Recent $\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau$ Studies at Belle

S. Hirose, for the Belle Collaboration

Center for Experimental Studies, Nagoya University, Furo, Chikusa, Nagoya, Japan

The semi-tauonic decay $\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau$ is sensitive to new physics beyond the Standard Model (SM) that has an enhanced coupling to the τ lepton. In the ratio of branching fractions $R(D^*) = B(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau)/B(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_\ell)$, where $\ell^- = e^-$ or μ^-, a 3.3σ anomaly was observed. In order to investigate the anomaly further, Belle performed a new $R(D^*)$ measurement using one-prong hadronic τ decays, which was statistically independent of the previous two measurements. This measurement included the first measurement of the τ polarization $P_\tau(D^*)$ using the kinematics of the two-body decays. The obtained results, $R(D^*) = 0.270 \pm 0.035^{\text{stat}}(0.028)^{\text{syst}}$ and $P_\tau(D^*) = -0.38 \pm 0.51^{\text{stat}}(0.21)^{\text{syst}}$, were consistent both with the SM and the world-average $R(D^*)$. Including this result, the $R(D^*)$ anomaly became 3.4σ away from the SM prediction.

1 Introduction

The decays $\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau$ are the semileptonic B meson decays containing a τ lepton in the final state. These processes are theoretically well studied within the Standard Model (SM), where a virtual W boson mediates the decay at the tree level. If new physics (NP) beyond the SM exists with a non-universal coupling over the three generation, ratios of branching fractions $R(D^{(*)}) = B(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau)/B(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_\ell)$, where $\ell^- = e^-$ or μ^-, is modified. Three collaborations, Belle, BaBar and LHCb, have studied the ratios experimentally. As of early 2016, the averages of $R(D)$ and $R(D^*)^6$ were 1.9σ and 3.3σ away from the SM predictions, respectively.

Previously, all the measurements were performed by identifying the τ lepton from its leptonic decay in order to exploit the presence of one charged lepton in the signal decay for the signal selection. Additionally, hadronic τ decays can be used to reconstruct signal events. With the full dataset, Belle has performed a new measurement of $\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau$ using one-prong τ decays: $\tau^- \to \pi^-\nu_\tau$ and $\rho^-\nu_\tau$. This choice of the τ decays realizes to investigate the $R(D^*)$ anomaly under the different main background from the previous measurements, where semileptonic decays $\bar{B} \to D^{(*)}\ell^-\bar{\nu}_\ell$ with excited charmed mesons heavier than D^* are the most important background modes. In addition, using the two-body kinematics of the τ decay, it is possible to measure the longitudinal polarization of the τ lepton, $P_\tau(D^*) = (\Gamma^+ - \Gamma^-)/\Gamma^+$, where Γ^+/Γ^- is the decay rate of $\bar{B} \to D^\tau\bar{\nu}_\tau$ with a right-(left-)handed τ lepton. This variable is sensitive to NP independently of $R(D^*)$. The new measurement of $\bar{B} \to D^\tau\bar{\nu}_\tau$ by Belle includes the first experimental study of $P_\tau(D^*)$.

This study is performed based on the dataset accumulated at the center-of-mass e^+e^- collision energy of 10.58 GeV using the KEKB accelerator. The energy corresponds to the mass of $\Upsilon(4S)$, and B mesons are produced in the process $\Upsilon(4S) \to BB$. The data are recorded by the Belle detector, which consists of the inner detectors (silicon vertex detector, central drift chamber, time-of-flight counter, aerogel Cherenkov counter and electromagnetic calorimeter),
the superconducting solenoid providing a 1.5 T magnetic field, and the K^0_L and muon detector.
Out dataset contains 772M $B\bar{B}$ pairs.

2 Measurement Method

2.1 Measurement of $R(D^*)$ and $P_\tau(D^*)$

The ratio $R(D^*)$ is determined by the yield ratio between the signal mode ($\bar{B} \to D^*\tau^-\bar{\nu}_\tau$) and the normalization mode ($\bar{B} \to D^*\ell^-\bar{\nu}_\ell$). It is represented by

$$R(D^*) = \frac{1}{B_\tau} \frac{\epsilon_{\text{norm}} N_{\text{sig}}}{\epsilon_{\text{sig}} N_{\text{norm}}},$$

where B_τ denotes the branching fraction of τ, and $\epsilon_{\text{sig(norm)}}$ and $N_{\text{sig(norm)}}$ are the efficiency and the yield of the signal (normalization) mode, respectively. These quantities are determined separately for different τ decay modes.

The polarization $P_\tau(D^*)$ is measured by the differential decay rate \(^{13}\)

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\text{hel}}} = \frac{1}{2} \left[1 + \alpha P_\tau(D^*) \cos\theta_{\text{hel}} \right],$$

where Γ denotes the decay rate of $\bar{B} \to D^*\tau^-\bar{\nu}_\tau$. The coefficient α denotes the τ-mode-dependent sensitivity to $P_\tau(D^*)$; $\alpha = 1$ for $\tau^- \to \pi^-\nu_\tau$ and $\alpha = (m_\tau^2 - 2m_\rho^2)/(m_\tau^2 + 2m_\rho^2) \approx 0.45$ for $\tau^- \to \rho^-\bar{\nu}_\tau$, where $m_\tau(\rho)$ is the τ lepton (ρ meson) mass. The angle θ_{hel} is determined as the direction of the τ-daughter π or ρ momentum with respect to the direction opposite the momentum of the virtual W boson. However, the complete τ momentum cannot be measured at Belle due to insufficient kinematic constraints. Here, we exploit the rotation symmetry in the rest frame of W. In this frame, we calculate $\cos\theta_{\tau d} = (2E_\tau E_d - m_\tau^2 - m_d^2)/(2|\vec{p}_\tau||\vec{p}_d|)$, where E and \vec{p} denote the energy and the momentum of τ and the τ-daughter meson $d = \pi$ or ρ, respectively, and m_d is the mass of d. The angle $\theta_{\tau d}$ is defined by the momenta of τ and d. Because τ is produced in the two-body decay, the energy and the magnitude of the τ momentum is determined only from the momentum transfer squared, $q^2 = (p_{\text{sig}^-} - p_{D^*})$, where p is the four-momenta of the signal B meson (B_{sig}) and D^*. Although B_{sig} is not fully reconstructed due to two neutrinos, we obtain the B_{sig} momentum from $p_{\text{sig}} = p_{e^+e^-} - p_{\text{tag}}$, where $p_{e^+e^-}$ and p_{tag} denote the four-momenta of the e^+e^- beam and the counterpart B meson (B_{tag}), respectively. In this measurement, we fully reconstruct B_{tag} from its hadronic decay.

Now, the τ momentum vector is fixed on the cone around the τ-daughter meson momentum with an angle of $\theta_{\tau d}$. Owing to the rotation symmetry of the cone, any direction is kinematically equivalent. An arbitrary direction is therefore selected as a Lorentz boost vector, and we obtain the equation

$$|\vec{p}_d^*| \cos\theta_{\text{hel}} = -\gamma|\vec{\beta}|E_d + \gamma|\vec{p}_d| \cos\theta_{\tau d},$$

where $|\vec{p}_d^*| = (m_\tau^2 - m_d^2)/(2m_\tau)$ is the τ-daughter momentum in the rest frame of τ, and $\gamma = E_\tau/m_\tau$ and $|\vec{\beta}| = |\vec{p}_\tau|/E_\tau$. Solving this equation, the value of $\cos\theta_{\text{hel}}$ is obtained.

2.2 Event Reconstruction

The event selection starts with reconstructing B_{tag} from one of the 1104 hadronic decay chains. The NeuroBayes-based multivariate analysis technique \(^{14}\) is employed. Good quality B_{tag} candidates are selected based on the beam-constraint mass $M_{bc} = \sqrt{E_{\text{beam}}^2 - |\vec{p}_B^*|^2}$, where E_{beam} and \vec{p}_B^* are the beam energy (5.29 GeV) and the three momentum of the B_{tag} candidate, respectively, as well as the single NeuroBayes output classifier C_{NB}. Our requirements retain 90% of correctly reconstructed B_{tag} candidates while rejecting 70% of misreconstructed candidates.
Using the remaining particles, we next reconstruct the D^* meson as a daughter of B_{sig}. Reconstructed D^* candidates are then combined with pions or ρ meson candidates properly in terms of the charge. The ρ meson candidates are reconstructed from the decay $\rho^- \to \pi^- \pi^0$. For the normalization mode, we require the existence of one e^- or μ^- instead of $\pi^- \pi^0$. Finally, we select events with no extra charged track and π^0 candidate not used for the reconstruction of B_{tag} and B_{sig}.

Details of the event reconstruction are discussed in Ref. 9.

3 Result

Signal extraction is performed by the two-step fit. First, a fit to the normalization events is performed based on the missing-mass squared $M_{\text{miss}}^2 = (p_{\ell^+e^-} - p_{\text{tag}} - p_{D^*} - p_{\ell})^2$, where p_{ℓ} denotes the four-momentum of ℓ. Since there is only one neutrino in the normalization mode, the distribution of M_{miss}^2 peaks around 0 GeV2. After determining the normalization yield, we perform a fit to the signal events using E_{ECL}, which is the sum of the cluster energies on the electromagnetic calorimeter that are not used for the event reconstruction. While the signal events tend to have E_{ECL} close to 0 GeV, the background events have larger values due to additional physical photons. The E_{ECL} has advantages for the signal yield extraction in terms of its small correlation to $P_\tau(D^*)$ and good signal separation from background processes. In the fit, the $P_\tau(D^*)$ is determined from two bins of $\cos\theta_{\text{hel}}$.

Figure 1 shows the fit results to the signal sample. From the fit, we obtain

$$R(D^*) = 0.270 \pm 0.035(\text{stat})^{+0.028}_{-0.025}(\text{syst}),$$

$$P_\tau(D^*) = -0.38 \pm 0.51(\text{stat})^{+0.21}_{-0.16}(\text{syst}).$$

The systematic uncertainty mainly arises from hadronic and semileptonic decays of B mesons, and the statistics of the Monte Carlo simulated sample; details are described in Ref. 9. The signal significance is 7.1σ, and therefore our measurement has achieved the first observation of $B \to D^* \tau^- \nu_\tau$ only with τ decays. The region $P_\tau(D^*) > 0.5$ is excluded at the 90% confidence level, which is the first result of $P_\tau(D^*)$ in $B \to D^* \tau^- \nu_\tau$.

Figure 1 – Fit results to the signal sample. The main panel and the sub panel show the E_{ECL} and the $\cos\theta_{\text{hel}}$. The red-hatched "\tau cross feed" contains $\bar{B} \to D^* \tau^- \nu_\tau$ signal events originating from τ decays different from the reconstruction channels.

Figure 2 – Summary of the $R(D^*)$ measurements as of distributions, respectively. The red-hatched "\tau cross feed" contains $\bar{B} \to D^* \tau^- \nu_\tau$ signal events originating from τ decays different from the reconstruction channels. The systematic uncertainty mainly arises from hadronic and semileptonic decays of B mesons, and the statistics of the Monte Carlo simulated sample; details are described in Ref. 9. The signal significance is 7.1σ, and therefore our measurement has achieved the first observation of $B \to D^* \tau^- \nu_\tau$ only with τ decays. The region $P_\tau(D^*) > 0.5$ is excluded at the 90% confidence level, which is the first result of $P_\tau(D^*)$ in $B \to D^* \tau^- \nu_\tau$.

Table 2

Experiment	$R(D^*)$ (syst)	$P_\tau(D^*)$ (stat)
S. Fajfer et al. (2012)	0.336	0.270
Belle (hadronic tag)	0.332	-0.38
Belle sl.tag	0.320	-0.51
HFLAV	0.270	-0.21
Average	0.304	-0.16

The systematic uncertainty mainly arises from hadronic and semileptonic decays of B mesons, and the statistics of the Monte Carlo simulated sample; details are described in Ref. 9. The signal significance is 7.1σ, and therefore our measurement has achieved the first observation of $B \to D^* \tau^- \nu_\tau$ only with τ decays. The region $P_\tau(D^*) > 0.5$ is excluded at the 90% confidence level, which is the first result of $P_\tau(D^*)$ in $B \to D^* \tau^- \nu_\tau$.

Figure 2 – Summary of the $R(D^*)$ measurements as of FPCP 2017.
4 Current Situation of \(R(D^*) \)

In addition to our new result, LHCb has performed a measurement of \(R(D^*) \) using three-prong hadronic \(\tau \) decays\(^{15}\). As shown in Fig. 2\(^{16}\), the current world-average \(R(D^*) = 0.304 \pm 0.013(\text{stat}) \pm 0.007(\text{syst}) \) is 3.4\(\sigma \) away from the SM prediction\(^{16}\). Including \(R(D) \), the overall discrepancy reaches 4.1\(\sigma \). In order to settle this puzzle, further \(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau \) studies using high statistics data at Belle II are essential.

5 Conclusion

The decays \(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau \) are interesting \(B \) decays in terms of their sensitivities to NP coupling to the \(\tau \) lepton. Belle has performed a new \(\bar{B} \to D^*\tau^-\bar{\nu}_\tau \) measurements, which results in the first observation of the \(\bar{B} \to D^*\tau^-\bar{\nu}_\tau \) signal using only hadronic \(\tau \) decays, and the first measurement of \(P_{\tau}(D^*) \). The obtained result is consistent with the SM predictions. The world averages of \(R(D^{(*)}) \) show the 4.1\(\sigma \) discrepancy from the SM predictions. This is an important topic to be further investigated with high precision of Belle II.

Acknowledgments

This work was partially supported by JSPS Grant-in-Aid for Scientific Research (S) “Proving New Physics with Tau-Lepton” (No. 26220706).

References

1. For example, D.S. Hwang and D.-W. Kim, E. Phys. J. C 14, 271 (2000).
2. M. Huschle et al. (Belle Collaboration), Phys. Rev. D 92, 072014 (2015).
3. Y. Sato et al. (Belle Collaboration), Phys. Rev. D 94, 072007 (2016).
4. J.P. Lees et al. (BaBar Collaboration), Phys. Rev. Lett. 109, 101802 (2012).
5. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115, 111803 (2015).
6. Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv:1412.7515 and online update at http://www.slac.stanford.edu/xorg/hfag/.
7. H. Na et al. (HPQCD Collaboration), Phys. Rev. D 92, 054510 (2015).
8. S. Fajfer, J.F. Kamenik and I. Nišandžić, Phys. Rev. D 85, 094025 (2012).
9. S. Hirose et al. (Belle Collaboration), Phys. Rev. Lett. 118, 211801 (2017); S. Hirose et al. (Belle Collaboration), arXiv:1709.00129.
10. For example, M. Tanaka and R. Watanabe, Phys. Rev. D 87, 034028 (2013).
11. S. Kurokawa and E. Kikutani, Nucl. Instrum. and Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013) and references therein.
12. A. Abashian et al. (Belle Collaboration), Nucl. Instr. and Meth. A 479, 117 (2002); also see the detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
13. K. Hagiwara, A.D. Martin and D. Zeppenfeld, Phys. Lett. B 235, 198 (1990).
14. M. Feindt et al., Nucl. Instrum. and Methods Phys. Res., Sect. A 654, 432 (2011).
15. G. Wormser, on behalf of the LHCb Collaboration, presented at FPCP 2017.
16. Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv:1612.07233 (2016) and online update at http://www.slac.stanford.edu/xorg/hfag/.