ON SIMPLE SHAMSUDDIN DERIVATIONS IN TWO VARIABLES

RENE BALTAZAR

Abstract. We study the subgroup of k-automorphisms of $k[x, y]$ which commute with a simple derivation D of $k[x, y]$. We prove, for example, that this subgroup is trivial when D is a Shamsuddin simple derivation. In the general case of simple derivations, we obtain properties for the elements of this subgroup.

1. Introduction

Let k be an algebraically closed field of characteristic zero and the ring $k[x, y]$ of polynomials over k in two variables.

A k-derivation $d : k[x, y] \to k[x, y]$ of $k[x, y]$ is a k-linear map such that

$$d(ab) = d(a)b + ad(b)$$

for any $a, b \in k[x, y]$. Denoting by $\text{Der}_k(k[x, y])$ the set of all k-derivations of $k[x, y]$. Let $d \in \text{Der}_k(k[x, y])$. An ideal I of $k[x, y]$ is called d-stable if $d(I) \subset I$. For example, the ideals 0 and $k[x, y]$ are always d-stable. If $k[x, y]$ has no other d-stable ideal it is called d-simple. Even in the case of two variables, a few examples of simple derivations are known (see for explanation [BLL2003], [Cec2012], [No2008], [BP2015], [KM2013] and [Leq2011]).

We denote by $\text{Aut}(k[x, y])$ the group of k-automorphisms of $k[x, y]$. Let $\text{Aut}(k[x, y])$ act on $\text{Der}_k(k[x, y])$ by:

$$(\rho, D) \mapsto \rho^{-1} \circ D \circ \rho = \rho^{-1} D \rho.$$

Fixed a derivation $d \in \text{Der}_k(k[x, y])$. The isotropy subgroup, with respect to this group action, is

$$\text{Aut}(k[x, y])_D := \{\rho \in \text{Aut}(k[x, y]) / \rho D = D \rho\}.$$

We are interested in the following question proposed by I.Pan (see [B2014]):

Conjecture 1. If d is a simple derivation of $k[x, y]$, then $\text{Aut}(k[x, y])_d$ is finite.

Research of R. Baltazar was partially supported by CAPES.
At a first moment, in the §2, we show that the conjecture is true for a family of derivations, named Shamsuddin derivations (Theorem 6). For this, we use a theorem of the Shamsuddin [Sh1977], mentioned in [No1994, Theorem 13.2.1.], that determines a condition that would preserve the simplicity by extending, in some way, the derivation to $R[t]$, with t an indeterminate. The reader may also remember that Y.Lequain [Leq2011] showed that these derivations check a conjecture about the A_n, the Weyl algebra over k.

In order to understand the isotropy of a simple derivation of the $k[x, y]$, in §3, we analysed necessary conditions for an automorphism to belong to the isotropy of a simple derivation. For example, we prove that if such an automorphism has a fixed point, then it is the identity (Proposition 7). Following, we present the definition of dynamical degree of a polynomial application and thus proved that in the case $k = \mathbb{C}$, the elements in $\text{Aut}(\mathbb{C}[x, y])_{d}$, with d a simple derivation, has dynamical degree 1 (Corollary 9). More precisely, the condition dynamical degree > 1 corresponds to exponential growth of degree under iteration, and this may be viewed as a complexity of the automorphism in the isotropy (see [FM1989]).

2. Shamsuddin derivation

The main aim of this section is study the isotropy group of the a Shamsuddin derivation in $k[x, y]$. In [No1994, §13.3], there are numerous examples of these derivations and also shown a criterion for determining the simplicity; furthermore, Y.Lequain [Leq2008] introduced an algorithm for determining when an Shamsuddin derivation is simple. However, before this, the following example shows the isotropy of an arbitrary derivation can be complicated.

Example 1. Let be $d = \partial_x \in \text{Der}_k(k[x, y])$ and $\rho \in \text{Aut}(k[x, y])_{d}$. Note that d is not a simple derivation; indeed, for any $u(y) \in k[y]$, the ideal generated by $u(x)$ is always invariant. Consider

$$\rho(x) = f(x, y) = a_0(x) + a_1(x)y + \ldots + a_t(x)y^t$$

$$\rho(y) = g(x, y) = b_0(x) + b_1(x)y + \ldots + b_s(x)y^s.$$

Since $\rho \in \text{Aut}(k[x, y])_{d}$, we obtain two conditions:

1) $\rho(d(x)) = d(\rho(x))$.

Thus,

$$1 = d(a_0(x) + a_1(x)y + \ldots + a_t(x)y^t) = d(a_0(x)) + d(a_1(x))y + \ldots + d(a_t(x))y^t.$$

Then, $d(a_0(x)) = 1$ and $d(a_j(x)) = 0$, $j = 1, \ldots, t$. We conclude that $\rho(x)$ is of the type $\rho(x) = x + c_0 + c_1y + \ldots + c_t y^t$, $c_i \in k$.

2) $\rho(d(y)) = d(\rho(y))$.
Analogously,

\[0 = d(b_0(x) + b_1(x)y + \ldots + b_s(x)y^s) = d(b_0(x)) + d(b_1(x))y + \ldots + d(b_s(x))y^s. \]

That is, \(b_i(x) = d_i \) with \(d_i \in k \). We conclude also that \(\rho(y) \) is of the type

\[\rho(y) = d_0 + d_1y + \ldots + d_s y^s, \quad d_i \in k. \]

Thus, \(\text{Aut}(k[x, y])_d \) contains the affine automorphisms

\[(x + uy + r, uy + s), \]

with \(u, r, s \in k \). In particular, \(\text{Aut}(k[x, y])_d \) is not finite.

Notice that \(\text{Aut}(k[x, y])_d \) contains also the automorphisms of the type \((x + p(y), y) \), with \(p(y) \in k[y] \).

Now, we determine indeed the isotropy. Using only the conditions 1 and 2,

\[\rho = (x + p(y), q(y)) \]

with \(p(y), q(y) \in k[y] \). However, \(\rho \) is an automorphism, in other words, the determinant of the Jacobian matrix must be a nonzero constant. Thus, \(|J_\rho| = q'(y) = c, \quad c \in k^*. \)

Therefore, \(\rho = (x + p(y), ay + c) \), with \(p(y) \in k[y] \) and \(a, b \in k \). Consequently, \(\text{Aut}(k[x, y])_d \) is not finite and, more than that, the first component has elements with any degree.

The following lemma is a well known result.

Lemma 2. Let \(R \) be a commutative ring, \(d \) a derivation of \(R \) and \(h(t) \in R[t] \), with \(t \) an indeterminate. Then, we can also extend \(d \) to a unique derivation \(\tilde{d} \) of the \(R[t] \) such that \(\tilde{d}(t) = h(t) \).

We will use the following result of Shamsuddin [Sh1977].

Theorem 3. Let \(R \) be a ring containing \(\mathbb{Q} \) and let \(d \) be a simple derivation of \(R \). Extend the derivation \(d \) to a derivation \(\tilde{d} \) of the polynomial ring \(R[t] \) by setting \(\tilde{d}(t) = at + b \) where \(a, b \in R \). Then the following two conditions are equivalent:

1. \(\tilde{d} \) is a simple derivation.
2. There exist no elements \(r \in R \) such that \(d(r) = ar + b \).

Proof. See [No1994, Theorem 13.2.1.] for a demonstration in details. \(\square \)

A derivation \(d \) of \(k[x, y] \) is said to be a **Shamsuddin derivation** if \(d \) is of the form

\[d = \partial_x + (a(x)y + b(x))\partial_y, \]

where \(a(x), b(x) \in k[x] \).
Example 4. Let d be a derivation of $k[x, y]$ as follows

$$d = \partial_x + (xy + 1)\partial_y.$$

Writing $R = k[x]$, we know that R is ∂_x-simple and, taking $a = x$ and $b = 1$, we are exactly the conditions of Theorem 3. Thus, we know that d is simple if, and only if, there exist no elements $r \in R$ such that $\partial_x(r) = xr + 1$; but the right side of the equivalence is satisfied by the degree of r. Therefore, by Theorem 3, d is a simple derivation of $k[x, y]$.

Lemma 5. ([No1994, Proposition. 13.3.2]) Let $d = \partial_x + (a(x)y + b(x))\partial_y$ be a Shamsuddin derivation, where $a(x), b(x) \in k[x]$. Thus, if d is a simple derivation, then $a(x) \neq 0$ and $b(x) \neq 0$.

Proof. If $b(x) = 0$, then the ideal (y) is d-invariante. If $a(x) = 0$, let $h(x) \in k[x]$ such that $h' = b(x)$, then the ideal $(y - h)$ is d-invariante. □

One can determine the simplicity of the a Shamsuddin derivation according the polynomials $a(x)$ and $b(x)$ (see ([No1994 §13.3])).

Theorem 6. Let $D \in \text{Der}_k(k[x, y])$ be a Shamsuddin derivation. If D is a simple derivation, then $\text{Aut}(k[x, y])_D = \{\text{id}\}$.

Proof. Let us denote $\rho(x) = f(x, y)$ and $\rho(y) = g(x, y)$. Let D be a Shamsuddin derivation and

$$D(x) = 1,$$

$$D(y) = a(x)y + b(x),$$

where $a(x), b(x) \in k[x]$

Since $\rho \in \text{Aut}(k[x, y])_D$, we obtain two conditions:

(1) $\rho(D(x)) = D(\rho(x)).$

(2) $\rho(D(y)) = D(\rho(y)).$

Then, by condition (1), $D(f(x, y)) = 1$ and since $f(x, y)$ can be written in the form

$$f(x, y) = a_0(x) + a_1(x)y + \ldots + a_s(x)y^s,$$

with $s \geq 0$, we obtain

$$D(a_0(x)) + D(a_1(x))y + a_1(x)(a(x)y + b(x)) + \ldots$$

$$+ D(a_s(x))y^s + sa_s(x)y^{s-1}(a(x)y + b(x)) = 1$$

Comparing the coefficients in y^s,

$$D(a_s(x)) = -sa_s(x)a(x),$$
which can not occur by the simplicity. More explicitly, the Lemma implies that \(a(x) = 0 \). Thus \(s = 0 \), this is \(f(x, y) = a_0(x) \). Therefore \(D(a_0(x)) = 1 \) and \(f = x+c \), with \(c \) constant.

Using the condition (2),
\[
D(g(x, y)) = \rho(a(x)y + b(x)) = \rho(a(x))\rho(y) + \rho(b(x)) = a(x+c)g(x, y) + b(x+c)
\]

Writing \(g(x, y) = b_0(x) + b_1(x)y + \ldots + b_i(x)y^i \); wherein, by the previous part, we can suppose that \(t > 0 \), because \(\rho \) is a automorphism. Thus
\[
a(x+c)g(x, y) + b(x+c) = D(b_0(x)) + D(b_1(x))y + D(b_i(x))y^i + b(x)c + b(x)\]
\[
= a(x)(b_0(x) + b_1 y) + b(x).
\]

Comparing the coefficients in \(y^i \), we obtain
\[
D(b_i(x)) + b(x)c + b(x) = a(x+c)b_i(x)
\]

Then \(D(b_i(x)) = b_i(x)(-ta(x) + a(x+c)) \). In this way, \(b_i(x) \) is a constant and, consequently, \(a(x+c) = ta(x) \). Comparing the coefficients in the last equality, we obtain \(t = 1 \) and then \(b_1(x) = b_1 \) a constant. Moreover, if \(a(x) \) is not a constant, since \(a(x+c) = a(x) \), is easy to see that \(c = 0 \). Indeed, if \(c \neq 0 \) we obtain that the polynomial \(a(x) \) has infinite distinct roots. If \(a(x) \) is a constant, then \(a(x) D \) is not a simple derivation (a consequence of [Leq2008, Lemma.2.6 and Theorem.3.2]); thus, we obtain \(c = 0 \).

Note that \(g(x, y) = b_0(x) + b_1 y \) and, using the condition (2) again,
\[
D(g(x, y)) = D(b_0(x)) + b_1(a(x)y + b(x)) = a(x)(b_0(x) + b_1 y) + b(x).
\]

Considering the independent term of \(y \),
\[
D(b_0(x)) = b_0(x)a(x) + b(x)(1 - b_1) \tag{1}
\]

If \(b_1 \neq 1 \), we consider the derivation \(D' \) such that
\[
D'(x) = 1, \quad D'(y) = a(x)y + b(x)(1 - b_1).
\]

In [No1994, Proposition. 13.3.3], it is noted that \(D \) is a simple derivation if and only if \(D' \) is a simple derivation. Furthermore, by the Theorem 3 there exist no elements \(h(x) \) in \(K[x] \) such that
\[
D(h(x)) = h(x)a(x) + b(x)(1 - b_1) :\]

what contradicts the equation (1). Then, \(b_1 = 1 \) and \(D(b_0(x)) = b_0(x)a(x) \), since \(D \) is a simple derivation we know that \(a(x) \neq 0 \), consequently \(b_0(x) = 0 \). This shows that \(\rho = id. \)
3. On the isotropy of the simple derivations

The purpose of this section is to study the isotropy in the general case of a simple derivation. More precisely, we obtain results that reveal some characteristics of the elements in $\text{Aut}(k[x,y])_D$. For this, we use some concepts presented in the previous sections and also the concept of dynamical degree of a polynomial application.

In [BP2015], which was inspired by [BLL2003], we introduce and study a general notion of solution associated to a Noetherian differential k-algebra and its relationship with simplicity.

The following proposition geometrically says that if an element in the isotropy of a simple derivation has fixed point then it is the identity automorphism.

Proposition 7. Let $D \in \text{Der}_k(k[x_1, ..., x_n])$ be a simple derivation and $\rho \in \text{Aut}(k[x_1, ..., x_n])_D$ an automorphism in the isotropy. Suppose that there exist a maximal ideal $\mathfrak{m} \subset k[x_1, ..., x_n]$ such that $\rho(\mathfrak{m}) = \mathfrak{m}$, then $\rho = \text{id}$.

Proof. Let φ be a solution of D passing through \mathfrak{m} (see [BP2015 Definition 1]). We know that $\frac{\partial}{\partial t} \varphi = \varphi D$ and $\varphi^{-1}(t) = \mathfrak{m}$. If $\rho \in \text{Aut}(k[x_1, ..., x_n])_D$, then

$$\frac{\partial}{\partial t} \varphi \rho = \varphi D \rho = \varphi \rho D.$$

In other words, $\varphi \rho$ is a solution of D passing through $\rho^{-1}(\mathfrak{m}) = \mathfrak{m}$. Therefore, by the uniqueness of the solution ([BP2015 Theorem 7(c)]), $\varphi \rho = \varphi$. Note that φ is one to one, because $k[x_1, ..., x_n]$ is D-simple and φ is a nontrivial solution. Then, we obtain that $\rho = \text{id}$.

□

F. Lane, in [Lane75], proved that every k-automorphism ρ of $k[x,y]$ leaves a nontrivial proper ideal I invariant, over an algebraically closed field; this is, $\rho(I) \subseteq I$. Em [Sh1982], A. Shamsuddin proved that this result does not extend to $k[x, y, z]$, proving that the k-automorphism given by $\chi(x) = x + 1$, $\chi(y) = y + xz + 1$ e $\chi(z) = y + (x + 1)z$ has no nontrivial invariant ideal.

Note that, in addition, ρ leaves a nontrivial proper ideal I invariant if and only if $\rho(I) = I$, because $k[x,y]$ is Noetherian. In fact, the ascending chain

$$I \subset \rho^{-1}(I) \subset \rho^{-2}(I) \subset \ldots \subset \rho^{-l}(I) \subset \ldots$$

must stabilize; thus, there exists a positive integer n such that $\rho^{-n}(I) = \rho^{-n-1}(I)$, then $\rho(I) = I$.
Suppose that $\rho \in \text{Aut}(k[x,y])_D$ and D is a simple derivation of $k[x,y]$. If this invariant ideal I is maximal, by the Proposition 7, we have $\rho = id$.

Suppose that I, this invariant ideal, is radical. Let $I = (m_1 \cap \ldots \cap m_s) \cap (p_1 \cap \ldots \cap p_t)$ be a primary decomposition where each ideal m_i is a maximal ideal and p_j are prime ideals with height 1 such that $p_j = (f_j)$, with f_j irreducible (by AM1969 Theorem 5.]). If $\rho(m_1 \cap \ldots \cap m_s) = m_1 \cap \ldots \cap m_s$, we claim that ρ^N leaves invariant one maximal ideal for some $N \in \mathbb{N}$: suppose m_1 this ideal. Indeed, we know that $\rho(m_1) \supseteq m_1 \cap \ldots \cap m_s$, since $\rho(m_1)$ is a prime ideal, we deduce that $\rho(m_1) \supseteq m_i$, for some $i = 1, \ldots, s$ (AM1969 Prop.11.1.(ii)). Then, $\rho(m_1) = m_i$; that is, ρ^N leaves invariant the maximal ideal m_1 for some $N \in \mathbb{N}$. Thus follows from Proposition 7 that $\rho^N = id$.

Note that $\rho(p_1 \cap \ldots \cap p_t) = p_1 \cap \ldots \cap p_t$. In fact, writing $p_1 \cap \ldots \cap p_t = (f_1 \ldots f_t)$, with f_i irreducible, we can choose $h \in m_1 \cap \ldots \cap m_s$ such that $\rho(h) \notin p_1$. We observe that there exists h. Otherwise, we obtain $m_1 \cap \ldots \cap m_s \subseteq p_1$, then $p_1 \supseteq m_i$, for some $i = 1, \ldots, s$ (AM1969 Prop.11.1.(ii)): a contradiction. Thus, since $hf_1 \ldots f_t \in I$, we obtain $\rho(h)\rho(f_1) \ldots \rho(f_t) \in I \subseteq p_1$. Therefore, $\rho(f_1 \ldots f_t) \in p_1$. Likewise, we conclude the same for the other primes p_i, $i = 1, \ldots, t$. Finally, $\rho(p_1 \cap \ldots \cap p_t) = p_1 \cap \ldots \cap p_t$.

With the next corollary, we obtain some consequences on the last case.

Corollary 8. Let $\rho \in \text{Aut}(k[x,y])_D$, D a simple derivation of $k[x,y]$ and $I = (f)$, with f reduced, a ideal with height 1 such that $\rho(I) = I$. If $V(f)$ is singular or some irreducible component C_i of $V(f)$ has genus greater than two, then ρ is a automorphism of finite order.

Proof. Suppose that $V(f)$ is not a smooth variety and let q be a singularity of $V(f)$. Since the set of the singular points is invariant by ρ, then there exist $N \in \mathbb{N}$ such that $\rho^N(q) = q$. Using that $\rho \in \text{Aut}(k[x,y])_D$, we obtain, by Proposition 7, $\rho^N = id$.

Let C_i be a component irreducible of $V(f)$ that has genus greater than two. Note that there exist $M \in \mathbb{N}$ such that $\rho^M(C_i) = C_i$. By FK1992 Thm. Hunwitz, p.241], the number of elements in $\text{Aut}(C_i)$ is finite; in fact, $\#(\text{Aut}(C_i)) < 84(g_i - 1)$, where g_i is the genus of C_i. Then, we deduce that ρ is a automorphism of finite order.

We take for the rest of this section $k = \mathbb{C}$.

Consider a polynomial application $f(x, y) = (f_1(x, y), f_2(x, y)) : \mathbb{C}^2 \to \mathbb{C}^2$ and define the degree of f by $\deg(f) := \max(\deg(f_1), \deg(f_2))$. Thus we may define the dynamical degree (see BD2012, FM1989, Silv12) of f as

$$\delta(f) := \lim_{n \to \infty} (\deg(f^n))^{\frac{1}{n}}.$$
Corollary 9. If $\rho \in \text{Aut}(\mathbb{C}[x,y])_D$ and D is a simple derivation of $\mathbb{C}[x,y]$, then $\delta(\rho) = 1$.

Proof. Suppose $\delta(\rho) > 1$. By [FM1989, Theorem 3.1.], ρ^n has exactly $\delta(\rho)^n$ fix points counted with multiplicities. Then, by Proposition 7 $\rho = id$, which shows that dynamical degree of ρ is 1. □

Acknowledgements. I would like to thank Ivan Pan for his comments and suggestions.

References

[AM1969] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, Massachusetts, 1969.

[BP2015] R. Baltazar, I. Pan, On solutions for derivations of a Noetherian k-algebra and local simplicity, To appear in Communications in Algebra (2015).

[B2014] R. Baltazar, Sobre solues de derivaes em k-gebras Noetherianas e simplicidade, Tese de Doutorado, Universidade Federal do Rio Grande do Sul, 2014. at http://hdl.handle.net/10183/9787

[BD2012] J. Blanc and J. Dserti, Degree Growth of Birational Maps of the Plane, preprint, http://www.math.jussieu.fr/~deserti/articles/degreegrowth.pdf, 2012.

[BLL2003] P. Brumatti, Y. Lequain and D. Levcovitz, Differential simplicity in Polynomial Rings and Algebraic Independence of Power Series, J. London Math. Soc. (2), 68, 615-630, 2003.

[FK1992] H.M. Farkas, I. Kra, Riemann Surfaces, 2nd ed., Graduate Texts in Mathematics, Springer, 1992.

[FM1989] S. Friedland, J. Milnor, Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dyn. Syst. 9., 67-99, 1989.

[Kaplan74] I. Kaplansky, Commutative Rings, Chicago, 1974, (2nd edition).

[KM2013] S. Kour, A.K. Maloo, Simplicity of Some Derivations of $k[x,y]$, Communications in Algebra, 41, 4, 2013.

[Lane75] D.R. Lane, Fixed points of affine Cremona transformations of the plane over an algebraically closed field, Amer. J. Math., 97, 3, 707-732, 1975.

[Leq2008] Y. Lequain, Simple Shamsuddin derivations of $K[X,Y_1,...,Y_n]$: An algorithmic characterization, J. Pure Appl. Algebra, 212, 2008.

[Leq2011] Y. Lequain, Cyclic irreducible non-holonomic modules over the Weyl algebra: An algorithmic characterization, J. Pure Appl. Algebra, 215, 2011.

[No1994] A. Nowicki, Polynomial derivations and their rings of constants, at http://www-users.mat.unm.pl/~anow/ps-dvi/pol-der.pdf

[No2008] A. Nowicki, An Example of a Simple Derivation in Two Variables, Colloq. Math., 113, No.1, 25-31, 2008.

[Cec2012] C. Saraiva, Sobre Derivaes Simples e Folheas holomorfas sem Soluo Algbrica, Tese de Doutorado, 2012.

[Sei1967] A. Seidenberg, Differential ideals in rings of finitely generated type, American Journal of Mathematics, 89, No. 1, 22-42, 1967.

[Sh1977] A. Shamsuddin, Ph.D. thesis, Univesity of Leeds, 1977.

[Sh1982] A. Shamsuddin, On Automorphisms of Polynomial Rings, Bull. London Math. Soc. 14, 1982.

[Sh1982'] A. Shamsuddin, Rings with automorphisms leaving no nontrivial proper ideals invariant, Canadian Math. Bull. 25, 1982.
[Silv12] J.H. Silverman, *Dynamical Degrees, Arithmetic Degrees, and Canonical Heights for Dominant Rational Self-Maps of Projective Space*, Ergodic Theory and Dynamical Systems, 2012. (Online publication)

Instituto de Matematica, Estatistica e Fisica, Universidade Federal do Rio Grande - FURG, Santo Antonio da Patrulha, 95500-000

E-mail address, R. Baltazar: rene.baltazar@ufrgs.br