MAP17, a ROS-dependent oncogene

Amancio Carnero*

Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Spain

The complex physiology of vertebrates requires the continuous renewal of most tissues, which may become damaged either by external agents or by the toxic byproducts of their own metabolism, to maintain homeostasis. Cancer arises as a consequence of genetic changes that deregulate the mechanisms that control the renewal process, either by activation of the pathways that promote survival and proliferation, or through inactivation of growth suppression pathways. In order for cancer cells to grow and metastasize, they must overcome additional barriers to their expansion by promoting angiogenesis, acquiring characteristics that allow them to survive in organs different from their origin or by evading immune surveillance mechanisms (Hanahan and Weinberg, 2000, 2011).

Tumorigenesis occurs when the mechanisms involved in the control of tissue homeostasis are disrupted and cells stop responding to physiological signals. Therefore, one of the ways of disseminating tumor cells to physiological signals may provide a selective advantage within the tumoral mass and influence the outcome of the disease. We undertook a large-scale genetic screen to identify genes capable of altering the cellular response to physiological signals that resulted in a selective advantage during tumorigenesis (Hannon et al., 1999; Carnero et al., 2000; Vergel and Carnero, 2010). A genome-wide opossum cDNA screen to search for genes that confer a selective advantage to cancer cells during tumorigenesis allowed us to identify MAP17 (Gujarro et al., 2007a). MAP17 is a small 17 kDa non-glycosylated membrane protein previously identified as being overexpressed in carcinomas. Breast tumor cells that overexpress MAP17 show an increased tumoral phenotype with enhanced proliferative capabilities both in the presence or the absence of contact inhibition, decreased apoptotic sensitivity, and increased migration. MAP17-expressing clones also grow better in nude mice. The increased malignant cell behavior induced by MAP17 is associated with an increase in reactive oxygen species (ROS) production, and the treatment of MAP17-expressing cells with antioxidants results in a reduction in the tumorigenic properties of these cells. The MAP17-dependent increase in ROS and tumorigenesis relies on its PDZ-binding domain because disruption of this sequence by point mutations abolishes the ability of MAP17 to enhance ROS production and tumorigenesis. MAP17 is overexpressed in a great variety of human carcinomas, including breast tumors. Immunohistochemical analysis of MAP17 during cancer progression demonstrates that overexpression of the protein strongly correlates with tumoral progression. Generalized MAP17 overexpression in human carcinomas indicates that MAP17 can be a good marker for tumorigenesis and, especially, for malignant progression.

Keywords: MAP17, cancer, oncogene, reactive oxygen species, tumorigenesis

*Correspondence:
Amancio Carnero, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Edificio BIS, Apte, Manuel Siuret s/n, 41013 Sevilla, Spain
E-mail: acarnero-ibis@us.es

MAP17 is a small 17 kDa non-glycosylated membrane protein previously identified as being overexpressed in carcinomas. Breast tumor cells that overexpress MAP17 show an increased tumoral phenotype with enhanced proliferative capabilities both in the presence or the absence of contact inhibition, decreased apoptotic sensitivity, and increased migration. MAP17-expressing clones also grow better in nude mice. The increased malignant cell behavior induced by MAP17 is associated with an increase in reactive oxygen species (ROS) production, and the treatment of MAP17-expressing cells with antioxidants results in a reduction in the tumorigenic properties of these cells. The MAP17-dependent increase in ROS and tumorigenesis relies on its PDZ-binding domain because disruption of this sequence by point mutations abolishes the ability of MAP17 to enhance ROS production and tumorigenesis. MAP17 is overexpressed in a great variety of human carcinomas, including breast tumors. Immunohistochemical analysis of MAP17 during cancer progression demonstrates that overexpression of the protein strongly correlates with tumoral progression. Generalized MAP17 overexpression in human carcinomas indicates that MAP17 can be a good marker for tumorigenesis and, especially, for malignant progression.

Keywords: MAP17, cancer, oncogene, reactive oxygen species, tumorigenesis

*Correspondence:
Amancio Carnero, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Edificio BIS, Apte, Manuel Siuret s/n, 41013 Sevilla, Spain
E-mail: acarnero-ibis@us.es

The complex physiology of vertebrates requires the continuous renewal of most tissues, which may become damaged either by external agents or by the toxic byproducts of their own metabolism, to maintain homeostasis. Cancer arises as a consequence of genetic changes that deregulate the mechanisms that control the renewal process, either by activation of the pathways that promote survival and proliferation, or through inactivation of growth suppression pathways. In order for cancer cells to grow and metastasize, they must overcome additional barriers to their expansion by promoting angiogenesis, acquiring characteristics that allow them to survive in organs different from their origin or by evading immune surveillance mechanisms (Hanahan and Weinberg, 2000, 2011).

Tumorigenesis occurs when the mechanisms involved in the control of tissue homeostasis are disrupted and cells stop responding to physiological signals. Therefore, one of the ways of disseminating tumor cells to physiological signals may provide a selective advantage within the tumoral mass and influence the outcome of the disease. We undertook a large-scale genetic screen to identify genes capable of altering the cellular response to physiological signals that resulted in a selective advantage during tumorigenesis (Hannon et al., 1999; Carnero et al., 2000; Vergel and Carnero, 2010). A genome-wide opossum cDNA screen to search for genes that confer a selective advantage to cancer cells during tumorigenesis allowed us to identify MAP17 (Gujarro et al., 2007a). MAP17 is a small 17 kDa non-glycosylated membrane protein previously identified as being overexpressed in carcinomas. Breast tumor cells that overexpress MAP17 show an increased tumoral phenotype with enhanced proliferative capabilities both in the presence or the absence of contact inhibition, decreased apoptotic sensitivity, and increased migration. MAP17-expressing clones also grow better in nude mice. The increased malignant cell behavior induced by MAP17 is associated with an increase in reactive oxygen species (ROS) production, and the treatment of MAP17-expressing cells with antioxidants results in a reduction in the tumorigenic properties of these cells. The MAP17-dependent increase in ROS and tumorigenesis relies on its PDZ-binding domain because disruption of this sequence by point mutations abolishes the ability of MAP17 to enhance ROS production and tumorigenesis. MAP17 is overexpressed in a great variety of human carcinomas, including breast tumors. Immunohistochemical analysis of MAP17 during cancer progression demonstrates that overexpression of the protein strongly correlates with tumoral progression. Generalized MAP17 overexpression in human carcinomas indicates that MAP17 can be a good marker for tumorigenesis and, especially, for malignant progression.
host elimination. Ectopic expression of MAP17 in tumor cells prevents TNF-induced G1 arrest by impairing p21waf1 induction. However, expression of MAP17 does not inhibit TNF-induced apoptosis in M180-sensitive tumor cells. The inhibition of TNF is specific because MAP17 does not alter the response to other cytokines such as IFN-α. As described in the Xenopus oocyte system, MAP17 increases the uptake of glucose in some cells, but this effect is not responsible for TNF bypass.

MAP17 IN HUMAN TUMORS

MAP17 overexpression in carcinomas occurs mostly through mRNA amplification, but promoter activation has also been observed by some oncogenes (Kocher et al., 1995; Guijarro et al., 2007c). Immunohistochemical analysis of MAP17 during cancer progression shows that overexpression of the protein strongly correlates with tumoral progression. Generalized MAP17 overexpression in human carcinomas indicates that MAP17 can be a good marker for tumorigenesis and especially for malignant progression.

MAP17 is highly expressed in renal proximal tubular cells and has been previously described to be associated with carcinomas (Kocher et al., 1995, 1996). We have performed an in-depth analysis of MAP17 overexpression in carcinomas by immunohistochemistry and mRNA expression (Figure 2). We have found that the MAP17 protein is overexpressed in a large percentage of the tumors analyzed and is significantly correlated with the tumor grade in ovarian, breast, and prostate carcinomas (Guijarro et al., 2007c, 2012). The analysis of mRNA levels by Q-PCR or by hybridization comparing tumoral vs. non-tumoral tissues of the same patient, demonstrate an even higher percentage of tumor samples with MAP17 overexpression. In tumors such as ovary, colon, stomach, cervix, and thyroid gland, the percentage of overexpression in tumor samples is higher than 70%, while in lung, uterus, and rectum it is approximately 50%. Although more samples need to be analyzed to confirm these high rates, the data suggest that MAP17 overexpression is the most common marker of tumorigenesis in carcinomas. The relevance of MAP17 as a general marker for the malignant stages of human tumors still needs to be confirmed in additional tumor types and larger cohorts. However, all tissues explored thus far have shown similar patterns of MAP17 expression. Furthermore, MAP17 expression seems to correlate with AKT phosphorylation at Ser473 (Figure 2). These expression patterns provide a mechanistic insight and a possible target for future therapies (AKT inhibition).

ONCOGENIC ACTIVITY OF MAP17

Tumor cells that overexpress MAP17 show an increased tumoral phenotype with enhanced proliferative capabilities both in the presence or absence of contact inhibition, decreased apoptotic sensitivity, and increased migration. MAP17-expressing clones also grow better in nude mice. The increased malignant cell behavior induced by MAP17 is associated with an increase in reactive oxygen species (ROS) production, and the treatment of MAP17-expressing cells with antioxidants results in a reduction in the tumorigenic properties of these cells. Treatment of breast cells with inhibitors of Na+-coupled co-transporters leads to an inhibition of a ROS increase and a decrease in the malignant cell behavior in MAP17-expressing clones (Guijarro et al., 2012). Finally, MAP17-dependent increase in ROS and tumorigenesis are dependent on its PDZ-binding domain because disruption of this sequence by point mutations abolishes the ability of MAP17 to enhance ROS production and tumorigenesis (Guijarro et al., 2007b). Furthermore, expression of a MAP17 specific shRNA in
protein-expressing tumor cells reduced their tumorigenic capabilities (Guijarro et al., 2012), which suggests that this effect is dependent upon MAP17 protein expression.

MAP17 significantly decreases the c-Myc induced caspase-3-like activity in Rat1 fibroblasts under low serum conditions. This decrease is in keeping with the concept of MAP17-induced PI3K/AKT signaling, in which MAP17 is able to interfere with Bax translocation to the mitochondria (Guijarro et al., 2007d). At the molecular level we have found that MAP17 protects Rat1a fibroblasts from Myc-induced apoptosis through, ROS-mediated activation of the PI3K/AKT signaling pathway (Guijarro et al., 2007d). A fraction of PTEN protein undergoes oxidation in MAP17-overexpressing cells. Furthermore, activation of AKT by MAP17 as measured by Thr308 phosphorylation was independent of PI3K activity (Figure 3). Importantly, modulation of ROS by antioxidant treatment prevented activation of AKT, thus, restoring the level of apoptosis in serum starved Rat1/c-Myc fibroblasts (Guijarro et al., 2007d). MAP17-mediated survival was associated with an absence of Bax translocation to the mitochondria and reduced caspase-3 activation. Finally, overexpression of a dominant negative mutant of AKT in MAP17-expressing clones makes them sensitive to serum depletion (Guijarro et al., 2007d). The data indicates that MAP17 protein activates AKT through ROS, and this activation is a determinant in conferring resistance to Myc-induced apoptosis in the absence of serum. These results might provide the mechanistic insight to explain the correlation between MAP17 levels and AKT phosphorylation found in tumor samples. Like ways, AKT activation has been described as responsible for TNF resistance in some tumor cell lines (Sudheerkumar et al., 2008; Xu et al., 2012).

MAP17 IS A ROS-DEPENDENT ONCOGENE

The increased tumorigenic properties induced by MAP17 are associated with an increase in ROS because MAP17 increases endogenous ROS and the antioxidant treatment of MAP17-expressing cells entails a reduction in the tumorigenic properties of these cells. Two explanations can be offered for the mechanism by which ROS induce the transformed phenotype. First, reactive oxygen generated in the presence of MAP17 may be mutagenic, causing the transformed phenotype through the induction of mutations in oncogenes or tumor suppressor genes. Alternatively, ROS generated in a MAP17-dependent manner might function as an intracellular signal, inducing a growth-related genetic program. We have found that ROS removal by antioxidant treatments decrease the malignant cell behavior induced by MAP17; thus, the second hypothesis is favored. Accumulating evidence implicates

![FIGURE 3](image-url)
ROS in signaling cascades related to cell proliferation and transformation (Sandaresan et al., 1995; Burdon, 1996; Irani et al., 1997). Ras-transformed fibroblasts overproduce ROS, and this overproduction is correlated with the activation of mitogenic signaling pathways (Irani et al., 1997). Loss of superoxide dismutase (SOD), which should elevate ROS levels, has also been correlated with a tumoral phenotype, and overexpression of SOD leads to the reversion of the transformed phenotype (Fernandez-Pol et al., 1982; Church et al., 1993; Yan et al., 1996). On the other hand, H$_2$O$_2$ is generated in response to the growth factors EGF and PDGF and is linked to growth-related signaling (Sandaresan et al., 1995; Bae et al., 1999). When overexpressed in NIH3T3 mouse fibroblasts, Nox1, a NADPH oxidase catalytic subunit, induces excessive production of ROS and a transformed phenotype with increased mitotic rates and aggressive tumor formation in athymic mice (Arnold et al., 2001). The phenotype of Nox1–transfected cells can be reversed by ROS reduction through stable expression of catalase, thereby implicating ROS as a signaling molecule (Arnold et al., 2001).

The cellular targets responsible for growth and transformation affected by ROS signaling are not fully known. DNA microarray experiments (Arnold et al., 2001) indicate that up to 2% of the genes are regulated by ROS. Furthermore, we have found that a ROS increase activates the PD3K pathway, which may be by direct oxidation and inactivation of PTEN and other AKT phosphatases, thus maintaining AKT activation even in the absence of a PD3K signal (Guajardo et al., 2002). AKT pathway activation induced by MAP17 expression might explain some of the properties described here. However, we hypothesize that other pathways must exist that are induced by MAP17 at the transcriptional level, as described in other systems (Klaunig et al., 1998; Droge, 2002). The p42/p44 mitogen-activated protein kinase (MAPK), p38 MAPK, p70S6k, AKT, and STAT, signaling pathways are all activated by ROS (Natarajan et al., 1993; Finkel, 1998; Bae et al., 1999; Allen and Trusini, 2000; Ray et al., 2012; Vuasanker et al., 2012). A variety of other targets can also be affected by ROS, including transcription factors such as NF-kB (Schmidt et al., 1995), AP1 (Venk et al., 1999), and p53 (Hainaut and Moller, 1993). In most cases the activation is indirect (Min et al., 1998; Abe et al., 2000). However, a direct effect has been shown on protein tyrosine phosphatase-1B (PTP-1B), which is inhibited by oxidation of a thiol in the active site (Lee et al., 1998; Barrett et al., 1999), leading to increased phosphotyrosines on many cell proteins. ROS can directly modify signaling proteins through different modifications such as nitrosylation, carbonylation, disulfide bond formation, and glutathionylation (England and Cotter, 2003). Whatever the proximal target(s), ROS reprogram the expression of enzymes and other proteins in the cell (Klaunig et al., 1998; Droge, 2002).

However, the increased tumoral properties of carcinoma cells were not paralleled in immortal non-tumoral cells (Guajarro et al., 2012), indicating that MAP17 provides a selective advantage once tumorigenesis has begun. ROS act as a second messenger that enhances tumoral properties, but only in those cells where the senescence/apoptotic signal provided by ROS is uncoupled. In primary cells, MAP17 triggers a ROS-dependent, senescence-like response that is abolished in the absence of p38a activation. Furthermore, in human breast tumors, MAP17 activation is correlated with a lack of phosphorylation of p38a. Therefore, MAP17 is overexpressed in late-stage breast tumors, in which oncogenic activity relies on p38 insensitivity to induced intracellular ROS (Guajarro et al., 2012).

MAP17 AND NHeRFs

MAP17 has been found to bind NHeRF1 and NHeRF3 (PDZK1) through its PDZ-binding motif (Pribanic et al., 2003; Silver et al., 2003; Lanapet et al., 2007). NHeRFs are scaffolding proteins defined by the presence of globular PDZ domains that assemble several proteins into functional complexes (Shenolikar et al., 2004; Cunningham et al., 2010; Clapenon et al., 2011). The NHeRF proteins regulate cell surface expression and functional activity of transporters (Shenolikar et al., 2004; Lee et al., 2007). Most transporters identified as binding partners belong to the ABC family (Weinman et al., 2010). In addition to transporters, other proteins have been shown to interact with NHeRF proteins, including signaling proteins, hormone receptors, and cytoskeleton structural elements (Thesen et al., 2007). Many proteins related to the G-protein signaling pathways were found to interact with PDZK1, and they were likely to be functionally associated with transporters (Cardone et al., 2007; Theisen et al., 2007; Carnero, 2012). Furthermore, it has been shown (Dai et al., 2004) that NHeRF1 binds to the breast tumor suppressor SYK and MERLIN, the product of the tumor suppressor NF2. NHeRF1 present also mutations at the PDZ domains in breast tumors which abolishes binding to these suppressor proteins. Primary breast tumors with LeH at the NHeRF1 locus show higher aggressiveness. However, the relation of these mutations with MAP17 or other physiological alterations such as ROS of glucose uptake is at present unknown.
MAP17 forms complexes with PDZK1 and NHE3 contributing to basal and calcium inhibition of NHE3 activity (Cinar et al., 2012). Therefore, MAP17 increase in tumor cells could be a mechanistic advantage that will permit tumor cells increase the glucose intake and parallel decrease the intracellular pH and lactic acid by the increase of membrane bound transports (Carnero, 2012; Figure 4).

CONCLUDING REMARKS
In summary, MAP17 overexpression in human breast carcinomas indicates that MAP17 can be a good marker for tumorigenesis and for malignant progression. Our results indicate that this protein is likely to play an important role in carcinogenesis. ACKNOWLEDGMENTS
This work was supported by grants from the Spanish Ministry of Science and Innovation and Feder Funds (SAF2009-06605), Consejeria de Innovacion y Ciencia (CTS-6844) and Consejeria de Salud (Ft-0142), Junta de Andalucia. Armanco-Carnero’s Lab is also funded by a fellowship from Fundacion Oncologica FERO supported by Fundacion Josep Bolet. The funding source has not had a role in the study design, analysis, or interpretation of data, nor in the writing and decision to submit the manuscript.

REFERENCES
Abe, J., Okuda, M., Huang, Q., Yoshizumi, M., and Berk, B. C. (2005). Reactive oxygen species activate p50 ribosomal S6 kinase via Fyn and Ras. J. Biol. Chem. 273, 17394–17399.
Allen, B. G., and Tsimos, M. (2000). Oxidative stress and gene regulation. Free Radiol. Biof. Med. 28, 485–499.
Arnaltd, R. S., Shi, M., Ohlms, E., Whilam, A. M., Sun, C. G., Polavarapu, B., Parthasarathy, S., Petros, J. A., and Lambeth, J. D. (2005). Hydrogen peroxide mediates the cell growth and transformation caused by the mitogen-soluble Nox. Proc. Natl. Acad. Sci. U.S.A. 98, 5505–5515.
Bar-Even, A., Flamholz, A., Noor, E., Bar-Dayan, Y., Kupiec, M., Alper, S. L., and Civan, M. M. (2002). Folding proteins in proximal tubule epithelial cells. Pflugers Arch. 443, 375–382.
Bae, G. U., Seo, D. W., Kwon, H. K., Cho, J. Y., Kim, S. Y., and Han, J. W. (2007). Evaluation of the cysolic acid peritoneum activation p70S6K signaling pathway. J. Biol. Chem. 282, 32799–32807.
Bai, E. E., Hamblet, A., Noor, E., and Mlo, R. (2012). Redox status and antioxidant status in breast cancer. Carcinogenesis 33, 509–517.
Barrett, W. C., DeGnore, J. P., Konig, S., Watson, J. A., Sinclair, A. M., Knudsen, B. B., and Chodirker, N. B. (2003). Regulation of FTFPI via glutathione-redox–leucine-rich domains in proximal tubule cells. Biochemistry 32, 6699–6705.
Blasco, T., Aramayona, J., Alcalde, A., Vidal-Tarín, N., Gomez, A., Rodriguez, A., and Berk, B. C. (2000). Rat kidney MAP17 induces apoptosis and in parallel decrease the intracellular pH and lactic acid by the increase of membrane bound transports. Cancer Res. 60, 525–529.
Burdon, P. R. (1996). Control of cell proliferation by reactive oxygen species. Biochem. Soc. Zans 24, 1028–1032.
Carnero, A., Hudson, J. D., Hannon, G. J., Ebert, M., Ebert, S. L., and Civan, M. M. (2012). MAP17 and NHE3 form complexes with PDZK1 and NHe3 contributing to basal and calcium inhibition of NHE3 activity (Cinar et al., 2012). Therefore, MAP17 increase in tumor cells could be a mechanistic advantage that will permit tumor cells increase the glucose intake and parallel decrease the intracellular pH and lactic acid by the increase of membrane bound transports (Carnero, 2012; Figure 4).

Cinar, A., Chen, M., Haidoun, R., Buchmann, O., Wiesmann, M., Mutus, M., Kuchler, O., and Seidler, U. (2007). NHE3 inhibition by cAMP and Ca2+ is abolished in PDZ-domain proteins PDZK1-deficient murine erythrocytes. J. Physiol. 581, 1235–1246.
Claparós, A., Menger, M., and Fournier, L. (2011). Role of the scaffold- ing proteins NHERF in liver biology. Curr. Opin. Cell Biol. 23, 176–181.
Coifman, L., Touret, N., Bieuk, M., Poter, S., Villalón, T., García-Prieto, O., and Seidler, U. (2008). The role of disturbed pH dynamics and the NHERF-dependent cystic acidification in carcinogenesis. Nat. Rev. Cancer 8, 786–793.
Cordenò, R., and Cordenò, S. (2015). Cardone, R. A., Casavola, V., Azzariti, A., Manzo, G., Weinman, E. J., Dell’Aquila, M., Alper, S. L., and Civan, M. M. (2002). Sodium-coupled monocarboxylate transporters in normal tissue and in cancer. AAPS J. 10, 195–199.
Counillon, L., Touret, N., Bidet, M., Poter, S., and Bravon, M. M. (2008). Role of NHERF and sarcosine inhibition in metastasis. Clin. Res. Hepatol. Gastroenterol. 32, 667–678.
Cunningham, R., Biswas, R., Steplock, E., Casavola, V., Azzariti, A., Manni, O., Wiemann, M., Manns, K. S., Lee, H. W., and Han, J. W. (2007). Correlation between the loss of the transformed protein and an increase in superoxide dismutase activity as a response to serum starvation of sarcoma virus-infected mammalian cells. Cancer Res. 67, 609–617.
Finkel, T. (1998). Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10, 248–253.
Fukushima, V., Thangarajus, M., Gopal, E., Martin, P. M., Inagaki, S., Miyashita, S., and Prasad, P. D. (2008). Sodium-coupled monocarboxylate transporters in normal tissue and in cancer. AAPS J. 10, 195–199.
Guijarro, M. V., Leal, J. F., Castro, M. E., Romero, J. M., and Carnero, M. V. (2004). Large scale genetic screen identifies MAP17 as protein bypassing TNF-induced growth arrest. J. Cell Biol. 169, 121–131.

Guijarro, M. V., Leal, J. F., Blanco-Aparicio, C., Alonsos, S., Fontanarrosa, J., Llorente, M., Castells, J., Ramon y Cajal, S., and Carnero, M. V. (2003). MAP17 enhances the malignant behavior of tumor cells through ROS increase. Carcinogenesis 24, 2086–2090.

Guijarro, M. V., Leal, J. F., Fontanarrosa, J., Llorente, M., Castells, J., Ramon y Cajal, S., and Carnero, M. V. (2007). MAP17 overexpression is a common characteristic of carcinomas. Carcinogenesis 28, 1644–1652.

Guijarro, M. V., Link, W., Rosado, A., Leal, J. F., and Carnero, M. V. (2007). MAP17 inhibits Mn2+-induced apoptosis through PTK/PI3K/Akt pathway activation. Carcinogenesis 28, 2435–2439.

Guijarro, M. V., Vingel, M., Martin, J. J., Patino, J. A., Orden, S. R., Roncal-Castañeda, G., Blanco-Aparicio, C., and Carnero, M. A. (2010). p53 limits the contribution of MAP17 to cancer progression in breast tumors. Oncogene 29, 1680–1689. [Epub ahead of print]

Hamant, P., and Stierer, W. (1993). Redox modulation of p53 conformation and sequence-specific DNA binding in the presence of manganese. EMBO J. 12, 4869–4875.

Hannan, W. J., and Weinberg, R. A. (2000). The hallmark of cancer. Cell 100, 57–70.

Hannan, W. J., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 146, 646, 648.

Hammon, G. J., Sun, P., Carnero, A., Xia, L., Maestro, R., Coutin, D. S., and Beaud, D. (1999). MaRKs an approach to genetics in mammalian cells. Sci. STKE 2000, RE2 (76).

Hillenkjem, J., Rindseth, B., Tuo, B., Chen, M., Maestro, M., Bibb, J., Yun, C., Koehr, O., and Selvador, U. (2007). Down regulation of small intestinal ion transport in PDK1–(CAGP0/99NHERF) deficient mice. Pflugers Arch. 454, 575–586.

Inoue, I., Onuki, T., Hirazuma, A., Inoue, I., Maestro, M., Shima, S., Tsumaki, M., and Inazawa, J. (2004). Overexpression of PDK1 within the Igα-2-ζ complex is likely to be associated with drug-resistance phenotype in multiple myeloma. Am. J. Pathol. 165, 71–81.

Irani, K., Xue, Y., Zienes, J. L., Sol, J., T. D., Der, C. J., Fearon, E. R., Sundaram, M., Finkel, T., and Goldschlager-Climent, P. J. (1997). Mioglinic signaling mediated by oxidants in Ras-transfected fibroblasts. Science 275, 1649–1652.

Jaeger, C., Schaefer, B., Wollrich, R., and Kreiner, M. (2000). The membrane-associated protein p51(kinase) in human keratinocytes. J. Invest. Dermatol. 113, 375–380.

Kim, J. K., Lee, K., Kim, J., Kim, K. E., Park, H. K., Lee, J. E., Kim, K. L., Choi, J. W., Lim, S., Seok, H., Lee, K.-W., Choi, J. H., Kang, B. H., Kim, S., Ryu, S. H., and Shin, P. G. (2012). PDZ domain-containing 1 (PDZK1) protein regulates phospholipase C-beta (PLC-beta)-specific activation of somatic transformation by forming a ternary complex with PDZK1 and somatostatin receptors. J. Biol. Chem. 287, 20123–20124.

Klaunig, J. E., Xu, Y., Isenberg, J. S., Klaunig, J. E., Xu, Y., Isenberg, J. S., and Garcia, J. J. (1995). Activation of endosomal cell phospholipase D by hydrogen peroxide and lipoic acid hydroperoxide. J. Biol. Chem. 270, 950–957.

Kraus, S. R., Chick, J., and Postnova, J. (2011). pH control mechanisms of tumour survival and growth. J. Cell. Biochem. 226, 399–408.

Kreutzer, S., Fader, S., Bas, D., Maldonado, C., Hernandez, N., Soulier, Y., Gauthier, A., Biber, J., and Meure, H. (2011). Involvement of the NHERF family in tumor progression and metastasis. J. Biol. Chem. 286, 454–465.

Kreutzer, S., Wollrich, R., and Kreiner, M. (2000). The membrane-associated protein p51(kinase) in human keratinocytes. J. Invest. Dermatol. 113, 375–380.

Kocher, O., Chemnitz, P., Brown, L. E., and Lee, S. W. (1995). Identification of a novel gene, selectively up-regulated in human colon cancer, using the differential display technique. Cis. Cancer Res. 1, 1203–1215.

Kocher, O., Chemnitz, P., and Lee, S. W. (1998). Identification and partial nucleotide sequence of another membrane-associated protein (MAP17) in colon carcinomas and modulating cell proliferation and tumor growth. Am. J. Pathol. 149, 493–506.

Lamana, M. A., Girál, B., Broslam, E. V., Hidalgo, J., Pacheco, C., Castaño, J., Cárdenas, J., A. Brux, N. P. L., and Sorel, S. (2007). Cytosis of MAP17 with NHERF1 induces translocation of the renal Na/K-ATPase transporter to the trans-Golgi. Am. J. Physiol. Renal Physiol. 292,T236–T242.

Lee, S. W., Rosen, K. S., Kim, S. R., and Kisse, S. G. (1995). Reversible inactivation of protein tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 270, 15566–15572.

Lee, Y. J., Lee, Y. J., and Han, H. J. (2007). Regulatory mechanisms of NADPH-generating enzymes in TNF-induced growth factor signal transduction. Science 270, 209–209.

Leverentz, C. S., Wahl, J. K. III, Johnson, K. R., and Wheelock, M. J. (2007). NHERF links the N-cadherin/catenin complex to the platelet-derived growth factor receptor to modulate the actin cytoskeleton and regulate cell motility. Cell 128, 1220–1232.

Vingel, M., and Carnero, M. A. (2008). Bypassing cellular senescence by genetic screening tools. Gln. Transl. Oncol. 11, 415–417.

Varmus, R., Poli, G., and Rubaga, H. (2012). Tumor suppressor genes and complex networks of interactions. Free Radic. Biol. Med. 52, 7–18.

Weinmann, E. J., Bova, R., Staple, D., Douglas, T. S., Cunningham, B., and Showelkik, S. (2010). Sodium–hydrogen exchanger regulatory factor 1 (NHE1)–transduces signals that mediate dopamine inhibition of sodium-phosphate co-transport in mouse kidney. J. Biol. Chem. 285, 13434–13440.

Wenk, J., Brenniston, P., Wilsack, M., Pospisil, A., Bestova, K., Oberley, T. D., and Quinn, E. (1999). Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the A T -mediated synthesis of matrix-degrading metalloproteinase- 2. J. Biol. Chem. 274, 25920–25926.

Xia, X., Tsai, L., Jiang, W., Feng, W., Zhao, C. X., and Wang, S. (2012). PDK1 promotes the apoptosis of NF-kB. Biochem. Biophys. Res. Commun. 418, 362–369.

Silver, D. L., Wong, N., and Vingel, M. (2005). Identification of small-molecule-associated protein, DD96/MAP17, as a regulator of Akt and Nf-κb signalling in NIT-1 cells induced by TNF-alpha. J. Biol. Chem. 280, 10560–10567.

Conflict of Interest Statement: The author declares that research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Carnero MAP17, a ROS-dependent oncogene

Received: 24 May 2012; accepted: 16 August 2012; published online: 06 September 2012.

Citation: Carnero A. (2012) MAP17, a ROS-dependent oncogene. Front. Oncol. 2:112. doi: 10.3389/fonc.2012.00112

This article was submitted to Frontiers in Molecular and Cellular Oncology, a specialty of Frontiers in Oncology.

Copyright © 2012 Carnero. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and any copyright notices concerning any third-party graphics etc.

www.frontiersin.org

September 2012 | Volume 2 | Article 112 | 7