DEFINITION OF THE ROLE OF POLYVINYL ALCOHOL DURING FORMATION AND IN THE STRUCTURE OF CATHODIC SYNTHESIZED COMPOSITE ELECTROCHROMIC NICKEL HYDROXIDE LAYER: TEMPLATE OR SURFACTANT (p. 6–14)

Abstract and References. Materials science

DOI: 10.15587/1729-4061.2022.255482

Vadym Kovalenko
Ukrainian State University of Chemical Technology, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-8012-6732

Valerii Kotok
Ukrainian State University of Chemical Technology, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0001-8879-7189

Oleksandra Zima
Ukrainian State University of Chemical Technology, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-4994-7014

Rovil Nafeev
State University of Telecommunications, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-2721-9718

Volodymyr Verbitskiy
National Pedagogical Dragomanov University, Kyiv, Ukraine
National Ecological and Naturalistic Center for Student Youth, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0001-7045-8293

Olona Melnyk
Sumy National Agrarian University, Sumy, Ukraine
ORCID: https://orcid.org/0000-0001-5763-0431

One of the promising applications of nickel hydroxide is electrochemical electrochromic devices. To significantly improve the characteristics, the role of polyvinyl alcohol (PVA) in the synthesis and structure of composite Ni(OH)\textsubscript{2}-PVA films was investigated by studying the effect of its concentration (30, 40, 50 g/l) and polymerization degree (17-99, 24-99, 30-99 types). Adhesion was investigated visually, and electrochemical and electrochromic properties – by cyclic voltammetry with simultaneous recording of optical characteristics. It was shown that at a concentration of 30 g/l, the film peeled off and had weak electrochemical and electrochromic properties. The presence of two cathodic peaks (E=500–510 mV and E=560 mV) on the cyclic voltammetry showed the presence of nickel hydroxide in the PVA matrix and nickel hydroxide with adsorbed PVA. This indicates the dual role of PVA as a surfactant and as a template. At low concentrations, the role of PVA as a surfactant prevailed. Increasing the concentration led to an increase in the film characteristics by strengthening the role of PVA as a template; at 50 g/l, the film did not peel off and had good electrochemical and electrochromic characteristics.

It is shown that at a low degree of polymerization, PVA (17-99 type) mainly played the role of a surfactant but was also a template. The film cracked and had mediocre characteristics. The use of medium polymerization PVA (24-99 type) gave a film with high adhesion, electrochemical and electrochromic characteristics. It is shown that in this case, PVA performed the function of a template, there was only one cathodic peak on the voltammogram at E=500–510 mV. It was found that the use of PVA with a high degree of polymerization (30-99 type) led to a significant deterioration of the characteristics, including complete peeling of the film. This is probably due to the loss of PVA in the film.

Keywords: nickel hydroxide, electrochromic film, polyvinyl alcohol, template, surfactant, degree of polymerization.

References

1. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792. doi: https://doi.org/10.1098/rspa.2014.0792
2. Kovalenko, V., Kotok, V., Yeroshchina, A., Zaychuk, A. (2017). Synthesis and characterisation of dyestricutated nickelaluminium layerdouble oxide as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 27–33. doi: https://doi.org/10.15587/1729-4061.2017.109814
3. Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (αβ) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)). 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
4. Kovalenko, V., Kotok, V. (2019). The effect of template residual content on supercapacitive characteristics of Ni(OH)\textsubscript{2} obtained by template homogeneous precipitation. Eastern-European Journal of Enterprise Technologies, 5 (12 (101)), 29–37. doi: https://doi.org/10.15587/1729-4061.2019.181020
5. Kotok, V., Kovalenko, V. (2017). The properties investigation of the faradic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)). 31–37. doi: https://doi.org/10.15587/1729-4061.2017.108839
6. Fomanyuk, S. S., Kolbasov, G. Y., Chernii, V. Y., Tretjakova, I. N. (2017). Gasochromic αβ-Ni(OH)\textsubscript{2} films for the determination of CO and chlorine content. Sensors and Actuators B: Chemical, 244, 717–726. doi: https://doi.org/10.1016/j.snb.2017.01.062
7. Mironyak, M., Volynska, O., Labyak, O., Kovalenko, V., Kotok, V. (2019). Development of a potentiometric sensor sensitive to polysorbate 20. EUREKA: Physics and Engineering, 4, 3–9. doi: https://doi.org/10.21303/2461-4262.2019.00942
8. Fomanyuk, S. S., Krasnov, Y. S., Kolbasov, G. Y. (2013). Kinetics of electrochromic process in thin films of cathodically deposited nickel hydroxide. Journal of Solid State Electrochemistry, 17 (10), 2643–2649. doi: https://doi.org/10.1007/s10008-013-2169-1
9. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15387/1729-4061.2018.121679
10. Araceli, M., Vidal-De-Hurtado, Mendoza, A. (2006). Electrochromic Nickel Hydroxide Thin Films Chemically Deposited. MRS Proceedings, 972. doi: https://doi.org/10.1557/proc-972-a09-08
11. Vidal-Hurtado, M. A., Mendoza-Galván, A. (2014). Electrochromic Properties of Nanoporous a α and β Nickel Hydroxide Thin Films Obtained by Chemical Bath Deposition. Journal of Nano Research, 28, 63–72. doi: https://doi.org/10.4208/jnano.28.26
12. Torres, R. M., Vázquez, M. V., Gorenstein, A., de Torres, S. J. C. (1993). Infrared characterization of electrochromic nickel hydroxide prepared by homogeneous chemical precipitation. Thin Sol-
id Films, 229 (2), 180–186. doi: https://doi.org/10.1016/j.solmat.2006.05.033
15. Jiao, Z., Wu, M., Qin, Z., Xu, H. (2003). The electrochromic characteristics of sol-gel prepared NiO thin films. Nanotechnology, 14 (4), 458–461. doi: https://doi.org/10.1088/0957-4484/14/4/310
16. Dalavi, D. S., Devan, R. S., Patil, R. S., Ma, Y.-R., Patil, P. S. (2013). Electrochromic performance of sol–gel deposited NiO thin film. Materials Letters, 90, 60–63. doi: https://doi.org/10.1016/j.matlet.2012.08.108
17. Martini, M., Brito, G. E. S., Fantini, M. C. A., Cnoviech, A. F., Goreinstein, A. (2001). Electrochemical properties of NiO-based thin films prepared by sol–gel and dip coating. Electrochimica Acta, 46 (13–14), 2275–2279. doi: https://doi.org/10.1016/s0013-4686(01)00396-6
18. Ferreira, F. (1996). Electrochemical nickel oxide thin films deposited under different sputtering conditions. Solid State Ionics, 86-88, 971–976. doi: https://doi.org/10.1016/0167-2738(96)00236-6
19. Chen, Y., Deng, H., Xu, Z., Luo, D., Zhu, Y., Zhao, S. (2014). Electrochromic Properties of Ni-W Oxide Thin Films by Reactive Magnetron Sputtering. Energy Procedia, 57, 1834–1841. doi: https://doi.org/10.1016/j.egypro.2014.10.047
20. Crijnak Orel, Z., Hutchins, M. G., McMeeking, G. (1993). The electrochromic properties of hydrated nickel oxide films formed by colloidal and anodic deposition. Solar Energy Materials and Solar Cells, 30 (4), 327–337. doi: https://doi.org/10.1016/0927-0248(93)90110-o
21. Sonavane, A. C., Inamdar, A. I., Shinde, P. S., Deshmukh, H. P., Patil, R. S., Patil, P. S. (2010). Efficient electrochromic nickel oxide thin films by electrodeposition. Journal of Alloys and Compounds, 489 (2), 667–673. doi: https://doi.org/10.1016/j.jallcom.2009.09.146
22. Chen, N., Su, G., Liu, W., et al. (2014). Electrodeposition and properties of Mn-doped NiO thin films. Journal of Materials Engineering, 11, 67–72.
23. Umeokwonna, N. S., Elkunobi, A. J., Ekwo, P. I. (2015). Effect of cobalt doping on the optical properties of nickel cobalt oxide nanofilms deposited by electrodeposition method. International Journal of Technical Research and Applications, 4 (3), 347–351. Available at: https://www.ijtrra.com/view/effect-of-cobalt-doping-on-the-optical-properties-of-nickel-cobalt-oxide-nanofilms-deposited-by-electrodeposition-method.pdf?paper=effect-of-cobalt-doping-on-the-optical-properties-of-nickel-cobalt-oxide-nanofilms-deposited-by-electrodeposition-method.pdf
24. Liao, C.-C. (2012). Lithium-driven electrochromic properties of electrodeposited nickel hydroxide electrodes. Solar Energy Materials and Solar Cells, 99, 26–30. doi: https://doi.org/10.1016/j.solmat.2011.12.001
25. Niklasson, G. A., Wen, R.-T., Qu, H.-Y., Arvin, M. A., Granqvist, C.-G. (2017). (Invited) Durability of Electrochromic Films: Aging Kinetics and Rejuvenation. ECS Transactions, 77 (11), 1659–1669. doi: https://doi.org/10.1149/07711.1659est
26. Qu, H.-Y., Primetshofer, D., Arvin, M. A., Qin, Z., Cindemir, U., Granqvist, C. G., Niklasson, G. A. (2017). Electrochemical Rejuvenation of Anodically Coloring Electrochromic Nickel Oxide Thin Films. ACS Applied Materials & Interfaces, 9 (49), 42420–42424. doi: https://doi.org/10.1021/acsami.7b13815
27. Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: https://doi.org/10.1023/a:1003493711239
28. Rajan, D. D., Svedlindh, P., Granqvist, C. G. (1998). Electrochrome Ni Oxide films studied by magnetic measurements. Solar Energy Materials and Solar Cells, 54 (1-4), 247–254. doi: https://doi.org/10.1016/s0927-0258(98)00076-2
29. Burmistr, M. V., Boiko, V. S., lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Metal and Synthetic Fibres Fillers. Mechanism of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1016/j.st.2012.01-4.9080-0
30. Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(VC)-based superalloy strip. Eastern-European Journal of Enterprise Technologies, 1 (5), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
31. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Daviate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.
32. Tan, Y., Srinivasan, S., Choi, K.-S. (2005). Electrochemical Deposition of Mesoporous Nickel Hydroxide Films from Dilute Surfactant Solutions. Journal of the American Chemical Society, 127 (10), 3596–3604. doi: https://doi.org/10.1021/ja0434329
33. Gu, W., Liao, L. S., Cai, S. D., Zhou, D. Y., Jin, Z. M., Shi, X. B., Lei, Y. L. (2012). Adhesive modification of indium–tin–oxide surface for template attachment for deposition of highly ordered nanosstructure arrays. Applied Surface Science, 258 (20), 8139–8145. doi: https://doi.org/10.1016/j.apsusc.2012.05.009
34. Kotok, V., Kovalenko, V. (2020). A study of the influence of polyvinyl pyrrolidone concentration in the deposition electrolyte on the properties of electrochromic Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 4 (4) (106), 31–37. doi: https://doi.org/10.15587/1729-4061.2020.2108857
35. Thomas, D., Cebe, P. (2016). Self-nucleation and crystallization of polyvinyl alcohol. Journal of Thermal Analysis and Calorimetry, 127 (1), 885–894. doi: https://doi.org/10.1007/s10973-016-5811-1
36. Aslam, M., Kalyar, M. A., Raza, Z. A. (2018). Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nano-composites. Polymer Engineering & Science, 58 (12), 2119–2132. doi: https://doi.org/10.1002/pen.24835
37. Chana, J., Forbes, B., Jones, S. A. (2008). The Synthesis of High Molecular Weight Partially Hydrolysed Poly(vinyl alcohol) Grades Suitable for Nanoparticle Fabrication. Journal of Nanoscience and Nanotechnology, 8 (11), 5739–5747. doi: https://doi.org/10.1166/jnn.2008.475
38. Dunn, A. S., Naravane, S. R. (1980). Structural Differences Between Similar Commercial Grades of Polyvinyl Alcohol-Acetate. British Polymer Journal, 12 (2), 75–77. doi: https://doi.org/10.1002/pi.0980120207
39. Kawakami, H., Mori, N., Kawashima, K., Sumi, M. (1963). The relationship between manufacturing conditions of polyvinyl alcohol and the properties polyvinyl alcohol fibers. Sen′i Gakkaishi, 19 (3), 192–197. doi: https://doi.org/10.2115/fiber.19.192
40. Henderson, B., Loveridge, N., Robertson, W. R. (1978). A quantitative study of the effects of different grades of polyvinyl alcohol on the activities of certain enzymes in unfixed tissue sections. The Histochemical Journal, 10 (4), 453–463. doi: https://doi.org/10.1007/bf01003008
41. Brough, C., Miller, D. A., Keen, J. M., Kucera, S. A., Labda, D., Williams, R. O. (2015). Use of Polyvinyl Alcohol as a Solubility-Enhancing Polymer for Poorly Water Soluble Drug Delivery (Part 1).
AAPS PharmSciTech, 17 (1), 167–179. doi: https://doi.org/10.1208/s12249-015-0458-y
42. Niu, C., Wu, X., Ren, W., Chen, X., Shi, P. (2015). Mechanical properties of low k SiO2 thin films templated by PVA. Ceramics International, 41, S365–S369. doi: https://doi.org/10.1016/j.ceramint.2015.03.242
43. Ecsedi, Z., Lazán, I., Pácurarui, C. (2007). Synthesis of mesoporous aluminia polyni vinyl alcohol template as porosity control additive. Processing and Application of Ceramics, 1 (1-2), 5–9. doi: https://doi.org/10.2298/paco0702005ec
44. Pou-On, W., Meejoo, S., Tang, I.-M. (2008). Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS). Materials Chemistry and Physics, 112 (2), 433–460. doi: https://doi.org/10.1016/j.matchemphys.2008.05.082
45. Miyake, K., Hirota, Y., Uchida, Y., Nishiyama, N. (2016). Synthesis of mesoporous MFI zeolite using PVA as a secondary template. Journal of Porous Materials, 23 (5), 1395–1399. doi: https://doi.org/10.1007/s10994-016-0199-7
46. Wanchanthu, R., Thapol, A. (2011). The Kinetic Study of Methylene Blue Adsorption over MgO from PVA Template Preparation. Journal of Environmental Science and Technology, 4 (5), 552–559. doi: https://doi.org/10.2932/jest.2011.552.559
47. Parkhomyuch, E. V., Sashkina, K. A., Rudina, N. A., Kulikovskaya, N. A., Parmon, V. N. (2013). Template synthesis of 3D-structured macroporous oxides and hierarchical zeolites. Catalysis in Industry, 5 (1), 80–89. doi: https://doi.org/10.1134/s2070050412040150
48. Kabita, B. et. al. (2015). Polypropylene Nanonetwork Embedded in Polyvinyl Alcohol as Ammonia Gas Sensor. Res. J. Chem. Sci., 5 (5), 61–68.
49. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
50. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precipitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
51. Kovalenko, V., Kotok, V. (2018). Synthesis of Ni(OH)2 by template homogeneous precipitation for application in the binderfree electrode of supercapacitor. Eastern-European Journal of Enterprise Technologies, 4(12 (94)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.140899
52. Kovalenko, V., Kotok, V. (2021). Synthesis of Ni(OH)2 suitable for supercapacitor application, by the cold template homogeneous precipitation method. Eastern-European Journal of Enterprise Technologies, 26(110)), 45–51. doi: https://doi.org/10.15587/1729-4061.2021.227952
53. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrophoretic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97377
54. Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 9 (13), 3076–3086.
55. Kotok, V., Kovalenko, V. (2021). Definition of the influence of pulsed deposition modes on the electrochromic properties of Ni(OH)2-polyvinyl alcohol films. Eastern-European Journal of Enterprise Technologies, 3 (6 (111)), 53–58. doi: https://doi.org/10.15587/1729-4061.2021.233510
56. Kotok, V. A., Kovalenko, V. L., Zima, A. S., Kirillova, E. A., Burkov, A. A., Kobylinska, N. G., et al. (2019). Optimization of electrolyte composition for the cathodic template deposition of Ni(OH)2-based electrochromic films on FTO glass. ARPN Journal of Engineering and Applied Sciences, 14 (2), 344–353.
57. Kotok, V., Kovalenko, V. (2018). A study of the effect of tungstate ions on the electrochromic properties of Ni(OH)2 films. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 18–24. doi: https://doi.org/10.15587/1729-4061.2018.145223
58. Kovalenko, V., Kovalenko, V. (2018). Investigation of the properties of Ni(OH)2 electrochrome films obtained in the presence of different types of polyvinyl alcohol. Eastern-European Journal of Enterprise Technologies, 4 (6 (94)), 42–47. doi: https://doi.org/10.15587/1729-4061.2018.140560
59. POVAL (PVOH). Available at: https://www.wj-vp.co.jp/english/pvaplus/POVAL/pkuv Polar for PVA Resin. Available at: https://www.kuraray-poval.com/fileadmin/technical_information/brochures/poval/pkuv_poval_basic_physical_properties_web.pdf

DOI: 10.15587/1729-4061.2022.255145
SYNTHESIS OF TITANIUM DIOXIDE NANOTUBE DERIVED FROM ILMENITE MINERAL THROUGH POST-HYDROTHERMAL TREATMENT AND ITS PHOTOCATALYTIC PERFORMANCE (p. 15–29)

Ahmad Fauzi
Universitas Indonesia (UI), Beji, Kota Depok, Jawa Barat, Indonesia
ORCID: https://orcid.org/0000-0001-8846-1124

Latifa Hanum Lalasari
National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
ORCID: https://orcid.org/0000-0002-0648-8655

Novirjon Sofyan
Universitas Indonesia (UI), Beji, Kota Depok, Jawa Barat, Indonesia
ORCID: https://orcid.org/0000-0001-7814-9022

Alfian Ferdiansyah
Universitas Indonesia (UI), Beji, Kota Depok, Jawa Barat, Indonesia
ORCID: https://orcid.org/0000-0003-1683-9401

Donanta Dhaneswara
Universitas Indonesia (UI), Beji, Kota Depok, Jawa Barat, Indonesia
ORCID: https://orcid.org/0000-0001-6667-8058

Akhammad Herman Yuwono
Universitas Indonesia (UI), Beji, Kota Depok, Jawa Barat, Indonesia
ORCID: https://orcid.org/0000-0001-9887-6146

Ilmenite (FeTiO3) is a suitable mineral to produce titanium dioxide (TiO2) for photocatalyst applications. Therefore, this research was conducted to synthesize TiO2 material from titanium oxysulfate (TiOSO4) extracted from Indonesia local ilmenite mineral (FeTiO3) and to modify this material into TiO2 nanotubes through a hydrothermal process at 150 °C for 24 hours followed by a post-hydrothermal treatment with temperature variations of 80, 100, 120, and 150 °C for 12 hours. The purpose was to investigate the effect of the post-hydrothermal variations on the crystal structure, morphology, and optical properties of the TiO2 nanotubes produced. It was discovered from the scanning electron microscopy (SEM) observations that the TiO2 nanotube was successfully derived from the ilmenite precursor. Moreover, the X-Ray diffraction (XRD) analysis
of the nanotube crystal structure showed that post-hydrothermal treatment enhanced the crystallinity of the anatase TiO$_2$ phase even though the sodium titanate phase was observed to exist in the structure. The increase in the post-hydrothermal temperature from 80 to 150°C was also discovered to have led to:

1) a reduction in the unit cell volume from 136.37 to 132.31 Å3
2) a decrease in the lattice constant c from 9.519 to 9.426 Å;
3) a decrease in the bandgap energy (E_g) from 3.33 to 3.02 eV.

These characteristics further indicate the ability of the photocatalytic performance of the nanotubes to enhance the degradation efficiency from 87.69 to 97.11 %. This means the TiO$_2$ nanotubes extracted from local FeTiO$_3$ can provide the expected crystal structure and photocatalytic performance.

Keywords: TiO$_2$ nanotube, post-hydrothermal, crystallite size, bandgap energy, photocatalytic, ilmenite mineral.

References

1. Al-Mamun, M. R., Kader, S., Islam, M. S., Khan, M. Z. H. (2019). Photocatalytic activity improvement and application of UV-TiO$_2$ photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7 (5), 103248. doi: https://doi.org/10.1016/j.jece.2019.103248
2. Peralta-Zamora, P., Kum, A., de Moraes, S. G., Pelegrini, R., de Campos Moleiro, P., Reyes, J., Duran, N. (1999). Degradation of reactive dyes I. A comparative study of ozonation, enzymatic and photocatalytic processes. Chemosphere, 38 (4), 835–852. doi: https://doi.org/10.1016/S0045-6535(98)00227-6
3. Gardiner, D. K., Borne, B. J. (1978). Textile Waste Waters: Treatment and Environmental Effects. Journal of the Society of Dyers and Colourists, 94 (8), 329–348. doi: https://doi.org/10.1080/17518253.2018.1440324
4. Rafatullah, M., Sulaiman, O., Hashim, R., Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbent: A review. Journal of Hazardous Materials, 177 (1-3), 70–80. doi: https://doi.org/10.1016/j.jhazmat.2009.12.047
5. Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K. et. al. (2020). Photocatalytic degradation of organic pollutants using TiO$_2$-based photocatalysts: A review. Journal of Cleaner Production, 268, 121725. doi: https://doi.org/10.1016/j.jclepro.2020.121725
6. Humayun, M., Razig, F., Khan, A., Luo, W. (2018). Modification strategies of TiO$_2$ for potential applications in photocatalysis: a critical review. Green Chemistry Letters and Reviews, 11 (2), 86–102. doi: https://doi.org/10.1080/17518253.2018.1440324
7. Nguyen, V. N., Nguyen, N. K. T., Nguyen, P. H. (2011). Hydrothermal synthesis of Fe-doped TiO$_2$ nanotube photocatalyst. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2 (3), 035014. doi: https://doi.org/10.1088/2043-6262/2/3/035014
8. Liu, X., Chen, X., Zhang, J., Schwank, J. W. (2014). A review on TiO$_2$-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today, 225, 34–51. doi: https://doi.org/10.1016/j.cattod.2013.10.090
9. Vu, T. H. T., Au, H. T., Tran, L. T., Nguyen, T. M. T., Tran, T. T. T., Pham, M. T. et. al. (2014). Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process. Journal of Materials Science, 49 (16), 5617–5625. doi: https://doi.org/10.1007/s10853-014-8274-4
10. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K. (1999). Titania nanotubes prepared by chemical processing. Advanced Materials, 11 (15), 1307–1311. doi: https://doi.org/10.1002/(sici)1521-4095(199910)11:15<1307:aaid-adma1307>3.0.co;2-h
11. Yuwono, A. H., Ferdiansyah, A., Sofyan, N., Kartini, I., Puji-anto, T. H., Iskandar, F., Abdullah, M. (2011). TiO$_2$ Nanotubes of Enhanced Nanocrystallinity and Well-Preserved Nanostructure by Pre-Annealing and Post-Hydrothermal Treatments. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.3667246
12. Samal, S., Mohapatra, B. K., Mukherjee, P. S. (2010). The Effect of Heat Treatment on Titania Slag. Journal of Minerals and Materials Characterization and Engineering, 9 (09), 795–809. doi: https://doi.org/10.4236/jmme.2010.99057
13. Sulbagi, R., Andriyiah, L., Lalarasi, L. H. (2013). Titanium Dissolution from Indonesian Ilmenite. International Journal of Basic & Applied Sciences IJBAS-IJENS, 13, 97–103. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.636.6959&rep=rep1&type=pdf
14. Mackey, T. S. (1994). Upgrading ilmenite into a high-grade synthetic rutile. JOM, 46 (4), 59–64. doi: https://doi.org/10.1007/bf03220676
15. Liang, B., Li, C., Zhang, C., Zhang, Y. (2005). Leaching kinetics of Pannzhuina ilmenite in sulfuric acid. Hydrometallurgy, 76 (3-4), 173–179. doi: https://doi.org/10.1016/j.hjhydromet.2004.10.006
16. Ponaryadov, A. V., Kotova, O. B., Tihthik, M., Sun, S. (2020). Natural titanium dioxide nanotubes. Epitoanyag - Journal of Silicate Based and Composite Materials, 72 (5), 152–155. doi: https://doi.org/10.13482/epitoanyag-jbcom.2020.25
17. Rohmawati, L., Istiqomah, Widancahayani, E., Haifaela, A., Setyaningsih, W. (2020). Nanocrystalline Titanium Dioxide Nanotube (TDN) by Hydrothermal Method From Tulungagung Mineral Sand. Proceedings of the International Conference on Research and Academic Community Services (ICRACOS 2019). doi: https://doi.org/10.2991/icracos-2019.2020.22
18. Ranjitha, A., Muthukumaranayy, N., Thambidurai, M., Velathupailil, D., Agilan, S., Balusundaramprabhu, R. (2015). Effect of reaction time on the formation of TiO$_2$ nanotubes prepared by hydrothermal method. Optik, 126 (20), 2491–2494. doi: https://doi.org/10.1016/j.ijleo.2015.06.022
19. Camposeco, R., Castillo, S., Navarrete, J., Gomez, R. (2016). Synthesis, characterization and photocatalytic activity of TiO$_2$ nanotubes. Nanotubes, nanofibers, nanowires and nanoparticles. Catalysis Today, 266, 90–101. doi: https://doi.org/10.1016/j.jcat.2015.09.018
20. López Zavala, M. A., Lozano Morales, S. A., Ávila-Santos, M. (2017). Stability of stable TiO$_2$ nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature. Heliyon, 3 (11), e00456. doi: https://doi.org/10.1016/j.heliyon.2017.e00456
21. Zulfiqar, M., Omar, A. A., Chowdhury, S. (2016). Synthesis and characterization of single-layer TiO$_2$ nanotubes. Advanced Materials Research, 1133, 501–504. doi: https://doi.org/10.4028/www.scientific.net/amr.1133.501
22. Cullity, B. (1978). Elements of X-Ray Diffraction. Addison Wesley.
23. Tan, J., Gregorovic, R., Vancu, A. (1966). Optical Properties and Electronic Structure of Amorphous Germanium. Physica Status Solidi b, 15 (2), 627–637. doi: https://doi.org/10.1002/pssb.19660150224
24. Viet, P. V., Huy, T. H., You, S.-J., Hieu, L. V., Thi, C. M. (2018). Hydrothermal synthesis, characterization, and photocatalytic activity of silicon doped TiO$_2$ nanotubes. Superlattices and Microstructures, 123, 447–455. doi: https://doi.org/10.1016/j.spmi.2018.09.035
25. Kumar, K. V., Porkodi, K., Rocha, F. (2008). Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications, 9 (1), 82–84. doi: https://doi.org/10.1016/j.catcom.2007.05.019
26. Rezaee, M., Mousavi Khoie, S. M., Liu, K. H. (2011). The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO$_2$: An XRD and Raman spectros-
copy investigation. CrystEngComm, 13 (16), 5055. doi: https://doi.org/10.1039/c3ce5185g
27. Yang, J., Jin, Z., Wang, X., Li, W., Zhang, J., Zhang, S. et al. (2003). Study on composition, structure and formation process of nanotube Na2Ti3O7(OH)2. Dalton Transactions, 20, 3898. doi: https://doi.org/10.1039/b305585j
28. Yuwono, A. H., Sofyan, N., Kartini, I., Ferdiansyah, A., Pujianto, T. H. (2011). Nanocrystallinity enhancement of TiO2 nanotubes by post-hydrothermal treatment. Advanced Materials Research, 277, 90–99. doi: https://doi.org/10.4028/www.scientific.net/amr.277.90
29. Djerdi, I., Tonejc, A. M. (2006). Structural investigations of nanocrystalline TiO2 samples. Journal of Alloys and Compounds, 413 (1-2), 159–174. doi: https://doi.org/10.1016/j.jallcom.2005.02.105
30. Yuwono, A. H., Liu, B., Xue, J., Wang, J., Elim, H. I., Ji, W. et al. (2004). Controlling the crystallinity and nonlinear optical properties of transparent TiO2–PMMA nanohybrids. J. Mater. Chem., 14 (20), 2978–2987. doi: https://doi.org/10.1039/b403530e
31. An, Y., Li, Z., Xiang, H., Huang, Y., Shen, J. (2011). First-principle calculations for electronic structure and bonding properties in layered Na2Ti3O7: Open Physics, 9 (6). doi: https://doi.org/10.2478/s11534-011-0072-x
32. Moradi, Y., Jun, M. B. G., Blackburn, A., Herring, R. A. (2018). Significant improvement in visible light photocatalytic activity of Fe doped TiO2 using an acid treatment process. Applied Surface Science, 427, 791–799. doi: https://doi.org/10.1016/j.apsusc.2017.09.017
33. Aslıtürk, M., Sayilkın, F., Arpacı, E. (2009). Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 203 (1), 64–71. doi: https://doi.org/10.1016/j.jphotochem.2008.12.021
34. Latifa, H., Yuwono, A. H., Firdiyono, F., Rochman, N. T., Harjanto, S., Suhamno, B. (2013) Controlling the Nanostructural Characteristics of TiO2 Nanoparticles Derived from Ilmenite Mineral of Bangka Island through Sulfuric Acid Route. Applied Mechanics and Materials, 391, 34–40. doi: https://doi.org/10.4028/www.scientific.net/amm.391-392.34
35. Chen, W., Guo, X., Zhang, S., Jin, Z. (2007). TEM study on the formation mechanism of sodium titanate nanotubes. Journal of Nanoparticle Research, 9 (6), 1173–1180. doi: https://doi.org/10.1007/s11051-006-9190-6
36. Morgan, D. L., Triani, G., Blackford, M. G., Raftery, N. A., Frost, R. L., Waclawik, E. R. (2011). Alkaline hydrothermal kinetics in titanate nanostructure formation. Journal of Materials Science, 46 (2), 548–557. doi: https://doi.org/10.1007/s10853-010-5016-0
37. Sriekantan, S., Wei, L. C. (2010). Study on the formation and photocatalytic activity of titania nanotubes synthesized via hydrothermal method. Journal of Alloys and Compounds, 490 (1-2), 436–442. doi: https://doi.org/10.1016/j.jallcom.2009.10.030
38. Kotani, Y., Matsuda, A., Kogure, T., Tatsusimazato, M., Minami, T. (2001). Effects of Addition of Poly(ethylene glycol) on the Formation of Amate Nanocrystals in SiO2-TiO2 Gel Films with Hot Water Treatment. Chemistry of Materials, 13 (6), 2144–2149. doi: https://doi.org/10.1021/cm010149r
39. Wang, L.-Q., Baer, D. R., Engelhard, M. H., Shultz, A. N. (1995). The adsorption of liquid and vapor water on TiO2(110) surfaces: the role of defects. Surface Science, 344 (3), 237–250. doi: https://doi.org/10.1016/0039-6028(95)00859-4
40. Reza, K. M., Kurny, A., Gulshan, F. (2015). Parameters affecting the photocatalytic degradation of dyes using TiO2 a review. Applied Water Science, 7 (4), 1569–1578. doi: https://doi.org/10.1007/s13201-015-0367-y

DOI: 10.15587/1729-4061.2022.255331

IMPROVING THE PROPERTY OF WEAR RATE AND HARDNESS BY ADDING HYBRID NANOMATERIALS TO AA7075 (p. 30–36)

Ali Yousuf Khenyab
Al-Salam University, Baghdad, Iraq
ORCID: https://orcid.org/0000-0001-9470-417X

Raad Mohammed Abed
Ministry of Higher Education and Scientific Research, Baghdad, Iraq
ORCID: https://orcid.org/0000-0002-0112-8327

Ali Raad Hassan
University of Technology-Iraq, Baghdad, Iraq
ORCID: https://orcid.org/0000-0001-8021-4479

Hussain Jasim M. Al-Alkawi
Bilad Alfaldian University, Baghdad, Iraq
ORCID: https://orcid.org/0000-0002-2497-3400

Aluminum alloys have become an essential material in many modern applications, such as automobiles, marines and aviation industries. It is expected that more applications will heavily depend on aluminum alloys to reduce the weight and maintain safety standards, many previous studies have done in this regard. Numerous of these applications’ parts could be subjected to different loading and environmental conditions. This includes wearing stress and loss of the surface properties. To address these issues, intensive researches have been conducted aiming to improve aluminum wear resistance. However, there is an increasing demand to provide a comprehensive understanding of the mechanisms of enhancing wear resistance. Preparation of nano-materials combined with aluminum alloy can be made in several known metallurgical methods. One of the most important difficulties and challenges faced in the manufacture of these nano-materials is to obtain a homogeneous mixture that does not have manufacturing defects. The present work aims to process and evaluate the Nano-hybrid composites of with different ratio of (Cu+Ti) mixed with AA7075 by using the liquid stir casting method by using (pin-on-disc) wear testing apparatus.

The results showed when using multiple speeds and different loads in practical experiments, that the volumetric wear loss increase from 2.8 mm3 to 29.89 mm3 for zero–Nano and from 0.889 mm3 to 3.09 mm3 for 0.8 % +0.3 % (Cu+Ti) composite at speed 100 to 300 respectively. And from 12.81 mm3 to 0.89 mm3 at 25N. The coefficient of friction is reduced with the addition of reinforced material at 0.8 % +0.3 % (Cu+Ti) composite from 0.172 to 0.05. The hardness (BH) of the prepared composites increases with increasing the amount of hybrid Nano–reinforced materials. The enhancement percentage of 25.4 % to 39.5 % from 0.889 to 3.09 mm3 for zero-Nano and from 0.889 to 3.09 mm3 for 0.8 % +0.3 % (Cu+Ti) composite at different loads in practical experiments.

The results showed when using multiple speeds and different loads in practical experiments, that the volumetric wear loss increase from 2.8 mm3 to 29.89 mm3 for zero–Nano and from 0.889 mm3 to 3.09 mm3 for 0.8 % +0.3 % (Cu+Ti) composite at speed 100 to 300 respectively. And from 12.81 mm3 to 0.89 mm3 at 25N. The coefficient of friction is reduced with the addition of reinforced material at 0.8 % +0.3 % (Cu+Ti) composite from 0.172 to 0.05. The hardness (BH) of the prepared composites increases with increasing the amount of hybrid Nano–reinforced materials. The enhancement percentage of 25.4 % is attained compared to the matrix material. These additions, which were in certain proportions, improved the mechanical properties.

Keywords: AA7075, nano-hybrid material, wear rate, coefficient of friction, hardness test.

References
1. Sajjadi, S. A., Ezatpour, H. R., Beygi, H. (2011). Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting. Materials Science and Engineering: A, 528 (29-30), 8765–8771. doi: https://doi.org/10.1016/j.msea.2011.08.052
2. Krishna, M. V., Xavior, A. M. (2014). An Investigation on the Mechanical Properties of Hybrid Metal Matrix Composites. Procedia Engineering, 97, 918–924. doi: https://doi.org/10.1016/j.proeng.2014.12.367
3. Tang, D., Liu, Y., Li, J., Liu, X., Zhou, Q. (2018). Microstructure refinement and magnetic properties enhancement for nanocomposite RE₂Fe₁₄B alloys by Zr additions. Journal of Magnetism and Magnetic Materials, 460, 263–267. doi: https://doi.org/10.1016/j.jmmm.2018.04.013

4. Li, W., Li, H., Zhu, S., Cui, L. (2018). Simultaneously improved corrosion resistance and magnetic properties of α-Fe/Nd₂Fe₁₄B type nanocomposite magnets by interfacial modification. Journal of Alloys and Compounds, 762, 1–7. doi: https://doi.org/10.1016/j.jallcom.2018.05.137

5. Maleki, A., Taherizadeh, A. R., Issa, H. K., Niroumand, B., Al-lafchian, A. R., Ghaei, A. (2018). Development of a new magnetic aluminum matrix nanocomposite. Ceramics International, 44 (13), 15079–15085. doi: https://doi.org/10.1016/j.ceramint.2018.05.141

6. Wu, Q., Yu, Z., Wu, Y., Gao, Z., Xie, H. (2018). The magnetic and photocatalytic properties of nanocomposites SrFe₁₂O₁₉/ZnFe₂O₄. Journal of Magnetism and Magnetic Materials, 465, 1–8. doi: https://doi.org/10.1016/j.jmmm.2018.05.098

7. Yang, Q., Zhang, W., Yuan, M., Kang, L., Feng, J., OuYang, J. (2018). Impact of phase dispersion on the magnetic property of a ceramic nanocomposite film. Ceramics International, 44 (12), 14323–14326. doi: https://doi.org/10.1016/j.ceramint.2018.05.039

8. Daboin, V., Briceno, S., Suarez, J., Gonzalez, G. (2018). Effect of the dispersing agent on the structural and magnetic properties of CoFe₂O₄/SiO₂ nanocomposites. Journal of Magnetism and Magnetic Materials, 451, 502–506. doi: https://doi.org/10.1016/j.jmmm.2017.08.043

9. Vencl, A., Bobic, I., Arostegui, S., Bobic, B., Marinovic, A., Babic, M. (2010). Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al₂O₃, SiC and SiC+graphite particles. Journal of Alloys and Compounds, 506 (2), 631–639. doi: https://doi.org/10.1016/j.jallcom.2010.07.028

10. Nanoshel. Available at: https://www.nanoshel.com/

11. Nanjing High Technology Nano Material Co. Available at: http://www.htnano.com/en/gsjs.htm

12. Girisha, K. B., Chittappa, D. H. C. (2014). Wear performance and hardness property of A356.1 aluminium Alloy Reinforced with Zirconium Oxide Nano Particle. International Journal of Engineering Sciences & Research Technology, 3 (6), 723–731.

13. David Raja Selvam, J., Dinaharan, I., Vibin Philip, S., Mashini, P. M. (2018). Microstructure and mechanical characterization of in situ synthesized Al₆₀Ni₁₄B alloys by Zr additions. Journal of Alloys and Compounds, 740, 529–535. doi: https://doi.org/10.1016/j.jallcom.2018.01.016

14. Khleif, A. A., Abdulsahib, Y. M., Mutier-Hanon, M. (2017). Study- ing properties of AL-12wt % Si alloy reinforced with CeO₂ Nano powders prepared by powder metallurgy. Iraqi journal of mechanical and material engineering, 17 (1), 87–99. Available at: https://www.iasj.net/iasj/download/8d95eceace4874

15. Ravindranath, V. M., Shiva Shankar, G. S., Basavarajappa, S., Siddesh Kumar, N. G. (2017). Dry sliding Wear Behavior of Hybrid aluminum Metal Matrix Composite reinforced with Boron carbide and graphite particles. Materials Today: Proceedings, 4 (10), 11163–11167. doi: https://doi.org/10.1016/j.matpr.2017.08.082
В. Л. Коваленко, В. А. Коток, О. С. Зіма, Р. К. Нафес, В. В. Вербицький, О. С. Мельник

Одним із перспективних напрямів використання гідроксиду нікелю є електрохімічні електрохромні пристрої. Для суттєового покращення характеристик було досліджено роль полівінілового спирту (ПВС) при синтезі та у структурі композитних плівок Ni(OH)2-ПВС шляхом вивчення впливу його концентрації (30, 40, 50 г/л) та ступеню полімеризації (типи 17-99, 24-99, 30-99). Ад- десія досліджувалася візуально, електрохімічними та електрохромними властивостями – методом циклічної вольтамперометрії із одночасною фіксацією оптичних характеристик. Показано, що при концентрації 30 г/л плівка відшаровується та має слабкі електрохімічні та електрохромні властивості. На навантаженнях двох катодних піків (E = 500–510 мВ і E = 560 мВ) на циклічній вольтамперограмі показує навіяння гідроксиду нікелю в матриці ПВС та гідроксиду нікелю з адсорбованим ПВС. Це вказує на поєднану роль ПВС – як ПАР та як темплат. При низьких концентраціях роль ПВС як ПАР превалює. Підвищення концентрації призводить до збільшення характеристик плівки за рахунок підсилення ролі ПВС як темплат: при 50 г/л плівка не відшаровується та має добри електрохромні та електрохромні характеристики. Показано, що при низькому ступене полімеризації ПВС (тип 17-99) переважно гріє роль ПАР, однак також є темплат. Плівка при цьому розширюється та має посередні характеристики. Використання ПВС середнього ступеня полімеризації (тип 24-99) дозволяє отримати плівку з високими адгезійними, електрохромними та електрохромними характеристиками. Показано, що в цьому випадку ПВС виконує функцію темплату, на циклічній вольтамперограмі є тільки один катодний пік при E = 500–510 мВ. Виявлено, що використання ПВС з високим ступенем полімеризації (тип 30-99) призводить до суттєвого погіршення характеристик, в тому числі до повного відшарування плівки. Імовірно, це пов’язано із збитковою кількістю ПВС в плівці.

Ключові слова: гідроксид нікелю, електрохромна плівка, полівініловий спирт, темплат, ПАР, ступінь полімеризації.

Ahmad Fauzi, Latifa Hanum Lalasari, Nofrijon Sofyan, Alfian Ferdiansyah, Donanta Dhaneswara, Akhmad Herman Yuwono

Я́мейн (FeTiO3) є підходящим матеріалом для отримання діоксиду титану (TiO2) для фотоактівізаторів. Тому дане дослідження було здійснено для вивчення електрохемічних властивостей синтезованої плівки FeTiO3 шляхом вивчення впливу її концентрації (30–99) і ступеню полімеризації (тип 17–99). Використаний метод циклічної вольтамперометрії (CV) показує на амперетрафії пік при E = 0,2–0,4 В. Електрохромні характеристики — волтамперограма з двома катодними піками при E = 0,2–0,4 В.

Ключові слова: напір, діоксид титану, мінеральна сировинна, вольтамперограма

Ali Yousuf Kenyab, Raad Mohammed Abed, Ali Raad Hassan, Hussain J. Al-Alkawi

Алюмінієві сплави стали незамінним матеріалом у багатьох сучасних галузях, таких як автомобілі, суднобудування та авіація. Очікується, що більша кількість додатків значною мірою залежить від алюмінієвих сплавів для зниження ваги та дотримання стандартів безпеки, у цьому відношення було проведено безліч попередніх досліджень. Деталі багатьох з цих
Додатків можуть зазнавати різних навантажень та умов навколишнього середовища. Це включає навантаження на зношування та втрату властивостей поверхні. Для вирішення цих проблем було проведено інтенсивні дослідження, спрямовані на підвищення зносостійкості алюмінію. Проте зростає потреба у забезпеченні всебічного розуміння механізмів підвищення зносостійкості. Одержання наноматеріалів у поєднанні з алюмінієвим сплавом може здійснюватись кількома відомими металургійними методами. Однак з найважливіших труднощів та завдань, що виникають при виготовленні цих наноматеріалів, є отримання однорідної суміші, яка не має виробничих дефектів. Наведена робота спрямована на обробку та оцінку наногібридних композитів з різними співвідношеннями (Cu+Ti), смиканих з AA7075, з використанням методу лиття з перемішуванням рідини з використанням пристрою для випробувань на знос (штифт на диску). Результати показали, що при використанні кількох швидкостей та різних навантажень у практичних експериментах об'ємні втрати на знос збільшуються з 2,8 мм³ до 29,89 мм³ для нуль-нано та з 0,889 мм³ до 3,09 мм³ для 0,8 %+0,3 % (Cu+Ti) композиту за швидкості від 100 до 300 відповідно. Коефіцієнт тертя знижується при додаванні армуючого матеріалу 0,8 %+0,3 % (Cu+Ti) композиту з 0,172 до 0,05. Твердість (ВН) отриманих композитів збільшується з 12,81 до 25Н. Коефіцієнт тертя знижується при додаванні наногофелюваного гібридного матеріалу 0,8 %+0,3 % (Cu+Ti) композиту з 0,172 до 0,05. Твердість (ВН) отриманих композитів збільшується зі збільшенням кількості наногібридних матеріалів. Досліджувані впливи покращення 25,4 % порівняно з матричним матеріалом. Ці добавки у певних пропорціях покращували механічні властивості.

Ключові слова: AA7075, наногібридний матеріал, швидкість зношування, коефіцієнт тертя, випробування на твердість.