Metabolic Dysfunction-associated Fatty Liver Disease is Associated with Greater Impairment of Lung Function than Nonalcoholic Fatty Liver Disease

Lei Miao1,2,3,4*, Li Yang1,3,4, Li-Sha Guo3, Qiang-Qiang Shi1,3, Teng-Fei Zhou1,3, Yang Chen1,3, Huai Zhang5, Hui Cai6, Zhi-Wei Xu7, Shuan-Ying Yang8, Hai Lin9, Zhe Cheng10, Ming-Yang Zhu1,3, Xu Nan3, Shuai Huang4, Ya-Wen Zheng3, Giovanni Targher11, Christopher D Byrne12, Yu-Ping Li1,3, Ming-Hua Zheng1,3,4*, and Cheng-Shui Chen1,3,4

1Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; 2Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; 3The Interventional Pulmonary Key Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China; 4NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; 5Department of Biostatistics and Records Room, Medical Quality Management Office, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; 6Department of Respiratory Medicine, Zhong Shan Hospital Affiliated to Shanghai Fudan University, Shanghai, China; 7Clinical Research Service Center, People’s Hospital of Henan Provincial, Zhengzhou, Henan, China; 8Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China; 9Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China; 10Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; 11Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy; 12Southampton General Hospital, Southampton, UK; 13Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China

Received: 26 July 2021 | Revised: 17 October 2021 | Accepted: 8 November 2021 | Published: 4 January 2022

Abstract

Background and Aims: We compared lung function parameters in nonalcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD), and examined the association between lung function parameters and fibrosis severity in MAFLD. Meth-

odds: In this cross-sectional study, we randomly recruited 2,543 middle-aged individuals from 25 communities across four cities in China during 2016 and 2020. All participants received a health check-up including measurement of anthropometric parameters, biochemical variables, liver ultrasonography, and spirometry. The severity of liver disease was assessed by the fibrosis (FIB)-4 score. Results: The prevalence of MAFLD was 20.4% (n=519) and that of NAFLD was 18.4% (n=469). After adjusting for age, sex, adiposity measures, smoking status, and significant alcohol intake, subjects with MAFLD had a significantly lower predicted forced vital capacity (FVC, 88.27±17.60% vs. 90.82±16.85%, p<0.05) and lower 1 s forced expiratory volume (FEV1, 79.89±17.34 vs. 83.02±16.66%, p<0.05) than those with NAFLD. MAFLD with an increased FIB-4 score was significantly associated with decreased lung function. For each 1-point increase in FIB-4, FVC was diminished by 0.507 (95% CI: −0.840, −0.173, p=0.003), and FEV1 was diminished by 0.439 (95% CI: −0.739, −0.140, p=0.004). The results remained unchanged when the statistical analyses was performed separately for men and women. Conclusions: MAFLD was significantly associated with a greater impairment of lung function parameters than NAFLD.

Citation of this article: Miao L, Yang L, Guo LS, Shi QQ, Zhou TF, Chen Y, et al. Metabolic Dysfunction-associated Fatty Liver Disease is Associated with Greater Impairment of Lung Func-

Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease, affecting ∼30% of adults worldwide.1 Convincing evidence indicates that NAFLD is a “multisystem” disease that affects multiple extrahepatic organ systems, including the respiratory system, cardiovascular system, endocrine system, and others.2–6 Jung et al.7 first reported that NAFLD was associated with decreased lung function. Although decreased lung function is associated with older age, obesity, smoking, and air pollution,8 recent observational studies have reported an association between NAFLD and lung function.7,9–17 Lonardo et al.18 also recently proposed that it would be the time to “cross the diaphragm between NAFLD and chronic obstructive pulmonary disease (COPD).” A meta-analysis of six observational studies including 133,707 participants of predominantly Asian ethnicity reported a significant association between NAFLD and impaired lung function.19 Moreover, it has been reported that individuals with NAFLD had significant reductions in both FVC and FEV120,21 that worsened with the severity of NAFLD, especially with higher fibrosis stage.9,16,22 A Korean cohort study also showed that the risk for incident NAFLD increased with decreasing quartiles of both FEV1 (%) and FVC (%), regardless of smoking history, over a mean follow-up of ∼6 years.23 The current definition for identifying those patients who are at increased risk of smoking history, over a mean follow-up of ∼6 years.

Methods

Study design and data collection

Between 2016 and 2020, we ran a national noncommunci- cable and chronic-disease management program that we developed to identify risk factors and pathogenesis of COPD based on clinical bioinformatics technology and epidemiology.24 The program randomly recruited a total of 8,375 individuals 40 years of age or older from 25 communities across four cities (Wenzhou, Shanghai, Fuzhou, and Zhengzhou) in Central and Southeast China. In the program, there were 2,960 individuals, who had undergone both spirometry and liver ultrasound examinations. As shown in Figure 1, we excluded those (1) who had acute or chronic lung diseases, except COPD, (2) with lung cancers or other extrapulmonary malignancies, and (3) who were missing important clinical and laboratory data from the study. The remaining 2,543 adults were included in the final analysis. The study was approved by the Institutional Review Board at each hospital involved in the study (no. 2016134). All participants signed an informed consent to participate in the study.

At each visit, standardized self-administered questionnaires were administered to collect detailed information on demographic characteristics, alcohol consumption, smoking habits, physical activity, medical history, and any clinical symptoms associated with lung diseases. Serum lipids, liver enzymes, glucose, and other biochemical blood measurements were determined in all participants after an overnight fast by standard laboratory procedures. Body mass index (BMI, kg/m2) was calculated. Waist circumference was measured while standing, with the measurement taken horizontal to the floor at the midpoint between the lowest rib and the iliac crest. Hypertension was defined as a systolic blood pressure (SBP) ≥130 mmHg and diastolic blood pressure (DBP) ≥85 mmHg and/or use of antihypertensive drugs. Type 2 diabetes mellitus (T2DM) was defined by a fasting glucose ≥7.0 mmol/L (≥126 mg/dL) or glycated hemoglobin (HbA1c ≥6.5% or ≥48 mmol/mol) and/or use of any glucose-lowering agents.

Criteria for diagnosing NAFLD and MAFLD

Experienced radiologists performed liver ultrasonography in all participants. The radiologists were blinded to the clinical and laboratory details of participants and captured liver images in a standard manner. Diagnosis of hepatic steatosis was mainly based on the increased echogenicity of the liver relative to the echogenicity of the renal cortex or spleen parenchyma.25 The diagnosis of NAFLD was based on the evidence of hepatic steatosis and exclusion of significant alcohol consumption defined as ≥21 drinks/week for men and 14 drinks/week for women and other competing causes for hepatic steatosis, as shown in Figure 1.26 The diagnosis of MAFLD was based on the evidence of hepatic steatosis on ultrasonography and presence of at least one of the following three metabolic risk factors: (1) overweight or obesity (i.e., a BMI ≥23 kg/m2 for Asian people; (2) established T2DM according to the diagnostic criteria described above; or (3) metabolic dysregulation. Metabolic dysregulation included at least two of the following seven metabolic risk abnormalities: (1) a waist circumference ≥90 cm for men, and ≥80 cm for women; (2) blood pressure ≥130/85 mmHg or drug treatment; (3) triglycerides ≥1.70 mmol/L (≥150 mg/dL) or drug treatment; (4) high-density lipoprotein (HDL) cholesterol <1.0 mmol/L for men and <1.3 mmol/L for women; (5) prediabetes status defined as a fasting glucose between 5.6 and 6.9 mmol/L, or HbA1c between 5.7 and 6.4%; (6) a homeostasis model assessment-estimated insulin resistance (HOMA-IR) score ≥2.5; and (7) a plasma C-reactive protein ≥2 mg/L.27

Lean participants with NAFLD who did not have T2DM or metabolic dysregulation (as above) were defined as having nonmetabolic dysfunction-associated (non-MD)-NAFLD.28 The fibrosis 4 (FIB-4) score = age × AST (IU/L) / (platelet count × 1012/L) × ALT (IU/L)0.529 was used to noninvasively assess the presence of advanced liver fibrosis.30,31

Spirometry

Trained medical personnel who were blinded to the clinical and laboratory details of participants, performed the spirometry following American Thoracic Society criteria.32 Forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1) were recorded and the predicted FEV1 and FVC were calculated as previously described.33
Miao L. et al.: MAFLD and impaired lung function

Statistical analysis

Continuous variables were expressed as means ± standard deviation (SD); categorical variables were expressed as numbers or percentages (%). Differences of continuous variables were compared by one-way analysis of variance and differences of categorical variables were compared by chi-squared tests. Separate analyses were performed by sex. Multivariable linear regression analysis was performed to examine the independence of associations between MAFLD and lung function tests after adjusting for age, sex, adiposity measures, smoking status, presence of significant alcohol intake (≥21 drinks/week for men and ≥14 drinks/week for women), and other potential confounding variables. The results were reported as beta coefficients and 95% confidence intervals (CIs). All statistical tests were two-sided and a p-values <0.05 (two-tailed) was considered to be statistically significant. SPSS version 22.0 (IBM Corp., Armonk, NY, USA) was used for the statistical analysis.

Results

Participant characteristics

In total, 2,543 middle-aged Chinese adults were included and their clinical and biochemical characteristics and lung function parameters are shown in Table 1. There were 519 individuals with MAFLD (20.4%) and 469 (18.4%) with NAFLD. Compared with the non-MAFLD group, those with MAFLD were younger and had higher levels of serum liver enzymes, white blood cell (WBC) counts, and total hemoglobin as well as a significant impairment of lung function, mainly FVC, predicted FVC (%), and predicted-FEV1 (%). Individuals with MAFLD also had a greater prevalence of metabolic syndrome, T2DM, dyslipidemia, and hypertension. The two groups of individuals did not significantly differ by sex, smoking status, presence of prior COPD, and FEV1/FVC ratio. Individuals with NAFLD also had a lower FVC, predicted FVC (%), predicted-FEV1 (%), and a greater prevalence of metabolic syndrome, T2DM, and dyslipidemia compared with the non-MAFLD group. Differences of FEV1, and FEV1/FVC in the two groups were not significant.

Lung function in MAFLD and NAFLD non-MD-NAFLD participants

Table 2 shows the comparisons of lung function tests between participants with NAFLD and different groups with MAFLD. Differences in lung function tests were adjusted for age, sex, adiposity, smoking status, and significant alcohol intake (by analysis of covariance). Compared with the NAFLD or non-MD-NAFLD groups, individuals with MAFLD had the lowest FVC, predicted FVC (%), FEV1, and predicted-FEV1 (%) values. In addition, those with MAFLD and co-existent T2DM had lower predicted FVC (%) and predicted
Relation between lung function tests and fibrosis severity

Table 3 shows the lung function tests stratified by increasing quartiles of FIB-4 score in participants with MAFLD or NAFLD. The mean values of most lung function tests progressively decreased across FIB-4 quartiles, in both NAFLD and in MAFLD. Table 4 shows the unadjusted and adjusted changes in lung function tests for a 1-point increase in FIB-4 score in patients with MAFLD. Univariable linear regression (unadjusted model 1) found that the severity of liver fibrosis (the FIB4 score) was inversely related to FVC, FEV₁, and predicted FVC (%). For each one-point increase in the FIB-4 score, FVC (%) decreased by 6.441 (95% CI: −12.032, −0.851, p = 0.024), FEV₁ decreased by 0.748 (95% CI: −1.002, −0.495, p < 0.001), and FEV₁/FVC decreased by 0.587 (95% CI: −0.796, −0.378, p < 0.001). As shown in Table 4, the results remained unchanged in multivariable regression.
Miao L. et al: MAFLD and impaired lung function

Table 2. Comparison of age, sex, BMI, smoking status, and lung function tests between subjects with NAFLD and different groups of subjects with MAFLD

Variable	Age, years	BMI, kg/m², mean±SD	Men, n (%)	Current smoker, n (%)	FVC, L, mean±SD	FVC, % of predicted, mean±SD	FEV₁, L, mean±SD	FEV₁, % of predicted, mean±SD	FEV₁/FVC, %, mean±SD
MAFLD (n=519)	64.89±8.00	27.81±2.59	292 (58.1)	127 (24.5)	2.61±0.67	88.27±17.60*	2.08±0.57*	79.89±17.34*	80.04±10.23
NAFLD (n=469)	64.34±7.73	27.66±2.67	269 (57.4)	116 (24.8)	2.67±0.75	90.82±16.85	2.16±0.53	83.02±16.66	81.08±8.32
Non-MD-NAFLD (n=177)	62.75±9.06	27.32±2.92	98 (55.3)	42 (23.9)	2.86±0.73	94.24±16.68	2.24±0.65	84.70±19.58	80.35±10.60

P for trend[$] 0.006 0.150 0.097 0.592 <0.001 <0.001 0.010 0.006 0.008

Differences in lung function tests (FVC, FEV₁ and FEV₁/FVC ratio) were adjusted for age, sex, adiposity (BMI and waist circumference), smoking status and alcohol intake by analysis of covariance. *p<0.05 for MAFLD vs. NAFLD; #p<0.05 for NAFLD vs. Non-MD-NAFLD; &p<0.05 for MAFLD vs. Non-MD-NAFLD; $p<0.05 for comparisons among the NAFLD, MAFLD and Non-MD-NAFLD groups. BMI, body mass index; FVC, forced vital capacity; FEV₁, forced expiratory volume measured in the first second of exhalation; T2DM, Type 2 diabetes; NAFLD, nonalcoholic fatty liver disease; MAFLD, metabolic dysfunction-associated fatty liver disease; non-MD-NAFLD, nonmetabolic dysfunction-NAFLD.

Table 3. Lung function tests stratified by increasing FIB-4 quartiles in patients with MAFLD or NAFLD

Variable	MAFLD (n=519)	NAFLD (n=469)								
FIB-4 quartiles	Quartile 1 (0–0.38, n=130)	Quartile 2 (0.38–0.49, n=129)	Quartile 3 (0.49–0.67, n=131)	Quartile 4 (0.67–3.91, n=129)	Quartile 1 (0–0.36, n=115)	Quartile 2 (0.36–0.48, n=114)	Quartile 3 (0.48–0.64, n=115)	Quartile 4 (0.64–3.16, n=115)		
Lung function tests										
FVC, L	2.92±0.81	2.72±0.82	2.49±0.78	2.26±0.72	<0.001	2.92±0.82	2.78±0.83	2.61±0.82	2.36±0.69	<0.001
FVC, % of predicted value	90.60±17.03	89.24±16.64	87.72±17.41	84.80±16.21	0.056	93.43±17.48	91.43±15.56	89.06±17.67	89.37±16.93	0.152
FEV₁, L	2.29±0.69	2.19±0.68	2.02±0.69	1.77±0.59	<0.001	2.36±0.64	2.29±0.65	2.11±0.64	1.91±0.56	<0.001
FEV₁, % of predicted value	86.12±12.16	81.14±16.43	80.18±16.63	76.72±19.82	<0.001	85.54±16.55	84.09±15.56	82.06±17.79	80.97±17.17	0.155
FEV₁/FVC, %	81.10±7.41	80.94±10.24	79.46±8.16	78.89±12.99	0.227	81.30±9.42	81.20±9.45	80.95±12.46	79.86±10.62	0.548

*One-way analysis of variance. FIB-4, fibrosis 4 score; FVC, forced vital capacity; FEV₁, forced expiratory volume measured in the first second of exhalation; NAFLD, nonalcoholic fatty liver disease; MAFLD, metabolic dysfunction-associated fatty liver disease; non-MD-NAFLD, nonmetabolic dysfunction-NAFLD.
found that each one-point increase in the FIB-4 score was associated with a significant reduction in both FVC (−0.507 95% CI: −0.840, −0.173, p=0.003) and FEV₁ (−0.439 95% CI: −0.793, −0.140, P=0.004).

Lung function tests in MAFLD and NAFLD non-MD-NAFLD participants stratified by sex

The aforementioned results remained essentially unchanged even when we performed separate statistical analyses by sex. As shown in Supplementary Tables 1–4, we found that the trends in impairment of lung function were comparable in men and women with MAFLD, but that the impairment in lung function appeared to be greater in men than in women, after adjusting for age ≥65 years, pre-existing COPD, smoking status, significant alcohol intake, adiposity measures, and other potential confounding factors (Table S4, adjusted model 3).

Discussion

The main findings of this large cross-sectional study were that both MAFLD and NAFLD were significantly associated with decreased lung function tests (i.e., FVC and FEV₁) in middle-aged Chinese adults after adjustment for multiple potential confounding factors. The observed decreases in lung function were significantly greater in participants with MAFLD than in those with NAFLD. Furthermore, the reductions in FEV₁ and FVC in those with MAFLD increased progressively with the severity of liver fibrosis, as noninvasively assessed by the FIB-4 score.

To the best of our knowledge, this is the first observational study that aimed to compare lung function parameters in NAFLD and MAFLD populations and to examine the association between lung function parameters and MAFLD fibrosis severity as assessed noninvasively by FIB-4 score. As summarized in Supplementary Table 5, previous observational studies reported that NAFLD was associated with impaired lung function tests, and that the association worsened as the histological severity of NAFLD progressed to a higher fibrosis stage. Moreover, some studies have shown a significant association between NAFLD and the presence of COPD or chronic restrictive pulmonary diseases. Although most of the aforementioned studies were cross-sectional and NAFLD was diagnosed by ultrasonography, they support the existence of an association between NAFLD and COPD.

The precise pathogenic mechanisms underpinning the association between MAFLD and reduced lung function tests remain poorly understood. The lungs and the liver are both highly vascular organs with dual blood supplies, and both are involved in antigen processing and are master regulators of energy homeostasis. It might thus be hypothesized that MAFLD and its associated metabolic disorders, principally obesity and T2DM, may promote systemic chronic inflammation, increased oxidative stress, increased insulin resistance, and lipotoxicity, which may induce lung function impairment in the long-term, possibly by activation of bronchial inflammation, lung fibrosis, and hypotrophy of airway respiratory muscles. As low-grade chronic inflammation is associated with both impaired lung function and NAFLD, some studies have shown that increased plasma C-reactive protein concentrations are associated with impaired lung function. Impaired lung function may subsequently promote increased insulin resistance, oxidative stress, and low-grade chronic inflammation, all of which may contribute to NAFLD progression. Nevertheless, future prospective cohort studies are required to better elucidate the direction of the relationship between impaired lung function and fatty liver disease.

Recently, an international panel of experts proposed a change in name and definition of NAFLD to MAFLD. However, the criteria for diagnosing MAFLD and NAFLD are distinct, and to the best of our knowledge, there is currently no published research related to MAFLD and lung function. Thus, given the emerging worldwide epidemic of this metabolic liver disease, it is important to ascertain if the newly proposed definition of MAFLD is more able to identify subjects with impaired lung function compared to the old NAFLD definition. In our study, we made some key observations. Firstly, both MAFLD and NAFLD definitions were associated with significant reductions in lung function parameters in Chinese people, but the reductions was significantly greater in patients with MAFLD than in those with NAFLD. Secondly, patients with MAFLD and T2DM or overweight/obesity had greater decreases in lung function than their counterparts without T2DM or overweight/obesity. Thirdly, patients with MAFLD and increased FIB-4 scores had worse lung function, even after adjusting for sex, age, smoking status, significant alcohol intake, BMI, pre-existing T2DM, and other potential confounding factors. Fourthly, patients with non-MD-NAFLD had the best lung function parameters compared with the MAFLD and NAFLD groups. As patients with MAFLD have various metabolic abnormalities, especially overweight/obesity and T2DM, that may adversely affect lung function, it is clinically important to manage and control the underlying metabolic disorders related to MAFLD.

Our study has some important limitations that should be

Table 4. Changes in lung function tests for 1-point increase in FIB-4 score in participants with MAFLD (n=519)

	Unadjusted model 1	p	Adjusted model 2	p	Adjusted model 3	p
FVC, L	−0.748 (−1.002,−0.495)	<0.001	−0.420 (−0.753,−0.088)	0.014	−0.507 (−0.840,−0.173)	0.003
FVC, % of	−6.441 (−12.032,−0.851)	0.024	−1.816 (−7.564,−3.932)	0.535	−8.824 (−19.554,−1.906)	0.107
predicted value	FEV₁, L	<0.001	−0.245 (−0.380,−0.042)	0.015	−0.439 (−0.739,−0.140)	0.004
FEV₁, % of	−4.039 (−9.724,1.646)	0.163	−1.342 (−7.083,4.435)	0.652	−6.053 (−16.621,4.515)	0.260
predicted value	FEV₁ /FVC, %	0.996	0.579	1.563	−1.949 (5.074)	0.382

Data are beta coefficients (95% CI). Model 1: univariable linear regression analysis (unadjusted model); Model 2: adjusted for age ≥65 years, sex, prior COPD, smoking status and significant alcohol intake; Model 3: adjusted for the same covariates of model 2 plus adiposity measures (BMI and waist circumference), blood pressure, WBC count, hemoglobin, serum transaminases, fasting glucose, and plasma lipid profile.
mentioned. Firstly, we used liver ultrasonography and FIB-4 scores for noninvasive diagnosing and staging of NAFLD or MAFLD. Secondly, the participants recruited from community hospitals were mostly middle-aged and elderly, which may have contributed to worse lung function compared with the normal population. Thirdly, the cross-sectional design of the study did not allow any temporal and causal inferences of the observed significant associations between decreased lung function volumes and MAFLD or MAFLD-related liver fibrosis. Finally, the findings should be confirmed in different ethnic groups.

In conclusion, the results of our study show that both MAFLD and NAFLD were associated with significant reductions of FEV1 and FVC in a large hospital-based cohort of middle-aged Chinese adults. The reductions in lung volumes were significantly greater in participants with MAFLD than in those with NAFLD. Reduced lung function parameters were also associated with higher FIB-4 scores in MAFLD. We suggest that future prospective and mechanistic studies are needed to decipher the existing but complex links between MAFLD and impaired lung function.

References
[1] Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors, and prevention. Nat Rev Gastroenterol Hepatol 2018;15(1):11–20. doi:10.1038/nrgastro.2017.109, PMID:28030295.
[2] Byrne CD, Targher G, NAFLD: a multisystem disease. J Hepatol 2015;62(1 Suppl):S47–64. doi:10.1002/hep.27090.
[3] Targher G, Tilg H, Byrne CD. Non-alcoholic fatty liver disease: a multisystem disease requiring a multidisciplinary and holistic approach. Lancet Gastroenterol Hepatol 2021;6(7):578–588. doi:10.1016/S2468-1253(21)00020-0, PMID:33961787.
[4] Mantovani A, Petraccia G, Beatrice G, Csermely A, Lonardo A, Schattenberg M, et al. Non-alcoholic fatty liver disease and risk of incident chronic kidney disease: an updated meta-analysis. Gut 2020;69(1):203–210. doi:10.1136/gutjnl-2020-323082, PMID:33303564.
[5] Ballestri S, Mantovani A, Nascimbene F, Lugaro S, Lonardo A. Extra-hepatic manifestations and complications of nonalcoholic fatty liver disease. Future Med Chem 2019;11(16):2171–2192. doi:10.4155/fmc-2019-0003, PMID:31538528.
[6] Targher G, Lonardo A, Byrne CD. Non-alcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol 2012;8(4):199–214. doi:10.1038/nrendo.2011.234, PMID:22181832.
[7] Talimano Barroso A, Marqués Martín E, Roa Romero LM, Ortega Ruiz F. Factors Affecting Lung Function: A Review of the Literature. Arch Bronconeumol (Engl Ed) 2018;54(6):327–332. doi:10.1016/j.arbres.2018.01.030, PMID:29469283.
[8] Peng TC, Kao TW, Wu LW, Chen YJ, Chang YW, Wang CC, et al. Association Between Pulmonary Function and Nonalcoholic Fatty Liver Disease in the NHANES III Study. Medicine (Baltimore) 2015;94(21):e907. doi:10.1097/MD.0000000000000907, PMID:26020401.
[9] Qin L, Julian-Dessayes I, Minoves M, Wiesenjw J, Leroy V, Zarski JP, et al. Non-alcoholic fatty liver disease in chronic obstructive pulmonary disease. Respir Res 2017;18(9):962. doi:10.1186/s12931-017-0654-5, PMID:28596431.
[10] Qin L, Zhang W, Yang Z, Niu Y, Li X, Su L, et al. Impaired lung function is associated with non-alcoholic fatty liver disease independently of metabolic syndrome features in middle-aged and elderly Chinese. BMC Endocr Disord 2017;17:1(1):18. doi:10.1186/s12902-017-0168-4, PMID:28330472.
[11] Wang MS, Kim E, Jiang LJ, Song WJ, Byrne CD. The association of non-alcoholic fatty liver disease with lung function: a surgery design analysis using propensity score. Respir2018;23(1):82–88. doi:10.1111/resp.13127, PMID:28749019.
[12] Moon SW, Kim SY, Jang JY, Kang YA, Park MS, Kim YS, et al. Relationship between obstructive lung disease and non-alcoholic fatty liver disease in the Korean population: Korea National Health and Nutrition Examination Survey, 2007-2010. Int J Chron Obstruct Pulmon Dis 2018;13:2603–2611. doi:10.2147/ICOP.S166902, PMID:30214179.
[13] Lee CH, Choi SH, Chung GE, Park B, Kwak MS. Nonalcoholic fatty liver disease is associated with decreased lung function. Liver Int 2018;38(11):2091–2100. doi:10.1111/liv.13960, PMID:29660233.
[14] Song JU, Yang J, Lim SY, Ryu S, Song WJ, Byrne CD, et al. Decreased lung function is associated with risk of developing non-alcoholic fatty liver disease: A longitudinal cohort study. PLoS One 2019;14(1):e0208736. doi:10.1371/journal.pone.0208736, PMID:30673968.
[15] Lee HW, Lee DH, Lee JK, Lee S, Koo BK, Joo SK, et al. Pulmonary function is associated with fibrosis severity in patients with biopsy-proven nonalcoholic fatty liver disease. Liver Int 2020;40(12):3008–3017. doi:10.1111/liv.14626, PMID:32737959.
[16] El Amrousy D, El Ashry H, Maher S, Ganna S, Hasan S. Pulmonary function test abnormalities in children and adolescents with non-alcoholic fatty liver disease. Eur J Pediatr 2021;180(6):1693–1699. doi:10.1007/s00431-021-03941-3, PMID:33477999.
[17] Lonardo A, Nascimbene F, Ponz de Leon M. Nonalcoholic fatty liver disease and liver failure. Eur J Pediatr 2017;176(1):179–187. doi:10.1007/s00431-016-0000-8, PMID:28596428.
[18] Petraccia G, Becherini M, Venegoni E, Zoppas M, Bonora E, et al. Association between non-alcoholic fatty liver disease and decreased lung function in adults: A systematic review and meta-analysis. Diabetologia 2019;62(5):936–944. doi:10.1007/s00125-019-04608-y, PMID:31067493.
[19] Qin L, Zhang W, Yang Z, Niu Y, Li X, Su L, et al. Impaired lung function was associated with non-alcoholic fatty liver disease independently of metabolic syndrome features in middle-aged and elderly Chinese. Korean J Med Surg 2016, PMID:28596428.
[20] Ji YP, Li DM, Li J, Zhang J, Wang JL, Zhang L, et al. Non-alcoholic fatty liver disease and risk of incident chronic kidney disease: a meta-analysis. Clin J Am Soc Nephrol 2018;13(21):2271–2273. doi:10.2215/CJN.00940018, PMID:32027159.
[21] Zheng YJ, Jin DQ, Yin SF, Zhong SW, Zhang MH. Clinical utility of the NAFLD definition. J Hepatol 2021;74(4):989–991. doi:10.1016/j.jhep.2020.12.016, PMID:33347953.
[22] Foad Y, Waked I, Bollipo S, Gomaa A, Ajilony J, Attia D. What’s in a
Miao L. et al: MAFLD and impaired lung function

name? Renaming ‘NAFLD’ to ‘MAFLD’. Liver Int 2020;40(6):1254–1261. doi:10.1111/liv.14478, PMID:32301554.

[28] Lonardo A. Renaming NAFLD to MAFLD: Could the LDE System Assist in This Transition? J Clin Med 2021;10(3):492. doi:10.3390/jcm10030492, PMID:33572544.

[29] Zheng K, Eslam M, George J, Zheng MH. When a new definition overhauls perceptions of MAFLD related cirrhosis care. Hepatobiliary Surg Nutr 2020;9(6):801–804. doi:10.21037/hbsn-20-725, PMID:33299840.

[30] Sun QD, Jin Y, Wang Y, Zheng KJ, Kios RS, Zhang HY, et al. MAFLD and risk of CKD. Metabolism 2021;115:154433. doi:10.1016/j.metabol.2020.154433, PMID:33212070.

[31] Zheng H, Hu Y, Dong L, Shu Q, Zhu M, Li Y, et al. Predictive diagnosis of chronic obstructive pulmonary disease using serum metabolic biomarkers and least-squares support vector machine. J Clin Lab Anal 2021;35:e23641. doi:10.1002/jcla.23641, PMID:33141993.

[32] Mathiesen UL, Frænzen LE, Aesilus H, Resjö M, Jacobsson L, Foberg U, et al. Increased liver echogenicity at ultrasound examination reflects degree of steatosis but not of fibrosis in asymptomatic patients with mild/moderate abnormalities of liver transaminases. Dig Liver Dis 2002;34(7):516–522. doi:10.1016/s1590-8658(02)80111-6, PMID:12236486.

[33] Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. J Gastroenterol 2012;107(6):811–826. doi:10.1038/ajg.2012.128, PMID:22641309.

[34] Itakura J, Kurosaki M, Satoyma H, Simakami T, Oza N, Korenaga M, et al. Applicability of APRI and FIB-4 as a transition indicator of liver fibrosis in patients with chronic viral hepatitis. J Gastroenterol 2021;56(5):470–478. doi:10.1007/s00408-021-0065-7, PMID:33308438.

[35] Zhou YJ, Zheng KI, Eslam M, George J, Zheng MH. Insulin resistance, metabolic syndrome and lung function in adults with and without asthma. J Allergy Clin Immunol 2015;136(2):304–311.e8. doi:10.1016/j.jaci.2015.01.010, PMID:25748066.

[36] Teg NG, Punjabi NM, Wang NY, Pankow JS, Duncan BB, Cox CE, et al. Cross-sectional and prospective study of lung function in adults with type 2 diabetes: the Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care 2008;31(4):741–746. doi:10.2337/dc07-1464, PMID:18056886.

[37] Kalhan R, Tran BT, Colangelo LA, Rosenberg SR, Liu K, Thyagarajan B, et al. Systemic inflammation in young adults is associated with abnormal lung function in middle age. PLoS One 2010;5(7):e11431. doi:10.1371/journal.pone.0011431, PMID:20625390.

[38] Rasmussen F, Mikkelsen D, Hancox RJ, Lambrechtsen J, Nybo M, Hansen HS, et al. High-sensitive C-reactive protein is associated with reduced lung function in young adults. Eur Respir J 2009;33(2):382–388. doi:10.1183/09031936.00040708, PMID:19010993.

[39] Baines KJ, Backer V, Gibson PG, Powell H, Porsbjerg CM. Impaired lung function is associated with systemic inflammation and macrophage activation. Eur Respir J 2015;45(2):557–559. doi:10.1183/09031936.00187514, PMID:25504991.

[40] Wu H, Baliantyne CM. Metabolic Inflammation and Insulin Resistance in Obesity. Circ Res 2020;126(11):1549–1564. doi:10.1161/CIRCRESAHA.119.315896, PMID:32437299.

[41] Cardet JC, Ash S, Kusa T, Camargo CA Jr, Israel E. Insulin resistance modifies the association between obesity and current asthma in adults. Eur Respir J 2016;48(2):403–410. doi:10.1183/13993003.00246-2016, PMID:27103388.

[42] Tilg H, Enfenberger M. From NAFLD to MAFLD: when pathophysiology succeeds. Nat Rev Gastroenterol Hepatol 2020;17(7):387–388. doi:10.1038/s41575-020-0316-6, PMID:32461575.