ON CRITICAL POINTS OF BLASCHKE PRODUCTS

S. FAVOROV AND L. GOLINSKII

ABSTRACT. We obtain an upper bound for the derivative of a Blaschke product, whose zeros lie in a certain Stolz-type region. We show that the derivative belongs to the space of analytic functions in the unit disk, introduced recently in [6]. As an outcome, we obtain a Blaschke-type condition for critical points of such Blaschke products.

1. INTRODUCTION

Given a sequence \(\{z_n\} \subset \mathbb{D} \) subject to the Blaschke condition
\[
\alpha := \sum_{n=1}^{\infty} (1 - |z_n|) < \infty, \tag{1}
\]
let
\[
B(z) = \prod_{n=1}^{\infty} b_n(z), \quad b_n(z) = \frac{\overline{z}_n}{|z_n|} \frac{z_n - z}{1 - \overline{z}_n z}
\]
be a Blaschke product with the zero set \(Z(B) = \{z_n\} \). With no loss of generality we will assume that \(B(0) \neq 0 \).

One of the central problems with Blaschke products is that of the membership of their derivatives in classical function spaces, \(B' \in X \). There is a vast literature on the problem, starting from investigations of P. Ahern and his collaborators [1, 2, 3, 4] and D. Prota [14] in 1970s, up to quite recent results of the Spanish school [8, 9, 10], see also [12, 15]. The above mentioned spaces \(X \) are primarily the Hardy spaces \(H^p \), the Bergman spaces \(A^p \), the Banach envelopes of the Hardy spaces \(B^p \) etc. Recall the definition of the Bergman spaces \(A^p \), \(p > 0 \):
\[
A^p = \{ f \in \mathcal{A}(\mathbb{D}) : \int_{\mathbb{D}} |f(z)|^p \, dx \, dy < \infty \}, \quad z = x + iy.
\]

In this paper we will add to the list some new spaces \(X = \mathcal{A}(E, \rho) \) of analytic functions in the unit disk, introduced recently in [6]. Given a closed set \(E = \overline{E} \subset \mathbb{T} \) and \(\rho > 0 \), we say that an analytic function \(f \) belongs to \(\mathcal{A}(E, \rho) \) if
\[
|f(z)| \leq C_1 \exp \left(\frac{C_2}{d^p(z, E)} \right), \quad d(z, E) = \text{dist}(z, E)
\]

Date: November 16, 2010.

1991 Mathematics Subject Classification. Primary: 30D50; Secondary: 31A05, 47B10.
is the distance from \(z \in \mathbb{D} \) to \(E \), \(C_{1,2} \) are positive constants.

The simplest and most general result drops out immediately from the Schwarz–Pick lemma for functions \(g \) from the unit ball of \(H^\infty \):

\[
|g'(z)| \leq \frac{1 - |g(z)|^2}{1 - |z|^2},
\]

and states, that \(g' \in A^p \) for all \(0 < p < 1 \). The result is sharp: there exists a Blaschke product \(B \) such that \(B'/A^1 \) (W. Rudin).

To proceed further, one should impose some additional restrictions either on absolute values \(|z_n| \), stronger than (1), or on location, distribution of arguments of zeros \(z_n \) etc. For instance, a typical result of the first type is due to Protas [14]:

\[
\sum_{n=1}^{\infty} (1 - |z_n|)^r < \infty, \quad 0 < r < \frac{1}{2} \Rightarrow B' \in H^{1-r},
\]

and \(\frac{1}{2} \) is sharp.

We are more interested in the second direction, related to the location of zeros. A typical assumption here is that \(Z(B) \) belongs to certain regions inside the unit disk.

Let \(t \in \mathbb{T}, \gamma \geq 1 \). Following [5, 3, 10] we introduce regions

\[
R(t, \gamma, K) := \{ \lambda \in \mathbb{D} : |t - \lambda|^\gamma \leq K(1 - |\lambda|) \}, \quad K \geq 1.
\]

For \(\gamma = 1, K > 1 \) this is the standard Stolz angle. When \(\gamma > 1 \) the region touches the circle \(\mathbb{T} \) at the vertex \(t \) with the power degree of tangency. The following result claims that \(B' \) belongs to \(H^p \) or \(A^p \) as soon as \(Z(B) \subset R(t, 1, K) \).

Theorem A. Let \(Z(B) \subset R(t, 1, K) \). Then

1. \(B' \in H^p, \quad p < \frac{1}{2}, \) and \(\frac{1}{2} \) is sharp;
2. \(B' \in A^p, \quad p < \frac{3}{2}, \) and \(\frac{3}{2} \) is sharp.

The first statement is proved in [9, Theorem 2.3], for the second one see [9, 8]. For related results in the case \(Z(B) \subset R(t, \gamma, K) \) with \(\gamma > 1 \), see [10, Section 3].

We study the same problem for more general Stolz-type regions.

A function \(\phi \) on the right half-line will be called a model function, if it is nonnegative, continuous and increasing, and

\[
\phi(x) \leq Cx, \quad x \geq 0, \quad C = C(\phi) > 0.
\]

We define a Stolz angle associated with a model function \(\phi \) with the vertex at \(t \in \mathbb{T} \) as

\[
S_\phi(t, K) = S(t, K) := \{ \lambda \in \mathbb{D} : \phi(|t - \lambda|) \leq K(1 - |\lambda|) \}, \quad K > 0.
\]

Since \(|t - \lambda| \leq 2 \) for \(t, \lambda \in \mathbb{D} \), it is clear that regions (2) are of the form (4) for an appropriate \(\phi \). Precisely, one can put \(\phi(x) = x^\gamma \) for \(0 \leq x \leq 2 \), and...
φ(x) = 2^x − 1 for x ≥ 2. Next, given a closed set \(E = \overline{E} \subset \mathbb{T} \) we define a Stolz region, associated with a model function φ and the set E, as

\[
S(E, K) := \{ \lambda \in \mathbb{D} : \phi(d(\lambda, E)) \leq K(1 - |\lambda|) \} = \bigcup_{t \in E} S(t, K).
\]

Here is our main result.

Theorem 1. Let \(B \) be a Blaschke product such that \(Z(B) \subset S(E, K) \). Then

\[
|B'(z)| \leq 2(2C + K)^2 \sum_{n=1}^{\infty} (1 - |z_n|) \phi^{-2} \left(\frac{d(z, E)}{6} \right).
\]

(5)

For the standard Stolz angle and \(E = \{t\} \) we take \(\phi(x) = x \), so

\[
|B'(z)| \leq \frac{C_3}{|t - z|^2},
\]

and part (1) in Theorem A follows. Similarly, for the region \(R(t, \gamma, K) \), \(\gamma > 1 \), (5) implies

\[
|B'(z)| \leq \frac{C_4}{|t - z|^{2\gamma}},
\]

and we come to the following result (cf. [10, Remark 1]).

Corollary 2. If \(Z(B) \subset R(t, \gamma, K) \), \(\gamma > 1 \), then \(B' \in H^p \) for all \(p < 1/2\gamma \).

We are particularly interested in the model function \(\phi(x) = \exp\{-x^{-\rho}\} \), \(\rho > 0 \). In this case (5) says that \(B' \in \mathcal{A}(E, \rho) \).

Denote \(Z(B') = \{z'_n\} \) the zero set of \(B' \). Each result of the form \(B' \in X \) provides some information about the critical points of \(B \) (zeros of \(B' \)), as long as the information about zero sets of functions from \(X \) is available. The most general condition applied to an arbitrary Blaschke product arises from the fact that \(B' \in A^p \), \(p < 1 \), so (cf. [11, Theorem 4.7])

\[
\sum_{n=1}^{\infty} \frac{1 - |z'_n|}{(\log \frac{1}{1-|z'_n|})^{1+\varepsilon}} < \infty, \quad \forall \varepsilon > 0.
\]

On the other hand there are Blaschke products \(B \) such that \(\sum 1 - |z'_n| = \infty \) (see, e.g., [13]).

A Blaschke–type condition for zeros of functions from \(\mathcal{A}(E, \rho) \) is given in a recent paper [6]. To present its main result we define, following P. Ahern and D. Clark [4, p.113], the type \(\beta(E) \) of a closed subset \(E \) of the unit circle as

\[
\beta(E) := \sup\{\beta \in \mathbb{R} : |E_x| = O(x^\beta), \ x \to 0\},
\]

where \(E_x := \{t \in \mathbb{T} : d(t, E) < x\} \), \(x > 0 \), is an \(x \)-neighborhood of \(E \), \(|E_x| \) its normalized Lebesgue measure. For the equivalent definition and properties of the type see also [6, 7].
Theorem 3. Given a closed set \(E \subset \mathbb{T} \) and a Blaschke product \(B \), assume that \(Z(B) \subset S_\phi(E, K) \), \(\phi(x) = \exp\{-x^{-\rho}\}, \rho > 0 \). Then

\[
\sum_{n=1}^{\infty} (1 - |z_n'|) d(\rho - \beta(E) + \epsilon)_+(z_n', E) < \infty, \quad \forall \epsilon > 0,
\]

\(\beta(E) \) is the type of \(E \), \((a)_+ = \max(a, 0) \).

It is clear that \(\beta(E) = 1 \) for each finite set \(E \).

Corollary 4. Let \(Z(B) \subset S_\phi(t, K) \) with the same \(\phi \). Then

\[
\sum_{n=1}^{\infty} (1 - |z_n'|) |t - z_n'|^{(\rho-1+\epsilon)_+} < \infty, \quad \forall \epsilon > 0.
\]

The authors thank the referee for a number of comments that improved the paper write-up.

2. Main results

A model function \(\phi \) is nonnegative and increasing, so for all \(x, y, u \geq 0 \)

\[
\phi \left(\frac{x + y + u}{3} \right) \leq \phi(x) + \phi(y) + \phi(u).
\]

(6)

We begin with the following result, which is similar to Vinogradov’s lemma from [16].

Lemma 5. Let \(z \in \mathcal{D}, t \in \mathbb{T} \) and \(\lambda \in S(t, K) \). Then

\[
\frac{1}{|1 - \lambda z|} \phi \left(\frac{|t - z|\lambda|}{3} \right) \leq 2C + K.
\]

(7)

Proof. With no loss of generality we assume that \(t = 1 \). Since

\[
|1 - z|\lambda| = |1 - \lambda z + z(\lambda - |\lambda|)| \leq |1 - \lambda z| + |\lambda - |\lambda||
\]

\[
\leq |1 - \lambda z| + (1 - |\lambda|) + |1 - \lambda|,
\]

then by (6)

\[
\phi \left(\frac{|1 - z|\lambda|}{3} \right) \leq \phi(|1 - \lambda z|) + \phi(1 - |\lambda|) + \phi(|1 - \lambda|),
\]

so

\[
\frac{1}{|1 - \lambda z|} \phi \left(\frac{|1 - z|\lambda|}{3} \right) \leq A_1 + A_2 + A_3.
\]

By (3), for the first two terms we have

\[
A_1 = \frac{\phi(|1 - \lambda z|)}{|1 - \lambda z|} \leq C, \quad A_2 \leq \frac{\phi(1 - |\lambda|)}{1 - |\lambda|} \leq C.
\]

As for the third one,

\[
A_3 \leq \frac{\phi(|1 - \lambda|)}{1 - |\lambda|} \leq K
\]

according to the assumption \(\lambda \in S(1, K) \). The proof is complete.
Our main result gives a bound for the derivative B' in the case when the zero set $Z = Z(B) \subset S(E, K)$.

Proof of Theorem 1. Denote $Z(t) := Z \cap S(t, K), t \in E$. Then there is an at most countable set $\{t_k\}_{k=1}^{\omega}, \omega \leq \infty, t_k \in E$, so that $z_k \in Z(t_k)$, and $Z = \bigcup_k Z(t_k)$. It is clear that there is a disjoint decomposition

$$Z = \bigcup_k Z_k, \quad Z_k \neq \emptyset, \quad Z_k \subset Z(t_k), \quad Z_j \cap Z_k = \emptyset, \quad j \neq k.$$

Let us label the set Z in such a way that

$$Z = \{z_{kj}\}, \quad k = 1, 2, \ldots, \omega, \quad j = 1, 2, \ldots, \omega_k, \quad \{z_{kj}\}_{j=1}^{\omega_k} \subset Z_k.$$

We proceed with the expression

$$B'(z) = \sum_{j=1}^{\infty} b'_n(z)B_n(z), \quad B_n(z) = \frac{B(z)}{b_n(z)},$$

so

$$|B'(z)| \leq \sum_{n=1}^{\infty} \frac{1 - |z_n|^2}{|1 - z_n z|^2} |B_n(z)| \leq \sum_{n=1}^{\infty} \frac{1 - |z_n|^2}{|1 - z_n z|^2} = \sum_{k=1}^{\omega} \sum_{j=1}^{\omega_k} \frac{1 - |z_{kj}|^2}{|1 - z_{kj} z|^2}.$$

Note that $|t - z| \leq 2|t - z|\lambda|$ for all $z, \lambda \in \mathbb{D}$ and $t \in \mathbb{T}$. Indeed,

$$|t - z|\lambda| \geq 1 - |z\lambda| \geq 1 - |\lambda|$$

and

$$|t - z| \leq |t - z|\lambda| + |z|(1 - |\lambda|) \leq 2|t - z|\lambda|,$$

as claimed. Hence

$$\phi \left(\frac{|t - z|}{6} \right) \leq \phi \left(\frac{|t - z|\lambda|}{3} \right),$$

and by (7)

$$\phi^2 \left(\frac{d(z, E)}{6} \right) |B'(z)| \leq \sum_{k=1}^{\omega} \sum_{j=1}^{\omega_k} \frac{1 - |z_{kj}|^2}{|1 - z_{kj} z|^2} \phi^2 \left(\frac{|t_k - z|}{6} \right)
\leq \sum_{k=1}^{\omega} \sum_{j=1}^{\omega_k} \frac{1 - |z_{kj}|^2}{|1 - z_{kj} z|^2} \phi^2 \left(\frac{|t_k - z| |z_{kj}|}{3} \right)
\leq 2(2C + K)^2 \sum_{n=1}^{\infty} (1 - |z_n|),$$

which is (5). The proof is complete.

Theorem 3 is a direct consequence of Theorem 1 and [6, Theorem 3].
References

[1] P. Ahern, The mean modulus of the derivative of an inner function, Indiana Univ. Math. J., 28 (1979), 311–347.
[2] P. Ahern, The Poisson integral of a singular measure, Can. J. Math. 35 (1983), 735–749.
[3] P. Ahern and D. Clark, On inner functions with H^p derivatives, Michigan Math. J., 21 (1974), 115–127.
[4] P. Ahern and D. Clark, On inner functions with B^p derivatives, Michigan Math. J., 23 (1976), 107–118.
[5] G. Cargo, Angular and tangential limits of Blaschke products and their successive derivatives, Canad. J. Math., 14 (1962), 334–348.
[6] S. Favorov and L. Golinskii, A Blaschke-type condition for analytic and subharmonic functions and application to contraction operators, Amer. Math. Soc. Transl., 226 (2) (2009), 37–47.
[7] S. Favorov and L. Golinskii, Blaschke-type conditions for analytic functions in the unit disk: inverse problems and local analogs, preprint arXive:1007.3020v1 [math.CV] 18 Jul 2010.
[8] D. Girela and J. Peláes, On the membership in Bergman spaces of the derivative of a Blaschke product with zeros in a Stolz domain, Canad. Math. Bull., 49 (3) (2006), 381–388.
[9] D. Girela, J. Peláes, and D. Vucotić, Integrability of the derivative of a Blaschke product, Proc. Edinburgh Math. Soc., 50 (2007), 673–687.
[10] D. Girela, J. Peláes, and D. Vucotić, Interpolating Blaschke products: Stolz and tangential approach regions, Constr. Approx., 27 (2008), 203–216.
[11] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces. Graduate Texts in Mathematics, vol. 199. Springer-Verlag, New York, 2000.
[12] J. Mashreghi and M. Shabankhah, Integral means of the logarithmic derivative of Blaschke products, Comp. Meth. Func. Theory, 9 (2) (2009), 421–433.
[13] Ch. Pommerenke, On the Green’s function of Fuchsian groups, Ann. Acad. Sci. Fenn., 2 (1976), 409–427.
[14] D. Protas, Blaschke products with derivative in H^p and B^p, Michigan Math. J., 20 (1973), 393–396.
[15] D. Protas, Blaschke products with derivatives in function spaces, preprint arXive:1001.5098v2 [math.CV] 10 Jun 2010.
[16] S. A. Vinogradov, Multiplication and division in the space of analytic functions with area integrable derivative, and some related spaces, Zap. Nauchn. Semin. POMI, 222 (1994), 45–77. (Russian)

Mathematical School, Kharkov National University, 4 Svobody sq., Kharkov 61077, Ukraine
E-mail address: Sergey.Ju.Favorov@univer.kharkov.ua

Mathematics Division, Institute for Low Temperature Physics and Engineering, 47 Lenin ave., Kharkov 61103, Ukraine
E-mail address: leonid.golinskii@gmail.com