Evaluation of the Efficacy of Chemical Insecticides and Biopesticides against Flea Beetle in Cabbage (Brassica oleracea var. Capitata)

Fatima Farhana¹*, Md. Abdul Latif¹ and Mohammed Ali¹

¹Department of Entomology, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh.

Authors' contributions

This work was carried out in collaboration among all authors. Authors MAL and MA planned & designed the study along with review & editing. Author FF managed the literature searches, data collection & curation, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. All authors read and approved the final manuscript.

ABSTRACT

Aims: This study aimed to evaluate chemical insecticides and bio-pesticides against flea beetle in cabbage.

Study Design: The experiment was laid out at a randomized complete block design with three replications.

Place and Duration of Study: Experimental farm of Sher-e-Bangla Agricultural University, Bangladesh during the period from October 2017 to March 2018.

Methodology: The experiment consisted of nine treatments viz. T₁ (Sevin 85 WP @ 2g/L of water), T₂ (Decis 2.5 EC @ 1.0 ml/L of water), T₃ (Voliam flexi @ 0.5 ml/L of water), T₄ (Ripcord 10 EC @ 1.0 ml/L of water), T₅ (Dursban 20EC @ 1 ml L⁻¹ of water), T₆ (Tobacco leaf extract @ 3 g L⁻¹ of water), T₇ (Neem seed kernel extract @ 3 g L⁻¹ of water), T₈ (Bioneem plus 1 EC @ 1 ml L⁻¹ of water) and T₉ (Untreated Control) were used at 7 days interval.

Results: Stripped flea beetle (Phyllotreta striolata) and white-spotted flea beetle (Monolepta signata), these two species of flea beetle were found in the experimental field. Among all the treatments T₄ (Ripcord 10EC) performed the best in managing flea beetles based on the lowest
INTRODUCTION

For cabbage production, there are many limiting factors, i.e., unavailability of quality seeds of high-yielding varieties, delayed sowing after the harvesting of transplanted aman rice, fertilizer management, improper and limited irrigation facilities, and infestation of different insect pests. Insects play an important role in decreased production of cabbage in Bangladesh. Cabbage caterpillar, Flea beetle, Cabbage aphid, Semi looper, Diamond back moth, Cutworm, Whitefly, Cabbage worm, etc., are the most common insect infesting cabbage [1, 2].

Flea beetles are included in the most important pest of cruciferous plants [3]. It is common name of an insect of Chrysomelidae family and belongs to the order Coleoptera. Pale striped Flea beetle, Elongate Flea beetle, Hop Flea beetle, Red headed Flea beetle, Three spotted Flea beetle, Western black Flea beetle, Toothed Flea beetle, etc., are the various genus and species of Flea beetle. Beetles can cause substantial damage on host plants by feeding on the leaves, especially in early stages of development [4]. They occasionally damage vegetables, flowers, and even trees. Adult’s flea beetle, which produce most plant injuries are typically small often shiny, and have larger rear legs that allow them to jump like a flea when disturbed and also produce characteristics injury known as “shot holing”. When occurring in large numbers can rapidly defoliate and kill plants. The pest if left unabated and in severe infestation can result in total crop failure while moderate infestation leads to at least 25% foliage damage characterized by “shot holes” on the foliage. The importance of flea beetles as pests is aggravated by the fact that several species also vector plant pathogens [5]. Some species are vectors of serious diseases such as potato blight and bacterial wilt of corn.

Among the various control practices in cabbage to suppress the prevalence of flea beetle insecticides are the mostly used. Foliar applied insecticides are effective when beetle populations have reached an economic threshold level and treatments are timed properly. There are many insecticides labeled for treating flea beetles. For conventional growers, pesticides containing pyrethroids or carbamates (Sevin) are generally effective [6]. Organophosphate insecticides are widely used as it is comparatively safer than other insecticides. Farmers are eagerly using insecticides as it shows instant result in controlling pest populations. However, there are many challenges in case of pest management from economic and ecological point of view due to human and environmental hazards and most of them are caused by synthetic chemical pesticides [7]. Now a day, biopesticides is being used as an alternative of chemical insecticides. Rotenone was often used in the past, but it is not ideal because it has a relatively high mammalian toxicity and its availability has become limited. Neem-based insecticides are known for their pesticidal activity against more than 400 species of insects [8]. However, they are not toxic to humans and many beneficial arthropods, and targeted pests are unlikely to develop resistance; therefore, these insecticides have been advocated to replace synthetic insecticides as they are more sensible to be used in most pest management programs [9]. Therefore, an attempt was taken to evaluate the efficacy of some commonly used chemical insecticides and biopesticides against flea beetle in cabbage.

Keywords: Flea beetle; Monolepta signata; Phyllotreta striolata; voliam flexi; Bioneem plus; tobacco leaf extract.

1. INTRODUCTION

For cabbage production, there are many limiting factors, i.e., unavailability of quality seeds of high yielding varieties, delayed sowing after the harvesting of transplanted aman rice, fertilizer management, improper and limited irrigation facilities, and infestation of different insect pests. Insects play an important role in decreased production of cabbage in Bangladesh. Cabbage caterpillar, Flea beetle, Cabbage aphid, Semi looper, Diamond back moth, Cutworm, Whitefly, Cabbage worm, etc., are the various genus and species of Flea beetle. Beetles can cause substantial damage on host plants by feeding on the leaves, especially in early stages of development [4]. They occasionally damage vegetables, flowers, and even trees. Adult’s flea beetle, which produce most plant injuries are typically small often shiny, and have larger rear legs that allow them to jump like a flea when disturbed and also produce characteristics injury known as “shot holing”. When occurring in large numbers can rapidly defoliate and kill plants. The pest if left unabated and in severe infestation can result in total crop failure while moderate infestation leads to at least 25% foliage damage characterized by “shot holes” on the foliage. The importance of flea beetles as pests is aggravated by the fact that several species also vector plant pathogens [5]. Some species are vectors of serious diseases such as potato blight and bacterial wilt of corn.

Among the various control practices in cabbage to suppress the prevalence of flea beetle insecticides are the mostly used. Foliar applied insecticides are effective when beetle populations have reached an economic threshold level and treatments are timed properly. There are many insecticides labeled for treating flea beetles. For conventional growers, pesticides containing pyrethroids or carbamates (Sevin) are generally effective [6]. Organophosphate insecticides are widely used as it is comparatively safer than other insecticides. Farmers are eagerly using insecticides as it shows instant result in controlling pest populations. However, there are many challenges in case of pest management from economic and ecological point of view due to human and environmental hazards and most of them are caused by synthetic chemical pesticides [7]. Now a day, biopesticides is being used as an alternative of chemical insecticides. Rotenone was often used in the past, but it is not ideal because it has a relatively high mammalian toxicity and its availability has become limited. Neem-based insecticides are known for their pesticidal activity against more than 400 species of insects [8]. However, they are not toxic to humans and many beneficial arthropods, and targeted pests are unlikely to develop resistance; therefore, these insecticides have been advocated to replace synthetic insecticides as they are more sensible to be used in most pest management programs [9]. Therefore, an attempt was taken to evaluate the efficacy of some commonly used chemical insecticides and biopesticides against flea beetle in cabbage.

Keywords: Flea beetle; Monolepta signata; Phyllotreta striolata; voliam flexi; Bioneem plus; tobacco leaf extract.
2. MATERIALS AND METHODS

2.1 Experimental Site

The location of the present experimental field was at the central farm of Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh. The experiment was laid during the period of October 2017 to March 2018. The soil of the experimental plot was shallow red-brown terrace soil and little less than neutral (pH 5.8-6.5) in nature.

2.2 Experimental Treatment and Design

The test crop used in the experiment was cabbage variety Atlas-70. It is an imported high yielding variety with average yield 55-60 t/ha. Nine treatment were used in this experiment and all the treatments were applied at seven days interval from 10 days after harvesting. We laid out the experiment in a Randomized Complete Block Design (RCBD) with three replications. The area of a single plot of the experiment was 4 m² (2.5 m ×1.6 m).

2.3 Crop Husbandry

The seeds were collected from the local market and were sown on the seedbed on October 15, 2017. Before seed sowing, the seedbed was prepared well and made suitable for seedling production. Before seedling transplantation, the land was prepared well by deep ploughing followed by laddering. 28 days old seedlings were transplanted in the main field on 15 November, 2017 at the rate of 16 seedlings plot⁻¹. Application of manures and fertilizers was done according to the recommended fertilizer doses for cabbage production per hectare by [10]. Urea, Triple Super Phosphate (TSP) and Muriate of Potash (MP) were used as a source of nitrogen, phosphorous, and potassium, respectively. The total amount of cowdung, TSP and MoP was applied as basal dose at the time of land preparation. The total amount of Urea was applied in three installments at 10, 30 and 50 days after transplanting (DAT). Intercultural operations such as gap filling, weeding, earthing up, irrigation, etc. were done as and when required for ensuring and maintaining the normal growth of crops.

2.4 Data Collection

Five plants were randomly selected from each unit plot for the recording of necessary data on different crop attributes. Data collection was started at the vegetative stage at 15 DAT to cabbage head harvest. The data on crop characters like the number of infested leaves, no. of holes, no. of healthy and infested head, the weight of individual head; length and girth of cabbage heads; yield (t ha⁻¹) were recorded. Only the fully compact and marketable heads were harvested at the time of harvesting.

2.5 Statistical Package

Collected data were analyzed following ANOVA techniques by using MSTAT computer package program. Mean values were ranked and compared by Duncan's Multiple Range Test (DMRT) at 5% level of significance [11].

3. RESULTS AND DISCUSSION

3.1 Available Flea Beetle Species

Two species of flea beetle were found in the experimental field i.e; Stripped flea beetle (Phyllotreta striolata) and white-spotted flea beetle (Monolepta signata). Species were identified according to mainly external marks such as colours and patterns of the elytra, the shape of the yellow patterns, punctuation of the head and the forehead, presence or absence of metallic shade on the back of the prothorax and the elytrae, the specific colour of the elytrae, the shape of the prothorax, the punctuation of the elytrae, the colour of the segments of the antenna, the tibia and the tarsus [12,13].

3.2 Percent leaf Infestation by Number at Different Days after Transplanting

The significant variations were observed among the different treatments used for the management in terms of percent leaf infestation by number due to attack of flea beetle at different days after transplanting (DAT). In terms of mean infestation of leaf by number, the highest was found in T₉ (37.41%) comprised of untreated control which was significantly different from all other treatments. On the other hands the lowest mean leaf infestation by number was found in T₄ (5.837%) which was followed by T₃ (11.78%) and significantly different from all other treatments (Table 2).

In case of percent reduction over control, the highest reduction over control was achieved by T₄ (84.42%) where the lowest was found in T₇ (54.56%). In Bangladesh, during the end of
Table 1. Treatments used in the experiment

Treatments	Group name	Trade name	Doses
T₁	N-methyl carbamate	Sevin 85WP	2 g L⁻¹ of water
T₂	Deltamethrin	Decis 2.5 EC	1 ml L⁻¹ of water
T₃	Chlorantraniliprole + Thiamethoxam	Voliam flexi	0.5 ml L⁻¹ of water
T₄	Cypermethrin	Ripcord 10EC	1 ml L⁻¹ of water
T₅	Chlorpyrifos	Dursban 20EC	1 ml L⁻¹ of water
T₆	Nicotine extract	Tobacco leaf extract	3 g L⁻¹ of water
T₇	Azadirachtin	Neem seed kernel extract	3 g L⁻¹ of water
T₈	Azadirachtin	Bioneem plus 1 EC	1 ml L⁻¹ of water
T₉	Untreated control		

Table 2. Leaf infestation of cabbage by number due to attack of flea beetle at different days after transplanting (DAT) in different treatments

Treatments	15 DAT	25 DAT	35 DAT	45 DAT	55 DAT	Mean	% Reduction over control
T₁	10.54b	12.87 d	19.63 c	20.76 b	13.55 de	15.47 c	58.70
T₂	11.67 b	15.88 c	17.75 d	14.79 f	14.31 c	14.88 d	60.27
T₃	8.88 c	10.51 e	9.72 e	15.81 e	13.98 cd	11.78 f	68.55
T₄	2.62 e	4.22 f	8.47 f	7.01 g	6.87 g	5.84 g	84.42
T₅	10.88 b	19.66 b	18.01 d	17.67 c	12.53 e	15.75 c	57.95
T₆	5.17 d	16.83 c	19.82 c	16.33 d	15.68 b	14.76 d	60.58
T₇	11.18 b	20.69 b	21.19 b	18.90 b	16.13 b	17.02 b	54.56
T₈	6.10 d	9.59 e	19.15 c	16.68 d	10.78 f	12.46 e	66.73
T₉	18.63 a	32.38 a	44.74 a	47.65 a	43.88 a	37.41 a	--
LSD (0.05)	1.07	1.04	1.01	0.48	0.94	0.46	--
CV%	6.48	3.81	2.93	1.46	1.64	1.64	--

In column, means containing same letter(s) indicate significantly similar under DMRT at 5% level of significance, T₁ = Sevin 85WP @ 2.0 g/L of water, T₂ = Decis 2.5 EC @ 1.0 mL/L of water, T₃ = Voliam flexi @ 0.5 mL/L of water, T₄ = Ripcord 10EC @ 1.0 mL/L of water, T₅ = Dursban 20EC @ 1.0 mL/L of water, T₆ = Tobacco leaf extract @ 3.0 g/L of water, T₇ = Neem seed kernel extract @ 3.0 g/L of water, T₈ = Bioneem plus 1 EC @ 1.0 mL/L of water, T₉ = Untreated control.
February the temperatures increases gradually, it was around 55°F to 93°F. However, the rate of incidence of flea beetles infested leaves was decreased with the age of the cabbage plants and no flea beetles infested leaves was observed at 45 DAT, because the leaves that were infested at early stage of the plant growth, these were dropped off at the later stage. The same trend was found by Islam [14]. As the temperature increased after 45 DAT, the number of flea beetle decreased hence the infestation reduced at 45 DAT and during this time the temperature was around 55°F to 93°F.

3.3 Number of Holes/Head of a Plant at Different Days after Transplanting (DAT)

The significant variations were observed among different treatments used for the management practices in terms of number of holes/infested head of a plant due to attack of flea beetle at different days after transplanting (DAT). In terms of mean infestation/head of cabbage, the highest infestation was found in T₉ (14.87) which was significantly different from all other treatments. Among the management practices, the highest infestation was found in T₇ (9.33) which is statistically similar with T₅ (8.93), T₁ (8.40) and T₂ (8.40) followed by T₆ (7.87) and T₈ (7.60). On the other hand, the lowest mean infestation was observed in T₄ (6.13) which was followed by T₃ (6.87). In case of percent reduction over control, the highest reduction over control was achieved by T₄ (58.93%) where the lowest was found in T₇ (39.94%) which was very close to T₅ (39.94%). However, the lowest reduction over control was found in T₉ (39.94%) which was very close to T₅ (39.94%) (Table 3). Stanislav in 2005 also found similar results in the infestation by using some botanical and cultural practices [15].

3.5 Leaf infestation Intensity at Harvesting

Significant variations were observed among the different treatments used for the management practices in terms of leaf infestation intensity due to attack of flea beetle during harvesting period (Table 4). The highest leaf infestation intensity (22.66%) was recorded in T₉ which was significantly different from all other treatments. But in the treated plots, the highest leaf infestation intensity was found in T₇ (14.61%) which was statistically similar with T₅ (13.96%) and T₁ (13.46%) followed by T₂ (10.96%). On the other hand, the lowest leaf infestation intensity was observed in T₄ (5.73%) which was significantly different from all other treatments followed by T₃ (8.98%) and T₈ (10.77%). The results obtained from other treatments showed intermediate level of leaf infestation intensity. In case of % reduction over control, the highest reduction over control on leaf infestation intensity was achieved by T₄ (74.69%) where the lowest was found in T₇ (35.53%) which was very close to T₅ (38.39%). During the harvesting time the infestation rate is lower than the vegetative stages as the temperature increases. Because in perspective of Bangladesh in the month of November to January, the temperature remains very low which gradually tends to increase from the end of February. At harvesting the cabbage leaf grows older it may be a reason of low infestation.
Table 3. Infestation intensity of leaf of cabbage by number of holes due to attack of Flea beetle at different days after transplanting (DAT) in different treatments

Treatments	No. of holes / plant	Mean	% reduction over control				
	15 DAT	25 DAT	35 DAT	45 DAT	55 DAT		
T1	6.67 b	7.67 bc	9.67 bc	10.00 cd	8.00 bcd	8.40 bc	43.49
T2	5.67 bc	7.67 bc	9.67 bc	11.00 bc	8.00 bcd	8.40 bc	43.49
T3	5.67 bc	6.00 cd	7.67 d	9.33 cde	6.67 b	6.87 de	52.46
T4	4.67 c	5.00 d	6.33 e	7.67 e	7.00 cd	6.13 e	58.74
T5	6.67 b	8.00 b	9.67 b	12.00 b	8.33 bc	8.93 b	39.91
T6	6.00 bc	6.67 bc	8.33 cd	11.00 bc	7.33 bcd	7.87 c	47.08
T7	7.33 b	8.33 b	10.33 b	12.00 b	8.67 b	9.33 b	37.22
T8	6.00 bc	7.00 b	8.67 cd	8.67 de	7.67 bcd	7.60 cd	48.87
T9	11.00 a	14.00 a	16.67 a	18.33 a	14.33 a	14.87 a	--
LSD (0.05)	1.59	1.57	1.32	1.79	1.37	0.92	--
CV%	13.85	11.65	7.90	9.31	9.36	6.05	

In column, means containing same letter(s) indicate significantly similar under DMRT at 5% level of significance, T1 = Sevin 85WP @ 2.0 g/L of water, T2 = Decis 2.5 EC @ 1.0 ml/L of water, T3 = Voliam flexi @ 0.5 ml/L of water, T4 = Ripcord 10EC @ 1.0 ml/L of water, T5 = Dursban 20EC @ 1.0 ml/L of water, T6 = Tobacco leaf extract @ 3.0 g/L of water, T7 = Neem seed kernel extract @ 3.0 g/L of water, T8 = Bioneem plus 1 EC @ 1.0 ml/L of water, T9 = Untreated control

Table 4. Infestation of cabbage plant by number due to attack of flea beetle at different days after transplanting (DAT) in different treatments

Treatments	% infestation of head	Mean	% reduction over control				
	25 DAT	35 DAT	45 DAT	55 DAT	65 DAT		
T1	21.67 d	26.46 d	39.32 b	16.57 d	14.48 b	23.70 c	46.06
T2	20.36 d	28.39 d	32.34 e	12.92 e	10.64 d	20.93 d	52.36
T3	15.92 f	18.47 f	34.86 d	10.64 f	11.67 cd	18.31 fg	58.32
T4	16.57 f	20.36 ef	32.34 e	12.49 e	8.46 e	18.04 g	58.93
T5	27.35 c	31.50 c	39.32 b	21.28 b	12.49 c	26.39 b	39.94
T6	18.78 e	22.00 e	31.50 e	18.78 c	8.26 e	19.86 e	54.79
T7	29.05 b	34.86 b	36.80 c	20.36 b	13.08 bc	26.83 b	38.93
T8	18.47 e	22.00 e	28.39 f	16.57 d	10.64 d	19.21 ef	56.27
T9	36.80 a	55.13 a	56.39 a	31.50 a	39.85 a	43.93 a	--
LSD (0.05)	1.52	3.06	1.71	1.34	1.54	0.96	--
CV%	3.83	6.14	2.69	4.31	6.16	2.29	--

In column, means containing same letter(s) indicate significantly similar under DMRT at 5% level of significance, T1 = Sevin 85WP @ 2.0 g/L of water, T2 = Decis 2.5 EC @ 1.0 ml/L of water, T3 = Voliam flexi @ 0.5 ml/L of water, T4 = Ripcord 10EC @ 1.0 ml/L of water, T5 = Dursban 20EC @ 1.0 ml/L of water, T6 = Tobacco leaf extract @ 3.0 g/L of water, T7 = Neem seed kernel extract @ 3.0 g/L of water, T8 = Bioneem plus 1 EC @ 1.0 ml/L of water, T9 = Untreated control
3.6 Percent (%) Infestation of Head by Number during Harvesting

Significant variations were observed among the different treatments used for the management practices in terms of number of % infestation of head by number due to attack of flea beetle during harvesting period (Table 5). The highest % infestation of head by number (37.60) was recorded in T$_{9}$ which was significantly different from all other treatments. But in the treated plots, the highest % infestation of head by number was found in T$_{7}$ (12.92) and the lowest % infestation of head by number was observed in T$_{4}$ (6.69). The results obtained from other treatments gave intermediate level of % infestation of head by number. In case of percent reduction over control, the highest reduction over control on percent infestation of head by number was achieved by T$_{4}$ (82.18%) where the lowest was found in T$_{7}$ (65.64%).

3.7 Girth and Length of Cabbage Head

Significant variations were observed among the different treatments used for the management practices in terms of length and girth of head due to attack of flea beetle during harvesting period. The highest length of head (13.77 cm) was recorded in T$_{4}$ and the lowest head length (9.90 cm) was found in T$_{9}$ which was significantly different from all other treatments. But in the treated plots, the lowest head length (12.26 cm) was found in T$_{7}$. The highest girth of head (20.62 cm) was found in T$_{7}$. The highest girth of head (20.62 cm) was found in T$_{7}$.

Table 5. Infestation intensity of leaf of cabbage by flea beetle in different treatments during harvesting

Treatments	% leaf infestation at harvest	% reduction over control
T$_{1}$	13.46 b	40.60
T$_{2}$	10.96 c	51.53
T$_{3}$	8.98 d	60.35
T$_{4}$	5.73 e	74.69
T$_{5}$	13.96 b	38.39
T$_{6}$	10.92 c	51.80
T$_{7}$	14.61 b	35.53
T$_{8}$	10.77 c	52.47
T$_{9}$	22.66 a	--
LSD (0.05)	1.26	--
CV%	5.87	--

[In column, means containing same letter(s) indicate significantly similar under DMRT at 5% level of significance, T$_{1}$ = Sevin 85WP @ 2.0 g/L of water, T$_{2}$ = Decis 2.5 EC @ 1.0 ml/L of water, T$_{3}$ = Voliam flexi @ 0.5 ml/L of water, T$_{4}$ = Ripcord 10EC @ 1.0 ml/L of water, T$_{5}$ = Dursban 20EC @ 1.0 ml/L of water, T$_{6}$ = Tobacco leaf extract @ 3.0 g/L of water, T$_{7}$ = Neem seed kernel extract @ 3.0 g/L of water, T$_{8}$ = Bioneem plus 1 EC @ 1.0 ml/L of water, T$_{9}$ = Untreated control]

Table 6. Incidence of cabbage flea beetle in the infested head on different treatments at harvesting

Treatments	% head infestation at harvest	% reduction over control
T$_{1}$	11.44 bc	69.57
T$_{2}$	10.64 c	71.70
T$_{3}$	7.50 d	80.05
T$_{4}$	6.69 d	82.18
T$_{5}$	11.92 bc	68.30
T$_{6}$	8.04 d	78.62
T$_{7}$	12.92 b	65.64
T$_{8}$	7.67 d	79.60
T$_{9}$	37.60 a	--
LSD (0.05)	1.53	--
CV%	6.95	--

[In column, means containing same letter(s) indicate significantly similar under DMRT at 5% level of significance, T$_{1}$ = Sevin 85WP @ 2.0 g/L of water, T$_{2}$ = Decis 2.5 EC @ 1.0 ml/L of water, T$_{3}$ = Voliam flexi @ 0.5 ml/L of water, T$_{4}$ = Ripcord 10EC @ 1.0 ml/L of water, T$_{5}$ = Dursban 20EC @ 1.0 ml/L of water, T$_{6}$ = Tobacco leaf extract @ 3.0 g/L of water, T$_{7}$ = Neem seed kernel extract @ 3.0 g/L of water, T$_{8}$ = Bioneem plus 1 EC @ 1.0 ml/L of water, T$_{9}$ = Untreated control]
Table 7. Effect of different treatments on yield and yield contributing characters of Cabbage

Treatments	Length	Girth	Single head wt. (kg)	Total yield (ton/ha)
T1	12.52 bc	16.96 e	1.67 c	58.40 d
T2	12.69 bc	17.10 e	1.70 c	58.74 d
T3	13.12 ab	20.05 b	1.95 b	66.95 b
T4	13.77 a	20.62 a	2.19 a	75.76 a
T5	12.39 bc	16.21 f	1.46 d	50.52 e
T6	12.72 bc	18.07 d	1.83 bc	62.69 c
T7	12.26 c	16.19 f	1.44 d	49.67 f
T8	12.87 bc	18.65 c	1.94 b	66.76 b
T9	9.90 d	13.78 g	1.04 e	35.65 g

LSD (0.05) 0.66 0.47 0.16 0.52
CV% 3.06 1.55 5.70 5.51

[In column, means containing same letter(s) indicate significantly similar under DMRT at 5% level of significance. T1 = Sevin 85WP @ 2.0 g/L of water, T2 = Decis 2.5 EC @ 1.0 ml/L of water, T3 = Voliam flexi @ 0.5 ml/L of water, T4 = Ripcord 10EC @ 1.0 ml/L of water, T5 = Dursban 20EC @ 1.0 ml/L of water, T6 = Tobacco leaf extract @ 3.0 g/L of water, T7 = Neem seed kernel extract @ 3.0 g/L of water, T8 = Bioneem plus 1 EC @ 1.0 ml/L of water, T9 = Untreated control.]

3.8 Single Head Weight (kg) and Yield (t/ha) of Cabbage

Significant variations were observed among the different treatments used for the management practices in terms of single head weight (kg) and yield (t/ha) due to attack of flea beetle. The highest single head weight (2.19 kg) was recorded in T4 and the lowest single head weight (1.04 kg) was found in T9. But in the treated plots, the lowest single head weight (1.44 kg) was found in T7.

The highest total yield (75.76 t/ha) was recorded in T4 and the lowest total yield (35.65 t/ha) was found in T9 which was significantly different from all other treatments. But in the treated plots, the lowest total yield (49.67 t/ha) was found in T7.

3.9 Relationship between Leaf Infestation Intensity and Yield (t/ha)

The results revealed that there was strong negative correlation between leaf infestation intensity and total yield/ha, which suggested that with the increase of leaf infestation intensity there was a significant influence on total yield/ha. A linear regression was fitted between total yield/ha weight and leaf infestation intensity (Fig.1). The correlation coefficient (r) was −0.789 and the contribution of the regression (R²) were 0.623. In the present study, it was observed that flea beetle infestation on leaf passively prevented plants to produce and supply nutrient and water. The plants became stunted with a reduced yield.

3.10 Relationship between Percent Head Infestation during Harvest and WT. of Individual Head

The results revealed that there was strong negative correlation between leaf infestation intensity and total yield/ha, which suggested that with the increase of head infestation intensity there was a significant influence on total yield/ha.
A linear regression was fitted between total yield/ha weight and head infestation intensity (Fig. 2). The correlation coefficient (r) was –0.642 and the contribution of the regression (R^2) were 0.413. In the present study, it was observed that flea beetle infestation on head passively prevented plants to produce and supply nutrient and water. The plants became stunted with a reduced yield.

4. CONCLUSION

The result of the current analysis suggests that among the different treatments T_4 comprised of Ripcord 10EC @ 1.0 ml/L of water at 7 days interval gave the highest performance where the lowest performance was obtained by control treatment. On the other hand, the lowest performance among the treated plots was achieved by T_7 (Neem seed kernel extract @ 3.0 g/L of water at 7 days interval). While among the biopesticides, Bioneem plus 1 EC performed the best.

ACKNOWLEDGEMENTS

This work was supported by the National Science and Technology (NST) Fellowship, Ministry of Science and Technology, Government of the People's Republic of Bangladesh. The authors are grateful for financial support.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Butani DK, Jotwani MG. Insects in vegetable. Periodical Expert Book Agency.Vivek-Vihar, Delhi, India. 1984;69-79.
2. Bhat MG, Joshi AB, Singh M. Relative losses of cotton yield by insects in some cotton genotypes (Gossypium hirsutum L.). Indian J Entomol. 1994;46:169-172.
3. Csonka E, Toth M. Comparison of KLP+ ("hat") and VARL+ (funnel) trap designs baited with allyl isothiocyanate for the capture of cabbage flea beetles (Phyllotreta spp.) (Coleoptera, Chrysomelidae). Budapest, Hungary: Agro Kia. 2006;425-427.
4. Palaniswamy, Lamb. A laboratory method to screen crucifer seedlings for antixenosis resistance to flea beetles, Phyllotreta cruciferae. Can Ent. 1992;124:895-906.
5. Dillard HR, Cobb AC, Lamboy JS. Transmission of Alternaria brassicicola to cabbage by flea beetles (Phyllotreta cruciferae). Plant Dis. 1998;82:153-157.
6. Vern Grubinger. Handbook of Vegetable Pests. Academic Press. San Diego, California. 2003; 76.
7. Joshi MJ, Solanki CB, Inamdar AG, Birari VV, Varadharasu PR. Latest trends in zoology and entomology sciences. In: DS Ganguly (ed.), Botanical Insecticides: A Venture toward organic farming. Delhi, India: AkiNik Publications. 2020;53-75.
8. Siddiqui N, Kozlov G, D’Orso I, Trempe JF, Gehring K. Solution structure of the C-terminal domain from poly(A)-binding protein in Trypanosoma cruzi: A vegetal PABC domain. Protein Sci. 2003;12(9):1925-33.
9. Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Rev J Entomol. 2006;51:45-66.
10. BARC. Fertilizer recommendation guide-2012. Bangladesh agricultural research council, farmgate, New Airport Road, Dhaka-1215. 2012;113.

11. Gomez KA, Gomez AA. Statistical procedures for agricultural research. Second Edition. AWiley Interscience publications Jhon Wiley, Sons, New York, Chichester, Toronto, Singapore.1984;680.

12. Kaszab Z. Levélbogarak - Chrysomelidae. In: Fauna Hungariae. Akadé Kia. Budapest (In Hungarian).1962;63.

13. Gruev B., Tomov V. Coleoptera, Chrysomelidae. In: Catalogus Faunae Bulgaricae. Pensoft Publ. SoWa, Moscow.1998;3.

14. Islam MR, Ali MR, Ahmed WR, Rahman MM, Hira H. Varietal performance of cabbage on the incidence of flea beetles (Phyllotreta spp.) Entomol Helleni. 2015;24:1-10.

15. Stanislav T, Nevenka V, Dragan Z, Matej V, Klemen B, Emil Z, Lea Milevoj. The role of Chinese cabbage as a trap crop for flea beetles (Coleoptera: Chrysomelidae) in production of white cabbage. Sci Horti. 2005;106;12–24.

16. Ester A, De Putter H, Van Bilsen JGPM. Filmcoating the seed of cabbage (Brassica oleracea L. convar.bapitata L.) and cauliflower (Brassica oleracea L. var. botrytis L.) with imidacloprid and spinosad to control insect pests. Crop Prot. 2003;22:761–768.