REFINEMENTS OF MİTRINOVİĆ–CUSA INEQUALITY

ZHENG-HANG YANG

Abstract. The Mitrinović-Cusa inequality states that for \(x \in (0, \pi/2)\)

\((\cos x)^{1/3} < \frac{\sin x}{x} < \frac{2 + \cos x}{3}\)

hold. In this paper, we prove that

\((\cos x)^{1/3} < (\cos px)^{1/(3p^2)} < \frac{\sin x}{x} < (\cos qx)^{1/(3q^2)} < \frac{2 + \cos x}{3}\)

hold for \(x \in (0, \pi/2)\) if and only if \(p \in (p_1, 1)\) and \(q \in (0, 1/\sqrt{5}]\), where
\(p_1 = 0.45346830977067\ldots\). And the function \(p \mapsto (\cos px)^{1/(3p^2)}\) is decreasing
on \((0, 1]\). Our results greatly refine the Mitrinović-Cusa inequality.

1. Introduction

In the recent past, the following double inequality

\((1.1) (\cos x)^{1/3} < \frac{\sin x}{x} < \frac{2 + \cos x}{3} \quad (0 < x < \pi/2)\)

has attracted the attention of many scholars.

The left hand side inequality \([1.1]\) was first proved by Mitrinović in \([10]\) (see also
\([11]\), pages 238-240]), and so we call it as Mitrinović’s inequality. While the right
hand side inequality \([1.1]\) was found by the German philosopher and theologian
Nicolaus de Cusa (1401-1464) and proved explicitly by Huygens (1629–1695) when
he approximated \(\pi\), and it is now known as Cusa’s inequality \([18]\), \([23]\), \([12]\), \([13]\), \([5]\). Hence \([1.1]\) can be called as Mitrinović-Cusa inequality.

A nice refinement of the Mitrinović-Cusa inequality \([1.1]\) appeared in \([11, 3.4.6]\).
For convenience, we record it as follows.

Theorem M. For \(x \in (0, \pi/2)\),

\((1.2) \cos px \leq \frac{\sin x}{x} \leq \cos qx\)

with the best possible constants

\(p = \frac{1}{\sqrt{3}}\) and \(q = \frac{2}{\pi} \arccos \frac{2}{\pi}\).

Also, the following inequalities hold:

\((1.3) \cos x \leq \frac{\cos x}{1 - x^2/3} \leq (\cos x)^{1/3} \leq \cos \frac{x}{\sqrt{3}} \leq \frac{\sin x}{x} \leq \cos qx \leq \cos \frac{x}{2} \leq 1.\)
Recently, Klén et al. [8] Theorem 2.4 showed that the function \(p \mapsto (\cos px)^{1/p} \) is decreasing on \((0, 1)\) and improved Cusa’s inequality (the right hand side inequality in (1.4)), which is stated as follows.

Theorem K. For \(x \in \left(-\sqrt{\frac{27}{5}}, \sqrt{\frac{27}{5}}\right) \)

\[
\cos^2 \frac{x}{2} \leq \frac{\sin x}{x} \leq \cos^3 \frac{x}{3} \leq \frac{2 + \cos x}{3}.
\]

The following sharp bounds for \((\sin x)/x\) due to Lv et al. [9] give another refinement of the Mitrinović’s inequality.

Theorem L. For \(x \in (0, \pi/2) \) inequalities

\[
(\cos \frac{x}{2})^{4/3} < \frac{\sin x}{x} < (\cos \frac{x}{2})^\theta
\]

hold, where \(\theta = 2 (\ln \pi - \ln 2) / \ln 2 = 1.3030... \) and \(4/3 \) are the best possible constants.

Other results involving Mitrinović’s and Cusa’s inequality can be found in [7], [13], [23], [22], [16], [13], [5], [12], [14] and related references therein.

This paper is motivated by these studies and is aimed at giving sharp bounds \((\cos px)^{1/(3p^2)}\) for \((\sin x)/x\) to establish interpolated inequalities of (1.4), that is, for \(x \in (0, \pi/2)\), determine the best \(p, q \in (0, 1) \) such that

\[
(\cos x)^{1/3} < (\cos px)^{1/(3p^2)} < \frac{\sin x}{x} < (\cos qx)^{1/(3q^2)} < \frac{2 + \cos x}{3}
\]

hold.

The organization of this paper is as follows. Some useful lemmas are given in section 2. In section 3, the sharp bounds \((\cos px)^{1/(3p^2)}\) for \((\sin x)/x\) and its relative error estimates are established. In the last section, some precise estimates for certain integrals are presented.

2. **Lemmas**

Lemma 1 ([19], [1]). Let \(f, g : [a, b] \to \mathbb{R} \) be two continuous functions which are differentiable on \((a, b)\). Further, let \(g' \neq 0 \) on \((a, b)\). If \(f'/g' \) is increasing (or decreasing) on \((a, b)\), then so are the functions

\[
x \mapsto \frac{f(x) - f(a)}{g(x) - g(a)} \quad \text{and} \quad x \mapsto \frac{f(x) - f(b)}{g(x) - g(b)}.
\]

Lemma 2 ([2]). Let \(a_n \) and \(b_n \) \((n = 0, 1, 2, \ldots)\) be real numbers and let the power series \(A(t) = \sum_{n=1}^\infty a_n t^n \) and \(B(t) = \sum_{n=1}^\infty b_n t^n \) be convergent for \(|t| < R\). If \(b_n > 0 \) for \(n = 0, 1, 2, \ldots \), and \(a_n/b_n \) is strictly increasing (or decreasing) for \(n = 0, 1, 2, \ldots \), then the function \(A(t)/B(t) \) is strictly increasing (or decreasing) on \((0, R)\).

Lemma 3 ([6] pp.227-229]). We have

\[
\cot x = \frac{1}{x} - \sum_{n=1}^\infty \frac{2^{2n}}{(2n)!} B_{2n} x^{2n-1}, \quad |x| < \pi,
\]

\[
\tan x = \sum_{n=1}^\infty \frac{2^{2n-1} - 1}{(2n)!} 2^{2n} B_{2n} x^{2n-1}, \quad |x| < \pi/2,
\]

\[
\frac{1}{\sin^2 x} = \frac{1}{x^2} + \sum_{n=1}^\infty \frac{(2n - 1) 2^{2n}}{(2n)!} B_{2n} x^{2n-2}, \quad |x| < \pi,
\]
where B_n is the Bernoulli numbers.

Lemma 4. Let F_p be the function defined $(0, \pi/2)$ by

$$(2.4) \quad F_p(x) = \frac{\ln \sin x}{\ln \cos px}.$$

Then F_p is strictly increasing on $(0, \pi/2)$ if $p \in (0, \sqrt{5}/5]$ and decreasing on $(0, \pi/2)$ if $p \in [1/2, 1]$. Moreover, we have

$$(2.5) \quad \frac{\ln 2 - \ln x}{\ln(\cos \frac{\pi}{4}p)} \ln \cos px < \ln \frac{\sin x}{x} < \frac{1}{3p} \ln \cos px$$

if $p \in (0, \sqrt{5}/5]$. The inequalities (2.5) are reversed if $p \in [1/2, 1]$.

Proof. For $x \in (0, \pi/2)$, we define $f(x) = \ln \frac{\sin x}{x}$ and $g(x) = \ln \cos px$, where $p \in (0, 1]$. Note that $f(0^+) = g(0^+) = 0$, then $F_p(x)$ can be written as

$$F_p(x) = \frac{f(x) - f(0^+)}{g(x) - g(0^+)}.$$

Differentiation and using (2.1) and (2.2) yield

$$f'(x) = \frac{p(\frac{1}{x} - \cot x)}{\tan px} = \frac{\sum_{n=1}^{\infty} \frac{2^n}{(2n)!} B_{2n} |x^{2n-1}|}{\sum_{n=1}^{\infty} \frac{2^{n-1}}{(2n)!} p^{2n-2} 2^n |B_{2n}| x^{2n-1}} := \frac{\sum_{n=1}^{\infty} a_n x^{2n-1}}{\sum_{n=1}^{\infty} b_n x^{2n-1}},$$

where

$$a_n = \frac{2^{2n}}{(2n)!} |B_{2n}|, \quad b_n = \frac{2^{2n} - 1}{(2n)!} p^{2n-2} 2^n |B_{2n}|.$$

Clearly, if the monotonicity of a_n/b_n is proved, then by Lemma 2 it is deduced the monotonicity of f'/g', and then the monotonicity of the function F_p easily follows from Lemma 1. Now we prove the monotonicity of a_n/b_n. Indeed, elementary computation yields

$$\frac{b_{n+1}}{a_{n+1}} \frac{b_n}{a_n} = \frac{(2^{2n+2} - 1) p^{2n} - (2^{2n} - 1) p^{2n-2}}{(4^{n+1} - 1) p^{2n-2} \left(p^2 - \frac{1}{4} + \frac{3}{4 (4^{n+1} - 1)}\right)},$$

from which it is easy to obtain that for $n \in \mathbb{N}$

$$\frac{b_{n+1}}{a_{n+1}} \frac{b_n}{a_n} \begin{cases} \leq 0 & \text{if } p^2 < \frac{1}{4}, \\ > & \text{if } p^2 \geq \frac{1}{4}. \end{cases}$$

It is seen that b_n/a_n is decreasing if $0 < p \leq \sqrt{5}/5$ and increasing if $1/2 \leq p \leq 1$, which together with $a_n, b_n > 0$ for $n \in \mathbb{N}$ leads to a_n/b_n is strictly increasing if $0 < p \leq \sqrt{5}/5$ and decreasing if $1/2 \leq p \leq 1$.

By the monotonicity of the function F_p and notice that

$$F_p(0^+) = \frac{1}{3p} \quad \text{and} \quad F_p(\frac{\pi}{2}) = \frac{\ln 2 - \ln \pi}{\ln(\cos \frac{\pi}{4}p)},$$

the inequalities (2.5) follow immediately. \endproof

Remark 1. Lemma 4 contains many useful and interesting inequalities for trigonometric functions. For example, put $p = 1/\sqrt{3}$, $\frac{\pi}{2} \arccos \frac{2}{3} \in [1/2, 1]$ in (2.5) yield the second and first inequality of (1.2), respectively: put $p = 1/2 \in [1/2, 1]$ leads to (1.3). Similarly, by virtue of Lemma 4 we will easily prove our most main results in the sequel.
Lemma 5. For \(x \in (0, \pi/2) \), let the function \(U : (0, 1] \mapsto (-\infty, 0) \) be defined by

\[
U(p) = \frac{1}{3p^2} \ln \cos px.
\]

Then \(U \) is decreasing on \((0, 1]\) with the limit \(U(0^+) = -x^2/6 \).

Proof. Differentiation yields

\[
3p^3U'(p) = -2 \ln (\cos px) - \frac{p x \sin px}{\cos px} := V(p),
\]

\[
V'(p) = \frac{x}{2 \cos^2 px} (\sin 2px - 2px) < 0.
\]

It follows that \(V(p) < V(0) = 0 \), and therefore \(U'(p) > 0 \), that is, \(U \) is decreasing on \((0, 1]\).

Simple computation leads to \(U(0^+) = -x^2/6 \).

Thus the proof ends. \(\square \)

Lemma 6. For \(p \in (0, 1] \), let the function \(f_p \) be defined on \((0, \pi/2)\) by

\[
f_p(x) := \ln \frac{\sin x}{x} - \frac{1}{3p^2} \ln \cos px.
\]

(i) If \(f_p(x) < 0 \) holds for all \(x \in (0, \pi/2) \) then \(p \in (0, \sqrt{5}/5] \).

(ii) If \(f_p(x) > 0 \) for all \(x \in (0, \pi/2) \), then \(p \in [p_1, 1] \), where \(p_1 = 0.45346830977067... \) is the unique root of equation

\[
f_p\left(\frac{\pi}{2}\right) = \ln \frac{2}{\pi} - \frac{1}{3p^2} \ln \cos \frac{p\pi}{2} = 0
\]

on \((0, 1]\).

Proof. At first, We assert that there is a unique \(p_1 \in (0, 1) \) to satisfy equation \(2.8 \) such that \(f_p\left(\frac{\pi}{2}\right) < 0 \) for \(p \in (0, p_1) \) and \(f_p\left(\frac{\pi}{2}\right) > 0 \) for \(p \in (p_1, 1] \).

In fact, Lemma 5 indicates that \(U \) is decreasing on \((0, 1)\), and so \(p \mapsto f_p\left(\frac{\pi}{2}\right) \) is increasing on \((0, 1)\). Since

\[
f_{1/3}\left(\frac{\pi}{2}\right) = \ln \frac{2}{\pi} - 3 \ln \frac{\sqrt{5}}{2} < 0,
\]

\[
f_{1/2}\left(\frac{\pi}{2}\right) = \ln \frac{2}{\pi} - \frac{4}{3} \ln \frac{\sqrt{5}}{2} > 0,
\]

so the equation \(2.8 \) has a unique solution \(p_1 \) on \((0, 1)\) and \(p_1 \in (1/3, 1/2) \) such that \(f_p\left(\frac{\pi}{2}\right) < 0 \) for \(p \in (0, p_1) \) and \(f_p\left(\frac{\pi}{2}\right) > 0 \) for \(p \in (p_1, 1] \). Numerical calculation yields \(p_1 = 0.45346830977067... \).

Now, if inequality \(f_p(x) < 0 \) holds for \(x \in (0, \pi/2) \), then we have

\[
\left\{ \begin{array}{l}
\lim_{x \to 0^+} \frac{f_p(x)}{x^2} = \lim_{x \to 0^+} \frac{\ln \sin px - \frac{1}{3p^2} \ln \cos px}{x^2} = \frac{1}{3p^2} \ln \cos \frac{p\pi}{2} \leq 0, \\
\frac{f_p\left(\frac{\pi}{2}\right)}{\frac{\pi}{2}} = \ln \frac{2}{\pi} - \frac{1}{3p^2} \ln \cos \frac{p\pi}{2} \leq 0.
\end{array} \right.
\]

Solving the inequalities for \(p \) yields

\(p \in (0, \sqrt{5}/5] \cap (0, p_1] = (0, \sqrt{5}/5] \).

In the same way, if inequality \(f_p(x) > 0 \) holds for all \(x \in (0, \pi/2) \), then

\(p \in \left[\frac{\sqrt{5}}{5}, 1\right] \cap [p_1, 1] = [p_1, 1], \)

which completes the proof. \(\square \)
3. Main Results

Now we state and prove the sharp upper bound \((\cos px)^{1/(3p^2)}\) for \((\sin x)/x\).

Theorem 1. For \(p \in (0, 1]\), the inequality

\[
(3.1) \quad \frac{\sin x}{x} < (\cos px)^{1/(3p^2)}
\]

holds for all \(x \in (0, \pi/2)\) if and only if \(p \in (0, \sqrt{5}/5]\). Moreover, we have

\[
(3.2) \quad \left(\cos \frac{x}{\sqrt{5}}\right)^\alpha < \frac{\sin x}{x} < \left(\cos \frac{x}{\sqrt{5}}\right)^{5/3},
\]

where \(\alpha = (\ln 2) / \ln \left(\cos \frac{\sqrt{5}x}{10}\right) = 1.6714... and 5/3 = 1.6667... are the best possible constants.

Proof. From Lemma \(\square\) the necessity follows. The second inequality of (2.5) implies that the condition \(p \in (0, \sqrt{5}/5]\) is sufficient.

Put \(p = \sqrt{5}/5\) in (2.5) yields (3.1).

Thus the proof is completed. \(\square\)

From the corollary, in order to prove the last inequality in (1.6), it suffices to compare \(e^{-x^2/6}\) with \((2 + \cos x)/3\). We have

Theorem 2. The inequality

\[
(3.3) \quad e^{-x^2/6} < \frac{2 + \cos x}{3}
\]

holds for \(x \in (0, \infty)\). Moreover, for \(x \in (0, a)\) (\(a > 0\)) we have

\[
(3.4) \quad \frac{2 + \cos x}{(2 + \cos a)e^{a^2/6}} < e^{-x^2/6} < \frac{2 + \cos x}{3}.
\]

Proof. Considering the function \(g\) defined by

\[
g(x) = \ln \frac{2 + \cos x}{3} + \frac{x^2}{6},
\]

and differentiation yields

\[
(3.5) \quad g'(x) = \frac{x}{3} - \frac{\sin x}{\cos x + 2},
\]

\[
g''(x) = \frac{1}{3} \frac{(\cos x - 1)^2}{(\cos x + 2)^2} \geq 0,
\]

which implies that for \(x \in (0, \infty)\), \(g'(x) > g'(0^+) = 0\), then, \(g'(x) > 0\), that is, \(g\) is increasing on \((0, \infty)\). Hence, we have \(g(x) > g(0^+) = 0\) for \(x \in (0, \infty)\), that is, \((3.3)\) is true.

For \(x \in (0, a)\) we have

\[
0 = g(0^+) < g(x) < g(a) = \ln \left(\frac{2 + \cos a}{3}e^{a^2/6}\right),
\]

which proves (3.4). \(\square\)

Next we establish the sharp lower bound for \((\sin x)/x\).
Theorem 3. Let \(p \in (0, 1] \). Then the inequality
\[
\frac{\sin x}{x} > (\cos px)^{1/(3p^2)}
\]
holds for all \(x \in (0, \pi/2) \) if and only if \(p \in [p_1, 1] \), where \(p_1 = 0.45346830977067... \)
is the unique root of equation (2.3) in \(p \in (0, 1) \). Moreover, we have
\[
(\cos p_1 x)^{1/(3p_1^2)} < \frac{\sin x}{x} < \beta (\cos p_1 x)^{1/(3p_1^2)},
\]
where 1 and \(\beta \approx 1.0002 \) are the best possible constants.

Proof. Necessity. Lemma 6 implies necessity.

Sufficiency. Due to Lemma 5, it suffices to show that \(f_{p_1}(x) > 0 \) for all \(x \in (0, \pi/2) \), where \(f_p \) is defined by (2.7). To this end, we introduce an auxiliary function \(h \) defined on \((0, \pi/2) \) by
\[
h(x) = \frac{f'_{p_1}(x)}{x^4} = \frac{\left(\cot x - \frac{1}{x}\right) + \frac{1}{3p_1^2} \tan p_1 x}{x^4}.
\]
We will show that \(h \) is decreasing on \((0, \pi/2) \).

Differentiation and simplifying yield
\[
x^4 h'(x) = \frac{4}{3} \sum_{n=1}^{\infty} \frac{(2n-1)x^{2n}}{2n-1} |B_{2n}| (2p_1)^{2n-2} x^{2n-1} - \frac{4}{3} \sum_{n=1}^{\infty} \frac{(2n-1)x^{2n}}{2n-1} |B_{2n}| p_1^{2n-2} x^{2n-1}
\]
\[= \sum_{n=1}^{\infty} \frac{2n|B_{2n}| x^{2n-1}}{3(2n)!} u_n x^{2n-1},
\]
where
\[u_n = (2^{2n-1} (2n-10) p_1^{2n-2} - 3 (2n-1)).\]
Clearly, \(u_n < 0 \) for \(n = 1, 2, 3, 4, 5 \). We now show that \(u_n < 0 \) for \(n \geq 6 \). For this purpose, it needs to prove that for \(n \geq 6 \)
\[p_1 < \left(\frac{3 (2n-1)}{(2^{2n-1} (2n-10))} \right)^{1/(n-6)} := h_1(n).
\]
Since \((2n-1) > (2n-10) \), we have
\[h_1(n) > \left(\frac{3}{2^{2n-1}} \right)^{1/(2n-2)} := k(n).
\]
Considering the function \(k : (1, \infty) \to (0, \infty) \) defined by
\[
k(x) = \left(\frac{3}{2^{x-1}} \right)^{1/(2x-2)},
\]
and differentiation leads to
\[
\frac{2(x-1)^2}{k(x)} k'(x) = \ln(2^{2x} - 1) - \ln 3 - 2 \ln 2 \frac{(x-1)^{2x}}{2^{2x} - 1} := k_1(x),
\]
\[
k'_1(x) = \frac{2^{2x+2} \ln^2 2}{(2^{2x} - 1)^2} (x-1),
\]
which reveals that \(k_1 \) is increasing on \((1, \infty)\), and so \(k_1(x) > k_1(1^+) = 0 \), then \(k'(x) > 0 \), that is, \(k \) is increasing on \((1, \infty)\). Therefore for \(n \geq 6 \)
\[0.485 \, 83 \approx 1365^{-1/10} = k(6) \leq k(n) < k(\infty) = \frac{1}{2}.
\]It follows that for \(n \geq 6 \)
\[h_1(n) > k(n) > 0.485 \, 83 > p_1,
\]
which indicates that \(u_n \) is a unique \(x \) for \((0, \pi/2)\), which is increasing on \((0, \pi/2)\).

On the other hand, it is clear that
\[h(0^+) = \lim_{x \to 0^+} \left(\frac{\cot x - \frac{1}{x} + \frac{1}{3p_1} \tan p_1 x}{x^3} \right) = \frac{1}{9} \left(\frac{p_1^2 - 1}{\sqrt{3}} \right) > 0.
\]
And we claim that \(h\left(\frac{\pi}{2}^-\right) < 0 \). If \(h\left(\frac{\pi}{2}^+\right) \geq 0 \), then there must be \(h(x) > 0 \) for all \(x \in (0, \pi/2) \), which, by \((3.8)\), implies that \(f_{p_1}'(x) > 0 \), then \(f_{p_1} \) is increasing on \((0, \pi/2)\). It yields
\[f_{p_1}(x) > f_{p_1}\left(0^+\right) = 0 \text{ and } f_{p_1}(x) < f_{p_1}\left(\frac{\pi}{2}^-\right) = \ln \frac{\pi}{2} - \frac{1}{3p_1} \ln (\cos \frac{\pi}{2}p_1 \pi) = 0,
\]
which is a contradiction. Consequently, \(h(0^+) > 0 \) and \(h\left(\frac{\pi}{2}^-\right) < 0 \).

Make use of the monotonicity of the auxiliary function \(h \) it is showed that there is a unique \(x_0 \in (0, \pi/2) \) to satisfy \(h(x_0) = 0 \) such that \(h(x) > 0 \) for \(x \in (0, x_0) \) and \(h(x) < 0 \) for \(x \in (x_0, \pi/2) \). Then, by \((3.8)\), it is seen that \(f_{p_1} \) is increasing on \((0, x_0)\) and decreasing on \((x_0, \pi/2)\). It is concluded that
\[0 = f_{p_1}\left(0^+\right) < f_{p_1}(x) < f_{p_1}(x_0) \text{ for } x \in (0, x_0),
\]
\[0 = f_{p_1}\left(\frac{\pi}{2}^-\right) < f_{p_1}(x) < f_{p_1}(x_0) \text{ for } x \in (x_0, \pi/2),
\]
that is, \(0 < f_{p_1}(x) < f_{p_1}(x_0) \) for \(x \in (0, \pi/2) \).

Solving the equation \(h(x) = 0 \) which is equivalent with
\[f_{p_1}'(x) = \left(\cot x - \frac{1}{x} \right) + \frac{1}{3p_1} \tan p_1 x = 0
\]
by using mathematical computer software, we find that
\[x_0 \in (1.31187873615727632, 1.31187873615727633),
\]
and \(\beta = \exp(f_{p_1}(x_0))) \approx 1.0002 \), which proves the sufficiency and \((3.7)\).

Letting \(p = \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{\sqrt{3}}{2}, 1 \) in Theorem \((3)\) and \(p = \frac{1}{\sqrt{6}}, \frac{1}{3}, \frac{1}{2\sqrt{3}}, \frac{1}{4}, \ldots, \to 0 \) in Theorem \((1)\) together with Theorem \((2)\) we have
Corollary 1. For \(x \in (0, \pi/2) \), we have

\[
\cos^{1/3} x < \cdots < \left(\cos \frac{\sqrt{5}x}{3} \right)^{1/2} < \left(\cos \frac{x}{\sqrt{3}} \right)^{2/3} < \cos \frac{x}{\sqrt{3}} < \left(\cos \frac{\pi}{3} \right)^{1/3}
\]

\[
< \left(\cos p_1 x \right)^{1/(3p_1^2)} < \frac{\sin x}{x} < \left(\cos \frac{x}{\sqrt{5}} \right)^{5/3} < \left(\cos \frac{x}{\sqrt{5}} \right)^2 < \left(\cos \frac{\pi}{3} \right)^3
\]

where \(p_1 = 0.45346830977067 \).

Thus it can be seen that our results greatly refine Milinović-Cusa inequality \((1.1)\).

The following give a relative error estimating \((\sin x) / x \) by \((\cos px)^{1/(3p^2)} \).

Theorem 4. For \(p \in (0, 1) \), let \(f_p \) be defined on \((0, \pi/2) \) by \((2.7)\). Then \(f_p \) is decreasing if \(p \in (0, \sqrt{5}/5) \) and increasing if \(p \in [1/2, 1] \).

Moreover, if \(p \in (0, \sqrt{5}/5) \) then for \(x \in (0, c) \) with \(c \in (0, \pi/2) \)

\[
\gamma_p (c) \cos px^{1/(3p^2)} < \frac{\sin x}{x} < (\cos px)^{1/(3p^2)}
\]

with the best possible constants \(\gamma_p (c) = c^{-1} (\sin c) (\cos pc)^{1/(3p^2)} \) and 1. The inequalities \((3.10)\) are reversed if \(p \in [1/2, 1] \).

Proof. Differentiation and using \((2.1)\) and \((2.2)\) yield

\[
f'_p (x) = \left(\cot x - \frac{1}{x} \right) + \frac{1}{3p} \tan px
\]

\[
= -\sum_{n=1}^{\infty} \frac{22^n}{(2n)!} |B_{2n}| x^{2n-1} + \frac{1}{3} \sum_{n=1}^{\infty} \frac{22^n - 1}{(2n)!} p^{2n-2} 22^n |B_{2n}| x^{2n-1}
\]

\[
= \sum_{n=1}^{\infty} \frac{(22^n - 1) 22^n}{3 (2n)!} |B_{2n}| \left(p^{2n-2} - \frac{3}{2^{2n-1}} \right) x^{2n-1} = \sum_{n=2}^{\infty} s_n t_n x^{2n-1},
\]

where

\[
s_n = \frac{(22^n - 1) 22^n |B_{2n}|}{3 (2n)!} p^{2n-2} \frac{3}{2^{2n-1}} t_n > 0,
\]

\[
t_n = p - k (n)
\]

for \(n \geq 2 \) and \(p \in (0, 1) \), where the function \(k \) is defined by \((3.9)\). As showed in the proof of Theorem 3 \(k \) is increasing on \((1, \infty)\), and so for \(n \geq 2 \)

\[
1/\sqrt{5} \leq k (2) \leq k (n) \leq k (\infty) = \lim_{n \rightarrow \infty} \left(\frac{3}{2^{2n-1}} \right)^{1/(2n-2)} = \frac{1}{2}
\]

and then, \(t_n = p - k (n) \leq 0 \) if \(p \in (0, \sqrt{5}/5) \) and \(t_n = p - k (n) \geq 0 \) if \(p \in [1/2, 1] \). Thus, if \(p \in (0, \sqrt{5}/5) \) then \(f'_p (x) < 0 \), that is, \(f_p \) is decreasing, and it is derived that for \(x \in (0, c) \) with \(c \in (0, \pi/2) \)

\[
\ln \gamma_p (c) = f_p (a) < f_p (x) < \lim_{x \rightarrow 0^+} f_p (x) = 0,
\]

which yields \((3.10)\).

Likewise, if \(p \in [1/2, 1] \) then \(f'_p (x) > 0 \), then, \(f_p \) is increasing, and \((3.10)\) is reversed, which completes the proof. \(\square \)
Letting \(c \to \frac{\pi}{2} \) and putting \(p = \sqrt{5}/5, \sqrt{6}/6, 1/3, 0^+ \) in Theorem 4, we get

Corollary 2. The following inequalities

\[
\begin{align*}
\gamma_{1/\sqrt{5}} \left(x^3 \right) \left(\cos \frac{2x}{\sqrt{5}} \right) &< \frac{\sin x}{x} < \left(\cos \frac{2x}{\sqrt{5}} \right)^{5/3}, \\
\gamma_{1/\sqrt{6}} \left(x^2 \right) \left(\cos \frac{2x}{\sqrt{6}} \right)^2 &< \frac{\sin x}{x} < \left(\cos \frac{2x}{\sqrt{6}} \right)^2, \\
\gamma_{1/3} \left(x^3 \right) \left(\cos \frac{2x}{3} \right) &< \frac{\sin x}{x} < \left(\cos \frac{2x}{3} \right)^3, \\
\gamma_{0+} \left(x^2 \right) e^{-x^2/6} &< \frac{\sin x}{x} < e^{-x^2/6}
\end{align*}
\]

hold true for \(x \in (0, \pi/2) \), where \(\gamma_{1/\sqrt{5}} (\pi/2) = 0.99872..., \gamma_{1/\sqrt{6}} (\pi/2) = 0.99141..., \gamma_{1/3} (\pi/2) = 16\sqrt{3}/(9\pi), \gamma_{0+} (\pi/2) = 2e^{\pi^2/24}/\pi \) are the best possible constants.

Letting \(c \to \pi/2 \) and putting \(p = 1/2 \) in Theorem 4, we obtain

Corollary 3. For \(x \in (0, \pi/2) \), the double inequality

\[
\left(\cos \frac{x}{2} \right)^{4/3} < \frac{\sin x}{x} < \gamma_{1/2} \left(\frac{x}{2} \right) \left(\cos \frac{x}{2} \right)^{4/3}
\]

holds, where 1 and \(\gamma_{1/2} (\pi/2) = 2^{5/3}/\pi = 1.0106... \) are the best constants.

Remark 2. Note that the first inequality of (3.15) also holds for \(x \in (0, \pi) \), Indeed, differentiation yields

\[
\frac{x \sin x}{\cos x + 2} f'_{1/2} (x) = \frac{x}{3} - \frac{\sin x}{\cos x + 2} = g' (x).
\]

From the proof of Theorem 4, we see that for \(x \in (0, \infty), g' (x) > 0 \), which yields for \(x \in (0, \pi) \), \(f'_{1/2} (x) > 0 \), and then \(f_{1/2} (x) > f_{1/2} (0^+) = 0 \), that is, the first inequality of (3.15) holds for \(x \in (0, \pi) \).

4. Applications

As simple applications of main results, we will present some precise estimates for certain integrals in this section. The following is a direct corollary of Theorem 4

Application 1. We have

\[
\frac{1}{p} \left(\frac{2}{p} \right)^{3p^2} \tan \frac{p\pi}{2} \leq \int_0^{\pi/2} \left(\frac{\sin x}{x} \right)^{3p^2} dx < \int_0^{\pi/2} (\cos px) = \frac{1}{p} \sin \frac{p\pi}{2}
\]

if \(p \in (0, \sqrt{5}/5) \). Inequalities (4.1) is reversed if \(p \in [1/2, 1] \).

By integrating both sides of (3.14) over \([0, a]\) and simple computation, we have

Application 2. For \(a > 0 \) the following inequalities

\[
f(a) = \frac{2a + \sin a}{(2 + \cos a) e^{x^2/6}} < \int_0^a e^{-x^2/6} dx < \frac{2a + \sin a}{3}
\]
are valid. Particularly, we have

\[
\frac{\pi + 1}{2e^{\pi^2/24}} < \int_0^{\pi/2} e^{-x^2/6} dx < \frac{\pi + 1}{3},
\]

\[
\frac{(4 - \sqrt{2}) (\pi + \sqrt{2})}{14e^{\pi^2/90}} < \int_0^{\pi/4} e^{-x^2/6} dx < \frac{\pi + \sqrt{2}}{6}.
\]

For the estimate for the sine integral defined by

\[\text{Si}(x) = \int_0^x \frac{\sin t}{t} dt,\]

there has some results, for example, Qi \[15\] showed that

\[1.3333... = \frac{4}{3} < \text{Si} \left(\frac{\pi}{2} \right) < \frac{\pi + 1}{3} = 1.3805...;\]

the following two estimations are due to Wu \[20], \[21]:

\[1.3569... = \frac{\pi + 5}{6} < \text{Si} \left(\frac{\pi}{2} \right) < \frac{\pi + 1}{3} = 1.3805...;\]

\[1.3688... = \frac{92 - \pi^2}{60} < \text{Si} \left(\frac{\pi}{2} \right) < \frac{8 + 4\pi}{15} = 1.3711...;\]

Now we give a more better one.

Application 3. We have

\[
\frac{\sqrt{3}}{4} \pi < \int_0^{\pi/2} \frac{\sin x}{x} dx < \frac{7}{16} \pi
\]

Proof. By Corollary 1 we see that the inequalities

\[
\cos \frac{x}{\sqrt{3}} < \frac{\sin x}{x} < \cos \frac{x}{\sqrt{6}}
\]

hold for \(x \in [0, \pi/2]\). Integrating both sides over \([0, \pi/2]\) and simple calculation yield

\[
\sqrt{3} \sin \frac{\pi}{2\sqrt{3}} < \int_0^{\pi/2} \frac{\sin x}{x} dx < \frac{\pi}{4} + \frac{\sqrt{6}}{4} \sin \frac{\pi}{\sqrt{6}}.
\]

Using (4.4) again gives

\[
\sin \frac{\pi}{2\sqrt{3}} > \frac{\pi}{2\sqrt{3}} \cos \frac{\pi}{2\sqrt{3}} = \frac{\pi}{4},
\]

\[
\sin \frac{\pi}{\sqrt{6}} < \frac{\pi}{\sqrt{6}} \cos \frac{\pi}{\sqrt{6}} = \frac{3\pi}{4\sqrt{6}}
\]

which implies that the left hand side of (4.5) is grater than \(\sqrt{3}\pi/4\) and the right hand side is less than

\[
\frac{\pi}{4} + \frac{\sqrt{6}}{4} \frac{3\pi}{4\sqrt{6}} = \frac{7}{16} \pi.
\]

Thus (4.2) follows. \(\square\)

It is known that

\[
\int_0^{\pi/2} \ln (\sin x) dx = -\frac{\pi}{2} \ln 2.
\]

We now evaluate the integral \(\int_c^\pi \ln (\sin x) dx (c \in (0, \pi/2)).\)
Application 4. For \(c \in (0, \pi/2) \), we have

\[
(4.6) \quad c \ln (\sin c) - c + \frac{1}{9}c^3 < \int_0^c \ln (\sin x) \, dx < c \ln c - \frac{1}{18}c^3.
\]

Particularly, we get

\[
(4.7) \quad -\frac{\pi}{72} (36 - \pi^2) < \int_0^{\pi/2} \ln (\sin x) \, dx < -\frac{\pi}{72} (\ln 2 + \frac{\pi^2}{72} + 1),
\]

\[
(4.8) \quad -\frac{\pi}{8} (2 + \ln 2 - \frac{\pi^2}{72}) < \int_0^{\pi/4} \ln (\sin x) \, dx < -\frac{\pi}{8} (2 \ln 2 + 1 + \frac{\pi^2}{288} - \ln \pi).
\]

Proof. Letting \(p \to 0^+ \) in \((3.10)\) gives

\[
\gamma_0^+ (c) e^{-x^2/6} < \frac{\sin x}{x} < e^{-x^2/6},
\]

where \(\gamma_0^+ (c) = e^{-1} (\sin c) e^{c^2/6} \). Multiplying both sides by \(x \) and taking the logarithm and next integrating \([0, c]\) yield

\[
\int_0^c \ln \left(\gamma_0^+ (c) xe^{-x^2/6} \right) \, dx < \int_0^c \ln (\sin x) \, dx < \int_0^c \ln \left(xe^{-x^2/6} \right) \, dx.
\]

Simple integral computation leads to desired result. □

The Catalan constant \([4]\)

\[
G = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} = 0.9159655941772190...
\]

is a famous mysterious constant appearing in many places in mathematics and physics. Its integral representations \([3]\) contain the following

\[
G = \int_0^1 \frac{\arctan x}{x} \, dx = \frac{1}{2} \int_0^{\pi/2} \frac{x}{\sin x} \, dx
\]

\[
= -2 \int_0^{\pi/4} \ln (2 \sin x) \, dx = \frac{\pi^2}{16} - \frac{\pi}{4} \ln 2 + \int_0^{\pi/4} \frac{x^2}{\sin^2 x} \, dx.
\]

We next prove three accurate estimations for \(G \).

Application 5. We have

\[
(4.9) \quad \frac{\sqrt{6\pi}}{2\sqrt{16\sqrt{3} - \pi^2}} < G < \frac{3}{32} \pi^2,
\]

\[
(4.10) \quad \frac{\pi}{2} \left(2 \ln 2 - \ln \pi + \frac{\pi^2}{288} + 1 \right) < G < \frac{\pi}{4} \left(2 \ln 2 - \frac{\pi^2}{72} \right),
\]

\[
(4.11) \quad \frac{\pi^2}{16} - \frac{\pi}{4} \ln 2 + \frac{8}{5} \left(172 - 99\sqrt{3} \right) < G < \frac{\pi^2}{320} \left(37 + 6\sqrt{3} \right) - \frac{\pi}{4} \ln 2.
\]

Proof. (i) \((3.12)\) implies that for \((0, \pi/2)\)

\[
\frac{1}{\cos^2 \frac{x}{\sqrt{6}}} < \frac{x}{\sin x} < \frac{1}{\gamma_1/\sqrt{6} \left(\frac{\pi}{2} \right) \cos^2 \frac{x}{\sqrt{6}}},
\]
where $\gamma_{1/\sqrt{3}}(\pi/2) = 2\pi^{-1} \cos^2\left(\sqrt{6}\pi/12\right)$. Integrating both sides over $[0, \pi/2]$ yields
\[
\sqrt{6} \tan \frac{\pi}{2\sqrt{6}} < \int_{0}^{\pi/2} \frac{x}{\sin x} \, dx < \frac{\sqrt{6}}{4} \pi \sin \frac{\pi}{\sqrt{6}}.
\]
By Corollary 1 it is seen that for $x \in (0, \pi/2)$
\[
\sin x > x \left(\cos \frac{\sqrt{6}x}{3}\right)^{1/2}
\]
holds, and so
\[
\tan^{2} \frac{\pi}{2\sqrt{6}} = 1 - \sin^{2} \frac{\sqrt{6}x}{3} < x^2 < \cos^{2} \frac{\pi}{\sqrt{6}} = \frac{\sqrt{6}}{8} \pi.
\]
Hence,
\[
\frac{\sqrt{6}x}{\sqrt{16\sqrt{3}-\pi^2}} < \sqrt{6} \tan \frac{\pi}{2\sqrt{6}} < \int_{0}^{\pi/2} \frac{x}{\sin x} \, dx < \frac{\sqrt{6}}{4} \pi \sin \frac{\pi}{\sqrt{6}} < \frac{3}{16} \pi^2,
\]
which, from the third integral representation for G, implies (4.9).

(ii) By (7) it is derived that
\[
\frac{\pi}{8} \left(\ln 2 + \frac{1}{72} \pi^2 - 2\right) < \int_{0}^{\pi/4} \ln(2 \sin x) \, dx < \frac{\pi}{4} \left(\ln \pi - \ln 2 - 1 - \frac{1}{288} \pi^2\right),
\]
it follows from the third integral representation for G that (4.9) holds.

(iii) Lastly, we use the fourth integral representation for G to prove (4.10). Employing Theorem 4, we have
\[
\gamma_{1/3} \left(\frac{\pi}{4}\right) \cos^{3} \frac{x}{3} < \sin \frac{x}{x} < \cos^{3} \frac{x}{3},
\]
where $\gamma_{1/3} \left(\pi/4\right) = 16 \left(3\sqrt{3} - 5\right)/\pi$. It is obtained that
\[
\cos^{-6} \frac{x}{3} < \frac{x^2}{\sin^2 x} < \frac{\pi^2}{512} \left(15\sqrt{3} + 26\right) \cos^{-6} \frac{x}{3},
\]
and integrating both sides over $[0, \pi/4]$ leads to
\[
\int_{0}^{\pi/4} \cos^{-6} \frac{x}{3} \, dx < \int_{0}^{\pi/4} \frac{x^2}{\sin^2 x} \, dx < \frac{\pi^2}{512} \left(15\sqrt{3} + 26\right) \int_{0}^{\pi/4} \cos^{-6} \frac{x}{3} \, dx.
\]
Integral computation reveals that
\[
\int_{0}^{\pi/4} \left(\cos \frac{x}{3}\right)^{-6} \, dx = \frac{8}{5} \left(172 - 99\sqrt{3}\right),
\]
and therefore
\[
\frac{8}{5} \left(172 - 99\sqrt{3}\right) < \int_{0}^{\pi/4} \frac{x^2}{\sin^2 x} \, dx < \frac{\pi^2}{320} \left(6\sqrt{3} + 17\right).
\]
Application of the fourth integral representation for G the desired inequality (4.10) follows. □
References

[1] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps, New York 1997.

[2] M. Biernacki and J. Krzyz, On the monotonicity of certain functionals in the theory of analytic functions, Annales Universitatis Mariae Curie-Sklodowska, 9 (1995), 135–147.

[3] D. M. Bradley, Representations of Catalan’s constant, 2001, available online at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.1879.

[4] E. Catalan, Recherches sur la constante G, et sur les intégrales eulériennes, Mémoires de l’Académie imperiale des sciences de Saint-Pétersbourg, Ser. 31 (7) (1883).

[5] C.-P. Chen and W.-S. Cheung, Sharp Cusa and Becker-Stark inequalities, J. Ineq. Appl. 2011 (2011): 136.

[6] Group of compilation, Handbook of Mathematics, Peoples’ Education Press, Beijing, China, 1979. (Chinese)

[7] K.S.K. Iyengar, B.S. Madhava Rao and T.S. Nanjundiah, Some trigonometrical inequalities, Half-Yearly J. Mysore Univ. Sect. B., N. S. 6 (1945), 1-12.

[8] R. Klén, M. Visuri and M. Vuorinen, On Jordan type inequalities for hyperbolic functions, J. Inequal. Appl. 2010 (2010), Art. ID 362548, 14 pages, doi:10.1155/2010/362548.

[9] Y.-P. Lv, G.-D. Wang and Y.-M. Chu, A note on Jordan type inequalities for hyperbolic functions, Appl. Math. Lett. 25 (2012), 505-508.

[10] D. S. Mitrinović, Limitations en module d’une fonction homographique sur un cercle, Universitet u Beogradu. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika, 143-155 (1965), 3-4.

[11] D. S. Mitrinović and P. M. Vasić, Analytic Inequalities, Springer, New York, 1970.

[12] C. Morttice, The natural approach of Wilker-Cusa-Huygens inequalities, Math. Inequal. Appl. 14 (2011), 535-541.

[13] E. Neuman and J. Sándor, On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities, Math. Inequal. Appl. 13, 4 (2010), 715–723.

[14] E. Neuman, Inequalities for the Schwab-Borchardt mean and their applications, J. Math. Inequal. in print.

[15] F. Qi, Extensions and sharpenings of Jordan’s and Kober’s inequality, Journal of Mathematics for Technology 12 (4) (1996), 98–102. (Chinese)

[16] F. Qi, D.-W. Niu and B.-N. Guo, Refinements, generalizations, and applications of Jordan’s inequality and related problems, J. Inequal. Appl. 2009 (2009), Art. ID 271923, 52 pages.

[17] F. Qi, L.-H. Cui and S.-L. Xu, Some inequalities constructed by Tchebysheff’s integral inequality, Math. Inequal. Appl. 2 (4) (1999), 517–528.

[18] J. Sándor and M. Bencze, On Huygens’s trigonometric inequality, RGMIA Research Report Collection 8 (3) (2005); available online at http://www.aejmaa.org/RGMIA/papers/v8n3/Huygens.pdf.

[19] M. K. Vamanamurthy and M. Vuorinen, Inequalities for means, J. Math. Anal. Appl. 183 (1994), 155–166.

[20] Sh.-H. Wu and L. Debnath, A new generalized and sharp version of Jordan’s inequality and its applications to the improvement of the Yang Le inequality, Appl. Math. Letters 19 (12) (2006), 1378–1384.

[21] Sh.-H. Wu, Sharpness and generalization of Jordan’s inequality and its application, Taiwanese J. Math. 12 (2) (2008), 325-336.

[22] S.-H. Wu and A. Báricz, Generalizations of Mitrinović, Adamović and Lazarević inequalities and their applications, Publ. Math. Debrecen 75, 3–4 (2009), 447–458.

[23] L. Zhu, A source of inequalities for circular functions, Comput. Math. Appl. 58 (2009), 1998-2004.

System Division, Zhejiang Province Electric Power Test and Research Institute, Hangzhou, Zhejiang, China, 310014
E-mail address: yzhkm@163.com