Does the reionization model influence the constraints on dark matter decay or annihilation?

Lu Chena and Ke Wangb

aSchool of Physics and Electronics, Shandong Normal University, Jinan 250014, China
bInstitute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Lanzhou 730000, China

E-mail: chenlu@sdnu.edu.cn, wangkey@lzu.edu.cn

Received July 7, 2021
Revised November 18, 2021
Accepted December 7, 2021
Published December 16, 2021

Abstract. If dark matter decay or annihilate, a large amount of energy and particles would be released into the cosmic plasma. Therefore, they could modify the thermal and ionization history of our universe, then leave footprints on the cosmic microwave background power spectra. In this paper, we take dark matter annihilation as an example and investigate whether different reionization models influence the constraints on dark matter annihilation. We consider the ionization history including both dark matter annihilation and star formation, then put constraints on DM annihilation. Combining the latest Planck data, BAO data, SNIa measurement, Q_{HII} constraints from observations of quasars, as well as the star formation rate density from UV and IR data, the optical depth is $\tau = 0.0571^{+0.0055}_{-0.0006}$ at 68\%C.L. and the upper limit of $\epsilon_0 f_d$ reads 2.7765×10^{-24} at 95\%C.L.. By comparison, we also constrain dark matter annihilation in the instantaneous reionization model from the same data combination except the Q_{HII} constraints and star formation rate density. We get $\tau = 0.0559^{+0.0069}_{-0.0076}$ at 68\%C.L. and the upper limit of $\epsilon_0 f_d$ is 2.8468×10^{-24} at 95\%C.L.. This indicates various reionization models have little influence ($\lesssim 2.5\%$) on constraining parameters of dark matter decay or annihilation.

Keywords: cosmological parameters from CMBR, dark matter simulations, reionization

ArXiv ePrint: 2106.05509
1 Introduction

The existence of dark matter (DM) has been confirmed by cosmological observations, for example, gravitational lensing of clusters and galaxies [1–4], the large-scale structure formation [5–9], rotation curves of galaxies [10–12], the cosmic microwave background (CMB) [13, 14] and so on [15–18]. However, its nature is still a puzzle after decades of researches and observations [19–23]. Many theories predict that DM particles can decay or annihilate into standard model particles (e.g. photons, protons, electrons and so on) which are well known in particle physics [24–28]. It is clear that the thermal and ionization history of our universe would be influenced because annihilating or decay DM release extra particles and energy into the cosmic plasma [29–32]. If it occurs during the epoch of recombination, DM decay or annihilation would lead to extra ionizations and excitations, as well as the increase of plasma temperature. As a result, recombination would be modified. Moreover, DM decay or annihilation occurred during the reionization epoch could be an extra ionized source besides star formation. Eventually, the whole process would leave footprints on the CMB power spectra and provide a method to constrain DM using CMB observations. Actually, the recombination redshift $z_\ast \sim 1089$ is constrained well from observational data in various recombination models [13, 14]. On the other hand, observations of the Gunn-Peterson effect in the spectra of high-redshift quasars reveal that the reionization epoch of our universe ended before redshift $z \sim 6$ [33–36]. But the history during $z \sim 6 - 1089$ is still under debate, especially the onset and process of reionization. Although previous works indicate that DM decay or annihilation contributed much less ionized photons than stars and galaxies during the epoch of reionization [37–42], that occurred during recombination has the ability to influence the reionization history by providing the initial conditions. The most popular reionization model is the instantaneous reionization model with a simple parameterization of hyperbolic tangent
function \text{tanh} \ (\text{named the TANH model hereafter}).\footnote{In the TANH model, the ionized fraction \(x_e = N_e/N_H \approx x_p + x_{\text{HeII}} \) is assumed to be [43]}

Planck Collaboration gave the reionization optical depth \(\tau = 0.054 \pm 0.007 \) at 68\%C.L. in 2018 (hereafter Planck 2018) [14]. An extended model named Poly-reion model [44] has also been well studied. The ionized fraction is parameterized by a polynomial function and higher values of \(\tau \) are acquired, which are similar with values obtained using the principle-component analysis (PCA) [45]. However, there is another much more direct approach to study the cosmic reionization history via star formation history (SFH). Since early stars and galaxies are considered as ionized sources of reionization [35, 36, 46–48], we can reconsider the reionization history using star formation rate (SFR) density from UV and IR data [35] at lower redshifts directly (named the SFH model hereafter). In this paper, we take DM annihilation into consideration and put constraints on parameters in the TANH and SFH reionization models from observational data.

This paper is organized as follows. In section 2, the ionization history of universe is reconsidered including DM annihilation and SFR rate. In subsection 2.1, we review the modified ionized fraction after taking DM annihilation into account. In subsection 2.2, the SFR density and its influence on the ionization of the intergalactic medium (IGM) during the epoch of reionization are presented. In subsection 2.3, we give the required equations for calculating the optical depth. Our constraints on DM annihilation are shown in section 3. In the SFH model, we make use of the data combination including CMB measurement from Planck 2018 [14], SFR density from UV data and IR data [35], \(Q_{\text{HI}} \) constraints from observations of quasars [49–51], baryon acoustic oscillation (BAO) data [52–54], as well as the measurement of Type Ia supernova [55]. In the TANH model, the same data combination excluding SFR density is used. Finally, a brief summary is included in section 4.

2 Ionization history

2.1 Effects of annihilating dark matter on recombination and reionization

In this subsection, we give a brief summary of the ionized fraction related to DM annihilation [32]. Considering self-annihilating DM particles \(\chi \) and their anti-particles \(\bar{\chi} \), the total energy rate released via annihilation per unit volume usually depends on the involved annihilation channels, mass of DM particles \(M_\chi = M_{\bar{\chi}} \) and their averaged cross-section \(<\sigma v> \). But only a fraction of them can be deposited into the cosmic plasma. The energy deposition efficiency \(f_d \) is related to redshift \(z \) and cosmological models. In brief, the total rate of energy deposited to the cosmic plasma per unit volume is given by

\[
\left. \frac{dE_d}{dt} \right|_{\chi\bar{\chi}} = \epsilon_0 \int_{0}^{\chi} N_H(z)(1 + z)^3 eV \cdot s^{-1},
\]

where \(y(z) = (1 + z)^{3/2}, \Delta y = \frac{3}{2}(1 + z_{\text{re}})^{1/2} \Delta z, \Delta z = 0.5. \) And the optical depth is

\[
\tau(z) = \int_{0}^{z} x_e N_H \sigma_T H^{-1}(z')(1 + z')^{-1} dz'.
\]
where \(N_H(z) \) is the comoving number density of hydrogen nuclei in our universe and \(\epsilon_0 \) is a dimensionless parameter given by

\[
\epsilon_0 = 1.5 \times 10^{-24} \left[\frac{M_\chi c^2}{100 \text{GeV}} \right]^{-1} \left[\Omega_\chi h^2 \right]^{2} \left[\frac{<\sigma v>}{3 \times 10^{-26} \text{cm}^3 \cdot \text{s}^{-1}} \right].
\] (2.2)

where \(c \) is the speed of light, \(\Omega_\chi h^2 \) is the physical density of DM today. In this paper, \(\epsilon_0 f_d \) is regarded as a constant roughly.

The energy absorbed by the cosmic plasma will heat, ionize and excite atoms. To measure the effects of annihilating DM on the ionization history, the evolution equations for the net ionization rate from ground states of neutral hydrogen and helium results from DM annihilation, as well as the plasma temperature evolution equation, are written as \[32, 38\]

\[
\begin{align*}
\frac{dx_p}{dt} \bigg|_{\chi\bar{\chi}} &= -\frac{1}{N_H[1 + f_{\text{He}}]} \frac{g_p(z) \, dE_{\text{d}}}{dt} \bigg|_{\chi\bar{\chi}}, \\
\frac{dx_{\text{HeII}}}{dt} \bigg|_{\chi\bar{\chi}} &= -\frac{f_{\text{He}}}{N_H[1 + f_{\text{He}}]} \frac{g_{\text{He}}(z) \, dE_{\text{d}}}{dt} \bigg|_{\chi\bar{\chi}}, \\
\frac{dT_m}{dt} \bigg|_{\chi\bar{\chi}} &= \frac{1}{N_H[1 + f_{\text{He}} + x_e(z)]} \frac{2g_h(z) \, dE_{\text{d}}}{dt} \bigg|_{\chi\bar{\chi}},
\end{align*}
\] (2.3)

where \(x_p \equiv N_p/N_H, \ x_{\text{HeII}} \equiv N_{\text{HeII}}/N_H \) are the ionized fraction from the ground states of hydrogen and helium related to DM annihilation respectively, \(f_{\text{He}} \equiv N_{\text{He}}/N_H \simeq 0.08 \) is the fraction of helium, \(E_{\text{Hion}} = 13.6 \text{ eV} \) and \(E_{\text{HeIion}} = 24.6 \text{ eV} \) are the ionization potentials of hydrogen and helium respectively, \(k_B \) is the Boltzmann constant. \(g_h, g_p \) and \(g_{\text{He}} \) represent the partial contributions of the total deposited energy going into heating the plasma, ionizations of hydrogen and helium. Here we use the following approximations,

\[
\begin{align*}
g_p &\approx \frac{1 - x_p(z)}{3}, \\
g_{\text{He}} &\approx \frac{1 - Z_{\text{HeII}}(z)}{3}, \\
g_h &\approx \frac{1}{3} \left(1 + \frac{2x_e(z)}{1 + f_{\text{He}}} \right),
\end{align*}
\] (2.4)

where \(Z_{\text{HeII}} = N_{\text{HeII}}/N_{\text{He}} \) is the fraction of singly ionized helium atoms. For simplification, \(T_m \) is assumed to be a constant during the epoch of reionization, which is different from the redshift-dependent temperature \(T_m \) during recombination. This is reasonable because the duration of recombination is much longer than reionization and the change of \(T_m \) during reionization epoch is small enough to be ignored. Notice that we have ignored the contribution of excitations because electrons are tend to stay at lower levels and it has a weak influence relative to ionizations \[28, 38, 56\].

2.2 Effects of star formation on reionization

On the other hand, the mainstream considers early star formation of galaxies most likely supplies the ionizing photons for the reionization of our universe \[35, 36\]. Naturally, SFR involves significant information on the onset and process of reionization. We use the following parameterization of cosmic SFR density \(\rho_{\text{SFR}} \) (in units of \(\text{M}_\odot \cdot \text{yr}^{-1} \cdot \text{Mpc}^{-3} \)) \[35, 57\],

\[
\rho_{\text{SFR}} = \frac{a_p(1 + z)^{b_p}}{1 + [(1 + z)/c_p]^{d_p}} - \frac{a_p(1 + 22)^{b_p}}{1 + [(1 + 22)/c_p]^{d_p}},
\] (2.5)
with \(a_p, b_p, c_p, \) and \(d_p \) are the four coefficients which ought to be determined by observational data. The second term results from our assumption that there’s no star formation before \(z \sim 22 \). We choose the value of 22 because there is almost no 21 cm absorption signal before \(z \sim 22 \) as the figure of best-fit 21 cm absorption profiles shows in [57]. This parameterization not only can provide the bump at about \(z \sim 2 \), but also behaves as \(\log \rho_{SFR} \rightarrow -\infty \) near the starting redshift of reionization. Therefore, \(\log \rho_{SFR}(z \gtrsim 10) \) performs a rapid downtrend which is consistent with figure 8 of [58]. If Lyman continuum photons released from star forming galaxies play a dominant role in the reionization, their influence on the ionized rate depends on the photon production rate \(\xi_{\text{ion}} \) and the escaping rate \(f_{\text{esc}} \) of galaxies besides \(\rho_{\text{SFR}} \), which can be written as the growth rate of number density for ionized photons,

\[
\dot{N}_{\text{ion}} = f_{\text{esc}} \xi_{\text{ion}} \rho_{\text{SFR}},
\]

with the overdot indicates the differentiation of cosmic time \(t \). Here, we adopt the fiducial values \(f_{\text{esc}} = 0.2 \) and \(\log_{10} \xi_{\text{ion}} = 53.14 \) \([\text{Lyc} \cdot \text{photons} \cdot \text{s}^{-1} \cdot \text{M}_{\odot}^{-1} \cdot \text{yr}]\).

2.3 Thomson optical depth

The Thomson optical depth is given by

\[
\tau(z) = c\sigma_T \int_0^z (1 + f_{\text{He}})Q_{\text{HII}}(z')N_H(z')(1 + z')^{-1}H^{-1}(z')dz',
\]

where \(c \) is the speed of light, \(\sigma_T \) is the Thomson scattering cross section, \(H(z) \) is the redshift-dependent Hubble parameter. And \(Q_{\text{HII}} \) indicates the ionized fraction (equivalent to \(x_p \) physically) which can be calculated by evolving the differential equation

\[
\dot{Q}_{\text{HII}} = - \frac{Q_{\text{HII}}}{t_{\text{rec}}} + \frac{dx_p}{dt} \bigg|_{\chi \chi} + \frac{\dot{N}_{\text{ion}}}{N_H},
\]

Here \(t_{\text{rec}} \) is the recombination time as follows [49]

\[
t_{\text{rec}} = 0.88 \text{ Gyr} \left(\frac{1 + z}{7} \right)^{-3} \left(\frac{T_0}{2 \times 10^4 \text{K}} \right)^{-0.7} \left(\frac{C_{\text{HII}}}{3} \right)^{-1},
\]

where \(T_0 \sim 2 \times 10^4 \text{ K} \) is the temperature of the ionizing hydrogen gas and \(C_{\text{HII}} \sim 3 \) is the clumping factor of ionized hydrogen. The second term of eq. 2.8 represents the effect of DM annihilation and the last term represents the effect of SFR. Note we have ignored the contribution of He ionization in the second equation of eq. 2.3. The initial value of \(Q_{\text{HII}} \) at the start of reionization depends on DM annihilation occurred during the recombination epoch and that is why we can constrain \(\epsilon_0 f_d \).

3 Results

In this section, we use the observational data to reconstruct the ionization history of our universe and put constraints on DM annihilation. CAMB [59] and CosmoRec [60] are used to calculate the optical depth and CMB power spectra. Then the Markov Chain Monte Carlo sampler — CosmoMC [61, 62] is applied to constrain the free parameters using the maximum likelihood determination. In the SFH model, we refer to the data combination of Planck 2018 TT,TE,EE+lowE+lensing [14], baryon acoustic oscillation (BAO) data at
redshifts $z = 0.106, 0.15, 0.32, 0.57, 1.52$ (named 6dFGS [52], MGS [53], DR12 [54] respectively), the latest SNIa measurement (named Pantheon) [55], Q_{HI} constraints between $5.0 \leq z \leq 8.0$ from observations of Gunn-Peterson optical depth and prevalence of Ly-α emission in galaxies [49–51], as well as the SFR density from UV and IR data [35]. Notice that the SFR data used here extend to $z \sim 8$. Actually, [49, 58] provide UV data extending to $z \sim 10$, but the uncertainties of the data are large between $8 < z < 10$. So our choice would not impact the results significantly. There are ten free parameters in this model, $\{\Omega_b h^2, \Omega_c h^2, 100\theta_{\text{MC}}, \ln (10^{10} A_s), n_s, 10^{-23} \epsilon_0 f_d, a_p, b_p, c_p, d_p\}$. Here five of them are parameters from the ΛCDM model: $\Omega_b h^2$ and $\Omega_c h^2$ are the density of baryons and cold dark matter today respectively, $100\theta_{\text{MC}}$ is 100 times the ratio of angular diameter distance to the large scale structure sound horizon, A_s is the amplitude of the power spectrum of primordial curvature perturbations, and n_s is the scalar spectrum index. Besides, $\epsilon_0 f_d$ and a_p, b_p, c_p, d_p are parameters of DM annihilation and SFR density as described in section 2. For comparison, the TANH model with previous data combination except the SFR density data has been run, too. In this model, we have seven free parameters $\{\Omega_b h^2, \Omega_c h^2, 100\theta_{\text{MC}}, \ln (10^{10} A_s), n_s, \tau, 10^{-23} \epsilon_0 f_d\}$. Moreover, we have to mention that the optical depth τ is a free parameter in the TANH model, but it’s a derived parameter in the SFH model because SFR density data are used to put constraints on the reionization epoch directly, replacing the parameterization in the TANH model.

Our results are summarized in table 1. We have listed the 68% limits of the free parameters and necessary derived parameters in these two models. The upper limit of $\epsilon_0 f_d$ is 1.3309×10^{-24} at 68% C.L. and 2.7765×10^{-24} at 95% C.L. in the SFH model, while it reads 1.4253×10^{-24} at 68% C.L. and 2.8468×10^{-24} at 95% C.L. in the TANH model. The constraint on $\epsilon_0 f_d$ improves 6.6% at 68% C.L. and 2.5% at 95% C.L. The likelihood is shown vividly in figure 1. Our results reveal modifying reionization epoch has little influence on constraining DM annihilation. In the SFH model, the optical depth τ is $0.0571^{+0.0005}_{-0.0006}$ at 68% C.L.. It is in consistent with the value of $0.0559^{+0.0069}_{-0.0076}$ in the TANH model, as well as 0.054 ± 0.007 in the ΛCDM model released by Planck Collaboration in 2018 [14]. The mean values of τ do not vary almostly, leading to similar constraints on $\epsilon_0 f_d$. This is because they are related directly as shown in section 2. However, the error bar of τ is reduced by around an order of magnitude in the SFH model. Notice previous reionization analysis including both CMB and SFR data gave uncertainties of τ about $\sigma_\tau \sim 0.001 – 0.002$ [63, 64]. Our error bars are about half smaller on account of the Q_{HI} constraints of Gunn-Peterson optical depth between $5.03 < z < 5.85$, which provide strict restrictions of Q_{HI} with uncertainties of order $\sigma \sim 0.00001 – 0.000005$ [49, 50]. Besides, the ionized fraction $x_{\text{i}}(z)$ in these two models are illustrated in figure 2. It shows that the reionization started at about $z \sim 20$ in the SFH model, which is higher than the TANH model.

4 Summary and discussion

In this paper, we investigate whether the reionization model influences constraining parameters of DM annihilation or decay. Take DM annihilation as an example. Energy released by annihilating DM would be absorbed by the cosmic plasma, resulting extra heating, ionization and excitation of gas. Therefore, both the recombination and reionization history of our universe are influenced, leaving footprints on the CMB power spectra. On the other hand, early star forming galaxies are thought to be sources of reionization epoch. This provides a way to reconstruct the ionization history with the SFR density directly. Combining the
SFH	TANH
$\Omega_b h^2$ | 0.02240 ± 0.00013 | $0.02245^{+0.00014}_{-0.00013}$
$\Omega_c h^2$ | 0.1192 ± 0.0008 | 0.1193 ± 0.0009
$100\theta_{MC}$ | $1.04094^{+0.00030}_{-0.00029}$ | $1.04095^{+0.00030}_{-0.00029}$
$\ln(10^{10} A_s)$ | $3.0529^{+0.0063}_{-0.0071}$ | 3.0509 ± 0.0144
n_s | 0.9675 ± 0.0036 | 0.9677 ± 0.0037
$10^{-23} \epsilon_0 f_d (95\% \text{ C.L.})$ | < 0.27765 | < 0.28468
$a_p [M_\odot \cdot \text{yr}^{-1} \cdot \text{Mpc}^{-3}]$ | $0.01769^{+0.00068}_{-0.00069}$ | —
b_p | 2.967 ± 0.118 | —
c_p | $2.555^{+0.087}_{-0.100}$ | —
d_p | $5.131^{+0.096}_{-0.095}$ | —
τ | $0.0571^{+0.0005}_{-0.0006}$ | $0.0559^{+0.0069}_{-0.0076}$
$10^{-4} Q_{\text{HII}}(z = 22)$ | $2.666^{+0.220}_{-0.511}$ | —
$H_0 [\text{km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1}]$ | $67.66^{+0.39}_{-0.38}$ | 67.69 ± 0.42

Table 1. The 68\% limits for the cosmological parameters in the SFH and TANH model. Note we give the upper limits of $10^{-23} \epsilon_0 f_d$ at 95\% C.L.

Figure 1. The likelihood of $10^{-23} \epsilon_0 f_d$ in the SFH and TANH model. The blue solid curve indicates the SFH model and the red dashed curve indicates the TANH model.

measurement of Planck 2018, BAO data, PANTHEON samples, Q_{HII} constraints, as well as the SFR density from UV and IR data, we put constraints on the ionization history with DM annihilation and star formation by performing a maximum likelihood determination with CAMB+CosmoMC packages. The upper limits of $\epsilon_0 f_d$ show 1.3309×10^{-24} at 68\% C.L. and 2.7765×10^{-24} at 95\% C.L. in this model. By comparison, we also research the instantaneous reionization model including DM annihilation from the same data combination except SFR density data and Q_{HII} constraints. We get similar constraints and $\epsilon_0 f_d$ reads 1.4253×10^{-24}
The evolution of ionized fraction $x_e(z)$ in the SFH and TANH model. The blue solid curve illustrate the SFH model and the red dashed curve corresponds to the TANH model. Note that the values of $\epsilon_0 f_d$ are set to the upper limits at 95\%C.L. and we set the other necessary parameters to their mean values in table 1.

at 68\% C.L. and 2.8468×10^{-24} at 95\% C.L.. So the reionization models have little influence ($\lesssim 2.5\%$) on constraining DM annihilation. Similarly, DM decay has analogous influence on ionization history of our universe and the decay rate plays a similar role as $\epsilon_0 f_d$. Therefore, we arrive at a conclusion that various reionization models have little effects on DM decay or annihilation. Besides, the optical depth is $\tau = 0.0571^{+0.0005}_{-0.0006}$ at 68\% in the SFH model, improving significantly than $\tau = 0.0559^{+0.0069}_{-0.0076}$ in the TANH model.

In our models, we have made some simplifications. We use the typical values of parameters, such as the clumping factor of ionized hydrogen $C_{\text{HI}} \sim 3$, the escaping rate $f_{\text{esc}} = 0.2$ and so on. Actually, other comparable values or redshift-varying functions of them are also acceptable [37, 47, 65]. However, we do not think these comparable values would change our conclusion significantly. More discussion about complicated models can be found in [37, 47, 48, 64]. We also assume $\epsilon_0 f_d$ to be a constant though it varies with redshift, cosmological models, as well as DM annihilation channels. The plasma temperature evolution and excitation during the epoch of reionization are also small enough to be ignored. Moreover, DM annihilation in halos may also influence the reionization history of our universe [38, 39]. But we have ignored the enhancement of halos in this paper.

Acknowledgments

We acknowledge the use of HPC Cluster of Tianhe II in National Supercomputing Center in Guangzhou. Ke Wang is supported by grants from NSFC (grant No. 12005084) and grants from the China Manned Space Project with NO. CMS-CSST-2021-B01. Lu Chen is supported by grants from NSFC (grant No. 12105164). This work has also received funding from project ZR2021QA021 supported by Shandong Provincial Natural Science Foundation.
References

[1] H. Hoekstra, H. Yee and M. Gladders, Current status of weak gravitational lensing, New Astron. Rev. 46 (2002) 767 [astro-ph/0205205] [nSPIRE].

[2] L.V.E. Koopmans and T. Treu, The structure and dynamics of luminous and dark matter in the early-type lens galaxy of 0047 − 281 at z = 0.485, Astrophys. J. 583 (2003) 606 [astro-ph/0205281] [nSPIRE].

[3] R.B. Metcalf, L.A. Moustakas, A.J. Bunker and I.R. Parry, Spectroscopic gravitational lensing and limits on the dark matter substructure in Q2237 + 0305, Astrophys. J. 607 (2004) 43 [astro-ph/0309738] [nSPIRE].

[4] L.A. Moustakas and R.B. Metcalf, Detecting dark matter substructure spectroscopically in strong gravitational lenses, Mon. Not. Roy. Astron. Soc. 339 (2003) 607 [astro-ph/0206176] [nSPIRE].

[5] M. Davis, G. Efstathiou, C.S. Frenk and S.D.M. White, The evolution of large scale structure in a universe dominated by cold dark matter, Astrophys. J. 292 (1985) 371 [nSPIRE].

[6] J.F. Navarro, C.S. Frenk and S.D.M. White, The structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [nSPIRE].

[7] J.F. Navarro et al., The inner structure of ΛCDM halos 3: universality and asymptotic slopes, Mon. Not. Roy. Astron. Soc. 349 (2004) 1039 [astro-ph/0311231] [nSPIRE].

[8] G.R. Blumenthal, S.M. Faber, J.R. Primack and M.J. Rees, Formation of galaxies and large scale structure with cold dark matter, Nature 311 (1984) 517 [nSPIRE].

[9] M. Davis, F.J. Summers and D. Schlegel, Large scale structure in a universe with mixed hot and cold dark matter, Nature 359 (1992) 393 [nSPIRE].

[10] K.G. Begeman, A.H. Broeils and R.H. Sanders, Extended rotation curves of spiral galaxies: dark haloes and modified dynamics, Mon. Not. Roy. Astron. Soc. 249 (1991) 523 [nSPIRE].

[11] W.J.G. de Blok, S.S. McGaugh, A. Bosma and V.C. Rubin, Mass density profiles of LSB galaxies, Astrophys. J. Lett. 552 (2001) L23 [astro-ph/0103102] [nSPIRE].

[12] F.C. van den Bosch and R.A. Swaters, Dwarf galaxy rotation curves and the core problem of dark matter halos, Mon. Not. Roy. Astron. Soc. 325 (2001) 1017 [astro-ph/0006048] [nSPIRE].

[13] PLANCK collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [nSPIRE].

[14] PLANCK collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [nSPIRE].

[15] G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [nSPIRE].

[16] G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [nSPIRE].

[17] D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. Lett. 648 (2006) L109 [astro-ph/0608407] [nSPIRE].

[18] A.H.G. Peter, Dark matter: a brief review, arXiv:1201.3942 [nSPIRE].

[19] J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [nSPIRE].

[20] K. Freese, M. Lisanti and C. Savage, Colloquium: annual modulation of dark matter, Rev. Mod. Phys. 85 (2013) 1561 [arXiv:1209.3339] [nSPIRE].
J.M. Gaskins, *A review of indirect searches for particle dark matter*, *Contemp. Phys.* 57 (2016) 496 [arXiv:1604.00014] [INSPIRE].

F. Kahlhoefer, *Review of LHC dark matter searches*, *Int. J. Mod. Phys. A* 32 (2017) 1730006 [arXiv:1702.02430] [INSPIRE].

M. Cirelli, *Indirect searches for dark matter: a status review*, *Pramana* 79 (2012) 1021 [arXiv:1202.1454] [INSPIRE].

A. Geringer-Sameth, S.M. Koushiappas and M. Walker, *Dwarf galaxy annihilation and decay emission profiles for dark matter experiments*, *Astrophys. J.* 801 (2015) 74 [arXiv:1408.0002] [INSPIRE].

G. Steigman, B. Dasgupta and J.F. Beacom, *Precise relic WIMP abundance and its impact on searches for dark matter annihilation*, *Phys. Rev. D* 86 (2012) 023506 [arXiv:1204.3622] [INSPIRE].

P. Gondolo and J. Silk, *Dark matter annihilation at the galactic center*, *Phys. Rev. Lett.* 83 (1999) 1719 [astro-ph/9906391] [INSPIRE].

S. Galli, F. Iocco, G. Bertone and A. Melchiorri, *CMB constraints on dark matter models with large annihilation cross-section*, *Phys. Rev. D* 80 (2009) 023505 [arXiv:0905.0003] [INSPIRE].

S. Galli, F. Iocco, G. Bertone and A. Melchiorri, *Updated CMB constraints on dark matter annihilation cross-sections*, *Phys. Rev. D* 84 (2011) 027302 [arXiv:1106.1528] [INSPIRE].

L. Zhang, X.-L. Chen, Y.-A. Lei and Z.-G. Si, *The impacts of dark matter particle annihilation on recombination and the anisotropies of the cosmic microwave background*, *Phys. Rev. D* 74 (2006) 103519 [astro-ph/0603425] [INSPIRE].

C. Dvorkin, K. Blum and M. Zaldarriaga, *Perturbed recombination from dark matter annihilation*, *Phys. Rev. D* 87 (2013) 103522 [arXiv:1302.4753] [INSPIRE].

C. Weniger, P.D. Serpico, F. Iocco and G. Bertone, *CMB bounds on dark matter annihilation: nucleon energy-losses after recombination*, *Phys. Rev. D* 87 (2013) 123008 [arXiv:1303.0942] [INSPIRE].

J. Chluba, *Could the cosmological recombination spectrum help us understand annihilating dark matter?*, *Mon. Not. Roy. Astron. Soc.* 402 (2010) 1195 [arXiv:0910.3663] [INSPIRE].

C. Gruppioni, F. Pozzi, G. Zamorani and C. Vignali, *Modelling galaxy and AGN evolution in the IR: black hole accretion versus star-formation activity*, *Mon. Not. Roy. Astron. Soc.* 416 (2011) 70 [arXiv:1105.1955] [INSPIRE].

R. Chornock et al., *GRB 130606A as a probe of the intergalactic medium and the interstellar medium in a star-forming galaxy in the first Gyr after the big bang*, *Astrophys. J.* 774 (2013) 26 [arXiv:1306.3949] [INSPIRE].

P. Madau and M. Dickinson, *Cosmic star formation history*, *Ann. Rev. Astron. Astrophys.* 52 (2014) 415 [arXiv:1403.0007] [INSPIRE].

B.E. Robertson, R.S. Ellis, S.R. Furlanetto and J.S. Dunlop, *Cosmic reionization and early star-forming galaxies: a joint analysis of new constraints from Planck and the Hubble space telescope*, *Astrophys. J. Lett.* 802 (2015) L19 [arXiv:1502.02024] [INSPIRE].

I.P. Carucci and P.-S. Corasaniti, *Cosmic reionization history and dark matter scenarios*, *Phys. Rev. D* 99 (2019) 023518 [arXiv:1811.07904] [INSPIRE].

L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz and A.C. Vincent, *Constraints on dark matter annihilation from CMB observations before Planck*, *JCAP* 07 (2013) 046 [arXiv:1303.5094] [INSPIRE].

H. Liu, T.R. Slatyer and J. Zavala, *Contributions to cosmic reionization from dark matter annihilation and decay*, *Phys. Rev. D* 94 (2016) 063507 [arXiv:1604.02457] [INSPIRE].
[40] M. Mapelli, A. Ferrara and E. Pierpaoli, Impact of dark matter decays and annihilations on reionization, Mon. Not. Roy. Astron. Soc. 369 (2006) 1719 [astro-ph/0603237] [inSPIRE].

[41] D.K. Hazra, D. Paoletti, F. Finelli and G.F. Smoot, Reionization in the dark and the light from cosmic microwave background, JCAP 09 (2018) 016 [arXiv:1807.05435] [inSPIRE].

[42] D. Paoletti, D.K. Hazra, F. Finelli and G.F. Smoot, Extended reionization in models beyond ΛCDM with Planck 2018 data, JCAP 09 (2020) 005 [arXiv:2005.12222] [inSPIRE].

[43] A. Lewis, Cosmological parameters from WMAP 5-year temperature maps, Phys. Rev. D 78 (2008) 023002 [arXiv:0804.3865] [inSPIRE].

[44] D.K. Hazra and G.F. Smoot, Witnessing the reionization history using cosmic microwave background observation from Planck, JCAP 11 (2017) 028 [arXiv:1708.04913] [inSPIRE].

[45] C.H. Heinrich, V. Miranda and W. Hu, Complete reionization constraints from Planck 2015 polarization, Phys. Rev. D 95 (2017) 023513 [arXiv:1609.04788] [inSPIRE].

[46] Y. Khusanova et al., UV and Lyα luminosity functions of galaxies and star formation rate density at the end of HI reionization from the VIMOS UltraDeep Survey (VUDS), Astron. Astrophys. 634 (2020) A07 [arXiv:1903.01884] [inSPIRE].

[47] B.E. Robertson, R.S. Ellis, J.S. Dunlop, R.J. McLure and D.P. Stark, Early star-forming galaxies and the reionization of the universe, Nature 468 (2010) 49 [arXiv:1011.0727] [inSPIRE].

[48] B.E. Robertson et al., New constraints on cosmic reionization from the 2012 Hubble ultra deep field campaign, Astrophys. J. 768 (2013) 71 [arXiv:1301.1228] [inSPIRE].

[49] R.J. Bouwens et al., Reionization after Planck: the derived growth of the cosmic ionizing emissivity now matches the growth of the galaxy UV luminosity density, Astrophys. J. 811 (2015) 140 [arXiv:1503.08228] [inSPIRE].

[50] X.-H. Fan et al., Constraining the evolution of the ionizing background and the epoch of reionization with z ~ 6 quasars. 2. A sample of 19 quasars, Astron. J. 132 (2006) 117 [astro-ph/0512082] [inSPIRE].

[51] M.A. Schenker, R.S. Ellis, N.P. Konidaris and D.P. Stark, Line emitting galaxies beyond a redshift of 7: an improved method for estimating the evolving neutrality of the intergalactic medium, Astrophys. J. 795 (2014) 20 [arXiv:1404.4632] [inSPIRE].

[52] F. Beutler et al., The 6dF galaxy survey: baryon acoustic oscillations and the local Hubble constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017 [arXiv:1106.3366] [inSPIRE].

[53] A.J. Ross, L. Samushia, C. Howlett, W.J. Percival, A. Burden and M. Manera, The clustering of the SDSS DR7 main galaxy sample — I. A 4 per cent distance measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449 (2015) 835 [arXiv:1409.3242] [inSPIRE].

[54] BOSS collaboration, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470 (2017) 2617 [arXiv:1607.03156] [inSPIRE].

[55] PAN-STARRS1 collaboration, The complete light-curve sample of spectroscopically confirmed SNe Ia from pan-STARRS1 and cosmological constraints from the combined pantheon sample, Astrophys. J. 859 (2018) 101 [arXiv:1710.00845] [inSPIRE].

[56] G. Hutsi, J. Chluba, A. Hektor and M. Raidal, WMAP7 and future CMB constraints on annihilating dark matter: implications on GeV-scale WIMPs, Astron. Astrophys. 535 (2011) A26 [arXiv:1103.2766] [inSPIRE].

[57] J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen and N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555 (2018) 67 [arXiv:1810.05912] [inSPIRE].
[58] M. Ishigaki, R. Kawamata, M. Ouchi, M. Oguri, K. Shimasaku and Y. Ono, Full-data results of Hubble frontier fields: UV luminosity functions at $z \sim 6-10$ and a consistent picture of cosmic reionization, Astrophys. J. 854 (2018) 73.

[59] A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177] [inSPIRE].

[60] J.R. Shaw and J. Chluba, Precise cosmological parameter estimation using CosmoRec, Mon. Not. Roy. Astron. Soc. 415 (2011) 1343 [arXiv:1102.3683] [inSPIRE].

[61] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: a Monte Carlo approach, Phys. Rev. D 66 (2002) 103511 [astro-ph/0205436] [inSPIRE].

[62] A. Lewis, Efficient sampling of fast and slow cosmological parameters, Phys. Rev. D 87 (2013) 103529 [arXiv:1304.4473] [inSPIRE].

[63] A. Krishak and D.K. Hazra, Gaussian process reconstruction of reionization history, Astrophys. J. 922 (2021) 95 [arXiv:2106.01728] [inSPIRE].

[64] A. Gorce, M. Douspis, N. Aghanim and M. Langer, Observational constraints on key-parameters of cosmic reionisation history, Astron. Astrophys. 616 (2018) A113 [arXiv:1710.04152] [inSPIRE].

[65] M. Ouchi et al., Large area survey for $z = 7$ galaxies in SDF and GOODS-N: implications for galaxy formation and cosmic reionization, Astrophys. J. 706 (2009) 1136 [arXiv:0908.3191] [inSPIRE].