Comparison of long-term outcome of patients with ST-segment elevation myocardial infarction between pre-COVID-19 and COVID-19 era

Abstract

Aims: To compare major cardiovascular and cerebrovascular events (MACCE) rates between patients in the pre-COVID-19 era and COVID-19 era, and to assess the impact of the presence of COVID-19 (+) on long-term MACCE in ST-segment elevation myocardial infarction (STEMI) in Turkey.

Methods: Using the TURSER study (TURKISH ST-segment elevation myocardial infarction registry) data, the current study included 1748 STEMI patients from 15 centres in Turkey. Patients were stratified into COVID-19 era (March 11st–May 15st, 2020; n = 723) or pre-COVID-19 era (March 11st–May 15st, 2019; n = 1025) cohorts. Long-term MACCE rates were compared between groups. In addition, the effect of COVID-19 positivity on long-term outcomes was evaluated. The primary outcome was the occurrence of MACCE at long-term follow-up, and the secondary outcome was hospitalization with heart failure.

Results: The MACCE and hospitalization with heart failure rates between pre-COVID-19 era and COVID-19 era were 23% versus 22% (p = .841), and 12% versus 8% (p = .002), respectively. In the COVID-19 era, the rates of MACCE and hospitalization with heart failure COVID-19-positive versus COVID-19-negative patients were 40% versus 20%, (p < .001), and 43% versus 11% (p < .001), respectively.

Conclusion: There was no difference between the pre-COVID-19 era and the COVID-19 era in terms of MACCE in STEMI patients in Turkey. In the COVID-19 era, STEMI patients positive for COVID-19 had a higher rate of MACCE and heart failure hospitalization at the long-term follow-up.

1 | INTRODUCTION

The COVID-19 pandemic, caused by the new SARS-CoV-2, has killed more than 6 million people worldwide as of May 2022. ST-segment elevation myocardial infarction (STEMI) admissions decrease significantly due to the COVID-19 pandemic. Also, symptom to first medical contact time has been prolonged during this period. In addition to all this, lower left ventricular ejection fraction (LVEF) values, higher troponin levels and high intracoronary thrombus burden were commonly seen in these patients in the COVID-19 era compared with the pre-COVID-19 era.

Although there was no difference between the pre-COVID-19 era and the COVID-19 era regarding in-hospital mortality, COVID-19 (+) STEMI patients had a higher risk of mortality than those without. There are limited data with respect to the long-term outcomes of these patients. In the presented study, we aimed to assess the effects of both COVID-19 era and the presence of COVID-19 (+) on long-term major cardiovascular and cerebrovascular events (MACCE) in STEMI patients in Turkey.

2 | METHODS

2.1 | Study design and patient population

We used data from the TURKISH ST-segment elevation myocardial infarction registry (TURSER), which is a multicenter, retrospective, observational study that enrolled 1788 patients between 18 and 90 years of age, who were diagnosed with STEMI in 15 centres. Forty patients who were lost, or whose data could not be reached in follow-up, were not included in this study. The final study population consisted of 1748 STEMI patients (Figure 1). The patients were divided into two groups: COVID-19 era (March 11st–May 15st, 2020; n = 723) and pre-COVID-19 era (March 11st–May 15st, 2019; n = 1025).
era group (March 11st– May 15st, 2019; \(n = 1025 \)). Moreover, the patients in COVID-19 era were grouped as COVID-19 positive (\(n = 62 \)) or negative (\(n = 661 \)). STEMI was defined according to the fourth universal definition of myocardial infarction.\(^7\) Evidence-based optimal medical therapy and coronary revascularization were carried out according to current guidelines and recommendations.\(^8\) All interventional procedures and strategies such as balloon angioplasty, type of stent, aspiration thrombectomy and the usage of intra-aortic balloon pumps were left to the discretion of interventional cardiologists. The thrombolysis in myocardial infarction (TIMI) thrombus grade (TG) was used for the thrombus burden classification.\(^9\) Patients with Grade 5 thrombus burden were reclassified to a thrombus category after flow achievement either with a guidewire or with a small (1.5 mm) balloon.\(^10\) Procedural success was defined as post-PCI TIMI-3 flow. The left ventricle ejection fraction (LVEF) was calculated after measuring the end-diastolic and end-systolic left ventricle (LV) volumes in the apical four-chamber and two-chamber views using the modified Simpson’s method. Valve disease was considered as moderate or severe regurgitation in mitral or aortic valves, or severe stenosis for mitral or aortic valves.

The bleeding classification was performed according to the thrombolysis in myocardial infarction (TIMI) bleeding score. Major haemorrhage was defined as 5 gr/dl haemogram, a 15% or greater decline in haematocrit or intracranial haemorrhage. Minor bleeding was defined as 3–5 gr/dl Hb, a 10%–15% gr/dl haematocrit decline or gastrointestinal bleeding. Cardiogenic shock was defined as systolic blood pressure \(<90\text{ mmHg}\) for at least 30 min with evidence of poor tissue perfusion after correction of nonmyocardial factors.

After the STEMI diagnosis, the patients with no signs of COVID-19 infection were transferred to the routine cardiac catheterization laboratory; however, the patients with symptoms indicating possible COVID-19 were transferred to an allocated cardiac catheterization laboratory. The COVID-19 diagnosis was made by detecting SARS-CoV-2 on a nasal/pharyngeal swab\(^11\) or by evaluating the symptoms plus radiological imaging.\(^12\) All of these patients were treated as COVID-19 patients in these centres. The study was approved by the ethics committee of the Dokuz Eylul University Faculty of Medicine (2020/10-35) and the Ministry of Health (2020-05-02T23_17_42).

2.2 | Data collection

The patient’s demographic, clinical, laboratory, interventional and long-term outcomes data from each centre were collected by the principal investigator of that centre. Also, the national death registry system data were used to determine long-term mortality. Cineangiographic images of patients were retrospectively analysed by two interventional

1.788 ST-segment elevation myocardial infarction (STEMI) patients from TURSER study (TURKISH ST-segment elevation myocardial infarction registry) were included in this study

40 patients who were lost, or whose data could not be reached in follow-up

The final study population consisted of 1748 STEMI patients

- 1025 patients in the pre-COVID-19 era
- 723 patients in the COVID-19 era, 661 COVID-19 negative patients and 62 COVID-19 positive patients

FIGURE 1 Flow diagram of patient recruitment
cardiologists blinded to the patient’s COVID-19 status. Data were finally checked for missing or contradictory entries.

2.3 Study outcomes

The primary end-point was the occurrence of MACCE, which included all-cause mortality, hospitalization with heart failure, myocardial reinfarction defined as STEMI or non-ST-segment elevation myocardial infarction, target vessel revascularization defined as any repeat revascularization in the epicardial vessel of the prior stent (main branch or side branches) and cerebrovascular events. The secondary end-point of this study was hospitalization with heart failure in the follow-up.

TABLE 1 Baseline characteristics of the study population

Variables	Pre-COVID-19 era (n = 1025)	COVID-19 era (n = 723)	p-Value
Age, years	61.9 ± 12.4	60.6 ± 12.4	.040
Symptoms at admission n (%)			
Chest pain	767 (75)	488 (68)	.005
Dyspnoea	194 (19)	165 (23)	
Arrest	10 (1)	9 (1)	
Other	54 (5)	61 (8)	
Female gender (%)	257 (25)	166 (23)	.310
Hypertension, n (%)	388 (38)	304 (42)	.077
Diabetes mellitus, n (%)	302 (30)	207 (29)	.461
Previous AF, n (%)	43 (4)	39 (5)	.243
Smoking, n (%)	315 (31)	239 (33)	.304
Asthm or COPD, n (%)	105 (10)	71 (10)	.772
Previous CAD, n (%)	125 (12)	93 (13)	.677
COVID-19-positive n (%)	-	44 (7)	
Echocardiographic findings			
LVEF (%)	47.8 ± 9.1	46.7 ± 8.9	.015
LVWM abnormalities n (%)	645 (63)	484 (67)	.084
Valve disease n (%)	104 (10)	66 (9)	.630
Symptom-to-FMC, minutes (median [IQR])	100 (60–180)	120 (75–240)	<.001
Symptom-to- (FMC) time			
<2 h, n (%)	542 (53)	312 (43)	<.001
2–6 h, n (%)	209 (20)	143 (20)	
6–12 h, n (%)	232 (23)	203 (28)	
12–24 h, n (%)	19 (2)	26 (4)	
More than 24 h, n (%)	23 (2)	39 (5)	
Laboratory findings			
WBC (×10³/μl)	11.9 ± 3.9	12.1 ± 4.6	.205
Haemoglobin (mg/dl)	13.8 ± 2.1	13.9 ± 2.1	.129
Creatinine³ (mg/dl)	0.90 (0.74–1.03)	0.90 (0.76–1.10)	.382
Platelet (×10⁹/L)	256.5 ± 75.3	251.8 ± 73.3	.185
C-reactive protein⁴ (mg/L)	19.2 (2.0–47.6)	23.6 (3.0–53.8)	.128
Troponin⁴ (ng/L)	6259 (415–19,176)	9739 (869–24,810)	.099

Abbreviations: AF, atrial fibrillation; CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease; FMC, first medical contact; IQR, interquartile range; LVEF, left ventricular ejection fraction; LVWM, left ventricular wall motion abnormalities; WBC, white blood cell.
³Comparison was made using Mann–Whitney U test at p < .05, and these values were described by median with interquartile range (25th and 75th percentile).
Variables	Pre-COVID-19 era (n = 1025)	COVID-19 era (n = 723)	p-Value
Coronary intervention n (%)	1024 (100)	719 (99)	.079
Infarct-related artery n (%)			
LMCA	15 (2)	17 (2)	.175
LAD	388 (38)	303 (42)	
CX	195 (19)	133 (19)	
RCA	334 (33)	219 (31)	
Other	83 (8)	42 (6)	
Noncritical CAD	9 (1)	5 (1)	
Multi-vessel disease n (%)	412 (40)	292 (41)	.874
Glycoprotein IIb/IIIa inhibitors n (%)	234 (23)	161 (22)	.766
Thrombus aspiration device n (%)	60 (6)	55 (8)	.148
IABP n (%)	29 (3)	12 (2)	.112
Baseline TIMI flow n (%)			
TIMI flow 0–1	932 (91)	642 (89)	.231
Baseline thrombus grade >3	685 (67)	491 (68)	.541
Modified thrombus grade >3	415 (41)	287 (40)	.673
Procedural success:			
Post-PCI TIMI 3 flow n (%)	878 (83)	594 (82)	.319
Multi-vessel PCI during the index procedure n (%)	96 (9)	70 (10)	.824
Complete revascularization during the index hospitalization n (%)	187 (18)	126 (17)	.661
Previous medication			
ACE-I/ARB, n (%)	251 (25)	199 (28)	.153
Statin n (%)	175 (17)	112 (16)	.379
In-hospital or discharge ASA + P2Y12Y inhibitors			
ASA plus Clopidogrel n (%)	754 (73)	498 (69)	.133
ASA plus Ticagrelor n (%)	176 (17)	146 (20)	
ASA plus Prasugrel n (%)	94 (9)	75 (10)	
Pharmaco-invazive treatment n (%)	9 (1)	4 (1)	.438
Patients treated with medical treatment n (%)	4 (0)	7 (1)	.132

Abbreviations: ACE-I/ARB, angiotensin-converting enzyme inhibitors/ angiotensin receptor blocker; ASA, acetylsalicylic acid; CX, circumflex artery; IABP, intra-aortic balloon pump; IQR, interquartile range; LAD, left descending artery; LMCA, left main coronary artery; PCI, percutaneous coronary intervention; RCA, right coronary artery.

Variables	Pre-COVID-19 era (n = 1025)	COVID-19 era (n = 723)	p-Value
In-hospital outcomes			
Mortality n (%)	71(7)	61 (8)	.239
Shock n (%)	91(9)	62 (9)	.825
Stent thrombosis n (%)	15 (2)	12 (2)	.742
Major bleeding n (%)	0 (0)	3 (0.4)	.039
Minor bleeding n (%)	29 (3)	16 (2)	.426
Long-term outcomes			
MACCE n (%)	231(23)	160 (22)	.841
Mortality n (%)	74 (8)	40 (6)	.186
Myocardial reinfarction n (%)	67 (7)	39 (6)	.329
New revascularization n (%)	88 (9)	62 (9)	.998
Stroke/TIA, n (%)	22 (2)	8 (1)	.100
Hospitalization with HF, n (%)	78 (8)	87 (12)	.002

Abbreviations: HF, heart failure; MACCE, major cardiovascular and cerebrovascular events; TIA, transient ischaemic attack.
2.4 | Follow-up period

The patients in the COVID-19 period were followed until 22 September 2021, and the patients in the pre-COVID-19 period were followed until 22 September 2020.

2.5 | Statistical analysis

Categorical variables are presented as absolute numbers, and percentages, and compared by the χ^2 test. Continuous variables are shown as mean and standard deviation (SD) and compared by the Student’s t-test, or Mann–Whitney test as appropriate. Factors entered into the multivariate model comprised those with p-values <.1 from the univariate analysis. Multivariable Cox regression analysis with clinically relevant variables was made to detect independent predictors of long-term MACCE. The cumulative incidence of the primary and secondary end-points was estimated by the Kaplan–Meier method. Two-sided p-values <.05 were considered statistically significant. All statistical analysis was performed with SPSS version 26 (SPSS Inc.).

TABLE 4 Baseline characteristics of the study population

Variables	COVID-19 (−)	COVID-19 (+)	p-Value
Age, years	60.0 ± 12.3	66.9 ± 12.2	<.001
Symptoms at admission n (%)			
Chest pain	454 (69)	34 (55)	.003
Dyspnoea	151 (23)	14 (23)	
Arrest	8 (1)	1 (2)	
Other	48 (7)	13 (21)	
Female gender (%)	146 (22)	20 (33)	.069
Hypertension, n (%)	274 (42)	30 (49)	.290
Diabetes mellitus, n (%)	190 (28)	17 (27)	.930
Previous AF, n (%)	36 (5)	3 (5)	.840
Smoking, n (%)	218 (33)	21 (34)	.887
Asthm or COPD, n (%)	60 (9)	11 (18)	.028
Previous CAD, n (%)	81 (12)	12 (19)	.110
Echocardiographic findings			
LVEF (%)	47.0 ± 8.8	43.6 ± 9.0	.004
LVWM abnormalities n (%)	436 (66)	48 (77)	.067
Valve disease n (%)	53 (9)	13 (25)	<.001
Symptom-to-FMC time (median [IQR])	120 (75–245)	120 (84–240)	.610
Symptom-to- (FMC) time			
Less than 2 h, n (%)	287 (43)	25 (40)	.939
2–6 h, n (%)	129 (20)	14 (23)	
6–12 h, n (%)	185 (28)	18 (29)	
12–24 h, n (%)	24 (4)	2 (3)	
More than 24 h, n (%)	36 (5)	3 (5)	
Laboratory findings			
WBC ($\times 10^3$/μl)	12.0 ± 4.5	13.5 ± 4.8	.013
Haemoglobin (mg/dl)	14.0 ± 2.0	13.6 ± 2.4	.246
Creatinine* (mg/dl)	0.90 (0.70–1.02)	0.91 (0.80–1.21)	.940
Platelet($\times 10^9$/L)	252 ± 72	252 ± 83	.975
C-reactive protein* (mg/L)	21.0 (2.8–51.3)	55.2 (21.4–147.4)	$<$.001
Troponin* (ng/L)	8170 (789–23,593)	19,254 (6587–26,477)	.005

Abbreviations: AF, atrial fibrillation; CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease; FMC, first medical contact; IQR, interquartile range; LVEF, left ventricular ejection fraction; LVWM, left ventricular wall motion abnormalities; WBC, white blood cell.

*Comparison was made using Mann–Whitney U test at $p < .05$, and these values were described by median with interquartile range (25th and 75th percentile).
2.6 Power analysis

The study needed to recruit 490 participants for each group to have 80% power with 5% type I error level when assuming a primary end-point rate of 18% at 1-year follow-up. The power of the study increased to 89.36% with the selection of 1025 patients in the pre-COVID-19 era and 723 patients during the COVID-19 era with a 5% type I error level.

3 RESULTS

3.1 Patient characteristics

A total of 1748 STEMI patients were examined. The median follow-up time was 524 days (507–541). Patients in pre-COVID-19 era were older than in COVID-19 era (61.9 ± 12.4 vs. 60.6 ± 12.4, p = .040). As shown in Table 1, all groups were similar regarding the histories of diabetes mellitus, hypertension, coronary artery disease and atrial fibrillation. Moreover, there was no significant difference between groups with respect to a pre-usage statin, and ACE-I angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (ARB) (Table 1). The patients in the COVID-19 era had lower LVEF compared with those in the pre-COVID-19 era (46.7 ± 8.9 vs. 47.8 ± 9.1, p = .015).

The time from symptom-to-FMC was significantly longer in COVID-19 group than in pre-COVID-19 group (120 [75–240] vs. 100 [60–180] min p < .001). The laboratory values of the groups are illustrated in Table 1. There was no significant difference between groups concerning

Variables	COVID-19 (−)	COVID-19 (+)	p-Value	
Coronary intervention n (%)	660 (100)	59 (95)	<.001	
Infarct-related artery n (%)				
LMCA	16 (2)	1 (2)	.285	
LAD	278 (42)	25 (42)		
CX	119 (18)	14 (24)		
RCA	207 (31)	12 (20)		
Other	36 (6)	6 (10)		
Noncritical CAD	4 (1)	1 (2)		
Multi-vessel disease n (%)	265 (40)	27 (46)	.400	
Glycoprotein IIb/IIIa inhibitors n (%)	126 (20)	15 (34)	.032	
Thrombus aspiration device n (%)	46 (7)	9 (15)	.032	
IABP n (%)	10 (2)	2 (3)	.313	
Baseline TIMI flow n (%)				
TIMI flow 0–1	587 (89)	55 (93)	.308	
Baseline thrombus grade >3	437 (66)	56 (95)	<.001	
Modified thrombus grade >3	252 (38)	35 (59)	.001	
Procedural success:				
Post-PCI TIMI 3 flow n (%)	538 (82)	48 (81)	.976	
Multi-vessel PCI during the index procedure n (%)	65 (10)	5 (8)	.652	
Complete revascularization during the index hospitalization n (%)	108 (16)	18 (29)	.012	
Previous medication				
ACE-I/ARB, n (%)	181 (27)	18 (29)	.781	
Statin n (%)	98 (15)	14 (23)	.107	
In-hospital or discharge ASA + P2Y12Y inhibitors				
ASA plus Clopidogrel n (%)	458 (70)	40 (68)	.929	
ASA plus Ticagrelor n (%)	134 (20)	12 (20)		
ASA plus Prasugrel n (%)	68 (10)	7 (12)		
Pharmacov-ceutive treatment n (%)	1 (0)	3 (5)	.240	
Patients treated with medical treatment n (%)	3 (1)	4 (7)	<.001	

Abbreviations: ACE-I/ARB, angiotensin-converting enzyme inhibitors/angiotensin receptor blocker; ASA, acetylsalicylic acid; CX, circumflex artery; IABP, intra-aortic balloon pump; IQR, interquartile range; LAD, left descending artery; LMCA, left main coronary artery; PCI, percutaneous coronary intervention; RCA, right coronary artery.
white blood cell counts (WBC), serum creatinine and troponin levels (each $p > .05$).

Sixteen-two STEMI patients were COVID-19 positive in COVID-19 era. These patients' characteristics are presented in Table 4. There was no significant difference between groups concerning the symptom onset to FMC time, histories of DM, HT, CAD and COPD or asthma (Table 4). Valve disease was more frequent in COVID-19-positive STEMI patients than those without (25% vs. 9%, $p < .001$). The levels of C-reactive protein (CRP) and troponin were higher in COVID-19 group (55.2 [21.4–147.4] vs. 21.0 [2.8–51.3], $p < .001$; 19,254 [6587–26,477] vs. 8170 [789–26,477], $p = .005$, respectively, Table 4) than in non-COVID-19.

3.2 | Procedural characteristics

The features of patients regarding procedures are provided in Table 2. Infarct-related artery, multi-vessel disease, glycoprotein IIb/IIIa inhibitors use, IABP, and thrombus aspiration device use, baseline TIMI 0/1 flow, modified thrombus grade >3, and post-PCI TIMI-3 flow were similar in both groups.
The patients with COVID-19 (+) had significantly lower rate of coronary intervention than those without (95% vs. 100%, \(p < .001 \)). Baseline modified thrombus grade \(\geq 3 \) was higher COVID-19 group than in non-COVID-19 group (59% vs. 38%, \(p = .001 \)). Glycoprotein IIb/IIIa inhibitors use was more common in patients with COVID-19 (34% vs. 20%, \(p = .032 \)). There was no difference between COVID-19 (+) and those without with respect to post-PCI TIMI 3 flow (Table 5). The COVID-19-positive patients had lower LVEF than COVID-19-negative patients (43.6 ± 9.0 vs. 47.0 ± 8.8, \(p = .004 \)). Complete revascularization during the index hospitalization was performed in 29% of COVID-19 (+) patients (\(p = .012 \)).
3.3 In-hospital outcomes

Mortality, shock and stent thrombosis rates was similar between pre-COVID-19 era and COVID-19 era (8% vs. 7%, \(p = .839 \), Table 3) during in-hospital. However, patients who tested positive for COVID-19 among STEMI patients had higher percentage of mortality, shock and stent thrombosis compared with non-COVID-19 patients (29% vs. 7%, \(< .001\); 21% vs. 7%, \(< .001\); 7% vs. 1%, \(p = .002 \), respectively, Table 6).

3.4 Long-term outcomes

We observed similar MACCE rates between pre-COVID-19 era and COVID-19 era (23% vs. 22%, \(p = .841 \), Table 3, Figure 2). However, hospitalization with HF was more common in the COVID-19 era compared with COVID-19 era (12% vs. 8%, \(p = .002 \), Table 3, Figure 3).

The presence of COVID-19 (+) in STEMI patients was an independent predictor of MACCE at long-term follow-up (HR: 1.628, 95% CI: 1.042–2.542, \(p = .032 \), Table 7).
The patients with COVID-19 (+) had higher MACCE rates, which were mainly driven by hospitalization with HF, than those with COVID-19 (−) (40% vs. 20%, \(p < .001 \), Table 6, Figures 4–6).

4 | DISCUSSION

To our best knowledge, this study may be the first study in terms of being a multicentre study involving a large number of STEMI patients and representing long-term follow-up of STEMI patients in both the COVID-19 era and pre-COVID-19 era. The current retrospective study found that STEMI patients with COVID-19 had a higher rate of MACCE compared with those without COVID-19 at long-term follow-up. Moreover, hospitalization with HF was more frequent during COVID-19 than pre-COVID-19.

Total ischaemic time plays an important role in determining cardiovascular outcomes in STEMI patients. Mortality rates increase with increasing this time.\(^{13}\) Both symptom-to-FMC time and door-to-balloon time were prolonged in these patients in the COVID-19 era when compared with the pre-COVID-19 era.\(^{14-17}\) The presented study showed that symptom-to-FMC time during the COVID-19 era was longer than the pre-COVID-19 era in STEMI as found in previous studies. Prolongation in this time may be due to patient-related delays as we did not have information regarding system-related delays in the presented study.

The data regarding long-term outcomes of STEMI patients in the COVID-19 era and the pre-COVID-19 era were limited. Different results have been reported on this in previous studies.\(^{5,18,19}\) Recently, a new study published by Phua et al.\(^{5}\) which included 321 STEMI patients, has shown that there were similar outcomes including all-cause mortality, recurrent coronary event, cardiac-related readmission between the pre-COVID-19 period and COVID-19 period. Unlike that results, a higher mortality rate was seen in acute coronary syndrome patients during the COVID era compared with the pre-COVID-19 era in another study.\(^{19}\) In a prospective study by Rattka et al.\(^{5}\) survival was found to be significantly worse in STEMI patients during the COVID-19 pandemic. While the pre-COVID-19 period had a higher HF admission rate, there was no difference between groups in terms of MACCE in the presented study. The patients in the pre-COVID-19 era had higher troponin, and lower LVEF values than those in the pre-COVID-19 era as a reflection of the longer total ischaemic time in our study. These may indicate larger myocardial damage in these patients. All of them may contribute to the development of HF and lead to a higher rate of hospitalization with HF in these patients.

The presence of COVID-19 in STEMI patients was found to be associated with short-term mortality in previous studies.\(^{4-18}\) The data concerning long-term mortality in these patients were limited. A recently published study showed that acute coronary syndromes patients who were infected with COVID-19 had higher mortality than those without.\(^{19}\) Contrary to that study, in our study, no difference was demonstrated between STEMI patients with COVID-19 (+) compared to those without in terms of long-term mortality; yet proportions of MACCE mainly driven by hospitalization with HF were higher in COVID-19 (+) patients.

The high MACCE rates in these patients may be due to many reasons. It has been shown that higher troponin...
levels were related to poor outcomes in COVID-19 patients. STEMI patients infected with COVID-19 had higher troponin levels and lower LVEF values in the presented study. These may indicate the magnitude of cardiac damage. Furthermore, the presence of a high inflammatory process reflected by increased CRP might be a sign of myocardial destruction by virus. The fact that these patients receiving invasive treatment were less; therefore, this may be a reason for the high rate of MACCE in these patients. The presence of the multi-vessel disease may have contributed to the increased MACCE rates in our study.

There are several limitations of the current study. The nature of observational, retrospective study design might hinder causal inference. As we did not have out-of-hospital mortality data, it was difficult to give information about the effect of this on total mortality. The follow-up time for both pre-COVID and post-COVID periods was relatively short; therefore, to see the effect of COVID-19, these patients may need longer follow-up.

5 CONCLUSION

There was no difference between the pre-COVID-19 era and the COVID-19 era in terms of MACCE in STEMI patients in Turkey. In the COVID-19 era, STEMI patients positive for COVID-19 had a higher rate of MACCE and heart failure hospitalization at the long-term follow-up.

AUTHOR CONTRIBUTIONS
All authors contributed to the final manuscript.

KEYWORDS
COVID-19, Mortality, ST-segment elevation myocardial infarction

CONFLICT OF INTEREST
The author(s) declared no potential conflict of interest concerning the research, authorship and/or publication of this article.

ORCID
Tuncay Kiris: https://orcid.org/0000-0001-9793-718X
Arafat Yidirim: https://orcid.org/0000-0002-3579-3747
REFERENCES

1. Rattka M, Dreyhaupt J, Winsauer C, et al. Effect of the COVID-19 pandemic on mortality of patients with STEMI: a systematic review and meta-analysis. Heart. 2021;107:482-487.

2. Han Y. A treatment strategy for acute myocardial infarction and personal protection for medical staff during the COVID-19 epidemic: the Chinese experience. Eur Heart J. 2020;41:2148-2149.

3. Choudry FA, Hamshere SM, Rathod KS, et al. High thrombus burden in patients with COVID-19 presenting with ST-elevation myocardial infarction. J Am Coll Cardiol. 2020;76(10):1168-1176.

4. Kiris T, Avci E, Ekin T, et al. Impact of COVID-19 outbreak on patients with ST-segment elevation myocardial infarction (STEMI) in Turkey: results from TURSER study (TURKISH ST-segment elevation myocardial infarction registry). J Thromb Thrombolysis. 2022;53(2):321-3345.

5. Phua K, Chew NWS, Sim V, et al. One-year outcomes of patients with ST-segment elevation myocardial infarction during the COVID-19 pandemic. J Thromb Thrombolysis. 2022;53(2):335-345.

6. Rattka M, Stuhler L, Winsauer C, et al. Outcomes of patients with ST-segment elevation myocardial infarction admitted during COVID-19 pandemic lockdown in germany - Results of a single center prospective cohort study. Front Cardiovasc Med. 2021;8:638954.

7. Hartikainen TS, Sörensen NA, Haller PM, et al. Clinical application of the 4th universal definition of myocardial infarction. Eur Heart J. 2020;41(23):2209-2216.

8. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119-177.

9. Sianos G, Papafaklis MI, Serruys PW. Angiographic thrombus burden classification in patients with ST-segment elevation myocardial infarction treated with percutaneous coronary intervention. J Invasive Cardiol. 2010;22:6B-14B.

10. Gibson CM, de Lemos JA, Murphy SA, et al. Combination therapy with abciximab reduces angiographically evident thrombus in acute myocardial infarction: a TIMI 14 substudy. Circulation. 2001;103:2550-2554.

11. Patel A, Jernigan DB, 2019-to CDC response team. Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak - United States, December 31, 2019-February 4, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(5):140-146.

12. Simpson S, Kay FU, Abbara S, et al. Radiological Society of North America Expert consensus statement on reporting chest CT findings related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. J Thorac Imaging. 2020;35(4):219-227.

13. Garcia S, Albaghdadi MS, Meraj PM, et al. Reduction in ST-segment elevation cardiac catheterization laboratory activations in the United States during COVID-19 pandemic. J Am Coll Cardiol. 2020;75(22):2871-2872.

14. Abdelaziz HK, Abdelrahman A, Nabi A, et al. Impact of COVID-19 pandemic on patients with ST-segment elevation myocardial infarction: insights from a British cardiac center. Am Heart J. 2020;226:45-48.

15. Xiang D, Xiang X, Zhang W, et al. Management and outcomes of patients with STEMI during the COVID-19 pandemic in China. J Am Coll Cardiol. 2020;76(11):1318-1324.

16. Fileti L, Vecchio S, Moretti C, et al. Impact of the COVID-19 pandemic on invasive coronary procedures at two Italian high-volume referral centers. J Cardiovasc Med. 2020;21(11):869-873.

17. Tomasoni D, Adamo M, Italia L, et al. Impact of COVID-19 outbreak on prevalence, clinical presentation, and outcomes of ST-elevation myocardial infarction. J Cardiovasc Med. 2020;21(11):874-881.

18. Choudry FA, Rathod KS, Baumbach A, Mathur A, Jones DA. Long-term outcomes of COVID-19 associated ST-elevation myocardial infarction treated with primary PCI. Cardiovasc Revasc Med. 2022;25:S1553-S8389.

19. Çınar T, Şaylık F, Akbulut T, et al. One-year outcomes of invasively managed acute coronary syndrome patients with COVID-19. Heart Lung. 2022;52:159-164.

20. Lala A, Johnson KW, Januzzi JL. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J Am Coll Cardiol. 2020;76(5):533-546.