CYCLIC COVERS OF PRIME POWER DEGREE, JACOBIANS
AND ENDMORPHISMS

YURI G. ZARHIN

Abstract. Suppose K is a field of characteristic zero, K_a is its algebraic
closure, $f(x) \in K[x]$ is an irreducible polynomial of degree $n \geq 5$, whose
Galois group coincides either with the full symmetric group S_n or with the
alternating group A_n. Let q be a power prime, $P_q(t) = t^q - 1$.

Let C be the superelliptic curve $y^q = f(x)$ and $J(C)$ its jacobian. We
prove that if p does not divide n then the algebra $\text{End}(J(C)) \otimes \mathbb{Q}$ of K_a-
edmorphisms of $J(C)$ is canonically isomorphic to $\mathbb{Q}[t]/P_q(t)\mathbb{Q}[t]$.

1. Introduction

We write $\mathbb{Z}, \mathbb{Q}, \mathbb{C}$ for the ring of integers, the field of rational numbers and the
field of complex numbers respectively. Recall that a number field is called a CM-
field if it is a purely imaginary quadratic extension of a totally real field. Let p
be a prime, $q = p^r$ an integral power of p, $\zeta_q \in \mathbb{C}$ a primitive qth root of unity,
$\mathbb{Q}(\zeta_q) \subset \mathbb{C}$ the qth cyclotomic field and $\mathbb{Z}[\zeta_q]$ the ring of integers in $\mathbb{Q}(\zeta_q)$. If $q = 2$
then $\mathbb{Q}(\zeta_q) = \mathbb{Q}$. It is well-known that if $q > 2$ then $\mathbb{Q}(\zeta_q)$ is a CM-field of degree
$(p - 1)p^{r-1}$. Let us put

$$P_q(t) = \frac{t^q - 1}{t - 1} = t^{q-1} + \cdots + 1 \in \mathbb{Z}[t].$$

Clearly,

$$P(t) = \prod_{i=1}^r \Phi_{p^i}(t)$$

where

$$\Phi_{p^i}(t) = t^{(p-1)p^{i-1}} + \cdots + t^{p^{i-1}} + 1 \in \mathbb{Z}[t]$$

is the p^ith cyclotomic polynomial. In particular,

$$\mathbb{Q}[t]/\Phi_{p^i}(t)\mathbb{Q}[t] = \mathbb{Q}(\zeta_{p^i})$$

and

$$\mathbb{Q}[t]/P_q(t)\mathbb{Q}[t] = \prod_{i=1}^r \mathbb{Q}(\zeta_{p^i}).$$

We write \mathbb{F}_p for the finite field with p elements.
Let \(f(x) \in \mathbb{C}[x] \) be a polynomial of degree \(n \geq 4 \) without multiple roots. Let \(C_{f,q} \) be a smooth projective model of the smooth affine curve

\[
y^q = f(x).
\]

Throughout this paper we assume that either \(p \) does not divide \(n \) or \(q \) divides \(n \). It is well-known that the genus \(g(C_{f,q}) \) of \(C_{f,q} \) is \((q - 1)(n - 1)/2\) if \(p \) does not divide \(n \) and \((q - 1)(n - 2)/2\) if \(q \) divides \(n \). The map

\[
(x, y) \mapsto (x, \zeta_q y)
\]

gives rise to a non-trivial birational automorphism

\[
\delta_q : C_{f,q} \to C_{f,q}
\]
of period \(q \).

The jacobian \(J(C_{f,q}) \) of \(C_{f,q} \) is an abelian variety of dimension \(g(C_{f,q}) \). We write \(\text{End}(J(C_{f,q})) \) for the ring of endomorphisms of \(J(C_{f,q}) \) over \(\mathbb{C} \) and \(\text{End}^0(J(C_{f,q})) \) for the endomorphism algebra \(\text{End}(J(C_{f,q})) \otimes \mathbb{Q} \). By Albanese functoriality, \(\delta_q \) induces an automorphism of \(J(C_{f,q}) \) which we still denote by \(\delta_q \). One may easily check (see below) that

\[
\delta_q^{-1} + \cdots + \delta_q + 1 = 0
\]
in \(\text{End}(J(C_{f,q})) \). This implies that if \(\mathbb{Q}[\delta_q] \) is the \(\mathbb{Q} \)-subalgebra of \(\text{End}^0(J(C_{f,q})) \) generated by \(\delta_q \) then there is the natural surjective homomorphism

\[
\mathbb{Q}[t]/\mathcal{P}_q(t)\mathbb{Q}[t] \twoheadrightarrow \mathbb{Q}[\delta_q]
\]

which sends \(t + \mathcal{P}_q(t)\mathbb{Q}[t] \) to \(\delta_q \). One may check that this homomorphism is, in fact, an isomorphism (see [9, p. 149], [10, p. 458]) where the case \(q = p \) was treated).

This gives us an embedding

\[
\mathbb{Q}[t]/\mathcal{P}_q(t)\mathbb{Q}[t] \cong \mathbb{Q}[\delta_q] \subset \text{End}^0(J(C_{f,q})).
\]

Our main result is the following statement.

Theorem 1.1. Let \(K \) be a subfield of \(\mathbb{C} \) such that all the coefficients of \(f(x) \) lie in \(K \). Assume also that \(f(x) \) is an irreducible polynomial in \(K[x] \) of degree \(n \geq 5 \) and its Galois group over \(K \) is either the symmetric group \(S_n \) or the alternating group \(A_n \). In addition, assume that either \(p \) does not divide \(n \) or \(q \mid n \). Then

\[
\text{End}^0(J(C_{f,q})) = \mathbb{Q}[\delta_q] \cong \mathbb{Q}[t]/\mathcal{P}_q(t)\mathbb{Q}[t] = \prod_{i=1}^{r} \mathbb{Q}(\zeta_{p^r}).
\]
Remark 1.2. In the case when q is a prime (i.e. $q = p$) the assertion of Theorem 1.1 is proven in [16, 23]. See [21, 25, 20] for a discussion of finite characteristic case.

Examples 1.3. Let $n \geq 5$ be an integer, p a prime, r a positive integer, $q = p^r$.

(1) The polynomial $x^n - x - 1 \in \mathbb{Q}[x]$ has Galois group S_n over \mathbb{Q} ([13, p. 42]). Therefore the endomorphism algebra (over \mathbb{C}) of the jacobian $J(C)$ of the curve $C : y^q = x^n - x - 1$ is $\mathbb{Q}[t]/P_q(t)\mathbb{Q}[t]$.

(2) The Galois group of the “truncated exponential” $\exp_n(x) := 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots + \frac{x^n}{n!} \in \mathbb{Q}[x]$ is either S_n or A_n [11]. Therefore the endomorphism algebra (over \mathbb{C}) of the jacobian $J(C)$ of the curve $C : y^q = \exp_n(x)$ is $\mathbb{Q}[t]/P_q(t)\mathbb{Q}[t]$.

Remark 1.4. If $f(x) \in K[x]$ then the curve $C_{f,q}$ and its jacobian $J(C_{f,q})$ are defined over K. Let $K_a \subset \mathbb{C}$ be the algebraic closure of K. Clearly, all endomorphisms of $J(C_{f,q})$ are defined over K_a. This implies that in order to prove Theorem 1.1 it suffices to check that $\mathbb{Q}[\delta_q]$ coincides with the \mathbb{Q}-algebra of K_a-endomorphisms of $J(C_{f,q})$.

2. Complex abelian varieties

Throughout this section we assume that Z is a complex abelian variety of positive dimension. As usual, we write $\text{End}^0(Z)$ for the semisimple finite-dimensional \mathbb{Q}-algebra $\text{End}(Z) \otimes \mathbb{Q}$. We write \mathcal{C}_Z for the center of $\text{End}^0(Z)$. It is well-known that \mathcal{C}_Z is a direct product of finitely many number fields. All the fields involved are either totally real number fields or CM-fields. Let $H_1(Z, \mathbb{Q})$ be the first rational homology group of Z; it is a 2dim(Z)-dimensional \mathbb{Q}-vector space. By functoriality, $\text{End}^0(Z)$ acts on $H_1(Z, \mathbb{Q})$; hence we have an embedding

$$\text{End}^0(Z) \hookrightarrow \text{End}_\mathbb{Q}(H_1(Z, \mathbb{Q}))$$

(which sends 1 to 1).

Suppose E is a subfield of $\text{End}^0(Z)$ that contains the identity map. Then $H_1(Z, \mathbb{Q})$ becomes an E-vector space of dimension

$$d = \frac{2\text{dim}(Z)}{[E : \mathbb{Q}]}.$$

We write

$$\text{Tr}_E : \text{End}_E(H_1(Z, \mathbb{Q})) \to E$$
for the corresponding trace map on the E-algebra of E-linear operators in $H_1(Z, Q)$.

Extending by C-linearity the action of $\text{End}^0(Z)$ and of E on the complex cohomology group

$$H_1(Z, Q) \otimes Q C = H_1(Z, C)$$

of Z we get the embeddings

$$E \otimes Q C \subset \text{End}^0(Z) \otimes Q C \hookrightarrow \text{End}_C(H_1(Z, C))$$

which provide $H_1(Z, C)$ with a natural structure of free $E_C := E \otimes Q C$-module of rank d. If Σ_E is the set of all field embeddings $\sigma : E \hookrightarrow C$ then it is well-known that

$$E_C = E \otimes Q C = \prod_{\sigma \in \Sigma_E} E \otimes E,_{\sigma} C = \prod_{\sigma \in \Sigma_E} C_\sigma$$

where

$$C_\sigma = E \otimes E,_{\sigma} C = C.$$

Since $H_1(Z, C)$ is a free E_C-module of rank d, there is the corresponding trace map

$$\text{Tr}_{E_C} : \text{End}_{E_C}(H_1(Z, C)) \to E_C$$

which coincides on E_C with multiplication by d and with Tr_E on $\text{End}_E(H_1(Z, Q))$.

We write $\text{Lie}(Z)$ for the tangent space of Z; it is a $\dim(Z)$-dimensional C-vector space. By functoriality, $\text{End}^0(Z)$ and therefore E act on $\text{Lie}(Z)$. This provides $\text{Lie}(Z)$ with a natural structure of $E \otimes Q C$-module. We have

$$\text{Lie}(Z) = \bigoplus_{\sigma \in \Sigma_E} C_\sigma \text{Lie}(Z) = \oplus_{\sigma \in \Sigma_E} \text{Lie}(Z)_\sigma$$

where

$$\text{Lie}(Z)_\sigma = C_\sigma \text{Lie}(Z) = \{ x \in \text{Lie}(Z) \mid e x = \sigma(e)x \quad \forall e \in E \}.$$

Let us put

$$n_\sigma = n_\sigma(Z, E) = \dim_{C_\sigma} \text{Lie}(Z)_\sigma = \dim_{C} \text{Lie}(Z)_\sigma.$$

Remark 2.1. Let $\Omega^1(Z)$ be the space of the differentials of the first kind on Z. It is well-known that the natural map

$$\Omega^1(Z) \to \text{Hom}_C(\text{Lie}(Z), C)$$

is an isomorphism. This isomorphism allows us to define via duality the natural homomorphism

$$E \to \text{End}_C(\text{Hom}_C(\text{Lie}(Z), C)) = \text{End}_C(\Omega^1(Z)).$$
This provides $\Omega^1(Z)$ with a natural structure of $E \otimes_{\mathbb{Q}} \mathbb{C}$-module in such a way that

$$\Omega^1(Z)_\sigma := \mathbb{C}_\sigma \Omega^1(Z) \cong \text{Hom}_{\mathbb{C}}(\text{Lie}(Z)_\sigma, \mathbb{C}).$$

In particular,

$$n_{\sigma} = \dim_{\mathbb{C}}(\text{Lie}(Z)_\sigma) = \dim_{\mathbb{C}}(\Omega^1(Z)_\sigma).$$

Theorem 2.2. Suppose that E contains \mathcal{C}_Z. Then the tuple

$$(n_{\sigma})_{\sigma \in \Sigma_E} \in \prod_{\sigma \in \Sigma_E} \mathbb{C}_{\sigma} = E \otimes_{\mathbb{Q}} \mathbb{C}$$

lies in $\mathcal{C}_Z \otimes_{\mathbb{Q}} \mathbb{C}$. In particular, if E/\mathbb{Q} is Galois and $\mathcal{C}_Z \neq E$ then there exists a nontrivial automorphism $\kappa : E \to E$ such that $n_{\sigma} = n_{\sigma \kappa}$ for all $\sigma \in \Sigma_E$.

Proof. This is Theorem 2.3 of [23].

Corollary 2.3. Suppose that there exist a prime p, a positive integer r, the power prime $q = p^r$ and an integer $n \geq 4$ enjoying the following properties:

(i) $E = \mathbb{Q}(\zeta_q) \subset \mathbb{C}$ where $\zeta_q \in \mathbb{C}$ is a primitive qth root of unity;

(ii) n is not divisible by p, i.e. n and q are relatively prime;

(iii) Let $i < q$ be a positive integer that is not divisible by p and $\sigma_i : E = \mathbb{Q}(\zeta_q) \hookrightarrow \mathbb{C}$ an embedding that sends ζ_q to ζ_q^{-i}. Then

$$n_{\sigma_i} = \left\lfloor \frac{ni}{q} \right\rfloor.$$

Then $\mathcal{C}_Z = \mathbb{Q}(\zeta_q)$.

Proof. If $q = 2$ then $E = \mathbb{Q}(\zeta_2) = \mathbb{Q}$. Since \mathcal{C}_Z is a subfield of $E = \mathbb{Q}$, we conclude that $\mathcal{C}_Z = \mathbb{Q} = \mathbb{Q}(\zeta_2)$.

So, further we assume that $q > 2$. Clearly, $\{\sigma_i\}$ is the collection Σ of all embeddings $\mathbb{Q}(\zeta_q) \hookrightarrow \mathbb{C}$. It is also clear that $n_{\sigma_i} = 0$ if and only if $1 \leq i \leq \left\lfloor \frac{q}{n} \right\rfloor$. Suppose that $\mathcal{C}_Z \neq \mathbb{Q}(\zeta_q)$. It follows from Theorem [23] that there exists a non-trivial field automorphism $\kappa : \mathbb{Q}(\zeta_q) \to \mathbb{Q}(\zeta_q)$ such that for all $\sigma \in \Sigma$

$$n_{\sigma} = n_{\sigma \kappa}.$$

Clearly, there exists an integer m such that p does not divide m, $1 < m < q$ and $\kappa(\zeta_q) = \zeta_q^m$.

Assume that $q < n$. In this case the function $i \mapsto n_{\sigma_i} = \left\lfloor \frac{ni}{q} \right\rfloor$ is strictly increasing and therefore $n_{\sigma_i} \neq n_{\sigma_j}$ while $i \neq j$. This implies that $\sigma_i = \sigma_j \kappa$, i.e. κ is the identity map which is not the case. The obtained contradiction implies that

$$n < q.$$
Since $n \geq 4$,

$$q \geq 5.$$

Clearly, $n_\sigma = 0$ if and only if $\sigma = \sigma_i$ with $1 \leq i \leq \left[\frac{q}{n}\right]$. Since n and q are relatively prime, $\left[\frac{q}{n}\right] = \left[\frac{q-1}{n}\right]$. It follows that $n_\sigma = 0$ if and only if $1 \leq i \leq \left[\frac{q-1}{n}\right]$. Clearly, the map $\sigma \mapsto \sigma \kappa$ permutes the set $\{\sigma_i \mid 1 \leq i \leq \left[\frac{q-1}{n}\right], p$ does not divide $i\}$.

Since $\kappa(\zeta_q) = \zeta_q^m$, $\sigma_i \kappa(\zeta_q) = \zeta_q^{-im}$. This implies that multiplication by m in $(\mathbb{Z}/q\mathbb{Z})^* = \text{Gal}(\mathbb{Q}(\zeta_q)/\mathbb{Q})$ leaves invariant the subset

$$A := \{i \mod q \in \mathbb{Z}/q\mathbb{Z} \mid 1 \leq i \leq \left[\frac{q-1}{n}\right], p$ does not divide $i\}.$$

Clearly, A contains 1 and therefore $m = m \cdot 1 \in A$. Since $m < q$,

$$m = m \cdot 1 \leq \left[\frac{(q-1)}{n}\right] \leq \frac{(q-1)}{4}.$$

Let us consider the arithmetic progression consisting of $2m$ integers $\left[\frac{(q-1)}{n}\right] + 1, \ldots, \left[\frac{(q-1)}{n}\right] + 2m$ with difference 1. All its elements lie between $\left[\frac{(q-1)}{n}\right] + 1$ and $\left[\frac{(q-1)}{n}\right] + 2m \leq 3 \left[\frac{(q-1)}{n}\right] \leq \frac{3(q-1)}{4} < q - 1$.

Clearly, there exist exactly two elements of A say, d_1 and $d_2 = d_1 + m$ that are divisible by m. Then there is a positive integer c_1 such that

$$d_1 = mc_1, d_2 = m(c_1 + 1).$$

Clearly, either c_1 or $c_1 + 1$ is not divisible by p; we put $c = c_1$ in the former case and $c = c_1 + 1$ in the latter case. However, c is not divisible by p and

$$\left[\frac{(q-1)}{n}\right] < mc \leq \left[\frac{(q-1)}{n}\right] + 2m < q - 1.$$

In particular, mc does not lie in A. It follows that c also does not lie in A and therefore

$$c > \left[\frac{(q-1)}{n}\right].$$

This means that

$$mc > m \left[\frac{(q-1)}{n}\right].$$

Since

$$mc \leq \left[\frac{(q-1)}{n}\right] + 2m,$$

we conclude that

$$(m-1) \left[\frac{(q-1)}{n}\right] < 2m.$$
and therefore
\[\left\lfloor \frac{(q-1)}{n} \right\rfloor < \frac{2m}{m-1} = 2 + \frac{2}{m-1}. \]
Since
\[1 < m < \left\lfloor \frac{(q-1)}{n} \right\rfloor, \]
we conclude that if \(m > 2 \) then \(m \geq 3 \) and
\[3 \leq m < \left\lfloor \frac{(q-1)}{n} \right\rfloor < 2 + \frac{2}{m-1} \leq 3 \]
and therefore \(3 < 3 \) which could not be the case. Hence \(m = 2 \) and
\[2 = m < \left\lfloor \frac{(q-1)}{n} \right\rfloor < 2 + \frac{2}{m-1} = 4 \]
and therefore
\[\left\lfloor \frac{(q-1)}{n} \right\rfloor = 3. \]
It follows that
\[q \geq 1 + 3n \geq 1 + 3 \cdot 4 = 13. \]
Since \(m = 2 \) is not divisible by \(p \), we conclude that \(p \geq 3 \) and either \(p = 3 \) and \(A = \{1, 2\} \) or \(p > 3 \) and \(A = \{1, 2, 3\} \). In both cases \(4 = 2 \cdot 2 = m \cdot 2 \) must lie in \(A \).
Contradiction. \(\square \)

3. **Abelian varieties over arbitrary fields**

Let \(K \) be a field. Let us fix its algebraic closure \(K_a \) and denote by \(\text{Gal}(K) \) the absolute Galois group \(\text{Aut}(K_a/K) \) of \(K \). If \(X \) is an abelian variety over \(K_a \) then we write \(\text{End}(X) \) for the ring of all its \(K_a \)-endomorphisms. We write \(1_X \) (or even just 1) for the identity automorphism of \(X \). If \(Y \) is (may be another) abelian variety over \(K_a \) then we write \(\text{Hom}(X,Y) \) for the group of all \(K_a \)-homomorphisms from \(X \) to \(Y \).

It is well-known that \(\text{Hom}(X,Y) = 0 \) if and only if \(\text{Hom}(Y,X) = 0 \). One may easily check that if \(X \) is simple and \(\text{dim}(X) \geq \text{dim}(Y) \) then \(\text{Hom}(X,Y) = 0 \) if and only if \(X \) and \(Y \) are not isogenous over \(K_a \). We write \(\text{End}^0(X) \) for the finite-dimensional semisimple \(\mathbb{Q} \)-algebra \(\text{End}(X) \otimes \mathbb{Q} \) and \(\text{Hom}^0(X,Y) \) for the finite-dimensional \(\mathbb{Q} \)-vector space \(\text{Hom}(X,Y) \otimes \mathbb{Q} \). Clearly, if \(X = Y \) then
\[\text{End}^0(X) = \text{Hom}^0(X,Y) = \text{Hom}^0(Y,X) = \text{End}^0(Y). \]

It is well-known that \(\text{Hom}^0(X,Y) \) and \(\text{Hom}^0(Y,X) \) have the same dimension which does not exceed \(4\text{dim}(X)\text{dim}(Y) \) \[16\]. The equality holds if and only if \(\text{char}(K) > 0 \) and both \(X \) and \(Y \) are supersingular abelian varieties \[16\] \[22\].
It is well-known that if X and Y are simple and the \mathbb{Q}-algebras $\text{End}^0(X)$ and $\text{End}^0(Y)$ are not isomorphic then

$$\text{Hom}(X, Y) = 0, \text{Hom}(Y, X) = 0.$$

Let E be a number field and $\mathcal{O} \subset E$ be the ring of all its algebraic integers. Let (X, i) be a pair consisting of an abelian variety X over K_0 and an embedding

$$i : E \hookrightarrow \text{End}^0(X)$$

Here $1 \in E$ must go to 1_X. It is well known [7] that the degree $[E : \mathbb{Q}]$ divides $2\dim(X)$, i.e.

$$r = r_X := \frac{2\dim(X)}{[E : \mathbb{Q}]}$$

is a positive integer.

Let us denote by $\text{End}^0(X, i)$ the centralizer of $i(E)$ in $\text{End}^0(X)$. Clearly, $i(E)$ lies in the center of the finite-dimensional \mathbb{Q}-algebra $\text{End}^0(X, i)$. It follows that $\text{End}^0(X, i)$ carries a natural structure of finite-dimensional E-algebra. If Y is (possibly) another abelian variety over K_0 and $j : E \hookrightarrow \text{End}^0(Y)$ is an embedding that sends 1 to the identity automorphism of Y then we write

$$\text{Hom}^0((X, i), (Y, j)) = \{u \in \text{Hom}^0(X, Y) \mid ui(c) = j(c)u \quad \forall c \in E\}.$$

Clearly, $\text{End}^0(X, i) = \text{Hom}^0((X, i), (X, i))$. If d is a positive integer then we write $i^{(d)}$ for the composition

$$E \hookrightarrow \text{End}^0(X) \subset \text{End}^0(X^d)$$

of i and the diagonal inclusion $\text{End}^0(X) \subset \text{End}^0(X^d)$.

Remark 3.1. (i) The E-algebra $\text{End}^0(X, i)$ is semisimple. Indeed, let us split the semisimple \mathbb{Q}-algebra $\text{End}^0(X)$ into a finite direct product

$$\text{End}^0(X) = \prod_s D_s$$

of simple \mathbb{Q}-algebras D_s. If $\text{pr}_s : \text{End}^0(X) \rightarrow D_s$ is the corresponding projection map and $D_{s, E}$ is the centralizer of $\text{pr}_s i(E)$ in D_s then one may easily check that

$$\text{End}^0(X, i) = \prod_s D_{s, E}.$$

Clearly, $\text{pr}_s i(E) \cong E$ is a simple \mathbb{Q}-algebra. It follows from Theorem 4.3.2 on p. 104 of [1] that $D_{s, E}$ is also a simple \mathbb{Q}-algebra. This implies easily that $D_{s, E}$ is a simple E-algebra and therefore $\text{End}^0(X, i)$ is a semisimple
E-algebra. It is also clear that $\text{End}^0(X, i)$ is a simple E-algebra if and only if $\text{End}^0(X)$ is a simple \mathbb{Q}-algebra, i.e., X is isogenous to a self-product of (absolutely) simple abelian variety.

(ii) Let e_s be the identity element of D_s. One may view e_s as an idempotent in $\text{End}^0(X)$. Clearly,

$$1 = \sum_s e_s$$

in $\text{End}^0(X)$ and $e_s e_t = 0$ if $s \neq t$. There exists a positive integer N such that all $N \cdot e_s$ lie in $\text{End}(X)$. We write X_s for the image

$$X_s := (N e_s)(X);$$

it is an abelian subvariety in X of positive dimension. Clearly, the sum map

$$\pi_X : \prod_s X_s \rightarrow X, \quad (x_s) \mapsto \sum_s x_s$$

is an isogeny. It is also clear that the intersection $D_s \cap \text{End}(X)$ leaves $X_s \subset X$ invariant. This gives us a natural identification

$$D_s \cong \text{End}^0(X_s).$$

One may easily check that each X_s is isogenous to a self-product of (absolutely) simple abelian variety. It is also clear that

$$\text{Hom}(X_s, X_t) = 0 \quad \forall s \neq t.$$

We write i_s for the composition

$$\text{pr}_s i : E \hookrightarrow \text{End}^0(X) : D_s \cong \text{End}^0(X_s).$$

Clearly,

$$D_{s, E} = \text{End}^0(X_s, i_s)$$

and

$$\pi_X^{-1} i \pi_X : E \rightarrow \prod_s D_s = \prod_s \text{End}^0(X_s) \subset \text{End}^0(\prod_s X_s).$$

It is also clear that

$$\text{End}^0(\prod_s X_s, \prod_s i_s) = \prod_s D_{s, E}.$$

Theorem 3.2.

(i)

$$\dim_E(\text{End}^0((X, i))) \leq \frac{4 \cdot \dim(X)^2}{[E: \mathbb{Q}]^2};$$
(ii) Suppose that
$$\dim_E(\text{End}^0((X, i))) = \frac{4 \cdot \dim(X)^2}{[E : \mathbb{Q}]^2}.$$ Then X is isogenous to a self-product of (absolutely) simple abelian variety. Also $\text{End}^0((X, i))$ is a central simple E-algebra, i.e., E coincides with the center of $\text{End}^0((X, i))$. In addition, X is an abelian variety of CM-type.

If $\text{char}(K_a) = 0$ then $[E : \mathbb{Q}]$ is even and there exist a $\frac{[E : \mathbb{Q}]}{2}$-dimensional abelian variety Z, an isogeny $\psi : Z^r \to X$, an embedding $k : E \hookrightarrow \text{End}^0(Z)$ that sends 1 to 1_Z and such that
$$\psi \in \text{Hom}^0((Z^r, k^{(r)}), (X, i)).$$

Proof. Recall that $r = 2\dim(X)/[E : \mathbb{Q}]$.

First, assume that X is isogenous to a self-product of (absolutely) simple abelian variety, i.e., $\text{End}^0(X, i)$ is a simple E-algebra. We need to prove that
$$N := \dim_E(\text{End}^0(X, i)) \leq r^2.$$ Let E' be the center of $\text{End}^0(X, i)$. Let us put
$$e = [E' : E].$$ Then $\text{End}^0(X, i)$ is a central simple E'-algebra of dimension N/e. Then there exists a central division E'-algebra D such that $\text{End}^0(X, i)$ is isomorphic to the matrix algebra $M_m(D)$ of size m for some positive integer m. Dimension arguments imply that
$$m^2 \dim_{E'}(D) = \frac{N}{e}, \quad \dim_{E'}(D) = \frac{N}{em^2}.$$ Since $\dim_{E'}(D)$ is a square,
$$\frac{N}{e} = N_1^2, \quad N = eN_1^2, \quad \dim_{E'}(D) = \left(\frac{N_1}{m} \right)^2$$ for some positive integer N_1. Clearly, m divides N_1.

Clearly, D contains a (maximal) field extension L/E' of degree N_1/m and $\text{End}^0(X, i) \cong M_m(D)$ contains every field extension T/L of degree m. This implies that
$$\text{End}^0(X) \supset \text{End}^0(X, i) \supset T$$ and the number field T has degree
$$[T : \mathbb{Q}] = [E' : \mathbb{Q}] \cdot \frac{N_1}{m} \cdot m = [E : \mathbb{Q}]eN_1.$$
But \([T : \mathbb{Q}]\) must divide \(2\dim(X)\); if the equality holds then \(X\) is an abelian variety of CM-type. This implies that \(eN_1\) divides \(r = \frac{2\dim(X)}{[E : \mathbb{Q}]}\). It follows that \((eN_1)^2\) divides \(r^2\); if the equality holds then \(X\) is an abelian variety of CM-type. But

\[(eN_1)^2 = e^2N_1^2 = e(eN_1^2) = eN = e \cdot \dim_E(\text{End}^0(X, i)).\]

This implies that

\[\dim_E(\text{End}^0(X, i)) \leq \frac{r^2}{e} \leq r^2.\]

If the equality \(\dim_E(\text{End}^0(X, i)) = r^2\) holds then \(e = 1\) and

\[(eN_1)^2 = r^2, N_1 = r, [T : \mathbb{Q}] = [E : \mathbb{Q}]eN_1 = [E : \mathbb{Q}]r = 2\dim(X);\]

in particular, \(X\) is an abelian variety of CM-type. In addition, since \(e = 1\), we have \(E' = E\), i.e. \(\text{End}^0(X, i)\) is a central simple \(E\)-algebra.

Clearly, there exists an abelian variety \(Z\) over \(K_a\) with

\[E \subset D \subset \text{End}^0(Z)\]

and an isogeny

\[\psi : Z^m \to X\]

such that the induced isomorphism

\[\text{End}^0(Z^m) \cong \text{End}^0(X), u \mapsto \psi u \psi^{-1}\]

maps identically

\[E \subset \text{End}^0(Z) \subset \text{End}^0(Z^m)\]

onto \(E \subset \text{End}^0(X)\).

We still have to check that if \(\text{char}(K) = 0\) then

\[2\dim(Z) = [E : \mathbb{Q}].\]

Indeed, since \(D\) is a division algebra, \(\dim_{\mathbb{Q}}(D)\) must divide \(2\dim(Z) = \frac{2\dim(X)}{m} = [E : \mathbb{Q}] \frac{r}{m}\). On the other hand,

\[\dim_{\mathbb{Q}}(D) = [E : \mathbb{Q}] \dim_E(D) = [E : \mathbb{Q}] \left(\frac{r}{m}\right)^2.\]

Since \(m\) divides \(r\), we conclude that \(\frac{r}{m} = 1\), i.e.

\[\dim_E(D) = 1, \quad D = E, \quad 2\dim(Z) = [E : \mathbb{Q}].\]
Now let us consider the case of arbitrary X. Applying the already proven case of the theorem to each X_s, we conclude that

$$\dim_E(\text{End}^0(X, i)) \leq \left(\frac{2\dim(X_s)}{|E : \mathbb{Q}|} \right)^2.$$

Since

$$\text{End}^0(X, i) = \prod_s \text{End}^0(X_s, i_s),$$

we conclude that $\dim_E(\text{End}^0(X, i))$ does not exceed

$$\sum_s \left(\frac{2\dim(X_s)}{|E : \mathbb{Q}|} \right)^2 = \frac{(2\sum_s \dim(X_s))^2}{|E : \mathbb{Q}|^2} = \frac{(2\dim(X))^2}{|E : \mathbb{Q}|^2}.$$

It follows that if the equality

$$\dim_E(\text{End}^0(X, i)) = \frac{(2\dim(X))^2}{|E : \mathbb{Q}|^2}$$

holds then the set of indices s is a singleton, i.e. $X = X_s$ is isogenous to a self-product of (absolutely) simple abelian variety. □

Let d be a positive integer that is not divisible by char(K). Let X be an abelian variety of positive dimension defined over K. We write X_d for the kernel of multiplication by d in $X(K_a)$. It is known \[6\] that the commutative group X_d is a free $\mathbb{Z}/d\mathbb{Z}$-module of rank $2\dim(X)$. Clearly, X_d is a Galois submodule in $X(K_a)$. We write

$$\tilde{\rho}_{d,X} : \text{Gal}(K) \to \text{Aut}_{\mathbb{Z}/d\mathbb{Z}}(X_d) \cong \text{GL}(2\dim(X), \mathbb{Z}/d\mathbb{Z})$$

for the corresponding (continuous) homomorphism defining the Galois action on X_d. Let us put

$$\tilde{G}_{d,X} = \tilde{\rho}_{d,X}(\text{Gal}(K)) \subset \text{Aut}_{\mathbb{Z}/d\mathbb{Z}}(X_d).$$

Clearly, $\tilde{G}_{d,X}$ coincides with the Galois group of the field extension $K(X_d)/K$ where $K(X_d)$ is the field of definition of all points on X of order dividing d. In particular, if a prime $\ell \neq \text{char}(K)$ then X_{ℓ} is a $2\dim(X)$-dimensional vector space over the prime field $\mathbb{F}_\ell = \mathbb{Z}/\ell\mathbb{Z}$ and the inclusion $\tilde{G}_{\ell,X} \subset \text{Aut}_{\mathbb{F}_\ell}(X_{\ell})$ defines a faithful linear representation of the group $\tilde{G}_{\ell,X}$ in the vector space X_{ℓ}.

We write $\text{End}_K(X) \subset \text{End}(X)$ for the (sub)ring of all K-endomorphisms of X.

Now let us assume that

$$i(\emptyset) \subset \text{End}_K(X).$$
Let λ be a maximal ideal in \mathcal{O}. We write $k(\lambda)$ for the corresponding (finite) residue field. Let us put

$$X_\lambda := \{ x \in X(K_a) \mid i(e)x = 0 \quad \forall e \in \lambda \}.$$

Clearly, if $\text{char}(k(\lambda)) = \ell$ then $\lambda \supset \ell \cdot \mathcal{O}$ and therefore $X_\lambda \subset X_\ell$. Clearly, X_λ is a Galois submodule of X_ℓ. It is also clear that X_λ carries a natural structure of $\mathcal{O}/\lambda = k(\lambda)$-vector space. We write

$$\tilde{\rho}_{\lambda,X} : \text{Gal}(K) \to \text{Aut}_{k(\lambda)}(X_\lambda)$$

for the corresponding (continuous) homomorphism defining the Galois action on X_λ. Let us put

$$\tilde{G}_{\lambda,X} = \tilde{G}_{\lambda,i,X} := \tilde{\rho}_{\lambda,X}(\text{Gal}(K)) \subset \text{Aut}_{k(\lambda)}(X_\lambda).$$

Clearly, $\tilde{G}_{\lambda,X}$ coincides with the Galois group of the field extension $K(X_\lambda)/K$ where $K(X_\lambda) = K(X_{\lambda,i})$ is the field of definition of all points in X_λ.

In order to describe $\tilde{\rho}_{\lambda,X}$ explicitly, let us assume for the sake of simplicity that λ is the only maximal ideal of \mathcal{O} dividing ℓ, i.e.,

$$\ell \cdot \mathcal{O} = \lambda^b$$

where the positive integer b satisfies

$$[E : \mathbb{Q}] = b \cdot [k(\lambda) : \mathbb{F}_\ell].$$

Then $\mathcal{O} \otimes \mathbb{Z}_\ell = \mathcal{O}_\lambda$ where \mathcal{O}_λ is the completion of \mathcal{O} with respect to λ-adic topology. It is well-known that that \mathcal{O}_λ is a local principal ideal domain and its only maximal ideal is $\lambda \mathcal{O}_\lambda$. One may easily check that $\ell \cdot \mathcal{O}_\lambda = (\lambda \mathcal{O}_\lambda)^b$.

Let us choose an element $c \in \lambda$ that does not lie in λ^2. Clearly, $\lambda \mathcal{O}_\lambda = c \cdot \mathcal{O}_\lambda$. This implies that there exists a unit $u \in \mathcal{O}_\lambda^*$ such that $\ell = uc^b$. It follows from the unique factorization of ideals in \mathcal{O} that

$$\lambda = \ell \cdot \mathcal{O} + c \cdot \mathcal{O}.$$

It follows readily that

$$X_\lambda = \{ x \in X_\ell \mid cx = 0 \} \subset X_\ell.$$

Let $T_\ell(X)$ be the \mathbb{Z}_ℓ-Tate module of X defined as projective limit of Galois modules X_{ℓ^m} where the transition map(s) $X_{\ell^{m+1}} \to X_{\ell^m}$ is multiplication by ℓ.

Recall that $T_\ell(X)$ is a free \mathbb{Z}_ℓ-module of rank $2\dim(X)$ provided with the continuous action

$$\rho_{\ell,X} : \text{Gal}(K) \to \text{Aut}_{\mathbb{Z}_\ell}(T_\ell(X))$$

and the natural embedding

$$\text{End}_K(X) \otimes \mathbb{Z}_\ell \hookrightarrow \text{End}_{\mathbb{Z}_\ell}(T_\ell(X)),$$

whose image commutes with $\rho_{\ell,X} (\text{Gal}(K))$. In particular, $T_\ell(X)$ carries the natural structure of $\mathbb{O} \otimes \mathbb{Z}_\ell = \mathbb{O}_\lambda$-module; it is known [7] that the \mathbb{O}_λ-module $T_\ell(X)$ is free of rank $r = r_X = \frac{2\dim(X)}{|E : \mathbb{Q}|}$. There is also the natural isomorphism of Galois modules

$$X_\ell = T_\ell(X)/\ell T_\ell(X),$$

which is also an isomorphism of $\text{End}_K(X) \supset \mathbb{O}$-modules. This implies that the $\mathbb{O}[\text{Gal}(K)]$-module X_λ coincides with

$$c^{-1}T_\ell(X)/\ell T_\ell(X) = c^{b-1}T_\ell(X)/c^{b}T_\ell(X) = T_\ell(X)/cT_\ell(X) = T_\ell(X)/\lambda T_\ell(X) = T_\ell(X)/(\lambda \mathbb{O}_\lambda) T_\ell(X).$$

Hence

$$X_\lambda = T_\ell(X)/(\lambda \mathbb{O}_\lambda) T_\ell(X) = T_\ell(X) \otimes_{\mathbb{O}_\lambda} k(\lambda).$$

It follows that

$$\dim_{k(\lambda)} X_\lambda = \frac{2\dim(X)}{|E : \mathbb{Q}|} := r_X.$$

Let us put

$$V_\ell(X) = T_\ell(X) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell;$$

it is a $2\dim(X)$-dimensional \mathbb{Q}_ℓ-vector space that carries a natural structure of r_X-dimensional E_λ-vector space. There is the natural embedding

$$\text{End}(X) \otimes \mathbb{Z}_\ell \hookrightarrow \text{End}_{\mathbb{Q}_\ell}(V_\ell(X)).$$

Extending it by \mathbb{Q}-linearity, we get the natural embedding

$$\text{End}^0(X) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell \hookrightarrow \text{End}_{\mathbb{Q}_\ell}(V_\ell(X)).$$

Further we will identify $\text{End}^0(X) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell$ with its image in $\text{End}_{\mathbb{Q}_\ell}(V_\ell(X))$.

Remark 3.3. Notice that

$$E_\lambda = E \otimes_{\mathbb{Q}} \mathbb{Q}_\ell = \mathbb{O} \otimes \mathbb{Q}_\ell = \mathbb{O}_\lambda \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$$

is the field coinciding with the completion of E with respect to λ-adic topology. Clearly, $V_\ell(X)$ carries a natural structure of r_X-dimensional E_λ-vector space. One
may easily check that $\text{End}_0^0(X, i) \otimes \mathbb{Q}_\ell$ is a $E \otimes \mathbb{Q}_\ell = E_\lambda$-vector subspace (even subalgebra) in $\text{End}_{E_\lambda}(V_\ell(X))$. Clearly,

$$\dim_{E_\lambda}(\text{End}_0^0(X, i) \otimes \mathbb{Q}_\ell) = \dim_E(\text{End}_0^0(X, i))$$

and

$$\dim_{E_\lambda}(\text{End}_{E_\lambda}(V_\ell(X))) = r_X^2.$$ This implies that

$$\text{End}_0^0(X, i) \otimes \mathbb{Q}_\ell = \text{End}_{E_\lambda}(V_\ell(X))$$

if and only if

$$\dim_E(\text{End}_0^0(X, i)) = r_X^2.$$

Using the inclusion

$$\text{Aut}_{\mathbb{Z}_\ell}(T_\ell(X)) \subset \text{Aut}_{\mathbb{Q}_\ell}(V_\ell(X)),$$

one may view $\rho_{\ell,X}$ as ℓ-adic representation

$$\rho_{\ell,X} : \text{Gal}(K) \to \text{Aut}_{\mathbb{Z}_\ell}(T_\ell(X)) \subset \text{Aut}_{\mathbb{Q}_\ell}(V_\ell(X)).$$

Since X is defined over K, one may associate with every $u \in \text{End}(X)$ and $\sigma \in \text{Gal}(K)$ an endomorphism $\sigma u \in \text{End}(X)$ such that

$$\sigma u(x) = \sigma u(\sigma^{-1} x) \quad \forall x \in X(K_a).$$

Clearly,

$$\sigma u = u \quad \forall u \in \text{End}_K(X).$$

In particular,

$$\sigma u = u \quad \forall u \in \mathcal{O}$$

(here we identify \mathcal{O} with $i(\mathcal{O})$). It follows easily that for each $\sigma \in \text{Gal}(K)$ the map $u \to \sigma u$ extends by \mathbb{Q}-linearity to a certain automorphism of $\text{End}_0^0(X)$. It is also clear that $\sigma u = u$ for each $u \in E$ and

$$\sigma u \in \text{End}_0^0(X, i) \quad \forall u \in \text{End}_0^0(X, i), \sigma \in \text{Gal}(K).$$

Remark 3.4. The definition of $T_\ell(X)$ as the projective limit of Galois modules X_{e_m} implies that

$$\sigma u(x) = \rho_{\ell,X}(\sigma)u\rho_{\ell,X}(\sigma)^{-1}(x) \quad \forall x \in T_\ell(X).$$

It follows easily that

$$\sigma u(x) = \rho_{\ell,X}(\sigma)u\rho_{\ell,X}(\sigma)^{-1}(x) \quad \forall x \in V_\ell(X), u \in \text{End}_0^0(X), \sigma \in \text{Gal}(K).$$
This implies that for each $\sigma \in \text{Gal}(K)$

$$\rho_{\ell,X}(\sigma) \in \text{Aut}_{E_{\lambda}}(V_{\lambda}(X)).$$

and therefore

$$\rho_{\ell,X}(\text{Gal}(K)) \subset \text{Aut}_{E_{\lambda}}(V_{\lambda}(X)).$$

It is also clear that

$$\rho_{\ell,X}(\sigma)u\rho_{\ell,X}(\sigma)^{-1} \in \text{End}^0(X) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell} \quad \forall u \in \text{End}^0(X) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$$

and

$$\rho_{\ell,X}(\sigma)u\rho_{\ell,X}(\sigma)^{-1} \in \text{End}^0(X,i) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell} \quad \forall u \in \text{End}^0(X,i) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}.$$

We refer to [17, 18, 21, 24] for a discussion of the following definition.

Definition 3.5. Let V be a vector space over a field F, let G be a group and $\rho : G \to \text{Aut}_F(V)$ a linear representation of G in V. We say that the G-module V is very simple if it enjoys the following property:

If $R \subset \text{End}_F(V)$ is an F-subalgebra containing the identity operator Id such that

$$\rho(\sigma)R\rho(\sigma)^{-1} \subset R \quad \forall \sigma \in G$$

then either $R = F \cdot \text{Id}$ or $R = \text{End}_F(V)$.

Remarks 3.6.

(i) If G' is a subgroup of G and the G'-module V is very simple then obviously the G-module V is also very simple.

(ii) Clearly, the G-module V is very simple if and only if the corresponding $\rho(G)$-module V is very simple. This implies easily that if $H \to G$ is a surjective group homomorphism then the G-module V is very simple if and only if the corresponding H-module V is very simple.

(iii) Let G' be a normal subgroup of G. If V is a very simple G-module then either $\rho(G') \subset \text{Aut}_k(V)$ consists of scalars (i.e., lies in $k \cdot \text{Id}$) or the G'-module V is absolutely simple. See [21, Remark 5.2(iv)].

(iv) Suppose F is a discrete valuation field with valuation ring O_F, maximal ideal m_F and residue field $k = O_F/m_F$. Suppose V_F a finite-dimensional F-vector space, $\rho_F : G \to \text{Aut}_F(V_F)$ a F-linear representation of G. Suppose T is a G-stable O_F-lattice in V_F and the corresponding $k[G]$-module T/m_FT is isomorphic to V. Assume that the G-module V is very simple. Then the G-module V_F is also very simple. See [21, Remark 5.2(v)].
Theorem 3.7. Suppose that X is an abelian variety defined over K and $i(\mathcal{O}) \subset \text{End}_K(X)$. Let ℓ be a prime different from $\text{char}(K)$. Suppose that λ is the only maximal ideal dividing ℓ in \mathcal{O}. Suppose that the natural representation in the $k(\lambda)$-vector space X_λ is very simple. Then $\text{End}^0(X,i)$ enjoy one of the following two properties:

(i) $\text{End}^0(X,i) = i(E)$, i.e. $i(E) \cong E$ is a maximal commutative subalgebra in $\text{End}^0(X)$ and $i(\mathcal{O}) \cong \mathcal{O}$ is a maximal commutative subring in $\text{End}(X)$;

(ii) $\text{End}^0(X,i)$ is a central simple E-algebra of dimension r_X^2 and X is an abelian variety of CM-type over K_a. In addition, if $\text{char}(K) = 0$ then $[E : \mathbb{Q}]$ is even and there exist a $\frac{[E : \mathbb{Q}]}{2}$-dimensional abelian variety Z, an isogeny $\psi : Z^r \to X$ and an embedding $k : E \to \text{End}^0(Z)$ that sends 1 to 1_Z such that

$$\psi \in \text{Hom}^0((Z^r,k(r)),(X,i)).$$

Proof. In light of 3.6(ii), the $\text{Gal}(K)$-module X_λ is very simple. In light of 3.6(iv) and Remark 3.4

$$\rho_{\ell,X} : \text{Gal}(K) \to \text{Aut}_{E_\lambda}(V_\ell(X))$$

is also very simple. Let us put

$$R = \text{End}^0(X,i) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell.$$

It follows from Remark 3.4 that either $R = E_\lambda \text{Id}$ or $R = \text{End}_{E_\lambda}(V_\ell(X))$. By Remark 3.5

$$\dim_{E_\lambda}(R) = \dim_{E_\lambda}(\text{End}^0(X,i) \otimes_{\mathbb{Q}} \mathbb{Q}_\ell) = \dim_E(\text{End}^0(X,i)).$$

It follows that $\dim_E(\text{End}^0(X,i)) = 1$ or r_X^2. Clearly, if $\dim_E(\text{End}^0(X,i)) = 1$ then $\text{End}^0(X,i) = i(E)$ and the property (i) holds. Suppose that $\dim_E(\text{End}^0(X,i)) = r_X^2$. Applying Theorem 3.2 we conclude that the property (ii) holds. □

Let Y be an abelian variety of positive dimension over K_a and u a non-zero endomorphism of Y. Let us consider the abelian (sub)variety

$$Z = u(Y) \subset Y.$$
Remark 3.8. If \(Y \) is defined over \(K \) and \(u \in \text{End}_K(Y) \) then \(Z \) is also defined over \(K \) and the inclusion map \(Z \subset Y \) is defined over \(K \). Indeed, clearly, \(Z \) and the inclusion map \(Z \subset Y \) are defined over \(K_{\text{Gal}(K)} \), i.e. \(Z \) and \(Z \subset Y \) are defined over a purely inseparable extension of \(K \). By Theorem of Chow [3, Th. 5 on p. 26], \(Z \) is defined over \(K \). It follows that every homomorphism between \(Z \) and \(Y \) is defined over a separable extension of \(K \). Hence \(Z \subset Y \) is defined over \(K \).

We write \(\Omega^1(Y) \) (resp. \(\Omega^1(Z) \)) for the \(\dim(Y) \)-dimensional (resp. \(\dim(Z) \)-dimensional) \(K \)-vector space of differentials of the first kind on \(Y \) (resp. on \(Z \)).

Theorem 3.9. Let \(Y \) be an abelian variety of positive dimension over \(K \) and \(\delta \) an automorphism of \(Y \). Suppose that the induced \(K \)-linear operator

\[\delta^* : \Omega^1(Y) \to \Omega^1(Y) \]

is diagonalizable. Let \(S \) be the set of eigenvalues of \(\delta^* \) and \(\text{mult}_Y : S \to \mathbb{Z}_+ \) the integer-valued function which assigns to each eigenvalue its multiplicity.

Suppose that \(P(t) \) is a polynomial with integer coefficients such that \(u = P(\delta) \) is a non-zero endomorphism of \(Y \). Let us put \(Z = u(Y) \). Clearly, \(Z \) is \(\delta \)-invariant and we write \(\delta_Z : Z \to Z \) for the corresponding automorphism of \(Z \) (i.e. for the restriction of \(\delta \) to \(Z \)).

Suppose that

\[\dim(Z) = \sum_{\lambda \in S, P(\lambda) \neq 0} \text{mult}_Y(\lambda). \]

Then the spectrum of \(\delta^*_Z : \Omega^1(Z) \to \Omega^1(Z) \) coincides with \(S_P = \{ \lambda \in S, P(\lambda) \neq 0 \} \) and the multiplicity of an eigenvalue \(\lambda \) of \(\delta^*_Z \) equals \(\text{mult}_Y(\lambda) \).

Proof. Clearly, \(u \) commutes with \(\delta \). We write \(v \) for the (surjective) homomorphism \(Y \to Z \) induced by \(u \) and \(j \) for the inclusion map \(Z \subset Y \). Notice that \(u : Y \to Y \) splits into a composition

\[Y \xrightarrow{v} Z \xrightarrow{j} Y, \]

i.e. \(u = jv \). Clearly,

\[\delta_Z v = v \delta \in \text{Hom}(Y, Z), \quad j \delta_Z = \delta j \in \text{Hom}(Z, Y), \quad u = jv \in \text{End}(Y), \quad u \delta = \delta u \in \text{End}(Y). \]

It is also clear that the induced map

\[u^* : \Omega^1(Y) \to \Omega^1(Y) \]

coincides with \(P(\delta^*) \). It follows that

\[u^*(\Omega^1(Y)) = P(\delta^*)(\Omega^1(Y)) \]
has dimension
\[\sum_{\lambda \in S, P(\lambda) \neq 0} \text{mult}_Y(\lambda) = \dim(Y) \]
and coincides with
\[\oplus_{\lambda \in S, P(\lambda) \neq 0} W_\lambda \]
where \(W_\lambda \) is the eigenspace of \(\delta \) attached to eigenvalue \(\lambda \). Since \(u^* = v^* j^* \),
\[u^*(\Omega^1(Y)) = v^* j^*(\Omega^1(Y)) \subset v^*(\Omega^1(Z)). \]
Since
\[\dim(u^*(\Omega^1(Y))) = \dim(Y) = \dim(\Omega^1(Z)) \geq \dim(v^*(\Omega^1(Z))), \]
the subspace
\[u^*(\Omega^1(Y)) = v^*(\Omega^1(Z)) \]
and
\[v^* : \Omega^1(Z) \hookrightarrow \Omega^1(Y). \]
It follows that if we denote by \(w \) the isomorphism \(v^* : \Omega^1(Z) \cong v^*(\Omega^1(Z)) \) and by \(\gamma \) the restriction of \(\delta^* \) to \(v^*(\Omega^1(Z)) \) then \(\gamma w = w \delta_Y^* \) and therefore
\[\gamma = w \delta_Y^* w^{-1}. \]

\[\square \]

4. Cyclic covers and Jacobians

Throughout this paper we fix a prime number \(p \) and its integral power \(q = p^r \) and assume that \(K \) is a field of characteristic different from \(p \). We fix an algebraic closure \(K_a \) and write \(\text{Gal}(K) \) for the absolute Galois group \(\text{Aut}(K_a/K) \). We also fix in \(K_a \) a primitive \(q \)th root of unity \(\zeta \).

Let \(f(x) \in K[x] \) be a separable polynomial of degree \(n \geq 4 \). We write \(\mathfrak{R}_f \) for the set of its roots and denote by \(L = L_f = K(\mathfrak{R}_f) \subset K_a \) the corresponding splitting field. As usual, the Galois group \(\text{Gal}(L/K) \) is called the Galois group of \(f \) and denoted by \(\text{Gal}(f) \). Clearly, \(\text{Gal}(f) \) permutes elements of \(\mathfrak{R}_f \) and the natural map of \(\text{Gal}(f) \) into the group \(\text{Perm}(\mathfrak{R}_f) \) of all permutations of \(\mathfrak{R}_f \) is an embedding. We will identify \(\text{Gal}(f) \) with its image and consider it as a permutation group of \(\mathfrak{R}_f \).

Clearly, \(\text{Gal}(f) \) is transitive if and only if \(f \) is irreducible in \(K[x] \).

Further, we assume that either \(p \) does not divide \(n \) or \(q \) does divide \(n \).

If \(p \) does not divide \(n \) then we write (as in [19])
\[V_{f,p} = (F_p^{\mathfrak{R}_f})^0 = (F_p^{\mathfrak{R}_f})^0 \]
for the \((n - 1)\)-dimensional \(\mathbb{F}_p\)-vector space of functions
\[
\phi : \mathfrak{R}_f \to \mathbb{F}_p, \quad \sum_{\alpha \in \mathfrak{R}_f} \phi(\alpha) = 0
\]
provided with a natural action of the permutation group \(\text{Gal}(f) \subset \text{Perm}(\mathfrak{R}_f)\). It is the heart over the field \(\mathbb{F}_p\) of the group \(\text{Gal}(f)\) acting on the set \(\mathfrak{R}_f\).

Remark 4.1. If \(p\) does not divide \(n\) and \(\text{Gal}(f) = S_n\) or \(A_n\) then the \(\text{Gal}(f)\)-module \(V_{f,p}\) is very simple.

Let \(C = C_{f,q}\) be the smooth projective model of the smooth affine \(K\)-curve
\[
y^q = f(x)
\]
So \(C\) is a smooth projective curve defined over \(K\). The rational function \(x \in K(C)\) defines a finite cover \(\pi : C \to \mathbb{P}^1\) of degree \(p\). Let \(B' \subset C(K_a)\) be the set of ramification points. Clearly, the restriction of \(\pi\) to \(B'\) is an injective map \(B' \hookrightarrow \mathbb{P}^1(K_a)\), whose image is the disjoint union of \(\infty\) and \(\mathfrak{R}_f\) if \(p\) does not divide \(\deg(f)\) and just \(\mathfrak{R}_f\) if it does. We write
\[
B = \pi^{-1}(\mathfrak{R}_f) = \{(\alpha, 0) \mid \alpha \in \mathfrak{R}_f\} \subset B' \subset C(K_a).
\]
Clearly, \(\pi\) is ramified at each point of \(B\) with ramification index \(q\). We have \(B' = B\) if and only if \(n\) is divisible by \(p\). If \(n\) is not divisible by \(p\) then \(B'\) is the disjoint union of \(B\) and a single point \(\infty' : = \pi^{-1}(\infty)\). In addition, the ramification index of \(\pi\) at \(\pi^{-1}(\infty)\) is also \(q\). Using Hurwitz’s formula, one may easily compute the genus \(g = g(C) = g(C_{q,f})\) of \(C\) ([24 pp. 401–402], [14 proposition 1 on p. 3359], [9 p. 148]). Namely, \(g\) is \((q - 1)(n - 1)/2\) if \(p\) does not divide \(n\) and \((q - 1)(n - 2)/2\) if \(q\) does divide \(n\).

Remark 4.2. Assume that \(p\) does not divide \(n\) and consider the plane triangle (Newton polygon)
\[
\Delta_{n,q} := \{(j, i) \mid 0 \leq j, \quad 0 \leq i, \quad qj + ni \leq nq\}
\]
with the vertices \((0, 0), (0, q)\) and \((n, 0)\). Let \(L_{n,q}\) be the set of integer points in the interior of \(\Delta_{n,q}\). One may easily check that \(g = (q - 1)(n - 1)/2\) coincides with the number of elements of \(L_{n,q}\). It is also clear that for each \((j, i) \in L_{n,q}\)
\[
1 \leq j \leq n - 1; \quad 1 \leq i \leq q - 1; \quad q(j - 1) + (j + 1) \leq n(q - i).
\]
Elementary calculations ([2, theorem 3 on p. 403]) show that
\[\omega_{j,i} := x^{j-1}dx/y^{q^i} = x^{j-1}y^i dx/y^{q^i} = x^{j-1}y^i dx/y^{q^i-1} \]
is a differential of the first kind on \(C \) for each \((j, i) \in L_{n,q}\). This implies easily that the collection \(\{\omega_{j,i}\}_{(j,i) \in L_{n,q}} \) is a basis in the space of differentials of the first kind on \(C \).

There is a non-trivial birational \(K_a \)-automorphism of \(C \)
\[\delta_q : (x, y) \mapsto (x, \zeta y). \]
Clearly, \(\delta_q^q \) is the identity map and the set of fixed points of \(\delta_q \) coincides with \(B' \).

Remark 4.3. Let us assume that \(n = \deg(f) \) is divisible by \(q \) say, \(n = qm \) for some positive integer \(m \). Let \(\alpha \in K_a \) be a root of \(f \) and \(K_1 = K(\alpha) \) be the corresponding subfield of \(K_a \). We have \(f(x) = (x - \alpha)f_1(x) \) with \(f_1(x) \in K_1[x] \). Clearly, \(f_1(x) \) is a separable polynomial over \(K_1 \) of degree \(qm - 1 = n - 1 \geq 4 \). It is also clear that the polynomials
\[h(x) = f_1(x + \alpha), h_1(x) = x^{n-1}h(1/x) \in K_1[x] \]
are separable of the same degree \(qm - 1 = n - 1 \geq 4 \). The standard substitution
\[x_1 = 1/(x - \alpha), y_1 = y/(x - \alpha)^m \]
establishes a birational isomorphism between \(C_{f,p} \) and a curve
\[C_{h_1} : y_1^q = h_1(x_1) \]
(see [14, p. 3359]). In particular, the jacobians of \(C_f \) and \(C_{h_1} \) are isomorphic over \(K_a \) (and even over \(K_1 \)). But \(\deg(h_1) = qm - 1 \) is not divisible by \(p \). Clearly, this isomorphism commutes with the actions of \(\delta_q \). Notice also that if the Galois group of \(f \) over \(K \) is \(S_n \) (resp. \(A_n \)) then the Galois group of \(h_1 \) over \(K_1 \) is \(SS_{n-1} \) (resp. \(A_{n-1} \)).

Remark 4.4.
(i) Let \(\Omega^1(C) = \Omega^1(C_{f,q}) \) be the \(K \)-vector space of differentials of the first kind on \(C \). It is well-known that \(\dim_K(\Omega^1(C_{f,q})) \) coincides with the genus of \(C_{f,q} \). By functoriality, \(\delta_q \) induces on \(\Omega^1(C_{f,q}) \) a certain \(K \)-linear automorphism
\[\delta_q^*: \Omega^1(C_{f,q}) \to \Omega^1(C_{f,q}). \]
Clearly, if for some positive integer \(j \) the differential \(\omega_{j,i} = x^{j-1}dx/y^{q^{-i}} \) lies in \(\Omega^1(C_{f,q}) \) then it is an eigenvector of \(\delta_q^* \) with eigenvalue \(\zeta_i \).

(ii) Now assume that \(p \) does not divide \(n \). It follows from Remark 4.2 that the collection

\[
\{ \omega_{j,i} = x^{j-1}dx/y^{q^{-i}} \mid (i,j) \in L_{n,q} \}
\]

is an eigenbasis of \(\Omega^1(C_{f,q}) \). This implies that the multiplicity of the eigenvalue \(\zeta^{-i} \) of \(\delta_q^* \) coincides with number of interior integer points in \(\Delta_{n,q} \) along the corresponding (to \(q - i \)) horizontal line. Elementary calculations show that this number is \(\left\lfloor \frac{ni}{q} \right\rfloor \); in particular, \(\zeta^{-i} \) is an eigenvalue if and only if \(\left\lfloor \frac{ni}{q} \right\rfloor > 0 \).

It also follows easily that 1 is not an eigenvalue \(\delta_q^* \). This implies that

\[
\mathcal{P}_q(\delta_q^*) = \delta_q^{*q-1} + \cdots + \delta_q^* + 1 = 0
\]

in \(\text{End}_K(\Omega^1(C_{f,q})) \). In addition, one may easily check that if \(H(t) \) is a polynomial with rational coefficients such that \(H(\delta_q^*) = 0 \) in \(\text{End}_K(\Omega^1(C_{f,q})) \) then \(H(t) \) is divisible by \(\mathcal{P}_q(t) \) in \(\mathbb{Q}[t] \).

Let \(J(C_{f,q}) = J(C) = J(C_{f,q}) \) be the jacobian of \(C \). It is a \(g \)-dimensional abelian variety defined over \(K \) and one may view (via Albanese functoriality) \(\delta_q \) as an element of

\[
\text{Aut}(C) \subset \text{Aut}(J(C)) \subset \text{End}(J(C))
\]

such that \(\delta_q \neq \text{Id} \) but \(\delta_q^2 = \text{Id} \) where \(\text{Id} \) is the identity endomorphism of \(J(C) \). Here \(\text{Aut}(C) \) stands for the group of \(K_a \)-automorphisms of \(C \), \(\text{Aut}(J(C)) \) stands for the group of \(K_a \)-automorphisms of \(J(C) \) and \(\text{End}(J(C)) \) stands for the ring of all \(K_a \)-endomorphisms of \(J(C) \). We write \(\mathbb{Z}[\delta_q] \) for the subring of \(\text{End}(J(C)) \) generated by \(\delta_q \). As usual, we write \(\text{End}^0(J(C)) = \text{End}^0(J(C_{f,q})) \) for the corresponding \(\mathbb{Q} \)-algebra \(\text{End}(J(C)) \otimes \mathbb{Q} \). We write \(\mathbb{Q}[\delta_q] \) for the \(\mathbb{Q} \)-subalgebra of \(\text{End}^0(J(C)) \) generated by \(\delta_q \).

Remark 4.5. Assume that \(p \) does not divide \(n \). Let \(P_0 \) be one of the \(\delta_q \)-invariant points (i.e., a ramification point for \(\pi \)) of \(C_{f,p}(K_a) \). Then

\[
\tau : C_{f,q} \to J(C_{f,q}), \quad P \mapsto \text{cl}((P) - (P_0))
\]
is an embedding of complex algebraic varieties and it is well-known that the induced map

$$\tau^*: \Omega^1(J(C_{f,q})) \to \Omega^1(C_{f,q})$$

is a C-linear isomorphism obviously commuting with the actions of δ_q. (Here cl stands for the linear equivalence class.) This implies that n_σ coincides with the dimension of the eigenspace of $\Omega^1(C_{f,q})$ attached to the eigenvalue ζ^{-i} of δ_q^*. Applying Remark 4.4, we conclude that if $H(t)$ is a monic polynomial with integer coefficients such that $H(\delta_q) = 0$ in $\text{End}(J(C_{f,q}))$ then $H(t)$ is divisible by $P_q(t)$ in $\mathbb{Q}[t]$ and therefore in $\mathbb{Z}[t]$.

Remark 4.6. Assume that p does not divide n. Clearly, the set S of eigenvalues λ of

$$\delta_q^*: \Omega^1(J(C_{f,q})) \to \Omega^1(J(C_{f,q}))$$

with $P_q/\lambda(\lambda) \neq 0$ consists of primitive qth roots of unity ζ^{-i} $(1 \leq i < q, (i,p) = 1)$ with $\left\lceil \frac{ni}{q} \right\rceil > 0$ and the multiplicity of ζ^{-i} equals $\left\lfloor \frac{ni}{q} \right\rfloor$, thanks to Remarks 4.5 and 4.4. Let us compute the sum

$$M = \sum_{1 \leq i < q, (i,p) = 1} \left\lfloor \frac{ni}{q} \right\rfloor$$

of multiplicities of eigenvalues from S.

First, assume that $q > 2$. Then $\varphi(q) = (p - 1)p^{r-1}$ is even and for each (index) i the difference $q - i$ is also prime to p, lies between 1 and q and

$$\left\lfloor \frac{ni}{q} \right\rfloor + \left\lfloor \frac{n(q-i)}{q} \right\rfloor = n - 1.$$

It follows easily that

$$M = (n - 1)\varphi(q) = \frac{(n - 1)(p - 1)p^{r-1}}{2}.$$

Now assume that $q = p = 2$ and therefore $r = 1$. Then n is odd,

$$C_{f,q} = C_{f,2} : y^2 = f(x)$$

is a hyperelliptic curve of genus $g = \frac{n-1}{2}$ and

$$\delta_2 : (x,y) \mapsto (x,-y).$$

It is well-known that the differentials $x^i \frac{dx}{y}$ $(0 \leq i \leq g - 1)$ constitute a basis of the g-dimensional $\Omega^1(J(C_{f,2}))$. It follows that δ_2^* is just multiplication by -1. Therefore

$$M = g = \frac{n - 1}{2} = \frac{(n - 1)(p - 1)p^{r-1}}{2}.$$
Notice that if the abelian (sub)variety \(Z := \mathcal{P}_{q/p}(\delta_q)(J(C_{f,q})) \) has dimension \(M \) then the data \(Y = J(C_{f,q}), \delta = \delta_q, P = \mathcal{P}_{q/p}(t) \) satisfy the conditions of Theorem 3.9.

Lemma 4.7. Assume that \(p \) does not divide \(n \). Let \(D = \sum_{P \in B} a_P(P) \) be a divisor on \(C = C_{f,p} \) with degree 0 and support in \(B \). Then \(D \) is principal if and only if all the coefficients \(a_P \) are divisible by \(q \).

Proof. Suppose \(D = \text{div}(h) \) where \(h \in K_a(C) \) is a non-zero rational function of \(C \). Since \(D \) is \(\delta_q \)-invariant, the rational function \(\delta_q^* h := h \delta_q = c \cdot h \) for some non-zero \(c \in K_a \). It follows easily from the \(\delta_q \)-invariance of the splitting \(K_a(C) = \oplus_{i=0}^{q-1} y^i \cdot K_a(x) \) that

\[
\delta_q^* h := h \delta_q = c \cdot h
\]

for some non-zero \(c \in K_a \). It follows easily from the \(\delta_q \)-invariance of the splitting

\[
K_a(C) = \oplus_{i=0}^{q-1} y^i \cdot K_a(x)
\]

that

\[
h = y^i \cdot u(x)
\]

for some non-zero rational function \(u(x) \in K_a(x) \) and a non-negative integer \(i \leq q-1 \). It follows easily that all finite zeros and poles of \(u(x) \) lie in \(B \), i.e., there exists an integer-valued function \(b \) on \(\mathfrak{R}_f \) such that \(u \) coincides, up to multiplication by a non-zero constant, to \(\prod_{\alpha \in \mathfrak{R}_f} (x - \alpha)^{b(\alpha)} \). Notice that

\[
\text{div}(y) = \sum_{P \in B} (P) - n(\infty).
\]

On the other hand, for each \(\alpha \in \mathfrak{R}_f \), we have \(P_\alpha = (\alpha,0) \in B \) and the corresponding divisor

\[
\text{div}(x - \alpha) = q((\alpha,0)) - q(\infty) = q(P_\alpha) - q(\infty)
\]

is divisible by \(q \). This implies that

\[
a_{P_\alpha} = q \cdot b(\alpha) + i.
\]

Also, since \(\infty \) is neither zero no pole of \(h \),

\[
0 = ni + \sum_{\alpha \in \mathfrak{R}_f} b(\alpha)q.
\]

Since \(n \) and \(q \) are relatively prime, \(i \) must divide \(q \). This implies that \(i = 0 \) and therefore the divisor

\[
D = \text{div}(u(x)) = \text{div}(\prod_{\alpha \in \mathfrak{R}_f} (x - \alpha)^{b(\alpha)})
\]
is divisible by q.

Conversely, suppose a divisor $D = \sum_{P \in B} a_P(P)$ with $\sum_{P \in B} a_P = 0$ and all a_P are divisible by q. Let us put
\[h = \prod_{P \in B} (x - x(P))^{a_P/q}. \]
One may easily check that $D = \text{div}(h)$. \hfill \square

Lemma 4.8. $1 + \delta_q + \cdots + \delta_q^{q-1} = 0$ in $\text{End}(J(C_{f,q}))$. The subring $\mathbb{Z}[\delta_q] \subset \text{End}(J(C_{f,q}))$ is isomorphic to the ring $\mathbb{Z}[t]/\mathcal{P}_q(t)[t]$. The \mathbb{Q}-subalgebra $\mathbb{Q}[\delta_q] \subset \text{End}^0(J(C_{f,q})) = \text{End}^0(J(C_{f,q}))$ is isomorphic to $\mathbb{Q}[t]/\mathcal{P}_q(t)[t] = \prod_{i=1}^{r} \mathbb{Q}(\zeta_{p_i})$.

Proof. If $q = p$ is a prime this assertion is proven in [9, p. 149], [10, p. 458]. So, further we may assume that $q > p$. It follows from Remark 4.3 that we may assume p does not divide n.

Now we follow arguments of [10, p. 458] (where the case of $q = p$ was treated). The group $J(C_{f,q})(K_a)$ is generated by divisor classes of the form $(P) - (\infty)$, where P is a finite point on $C_{f,p}$. The divisor of the rational function $x - x(P)$ is $(\delta_q^{q-1}P) + \cdots + (\delta_qP) + (P) - q(\infty)$. This implies that
\[\mathcal{P}_q(\delta_q) = 0 \in \text{End}(J(C_{f,q})). \]
Applying Remark 4.5(ii), we conclude that $\mathcal{P}_q(t)$ is the minimal polynomial of δ_q in $\text{End}(J(C_{f,q}))$. \hfill \square

Let us define the abelian (sub)variety
\[J^{(f,q)} := \mathcal{P}_{q/p}(\delta_q)(J(C_{f,q})) \subset J(C_{f,q}). \]
Clearly, $J^{(f,q)}$ is a δ_q-invariant abelian subvariety defined over $K(\zeta_q)$. In addition,
\[\Phi_q(\delta_q)(J^{(f,q)}) = 0. \]

Remark 4.9. If $q = p$ then $\mathcal{P}_{q/p}(t) = \mathcal{P}_1(t) = 1$ and therefore $J^{(f,p)} = J(C_{f,p})$.

Remark 4.10. Since the polynomials Φ_q and $\mathcal{P}_{q/p}$ are relatively prime, the homomorphism
\[\mathcal{P}_{q/p}(\delta_q) : J^{(f,q)} \rightarrow J^{(f,q)} \]
has finite kernel and therefore is an isogeny. In particular, it is surjective.

Lemma 4.11. (i) If p does not divide n then $\dim(J^{(f,q)}) = (p^{r} - p^{r-1})/(n-1)$.
If q divides n then $\dim(J^{(f,q)}) = (p^{r} - p^{r-1})(n-2)/2$.
(ii) If p does not divide n then there is an $K(\zeta_q)$-isogeny $J(C_{f,q}) \to J(C_{f,q/p}) \times J^{(f,q)}$.

(iii) If p does not divide n and $\zeta \in K$ then the Galois modules $V_{f,p}$ and

$$(J^{(f,q)})^{(\delta_q)} := \{ z \in J^{(f,q)}(K_a) \mid \delta_q(z) = z \}$$

are isomorphic.

Proof. Clearly, we may assume that $\zeta \in K$. It follows from Remark 4.3 that we may assume that p does not divide n. Clearly, the assertion (ii) implies the assertion (i). Further we will prove the assertions (ii) and (iii).

Let us consider the curve

$$C_{f,q/p} : y_1^{q/p} = f(x_1)$$

and a regular surjective map

$$\pi_1 : C_{f,q} \to C_{f,q/p}, \quad x_1 = x, y_1 = y^p.$$

Clearly,

$$\pi_1 \delta_q = \delta_{q/p} \pi_1.$$

By Albanese functoriality, π_1 induces a certain surjective homomorphism of jacobians $J(C_{f,q}) \to J(C_{f,q/p})$ which we continue to denote by π_1. Clearly, the equality $\pi_1 \delta_q = \delta_{q/p} \pi_1$ remains true in $\text{Hom}(J(C_{f,q}), J(C_{f,q/p}))$. By Lemma 4.8

$$P_{q/p}(\delta_{q/p}) = 0 \in \text{End}(J(C_{f,q/p})).$$

It follows from Lemma 4.10 that

$$\pi_1(J^{(f,q)}) = 0.$$

It follows that $\dim(J^{(f,q)})$ does not exceed

$$\dim(J(C_{f,q})) - \dim(J(C_{f,q/p})) = \frac{(p^r - 1)(n - 1)}{2} - \frac{(p^{r-1} - 1)(n - 1)}{2} = \frac{(p^r - p^{r-1})(n - 1)}{2}.$$

By definition of $J^{(f,q)}$, for each divisor $D = \sum_{P \in B} a_P(P)$ the linear equivalence class of

$$p^{r-1}D = \sum_{P \in B} p^{r-1}a_P(P)$$

lies in $(J^{(f,q)})^{(\delta_q)} \subset J^{(f,q)}(K_a) \subset J(C_{f,q})(K_a)$. It follows from Lemma 4.17 that the class of $p^{r-1}D$ is zero if and only if all $p^{r-1}a_P$ are divisible by $q = p^r$, i.e. all a_P are divisible by p. This implies that the set of linear equivalence classes of $p^{r-1}D$ is a Galois submodule isomorphic to $V_{f,p}$. We need to prove that $(J^{(f,q)})^{(\delta_q)} = V_{f,p}$.
Recall that $J^{(f,q)}$ is δ_p-invariant and the restriction of δ_q to $J^{(f,q)}$ satisfies the qth cyclotomic polynomial. This allows us to define the homomorphism

$$\mathbb{Z}[\zeta_q] \to \text{End}(J^{(f,q)})$$

which sends 1 to the identity map and ζ_q to δ_q. Let us put

$$E = \mathbb{Q}(\zeta_q) , \mathcal{O} = \mathbb{Z}[\zeta_q] \subset \mathbb{Q}(\zeta_q) = E.$$

It is well-known that \mathcal{O} is the ring of integers in E,

$$\lambda = (1 - \zeta_q)\mathbb{Z}[\zeta_q] = (1 - \zeta_q)\mathcal{O}$$

is a maximal ideal in \mathcal{O} with $\mathcal{O}/\lambda = \mathbb{F}_p$ and $\mathcal{O} \otimes \mathbb{Z}_p = \mathbb{Z}_p[\zeta_q]$ is the ring of integers in the field $\mathbb{Q}_p(\zeta_q)$. Notice also that $\mathcal{O} \otimes \mathbb{Z}_p$ coincides with the completion \mathcal{O}_λ of \mathcal{O} with respect to λ-adic topology and $\mathcal{O}_\lambda/\lambda \mathcal{O}_\lambda = \mathcal{O}/\lambda = \mathbb{F}_p$.

It follows (see [7]) that

$$d = \frac{2\dim(J^{(f,q)})}{E : \mathbb{Q}} = \frac{2\dim(J^{(f,q)})}{p^r - p^{r-1}}$$

is a positive integer and the \mathbb{Z}_p-Tate module $T_p(J^{(f,q)})$ is a free \mathcal{O}_λ-module of rank d. It follows that $T_p(J^{(f,q)}) \otimes_{\mathcal{O}_\lambda} \mathbb{F}_p$ is a d-dimensional vector space. On the other hand, clearly

$$(J^{(f,q)})^{\delta_q} = \{ u \in J^{(f,q)}(K_a) \mid (1 - \delta_p)(u) = 0 \} = J^{(f,q)}_\lambda = T_p(J^{(f,q)}) \otimes_{\mathcal{O}_\lambda} \mathbb{F}_p.$$

Since $(J^{(f,q)})^{\delta_q}$ contains $(n-1)$-dimensional \mathbb{F}_p-vector space $V_{f,p}$,

$$d \geq n - 1.$$

This implies that

$$2\dim(J^{(f,q)}) = d(p^r - p^{r-1}) \geq (n-1)(p^r - p^{r-1})$$

and therefore

$$\dim(J^{(f,q)}) \geq \frac{(n-1)(p^r - p^{r-1})}{2}.$$

But we have already seen that

$$\dim(J^{(f,q)}) \leq \frac{(n-1)(p^r - p^{r-1})}{2}.$$

This implies that

$$\dim(J^{(f,q)}) = \frac{(n-1)(p^r - p^{r-1})}{2}.$$

It follows that $d = n - 1$ and therefore

$$(J^{(f,q)})^{\delta_q} = V_{f,p}.$$
Corollary 4.12. If \(p \) does not divide \(n \) then there is a \(K(\zeta_q) \)-isogeny \(J(C_{f,q}) \to J(C_{f,p}) \times \prod_{i=2}^{n^2} J(f,p^i) = \prod_{i=1}^{n^2} J(f,p^i) \).

Proof. Combine Corollary 4.11(ii) and Remark 4.9 with easy induction by \(r \). □

Remark 4.13. Suppose that \(p \) does not divide \(n \) and consider the induced linear operator

\[
\delta_q^*: \Omega^1(J(f,q)) \to \Omega^1(J(f,q)).
\]

It follows from Theorem 3.9 combined with Remark 4.6 that its spectrum consists of primitive \(q \)-th roots of unity \(\zeta^{-i} \) (\(1 \leq i < q \)) with \(\left\lfloor \frac{ni}{q} \right\rfloor > 0 \) and the multiplicity of \(\zeta^{-i} \) equals \(\left\lfloor \frac{ni}{q} \right\rfloor \).

Theorem 4.14. Suppose that \(n \geq 5 \) is an integer. Let \(p \) be a prime, \(r \geq 1 \) an integer and \(q = p^r \). Suppose that \(p \) does not divide \(n \). Suppose that \(K \) is a field of characteristic different from \(p \) containing a primitive \(q \)-th root of unity \(\zeta \). Let \(f(x) \in K[x] \) be a separable polynomial of degree \(n \) and \(\text{Gal}(f) \) its Galois group. Suppose that the \(\text{Gal}(f) \)-module \(V_{f,p} \) is very simple. Then the image \(\mathcal{O} \) of

\[
\mathbb{Z}[\delta_q] \to \text{End}(J(f,q))
\]

is isomorphic to \(\mathbb{Z}[\zeta_q] \) and enjoys one of the following two properties.

(i) \(\mathcal{O} \) is a maximal commutative subring in \(\text{End}(J(f,q)) \);

(ii) \(\text{char}(K) > 0 \) and the centralizer of \(\mathcal{O} \otimes \mathbb{Q} \cong \mathbb{Q}(\zeta_q) \) in \(\text{End}^0(J(f,q)) \) is a central simple \((n-1)^2 \)-dimensional \(\mathbb{Q}(\zeta_q) \)-algebra.

Proof. Clearly, \(\mathcal{O} \) is isomorphic to \(\mathbb{Z}[\zeta_q] \). Let us put \(\lambda = (1 - \zeta_q)\mathbb{Z}[\zeta_q] \). By Lemma 4.11(iii), the Galois module \((J(f,q))^\delta_\lambda = J_{\lambda}^0(f,q) \) is isomorphic to \(V_{f,p} \). Applying Theorem 3.7 we conclude that either (ii) holds true or one of the following conditions hold:

(a) \(\mathcal{O} \) is a maximal commutative subring in \(\text{End}(J(f,q)) \);

(b) \(\text{char}(K) = 0 \) and there exist a \(\frac{\varphi(q)}{2} \)-dimensional abelian variety \(Z \) over \(K_a \), an embedding \(\mathbb{Q}(\zeta_q) \hookrightarrow \text{End}^0(Z) \) and a \(\mathbb{Q}(\zeta_q) \)-equivariant isogeny \(\psi : Z^{n-1} \to J(f,q) \).

Clearly, if (a) is fulfilled then we are done.

If \(q = p \) and \(\text{char}(K) = 0 \) then it is known [17], [19, Th. 5.3] that (a) is fulfilled.
So further we may assume that (b) holds true. In particular, \(\text{char}(K) = 0 \). We may also assume that \(q > p \). In order to finish the proof, we need to arrive to a contradiction. Clearly, \(\psi \) induces an isomorphism
\[
\psi^* : \Omega^1(J(f,q)) \cong \Omega^1(Z^{n-1})
\]
that commutes with the action of \(Q(\zeta_q) \). (Here again we use that \(\text{char}(K) = 0 \).)

Since \(\dim\Omega^1(Z) = \frac{\varphi(q)}{2} \), the linear operator in \(\Omega^1(Z) \) induced by \(\zeta_q \) has, at most, \(\frac{\varphi(q)}{2} \) distinct eigenvalues. It follows that the linear operator in \(\Omega^1(Z^{n-1}) = \Omega^1(Z)^{n-1} \) induced by \(\zeta_q \) also has, at most, \(\frac{\varphi(q)}{2} \) distinct eigenvalues. This implies that the linear operator \(\delta_q^* \) in \(\Omega^1((J(f,q))) \) also has, at most, \(\frac{\varphi(q)}{2} \) distinct eigenvalues. Recall that the eigenvalues of \(\delta_q^* \) are primitive \(q \)-th roots of unity \(\zeta^{-i} \) with
\[
1 \leq i < q, (i, p) = 1, \left\lfloor \frac{ni}{q} \right\rfloor > 0.
\]
Clearly, the inequality \(\left\lfloor \frac{ni}{q} \right\rfloor > 0 \) means that \(ni \geq q \), i.e.
\[
i \geq \frac{q}{n} \geq \frac{q}{5}.
\]
So, in order to get a desired contradiction, it suffices that the cardinality of the set of integers
\[
B := \left\{ i \mid \frac{q}{5} \leq i < q = p^r, (i, p) = 1 \right\}
\]
is strictly greater than \((p - 1)p^{r-1}/2 \). Indeed, clearly, \(\frac{q}{5} < \frac{p^{r-1}}{2} \) and
\[
\#(B) > \varphi(q) - \frac{q}{5} = (p - 1)p^{r-1} - \frac{p^{r-1}p}{5} = (p - 1 - \frac{p}{5})p^{r-1} > \frac{p - 1}{2}p^{r-1}.
\]

\(\square \)

Corollary 4.15. Suppose that \(n \geq 5 \) is an integer. Let \(p \) be a prime, \(r \geq 1 \) an integer and \(q = p^r \). Assume in addition that either \(p \) does not divide \(n \) or \(q \mid n \) and \((n, q) \neq (5, 5) \). Let \(K \) be a field of characteristic different from \(p \), Let \(f(x) \in K[x] \) be an irreducible separable polynomial of degree \(n \) such that \(\text{Gal}(f) = S_n \) or \(A_n \). Then the image \(\mathcal{O} \) of
\[
\mathbb{Z}[\delta_q] \to \text{End}(J(f,q))
\]
is isomorphic to \(\mathbb{Z}[\zeta_q] \) and enjoys one of the following two properties.

- (i) \(\mathcal{O} \) is a maximal commutative subring in \(\text{End}(J(f,q)) \);
Remark 2.1 allows us to do it, using the action of J on differentials of the first kind on Ω. Let $\Sigma = \Sigma_1$ be the set of all field embeddings $\sigma : E = \mathbb{Q}[\delta_q] \hookrightarrow \mathbb{C}$. We are going to apply Theorem 2.2 to $Z = J^{[f]}$ and $E = \mathbb{Q}[\delta_q]$. In order to do that we need to get some information about the multiplicities

$$n_\sigma = n_\sigma(Z, E) = n_\sigma(J^{[f]}, \mathbb{Q}[\delta_q]).$$

Remark 2.1 allows us to do it, using the action of $\mathbb{Q}[\delta_q]$ on the space $\Omega_1(J^{[f]})$ of differentials of the first kind on $J^{[f]}$.

In other words, $\Omega_1(J^{[f]})_\sigma$ is the eigenspace corresponding to the eigenvalue $\sigma(\delta_q)$ of δ_q and n_σ is the multiplicity of the eigenvalue $\sigma(\delta_q)$.

Let $i < q$ be a positive integer that is not divisible by p and $\sigma_i : \mathbb{Q}[\delta_p] \hookrightarrow \mathbb{C}$ be the embedding which sends δ_p to ζ^{-i}. Clearly, for each σ there exists precisely one i such that $\sigma = \sigma_i$. Clearly, $\Omega_1(J^{[f]})$ is the eigenspace of $\Omega_1(J^{[f]})$ attached to the eigenvalue ζ^{-i} of δ_q. Therefore n_{σ_i} coincides with the multiplicity of the eigenvalue ζ^{-i}. It follows from Remark 4.13 that

$$n_{\sigma_i} = \left\lfloor \frac{ni}{q} \right\rfloor.$$
Combining Corollary 4.15 and 4.16 we obtain the following statement.

Theorem 4.17. Let p be a prime, r a positive integer, $q = p^r$ and K a field of characteristic zero. Suppose that $f(x) \in K[x]$ is an irreducible polynomial of degree $n \geq 5$ and $\text{Gal}(f) = S_n$ or A_n. Assume also that either p does not divide n or q divides n. Then $\text{End}^0(J^{f,q}) = \mathbb{Q}[\delta_q] \cong \mathbb{Q}(\zeta_q)$ and therefore $\text{End}(J^{f,q}) = \mathbb{Z}[\delta_q] \cong \mathbb{Z}[\zeta_q]$. In particular, $J^{f,q}$ is an absolutely simple abelian variety.

Combining Theorem 4.16 and Corollary 4.14 we obtain the following statement.

Theorem 4.18. Let p be a prime, r a positive integer, $q = p^r$ and K a field of characteristic zero. Let $f(x) \in K[x]$ be an irreducible polynomial of degree $n \geq 5$. Assume also that p does not divide n and the $\text{Gal}(f)$-module $V_{f,p}$ is very simple. Then $\text{End}^0(J^{f,q}) = \mathbb{Q}[\delta_q] \cong \mathbb{Q}(\zeta_q)$ and therefore $\text{End}(J^{f,q}) = \mathbb{Z}[\delta_q] \cong \mathbb{Z}[\zeta_q]$. In particular, $J^{f,q}$ is an absolutely simple abelian variety.

5. Jacobians and their endomorphism rings

Throughout this section we assume that K is a field of characteristic zero. Recall that K_a is an algebraic closure of K and $\zeta \in K_a$ is a primitive qth root of unity. Suppose $f(x) \in K[x]$ is a polynomial of degree $n \geq 5$ without multiple roots, $\mathfrak{R}_f \subset K_a$ is the set of its roots, $K(\mathfrak{R}_f)$ is its splitting field. Let us put

$$\text{Gal}(f) = \text{Gal}(K(\mathfrak{R}_f)/K) \subset \text{Perm}(\mathfrak{R}_f).$$

Let r be a positive integer. Recall (Corollary 4.12) that if p does not divide n then there is a $K(\zeta_{q^r})$-isogeny $J(C_{f,p^r}) \to \prod_{i=1}^r J^{f,q^i}$. Applying Theorem 4.18 to all $q = p^i$, we obtain the following assertions.

Theorem 5.1. Let p be a prime, r a positive integer, $q = p^r$ and K a field of characteristic zero. Let $f(x) \in K[x]$ be an irreducible polynomial of degree $n \geq 5$. Assume also that p does not divide n and the $\text{Gal}(f)$-module $V_{f,p}$ is very simple. Then

$$\text{End}^0(J(C_{f,q})) = \mathbb{Q}[\delta_q] \cong \mathbb{Q}[t]/\mathbb{Q}(\zeta_q) \cong \prod_{i=1}^r \mathbb{Q}(\zeta_{q^i}).$$

Theorem 5.2. Let p be a prime, r a positive integer and K a field of characteristic zero. Suppose that $f(x) \in K[x]$ is an irreducible polynomial of degree $n \geq 5$ and $\text{Gal}(f) = S_n$ or A_n. Assume also that either p does not divide n or

$$\text{End}^0(J(C_{f,q})) = \mathbb{Q}[\delta_q] \cong \mathbb{Q}[t]/\mathbb{Q}(\zeta_q) \cong \prod_{i=1}^r \mathbb{Q}(\zeta_{q^i}).$$
Proof. The existence of the isogeny $J(C_{f,q}) \rightarrow \prod_{i=1}^{r} J^{f(p^i)}$ combined with Theorem 4.17 implies that the assertion holds true if p does not divide n. If q divides n then Remark 4.3 allows us to reduce this case to the already proven case when p does not divide $n − 1$. □

Example 5.3. Suppose $L = \mathbb{C}(z_1, \cdots, z_n)$ is the field of rational functions in n independent variables z_1, \cdots, z_n with constant field \mathbb{C} and $K = L^S_n$ is the subfield of symmetric functions. Then $K_a = L_a$ and

$$f(x) = \prod_{i=1}^{n} (x - z_i) \in K[x]$$

is an irreducible polynomial over K with Galois group S_n. Let $q = p^r$ be a power of a prime p. Let C be a smooth projective model of the K-curve $y^q = f(x)$ and $J(C)$ its jacobian. It follows from Theorem 5.2 that if $n \geq 5$ and either p does not divide n or q divides n then the algebra of L_a-endomorphisms of $J(C)$ is $\prod_{i=1}^{r} Q(\zeta_{p^i})$.

Example 5.4. Let $h(x) \in \mathbb{C}[x]$ be a Morse polynomial of degree $n \geq 5$. This means that the derivative $h'(x)$ of $h(x)$ has $n − 1$ distinct roots $\beta_1, \cdots, \beta_{n−1}$ and $h(\beta_i) \neq h(\beta_j)$ while $i \neq j$. (For example, $x^n - x$ is a Morse polynomial.) Let $K = \mathbb{C}(z)$ be the field of rational functions in variable z with constant field \mathbb{C} and K_a its algebraic closure. Then a theorem of Hilbert ([13, theorem 4.4.5, p. 41]) asserts that the Galois group of $h(x) − z$ over $k(z)$ is S_n. Let $q = p^r$ be a power of a prime p. Let C be a smooth projective model of the K-curve $y^q = h(x) − z$ and $J(C)$ its jacobian. It follows from Theorem 5.2 that if either p does not divide n or q divides n then the algebra of K_a-endomorphisms of $J(C)$ is $\prod_{i=1}^{r} Q(\zeta_{p^i})$.

References

[1] I. N. Herstein, Noncommutative rings. John Wiley and Sons, 1968.
[2] J. K. Koo, On holomorphic differentials of some algebraic function field of one variable over \mathbb{C}. Bull. Austral. Math. Soc. 43 (1991), 399–405.
[3] S. Lang, Abelian varieties, Springer Verlag 1983.
[4] B. Moonen and Yu. G. Zarhin, Weil classes on abelian varieties. J. reine angew. Math. 496 (1998), 83–92.
[5] B. Mortimer, The modular permutation representations of the known doubly transitive groups. Proc. London Math. Soc. (3) 41 (1980), 1–20.
[6] D. Mumford, Abelian varieties, 2nd edn (Oxford University Press, 1974).
[7] K. Ribet, Galois action on division points of Abelian varieties with real multiplications. Amer. J. Math. 98 (1976), 751–804.
K. Ribet, *Hodge classes on certain abelian varieties*. Amer. J. Math. **105** (1983), 523–538.

B. Poonen and E. Schaefer, *Explicit descent for Jacobians of cyclic covers of the projective line*. J. reine angew. Math. **488** (1997), 141–188.

E. Schaefer, *Computing a Selmer group of a Jacobian using functions on the curve*. Math. Ann. **310** (1998), 447–471.

I. Schur, *Gleichungen ohne Affect*. Sitz. Preuss. Akad. Wiss. 1930, Physik-Math. Klasse 443–449 (=Ges. Abh. III, 191–197).

J.-P. Serre, Abelian ℓ-adic representations and elliptic curves. AK Peters, Wellesley, 1998.

J.-P. Serre, *Topics in Galois Theory*. Jones and Bartlett Publishers, 1992.

C. Towse, *Weierstrass points on cyclic covers of the projective line*. Trans. Amer. Math. Soc. **348** (1996), 3355–3377.

Yu. G. Zarhin, *Weights of simple Lie algebras in the cohomology of algebraic varieties*. Izv. Akad. Nauk SSSR Ser. Mat. **48** (1984), 264–304; English translation: Math. USSR Izv. **24** (1985), 245 - 281.

Yu. G. Zarhin, *Hyperelliptic jacobians without complex multiplication*. Math. Res. Letters **7** (2000), 123–132.

Yu. G. Zarhin, *Hyperelliptic jacobians and modular representations*. In: Moduli of abelian varieties (eds. C. Faber, G. van der Geer and F. Oort). Progress in Math., vol. **195** (Birkhäuser, 2001), pp. 473–490.

Yu. G. Zarhin, *Hyperelliptic jacobians without complex multiplication in positive characteristic*. Math. Res. Letters **8** (2001), 429–435.

Yu. G. Zarhin, *Cyclic covers of the projective line, their jacobians and endomorphisms*. J. reine angew. Math. **544** (2002), 91–110.

Yu. G. Zarhin, *Endomorphism rings of certain jacobians in finite characteristic*. Matem. Sbornik **193** (2002), issue 8, 39–48; Sbornik Math., 2002, **193** (8), 1139-1149.

Yu. G. Zarhin, *Very simple 2-adic representations and hyperelliptic jacobians*. Moscow Math. J. **2** (2002), issue 2, 403-431.

Yu. G. Zarhin, *Homomorphisms of hyperelliptic jacobians*. In: Number Theory, Algebra, and Algebraic geometry (Shafarevich Festschrift), Proc. Steklov Math. Institute **241** (2003), 90–104; e-print: http://arXiv.org/abs/math.NT/0301173.

Yu. G. Zarhin, *The endomorphism rings of jacobians of cyclic covers of the projective line*. Math. Proc. Cambridge Philos. Soc. **136** (2004), to appear.

Yu. G. Zarhin, *Very simple representations: variations on a theme of Clifford*. In: Galois Theory Conference Proceedings (H. Völklein, ed.), Developments in Math., Kluwer, to appear; e-print: http://front.math.ucdavis.edu/math.GR/0209083.

Yu. G. Zarhin, *Non-supersingular hyperelliptic jacobians*. e-print: http://front.math.ucdavis.edu/math.AG/0311137.

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

E-mail address: zarhin@math.psu.edu