Development and Characterization of a Potent Tumor Necrosis Factor-Alpha-Blocking Agent

Aida Jameei, Deepesh Nagarajan, Mohsen Sarikhani, Nagasuma Chandra, and Anjali A. Karande

Tumor necrosis factor-α (TNFα), one of the major proinflammatory cytokines, plays a key role in an effective immune response. However, the chronic presence of TNFα can lead to several inflammatory disorders, such as rheumatoid arthritis, psoriasis, Crohn’s disease, etc. Inhibition of TNFα by pharmacological inhibitors or antibodies has proven to be effective in palliative treatment to some extent. The aim of this study was to develop an anti-TNFα antibody, which may be used as a therapeutic option to inhibit TNFα-mediated cytotoxicity. We characterized several hybridoma clones secreting monoclonal antibodies (mAbs) to human-TNFα. Four mAbs rescued L929 fibroblast cells from TNFα-triggered cell death and one of these, namely C8, was found to have the highest affinity.

To gain insights into the mechanism by which mAb C8 inhibits human TNFα-mediated toxicity, the epitope corresponding to the mAb was delineated. The antigenic determinant was found to comprise of the stretch of amino acids 99–120, of which, 102–104 (glutamine, arginine, glutamic acid) form the core epitope. The observation was supported by bioinformatics analyses of an antigen/antibody complex model. In addition, the binding affinity of mAb C8 to TNFα was found to be comparable with that of infliximab, which is a commercially available anti-TNFα mAb.

Keywords: monoclonal antibodies, TNFα, inflammation

Introduction

Tumor necrosis factor (TNF) is a proinflammatory cytokine having pleiotropic effects on immune cells and plays an indispensable role in inflammation, cell differentiation, cell proliferation, apoptosis, and cell metabolism. There are two types of TNF, tumor necrosis factor-α (TNFα) and tumor necrosis factor-β (TNFβ), both of which are cytotoxic. They are sequentially and structurally related and compete with each other for binding to their receptors. Soluble TNFα exerts a broad range of biological activities on interaction with two specific receptors, TNFα receptor-type 1 (TNFR1 or p55) and TNFα receptor-type 2 (TNFR2 or p75). TNFR1, expressed on almost all cell types, plays a major role in triggering the TNFα signaling pathways. TNFR2 expression on the other hand is mostly limited to the cells of the immune system, nerve cells, and endothelial cells under normal physiological conditions. Upon binding to receptors, TNFα promotes a series of intracellular signaling cascades, such as, activation of transcription factor NFκB, p38 mitogen-activated protein kinase (p38MAPK), and c-Jun N-terminal kinase (JNK) extracellular signal-regulated kinase.

Although TNFα plays an essential role in an effective immune response, its unrestricted production may lead to several inflammatory disorders. Inhibition of TNFα by pharmacological agents has proven to be effective in palliative treatment.

In the study described in this article, we developed an anti-human TNFα (hTNFα) monoclonal antibody (mAb), namely C8, which can neutralize human-TNFα activity. Furthermore, using truncation and mutation analysis, we mapped the TNFα-binding sites of the mAb, which was supported by docking studies using sequenced variable regions of heavy and light chain of the antibody.

A study of mAb C8 and infliximab (a commercialized anti-TNFα antibody), demonstrated that both antibodies have comparable affinities as well as TNFα-neutralizing efficiency.

Methods

Animal and cell lines

All the animal experiments were reviewed and approved by the Institutional Animal Ethics Committee (IAEC) of the Indian Institute of Science, CAF/Ethics/184/2010 dated June 16, 2010. L929 mouse fibroblast cells were maintained as monolayer cultures in Dulbecco’s modified Eagle’s medium (DMEM) and passaged every 2–3 days using 0.25% trypsin-EDTA. Hybridoma cells were cultured in Iscove’s modified Dulbecco’s medium (IMDM). Both media were supplemented with 10% fetal bovine serum (FBS), 1 mM GlutaMAX (Gibco), and...
antibiotics. IMDM was supplemented also with 50 μM β-mercaptoethanol. All cultures were maintained at 37°C in a humidified incubator with 5% CO₂.

Expression and purification of His-tagged human-TNFα and mouse-TNFα

Escherichia coli BL21 (DE3) strain cells were transformed with the pET15b vector containing the human-TNFα gene and pET28a vector containing the mouse-TNFα gene. Then, cells were induced with 1 mM IPTG and were incubated at 30°C for 8 hours in an incubator shaker at 200 rpm for the expression of each respective protein; the cells were harvested by centrifugation at 6000 rpm for 20 minutes at 4°C. The cell pellet obtained was resuspended with 50 mM Tris-HCl, pH 8.0 containing 150 mM NaCl (TBS), sonicated (sonication conditions: 4°C, ampt 30%, 30 minutes), and the soluble proteins were separated by centrifugation at 13,000 rpm for 30 minutes at 4°C. The supernatant (soluble protein) was loaded on the Ni-NTA column. Unbound proteins were washed away with TBS containing 30 mM imidazole and the bound protein was eluted with 300 mM imidazole in TBS. After elution, the protein was dialyzed against phosphate-buffered saline (PBS; 50 mM phosphate buffer pH, 7.4, containing 150 mM NaCl). The concentration of proteins was estimated using Bradford method.

Generation of mAbs against human-TNFα

Eight-week-old female BALB/c mice were immunized by subcutaneous injection with 5 μg of human-TNFα protein in phosphate-buffered saline (PBS) emulsified with Freund’s complete adjuvant and boosted twice with 5 μg of the same antigen in Freund’s incomplete adjuvant at 21 days interval. The animals were rested for a month. Three days before sacrificing, the mice were administrated intraperitoneally with 5 μg of antigen in PBS. The splenocytes were collected and fused with mouse myeloma cells SP2/0 (ratio 5:1) using PEG 4000 (Merck, Rahway, NJ). The fused cells were plated in IMDM supplemented with HAT (10 mM hypoxanthine, 40 μM aminopterin, and 1.6 mM thymidine), 20% (v/v) FBS, and 50 μM Merca-topothenol. They were examined for secretion of anti-TNFα-specific antibodies using enzyme-linked immunosorbent assay (ELISA) after 10 days. The positive clones were subcloned to monoclonality by limiting the dilution method. mAbs were purified by protein A (Sigma-Aldrich, St. Louis MO).

Enzyme-linked immunosorbent assay

ELISA plates were coated with protein in 100 μL PBS (50 mM phosphate buffer pH, 7.4, containing 150 mM NaCl), overnight at room temperature (RT). After blocking the unoccupied sites of the wells with 0.5% gelatin in PBS for 1 hour at RT, hybridoma culture supernatants or purified antibodies were added and incubated for 2 hours. Plates were washed with PBST (T = Tween 20, at 0.05%) followed by PBS and incubated with 100 μL of secondary antibody conjugated to horseradish peroxidase (HRP) for 45 minutes. After washing the plates, 100 μL of substrate (0.03% H₂O₂ in citrate phosphate buffer, pH 5.5, and the chromogen 3, 3', 5', 5'-tetramethyl benzidine [60 μg/mL]) was added. The reaction was stopped with 50 μL of 1 M H₂SO₄ and absorbance was measured at 450 nm using an ELISA microplate reader.

To determine comparative affinities of the mAbs, ELISA was performed as above, but after the incubation with the mAbs, ammonium thiocyanate (NH₄SCN) was added at varying concentrations (0.5, 1.0, 2.0, 3.0, 4.0, and 6.0 M) in 0.1 M sodium phosphate buffer, pH 6.0. The plates were incubated for 15 minutes at RT before washing with PBS, followed by blocking with 0.5% bovine serum albumin in PBS for 1 hour at RT, before addition of the secondary antibody conjugate. The rest of the procedure followed as mentioned above.

For obtaining antigen and antibody dilution curves, four concentrations (500, 250, 125, 62.5 ng/well in 100 μL PBS) of hTNFα were coated in ELISA plate, blocked with 0.5% gelatin in PBS, and 100 μL serially double diluted hybridoma culture supernatant was added ranging from undiluted to 1:1024 and incubated for 2 hours at RT. The remaining steps were carried out in the same way as mentioned above.

For Inhibition ELISA, 500 ng antigen/well was coated in ELISA plate overnight at RT. After blocking the plates with 0.5% gelatin in PBS for 1 hour at RT, varying concentrations of the antigen (5 μg serially double diluted to 0.0097 μg) was added in 50 μL, followed immediately with 50 μL of appropriately diluted (exhibiting a binding of ~85% of the Bmax) anti-TNFα antibodies and incubated for 2 hours at RT. The remaining steps were carried out in the same way as mentioned above.

Western blot analysis of mAb C8

HumanTNFα or its fragments, 1 μg each were electrophoresed on 12.5% polyacrylamide gel under reducing conditions and transferred to nitrocellulose membrane using a semidry electrotransfer apparatus, at 125 mA. The membrane was incubated in a blocking solution (5% skimmed milk in PBS) for 2 hours or overnight followed by incubation with the mAb for 2 hours. The membrane was washed with PBST and incubated with the secondary antibody (rabbit α-mouse Ig-GHRP) for 45 minutes and developed using the ECL Kit (Millipore).

L929 cells were incubated with TNFα for 30 minutes, then washed with cold PBS 3 times, followed by suspension in lysis buffer (20 mM Tris pH 7.5, 150 mM NaCl, 1% Triton x 100, 1 mM EDTA, 1 mM EGTA, NaVO₃, Sodium Pyrophosphate, and Protease Inhibitors). The mixture was vortexed and centrifuged and the protein concentration of the supernatant was estimated. Equal amounts of each protein sample were mixed with Laemmli Buffer (2 ×, Bio-Rad), heated for 5 minutes at 95°C and resolved by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) followed by overnight transfer to a PVDF membrane (Cat# 10600023; GE) at 25 V at 4°C. The membrane was blocked with 5% nonfat dried milk in TBST buffer (25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.05% Tween 20). For detection of proteins, blots were incubated with their respective antibodies (anti-JNK, -p-JNK, -β actin) at 4°C overnight. After washing three times with TBST buffer, peroxidase-conjugated secondary antibody (1:10,000; Santa Cruz) was added and incubated at RT for 1 hour. Signals were detected using chemiluminescence substrate solution (Cat# 34080; Thermo Fisher) and analyzed by a GE LAS4000 luminescent image analyzer (Fuji Photo Film).
Viability of cells was checked using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. For the assay, L929 fibroblast cells were plated in 48-well flat bottom tissue culture plate at 10,000 cells/well in 200 µL DMEM supplemented with 10% FBS. Cells were allowed to attach overnight and then incubated with different concentrations of hTNFα. Actinomycin-D (2 µg/mL) was used as positive control. After 48 hours of incubation, 20 µL of MTT solution (5 mg/mL in PBS) was added per well, incubated for 4 hours at 37°C in CO2 incubator. Formazan crystals formed as a result were dissolved with 100 µL of DMSO and transferred to a 96-well plate and optical density was measured in a microplate reader, at 570 nm.

Cloning of mutant constructs of hTNFα gene

Deletion constructs of the hTNFα gene were cloned in pGEX5X2 vector between BamHI and XhoI restriction enzyme sites at the 5¢ and 3¢ end, respectively. All clones carried an N-terminal glutathione S-transferase (GST)-tag and were amplified employing the primers listed in Table 1.

The polymerase chain reaction (PCR) cycle used for the amplification procedure was as follows: initial denaturation – 94°C, 5 minutes; denaturation – 94°C, 1 minute; annealing – 55°C, 45 seconds; extension – 72°C, 1 minute; final extension – 72°C, 10 minutes. The denaturation, annealing, and extension steps were carried out for 30 cycles. The hTNFα cloned in pET15b was used as the template and Deep Vent polymerase was used for amplification of DNA in the PCRs.

Table 1. List of Oligonucleotides Used for Generating the Deletion Constructs of hTNFα

Primer name	Sequence (5¢→3¢)	Restriction enzyme site
F1 1–53 FP	TAACCGGGATCCCGGTCAGATCATCCTTCTC	BamHI
F1 1–53 RP	TGCTTCCGCTGATGTCATGATGCACACCAC	XhoI
F2 26–131 FP	TAACCGGGATCCCGGCTCGATGTCATGATGCACGCC	BamHI
F2 26–131 RP	TGCTTCCGCTGATGTCATGATGCACGCC	BamHI
F3 96–157 FP	TAACCGGGATCCCGGTCAGATCATCCTTCTC	BamHI
F3 96–157 RP	TGCTTCCGCTGATGTCATGATGCACGCC	XhoI
F2 core 54–93 FP	TAACCGGGATCCCGGCTCGATGTCATGATGCACGCC	BamHI
F2 core 54–93 RP	TGCTTCCGCTGATGTCATGATGCACGCC	XhoI
F2-F1 72–131 FP	TAACCGGGATCCCGGTCAGATCATCCTTCTC	BamHI
R1 72–107 FP	CCGCTGAGTCATGTCAGATCATGATGCACACC	BamHI
R1 72–107 RP	CGGCTGAGTCATGTCAGATCATGATGCACACC	XhoI
R2 99–131 FP	CGGCTGAGTCATGTCAGATCATGATGCACACC	BamHI
R2 99–131 RP	CGGCTGAGTCATGTCAGATCATGATGCACACC	XhoI
R3 85–120 FP	CCGGGATCCCGGCTCGATGTCATGATGCACACC	BamHI
R3 85–120 RP	CCGGGATCCCGGCTCGATGTCATGATGCACACC	XhoI

FP, forward primer; hTNFα, human tumor necrosis factor-α; RP, reverse primer.

Table 2. List of Oligonucleotides Used for Generating the Site-Directed Mutants of hTNFα

Primer name	Sequence (5¢→3¢)
S71deletion FP	CCAAGGCTGCCCCGACCATACGTGCTCCTC
S71deletion RP	GGAAGCAGCTAGTGGGGCAGGCTTGG
T72D FP	CGAAGGCTGCCCCGACCATACGTGCTCCTC
T72D RP	GGAAGCAGCTAGTGGGGCAGGCTTGG
H73Y FP	GGGTCTCCCTCGGACTACTGCTGCTCCTC
H73Y RP	GTGAGGAGACGATGGTCGGAGGGCAGC
TH72,73DY FP	GGCTGCCCCCTCGGACTACTGCTGCTCCTC
TH72,73DY RP	GTGAGGAGACGATGGTCGGAGGGCAGC
S71 deletion T72D P	CCAAGGCTGCCCCGACCATACGTGCTCCTC
S71 deletion RP	GGAAGCAGCTAGTGGGGCAGGCTTGG
S71 deletion H73Y P	CCAAGGCTGCCCCGACCATACGTGCTCCTC
S71 deletion H73Y P	GGAAGCAGCTAGTGGGGCAGGCTTGG
T89E FP	CATCGCCGGTCTCCTACCAAGGAGGCTCAGCTCTTCTG
T89E RP	CAGAGGAGAGGATGGTACCCCTCTTCTGAGAGGACGCTAG
Q102P FP	GGGTCTCCCTCGGACTACTGCTGCTCCTC
Q102P RP	GGAAGCAGCTAGTGGGGCAGGCTTGG
R103K FP	GGGTCTCCCTCGGACTACTGCTGCTCCTC
R103K RP	GGAAGCAGCTAGTGGGGCAGGCTTGG
E104D FP	CTCTGGGGTGATCCCTCTGAGGGGCTG
E104D RP	AGCCCTTGGCGAGGCTCAGCTCAGG
RE103,104KD FP	CAGAGGAGGAGGATGGTACCCCTCTTCTGAGAGGACGCTAG
RE103,104KD RP	CTCTGGGGTGATCCCTCTGAGGGGCTG
R131Q FP	GGAAGGAGAGGATGGTACCCCTCTTCTGAGAGGACGCTAG
R131Q RP	CCGTCTGAGTCTGGGCTACCCCTCTTCTGAGAGGACGCTAG
The clones obtained were screened by digestion with restriction enzymes and confirmed by DNA sequencing.

Site-directed mutant genes were generated by QuikChange Primer Design method\(^\text{12}\). Sense and antisense primers carried the desired site-specific mutation along with a specific restriction enzyme site. The plasmid carrying the wild-type hTNF\(\alpha\) gene construct was amplified by PCR. The amplified product was subjected to DpnI digestion to digest the methylated plasmid template and E. coli DH5\(\alpha\) cells were transformed with the plasmid.

The hTNF\(\alpha\) F2 mutant clones, T72 to D; H73 to Y; T89 to E; S71deletion; TH72,73 DY; Q102 to P; R103 to K; E104 to D; R103E104 to KD; R131 to Q; S71 deletion + T 72 to D; S71 deletion + H73 to Y; and Q102R103E104 to proline, lysine, aspartic acid (PKD) were obtained by QuikChange Primer Design method. Phusion High-Fidelity DNA Polymerase was used for carrying out PCRs. In a PCR cycle, initial denaturation was carried out at 98°C for 2 minutes followed by 25 cycles of denaturation at 98°C for 1 minute, annealing for 1 minute (at the temperature specified for each clone in Table 2), and extension at 72°C for 6 minutes. The final extension for end filling was carried out at 72°C for 10 minutes (For first 4 cycles, we have prepared reactions with forward or reverse primers separately and then pooled together for another 21 cycles).

All site-directed mutant DNA fragments obtained were cloned in pGEX5X2 vector between BamHI and XhoI restriction enzyme sites. The recombinant plasmids were isolated. The sequence of the clones obtained was verified by DNA sequencing to confirm the presence of the desired mutations. All clones carried an N-terminal GST-tag and were amplified in E. coli BL21 (DE3) N-terminal GST-tag.

Expression and purification of hTNF\(\alpha\) recombinant proteins

All recombinant hTNF\(\alpha\) overlapping truncated and mutant forms of hTNF\(\alpha\) F2 constructs in pGEX5X2 vector have an N-terminal GST-tag. E. coli BL21 (DE3) cells were transformed with each plasmid and were induced to express respective protein with 1 mM IPTG for hTNF\(\alpha\) F1 and F3 for 4 hours at 30°C and 0.1 mM IPTG for hTNF\(\alpha\) F2 and F2-mutants for 14 hours at 20°C in an incubator shaker, at 200 rpm. The cells were harvested with centrifugation and the pellet obtained was resuspended and sonicated in lysis buffer (50 mM Tris, pH 8, 150 mM NaCl, and 1 mM PMSF) containing lysozyme for 20 minutes using 5 seconds On and Off pulses and then spun at 13,000 rpm for 30 minutes at 4°C. The supernatant was passed through a pre-equilibrated column (using wash buffer: 20 mM Tris, pH 7.5, 150 mM NaCl, and 0.1% Triton X-100). Unbound proteins were washed away with wash buffer and the GST-fusion protein was eluted with 10 mM reduced glutathione in 50 mM Tris, pH 8. After elution, the protein was dialyzed against PBS. The concentration of proteins was estimated using the Bradford method.

Bioinformatics analysis

To determine the amino acid sequence of the VH and VL chains of mAb C8, the amino acid sequence derived from the obtained DNA sequences were utilized for hTNF\(\alpha\)-C8 docking study. hTNF\(\alpha\)-mAb C8 modeling was performed using the SWISS-MODEL server\(^\text{13}\) and superposed onto PDB ID 4g3y using Mustang.\(^\text{14}\) All structural images were analyzed and visualized using the open-source PyMOL software. Local protein/protein docking and energy minimization for both wild type (WT) TNF-Ab as well as mutated TNF-Ab complexes was performed using Rosetta.\(^\text{15}\)

Results

The hTNF\(\alpha\) gene was cloned in a His-tag expression vector, expressed and purified using Ni-NTA affinity chromatography, and the expected protein size was seen in SDS-PAGE gel stained with Coomassie Brilliant Blue. Mass spectrometry analysis confirmed the molecular size of the purified hTNF\(\alpha\) (Supplementary Fig. S1A, B).

Binding of anti-TNF\(\alpha\) mAbs to TNF\(\alpha\)

To screen the binding of the mAbs to hTNF\(\alpha\), indirect ELISA was carried out. Thirteen clones were found to bind specifically to hTNF\(\alpha\) (Supplementary Fig. S1C). In spite of more than 70% sequence identity between human and mouse TNF\(\alpha\) (mTNF\(\alpha\)), only one out of the 13 mAbs, namely C12, bound also to mouse-TNF\(\alpha\) (Supplementary Fig. S1D).

To identify high-affinity antibodies, different concentrations of immobilized hTNF\(\alpha\) antigen were incubated with different dilutions of the anti-TNF\(\alpha\) mAbs. While all the mAbs bound to 500 ng h-TNF\(\alpha\), except mAbs C8 and C12, none bound significantly to lower concentrations of the immobilized antigen. In case of the mAb C8, there was no apparent difference in the binding of the mAb to even ~60 ng immobilized antigen (Fig. 1A).

If mAbs are to be used in therapy, they should bind to antigen in solution phase. Inhibition ELISA was therefore performed. As can be seen in Figure 1B, free antigen was able to compete out the binding of the mAbs to the immobilized antigen in a concentration-dependent manner in case of mAbs C1, C2, C7, and C8 (data not shown for the other mAbs). Therefore, the four mAbs were selected for further studies. Subclass isotyping studies revealed mAbs C1, C2,
FIG. 1. (A) Dilution curves of anti-TNFα mAbs. Different concentrations of hTNFα were coated in ELISA plate wells, followed by 2 hours of incubation with serially double-diluted hybridoma culture supernatants, and subsequently with the secondary antibody for 45 minutes. The binding of the antibodies was measured by incubation with the secondary antibody conjugated to HRP, followed by incubation with the substrate, TMB H₂O₂. The reaction was stopped with H₂SO₄ and the absorbance was measured at 450 nm using an ELISA microplate reader. (B) Inhibition ELISA curves of anti-TNFα mAbs. Five hundred nanograms of human-TNFα was coated in ELISA wells, followed by addition of free antigen hTNFα (serial double dilution from 5 to 0.0097 μg) and simultaneously incubated with predetermined dilution of the mAbs for 2 hours followed by incubation with anti-mouse Ig conjugated to HRP and the procedure followed as described above. ELISA, enzyme-linked immunosorbent assay; HRP, horse radish peroxidase; hTNFα, human TNFα; mAbs, monoclonal antibodies; TNFα, tumor necrosis factor-α.
and C7 to be of IgG1 isotype, whereas C8 was IgG2a. In addition, immunoblot analysis of all 4 antibodies revealed binding of the mAbs also to denatured/linear hTNFα. The experiment was carried out using two concentrations of hTNFα (100 and 500 ng). mAbs are capable of detecting 500 ng of denatured hTNFα and a faint band was detected at the lower concentration (Supplementary Fig. S2A).

mAb C8 protects cells from TNFα-mediated toxicity

Several studies have shown that TNFα induces cell death in L929 cells through binding to TNFαR. To determine the activity of our purified recombinant hTNFα protein, L929 cells were subjected to different concentrations of hTNFα, and at 48 hours posttreatment, the cell viability was examined using MTT assay. A concentration-dependent cell toxicity was observed and the IC50 (concentration at which there was 50% cell death) was determined to be 6.25 ng/mL (Fig. 2A). To confirm that the toxicity seen in L929 cells was indeed because of TNFα, cells were challenged with heat-inactivated hTNFα protein which had no effect on the cell viability (data not shown).

After establishing that recombinant hTNFα was active, the ability of purified anti-TNFα mAbs to rescue cells from TNFα-mediated cytotoxicity was carried out. All 4 mAbs (C1, C2, C7, and C8) rescued L929 cells (Fig. 2B), and as can be seen from Figures 2C and D and Supplementary Fig. S2B,C the rescue was dose dependent. Of interest was the mAb C8, which rescued 50% of the cells from hTNFα-triggered cytotoxicity at 0.07 µg/mL and exhibited significant rescue even at 0.017 µg/mL (Fig. 2D).

Comparison of mAb C8 and infliximab (anti-TNFα mAb)

Infliximab is a chimeric mAb developed against TNFα and approved by the U.S. Food and Drug Administration (FDA) for the treatment of autoimmune disease. To compare mAb C8 and infliximab, indirect ELISA was carried out to study the binding of the mAbs to different concentrations of hTNFα antigen (Fig. 3A). The result revealed that not only in antigen dilution but also in antibody dilution assay, binding of C8 to TNFα is highly comparable with that of infliximab. Both mAbs were found to have high titer as determined by the dilution curves (Supplementary Fig. S2D). Moreover, the binding affinity of the mAbs to immobilized hTNFα was measured using the chaotrope ammonium thiocyanate ELISA to determine relative affinities of mAbs. As presented in Figure 3B, data demonstrate that the affinity of C8 and infliximab are very similar. Importantly, even the L929 cell assay showed that TNFα-mediated cytotoxicity could be rescued by mAb C8 as efficiently as infliximab (Fig. 3C).
Effect of mAb C8 on TNFα-mediated signaling

TNFα-mediated cell death has been shown through activation of JNK.(18) TNFα triggers rapid phosphorylation of JNK and sustained JNK activation leads to cell death.(19) To confirm this, L929 cells were treated with different concentrations of TNFα and JNK phosphorylation was assessed with western blotting. The result shows increase in JNK phosphorylation in a dose-dependent manner in TNFα-treated cells, whereas heat-inactivated TNFα failed to show this (Fig. 4A). To test whether mAb C8 can inhibit TNFα-mediated JNK activation, we exposed L929 cells with TNFα incubated with C8 or infliximab or mAb C12, following which pJNK level was assessed. As the immunoblot analysis suggests, although mAb C12 had no effect, mAbs C8 and infliximab inhibited TNFα-mediated JNK phosphorylation. Interestingly, mAb C8-treated cells showed better inhibition as compared with the infliximab-treated cells (Fig. 4B).

Localization of mAb C8 core epitope

Identification and characterization of the binding sites of neutralizing antibodies might help in the development of new vaccine, diagnostics, and therapeutics.(20) Epitope mapping provides insights into the therapeutic mechanism of an individual mAb.(21) To identify the epitope corresponding to mAb C8, we made three overlapping truncated hTNFα fragments F1, F2, and F3 as GST-fusion proteins. mAb C8 bound to full-length hTNFα (His-tag fusion 17 kDa) and hTNFα fragment 2 (26–131 aa) proteins, but not to F1 (1–53 aa) and F3 (96–157 aa) proteins (Fig. 5A). The result was supported by indirect ELISA using different concentrations of the...
FIG. 3. (A) Comparison of antibody affinity. Different concentrations of hTNFα was coated (x-axis) on ELISA plate, followed by 2 hours of incubation of mAbs with C8 or infliximab. The binding of the antibodies was measured by incubation with the secondary antibody conjugated to HRP, followed by incubation with the substrate, TMB H₂O₂. The reaction was stopped with H₂SO₄ and the absorbance was measured at 450 nm using an ELISA microplate reader. Light green: mAb C8; dark green: infliximab. (B) Comparison of antibody affinity using ammonium thiocyanate. Five hundred nanograms of hTNFα was coated in an ELISA plate followed by 2 hours of incubation with mAbs, followed by incubation with different concentrations of NH₄SCN in 0.1 M sodium phosphate buffer at pH 6.0 for 15 minutes and then secondary antibody conjugated to HRP. (C) Rescue of cells from TNFα-mediated cytotoxicity. L929 cells were treated with 10 ng/mL hTNFα along with the indicated concentrations of mAb C8 or infliximab. MTT assay was performed to measure cell viability after 48 hours of incubation. Actin used as a positive control. ***p < 0.001. mAb, monoclonal antibody; ns, non-significant.

FIG. 4. Immunoblot analysis of TNFα-induced JNK phosphorylation. L929 cells were treated with TNFα alone or along with antibodies for 15 minutes, followed by cell lysis. Cell lysates were electrophoresed on a 10% polyacrylamide gel under denaturing and reducing conditions. Proteins were transferred from the gel to nitrocellulose membrane, probed with pJNK, JNK, and actin antibodies, followed by incubation with secondary antibody/HRP conjugate and visualized with ECL Kit. (A) Cells were incubated with different concentrations of TNFα as active and heat-inactive forms. (B) Cells were pre-incubated with 10 ng/mL TNFα along with mAbs C8/Infliximab/C12 or D6F10. JNK, c-Jun N-terminal kinase.
fragments incubated with mAb C8 (Supplementary Fig. S3A, B). The data suggest that the epitope of mAb C8 lies in TNFα fragment 2 region comprising of amino acid 26–131. Indeed F2 in solution phase bound and competed out the binding of mAb C8 to full-length hTNFα as well (Data not shown).

To narrow down the epitope corresponding to the mAb C8 further, two truncated constructs were generated from the F2 region of hTNFα, F2 core region (54–93) excluding F1 and F3 overlap and F2-F1 (72–131). mAb bound to F2-F1 (72–131) but not to F2 core region (54–93) (Fig. 5B). The immunoblot study was confirmed by ELISA result as well (Supplementary Fig. S3C).

Then, 3 overlap fragment constructs were generated from F2-F1 (72–131) region, corresponding to R1 (72–107), R2 (99–131), and R3 (85–120), as GST-fusion proteins. The antibody bound to R2 and R3 but not to R1 (Fig. 5C).

Based on mAb C8 binding interaction with both R2 and R3, it is clear that the overlap region of R2 and R3 contained...
the core epitope of mAb C8, spanning amino acids 99–120 of hTNFα. As observed in Supplementary Figure S2A, mAb C8 binding to hTNFα is specific and there is no crossreactivity of mAb C8 to mTNFα. In the region 99–120 of hTNFα, four amino acids were found to be different between hTNFα and mTNFα. Therefore 3 residues in this stretch were mutated to the corresponding amino acids present in mTNFα, (Q102 R103 E104 to PKD); both 99–120 WT and 99–120 triple mutants’ protein constructs were generated. The binding of mAb C8 to 99–120 WT and 99–120 glutamine, arginine, glutamic acid (QRE)/PKD mutant proteins was analyzed. As shown in immunoblot Figure 5E and ELISA (Supplementary Fig. S3D), the mAb did not bind to the triple mutated fragment, thereby showing clearly that amino acids Q102 R103 E104 are crucial for the binding of mAb C8 to hTNFα.

A schematic diagram of truncated fragments is shown in Figure 5F.

Simulation studies revealed that, infliximab blocks TNFα activity due to binding to the E-F loop of the hTNFα structure, which hampers TNFα-receptor binding. Our study also showed that mAb C8 binds to the E-F loop in the vicinity of infliximab epitope. This suggests that the C8 binding to TNFα being comparable with infliximab might be due to juxtaposed epitopes (Fig. 6A).

Docking

Docking study was performed by utilizing structural models based on confirmed sequences of the VH and VL chains of mAb C8, which were generated from RNA isolated
from hybridoma cells (Fig. 6B). The docking analysis revealed that glutamine at the 102nd position of TNF-α interacts with an arginine residue at the 36th position of the light chain of mAb C8. This interaction is crucial to make antigen/antibody induced-fit correctly due to at least two reasons. First, Q102 to P mutation disrupted hydrogen bond between Q-102 (on TNF-α) and R-36 (on the antibody light chain). Second, the introduction of a proline slightly altered the conformation of the QRE loop, reducing the fit for multiple residues along the binding loop on TNF-α. This conformational change disturbed TNF-α antibody binding (Fig. 6C, D). Finally, local docking was performed and Rosetta energy score differences were calculated for both WT TNF-Ab as well as mutated TNF-Ab complexes. The entire mutated TNF-Ab complex score is more unfavorable energetically than WT TNF-Ab complex, indicating a disruption in antibody recognition (Fig. 6E).

Discussion

TNF-α is one of the most important proinflammatory cytokines which regulates a number of cellular processes like cell proliferation, differentiation, and apoptosis. Excessive production of TNF-α, however, is detrimental to health and needs to be regulated. Specific antibodies to TNF-α have been proven to be useful blockers of TNF-α-mediated toxicity. As it is known, anti-TNF-α agents bound to TNF-α may block interaction between TNF-α and its receptors, thus, basically inhibit TNF-α-mediated proinflammatory signal activation.

Even though there are a number of anti-TNF-α agents in the market, there is a demand for more TNF-α-specific antibodies. Like infliximab, Adalimumab, and Etanercept are currently being used in the alleviation of inflammatory immune disorders through interruption of TNF-α/TNF receptor interaction. Infliximab was the first approved anti-TNF-α drug for the management of autoimmune diseases, such as Crohn’s disease, rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, and various inflammatory skin problems.

In our study, we found mAb C8 to bind with high affinity to TNF-α. Since hTNF-α-mediated cell death in L929 fibroblast cells is a well-accepted cell culture model, we utilized it to test the rescue from cytotoxicity by our panel of mAbs. mAb C8 inhibited TNF-α-mediated activity significantly and comparably with that of infliximab. Due to specificity of mAb C8 to human-TNF-α only, we could not test the effect of mAb C8 in blocking the biological activity of TNF-α in a mouse model. However, comparable cell rescue from TNF-α-mediated toxicity and inhibition of TNF-α-mediated signaling by both antibodies may suggest the capability of mAb C8 in blocking the physiological activity of TNF-α also in-vivo. That mAb C8 inhibits TNF-α-induced cell signaling was also demonstrated by assessing the decrease in activation of JNK.

To get insights into the mechanism by which C8 antibody inhibits hTNF-α-mediated toxicity, we initiated studies to identify the epitope corresponding to the mAb. The core epitope of mAb C8 was delineated to amino acid sequence 99–120. Mutational analysis in this region established unequivocally that residues Gln102, Arg103, and Glu104 are the most critical for binding of mAb C8 to hTNF-α. It is worth mentioning that, these residues are located in the E–F loop of TNF-α structure. Interestingly, the epitope of infliximab on TNF-α structure comprises of the C-D and E-F loop and include residues Glu67-His73 and Thr105-Lys112, respectively, as well as several residues in C and D strands and blocks its activity. mAb C8 and infliximab binding to the E–F loop hampers TNF-α binding to its receptor, as a result inhibits its activity.

In conclusion, we have established a mAb with the ability to neutralize hTNF-α at the same efficiency as infliximab, therefore could be explored for clinical application.

Acknowledgments

The authors thank the Central Animal Facility, Indian Institute of Science (IISc). They thank Dr. Manjula Das and Dr. Akanksha Dixit for valuable discussions and critical comments. They greatly acknowledge financial support from the Department of Biotechnology, DBT-IISc partnership program. They also thank IISc-student fellowship support.

Author Disclosure Statement

No competing financial interests exist.

Supplementary Material

Supplementary Figure S1
Supplementary Figure S2
Supplementary Figure S3

References

1. Tracey KJ, and Cerami A: Tumor necrosis factor: A pleiotropic cytokine and therapeutic target. Ann Rev Med 1994;45:491–503.
2. Baxter GT, Kuo RC, Jupp OJ, Vandenabeele P, and MacEwan DJ: Tumor necrosis factor-alpha mediates both apoptotic cell death and cell proliferation in a human hematopoietic cell line dependent on mitotic activity and receptor subtype expression. J Biol Chem 1999;274:9539–9547.
3. Clark JA, Virelizier JL, Carswell EA, and Wood PR: Possible importance of macrophage-derived mediators in acute malaria. Infecti Immun 1981;32:1058–1066.
4. van der Bruggen T, Vandenabeele P, and MacEwan DJ: Tumor necrosis factor-alpha mediates both apoptotic cell death and cell proliferation in a human hematopoietic cell line. Infecti Immun 1999:67:3824–3829.
5. Kircheis R, Milleck J, Korobko VG, Shingarova LN, and Schmidt HE: Differences in the biological activity of TNF alpha and TNF beta correlate with their different abilities for binding to the target cells. Eur Cytokine Netw 1992;3:381–390.
6. Loetscher H, Han PC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, and Lesslauer W: Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 1990;61:351–359.
7. Tartaglia LA, and Goeddel DV: Two TNF receptors. Immunol Today 1992;13:151–153.
8. Aggarwal BB, Gupta SC, and Kim JH: Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 2012;119:651–665.
9. MacEwan DJ: TNF receptor subtype signalling: Differences and cellular consequences. Cell Signal 2002;14:477–492.
10. Peyrin-Biroulet L: Anti-TNF therapy in inflammatory bowel diseases: A huge review. Minerva Gastroenterol Dietol 2010;56:233–243.
11. Ma X, and Xu S: TNF inhibitor therapy for rheumatoid arthritis. Biomed Rep 2013;1:177–184.
12. Ho SN, Hunt XD, Horton RM, Pullen JK, and Pease LR: Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 1989;77:51–59.
13. Schwede T, Kopp J, Guex N, and Peitsch MC: SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 2003;31:3381–3385.
14. Konagurthu AS, Whisstock JC, Stuckey PJ, and Lesk AM: MUSTANG: A multiple structural alignment algorithm. Proteins 2006;64:559–574.
15. Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, and Baker D: Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 2003;331:281–299.
16. Humphreys DT, and Wilson MR: Modes of L929 cell death induced by TNF-alpha and other cytotoxic agents. Cytokine 1999;11:773–782.
17. Monaco C, Nanchahal J, Taylor P, and Feldmann M: Anti-TNF therapy: Past, present and future. Int Immunol 2015;27:55–62.
18. Dietrich N, Thastrup J, Holmberg C, Gyrd-Hansen M, Fehrenbacher N, Ladrerm M, Herdegen T, Jaattela M, and Kallunki T: JNK2 mediates TNF-induced cell death in mouse embryonic fibroblasts via regulation of both caspase and cathepsin protease pathways. Cell Death Differ 2004;11:301–313.
19. Barbin G, Roisin MP, and Zalc B: Tumor necrosis factor alpha activates the phosphorylation of ERK, SAPK/JNK, and P38 kinase in primary cultures of neurons. Neurochem Res 2001;26:107–112.
20. Gershoni JM, Roitburd-Berman A, Siman-Toov DD, Tarnovitski Freund N, and Weiss Y: Epitope mapping: The first step in developing epitope-based vaccines. BioDrugs 2007;21:145–156.
21. Hasan SS, Miller A, Sapparapu G, Fernandez E, Klose T, Long F, Fokine A, Porta JC, Jiang W, Diamond MS, Crowe JE Jr, Kuhn RJ, and Rossmann MG: A human antibody against Zika virus crosslinks the E protein to prevent infection. Nat Commun 2017;8:14722.
22. Liu ZG: Molecular mechanism of TNF signaling and beyond. Cell Res 2005;15:24–27.
23. Wong M, Ziring D, Korin Y, Desai S, Kim S, Lin J, Gjertson D, Braun J, Reed E, and Singh RR: TNFalpha blockade in human diseases: Mechanisms and future directions. Clin Immunol 2008;126:121–136.
24. Sedger LM, and McDermott MF: TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants—Past, present and future. Cytokine Growth Factor Rev 2014;25:453–472.
25. Mukai Y, Nakamura T, Yoshikawa M, Yoshioka Y, Tsunoda S, Nakagawa S, Yamagata Y, and Tsutsumi Y: Solution of the structure of the TNF-TNFRII complex. Sci Signal 2010;3:ra83.
26. Buch MH, Conaghan PG, Quinn MA, Bingham SJ, Veale D, and Emery P: True infliximab resistance in rheumatoid arthritis: A role for lymphotoxin alpha? Ann Rheum Dis 2004;63:1344–11346.
27. Liang S, Dai J, Hou S, Su L, Zhang D, Guo H, Hu S, Wang H, Rao Z, Guo Y, and Lou Z: Structural basis for treating tumor necrosis factor alpha (TNFalpha)-associated diseases with the therapeutic antibody infliximab. J Biol Chem 2013;288:13799–13807.

Address correspondence to:
Anjali A. Karande
Lab # FB-05
Division of Biological Sciences
Department of Biochemistry
Indian Institute of Science (IISc)
Bengaluru 560012
Karnataka
India

E-mail: anjali@iisc.ac.in

Received: March 26, 2019
Accepted: June 4, 2019