Recent decade has seen a shift in the causes of childhood blinding diseases from anterior segment to retinal disease in both developed and developing countries. The common retinal disorders are retinopathy of prematurity and vitreoretinal infections in neonates, congenital anomalies in infants, and vascular retinopathies including type 1 diabetes, tumors, and inherited retinal diseases in children (up to 12 years). Retinal imaging helps in diagnosis, management, follow up and prognostication in all these disorders. These imaging modalities include fundus photography, fluorescein angiography, ultrasonography, retinal vascular and structural studies, and electrodagnosis. Over the decades there has been tremendous advances both in design (compact, multifunctional, tele-consult capable) and technology (wide- and ultra-wide field and noninvasive retinal angiography). These new advances have application in most of the pediatric retinal diseases though at most times the designs of new devices have remained confined to use in adults. Poor patient cooperation and insufficient attention span in children demand careful crafting of the devices. The newer attempts of hand-held retinal diagnostic devices are welcome additions in this direction. While much has been done, there is still much to do in the coming years. One of the compelling and immediate needs is the pediatric version of optical coherence tomography angiography. These needs and demands would increase many folds in future. A sound policy could be the simultaneous development of adult and pediatric version of all ophthalmic diagnostic devices, coupled with capacity building of trained medical personnel.

Key words: Newborn eye screening, pediatric retina, pediatric retinal diseases, retinal imaging

The pediatric age group is from birth to 16 years. The World Health Organization (WHO) divides this period into 5 groups: neonate (0-30 days), infant (1–2 years), young child (2–6 years), child (6–12 years), and adolescent (12–16 years).[1]

Retinal disorders are one of the important causes of childhood visual impairment (VI) and blindness.[2,3] These can constitute a large proportion of causes of childhood blindness[5] and is prevalent in both high- and low-income countries.[6] Generally, there appear to be age-specific patterns of pediatric retinal diseases with some degree of overlap. Other than possible birth trauma, the common ones in neonates and infants include retinopathy of prematurity (ROP), TORCH (Toxoplasmosis, Other infections, Rubella, Cytomegalovirus, Herpes simplex) infections, congenital anomalies, retinoblastoma, and retinal dystrophies like Leber Congenital amaurosis (LCA), retinoschisis and achromatopsia. The common retinal disorders in children up to 12 years includes other vascular retinopathies, inflammatory disorders, tumors, non-accidental injuries (previously termed battered baby syndrome), accidental trauma, retinal dystrophies and diabetic retinopathy (secondary to type 1 diabetes). Of all the disorders, there has been an exponential rise in ROP in the last decade and continues to be the most common retinal disease in neonates and infants.[2–5]

Blindness causes a massive impact on the development of the child and affects the psychological, educational, and socioeconomic growth. These in turn lead to increased disability-adjusted life years (DALY).

Retinal imaging has enhanced our ability to refine understanding of the anatomy, pathophysiology, diagnosis, and management of retinal disorders. From the development of the first ophthalmoscope in 1851, to our current ability to visualize individual retinal cells using adaptive optics, the journey has been remarkable[6] But most times the design of
devices using new technologies has been confined to retinal imaging in adults. Neonates and infants have smaller eyes and different anatomy than adults. Most of these devices need good fixation for image capture. Poor fixation in children due to short attention span leads to image with multiple artifacts.

In order to adapt to children, these devices have to be much smarter- miniaturized, portable, noninvasive with auto focus and quick image capture. Introduction and availability of handheld devices is a welcome change in the technological advances, but it is not available in all modalities. In this review, we would elaborate on the various modalities, their indications and challenges for imaging used in pediatric retinal disorders, but mostly limited up to 12 years age group since the adult diagnostic devices could be used conveniently in the adolescents (12-16 years).

Challenges

There are three main challenges in pediatric imaging: parental consent, child’s cooperation, and shortage of health workforce. Parents must be convinced that the test is essential in management decision; a quick, painless and non-invasive test is likely to have more acceptance. Neonates may not need general anesthesia, as they are small enough to be cozily swaddled. Parents are unlikely to oppose fundus imaging using a hand-held fundus photography system. However, the use of contact systems along with accessories like speculum and indenters might not be acceptable to some parents. A clear, transparent, persuasive conversation and creating a good rapport with the parents is of utmost importance. Children of one year of age and older are invariably anxious in hospital environment. The attention span is less, and hence every attempt must be made to buy their cooperation including use of colorful fixators or playful methods in quiet and non-crowded environment. Many a times, the older children may require general anesthesia.

Currently, hand-held devices to capture retinal images in a child in supine position are available for fundus photography, but not for other useful modalities such as optical coherence tomography (OCT) and OCT angiography (OCTA). Similarly, flash electroretinography (ERG) and visual evoked potential (VEP) are available as hand-held devices, but not pattern ERG and multifocal ERG (mfERG).

The third challenge is the scarcity of trained human workforce: trained technicians to perform these tests deftly and reliably, and pediatric retina specialists who could interpret the results and gainfully use the results in clinical care. Even in the devices like ocular ultrasonography where fixation is not needed, evaluating each quadrant with precision and confidence is challenging in a crying child. A trained and skilled child-friendly technician thus helps.

Despite these constraints, newer technologies have seen multiple advancements in pediatric retinal imaging in the last decade. The summary of usefulness of these modalities in pediatric retinal diseases is summarized in Table 1. We describe individual diagnostic methods with special mention of their technique and utility in pediatric retinal diseases.

Ultrasonography

The first report of ophthalmic ultrasonography (USG) was published in 1957.[4] It is a useful and time-tested modality for imaging the posterior segment. It is inexpensive and noninvasive, and does not require use of sedation or anesthesia. Most of the equipment used in adults is also suitable for use in children. Depending on the indication and characteristics of sound waves, most commonly used ultrasonographic examinations include the following:

1. A-scan biometry for axial length measurements
2. Diagnostic B-Scan USG along with corresponding A scan ultrasonography
3. Ultrasound biomicroscopy for anterior segment.

Technique. A coupling medium is needed for good ultrasound waves transmission from the transducer to the globe.[9] Transducer probes of frequency from 10-30 MHz are used for ophthalmic ultrason. Coupling gel (propylene glycol) is applied over the eyelids and the scans are performed over the eyelid. Immersion A-scan is performed with open eyelids taking care to avoid excessive pressure on the cornea. Systematic protocol-based approach in scanning the entire globe helps avoid missing small lesions. The accepted sequence is axial scan, followed by transverse scans from superior to inferior and sagittal views, and lateral to medial scans. Adjusting the gain can help in identifying minimal inflammatory debris or membranes in the vitreous cavity.[9]

Indications. Ultrasonography is commonly used in situations where detailed examination of retina is not possible. It may be due to media opacities including but not limited to corneal edema, corneal scars, poorly dilating pupil, cataract, retrolenticular membranes, or vitreous...

Table 1: Retinal diagnostic tests in pediatric disorders

Disease	USG/UBM	FP	FFA	AF	OCT	OCTA	Electrodiagnostics
Retinopathy of Prematurity	+	+	-	-	+	+	-
Retinal vascular diseases	+	+	-	-	+	+	+
Retinal detachment	+	+	-	-	-	-	-
Intraocular tumors	+	+	-	+	-	-	-
Inherited retinal dystrophies	-	+	+	+	+	+	+
Congenital developmental anomalies	+	+	-	-	+	+	-
Inflammatory disorders	+	+	-	+	+	+	+
Trauma	+	+	-	-	+	+	+

AF - Autofluorescence; FP - Fundus photography; OCT - Optical coherence tomography; OCTA - Optical coherence tomography angiography; UBM - Ultrasound biomicroscopy; USG - Ultrasound sonography
hemorrhage and haze. A-scan biomicroscopy is indicated in pediatric retinal diseases such as nanophthalmos and posterior microphthalmos. A routine USG examination could be easier than repeated dilated eye indirect ophthalmoscopy in children with high risk of retinal detachments such as in eyes with uveal colobomas, microphthalmia, high myopia, closed globe injuries, genetic syndromes predisposing to retinal detachment, and in mentally challenged children with vision loss.[10] Two distinct advantages of USG are examination without dilatation and avoidance of annoying light of an indirect ophthalmoscope in an often crying and apprehensive child. USG is useful in detection and monitoring treatment outcome of intraocular tumors [Fig. 1].[11] Table 2 summarizes the indications of USG in pediatric retinal disorders.

USG provides a comprehensive overview of the anatomy of the globe with reproducible images. But the details of ocular pathology might not be clear on USG. Extension of any lesion into the orbit requires deeper penetration of the ultrasound waves. USG images are inferior to computed tomography (CT) or magnetic resonance imaging (MRI) scan.[11] Nevertheless, USG remains an important adjunctive tool in imaging the eye in children.

Ultrasound biomicroscopy (UBM) was developed in 1989.[12] It uses high frequency transducers, ranging from 50-100 MHz which provide better resolution, about 40 μ, of the cornea, lens, aqueous and ciliary body.[12-14] UBM cannot image structures deeper than 4 mm from the surface.[15] It requires the use of a coupling medium like saline or methylcellulose, which is held over the eye in a custom made cup while the transducer is dipped in it. UBM is widely used to image the ciliary area in uveitis, ciliary tumors and trauma. UBM is reported to have a good sensitivity and reproducibility to detect retinoblastoma extension into anterior retina and ciliary body.[15] Other specific uses of UBM are documenting changes in the ciliary body in intermediate uveitis,[15] and anterior hyaloidal fibrovascular proliferation in ROP.[13] The disadvantage is that UBM has to be done under general anesthesia for most pediatric patients unlike the USG.

Fundus Photography (FP)

Fundus photography is one of the most common retinal imaging performed in children. These could be either contact or non-contact camera.

Contact retinal cameras

RetCam™ (Clarity Medical System, Pleasanton, CA, USA) remained the most widely used wide-field pediatric contact fundus camera for longer than two decades. It features capabilities of wide-angle fundus view (130°), anterior segment, angle and posterior segment imaging with five different detachable lenses (D1300, B1200, E800, C300, portrait lens). This foot-pedal operated system needs topical anesthesia, wire speculum (separates the eyelids) and ultrasound gel or 2% hydroxypropyl methylcellulose (HPMC) for coupling between the cornea and the probe. Careful scleral indentation helps capture the retinal pathology in extreme periphery. A montage image provides a panoramic view. RetCam shuttle is a portable system and has been widely used in screening for ROP, both in universal newborn eye screening[18] and tele-screening.[19-21] It is also one of the common devices used to document and follow up cases of intraocular tumors in children, including retinoblastoma. The handheld probe has an advantage in

![Figure 1: A 2-year old female, born preterm at 32 weeks, presented with bilateral leucocoria. She was referred with a diagnosis of Stage V retinopathy of prematurity. (a) An immersion ultrasonography of left eye shows a mass lesion in the posterior half of the globe. (b-d) Transverse scans of superior, nasal and temporal half showing a mass lesion with intraretinal calcification. She was diagnosed with retinoblastoma and was treated for the same](image)

Table 2: Indications of ultrasonography in pediatric retinal diseases
Category

A. Conditions preventing fundoscopic examination
B. Congenital Anomalies
C. Retinal Detachment
D. Ocular Tumours
E. Inflammation
F. Trauma
imaging children under general anesthesia or in neonates. But the RetCam probe is heavy and unwieldy; artifacts are not uncommon. This system is also expensive for every one to procure. Icon (Phoenix Clinical) is a modified version of the contact based fundus camera with interchangeable and light weight LED based handpiece. It provides a 100 degree field of view and comes with an inbuilt FFA module.

Some of shortcomings of RetCam have been overcome by a compact and portable system developed in India (3Nethra Neo ™, Forus Health, Bangalore, India).[22] This comprises of a handheld camera with inbuilt liquid lens system, and LED based illumination system. It provides a maximum of 120 degree field of view. The other novel features include option of adjustment for colour and contrast,[23] This is very useful in enhancing subtle vascular changes. This system presently cannot be used image the anterior segment or angle due to the inbuilt lens system. A technical and fundus image comparison between Retcam and 3Nethra Neo is shown in Table 3 and Fig. 2 respectively.[22]

Other cameras introduced in the recent times are PanoCam LT (Visunex Medical Systems) which has the advantage of being a wireless system. It offers a 130 degree field of view.

Non contact retinal cameras

Smart phone photography

Newer generation smartphones are equipped with a high-quality optical system and a coaxial light source, which can be used to capture high-quality retinal images. The camera’s coaxial flashlight and a handheld high plus power lens create an indirect ophthalmoscopy-like optical system that is able to record high-resolution digital retinal images. The emitted light of smartphones is safe as retinal irradiance from smartphones is less than that from an indirect ophthalmoscope. The field of view varies with the dioptric strength of the handheld lens (46°, 53°, and 90° with +20D, +28D, and +40D indirect condensing lenses respectively). The acquired image is inverted, like an indirect ophthalmoscope view. For a single examiner, MIIRetCam or a condensing lens/ smartphone/MIIRetCam black tube device assembly can be used to capture images.[27]

Apparently, there was no significant difference between the images taken by smartphones and fundus cameras in adults.[28] The autofocus capability of smartphone camera helps maintain the image quality. The quick data transfer capability in smartphones can be utilized as an effective telemedicine tool to share and discuss the cases in remote places, e.g., screening for pediatric eye diseases such as ROP and diabetic retinopathy in children and adolescents.[29] Hazy vitreous, small pupil and vasculosa lentis could hamper good quality image acquisition.[30] There is a learning curve in using the smartphone camera to capture the images since it is based on inverted virtual images.

Wide field and Ultra-wide wide field fundus photography (UWF-FP)

Optos ™ Panoramic 200Tx imaging system (Optos PLC, Dunfermline, Scotland, UK) is a popular UWF fundus camera based on scanning ophthalmoscope technology and utilizes an ellipsoid mirror to capture a retinal image spanning a maximum of 200 internal degrees. Green and red lasers produce pseudo color, but high-quality retinal images.[31] The coverage in a single image is much greater than in any other existing retinal cameras. This makes it a lucrative choice for pediatric vascular disorders like ROP, familial exudative vitreoretinopathy (FEVR) and Coat’s disease, the pathology of which often lies in the peripheral fundus [Fig. 3]. It’s use in imaging in ROP was reported in 2013.[31] The authors demonstrated the modified ‘flying baby position’ with one arm supporting the chest/chin and the other hand supporting the head to acquire ultra-wide field images.

Ultra-wide field acquisition of images in one go with a laser based camera makes it comfortable for relatively older children in age group of 3-8 years, who are otherwise uncooperative for fundus examinations. This could potentially decrease the need for examination under anesthesia. With inbuilt fundus fluorescein angiography (FFA) and autofluorescence modules, there are possibilities of use in a wide range of indications including retinal dystrophies, peripheral vascular diseases,

Table 3: Technical comparison between Retcam and 3Nethra Neo

Features	3Nethra Neo ™	RetCam ™
Probe design	Single, monolithic hand held	Detachable front, optical hand held
Probe weight	340 g (740 g with cable)	800 g
Machine weight	6.5 kg	30 kg
Portability	Designed portable (compact carrycase)	Possible. On wheels
Image resolution	2040 x 2040 pixels/inch	1600 x1600 pixels/inch
Field of view	Maximum 120 degrees	Maximum 130 degrees
Focus	Motionless focus with liquid lens system	Motorized focus
Image capture	By foot pedal and on screen Video and still LED	By foot pedal or using keyboard Video and still Halogen
A 14-year old female presented with bilateral gradual decrease in vision. The best corrected visual acuity was 20/200. (a) Color fundus image shows a central area of RPE atrophic changes with fleck like changes around fovea. (b) Autofluorescence shows central dark hypofluorescence corresponding to the area of RPE atrophy and multiple hyper- and hypo-fluorescent fleck like deposits around fovea, more prominent than the color fundus photo. She was diagnosed with Stargardt’s disease.
Fundus Fluorescein Angiography

Fundus Fluorescein Angiography (FFA) to assess the retinal circulation in human eyes was first published in 1961.\[54] Since then it has served as a useful tool to assess vascular status, the disease process, and management of retinal vascular disorders. It is a relatively simple but invasive procedure with a high margin of safety in both adults and children.\[53] All the same, it is a good practice to review history of allergy, explain the common side effects like yellow discoloration of the urine and skin at the time of taking the consent.

Technique: Retcam3™ (Natus, USA) is a commonly used wide-angle pediatric retinal imaging system, which allows FFA with a 130 degrees view handheld camera. Some key steps include insertion of the yellow filter in the camera hand piece, switching the light source to blue light, and switching the software to FFA mode. A patent intravenous cannula is preplaced by the pediatrician and tested (as dye extravasation can be very painful). Sodium fluorescein 20% is injected intravenously as a bolus dose of 0.04 mL/kg (8 mg/kg) rapidly followed by a saline flush; a close monitoring by a pediatrician/anesthetist helps. Images are captured soon after the dye is injected. One must avoid pressing the globe with the weight of the camera hand piece as the dye might not properly enter the eye. It is necessary to alternate the camera between the eyes so as to capture all phases of dye transit in either eye quick enough before the dye leaks into the anterior chamber.

The Optos, that provides 200° field of view has in-built support for performing FFA and indocyanine green angiography (ICGA). It is difficult to use this system in smaller babies, but is excellent in older children who can sit upright. Alternatively, the modified Heidelberg Spectralis ultra-widefield imaging module (Heidelberg Engineering) has been successfully used in to capture good quality widefield FFA images under general anesthesia in infants. This system is non-contact and hence compression artefacts are absent.\[56]

Indications: FFA has been studied extensively in ROP.\[57-59] It helps clearly demarcate the vascular from avascular retina, identify flat neovascularization not easily discernible to the naked eye, and monitors treatment response [Fig. 5a and b].\[60-63] FFA is also useful in other pediatric retinal diseases like retinopathy in type 1 diabetes, FEVR, incontinentia pigmenti, dyskeratosis congenital, muscular dystrophy etc., which have a common presentation of peripheral retinal avascularity, progressive neovascularization and early development of tractional retinal detachment. It has helped identify lesser-known clinical and angiographic findings, where these novel findings have led to an updated FEVR classification and more complete characterization of early stages of FEVR.\[64] FFA in these cases also led to the description of newer entities like ROPER which has implications in the management.\[65]

In Coat’s disease FFA documents occurrence/progression of characteristic early telangiectasia, capillary non perfusion areas and leakage leading to subretinal exudation – all of which are difficult to detect and assess on indirect ophthalmoscopy.\[66] FFA could also be useful to identify subtle retinal new vessels in eyes that present with recurrent vitreous hemorrhage or persistent/progressive vitreoretinal traction, and monitor regression of these new vessels after laser treatment [Fig. 5c].

![Figure 5: Half zone APROP. (a) Left eye color fundus image shows limited details of vascular retina. (b) Fundus fluorescein angiography (FFA) in the same patient shows vascular retina extent and neovascularization status, not clearly apparent on fundus examination. (c) Wide field FFA shows peripheral avascular retina and neovascular leakage in right eye of 8-year old child presenting with recurrent vitreous hemorrhage.](image)

Wide-field ICGA has been performed in preterm babies with active type 1 ROP and was well tolerated. Choroidal circulation in ROP with peripheral attenuation that corresponds to the regions of avascularity. ICGA has theoretical advantages over FFA like superior imaging in the presence of vitreous hemorrhage. Currently there is limited literature on ICGA in pediatric retinal diseases, but with advances in choroidal imaging, its indications and advantages are likely to expand.
Optical Coherence Tomography (OCT)

Despite the ubiquitous use of spectral domain optical coherence tomography (SD OCT) in adult retinal disease management, its adoption into pediatric retina has been limited due to many factors including lack of available instrumentation to easily, rapidly and accurately image infants in the office without anesthesia. Historically, infant SDOCT was performed in the operating room with the baby in the ‘flying baby’ position under anesthesia and converting the table-top device into a hand-held device. With the introduction of the hand-held OCT device, this tool has become more popular in imaging infants in the office and in the operating room. Image optimization is required while imaging pediatric eyes due to a rapidly increasing axial length in the neonatal period, an evolving refractive status, a steeper cornea and a greater astigmatism in the first six months. Faster OCT systems such as spectral domain (SD) and swept source (SS) (over time-domain system) have shorter acquisition times, and are superior for small children. Adult OCT systems can be easily used for older children who can fixate on the target.

Compared to an adult, the infant’s fovea differs in that, there is a shallower foveal depression, persistence of the inner retinal layers including the inner plexiform and inner nuclear layers, more attenuated retinal layers, attenuation of photoreceptor layer (PRL) and absence of the PRL sub-layers. Most of this thinning occurs by inner retinal cell migration centrifugally and occurs between 31 and 42 weeks of post menstrual age (PMA). The photoreceptor layer in infants is initially thin and as the infant grows, there is a progressive centripetal growth of the photoreceptor subcellular structures that extend into the foveal center. There has been good histopathological correlation of the retinal layers with those imaged on SDOCT in developing eyes.

SD OCT is not a mainstream imaging tool for ROP screening or management yet. However, it can detect clinically unseen or poorly detected retinal features. Vinekar et al. first described macular edema of prematurity (MEOP) as “foveal disruptive” changes on the SD OCT in clinically normal looking foveae in Asian Indian infants. The MEOP is transient, but may influence the visual acuity and refractive status of infants even at the end of infancy. It helps to prognosticate clinical stage 4A ROP with OCT involvement of the macula, Clinically undetected structures including vitreoretinal interface and epioretinal membranes, retinoschisis, retinal detachment and retinal pigment epithelium changes have reported using OCT. The ability of the OCT to detect neo-vascularization in the posterior retina associated with aggressive posterior ROP (APROP) has helped in OCT guided photoablation of neovascular fronds. It has also been utilized for assessment the macula status after vitrectomy for ROP-related retinal detachments. The vascular abnormality score by OCT (VASO) described by Maldonado et al. delineated the severity of vascular pathology in ROP and is useful in early detection of disease progression and in monitoring the response to therapy.

OCT is an important tool in finer evaluation of the retinal layers in inherited retinal dystrophies, inflammation and infections. Macular edema, epioretinal membranes and extent of photoreceptor loss associated with retinal dystrophies are best reviewed using OCT. It serves to be an important part of workup of children presenting with early onset nystagmus (examined under general anesthesia) and/or unexplained visual loss. OCT along with multifocal ERG is an important tool to identify drug toxicities (eg, hydroxychloroquine) affecting the macula. It has been used in evaluation of optic disc drusen. Choroidal thickening and choroidal vascularity has been studied in retinal dystrophies using OCT. Despite these advantages in pediatric retinal diseases and availability of hand held OCT, its widespread use is still limited in clinical practice.

OCT Angiography

Optical coherence tomography angiography (OCTA) is new non-invasive technique to assess retinal vasculature. The available systems can create automated cross sections of retina at superficial capillary plexus (SCP), deep capillary plexus (DCP), outer retina and choriocapillaris (CC).

Conventional dye-based angiography preclude the detection of deeper extensions of neovascularization which are either not seen or leak. OCTA allows us to evaluate the deep capillary plexus despite overlying lesions. This was first reported in an infant with APROP that documented a deeper extension of flat new vessel suggesting that it was a ‘complex’ of vascular abnormalities. In addition to foveal avascular zone (FAZ), the OCTA also images the SCP- and DCP- vessel density. Some of these reported changes include an increased vascular density in the SCP and DCP in the central foveae of preterm babies; persistent foveal vasculature in the central FAZ in adults who were born premature, and significantly lower vascular density in the para-central regions in a ROP treated cohort. On OCTA, foveal area is apparently reduced in both treated and spontaneously regressed ROP, but the foveal diameter may not be altered.

OCTA allows separate analysis of these capillary plexuses and choriocapillaris as compared to FFA where such detailed layer-wise image separation is not possible. This is especially useful in assessing the choroidal neovascularization. Choroidal neovascular membrane (CNVM) in pediatric population present in association with retinal dystrophies like Best disease, inflammatory disorders like presumed ocular histoplasmosis syndrome, serpiginous choroiditis, myopia or post trauma choroidal rupture. OCTA is reportedly superior to FFA in identification of these CNVms. Chorocapillaries rarefaction has been studied using OCTA in retinal dystrophies and are of value especially when RPE transplantation is around the corner.

Improper segmentation and multiple artefacts can limit the use of OCTA in children. Hand-held OCTA devices (when commercially available) will hold exciting prospects in our understanding of multiple pediatric retinal disorders.

Visual Electrophysiology

Children often can’t verbalize their symptoms accurately and a detailed retinal examination at times could be challenging. Objective methods of assessment of retinal and visual pathway like visual electrodiagnostics are useful in such situations. The commonly used visual electrodagnostic tests, and the target cells are briefed in Table 4. Retinal cells and their electrophysiological responses mature variably in infants with time. These must be interpreted with great caution or repeated when required. The major responses, individual
Table 4: Commonly used electrophysiological tests and the cells targeted by them

Targeted Cells	Tests
Pan retinal response (Outer + Inner retina)	Full field Electroretinogram or simply ERG
Pan retinal response (RPE & PR complex)	Electro-oculogram
Regional response: Topography of responses from predefined points within a specific region (cone + cone bipolar cells)	Multifocal ERG
Regional response: as a whole (Macular ganglion cells +/-PR)	Pattern ERG
Evaluation of functional integrity of retino striate pathway	Flash VEP
	Pattern VEP

Table 5: Commonly used electrodiagnostic tests, waveforms, their origin and their maturation with age

Full field ERG	Individual components and their origin	Maturation of responses with age
Scotopic 0.01: Dominated by b wave	Rod bipolar cells, driven by rod photoreceptors	ERG waveforms start appearing at 30 wks of GA & get completed by 6 m of age.
		Maturation: Rapid during initial 4 m reach adult level by 1 year and stabilizing by 3 to 4 years of age.
		The waveforms mature by shortening their latencies and reducing their amplitudes.
Scotopic 3.0: Negative ‘a’ wave followed by a positive ‘b’ wave; a-rod and rod on bipolar cells; b-rod on bipolar cells		
Scotopic 10.0: Same as scotopic 3.0 with a wave being steeper and more pronounced		
Oscillatory potential: Series of 3 to 4 waves, originate from Amacrine cells		
Photopic 3.0 ERG: Negative a wave followed by a positive b wave, a: cone & off bipolar cells; b-cone on & off bipolar cells		
Photopic 30 Hz flicker: Cone on and off bipolar cells		
EOG	Series of square waves in dark and light generated by RPE-Photoreceptor complex. Light peak (Lp)	Lp: Dt ratio reach adult level in infancy. It decrease by 0.13 in every 10 yrs from 10-60 yrs of age.
	Dark trough (Dt) ratio or Arden ratio is the one commonly used	

Contd...
component and their origin and maturation with age have been summarized in Table 5.

Technique: Children older than 4-5 years can easily be tested like adults. Examination of the younger children is more difficult with corneal contact lens electrodes. At any age, the patient acceptance is good with skin electrodes though the wave amplitudes tend to be lower with increased noise. The sensitivity of retinal cells differs between adults and infants. Therefore, the stimulus strength must be adjusted accordingly. The ERG and VEP can easily and quickly be done under sedation or general anesthesia but the pharmacological agents used in the testing could expose the child to risks and alter the response. A survey conducted by International society for clinical electrophysiology of vision (ISCEV) report that most of the responders prefer to perform ERG in an awake stage.[96] Older children can be easily tested with skin electrodes in awake stage. Toys and attractive targets can be used to attract the attention of smaller children to the testing target. The procedure can be briefed and divided into smaller segments to account for the shorter attention span in infants and younger children.

Good recording requires time, commitment and a baby friendly skilled technician. Multifocal ERG (mfERG) can be recorded in infants as small as 10 months old with smaller number of hexagons with a large central hexagon to address reduced pediatric attention span and a better fixation.[96] Electro oculogram (EOG) requires more co-operation than full field ERG. The reflex eye movement with the subject lying supine on mother’s lap in a chair rocking within a constant angle have been used to perform EOG in infants.[97] Visually evoked potential play an important role in in the objective assessment and localization of the pathology along retinostriate pathway. This becomes important to reason out the cause of visual loss in subjects with a normal fundus but no or subnormal vision secondary to birth related brain injury. Similarly the pattern sizes used to evoke a response in pattern VEP can give a rough idea on the visual acuity and prognosis in infants and preverbal children.

Indications and interpretation: These tests can help in making or confirming the diagnosis, disease classification, localization, assessment of a response to treatment and prognosis, especially in retinal dystrophies [Fig. 6a-f].

The results of visual electrophysiological tests should be interpreted with caution because of difficulties in doing a test, possible bias secondary to technical adjustments, age dependent change in wave responses in a growing infant and lack of adequate normative data. For example the cone density varies from 15,000 cones/mm² at the fovea to 12,500 cones/mm² at 10° in the infant retina compared to ~ 200,000 cones/mm² at the fovea and 11,300 cones/mm² at 10° in the adult retina.[97] Smaller and slower responses in mfERG from the central retina are normal for the infants compared to the adults.[98] A subnormal VEP can be due to macular, panretinal, and optic nerve pathology alone or in any combination. It should always be analyzed in conjunction with pattern or full field ERG.

Advantages and disadvantages: Independent, handheld portable systems work best for infants as they can fit in any position and at various places for testing in awake stage. The table-top electrophysiological devices are rather cumbersome for use in infants and small children and would require general anesthesia in operating room. The disadvantages with hand
Figure 6: A 6-year-old girl presented with reduction in vision in both eyes; best corrected vision was 20/60 in both eyes. She was able to read 20 of 23 plates in Ishihara color vision chart. (a and b) The fundus was unremarkable; (c and d) very subtle photoreceptor irregularity on OCT. (e and f) A full-field electroretinogram showed normal scotopic and photopic responses while mERG showed hypovoltaged subnormal responses from central macula. This confirmed the diagnosis of occult macular dystrophy.

Financial support and sponsorship
Support provided by Hyderabad Eye Research Foundation (HERF), Hyderabad, India. The funders had no role in the preparation, review or approval of the manuscript.

Conflicts of interest
There are no conflicts of interest.

Financial Disclosures
None of the authors have any commercial interests related to materials or techniques described in this study to disclose.

Author’s Contribution
All persons designated as authors qualify for authorship, and all those who qualify are listed. Each author has participated sufficiently in the work to take public responsibility for appropriate portions of the content.

References
1. Position Paper- WHO archives- World Health Organization. Available from: www.archives.who.int. [Last accessed 2020 Jun 03].
2. Wadhwani M, Vashist P, Singh SS, Gupta V, Gupta N, Saxena R. Prevalence and causes of childhood blindness in India: A systematic review. Indian J Ophthalmol 2020;68:311-5.
3. Gilbert C, Foster A. Childhood blindness in the context of VISION 2020—The right to sight. Bull World Health Organ 2001;79:227-32.
4. Agarwal K, Balakrishnan D, Rani PK, Jalali S. Changing patterns of early childhood blinding conditions presenting to a tertiary eye center: The epidemic of retinopathy of prematurity in India. Indian J Ophthalmol 2019;67:816-8.
5. Soleo AL, Teoh L, Rahi J. Epidemiology of blindness in children. Arch Dis Child 2017;102:853-7. Erratum in: Arch Dis Child 2017;102:995.
6. Witter MT, Kisi S. Wide-field imaging of the retina. Surv Ophthalmol 2013;58:143-54.
7. Mundt G, Hughes W. Ultrasonoc in ocular diagnosis. Am J Ophthalmol 1956;41:488-98.
8. Guthoff RF, Labriola LT, Stachs O. Diagnostic ophthalmic ultrasound. In: Schachat AP, editor. Ryan’s Retina. 6th ed. Amsterdam, Netherlands: Elsevier; 2018. P. 273-374.
9. Silva CT, Brockley CR, Crum A, Mandelstam SM. Pediatric ocular sonography. Semin Ultrasound CT MR 2013;34:311-34.
10. Ramji FG, Slovis TL, Baker JD. Orbital sonography in children. Pediatr Radiol 1996;26:245-58.
11. Berrocal T, de Orbe A, Prieto C, al-Assir I, Izquierdo C, Pastor I, et al. US and color Doppler imaging of ocular and orbital disease in the pediatric age group. Radiographics 1996;16:251-72.
12. Pavlin C, Foster F. Ultrasound biomicroscopy of the Eye. New York: Springer; 1995.
13. Sherar MD, Starkoski BG, Taylor WB, Foster FS. A 100 MHz B-scan ultrasound backscatter microscope. Ultrasound Imaging 1989;11:95-105.
14. Pavlin C, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology 1991;98:287-95.
15. Vasquez LM, Guilari GP, Halliday W, Pavlin CJ, Gallie BL, Heon E. Ultrasound biomicroscopy in the management of retinoblastoma. Eye 2011;25:141-7.
16. Haring G, Nolle B, Wiechers B. Ultrasound biomicroscopy imaging in intermediate uveitis. Br J Ophthalmol 1998;82:625-62.
17. Dave VP, Jalali S, Rani PK, Padhi TR. Characteristics and outcomes of anterior hyaloid fibrovascular proliferation in lasered retinopathy of prematurity. The Indian Twin cities retinopathy of prematurity study (ITCRÖPS) report number 4. Int Ophthalmol 2014;34:311-7.
18. Goyal P, Padhi TR, Das T, Pradhan L, Sutar S, Butola S, et al. Outcome of universal newborn eye screening with wide-field digital retinal imaging systems: A pilot study. Eye (Lond) 2018;32:67-73.
19. Schwartz SD, Harrison SA, Ferrone PJ, Trese MT. Telemedical evaluation and management of retinopathy of prematurity using a fiberoptic digital fundus camera. Ophthalmology 2000;107:25-8.
20. Silva RA, Murakami Y, Jain A, Gandhi J, Lad EM, Moshfeghi DM. Stanford University Network for Diagnosis of Retinopathy of Prematurity (SUNDROP): 18-month experience with telemedicine screening. Graefes Arch Clin Exp Ophthalmol 2009;247:129-36.
21. Lorenz B, Spasovska K, Elfelein H, Schneider N. Wide-field digital imaging based telemedicine for screening for acute retinopathy of prematurity (ROP). Six-year results of a multicentre field study. Graefes Arch Clin Exp Ophthalmol 2009;247:1251-62.
22. Vinekar A, Rao SV, Murthy S, Jayadev C, Dogra MR, Verma A, et al. A novel, low-cost, wide-field, infant retinal camera, “Neo”- Technical and safety report for the use on premature infants. Transl Vis Sci Technol 2019;8:2.
23. Padhi TR, Das T, Kaur P, Sutar S, Khalsa A, Modi R, et al. Characteristics of ‘sawtooth shunt’ following anti-vascular endothelial growth factor for aggressive posterior retinopathy of prematurity. Int Ophthalmol 2020;40:1007-15.
24. Patel TP, Kim TN, Yu G, Dedania VS, Lieu P, Qian CX, et al. Smartphone-based, rapid, wide-field fundus photography for diagnosis of pediatric retinal diseases. Transl Vis Sci Technol 2019;8:29.
among patients treated with intravitreal anti-VEGF due to aggressive posterior ROP. Int Ophthalmol 2019;39:2697–705.

63. Garcia Gonzalez JM, Snyder L, Blair M, Rohr A, Shapiro M, Greenwald M. Prophylactic peripheral laser and fluorescein angiography after bevacizumab for retinopathy of prematurity. Retina 2018;38:764–72.

64. Kashani AH, Brown KT, Chang E, Drenser KA, Capone A, Tresse MT. Diversity of retinal vascular anomalies in patients with familial exudative vitreoretinopathy. Ophthalmology 2014;121:2220–7.

65. John VJ, McClintic JJ, Hess DJ, Berrocal AM. Retinopathy of prematurity versus familial exudative vitreoretinopathy: Report on clinical and angiographic findings. Ophthalmic Surg Lasers Imaging Retina 2016;47:14–9.

66. Sen M, Shields CL, Honavar SG, Shields JA. Coats disease: An overview of classification, management and outcomes. Indian J Ophthalmol 2019;67:763–71.

67. Vinekar A, Sivakumar M, Shetty R, Mahendradas P, Krishnan N, Mallipatna A, et al. A novel technique using spectral-domain optical coherence tomography (Spectralis, SD-OCT + HRA) to image supine non-anaesthetized infants: Utility demonstrated in aggressive posterior retinopathy of prematurity. Eye (Lond) 2010;24:379–82.

68. Chavala SH, Farsiu S, Maldonado R, Wallace DK, Freedman SF, Toth CA. Insights into advanced retinopathy of prematurity using handheld spectral domain optical coherence tomography imaging. Ophthalmology 2009;116:2448–56.

69. Vinekar A, Avadhani K, Sivakumar M, Mahendradas P, Kurian M, Braganza S, et al. Understanding clinically undetected macular changes in early retinopathy of prematurity on spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2011;52:5183–8.

70. Chong GT, Farsiu S, Freedman SF, Sarin N, Koreishi AF, Izatt JA, et al. Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography. Arch Ophthalmol 2009;127:37–44.

71. Scott AW, Farsiu S, Enyedi LB, Wallace DK, Toth CA. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device. Am J Ophthalmol 2009;147:364–73.

72. Cook A, White S, Batterbury M, Clark D. Ocular growth and refractive error development in premature infants with or without retinopathy of prematurity. Invest Ophthalmol Vis Sci 2008;49:5199–207.

73. Gordon RA, Donzis PB. Refractive development of the human eye. Arch Ophthalmol 1985;103:785–9.

74. Isenberg SJ, Del Signore M, Chen A, Wei J, Christenson PD. Corneal topography of neonates and infants. Arch Ophthalmol 2004;122:1767–71.

75. Vinekar A, Mangalesh S, Jayadev C, Maldonado RS, Bauer N, Toth CA. Retinal imaging of infants on spectral domain optical coherence tomography. Biomed Res Int 2015;2015:782420. doi: 10.1155/2015/782420. Epub 2015 Jul 6.

76. Maldonado RS, O’Connell RV, Sarin N, Freedman SF, Wallace DK, Cotten CM, et al. Dynamics of human foveal development after premature birth. Ophthalmology 2011;118:2315–25.

77. Vajzovic L, Hendrickson AE, O’Connell RV, Clark LA, Tran-Viet D, Possin D, et al. Maturation of the human fovea: Correlation of spectral-domain optical coherence tomography findings with histology. Am J Ophthalmol 2012;154:779–89.

78. Yuodelis C, Hendrickson A. A qualitative and quantitative analysis of the human fovea during development. Vision Res 1986;26:847–55.

79. Hendrickson AE, Yuodelis C. The morphological development of the human fovea. Ophthalmology 1984;91:603–12.

80. Diaz-Araya C, Provis JM. Evidence of photoreceptor migration during early foveal development: A quantitative analysis of human fetal retinae. Vis Neurosci 1992;8:305–14.

81. Vinekar A, Avadhani K, Sivakumar M, Mahendradas P, Kurian M, Braganza S, et al. Macular edema in premature infants. Ophthalmology 2012;119:1288–9.

82. Vinekar A, Mangalesh S, Jayadev C, Bauer N, Munusamy S, Kemmannu V, et al. Macular edema in Asian Indian premature infants with retinopathy of prematurity: Impact on visual acuity and refractive status after 1-year. Indian J Ophthalmol 2015;63:432–7.

83. Joshi MM, Tresse MT, Capone A Jr. Optical coherence tomography findings in stage 4A retinopathy of prematurity: A theory for visual variability. Ophthalmology 2006;113:657–60.

84. Lee AC, Maldonado RS, Sarin N, O’Connell RV, Wallace DK, Freedman SF, et al. Macular features from spectral-domain optical coherence tomography as an adjunct to indirect ophthalmoscopy in retinopathy of prematurity. Retina 2011;31:1470–82.

85. Muni RH, Kohly RP, Charonis AC, Lee TC. Retinoschisis detected with handheld spectral-domain optical coherence tomography in neonates with advanced retinopathy of prematurity. Arch Ophthalmol 2010;128:57–62.

86. Maldonado RS, Yuan E, Tran-Viet D, Rothman AL, Tong AY, Wallace DK, et al. Three-dimensional assessment of vascular and perivascular characteristics in subjects with retinopathy of prematurity. Ophthalmology 2014;121:1289–96.

87. Maccora KA, Sheth S, Ruddle JB. Optical coherence tomography in paediatric clinical practice. Clin Exp Optom 2019;102:300–8.

88. Ratra D, Tan R, Jaishankar D, Khandelwal N, Gupta A, Chhablani J, et al. Orochoidal structural changes and vascularity index in Stargardt disease on swept source optical coherence tomography. Retina 2018;38:2395–400.

89. Vinekar A, Chidambaram I, Jayadev C, Sivakumar M, Webers CA, Shetty B. Monitoring neovascularization in aggressive posterior retinopathy of prematurity using optical coherence tomography angiography. J AAPOS 2016;20:271–4.

90. Balasubramanian S, Borrelli E, Lonngi M, Velez F, Sarraf D, Sadda SR, et al. Visual function and optical coherence tomography angiography features in children born preterm. Retina 2019;39:2233–9.

91. Falavarijan KG, Sarraf D, Tsui I. Optical coherence tomography angiography of the macula in adults with a history of preterm birth. Ophthalmic Surg Lasers Imaging Retina 2018;49:122–5.

92. Nonobe N, Kaneko H, Ito Y, Takayama K, Kataoka K, TsuneKawata T, et al. Optical coherence tomography angiography of the foveal avascular zone in children with a history of treatment-requiring retinopathy of prematurity. Retina 2019;39:111–7.

93. Bowl W, Bowl M, Schweinfurth S, Holke V, Knobloch R, Stieger K, et al. OCT Angiography in young children with a history of retinopathy of prematurity. Ophthalmology Retina 2018;2:972–8.

94. Padhi TR, Anderson BJ, Abbey AM, Yonekawa Y, Stem M, Alam D, et al. Orochoidal neovascular membrane in paediatric patients: Clinical characteristics and outcomes. Br J Ophthalmol 2018;102:1232–7.

95. Guduru A, Gupta A, Tyagi M, Jalali S, Chhablani J. Optical coherence tomography angiography characterisation of Best disease and associated choroidal neovascularisation. Br J Ophthalmol 2018;102:444–7.

96. ISCEV Committee for Pediatric Clinical Electrophysiology Guidelines, Fulton AB, Brecell J, Lorenz B, Moskowitz A, Thompson D, et al. Pediatric clinical visual electrophysiology: A survey of actual practice. Doc Ophthalmol 2006;113:193–204.

97. Praidou A, Hagan R, Nayak H, Chandna A. Multifocal electroretinogram contributes to differentiation of various clinical pictures within a family with Bardet-Biedle syndrome. Eye 2014;28:1136–42.

98. Trimble JL, Ernest JT, Newell FW. Electro-oculography in infants. Invest Ophthalmol Vis Sci 1977;16:668–70.

99. Candy TR, Crowell JA, Banks MS. Optical receptoral, and retinal constraints on foveal and peripheral vision in the human neonate. Vision Res 1998;38:3857–70.