CONCEPTUAL STAGE OF DESIGN IN MECHANICAL ENGINEERING

Dr. Ali Hasan

Assistant Professor, Department of Mechanical Engineering, Faculty of Engineering & Technology, Jamia Millia Islamia (A Central University), New Delhi-110025, India,

Abstract - This paper gives a new thought for identifying the mechanism kinematic chains. The thought is based on Weighted Physical Connectivity Matrix [WPCM] of the considered mechanism kinematic chains. The two constants terms named [WPCM∑] (sum of absolute characteristic polynomial coefficients) and [WPCMax] (Maximum absolute value of characteristic polynomial coefficient) of are calculated from [WPCM] matrix. These two constant terms are used as the identity number of a mechanism kinematic chain. This study will help the designer to select the best possible mechanism to perform the specified task at the conceptual stage of design.

Key words - Kinematic Chain, Physical Connectivity Matrix, Mechanism

I. INTRODUCTION

A number of researchers have discussed structural synthesis in the earlier days. Chang, et.al. [1] proposed a method based on the eigen vectors and eigen values to identify isomorphism of mechanism kinematic chain. Yi-Qu [2] used extended adjacency matrix for molecules in chemical engineering. Agrawal and Rao [3] investigated a systematic method of analysis of the mobility properties of the kinematic chains by its loop freedom matrix and its permanent function which are used to identify it. Sethi and Agrawal [4] proposed a classification scheme on the basis of structural properties. Madan and Jain [5] considered the kinematic chains-isomorphism, inversions and degree of similarity using the concept of connectivity. Rao [6] threw the light on the enumeration of distinct planar kinematic chains. Misti [7] presented the position analysis in polynomial form of planar mechanisms with Assur groups of class 3 including revolute and prismatic joints. Uicker and Raicu [8] presented a method for the identification and recognition of equivalence of kinematic chains. Later on, this method failed. Mruthyunjaya and Balasubramanian [9] proved that the method proposed by Uicker and Raicu [8] is not reliable. Shende and Rao [10] work on the problem of detection of isomorphism. Chu Jin-Kui and Cao Wei-Qing [11] proposed a method for identification of isomorphism among kinematic chains and inversions using Link's adjacent-chain-table. Yadav, et.al. [12] Proposed a computer aided detection method of isomorphism among kinematic chains and mechanisms using the concept of modified distance. Yadav, et.al.[13] presented a paper mechanism of a kinematic chain and the degree of structural similarity based on the concept of link path code. Yadav, et.al.[14] presented a paper ‘computer aided detection of isomorphism among binary chains using the link-link multiplicity distance concept. Rao [15] used the application of fuzzy logic for the study of isomorphism, inversions, symmetry, parallelism and mobility in kinematic chains with some necessary and sufficient conditions. Kong, et.al. [16] Proposed a new method based on artificial neural network (ANN) to identify the isomorphism of the mechanism kinematic chain. Rao and Deshmukh [17] proposed method does not require any separate test for isomorphism in the generation of kinematic chains. He and Jhang [18] proposed a new method for detection of graph isomorphism based on the quadratic form. Tang and Liu [19] established a method ‘the degree code’ as a new mechanism identifier. Later on this method also failed. Zhao, et.al [20] put forward and more complete theory of degrees of freedom (DOF) for mechanisms. Hasan et al. [21] but the concept that these methods are based on seems to be unjustified as either link-link adjacency or joint-joint adjacency hardly differ in nature and are likely to fail at some stage or the other. Hasan [22-23]
proposed a new method in which kinematic chains are represented in the form of the Joint-Joint (JJ) matrix. Dargar et al. [24-25] proposed Link adjacency value method to identify the isomorphism by calculating the first and second link adjacency values. Rizvi et al. [26] presented a new method for distinct inversions and isomorphism based on a link identity matrix and link signature.

Nomenclature: C: Cylindric lower pair, F: Planer lower pair, G: Spheric lower pair, HP: Higher pairs (point contact), HL: Higher pairs (line contact), P: Prismatic lower pairs, R: Revolute lower pairs, SL: Screw lower pairs. All the kinematic pairs (KP) are distinguished by assigning different numeric values. Let R=1.1, P=1.2, C=1.3, SL=1.4, F=1.5, G=1.6, HP=2.1 and HL=2.2. These values are assumed to distinguish the kinematic pairs.

II. SUMMARY OF THE METHODOLOGY

Step-1: write the Physical Connectivity Matrix [PCM] of the given mechanism kinematic chain.

\[[PCM] = \{ P_{ij} \}_{nxn}, \]

Where, \(P_{ij} \) = Type of kinematic pair between \(i^{th} \) link and \(j^{th} \) link that are directly connected.

\(= 0, \) when \(i^{th} \) and \(j^{th} \) link are not connected directly.

Of course; \(P_{ii} = 0 \)

Step-2: Write the Weighted Physical Connectivity Matrix [WPCM]

\[[WPCM] = \{ g_{ij} \}_{nxn} \]

Where; \(g_{ij} = (P_{ij}) x (W_{ij}), W_{ij} = \frac{1}{2} [v_i/v_j+v_j/v_i] , V = [v_1 \ v_2 \ v_3 \ v_4 \ v_5 \ \ldots \ \ldots \ v_n] , \)

The degree vector (V) represents the type of individual link, like 2 for binary link, 3 for ternary link, 4 for quaternary link, etc.

Step-3: Using MATLAB Software, determine the identity numbers [WPCM∑] and [WPCMmax] of [WPCM] matrix

The characteristic polynomial of WPCM matrix is given by \(D(\lambda) \). The monic polynomial of degree \(n \) of WPCM matrix is given by:

\[D(\lambda) = 1 \ WPCM - \lambda I \ 1 = \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \ldots + + a_{n-1} \lambda + a_n . \]

1, \(a_1, a_2, \ldots, a_{n-1}, a_n \) are characteristic polynomial coefficients.

The two important properties of the characteristic polynomials are:

1. The [WPCM∑] is a constant , i.e. \(1+|a_1|+|a_2|+\ldots+|a_{n-1}|+|a_n| = \text{constant} \)
2. The [WPCMmax] is also another constant for a WPCM matrix.

So, two identity numbers WPCM∑ and WPCMmax unique.

III. ILLUSTRATIVE EXAMPLE

Consider a KC with 10- links shown in Figure-1. We have to determine the equivalent links or equivalent mechanisms or total distinct mechanisms obtained from this kinematic chain.

![Figure-1: 10 Links kinematic chain](image-url)
Following the methodology, [WPCM] matrices of other inversions (by fixing the links in turn) are written. The numeric values of the constant for chain shown in Figure 1 are: \([WPCM_\Sigma] = 1.1243 \times 10^3\) and \([WPCM_{\text{max}}] = 393.6130\). These identification values for different mechanisms are given in Table 1.

Table 1: Numeric value of \([WPCM_\Sigma]\) and \([WPCM_{\text{max}}]\) for chain shown in Figure 1.

Numeric value of \([WPCM_\Sigma]\)	Numeric value of \([WPCM_{\text{max}}]\)	Remarks
\([WPCM_\Sigma]\) = 1.2580 \times 10^3	\([WPCM_{\text{max}}]=-1=393.6130\)	Link 1 and link 2 are equivalent and will form only one mechanism.
\([WPCM_\Sigma]=2=393.6130\)	\([WPCM_{\text{max}}]=2=393.6130\)	Similarly links 3, 4, 5, 6, 7, 8, 9 and 10 equivalent links and will form another single mechanism.
\([WPCM_\Sigma]=3=393.6130\)	\([WPCM_{\text{max}}]=3=393.6130\)	Therefore, total distinct mechanisms obtained will be 2.
\([WPCM_\Sigma]=4=393.6130\)	\([WPCM_{\text{max}}]=4=393.6130\)	
\([WPCM_\Sigma]=5=393.6130\)	\([WPCM_{\text{max}}]=5=393.6130\)	
\([WPCM_\Sigma]=6=393.6130\)	\([WPCM_{\text{max}}]=6=393.6130\)	
\([WPCM_\Sigma]=7=393.6130\)	\([WPCM_{\text{max}}]=7=393.6130\)	
\([WPCM_\Sigma]=8=393.6130\)	\([WPCM_{\text{max}}]=8=393.6130\)	
\([WPCM_\Sigma]=9=393.6130\)	\([WPCM_{\text{max}}]=9=393.6130\)	
\([WPCM_\Sigma]=10=393.6130\)	\([WPCM_{\text{max}}]=10=393.6130\)	

It is clear from Table 1 that 2 distinct mechanisms can be obtained from the given kinematic chain in Figure 1, because there are only two different values of the constants \([WPCM_\Sigma]\) i.e. 1.2580 \times 10^3, 1.5393 \times 10^3 for the mechanisms obtained by fixing the links 1 to 10 in turn. Note that the result obtained by using other methods available in the literature, the same result is obtained.

IV. CONCLUSION

The proposed [PCM] matrix is based on different kinematic pairs based on the contact among different links in a mechanism kinematic chain. The [WPCM] matrix is written with the help of
[PCM] matrix. This matrix takes care for the types of links used in the mechanism kinematic chains. The two constants known as identification number [WPCM∑] and [WPCMmax] are determined using MATLAB from the [WPCM] matrix. These identification numbers have been used for determining the distinct mechanisms from a given kinematic chain.

REFERENCES

[1] Zongyu Chang, Ce Zhan, Yuhu Yang and Yuxin Wang, “A new Method to Mechanism Kinematic Chain Isomorphism Identification”, Mech. Mach. Theory, Vol. 37, pp. 411-417, 2002.

[2] Yi-Qui Yang, Lu Xu and Chang-Yu Hu, “Extended Adjacency Matrix Indices and Their Applications”, J. Chem. Inf. Comput. Sci., 34, pp. 1140-1145, 1994.

[3] Agrawal V.P. and Rao J.S., “The Mobility Properties of Kinematic Chains”, Mech. Mach. Theory, Vol. 22, pp. 497-504, 1987.

[4] Sethi V. K. and Agrawal V. P., “Hierarchical Classification of Kinematic Chains – A Multigraph Approach”, Mech. Mach. Theory, Vol. 28, pp. 601 – 614, 1993.

[5] Madan D. R. and Jain R. C., “Kinematic Chains-Isomorphism, Inversions and Degree of Similarity Using Concept of Connectivity”, Journal of Institution of Engineers (India), Vol. 82, pp. 164-169, 2002.

[6] Rao a.b.s., Srinath A. and Rao A.C., “Synthesis of Planar Kinematic Chains”, IE (I), vol.86, pp 195-201, 2006.

[7] Mitsu S., Bouzakis K. D., Mansour G. and Popescu I., “Position Analysis in Polynomial Form of Planer Mechanisms with Assurance Groups of Class – 3 including revolute and Prismatic Joints”, Mech. Mach. Theory, Vol. 38, pp. 1325-1344, 2003.

[8] Uicker J. J. and Raicu A., “A method for the Identification and Recognition of Equivalence of Kinematic Chains”, Mech. Mach. Theory, Vol. 10, pp. 375 – 383, 1975.

[9] Mruthyunjaya T.S. and Balasubramanium H.R., “In Quest of Reliable and Efficient Computational Test for Detection of Isomorphism in Kinematic Chains”, Mech. Mach theory, Vol. 22, No 4, pp 131-139, 1987.

[10] Schende S. and Rao A. C., “Isomorphism in Kinematic Chains”, Mech. Mach. Theory, Vol. 29, No. 7 pp. 1065 – 1070, 1994.

[11] Chu Jin-Kui and Cao Wei-Qing, “Identification of Isomorphism among Kinematic Chains and Inversions Using Link’s Adjacent-Chain-Table”, Mech. Mach. Theory, Vol. 29, pp – 53 – 58 1994.

[12] Yadav J. N., Pratap C. R.and Agrawal V. P., “Mechanisms of a kinematic chain and degree of structural similarity based on the concept of link – path code”, Mech. Mach. Theory, Vol. 31, pp. 865 – 871, 1996.

[13] Yadav J. N., Pratap C. R.and Agrawal V. P., “Computer Aided detection of isomorphism among binary chains using link – link multiplicity distance concept”, Mech. Mach. Theory, Vol. 31 , pp. 873 – 877, 1996.

[14] Yadav J. N., Pratap C. R.and Agrawal V. P., “Computer Aided Detection Of Isomorphism Among Kinematic Chains And Mechanisms Institution of Engineers (India), Vol. 82, pp. 51-55, 2002

[15] Rao A. C., “Application of Fuzzy Logic for the Study of Isomorphism, Inversions, Symmetry, Parallelism and Mobility in Kinematic Chains”, Mech. Mach. Theory, Vol. 35, pp. 1103-1116, 2000.

[16] Kong F. G., Li Q. and Zhang W., J., “An Artificial Neural Network Approach to Mechanism Kinematic Chains Isomorphism Identification”, Mech. Mach. Theory, Vol. 34, pp. 271-283, 1999.

[17] Rao A. C., Pratap and B. Deshmukh, “Computer Aided Structural Synthesis of Planar Kinematic Chains Obitiating the Test of Isomorphism”, Mech. Mach. Theory, Vol. 36, pp. 489-506, 2001.

[18] He.P.R., Zhang W.J., Li Q. and Wu F.X., “A New Method For Detection of Graph Isomorphism Based On The Quadratic Form”, ASME Journal of mechanical design, vol.125,pp 640-646,2003

[19] Tang C. S. and Liu Tyang, “The degree code – A New Mechanism Identifier” Trends and Developments in Mechanisms, Machines and Robotics, Kissimmee, Florida, U.S.A., 1, pp. 147-151, 1988.

[20] Zhao J.S., Zhou K.and feng Z.J., “A theory of freedom for mechanisms”, Mech. Mach. Theory, Vol. 39, pp. 621-643, 2004.

[21] Hasan A.,Darga A. , Khan R.A., “Isomorphism and inversions of kinematic chains up to 10-links”, Proceedings of the 13th National Conference on Mechanisms and Machines, 2007.

[22] Hasan A., “Some Studies on Characterization and Identification of Kinematic Chains and Mechanisms.” Ph D Thesis, Mechanical Engineering Department, Jamia Millia Islamia (A Central University), New Delhi, India, 2007.

[23] Hasan A., “ Isomorphism and Inversions of Kinematic Chains up to 10 Links ”,Journal of ‘Institution of Engineers (India), Vol. 90, pp.10-14, 2009.

[24] Darga A. , Khan R.A.,Hasan A., “ Identification of Isomorphism among Kinematic Chains and Inversions Using Link Adjacency Values”,International J. of Mech. and Materials Engineering (IJMME), pp.309-315, No.3, Vol. 4(2009)

[25] Darga A. , Khan R.A.,Hasan A., “ Application of Link Adjacency Values to Detect Isomorphism among Kinematic Chains”,Int. J. Mech. Mater. Design ,”, 6,157-162.2010.

[26] Rizvi S.S.H., Hasan A., Khan R.A., “ A New for distinct inversions and isomorphism detection in kinematic chains”, Int. J. Mechanisms and Robotic Systems, Inderscience Enterprises Ltd Vol. 3, No. 1, pp. 48-59, 2016.