Multiplication Groups of Abelian Torsion-Free Groups of Finite Rank

E. I. Kompantseva and A. A. Tuganbaev

Abstract. For an Abelian group G, any homomorphism $\mu : G \otimes G \to G$ is called a multiplication on G. The set Mult_G of all multiplications on an Abelian group G itself is an Abelian group with respect to addition; the group is called the multiplication group of G. Let A_0 be the class of all reduced block-rigid almost completely decomposable groups of ring type with cyclic regulator quotient. In this paper, for groups $G \in A_0$, we describe groups Mult_G. We prove that for $G \in A_0$, the group Mult_G also belongs to the class A_0. For any group $G \in A_0$, we describe the rank, the regulator, the regulator index, invariants of near-isomorphism, a main decomposition, and a standard representation of the group Mult_G.

Mathematics Subject Classification. 20K30, 20K99, 16B99.

Keywords. Abelian group, almost completely decomposable Abelian group, ring on an Abelian group, multiplication group of an Abelian group.

1. Introduction

For an Abelian group G, a multiplication on G is a homomorphism $\mu : G \otimes G \to G$. The set Mult_G of all multiplications on the group G itself is an Abelian group with respect to addition; the group is called the multiplication group of G or the group of multiplications on G [11]. An Abelian group G with multiplication on G is called a ring on the group G. The problem of studying the relationship between the structure of an Abelian group and the properties of ring structures on it is very multifaceted and has a long history in algebra; see [1], [2], [8], [9], [12], [13], [15], [16].

In this paper, we consider only additively written Abelian groups and “a group” means “an Abelian group” in what follows.

In this paper, we study the group Mult_G for an almost completely decomposable Abelian group G. A torsion-free group G of finite rank is called an almost completely decomposable group (ACD-group) if G contains completely decomposable subgroup of finite index. ACD-groups were studied in
Any ACD-group G contains a special uniquely defined completely decomposable (see [11]) subgroup $\text{Reg} G$ of finite index which is a fully invariant subgroup of G; it is called the regulator of the group G. The regulator of an ACD-group can be defined as the intersection of all its completely decomposable subgroups of lowest index [6]. The factor group $G/\text{Reg} G$ is called the regulator quotient of the group G; the index of the subgroup $\text{Reg} G$ in the group G is called a regulator index. It is denoted by $n(G)$. ACD-groups with cyclic regulator quotient are often called CRQ-groups.

Let G be an almost completely decomposable group. Then the regulator quotient of the group G can be uniquely, up to isomorphism, represented as a direct sum of torsion-free groups of rank 1 [10, Proposition 86.1]. For every type τ, we denote by $\text{Reg}_\tau G$ the sum of summands of rank 1 and type τ in this decomposition of the group $\text{Reg} G$. The set of types

$$T(G) = T(\text{Reg} G) = \{ \tau \mid \text{Reg}_\tau G \neq 0 \}$$

is called the set of critical types of groups G and $\text{Reg} G$. If $T(G)$ consists of pairwise incomparable types, then the groups G and $\text{Reg} G$ are called block-rigid groups. If, in addition, for any $\tau \in T(G)$, the group $\text{Reg}_\tau G$ is of rank 1, then G and $\text{Reg} G$ are called rigid groups. If all types in $T(G)$ are idempotent types, then G is called a group of ring type.

We note that a block-rigid ACD-group is either divisible or reduced. For a divisible torsion-free group G, the group $\text{Mult} G$ is described in [10, Sect. 121]; therefore, we consider only reduced groups in what follows.

We denote by \mathcal{A}_0 the class of all reduced block-rigid CRQ-groups of ring type. In Sect. 2, we describe the group $\text{Mult} G$ for $G \in \mathcal{A}_0$ (Theorem 2.8). The aim of Sect. 3 is, for groups G in the class \mathcal{A}_0, to study properties of $\text{Mult} G$. It is proved (Theorem 3.4) that if G is a block-rigid CRQ-group of ring type, then $\text{Mult} G$ also is a block-rigid CRQ-group of ring type. We describe the rank, the regulator, the regulator index, invariants of near-isomorphism, a main decomposition and a standard representation of the group $\text{Mult} G$ for $G \in \mathcal{A}_0$.

The multiplication $\mu : G \otimes G \to G$ is often denoted by the symbol \times, i.e.,

$$\mu(g_1 \otimes g_2) = g_1 \times g_2$$

for all $g_1, g_2 \in G$. The multiplication \times on the group G induces a ring on this group which is denoted by (G, \times). Let G be a group and $g \in G$. The characteristic and the order of the element g are denoted by $\chi(g)$ and $o(g)$, respectively. The rank and the divisible hull of the group G are denoted by $r(G)$ and \overline{G}, respectively. If $S \subseteq G$, then $|S|$ is the cardinality of the set S and $\langle S \rangle$ is the subgroup of the group G generated by the set S. We write an element of a group direct product $\prod_{i \in I} G_i$ in the form $(g_i)_{i \in I}$, where $g_i \in G_i$. If $I_1 \subseteq I$, then for simplicity, we identify the subgroup $\{(g_i)_{i \in I} \mid g_i = 0 \text{ for all } i \notin I_1 \}$ of the group $\prod_{i \in I} G_i$ with the group $\prod_{i \in I_1} G_i$; we write elements of this group in the form $(g_i)_{i \in I_1}$.
As usual, \mathbb{N} and \mathbb{P} are the sets of positive integers and all prime integers, respectively, \mathbb{Z} is the group (the ring) of integers, \mathbb{Q} is the group (the field) of rational numbers. If R is a unital ring, then Re is the cyclic module over R generated by the element e. If S is a finite subset in \mathbb{Z}, then $\gcd(S)$ is the greatest common divisor of all integers in S and $\text{lcm}(S)$ is the least common multiple of the integers in S. If $P_1 \subseteq \mathbb{P}$, then P_1-integer is an integer such that any prime divisor of it (if it exists) is contained in P_1. It follows from the definition that 1 is a P_1-integer for any $P_1 \subseteq \mathbb{P}$. For any type τ, we set

$$P_\infty(\tau) = \{p \in \mathbb{P} \mid \tau(p) = \infty\}, \quad P_0(\tau) = \mathbb{P} \setminus P_\infty(\tau).$$

Unless otherwise stated, we use notation and definitions from [10,11] and [19].

2. Multiplication Groups of Block-Rigid CRQ-Groups of Ring Type

All over this section, G is a reduced block-rigid CRQ-group of ring type with regulator A, regulator quotient $G/A = \langle d + A \rangle$ where $d \in G$, regulator index n and set of critical types $T(G) = T(A)$.

By setting $\text{Reg}_\tau G = A_\tau$, we can represent the group A in the form $A = \bigoplus_{\tau \in T(G)} A_\tau$. According to [21, Proposition 2.4.11], such decomposition of the completely decomposable group A is unique if and only if A is a block-rigid group. For divisible hulls \tilde{G}, \tilde{A}, \tilde{A}_τ of the groups G, A and A_τ, respectively, we have relations

$$\tilde{G} = \tilde{A} = \bigoplus_{\tau \in T(G)} \tilde{A}_\tau.$$

For $\tau \in T(G)$, we denote by π_τ the natural projection from the group \tilde{G} onto \tilde{A}_τ.

In [7], positive integers $m_\tau = m_\tau(G) \ (\tau \in T(G))$ are defined; these integers are invariants of near-isomorphism of the group G. We can define integers $m_\tau \ (\tau \in T(G))$ as follows; we take an element $d \in G/A$ such that $\langle d + A \rangle = G/A$. Let $d_\tau = \pi_\tau(d) \in \tilde{A}_\tau$ and let $m_\tau = o(d_\tau + A)$ be the order of the element $d_\tau + A$ in the torsion group \tilde{A}/A. In [7], it is shown that integers $m_\tau \ (\tau \in T(G))$ do not depend on the choice of the element d. We note that $n = o(d + A) = \text{lcm}\{m_\tau \mid \tau \in T(G)\}$.

Remark 2.1. Let T be a finite set of pair-wise incomparable types and let $\{m_\tau \mid \tau \in T\}$ be some set of positive integers. We say that the set $\{m_\tau \mid \tau \in T\}$ satisfies condition (m) if for any $p \in \mathbb{P}$, $k \in \mathbb{N}$, $\tau \in T$, we have that p^k divides m_σ for some $\sigma \in T \setminus \{\tau\}$ provided p^k divides m_τ. We note that the set $\{m_\tau \mid \tau \in T\}$ satisfies condition (m) if and only if the set $\{m_\tau \mid \tau \in T, \ m_\tau > 1\}$ satisfies condition (m).

According to [21, Theorem 13.1.2], the set $\{m_\tau \mid \tau \in T\}$ is a system of invariants of a near-isomorphism of some block-rigid CRQ-group G with $T(G) = T$ if and only if this set satisfies condition (m) and m_τ are $P_0(\tau)$-integers for all $\tau \in T$. \triangleright
In [5, Theorem 3.5], it is proved that for any of the group \(G \in A_0 \), there exists a direct decomposition
\[
G = G_1 \oplus C,
\]
where \(C \) is a completely decomposable group and \(G_1 \) is a rigid CRQ-group which satisfies the following conditions:
\[
\tau \in T(G_1) \text{ if and only if } m_\tau(G) > 1, \quad (1')
\]
\[
m_\tau(G_1) = m_\tau(G) \text{ for all } \tau \in T(G_1). \quad (1'')
\]
Decomposition (1), which satisfies conditions (1') and (1''), is called a main decomposition of the group \(G \). In a main decomposition of the group \(G \), the group \(G \) does not contain a completely decomposable summand; such groups are said to be clipped. We note that a main decomposition of a CRQ-group is not uniquely defined, since it depends on the choice of the element \(d \) participating in the definition of the group. In what follows, we assume that a main decomposition of the group \(G \) is fixed. We set \(T_0(G) = \{ \tau \in T(G) \mid m_\tau > 1 \} \). Then \(T_0(G) \) is the set of critical types of a clipped direct summand in any main decomposition of the group \(G \).

Let \(B \) be the regulator of the group \(G_1 \), then \(T(G_1) = T(B) = T_0(G) \) and \(\tilde{G}_1 = \tilde{B} \). There exists a system \(E_0 = \{ e^{(\tau)}_0 \in B_\tau \mid \tau \in T(B) \} \) such that
\[
B = \bigoplus_{\tau \in T(B)} R_\tau e^{(\tau)}_0. \quad (2)
\]
In (2), we assume that \(R_\tau \) is a unitary subring in \(\mathbb{Q} \), the type of the additive group of \(R_\tau \) is equal to \(\tau \), characteristics \(\chi(e^{(\tau)}_0) \in \tau \) contain only zeros and symbols \(\infty \) \((\tau \in T(B)) \).

Let \(D = \{ d \in G_1 \mid G/A = \langle d + A \rangle \} \), it is easy to see that \(D \neq \emptyset \).

Let \(d \in D \). In the group \(\tilde{B} \), the element \(d \) can be represented in the form
\[
d = \sum_{\tau \in T(B)} \frac{s_\tau}{r_\tau} e^{(\tau)}_0, \quad \text{where } s_\tau \in \mathbb{Z}, r_\tau \in \mathbb{N}, \gcd(s_\tau, r_\tau) = 1. \]

Without loss of generality, we can assume that \(s_\tau, r_\tau \) are \(P_0(\tau) \)-integers (otherwise, we can replace the system \(E_0 \)).

Let \(\tau \in T(B) \). By the definition of the integer \(m_\tau \), the relation
\[
o \left(\frac{s_\tau}{r_\tau} e^{(\tau)}_0 + A \right) = m_\tau \text{ holds in the group } \tilde{A}/A. \]

Since \(r_\tau \) is a \(P_0(\tau) \)-integer and \(\gcd(s_\tau, r_\tau) = 1 \), we have \(r_\tau = m_\tau \). Consequently, the element \(d \) of \(\tilde{B} \) is of the form
\[
\sum_{\tau \in T(B)} \frac{s_\tau}{m_\tau} e^{(\tau)}_0, \quad (3)
\]
and the integers \(n, m_\tau \) and \(s_\tau \) satisfy the following conditions:
\[
n = \text{lcm}\{ m_\tau \mid \tau \in T(B) \}, \quad (3')
\]
\[
\gcd(s_\tau, m_\tau) = 1 \text{ for all } \tau \in T(B), \quad (3'')
\]
\[
s_\tau \text{ and } m_\tau \text{ are } P_0(\tau) \text{ numbers for any } \tau \in T(B). \quad (3''')
\]
A system \(E_0 = \{ e^{(\tau)}_0 \in B_\tau \mid \tau \in T(B) \} \) which satisfies conditions (2) and (3), is called a \(B \)-basis of the group \(G \) defined by the element \(d \). We note that the pair \((d, E_0) \) uniquely defines the numbers \(s_\tau \ (\tau \in T(B)) \). Relation
(3) is called a **standard representation** of block-rigid CRQ-group G related to the pair (d, E_0).

Remark 2.2. We note that a B-basis E_0 can be defined by more than one element $d \in D$.

Indeed, let we have a standard representation (3) of the group G. Let γ be an integer which is co-prime with the regulator index G. Then $G/A = \langle d + A \rangle = \langle d_1 + A \rangle$, i.e., $d_1 \in D$. In addition,

$$d_1 = \sum_{\tau \in T(B)} \frac{\gamma s_{\tau}}{m_{\tau}} e_0^{(\tau)}. \quad (4)$$

If γ is a $P_0(\tau)$-integer, then the relation (4) is a standard representation of the group G. Consequently, the B-basis E_0 is defined by each of elements d and d_1.

We note that if γ is not a $P_0(\tau)$-integer, then the relation (4) is not a standard representation of the group G. ▷

For a B-basis E_0, we set

$$D(E_0) = \{ d \in D \mid B$-basis E_0 is determined by the element $d \}. $$

It follows from the definition of the B-basis that $D(E_0) \neq \emptyset$ and it follows from Remark 2.2 that $D(E_0)$ can contain more than one element.

With the right choice of elements $e_i^{(\tau)} \in C_\tau$ ($i = 0, 1, \ldots, k_\tau$), the group C can be written in the form

$$C = \bigoplus_{\tau \in T(C)} C_\tau = \bigoplus_{\tau \in T(C)} \bigoplus_{i=1,\ldots,k_\tau} R_\tau e_i^{(\tau)},$$

where R_τ is a unitary subring in the field of rational numbers, the type of the additive group of R_τ is equal to τ, and characteristics $\chi(e_i^{(\tau)}) \in \tau$ contain only zeros and symbols ∞.

For $\tau \in T(G)$, we define the following sets:

$$I_\tau(B) = \begin{cases} \{0\}, & \text{for } \tau \in T(B) \\ \emptyset, & \text{for } \tau \notin T(B), \end{cases}$$

$$I_\tau(C) = \begin{cases} \{1, \ldots, k_\tau\}, & \text{for } \tau \in T(C), \ k_\tau \in \mathbb{N} \\ \emptyset, & \text{for } \tau \notin T(C), \end{cases}$$

$$I_\tau = I_\tau(B) \cup I_\tau(C).$$

Then $A_\tau = \bigoplus_{i \in I_\tau} R_\tau e_i^{(\tau)}$ for any $\tau \in T(G)$ and

$$A = \bigoplus_{\tau \in T(G)} \bigoplus_{i \in I_\tau} R_\tau e_i^{(\tau)}. \quad (5)$$

A system $E = \{e_i^{(\tau)} \in A_\tau \mid \tau \in T(G), i \in I_\tau\}$ is called an A-basis of the group G if E satisfies (5) and the subsystem $E_0 = \{e_0^{(\tau)} \in A_\tau \mid \tau \in T(B)\}$ of E is a B-basis.

Let (G, \times) be a ring on the group $G \in A_0$. Since A is a fully invariant subgroup of the group G, we have that A is an ideal of the ring (G, \times) which is a direct sum of ideals A_τ ($\tau \in T(G)$). Thus, every multiplication on G
induces a multiplication on A; therefore, $\text{Mult} \, G \subseteq \text{Mult} \, A$; however, the converse is not true.

Let $E = \{ e_i^{(\tau)} \in A_\tau \mid \tau \in T(G), i \in I_\tau \}$ be an A-basis of the group G. Then for any set $\{ u_{ij}^{(\tau)} \in A_\tau \mid \tau \in T(G), i, j \in I_\tau \}$, there exists a unique ring (A, \times) such that $e_i^{(\tau)} \times e_j^{(\tau)} = u_{ij}^{(\tau)}$ for all $\tau \in T(G)$ and $i, j \in I_\tau$. The multiplication \times is uniquely extended to a multiplication on $\tilde{A} = \tilde{G}$, where it is defined as follows:

$$\sum_{i \in I_\tau} r_i e_i^{(\tau)} \times \sum_{i \in I_\tau} r_i' e_i^{(\tau)} = \sum_{i, j \in I_\tau} r_i r_j' (e_i^{(\tau)} \times e_j^{(\tau)})$$

(6)

for all $\tau \in T(G)$, $r_i, r_j' \in \mathbb{Q}$; and $\tilde{A} \times \tilde{A}_\sigma = 0$ for $\tau \neq \sigma$. However, G is not necessarily a subring of the ring (\tilde{A}, \times). We say that the set $\{ u_{ij}^{(\tau)} \in A_\tau \mid \tau \in T(G), i, j \in I_\tau \}$ defines a multiplication on G with respect to the A-basis E if there exists a ring (G, \times) such that $e_i^{(\tau)} \times e_j^{(\tau)} = u_{ij}^{(\tau)}$ for all $\tau \in T(G)$ and $i, j \in I_\tau$. We note that any set $\{ u_{ij}^{(\tau)} \in A_\tau \mid \tau \in T(G), i, j \in I_\tau \}$ defines multiplication on group G with respect to the A-basis E at most one way.

Let $G \in A_0$. To describe sets defining multiplications on the group G, we define the following groups.

For any $\tau \in T(G)$, let $n_\tau = |I_\tau|$ and let $M_\tau^{(0)} = M_{n_\tau} (A_\tau)$ be the additive group of square matrices of order n_τ with elements in A_τ,

$$M_\tau^{(1)} = \begin{bmatrix} m_\tau A_\tau & m_\tau A_\tau & \ldots & m_\tau A_\tau \\ m_\tau A_\tau & A_\tau & \ldots & A_\tau \\ \vdots & \vdots & \ddots & \vdots \\ m_\tau A_\tau & A_\tau & \ldots & A_\tau \end{bmatrix} \subseteq M_\tau^{(1)}.$$

where the symbol $[\ldots]$ means the set of matrices of certain form, m_τ are invariants of near-isomorphism of the group G,

$$M_\tau^{(2)} = \begin{bmatrix} m_\tau^2 A_\tau & m_\tau A_\tau & \ldots & m_\tau A_\tau \\ m_\tau A_\tau & A_\tau & \ldots & A_\tau \\ \vdots & \vdots & \ddots & \vdots \\ m_\tau A_\tau & A_\tau & \ldots & A_\tau \end{bmatrix} \subseteq M_\tau^{(1)}.$$

We set

$$M^{(0)} = \prod_{\tau \in T(G)} M^{(0)}_\tau, \quad M^{(1)} = \prod_{\tau \in T(G)} M^{(1)}_\tau, \quad M^{(2)} = \prod_{\tau \in T(G)} M^{(2)}_\tau.$$

Then $M^{(2)} \subseteq M^{(1)} \subseteq M^{(0)}$ and $M^{(2)} \cong M^{(1)} \cong M^{(0)} \cong \text{Mult} \, A$.

For the standard representation (3) of the group G related to the pair (d, E_0) and for every $\tau \in T(G)$, we consider elements

$$X^{(\tau)} = X^{(\tau)} (d, E_0) = \begin{pmatrix} m_\tau s_\tau^{-1} e_0^{(\tau)} & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \ldots & \ldots & \ddots & \ldots \\ 0 & 0 & \ldots & 0 \end{pmatrix} \in M^{(1)}_\tau, \text{ if } \tau \in T(B),$$

where \(s_\tau^{-1} \) is an integer which is inverse to \(s_\tau \) modulo \(m_\tau \),

\[
X^{(\tau)} = \begin{pmatrix}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{pmatrix} \in M_1^{(1)}, \text{ if } \tau \notin T(B).
\]

We set

\[
X = X(d, E_0) = \left(X^{(\tau)} \right)_{\tau \in T(G)} = \left(X^{(\tau)} \right)_{\tau \in T(B)} \in M^{(1)}.
\]

\[
M(d, E_0) = \langle X, M^{(2)} \rangle \subseteq M^{(1)}.
\]

We note that integral solutions of the congruence \(s_\tau x \equiv 1 \pmod{m_\tau} \) form the residue class modulo \(m_\tau \). Therefore, the set \(M(d, E_0) \) does not depend on the choice of the integers \(s_\tau^{-1} \) in the definition of \(X \).

We also note that if \(\tau \in T(C) \setminus T(B) \), then \(m_\tau = 1 \) by (1'). Therefore,

\[
M_1^{(2)} = M_1^{(1)} = M_0^{(0)}
\]

in this case. For every set \(U = \{ u_{ij}^{(\tau)} \in A_\tau \mid \tau \in T(G), \ i, j \in I_\tau \} \) and every \(\tau \in T(G) \), we consider the matrix

\[
U^{(\tau)} = \begin{pmatrix}
u_{i_1,i_1}^{(\tau)} & u_{i_1,i_2}^{(\tau)} & \ldots & u_{i_1,i_{n_\tau}}^{(\tau)} \\
u_{i_2,i_1}^{(\tau)} & u_{i_2,i_2}^{(\tau)} & \ldots & u_{i_2,i_{n_\tau}}^{(\tau)} \\
\vdots & \vdots & \ddots & \vdots \\
u_{i_{n_\tau},i_1}^{(\tau)} & u_{i_{n_\tau},i_2}^{(\tau)} & \ldots & u_{i_{n_\tau},i_{n_\tau}}^{(\tau)}
\end{pmatrix} \in M_\tau^{(0)},
\]

where \(i_k \in I_\tau, i_1 < i_2 < \ldots < i_{n_\tau} \). We set \(U = \left(U^{(\tau)} \right)_{\tau \in T(G)} \in M^{(0)} \).

Remark 2.3. Let \(G \in A_0 \), \(G = G_1 \oplus C \) be a main decomposition of the group \(G \), and let \(\text{Reg} G = A \), \(\text{Reg} G_1 = B \). In [14], it is proved that for any multiplication \(\times \) on group \(G \), we have

\[
B_\tau \times A \subseteq m_\tau A_\tau \quad \text{and} \quad A \times B_\tau \subseteq m_\tau A_\tau \quad \text{for all} \ \tau \in T(B).
\]

Theorem 2.4. Let \(G \) be a block-rigid \(CRQ \)-group of ring type with \(A \)-basis \(E \) containing an \(B \)-basis \(E_0 \). Let \(U = \{ u_{ij}^{(\tau)} \in A_\tau \mid \tau \in T(G), \ i, j \in I_\tau \} \). Then the following conditions are equivalent.

1) \(U \) defines a multiplication on \(G \) with respect to the \(A \)-basis \(E \).

2) \(U \in M(d, E_0) \) for any \(d \in D(E_0) \).

3) \(U \in M(d, E_0) \) for some \(d \in D(E_0) \).

\(< 1 \Rightarrow 2. \) Let the set \(U = \{ u_{ij}^{(\tau)} \in A_\tau \mid \tau \in T(G), \ i, j \in I_\tau \} \) induce the multiplication \(\times \) on \(G \) with respect to the \(A \)-basis \(E = \{ e_i^{(\tau)} \in A_\tau \mid \tau \in T(G), \ i \in I_\tau \} \). It follows from Remark 2.3 that \(u_{0i}^{(\tau)}, u_{i0}^{(\tau)} \in m_\tau A_\tau \) and \(u_{00}^{(\tau)} = m_\tau v_{00}^{(\tau)} \) (\(v_{00}^{(\tau)} \in A_\tau \) for all \(\tau \in T(B), \ i \in I_\tau \).

Let \(d \in D(E_0) \) and let a standard representation related to the pair \((d, E_0)\) be of the form

\[
d = \sum_{\tau \in T(B)} \frac{s_\tau}{m_\tau} e_0^{(\tau)}.
\]
Since \(d \times d \in G \), we have that \(d \times d = \alpha d + a \) for some \(\alpha \in \mathbb{Z} \) and \(a \in A \). Then
\[
d \times d = \sum_{\tau \in T(B)} \frac{\alpha s_\tau}{m_\tau} e_0^{(\tau)} + a. \tag{7}
\]
On the other hand, it follows from (6) that
\[
d \times d = \sum_{\tau \in T(B)} \frac{s_\tau}{m_\tau} v_{00}^{(\tau)} = \sum_{\tau \in T(B)} \frac{s_\tau^2}{m_\tau^2} u_{00}^{(\tau)} = \sum_{\tau \in T(B)} \frac{s_\tau^2}{m_\tau} v_{00}^{(\tau)}.
\tag{8}
\]
Let \(\tau \in T(B) \). It follows from (7) and (8) that
\[
\pi_\tau(d \times d) = \frac{s_\tau^2}{m_\tau} v_{00}^{(\tau)} = \frac{\alpha s_\tau}{m_\tau} e_0^{(\tau)} + a_\tau, \quad \text{where } a_\tau = \pi_\tau(a) \in A_\tau.
\]
Consequently, \(s_\tau v_{00}^{(\tau)} = \alpha s_\tau e_0^{(\tau)} + m_\tau a_\tau \); therefore, \(v_{00}^{(\tau)} = \alpha s_\tau^{-1} e_0^{(\tau)} + m_\tau a_\tau' \) for some \(a_\tau' \in A_\tau \), where \(s_\tau^{-1} \) is an integer which is inverse to \(s_\tau \) modulo \(m_\tau \). Therefore,
\[
u_{00}^{(\tau)} = m_\tau v_{00}^{(\tau)} = \alpha m_\tau s_\tau^{-1} e_0^{(\tau)} + m_\tau^2 a_\tau'.
\]
Consequently, \(U \in \alpha X + M(2) \subseteq M(d, E_0) \).

2) \(\Rightarrow \) 3). The implication is directly verified.

3) \(\Rightarrow \) 1). Let \(U \in M(d, E_0) \) for some \(d \in D(E_0) \) and let a standard representation related to \((d, E_0) \) be of the form \(d = \sum_{\tau \in T(B)} \frac{s_\tau}{m_\tau} e_0^{(\tau)} \). Then \(U = \alpha X + Y \) for some \(\alpha \in \mathbb{Z} \), \(Y \in M(2) \). Therefore, for all \(\tau \in T(B) \) and \(i \in I_\tau \), we have
\[
u_{0i}^{(\tau)} = m_\tau v_{0i}^{(\tau)}, \quad u_{0i}^{(\tau)} = m_\tau u_{0i}^{(\tau)}, \quad u_{00}^{(\tau)} = \alpha m_\tau s_\tau^{-1} e_0^{(\tau)} + m_\tau^2 a_\tau,
\]
where \(v_{0i}^{(\tau)}, v_{00}^{(\tau)}, a_\tau \in A_\tau \) and the integers \(s_\tau^{-1} \) satisfy conditions \(s_\tau s_\tau^{-1} = 1 + m_\tau x_\tau \) for some \(x_\tau \in \mathbb{Z} \).

There exists a ring \((A, \times)\) such that \(e_i^{(\tau)} \times e_j^{(\tau)} = u_{ij}^{(\tau)} \) for all \(\tau \in T(G) \), \(i, j \in I_\tau \); and \(A_\tau \times A_\sigma = 0 \) for \(\tau \neq \sigma \). This multiplication is extended to a multiplication on divisible hull \(\tilde{A} = \tilde{G} \) of the group \(A \). We prove that \(G \) is a subring of the ring \((\tilde{A}, \times)\).

It follows from (6) that
\[
d \times d = \sum_{\tau \in T(B)} \frac{s_\tau^2}{m_\tau^2} u_{00}^{(\tau)} = \alpha \sum_{\tau \in T(B)} \frac{s_\tau^2 s_\tau^{-1}}{m_\tau} e_0^{(\tau)} + \sum_{\tau \in T(B)} \frac{s_\tau^2}{m_\tau} a_\tau
\]
\[
= \alpha \sum_{\tau \in T(B)} \frac{s_\tau}{m_\tau} (1 + m_\tau x_\tau) e_0^{(\tau)} + \sum_{\tau \in T(B)} s_\tau^2 a_\tau
\]
\[
= \alpha \sum_{\tau \in T(B)} \frac{s_\tau}{m_\tau} e_0^{(\tau)} + \sum_{\tau \in T(B)} (\alpha s_\tau x_\tau) e_0^{(\tau)} + \sum_{\tau \in T(B)} s_\tau^2 a_\tau
\]
\[
= \alpha d + \sum_{\tau \in T(B)} (\alpha s_\tau x_\tau e_0^{(\tau)} + s_\tau^2 a_\tau) \in G.
\]
In addition, if $\sigma \in T(B)$ and $i \in I_\sigma$, then
\[
d \times e_i^{(\sigma)} = \left(\sum_{\tau \in T(B)} s_\tau \frac{e_0^{(\tau)}}{m_\tau} \right) \times e_i^{(\sigma)} = \frac{s_\sigma}{m_\sigma} u_0^{(\sigma)} = \frac{s_\sigma}{m_\sigma} m_\sigma v_0^{(\sigma)} = s_\sigma v_0^{(\sigma)} \in A.
\]
Similarly, we have $e_i^{(\sigma)} \times d \in A$.

If $\sigma \notin T(B)$, then $d \times e_i^{(\sigma)} = e_i^{(\sigma)} \times d = 0$ for any $i \in I_\sigma$. Since $G = \langle d, A \rangle$, we have that G is a subring of the ring (\hat{A}, \times). Therefore, the set U defines a multiplication on G, \triangleright.

It follows from Theorem 2.4 that the group $M(d, E_0)$ does not depend on the choice of the element $d \in D(E_0)$. In the following assertion, we consider relations between elements of groups $M(d_1, E_0)$ and $M(d_2, E_0)$ for $d_1, d_2 \in D(E_0)$. We note that if $d_1, d_2 \in D$, then $\langle d_1 + A \rangle = \langle d_2 + A \rangle = G/A$; therefore, $d_1 = \gamma d_2 + b$ for some $b \in B$ and some integer γ which is co-prime with $n(G)$.

Proposition 2.5. Let G be a group in A_0 with main decomposition (1) and with a B-basis E_0 and regulator index n. Then the following assertions hold.

1) $M(d_1, E_0) = M(d_2, E_0)$ for any $d_1, d_2 \in D(E_0)$.

2) If $d_1, d_2 \in D(E_0)$ and $d_1 = \gamma d_2 + b$, where $\gamma \in \mathbb{Z}$, $\text{lcm}(\gamma, n) = 1$, $b \in B$, $X_1 = X(d_1, E_0) \in M(d_1, E_0)$, $X_2 = X(d_2, E_0) \in M(d_2, E_0)$, then $X_1 + M^{(2)} = \gamma^{-1} X_2 + M^{(2)}$, where γ^{-1} is an integer which is inverse to γ modulo n.

\[\triangleright\text{Let } d_1, d_2 \in D(E_0), d_1 = \gamma d_2 + b, \text{ where } \gamma \in \mathbb{Z}, \text{lcm}(\gamma, n) = 1 \text{ and } b = \sum_{\tau \in T(B)} b_\tau e_0^{(\tau)} (b_\tau \in R_\tau). \text{Let}
\]
\[
d_1 = \sum_{\tau \in T(B)} \frac{s_\tau}{m_\tau} e_0^{(\tau)}, \quad d_2 = \sum_{\tau \in T(B)} \frac{t_\tau}{m_\tau} e_0^{(\tau)}
\]
be standard representations of the group G related to (d_1, E_0) and (d_2, E_0), respectively. In the divisible hull \hat{G} of the group G, we have relations
\[
\sum_{\tau \in T(B)} \frac{s_\tau}{m_\tau} e_0^{(\tau)} = d_1 = \gamma d_2 + b = \sum_{\tau \in T(B)} \frac{\gamma t_\tau + m_\tau b_\tau}{m_\tau} e_0^{(\tau)}.
\]
Therefore,
\[
s_\tau = \gamma t_\tau + m_\tau b_\tau \text{ for all } \tau \in T(B).
\]
Let $\tau \in T(B)$, γ^{-1} be an integer which is inverse to γ modulo n, and let t^{-1}_τ be an integer which is inverse to t_τ modulo m_τ. Then number γ^{-1} is inverse to γ modulo m_τ by (3'); therefore, the integer $\gamma^{-1} t^{-1}_\tau$ is inverse to s_τ modulo m_τ by (9).

Let $a_\tau \in A_\tau$. Then
\[
s^{-1}_\tau m_\tau e_0^{(\tau)} + m_\tau^2 a_\tau = \gamma^{-1} t^{-1}_\tau m_\tau e_0^{(\tau)} + m_\tau^2 a'_\tau, \text{ where } a'_\tau \in A_\tau.
\]
Consequently,
\[
X_1 + M^{(2)} \subseteq \gamma^{-1} X_2 + M^{(2)}.
\]
Since \(d_2 = \gamma^{-1}d_1 + b'_1 \) (where \(b'_1 \in B \)), we have
\[
\gamma^{-1}X_2 + M^{(2)} \subseteq \gamma^{-1}(\gamma X_1 + M^{(2)}) + M^{(2)} = X_1 + M^{(2)}
\]
by (10). \(\diamond \)

It follows from Proposition 2 that we can write \(M(d, E_0) = M(E_0) \), however we will often write \(M(d, E_0) \) if we want to point which a standard representation is used in the definition of the group \(M(d, E_0) \).

Remark 2.6. Let \(\overline{U} \in M^{(2)} \) for the set \(U = \{ u_{ij}^{(\tau)} \in A_\tau \mid \tau \in T(G), \; i, j \in I_\tau \} \). It follows from Theorem 2.4 that, with respect to any \(A \)-basis \(E \) of the group \(G \), the set \(U \) defines a multiplication \(\times_{U,E} \) on \(G \) such that \(G \times_{U,E} G \subseteq A \). Such a multiplication is called a regulator multiplication. \(\diamond \)

Example 2.7. It is possible that the set \(U = \{ u_{ij}^{(\tau)} \mid \tau \in T(G), \; i, j \in I_\tau \} \) defines a multiplication on \(G \) with respect to one \(A \)-basis and does not define any multiplication on \(G \) with respect to another \(A \)-basis even for the same main decomposition. Moreover, the following situation is possible: there exist two \(A \)-bases \(E \) and \(F \) such that any set \(U \), which defines non-regulator multiplication with respect to \(E \), does not define any multiplication with respect to \(F \). This means that
\[
M(E_0) \cap M(F_0) = M^{(2)}.
\]

\(\langle \) Let \(s_1, \; s_2 \) be two co-prime integers, \(s_1 > 1, \; s_2 > 1 \), and let \(m \) be a prime integer which does not divide any of the integers \(s_1, \; s_2, \; s_1^2 - s_2^2 \).

Let \(\tau_i \) be an idempotent type such that \(P_0(\tau_i) \) is the set of all prime divisors of the integers \(m \) and \(s_i \), respectively \((i = 1, 2)\). Then types \(\tau_1 \) and \(\tau_2 \) are incomparable.

We consider a group \(B = R_1 e_1 \oplus R_2 e_2 \), where \(R_1 \) and \(R_2 \) are unital subrings in the field \(\mathbb{Q} \) whose additive groups are of types \(\tau_1 \) and \(\tau_2 \), respectively.

It follows from Remark 2.1 that there exists a CRQ-group \(G = \langle d, B \rangle \) with regulator \(B \) and quasi-isomorphism invariants \(m_{\tau_1} = m_{\tau_2} = m \). We can choose the group \(G \) in such a way that a standard representation of \(G \) is of the form
\[
d = \frac{s_1}{m} e_1 + \frac{s_2}{m} e_2.
\]
Then the system \(E_0 = \{ e_1, e_2 \} \) is a \(B \)-basis of the group \(G \) defined by the element \(d \) (in this case, the \(B \)-basis coincides with an \(A \)-basis).

We set
\[
B_1 = B_{\tau_1} = R_1 e_1, \; B_2 = B_{\tau_2} = R_2 e_2.
\]
We consider \(d_1 = d + (e_1 + e_2) \in G \). Then \(d_1 \in D \); in \(\tilde{G} \), we have
\[
d_1 = \frac{s_1 + m}{m} e_1 + \frac{s_2 + m}{m} e_2. \quad (11)
\]
Since \(s_i + m \) is co-prime with each of the integers \(s_i \) and \(m \), we have that \(s_i + m \) is a \(P_\infty(\tau_i) \)-integer for \(i = 1, 2 \). Consequently, (11) is not a standard representation of the group \(G \). We set \(f_1 = (s_1 + m)e_1 \) and \(f_2 = (s_2 + m)e_2 \). Then the system \(F_0 = \{ f_1, f_2 \} \) is a \(B \)-basis defined by the element \(d_1 \). The
standard representation of the group G, related to the pair (d_1, F_0), is of the form $d_1 = \frac{1}{m} f_1 + \frac{1}{m} f_2$.

Let the set $U = \{u_i \in B_i \mid i = 1, 2\}$ define a non-regulator multiplication on G with respect to of the B-basis $E_0 = \{e_1, e_2\}$. By Theorem 2.4, we have $(u_1, u_2) \in M(d, E_0) \setminus M^{(2)}$. Consequently,

$$u_1 \in \alpha ms_1^{-1} e_1 + m^2 B_1, \quad u_2 \in \alpha ms_2^{-1} e_2 + m^2 B_2,$$

for some integer α which is not divided by the prime integer m.

We assume that the set U defines multiplication with respect to the B-basis $F_0 = \{f_1, f_2\}$. Then it follows from Theorem 2.4 that for some $\beta \in \mathbb{Z}$, we have

$$u_1 \in \beta mf_1 + m^2 B_1, \quad u_2 \in \beta mf_2 + m^2 B_2.$$

It follows from (12) and (13) that

$$\alpha ms_1^{-1} e_1 \in \beta mf_1 + m^2 B_1 = \beta ms_1 e_1 + m^2 B_1,$$

$$\alpha ms_2^{-1} e_2 \in \beta mf_2 + m^2 B_2 = \beta ms_2 e_2 + m^2 B_2.$$

Therefore,

$$\alpha = \beta s_1^2 + mx_1, \quad \alpha = \beta s_2^2 + mx_2$$

for some $x_1 \in R_1, \ x_2 \in R_2$. Since $x_i = \frac{\alpha - \beta s_i^2}{m} \in R_i$ and m is a $P_0(\tau_i)$-integer, we have $x_i \in \mathbb{Z}$ for $i = 1, 2$. Consequently, it follows from (14) that

$$\beta(s_1^2 - s_2^2) = my$$

for $y = x_2 - x_1 \in \mathbb{Z}$. Since the prime integer m does not divide $s_1^2 - s_2^2$, we have that m divides β; therefore, m divides α by (14). This contradicts to the property that $(u_1, u_2) \notin M^{(2)}$. Consequently, the set $U = \{u_1, u_2\}$ does not define any multiplication with respect to the B-basis F_0. ▷

Let \times be a multiplication on a group $G \in A_0$. Let $E = \{e_i^{(\tau)} \in A_\tau \mid \tau \in T(G), \ i \in I_\tau\}$ be an A-basis of the group G and let

$$U_\times = U_\times(E) = \{u_{ij}^{(\tau)} = e_i^{(\tau)} \times e_j^{(\tau)} \in A_\tau \mid \tau \in T(G), \ i, j \in I_\tau\}.$$

It clearly follows from Theorem 2.4 that the correspondence $\times \mapsto U_\times$ defines an isomorphism from the group Mult G onto $M(E_0)$.

Theorem 2.8. If $G \in A_0$ and E_0 is a B-basis of the group G, then Mult $G \cong M(E_0)$. ▷

We note that Theorem 2.8 implies the following property: up to isomorphism, the group $M(E_0)$ does not depend on the choice of the B-basis E_0.

Remark 2.9. Let $G = \langle d, A \rangle \in A_0$ and let E be an A-basis of the group G containing the B-basis E_0.

1. It follows from Theorem 2.8 that the group Mult G can be identified with the group $M(E_0) = \langle X, M^{(2)} \rangle$ and the multiplication \times can be identified with $\bar{U}_\times \in M(E_0)$.

2. Let \(\overline{U}_\times = \overline{U}_\times(E) \in \text{Mult} G = M(d, E_0) = \langle \alpha \rangle \), \(\alpha \in \mathbb{Z} \). It follows from the proof of Theorem 2.4 that \(\overline{U}_\times \in \alpha X + M(2) \) if and only if \(d \times d \in \alpha d + A \).

3. It follows from 2 that \(\overline{U}_\times \in M(2) \) if and only if \(G \times G \subseteq A \). In the group \(\text{Mult} G \), this means that the subgroup \(\text{Hom}(G \otimes G, A) \) of all regulator multiplications coincides with the group \(M(2) \). \(\triangleright \)

3. Properties of Multiplication Groups of Block-Rigid CRQ-Groups of Ring Type

The purpose of this section is to show that for any group \(G \) in the class \(A_0 \), the group \(\text{Mult} G \) belongs to this class, as well. We will also describe the rank, the set of critical types, invariants of near-isomorphism, the regulator, a main decomposition, and a standard representation of the group \(\text{Mult} G \), where \(G \in A_0 \).

Remark 3.1. Let \(A \) be a completely decomposable block-rigid group of finite rank and \(G = \langle d, A \rangle \), where \(d \in \hat{A} \). Let we have \(o(d_\tau + A) = m_\tau \) in the group \(\hat{A}/A \), where \(d_\tau = \pi_\tau(d) \) for \(\tau \in T(A) \). Then the set \(\{ m_\tau | \tau \in T(A) \} \) satisfies condition (m) (see Remark 2.1) if and only if for any \(\tau \in T(A) \), the subgroup \(A_\tau \) is pure in \(G \).

Indeed, let the set \(\{ m_\tau | \tau \in T(A) \} \) satisfy condition (m), \(\sigma \in T(A) \), \(a \in A_\sigma \) and \(a = k(td + x) \) for some \(k, t \in \mathbb{Z} \) and \(x \in A \). Let \(\tau \neq \sigma \), then

\[
kt \sigma + kx_\tau = 0, \quad \text{where} \quad x_\tau = \pi_\tau(x) \in A_\tau.
\]

Therefore, \(td_\tau \in A_\tau \), whence \(m_\tau \) divides \(t \). Since the set \(\{ m_\tau | \tau \in T(A) \} \) satisfies condition (m), we have that

\[
\text{lcm}\{ m_\tau | \tau \in T(A), \tau \neq \sigma \} = \text{lcm}\{ m_\tau | \tau \in T(A) \} = n.
\]

Consequently, \(n \) divides \(t \); therefore, \(td + x \in A \). Since the type of the element \(td + x \) is equal to \(\sigma \), we have that \(td + x \in A_\sigma \).

Conversely, let the subgroup \(A_\tau \) be pure in \(G \) for any \(\tau \in T(A) \). We assume that the set \(\{ m_\tau | \tau \in T(A) \} \) does not satisfy condition (m). Then there exists a type \(\sigma \in T(A) \) such that \(m_\sigma \) does not divide \(n_1 = \text{lcm}\{ m_\tau | \tau \in T(A), \tau \neq \sigma \} \). Consequently, for \(n = \text{lcm}\{ m_\tau | \tau \in T(A) \} \), it is true that \(n = n_1 n_2 \) for some integer \(n_2 > 1 \). Consequently, \(n_1 d_\sigma \notin A_\sigma \) and \(n_2 (n_1 d_\sigma) \in A_\sigma \). Therefore, the subgroup \(A_\sigma \) is not pure in \(G \). \(\triangleright \)

Remark 3.2. Let \(A \) be a reduced block-rigid (resp., rigid) completely decomposable group of finite rank and let \(G = \langle d, A \rangle \), where \(d \in \hat{A} \setminus A \). Then \(A \) is a subgroup of finite index of the group \(G \), and \(T(G) = T(A) \). Therefore, \(G \) is a block-rigid (resp., rigid) ACQG-group by the definition. We note that if \(A \) is a group of ring type, then \(G \) also is a group of ring type. Since \(G/A = \langle d + A \rangle \) is a cyclic group, we have that \(G \) is a CRQ-group by [5, Sect. 2]. In addition, \(A = \text{Reg} G \) if and only if subgroup \(A_\tau \) is pure in \(G \) [5, Sect. 2] for any \(\tau \in T(G) \). \(\triangleright \)
Let $G \in \mathcal{A}_0$. The following theorem describes properties of the group \(\text{Mult} G \). In what follows, $G \in \mathcal{A}_0$, $T(G) = T$, $T_0(G) = T_0$, $m_\tau(G) = m_\tau$ ($\tau \in T$), $n(G) = n$, $G = G_1 \oplus C$ is a main decomposition of the group G, $\text{Reg} G_1 = B = \oplus_{\tau \in T_0} R_\tau e_0(\tau)$, $\text{Reg} G = A = B \oplus C$, $G = \langle d, A \rangle$, and a standard representation of the group G is of the form

$$d = \sum_{\tau \in T_0} \frac{s_\tau e_0(\tau)}{m_\tau}.$$

We note that the set of integral solutions of the congruence $s_\tau x \equiv 1 \pmod{m_\tau}$ always contains a $P_0(\tau)$-integer $s_\tau^\varphi(m_\tau)-1$, where $\varphi(x)$ is the Euler function. Therefore, we always can take this $P_0(\tau)$-integer as the integer s_τ^{-1} inverse to s_τ modulo m_τ.

Theorem 3.3. Let $G \in \mathcal{A}_0$. Then the group \(\text{Mult} G \) satisfies the following conditions.

1. The group \(\text{Mult} G \) is a block-rigid CRQ-group of ring type with regulator $M^{(2)} = \text{Hom}(G \otimes G, A)$.
2. $T(\text{Mult} G) = T(G)$ and $T_0(\text{Mult} G) = T_0(G)$, as a corollary.
3. $m_\tau(\text{Mult} G) = m_\tau(G)$ for any $\tau \in T(G)$, $n(\text{Mult} G) = n(G)$.
4. $r(\text{Reg}_\tau(\text{Mult} G)) = (r(\text{Reg}_\tau(G)))^3$ for any $\tau \in T(G)$.
5. One of main decompositions of the group $\text{Mult} G$ is of the form $\text{Mult} G = M' \oplus M''$, where

$$M' = \langle X, K \rangle, \quad K = \prod_{\tau \in T_0(G)} K_\tau, \quad K_\tau = \begin{bmatrix} m_\tau^2 B_\tau & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 \end{bmatrix} \subseteq M^{(2)},$$

$$X = \left(X^{(\tau)} \right)_{\tau \in T_0(G)}, \quad X^{(\tau)} = \begin{bmatrix} m_\tau s_\tau^{-1} e_0(\tau) & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 \end{bmatrix} \in M^{(1)}_\tau \text{ for } \tau \in T_0(G),$$

$$M'' = \prod_{\tau \in T(G)} M''_\tau, \quad M''_\tau = \begin{bmatrix} m_\tau^2 C_\tau & m_\tau A_\tau \ldots m_\tau A_\tau \\ m_\tau A_\tau & A_\tau \ldots A_\tau \\ \vdots & \vdots & \ddots & \vdots \\ m_\tau A_\tau & A_\tau \ldots A_\tau \end{bmatrix} \subseteq M^{(2)}_\tau.$$

In addition, $T(M') = T_0(G)$, $\text{Reg} M' = K$.

6. For every $\tau \in T_0(G)$, we denote by s_τ^{-1} a $P_0(\tau)$-integer which is inverse to s_τ modulo m_τ,

$$E_0^{(\tau)} = \begin{bmatrix} m_\tau^2 e_0(\tau) & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 \end{bmatrix} \in K_\tau.$$

Then the system $\{ E_0^{(\tau)} \mid \tau \in T_0(G) \}$ is one of B-bases of the group $\text{Mult} G$.

One of standard representations of the group $\text{Mult} G$ is of the form

$$X = \left(\frac{s_\tau^{-1} E_0^{(\tau)}}{m_\tau} \right)_{\tau \in T_0(G)}.$$
1. It follows from Theorem 2.8 that \(\text{Mult} G = \langle X, M^{(2)} \rangle \), where

\[
X = \left(X^{(\tau)} \right)_{\tau \in T_0}, \quad X^{(\tau)} = \begin{pmatrix}
 m_\tau s_\tau^{-1} e_0^\tau & 0 & \ldots & 0 \\
 0 & 0 & \ldots & 0 \\
 \ldots & \ldots & \ldots & \ldots \\
 0 & 0 & \ldots & 0
\end{pmatrix} \in M^{(1)} \text{ for } \tau \in T_0.
\]

Since \(\gcd(s_\tau^{-1}, m_\tau) = 1 \) for \(\tau \in T_0 \), we have \(o(X_\tau + M^{(2)}) = m_\tau \) in the group \(\hat{M}^{(2)}/M^{(2)} \).

By Remark 2.1, the set \(\{m_\tau \mid \tau \in T\} \) satisfies condition (m). Therefore, it follows from Remark 3.1 that the subgroups \(M^{(2)}_\tau \) are pure in \(\text{Mult} G \) for any \(\tau \in T \). Since \(M^{(2)} \) is a block-rigid completely decomposable group of ring type, \(\text{Mult} G \) is a block-rigid CRQ-group of ring type with regulator \(M^{(2)} \) by Remark 3.2. It follows from Remark 2.9(3) that we have \(M^{(2)} = \text{Hom}(G \otimes G, A) \).

2. It follows from 1 and the definition of the group \(M^{(2)} \) that

\[
T(\text{Mult} G) = T(M^{(2)}) = T(G).
\]

3. We have \(\text{Mult} G = \langle X, M^{(2)} \rangle \) and \(\text{Reg(Mult} G) = M^{(2)} \) by 1. Let \(\tau \in T \), then

\[
m_\tau(\text{Mult} G) = o(X_\tau + M^{(2)}) = m_\tau = m_\tau(G).
\]

Therefore, \(n(\text{Mult} G) = \text{lcm}\{m_\tau \mid \tau \in T\} = n(G) \).

4. Let \(\tau \in T \). It follows from 1 that

\[
\text{Reg}_\tau(\text{Mult} G) = M^{(2)}_\tau = \begin{bmatrix}
 m_\tau^2 A_\tau & m_\tau A_\tau & \ldots & m_\tau A_\tau \\
 m_\tau A_\tau & A_\tau & \ldots & A_\tau \\
 \ldots & \ldots & \ldots & \ldots \\
 m_\tau A_\tau & A_\tau & \ldots & A_\tau
\end{bmatrix} \cong M_{n_\tau}(A_\tau),
\]

where \(n_\tau = r(A_\tau) \). Consequently, \(r(\text{Reg}_\tau(\text{Mult} G)) = n_\tau^3 = (r(\text{Reg}_\tau G))^3 \).

5. In the decomposition \(\text{Mult} G \cong M' \oplus M'' \), the group \(M'' \) is completely decomposable and \(M' = \langle X, K \rangle \). By the definition of the group \(K \), we have \(T(K) = T(M') = T_0 \). It is easy to see that \(o(X^{(\tau)} + K) = m_\tau \) in the group \(\hat{K}/K \), for any \(\tau \in T_0 \). Since \(\{m_\tau \mid \tau \in T_0\} \) satisfies condition (m) (by Remark 2.1) and \(K \) is a rigid completely decomposable group, we have that \(M' \) is a rigid group in \(A_0 \) with \(\text{Reg} M' = K \) by Remarks 3.1 and 3.2.

Since \(T(M') = T_0 \), we have that \(\tau \in T(M') \) if and only if \(m_\tau(\text{Mult} G) = m_\tau > 1 \). In addition,

\[
m_\tau(M') = o(X^{(\tau)} + K) = m_\tau = m_\tau(\text{Mult} G),
\]

by 3. It follows from (1'), (1'') that the decomposition \(\text{Mult} G = M' \oplus M'' \) is a main decomposition of the group \(\text{Mult} G \).

6. Let \(\tau \in T_0 \), \(s_\tau^{-1} \) be a \(P_0(\tau) \)-integer which is inverse to \(s_\tau \) modulo \(m_\tau \), and let

\[
E_0^{(\tau)} = \begin{pmatrix}
 m_\tau^2 e_0^{(\tau)} & 0 & \ldots & 0 \\
 0 & 0 & \ldots & 0 \\
 \ldots & \ldots & \ldots & \ldots \\
 0 & 0 & \ldots & 0
\end{pmatrix} \in K_\tau.
\]
Then \(K = \prod_{\tau \in T_0} R_{\tau} E^{(\tau)}_0 \). In addition,

\[
X = \left(\frac{s_{\tau}^{-1}}{m_{\tau}} E^{(\tau)}_0 \right)_{\tau \in T_0}.
\]

(15)

Since \(s_{\tau}^{-1} (\tau \in T_0) \) is a \(P_0(\tau) \)-integer, (15) is a standard representation of the group \(\text{Mult} \ G \). Therefore, \(\{ E^{(\tau)}_0 \mid \tau \in T_0(G) \} \) is a \(B \)-basis of the group \(\text{Mult} \ G \).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

[1] Andruszkiewicz, R.R., Woronowicz, M.: On additive groups of associative and commutative rings. Quaestiones Mathematicae 40(4), 527–537 (2017)
[2] Beaumont, R.A., Pierce, R.S.: Torsion-free rings Illinois J. Math. 5, 61–98 (1961)
[3] Blagoveshchenskaya, E. A.: Classification of a class of almost completely decomposable groups Rings, Modules, Algebras and Abelian Groups (Lecture notes in pure and applied mathematics series/236), 45–54 (2004)
[4] Blagoveshchenskaya, E.A.: Almost completely decomposable groups and rings. J. Math. Sci. 152(2), 137–154 (2008)
[5] Blagoveshchenskaya, E.A., Mader, A.: Decompositions of almost completely decomposable groups contemp. Math. Amer. Math. Soc. 171, 21-36 (1994)
[6] Burkhardt, R.: On a special class of almost Completely Decomposable groups Abelian Groups and Modules, Proceedings of the Udine Conference, CISM Courses and Lecture Notes. 287, 141–150 (1984)
[7] Dugas, M., Oxford, E.: Near isomorphism invariants for a class of almost completely decomposable groups Abelian groups, Proceedings of the 1991 Curacao Conference, Marcel Dekker, Inc. 129–150 (1993)
[8] Feigelstock, S.: Additive groups of rings whose subrings are ideals Bull. Austral. Math. Soc. 55, 477–481 (1997)
[9] Feigelstock, S.: Additive groups of commutative rings Quaest. Math. 23, 241–245 (2000)
[10] Fuchs, L.: Infinite Abelian Groups, Academic Press. New York–London, 2 (1973)
[11] Fuchs, L.: Abelian Groups. Springer Int. Publ. Switzerland. (2015)
[12] Gardner, B.J.: Rings on completely decomposable torsion-free Abelian groups Comment. Math. Univ. Carolinae 15(3), 381–392 (1974)
[13] Jackett, D.R.: Rings on certain mixed Abelian groups Pacif. J. Math. 98(2), 365–373 (1982)
[14] Kompantseva, E.I.: Rings on almost completely decomposable abelian groups J. Math. Sci. (Springer). 163(6), 688–693 (2009)
[15] Kompantseva, E.I.: Torsion-free rings J. Math. Sci. (Springer). 171(2), 213–247 (2010)
[16] Kompantseva, E.I.: Abelian dqt-groups and rings on them J. Math. Sci. (Springer). 206(5), 494–504 (2015)
[17] Kompantseva, E.I., Tuganbaev, A.A.: Rings on Abelian torsion-free groups of finite rank Beitrage zur Algebra und Geometrie, Published on-line. https://doi.org/10.1007/s13366-021-00585-0 (2022)
[18] Kompantseva, E.I., Tuganbaev, A.A.: Absolute Ideals of Murley Groups Beitrage zur Algebra und Geometrie (2022) https://doi.org/10.1007/s13366-021-00604-0
[19] Krylov, P.A., Mikhalev, A.V., Tuganbaev, A.A.: Endomorphism Rings of Abelian Groups. Springer, Netherlands (Kluwer), Dordrecht-Boston-London (2003)
[20] Lady, E.L.: Almost completely decomposable torsion-free abelian groups Proc. Amer. Math. Soc. 45, 41–47 (1974)
[21] Mader, A.: Almost completely decomposable abelian groups. Gordon and Breach. Amsterdam (2000)

E. I. Kompantseva and A. A. Tuganbaev
Moscow State Pedagogical University
Moscow
Russia
e-mail: e.kompantseva@gmail.com

A. A. Tuganbaev
National Research University MPEI
Moscow
Russia
e-mail: tuganbaev@gmail.com

Received: April 19, 2022.
Revised: November 12, 2022.
Accepted: December 28, 2022.