Analysis of highly charged ion states in a simplified HFD approximation

V A Kilin
Tomsk Polytechnic University, Lenin 30 av., 634050 Tomsk, Russian Federation
vak@tpu.ru

Abstract. The analysis of calculating the total and single electron energies of a sequence of highly charged Li - and Be - like ions in Hartree-Fock-Dirac (HFD) approximation is presented. It is ascertained an unexpected order of location of some energy levels at $Z>50$ for both the ground and the excited configurations. Possible reasons of such deviations are discussed from theoretical and computational points of view.

1. Introduction
The data on energy levels and wave functions of heavy highly charged ions is very important in different physical theoretical models and experimental applications. As an example, one could point out the processes of channeling such ions through a crystal lattice [1-3]. Due to strong Coulomb interaction with the crystal lattice periodic potential field the ion electrons could be transferred to some excited states. Post channeling, high-energy photons should be radiated due to transitions to the lower-lying states. The analysis of registered photon spectra may be helpful in revealing the essence of both the channeling process physical mechanisms and the details of multi-dipole crystalline field potential exciting ionic electrons.

2. Elements of theory
Here we do not describe the basic of well-known HFD approximation (see, e.g. [4]) but present some specific features which may be useful in the below discussion of the obtained results.

In atomic calculations, the total wave function is the determinant of single-electron wave functions. They could be found by solving the system of simultaneous integro-differential equations under the condition of minimum of total energy.

The single-electron wave function $\phi_i(\vec{r}, \sigma)$ of a bound electron i has a form of Dirac bispinor

$$\chi_i(\vec{r}, \sigma) = \frac{1}{\beta} \left\{ \frac{F_{\kappa}(r)}{i \alpha_0 G_{\kappa}(r)} \Omega_{j_1 j_2}(\vec{n}) \right\}.$$ \hspace{1cm} (1)

Here $F_{\kappa}(r)$ is the large component and $G_{\kappa}(r)$ is the small component of the wave function radial part, $\Omega_{j_1 j_2}(\vec{n})$ and $\Omega_{j_1' j_2'}(\vec{n}) = -(\vec{\sigma}, \vec{n})\Omega_{j_1 j_2}(\vec{n})$ present the spin-angular parts, correspondently, $\alpha_0 = 1/c$ is the fine structure constant, n is the electron principal quantum number, j and l are the total and orbital electron momenta, κ is the “effective” orbital momentum defined as follows:
By variation procedure, the following simultaneous equations could be derived [5] (atomic units are used, \(\hbar = m = e = 1 \), energy in Ry) in the form

\[
\kappa = \begin{cases}
-(j + 1/2) = -(l + 1) & \text{if } l = j - 1/2 \\
 j + 1/2 & \text{if } l = j + 1/2
\end{cases}.
\]

(2)

By variation procedure, the following simultaneous equations could be derived [5] (atomic units are used, \(\hbar = m = e = 1 \), energy in Ry) in the form

\[
F_i(r) + \frac{\kappa}{r} F_i(r) - [2 + \alpha_0^2(\hat{\varepsilon}_i - U_i(r))] G_i(r) = -\frac{\alpha_0^2}{r} \sum_{k,j \neq i} D(i,j,k) \hat{Y}_j^k G_j(r)
\]

(3)

\[
G_i'(r) - \frac{\kappa}{r} G_i(r) + (\hat{\varepsilon}_i - U_i(r)) F_i(r) = \frac{1}{r} \sum_{k,j \neq i} D(i,j,k) \hat{Y}_j^k F_j(r).
\]

(4)

Here \(i = n \kappa, j = n' \kappa' \) run over all atomic subshells, \(U_i(r) \) is the self-consisted potential in which the electrons of a subshell \(i \) move, \(\hat{\varepsilon}_i = \varepsilon_{ii} \) is the single electron energy. The terms with non-diagonal parameters \(\varepsilon_{ij} \), responsible for the wave functions orthogonality, are equal to zero for closed shells and rather small for the ground states of most atoms [5,6]. Therefore they are omitted in the above equations (3) and (4). Additional simplification done in (3) and realized in the computer codes ATOM [7] used in our calculation is the neglect of the right hand side term in (3). This term stands for correcting the single electron energies and wave functions because of so-called “exchange in small components”. Estimations show that this neglect results in inaccuracy of 0.1% for the most inter shells and of 0.01% for outer shells [8].

3. Main results and discussion

Here we present some results on the total and single-electron energies for \(Li^- \), \(Be^- \) like ions in the nuclear charge range \(Z \) up to 100 calculated in HFD approximation simplified as mentioned above. Computer codes ATOM [7] have been used.

Since the single-electron wave functions of a highly charged ion are expected to be strongly localized nearby a nuclear, the radial variable \(r \) variation is restricted by a value of \(R=20 \) a.u. The wave functions are calculated at 600 points of \(r \). LSJ approximation is used in calculating spin-angular coefficients in equations (1) and (2). The total and single electron energies as functions of nuclear charge \(Z \), (increment \(\Delta Z=10 \)) are listed in tables below.

The below presented analysis of the obtained results is intended to reveal some unexpected features, along with standard ones, which may be a subject of the discussion on simplified theoretical approximations used in the research of extra-ordinary objects such as highly charged ions.

3.1. Be-like ion configurations 1s\(^2\) 2s\(^2\) 1s\(^2\) 2s 2p and 1s\(^2\)2p\(^2\)

The analysis of results presented in tables 1-3 for Be-like ions of ground 1s\(^2\) 2s\(^2\), excited 1s\(^2\) 2s\(^1\)2p\(^1\) and doubly excited 1s\(^2\) 2p\(^2\) configurations reveals the following:

(a) the relationship between the total energies of mentioned above configurations in the nuclear charge \(Z \) range up to 100 corresponds to the expected usual sequence, i.e., \(E_{1s}^\text{1s} < E_{1s}^\text{1s}\!\!\!1s < E_{1s}^\text{1s}2s < E_{1s}^\text{1s}2s2p < E_{1s}^\text{1s}2s2p^2 \);

(b) the single electron energies \(\varepsilon_{1s} \) of the most inner sub-shell 1s also follows the above relationship, except for \(Z=4 \);

(c) the single electron energies \(\varepsilon_{2s} \) of 1s\(^2\) 2s\(^2\) and 1s\(^2\) 2s\(_{1/2}\) 2p\(_{1/2}\) configurations also follows the above relationship up to \(Z=50 \) but then changes it to the inverse one;

(d) the single electron energies \(\varepsilon_{2p} \) of 1s\(^2\) 2s\(_{1/2}\) 2p\(_{1/2}\) and 1s\(^2\) 2p\(^2\) configurations follows the relationship (a) for all values of \(Z \);

(e) for configurations 1s\(^2\) 2s\(^2\), 1s\(^2\) 2s\(_{1/2}\) 2p\(_{1/2}\) and 1s\(^2\) 2p\(^2\) the single electron energies show an expected usual relationship \(\varepsilon_{2s} < \varepsilon_{2p} \) for all values of \(Z \).
Table 1. The total \(E_{\text{tot}} \) and single electron energies \(\varepsilon \) of Be 1s\(^2\) 2s\(^2\) (in Ry).

\(Z \)	\(E_{\text{tot}} \)	\(\varepsilon_{1s} \)	\(\varepsilon_{2s} \)
4	-29.152	-9.467	-0.619
10	-220.509	-81.177	-15.002
20	-944.020	-362.452	-79.490
30	-2186.007	-850.315	-195.826
40	-3973.058	-1554.007	-366.575
50	-6348.905	-2488.496	-595.730
60	-9380.383	-3676.653	-889.147
70	-13166.178	-5152.791	-1255.275
80	-17850.796	-6968.754	-1706.445
90	-23649.073	-9205.204	-2261.262
93	-25651.055	-9975.930	-2451.193
100	-30894.050	-11994.819	-2949.469

Table 2. The total \(E_{\text{tot}} \) and single electron energies \(\varepsilon \) of Be 1s\(^2\) 2s 2p (in Ry).

\(Z \)	\(E_{\text{tot}} \)	\(\varepsilon_{1s} \)	\(\varepsilon_{2s} \)	\(\varepsilon_{2p} \)
4	-29.029	-9.489	-0.789	-0.483
10	-219.725	-80.740	-15.394	-14.213
20	-942.128	-361.278	-0.723	-0.123
30	-2182.934	-368.837	-196.917	-192.720
40	-3968.680	-1551.228	-368.006	-362.113
50	-6343.036	-2484.782	-597.490	-589.680
60	-9372.764	-3671.857	-891.218	-881.167
70	-13156.451	-5146.708	-1257.633	-1244.865
80	-17838.462	-6961.088	-1709.053	-1692.860
90	-23633.424	-9195.521	-2264.061	-2243.343
93	-25634.227	-9965.527	-2454.772	-2432.389
100	-30874.022	-11982.455	-2952.365	-2925.305

Table 3. The total \(E_{\text{tot}} \) and single electron energies \(\varepsilon \) of Be 1s\(^2\) 2p\(^2\) (in Ry).

\(Z \)	\(E_{\text{tot}} \)	\(\varepsilon_{1s} \)	\(\varepsilon_{2p} \)
4	-28.591	-9.676	-0.389
10	-217.436	-80.321	-13.337
20	-936.705	-359.784	-75.376
30	-2174.269	-845.760	-189.142
40	-3956.589	-1547.422	-357.115
The analysis of results presented in tables 4 and 5 for the Li-like ground 1s\(^2\) 2s and excited 1s\(^2\) 2p\(^{1/2}\) configurations show the following:

(a) the relationship between the total energies of Li-like ions in the nuclear charge range \(Z\) up to 50 corresponds to the expected usual sequence, i.e., \(E_{\text{tot}}(1s^2 2s) < E_{\text{tot}}(1s^2 2p^{1/2})\), but unexpectedly changes the relationship to the inverse one for \(Z > 50\);

(b) the single electron energies \(\varepsilon_{1s}\) of the most inner sub-shell 1s follows the relationship (b) for Be, except for \(Z = 3\);

(c) starting from \(Z > 50\) the single electron energies of configurations 1s\(^2\) 2s and 1s\(^2\) 2p\(^{1/2}\) reveal an unexpected relationship \(\varepsilon_{2s} > \varepsilon_{2p}\).

The latter statement (c) probably serves as one of the reasons responsible for the relationship formulated in (a).

Table 4. The total \(E_{\text{tot}}\) and single electron energies \(\varepsilon\) of Li 1s\(^2\) 2s (in Ry).

\(Z\)	\(E_{\text{tot}}\)	\(\varepsilon_{1s}\)	\(\varepsilon_{2p}\)
3	-14.867	-4.956	-3.93
10	-205.531	-84.460	-17.565
20	-864.562	-369.787	-85.101
30	-1990.169	-861.810	-204.523
40	-3606.146	-1569.856	-378.342
50	-5751.687	-2508.995	-610.346
60	-8486.766	-3702.238	-905.911
70	-11900.010	-5184.111	-1272.538
80	-16121.245	-7006.824	-1720.790
90	-21343.487	-9251.739	-2266.009
100	-27865.795	-12053.041	-2931.715

Table 5. The total \(E_{\text{tot}}\) and single electron energies \(\varepsilon\) of Li 1s\(^2\) 2p\(^{1/2}\) (in Ry).

\(Z\)	\(E_{\text{tot}}\)	\(\varepsilon_{1s}\)	\(\varepsilon_{2p}\)
3	-14.748	-5.014	-2.74
10	-204.838	-84.138	-16.881
20 -863.105 -369.072 -83.648
30 -1987.987 -860.673 -202.272
40 -3603.610 -1568.233 -375.357
50 -5750.060 -2506.778 -607.029
60 -8489.173 -3699.245 -903.473
70 -11912.993 -5180.015 -1273.900
80 -16157.267 -7000.978 -1732.334
90 -21425.097 -9242.708 -2301.129
92 -22626.508 -9751.837 -2431.077
100 -28033.001 -12037.293 -3018.681

4. Conclusion
Firstly, it should be mentioned that calculated in the same approximation energies of exited Li-like 1s² 2p½ ion states, which are not presented here, show a usual behavior of the excited state energies with respect to corresponding ground configuration 1s² 2s for all values of Z.

Secondly, it could be assumed that the mentioned unusual energy positioning of Li-like ion states for Z>50 does not have any real physical reasons but mainly arises from the simplifications of HFD approximation realized in the used computer codes [7]. To obtain the highly charged ion energy levels with an accuracy closed to spectroscopic one, approximations that are more exact should be used.

5. Acknowledgements
The author thanks to Prof. Yu. Pivovarov and E. Sinitsin, Tomsk Polytechnic University, who stimulated this investigation for using the results in studying the channeling of ions through a crystal.

References
[1] Babaev A, Pivovarov Yu L. 2012 Computer Physics Communications 183 705
[2] Nakano Y, Sokolik A A., Stysin A V, Nakai Y, Komaki K, Takada E, Murakami T and Azuma T 2015 J. Phys. B: At. Mol. Opt. Phys. 48 144026
[3] Sinitsyn E A, Kilin V A , Pivovarov Y L 2015 Book of Abstracts of XI International RREPS-15 Symposium, Saint Petersburg
[4] Grant I P. 1970 Adv. Phys 19 747
[5] Lindgren I, Rosen A 1974 Case studies in Atomic Physics 4 № 3 105
[6] Hartree D 1960 Calculation of atomic structures (Moscow: Atomizdat, in Russian)
[7] Chernysheva L V and Amusia M Ya 1983 Automation System for Atomic Structure Researches (Leningrad: Nauka, in Russian)
[8] Fischer F 1970 Computer Physics Communications 1 151