Growth of structures and spherical collapse in the Galileon Ghost Condensate model

Noemi Frusciantea, Francesco Paceb

aInstituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, P-1749016, Lisboa, Portugal
bJodrell Bank Centre for Astrophysics, School of Natural Sciences, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, U.K.

Abstract

We present a detailed study of the collapse of a spherical matter overdensity and the non-linear growth of large scale structures in the Galileon ghost condensate (GGC) model. This model is an extension of the cubic covariant Galileon (G3) which includes a field derivative of type $(\nabla \mu \partial^\nu \phi)^2$ in the Lagrangian. We find that the cubic term activates the modifications in the main physical quantities and the additional term has an extended impact in the evolution of the latter. Indeed, the GGC model shows largely mitigated effects in the linearised critical density contrast, non-linear effective gravitational coupling and the virial overdensity with respect to G3 but still preserves peculiar features with respect to the standard ΛCDM cosmological model, e.g., both the linear critical density contrast and the virial overdensity are larger than the ones in ΛCDM. The results of the spherical collapse model are then used to predict the evolution of the halo mass function, non-linear matter and lensing power spectra. While at low masses the GGC model presents about 10% fewer objects with respect to ΛCDM, at higher masses for $z > 0$ it predicts 10% ($z = 0.5$)-20% ($z = 1$) more objects per comoving volume. Using a phenomenological approach to include the screening effect in the matter power spectrum, we show that the difference induced by the modifications of gravity are strongly dependent on the screening scale and that the largest differences with respect to the standard cosmological model are for $\ell < 10^3$. Depending on the screening scale, they reach 60% on larger angular scales and then decrease for growing ℓ. These results are obtained for the best fit parameters from linear cosmological data for each model.

Keywords: modified gravity, Vainshtein mechanism, spherical collapse, mass function, matter & lensing power spectra

1. Introduction

The late-time acceleration of the Universe has been confirmed by several cosmological observations [1–8]. Its modelling within General Relativity (GR) is done through the cosmological constant Λ which counteracts the attractive force of gravity realising the desired acceleration. The resulting model is the Λ-cold-dark-matter (ΛCDM) which provides an accurate picture of the Universe. However, it still contains a number of open theoretical issues [9] which might signal the breakdown of GR. Alternative proposals, known as modified gravity theories (MG), suggest to modify the gravitational interaction on cosmological scales. The latter usually foresee the inclusion of additional degrees of freedom (dofs) [9–18]. Among these proposals, scalar-tensor theories of gravity have played a prominent role as they simply add a scalar dof to the usual tensor modes of GR [9–14,17,19–23]. For example, Horndeski theory (or Galileon theory) [19–23,24], is described by an action characterized by four free functions of the scalar field ϕ and its kinetic energy $X = \nabla \phi \nabla^\nu \phi$. In this theory, the scalar field obeys a second order Euler-Lagrange equation and a fixed form for these functions defines a model. In the last year several models have been proposed [25–31] and some of them have been tested against cosmological data at linear level [32–39]. The so-called Galileon ghost condensate model (GGC) [28] is of particular interest as it is the first Galileon model to be statistically preferred by data over ΛCDM [37]. This is due to a suppression in the low-ℓ tail of the Cosmic Microwave Background (CMB) temperature-temperature power spectrum with respect to ΛCDM and a peculiar evolution of the expansion history, characterised by a dark energy (DE) equation of state w_{DE} entering the region $(-2,-1)$ during the matter era without ghosts.

The GGC model possesses a screening mechanism, dubbed Vainshtein mechanism [9,40–43], which suppresses the modifications to gravity on Solar-System scales where GR is tested with exquisite precision [44,45]. The Vainshtein mechanism operates through the second derivative of the scalar field $\partial^2 \phi$, dropping the modification to the gravity force in high-density environment. Screening mechanisms play a very important role when considering the formation of gravitationally bound structures: indeed, during the collapse phase the density of the region can be sufficiently high to significantly modify the dynamics of the scalar field. Analysis in this direction have been performed using the spherical collapse model for Galileon models [46–49]. For example, in DGP braneworld gravity, the Vain-
In light of new and high quality data in the non-linear regime, the screening mechanism has on the dynamics of the scalar field at late times [49]. Hence, in order to properly constrain any total energy is violated [46] and in the cubic Galileon model, Shtein mechanism affects both force and energy conditions during gravity.

The background of the flat Friedmann-Lemaître-Robertson-Walker (FLRW) background:

\[\phi = \frac{1}{R} \] (1)

where \(R \) is the scale factor and \(\gamma_{ij} \) is the spatial metric. Following Ref. [28], we introduce the dimensionless variables

\[x_1 = \frac{a_1 \phi^2}{3M^2_{pl}H^2}, \quad x_2 = \frac{a_2 \phi^4}{M^2_{pl}H^2}, \quad x_3 = \frac{6a_3 \phi^4}{M^2_{pl}H}, \] (3)

where \(H = \dot{a}/a \) and a dot represents the derivative with respect to the cosmic time \(t \). Using these definitions we can write the field equations in the background as a dynamical system:

\[x'_1 = 2x_1(\epsilon - 1), \quad x'_2 = 2x_2(\epsilon - 1), \quad \Omega'_2 = -2\Omega(2 + 1), \] (4)

where \(\Omega = \rho/(3M^2_{pl}H^2) \) is the dimensionless density parameter for radiation, \(\epsilon = \dot{\phi}/(H\phi) \), \(h = H/H^2 \), and a prime is defined as the derivative with respect to \(N = \ln a \). Given the length of the expressions for \(\epsilon \) and \(h \) we refer the reader to Eqs. (4.16) and (4.17) in Ref. [28] (with \(x_4 = 0 \)). From the Friedmann equation we also have

\[\Omega + \Omega + \Omega + \Omega_{DE} = 1, \] (6)

where \(\Omega_{b,c} = \rho_{b,c}/(3M^2_{pl}H^2) \) are the density parameter for the baryons (b) and cold dark matter (c), respectively, and

\[\Omega_{DE} = x_1 + x_2 + x_3, \] (7)

is the DE density parameter. Eq. (7), evaluated today, can be used to reduce the number of free parameters of the model, leaving the model with two additional parameters out of three compared to \(\Lambda \)CDM, i.e.,

\[x_2(0) = \Omega_{DE}^{(0)} - x_1^{(0)} - x_3^{(0)}. \] (8)

The GGC model allows for a de Sitter fixed point free from ghost instability. The presence of \(x_2 \neq 0 \) prevents the model from reaching a tracker solution. The latter would be characterised by \(w_{DE} = -2 \) during the matter era, while the \(X^2 \) term allows to temporarily enter the region \(-2 < w_{DE} < -1 \) [28]. This property allows the model to be observationally favoured over \(\Lambda \)CDM [37].

3. Linear density perturbations

Let us consider the linear perturbed line element on the flat FLRW background:

\[ds^2 = -(1 + 2\Psi)dt^2 + a^2(t)(1 - 2\Phi)dx^i dx^j, \] (9)

where \(\Psi(t, x_i) \) and \(\Phi(t, x_i) \) are the gravitational potentials. In Fourier space, for MG models with one extra scalar dof we can write the following equations which generalise the standard general relativistic Poisson and lensing equations [56, 58]:

\[-k^2\Psi = 4\pi G_{N}a^2\mu^2(a, k)\rho_m\delta_m, \] (10)

\[-k^2(\Psi + \Phi) = 8\pi G_{N}a^2\Sigma^2(a, k)\rho_m\delta_m, \] (11)

where \(G_{N} = 8\pi M^2_{pl} \) is the Newtonian gravitational constant, \(k \) is the comoving wavenumber, \(\rho_m\delta_m = \sum_i \rho_i\delta_i \) is the total matter density perturbation (where \(i \in \{r, b, c\} \)). The dimensionless quantities \(\mu^2 \) and \(\Sigma^2 \) characterise the effective gravitational
couplings at linear order felt by matter and light, respectively. The GR limit is recovered when both \(\mu^L = \Sigma^L = 1 \). Applying the quasi-static approximation (QSA) \(^\text{(59, 60)} \) for perturbations deep inside the Hubble radius to the model in action \(^\text{(1)} \), it follows that \(^\text{(28)} \)

\[
\mu^L(a) = \Sigma^L(a) = 1 + \frac{x_2^3}{Q_s c_s^2 (2 - x_3)^2},
\]

where

\[
Q_s = \frac{3(4x_1 + 8x_2 + 4x_3 + x_7^2)}{(2 - x_3)^2}, \]

\[
c_s^2 = \frac{2(1 + 3\epsilon_s)x_3 - x_2^2 - 4h - 6(\Omega_\text{c} + \Omega_\text{b}) - 8\Omega_\text{r}}{3(4x_1 + 8x_2 + 4x_3 + x_7^2)}.
\]

To avoid ghosts and Laplacian instabilities, we require that both \(Q_s \) and the speed of propagation of the scalar modes \(c_s^2 \) are positive. Then, for \(x_3 \neq 0 \), \(\mu^L \) and \(\Sigma^L \) are larger than 1. Since \(\mu^L = \Sigma^L \), there is no gravitational slip (\(\Psi = \Phi \)).

For sub-horizon perturbations, the matter density \(\delta_m \) approximately obeys the linear equation

\[
\delta_m'' + \left(2 + \frac{H'}{H}\right)\delta_m' - \frac{3}{2} \Omega_\text{m} \mu^L(a) \delta_m = 0,
\]

where we have used Eq. \(^\text{(10)} \) to replace \(\Psi \) in favour of \(\delta_m \).

We solve the equation above by setting the initial conditions (ICs) as follows: \(a_i = 0.01, \delta_{m,i} = a_i \) and \(\delta_m'' = a_i \), which correspond to the matter dominated era solution. The model and cosmological parameters of GGC are listed in Tab. 1 and correspond to the cosmological constraints obtained with Planck data \(^\text{[37]} \). For reference we also include the parameters for other two models: the \(\Lambda \text{CDM} \) model (for the constraints we refer to \(^\text{[57]} \)) and the Cubic Galileon model (G3) \(^\text{[25]} \). We decided to use this model for comparison because it can be obtained from GGC by setting \(x_2 = 0 \) \(^\text{[1]} \). Given this property, the G3 model shows a tracker solution \(H^2 \phi = \text{const} \) \(^\text{[61]} \). The values of the cosmological parameters we use for G3 are from the constraints in Ref. \(^\text{[55]} \). In this work we decided to use the constrain values of the cosmological/model parameters for each model because we want to make theoretical predictions that are as close as possible to what we can actually expect from observations.

In the top panel of Fig. 1 we show the relative difference in the evolution of the linear matter density perturbation \(\delta_m \) with respect to \(\Lambda \text{CDM} \) for both the GGC and the G3 models. The relative difference is very small at early times for both models. In the case of GGC, it remains smaller than 1% throughout its growth history, while for G3 it reaches 11% at present. Such modifications with respect to the \(\Lambda \text{CDM} \) model are due in both cases to a modified expansion history and to \(\mu^L \neq 1 \) at later times, while the large difference between the GGC and the G3 is only due to the presence of \(x_3 \neq 0 \) in GGC.

Modifications with respect to \(\Lambda \text{CDM} \) can be also spotted in the linear growth rate \(f(a) \), which is a derived quantity defined as

\[
f(a) = \frac{d \ln \delta_m}{d \ln a}.
\]

We show its evolution in the bottom panel of Fig. 1 for the two Galileon models and we compare them to \(\Lambda \text{CDM} \). The growth rates in both Galileon models become larger than \(\Lambda \text{CDM} \) as soon as the Universe exits the matter dominated era. Appreciable differences in the case of GGC are around \(a = 0.2 \), being the time at which \(\delta_m(\text{GGC}) \) starts to be larger than that of \(\Lambda \text{CDM} \). For GGC, the linear growth rate \(f \) is enhanced with respect to the standard model until \(a \gtrsim 0.6 \), while at earlier times the difference is negligible. In G3 differences arise a bit earlier because a 0.5% difference in \(\delta_m \) is already present (see upper panel). A large enhanced modification is then present up to the present time.

\(^3\)In the QSA, time derivatives of the perturbed quantities can be neglected compared with their spatial derivatives.

\(^\text{4}\)Let us note that the analysis for G3 we show in this work has been the subject of several papers in the past \(^\text{[47, 49]} \). That is why we do not explicitly rewrite the corresponding equations but we prefer to refer the reader to these papers for a detailed discussion.
Table 1: Present day values for the amplitude of the linear matter power spectrum at 8 h^{-1}Mpc, \(\sigma_8^{(0)} \), the Hubble parameter \(H_0 \) in units of km s^{-1}Mpc^{-1}, the matter density \(\Omega_m^{(0)} \) and the \(x_i^{(0)} \) parameters. They correspond to the maximum likelihood values obtained with Planck data for \(\Lambda \)CDM and GGC in Ref. [37], and the mean values of G3 obtained with Planck data in Ref. [36].

4. Non-linear perturbations

We will now investigate the evolution of the metric and the scalar field perturbations on small scales, where second order, non-linear perturbations are no longer negligible. Let us consider the perturbation of the scalar field: \(\phi(t, x) = \phi(t) + \delta \phi(t, x) \) and along with the QSA we will also neglect terms that are suppressed by the Newtonian potentials and their first spatial derivatives.

Then, the time-time component of the GGC equation gives

\[
\frac{\partial^2 \Phi}{a^2} = 4\pi G_N \rho_m \delta_m + 24 \pi G_N a_3 X \frac{\partial^2 \delta \phi}{a^2},
\]

(17)

where the derivatives are with respect to spatial components, and the equation for the scalar field reads

\[
-3a_3 \delta \phi \frac{\partial^2 \Psi}{a^2} = \left[-a_1 - 2a_2 X + 6a_3 (\delta + 2H \delta) \right] \frac{\partial^2 \delta \phi}{a^2} + 3a_3 \left(\frac{\partial^2 \delta \phi}{a^2} \right)^2 - \frac{3}{a^2} \left(\frac{\partial \delta \phi}{a^2} \right)^2,
\]

(18)

where \((\partial, \partial, \partial \phi) \) and \((\partial, \partial, \partial \phi) \) are raised with the metric \(g_{ij} \) and \(g_{ij} \) indexes are raised with the metric \(\gamma_{ij} \).

At the non-linear level, the relation \(\Phi = \Psi \) is still valid, so we can combine the above equations to get

\[
\frac{\partial^2 \delta \phi}{a^2} + \lambda^2 \left(\frac{\partial^2 \delta \phi}{a^2} \right)^2 = -4\pi G_N \zeta \rho_m \delta_m,
\]

(19)

where

\[
\lambda^2(a) = \frac{12a_3 \delta \phi^2}{M_p^2 H^2 c^2 Q_s(2 - x_3)^2}, \quad \zeta(a) = \lambda^2 \phi^2.
\]

(20)

Let us consider a spherically symmetric density perturbation. Then, Eq. (19) becomes

\[
\frac{1}{r^2} \frac{d}{dr} \left[r^2 \frac{d \delta \phi}{dr} \right] - \frac{2a_3}{r^2} \frac{d}{dr} \left[r \frac{d \delta \phi}{dr} \right] = -4\pi G_N \zeta \rho_m \delta_m.
\]

(21)

Defining the mass enclosed in a sphere of radius \(r \) as

\[
m(r) = 4\pi \int_0^r r' \rho_m (r') \delta_m (r') dr',
\]

(22)

we can integrate Eq. (19) and obtain

\[
r^2 \frac{d \delta \phi}{dr} - 2a_3 \frac{d \delta \phi}{dr} = -G_N \zeta m(r).
\]

(23)

We can now evaluate its solution, which reads

\[
\frac{d \delta \phi}{r \rho} = \frac{r V}{4a^2} \left(1 - \sqrt{1 + \frac{r^2}{r^2}} \right).
\]

(24)

where \(r_V \) is the Vainshtein radius of the enclosed mass perturbation and it is defined as

\[
r_V^3 = 8G_N m(r) \lambda^2 \zeta = \frac{32G_N m(r) x_3^2}{H_c^2 Q_s(2 - x_3)^2}.
\]

(25)

It then depends on the mass distribution in the sphere and on the parameters of the model. In particular, it is non-vanishing as long as \(x_3 \neq 0 \). For a point source, \(r_V = 2.07 \times 10^4 (M/M_\odot)^{1/3} \) pc, where we have used the maximum likelihood values for the present day parameters \(H_0, x_3, x_4, x_5 \) obtained in [37] with Planck data. The corresponding Vainshtein radius for G3 is \(r_V = 2.24 \times 10^4 (M/M_\odot)^{1/3} \) pc where we have used the constraints obtained in [36] see Tab. 1. We note that the Vainshtein radius at the present time for the GGC is smaller than the one for the G3. In Fig. 2, we compare the time evolution of the Vainshtein radius for both the GGC and the G3 models. For both models, at early times, its value is very small which means that the screening mechanism works only on very small scales. At this time the Vainshtein radius for the GGC is slightly larger than the G3 one and afterwords they become equal. As the Universe expands, the GGC radius increases and its value is higher if compared to G3 in the time range \(0.07 < a < 0.9 \). Only at present time we notice a change of trend, the Vainshtein radius of the GGC decreases with respect to the G3 according to the estimated values we presented before.

According to Eq. (24), well outside the Vainshtein radius, the derivative of the scalar field perturbation is proportional to the Newtonian potential and it corresponds to the linear solution.

If we consider a top-hat profile for the density field, we get that \(d \delta \phi/dr \propto r \) for \(r < R \) where \(R \) is the radius of the sphere of
mass \(m(R) = M \). Then, Eq. (19) reduces to
\[
\frac{\partial^2 \delta \phi}{a^2} - 2\lambda^2 \left(\frac{\partial^2 \delta \phi}{a^2} \right)^2 = -4\pi G_N \rho_m \delta_m .
\] (26)

At \(r = R \) the equation above can be solved for \(\partial^2 \delta \phi/a^2 \) and we find
\[
\frac{\partial^2 \delta \phi}{a^2} = 8\pi G N \rho_m \left(\frac{R}{R_c} \right)^3 \left[1 - \sqrt{1 + \frac{R_c}{R}} \right] \delta_m .
\] (27)

where \(R_c^3 = 8G_N \lambda^2 \zeta \delta M \) and \(\delta M \) is the total mass of the density perturbation \(\rho_m \delta_m \). Now we can compute a modified Poisson equation from Eq. (17) which includes non-linear corrections and it reads
\[
\frac{\partial^2 \mu}{a^2} = 4\pi G_N \mu^{NL}(a, R) \rho_m \delta_m ,
\] (28)

where the non-linear effective gravitational coupling is
\[
\mu^{NL}(a, R) = 1 + 2 \left(\mu^1 - 1 \right) \left(\frac{R}{R_c} \right)^3 \left[\sqrt{1 + \frac{R_c}{R}} - 1 \right] .
\] (29)

In the limit \(R \to 0 \) the above expression reduces to unity approaching GR, while for \(R \gg R_c \) we recover the linear result \(\mu^{NL} \to \mu^1 \), showing how the Vainshtein screening mechanism works.

In the next Section we will show the evolution of \(\mu^{NL} \) for a collapsing sphere and we will compare it with the linear effective gravitational coupling. Finally, because in the non-linear regime \(\Phi = \Psi \) is still valid, we can deduce \(\Sigma^{NL} = \mu^{NL} \). This information will be used when computing the non-linear lensing power spectrum.

5. Spherical collapse model

The spherical collapse process is the simplest model for the formation of non-linear gravitationally bound structures. It is characterised by the turnaround phase, during which the amplitude of the spherical perturbation in the expansion phase reaches a sufficient large value such that the gravitational force prevents the sphere from an infinite expansion. It is then followed by the proper collapse phase, i.e., when the sphere reaches its maximum radius at the turnaround, \(R_m \), the overdensity starts to collapse. While the mathematical model implies the collapsing sphere to reduce to a point, in reality this does not happen, as virialization takes place [62] and the system satisfies the Virial theorem. In the following we assume that during the evolution the matter distribution remains with a top-hat profile.

The non-linear evolution equation for the matter overdensity is [63, 64]
\[
\ddot{\delta}_m + 2H \dot{\delta}_m - \frac{4}{3} \frac{\dot{\mu}}{\dot{\mu}_m} \left(1 + \delta_m \right) \frac{\partial^2 \mu}{a^2} = 0 .
\] (30)

We can use Eq. (28) to eliminate the metric potential. Thus it is clear that the evolution of \(\delta_m \) is modified with respect to GR by \(\mu^{NL} \).

Assuming that the total mass inside \(R \) is conserved during the collapse, we have
\[
M = \frac{4\pi}{3} R^3 \rho_m (1 + \delta_m) = \text{const} ,
\] (31)

from which we can derive the equation of evolution of the radius after differentiating it with respect to time and using Eq. (30). Then, we have
\[
\frac{\dot{R}}{R} = H^2 + H - \frac{4\pi G_N}{3} \mu^{NL} \rho_m \delta_m ,
\] (32)

which is composed by a background term \((H^2 + H)\) and a gravitational one \((\propto \mu^{NL} \rho_m \delta_m)\). We can numerically solve the above equation as follows. As standard procedure, we introduce the variable
\[
y = \frac{R}{R_i} - \frac{a}{a_i} ,
\] (33)

where \(R_i \) is the initial radius of the perturbation and \(a_i \) is the initial scale factor. Thus Eq. (32) reads
\[
y'' = \frac{H'}{H} y' + \left(1 + \frac{H'}{H} \right) y - \frac{2}{3} \mu^{NL} \delta_m \left(y - \frac{a}{a_i} \right) .
\] (34)

In order to specify the evolution of \(\mu^{NL}(a, R) \), we also use
\[
\left(\frac{R}{R_c} \right)^3 = \frac{1}{4\Omega_m H^2 \lambda^2} \frac{1}{\delta_m} = \frac{x^3}{16\Omega_m (\mu^1 - 1)^2} \frac{1}{\delta_m} ,
\] (35)

which can be easily computed from the mass conservation and the definition of Vainshtein radius. Eq. (35) thus shows the relation between the Vainshtein radius and the collapsing overdensity, which holds as long as \(x_3 \neq 0 \).

In order to solve Eq. (34) numerically, we consider the initial conditions such that the collapse time is \(a_{\text{collapse}} = 1 \). It follows [6, 7] \(a_i = 6,66 \times 10^{-8} \), \(y_i = 0 \) and \(y'_i = -\delta_{m,i}/3 \), where \(\delta_{m,i} \) is the initial density obtained from linear theory in the matter dominated era assuming the collapse \((R = 0)\) at \(a_{\text{collapse}} = 1 \). Finally, we write the overdensity as
\[
\delta_m = (1 + \delta_{m,i}) \left(1 + \frac{a_i}{a} \right)^{-3} - 1 ,
\] (36)

which follows from matter conservation.

In Fig. 3 we show the solution of Eq. (32) for the three models when the collapse time is set at the present time. We note that modifications with respect to the ΛCDM model are present during the collapse phase for both Galileon models. However, the modification introduced by \(x_3 \) makes the dynamics of the collapse for the GGC quite different from that of the G3. The ΛCDM model indeed is in between the two Galileon models. This is understood by noticing that there is the following hierarchy for the initial overdensities: \(\delta_{m,G3} < \delta_{m,\Lambda CDM} < \delta_{m,\Lambda CDM} \) (GGC). This translates to an opposite hierarchy for the radii,

\footnote{From Eq. (33) at initial time one gets \(y_i = 0 \) and \(y'_i = -\delta_{m,i}/(3(1 + \delta_{m,i})) \). Assuming that the density perturbation grows linearly during matter dominated era, we can use \(\delta_m \propto a \) and \(\delta_m' \propto \delta_m \), thus one gets \(y'_i = -\delta_{m,i}/3 \) (see Ref. [18]).}
Table 1: Physical quantities characterising the spherical collapse at the present time for the GGC model in comparison with ΛCDM and G3. The parameters of the models used to obtain these results are in Tab. 1.

Table 2: Physical quantities characterising the spherical collapse at the present time for the GGC model in comparison with ΛCDM and G3. The parameters of the models used to obtain these results are in Tab. 1.

![Figure 3: Time evolution of R/R_v for the GGC (blue solid line) and G3 (red dot-dashed line) models. The initial overdensity $\delta_{m,i}$ for the models are: $\delta_{m,i}(\Lambda\text{CDM}) = 12.3 \times 10^{-5}$, $\delta_{m,i}(\text{GGC}) = 13.2 \times 10^{-5}$ and $\delta_{m,i}(\text{G3}) = 7.3 \times 10^{-5}$. The model and cosmological parameters are shown in Tab. 1.](image)

![Figure 4: Time evolution of μ^L (solid lines) and μ^NL (dashed lines) for the GGC (blue) and the G3 (red) models. The models’ parameters for the GGC and the G3 have been chosen according to the cosmological constraints in Refs. [37] and [36], respectively.](image)

![Figure 5: Time evolution of R/R_v for the GGC (blue solid line) and the G3 (red dot-dashed line) models for a matter overdensity collapsing at the present time. The models’ parameters for the GGC and the G3 have been chosen according to the cosmological constraints in Refs. [37] and [36], respectively.](image)

as a larger overdensity implies an earlier collapse and therefore a smaller radius. The GGC model has a turn-around radius smaller than both the ΛCDM and the G3 as shown in Tab. 2. The latter, instead, shows the larger one. The turn-around phase takes place at the same time for both the Galileon cosmologies, $a_{ta} \approx 0.558$ while in ΛCDM it is slightly delayed, $a_{ta} \approx 0.567$.

In Fig. 4, we show the time evolution of the non-linear effective gravitational coupling compared to the linear one for both the GGC and the G3 models. We note that the matter overdensity for the GGC case enters the Vainshtein radius approaching the GR solution before the G3 model does. The crossing time of the Vainshtein radius can be extrapolated from Fig. 5 where we show the evolution of $(R/R_\text{v})^2$. It occurs when $R/R_\text{v} = 1$ and for the GGC it is at $a = 0.24$ and for the G3 at $a = 0.47$.

The final stage of the collapse is virialization. The collapse stops when the system reaches the equilibrium and thus satisfies the Virial theorem. The latter states that, for a stable, self-gravitating, spherical distribution, the total kinetic energy of the object (T) and the total gravitational potential energy (U), satisfy the relation:

$$T + \frac{1}{2} U = 0 \quad (37)$$

where the kinetic energy during the collapse for a top-hat profile is

$$T \equiv \frac{1}{2} \int d^3 x \rho_m v^2 = \frac{3}{10} MR^2 \cdot (38)$$

and the total potential energy is [47]

$$U \equiv - \int d^3 x \rho_m(x) \cdot \nabla \Psi = \frac{3}{5} (H + H^2) MR^2 - \frac{3}{5} G_{\text{N}} \mu^\text{NL} M^3 R^3 . \quad (39)$$

Let us note that the energy conservation is not strictly satisfied for a time-dependent dark energy or modified gravity model [46]. Thus, we choose the virialization time a_{vir} such that the conservation relation (37) is satisfied. We can then define the virial overdensity as

$$\Delta_{\text{vir}} \equiv \frac{\rho_{\text{vir}}}{\rho_{\text{collapse}}} = [1 + \delta_m(R_{\text{vir}})]\left(a_{\text{collapse}}^3 \frac{a_{\text{vir}}}{a_{\text{vir}}^3}\right) . \quad (40)$$

In Tab. 1, we list some relevant physical quantities such as a_{vir}, R_{vir}, Δ_{vir} and δ_c for a matter overdensity collapsing at the present time. δ_c is the linear critical density contrast defined as the value of the linear δ_m at the collapse when initial...
conditions are assumed such that the non-linear equation diverges at the collapse time. In Figs. 6 and 7 we show the evolution of δ_c and Δ_{vir} respectively as function of the scale factor.

The critical density at early times approaches the value of the Einstein-de Sitter Universe, and for $a > 0.2$ its time evolution differs in the three cosmological models, as the contribution of the cosmological constant and of the modifications of gravity becomes more important with time. In detail, while $\delta_c(\Lambda\text{CDM})$ decreases approaching the collapse at $a \approx 1$, in the Galileon cosmologies the late time values of δ_c are larger: $\delta_c(\text{GGC})$ increases up to 1.708 while $\delta_c(\text{G3})$ is rather constant till $a \approx 0.4$ and then it rapidly grows up to 1.738. From Fig. 7 we see that the evolution of the virial overdensity for the ΛCDM and the GGC is approximately the same and $\Delta_{\text{vir}}(\text{GGC})$ prefers slightly larger values for $a > 0.5$. $\Delta_{\text{vir}}(\text{G3})$ remains constant (≈ 177.8, the Einstein-de Sitter value) up to $a \approx 0.4$ and then increases remaining always smaller than ΛCDM and GGC.

We note that both the GGC and the G3 share in the Lagrangian the same form for the cubic term ($\propto X^2\phi$), but in the latter the ghost condensate term $\propto X^2$ is not present. Although the modifications at both linear and non-linear regimes are driven by the cubic term, the inclusion of the X^2 term changes the evolution of the scalar field and that of the background quantities in such a way that all the relevant physical quantities we have investigated in this section show a significant modification with respect to the G3 model. Finally, we recall that these results are obtained using the best fit values for the parameters of each model from cosmological data on linear scales, thus according to data, the theoretical predictions we obtain are very close to what we can actually expect at non-linear level.

6. Non-linear matter and lensing power spectra

Matter and lensing auto-correlation power spectra are two powerful tools to investigate the deviations from GR. One can resort to Einstein-Boltzmann codes to compute their predictions at linear scales [65] (see Ref. [67] for GGC). In order to extend such predictions on smaller scales one has to include non-linear corrections and screening mechanisms effects. These usually require a model by model implementation of the relevant equations in N-body codes [49] [66] [80].

Analytically, a formalism to calculate the non-linear matter power spectrum for wider classes of gravity models has been developed [81] considering the closure approximation [82] with applications to DGP and $f(R)$ gravity models; or another approach [83] [84] is the one which extends the reaction method [85] using the halo model.

In this work the goal is to have a glimpse into the phenomenology associated with the screening effects on the matter and lensing power spectra, leaving for a future work a more detailed investigation. In this regard, we will use the predictions from linear cosmological perturbation theory and incorporate the screening effects in a phenomenological fashion. We will model the small-scale limit to GR through a scale dependence in the gravitational coupling as follows [86] [87]

$$\mu(a, k) = 1 + (\mu^s - 1) \exp \left[-\left(\frac{k}{k_s}\right)^2\right].$$ \hspace{1cm} (41)$$

where k_s is the screening scale. Its value is strictly related to the specific model under consideration. From N-body cosmological simulations in the G3 model one finds that $k_s = 0.1 \text{ h Mpc}^{-1}$ at the present time [49]. For the GGC model, N-body simulations do not exist, therefore we will present our results for four values of k_s in order to quantify the relevance of this parameter. They are $k_s = 0.05, 0.1, 0.5, 1 \text{ h Mpc}^{-1}$ and will serve to show the phenomenology of GGC at these scales and provide theoretical predictions to be then compared to accurate N-body simulations once they are available. However, we guess that the more reliable results for the GGC will be those with a screening scale larger than that of the G3 at the present time. That is because in this work we find that the Vainshtein radius at the present time for a point source for GGC is slightly smaller than that in the G3 model, therefore we expect $k_s(\text{GGC}) > k_s(\text{G3})$ at $z = 0$.

To derive the non-linear matter power spectrum for the GGC model we follow the prescription in Ref. [88] which has been used to constrain Horndeski models using cosmic shear, galaxy-
galaxy lensing and galaxy clustering with the KiDS [89, 90] and GAMA surveys [91, 92]. In detail we firstly evaluate the non-linear matter power spectrum for ΛCDM [93], then we divide it by its linear counterpart obtained with the Einstein-Boltzmann solver CAMB [94]. The resulting function is what we call the “non-linear transfer function”. The latter is used to compute the “nonlinear transfer function” for the GGC model by multiplying it for the function $\mu^2(a, k)$ in Eq. (41), which takes into account the effects of the screening. As $\mu^2 > 1$, when $k < k_\text{c}$, the function μ induces an excess of power on non-screened scales, while for $k > k_\text{c}$ (screened scales), $\mu \rightarrow 1$ and the power transferred by the “non-linear transfer function” is the same as in the ΛCDM model. Finally, the non-linear matter power spectrum for the GGC is obtained by multiplying the “non-linear transfer function” for the GGC with the linear matter power spectrum obtained with the Einstein-Boltzmann solver EFTCAMB [95, 96].

In the top panel of Fig. 8 we present the non-linear matter power spectrum at $z = 0$ for ΛCDM and the GGC model for the four screening scales discussed above and the relative difference $\Delta P/P$ in the bottom panel, where $\Delta P = P_{\text{GGC}}(k) - P_{\text{LCDM}}(k)$ and $P = P_{\text{LCDM}}$. On large scales, $k \leq 10^{-3} \, h\, \text{Mpc}^{-1}$, there is about 20% difference between the two models due to $\mu \approx \mu^2 > 1$. The difference increases on intermediate scales, up to about 60% and then decreases to approximately 10% on small scales where the Vainshtein screening takes place. The exact scale depends on the value of the screening scale, k_c. A small value of the latter induces a suppression of power on larger scales (small k) with respect to a larger value of k_c. This is indeed particularly evident when comparing the results for $k_\text{c} = 0.1 \, h\, \text{Mpc}^{-1}$ and $k_\text{c} = 0.5 \, h\, \text{Mpc}^{-1}$: a factor of 5 in the screening scale translates into about an order of magnitude in the scale where one would approximately recover the ΛCDM limit. The main difference in changing the screening scale is the slow decline of the plateau where the difference between the two models reaches its maximum. When k is about a factor of two smaller than the screening scale, the exponential cut-off due to the screening kicks in and we observe a fast decline in power to then reach a constant plateau which corresponds to $\mu = 1$. This value is reached for $k \approx 2k_\text{c}$. We note also that the oscillations one can see in the relative difference are due to the scale-dependent corrections introduced by μ and originate from the baryon acoustic oscillations signature imprinted on the matter power spectrum. According to our finding, we expect that $k_\text{c}(\text{GGC}) > k_\text{c}(\text{G3})$ at $z = 0$, where $k_\text{c}(\text{G3}) = 0.1 \, h\, \text{Mpc}^{-1}$ [49], thus future N-body simulations for the GGC should find the non-linear matter power spectrum of the GGC to have a screening scale in between $0.1 \, h\, \text{Mpc}^{-1} < k_\text{c} < 0.5 \, h\, \text{Mpc}^{-1}$.

We now investigate the effects of the GGC signatures on the lensing power spectrum. The latter is defined as the integral along the line of sight of the matter power spectrum. As for the matter power spectrum, we need to take into account the effects of modifications to gravity and on smaller scales we have to include those of the screening mechanism. The lensing effect depends on the sum of the two gravitational potentials, $\Phi + \Psi$, and as discussed in Sections 3 and 4 any departure form GR in the lensing equation can be included in the phenomenological function Σ. For GGC $\Phi = \Psi$ even on non-linear scale, so that $\Sigma = \mu$. In the following analysis we can therefore assume for Σ the same functional form of Eq. (41).

The expression used to evaluate the lensing power spectrum
is \[98\]

\[P_\chi(\ell) = \frac{9H_0^2\Omega_m^{(0)^2}}{4\pi^4} \int_0^{\infty} \frac{W(\chi)^2\Sigma(\chi,k)^2}{a^2(\chi)} P \left(\frac{\ell + 1/2}{f_\chi(\chi)} \right) d\chi, \]

(42)

where \(W(\chi) \) is a kernel describing the distribution in redshift of the sources, \(P(k) \) is the matter power spectrum evaluated at the wave-number \(k = (\ell + 1/2)/f_\chi(\chi) \) \[99\], being \(f_\chi(\chi) \) the comoving angular diameter distance. Finally, \(\chi_H \) represents the comoving angular diameter distance of the horizon. The function \(\Sigma \) depends on the scale \(k \) and the time (here parameterized via \(\chi \)). Assuming there is no scale-dependent screening, the expression in Eq. (42) reduces to Eq. (47) of Ref. \[100\] upon the following identification \(\Sigma = 1/F(\chi) \). Also note that, for simplicity, we assumed the sources to be fixed in redshift at \(z_s = 2. \) Distributing the sources in redshift will not change our conclusions qualitatively, but only slightly decrease the impact of the modifications.

We show in Fig. \[9\] the results for the non-linear lensing power spectrum in both the ΛCDM and the GGC scenarios. The latter is given for different screening scales. Because the screening affects small scales (high-\(\ell \)), both models look the same in this regime and the multipole where this happen depends, obviously, on the screening scale \(k_s \). Due to the contribution of several \(k \) to the same multipole \(\ell \), we do not observe the same plateau as for the matter power spectrum. Larger differences are restricted to small-\(\ell \) where they can go up to 60% for \(\ell = 10 \) independently of the particular screening scale. Due to the screening, the power decreases linearly until it is the same of the ΛCDM. The rate at which the GGC approaches ΛCDM is faster for smaller \(k_s \), as the screening takes place at larger scales. For the smaller values of the screening scale, the two models become the same for \(\ell \approx 400 \), while for \(k_s = 1 \, h \, \text{Mpc}^{-1} \) the two models become indistinguishable for \(\ell \gtrsim 3000 \). For the lensing power spectrum, a change in \(k_s \) of a factor of ten changes the scale at which the spectrum of the GGC approaches the ΛCDM limit roughly by the same amount (see, for example, the behaviour for \(k_s = 0.1 \, h \, \text{Mpc}^{-1} \) and \(k_s = 1 \, h \, \text{Mpc}^{-1} \)).

Finally let us note that in this analysis we have considered the screening scale \(k_s \) constant at all redshifts. However, we expect the screening scale to be time-dependent as showed in Fig. \[5\]. This behaviour is further confirmed in the case of the G3 model in Ref. \[49\] using \(N \)-body simulations. For the G3 model the screening scale is \(k_s \approx 0.1 \, h \, \text{Mpc}^{-1} \) at \(a = 1 \) and \(k_s \approx 0.3 - 0.4 \, h \, \text{Mpc}^{-1} \) at \(a = 0.6 \). This is a clear indication that a constant \(k_s \) might just be a first approximation. While a time variation of the screening scale does not change our discussion for the matter power spectrum (as we present the results at a given \(z \)), it will affect quantitatively the evolution of the lensing power spectrum as there will be a different screening scale at different redshift. This reinforces the need of accurate \(N \)-body simulations to properly quantify the effects of modified gravity on non-linear structure formation.

7. Mass function

In this section we investigate the effects of the GGC model on the abundance of halos. To this purpose we use the Sheth & Tormen mass function \[101\]–\[103\]

\[
\frac{dn}{dM} = -\frac{2\alpha}{\pi} \left[1 + \frac{\tilde{\alpha} \delta_c^2}{D^2(\sigma_M^2)} \right] \rho_{m0} \frac{\sigma_c}{M^2} \sigma_M^2 \exp \left(-\frac{\tilde{\alpha} \delta_c^2}{2D^2(\sigma_M^2)} \right),
\]

(43)

where \(\tilde{\alpha} = 0.707 \), \(p = 0.3 \), \(\delta_c \) is the linear density contrast derived in Section 5, \(D = d_{\lambda}/d_{m0}(a = 1) \) is the linear growth factor, and \(\sigma_M^2 \) is the variance of the matter power spectrum defined as \[104\]

\[
\sigma_M^2 = \frac{1}{2\pi^2} \int_0^{\infty} dk k^2 W^2(kR) P(k),
\]

(44)

where the window function is defined as

\[
W(kR) = \frac{\sin(kR) - kR \cos(kR)}{(kR)^3},
\]

(45)

being \(R \) the radius enclosing the mass \(M = \frac{4\pi}{3} \rho_{m0} R^3 \). The window function represents the Fourier transform of the top-hat function in the space configuration. We also compute the number density of objects above a given mass at a chosen \(z \) as:

\[
n(M) = \int_M^{\infty} \frac{dn}{dM} \, dM'.
\]

(46)

We present the results in Fig. \[10\] where we show the differential and the cumulative mass functions, respectively in the top and bottom panels. For each panel, we also consider the relative difference of the GGC model with respect to ΛCDM, i.e. \(\Delta n/n = (n_{GGC} - n_{\Lambda CDM})/n_{\Lambda CDM} \). We select three redshifts \(z = 0, 0.5, 1 \) and we consider halo masses ranging from \(10^{12} M_\odot h^{-1} \) (galactic scales), until \(10^{15} M_\odot h^{-1} \) (cluster scales) to better assess the effects of GGC at different mass scales and redshifts.

For both the differential and the cumulative mass function, the relative difference between the models is approximately the same, with differences of a few percent higher especially on the lower- and higher-mass of the cumulative mass function. At low-mass we observe a decrease of about 10% in the GGC model with respect to ΛCDM, regardless of the chosen redshift. At \(z = 0 \), the lack of objects is rather constant over two orders of magnitudes in mass in the two models. The number of objects become more similar towards high masses, but the GGC model still shows a few percent less objects than ΛCDM. At higher redshifts, the differences observed at low masses get smaller going toward \(M \approx 10^{14} M_\odot h^{-1} \) for \(z = 0.5 \) and \(M \approx 3 \times 10^{13} M_\odot h^{-1} \) for \(z = 1 \), respectively, but for higher masses they become more prominent and it is where the two

\[8\] With respect to Ref. \[99\], in Eq. (42) we include the modification to gravity with the function \(\Sigma \).

\[9\] We changed the commonly adopted notation to avoid confusion with the scale factor \(a \).
models differ the most in the predictions of the number of halos.

This is the typical behaviour of models beyond ΛCDM. The reason is that the exponential suppression in the halo mass function (and, as a consequence, also in the cumulative mass function) is more important at high masses and redshifts [101–103]. The GGC model predicts an excess of objects in the function) is more important at high masses and redshifts [101–103]. The reason is that the exponential suppression in the halo mass function for the same set of redshifts. The cosmological parameters used to compute the lensing power spectra are in Tab. [1]

8. Conclusions

In this work we studied the impact of non-linearities in the Galileon ghost condensate (GGC) model [28] on the formation of spherical gravitationally bounded objects and we made theoretical predictions on the abundances of halos, non-linear matter and lensing power spectra. To spot key features we have compared the results with the standard cosmological scenario ΛCDM and another Galileon model, the cubic Galileon (G3) [25] which shares with the GGC the term in the Lagrangian \(\propto X \partial \phi \partial X \) but differs for the \(X^2 \) term which is not present in the G3. The results presented in the analysis used the maximum likelihood values for the cosmological and model parameters obtained with Planck data in previous works. This is because we wanted to show the difference between the predictions of every model as close as possible to what we actually expect from observations.

We found that the predictions on the growth of structures and spherical collapse of the GGC model are quite different from those of the G3 and are closer to the ΛCDM ones but still with some peculiarities. To start with, the linear growth rate in G3 presents large enhancements with respect to the GGC, being the latter very close to ΛCDM. On non-linear scales, the presence of the Vainshtein screening mechanism which characterises both Galileon models changes the gravitational coupling felt by matter which, in both cases, is larger than that in ΛCDM. We noted that for a collapse taking place at the present time in the GGC model such gravitational coupling stays closer to ΛCDM than the G3 one. This is due to the fact that the former enters in the Vainshtein radius before. Indeed, during the collapse process, the Vainshtein radius of the GGC is always as the differences due to \(\delta_c \) are bigger than those of \(\sigma_M \) and \(\delta_c(\text{GGC}) > \delta_c(\text{ΛCDM}) \), we have a suppression in the number of objects; at high redshifts \(\delta_c(\text{GGC}) \gtrsim \delta_c(\text{ΛCDM}) \) and the major effect is due to the mass variance \(\sigma_M \), hence we observe an increase of the relative mass function at high masses. At low masses, the exponential term contributes less to the overall picture with respect to the other terms and the decrease in the number of objects is due to the latter. From the observational side it would be of interest to compare the predicted halo mass function for the GGC model with the data obtained in Ref. [105] from a sub-sample of 843 clusters (SelFMC) in the redshift range \(0.01 \leq z \leq 0.125 \) with virial masses of \(M \geq 0.8 \times 10^{14} h^{-1} M_\odot \) from the GalWCat19 catalogue [106]. As the catalogue is complete in the mass range of \(10^{14} < M/M_\odot < 10^{15} \), where the GGC predictions largely differ from ΛCDM, it is possible to better assess the influence of modifications of gravity. An extension of the analysis to smaller masses or different redshift ranges, would require to weigh the observed mass function with a selection function \(S(D) \), where \(D \) is the comoving distance of the cluster. For more details about the procedure, we refer the reader to [105]. Note that since the catalogue is at small redshifts, any assumption on the underlying cosmological model made to derive the data does not play an important role.

Figure 10: Top panel: differential mass function as a function of the halo mass \(M \) at \(z = 0, 0.5, 1 \), as shown in the labels. Solid lines refer to the GGC model, while dashed lines to ΛCDM. Bottom panel: cumulative mass function as a function of the halo mass for the same set of redshifts. The cosmological parameters used to compute the lensing power spectra are in Tab. [1]
larger than that in the G3. Furthermore, we found that the turn-around phase for both Galileon models takes place slightly before than for ΛCDM and the virialization time follows the order G3, GGC and ΛCDM. Being G3 the first to reach virialization, the evolution of the virial overdensity for the Galileon models is completely different: while G3 stays always below ΛCDM, the GGC closely follows the ΛCDM one and after α = 0.5 it is slightly enhanced. The evolution of the linear critical overdensity δ_c shows again key features after z ≈ 2: in the ΛCDM scenario it decreases from the de-Sitter value to ≈ 1.675 at present time; in the GGC, instead, it has the opposite behaviour, increasing its value up to 1.708; finally the G3 grows as well but up to α ≈ 0.7 it stays below the GGC and after it overcomes the GGC, reaching the present day value of ≈ 1.74. These new features of the GGC can be addressed considering the inclusion of the X^2 term in the Lagrangian which makes the difference with respect to G3. This term changes remarkably the evolution of the Vainshtein radius and as such the physics associated to the formation of (non-linear) structures.

We employed a phenomenological approach to incorporate the screening mechanism in the computation of the non-linear matter and lensing power spectra. This is done by considering the gravitational couplings felt by matter and light, respectively, to have an explicit dependence on the screening scale, k_s such that when k < k_s it induces an excess of power on non-screened scales while when k > k_s they approach the ΛCDM behaviour. Because we do not know the screening scale of the GGC model in Fourier space, we computed the predictions for matter and lensing power spectra for four scales. This approach led us to show the phenomenology of GGC and provide theoretical predictions which, in the future, can be compared to accurate N-body simulations once they are available. We found that the matter power spectrum on linear scales for GGC shows a difference with respect to ΛCDM of up to 60% and it decreases to about 10% on the smaller scales. The scale at which the matter power spectrum approaches the ΛCDM one depends on the screening scale. As expected, smaller screening scales suppress the matter power spectrum at larger scales. We note the same behaviour in the lensing power spectrum. The relative difference between GGC and ΛCDM is around 60% at small-ℓ and decreases at larger-ℓ. The values of k_s we chose show that for the smaller value of k_s, = 0.05 h Mpc^{-1}, the ΛCDM limit is reached at ℓ ≈ 200 and for the larger k_s, = 1 h Mpc^{-1} we found that ℓ ≈ 3000. We then computed the mass function as a function of the halo mass following the Sheth & Tormen model. We found that at low masses the GGC model provides about 10% less objects with respect to ΛCDM, while at higher masses and higher redshift (z > 0.5) it predicts about 10%-20% more objects. This can be explained by the fact that the critical linear overdensity for GGC is larger than in ΛCDM and by a larger mass variance in the former.

Finally, given the results presented in this paper, the GGC model shows very peculiar and measurable features which can definitely help in discriminating between GGC and ΛCDM. Whilst this work provides only a glimpse into the phenomenology of non-linear matter and lensing power spectra, less simplified methods can be employed, such as those in Refs. [51] [83] which we will consider in an upcoming work.

We further stress that a proper assessment and validation of our results can come with realistic N-body simulations, which are not affected by the necessary simplifications required for an analytical evaluation. Simulations will also allow to produce fitting formulae for the evolution of the non-linear matter power spectrum and improve the formalism of the spherical collapse model.

Acknowledgements
We thank Alberto Rozas-Fernández, Björn Malte Schäfer and Shinji Tsujikawa for useful discussions. The research of NF is supported by Fundação para a Ciência e a Tecnologia (FCT) through the research grants UID/FIS/04434/2019, UIDB/04434/2020 and UIDP/04434/2020 and by FCT project “DarkRipple – Space-time ripples in the dark gravitational Universe” with ref. number PTDC/FIS-OUT/29048/2017. FP acknowledges support from Science and Technology Facilities Council (STFC) grant ST/P000649/1 and the ERC Consolidator Grant CMB-SPEC (No. 725456) as part of the European UnionÂ’s Horizon 2020 research and innovation program.

References

[1] A. G. Riess, et al. (Supernova Search Team), Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009–1038. doi:10.1086/300549 arXiv:astro-ph/9805201

[2] S. Perlmutter, et al. (Supernova Cosmology Project), Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565–586. doi:10.1086/300223 arXiv:astro-ph/9812133

[3] M. Betoule, et al. (SDSS), Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, Astron. Astrophys. 568 (2014) A22. doi:10.1051/0004-6361/201423413 arXiv:1401.4964

[4] D. N. Spergel, et al. (WMAP), First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters, Astrophys. J. Suppl. 148 (2004) 175–194. doi:10.1086/377226 arXiv:astro-ph/0302209

[5] F. A. R. Ade, et al. (Planck), Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13. doi:10.1051/0004-6361/201525830 arXiv:1502.01589

[6] N. Aghanim, et al. (Planck), Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, Astron. Astrophys. 594 (2016) A11. doi:10.1051/0004-6361/201526929 arXiv:1502.01589

[7] D. J. Eisenstein, et al. (SDSS), Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, Astrophys. J. 633 (2005) 560–574. doi:10.1086/466512 arXiv:astro-ph/050171

[8] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, F. Watson, The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017–3032. doi:10.1111/j.1365-2966.2011.19250.x arXiv:1106.3366

[9] A. Joyce, B. Jain, J. Khoury, M. Trodden, Beyond the Cosmological Standard Model, Phys. Rept. 566 (2015) 1–98. doi:10.1016/j.physrep.2014.12.002 arXiv:1407.0058

[10] A. Lue, R. Scoccimarro, G. D. Starkman, Probing Newton’s constant on vast scales: DGP gravity, cosmic acceleration and large scale structure, Phys. Rev. D69 (2004) 124015. doi:10.1103/PhysRevD.69.124015 arXiv:astro-ph/0401515
and Mass Assembly (GAMA): survey diagnostics and core data release, MNRAS 413 (2011) 971–995. doi:10.1111/j.1365-2966.2010.18188.x arXiv:1009.0614

[93] J. Liske, I. K. Baldry, S. P. Driver, R. J. Tuffs, M. Alpaslan, E. Andrae, S. Brough, M. E. Cluver, M. W. Grootes, et al., Galaxy And Mass Assembly (GAMA): end of survey report and data release 2, MNRAS 452 (2015) 2087–2126. doi:10.1093/mnras/stv1436 arXiv:1306.08222

[94] R. E. Smith, J. A. Peacock, A. Jenkins, S. D. M. White, C. S. Frenk, F. R. Pearce, P. A. Thomas, G. Efstathiou, H. M. P. Couchman, Stable clustering, the halo model and non-linear cosmological power spectra, MNRAS 341 (2003) 1311–1332. doi:10.1046/j.1365-8711.2003.06503.x arXiv:astro-ph/0207664

[95] A. Lewis, A. Challinor, A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473–476. doi:10.1086/309179 arXiv:astro-ph/9911177

[96] M. Raveri, B. Hu, N. Frusciante, A. Silvestri, Effective Field Theory of Cosmic Acceleration: constraining dark energy with CMB data, Phys. Rev. D90 (2014) 043513. doi:10.1103/PhysRevD.90.043513 arXiv:1005.1022

[97] B. Hu, M. Raveri, A. Silvestri, N. Frusciante, Exploring massive neutrinos in dark cosmologies with EFTCAMB/ EFTCosmoMC, Phys. Rev. D91 (2015) 063524. doi:10.1103/PhysRevD.91.063524 arXiv:1410.5807

[98] M. Bartelmann, P. Schneider, Weak gravitational lensing, Physics Reports 340 (2001) 291–472. doi:10.1016/S0370-1573(00)00082-X arXiv:arXiv:astro-ph/9912508

[99] M. Loverde, N. Afshordi, Extended Limber approximation, Phys. Rev. D 78 (2008) 123506. doi:10.1103/PhysRevD.78.123506 arXiv:0804.5112

[100] F. Pace, L. Moscardini, R. Crittenden, M. Bartelmann, V. Pettorino, A comparison of structure formation in minimally and non-minimally coupled quintessence models, MNRAS 437 (2014) 547–561. doi:10.1093/mnras/stt1907 arXiv:1307.7026

[101] R. K. Sheth, An excursion set model for the distribution of dark matter and dark matter haloes, MNRAS 300 (1998) 1057–1070. doi:10.1046/j.1365-8711.1998.01976.x arXiv:astro-ph/9805319

[102] R. K. Sheth, H. J. Mo, G. Tormen, Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes, MNRAS 323 (2001) 1–12. doi:10.1046/j.1365-8711.2001.04006.x arXiv:astro-ph/9907024

[103] R. K. Sheth, G. Tormen, An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier, MNRAS 329 (2002) 61–75. doi:10.1046/j.1365-8711.2002.04950.x arXiv:astro-ph/0105113

[104] W. H. Press, P. Schechter, Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation, ApJ 187 (1974) 425–438. doi:10.1086/152650

[105] M. H. Abdullah, A. Klypin, G. Wilson, Cosmological Constraint on \(\Omega_m \) and \(\sigma_8 \) from Cluster Abundances using the GalWCat19 Optical-Spectroscopic SDSS Catalog (2020). arXiv:2002.11907

[106] M. H. Abdullah, G. Wilson, A. Klypin, L. Öst, E. Praton, G. Ali, GalWeight Application: A Publicly Available Catalog of Dynamical Parameters of 1800 Galaxy Clusters from SDSS-DR13, (GalWCat19), Astrophys. J. Suppl. 246 (2020) 2. doi:10.3847/1538-4365/ab536e arXiv:1907.05061