Genome Sequence of *Arthrobacter* sp. UKPF54-2, a Plant Growth-Promoting Rhizobacterial Strain Isolated from Paddy Soil

Weishou Shen, a Xinchun Yu, a Nan Gao, b Sayuri Ota, c Yutaka Shiratori, c Tomoyasu Nishizawa, d Kazuo Isobe, e Xinhua He, f Keishi Senoo e, g

a Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, and School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China

b National Engineering Research Center for Biotechnology and School of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China

c Niigata Agricultural Research Institute, Niigata, Japan

d Department of Bioresource Science, College of Agriculture, Ibaraki University, Ibaraki, Japan

e Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan

f Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China

g Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan

ABSTRACT *Arthrobacter* sp. strain UKPF54-2, a plant growth-promoting rhizobacterium having the potential ability to control fungal and bacterial pathogens, was isolated from paddy soil in Kumamoto, Japan. We report here the whole-genome sequence of this strain.

Arthrobacter sp. strains are a group of rod-shaped or coccoid Gram-positive bacteria in soil that can grow under aerobic and anaerobic conditions (1). Some *Arthrobacter* sp. strains are able to promote plant growth (1–4), enhance heavy metal phytoextraction (5–7), degrade organic and polyaromatic pollutants (8, 9), and restrain plant-pathogenic bacteria and fungi (1, 3, 10). Results from this present study have shown that *Arthrobacter* sp. strain UKPF54-2, originally isolated from the rhizosphere of paddy soil in Kumamoto, Japan (11), can promote the growth of a number of vegetable crops, such as komatsuna (*Brassica rapa* L., Brassicaceae), crown daisy (*Glebionis coronaria* L., Asteraceae), parsley (*Petroselinum crispum* [Mill.] Fuss, Apiaceae), baby carrot (*Daucus carota* L., Apiaceae), and radish (*Raphanus sativus* L., Brassicaceae).

A single colony of *Arthrobacter* sp. strain UKPF54-2 was cultured in 5-ml nutrient broth culture medium containing 0.3 mM NaNO₃ and 4 mM sodium succinate (pH 7.0) for 2 to 3 days and incubated at 26°C with shaking at 220 rpm. The genomic DNA was extracted with a DNeasy blood and tissue kit (Qiagen, Germany). The template prep kit 1.0 and BluePippin size selection system were used to construct a SMRTbell library with a 20-kb insert size. Whole-genome sequencing was performed on the PacBio RS II DNA sequencing system using C4 chemistry. A total of 1,623,497,927 bases were obtained. The mean subread length was 9,026 bp. The N₅₀ value of the raw sequences is 11,645 bp. Up to 179,866 reads were obtained by filtration. The Falcon software (v 0.2.1) (12) was used to assemble the PacBio long reads with default parameters, except for daligner-selected overlap detection and error correction of raw reads. One contig was acquired accordingly. The ends of this contig are overlapped to generate a single circular contig for the chromosome. *Arthrobacter* sp. strain UKPF54-2, with a depth of about 260×, has a circular chromosome size of 3,517,818 bp, with a G+C content of 68.5%.

A total of 3,110 protein-coding sequences, 50 tRNAs, 15 rRNAs, 3 noncoding RNAs (ncRNAs), and 60 pseudogenes were discovered using the NCBI Prokaryotic Genome Citation

Shen W, Yu X, Gao N, Ota S, Shiratori Y, Nishizawa T, Isobe K, He X, Senoo K. 2019. Genome sequence of *Arthrobacter* sp. UKPF54-2, a plant growth-promoting rhizobacterial strain isolated from paddy soil. *Microbiol Resour Announc* 8:e01005-19. https://doi.org/10.1128/MRA.01005-19.

Editor Vincent Bruno, University of Maryland School of Medicine

Copyright © 2019 Shen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Nan Gao, ngao@njtech.edu.cn.

Received 23 August 2019

Accepted 21 October 2019

Published 7 November 2019
Annotation Pipeline (PGAP; revision 4.8) with the best-placed reference protein set (GeneMarks-2+) with default parameters (13, 14). Results from BlastKOALA (15) against the species_prokaryotes database with default parameters showed that the annotated functional genes consisted of 155 genes of the transporters, 31 genes of the secretion system, 10 genes of the two-component system, and 30 genes of the bacterial motility proteins. These predicted genes contained candidate genes relevant to plant growth promotion (Table 1). They also contained genes encoding acetolactate synthase (*ilvCDN*), which is involved in the synthesis of the volatile plant growth promotion signaling molecule acetoin. Furthermore, they contained 5 genes related to antimicrobial resistance. This report will allow for genome-wide comparative analysis among *Arthrobacter* species or between this strain and other plant growth-promoting rhizobacterial strains that will provide fundamental support for developing biofertilizer.

Data availability. This whole-genome sequence of *Arthrobacter* sp. strain UKPF54-2 is available at GenBank under the accession number CP040174. The raw reads have been deposited in the Sequence Read Archive (SRA) under the accession number SRR8929632.

ACKNOWLEDGMENTS

This study was financially supported by the National Natural Science Foundation of China (41771291 and 31972503), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (18KJB210007), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTE1828), China, the Japan Society for the Promotion of Science through a postdoctoral fellowship (14F04390), JSPS KAKENHI (JP15KT0024), the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (26037B), and the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry (27004C), Japan.

REFERENCES

1. Busse HJ. 2016. Review of the taxonomy of the genus *Arthrobacter*, emendation of the genus *Arthrobacter* sensu lato, proposal to reclassify selected species of the genus *Arthrobacter* in the novel genera *Glutamicibacter* gen. nov., *Paeniglutamicibacter* gen. nov., *Pseudoglutamicibacter* gen. nov., *Paenarthrobacter* gen. nov. and *Pseudarthrobacter* gen. nov., and emended description of *Arthrobacter roseus*. Int J Syst Evol Microbiol 66:9–37. https://doi.org/10.1099/ijsem.0.007002.

2. Crovadore J, Grizard D, Chablais R, Cochard B, Blanc P, Lefort F. 2018. Whole-genome sequences of two *Arthrobacter* sp. strains, 4041 and 4042, potentially usable in agriculture and environmental depollution. Microbiol Resour Announc 7:e01054-18. https://doi.org/10.1128/MRA.01054-18.

3. Mendoza-Bruvo A, Cortazar-Murillo EM, Guevara-Avendaño E, Calablos-Luna O, Rodríguez-Haas B, Kiel-Martínez AL, Hernández-Cristóbal O, Guerrero-Ánalco JA, Reverchon F. 2018. Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against *Phytophthora cinnamomi* through volatile emissions. PLoS One 13: e0194665. https://doi.org/10.1371/journal.pone.0194665.

4. Khan MA, Ullah I, Waqas M, Hamayun M, Khan AL, Asaf S, Kang SM, Kim KM, Jan R, Lee IJ. 2019. Halo-tolerant rhizospheric *Arthrobacter* wulwaensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of *GmST1* and *GmLAX3* in soybean. Symbiosis 77:9–37. https://doi.org/10.1016/j.symbios.2017.03.010.

5. Rosatto S, Roccotelli E, Di Piazza S, Cecchi G, Greco G, Zotti M, Vezzulli L, Mariotti M. 2019. Rhizosphere response to nickel in a facultative hyperaccumulator, *Chemosphere* 232:243–253. https://doi.org/10.1016/j.chemosphere.2019.05.193.

6. Xu XH, Xu M, Zhao QM, Xia Y, Chen C, Shen ZG. 2018. Complete genome sequence of Cd(II)-resistant *Arthrobacter* sp. PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation. Curr Microbiol 75:1231–1239. https://doi.org/10.1007/s00284-018-1515-z.

7. See-To W, Ee R, Lim YL, Convey P, Pearce DA, Mohedin TBM, Yin WF, Chan KG. 2017. Complete genome of *Arthrobacter alpinus* strain R3.8, bioremediation potential unraveled with genomic analysis. Stand Genomic Sci 12:52. https://doi.org/10.1186/s40793-017-0264-0.

8. Hennessy RC, Park B, Pathiraja D, Choi IG, Stougaard J, Schultz-Johansen M, Stougaard P. 2019. Draft genome sequences of two glycoalkaloid-degrading *Arthrobacter* strains isolated from green potato peel. Microbiol Resour Announc 8:e00226-19. https://doi.org/10.1128/MRA.00226-19.

9. Zhao XY, Ma F, Feng CJ, Bai SW, Yang JX, Wang L. 2017. Complete genome sequence of *Arthrobacter* sp. ZXY-2 associated with effective atrazine degradation and salt adaptation. J Biotechnol 248:43–47. https://doi.org/10.1016/j.jbiotec.2017.03.010.

10. Siegel-Hertz K, Edel-Hermann V, Chapelle E, Terrat S, Raaijmakers JM, Stein-

TABLE 1 Predicted genes relevant to plant growth promotion in the *Arthrobacter* sp. strain UKPF54-2 genome

Gene function	Gene name	Product	GenBank accession no.
Nitrogen fixation	nifU	SUF system NifU family Fe-S cluster assembly protein	WP_017199296
Acetolactate synthase production	ilvC	Ketol acid reductoisomerase	WP_013493182
	ilvD	Dihydroxy acid dehydratase	WP_011692381
	ilvN	Acetolactate synthase small subunit	WP_015937457
berg C. 2018. Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region. Front Microbiol 9:568. https://doi.org/10.3389/fmicb.2018.00568.

11. Ashida N, Ishii S, Hayano S, Tago K, Tsuji T, Yoshimura Y, Otsuka S, Senoo K. 2010. Isolation of functional single cells from environments using a micromanipulator: application to study denitrifying bacteria. Appl Microbiol Biotechnol 85:1211–1217. https://doi.org/10.1007/s00253-009-2330-z.

12. Beckett SJ, Boulton CA, Williams HT. 2014. FALCON: a software package for analysis of nestedness in bipartite networks. F1000Res 3:185. https://doi.org/10.12688/f1000research.4831.1.

13. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569.

14. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O’Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH, Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY, Marchler-Bauer A, Pruitt KD. 2018. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–D860. https://doi.org/10.1093/nar/gkx1068.

15. Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. https://doi.org/10.1016/j.jmb.2015.11.006.