Characterization and phylogenetic analysis of the complete mitochondrial genome of *Rhinogobius* sp. (Perciformes, Gobiidae)

Tiantian Chen*, Mindong Ren*, Qingqing Li, Qiming Xie, Shiping Su and Xilei Li

*College of Animal Science and Technology, Anhui Agricultural University, Hefei, China

ABSTRACT

The genus *Rhinogobius* was widely distributed in East Asia. In the present study, the complete mitochondrial genome of *Rhinogobius* sp., possible a new species of freshwater goby from Anhui province of China, was sequenced for the first time. Sequence analysis showed that it is 16,511 bp in length with A+T content of 52.3%, consisting of 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and a control region (CR). Phylogenetic analyses placed *Rhinogobius* sp. in a well-supported monophyletic cluster with other *Rhinogobius* fish and the phylogenetic position of *Rhinogobius* sp. was closer to *Rhinogobius cliffordpopei*.

ARTICLE HISTORY

Received 22 June 2019
Accepted 1 August 2019

KEYWORDS

Rhinogobius; Gobiidae; mitochondrial genome; genome characteristics; phylogenetic analysis

The genus *Rhinogobius*, known as freshwater goby, is widely distributed in eastern Asia, from Japan to middle and southeastern of China (Thacker 2015; Yu et al. 2016; Zhang and Shen 2019). It is of importance to local peoples as a food fish. Most species of genus *Rhinogobius* are under the threat due to overfishing and habitat destruction, and some species are classed as vulnerable species on the IUCN Red List (http://oldredlist.iucnredlist.org/details/169498/0). In addition, taxonomy within the genus *Rhinogobius* has long been a question debated among scientists (Ogawa and Itoh 2017; Yamasaki et al. 2015). The mitochondrial genome of *Rhinogobius* sp. reported here will promote further understanding of the evolution, taxonomy, and population genetics of this important freshwater goby.

The specimen (*Rhinogobius* sp.) was obtained from Yaodu River, Dongzhi, Anhui, China (117°1’2”E, 30°3’43”N) and was initially identified as *Rhinogobius* sp. based on phenotypic characteristics (Suzuki et al. 2016). Then, the whole muscle
was immediately preserved in 95% ethanol and was stored in Laboratory of Aquatic Genetic Resources, Anhui Agricultural University (Voucher No. AAU17072501). Total genomic DNA was extracted using Ezup Column Animal Genomic DNA Kit (Sangon, Shanghai) and stored at \(-20\) °C. The complete mitogenome sequence of *Rhinogobius* sp. was determined using 12 pairs of primers which were designed based on the mitogenome sequence of *Rhinogobius cliffordpopei* (Zhong et al. 2018).

The complete mitochondrial genome of *Rhinogobius* sp. is 16,511 bp in length (GenBank accession number: MK288030). It contained 13 protein-coding genes (PCGs), 22 close related species and two ribosomal RNA genes (rRNAs), a control region (CR). The overall base composition was 26.8% of A, 25.5% of T, 16.9% of G, and 30.8% of C. Except for one protein-coding gene ND 6 and eight tRNAs (tRNA\(^{Cln}\), tRNA\(^{Aas}\), tRNA\(^{Atr}\), tRNA\(^{Cr}\), tRNA\(^{tpr}\), tRNA\(^{Ser}\), tRNA\(^{Glu}\), and tRNA\(^{Pro}\)), all other genes are encoded on the heavy strand, which are in accordance with the other teleost mitogenomes (Boore 1999; Xie et al. 2015).

Among the 13 PCGs, all genes used ATG as the start codon except COI, which used GTG. Five PCGs (ND1, COI, ATP8, ND4L, and ND5) used TAA as stop codon; two PCGs (ND2 and ND6) used TAG as stop codon, whereas five PCGs (COII, COIII, ND3, ND4, and Cytb) had incomplete stop codon T— and ATP6 had incomplete stop codon TA—.

To validate the phylogenetic position of *Rhinogobius* sp., we construct the phylogenetic trees of 14 closely related species based on the complete mitogenome sequences using MEGA 7 program (Kumar et al. 2016). *Odontobutis sinensis* was chosen as outgroup. The neighbour-joining tree (Figure 1) showed that *Rhinogobius* sp. first clustered together with *R. cliffordpopei* and formed a monophyly in the genus *Rhinogobius*, and then they constituted a sister-group relationship with other five genera. The present results on the molecular phylogenetic analysis strongly supported that the *Rhinogobius* sp. should be *R. cliffordpopei*. In conclusion, this study also revealed the phylogenetic relationship of the Gobiidae at molecular levels and provided essential nucleotide data for further evolutionary analysis in family Gobiidae.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Anhui Higher Institutions Natural Science Foundation [No. KJ2018A0137] and Anhui Agricultural University College Students Innovation and Entrepreneurship Training Program Innovative Training Project Foundation [No. 201710364022].

References

Boore JL. 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767–1780.

Kumar S, Stecher G, Tamura K. 2016. Mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33: 1870–1874.

Ogawa K, Itoh N. 2017. Gobioecetes biwaensis n. g., n. sp (Monogenea: Dactylogyridae) from the gills of a freshwater gobiid fish, *Rhinogobius* sp. BW Takahashi & Okazaki, 2002, with a redescription of *Parancyrocephaloides daicoci* Yamaguti, 1938. Parasitol Int. 66:287–298.

Suzuki T, Shibukawa K, Senou H, Chen IS. 2016. Redescription of *Rhinogobius similis* Gill 1859 (Gobiidae: Gobionellinae), the type species of the genus *Rhinogobius* Gill 1859, with designation of the neotype. Ichthyol Res. 63:227–238.

Thacker CE. 2015. Biogeography of goby lineages (Gobiiformes: Gobiidae): genome characterization and phylogenetic analysis. Genes Genom. 40:1137–1148.

Yu MJA, Wu JH, Kuo PH, Hsu KC, Wang WK, Lin FJ, Lin HD. 2016. Mitochondrial genetic diversity of *Rhinogobius giurinus* (Teleostei: Gobiidae) in East Asia. Biochem Syst Ecol. 69:60–66.

Zheng FB, Shen YJ. 2019. Characterization of the complete mitochondrial genome of *Rhinogobius leavelli* (Perciformes: Gobiidae: Gobionellinae) and its phylogenetic analysis for Gobionellinae. Biologia. 74:493–499.