AMALGAMATED PRODUCTS AND PROPERLY 3-REALIZABLE GROUPS

M. CARDENAS, F. F. LASHERAS, A. QUINTERO AND D. REPOVŠ

Abstract. In this paper, we show that the class of all properly 3-realizable groups is closed under amalgamated free products (and HNN-extensions) over finite groups. We recall that G is said to be properly 3-realizable if there exists a compact 2-polyhedron K with $\pi_1(K) \cong G$ and whose universal cover \tilde{K} has the proper homotopy type of a 3-manifold (with boundary).

1. Introduction

We are concerned about the behavior of the property of being properly 3-realizable (for finitely presented groups) with respect to the basic constructions in Combinatorial Group Theory; namely, amalgamated free products and HNN-extensions. Recall that a finitely presented group G is said to be properly 3-realizable if there exists a compact 2-polyhedron K with $\pi_1(K) \cong G$ and whose universal cover \tilde{K} has the proper homotopy type of a 3-manifold. It is worth mentioning that the property of being properly 3-realizable has implications in the theory of cohomology of groups, in the sense that if G is properly 3-realizable then for some (equivalently any) compact 2-polyhedron K with $\pi_1(K) \cong G$ we have $H^2_c(\tilde{K}; \mathbb{Z})$ free abelian (by manifold duality arguments), and hence so is $H^2_c(G; \mathbb{Z}G)$ (see [9]). It is a long standing conjecture that $H^2_c(G; \mathbb{Z}G)$ be free abelian for every finitely presented group G. In [11] it was shown that the property of being properly 3-realizable is preserved under amalgamated free products (HNN-extensions) over finite cyclic groups. See also [3, 4, 7] to learn more about properly 3-realizable groups and related topics. In this paper, we continue in the line of [11]. Our main result is:

Theorem 1.1. The class of all properly 3-realizable groups is closed under amalgamated free products (and HNN-extensions) over finite groups.

This generalizes to show that the fundamental group of a finite graph of groups with properly 3-realizable vertex groups and finite edge groups is properly 3-realizable, since such a group can be expressed as a combination of amalgamated free products and HNN-extensions of the vertex groups over the edge groups.

Recall that, given a finitely presented group G and a compact 2-polyhedron K with $\pi_1(K) \cong G$ and \tilde{K} as universal cover, the number of ends of G is the number of ends of \tilde{K} which equals 0, 1, 2 or ∞ (see also [8, 13]). The 0-ended groups are the finite groups and the 2-ended groups are those having an infinite cyclic subgroup of finite index, and they are all known to be properly 3-realizable (see [11]). Note that Stallings’ Structure Theorem [12] characterizes those groups G with more than one end as those which split as an amalgamated free product (or an HNN-extension)
over a finite group (see also [13, 8]). In addition, Dunwoody [8] showed that this process of further splitting \(G \) must terminate after finitely many steps.

Corollary 1.2. In order to show whether or not all finitely presented groups are properly 3-realizable it suffices to look among those groups which are 1-ended.

2. Main result

The purpose of this section is to prove Theorem 1.1. We will make use of the following result:

Proposition 2.1 (II, Prop. 3.1). Let \(M \) be a manifold of the same proper homotopy type of a locally compact polyhedron \(K \) with \(\dim(K) < \dim(M) \). Then, any Freudenthal end \(\epsilon \in F(M) \) can be represented by a sequence of points in \(\partial M \).

Proof of Theorem 1.1. Let \(G_0, G_1 \) be properly 3-realizable groups and \(F \) be a finite group with presentation \(\langle a_1, \ldots, a_N; r_1, \ldots, r_M \rangle \). Consider monomorphisms \(\varphi_i : F \to G_i (i = 0, 1) \), and denote by \(G_0 *_F G_1 = \langle G_0, G_1; \varphi_0(a_i) = \varphi_1(a_i), 1 \leq i \leq N \rangle \) the corresponding amalgamated free product. Let \(X_0, X_1 \) be compact 2-polyhedra with \(\pi_1(X_i) \cong G_i \) and such that their universal covers have the proper homotopy type of \(3 \)-manifolds \(M_0, M_1 \) respectively. Let \(L = \bigvee_{i=1}^N S^1 \) and \(f_i : L \to X_i \) \((i = 0, 1)\) be cellular maps such that \(\text{Im} f_i \subseteq \pi_1(X_i) \) corresponds to the subgroup \(\text{Im} \varphi_i \subseteq G_i \). We take the standard 2-dimensional CW-complex \(Y' \) associated to the above presentation of \(F \), i.e., \(\text{Y}' \) has one 1-cell \(e_i \) for each generator \(a_i \) \((1 \leq i \leq N)\), all of them sharing the only vertex in \(\text{Y}' \), and one 2-cell \(d_j \) for each relation \(r_j \) \((1 \leq j \leq M) \) attached via a map \(S^1 \to \bigvee_{i=1}^N e_i \) which “spells” the relation \(r_j \). Consider the adjunction spaces \(Y = (\bigvee_{i=1}^N e_i) \times I \cup (\bigvee_{i=1}^N e_i) \times \{1\} \) \((\text{homotopy equivalent to } \text{Y}' \)) and \(Z = Y \cup f_0 \times \{0\} \cup f_1 \times \{1\} (X_0 \cup X_1) \). By van Kampen’s Theorem, \(Z \) is a compact 2-polyhedra with \(\pi_1(Z) \cong G_0 *_F G_1 \). Let \(\tilde{Z} \) be the universal cover of \(Z \) with covering map \(p : \tilde{Z} \to Z \). Then, \(p^{-1}(X_i) \) consists of a disjoint union of copies of the universal cover \(\tilde{X}_i \) of \(X_i \), since the inclusion \(X_i \to Z \) induces a monomorphism \(G_i \to G_0 *_F G_1 \) between the fundamental groups, \(i = 0, 1 \) (see [10]). On the other hand, let \(\Gamma \) be a connected component of \(p^{-1}(\bigvee_{i=1}^N e_i) \subseteq p^{-1}(\text{Y}') \) and \(\tilde{Y}' \) be the connected component of \(p^{-1}(\text{Y}') \) containing \(\Gamma \). Observe that \(\tilde{Y}' \) is a copy of the universal cover of \(\text{Y}' \) \((\text{which is compact})\), so the inclusion \(\text{Y}' \to Z \) induces a monomorphism \(F \to G_0 *_F G_1 \). Then, it is easy to see that \(p^{-1}(Y) \) consists of a disjoint union of copies of the compact CW-complex \(K = (\Gamma \times I) \cup _{\Gamma \times \{1\}} \tilde{Y}' \). Thus, \(\tilde{Z} \) comes together with the following data (see [13]):

\[(a)\] The disjoint unions \(\bigsqcup_{p \in \mathbb{N}} \tilde{X}_{0,p} \) and \(\bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1,r} \) of copies of \(\tilde{X}_0 \) and \(\tilde{X}_1 \) respectively;

\[(b)\] a disjoint union \(\bigsqcup_{p \in \mathbb{N}} K_{p,q} \) of copies of \(K \); and

\[(c)\] a bijective function \(\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}, (p, q) \mapsto (r, s) \) \((\text{given by the group action of } G_0 *_F G_1 \text{ on } \tilde{Z})\), so that for each \(p, q \in \mathbb{N}, \Gamma \times \{0\} \subset K_{p,q} \) is being glued to \(\tilde{X}_{0,p} \) via a lift \(\tilde{f}_{0,p} : \Gamma \times \{0\} \to \tilde{X}_{0,p} \) of the map \(f_0 \), and \(\Gamma \times \{1\} \subset K_{p,q} \) is being glued to \(\tilde{X}_{1,r} \) via a lift \(\tilde{f}_{r,s} : \Gamma \times \{1\} \to \tilde{X}_{1,r} \) of the map \(f_1 \).

Next, for each copy of \(\tilde{X}_i, i = 0, 1, \) in \(\tilde{Z} \) \((\text{written as } \tilde{X}_{0,p} \text{ or } \tilde{X}_{1,r})\), we take one of the maps \(\tilde{f}_{r,s} : \Gamma \times \{1\} \to \tilde{X}_i \) and observe that this map is nullhomotopic so
we can replace it (up to homotopy) with a constant map $g_{\lambda,\mu}^i : \Gamma \times \{i\} \to \hat{X}_i$ with $Im \ g_{\lambda,\mu}^i \subset Im \ \hat{f}_{\lambda,\mu}^i$, and we do this equivariantly using the group action of G_i on \hat{X}_i. Since this action is properly discontinuous, the collection of all these homotopies gives rise to a proper homotopy equivalence between \hat{Z} and a new 2-dimensional CW-complex W obtained from a collection of copies of K and a collection of copies of \check{X}_0 and \check{X}_1 by gluing each copy of $\Gamma \times \{i\}$ to the corresponding copy of \hat{X}_i via the bijection φ and the new maps $g_{\lambda,\mu}^i$, $i = 0, 1$.

We will now manipulate the CW-complex K as follows. First, let K' be the CW-complex obtained from K by shrinking to a point $v \times \{i\}$ each copy $T \times \{i\}$ ($i \in I$) of a maximal tree $T \subset \check{Y}' \subset K$. Next, we take K'' to be the CW-complex obtained from K' by identifying the subcomplexes $\Gamma \times \{i\}/T \times \{i\}$, $i = 0, 1$, to a (different) point which we will denote by $[v \times \{0\}]$ and $[v \times \{1\}]$. Note that K'' has a copy of Y'/T as a subcomplex. Since Y'/T is compact and simply connected, it follows from ([1], Prop. 3.3) that Y'/T is homotopy equivalent to a finite bouquet of 2-spheres $\vee_{a \in A} S^2$ (which we may regard as a connected 2-dimensional CW-complex with no 1-cells). Moreover, we may assume that this homotopy equivalence is given by a cellular map $\hat{Y}'/T \to \vee_{a \in A} S^2$ so that the 1-skeleton Γ/T of Y'/T is mapped to the wedge point. Finally, taking into account this homotopy equivalence, it is not difficult to see that K'' is homotopy equivalent to the CW-complex \hat{K} obtained from the disjoint union of a finite bouquet $\vee_{a \in A \cup B} S^2$ (where $Card(B) = 2 \ rank(\pi_1(\Gamma))$ and the unit interval I by identifying $\frac{1}{2} \in I$ with the wedge point, so that $I \subset \hat{K}$ would correspond to the subcomplex $v \times I \subset K'$ and $0, 1 \in I$ would correspond to $[v \times \{0\}], [v \times \{1\}] \in K''$. Notice that \hat{K} thickens to a 3-manifold $P \setminus \hat{K}$ containing 3-dimensional 1-handles H and H' (with a free end face of each of them) corresponding to the edges $[0, \frac{1}{2}], [\frac{1}{2}, 1] \subset I \subset \hat{K}$ respectively.

According to the above, one can see that the CW-complex W (proper homotopy equivalent to \hat{Z}) is in turn proper homotopy equivalent to the quotient space obtained from the following data:

(a) A disjoint union $\bigsqcup_{p \in \N} \check{X}_{0,p}$ of copies of \check{X}_0 together with a locally finite sequence of points $\{x^p_q\}_{q \in \N} \subset \check{X}_{0,p}$, for each $p \in \N$, corresponding to the images of the constant maps $g^0_{p,q} : \Gamma \times \{0\} \to \check{X}_{0,p}$ considered above in the construction of W;

(b) a disjoint union $\bigsqcup_{r \in \N} \check{X}_{1,r}$ of copies of \check{X}_1 together with a locally finite sequence of points $\{y^r_s\}_{s \in \N} \subset \check{X}_{1,r}$, for each $r \in \N$, corresponding to the images of the constant maps $g^1_{r,s} : \Gamma \times \{1\} \to \check{X}_{1,r}$ from the construction of W;

(c) a disjoint union $\bigsqcup_{p,q \in \N} \hat{K}_{p,q}$ of copies of \hat{K}; and

(d) the bijective function $\varphi : \N \times \N \to \N \times \N, (p, q) \mapsto (r, s)$, so that $0 \in I \subset \hat{K}_{p,q}$ is being identified with $x^p_q \in \check{X}_{0,p}$ and $1 \in I \subset \hat{K}_{p,q}$ is being identified with $y^r_s \in \check{X}_{1,r}$ ($(r, s) = \varphi(p, q)$), for each $p, q \in \N$.

We now follow an argument similar to the proof of ([1], Lemma 3.2). Fix proper homotopy equivalences $h : \check{X}_0 \to M$ and $h' : \check{X}_1 \to N$, where we now denote M_0 by M and M_1 by N. Given the above data, we set $A = \N \times \N$ and consider
maps \(i : A \longrightarrow \bigcup_{p \in \mathbb{N}} \hat{X}_{0,p} \), \(i' : A \longrightarrow \bigcup_{r \in \mathbb{N}} \hat{X}_{1,r} \) given by \(i(p, q) = x_p^r \) and \(i'(p, q) = y_s^r \), where \((r, s) = \varphi(p, q)\). It is easy to check that \(i \) and \(i' \) are proper cofibrations, as the corresponding sequences of points are locally finite. Next, we take exhaustive sequences \(\{A_p^m\}_{m \in \mathbb{N}} \) and \(\{B_r^n\}_{r \in \mathbb{N}} \) of copies of \(M_p \) and \(N_r \) of the 3-manifolds \(M \) and \(N \) respectively by compact submanifolds, and define proper cofibrations \(j : A \longrightarrow \bigcup_{p \in \mathbb{N}} M_p \), \(j' : A \longrightarrow \bigcup_{r \in \mathbb{N}} N_r \) as follows. Given \((p, q) \in A\) and the proper homotopy equivalences \(h_p = h : \hat{X}_{0,p} \longrightarrow M_p \), \(h'_p = h' : \hat{X}_{1,r} \longrightarrow N_r \) (with \((r, s) = \varphi(p, q)\)), we take \(m(q), n(s) \in \mathbb{N} \) to be the least natural numbers such that \(h_p \circ i(p, q) \notin A_{m(q)}^p \subset M_p \) and \(h'_p \circ i'(p, q) \notin B_{n(s)}^r \subset N_r \). Then, using Proposition 2.1, we define \(j(p, q) \) and \(j'(p, q) \) to be points \(j(p, q) = a_p,q \in \partial M_p - A_{m(q)}^p \) and \(j'(p, q) = b_{r,s} = \partial N_r - B_{n(s)}^r \) so that \((i)\) \(j, j' \) are one-to-one maps (note that \(h, h' \) need not be one-to-one); and \((ii)\) \(a_{p,q} \) and \(h_p \circ i(p, q) \) (resp. \(b_{r,s} \) and \(h'_p \circ i'(p, q) \)) are in the same path component of \(M_p - A_{m(q)}^p \) (resp. \(N_r - B_{n(s)}^r \)). Notice that \(j \) and \(j' \) are proper maps by construction. Consider now maps \(G, H \) extend to proper maps

\[
G : \left(\bigcup_{p \in \mathbb{N}} \hat{X}_{0,p} \right) \times \{0\} \cup (i(A) \times I) \longrightarrow \bigcup_{p \in \mathbb{N}} M_p
\]

\[
H : \left(\bigcup_{r \in \mathbb{N}} \hat{X}_{1,r} \right) \times \{0\} \cup (i'(A) \times I) \longrightarrow \bigcup_{r \in \mathbb{N}} N_r
\]

with \(G|_{\hat{X}_{0,p} \times \{0\}} = h_p = h \) and \(H|_{\hat{X}_{1,r} \times \{0\}} = h'_p = h' \) \((r, s) \in \mathbb{N})\), and so that \(\alpha_{p,q} = G|_{i(p,q) \times I} \) (resp. \(\alpha_{r,s} = H|_{i'(p,q) \times I} \)) is a path in \(M_p - A_{m(q)}^p \) from \(h_p \circ i(p, q) \) to \(a_{p,q} \) (resp. a path in \(N_r - B_{n(s)}^r \) from \(h'_p \circ i'(p, q) \) to \(b_{r,s} \)). Observe that \(G \) and \(H \) are proper maps, since \(h, h', j \) and \(j' \) are proper. By the Homotopy Extension Property, the maps \(G, H \) extend to proper maps

\[
\hat{G} : \left(\bigcup_{p \in \mathbb{N}} \hat{X}_{0,p} \right) \times I \longrightarrow \bigcup_{p \in \mathbb{N}} M_p , \quad \hat{H} : \left(\bigcup_{r \in \mathbb{N}} \hat{X}_{1,r} \right) \times I \longrightarrow \bigcup_{r \in \mathbb{N}} N_r
\]

which yield commutative diagrams

\[
\begin{array}{ccc}
\bigcup_{p \in \mathbb{N}} \hat{X}_{0,p} & \xrightarrow{i} & \bigcup_{p \in \mathbb{N}} M_p \\
\bigcup_{r \in \mathbb{N}} \hat{X}_{1,r} & \xrightarrow{j} & \bigcup_{r \in \mathbb{N}} N_r
\end{array}
\]

\[
\begin{array}{ccc}
\bigcup_{p \in \mathbb{N}} \hat{X}_{0,p} & \xrightarrow{k} & \bigcup_{p \in \mathbb{N}} M_p \\
\bigcup_{r \in \mathbb{N}} \hat{X}_{1,r} & \xrightarrow{\hat{h}} & \bigcup_{r \in \mathbb{N}} N_r
\end{array}
\]

where \(\hat{h} = \hat{G}|_{(\bigcup_{p \in \mathbb{N}} \hat{X}_{0,p}) \times \{1\}} \) and \(\hat{h}' = \hat{H}|_{(\bigcup_{r \in \mathbb{N}} \hat{X}_{1,r}) \times \{1\}} \) are proper homotopy equivalences. Moreover, \(\hat{h} \) and \(\hat{h}' \) are proper homotopy equivalences under \(A \), by \([2, \text{Prop. 4.16}]\) (compare with \([11, \text{Chap. 6, §5}]\). Hence, they induce a proper homotopy equivalence between the quotient space described above (proper homotopy equivalent to \(W \)) and the following 3-manifold obtained as the quotient space given by the data:

(a) The disjoint unions \(\bigcup_{p \in \mathbb{N}} M_p \) and \(\bigcup_{r \in \mathbb{N}} N_r \) of copies of the 3-manifolds \(M \) and \(N \) respectively;
(b) a disjoint union \[\bigsqcup_{p,q \in \mathbb{N}} P_{p,q} \] of copies of the compact 3-manifold \(P \setminus \hat{K} \); and

(c) the bijective function \(\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}, (p, q) \mapsto (r, s) \), so that for each \(p, q \in \mathbb{N} \), the free ends of the corresponding 3-dimensional 1-handles \(H_{p,q}, H'_{p,q} \subset P_{p,q} \) considered above are being identified homeomorphically with small disks \(D_{p,q} \subset \partial M_p \) and \(D'_{r,s} \subset \partial N_r \) about the points \(a_{p,q} \) and \(b_{r,s} \) respectively.

In the case of an HNN-extension \(G \rtimes F = \langle G, t ; t^{-1} \psi_0(a_i) t = \psi_1(a_i), 1 \leq i \leq N \rangle \) (with monomorphisms \(\psi_i : F \to G, i = 0,1 \)), let \(X \) be a compact 2-polyhedron with \(\pi_1(X) \cong G \) and whose universal cover has the proper homotopy type of a 3-manifold, and let \(f_i : \bigvee_{i=1}^N S^1 \to X \) \((i = 0,1) \) be cellular maps so that \(\text{Im } f_i \subseteq \pi_1(X) \) corresponds to the subgroup \(\text{Im } \psi_i \subseteq G \). Let \(Y \) be the 2-dimensional CW-complex constructed as above and consider the adjunction space \(Z = Y \cup f_0 \times \{0\} \cup f_1 \times \{1\} \times X \), with \(\pi_1(Z) \cong G \rtimes F \). Then, the proof goes just as the one given above for the amalgamated free product. \(\square \)

Acknowledgements

The first three authors were supported by the project MTM 2004-01865. This research was also supported by Slovenian-Spanish research grant BI-ES/04-05-014.

References

[1] R. Ayala, M. Cárdenas, F.F. Lasheras, A. Quintero. Properly 3-realizable groups. Proc. Amer. Math. Soc. 133(2005), 1527-1535.
[2] H-J. Baues, A. Quintero. Infinite Homotopy Theory. K-monographs in Mathematics, Kluver Academic Publishers, 2001.
[3] M. Cárdenas, F.F. Lasheras. Properly 3-realizable groups: a survey. Proceedings of the Conference on Geometric Group Theory and Geometric Methods in Group Theory (Seville 2003), Contemp. Math., to appear.
[4] M. Cárdenas, F.F. Lasheras, R. Roy. Direct products and properly 3-realizable groups. Bull. Australian Math. Soc. 70(2004), 199-206.
[5] M. J. Dunwoody. The accessibility of finitely presented groups. Invent. Math. 81(1985), 449-457.
[6] H. Freudenthal. Über die Enden topologischer Raume und Gruppen. Math. Z. 33(1931), 692-713.
[7] D. J. Garity, F. F. Lasheras, D. Repovš. Topology of 2-dimensional complexes. Preprint.
[8] R. Geoghegan. Topological Methods in Group Theory. Book in preparation.
[9] R. Geoghegan, M. Mihalik. Free abelian cohomology of groups and ends of universal covers. J. Pure and Appl. Algebra, 36(1985), 123-137.
[10] R. C. Lyndon, P. E. Schupp. Combinatorial Group Theory. Springer-Verlag, 1977.
[11] P.J. May. A Concise Course in Algebraic Topology. Chicago Lectures in Mathematics. University of Chicago Press, 1999.
[12] J. Stallings. Group theory and three dimensional manifolds. Yale Math. Monographs, no. 4, Yale Univ. Press, New Haven, Conn. 1971.
[13] P. Scott, C.T.C. Wall. Topological methods in group theory. Homological Group Theory, London Math. Soc. Lecture Notes, Cambridge Univ. Press, Cambridge (1979), 137-204.
[14] C.T.C. Wall. Finiteness conditions for CW-complexes. Ann. of Math. 81(1965), 56-69.