Structure of the exportin Xpo4 in complex with RanGTP and the hypusine-containing translation factor eIF5A

Metin Aksu¹, Sergei Trakhanov¹ & Dirk Görlich¹

Xpo4 is a bidirectional nuclear transport receptor that mediates nuclear export of eIF5A and Smad3 as well as import of Sox2 and SRY. How Xpo4 recognizes such a variety of cargoes is as yet unknown. Here we present the crystal structure of the RanGTP•Xpo4•eIF5A export complex at 3.2 Å resolution. Xpo4 has a similar structure as CRM1, but the NES-binding site is occluded, and a new interaction site evolved that recognizes both globular domains of eIF5A. eIF5A contains hypusine, a unique amino acid with two positive charges, which is essential for cell viability and eIF5A function in translation. The hypusine docks into a deep, acidic pocket of Xpo4 and is thus a critical element of eIF5A's complex export signature. This further suggests that Xpo4 recognizes other cargoes differently, and illustrates how Xpo4 suppresses – in a chaperone-like manner – undesired interactions of eIF5A inside nuclei.

¹Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany. Correspondence and requests for materials should be addressed to D.G. (email: goerlich@mpibpc.mpg.de).
The organization of eukaryotic cells is based on a division of labour between compartments as well as on inter-compartmental transport. Cell nuclei import all required proteins from the cytoplasm. The cytoplasm, in turn, relies on exported nuclear products such as transfer RNAs (tRNAs), messenger RNAs (mRNAs), as well as 40 and 60 S pre-ribosomal subunits (reviewed in ref. 1). The latter are exported in a still translation-incompetent state, but they gain full functionality soon after their arrival in the cytoplasm.

The nuclear membranes separate nuclear from cytoplasmic contents (reviewed in refs 2,3). The NPC permeability barrier controls this exchange and suppresses an intermixing of nuclear and cytoplasmic contents (reviewed in ref. 4). It grants free passage to small molecules, while restricting fluxes of larger species that approach or exceed a limit of ~5 nm in diameter or ~30 kDa in mass.

![Image](https://example.com/image.png)

Shuttling nuclear transport receptors (NTRs) can overcome this size limit and carry larger cargoes across the barrier by means of facilitated translocation. Most NTRs have a HEAT repeat domain. The largest NTR, CRM1 (refs 7,8,21,24–26,52), has a mass of 30 kDa and can transport cargoes of up to 1,000 different proteins per se and in an auto-inhibited state.

CRM1 depletes most translation initiation and all termination factors from the nuclear compartment (refs 12,14); however, it does not appear to act on the elongation factors. This gap is filled by Xpo5, exporting tRNA\(\text{\textbullet}\text{EF1A}\) complexes (refs 12,13) and by Xpo4, the exportin for eIF5A (ref. 27).

eIF5A (refs 28,29), previously also referred to as IF-M2B\(\alpha\) or eIF4D, is universally conserved. It occurs not only in eukaryotes (refs 28,30) and archaea (ref. 31), but also in eubacteria, where it is called EF-P (ref. 32). It is a translation elongation factor required for rapid synthesis of protein regions that contain consecutive proline residues (refs 33–35). Earlier literature assigned a multitude of other functions to eIF5A; retrospectively, however, it is reasonable to assume that these are secondary to the requirement of eIF5A for efficiently translating mRNAs that encode proteins with proline-rich motifs.

Eukaryotic and archael eIF5A comprises two domains, namely an N-terminal SH3-like domain and a C-terminal oligonucleotide-binding-fold domain. eIF5A contains a unique amino acid, namely an N-c-(4-amino-2-hydroxybutyl)-modified lysine 50 (in human numbering) that is called hypusine (refs 38–40).

The recently solved structure of yeast eIF5A bound to the E-site of cycloheximide-arrested ribosomes revealed that hypusine contacts the CCA-end of the P-site tRNA. Hypusine is indispensable for eIF5A function and indeed for cell viability (refs 42,43).

Fully hypusinated eIF5A is a cytoplasmic protein (refs 44,45).

However, it is also rather small (17 kDa); it therefore enters nuclei rapidly and accumulates within nucleoli if not exported back by Xpo4 (ref. 27).

Xpo4 behaves like a tumour suppressor (ref. 44), and it is remarkable that Xpo4 exports not only eIF5A, but also other structurally unrelated cargoes, such as the transcription factor Smad3 (ref. 46). It even functions directly in nuclear import and carries Sox-type transcription factors together with unrelated other proteins into the nucleus. No structural information on Xpo4 is available so far. It therefore remained unclear how Xpo4 can handle such a diversity of cargoes or indeed how it recognizes any of them.

In this paper, we report the first crucial step and present the x-ray structure of the RanGTP\(\text{\textbullet}\text{Xpo4\textbullet}\text{eIF5A}\) complex. Xpo4 has the shape of a toroid and is structurally closely related to CRM1, suggesting that Xpo4 might have evolved from CRM1. The NES-binding site of CRM1 is still recognizable, but it is ocluded by an inserted NES-like element and a repositioned HEAT 11A helix. Instead, a newly evolved cargo-binding site is used, which is formed mainly by intra-repeat loops of HEATs 11-16, and which recognizes each of the two globular eIF5A domains. The interaction buries positively charged regions of eIF5A and the hypusine-containing loop in particular; it thereby also precludes off-target interactions of eIF5A within the nucleus. Xpo4 thus combines properties of an exportin with those of a compartment-specific chaperone.

Results

Structure determination. For structural analysis, we assembled a mammalian RanGTP\(\text{\textbullet}\text{Xpo4\textbullet}\text{eIF5A}\) complex from bacterially expressed components. This included eIF5A (in vitro hypusinated by recombinant deoxyhypusine synthase (refs 48,49) and deoxyhypusine hydroxylase (ref. 50), as well as the GTPase-deficient RanQ69L mutant (ref. 51) comprising residues 5–180, which were resolved in previous RanGTP\(\text{\textbullet}\text{NTR}\) complexes (refs 7,8,21,24–26,52).

Even though this complex was stable and monodisperse, it did not crystallize—apparently because of disordered loops and...
Indeed, the 14 N-terminal probably disordered residues of eIF5A (refs 36,37,53) not only turned out to be dispensable for complex formation (Fig. 1a), but also, their deletion allowed the RanGTP•Xpo4•eIF5A complex to crystallize in needle clusters. An additional in situ treatment with trypsin or chymotrypsin in the crystallization drops yielded triclinic crystals that diffracted to a resolution of 3.8 Å.

Limited proteolysis by trypsin or chymotrypsin did not compromise the integrity of the heterotrimeric complex (Fig. 1b). It also left eIF5A and Ran intact, but cleaved Xpo4 within two poorly conserved loops comprising residues 241–260 and 931–948, respectively (Fig. 1c and Supplementary Fig. 1). Deleting these loops led to an Xpo4 mutant that still bound Ran and eIF5A like the wild-type exportin (Fig. 1d,e), but became trypsin-resistant (Fig. 1f) and yielded triclinic export complex crystals even without protease addition.

The structure of this ternary export complex was solved by a combination of molecular replacement (MR) using Ran (PDB ID 3GJX; ref. 21) and eIF5A (PDB ID 3CPF; ref. 37) as search models and single-wavelength anomalous dispersion (SAD) phasing with
Table 1 | Data collection and refinement statistics for RanGTP•Xpo4•eIF5A complex (MR-SAD).

	Native	SeMet
Data collection		
Space group	P3₁2₁	P3₁2₁
Cell dimensions		
a, b, c (Å)	98.62, 98.62, 726.86	98.48, 98.48, 725.68
α, β, γ (°)	90.00, 90.00, 120.00	90.00, 90.00, 120.00
Resolution (Å)	49.41 – 3.20	49.33 – 3.48
Rsym	3.31 – 3.20*	3.61 – 3.48
Rmerge	22.42 (2.26)	18.00 (1.40)
Completeness (%)	99.91 (99.79)	99.70 (97.10)
Redundancy (%)	9.90 (10.20)	18.70 (15.10)

Refinement		
Resolution (Å)	49.41 – 3.20	-
No. reflections	69.887	-
Rwork/Rfree (%)	21.5/26.8	-
No. atoms	20.622	-
Protein	66	-
Water	0	-
B-factors		
Protein	118.88	-
Ligand/ion	75.92	-
Water	-	-
r.m.s. deviations		
Bond lengths (Å)	0.006	-
Bond angles (°)	0.57	-

*Values in parentheses are for highest-resolution shell.

crystals that contained selenomethionine-substituted Xpo4. The final model was refined against a native data set to 3.2 Å resolution, an Rwork of 21.5% and an Rfree of 26.8% (Table 1). Supplementary Fig. 2 depicts two details of the structure to exemplify the quality of the electron density.

The asymmetric unit comprises two ternary complexes of very similar structure (r.m.s.d. of ~1 Å). The electron density of complex 1 (corresponding to chains B, C and F in pdb 5DLQ) is, however, slightly better defined. The final model includes residues 7–179 of Ran and 15–152 of eIF5A. We modelled 1,052 of 1,113 residues of Xpo4, with a few residues missing from N- and C-terminus as well as from several loop regions between the HEAT repeats.

Overall structure of Xpo4. Xpo4, as all members of the importin β family, is an α-helical protein built of consecutive HEAT repeats (Fig. 2b,c). HEAT repeats are ~40 amino acid motifs, which consist of two α-helices (A and B) that pack in an anti-parallel orientation against each other24. Individual HEAT repeat units, in turn, pack side by side with a clockwise rotation to form a superhelical structure, whereby the A helices form the outer convex surface and the B helices the inner (concave) one.

Xpo4 consists of 19 canonical HEAT repeats and three additional α-helices (termed HEAT 20) that cap the superhelix at the very C-terminus (Fig. 2b,c). The superhelical arrangement of Xpo4 is interrupted by three anticlockwise kinks (between HEATs 3 and 4, HEATs 9 and 10, and HEATs 13 and 14) that bend the superhelical structure into a toroid-like shape, whereby HEAT 20 touches the loop between HEATs 2 and 3. This architecture is very similar to the cargo-bound form of CRM1 (refs 21,22; see below, Fig. 4), a difference being that Xpo4 lacks the most C-terminal helix of CRM1. In turn, Xpo4 contains a number of insertions either between the A and B helices of the same HEAT repeat (intra-repeat inserts) or between successive HEAT repeats (inter-repeat inserts). As mentioned already, two poorly conserved insertions had to be deleted to obtain a crystallizable complex. The conserved ones will be discussed below.

RanGTP recognition by Xpo4. Xpo4 wraps with four distinct Ran-interaction sites around Ran and thereby buries a large surface area of ~1,920 Å² (Figs 2a,c and 3). The first Ran-binding site is formed by HEATs 1–3 (Fig. 3) and represents the region that is most conserved between importin β superfamily members5,53. This N-terminal site contacts Ran’s switch II region (residues 65–80) as well as α-helix 3 (Fig. 3). The interaction occurs mainly via hydrophobic contacts, which is very similar to what has been seen with other NTRs before21,24–26,52.

Table 1 | Data collection and refinement statistics for RanGTP•Xpo4•eIF5A complex (MR-SAD).
each other in a CRM1-export complex21. Here, it appears that the nuclear exportin conformation is ‘spring-loaded’ and that cooperativity is achieved by each of the two ligands stabilizing the same high-energy conformation of CRM1.

In the case of the Xpo4 export complex, we found just a very small Ran-eIF5A interface, comprising no more than a single salt bridge between R29Ran and E42eIF5A (Supplementary Fig. 4a). Abolishing this salt bridge by an E42AeIF5A mutation had no detectable effect on export complex formation (see below, Fig. 7c). This suggests that Xpo4, like CRM1, relies on an allosteric mechanism for RanGTPase-driven cargo-loading and unloading.

Divergence of Xpo4 from CRM1. A plausible scenario is that Xpo4 arose from a duplication of the CRM1 gene early in eukaryotic evolution, and then diverged into an orthogonal cargo specificity, which includes that CRM1-specific NESs are no longer accepted. The remnants of the NES-binding site21,22 in CRM1 (formed by HEATs 11 and 12) are still recognizable in Xpo4, and helices 11B, 12A and 12B still nearly perfectly align (Fig. 4). However, a repositioning of the HEAT 11A helix closes one side of the hydrophobic cleft, while the remainder of the cleft is blocked by inserts between the canonical HEAT helices. One of these inserted regions actually resembles in structure and position a PKI-type NES (ref. 23).

Interactions of Xpo4 with its export cargo eIF5A. Xpo4 neither binds a small NES peptide to a hydrophobic cleft, nor does Xpo4 enwrap its cargo. Instead, eIF5A sits on an unprecedented binding site provided by HEATs 8–16, and in particular by the intra-repeat loops of HEATs 9, 11, 12 and 14–16 (Fig. 2a,c). Consistent with earlier mapping data27, Xpo4 interacts extensively with both domains of eIF5A (refs 36,37), namely with the N-terminal SH3-like domain as well as with the

Figure 2 | Structure of the RanGTP\texttimes{}Xpo4\texttimes{}eIF5A export complex and HEAT repeat organization of Xpo4. (a) Xpo4 (grey) is shown as surface representation, while Ran (green) and eIF5A are shown as ribbon representation. Different regions of eIF5A are coloured and labelled accordingly. GTP is shown as black sticks. (b) Xpo4 in the export complex is shown in a ribbon representation (RanGTP and eIF5A are removed for clarity). Colour scheme: A helices of the HEAT repeats, blue; B helices, yellow; long inter-repeat insertions, dark pink; the acidic loop, brown. (c) Schematic representation of the Xpo4 secondary structure. Colouring is as in b. Green and orange dots represent the Xpo4 residues interacting with RanGTP and eIF5A, respectively.
C-terminal oligonucleotide-binding (OB)-fold domain (Figs 2a, 5a and Supplementary Fig. 4).

The interaction buries a very large surface area of 2169 Å². Xpo4 shields many of the positively charged and highly conserved residues that constitute eIF5A's 25S RNA- and tRNA-binding interface (Fig. 5a–c; ref. 41). This qualifies Xpo4 as a nucleus-specific inhibitor (or chaperone) of eIF5A and as an antagonist towards off-target interactions of eIF5A, for example, with nuclear RNA species (discussed below). The recognition of very conserved eIF5A features is also evident from our observation that mammalian Xpo4 binds yeast (S. cerevisiae) eIF5A perfectly well (M.A., A. Rodriguez, D.G., unpublished data). It appears that Xpo4 has adapted to pre-existing eIF5A features.

The C-terminal oligonucleotide-binding-fold domain of eIF5A forms the smaller binding interface, but interacts extensively with Xpo4. It sits on a concave surface made up of the intra-repeat loops of HEATs 14–16 (Supplementary Fig. 4b). The intra-repeat loop of HEAT 16 runs in opposite direction to β-strand 11 and makes backbone hydrogen bonds as well as hydrophobic contacts via I149eIF5A. Several residues of the intra-repeat loops of HEATs

Figure 3 | RanGTP recognition by Xpo4. The export complex is shown as a ribbon representation. On the left, Xpo4 is coloured in a gradient from blue (N-terminus) to grey (C-terminus); the acidic loop is shown in brown. eIF5A is coloured in orange and Ran in green. Switch I and II regions of Ran are shown as cyan and pink, respectively. GTP (black) is shown as sticks. The close-up on the right illustrates Xpo4-Ran interactions.

Figure 4 | Comparison of the ligand-bound structures of CRM1 and Xpo4. Export complexes are aligned with respect to Ran, illustrated in ribbon representations, and each shown in two different orientations (side and top views). Exportins are coloured in gradients from blue (N-terminus) to grey (C-terminus). The respective cargoes are shown in orange, Ran in green. Right, NES-binding site of CRM1 and the corresponding region of Xpo4 are shown. A and B helices of the HEAT repeats are coloured in blue and yellow, respectively. The PKI NES is coloured in orange, the NES-like fragment in purple.
14 and 15 approach eIF5A and interact via polar contacts with β-strands 7 and 10 (β7 and β10, respectively).

The N-terminal SH3-like domain of eIF5A constitutes the larger interaction interface and contacts numerous residues on HEATs 8–16 of Xpo4 (Supplementary Fig. 4a). Most of these interactions involve salt bridges and hydrogen bonds. The ‘basic tip of eIF5A’, comprising β-strand 3, the hypusine-containing loop and β-strand 4, forms the centre of the interactions (Supplementary Fig. 4a). The acidic loop of Xpo4 forms an antiparallel inter-chain β-sheet with β-strand 3 of eIF5A and thereby locks the position of the basic tip. In addition, E462Xpo4 and E465Xpo4 of the acidic loop contact T45eIF5A, T48eIF5A and K55eIF5A on the basic tip and further stabilize this interaction.

The perhaps most striking interaction was observed for the hypusine (Hpu50) and the neighbouring histidine (H51) (Fig. 6). The hypusine side chain bends in an L-shape and hooks into a crooked pocket that is formed by the acidic loop of Xpo4 and HEAT 10. E390Xpo4 engages in a salt bridge with the terminal κ-amino group of hypusine, E537Xpo4 forms salt bridges with the ε-amine group of Hpu50eIF5A and with H51eIF5A, while D470Xpo4 makes another salt bridge with the ε-amino group and a hydrogen bond with the hypusine hydroxyl group. S631Xpo4 stabilizes H51eIF5A further.

Consequently, we mutated the above-mentioned Xpo4 residues, and analysed the resulting mutants. None of the mutations impaired the Ran•Xpo4 interaction (Fig. 7a), verifying that folding was not affected. However, even the very subtle S631AXpo4 or the isosteric E537QXpo4 and D470NXpo4 mutations abolished eIF5A binding (Fig. 7a).

Nuclear export assays provided the same striking result: in the absence of Xpo4, fluorescent eIF5A accumulated (weakly) in the nucleoplasm and strongly within nucleoli (Fig. 7b). Addition of wild-type Xpo4 led to complete loss of the nuclear/nucleolar signal. The S631A, E537Q and D470N Xpo4 mutants, however, had no such effect.
eggs. The mixture was split 15 min later and indicated Xpo4 variants (2nd staining. Uncropped gels are shown in Supplementary Fig. 5. (b) Alexa568-labelled hypusinated eIF5A (2 μM) was allowed to diffuse into the nuclei of digitonin-permeabilized HeLa cells42 in the presence of an energy-regenerating system and an NTR-depleted extract73 prepared from unfertilized Xenopus eggs. The mixture was split 15 min later and indicated Xpo4 variants (2 μM) were added. After 30 min, eIF5A distributions were recorded by confocal fluorescence microscopy. Scale bar, 20 μm. (c) The binding assay was performed as in (a), but 1 μM untagged RanGTP and Xpo4 were incubated with 0.75 μM ZZ-bdSUMO tagged (non-hypusinated) wild-type or mutant eIF5A in a 50 mM NaCl buffer, and bdSENP1 was used for elution.

Why is a special exportin needed to keep eIF5A cytoplasmic? CRM1 mediates nuclear export of ~1,000 different proteins, many of which are factors that have to be kept exclusively cytoplasmic44. Why then is eIF5A not amongst the CRM1 substrates? Why have eukaryotes evolved a specialized exportin for confining eIF5A to the cytoplasm? Why can’t cells prevent a nuclear accumulation of eIF5A be a problem?

Nuclear entry of eIF5A not only leads to its depletion from the cytoplasm, but also, it is evident that it binds strongly to nucleolar structures. Such off-target interactions might disturb nucleolar functions, for example, the assembly process of ribosomal subunits. Furthermore, as nearly all translation factors are actively depleted from the nuclear interior, we can also see eIF5A export as part of the cell’s effort to keep nuclei free of translation activity.

eIF5A has an invariably small molecular mass of only 17 kDa and can thus cross the permeability barrier of NPC rather rapidly even without the help of any importin. An increase in size would have been a straightforward way of slowing down such passive nuclear entry. Yet, a fusion to a sufficiently large ‘cytoplasmic anchor’ was not an evolutionary successful solution, perhaps because the present (small-sized) forms of eIF5A represent the optimum for rapid and accurate translation, and because even slight reductions in translation efficiency would decrease the competitive fitness of the organism.

An explanation for its CRM1-independent export is that eIF5A must be transported in a state that precludes interactions with nuclear off-targets. Otherwise, nuclear retention might dominate, or -even worse- nuclear interaction partners of eIF5A might get exported as well. Xpo4 appears indeed highly optimized to cleanly ‘extract’ eIF5A from the nuclear interior. It covers the most conserved and the most positively charged (RNA-interacting) regions of eIF5A and should thus be considered as an eIF5A chaperone. As an exportin, however, it can suppress nuclear eIF5A interactions not only stoichiometrically, but also by means of multi-round export in a ‘catalytic’ manner.

Figure 7 | Xpo4 residues contacting hypusine and H51eIF5A are crucial for eIF5A binding and export. (a) 1 μM Xpo4 wild type or mutants were incubated with 0.75 μM ZZ-bdNEDD8-tagged RanGTP and 1.25 μM hypusinated eIF5A in a 100 mM NaCl buffer. Formed complexes were retrieved via tag-cleaving bdNEDP1 protease, and analysed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Coomassie staining. Uncropped gels are shown in Supplementary Fig. 5. (b) Alexa568-labelled hypusinated eIF5A (2 μM) was allowed to diffuse into the nuclei of digitonin-permeabilized HeLa cells42 in the presence of an energy-regenerating system and an NTR-depleted extract73 prepared from unfertilized Xenopus eggs. The mixture was split 15 min later and indicated Xpo4 variants (2 μM) were added. After 30 min, eIF5A distributions were recorded by confocal fluorescence microscopy. Scale bar, 20 μm. (c) The binding assay was performed as in (a), but 1 μM untagged RanGTP and Xpo4 were incubated with 0.75 μM ZZ-bdSUMO tagged (non-hypusinated) wild-type or mutant eIF5A in a 50 mM NaCl buffer, and bdSENP1 was used for elution.

Methods

Protein expression and purification. All Xpo4 variants were expressed as N-terminal His14-bdSUMO fusions in E.coli Top10 F' at 21 °C for ~16 h. The cells were resuspended in buffer A (50 mM Tris/HCl pH 7.7, 300 mM NaCl, 2 mM Mg(OAc)2 and 2 mM DTT) supplemented with 5% glycerol and lysed by sonication on ice. Lysates were cleared by ultracentrifugation, and the protein was bound to a Ni (II) chelate matrix in the presence of 15 mM imidazole/HCl pH 7.7. The column was first washed with buffer A and then with buffer B (50 mM Tris/HCl pH 7.7, 150 mM NaCl, 2 mM Mg(OAc)2 and 2 mM DTT) supplemented with 25 mM imidazole, and Xpo4 finally eluted by 250 mM of the tag-cleaving bdSENP1 protease59.

The eluate was subjected to a Superdex 200 16/60 gel filtration column (GE Healthcare) equilibrated with buffer B. For crystallization, Xpo4 was further purified via anion exchange chromatography (Mono Q HR 5/5 column, GE Healthcare). For phasing, selenomethionine-substituted Xpo4 was expressed in BL21 cells grown in minimal medium supplemented with lysine, phenylalanine, threonine, isoleucine, leucine, valine and selenomethionine. Selenomethionine-labelled Xpo4 was purified using the same protocol as unmodified Xpo4. The DTT concentration was increased to 5 mM during the purification.

RanQ69L (aa 5–180) was expressed as an N-terminal His14-ZZ-bdSUMO fusion in E.coli Top10 F' cells at 21 °C for ~16 h. The cells were lysed in buffer C (50 mM HEPES/KOH pH 8.2, 500 mM NaCl, 2 mM MgCl2 and 2 mM DTT). Ran was bound in the presence of 20 mM imidazole from the cleared lysate to a Ni (II) chelate matrix and eluted with buffer C containing 500 mM imidazole. To assess the nucleotide-bound state of Ran, a protein sample was boiled to release the nucleotide, and the nucleotide pattern was analysed by anion exchange chromatography and compared with that of a standard GDP–GTP mixture.

For binding assays, Ran was expressed as an N-terminal His14-bdSUMO-ZZ-bdNEDD8 fusion, bound to Ni (II) chelate matrix and eluted with bdSENP1 protease as described above.

All eIF5A variants were expressed as N-terminal His14-ZZ-bdSUMO fusions in E.coli NEB Express cells as described for Ran, but buffer A was used throughout the purification.

Outlook. Another fascinating facet of Xpo4 is that it carries not only eIF5A, but fully unrelated cargoes as well. We already know of Smad3 as an additional export46 and of Sox-type transcription factors as import47. Given that the full cargo-spectrum of Xpo4 has not yet been explored, it is even possible that Xpo4 actually transports a far larger number. From a structural perspective, it will then be interesting to see how different the other cargo-binding sites are, how RanGTP displaces the import substrates and in how far distinct types of cargoes influence each other’s transport behaviour.
Deoxyhypusynase synthase and deoxyhypusine hydroxylase were expressed as N-terminal His10-GFP-Tev and His21-Tev fusions, respectively, as described for eIF5A variants. The two enzymes were purified by Ni(II) chelate chromatography using in tagged form, so that they could be removed after the reaction.

In vitro eIF5A hypusination

Deoxyhypusynase and hydroxylation reactions were adapted from published protocols and optimized for higher modification efficiency. His14-ZZ-bdSUMO-tagged eIF5A (160 μM) was incubated with 4 μM deoxyhypusynase and 2 mM Mg(OAc)2, 2 mM DTT, 50 mM Tris/HCl pH 7.5 for 4 h at 37 °C. eIF5A was separated from the enzymes by binding to an anti-β-Z affinity matrix. Bound eIF5A was eluted by βSBDNP1 protease in 15 mM Tris/HCl pH 7.0, 150 mM NaCl and 2 mM DTT. The eluate was diluted to 50 mM NaCl with 15 mM Tris/HCl pH 7.0 and bound to a HiTrap SP HP 5 ml column (GE Healthcare) equilibrated with 15 mM Tris/HCl pH 7.0, 20 mM NaCl and 2 mM DTT. Still non-modified eIF5A was removed by βSBDNP1 protease in 15 mM Tris/HCl pH 7.0, 600 mM NaCl and 2 mM DTT. To remove deoxyhypusynated eIF5A, we exploited the observation that the first modification step is reversible as long as hydroxylation has not yet occurred. For enzymatic removal of deoxyhypusin, 100 μM modified eIF5A and 2 mM His10 tagged deoxyhypusynase synthase were incubated with 2 mM NAD, 2 mM 1,3-diaminopropane, 2 mM DTT, 200 mM glycine pH 9.0 for 4 h at 37 °C. The enzyme was separated from eIF5A by Ni (II) chelate resin. The reversal of the deoxyhypusynase reaction converts deoxyhypusin to lysine while having no effect on hypusinated eIF5A. eIF5A(Hpu) was separated from eIF5A(Lys) by cation exchange chromatography as detailed above.

Reconstitution and crystallization of the ternary complex.

For complex formation, Xpo4 variants and His14-ZZ-bdSUMO-tagged RanGTP were mixed with a 1.3-molar excess of hypusine-containing eIF5A. After 1 h incubation on ice, the buffer was exchanged to buffer D (15 mM Tris/HCl pH 7.7, 48 mM NaCl, 2 mM Mg(OAc)2 and 2 mM DTT) and the sample was further incubated on ice for 3 h. The complex was immobilized on anti-β-Z affinity matrix via tagged RanGTP. 15 μM RanGTP and the bound proteins were eluted by βSBDNP1 protease in buffer D. The eluate was subjected to a Superdex 200 16/60 gel filtration column (GE Healthcare) equilibrated with 15 mM Tris/HCl pH 7.7, 18 mM NaCl, 2 mM Mg(OAc)2 and 2 mM DTT. The purified complex was concentrated to 12 μg/mL.

Diffraction quality crystals were obtained at 20 °C using microseeding hanging drops by mixing 1 μl of the protein solution with 1 μl reservoir solution containing 100 mM MES pH 6.26 and 8–11% PEG 400. Crystals were slowly transferred to a cryo-protectant solution (100 mM MES pH 6.26, 26% PEG 400, 15% Glycerol) and flash-frozen in liquid nitrogen. Nucleocytoplasmic transport of model building and the quality of the model was assessed with MolProbity. In

Structure determination and analysis.

All diffraction data were collected at the beamline X10SA (Swiss Light Source, Villigen, Switzerland). All data sets were indexed, integrated and scaled with XDS (ref. 62). For phasing, 56 selenium sites (out of 66) were located by SHELXD (ref. 63). Initial phases were obtained by Molecular replacement with Phaser (ref. 64) using Ran (PDB ID 3GIX, ref. 21) and eIF5A (PDB ID 3CPF, ref. 37) as search models. The resulting information and information file, or from the corresponding author on reasonable request. The findings of this study are available within the article and its Supplementary Information file, or from the corresponding author on reasonable request.

Data availability.

The coordinates and structure factors have been deposited in the Protein Data Bank with accession code 5DLQ. All other data supporting the findings of this study are available within the article and its Supplementary Information file, or from the corresponding author on reasonable request.

References

1. Sloan, K. E., Gleizes, P. E. & Bohnsack, M. T. Nucleocytoplasmic transport of RNAs and RNA-protein complexes. *J. Mol. Biol.* **428**, 2040–2059 (2015).
2. Hurt, E. & Beck, M. Towards understanding nuclear pore complex architecture and dynamics in the age of integrative structural analysis. *Curr. Opin. Cell. Biol.* **31–38** (2015).
3. Kabachinski, G. & Schwartz, T. U. The nuclear pore complex—structure and function at a glance. *J. Cell Sci.* **128**, 423–429 (2015).
4. Schmidt, H. B. & Görlich, D. Transport Selectivity of nuclear pores, phase separation, and membraneless organelles. *Trends Biochem. Sci.* **41**, 46–61 (2016).
5. Görlich, D. et al. A novel class of RanGTP binding proteins. *J. Cell Biol.* **138**, 65–80 (1997).
6. Cirio, G., Petosa, C., Weis, K. & Muller, C. W. Structure of importin-beta from the IID domain of importin-alpha. *Nature* **399**, 221–229 (1999).
7. Vetter, I. R., Arndt, A., Kutyat, U., Görlich, D. & Wittinghofer, A. Structural view of the Ran-Importin beta interaction at 2.3A resolution. *Cell* **97**, 635–646 (1999).
8. Chook, Y. M. & Blobel, G. Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. *Nature* **399**, 230–237 (1999).
9. Kutyat, U., Bischoff, F. R., Kostka, S., Kraft, R. & Görlich, D. Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. *Cell* **90**, 1061–1071 (1997).
10. Fornerod, M., Ohno-Zia, M., Yoshida, M. & Mattaj, I. W. Crm1 is an export receptor for leucine rich nuclear export signals. *Cell* **101**, 1051–1060 (1997).
11. Stiven, T., Hartmann, E. & Görlich, D. Exportin 6: a novel nuclear export receptor that is specific for profilin-actin complexes. *EMBO J.* **22**, 5928–5940 (2003).
12. Momba, T. M. et al. Exp5 exports eIF1A via RNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. *EMBO J.* **21**, 6205–6215 (2002).
13. Calado, A., Treichl, N., Muller, E. C., Otto, A. & Kutyat, U. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and mRNA. *EMBO J.* **21**, 6216–6224 (2002).
14. Kiril, K. et al. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. *elife* **4**, e14665 (2015).
15. Gütter, T. & Görlich, D. Ran-dependent nuclear export mediators: a structural perspective. *EMBO J.* **30**, 3457–3474 (2011).
16. Matsuura, Y. Mechanistic insights from structural analyses of Ran-GTPase-driven nuclear export of proteins and RNAs. *J. Mol. Biol.* **428**, 2025–2039 (2015).
17. Stade, K., Ford, C. S., Guthrie, C. & Weiss, K. Exportin 1 (Crmlp) is an essential nuclear export factor. *Cell* **90**, 1041–1050 (1997).
18. Wen, W., Meinkoth, J., Tsiern, R. & Taylor, S. Identification of a signal for rapid export of proteins from the nucleus. *Cell* **82**, 463–473 (1995).
19. Fischer, U., Huber, J., Boelens, W. C., Mattaj, I. W. & Lührmann, R. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export path way used by specific cellular RNAs. *Cell* **82**, 475–483 (1995).
20. Xu, D., Farmer, A., Collett, G., Grishin, N. V. & Chook, Y. M. Sequence and structural analyses of nuclear export signals in the NESdb database. *Mol. Biol. Cell* **23**, 3677–3693 (2012).
21. Munroe, T. et al. Crystal structure of the nuclear export receptor CRM1 in complex with smnprot1 and RanGTP. *Science* **324**, 1087–1091 (2009).
22. Dong, X. et al. Structural basis for leucine-rich nuclear export signal recognition by CRM1. *Nature* **458**, 1136–1141 (2009).
23. Güttler, T. et al. NES consensus refined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. *Nat. Struct. Mol. Biol.* **17**, 1366–1376 (2010).
24. Cool, A. G., Fukuhara, N., Jinek, M. & Conti, E. Structures of the IIA RNA export receptor in the nuclear and cytosolic states. *Nature* **461**, 60–65 (2009).
25. Okada, C. et al. A high-resolution structure of the pre-microRNA nuclear export machinery. *Science* **326**, 1275–1279 (2009).
26. Ichikawa, Y. Structural basis for the assembly of a nuclear export complex. *Nature* **432**, 872–877 (2004).
27. Lipowsky, G. et al. Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. *EMBO J.* **19**, 4362–4371 (2000).
Kemper, W. M., Berry, K. W. & Merrick, W. C. Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta. J. Biol. Chem. 251, 5557–5567 (1976).

Smit-McBride, Z., Dever, T. E., Hershey, J. W. & Merrick, W. C. Sequence determination and cDNA cloning of eukaryotic initiation factor 4D, the hypusine-containing protein. J. Biol. Chem. 264, 1578–1583 (1989).

Gordon, E. D., Mora, R., Meredith, S. C., Lee, C. & Lindquist, S. L. Eukaryotic initiation factor 4D, the hypusine-containing protein, is conserved among eukaryotes. J. Biol. Chem. 262, 16585–16589 (1987).

Kypride, N. C. & Woeser, C. R. Universally conserved translation initiation factors. Proc. Natl Acad. Sci. USA 95, 224–228 (1998).

Sasaki, K., Abid, M. R. & Miyazaki, M. Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. EMBO J. 13, 32–41 (2007).

Peat, T. S., Newman, J., Waldo, G. S., Berendzen, J. & Terwilliger, T. C. Determination and cDNA cloning of eukaryotic initiation factor 4D, the hypusine-containing protein, is conserved among eukaryotes. Science 339, 85–88 (2013).

Ude, S. et al. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339, 82–85 (2013).

Gutierrez, E. et al. elf5A promotes translation of polyproline motifs. Mol. Cell 51, 35–45 (2013).

Park, S. et al. Translation initiation factor 5A from Pyrolobus aerophilum at 1.75Å resolution. Structure 6, 1207–1214 (1998).

Tong, Y. et al. Crystal structure of human elf5A1: insight into functional similarity of human elf5A1 and elf5A2. Proteins 75, 1040–1045 (2009).

Shiba, T., Mizote, H., Kaneko, T., Nakajima, T. & Kakimoto, Y. Hypusine, a new amino acid occurring in bovine brain. Isolation and structural determination. Biochim. Biophys. Acta 244, 523–531 (1971).

Ribbeck, K. & Görlich, D. The permeability barrier of nuclear pore complexes determined with phenix.refine. Acta. Crystallogr. D 64, 742–757 (2008).

Ude, S. et al. Synthesis of eukaryotic initiation factor 5A in mammalian cells. J. Biol. Chem. 278, 32683–32691 (2003).

Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

Park, J. H., Wolff, E. C. & Park, M. H. Structure determination and cDNA cloning of elf5A. Nature 415, 662–666 (2002).

Böhm, S. & Götlich, D. A new set of highly efficient, tag-counting enzymes for purifying recombinant proteins. J. Chromatogr. A 1337, 95–103 (2014).

Park, J. H., Wolff, E. C. & Park, M. H. Assay of deoxyhypusine hydroxylase activity. Methods Mol. Biol. 720, 207–216 (2011).

Park, J. H., Wolff, E. C., Folk, J. E. & Park, M. H. Reversal of the deoxyhypusine synthesis reaction. Generation of spermidine or homospermidine from deoxyhypusine by deoxyhypusine synthase. J. Biol. Chem. 278, 32683–32691 (2003).

McCoy, A. J. Solving structures of protein complexes by molecular replacement with PHENIX. Acta. Crystallogr. D 63, 32–41 (2007).

Terwilliger, T. C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta. Crystallogr. D Biol. Crystallogr. 65, 582–601 (2009).

Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta. Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta. Crystallogr. D Biol. Crystallogr. 62, 1002–1011 (2006).

Terwilliger, T. C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta. Crystallogr. D Biol. Crystallogr. 65, 282–300 (2012).

Park, J. H., Wolff, E. C. & Park, M. H. Assay of deoxyhypusine hydroxylase activity. Proc. Natl Acad. Sci. USA 85, 8619–8623 (1988).

Gibbs, H. C. & Craig, E. DNA replication in cell-free extracts from Xenopus egg extract. Methods Cell Biol. 36, 561–579 (1991).

Ribbeck, K. & Görlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21, 2664–2671 (2002).

Adam, S. A., Marr, R. S. & Gerace, L. Nuclear protein import in permeabilized mammalian cells. J. Cell Biol. 111, 807–816 (1990).

Acknowledgements

We thank Gabi Hawlitschek for excellent technical help, Heinz-Jürgen Dehne for the permeabilized HeLa cells, Jens Krull for Xenopus egg extract, Bernard Freytag for Ran-energy-regenerating system, Samir Karaca for mass spectrometry analysis, the staff of synchrotron beamlines at the Swiss Light Source (SLS, Villigen, X10SA, PXII) for assistance during data collection, Ruştem Yılmaz, Cornelia Paz, Tino Pleiner and Kevser Fuńgel for critical reading of the manuscript as well as the Max-Planck-Gesellschaft and the Deutsche Forschungsgemeinschaft (SFB 860) for funding.

Author contributions

M.A. conceived and performed the experiments, crystallized the export complex, contributed to the crystallographic data collection, performed model building and structure refinement, interpreted the data, prepared figures and wrote the manuscript; S.T. performed the crystallographic data collection, data processing and initial heavy atom identification; D.G. supervised the project, conceived the experiments, interpreted the data and wrote the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://www.nature.com/reprints/index.html

How to cite this article: Aksu, M. et al. Structure of the exportin Xpo4 in complex with RanGTP and the hypusine-containing translation factor elf5A. Nat. Commun. 7:11952 doi: 10.1038/ncomms11952 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/