On the X-ray transform of planar symmetric 2-tensors

K. Sadiq, O. Scherzer, A. Tamasan

RICAM-Report 2015-07
ON THE X-RAY TRANSFORM OF PLANAR SYMMETRIC 2-TENSORS

KAMRAN SADIQ, OTMAR SCHERZER, AND ALEXANDRU TAMASAN

ABSTRACT. In this paper we study the attenuated X-ray transform of 2-tensors supported in strictly convex bounded subsets in the Euclidean plane. We characterize its range and reconstruct all possible 2-tensors yielding identical X-ray data. The characterization is in terms of a Hilbert-transform associated with A-analytic maps in the sense of Bukhgeim.

1. INTRODUCTION

This paper concerns the range characterization of the attenuated X-ray transform of symmetric 2-tensors in the plane. Range characterization of the non-attenuated X-ray transform of functions (0-tensors) in the Euclidean space has been long known [10, 11, 19], whereas in the case of a constant attenuation some range conditions can be inferred from [17, 1, 2]. For a varying attenuation the two dimensional case has been particularly interesting with inversion formulas requiring new analytical tools: the theory of A-analytic maps originally employed in [3], and ideas from inverse scattering in [24]. Constraints on the range for the two dimensional X-ray transform of functions were given in [25, 4], and a range characterization based on Bukhgeim’s theory of A-analytic maps was given in [30].

Inversion of the X-ray transform of higher order tensors has been formulated directly in the setting of Riemannian manifolds with boundary [32]. The case of 2-tensors appears in the linearization of the boundary rigidity problem. It is easy to see that injectivity can hold only in some restricted class: e.g., the class of solenoidal tensors. For two dimensional simple manifolds with boundary, injectivity with in the solenoidal tensor fields has been established fairly recent: in the non-attenuated case for 0- and 1-tensors we mention the breakthrough result in [29], and in the attenuated case in [34]; see also [13] for a more general weighted transform. Inversion for the attenuated X-ray transform for solenoidal tensors of rank two and higher can be found in [27], with a range characterization in [28]. In the Euclidean
case we mention an earlier inversion of the attenuated X-ray transform of solenoidal tensors in [16]; however this work does not address range characterization.

Different from the recent characterization in terms of the scattering relation in [28], in this paper the range conditions are in terms of the Hilbert-transform for A-analytic maps introduced in [30, 31]. Our characterization can be understood as an explicit description of the scattering relation in [26, 27, 28] particularized to the Euclidean setting. In the sufficiency part we reconstruct all possible 2-tensors yielding identical X-ray data; see (30) for the non-attenuated case and (82) for the attenuated case.

For a real symmetric 2-tensor $F \in L^1(\mathbb{R}^2; \mathbb{R}^{2 \times 2})$,

$$ F(x) = \begin{pmatrix} f_{11}(x) & f_{12}(x) \\ f_{12}(x) & f_{22}(x) \end{pmatrix}, \quad x \in \mathbb{R}^2, $$

and a real valued function $a \in L^1(\mathbb{R}^2)$, the a-attenuated X-ray transform of F is defined by

$$ X_a F(x, \theta) := \int_{-\tau(x, \theta)}^{\tau(x, \theta)} \langle F(x + t\theta), \theta, \theta \rangle \exp \left\{ -\int_t^{\tau(x, \theta)} a(x + s\theta) ds \right\} dt, $$

where θ is a direction in the unit sphere S^1, and $\langle \cdot, \cdot \rangle$ is the scalar product in \mathbb{R}^2. For the non attenuated case $a \equiv 0$ we use the notation XF.

In this paper, we consider F be defined on a strictly convex bounded set $\Omega \subset \mathbb{R}^2$ with vanishing trace at the boundary Γ; further regularity and the order of vanishing will be specified in the theorems. In the attenuated case we assume $a > 0$ in $\overline{\Omega}$.

For any $(x, \theta) \in \overline{\Omega} \times S^1$ let $\tau(x, \theta)$ be length of the chord in the direction of θ passing through x. Let also consider the incoming $(-)$, respectively outgoing $(+)$ submanifolds of the unit bundle restricted to the boundary

$$ \Gamma_\pm := \{(x, \theta) \in \Gamma \times S^1 : \pm \theta \cdot n(x) > 0\}, $$

and the variety

$$ \Gamma_0 := \{(x, \theta) \in \Gamma \times S^1 : \theta \cdot n(x) = 0\}, $$

where $n(x)$ denotes outer normal.

The a-attenuated X-ray transform of F is realized as a function on Γ_+ by

$$ X_a F(x, \theta) = \int_{-\tau(x, \theta)}^{0} \langle F(x + t\theta), \theta, \theta \rangle e^{-\int_t^{\tau(x, \theta)} a(x + s\theta) ds} dt, \quad (x, \theta) \in \Gamma_+. $$

We approach the range characterization through its connection with the transport model as follows: The boundary value problem

$$ \theta \cdot \nabla u(x, \theta) + a(x)u(x, \theta) = \langle F(x)\theta, \theta \rangle \quad (x, \theta) \in \Omega \times S^1, $$

$$ u|_{\Gamma_-} = 0 $$
ON THE X-RAY TRANSFORM OF SYMMETRIC 2-TENSORS

Figure 1. Definition of Γ_{\pm}

has a unique solution in $\Omega \times S^1$ and

$$u|_{\Gamma_+}(x, \theta) = X_\theta F(x, \theta), \quad (x, \theta) \in \Gamma_+.$$ \hspace{1cm} (8)

The X-ray transform of 2-tensors occurs in the linearization of the boundary rigidity problem [32]: For $\epsilon > 0$ small, let

$$g^\epsilon(x) := I + \epsilon F(x) + o(\epsilon), \quad x \in \Omega,$$

be a family of metrics perturbations from the Euclidean, where I is the identity matrix and F is as in (1). For an arbitrary pair of boundary points $x, y \in \Gamma$ let $d^\epsilon(x, y)$ denote their distance in the metric g^ϵ. The boundary rigidity problem asks for the recovery of the metric g^ϵ from knowledge of $d^\epsilon(x, y)$ for all $x, y \in \Gamma$. In the linearized case one seeks to recover $F(x)$ from $\frac{d}{d\epsilon}|_{\epsilon=0} d^2_\epsilon(x, y)$. Taking into account the length minimizing property of geodesic one can show that

$$\frac{1}{|x-y|} \frac{d}{d\epsilon}|_{\epsilon=0} d^2_\epsilon(x, y) = \int_{-|x-y|}^0 \langle F(x + t\theta)\theta, \theta \rangle dt = X F(x, \theta),$$

where $\theta := \frac{x-y}{|x-y|} \in S^1$.

2. Preliminaries

In this section we briefly introduce the properties of Bukhgeim’s A-analytic maps [7] needed later.

For $z = x_1 + ix_2$, we consider the Cauchy-Riemann operators

$$\overline{\partial} = (\partial_{x_1} + i\partial_{x_2})/2, \quad \partial = (\partial_{x_1} - i\partial_{x_2})/2.$$ \hspace{1cm} (9)
Let l_∞, l_1 be the space of bounded (, respectively summable) sequences, $L : l_\infty \to l_\infty$ be the left shift

$$L \langle u_{-1}, u_{-2}, \ldots \rangle = \langle u_{-2}, u_{-3}, u_{-4}, \ldots \rangle.$$

Definition 2.1. A sequence valued map

$$z \mapsto u(z) := \langle u_{-1}(z), u_{-2}(z), u_{-3}(z), \ldots \rangle$$

is called L-analytic, if $u \in C(\bar{\Omega}; l_\infty) \cap C^1(\Omega; l_\infty)$ and

$$\overline{\partial}u(z) + L \partial u(z) = 0, \quad z \in \bar{\Omega}.$$

For $0 < \alpha < 1$ and $k = 1, 2$, we recall the Banach spaces in [30]:

$$l^{1,k}_\infty(\Gamma) := \left\{ u = \langle u_{-1}, u_{-2}, \ldots \rangle : \sup_{\zeta \in \Gamma} \sum_{j=1}^{\infty} j^k |u_{-j}(\zeta)| < \infty \right\},$$

$$C^\alpha(\Gamma; l_1) := \left\{ u : \sup_{\xi \in \Gamma} \|u(\xi)\|_{l_1} + \sup_{\xi, \eta \in \Gamma} \frac{\|u(\xi) - u(\eta)\|_{l_1}}{|\xi - \eta|^\alpha} < \infty \right\}.$$

By replacing Γ with $\bar{\Omega}$ and l_1 with l_∞ in (12) we similarly define $C^\alpha(\bar{\Omega}; l_1)$, respectively, $C^\alpha(\bar{\Omega}; l_\infty)$.

At the heart of the theory of A-analytic maps lies a Cauchy-like integral formula introduced by Bukhgeim in [7]. The explicit variant (13) appeared first in Finch [8]. The formula below is restated in terms of L-analytic maps as in [31].

Theorem 2.1. [31, Theorem 2.1] For some $g = \langle g_{-1}, g_{-2}, g_{-3}, \ldots \rangle \in l^{1,1}_\infty(\Gamma) \cap C^\alpha(\Gamma; l_1)$ define the Bukhgeim-Cauchy operator B acting on g,

$$\Omega \ni z \mapsto \langle (Bg)_{-1}(z), (Bg)_{-2}(z), (Bg)_{-3}(z), \ldots \rangle,$$

by

$$B^g_{-n}(z) := \frac{1}{2\pi i} \sum_{j=0}^{\infty} \int_{\Gamma} \frac{g_{-n-j}(\zeta)(\zeta - z)^j}{(\zeta - z)^{j+1}} d\zeta$$

$$- \frac{1}{2\pi i} \sum_{j=1}^{\infty} \int_{\Gamma} \frac{g_{-n-j}(\zeta)(\zeta - z)^{j-1}}{(\zeta - z)^j} d\zeta, \quad n = 1, 2, 3, \ldots$$

Then $B^g \in C^{1,\alpha}(\Omega; l_\infty) \cap C(\bar{\Omega}; l_\infty)$ and it is also L-analytic.

For our purposes further regularity in B^g will be required. Such smoothness is obtained by increasing the assumptions on the rate of decay of the
ON THE X-RAY TRANSFORM OF SYMMETRIC 2-TENSORS

terms in \(g \) as explicit below. For \(0 < \alpha < 1 \), let us recall the Banach space \(Y_\alpha \) in [30]:

\[
Y_\alpha = \left\{ g \in l^{1,2}_\infty(\Gamma) : \sup_{\xi,\mu \in \Gamma, \xi \neq \mu} \sum_{j=1}^{\infty} j |g_{-j}(\xi) - g_{-j}(\mu)|^\alpha |\xi - \mu| \right\}.
\]

Proposition 2.1. [31, Proposition 2.1] If \(g \in Y_\alpha, \alpha > 1/2 \), then

\[
Bg \in C^{1,\alpha}(\Omega; l^1_{1}) \cap C^{\alpha}(\Omega; l^1_{1}) \cap C^{2}(\Omega; l^\infty).
\]

The Hilbert transform associated with boundary of \(\mathcal{L} \)-analytic maps is defined below.

Definition 2.2. For \(g = (g_{-1}, g_{-2}, g_{-3}, \ldots) \in l^{1,1}_\infty(\Gamma) \cap C^{\alpha}(\Gamma; l^1_{1}) \), we define the Hilbert transform \(Hg \) componentwise for \(n \geq 1 \) by

\[
(Hg)_n(\xi) = \frac{1}{\pi} \int_{\Gamma} \frac{g_{-n}(\zeta)}{\zeta - \xi} d\zeta
\]

\[
+ \frac{1}{\pi} \int_{\Gamma} \left(\frac{d\zeta}{\zeta - \xi} - \frac{d\zeta}{\zeta - \xi} \right) \sum_{j=1}^{\infty} g_{-n-j}(\zeta) \left(\frac{\zeta - \xi}{\zeta - \xi} \right)^j, \xi \in \Gamma.
\]

The following result justifies the name of the transform \(\mathcal{H} \). For its proof we refer to [30, Theorem 3.2].

Theorem 2.2. For \(0 < \alpha < 1 \), let \(g \in l^{1,1}_\infty(\Gamma) \cap C^{\alpha}(\Gamma; l^1_{1}) \). For \(g \) to be boundary value of an \(\mathcal{L} \)-analytic function it is necessary and sufficient that

\[
(I + i\mathcal{H})g = 0,
\]

where \(\mathcal{H} \) is as in (16).

3. THE NON-ATTENUATED CASE

In this section we assume \(a \equiv 0 \). We establish necessary and sufficient conditions for a sufficiently smooth function on \(\Gamma \times S^1 \) to be the X-ray data of some sufficiently smooth real valued symmetric 2-tensor \(F \). For \(\theta = (\cos \varphi, \sin \varphi) \in S^1 \), a calculation shows that

\[
\langle F(x)\theta, \theta \rangle = f_0(x) + f_2(x)e^{2i\varphi} + f_2(x)e^{-2i\varphi},
\]

where

\[
f_0(x) = \frac{f_{11}(x) + f_{22}(x)}{2}, \quad \text{and} \quad f_2(x) = \frac{f_{11}(x) - f_{22}(x)}{4} + \frac{f_{12}(x)}{2}.
\]

The transport equation in (6) becomes

\[
\theta \cdot \nabla u(x, \theta) = f_0(x) + f_2(x)e^{2i\varphi} + f_2(x)e^{-2i\varphi}, \quad x \in \Omega.
\]
For \(z = x_1 + ix_2 \in \Omega \), we consider the Fourier expansions of \(u(z, \cdot) \) in the angular variable \(\theta = (\cos \varphi, \sin \varphi) \):

\[
u(z, \theta) = \sum_{-\infty}^{\infty} u_n(z)e^{in\varphi}.
\]

Since \(u \) is real valued its Fourier modes occur in conjugates,

\[
u_{-n}(z) = \overline{u_n(z)}, \quad n \geq 0, \quad z \in \Omega.
\]

With the Cauchy-Riemann operators defined in (9) the advection operator becomes

\[
\theta \cdot \nabla = e^{-i\varphi} \overline{\partial} + e^{i\varphi} \partial.
\]

Provided appropriate convergence of the series (given by smoothness in the angular variable) we see that if \(u \) solves (20) then its Fourier modes solve the system

\[
\begin{align*}
\overline{\partial}u_1(z) + \partial u_{-1}(z) &= f_0(z), \\
\overline{\partial}u_{-1}(z) + \partial u_{-3}(z) &= f_2(z), \\
\overline{\partial}u_{2n}(z) + \partial u_{2n-2}(z) &= 0, \quad n \leq 0, \\
\overline{\partial}u_{2n-1}(z) + \partial u_{2n-3}(z) &= 0, \quad n \leq -1,
\end{align*}
\]

The range characterization is given in terms of the trace

\[
g := u|_{\Gamma \times S^1} = \left\{ \begin{array}{ll}
XF(x, \theta), & (x, \theta) \in \Gamma_+, \\
0, & (x, \theta) \in \Gamma_\pm \cup \Gamma_0.
\end{array} \right.
\]

More precisely, in terms of its Fourier modes in the angular variables:

\[
g(\zeta, \theta) = \sum_{-\infty}^{\infty} g_n(\zeta)e^{in\varphi}, \quad \zeta \in \Gamma.
\]

Since the trace \(g \) is also real valued, its Fourier modes will satisfy

\[
g_{-n}(\zeta) = \overline{g_n(\zeta)}, \quad n \geq 0, \quad \zeta \in \Gamma.
\]

From the negative even modes, we built the sequence

\[
g^{\text{even}} := \langle g_0, g_{-2}, g_{-4}, \ldots \rangle.
\]

From the negative odd modes starting from mode \(-3\), we built the sequence

\[
g^{\text{odd}} := \langle g_{-3}, g_{-5}, g_{-7}, \ldots \rangle.
\]

Next we characterize the data \(g \) in terms of the Hilbert Transform \(\mathcal{H} \) in (16). We will construct simultaneously the right hand side of the transport equation (20) and the solution \(u \) whose trace matches the boundary data \(g \). Construction of \(u \) is via its Fourier modes. We first construct the negative modes and then the positive modes are constructed by conjugation.
Except from negative one mode \(u_{-1} \) all non-positive modes are defined by Bukhgeim-Cauchy integral formula in (13) using boundary data. Other then having the trace \(g_{-1} \) on the boundary \(u_{-1} \) is unconstrained. It is chosen arbitrarily from the class of functions

\[
\psi \in C^1(\overline{\Omega}; \mathbb{C}) : \psi|_{\Gamma} = g_{-1}
\]

(30)

Theorem 3.1 (Range characterization in the non-attenuated case). Let \(\alpha > 1/2 \).

(i) Let \(F \in C^{1,\alpha}_0(\Omega; \mathbb{R}^{2\times 2}) \). For \(g := \left\{ \begin{array}{ll} XF(x, \theta), & (x, \theta) \in \Gamma_+, \\ 0, & (x, \theta) \in \Gamma_0 \end{array} \right. \), consider the corresponding sequences \(g^{\text{even}} \) as in (28) and \(g^{\text{odd}} \) as in (29). Then \(g^{\text{even}}, g^{\text{odd}} \in l^{1,1}_\infty(\Gamma) \cap C^\alpha(\Gamma; l_1) \) satisfy

\[
[I + i\mathcal{H}]g^{\text{even}} = 0,
\]

(31)

\[
[I + i\mathcal{H}]g^{\text{odd}} = 0,
\]

(32)

where the operator \(\mathcal{H} \) is the Hilbert transform in (16).

(ii) Let \(g \in C^\alpha(\Gamma; C^{1,\alpha}(S^1)) \cap C(\Gamma; C^{2,\alpha}(S^1)) \) be real valued with \(g|_{\Gamma_\infty} = 0 \). If the corresponding sequence \(g^{\text{even}}, g^{\text{odd}} \in Y_\alpha \) satisfies (31) and (32), then there exists a real valued symmetric 2-tensor \(F \in C(\Omega; \mathbb{R}^{2\times 2}) \), such that \(g|_{\Gamma_+} = XF \). Moreover for each \(\psi \in \Psi_g \) in (30), there is a unique real valued symmetric 2-tensor \(F_\psi \) such that \(g|_{\Gamma_+} = XF_\psi \).

Proof. (i) **Necessity**

Let \(F \in C^{1,\alpha}_0(\Omega; \mathbb{R}^{2\times 2}) \). Since \(F \) is compactly supported inside \(\Omega \), for any point at the boundary there is a cone of lines which do not meet the support. Thus \(g \equiv 0 \) in the neighborhood of the variety \(\Gamma_0 \) which yields \(g \in C^{1,\alpha}(\Gamma \times S^1) \). Moreover, \(g \) is the trace on \(\Gamma \times S^1 \) of a solution \(u \in C^{1,\alpha}(\overline{\Omega} \times S^1) \) of the transport equation (20). By [30, Proposition 4.1] \(g^{\text{even}}, g^{\text{odd}} \in l^{1,1}_\infty(\Gamma) \cap C^\alpha(\Gamma; l_1) \).

If \(u \) solves (20) then its Fourier modes satisfy (21), (22), (23) and (24). Since the negative even Fourier modes \(u_{2n} \) of \(u \) satisfies the system (23) for \(n \leq 0 \), then

\[
z \mapsto u^{\text{even}}(z) := \langle u_0(z), u_{-2}(z), u_{-4}(z), u_{-6}(z), \cdots \rangle
\]

is \(\mathcal{L} \)-analytic in \(\Omega \) and the necessity part in Theorem 2.2 yields (31).

The equation (24) for negative odd Fourier modes \(u_{2n-1} \) starting from mode \(-3\) yield that the sequence valued map

\[
z \mapsto u^{\text{odd}}(z) := \langle u_{-3}(z), u_{-5}(z), u_{-7}(z), \cdots \rangle
\]

is \(\mathcal{L} \)-analytic in \(\Omega \) and the necessity part in Theorem 2.2 yields (32).

(ii) **Sufficiency**
To prove the sufficiency we will construct a real valued symmetric 2-tensor F in Ω and a real valued function $u \in C^1(\Omega \times S^1) \cap C(\overline{\Omega} \times S^1)$ such that $u|_{\Gamma \times S^1} = g$ and u solves (20) in Ω. The construction of such u is in terms of its Fourier modes in the angular variable and it is done in several steps.

Step 1: The construction of negative even modes u_{2n} for $n \leq 0$.

Let $g \in C^{\alpha}(\Gamma; C^{1,\alpha}(S^1)) \cap C(\Gamma; C^{2,\alpha}(S^1))$ be real valued with $g|_{\Gamma_\cup \Gamma_0} = 0$. Let the corresponding sequences g^{even} and g^{odd} satisfying (31) and (32). By [30, Proposition 4.1(ii)] $g^{even}, g^{odd} \in Y_\alpha$. Use the Bukhgeim-Cauchy Integral formula (13) to construct the negative even Fourier modes:

$$
\langle u_0(z), u_{-2}(z), u_{-4}(z), u_{-6}(z), \ldots \rangle := B_{g^{even}}(z), \quad z \in \Omega.
$$

By Theorem 2.1, the sequence valued map

$$
z \mapsto \langle u_0(z), u_{-2}(z), u_{-4}(z), \ldots \rangle,
$$

is \mathcal{C}-analytic in Ω, thus the equations

$$
\overline{\partial}u_{-2k} + \partial u_{-2k-2} = 0,
$$

are satisfied for all $k \geq 0$. Moreover, the hypothesis (31) and the sufficiency part of Theorem 2.2 yields that they extend continuously to Γ and

$$
u_{-2k}|_{\Gamma} = g_{-2k}, \quad k \geq 0.
$$

Step 2: The construction of positive even modes u_{2n} for $n \geq 1$.

All of the positive even Fourier modes are constructed by conjugation:

$$u_{2k} := \overline{u_{-2k}}, \quad k \geq 1.
$$

By conjugating (34) we note that the positive even Fourier modes also satisfy

$$
\overline{\partial}u_{2k+2} + \partial u_{2k} = 0, \quad k \geq 0.
$$

Moreover, they extend continuously to Γ and

$$
u_{2k}|_{\Gamma} = \overline{u_{-2k}}|_{\Gamma} = \overline{g_{-2k}} = g_{2k}, \quad k \geq 1.
$$

Thus, as a summary, we have shown that

$$
\overline{\partial}u_{2k} + \partial u_{2k-2} = 0, \quad \forall k \in \mathbb{Z},
$$

$$u_{2k}|_{\Gamma} = g_{2k}, \quad \forall k \in \mathbb{Z}.
$$

Step 3: The construction of modes u_{-1} and u_1.

Let $\psi \in \Psi_g$ as in (30). We define

$$
u_{-1} := \psi, \quad \text{and} \quad u_1 := \overline{\psi}.
$$

Since g is real valued, we have

$$u_1|_{\Gamma} = \overline{g_{-1}} = g_1.$$
Step 4: The construction of negative odd modes u_{2n-1} for $n \leq -1$.

Use the Bukhgeim-Cauchy Integral formula (13) to construct the other odd negative Fourier modes:

$$\langle u_{-3}(z), u_{-5}(z), \cdots \rangle := \mathcal{B}g^{\text{odd}}(z), \quad z \in \Omega.$$ \hspace{1cm} (43)

By Theorem 2.1, the sequence valued map

$$z \mapsto \langle u_{-3}(z), u_{-5}(z), u_{-7}(z), \ldots \rangle,$$

is \mathcal{L}-analytic in Ω, thus the equations

$$\overline{\partial}u_{2k-1} + \partial u_{2k-3} = 0,$$

are satisfied for all $k \leq -1$. Moreover, the hypothesis (32) and the sufficiency part of Theorem 2.2 yields that they extend continuously to Γ and

$$u_{2k-1}|_{\Gamma} = g_{2k-1}, \quad \forall k \leq -1.$$ \hspace{1cm} (45)

Step 5: The construction of positive odd modes u_{2n+1} for $n \geq 1$.

All of the positive odd Fourier modes are constructed by conjugation:

$$u_{2k+3} := \overline{u_{-(2k+3)}}, \quad k \geq 0.$$ \hspace{1cm} (46)

By conjugating (44) we note that the positive odd Fourier modes also satisfy

$$\overline{\partial}u_{2k+3} + \partial u_{2k+1} = 0, \quad \forall k \geq 1.$$ \hspace{1cm} (47)

Moreover, they extend continuously to Γ and

$$u_{2k+3}|_{\Gamma} = \overline{u_{-(2k+3)}}|_{\Gamma} = \overline{g_{-(2k+3)}} = g_{2k+3}, \quad k \geq 0.$$ \hspace{1cm} (48)

Step 6: The construction of the tensor field F_ψ whose X-ray data is g.

We define the 2-tensor field

$$F_\psi := \left(\begin{array}{cc} f_0 + 2\Re f_2 & 2\Im f_2 \\ 2\Im f_2 & f_0 - 2\Re f_2 \end{array} \right),$$

where

$$f_0 = 2\Re(\partial \psi), \quad \text{and} \quad f_2 = \overline{\partial \psi} + \partial u_{-3}.$$ \hspace{1cm} (50)

In order to show $g|_{\Gamma_+} = X F_\psi$ with F_ψ as in (49), we define the real valued function u via its Fourier modes

$$u(z, \theta) := u_0(z) + \psi(z)e^{-i\varphi} + \overline{\psi(z)}e^{i\varphi} + \sum_{n=2}^{\infty} u_{-n}(z)e^{-in\varphi} + \sum_{n=2}^{\infty} u_n(z)e^{in\varphi},$$

and check that it has the trace g on Γ and satisfies the transport equation (20).

Since $g \in C^\alpha(\Gamma; C^{1,\alpha}(S^1)) \cap C(\Gamma; C^{2,\alpha}(S^1))$, we use [30, Corollary 4.1] and [30, Proposition 4.1 (iii)] to conclude that u defined in (51) belongs to
$C^{1,\alpha}(\Omega \times S^1) \cap C^{\alpha}(\overline{\Omega} \times S^1)$. In particular $u(\cdot, \theta)$ for $\theta = (\cos \varphi, \sin \varphi)$ extends to the boundary and its trace satisfies

$$u(\cdot, \theta)|_{\Gamma} = \left(u_0 + \psi e^{-i\varphi} + \overline{\psi} e^{i\varphi} + \sum_{n=2}^{\infty} u_{-n} e^{-in\varphi} + \sum_{n=2}^{\infty} u_n e^{in\varphi} \right)|_{\Gamma},$$

where in the third equality above we used (40), (45), (48), (42) and definition of $\psi \in \Psi_g$ in (30).

Since $u \in C^{1,\alpha}(\Omega \times S^1) \cap C^{\alpha}(\overline{\Omega} \times S^1)$, the following calculation is also justified:

$$\theta \cdot \nabla u = e^{-2i\varphi}(\overline{\partial} u_0 + \partial u_{-3}) + e^{2i\varphi}(\partial \overline{u}_0 + \overline{\partial} u_3) + \overline{\partial} \psi + \partial \psi + e^{2i\varphi} \overline{\partial} \psi$$

$$+ e^{-2i\varphi} (\partial u_0 + \overline{\partial} u_{-2}) + e^{2i\varphi} (\partial \overline{u}_0 + \partial u_2)$$

$$+ \sum_{n=1}^{\infty} (\partial u_{-n} + \overline{\partial} u_{n-2}) e^{-i(n+1)\varphi} + \sum_{n=1}^{\infty} (\overline{\partial} u_{n+2} + \partial u_n) e^{i(n+1)\varphi}.$$
only in terms of \(g \) on \(\Gamma_+ \), where \(g := u|_{\Gamma \times S^1} \). More precisely, let \(\tilde{u} \) be the solution of the boundary value problem

\[
\theta \cdot \nabla \tilde{u}(x, \theta) = \langle F(x) \theta, \theta \rangle, \quad x \in \Omega,
\]

\[
\tilde{u}(z, \theta) = -\frac{1}{2} g|_{\Gamma_+}(z, -\theta), \quad (z, \theta) \in \Gamma_-.
\]

Then one can see that

\[
\tilde{u}|_{\Gamma_+} = \frac{1}{2} g|_{\Gamma_+},
\]

and therefore \(\tilde{u}|_{\Gamma \times S^1} \) is an odd function of \(\theta \). This shows that we can work with the following odd extension:

\[
\tilde{g}(z, \theta) := \frac{g(z, \theta) - g(z, -\theta)}{2}, \quad (z, \theta) \in (\Gamma \times S^1) \setminus \Gamma_0,
\]

and \(\tilde{g} = 0 \) on \(\Gamma_0 \). Note that \(\tilde{g} \) is the trace of \(\tilde{u} \) on \(\Gamma \times S^1 \).

The range characterization can be given now in terms of the odd Fourier modes of \(\tilde{g} \), namely in terms of

\[
\tilde{g} := \langle \tilde{g}_{-3}, \tilde{g}_{-5}, \tilde{g}_{-7}, \ldots \rangle.
\]

Corollary 3.1. Let \(\alpha > 1/2 \).

(i) Let \(F \in C^{1,\alpha}_{0}(\Omega; \mathbb{R}^{2 \times 2}) \), \(\tilde{u} \) be the solution of \((52) \) and \(\tilde{g} \) as in \((55) \). Then \(\tilde{g} \in L^{1,1}_{\infty}(\Gamma) \cap C^{\alpha}(\Gamma; l_1) \) and

\[
[I + i\mathcal{H}] \tilde{g} = 0,
\]

where the operator \(\mathcal{H} \) is the Hilbert transform in \((16) \).

(ii) Let \(g \in C^{\alpha}(\Gamma; C^{1,\alpha}(S^1)) \cap C(\Gamma; C^{2,\alpha}(S^1)) \) be real valued with \(g|_{\Gamma_+ \cup \Gamma_0} = 0 \). Let \(\tilde{g} \) be its odd extension as in \((54) \) and the corresponding \(\tilde{g} \) as in \((55) \). If \(\tilde{g} \) satisfies \((56) \), then there exists a real valued symmetric \(2 \)-tensor \(F \in C(\Omega; \mathbb{R}^{2 \times 2}) \), such that \(g|_{\Gamma_+} = X^{\alpha}F \). Moreover for each \(\psi \in \Psi_g \) in \((30) \), there is a unique real valued symmetric \(2 \)-tensor \(F_{\psi} \) such that \(g|_{\Gamma_+} = X^{\alpha}F_{\psi} \).

4. The Attenuated Case

In this section we assume an attenuation \(a \in C^{2,\alpha}(\overline{\Omega}), \alpha > 1/2 \) with

\[
\min_{\overline{\Omega}} a > 0.
\]

We establish necessary and sufficient conditions for a sufficiently smooth function \(g \) on \(\Gamma \times S^1 \) to be the attenuated X-ray data, with attenuation \(a \), of some sufficiently smooth real symmetric \(2 \)-tensor, i.e. \(g \) is the trace on \(\Gamma \times S^1 \) of some solution \(u \) of

\[
\theta \cdot \nabla u(x, \theta) + a(x) u(x, \theta) = \langle F(x) \theta, \theta \rangle, \quad (x, \theta) \in \Gamma \times S^1.
\]
Different from 1-tensor case in [31] (where there is uniqueness), in the 2-tensor case there is non-uniqueness: see the class of function in (82).

As in [30] we start by the reduction to the non-attenuated case via the special integrating factor e^{-h}, where h is explicitly defined in terms of a by

$$h(z, \theta) := Da(z, \theta) - \frac{1}{2} (I - iH) Ra(z \cdot \theta^\perp, \theta),$$

where θ^\perp is orthogonal to θ, $Da(z, \theta) = \int_0^\infty a(z + t\theta)dt$ is the divergence beam transform of the attenuation a, $Ra(s, \theta) = \int_{-\infty}^\infty a(s\theta^\perp + t\theta)dt$ is the Radon transform of the attenuation a, and the classical Hilbert transform $Hh(s) = \frac{1}{\pi} \int_{-\infty}^\infty \frac{h(t)}{s-t}dt$ is taken in the first variable and evaluated at $s = z \cdot \theta^\perp$. The function h was first considered in the work of Natterer [21]; see also [8], and [6] for elegant arguments that show how h extends from S^1 inside the disk as an analytic map.

The lemma 4.1 and lemma 4.2 below were proven in [31] for a vanishing at the boundary, $a \in C^{1,\alpha}_0(\overline{\Omega})$, $\alpha > 1/2$. We explain here why the vanishing assumption is not necessary: we extend a in a neighbourhood $\tilde{\Omega}$ of Ω with compact support, $\tilde{a} \in C^{1,\alpha}_0(\tilde{\Omega})$. We apply the results [31, Lemma 4.1 and Lemma 4.2] for the extension \tilde{a} and use it on Ω.

Lemma 4.1. [31, Lemma 4.1] Assume $a \in C^{p,\alpha}(\overline{\Omega})$, $p = 1, 2$, $\alpha > 1/2$, and h defined in (58). Then $h \in C^{p,\alpha}(\overline{\Omega} \times S^1)$ and the following hold

(i) h satisfies

$$\theta \cdot \nabla h(z, \theta) = -a(z), \ (z, \theta) \in \Omega \times S^1. \quad (59)$$

(ii) h has vanishing negative Fourier modes yielding the expansions

$$e^{-h(z, \theta)} := \sum_{k=0}^\infty \alpha_k(z) e^{ik\varphi}, \quad e^{h(z, \theta)} := \sum_{k=0}^\infty \beta_k(z) e^{ik\varphi}, \ (z, \theta) \in \overline{\Omega} \times S^1, \quad (60)$$

with

(iii)

(61) $z \mapsto (\alpha_1(z), \alpha_2(z), \alpha_3(z), ...,) \in C^{p,\alpha}(\Omega; l_1) \cap C(\overline{\Omega}; l_1),$

(62) $z \mapsto (\beta_1(z), \beta_2(z), \beta_3(z), ...,) \in C^{p,\alpha}(\Omega; l_1) \cap C(\overline{\Omega}; l_1).$
(iv) For any \(z \in \Omega \)

\[
\frac{\partial}{\partial \beta_0}(z) = 0,
\]

\[
\frac{\partial}{\partial \beta_1}(z) = -a(z)\beta_0(z),
\]

\[
\frac{\partial}{\partial \beta_{k+2}}(z) + \partial \beta_k(z) + a(z)\beta_{k+1}(z) = 0, \quad k \geq 0.
\]

(v) For any \(z \in \Omega \)

\[
\frac{\partial}{\partial \alpha_0}(z) = 0,
\]

\[
\frac{\partial}{\partial \alpha_1}(z) = a(z)\alpha_0(z),
\]

\[
\frac{\partial}{\partial \alpha_{k+2}}(z) + \partial \alpha_k(z) + a(z)\alpha_{k+1}(z) = 0, \quad k \geq 0.
\]

(vi) The Fourier modes \(\alpha_k, \beta_k, k \geq 0 \) satisfy

\[
\alpha_0\beta_0 = 1, \quad \sum_{m=0}^{k} \alpha_m\beta_{k-m} = 0, \quad k \geq 1.
\]

From (59) it is easy to see that \(u \) solves (57) if and only if \(v := e^{-h}u \) solves

\[
\theta \cdot \nabla v(z, \theta) = \langle F(z)\theta, \theta \rangle e^{-h(z, \theta)}.
\]

If \(u(z, \theta) = \sum_{n=-\infty}^{\infty} u_n(z) e^{in\varphi} \) solves (57), then its Fourier modes satisfy

\[
\frac{\partial}{\partial u_1}(z) + \partial u_{-1}(z) + a(z)u_0(z) = f_0(z),
\]

\[
\frac{\partial}{\partial u_0}(z) + \partial u_{-2}(z) + a(z)u_{-1}(z) = 0,
\]

\[
\frac{\partial}{\partial u_{-1}}(z) + \partial u_{-3}(z) + a(z)u_{-2}(z) = f_2(z),
\]

\[
\frac{\partial}{\partial u_{n}}(z) + \partial u_{n-2}(z) + a(z)u_{n-1}(z) = 0, \quad n \leq -2,
\]

where \(f_0, f_2 \) as defined in (19).

Also, if \(v := e^{-h} = \sum_{n=-\infty}^{\infty} v_n(z) e^{in\varphi} \) solves (70), then its Fourier modes satisfy

\[
\frac{\partial}{\partial v_1}(z) + \partial v_{-1}(z) = \alpha_0(z)f_0(z) + \alpha_2(z)f_2(z),
\]

\[
\frac{\partial}{\partial v_0}(z) + \partial v_{-2}(z) = \alpha_1(z)f_2(z),
\]

\[
\frac{\partial}{\partial v_{-1}}(z) + \partial v_{-3}(z) = \alpha_0(z)f_2(z),
\]

\[
\frac{\partial}{\partial v_{n}}(z) + \partial v_{n-2}(z) = 0, \quad n \leq -2,
\]

where \(\alpha_0, \alpha_1 \) and \(\alpha_2 \) are the Fourier modes in (60), and \(f_0, f_2 \) as defined in (19).

The following result shows that the equivalence between (74) and (75) is intrinsic to negative Fourier modes only.
Lemma 4.2. [31, Lemma 4.2] Assume $a \in C^{1,\alpha} (\Omega), \alpha > 1/2$.

(i) Let $v = \langle v_{-2}, v_{-3}, \ldots \rangle \in C^1 (\Omega, l_1)$ satisfy (75), and $u = \langle u_{-2}, u_{-3}, \ldots \rangle$ be defined componentwise by the convolution

$$u_n := \sum_{j=0}^{\infty} \beta_j v_{n-j}, \quad n \leq -2,$$

where β_j’s are the Fourier modes in (60). Then u solves (74) in Ω.

(ii) Conversely, let $u = \langle u_{-2}, u_{-3}, \ldots \rangle \in C^1 (\Omega, l_1)$ satisfy (74), and $v = \langle v_{-2}, v_{-3}, \ldots \rangle$ be defined componentwise by the convolution

$$v_n := \sum_{j=0}^{\infty} \alpha_j u_{n-j}, \quad n \leq -2,$$

where α_j’s are the Fourier modes in (60). Then v solves (75) in Ω.

The operators $\partial, \overline{\partial}$ in (9) can be rewritten in terms of the derivative in tangential direction ∂_τ and derivative in normal direction ∂_n,

$$\partial_n = \cos \eta \partial_{x_1} + \sin \eta \partial_{x_2},$$
$$\partial_\tau = -\sin \eta \partial_{x_1} + \cos \eta \partial_{x_2},$$

where η is the angle made by the normal to the boundary with x_1 direction (Since the boundary Γ is known, η is a known function on the boundary). In these coordinates

$$\partial = \frac{e^{-i\eta}}{2} (\partial_n - i \partial_\tau), \quad \overline{\partial} = \frac{e^{i\eta}}{2} (\partial_n + i \partial_\tau).$$

Next we characterize the attenuated X-ray data g in terms of its Fourier modes g_0, g_{-1} and the negative index modes $\gamma_{-2}, \gamma_{-3}, \gamma_{-4} \ldots$ of

$$e^{-h(\zeta, \theta)} g(\zeta, \theta) = \sum_{k=-\infty}^{\infty} \gamma_k (\zeta) e^{ik\varphi}, \quad \zeta \in \Gamma.$$

To simplify the statement, let

$$g_h := \langle \gamma_{-2}, \gamma_{-3}, \gamma_{-4}, \ldots \rangle,$$

and from the negative even, respectively, negative odd Fourier modes, we built the sequences

$$g_h^{\text{even}} = \langle \gamma_{-2}, \gamma_{-4}, \ldots \rangle, \quad \text{and} \quad g_h^{\text{odd}} = \langle \gamma_{-3}, \gamma_{-5}, \ldots \rangle.$$

Note that γ_{-1} is not included in the g_h^{odd} definition. As before we construct simultaneously the right hand side of the transport equation (57) together with the solution u. Construction of u is via its Fourier modes. We first construct the negative modes and then the positive modes are constructed by conjugation. Apart from zeroth mode u_0 and negative one mode u_{-1}, all Fourier modes are constructed uniquely from the data $g_h^{\text{even}}, g_h^{\text{odd}}$. The
mode \(u_0 \) will be chosen arbitrarily from the class \(\Psi^a \) with prescribed trace and gradient on the boundary \(\Gamma \) defined as

\[
\Psi^a_g := \left\{ \psi \in C^2(\Omega; \mathbb{R}) : \psi|_\Gamma = g_0, \quad \partial_n \psi|_\Gamma = -2 \Re e^{-i\eta} \left(\partial \sum_{j=0}^\infty \beta_j (\mathcal{B}g_h)_{-2-j} \right|_\Gamma + a|_\Gamma g_{-1} \right\},
\]

where \(\mathcal{B} \) be the Bukhgeim-Cauchy operator in (13), \(\beta_j \)'s are the Fourier modes in (60) and \(g_h \) in (80). The mode \(u_{-1} \) is defined in terms of \(u_0 \), see (99).

Recall the Hilbert transform \(\mathcal{H} \) in (16).

Theorem 4.1 (Range characterization in the attenuated case). Let \(\alpha \in C^{2,\alpha}(\Omega) \), \(\alpha > 1/2 \) with \(\min \alpha > 0 \).

(i) Let \(F \) be a real valued symmetric 2-tensor \(\psi \) such that \(F(x,\theta) \) is compactly supported inside \(\Omega \), then the negative Fourier modes \(g^\text{odd} \) in (80) and \(g_h \) in (80).

(ii) Let \(g \in C^\alpha(\Gamma; C^{1,\alpha}(S^1)) \cap C(\Gamma; C^{2,\alpha}(S^1)) \) be real valued with \(g|_{\Gamma_+ \cup \Gamma_0} = 0 \). If the corresponding sequences \(g_{h-}^\text{even}, g_{h-}^\text{odd} \) satisfy (83) and (84) then there exists a symmetric 2-tensor \(\mathcal{F} \in C(\Omega; \mathbb{R}^{2 \times 2}) \), such that \(g|_{\Gamma_+} = X_\alpha \mathcal{F} \). Moreover for each \(\psi \in \Psi^a \) in (82), there is a unique real valued symmetric 2-tensor \(\mathcal{F}_{\psi} \) such that \(g|_{\Gamma_+} = X_\alpha \mathcal{F}_{\psi} \).

Proof. (i) **Necessity**

Let \(\mathcal{F} \in C^{1,\alpha}_{0;\Omega} \). Since \(\mathcal{F} \) is compactly supported inside \(\Omega \), for any point at the boundary there is a cone of lines which do not meet the support. Thus \(g \equiv 0 \) in the neighborhood of the variety \(\Gamma_0 \) which yields \(g \in C^{1,\alpha}(\Gamma \times S^1) \). Moreover, \(g \) is the trace on \(\Gamma \times S^1 \) of a solution \(u \in C^{1,\alpha}(\Omega \times S^1) \). By [30, Proposition 4.1] \(g_{h-}^\text{even}, g_{h-}^\text{odd} \in l_{\infty}^{1,\alpha}(\Gamma \cap C(\Gamma;l_1)) \).

Let \(v := e^{-h}u = \sum_{n=-\infty}^{\infty} v_n(z) e^{i\eta z} \), then the negative Fourier modes of \(v \) satisfy (75). In particular its negative odd subsequence \(\langle v_{-3}, v_{-5}, \ldots \rangle \) and negative even subsequence \(\langle v_{-2}, v_{-4}, \ldots \rangle \) are \(\mathcal{L} \)-analytic with traces \(g_{h-}^\text{odd} \).
respectively g_h^{even}. The necessity part of Theorem 2.2 yields (83):

$$[I + i\mathcal{H}]g_h^{\text{odd}} = 0, \quad [I + i\mathcal{H}]g_h^{\text{even}} = 0.$$

If u solves (57), then its Fourier modes satisfy (71), (72), (73), and (74). The negative Fourier modes of u and v are related by

$$u_n = \sum_{j=0}^{\infty} \beta_j v_{n-j}, \quad n \leq 0,$$

where β_j’s are the Fourier modes in (60). The restriction of (72) to the boundary yields

$$\partial u_0 |_\Gamma = - \partial u_{-2} |_\Gamma - (au_{-1}) |_\Gamma.$$

Expressing ∂ in the above equation in terms of ∂_r and ∂_n as in (78) yields

$$\frac{e^{in}}{2} (\partial_n + i\partial_r) u_0 |_\Gamma = - \partial u_{-2} |_\Gamma - a g_{-1}.$$

Simplifying the above expression and using $\partial_r u_0 |_\Gamma = \partial_r g_0$, yields

$$\partial_n u_0 |_\Gamma + i\partial_r g_0 = -2e^{-in} (\partial u_{-2} |_\Gamma + a g_{-1}).$$

The imaginary part of the above equation yields (84). This proves part (i) of the theorem.

(ii) **Sufficiency**

To prove the sufficiency we will construct a real valued symmetric 2-tensor F in Ω and a real valued function $u \in C^1(\Omega \times S^1) \cap C(\overline{\Omega} \times S^1)$ such that $u|_{\Gamma \times S^1} = g$ and u solves (57) in Ω. The construction of such u is in terms of its Fourier modes in the angular variable and it is done in several steps.

Step 1: The construction of negative modes u_n for $n \leq -2$.

Let $g \in C^\alpha (\Gamma; C^{1,\alpha}(S^1)) \cap C(\Gamma; C^{2,\alpha}(S^1))$ be real valued with $g|_{\Gamma_0} = 0$. Let the corresponding sequences $g_h^{\text{even}}, g_h^{\text{odd}}$ as in (81) satisfying (83) and (84). By [30, Proposition 4.1(ii)] and [30, Proposition 5.2(iii)] $g_h^{\text{even}}, g_h^{\text{odd}} \in Y_\alpha$. Use the Bukhgeim-Cauchy Integral formula (13) to define the \mathcal{L}-analytic maps

$$v^{\text{even}}(z) = \langle v_{-2}(z), v_{-4}(z), \ldots \rangle := B g_h^{\text{even}}(z), \quad z \in \Omega,$n

$$v^{\text{odd}}(z) = \langle v_{-3}(z), v_{-5}(z), \ldots \rangle := B g_h^{\text{odd}}(z), \quad z \in \Omega.$$

By intertwining let also define

$$v(z) := \langle v_{-2}(z), v_{-3}(z), \ldots \rangle, \quad z \in \Omega.$$

By Proposition 2.1

$$v^{\text{even}}, v^{\text{odd}}, v \in C^{1,\alpha}(\Omega; l_1) \cap C^\alpha(\overline{\Omega}; l_1) \cap C^2(\Omega; l_\infty).$$
Moreover, since \(g_{h}^{\text{even}}, g_{h}^{\text{odd}} \) satisfy the hypothesis (83), by Theorem 2.2 we have

\[
v^{\text{even}}|_{r} = g_{h}^{\text{even}} \quad \text{and} \quad v^{\text{odd}}|_{r} = g_{h}^{\text{odd}}.
\]

In particular

\[
v_{n}|_{r} = \sum_{k=0}^{\infty} (\alpha_{k}|_{r}) g_{n-k}, \quad n \leq -2.
\]

For each \(n \leq -2 \), we use the convolution formula below to construct

\[
u_{n} := \sum_{j=0}^{\infty} \beta_{j} v_{n-j}.
\]

Since \(a \in C^{2,\alpha}(\Omega) \), by (62), the sequence \(z \mapsto \langle \beta_{0}(z), \beta_{1}(z), \beta_{2}(z), \ldots \rangle \) is in \(C^{2,\alpha}(\Omega; l_{1}) \cap C^{\alpha}(\Omega; l_{1}) \). Since convolution preserves \(l_{1} \), the map is in

\[
z \mapsto \langle u_{-2}(z), u_{-3}(z), \ldots \rangle \in C^{1,\alpha}(\Omega; l_{1}) \cap C^{\alpha}(\Omega; l_{1}).
\]

Moreover, since \(v \in C^{2}(\Omega; l_{\infty}) \) as in (88), we also conclude from convolution that

\[
z \mapsto \langle u_{-2}(z), u_{-3}(z), \ldots \rangle \in C^{2}(\Omega; l_{\infty}).
\]

The property (91) justifies the calculation of traces \(u_{n}|_{r} \) for each \(n \leq -2 \):

\[
u_{n}|_{r} = \sum_{j=0}^{\infty} \beta_{j}|_{r} (v_{n-j}|_{r}).
\]

Using (89) in the above equation gives

\[
u_{n}|_{r} = \sum_{j=0}^{\infty} \beta_{j}|_{r} \sum_{k=0}^{\infty} \alpha_{k}|_{r} g_{n-j-k}.
\]

A change of index \(m = j + k \), simplifies the above equation

\[
u_{n}|_{r} = \sum_{m=0}^{\infty} \sum_{k=0}^{m} \alpha_{k} \beta_{m-k} g_{n-m},
\]

\[
= \alpha_{0} \beta_{0} g_{n} + \sum_{m=1}^{\infty} \sum_{k=0}^{m} \alpha_{k} \beta_{m-k} g_{n-m}.
\]

Using Lemma 4.1 (vi) yields

\[
u_{n}|_{r} = g_{n}, \quad n \leq -2.
\]

From the Lemma 4.2, the constructed \(u_{n} \) in (90) satisfy

\[
\bar{\partial} u_{n} + \partial u_{n-2} + au_{n-1} = 0, \quad n \leq -2.
\]

Step 2: The construction of positive modes \(u_{n} \) for \(n \geq 2 \).
All of the positive Fourier modes are constructed by conjugation:

\[u_n := \overline{u_{-n}}, \quad n \geq 2. \] (95)

Moreover using (93), the traces \(u_n|_\Gamma \) for each \(n \geq 2 \):

\[u_n|_\Gamma = \overline{u_{-n}|_\Gamma} = \overline{g_{-n}} = g_n, \quad n \geq 2. \] (96)

By conjugating (94) we note that the positive Fourier modes also satisfy

\[\overline{\partial} u_{n+2} + \partial u_n + a u_{n+1} = 0, \quad n \geq 2. \] (97)

Step 3: The construction of modes \(u_0, u_{-1} \) and \(u_1 \).

Let \(\psi \in \Psi_g^a \) as in (82) and define

\[u_0 := \psi, \] (98)

and

\[u_{-1} := \frac{-\overline{\partial} \psi - \partial u_{-2}}{a}, \quad u_1 := \overline{u_{-1}}. \] (99)

By the construction \(u_0 \in C^2(\Omega; l_\infty) \) and \(u_{-1} \in C^1(\Omega; l_\infty) \), and

\[\overline{\partial} u_0 + \partial u_{-2} + a u_{-1} = 0 \] (100)

is satisfied. Furthermore, by conjugating (100) yields

\[\partial u_0 + \partial u_2 + a u_1 = 0. \] (101)

Since \(\psi \in \Psi_g^a \), the trace of \(u_0 \) satisfies

\[u_0|_\Gamma = g_0. \] (102)

We check next that the trace of \(u_{-1} \) is \(g_{-1} \):

\[u_{-1}|_\Gamma = \left. \frac{-\overline{\partial} \psi - \partial u_{-2}}{a} \right|_\Gamma \]

\[= -\frac{1}{a} \left. \frac{e^{in}}{2} (\partial_n + i \partial_\tau) \psi \right|_\Gamma - \frac{1}{a} \left. \partial u_{-2} \right|_\Gamma \]

\[= -\frac{1}{2a} \left. e^{in} \{ \partial_n \psi + i \partial_\tau \psi \} \right|_\Gamma + 2e^{-in} \partial u_{-2}|_\Gamma \]

\[= g_{-1}, \] (103)

where the last equality uses (84) and the condition in class (82).

Step 4: The construction of the tensor field \(F_\psi \) whose attenuated X-ray data is \(g \).

We define the 2-tensor

\[F_\psi := \begin{pmatrix} f_0 + 2 \Re f_2 & 2 \Im f_2 \\ 2 \Im f_2 & f_0 - 2 \Re f_2 \end{pmatrix}, \] (104)
where

\begin{align}
(105)
 f_0 &= -2 \Re \left(\frac{\partial \psi + \partial u_{-2}}{a} \right) + a \psi, \text{ and } \\
(106)
 f_2 &= -a \partial \left(\frac{\partial \psi + \partial u_{-2}}{a} \right) + \partial u_{-3} + au_{-2}.
\end{align}

Note that \(f_2\) is well defined as \(u_{-2} \in C^2(\Omega; l_\infty)\) from (92).

In order to show \(g|_{\Gamma} = X_\alpha F\psi\) with \(F\psi\) as in (104), we define the real valued function \(u\) via its Fourier modes

\begin{equation}
(107)
 u(z, \theta) := u_0(z) + u_{-1} e^{-i\varphi} + \bar{u}_{-1}(z) e^{i\varphi} \\
 + \sum_{n=2}^{\infty} u_{-n}(z) e^{-in\varphi} + \sum_{n=2}^{\infty} u_n(z) e^{in\varphi}.
\end{equation}

We check below that \(u\) is well defined, has the trace \(g\) on \(\Gamma\) and satisfies the transport equation (57).

For convenience consider the intertwining sequence

\[u(z) := \langle u_0(z), u_{-1}(z), u_{-2}(z), u_{-3}(z), ... \rangle, \quad z \in \Omega. \]

Since \(u \in C^{1,\alpha}(\Omega; l_1) \cap C^{\alpha}(\overline{\Omega}; l_1)\), by [30, Proposition 4.1 (iii)] we conclude that \(u\) is well defined by (107) and as a function in \(C^{1,\alpha}(\Omega \times S^1) \cap C^{\alpha}(\overline{\Omega} \times S^1)\). In particular \(u(\cdot, \theta)\) for \(\theta = (\cos \varphi, \sin \varphi)\) extends to the boundary and its trace satisfies

\[u(\cdot, \theta)|_{\Gamma} = \left(u_0 + u_{-1} e^{-i\varphi} + \bar{u}_{-1} e^{i\varphi} + \sum_{n=2}^{\infty} u_{-n} e^{-in\varphi} + \sum_{n=2}^{\infty} u_n e^{in\varphi} \right)|_{\Gamma} \]

\[= u_0|_{\Gamma} + u_{-1}|_{\Gamma} e^{-i\varphi} + \bar{u}_{-1}|_{\Gamma} e^{i\varphi} + \sum_{n=2}^{\infty} (u_{-n}|_{\Gamma}) e^{-in\varphi} + \sum_{n=2}^{\infty} (u_n|_{\Gamma}) e^{in\varphi} \]

\[= g_0 + g_{-1} e^{-i\varphi} + g_1 e^{i\varphi} + \sum_{n=2}^{\infty} g_{-n} e^{-in\varphi} + \sum_{n=2}^{\infty} g_n e^{in\varphi} \]

\[= g(\cdot, \theta), \]

where is the third equality we have used (93), (96), (102), and (103).
Since \(u \in C^{1,\alpha}(\Omega \times S^1) \cap C^\alpha(\Omega \times S^1) \), the following calculation is also justified:

\[
\theta \cdot \nabla u + au = e^{-i\varphi} \overline{\partial u_0} + e^{i\varphi} \partial u_0 + e^{-2i\varphi} \overline{\partial u_{-1}} + \partial u_1 + \partial u_{-1} + e^{2i\varphi} \partial u_1 \\
+ \sum_{n=2}^{\infty} \overline{\partial u_{-n}} e^{-i(n+1)\varphi} + \sum_{n=2}^{\infty} \partial u_{-n} e^{-i(n-1)\varphi} \\
+ \sum_{n=2}^{\infty} \overline{\partial u_n} e^{i(n-1)\varphi} + \sum_{n=2}^{\infty} \partial u_n e^{i(n+1)\varphi} \\
+ au_0 + au_{-1} e^{-i\varphi} + au_1 e^{i\varphi} + \sum_{n=2}^{\infty} au_{-n} e^{-in\varphi} + \sum_{n=2}^{\infty} au_n e^{in\varphi}.
\]

Rearranging the modes in the above equation yields

\[
\theta \cdot \nabla u + au = e^{-2i\varphi}(\overline{\partial u_{-1}} + \partial u_{-3} + au_{-2}) + e^{2i\varphi}(\partial u_1 + \overline{\partial u_3} + au_2) \\
+ e^{-i\varphi}(\overline{\partial u_0} + \partial u_{-2} + au_{-1}) + e^{i\varphi}(\partial u_0 + \overline{\partial u_2} + au_1) \\
+ \overline{\partial u_1} + \partial u_{-1} + au_0 + \sum_{n=2}^{\infty} (\overline{\partial u_{n+2}} + \partial u_n + au_{n+1}) e^{i(n+1)\varphi} \\
+ \sum_{n=2}^{\infty} (\overline{\partial u_{-n}} + \partial u_{-n+2} + au_{-n-1}) e^{-i(n+1)\varphi}.
\]

Using (94), (97), (100) and (101) simplifies the above equation

\[
\theta \cdot \nabla u + au = e^{-2i\varphi}(\overline{\partial u_{-1}} + \partial u_{-3} + au_{-2}) + e^{2i\varphi}(\partial u_1 + \overline{\partial u_3} + au_2) \\
+ \overline{\partial u_1} + \partial u_{-1} + au_0.
\]

Now using (105) and (106), we conclude (57)

\[
\theta \cdot \nabla u + au = e^{-2i\varphi}f_2 + e^{2i\varphi} \overline{f_2} + f_0 = \langle F_\psi \theta, \theta \rangle.
\]

\[
\square
\]

Acknowledgment

The work of O. Scherzer has been supported by the Austrian Science Fund (FWF), Project P26687-N25 (Interdisciplinary Coupled Physics Imaging). The work of A. Tamasan has been supported by the NSF-Grant DMS 1312883.

References

[1] V. Aguilar and P. Kuchment, *Range conditions for the multidimensional exponential x-ray transform*, Inverse Problems 11 (1995), no. 5, 977-982.

[2] V. Aguilar, L. Ehrenpreis and P. Kuchment, *Range conditions for the exponential Radon transform*, J. Anal. Math. 68 (1996), 1-13.
[3] E. V. Arzubov, A. L. Bukhgeim and S.G. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math. 8 (1998), 1–20.
[4] G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems 20 (2004), 399–418.
[5] G. Bal and A. Tamasan, Inverse source problems in transport equations, SIAM J. Math. Anal., 39 (2007), 57–76.
[6] J. Boman and J.-O. Strömberg, Novikov’s inversion formula for the attenuated Radon transform—a new approach, J. Geom. Anal. 14 (2004), 185–198.
[7] A. L. Bukhgeim, Inversion Formulas in Inverse Problems, in Linear Operators and Ill-Posed Problems by M. M. Lavrentev and L. Ya. Savalev, Plenum, New York, 1995.
[8] D. V. Finch, The attenuated x-ray transform: recent developments, in Inside out: inverse problems and applications, Math. Sci. Res. Inst. Publ., 47, Cambridge Univ. Press, Cambridge, 2003, 47–66.
[9] G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, (1995).
[10] I. M. Gelfand and M.I. Graev, Integrals over hyperplanes of basic and generalized functions, Dokl. Akad. Nauk SSSR 135 (1960), no. 6, 1307–1310; English transl., Soviet Math. Dokl. 1 (1960), 1369–1372.
[11] S. Helgason, An analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces, Math. Ann. 165 (1966), 297–308.
[12] S. Helgason, The Radon Transform, Birkhäuser, Boston, 1999.
[13] S. Holman and P. Stefanov, The weighted Doppler transform, Inverse Probl. Imaging 4 (2010) 111–130.
[14] Y. Katznelson, An introduction to harmonic analysis, Cambridge Math. Lib., Cambridge, 2004.
[15] S. G. Kazantsev and A. A. Bukhgeim, Singular value decomposition for the 2D fan-beam Radon transform of tensor fields, J. Inverse Ill-Posed Problems 12 (2004), 245–278.
[16] S. G. Kazantsev and A. A. Bukhgeim, The Chebyshev ridge polynomials in 2D tensor tomography, J. Inverse Ill-Posed Problems, 14 (2006), 157–188.
[17] P. Kuchment, S. A. L’vin, Range of the Radon exponential transform, Soviet Math. Dokl. 42 (1991), no. 1, 183–184.
[18] J. M. Lee, Riemannian Manifolds: An introduction to curvature, Springer-Verlag, New York, 1997.
[19] D. Ludwig, The Radon transform on euclidean space, Comm. Pure Appl. Math. 19 (1966), 49–81.
[20] N.I. Muskhelishvili, Singular Integral Equations, Dover, New York, 2008.
[21] F. Natterer, The mathematics of computerized tomography, Wiley, New York, 1986.
[22] F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems 17 (2001), 113–119.
[23] F. Natterer and F. Wübbeling, Mathematical methods in image reconstruction. SIAM Monographs on Mathematical Modeling and Computation, SIAM, Philadelphia, PA, 2001.
[24] R. G. Novikov, Une formule d’inversion pour la transformation d’un rayonnement X atténúé, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 1059–1063.
[25] R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems 18 (2002), no. 3, 677–700.
[26] G. P. Paternain, M. Salo, and G. Uhlmann, *On the range of the attenuated Ray transform for unitary connections*, Int. Math. Res. Not., to appear, (2013), arXiv:1302.4880v1.

[27] G. P. Paternain, M. Salo, and G. Uhlmann, *Tensor tomography on surfaces*, Invent. Math. **193** (2013), no. 1, 229–247.

[28] G. P. Paternain, M. Salo, and G. Uhlmann, *Tensor Tomography: Progress and Challenges*, Chin. Ann. Math. Ser. B **35** (2014), no. 3, 399–428.

[29] L. Pestov and G. Uhlmann, *On characterization of the range and inversion formulas for the geodesic X-ray transform*, Int. Math. Res. Not. **80** (2004), 4331–4347.

[30] K. Sadiq and A. Tamasan, *On the range of the attenuated Radon transform in strictly convex sets*, Trans. Amer. Math. Soc., electronically published on November 4, 2014, DOI: http://dx.doi.org/10.1090/S0002-9947-2014-06307-1 (to appear in print).

[31] K. Sadiq and A. Tamasan, *On the range characterization of the two dimensional attenuated Doppler transform*, arXiv:1411.4923 [math.AP], SIAM J. Math. Anal., to appear 2015.

[32] V. A. Sharafutdinov, Integral geometry of tensor fields, VSP, Utrecht, 1994.

[33] V. A. Sharafutdinov, *The finiteness theorem for the ray transform on a Riemannian manifold*, Inverse Problems **11** (1995), pp. 1039-1050.

[34] M. Salo and G. Uhlmann, *The attenuated ray transform on simple surfaces*, J. Differential Geom. **88** (2011), no. 1, 161-187.

[35] A. Tamasan, *An inverse boundary value problem in two-dimensional transport*, Inverse Problems **18**(2002), 209–219.

[36] A. Tamasan, *Optical tomography in weakly anisotropic scattering media*, Contemporary Mathematics **333**(2003), 199–207.

[37] A. Tamasan, *Tomographic reconstruction of vector fields in variable background media*, Inverse Problems **23**(2007), 2197–2205.

JOHANN RADON INSTITUTE OF COMPUTATIONAL AND APPLIED MATHEMATICS (RICAM), ALTENBERGERSTRASSE 69, 4040 LINZ, AUSTRIA

E-mail address: kamran.sadiq@oeaw.ac.at

COMPUTATIONAL SCIENCE CENTER, OSKAR-MORGENSTERN-PLATZ 1, 1090 VIENNA & JOHANN RADON INSTITUTE OF COMPUTATIONAL AND APPLIED MATHEMATICS (RICAM), ALTENBERGERSTRASSE 69, 4040 LINZ, AUSTRIA

E-mail address: otmar.scherzer@univie.ac.at

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CENTRAL FLORIDA, ORLANDO, 32816 FLORIDA, USA

E-mail address: tamasan@math.ucf.edu