Linkage Map of *Escherichia coli* K-12, Edition 6†

Barbara J. Bachmann* and K. Brooks Low

Department of Human Genetics and Radiobiology Laboratories, Yale University School of Medicine, New Haven, Connecticut 06510

INTRODUCTION

The rate at which genetic loci are being placed on the linkage map of *Escherichia coli* strain K-12 continues unabated. Over 300 new loci have been added since the 1976 edition of the map (24), bringing the total number of loci listed in Table 1 of this review to almost 1,000. The continued progress in understanding the structure of the genome of this bacterium is even more impressive in view of the technical difficulties involved in mapping many of the newly added loci. A large proportion of the loci added to this and the previous edition of the map are those of essential genes coding for components of the complex machinery required for translation, transcription, and chromosome replication. Another major category among recently identified genetic elements has come from studies at the molecular level of the sequences controlling transcription. Many of these accomplishments were achieved through the use of radically new techniques of mapping, which have permitted the precise determination of many map distances in kilobases. Knowledge of the *E. coli* genome has thus moved to new levels of complexity and precision. A list of the mapping techniques now available is presented in Table 3.

The naming of the genetic elements involved in the control of transcription has presented problems which we feel call for a modification of the accepted system of nomenclature. The modifications adopted in this revision of the map are discussed below. These transcriptional control elements no longer appear on the drawing of the linkage map (see Fig. 1) but are included in the list of genetic markers (see Table 1).

This review is based on a survey of the literature published from July 1975 through June 1979 and on personal communications of mapping data. Some of the latter data have been published since we received them; references to these publications have been included when possible. In some cases in which several papers from the same laboratory described work on the mapping of the same loci, we have referred to only the latest paper. We have not included review articles unless they presented original data. The number of papers cited in this review is close to the total number cited in previous editions of the map. It was therefore impractical to include the earlier references in this edition. The letter A in Table 1 refers the reader to the 1976 edition of the map (24), in which the earlier papers are cited.

The major coordinates of the map are still determined by time-of-entry data, as at least two gaps remain in the cotransduction data for the entire linkage group. So far, only about 15% of the map has been covered by physical mapping data. The precision with which map distances are known thus varies from ± a few kilobases (or base pairs) for some physical mapping to ± a few tenths of a minute for some markers mapped by cotransduction to cases in which a marker has been localized only to a 5- to 10-min segment of the map by conjugation or other less-precise methods. In Fig. 1, markers that have not been ordered with respect to surrounding markers are indicated by an asterisk. Loci mapped only approximately by imprecise methods are shown in parentheses, usually near the center of the region to which they have been localized. We were not able to represent map distances of a few kilobases accurately in Fig. 1, as the scale of the map drawing was not suitable for this.

We wish to emphasize strongly here that this review is intended to provide easy access to the original research papers, not to eliminate the necessity of consulting them. The positions shown for many loci in Fig. 1 are estimates...
based on analyses of widely varying or even contradictory data. It seems worth pointing out that a marker mapped on the basis of a low frequency of cotransduction with a second marker, and not oriented by three-factor crosses or other means, could be shown in Fig. 1 as much as 4 min away from its proper position, to take the worst possible case as an example.

NOMENCLATURE

The system of nomenclature proposed by Demerec et al. (127a) has served well for the naming of genetic loci and the unambiguous designation of mutant alleles over the past 13 years. It seems worthwhile preserving this valuable system. The genes coding for ribosomal proteins were successfully accommodated in this system in an orderly manner that made their symbols easy to determine and to remember. In this revision, the ribosomal ribonucleic acid (rRNA) genes are named as recommended by Nomura et al. (448b). We have retained on the map drawing the symbols rRNA, rRN, etc., for the rRNA operons, as these informal names appear to be very useful. The rRNA genes within these operons are given the symbols rrs (16S rRNA), rrl (23S rRNA), and rrf (5S rRNA). Contrary to the suggestion of the authors mentioned above, we have designated the transfer RNA (tRNA) genes within the rRNA operons in the customary manner: three letters symbolizing the amino acid, followed by T, U, V, etc. The symbols designating genes coding for flagellar components now number more than 26; following the precedent set in naming the genes coding for the proteins of the large ribosomal subunit, the flagellar genes have been given the symbols flaA through flaZ, followed by flbA, flbB, etc.

Around 8% of the loci listed in Table 1 are sequences controlling transcription: operators, promoters, leaders, attenuators, etc. Only 3% of the loci on the 1976 map were of this class. The number of such elements identified can be expected to increase greatly in the near future. If these sequences were to be designated according to the system of Demerec et al., new gene symbols would have to be invented for a number of them. This would make the nomenclature very cumbersome and lessen the value of the mononics, especially in those cases in which there are many loci with the same gene symbol, e.g., the ribosomal protein genes, the rRNA genes, the flagellar genes, the pyrimidine genes, etc. It seems likely that before long a system will be devised for designating the control sequences precisely in molecular terms. In the meantime, it is necessary to have a method for designating mutations in these sequences. For this reason, we have devised a system for designating these elements by a modification of the Demerec et al. system. This solution was reached in consultation with the members of the Advisory Committee to the Escherichia coli Genetic StockCenter: A. J. Clark (University of California, Berkeley), P. E. Hartman (Johns Hopkins University, Baltimore), K. E. Sanderson (University of California, Calgary, Calgary), and A. L. Taylor (University of Colorado Medical Center, Denver).

In Table 1 the transcriptional control elements for an operon are designated by appending a lower case (italicized) letter to the (italized) gene symbols of the nearest loci controlled. In the case of operators, promoters, leaders, attenuators, and initiators, the designation of the nearest gene downstream is used. Thus, for operon abcDEF, in which abcD is the first gene transcribed, these symbols would be abcDo (operator), abcDp (promoter), abcDl (leader), abcDa (attenuator), and abcDi (initiator). The terminator of transcription of this operon would be designated abcFl, using the designation of the nearest gene upstream from the terminator. The naming of mutations in spacer sequences can be accommodated in the same manner by appending an "s" to the designation of the first gene downstream from the spacer sequence.

In the case of tandem dual operators and promoters affecting transcription of the same genes, numbers can be inserted into these designations in such a manner that they will not be confused with mutant allele numbers, e.g., deoClp and deoC2p, as shown in Table 1 for the deo operon. In the case of operons transcribed divergently from overlapping control regions, separate designations have been given to the elements controlling transcription in the two directions on a functional basis, even though involved naming the same sequence of deoxyribonucleic acid (DNA) twice, e.g., argEO and argEp and argCo and argCp in the argECB operon as shown in Table 1. The transcriptional control elements are not shown on the drawing of the genetic map (Fig. 1) but are listed in Table 1.

As in the 1976 edition of the map, we have attempted to reconcile differences in the genetic nomenclature used for E. coli with that used for the closely related organism Salmonella typhimurium. The degree of homology reflected in the linkage maps of these two organisms is discussed in the most recent edition of the linkage map of S. typhimurium (535), and the genetic relatedness of the members of the family Enterobacteriaceae as a whole is the subject of a recent review (534).

To bring the nomenclature for E. coli in line
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
aat	Aminoacyl-tRNA-protein transferase (EC 2.3.2.6)	(54)		113, 580
aceA	Acetate	90	icl; utilization of acetate; isocitrate lyase (EC 4.1.3.1)	A
aceB	Acetate	90	mas; utilization of acetate; malate synthase A (EC 4.1.3.2)	A
aceE	Acetate	3	aceE; acetate requirement; pyruvate dehydrogenase (decarboxylase component)	A, 345
aceF	Acetate	3	aceE2; acetate requirement; pyruvate dehydrogenase (dihydrolipoyltransacetylase component)	A, 345
ack	Aminoacyl-tRNA-protein transferase (EC 2.3.2.6)	49	Aminoacyl-tRNA-protein transferase (EC 2.3.2.6)	A
acrA	Acridine	10	Mbt, mbl, mtr; sensitivity to acriflavin, phenethyl alcohol, sodium dodecyl sulfate	A
add	Adenine	36	Adenine deaminase (EC 3.5.4.4)	291, 92
adh	Adenine	27	Levels of alcohol dehydrogenase and nitrate reductase activity	A, 200, 508
adk	Adenine	11	plSA; adenylate kinase (EC 2.7.4.3) activity; pleiotropic effects on glycerol-3-phosphate acyltransferase activity	A, 200, 508
alaS	Alanine	58	ala-act; alanin-tRNA synthetase (EC 6.1.1.7)	A, 404, 619
alaT	Alanine	86	tala; alanine tRNA1B; in rnaA operon	268, 424
alaU	Alanine	70	talD; alanine tRNA1B; in rnaD operon	268, 424, 688
alkB	Alkaline	43	Sensitivity to alkylating agents	678
alnA	Alanine	1	dad; D-alanine dehydrogenase	A, 170
alnR	Alanine	99	Regulatory gene	A
alc	Alanine	92	Alanine racemase (EC 5.1.1.1)	A
ampA	Ampicillin	94	Penicillin resistance; possibly operator or promoter sequence for ampC	A, 449, 450
ampC	Ampicillin	94	Resistance to penicillin; penicillinase structural gene (EC 3.5.2.6)	A, 449, 450
ana	Alanine	27	Reoxidation of reduced pyridine nucleotides	36, 79
apt	Alanine	10	Adenine phosphoribosyltransferase (EC 2.4.2.7)	316, 317
araA	Arabinose	1	L-Arabinose isomerase (EC 5.3.1.4)	A, 302
araB	Arabinose	1	Ribulokinase (EC 2.7.1.16)	A, 302, 356
araBi	Arabinose	1	araI; initiator sequence	A, 98, 574
araBo	Arabinose	1	araG; operator sequence for araBAD	A, 543, 574
araBp	Arabinose	1	Promoter sequence for araBAD	202, 207, 574
araC	Arabinose	1	Regulatory gene; activator and repressor protein	A, 76, 302, 442
araCo	Arabinose	1	Operator sequence for araC	76, 574
araCp	Arabinose	1	Promoter sequence for araC	253, 574
araD	Arabinose	1	L-Ribulosephosphate 4-epimerase (EC 5.1.3.4)	A, 302
araE	Arabinose	61	L-Arabinose permease	A
araF	Arabinose	45	L-Arabinose periplasmic binding protein	506, M
argA	Arginine	60	argB, ArgI, ArgZ; amino acid acetyltransferase (EC 2.3.1.1)	A, 145
argA0	Arginine	60	Operator sequence for argA	145
argB	Arginine	89	argC; acetylglutamate kinase (EC 2.7.2.8)	A, 56, 84, 110, 398
argC	Arginine	89	argH, Arg2; N-acetyl-g-glutamyl-phosphate reductase (EC 1.2.1.38)	A, 56, 84, 110, 398
argCo	Arginine	89	Operator sequence for argCBH	56, 61, 84, 110, 398
argCp	Arginine	89	Promoter sequence for argCBH	56, 61, 84, 110, 398
argD	Arginine	73	argG, ArgJ; acetylornithine aminotransferase (EC 2.6.1.11)	A
argE	Arginine	89	argA, Arg4; acetylornithine deacetylase (EC 5.1.1.16)	A, 56, 84, 110, 398
argEo	Arginine	89	Operator sequence for argE	56, 61, 84, 110, 398
argEp	Arginine	89	Promoter sequence for argE	56, 61, 84, 110, 398
argF	Arginine	6	argF, Arg5; ornithine carbamoyltransferase (EC 2.1.3.3) (duplicate gene)	A, 94, 309, 310, 358, 553
argG	Arginine	68	argE, Arg6; argininosuccinate synthetase (EC 6.3.4.5)	A
argH	Arginine	89	argF, Arg7; argininosuccinate lyase (EC 4.3.2.1)	A, 56, 84, 110, 398
argHp	Arginine	89	Secondary promoter sequence for argH	56, 84, 110, 398
argI	Arginine	96	Ornithine carbamoyltransferase (EC 2.1.3.3) (duplicate gene)	A, 94, 309, 310, 358, 553
argP	Arginine	62	Transport of arginine, ornithine, and lysine	A
argR	Arginine	70	ArgR; regulatory gene	A
argS	Arginine	(40)	Arginyl-tRNA synthetase (EC 6.1.1.19)	A
aroA	Aromatic	20	3-Enolpyruvylshikimate-5-phosphate synthetase	A
aroB	Aromatic	74	Dehydroquinate synthetase	A
Table 1—Continued

Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
aroC	Aromatic	50	Chorismate synthetase	A
aroD	Aromatic	37	5-Dehydroquinase dehydratase (EC 4.2.1.10)	A
aroE	Aromatic	72	Dehydroshikimate reductase	A
aroF	Aromatic	56	DAHP synthetase (tyrosine repressible)	A
aroFo	Aromatic	56	*aroK*, operon sequence for *aroF*/*tyrA*	A
aroG	Aromatic	17	DAHP synthetase (phenylalanine repressible)	A
aroH	Aromatic	37	DAHP synthetase (tryptophan repressible)	A
aroHo	Aromatic	37	*aroJ*, operon sequence for *aroH*	A
aroI		83	Function unknown	A
aroL	Aromatic	(10)	Shikimate kinase II (EC 2.7.1.71)	148
aroP	Aromatic	3	General aromatic amino acid transport	A
aroT	Aromatic	27	*aroR*, *trpP*; transport of aromatic amino acids, alanine, and glycine	A, 265
asd		75	*dap* + *hom*; aspartate semialdehyde dehydrogenase (EC 1.2.1.11)	A
asnA	Asparagine	84	Asparagine synthetase A (EC 6.3.1.1)	A, 159, 264, 414, 462
asnB	Asparagine	15	Asparagine synthetase B (EC 6.3.1.1)	159, 264, 462
asnS	Asparagine	21	*lcr*; asparaginyl-tRNA synthetase	455, 676
asnT	Asparagine	(43)	*Asn* T; asparagine tRNA synthetase	269
aspA	Aspartate	94	Aspartate ammonia-lyase (aspartase) (EC 4.3.1.1)	A, 217, 583
aspC	Aspartate	20	Aspartate aminotransferase (EC 2.6.1.1)	190, 191
ast	Aspartate	84	*tasC*; aspartate tRNA1; in *rrnC* operon	268, 423, 424, 425
attA		47	Acetate CoA-transferase (EC 2.8.3.-.)	A
attB	Acetoacetate	47	Acetyl-CoA acetyltransferase (EC 2.3.1.9)	A
attC	Acetate	47	Regulatory gene	A
attP	Attachment	17	Integration site for prophage *λ*	A, 122, 457
attP2H	Attachment	43	Phage P2 integration site H	A
attP2II	Attachment	86	Phage P2 integration site II	A
attP22	Attachment	6	*ata*; integration site for prophage P22	A
attPA-2	Attachment	50	Integration site for phage PA-2	493
attP90	Attachment	27	Integration site for prophage *φ80*	A, 489
attR2	Attachment	17	Integration site for prophage *ρ2*	A
attR186	Attachment	57	Integration site for prophage 186	A
attR434	Attachment	17	Integration site for prophage 434	A
azi	Azide	2	*pea*; resistance or sensitivity to sodium azide or phenethyl alcohol; filament formation at 42°C	A
azl	Azaleucine	55	Regulation of *ilv* and *lev* genes; azaleucine resistance	A
bfr		84	Phage BP23 multiplication	A
bgI	β-Glucoside	83	*bgID*; phospho-β-glucosidase A	A, 223
bgIB	β-Glucoside	83	*bgIA*; phospho-β-glucosidase B	A, 223, 414, 642, 462
bgI	β-Glucoside	83	*bgIB*; β-glucoside transport	A, 414
bgIR	β-Glucoside	83	*bgIB*, *bgIC*; regulatory gene	A, 414
bgIS	β-Glucoside	83	*bgIC*; regulatory gene	A
bgIT	β-Glucoside	84	*bgIE*; regulatory gene for phospho-β-glucosidase A synthesis	A
bioA	Biotin	17	Group II; 7KAP→DAPA	A, 117, 608
bioA0	Biotin	17	Operator sequence for *bioA*	116, 117, 306, 462, 490, 608
bioAp	Biotin	17	Promoter sequence for *bioA*	116, 117, 306, 462, 608
bioB	Biotin	17	Conversion of dethiobiotin to biotin	A, 117, 608
bioBo	Biotin	17	*bioO*; operator sequence for *bioBFCD*	116, 117, 306, 462, 490, 608
bioBp	Biotin	17	*bioP*; promoter sequence for *bioBFCD*	116, 117, 306, 462, 608
bioC	Biotin	17	Block before pimeloyl CoA	A, 117, 608
bioD	Biotin	17	Dethiobiotin synthetase	A, 117, 608
bioE	Biotin	17	Pimeloyl CoA→7KAP	A, 117, 608
bioH	Biotin	74	*bioB*; block before pimeloyl CoA	A
bioR	Biotin	89	*dhbB*; regulatory gene	A, 468
bir	Biotin retention	89	Biotin uptake, retention, and regulation	A, 468
bioA	Biotin sulfoxide	17	Reduction of biotin-d-sulfoxide; may be *chlA*	95, 144
bioA	Biotin sulfoxide	18	Reduction of biotin-d-sulfoxide; may be *chlE*	95, 144
bioC	Biotin sulfoxide	79	Reduction of biotin-d-sulfoxide	95, 144
bioD	Biotin sulfoxide	0	Reduction of biotin-d-sulfoxide; may be *chIG*	95, 144
brnQ	Branched chain	9	Transport system 1 for isoleucine, leucine, and valine	A, 62, 679
Table 1—Continued

Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References*
brnR	Branched chain	8	Component of transport systems 1 and 2 for isoleucine, leucine, and valine	A
brnS	Branched chain	1	Transport system for isoleucine, leucine, and valine	A
brnT	Branched chain	62	Low-affinity transport system for isoleucine	265
btaB	B12 uptake	89	btaB, tnaA; epr, receptor for vitamin B12, E. coli, and bacteriophage BFP23	A, 53, 56, 57, 84, 270, 398
btaC	B12 uptake	37	Vitamin B12 transport	33
bymA	(93)	Bypass of maltose permease at malB	A	
can	Canavanine	62	Canavanine resistance	A
capS	Capsule	(24)	Regulation of galU and of capsular polysaccharide synthesis	A
carA	1	arg + ura, cap, pyrA; carbamoylphosphate synthase (EC 2.7.2.9), glutamine (light) subunit	A	
carB	1	arg + ura, cap, pyrA; carbamoylphosphate synthase (EC 2.7.2.9), ammonia (heavy) subunit	A	
cct	16	Uptake of carboxylic acids	A	
cca	66	tRNA nucleotidyl transferase	A	
cdd	(49)	Deoxycytidine deaminase (EC 3.5.4.5)	A, 179, 547	
cet	Colicin E2	(100)	ref, refII, tolerance to colicin E2	A
cheA	Chemotaxis	42	Chemotactic response	A, 397, 476, 477, 569
cheB	Chemotaxis	42	Chemotactic response; protein methylesterase activity	A, 235, 397, 476, 477, 569, 597
cheD	Chemotaxis	See tsr		
cheM	Chemotaxis	See tar		
cheW	Chemotaxis	42	Chemotactic response	397, 477, 569
cheX	Chemotaxis	42	Chemotactic response; protein methyltransferase activity	206, 397, 477, 569, 597
cheY	Chemotaxis	42	Chemotactic response	397, 477, 569
cheZ	Chemotaxis	42	Chemotactic response	235, 397, 477, 569, 570
chIA	Chlorate	17	narA; nitrate reductase and formate dehydrogenase activity; molybdenum-containing factor	A, 381
chIB	Chlorate	86	narB; nitrate reductase and formate dehydrogenase activity; molybdenum-containing factor	A, 78, 305, 381
chIC	Chlorate	27	narC; nitrate reductase (EC 1.7.99.4) A- (<a>), subunit, structural gene	A, 128, 381
chID	Chlorate	17	narD; nitrate reductase and formate dehydrogenase activity; insertion of molybdenum-containing factor	A, 584
chIE	Chlorate	18	narE; nitrate reductase (EC 1.7.99.4) C- (<gamma>), subunit, cytochrome b1	A, 381
chIF	Chlorate	(27)	Formate dehydrogenase (EC 1.2.2.1) structural gene	A
chIG	Chlorate	0	Nitrate reductase and formate dehydrogenase activity	A
cir	Colicin I resistance	44	fuaA; production of colicin I receptor affected	A, 120, 494, 582
cls	27	Cardiolipin synthase activity	485	
cmIA	Chloramphenicol	18	Resistance or sensitivity to chloramphenicol	A
codA	8	Cytosine deaminase (EC 3.5.4.1)	A	
codB	8	Cytosine transport	A	
corA	Cobalt resistance	85	Mg⁺⁺ transport, system I	473
corB	Cobalt resistance	96	Mg⁺⁺ transport, system I	473
crp	73	cap; cyclic AMP receptor protein	A	
crr	52	Catabolite repression resistance	297, 523	
cxt	6	ccr; methylglyoxal synthesis	A, 310	
cya	84	Adenylate cyclase (EC 4.6.1.1)	A, 559	
cycA	Cycloserine	95	dagA; resistance to d-cycloserine and d-serine; transport of d-alanine, d-serine, and glycine	A, 284
cysA	Cysteine	52	Sulfate permease; chromate resistance	A, 204, 303
cysB	Cysteine	28	Regulatory gene for cysteine biosynthesis	A, 162, 628
cysC	Cysteine	59	Adenylylsulfate kinase (EC 2.7.1.25)	A
cysD	59	Sulfate adenylyltransferase (EC 2.7.7.4)	A	
cysE	Cysteine	80	Serine acetyltransferase (EC 2.3.1.30)	A, 91
cysG	Cysteine	73	Sulfite reductase activity	A
cysH	Cysteine	59	Adenylylsulfate reductase (EC 1.8.99.2)	A
cysI	Cysteine	59	cysQ; sulfite reductase activity	A
cysJ	Cysteine	59	cysP; sulfite reductase activity	A
cysK	Cysteine	52	Cysteine synthetase (EC 4.2.99.3)	161
cysR	88	Regulatory gene for deo operon, udp, and cdd	A, 630	
dacA	14	d-Alanine carboxypeptidase, fraction A; penicillin-binding protein 5	396, 602, W	

References: *A, 27; A, 120; A, 297, 305, 473; A, 397, 476, 477, 569; A, 584; A, 78, 305, 381; A, 128, 381; A, 310; A, 204, 303; A, 162, 628; A; A; A; A; A; A, 120, 494, 582; 485; 473; 297, 523; A, 310; A, 284; A, 204, 303; A, 162, 628; A; A; A; A, 120, 494, 582; 485; 473; 297, 523; A, 310; A, 284; A; A; A; A; A; A; A; A.
Table 1—Continued

Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
dacB	d-Alanine carboxypeptidase, fraction B; penicillin-binding protein 4	69	395, 502	A, 28, 288
dadR	Regulatory gene for d-amino acid deaminases	26		A, 571
dam	DNA adenine methylation	74		A, 28, 388
dapA	Diaminopimelate	53		A
dapB	Diaminopimelate	0		A
dapC	Diaminopimelate	3		A
dapD	Diaminopimelate	4		A
dapE	Diaminopimelate	53		A
dcd	(45) 2'-Deoxyctydine 5'-triphosphate deaminase (EC 3.5.4.-) activity		179, 444a	A
dcm	mec; DNA cytosine methylation	43		A, 28
dcp	Dipeptidyl carboxypeptidase			134
dctA	Uptake of C, dicarboxylic acids	79		A
dctB	Uptake of C, dicarboxylic acids	16		A
ddi	d-Alanine:d-alanine ligase	2		A, 164
del	Frequency of IS1-mediated deletion	61		445
deoA	Deoxyribose	99		A, 6, 300
deoB	Deoxyribose	99		A, 6, 300
deoBo	OP3; operator sequence for deoBD, regulator unknown	99		6, 69, 70
deoBp	P3; promoter sequence for deoBD	99		6, 69, 70
deoC	Deoxyribose	94		6, 300
deoCl	cytO; operator sequence for deoCABD regulated by cytR	99		6, 300
deoC2o	deoO; operator sequence for deoCABD regulated by deoR	99		6, 300
deoC1p	cytP; promoter sequence for deoCABD	99		6, 300
deoC2p	deoP; promoter sequence for deoCABD	99		6, 300
deoD	ppu; purine-nucleoside phosphorylase (EC 2.4.2.1)	99		A, 6, 300
deoDp	P5; promoter sequence for deoD	99		70
deoR	NucR; regulatory gene for deo operon	18		A, 630
dgd	d-Galactose dehydrogenase production	69		A
dgk	D-galactonate	91		502
dgoA	d-Galactonate	82		102
dgoD	Galactonate dehydratase (EC 4.2.1.6)	82		102
dgoK	2-Oxo-3-deoxygalactonate 6-phosphate aldolase (EC 4.1.2.21)	82		102
dgoR	Regulatory gene	82		102
dgoT	Galactonate transport	82		102
divE	Membrane protein biosynthesis	22		539
dnaA	DNA biosynthesis; initiation and chain elongation	82		A, 2, 233, 338, 419
dnaB	exB, groP, grpA; DNA biosynthesis; chain elongation	91		A, 408, 527, 541, 654, 696, R
dnaC	dnaD; DNA biosynthesis; initiation and chain elongation	99		A
dnaE	4polC; DNA biosynthesis; DNA polymerase III component; mutator activity	4		A, 261, 325
dnaG	DNA biosynthesis; primase	66		A, 87, 521
dnaI	DNA biosynthesis	39		A
dnaJ	DNA biosynthesis; primase	39		A
dnaK	groPAB, groPC; DNA biosynthesis	0		527, 528, 601, 684
dnaL	DNA biosynthesis; DNA biosynthesis	28		
dnaM	DNA biosynthesis; initiation	85		A
dnaQ	Mutator activity and DNA biosynthesis; may be mutD	5		261
dnaT	DNA biosynthesis; termination	99		346
dnaW	DNA biosynthesis	10		50
dnaX	DNA biosynthesis	10		248
dnaY	DNA biosynthesis	10		248
dnaZ	DNA biosynthesis; DNA elongation factor II	10		A, 653, 655
dpp	Transport of dipeptides	(13)		A, L
dsdA	d-Serine deaminase	50		A, 238
dsdAi	Initiator sequence for dsdA	50		238
dsdAo	Operator sequence for dsdA	50		238
dsdC	Regulatory gene for dsdA	51		A
dsi	dUTPase			
dso	Resistance or sensitivity to methylene blue	100		A, 8, 255, 629

References:
- A: 87, 521, 28, 288, 419, 654, 696, R
- B: 408, 527, 541, 654, 696, R
- C: 195, 527, 528, 684
- D: 527, 528, 601, 684
- E: 527, 528, 684
- F: 554
- G: 669
- H: 346
- I: 539
- J: 261
- K: 541
- L: 325
- M: 653, 655
- N: 261
- O: 346
- P: 28, 288
- Q: 654
- R: 261
- S: 346
- T: 28, 288
- U: 654
- V: 696
- W: 261
- X: 325
- Y: 653, 655
- Z: 238
Table 1—Continued

Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
ebgA		67	Second β-galactosidase activity appears as result of mutations	A, 20, 220
ebgR		67	Regulatory gene	220
ecFA		65	Pleiotropic effects on active transport coupling to metabolic energy; may be metC	364, 365, 626
ecFB		87	Generalized resistance to aminoglycoside antibiotics; coupling of metabolic energy to active transport	624
edA		41	kdgA, kga; 2-keto-3-deoxyglucuronic 6-phosphate aldolase (EC 4.1.2.14)	A
fend		41	Phosphogluconate dehydrogenase (EC 4.2.1.12)	A
endA		63	DNA-specific endonuclease I	665
eno		59	Enolase (EC 4.2.1.11)	A, 278
entA	Enterochelin	13	2,3-Dihydro-2,3-dihydroxybenzolate dehydrogenase	A, 662, O
entB	Enterochelin	13	2,3-Dihydro-2,3-dihydroxybenzolate synthetase	A, 662, O
entC	Enterochelin	13	Isocitrate synthetase	A, O
entD	Enterochelin	13	Enterochelin synthetase, component D	A, 208
entE	Enterochelin	13	Enterochelin synthetase, component E	A, 208, 663, O
entF	Enterochelin	13	Enterochelin synthetase, component F	A, 208, 663
entG	Enterochelin	13	Enterochelin synthetase, component G	208, 662, O
envA	Envelope	2	Anomalous cell division; chain formation	A, 286, 451, 656
envB	Envelope	70	mon, rodY; anomalous formation of spheroidal cells	A, 286, 374
envC	Envelope	80	Anomalous cell division; chain formation	A
envM	Envelope	28	Osmotically remedial envelope defect	A
envN	Envelope	(4)	Osmotically remedial envelope defect	A
envP	Envelope	90	Osmotically remedial envelope defect	A
envQ	Envelope	57	Osmotically remedial envelope defect	A
envT	Envelope	(14)	Osmotically remedial envelope defect	A
eryC	Erythromycin	83	Erythromycin resistance; ribosome assembly	471, 472
esp		17	Site for efficient packaging of phage T1	141
exbB		64	Uptake of enterochelin; resistance to sensitivity to colicins	A, 120, 495
exbC		58	Uptake of enterochelin; resistance to sensitivity to colicins	495
exuR		67	Regulatory gene for uxaA, uxaB, uxaC, and exuT	393, 443
exuT		67	Transport of hexuronates	393, 443
fabA	Fatty acid biosynthesis	22	β-Hydroxydecanoylthioester dehydrogenase (EC 4.2.1.60)	A
fabB	Fatty acid biosynthesis	50	fabC; β-ketoacyl-acyl carrier protein synthase I (EC 2.3.1.41)	A, 91, 110a
fabD	Fatty acid biosynthesis	25	Malonyl-CoA-acyl carrier protein transacylase (EC 2.3.1.39)	A
fabE	Fatty acid biosynthesis	71	Acetyl-CoA carboxylase (EC 6.4.1.2)	563
fabF	Fatty acid biosynthesis	25	β-Ketoacyl-acyl carrier protein synthase II (EC 2.3.1.14)	J
fabA	Fatty acid degradation	86	oldA; thiolase I (EC 2.3.1.16)	A
fabB	Fatty acid degradation	86	oldB; 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35)	A
fabD	Fatty acid degradation	40	oldD; acyl-CoA synthetase (EC 6.2.1.3)	A, 652
fabE	Fatty acid degradation	5	Electron transport flavoprotein of beta-oxidation	A
fabL	Fatty acid degradation	50	Transport of long-chain fatty acids	454
fabR	Fatty acid degradation	25	oleR; regulatory gene	634, 635
fcsA		86	Cell division; septation	334
fda		63	ald; fructose-bisphosphate aldolase	A
fdhA		80	Formate dehydrogenase activity	383
fdp		95	Fructose-1,6-diphosphatase (EC 3.1.3.11)	A
fec	Iron	7	Citrate-dependent iron transport	661
fep	Iron	13	cbr, ctb, feuB; receptor for ferrienterochelin and colicins	A, 120, 406, 492, 494, 495, 662, 664, O
fes	Iron	13	Enterochelin-dependent iron transport	A, 120, 495, 662, 664, O
fex	Iron	100	Expression of F factor	362
firA	RNA polymerase function	4		350
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
-------------	----------	-------------------	--	------------
flaA	Flagella	43	chec; flagellar synthesis and chemotaxis	A, 322, 324, 476
flaB	Flagella	43	Flagellar synthesis	A, 322, 324
flaC	Flagella	43	Flagellar synthesis	A, 322, 324
flaD	Flagella	42	Flagellar synthesis	A, 322, 324
flaE	Flagella	43	Flagellar synthesis; length of basal hook	A
flaG	Flagella	41	Flagellar synthesis	A
flaH	Flagella	41	Flagellar synthesis	A
flaI	Flagella	42	Regulation of flagellar synthesis	A
flaK	Flagella	24	Flagellar hook subunit protein	319, 320, 321
flaL	Flagella	24	Flagellar synthesis; basal body	319, 320
flaM	Flagella	24	Flagellar synthesis; basal body	319, 320
flaN	Flagella	43	Flagellar synthesis	A, 322, 324
flaO	Flagella	43	Flagellar synthesis	A, 322, 324
flaP	Flagella	43	Flagellar synthesis	A, 322, 324
flaQ	Flagella	43	Flagellar synthesis	A, 322, 324
flaR	Flagella	43	Flagellar synthesis	A, 322, 324
flaS	Flagella	24	Flagellar synthesis; basal body	319, 320
flaT	Flagella	24	Flagellar synthesis; basal body	319, 320
flaU	Flagella	24	Flagellar synthesis	318
flaV	Flagella	24	Flagellar synthesis; basal body	318
flaW	Flagella	24	Flagellar synthesis	318
flaX	Flagella	24	Flagellar synthesis	318
flaY	Flagella	24	Flagellar synthesis; basal body	318
flaZ	Flagella	24	Flagellar synthesis; basal body	318
fbaA	Flagella	24	Flagellar synthesis	318
fbaB	Flagella	42	Flagellar synthesis	318
fbaC	Flagella	43	Flagellar synthesis	318
ffrA	Fluorelocine	100	Metastable gene affecting surface properties, pilation, and colonial morphology	135a
flu	Flurfing	43	Metastable gene affecting surface properties, pilation, and colonial morphology	
fnr		29	frdB, nirR; fumarate, nitrate, and nitrite reductases, hydrogenase, and cytochrome c_{55} activities affected	A, 344
folA	Folate	1	tmra; dihydrofolate reductase (EC 1.5.1.3); trimethoprim resistance	A, 556, 557
folB	Folate	1	tmraB; regulatory gene; trimethoprim resistance	A, 556, 557
fpk		46	Fructose-1-phosphate kinase (EC 2.7.1.3)	A, 91
frdA		94	Fumarate reductase	A, 217
ftaA		2	Anomalous filamentous growth	A, 164, 380, 646, 656
ftaE		73	Anomalous filamentous growth	598
ftaH		69	Anomalous filamentous growth	536
fus	Fucose	60	prd; l-fucose utilization	A, 218
fusA	Fusic acid	73	FrdA; protein chain elongation factor G	73, 184, 367
fusB	Fusic acid	14	Pleiotropic effects on RNA synthesis, ribosomes, and ribosomal protein S6	280, 615
gabC	γ-Aminobutyrate	57	Regulatory gene for gabP,D,T	A, 411
gabD	γ-Aminobutyrate	57	Succinyl semialdehyde dehydrogenase (EC 1.2.1.16) activity	411
gabP	γ-Aminobutyrate	57	Transport of γ-amino butyrate	411
gabT	γ-Aminobutyrate	57	Aminobutyrate aminotransferase (EC 2.6.1.19) activity	A, 411
gadR		81	Regulatory gene for gadS	A
gadS		81	Glutamate decarboxylase (EC 4.1.1.15)	A
galE	Galactose	17	galD; UDPgalactose 4-epimerase; hexose-1-phosphate uridylyltransferase (EC 2.7.7.12)	A, 137, 436
galEo	Galactose	17	galC, galO; operator sequence for galETK	A, 137
galElp	Galactose	17	Promoter sequence for galETK, cyclic AMP dependent	137, 436
galElp2	Galactose	17	Promoter sequence for galETK, cyclic AMP independent	137, 436
galK	Galactose	17	galA; galactokinase (EC 2.7.1.6)	A
galP	Galactose	63	Fgal; galactose permease activity	513
galR	Galactose	61	Rgal; regulatory gene; represor of galETK operon	A
galT	Galactose	17	galB; galactose-1-phosphate uridylyltransferase	A
galU	Galactose	27	Glucose-1-phosphate uridylyltransferase (EC 2.7.7.9)	A, 79
gap		39	gad; glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12)	A, 250, 278, 652
gatA	Galactitol	46	Galactitol-specific enzyme II of phosphotransferase system	359, 360, 361
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
-------------	----------	-------------------	---	------------
guaC	Galactitol	46	Regulatory gene	359, 361
guaD	Galactitol	46	Galactitol-1-phosphate dehydrogenase	359, 361
gdh		27	Glutamate dehydrogenase	467
glc	Glycolate	64	Utilization of glycolate; maltase synthase G	A
glgA	Glycogen	75	Glycogen synthase (EC 2.4.1.21)	A, 352
glgB	Glycogen	75	1,4-α-glucan branching enzyme (EC 2.4.1.18)	A, 352
glgC	Glycogen	75	Glucose-1-phosphate dehydrogenase (EC 2.7.7.27)	A, 352
gik		51	Guanine kinase (EC 2.7.1.2)	A
glnS	Gluconamine	92	Glucoamminephosphate isomerase (EC 5.3.1.19)	A, I
gltA	Glutamine	82	Guanamine synthetase (EC 6.3.1.2)	A, 305
gltD	Glutamine	4	Uridyltransferase	51
glnF	Glutamine	69	Regulation of glutamine synthetase production	467
glnS	Glutamine	15	Glutaminyl-tRNA synthetase (EC 6.1.1.12)	A
glnT	Glutamine	77	Affects levels of glutamine tRNA1 and glutamine synthetase	426
glpU	Glutamine	15	supE, Su2, suH; glutamine tRNA2	269, S
glpV	Glutamine	15	supB; glutamine tRNA1	269, S
glpA	Glycerol phosphate	48	Glycerol-3-phosphate dehydrogenase (anaerobic) (EC 1.1.99.5)	A, 413
glpD	Glycerol phosphate	75	glyD; glycerol-3-phosphate dehydrogenase (aerobic) (EC 1.1.99.5)	A
glpF	Glycerol phosphate	88	Facilitated diffusion of glycerol	A
glpK	Glycerol phosphate	88	Glycerol kinase (EC 2.7.1.30)	A
glpR	Glycerol phosphate	48	Glycerol-3-phosphate transport system	A, 413, 566
glnA	Glutamate	16	glut; citrate synthase	A
glnB	Glutamate	69	aspB; glutamate tRNA1	A, 467
glnE	Glutamate	80	Glutamyl-tRNA synthetase; possible regulatory subunit	A
glnH	Glutamate	22	Requirement	A
glnM	Glutamate	43	Guanamyl-tRNA synthetase	A
glnR	Glutamate	92	Regulatory gene for glutamate permease	A
glnS	Glutamate	82	Glutamate permease	A
glnT	Glutamate	82	glnT; operator sequence for glnT; growth on glutamate as sole source of carbon	A
glnU	Glutamate	89	tglB; glutamate tRNA2; in rnrB operon	268, 368, 379, 424, 672, 675
glnV	Glutamate	84	tglC; glutamate tRNA2; in rnrC operon	268, 368, 424
glnW	Glutamate	80	tglE; glutamate tRNA2; in rnrF operon	268, 424
glnX	Glutamate	82	Catalytic subunit for glutamyl-tRNA synthetase	A
glyA	Glycine	54	Serine hydroxymethyltransferase (EC 2.1.2.1)	A
glyS	Glycine	79	gly-act; glycyl-tRNA synthetase (EC 6.1.1.14)	A
glyT	Glycine	89	suA36, sumA, sup158; glycine tRNA2	A, 82, 113, 515, 517, 518, 675
glyU	Glycine	61	suA36, suD, sumB, sup7; glycine tRNA1	A
glyV	Glycine	96	suA58, suA78; glycine tRNA3 (duplicate gene)	A, 434
glyW	Glycine	41	suA38, suA78; glycine tRNA3 (duplicate gene)	A
gntM	Glucanone	75	Glucose-6-phosphate dehydrogenase (EC 1.1.1.43)	A
gntR	Glucanone	75	usgA; transport and phosphorylation of glucanone	A, 23
gntS	Glucanone	96	Second system for transport, and possibly phosphorylation, of glucanone	23
gpp		84	Guanine pentaphosphatase activity	581
gpaA	Guanaine	81	is-Glycerol-3-phosphate dehydrogenase [NAD(P)*] (EC 1.1.1.94)	A, 91
gpt		6	gpp, gpx; guanine-hypoxanthine	A, 257, 260
grpD		71	Phosphoribosyltransferase (EC 2.4.2.8)	A
grpE		56	Phosphoribosyltransferase (EC 2.4.2.8)	A
gsa		13	Guanine kinase	291
gsaA	Guanine	53	guaA; GMP synthetase (EC 6.3.4.1)	A, 474, 560, 631
gsaB	Guanine	53	Promoter sequence for gsaA	181
gsaBr	Guanine	53	guaA; IMP dehydrogenase (EC 1.2.1.14)	A, 474, 560, 631
gsaBo	Guanine	53	Operator sequence for gsaBA	A

TABLE 1—Continued

Gene symbol: Symbol used to represent the gene in the linkage map.

Mnemonic: A mnemonic is a word or phrase that is used as a memory aid.

Map position (min): The map position of the gene in minutes.

Alternate gene symbols; phenotypic trait affected: Additional gene symbols or the phenotype affected by the gene.

References: A list of references that support the information provided in the table.
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
guaB	Guanine	53	Promoter sequence for guaBA	560
guaC	Guanine	(99)	GMP reductase (EC 1.6.6.5)	A
gyrB	Gyrase	73	Utilization of methyl-β-d-glucuronic; possibly identical to crp	A
gyrC	Gyrase	(18)	Utilization of methyl-β-d-glucuronic	A
gyrD	Gyrase	(67)	Utilization of methyl-β-d-glucuronic	A
gyrA	Gyrase	48	naLA; DNA gyrase, subunit A; resistance or sensitivity to nalidixic acid	A, 192, 249, 329, 421, 600
gyrB	Gyrase	82	acrB, cou; DNA gyrase, subunit B; resistance or sensitivity to coumermycin	192, 193, 223, 249, 421, 522, 600
hag	H antigen	42	flaF, H; flagellin, structural gene; flagellar (H) antigen	A, 324, 568
hemA	Hemin	26	8-Aminolevulinate synthase (EC 2.3.1.37)	A
hemB	Hemin	8	ncf; 5-aminolevulinate dehydratase (EC 4.2.1.24) activity	A, 400
hemC	Hemin	85	popE; Uroporphyrin I synthase (EC 4.3.1.8) activity	401
hemD	Hemin	84	Uroporphyrin III cosynthase	85
hemE	Hemin	90	hemC; Uroporphyrin decarboxylase (EC 4.1.1.37) activity	A
hemF	Hemin	17	popB, sec; coproporphyrin III oxidase (EC 1.3.3.3) activity	A
hemH	Hemin	11	hemG, popA; ferrochelatase (EC 4.99.1.1) activity	A
hisO	Histidine	44	N-(5'-Phospho-L-ribosylformimino)-5-amino-1-(5'-phosphoribosyl)-4-imidazolecarboxamide isomerase (EC 5.3.1.16) activity	A
hisB	Histidine	44	Imidazoleglycerolphosphate dehydratase (EC 4.2.1.19) and histidinolphosphatase (EC 3.1.3.15) (bifunctional enzyme)	A
hisC	Histidine	44	Histidinol-phosphate aminotransferase (EC 2.6.1.9)	A
hisD	Histidine	44	Histidinol dehydrogenase (EC 1.1.1.23) activity	A
hisE	Histidine	44	Phosphoribosyl-ATP pyrophosphohydrolase	A
hisF	Histidine	44	Cyclase	A
hisG	Histidine	44	ATP phosphoribosyltransferase (EC 2.4.2.17) activity	A
hisGa	Histidine	44	Attenuator sequence in hisG leader region	29, 138
hisGe	Histidine	44	Leader region; regulation of transcription of his operon activity	29, 138
hisGo	Histidine	44	hisG; operator sequence for his operon	A
hisH	Histidine	44	Amido transferase	A
hisI	Histidine	44	Phosphoribosyl-AMP cyclohydrolase (EC 3.5.4.19) activity	A
hisR	Histidine	(84)	hisT; histidine tRNA	269
hisS	Histidine	54	Histidyl-tRNA synthetase (EC 6.1.1.21) activity	474
hisT	Histidine	50	Pseudouridylate synthetase	67, 354
hpt		3	Hypoxanthine phosphoribosyltransferase (not EC 2.4.2.8; see gpt)	291
hsdM	Host specificity	98	his, hsm, rm, hsp; host modification activity; DNA methylase M	A
hsdR	Host specificity	98	hs, hsr, rm, hsp; host restriction activity; endonuclease R	A
hsdS	Host specificity	98	his; specificity determinant for hsdM and hsdR activities	A
hyd		57	Hydrogenase activity	478
iap		59	Altered isozyme pattern of alkaline phosphatase	440
icsR		25	Inositol dehydrogenase, NADP" specific (EC 1.1.1.42) activity	18
ileS	Isoleucine	0	Isoeucyl-tRNA synthetase (EC 6.1.1.5) activity	A, 176
ileT	Isoleucine	86	tiiA; isoleucine tRNA1; in rrnA operon	268, 424
ileU	Isoleucine	70	tiiD; isoleucine tRNA1; in rrnD operon	268, 424, 688
iloA	Isoleucine-valine	84	ile; threonine deaminase (EC 4.2.1.16) activity	A, 26, 96, 402, 577
iloB	Isoleucine-valine	82	Acetolactate synthase I (EC 4.1.3.18), valine sensitive	A, 213, 448
iloC	Isoleucine-valine	84	iloA; ketol-acid reductoisomerase (EC 1.1.1.86) activity	A, 26, 402, 578, 648
iloD	Isoleucine-valine	84	iloB; dihydroxyacid dehydratase (EC 4.2.1.9) activity	A, 26, 96, 402, 577
iloE	Isoleucine-valine	84	iloC, iloJ; branched-chain-amino-acid aminotransferase (EC 2.6.1.42) activity	A, 26, 96, 357, 402, 577
iloF	Isoleucine-valine	54	Affects production of valine-resistant acetolactate synthase activity	A
iloG	Isoleucine-valine	84	Acetolactate synthase II (EC 4.1.3.18), valine insensitive	A, 26, 125, 213, 479, 576
iloH	Isoleucine-valine	84	Acetolactate synthase III (EC 4.1.3.18), valine sensitive	A, 213
iloI	Isoleucine-valine	84	Acetolactate synthase III (EC 4.1.3.18), valine sensitive	A, 213
iloO	Isoleucine-valine	84	Locus affecting expression of iloG activity	A, 26, 96, 479, 576
iloY	Isoleucine-valine	84	Positive regulatory locus for iloC activity	648
infC	Initiation factor	38	Protein chain initiation factor 3	243, 588, 589, 590
kat	Catalase	7	Catalase activity	363
TABLE 1—Continued

Gene symbol	Mnemonic	Map position (min)*	Alternate gene symbols; phenotypic trait affected	References*
kbA	K-polysaccharide	61 Acidic polysaccharide capsule (K) antigen	A, B, N	
kagA	Kasugamycin	1 RNA methylase for tRNA	A, B, N	
kagB	Kasugamycin	34 Second-step (high-level) resistance to kasugamycin	A, B, N	
kagC	Kasugamycin	12 Kasugamycin resistance; affects ribosomal protein S2	685	
lacA	Lactose	8	a, lacA; galactose acetyltransferase (EC 2.3.1.18)	A, 12
lacI	Lactose	8	i; regulatory gene; repressor protein of lac operon	A, 104, 155, 416, 417, 544
lacIp	Lactose	8	Promoter sequence for lacI	74
lacIp	Lactose	8	y; galactoside permease (M protein)	A, 171, 254
lacZ	Lactose	8	z; β-β-galactosidase (EC 3.2.1.23)	A, 169
lacZo	Lactose	8	lacO; operator sequence for lac operon	A, 37, 135, 382
lacZp	Lactose	8	lacZp; promoter sequence for lac operon	A, 135, 382
lamB	Lambda	91	maltB; phage lambda receptor protein; maltose high-affinity uptake system	A, 58, 150, 237, 259, 387, 503, 504, 505, 567, 606, 607
lamBp	Lambda	91	Weak promoter for lamB	59
lct	Lactate	80	Lactate dehydrogenase (EC 1.1.1.27)	A
leuA	Leucine	2	2-Isopropylmalyl synthase (EC 4.1.3.12)	A
leuB	Leucine	2	2-Isopropylmalyl dehydrogenase (EC 1.1.1.85)	A
leuC	Leucine	2	α-Isopropylmalyl isomerase subunit	A
leuD	Leucine	2	α-Isopropylmalyl isomerase subunit	A
leuK	Leucine	18	Regulation of biosynthetic enzymes for leucine, isoleucine-valine, histidine, and tryptophan	A, 64
leuR	Leucine	78	Level of leucyl-tRNA synthetase affected	620
leuS	Leucine	15	Leucyl-tRNA synthetase (EC 6.1.1.4)	A, C
leuSc	Leucine	15	leuX; operator sequence for leuS	347
leuSp	Leucine	15	leuX; promoter sequence for leuS	347
leuT	Leucine	(84)	Leucine tRNA1	269
leuU	Leucine	(68)	Leucine tRNA2	269
leuV	Leucine	(93)	Leucine tRNA1	269
leuW	Leucine	15	A leucine tRNA	S
leuY	Leucine	10	Level of leucyl-tRNA synthetase affected	347
lev	Levallophan	(9)	Resistance to levallophan	111
lexA	Leucine	91	extrA, spr, tsd, umuA; resistance or sensitivity to X rays and UV	A, 304, 465
ligA	Ligase	52	dnaA, pdeC; DNA ligase	A, 204, 262, 538
ligAo	Ligase	52	lap; possibly operator sequence for ligA	A
ligAp	Ligase	52	lap; possibly promoter sequence for ligA	A
linB	Lincomycin	(28)	High-level resistance to lincomycin	A
lip	Lipoate	14	Requirement	A
irr	Lipoate	(12)	Increased sensitivity to lincomycin, to erythromycin, or to both	A
lit	Phage T4 late gene expression	25		101
livH	Leucine, isoleucine, and valine	75	High-affinity branched-chain amino acid transport system	9
livJ	Leucine, isoleucine, and valine	75	Binding protein, high-affinity branched-chain amino acid transport system	9
livK	Leucine, isoleucine, and valine	75	Binding protein, high-affinity branched-chain amino acid transport system	9
livR	Leucine, isoleucine, and valine	20	leu; regulatory gene, high-affinity branched-chain amino acid transport system	10, 498
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
-------------	----------	-------------------	--	------------
lon	Long form	10	capR, deg, dir, muc; filamentous growth; radiation, sensitivity; regulation of gal operon; capsular polysaccharide synthesis	A, 42, 188, 205
lipA	Lipopolysaccharide core	6	tfrA; lipopolysaccharide core synthesis; resistance to phages T4, T7, and P1; deficiency in conjugation	A, 232
lipB	Lipopolysaccharide core	(65)	pon; lipopolysaccharide core synthesis	A
lpp	Lipoprotein	3	dhli; lipopide dehydrogenase (NADH) (EC 1.6.4.3)	A, 345
		36	mIgA; murein lipoprotein structural gene	252, 277, 366, 519, 602, 667, 682, 683
latR		20	Leucine-specific transport	10
lysA	Lysine	61	Diaminopimelate decarboxylase (EC 4.1.1.20)	A
lysC	Lysine	91	apty; aspartokinase III	A
lysCo	Lysine	91	Operator sequence for lysC	77
lysT	Lysine	16	sulf, sup L; lysine tRNA	269, S
lysX	Lysine	60	Lysine excretion	A
mac	Macrolide	(26)	Erythromycin growth dependence	A
majA		1	Maintenance of F-plasmids	A, 643, 644
majB		2	Maintenance of F-plasmids	644
malE	Maltose	91	malB; periplasmic maltose-binding protein; substrate recognition for transport and chemotaxis	A, 30, 387, 503, 505, 564
malF	Maltose	91	malB; maltose transport; cytoplasmic membrane protein	A, 387, 503, 564, 565
malG	Maltose	91	malB; active transport of maltose and maltodextrins	503, 564
malK	Maltose	91	malB; maltose permeation	A, 387, 503, 564
malP	Maltose	75	malA; maltodextrin phosphorylase (EC 2.4.1.1)	A
malP1	Maltose	75	malP, malA: initiation sequence for malPQ	A, 123
malQ	Maltose	75	malA; amylo maltase (EC 2.4.1.23)	A
malT	Maltose	75	malA; positive regulatory gene for malPQ, malEFG, and malK BamB	A, 123
manA	Mannose	36	Mannosephosphate isomerase (EC 5.3.1.8)	A
manC	Mannose	(87)	mni; d-mannose isomerase regulation; utilization of D-mannose	596
mdh		70	Malate dehydrogenase (EC 1.1.1.37)	A
metA	Melibiose	93	met-7; a-galactosidase (EC 3.2.1.22)	A
metB	Melibiose	93	met-4; thiomethylgalactoside permease II	A
menA	Menaquinone	88	Conversion of 1,4-di-hydroxy-2-naphthoate to demethylmenaquinone	A, 687
menB	Menaquinone	48	Conversion of 2-succinylbenzoate to 1,4-di-hydroxy-2-naphthoate	687, K
menC	Menaquinone	48	Conversion of chorismate to 2-succinylbenzoate	216
metA	Methionine	90	metC; homoserine acetyltransferase (EC 2.3.1.31)	A
metB	Methionine	88	met-1, met-1; cystathionine y-synthase (EC 4.2.99.9)	A
metC	Methionine	65	Cystathionine y-lyase (EC 4.4.1.1)	A
metD	Methionine	5	High-affinity uptake of D- and L-methionine	A, 261
metE	Methionine	85	met-B12; tetrahydropropylglycylaminate methyltransferase (EC 2.1.1.14)	A
metF	Methionine	88	met-2, met-7; 5,10-methylene tetrahydrofolate reductase (EC 1.1.1.68)	A
metG	Methionine	(46)	Methionyl-tRNA synthetase	A, 79a, 509
metH	Methionine	90	B2-dependent homocysteine-N7-methyltetrahydrofolate transmethylase	A, 541
metJ	Methionine	88	Regulatory gene	A, 5, 328
metK	Methionine	63	Methionine adenosyltransferase (EC 2.5.1.6)	A, 5, 219
metL	Methionine	88	Aspartokinase II	A
metM	Methionine	88	Homoserine dehydrogenase II	A
metT	Methionine	15	Methionine tRNA	269, S
metY	Methionine	(68)	Methionine tRNA2	269
metZ	Methionine	(61)	Methionine tRNA1	269
mglA	Methyl-galactoside	45	mglP; methyl-galactoside transport and galactose taxis	A, 514
mglB	Methyl-galactoside	45	methylgalactose-binding protein; receptor for galactose taxis	A, 514
mglC	Methyl-galactoside	45	mglP; methyl-galactoside transport and galactose taxis	A, 514
mglD	Methyl-galactoside	45	Regulatory locus for methyl-galactoside transport	514
mglR	Methyl-galactoside	(17)	R-MG; regulatory gene	A
mgt	Magnesium transport	92	Mg2+ transport, system II	473
minA	Minicell	10	Formation of minute cells containing no DNA	A
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
------------	----------	-------------------	---	------------
minB	Minicell	(29)	Formation of minute cells containing no DNA	A
mng	Manganese	(39)	Resistance or sensitivity to manganese	A
mop	Morphogenesis of phages	94	groE, tabB; defect of head assembly of phages T4 and λ	A, 196, 217, 240
motA	Motility	42	flaJ; flagellar paralysis	A, 397, 569
motB	Motility	42	flaJ; flagellar paralysis	A, 397, 569
mraA	Murein	2	D-Alanine carboxypeptidase	A
mraB	Murein	2	D-Alanine requirement; cell wall peptidoglycan	A
mraB	Murein	2	biogenesis	A
mtaB	Murein	3	ponA; penicillin-binding protein 1A	602
map	Male-specific phage	100	Sensitivity or resistance of male strains to male-specific phages R17 and μ2	70
mtaA	Mannitol	80	Mannitol-specific enzyme II of phophotransferase system	A, 359, 360
mtaC	Mannitol	80	Regualtory locus	A, 359
mtdD	Mannitol	80	Mannitol-1-phosphate dehydrogenase (EC 1.1.1.17)	A, 359
mtr	Methyltrypotphan	68	Resistance to 5-methyltrypotphan	A, 311
murC	Murein	2	L-Alanine-adding enzyme	A
murE	Murein	2	meso-Diaminopimelate-adding enzyme	A, 164
murF	Murein	2	d-alanine-l-amine-adding enzyme	A, 184
mutD	Mutator	5	Generalized high mutability; thymidine-stimulated	A
mutH	Mutator	61	mutR; prv; increased rates of frameshift and base substitution mutations	A, 258, 444
mutL	Mutator	94	mut-25; high rates of AT → GC transitions	A
mutS	Mutator	58	High rates of AT → GC transitions	A
mutT	Mutator	3	High rate of AT → GC transversion	A, 875, E
nadA	NAD	16	nica; quinolinate synthetase, A protein	A
nadB	NAD	55	nicB; quinolinate synthetase, B protein	A
nadC	NAD	3	Quinolinate phosphoribosyl transferase	A
nagA	N-Acetylglucosamine	15	N-Acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25)	A
nagB	N-Acetylglucosamine	15	glmD; glucosamine-6-phosphate deaminase	A
naiA	Nalidixic acid	48	See gyrA	A
naiB	Nalidixic acid	57	Resistance or sensitivity to nalidixic acid	A
naiC	Nalidixic acid	82	nald; resistance or sensitivity to nalidixic and piromidic acids	275
ndh	NAD dehydrogenase complex	22	NAD dehydrogenase complex	686
neaB	Neamine	73	Resistance to neamine	A, 127
nek	73	amk; resistance to neomycin, kanamycin, and other aminoglycoside antibiotics	A, 263	
nfaA	Nitrofurazone sensitivity	(22)	Nitrofurazone reductase I activity	399
nfaB	Nitrofurazone sensitivity	(11)	Nitrofurazone reductase I activity	399
nirA	Nitrite reductase	29	NADH-nitrite reductase (EC 1.6.6.4) activity and cytochrome c552	A, 88, 447
nirC	Nitrite reductase	26	NADH-nitrite reductase (EC 1.6.6.4) activity	1
nirD	Nitrite reductase	73	NADH-nitrite reductase (EC 1.6.6.4) activity	1
nirE	Nitrite reductase	49	NADH-nitrite reductase (EC 1.6.6.4) activity	1
nirF	Nitrite reductase	(52)	NADH-nitrite reductase (EC 1.6.6.4) activity	1
nmpA	New membrane protein	83	ompE; production of outer membrane protein 1c (E,e)	167, 168, 246, 497
nmpB	New membrane protein	9	Production of an outer membrane protein	497
nmpC	New membrane protein	12	Production of an outer membrane protein	497
non	Nonmucoid	45	Capsule formation	A
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
-------------	----------	-------------------	---	------------
nrdA	dnaF; ribonucleoside diphosphate reductase (EC 1.17.4.1), subunit B1	48		A, 179
nrdB	Ribonucleoside diphosphate reductase (EC 1.17.4.1), subunit B2	48		A, 179
nupC	Transport of nucleosides, except guanosine	52		432
nupG	Transport of nucleosides	65		432
nusA	Expression of phase λ N gene function	68		172
nusB	Expression of phase λ N gene function	10		173
nuvA	9	Uridine thiolation factor A activity	372, 621	
nuvC	9	Uridine thiolation factor C activity	372	
ompA	Outer membrane protein	21	con, tolG, tut; outer membrane protein 3a (II*); G, d; structural gene	A, 2, 118, 231, 244, 245, 247, 284, 385
ompB	Outer membrane protein	74	cry, kmt; production of outer membrane proteins 1a and 1b (a and b; c)	34, 80, 221, 246, 496, 537, 639
ompC	Outer membrane protein	47	meoA, par; outer membrane protein 1b (b; c), structural gene	32, 167, 246, 266, 496, 546, 632, 638
ompF	Outer membrane protein	21	cmIB, coa, cry, tolF; outer membrane protein 1a (a; b, F), structural gene	32, 80, 165, 166, 167, 266, 353, 540, 546, 639, 639, 1
opp	Oligopeptide transport	83	het, poh; origin of replication of chromosome	157, 251, 391, 392, 400, 410, 414, 599, 641
oriC	Origin of replication	83	642, 645, 680	
pabA	p-Aminobenzoate	74	Requirement	A
pabB	p-Aminobenzoate	40	Requirement	A, 652
panA	Pantothenate	3	Ketopantoate hydroyxymethyl transferase (EC 4.1.2.12)	A, 108
panC	Pantothenate	3	Pantothenate synthetase (EC 6.3.2.1)	A, 108
panD	Pantothenate	3	Aspartate 1-decarboxylase	A, 108
phbA	Penicillin-binding protein	14	Penicillin-binding protein 2	285, 586, 285
pphB	Penicillin-binding protein	2	ftsI, sep; penicillin-binding protein 3; septum formation	164, 586, 602, 2Y
pcsA	Pyridoxine	81	Cell division; chromosome segregation	333, 335
pdsA	Pyridoxine	1	Requirement	A, 256
pdsB	Pyridoxine	50	Requirement	A, 91
pdsC	Pyridoxine	20	Requirement	A
pdsH	Pyridoxine	36	Pyridoxine phosphate oxidase	A, 561
pdsJ	Pyridoxine	55	Requirement	A, 17
pepD	Peptides	6	pepH (carnosinase); peptide D, a dipeptidase	A, L
pepN	Peptides	21	Peptidase N, an aminopeptidase	351
pfkA	6-Phosphofructokinase I (EC 2.7.1.11)	88		A, 22, 466, 623
pfkB	Level of 6-phosphofructokinase II production; suppressor of pfkA	38		A, 22
pfkC	Modifier of 6-phosphofructokinase activity	(58)		A
plf	Pyruvate formate lyase	20		637
pg1	Gluconeophosphatase isomerase (EC 5.3.1.9)	91		A
pgk	Phosphoglycerate kinase (EC 2.7.2.3)	63		A, 278, 623
pgl	bld, 6-phosphogluconolactonase (EC 3.1.1.31)	17		A
pglA	Phosphoglucomutase (EC 2.7.5.1)	(15)		A
pglB	Phosphatidylglycerophosphate synthetase	42		448 a, Q
pheA	Phenylalanine	56	Chorismate mutase-P-prephenate dehydrogenase	A, 693, 694
pheAe	Phenylalanine	56	pheL; regulation of transcription of pheA; leader region	692
pheAo	Phenylalanine	56	pheO; operator sequence for pheA	A, 693, 694
pheS	Phenylalanine	37	phe-act; phenylalanyl-tRNA synthetase (EC 6.1.1.20), α subunit	A, 100, 241, 243, 588, 589, 590
pheT	Phenylalanine	37	pheS; phenylalanyl-tRNA synthetase (EC 6.1.1.20), β subunit	A, 100, 243, 588, 589, 590
phoA	Phosphate	9	Alkaline phoshatase (EC 3.1.3.1)	A, 62, 276
phoB	Phosphate	9	phoC, phoT; positive regulatory gene for phoA and phoS	A, 62, 330, 491, 657
phoR	Phosphate	9	phoRa, R1pho; negative regulatory gene for phoA and phoS	A, 62, 330, 491, 657
phoS	Phosphate	83	phoR2A, R2pbo; periplasmic phosphate-binding protein	A, 338, 657, 670, I
phoT	Phosphate	83	phoS; inorganic phosphate transport	A, I
phr	Photoreactivation	16	Deoxyribodipryrimidine photolase (EC 4.1.99.3)	A, 531, 690
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
-------------	----------	-------------------	--	------------
phxB	Phi-X	17	Adsorption of φX174	433
pldB	Pili	98	fm; formation of type 1 somatic pili	A, 604, 605
plcC	Pili	98	fm; formation of type 1 somatic pili	A, 604, 605
pit	Inorganic phosphate transport	76	Inorganic phosphate transport system	A
pldA	Phospholipid synthesis	85		A
psbA	Phospholipid synthesis	91	Glycerol phosphate acyltransferase activity	A, 579, U
pncA	Pyridine nucleotide cycle	39	nac; nicotinamide deamidase (EC 3.5.1.19)	A, 652
pncH	Pyridine nucleotide cycle	39	Hyperproduction of nicotinamide deamidase	A
ppx	Phosphoenolpyruvate	89	glu, asp; phosphoenolpyruvate carboxylyase (EC 4.1.1.31)	A, 56, 84, 110, 389
ppa	Phosphoenolpyruvate	37	Phosphoenolpyruvate synthase	A
prmB	Pmr-1; methylation of 50S ribosomal subunit protein L1	71		
proA	Proline	6	proA; block before l-glutamate semialdehyde reductase	A
proB	Proline	6	proB; block before l-glutamate semialdehyde reductase	A
proC	Proline	9	proC, proA; probably Δ-pyrroline-5-carboxylate reductase	A
proT	Proline	83	Proline transport	430
psd	Phosphatidylserine	94	Phosphatidylserine decarboxylase	A, 234
psl	Phosphatidylserine synthetase	56	Phosphatidylserine synthetase	456, 500, 501
pts	Inorganic phosphate transport system	83	Inorganic phosphate transport system	A, 642
pta	Phosphotransacetylase	49	Phosphotransacetylase (EC 2.3.1.8) activity	65
pth	Peptidyl-tRNA hydrolase	26	Peptidyl-tRNA hydrolase	A
pts	Phosphotransferase system	46	Fructosephosphotransferase enzyme II	A, 7, 514
ptsG	Phosphotransferase system	24	cat, CR, gpt, gptA, tgl, umg; glucosolphosphotransferase enzyme II	A, 152
ptsH	Phosphotransferase system	52	cr, Hpr; phosphohistidineprotein-hexose phophotransferase (EC 2.7.1.69)	A, 204
ptsI	Phosphotransferase system	52	cr; phosphotransferase system enzyme I	A, 204
ptsM	Phosphotransferase system	40	gptB, mpi, pel, ptsX; mannosephosphotransferase enzyme II; penetration of phage λ	A, 147, 296
purA	Purine	94	ades, Ades; adenylosuccinate synthetase (EC 6.3.4.4)	A
purB	Purine	25	ades; adenylosuccinate lyase (EC 4.3.2.2)	A
purC	Purine	53	ades; phosphoribosylaminomimidazole-succinocarboxamidine synthetase (EC 6.3.2.6)	A
purD	Purine	89	adth; phosphoribosylglycinamidine synthetase (EC 6.3.4.13)	A
purE	Purine	12	ades, ades, PurA; phosphoribosylaminomimidazolecarboxylase (EC 4.1.1.21)	A
purF	Purine	49	ades, purC; amidophosphoribosyltransferase (EC 2.4.1.14)	A
purG	Purine	53	adth; phosphoribosylformylglycinamidine synthetase (EC 6.3.5.3)	A, 474, 631
purH	Purine	89	ades; phosphoribosylaminomimidazolecarboxamidine formyltransferase (EC 2.1.2.3)	A
purI	Purine	55	Phosphoribosylaminomimidazole synthetase (EC 6.3.3.1)	A
putA	Purine	22		A, 204, 309, 310, 482
pyrA	Pyrimidine	9		A
pyrB	Pyrimidine	96	Aspartate carbamoyltransferase (EC 2.1.3.2), catalytic subunit	A

TABLE 1—Continued
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
pyrC	Pyrimidine	23	Dihydro- orotate (EC 3.5.2.3)	A
pyrD	Pyrimidine	21	Dihydro-orotate oxidase (EC 1.3.3.1)	A
pyrE	Pyrimidine	81	Orotate phosphoribosyltransferase (EC 2.4.2.10)	A
pyrF	Pyrimidine	28	Orotidine-5'-phosphate decarboxylase (EC 4.1.1.23)	A
pyrG	Pyrimidine	59	CTP synthetase (EC 6.3.4.2)	174, 177
pyrH	Pyrimidine	(4)	UMP kinase	A
qmeA		28	g3t; unspecified membrane defect	A
qmeC		74	Unspecified membrane defect; tolerance to glycine; penicillin sensitivity	A
qmeD		61	Unspecified membrane defect; tolerance to glycine; penicillin sensitivity	A
rac		37	Unspecified membrane defect	A
ranA	Radiation sensitivity	(9)	Sensitivity to UV and X rays	A
ras		55	Defect in RNA metabolism	A
rbsK	Ribose	84	Ribokinase (EC 2.7.1.15)	A, 641, 642
rbsP	Ribose	84	D-Ribose permease	A, 641, 642
recA	Recombination	58	lexB, recH, tif, umuA, zah; general recombination; repair of radiation damage; induction of phage lambda	A, 149, 215, 304, 372, 391, 403, 405, 422, 531, 558
recB	Recombination	60	rora; recombination and repair of radiation damage; exonuclease V subunit	A, 201, 636
recC	Recombination	60	Recombination and repair of radiation damage; exonuclease V subunit	A
recE	Recombination	30	Locus of Pac prophage; exonuclease VIII	A, 153, N
recF	Recombination	82	aurF; recombination and repair of radiation damage	A, D
recG	Recombination	(82)	Recombination	A
relA	Relaxed	59	RC; regulation of RNA synthesis; stringent factor; ATP: GTP 3'-pyrophosphotransferase	A, 174, 177
relB	Relaxed	34	Regulation of RNA synthesis	136, 429
relX	Relaxed	59	Control of synthesis of guanosine-5'-diphosphate-3'-diphosphate	470
rep		84	DNA-melting activity involved in replication of certain phages	A, 549
rer		89	Resistance to UV and gamma radiation	592
rfa	Rough	81	con, lpsA, phx; cluster of genes coding for enzymes involved in lipopolysaccharide core biosynthesis	A, 222, 233
rfbA	Rough	45	TDP-glucose pyrophosphorylase	A
rfbB	Rough	45	TDP-glucose oxidoreductase	A
rfbD	Rough	45	TDP-ribonucleotidase	A
rfe	Rough	(85)	Synthesis of enterobacterial common antigen and O antigen	546
rff	Rough	(85)	Synthesis of enterobacterial common antigen	545
rhaA	Rhamnose	87	L-Rhamnose isomerase (EC 5.3.1.14)	A
rhaB	Rhamnose	87	Rhamnolokinase (EC 2.7.1.5)	A
rhaC	Rhamnose	87	Regulatory gene	A
rhaD	Rhamnose	87	Rhamnolosephosphate aldolase (EC 4.1.2.19)	A
rho		84	nizA, psu, rnaC; SulA, sun, tsu; transcription termination factor rho; polarity suppressor	A, 66, 115, 214, 274, 273, 274, 326, 507, 507
rimA	Ribosomal modification	83	Maturation of 50S ribosomal subunit	A, 223
rimB	Ribosomal modification	37	Maturation of 50S ribosomal subunit	A
rimC	Ribosomal modification	(26)	Maturation of 50S ribosomal subunit	A
rimD	Ribosomal modification	(87)	Maturation of 50S ribosomal subunit	A
rimE	Ribosomal modification	72	Modification of ribosomal proteins	340
rimF	Ribosomal modification	1	res; ribosomal modification	A
rimG	Ribosomal modification	(1)	ramB; modification of 30S ribosomal subunit protein S4	A
rimH	Ribosomal modification	13	staB; ribosomal modification	A, 294
Table 1—Continued

Gene symbol	Mnemonic	Map position (min)*	Alternate gene symbols; phenotypic trait affected	References*
rimI	Ribosomal modification	99	Modification of 30S ribosomal subunit protein S18; acetylation of N-terminal alanine	283
rimJ	Ribosomal modification	(31)	Modification of 30S ribosomal subunit protein S5; acetylation of N-terminal alanine	109
rnt	Ribonuclease	14	Affects thermolability of 50S ribosomal subunit rnt, rntA; ribonuclease I	A
rnb	Ribonuclease	28	Ribonuclease II	460
rnc	Ribonuclease	55	Ribonuclease III	A, 15
rne	Ribonuclease	24	Ribonuclease E activity	13
rnpA	Ribonuclease	82	Ribonuclease P activity; processing of tRNA precursors	14, 332, 464, 530
rnpB	Ribonuclease	70	Ribonuclease P activity	332, 464, 530
rodA	Rod shape	14	Rounded morphology; radiation resistance; drug sensitivities	A, 286, 602, W
rpiA	Ribosomoprotein, large	62	Ribose phosphate isomerase (EC 5.3.1.6) (constitutive)	A
rpiA	Ribosomoprotein, large	89	50S ribosomal subunit protein L1	A, 160, 368, 370, 488, 675
rpiB	Ribosomoprotein, large	72	50S ribosomal subunit protein L2	A, 288, 299, 367
rpiC	Ribosomoprotein, large	72	50S ribosomal subunit protein L3	A, 288, 299, 367
rpiD	Ribosomoprotein, large	72	eryA; 50S ribosomal subunit protein L4	A, 73, 288, 289, 367
rpiE	Ribosomoprotein, large	72	50S ribosomal subunit protein L5	A, 288, 290, 367
rpiP	Ribosomoprotein, large	72	50S ribosomal subunit protein L6	A, 288, 290, 367
rpiI	Ribosomoprotein, large	95	50S ribosomal subunit protein L9	284
rpiJ	Ribosomoprotein, large	89	50S ribosomal subunit protein L10	A, 160, 371, 488, 674, 675
rpiJp	Ribosomoprotein, large	89	P; promoter sequence for rplJLrpoBC operon	160, 371, 488, 674
rpiK	Ribosomoprotein, large	89	relC; 50S ribosomal subunit protein L11	A, 39, 160, 368, 370, 475, 488, 674, 675
rpiKp	Ribosomoprotein, large	89	P,L1; promoter sequence for rplKA	488
rpiL	Ribosomoprotein, large	89	50S ribosomal subunit protein L7/L12	A, 160, 368, 371, 446, 488, 674, 675
rpiN	Ribosomoprotein, large	72	50S ribosomal subunit protein L14	A, 288, 290, 367
rpiNp	Ribosomoprotein, large	72	P, promoter sequence for rplN operon	487
rpiO	Ribosomoprotein, large	72	50S ribosomal subunit protein L15	A, 288, 299, 290, 367
rpiP	Ribosomoprotein, large	72	50S ribosomal subunit protein L16	A, 288, 367, 487
rpiQ	Ribosomoprotein, large	72	50S ribosomal subunit protein L17	A, 288, 367
rpiR	Ribosomoprotein, large	72	50S ribosomal subunit protein L18	A, 73, 288, 290, 367
rpiS	Ribosomoprotein, large	56	50S ribosomal subunit protein L19	312, 526
rpiU	Ribosomoprotein, large	69	50S ribosomal subunit protein L21	311, 614, 616
rpiV	Ribosomoprotein, large	72	50S ribosomal subunit protein L22	A, 288, 367
rpiW	Ribosomoprotein, large	72	50S ribosomal subunit protein L23	288, 289, 367
rpx	Ribosomoprotein, large	72	50S ribosomal subunit protein L24	A, 72, 288, 290, 367
rplY	Ribosomoprotein, large	46	50S ribosomal subunit protein L25	547
rpmA	Ribosomoprotein, large	69	50S ribosomal subunit protein L27	311, 614
rpmB	Ribosomoprotein, large	81	50S ribosomal subunit protein L28	282
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
-------------	----------	-------------------	--	------------
rpmC	Ribosomal protein, large	72	50S ribosomal subunit protein L29	A, 288, 367, 487
rpmD	Ribosomal protein, large	72	50S ribosomal subunit protein L30	A, 197, 288, 290, 367
rpmG	Ribosomal protein, large	81	50S ribosomal subunit protein L33	282
rpoA	RNA polymerase	72	RNA polymerase (EC 2.7.7.6), α-subunit	A, 180, 236, 367
rpoB	RNA polymerase	90	groN, nitB, rif, ron, str, stv, tabD; RNA polymerase (EC 2.7.7.6), β-subunit	A, 21, 103, 160, 236, 270, 368, 371, 446, 488, 674, 675
rpoC	RNA polymerase	90	tabD; RNA polymerase (EC 2.7.7.6), β'-subunit	A, 21, 103, 160, 236, 238, 368, 371, 446, 674, 675
rpoD	RNA polymerase	67	alt; RNA polymerase (EC 2.7.7.6), ε subunit	210, 239, 236, 439, 493a, 627
rpsA	Ribosomal protein, small	20	30S ribosomal subunit protein S1	461
rpsB	Ribosomal protein, small	4	30S ribosomal subunit protein S2	A, 175, 441, 613, 627
rpsC	Ribosomal protein, small	72	30S ribosomal subunit protein S3	A, 288, 367
rpsD	Ribosomal protein, small	72	rmaA, sud2; 30S ribosomal subunit protein S4	A, 288, 289, 367, 369
rpsE	Ribosomal protein, small	72	eps, spcA, spc; 30S ribosomal subunit protein S5	A, 11, 71, 73, 288, 290, 367, 369, 484, 660
rpsF	Ribosomal protein, small	95	30S ribosomal subunit protein S6	A, 284
rpsG	Ribosomal protein, small	72	K12; 30S ribosomal subunit protein S7	A, 288, 289, 367, 487
rpsH	Ribosomal protein, small	72	30S ribosomal subunit protein S8	A, 197, 288, 290, 369, 659
rpsI	Ribosomal protein, small	72	30S ribosomal subunit protein S10	A, 288, 289, 367
rpsK	Ribosomal protein, small	72	30S ribosomal subunit protein S11	A, 288, 289, 367, 369
rpsL	Ribosomal protein, small	72	strA; 30S ribosomal subunit protein L12	A, 11, 73, 288, 290, 367, 487, 660
rpsLp	Ribosomal protein, small	72	F. sub; promoter sequence for rpsL operon	486, 487
rpsM	Ribosomal protein, small	72	30S ribosomal subunit protein S13	A, 288, 289, 367, 369
rpsN	Ribosomal protein, small	72	30S ribosomal subunit protein S14	A, 288, 290, 367, 369
rpsO	Ribosomal protein, small	68	30S ribosomal subunit protein S15	311, 614, 616
rpsP	Ribosomal protein, small	56	30S ribosomal subunit protein S16	281, 526
rpsQ	Ribosomal protein, small	72	neaA; 30S ribosomal subunit protein S17	A, 53, 288, 367, 487, 671
rpsR	Ribosomal protein, small	95	30S ribosomal subunit protein S18	A, 284
rpsS	Ribosomal protein, small	72	30S ribosomal subunit protein S19	A, 288, 367
rpsT	Ribosomal protein, small	0	supS20; 30S ribosomal subunit protein S20	A, 68, 176, 613
rpsU	Ribosomal protein, small	67	30S ribosomal subunit protein S21	282, 614
rrfB	rRNA, 5S	89	5S rRNA gene of rrfB operon	368, 672, 675
rrfC	rRNA, 5S	84	5S rRNA gene of rrfC operon	668
rrlB	rRNA, 23S	89	23S rRNA gene of rrlB operon	368, 672, 675
rrlC	rRNA, 23S	84	23S rRNA gene of rrlC operon	299, 668
rrdD	rRNA, 23S	72	23S rRNA gene of rrdD operon	686
rrdG	rRNA, 23S	56	23S rRNA gene of rrdG operon	694
rnaA	rRNA	86	cqsa; rRNA operon; see rfa, rla, rraA, ileT, and alaT	A, 55, 124, 288, 307, 640
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References
-------------	---------	-------------------	---	------------
rrsB	rRNA	89	cqsE, rraB; rRNA operon; see rrfB, rrfB, rrsB, and gltT	A, 55, 307, 368, 640, 672, 675
rrsC	rRNA	84	cqsB, rraB, rraB; rRNA operon; see rrfC, rrfC, rrsC, gltU, aspT, and trpT	A, 55, 299, 307, 423, 425, 640, 668
rrsD	rRNA	72	cqsD; rRNA operon; see rrfD, rrfD, rrsD, ileU, and alaU	55, 298, 307, 640, 688, 689
rrsE	rRNA	90	rraD; rRNA operon, see rraE, rraE, rraE, and gltV	55, 124, 673
rrsF	rRNA	74	cqsC, rraC; rRNA operon; see rrfF, rrfF, and rrsF	55, 640
rrsG	rRNA	56	rRNA operon; see rraG and rrsG	55, 694
rrsA	rRNA, 16S	86	16S RNA gene of rraA operon	124
rrsA1p	rRNA, 16S	86	Promoter sequence for rraA operon	124
rrsA2p	rRNA, 16S	86	Promoter sequence for rraA operon	124
rrsB	rRNA, 16S	89	16S RNA gene of rraB operon	63, 368, 672, 675
rrsC	rRNA, 16S	84	16S RNA gene of rraC operon	295, 668
rrsD	rRNA, 16S	72	16S RNA gene of rraD operon	688, 689
rrsD1p	rRNA, 16S	72	Promoter sequence of rraD operon	689
rrsD2p	rRNA, 16S	72	Promoter sequence of rraD operon	689
rrsE	rRNA, 16S	90	16S RNA gene of rraE operon	124
rrsE1p	rRNA, 16S	90	Promoter sequence for rraE operon	124
rrsE2p	rRNA, 16S	90	Promoter sequence for rraE operon	124
rrsG	rRNA, 16S	56	16S RNA gene of rraG operon	694
rrs	89		ts-5; uncharacterized growth defect	A, 39, 370
ruw		41	filament formation and sensitivity to UV radiation	A
sboA		30	Regulatory gene affecting recE; locus of Rac prophage	A, D
sboB		44	sonA; exonuclease I; suppressor of recB, recC	A
sdh		16	Succinate dehydrogenase (EC 1.3.99.1)	A
sefA		4	Septum formation	451
seg	Segregation	100	Replication of F-factors	A, 287
serA	Serine	62	Phosphoglycerate dehydrogenase (EC 1.1.1.95)	A
serB	Serine	100	Phosphoserine phosphatase (EC 3.1.3.3)	A
serC	Serine	20	pdxF; phosphoserine aminotransferase (EC 2.6.1.52)	A, 562
serD	Serine	2	Level of seryl-tRNA synthetase	620
serE	Serine	20	Seryl-tRNA synthetase (EC 6.1.1.11)	A
serG	Serine	20	serO; operator sequence for serS	A
serI	Serine	168	Serine tRNA1	269
serV	Serine	61	Serine tRNA3	269
shA	Shikimate	43	Shikimate and dehydroshikimate permease	A
sloB	Slow growth	73	Low growth rate; tolerance to amimidopenicillin and nalidixic acid	374, 650
speA	Spermidine	63	Arginine decarboxylase (EC 4.1.1.19)	A
speB	Spermidine	63	Arginase (EC 3.5.3.11)	A
speC	Spermidine	64	Ornithine decarboxylase (EC 4.1.1.17)	A, 219
speD	Spermidine	3	S-Adenosylmethionine decarboxylase (EC 4.1.1.50)	609
spoT		81	Guanosine 5'-diphosphate, 3'-diphosphate pyrophosphatase	A, 8
srA	Sorbitol	58	gutA, sbl; d-glutol-specific enzyme II of phosphotransferase system	A, 359, 360, 404
srtC	Sorbitol	58	gutC, sbl; regulatory gene	A, 359, 404
srtD	Sorbitol	58	gutD, sbl; sorbitol-6-phosphate dehydrogenase (EC 1.1.1.140)	A, 359, 404
srrR	Sorbitol	58	Regulatory gene	D
srrA	Sorbitol	9	Degradation of stable RNA	A
sss	Single-strand binding	92	extrB, lexC; single-strand DNA-binding protein	292, 412, 532
strC	Streptomycin	5	strB; low-level streptomycin resistance	A
strM	Streptomycin	76	Control of ribosomal ambiguity	A
staA	Sorbitol	83	Altered ribonuclease activity	A
sucA	Succinate	16	lys + met, suc; succinate requirement; a-ketoglutarate dehydrogenase (decarboxylase component)	A
sucB	Succinate	16	lys + met, suc; succinate requirement; a-ketoglutarate dehydrogenase (dihydrolipoamide succinyltransferase component)	A
sulA	Suppressor	22	sfIA, sul; suppressor of lon	A, 188, 194, 293
sulB	Suppressor	2	sfIB; suppressor of lon	188, 194, 293
supB	Suppressor	15	su; suppressor of ochre (UAA) and amber (UAG) mutations; see gltU	188, 194, 293
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References\(^c\)
-------------	---------------	--------------------	--	------------------
supC	Suppressor	27	**suc, Su-4:** suppressor of ochre (UAA) and amber (UAG) mutations	A
supD	Suppressor	43	**sua, Su-1:** suppressor of amber (UAG) mutations	A, 324
supE	Suppressor	15	**suc, Su-2:** suppressor of amber (UAG) mutations; see **glnV**	A
supF	Suppressor	27	**suc, Su-3:** suppressor of amber (UAG) mutations; see **bryT**	A
supG	Suppressor	16	**Su-5:** suppressor of ochre (UAA) and amber (UAG) mutations	A, H
supH	Suppressor	43	**Suppressor**	A
supK	Suppressor	61	**Suppressor**	X
supL	Suppressor	16	**Suppressor**	A
supM	Suppressor	89	Suppressor of ochre (UAA) and amber (UAG) mutations; see **bryU**	A
supN	Suppressor	51	**Suppressor**	A
supO	Suppressor	27	**Suppressor**	A
supP	Suppressor	96	**Su-6:** suppressor of amber (UAG) mutations	H
supQ	Suppressor	12	**Suppressor**	A
supT	Suppressor	61	**Suppressor**	A
supU	Suppressor	84	**Suppressor**	A
supV	Suppressor	(84)	**Suppressor**	A
tabC	Terminus	85	Affects development of phage T4	612
tag	Thiamine	47	3-Methyl-adenine DNA glycosylase activity	V
tar	Thymine	42	**cheM:** chemotaxis response; methyl-accepting chemotaxis protein II	397, 569, 570, 587
tdi	(4)	(4)	Transduction, transformation, and rates of mutation reduced	593
tdk	Thymine kinase (EC 2.7.1.75)	27	Thymidine kinase (EC 2.7.1.75)	A, 79
terC	Terminus	(32)	**tre:** terminus of replication of chromosome	336, 337, 375
thiA	Thiamine	90	Thiamine thiazole requirement	A
thiB	Thiamine	90	Thiamine thiazole requirement	A
thiC	Thiamine	90	Thiamine thiazole requirement	A
thi-o	Thiamine	90	Thiamine thiazole requirement	A
thrA	Threonine	0	HS, thrD; aspartokinase I-homoserine dehydrogenase I	A
thrB	Threonine	0	Attenuator sequence in leader region of **thrABC** operon	186
thrC	Threonine	0	Leader region of **thrABC** operon	186
thrD	Threonine	0	Operator sequence for **thrABC** operon	187, 524, 525
thrE	Threonine	0	Promoter sequence for **thrABC** operon	187, 525
thrF	Threonine	0	Homoserine kinase (EC 2.7.1.39)	A
thrG	Threonine	0	Threonine synthase (EC 2.5.1.39)	A
thrH	Threonine	0	Threonine synthase (EC 2.5.1.39)	A
thrI	Threonine	38	Threonyl-tRNA synthetase (EC 6.1.1.3)	242, 588
thrJ	Threonine	89	Threonyl-tRNA3	A, 82, 113, 517, 518, 675
thrU	Threonine	89	Threonyl-tRNA4	517, 518, 675
thyA	Thymine	60	Thymidylate synthetase	A
tkt	Transketolase	(62)	Transketolase (EC 2.2.1.1)	A
tnaA	Ind; tryptophanase (EC 4.1.99.1)	83	A; 223, 338, 392, 414	A
tnaAp	Promoter sequence for **tnaA**	83	A; 223, 338, 392, 414	439
tnaB	Regulatory gene	83	A; 618	
tolA	Tolerance	16	**cim, tol-2:** tolerance to colicins E2, E3, A, and K	A
tolB	Tolerance	16	**cim, tol-2:** tolerance to colicins E2, E3, A, and K	A
tolC	Tolerance	16	**cim, tol-2:** tolerance to colicins E2, E3, A, and K	A
tolD	Tolerance	(23)	Speciﬁc tolerance to colicin E1 A	A
tolE	Tolerance	(23)	Speciﬁc tolerance to colicin E1 A	A
tolI	Tolerance	(0)	Speciﬁc tolerance to colicin E1 A	A
tolJ	Tolerance	0	Speciﬁc tolerance to colicin E1 A	A
tonA	T-one	3	**T1, T5rec:** receptor for ferrichrome, bacteriophages T1, T5, and φ80, and colicin M	A, 119, 226, 227, 494, 664
tonB	T-one	27	**exbA, T1rec:** uptake of chelated iron and cyanocobalamin; sensitivity to phages T1 and φ80 and colicins	A, 31, 120, 178, 226, 227, 489, 495, 664
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References†
-------------	--------------	-------------------	---	-------------
*tp*A	Trehalose	88	Triosephosphate isomerase (EC 5.3.1.1)	A, 466
tre		26	Utilization of trehalose	36
trg	(30)		Chemotactic response; methylation of methyl-accepting chemotaxis protein III	228, 323
*trk*A		72	Transport of potassium	A
trkB		73	Transport of potassium	A
trkC		1	Transport of potassium	A
trkD		84	Transport of potassium	A, 642
trkE		28	Transport of potassium	A
trmA	tRNA methyltransferase	89	tRNA (uracil-5)-methyltransferase (EC 2.1.1.35)	A, 47
trmB	tRNA methyltransferase	(7)	tRNA (guanine-7)-methyltransferase (EC 2.1.1.33)	A
trmC	tRNA methyltransferase	(55)	Deficiency of 5-methylaminomethyl-2-thio-uridine in tRNA	A, 48
trmD	tRNA methyltransferase	(58)	tRNA (guanine-1)-methyltransferase (EC 2.1.1.31)	48
*trp*A	Tryptophan	27	tryp-2; tryptophan synthase (EC 4.2.1.20), A protein termination sequence of *trpEDCBA* operon	A, 214, 420, 666
trpAt	Tryptophan	27	Tryp-1; tryptophan synthase (EC 4.2.1.20), B protein tryp-3; N-(5-phosphoribosyl)anthranilate isomerase-	A
trpB	Tryptophan	27	Indole-3-glycerolphosphate synthetase	A, 428
trpCp	Tryptophan	27	Promoter sequence for *trpCBA*	428
trpD	Tryptophan	27	TrypE; glutamine amidotransferase-phosphoribosyl anthranilate synthase	A
trpE	Tryptophan	27	*anth*, tryp-4, tryD; anthranilate synthase (EC 4.1.3.27)	A, 40, 41, 45, 355, 418, 79, 585, 695
trpEd	Tryptophan	27	Attenuator sequence in leader region of *trpEDCBA* operon	45, 355, 591, 595, 695
trpEe	Tryptophan	27	*trpL*; leader region of *trpEDCBA* operon	45, 355, 418, 591, 595, 695
trpEs	Tryptophan	27	*trpO*; operator sequence for *trpEDCBA* operon	A, 40, 41
trpEp	Tryptophan	27	Promoter sequence for *trpEDCBA* operon	A, 40, 41
trpR	Tryptophan	100	*Rtyr*; regulation of *trpEDCBA* operon and *aroH*	A, 516
trpS	Tryptophan	74	Tryptophanyl-tRNA synthetase (EC 6.1.1.2)	A, 52
trpT	Tryptophan	84	*su7*, *su8*; tryptophan tRNA gene at distal end of rrnC operon	A, 423, 425
trxA	Thioredoxin	85	*tsnC*; thioredoxin deficiency	389, 390
tsf		4	Protein chain elongation factor Ts	175, 677
tsr		99	*cheD*; chemotactic response; methyl-accepting chemotaxis protein I	570, 587, T
tsx	T-six	9	*savA*, *savB*: nucleoside uptake; receptor for phage T6 and colicin K	A, 225, 386, 407
tufA		73	Protein chain elongation factor Tu (duplicate gene)	A, 37, 182, 183, 184, 189, 289, 367, 415, 633
tufB		89	Protein chain elongation factor Tu (duplicate gene)	A, 37, 182, 183, 189, 388, 370, 415, 481, 633, 675
tynA		(27)	Tyramine oxidase (EC 1.4.3.4)	435
tyrA	Tyrosine	56	Chorismate mutase T (EC 5.4.99.5)-prephenate dehydrogenase (EC 1.3.1.12)	A
tyrB	Tyrosine	91	Tyrosine aminotransferase (EC 2.6.1.5), tyrosine repressible	190, 191, R
tyrR	Tyrosine	29	Regulation of *aroF*, *aroG*, and *tyrA* and aromatic amino acid transport systems	A, 148, 651
tyrS	Tyrosine	36	Tyrosyl-tRNA synthetase (EC 6.1.1.1)	A, G
tyrT	Tyrosine	27	*su7*, *su8*, *su9*, *su10*, *su3*, *suF*; tyrosine tRNA1 (tandemly duplicated gene)	A, 146, 517, 550
*tyrT*p	Tyrosine	27	Promoter sequence for *tyrT*	550
tyrU	Tyrosine	89	*supM*; tyrosine tRNA2	A, 113, 517, 518, 550, 675
tyrV	Tyrosine	27	Promoter sequence for *tyrU*	146, 339, 517, 550
*tyrV*t	Tyrosine	27	Terminator sequence for *tyrV*	146, 339
Gene symbol	Mnemonic	Map position (min)	Alternate gene symbols; phenotypic trait affected	References¹
-------------	----------	-------------------	--	-------------
ubiA	Ubiquinone	91	4-Hydroxybenzotate → 3-octaprenyl 4-hydroxybenzotate	A, 329
ubiB	Ubiquinone	85	2-Octaprenylphenol → 2-octaprenyl-6-methoxy-phenol	A
ubiC	Ubiquinone	91	Chorismate lyase	A
ubiD	Ubiquinone	85	3-Octaprenyl-4-hydroxybenzotate → 2-octaprenylphenol	A
ubiE	Ubiquinone	85	2-Octaprenyl-6-methoxy-1,4-benzoquinone → 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone	A
ubiF	Ubiquinone	15	2-Octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone → 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone	A
ubiG	Ubiquinone	48	2-Octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone → ubiquinone-8	A, 329
ubiH	Ubiquinone	62	2-Octaprenyl-6-methoxyphenol → 2-octaprenyl-6-methoxy-1,4-benzoquinone	A
udk		45	Uridine kinase (EC 2.7.1.48)	A
udp		85	Uridine phosphorylase (EC 2.4.2.3)	A
udpR		82	Regulation of hexose phosphate transport	A, 223, 392
udpT		82	Hexose phosphate transport	A, 223, 392
uidA		36	gurA; β-d-glucuronidase (EC 3.2.1.31)	A, 452
uida		36	Operator sequence for uidA	452
uidB		36	Regulatory gene	A, 452
umuC		25	Induction of mutations by UV; sensitivity to UV	304
uncA	Uncoupling	83	F₁-component of ATP-synthesizing system, α-subunit	A, 139, 143, 199, 305, 551, 641, 642
uncB	Uncoupling	83	F₁-component of ATP-synthesizing system	A, 107, 139, 199, 230, 641, 642
uncC	Uncoupling	83	F₁-component of ATP-synthesizing system, ε-subunit	A, 139, 198, 199, 641, 660, E
uncD	Uncoupling	83	F₁-component of ATP-synthesizing system, β-subunit	106, 139, 158, 199, 552, 641, 642
uncE	Uncoupling	83	F₁-component of ATP-synthesizing system	A, 139, 140
uncG	Uncoupling	83	F₁-component of ATP-synthesizing system, λ-subunit	F
ung		56	Uracil-DNA-glycosylase	142
upp		53	uraF; uracil phosphoribosyltransferase (EC 2.4.2.9)	A, 474
ups		26	Efficiency of nonsense suppressors	122
ush		11	UDP-glucose-1-hydrolyase (5'-nucleotidase)	A, 35
wraA	UV	92	dAR; repair of UV damage to DNA; UV endonuclease	A, 427, 532
wraB	UV	17	dAR-1.6; repair of UV damage to DNA; UV endonuclease	A, 427, 457, 608
wraC	UV	42	dAR-4.5; repair of UV damage to DNA	A
wraD	UV	85	dAR-2, mutU, pde, rad, recL, wraE, wraS20; repair of UV damage to DNA	A, 341, 520, 573
uxaA		67	Altrionate hydrolase (EC 4.2.1.7)	A, 393, 443
uxaB	(52)		Altrionate oxidoreductase (EC 1.1.1.58)	A, 443
uxaC		67	Altrionate isomerase (EC 5.3.1.12)	A, 393, 443
uxaD		98	Mannolte hydrolase	A, 284
uxaE		98	Mannolte oxidoreductase (EC 1.1.1.57)	A, 284
uxaR		98	Regulatory gene	453
valS	Valine	96	val-act; valyl-tRNA synthetase (EC 6.1.1.9)	A, 309, 310
valT	Valine	(16)	Valine tRNA1	269
xthA		38	Exonuclease III	A, 652
xseA		53	Exonuclease VII	86, 631
xyl	Xylose	70	Utilization of D-xylose	A
xylf		41	Glucose-6-phosphate dehydrogenase (EC 1.1.1.49)	A

¹ Abbreviations: DAHP, 3-deoxy-D-arabinohexulosonate-7-phosphate; KAP, 7-oxo-8-aminopelargonate; DAPA, 7,8-diamino-pelargonate; CoA, coenzyme A; tRNA, transfer ribonucleic acid; DNA, deoxyribonucleic acid; ATP, GTP, and CTP, adenosine, guanosine, and cytosine 5'-triphosphate, respectively; UDP and TDP, uridine and thymidine 5'-diphosphate, respectively; IMP, UMP, and GMP, inosine, uridine, and guanosine 5'-monophosphate, respectively; cyclic AMP, cyclic adenosine 3',5'-monophosphate; ATPase, adenosine triphosphatase; dUTPase, deoxyuridine triphosphatase; NAD, nicotinamide adenine dinucleotide; NADH, reduced NAD; NADP, NADP; phosphate; UV, ultraviolet light.

² Numbers refer to time scale shown in Fig. 1. Parentheses indicate approximate map locations.

³ Numbers refer to Literature Cited. The letter A refers to Literature Cited in Table 2 of reference 24. The other letters refer to personal communications from the following persons; (B) S. D. Barbour; (C) J. Calvo; (D) A. J. Clark; (E) E. C. Cox; (F) G. B. Cox; (G) B. Didierichsen; (H) G. E. Eggertsson; (I) J. Felton and A. Wright; (J) J. Foulad; (J) J. Garwin and J. E. Cronan, Jr.; (K) J. R. Guest; (L) P. E. Hartman; (M) R. W. Hogg; (R) P. K. Krell; (O) A. J. Laird; (P) A. B. Lenney and P. Margolin; (Q) A. Ohta and W. Dowhan; (R) D. Mount and J. Little; (S) H. Osako; (T) J. S. Parkinson; (U) C. H. R. Raetz; (V) E. Seeberg; I. Seng, T. Lindahl, and P. Karran; (W) B. G. Spratt; (X) R. T. Vinopal; (Y) J. R. Walker; (Z) I. Young.
with that of *S. typhimurium*, we have adopted here the *Salmonella* nomenclature used for renaming genes involved in the utilization of amino acids: these locus symbols consist of a single letter coding for the amino acid, followed by the letters *ut* (for "utilization"). Thus, the old symbol *poaA* on the *E. coli* map for the locus coding for proline oxidase has been changed to *putA* as used in *Salmonella*, where this locus is better understood. The symbol *strB* on the *E. coli* map has been changed herein to *strC*, to avoid confusion with the better-known locus called *strB* in *Salmonella*.

It behooves authors who are thinking of coining a new locus symbol to attempt to determine whether or not the symbol that they are considering has been, or is about to be, used to designate another locus in either one of these organisms. Previous use of a gene symbol can be determined by consulting the literature and the most recent genetic maps for the two organisms, including the tables of outmoded gene symbols that have been reduced to synonymy. Often the intent to use a gene symbol is registered with the keepers of the Genetic Stock Centers for these organisms: B. J. Bachmann for *E. coli* and K. E. Sanderson, Department of Biology, University of Calgary, Calgary, Alberta, Canada T2N 1N4, for *Salmonella*. Numbers for the designation of mutant alleles are also registered in the two Stock Centers. Blocks of allele numbers are assigned to research workers for the designation of mutations that are to be described in publications or distributed to other laboratories.

COMMENTS ON THE LINKAGE MAP

The many minor changes in gene order, map distances, and nomenclature for individual markers on the map are now too numerous to discuss individually. The experimental basis for these changes can be found in Literature Cited. Four markers that were on the 1976 map have been removed altogether from the map drawing and the tables: *ast* and *lar*, which have not been found in *E. coli* K-12; *dnaH* (32); and *rplH* (483). Some markers have been found to be identical to other genes that had been placed on the map earlier. The symbols for these markers are now given in Table 1 as synonyms for the earlier mapped loci: e.g., *recL* and *urrE* are now synonyms for *urrD* (341, 520, 573).

An outmoded gene designation can be found by first scanning in Table 1 the synonyms given for loci having that same gene symbol. Thus, *urrE* will be found as a synonym under *urrD*. If the designation is not found in this way, then the gene symbol is now different and the outmoded designation will be found in Table 2. Thus, *recL* is listed in Table 2, although *urrE* is not.

Some of the major changes and outstanding problems encountered in drawing the linkage map require discussion. One of the two cotransduction gaps that remained on the 1976 map has been closed. Cotransduction has been obtained between markers across the gap between *valS* and the *hsd* operon in the 90-min region (284). These data, some of which involved cotransduction with an uncharacterized and undesignated temperature-sensitive mutation not placed on the linkage map herein, indicate that this region is over 1 min shorter than it was thought to be in 1976. New time-of-entry data for this region support the shorter map distance (K. B. Low, unpublished data).

There are still at least two cotransduction gaps on the map, however. The removal of *plsB* from the 70-min region of the map has left a gap between the *pit* and *kdgK* loci. The large gap in the 30-min region containing the terminus of replication (*terC*) is still a mystery. Two markers of the Rac prophage (*recE* and *sbcA*) have been mapped by cotransduction around 2 min clockwise from *trp* (P. Kuempel, personal communication); *relB* (139, 149) and *ksgB* (S. Barbour and P. Kuempel, personal communications) have been mapped by cotransduction around 1 min counterclockwise from *man*. This leaves, between these two pairs of markers, a gap of over 4.5 min, by time-of-entry, in which no markers have been mapped by cotransduction. It is still not known whether this region of the map accurately represents a segment of the genome (i.e., DNA) or is only an artifact resulting

Fig. 1. Linear-scale drawings representing the circular linkage map of *E. coli* K-12. The time scale of 100 min, beginning arbitrarily with zero at the *thr* locus, is based on the results of interrupted-conjugation experiments. The genetic symbols used in this figure are defined in Table 1. The outmoded gene symbols *malA*, *malB*, *rnrA*, *rnrB*, *rnc*, *rmd*, *rnrE*, *rnf*, and *rnnG* have been used for the operons formerly so-designated as a matter of convenience, because of their wide usage in the past. Parentheses around a gene symbol indicate that the position of that marker is not well known and may have been determined only within 5 to 10 min. An asterisk indicates that a marker has been mapped more precisely but that its position with respect to nearby markers is not known. Arrows above genes and operons indicate the direction of transcription of these loci. For a comparison with the linkage map of *Salmonella typhimurium*, see reference 535. NOTE: The *rnnD* operon is placed incorrectly in Fig. 1. The correct position of this operon is at approximately 71.7 min on the linkage map.
Alternate symbol	Symbol in Table 1	Alternate symbol	Symbol in Table 1
acrB	gyrB	feuA	cir
ade	pur	feuB	fep
aid	fda	fim	pil
add_h	purD	flaJ	motA, motB
add_h3	purG	flaF	hag
ala-act	alaS	frdD	fns
alt	rpoD	ftsi	pbpB
amk	nkg	gad	nsp
anth	trpE	glmD	nagB
aph	lysC	glu	ppc
arg + ural	car	glut	gilA
arO	aroT	gly-act	glyS
asp	ppc	glyD	gpt
aspB	gilB	gpp	gpt
ata	attP22	gpt	ptsG
bfe	btuB	gptB	ptsM
blu	pgl, pgm, malP	groE	mop
brnP	iuH	groN	rpoB
cap	car, crp	groP	dnaB, dnaJ, dnaK
capR	lon	grpA	dnaA
cat	ptsG	grpC	dnaJ, dnaK
cbr	fep	grpF	dnaK
cby	fep	gts	qmeA
cer	btuB	gurA	uID
cheC	tolA	gut	srl
cim	tolA	gxu	gpt
cmlB	ompF	H	hag
coa	ompF	Hs	hsd
colEl-1i	tolC	Hs	thrA
con	ompA, rfa	hsm	hsdM
Cou	gyrB	hsp	hsd
cqsA	rrrA	hsr	hsdR
cqsB	rrrC	hss	hsdS
cqsC	rrrF	icl	aceA
cqsD	rrrD	ile	ilcA
CR	ptsG	ind	tnaA
cru	nupC	ins	glyV, glyW
cry	ompB, ompF	K12	rpsG
cte	ptsH, ptsI	kac	kdp
cxr	ccm	kgdA	eda
dad	alnA	kga	eda
dagA	cycA	kmt	ompB
dap + hom	asd	lcs	asnS
dar	uvr	lexB	recA
deg	lon	lexC	sbb
ddbB	bioR	lop	ligAo
dhl	ldp	lips	rfa
dir	lon	lps	rfa
dnaF	nrdA	lss	libR
dnaL	lig	lys + met	sucA, sucB
dnaS	dut	mas	aceB
dra	deoC	M6	acaA
drm	deoB	mbl	acaA
eps	rpsE	mec	dcm
eryA	rplD	meoA	ompC
eryB	rplV	mlpA	lpp
exbA	tonB	mon	envB
exprA	lexA	mni	manC
exprB	ssb	mpt	ptsM
Alternate symbol	Symbol in Table 1	Alternate symbol	Symbol in Table 1
------------------	------------------	------------------	------------------
mra	murF	sbl	srl
mtcA	acrA	sec	hemF
mtcB	tolC	sep	phpB
muc	lon	sfiA	sulA
mutU	uvrD	sfiB	sulB
nalA	gyra	sof	dut
nam	pncA	som	rfb
nar	chl	spcA	rpsE
ncf	hemB	spr	lexA
neaA	rpsQ	strA	rpsL
nic	nad	stsB	rimH
nIR	fhr	stv	rpoB
nitA	rho	su, su	sup
nitB	rpoB	sud2	rpsD
nuc	deo	sufD	glyU
nupA	txs	sun	glyT
old	fad	sumA	sun
ole	fadR	sumB	rpoB
ompE	nmpA	supV20	glyU
par	ompC	T1rec	T1, T5rec
pdeB	uvrD	tonB	tonA
pdeC	pig	T6rec	tsx
pdxF	serC	tabB	tabA
pea	azi	tD	tA
pel	ptsM	talA	talD
phe-act	pheS	talD	alaU
phx	rfa	tgi	alaU
PMG	mgl	tgtA	lpcA
poaA	putA	tgtB	ptaG
poh	oriC	tgtC	gliT
polC	dnaE	tgtE	gliU
pon	lpcB, mrc	thyR	glyU
popA	hemH	th0	deoB, deoC
popB	hemF	tabF	mop
popE	hemC	tabD	rpoB, rpoC
prd	fuc	tA	rpoB
prv	mutH	tI	rpoB
psuA	rho	tii	rpoB
pup	deoD	tiiD	rpoB
pyrA	car	toIF	rpoB
rad	uvrD	toIG	rpoB
ramA	rpsD	toP	rpoB
ramB	rimF	tsp	rpoB
RC	rel	tre	rpoB
recL	uvrD	trP	rpoB
refl	tolC	try	rpoB
refII	cet	tryp	rpoB
relC	rplK	ts-9	rpoB
res	rimF	tsnC	rpoB
resA	polA	tsu	rpoB
RMG	mglR	tss	rpoB
rm	hsd	ass	rpoB
rnsA	rna	umuA	rpoB
rnsC	rho	umuB	rpoB
rodY	envB	uraF	rpoB
ron	rpoB	usgA	rpoB
rorA	recB	uvrF	rpoB
rps	rps	val-act	rpoB
rpy	rpl	valS	rpoB
rps	rpm	xenA	rpoB
		zab	rpoB
		recA	rpoB
from a slowing of time-of-entry in this region. Experiments indicating a slowing of chromosomal replication across the terminus suggest that the latter may be the case but are not yet conclusive (336, 337).

There may be yet a third cotransduction gap on the map, in the 40-min region. Efforts to reproduce the cotransduction data which spanned the gap between non and the ato cluster at the time of the 1976 map, utilizing cotransduction between his, ptsF, fpk, and nalA (now gyrA), have not been successful (91). It is possible that a gap not spanned by cotransduction still remains between udk and the mgl cluster. Time-of-entry data do not indicate that this region is longer than shown on the present map; cotransduction of udk and the mgl cluster should be possible.

A very perplexing problem in this region concerns the map location of the metG marker. Efforts to obtain cotransduction of metG with fpk and nalA (now gyrA) have failed (91). In E. coli strain C, metG has been shown to lie roughly 2.5 min clockwise from his, and metG and gat can be cotransduced into E. coli C from strain K-12 at high frequency. metG cotransduces with udk in Salmonella (535). We have not included on the linkage map the loci atl and rtl, found in E. coli C but not in E. coli B or K-12, which map in this region when transduced into K-12 derivatives. Studies of these loci (509) indicate that there is nonhomology between strains C and K-12 in this region. Recent studies of metG (79a) have indicated that control of the expression of this locus is complex and is affected by other loci in this region.

The failure to obtain cotransduction of metG with other markers in this region and the possibility of a cotransduction gap between udk and the mgl cluster are suggestive but perhaps misleading coincidences. The problem cannot be solved by assuming that the gap is large and that metG is in the middle of it. P2 eductants which are thought to be deleted for the region including udk and the mgl cluster are not deleted for metG, although they are deleted for a locus which affects the expression of metG (79a). For lack of data satisfactorily positioning metG, we have placed this marker in parentheses at approximately 45 min on the map, next to genes with which it apparently cannot be cotransduced.

PHYSICAL LENGTH VERSUS LENGTH IN MAP UNITS

In the previous edition of the E. coli K-12 genetic map (24), an estimate of the length of DNA equivalent to 1 min of map length was given to be 41 kilobases (kb). This was derived from the lengths of chromosomal regions on F-prime factors relative to the length of the F factor, which was taken as 94.5 kb. New estimates of the number of kilobases per minute can be made using the lengths of intervals shown on the present map. Another correction factor arises from the standard of length used in the original electron microscopic measurements. Bacteriophage φX174 was assumed originally to be 5,250 bases long and, since its actual length has been determined to be 5,386 bases, an increase by a factor of 5,386/5,250 = 1.03 should be applied to all lengths reported using the original standard (N. Davidson, personal communication). Using two of the intervals discussed for the last map, therefore, amended values are:

on F-prime F14, iluD-argC:

\[\begin{align*}
186.5 \times (1.03) & = 92 \text{ kb/min} \\
& = 39 \text{ kb/min}
\end{align*} \]

on F-prime KLF5, polA-rpoB:

\[\begin{align*}
126 \times (1.03) & = 81 \text{ kb/min} \\
& = 38 \text{ kb/min}
\end{align*} \]

Of these values, the one for the iluD-argC interval, i.e., 39 kb/min, was derived using measurements of an F-prime factor (F14) that was less likely to have carried undetected deletions than in the other case (24), and for this reason the value of 39 kb/min may be the most accurate. Additional electron microscopic heteroduplex analysis (457) has indicated that the total amount of DNA between lac and gal is 412.5 \times (1.03) kb, corresponding to 8.8 min of map length, or 48 kb/min. The somewhat higher value determined for this interval as compared with those discussed above might be due to some degree of position dependence of physical length per unit of recombinational length, as suggested by regional variations in transduction frequency (and thus cotransduction frequency) observed for E. coli K-12 (392). These results emphasize the fact that some uncertainty remains in the absolute lengths indicated on the map as a whole.

E. COLI GENETIC MECHANISMS AND TECHNIQUES

The continued proliferation of new powerful techniques for genetic and physical analyses of E. coli and related organisms is impressive. Representative examples of these techniques are listed in Table 3. Of particular note is the useful spectrum of manipulations made possible by insertion sequences and transposons, including bacteriophage Mu (154, 315, 555), and also the variety of methods for cloning regions of the E. coli DNA, a few of which are listed in Table 3.
Table 3. Key or recent references to selected techniques in E. coli genetics

Technique*	Reference(s)*
MUTANT ISOLATION	
General survey	A-470
Specificities of mutagens and mutators; distribution of nonsense mutations	28, 104, 105, 417
Mutations in mut strains	See mut loci
Mutagenesis by transposon insertions	
General aspects	228, 314, 315, 555
Random, using nonconjugative plasmids	532
Localized mutagenesis	
Using bacteriophage P1	628
Using bacteriophage Mu transfer by Hfr	610
Using nitrosoguanidine	454a
Mutant enrichment	
Penicillin selection, plate method	163
Penicillin selection, DNA repair mutants	531a
DAP starvation, plate method	112
Nalidixic acid selection	A-309
Auxotrophic mutations, in polA background	A-37
Mutations in essential genes	
Amber mutations	126, 274
Spontaneous mutations affecting protein or RNA synthesis	279
Mutations affecting lipid synthesis	499
Use of partial diploids	19, A-639
Large-scale automated procedure	554
Mass screening for CO₂ nonproducers	611
Mass replica plating, for non-UV-mutable mutants	304
Mutations affecting suppression and misreading of levels	A-193
Isolation of deletion mutants	
On F-primes	11
In lacI	544
On bacteriophage lambda	672
Operon analysis, using phages Mu and λ	413, 543, 560, 631, A-625
Eduction of his region	A-661
Isolation of promoter mutants, using gene fusion	44
GENETIC MAPPING	
Conjugation	
Time-of-entry	24, 376, 691, A-66, A-435
Rapid mapping	376
Gradient of transfer and genetic analysis	A-160, A-161, A-691
Early marker effects	A-253, A-429
Allele-specific effects; negative interference	104, A-445, A-497
Recombinational hot spots	60, 542
Radiation-induced recombination	A-707
Intergeneric crosses	508, 613, 614, 616
Transformation	
Mapping function	256
Transduction	
By bacteriophage P1	
Mapping function and position effects	392, A-416, A-736
Allele-specific effects	A-112, A-140
By bacteriophage Mu	25
By bacteriophage T1	141
By bacteriophage T4	658
Transductional shortening of F-primes; deletion analysis	A-457, A-510
Problems in transductional mapping of plasmids	419
Use of transposon pools, duplications (gene trapping)	315
Merodiploids, gene dosage	269, 377
Gene expression in regions near induced prophages	269
Mutation and transposition by bacteriophage Mu; analysis of gene sequence and transcriptional units	73, 154, 307, 423-425
TABLE 3—Continued

Technique*	Reference(s)ᵇ
In vitro synthesis of proteins coded for by transducing fragments	367, 369, 425
Deletion analysis, fine structure, deletions of prophages	104, 425, 466, 544, A-610
Physical versus recombinational lengths	131, 457, 469, 503
Physical mapping by RNA-DNA hybridization	668

TRANPOSITION

Using temperature-sensitive F-primes | A-32 |
By integrative suppression; review of related methods | 267 |
By bacteriophage Mu | 154 |
Transposon technology | 313-315, 555 |
Transposon-mediated R factor integration | 81, 114 |

FUSION

R factor fusions with bacteriophage P1 or P22 | 419 |
Gene fusions, using λ-Mu hybrids | 43, 75, 564, 565, 566, 578 |
F-prime fusions | 469 |
Novel F-prime transductants; deletions on F-primes | 239, 641 |
Fusion by deletion, other examples | 420, A-379 |

CLONING

Banks of E. coli fragments; cloning onto plasmids by poly(A)-poly(T) tailing or by restriction enzyme cleavage | 54, 93, 97, 243, 369, 387, 393, 526, 532, 599, 642, 644, 694, A-383 |
Subcloning; maxicells | 446, 533, 675 |
From an F-prime factor | 568 |
Colony screening by nucleic acid hybridization | 212 |
Transducing phages from abnormal attachment sites | 398, 548a |
General method | 176, 329, 387, 393, 516, 642 |
Examples | 62, 70, 270, 315, 694, A-383 |
Directed integration of bacteriophage | 251, 409, 410, 431, 587, 642, 645 |
Cloning onto minichromosomes or λadv; selection for origins of replication | 75, 267, 469, 564, 694, 695 |
Fusions to orient genes near attachment sites | 694 |

* DAP, Diaminopimelic acid; poly(A), polyadenylate; poly(T), polythymidylate.
* Reference numbers preceded by "A-" refer to references in the previous edition of the map (24).

Increased evidence for the role of insertion sequences and transposons in normal E. coli biology has come from further analysis of the sites of recombination involved in Hfr formation (from F') and F-prime formation (from Hfr). In examples of both of these phenomena, the crossover is indicated to have occurred between preexisting insertion sequences (129, 131, 457, 458). The involvement of transposition events in mobilization of plasmids in conjugation has been recently discussed in a review of various stages in conjugal transmission of plasmids (90).

In a recent review of modes of gene transfer in bacteria, examples of potentially useful gene transfer systems can be found (378). Since that review, another potentially advantageous gene transfer system for E. coli has been reported, namely, generalized transduction using mutants of bacteriophage T4 (658). Although it is not yet clear whether or not all loci of E. coli are transducible by T4, the length of DNA carried in T4 transducing particles appears to be approximately twice that of the more commonly used bacteriophage, P1. Thus, T4 transduction may be of special use in detecting longer-range transductional linkages. For most basic techniques in genetic analysis involving gene transfer, we refer to previous reviews (376, 377, and references 151 and 470 contained in the last map review [24]). A convenient set of Hfr and F-prime strains for use in conjugational genetic analysis is shown in Fig. 2.

REPEATED GENES: AN IMPORTANT ASPECT OF GENE ARRANGEMENT IN E. COLI?

In the past few years, increasing evidence has revealed the presence of duplications or near-
duplications on the *E. coli* K-12 chromosome. This is manifested in at least two ways. First, electron microscopic evidence indicates numerous inverted repeats of several discrete sizes, some of which have approximately the same lengths as known insertion sequences such as IS1, IS2, IS3, IS4, and γ6 (89, 130). The lengths of DNA bracketed by these sets of inverted repeats are also nonrandom, and numerous examples of approximately 22, 28, and 69 kb were observed. In one study, approximately 14% of the entire chromosome was estimated to lie between such inverted repeats (89).

The second type of duplication alluded to above is the occurrence of more than one copy of genes whose products have known metabolic functions. The sequencing of two genes for tRNA^{tyr}, i.e., tyr^T and tyr^U, shows that the DNAs corresponding to the mature tRNA's are identical except for two bases, although the adjoining base sequences are very different (517, 518). Furthermore, a sequence of 178 bases including the end of only one of these genes (tyr^T) is repeated tandemly more than threefold, downstream from tyr^T (146). tyr^T and tyr^U are located very far from each other on the map, at 27 and 89 min, respectively. Next to tyr^T lies an apparent tandem duplication, tyr^V. Another example of apparent gene duplication is the genes arg^I and arg^F, which both code for monomers of the same trimeric enzyme, ornithine carbamoyltransferase. These two genes are also well separated on the map, at 96 and 6 min, respectively, and their base sequences differ only by perhaps 5% (309, 310, 358). In spite of this divergence, the mature trimeric enzyme consists of
various combinations of monomers from the two genes. Pure trimers coded for by the two genes separately show very similar enzyme activities but differ significantly in thermal stabilities (358, 553). Since \textit{argF} is not found in \textit{E. coli} B, \textit{E. coli} W, or several other closely related enteric bacterial species, it may be that \textit{argF} evolved relatively recently in \textit{E. coli} K-12 and is derived from a duplication of \textit{argI}.

Other recently studied examples of multiple gene copies include in particular the seven rRNA operons \textit{rrnA} through \textit{rrnG}. Although located at seven different map locations, these operons include genes for 5S rRNA, 16S rRNA, and 23S rRNA, and the corresponding genes are nearly homologous but in general not identical (55, 124, 307, 424, 640). Another remarkable aspect of some of these operons is that the rRNA genes are coupled to tRNA genes, which differ in number and species from operon to operon (423, 424). Thus, not only have the rRNA genes undergone what appears to be gene duplication in the course of evolution, but also aspects of the organization of these genes appear to have been preserved as well. It is also interesting that in general the bulk of genes for tRNA are not either randomly distributed or all clustered, but lie in several regions corresponding to apparent high gene density on the map (269), and in many cases appear to exist as tandem repeats of the same tRNA gene, with up to five copies of a given tRNA gene per rRNA operon (271). One further example of duplication of a gene whose product is produced in large amounts is the case of \textit{tufA} and \textit{tufB}, each of which codes for a species of elongation factor Tu, which in total comprises over 5% of the cellular protein by weight (182, 367, 368). Here again, the base sequences of the duplicated genes, although located in different regions of the genetic map, are very nearly but not completely identical (183, 189).

The existence of many regions of the chromosome bounded by inverted repeats, mentioned earlier, indicates configurations that are at least topologically equivalent to transposons (313) and suggests that a major avenue for the generation of duplicate genes in \textit{E. coli} has been via transposition of genetic material from one region to another, with retention of one copy at the original location. A detailed discussion of map position of related genes in \textit{E. coli} K-12 and \textit{S. typhimurium} suggests a number of possible insertions and deletions during evolutionary divergence of these closely related species (511), although any such conclusions must depend ultimately on accurate physical comparison of particular map regions. These authors also review the properties of numerous unstable genetic duplications that have been isolated in the laboratory. Genes involved in glucose catabolism have been found to be clustered at four regions separated by 90° on the map (512), and the authors suggest that two entire chromosome doublings could have led to evolution of related genes. This is to be contrasted with the examples of exact or near-exact gene duplication summarized above, in which the locations of duplicate genes seem to bear no regular relation to each other (see also 83). For these cases, the idea of transposition-like processes is at present the most attractive.

\section*{ACKNOWLEDGMENTS}

The revision of the genetic map was supported by National Science Foundation grant DEB75-04332. This support is gratefully acknowledged.

The revision of the map would not have been possible without the friendly help of many \textit{E. coli} geneticists, too numerous to list here, who generously gave of their time, supplying answers to questions, advice, and encouragement when needed. Gratitude is particularly due to those listed in the footnote to Table 1, who shared unpublished data; to those who sent manuscripts before publication so that the revised map could be more up-to-date and more accurate; and to the 11 reviewers, and their colleagues, who took the time to check the manuscript carefully. We also express our gratitude and admiration to B. Pope of the Medical Illustration Department of Yale University School of Medicine, who once again has produced an elegant drawing of the map.

\section*{LITERATURE CITED}

1. Abou-Jaoude, A., M. Lepeletier, J. Ratouchniaik, M. Chippaux, and M. C. Pascal. 1978. Nitrite reduction in \textit{Escherichia coli}: genetic analysis of \textit{nir} mutants. Mol. Gen. Genet. 167:113-118.

2. Achtem, M., S. Schwuchow, R. Helmut, G. Morelli, and P. A. Manning. 1978. Cell-cell interactions in conjugating \textit{Escherichia coli} \textit{Col} ÷ mutants and stabilization of mating aggregates. Mol. Gen. Genet. 164:171-183.

3. Adhya, S., and W. Miller. 1979. Modulation of the two promoters of the galactose operon of \textit{Escherichia coli}. Nature (London) 279:492-494.

4. Ahmed, A. 1973. Mechanism of repression of methionine biosynthesis in \textit{Escherichia coli} I. The role of methionine, \textit{S}-adenosylmethionine, and methionyltransfer ribonucleic acid in repression. Mol. Gen. Genet. 123:299-324.

5. Albrechtsen, H., K. Hammer-Jepsersen, A. Munch-Petersen, and N. Fili. 1976. Multiple regulation of nucleoside catabolizing enzymes: effects of a polar \textit{dra} mutation on the deoxy enzymes. Mol. Gen. Genet. 146:139-145.

6. Almata, D., and H. L. Kornberg. 1975. Regulation of fructose uptake by glucose in \textit{Escherichia coli}. J. Gen. Microbiol. 90:157-168.

7. An, G., J. Justesen, R. J. Watson, and J. D.
Friesen, 1979. Cloning the spoT gene of Escherichia coli: identification of the spoT gene product. J. Bacteriol. 137:1100–1110.

9. Anderson, J. J., and D. L. Oxender. 1977. Escherichia coli transport mutants lacking binding protein and other components of the branched-chain amino acid transport systems. J. Bacteriol. 130:384–392.

10. Anderson, J. J., S. C. Quay, and D. L. Oxender. 1976. Mapping of two loci affecting the regulation of branched-chain amino acid transport in Escherichia coli K-12. J. Bacteriol. 126:80–90.

11. Andréasson, O. S., R. A. Magnúsdóttir, and G. Eggertsson. 1976. Deletions of ribosomal protein genes in Escherichia coli merodiploids heterozygous for resistance to streptomycin and spectinomycin. Mol. Gen. Genet. 144:127–130.

12. Andrews, K. J., and E. C. C. Lin. 1976. Thiogalactoside transacetylase of the lactose operon as an enzyme for detoxification. J. Bacteriol. 128:510–513.

13. Apirion, D. 1978. Isolation, genetic mapping, and some characterization of a mutation in Escherichia coli which affects the processing of ribonucleic acid. Genetics 90:659–671.

14. Apirion, D. 1979. Genetic mapping and some characterization of the rnpA49 mutation of Escherichia coli which affects RNA processing enzyme ribonuclease P. Genetics, in press.

15. Apirion, D., J. Neil, and N. Watson. 1976. Reverpants from RNase III negative strains of Escherichia coli. Mol. Gen. Genet. 149:201–210.

16. Apontoweil, P., and W. Berends. 1975. Mapping of gshA, a gene for the biosynthesis of glutathione in Escherichia coli K-12. Mol. Gen. Genet. 141:91–95.

17. Apostolakos, D., and E. A. Birge. 1979. A thermosensitive pdsA mutation affecting vitamin B6 biosynthesis in Escherichia coli K-12. Curr. Microbiol. 2:39–42.

18. Apostolakos, D., P. A. Menter, H. C. Reeves, and E. A. Birge. 1979. Location of the structural gene for isocitrate dehydrogenase of Escherichia coli K-12. Genetics 91:52–62.

19. Armstrong, K. A., and R. K. Herman. 1976. Method for the isolation of Escherichia coli K-12 mutants deficient in essential genes. J. Bacteriol. 126:38–47.

20. Arraj, J. A., and J. H. Campbell. 1975. Isolation and characterization of the newly evolved ebg β-galactosidase of Escherichia coli K-12. J. Bacteriol. 124:849–856.

21. Austin, S. 1976. Wild-type and mutant in vitro products of an operon for ribonucleic acid polymerase subunits. J. Bacteriol. 127:32–39.

22. Babul, J. 1978. Phosphoerucokinases from Escherichia coli. Purification and characterization of the nonallosteric enzyme. J. Biol. Chem. 253:4380–4385.

23. Bächli, R., and H. L. Kornberg. 1975. Genes involved in the uptake and catabolism of gluconate by Escherichia coli. J. Gen. Microbiol. 90:321–335.

24. Bachmann, B. J., K. B. Low, and A. L. Taylor. 1976. Recalibrated linkage map of Escherichia coli K-12. Bacteriol. Rev. 40:116–167.

25. Bade, E. G., M. M. Howe, and L. Rawluk. 1978. Preferential generalized transduction by bacteriophage Mu. Mol. Gen. Genet. 160:89–94.

26. Baez, M., D. W. Patin, and D. H. Calhoun. 1979. Deletion mapping of the iloGOEDAC genes of Escherichia coli K-12. Mol. Gen. Genet. 169:289–297.

27. Bahl, C. P., R. Wu, J. Stawinsky, and S. A. Narang. 1977. Minimal length of the lactose operator sequence for the specific recognition, by the lactose repressor. Proc. Natl. Acad. Sci. U.S.A. 74:966–970.

28. Bale, A., M. D’Aiaraco, and M. G. Marinus. 1979. Characterization of DNA adenine methyltransferase mutants of Escherichia coli K-12. Mutat. Res. 59:157–165.

29. Barnes, W. M. 1978. DNA sequence from the histidine operon control region: seven histidine codons in a row. Proc. Natl. Acad. Sci. U.S.A. 75:4281–4285.

30. Bassford, P., and J. Beckwith. 1979. Escherichia coli mutants accumulating the precursor of a secreted protein in the cytoplasm. Nature (London) 277:538–541.

31. Bassford, P. J., Jr., C. Bradbeer, R. J. Kadner, and C. A. Schnaitman. 1976. Transport of vitamin B12 in tonB mutants. J. Bacteriol. 128:242–247.

32. Bassford, P. J., Jr., D. L. Diedrich, C. L. Schnaitman, and P. Reeves. 1977. Outer membrane proteins of Escherichia coli. VII. Protein alteration in bacteriophage-resistant mutants. J. Bacteriol. 131:606–622.

33. Bassford, P. J., Jr., and R. J. Kadner. 1977. Genetic analysis of components involved in vitamin B12 uptake in Escherichia coli. J. Bacteriol. 132:796–805.

34. Bavoll, P., H. Nikaido, and K. von Meyenburg. 1977. Pleiotropic transport mutants of Escherichia coli lack porin, a major outer membrane protein. Mol. Gen. Genet. 158:23–33.

35. Beachman, I. R., and E. Yagil. 1976. Genetic location of the gene (ush) specifying periplasmic uridine 5′-diphosphate glucose hydrodrolase (5′-nucleotidase) in Escherichia coli K-12. J. Bacteriol. 128:487–489.

36. Becerra de Lares, L., J. Ratouchnik, and F. Casse. 1977. Chromosomal location of gene governing the trehalose utilization in Escherichia coli K-12. Mol. Gen. Genet. 152:105–108.

37. Beck, B. D., P. G. Arscott, and A. Jacobson. 1978. Novel properties of bacterial elongation factor Tu. Proc. Natl. Acad. Sci. U.S.A. 75:1250–1254.

38. Bender, R. A., A. Macaluso, and B. Magasanik. 1976. Glutamate dehydrogenase: genetic mapping and isolation of regulatory mutants of Klebsiella aerogenes. J. Bacteriol. 128:141–148.

39. Bendia, D. S., J. Parker, and J. D. Friesen.
1977. Fine-structure mapping of the rts, rplK, rplL, and rpoB genes of *Escherichia coli*. J. Bacteriol. 129:536–539.

40. Bennett, G. N., M. E. Schweingruber, K. D. Brown, C. Squires, and C. Yanofsky. 1978. Nucleotide sequence of the promoter-operator region of the tryptophan operon of *Escherichia coli*. J. Mol. Biol. 121:113–137.

41. Bennett, G. N., and C. Yanofsky. 1978. Sequence analysis of operator constitutive mutants of the tryptophan operon of *Escherichia coli*. J. Mol. Biol. 121:179–192.

42. Berg, F. E., R. Gayda, H. Avni, B. Zehnbauer, and A. Markovitz. 1978. Cloning of *Escherichia coli* DNA that controls cell division and capsular polysaccharide synthesis. Proc. Natl. Acad. Sci. U.S.A. 73:697–701.

43. Berman, M. L., and J. Beckwith. 1979. Fusions of the lac operon to the transfer RNA gene tyr*T of *Escherichia coli*. J. Mol. Biol. 130:285–301.

44. Berman, M. L., and J. Beckwith. 1979. Use of gene fusions to isolate promoter mutants in the transfer RNA gene tyr*T of *Escherichia coli*. J. Mol. Biol. 130:303–315.

45. Bertrand, K., C. Squires, and C. Yanofsky. 1976. Transcription termination in vivo in the leader region of the tryptophan operon of *Escherichia coli*. J. Mol. Biol. 103:319–337.

46. Bezanson, G. S., and V. N. Iyer. 1975. dnaB gene of *Escherichia coli* K-12 affects superinfection inhibition between F* plasmids. J. Bacteriol. 123:137–146.

47. Björk, G. R. 1975. Transduational mapping of gene trmA responsible for the production of 5-methyluridine in transfer ribonucleic acid of *Escherichia coli*. J. Bacteriol. 124:92–98.

48. Björk, G. R., and K. Kjellin-Stráby. 1978. *Escherichia coli* mutants with defects in the biosynthesis of 5-methylaminomethyl-2-thiouridine or 1-methylguanosine in their tRNA. J. Bacteriol. 133:508–517.

49. Björk, G. R., and F. C. Neidhardt. 1975. Physiological and biochemical studies on the function of 5-methyluridine in the transfer ribonucleic acid of *Escherichia coli*. J. Bacteriol. 124:99–111.

50. Blinkowa, A., and G. Gawecka. 1979. Mechanism of conjugation. II. Characterization of an Hfr dna ts mutant of *Escherichia coli* K-12. Mol. Gen. Genet. 172:107–111.

51. Bloom, F. R., M. S. Levin, F. Poor, and B. Tyler. 1978. Regulation of glutamine synthetase formation in *Escherichia coli*: characterization of mutants lacking the uridylyltransferase. J. Bacteriol. 134:569–577.

52. Bohman, K., and L. A. Isaksson. 1978. Mutations in the tryptophanyl-transfer ribonucleic acid ligase of *E. coli* causing temperature-sensitivity for growth. Mol. Gen. Genet. 161:285–289.

53. Bollen, A., T. Cabezón, M. DeWilde, R. Villarroel, and H. Herzog. 1975. Alteration of ribosomal protein S17 by mutation linked to neamine resistance in *Escherichia coli*. I. General properties of neaA mutants. J. Mol. Biol. 99:795–806.

54. Borck, K., J. D. Beggs, W. J. Brummer, A. S. Hopkins, and N. E. Murray. 1976. The construction in vitro of transducing derivatives of phage lambda. Mol. Gen. Genet. 146:199–207.

55. Boros, I., A. Kiss, and P. Venetianer. 1979. Physical map of the seven ribosomal RNA genes of *Escherichia coli*. Nucleic Acids Res. 6:1817–1830.

56. Boyen, A., D. Charlier, M. Crabreel, R. Cinun, S. Palchauhduri, and N. Glansdorff. 1978. Studies on the control region of the bipolar argECBH operon. I. Effect of regulatory mutations and IS2 insertions. Mol. Gen. Genet. 161:185–196.

57. Bradbeer, C. M. L. Woodrow, and L. I. Khalifah. 1976. Transport of vitamin B12 in *Escherichia coli*: common receptor system for vitamin B12 and bacteriopeptide BP23 on the outer membrane of the cell envelope. J. Bacteriol. 125:1032–1039.

58. Braun, V., and H. J. Krieger-Brauer. 1977. Interrelationship of the phage λ receptor protein and maltose transport in mutants of *Escherichia coli* K-12. Biochim. Biophys. Acta 469:89–98.

59. Braun-Breton, C., and M. Hofnung. 1978. Explanations accounting for transduction by bacteriophage λ in maltose negative bacteriophage λ resistant mutants of *Escherichia coli* K-12. Mol. Gen. Genet. 159:143–149.

60. Bresler, S. E., S. V. Krivonogov, and V. A. Lanzov. 1978. Scale of the genetic map and genetic control of recombination after conjugation in *Escherichia coli* K-12. Mol. Gen. Genet. 168:337–346.

61. Bretscher, A. P., and S. Baumberg. 1976. Different transcription of the argECBH cluster of *Escherichia coli* K-12. Mutations which affect the control of enzyme synthesis. J. Mol. Biol. 102:205–220.

62. Brickman, E., and J. Beckwith. 1975. Analysis of the regulation of *Escherichia coli* alkaline phosphatase synthesis using deletions and non-transducing phages. J. Mol. Biol. 96:307–316.

63. Brosius, J., M. L. Palmer, P. J. Kennedy, and H. F. Noller. 1978. Complete nucleotide sequence of a 16s ribosomal RNA gene from *Escherichia coli*. Proc. Natl. Acad. Sci. U.S.A. 75:4801–4805.

64. Brown, C. S., R. West, R. H. Hilderman, F. T. Bayliss, and E. L. Kline. 1978. A new locus (leuK) affecting the regulation of branched-chain amino acid, histidine, and tryptophan biosynthetic enzymes. J. Bacteriol. 135:542–550.

65. Brown, T. D. K., M. C. Jones-Mortimer, and H. L. Kornberg. 1977. The enzymic interconversion of acetate and acetyl-coenzyme A in *Escherichia coli*. J. Gen. Microbiol. 102:327–336.

66. Brunel, F., and J. Davison. 1975. Bacterial mutants able to partly suppress the effect of N mutations in bacteriophage lambda. Mol. Gen.
Vol. 44, 1980

Genet. 138:167-180.

67. Bruni, C. B., V. Colantuoni, L. Sbordone, R. Cortese, and F. Blasi. 1977. Biochemical and regulatory properties of Escherichia coli K-12 hisT mutants. J. Bacteriol. 130:4-10.

68. Buckel, P. 1976. Identity of a gene responsible for suppression of aminoacyl-tRNA synthetase mutations with rpsT, the structural gene for ribosomal protein S20. Mol. Gen. Genet. 149:225-228.

69. Buxton, R. S., H. Albrechtsen, and K. Hammer-Jespersen. 1977. Overlapping transcriptional units in the deo operon of Escherichia coli K-12. Evidence from phage Mu-1 insertion mutants. J. Mol. Biol. 114:287-300.

70. Buxton, R. S., K. Hammer-Jespersen, and T. D. Hansen. 1978. Insertion of bacteriophage lambda into the deo operon of Escherichia coli and isolation of plaque-forming λ deo* transducing bacteriophages. J. Bacteriol. 138:668-681.

71. Cabezon, T., A. Herzog, M. DeWilde, R. Villarreal, and A. Bollen. 1976. Cooperative control of ribosomal fidelity by ribosomal proteins in Escherichia coli. III. A ram mutation in the structural gene for protein S5 (rpxE). Mol. Gen. Genet. 144:59-62.

72. Cabezon, T., A. Herzog, J. Petre, M. Yaguchi, and A. Bollen. 1977. Ribosomal assembly deficiency in an Escherichia coli thermosensitive mutant having an altered L24 ribosomal protein. J. Mol. Biol. 118:361-374.

73. Cabezon, T., F. Van Gijsegem, A. Toussaint, M. Faelen, and A. Bollen. 1978. Phage Mu-1 mediated transposition: a tool to study the organization of ribosomal protein genes in Escherichia coli. Mol. Gen. Genet. 161:291-296.

74. Calos, M. P. 1978. DNA sequence for a low-level promoter of the lac repressor gene and an 'up' promoter mutation. Nature (London) 274:762-765.

75. Casadaban, M. J. 1976. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol. 104:541-555.

76. Casadaban, M. J. 1976. Regulation of the regulatory gene for the arabinose pathway, araC. J. Mol. Biol. 104:557-566.

77. Cassan, M., E. Boy, F. Borne, and J. C. Patte. 1975. Regulation of the lysine biosynthetic pathway in Escherichia coli K-12: isolation of a cis-dominant constitutive mutant for AK III synthesis. J. Bacteriol. 123:391-399.

78. Casse, F. 1970. Mapping of the gene chlB controlling membrane bound nitrate reductase and formal hydrogen-lyase activities in Escherichia coli K-12. Biochem. Biophys. Res. Commun. 39:429-436.

79. Casse, F., M.-C. Pascal, M. Chippaux, and J. Ratouchniak. 1976. Genetic analysis of mutants from Escherichia coli K12 unable to grow anaerobically without exogenous acceptor. Mol. Gen. Genet. 148:337-340.

79a. Cassio, D., Y. Mathien, and J. P. Waller. 1975. 1975. Enhanced level and metabolic regulation of methionyl-transfer ribonuclease acid synthetase in different strains of Escherichia coli K-12. J. Bacteriol. 123:580-588.

80. Chai, T.-J., and J. Foulds. 1977. Escherichia coli K-12 tolF mutants: alterations in protein composition of the outer membrane. J. Bacteriol. 130:781-786.

81. Chandler, M., E. Roulet, L. Silver, E. Boy de la Tour, and L. Caro. 1979. Tn10 mediated integration of the plasmid R100.1 into the bacterial chromosome: inverse transposition. Mol. Gen. Genet. 173:23-30.

82. Chang, S., and J. Carbon. 1975. The nucleotide sequence of a precursor to the glycine- and threonine-specific transfer ribonuclease acids of Escherichia coli. J. Biol. Chem. 250:5542-5555.

83. Charlier, D., M. Crabeel, R. Cunin, and N. Glansdorff. 1979. Tandem and inverted repeats of arginine genes in Escherichia coli. Structural and evolutionary considerations. Mol. Gen. Genet. 174:75-88.

84. Charlier, D., M. Crabeel, S. Palchaudhuri, R. Cunin, A. Boyen, and N. Glansdorff. 1978. Heteroduplex analysis of regulatory mutations and of insertions (IS1, IS2, IS5) in the bipolar argECBH operon of Escherichia coli. Mol. Gen. Genet. 181:185-196.

85. Chartrand, P., D. Tardif, and A. Sasarman. 1979. Uroporphyrin- and coproporphyrin I-accumulating mutant of Escherichia coli K12. J. Gen. Microbiol. 110:61-66.

86. Chase, J. W., and C. C. Richardson. 1977. Escherichia coli mutants deficient in exonuclease VII. J. Bacteriol. 129:934-947.

87. Chen, P. L., and P. L. Carl. 1975. Genetic map location of the Escherichia coli dnaG gene. J. Bacteriol. 124:1613-1614.

88. Chippaux, M., D. Giudici, A. Abou-Jaoude, F. Casse, and M. C. Pascal. 1978. A mutation leading to the total lack of nitrite reductase activity in Escherichia coli K12. Mol. Gen. Genet. 160:225-229.

89. Chow, L. T. 1977. Sequence arrangements of the Escherichia coli chromosome and of putative insertion sequences, as revealed by electron microscopic heteroduplex studies. J. Mol. Biol. 113:611-621.

90. Clark, A. J., and G. J. Warren. 1979. Conjugal transmission of plasmids. Annu. Rev. Genet. 13:99-125.

91. Clark, D., and J. E. Cronan, Jr. 1977. Further mapping of several membrane lipid biosynthetic genes (fabC, fabB, gpsA, plsB) of Escherichia coli. J. Bacteriol. 132:549-554.

92. Clark, D., and J. E. Cronan, Jr. 1980. Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J. Bacteriol. 141:177-183.

93. Clarke, L., and J. Carbon. 1978. Biochemical construction and selection of hybrid plasmids containing specific segments of the Escherichia coli genome. Proc. Natl. Acad. Sci. U.S.A. 72:4361-4365.
94. Cleary, M. L., R. T. Garvin, and E. James. 1977. Synthesis of the Escherichia coli K12 isoenzymes of ornithine transcarbamylase, performed in vitro. Mol. Gen. Genet. 157:156-165.

95. Cleary, P. F., and D. Dykhuizen. 1974. Enzymatic reduction of D-biotin-d-sulfoxide with cell-free extracts of Escherichia coli. Biochem. Biophys. Res. Commun. 56:629-634.

96. Cohen, B. M., and E. W. Jones. 1976. New map location of idoA in Escherichia coli. Genetics 83:201-225.

97. Collins, C. J., D. A. Jackson, and F. A. J. de Vries. 1976. Biochemical construction of specific chimeric plasmids from ColE1 DNA and unfraccionated Escherichia coli DNA. Proc. Natl. Acad. Sci. U.S.A. 73:3838-3842.

98. Colome, J. G., W. Wilcox, and E. Englesberg. 1977. Constitutive mutations in the controlling site region of the araBAD operon of Escherichia coli B/r that decrease sensitivity to catechololite repression. J. Bacteriol. 129:948-958.

99. Colson, C., J. Lhoest, and C. Urlings. 1979. Genetics of ribosomal protein methylation in Escherichia coli III. Map position of two genes, prmA and prmB, governing methylation of proteins L11 and L3. Mol. Gen. Genet. 169:245-250.

100. Comer, M. M., and A. Böck. 1976. Genes for the α and β subunits of the phenylalanine-transfer ribonuclease synthetase of Escherichia coli. J. Bacteriol. 127:923-933.

101. Cooley, W., K. Sirotkin, R. Green, and L. Snyder. 1979. A new gene of Escherichia coli K-12 whose product participates in T4 bacteriophage late gene expression: interaction of lit with the T4-induced polynucleotide 3′-kinase 3′-phosphatase. J. Bacteriol. 140:83-91.

102. Cooper, R. A. 1978. The utilization of d-galactonate and d-/e-aux-3-deoxygalactonate by Escherichia coli K-12. Arch. Microbiol. 118:119-206.

103. Coppo, A., A. Manzi, J. F. Pulitzer, and H. Takahashi. 1975. Host mutant (tabD)-induced inhibition of bacteriophage T4 late transcription. II. Genetic characterization of mutants. J. Mol. Biol. 96:601-624.

104. Coulondre, C., and J. H. Miller. 1977. Genetic studies of the lac repressor. III. Additional correlation of mutational sites with specific amino acid residues. J. Mol. Biol. 117:525-575.

105. Coulondre, C., and J. H. Miller. 1977. Genetic studies of the lac repressor. IV. Mutagenic specificity in the lacI gene of Escherichia coli. J. Mol. Biol. 117:577-606.

106. Cox, G. B., J. A. Downie, F. Gibson, and J. Radik. 1978. Genetic complementation between two mutant unc alleles (uncA401 and uncD409) affecting the F portion of the magnesium-ion-stimulated adenosine triphosphatase of Escherichia coli K-12. Biochem. J. 170:593-598.

107. Cox, G. B., F. Gibson, and L. McCann. 1973. Reconstitution of oxidative phosphorylation and the adenosine triphosphate dependent transhydrogenase activity by a combination of membrane fractions from uncA− and uncB− mutant strains of Escherichia coli K-12. Biochem. J. 134:1015-1021.

108. Cronan, J. E., Jr. 1980. β-Alanine synthesis in Escherichia coli. J. Bacteriol. 141:1291-1297.

109. Cumleridge, A. G., and K. Isono. 1979. Ribosomal protein modification in Escherichia coli I. A mutant lacking the N-terminal acetylation of protein S5 exhibits thermosensitivity. J. Mol. Biol. 131:169-189.

110. Cunin, R., A. Boyen, P. Pouwels, N. Gansdorff, and M. Crabeel. 1975. Parameters of gene expression in the bipolar argE/CBH operon of Escherichia coli K-12. Mol. Gen. Genet. 140:51-60.

110a. D’Agnolo, G., I. S. Rosenfeld, and P. R. Vogelos. 1975. Multiple forms of β-ketoadyl-acetyl carrier protein synthetase in Escherichia coli. J. Biol. Chem. 250:5289-5294.

111. Dame, J. B., and B. M. Shapiro. 1976. Use of polymyxin B, levorphanol, and tetracaine to isolate novel envelope mutants of Escherichia coli. J. Bacteriol. 127:961-972.

112. Danchin, A. 1977. New technique for selection of sensitive and auxotrophic mutants of Es. coli: isolation of a strain sensitive to an excess of one-carbon metabolites. Mol. Gen. Genet. 150:293-299.

113. Daniel, V., J. I. Grimberg, and M. Zeevi. 1975. In vitro synthesis of tRNA precursors and their conversion to mature size tRNA. Nature (London) 257:193-197.

114. Danilevich, V. N., Y. G. Stepanshin, N. V. Volozhantsev, and E. I. Golub. 1978. Transposon-mediated insertion of r factor into bacterial chromosome. Mol. Gen. Genet. 161:337-339.

115. Das, A., D. Court, and S. Adhya. 1976. Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho. Proc. Natl. Acad. Sci. U.S.A. 73:1959-1963.

116. Das Gupta, C. K., and A. Guha. 1978. Isolation of the regulatory segment of the biotin operon of Escherichia coli K-12. Gene 3:233-246.

117. Das Gupta, C. K., A. Urancic, and A. Guha. 1977. Isolation and characterization of the biotin genes of Escherichia coli K-12. Gene 2:331-345.

118. Datta, B. B., C. Krämer, and U. Henning. 1976. Diploidy for a structural gene specifying a major protein of the outer cell envelope membrane from Escherichia coli K-12. J. Bacteriol. 128:834-841.

119. Davidoff-Abelson, R., and L. Mindich. 1978. A mutation that increases the activity of nonsense suppressors in Escherichia coli. Mol. Gen. Genet. 168:161-169.

120. Davies, J. K., and P. Reeves. 1975. Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group B. J. Bacteriol. 123:96-101.

121. Davies, J. K., and P. Reeves. 1975. Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J.
122. Davies, R. W., P. H. Schreier, and D. E. Büchel. 1977. Nucleotide sequence of the attachment site of coliphage lambda. Nature (London) 270:757–759.

123. Débarbouille, M., H. A. Shuman, T. J. Silhavy, and M. Schwartz. 1978. Dominant constitutive mutations in matT, the positive regulator gene of the maltose regulon in *Escherichia coli*. J. Mol. Biol. 124:359–371.

124. deBoer, H. A., S. F. Gilbert, and M. Nomura. 1979. DNA sequences of promoter regions for rRNA operons *rrnE* and *rrnA* in *Escherichia coli*. Cell 17:201–209.

125. DeFelice, M., C. Squires, M. Levinthal, J. Guardiola, A. Lambert, and M. Iaccarino. 1977. Growth inhibition of *Escherichia coli* K-12 by L-valine: a consequence of a regulatory pattern. Mol. Gen. Genet. 156:1–7.

126. Delcuve, G., T. Cabezón, A. Ghysen, A. Herzog, and A. Bollen. 1977. Amber mutations in *Escherichia coli* essential genes: isolation of mutants affected in the ribosomes. Mol. Gen. Genet. 157:149–153.

127. Delcuve, G., T. Cabezón, A. Herzog, M. Cannon, and A. Bollen. 1978. Resistance to the aminoglycoside antibiotic neamine in *Escherichia coli*. A new mutant whose *Nea* phenotype results from the cumulative effects of two distinct mutations. Biochem. J. 174:1–7.

127a. Demerec, M., E. A. Adelberg, A. J. Clark, and P. E. Hartman. 1966. A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61–76.

128. DeMoss, J. A. 1978. Role of the *chlC* gene in formation of the formate-nitrate reductase pathway in *Escherichia coli*. J. Bacteriol. 133:624–630.

129. Deonier, R. C., and N. Davidson. 1976. The sequence organization of the integrated F plasmid in two Hfr strains of *Escherichia coli*. J. Mol. Biol. 107:207–222.

130. Deonier, R. C., and R. G. Hadley. 1976. Distribution of inverted IS-length sequences in the *E. coli* K-12 genome. Nature (London) 264:191–193.

131. Deonier, R. C., G. R. Oh, and M. Hu. 1977. Further mapping of IS2 and IS3 in the *lac-purE* region of the *Escherichia coli* K-12 genome: structure of the F-prime ORF203. J. Bacteriol. 129:1129–1140.

132. Derstine, P. L., and L. B. Dumas. 1976. Deoxyribonucleic acid synthesis in a temperature-sensitive *Escherichia coli dnaH* mutant, strain HF47045. J. Bacteriol. 128:801–809.

133. Deucht, C. E., R. C. Scarpulla, E. B. Sonnenblick, and R. L. Soffer. 1977. Pleiotropic phenotype of an *Escherichia coli* mutant lacking leucyl-, phenylalanyl-transfer ribonucleic acid-protein transferase. J. Bacteriol. 129:544–546.

134. Deucht, C. E., and R. L. Soffer. 1978. *Escherichia coli* mutants defective in dipeptidyl carboxypeptidase. Proc. Natl. Acad. Sci. U.S.A. 75:5998–6001.

135. Dickson, R. C., J. Abelson, W. M. Barnes, and W. S. Reznikoff. 1975. Genetic regulation: the Lac control region. Science 187:37–35.

136a. Diderichsen, B. 1980. *flu*, a metastable gene controlling surface properties of *Escherichia coli*. J. Bacteriol. 141:868–867.

136b. Diderichsen, B., N. F. Fihl, and R. Lavallé. 1977. Genetics of the *relB* locus in *Escherichia coli*. J. Bacteriol. 131:30–33.

137. DiLauro, R., T. Taniguchi, R. Musso, and B. de Crombrugghe. 1979. Unusual location and function of the operator in the *Escherichia coli* galactose operon. Nature (London) 279:494–500.

138. DiNocera, P. P., F. Blasi, R. DiLauro, R. Frunzio, and C. B. Bruni. 1978. Nucleotide sequence of the attenuator region of the histidine operon of *Escherichia coli* K-12. Proc. Natl. Acad. Sci. U.S.A. 75:4276–4280.

139. Downie, J. A., F. Gibson, and G. B. Cox. 1979. Membrane adenosine triphosphatases of prokaryotic cells. Annu. Rev. Biochem. 48:103–131.

140. Downie, J. A., A. E. Senior, F. Gibson, and G. B. Cox. 1979. A fifth gene (*uncE*) in the operon concerned with oxidative phosphorylation in *Escherichia coli*. J. Bacteriol. 137:711–718.

141. Drexler, H. 1977. Specialized transduction of the biotin region of *Escherichia coli* by phage T1. Mol. Gen. Genet. 152:59–63.

142. Duncan, B. K., P. A. Rockstroh, and H. R. Warner. 1978. *Escherichia coli* K-12 mutants deficient in uracil-DNA glycosylase. J. Bacteriol. 134:1039–1045.

143. Dunn, S. T. 1978. Identification of the altered subunit in the inactive F,ATPase of an *Escherichia coli unCA* mutant. Biochem. Biophys. Res. Commun. 62:596–602.

144. Dykhuizen, D. 1973. Genetic analysis of the system that reduces biotin-d-sulfoxide in *Escherichia coli*. J. Bacteriol. 115:662–667.

145. Eckhardt, T. 1977. Use of argA-lac fusions to generate lambda argA-lac bacteriophages and to determine the direction of *argA* transcription in *Escherichia coli*. J. Bacteriol. 132:60–66.

146. Egan, J., and A. Landy. 1978. Structural analysis of the tRNA*35* gene of *Escherichia coli*. A 178 base pair sequence that is repeated 3.14 times. J. Biol. Chem. 253:3607–3622.

147. Elliott, J., and W. Arber. 1978. *E. coli* K-12 *pel* mutants, which block phase A DNA injection, coincide with *ptsM*, which determines a component of a sugar transport system. Mol. Gen. Genet. 161:1–8.

148. Ely, B., and A. J. Pittard. 1979. Aromatic amino acid biosynthesis: regulation of shikimate kinase in *Escherichia coli* K-12. J. Bacteriol. 138:933–943.

149. Emmerson, P. T., and S. C. West. 1977. Identification of protein X of *Escherichia coli* as the *recA* "fit" gene product. Mol. Gen. Genet. 156:77–85.

150. Emr, S. D., M. Schwartz, and T. J. Silhavy.
1978. Mutations altering the cellular localization of the phage λ receptor, an *Escherichia coli* outer membrane protein. Proc. Natl. Acad. Sci. U.S.A. 75:5802–5806.

151. Epstein, W., V. Whitehall, and J. Hesse. 1978. A K⁺ transport ATPase in *Escherichia coli*. J. Biol. Chem. 253:6666–6668.

152. Erlagaeva, R. S., T. N. Bolshakov, M. V. Shulgina, G. I. Bourd, and V. N. Gershansovitch. 1977. Glucose effect on tgf mutant of *Escherichia coli* K-12 defective in methyl-a-D-glucoside transport. Eur. J. Biochem. 72: 127–135.

153. Evans, R., N. Seeley, and P. Kuenzle. 1979. Loss of rac locus DNA in meroglytes of *Escherichia coli* K12. Mol. Gen. Genet. 175:245–250.

154. Faælen, M., and A. Toussaint. 1976. Bacteriophage Mu-1: a tool to transpose and to localize bacterial genes. J. Mol. Biol. 104:525–539.

155. Farabaugh, P. J. 1978. Sequence of the *lacI* gene. Nature (London) 274:765–769.

156. Favre, R., A. Wiater, S. Puppo, M. Iaccarino, R. Noelle, and M. Freundlich. 1976. Expression of a valine-resistant acetyltransferase activity mediated by the *ilvO* and *ilvG* genes of *Escherichia coli* K-12. Mol. Gen. Genet. 143:243–252.

157. Fayet, O., and J.-M. Louarn. 1978. Map position of the replication origin on the *E. coli* chromosome. Mol. Gen. Genet. 162:109–111.

158. Faye, D. R. H., J. A. Downie, G. B. Cox, F. Gibson, and J. Radik. 1978. Characterization of the mutant-uncD-gene product in a strain of *Escherichia coli* K-12. An altered β-subunit of the magnesium ion-stimulated adenosine triphosphatase. Biochem. J. 172:523–531.

159. Felton, J., S. Michaelis, and A. Wright. 1980. Mutations in two unlinked genes are required to produce asparagine auxotrophy in *Escherichia coli*. J. Bacteriol. 142:221–228.

160. Fill, N. P., D. Bendikas, J. Collins, and J. D. Friesen. 1979. Expression of *Escherichia coli* ribosomal protein and RNA polymerase genes cloned on plasmids. Mol. Gen. Genet. 173:39–50.

161. Fimmel, A. L., and R. E. Loughlin. 1977. Isolation and characterization of cySH mutants of *Escherichia coli* K12. J. Gen. Microbiol. 103: 37–43.

162. Fimmel, A. L., and R. E. Loughlin. 1977. Isolation of a 1dcys transducing bacteriophage and its use in determining the regulation of cysteine messenger ribonucleic acid synthesis in *Escherichia coli* K-12. J. Bacteriol. 143: 757–763.

163. Fitzgerald, G., and L. S. Williams. 1975. Modified penicillin enrichment procedure for the selection of bacterial mutants. J. Bacteriol. 122:340–346.

164. Fletcher, G., C. A. Irwin, J. M. Henson, C. Fillingim, M. M. Malone, and J. R. Walker. 1978. Identification of the *Escherichia coli* cell division gene *sep* and organization of the cell division-cell envelope genes in the *sep-mur-*fSA-envA cluster as determined with specialized transducing lambda bacteriophages. J. Bacteriol. 133:91–100.

165. Foster, T. J. 1975. R factor tetracycline and chloramphenicol resistance in *Escherichia coli* K-12 cmlB mutants. J. Gen. Microbiol. 90:303–310.

166. Foulds, J. 1976. tolF locus in *Escherichia coli*: chromosomal location and relationship to loci cmlB and tolD. J. Bacteriol. 128:604–608.

167. Foulds, J., and T. J. Chai. 1978. New major outer membrane protein found in an *Escherichia coli* tolF mutant resistant to bacteriophage TuB. J. Bacteriol. 133:1478–1483.

168. Foulds, J., and T. J. Chai. 1978. Chromosomal location of a gene (nmRA) involved in expression of a major outer membrane protein in *Escherichia coli*. J. Bacteriol. 136:501–506.

169. Fowler, A. V., and I. Zabin. 1977. The amino acid sequence of β-galactosidase of *Escherichia coli*. Proc. Natl. Acad. Sci. U.S.A. 74:1507–1510.

170. Franklin, F. C. H., and W. A. Venables. 1976. Biochemical, genetic and regulatory studies of alanine catabolism in *Escherichia coli* K12. Mol. Gen. Genet. 149:229–237.

171. Fried, V. A. 1977. A novel mutant of the *lacI* transport system of *Escherichia coli*. J. Mol. Biol. 114:477–490.

172. Friedman, D. I., and L. S. Baron. 1974. Genetic characterization of a bacterial locus involved in the activity of the N gene of phase λ. Virology 58:141–148.

173. Friedman, D. I., M. Baumann, and L. Baron. 1976. Cooperative effects of bacterial mutations affecting λ N gene expression. 1. Isolation and characterization of a *nusB* mutant. Virology 73:119–127.

174. Friesen, J. D., G. An, and N. P. Fill. 1978. Nonsense and insertion mutants in the *reb* gene of *E. coli*: cloning *relA*. Cell 15:1187–1197.

175. Friesen, J. D., J. Parker, R. J. Watson, D. Bendikas, S. V. Reeh, S. Pedersen, and N. Fill. 1976. A transducing bacteriophage carrying the structural gene for elongation factor Ts. Mol. Gen. Genet. 148:93–98.

176. Friesen, J. D., J. Parker, R. J. Watson, N. P. Fill, and S. Pedersen. 1976. Isolation of a transducing phage carrying *rpsT*, the structural gene for ribosomal protein S20. Mol. Gen. Genet. 144:115–118.

177. Friesen, J. D., J. Parker, R. J. Watson, N. P. Fill, S. Pedersen, and F. S. Pedersen. 1976. Isolation of a lambda transducing bacteriophage carrying the *relA* gene of *Escherichia coli*. J. Bacteriol. 127:917–922.

178. Frost, G. E., and H. Rosenberg. 1975. Relationship between the *tonB* locus and iron transport in *Escherichia coli*. J. Bacteriol. 124:704–712.

179. Fuchs, J. A., and O. Karlström. 1976. Mapping of *nrdA* and *nrdB* in *Escherichia coli* K-12. J. Bacteriol. 128:810–814.

180. Fujiki, H., P. Palm, W. Zillig, R. Calendar, and M. Sunshine. 1978. Identification of a
mutation within the structural gene for the a subunit of DNA-dependent RNA polymerase of *Escherichia coli*. Mol. Gen. Genet. 145:19-22.

181. Fukuizaki, Y., K. Shimada, and Y. Takagi. 1977. Secondary promoter of the guanine operon of *Escherichia coli K-12*. J. Bacteriol. 131:685-688.

182. Furano, A. 1978. Direct demonstration of duplicate *tuf* genes in enteric bacteria. Proc. Natl. Acad. Sci. U.S.A. 75:3104-3108.

183. Furano, A. V. 1977. The elongation factor Tu coded by the *tuf* A gene of *Escherichia coli K-12* is almost identical to that coded by the *tufB* gene. J. Biol. Chem. 252:2154-2157.

184. Furano, A. V., and M. Sullivan. 1978. The peptide chain elongation factor genes *tufA* and *fus* of *Escherichia coli* are intimately related physically. J. Biol. Chem. 253:8351-8354.

185. Garcia, E., S. Bancroft, S. G. Rhee, and S. Kustu. 1977. The product of a newly-identified gene, *glnF*, is required for synthesis of glutamine synthetase in *Salmonella*. Proc. Natl. Acad. Sci. U.S.A. 74:1662-1666.

186. Gardiner, J. F. 1979. Regulation of the threonine operon: tandem threonine and isoleucine codons in the control region and translational control of transcription termination. Proc. Natl. Acad. Sci. U.S.A. 76:1706-1710.

187. Gardiner, J. F., and O. H. Smith. 1975. Operator-promoter functions in the threonine operon of *Escherichia coli*. J. Bacteriol. 124:161-166.

188. Gayda, R. C., L. T. Yamamoto, and A. Markovitz. 1976. Second-site mutations in *capR* (lon) strains of *Escherichia coli K-12* that prevent radiation sensitivity and allow bacteriophage lambda to lysogenize. J. Bacteriol. 127:1208-1216.

189. Geiser, M., and J. Gordon. 1978. Two chromatographically separable forms of *Escherichia coli* elongation factor Tu. Proc. Natl. Acad. Sci. U.S.A. 75:1140-1144.

190. Gelfand, D. H., and N. Rudo. 1977. Mapping of the aspartate and aromatic amino acid amino-transferase genes *tyrB* and *aspC*. J. Bacteriol. 130:441-444.

191. Gelfand, D. H., and R. A. Steinberg. 1977. *Escherichia coli* mutants deficient in the aspartate and aromatic amino acid aminotransferases. J. Bacteriol. 130:429-440.

192. Gellert, M., K. Mizuchi, M. H. O'Dea, T. Itoh, and J.-I. Tomizawa. 1977. Naldixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc. Natl. Acad. Sci. U.S.A. 74:4772-4776.

193. Gellert, M., M. H. O'Dea, T. Itoh, and J.-I. Tomizawa. 1976. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc. Natl. Acad. Sci. U.S.A. 73:4474-4478.

194. George, J., M. Castellazzi, and G. Buttin. 1975. Prophage induction and cell division in *E. coli* III. Mutations *sfA* and *sfB* restore division in *tif* and *lon* strains and permit the expression of mutator properties of *tif*. Mol. Gen. Genet. 140:309-332.

195. Georgopoulos, C. P. 1977. A new bacterial gene (*groF*) which affects DNA replication. Mol. Gen. Genet. 151:35-38.

196. Georgopoulos, C. P., and B. Hohn. 1978. Identification of a host protein necessary for bacteriophage morphogenesis (the *groE* gene product). Proc. Natl. Acad. Sci. U.S.A. 75:131-135.

197. Geyl, D., A. Böck, and H. G. Wittmann. 1977. Cold-sensitive growth of a mutant of *Escherichia coli* with an altered ribosomal protein S8: analysis of revertants. Mol. Gen. Genet. 152:331-336.

198. Gibson, F., G. B. Cox, J. A. Downie, and J. Radik. 1977. A mutation affecting a second component of the F0 portion of the magnesium ion-stimulated adenosine triphosphatase of *Escherichia coli K12*. The uncC424 allele. Biochem. J. 164:193-198.

199. Gibson, F., J. A. Downie, G. B. Cox, and J. Radik. 1978. Mu-induced polarity in the *unc* operon of *Escherichia coli*. J. Bacteriol. 134:728-736.

200. Glaser, M., W. Nulty, and P. R. Vagelos. 1975. Role of adenylate kinase in the regulation of macromolecular biosynthesis in a putative mutant of *Escherichia coli* defective in membrane phospholipid biosynthesis. J. Bacteriol. 128:126-138.

201. Glickman, B. W. 1979. *ror* A mutation of *Escherichia coli K-12* affects the *recB* subunit of exonuclease V. J. Bacteriol. 137:658-660.

202. Gonzalez, I. L., and D. E. Sheppard. 1977. Mutations in the 1-arabinose operon of *Escherichia coli B/r* with reduced initiator function. J. Bacteriol. 130:684-691.

203. Gottfried, F., and J. Wechsler. 1977. Dominance of *dnaA* + to *dnaA* in *Escherichia coli*. J. Bacteriol. 130:963-964.

204. Gottesman, M. M. 1976. Isolation and characterization of a λ specialized transducing phage for the *Escherichia coli* DNA ligase gene. Virol. 72:33-44.

205. Gottesman, S., and D. Zipser. 1978. Deg phenotype of *Escherichia coli* *lon* mutants. J. Bacteriol. 133:844-851.

206. Goy, M. F., M. S. Springer, and J. Adler. 1978. Failure of sensory adaptation in bacterial mutants that are defective in a protein methyla- tion reaction. Cell 15:1231-1240.

207. Greenfield, L., T. Boone, and G. Wilcox. 1978. DNA sequence of the *araBAD* promoter in *Escherichia coli B/r*. Proc. Natl. Acad. Sci. U.S.A. 75:4724-4728.

208. Greenwood, K. T., and R. K. J. Luke. 1976. Studies on the enzymatic synthesis of enterochelin in *Escherichia coli* K-12. Four polypeptides involved in the conversion of 2,3-dihydroxybenzoate to enterochelin. Biochim. Biophys. Acta 454:285-297.

209. Greenwood, K. T., and R. K. J. Luke. 1978. Enzymatic hydrolysis of enterochelin and its iron complex in *Escherichia coli* K-12. Properties of enterochelin esterase. Biochim. Bio-
phys. Acta 525:209–218.

210. Gross, C., J. Hoffman, C. Ward, D. Hager, G. Burdick, H. Berger, and R. Burgess. 1978. Mutation affecting thermostability of sigma subunit of Escherichia coli RNA polymerase lies near the dnaG locus at about 66 min on the E. coli genetic map. Proc. Natl. Acad. Sci. U.S.A. 75:427–431.

211. Gross, G., D. A. Fields, and E. K. F. Bautz. 1976. Characterization of a ts β′ mutant RNA polymerase of Escherichia coli. Mol. Gen. Genet. 147:337–341.

212. Grunstein, M., and D. S. Hogness. 1975. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. U.S.A. 72:3961–3965.

213. Guardiola, J., M. DeFelice, A. Lamberti, and M. Iaccarino. 1977. The acetolactate synthase isoenzymes of Escherichia coli K-12. Mol. Gen. Genet. 156:17–25.

214. Guarente, L. P., D. H. Mitchell, and J. Beckwith. 1977. Transcription termination at the end of the tryptophan operon of Escherichia coli. J. Mol. Biol. 112:423–436.

215. Gudas, L. J., and D. W. Mount. 1977. Identification of the recA (tit) gene product of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 74:5280–5284.

216. Guest, J. R. 1977. Menaquino biosynthesis: mutants of Escherichia coli K-12 requiring 2-succinylbenzoate. J. Bacteriol. 130:1038–1046.

217. Guest, J. R., and H. M. Nice. 1978. Chromosomal location of the mopa (groE) gene necessary for bacteriophage morphogenesis in Escherichia coli. J. Gen. Microbiol. 109:329–333.

218. Hacking, A. J., and E. C. C. Lin. 1977. Regulatory changes in the fusose system associated with the evolution of a catabolic pathway for propanediol in Escherichia coli. J. Bacteriol. 130:82–836.

219. Hafner, E. W., C. W. Tabor, and H. Tabor. 1977. Isolation of a metK mutant with a temperature-sensitive S-adenosylmethionine synthetase. J. Bacteriol. 132:832–840.

220. Hall, B. G., and D. L. Hartl. 1975. Regulation of newly evolved enzymes. II. The ebg repressor. Genetics 81:427–435.

221. Hall, M. N., and T. J. Silhavy. 1979. Transcriptional regulation of Escherichia coli K-12 major outer membrane protein 1b. J. Bacteriol. 140:342–350.

222. Hancock, R. E. W., and P. Reeves. 1976. Lipopolysaccharide-deficient, bacteriophage-resistant Escherichia coli K-12. J. Bacteriol. 127:98–108.

223. Hansen, F. G., and K. von Meyenburg. 1979. Characterization of the dnaA, gyrB and other genes in the dnaA region of the Escherichia coli chromosome on specialized transducing phages λma. Mol. Gen. Genet. 176:135–144.

224. Hanson, R. L., and C. Rose. 1979. Genetic mapping of a mutation affecting pyridine nucleotide transhydrogenase in Escherichia coli. J. Bacteriol. 138:783–787.

225. Hantke, K. 1976. Phage T6-colicin K receptor and nucleoside transport in Escherichia coli. FEMS Lett. 70:109–112.

226. Hantke, K., and V. Braun. 1975. Membrane receptor dependent transport in Escherichia coli. FEMS Lett. 49:301–305.

227. Hantke, K., and V. Braun. 1978. Functional interaction of the tonA/tonB receptor system in Escherichia coli. J. Bacteriol. 138:190–197.

228. Hayayama, S., E. T. Palva, and G. L. Hazelbauer. 1979. Transposon-insertion mutants of Escherichia coli K-12 defective in a component common to galactose and ribose catabolism. Mol. Gen. Genet. 171:193–203.

229. Harris, J. D., J. S. Heilig, I. L. Martínez, R. M. Calendar, and L. A. Isaksson. 1978. Temperature-sensitive Escherichia coli mutant producing a temperature-sensitive σ subunit of DNA-dependent RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 75:6177–6181.

230. Hasans, S. M., T. Tsujiya, and B. P. Rosen. 1978. Energy transduction in Escherichia coli: physiological and biochemical effects of mutation in the uncB locus. J. Bacteriol. 133:108–113.

231. Havekes, L. M., and W. P. M. Hoekstra. 1976. Characterization of an Escherichia coli K-12 F′ Con′ mutant. J. Bacteriol. 126:593–600.

232. Havekes, L. M., B. J. J. Lugtenberg, and W. P. M. Hoekstra. 1976. Conjugation deficient E. coli K-12 F′ mutants with heptose-less lipopolysaccharide. Mol. Gen. Genet. 146:43–50.

233. Havekes, L., J. Tommassen, W. Hoekstra, and B. Lugtenberg. 1977. Isolation and characterization of Escherichia coli K-12 F′ mutants defective in conjugation with an I-type donor. J. Bacteriol. 129:1–8.

234. Hawrot, E., and E. P. Kennedy. 1976. Conditional lethal phosphatidylserine decarboxylase mutants of Escherichia coli. Mol. Gen. Genet. 148:271–279.

235. Hayashi, K., O. Koivai, and M. Kozuka. 1979. Studier on bacterial chemotaxis. II. Effect of cheB and cheZ mutations on methylation of methyl-accepting chemotaxis protein of Escherichia coli. J. Biochem. (Tokyo) 85:1213–1223.

236. Hayward, R. S., and J. G. Scaife. 1976. Systematic nomenclature for the RNA polymerase genes of prokaryotes. Nature (London) 260:646–648.

237. Hazelbauer, G. L. 1975. Role of the receptor for bacteriophage lambda in the functioning of the maltose chemoreceptor of Escherichia coli. J. Bacteriol. 124:119–126.

238. Heinze, M. C., and E. McFall. 1975. N-terminal amino acid sequences of d-serine deaminases of wild-type and operon-constitutive strains of Escherichia coli K-12. J. Bacteriol. 123:1165–1168.

239. Hendrickson, E. R., and D. E. Duggan. 1976. Novel genotypes among transductants made with bacteriophage P1 lysates from an F14 merogenote strain of Escherichia coli K-12. J. Bacteriol. 127:392–405.

240. Hendrix, R. W., and L. Tsui. 1978. Role of the
host in virus assembly: cloning of the *Escherichia coli* groE gene and identification of its protein product. Proc. Natl. Acad. Sci. U.S.A. 75:136–139.

244. Hennecke, H., and A. Böck. 1975. Altered α subunits in phenylalanyl-tRNA synthetases from P-fluorophenylalanine-resistant strains of *Escherichia coli*. Eur. J. Biochem. 55:431–437.

245. Hennecke, H., A. Böck, J. Thomale, and G. Nass. 1977. Threonyl-transfer ribonuclease acid synthetase from *Escherichia coli*: subunit structure and genetic analysis of the structural gene by means of a mutated enzyme and of a specialized transducing lambda bacteriophage. J. Bacteriol. 131:943–950.

246. Hennecke, H., M. Springer, and A. Böck. 1977. A specialized transducing λ phage carrying the *Escherichia coli* genes for phenylalanyl-tRNA synthetase. Mol. Gen. Genet. 152: 205–210.

247. Henning, U., and I. Haller. 1975. Mutants of *Escherichia coli* K-12 lacking all "major" proteins of the outer cell envelope membrane. FEBS Lett. 55:161–164.

248. Henning, U., I. Hindennach, and I. Haller. 1976. The major proteins of the *Escherichia coli* outer cell envelope membrane: evidence for the structural gene of protein II*. FEBS Lett. 61:46–48.

249. Henning, U., W. Schmidmayer, and I. Hindennach. 1977. Major proteins of the outer cell envelope membrane of *Escherichia coli* K-12: multiple species of protein I. Mol. Gen. Genet. 154:293–298.

250. Henning, U., I. Sonntag, and I. Hindennach. 1978. Mutants (ompA) affecting a major outer membrane protein of *Escherichia coli* K12. Eur. J. Biochem. 92:491–498.

251. Henson, J. M., H. Chu, C. A. Irwin, and J. R. Walker. 1979. Isolation and characterization of dnaX and dnaY temperature sensitive mutants of *Escherichia coli*. Genetics 92:1041–1059.

252. Higgins, N. P., C. L. Peebles, A. Sugino, and N. R. Cozzarelli. 1978. Purification of subunits of *Escherichia coli* DNA gyrase and reconstitution of enzymatic activity. Proc. Natl. Acad. Sci. U.S.A. 75:1773–1777.

253. Hillman, J. D. 1979. Mutant analysis of glycer-aldehyde 3-phosphate dehydrogenase in *Escherichia coli*. Biochem. J. 179:99–107.

254. Hiraga, S. 1976. Novel F prime factors able to replicate in *Escherichia coli* Hfr strains. Proc. Natl. Acad. Sci. U.S.A. 73:198–202.

255. Hirota, Y., H. Suzuki, Y. Nishimura, and S. Yasuda. 1977. On the process of cellular division in *Escherichia coli*: a mutant of *E. coli* lacking a murine lipoprotein. Proc. Natl. Acad. Sci. U.S.A. 74:1417–1420.

256. Hirsh, J., and R. Schleif. 1977. The araC promoter: transcription, mapping and interaction with the araBAD promoter. Cell 11:545–550.

257. Hobson, A. C., D. Gho, and B. Müller-Hill. 1977. Isolation, genetic analysis, and characterization of *Escherichia coli* mutants with defects in the lacY gene. J. Bacteriol. 131:830–838.

258. Hochhauser, S. J., and B. Weiss. 1978. *Escherichia coli* mutants deficient in deoxyuridine triphosphatase. J. Bacteriol. 134:157–166.

259. Hoekstra, W. P. M., P. G. de Haan, J. E. N. Bergmans, and E. M. Zuidweg. 1976. Transformation in *E. coli* K12: relation of linkage to distance between markers. Mol. Gen. Genet. 145:109–110.

260. Hoekstra, W. P. M., and H. G. Vis. 1977. Characterization of the *E. coli* K12 strain AB1157 as impaired in guanine/xanthine metabolism. Antonie van Leeuwenhoek J. Microbiol. Serol. 43:199–204.

261. Hoess, R. H., and D. P. Fan. 1975. Further characterization of a non-essential mutator gene in *Escherichia coli* K-12. J. Bacteriol. 124:650–660.

262. Hofnung, M., A. Jezierska, and C. Brum-Breton. 1976. lamB mutations in *Escherichia coli* K12: growth of λ host range mutants and effect of nonsense suppressors. Mol. Gen. Genet. 145:207–213.

263. Holden, J. A., P. D. Harriman, and J. D. Wall. 1976. *Escherichia coli* mutants deficient in guanine-xanthine phosphoribosyltransferase. J. Bacteriol. 136:1141–1148.

264. Horiiuchi, T., H. Maki, and M. Sekiguchi. 1978. A new conditionally lethal mutant (dnaQ49) in *Escherichia coli* K12. Mol. Gen. Genet. 163:277–283.

265. Horiiuchi, T., T. Sato, and T. Nagata. 1975. DNA degradation in an amber mutant of *Escherichia coli* K12 affecting DNA ligase and viability. J. Mol. Biol. 95:271–287.

266. Hull, R., J. D. Klinger, and E. E. M. Moody. 1976. Isolation and characterization of mutants of *Escherichia coli* K12 resistant to the new aminoglycoside antibiotic, amikacin. J. Gen. Microbiol. 94:389–394.

267. Iaccarino, M., J. Guardiola, and M. DeFelice. 1978. On the permeability of biological membranes. J. Membr. Sci. 3:287–302.

268. Ichihara, S., and S. Mizushima. 1978. Characterization of major outer membrane proteins O-8 and O-9 of *Escherichia coli* K-12. J. Biochem. (Tokyo) 83:1095–1100.

269. Iida, S. 1977. Directed integration of an F' plasmid by integrative suppression. Isolation of plaque forming lambda transducing phage for the dnaC gene. Mol. Gen. Genet. 155:153–162.

270. Ikemura, T., and M. Nomura. 1977. Expression of spacer tRNA genes in ribosomal RNA transcription units carried by hybrid ColE1 plasmids in *E. coli*. Cell 11:779–783.

271. Ikemura, T., and H. Ozeki. 1977. Gross map location of *Escherichia coli* transfer RNA genes. J. Mol. Biol. 117:419–446.

272. Ikuchi, T., T. Yura, and H. Yamagishi. 1975. Genetic and physical studies of lambda transducing bacteriophage carrying the beta subunit gene of the *Escherichia coli* ribonucleic acid polymerase. J. Bacteriol. 122:1247–1256.

273. Ilgen, C., L. L. Kirk, and J. Carbon. 1976.
Isolation and characterization of large transfer ribonucleic acid precursors from *Escherichia coli*. J. Biol. Chem. 251:922–929.

272. Isono, M., and K. Shigesada. 1978. Studies on the altered rho factor in *nitA* mutants of *Escherichia coli* defective in transcription termination. I. Characterization and quantitative determination of rho in cell extracts. J. Mol. Biol. 120:451–466.

273. Inoko, H., and M. Imai. 1976. Isolation and genetic characterization of the *nitA* mutants of *Escherichia coli* affecting the transcription factor rho. Mol. Gen. Genet. 143:211–221.

274. Inoko, H., K. Shigesada, and M. Imai. 1977. Isolation and characterization of conditional-lethal rho mutants of *Escherichia coli*. Proc. Natl. Acad. Sci. U.S.A. 74:1162–1166.

275. Inoue, S., T. Ohue, J. Yamagishi, S. Nakamura, and M. Shimizu. 1978. Mode of incomplete cross-resistance among pipemidic, piperacillin, and nalidixic acids. Antimicrob. Agents Chemother. 14:240–245.

276. Inouye, H., and J. Beckwith. 1977. Synthesis and processing of an *Escherichia coli* alkaline phosphatase precursor in vitro. Proc. Natl. Acad. Sci. U.S.A. 74:1440–1444.

277. Inouye, S., N. Lee, M. Inouye, H. C. Wu, H. Suzuki, Y. Nishimura, H. Iketani, and Y. Hirota. 1977. Amino acid replacement in a mutant lipoprotein of the *Escherichia coli* outer membrane. J. Bacteriol. 132:308–313.

278. Irani, M., and P. K. Maitra. 1976. Glyceraldehyde 3-P dehydrogenase, glyceral 3-P kinase and enolase mutants of *Escherichia coli*: genetic studies. Mol. Gen. Genet. 145:65–71.

279. Isaksson, L. A., S.-E. Sköld, J. Skjöldebrand, and R. Takata. 1977. A procedure for isolation of spontaneous mutants with temperature sensitive synthesis of RNA and/or protein. Mol. Gen. Genet. 165:239–237.

280. Isaksson, L. A., and R. Takata. 1978. The temperature sensitive mutant 72c: I. Pleiotropic growth behavior and changed response to some antibiotics and mutations. Mol. Gen. Genet. 161:9–14.

281. Isono, K. 1978. Genes encoding ribosomal proteins S16 and L19 form a gene cluster at 56.4 min in *Escherichia coli*. Mol. Gen. Genet. 165:265–268.

282. Isono, K. 1979. Genetic fine structure of the *pyrE* region that contains the genes for ribosomal proteins L28 and L33 in *Escherichia coli*. Mol. Gen. Genet., submitted for publication.

283. Isono, K., and S. Isono. 1979. Ribosomal modification in *Escherichia coli* II. Studies of a mutant lacking the N-terminal acetylation of protein S18. Mol. Gen. Genet., submitted for publication.

284. Isono, K., and M. Kitakawa. 1978. Cluster of ribosomal protein genes in *Escherichia coli* containing genes for proteins S6, S18, and L9. Proc. Natl. Acad. Sci. U.S.A. 75:6163–6167.

285. Iwaya, M., R. Goldman, D. J. Tipper, B. Feingold, and J. L. Strominger. 1978. Morphology of an *Escherichia coli* mutant with a temperature-dependent round cell shape. J. Bacteriol. 136:1143–1158.

286. Iwaya, M., C. W. Jones, J. Khorana, and J. L. Strominger. 1978. Mapping of the meccullinam-resistant, round morphological mutants of *Escherichia coli*. J. Bacteriol. 138:196–202.

287. Jamieson, A. F., and P. L. Bergquist. 1976. Genetic mapping of chromosomal mutations affecting the replication of the F-factor of *Escherichia coli*. Mol. Gen. Genet. 148:221–233.

288. Jaskunas, S. R., A. M. Fallon, and M. Nomura. 1977. Identification and organization of ribosomal protein genes of *Escherichia coli* carried by λ fus2 transducing phage. J. Bacteriol. 132:373–3736.

289. Jaskunas, S. R., A. M. Fallon, M. Nomura, B. G. Williams, and F. R. Blattner. 1977. Expression of ribosomal protein genes cloned in Charon vector phages and identification of their products. J. Bacteriol. 142:735–7364.

290. Jaskunas, S. R., and M. Nomura. 1977. Organization of ribosomal protein genes of *Escherichia coli* as analyzed by polar insertion mutations. J. Bacteriol. 125:7337–7343.

291. Jochimsen, B., P. Nygaard, and T. Vester-gaard. 1975. Location on the chromosome of *Escherichia coli* genes governing purine metabolism. Mol. Gen. Genet. 143:85–91.

292. Johnson, B. F. 1977. Genetic mapping of the *lexC*-113 mutation. Mol. Gen. Genet. 157:91–97.

293. Johnson, B. F. 1977. Fine structure mapping and properties of mutations suppressing the lon mutation in *Escherichia coli* K-12 and B strains. Genet. Res. 30:273–286.

294. Johnson, S. C., N. Watson, and D. Apirion. 1976. A lethal mutation which affects the maturation of ribosomes. Mol. Gen. Genet. 147:29–37.

295. Jones-Mortimer, M. C., and H. L. Kornberg. 1976. Uptake of fructose by the sorbitol phosphotransferase of *Escherichia coli* K12. J. Gen. Microbiol. 96:383–391.

296. Jones-Mortimer, M. C., and H. L. Kornberg. 1976. Order of genes adjacent to ptsX on the *E. coli* genome. Proc. R. Soc. London Ser. B 193:313–315.

297. Jones-Mortimer, M. C., H. L. Kornberg, R. Maitby, and P. D. Watts. 1977. Role of the *crr*-gene in glucose uptake by *Escherichia coli*. FEBS Lett. 74:17–19.

298. Jørgensen, P. 1976. A ribosomal RNA gene of *Escherichia coli* (*rtnD*) on λ *daroE* specialized transducing phages. Mol. Gen. Genet. 146:303–307.

299. Jørgensen, P., J. Collins, N. Fild, and K. von Meyenburg. 1978. A ribosomal RNA gene, *rntC*, of *Escherichia coli*, mapped by specialized transducing λ *dil* and λ *d18* phages. Mol. Gen. Genet. 163:223–228.

300. Jørgensen, P., J. Collins, and P. Valentini-Hansen. 1977. On the structure of the *deo* operon of *Escherichia coli*. Mol. Gen. Genet.
155:93–102.

301. Kanazawa, H., S. Saito, and M. Futai. 1978. Coupling factor ATPase from Escherichia coli. An uncA mutant (uncA401) with a defective α subunit. J. Biochem. 84:1513–1517.

302. Kaplan, D. A., L. Greenfield, T. Boone, and G. Wilcox. 1978. Hybrid plasmids containing the araBAD genes of Escherichia coli B/r. Gene 3:177–189.

303. Karbonowska, H., A. Wiater, and D. Hulanicka. 1977. Sulphate permease of Escherichia coli K12. Acta Biochim. Pol. 24:329–334.

304. Kato, T., and Y. Shinoura. 1977. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol. Gen. Genet. 156:121–131.

305. Kelley, W. S., K. Chalmers, and N. E. Murray. 1977. Isolation and characterization of a λ polα transducing phage. Proc. Natl. Acad. Sci. U.S.A. 74:5632–5636.

306. Kelley, W. S., and N. D. F. Grindley. 1976. Mapping of the polα locus of Escherichia coli K12: orientation of the amino- and carboxy-termini of the cistron. Mol. Gen. Genet. 147:307–314.

307. Kenerley, M. E., E. A. Morgan, L. Post, L. Lindahl, and M. Nomura. 1977. Characterization of hybrid plasmid carrying individual ribosomal ribonucleic acid transcription units of Escherichia coli. J. Bacteriol. 132:931–949.

308. Ketner, G., and A. Campbell. 1975. Operator and promoter regions affecting divergent transcription in the bio gene cluster of Escherichia coli. J. Mol. Biol. 96:13–27.

309. Kikuchi, A., and L. Gorini. 1975. Similarity of genes argF and argI. Nature (London) 256:621–624.

310. Kikuchi, A., and L. Gorini. 1976. Studies of the DNA carrying genes, valA, argL, pyrB and . argF by electron microscopy and by site specific endonucleases. J. Microsc. Biol. Cell. 27:1–10.

311. Kitakawa, M., E. R. Dabbs, and K. Isono. 1979. Genes coding for ribosomal proteins S15, L21, and L27 map near argG in Escherichia coli. J. Bacteriol. 138:832–838.

312. Kitakawa, M., and K. Isono. 1977. Localization of the structural gene for ribosomal protein L19(rpL5) in Escherichia coli. Mol. Gen. Genet. 158:149–155.

313. Kleckner, N. 1977. Translocatable elements in procaryotes. Cell 11:11–23.

314. Kleckner, N., D. F. Barker, D. G. Ross, and D. Botstein. 1978. Properties of the translocatable tetracycline-resistance element Tn10 in Escherichia coli and bacteriophage lambda. Genetics 90:427–461.

315. Kleckner, N., J. Roth, and D. Botstein. 1977. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J. Mol. Biol. 116:125–159.

316. Kocharyan, S. M., T. I. Chukanova, and V. V. Sukhodolets. 1977. Mutations of resistance to 2,6-diaminopurine and 6-methylpurine affecting adenine phosphoribosyltransferase in Escherichia coli K-12. Genetika 13:1821–1830. (Sov. Genet. 13:1226–1233.)

317. Kocharyan, S. M., V. A. Livshits, and V. V. Sukhodolets. 1975. Genetic study of Escherichia coli K-12 mutants resistant to 2,6-diaminopurine. Genetika 11:79–88. (Sov. Genet. 11:1417–1425.)

318. Komeda, Y., K. Kutsukake, and T. Iino. 1979. Further genetic study of flagellar mutants in Escherichia coli K-12. Genetics, submitted for publication.

319. Komeda, Y., M. Silverman, P. Matsumura, and M. Simon. 1978. Genes for the hook­basal body proteins of the flagellar apparatus in Escherichia coli. J. Bacteriol. 134:655–667.

320. Komeda, Y., M. Silverman, and M. Simon. 1977. Genetic analysis of Escherichia coli K-12 region 1 flagellar mutants. J. Bacteriol. 131:801–808.

321. Komeda, Y., M. Silverman, and M. Simon. 1978. Identification of the structural gene for the hook subunit protein of Escherichia coli flagella. J. Bacteriol. 133:364–371.

322. Konodoh, H. 1977. Isolation and characterization of nondefective transducing lambda bacteriophages carrying fla genes of Escherichia coli K-12. J. Bacteriol. 130:736–745.

323. Konodoh, H., C. B. Ball, and J. Adler. 1979. Identification of a methyl­accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 76:260–264.

324. Konodoh, H., and H. Ozeki. 1976. Deletion and amber mutants of fla loci in Escherichia coli K-12. Genetics 84:403–421.

325. Konrad, B. E. 1978. Isolation of an Escherichia coli K-12 dnaE mutation as a mutator. J. Bacteriol. 133:1197–1202.

326. Korn, L. J., and C. Yanofsky. 1976. Polarity suppressors defective in transcription termination at the attenuator of the tryptophan operon of Escherichia coli have altered rho factor. J. Mol. Biol. 106:231–241.

327. Kozlov, J. L., N. A. Kalishina, L. V. Gening, B. A. Rebentish, A. Y. Strongin, V. G. Bogush, and V. G. Debabov. 1977. A suitable method for construction and cloning hybrid plasmids containing EcoRI-fragments of E. coli genome. Mol. Gen. Genet. 150:211–219.

328. Kraus, J., D. Söll, and K. B. Low. 1979. Glutamyl-m­ethyl ester acts as a methionine analogue in Escherichia coli: analogue resistant mutants map at the metf and metK loci. Genet. Res. 33:49–55.

329. Kreuzer, K. N., K. McEntee, A. P. Geballe, and N. R. Cozzarelli. 1978. Lambda transducing phages for the nalA gene of Escherichia coli and conditional lethal nalA mutations. Mol. Gen. Genet. 167:129–137.

330. Kreuzer, K., C. Pratt, and A. Torriani. 1975. Genetic analysis of regulatory mutants of alkaline phosphatase of E. coli. Genetics 81:459–468.

331. Krüger, D. H., L. S. Chernin, S. Hansen, H. A. Rosenthal, and D. M. Goldfarb. 1978.
Protection of foreign DNA against host-controlled restriction in bacterial cells. I. Protection of F' plasmid DNA by preinfection with bacteriophages T3 or T7. Mol. Gen. Genet. 159:107-110.

332. Kubokawa, S., H. Sakano, and H. Ozeki. 1976. Two genes for RNase P in E. coli. Jpn. J. Genet. (Abstr.) 51:420-421.

333. Kudo, T., K. Nagai, and G. Tamura. 1977. Characterization of a cold-sensitive chromosome segregation mutant of Escherichia coli. Agric. Biol. Chem. 41:89-95.

334. Kudo, T., K. Nagai, and G. Tamura. 1977. Characteristics of a cold-sensitive cell division mutant of Escherichia coli K12. Agric. Biol. Chem. 41:97-107.

335. Kudo, T., K. Nagai, and G. Tamura. 1977. Genetic analysis of a cold-sensitive chromosome segregation mutant of Escherichia coli K-12. Agric. Biol. Chem. 41:607-608.

336. Kuempel, P. L., S. A. Duerr, and P. D. Maglothin. 1978. Chromosome replication in an Escherichia coli dnaA mutant integratively suppressed by prophage P2. J. Bacteriol. 134:902-912.

337. Kuempel, P. L., S. A. Duerr, and N. R. Seeley. 1977. Terminus region of the chromosome in Escherichia coli inhibits replication forks. Proc. Natl. Acad. Sci. U.S.A. 74:3927-3931.

338. Kung, F.-C., and D. A. Glaser. 1978. dnaA acts before dnaC in the initiation of DNA replication. J. Bacteriol. 133:755-762.

339. Küpper, H., T. Sekiya, M. Rosenberg, J. Egan, and A. Landy. 1978. A p-dependent termination site in gene coding for tyrosine tRNA of Escherichia coli. Nature (London) 272:423-428.

340. Kushner, S. R., V. F. Maples, and W. S. Champaigne. 1977. Conditionally lethal ribosomal protein mutants: characterization of a locus required for modification of 50S subunit proteins. Proc. Natl. Acad. Sci. U.S.A. 74:467-471.

341. Kushner, S. R., J. Shepard, G. Edwards, and V. F. Maples. 1978. wurD, wurE and recL represent a single gene, p. 251-254. In P. C. Hanawalt, E. C. Friedberg, and C. F. Fox (ed.), DNA repair mechanisms. Academic Press Inc., New York.

342. Lagarde, A. E., and F. R. Stoeber. 1977. Escherichia coli K-12 structural kdgT mutants exhibiting thermosensitive 2-keto-3-deoxy-d-gluconate uptake. J. Bacteriol. 129:606-615.

343. Laimins, L. A., D. B. Rhoads, K. Allendorf, and W. Epstein. 1978. Identification of the structural proteins of an ATP-driven potassium transport system in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 75:3216-3219.

344. Lambden, P. R., and J. R. Guest. 1976. Mutants of Escherichia coli K-12 unable to use fumarate as an anaerobic electron acceptor. J. Gen. Microbiol. 97:145-160.

345. Langley, D., and J. R. Guest. 1978. Biochemical genetics of the a-keto acid dehydrogenase complexes of Escherichia coli K-12: genetic characterization and regulatory properties of deletion mutants. J. Gen. Microbiol. 106:103-117.

346. Lark, C. A., J. Riaizi, and K. G. Lark. 1978. dnaT, dominant conditional-lethal mutation affecting DNA replication in Escherichia coli. J. Bacteriol. 136:1008-1017.

347. LaRossA, R., G. Vogeli, K. B. Low, and D. Soll. 1977. Regulation of biosynthesis of amnocyacyl-tRNA synthetases and of tRNA in Escherichia coli. II. Isolation of regulatory mutants affecting leucyl-tRNA synthetase levels. J. Mol. Biol. 117:1033-1048.

348. Lathe, R. 1977. Fine-structure mapping of the firA gene, a locus involved in the phenotypic expression of rifampin resistance in Escherichia coli. J. Bacteriol. 131:1033-1036.

349. Lathe, R., and J. P. Lecocq. 1977. The firA gene, a locus involved in the expression of rifampin resistance in Escherichia coli. I. Characterization of λfirA transducing phages. Mol. Gen. Genet. 154:553-60.

350. Lathe, R., J.-P. Lecocq, and A. Resibois. 1977. The firA gene, a locus involved in the expression of rifampin resistance in Escherichia coli. I. Characterization of λfirA transducing phages constructed in vitro. Mol. Gen. Genet. 154:43-51.

351. Latil, M., M. Murgier, A. Lazdunski, and G. Lazdunski. 1976. Isolation and genetic mapping of Escherichia coli aminopeptidase mutants. Mol. Gen. Genet. 148:43-47.

352. Latil-Damotte, M., and C. Lathe. 1977. Relative order of gII mutations affecting glycine biosynthesis in Escherichia coli. K12. Mol. Gen. Genet. 156:325-329.

353. Lavoie, M., and L. G. Mathieu. 1975. Isolation and partial characterization of an Escherichia coli mut mutant resistant to colicin A. Can. J. Microbiol. 21:1598-1601.

354. Lawther, R. P., and G. W. Hatfield. 1977. Biochemical characterization of an Escherichia coli hist' strain. J. Bacteriol. 130:552-553.

355. Lee, F., C. L. Squires, C. Squires, and O. Yanofsky. 1976. Termination of transcription in vitro in the Escherichia coli tryptophan operon leader region. J. Mol. Biol. 103:385-393.

356. Lee, N., and J. Carbon. 1977. Nucleotide sequence of the 5' end of araBAD operon messenger RNA in Escherichia coli B/r. Proc. Natl. Acad. Sci. U.S.A. 74:49-53.

357. Lee-Peng, F.-C., M. A. Hermodson, and G. B. Kohlhaw. 1979. Transaminase B from Escherichia coli: quaternary structure, amino-terminal sequence, substrate specificity, and absence of a separate valine-a-ketoglutarate activity. J. Bacteriol. 139:339-345.

358. Legrain, C., V. Stalon, and N. Glandsorff. 1976. Escherichia coli carbamoyl-transferase isoenzymes: evolutionary significance and the isolation of λargF and λargT transducing bacteriophages. J. Bacteriol. 128:35-38.

359. Lengeler, J. 1975. Mutations affecting transport.
of the hexitol d-mannitol, d-glucitol, and galactitol in *Escherichia coli* K-12: isolation and mapping. J. Bacteriol. 124:26-38.

360. *Lengeler, J.* 1975. Nature and properties of hexitol transport systems in *Escherichia coli*. J. Bacteriol. 124:39-47.

361. *Lengeler, J.* 1977. Analysis of mutations affecting the dissimilation of galactitol (dulcitol) in *Escherichia coli* K12. Mol. Gen. Genet. 152:83-91.

362. *Lerner, T. J., and N. D. Zinder.* 1979. Chromosomal regulation of sexual expression in *Escherichia coli*. J. Bacteriol. 137:1063-1065.

363. *Levine, S. A.* 1977. Isolation and characterization of catalase deficient mutants of *Salmonella typhimurium*. Mol. Gen. Genet. 150:205-209.

364. *Lieberman, M. A., and J.-S. Hong.* 1976. Changes in active transport, intracellular adenosine 3'-triphosphate levels, macromolecular syntheses, and glycolysis in an energy-uncoupled mutant of *Escherichia coli*. J. Bacteriol. 128:1024-1031.

365. *Lieberman, M. A., M. Simon, and J.-S. Hong.* 1977. Characterization of *Escherichia coli* mutant incapable of maintaining a transmembrane potential. J. Biol. Chem. 252:4056-4067.

366. *Lin, J. J. C., H. Kanazawa, J. Ozols, and H. C. Wu.* 1978. An *Escherichia coli* mutant with an amino acid alteration within the signal sequence of outer membrane piloprotein. Proc. Natl. Acad. Sci. U.S.A. 75:4891-4895.

367. *Lindahl, L., L. Post, J. Zengel, S. F. Gilbert, W. A. Strycharz, and M. Nomura.* 1977. Mapping of ribosomal protein genes by *in vitro* protein synthesis using DNA fragments of *λ fus3* transducing phage as DNA templates. J. Biol. Chem. 252:7365-7383.

368. *Lindahl, L., M. Yamamoto, M. Nomura, J. B. Kirshbaum, B. Allet, and J.-D. Rochaix.* 1977. Mapping of a cluster of genes for components of the transcriptional and translational machineries of *Escherichia coli*. J. Mol. Biol. 109:23-47.

369. *Lindahl, L., J. Zengel, and M. Nomura.* 1976. Organization of ribosomal protein genes in *Escherichia coli*. II. Mapping of ribosomal protein genes by *in vitro* synthesis of ribosomal proteins using DNA fragments of a transducing phage as templates. J. Mol. Biol. 106:837-855.

370. *Linn, T., M. Goman, and J. G. Scaife.* 1979. Studies on the control of the genes for transcription and translation in *Escherichia coli* K-12. I. *tuf* and *rplA,K* have separate promoters. J. Mol. Biol. 130:405-420.

371. *Linn, T., and J. Scaife.* 1978. Identification of a single promoter in *E. coli* for *rplB*, *rplL* and *rpoBC*. Nature (London) 278:33-37.

372. *Lipsett, M. N.* 1978. Enzymes producing 4-thiouridine in *Escherichia coli* tRNA: approximate chromosomal locations of the genes and enzyme activities in a 4-thiouridine-deficient mutant. J. Bacteriol. 135:993-997.

373. *Little, J. W., and D. G. Kleid.* 1977. *Escherichia coli* protein X is the *recA* gene product. J. Biol. Chem. 252:6251-6252.

374. *Long, W. S., C. L. Slayman, and K. B. Low.* 1978. Production of giant cells of *Escherichia coli*. J. Bacteriol. 133:995-1007.

375. *Louarn, J., J. Patte, and J.-M. Louarn.* 1979. Map position of the replication terminus on the *Escherichia coli* chromosome. Mol. Gen. Genet. 172:7-11.

376. *Low, B.* 1973. Rapid mapping of conditional and auxotrophic mutations in *Escherichia coli* K-12. J. Bacteriol. 113:798-812.

377. *Low, K. B.* 1972. *Escherichia coli* K-12 F-prime factors, old and new. Bacteriol. Rev. 36:587-607.

378. *Low, K. B., and R. D. Porter.* 1978. Modes of gene transfer and recombination in bacteria. Annu. Rev. Genet. 12:249-287.

379. *Lund, E., J. E. Dahlberg, L. Lindahl, S. R. Jaskunas, P. P. Dennis, and M. Nomura.* 1976. Transfer RNA genes between 16S and 23S rRNA genes in rRNA transcription units of *Escherichia coli*. Cell 7:165-177.

380. *Lutkenhaus, J. F., and W. D. Donachie.* 1979. Identification of the *fusA* gene product. J. Bacteriol. 137:1088-1094.

381. *MacGregor, C. H.* 1975. Synthesis of nitrate reductase components in chlorate-resistant mutants of *Escherichia coli*. J. Bacteriol. 121:1117-1121.

382. *Majors, J.* 1979. Initiation of *in vitro* mRNA synthesis from the wild-type lac promoter. Proc. Natl. Acad. Sci. U.S.A. 72:4394-4399.

383. *Mandrand-Berthelot, M.-A., M. Y. K. Wee, and B. A. Haddock.* 1979. An improved method for identification and characterization of mutants of *Escherichia coli* deficient in formate dehydrogenase activity. FEMS Microbiol. Lett. 4:37-40.

384. *Manning, P. A., A. Puspurs, and P. Reeves.* 1976. Outer membrane of *Escherichia coli* K-12: isolation of mutants with altered protein 3A by using host range mutants of bacteriophage K3. J. Bacteriol. 12:1060-1084.

385. *Manning, P. A., and P. Reeves.* 1976. Outer membrane of *Escherichia coli* K-12: differentiation of proteins 3A and 3B on acrylamide gels and further characterization of *con* (tolG) mutants. J. Bacteriol. 127:1070-1079.

386. *Manning, P. A., and P. Reeves.* 1978. Outer membrane proteins of *Escherichia coli* K-12: isolation of a common receptor protein for bacteriophage T6 and colicin K. Mol. Gen. Genet. 158:279-286.

387. *Marchal, C., J. Greenblatt, and M. Hofnung.* 1978. *molB* region in *Escherichia coli* K-12: specialized transducing bacteriophages and first restriction map. J. Bacteriol. 136:1109-1119.

388. *Marinus, M. G., and E. B. Konrad.* 1976. Hyper-recombination in *dam* mutants of *Escherichia coli* K-12. Mol. Gen. Genet. 149:273-287.

389. *Mark, D. F., J. W. Chase, and C. C. Richardson.* 1977. Genetic mapping of *trxA*, a gene affecting thioredoxin in *Escherichia coli* K-12.
390. Mark, D. F., and C. C. Richardson. 1976. Escherichia coli thioredoxin: a subunit of bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 73:780–784.

391. Marsh, R. C. 1978. Map location of the Escherichia coli origin of replication. Mol. Gen. Genet. 168:299–304.

392. Masters, M. 1977. The frequency of P1 transduction of the genes of Escherichia coli as a function of chromosomal position: preferential transduction of the origin of replication. Mol. Gen. Genet. 155:197–202.

393. Mata, M., M. Delstanche, and J. Robert-Baudouy. 1978. Isolation of specialized transducing bacteriophages carrying the structural genes of the hexuronic system in Escherichia coli K-12: exu region. J. Bacteriol. 135:549–557.

394. Matsuhashi, M. I. N. Maruyama, Y. Takagaki, S. Tamaki, Y. Nishimura, and Y. Hirota. 1978. Isolation of a mutant of Escherichia coli lacking penicillin-sensitive 3-alamine carboxypeptidase IA. Proc. Natl. Acad. Sci. U.S.A. 75:2631–2635.

395. Matsuhashi, M., Y. Takagaki, I. N. Maruyama, S. Tamaki, Y. Nishimura, H. Suzuki, U. Ogino, and Y. Hirota. 1977. Mutants of Escherichia coli lacking in highly penicillin-sensitive 3-alanine carboxypeptidase activity. Proc. Natl. Acad. Sci. U.S.A. 74:2976–2979.

396. Matsuhashi, M., S. Tamaki, S. J. Curtis, and J. L. Strominger. 1979. Mutational evidence for identity of penicillin-binding protein 5 in Escherichia coli with the major 3-alanine carboxypeptidase IA activity. J. Bacteriol. 137:644–647.

397. Matsumura, P., M. Silverman, and M. Simon. 1977. Synthesis of mot and che gene products of Escherichia coli programmed by hybrid ColE1 plasmids in minicells. J. Bacteriol. 132:996–1002.

398. Mazaitis, A. J., S. Palchaudhuri, N. Glansdorff, and W. K. Maas. 1976. Isolation and characterization of largeECBH transducing phages and heteroduplex analysis of the largeECBH cluster. Mol. Gen. Genet. 143:185–196.

399. McCullar, D. R., C. Kaiser, and M. L. Green. 1978. Genetics of nitrofurazone resistance in Escherichia coli. J. Bacteriol. 133:10–16.

400. McConville, M., and H. P. Charles. 1979. Mutants of Escherichia coli K-12 accumulating porphobilinogen: a new locus, hemC. J. Gen. Microbiol. 111:193–200.

401. McConville, M. L., and H. P. Charles. 1979. Isolation of haemin-requiring mutants of Escherichia coli K12. J. Gen. Microbiol. 113:155–164.

402. McCorkle, G. M., T. D. Leathers, and H. E. Umbarger. 1978. Physical organization of the tlvEDAC genes of Escherichia coli strain K-12. Proc. Natl. Acad. Sci. U.S.A. 75:89–93.

403. McEntee, K. 1977. Protein X is the product of the recA gene of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 74:5275–5279.

404. McEntee, K. 1977. Genetic analysis of the Escherichia coli K-12 srl region. J. Bacteriol. 132:904–911.

405. McEntee, K., G. M. Weinstock, and I. R. Lehman. 1979. Initiation of general recombination catalyzed in vitro by the recA protein of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 76:2615–2619.

406. McIntosh, M. A., S. S. Chenault, and C. F. Earnhart. 1979. Genetic and physiological studies on the relationship between colicin B resistance and ferrienterochelin uptake in Escherichia coli K-12. J. Bacteriol. 137:853–857.

407. McKeown, M., M. Kahn, and P. Hanawalt. 1976. Thymidine uptake and utilization in Escherichia coli: a new gene controlling nucleoside transport. J. Bacteriol. 128:814–823.

408. McMacken, R., K. Ueda, and A. Kornberg. 1977. Migration of Escherichia coli dnaB protein on the template DNA strand as a mechanism in initiating DNA replication. Proc. Natl. Acad. Sci. U.S.A. 74:4190–4194.

409. Meijer, M., E. Beck, F. G. Hansen, H. E. Bergmans, W. Messer, K. von Meyenburg, and H. Schaller. 1979. Nucleotide sequence of the origin of replication of the Escherichia coli K-12 chromosome. Proc. Natl. Acad. Sci. U.S.A. 76:580–584.

410. Messer, W., H. E. N. Bergmans, M. Meijer, M. E. Womack, F. G. Hansen, and K. von Meyenburg. 1978. Mini-chromosomes: plasmids which carry the E. coli replication origin. Mol. Gen. Genet. 162:269–275.

411. Metzer, E., R. Levitz, and Y. S. Halpern. 1977. Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of o-nitrobenzoylglutamate. J. Bacteriol. 137:1111–1118.

412. Meyer, R. R., J. Glassberg, and A. Kornberg. 1979. An Escherichia coli mutant defective in single-strand binding protein is defective in DNA replication. Proc. Natl. Acad. Sci. U.S.A. 76:1702–1705.

413. Miki, K., T. J. Silhavy, and K. J. Andrews. 1979. Resolution of gipA and gipF loci into separate operons in Escherichia coli K-12 strains. J. Bacteriol. 138:268–269.

414. Miki, T., S. Hiraga, T. Nagata, and T. Yusa. 1978. Bacteriophage χ carrying the Escherichia coli chromosomal region of the replication origin. Proc. Natl. Acad. Sci. U.S.A. 75:5099–5103.

415. Miller, D. L., S. Nagarkatti, R. A. Laursen, J. Parker, and J. D. Friesen. 1978. A comparison of the activities of the products of the two genes for elongation factor Tu. Mol. Gen. Genet. 159:57–62.

416. Miller, J. H. 1979. Genetic studies of the lac repressor. XI. On aspects of lac repressor structure suggested by genetic experiments. J. Mol. Biol. 131:249–258.

417. Miller, J. H., D. Ganem, P. Lu, and A. Schmitz. 1977. Genetic studies of the lac repressor. I. Correlation of mutational sites with specific amino acid residues: construction of a colinear gene-protein map. J. Mol. Biol. 109:...
275–301.

418. Miozzi, R. G. F., and C. Yanofsky. 1978. Translation of the leader region of the Escherichia coli tryptophan operon. J. Bacteriol. 133:1457–1466.

419. Mise, K., and R. Nakaya. 1977. Transduction of R plasmids by bacteriophages P1 and P22. Distinction between generalized and specialized transduction. Mol. Gen. Genet. 157:131–138.

420. Mitchell, D. H., W. S. Reznikoff, and J. Beckwith. 1976. Genetic fusions that help define a transcription termination region in Escherichia coli. J. Mol. Biol. 101:444–457.

421. Mizusuchi, K., M. H. O'Dea, and M. Gellert. 1978. DNA gyrase: subunit structure and ATPase activity of the purified enzyme. Proc. Natl. Acad. Sci. U.S.A. 75:5960–5963.

422. Morand, P., A. Goze, and R. Devoret. 1977. Complementation pattern of lexB and recA mutations in Escherichia coli K12; mapping of tif-1, lexB and recA mutations. Mol. Gen. Genet. 157:69–82.

423. Morgan, E. A., T. Ikemura, L. Lindahl, A. M. Fallon, and M. Nomura. 1978. Some rRNA operons in E. coli have tRNA genes at their distal ends. Cell 13:335–344.

424. Morgan, E. A., T. Ikemura, and M. Nomura. 1977. Identification of spacer tRNA genes in individual ribosomal transcription units of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 74:2710–2714.

425. Morgan, E. A., and M. Nomura. 1979. Deletion analysis of the expression of rRNA genes and associated tRNA genes carried by λ transducing bacteriophage. J. Bacteriol. 137:507–516.

426. Morgan, S., A. Kornor, K. B. Low, and D. Soll. 1977. Regulation of biosynthesis of aminoacyl-tRNA synthetases and of tRNA in Escherichia coli. I. Isolation and characterization of a mutant with elevated levels of tRNA. J. Mol. Biol. 117:1003–1031.

427. Morimoto, M., Y. Shimizu, and N. Ishii. 1976. Isolation and genetic analysis of amber uvrA and uvrB mutants. J. Bacteriol. 128:529–532.

428. Morse, D. E., and I. Yanofsky. 1968. The internal low-efficiency promoter of the tryptophan operon of Escherichia coli. J. Mol. Biol. 38:447–451.

429. Mosteller, R. D. 1978. Evidence that glucose-starvation mutants are altered in the rclB locus. J. Bacteriol. 133:1034–1037.

430. Motojima, K., I. Yamato, and Y. Anraku. 1978. Proline transport carrier-defective mutants of Escherichia coli K-12: properties and mapping. J. Bacteriol. 136:5–9.

430a.Movva, N. R., E. Katz, P. L. Asdourian, Y. Hirota, and M. Inouye. 1978. Gene dosage effects of the structural gene for a lipoprotein of the Escherichia coli outer membrane. J. Bacteriol. 133:81–84.

431. Mukai, T., K. Matsubara, and Y. Takagi. 1976. Cloning bacterial genes with plasmid Adv. Mol. Gen. Genet. 146:269–274.

432. Munch-Petersen, A., B. Mygind, A. Nicolaissen, and N. J. Pihl. 1979. Nucleoside transport in cells and membrane vesicles from Escherichia coli K-12. J. Biol. Chem. 254:3730–3737.

433. Munekiyo, R., T. Tsuzuki, and M. Sekiguchi. 1979. A new locus of Escherichia coli that determines sensitivity to bacteriophage φX174. J. Bacteriol. 138:1038–1040.

434. Murgola, E. J., N. E. Prather, and K. H. Hadley. 1978. Variations among glyV-derived glycine tRNA suppressors of glutamic acid donors. J. Bacteriol. 134:801–807.

435. Murooka, Y., T. Higashiura, and T. Hirada. 1978. Genetic mapping of tyrosine oxidase and arolysulfatase genes and their regulation in interspecific hybrids of enteric bacteria. J. Bacteriol. 136:714–722.

436. Musso, R. E., R. DiLauro, S. Adhya, and B. de Crombrugghe. 1977. Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promoters. Cell 12:847–854.

437. Musso, R., R. DiLauro, M. Rosenberg, and B. de Crombrugghe. 1977. Nucleotide sequence of the operator-promoter region of the galactose operon of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 74:106–110.

438. Nakamura, H., N. Hachiya, and T. Tojo. 1978. Second acriflavine sensitivity mutation, acrB, in Escherichia coli K-12. J. Bacteriol. 134:1184–1187.

439. Nakamura, Y. 1978. RNA polymerase mutant with altered sigma factor in Escherichia coli. Mol. Gen. Genet. 165:1–6.

439a.Nakamura, Y., T. Osawa, and T. Yura. 1977. Chromosomal location of a structural gene for the RNA polymerase σ factor in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 74:1831–1835.

440. Nakata, A., M. Yamaguchi, K. Izutani, and M. Amemura. 1978. Escherichia coli mutants deficient in the production of alkaline phosphatase isozymes. J. Bacteriol. 134:287–294.

441. Nashimoto, H., and H. Uchida. 1975. Late steps in the assembly of 90S ribosomal proteins in vivo in a spectinomycin-resistant mutant of Escherichia coli. J. Mol. Biol. 96:443–453.

442. Nathanson, N. M., and R. Schleif. 1978. Pau- city of sites mutable to constitutivity in the araC activator gene of the L-arabinose operon of Escherichia coli. J. Mol. Biol. 96:185–199.

443. Nemoz, G., J. Robert-Baudouy, and F. Stoeber. 1976. Physiological and genetic regulation of the aldehyduretate transport system in Escherichia coli. J. Bacteriol. 127:706–718.

444. Nestman, E. R. 1978. Mapping by transduction of mutator gene muH in Escherichia coli. Mutat. Res. 49:421–423.

444a.NevehN, L., and E. Thomassen. 1976. Altered deoxyribonucleotide pools in P2 educlants of Escherichia coli K-12 due to deletion of the dcG gene. J. Bacteriol. 128:999–1001.

445. Nevers, P., and H. Saedler. 1978. Mapping and characterization of an E. coli mutant defective
in IS1-mediated deletion formation. Mol. Gen. Genet. 160:209–214.

446. Newman, A. J., T. G. Linn, and R. S. Hayward. 1979. Evidence for cotranscription of the RNA polymerase genes rpoBC with a ribosomal protein gene of Escherichia coli. Mol. Gen. Genet. 189:195–204.

447. Newman, B. M., and J. A. Cole. 1977. The chromosomal location and pleiotropic effects of mutations of the nirA gene or Escherichia coli K-12: the essential role of nirA in nitrite reduction and in other anaerobic redox reactions. J. Gen. Microbiol. 106:1–12.

448. Newman, T. C., and M. Levinthal. 1979. A new map location for the ilvB locus of Escherichia coli. Genetics, submitted for publication.

448a. Nishijima, M., and C. H. R. Raetz. 1979. Membrane lipid biosynthesis in Escherichia coli: identification of genetic loci for phosphatidylglycerolphosphate synthetase and construction of mutants lacking phosphatidylglycerol. J. Biol. Chem. 254:7837–7844.

448b. Nomura, M., E. A. Morgan, and S. R. Jasperson. 1977. Genetics of bacterial ribosomes. Annu. Rev. Genet. 11:297–347.

449. Normark, S., and L. G. Burman. 1977. Resistance of Escherichia coli to penicillins: fine-structure mapping and dominance of chromosomal beta-lactamase mutations. J. Bacteriol. 132:1–7.

450. Normark, S., T. Edlund, T. Grundström, S. Bergström, and H. Wolf-Watz. 1977. Escherichia coli K-12 mutants hyperproducing chromosomal beta-lactamase by gene repetitions. J. Bacteriol. 132:912–922.

451. Normark, S., L. Norlander, T. Grundström, G. D. Bloom, P. Boquel, and G. Frelet. 1976. Septum formation-defective mutant of Escherichia coli. J. Bacteriol. 128:401–412.

452. Novel, M., and G. Novel. 1976. Regulation of \(\beta \)-glucoronidase synthesis in Escherichia coli K-12: constitutive mutants specifically derepressed for uidA expression. J. Bacteriol. 127:494–501.

453. Novel, M., and G. Novel. 1976. Regulation of \(\beta \)-glucuronidase synthesis in Escherichia coli K-12: pleiotropic constitutive mutations affecting \(uux \) and \(uidA \) expression. J. Bacteriol. 127:418–432.

454. Nunn, W. D., and R. W. Simons. 1978. Transport of long-chain fatty acids by Escherichia coli: mapping and characterization of mutants in the \(fadL \) gene. Proc. Natl. Acad. Sci. U.S.A. 78:3377–3381.

454a. Oeschger, M. P., and M. K. B. Berlyn. 1974. A simple procedure for localized mutagenesis using nitrosoguanidine. Mol. Gen. Genet. 134:77–83.

455. Ohsawa, H., and B. Maruo. 1976. Restoration by ribosomal protein S1 of the defective translation in a temperature-sensitive mutant of Escherichia coli K-12: characterization and genetic studies. J. Bacteriol. 127:1157–1166.

456. Ohta, A., I. Shibuya, and B. Maruo. 1975. Escherichia coli mutants with temperature-sensitive phosphatidylserine synthetase: genetic analysis. Agric. Biol. Chem. 39:2443–2445.

457. Ohtsubo, E., and M.-T. Hsu. 1978. Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli: structure of \(fpl \), \(F132 \), and \(F8 \) and mapping of the Escherichia coli chromosomal region \(fem-supe-gal-att-B \). J. Bacteriol. 134:778–794.

458. Ohtsubo, E., and M.-T. Hsu. 1978. Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli: isolation of a new \(F \)-prime factor, \(F80 \), and its implication for the mechanism of \(F \) integration into the chromosome. J. Bacteriol. 134:795–800.

459. Ono, M., and M. Kuwano. 1978. Mutations affecting the thermolability of the 50S ribosomal subunit in Escherichia coli. J. Bacteriol. 134:677–679.

460. Ono, M., M. Kuwano, and T. Horiuchi. 1977. Genetic analysis of mutations affecting ribonuclease II in Escherichia coli. Mol. Gen. Genet. 153:1–4.

461. Ono, M., M. Kuwano, and S. Mizushima. 1979. Genetic analysis of a mutation affecting ribosomal protein S1 in Escherichia coli. Mol. Gen. Genet. 174:11–15.

462. Otsuka, A., and J. Abelson. 1978. The regulatory region of the biotin operon in Escherichia coli. Nature (London) 276:689–694.

463. Oxender, D. L. 1975. Genetic approaches to the study of transport systems, p. 214–231. In H. N. Christensen (ed.), Biological transport, 2nd ed. A. Benjamin, New York.

464. Ozeki, H., H. Sakano, S. Yamada, T. Kusumura, and Y. Shimura. 1974. Temperature-sensitive mutants of Escherichia coli defective in tRNA biosynthesis. Brookhaven Sympl. Biol. 28:89–105.

465. Pacelli, L. Z., S. H. Edmiston, and D. Mount. 1979. Isolation and characterization of amber mutations in the \(gltB \) gene of Escherichia coli K-12. J. Bacteriol. 137:568–573.

466. Pabel, G., F. R. Bloom, and B. Tyler. 1979. Deletion mapping of the polA-metB region of the Escherichia coli chromosome. J. Bacteriol. 138:653–656.

467. Pabel, G., A. D. Zelenetz, and B. M. Tyler. 1978. \(gltB \) gene and regulation of nitrogen metabolism by glutamine synthetase in Escherichia coli. J. Bacteriol. 133:139–148.

468. Pai, C. H., and H. C. Yau. 1975. Chromosomal location of mutations affecting the regulation of biotin synthesis in Escherichia coli. Can. J. Microbiol. 21:1116–1120.

469. Palchaudhuri, S., and W. K. Maas. 1976. Fusion of two \(F \)-prime factors in Escherichia coli studied by electron microscope heteroduplex analysis. Mol. Gen. Genet. 146:215–231.

470. Pao, C. C., and J. Gallant. 1978. A gene involved in the metabolic control of ppGpp synthesis. Mol. Gen. Genet. 158:271–277.

471. Pardo, D., and R. Rosset. 1977. A new ribo-
somal mutation which affects the two ribosomal subunits in Escherichia coli. Mol. Gen. Genet. 153:199–204.

472. Pardo, D., and R. Rosset. 1977. Properties of ribosomes from erythromycin resistant mutants of Escherichia coli. Mol. Gen. Genet. 158:267–271.

473. Park, M. H., B. R. Wong, and J. E. Lusk. 1976. Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology. J. Bacteriol. 126:1096–1103.

474. Parker, J., and S. E. Fishman. 1979. Mapping hisS, the structural gene for histidyl-transfer ribonucleic acid synthetase, in Escherichia coli. J. Bacteriol. 138:264–267.

475. Parker, J., R. J. Watson, J. D. Friesen, and N. Fidl. 1976. A relaxed mutant with an altered ribosomal protein L11. Mol. Gen. Genet. 144:111–114.

476. Parkinson, J. S. 1976. cheA, cheB, and cheC genes of Escherichia coli and their role in chemotaxis. J. Bacteriol. 126:758–770.

477. Parkinson, J. S. 1978. Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis. J. Bacteriol. 135:45–53.

478. Pascal, M.-C., F. Casse, M. Chippaux, and M. Lepelletier. 1975. Genetic analysis of mutants of Escherichia coli K-12 and Salmonella typhimurium LT2 deficient in hydrogenase activity. Mol. Gen. Genet. 141:173–179.

479. Patin, D. W., and D. H. Calhoun. 1979. Mapping of ilvO loci of Escherichia coli K-12 with bacteriophage λ dilv. J. Bacteriol. 137:1234–1242.

480. Pedersen, F. S., and N. O. Kjeldgaard. 1977. Analysis of the relA gene product of Escherichia coli. Eur. J. Biochem. 76:91–97.

481. Pedersen, S., R. M. Blumenthal, S. Reeh, J. Parker, P. Lemaux, R. A. Laursen, R. A. Nagarikati, and J. D. Friesen. 1976. A mutant of Escherichia coli with an altered elongation factor Tu. Proc. Natl. Acad. Sci. U.S.A. 73:1696–1701.

482. Perbal, B., P. Gueguen, and G. Herve. 1977. Biosynthesis of Escherichia coli aspartate transcarbamylase. II. Correlated biosynthesis of the catalytic and regulatory chains and cytoplasmic association of subunits. J. Mol. Biol. 119:319–340.

483. Pettersson, L. S. S. Hardy, and A. Liljaz. 1976. The ribosomal protein L8 is a complex of L7/L12 and L10. FEBS Lett. 64:135–138.

484. Piepersberg, W., A. Bock, M. Yaguchi, and H. G. Wittmann. 1975. Genetic position and amino acid replacements of several mutations in ribosomal protein S5 from Escherichia coli. Mol. Gen. Genet. 143:43–52.

485. Pluschke, G., Y. Hirota, and P. Overath. 1978. Function of phospholipids in Escherichia coli. Characterization of a mutant deficient in cardiolin synthesis. J. Biol. Chem. 253:5048–5055.

486. Post, L. E., A. E. Aafsten, and M. Nomura. 1978. Isolation and characterization of a pro-
501. Raetz, C. R. H., T. J. Larson, and W. Dowhan. 1977. Gene cloning for the isolation of enzymes of membrane lipid synthesis: phosphatidylserine synthase overproduction in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 74:1412-1416.

502. Raetz, C. R. H., and K. F. Newman. 1978. Neutral lipid accumulation in the membranes of Escherichia coli mutants lacking diglyceride kinase. J. Biol. Chem. 253:3882-3887.

503. Raibaud, O., J.-M. Clement, and M. Hofnung. 1979. Structure of the malB region in Escherichia coli K12 III. Correlation of the genetic map with the restriction map. Mol. Gen. Genet. 174:261-267.

504. Raibaud, O., M. Roa, C. Braun-Breton, and M. Schwartz. 1979. Structure of the malB region in Escherichia coli K12 I. Genetic map of the malK-lamb operon. Mol. Gen. Genet. 174:241-248.

505. Randall, L. L., S. J. S. Hardy, and L.-G. Josefsson. 1978. Precursors of three exported proteins in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 75:1209-1212.

506. Ratner, D. 1976. Evidence that mutations in the suA polarity suppressing gene directly affect termination factor rho. Nature (London) 259: 151-153.

507. Ratner, D. 1976. The rho gene of Escherichia coli maps at suA, p. 645-655. In R. Losick and M. Chamblin (ed.), RNA polymerase. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

508. Ray, T. K., J. E. Cronan, Jr., and G. N. Godson. 1976. Specific inhibition of phospholipid synthesis in pslA mutants of Escherichia coli. J. Bacteriol. 125:136-141.

509. Reiner, A. M. 1975. Genes for ribitol and N-arabitol catabolism in Escherichia coli: their loci in C strains and absence in K-12 and B strains. J. Bacteriol. 125:530-536.

510. Richmond, D. B., L. Laminin, and W. Epstein. 1978. Functional organization of the kdp genes of Escherichia coli K-12. J. Bacteriol. 135: 445-452.

511. Riley, M., and A. Anilionis. 1978. Evolution of the bacterial genome. Annu. Rev. Microbiol. 32:519-560.

512. Riley, M., L. Solomon, and D. Zipkais. 1978. Relation between gene function and gene location in Escherichia coli. J. Mol. Evol. 11: 47-56.

513. Riordan, C., and H. L. Kornberg. 1977. Location of galIP, a gene which specifies galactose permease activity, on the Escherichia coli linkage map. Proc. R. Soc. London Ser. B 198:401-410.

514. Robbins, A. R. 1975. Regulation of the Escherichia coli methylgalactoside transport system by gene mglD. J. Bacteriol. 123:69-74.

515. Roberts, J. W., and J. Carbon. 1975. Nucleotide sequence studies of normal and genetically altered glycine transfer ribonucleic acids from Escherichia coli. J. Biol. Chem. 250:5530-5541.

516. Roeder, W., and R. L. Somerville. 1979. Cloning the trpR gene. Mol. Gen. Genet. 176:361-368.

517. Rossi, J. J., and A. Landy. 1979. Structure and organization of the two tRNA\textsuperscript{\textsc{\textsc{\textsuperscript{\textsc{T}}}}}\textsuperscript{\textsc{\textsc{T}}}\textsuperscript{\textsc{\textsc{\textsuperscript{\textsc{T}}}} gene clusters on the E. coli chromosome. Cell 18:523-534.

518. Rossi, J. J., W. Ross, J. Egan, D. J. Lipman, and A. Landy. 1979. Structural organization of Escherichia coli tRNA\textsuperscript{\textsc{\textsc{\textsuperscript{\textsc{T}}}}}\textsuperscript{\textsc{\textsc{T}}}\textsuperscript{\textsc{\textsc{\textsuperscript{\textsc{T}}}} gene clusters in four different transducing bacteriophages. J. Mol. Biol. 128:21-47.

519. Rotering, H., and V. Braun. 1977. Lipid deficiency in a lipoprotein mutant of Escherichia coli. FEBS Lett. 83:41-44.

520. Rothman, R. H., and A. J. Clark. 1977. Defective excision and postreplication repair of damaged DNA in a recL mutant strain of E. coli K-12. Mol. Gen. Genet. 155:267-277.

521. Rowen, L., and A. Kornberg. 1978. Primase, the dnaG protein of Escherichia coli: an enzyme which starts DNA chains. J. Biol. Chem. 253:758-764.

522. Ryan, M. J. 1976. Coumermycin A; a preferential inhibitor of replicative DNA synthesis in Escherichia coli. Biochemistry 15:3769-3776.

523. Saier, M. H., Jr., and S. Roseman. 1976. Sugar transport. The crr mutation: its effect on repression of enzyme synthesis. J. Biol. Chem. 251:6598-6605.

524. Saint-Girons, I., and D. Margarita. 1975. Operator-constitutive mutants in the threonine operon of Escherichia coli K-12. J. Bacteriol. 124:1137-1141.

525. Saint-Girons, I., and D. Margarita. 1978. Fine structure analysis of the threonine operon of Escherichia coli K-12. Mol. Gen. Genet. 162:101-107.

526. Saito, H., Y. Nakamura, and H. Uchida. 1978. A transducing λ phage carrying grpE, a bacterial gene necessary for λ DNA replication, and two ribosomal protein genes, rpsP (S16) and rpsL (L19). Mol. Gen. Genet. 165:247-256.

527. Saito, H., and H. Uchida. 1977. Initiation of the DNA replication of bacteriophage lambda in Escherichia coli K12. J. Mol. Biol. 113:105-129.

528. Saito, H., and H. Uchida. 1978. Organization and expression of the dnaA and dnaX genes of Escherichia coli K12. Mol. Gen. Genet. 164:1-8.

529. Saitoh, T., and S. Hiraga. 1975. Initiation of DNA replication in Escherichia coli III. Genetic analysis of the dna mutant exhibiting rifampicin-sensitive resumption of replication. Mol. Gen. Genet. 137:249-261.

530. Sakano, H., and Y. Shimura. 1978. Characterization and in vitro processing of transfer RNA precursors accumulated in a temperature-sensitive mutant of Escherichia coli. J. Mol. Biol. 123:857-862.

531. Sancerç, A., and C. S. Rupert. 1978. Correction of the map location for the phr gene in Escherichia coli K12. Mutat. Res. 51:139-143.
Schmitges, C. J., and U. Henning. 1976. The major proteins of the Escherichia coli outer cell-envelope membrane. Heterogeneity of pro-
tein I. Eur. J. Biochem. 63:47-52.

547. Schnier, J., and K. Isono. 1979. The gene for ribosomal protein L25 (rplY) maps at 47.3 min near nalA in Escherichia coli K-12. Mol. Gen. Genet. 176:313-318.

548. Schrenk, W. J., and R. A. Weisberg. 1975. A simple method for making new transducing lines of coliphage λ. Mol. Gen. Genet. 137:101-107.

549. Scott, J. F., and A. Kornberg. 1978. Purification of the rep protein of Escherichia coli: an ATPase which separates duplex DNA strands in advance of replication. J. Biol. Chem. 253:3292-3297.

550. Sekiya, T., R. Contreras, H. Küpper, A. Landy, and H. G. Khorana. 1976. Esche-
richia coli tyrosine transfer ribonucleic acid genes. Nucleotide sequences of their promoters and of the regions adjoining C-C-A ends. J. Biol. Chem. 251:5125-5140.

551. Senior, A. E., J. A. Downie, G. B. Cox, F. Gibson, L. Langman, and D. R. H. Faye. 1979. The uncA gene codes for the α-subunit of the adenosine triphosphatase of Escherichia coli. Electrophoretic analysis of uncA mutant strains. Biochem. J. 180:103-109.

552. Senior, A. E., D. R. H. Faye, J. A. Downie, F. Gibson, and G. B. Cox. 1979. Properties of membranes from mutant strains of Escherichia coli in which the β-subunit of the adenosine triphosphatase is abnormal. Biochem. J. 180:111-118.

553. Sens, D., W. Natter, and E. James. 1977. Evolutionary drift of the argF and argI genes. Coding for isoenzyme forms of ornithine trans-
carbamylase in E. coli K12. Cell 10:275-285.

554. Sevastopoulos, C. G., C. T. Wehr, and D. A. Glaser. 1977. Large-scale automated isolation of Escherichia coli mutants with thermosen-
sitive DNA replication. Proc. Natl. Acad. Sci. U.S.A. 74:3485-3489.

555. Shaw, K. J., and C. M. Berg. 1979. Escherichia coli K-12 auxotrophs induced by insertion of the transposable element Th5. Genetics 92: 741-747.

556. Sheldon, R. 1977. Altered dihydrofolate reductase in fol regulatory mutants of Escherichia coli K12. Mol. Gen. Genet. 151:215-219.

557. Sheldon, R., and S. Brenner. 1976. Regulatory mutants of dihydrofolate reductase in Esche-
richia coli K-12. Mol. Gen. Genet. 147:91-97.

558. Shibata, T., C. DasGupta, R. P. Cunningham, and C. M. Radding. 1979. Purified Esche-
richia coli recA protein catalyzes homologous pairing of superhelical DNA and single-
stranded fragments. Proc. Natl. Acad. Sci. U.S.A. 76:1638-1642.

559. Shibuya, M., Y. Takebe, and Y. Kaziro. 1977. A possible involvement of cya gene in the synthesis of cyclic guanosine 3′:5′-monophos-
phate in E. coli. Cell 12:521-528.

560. Shimada, K., Y. Fukumake, and Y. Takagi. 1976. Expression of the guanine operon of Escherichia coli as analyzed by bacteriophage
lambda-induced mutations. Mol. Gen. Genet. 147:203–208.

561. Shimizu, S., and W. B. Dempsey. 1976. Genetic map position of the pdxH gene in Escherichia coli. J. Bacteriol. 127:1593–1594.

562. Shimizu, S., and W. B. Dempsey. 1978. 3-Hydroxypropyruvate substitutes for pyridoxine in serC mutants of Escherichia coli K-12. J. Bacteriol. 134:944–949.

563. Silbert, D. F., T. Pohland, and A. Chapman. 1976. Partial characterization of a temperature-sensitive mutation affecting acetyl coenzyme A carboxylase in Escherichia coli K-12. J. Bacteriol. 126:1351–1354.

564. Silhavy, T. J., E. Brickman, P. J. Bassford, Jr., M. J. Casadaban, H. A. Shuman, V. Schwartz, L. Guarente, M. Schwartz, and J. R. Beckwith. 1979. Structure of the malB region in Escherichia coli K-12. II. Genetic map of the malE,F,G operon. Mol. Gen. Genet. 174:249–259.

565. Silhavy, T. J., M. J. Casadaban, H. A. Shuman, and J. R. Beckwith. 1976. Conversion of β-galactosidase to a membrane-bound state by gene fusion. Proc. Natl. Acad. Sci. U.S.A. 73:3423–3427.

566. Silhavy, T. J., I. Hartig-Beeken, and W. Boos. 1976. Periplasmic protein related to the sn-glycerol-3-phosphate transport system of Escherichia coli. J. Bacteriol. 126:951–968.

567. Silhavy, T. J., H. A. Shuman, J. Beckwith, and M. Schwartz. 1977. Use of gene fusions to study outer membrane protein localization in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 74:5411–5415.

568. Silverman, M., P. Matsumara, R. Draper, S. Edwards, and M. I. Simon. 1976. Expression of flagellar genes carried by bacteriophage lambda. Nature (London) 261:248–250.

569. Silverman, M., and M. Simon. 1977. Identification of polypeptides necessary for chemotaxis in Escherichia coli. J. Bacteriol. 130:1317–1325.

570. Silverman, M., and M. Simon. 1977. Chemotaxis in Escherichia coli: methylation of the gene products. Proc. Natl. Acad. Sci. U.S.A. 74:3317–3321.

571. Simonian, M. H., R. V. Goldstein, and R. D. Mosteller. 1978. Genetic and segregation analysis of Escherichia coli strains containing a tandem duplication of the trpD-purB region of the chromosome. J. Bacteriol. 133:650–660.

572. Sklar, J., S. Weissman, R. E. Musso, R. DiLauro, and B. de Crombrugghe. 1977. Determination of the nucleotide sequence of part of the regulatory region for the galactose operon from Escherichia coli. J. Biol. Chem. 252:3538–3547.

573. Smirnov, G. B., and G. F. Abdulkhalykov. 1976. Study of genetic control of the recF recombination pathway. II. Effect of recL' and uweE mutations. Genetika 12:100–108. (Sov. Genet. 12:475–481.)

574. Smith, B. R., and R. Schleif. 1978. Nucleotide sequence of the L-arabinose regulatory region of Escherichia coli K12. J. Biol. Chem. 253:6931–6933.

575. Smith, C. L., H. Shizuya, and R. E. Moses. 1976. Deoxyribonucleic acid polymerase II activity in an Escherichia coli mutator strain. J. Bacteriol. 125:191–196.

576. Smith, J. M., F. J. Smith, and H. E. Umbarger. 1979. Mutations affecting the formation of acetoxyhydroxy acid synthase II in Escherichia coli K-12. Mol. Gen. Genet. 169:299–314.

577. Smith, J. M., D. E. Smolin, and H. E. Umbarger. 1976. Polarity and the regulation of the ilv gene cluster in Escherichia coli strain K-12. Mol. Gen. Genet. 148:111–124.

578. Smith, J. M., and H. E. Umbarger. 1977. Characterization of fusions between the lac operator and the ilv gene cluster in Escherichia coli. J. Bacteriol. 132:870–875.

579. Snider, M. D., and E. P. Kennedy. 1977. Partial purification of glycerophosphate acyltransferase from Escherichia coli. J. Bacteriol. 130:1072–1083.

580. Soffer, R. L., and M. Savage. 1974. A mutant of Escherichia coli defective in leucyl-pentylalanyl-tRNA-protein transferase. Proc. Natl. Acad. Sci. U.S.A. 71:1004–1007.

581. Somerville, C. R., and A. Ahmed. 1979. Mutants of E. coli defective in the degradation of guanosine 5’-triphosphate, 3’-diphosphate (pppGpp). Mol. Gen. Genet. 169:315–323.

582. Soucek, S., and J. Konisky. 1977. Normal iron-enterochelin uptake in mutants lacking the colicin I outer membrane receptor protein of Escherichia coli. J. Bacteriol. 130:1399–1404.

583. Spencer, M. E., V. M. Lebeter, and J. R. Guest. 1976. Location of the aspartase gene (aspA) on the linkage map of Escherichia coli K12. J. Gen. Microbiol. 97:73–82.

584. Speri, G. T., and J. A. DeMoss. 1975. chla gene function in molybdate activation of nitrate reductase. J. Bacteriol. 122:1230–1235.

585. Spratt, B. G. 1977. Temperature-sensitive division mutants of Escherichia coli with the molobal penicillin-binding proteins. J. Bacteriol. 131:293–305.

586. Spratt, B. G. 1978. Escherichia coli resistance to β-lactam antibiotics through a decrease in the affinity of a target for lethality. Nature (London) 274:713–715.

587. Springer, M. S., M. F. Goy, and J. Adler. 1972. Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins. Proc. Natl. Acad. Sci. U.S.A. 74:3312–3316.

588. Springer, M., M. Grafe, and M. Grunberg-Manago. 1979. Genetic organization of the E. coli chromosome around the structural gene for initiation factor IF3 (infC). Mol. Genet. 169:337–343.

589. Springer, M., M. Grafe, and M. Grunberg-Manago. 1977. Characterization of an E. coli mutant with a thermolabile initiation factor IF3 activity. Mol. Genet. 151:17–26.

590. Springer, M., M. Grafe, and H. Hennecke. 1977. Specialized transducing phage for the
initiation factor 3 gene in *Escherichia coli*. Proc. Natl. Acad. Sci. U.S.A. 74:3970–3974.

591. Squires, C., F. Lee, K. Bertrand, C. L. Squires, M. J. Bronson, and C. Yanofsky. 1976. Nucleotide sequence of the 5′ end of tryptophan messenger RNA of *Escherichia coli*. J. Mol. Biol. 103:351–381.

592. Srivastava, B. S. 1976. Radiation sensitivity of a mutant of *Escherichia coli* K-12 associated with DNA replication: evidence for a new repair function. Mol. Gen. Genet. 143:327–332.

593. Stacey, K. A., and P. Oliver. 1977. Novel pleiotropic mutation in *Escherichia coli* K12 which affects transcription, transformation and rates of mutation. J. Gen. Microbiol. 98:569–578.

594. Stanley, J., and L. K. Dunican. 1979. Intergeneric mobilization of *Rhizobium nif* genes to *Agrobacterium* and *Klebsiella*. Mol. Gen. Genet. 174:211–220.

595. Stauffer, G. V., G. Zurawski, and C. Yanofsky. 1978. Single base-pair alterations in *Escherichia coli* trp operon leader region that relieve transcription termination at trp attenuator. Proc. Natl. Acad. Sci. U.S.A. 75:4833–4837.

596. Stevens, F. J., and T. T. Wu. 1976. Growth on D-lxose of a mutant strain of *Escherichia coli* K-12 using a novel isomerase and enzymes related to D-xylose metabolism. J. Gen. Microbiol. 97:257–265.

597. Stock, J. B., and D. E. Koshland, Jr. 1978. A protein methyltransferase involved in bacterial sensing. Proc. Natl. Acad. Sci. U.S.A. 75:3659–3663.

598. Sturgeon, J. A., and L. O. Ingram. 1978. Low-temperature conditional division mutants of *Escherichia coli*. J. Bacteriol. 133:256–264.

599. Sugimoto, K., A. Oka, H. Sugisaki, M. Takamani, A. Nishimura, Y. Yasuda, and Y. Hirota. 1979. Nucleotide sequence of *Escherichia coli* K-12 replication origin. Proc. Natl. Acad. Sci. U.S.A. 76:575–579.

600. Sugino, A., C. L. Pheeles, K. N. Kreuzer, and N. R. Cozzarelli. 1977. Mechanism of action of nalidixic acid: purification of *Escherichia coli* nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc. Natl. Acad. Sci. U.S.A. 74:4767–4771.

601. Sunshine, M., M. Feiss, J. Stuart, and J. Yokochi. 1977. A new host gene (groPC) necessary for lambda DNA replication. Mol. Gen. Genet. 151:27–34.

602. Suzuki, H., Y. Nishimura, and Y. Hirota. 1978. On the process of cellular division in *Escherichia coli* : a series of mutants of E. coli altered in the penicillin-binding proteins. Proc. Natl. Acad. Sci. U.S.A. 75:664–668.

603. Suzuki, H., Y. Nishimura, H. Iketani, J. Campbell, A. Hirashima, M. Inouye, and Y. Hirota. 1976. Novel mutation that causes a structural change in a lipoprotein in the outer membrane of *Escherichia coli*. J. Bacteriol. 127:1494–1501.

604. Swaney, L. M., Y.-P. Liu, K. Ippen-Ifier, and C. C. Brinton, Jr. 1977. Genetic complementation analysis of *Escherichia coli* type 1 somatic pilus mutants. J. Bacteriol. 130:506–511.

605. Swaney, L. M., Y.-P. Liu, C.-M. To, C.-C. To, K. Ippen-Ifier, and C. C. Brinton, Jr. 1977. Isolation and characterization of *Escherichia coli* phase variants and mutants deficient in type 1 pilus production. J. Bacteriol. 130:495–505.

606. Szmelcman, S., and M. Hofnung. 1975. Maltose transport in *Escherichia coli* K-12: involvement of the bacteriophage lambda receptor. J. Bacteriol. 124:112–118.

607. Szmelcman, S., M. Schwartz, T. J. Silhavy, and W. Boos. 1976. Maltose transport in *Escherichia coli* K-12. A comparison of transport kinetics in wild-type and Δmutants with the dissociation constants of the maltose-binding protein as measured by fluorescence quenching. Eur. J. Biochem. 65:13–19.

608. Syzbaliski, E. H., and W. Szybaliski. 1977. Physical mapping of the biotin gene cluster. Abstr. Annu. Meet. Am. Soc. Microbiol. 1977, S275, p. 325.

609. Tabor, C. W., H. Tabor, and E. W. Hafner. 1978. *Escherichia coli* mutants completely deficient in adenosylmethionine decarboxylase and in spermidine biosynthesis. J. Biol. Chem. 253:3671–3676.

610. Tabor, H., E. W. Hafner, and C. W. Tabor. 1977. Localized mutagenesis with bacteriophage Mu: method for increasing the frequency of specific bacterial mutants. J. Bacteriol. 132:359–361.

611. Tabor, H., C. W. Tabor, and E. W. Hafner. 1976. Convenient method for detecting 14CO2 in multiple samples: application to rapid screening for mutants. J. Bacteriol. 128:485–486.

612. Takahashi, H. 1978. Genetic and physiological characterization of *Escherichia coli* K12 mutants (tabC) which induce the abortive infection of bacteriophage T4. Virology 87:256–265.

613. Takata, R. 1976. Genetic studies of the ribosomal proteins in *Escherichia coli*. IX. Mapping of the ribosomal proteins, S2 and S20, by intergeneric mating experiments between *Serratia marcescens* and *Escherichia coli* K12. Mol. Gen. Genet. 146:233–238.

614. Takata, R. 1978. Genetic studies of the ribosomal proteins in *Escherichia coli*. XI. Mapping of the genes for L21, L27, S15 and S21 by using hybrid bacteria and over-production of these proteins in the merodiploid strains. Mol. Gen. Genet. 160:151–155.

615. Takata, R., and L. A. Isaksson. 1978. The temperature sensitive mutant 72c. II. Accumulation at high temperature of ppGpp and pppGpp in the presence of protein synthesis. Mol. Gen. Genet. 161:15–21.

616. Takata, R., and K. Kobata. 1976. Genetic studies of the ribosomal proteins in *Escherichia coli*. X. Mapping of the ribosomal proteins, L21 and S15, by intergeneric mating experiments between *Serratia marcescens* and *Escherichia coli*.
622. Tamaki, S., S. Nakajima, and M. Matsuhashi. 1977. Thermosensitive mutation in *Escherichia coli* simultaneously causing defects in penicillin-binding protein-1Bs and in enzyme activity for peptidoglycan synthesis in *vitro*. Proc. Natl. Acad. Sci. U.S.A. 74:5472–5476.

617. Taylor, H. V., and M. D. Yudkin. 1978. Synthesis of tryptophanase in *Escherichia coli*: isolation and characterization of a structural-genotype mutant and two regulatory mutants. Mol. Gen. Genet. 165:95–102.

619. Theall, G., K. B. Low, and D. Söll. 1977. Suppression of a defective alanyl-tRNA synthetase in *Escherichia coli*: a compensatory mutation to high alanine affinity. Mol. Gen. Genet. 166:221–227.

618. Theall, G., K. B. Low, and D. Söll. 1979. Regulation of the biosynthesis of aminocetyl-tRNA synthetases and of tRNA in *Escherichia coli*. IV. Mutants with increased levels of leucyl- or seryl-tRNA synthetase. Mol. Gen. Genet. 169:205–211.

614. Thomas, G., and A. Favre. 1977. Localization génétique d’une mutation qui rend la croissance de *E. coli* K12 insensible à l’illumination à 365 nm. C.R. Acad. Sci. Ser. D 284:2285–2288.

613. Thomson, J., P. D. Gerstenberger, D. E. Goldberg, E. Gociar, A. Orozco de Silva, and D. G. Fraenkel. 1979. ColEl hybrid plasmids for *Escherichia coli* genes of glycolysis and the hexose monophosphate shunt. J. Bacteriol. 137:502–506.

612. Thomson, J. A. 1977. *E. coli* phosphofructokinase synthesized in vitro from a ColEl hybrid plasmid. Gene 1:347–356.

611. Thorbjarnardóttir, S. H., R. A. Magnusdóttir, G. Eggertsson, S. A. Kagan, and O. S. Andrésson. 1978. Mutations determining generalized resistance to aminoglycoside antibiotics in *Escherichia coli*. Mol. Gen. Genet. 161:89–98.

610. Thorne, G. M., and L. M. Corwin. 1975. Mutations affecting aromatic amino acid transport in *Escherichia coli* and *Salmonella typhimurium*. J. Gen. Microbiol. 90:203–216.

609. Tomochika, K.-I., and J.-S. Hong. 1978. Transport-defective *Escherichia coli* ecf mutant permeable to protons and nucleotides. J. Bacteriol. 133:1008–1014.

608. Travers, A. A., R. Buckland, M. Goman, S. S. G. LeGrice, and J. G. Scaife. 1978. A mutation affecting the α subunit of RNA polymerase changes transcriptional specificity. Nature (London) 273:354–358.

607. Tully, M., and M. D. Yudkin. 1977. Fine-structure mapping and complementation analysis of the *Escherichia coli* cysB gene. J. Bacteriol. 131:49–56.

606. Tye, B.-K., P.-O. Nyman, I. R. Lehman, S. Hochhauser, and B. Weiss. 1977. Transient accumulation of Okazaki fragments as a result of uracil incorporation into nascent DNA. Proc. Natl. Acad. Sci. U.S.A. 74:154–157.

605. Valentijn-Hansen, P., B. A. Svenningsen, A. Munch-Petersen, and K. Hammer-Jespersen. 1978. Regulation of the deo operon in *Escherichia coli*. The double negative control of the deo operon by the cytR and deoR repressors in a DNA directed in vitro system. Mol. Gen. Genet. 159:191–202.

604. Vales, L. D., J. W. Chase, and J. B. Murphy. 1979. Orientation of the guanine operon of *Escherichia coli* K-12 by utilizing strains containing guaB-xse and guaB-upp deletions. J. Bacteriol. 139:320–322.

603. van Alphen, L., B. Lugtenberg, R. van Boxtel, A.-M. Hack, C. Verhoef, and L. Hofvekes. 1979. meoA is the structural gene for outer membrane protein c of *Escherichia coli* K12. Mol. Gen. Genet. 169:147–155.

602. Van de Klundert, J. A. M., P. H. Van der Meide, P. Van de Putte, and L. Bosch. 1979. Mutants of *Escherichia coli* altered in both genes coding for the elongation factor Tu. Proc. Natl. Acad. Sci. U.S.A. 75:4470–4473.

601. Vanderwinkel, E., M. de Vlieghere, and A. Feller. 1977. Murein hydrolyase activity and septum deficiency in *Escherichia coli* genetically constitutive for the β-oxidation pathway. Biochem. Soc. Trans. 5:1043–1045.

600. Vanderwinkel, E., M. de Vlieghere, M. Fontaine, D. Charles, F. Denamur, D. Van de Voorde, and D. De Kegel. 1976. Septation deficiency and phospholipid perturbation in *Escherichia coli* genetically constitutive for the beta oxidation pathway. J. Bacteriol. 127:1389–1399.

599. van Dorp, B., R. Benne, and F. Palitje. 1976. The ATP-dependent DNAase of *Escherichia coli* rorA: a nuclease with changed enzymatic properties. Biochim. Biophys. Acta 408:446–454.

598. Varenne, S., F. Casse, M. Chippaux, and G. F. Pascual. 1975. A mutant of *Escherichia coli* deficient in pyruvate formate lyase. Mol. Gen. Genet. 141:181–184.

597. Verhoef, C., P. J. de Graaff, and E. J. Lugtenberg. 1977. Mapping of a gene for a major outer membrane protein of *Escherichia coli* K12 with the aid of a newly isolated bacterial phage. Mol. Gen. Genet. 150:103–105.

596. Verhoef, C., B. Lugtenberg, R. van Boxtel, P. de Graaff, and H. Verheij. 1979. Genetics and biochemistry of the peptidoglycan-associated proteins b and c of *Escherichia coli* K-12. Mol. Gen. Genet. 169:137–146.

595. Vola, C., B. Jarry, and R. Rosset. 1977. Linkage of 5S RNA and 16S+23S RNA genes on the *E. coli* chromosome. Mol. Gen. Genet. 153:337–341.

594. von Meyenburg, K., F. G. Hansen, L. D. Nielsen, and P. Jørgensen. 1977. Origin of replication, oriC, of the *Escherichia coli* chromosome: mapping of genes relative to R.EcoR1 cleavage sites in the oriC region. Mol. Gen. Genet. 158:101–109.

593. von Meyenburg, K., F. G. Hansen, L. D. Nielsen, and E. Riise. 1978. Origin of replication,
or C, of the *Escherichia coli* chromosome on specialized transducing phages λasn. Mol. Gen. Genet. 160:287–295.

645. Wada, C., S. Hiraga, and T. Yura. 1976. A mutant of *Escherichia coli* incapable of supporting vegetative replication of F-like plasmids. J. Mol. Biol. 108:25–41.

646. Wada, C., and T. Yura. 1979. Mutants of *Escherichia coli* incapable of supporting replication of F-like plasmids at high temperature: isolation and characterization of *mufA* and *mufB* mutants. J. Bacteriol. 140:864–873.

647. Wada, C., T. Yura, and S. Hiraga. 1977. Replication of *F* poh′ plasmid in *mufA* mutants of *Escherichia coli* defective in plasmid maintenance. Mol. Gen. Genet. 152:211–217.

648. Walker, J. R., A. Kovarik, J. S. Allen, and R. A. Gustafson. 1975. Regulation of bacterial cell division: temperature-sensitive mutants of *Escherichia coli* that are defective in septum formation. J. Bacteriol. 123:693–703.

649. Ward, D. F., and M. Yudkin. 1976. Mutations in *Escherichia coli* that relieve catabolite repression of tryptophanase synthesis. Tryptophanase promoter-like mutations. J. Gen. Microbiol. 92:133–137.

650. Watson, M. D., J. Wild, and H. E. Umberger. 1979. Positive control of *ilvC* expression in *Escherichia coli* K-12; identification and mapping of regulatory gene *ilvY*. J. Bacteriol. 139:1014–1020.

651. Wechsler, J. A. 1972. Complementation analysis of mutations at the *dnaB*, *dnaC*, and *dnaD* loci, p. 375–382. In R. D. Wells and R. B. Inman (ed.), DNA synthesis in *vitro*. University Press Park, Baltimore.

652. Westling-Häggström, B., and S. Normark. 1975. Genetic and physiological analysis of an *enb* spherelike mutant of *Escherichia coli* K-12 and characterization of its transductants. J. Bacteriol. 123:75–82.

653. Whip, M. J., and A. J. Pittard. 1977. Regulation of aromatic amino acid transport systems in *Escherichia coli* K-12. J. Bacteriol. 132:453–461.

654. White, B. J., S. J. Hochhauser, N. M. Cintrón, and B. Weiss. 1976. Genetic mapping of *xthA*, the structural gene for exonuclease III in *Escherichia coli* K-12. J. Bacteriol. 128:1082–1088.

655. Wickner, S. 1976. Mechanism of DNA elongation catalyzed by *Escherichia coli* DNA polymerase III, *dnaZ* protein, and DNA elongation factors I and III. Proc. Natl. Acad. Sci. U.S.A. 73:3511–3515.

656. Wickner, S., and J. Hurwitz. 1975. Interaction of *Escherichia coli* dnaB and *dnaC* (*D*) gene products in *vitro*. Proc. Natl. Acad. Sci. U.S.A. 72:921–925.

657. Wickner, S., and J. Hurwitz. 1976. Involvement of *Escherichia coli* dnaZ gene product in DNA elongation in *vitro*. Proc. Natl. Acad. Sci. U.S.A. 73:1053–1057.

658. Wilksman, H. J. W., and C. R. M. Koopman. 1976. The relation of the genes *enb* and *fts* in *Escherichia coli*. Mol. Gen. Genet. 147:99–102.

659. Willsky, G. R., and M. H. Malamy. 1976. Control of the synthesis of alkaline phosphatase and the phosphate-binding protein in *Escherichia coli*. J. Bacteriol. 127:595–609.

660. Wilson, G. G., K. K. Y. Young, G. J. Edlin, and W. Konigsberg. 1979. High frequency generalized transduction by bacteriophage T4. Nature (London) 280:80–81.

661. Wittmann, H. G., G. Stöffer, D. Geil, and A. Böck. 1975. Alteration of ribosomal proteins in revertants of a valyl-TRNA synthetase mutant of *Escherichia coli*. Mol. Gen. Genet. 141:317–329.

662. Wittmann, H. G., M. Yaguchi, W. Piersburg, and A. Böck. 1975. Direction of transcription of two ribosomal protein genes in *Escherichia coli*. J. Mol. Biol. 98:827–829.

663. Woodrow, G. C., L. Langman, I. G. Young, and F. Gibson. 1979. Mutations affecting the citrate-dependent iron uptake system in *Escherichia coli*. J. Bacteriol. 133:1524–1526.

664. Woodrow, G. C., I. G. Young, and F. Gibson. 1979. Mut-inducing polarity in the *Escherichia coli* K-12 *ent* gene cluster: evidence for a gene (*entG*) involved in the biosynthesis of enterochelin. J. Bacteriol. 124:1–6.

665. Woodrow, G. C., I. G. Young, and F. Gibson. 1979. Biosynthesis of enterochelin in *Escherichia coli* K-12. Separation of the polyamides coded for by the *entD, E, F* and *G* genes. Biochim. Biophys. Acta 582:145–153.

666. Wooker, P., and H. Rosenberg. 1978. Involvement of inner and outer membrane components in the transport of iron and in colicin B action in *Escherichia coli*. J. Bacteriol. 133:661–666.

667. Wright, M. 1971. Mutants of *Escherichia coli* lacking endonuclease I, ribonuclease I, or ribonuclease II. J. Bacteriol. 107:97–94.

668. Wu, A. M., and T. Platt. 1978. Transcription termination: nucleotide sequence at 3′ end of tryptophan operon in *Escherichia coli*. Proc. Natl. Acad. Sci. U.S.A. 75:5442–5446.

669. Wu, H. C., C. Hou, J. J. C. Lin, and D. W. Yen. 1977. Biochemical characterization of a mutant lipoprotein of *Escherichia coli*. Proc. Natl. Acad. Sci. U.S.A. 74:1388–1392.

670. Wu, M., and H. Davidson. 1975. Use of gene 32 protein staining of single-strand polynucleotides for gene mapping by electron microscopy: application to the *d30* and *ilsu* 7 system. Proc. Natl. Acad. Sci. U.S.A. 92:4506–4510.

671. Wu, T. T. 1976. Growth on D-arabitol of a mutant strain of *Escherichia coli* K12 using a novel dehydrogenase and enzymes related to L-1,2-propanediol and D-xylene metabolism. J. Gen. Microbiol. 94:246–256.

672. Yagil, E., N. Silberstein, and R. G. Gerdes. 1976. Co-regulation of the phosphate binding protein and alkaline phosphatase synthesis in *Escherichia coli*. J. Bacteriol. 127:656–659.

673. Yaguchi, M., H. G. Wittmann, T. Cabezón, M. De Wilde, R. Villarroel, A. Herzog, and A. Bollen. 1976. Alteration of ribosomal protein
S17 by mutation linked to neamine resistance in *Escherichia coli*. II. Localization of the amino acid replacement in protein S17 from a *neaA* mutant. J. Mol. Biol. 104:617–620.

672. Yamamoto, M., L. Lindahl, and M. Nomura. 1976. Synthesis of ribosomal RNA in *Escherichia coli*: analysis using deletion mutants of a λ transducing phage carrying ribosomal RNA genes. Cell 7:179–190.

673. Yamamoto, M., and M. Nomura. 1976. Isolation of λ transducing phages carrying rRNA genes at the meta-purD region of the *Escherichia coli* chromosome. FEBS Lett. 72:256–261.

674. Yamamoto, M., and M. Nomura. 1978. Cotranscription of genes for RNA polymerase subunits β and β' with genes for ribosomal proteins in *Escherichia coli*. Proc. Natl. Acad. Sci. U.S.A. 75:3891–3895.

675. Yamamoto, M., and M. Nomura. 1979. Organization of genes for transcription and translation in the rif region of the *Escherichia coli* chromosome. J. Bacteriol. 137:584–594.

676. Yamamoto, M., M. Nomura, H. Ohsawa, and B. Maruo. 1977. Identification of a temperature-sensitive asparaginyl-transfer ribonucleic acid synthetase mutant of *Escherichia coli*. J. Bacteriol. 132:127–131.

677. Yamamoto, M., W. A. Strycharz, and M. Nomura. 1976. Identification of genes for elongation factor Ts and ribosomal protein S2. Cell 8:129–138.

678. Yamamoto, Y., M. Katsuki, M. Sekiguchi, and N. Otsuji. 1978. *Escherichia coli* gene that controls sensitivity to alkylating agents. J. Bacteriol. 135:144–152.

679. Yamato, I., M. Ohki, and Y. Anraku. 1979. Genetic and biochemical studies of transport systems for branched-chain amino acids in *Escherichia coli*. J. Bacteriol. 138:24–32.

680. Yasuda, S., and Y. Hirota. 1977. Cloning and mapping of the replication origin of *Escherichia coli*. Proc. Natl. Acad. Sci. U.S.A. 74:5458–5462.

682. Yem, D. W., and H. C. Wu. 1977. Genetic characterization of an *Escherichia coli* mutant altered in the structure of murein lipoprotein. J. Bacteriol. 131:759–764.

683. Yem, D. W., and H. C. Wu. 1978. Physiological characterization of an *Escherichia coli* mutant altered in the structure of murein lipoprotein. J. Bacteriol. 133:1419–1426.

684. Yochem, J., H. Uchida, M. Sunshine, H. Saito, C. P. Georgopoulos, and M. Feiss. 1978. Genetic analysis of two genes, *dnaJ* and *dnaK*, necessary for *Escherichia coli* and bacteriophage lambda DNA replication. Mol. Gen. Genet. 164:9–14.

685. Yoshikawa, M., A. Okuyama, and N. Tanaka. 1975. A third kasugamycin resistance locus, *kgkC*, affecting ribosomal protein S2 in *Escherichia coli* K-12. J. Bacteriol. 122:796–797.

686. Young, I. G., and B. Wallace. 1976. Mutations affecting the reduced nicotinamide adenine di-nucleotide dehydrogenase complex of *Escherichia coli*. Biochim. Biophys. Acta 449:376–385.

687. Young, I. G. 1975. Biosynthesis of bacterial menaquinones. Menaquinone mutants of *Escherichia coli*. Biochemistry 14:399–406.

688. Young, R. A., R. Macklis, and J. A. Stetz. 1979. Sequence of the 16S–23S spacer region in two ribosomal RNA operons of *Escherichia coli*. J. Biol. Chem. 254:3284–3271.

689. Young, R. A., and J. A. Stetz. 1979. Target promoters direct *Escherichia coli* ribosomal RNA synthesis. Cell 17:225–234.

690. Youngs, D. A., and K. C. Smith. 1978. Genetic location of the *phr* gene of *Escherichia coli* K12. Mutat. Res. 51:133–137.

691. Zipkas, D., and M. Riley. 1976. Simplified method for interruption of conjugation in *Escherichia coli*. J. Bacteriol. 126:559–562.

692. Zurawski, G., K. Brown, D. Killingly, and C. Yanofsky. 1978. Nucleotide sequence of the leader region of the phenylalanine operon of *Escherichia coli*. Proc. Natl. Acad. Sci. U.S.A. 75:4271–4275.

693. Zurawski, G., and K. D. Brown. 1976. Directed integration of bacteriophage lambda in an *E. coli* transposition Hfr strain of *Escherichia coli*: isolation and characterization of specialized transducing phages for the phenylalanine and tyrosine operons. J. Mol. Biol. 102:311–334.

694. Zurawski, G., and K. D. Brown. 1979. Ribosomal RNA genes in the 56 minute region of the *Escherichia coli* chromosome. J. Mol. Biol. 130:83–96.

695. Zurawski, G., D. Elseviers, G. V. Stauffer, and C. Yanofsky. 1978. Translational control of transcription termination at the attenuator of the *Escherichia coli* tryptophan operon. Proc. Natl. Acad. Sci. U.S.A. 75:5988–5995.

696. Zyskind, J. W., and D. W. Smith. 1977. Novel *Escherichia coli* dnaB mutant: direct involvement of the dnaB252 gene product in the synthesis of an origin-ribonucleic acid species during initiation of a round of deoxyribonucleic acid replication. J. Bacteriol. 129:1476–1486.