphology, genome size, and SSR markers differentiate five distinct taxonomic groups among accessions in the genus Miscanthus. GCB Bioenergy 6:646–660. https://doi.org/10.1111/gcbb.12101
19. Clifton-Brown JC, Chiang Y, Hodkinson TR (2008) Miscanthus genetic resources and breeding potential. In: Vermerris W (ed) Genetic Improvement of Bioenergy Crops. Springer Science, pp 273–290. https://doi.org/10.1007/978-0-387-78085-8_10
20. Sun Q, Lin Q, Yi Z-L et al (2010) A taxonomic revision of Miscanthus s.l. (Poaceae) from China. Bot J Linn Soc 164:178–220. https://doi.org/10.1111/j.1095-8339.2010.01082.x
21. Clark LV, Brummer JE, Glowacka K et al (2014) A footprint of past climate change on the diversity and population structure of Miscanthus sinensis. Ann Bot 114:97–107. https://doi.org/10.1093/aob/mcu084
22. Clark LV, Ryan Stewart J, Nishiwaki A et al (2015) Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression. J Exp Bot 66:4213–4225. https://doi.org/10.1093/jxb/erv111
23. Clifton-Brown JC, Lewandowski I, Andersson B et al (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019
24. Zub HW, Arnout S, Brancourt-Hulmel M (2010) Key traits for biomass production identified in different Miscanthus species at two harvest dates. Biomass Bioenerg 35:637–651. https://doi.org/10.1016/j.biombioe.2010.10.020
25. Zub HW, Monod H, Béthencourt L, Brancourt-Hulmel M (2012) An index of competition reduces statistical variability and improves comparisons between genotypes of miscanthus. Bioenergy Res 5:829–840. https://doi.org/10.1007/s12155-012-9193-3
26. Brancourt-Hulmel M, Raverdy R, Giriones J, et al (2011a) Variability of stem solidness among miscanthus genotypes and its role on mechanical properties of propylene composites. GCB Bioenergy 13:1576–1585. https://doi.org/10.1111/gcbb.12818
27. Hattfield RD, Rancour DM, Marita JM (2017) Grass cell walls: a story of cross-linking. Front Plant Sci 7:1–15. https://doi.org/10.3389/fpls.2016.02056
28. Clifton-Brown JC, Lewandowski I (2002) Screening miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. Eur J Agron 16:97–110. https://doi.org/10.1016/S1161-010X(01)00020-4
29. Jeziorski S, Glowacka K, Kaczmarek Z (2010) Variation on biomass yield and morphological traits of energy grasses from the genus Miscanthus during the first years of crop establishment. Biomass Bioenergy 35:814–821. https://doi.org/10.1016/j.biombioe.2010.11.013
30. Anzoua KG, Suzuki K, Fujita S et al (2015) Evaluation of morphological traits, winter survival and biomass potential in wild
Japanese Miscanthus sinensis Anderss. populations in northern Japan. Grassl Sci 61:83–91. https://doi.org/10.1111/grs.12085
31. Arnould S, Obeuf A, Béthencourt L, Mansard M (2015) Miscanthus clones for cellulosic bioethanol production: relationships between biomass production, biomass production components, and biomass chemical composition. Ind Crop Prod 63:316–328. https://doi.org/10.1016/j.indcrop.2014.10.011
32. Kaiser CM, Clark LV, Juvik JA et al (2015) Characterizing a miscanthus germplasm collection for yield, yield components, and genotype × environment interactions. Crop Sci 55:1978–1994. https://doi.org/10.2135/cropsci2014.11.0805
33. Hodgson EM, Lister SJ, Bridgewater AV et al (2010) Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock. Biomass Bioenerg 34:652–660. https://doi.org/10.1016/j.biombioe.2010.01.008
34. Allison GG, Morris C, Clifton-Brown JC et al (2011) Genotypic variation in cell wall composition in a diverse set of 244 accesses of Miscanthus. Biomass Bioenergy 35:4740–4747. https://doi.org/10.1016/j.biombioe.2011.10.008
35. Iqbal Y, Lewandowski I (2014) Inter-annual variation in biomass combustion quality traits over five years in fifteen Miscanthus genotypes in south Germany. Fuel Process Technol 121:47–55. https://doi.org/10.1016/j.fuproc.2014.01.003
36. Van der Weijde T, Dolstra O, Visser RGF, Trindade LM (2017) Stability of cell wall composition and saccharification efficiency in Miscanthus across diverse environments. Front Plant Sci 7:1–14. https://doi.org/10.3389/fpls.2016.02004
37. Falconer DS (1981) Introduction to quantitative genetics. Ronald Press, New York
38. Jeziorski S (2008) Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Ind Crops Prod 27:65–68. https://doi.org/10.1016/j.indcrop.2007.07.013
39. Robson P, Jensen E, Hawkins S et al (2013) Accelerating the domestication of a bioenergy crop : identifying and modelling morphological targets for sustainable yield increase in Miscanthus. J Exp Bot 64:4143–4155. https://doi.org/10.1093/jxb/ert225
40. Gallais A, Poly J (1990) Théorie de la sélection en amélioration des plantes. Masson, Collection Sciences Agronomiques
41. Slavov G, Robson P, Jensen E et al (2013a) Contrasting geographic patterns of genetic variation for molecular markers vs. phenotypic traits in the energy grass Miscanthus sinensis. GCB Bioenergy 5:562–571. https://doi.org/10.1111/gcbb.12025
42. Slavov GT, Nipper R, Robson P et al (2013b) Genome-wide association studies and prediction of 17 traits related to phenoology, biomass and cell wall composition in the energy grass Miscanthus sinensis. New Phytol 201:1227-1239. https://doi.org/10.1111/nph.12621
43. Nie G, Huang L, Zhang X et al (2016) Marker-trait association for biomass yield of potential bio-fuel feedstock Miscanthus sinensis from Southwest. Front Plant Sci 7:1–13. https://doi.org/10.3389/fpls.2016.00802
44. Clark LV, Dzyubenko E, Dzyubenko N et al (2016) Ecological characteristiques and in situ genetic associations for yield-component traits of wild Miscanthus from eastern Russia. Ann Bot 118:991–995. https://doi.org/10.1093/aob/mcw137
45. Clark LV, Dwiyanti MS, Anzoua KG et al (2019) Biomass yield in a genetically diverse Miscanthus sinensis germplasm panel evaluated at five locations revealed individuals with exceptional potential. GCB Bioenergy 11:1125–1145. https://doi.org/10.1111/gcbb.12606
46. Gifford JM, Chae WB, Swaminathan K et al (2015) Mapping the genome of Miscanthus sinensis for QTL associated with biomass productivity. GCB Bioenergy 7:797–810. https://doi.org/10.1111/gcbb.12201
47. Dong H, Liu S, Clark LV et al (2018) Genetic mapping of biomass yield in three interconnected Miscanthus populations. GCB Bioenergy 10:165–185. https://doi.org/10.1111/gcbb.12472
48. Van der Weijde T, Kamei CLA, Severing El et al (2017) Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels. BMC Genomics 18:1–15. https://doi.org/10.1186/s12864-017-3802-7
49. Loughin TM (2006) Improved experimental design and analysis for long-term experiments. Crop Sci 46:2492–2502. https://doi.org/10.2135/cropsci2006.04.0271
50. Segura V, Cilas C, Costes E (2008) Dissecting apple tree architecture into genetic, ontogenetic and environmental effects : mixed linear modelling of repeated spatial and temporal measures. New Phytol 178:302–314. https://doi.org/10.1111/j.1469-8137.2007.02374.x
51. Tejera M, Boersma N, Vanlooocce A et al (2019) Multi-year and multi-site establishment of the perennial biomass crop Miscanthus × giganteus using a staggered start design to elucidate N response. Bioenergy Res 12:471–483. https://doi.org/10.1007/s12155-019-09985-6
52. Rambaud C, Arnould S, Bluteau A et al (2013) Shoot organogenesis in three Miscanthus species and evaluation for genetic uniformity using AFLP analysis. Plant Cell Tissue Organ Cult 113:437–448. https://doi.org/10.1007/s11210-012-0284-9
53. Leroy J, Ferchaud F, Giauffret C, et al (2022) Miscanthus sinensis is as efficient as Miscanthus × Giganteus for nitrogen recycling in spite of smaller nitrogen fluxes. BioEnergy Res. https://doi.org/10.1007/s12155-022-10408-2
54. Hou W, Raverdy R, Mignot E, et al (2021) Estimating the genetic parameters of flowering time-related traits in a Miscanthus sinensis population tested with a staggered-start design. Bioenergy Res. https://doi.org/10.1007/s12155-021-10328-7
55. Tejera MD, Heaton EA (2017) Description and codification of Miscanthus × giganteus growth stages for phenological assessment. Front Plant Sci 8:1–12. https://doi.org/10.3389/fpls.2017.01726
56. Kirby EJ, Appleyard M (1984) Cereal development guide. 2nd Edition. Arable Unit, National Agricultural Centre, Stoneleigh, Warwickshire
57. Hessketh JD, Warrington IJ (1989) Corn growth response to temperature: rate and duration of lead emergence. Agron J 81:696–701
58. Steinbach D, Alaux M, Anseme J et al (2013) GnpISL: an information system to integrate genetic and genomic data from plants and fungi. Database 2013:1–9. https://doi.org/10.1093/database/bat058
59. Belmokhtar N, Arnould S, Chabbert B et al (2017) Saccharification performances of miscanthus at the pilot and miniaturized assay scales: genotype and year variabilities according to the biomass composition. Front Plant Sci 8:1–13. https://doi.org/10.3389/fpls.2017.00740
60. Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J AOAC Int 50:50–55. https://doi.org/10.1093/jaacs/50.1.50
61. Henderson CR (1984) Applications of linear models in animal breeding. Univ Guelph, Guelph
62. Muñoz F, Sanchez L (2019) breedR: statistical methods for forest genetic resources analysts. R package version 0.12–4. https://famuvie.github.io/breedR/
63. Costa e Silva J, Dutkowski GW, Gilmour AR, (2001) Analysis of early tree height in forest genetic trials is enhanced by including a spatially correlated residual. Can J For Res 31:1887–1983. https://doi.org/10.1139/cjfr-31-11-1887
64. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723. https://doi.org/10.1109/TAC.1974.1100705

© Springer
65. Gouveia LRL, Silva GAP, Verardi CK et al (2013) Simultaneous selection of rubber yield and girth growth in young rubber trees. Ind Crops Prod 50:39–43. https://doi.org/10.1016/j.indcrop.2013.06.040

66. Howe T, Saruul P, Davis J, Chen H (2000) Quantitative genetics of bud phenology, frost damage, and winter survival in an F2 family of hybrid poplars. Theoretical and Applied Genetics 101:632–642. https://doi.org/10.1007/s001260051525

67. Wei T, Simko V (2017) R package “corrplot”: visualization of a correlation matrix (version 0.84). https://github.com/taiyun/corrplot

68. Le S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25:1–18. https://doi.org/10.18637/jss.v025.i01

69. Kar S, Weng TY, Nakashima T et al (2019) Field performance of Saccharum × Miscanthus intergeneric hybrids (Miscanes) under cool climatic conditions of Northern Japan. Bioenergy Res 13:132-146. https://doi.org/10.1007/s12155-019-10066-x

70. Petit J, Salentijn EMJ, Paulo MJ et al (2020) Genetic variability of morphological, flowering, and biomass quality traits in hemp (Cannabis sativa L.). Front Plant Sci 11:1–17. https://doi.org/10.3389/fpls.2020.00102

71. Brancourt-Hulmel M, Arnoult S, Cézard L, et al (2021b) A comparative study of maize and Miscanthus regarding cell-wall composition and stem anatomy for conversion into bioethanol and polymer composites. BioEnergy Res. https://doi.org/10.1007/s12155-020-10239-z

72. Raverdy R, Lourgant K, Mignot E, et al (2022) Linkage mapping of biomass production and composition traits in a Miscanthus sinensis population. BioEnergy Res. https://doi.org/10.1007/s12155-022-10402-8

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.