Complex Energy Method in four Body Faddeev-Yakubovsky Equations

E. Uzu
Department of Physics, Faculty of Science and Technology,
Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

H. Kamada
Department of Physics, Faculty of Engineering, Kyushu Institute of Technology,
1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan

Y. Koike
Science Research Center, Hosei University, 2-17-1 Fujimi, Chiyoda-ku, Tokyo 102-8550, Japan
and Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
(Dated: October 31, 2018)

The Complex Energy Method [Prog. Theor. Phys. 109, 869L (2003)] is applied to the four body Faddeev-Yakubovsky equations in the four nucleon system. We obtain a well converged solution in all energy regions below and above the four nucleon break-up threshold.

PACS numbers: 24.10.-i, 25.10.+s, 11.80.Jy, 02.40.Xx

Calculations for scattering systems in configuration space require boundary conditions which increase in complexity with growing particle numbers. These boundary conditions appear in the form of Green’s functions in momentum space which carry singularities of increasing complexity. The Green’s functions are expressed as $G_0 = \frac{1}{(E + i\varepsilon - H_0)}$ where E and H_0 are the total and kinetic energy, respectively, and the limit $\varepsilon \to 0$ has to be taken. In the two-body system there is one (relative) momentum variable p and G_0 has a pole in the complex p-plane. It is easy to handle it using the principal value prescription and (half) the residue theorem (PVR). In the three body case there arises already a difficulty in the form of so called moving singularities [1, 2], however, PVR is still applicable [3], or one can use the contour deformation [4, 5, 6, 7] (CD) technique. Summarizing these techniques, first one takes the limiting value $\varepsilon \to 0$ and next the equation is solved avoiding the integration path on the complex plane. This is illustrated in Fig. 1.

The situation is more complicated in the four body system. Employing a separable potential and a separable expansion technique for the three body, and [2+2] subamplitudes, the four body Faddeev-Yakubovsky (FY) equations \[(M_{\alpha\alpha} M_{\alpha\beta}) = \left(\begin{array}{cc} \pm E & F_1 \\ 2(F_1^T + F_2^T) & 0 \end{array} \right) \left(\begin{array}{cc} M_{\beta \alpha} & M_{\beta \beta} \end{array} \right) \] (1)

where the M’s are the four body amplitudes, α and β indicate [3+1] and [2+2] configurations (see Fig. 2). E is an exchange term from [3+1] to [3+1] configurations of which the plus sign corresponds to the four bosons and minus sign to the fermions. F’s are exchange terms from [2+2] to [3+1] where the subscripts are related to the two diagrams in Fig. 3. More details may be found in Ref. [3]. Further \mathcal{H} and \mathcal{G} are the three body and [2+2] propagators and they have a similar nature as Green’s function in the two body Lippmann-Schwinger (LS) equation.

If one stays below the three-body break-up threshold the FY equations can be solved with PVR, since only two-body singularities occur [10, 11, 12, 13, 14, 15, 16]. Above the three-body threshold but still below the four-body threshold the FY equations have also been solved applying the CD techniques [13, 14, 15, 16, 17, 18]. There in the E and F’s terms occur two-body propagators whose nature is similar to the three body Green’s func-
tion in the Born term of the three body Alt-Grassberger-Sandhas \[19\] or Amado-Mitra-Faddeev-Lovelace (e.g. \[20\]) equations. However, above the four-body threshold and we are not aware of a solution in this energy region.

Recently the Complex Energy Method \[21\] (CEM) has been revived and applied to the two- and three-nucleon system. The first step of CEM is to solve the equation for the three body S-matrix of elastic 3N+N scattering and is related to the on-shell momentum of \(M_{\alpha\alpha}\) in Eq. (1) as

\[
S = 1 - 2i\kappa M_{\alpha\alpha}^\text{on},
\]

where \(\kappa\) is the on-shell momentum. In case (I) \(\eta\) must be 1 due to unitarity and our result satisfies it within six digits. Also in cases (II) and (III) we reach a very high accuracy. In case (IV), we still obtain converged solutions within 4 digits. In the cases (I and II) our results agree very well with the solutions based on PVR.

We showed that well converged solutions of the FY equations are obtained in all energy regions. In relation to the application of EDPE we confirmed that converged solutions are obtained in the cases (I-III). In the case (IV), however, there is a report that EDPE is not applicable. We also found that EDPE did not converge. Therefore, in this study we just kept the rank fixed by

\[
\begin{align*}
V_{\ell\ell}(k, k') &= g_\ell(k)\lambda g_\ell(k'),
\end{align*}
\]

where the \(g_\ell\)'s are the two body form factors for the partial waves \(\ell\) as

\[
g_0(k) = \frac{1}{k^2 + \beta^2}, \quad g_2(k) = \frac{Ck^2}{(k^2 + \beta^2)^2},
\]

and the \(k\)'s are the initial and final momenta between the two nucleons, respectively. We adopt the parameters \(\lambda, \beta,\) and \(C\) given in Table I. We represent the three body and \([2+2]\) subamplitudes by rank-4 separable forms employing the Energy Dependent Pole Expansion (EDPE) method. We take the nucleon mass as 938.91897 MeV which is the average of those for proton and neutron, and \(hc = 197.327054\) MeV·fm. The integrations are cut off at 200 fm\(^{-1}\) for \(k\), at 40 fm\(^{-1}\) for the \(p\)'s, and at 16 fm\(^{-1}\) for the \(q\)'s (see Fig. 3).

The FY equations are solved at four energies: (I) 1.5 MeV above the 3N+N threshold, (II) 1 MeV above the 2N+2N threshold, (III) 1 MeV below the four body break-up threshold, and (IV) 12 MeV above it (Fig. 4). We define the \(\varepsilon\) term of the four body Green’s function as \(\varepsilon + \zeta\), where \(\varepsilon\) and \(\zeta\) are real. Thus \(G_0\) turns into \(G_0 = 1/(E + i\varepsilon + \zeta - H_0)\). Solutions of the FY equation satisfy uniqueness even at the limit for \(\varepsilon \to 0\), which is not the case for simple LS equation \[27\]. Therefore the results by the analytical continuation do not depend on the choice of \(\varepsilon\)’s within the radius of convergence. Thus we empirically choose 0.5 MeV as the minimum \(\varepsilon\) value for the cases (I)-(III) and 0.75 MeV for the case (IV) (see crosses in Fig. 4), with attention only to a better numerics. They are increased in steps of 0.125 MeV. \(\zeta\) is chosen as 0 and \(\pm 0.125\) MeV.

We employ the point method \[26\] as an analytical continuation technique in CEM. It’s convergence behavior is shown in Table I where the phase shift \(\delta\) and the inelasticity parameter \(\eta\) is defined by \(S = \eta\exp(2i\delta)\). Here \(S\) is the S-matrix of elastic 3N+N scattering and is related to the on-shell amplitude of \(M_{\alpha\alpha}\) in Eq. (1) as

\[
S = 1 - 2i\kappa M_{\alpha\alpha}^\text{on}, \quad (M_{\alpha\alpha}^\text{on})
\]

In case (I) \(\eta\) must be 1 due to unitarity and our result satisfies it within six digits. Also in cases (II) and (III) we reach a very high accuracy. In case (IV), we still obtain converged solutions within 4 digits. In the cases (I and II) our results agree very well with the solutions based on PVR.

We showed that well converged solutions of the FY equations are obtained in all energy regions. In relation to the application of EDPE we confirmed that converged solutions are obtained in the cases (I-III). In the case (IV), however, there is a report that EDPE is not applicable. We also found that EDPE did not converge. Therefore, in this study we just kept the rank fixed by

\[
\begin{array}{ccc}
\hline
\text{state} & \lambda & \beta & C \\
\text{state} & \beta & C \\
1^3S_0 & -68.942626 & 1.1300 & 3^5S_0 \\
2^3S_1 & -74.506955 & 1.2412 & 3^5S_1 \\
3^3D_1 & 1.9476 & -4.4950154 & 3^5D_1 \\
\hline
\end{array}
\]

TABLE I: Parameters of the Yamaguchi potential.
3N+N 2N+2N 2N+N+N N+N+N+N (E=0)

E

1.5MeV 1.0MeV 1.0MeV 1.2MeV

(I) (II) (III) (IV)

FIG. 4: Illustration of threshold energies for the 4N system. We choose E=0 at the four-body threshold. The various energies for the calculations are measure relative to the thresholds. The crosses indicate the complex energies where we solve the FY equations in the CEM. They are numbered by n for each choice of the energy region (I-IV).

TABLE II: Phase shifts (in deg) and inelasticity parameters for 3N+N → 3N+N elastic scattering. n\text{max} denotes the number of sample energies which are included in the point method. For instance, n\text{max} = 5 means that the solutions from n=1 to 5 (see Fig. 3) are included. The row PVR shows results from a direct solution of the FY equations using PVR. The agreement is perfect.

n\text{max}	(I) \(\delta\)	\(\eta\)	(II) \(\delta\)	\(\eta\)	(III) \(\delta\)	\(\eta\)	(IV) \(\delta\)	\(\eta\)
1	53.31351	1.018810	14.62234	0.675088	-8.0617	0.692391	-62.093	0.83875
2	46.21307	0.973139	10.47942	0.853658	-5.9428	0.815698	-61.965	0.75946
3	44.27898	0.898232	12.38204	0.948787	-5.5022	0.89150	-61.620	0.74999
4	44.27129	1.000623	12.38254	0.948044	-5.5101	0.898666	-61.676	0.74570
5	44.44444	0.999787	12.38211	0.948046	-5.5095	0.898656	-61.682	0.74589
6	44.44157	0.999994	12.38284	0.948053	-5.5094	0.898655	-61.669	0.74580
7	44.44022	1.000005	12.38198	0.948070	-5.5096	0.898654	-61.666	0.74570
8	44.44012	0.999997	12.38198	0.948069	-5.5095	0.898657	-61.669	0.74581
9	44.44013	0.999999	12.38198	0.948069	-5.5096	0.898656	-61.670	0.74580
10	44.44016	1.000000	12.38198	0.948069	-5.5095	0.898657	-61.669	0.74582

PVR

4.44016 1.000000 12.38198 0.948069

4. We plan to investigate this problem in a forthcoming study.
Further we shall include higher partial waves and employ realistic NN forces to discuss physics. One expects that evidence for three-nucleon forces is more pronounced in the high energy region and the presented method is applicable there, now in the four-nucleon system.

Acknowledgements

Authors would like to thank Prof. W. Glöckle for helping us to read this manuscript carefully. The calculations are performed on SX-5/128M8 (Research Center for Nuclear Physics), SX-5/6B (National Institute for Fusion Science), HP X4000 (Frontier Research Center for Computational Science, Tokyo University of Science) in Japan, and partly on Hitachi SR8000 (Leibniz-Rechenzentrum für die Münchener Hochschule) in Germany.

[1] E. W. Schmid and H. Ziegelmann, *The Quantum Mechanical Three-Body Problem* (Pergamon Press Oxford, 1974).
[2] D. Hüber, H. Kamada, H. Witała, and W. Glöckle, Few-Body Systems 16, 165 (1994).
[3] W. Glöckle, H. Witała, D. Hüber, H. Kamada, and J. Golak, Phys. Rep. 274, 107 (1996).
[4] C. Lovelace, Phys. Rev. C135, 1125 (1964).
[5] R. T. Cahill and I. H. Sloan, Nucl. Phys. A165, 161 (1971).
[6] W. Ebenböh, Nucl. Phys. A191, 97 (1972).
[7] Y. Koike, Nucl. Phys. A301, 411 (1978).
[8] O.A. Yakubovsky, Sov. J. Nucl. Phys. 5, 937 (1967).
[9] S. Oryu, H. Kamada, H. Sekine, T. Nishino and H. Sekiguchi, Nucl. Phys. A534, 221 (1991); E. Uzu, PhD thesis, Tokyo University of Science (1994), unpublished.
[10] E. Uzu, S. Oryu, M. Tanifuji, Few-Body Systems Suppl. 12, 491 (2000).
[11] E. Uzu, H. Kameyama, S. Oryu, and M. Tanifuji, Few-Body Systems 22, 65 (1997).
[12] E. Uzu, S. Oryu, and M. Tanifuji, Prog. Theor. Phys. 90, 937 (1993);
[13] B. J. Crowe III, C. R. Brune, W. H. Geist, H. J. Karczewski, E. J. Ludwig, K. D. Veal, A. C. Fonseca, G. M. Hale, and K. A. Fletcher, Phys. Rev. C61, 034006 (2000).
[14] A. C. Fonseca, Phys. Rev. Lett. 83, 4021 (1999).
[15] A. C. Fonseca, Nucl. Phys. A631, 675c (1998).
[16] A. C. Fonseca, Phys. Rev. C30, 35 (1984).
[17] P. D. Felsher, C. R. Howell, W. Tornow, M. L. Roberts, J. M. Hanly, G. J. Weisel, M. Al Ohali, R. L. Walter, I. Slaus, J. M. Lambert, P. A. Treado, G. Mertens, A. C. Fonseca, A. Soldi, and B. Vlahovic, Phys. Rev. C56, 38 (1997).
[18] A. C. Fonseca Phys. Rev. Lett. 63, 2036 (1989).
[19] E. O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B2 167 (1967), Phys. Rev. C1, 85 (1970).
[20] W. C. Parke, Y. Koike, D. R. Lehman, and L. C. Maxmon, Few-Body Systems 11, 89 (1991).
[21] H. Kamada, Y. Koike and W. Gl" ockle, Prog. Theor. Phys. 109, 869L (2003).
[22] Y. Yamaguchi, Phys. Rev. 95, 1628 (1954); Y. Yamaguchi and Y. Yamaguchi, Phys. Rev. 95, 1635 (1954).
[23] A. C. Phillips, Nucl. Phys A107, 209 (1968).
[24] S. A. Sofianos, N. J. McGurk, and H. Fiedelday, Nucl. Phys. A318, 295 (1979).
[25] W. Gl" ockle, The Quantum Mechanical Few-Body Problem (Springer-Verlag, Berlin Heidelberg, 1983).
[26] L. Schlessinger, Phys. Rev. 167, 1411 (1968).
[27] A. C. Fonseca, H. Haberzettl, and E. Cravo, Phys. Rev. C27, 939 (1983).