Prevalence of Obesity and Associated Factors in Benue State, Nigeria: A Population-Based Study

Damaris Amarachukwu Osunkwo, Patrick M. Nguku, Amina Mohammed, Chukwuma David Umeokonkwo, Moreen Kamateeka, Mohammed Ibrahim, Ibrahim Bekshak Kefas, Oladimeji S. Abolade, Hulda Ijeoma Nwokeukwu, Ayuba Ibrahim Zoakah

1Department of Medicine, National Hospital, 2African Field Epidemiology Network, Nigeria Country Office, 3Department of Family Health, Federal Ministry of Health, 4Department of Demography and Social Statistics, National Bureau of Statistics, Abuja, 5Department of Community Medicine, Jos University Teaching Hospital, Jos, 6Department of Community Medicine, Alex Ekweusmne Federal University Teaching Hospital, Abakaliki, Ebonyi State, 7Department of Community Medicine, Ahmadu Bello University, Zaria, 8Federal Medical Centre, Umuahia, Nigeria

Abstract

Background: The prevalence of obesity has risen to over 650 million adults in 2016, and accounts for 41 million deaths globally. It is a major contributor to the burden of noncommunicable diseases. We determined the prevalence and associated factors of obesity to inform policy decisions toward developing robust prevention and management strategies. Materials and Methods: We conducted a population-based cross-sectional study in July 2017 among 1265 adults in urban and rural communities in Benue State. We used multistage sampling technique in selecting the participants. The WHO standardized and validated tool were used to collect information on sociodemographic and anthropometric measurements. We calculated age standardized prevalence of obesity and determined factors associated with obesity using logistic regression at 5% level of significance. Results: The age standardized prevalence of obesity was 11.1% (rural 4.2%, urban 14.3%). The odds for obesity was higher among females (adjusted odds ratio [aOR]: 3.4; 95% confidence interval [CI]: 2.27–4.99), those with tertiary education (aOR: 3.3; 95% CI: 1.61–6.95), married (aOR: 2.1; 95% CI: 1.37–3.36), and those residing in urban areas (aOR: 3.0; 95% CI: 1.73–5.05) compared to rural dwellers. Conclusions: The prevalence of obesity was high among adults in Benue State. It is more prevalent among females, married, educated, and urban dwellers. Interventions targeted at healthy lifestyle choices should be directed at these populations for effective control.

Keywords: Age standardization, Benue, obesity, population-based, prevalence

Résumé

Contexte: La prévalence de l’obésité est passée à plus de 650 millions d’adultes en 2016 et représente 41 millions de décès dans le monde. C’est un majeur contribuant au fardeau des maladies non transmissibles. Nous avons déterminé la prévalence et les facteurs associés de l’obésité pour éclairer les décisions politiques vers l’élaboration de stratégies solides de prévention et de gestion. Matériel et méthodes: Nous avons réalisé une analyse transversale basée sur la population étude réalisée en juillet 2017 auprès de 1265 adultes des communautés urbaines et rurales de l’État de Benue. Nous avons utilisé une technique d’échantillonnage à plusieurs degrés pour sélectionner les participants. L’outil normalisé et validé de l’OMS a été utilisé pour collecter des informations sur les mesures sociodémographiques et anthropométriques. Nous avons calculé la prévalence.

Introduction

Obesity is a major risk factor for cardiovascular disease, diabetes mellitus (DM), musculoskeletal disorders and cancers which all constitute a significant proportion of all noncommunicable diseases (NCDs).1 It is also associated with poorer mental health outcomes and reduced quality of life.2,3

Address for correspondence: Dr. Damaris Amarachukwu Osunkwo, Department of Medicine, National Hospital Abuja, Abuja, Nigeria.
E-mail: damaosunkwo@yahoo.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Osunkwo DA, Nguku PM, Mohammed A, Umeokonkwo CD, Kamateeka M, Ibrahim M, et al. Prevalence of obesity and associated factors in Benue state, Nigeria: A population-based study. Ann Afr Med 2021;20:9-13.

Submitted: 12-Jul-2019 Revised: 13-May-2020 Accepted: 24-Aug-2020 Published: 13-Mar-2021
standardised according to age and determined the factors associated with obesity by using a regression logistique to a level of 5% of importance. **Résultats:** The prevalence of obesity normalised according to age was 11.1% (rural: 4.2%, urban: 14.3%). The probabilities of obesity were higher in women (adjusted odds ratio [aOR]: 3.4; confidence interval [CI]: 2.27-4.99), those who had higher education (aOR: 3.3; CI 95%: 1.61-6.95), married (aOR: 2.1; CI 95%: 1.37-3.36) and those residing in urban zones (aOR: 3; CI 95%: 1.73-5.05) compared to the residents of the rural areas. **Conclusions:** The prevalence of obesity was higher among adults in the State of Benue. It is more prevalent in women.

Mots-clé: normalisation de l’âge, Bénoué, obésité, population, prévalence

Materials and Methods

Study setting, population, and sampling technique

The study was conducted in Benue State, Nigeria. The state is largely agrarian and is tagged “food basket of the nation.” The study population included 1265 adults aged at least 18 years of age. We used multistage sampling method to recruit the participants. In stage one, a list of local government areas (LGA) in each senatorial district was made and stratified into rural and urban LGAs. One rural and one urban LGA were selected by balloting from each of the three senatorial districts. In stage two, a list of enumeration areas (EA) were made, and 33 EAs were selected by balloting using probability proportionate to size. In each EA, systematic sampling technique was used to select households for the study. In each household selected in stage three, a list of eligible adults was made and one eligible adult was selected by simple random sampling to participate in the study. The study was conducted from July to August 2017. Other details of the sampling and study setting have earlier been reported.

Study tool and data collection

We used a standardized and validated WHO STEPwise tool to collect information on participants’ sociodemographic characteristics and anthropometric measurements. The anthropometric measurements were standing height, weight, and waist circumferences. We measured height without shoes and hat in an upright position with the aid of the stadiometer (ASCO height measuring floor model stadiometer). The height of the participants was measured to the nearest 0.1 cm. Validated electronic weighing scale (OMRON BF212), set to the nearest 0.1 kg was used to measure weight. Waist circumference was measured to the nearest 0.1 cm using measuring tape, placed directly over the skin or light clothing at the level of the midpoint in between the inferior margin of the last rib and iliac crest along the mid axillary line. Data were collected by trained research assistants.

Definition of terms

Body mass index (BMI, kg/m²) was calculated using the formula below, for each participant we used the weight in kilogram and height in meters.
We categorized the participants based on their BMI (underweight [BMI <18.5 kg/m²], normal weight [BMI 18.5–24.9 kg/m²], overweight [BMI 25–29.9 kg/m²], and obesity [BMI ≥30 kg/m²]). For the purpose of bivariate and multivariate analysis, we dichotomized BMI classification into two: BMI ≥30 kg/m² as obese and BMI <30 kg/m² as non-obese.

Statistical analysis

The analysis was done using Epi info version 7.2 (US CDC). We estimated the prevalence of obesity among the participants. We calculated age-specific standardization of the prevalence of obesity using the 2006 Benue State census population [Table 1]. We also calculated the standardized urban and rural prevalence of obesity in Benue [Table 2] and determined the relationship between sociodemographic characteristics and obesity using univariable logistic regression. The factors that were significant were modeled in a multivariable logistic regression at 5% level of significance. The adjusted odds ratio and the 95% confidence interval (CI) were reported.

Ethical approval

We obtained ethical approval from the National Health Research Ethics Committee of Nigeria Federal Ministry of Health (NHREC/01/01/2007-22/12/2016). Written informed consent was obtained from each participant.

Results

Among our respondents, 22.1% were overweight, 5.4% were underweight, and 59.1% were normal [Figure 1]. The prevalence of obesity was 13.5% among the respondents. However, after standardizing for age using Benue State population as the reference population, the age standardized prevalence of obesity was 11.1%. The urban and rural age standardized prevalence of obesity was 14.3% and 4.2%, respectively [Figure 2]. There is a statistically significant association between age, sex, tertile education, marital status, occupation, and place of residence with obesity [\(P < 0.001 \), Table 3].

The odds for obesity was 3.4 times higher among females (adjusted odds ratio [aOR]: 3.4; 95% CI: 2.27–4.99) compared to males. Those with tertiary education (aOR: 3.3; 95% CI: 1.61–6.95) had 3.3 times odds of having obesity compared with those with no formal education. The odds of being obese was twice higher among married (aOR: 2.1; 95% CI: 1.37–3.36) compared with unmarried. The odds for obesity was about 3 times greater among those in the urban (aOR: 3.0; 95% CI: 1.73–5.05) compared to those in the rural settings [Table 4].

Discussion

The prevalence of obesity was generally high among the respondents. The prevalence was higher than earlier reported in Benue state[14] and elsewhere in Nigeria.[15] The high prevalence of obesity observed could probably be due to continued epidemiological transition ongoing in the population. The calculated age standardized prevalence of obesity was higher among urban than rural respondents. This could be attributed
to the adoption of poorer nutritional habits and lifestyle choices. The higher prevalence of obesity observed in the urban compared to the rural dwellers has earlier been reported and attributed to sedentary lifestyle, and dietary options.16,17

Table 3: Relationship between sociodemographic characteristics with obesity among respondents in Benue state

Characteristics	Presence of obesity	COR (95% Confidence Interval)	P	
	Yes	No		
	(n=171)	(n=1094)		
Age				
<20	4 (6.5)	58 (93.5)	Reference	
20-29	19 (5.7)	314 (94.3)	0.9 (0.29-2.67)	0.818
30-39	42 (13.6)	267 (86.4)	2.3 (0.79-6.61)	0.129
40-49	39 (20.2)	154 (79.8)	3.7 (1.26-10.73)	0.017
50-59	45 (25.1)	134 (74.9)	4.9 (1.67-14.17)	0.004
≥60	22 (11.6)	167 (88.4)	1.9 (0.63-5.77)	0.252
Sex				
Female	54 (8.8)	559 (91.2)	2.3 (1.6-3.2)	<0.001
Male	117 (18.0)	534 (82.0)	Reference	
Level of education				
None	13 (8.0)	149 (92.0)	Reference	
Primary	25 (10.8)	207 (89.2)	1.4 (0.69-2.80)	0.363
Secondary	35 (7.6)	425 (92.4)	0.94 (0.49-1.83)	0.864
Tertiary	98 (23.8)	313 (76.2)	3.6 (1.95-6.60)	<0.001
Marital status				
Unmarried*	18 (7.6)	391 (92.4)	Reference	
Married	139 (16.5)	703 (83.5)	2.0 (1.6-4.3)	<0.001
Occupation				
Unemployed	40 (11.8)	299 (88.2)	Reference	
Employed	131 (14.1)	795 (85.9)	1.2 (0.84-1.80)	0.279
Place of residence				
Rural	20 (4.9)	385 (95.1)	Reference	<0.001
Urban	151 (17.6)	709 (82.4)	4.1 (2.5-6.6)	

*Unmarried=Never married, separated, divorced, and widowed.
COR=Crude odds ratio, CI=Confidence interval

Table 4: Logistic regression showing sociodemographic predictors of obesity among respondents in Benue state

Characteristics	Presence of obesity	aOR (95% Confidence Interval)	P	
	Yes	No		
	(n=171)	(n=1094)		
Age				
<20	4 (6.5)	58 (93.5)	Reference	
20-29	19 (5.7)	314 (94.3)	0.4 (0.11-1.17)	0.089
30-39	42 (13.6)	267 (86.4)	0.8 (0.24-2.50)	0.674
40-49	39 (20.2)	154 (79.8)	1.4 (0.41-4.49)	0.615
50-59	45 (25.1)	134 (74.9)	1.8 (0.54-5.85)	0.344
≥60	22 (11.6)	167 (88.4)	1.2 (0.35-4.14)	0.760
Sex				
Female	54 (8.8)	559 (91.2)	3.4 (2.27-4.99)	<0.001
Male	117 (18.0)	534 (82.0)	Reference	
Level of education				
None	13 (8.0)	149 (92.0)	Reference	
Primary	25 (10.8)	207 (89.2)	1.4 (0.63-2.91)	0.432
Secondary	35 (7.6)	425 (92.4)	1.3 (0.58-2.81)	0.546
Tertiary	98 (23.8)	313 (76.2)	3.3 (1.61-6.95)	0.001
Marital status				
Unmarried*	18 (7.6)	391 (92.4)	Reference	
Married	139 (16.5)	703 (83.5)	2.1 (1.37-3.36)	<0.001
Occupation				
Unemployed	40 (11.8)	299 (88.2)	Reference	
Employed	131 (14.1)	795 (85.9)	1.2 (0.78-1.90)	0.374
Place of residence				
Rural	20 (4.9)	385 (95.1)	Reference	<0.001
Urban	151 (17.6)	709 (82.4)	3.0 (1.73-5.05)	

*aOR=Adjusted odds ratio, CI=Confidence interval

Obesity was higher among females and among married respondents. It was also higher among the married females compared to the unmarried. These have been reported in earlier studies.10,11,18-22 This could be due to pregnancy and hormonal changes in females. It could also be associated with
more involvement of males in physical activities compared to females. In addition, obesity is associated with wealth, beauty, good health strength, and respect among African women. This perspective of “healthy obesity” may fuel the epidemic and may also account for the lack of attention given to obesity.

Obesity increases with age with a slight decline after 60 years. Other studies reported similar findings.[2,23,24] This may be due to changes occurring with advancing age. As people advance in age, they become less active physically. Physical inactivity has been associated with risk of obesity. However, the relationship between aging, physical inactivity, and obesity has not been fully understood. Obesity was higher among those with tertiary education compared to those with no formal education and has been reported.[25] Those that had attained tertiary education were more likely to lead a sedentary lifestyle, more likely to be employed, live in urban area and eat westernized foods hence are more at risk of developing obesity compared to the uneducated that are more likely to engage in manual and unskilled work requiring more physical activity, less access to westernized food and hence less prone to obesity.

Conclusions

The prevalence of obesity was high among adults in Benue State, and it is more prevalent among females, married, educated, and urban residents. Policy and intervention should target these populations for effective control. The interventions should be targeted at younger people to help model their lifestyle and nutritional choices.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Levesque RJ. Obesity and overweight. In: Levesque RJ, editor. Encyclopedia of Adolescence. Cham: Springer; 2018. p. 2561-5.
2. Centers for Disease Control and Prevention. Adult Obesity Causes & Consequences. Overweight & Obesity; 2018. p. 7. Available from: https://www.cdc.gov/obesity/adult/causes.html. [Last accessed on 2019 May 27].
3. World Health Organization. Noncommunicable Diseases Key Facts. Geneva, Switzerland: World Health Organisation; 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases. [Last accessed on 2019 May 27].
4. Forouzanfar MH, Afschin A, Alexander LT, Biryukov S, Brauer M, Cercy K. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks. 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1659-724.
5. Popkin BM. Global nutrition dynamics: The world is shifting rapidly toward a diet linked with noncommunicable diseases. Am J Clin Nutr 2006;84:289-98.
6. Agyemang C, Boatemaa S, Frempong GA, de-Graft Aikins A. Obesity in Sub-Saharan Africa. In: Metabolic Syndrome. Cham: Springer International Publishing; 2015. p. 1-13.
7. Oladimeji AM, Fawole O, Nguku P, Nsubuga P. Prevalence and factors associated with hypertension and obesity among civil servants in Kaduna, Kaduna State, June 2012. Pan Afr Med J 2014;18 Suppl 1:13.
8. Powell RA, Ali Z, Luyirika E, Harding R, Radbruch L, Mwangi-Powell FN. Out of the shadows: Noncommunicable diseases and palliative care in Africa. BMJ Support Palliat Care 2017;7:128-32.
9. Chukwuonye II, Chuku A, John C, Ohagwu KA, Imoh ME, Isa SE, et al. Prevalence of overweight and obesity in adult Nigerians – A systematic review. Diabetes Metab Syndr Obes 2013;6:43-7.
10. Chukwuonye II. Body mass index, prevalence and predictors of obesity in urban and rural communities in Abia State South Eastern Nigeria. J Diabetes Metab 2015;6:1-4.
11. Iloh G, Amadi AN, Nwankwo BO, Ugwu VC. Obesity in adult Nigerians: A study of its pattern and common primary co-morbidities in a rural Mission General Hospital in Imo state, South-Eastern Nigeria. Niger J Clin Pract 2011;14:212-8.
12. Osunkwo D, Mohammed A, Kamateeka M, Nguku P, Umeokonkwo CD, Abolade OS, et al. Population-based prevalence and associated risk factors of hypertension among adults in Benue State, Nigeria. Niger J Clin Pract 2020;23:944-9.
13. World Health Organization. STEPswise Approach to Surveillance (STEPS) Version 3.2. Geneva: WHO; 2013. Available from: https://www.who.int/ncds/surveillance/steps/en. [Last accessed on 2017 Jun 12].
14. Sola AO, Steven AO, Kayode JA, Olayinka AO. Underweight, overweight and obesity in adults Nigerians living in rural and urban communities of Benue State. Ann Afr Med 2011;10:139-43.
15. Pollock NK, Bernard PJ, Gutin B, Davis CL, Zhu H, Dong Y. Adolescent obesity, bone mass, and cardiometabolic risk factors. J Pediatr 2011;158:727-34.
16. Nurwanti E, Hadi H, Chang JS, Chao JC, Paramashanti BA, Gittelsohn J, et al. Rural-urban differences in dietary behavior and obesity: Results of the riskesda study in 10-18-year-old Indonesian children and adolescents. Nutrients 2019;11:2813.
17. Martins-Silva T, dos Santos Vaz J, de Mola CL, Assunção MC, Tovo-Rodrigues L. Prevalence of obesity in rural and urban areas in Brazil: National health survey, 2013. Rev Bras Epidemiol 2019;22:E190049. doi: 10.1590/1980-549720190049. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-790X201900010045&lng=es&nrm=iso&tlng=en. [Last accessed on 2020 Jul 05].
18. Ofori-Asenso R, Agyeman AA, Laar A, Boateng D. Overweight and obesity epidemic in Ghana—a systematic review and meta-analysis. BMC Public Health 2016;16:1239.
19. Agyemang C, Owusu-Dabo E, de Jonge A, Martins D, Ogedegbe G, Stronks K. Overweight and obesity among Ghanaian residents in The Netherlands: How do they weigh against their urban and rural counterparts in Ghana? Public Health Nutr 2009;12:909-16.
20. Amoah AG. Sociodemographic variations in obesity among Ghanaian adults. Public Health Nutr 2003;6:751-7.
21. Addo PN, Nyarko KM, Sackey SO, Akwesong P, Sarfo B. Prevalence of obesity and overweight and associated factors among financial institution workers in Accra Metropolis, Ghana: A cross sectional study. BMC Res Notes 2015;8:599.
22. Biritwum R, Gyapong J, Biritwum K, Mensah G. The epidemiology of obesity in Ghana. Ghana Med J 2005;39:82-5.
23. Gutiérrez-Fisac JL, León-Muñoz LM, Regidor E, Banegas J, Rodríguez-Artalejo F. Trends in obesity and abdominal obesity in the older adult population of Spain (2000-2010). Obes Facts 2013;6:1-8.
24. Rhee SY, Park SW, Kim DJ, Woo J. Gender disparity in the secular trends for obesity prevalence in Korea: Analyses based on the KNHANES X2019000100445&lng=en&nrm=iso&tlng=en. [Last accessed on 2017 Jun 12].
25. Anyanwu GE, Ekezie J, Danborno B, Ugochukwu AI. Impact of education on obesity and blood pressure in developing countries: A study on the Ibos of Nigeria. N Am J Med Sci 2010;2:320-4.