Detection of Atypical porcine pestivirus in Swedish pigs with congenital tremor type A-II

CURRENT STATUS: UNDER REVISION

BMC Veterinary Research BMC Series

Hedvig Stenberg hedvig.stenberg@slu.se
Sveriges Lantbruksuniversitet Veterinarmedicin och husdjursvetenskap
Corresponding Author
ORCiD: 0000-0003-0444-4453

Magdalena Jacobson
Sveriges Lantbruksuniversitet Veterinarmedicin och husdjursvetenskap

Maja Malmberg
Sveriges Lantbruksuniversitet Veterinarmedicin och husdjursvetenskap

DOI: 10.21203/rs.2.16766/v1

SUBJECT AREAS
Small Animal Medicine

KEYWORDS
congenital tremor, type A-II, atypical porcine pestivirus, splay legs, Sweden, pigs, piglets
Abstract

Background Congenital tremor type A-II is a neurological disorder characterized by tremor of the head and body of new-born piglets. The suggestive causative agent of the disease is the recently found atypical porcine pestivirus. The virus has been detected in piglets suffering from congenital tremor in central Europe, South and North America and in China but no studies has so far not been performed in the Nordic countries, hence, the aim of this study was to investigate the prevalence of atypical porcine pestivirus in Swedish piglets. From June 2017 – June 2018, 15 piglets from four Swedish farms with ongoing outbreaks of congenital tremor, and 13 piglets with splay leg, from four different farms, were investigated for presence of APPV RNA in brain tissue. Matched healthy control piglets (n=8) were also studied. Two APPV-specific RT-qPCR:s targeting the NS3 and NS5B region, respectively, were used. A retrospective study was performed in the same manner on material from Swedish piglets with congenital tremor sampled in 2004 (n=11) and 2011/2012 (n=6).

Results Atypical porcine pestivirus-RNA was detected in 93% (27/29) of the piglets suffering from congenital tremor. All samples from piglets with congenital tremor from 2004 (n = 11) and 2012 (n = 3) were PCR-positive with respect to APPV. All of the healthy controls (n=8) were negative for APPV. The piglets with congenital tremor sampled 2017-2018 had an odds ratio of 271 (95% CI 12.1 to 6096.8, z = 3.5, P = 0.0004) to test positive for APPV by qRT-PCR compared to the healthy piglets (Fishers exact test p < 0.0001). These findings make it interesting to continue investigating APPV in pigs in Sweden, as most of the virus details is unknown to date.

Conclusion This is the first description of atypical porcine pestivirus in piglets with congenital tremor type A-II in Sweden and the Nordic countries. The virus has been present in the Swedish pig population since at least 2004.
Background

Congenital tremor (CT) is a neurological disorder that affects new-born piglets. The disease is characterized by tremors of the head and body, and may in severe cases be complicated by ataxia that exacerbates the piglets’ ability to move and suckle, resulting in reduced growth rate or increased pre-weaning mortality (1–3). The neurological signs are caused by impaired saltatory transmission due to hypomyelination of the central nervous system (3–5). At present, CT is divided into six different sub-types: type AI-AV and a B-type. By definition, all A-forms have hypomyelination of the CNS as the main histological finding, whereas the B-form presents with identical clinical signs but without any histopathological lesions (1, 3–5).

For over half a century, CT type A-II was attributed to an unidentified virus (2), but in 2016 it was associated with the recently discovered atypical porcine pestivirus (APPV) (2, 6–8). In two independent experiments with pregnant sows, APPV PCR-positive material was used to induce CT in piglets (7, 8). Since the discovery of APPV in the US (9), the virus has been described in both diseased and healthy domestic pigs in Europe, Asia and in South and North America (6, 9–15) and in serum and fecal samples from wild boars sampled in central Europe (16–18). Atypical porcine pestivirus has also been detected in stored material from historical CT-outbreaks, the oldest detection currently being from samples stored in 1997, originating from Spanish piglets with CT (18).

Interestingly, in the experimental infections described above, splay leg was induced in 0–40% of the piglets born from the APPV-inoculated sows (7, 8). This prevalence was an unusual observation of splay leg since the syndrome typically occurs only as sporadic cases (19), whereas CT commonly causes distinct, high-morbidity outbreaks (2, 12, 20).

Splay leg is characterized by impairment of the adducting muscles of the hindlimbs and, in severe cases, of the forelegs as well. This is attributed to hypomyelination of the spinal
cord and nerves innervating the affected muscles (21, 22). The syndrome was first described in 1967 (21) and the causal factors proposed so far are numerous e.g., heritable gene defects, various management factors, nutrition, and, fusarium toxin in the feed. However, the cause of splay leg have not been thoroughly investigated (19, 23–25).

Since there are no previous reports of APPV in Swedish piglets with congenital tremor or splay leg, the objectives of this study were threefold: (i) to investigate the presence of APPV in Swedish piglets affected by congenital tremor and splay legs sampled 2017—2018; (ii) to perform a retrospective study to investigate the presence of APPV in Swedish piglets affected by congenital tremor sampled in 2004 and 2012; and (iii) to perform a phylogenetic analysis of sequences acquired from the different farms.

Results

Detection of APPV in piglets with CT

Atypical porcine pestivirus -RNA was detected by qRT-PCR in 93% (27/29) of the piglets suffering from congenital tremor. All piglets exploiting signs of CT from 2004 (n = 11) and 2012 (n = 3) were PCR-positive with respect to APPV. Of the piglets sampled in 2017–2018, 87% (13/15) of the samples were positive with respect to APPV. Interestingly, the two negative samples both originated from two piglets from Farm F sampled in 2018. All of the healthy controls sampled in 2017–2018 (n = 8) and the healthy controls sampled in 2012 (n = 3) were PCR-negative with respect to APPV.

The piglets with congenital tremor sampled 2017–2018 had an odds ratio of 271 (95% CI 12.1 to 6096.8, z = 3.5, P = 0.0004. MEDCALC) to test positive for APPV by qRT-PCR as compared to the healthy piglets. Fishers exact test for the same sample gave a p < 0.0001 (Sergeant, ESG, 2019. Epitools epidemiological calculators. Ausvet Pty Ltd. Available at http://epitools.ausvet.com.au)
To get a clear overview of the Cq-values, all values were ranked in accordance with other publications; Cq-values (cycle quantification values) were graded as high (Cq < 28), moderate (Cq 28–33) and low (Cq 33–40) (11, 29). The mean Cq-values of each farm are presented in table 2. There is a supplementary file presenting the specific Cq-value obtained from each piglet.

3.2 Detection of APPV in piglets with splay leg

All of the piglets with splay leg (n = 13) sampled in 2017-2018 were PCR-negative with respect to APPV.

Sequence and phylogenetic analysis

The four samples generated between 775 and 812 nucleotides from the APPV NS3 protein: 1778KA021-22 (Farm B) 775 bp, 1778KA025-26 (Farm C) 807 bp, 1778KA023-24 (Farm D) 810 bp and 1778KA027-28 (Farm E) 812 bp. The nucleotide identity among the four sequences ranged from 88.3% to 98.8%. The sequence 1778KA025-26 (Farm C) and 1778KA021-22 (Farm B) had the highest identity at the nucleotide level at 98.8%. Both 1778KA025-26 (Farm C) and 1778KA021-22 (Farm B) shared the highest identity at the nucleotide level, 97.3%, compared to sequences obtained from Chinese domestic pigs (GenBank accession MH378079.1 and MH509410.1). The other two sequences, 1778KA023-24 (Farm D) and 1778KA027-28 (Farm E), shared 97.4% identity at the nucleotide level. These two sequences, 1778KA023-24 and 1778KA027-28, both shared the highest nucleotide sequences identity, 96.2% and 95.6%, respectively, with a sequence obtained from a Spanish wild boar (GenBank accession LT855204.1).

The Swedish sequences (marked * in figure 2) clustered with sequences from domestic pigs from China as well as with wild boar from Germany.

Pathology
Of the 15 piglets obtained 2017 - 2018, all piglets with CT and the healthy controls had milk in their ventricles, whereas the ventricles of the piglets with SL were empty. No gross lesions were recorded at necropsy.

Necropsies were also performed on all 11 piglets from 2011 but no gross lesions were visible. These 11 piglets also tested negative for PCV-2.

No necropsies were done on the 6 piglets sampled 2012, although the brains were subjected to histopathological investigation. In the piglets with clinical signs of CT, however, mild to moderate vacuolar changes of the white matter were observed in the cerebrum, brain stem, and cerebellum (Blomstrom, Ley et al. 2014).

Discussion

This is the first description of APPV in piglets with congenital tremor type A-II in Sweden and the Nordic countries. APPV was detected by qRT-PCR in 27 samples of brain tissue obtained from piglets with CT but not in the healthy control piglets or the piglets with splay leg. Thus, in this study we found no evidence for APPV as the causative agent of splay leg in Swedish piglets. The clinical samples were collected from five different farms between 2004 and 2018. Hence, this study provides evidence of APPV being present in Swedish pigs with CT type A-II since at least 2004.

Since all sampled piglets were new-born and in good general condition, differential diagnoses to tremor in piglets e.g. PMWS, Aujeszky’s disease, porcine reproductive and respiratory syndrome (PRRS), aflatoxicosis, classical and African swine fever could be excluded with high probability. Thus, APPV could be assumed to be the causative agent (30-32).

A previous report has suggested astrovirus as a possible causative agent of CT type A-II in Swedish piglets (26). However, this finding of APPV in piglets with CT but not in healthy piglets provides evidence of astrovirus being an incidental finding, or being present as a
co-infection, rather than being the causative agent.

The analysis of the sequences obtained from the APPV-positive piglets confirms the findings by others, that APPV is a genetically variable virus with no clear geographic clustering (33). Interestingly, the Swedish sequences show nucleotide identity not only to sequences from domestic pigs in China but also to sequences from wild boars obtained in Spain and Germany. Hence, a screening and phylogenetic analysis of APPV in the Swedish wild boar population would be highly interesting to try to elucidate a possible route of transmission within Europe.

Since this is the first description of APPV in piglets with CT type A-II in Sweden, further studies are needed to determine the prevalence of APPV in the Swedish pig population. In addition, the occurrence as well as the mechanism of potential co-infections of other viruses and APPV should be investigated.

Conclusions

This is the first description of atypical porcine pestivirus in piglets with congenital tremor type A-II in Sweden and the Nordic countries. The virus has been present in the Swedish pig population and been causing congenital tremor in piglets since at least 2004. Interestingly, the virus was not detected in piglets suffering from splay leg or in the healthy control piglets.

Material And Methods

The objectives of the performed study were threefold: (i) to investigate the presence of APPV in Swedish piglets affected by congenital tremor and splay legs sampled 2017—2018; (ii) to perform a retrospective study to investigate the presence of APPV in Swedish piglets affected by congenital tremor sampled in 2004 and 2012; and (iii) to perform a phylogenetic analysis of sequences acquired from the different farms.
Clinical cases and sample collection

All animal studies were approved by the ethical committee of Uppsala 2017-02-10 (Dnr 5.8.10-00431/2017) and the owners of the herds gave informed consent prior to the start of the study.

During the period from June 2017 to June 2018, 15 piglets were obtained from four Swedish farms with ongoing outbreaks of CT. Of these piglets, 13 piglets were aged 1–2 days and two piglets were aged 5 days. All piglets were in good general condition with moderate to severe signs of congenital tremor. Three of the four farms were located in the Central part of Sweden, with the remaining farm being located in the south of Sweden. The farms are marked on the map in Figure 1. During the same period, 13 piglets aged 1–2 days old suffering from splay leg were obtained from four different farms located in the Central part of Sweden. Most of these piglets had decreased demeanour. Piglets from the same farms and sows at their next farrowing were included as healthy controls; eight 1-day-old piglets in good condition were obtained. In cases where the original sow was unavailable, a piglet born to a sow from the same farrowing group was sampled.

None of the sampled farms had any documented contact with each other and the outbreaks were separated in time, or had simultaneous outbreaks of congenital tremor and splay leg.

The piglets were transported to the pathology section at the Swedish University of Agricultural Sciences in Uppsala. The piglets were sedated with an intramuscular injection of tiletamine and zolazepam (Zoletil, Virbac, Carros, France) and a blood sample was obtained from the jugular vein. All piglets were euthanized by an intraperitoneal injection of pentobarbital (Allfatal vet. Apotek Produktion & Laboratorier AB, Malmö, Sweden) with necropsy being performed within minutes.
Samples from the brain, spinal cord, saliva, urine, hearth, lung, quadriceps muscle, kidney, liver, spleen, ventricle, duodenum, jejunum, ileum, caecum, and colon were sampled and immediately put on dry ice. The tissue samples were then stored at -80 °C. Corresponding tissue samples were fixed in 10% formaldehyde for future investigations.

Retrospective study

A retrospective study was carried out on material from piglets sampled in 2004 (n = 11) and 2011/2012 (n = 6) (26). The samples from 2011 consisted of serum originating from eleven piglets affected by CT. The samples were collected from one litter of piglets originating from a farm located in the central part of Sweden. Necropsies were performed on all 11 piglets from 2004 with no records of gross lesions; these piglets tested negative for PCV–2.

The samples from 2012 consisted of brain tissue collected at the end of 2011 and beginning of 2012 from piglets on one farm during an ongoing CT-outbreak. Three newborn piglets with CT were euthanised and sampled at the farm. When the outbreak had ceased, three healthy newborn control animals from the same farm were similarly euthanised. The brains were collected and subjected to histopathological investigation, but no complete necropsies of the bodies were performed. In the piglets with clinical signs of CT, mild to moderate vacuolar changes of the white matter were observed in the cerebrum, brain stem, and cerebellum (Blomstrom, Ley et al. 2014).

Both the serum and brain samples were stored at -80 °C for future investigations.

Sample preparation, RNA isolation, qRT-PCR (quantitative reverse transcription-PCR) and sequence analysis

The brain samples were cryolyzed using a Precellys tissue homogenizer (Bertin Corp.
Rockville, MD, USA), RNA was extracted from all samples through a trizol-phenol-chloroform protocol, and cleaned using the GeneJET RNA kit (ThermoFisher Scientific, Waltham, MA, USA). In addition, RNA from the sera was extracted using the same protocol but without homogenization. The APPV genome was detected using an APPV-specific RT-qPCR protocol based on the QuantiTect Probe RT-PCR kit (Qiagen, Hilden, Germany) as described by (6) with a primer-pair targeting the NS3 encoding region of the APPV genome. The assay was run in duplicate under standard conditions on a Bio-Rad CFX96 Real-time system in a C1000 Touch thermal cycler (Bio-Rad, Hercules, CA, USA) with a plasmid containing the NS3 encoding region of the APPV genome as a positive control. One primer and one probe, denoted “Swe” in table 1, were slightly modified as compared to the protocol by (6) in accordance with (10), to better match the only described protocol for Porcine pestivirus in Sweden. All the samples were also analysed by an APPV-specific RT-qPCR targeting the non-structural protein NS5B in accordance with (27). The RT-qPCR was run in duplicate under standard conditions using the qScript XLT One-Step RT-qPCR ToughMix (Quanta Biosciences, Gaithersburg, USA) on the above-mentioned Bio-Rad CFX96 Real-time system in a C1000 Touch thermal cycler (Bio-Rad, Hercules, CA, USA).

Sequence analysis

From each APPV-positive farm, the sample with the lowest Cq-value was selected for sequencing. A part of the NS3-gene was PCR-amplified using the primers APPV_5087-fw and APPV_5703_Swe-rev with the Invitrogen SuperScript IV One-Step RT-PCR-System, using the ezDNase Enzyme protocol (ThermoFisher Scientific, Waltham, MA, USA) according to the manufacturers’ instructions. The product was run on a 2% agarose gel stained with GelRed, visualized by UV-transillumination (GelDoc, Bio-Rad Laboratories, Inc., Richmond CA, US), purified using the Thermo Fisher Scientific GeneJET Gel Extraction Kit and Sanger-sequenced at Macrogen Inc. Europe (Amsterdam, NL).
To get a clear and readily understood format of the tree, the phylogenetic analysis was performed on 26 full and partial genome sequences covering the APPV NS3 sequences extracted from the GenBank. The tree was constructed using the MAFFT alignment tool and the PHYLIP Neighbor-Joining method with a bootstrap value of 1000 using the UGENE software (28). A bayesian tree were also made using the MR Bayes tool within the UGENE software (28). To confirm the tree’s constitution and clustering, additional Neighbor-Joining trees were constructed, as well as Bayesian trees made with the MR Bayes tool within the UGENE software (28). The bayesian trees and the Neighbor-Joining trees were consistent with each other.

Abbreviations

CT: congenital tremor
SL: splay leg
APPV: atypical porcine pestivirus

Declarations

Ethics approval and consent to participate
The authors confirm that the ethical policies of the journal, as noted on the journal’s author guidelines page, have been adhered to and the appropriate ethical review committee approval has been received. All animal studies were approved by the ethical committee of Uppsala 2017-02-10 (Dnr 5.8.10-00431/2017) and the owners of the herds gave informed consent prior to the start of the study.

Consent for publication
Not applicable

Availability of data and materials

Competing interests
The authors declare that there is no conflict of interest involved in the completion of this
study.

Funding:

This work was supported by “The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, Formas” under the project “Neurotropic viruses in pigs: the role in congenital disease” (Grant number 2016-00979).

Author’s contributions

Acknowledgments

We would like to thank PD Dr. med. vet. habil. Alexander Postel, University of Veterinary Medicine Hannover, for providing positive control plasmid. We acknowledge Dr. Jane Morell, Swedish University of Agricultural Sciences, for language revision. We would also like to thank the farmers, Gård och Djurhälsan in Uppsala, Dr Anne-Lie Blomström and Professor Caroline Fossum for providing samples for the study.

This work was supported by “The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, Formas” under the project “Neurotropic viruses in pigs: the role in congenital disease” (Grant number 2016-00979).

Bibliography

1. Kinsley AT. Dancing pigs? Veterinary Medicine. 1922;17:123.

2. Larsson L. Om skaksjuka hos smågrisar. Svenska svinavelsföreningens tidskrift. 1955;9:149-51.

3. Done JT. Congenital nervous disease of pigs: a review. Laboratory animals. 1968;2:207-17.

4. Done JT. The congenital tremor syndrome in piglets. Veterinary Annual. 1976;16:98-102.

5. Done JT, Woolley J, Upcott DH, Hebert CN. Porcine congenital tremor type All: spinal cord morphometry. The British veterinary journal. 1986;142(2):145-50.

6. Postel A, Hansmann F, Baechlein C, Fischer N, Alawi M, Grundhoff A, et al. Presence of
atypical porcine pestivirus (APPV) genomes in newborn piglets correlates with congenital tremor. Sci Rep. 2016;6:9.

7. Arruda BL, Arruda PH, Magstadt DR, Schwartz KJ, Dohlman T, Schleining JA, et al. Identification of a Divergent Lineage Porcine Pestivirus in Nursing Piglets with Congenital Tremors and Reproduction of Disease following Experimental Inoculation. PloS one. 2016;11(2):e0150104.

8. de Groof A, Deijs M, Guelen L, van Grinsven L, van Os-Galdos L, Vogels W, et al. Atypical Porcine Pestivirus: A Possible Cause of Congenital Tremor Type A-II in Newborn Piglets. Viruses-Basel. 2016;8(10):13.

9. Hause BM, Collin EA, Peddireddi L, Yuan F, Chen Z, Hesse RA, et al. Discovery of a novel putative atypical porcine pestivirus in pigs in the USA. The Journal of general virology. 2015;96(10):2994–8.

10. Blomstrom AL, Fossum C, Wallgren P, Berg M. Viral Metagenomic Analysis Displays the Co-Infection Situation in Healthy and PMWS Affected Pigs. PloS one. 2016;11(12):e0166863.

11. Munoz-Gonzalez S, Canturri A, Perez-Simo M, Bohorquez JA, Rosell R, Cabezon O, et al. First report of the novel atypical porcine pestivirus in Spain and a retrospective study. Transboundary and emerging diseases. 2017;64(6):1645–9.

12. Schwarz L, Riedel C, Hogler S, Sinn LJ, Voglmayr T, Wochtl B, et al. Congenital infection with atypical porcine pestivirus (APPV) is associated with disease and viral persistence. Vet Res. 2017;48:14.

13. Denes L, Biksi I, Albert M, Szeredi L, Knapp DG, Szilasi A, et al. Detection and phylogenetic characterization of atypical porcine pestivirus strains in Hungary. Transboundary and emerging diseases. 2018.

14. Gatto IRH, Arruda PH, Visek CA, Victoria JG, Patterson AR, Krull AC, et al. Detection of
atypical porcine pestivirus in semen from commercial boar studs in the United States. Transboundary and emerging diseases. 2018;65(2):e339-e43.

15.Yuan J, Han Z, Li J, Huang Y, Yang J, Ding H, et al. Atypical Porcine Pestivirus as a Novel Type of Pestivirus in Pigs in China. Front Microbiol. 2017;8:862.

16.Colom-Cadena A, Ganges L, Munoz-Gonzalez S, Castillo-Contreras R, Bohorquez JA, Rosell R, et al. Atypical porcine pestivirus in wild boar (Sus scrofa), Spain. The Veterinary record. 2018.

17.Cagatay GN, Antos A, Meyer D, Maistrelli C, Keuling O, Becher P, et al. Frequent infection of wild boar with atypical porcine pestivirus (APPV). Transboundary and emerging diseases. 2018;65(4):1087-93.

18.Munoz-Gonzalez S, Canturri A, Perez-Simo M, Bohorquez JA, Rosell R, Cabezon O, et al. First report of the novel atypical porcine pestivirus in Spain and a retrospective study. Transboundary and emerging diseases. 2017.

19.Ward PS, Bradley R. The light microscopical morphology of the skeletal muscles of normal pigs and pigs with splayleg from birth to one week of age. Journal of comparative pathology. 1980;90(3):421-31.

20.Bolske G, Kronevi T, Lindgren NO. Congenital tremor in pigs in Sweden. A case report. Nordisk veterinaermedicin. 1978;30(12):534–7.

21.Thurley DC, Gilbert FR, Done JT. Congenital splayleg of piglets: myofibrillar hypoplasia. The Veterinary record. 1967;80(9):302-4.

22.Szalay F, Zsarnovszky A, Fekete S, Hullar I, Jancsik V, Hajos F. Retarded myelination in the lumbar spinal cord of piglets born with spread-leg syndrome. Anatomy and embryology. 2001;203(1):53–9.

23.Maak S, Boettcher D, Komolka K, Tetens J, Wimmers K, Reinsch N, et al. Exclusion of sequence polymorphisms in the porcine ITGA5 and MIR148B loci as causal variation for
congenital splay leg in piglets. Animal genetics. 2010;41(4):447–8.

24. Maak S, Boettcher D, Tetens J, Swalve HH, Wimmers K, Thaller G. Expression of microRNAs is not related to increased expression of ZDHHC9 in hind leg muscles of splay leg piglets. Molecular and cellular probes. 2010;24(1):32–7.

25. Kanora A, Maes D. The role of mycotoxins in pig reproduction: A review. 2009. 565–76 p.

26. Blomstrom AL, Ley C, Jacobson M.Astrovirus as a possible cause of congenital tremor type All in piglets? Acta Vet Scand. 2014;56:6.

27. Beer M, Wernike K, Drager C, Hoper D, Pohlmann A, Bergermann C, et al. High Prevalence of Highly Variable Atypical Porcine Pestiviruses Found in Germany. Transboundary and emerging diseases. 2017;64(5):e22-e6.

28. Okonechnikov K, Golosova O, Fursov M. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166–7.

29. Hoffmann B, Beer M, Schelp C, Schirrmeier H, Depner K. Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever. Journal of virological methods. 2005;130(1–2):36–44.

30. Segales J, Domingo M. Postweaning multisystemic wasting syndrome (PMWS) in pigs. A review. The Veterinary quarterly. 2002;24(3):109–24.

31. Jackson PGC, P. D. Handbook of Pig Medicine. Peter GG Jackson PDC, editor: W. B. Saunders; 2007.

32. Constable PDH, K. W.; Done, S. H.; Grünberg, W. Veterinary Medicine A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs, and Goats. 11 ed. Peter D. Constable KWH, Stanley H. Done, Walter Grünberg,, editor: Elsiver; 2017.

33. Postel A, Meyer D, Cagatay GN, Feliziani F, De Mia GM, Fischer N, et al. High Abundance and Genetic Variability of Atypical Porcine Pestivirus in Pigs from Europe and Asia. Emerg Infect Dis. 2017;23(12):2104–7.
Tables

Table 1. Primer and probe sequences used for APPV detection, in accordance with previously published protocols (6, 27).

Oligo name	Sequence (5’-3’)
APPV-NS5B-303F	GTAGGGCGGATACAGAAATA
APPV-NS5B-385R	GGYACTTCTCCATCATGG
APPV_5587-fw (NS3)	CAGAGRAAAGGKCGAGTGGG
APPV_5703_Swe-rev (NS3)	ACCATACTCTTGRCCTGCAG
APPV_5087-fw (NS3)	GAAAGTGCTGCGCTTCATG
APPV-NS5B-336-FAM	AAATATTGGAAATYYATTGACAATTGAC
APPV_Swe probe	ACTACTATCTTCGCGGGGTRGTRCCGA

Table 2. Showing Cq values obtained from the six farms.

Farm	Year	Location	Number of pigs	Cq-value
A	2004	Central Sweden	n = 11	low
B	2012	Central Sweden	n = 3	low - high
C	2017	Central Sweden	n = 3	high
D	2017	South of Sweden	n = 5	moderate - high
E	2018	Central Sweden	n = 5	high
F	2018	Central Sweden	n = 2	undetectable

Figures
Figure 1

A map of Sweden showing the location of the sampled farms with congenital tremor.
Figure 2

Phylogenetic tree of APPV-sequences, the Swedish sequences are marked *.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

table_piglets.xlsx