CONCLUSION ON PESTICIDES PEER REVIEW

APPROVED: 25 February 2021
doi: 10.2903/j.efsa.2021.6496

Peer review of the pesticide risk assessment of the active substance *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54

European Food Safety Authority (EFSA), Maria Anastassiadou, Maria Arena, Domenica Auteri, Alba Brancato, Laszlo Bura, Luis Carrasco Cabrera, Eugenia Chaideftou, Arianna Chiusolo, Federica Crivellente, Chloe De Lentdecker, Mark Egsmose, Gabriella Fait, Luna Greco, Alessio Ippolito, Frederique Istace, Samira Jarrah, Dimitra Kardassi, Renata Leuschner, Alfonso Lostia, Christopher Lythgo, Oriol Magrans, Iris Mangas, Ileana Miron, Tunde Molnar, Laura Padovani, Juan Manuel Parra Morte, Ragnor Pedersen, Hermine Reich, Miguel Santos, Rachel Sharp, Csaba Szentes, Andrea Terron, Manuela Tiramani, Benedicte Vagenende and Laura Villamar-Bouza

Abstract

The conclusions of the EFSA following the peer review of the initial risk assessments carried out by the competent authorities of the rapporteur Member State, Denmark, and co-rapporteur Member State, the Netherlands, for the pesticide active substance *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 and the considerations as regards the inclusion of the substance in Annex IV of Regulation (EC) No 396/2005 are reported. The context of the peer review was that required by Commission Implementing Regulation (EU) No 844/2012, as amended by Commission Implementing Regulation (EU) No 2018/1659. The conclusions were reached on the basis of the evaluation of the representative uses of *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 as an insecticide on stone fruit and ornamentals (field uses) and tomato (field, permanent greenhouse and walk-in tunnel uses). The reliable end points, appropriate for use in regulatory risk assessment, are presented. Missing information identified as being required by the regulatory framework is listed. Concerns are identified.

© 2021 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54, peer review, risk assessment, pesticide, insecticide

Requestor: European Commission

Question number: EFSA-Q-2017-00133

Correspondence: pesticides.peerreview@efs.europa.eu
Note: This scientific output, approved on 25 February 2021, supersedes the previous output published on 23 February 2012 (EFSA, 2012).

Declarations of interest: The declarations of interest of all scientific experts active in EFSA’s work are available at https://ess.efsa.europa.eu/doi/doiweb/doisearch.

Acknowledgements: EFSA wishes to thank the rapporteur Member State, Denmark, for the preparatory work on this scientific output.

Suggested citation: EFSA (European Food Safety Authority), Anastassiadou M, Arena M, Auteri D, Brancato A, Bura L, Carrasco Cabrera L, Chaideftou E, Chiusolo A, Crivellente F, De Lentdecker C, Eigmose M, Fait G, Greco L, Ippolito A, Istance F, Jarrah S, Kardasi D, Leuschner R, Lostia A, Lythgo C, Magrans O, Mangas I, Miron I, Molnar T, Padovani L, Parra Morte JM, Pedersen R, Reich H, Santos M, Sharp R, Szentes C, Terron A, Tiramani M, Vagenende B and Villamar-Bouza L, 2021. Conclusion on the peer review of the pesticide risk assessment of the active substance *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54. EFSA Journal 2021;19(4):6496, 20 pp. https://doi.org/10.2903/j.efsa.2021.6496

ISSN: 1831-4732

© 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, a European agency funded by the European Union.
Summary

Commission Implementing Regulation (EU) No 844/2012, as amended by Commission Implementing Regulation (EU) No 2018/1659, lays down the procedure for the renewal of the approval of active substances submitted under Article 14 of Regulation (EC) No 1107/2009. The list of those substances is established in Commission Implementing Regulation (EU) No 686/2012 as amended by Commission Implementing Regulation (EU) No 2016/183. Bacillus thuringiensis subsp. kurstaki strain PB 54 is one of the active substances listed in that Regulation.

In accordance with Article 1 of Regulation (EU) No 844/2012, the rapporteur Member State (RMS), Denmark, and co-rapporteur Member State (co-RMS), the Netherlands, received an application from Probelte, S.A.U. for the renewal of approval of the active substance Bacillus thuringiensis subsp. kurstaki strain PB 54.

An initial evaluation of the dossier on Bacillus thuringiensis kurstaki strain PB 54 was provided by the RMS in the renewal assessment report (RAR) and subsequently, a peer review of the pesticide risk assessment on the RMS evaluation was conducted by EFSA in accordance with Article 13 of Commission Implementing Regulation (EU) No 844/2012, as amended by Commission Implementing Regulation (EU) No 2018/1659. The following conclusions are derived.

The uses of Bacillus thuringiensis subsp. kurstaki strain PB 54 according to the representative uses as an insecticide on stone fruit and ornamentals (field uses) and tomato (field, permanent greenhouse and walk-in tunnel uses), as proposed at EU level result in a sufficient insecticidal efficacy against the target lepidopteran pests.

The assessment of the data package revealed no issues that could not be finalised or that need to be included as critical areas of concern with respect to identity, biological properties of the active substance and physical and technical properties of the representative formulation.

With respect to mammalian toxicology, two data gaps were identified, the first one concerning the potential adverse effects from repeated inhalation of Bacillus thuringiensis subsp. kurstaki strain PB 54 and the second one related to the potential genotoxic effect of Cry proteins through non-dietary exposure. On this basis, the risk assessment for residents and bystanders cannot be concluded (issue not finalised).

In the area of residues, two data gaps were identified. A storage stability study of Bacillus thuringiensis subsp. kurstaki strain PB 54 at –18°C in a crop representative of high-water and high acid content commodities (data gap). Related to the proposed upper threshold of 1×10^5 colony forming units (CFU)/g for viable residues on edible plant commodities at harvest, information on quantification of viable counts linked to specific preharvest intervals (PHIs) (data gap) is requested to finalise the consumer risk assessment.

Bacillus thuringiensis subsp. kurstaki strain PB 54 is not proposed to be included into Annex IV of Regulation (EC) No 396/2005 since the consumer dietary risk assessment cannot currently be finalised.

In the area of environmental fate and behaviour, the available information was considered sufficient to complete the necessary environmental exposure assessments with the exception that adequate information to address the uniform principles criterion of the strain PB 54 not being expected to persist and multiply in surface water in concentrations considerably higher than the natural background levels, provided that repeated applications be made over the years, was not available. This has led to the identification of an assessment not finalised.

Satisfactory information was not provided leading to issues not being finalised for the potential effects, infectivity and pathogenicity to non-target terrestrial organisms (birds, bees, non-target arthropods) for representative uses in open field and walk-in tunnels; and to soil organisms and to non-target aquatic organisms (fish, algae and aquatic plants) for all representative uses. Assessment was not finalised for the potential effects of toxins/secondary metabolites such as crystal proteins to non-target terrestrial organisms (birds, wild mammals, bees, non-target arthropods and soil organisms) for representative uses in open field and walk-in tunnels; and to non-target aquatic organisms (fish, freshwater invertebrates, algae and aquatic plants) for all representative uses.
Table of contents

Abstract... 1
Summary... 3
The identity of the microorganism and the properties of the formulated product............................... 6
Conclusions of the evaluation.. 6
1. Identity of the microorganism/biological properties/physical and technical properties and methods of analysis ... 6
2. Mammalian toxicity.. 7
3. Residues... 9
4. Environmental fate and behaviour .. 10
4.1. Fate and behaviour in the environment of the microorganism.. 11
4.2. Fate and behaviour in the environment of any relevant metabolite formed by the microorganism under relevant environmental conditions.. 11
5. Ecotoxicology.. 12
6. Overview of the risk assessment of the organism or metabolite compounds listed in residue definitions triggering assessment of effects data for the environmental compartments (Tables 1-4)......................... 13
7. Particular conditions proposed to be taken into account by risk managers ... 14
8. Concerns and related data gaps... 15
8.1. Issues that could not be finalised ... 15
8.2. Critical areas of concern... 16
8.3. Overview of the concerns identified for each representative use considered (Table 6) 16
9. List of other outstanding issues .. 18
References... 18
Abbreviations ... 18
Appendix A – List of end points for the active substance and the representative formulation................. 20
Background

Commission Implementing Regulation (EU) No 844/2012, as amended by Commission Implementing Regulation (EU) No 2018/1659, (hereinafter referred to as ‘the Regulation’), lays down the provisions for the procedure of the renewal of the approval of active substances, submitted under Article 14 of Regulation (EC) No 1107/2009. This regulates for the European Food Safety Authority (EFSA) the procedure for organising the consultation of Member States, the applicant(s) and the public on the initial evaluation provided by the rapporteur Member State (RMS) and/or co-rapporteur Member State (co-RMS) in the renewal assessment report (RAR), and the organisation of an expert consultation where appropriate.

In accordance with Article 13 of the Regulation, unless formally informed by the European Commission that a conclusion is not necessary, EFSA is required to adopt a conclusion on whether the active substance can be expected to meet the approval criteria provided for in Article 4 of Regulation (EC) No 1107/2009 within 5 months from the end of the period provided for the submission of written comments, subject to an extension of an additional 3 months where additional information is required to be submitted by the applicant(s) in accordance with Article 13(3).

In accordance with Article 1 of the Regulation, the RMS, Denmark, and co-RMS, the Netherlands, received an application from Probelte, S.A.U. for the renewal of approval of the active substance *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54. Complying with Article 8 of the Regulation, the RMS checked the completeness of the dossier and informed the applicant, the co-RMS (The Netherlands), the European Commission and EFSA about the admissibility.

The RMS provided its initial evaluation of the dossier on *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 in the RAR, which was received by EFSA on 28 June 2019 (Denmark, 2019).

In accordance with Article 12 of the Regulation, EFSA distributed the RAR to the Member States and the applicant, Probelte, S.A.U., for consultation and comments on 23 August 2019. EFSA also provided comments. In addition, EFSA conducted a public consultation on the RAR. EFSA collated and forwarded all comments received to the European Commission on 23 October 2019. At the same time, the collated comments were forwarded to the RMS for compilation and evaluation in the format of a reporting table. The applicant was invited to respond to the comments in column 3 of the reporting table. The comments and the applicant’s response were evaluated by the RMS in column 3.

The need for expert consultation and the necessity for additional information to be submitted by the applicant in accordance with Article 13(3) of the Regulation were considered in a telephone conference between EFSA and the RMS on 25 May 2020. On the basis of the comments received, the applicant’s response to the comments and the RMS’s evaluation thereof, it was concluded that additional information should be requested from the applicant and that there was no need to conduct an expert consultation.

The outcome of the telephone conference, together with EFSA’s further consideration of the comments, is reflected in the conclusions set out in column 4 of the reporting table. All points that were identified as unresolved at the end of the comment evaluation phase and which required further consideration, were compiled by EFSA in the format of an evaluation table.

The conclusions arising from the consideration by EFSA, and as appropriate by the RMS, of the points identified in the evaluation table, together with the written consultation on the assessment of additional information, were reported in the final column of the evaluation table.

A final consultation on the conclusions arising from the peer review of the risk assessment took place with Member States via a written procedure in January 2021.

This conclusion report summarises the outcome of the peer review of the risk assessment of the active substance and the representative formulation, evaluated on the basis of the representative uses of *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 as an insecticide on stone fruit and ornamentals (field uses) and tomato (field, permanent greenhouse and walk-in tunnel uses), as proposed by the
applicant. In accordance with Article 12(2) of Regulation (EC) No 1107/2009, risk mitigation options identified in the RAR and considered during the peer review, if any, are presented in the conclusion. A list of the relevant end points for the active substance and the formulation is provided in Appendix A.

A key supporting document to this conclusion is the peer review report (EFSA, 2021), which is a compilation of the documentation developed to evaluate and address all issues raised in the peer review, from the initial commenting phase to the conclusion. The peer review report comprises the following documents, in which all views expressed during the course of the peer review, including minority views, where applicable, can be found:

- the comments received on the RAR;
- the reporting table (26 May 2020);
- the evaluation table (24 February 2021);
- the report(s) of the scientific consultation with Member State experts (where relevant);
- the comments received on the assessment of the additional information (where relevant);
- the comments received on the draft EFSA conclusion.

Given the importance of the RAR, including its revisions (Denmark, 2020), and the peer review report, both documents are considered as background documents to this conclusion and thus are made publicly available.

It is recommended that this conclusion and its background documents would not be accepted to support any registration outside the EU for which the applicant has not demonstrated that it has regulatory access to the information on which this conclusion report is based.

The identity of the microorganism and the properties of the formulated product

Bacillus thuringiensis subsp. *kurstaki* strain PB 54 is a bacterium deposited at the Spanish Collection of Cultures Type (CECT) under the deposit number CECT 7209. *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 is a naturally occurring, indigenous wild-type bacterium, initially isolated from cultivated soils in the region of Murcia, Spain.

The representative formulated product for the evaluation was ‘*Belthirul*’, a wettable powder (WP) containing 160 g/kg of *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 with a minimum bio-potency of 32×10^6 IU/g (min. 1×10^{11} CFU/kg, max. 5×10^{12} CFU/kg).

The representative uses evaluated were spray applications for the biological control of insect pests of the order of Lepidoptera on stone fruits and ornamentals and on field and protected tomato (including permanent greenhouses and walk-in tunnels) in the EU. Full details of the good agriculture practices (GAPs) can be found in the list of end points in Appendix A.

Data were submitted to conclude that the use of *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 according to the representative uses proposed at EU level results in a sufficient insecticidal efficacy against the target organisms, following the guidance document SANCO/2012/11251-rev. 4 (European Commission, 2014b).

Conclusions of the evaluation

1. **Identity of the microorganism/biological properties/physical and technical properties and methods of analysis**

The following guidance documents were followed in the production of this conclusion: European Commission (2012) and EFSA FEEDAP Panel (2012).

Minimum and maximum specification of the technical grade microbial pest control agent (MPCA) used for manufacturing the microbial pest control product (MPCP) is 8×10^7 to 2×10^{13} IU/g, respectively. (Min. 1×10^{12} CFU/kg, max. 5×10^{13} CFU/kg).

Bacillus thuringiensis subsp. *kurstaki* strain PB 54 is characterised by serotyping, plasmid profiling, activity spectrum, fatty acid analysis, deoxyribonucleic acid (DNA) fingerprinting (amplified fragment length polymorphism; AFLP) and cry toxin analysis. To allow an unequivocal identification of strain PB 54, strain-specific primers based on the sequences of the whole genome and plasmids of strain PB 54 were developed allowing a clear serovar and subspecies specific detection, but within the subspecies
kurstaki many but not all closely related strains could be differentiated. Identification can be done by whole genome sequence analysis of the strain PB 54.

Bacillus thuringiensis subsp. *kurstaki* strain PB 54 contains genes encoding for potential production of cytotoxin type K₂ (CytK₂), six crystal insecticidal proteins (Cry1Ab, Cry1Aa, Cry1Ac, Cry1La, Cry2Aa and Cry2Ab), two Cry-like proteins and one vegetative insecticidal protein (VIP 3Aa). Furthermore, *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 has the potential to form a non-haemolytic (Nhe) and haemolytic (Hbl) enterotoxin complex (which also includes CytK₂). The genes for the highly cytotoxic Cyt K₁, for the cytotoxic variant of haemolysin II (HlyII), for cereulide and for β-exotoxins are missing in the strain.

The content of microbial contaminants of the MPCP was below the limits defined in the SANCO/12116/2012 working document (European Commission, 2012). *Bacillus thuringiensis* spores can remain viable for years in soil, but applied as a spray, the β-endotoxins are rapidly degradable and endospores are rapidly inactivated when exposed to UV radiation.

Optimum growth conditions for *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 are 28°C and pH 7.0. The growth is strongly limited at temperatures below 10°C and above 37°C, and at pH 3.0.

As a member of the *Bacillus cereus* group, *Bacillus thuringiensis* subsp. *kurstaki* is closely related to *Bacillus anthracis* and *Bacillus cereus*. *Bacillus thuringiensis* strains are, however, distinguishable from *Bacillus cereus* and *Bacillus anthracis* using strain-specific quantitative polymerase chain reaction (qPCR) protocol based on the sequences of the whole genome and plasmids of strain PB 54.

Bacillus thuringiensis subsp. *kurstaki* strain PB 54 was shown to be sensitive to all relevant antibiotics as provided in EFSA FEEDAP Panel Guidance (2018). It is sensitive to amoxicillin, chloramphenicol, ciprofloxacin, tetracycline, streptomycin, clindamycin, erythromycin, fosfomycin, gentamicin, imipenem, kanamycin, nitrofurantoin, oxacillin, rifampicin, teicoplanin and vancomycin. The strain PB-54 is intrinsic resistant to ampicillin, cephalothin, penicillin G, trimethoprim-sulfamethoxazole. The main data regarding the identity of *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 and its biological properties are given in Appendix A.

Acceptable methods for CFU counts of *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 in the formulation for the determination of the microorganism in the MPCP and for the determination of the content of contaminating microorganisms are available.

Methods for the determination and quantification of residues are currently not required as no residue definition applies to the microorganism and no MRL was set for any of the intended uses. The strain-specific molecular markers can be used for monitoring of the strain upon field application.

Methods of analysis for viable residues in the environment are not required.

Quantification of Cry1Ab in soil can be done with commercial enzyme-linked immunosorbent assay (ELISA) kit with an LOQ of 0.25 μg/L. Determination of Cry1Ab in water can be done with ELISA with a detection limit of 2.1 ng/L.

2. **Mammalian toxicity**

Bacillus thuringiensis ssp. *aizawai* strain GC-91 was discussed at the Pesticides Peer Review Experts’ Teleconference 25 in March 2020.*Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 has not been the subject of a Pesticides Peer Review Meeting; however, reference is made to the Pesticides Peer Review Meeting Teleconference 25 in March 2020, where similar *Bacillus thuringiensis* subsp. were discussed.

General data

From the medical data, no adverse reactions or sensitisation reactions due to *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 exposure were reported during its production, formulation, handling of microbial products, filling and packaging. The results of allergenicity observations indicate that increased IgE antibodies levels can occur in greenhouses workers exposed to products containing *Bacillus* thuringiensis, but no effect on the occurrence of respiratory symptoms or lung function was observed. Despite few data from the literature have reported clinical infections (e.g. ocular) and dermal irritation caused by *B. thuringiensis* species, no specific clinical case or epidemiological studies have been found for *Bacillus thuringiensis* subsp. *kurstaki* at strain level.

Bacillus thuringiensis is not recommended for the Qualified Presumption of Safety list (EFSA BIOHAZ Panel, 2020).
Toxicity/infectivity/pathogenicity studies

As the available methods for testing dermal sensitisation are not suitable for testing microorganisms and there are no validated test methods for sensitisation by inhalation, *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 may have the potential to provoke sensitising reactions.

Acute toxicity studies have been performed with either the *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 or the formulated product Belthirul. In two acute oral toxicity studies with rats, *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 as such or as a formulated product showed no signs of toxicity or pathogenicity. Clearance/infectivity was not investigated in these studies.

No strain-specific and guideline-compliant inhalation studies had been submitted for the first approval of *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54. In an acute inhalation study in rats submitted for the authorisation renewal, Belthirul appears to be devoid of respiratory toxicity or pathogenicity, while once again infectivity is not assessed. The relevance of these missing information on clearance is suggested by the results of additional investigations as reported further below (see repeated dose inhalation toxicity study).

No adverse effects were detected upon a single exposure to *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 via the intraperitoneal route, while clearance was not investigated.

The dermal toxicity study with Belthirul showed no acute toxicity following dermal exposure. The skin irritation study revealed slightly irritating properties of Belthirul which were completely reversible within 96 h and do not indicate need for classification. In the eye irritation study, no adverse effects were observed.

Even though at the time of the first approval of the active substance, no conclusions on the infectivity of this microorganism could be directly drawn from the available evidence due to the intrinsical limitations in the studies’ experimental design, the lack of any observed adverse effect in any acute toxicity study with *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 by any exposure route (oral, intratracheal/inhalation and intraperitoneal) was then considered per se sufficient to address this concern and complete the risk assessment (EFSA, 2012).

On the other hand, the results of a short-term repeated toxicity study in mice showing interstitial lung inflammation 70 days after subchronic (14-day) inhalation of products containing *Bacillus thuringiensis* subsp. *israelensis* and *Bacillus thuringiensis* subsp. *kurstaki*, and indicating that CFUs were still detectable in one animal 70 days after exposure. Thus, the potential concern for serious health effects after repeated exposure by inhalation cannot be excluded on the basis of the available data (data gap), as also concluded for other *Bacillus thuringiensis*. The RMS disagreed, being of the opinion that the evidence is not sufficient to support a concern. One MS disagreed with this view during the written consultation on the draft EFSA conclusion.

Secondary metabolites/toxins

Bacillus thuringiensis subsp. *kurstaki* strain PB 54 has the genetic determinants to produce enterotoxins (inactivated at low pH, therefore, preformed enterotoxins are not relevant by oral exposure). Based on the available evidence, only the spores are able to survive the stomach passage and to germinate and produce enterotoxins in the intestinal tract (potentially leading to diarrhoeal-associated foodborne disease in humans). Considering the available evidence and uncertainties, the threshold of 10⁵ CFU/g food as determined by the BIOHAZ Panel Opinion (EFSA BIOHAZ Panel, 2016) was concluded as applicable by a small majority of experts to cover the risk of foodborne poisonings caused by the *Bacillus cereus* group of microorganisms. The RMS, co-RMS and some MSs disagreed. It is noted that the adoption of this threshold is also supported by recent literature data.

Several studies investigating the toxic properties of the crystal proteins/endotoxins were identified in the literature. In a mouse microneurus study with intraperitoneal administration, positive results were observed with the spore–crystal complex containing Cry1Aa and Cry1Ac. These results were considered equivocal especially regarding whether the Cry proteins had been solubilised/activated prior
to administration or not (data gap). It was concluded that genotoxicity is not a concern for dietary exposure, but it was not possible to conclude for non-dietary exposure. The RMS and one MS disagreed during the written consultation on the draft EFSA conclusion, being of the opinion that these studies were not relevant.

Reference values and exposure estimates

Regarding dietary exposure, considering the available evidence and uncertainties, the threshold of 10^5 CFU/g as determined by the BIOHAZ Panel Opinion is considered applicable to all Bacillus thuringiensis strains to cover the risk of food-borne poisonings (caused by the B. cereus group of microorganisms).

With regard to non-dietary exposure, since toxicity/infectivity after repeated exposure by inhalation could not be concluded, and a genotoxic potential of the Cry proteins could not be excluded by non-dietary exposure, the risk assessment by inhalation for residents and bystanders cannot be concluded (issue not finalised). In the absence of a quantitative risk assessment, the use of respiratory protective equipment for the operators and workers might be considered to reduce the exposure via inhalation.

The RMS disagreed with this view, being of the opinion that Bacillus thuringiensis subsp. kurstaki preparations, including Belthirul, are not to be considered of health concern for operators, workers, bystanders and residents.

3. Residues

Bacillus thuringiensis subsp. kurstaki strain PB 54 has not been the subject of a Pesticides Peer Review Meeting; however, reference is made to the Pesticides Peer Review Meeting Teleconference 25 in March 2020, where similar Bacillus thuringiensis subsp. were discussed. The respective outcome derived for these strains is considered applicable for Bacillus thuringiensis subsp. kurstaki strain PB 54.

Considering the available evidence and uncertainties discussed at the expert meeting (see Section 2), the threshold of 10^5 CFU/g plant commodity at the time of harvest as determined by the BIOHAZ Panel Opinion (EFSA BIOHAZ Panel, 2016) is considered applicable to all Bacillus thuringiensis strains to cover the risk of food-borne poisonings (caused by the Bacillus cereus group of microorganisms; see Section 2). Non-viable residues are not of concern for the dietary consumption (see Section 2).

Therefore, only information on viable residues i.e., CFU per g or kg plant commodities at harvest is needed to demonstrate that the threshold of 1×10^5 CFU/g edible plant commodity is not exceeded.

To ensure this, the setting of a PHI may be needed because available experimental data from residue trials in greenhouse lettuce and peppers (up to 1.78×10^5 CFU/g 2 days after treatment following three applications of 9.82×10^{12} CFU/ha and 1.2×10^5 CFU/g 5 days after treatment following three application of 1.6×10^{14} CFU/ha, respectively), and theoretically calculated estimated counts (based on a total application of 1.5×10^{13} CFU/ha) on treated tomatoes of maximally 9×10^8 CFU/g (3 $\times 10^8$ CFU/g after the first application) for Bacillus thuringiensis subsp. kurstaki strain PB 54 demonstrate that counts at harvest may be close to or even exceed this threshold.

A study on cucumber in the greenhouse was conducted with Bacillus thuringiensis subsp. kurstaki strain PB 54 with one application equivalent to 50% of the maximum applied CFUs per hectare of the representative use and at BBCH 89 instead of BBCH 99. The study had, however, several shortcomings which are detailed in the evaluation report and did not provide decline trials with viable counts directly after treatment however only related to a BBCH of 89. It reported up to 27 CFU/g in treated samples at harvest which were deep frozen when collected prior to analysis. In addition to determining viable counts by an enumeration method, a quantitative PCR method was performed and cell counts of up to 1.22×10^4 per gram were reported. Since samples in the cucumber study were stored at -18°C prior to analysis, a storage stability study of Bacillus thuringiensis subsp. kurstaki strain PB 54 in high-water and high-acid commodities in support of the representative uses are not available and are, according to the current international OECD guideline (OECD, 2006), still required (data gap).

Viable counts of commercial Bacillus thuringiensis strains which are considered representative also for Bacillus thuringiensis subsp. kurstaki strain PB 54 were demonstrated in the scientific literature and by supporting experimental evidence to decline following application and not to persist or multiply on edible plant commodities (fruiting vegetable and leafy crops). Furthermore, in the literature, a body of

7 See experts’ consultation 6.2 in the Report of Pesticide Peer Review Meeting Teleconference 25 (March 2020) for Bacillus thuringiensis subsp. aizawai strain ABTS-1857 (EFSA, 2021).
evidence supports inactivation and decline of viable spores by environmental factors such as solar radiation, rainfall, plant growth and temperature.

Considering the above-mentioned threshold of 1×10^5 CFU/g in edible plant commodity, it is to be noted that while mostly the threshold is respected, several reported residue levels were very close to or even slightly exceeded the threshold level. Considering measurement uncertainties and the variability in quantifying viable counts, it can be concluded that there is a considerable risk that the consumer may be exposed to concentrations above the threshold level. This assumption is supported by analysed salad samples at retail where \textit{Bacillus thuringiensis} concentrations of 1.5×10^5 CFU/g were found.

It is noted that a validated enumeration method in high-water commodities (lettuce) was provided with an LOQ of 1.3×10^3 CFU/g. For an analysis of \textit{Bacillus thuringiensis} subsp. \textit{kurstaki} strain PB 54, a qPCR method with specific primer pairs is available. It is, however, noted that whole genome sequencing is available to unambiguously identify the strain (see also Section 1).

Furthermore, it is to be noted that the representative uses on tomato and on stone fruits at BBCH of 99 for the last treatment are indicated, which corresponds to the ripe fruits stage and can therefore readily be consumed since a PHI was not specified. Therefore, to ensure that consumers are not exposed to levels of \textit{Bacillus thuringiensis} subsp. \textit{kurstaki} strain PB 54 above the agreed threshold level, a quantification of viable counts for the representative uses on tomatoes and stone fruits and linked to specific PHIs is requested (data gap).

This information would still need to be addressed before a consumer risk assessment can be finalised.

Because of the above-mentioned data gaps, the consumer dietary risk assessment could not be finalised and \textit{Bacillus thuringiensis} subsp. \textit{kurstaki} strain PB 54 is not proposed to be included into Annex IV of Regulation (EC) No 396/2005.

4. Environmental fate and behaviour

Satisfactory information was provided in relation to potential interference of \textit{Bacillus thuringiensis} subsp. \textit{kurstaki} strain PB 54 with the analytical systems for the control of the quality of drinking water provided for in Directive 98/83/EC (see specific Annex VI decision-making criteria in Part II Commission Regulation (EU) No 546/2011). It was concluded that \textit{Bacillus thuringiensis} subsp. \textit{kurstaki} strain PB 54 is unlikely to interfere with the methodologies routinely used for such determinations.

\textit{Bacillus thuringiensis} subsp. \textit{kurstaki} strain PB 54 is a ‘wild type’ and there are no marker genes in the strain which would permit analysis of a frequency of genetic exchange. As the genetic diversity and drift in the wild-type population have not been ascertained, it would not be possible to distinguish any genetic drift from that in the wild population based on the information provided. Though it is acknowledged that the possibility and effects of transfer of genetic material are not different for \textit{Bacillus thuringiensis} subsp. \textit{kurstaki} strain PB 54 than for other naturally occurring \textit{Bacillus thuringiensis} strains, transfer of genetic material by \textit{Bacillus thuringiensis} subsp. \textit{kurstaki} strain PB 54 after application is possible (the strain has plasmids), so could not be excluded based on the information in the dossier. Information in the dossier confirms that plasmid exchange between vegetative cells of different strains of the species can be measured when applications were made to leaf surfaces. Note the applied material in the product is spores and not vegetative cells.

Specific environmental exposure estimates for greenhouse (permanent and walk-in tunnel) uses were not provided. The applicant chose to address the representative use on tomatoes grown in greenhouses by stating that greenhouse uses are covered by the exposure assessments provided for the field uses.
4.1. Fate and behaviour in the environment of the microorganism

Information was derived from published literature on different strains of *Bacillus thuringiensis* in relation to its persistence and multiplication in soil. Information specific to strain PB 54 was not available. Information on subsp. *kurstaki* demonstrated that spores remain viable for many years (more than 7). The species has been reported to have spores that can germinate in the rhizosphere of some plants. Based on a weight of evidence, it appears that germination of spores does not occur in the bulk soil where nutrient levels are generally more limited than in the rhizosphere. Overall, it is considered that repeated use over the years would result in the accumulation of subsp. *kurstaki* strain PB 54 spores in the soil environment. Consequently, EFSA concluded that the information is sufficient to address the uniform principles criterion. The spores of the strain are expected to persist and be present above natural background levels in soil, taking into account repeated applications over the years, but multiplication in bulk soil will not occur. PEC soil covering the intended uses have been calculated (see Appendix A).

With respect to the persistence and multiplication in surface water, information specific to strain PB 54 was not available. Information on subsp. *kurstaki* demonstrated that in a flowing water catchment levels of CFU declined after applications were made, but the authors attributed this to the dilution and removal effect of the flowing water. The available literature indicates the species *Bacillus thuringiensis* is present in surface water and that it is likely that the species is capable of growing in freshwater environments under nutrient/oxygen-rich conditions. Overall, it is concluded that the information available on the persistence/multiplication/germination of the strain in natural surface water was insufficient to demonstrate that *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 is likely to decline in surface water. Consequently, EFSA concluded that the information is insufficient to address the uniform principles criterion of the strain not being expected to persist and multiply in surface water in concentrations considerably higher than the natural background levels, taking into account repeated applications over the years. This conclusion identifies a data gap and assessment not finalised in this respect (see Section 8.1). PEC surface water for the intended use on ornamental trees (use pattern with greatest potential for spray drift exposure) stone fruit and tomatoes been calculated (values for ornamental trees have been included in Appendix A).

Information was provided on the occurrence and behaviour of *Bacillus thuringiensis* subsp. *kurstaki* spores in air. Re-aerolisation of applied spores occurred but spore transport distances were limited being up to 30 m. Spores rapidly lost viability following release to air.

4.2. Fate and behaviour in the environment of any relevant metabolite formed by the microorganism under relevant environmental conditions

Fate and behaviour end points for δ-endotoxins and their Cry and Cyt proteins were discussed at the Pesticides Peer Review Meeting Teleconference 25 in March 2020 for similar *Bacillus thuringiensis* subsp. The respective outcome derived for these strains is considered applicable for *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54.

According to scientific papers from the literature search, the subspecies *Bacillus thuringiensis* *kurstaki* is able to produce secondary metabolites, which are crystal proteins e.g. contain the δ-endotoxins, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ia, Cry2Aa and Cry2Ab. Strain PB 54 has genes encoding all these crystal proteins. The crystal proteins except Cry1Ab and Cry1Ia constitute components in the formulated product within and outside spores and are responsible for the insecticidal mode of action of *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54. Genes encoding two Cry-like proteins and VIP 3Aa protein are also present in strain PB 54.

It is not known to what extent *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 will produce crystal proteins following its application. However, as the concentrations of the crystal proteins in the formulated product is known, it was considered appropriate to complete an exposure assessment for them for surface water and groundwater based on their content in the product (Pesticides Peer Review Meeting Teleconference 25). For the crystal proteins, the experts agreed it would be appropriate to read across degradation and adsorption end points between the different crystal proteins from the available data set that contains measured end points from only a subset of these different δ-endotoxins and/or crystal proteins. Full details of the available experimental end points and which δ-endotoxins or crystal protein test material they were derived from can be found in Appendix A. As these end points were not available for all the δ-endotoxins present in *Bacillus thuringiensis* subsp.
Kurstaki, the experts agreed that the most conservative values available should be selected and used in the exposure calculations. These values were a DT50 soil of 41.3 days, Kdoc estimated at 1000 mL/g and DT50 water system of 28 days. It can also be considered that these properties might be read across to the two Cry-like proteins and the VIP3 Aa protein should they be produced by strain PB 54. Satisfactory calculations were provided for an environmental exposure assessment of the crystal proteins in soil, surface water, sediment and groundwater covering the representative uses. Soil exposure was calculated for the uses on ornamentals and tomatoes. The FOCUS surface water Step 1 and 2 calculator (v3.2) for the crop pome/stone fruit was used for the use pattern assessed on ornamental trees (use pattern with greatest potential for spray drift exposure) for surface water and sediment calculations (FOCUS, 2001). For groundwater calculations, PEARL 4.4.4 was used for the crop pome/stone fruit for the use pattern assessed on stone fruit and ornamental trees (European Commission, 2014a)11 (see Appendix A). It was concluded that the potential for leaching of the crystal proteins to groundwater above the parametric drinking water limit of 0.1 µg/L is low for the representative uses assessed in geoclimatic situations represented by the FOCUS groundwater scenarios.

5. Ecotoxicology

Insufficient data were available to address potential effects, infectivity and pathogenicity to birds from Bacillus thuringiensis subsp. kurstaki strain PB 54. Consequently, a data gap leading to an assessment not finalised was identified for the potential effect, infectivity and pathogenicity of Bacillus thuringiensis subsp. kurstaki strain PB 54 to birds for the representative uses in open field and in walk-in tunnels. Low risk identified for representative uses in permanent greenhouses as the exposure to birds is expected to be negligible.

As concluded in Section 2, sufficient information is available to finalise the assessment of infectivity and pathogenicity of Bacillus thuringiensis subsp. kurstaki strain PB 54 in mammals. A low risk to wild mammals is concluded for all representative uses.

Insufficient data were available to address potential effects, infectivity and pathogenicity to aquatic organisms (fish, algae and aquatic plants) from Bacillus thuringiensis subsp. kurstaki strain PB 54. No toxicity was observed in a 21-days limit test investigating effect of Bacillus thuringiensis subsp. kurstaki strain PB 54 on the reproduction of Daphnia magna. Although infectivity and pathogenicity were not reported, such effects would likely have been observed considering the duration of the study. Therefore, sufficient information is available to conclude on low risk to freshwater invertebrates for the representative uses. A data gap leading to an assessment not finalised was identified for potential effects, infectivity and pathogenicity of Bacillus thuringiensis subsp. kurstaki strain PB 54 to aquatic organisms (fish, algae and aquatic plants) for all representative uses.

Insufficient data were available to address potential effects to honeybee larvae, infectivity and pathogenicity to honeybee from Bacillus thuringiensis subsp. kurstaki strain PB 54. A neutral pH medium is reported to be the optimal condition for production of the microorganism and the neutral pH may occur in some life stages of honeybee larvae according to a published paper. Honeybee larvae may therefore be more sensitive to Bacillus thuringiensis subsp. kurstaki strain PB 54. Consequently, a data gap leading to an assessment not finalised was identified for the potential effects to honeybee larvae and for the infectivity and pathogenicity of Bacillus thuringiensis subsp. kurstaki strain PB 54 to honeybee for the representative uses in open field and in walk-in tunnels. Low risk identified for representative uses in permanent greenhouses as the exposure to honeybees is expected to be negligible. No information was available on potential effects to bumblebees intentionally introduced in permanent greenhouses.

Insufficient data were available to address potential toxicity, infectivity and pathogenicity to non-target arthropods from Bacillus thuringiensis subsp. kurstaki strain PB 54. In short-term lab studies on two foliar species of non-target arthropods exposed to the formulated product containing strain PB 54 at a rate three times higher than the maximum application rate, a statistical difference was observed for mortality between treated and control in one of the studies, whereas no difference was observed in the other study. In both studies, the effects were below the trigger value of 50% mortality. No effect on reproduction was observed. Infectivity and pathogenicity were not reported. It is to be noted that the exposure route in these studies was through dermal exposure (glass-plate), which is less relevant than the oral exposure route considering the mode of action of Bacillus.

11 Simulations utilised the agreed Q10 of 2.58 (following EFSA, 2008) and Walker equation coefficient of 0.7.
thuringiensis subsp. kurstaki strain EG2348 (see Section 4.2). Consequently, a data gap leading to an assessment not finalised was identified for the toxicity, infectivity and pathogenicity of Bacillus thuringiensis subsp. kurstaki strain PB 54 to non-target arthropods for the representative uses in open field and in walk-in tunnels. Low risk was identified for representative uses in permanent greenhouses as the exposure to non-target arthropods is expected to be negligible.

No strain-specific data were available on earthworms and other soil macro-organisms to indicate if Bacillus thuringiensis subsp. kurstaki strain PB 54 would be toxic, infectious or pathogenic to earthworms or other soil macro-organisms. Insufficient data were available to address potential adverse effects to soil microorganisms exposed to Bacillus thuringiensis subsp. kurstaki strain PB 54. The spores of strain PB 54 are expected to persist and be present above natural background levels in soil (see Section 4.1). A data gap leading to an assessment not finalised was identified for the potential adverse effects, infectivity and pathogenicity to soil organisms from Bacillus thuringiensis subsp. kurstaki strain PB 54 for representative uses in walk-in tunnels and open field. A data gap leading to an assessment not finalised was identified for the potential adverse effects, infectivity and pathogenicity to soil organisms from Bacillus thuringiensis subsp. kurstaki strain PB 54 for permanent greenhouses to account for possible change of destination of the soil within the structure in the longer term (e.g. if the soil is removed and used outside and/or the structure is removed).

The risk assessment of toxins/secondary metabolites such as crystal proteins could not be finalised for terrestrial and aquatic non-target organisms for the representative field and walk-in tunnel uses. Toxicity data were not available to perform a hazard characterisation (resulting in data gap and issue not finalised). The RMS disagreed. For non-target aquatic organisms, exposure to surface water cannot be excluded for the representative use in permanent greenhouse (resulting in a data gap and issue not finalised). The RMS disagreed.

6. Overview of the risk assessment of the organism or metabolite compounds listed in residue definitions triggering assessment of effects data for the environmental compartments (Tables 1–4)

Table 1: Soil

Compound (name and/or code)	Ecotoxicology
Bacillus thuringiensis subsp. *kurstaki* strain PB 54	A data gap and an assessment not finalised was identified for all representative uses
Toxins/secondary metabolites such as crystal proteins, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ia, Cry2Aa, Cry2Ab, 2 Cry-like proteins and Vip 3Aa protein	A data gap and an assessment not finalised was identified for representative field and walk-in tunnel uses

Table 2: Groundwater(a)

Compound (name and/or code)	Biological (pesticidal) activity/ relevance Step 2	Hazard identified Steps 3b and 3c	Consumer RA triggered Steps 4 and 5	Human health relevance
Toxins/secondary metabolites such as crystal proteins, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ia, Cry2Aa, Cry2Ab, 2 Cry-like proteins and Vip 3Aa protein	No	Assessment not triggered. Equivocal results in micronucleus study (with intraperitoneal administration)	No	Assessment not triggered for the representative uses assessed

(a): Assessment according to European Commission guidance of the relevance of groundwater metabolites (2003).
(b): FOCUS scenarios or relevant lysimeter.
7. Particular conditions proposed to be taken into account by risk managers

Risk mitigation measures (RMMs) identified following consideration of Member State (MS) and/or applicant's proposal(s) during the peer review, if any, are presented in this section. These measures applicable for human health and/or the environment leading to a reduction of exposure levels of operators, workers, bystanders/residents, environmental compartments and/or non-target organisms for the representative uses are listed below. The list may also cover any RMMs as appropriate, leading to an acceptable level of risks for the respective non-target organisms.

It is noted that final decisions on the need of RMMs to ensure the safe use of the plant protection product containing the concerned active substance will be taken by risk managers during the decision-making phase. Consideration of the validity and appropriateness of the RMMs remains the responsibility of MSs at product authorisation, taking into account their specific agricultural, plant health and environmental conditions at national level.

Table 5: Risk mitigation measures proposed for the representative uses assessed

Representative use	Tomato	Stone fruits	Ornaments
Use of PPE/RPE might be considered to reduce non-dietary exposure (dermal and inhalation).	Use of PPE/RPE might be considered to reduce non-dietary exposure (dermal and inhalation).	Use of PPE/RPE might be considered to reduce non-dietary exposure (dermal and inhalation).	Use of PPE/RPE might be considered to reduce non-dietary exposure (dermal and inhalation).

7. Particular conditions proposed to be taken into account by risk managers

Risk mitigation measures (RMMs) identified following consideration of Member State (MS) and/or applicant's proposal(s) during the peer review, if any, are presented in this section. These measures applicable for human health and/or the environment leading to a reduction of exposure levels of operators, workers, bystanders/residents, environmental compartments and/or non-target organisms for the representative uses are listed below. The list may also cover any RMMs as appropriate, leading to an acceptable level of risks for the respective non-target organisms.

It is noted that final decisions on the need of RMMs to ensure the safe use of the plant protection product containing the concerned active substance will be taken by risk managers during the decision-making phase. Consideration of the validity and appropriateness of the RMMs remains the responsibility of MSs at product authorisation, taking into account their specific agricultural, plant health and environmental conditions at national level.

Table 5: Risk mitigation measures proposed for the representative uses assessed
8. Concerns and related data gaps

8.1. Issues that could not be finalised

An issue is listed as ‘could not be finalised’ if there is not enough information available to perform an assessment, even at the lowest tier level, for one or more of the representative uses in line with the uniform principles in accordance with Article 29(6) of Regulation (EC) No 1107/2009 and as set out in Commission Regulation (EU) No 546/2011\(^\text{12}\) and if the issue is of such importance that it could, when finalised, become a concern (which would also be listed as a critical area of concern if it is of relevance to all representative uses).

An issue is also listed as ‘could not be finalised’ if the available information is considered insufficient to conclude on whether the active substance can be expected to meet the approval criteria provided for in Article 4 of Regulation (EC) No 1107/2009.

The following issues or assessments that could not be finalised have been identified, together with the reasons including the associated data gaps where relevant, which are reported directly under the specific issue to which they are related:

1) The risk assessment by inhalation for residents and bystanders could not be concluded considering the identified data gaps (relevant for all representative uses except permanent greenhouses, see Section 2).
 a) Lack of sufficient information on the toxicity/infectivity of *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 after repeated inhalation exposure (relevant for all representative uses except permanent greenhouses, see Section 2)
 b) Lack of data on the genotoxic potential of the Cry proteins resulting from non-dietary exposure (relevant for all representative uses except permanent greenhouses, see Section 2)

2) The consumer dietary risk assessment could not be concluded considering the identified data gaps (relevant for all representative uses except on ornamentals, see Section 3).
 a) Quantification of viable counts for the representative uses linked to specific PHIs is requested (relevant for the uses in tomato fruits and stone fruits, see Section 3).
 b) A storage stability study with *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 in high water and high acid content commodities at \(-18^\circ\mathrm{C}\) (relevant for the uses in tomato fruits and stone fruits, see Section 3).

3) Satisfactory information was not available for the potential effects, infectivity and pathogenicity to non-target terrestrial organisms (birds, bees and non-target arthropods) from *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 for the assessment of representative uses in open field and walk-in tunnels and for soil organisms for all representative uses (see Section 5).
 a) Data and information for the potential effects, infectivity and pathogenicity to non-target terrestrial organisms (birds, bees, non-target arthropods and soil organisms) from *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 (relevant for the representative uses in open field and walk-in tunnels and for soil organisms for all representative uses, see Section 5).\(^\text{13}\)

4) Satisfactory information was not available for the potential for *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 to persist and multiply in surface water nor for its effects, infectivity and pathogenicity to aquatic organisms (fish, algae and aquatic plants) for the assessment of all representative uses (see sections 4 and 5).

\(^\text{12}\) Commission Regulation (EU) No 546/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorisation of plant protection products. OJ L 155, 11.6.2011, p. 127–175.

\(^\text{13}\) A data gap leading to an assessment not finalised was identified for the potential adverse effects, infectivity and pathogenicity to soil-organisms from *Bacillus thuringiensis* subsp. *kurstaki* strain PB54 for permanent greenhouses to account for possible change of destination of the soil within the structure in the longer term (e.g. if the soil is removed and used outside and/or the structure is removed).
a) Adequate information to address the uniform principles criterion of the strain not being expected to persist and multiply in surface water in concentrations considerably higher than the natural background levels, provided that repeated applications be made over the years, was not available (relevant for all representative uses evaluated; see Section 4).

b) Data and information for the potential effects, infectivity and pathogenicity to non-target aquatic organisms (fish, algae and aquatic plants) from *Bacillus thuringiensis* subsp. *kurstaki* strain PB 54 (relevant for all representative uses, see Section 5).

5) Satisfactory information was not available for the potential effects of toxins/secondary metabolites such as crystal proteins to non-target terrestrial organisms (birds, wild mammals, bees, non-target arthropods and soil organisms) for the assessment of representative uses in open field and walk-in tunnels (see Section 5).

a) Data and information for the potential effects of toxins/secondary metabolites such as crystal proteins to non-target terrestrial organisms (birds, wild mammals, bees, non-target arthropods and soil organisms) (relevant for the assessment of the representative uses in open field and walk-in tunnels, see Section 5).

6) Satisfactory information was not available for the potential effects of toxins/secondary metabolites such as crystal proteins to non-target aquatic organisms (fish, freshwater invertebrates, algae, and aquatic plants) for the assessment of all representative uses (see Section 5).

a) Data and information for the potential effects of toxins/secondary metabolites such as crystal proteins to non-target aquatic organisms (fish, freshwater invertebrates, algae, and aquatic plants) (relevant for the assessment of all representative uses, see Section 5).

8.2. Critical areas of concern

An issue is listed as a critical area of concern if there is enough information available to perform an assessment for the representative uses in line with the uniform principles in accordance with Article 29 (6) of Regulation (EC) No 1107/2009 and as set out in Commission Regulation (EU) No 546/2011, and if this assessment does not permit the conclusion that, for at least one of the representative uses, it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater, or any unacceptable influence on the environment.

An issue is also listed as a critical area of concern if the assessment at a higher tier level could not be finalised due to lack of information, and if the assessment performed at the lower tier level does not permit the conclusion that, for at least one of the representative uses, it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater, or any unacceptable influence on the environment.

An issue is also listed as a critical area of concern if, in the light of current scientific and technical knowledge using guidance documents available at the time of application, the active substance is not expected to meet the approval criteria provided for in Article 4 of Regulation (EC) No 1107/2009.

Critical areas of concern, including associated data gaps have not been identified.

8.3. Overview of the concerns identified for each representative use considered (Table 6)

(If a particular condition proposed to be taken into account to manage an identified risk, as listed in Section 7, has been evaluated as being effective, then ‘risk identified’ is not indicated in Table 6.)
Representative use	Tomato (field)	Tomato (permanent greenhouse)	Tomato (walk-in tunnels)	Stone fruits (field)	Ornamentals (field)	
	Foliar spray	Foliar spray	Foliar spray	Foliar spray	Foliar spray	
Operator risk	Risk identified	Assessment not finalised				
Worker risk	Risk identified	Assessment not finalised				
Resident/bystander risk	Risk identified	Assessment not finalised	X¹	X¹	X¹	X¹
Consumer risk	Risk identified	Assessment not finalised	X²	X²	X²	X²
Risk to wild non-target terrestrial vertebrates	Risk identified	Assessment not finalised	X³,5	X³,5	X³,5	X³,5
Risk to wild non-target terrestrial organisms other than vertebrates	Risk identified	Assessment not finalised	X³,5	X³,5	X³,5	X³,5
Risk to aquatic organisms	Risk identified	Assessment not finalised	X⁴,6	X⁴,6	X⁴,6	X⁴,6
Groundwater exposure to active substance	Legal parametric value breached					
Groundwater exposure to metabolites	Legal parametric value breached (a)					
	Parametric value of 10 µg/L (b)					
	Assessment not finalised					

The superscript numbers relate to the numbered points indicated in Sections 8.1 and 8.2. Where there is no superscript number, see Sections 2–7 for further information.

(a): When the consideration for classification made in the context of this evaluation under Regulation (EC) No 1107/2009 is confirmed under Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008.

(b): Value for non-relevant metabolites prescribed in SANCO/221/2000-rev. 10 final, European Commission (2003).
9. List of other outstanding issues

Remaining data gaps not leading to critical areas of concern or issues not finalised but considered necessary to comply with the data requirements, and which are relevant for some or all of the representative uses assessed at EU level. Although not critical, these data gaps may lead to uncertainties in the assessment and are considered relevant.

Remaining data gaps not leading to critical areas of concern or issues not finalised have not been identified.

References

Denmark, 2019. Renewal Assessment Report (RAR) on the active substance *Bacillus thuringiensis* subsp. *kurstaki* strain EG2348 prepared by the rapporteur Member State Denmark, in the framework of Commission Implementing Regulation (EU) No 844/2012, June 2019. Available online: www.efsa.europa.eu

Denmark, 2020. Revised Renewal Assessment Report (RAR) on *Bacillus thuringiensis* subsp. *kurstaki* strain EG2348 prepared by the rapporteur Member State Denmark in the framework of Commission Implementing Regulation (EU) No 844/2012, October 2020. Available online: www.efsa.europa.eu

EFSA (European Food Safety Authority), 2008. Opinion on a request from EFSA related to the default Q10 value used to describe the temperature effect on transformation rates of pesticides in soil. EFSA Journal 2008;6(1):622, 32 pp. https://doi.org/10.2903/j.efsa.2008.622

EFSA (European Food Safety Authority), 2012. Conclusion on the peer review of the pesticide risk assessment of the active substance *Bacillus thuringiensis* subsp. *kurstaki* (strains ABTS 351, PB 54, SA 11, SA 12, EG 2348). EFSA Journal 2012;10(2):2540, 66 pp. https://doi.org/10.2903/j.efsa.2012.2540

EFSA (European Food Safety Authority), 2014. EFSA Guidance Document on clustering and ranking of emissions of active substances of plant protection products and transformation products of these active substances from protected crops (greenhouses and crops grown under cover) to relevant environmental compartments. EFSA Journal 2014;12(3):3615, 43 pp. https://doi.org/10.2903/j.efsa.2014.3615

EFSA (European Food Safety Authority), 2021. Peer review report to the conclusion regarding the peer review of the pesticide risk assessment of the active substance *Bacillus thuringiensis* subsp. *kurstaki* EG2348. Available online: www.efsa.europa.eu

EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2016. Scientific opinion on the risks for public health related to the presence of *Bacillus cereus* and other *Bacillus* spp. including *Bacillus thuringiensis* in foodstuffs. EFSA Journal 2016;14(7):4524, 93 pp. https://doi.org/10.2903/j.efsa.2016.4524

EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), Koutsoumanis K, Allende A, Alvarez-Ordonez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Skandamis P, Suffredini E, Correia S and Herman L, 2020. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017–2019). EFSA Journal 2020;18(2):5966, 56 pp. https://doi.org/10.2903/j.efsa.2020.5966

EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)), 2012. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal 2012;10(6):2740, 10 pp. https://doi.org/10.2903/j.efsa.2012.2740

European Commission, 2003. Guidance Document on the renewal of approval of active substances to be assessed in compliance with Regulation (EU) No 844/2012. SANCO/2012/11251-rev. 4, 12 December 2014.

European Commission, 2003. Guidance Document on Assessment of the Relevance of Metabolites in Groundwater of Substances Regulated under Council Directive 91/414/EEC. SANCO/221/2000-rev. 10 final, 25 February 2003.

European Commission, 2012. Working Document on Microbial Contaminant Limits for Microbial Pest Control Products. SANCO/12116/2012-rev. 0, September 2012.

European Commission, 2014a. Assessing potential for movement of active substances and their metabolites to groundwater in the EU. Report of the FOCUS Workgroup. EC Document Reference SANCO/13144/2010-v. 3, 613 pp., as outlined in Generic guidance for tier 1 FOCUS groundwater assessment, v. 2.2, May 2014.

European Commission, 2014b. Guidance document on the renewal of approval of active substances to be assessed in compliance with Regulation (EU) No 844/2012. SANCO/2012/11251-rev. 4, 12 December 2014.

FOCUS (Forum for the Co-ordination of Pesticide Fate Models and their Use), 2001. FOCUS surface water scenarios in the EU evaluation process under 91/414/EEC. Report of the FOCUS Working Group on Surface Water Scenarios. EC Document Reference SANCO/4802/2001-rev. 2, 245 pp., as updated by Generic guidance for FOCUS surface water scenarios, v. 1.4, May 2015.

OECD (Organisation for Economic Co-operation and Development), 2006. Test No 506: Stability of Pesticide Residues in Stored Commodities. 16 October 2007.

Abbreviations

\[\lambda \quad \text{wavelength} \]

CFU \quad \text{colony forming units}
DT$_{50}$ period required for 50% dissipation (define method of estimation)
ELISA enzyme-linked immunosorbent assay
FOCUS Forum for the Co-ordination of Pesticide Fate Models and their Use
GAP Good Agricultural Practice
iv intravenous
K$_{doc}$ organic carbon linear adsorption coefficient
LOQ limit of quantification
MPCA microbial pest control agent
MPCP microbial pest control product
mm millimetre (also used for mean measured concentrations)
MRL maximum residue level
OECD Organisation for Economic Co-operation and Development
PD proportion of different food types
PEC predicted environmental concentration
PEC$_{soil}$ predicted environmental concentration in soil
pF2 pF value of 2 (suction pressure that defines field capacity soil moisture)
PHI preharvest interval
PIE potential inhalation exposure
PPE personal protective equipment
ppm parts per million (10$^{-6}$)
PT proportion of diet obtained in the treated area
qPCR quantitative polymerase chain reaction
RAR Renewal Assessment Report
SC suspension concentrate
UV ultraviolet
WHO World Health Organization
Appendix A – List of end points for the active substance and the representative formulation

Appendix A can be found in the online version of this output ('Supporting information' section): https://doi.org/10.2903/j.efsa.2021.6496