malignancy or hematopoietic stem cell transplant (HSCT) (11 patients), use of immunosuppressing medications (11 patients), and invasive procedures (9 patients). At the time of diagnosis, only six patients were on an antifungal with mold activity. Eight patients died during hospitalization. The distribution of cases over time was compared with weather data for Colorado. A cluster of cases occurred in 2013 (6 cases) and in 2017 (6 cases). A majority of cases were diagnosed during the summer and fall months with July being the month with the most number of cases. There were higher levels of precipitation that occurred prior to or during the cluster of cases.

Conclusion. Cases of mucormycosis at UCH are associated with DM, hematologic malignancy or HSCT and Rhizopus species. The frequency and clinical characteristics of positive galactomannan assay results in mucormycosis in India, New Delhi, India, Clinical Microbiology, Professor, Vellore, India, 4St. John's Medical College Hospital, Bangalore, India, 5Department of Internal Medicine, University of Florida, Tampa, Florida, 6Department of Microbiology, PGIMER, Chandigarh, India, 7Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India, 8Clinical Microbiology, Professor, New Delhi, India, 9Postgraduate Institute of Medical Education and Research, Chandigarh, India

Session: 56. Fungal Disease: Management and Outcomes
Thursday, October 4, 2018: 12:30 PM

Background. Though the rise in number of mucormycosis cases has been reported globally, the rise in India is alarming especially in uncontrolled diabetics. However, there are gaps exist in the understanding of the disease in this country.

Methods. To describe the epidemiology, diagnosis, treatment practices, and outcome of mucormycosis in India. A single-arm prospective observational study was conducted in the network of 17 tertiary care centers across India during April 2016 through September 2017. All consecutive proven mucormycosis patients were enrolled in this study. Clinical data including risk factors, investigations, and treatment were collected. All isolates and histopathological specimens were sent to Mycology Reference Laboratory at Chandigarh for final identification (phenotypic and sequenc- ing) and drug susceptibility testing.

Results. A total of 234 cases were enrolled between the study period. Rhinorhinitis-cerebral mucormycosis was common (42.7%) presentation with 22.8% patients had brain involvement, followed by pulmonary (14.6%), cutaneous (11.8%), isolated renal (3.9%), and intra-abdominal (2.8%) mucormycosis. The underlying disease of predilection was diabetes mellitus (49.9%), hematopoietic malignancy (15.3%), nephrotic syndrome (12.9%), neurosurgical (10.3%) history of surgery, 9.7% malignancy, and 9.2% transplant). The most common agents isolated were Rhizopus species (75.9%, R. arrhizus [74.3%] and R. homothallicus [6.7%]) followed by Apophysomyces variabilis (7.4%), Mucor species (6%), and Lichtheimia species (6%). The patients were managed by medical and surgical armament. Amphotericin B (96.8%) either lipid formulations (65.7%) or conventional form (39.1%) was the common antifungal used. The mortality of patients was 30.4%, of which, 80.3% patients died within 6 weeks of their diagnosis. 24.3% patients left hospital against medical advice while 50.1% survived.

Conclusion. Rhinorhinitis-cerebral mucormycosis in uncontrolled diabetics is common presentation in India. R. arrhizus followed by A. variabilis are common species isolated from those patients. Survival was noted only in half of the patients despite increased awareness and diagnosis.

Disclosures. All authors: No reported disclosures.

400. The Frequency and Clinical Characteristics of Positive Galactomannan Assay Results in Patients With Mucormycosis
Sungmin Choi, MD,1 Joon Seon Song, MD,2 Ji Hyun Yun, MD,3 Jung Wan Park, MD,4 Kyung Hwa Kim, MD,5 Love-Ann Lee, MD,6 Shashikant Patankar, MD,7 Andrew Bryan, MD,5 PhD,6 Catherine Liu, MD, FIDSA14,15,16, Ania Sweet, PharmD12 and Steven Pergam, MD, MPH, FIDSA13,14,15, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 1Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, 2Division of Allergy

Background. Discrepancies between histomorphologic finding and indirect test results such as galactomannan (GM) assay make diagnosis of invasive fungal infection difficult. We investigated the frequency and clinical characteristics of positive GM assay results in patients with mucormycosis.

Methods. Patients who met the modified criteria for proven or probable mucormycosis and had serum and/or bronchoalveolar lavage (BAL) fluid GM assay result were enrolled at a tertiary hospital from July 2009 to October 2017. Proven mucormycosis was defined as histologic evidence of tissue invasion of hyphae with positive mucormycosis immunohistochemistry (HIC) test result and the recovery of agents of mucormycosis (Mucor spp., Absidia spp., Saksenaea spp., Rhizopus spp., and Mucor spp.) by culture from sterile specimens. Probable mucormycosis was defined as histologic evidence of tissue invasion of hyphae with positive mucormycosis HIC test result with or without recovery of agents of mucormycosis by culture from nonsterile specimen.

Results. Among 50 patients of proven or probable mucormycosis, 20 (40%) patients were positive for serum and/or BAL fluid GM assay results; 13 of 20 (65.0%) were positive in serum, nine of 12 (75.0%) were positive in BAL fluid, and two of 12 (16.7%) were positive in both. There were more patients with gastrointestinal infections (4 of 20 [20%] vs. 0 of 30 [0%], P = 0.021) and diagnosed as histomorphologically aspergillosis (6 of 20 [30%] vs. 1 of 30 [3%], P = 0.012) in GM positive group than GM negative group.

Conclusion. These results suggest that positive GM assay results are not uncommon in mucormycosis. GM assay results from the patients with mucormycosis appear to be related with gastrointestinal infections and histomorphologic diagnosis of aspergillosis. Further studies are needed on the mechanism of positive GM results in patients with mucormycosis and possible confection with other fungi such as Aspergillus species in these patients.

Disclosures. S. H. Kim, the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI): Investigator, Grant recipient

401. Pneumocystis jiroveci Pneumonia in Renal Transplant Recipients After a 6-Month Trimethoprim–Sulfamethoxazole Prophylaxis: A Case–Control Study
Shastri M., MD, FIDSA2; Kindo M., MD, FIDSA3; Ramamurthi M., MD, FIDSA2; Singh R., MD, FIDSA2; Singh S., MD, FIDSA2; Dogu J. H., MD, FIDSA2; and Park J. H., MD, FIDSA2

Session: 56. Fungal Disease: Management and Outcomes
Thursday, October 4, 2018: 12:30 PM

Background. Pneumocystis jiroveci pneumonia (PCP) is an important cause of morbidity and mortality in kidney transplant recipients (KTRs). Chemoprophylaxis with trimethoprim-sulfamethoxazole (TMP-SMX) is recommended about 6–12 months after solid-organ transplantation. However, PCP occasionally occurs after the recommended prophylaxis periods. The aim of this study was to investigate the incidence and risk factors for PCP in KTRs with 6-month TMP-SMX prophylaxis.

Methods. We performed a case–control study of adult patients diagnosed with PCP from 1999 to 2015 in a tertiary care hospital. All patients received 6-month PCP prophylaxis with TMP-SMX after kidney transplantation (KT). If there were rejection episodes, PCP prophylaxis was provided for additional 3 months. During the study period, CMV viremia was not indication of PCP prophylaxis because of the concern of the nephrotoxicity of TMP-SMX. We defined the classification of early or late-onset PCP as one year after transplantation.

Results. Among 3,941 kidney or pancreas-kidney transplant recipients, 67 (1.7%) patients developed PCP after the discontinuation of TMP-SMX prophylaxis. Among donors, 2 patients who was transferred from other hospitals (n = 14) and pancreas-kidney transplant recipients (n = 6) were excluded. Finally, 47 of KT PCP and 94 control patients were included. Of the 47 patients with PCP, 24 (51%) revealed early PCP while the remaining 23 (49%) exhibited late PCP. Duration of PCP prophylaxis was similar between case and control (median 6 months, respectively). In multivariate analysis, rejection (OR, 3.9; 95% CI, 1.4–11.1) and cytomegalovirus infection (OR, 2.4; 95% CI, 1.0–5.8) were independently associated with the development PCP after TMP-SMX prophylaxis. Rejection or CMV viremia were observed in 70% of patients with PCP. Time to development of PCP after rejection (median 6 months; IQR 1–9 months) was slightly shorter than that after CMV viremia (median 9 months; IQR 5–12 months), although this difference did not reach any statistical significance (P = 0.18).

Conclusion. Rejection and CMV viremia appear to be risk factors for the development of PCP after completing early transplantation period chemoprophylaxis. Our data suggest that at least 6–9-month chemoprophylaxis for PCP may be needed for KTRs with rejection or CMV viremia.

Disclosures. All authors: No reported disclosures.