Caenorhabditis elegans: A Simple Nematode Infection Model for *Penicillium marneffei*

Xiaowen Huang1,2, Dedong Li1,3, Liyan Xi2*, Eleftherios Mylonakis1*

1Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America, 2Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China, 3School of Pharmacy, Second Military Medical University, Shanghai, China

Abstract

Penicillium marneffei, one of the most important thermal dimorphic fungi, is a severe threat to the life of immunocompromised patients. However, the pathogenic mechanisms of *P. marneffei* remain largely unknown. In this work, we developed a model host by using nematode *Caenorhabditis elegans* to investigate the virulence of *P. marneffei*. Using two *P. marneffei* clinical isolate strains 570 and 486, we revealed that in both liquid and solid media, the ingestion of live *P. marneffei* was lethal to *C. elegans* (*P*<0.001). Meanwhile, our results showed that the strain 570, which can produce red pigment, had stronger pathogenicity in *C. elegans* than the strain 486, which can’t produce red pigment (*P*<0.001). Microscopy showed the formation of red pigment and hyphae within *C. elegans* after incubation with *P. marneffei* for 4 h, which are supposed to be two contributors in nematodes killing. In addition, we used *C. elegans* as an in vivo model to evaluate different antifungal agents against *P. marneffei*, and found that antifungal agents including amphotericin B, terbinafine, fluconazole, itraconazole and voriconazole successfully prolonged the survival of nematodes infected by *P. marneffei*. Overall, this alternative model host can provide us an easy tool to study the virulence of *P. marneffei* and screen antifungal agents.

Introduction

Penicillium marneffei is a dimorphic fungal pathogen appearing in mycelia form at 25°C and yeast form at 37°C and is primarily associated with infections in Southeast Asia [1–3]. Following the rising prevalence of HIV, penicilliosis has become a significant opportunistic infection in AIDS patients [4]. An experimental murine model was established for the chronic pulmonary and disseminated infection of *P. marneffei* [5,6], but the ethical and economic factors limited the use of this model. New animal model is urgent to study the pathogenesis of *P. marneffei*.

Caenorhabditis elegans, an invertebrate model, is increasingly being used as an infection model to study the pathogenesis of many bacterial and fungal human pathogens. *C. elegans* has emerged as a useful infection model for several reasons, including its easy obtainability, rapid life cycle and physiological simplicity [7]. Also, the nematode shares many morphological similarities with human intestinal epithelial cells and it responds to pathogens in a manner similar to mammals [8–10]. The *C. elegans* model has been utilized for several clinically relevant fungal pathogens, including *Candida glabrata*, *Candida albicans*, *Cryptococcus neoformans*, and *Histoplasma capsulatum* [11–14]. However, it has not yet been used to study the virulence of *P. marneffei*.

In this study, we developed a *P. marneffei-C. elegans* infection model based on the killing assay, and found that the red pigment and hyphae formation of *P. marneffei* might be crucial toxicity factors involved in *C. elegans* killing. Also, we tested the effect of antifungal agents in this model. This is the first nematode survival assay model in *P. marneffei* infection, and it’s a fast effective screening method for identifying antifungal agents that are active against *P. marneffei*.

Materials and Methods

Fungal Strains and Preparation of Conidia

P. marneffei strains SUMS0486 and SUMS0570 are clinical isolates got from Sun Yat-sen memorial hospital, Guangzhou, China. The strains were maintained on Potato Dextrose Agar (PDA) plates with 45 μg/ml kanamycin, 100 μg/ml ampicillin, and 100 μg/ml streptomycin at 4°C. To obtain the yeast phase of *P. marneffei*, colonies grown on PDA at 25°C were cultured on brain heart infusion agar (BHI) media at 37°C for 7–10 days. *P. marneffei* conidia, obtained from a culture on BHI plate grown at 37°C for 10–14 days, were collected by flooding the culture surface with PBS and the number of conidia were counted with a hemocytometer.

C. elegans Liquid Killing Assay

C. elegans wild-type strain N2 was maintained at 15°C on Nematode Growth Medium (NGM) with *E. coli* HB101 as a standard food source. Stage-synchronized young adult worms...
were used for all the experiments. 30 L4 stage N2 worms were transferred from a lawn of *E. coli* to a 12 wells culture plate containing 2 ml liquid medium of 80% M9 buffer, 20% BHI, 45 μg/ml kanamycin and 10^5 cells/ml *P. marneffei*. The plates were incubated at 25°C and monitored for their lifespan changes at a 24 h interval. Worms were considered dead and removed away when it showed no response to touch.

Full Lawn Solid Plate Killing Assay

Swab 200 μl *P. marneffei* culture on BHI plates to perform a fungus full lawn assay. Plates were incubated at 37°C for three days and allowed to equilibrate at room temperature. Approximately 100 adult worms were placed on each plate and incubated at 25°C to monitor their lifespan changes. During exposure of pathogens at different time intervals, observe the phenotypic changes of worms. Test worms were transferred to fresh plates.

Figure 1. The morphology of two tested *P. marneffei* strains after 7 days of incubation at 25°C and 37°C (a). Survival curves of *C. elegans* after infected with *P. marneffei* in solid medium (b) and liquid medium (c). doi:10.1371/journal.pone.0108764.g001
every day to avoid the interference with spawining. Worms were considered dead and removed away from the plates when it shows no response to touch or no pharynx contraction was visible.

Microscopic Studies

To study the internal colonization of *P. marneffei* in *C. elegans*, nematodes were pre-infected with *P. marneffei* for 4 h. Then the worms were washed three times in M9 buffer and transferred to the fresh medium and incubated at 25°C. At different time intervals, the worms were fixed with 1 mM sodium azide solution and placed on 2% agarose. A confocal laser microscope was used for observation.

Study of antifungal compounds

To study the efficacy of antifungal agents against *P. marneffei* in this *C. elegans* infection model, amphotericin B, voriconazole, fluconazole, itraconazole and terbinafine were dissolved with dimethyl sulphoxide (DMSO) and added to the liquid assay to the target concentration. The concentration of these antifungal drugs was referenced to the published papers about the antifungal sensitivity to *P. marneffei* [15]. 1.6 μg/ml for amphotericin B, 0.32 μg/ml for voriconazole, 16 μg/ml for fluconazole, 0.8 μg/ml for itraconazole and 3.2 μg/ml for terbinafine. All chemicals were obtained from Sigma (St Louis, MO, USA).

Statistical analysis

Killing curves were plotted and examined by using the Kaplan–Meier method and differences were determined by using the log-rank test. A *P* value of <0.05 was considered statistically significant. Each experiment was repeated at least three times, and each independent experiment gave similar results. Data presented here are from a representative experiment.

Results

1. **Killing C. elegans by *P. marneffei***

Two *P. marneffei* clinical isolates SUMS0570 (570) and SUMS0486 (486) were used in this study. As shown in Fig. 1a, both strains were in mycelial phase at 25°C and yeast phase at 37°C. Meanwhile, the results showed that the strain 570 can produce red pigment at 25°C, while the strain 486 does not produce red pigment (Fig. 1a). First, we assessed the virulence of the two strains through the killing of *C. elegans* in both solid and liquid media. For the solid media assay, L4 stage worms were transferred from NGM plates with *E. coli* to BHI plates with *P. marneffei* and monitored for their lifespan changes. The results showed that both strains were able to kill *C. elegans*, with significant difference were found between the strain 486 infection group and *E. coli* control group (*P*, 0.001), as well as the strain 570 infection group and *E. coli* control group (*P*<0.001) (Fig. 1b).

Interestingly, there was also significant difference between the strain 486 infection group and the strain 570 infection group (*P*<0.001). As shown in Fig. 1b, at 8 h post infection, only worms exposed to the strain 570 began to die, and the mortality rate was 17%. 16 h after infection, it raised to 48%, while there were only 3% worms exposed to the strain 486 died at this time point. In the following 8 h, all worms on the lawn of *P. marneffei* strain 570 died. Similar result was found in the liquid killing assay (Fig. 1c).
2. Red Pigment Formation of *P. marneffei* within *C. elegans*

The production of red pigment is one of the best-known secondary metabolites produced by *P. marneffei* [16]. Usually, *P. marneffei* exhibits with a characteristic red diffusible pigment at 25°C, and it was reported that the conidia and yeast cells of this fungus could produce melanin or melanin-like compounds *in vitro* and *in vivo* [17]. In this study, we detected the presence of red pigment within *C. elegans* at different time points after infection with both strains. As shown in Fig. 2a, after pre-infection with *P. marneffei* strain 570 for 4 h, the intestine of nematodes extended and during the following 72 h red pigment formed gradually and filled the entire intestine gradually. However, after pre-infection with *P. marneffei* strain 486, no extended intestine or red pigment was found in the nematodes (Fig. 2b).

3. Hyphal Formation of *P. marneffei* within *C. elegans*

Further, we detected the *C. elegans* intestine injury after *P. marneffei* infection. As shown in Fig. 3a and Fig. 3b, nematodes infected with *P. marneffei* strain 570 demonstrated hyphae had the ability to destroy and penetrate through *C. elegans*. We could see the aggregation growth of hyphae around the broken tail (Fig. 3b). Hyphae were found in about 50% of the infected nematodes (Fig. 3c). When nematodes were infected with *P. marneffei* strain 486, we also observed hyphae in the intestine (Fig. 3d). But there were only 25% worms had hyphal formation (Fig. 3c).

4. Utilization of *C. elegans* to study antifungal compounds against *P. marneffei*

To assess whether *C. elegans* screen is suitable for evaluating the susceptibility of *P. marneffei* to antifungal agents, 5 antifungal agents including amphotericin B, terbinafine and three azoles (itraconazole, itraconazole and voriconazole) were used in this study. We used the strain 570 as the test strain and found that all 5 antifungal agents prolonged the survival of nematodes infected...
with *P. marneffei*. The results showed that the mortality of nematodes in the treatment groups was significantly lower than the strain 570 infection group (Fig 4, *P*<0.001 for all antifungal agents compared with the strain 570 infection group). Among different antifungals treatment groups, amphotericin B and voriconazole had the best therapeutic effect while fluconazole had the worst therapeutic effect. As shown in Fig 4, after administration for 7 days, 1.6 μg/ml amphotericin B or 0.32 μg/ml voriconazole could maintain 60% nematodes survive, while 16 μg/ml fluconazole could only make about 35% worms alive.

Discussion

The nematode *C. elegans* is a favorable in vivo model for a variety of fungal infection diseases, and proved to be essential for the study of fungal virulence [7,18,19]. In this study, we demonstrated that *C. elegans* was also an appropriate host model in *P. marneffei* infection. Using *P. marneffei* clinical isolate strains 570 and 486, we revealed that in both liquid and solid media, *P. marneffei* conidia ingested by *C. elegans* were able to infect and kill *C. elegans*. Meanwhile, the results showed that the strain 570, which can produce red pigment, had stronger pathogenicity in *C. elegans* than the strain 486, which can not produce red pigment. Further, we found that both strains can form hyphae in *C. elegans*, which might be an important virulence factor of *P. marneffei*. In addition, our results indicated that the *C. elegans*-*P. marneffei* model is reliable to evaluate antifungal agents in vivo.

To the best of our knowledge, this is the first report using *C. elegans* model to study the pathogenicity of *P. marneffei*. The *C. elegans* model has been utilized for several fungal pathogens, including *G. laibata*, *A. albicans*, *N. fumigatus*, and *H. capsulatum* [11–14]. However, it has not been used to study the virulence of *P. marneffei*. In this study, using solid method assay, we found the two isolates of *P. marneffei* both had a rapid kill rate, which is significantly greater than that found in *C. neoformans*-*C. elegans* model [11]. In addition to the solid method assay, we also adopted the liquid method assay. The liquid assay results confirmed the outcome of full lawn assays, but produced less killing during the same time. We supposed that on the solid medium, the fungus had a better growth and nematodes were exposed to more *P. marneffei*. Both these two assays have been used to study host-pathogen interactions, and they have their own characters suitable for different experiments. For example, *A. albicans* forms hyphae in the liquid environment, so it’s better to choose the liquid method assay if the purpose is to study the role of filamentation in virulence [19]. However, in the *C. neoformans*-*C. elegans* model, solid method assay is mostly applied [11,20]. Our results indicated that both assays are suitable for studying the virulence of *P. marneffei*.

Author Contributions

Conceived and designed the experiments: LX EM. Performed the experiments: XH. Analyzed the data: XH DL. Contributed reagents/materials/analysis tools: XH DL. Contributed to the writing of the manuscript: XH DL EM.

References

1. Hsueh PR, Teng LJ, Hung CC, Hsu JH, Yang PC, et al. (2000) Molecular evidence for strain dissemination of Penicillium marneffei an emerging pathogen in Taiwan. J Infect Dis 181: 1706–1712.

2. Supparatpinyo K, Khambwan C, Baosoung V, Nelson KE, Sirisanthana T (1994) Disseminated Penicillium marneffei infection in southeast Asia. Lancet 344: 110–113.

3. Wong SS, Siau H, Yuen KY (1999) Penicilliosis marneffei-West meets East. J Med Microbiol 48: 973–975.

4. Sobottka I, Albrecht H, Mack D, Stollbrink HJ, van Lunzen J, et al. (1996) Systemic Penicillium marneffei infection in a German AIDS patient. Eur J Clin Microbiol Infect Dis 15: 256–259.

5. Kudeken N, Kawakami K, Kusano N, Saito A (1996) Cell-mediated immunity to *Penicillium marneffei* in vivo. Med Mycol 34: 371–378.

6. Kudeken N, Kawakami K, Saito A (1997) CD4+ T cell-mediated fatal hyperinflammatory reactions in mice infected with *Penicillium marneffei*. Clin Exp Immunol 107: 468–473.

7. Arvanitis M, Glavis-Bloom J, Mylonakis E (2013) Invertebrate models of fungal infection. Biochim Biophys Acta 1832: 1378–1393.

8. Kim DH, Feinbaum R, Alloing G, Ezenrode FE, Garins DA, et al. (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297: 623–626.

9. Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, et al. (2002) Inducible antibacterial defense system in *C. elegans*. Curr Biol 12: 1209–1214.

10. Jain C, Yan M, Politz SM, Rao RP (2009) A pathogenesis assay using Saccharomyces cerevisiae and Caenorhabditis elegans reveals novel roles for yeast AP-1, Yap1, and host dual oxidase BLI-3 in fungal pathogenesis. Eukaryot Cell 8: 1218–1227.

11. Mylonakis E, Ausubel FM, Perfect JR, Heitman J, Calderwood SB (2002) Killing of *Histoplasma capsulatum* and *Caenorhabditis elegans*; a simple nematode model for an innate immune response to fungal infection. Med Mycol 40: 808–815.
13. Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, et al. (2007) Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 3: e18.

14. Thakur JK, Arthanari H, Yang F, Pan SJ, Fan X, et al. (2008) A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 452: 604–609.

15. Liu D, Liang L, Chen J (2013) In vitro antifungal drug susceptibilities of Penicillium marneffei from China. J Infect Chemother 19: 776–778.

16. Woo PC, Lam CW, Tain EW, Leung CK, Wong SS, et al. (2012) First discovery of two polyketide synthase genes for mitorubrinc acid and mitorubrinol yellow pigment biosynthesis and implications in virulence of Penicillium marneffei. PLoS Negl Trop Dis 6: e1871.

17. Liu D, Wri L, Guo T, Tan W (2014) Detection of DOPA-melanin in the dimorphic fungal pathogen Penicillium marneffei and its effect on macrophage phagocytosis in vitro. PLoS One 9: e92610.

18. Chamilos G, Lionakis MS, Lewis RE, Kontoyiannis DP (2007) Role of mini-host models in the study of medically important fungi. Lancet Infect Dis 7: 42–55.

19. Muhammed M, Coleman JJ, Mylonakis E (2012) Caenorhabditis elegans: a nematode infection model for pathogenic fungi. Methods Mol Biol 845: 447–454.

20. Mylonakis E, Ihnarm A, Moreno R, El Khoury J, Rothman JB, et al. (2004) Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals. Mol Microbiol 54: 407–419.