Femtosecond Pulse Propagation in Optical Fibers under Higher Order Effects: A Moment Method Approach

Fessomon Koki a, Gaston Edah b, Gaétan Djossou a, Ezivi Baloitcha a,b and Minadohona Maxime Capo-Chichi c*

aInternational Chair of Mathematical Physics and Applications (ICMPA-Unesco Chair), University of Abomey-Calavi, Benin.
bDépartement de Physique, Faculté des Sciences et Techniques, University of Abomey-Calavi, Benin.
cLaboratory of Radiations Physics, Faculté des Sciences et Techniques, University of Abomey-Calavi, Benin.

Authors’ contributions

This work was carried out in collaboration among all authors. Author FK designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Author GE managed the analyses of the study. Authors EB and MMCC managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/CJAST/2022/v41i231651

ABSTRACT

In this paper, we use the moment method approach to investigate the evolution of pulse parameters in nonlinear medium. The pulse propagation is modelled by higher order nonlinear Schrödinger equation (NLSE). The application of moment method leads to variational equations that are be integrated by the fourth order Runge-Kutta method (RK4). The results obtained show the variations of some important parameters of the pulse namely the energy, the pulse position, the frequency shift, the chirp and the width. For this form of the NLSE, the energy and frequency don’t vary. The coefficient of quintic self phase modulation governs the dynamics of the pulse propagation. It reveals the effects of the quintic coefficient α. The moment method is able to study the dynamics of the optical pulse modelled by higher order nonlinear Schrödinger equations.

Keywords: Optical soliton; moment method; higher order nonlinear Schrödinger equation; nonlinear optical phenomena.

*Corresponding author: E-mail: cachi1550@gmail.com;
1 INTRODUCTION

Nonlinear optical phenomena occur typically at high optical intensities and most of wave equations involved are governed by the nonlinear Schrödinger equations [1]. The nonlinear Schrödinger equation plays the role of Newton's laws and conservation of energy in classic mechanics. It predicts the future behaviour of a dynamic system. The nonlinear Schrödinger equation is an example of a universal nonlinear model that describes many physical nonlinear scenarios [2]. In order to better understand nonlinear phenomena, it’s important to seek their exact solution. They can help to analyse the stability of these solution and the movement role of the wave by making the graphs of the exacts solution [3]-[13]. The propagation of optical soliton through optical fibers is governed by nonlinear Schrödinger equation and it was first suggested by Hasegawa and Tappert [14] and first experimented by Mollenauer et al. [15]. After, this study has been expanded all across with various results due to their application in telecommunication [16]-[25], [26, 27]. Several forms of this nonlinear Schrödinger exist the focus is one of them which take account of the second as well as third order dispersion effects, cubic and quintic self phase modulation, self steepening and nonlinear dispersion effect. It is known as RKL and was proposed by Radhakrishnan, Kundu and Lakshman. The normalized (RKL) model of a higher order nonlinear Schrödinger equation for the propagation of femtosecond pulse can be written as:

\[
\begin{align*}
&i \frac{\partial \psi}{\partial z} + \frac{\partial^2 \psi}{\partial t^2} + ic_1 \frac{\partial^3 \psi}{\partial t^3} + 2|\psi|^2 \psi + ic_2 \frac{\partial}{\partial t}(|\psi|^2 \psi) + ic_3 \frac{\partial}{\partial t}(|\psi|^4 \psi) + \alpha |\psi|^4 \psi = 0 \\
&\text{and when}
&c_1 = c_2 = c_3 = 0
\end{align*}
\]

(1)

we have the case of cubic-quintic law which has been studied by Shwetanshumoler and Biswas in 2007 with collective variables approach. The mathematical methodology adopted in this paper is know as “moment method” which transform the nonlinear Schrödinger equation to system of ordinary differential equations [28]-[31] solving by Runge-Kutta algorithm. Another method of searching for exact solution have been presented in the literature: the inverse scattering method, the blacklund transformation, the Hirota bilinear method, the Lie group method, the variable separation method, the variation iteration, the Jacobi elliptic function, the expansion method, the split Fourrier method [12]-[14], [23]. The aim of this paper is to apply the moment method to find a solitary wave solution for which is straightforward and concise. The outline of the present paper is as follows. In Section 1, we solve the equation by variational moment method. In Section 2, we use a Gaussian function. We obtain the variational equations of the pulse parameters which are solve by the fourth order Runge Kutta method. In Section 3, we present results and in section 4, we discuss the results. Finally, we point out the concluding remarks.

2 SOLVING THE PROBLEM BY VARIATIONAL MOMENT METHOD

The basic idea of moment method is to treat the optical pulse like a particule whose energy \(E \), position \(T \), the frequency \(\Omega \), the root mean square (RMS) \(\sigma \) and the moment related to the chirp of the pulse are defined as [25, 29, 30, 32, 33]:

\[
\begin{align*}
E &= \int_0^\infty |\psi|^2 \, dt \\
T &= \int_0^\infty t |\psi|^2 \, dt \\
\Omega &= \int_0^\infty \log |\psi|^2 \, dt \\
\sigma &= \left(\frac{1}{T} \int_0^\infty t^2 |\psi|^2 \, dt \right)^{1/2} \\
\text{and when}
&\text{the moment related to the chirp of the pulse is defined as:}
&\text{for which is}
\end{align*}
\]

(2)
\[E = \int_{-\infty}^{+\infty} |\psi|^2 dt \]
\[T = \frac{1}{E} \int_{-\infty}^{+\infty} t|\psi|^2 dt \]
\[\Omega = \frac{i}{2E} \int_{-\infty}^{+\infty} \left(\psi^* \frac{\partial \psi}{\partial t} - \psi \frac{\partial \psi^*}{\partial t} \right) dt \]
\[\sigma^2 = \frac{1}{E} \int_{-\infty}^{+\infty} (t - T)^2 |\psi|^2 dt \]
\[\tilde{C} = \frac{i}{2E} \int_{-\infty}^{+\infty} (t - T) \left(\psi^* \frac{\partial \psi}{\partial t} - \psi \frac{\partial \psi^*}{\partial t} \right) dt \]

where \(\psi \) is the envelop of the pulse. Obviously, the evolution of these pulse parameters depends on the evolution on the pulse itself in the fiber which is governed by the NLSE equation (1). In order to find the evolution of these pulse parameters, we use the equations (3) to (7) along with equation (1).

2.1 Energy Evolution

Firstly, consider the evolution of the pulse energy. To find that, we differentiate (3) with respect to \(z \) and get:

\[\frac{dE}{dz} = \int_{-\infty}^{+\infty} \left(\psi^* \frac{\partial \psi}{\partial z} + \psi \frac{\partial \psi^*}{\partial z} \right) dt \]

Using (1) we find that:

\[\frac{\partial \psi}{\partial z} = i \frac{\partial^2 \psi}{\partial t^2} - c_1 \frac{\partial^3 \psi}{\partial t^3} + 2|\psi|^2 \psi - c_2 \frac{\partial}{\partial t} (|\psi|^4) - c_3 \frac{\partial}{\partial t} (|\psi|^4 \psi) + i\alpha |\psi|^4 \psi \]

After performing calculations, we have:

\[\frac{dE}{dz} = \int_{-\infty}^{+\infty} \left(\psi^* \frac{\partial^2 \psi}{\partial t^2} - \psi \frac{\partial^2 \psi}{\partial t^2} \right) dt - c_2 \int_{-\infty}^{+\infty} \left[\psi^* \frac{\partial}{\partial t} (|\psi|^2) + \psi \frac{\partial}{\partial t} (|\psi|^2 \psi^*) \right] dt \]

\[- c_1 \int_{-\infty}^{+\infty} \left(\psi^* \frac{\partial^3 \psi}{\partial t^3} + \psi \frac{\partial^3 \psi}{\partial t^3} \right) dt - c_3 \int_{-\infty}^{+\infty} \left[\psi^* \frac{\partial}{\partial t} (|\psi|^4) + \psi \frac{\partial}{\partial t} (|\psi|^4 \psi^*) \right] dt. \]

When we compute the integrals, the right handside of (10), we have

\[\frac{dE}{dz} = 0. \]

2.2 Evolution of Pulse Position

Differentiating (4) with respect to \(z \) we get:

\[\frac{dT}{dz} = \frac{1}{E} \int_{-\infty}^{+\infty} t \left(\psi^* \frac{\partial \psi}{\partial z} + \psi \frac{\partial \psi^*}{\partial z} \right) dt \]

We get:

\[\frac{dT}{dz} = \frac{-i}{E} \int_{-\infty}^{+\infty} t \left(\psi^* \frac{\partial^2 \psi^*}{\partial t^2} - \psi \frac{\partial^2 \psi}{\partial t^2} \right) dt - c_2 \frac{1}{E} \int_{-\infty}^{+\infty} t \left[\psi^* \frac{\partial}{\partial t} (|\psi|^2) + \psi \frac{\partial}{\partial t} (|\psi|^2 \psi^*) \right] dt \]

\[- c_1 \frac{1}{E} \int_{-\infty}^{+\infty} t \left(\psi^* \frac{\partial^3 \psi^*}{\partial t^3} + \psi \frac{\partial^3 \psi}{\partial t^3} \right) dt - c_3 \frac{1}{E} \int_{-\infty}^{+\infty} t \left[\psi^* \frac{\partial}{\partial t} (|\psi|^4) + \psi \frac{\partial}{\partial t} (|\psi|^4 \psi^*) \right] dt \]
After integrating and considering the definition of frequency in (5), we obtain:

\[\frac{d\Omega}{dz} = 2\Omega - \frac{3c_1}{2E} \int_{-\infty}^{+\infty} |\frac{\partial \psi}{\partial t}|^2 dt + \frac{3c_2}{2E} \int_{-\infty}^{+\infty} |\psi|^4 dt + \frac{c_3}{3E} \int_{-\infty}^{+\infty} |\psi|^6 dt \] \hspace{1cm} (14)

2.3 Evolution of Frequency Schrödinger

Differentiating (5) with respect to \(z \), we get:

\[\frac{d\Omega}{dz} = \frac{i}{2E} \int_{-\infty}^{+\infty} \left(\frac{\partial}{\partial z} \left(\psi^* \frac{\partial \psi}{\partial t} \right) - \frac{\partial}{\partial z} \left(\psi^* \frac{\partial \psi^*}{\partial t} \right) \right) dt \] \hspace{1cm} (15)

From (9), we can write:

\[\psi^* \frac{\partial^2 \psi}{\partial z \partial t} = i\psi^* \frac{\partial^2 \psi}{\partial t^2} - c_1 \psi^* \frac{\partial^4 \psi}{\partial t^4} + 2i\psi^* \frac{\partial^3 \psi}{\partial t^3} + \frac{\partial}{\partial t} (|\psi|^2 \psi) - c_2 \psi^* \frac{\partial^2 \psi}{\partial t^2} (|\psi|^2 \psi) - c_3 \psi^* \frac{\partial^2 \psi}{\partial t^2} (|\psi|^4 \psi) + i\alpha \psi^* \frac{\partial}{\partial t} (|\psi|^4 \psi) \] \hspace{1cm} (16)

and

\[\frac{\partial}{\partial z} \left(\psi^* \frac{\partial \psi^*}{\partial t} \right) = -\frac{\partial^2}{\partial t^2} \psi^* \frac{\partial \psi^*}{\partial t} - c_1 \frac{\partial^4}{\partial t^4} \psi^* \frac{\partial \psi^*}{\partial t} - 2i\psi^* \frac{\partial}{\partial t} (|\psi|^2 \psi^*) - c_2 \frac{\partial^2}{\partial t^2} (|\psi|^2 \psi^*) - c_3 \frac{\partial^2}{\partial t^2} (|\psi|^4 \psi^*) - c_4 \frac{\partial}{\partial t} (\psi^* |\psi|^4) - i\alpha \psi^* \frac{\partial}{\partial t} (|\psi|^4 \psi) \] \hspace{1cm} (17)

Adding (17) and (18) and substituting into (16), we find:

\[\frac{\partial}{\partial z} \left(\psi^* \frac{\partial \psi^*}{\partial t} \right) = i \left[\psi^* \frac{\partial^3 \psi}{\partial t^3} - \frac{\partial^2 \psi}{\partial t^2} \frac{\partial \psi}{\partial t} \right] - c_1 \left[\psi^* \frac{\partial^3 \psi}{\partial t^3} + \frac{\partial^2 \psi}{\partial t^2} \frac{\partial \psi}{\partial t} \right] + i2\psi^* \frac{\partial}{\partial t} (|\psi|^2 \psi^*) - i2 \frac{\partial}{\partial t} (|\psi|^2 \psi)^2 \] \hspace{1cm} (19)

Also, we can write:

\[\frac{\partial}{\partial z} \left(\psi^* \frac{\partial \psi^*}{\partial t} \right) = \left[\psi^* \frac{\partial^3 \psi}{\partial t^3} - \frac{\partial^2 \psi}{\partial t^2} \frac{\partial \psi}{\partial t} \right] - c_1 \left[\psi^* \frac{\partial^3 \psi}{\partial t^3} + \frac{\partial^2 \psi}{\partial t^2} \frac{\partial \psi}{\partial t} \right] + i2\psi^* \frac{\partial}{\partial t} (|\psi|^2 \psi^*) + i2 \frac{\partial^2}{\partial t^2} (|\psi|^2 \psi)^2 \] \hspace{1cm} (20)

Using (19) and (20) into (15), we can find the evolution of frequency along the fiber to be:

\[\frac{d\Omega}{dz} = \frac{1}{2E} \int_{-\infty}^{+\infty} \left(\frac{\partial^3 \psi}{\partial t^3} + \frac{\partial^2 \psi}{\partial t^2} \frac{\partial \psi}{\partial t} \right) dt - \frac{i c_1}{2E} \int_{-\infty}^{+\infty} \left(\psi^* \frac{\partial^3 \psi}{\partial t^3} + \frac{\partial^2 \psi}{\partial t^2} \frac{\partial \psi}{\partial t} - \frac{\partial^3 \psi}{\partial t^3} \frac{\partial \psi}{\partial t} \right) dt \] \hspace{1cm} (21)
In order to calculate \(\frac{d\Omega}{dz} \), we evaluate one by one the integrals on right hand side of the (21). After computation, we get:

\[
\frac{d\Omega}{dz} = 0 \tag{22}
\]

2.4 Evolution of Chirp Parameter

Next we find the evolution of the chirp parameter. Differentiating (7) with respect to \(z \), we can write

\[
\frac{dC}{dz} = \frac{i}{2E} \int_{-\infty}^{+\infty} (t - T) \left[\frac{\partial^2 \psi^*}{\partial t^2} + \frac{\partial \psi^*}{\partial t} + \frac{\partial^2 \psi}{\partial t^2} \right] dt \tag{23}
\]

From (19) and (20), we have:

\[
\frac{dC}{dz} = \frac{1}{2E} \int_{-\infty}^{+\infty} (t - T) \left[\left(\frac{\partial^2 \psi^*}{\partial t^2} - \frac{\partial \psi^*}{\partial t} \right) + \left(\frac{\partial^2 \psi}{\partial t^2} - \frac{\partial \psi}{\partial t} \right) \right] dt
\]

\[
- i \frac{c_2}{2E} \int_{-\infty}^{+\infty} (t - T) |\psi|^2 \left(\frac{\partial^2 \psi^*}{\partial t^2} - \frac{\partial \psi^*}{\partial t} \right) dt - i \frac{c_2}{2E} \int_{-\infty}^{+\infty} (t - T) |\psi|^2 \left(\frac{\partial^2 \psi}{\partial t^2} - \frac{\partial \psi}{\partial t} \right) dt +
\]

\[
- \frac{2}{E} \int_{-\infty}^{+\infty} (t - T) |\psi|^2 \frac{\partial}{\partial t} |\psi|^2 dt - \frac{2}{E} \int_{-\infty}^{+\infty} (t - T) |\psi|^2 \left(\frac{\partial^2 \psi^*}{\partial t^2} - \frac{\partial \psi^*}{\partial t} \right) dt +
\]

\[
- i \frac{c_2}{2E} \int_{-\infty}^{+\infty} (t - T) |\psi|^4 \left(\frac{\partial^2 \psi^*}{\partial t^2} - \frac{\partial \psi^*}{\partial t} \right) dt - i \frac{c_2}{2E} \int_{-\infty}^{+\infty} (t - T) |\psi|^4 \left(\frac{\partial^2 \psi}{\partial t^2} - \frac{\partial \psi}{\partial t} \right) dt +
\]

After many integrations by parts, finally, we get:

\[
\frac{dC}{dz} = - \frac{2}{E} \int_{-\infty}^{+\infty} \frac{\partial |\psi|^2}{\partial t} dt + \frac{3ic_1}{2E} \int_{-\infty}^{+\infty} \left(\frac{\partial^2 |\psi|^2}{\partial t^2} - \frac{\partial |\psi|^2}{\partial t} \right) dt
\]

\[
- i \frac{c_2}{2E} \int_{-\infty}^{+\infty} |\psi|^2 \left(\frac{\partial^2 \psi^*}{\partial t^2} - \frac{\partial \psi^*}{\partial t} \right) dt + i \frac{c_2}{2E} \int_{-\infty}^{+\infty} (t - T) \frac{\partial}{\partial t} |\psi|^2 \left(\frac{\partial |\psi|^2}{\partial t} - \frac{\partial \psi^*}{\partial t} \right) dt +
\]

\[
+ \frac{1}{E} \int_{-\infty}^{+\infty} |\psi|^4 dt - i \frac{c_3}{E} \int_{-\infty}^{+\infty} |\psi|^4 \left(\frac{\partial^2 \psi^*}{\partial t^2} - \frac{\partial \psi^*}{\partial t} \right) dt +
\]

\[
+ i \frac{c_3}{2E} \int_{-\infty}^{+\infty} (t - T) \frac{\partial}{\partial t} |\psi|^4 \left(\frac{\partial |\psi|^2}{\partial t} - \frac{\partial \psi}{\partial t} \right) dt +
\]

\[
+ i \frac{c_3}{2E} \int_{-\infty}^{+\infty} |\psi|^4 \left(\frac{\partial \psi^*}{\partial t} - \frac{\partial \psi}{\partial t} \right) dt + \frac{\alpha}{E} \int_{-\infty}^{+\infty} |\psi|^6 dt \tag{25}
\]

2.5 Evolution of the RMS Width

We differentiate (6) with respect to \(z \) to obtain

\[
2\sigma E \frac{d\sigma}{dz} = \int_{-\infty}^{+\infty} (t - T)^2 (\psi^* \frac{\partial \psi}{\partial z} + \psi \frac{\partial \psi^*}{\partial z}) dt \tag{26}
\]
After calculating, we can write

\[
2\sigma \frac{d\sigma}{dz} = \int_{-\infty}^{+\infty} -i(t - T)^2 \left(\psi \frac{\partial^2 \psi^*}{\partial z^2} - \psi^* \frac{\partial^2 \psi}{\partial z^2} \right) dt - \int_{-\infty}^{+\infty} c_1(t - T)^2 \left(\psi \frac{\partial^3 \psi^*}{\partial z^3} + \psi^* \frac{\partial^3 \psi}{\partial z^3} \right) dt
\]

\[
- c_2(t - T)^3 \int_{-\infty}^{+\infty} \left[\psi \frac{\partial}{\partial t} \left(|\psi|^2 \psi \right) + \psi^* \frac{\partial}{\partial t} \left(|\psi|^2 \psi^* \right) \right] dt
\]

\[
- c_3(t - T)^3 \int_{-\infty}^{+\infty} \left[\psi \frac{\partial}{\partial t} \left(|\psi|^4 \psi \right) + \psi^* \frac{\partial}{\partial t} \left(|\psi|^4 \psi^* \right) \right] dt
\]

After many integrations by parts we get:

\[
\frac{d\sigma}{dz} = \frac{2C}{\sigma} \sigma - \frac{3c_1}{\sigma E} \int_{-\infty}^{+\infty} (t - T) \left| \frac{\partial \psi}{\partial t} \right|^2 dt
\]

3 NUMERICAL SIMULATION WITH RUNGE-KUTTA 4

Let’s choose the pulse shape on the Gaussian form [32, 34]:

\[
\psi(z, t) = A \exp \left[\left(i\varphi - i\Omega(t - T) - (1 + iC) \frac{(t - T)^2}{2\tau^2} \right) \right],
\]

with \(\tau^2 = K\sigma^2, C = 2C, K = c\tau \)

We obtain a variational equations for each parameter as follows:

\[
\begin{align*}
\frac{dE}{dz} &= 0; \\
\frac{dT}{dz} &= 2\Omega - 3c_1 \left(\Omega^2 + \frac{1 + C^2}{2\tau^2} \right) + \frac{3c_1 E^2}{2\sqrt{2\pi} 2\tau} + \frac{c_3 E^2}{3\pi \sqrt{3}\tau^2}; \\
\frac{d\Omega}{dz} &= 0; \\
\frac{dC}{dz} &= -4\Omega^2 - 4 \frac{1 + C^2}{2\tau^2} - 3c_2 \left(2\Omega^3 + 3\Omega \frac{1 + C^2}{\tau^2} \right) + \frac{2E + 2Ec_1\Omega - 2Ec_2\Omega + 2Ec_3\Omega}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi \tau}} + \frac{4c_1 E^2 + 4c_3 E^2 C}{3\pi \sqrt{3}\tau^2} + \frac{2\alpha E^2}{\pi \sqrt{3}\tau^2}; \\
\frac{d\tau}{dz} &= \frac{4C}{\tau} - \frac{12c_1 C}{\tau}.
\end{align*}
\]

We solve the variational equations by the fourth order Runge-Kutta method [24].

The results obtained for the case \(c_i = 0 \ (i \in \{1, 2, 3\}) \) and \(\alpha \neq 0 \) are showed in Fig.1.
For small values of α ($\alpha \leq 3.272$), Ω and C decrease. The concavity of Ω and C changes when $\alpha \geq 3.273$. For large values of α ($\alpha \geq 50$), Ω and C increase asymptotically. In addition, E, T and τ remain constant.

Now, we consider the case $c_i \neq 0$ ($i \in \{1, 2, 3\}$) and $\alpha \neq 0$ showed in Fig. 2.
Fig. 2. Numerical simulations for case $c_i \neq 0$ ($i \in \{1, 2, 3\}$) and $\alpha \neq 0$

Ω, C, E and T have the same behaviour as the above case. But, we notice that T is a line with positive slope.

4 DISCUSSION

Since $\frac{dE}{dz} = 0$ and $\frac{d\Omega}{dz} = 0$, therefore the pulse energy and frequency remain constant when the pulse propagates along the fiber.
The equation (14) shows that the variation of T is not affected by quintic coefficient α.

The variation of C is affected by all parameters of the pulse (25).

Only the coefficient of the third order dispersion c_1 affected the variation of τ (28).

Finally, the equation (30) is the model of nonlinear dynamics. In fact, we have a system of ODEs and it requires to set initial conditions: $E(0) = 1$; $T(0) = 0$; $\Omega(0) = 1$; $C(0) = 0$ and $\tau(0) = 0$.

We use fourth order Runge-Kutta method for integration. In order to examine the effect of quintic coefficient α on the propagation, we have studied pulse parameters for the case $c_i = 0$; $i \in \{1, 2, 3\}$ and $\alpha \neq 0$, particularly $\alpha = 2$; $\alpha = 3.272$; $\alpha = 3.273$; $\alpha = 10$ and $\alpha = 100$; and the case $c_i \neq 0$; $i \in \{1, 2, 3\}$ and $\alpha \neq 0$; particularly:

- $c_1 = 0.01$; $c_2 = 0.2$; $c_3 = 0.001$; $\alpha = 2$
- $c_1 = 0.01$; $c_2 = 0.2$; $c_3 = 0.001$; $\alpha = 2.5$
- $c_1 = 0.01$; $c_2 = 0.2$; $c_3 = 0.001$; $\alpha = 3.272$
- $c_1 = 0.01$; $c_2 = 0.2$; $c_3 = 0.001$; $\alpha = 3.273$
- $c_1 = 0.01$; $c_2 = 0.2$; $c_3 = 0.001$; $\alpha = 10$
- $c_1 = 0.01$; $c_2 = 0.2$; $c_3 = 0.001$; $\alpha = 100$

In the work of Shwetanshumala and Biswas (2008) with the same equation using collective variables approach, it shows that the influence of self steepening c_2 is the largest on the beam center.

5 CONCLUSION

In this paper, we have applied the moment method approach to investigate the dynamics of a femtosecond pulse propagation in optical fibers under higher order effects. In order to achieve this, Gaussian ansatz was chosen and fourth order Runge-Kutta method was used to integrate the system of ordinary differential equations. We used initial conditions. For the set of model parameters, we computed the results that are depicted in figures. The variations of each parameter of system show the effect of the quintic coefficient α. The parameter α governs the dynamics of the pulse propagation. The further work will be interested to generalize this equation by using the same method.

ACKNOWLEDGEMENT

Authors wish to acknowledge Robinson DEGBEGNI, Aubin AIHOULE for useful advice and suggestions.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

[1] Gupta SL, Moore K, Murch WK, Stamper-Kurn MD. Cavity nonlinear optics at low photon numbers from collective atomic motion. Quant-ph. 2007;1-4. arxiv:0706.1052V1
[2] Belmonto-Beitia J, Perez-Garcia MV, Brazhuyi V. Solitary waves in coupled Schrodinger equations with spatially inhomogeneous nonlinearities. Nlin-ps. 2010;1-17. arXIV:1001-2425 VI
[3] Whitham GB. Linear and nonlinear waves. New York; 1972.
[4] Choi W, Camassa R. Weakly nonlinear internal waves in a two fluid system. J. Fluid Mech. 1996;313:83-103.
[5] Seadawy AR. Fractional solitary wave solutions of the nonlinear higher-orderextended kdv equation in a stratifield shear flow : Part I. Comput. Math. Appl. 2015;70:345-52.
[6] Seadawy AR. Stability analysis of traveling wave solutions for generalized coupled nonlinear kdv equations. Appl. Math. Int. Sei. 2016;1(10):209-14.
[7] Seadawy AR. New exact solutions for the kdv equation with higher order
nonlinearity by using the variational method. Comput. Math. Appl. 2011;62:3741-55.

[8] Joseph RI. Solitary waves in finite depth fluid. J. phys. A : Math. Gen. 1977;10:1225-7.

[9] Helal MA, Seadawy AR. Benjamin - feir instability in nonlinear dispersive waves. Comput. Math. App. 2012;64:3557-68.

[10] Seadawy AR, Sayed A. Traveling wave solutions of the benjamin-bona mahonywater wave Equations. Abstr. App. Anal. 2014;1-7.

[11] Seadawy AR. Stability analysis solutions for nonlinear three dimensional modified kortepeg - de vries - zakharov - kuznetsov equation in a magnetized election positionplasma. Phys. A : Stat. Mech. App. Phys. A. 2016;455:44 - 51.

[12] Kadomtsev BB, Petviashvili VI. On the stability of solitary waves in weakly dispersive media. Sov. Phys. Doke. 1970;15:539-41.

[13] Seadawy AR. Three - dimensional nonlinear modified zakharov - kuznetsovequation of ion - acoustic waves in a maganetized phama. Comput. Math. App. 2016;71:201-12.

[14] Hasegawa A, Kodame K. Solitons in optical communications. New York; 1995.

[15] Mollenauer LF, Stolen RH, Goden JP. Experimental observation of picosecond pulse norrowing and soliton in optical fibers. Phys Rev. Lett. 1980;45:1095.

[16] Hasegawa A, Tappert DF. Transmission of stationary nonlinear optical putses indispersive dielectric fibers. I : Anomalous dispersion regime. Appl. Phys. Lett. 1973;3(23):142-4.

[17] Saha Manirupa, Sarma Amarendra K. Solitary wave solutions and modulation instabilities analysis of the nonlinear Schrdinger equation with high order dispersion and nonlinear terms. Commun. Nonlinear Sei. Numer. Simulat. 2013;18:2420-5.

[18] Nijholt JHB, Roelofs CHM. Prolongation structures of a higher- order nonlinear Schrdinger equation. J. phys. A : Math. Gen . 1992;25:2403-16.

[19] Li Min, Tao Xu, Wang Lei. Dynamical behaviors and soliton solutions of a generalized higher - order nonlinear schrdinger equation in optical fibers. Nonlinear Dyn. 2015;80:1451-61.

[20] Seadawy AR. Approximation solutions of derivative nonlinear Schrdinger equation with computational applications by variational method. Eur. Phys. J. Plus. 2015;130:182.

[21] Helal MA, Seadawy AR. Exact solution of an. d. dimensional nonlinear schrdinger equation with damping and diffusive terms. Z. Angew. Math. Phys. 2011;62:839-47.

[22] Hasegawa A. An historical review of application of optical solitons for high speed communication. Chaos. 2000;3(10):475- 85.

[23] Radhakrishnan R, Kundu A, Lakshmanan M. Coupled nonlinear Schrdinger equations with cubic-quintic nonlinearity integrability and soliton interaction in non-kerr media. Phys. Rev. E. 1999;60:3314.

[24] Shwetanshumala, Anjan Biswas. Femtoseand pulse propagation in optical fibers under higher order effects : A. collective variable approach. Int. J Theor. Phys. 2008;47:1699-1708.

[25] Belanger N. Etude des moments de l’équation de Schrdinger non linéaire avec perte. Master’s Thesis, Universit de laval; 1996.

[26] Agrawal GP. Nonlinear fiber optics; 2007.

[27] Cao Rui, Zhang Jia. Trial function method and exact solutions in the generalized Schrdinger equation with time-dependent coefficient. Chin. Phys. B. 2013;10(22):100507.

[28] Edah G, Adanhoum V, Kanfun A, Gudj N. Hounkounnou. Pulse propagation in a nonlinear Medium. Open Phys. 2014;13:151-156.

[29] Saha Manirupa, Sarma Amarendra K. Solitary wave solutions and modulation instabilities analysis of the nonlinear schrdinger equation with high order dispersion and nonlinear terms. Commun. Nonlinear sei. Numer. Simulat. 2013;18:2420-5.

[30] Burgoyne Bryan. Etude de la forme des impulsions par la mthode des moments : application la propagation dispersive non linéaire et aux quations maitresses des lasers tout fibre; 2010.

[31] Agrawal GP. Fiber. Optic Communication Systems; 1997.
[32] Jayanthi Santhanam. Applications of the moment method to optical communications systems: Amplifier noise and timing jitter. Master's Thesis, University of Rochester; 2004.

[33] Fessomon Koki, Gaston Edah, Minadohana Maxime Capo-Chichi, Gatan Djossou, Camille Elloh, Marc Ayla. Dynamics of the optical pulse in a nonlinear medium: Approach of moment method coupled with the fourth order Runge-Kutta method. Physical Science International Journal. 2020;24(9):8-17.

[34] Fisher RA, Bischel WK. Numerical studies of the interplay between self-phase modulation and dispersion for intense plane-wave laser pulses. J. Appl. Phys. 1975;46.