Fibulin-1 integrates subendothelial extracellular matrices and contributes to anatomical closure of the ductus arteriosus.

Satoko Ito1,2, Utako Yokoyama1,2, Taichi Nakakoji2, Yuko Kato1, Junichi Saito1,2, Naoki Nicho2, Masuda Munetaka3, Toshihide Asou4, Yoshihiro Ishikawa2

1Department of Physiology, Tokyo Medical University, 2Cardiovascular Research Institute, Yokohama City University, 3Department of Surgery, Yokohama City University, 4Department of Cardiovascular Surgery, Kanagawa Children’s Medical Center

Objective: COX inhibitors targeting smooth muscle cell (SMC) contraction represent the only pharmacological treatment for patent ductus arteriosus (PDA), but >30% patients are resistant to the current therapies. Intimal thickening (IT), occurs in the subendothelial region of DA to bring anatomical DA closure. We investigated the role of fibulin-1 in DA anatomical closure to seek a new IT-inducing pharmacological therapy.

Approaches and results: Microarray analysis demonstrated that fibulin-1 was the most up-regulated gene by stimulation of EP4 in DA-SMCs. EP4-induced fibulin-1 expression was mediated through the phospholipase C-protein kinase C-noncanonical nuclear factor-kappa B pathway. We performed FACS analysis and found that fibulin-1 binding protein versican was derived from DA-endothelial cells. Immunofluorescence demonstrated that fibulin-1 and versican V0/V1 were co-expressed at the IT of wild-type DA. In the DA of EP4-deficient mouse (Ptger4-/-), fibulin-1 was largely attenuated and showed PDA. All of fibulin-1-deficient mice exhibited PDA with hypoplastic IT, and fibulin-1 protein administration restored IT formation of Ptger4-/-. Furthermore, 30% of versican deleted mice lacking a hyaluronan binding site displayed PDA.

Conclusions: Fibulin-1 contributes to DA closure by forming an environment favoring directional SMC migration toward the subendothelial region in combination with versican and hyaluronan. Targeting fibulin-1 upregulation may provide the basis for therapeutic strategies for inducing anatomical DA closure.