Dynamic B-SIM application for energy consumption estimation of DOAS with FCU HVAC system during design phase

Norbert Harmathy¹,*

¹Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary

Abstract. The investigation presents a strategic approach during the design process using advanced energy performance simulation technology. Team coordination and building performance efficiency during the design process is aided by conducting a performance based assessment with comprehensive fully incorporated design, construction, energy, HVAC and annual building operation. Performance based decision making is demonstrated through an office building complex. The engineering decisions were based on performance enhancement and overall energy demand reduction, which was evaluated on an annual basis. The building envelope’s dominant curtain wall system was analyzed in detail in order to demonstrate qualitative energy performance improvement. DOAS with FCU HVAC system’s annual energy performance was estimated and evaluated from the aspect of end-use energy.

1 Introduction

The investigation covers the energetic and operational energy demand analysis of a 23 205 sqm office building complex [1]. Operational energy demands and HVAC system operation were analyzed in detail using complex input datasets: climatic database, building structure, thermal loads, occupancy and HVAC system documentation.

Various design alternatives were used to select the most preferable curtain-wall structure. The calculations were performed with detailed dynamic energy simulation in EnergyPlus [2] engine.

Our previous investigations were performed on existing buildings and their energy refurbishment processes [3-5].

Teams have demonstrated various approaches in energy analysis of office buildings using simulation techniques [6-8].

Our task was to justify which curtain-wall window structure would be the most preferable from the energy performance aspect, and to demonstrate which is the most appropriate window type contributing to higher energy efficiency of the building. During the investigation according to the buildings geometry the massing of the building contributed significantly to its energy performance.

* Corresponding author: harmathy@egt.bme.hu
We evaluated the influence of the curtain-wall structure on the heating and cooling energy requirements on an annual basis, from which we determined the annual energy savings. The report includes selecting the right facade glass structure that meets the energy and cost optimum requirements.

Furthermore, two types of HVAC systems were simulated in order to assess and evaluate their annual end use energy consumption in order to hold decision-making in the early design phases of the energy strategy.

2 Research focus and methodology

During the energy performance analysis, we focused on the following:

• Building simulation and determination of energy demands
• Determining detailed heating and cooling energy requirements
• Analysis of thermal load alternatives
• Influence of internal heat loads on the annual energy balance
• Determining the energy influence of the glass structure annually
• Analyzing the effect of different curtain wall systems’ thermal properties
• HVAC system simulation and end use energy determination of the project
• Total energy savings potential

The virtual environment was created in EnergyPlus software where the simulation was performed according to the calculation models from the EnergyPlus Engineering documentation [9].

The geometric thermal model was created in Sketchup [10] and the data were imported in OpenStudio [11] software.

3 Dynamic simulation input parameters

3.1 Weather data – climatological data sets

The climatic data was used from the Meteonorm [12] Swiss global database. The meteorological data package for Budapest contained more than 100,000 data.

In the simulation process 30 year hourly averages were applied. In the dynamic simulation we used the following climatic data; air temperature, relative humidity, direct and indirect solar radiation, pressure, wind direction and wind speed.

The weather data for Budapest were used from the data packages of ASHRAE Climate Design Conditions [13] which are shown in Table 1.

Depending on the size and complexity of the building, we divided the model into 22 thermal zones. The energy zone allocation by area and volume is shown in Table 2. The 3D model of the boundary surface model and the thermal zone model is shown in Figure 1.

3.2 Building envelope thermal properties

The building structure and layers were used in the thermal simulation according to the design and construction documentation.

The objective was to analyze and simulate the building envelope’s dual pane glass construction on the annual building energy performance.
Table 1. Weather file for Budaors, Hungary (WMO: 128380) from Ashrae climate design conditions.

Coldest Month	Heating DB	Humidification DP/MCDB and HR	Coldest month WS/MCDB	MCWS/PCWD to 99.6% DB										
	99.6%	99%	99%	0.4%	1%									
1	-11.2	-9.0	-14.4	1.1	-9.8	-12.3	1.3	-7.3	18.0	-0.9	16.6	0.7	1.9	270

Hottest Month	Cooling DB/MCWB	Evaporation WB/MCDB	MCWS/PCWD to 0.4% DB												
	0.4%	1%	2%	0.4%	1%	2%									
7	DB	MCW B	DB	MCWB	DB	DB	MCW B	WB	MCDB	WB	WB	WB	MCDB	MCWB	PCWD
	10.3	31.0	20.1	29.3	19.7	27.8	19.2	21.3	28.9	20.5	27.5	19.8	26.1	2.9	180

DP	HR	MCD B	DP	HR	MCD B	DP	HR	MCD B	Enthalpy/MCDB	0.4%	1%	2%			
18.6	13.7	24.3	17.9	13.1	23.6	17.3	12.5	23.0	62.1	28.9	59.4	27.9	56.9	26.1	923

Extreme Annual WS	Extreme Annual DB	n-Year Return Period Values of Extreme DB																	
	Mean	Stand.deviation	n=5 years	n=10 years	n=20 years	n=50 years													
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max							
1%	2.5%	5%	13.9	11.6	9.3	24.3	13.1	16.3	33.5	5.1	1.4	-19.9	34.5	-22.9	35.3	-25.8	36.1	-29.4	37.1

Monthly Climatic Design Conditions
Annual

Tavg
Sd
HDD1-0.0
HDD1-8.3
CDD1-0.0
CDD1-8.3
Precipitation

Monthly Design Dry Bulb and Mean Coincident Wet Bulb Temperatures
DB 10-5
MCB W
DB 2%
MCB W
DB 5%
MCB W
DB 10%
MCB W
WB 0.4%
MCB W
WB 2%
MCB W
WB 5%
MCB W
WB 10%
MCB W
MDB R 5% D B
MCB BR 5% D B
MCB W 5% W B
MCB BR 5% W B
MCB BR 5% W B
Clear Sky Solar Irradiance

Ebn,noon
Edn,noon

Table 2. Thermal zoning with area and volume.

Thermal zone	Area [m²]	Volume [m³]
1 Open Office North 0	1425.15	6595.03
2 Open Office North 2	1278.78	3580.57
3 Open Office North 3	1278.78	3580.57
4 Open Office North 4	1155.29	3254.81
5 Open Office North 5	1161.40	3251.92
6 Open Office North 6	1161.40	3251.92
7 Open Office South 0	1576.57	6936.89
8 Open Office South 1	3402.77	10208.32
9 Open Office South 2	1432.48	4010.94
10 Open Office South 3	1432.48	4010.94
11 Open Office South 4	1432.48	4010.94
12 Open Office South 5	1519.52	4254.66
13 Open Office South 6	1519.52	4653.65
14 Open Office South 7	690.57	2386.66
15 Sanitary & Communication 0	390.75	1904.55
16 Sanitary & Communication 1	317.60	952.80
17 Sanitary & Communication 2	379.35	1062.18
18 Sanitary & Communication 3	379.35	1062.18
19 Sanitary & Communication 4	379.35	1062.18
20 Sanitary & Communication 5	379.35	1062.18
21 Sanitary & Communication 6	379.35	1062.18
22 Sanitary & Communication 7	132.30	370.44
Total	23204.57	72506.51

Fig. 1. 3D thermal zone model.
The building envelope’s glass structure consisted of three glass structure types of which all are Argon filled, where under glazing A1 two different glass structures are applied according to project documentation:

1. Glazing A1; U-Factor = 1.40 W/m²K, SHGC1= 0.4, SHGC2= 0.3, Glass Visible Transmittance1 = 0.70 with inner pane shading and Argon gas (Southern facade), Glass Visible Transmittance2 = 0.70 without inner pane shading.
2. Glazing A2; U-Factor = 1.40 W/m²K, SHGC= 0.5, Glass Visible Transmittance = 0.73 (East and West orientation)
3. Glazing A3; U-Factor = 1.40 W/m²K, SHGC= 0.6, Glass Visible Transmittance = 0.80 (North orientation)

The focus was on the structural and energetic performance of the facade glazing. The use of adequate glazing is of utmost importance for efficient energy reduction and user comfort. Choosing the right glass structure depends from; building’s type and function, the building floor area, window to wall ratio, facade orientation, internal heat loads, building location and climate zone. The listed parameters all affect the efficiency of the glass structure, building on the energy of the building. We investigated the influence of the heat transfer factor (U), the solar factor (g) and the light transmission factor (τ) on the yearly energy requirements and user comfort of the building. The title is set in bold 16-point Arial, justified. The first letter of the title should be capitalised with the rest in lower case. You should leave 22 mm of space above the title and 6 mm after the title.

3.3 Thermal comfort demand and building operation data

The energy simulation allows detailed analysis of building operation according to schedules. Its significance lies in the fact that we can investigate the energy and heat loads of a building according to various time dependant scenarios. With energy simulation, we calculated the building's energy demand annually using the following data:

• Heating period (indoor air temperature):
 Minimum indoor air temperature was 20°C during permanently occupied periods.
 Outside working hours the maximum allowed temperature fall was 4°C.
 The heating system operates with an automatic indoor air temperature sensor setting.

• Cooling period (indoor air temperature):
 Maximum indoor air temperature was 26°C during permanently occupied periods.
 Outside working hours the cooling system is not operating. The cooling system operates with an automatic indoor air temperature sensor setting.

In both periods, the perimeter values of air temperatures were maintained daily in 10 hour intervals (8-18h). In case changes in occupancy schedules of the building, number of people and work hours, the energy demands will change. The results of the energy simulation apply only to the specified 10 hours working time and to the perimeter values of the specified air temperature. Air change rate and specified air volume in thermal zones was calculated according to equation 1 where n is the number of people and A is the area in m².

\[q_{tot} = n \times 25.2 + A \times 2.52 \]

\[q_{tot} = 2520 \times 25.2 + 21400 \times 2.52 \]

\[q_{tot} = 117432 \text{ m}^3/\text{h} \]

For the office spaces 0.46 ach was assumed. In the simulation we counted 0.8 1/h air change was the maximum intensity during working hours. During unoccupied periods the air change rate was 0.1 1/h. The intensity of air exchange depends on working time. From 7 to 18 hours constant air volume was estimated.
3.4 Internal loads - heat sources

Internal heat loads are the thermal load delivered by users and office equipment (electrical equipment). Based on the functional “open office” disposition of spaces, the number of people occupants per floor was estimated.

Table 3 shows the number of occupants per floor area. The internal gains were taken into consideration as constant loads for all 3 scenarios in the simulation to estimate adequate heating and cooling requirements of the building.

In case of occupant heat gain, 120W of constant heat load was calculated in the function of work hours. A total of 2520 PC’s were assumed in the building, where 150W of heat load was assumed per PC in the function of work hours, where the highest intensity is between 8-12h and 13-17h. Lunch break between 12-13h was included respectively.

Level	No. of occupants	Area [m²]	m² / person
ground floor	230	2000	8,7
1	450	3766	8,4
2	350	2995	8,5
3	350	2995	8,5
4	350	2995	8,5
5	350	2937	8,4
6	350	2937	8,4
7	90	777	8,6

4 Energy performance results

4.1 Annual energy demands for heating and cooling

With the energy simulation run-time of 8760 hours annual heating and cooling energy demands were determined for two operational scenarios:
1. Permanent maximum heat loads – entire building is occupied during working hours
2. Without internal heat loads – estimation of internal loads influence on the energy performance

Particular emphasis was placed on the curtain wall’s glass structure and its energy performance. The heating and cooling energy requirements with different grazing types from the simulations are shown in Table 4 and Figure 2.

The energy demands were classified according to the parameters of the facade glass structure. Table 5 shows the percentage deviation of the aggregate annual energy demand. Table 6 summarizes active and passive heat gains and losses.

The highlighted values are considering the heat addition and heat removal via the glazing structure.
Table 4. Annual energy demands for heating and cooling.

Curtain wall glazing properties	Heating [MWh/a]	Cooling [MWh/a]	Heating per m² [MWh/m²/a]	Cooling per m² [MWh/m²/a]
			With constant maximum internal heat loads	
A1 g1=0.4; g2=0.3	1228	658	53	28
A2 g=0.5	1184	800	51	34
A3 g=0.6	1151	941	49	40
			Without internal heat loads	
A1 g1=0.4; g2=0.3	1557	60	67	3
A2 g=0.5	1475	138	63	6
A3 g=0.6	1415	228	61	10

Table 5. Annual energy demands percentual deviation.

	Total energy [MWh/a]	Percentual reduction [%]	Reduced energy [MWh/a]
A1	1886	9.8% according to A3 5% according to A2	206 98
A2	1984	5% according to A3	108
A3	2092	0%	0

Table 6. Annual energy demands percentual deviation.
Following the heating and cooling demand assessment according to adequate glazing assignment two of the Dedicated outdoor air system (DOAS) with fan-coil units (FCU) HVAC system was simulated in order to assess their annual operating performance.

The following table 7 shows the end energy uses for the DOAS FC system’s energy end use. The electricity end energy use for the DOAS system resulted with 1465 GJ/a or 407 MWh/a. Table 8 shows the annual electricity consumption of interior lighting and equipment.

Table 7. Annual energy demands percentual deviation.

	Electricity [GJ]	Natural Gas [GJ]
Heating	161.64	930.45
Cooling	803.35	-
Fans	500.43	-
Total End Uses	1465.42	930.45
Table 8. Annual energy demands percentual deviation.

Energy End Use	Electricity [GJ]
Interior Lighting	2226.45
Interior Equipment	2931.12

Proportional presentation of the total annual energy consumption for each energy consumer per category is shown in Figure 3 for DOAS with FCU system.

Fig. 3. Annual end energy consumption for DOAS system including lighting and equipment.

5 Conclusion

The investigation presented that the energy demand could be influenced by the selection of adequate glazing type which can be determined by analysing the curtain wall’s influence on the total energy demand as function dependant. Findings indicated that for an office building with high internal heat gains can lower its heating demands by selecting glazing in wider SHGC interval from 0.3 to 0.6. The changes between the total energy demand (heating and cooling) scenarios for the three simulated glazing types was max. 9.8% on annual basis. However, investment in glazing with more efficient low-E layers is higher. Nevertheless, cooling should be taken in account seriously since the deviation was 30%. It was concluded that high energy reduction can be achieved according to the HVAC system operation, the electricity end energy use for the DOAS system resulted with 1465 GJ/a or 407 MWh/a.

6 Acknowledgement

The research reported in this paper was supported by the Higher Education Excellence Program of the Ministry of Human Capacities in the frame of Artificial Intelligence research area of Budapest University of Technology and Economics (BME FIKP-MI/SC).
References

1. Szerdahelyi L. Office Building Project Documentation. (Aspectus Architect Ltd., Budapest, 2018)
2. EnergyPlus, https://energyplus.net/
3. N. Harmathy, V. Murgul, Procedia Engineering 165 (2016) 10.1016/j.proeng.2016.11.932
4. N. Harmati, R. Folić, Z. Magyar, J. Dražić, N. Kurtović-Folić, Thermal Science 20(2), 679-693 (2016) doi: 10.2298/TSCI141111109H
5. N. Harmathy, Z. Magyar, R. Folic, Energy 144, 302-317 (2016) doi: 10.1016/j.energy.2016.07.162
6. R. Evins, Energy 90, 1775-1789 (2015) doi: 10.1016/j.energy.2015.07.007
7. A. Krstić-Furundžić, T. Kosić, Energy and Buildings (2015) 10.1016/j.enbuild.2015.06.050
8. I.G. Capeluto, C.E. Ochoa, Energy 76, 375-384 (2014) doi: 10.1016/j.energy.2014.08.028
9. EnergyPlus Engineering Reference https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.8.0/EngineeringReference.pdf
10. Sketchup, https://www.sketchup.com/
11. OpenStudio, http://nrel.github.io/OpenStudio-user-documentation/
12. Meteonorm, http://www.meteonorm.com/
13. ASHRAE Climate Design Conditions, http://ashrae-meteo.info/