On k-free-like groups

A.Yu. Olshanskii and M. V. Sapir *

November 12, 2008

Let G be a finitely generated group. For a subset $A \subset G$ and a finite and symmetric generating set X of G (i.e. $X = X^{-1}$), the set $\partial_X A = \{ a \in A : ax \notin A \text{ for some } x \in X \}$ is the (inner) boundary of A (relative to X). The Cheeger constant of G with respect to X is the number $\text{Che} G = \inf_{A} \frac{\# \partial_X A}{\# A}$ where A runs over all nonempty finite subsets of G and $\#$ denotes cardinality.

Let $k \geq 2$ be an integer. We call a group G k-free-like if there exists a sequence of generating sets Z_i, $i \geq 1$, each with k elements, such that the Cayley graph $\text{Cayley}(G, Z_i)$ has girth (that is the minimal length of a simple loop in the graph) at least i, and the Cheeger constant of this graph is uniformly (in i) bounded away from 0.

I. Benjamini (personal communication) asked whether there exists a k-free-like but not free group. A positive answer for $k \geq 4$ can be deduced from the paper by Akhmedov [Akh2] and [ABLRS]: the proof of [Akh2, Theorem 2.6] and the fact that non-elementary hyperbolic groups are uniformly non-amenable [ABLRS] imply that every m-generated non-elementary hyperbolic group is $(m + 2)$-free-like. This does not provide k-free-like but non-free groups with $k = 2, 3$.

In this note, we prove the following three theorems. Theorem 1 gives, in a sense, the simplest example of k-free-like but not free group. A positive answer for $k \geq 4$ can be deduced from the paper by Akhmedov [Akh2] and [ABLRS]: the proof of [Akh2, Theorem 2.6] and shows that any non-elementary m-generated hyperbolic groups [Gr] is k-free-like for all $k \geq m + 1$, and if, in addition, the group is torsion-free, then one can take any $k \geq m$. Theorem 3 gives many k-free-like torsion groups. The proofs of these theorems rely on results of [Ol].

Theorem 1. There exist both finitely presented and non-finitely presented 2-generated non-free groups which are k-free-like for every $k \geq 2$.

Theorem 2. Every non-virtually cyclic (resp. non-cyclic torsion-free) hyperbolic m-generated group is k-free-like for every $k \geq m + 1$ (resp. $k \geq m$).

Theorem 3. There exists a 2-generated torsion group G which is k-free-like for every $k \geq 3$.

It is obvious that a group satisfying a non-trivial identity is not k-free-like for any k. We give a necessary and sufficient conditions for a group to be k-free-like in terms of the so-called almost identities and show that a group with bounded girth (for all finite generating sets) may not satisfy a non-trivial identity. The counter-examples given

*Both authors were supported in part by the NSF grants DMS 0455881 and DMS-0700811. In addition, the research of the first author was supported in part by the Russian Fund for Basic Research grant 08-01-00573, and the research of the second author was supported by a BSF (USA-Israeli) grant.
earlier in [Sch] and [Akh] were identical, and both authors suggested to use the methods from [Ol91] for the proofs; Schleimer just “suspected” that the approach from §34 [Ol91] should work while Akhmedov claimed that §34 [Ol91] explained the example. But in fact, the proof cannot be deduced from Section §34 [Ol91], and we note at the end of this paper that the desired examples were already provided by Theorem 39.4 [Ol91] which is not based on the techniques from §34 [Ol91].

By a result of Benjamini, Nachmias and Peres [BNP], Theorems 1, 2, 3 have applications to the theory of percolation on transitive graphs.

Let Γ = (V, E) be a graph with vertex set V and edge set E. An edge of the graph is called a bond. Pick a real number p between 0 and 1. The Bernoulli bond percolation on G is a product probability measure P_p on the space $\Omega = \{0, 1\}^E$, the set of subsets of the edge set E. For any realization $\omega \in \Omega$, the bond $e \in E$ is called open if $\omega(e) = 1$ and closed otherwise. For $0 \leq p \leq 1$ the product measure is defined via $P_p(\omega(e) = 1) = p$ for all $e \in E$. Thus each bond is open with probability p independently of all other bonds.

For any realization ω, open edges form a random subgraph of G.

The critical percolation constant p_c is defined as the infimum of all numbers p for which the random subgraph has infinite connected components P_p-almost surely.

The constant p_c is one of the most important characteristics of the graph Γ, and the study of percolation on graphs, in particular Cayley graphs, has been very intensive for the last 50 years. We refer the reader to the nice article by I. Benjamini and O. Schramm [BS] and the book by R. Lyons and Y. Peres [LP].

It is known [LP, BS] that the critical percolation constant of a d-regular tree is $\frac{1}{d-1}$. Hence the p_c of the Cayley graph of a free group of rank k with respect to its free generators is $\frac{1}{2k-1}$. It is also known [BS] that the p_c of a factor-graph cannot be smaller than the p_c of the original graph. In particular, the p_c of any k-generated group cannot be smaller than $\frac{1}{2k-1}$.

It is not difficult to show using [LP] that the p_c of a Cayley graph of a group with respect to a generating set with k generators is equal to $\frac{1}{2k-1}$ only if the group is free and the generators are free generators of that free group. Nevertheless, it is proved in [BNP] that a Cayley graph of a k-free-like group with respect to an appropriately chosen k-element generating set can have p_c arbitrary close to the minimal possible value: $\frac{1}{2k-1}$. Theorems 1, 2, 3 provide plenty of examples of such groups. Notice that we do not provide any procedures of finding p_c of particular Cayley graphs. Currently the only groups for which formulas for p_c are known for Cayley graphs of these groups corresponding to all possible (finite) generating sets, are groups acting on simplicial trees with finite vertex stabilizers (Kozákóv [Ko]). All these constants p_c turned out to be algebraic numbers. All groups considered in [Ko] are virtually free, hence hyperbolic. It is not known whether the p_c of a Cayley graph of a hyperbolic group (relative to a finite generating set) is always an algebraic number.

For groups discussed in Theorems 1, 3 we do not know even the cardinality of the set of possible p_c. It is clear from the proofs of Theorems 1, 3 that one can construct continuously many k-free-like groups (for every $k \geq 2$). But it is not clear why these groups may not have the same set of critical percolation constants p_c.

Proof of Theorem 1. Recall that a symmetric set R of cyclically reduced words which is closed under taking cyclic shifts satisfies the small cancellation condition $C'(\lambda)$ ($\lambda > 0$) if for every two words $r, r' \in R$, $r \neq r'$, having a common prefix u, we have $|u| < \lambda \min(|r|, |r'|)$ (here $|w|$ denotes the length of the word w).
We consider a finite or infinite set of positive words R in letters a and b which (a) is closed under cyclic shifts, (b) $R \cup R^{-1}$ satisfies $C'(\frac{1}{6})$, (c) R has no words with prefixes a^2, $(ab)^2$ or $(ba)^2$, and (d) R has no words of length < 6. (Take, for example, all cyclic shifts of the words $ab^2, ab^3, \ldots, ab^{100}$, $j = 1, 2, \ldots$) We define the group $G = \langle a, b \mid R \rangle$.

For a given $k \geq 2$, the set of words $X_n = X_n(k) = \{x_1 = a, x_2 = ba^n, x_3 = ba^{2n}, \ldots, x_k = ba^{(k-1)n}\}$ generates G. We set $n = 2 \ (\text{mod} \ 4)$. In order to estimate the girth of G with respect to X_n, consider a non-trivial cyclically reduced word u of length $\leq n$ such that $u(x_1, \ldots, x_k) = 1$ in G. Then clearly $u(x_1, \ldots, x_n) \neq 1$ in the free group $F(a, b)$, and so the reduced form U in generators a, b of the left-hand side is non-empty.

Since $U = 1$ in G, by the Greendlinger lemma for small cancellation presentations ([LS], U must contain a subword V which is at the same time a prefix of some $r \in R \cup R^{-1}$ and $|V| > |r|/2 \geq 3$. Since the cyclic shifts of r have no subwords $a^{\pm 2}$, it follows that the product $u(x_1, \ldots, x_k)$ involves some $x_j^{\pm 1}$ for $j > 1$.

The factor $x_j^{\pm 1}$ occurs at most $n - 1$ times in u, and so the word U must have a reduced form $a^{t_1}b^{s_1}a^{t_2}b^{s_2} \ldots a^{t_{n-1}}b^{s_{n-1}}a^{t_n}$, where $t \geq 1$ and $|s_1|, \ldots, |s_{n-1}| > 0$. Since $|V| > 3$ and r is positive, the subword V of U must contain one of the subwords $a^{\pm 2}$, $(ab)^{\pm 2}$, $(ba)^{\pm 2}$ contrary to the choice of R. Hence the girth of G with respect to X_n is at least $n + 1$.

If as above, we consider a non-trivial relation of the form $U = u(x_1^4, x_2) = 1$, then the reduced form U and any of its subwords V have no occurrences of $b^{\pm 2}$ since $n \neq 0 \ (\text{mod} \ 4)$, and all the exponents s_j of the letter a in U must be even, contrary to the condition (c) for the choice of R. Hence the subgroup $\langle x_1^4, x_2 \rangle$ is free in G. Therefore for every n there exists a free subgroup of G generated by two words of uniformly bounded length (four) with respect to X_n. This implies that the Cayley graphs Cayley(G, X_n) have Cheeger constants bounded away from 0 (see, for example, [ABLRS, Section 10]).

Let R_0 be the set of relators from R with pairwise distinct sets of cyclic shifts. It remains to note that R_0 is the set of independent relators. Indeed, if one of the relations $r = 1 \ (r \in R_0)$ follows from the others, then by Greendlinger lemma, r must contain “at least half” of a cyclic shift of another relator from R_0 which contradicts $C'(\frac{1}{6})$.

Proof of Theorem 2. Recall that a group E is elementary if it has a cyclic subgroup of finite index. We will use some properties of hyperbolic groups which can be found in [Ol].

Every hyperbolic group H has a unique maximal finite normal subgroup denoted by $E(H)$. If H is non-elementary hyperbolic group then the quotient $H/E(H)$ is also non-elementary hyperbolic group.

Let $\{a_1, \ldots, a_m\}$ be a set of generators for a non-elementary hyperbolic group H. Then one can choose m pairwise distinct modulo $E(H)$ generators.

Indeed, assume that $a_i = a_jb$ for some $b \in E(G)$ and $i \neq j$. Then the (images of the) elements $a_1, \ldots, a_{j-1}, a_{j+1}, a_m$ generate the infinite group $H/E(H)$. Therefore there is a word w in these $m - 1$ generators such that w is not equal to any of $1, a_1, \ldots, a_m$ modulo $E(H)$, and the set $a_1, \ldots, a_{j-1}, wb, a_{j+1}, \ldots, a_m$ generates H. A repeated application of such a change of generators provides us with pairwise distinct generators modulo $E(H)$. Similarly, we may assume that no generator a_i belongs to the subgroup $E(H)$.

Every element g having infinite order in a hyperbolic group H is contained in a unique maximal elementary subgroup $E(g)$ [Gr]. For a non-elementary hyperbolic group H, (simplified versions of) Lemmas 3.4 and 3.8 from [Ol] provide us with an infinite
set g_1, g_2, \ldots of elements of infinite order such that pairwise intersections of the cyclic subgroups $\langle g_i \rangle$ generated by these elements are trivial, and $E(g_i) = \langle g_i \rangle \times E(H)$.

Since the subgroup $E(H)$ is finite, it follows that the cyclic subgroups $\langle g_i \rangle$ have pairwise trivial intersection modulo $E(g)$ as well. By the above choice of the generators a_1, \ldots, a_m, the set $Y = \{a_i; i \leq m\} \cup \{a_i^{-1}a_j; 1 \leq i < j \leq m\}$ has empty intersection with $E(H)$. Hence one can select $g = g_i$ such that the subgroup $E(g) = \langle g \rangle \times E(H)$ has no elements from the set Y.

Given $n \geq 1$ let X_n be the following generating set of H:

$$X_n = \{g, a_1g^n, a_2g^{2n}, \ldots, a_mg^{mn}\}.$$

It is known [ABLRS] that every non-elementary hyperbolic group is uniformly non-amenable (that is the Cheeger constant is bounded away from 0 uniformly for all finite generating sets of the group). Hence in order to show that H is k-free-like, it is enough to show that for any given $l \geq 1$, the girth of the group H with respect to the generator set X_n is greater that l provided $n = n(l)$ is large enough.

Denote by $|x|$ the length of an element x of H with respect to the generators a_1, \ldots, a_m. A simplified version of Lemma 2.4 [Ol] says that there are $\lambda \in (0,1]$ and $c \geq 0$ depending on g only, such that if a product of the form

(*) $h = x_0g^{m_1}x_1g^{m_2}x_2 \ldots g^{m_t}x_t, (t \leq l)$

satisfies the conditions

1. $|x_i| \leq 2$ for $i = 0, 1, \ldots, t$,
2. $|m_i| \geq C$, where the constant $C > 0$ depends on g only ($i = 1, \ldots, t$),
3. $x_i^{-1}gx_i \notin E(g)$ for $i = 1, \ldots, t - 1$,

then $|h| \geq \lambda(|m_1| + \ldots + |m_t|) - c$.

Now let us choose $n > C + \lambda^{-1}c + l$ and assume that there is a non-trivial cyclically reduced relation of length $\leq l$ between the elements of X_n. This relation involves at least one generator of the form $a_i g^{n_t}$ since the generator g has infinite order.

This relation gives us an equation $h = 1$ in G, where h has the form (*) with x_i belonging to the set Y, whence h satisfies condition (1). It is clear from the definition of X_n that $t \geq 1$ and the condition (2) holds as well since the generator g occurs in our relation at most l times and $n - l > C$. Finally, since every x_i with $i = 1, \ldots, t - 1$ belongs to Y, we have $x_i \notin E(g)$ by the choice of g. But then $x_i^{-1}gx_i \notin E(g)$ by Lemmas 1.16 and 1.17 [Ol], and the condition (3) holds.

Thus, $|h| \geq \lambda(|m_1| + \ldots + |m_t|) - c \geq \lambda(n - l) - c \geq \lambda C > 0$ contrary to the assumption that $h = 1$ in G. The required lower bound for the girth is obtained.

If the group H is, in addition, torsion free, then the elementary subgroups in H are cyclic. (It is well known that a virtually cyclic torsion free group is cyclic.) Therefore H has a minimal generator set $\{a_1, \ldots, a_m\}$ with $m \geq 2$ and $E(\langle a_i \rangle) = \langle a_i \rangle$ for every i. In this case neither an element a_i ($1 < i \leq m$) nor an element $a_i^{-1}a_j$ ($1 < i < j \leq m$) belongs to $E(\langle a_i \rangle) = \langle a_i \rangle$ by the minimality in the choice of generators. Hence the above proof works for the generator set $S = \{a_1(=g), a_2g^n, \ldots, a_mg^{(m-1)n}\}$, and so an m-generated non-cyclic torsion free hyperbolic group is k-free-like for any $k \geq m$.

To prove Theorem 3 we need the following lemma which is interesting by itself.

Lemma 4. Suppose H is a non-elementary hyperbolic group, and h is an element of infinite order in H. Then there is a natural number $n_0 = n_0(h)$ such that for every finite subset M of H there is a natural number $N = N(h, M)$ such that for every n
divisible by n_0 and $n \geq N$, the quotient H_1 of H over the normal closure of h^n in H is non-elementary hyperbolic and the canonical epimorphism $H \to H_1$ is injective on M.

Proof. The elementary subgroup $E(h)$ has a normal in $E(h)$ cyclic subgroup C of finite index n_0. Let C be generated by an element g, and so $h^{n_0} = g^s$, and we may assume that $s > 0$. By [Ol] Theorem 3), for every sufficiently large $t = t(g, M)$, there is a canonical homomorphism ϵ_1 of H onto a factor-group $H_1 = H/K$ such that H_1 is a non-elementary hyperbolic group and ϵ_1 is injective on the subset M. The subgroup K can be chosen as the normal closure in H of the element g^q for arbitrary $q \geq q_0 = q_0(g, M)$. (See line 4 in the proof of that theorem.) If we choose q divisible by s, $q = sd$, then $g^q = h^n$, where $n = n_0d$. It now suffices to set $N = [n_0g_0/s] + 1$.

Proof of Theorem 3. Let $H = F_2 = F(a_1, a_2)$. By Osin’s theorem [Os07], we can select a large odd number N_0 such that the free Burnside group $B(2, N_0) = F_2/(F_2)^{N_0}$ is uniformly non-amenabale.

We can enumerate the elements of $H_0 = H = \{h_1, h_2, \ldots \}$ and enumerate all pairs (j, k), where $j \geq 1$ and $k \geq 3$, such that $i \geq j$ if i is the number of a pair (j, k).

Assume that the canonical epimorphisms $H_0 \xrightarrow{\epsilon_1} H_1 \xrightarrow{\epsilon_2} \cdots \xrightarrow{\epsilon_i} H_i$ are defined for $i \geq 0$, and (1) H_0, \ldots, H_i are non-elementary hyperbolic groups, (2) (the images of) h_1, \ldots, h_i have finite orders in H_i (3) for the pair (j, k) with number i, the words $v(i, 1), \ldots, v(i, k)$ are selected such that (a) the set $V_i = \{v(i, 1), \ldots, v(i, k)\}$ generates H_i (b) $v(i, s) = a_s \mod (F_m)^{N_0}$ for $s = 1, 2$ (c) the girth of H_i with respect to V_i is at least i.

Consider the pair (j, k) number $i + 1$. Since H_i is non-elementary hyperbolic and generated by a_1 and a_2, we, as in the proof of Theorem 2 choosing an appropriate word $g = g(i)$, can construct a generating set $V_{i+1} = \{v(i + 1, 1) = a_1g^t, v(i + 1, 2) = a_2g^{2t}, \ldots, v(i + 1, k = g)\}$ for H_{i+1} (and for H too), such that the girth of H_{i+1} with respect to V_{i+1} is at least $i + 1 \geq j$. In addition we demand now the exponent t to be divisible by N_0, and so $v(i + 1, s) = a_s \mod (F_m)^{N_0}$ for $s = 1, 2$.

Now we define M as the set of all words in a_1 and a_2 whose lengths are bounded from above by $d_{i+1}(i + 1)$, where d_{i+1} is the maximum of length of all words from $\bigcup_{1 \leq l \leq i+1} V_l$. Then if (the image of) h_{i+1} has finite order in H_i, we apply Lemma 4, choosing the exponent $n = n(i+1)$ divisible also by N_0. It provides us with a canonical homomorphism $\epsilon_{i+1} : H_i \to H_{i+1}$ onto a non-elementary hyperbolic group H_{i+1} injective on the set M, such that the kernel of ϵ_{i+1} is the normal closure of h_{i+1}^n in H_i.

Such a choice of ϵ_{i+1} guarantees by induction that the girth of H_{i+1} with respect to $V_{i'}$ is at least $i' \geq j'$ if a pair (j', k') has number $i' \leq i + 1$.

If the word h_{i+1} has finite order in H_i, then we set $H_{i+1} = H_i$, and ϵ_{i+1} is the identical mapping. In any case the images of h_1, \ldots, h_{i+1} in H_{i+1} are of finite orders. Hence, the limit group \hat{H} for the sequence of epimorphisms ϵ_i is a torsion group. This group is infinite since non-elementary groups H_{i+1} are infinite.

Furthermore, the relations from every finite set of \hat{H}-relations follow from the relations of some group H_i, and so the girth of \hat{H} with respect to arbitrary set $V_{i'}$ is at least $j + 1$ if i' is the number of a pair (j, k), since this property holds for every H_i with $i \geq i'$. Finally, the group \hat{H} can be canonically mapped onto $B(2, N_0)$ by the choice of exponents $n(i)$ divisible by N_0. Under this mapping, the words $v(i, 1)$ and $v(i, 2)$ are mapped to the generators a_1, a_2 of the group $B(2, N_0)$ since the other factors of $v(i, 1), v(i, 2)$
vanish. Since by [Os07], the Cheeger constants for the images of the sets V_i are uniformly separated from 0, the same is true for the generating set V_i of the group \hat{H} (see [ABLRS]). Thus, the theorem is proved for the group $G = \hat{H}$.

Remark 5. Using results of Osin [Os06, Os07], one can replace “hyperbolic” in Theorem 2 by “strongly relatively hyperbolic”. In particular, for every two finitely generated groups A, B of orders ≥ 3, the free product $A \ast B$ is k-free-like for all sufficiently large k. Note that if A or B is not finitely presented, $A \ast B$ is also not finitely presented.

Remark 6. By choosing the exponents $n(i)$ in the proof of Theorem 3 large enough, one can ensure that the group G in that theorem is lacunary hyperbolic [OOS], i.e. one of its asymptotic cones is an \mathbb{R}-tree. More complicated but similar in spirit constructions of torsion lacunary hyperbolic groups can be found in [OOS, Section 6].

Definition 7. A word u in k variables is called a k-almost identity of a k-generated group G if $u(a_1, \ldots, a_k) = 1$ in G for every generating set $\{a_1, \ldots, a_k\}$ of G.

For example, the words $a_1^2a_2^2$ and $a_2^2a_2a_2^{-1}$ are 2-almost identities but not identities of the quaternion group of order 8 and, respectively, of the symmetric group S_3. The left-hand sides of all k-almost identities of the group G form a characteristic subgroup $C = C(G)$ of the free group F_k since C is the intersection of the kernels of all epimorphisms $F_k \to G$.

Clearly if a group G has a non-trivial k-almost identity, then the girth of G with respect to every k-element generating set is bounded from above. The next Theorem shows that the converse statement holds too.

Theorem 8. Let G be a k-generated group. The girth of the group G with respect to every k-element generating set is uniformly bounded if and only if G satisfies a non-trivial k-almost identity.

Proof. We only need to prove the “only if” implication. Suppose that for some $k \geq 2$, the girth of a group G with respect to every system of generators $\{a_1, \ldots, a_k\}$ does not exceed N, that is $w(a_1, \ldots, a_k) = 1$ for some non-trivial in F_k word in k variables of length $\leq N$. Let $W = \{w_1, \ldots, w_M\}$ be the (finite) set of non-trivial words of length $\leq N$ in k variables. Consider a sequence of words word u_1, \ldots, u_M constructed by induction. Let $u_1 = w_1$. Suppose that we already have u_{i-1}. If u_{i-1} commutes with w_i in the free group, i.e. $u_{i-1}^* = w_i^t$ for some $s, t \neq 0$, we set $u_i = u_{i-1}^s$, otherwise we set $u_i = [u_{i-1}, w_i]$. Then the word $u = u_M$ is non-trivial in the free group but $u(a_1, \ldots, a_k) = 1$ in G for every generating set $\{a_1, \ldots, a_k\}$ of G (and in fact for every k-tuple of elements a_1, \ldots, a_k such that $w(a_1, \ldots, a_k) = 1$ for some $w \in W$). Therefore $u = 1$ is a non-trivial k-almost identity of G.

Finally we provide an example of a group satisfying a k-almost identity, but containing a free non-abelian subgroup and thus does not satisfy any non-trivial identity.

Proof. Let $n > 1$ be an odd integer. In the free group $F_2 = \langle a, b \rangle$, we choose the subgroup $^n F_2$ which is generated by all n-th powers of words w such that the total (algebraic) number of occurrences of either a or b in w is not divisible by n. Clearly, $^n F_2$ is normal in F_2. Let $G = F_2/\langle F_2 \rangle$. [Ol91] Theorem 39.4] states that if n is large enough, the group G contains a free non-abelian subgroup. On the other hand, if words x_1, \ldots, x_k represent elements in G that generate G, then the number of occurrences of either a or
b in one of x_i is not divisible by n. Indeed, otherwise all x_i would be in the kernel of the natural homomorphism $G \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. This x_i must satisfy $x_i^n = 1$ in G. Hence the girth of G with respect to the generating set $\{x_1, ..., x_k\}$ does not exceed n. □

References

[Akh1] Azer Akhmedov, On the girth of finitely generated groups. J. Algebra 268 (2003), no. 1, 198–208.

[Akh2] Azer Akhmedov, The girth of groups satisfying Tits alternative. J. Algebra 287 (2005), no. 2, 275–282.

[ABLRS] G. Arzhantseva, J. Burillo, M. Lustig, L. Reeves, H. Short, E. Ventura, Uniform non-amenability. Adv. Math. 197 (2005), no. 2, 499–522.

[BNP] Itai Benjamini, Assaf Nachmias, Yuval Peres, Is the critical percolation probability local? preprint, 2008.

[BS] Itai Benjamini and Oded Schramm, Percolation beyond \mathbb{Z}^d, many questions and a few answers, Electron. Comm. Probab. 1 (1996), no. 8, 71–82 (electronic).

[Gr] M. Gromov, Hyperbolic groups, in: Essays in Group Theory (S. M. Gersten, ed.), M.S.R.I. Pub. 8, Springer, 1987, 75–263.

[Ko] Iva Kozáková, Critical percolation on Cayley graphs of groups acting on trees, preprint, arXiv:0801.4153, 2008.

[LS] Roger Lyndon and Paul Schupp. Combinatorial group theory. Springer-Verlag, 1977.

[LP] Russell Lyons and Yuval Peres, Probability on trees and networks, Cambridge University Press, http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html, To appear.

[Ol91] A. Yu. Olshanski, Geometry of Defining Relations in Groups, Kluwer Academic, 1991.

[Ol] A. Yu. Olshanskii. On residualing homomorphisms and G–subgroups of hyperbolic groups. Int. J. Alg. Comp., 3 (1993), 4, 365–409.

[OOS] A. Yu. Olshanskii, D. V. Osin, M. V. Sapir, Lacunary hyperbolic groups, arXiv, math/0701365, 2007.

[Os06] D. Osin, Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems, Memoirs Amer. Math. Soc., 179 (2006), no. 843.

[Os07'] D. Osin, Uniform non-amenability of free Burnside groups. Arch. Math. (Basel) 88 (2007), no. 5, 403–412.

[Os07] D. Osin, Peripheral fillings of relatively hyperbolic groups. Invent. Math. 167 (2007), no. 2, 295–326.

[Sch] S. Schleimer, On the girth of groups. Preprint.
Alexander Yu. Olshanskii:
Department of Mathematics, Vanderbilt University, Nashville, TN 37240.
Department of Mathematics, Moscow State University, Moscow, 119899, Russia.
E-mail: alexander.olshanskiy@vanderbilt.edu

Mark V. Sapir:
Department of Mathematics, Vanderbilt University, Nashville, TN 37240.
E-mail: m.sapir@vanderbilt.edu