Taxonogenomics description of Bacillus dakarensis sp. nov., Bacillus sinesaloumensis sp. nov. and Bacillus massiliogabonensis sp. nov., three new species isolated from human stools

M. Sarr1,4, C. I. Lo2,3, M. L. Tall1,2, A. Fadlane1,4, B. Senghor1,4, C. Sokhna1,4, D. Raoult1,2, M. Million1,2 and F. Fenollar2,3

1) Aix Marseille Université, IRD, AP-HM, ME VI, 2) IHU-Méditerranée Infection, 3) Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France and 4) Campus Commun UCAD-IRD of Hann, Dakar, Senegal

Abstract

Using microbial culturomics, three Bacillus strains were isolated, identified and characterized following the taxonogenomics strategy. Bacillus dakarensis strain Marseille-P3515T (=CSURP3515), Bacillus sinesaloumensis strain Marseille-P3516T (=CSURP3516), and Bacillus massiliogabonensis strain Marseille-P2639T (=CSURP2639) were isolated from human stool samples. The phylogenetic analysis, phenotypic characteristics and genotypic data presented here prove that these three bacteria are different from previously known bacterial species with standing in nomenclature and represent new Bacillus species.

Keywords: Africa, Bacillus sp., culturomics, human stool, taxonogenomics

Original Submission: 10 January 2020; Revised Submission: 12 May 2020; Accepted: 17 June 2020

Introduction

Genus Bacillus was created in 1872 by Ferdinand Julius Cohn [1]. To date, there are 379 species and seven subspecies with validly published names. Most Bacillus species are environmental bacteria found in food, soil, freshwater and the sea. Other Bacillus species may be saprophytic [2] or endophytic on plants [3]. Two species are important in public health, namely Bacillus cereus (associated with food poisoning) and Bacillus anthracis (responsible for anthrax) [4,5].

Bacteria involved in normal physiological functions and with a predisposition to human diseases should be studied for better understanding [6]. The culturomics method that isolates bacteria under different culture conditions is complemented in our laboratory by the systematic sequencing of the 16S rRNA gene, which allows us to explore the microbial diversity of the human gut [7–9]. The new species, which we report here, were described using a combination of genotypic and phenotypic characteristics, following a previously described taxonogenomics strategy [10,11].

We present the details of the isolation and taxonogenomics characterization of strain Marseille-P3515T, strain Marseille-P3516T and strain Marseille-P2639T as type strains of Bacillus dakarensis sp. nov., Bacillus sinesaloumensis sp. nov. and Bacillus massiliogabonensis sp. nov., respectively.

Isolation and growth conditions

In 2016, three stool samples were collected with the aim of studying halophilic bacteria involved in human gut functioning [12]. Marseille-P3515T and Marseille-P3516T were isolated from the stool samples of a 17-year-old boy and a 10-year-old girl, respectively, both living in Ndiop, a rural area in Senegal. Strain Marseille-P2639T was isolated from the stool sample of a 16-year-old boy living in Gabon. After numerous attempts at identification by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, no reliable
recognition was obtained for the three strains. The screening was performed on a Microflex LT spectrometer (Bruker Daltonics, Bremen, Germany) as previously described [13]. The spectra obtained (Fig. 1) were imported into MALDI Biotyper 3.0 software and analysed against the Bruker database, which is permanently improved with the MEPHI database (https://www.mediterrane-infection.com/urms-data-base). The strains (Marseille-P3515T, Marseille-P3516T and Marseille-P2639T) were first isolated after 1–2 days of preculture of stool samples in aerobic conditions in blood-culture bottles enriched with 5% rumen fluid sterilized by filtration at 0.2 μm and seeded on 5% sheep-blood Columbia agar (bioMérieux, Marcy l’Etoile, France) under aerobic conditions at 37°C.

Strain identification

After missing identification using MALDI-TOF, the 16S rRNA genes for each strain were sequenced to classify these bacteria. These genes were amplified using universal primer pairs fD1 and rP2 (Eurogentec, Angers, France) and sequenced with the Big Dye® Terminator v1.1 Cycle Sequencing Kit and 3500xL Genetic Analyzer capillary sequencer (Thermo Fisher, Saint-Aubin, France), as previously described [14]. CodonCode Aligner software was used for assembly and to correct the 16S rRNA nucleotide sequences (http://www.codoncode.com). The sequences of each strain were submitted for BLAST in the NCBI database to determine the phylogenetically closest species with standing in nomenclature. It is in this context that we found that strain Marseille-P3515T exhibited a 97.96% sequence identity with Bacillus circulans strain NBRC 13626 (GenBank Accession no.: AJ724690), strain Marseille-P3516T showed a 98.51% sequence identity with Bacillus humi strain LMG 22167 (AJ627210), and strain Marseille-P2639T displayed 98.41% sequence identity with Bacillus ciccensis strain 105-2 (KP965576). These values are below the threshold value recommended (<98.7% sequence similarity of the 16S rRNA gene) by authors to delineate new bacterial species within a genus without performing DNA–DNA hybridization [15,16]. Based

FIG. 1. MALDI-TOF MS reference spectrum of the three new species described above. The reference spectra were generated by comparison of spectra from 12 individual colonies for each species.
on this observation, we declare that these strains are new members of the genus Bacillus belonging to the family Bacillaceae within the phylum Firmicutes (Fig. 2).

Phenotypic characteristics

The strains from Senegal were easily grown in an aerobic atmosphere. Apparent colonies were obtained after 24 h of incubation at 37°C on 5% sheep’s blood–Columbia agar medium (bioMérieux). Strains Marseille-P3515^T^ and Marseille-P3516^T^ were recovered from human stool sample from a Senegalese village named Ndiop. Their colonies appear rounded, beige and shiny with a mean diameter of 1.2 mm. Cells were Gram-positive bacteria, rod-shaped and catalase positive. In addition, the oxidase reaction test was positive for these two strains, which were mobile and spore forming. These strains were cultured on halophilic media with NaCl concentrations of 50, 75, 100 and 150 g/L of NaCl. In parallel, the growth of bacteria was tested on media at different pH (pH 6, 6.5, 7, 7.5 and 8).

Tests have shown that the two strains grow better in 48 h at pH 7.5, at 75 g/L of NaCl and 37°C. These data indicate that strains Marseille-P3515^T^ and Marseille-P3516^T^ are halophilic bacteria.

Strain Marseille-P2639^T^ was endospore forming and motile. It was a Gram-negative bacterium that exhibited catalase activity. Bacterial cells did not have an oxidase reaction. They measured 3.7 μm in length and 0.8 μm in diameter. Strain Marseille-P2639^T^ was an aerobic bacterium that grew between 23°C and 45°C in <1 day of incubation. Colonies of strain Marseille-P2639^T^ were white with a mean diameter of 3 mm on 5% sheep’s blood-enriched Columbia agar. Strain Marseille-P2639^T^ is a bacterium that weakly tolerates salt concentrations >50 g/L of NaCl but is able to grow on media with a pH ranging from 6 to 10. The optimal growth temperature is 37°C under aerobic conditions.

The shape of these bacteria was highlighted with the Tecnai G20 transmission electron microscope (FEI Company) (Fig. 3). The biochemical characteristics of these strains were tested using the API ZYM and API 50 CH strips (bioMérieux) and are
presented in Table 1. A comparative study of the differential characteristics of these strains with other closely related species is displayed in Table 2.

Genomic sequencing

Genomic DNA was extracted using the EZ1 biorobot (Qiagen, Courtaboeuf, France) with the EZ1 DNA tissue Kit and then sequenced using MiSeq technology (Illumina, San Diego, CA, USA) with the Nextera Mate Pair sample prep kit and Nextera XT Paired end (Illumina), as previously described [17]. The assembly was performed with a pipeline incorporating different softwares (VELVET [18], SPades [19] and SOAP DENOVO [20]), and trimmed data (MiSeq and TRIMMOMATIC [21] softwares) or untrimmed data (only MiSeq software). GAPCLOSER was used to reduce assembly gaps. Scaffolds <800 bp and scaffolds with a depth value < 25% of the mean depth were removed. The best assembly was selected using different criteria (number of scaffolds, N50, number of N). The degree of genomic similarity of these three strains with closely related species was estimated using ORTHOANI software [22]. ORTHOANI values among Bacillus species (Fig. 4) ranged from 68.03% between Bacillus acidocaldarius and B. humi to 88.91% between B. ciccensis and B. massiliogabonensis. These values were <95%, the threshold value suggested for delineating new bacterial species in an ORTHOANI comparison [23].

Genome properties

The genome of strain Marseille-P3515T is 5 482 351 bp long with 38.6 mol% G + C content (Table 3). It is composed of 11 scaffolds (composed of 62 contigs). Of the 5282 predicted genes, 5040 are protein-coding genes and 242 are RNAs (15 genes are 5S rRNA, 7 genes are 16S rRNA, 9 genes are 23S rRNA, 211 genes are tRNA genes). A total of 3600 genes (71.43%) were assigned as putative function (by cogs or by NR blast); 206 genes were identified as ORFans (4.09%). The remaining genes were annotated as hypothetical proteins (1014 genes, ≥20.12%).

Strain Marseille-P3516T has a genome size of 4 556 426 bp long with 37.9 mol% G + C content (Table 3). It is composed of three scaffolds with 26 contigs. Of the 4466 predicted genes, 4323 are protein-coding genes and 143 are RNAs. These RNA
genes are divided into 12 5S rRNA genes, 13 16S rRNA genes, 13 23S rRNA genes and 105 tRNA genes. Strain Marseille-P3516T possesses 3095 genes (71.59%) as putative function (by cogs or by NR blast) and 130 genes as ORFans (3.01%); 868 genes (20.08%) were annotated as hypothetical proteins.

The genome of strain Marseille-P2639T is 5 224 786 bp in length with 37.9 mol% G + C content and is composed of nine scaffolds with 69 contigs (Table 3). Overall, in 5234 predicted genes, 5045 genes encode proteins and 189 genes are RNAs (12 genes are 5S rRNA, 18 genes are 16S rRNA, 16 genes are

Table 1.

Phenotypic characterization of *Bacillus dakarensis* sp. nov., strain Marseille-P3515T, *Bacillus sinesaloumensis* sp. nov., strain Marseille-P3516T and *Bacillus massiliogabonensis* sp. nov., strain Marseille-P2639T sp. nov., based on analytical profile index (API) tests

Tests	Number	Characteristics	Marseille-P3515T	Marseille-P3516T	Marseille-P2639T
API ZYM	2	Alkaline phosphatase	−	−	+
	4	Esterase (C4)	+	+	+
	4	Esterase lipase (CB)	−	−	−
	5	Lipase (C14)	−	−	−
	6	Leucine arylamidase	−	−	−
	7	Valine arylamidase	−	−	−
	8	Cystine arylamidase	−	−	−
	9	Trypsin	−	−	−
	10	α-chymotrypsin	−	−	+
	11	Acid phosphatase	+	−	+
	12	Naphthol-AS-BI-phosphohydrolase	−	+	−
	14	β-galactosidase	−	−	−
	15	β-glucuronidase	−	−	−
	16	α-glucosidase	−	−	+
	17	β-glucosidase	−	−	+
	18	N-acetyl-β-glucosaminidase	−	−	+
	19	α-mannosidase	−	−	−
	20	α-fucosidase	−	−	−
API 50CH	1	Glycerol	−	+	−
	2	Erythritol	−	−	−
	3	D-arabinose	+	+	+
	4	L-arabinose	−	−	−
	5	D-ribose	−	−	−
	6	D-xylene	+	−	+
	7	L-xylene	−	−	−
	8	D-Adonitol	+	−	−
	9	Methyl β-D-xylopyranoside	−	−	+
	10	D-galactose	−	−	+
	11	D-glucose	−	−	+
	12	D-fructose	−	−	+
	13	D-mannose	−	−	+
	14	L-sorbose	−	−	+
	15	L-rhamnose	+	−	−
	16	Dulcitol	−	−	−
	17	Inositol	+	−	−
	18	D-mannitol	−	+	−
	19	D-sorbitol	+	−	−
	20	Methyl α-D-mannopyranoside	−	−	+
	21	Methyl α-D-glucopyranoside	−	−	+
	22	N-acetyl-D-glucosamine	−	−	+
	23	Amygdalin	−	−	+
	24	Arbutin	−	−	+
	25	Esculin ferric citrate	+	+	+
	26	Salicin	−	+	−
	27	D-xylobiose	−	+	−
	28	D-maltose	−	−	−
	29	D-lactose	−	−	−
	30	D-melibiose	+	−	−
	31	Sucrose	−	−	−
	32	D-trehalose	−	−	−
	33	Inulin	−	−	+
	34	D-melezitose	−	−	+
	35	D-raffinose	−	−	+
	36	Starch	−	−	−
	37	Glycogen	−	−	+
	38	Xylool	+	−	−
	39	Gentiobiose	−	−	−
	40	D-erythritol	−	−	−
	41	D-lyxose	+	−	−
	42	D-tagalose	−	−	−
	43	D-fucose	+	−	−
	44	L-fucose	−	−	−
	45	D-arabinol	+	−	−
	46	D-arabitol	−	−	+
	47	Potassium gluconate	−	−	+
	48	Potassium 2-ketogluconate	−	−	+
	49	Potassium 5-ketogluconate	−	−	+
23S rRNA, 143 genes are tRNA genes). A total of 3476 genes (68.9%) were assigned as putative function (by the cogs or by NR blast), 179 genes were recognized as ORFans (3.55%) and the remaining 1151 genes (22.81%) were annotated as hypothetical proteins.

The digital DNA–DNA hybridization between the genomes of three new Bacillus species and other available genomes of the phylogenetically closest species, was calculated using the Genome-to-Genome Distance Calculator online calculator with formula 2 (Table 4). A 70% threshold is fixed by Meier-

TABLE 2. Differential characteristics of Bacillus dakarensis strain Marseille-P3515T, Bacillus sinesaloumensis strain Marseille-P3516T and Bacillus massiliogabonensis strain Marseille-P2639T compared with Bacillus ndiopicus FF3T and Bacillus dielmoensis strain FF4T

Property	P3515T	P3516T	P2639T	FF3T	FF4T
Cell diameter (μm)	0.5–1	1–1.9	0.7–1	0.8–1.6	0.5–0.8
Oxygen requirement	Aerobic	Aerobic	Aerobic	Aerobic	Aerobic
Gram stain	+	+	+	+	+
Motility	+	+	+	+	+
Endospore formation	+	+	+	+	+
Production of:					
Alkaline phosphatase	–	–	–	–	–
Acid phosphatase	+	+	+	+	+
Catalase	+	+	+	+	+
Oxidase	+	+	+	+	+
β-Galactosidase	–	–	–	–	–
α-Glucosidase	+	+	+	+	+
Esterase	–	–	–	–	–
Esterase lipase	–	–	–	–	–
Naphthol-AS-BI-phosphohydrolase	–	–	–	–	–
N-acetyl-β-glucosaminidase	–	–	–	–	–
Utilization of:					
Potassium 5-ketogluconate	–	–	–	–	–
D-Xylose	+	+	+	+	+
α-Fructose	–	–	–	–	–
α-Glucose	–	–	–	–	–
β-P Mannose	–	–	–	–	–
Habitat	Human sample	Human sample	Stool sample	Human skin	Human skin

Note: +, positive result; –, negative result; NA, data not available.
Kolthoff et al., to differentiate two distinct species [24]. DNA–DNA hybridization values ranged from 21.5% between B. ciccensis and Bacillus firmus to 34.9% between Bacillus sinesaloumensis and Bacillus acidicola, which supported the previous data indicating the classification of these as a new bacterial species (Table 4). Likewise, repartition of genes into the 25 general COG categories is illustrated in Table 5 and Fig. 5. The average percentage nucleotide identity calculated using the Average Genomic Identity of Orthologous Gene Sequences (AGIOS) in-house software [10] and number of orthologous genes of B. dakarensis, B. sinesaloumensis and B. massiliogabonensis shared with others species are displayed in Table 6.

Conclusion

Based on unique phenotypic characteristics, including API test strips, MALDI-TOF spectra, and phylogenetic and genomic analyses such as 16S rRNA sequence similarity <98.7% and ORTHOANI values <95% with the phylogenetically closest species with standing in nomenclature, we propose strains Marseille-P3515T, Marseille-P3516T and Marseille-P2639T, respectively, as being the type strains of Bacillus dakarensis sp. nov., Bacillus sinesaloumensis sp. nov. and Bacillus massiliogabonensis sp. nov., which are new species in the genus Bacillus.

Description of Bacillus dakarensis sp. nov.

Bacillus dakarensis (da.ka.ren시스, N.L. masc. adj. dakarensis of Dakar, the name of the capital of Senegal where the stool sample was collected). The colonies of the strain appear beige and circular on blood agar with a mean diameter of 1.2 mm. The cells are mobile and spore-forming. They are Gram-positive bacilli and present positive oxidase and positive catalase activities. The draft genome size of strain Marseille-P3515T is about 5.33 Mb with a 38.6 mol% of G + C content. The 16S rRNA gene sequence and whole-genome shotgun sequence of B. dakarensis strain Marseille-P3515T were deposited in GenBank under accession numbers LT671589 and FTOZ00000000, respectively. The type strain Marseille-P3515T (=CSURP3515) was isolated from the stool sample of 17-year-old-boy living in Senegal.

Table 3. Nucleotide content and gene count levels of genomes of Bacillus dakarensis strain Marseille-P3515T, Bacillus sinesaloumensis strain Marseille-P3516T and Bacillus massiliogabonensis strain Marseille-P2639T

Attribute	B. dakarensis	B. sinesaloumensis	B. massiliogabonensis
Size (bp)	5482351	4556426	5224786
G + C content (bp)	5207335	4711281	1944649
Total of genes	5282	4466	5234
RNA genes	242	142	152
Coding sequence size (bp)	4474355	3886129	4337909
Protein-coding genes	504	4323	5045
Protein assigned to COGs	3246	2741	3063
Genes with peptide signals	595	478	561
Genes with transmembrane helices	1189	1183	1278
Genes associated with mobiotme	2147	1174	2068
Genes associated with virulence	951	790	948

Total is based on total number of protein-coding genes in annotated genome.

Table 4. Genome comparison between three new bacterial strains and closely related species using GGDC and formula 2 (dDDH estimates based on identities over HSP length), upper right. The inherent uncertainty in assigning dDDH values from intergenic distances is presented in the form of confidence intervals

	Bdk	Bmas	Bsin	Baci	Bcic	Bcir	Bfir	Bnov	Btim
Bdk	100%								
Bmas	24.3±4.8	27.5±4.9	28.4±4.9	24.5±4.8	28.5±4.9	22.7±4.7	24.3±4.8	23.2±4.8	
Bacin	31.5±4.9	32.1±4.9	34.9±4.9	32.7±4.9	33.9±4.9	27.3±4.9	29.3±4.9	29.3±4.9	
Bacin	100%								
Bacin	28.9±4.8	21.5±4.7	25.6±4.8	25.6±4.8	25.6±4.8	28.3±4.9	29.3±4.9	29.3±4.9	
Bacin	100%								
Bacin	32.6±4.9	32.6±4.9	32.6±4.9	32.6±4.9	32.6±4.9	32.6±4.9	32.6±4.9	32.6±4.9	
Bcin	100%								
Bcin	22.2±4.7	100%							
Bcin	22.6±4.7	100%							
Bcin	22.6±4.7	100%							
Bcin	22.6±4.7	100%							

© 2020 Published by Elsevier Ltd, WNNI, 37, 100718

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
TABLE 5. Number of genes associated with 25 general COG functional categories

Code	Bacillus sinesaloumensis	Bacillus dakarensis	Bacillus massiliogabonensis	Description
[J]	236 5.45	237 4.70	250 4.95	Translation
[A]	0 0	0 0	0 0	RNA processing and modification
[K]	219 5.06	217 4.30	255 5.05	Transcription
[L]	104 2.40	111 2.20	126 2.49	Replication, recombination and repair
[F]	1 0.02	1 0.01	1 0.01	Chromatin structure and dynamics
[D]	52 1.20	56 1.11	58 1.14	Cell cycle control, mitosis and meiosis
[Y]	0 0	0 0	0 0	Nuclear structure
[V]	79 1.82	58 1.15	98 1.94	Defence mechanisms
[T]	151 3.49	197 3.90	198 3.92	Signal transduction, mechanisms
[M]	122 2.82	132 2.61	139 2.75	Cell wall/membrane biogenesis
[N]	53 1.22	69 1.36	72 1.42	Cell motility
[Z]	0 0	0 0	1 0.01	Cytoskeleton
[W]	8 0.18	9 0.17	8 0.15	Extracellular structures
[U]	29 0.67	40 0.79	34 0.67	Intracellular trafficking and secretion
[O]	113 2.61	128 2.53	149 2.95	Post-translational modification, protein turnover, chaperones
[X]	6 0.60	32 0.63	66 1.30	Mobosome: prophages, transposons
[C]	167 3.86	254 5.03	208 4.12	Energy production and conversion
[G]	294 6.80	245 4.86	201 3.98	Carbohydrate transport and metabolism
[E]	291 6.73	368 7.30	329 6.52	Amino acid transport and metabolism
[F]	100 2.31	94 1.86	111 2.20	Nucleotide transport and metabolism
[H]	156 3.60	187 3.71	178 3.52	Coenzyme transport and metabolism
[J]	158 3.65	345 6.84	160 3.17	Lipid transport and metabolism
[P]	172 3.97	237 4.70	227 4.49	Inorganic ion transport and metabolism
[Q]	81 1.87	164 3.25	98 1.94	Secondary metabolites biosynthesis, transport and catabolism
[R]	278 6.43	363 7.20	300 5.94	General function prediction only
[S]	230 5.32	220 4.36	239 4.73	Function unknown
-	1582 36.59	1794 35.59	1982 39.28	Not in COGs

COG, cluster of orthologous groups.

FIG. 5. Distribution of functional classes of predicted genes according to the COG of proteins of Bacillus dakarensis strain Marseille-P3515T, Bacillus sinesaloumensis strain Marseille-P3516T and Bacillus massiliogabonensis strain Marseille-P2639T among other related Bacillus species.
Description of Bacillus sinesaloumensis sp. nov.

Bacillus sinesaloumensis (si.ne.sa.lou.men’sis, N.L. masc. adj. sinesaloumensis of Sine-Saloum, a former administrative region of Senegal where the village of Ndiop is located, from which this strain was sampled). Colonies grow on 5% sheep blood Columbia agar plate after 24 h of incubation under aerobic conditions. They are shiny, beige and 2 mm in diameter. The cells are Gram-positive bacteria, mobile and spore-forming. Oxidase and catalase activities were positive. The DNA G + C content of the type strain is 37.9 mol% in a genome sequence length of 4.52 Mb. Its type strain, Marseille-P3516T (=CSURP3516T), was isolated from a 10-year-old girl from Ndiop, a rural area in Senegal.

Description of Bacillus massiliogabonensis sp. nov.

Bacillus massiliogabonensis (mas.si.li.ga.bo.nen’sis: NL. masc. adj. a composed name designating Marseille and Gabon, the city and the country where the strain and the stool specimen was characterized and collected, respectively). The strain grows at temperatures ranging from 23°C to 45°C in aerobic conditions with an optimum temperature of 37°C. Colonies with a white aspect had a mean diameter of 3 mm on blood agar medium. The strain Marseille-P2639T is a Gram-negative bacterium and exhibits positive catalase and negative oxidase activities. The genome of the Marseille-P2639T strain was 5.13 Mb with 37.9 mol% of G + C content. The potential pathogenicity of the type strain Marseille-P2639T (=CSURP2639) is unknown. It was isolated from the stool sample of a healthy 16-year-old Gabonese boy.

Nucleotide sequence accession number

Table 7 shows the 16S rRNA gene and genome sequence accession numbers deposited in GenBank for these three new bacterial species:

Conflict of interest

None to declare.

Funding sources

This study was supported by the Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, the National Research Agency under the programme Investissements d’avenir, reference ANR-10-IAHU-03, the Région Provence-Alpes-Côte d’Azur and European funding FEDER PRIMI.
Ethics and consent

The study and consent procedures were approved by the ethics committee of the Institut Hospitalo-Universitaire Méditerranée Infection (No. 2011-11), the National ethics committee of Gabon (No. 0023/2013/SG/CNE) and IFR48 of Marseille France (No. 09-022). The volunteers gave a written consent.

Acknowledgements

The authors thank Catherine Robert for sequencing the genome, Aurelia Caputo for submitting the genomic sequence to GenBank and Carine Couderc for producing the MALDI-TOF reference spectrum.

References

[1] Cohn F. Untersuchungen über Bakterien. Beiträge zur Biologie der Pflanzen Heft. 1872:1:127–224.
[2] Lopez MS, Hoedde MK, Chamakura KR, Kuty Everett GF. Complete genome of Bacillus megaterium podophage page. Genome Announc 2014;2(2):e00332-14.
[3] Zhang YZ, Chen WF, Li M, Sui XH, Liu HC, Zhang XX, et al. Bacillus endoradicis sp. nov., an endophytic bacterium isolated from soybean root. Int J Syst Evol Microbiol 2012;62:359–63.
[4] Jernigan JA, Stephens DS, Ashford DA, Omenaca C, Topiel MS, Gallraith M, et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 2001;7:933–44.
[5] Bottone EJ. Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 2010;23:382–98.
[6] Turnbaugh PJ, Ley RE, Harnady M, Fraser-Liggets CM, Knight R, Gordon JI. The human microbiome project. Nature 2007;449:804–10. Available at: https://www.nature.com/articles/nature06244.
[7] Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012;18:1185–93.
[8] Lagier JC, Hugon P, Khelafia S, Fournier PE, La Scala B, Raoult D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015;28:237–64.
[9] Lagier JC, Khelafia S, Alou MT, Ndongo S, Dione N, Hugon P, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016;1:16203.
[10] Ramasamy D, Mishra AK, Lagier JC, Padmanabhan R, Rossi M, Sentausa E, et al. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 2014;64:384–91.
[11] Fournier PE, Lagier JC, Dubourg G, Raoult D. From culturomics to taxonomogenomics: a need to change the taxonomy of prokaryotes in clinical microbiology. Anaerobe 2015;36:73–8.
[12] Seck EH, Diop A, Armstrong N, Delerue J, Fournier PE, Raoult D, et al. Microbial culturomics to isolate halophilic bacteria from table salt: genome sequence and description of the moderately halophilic bacterium Bacillus solis sp. nov. New Microbe. New Infect 2018;23:28–38.
[13] Lo CI, Fall B, Sambe-Ba B, Diawara S, Gueye MW, Mediannikov O, Sokhra C, et al. MALDI-TOF mass spectrometry: a powerful tool for clinical microbiology at Hôpital Principal de Dakar, Senegal (West Africa). PLoS One 2015;10(12):e0145889.
[14] Morel AS, Dubourg G, Prudent E, Edouard S, Gouriet F, Casalta JP, et al. Complementarity between targeted real-time specific PCR and conventional broad-range 16S rDNA PCR in the syndrome-driven diagnosis of infectious diseases. Eur J Clin Microbiol Infect Dis 2015;34:561–70.
[15] Meier-Kolthoff JP, Goker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 2013;195:413–8.
[16] Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–5.
[17] Lo CI, Sankar SA, Fall B, Ba BS, Diawara S, Gueye MW, et al. High-quality draft genome sequence and description of Haemophilus massiliensis sp. nov. Stand Genom Sci 2016;11:31.
[18] Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18:821–9.
[19] Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–77.
[20] Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012;1:18.
[21] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
[22] Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2015;66:1100–3.
[23] Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106(45):19126–31.
[24] Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013;14:60.