Profiling of Chemical and Structural Composition of Lignocellulosic Biomasses in Tetraploid Rice Straw

Chen Chen 1,2,†, Zhixiong Chen 3,†, Jiajun Chen 1,2, Jiawei Huang 1,2, Huiling Li 1,2, Shaolong Sun 4, Xiangdong Liu 1,3, Aimin Wu 1,2 and Bo Wang 1,3,*

1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, 510642, China; cc@cch3n.cn (C.C.); chenjiajun1001@126.com (J.C.); jiaweihuangkawy@gmail.com (J.H.); lihl@scau.edu.cn (H.L.); xdliu@scau.edu.cn (X.L.); wuaimin@scau.edu.cn (A.W.)
2 Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou, 510642, China
3 The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; chenzx@scau.edu.cn
4 College of National Resources and Environment, South China Agricultural University, Guangzhou 510642, China; sunshaolong328@scau.edu.cn
* Correspondence: bowang@scau.edu.cn
† These authors contributed equally to this work.
Figure S1. Surface morphology of cellulose purified from tetraploid (4x), diploid (2x), tetraploid after pretreatment (4x-p) and the diploid after pretreatment (2x-p) by scanning electron microscope.

Figure S2. FT-IR spectrum of cellulose of tetraploid (4x), diploid (2x), tetraploid after pretreatment (4x-p) and the diploid after pretreatment (2x-p).