Supplementary Information

GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis

Florence Verrier1,*, Songon An$^{2,#,*}$, Ann M. Ferrie1, Haiyan Sun1, Minjoung Kyoung3, Huayun Deng1, Ye Fang1,** and Stephen J. Benkovic2,**

1 Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, NY 14831
2 Department of Chemistry, Pennsylvania State University, University Park, PA 16802
3 Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305

* These authors contributed equally to the study.
** Correspondence should be addressed to Y.F. (email: Fangy2@corning.com) and S.J.B. (email: sjb1@psu.edu)
Current address: Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250

This PDF file includes:

Supplementary Methods

Supplementary Table 1
Supplementary Table 2

Supplementary Results

Supplementary Figures 1 to 7
1. Supplementary Methods

DMR profiling of HeLa cells using small molecules. To screen functional GPCRs in HeLa cells, a library of GPCR agonists consisting of 113 known GPCR agonists and two control compounds (forskolin and IBMX) was assembled. These agonists include endogenous and synthetic agonists, covering > 150 known GPCRs. Forskolin is an activator for adenylyl cyclases, and IBMX is non-selective phosphodiesterase inhibitors. Each compound with the highest possible purity was purchased individually from commercial vendors (**Supplementary Table 1**). All compounds were dissolved in DMSO, except for epinephrine, ATP, ADP, UTP and UDP which were dissolved in water. The compound storage plate was made by dispensing 2 µl of corresponding solution at a desired concentration into 96well deep volume compound source plates (Corning Inc.). The storage concentration was 10 mM for small organic molecules, and 1 mM for peptides and lipid molecules. All compound storage plates were stored at -80 °C. For screening, all compounds were directly diluted using 1x HBSS assay buffer, except for peptide and lipid molecules which were diluted using 1x HBSS containing 0.25% bovine serum albumin. All compound solutions were then transferred into 384well compound source plates (Corning Inc). The screening dose was 10 µM for small organic molecules and 1 µM for both peptide and lipid agonists. At least two independent measurements were carried out. For each independent measurement, each compound was assayed in duplicate. The rest 154 wells were used as controls. The real time DMR responses were obtained for each compound.

Supplementary Table 2 lists the information of all other compounds used in the present study.

RNA Interference. A small interfering RNA (siRNA) expression system was prepared using the psiRNAhH1GFPzeo vector (InvivoGen) according to the manufacturer’s protocol. To
specifically knock down the human CK2α catalytic subunit in HeLa cells, a DNA sequence of 5'-GTACCAGACGTTAACAGACTA-3' (siCK2α-1) generating short hairpin RNAs were inserted into the siRNA expression vector using restriction enzymes Acc65I and HindIII. siRNA transfection was monitored by a GFP marker present in the plasmid under fluorescence microscopy. The mock transfection was used as the controls. The efficiency of the siRNA knockdown was examined using immunoblotting of HeLa lysates obtained after 24 hr transfection and lysed in mammalian protein extraction reagent solution (Pierce) containing both protease inhibitor cocktail (Roche) and phosphatase inhibitor cocktail (Roche). Cell lysates then were loaded on SDS-PAGE gels and enhanced chemiluminescence signals were captured with the Fluor-S imaging system (Bio-Rad). The Western blotting was probed with commercially available anti-hCK2α antibody (C-18; Santa Cruz Biotechnology).

Supplementary Table 1. Information of a compound library used for identification of receptors whose signaling regulates purinosome dynamics.

Compound name	Receptor	Source	Catalog #	M.W.
Serotonin	5-HT receptors	Sigma	H9523	212.68
(S)-WAY 100135 dihydrochloride	5-HT1A	Tocris	1253	468.47
Ipsapirone	5-HT1A	Tocris	1869	401.48
L-694247	5-HT1D	Tocris	781	411.48
LY 334370 hydrochloride	5-HT1F	Tocris	3079	387.88
DOI hydrochloride	5-HT2A, 5-HT2B, 5HT2C	Tocris	2643	357.62
Ro 60-0175 fumarate	5-HT2B, 5-HT2C	Tocris	1854	342.75
RS 67506 hydrochloride	5-HT4	Tocris	990	454.41
CPA (2-Chloro-N6-cyclopentyl-adenosine)	Adenosine A1 receptor	Sigma	A9251	267.24
CGS 21680	Adenosine A2A receptor	Tocris	1063	535.99
IB-MECA	Adenosine A3 receptor	Tocris	1066	510.29
Adenosine	Adenosine receptors	Sigma	A9251	267.24
Forskolin	Adenylyl cyclases	Tocris	1099	410.51
(R)-(−)-Phenylephrine hydrochloride	Adrenergic α1 receptors	Tocris	2838	203.67
Compound	Receptor Type	Supplier	EC50	
---	--------------------------------	-------------	-------	
A 61603 hydrobromide	Adrenergic α1A receptor	Tocris	1052	
Clonidine	Adrenergic α2 receptors	Sigma	1660	
Salmeterol	Adrenergic β2 receptor	Tocris	1660	
(-)-epinephrine	Adrenergic receptors	Sigma	2450	
(R)-(+-)-m-Nitrobiphenyline	Adrenergic α2C receptor	Tocris	2948	
Adrenomedullin	Adrenomedullin receptor	Bachem	2569	
Amylin	Amylin receptor	Bachem	2569	
L-162313	Angiotensin AT1 receptor	Sigma	582.78	
Angiotensin	Angiotensin receptors	Bachem	1296.5	
CGP 42112	Angiotensin AT2 receptor	Tocris	1052.2	
Apelin	APJ receptor	Bachem	1550.85	
Neuramomin B	BB1 receptor	Bachem	1132.31	
Bombesin	BB1, BB2, BB3	Bachem	1619.87	
Gastrin releasing peptide (GRP) (human)	BB2 receptor	Bachem	2859.42	
Leukotriene B4	BLT1, BLT2	Tocris	336.47	
Bradykinin	Bradykinin receptors	Bachem	1060.22	
(Trp^63, Trp^64)-C3a(63-77)	C3A receptor	Bachem	1820.17	
(Tyr^65, Phe^67)-C5a (65-74)	C5A receptor	Bachem	1244.44	
Calcitonin	Calcitonin receptor	Bachem	3417.90	
ACEA	Cannabinoid CB1 receptor	Tocris	365.99	
Anadamide	Cannabinoid CB2 receptor	Tocris	347.54	
CB65	Cannabinoid CB2 receptor	Tocris	417.93	
spermidine	Ca-sensing receptor	Sigma	145.25	
spermine	Ca-sensing receptor	Sigma	202.34	
Cholecystokinin-33 (human)	CCK1, CCK2	Bachem	3945.45	
ZK 756326	CCR8 chemokine receptor	Tocris	429.38	
α-Calctonin gene-related peptide (human)	CGRP	Tocris	3789.33	
A-71623	Cholecystokinin CCK1 receptor	Tocris	840.97	
Corticotropin-releasing factor	CRF1, CRF2	Tocris	4758.00	
R(+)-SKF38393	D1-like dopamine receptor	Tocris	336.23	
Cabergoline	D2-like dopamine receptor	Tocris	451.6	
Dopamine hydrochloride	Dopamine receptors	Sigma	189.64	
Endothelin-1	ET₆, ET₈	Bachem	2491.94	
N-Formyl-Met-Leu-Phe	Formyl peptide receptor 1	Tocris	437.55	
WKYMVM	Formyl peptide receptors	Tocris	855.41	
SKF 97541	GABAab	Tocris	137.12	
GABA (γ-aminobutyric acid)	GABAab	Tocris	103.12	
Galanin	GAL1, GAL2	Bachem	3157.45	
Name	Receptor	Company	Code	Price
---	------------------------------------	------------	------	---------
Ghrelin	Ghrelin receptor	Tocris	1463	3370.90
L-692,585	GHRH receptor	Bachem	H-3112	5107.84
Growth hormone-releasing factor (ovine)	GIP receptor	Tocris	2257	4633.21
Gastric inhibitory polypeptide (1-39)	GLP1, GLP2 receptor	Tocris	1851	4169.52
Glucagon	Glucagon receptor	Bachem	H6790.0001	3482.80
Nafarelin	GPR109 receptor agonist	Tocris	2544	1322.00
Nicotinic acid	GPR109A, GPR109B	Tocris	1762	218.21
ICI182780	GPR30	Tocris	1047	606.77
β-Estradiol 17-cypionate	GPR30	BioMOL	E8004	396.56
NPPB	GPR40	Sigma	E4637	282.46
Elaidic acid	Histamine H1, H2 receptors	Tocris	646	614.57
HTMT dimaleate	Histamine H2 receptor	Tocris	668	319.06
Amphetamine dihydrobromide	Histamine H3, H4 receptor	Tocris	729	332.06
Imetit dihydrobromide	Histamine H4 receptor	Tocris	2342	198.09
4-Methylhistamine dihydrochloride	Histamine receptors	Sigma	H7125	111.15
Histamine	Histamine receptors	Sigma	H4437	1302.45
Kisspeptin 10 (human)	KISS1 receptor (GPR54)	Tocris	1067	322.19
Oleoyl-L-α-lysophosphatidic acid sodium	LPA1, LPA2, LPA4	Sigma	L7260	436.52
α-Melanotropin (human)	MC1, MC2, MC3, M4, MC5	Bachem	H-1075	1664.91
Melanin-concentrating hormone	MCH1, MCH2	Phoenix	070-47	2385.10
L-aspartate acid	mGlur receptors	Sigma	A9506	144.25
L-Glutamic acid	mGlur receptors	Tocris	218	147.13
L-Cysteinesulfonic acid	mGlur1a and mGlur5a	Tocris	216	153.15
L-serine-O-phosphate	mGLUR4 receptor	Tocris	238	185.07
Motilin	MOT receptor	Tocris	2264	2699.07
Melatonin	MT1, MT2, MT3	Bachem	Q-1300	232.28
McN-A 343	Muscrunic M1 receptor	Tocris	1384	317.21
Acetylcholine chloride	Muscrunic M1-M5 receptor	Sigma	A2661	181.66
Oxtremorine M	Muscrunic M1-M5 receptors	Tocris	1067	322.19
Substance P	Neurokinnin receptor NK1	Bachem	H1890	1347.65
Neurokinnin A	NK2, NK3	Bachem	H3745	1133.34
Neuromedin U	NMU1, NMU2	Bachem	H-5538	3080.42
Neuropeptide B (NPB-23)	NPBW1, NPBW2	Phoenix	005-53	2348.66
Neuropeptide Y	NPY1, Y2, Y4, Y5, Y6	Bachem	H6375	4271.74
Neutropeptide	NTS1, NTS2	Bachem	h4435	1672.95
Drug Name	Receptor Type	Vendor	Catalog No.	Purity
--	--	------------	-------------	--------
SB 205607 dihydrobromide	Opioid delta receptor	Tocris	921	506.28
Endomorphin 1	Opioid mu receptor	Bachem	H-4002	610.71
Dynorphin A	Opioid receptors	Bachem	H2620	2147.52
Nociceptin/orphanin FQ	ORL1	Bachem	H3036	1809.06
Orexin-A	OX1, OX2 receptors	Tocris	1455	3561.12
5-oxo-ETE	Oxoeicosanoid receptor	Tocris	1796	318.46
ADP	P2Y1, 12, 13	Sigma	A2754	427.20
ATP	P2Y2	Sigma	A6419	551.14
UTP	P2Y4	Sigma	U6875	484.14
UDP	P2Y6	Sigma	U4125	404.16
Platelet activating factor PAF (C16)	PAF receptor	Calbiochem	511075	523.70
SFLLR-amide	PAR1	Bachem	H-2938	633.79
SLIGKV-amide	PAR2	Bachem	H-4624	614.79
3-Isobutyl-1-methylxanthine (IBMX)	phosphodiesterases	Sigma	I7018	222.24
Prostaglandin D2	Prostaglandin DP receptor	Sigma	P5172	352.47
Prostaglandin E2	Prostaglandin receptors	Tocris	2296	352.47
Epoprostenol	Prostaglandin IP receptor	Tocris	2989	374.45
Sphingosine-1-phosphate	S1P receptors	Sigma	S9666	379.47
SEW 2871	S1P1 receptor	Tocris	2284	440.36
Secretin (human)	Secretin receptor	Tocris	1918	3039.44
Somatostatin	SST receptors	Bachem	J-1490	1637.90
tyramine	TA1, TA2	Sigma	T2879	173.64
Thyrotropin-releasing hormone	TRH1, TRH2	Bachem	H-4915	362.39
Urotensin II	Urotensin receptor	Tocris	1642	1388.57
(Arg8)-vasopressin	Vasopressin receptors	Bachem	H-1780	1084.25
Vasoactive intestinal peptide	VIP receptors VPAC1 and VPAC2	Bachem	H-3775	3325.84
Supplementary Table 2. Information of other compounds used in the present study.

Compound name	Source	Catalog #	Purity
DMAT	Tocris	3686	>99%
TBI	Tocris	T6951	≥98%
TBB	Sigma	T0826	≥98%
TBCA	EMD Biosciences	218710	≥95%
Oxymetazoline	Tocris	1142	>99%
UK14304	Tocris	0425	>99%
Salmeterol	Tocris	1660	>99%
Isoproterenol	Tocris	1747	>99%
Betaxolol	Tocris	0906	>99%
Propranolol	Tocris	0834	>99%
Phentolamine	Sigma	P7547	≥98%
Yohimbine	Tocris	1127	>99%
Prazosin	Tocris	0623	>99%

2. Supplementary Results

Figure S1 shows the DMR characteristics of distinct known CK2 inhibitors. Figure S2 shows the dose responses of both DMAT and TBB. Figure S3 shows the dose responses of adrenergic receptor agonists. Figure S4 and S5 show the impact of known adrenergic receptor antagonists on the epinephrine response as well as the epinephrine-induced potentiation of the TBB response. Figure S6 shows the impact of toxin treatment on both DMAT and TBB responses. Figure S7 shows the DMR characteristics of endogenous GPCRs, other than adrenergic receptors, and their impacts on the TBB and DMAT responses.
Supplementary Figure 1. DMR signatures of four CK2 inhibitors in HeLa cells. Observed DMR signals were induced at 32 μM of DMAT (a), TBB (b), 4,5,6,7-tetrabromo-1H-benzimidazole (TBI, c) and tetrabromocinnamic acid (TBCA, d). All error bars represent the standard deviations of at least 4 measurements.
Supplementary Figure 2. Dose-dependent responses of DMAT and TBB measured by DMR assays in HeLa cells. EC50 values were calculated from corresponding DMR traces induced by DMAT (a-c) and TBB (d-e). All error bars represent the standard deviations of at least 4 measurements.
Supplementary Figure 3. Dose-dependent responses of AR agonists measured by DMR assays in HeLa cells. (a-e) DMR traces were monitored for various concentrations of oxymetazoline (OXY, a), UK14304 (b), salmeterol (SAL, c), isoproterenol (d), and epinephrine (EPI, e). (f) EC$_{50}$ values were calculated from the corresponding DMR traces. All error bars represent the standard deviations of at least 4 measurements.
Supplementary Figure 4. Effects of epinephrine on TBB responses with or without antagonists. The dose dependent DMR for epinephrine showed an EC$_{50}$ of 15.0 ± 3.7 nM to trigger its respective DMR (Fig. 3a, and Supplementary Fig. 3e) and an EC$_{50}$ of 4.0 ± 0.4 nM (n =4) to potentiate the TBB-induced DMR (a-b). Various AR blockers, each at 10 µM, were included with the epinephrine to test for their ability to interfere with epinephrine enhancements of the TBB response. Neither the potent α_1-AR blocker, prazosin, nor the β-blockers, betaxolol or propranolol, altered the potency of epinephrine to increase the TBB response (b). In contrast, the potent α_2-blocker yohimbine suppressed and shifted the epinephrine DMR titration (c-d) as well as completely blocking the epinephrine increased TBB response (e-f). EC$_{50}$ values were calculated from the corresponding DMR traces. All error bars represent the standard deviations of at least 4 measurements.
Supplementary Figure 5. Effect of phentolamine on DMR assays. An α_2-blocker phentolamine that is less potent than yohimbine (Supplementary Fig. 4c-f) only slightly suppressed and right-shifted the epinephrine DMR (a-b), and also caused the right-shift in the potency of epinephrine to increase the TBB DMR (c-d). EC$_{50}$ values were calculated from the corresponding DMR traces. All error bars represent the standard deviations of at least 4 measurements.
Supplementary Figure 6. DMAT and TBB responses in the absence and the presence of toxin. PTX or CTX showed little effect on either DMAT (20 μM) or TBB (25 μM) responses, relative to DMR signals obtained from untreated HeLa cells. All error bars represent the standard deviations of at least 4 measurements. An arrow indicates the addition of DMAT (a) or TBB (b).
Supplementary Figure 7. DMR assays of additional endogenous GPCRs. (a) A purinergic P2Y receptor agonist, ATP, resulted in robust DMR signals, which were sensitive to both PTX and CTX pretreatments. Similar to α2A-AR agonists, the activation of P2Y receptors by ATP led to a decreased DMAT signal and an increased TBB signal relative to the positive control (d-e). Pretreatment of cells with PTX but not CTX blocked the alteration of the DMAT signal by ATP. (b) A LPA receptor agonist, LPA, led to a distinct DMR, which was also sensitive to both PTX and CTX pretreatments. PTX but not CTX rescued the suppressed DMAT signal and diminished the increased TBB signal by LPA (d-e). (c) A prostaglandin receptor agonist PGE2 triggered a complicated DMR, which was also sensitive to both PTX and CTX pretreatments. Pre-stimulation of cells with PGE2 increased the DMAT signal, but decreased the TBB signal (d-e). Both PTX and CTX pretreatments blocked the increased DMAT signal by PGE2, but had a little effect on the decreased TBB signal by PGE2. (d and e) Each type of HeLa cells was pre-
stimulated with 10 μM of agonists listed on the x-axis for 1 hr. Positive controls indicate DMAT (20 μM) or TBB (25 μM) responses from buffer-pretreated HeLa cells. Negative controls mean no treatment with DMAT or TBB. The % change of the DMAT response was calculated based on the difference between the positive control and the DMAT signal in a treated cell (e.g., EPI-treated cell, or PTX-EPI-treated cell). The % change of the TBB response was obtained similarly. All error bars represent the standard deviations of 4 or 6 measurements.