Rabi oscillations and saturable absorption effect in single-wall carbon nanotubes

A M Nemilentsau, G Ya Slepyan, and S A Maksimenko
Institute for Nuclear Problems, Belarus State University, Bobruiskaya 11, 220030 Minsk, Belarus
E-mail: andrei.nemilentsau@gmail.com

Abstract. We have studied theoretically a single-wall carbon nanotube (SWNT) interaction with the short high-intensive electromagnetic pulse whose carrier frequency is in the resonance with the frequency of the electron interband transitions in the SWNT. For this purpose kinetic equations describing evolution of the density matrix of the electron sub-system have been solved numerically and spectra of the surface current density induced in the SWNT by the external electromagnetic field have been calculated. We have demonstrated that Rabi oscillations of the population of the SWNT electronic bands occur for the pulse intensity exceeding 10^{10} W/cm2.

1. Introduction
Carbon nanotubes are known to possess strongly nonlinear optical response [1]. In particular, it has been demonstrated that single-wall carbon nanotubes (SWNTs) have high values of the third-order nonlinear optical susceptibility [2, 3, 4], may be used for effective generation of the high-order harmonics [5, 6] and as saturable absorbers for passive mode-locking in lasers [7, 8]. Among the different nonlinear processes Rabi oscillations of the inversion that can occur in two-level [9] or two-bands [10] systems illuminated by a high-intensive resonant electromagnetic field are of a great interest. We expect that due to the SWNTs strong optical nonlinearity Rabi oscillations will also occur in SWNTs illuminated by the external electromagnetic field.

2. System under the consideration
Let us consider single-wall carbon nanotube (SWNT) illuminated by an electromagnetic pulse (see Fig. 1) of the form:

$$
E(t) = e_z \begin{cases}
E_0 \sin(\omega_0 t), & 0 \leq t \leq \sigma_0 \\
0, & t < 0, t > \sigma_0
\end{cases},
$$

where E_0 is the pulse amplitude, σ_0 is the pulse duration, e_z is the unit vector along the z-axis. The direction of pulse propagation k is normal to the SWNT axis and the vector of electric field strength $E(t)$ is polarized along the SWNT axis (see Fig. 1a). The pulse carrier frequency ω_0 is in the resonance with the frequency of electron interband transitions $\omega_{cv}(p, s) = (E_c(p, s) - E_v(p, s))/\hbar$ (see Fig. 1b) for the electrons with quasi-momentum $p = 0$ in the sub-band $s = 9$, where

$$
E_{c,v}(p, s) = \pm \gamma_0 \sqrt{1 + 4 \cos \left(\frac{3pb}{2\hbar} \right) \cos \left(\frac{\pi s}{m} \right) + 4 \cos^2 \left(\frac{\pi s}{m} \right)}
$$

International Conference on Theoretical Physics Dubna-Nano 2010 IOP Publishing
Journal of Physics: Conference Series 248 (2010) 012015 doi:10.1088/1742-6596/248/1/012015
© 2010 IOP Publishing Ltd
is the electrons dispersion law, $\gamma_0 = 2.7 \text{ eV}$, p is the electron quasi-momentum, indices c,v stand for the conduction and valence bands, respectively. In $(m,0)$ SWNT both conduction and valence bands are split on $2m$ sub-bands [11], designated by index $s = 1, \ldots, 2m$. First Brillouin zone in the SWNT is defined by the condition $-\pi \hbar/3b < p \leq \pi \hbar/3b$, $b = 0.142 \text{ nm}$.

![Figure 1](image)

Figure 1. (a) Schematic representation of $(14,0)$ SWNT (black cylinder) illuminated by the electromagnetic pulse $E(t)$ of the form defined by Eq. (1). (b) Band structure of $(14,0)$ SWNT in the vicinity of the Fermi level.

3. Evolution of the dynamical inversion

To study the SWNT response on the applied electromagnetic field we solve numerically kinetic equations for the density matrix $\rho_{\alpha\beta}(t,p,s)$ of π-electrons in SWNT [3, Eq. (1)]

\[
\frac{\partial \rho_{\alpha\beta}(t,p,s)}{\partial t} + e E(t) \frac{\partial \rho_{\alpha\beta}(t,p,s)}{\partial p} = - \frac{\rho_{\alpha\beta}(t,p,s) - \rho^{eq}(p,s)}{T_1} + \frac{2ie}{\hbar} E(t) R_{cv}(p,s)(\rho_{cv}(t,p,s) - \rho_{cv}(t,p,s)),
\]

or

\[
\frac{\partial \rho_{cv}(t,p,s)}{\partial t} + e E(t) \frac{\partial \rho_{cv}(t,p,s)}{\partial p} = - \left(\frac{1}{T_2} + i \omega_{cv}(p,s) \right) \rho_{cv}(p,s) - \frac{i e}{\hbar} E(t) R_{cv}(p,s) \rho_{nv}(t,p,s),
\]

where $T_{1,2} = 40 \text{ fs}$ is the electron relaxation time, $R_{cv}(p,s)$ is the normalized matrix elements of the dipole momentum operator, $\rho_{nv}(t,p,s) = \rho_{cv}(t,p,s) - \rho_{cv}(t,p,s)$ is the dynamical inversion.

Results of calculations are presented in Fig. 2 for $(14,0)$ SWNT illuminated by the electromagnetic field defined by Eq. (1). We restrict our consideration to sub-band $s = 9$ and only small part ($-0.3 \leq p \leq 0.3$) of first Brillouin zone of the SWNT corresponding to the electron interband transitions frequencies $\omega_{cv}(p,s)$ that are close to the carrier frequency ω_0 of the pulse. As one can see, for low intensities of the driving field (Fig. 2a,b) the dynamical inversion increases while the pulse is switched on and decreases exponentially after the pulse passage due to the relaxation effects. The slight inversion oscillations with the frequency equals to the carrier frequency of the pulse is due to the intraband electrons motion. With the pulse intensity increase (Fig. 2c,d) we observe that high frequency oscillations with the period T_0 are superimposed by the low frequency oscillations with the oscillations period T_R. These are so-called Rabi oscillations of the inversion that are due to the electron transitions between the valence and conduction bands.
current density spectra with the frequencies increase of the intensity leads to the appearance of the additional spectral lines in the induced field intensity increase, i.e. the SWNT-electromagnetic field interaction is saturated. Further between the SWNT and external electromagnetic field occurs in the saturation regime (Fig. 3a) the value of the induced current is approximately proportional to the electric field strength, i.e. \(|j(\omega_0)| \sim E_0 \). For the driving field intensities exceeding \(10^9 \) W/cm\(^2\) the interaction between the SWNT and external electromagnetic field occurs in the saturation regime (Fig. 3b). In this regime the value of the induced electric \(|j(\omega_0)|\) varies very slow with the electric field intensity increase, i.e. the SWNT-electromagnetic field interaction is saturated. Further increase of the intensity leads to the appearance of the additional spectral lines in the induced current density spectra with the frequencies \(\omega_0 \pm \Omega_R \). The origin of these lines are the Rabi oscillations of the dynamical inversion presented on Fig. 2c,d and \(\Omega_R \) is the Rabi frequency.

4. Surface current density

We also calculated the surface current density induced in the SWNT by the external electromagnetic field defined by Eq. (1)

\[
j(t) = \frac{e}{2\pi^2 h R_{cn}} \sum_{k=1}^{2m} \left(\frac{\partial \mathcal{E}_k(p, s)}{\partial p} \rho_{\text{inv}}(t, p, s) + i \omega_{\text{exc}}(p, s) R_{\text{exc}}(p, s)(\rho_{\text{exc}}(t, p, s) - \rho_{\text{exc}}(t, p, s)) \right) dp, \tag{5}
\]

where integration is performed over the first Brillouin zone of the SWNT. The spectra of the induced current density \(j(t) \) are presented on Fig. 3.

5. Conclusions

Concluding, we have studied the single-wall carbon nanotube (SWNT) interaction with the short high-intensive electromagnetic pulse whose carrier frequency is in the resonance with the frequency of the electron interband transitions in the SWNT. To describe the dynamics of the electron sub-system in the SWNT we use kinetic equations for the electron density matrix. These
Figure 3. (a)-(c) Spectra $|j(\omega)|$ of the surface current density $j(t)$ induced in (14,0) SWNT by electromagnetic field defined by Eq. (1); Ω_R is the Rabi frequency. (d) Intensity dependence of the spectral component $|j(\omega_0)|$ of the induced current.

equations have been solved numerically and the density of the surface current induced on the SWNT surface by the external electromagnetic field has been calculated. We have demonstrated that for the pulse intensities of order 10^9 W/cm^2 SWNTs interaction with pulse occur in the saturation regime. However, for the pulse intensities higher that 10^{10} W/cm^2 Rabi oscillations of the inversion have been predicted. The triplet Mollow in the spectra of the induced current density has been demonstrated.

Acknowledgments

This research was partially supported by the Belarus Republican Foundation for Fundamental Research (BRFFR) under projects F10R-002, F10CO-020 and young scientists grant F09M-071, and EU FP7 under projects FP7-230778 TERACAN, FP7-247007 CACOMEL and FP7-266529 BY-NanoERA.

References

[1] Wang J, Chen Y and and Blau W J 2009 J. Mat. Chem. 19 7425
[2] Margulis VI A and Sizikova T A 1998 Physica B 245 173
[3] Nemilentsau A M, Slepyan G Ya, Krutchinskii A A and Maksimenko S A 2006 Carbon 44 2246
[4] Zariﬁ A, Fisker C and Pedersen T G 2007 Phys. Rev. B 76 045403
[5] Slepyan G Ya, Maksimenko S A, Kalosha V P, Herrmann J, Campbell E E B, and Hertel I V 1999 Phys. Rev. A 60 R777
[6] Slepyan G Ya, Krutchinskii A A, Nemilentsau A M, Maksimenko S A and Herrmann J 2004 Int. J. Nanosci. 3 343
[7] Rozhin A G, Sakakibara Y, Kataura H, Matsuzaki S, Ishida K, Achiba Y and Tokumoto M 2005 Chem. Phys. Lett. 405 288
[8] Solodyankin M A, Obraztsova E D, Lobach A S, Chernov A I, Tausenev A V, Konov V I, Dianov E M 2008 Opt. Lett. 33 1336
[9] Tritschler T, Miicke O D and Wegener M 2003 Phys. Rev. B 68 033404
[10] Golde D, Meier T and Koch S W 2008 Phys. Rev. B 77 075330
[11] Reich S, Thomsen C and Maultzsch J 2004 Carbon Nanotubes: Basic Concepts and Physical Properties (Weinheim: Wiley-VCH)