Mother’s iodine exposure and infants’ hypothyroidism: the Japan environment and children’s study

Hiroshi Yokomichi¹, Mie Mochizuki², Reiji Kojima¹, Sayaka Horiuchi¹, Tadao Ooka¹, Yuka Akiyama¹, Kunio Miyake¹, Megumi Kushima³, Sanae Otawa³, Ryoji Shinohara³ and Zentaro Yamagata¹,³

¹Department of Health Sciences, University of Yamanashi, Yamanashi 409-3898, Japan
²Department of Pediatrics, University of Yamanashi, Yamanashi 409-3898, Japan
³Center for Birth Cohort Studies, University of Yamanashi, Yamanashi 409-3898, Japan

Abstract. In this study, we aimed to determine the association of neonatal/post-neonatal hypothyroidism with mother’s iodine exposure, especially povidone iodine disinfection, and hysterosalpingography. Participants were mother–child pairs in a Japanese birth cohort (n = 100,286). Risk factors of hypothyroidism were supplement intake, seaweed intake, other daily iodine intake, povidone iodine disinfection at delivery, and maternal history of hysterosalpingography, thyroid disease (Graves’ disease and Hashimoto’s thyroiditis), and medication (thiamazole and levothyroxine). Congenital hypothyroidism (CH) at age 1 year was assessed using a questionnaire. Transient hypothyroidism was defined as elevated thyroid stimulating hormone level at birth and absence of CH at age 1 year. The incidence of CH at age 1 year per 100 children was 1.1 for those born at 22–30 weeks’ gestation, 0.17 following povidone iodine disinfection, and 0.07, 0.95, 0.81, 1.17, and 1.15 with a maternal history of hysterosalpingography, Graves’ disease, Hashimoto’s thyroiditis, thiamazole use, and levothyroxine use, respectively. Odds ratios (95% confidence intervals) of CH at age 1 year for povidone iodine disinfection, hysterosalpingography history, maternal Graves’ disease, and maternal Hashimoto’s thyroiditis were 1.13 (0.71–1.79), 0.47 (0.07–3.36), 7.06 (3.70–13.5), and 5.93 (2.90–12.1), respectively. For transient hypothyroidism for povidone iodine disinfection and hysterosalpingography history, these values were 1.99 (1.51–2.62) and 0.63 (0.20–1.96), respectively. Maternal thyroid disease greatly increased neonatal/post-neonatal hypothyroidism risk. Povidone iodine disinfection may increase transient hypothyroidism risk but not the risk at 1 year of age. Hysterosalpingography does not increase hypothyroidism risk from birth to age 1 year.

Key words: Congenital hypothyroidism, Cretinism, Povidone iodine disinfection, Hysterosalpingography, Chromatography-tandem mass spectrometry screening

CONGENITAL HYPOTHYROIDISM (CH) is a thyroid hormone deficiency syndrome in newborns that is caused by incomplete thyroid development and decreased thyroid hormone biosynthesis or thyroid-stimulating hormone (TSH) secretion [1]. This disease was long thought to occur in approximately 1 in 3,000 to 4,000 newborns [2, 3]. In Japan, where newborn mass screening is routinely performed [4], a 2014 study estimated that CH occurred in 1 in 4,000 newborns [5]. Recent evidence suggests that the incidence may be 1 in 2,000 to 1 in 4,000 [5, 6]. In Italy, using the cutoff value of 10 μIU/mL for TSH, a previous study reported a CH incidence of 1 in 1,154 [7]. Incidence estimates have increased, possibly because clinicians have recognized that CH is a more common condition than was previously thought and have worked to diagnose and actively treat CH. Epidemiological investigations are necessary to determine whether there are other reasons for this phenomenon.

Hypothyroidism in the neonatal and post-neonatal periods occurs via many mechanisms. The causes of CH are broadly classified as primary (disorder of the thyroid gland), central (disorder of the hypothalamus or pituitary gland), or peripheral (impaired thyroid hormone action). Mutations of the Pax8 and Nkx2-1 genes are associated with a subset of permanent primary CH that results in thyroid dysplasia [8]. Mutations of the TG, TPO, and DUOX2 genes have also been detected in a subset of newborns with decreased thyroid hormone biosynthesis [9, 10]. In contrast, most cases of incomplete thyroid development are still thought to be sporadic [11]. The environmental etiology of CH needs to be further investigated.

Submitted Mar. 10, 2021; Accepted Jun. 20, 2021 as EJ21-0168
Released online in J-STAGE as advance publication Aug. 26, 2021
Correspondence to: Hiroshi Yokomichi, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi 409-3898, Japan.
E-mail: hyokomichi@yamanashi.ac.jp

©The Japan Endocrine Society
The environmental factors previously found to be associated with permanent CH are female sex, pre- and post-term delivery, and twin pregnancy (incidence of 1 in 900) [10, 12]. Some cases of transient hypothyroidism may be attributed to transplacental migration of antithyroid agents, TSH receptor-blocking antibodies [13], and maternal excess intake of iodine. Because thiamazole, an antithyroid agent, is transferred to the fetus via the placenta [14], use of this medication by the mother can be expected to be associated with offspring hypothyroidism. However, the incidence of hypothyroidism in the children of women using such agents is not well known.

Mothers may also be exposed to iodine from other sources, such as supplements [15], the consumption of seaweed (a traditional Japanese food) [16], disinfection with povidone iodine at delivery [13], and hysterosalpingography used as a fertility treatment to flush the ovarian tubes and increase the chance of pregnancy [17]. Clinicians may have recently refrained from using povidone iodine disinfection for fear of increasing the hypothyroidism risk, but it is unknown whether this type of disinfection has adverse effects. At present, hysterosalpingography with oil-soluble contrast agent could be a risk factor of neonatal hypothyroidism [18]; hysterosalpingography with water-soluble contrast agent is considered to be safer. Recent data regarding the influence of hysterosalpingography on hypothyroidism risk are needed.

Among children aged ≤3 years, a subset of patients treated for CH are later determined not to have permanent CH at the end of the treatment. In the present study, we used birth cohort data that included CH history and test results using dried blood spot samples on chromatography paper [19]. We aimed to quantify the associations between varied routes of mother’s iodine exposure and child hypothyroidism incidence from birth to 1 year of age. We calculated the incidence rates and odds ratios (ORs) for these associations in the Japanese population [20-23].

Materials and Methods

Enrollment

Details of the Japan Environment and Children’s Study (JECS) have been published elsewhere [20]. In brief, the cohort study, recruiting from 2011 to 2014, followed over 100,000 children born in 15 regions across Japan from preconception to puberty [24]. We used the following JECS data files: “jecs-ta-20190930-qsn,” “jecs-ta-20200331-tsh of jecs-ta-20190930,” and “jecs-an-20180131.”

Exposure and outcome variables

Data on exposure to disinfection with povidone iodine at delivery and maternal history of hysterosalpingography were gathered using an obstetrician questionnaire. Because indicating whether disinfection was conducted at delivery was voluntary, the number of cases was reduced to nearly half the original number of participants. Hysterosalpingography within 3 months before pregnancy was assessed. Mother’s iodine exposure in the first and second or third trimesters comprised the following routes: supplement intake, seaweed intake three or more times per week, and estimated insufficient or excessive iodine intake. A self-administered food frequency questionnaire [25] was used to estimate the amount of iodine intake through consumption of supplements and seaweed. We considered an estimated iodine intake of 2,000 μg/day to be excessive exposure for pregnant women, referring to the 2015 and 2020 Dietary Reference Intakes for Japan [26]. Data on thyroid disease (Graves’ disease and Hashimoto’s thyroiditis) and medication for thyroid disease (thiamazole and levothyroxine) were collected using questions asked of mothers during the first trimester of pregnancy. Gestational age at birth was categorized as 22–30 weeks, 31–36 weeks, 37–41 weeks, or ≥42 weeks because the fetal serum T₃ concentration in the fetal thyroid gland gradually increases from 30 weeks of gestation [27].

We sent the JECS questionnaire by mail to caregivers when their children were aged 1 year, asking whether a physician had diagnosed the child with hypothyroidism or cretinism. We also collected whole blood spot samples on chromatography paper from the children’s heel at the age of 4–6 days. TSH concentration was examined using this blood sample in semi-quantitative immunofluorescent assay analysis with an AutoDELFIA (PerkinElmer Inc., Waltham, MA, USA). We restricted the analysis to children sampled between 4 and 6 days of age. There is no global criterion for TSH level at birth to screen for CH. Following the Japanese guidelines for pediatricians [5], we set the criterion for TSH to ≥10 μIU/mL in blood spot samples. In this study, we defined “transient hypothyroidism” as having serum TSH levels ≥10 μIU/mL at birth but subsequently not being identified as having CH on the caregiver questionnaire.

Sensitivity analysis

We calculated the incidence of TSH ≥10 μIU/mL among infants born at 37–41 weeks’ gestation (term delivery). This analysis was intended to identify risk factors after excluding for the influence of the decreased surge in TSH levels at birth among early-term neonates.

Among the 18 Japanese prefectures in this study, 16 have a coastline. For the two inland prefectures, a subset...
of women might have lower iodine intake. In another sensitivity analysis, we constructed tables of incidence and ORs of a diagnosis of CH or cretinism according to the questionnaire, and restricted the analysis to data from these two inland prefectures. In a third sensitivity analysis, we calculated the incidence and ORs of a diagnosis of CH or cretinism according to the questionnaire and restricted the analysis to data from mothers aged 35 years or more. In this analysis, we aimed to explore whether the results may differ with older childbearing age.

Statistical analysis

We calculated the incidence of CH (both determined by blood spot samples and as reported on the caregiver questionnaires) for each examined route of mother’s iodine exposure. We also computed ORs and 95% confidence intervals to assess the effects of the exposures on the outcomes. Furthermore, we calculated the ORs of transient hypothyroidism. We conducted all statistical analyses using SAS statistical software, version 9.4 (SAS Institute Inc., Cary, NC, USA). p-values were two-sided, and p < 0.05 was considered to indicate a significant difference.

The JECS protocol was reviewed and approved by the Ministry of the Environment’s Institutional Review Board on Epidemiological Studies and the ethics committees of all participating institutions. The study was conducted in accordance with the ethical guidelines and regulations outlined in the Declaration of Helsinki. Written informed consent was obtained from all participants.

Results

We analyzed data on 100,286 children (female, 48.8%) at baseline. Table 1 shows numbers and percentages of mothers who had different levels of iodine exposure. A total 0.14% of cases had questionnaire-reported child CH at the age of 1 year, 0.7% had TSH values ≥10 μIU/mL in blood spot samples, and 0.6% had transient hypothyroidism. The percentages of mothers with an estimated iodine intake of >2,000 μg/day in the first trimester, the second to third trimester, and throughout the pregnancy were 0.23%, 0.24%, and 0.02%, respectively. In total, 29.9% of mothers had povidone iodine disinfection at delivery, 1.7% had a history of hysterosalpingography, 1.1% had Graves’ disease, and 1.0% had Hashimoto’s thyroiditis.

Table 2 shows the incidence rate of CH, as measured using the questionnaire. The CH incidence was 0.15% and 0.14% in male and female infants, respectively. The incidence was relatively high for children born at 22–30 weeks (1.1%) and 31–36 weeks (0.18%) of gestation. Twins did not have higher incidence of CH (0.11%).

Among the examined routes of iodine exposure, a relatively high incidence of CH was found in cases where the mother had an iodine intake of >2,000 μg/day in early pregnancy (0.67%), Graves’ disease (0.95%), Hashimoto’s thyroiditis (0.81%), and a history of taking thiamazole (1.17%) or levothyroxine (1.15%).

Table 3 shows the ORs of CH, as measured using the questionnaire, for the factors of interest. The ORs were significantly higher for infants born at 22–30 weeks’ gestation (OR = 8.23) compared with those born at 37–41 weeks’ gestation. The ORs were significantly higher in cases involving maternal Graves’ disease (OR = 7.06), Hashimoto’s thyroiditis (OR = 5.93), thiamazole use (OR = 8.52), and levothyroxine use (OR = 8.55). Disinfection with povidone iodine (OR = 1.13) and history of hysterosalpingography (OR = 0.47) were not statistically associated with the outcome.

Table 4 shows the ORs of CH, defined as TSH values ≥10 μIU/mL in blood spot samples. The ORs were significantly lower for infants born at 31–36 weeks’ gestation (OR = 0.44) compared with those born at 37–41 weeks’ gestation. The ORs were significantly higher in cases where mothers had an iodine intake of <75 μg/day throughout their pregnancy (OR = 1.32), disinfection with povidone iodine at delivery (OR = 1.97), Graves’ disease (OR = 4.04), thiamazole use (OR = 6.19), and levothyroxine use (OR = 2.98). A history of hysterosalpingography was not statistically associated with the outcome of TSH values ≥10 μIU/mL (OR = 0.57).

Table 5 shows the ORs of transient hypothyroidism, as defined above. The ORs were significantly higher in cases where mothers had an iodine intake of <75 μg/day throughout their pregnancy (OR = 1.50), disinfection with povidone iodine at delivery (OR = 1.99), Graves’ disease (OR = 4.16), thiamazole use (OR = 6.85), and levothyroxine use (OR = 2.98). A history of hysterosalpingography was not statistically associated with the outcome of transient CH (OR = 0.63).

In the first sensitivity analysis (Supplementary Table 1), 444 cases with TSH values ≥10 μIU/mL were found among 56,251 neonates born at term gestation (0.79%). The percentages with TSH values ≥10 μIU/mL were 0.73% for male infants, 0.69% for female infants, 0.69% for infants whose mothers consumed seaweed ≥3 times per week, 0.88% for those whose mothers had an iodine intake of <75 μg/day during pregnancy, 1.1% in cases involving disinfection with povidone iodine, 0.43% for cases with a maternal history of hysterosalpingography, 2.8% in cases involving maternal Grave’s disease, 0.81% in cases involving maternal Hashimoto disease, 4.3% in cases with maternal thiamazole use, and 2.2% in cases with maternal levothyroxine use.

In the second sensitivity analysis (Supplementary
Tables 2 and 3), there were significantly increased ORs of hypothyroidism at age 1 year for gestational age 22 to 30 weeks and 31 to 36 weeks, twin birth, maternal Graves’ disease, and maternal thiamazole and levothyroxine use. We found significantly decreased ORs for gestational age 42 weeks or more, estimated iodine intake >2,000 μg/day in the first trimester, and history of hysterosalpingography. The results of the third sensitivity analysis for mothers aged 35 years or more at delivery (Supplementary Tables 4 and 5) did not differ substantially from the main results in Tables 2 and 3.

Discussion

Principal findings

We found no statistically significant associations with caregiver-reported CH in children at 1 year of age for sex, twin birth, excessive or insufficient intake of iodine, disinfection with povidone iodine at delivery, or history of hysterosalpingography (Table 3). Birth at 22–30 weeks of gestation, as well as maternal Graves’ disease and Hashimoto’s thyroiditis and the use of medications for these diseases were identified as risk factors for CH. Post-term birth was identified as a preventive factor. For CH defined as TSH value ≥10 μIU/mL at 4–6 days of age, insufficient iodine intake, povidone iodine disinfection, maternal Graves’ disease, and use of thiamazole and levothyroxine were found to be risk factors (Table 4). Birth at 31–36 weeks of gestation was associated with a lower risk of hypothyroidism, and a history of hysterosalpingography was not demonstrated to be a risk factor. Povidone iodine disinfection, maternal Graves’ disease, and thiamazole and levothyroxine use were found to increase the risk of transient hypothyroidism (Table 5).
although the number of cases with iodine disinfection data was relatively small. History of hysterosalpingography was not identified as a risk factor.

Comparison with previous research

According to the data, CH incidence at 1 year of age was 0.14%, indicating that 1 in 696 children were affected. This figure is surprising in comparison with the results of mass screening of 1 CH case in 3461 newborns in Kanagawa Prefecture, Japan from 1979 to 2006 [28]. Japanese prefectures determine their own cutoff values for mass screening. Kanagawa has adopted the TSH cut-off value 9.4 μIU/mL, and most institutions in the prefecture simultaneously assess the free T4 level, which should lower the CH incidence. The measured incidence of CH should be lower at 1 year of age than that at birth because the latter estimate also includes cases of transient hypothyroidism. A report published by Japan’s Ministry of Health, Labour and Welfare estimated the incidence of CH to be 1 in 1700–1900 newborns, using mass-screening data from 2009 to 2014 [29]. In the present survey, we used reports from caregivers rather than physicians. We believe that as participants in a study with a long follow-up period [30], caregivers responded accurately to the survey and rarely misclassified their children as having CH. Indeed, a previous study indicated that the incidence of CH in Japanese neonates has risen over the past two decades [29], and a rising international trend has also been identified [6].

This increase in the incidence of CH may be partly attributable to an increase in preterm births and late childbearing [12]. The results presented in Table 2 support this hypothesis. Generally, the incidence of CH is higher in Asian children than in White and African children [31]. Existing evidence is mixed regarding whether Japanese people consume very high amounts of iodine in the traditional Japanese diet [32, 33]. Our findings suggested that most pregnant women did not consume excessive amounts of iodine (Table 2). We consider it likely that the finding of a high incidence of CH among 1-year-old children is caused by prophylactic thyroid hormone therapy for infants, as has been suggested in a

Table 2	Incidence rate of child congenital hypothyroidism (reported on questionnaire at 1 year of age) according to mother/child characteristics, including mother’s iodine exposure
Mother/child characteristic	**Incidence per 100 children**
Children’s variables	
Male sex	77/51,396 (0.15)
Female sex	67/48,890 (0.14)
Born at 22–30 weeks’ gestation	6/541 (1.1)
Born at 31–36 weeks’ gestation	9/5,042 (0.18)
Born at 37–41 weeks’ gestation	128/94,191 (0.14)
Born at ≥42 weeks’ gestation	0/227 (0)
Singleton birth	142,98,395 (0.14)
Twin birth	2/1,847 (0.11)
Mothers’ variables	
Iodine supplement intake	0/8 (0)
Seaweed intake ≥3 times per week	115/77,868 (0.15)
Estimated iodine intake <75 μg/day in the 1st trimester	53/33,314 (0.16)
Estimated iodine intake <75 μg/day in the 2nd to 3rd trimester	44/33,024 (0.13)
Estimated iodine intake <75 μg/day in the 1st to 3rd trimester	28/20,187 (0.14)
Estimated iodine intake >2,000 μg/day in the 1st trimester	1/149 (0.67)
Estimated iodine intake >2,000 μg/day in the 2nd to 3rd trimester	0/155 (0)
Estimated iodine intake >2,000 μg/day in the 1st to 3rd trimester	0/12 (0)
Disinfection with povidone iodine at delivery	27/16,324 (0.17)
History of hysterosalpingography	1/4,154 (0.07)
Thyroid disease	
Graves’ disease	10/1,055 (0.95)
Hypothyroidism or Hashimoto’s thyroiditis	8/988 (0.81)
Medication for thyroid disease	
Thiamazole	5/426 (1.17)
Levothyroxine	9/784 (1.15)
previous study [34]. Although more information on the incidence of permanent CH is required in the field of endocrinology, our risk factor analysis separating out transient hypothyroidism has the potential to contribute to clinical practice.

High TSH value in the neonatal period

In our semi-quantitative analysis of blood samples from neonates, insufficient maternal iodine intake was associated with a higher risk of children having TSH values ≥10 μIU/mL (Table 4). This finding is in line with the results of a study conducted among people living in iodine-deficient areas, where maternal hypothyroxinemia and neonatal hypothyroidism are particularly common [27]. Our finding that 20% to 33% of mothers had an iodine intake of <75 μg/day seems to be very large. Although this finding may suggest a limitation of brief-type self-administered diet history questionnaires, it should also be noted that in recent years, Japanese women may have developed an especially high risk of insufficient iodine consumption.

It should be noted that the percentage of neonates born at term gestation with TSH ≥10 μIU/mL (male 0.73%, female 0.69%; Supplementary Table 1) was higher than the percentage with CH at 1 year of age (0.14%, Table 1). Most of the 444 neonates with term births did not appear to be influenced by maternal thyroid disease, as there were only 16 cases involving maternal Grave’s disease and only four cases involving maternal Hashimoto’s disease. The high percentages suggest that detection of CH in mass screening may be more common than thought by clinicians, even among neonates born at term gestation. These results indicate that mass screening has benefitted a substantial number of neonates delivered at term by enabling early intervention with thyroid hormone therapy.

Implications for clinicians and parents

Globally, the main causes of transient hypothyroidism are iodine intake deficiency and preterm birth [35]. Other causes may include hysterosalpingography, excessive intake of iodine because of regular consumption of sea-

Table 3 Odds ratios of child congenital hypothyroidism (reported on questionnaire at 1 year of age) according to mother/child characteristics, including mother’s iodine exposure

Mother/child characteristic	Odds ratio (95% confidence interval)
Children’s variables	
Male (vs. female) sex	1.09 (0.79–1.52)
Born at 22–30 weeks (vs. 37–41 weeks of gestation)	8.23 (3.61–18.7)
Born at 31–36 weeks (vs. 37–41 weeks of gestation)	1.31 (0.67–2.59)
Born at ≥42 weeks (vs. 37–41 weeks of gestation)	0.998 (0.997–0.998)
Twin birth (vs. singleton birth)	1.33 (0.33–5.39)
Mothers’ variables	
Iodine supplement intake	—†
Seaweed intake ≥3 times per week	1.14 (0.76–1.72)
Estimated iodine intake <75 μg/day in the 1st trimester	1.17 (0.83–1.65)
Estimated iodine intake <75 μg/day in the 2nd to 3rd trimester	0.89 (0.62–1.27)
Estimated iodine intake <75 μg/day in the 1st to 3rd trimester	0.95 (0.63–1.44)
Estimated iodine intake ≥2,000 μg/day in the 1st trimester	4.97 (0.69–35.9)
Estimated iodine intake ≥2,000 μg/day in the 2nd to 3rd trimester	—†
Estimated iodine intake ≥2,000 μg/day in the 1st to 3rd trimester	—†
Disinfection with povidone iodine at delivery	1.13 (0.71–1.79)
History of hysterosalpingography	0.47 (0.07–3.36)
Thyroid disease	
Graves’ disease	7.06 (3.70–13.5)
Hypothyroidism or Hashimoto’s thyroiditis	5.93 (2.90–12.1)
Medication for thyroid disease	
Thiamazole	8.52 (3.47–20.9)
Levothyroxine	8.55 (4.34–16.8)

† Owing to a small number of cases of child congenital hypothyroidism, this odds ratio could not be calculated.
weed, iodine supplement intake, and transplacental migration of antithyroid medicines and TSH receptor-blocking antibodies [35]. Table 5 shows that only povidone iodine disinfection at delivery and maternal thyroid diseases were risk factors for transient CH; a history of hysterosalpingography was not identified as a risk factor. Clinicians may have concerns regarding the possible adverse effects of povidone iodine disinfection. Table 3 indicates no significant association between the risk of CH at 1 year of age and povidone iodine disinfection, suggesting that if there is any risk linked to povidone iodine disinfection, it is transient (Table 5).

Parents sometimes use hysterosalpingography to assess uterine function and to increase the chances of pregnancy, treating the exam itself as a fertility treatment. Lipid- and water-soluble iodine contrast agents are used for radiography. Lipid-soluble contrast media may be preferred to increase the chances of pregnancy [17]. However, because of concerns that lipid-soluble agents remain in the ovarian tubes for a long time [18], water-soluble contrast agents have recently begun to be used in radiographic examination [36]. In the present study, the agent type was not investigated. Parents may be concerned about the risk of transient hypothyroidism; however, the data in Tables 3–5 suggest that hysterosalpingography does not pose this risk. The reason may be owing to clinicians’ efforts to shift from lipid-soluble to water-soluble agents and to encourage patients to wait several days after the examination before trying for pregnancy.

Limitations

This study has several limitations. First, although permanent CH is determined at around 3 years of age, we explored the risk factors for CH at birth and at 1 year of age. A definition of CH using a screening test for TSH during the neonatal period would lead to overdiagnosis of hypothyroidism. Additionally, although levothyroxine Na (L-T₄) would be used for children with CH, use of this agent was not measured at 1 year of age in this

Table 4	Odds ratios of child hypothyroidism (TSH ≥10 μIU/mL in blood spot samples) according to mother/child characteristics, including mother’s iodine exposure
Children’s variables	
Male (vs. female) sex	1.08 (0.88, 1.32)
Born at 22–30 weeks (vs. 37–41 weeks of gestation)	—†
Born at 31–36 weeks (vs. 37–41 weeks of gestation)	0.44 (0.20, 0.99)
Born at ≥42 weeks (vs. 37–41 weeks of gestation)	—†
Twin birth (vs. singleton birth)	—†
Mothers’ variables	
Iodine supplement intake	—†
Seaweed intake ≥3 times per week	0.87 (0.69, 1.09)
Estimated iodine intake <75 μg/day in the 1st trimester	1.22 (0.99, 1.50)
Estimated iodine intake <75 μg/day in the 2nd to 3rd trimester	1.39 (1.13, 1.70)
Estimated iodine intake <75 μg/day in the 1st to 3rd trimester	1.32 (1.05, 1.66)
Estimated iodine intake ≥2,000 μg/day in the 1st trimester	—†
Estimated iodine intake ≥2,000 μg/day in the 2nd to 3rd trimester	2.15 (0.30, 15.5)
Estimated iodine intake ≥2,000 μg/day in the 1st to 3rd trimester	—†
Disinfection with povidone iodine at delivery	1.97 (1.51, 2.56)
History of hysterosalpingography	0.57 (0.18, 1.79)
Thyroid disease	
Graves’ disease	4.04 (2.40, 6.82)
Hypothyroidism or Hashimoto’s thyroiditis	1.13 (0.42, 3.04)
Medication for thyroid disease	
Thiamazole	6.19 (3.16, 12.2)
Levothyroxine	3.10 (1.53, 6.30)

† Owing to a small number of cases of child congenital hypothyroidism, this odds ratio could not be calculated.

TSH, thyroid-stimulating hormone.
study. Second, we could not use maternal thyroid hormone or TSH levels as an exposure to determine the influence of maternal thyroid gland function. The range of maternal hormone levels associated with the lowest likelihood of hypothyroidism in neonates may be a question to answer in clinical practice. Third, the diagnoses of maternal thyroid diseases and child CH at 1 year of age were according to questionnaire items on the history of physician diagnosis. Use of medical records for these conditions would be ideal. In this study, child CH at 1 year of age may include acquired hypothyroidism and transient hypothyroidism.

Fourth, because differences in the TSH surge at birth result in a relatively low level of TSH in neonates delivered prematurely, and TSH mass screenings are conducted several times for low-weight infants, the significantly lower odds of TSH ≥10 μIU/mL among neonates born at 31–36 weeks of gestation may be underestimated. Fifth, the details of disinfection with povidone iodine were not recorded. These procedures could include disinfection with vaginal or cesarean birth or omphalotomy. The risk of each type of disinfection could not be evaluated. Sixth, questionnaire-based estimation of iodine intake may be limited; as mentioned above, the proportion of women with insufficient iodine intake was very large. The amount of iodine intake assessed using food frequency questionnaires has been reported to differ substantially from the actual intake [25]. Japanese people often consume iodine in seaweed broth, and this proportion may be overestimated. Seventh, the data on povidone iodine disinfection at delivery may be biased because of the self-report nature of the questionnaire. The proportion of women with disinfection at delivery in Japan can be expected to be larger than that found in the present study. Eighth, the question regarding hysterosalpingography history was restricted to within 3 months before pregnancy.

Table 5 Odds ratios of transient hypothyroidism (TSH ≥10 μIU/mL in blood spot samples; no questionnaire report of congenital hypothyroidism at 1 year of age) according to mother/child characteristics, including mother’s iodine exposure

Mother/child characteristic	Odds ratio (95% confidence interval)
Children’s variables	
Male (vs. female) sex	1.07 (0.87, 1.32)
Born at 22–30 weeks (vs. 37–41 weeks of gestation)	—†
Born at 31–36 weeks (vs. 37–41 weeks of gestation)	0.49 (0.22, 1.09)
Born at ≥42 weeks (vs. 37–41 weeks of gestation)	—†
Twin birth (vs. singleton birth)	—†
Mothers’ variables	
Iodine supplement intake	—†
Seaweed intake ≥3 times per week	0.84 (0.66, 1.07)
Estimated iodine intake <75 μg/day in the 1st trimester	1.20 (0.97, 1.49)
Estimated iodine intake <75 μg/day in the 2nd to 3rd trimester	1.40 (1.14, 1.74)
Estimated iodine intake <75 μg/day in the 1st to 3rd trimester	1.30 (1.03, 1.66)
Estimated iodine intake ≥2,000 μg/day in the 1st trimester	—†
Estimated iodine intake ≥2,000 μg/day in the 2nd to 3rd trimester	2.38 (0.33, 17.2)
Estimated iodine intake ≥2,000 μg/day in the 1st to 3rd trimester	—†
Disinfection with povidone iodine at delivery	1.99 (1.51, 2.62)
History of hysterosalpingography	0.63 (0.20, 1.96)
Thyroid disease	
Graves’ disease	4.16 (2.42, 7.14)
Hypothyroidism or Hashimoto’s thyroiditis	0.93 (0.30, 2.91)
Medication for thyroid disease	
Thiamazole	6.85 (3.48, 13.5)
Levothyroxine	2.98 (1.40, 6.35)

† Owing to a small number of cases of child congenital hypothyroidism, this odds ratio could not be calculated.

TSH, thyroid-stimulating hormone.
Conclusion

Our analysis of a large Japanese birth cohort dataset suggests that maternal thyroid disease increases the risk of CH. Disinfection with povidone iodine at delivery may increase transient hypothyroidism but not CH risk at 1 year of age, although disinfection data were only collected from a subset of participants. Hysterosalpingography does not increase the risk of transient hypothyroidism and or CH at 1 year of age.

Acknowledgments

We thank Edanz for editing a draft of this manuscript. Members of the JECS Group as of 2020: Michihiro Kamijima (principal investigator, Nagoya City University, Nagoya, Japan), Shin Yamazaki (National Institute for Environmental Studies, Tsukuba, Japan), Yukihiro Ohya (National Center for Child Health and Development, Tokyo, Japan), Reiko Kishi (Hokkaido University, Sapporo, Japan), Nobuo Yaegashi (Tohoku University, Sendai, Japan), Koichi Hashimoto (Fukushima Medical University, Fukushima, Japan), Chisato Mori (Chiba University, Chiba, Japan), Hidekuni Inadera (University of Toyama, Toyama, Japan), Takeo Nakayama (Kyoto University, Kyoto, Japan), Hiroyasu Iso (Osaka University, Suita, Japan), Masayuki Shima (Hyogo College of Medicine, Nishinomiya, Japan), Youichi Kurozawa (Tottori University, Yonago, Japan), Narufumi Suganuma (Kochi University, Nankoku, Japan), Koichi Kusuhara (University of Occupational and Environmental Health, Kitakyushu, Japan), and Takahiko Katoh (Kumamoto University, Kumamoto, Japan).

Financial Support

A grant from the Ministry of the Environment, Japan, was awarded to Zentaro Yamagata. The descriptions in this article are the authors’ responsibility and do not represent the official views of the Japanese government. The funder had no role in the design or conduct of the study; collection, management, analysis, or interpretation of the data; preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication.

Disclosure

None of the authors have any potential conflicts of interest associated with this research. The descriptions in this article are the authors’ responsibility and do not represent the official views of the Japanese government.

Supplementary Table 1 Incidence rate of child congenital hypothyroidism (TSH ≥10 μIU/mL in blood spot samples) according to maternal iodine exposure

Characteristics/Iodine exposure route	Incidence per 100 children
Male sex	200/27,375 (0.73)
Female sex	183/26,572 (0.69)
Singleton	444/56,235 (0.79)
Twins	0/16 (0)
Supplement intake	0/5 (0)
Seaweed intake 3 times per week or more	289/41,886 (0.69)
Estimated iodine intake <75 μg/day in the 1st trimester	143/17,894 (0.80)
Estimated iodine intake <75 μg/day in the 2nd to 3rd trimester	153/18,010 (0.88)
Estimated iodine intake <75 μg/day in the 1st to 3rd trimesters	97/11,010 (0.88)
Estimated iodine intake >2,000 μg/day in the 1st trimester	0/86 (0)
Estimated iodine intake >2,000 μg/day in the 2nd to 3rd trimester	0/73 (0)
Estimated iodine intake >2,000 μg/day in the 1st to 3rd trimester	0/9 (0)
Disinfection by povidone iodine at delivery	102/9,114 (1.1)
History of hysterosalpingography	3/698 (0.43)
Maternal thyroid disease	
Graves’ disease	15/539 (2.8)
Hypothyroidism or Hashimoto’s thyroiditis	4/494 (0.81)
Medication for thyroid disease	
Thiamazole	9/212 (4.3)
Levothyroxine	8/365 (2.2)

Data limited to term delivery.
TSH, thyroid-stimulating hormone.
Supplementary Table 2 Incidence rate of child congenital hypothyroidism (reported on questionnaire at 1 year of age) with inland birthplace location

Iodine exposure route	Incidence per 100 children
Inland area	
Children’s variables	
Male sex	6/3,602 (0.17)
Female sex	12/3,567 (0.34)
Born at 22–30 weeks’ gestation	3/37 (8.1)
Born at 31–36 weeks’ gestation	4/350 (1.1)
Born at 37–41 weeks’ gestation	11/6,762 (0.16)
Born at ≥42 weeks’ gestation	0/11 (0)
Singleton birth	16/7,042 (0.23)
Twin birth	2/127 (1.6)

Mothers’ variables

Iodine supplement intake	0/1 (0)
Seaweed intake ≥3 times per week	16/5,738 (0.28)
Estimated iodine intake <75 μg/day in the 1st trimester	5/2,348 (0.21)
Estimated iodine intake <75 μg/day in the 2nd to 3rd trimester	3/2,395 (0.13)
Estimated iodine intake <75 μg/day in the 1st to 3rd trimester	1/1,462 (0.07)
Estimated iodine intake >2,000 μg/day in the 1st trimester	0/11 (0)
Estimated iodine intake >2,000 μg/day in the 2nd to 3rd trimester	0/4 (0)
Estimated iodine intake >2,000 μg/day in the 1st to 3rd trimester	0/0
Disinfection with povidone iodine at delivery	3/2,161 (0.14)
History of hysterosalpingography	0/67 (0)
Thyroid disease	3/69 (4.4)
Graves’ disease	1/61 (1.6)
Hypothyroidism or Hashimoto’s thyroiditis	0/0
Medication for thyroid disease	34.3 (7.50–157)
Thiamazole	2/62 (3.2)
Levothyroxine	2/28 (7.1)

Supplementary Table 3 Odds ratios (95% confidence intervals) of child congenital hypothyroidism (reported on questionnaire) with inland birthplace location

Mother/child characteristic	Odds ratio (95% confidence interval)
Children’s variables	
Male (vs. female) sex	0.49 (0.19–1.32)
Born at 22–30 weeks (vs. 37–41 weeks of gestation)	54.2 (14.5–203)
Born at 31–36 weeks (vs. 37–41 weeks of gestation)	7.10 (2.25–22.4)
Born at ≥42 weeks (vs. 37–41 weeks of gestation)	0.998 (0.997–0.999)
Twin birth (vs. singleton birth)	7.38 (1.68–32.5)

Mothers’ variables

Iodine supplement intake	0/1 (0)
Seaweed intake ≥3 times per week	16/5,738 (0.28)
Estimated iodine intake <75 μg/day in the 1st trimester	5/2,348 (0.21)
Estimated iodine intake <75 μg/day in the 2nd to 3rd trimester	3/2,395 (0.13)
Estimated iodine intake <75 μg/day in the 1st to 3rd trimester	1/1,462 (0.07)
Estimated iodine intake >2,000 μg/day in the 1st trimester	0/11 (0)
Estimated iodine intake >2,000 μg/day in the 2nd to 3rd trimester	0/4 (0)
Disinfection with povidone iodine at delivery	3/2,161 (0.14)
History of hysterosalpingography	0/67 (0)
Thyroid disease	3/69 (4.4)
Graves’ disease	1/61 (1.6)
Hypothyroidism or Hashimoto’s thyroiditis	0/0
Medication for thyroid disease	34.3 (7.50–157)
Thiamazole	2/62 (3.2)
Levothyroxine	2/28 (7.1)

† Owing to a small number of cases of child congenital hypothyroidism, this odds ratio could not be calculated.
Supplementary Table 4 Incidence rate of child congenital hypothyroidism (reported on questionnaire at 1 year of age) in mothers aged 35 years or more

Mother/child characteristic	Incidence per 100 children
Children’s variables	
Male sex	16/14,056 (0.11)
Female sex	18/13,067 (0.14)
Born at 22–30 weeks’ gestation	3/194 (1.55)
Born at 31–36 weeks’ gestation	1/1,664 (0.06)
Born at 37–41 weeks’ gestation	30/25,152 (0.12)
Born at ≥42 weeks’ gestation	0/61 (0)
Singleton birth	34/26,528 (0.13)
Twin birth	0/592 (0)
Mothers’ variables	
Iodine supplement intake	0/4 (0)
Seaweed intake ≥3 times per week	28/22,253 (0.13)
Estimated iodine intake <75 μg/day in the 1st trimester	12/7,362 (0.16)
Estimated iodine intake <75 μg/day in the 2nd to 3rd trimester	8/7,315 (0.11)
Estimated iodine intake <75 μg/day in the 1st to 3rd trimester	3/4,058 (0.07)
Estimated iodine intake >2,000 μg/day in the 1st trimester	0/46 (0)
Estimated iodine intake >2,000 μg/day in the 2nd to 3rd trimester	0/41 (0)
Estimated iodine intake >2,000 μg/day in the 1st to 3rd trimester	0/4 (0)
Disinfection with povidone iodine at delivery	6/4,110 (0.15)
History of hysterosalpingography	1/562 (0.18)
Thyroid disease	
Graves’ disease	5/406 (1.23)
Hypothyroidism or Hashimoto’s thyroiditis	3/412 (0.73)
Medication for thyroid disease	
Thiamazole	2/127 (1.57)
Levotyroxine	4/343 (1.17)

Supplementary Table 5 Odds ratios (95% confidence intervals) of child congenital hypothyroidism (reported on questionnaire) among mothers aged 35 years or more

Mother/child characteristic	Odds ratio (95% confidence interval)
Children’s variables	
Male (vs. female) sex	0.83 (0.42–1.62)
Born at 22–30 weeks (vs. 37–41 weeks of gestation)	13.2 (3.98–43.5)
Born at 31–36 weeks (vs. 37–41 weeks of gestation)	0.50 (0.07–3.70)
Born at ≥42 weeks (vs. 37–41 weeks of gestation)	—†
Twin birth (vs. singleton birth)	—†
Mothers’ variables	
Iodine supplement intake	—†
Seaweed intake ≥3 times per week	1.02 (0.42–2.47)
Estimated iodine intake <75 μg/day in the 1st trimester	1.44 (0.71–2.91)
Estimated iodine intake <75 μg/day in the 2nd to 3rd trimester	0.81 (0.37–1.80)
Estimated iodine intake <75 μg/day in the 1st to 3rd trimester	0.54 (0.17–1.78)
Estimated iodine intake >2,000 μg/day in the 1st trimester	—†
Estimated iodine intake >2,000 μg/day in the 2nd to 3rd trimester	—†
Estimated iodine intake >2,000 μg/day in the 1st to 3rd trimester	—†
Disinfection with povidone iodine at delivery	1.21 (0.46–3.24)
History of hysterosalpingography	1.37 (0.19–10.1)
Thyroid disease	
Graves’ disease	11.4 (4.41–29.7)
Hypothyroidism or Hashimoto’s thyroiditis	6.28 (1.91–20.6)
Medication for thyroid disease	
Thiamazole	13.5 (3.20–56.9)
Levotyroxine	10.5 (3.69–30.0)

† Owing to a small number of cases of child congenital hypothyroidism, this odds ratio could not be calculated.
References

1. Wassner AJ, Brown RS (2013) Hypothyroidism in the newborn period. *Curr Opin Endocrinol Diabetes Obes* 20: 449–454.
2. (2020) Congenital hypothyroidism. National Institute of Health. Genetics home reference. https://ghr.nlm.nih.gov/condition/congenital-hypothyroidism#statistics. Accessed on June 9, 2021.
3. Delange F (1998) Screening for congenital hypothyroidism used as an indicator of the degree of iodine deficiency and of its control. *Thyroid* 8: 1185–1192.
4. Minamitani K, Inomata H (2012) Neonatal screening for congenital hypothyroidism in Japan. *Pediatr Endocrinol Rev* 10 Suppl 1: 79–88.
5. Mass Screening Committee, Japanese Society for Pediatric Endocrinology, Japanese Society for Mass Screening, Nagasaki K, Minamitani K, et al. (2015) Guidelines for mass screening of congenital hypothyroidism (2014 revision). *Clin Pediatr Endocrinol* 24: 107–133.
6. Ford G, LaFranchi SH (2014) Screening for congenital hypothyroidism: a worldwide view of strategies. *Best Pract Res Clin Endocrinol Metab* 28: 175–187.
7. Corbetta C, Weber G, Cortinovis F, Calebri D, Passoni A, et al. (2009) A 7-year experience with low blood TSH cutoff levels for neonatal screening reveals an unsuspected frequency of congenital hypothyroidism (CH). *Clin Endocrinol (Oxf)* 71: 739–745.
8. Wang F, Liu C, Jia X, Liu X, Xu Y, et al. (2017) Next-generation sequencing of NKX2.1, FOXE1, PAX8, NKX2.5, and TSHR in 100 Chinese patients with congenital hypothyroidism and athyreosis. *Clin Chim Acta* 470: 36–41.
9. Carvalho DP, Dupuy C (2017) Thyroid hormone biosynthesis and release. *Mol Cell Endocrinol* 458: 6–15.
10. Medda E, Olivieri A, Stazi MA, Grandolfo ME, Fazzini C, et al. (2005) Risk factors for congenital hypothyroidism: results of a population case-control study (1997–2003). *Eur J Endocrinol* 153: 765–773.
11. Gruters A (1992) Congenital hypothyroidism. *Pediatr Ann* 21: 15–28.
12. Harris KB, Pass KA (2007) Increase in congenital hypothyroidism in New York State and in the United States. *Mol Genet Metab* 91: 268–277.
13. Brown RS, Bellisario RL, Botero D, Fournier L, Abrams CA, et al. (1996) Incidence of transient congenital hypothyroidism due to maternal thyrotropin receptor-blocking antibodies in over one million babies. *J Clin Endocrinol Metab* 81: 1147–1151.
14. Marchant B, Brownlie BE, Hart DM, Horton PW, Alexander WD (1977) The placental transfer of propylthiouracil, methimazole and carbimazole. *J Clin Endocrinol Metab* 45: 1187–1193.
15. Connelly KJ, Boston BA, Pearce EN, Sesser D, Snyder D, et al. (2012) Congenital hypothyroidism caused by excess prenatal maternal iodine ingestion. *J Pediatr* 161: 760–762.
16. Nishiyama S, Mikeda T, Okada T, Nakamura K, Kotani T, et al. (2004) Transient hypothyroidism or persistent hypothyrotropinemia in neonates born to mothers with excessive iodine intake. *Thyroid* 14: 1077–1083.
17. Dreyer K, van Rijswijk J, Mijatovic V, Goddijn M, Verhoeve HR, et al. (2017) Oil-based or water-based contrast for hysterosalpingography in infertile women. *N Engl J Med* 376: 2043–2052.
18. Satoh M, Aso K, Katagiri Y (2015) Thyroid dysfunction in neonates born to mothers who have undergone hysterosalpingography involving an oil-soluble iodinated contrast medium. *Horm Res Paediatr* 84: 370–375.
19. Oya N, Ito Y, Ebara T, Kato S, Ueyama J, et al. (2021) Cumulative exposure assessment of neonicotinoids and an investigation into their intake-related factors in young children in Japan. *Sci Total Environ* 750: 141630.
20. Kawamoto T, Nitta H, Murata K, Toda E, Tsukamoto N, et al. (2014) Rationale and study design of the Japan environment and children’s study (JECS). *BMC Public Health* 14: 25.
21. Michikawa T, Nitta H, Nakayama SF, Yamazaki S, Isobe T, et al. (2018) Baseline profile of participants in the Japan Environment and Children’s Study (JECS). *J Epidemiol* 28: 99–104.
22. Yokomichi H, Kojima R, Horiuichi S, Ooka T, Akiyama Y, et al. (2021) Effectiveness of influenza vaccination in infants and toddlers with and without prior infection history: The Japan Environment and Children’s Study. *Vaccine* 39: 1800–1804.
23. Yokomichi H, Mochizuki M, Tsuchida A, Kojima R, Horiuichi S, et al. (2021) Association of the incidence of atopic dermatitis until 3 years old with birth month and with sunshine duration and humidity in the first 6 months of life: Japan Environment and Children’s Study. *BMJ Open* 11: e047226.
24. Iwai-Shimada M, Nakayama SF, Isobe T, Michikawa T, Yamazaki S, et al. (2018) Questionnaire results on exposure characteristics of pregnant women participating in the Japan Environment and Children Study (JECS). *Environ Health Prev Med* 23: 45.
25. Yokoyama Y, Takachi R, Ishihara J, Ishii Y, Sasazuki S, et al. (2016) Validity of short and long self-administered food frequency questionnaires in ranking dietary intake in middle-aged and elderly Japanese in the Japan Public Health Center-Based Prospective Study for the Next Generation (JPHC-NEXT) Protocol Area. *J Epidemiol* 26: 420–432.
26. (2015) Overview of dietary reference intakes for Japanese. Ministry of Health, Labour and Welfare. https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/Overview.pdf. Accessed on June 22, 2021.
27. Burrow GN, Fisher DA, Larsen PR (1994) Maternal and fetal thyroid function. *N Engl J Med* 331: 1072–1078.
28. Narumi S, Muroya K, Asakura Y, Adachi M, Hasegawa T (2010) Transcription factor mutations and congenital hypothyroidism: systematic genetic screening of a population-based cohort of Japanese patients. *J Clin Endocrinol Metab* 95: 1981–1985.

29. (2014) Ministry of Health, Labour and Welfare. Information of results of mass screening. http://www.boshiaiikukai.jp/img/milk/kensajokyoH26.pdf (in Japanese). Accessed on March 10, 2021.

30. Kigawa M, Tsuchida A, Matsumura K, Takamori A, Ito M, et al. (2019) Factors of non-responsive or lost-to-follow-up Japanese mothers during the first year post partum following the Japan Environment and Children’s Study: a longitudinal cohort study. *BMJ Open* 9: e031222.

31. Waller DK, Anderson JL, Lorey F, Cunningham GC (2000) Risk factors for congenital hypothyroidism: an investigation of infant’s birth weight, ethnicity, and gender in California, 1990–1998. *Teratology* 62: 36–41.

32. Zava TT, Zava DT (2011) Assessment of Japanese iodine intake based on seaweed consumption in Japan: a literature-based analysis. *Thyroid Res* 4: 14.

33. Fuse Y, Ohashi T, Yamaguchi S, Yamaguchi M, Shishiba Y, et al. (2011) Iodine status of pregnant and postpartum Japanese women: effect of iodine intake on maternal and neonatal thyroid function in an iodine-sufficient area. *J Clin Endocrinol Metab* 96: 3846–3854.

34. Osborn DA, Hunt RW (2007) Prophylactic postnatal thyroid hormones for prevention of morbidity and mortality in preterm infants. *Cochrane Database Syst Rev* 24: CD005948.

35. Bhavani N (2011) Transient congenital hypothyroidism. *Indian J Endocrinol Metab* 15: S117–S120.

36. Sekhon J, Lee E, Lo G, Woolcock J, Ramkrishnan J, et al. (2020) Lipiodol flush under ultrasound guidance in Australia. *Aust N Z J Obstet Gynaecol* 60: 965–969.