Disproving the Neighbourhood Conjecture

Heidi Gebauer *

October 10, 2008

Abstract

We study the following Maker/Breaker game. Maker and Breaker take turns in choosing vertices from a given \(n\)-uniform hypergraph \(F\), with Maker going first. Maker’s goal is to completely occupy a hyperedge and Breaker tries to avoid this. Beck conjectures that if the maximum neighborhood size of \(F\) is at most \(2n-1\) then Breaker has a winning strategy. We disprove this conjecture by establishing an \(n\)-uniform hypergraph with maximum neighborhood size \(3 \cdot 2^{n-3}\) where Maker has a winning strategy. Moreover, we show how to construct an \(n\)-uniform hypergraph with maximum degree \(\frac{2^{n-1}}{n}\) where Maker has a winning strategy.

Finally we show that each \(n\)-uniform hypergraph with maximum degree at most \(\frac{2^{n-2}}{cn}\) has a proper halving 2-coloring, which solves another open problem posed by Beck related to the Neighbourhood Conjecture.

1 Introduction

A hypergraph is a pair \((V, E)\), where \(V\) is a finite set whose elements are called vertices and \(E\) is a family of subsets of \(V\), called hyperedges. We study the following Maker/Breaker game. Maker and Breaker take turns in claiming one previously unclaimed vertex of a given \(n\)-uniform hypergraph, with Maker going first. Maker wins if he claims all vertices of some hyperedge of \(F\), otherwise Breaker wins.

Let \(F\) be a \(n\)-uniform hypergraph. The degree \(d(v)\) of a vertex \(v\) is the number of hyperedges containing \(v\) and the maximum degree of \(F\) is the maximum degree of its vertices. The neighborhood \(N(e)\) of a hyperedge \(e\) is the set of hyperedges of \(F\) which intersect \(e\) and the maximum neighborhood size of \(F\) is the maximum of \(|N(e)|\) where \(e\) runs over all hyperedges of \(F\).

The famous Erdős-Selfridge Theorem [3] states that for each \(n\)-uniform hypergraph \(F\) with less than \(2^{n-1}\) hyperedges Breaker has a winning strategy. This upper bound on the number of hyperedges is best possible as the following example shows. Let \(T\) be a rooted binary tree with \(n\) levels and let \(G\) be the hypergraph whose hyperedges are exactly the sets \(\{v_0, \ldots, v_{n-1}\}\) such that \(v_0, v_1, \ldots, v_{n-1}\)

*Institute of Theoretical Computer Science, ETH Zurich, CH-8092 Switzerland. Email: gebauerh@inf.ethz.ch.
is a path from the root to a leaf. Note that the number of hyperedges of G is 2^{n-1}. To win the game on G Maker can use the following strategy. In his first move he claims the root m_1 of T. Let b_1 denote the vertex occupied by Breaker in his subsequent move. In his second move Maker claims the child m_2 of m_1 such that m_2 lies in the subtree of m_1 not containing b_1. More generally, in his ith move Maker selects the child m_i of his previously occupied node m_{i-1} such that the subtree rooted at m_i contains no Breaker’s node. Note that such a child m_i always exists since the vertex previously claimed by Breaker is either in the left or in the right subtree of m_{i-1} (but not in both!). Using this strategy Maker can achieve to own some set $\{v_0, \ldots, v_{n-1}\}$ of vertices such that $v_0, v_1, \ldots, v_{n-1}$ is a path from the root to a leaf, which corresponds to some hyperedge of G. Hence Maker has a winning strategy on G.

Note that both the maximum neighborhood size and the maximum degree of G are 2^{n-1}, thus equally large as the number of hyperedges of G. This provides some evidence that in order to be a Maker’s win a hypergraph must have largely overlapping hyperedges. Moreover, Beck [2] conjectured that the main criterion for whether a hypergraph is a Breaker’s win is not the cardinality of the hyperedge set but rather the maximum neighborhood size, i.e. the actual reason why each hypergraph H with less than 2^{n-1} edges is a Breaker’s win is that the maximum neighborhood of H is smaller than 2^{n-1}.

Neighborhood Conjecture (Open Problem 9.1(a), [2]) Assume that F is an n-uniform hypergraph, and its maximum neighborhood size is smaller than 2^{n-1}. Is it true that by playing on F Breaker has a winning strategy?

Further motivation for the Neighborhood Conjecture is the well-known Erdős-Lovász 2-coloring Theorem – a direct consequence of the famous Lovász Local Lemma – which states that every n-uniform hypergraph with maximum neighborhood size at most 2^{n-3} has a proper 2-coloring. An interesting feature of this theorem is that the board size does not matter. In this paper we prove by applying again the Lovász Local Lemma that in addition every n-uniform hypergraph with maximum neighborhood size at most $2^{n-3} - \frac{3}{n}$ has a so called *proper halving* 2-coloring, i.e., a proper 2-coloring in which the number of red vertices and the number of blue vertices differ by at most 1 (see Theorem 1.3 for details). This guarantees the existence of a course of the game at whose end Breaker owns at least one vertex of each hyperedge and thus is the winner. This suggests that the game we study is a priori not completely hopeless for Breaker.

In our first theorem we prove that the Neighborhood Conjecture, in this strongest of its forms, is not true.

Theorem 1.1 There is an n-uniform hypergraph H with maximum neighborhood size $2^{n-2} + 2^{n-3}$ where Maker has a winning strategy.

In the hypergraph H we will construct to prove Theorem 1.1 one vertex has degree 2^{n-2}. How-
ever, the existence of vertices with high degree is not crucial. We can also establish a hypergraph
with maximum degree $\frac{2^{n-1}}{n}$ on which Maker has a winning strategy. In this case the maximum
neighborhood size is at most $2^{n-1} - n$, which is weaker than Theorem 1.1 but also disproving the
Neighborhood Conjecture.

Theorem 1.2 There is an n-uniform hypergraph H with maximum degree $\frac{2^{n-1}}{n}$ where Maker has a
winning strategy.

In his book [2] Beck also poses several weakenings of the Neighborhood Conjecture, i.e.

(i) (Open Problem 9.1(b), [2]) If the Neighborhood Conjecture is too difficult (or false) then how
about if the upper bound on the maximum neighborhood size is replaced by an upper bound
$\frac{2^{n-c}}{n}$ on the maximum degree where c is a sufficiently large constant?

(ii) (Open Problem 9.1(c), [2]) If (i) is still too difficult, then how about a polynomially weaker
version where the upper bound on the maximum degree is replaced by $n^{-c} \cdot 2^n$, where $c > 1$ is
a positive absolute constant?

(iii) (Open Problem 9.1(d), [2]) If (ii) is still too difficult, then how about an exponentially weaker
version where the upper bound on the maximum degree is replaced by c^n, where $2 > c > 1$ is
an absolute constant?

(iv) (Open Problem 9.1(e), [2]) How about if we make the assumption that the hypergraph is almost
disjoint?

(v) (Open Problem 9.1(f), [2]) How about if we just want a proper halving 2-coloring?

Note that Theorem 1.2 disproves (i) for $c = 1$.

Finally we deal with (v). It is already known that the answer is positive if the maximum degree
is at most $(\frac{3}{2} - o(1))^n$. According to Beck [2] the real question in (v) is whether or not $\frac{3}{2}$ can be
replaced by 2. We prove that the answer is yes.

Theorem 1.3 For every n-uniform hypergraph F with maximum degree at most $\frac{2^{n-2}}{en}$ there is a
proper halving 2-coloring.

Before starting with the actual proofs we fix some notation. Let T be a rooted binary tree of height
h. With a path of T we denote an ordinary path $v_i, v_{i+1}, \ldots, v_j$ of T where v_k is on level k for every
$k = i, \ldots, j$. A branch of T is a path starting at the root of T. Finally, a full branch of T is a branch
of length $h + 1$. The hypergraphs we will construct to prove Theorem 1.1 and Theorem 1.2 both
belong to the class C of hypergraphs H whose vertices can be arranged in a binary tree T_H such
that each hyperedge of H is a path of T_H. Depending on the context we consider a hyperedge e of
a hypergraph H either as a set or as a path in T_H. So we will sometimes speak of the start or end
node of a hyperedge.
2 Counterexample to the Neighborhood Conjecture

Proof of Theorem 1.1: Our goal is to construct an element $H \in C$ with the required maximum neighborhood size where Maker has a winning strategy. Before specifying H we fix Maker’s strategy. In his first move he claims the root m_1 of T_H. In his ith move he then selects the child m_i of his previously occupied node m_{i-1} such that the subtree rooted at m_i contains no Breaker’s vertex. Note that such a child m_i always exists since the vertex previously claimed by Breaker is either in the left or in the right subtree of m_{i-1} (but not in both!). This way Maker can achieve some full branch of T_H by the end of the game. This directly implies the following.

Observation 2.1 Let $G \in C$ be an n-uniform hypergraph such that every full branch of T_G contains a hyperedge. Then Maker has a winning strategy on G.

So in order to prove Theorem 1.1 it suffices to show the following claim.

Lemma 2.2 There is an n-uniform hypergraph $H \in C$ with maximum neighborhood $2n - 2 + 2n - 3$ such that each full branch of T_H contains a hyperedge of H.

□

Proof of Lemma 2.2: We construct H as follows. Let T' be a binary tree with $n - 1$ levels. For each leaf u of T' we proceed as follows. Then we add two children v, w to u and let the full branch ending at v be a hyperedge. Then we attach a subtree S with $n - 2$ levels to w (such that w is the root of S). We need to achieve that each full branch containing w contains a hyperedge. For each leaf u' of S we therefore do the following. We add two children v', w' to u' and let the path from u to v' be a hyperedge. Moreover, we attach a subtree S' with $n - 1$ levels to w' (such that w' is the root of S'). We have to complete our tree in such a way that each full branch containing w' contains a hyperedge. To this end we let each path from u' to a leaf of S' be a hyperedge. Figure 1 shows an illustration. It remains to show that the maximum neighborhood of the resulting hypergraph H is at most $2n - 2 + 2n - 3$.

Proposition 2.3 Every hyperedge e of H intersects at most $2n - 2 + 2n - 3$ other hyperedges.

□

Proof of Proposition 2.3: We fix six vertices u, u', v, v', w, w' according to the above description, i.e., u is a node on level $n - 2$ whose children are v and w, u' is a descendant of w on level $2n - 4$ whose children are v' and w'. Let e be a hyperedge of H. Note that the start node of e is either the root r of T_H, a node on the same level as u or a node on the same level as u'. We now distinguish these cases.

Case (a): The start node of e is r.

By symmetry we assume that e ends at v. According to the construction of T_H the hyperedge e intersects the $2^{n-2} - 1$ other hyperedges starting at r and the 2^{n-3} hyperedges starting at u. So altogether e intersects $2^{n-2} + 2^{n-3} - 1$ hyperedges, as claimed.
Figure 1: An illustration of H. The marked paths represent exemplary hyperedges.

Case (b): The start node of e is on the same level as u.

By symmetry we suppose that e starts at u and ends at v'. The hyperedges intersecting e can be divided into the following three categories.

- The hyperedge starting at u and ending at v,
- the $2^{n-3} - 1$ hyperedges different from e starting at u, and
- the 2^{n-2} hyperedges starting at u',

implying that e intersects at most $2^{n-2} + 2^{n-3}$ hyperedges in total.

Case (c): The start node of e is on the same level as u'

By symmetry we assume that e starts at u'. Then e intersects the 2^{n-2} other hyperedges starting at u' and the hyperedge starting at u and ending at v', thus $2^{n-2} + 1$ hyperedges altogether.
3 A Degree-Regular hypergraph with small maximum degree which is a Maker’s win.

We need some notation first. Throughout this paper log will denote logarithm to the base 2. The vertex set and the hyperedge set of a hypergraph G are denoted by $V(G)$ and $E(G)$, respectively. By a slight abuse of notation we consider $E(G)$ as a multiset, i.e. each hyperedge e can have a multiplicity greater than 1. By a bottom hyperedge of a tree T_G we denote a hyperedge covering a leaf of T_G. As in the previous section we only deal with hypergraphs of the class \mathcal{C}.

Before tackling the rather technical proof of Theorem 1.2 we show the following weaker claim.

3.1 A weaker statement

Theorem 3.1 There is a n-uniform hypergraph H with maximum degree $\frac{2^{n+1}}{n}$ where Maker has a winning strategy.

Let $d = \frac{2^n}{n}$. For simplicity we assume that n is a power of 2, implying that d is power of 2 as well. Due to Observation 2.1 it suffices to show the following.

Lemma 3.2 There is an n-uniform hypergraph $G \in \mathcal{C}$ with maximum degree $2d$ such that every full branch of T_G contains a hyperedge of G.

□

Proof of Lemma 3.2: To construct the required hypergraph G we establish first a (not necessarily n-uniform) hypergraph H and then successively modify its hyperedges and T_H. The following lemma is about the first step.

Lemma 3.3 There is a hypergraph $H \in \mathcal{C}$ with maximum degree $2d$ such that every full branch of T_H has 2^i bottom hyperedges of size $\log d + 1 - i$ for every i with $0 \leq i \leq \log d$.

Proof of Lemma 3.3: Let T be a binary tree with $\log d + 1$ levels. In order to construct the desired hypergraph H we proceed for each vertex v of T as follows. For each leaf descendant w of v we let the path from v to w be a hyperedge of multiplicity $2^{l(v)}$ where $l(v)$ denotes the level of v. Figure 2 shows an illustration. The construction yields that each full branch of T_H has 2^i bottom hyperedges of size $\log d + 1 - i$ for every i with $0 \leq i \leq \log d$. So it remains to show that $d(v) \leq 2d$ for every vertex of $v \in V(T)$. Note that every vertex v has $2^{\log d - l(v)}$ leaf descendants in T_H, implying that v is the start node of $2^{\log d - l(v)} \cdot 2^{l(v)} \leq d$ hyperedges. So the degree of the root is at most $d \leq 2d$. We then apply induction. Suppose that $d(u) \leq 2d$ for all nodes u with $l(u) \leq i - 1$ for some i with $1 \leq i \leq \log d$ and let v be a vertex on level i. By construction exactly half of the hyperedges containing the ancestor of v also contain v itself. Hence v occurs in at most $\frac{1}{2} \cdot 2d = d$ hyperedges as non-start node. Together with the fact that v is the start node of at most d hyperedges this implies that $d(v) \leq d + d \leq 2d$. □
Figure 2: An illustration of \mathcal{H} for $d = 4$. The hyperedge $\{a, b, c\}$ has multiplicity 1, $\{b, c\}$ has multiplicity 2 and $\{c\}$ has multiplicity 4.

The next lemma deals with the second step of the construction of the required hypergraph \mathcal{G}.

Lemma 3.4 There is a hypergraph $\mathcal{H}' \in \mathcal{C}$ with maximum degree $2d$ such that each full branch of $T_{\mathcal{H}'}$ has 2^i bottom hyperedges of size $\log d + 1 - i + \lfloor \log \log d \rfloor$ for some i with $0 \leq i \leq \log d$.

Proof: Let $\mathcal{H} \in \mathcal{C}$ be a hypergraph with maximum degree $2d$ such that every leaf u of $T_{\mathcal{H}}$ is the end node of a set $S_i(u)$ of 2^i hyperedges of size $\log d + 1 - i$ for every i with $0 \leq i \leq \log d$. (Lemma 3.3 guarantees the existence of \mathcal{H}.) To each leaf u of $T_{\mathcal{H}}$ we then attach a binary tree T'_u of height $\lfloor \log \log d \rfloor$ in such a way that u is the root of T'_u. Let $v_0, \ldots, v_{2^{\lfloor \log \log d \rfloor} - 1}$ denote the leaves of T'_u. For every i with $0 \leq i \leq 2^{\lfloor \log \log d \rfloor} - 1$ we then augment every hyperedge of $S_i(u)$ with the set of vertices different from u along the full branch of T'_u ending at v_i.

After repeating this procedure for every leaf u of $T_{\mathcal{H}}$ we get the desired hypergraph \mathcal{H}'. It remains to show that every vertex in \mathcal{H}' has degree at most $2d$. To this end note first that during our construction the vertices of \mathcal{H} did not change their degree. Secondly, let u be a leaf of $T_{\mathcal{H}}$. By assumption u has degree at most $2d$ and by construction $d(v) \leq d(u)$ for all vertices $v \in V(\mathcal{H}') \setminus V(\mathcal{H})$, which completes our proof. □

Lemma 3.5 There is a hypergraph $\mathcal{H}'' \in \mathcal{C}$ with maximum degree $2d$ such that every full branch of $T_{\mathcal{H}''}$ has one bottom hyperedge of size $\log d + 1 + \lfloor \log \log d \rfloor$.

Note that due to our choice of d, Lemma 3.5 directly implies Lemma 3.2. □

Proof of Lemma 3.5: By Lemma 3.4 there is a hypergraph $\mathcal{H}' \in \mathcal{C}$ with maximum degree $2d$ such that each full branch of $T_{\mathcal{H}'}$ has 2^i bottom hyperedges of size $\log d + 1 - i + \lfloor \log \log d \rfloor$ for some i with $0 \leq i \leq \log d$. For every leaf u of $T_{\mathcal{H}'}$ we proceed as follows. Let e_1, \ldots, e_{2^i} denote the bottom hyperedges of \mathcal{H}' ending at u. We then attach a binary tree T'' of height i to u in such a way that u is the root of T''. Let p_1, \ldots, p_{2^i} denote the full branches of T''. We finally augment e_j with the vertices along p_j, for $j = 1 \ldots 2^i$.

After repeating this procedure for every leaf u of $T_{\mathcal{H}'}$ we get the resulting graph \mathcal{H}''. By construction every full path of $T_{\mathcal{H}''}$ has one bottom hyperedge of size $\log d + 1 + \lfloor \log \log d \rfloor$. A similar argument as in the proof of Lemma 3.4 shows that the maximum degree of \mathcal{H}'' is at most $2d$. □
To prove Theorem 1.2 we then use the same basic ideas, augmented with some refined analysis. To achieve the additional factor of $\frac{1}{4}$ in the bound on the maximum degree we however have to deal with many technical issues.

3.2 The actual Theorem

We fix some notation first. A unit is a set of 2^i hyperedges of size $\log d + 1 - i$ for some $i \leq \log(d) + 1$. Similarly, a unit of power k denotes a set of 2^i hyperedges of size $\log d + 1 - i + k$ for some $i \leq \log(d) + 1$. Let U be a unit. By a slight abuse of notation we let the length $l(U)$ of a unit U denote the size of the hyperedges of U. Accordingly, a unit is called a bottom unit if all of its hyperedges are bottom hyperedges.

Note that we have already used the term of a unit implicitly in the proof of Theorem 3.1, e.g. the hypergraph \mathcal{H} mentioned in Lemma 3.3 has the property that each full branch of $T_{\mathcal{H}}$ has $\log d + 1$ bottom units of length at most $\log d + 1$ each, the hypergraph \mathcal{H}' of Lemma 3.4 corresponds to a tree $T_{\mathcal{H}'}$ where each full branch contains one bottom unit of power $\lfloor \log \log d \rfloor$ and, finally, in the tree $T_{\mathcal{H}''}$ of Lemma 3.5 every full branch contains a bottom unit of length n, which represents an ordinary hyperedge of size n.

Proof of Theorem 1.2 Due to Observation 2.1 it suffices to show the following.

Lemma 3.6 There is an n-uniform hypergraph $\mathcal{H} \in \mathcal{C}$ with maximum degree $\frac{2n-1}{n}$ such that every full branch of $T_{\mathcal{H}}$ contains a hyperedge of \mathcal{H}.

□

Proof of Lemma 3.6

Let $d = \frac{2n-2}{n}$. For simplicity we assume that n is a power of 2, implying that d is a power of 2. From now on by a hypergraph we mean an ordinary hypergraph of \mathcal{C} with maximum degree $2d$.

We now state some technical lemmas.

3.2.1 General Facts

The basic operation we use in our construction will be denoted by node splitting. Let \mathcal{G} be a hypergraph and let u be a leaf of $T_{\mathcal{G}}$ such that there is a set S of bottom hyperedges ending at u. Then splitting u means that we add two children v_1, v_2 to u, partition S into two subsets S_1, S_2 and augment every hyperedge of S_i with v_i for $i = 1, 2$. Possibly we also add new hyperedges of size 1 containing either v_1 or v_2. Figure 3 shows an illustration for $|S| = 2$. We will often apply a series of hyperedge splittings. By extending a hypergraph \mathcal{G} at a leaf u of $T_{\mathcal{G}}$ we denote the process of successively splitting one of the current leaves in the subtree of u; i.e., the resulting hypergraph can be obtained by adding to u a left and a right subtree, modifying the hyperedges of \mathcal{G} containing u and possibly adding some new hyperedges starting at a descendant of u (the other hyperedges remain as they are).
The next lemma is about another basic modification.

Lemma 3.7 Let \(G \) be a hypergraph and let \(u \) be a leaf of \(T_G \) such that the full branch of \(T_G \) ending at \(u \) contains \(i \) bottom units \(U_1, \ldots, U_i \) with \(l(U_j) \leq \log d \). Then \(u \) can be split in such a way that each full branch containing \(u \) has \(i + 1 \) bottom units \(U_1', \ldots, U_{i+1}' \) with \(l(U_1') = 1 \) and \(l(U_{j+1}') = l(U_j) + 1 \) for \(j = 1 \ldots i \).

Proof: Let \(v_1, v_2 \) be the children of \(u \). For each \(U_i \) we proceed as follows. To half of the hyperedges of \(U_i \) we add \(v_1 \) and to the other half we add \(v_2 \). Finally, we let \(\{v_1\}, \{v_2\} \) be hyperedges occurring with multiplicity \(d \) each. Let \(G' \) denote the resulting hypergraph. By construction \(G' \) fulfills the requirements of **Lemma 3.7** as far as the bottom units \(U_1', \ldots, U_{i+1}' \) are concerned. It remains to show that \(G \) has maximum degree \(2d \). To this end note that apart from \(v_1 \) and \(v_2 \) all vertices of \(G' \) have the same degree as in \(G \). The construction yields that \(d_G(v_1), d_G(v_2) \leq d + \frac{d_G(u)}{2} \). Since by assumption \(d_G(u) \leq 2d \) we are done. \(\Box \)

Note that **Lemma 3.3** states that there is a hypergraph \(H \in \mathcal{C} \) such that each full branch of \(T_H \) has \(\log d + 1 \) bottom units of length at most \(\log d + 1 \). We generalize this fact in the following two statements, which are both direct Corollaries of Lemma 3.7.

Corollary 3.8 Let \(i \leq \log d + 1 \). Then there is a hypergraph \(G \) such that each full branch of \(T_G \) contains \(i \) bottom units \(U_1, \ldots, U_i \) with \(l(U_j) = j \) for \(j = 1 \ldots i \).

Corollary 3.9 Let \(r \leq s \) be integers with \(s \leq \log d + 1 \). Let \(G \) be a hypergraph and let \(u \) be a leaf of \(T_G \) such that the full branch ending at \(u \) contains \(i \) bottom units \(U_1, \ldots, U_i \) with \(l(U_j) \leq r \) for every \(j = 1, \ldots, i \). Then \(G \) can be extended at \(u \) in such a way that in the tree \(T_{G'} \) corresponding to the resulting hypergraph \(G' \) each full branch containing \(u \) has \(i + s - r \) bottom units \(V_1, \ldots, V_{s-r}, V_1', \ldots, V_i' \) with \(l(V_j) = j \) for \(j = 1 \ldots s - r \) and \(l(V_j') = l(U_j) + s - r \) for \(j = 1 \ldots i \).

Next we describe how one can develop some units by giving up others. Let \(k \geq 0 \) and let \(i \) be an even number. Suppose there is a hypergraph \(G \) and a vertex \(u \in V(G) \) such that \(u \) is a leaf of \(T_G \) and the full branch ending at \(u \) contains \(i \) bottom units \(U_1, \ldots, U_i \) of power \(k \) each. Then \(u \) can be split in such a way that each full branch of containing \(u \) has \(\frac{i}{2} \) bottom units of power \(k + 1 \). Indeed, we just have to split \(u \) in such a way that one child \(v \) of \(u \) is added to all hyperedges of \(U_j \) for every
$j \leq \frac{c}{2}$ whereas the other child w of u is added to all hyperedges of U_j for every $j \geq \frac{c}{2} + 1$. This directly implies the following.

Proposition 3.10 Let $k \geq 0$ and let i be a power of 2. Suppose that there is a hypergraph G and a leaf u of T_G such that the full branch ending at u contains i bottom units U_1, \ldots, U_i of power k each. Then G' can be extended at u in such a way that in the tree $T_{G'}$ of the resulting hypergraph G' each full branch containing u has a bottom unit of power $k + \log i$.

We describe some other frequently applied modifications of hypergraphs. Let $k \geq 0$, let G be a hypergraph and let u be a leaf of T_G such that the full branch ending at u contains a bottom unit U of power k with $|U| \geq 2$. Similarly as above we can split u in such a way that each full branch containing u has a bottom unit U' of power k with $|U'| = \frac{|U|}{2}$. By successively splitting the descendants of u in this way we obtain that finally (in the resulting tree) each full branch containing u has a bottom unit of power k with $|U| = 1$. Together with the fact that a unit U of power k with $|U| = 1$ must have length $\log d + k + 1$ this implies that to show Lemma 3.6 it is sufficient to establish a hypergraph G where each full branch of T_G contains one bottom unit of power $n - \log d - 1$. Together with Proposition 3.10 this implies the following.

Observation 3.11 Suppose that there is a hypergraph G where each full branch P of T_G contains l_P bottom units of power k_P such that $k_P + [\log l_P] \geq n - \log d - 1$. Then Lemma 3.6 holds.

We are now able to roughly describe the actual construction of \mathcal{H}.

3.2.2 Development of the game

Let U be a unit and let v be a vertex. By a slight abuse of notation we will sometimes say "v is added to U" to express that v is added to all hyperedges of U.

Our goal is to show the following.

Lemma 3.12 There is a hypergraph G such that every leaf u of T_G is the end node of $2 \log d - 6$ bottom units $U_1, \ldots, U_{2 \log d - 6}$ such that $l(U_j) \leq (1 - c) \log d$ for $j \leq \log d$ and some constant $c > 0$.

Before proving Lemma 3.12 we show that it implies Lemma 3.6. Let $c' = \frac{c}{4}$. For each leaf u of T_G we proceed as follows. We add two children v, w to u and then for $j = 1 \ldots 2 \log d - 6$ add to U_j the node v if $j \leq (1 - c') \log d$ and w, otherwise. Then the full branch ending at w contains $(1 + c') \log d - 6 \geq (1 + c'') \log d$ bottom units of power 1 for some suitable constant $c'' > 0$. Our aim is to apply Observation 3.11 (Note that if the full branch ending at v contained the same amount of bottom units as the full branch ending at w then we would be done.) To this end we will split v. Note that the full branch ending at v has $(1 - c') \log d$ units $V_1, \ldots, V_{(1-c') \log d}$ of power 1 with $l(V_j) = l(U_j) + 1 \leq (1 - c) \log d + 1$ for every $j = 1, \ldots, (1 - c') \log d$. Since $l(V_j) \leq \log d + 1$ we have $|V_j| \geq 2$ and therefore every V_j can be partitioned into two units V'_j, V''_j of
power 0 with $|V_j'|, |V_j''| = \frac{|V_j|}{2}$. By applying Corollary 3.10 for $i = 2(1 - c') \log d$, $r = (1 - c) \log d + 1$ and $s = \log d + 1$ we get that our current hypergraph can be extended at v in such a way that each full branch containing v has $(2 + \frac{c}{2}) \log d$ bottom units.

After repeating this procedure for every leaf u of T_G we can apply Observation 3.11 which completes our proof.

Proof of Lemma 3.12: For simplicity we assume that $\log d$ is even. We say that a full branch P of a tree T_G has property \mathcal{P} if it contains $2 \log d - 6$ bottom units $U_1, \ldots, U_{2 \log d - 6}$ such that $l(U_j) \leq (1 - c) \log d$ for $j \leq \log d$ and some constant $c > 0$. Our construction of the desired hypergraph \mathcal{G} will consist of two major steps. The next proposition is about the first step.

Proposition 3.13 Let i be an integer with $0 \leq i \leq \log d - 2$. Let $k_1 = \log d$, if $i = 0$ and $k_1 = \log d - i - 2$, otherwise. Then there is a hypergraph \mathcal{G} such that each full branch of T_G either has property \mathcal{P} or contains $\log d + i$ bottom units $U_1, \ldots, U_{\log d + i}$ with

- $l(U_j) = j$ for $j \leq k_1$
- $l(U_{k_1 + 2r - 1}), l(U_{k_1 + 2r}) = k_1 + r + 1$ for $r \geq 1$

Proof: We proceed by induction. By Corollary 3.8 applied for $i = \log d$ the claim is true for $i = 0$. Suppose that it holds for $i \leq \frac{\log d}{2} - 2$. For each leaf u of T_G we then proceed as follows. If the full branch ending at u has property \mathcal{P} then we do nothing. Otherwise, induction yields that the full branch ending at u contains $\log d + i$ bottom units $U_1, \ldots, U_{\log d + i}$ according to the description in Proposition 3.13. We then add two children v, w to u. For $j = 1 \ldots \log d + i$ we then add to U_j the vertex v if $j \leq i + 2$ and w, otherwise. Note that the full branch ending at w contains $\log d - 2$ bottom units $V_{i+3}, \ldots, V_{\log d + i}$ of power 1 with $l(V_j) = l(U_j) + 1$ for $j = i + 3 \ldots \log d + i$. Since each V_j is of length at most $\log d + 1$ it contains at least two hyperedges and can thus be partitioned into two units V_j', V_j'' of power 0 with $l(V_j'), l(V_j'') = l(U_j) + 1$. Moreover, $l(V_j') \leq k_1 + \left\lceil \frac{r - k_1}{2} \right\rceil + 1$ (it can be checked that this is true both for $r \geq k_1$ and $r \leq k_1$). Hence $l(V_j') \leq k_1 + \left\lceil \frac{r + \log d - k_1}{2} \right\rceil + 1$. So $l(V_j') \leq \frac{3}{4} \log d + 1$ and thus the full branch ending at w has property \mathcal{P}.

It remains to consider the full branch P ending at v. P contains $i + 2$ units V_1, \ldots, V_{i+2} of power 1, which due to a similar argument as before correspond to $2(i + 2)$ units $V_1', V_1'', \ldots, V_{i+2}', V_{i+2}''$ with $l(V_j'), l(V_j'') = l(U_j) + 1 = j + 1$ (note that $i + 2 \leq k_1$) for $j = 1 \ldots i + 2$. By applying Corollary 3.9 for $r = i + 3$ and $s = \log d$ we get that our current hypergraph can be extended at v in such a way that each full branch containing v has the $\log d + i + 1$ required bottom hyperedges (considering the induction hypothesis for $i + 1$). After repeating this procedure for every leaf u of T_G the resulting hypergraph fulfills our hypothesis for $i + 1$. □

The following corollary specifies the result of our first step.

Corollary 3.14 Let $k_1 = \frac{\log d}{2} - 1$. Then there is a hypergraph \mathcal{G} such that each full branch of T_G either has property \mathcal{P} or contains $\frac{3}{4} \log d - 1$ units $U_1, \ldots, U_{\frac{1}{4} \log d - 1}$ such that
• \(l(U_j) = j \) for \(j \leq k_1 \)

• \(l(U_{k_1+2r-1}), l(U_{k_1+2r}) = k_1 + r + 1 \) for \(r \geq 1 \)

The next proposition deals with the second major step of our construction.

Proposition 3.15 Let \(i \) be an integer with \(\log d - 1 \leq i \leq \log d - 6 \) and let \(k_1 = \frac{\log d}{2} - 1 \), if \(i = \frac{\log d}{2} - 1 \) and \(k_1 = \log d - i - 4 \), otherwise. Then there is a \(k_2 \geq 2 \) such that there is a hypergraph \(G \) where each full branch of \(T_G \) either has property \(P \) or contains \(\log d + i \) units \(U_1, \ldots, U_{\log d + i} \) with

- \(l(U_j) \leq j \) for \(j \leq k_1 \)
- \(l(U_{k_1+2r-1}), l(U_{k_1+2r}) \leq k_1 + r + 1 \) for \(1 \leq r \leq k_2 \)
- \(l(U_{k_1+2k_2+2m-1}), l(U_{k_1+2k_2+2m}) \leq k_1 + k_2 + m + 2 \) for \(m \geq 1 \)

Note that Proposition 3.15 applied for \(i = \log d - 6 \) directly implies Lemma 3.12 \(\square \)

So it remains to show Proposition 3.15.

Proof of Proposition 3.15: Corollary 3.14 yields that our claim is true for \(i = \frac{\log d}{2} - 1 \) (with \(k_2 = \infty \)). Suppose that the claim holds for \(i \). For each leaf \(w \) of \(T_G \) we proceed as follows. If the full branch ending at \(u \) has property \(P \) we do nothing. Otherwise induction yields that the full branch ending at \(u \) contains \(\log d + i \) bottom units \(U_1, \ldots, U_{\log d + i} \) according to the description in Proposition 3.15. In this case we add two children \(v, w \) to \(u \) and for \(j = 1 \ldots \log d + i \) add to \(U_j \) the node \(v \), if \(j \leq i + 3 \) and \(w \), otherwise. The full branch \(P \) ending at \(w \) contains \(\log d - 3 \) units \(U_{i+4}, \ldots, U_{\log d+i} \) of power 1 with \(l(U'_j) = l(U_j) + 1 \). The induction hypothesis yields that for each \(U'_j \) we have \(l(U'_j) \leq \log d \), implying that \(|U'_j| \geq 2 \). So \(U'_j \) can be partitioned into two units \(V'_j, V''_j \) of power 0 with \(l(V'_j), l(V''_j) = l(U'_j) \). Due to our hypothesis \(l(V'_j) \) (and \(l(V''_j) \), respectively) is at most \(k_1 + 2 + \lceil \frac{m_i}{d} \rceil \) (note that this also holds for \(j \leq k_1 \)) and so for \(j \) with \(i+4 \leq j \leq i+3 + \frac{\log d}{2} \) we have \(l(V'_j) \leq k_1 + 2 + \frac{i+3}{2} + \frac{\log d}{4} \leq \frac{3}{2} \log d + 3 \). Since \(P \) contains \(V'_{i+4}, V''_{i+4}, \ldots, V'_{\log d+i}, V''_{\log d+i} \) it has property \(P \).

It remains to consider the full branch \(P \) ending at \(v \). \(P \) contains \(i + 3 \) units \(U'_{i+3} \) of power 1. For a similar reason as above they can be partitioned into \(2(i + 3) \) units \(V^{(1)}_1, V^{(2)}_1, \ldots, V^{(1)}_{i+3}, V^{(2)}_{i+3} \) with \(l(V^{(s)}_j) = l(U_j) + 1 \) for \(s \in \{1, 2\} \). According to our assumption we have for \(s \in \{1, 2\} \)

- \(l(V^{(s)}_j) \leq j + 1 \) for \(j \leq k_1 \)
- \(l(V^{(s)}_{k_1+2r-1}), l(V^{(s)}_{k_1+2r}) \leq k_1 + r + 2 \) for \(1 \leq r \leq k_2 \)
- \(l(V^{(s)}_{k_1+2k_2+2m-1}), l(V^{(s)}_{k_1+2k_2+2m}) \leq k_1 + k_2 + m + 3 \) for \(m \geq 1 \)

Note that for each \(V^{(s)}_j \) we have \(l(V^{(s)}_j) \leq j + 2 \leq i + 5 \) (this can be seen by considering each of the three possible intervals for \(j \) separately and using that \(k_2 \geq 1 \)). Let \(k'_i = \log d - i - 5 \). By applying Corollary 3.9 for \(r = i + 5 \) and \(s = \log d \) we obtain that our current graph can be extended at \(v \) in
such a way that each full branch of the tree $T_{G'}$ of the resulting graph G' contains $\log d + i + 1$ units $X_1, \ldots, X_{k'_i}, W_1^{(1)}, W_1^{(2)}, \ldots, W_{i+3}^{(1)}, W_{i+3}^{(2)}$ with

- $l(X_j) \leq j$ for $j \leq k'_1$
- $l(W_j^{(s)}) \leq j + k'_1 + 1$ for $s \in \{1, 2\}$ and $j \leq k_1$
- $l(W_{k_1+2r-1}^{(s)}) \leq k_1 + k'_1 + r + 2$ for $s \in \{1, 2\}$ and $r \leq k_2$
- $l(W_{k_1+2k_2+2m-1}^{(s)}) \leq k_1 + k_2 + k'_1 + m + 3$ for $s \in \{1, 2\}$ and $m \geq 1$

Let $i' = i + 1$ and $k'_2 = k_1$. Note that $k'_1 = \log d - i' - 4$ and that $k'_2 \geq 2$ (due to the fact that by definition $k_1 \geq 2$). The fact that $k_2 \geq 2$ guarantees that after a suitable renaming the units $X_1, \ldots, X_{k'_i}, W_1^{(1)}, W_1^{(2)}, \ldots, W_{i+3}^{(1)}, W_{i+3}^{(2)}$ fulfill our hypothesis for i', k'_1 and k'_2. □

4 Establishing a Proper Halving 2-Coloring

Proof of Theorem 1.3 For simplicity we only consider hypergraphs with an even number of vertices. We will show the following stronger claim.

Proposition 4.1 Let F be a n-uniform hypergraph with maximum degree at most $\frac{2^n}{dn}$. Then for each pairing $(v_1, w_1), (v_2, w_2), (v_3, w_3), \ldots$ of the vertices of F there is a proper 2-coloring such that v_k and w_k have different colors for each k.

To prove Theorem 1.3 it suffices to prove Proposition 4.1. We adapt a proof by Kratochvíl, Savický and Tuza [4].

Proof of Proposition 4.1 Our claim is a consequence of Lovász Local Lemma.

Lemma 4.2 (Lovász Local Lemma.) Let A_1, \ldots, A_m be events in some probability space, and let G be a graph with vertices A_1, \ldots, A_m and edges E such that each A_i is mutually independent of all the events $\{A_j \mid \{A_i, A_j\} \notin E, i \neq j\}$. If there exist real numbers $0 < \gamma_i < 1$ for $i = 1, \ldots, m$ satisfying

$$Pr(A_i) \leq \gamma_i \prod_{j : \{A_i, A_j\} \in E} (1 - \gamma_i)$$

for all $i = 1, \ldots, m$ then

$$Pr(\neg A_1 \land \neg A_2 \land \cdots \land \neg A_m) > 0$$

For a proof of the Lovász Local Lemma and different versions, see e.g. [1]. Let $d = \frac{2^n}{dn}$. Note that each proper coloring of F fulfilling the condition that v_k and w_k have different colors for each k is a proper-2-coloring. In each edge of F we then replace w_k with \bar{v}_k, expressing that w_k gets the "inverse" color of v_k. Let F' denote the resulting hypergraph. Note that the maximum degree of F' is at most $2d = \frac{2^n}{2en}$. Indeed, the degree of v_k is bounded by the number of edges possessing
plus the number of edges possessing \(\bar{v}_k \). Since edges containing both \(v_k, \bar{v}_k \) get two colors in every coloring we can ignore those edges and assume that no edge of \(\mathcal{F}' \) contains both \(v_k, \bar{v}_k \) for some \(k \). Since every proper 2-coloring of \(\mathcal{F}' \) directly provides the desired proper halving 2-coloring, it suffices to show that \(\mathcal{F}' \) has a proper 2-coloring. To this end we apply the Lovász Local Lemma. Let the probability space be the set of all color assignments to the vertices of \(\mathcal{F} \) with the uniform distribution. Let \(E(\mathcal{F}') = \{ E_1, \ldots, E_m \} \) and let \(A_i \) be the event that \(E_i \) is monochromatic in a random 2-coloring. Let \(G \) be the graph where \(A_i \) and \(A_j \) are connected if they have a vertex in common. Since every vertex has degree at most \(2d \) every \(A_i \) has degree at most \(n \cdot (2d - 1) \). Note that \(\Pr(A_i = 1) = 2 \cdot 2^{-n} \). We let \(\gamma_i = e \cdot \Pr(A_i = 1) = 2e \cdot 2^{-n} \) for each \(i \). Hence

\[
\frac{\gamma_i}{\Pr(A_i = 1)} \prod_{A_i, A_j \in E(G)} (1 - \gamma_j) \geq e \left(1 - \frac{2e}{2^n} \right)^n \left(\frac{2^n}{2^n - 1} \right)^{-1} > e \left(1 - \frac{2e}{2^n} \right)^{\frac{2^n}{2^n - 1}} > ee^{-1} = 1
\]

Hence \(Pr(\neg A_1 \land \neg A_2 \land \cdots \land \neg A_m) > 0 \) and therefore there is a proper 2-coloring on \(\mathcal{F}' \). □

References

[1] N. Alon and J.H. Spencer, The Probabilistic Method J. John Wiley & Sons (2002).

[2] J. Beck, Remarks on positional games Acta Math. Acad. Sci. Hungar. 40 (1982), 65–71.

[3] P. Erdős and J.L. Selfridge, On a combinatorial game J. Combinatorial Theory Ser. A 14 (1973) 298–301.

[4] J. Kratochvil, P. Savický and Z. Tuza, One more occurrence of variables makes satisfiability jump from trivial to NP-complete SIAM Journal of Computing 22(1) 22(1) (1993) 203210