Sulphur Dioxide Adsorption on Nickel Smelting Industry in East Luwu Using a Solution of Hydrogen Peroxide

Agus Dina¹, Muhammad Sjahru1, Muhammad Zakir¹, Dadang Ahmad Suriamihardja²

¹Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar, Indonesia
²Department of Physics, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar, Indonesia

Email address:
muhmmadzakir@gmail.com (M. Zakir)

To cite this article:
Agus Dina, Muhammad Sjahru1, Muhammad Zakir¹, Dadang Ahmad Suriamihardja. Sulphur Dioxide Adsorption on Nickel Smelting Industry in East Luwu Using a Solution of Hydrogen Peroxide. American Journal of Environmental Protection. Vol. 5, No. 4, 2016, pp. 103-108.
doi: 10.11648/j.ajep.20160504.15

Received: June 22, 2016; Accepted: July 4, 2016; Published: July 16, 2016

Abstract: Research on SO₂ gas adsorption from emissions of nickel ore industries plant use coal in the smelting process and the production by using H₂O₂ as an adsorbent solution. The adsorbent used to reduce the level of SO₂ in the air pollution. This study includes the adsorption of SO₂ gas of 6 factory chimneys at the nickel ore industry (2 dryers, 2 kilns, and 2 furnaces). The results showed that the percentage ratio of the average absorbance between H₂O₂ and calcium carbonate in reducing greenhouse gas emissions of SO₂ into the air that is 95.00%: 93.34%. As for the rest of SO₂ gas unadsorbed fixed meet the quality standards specified (750 mg/m³). Batch adsorption was conducted with respect to concentration of adsorbent, the adsorption temperature, and contact time. It was shown that the optimum concentration of adsorbent was 5%, the adsorption temperature was 20°C, and contact time was 1800 second.

Keywords: SO₂ Gas, Hydrogen Peroxide, Gas Emission

1. Introduction

Total human population that continues to increase accompanied by increased their requirement and their activities. Diverse human activities have negative and positive impact on the environment. One of its negative effects that currently very disturbing is air pollution. According [16], air pollution is the presence of one or more physical substance, chemical, or biological in the atmosphere in an amount which can endanger the health of humans, animals and plants.

One of the substances that can cause air pollution is sulfur. Sulfur compounds in different forms has been known as a major air pollutant industrial areas as a result of burning fossil fuels, and can be derived from volcanic eruptions. In the future, an estimated amount of sulfur discharged into the atmosphere would have increased 10-fold [41]. In the form of gas, SO₂ can cause irritation to the lungs that causing hard to breathing especially for people who has asthma, children and the elderly. SO₂ is also able to react with other chemical compounds formed sulfate particles that if inhaled can accumulate in the lungs and cause breathing problems, respiratory illnesses, and even death [9].

One of the industries that produce gas emission SO₂ is smelting industry Nickel located in Sorowako, East Luwu, South Sulawesi, where the production process is done by burning the raw material in the kiln-firing with coal and produce byproduct that is SO₂ [19]. The main problem that causing gas emissions SO₂ in the industry is coal as the main fuel, even if used is coal with the best quality (low sulfur content), sulfur dioxide will formed surely and estimated gas emissions SO₂ is wasted at least able to reach 13 tons/hour.

Reducing gas emissions SO₂ can be done with a wet scrubber systems, combustion flue gas is sprayed with slurry (lime slurry), Ca(OH)₂ were able to reduce SO₂ emissions of 88.5 thousand tons/year to 4.5 thousand tons/year or absorption SO₂ gas approximately 95% [24] but this process can produce CO₂ which is also one of the air pollutants. System wet scrubber also create problems with the chimney because there is spraying a slurry of lime on the chimney wall [43] and this system is costly because the industry had to prepare the land for mining and milling
limestone as well as land for waste disposal in a large capacity [48].

Based on the description above, it takes a process to reduce gas emissions SO$_2$ that are environmentally friendly and not damage the property industry. As it is known that the gas sulfur dioxide is a colorless, flammable and easily soluble in water, young oxidized, and can react with other compounds. Based on the chemical and physical properties, then the SO$_2$ can be removed by oxidation using oxidizing agent that is hydrogen peroxide and this reaction can produce sulfuric acid compound, so this research is carried out to reduce SO$_2$ gas emissions in the nickel industry located in the east Luwu using hydrogen peroxide.

2. Experimental

This research was carried out directly on the nickel smelting industry in East Luwu. This research is qualitative and quantitative research on the amount of SO$_2$ can react with the hydrogen peroxide. Samples emissions of SO$_2$ that get as laboratory scale using an instrument (Figure 1) and there are variation on concentrations, temperature and time of hydrogen peroxide to react with SO$_2$. This process is carried out at the time when the industry is operating in conditions of temperature, flow rate and pressure of maximum emissions. SO$_2$ concentration was measured using a UV - Vis spectrophotometer.

2.1. Instrument

![Figure 1. The series of instrument of SO$_2$ sampling.](image)

Description of Instrument:
A: Pipe sampling test;
B: Flange;
C: heater element;
D: glass wool;
E1, E2: adsorption bottle of 250 mL;
F1, F2: junction three-cock;
G: drying tube;
H: wash bottle containing the adsorbent solution;
I: aspirator pump;
J: gas meter (capacity 1 L - 5 L per circle);
K: gas meter thermometer;
L: manometer;
M: thermometer;
N1: the cover faucet;
N2: faucet flow rate regulator;
O: rubber pipe (flurorubber);
P: cooling container.

2.2. Material

The materials used in this research are hydrogen peroxide 30%, NaCl, HCl (37% w/v), Glycerol, Barium chloride (BaCl$_2$), Sulfuric acid (H$_2$SO$_4$) 0.1 N; Sodium tetraborate (boraks, Na$_2$B$_4$O$_7$·10H$_2$O) 0.1 N; Indicator SM (sindur methyl) or MO (methyl orange) and Field blank solution.

3. Results and Discussion

Sampling and adsorption exhaust gas emissions industry conducted for twelve days in May 2015. The sampling is done where the condition of each chimney in a state of maximum 6 industrial chimney, each on 2 chimney dryer, 2 chimney Kiln, and 2 chimney furnace. The sampling
technique uses a series of side tool probe, vacuum for sucking in air emissions and a series of impinger a place for adsorbent solution (hydrogen peroxide). To view the results of adsorption of SO$_2$ gas, then conducted sample analysis in Laboratory Technical Implementation Unit of the Environment Agency of South Sulawesi province. Description of adsorption results concentration of SO$_2$ of each chimney can be seen in the following chart.

Table 1. Results of adsorption concentration of SO$_2$ gas in chimneys emissions based on variations concentration of adsorbent solution.

No	Concentration (%)	Hydrogen peroxide					
		Dryer 1	Dryer 2	Kiln 1	Kiln 2	Furnace 1	Furnace 2
1	1	2,585.25	3,185.07	4,093.89	3,031.75	6,345.13	6,495.09
2	2	4,558.59	4,383.21	4,717.91	3,432.83	6,462.34	6,290.94
3	3	5,545.59	4,390.07	4,949.44	3,790.89	8,414.79	8,052.81
4	4	4,824.26	5,468.10	6,067.79	4,548.50	8,570.97	8,406.47
5	5	5,652.36	5,610.57	7,805.51	6,099.64	10,501.50	10,590.40

Table 2. Results of adsorption concentration of SO$_2$ gas in chimneys emissions by temperature variations of adsorbent solution.

No	Temp. (°C)	Hydrogen peroxide					
		Dryer 1	Dryer 2	Kiln 1	Kiln 2	Furnace 1	Furnace 2
1	20	5,328.14	5,377.72	6,674.04	5,316.34	9,613.78	10,015.3
2	25	4,526.98	4,988.47	6,466.24	4,381.93	9,603.76	8,610.69
3	30	4,083.60	4,918.19	6,006.50	3,854.37	8,433.09	8,563.33
4	35	3,437.75	4,765.20	4,018.89	3,694.13	7,257.47	6,373.46
5	40	2,780.29	3,333.34	3,573.66	2,852.99	6,229.25	6,236.93

Table 3. Results of adsorption concentration of SO$_2$ gas in chimneys emissions based on time variation of adsorbent solution.

No	Time (second)	Hydrogen peroxide					
		Dryer 1	Dryer 2	Kiln 1	Kiln 2	Furnace 1	Furnace 2
1	600	2,880.02	2,650.28	3,698.88	2,796.12	5,789.36	4,584.16
2	900	3,389.42	3,665.24	4,864.09	3,222.10	6,741.13	5,528.04
3	1200	4,673.73	4,305.88	5,552.45	4,538.86	8,455.43	8,149.12
4	1500	4,937.86	5,097.07	6,559.05	5,267.34	9,685.90	8,101.28
5	1800	5,447.36	5,585.66	7,466.57	6,019.59	10,271.01	10,249.52

Figure 2. Results of adsorption concentration of SO$_2$ gas in chimneys emissions based on variations concentration of adsorbent solution.

Figure 3. Results of adsorption concentration of SO$_2$ gas in chimneys emissions by temperature variations of adsorbent solution.
direct measurements of SO2 gas emissions conducted in the same month of the dryer 1 with a gas flow rate 239.39 m/sec, dryer 2 with a gas flow rate 212.39 m/sec produce an average of test results to produce ±4785.43 tons/month or equivalent to 8692.64 mg/m³, while from kiln 1 with a flow rate 171.52 m³/sec and kiln 2 with a flow rate 223.94 m³/sec produce an average of ±4907.70 tons/month or equivalent to 9622.94 mg/m³. Furnace 1 with a gas flow rate 236.63 m³/sec and furnace 2 with a gas flow rate 170 m³/sec also resulted in an average concentration ±4907.7 tons/month or equivalent to 9259.81 mg/m³.

Gas emissions that are not adsorbed from flue dryer 1 is 161.81 tons/month or 190.59 mg/m³ or 3.38%, dryer 2 is 437.02 tons/month or 538.87 mg/m³ or 9.13%, kiln 1 was 452.71 tons/month or 743.37 mg/m³ or 9.22%, kiln 2 was 519.75 tons/month or 688.41 mg/m³ or 10.59%, furnace 1 was 187.70 ton/month or 402.79 mg/m³ or 3.82%, and furnace 2 was 186.86 tons/month or 407.10 mg/m³ or 3.81%.

The results showed that the higher the temperature of the solution is getting lower to adsorb exhaust gas emissions, the lower the flow rate of the exhaust gas is getting greater the ability reaction of adsorbent and the nature of the gases emitted fluctuations in temperature, pressure and flow rate as well as the turbulence also affects the absorption of gas emissions factory chimneys.

Based on data from previous research using a slurry of lime (calcium hydroxide) which is able to adsorb sulfur dioxide by 95% equal to the adsorption ability of hydrogen peroxide that is 94.85% from industrial sources of nickel.

4. Conclusions

This result of this study that is comparison of percentage of the average adsorption accumulation between adsorbent solution using a solution of hydrogen peroxide and calcium carbonate slurry to reduce sulfur dioxide emissions into the ambient air show results approximately equal to the lime slurry that is 95.00%; 93.34%. The adsorption concentration of SO2 greater if conditions adsorbent greater concentration, then the lower the temperature and the longer the adsorption time. Emissions of the six chimneys that are not adsorbed, they meet the standards set. under the rules of the Governor Number 69 Year 2010 on the quality standard emissions of SO2 750 mg/m³, means that hydrogen peroxide as a adsorbent solution viable as an alternative instead of calcium carbonate.

References

[1] Ahmed, I. B., P. K. Gbor, and C. Q. Jia, “Aqueous sulfur dioxide leaching of Cu, Ni, Co, Zn, and Fe from smelter slag in absence of oxygen,” Can. J. Chem. Eng. 78(A) 694-703 (2000).

[2] Ahmed, I. B., P. K. Gbor, and C. Q. Jia, "Effect of O2 on aqueous SO2 leaching of Co, Cu, and Ni from discard smelter slag,“ Can. J. Chem. Eng. 80(3) 410-420 (2002).
[40] Djayanti, S., Perancangan Prototipe Alat Pengendalian Pencemaran SO\textsubscript{2} dengan Teknologi Non Thermal Plasma. Balai Besar Teknologi Pencegahan Pencemaran Industri.

[41] Sjahrol, M., 2001, Kimia Lingkungan. Fakultas MIPA. Universitas Hasanuddin. Makassar.

[42] Smith, S. J., Andres, R., Conception, E., and Lurz, J.: Sulfur Dioxide Emissions: 1850–2000, JGCRI Report PNNL-14537, 2004.

[43] Srivastava, A., and Kumar, R., 2001, Economics Valuation of Health Impact of Air Pollution in Mumbai, Environmental Monitoring and Assessment, 75: 135-143.

[44] Sudrajad, Agung., 2006, Pencemaran Udara, Suatu Pendahuluan

[45] Valix, M., and W. H. Cheung, 2002, Effect of sulfur on the mineral phases of laterite ores at high temperature reduction, Miner. Eng. 15: 523-530.

[46] Youvial M, Sastrawinata, Yurismono (1999), Laporan Akhir Studi Kelayakan Pengendalian Emisi SO\textsubscript{2}, UPT LSDE–BPPT, Maret 1999.

[47] Yurismono H., Cahyadi, YenniWesti (2003), Pengendalian SO\textsubscript{2} dengan Sistem Injeksi Batu Kapur pada PLTU Batubara, Laporan Akhir RUT, UPT LSDE–BPPT.

[48] Watson, J., Chow, J., Wang, X., Kohl, S., Sodeman, D., 2010. Measurement of Realworld Stack Emissions with a Dilution Sampling System (No. 010109-123109), Prepared by Desert Research Institute, Reno, NV, for Ft. McMurray, AB, Canada, Wood Buffalo Environmental Association.

[49] Xiao, H. Y., Liu, C. Q., 2002. Sources of nitrogen and sulfur in wet deposition at Guiyang, southwest China. Atmospheric Environment 36, 5121-5130.

[50] Zhang, W., P. Singh and D. M. Muir, 2000, SO\textsubscript{2}/O\textsubscript{2} as an oxidant in hydrometallurgy, Miner. Eng. 13(13), 1319-1328.

[51] Zhao, F., Knights, J., Hu, Z., McGrath, S., 2003. Stable sulfur isotope ratio indicates long-term changes in sulfur deposition in the Broadbalk experiment since 1845. Journal of Environmental Quality 32, 33-39.