Research Paper
Comparing the Effect of Eight Weeks of Resistance and Endurance Trainings on Physiological and Functional Factors and Record of Elite Runners

Ali Asqar Saberi 1, *Mehrdad Fathi 2, Keyvan Hejazi 3

1. Department of Sport Physiology, Faculty of Sport Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
2. Department of Sport Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
3. Department of Sport Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran.

ABSTRACT

Objective: The 3000-meter run is one of the most popular events among endurance and semi-endurance track runnings. Due to its special conditions, aerobic and anaerobic energy production systems can be used at the same time. The aim of the present study was to compare the effect of eight weeks of resistance and endurance trainings on physiological and functional factors and record of elite runners.

Method: In this quasi-experimental study, 22 male elite runners were randomly assigned into the two groups of resistance (n=11) and endurance (n=11) trainings. The resistance and endurance training programs were performed for 8 weeks, 3 sessions per week, each for 55-60 minutes. Physiological and functional factors were measured at baseline and at the end of the study. Repeated measures ANOVA was used for within-group and between-group comparisons considering the significant level at P<0.05.

Result: The training led to significant improvement in heart rate, blood pressure, muscle strength, muscle endurance, balance and 3000-meter record in both groups. There was a significant difference between groups in the mentioned factors (P<0.05).

Conclusion: Both resistance and endurance training may have a positive effect on runners’ records and performance indicators.

Key words: Blood pressure, Heart rate, Muscle strength

Extended Abstract

1. Introduction

Success in the athletic performance is related to the several factors, one of which is training [1]. Although training is done with different physical, technical and tactical goals, but in endurance disciplines, especially in athletics, the role of physical and physiological factors is very prominent. On this basis, some endurance instructors believe that people with higher maximal oxygen consumption are able to perform better [1]. The role of these factors is more prominent in trained athletes who have achieved maximum oxygen consumption [2]. The importance of endurance and strength and the relationship between them in sports activities is evident, and when strength and endurance are discussed, physiological and functional issues also arise. The effects of training on the structure and function of the heart depend on the type, intensity and duration of exercise, initial physical fitness, heredity and gender [5].
The effect of resistance training on the endurance has also been studied in the recent years. However, resistance training is not commonly used for endurance runners and it seems that no more than 50% of the maximum oxygen consumption is included in the strength training [9], and improving maximal oxygen consumption through this type of training is unlikely; however, some evidence suggests that adding resistance training to an aerobic exercise program has a positive effect on the performance of endurance athletes [10].

Due to the lack of research on cardiac adaptation with endurance and resistance training in elite runners and also on the effect of these trainings on physiological and functional factors and the record of elite runners, more study is needed. Therefore, the present study seeks to address the main question of whether the resistance and endurance training programs affect the physiological, functional and record factors of elite runners? And is there a difference between these two training programs? This research can take an effective and small step to identify and solve the problems of runners, and by presenting the results to the community, can help prevent and reduce problems.

2. Methods

This is a quasi-experimental study with Pre-test and Post-test design. The study population consisted of all elite male runners in North Khorasan province of Iran who were members of the Bojnourd city athletics team. Among them, 22 volunteers were selected by convenience and purposive sampling methods. First the study objectives and process were explained to them. The samples were then randomly divided into two groups of resistance training (n=11) and endurance training (n=11). Height of subjects was measured by a stadiometer (Saca, Saca Inc., Germany) with an accuracy of 5 mm, hip and waist circumference by a tape measure (Mabis, Japan) with a sensitivity of 5 mm, and body fat percentage and weight by using Bioelectric impedance device (Inbody, Inbody Inc., South Korea) with a sensitivity of 100 g. Subjects were allowed to enter the study after cardiovascular examination, blood

Factors	Groups	Pre-test	Post-test	Within-Group t	Between-Group F	P	P<0.05†
Heart rate (min)	Resistance	72.8±9.8	137.8±26.2	0.69	4.661	0.04	
	Endurance	72.3±9.0	147.7±24.7	2.23	6.610	0.04	
Blood pressure (mm Hg)	Resistance	75.43±7.62	83.92±2.64	0.15	42.672	0.001	
	Endurance	72.57±12.07	95.07±9.66	2.20	6.610	0.012	
Aerobic power (mg/kg/min)	Resistance	68.11±9.60	73.85±9.00	0.70	0.956	0.432	
	Endurance	65.32±7.76	69.32±7.60	0.70	0.956	0.332	
Muscle strength (kg)	Resistance	12.61±3.27	13.78±3.73	-1.500	2.544	0.037	
	Endurance	13.51±3.25	14.65±3.70	-6.091	42.672	0.001	
Muscle endurance (kg)	Resistance	18.43±4.15	38.00±2.36	0.579	42.672	0.001	
	Endurance	17.45±5.30	41.04±4.17	3.753	42.672	0.005	
Balance (s)	Resistance	41.08±13.52	49.25±3.25	-0.696	0.991	0.009	
	Endurance	45.12±13.12	52.25±5.13	0.992	4.170	0.045	
3000-meter record (hs)	Resistance	3202±4.74	2780±13.12	-0.129	4.170	0.045	
	Endurance	4168±0.26	3420±5.13	-0.556	4.170	0.045	

† Significant at P<0.05.
pressure measurement and electrocardiography by a physician.

The Bruce protocol on a treadmill was used to estimate the maximum oxygen consumption. The maximum strength of the subjects was measured using RM1 test according to McGuigan et al. method [18]. To measure the subjects' muscular endurance, McGill’s torso muscular endurance test was used in four modes: trunk flexion, trunk extension, right-side bridge, and left-side bridge. Total endurance in the all four directions was considered as final score. To measure the balance, the stork balance test was used according to its standard procedure. This test was performed separately on the dominant and non-dominant legs [19]. At the end, the subjects’ record was set using the 3000 meters running test. For this purpose, the subject runs 7.5 laps around the 400-meter track.

The training protocol included aerobic (endurance) and resistance trainings for 8 weeks, 3 sessions per week, each for 60 minutes. The aerobic training consisted of running on a treadmill for 21 minutes with intensity equal to 60-70% of the heart rate reserve. Training intensity was controlled by a heart rate monitor (POLAR, Finland). Pyramid model was used in resistance training. In each session, after 15 minutes of warming up, they performed each movement in 7 sets: 6 repetitions ×80%, 3 repetitions ×90%, 3 repetitions ×90%, 3×90% repetitions, 3 repetitions ×90%, 3 repetitions ×90%, and 6 repetitions ×80%, respectively with a 5 minute interval between each movement. The workouts included leg flexion, leg extension, leg press, squat, lat stretch, chest press, cross-body dumbbell, biceps, triceps, and sit-ups [20].

The collected data were analyzed by SPSS V. 21 software. After ensuring the normality of data distribution by Shapiro-Wilk test and the equality of variances by Levene’s test, repeated measures ANOVA was used for within-group and between-group comparisons. Significance level was considered P<0.05.

3. Results

The results in Table 1 showed that within-group and between-group differences in heart rate, blood pressure, muscle strength, muscle endurance, balance and 3000-meter record were significant (P<0.05).

4. Conclusion

Runners’ heart rate and blood pressure increase after resistance and endurance training, which is due to the duration, nature and intensity of trainings with short rest intervals between sessions. It is suggested that these factors of trainings be moderated to reduce the muscle fatigue of runners.

Ethical Considerations

Compliance with ethical guidelines

Prior to study, a written informed consent was signed by the participants after explaining the study objectives and methods. They were assured of the confidentiality of their information, and were free to leave the study at any time.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions

Implementation: Ali Asghar Saberi, Mehrdad Fathi; Final review of the manuscript: All authors; Conceptualization: Mehrdad Fathi; Data analysis: Keyvan Hejazi; Performing the study and compiling the manuscript: Keyvan Hejazi.

Conflicts of interest

The authors declare no conflict of interest.
مقایسه تأثیر هشت هفته تمرین مقاومتی و استقامتی بر فاکتورهای فیزیولوژیکی، عملکردی و رکورد دوندگان نخبه

عنوان: مطالعه مقایسه تأثیر هشت هفته تمرین مقاومتی و استقامتی بر فاکتورهای فیزیولوژیکی، عملکردی و رکورد دوندگان نخبه

استاد مسئول: دکتر مهرداد فتحی

گروه: گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه فردوسی مشهد، مشهد، ایران

نشانی: +98(35)38833910

تلفن: mfathei@um.ac.ir

پست الکترونیک: mfathei@um.ac.ir

مقدمه
موفقیت در عملکرد ورزشی با عوامل متعددی در ارتباط است که تمرین یک بخش اصلی آن محسوس می‌شود. در این فیزیوتکنیک و تکنیکی انجام تمرین به سیستم‌های فیزیولوژیکی و عملکردی همبستگی بالا دارند. به ویژه در ورزشکاران به طور دینامیک انجام می‌شود، فشار خون سیستولیک غیر ورزشکاران و رکورد دوندگان می‌شود که به طور خاص می‌کند استقامت از نظر توانایی بی‌هوای بیشتر، توانایی حرکت به‌طور کامل و کاهش سبب شده که به طور دینامیک استقامت با توجه به نوع تمرین علاوه بر توان هوازی بیشینه، از عواملی مانند کارایی حرکتی، سازگاری های عصبی-عضلانی، توان بی‌هوای، سازگاری های آندروکرین، آستانه لاکتات و توانایی به تأخیر اندازه گیری می‌شود. به ویژه نقش این عوامل در ورزشکاران تمرین‌کرده که به طور دینامیک استقامتی و عوامل ناپذیره بهبود عملکرد استقامتی و اهمیت استقامت و قدرت و رابطه آن‌ها در فعالیت‌های ورزشی بسیار گسترده است و زمانی که به قدرت و استقامت صحبت می‌شود، مباحث فیزیولوژیکی و عملکردی نیز به میان می‌آید. آثار ورزش بر ساختار و عملکرد قلب به نوع، شدت و مدت زمان ورزش، میزان آمادگی جسمانی، وراثت و جنسیت بستگی دارد که به طور دینامیک در نظر گرفته می‌شود.
فاکتورهای فیزیولوژیکی، عملکردی و رکورد دوندگان نخبه اصلی است که آیا دو برنامه تمرینی مقاومتی و استقامتی بر کند؟ از این رو تحقیق حاضر به دنبال رسیدن به پاسخ این سؤال تحقیق به جامعه، در پیشگیری و کاهش مشکلات کمک شایانی شناخت و رفع مشکلات دوندگان برداشته و با ارائه نتایج این امید است انجام این پژوهش بتواند گام مؤثر و کوچکی در جهت و رکورد دوندگان نخبه، انجام پژوهش حاضر ضروری می‌نماید و استقامتی و مقاومتی دوندگان نخبه و نیز عدم وجود پژوهشی در محدودیت‌های پژوهشی در حیطه سازگاری‌های قلبی با تمرینات کاربرد خاصی برای مربیان و ورزشکاران برخوردار است. با توجه به ویژگی‌ها در جهت ارائه برنامه‌های مناسب از اهمیت و در عملکرد استقامتی و چگونگی تأثیر انواع تمرینات بر بهبود عملکرد، تعیین مهم‌ترین ویژگی‌های فیزیولوژیکی آنجایی که هدف ورزشکاران از شرکت در برنامه‌های تمرینی کارایی حرکتی بتواند به ورزشکاران استقامتی کمک کند. از همین جهت و حیاتی بودن روند تحقیقاتی و با توجه به تاثیر تمرین‌های مقاومتی بر عملکرد استقامتی و بی‌توجهی سرمایه‌گذاری رو به بهبود ضروری و بهبود عملکرد دوندگان نخبه و نیز عدم وجود پژوهشی در محدودیت‌های پژوهشی در حیطه سازگاری‌های قلبی با تمرینات کاربرد خاصی برای مربیان و ورزشکاران برخوردار است. با توجه به ویژگی‌ها در جهت ارائه برنامه‌های مناسب از اهمیت و در عملکرد استقامتی و چگونگی تأثیر انواع تمرینات بر بهبود عملکرد، تعیین مهم‌ترین ویژگی‌های فیزیولوژیکی آنجایی که هدف ورزشکاران از شرکت در برنامه‌های تمرینی کارایی حرکتی بتواند به ورزشکاران استقامتی کمک کند. از همین جهت و حیاتی بودن روند تحقیقاتی و با توجه به تاثیر تمرین‌های مقاومتی بر عملکرد استقامتی و بی‌توجهی سرمایه‌گذاری رو به بهبود ضروری و بهبود عملکرد دوندگان نخبه و نیز عدم وجود پژوهشی در محدودیت‌های پژوهشی در حیطه سازگاری‌های قلبی با تمرینات کاربرد خاصی برای مربیان و ورزشکاران برخوردار است. با توجه به ویژگی‌ها در جهت ارائه برنامه‌های مناسب از اهمیت و در عملکرد استقامتی و چگونگی تأثیر انواع تمرینات بر بهبود عملکرد، تعیین مهم‌ترین ویژگی‌های فیزیولوژیکی آنجایی که هدف ورزشکاران از شرکت در برنامه‌های تمرینی کارایی حرکتی بتواند به ورزشکاران استقامتی کمک کند. از همین جهت و حیاتی بودن روند تحقیقاتی و با توجه به تاثیر تمرین‌های مقاومتی بر عملکرد استقامتی و بی‌توجهی سرمایه‌گذاری رو به بهبود ضروری و بهبود عملکرد دوندگان نخبه و نیز عدم وجود پژوهشی در محدودیت‌های پژوهشی در حیطه سازگاری‌های قلبی با تمرینات کاربرد خاصی برای مربیان و ورزشکاران برخوردار است. با توجه به ویژگی‌ها در جهت ارائه برنامه‌های مناسب از اهمیت و در عملکرد استقامتی و چگونگی تأثیر انواع تمرینات بر بهبود عملکرد، تعیین مهم‌ترین ویژگی‌های فیزیولوژیکی آنجایی که هدف ورزشکاران از شرکت در برنامه‌های تمرینی کارایی حرکتی بتواند به ورزشکاران استقامتی کمک کند. از همین جهت و حیاتی بودن روند تحقیقاتی و با توجه به تاثیر تمرین‌های مقاومتی بر عملکرد استقامتی و بی‌توجهی سرمایه‌گذاری رو به بهبود ضروری و بهبود عملکرد دوندگان نخبه و نیز عدم وجود پژوهشی در محدودیت‌های پژوهشی در حیطه سازگاری‌های قلبی با تمرینات کاربرد خاصی برای مربیان و ورزشکاران برخوردار است. با توجه به ویژگی‌ها در جهت ارائه برنامه‌های مناسب از اهمیت و در عملکرد استقامتی و چگونگی تأثیر انواع تمرینات بر بهبود عملکرد، تعیین مهم‌ترین ویژگی‌های فیزیولوژیکی آنجایی که هدف ورزشکاران از شرکت در برنامه‌های تمرینی کارایی حرکتی بتواند به ورزشکاران استقامتی کمک کند. از همین جهت و حیاتی بودن روند تحقیقاتی و با توجه به تاثیر تمرین‌های مقاومتی بر عملکرد استقامتی و بی‌توجهی سرمایه‌گذاری رو به بهبود ضروری و بهبود عملکرد دوندگان نخبه و نیز عدم وجود پژوهشی در محدودیت‌های پژوهشی در حیطه سازگاری‌های قلبی با تمرینات کاربرد خاصی برای مربیان و ورزشکاران برخوردار است. با توجه به ویژگی‌ها در جهت ارائه برنامه‌های مناسب از اهمیت و در عملکرد استقامتی و چگونگی تأثیر انواع تمرینات بر بهبود عملکرد، تعیین مهم‌ترین ویژگی‌ها
آزمون دری سه حوزه متریت شد. برای این مطالعه نمونه‌گیری می‌شود.

پورونکل تمرینی شامل تمرین‌های جسمی و روانی (маکوله‌ی) شامل مقاومتی و استقلال در گروه همکاران و جلسه به مدت 20 دقیقه بر روی آموزش شادت عضلانی و روش آموزشی مسیره و گروه تمرینی مدل MaximedExipres TD-3018 و با استفاده از گزارش‌های خونی متوسط شرایطی و فشار خون متوسط تبدیل شد.

یافته‌ها شماره 197 نمونه گرفته شد. نتایج تحقیق حاضر نشان داد تمرینات هشت هفته تمرین سه هزار متر در بین دو گروه آزمایش تفاوت معنی‌دار داشت.

برای مقایسه تغییرات واریانس درون گروهی و بین گروهی استفاده واریانس ها توسط آزمون لون از آنالیز واریانس با اندازه تکراری و تحلیل شدند. پس از کسب اطمینان از نرمال بودن توزیع تجزیه کشش زیربغل، پرس سینه، حرکت صلیب با دمبل، جلو بازو، به ترتیب شامل فلکشن ساق، اکستنشن ساق، پرس پا، اسکات، دقیقه بود. برنامه تمرین‌های کششی شامل دویدن مقاومتی به مدت هشت هفته و در هر هفته سه جلسه و هر جلسه به مدت 20 دقیقه بر روی آموزش شادت عضلانی و روش آموزشی مسیره و گروه تمرینی مدل MaximedExipres TD-3018 و با استفاده از گزارش‌های خونی متوسط شرایطی و فشار خون متوسط تبدیل شد.

یافته‌ها شماره 197 نمونه گرفته شد. نتایج تحقیق حاضر نشان داد تمرینات هشت هفته تمرین سه هزار متر در بین دو گروه آزمایش تفاوت معنی‌دار داشت.

برای مقایسه تغییرات واریانس درون گروهی و بین گروهی استفاده واریانس ها توسط آزمون لون از آنالیز واریانس با اندازه تکراری و تحلیل شدند. پس از کسب اطمینان از نرمال بودن توزیع تجزیه کشش زیربغل، پرس سینه، حرکت صلیب با دمبل، جلو بازو، به ترتیب شامل فلکشن ساق، اکستنشن ساق، پرس پا، اسکات، دقیقه بود. برنامه تمرین‌های کششی شامل دویدن مقاومتی به مدت هشت هفته و در هر هفته سه جلسه و هر جلسه به مدت 20 دقیقه بر روی آموزش شادت عضلانی و روش آموزشی مسیره و گروه تمرینی مدل MaximedExipres TD-3018 و با استفاده از گزارش‌های خونی متوسط شرایطی و فشار خون متوسط تبدیل شد.

یافته‌ها شماره 197 نمونه گرفته شد. نتایج تحقیق حاضر نشان داد تمرینات هشت هفته تمرین سه هزار متر در بین دو گروه آزمایش تفاوت معنی‌دار داشت.

برای مقایسه تغییرات واریانس درون گروهی و بین گروهی استفاده واریانس ها توسط آزمون لون از آنالیز واریانس با اندازه تکراری و تحلیل شدند. پس از کسب اطمینان از نرمال بودن توزیع تجزیه کشش زیربغل، پرس سینه، حرکت صلیب با دمبل، جلو بازو، به ترتیب شامل فلکشن ساق، اکستنشن ساق، پرس پا، اسکات، دقیقه بود. برنامه تمرین‌های کششی شامل دویدن مقاومتی به مدت هشت هفته و در هر هفته سه جلسه و هر جلسه به مدت 20 دقیقه بر روی آموزش شادت عضلانی و روش آموزشی مسیره و گروه تمرینی مدل MaximedExipres TD-3018 و با استفاده از گزارش‌های خونی متوسط شرایطی و فشار خون متوسط تبدیل شد.

یافته‌ها شماره 197 نمونه گرفته شد. نتایج تحقیق حاضر نشان داد تمرینات هشت هفته تمرین سه هزار متر در بین دو گروه آزمایش تفاوت معنی‌دار داشت.

برای مقایسه تغییرات واریانس درون گروهی و بین گروهی استفاده واریانس ها توسط آزمون لون از آنالیز واریانس با اندازه تکراری و تحلیل شدند. پس از کسب اطمینان از نرمال بودن توزیع تجزیه کشش زیربغل، پرس سینه، حرکت صلیب با دمبل، جلو بازو، به ترتیب شامل فلکشن ساق، اکستنشن ساق، پرس پا، اسکات، دقیقه بود. برنامه تمرین‌های کششی شامل دویدن مقاومتی به مدت هشت هفته و در هر هفته سه جلسه و هر جلسه به مدت 20 دقیقه بر روی آموزش شادت عضلانی و روش آموزشی مسیره و گروه تمرینی مدل MaximedExipres TD-3018 و با استفاده از گزارش‌های خونی متوسط شرایطی و فشار خون متوسط T الا وامه.
تان در گروه‌های استقامتی و قدرتی است و در گروه‌های تمرینات افزایش می‌یابد. اندازه‌گیری این متغیر در گروه‌ها حاکی از افزایش نمایه‌توده‌بدن (کیلوگرم/مترمربع)

متغیر	گروه‌ها
سمن‌ریزی	0/33 ± 1/0
استقامتی	0/33 ± 1/0
قدرتی	0/33 ± 1/0

علیاصغر صابری و همکاران. تأثیر هشت هفته تمرین مقاومتی و استقامتی بر فشار خون و فشار عروقی

جدول ۱. مقایسه نتایج تمرینات مروت‌گیری و بین‌گروهی در سطح‌های فیزیولوژیکی

متغیر	گروه‌ها
فشار خون سیستولی	72/68 ± 7/3
فشار خون دیاستولی	120/86 ± 1/1

میانگین ± سطح کمتر از 0.05
نتایج تحقیق حاضر نشان داد تمرینات مقاومتی و استقامتی موجب به افزایش قدرت قلب و فشار خون افراد شد. در این تحقیق حاضر، نتایج نشان داد که ضریب قلب و فشار خون افراد قبل برای اجرای تمرینات، محدودیت های فیزیولوژیکی و محتوای گلیکوفیت در عضله و افزایش در حجم ضربه و هوازی می‌توانند از طریق افزایش در آنزیم‌های اکسیداتیو، چگالی فیبر عضله را افزایش دهند. تمرینات استقامتی و قدرتی بر انجام تمرینات هوازی می‌پردازند و به احتمال زیادی افزایش بیشتری در توان هوازی نسبت به زمانی که آزمودنی‌ها انجام ترکیبی تمرینات هوازی با نوع دیگری از تمرینات باعث منفی بر توان هوازی آزمودنی‌ها نمی‌گردد. در بعضی موارد تمرینات هوازی به صورت ترکیب با تمرینات دیگر ممکن است توان هوازی را کاهش دهد. هفته‌ها و هفته‌ای تمرینات استقامتی و قدرتی بر تعادل ورزشکار به ویژه مؤثر در عملکرد ورزشکار به شمار می‌روند. کسب پیش‌نمونه از خصوصیات حساسیت و ضعف عضله، مهم‌ترین

نتایج تحقیق حاضر نشان داد که تمرینات مقاومتی و استقامتی موجب به افزایش قدرت قلب و فشار خون افراد شد. در این تحقیق حاضر، نتایج نشان داد که ضریب قلب و فشار خون افراد قبل برای اجرای تمرینات، محدودیت های فیزیولوژیکی و محتوای گلیکوفیت در عضله و افزایش در حجم ضربه و هوازی می‌توانند از طریق افزایش در آنزیم‌های اکسیداتیو، چگالی فیبر عضله را افزایش دهند. تمرینات استقامتی و قدرتی بر انجام تمرینات هوازی می‌پردازند و به احتمال زیادی افزایش بیشتری در توان هوازی نسبت به زمانی که آزمودنی‌ها انجام ترکیبی تمرینات هوازی با نوع دیگری از تمرینات باعث منفی بر توان هوازی آزمودنی‌ها نمی‌گردد. در بعضی موارد تمرینات هوازی به صورت ترکیب با تمرینات دیگر ممکن است توان هوازی را کاهش دهد. هفته‌ها و هفته‌ای تمرینات استقامتی و قدرتی بر تعادل ورزشکار به ویژه مؤثر در عملکرد ورزشکار به شمار می‌روند. کسب پیش‌نمونه از خصوصیات حساسیت و ضعف عضله، مهم‌ترین

نتایج تحقیق حاضر نشان داد که تمرینات مقاومتی و استقامتی موجب به افزایش قدرت قلب و فشار خون افراد شد. در این تحقیق حاضر، نتایج نشان داد که ضریب قلب و فشار خون افراد قبل برای اجرای تمرینات، محدودیت های فیزیولوژیکی و محتوای گلیکوفیت در عضله و افزایش در حجم ضربه و هوازی می‌توانند از طریق افزایش در آنزیم‌های اکسیداتیو، چگالی فیبر عضله را افزایش دهند. تمرینات استقامتی و قدرتی بر انجام تمرینات هوازی می‌پردازند و به احتمال زیادی افزایش بیشتری در توان هوازی نسبت به زمانی که آزمودنی‌ها انجام ترکیبی تمرینات هوازی با نوع دیگری از تمرینات باعث منفی بر توان هوازی آزمودنی‌ها نمی‌گردد. در بعضی موارد تمرینات هوازی به صورت ترکیب با تمرینات دیگر ممکن است توان هوازی را کاهش دهد. هفته‌ها و هفته‌ای تمرینات استقامتی و قدرتی بر تعادل ورزشکار به ویژه مؤثر در عملکرد ورزشکار به شمار می‌روند. کسب پیش‌نمونه از خصوصیات حساسیت و ضعف عضله، مهم‌ترین
است که علت این افزایش به دلیل طول مدت تمرینات، ماهیت تمرینات و سگنی بودن تمرینات با فاصله انتدازی کوتاه بین دوره‌های تمرین بوده است. بدین منظور پیشنهاد بر این انت که تمرینات متعادل‌تری از دندان‌های همگام کارایی دندان‌گاه کاهش دهد.

ملاحظات اخلاقی

پیروی از اصول اخلاقی پژوهش

به تأمین آزمونی‌ها، قرار رضایت نامه شرکت در پژوهش، داده شد که پس از تکمیل آن و کسب اطلاع از ماهیت و نحوه همکاری، وارد پژوهش شدن نمی‌شود. همچنین به تمام آزمونی‌ها اطمینان داده شد که اطلاعات شخصی آنان به صورت محرمانه و مخفی باقی خواهد ماند و در صورت بروز مشکل یا نارضایتی در هر مرحله از پژوهش، یا هم‌اکنون انجام شده از قبل، اجازه خروج از پژوهش را می‌دهد.

حامی مالی

این پژوهش هیچگونه کمک مالی از سازمانی دولتی، خصوصی و غیرانتفاعی دریافت نکرده است.

مشارکت‌نویس‌های چندگانه

اجرای پروتکل: علی اصغر صابری و مهرداد فتحی، بازبینی نهایی مقاله: همه نویسندگان؛ ایده اصلی: مهرداد فتحی؛ آنالیز داده‌ها: کیوان حجازی؛ اجرای مطالعه و تدوین دست نوشته: کیوان حجازی.

تعارض منافع

بنابر اظهار نویسندگان، این مقاله تعارض منافع ندارد.
[30] Takarda Y, Ishii N. Effects of low-intensity resistance exercise with short interset rest period on muscular function in middle-aged women. J Strength Cond Res. 2002; 16(1):123-8. [DOI:10.1519/00124278-20020200-00019]

[31] Hoff J, Helgerud J. Endurance and strength training for soccer players. Sports Med. 2004; 34(3):165-80. [DOI:10.2165/00007256-200434030-00003] [PMID]

[32] Helgerud J, Rodas G, Kemi OJ, Hoff J. Strength and endurance in elite football players. Int J Sports Med. 2011; 32(9):677-82. [DOI:10.1055/s-0031-1275742] [PMID]

[33] Sundberg CJ. Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle. Acta Physiol Scand Suppl. 1994; 615:1-50. [PMID]
