Active catalyst construction for CO$_2$ recycling via catalytic synthesis of N-doped carbon on supported Cu

Yajuan Wu1,2,4, Tao Wang3,4, Hongli Wang1, Xinzhi Wang1,2, Xingchao Dai1,2 & Feng Shi1

Bridging homogeneous and heterogeneous catalysis is a long-term pursuit in the field of catalysis. Herein, we report our results in integration of nano- and molecular catalysis via catalytic synthesis of nitrogen doped carbon layers on AlOx supported nano-Cu which can finely tune the catalytic performance of the supported copper catalyst. This synthetic catalytic material, which can be generated in situ by the reaction of CuAlOx and 1,10-Phen in the presence of hydrogen, could be used for controllable synthesis of N,N-dimethylformamide (DMF) from dimethylamine and CO$_2$/H$_2$ via blocking reaction pathways of further catalytic hydrogenation of DMF to N(CH$_3$)$_3$. Detailed characterizations and DFT calculations reveal that the presence of N-doped layered carbon on the surface of the nano-Cu particles results in higher activation energy barriers during the conversion of DMF to N(CH$_3$)$_3$. Our primary results could promote merging of homogeneous catalysis and heterogeneous catalysis and CO$_2$ recycling.
Utilization and transformation of CO₂ into value-added chemicals has the potential to alleviate climate change and mitigate the dependence on fossil fuels. Among various CO₂ transformation routes, the reductive functionalization of CO₂ to DMF is one of the most promising approaches for its chemical utilization, since DMF is a versatile multipurpose reagent in numerous synthetic processes and important solvent having widespread applications in industry. Currently, DMF is primarily produced by sodium methoxide catalyzed carboxylation of dimethylamine with carbon monoxide in methanol at 2–10 MPa and 353–373 K. To substitute the toxic carbon monoxide, the reductive coupling of dimethylamine with CO₂ and H₂ would offer a fascinating route for sustainable production of DMF. Since the initial report by Haynes et al. on (Ph₃P)₂(CO)IrCl catalyzed preparation of DMF from dimethylamine with CO₂ and H₂ in 1970, a series of homogeneous and heterogeneous transition-metal catalysts, such as ruthenium, palladium, platinum, iridium, iron, copper, and others, are developed for the reduction of CO₂ to synthesize DMF. Although it has been extensively studied, the highly controlled synthesis of DMF remains a tremendous challenge because DMF is prone to further reduction into N(CH₃)₃. Therefore, the development of efficient methods for controllable synthesis of DMF from dimethylamine and CO₂/H₂ via suppression of further reduction of DMF to N(CH₃)₃ is highly desirable, especially by heterogeneous catalysts, because it is easy to be applied in practical process. However, the regulation of the catalytic performance of heterogeneous catalysts on molecular level is difficult. Noteworthy, the development of homogeneous catalysis gives us nice inspirations, in which the catalytic performance can be precisely modulated by organic ligand.

For example, N-formylation and N-methylation of amines with CO₂ and phenylsilane can be precisely controlled by organic ligand, i.e., DPPP (1,4-bis(diphenylphosphino)butane) promoted N-methylation whereas Ph₃CyP (diphenycyclohexylphosphine) favored for N-formylation. Also, it has been revealed that the addition of molecular organic ligands can tune the catalytic performance of heterogeneous catalysts, too. A heterogeneous catalyst with the catalytic performance of homogeneous catalyst might be obtained if the traditional organic ligand can be controllably deposited on the surface of heterogeneous catalyst.

It is well known that transition-metal catalysts such as Cu possess the ability of converting the organic molecules into carbon materials, such as CNT (carbon nanotube), graphite/graphene (oxide), amorphous carbon, and ordered mesoporous carbon. In addition, Cu was found to be an active catalyst for catalytic hydrogenation of CO₂ to methanol and nitrogen-containing ligand was usually used to tuning the catalytic performance of active metals. Inspired by the discussions above, a N-doped carbon layer on the surface of nanoparticles might be formed in situ by using the nitrogen-containing ligand as the carbon layer precursor. In this way, a facile methodology to integrate heterogeneous and homogeneous catalysts can be built, and the preparation of heterogeneous catalyst with homogeneous characteristics for controllable synthesis of DMF with CO₂/H₂ may be realized.

Herein, we report a facile methodology for integration of nanomaterial catalysis via catalytic synthesis of nitrogen doped carbon layers on AlOx supported nano-Cu. This synthetic catalytic material, which can be generated in situ by the reaction of CuAlOx and 1,10-Phen in the presence of hydrogen, could be used for controllable synthesis of DMF from dimethylamine and CO₂/H₂ via blocking reaction pathways of further catalytic hydrogenation of DMF to N(CH₃)₃.

Results

Optimization of the reaction conditions

To validate our hypothesis, we commenced our studies by investigating the reactions of N,N-dimethylammonium N,N’-dimethylcarbamate (DMCARB) in the presence of CuAlOx and different organic nitrogen-containing ligands under 3 MPa of CO₂ and 7 MPa of H₂ in DME at 160 °C for 24 h (Table 1). The CuAlOx catalyst used here was prepared by a co-precipitation method by adding an aqueous solution of Na₂CO₃ to a Cu(NO₃)₂ and Al(NO₃)₃ solution. It was found that the reaction proceeded smoothly in the absence of ligand leading to DMF and N(CH₃)₃ in 93.7% total yield with low selectivity of 41.8% toward DMF (Entry 1). Among the common monodentate nitrogen-containing ligands in this study, the selectivity to DMF slightly decreased when Et₃N and PhNMe₂ were used while Py slightly promoted to deliver DMF with 44.0% selectivity (Entries 2–4). Then, various bidentate ligands were also evaluated. Bipy had a negligible impact on the observed selectivity (Entry 5). Clearly, the selectivity toward DMF can be improved slightly if TMEDA was added during the reactions (Entry 6). Compared with TMEDA, the selectivity to DMF sharply increased to 77.9% if DMDMA was employed (Entry 7). In addition, it was discovered that 1,10-Phen exhibited the highest DMF selectivity, i.e., 86.7% (Entry 8). Reducing the amount of 1,10-Phen to 5 mol% resulted in a lower selectivity toward DMF but the same reactivity was kept (Entry 9). Further increasing the amount of 1,10-Phen led to a higher selectivity to DMF (Entries 10–11). Importantly, this catalyst was easily recovered by simple filtration, and it can be reused directly without further treatment. To our delight, 89.6% yield with 97.3% selectivity to DMF was maintained when it was used at the third run, thus, this catalyst exhibits nice reusability (Entry 12).

Kinetic and product distribution

To obtain kinetic and product distribution data, the reactions of DMCARB with CO₂ and H₂ in the presence of CuAlOx, CuAlOx/1,10-Phen, and CuAlOx/TMEDA were traced with varied reaction times. Their performance versus time is shown in Fig. 2. The CuAlOx catalyst or CuAlOx with TMEDA exhibited significant decline in the DMF selectivity with prolonging the reaction time, whereas the high DMF selectivity was still maintained after 24 h if CuAlOx and 1,10-Phen were applied. These results indicated that further reduction of DMF to N(CH₃)₃ was suppressed when 1,10-Phen was used as ligand but the activity for DMF generation was not influenced remarkably.
Catalyst characterization. In order to explore whether N-doped carbon layer was formed on the surface of the supported nano-copper and which condition could form a N-doped carbon layer on the surface of nanoparticles, the fresh CuAlOx catalyst and the samples being treated by different conditions were characterized by TEM, XPS, XRD, EXAFS, TGA, and N2 adsorption−desorption instruments. At first, the morphology of the CuAlOx samples was examined by TEM and HRTEM as shown in Fig. 3 and Supplementary Fig. 1. The HRTEM image of the fresh CuAlOx provided a lattice fringe with the d-spacing of 0.21 nm, according with the (111) plane of Cu. Compared with fresh catalyst, the HRTEM images of fresh catalyst after being treated with DIMCARB + Phen + CO2 + H2, Phen + CO2 + H2, Phen + H2 conditions show that the copper nanoparticles are coated with a carbon layer on their surface (shown by an arrow.) The spacing between these layers is around 0.28 nm, which is consistent with that of layered carbon. This result well agrees our hypothesis, i.e., N-doped carbon layer can be in situ synthesized on the heterogenous catalyst sample during the reaction. To trace the formation process of layered carbon, a fresh CuAlOx treated with 1,10-Phen in the presence of H2 for 8, 16, and 24 h were also characterized by HRTEM (Fig. 3d–f). Clearly, after being treated for 8 h (Fig. 3d), layered carbon was formed on the edge of catalyst (shown by an arrow). Clearly, the carbon layers grew from edge to surface of CuAlOx after being treated for 16 and 24 h (Fig. 3e, f). The HRTEM images of the fresh CuAlOx catalyst after being treated with Et3N, PhNMe2, Py, Bipy, TMEDA, and DMEDA revealed that carbon layer was not formed on the surface of CuAlOx catalyst under the same treating conditions.

Furthermore, XPS was performed to explore the chemical state and composition of surface elements in the fresh and treated catalysts (Supplementary Fig. 2). The XPS spectra of all catalysts display two main peaks at 933.5 and 953.5 eV, which are in agreement with Cu 2p3/2 and Cu 2p1/2 the binding energies of Cu2+. Considering that metallic copper was observed in TEM characterizations, the appearance of Cu2+ on catalyst surface should be attributed to the oxidation of Cu(0) when the catalyst samples were exposed to air19,46,47. The C 1s and N 1s spectra of the catalysts were also analyzed by XPS (Supplementary Fig. 3). However, the C1s spectra were overlapped by the organic carbon from environment, and the N1s spectra were too weak due to the low concentration. So the structure of the carbon layers can not be determined by XPS analysis.

According to the nitrogen adsorption−desorption isotherms, the formation of mesoporous structure for the fresh CuAlOx catalyst was observed (Supplementary Fig. 4). The C 1s and N 1s spectra of the catalysts were also analyzed by XPS (Supplementary Fig. 3). However, the C1s spectra were overlapped by the organic carbon from environment, and the N1s spectra were too weak due to the low concentration. So the structure of the carbon layers can not be determined by XPS analysis.

Table 1 Results for DMF synthesis from DIMCARB and CO2/H2

Entry	Ligand (10 mol%)	Yield (%)b	Sel. (%)	DMF	N(CH3)3
1	None	93.7	41.8	58.2	
2	Et3N	90.0	30.3	69.7	
3	PhNMe2	89.4	30.3	69.7	
4	Py	99.0	44.0	56.0	
5	Bipy	91.3	43.6	56.4	
6	TMEDA	98.2	52.6	47.4	
7	DMEDA	92.1	77.9	22.1	
8	1,10-Phen	89.7	86.7	13.3	
9c	1,10-Phen	93.0	78.4	21.6	
10f	1,10-Phen	98.3	92.0	8.0	
11e	1,10-Phen	95.0	97.3	2.7	
12f	1,10-Phen	89.6	97.3	2.7	

*DIMCARB (0.5 mmol, equal to 1 mmol HN(CH3)2), CuAlOx (100 mg, 9 mmol% Cu), ligand (10 mol%), 1,2-Dimethoxyethane (4 mL), 3 MPa CO2, 7 MPa H2, 160 °C, 24 h

\[\text{Comb. yield of DMF and N(CH3)3 were determined by GC-FID using 1,4-dioxane as the internal standard material}\]

19,46,47

19,46,47

19,46,47

The catalyst was reused at the third run. Bipy: 2,2′-bipyridine; Py: pyridine; TMEDA: N,N,N′,N′-Tetramethylethylenediamine; DMEDA: N,N′-dimethylethylenediamine; 1,10-Phen: 1,10-Phenanthroline

Fig. 2 Products distribution during the reactions of DIMCARB with CO2 and H2. Reaction conditions: DIMCARB (0.5 mmol), CuAlOx (100 mg), ligand (10 mol%), 1,2-Dimethoxyethane (4 mL), 3 MPa CO2, 7 MPa H2, 160 °C. Except DMF, N(CH3)3 is the main product
in clogged mesoporous of the fresh CuAlOx catalyst. The N\textsubscript{2} adsorption—desorption tests showed that the BET surface areas of the fresh and treated catalysts (Supplementary Table 1) were 250.3 – 330.3 m2 g-1.

Then, fresh CuAlOx catalyst and the samples being treated by different conditions were characterized by XRD measurement, too (Fig. 4a and Supplementary Fig. 5). The fresh CuAlOx samples show diffraction peaks at 25.3, 37.9, 48.2, 54.1, and 55.3, which can be assigned as (101), (004), (200), (105), and (211) reflection lines of γ-Al\textsubscript{2}O\textsubscript{3}. The treated catalysts showed XRD reflections at 43.3°, 50.4°, 74.1°, 89.9°, and 95.0°, which are ascribed to the metallic copper phase. As the copper particle size can not be precisely determined by TEM, in which the copper particles were overlapped with AlOx, the crystallite sizes of different catalysts were calculated from Cu (111) diffraction peak in XRD by using Scherrer equation. As shown in Supplementary Table 1, these samples have a copper crystallite size in the range from 5.1 to 19.9 nm. Besides, the fresh CuAlOx catalyst treated with DIMCARB + Phen + CO\textsubscript{2} + H\textsubscript{2}, Phen + CO\textsubscript{2} + H\textsubscript{2}, Phen + H\textsubscript{2} conditions exhibited a new diffraction peak located at 18.0°. This peak is the typical diffraction peak of N-dope carbon (PDF#51–2183), which clearly proves our hypothesis. In addition, no diffraction peak was observable at 18.1° in fresh catalyst after being treated with Et\textsubscript{3}N, PhNMe\textsubscript{2}, Py, Bipy, TMEDA, and DMEDA. These results revealed that layered carbon was not formed on the surface of CuAlOx catalyst under the above conditions, which is in line with the TEM results. Therefore, we could draw conclusion that other ligands are not able to modulate the selectivity because of lack formation of the carbon shell on the catalysts.

Following, time-resolved XRD patterns of CuAlOx catalysts treated with 1,10-Phen and H\textsubscript{2} at different times: 0, 4, 8, 12, 16, 20, and 24 h.
spectra show that the bond distance of Cu size remains small. The results from the oxidation of Cu(0) when exposed to air and average particle size slightly increases after treatment. This result confirms the observations from XRD patterns.

To verify whether this structure have the ability as we hypothesized, control experiments were conducted under the same conditions. In the reaction of DIMCARB with CO₂ and H₂, fresh CuAlOₓ catalyst produced DMF and N(CH₃)₃ in 93.7% combined yield with low DMF selectivity of 41.8%). If applying N-doped layer carbon coated nano-copper (CuAlOₓ catalyst treated with 1,10-Phen and H₂) as the catalyst, 95.8% combined yield with much higher DMF selectivity of 80.2% was obtained. In addition, for the catalytic hydrogenation of DMF, fresh CuAlOₓ catalyst afforded 100% conversion while CuAlOₓ treated with 1,10-Phen and H₂ only gave 25% conversion (Fig. 6). The results obviously demonstrated that the precisely synthesized catalyst indeed possesses ability for controllable synthesis of DMF from CO₂/H₂. The copper contents in the solution after each cycle were tested by ICP-AES (Supplementary Table 4). 2.970, 1.928, and 0.900 ppm copper were observed in the solutions with CuAlOₓ itself as catalyst at the first, second, and third runs, while it was only 0.513, 0.028, and 0.013 ppm if Phen was added. Therefore, except the improving of the catalytic performance for DMF synthesis, the formation of carbon layer also can stabilize the CuAlOₓ catalyst.

DFT calculations. In order to explore the role of N-doped nano-carbon layer in controlling the selective synthesis of DMF, DFT calculations were performed to simulate the detailed reaction mechanism of DMF hydrogenation to N(CH₃)₃, on clean and Phen-covered Cu(111) surfaces, where five reaction pathways are considered as shown in Supplementary Figs. 8 and 9. More specifically, the adsorbed (CH₃)₂NCHO could produce (CH₃)₂NCH + O species via C–O bond breaking, and further hydrogenation of (CH₃)₂NCH would produce undesired N(CH₃)₃ species, which finally results in the lose in (CH₃)₂NCHO selectivity. (CH₃)₂NCHO could also generate (CH₃)₂NCH₂O and (CH₃)₂NCHOH species via hydrogenation. Then, (CH₃)₂NCHOH could produce either (CH₃)₂NCH₂ + O species via C–O bond breaking or (CH₃)₂NCH₂OH species via deep hydrogenation. Similarly, (CH₃)₂NCHOH could produce either (CH₃)₂NCH + OH species via C–O bond breaking or (CH₃)₂NCH₂OH species via hydrogenation. Furthermore, (CH₃)₂NCH₂OH could produce (CH₃)₂NCH₂ + OH species via C–O bond breaking. Finally, the (CH₃)₂NCH and (CH₃)₂NCH₂ species will be hydrogenated to N (CH₃)₃ species. All the detailed energetics as well as structures of all the species and transition states could be found in Supplementary Figs. 10 to 13. On the basis of the systematic reaction mechanism computations, we are able to have direct comparison the difference between clean and Phen-covered Cu catalyst. Figure 7 depicts the potential energy diagrams for the most favorable reaction pathways of DMF hydrogenation to N(CH₃)₃ on clean and Phen-covered Cu(111) surfaces. Clearly, the presence of Phen on Cu(111) surface increases the energy barriers of C–H bond formation and C–O bond breaking in DMF hydrogenation, which indicates its lower DMF hydrogenation activity compared with clean Cu(111) surface. Therefore, the computational results can reasonably explain our experimental findings.

In conclusion, we have successfully developed a facile methodology to integrate heterogeneous and homogeneous catalysts via construction of N-doped carbon layer on the surface of supported nano-catalyst. The synthetic catalytic material with defined structure exhibited a remarkable catalytic performance in controllable synthesis of DMF. Also, the applying of this concept in other catalytic hydrogenation reactions were ongoing. This work offers an effective methodology for the precise and controlled synthesis of heterogeneous catalysts with defined active sites, and it may provide an important insight in merging homogeneous catalysis with heterogeneous catalysis as well as controlled catalytic conversion of CO₂.
N-formylation of dimethylamine with CO2/H2. A mixture of DIMCARB (67 mg), CuAlOx (100 mg), 1,10-Phen (0.145 g, 0.6 mmol) of Cu(NO3)2·3H2O and 4.275 g (11.4 mmol) of Al(NO3)3·9H2O were added into 125 mL deionized water at room temperature (20 °C) for 20 min and the gas was pumped slowly into 120 mL 2 mol/L HCl methanol solution to absorb the gaseous N(CH3)2. Then, the methanol solution was concentrated under vacuum and the yield of gaseous N(CH3)2 was obtained. Subsequently, 0.5 mL triethylamine and 15 mL 1,2-dimethoxyethane were added into the reaction mixture quickly. The GC yield of liquid N(CH3)3 and DMF were determined by GC-FID (Agilent 7890 A) using 1,4-dimethoxyethane as the internal standard. The overall yield of N(CH3)3 was calculated by adding gaseous and liquid yields together.

Procedure for recycling test. The used catalyst was separated from the reaction mixtures by centrifuging, washed three times alternately with DME and acetone. After being dried in air at room temperature, it was recovered and directly recharged into the reaction tube for the next run.

The procedures for CuAlOx catalyst treated. For CuAlOx, N-formylation of dimethylamine with CO2 and H2, the processing conditions are the same as that of N-formylation of dimethylamine. After cooling to room temperature, the catalyst was washed alternately with methanol and acetone for three times and then dried in the air. For CuAlOx, N-formylation of dimethylamine with CO2 and H2, the processing conditions are the same as that of N-formylation of dimethylamine. The used catalyst was separated from the reaction mixtures by centrifuging, washed three times alternately with DME and acetone. After being dried in air at room temperature, it was recovered and directly recharged into the reaction tube for the next run.

DFT calculations. All calculations were performed by using the plane-wave based DFT method as implemented in the Vienna ab initio simulation package (VASP). The electron exchange and correlation energy was treated within the generalized gradient approximation in the Perdew-Burke-Ernzerhof formalism (GGA-PBE). The density-dependent DBC method was used for the dispersion correction. More computational details could be found in Supplementary Material.

Data availability
All data are available from the corresponding authors upon reasonable request.

References
1. He, M., Sun, Y. & Han, B. Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 52, 9620–9633 (2013).
2. Liu, Q., Wu, L., Jackstell, R. & Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 6, 5933 (2015).
3. Arts, J., Müller, T. E. & Thenert, K. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).
4. Ding, S. & Jiao, N. N,N-Dimethylformamide: a multipurpose building block. Angew. Chem. Int. Ed. 54, 9226–9237 (2015).
5. Muzart, J. N,N-Dimethylformamide: much more than a solvent. Tetrahedron 65, 8313–8323 (2009).
6. Weissermel, K. & Arpe, H. J. Industrial organic chemistry. 3rd edn (Wiley-VCH, Weinheim, 1997).
7. Haynes, P., Slaugh, L. H. & Kohnle, J. F. Formamides from carbon dioxide, amines and hydrogen in the presence of metal complexes. Tetrahedron Lett. 11, 365–368 (1970).
8. Jessop, P. G., Hisaio, Y., Ikariya, T. & Noyori, R. Catalytic production of dimethylformamide from supercritical carbon dioxide. J. Am. Chem. Soc. 116, 8851–8852 (1994).
9. Kobayashi, K., Kikuchi, T., Kitagawa, S. & Tanaka, K. Selective generation of formamides through photocatalytic CO2 reduction catalyzed by ruthenium carboxyl compounds. Angew. Chem. Int. Ed. 53, 11813–11817 (2014).
10. Krocher, O., Köppel, R. A. & Baiker, A. Highly active ruthenium complexes with bidentate phosphate ligands for the solvent-free catalytic synthesis of N,N-dimethylformamide and methyl formate. Chem. Commun. 0, 453–454 (1997).
11. Zhang, L., Han, Z., Zhao, X., Wang, Z. & Ding, K. Highly efficient ruthenium-catalyzed N-formylation of amines with H2 and CO2. Angew. Chem. Int. Ed. 54, 6186–6189 (2015).
12. Cui, X., Zhang, Y., Deng, Y. & Shi, F. Amine formylation via carbon dioxide recycling catalyzed by a simple and efficient heterogeneous palladium catalyst. Chem. Commun. 50, 189–191 (2014).
13. Schreiner, S., Yu, J. Y. & Vaska, L. Reversible homogeneous catalysis of carbon dioxide hydrogenation/reduction at room temperature and low pressures. J. Chem. Soc., Chem. Commun. 6, 602–603 (1988).

14. Bi, Q.-Y. et al. Partially reduced iridium oxide clusters dispersed on titania as a selective copper–copper oxide nanoparticles as active, stable and low-cost catalyst in the methanalysis of ammonia–borane for chemical hydrogen storage. Appl. Catal. B 165, 169–175 (2015).

15. Kudo, K., Phala, H., Sugita, N. & Takezaki, Y. Synthesis of dimethylformamide from CO2, H2 and dimethylamine. Chem. Commun. 50, 9138–9140 (2014).

16. Federsel, C. et al. A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. Angew. Chem. Int. Ed. 49, 9777–9780 (2010).

17. Ziebart, C. et al. Well-defined iron catalyst for supported palladium catalysts for small-walled carbon nanotubes—a review. J. Phys. Condens. Matter 15, S301–S305 (2003).

18. Yurerdi, M., Buht, A., Ertas, I. E., Zahmakiran, M. & Kaya, M. Supported copper–copper oxide nanoparticles as active, stable and low-cost catalyst in the methanalysis of ammonia–borane for chemical hydrogen storage. Appl. Catal. B 165, 169–175 (2015).

19. Beller, M. & Bolm, C. Catalytic deoxygenation of alcohols: homogeneous and heterogeneous catalysts. Catal. Sci. Tech. 3, 2392–2396 (2013).

20. Zhiani, R., Saadati, S. M., Zahedifar, M. & Sadeghzadeh, S. M. Synthesis of new copper(II)-based FeNi3/KCC1 for the N-formylation of amines under 1 atm of carbon dioxide with polymethylhydrosiloxane. J. Mol. Catal. A 366, 347–352 (2013).

21. Beller, M. & Bolm, C. Transition metals for organic synthesis (Wiley-VCH, Weinheim, 2004).

22. Feng, Y., Zhang, L., Li, Z., Su, Y., Huang, H., Yang, J., Zheng, N. & Fu, G. Selective hydrogenation of carbon dioxide and formic acid. J. Phys. Chem. Lett. 5, 3770–3776 (2014).

23. Zhuang, X., Kruk, I., Lehmann, R., Zheng, J. & Qiu, J. Supported copper nanoparticles as active, stable and low-cost catalyst in the methanalysis of ammonia–borane for chemical hydrogen storage. Appl. Catal. B 165, 169–175 (2015).

24. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

25. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

26. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

27. Steinmann, S. N. & Corrinbonneuf, C. Comprehensive benchmarking of a density-functional dispersion correction. J. Chem. Theory Comput. 7, 3567–3571 (2011).

Acknowledgements
Financial supports from the NSFC (91745106, 21633013, 21802147), National Key Research and Development Program of China (2017YFA0403103), the Youth Innovation Promotion Association of CAS (2019409), Key Research Program of Frontier Sciences of CAS (QYZDJ-SSW-SLH051), and Fujian Institute of Innovation of CAS are gratefully acknowledged.

Author contributions
F.S.-designed and supervised the project. Y.W., H.W., X.W. and X.D. performed most of the experiments. T.W. performed the DFT computations. H.W., Y.W. and F.S. authored the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-10633-y.

Competing Interests: The authors declare no competing interests.

Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.