Cambium-specific Transcriptome Analysis of Paulownia to Study the Molecular Impacts of Winter and Spring Seasons on Tree Growth

Zachary D Perry†, Thangasamy Saminathan‡, Alok Arun§, Brajesh N Vaidya¶, Chhandak Basu∥, Umesh K Reddy‡‡, and Nirmal Joshee¶¶

1Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030
2Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
3Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, 00794, Puerto Rico, USA
4Department of Biology, California State University, Northridge, Northridge, Los Angeles, California 91330, USA

†Contributed equally
‡‡Corresponding authors
Abstract

Paulownia (Paulownia elongata) is a fast-growing, multipurpose deciduous hardwood species that grows in a wide range of temperatures from –30 °C to 45 °C. Seasonal cues influence the secondary growth of tree stems, including cambial activity, wood chemistry, and transition to latewood formation. In this study, a de novo transcriptome approach was conducted to identify the transcripts expressed in vascular cambial tissue from senescent winter and actively growing spring seasons. Illumina paired-end sequenced cambial transcriptome generated 297,049,842 clean reads which finally yielded 61,639 annotated unigenes. Based on non-redundant protein database analyses, Paulownia cambial unigenes shared highest homology (64.8%) with Erythranthe guttata. A total of 35,471 unigenes resulted from KEGG annotation that were mapped to 128 pathways with metabolic pathways dominated among all. Additionally, DEG analysis showed that 2,688 and 7,411 genes were significantly upregulated and downregulated, respectively in spring compared to winter. Interestingly, quite a number of transcripts belonging to heat shock proteins were upregulated in spring season. RT-qPCR expression results of fifteen wood-forming candidate genes involved in hemicellulose, cellulose, lignin, auxin and cytokinin pathways showed that the hemicellulose genes (CSLC4, FUT1, AXY4, GATL1, and IRX19) were significantly upregulated in spring season tissues when compared to winter tissues. In contrast, lignin pathway genes CCR1 and CAD1 were upregulated in winter cambium. Finally, a transcriptome-wide marker analysis identified 11,338 Simple Sequence Repeat (SSRs). The AG/CT dinucleotide repeat predominately represented all SSRs. Altogether, the cambial transcriptomic analysis reported here highlights the molecular events of wood formation during winter and spring. The identification of candidate genes involved in the cambial growth provides a roadmap of wood formation in Paulownia and other trees for the seasonal growth variation.

Keywords

Paulownia; Cambium; Transcriptome; Winter Season; Spring Season; Tree Growth
Introduction

Paulownia (*Paulownia elongata*) is an extremely fast-growing woody plant reaching up to 20 feet in one year when young. Some species of *Paulownia* when in plantation can be harvested for saw timber in as little as five years. The genus *Paulownia* consists of nine species of deciduous, fast growing, multi-purpose, and hardwood trees (Zhu *et al.*, 1986) and have long been shown to be extremely adaptive to wide environmental variations in both edaphic and climatic factors, as well as being capable of growing on marginal lands (Clatterbuck and Hodges, 2004; Sedeer and Nabil, 2003). *Paulownia* species are native to Asia from China, Laos, and Vietnam and grown in Japan and Korea. It has been cultivated in Australia, Europe, and both North and Central America. Ten-year-old Paulownia tree in natural conditions can attain 30–40 cm in diameter at breast height (DBH) and a timber volume of 0.3–0.5 m3 (Zhu *et al.*, 1986).

Craftsman in Japan and other countries have used this valuable wood to create intricate carvings, surfboards, musical instruments, toys, and furniture. Paulownia wood has a high ignition point of 420–430 °C compared to other hardwoods which range generally from 220–225 °C (Akyildiz and Kol Sahin, 2010). The wood of Paulownia has also been shown to be fire retardant (Li and Oda, 2007) as it burns at much higher temperature in comparison to many other wood species. Paulownia bears abundant flowers that are highly nectariferous and yield premium honey (Yadav *et al.*, 2013) adding to the rural economy. By adding Paulownia wood flour (25–40%) to plastics, an attractive, equally strong, environmentally agreeable, and economically important biocomposite can be produced (Tisserat *et al.*, 2013a; Tisserat *et al.*, 2013b, 2015) that can serve many industries. In addition, due its light weight and strong nature of wood, it is attracted by music industry to make soundboards of stringed musical instruments such as the guqin, guzheng, pipa, koto, gayageum and electric guitars. Biochar produced from Paulownia is also a desirable organic soil amendment which allows the growth of beneficial microbes in the porous holes of the biochar (Vaughn *et al.*, 2015). Recently, researchers found its potential use as an animal feed resource (Stewart *et al.*, 2018).

Wood synthesis provides one of the most important sinks for atmospheric carbon dioxide (Ye and Zhong, 2015). Wood formation is a result of the regulated accumulation of secondary xylem cells (fibers, vessels, and rays in dicots) differentiated from the vascular cambium that involves wall thickening. This wall thickening is accompanied by the biosynthesis of wall
components, lignin, cellulose, and hemicelluloses, and it is terminated by programmed cell death (Samuels et al., 2006; Song et al., 2006). In order to survive for multiple growing seasons, perennial plant species have adapted a dormancy regulation system which allows active growth during the desirable time of year, and vegetative dormancy when climatic conditions are unfavorable for growth (Shim et al., 2014). Being one of the fastest growing tree species, a Paulownia tree is capable of producing ~45 kg/tree in the first growing year and ~90 kg/tree at the end of second year (Joshee, 2012). Paulownia being a perennial tree, harvest is not limited to a small seasonal window but can be conducted year-round with proper management practices. Another beneficial property of Paulownia is coppicing, the production of multiple sprouts from a stump after the removal of the tree or shrub. Harvest cycles of 2–3 years could be implemented to establish a short rotation fast growing bioenergy crop. Since Paulownia is a short rotation and fast-growing perennial tree, it serves as a good candidate for the production of lignocellulosic biofuel which can eliminate dependence on fossil fuel. Further, trees may also have a benefit as stable wildlife habitat because they are not disturbed by annual harvests.

Arabidopsis thaliana has been used widely as a model system for secondary growth. However, the drawback to using *Arabidopsis* is the fact that it is an herbaceous plant, lacking secondary growth. In order to combat this feature, mutant lines were developed which have phenotypes exhibiting secondary growth characteristics. Initial studies used *A. thaliana* microarrays to determine the differential expression of transcripts related to secondary growth (Ko and Han, 2004; Oh et al., 2003). The next generation of studies utilized expressed sequence tags (ESTs) to determine a genomic “snap shot” of how wood is formed (Moreau et al., 2005; Schrader et al., 2004). Transcriptome analyses of various tree species indicate involvement of receptor kinases, transcription factors, and secondary wall biosynthesis genes that are highly expressed in wood-forming cells (Aspeborg et al., 2005; Dharmawardhana et al., 2010; Pavy et al., 2008; Wang et al., 2009; Wilkins et al., 2009).

In the recent past, scientific research addressing Paulownia transcriptomics have been accumulated. However, focus of the studies has been on drought tolerance, and the analysis of a phytoplasma that causes Witches Broom Disease (Dong et al., 2014a, b; Mou et al., 2013). Comparative analysis of microRNA expression (Cao et al., 2018a), regulation of long noncoding RNAs (Fan et al., 2018), and genome-wide analysis of IncRNAs (Cao et al., 2018b) provided
comprehensive transcriptome analyses with phytoplasma infection. Transcriptome sequencing and a de novo assembly approach were together used to analyze gene expression profiles in *P. fortunei* infected by Phytoplasmas (Fan et al., 2014). Studies have been carried out to analyze the variations between *Paulownia tomentosa* and its autotetraploid counterpart to characterize the differential expression of unigenes (Fan et al., 2015) and microRNA expression under drought stress (Zhao et al., 2018). An investigation into the physiological alterations of *P. fortunei* x *P. tomentosa* in response to infection by Paulownia witches’ broom (PaWB) (*Phytoplasma* spp.), a pathogenic bacteria responsible for crop losses worldwide, was conducted by differential expression analysis of RNA-seq data of infected vs. pathogen free specimens (Mou et al., 2013). Another study investigated the expression of unigenes derived from Witches’ broom infected *P. tomentosa* x *P. fortunei* by a De novo assembled transcriptome (Liu et al., 2013). Recently, transcriptome and small RNA sequencing analysis revealed roles of PaWB-related miRNAs and genes in *Paulownia fortunei* (Li et al., 2018). An investigation into the miRNAs related to the regulation of gene expression in both *P. australis* diploid and autotetraploid genotypes was performed by sequencing of small RNA libraries for the two respective genotypes (Niu et al., 2014). Experimentation by (Li et al., 2014) identified the genes related to a synthesized autotetraploid of *P. tomentosa* x *P. fortunei*, which exhibits advanced characteristics such as greater yield and higher resistance than the diploid wild type tree.

Cambial development, the initiation and activity of the vascular cambium, leads to an accumulation of wood, the secondary xylem tissue. Seasonal cues play a significant role in determining cambial growth as perennial plants growing in temperate and high-latitude regions show termination of cell division in the meristems (Nitsch, 1957) and reversal of growth arrest during long days (Espinosa Ruiz et al., 2004). Time-coursed transcriptome analysis identified participation and modulation of hormone-related genes; IAA, ARF and SAURs were downregulated and circadian genes including PIF3 and PRR5 were upregulated (Wang et al., 2019). Transcriptome data from the same tissue/s at different time points or of different physiological conditions were compared to one another to elucidate the gene expression pattern to each treatment. Interconnected signaling profiles between cytokinin and auxin indicated that they displayed distinct distribution across the cambium with increased cytokinin content to stimulate cell division (Immanen et al., 2016). Interestingly, cambial zone in addition to showing elevated cambial cytokinin level, the cambial auxin concentration and auxin-responsive
gene expression were also increased. In Paulownia, by investigating the differential expression of vascular cambium, the site of lateral growth and xylem production (Nieminen et al., 2015), tissue during wood-forming spring and senescent fall seasons, the transcripts which influence the production of wood in *P. elongata* were determined. Recent study provided evidence for the involvement of microRNAs in *Paulownia tomentosa* cambial tissues in response to seasonal winter and summer changes (Qiu et al., 2018).

Transcriptomic analyses have been carried out to profile gene expression regulations for biotic and abiotic stresses, and growth responses. However, to the best of our knowledge no study has described how the gene expression profile changes in woody tissues under seasonal variations. In this study, we sequenced and analyzed the transcriptomes of cambium tissues collected during winter and spring seasons to assess the impact of two seasons on biomass. A transcriptome-wide analysis identified 61,639 annotated unigenes, and 2,688 and 7,411 transcripts were up- and downregulated, respectively in spring season. Interestingly, among selected wood-forming genes, hemicellulose-specific genes were upregulated in spring. Finally, 11,338 Simple Sequence Repeat (SSRs) were identified from the transcriptome data. The identification of genes and pathways involved in cambial growth will be useful to further investigate the regulation of wood formation in Paulownia and other trees.
Materials and Methods

Collection of Cambium Tissues and RNA Isolation

Samples were randomly selected from trees at the FVSU Paulownia bioenergy plot located at 32º 31’15.04” N and 83º 52’12.95” W. Samples were taken in triplicates during two seasonal points, each seasonal point representing a different physiologic state. The first sample (Winter Wood – hereafter referred as WW) was collected in March, 2015 and represented the senescent winter wood (Figure 1A). The second sample (Spring Wood – hereafter referred as SW) was collected in May, 2015 and was representative of the actively growing spring wood (Figure 1B). Samples were harvested from twigs which were located at a height of 1.0–1.5 m from the ground, and having a diameter of 2.0–3.0 cm. Since Paulownia has an opposite branching pattern, the Spring and Winter samples were taken from the same node positioned on opposite sides. Sections of limb (15–30 cm long) were collected by removing the selected limb section with an ethanol (70 %) solution and RNaseZap® (Ambion, Foster City, CA, USA) treated pruner and gloved hands. The samples were labeled, wrapped in aluminum foil, flash frozen in liquid nitrogen, and subsequently stored in a -80 ºC freezer until further use. Biological replicates were labelled as WW1, WW2 and WW3 for winter, and SW1, SW2, and SW3 for spring, respectively.

For high quality intact total RNA extraction, vascular cambium tissues were harvested from the frozen samples by first slicing a shallow, longitudinal, cut into the outer bark with a sterile scalpel (Figure 1C). The bark was then removed using sterile forceps in a large, single piece. The frozen green vascular cambium was then gently scraped from the wood below, into small strips using a sterile scalpel. One hundred milligrams (100 mg) of vascular cambium tissue was finely powdered in microvials containing zirconia beads (BioSpec, Bartlesville, OK, USA) and 550 µL of TRIzol reagent (Invitrogen, Carlsbad, CA, USA) in a MagNA Lyser (Roche, Basel, Switzerland) as described in (Saminathan et al., 2014). Finally, RNA was purified using Direct-Zol™ RNA mini-prep kit (Zymo Research, Irvine, CA, USA) and any traces of genomic DNA contamination was removed using enzymatic DNase I treatment. RNA quality and quantity were analyzed using NanoDrop 1100 (NanoDrop, Wilmington, DE, USA) and Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA).
RNA samples for each biological replicate from both treatments (a total of 6 samples) were sequenced at BGI International (http://bgi-international.com/) sequencing platform with standard protocol. Magnetic beads coated with Oligo (dT) were used to isolate mRNA from the total RNA. Using a proprietary fragmentation buffer, the full-length mRNA transcripts were then fragmented into smaller pieces. Next, cDNA was synthesized using random hexamer primers and the mRNA fragments as templates. Short fragments were then purified and resolved with EB buffer for end preparation and single nucleotide A (adenine) addition. The short fragments were then connected with sequencing adapters. For quality control purposes the Agilent 2100 Bioanlyzer and ABI StepOnePlus Real-Time PCR system were used in quantification and qualification of the prepared sample library. Finally, sequencing was performed on the Illumina Hiseq 2000 platform.

Assembly of Libraries, Data Analysis and Annotation

The raw reads generated from pair-end sequencing are stored in fastq format and usually are contaminated with adapters, unknown or low-quality sequences which were removed by BGI proprietary software “filter_fq”. Once the clean reads were resolved from the raw reads, they were assembled into transcripts using Trinity (http://trinityrnaseq.sourceforge.net/) (Grabherr et al., 2011). Three (Inchworm, Chrysalis, and Butterfly) modules in Trinity were applied sequentially to process raw RNA-seq reads into contigs and full-length transcripts known as unigenes. Inchworm (reference) was further used to assemble the clean reads into unique sequences of transcripts, known as contigs. Chrysalis clustered the Inchworm derived contigs into clusters and constructed complete de Bruijn graphs for each cluster. Butterfly then processed the individual de Bruijn graphs in parallel, tracing the paths that reads and pairs of reads take within the graph, and ultimately reporting full-length transcripts. Butterfly also determined alternatively spliced isoforms of genes. The end result of assembly are full-length transcripts known as unigenes. Open source program BLAST (http://www.blast.ncbi.nlm.nih.gov/Blast.cgi) compares nucleotide, amino acid, or protein sequences to annotated sequence databases and calculates the statistical significance of the homology. The unigenes were aligned with five databases: KEGG (Kyoto Encyclopedia of Genes and Genomes), COG (Clusters of Orthologous
Groups), NT (NCBI nucleotide database), NR (NCBI non-redundant protein database) and Swiss-Prot (Protein sequence database). The KEGG database (http://www.genome.jp/kegg/) (Kanehisa et al., 2007) was used to perform a systematic analysis of metabolic pathways and function of gene products within a cell. By aligning with the KEGG database the annotated metabolic pathways with which the transcripts (unigenes) correspond were elucidated, allowing insight into the complex biological functions of gene families. The COG database (http://www.ncbi.nlm.nih.gov/COG/) classified orthologous gene products into clusters. COG clusters predicted the possible function of the transcripts. The NT database (http://www.ncbi.nlm.nih.gov/nuccore) is a non-redundant nucleotide database with entries from NCBI’s other databases (GenBank, EMBL, and DDBJ) and offers another way to predict transcript function. Both NCBI’s NR database and the Swiss-Prot (http://www.uniprot.org/uniprot/) annotated protein databases and added additional information about the possible function of the transcripts.

Gene Ontology and Coding Sequences

Gene ontology (GO) was employed to standardize gene functional classification such as molecular function, cellular component, and biological process. Using the NR database annotation, the Blast2GO program (http://www.blast2go.com/b2ghome) was used to retrieve GO functional classification for all transcripts (Conesa et al., 2005). In order to determine the CDS for the transcripts, unigenes were first aligned to the protein databases, listed in order of priority, of NR, Swiss-Prot, KEGG, and COG by using a local blastx (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST/), with significance cutoff value of $e^{-0.0001}$, of the unigene sequences. Unigenes with alignments to higher priority databases, for example NR database, were not aligned to lower priority databases. The highest-ranking proteins in the blastx results were used to decide the coding region sequences of unigenes. Results of the blastx alignment used a standard codon table to translate the nucleotide query sequence into a translated amino acid sequence. However, unigenes that could not be aligned to any database were further scanned by ESTScan (Iseli et al., 1999), producing nucleotide sequence (5'→3') direction and amino sequence of the predicted coding region.

Gene Expression Analysis
In order to determine the expression pattern of the unigenes, clean reads were first mapped to unigenes using the program Bowtie2 (v. 2.2.5 \(\text{http://bowtie-bio.sourceforge.net/bowtie2/index.shtml}\) (Langmead and Salzberg, 2012). SAM files generated through Bowtie were used with the RSEM (RNA-Seq by Expectation-Maximization) software package (\(\text{http://deweylab.github.io/RSEM/}; \text{v1.2.12}\) in R (v1.03; \(\text{http://www.r-project.org/}\)) to measure the expression level of each unigene. RSEM software was used to estimate gene expression levels from RNA-seq data (Li and Dewey, 2011), providing expression data in FPKM (Fragments Per Kilobase of transcript per Million mapped reads) format, which was subsequently used to perform differential gene expression analysis in this study. To detect Differentially Expressed Genes (DEGs) the program NOIseq (\(\text{http://genome.cshlp.org/content/early/2011/09/07/gr.124321.111}\) (Tarazona \textit{et al.}, 2011) was utilized. In this study winter and spring unigenes with a fold change of \(\geq 2\) and a probability \(\geq 0.8\) were considered to be significantly differentially expressed. PCA was accomplished using Princomp function in R.

Simple Sequence Repeats Analyses

Simple Sequence Repeat (SSR) identification was accomplished with MIcroSAtellite (MISA) software (\(\text{http://pgrc.ipk-gatersleben.de/misa/misa.html}\)), using the unigenes as input sequences. The identified SSRs which have lengths \(\geq 150\) bp on both ends of the unigenes were used to design primers. The SSRs which met the selection criteria were used by the software Primer3 (v2.3.4; \(\text{http://www.onlinedown.net/soft/51549.htm}\)) to design primers. Primers derived from the unigenes were further filtered by removing primers with SSRs within the primer itself and primers aligned to more than one unigene.

Validation of Wood-forming Genes with RT-qPCR

Based on existing research information, fifteen wood-forming candidate genes correspond to the biosynthesis of cellulose, hemicellulose, or lignin (Dharmawardhana \textit{et al.}, 2010; Doering \textit{et al.}, 2012; Jia \textit{et al.}, 2015; Nieminen \textit{et al.}, 2015; Pauly \textit{et al.}, 2013; Quang \textit{et al.}, 2012), were selected for validation of expression level. Using the local blast utility (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST/) a database of all Paulownia unigenes was created. The mRNA sequences acquired for each of the selected genes were then
aligned to the database of all unigenes using the local blastx utility. The unigenes showing maximum homology for each of the genes was selected for two-step RT-qPCR primer design. The software Primer Express v3.01 (Applied Biosystems, Foster City, CA) was used to design primers for the unigenes corresponding to the selected wood forming genes. Complimentary DNA (cDNA) was synthesized from Paulownia vascular cambium total RNA using SuperScript™ II Reverse Transcriptase (Invitrogen, Waltham, Massachusetts, USA) with suggested protocol. FastStart SYBR Green Master Mix (Roche, Grenzacherstrasse, Basel, Switzerland) reagent was used in combination with primers (Table S3) and cDNA. RT-qPCR of three biological replications with no-template control (NTC) involved StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) and FastStart SYBR Green (Roche). The expression of selected genes was normalized to that of the 18S rRNA gene. Finally, the relative gene expression was calculated by the $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen, 2001).
Results and Discussion

Empress tree (*Paulownia tomentosa*), a fast-growing tree species native to China, has been grown for the purpose of timber, pulp, soil protection, and for many other uses. Daylength affects tree growth with a short-day length introduces cessation of growth and growth rate is very high during summer. To ensure survival and productivity, perennial trees in temperate climates utilize cyclical environmental signals, such as daylength and seasonal temperature patterns. The vascular cambium, a lateral meristem found in diverse tree species, is responsible for supporting the radial, woody growth of stems. The vascular cambium consists of meristematic initials that divide over time to produce daughter cells which consequently turn into secondary xylem and secondary phloem of the stem. The daily cumulative temperature is the most important cue for cambial reactivation (Sarvas, 1970), however daylength influences cambial dormancy at the end of the summer and autumn (Heide, 1974). In forest trees, seasonal cues influence several aspects of the secondary growth of tree stems, including cambial activity, wood chemistry, and transition to latewood formation (Jokipii-Lukkari *et al.*, 2018). A recent transcriptomic study showed photoperiod as the dominant driver of seasonal gene expression variation in needles of Douglas-fir (Cronn *et al.*, 2017). Therefore, it is evident that cambial growth is affected to a greater extent by changes in the ambient temperature and affects overall seasonal growth by tuning thousands of genes reach their annual peak activity during winter dormancy. In this study, we showed how winter and spring seasons modulated the transcriptome and consequently plant growth by studying cambial transcriptome and pathway analysis.

RNA-Seq and Transcriptome Assembly of Paulownia Cambial Tissue

In order to obtain the candidate genes associated with cambium development of empress tree during seasonal growth, transcriptome sequencing analysis for winter and spring seasons (Figure 1A and 1B) was carried out by collecting cambial tissues from tree twigs (Figure 1C). A total of 305,882,370 (~29 Gb) raw reads were generated. Removal of adapter sequences, low-quality reads, and ambiguous sequences resulted in 297,049,842 clean reads (Q20 > 97.73%) with an average length of 100 nucleotides. Winter samples generated more raw reads when compared to spring samples (Table 1).
The *de-novo* assembling of clean reads resulted in 129,428 and 104,388 total contigs for winter and spring cambial tissues, respectively. Clustering and assembly of these contigs resulted in 64,142 and 45,671 unigenes for winter and spring tissues with the average length of 960 and 842 nucleotides, respectively. Among the unigenes, all unigenes were sub-classified according to nucleotide length and found that 300 nt category dominated all. The number of unigenes was reduced as the nucleotide length increased from 300 to 3,000 nt (Figure S1). A total of 40,814 genes were greater than 1kb length. Approximately 58,654 unigenes were greater than 500 nucleotides in length. As in most previous studies, the mean length of the contigs (~340 bp) was shorter than that of the unigenes (>1,000 bp). The paired-end reads resulted in longer unigenes (mean, ~900 bp) than those reported in previous transcriptome studies on trees (Novaes et al., 2008; Wang et al., 2010). The mean length of unigenes (900 nucleotides) was less than those in previous studies related to tetraploid and drought (Dong et al., 2014b; Xu et al., 2014) species of *Paulownia australis* and *P. tomentosa*. Most of our assembled unigenes showed homology to nucleotide sequences to six public nucleotide databases. The unmatched unigenes are most likely to represent Paulownia-specific genes especially related to winter and spring seasons.

Functional Annotation of Paulownia Cambial Transcriptome

The 61,639 transcripts were annotated by performing a BLAST search of the sequences in six databases namely Nonredundant protein (Nr) database, NCBI non-redundant nucleotide sequence (Nt) database, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Groups of proteins (COG). Basic Local Alignment Search Tool (BLAST), a sequence similarity search was conducted against the NCBI Nr and Nt database and Swiss-Prot protein database using E-values of less than 10^{-5}. The BLAST search of 61,639 unigenes showed similarity of 72.47% to Nr database followed by 69.06% with Nt, 48.97% with Swiss-Prot, 43.17% with KEGG, 29.68% with COG, 53.85% with Interpro and 44.29% with GO (Table S1).

Of the annotated sequences in the non-redundant (Nr) protein database, 39.3% of the mapped unigenes had very significant homology to known sequences (e-value, 10–100), 35.1% showed significant homology (10–100, e-value, 10–30), and 25.6% showed weak homology (e-value 10–30 to 10–5) (Figure 2A). We also performed the sequence conservation analysis of
Paulownia transcripts with proteomes of all sequenced plant species. As depicted in Figure 2B, the E-value distribution analysis of transcripts showed that 47.0% unigenes had a similarity of more than 80%, 49.8% unigenes had a similarity between 40 and 80%, and just 3.2% unigenes had a similarity of less than 40%. We employed a new BLAST operation to study the relationship of Paulownia with other plant species to identify proteins and pathways that would be unique to Paulownia. The sequence conservation analysis of transcripts showed homology to sequences from *Erythranthe guttata* (64.8%), followed by *Vitis vinifera* (6.3%), *Solanum tuberosum* (5.0%), *Solanum lycopersicum* (3.0%), *Theobroma cacao* (2.7%) and others (Figure 2C). *Erythranthe guttata*, a yellow bee-pollinated annual or perennial plant, is a model organism for biological studies. Paulownia transcripts shared strong homology with *Erythranthe* species and this could be due to strong phylogenetic relationship between these two species (Zhao et al., 2019). However, transcripts from a drought-related transcriptomic studies of Paulownia (Dong et al., 2014b; Xu et al., 2014) showed homology to *Vitis vinifera* (45-48%). This shift in homology could be due to the selection of abiotic seasonal tissue for cambial transcriptome study.

The analysis of 43,780 transcripts in COG database classified them into 25 protein families participated in transcription, replication and recombination, posttranslational modification, signal transduction, and so on. However, the cluster for general function prediction (7,998) represented the largest group, followed by transcription (4,017), replication, recombination and repair (3,451), posttranslational modification, protein turnover and chaperones (3,414), signal transduction mechanisms (3,158), translation, ribosomal structure and biogenesis (3,055), carbohydrate transport and metabolism (2,776), amino acid transport and metabolism (1,874), cell wall/membrane/envelope biogenesis (1,629), energy production and conversion (1,563), cell cycle control, cell division, and chromosome partitioning (1,356). In contrast, only a few unigenes were assigned to extracellular structure and nuclear structure (17 and 4 unigenes, respectively). Importantly, many unigenes have been assigned to a wide range of COG classifications (Figure 3), indicating that a wide diversity of transcripts involved in wood formation as in Chinese fir (Qiu et al., 2018).

The Gene Ontology (GO) classification classified 42,588 out of 62,639 transcripts into ontologies related to molecular functions, cellular components and biological processes, allowing a coherent annotation of transcripts (Figure 4). We identified significantly higher number of
transcripts (19,418) involved in metabolic process and 18,047 related to cellular processes (18,047) when compared to others such as rhythmic processes (number). The most represented category for cellular components was cells (GO: 0005623; 18186 genes) followed by organelle (GO:0043226; 14053 genes). But for molecular functions, the catalytic activity (GO: 0003824; 17403 genes) was the most represented GO term followed by the binding activity (GO: 0005488; 15485 genes). Genes and pathways putatively responsible for dormant winter and active spring growth in Paulownia were identified in this study. In *Populus*, PtrHB7, a class III HD-Zip gene, is known to play a critical role in regulation of vascular cambium differentiation (Zhu *et al.*, 2013) and homeobox gene ARBORKNOXI regulates the shoot apical meristem and the vascular cambium (Groover *et al.*, 2006). In our study, Unigene2201, Unigene3374, and Unigene4121 which were downregulated belong to GO:0005488 (molecular function: binding) and are homologs of KNOX gene. KNOX family gene KNAT7 negatively regulates secondary wall formation in *Arabidopsis* and *Populus* (Li *et al.*, 2012). Since KNAT7 is a negative regulator of secondary wall biosynthesis, these Paulownia homologs might positively regulate cambium growth during active spring season.

In order to categorize the different biochemical pathways that the annotated unigenes were associated with, we assigned the EC numbers in the KEGG pathways. KEGG annotation yielded a total of 35,471 (57.5%) unigenes that were mapped to 128 KEGG pathways. The top eight KEGG enriched pathways were metabolic pathways 7943 (22.39%; ko01100) biosynthesis of secondary metabolites 3768 (10.62%; ko00980), and plant-pathogen interaction 1852 (5.22%; ko04626), plant hormone signal transduction 1717 (4.84%; ko04075), spliceosome 1462 (4.12%; ko03040), ribosome 1179 (3.32%; ko03010), RNA transport 1165 (3.28%; ko03013) and protein processing in endoplasmic reticulum 1120 (3.16%; ko04141) (Table S2). With the help of KEGG database, we could further analyze the metabolic pathways and functions of gene products, which help in studying the complex biological behaviors of genes. Most representative unigenes were annotated to metabolic pathways, biosynthesis of secondary metabolites, plant-pathogen interaction, plant hormone signaling, spliceosome, and phenylpropanoid biosynthesis using the KEGG database, lead us conclude that most of the genes identified in this study are involved in cambial differentiation and wood formation.

Transcriptional Profiling of Cambial Tissues in Winter and Spring
A total of 10,099 (12.33%) transcripts were found to be significantly differentially expressed between two tissue samples. Of these differentially expressed genes (DEGs), 2,688 (26.61%) transcripts were found to be upregulated (>1.6 fold) in spring season, whereas 7,411 (73.39%) were downregulated (<–1.6 fold) when compared to winter season (Figure S2). Hierarchical clustering of the DEGs identified in winter and spring conditions led to the detailed overall structure of clustering. This indirectly indicated that more genes were upregulated, active and required during the senescent winter season to keep tissues dormant. Out of 2,688 genes, top 20 genes with log2Fold change >8.00 are summarized in Table 2. This included APC/C cyclosome complex, phosphoenolpyruvate carboxy kinase, different classes of heat shock proteins, actin depolymerization factor, anaphase-promoting complex subunit (>12-fold expression), etc. Similarly, many key genes including synthases such as galactinol synthase (<–12-fold expression), rosmarinate synthase, and valencene synthase, kinases such as receptor-like protein kinase, serine/threonine protein kinase, and CBL-interacting protein kinase, and hormone regulated genes such as auxin efflux carrier family protein and ethylene-responsive transcription factor were downregulated (Table 3). The cell cycle, being one of the most important biological processes in the cambial zone, plays central role in regulating the growth and development of organisms including plants. The anaphase-promoting complex/cyclosome (APC/C; homolog in our study Unigene8688), a well-known ubiquitin ligase, acts to accomplish basic cell-cycle control. The APC/C must be turned off at the end of G1 phase to allow the S phase cyclins to accumulate and cells to begin DNA replication (Pines, 2011). This is very key during spring season for cell multiplication and growth. The Cyclin U2 (Unigene22553), one of the major cyclins involved in cell cycle control, like cyclins A and B on maximum gene expression in poplar cambium zone (Hertzberg et al., 2001) was upregulated in Paulownia. The high abundance of cyclin transcripts in active cambium during spring season also reflected a positive correlation between cambium cell division and key cell cycle gene expression.

As shown in Figure 5, GO analysis indicated that most of the DEGs for biological process were involved in the metabolic process (1,016), cellular process (890), and response to stimulus (350). GO cellular component analysis revealed the cell (824), cell part (789), membrane (436) and organelle (399) enriched the most DEGs. Meanwhile, GO molecular function analysis showed that the DEGs predominantly contributed to catalytic activity (836) followed by transporter activity and structural molecule activity. KEGG enrichment analysis of
DEG showed that these genes were involved in various pathways in Paulownia plant during seasonal changes (Table 4). Most of the DEGs were enriched in metabolic pathways (ko01100; 1387), biosynthesis of secondary metabolites (ko01110; 827), and plant hormone signal transduction (ko04075; 320). It was also found that starch and sucrose metabolism (ko00500; 172; Figure S3) and phenylpropanoid biosynthesis (ko00940; 106; Figure S4), which correspond to the production of several key wood forming genes, were within the top 25 most DEG enriched KEGG pathways (Table 4). Nineteen (Unigene11539, Unigene12164, Unigene12788, Unigene16018, Unigene17615, Unigene18048, Unigene18594, Unigene18926, Unigene22808, Unigene24462, Unigene24837, Unigene3634, Unigene4753, Unigene6221, Unigene891, and Unigene9670 (K00430), Unigene16856 (K11188), Unigene22599 and Unigene25305 (K03782)) out of 497 unigenes (total unigenes) involved in lignin synthesis in the phenylpropanoid biosynthesis pathway (Ko00940) were identified and differentially regulated (Figure S4). Lignin plays a vital role in keeping the structural integrity of the cell wall, and protecting plants from pathogens (Hu et al., 2008) as well as a main component of wood. Of these 19, different types of peroxidases (Unigene11539, Unigene18926, Unigene4753 and Unigene6221) were upregulated during winter. Recently, a notable remodeling of the transcriptome was reported in Norway Spruce where monolignol biosynthesis genes showed high expression during the period of secondary cell wall formation as well as a second peak in midwinter. Interestingly, this midwinter peak expression did not trigger lignin deposition. (Jokipii-Lukkari et al., 2018). These genes could be preparing for the biosynthesis and distribution of guaiacyl (G), p-hydroxyl phenol (H) and syringyl (S) lignin in developing biomass as soon as the onset of Spring.

Out of 61,639 annotated unigenes, 58,324 unigenes were matched to known genes using blastx and 1,708 unigenes were matched to coding sequences using ESTscan. Most unigenes population were ranked from 200-3000 nucleotides in length (Figure S7). Most of the unigenes (34,000) were about 200 nt in length for coding sequences. There were no translated peptides beyond 2,500 sequences. In case of ESTScan method, most of the unigenes from 200-3000 nt in length were translated into protein sequences in the range of 200 to 1,100. This difference could be due to extra sequences in the full-length cDNAs than protein coding sequences.

Expression of Lignocellulosic Pathway Genes and Their Validation
Wood, the secondary xylem, is produced from the activity of vascular cambium that is composed of two meristematic initials: fusiform initials and ray initials (Mauseth, 1988) with the sequential developmental process including differentiation of vascular cambium cells into secondary xylem mother cells, cell expansion, and massive deposition of secondary walls where a number of genes involved in vascular tissue differentiation and secondary wall biosynthesis (Zhong and Ye, 2015). When the wood compression starts, the expression of a number of genes involved in synthesis of lignocellulosic components (cellulose, hemicellulose and lignin) and lignans was upregulated in maritime pine (Villalobos et al., 2012). In addition onset of wood formation undergoes three periods: winter shrinkage, spring rehydration (32-47 days) and summer transpiration in the stem (Turcotte et al., 2009).

In order to explore the roles of cell wall- and hormone related genes for the seasonal cues, fifteen candidate genes were identified from previous studies (Table 5). They are involved in cellulose (CesA1, CesA3, CesA6 (Djerbi et al., 2004)), hemicellulose (CSLC4 (Davis et al., 2010), FUT1 (Perrin et al., 1999; Vanzin et al., 2002), AXY4 (Gille et al., 2011), GATL1 (Kong et al., 2009), IRX10 (Hörnblad et al., 2013), ESKIMO1 (Lefebvre et al., 2011)), lignin (4CL (Hu et al., 1999), CCR1 (Goujon et al., 2003), CAD1 (Bouvier d'Yvoire et al., 2013)), auxin (TAA1 (Stepanova et al., 2008), YUC1 (Cheng et al., 2006; Won et al., 2011)) and cytokinin (IPT1 (Immanen et al., 2016)) synthesis/pathways. RT-qPCR was employed to study the expression of these wood formation genes in Paulownia during winter and spring seasons (Figure 6).

Cellulose is synthesized in plant cell walls by large membrane-bound protein complexes proposed to contain several copies of the catalytic subunit of the cellulose synthase, CesA. Here, we found CesA1 and CesA6 were upregulated during spring while CesA3 was moderately downregulated during winter season. In hybrid aspen, expression analyses of CesA family showed specific location in normal wood undergoing xylogenesis, while PttCesA2, seems to be activated on the opposite side of a tension wood (Djerbi et al., 2004). However, in Arabidopsis, the expression levels of the three primary cell wall genes (AtCesA2, AtCesA5, AtCesA6) was increased, but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7 (Hu et al., 2018). Our results along with these studies indicated that the expression of major primary wall CesA genes to accelerate primary wall CesA complex.
Several proteins encoded by the cellulose synthase-like (CSL) gene family including CSLA proteins, which synthesize β (1→4) linked mannans, and CSLC proteins, which are thought to synthesize the β (1→4) linked glucan backbone of xyloglucan are known to be involved in the synthesis of cell wall polysaccharides (Davis et al., 2010). Higher expression of CLSC4 in Paulownia during spring season indicated that it might involve cellulose synthesis. The fucosyltransferase (FUT1) is an enzyme that transfers an L-fucose sugar from a GDP-fucose (guanosine diphosphate-fucose) donor substrate to an acceptor substrate. The Arabidopsis mur1 (AtFUT1) mutant study (Vanzin et al., 2002) exhibited a dwarf growth habit and decreased wall strength indicating indispensable role of FUT1 function in wood formation. Another key gene family of O-acetyl substituents seems to be very important for various plant tissues and during plant development (Liners et al., 1994), suggesting an important functional role in the plant. Mutants lacking AXY4 transcript resulted in a complete lack of O-acetyl substituents on xyloglucan in several tissues, except seeds (Gille et al., 2011). Biosynthesis of xylan in woody plants is a major pathway for plant biomass. Populus genes PdGATL1.1 and PdGATL1.2, the closest orthologs to the Arabidopsis PARVUS/GATL1 gene, have been shown to be important for xylan synthesis, but may also have role(s) in the synthesis of other wall polymers (Kong et al., 2009). The expression of GATL1 homolog in Paulownia was six-fold (Figure 6) in spring season implying more xylan biosynthesis. Collapsed xylem phenotypes of Arabidopsis (Turner and Somerville, 1997) and Physcomitrella patens (Hörnblad et al., 2013) mutants (irx10) identified mutants deficient in cellulose deposition in the secondary cell wall due to lack of synthesis of the glucuronoxylan. Acetyl transferases are involved cellulose biosynthesis in plants. In Arabidopsis, the ESKIMO1 (ESK1) gene has been described for multiple roles and mutants of which (esk1) indicated that ESK1 is necessary for the synthesis of functional xylem vessels towards laying down of secondary cell wall components (Lefebvre et al., 2011). Our gene expression along with RNAseq of cellulose and hemicellulose indicated that all these genes were highly expressed during spring season to prop complete wood formation.

Trees have extreme needs for both structural support and water transport and 15 to 36% of the dry weight of wood is lignin (Sarkanan and Hergen, 1971). Since lignin limits the use of wood for fiber, chemical, and energy production, lignin is therefore one of the world’s most
abundant natural polymers, along with cellulose and chitin. It has been shown that PAL or 4CL (4-coumarate:coenzyme A ligase) was strongly downregulated indicating lower lignin content with a preferred reduced content in G units and increase cellulose in aspen (Hu et al., 1999). However, we found upregulation of 4CL in Paulownia (Figure 6). It is reported that Paulownia spp. and hybrids showed more Klason lignin 22.9–27.8% whereas aspen exhibited 19.3% (García et al., 2011) relating positive correlation with increased 4CL transcripts in Paulownia from RT-qPCR results. Cinnamoyl CoA reductase (CCR) is the first enzyme in monolignols synthesis. Arabidopsis (atccr1) mutants were severely downregulated and had 50% decrease in lignin content accompanied by changes in lignin composition and structure implying CCR1 was a positive regulator (Goujon et al., 2003). However, it showed downregulation in Paulownia during spring season. Disrupting the Brachypodium Cinnamyl Alcohol Dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification (Bouvier d'Yvoire et al., 2013). Another study in poplar tree suggested that downregulating CAD1 is a promising strategy for improving lignocellulosic biomass (Van Acker et al., 2017). Lignin is the major phenolic polymer in plant secondary cell walls and is polymerized from monomeric subunits, the monolignols (Yan et al., 2019). Thr BiFC biochemical assay showed molecular interaction of PtcCAD1/PtcCCR2 homo- and heterodimer formation. The downregulation of CCR1 and CAD1 in Paulownia indicates the improvement of lignocellulosic biomass. Altogether, the lignocellulosic pathway genes regulate the components of cellulose, hemicellulose and lignin in appropriate ratios as indicated earlier repression of lignin biosynthesis promotes cellulose accumulation and growth in aspen tree (Hu et al., 1999).

Analysis of Hormone-Specific Genes and Their Validation

Auxins, morphogen-like plant-growth regulators, with some play a key role in regulating wood formation through its effects on cambial activity and xylem development (Sundberg et al., 2000). It is required for maintaining the cambium in a meristematic state as depleting the cambium of auxin leads to differentiation of cambial cells to axial parenchyma cells (Savidge, 1983). Cytokinins, on the other hand, have a well-established function in cell division during growth and development and they are called central regulators of cambial activity (Matsumoto-Kitano et al., 2008). The interaction between auxin and cytokinin seems to be essential for induction of phenylalanine ammonialyase activity in support of lignification (Bevan and
Northcote, 1979). \textit{TAA1}, which performs first two reactions in auxin pathway, is a Trp aminotransferase that converts Trp to IPA in the IPA auxin biosynthesis branch in Arabidopsis (Won \textit{et al.}, 2011). Higher order mutants in \textit{TAA1} showed auxin-related multiple phenotypes. Later, it was identified that \textit{TAA1} gene was essential for hormone crosstalk with ethylene for plant development (Stepanova \textit{et al.}, 2008). Later, new putative function of IAA production via IPyA and transport was identified which was newly postulated (Stepanova \textit{et al.}, 2011).

Another group of auxin biosynthesis gene family, \textit{YUCCA} flavin monooxygenases, controls the formation of floral organs and vascular tissues in Arabidopsis (Cheng \textit{et al.}, 2006). When \textit{TAA} family of amino transferases converts tryptophan to indole-3-pyruvate (IPA) and that the \textit{YUCCA} (\textit{YUC}) family participates in converting IPA to IAA, the main auxin in plants (Won \textit{et al.}, 2011). In addition, the authors found that \textit{YUC} and \textit{TAA} work genetically in the same pathway and that \textit{YUC} is downstream of \textit{TAA}. From our transcriptome and gene expression studies, we observed \textit{TAA1} was strongly expressed with no obvious difference in \textit{YUC1} expression during spring season. Different unigenes involved in auxin biosynthesis are given in tryptophan pathway for cell enlargement and plant growth (Figure S5).

In Arabidopsis, cambial activity responded to small changes in cytokinin levels indicating that cytokinins are central regulators of cambium activity (Matsumoto-Kitano \textit{et al.}, 2008). Isopentenyltransferase, the rate limiting step of cytokinin biosynthesis, is an important enzyme playing key roles in meristem maintenance and organ development. Arabidopsis quadruple mutants lacking \textit{AtIPT1}, \textit{AtIPT3}, \textit{AtIPT5}, and \textit{AtIPT7} were unable to form cambium and showed reduced thickening of the root and stem, thought single mutant \textit{atipt3} showing moderately decreased levels of cytokinins without any other recognizable morphological changes. Similarly, increased cytokinin biosynthesis stimulates the cambial cell division rate and increases the production of trunk biomass in transgenic Populus trees (Immanen \textit{et al.}, 2016). Surprisingly, \textit{IPT1} expression was high in winter and moderately reduced in spring indicating two possibilities. Cytokinin pathway with \textit{IPT1} role might have been active during mid-winter (end of March). Alternatively, there could be many other members in \textit{IPT} family that complement the function of cambial development. Auxin and cytokinin display distinct distribution profiles across the cambium and elevated cytokinin content leads to an increased cambial auxin concentration (Immanen \textit{et al.}, 2016). Together, it is very interesting to see the interaction of
lignocellulosic pathways genes along with major hormone-regulated genes and their crosstalks to maintain the balance of cambial activities for quality wood formation with alternative seasonal changes (Figure S6).

Analysis of Simple Sequence Repeats (SSRs)

SSR markers are very useful for multiple applications in plant genetics because of their co-dominance, high level of polymorphism, multi-allelic variance, and abundance, and cross-species transferability (Barbara *et al.*, 2007; Powell *et al.*, 1996). In the present study, SSR were identified utilizing the transcriptome of paulownia cambial tissues because EST-SSR markers have a relatively higher transferability than genomic SSRs (Varshney *et al.*, 2005). Recent studies showed that abundant EST-SSRs from RNA-seq have agronomic potential and constitute a scientific basis for future studies on the identification, classification, molecular verification and innovation of germplasms in hawthorn and Lei bamboo (Cai *et al.*, 2019; Ma *et al.*, 2019).

We identified 11,338 SSRs from the annotated 61,639 unigenes. We detected 3,036 mononucleotides, 5,492 dinucleotides, 2,493 trinucleotides, 204 tetranucleotides, 194 pentanucleotides, and 344 hexanucleotides motifs (Figure 7; Table S4). Among the dinucleotide and trinucleotide SSRs, AG/CT repeats represented 2,997 SSRs, and AAG/CTT repeats represented 582 SSRs. In mononucleotide, dinucleotide, trinucleotide, quadnucleotide, pentanucleotide, and hexanucleotide repeat categories, the occurrences of repeats were twelve, six, five, five, four and four, respectively (Table S4). Finally, 6,773 oligonucleotide pairs were generated for these identified SSR markers (Table S5). SSRs and SNPs are the most useful and robust molecular markers for genetics and plant breeding applications (Hiremath *et al.*, 2012). This study provided a set of SSR markers that could be used, for example, in diversity analysis of Paulownia species. In addition, Paulownia tree breeding programs will benefit from the availability of these SSR markers identified from our RNAseq data. Mononucleotide SSRs would be excluded because of the frequent homopolymer errors found in sequencing data and less polymorphism, dinucleotides (46.6%) and trinucleotides (21.2%) contributed most in Paulownia. This is consistent with the EST-SSRs distributions reported in other plant species (Ahn *et al.*, 2013; Wang *et al.*, 2014). In plants, SNPs are predominantly beneficial in the construction of high-resolution genetic maps, positional cloning, marker assisted selection.
(MAS) of important genes, genome wide linkage disequilibrium associate analysis, and species origin, relationship and evolutionary studies (Shahinnia and Sayed-Tabatabaei, 2009).

Conclusion

Paulownia is a fast growing, multipurpose timber tree suitable for use as a dedicated lignocellulosic bioenergy crop. In order to understand the genes involved in formation of woody biomass related to seasonal cues, a de novo transcriptome study was conducted on vascular cambium tissue from senescent winter vascular cambium tissue and actively growing spring vascular cambium tissue. To the best of our knowledge, this is the first transcriptome-based study on *P. elongata*, as well as the first transcriptome study performed on Paulownia vascular cambium tissue focusing seasonal difference. A set of transcripts was specifically expressed in two different tissues. The transcript abundance data confirms the differential pattern of expression of cellulosic, hemicellulosic, lignin biosynthesis specific, and hormone pathway specific genes. By analyzing the transcriptome from two different temporal treatments (winter and spring), representing two distinct physiological states of the plant, DEGs were identified from both treatments. Cell division is one of the key process taking place in the cambial zone and majority of the cell cycle genes were upregulated during the active stage. Onset of cambial activity began between the end of March and the beginning of April as the increased vacuolization of meristematic cells and the mitotic activity occur. However, our study showed more genes were downregulated in spring season remain to be answered. Overall, results of this study will be useful for future research regarding wood formation in Paulownia and other trees.
References

Ahn Y-K, Tripathi S, Cho Y-I, Kim J-H, Lee H-E, Kim D-S, Woo J-G, Cho M-C. 2013. De novo transcriptome assembly and novel microsatellite marker information in Capsicum annuum varieties Saengryeg 211 and Saengryeg 213. Botanical studies 54, 1-10.

Akyildiz MH, Kol Sahin H. 2010. Some technological properties and uses of paulownia (Paulownia tomentosa Steud.) wood. Journal of Environmental Biology 31, 351-355.

Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas Å, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F. 2005. Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. J Plant Physiology 137, 983-997.

Barbara T, PALMA SILVA C, Paggi GM, Bered F, Fay MF, Lexer C. 2007. Cross species transfer of nuclear microsatellite markers: potential and limitations. Molecular Ecology 16, 3759-3767.

Bevan M, Northcote D. 1979. The interaction of auxin and cytokinin in the induction of phenylalanine ammonia-lyase in suspension cultures of Phaseolus vulgaris. Planta 147, 77-81.

Bouvier d’Yvoire M, Bouchabke Coussa O, Voorend W, Antelme S, Cézard L, Legée F, Lebris P, Legay S, Whitehead C, McQueen Mason SJ. 2013. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (Bd CAD 1) leads to altered lignification and improved saccharification in Brachypodium distachyon. The Plant Journal 73, 496-508.

Cai K, Zhu L, Zhang K, Li L, Zhao Z, Zeng W, Lin X. 2019. Development and characterization of EST-SSR markers from RNA-Seq data in Phyllostachys violascens. Frontiers in plant science 10, 50.

Cao X, Zhai X, Zhang Y, Cheng Z, Li X, Fan G. 2018a. Comparative analysis of microRNA expression in three Paulownia species with Phytoplasma infection. Forests 9, 302.

Cao Y, Fan G, Zhai X, Dong Y. 2018b. Genome-wide analysis of IncRNAs in Paulownia tomentosa infected with phytoplasmas. Acta physiologiae plantarum 40, 49.

Cheng Y, Dai X, Zhao Y. 2006. Auxin biosynthesis by the YUCCA flavin monoxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes & development 20, 1790-1799.

Clatterbuck KW, Hodges DG. 2004. Tree Crops for Marginal Farmland. Paulownia. The University of Tennessee Extension, Vol. PB 1465. University of Tennessee, USA 1-32.

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676.
Cronn R, Dolan PC, Jogdeo S, Wegrzyn JL, Neale DB, Clair JBS, Denver DR. 2017. Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles. BMC Genomics 18, 558.

Davis J, Brandizzi F, Liepman AH, Keegstra K. 2010. Arabidopsis mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orientations in the Golgi membrane. The Plant Journal 64, 1028-1037.

Dharmawardhana P, Brunner AM, Strauss SH. 2010. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa. J BMC Genomics 11, 150.

Djerbi S, Aspeborg H, Nilsson P, Sundberg B, Mellerowicz E, Blomqvist K, Teeri TT. 2004. Identification and expression analysis of genes encoding putative cellulose synthases (CesA) in the hybrid aspen, Populus tremula (L.)× P. tremuloides (Michx.). Cellulose 11, 301-312.

Doering A, Lathe R, Persson S. 2012. An update on xylan synthesis. J Molecular plant 5, 769-771.

Dong Y, Fan G, Zhao Z, Deng M. 2014a. Compatible solute, transporter protein, transcription factor, and hormone-related gene expression provides an indicator of drought stress in Paulownia fortunei. Funct Integr Genomics 14, 479-491.

Dong Y, Fan G, Zhao Z, Deng M. 2014b. Transcriptome expression profiling in response to drought stress in Paulownia australis. Int J Mol Sci 15, 4583-4607.

Espinosa Ruíz A, Saxena S, Schmidt J, Mellerowicz E, Miskolczi P, Bakó L, Bhalerao RP. 2004. Differential stage specific regulation of cyclin dependent kinases during cambial dormancy in hybrid aspen. The Plant Journal 38, 603-615.

Fan G, Cao Y, Wang Z. 2018. Regulation of long noncoding RNAs responsive to Phytoplasma infection in Paulownia tomentosa. International Journal of Genomics 2018, 16.

Fan G, Dong Y, Deng M, Zhao Z, Niu S, Xu E. 2014. Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei. Int J Mol Sci 15, 23141-23162.

Fan G, Wang L, Deng M, Niu S, Zhao Z, Xu E, Cao X, Zhang X. Genomics. 2015. Transcriptome analysis of the variations between autotetraploid Paulownia tomentosa and its diploid using high-throughput sequencing. J Moleculaer Genetics 290, 1627-1638.

García JC, Zamudio MA, Pérez A, Feria MJ, Gomide JL, Colodette JL, López F. 2011. Soda-AQ pulping of Paulownia wood after hydrolysis treatment. BioResources 6, 971-986.

Gille S, de Souza A, Xiong G, Benz M, Cheng K, Schultink A, Reca I-B, Pauly M. 2011. O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain. The Plant Cell 23, 4041-4053.
Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau J-P, Barriere Y, Lapierre C, Jouanin L. 2003. Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217, 218-228.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology 29, 644-652.

Groover AT, Mansfield SD, DiFazio SP, Dupper G, Fontana JR, Millar R, Wang Y. 2006. The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant molecular biology 61, 917-932.

Heide OM. 1974. Growth and dormancy in Norway spruce ecotypes (Picea abies) I. Interaction of photoperiod and temperature. Physiologia Plantarum 30, 1-12.

Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlén M, Teeri TT, Lundeberg J. 2001. A transcriptional roadmap to wood formation. J Proceedings of the National Academy of Sciences 98, 14732-14737.

Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, Whaley AM, Carrasquilla García N, Gaur PM, Upadhyaya HD. 2012. Large scale development of cost effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant biotechnology journal 10, 716-732.

Hörnblad E, Ulfstedt M, Ronne H, Marchant A. 2013. Partial functional conservation of IRX10 homologs in Physcomitrella patens and Arabidopsis thaliana indicates an evolutionary step contributing to vascular formation in land plants. BMC plant biology 13, 3.

Hu H, Zhang R, Feng S, Wang Y, Wang Y, Fan C, Li Y, Liu Z, Schneider R, Xia T. 2018. Three AtCesA6 like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant biotechnology journal 16, 976-988.

Hu W-J, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai C-J, Chiang VL. 1999. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature biotechnology 17, 808-812.

Hu Z, Liu Q, Tan M, Yi H, Deng X. 2008. Lignin deposition converts juice sacs to “Brown Thorns” in a citrus triploid hybrid. Journal of the American Society for Horticultural Science 133, 173-177.

Immanen J, Nieminen K, Smolander O-P, Kojima M, Serra JA, Koskinen P, Zhang J, Elo A, Mähönen AP, Street N. 2016. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Current Biology 26, 1990-1997.

Iseli C, Jongeneel CV, Bucher P. 1999. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. ISMB, Vol. 99, 138-148.
Jia X-L, Wang G-L, Xiong F, Yu X-R, Xu Z-S, Wang F, Xiong A-S. 2015. De novo assembly, transcriptome characterization, lignin accumulation, and anatomic characteristics: novel insights into lignin biosynthesis during celery leaf development. J Scientific reports 5, 8259.

Jokipii-Lukkari S, Delhomme N, Schifffthaler B, Mannapperuma C, Prestele J, Nilsson O, Street NR, Tuominen H. 2018. Transcriptional roadmap to seasonal variation in wood formation of Norway spruce. Plant Physiology 176, 2851-2870.

Joshee N. 2012. Paulownia: A Multipurpose Tree for Rapid Lignocellulosic Biomass Production. In: Kole C, Joshi, C.P., Shonnard, D. , ed. Handbook of Bioenergy crop Plants. Boca Raton, USA: Taylor & Francis, 671-686.

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T. 2007. KEGG for linking genomes to life and the environment. Nucleic acids research 36, D480-D484.

Ko J-h, Han K-h. 2004. Arabidopsis whole-transcriptome profiling defines the features of coordinated regulations that occur during secondary growth. J Plant molecular biology 55, 433-453.

Kong Y, Zhou G, Avci U, Gu X, Jones C, Yin Y, Xu Y, Hahn MG. 2009. Two poplar glycosyltransferase genes, PdGATL1.1 and PdGATL1.2, are functional orthologs to PARVUS/AtGATL1 in Arabidopsis. Molecular Plant 2, 1040-1050.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. J Nature methods 9, 357.

Lefebvre V, Fortabat M-N, Ducamp A, North HM, Maia-Grondard A, Trouverie J, Boursiac Y, Mouille G, Durand-Tardif M. 2011. ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport. PLoS One 6.

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. J BMC bioinformatics 12, 323.

Li B, Zhai X, Cao Y, Zhao H, Wang Z, Liu H, Fan G. 2018. Transcriptome and small RNA sequencing analysis revealed roles of PaWB-related miRNAs and genes in Paulownia fortunei. Forests 9, 397.

Li E, Bhargava A, Qiang W, Friedmann MC, Forneris N, Savidge RA, Johnson LA, Mansfield SD, Ellis BE, Douglas CJ. 2012. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. New Phytologist 194, 102-115.

Li P, Oda J. 2007. Flame retardancy of paulownia wood and its mechanism. J Journal of Materials Science 42, 8544-8550.
Li Y, Fan G, Dong Y, Zhao Z, Deng M, Cao X, Xu E, Niu S. 2014. Identification of genes related to the phenotypic variations of a synthesized Paulownia (Paulownia tomentosa x Paulownia fortunei) autotetraploid. Gene 553, 75-83.

Liners F, Gaspar T, Van Cutsem P. 1994. Acetyl- and methyl-esterification of pectins of friable and compact sugar-beet calli: consequences for intercellular adhesion. Planta 192, 545-556.

Liu R, Dong Y, Fan G, Zhao Z, Deng M, Cao X, Niu S. 2013. Discovery of genes related to witches broom disease in Paulownia tomentosa x Paulownia fortunei by a De Novo assembled transcriptome. PLoS One 8, e80238.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. methods 25, 402-408.

Ma S, Dong W, Lyu T, Lyu Y. 2019. An RNA sequencing transcriptome analysis and development of EST-SSR markers in Chinese hawthorn through Illumina sequencing. Forests 10, 82.

Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K, Miyawaki K, Kakimoto T. 2008. Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences 105, 20027-20031.

Mauseth JD. 1988. Plant anatomy. The benjamin/cummings, 31-32,343,358.

Mauriseau C, Aksenov N, Lorenzo MG, Segerman B, Funk C, Nilsson P, Jansson S, Tuominen H. 2005. A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biol 6, R34.

Mou HQ, Lu J, Zhu SF, Lin CL, Tian GZ, Xu X, Zhao WJ. 2013. Transcriptomic analysis of Paulownia infected by Paulownia witches'-broom Phytoplasma. PLoS One 8, e77217.

Nieminen K, Blomster T, Helariutta Y, Mahonen AP. 2015. Vascular Cambium Development.

Nitsch J. 1957. Photoperiodism in woody plants. J. Amer. Soc. Hort. Sci. 70, 526-544.

Niu S, Fan G, Xu E, Deng M, Zhao Z, Dong Y. 2014. Transcriptome/Degradome-wide discovery of microRNAs and transcript targets in two Paulownia australis genotypes. PLoS One 9, e106736.

Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M. 2008. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9, 312.

Oh S, Park S, Han KH. 2003. Transcriptional regulation of secondary growth in Arabidopsis thaliana. J Exp Bot 54, 2709-2722.
Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G. 2013. Hemicellulose biosynthesis. Planta 238, 627-642.

Pavy N, Boyle B, Nelson C, Paule C, Giguere I, Caron S, Parsons LS, Dallaire N, Bedon F, Berube H, Cooke J, Mackay J. 2008. Identification of conserved core xylem gene sets: conifer cDNA microarray development, transcript profiling and computational analyses. New Phytol 180, 766-786.

Perrin RM, DeRocher AE, Bar-Peled M, Zeng W, Norambuena L, Orellana A, Raikhel NV, Keegstra K. 1999. Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284, 1976-1979.

Pines J. 2011. Cubism and the cell cycle: the many faces of the APC/C. Nature reviews molecular cell biology 12, 427-438.

Powell W, Machray GC, Provan J. 1996. Polymorphism revealed by simple sequence repeats. Trends in plant science 1, 215-222.

Qiu Z, He Y, Zhang Y, Guo J, Zhang L. 2018. Genome-wide identification and profiling of microRNAs in Paulownia tomentosa cambial tissues in response to seasonal changes. Gene 677, 32-40.

Quang TH, Hallingbäck H, Gyllenstrand N, von Arnold S, Clapham D. 2012. Expression of genes of cellulose and lignin synthesis in Eucalyptus urophylla and its relation to some economic traits. Trees 26, 893-901.

Saminathan T, Nimmakayala P, Manohar S, Malkaram S, Almeida A, Cantrell R, Tomason Y, Abburi L, Rahman MA, Vajja VG. 2014. Differential gene expression and alternative splicing between diploid and tetraploid watermelon. Journal of experimental botany 66, 1369-1385.

Samuels A, Kaneda M, Rensing KH. 2006. The cell biology of wood formation: from cambial divisions to mature secondary xylem. Botany 84, 631-639.

Sarkanan K, Hergeht H. 1971. Classification and distribution in definition and nomenclature in lignins: occurrence, formation, structure and reactions [J]. Tappi 50, 583-590.

Sarvas R. 1970. Genetical adaptation of forest trees to the heat factor of the climate. Second world consultation on forest tree breeding, Washington, DC, USA, 7-16 August 1969. 1, 187-202.

Savidge RA. 1983. The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. The Histochemical journal 15, 447-466.

Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J, Nilsson P, Bhalerao RP. 2004. Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. The Plant Journal 40, 173-187.
Sedeer E-S, Nabil E-S. 2003. The paulownia tree an alternative for sustainable forestry.

www.cropdevelopment.org.

Shahinnia F, Sayed-Tabatabaei BE. 2009. Conversion of barley SNPs into PCR-based markers using dCAPS method. Genetics and molecular biology 32, 564-567.

Shim D, Ko J-H, Kim W-C, Wang Q, Keathley DE, Han K-H. 2014. A molecular framework for seasonal growth-dormancy regulation in perennial plants. Horticulture Research 1, 14059.

Song J, Lu S, Chen Z-Z, Lourenco R, Chiang VL. 2006. Genetic transformation of Populus trichocarpa genotype Nisqually-1: a functional genomic tool for woody plants. Plant and cell physiology 47, 1582-1589.

Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie D-Y, Doležal K, Schlereth A, Jürgens G, Alonso JM. 2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177-191.

Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM. 2011. The Arabidopsis YUCCA1 flavin monoxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. The Plant Cell 23, 3961-3973.

Stewart WM, Vaidya BN, Mahapatra AK, Terrill TH, Joshee N. 2018. Potential use of multipurpose Paulownia elongata tree as an animal feed resource. American Journal of Plant Sciences 9, 1212.

Sundberg B, Uggla C, Tuominen H, Savidge R, Barnett J, Napier R. 2000. Cell and Molecular Biology of Wood Formation. BIOS Scientific Publishers, Oxford, 169-188.

Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. 2011. Differential expression in RNA-seq: a matter of depth. Genome Res 21, 2213-2223.

Tisserat B, Joshee N, Mahapatra AK, Selling GW, Finkenstadt VL. 2013a. Physical and mechanical properties of extruded poly (lactic acid)-based Paulownia elongata biocomposites. Industrial Crops and Products 44, 88-96.

Tisserat B, Reifschneider L, Joshee N, Finkenstadt VL. 2013b. Properties of high density polyethylene–Paulownia wood flour composites via injection molding. BioResources 8, 4440-4458.

Tisserat B, Reifschneider L, Joshee N, Finkenstadt VL. 2015. Evaluation of Paulownia elongata wood polyethylene composites. Journal of Thermoplastic Composite Materials 28, 1301-1320.

Turcotte A, Morin H, Krause C, Deslauriers A, Thibeault-Martel M. 2009. The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agricultural and Forest Meteorology 149, 1403-1409.
Turner SR, Somerville CR. 1997. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. The Plant Cell 9, 689-701.

Van Acker R, Déjardin A, Desmet S, Hoengenaert L, Vanholme R, Morreel K, Laurans F, Kim H, Santoro N, Foster C. 2017. Different routes for conifer-and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1. Plant Physiology 175, 1018-1039.

Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter W-D. 2002. The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyl glucan because of a lesion in fucosyltransferase AtFUT1. Proceedings of the National Academy of Sciences 99, 3340-3345.

Varshney RK, Graner A, Sorrells ME. 2005. Genic microsatellite markers in plants: features and applications. TRENDS in Biotechnology 23, 48-55.

Vaughn SF, Dinelli FD, Tisserat B, Joshee N, Vaughan MM, Peterson SC. 2015. Creeping bentgrass growth in sand-based root zones with or without biochar. Scientia Horticulturae 197, 592-596.

Villalobos DP, Díaz-Moreno SM, Said E-SS, Cañas RA, Osuna D, Van Kerckhoven SH, Bautista R, Claros MG, Cánovas FM, Cantón FR. 2012. Reprogramming of gene expression during compression wood formation in pine: coordinated modulation of S-adenosylmethionine, lignin and lignan related genes. BMC plant biology 12, 100.

Wang C, Wang Y, Diao G, Jiang J, Yang C. 2010. Isolation and characterization of expressed sequence tags (ESTs) from cambium tissue of birch (Betula platyphylla Suk). Plant molecular biology reporter 28, 438-449.

Wang J, Wang H, Deng T, Liu Z, Wang X. 2019. Time-coursed transcriptome analysis identifies key expressional regulation in growth cessation and dormancy induced by short days in Paulownia. Scientific reports 9, 1-14.

Wang M, Qi X, Zhao S, Zhang S, Lu M-Z. 2009. Dynamic changes in transcripts during regeneration of the secondary vascular system in Populus tomentosa Carr. revealed by cDNA microarrays. BMC Genomics 10, 215.

Wang Z, Yu G, Shi B, Wang X, Qiang H, Gao H. 2014. Development and characterization of simple sequence repeat (SSR) markers based on RNA-sequencing of Medicago sativa and in silico mapping onto the M. truncatula genome. PLoS One 9, e92029.

Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM. 2009. Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiology 149, 981-993.

Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y. 2011. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proceedings of the National Academy of Sciences 108, 18518-18523.
Xu E, Fan G, Niu S, Zhao Z, Deng M, Dong Y. 2014. Transcriptome-wide profiling and expression analysis of diploid and autotetraploid *Paulownia tomentosa* × *Paulownia fortunei* under drought stress. PLoS One 9, e113313.

Yadav NK, Vaidya BN, Henderson K, Lee JF, Stewart WM, Dhekney SA, Joshee N. 2013. A review of *Paulownia* biotechnology: a short rotation, fast growing multipurpose bioenergy tree. American Journal of Plant Sciences 4, 2070.

Yan X, Liu J, Kim H, Liu B, Huang X, Yang Z, Lin YCJ, Chen H, Yang C, Wang JP. 2019. CAD 1 and CCR 2 protein complex formation in monolignol biosynthesis in *Populus trichocarpa*. New Phytologist 222, 244-260.

Ye Z-H, Zhong R. 2015. Molecular control of wood formation in trees. Journal of experimental botany 66, 4119-4131.

Zhao H, Li R, Shang F. 2019. The complete chloroplast genome of *Paulownia elongata* and phylogenetic implications in Lamiales. Mitochondrial DNA Part B 4, 2067-2068.

Zhao Z, Niu S, Fan G, Deng M, Wang Y. 2018. Genome-wide analysis of gene and microRNA expression in diploid and autotetraploid *Paulownia fortunei* (Seem) Hemsl. under drought stress by transcriptome, microRNA, and degradome sequencing. Forests 9, 88.

Zhong R, Ye Z-H. 2015. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant and cell physiology 56, 195-214.

Zhu Y, Song D, Sun J, Wang X, Li L. 2013. PtrHB7, a class III HD-Zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus. Molecular Plant 6, 1331-1343.

Zhu Z-H, Chao C-J, Lu X-Y, Xiong YG. 1986. *Paulownia in China: cultivation and utilization*: International Development Research Centre.
Figure Legends:

Figure 1. Paulownia tree growth and sampling of tree twigs. Paulownia Demonstration Plot at FVSU showing dormant during winter (A) and active growth during spring (B). Cambial tissue sampling from paulownia twig (C); unopened twig (left), bark removal (middle) and scraping wood forming cambial tissue for RNA extraction (right).

Figure 2. Statistics of homology search of unigenes against Non-redundant (NR) protein database. Distribution of top BLASTX hits with cut-off e-value of <1.0 x 10^-5 (A), similarity (B), and species distributions (C) of all unigenes.

Figure 3. Histogram representation of clusters of orthologous groups (COG). The horizontal coordinates are function classes of COG, and the vertical coordinates are numbers of unigenes in one class. The notation on the right is the full name of the functions in X-axis. Histogram representation of classification of the clusters of orthologous groups (COG) for the total aligned 43,780 unigenes (53.43%) into 25 functional groups.

Figure 4. GO classification analysis of unigenes. GO functions is showed in X-axis. The right Y-axis shows the number of genes which have the GO function, and the left Y-axis shows the percentage. Unigenes in winter and spring season are classified into biological processes, cellular component and molecular function. In total 41,588 (50.76% of all unigenes) were assigned to 48 GO categories.

Figure 5. GO function analysis of the differentially expressed genes. GO function analysis results for the differentially expressed genes in cambial tissues due to winter and spring seasons into biological processes, cellular component and molecular function.

Figure 6. Relative mRNA expression of key genes involved in winter and spring seasons. Expression of genes involved in cell wall synthesis (CESA3, CESAI, CESAI6, CSLC4, FUT1, AXY4, GATL1, IRX10, ESKIMO1, 4CL, CCR1, CAD1) and hormone synthesis (TAA1, YUC1, IPT1) and hormone synthesis (TAA1, YUC1, IPT1). Expression quantity of the calibrator sample (winter tissue) was set to 1. Data are the mean ± SD. Student’s t-test was used to compare significant changes in spring tissues compared to winter tissues. *, p <0.1; **, p < 0.01; ***, p < 0.001; ns; no significance.

Figure 7. Simple Sequence Repeat (SSR) marker variation statistics. Number of motifs are given against each repeated nucleotide categories from mono-nucleotides to hexa-nucleotides.
Paulownia tree growth and sampling of tree twigs.
Statistics of homology search of unigenes against Non-redundant (NR) protein database.
Histogram representation of clusters of orthologous groups (COG).
GO classification analysis of unigenes.
GO function analysis of the differentially expressed genes.
Relative mRNA expression of key genes involved in winter and spring seasons.
	Winter Wood	Spring Wood
Total raw reads	5.35±4.22	1.35±1.25
	8.42±9	1.46±0.79
	36.4±6.38	7.8±0.57
	4.1±1.22	1.4±0.42
Total clean reads	51,005,253±2,639,904	52,359,187±737,515
	49,766,422±2,349,991	50,689,696±1,090,856
Percentage of reads	97.60±0.52	96.64±0.63
Q20 Percentage	97.96±0.36	97.51±0.35
Contigs		
Total Number	129,428±610	104,388±1,779
Total Length (nt)	43,730,308±513,387	35,501,692±721,304
Mean Length (nt)	338±3	340±1
N50	605±7	642±4
Unigenes		
Total Number	64,142±1229	45,671±1,225
Total Length (nt)	61,610,800±2,101,797	38,465,680±1,457,846
Mean Length (nt)	960±14	842±9
N50	1,551±25	1,354±22

Given as Mean±SD from three replicates. The values are summarized of the sequence assembly after Illumina sequencing and statistics of contigs and unigenes (n=3).
Gene	Unigene/Contig	Length	WW Expression	SW Expression	log2Fold Change	Probability
Anaphase-promoting complex, cyclophilin peptidyl-prolyl cis-trans isomerase	Unigene8688	995	0.01	42.67	12.06	0.9997
Class II heat shock protein family Tubulin/Fts family	Unigene7975	995	0.01	3.54	10.00	0.9997
Aquaporin PIP2	Unigene19860	1028	0.01	4.01	8.65	0.9801
Heat shock protein	Unigene15576	532	0.01	5.42	9.08	0.9893
Class I heat shock protein	Unigene35083	779	0.82	359.96	8.78	0.9995
Calcium-binding domain	Unigene34010	359	0.01	5.87	9.20	0.9910
Class II heat shock protein	Unigene11017	1050	0.01	3.59	8.80	0.9997
photosystem II oxygen-evolving complex protein 2 precursor	Unigene19860	1028	0.01	4.01	8.65	0.9801
Class I heat shock protein	Unigene3966	521	0.01	3.62	8.50	0.9754
Calcium-binding domain	Unigene8720	500	0.01	4.08	8.67	0.9808
Class II heat shock protein	Unigene19860	1028	0.01	4.01	8.65	0.9801
Calcium-binding domain	Unigene4063	527	0.06	23.35	8.60	0.9986
Aquaporin PIP2	Unigene3966	521	0.01	3.62	8.50	0.9754
Tubulin/Fts family	Unigene8720	500	0.01	4.08	8.67	0.9808
Class II heat shock protein	Unigene11017	1050	0.01	3.59	8.80	0.9997
photosystem II oxygen-evolving complex protein 2 precursor	Unigene19860	1028	0.01	4.01	8.65	0.9801
Class I heat shock protein	Unigene3966	521	0.01	3.62	8.50	0.9754
Calcium-binding domain	Unigene8720	500	0.01	4.08	8.67	0.9808
Class II heat shock protein	Unigene11017	1050	0.01	3.59	8.80	0.9997
photosystem II oxygen-evolving complex protein 2 precursor	Unigene19860	1028	0.01	4.01	8.65	0.9801
Class I heat shock protein	Unigene3966	521	0.01	3.62	8.50	0.9754
Calcium-binding domain	Unigene8720	500	0.01	4.08	8.67	0.9808
Class II heat shock protein	Unigene11017	1050	0.01	3.59	8.80	0.9997
photosystem II oxygen-evolving complex protein 2 precursor	Unigene19860	1028	0.01	4.01	8.65	0.9801
Class I heat shock protein	Unigene3966	521	0.01	3.62	8.50	0.9754
Calcium-binding domain	Unigene8720	500	0.01	4.08	8.67	0.9808
Class II heat shock protein	Unigene11017	1050	0.01	3.59	8.80	0.9997
photosystem II oxygen-evolving complex protein 2 precursor	Unigene19860	1028	0.01	4.01	8.65	0.9801
Class I heat shock protein	Unigene3966	521	0.01	3.62	8.50	0.9754

Table 2: List of top 20 upregulated known genes
Gene	Unigene/Contig	Length	WW Expression	SW Expression	log2Fold Change	Probability	(SW/WW) Length
GALACTINOL SYNTHASE	Unigene22837	205	73.99	0.01	-12.85	0.9998	
MATE EFFLUX FAMILY PROTEIN	Unigene6926	252	21.15	0.01	-11.05	0.9991	
COPROPORPHYRIN OXIDASE	CL7319.Contig2	890	16.20	0.01	-10.66	0.9987	
ROSMARINATE SYNTHASE	Unigene13375	584	14.56	0.01	-10.51	0.9985	
RECEPTOR-LIKE PROTEIN KINASE	Unigene10966	1645	11.55	0.01	-10.17	0.9977	
VALENCENE SYNTHASE	Unigene10726	1857	8.84	0.01	-9.79	0.9961	
PECTIN METHYLTRANSFERASE	CL698.Contig3	3901	6.65	0.01	-9.38	0.9929	
ROOT PHOTOTROPISM PROTEIN	CL8528.Contig1	1476	6.63	0.01	-9.37	0.9929	
SPlicing factor U2af large subunit	CL799.Contig5	3446	4.72	0.01	-8.88	0.9857	
TROPINONE REDUCING HOMOLOG	Unigene13350	451	4.13	0.01	-8.79	0.9845	
ETHYLENE RESponsive TRANScription FACTOR	CL822.Contig5	1916	4.24	0.01	-8.73	0.9823	

Table 3. List of top 20 downregulated genes.
Table 4. Top 25 DEG enriched KEGG pathways.

Pathway	Number of DEGs genes	p-value	Pathway ID
Metabolic pathways	1387	1.32E-12	ko01100
Biosynthesis of secondary metabolites	827	7.55E-10	ko01110
Plant hormone signal transduction	320	1.58E-05	ko04075
Plant-pathogen interaction	266	0.2430222	ko04626
Ribosome	204	0.200625	ko03010
Spliceosome	178	0.9468082	ko03040
Starch and sucrose metabolism	172	1.22E-06	ko00500
Protein processing in E.R.	162	0.3255727	ko04141
Carbon metabolism	161	0.04321163	ko01200
RNA transport	151	0.986695	ko03013
Glycerophospholipid metabolism	138	0.1244536	ko00564
Endocytosis	134	0.6458048	ko04144
Biosynthesis of amino acids	123	0.7258124	ko01230
Glycolysis / Gluconeogenesis	115	5.48E-05	ko00010
Phenylpropanoid biosynthesis	106	1.50E-06	ko00940
Circadian rhythm - plant	105	5.10E-09	ko04712
Ether lipid metabolism	104	0.02664109	ko00565
Ubiquitin mediated proteolysis	99	0.7266876	ko04120
Pentose and glucuronate interconversions	93	1.57E-05	ko00040
Purine metabolism	92	0.9911015	ko00230
Amino sugar and nucleotide sugar metabolism	86	0.006516035	ko00520
Pyrimidine metabolism	78	0.992583	ko00240
mRNA surveillance pathway	77	0.9938776	ko03015
Flavonoid biosynthesis	70	8.18E-07	ko00941
RNA degradation	68	0.940714	ko03018
Table 5: Wood-Forming Genes Selected for RT-qPCR Expression Validation

Gene name	Unigene/Contig	Macromolecule	Enzyme/Protein Name	Activity	Function	Complexes, required for cell wall formation
Cesa3	Unigene9908	Cellulose	Cellulose synthase A	Catalytic subunit of cellulose synthase terminal		
Cesa1	Unigene21132					
Cesa6	Unigene13924					
CSLC4	Unigene2644	Hemicellulose				
CS 4	Unigene4440					
FUT1	Unigene2841					
AXY4	Unigene14391					
AXY7	Unigene1440					
FUT4	Unigene2841					
CESA4	Unigene4440					
CESA12	Unigene1372					

Notes:
- CESA3 catalyzes subunit 3 [UDP].
- CESA4 catalyzes subunit A.
- CESA15 catalyzes subunit [UDP].
| Enzyme Name | Gene Name | Description |
|----------------------|--------------------|---|
| Lignin dehydrogenase 1 | Unigene17183 | Involved in lignin biosynthesis. Catalyzes the final step specific for the production of lignin monomers. |
| Cinnamyl alcohol | dehydrogenase 1 | Involved in lignin biosynthesis. Catalyzes the final step specific for the production of lignin monomers. |
| Monolignol synthesis | Involved in lignin biosynthesis. Catalyzes the final step specific for the production of lignin monomers. |
| TAA1 | CL1596.Contig1 | Auxin synthesis. Performs first two reactions in auxin pathway. |
| CL1.596.Contig1 | VUCA1 | Auxin synthesis. Performs first two reactions in auxin pathway. |
| CL.8922.Contig1 | TAA1 | Auxin synthesis. Performs first two reactions in auxin pathway. |
| IPT1 | Unigene8131 | Cytokinin synthesis. Catalyzes the transfer of an isopentenyl group from dimethylallyl diphosphate (DMAPP) to ADP. |
| CL11596.Contig1 | VUCA1 | Auxin synthesis. Performs first two reactions in auxin pathway. |
| CL.8922.Contig1 | TAA1 | Auxin synthesis. Performs first two reactions in auxin pathway. |