Putatively cancer-specific alternative splicing is shared across patients and present in developmental and other non-cancer cells

AUTHORS
Julianne K. David (1, 2), Sean K. Maden# (1, 2), Benjamin R. Weeder# (1, 2), Reid F. Thompson* (1, 2, 3, 4, 5), and Abhinav Nellore*♦ (1, 2, 8)

AFFILIATIONS
1. Computational Biology Program; Oregon Health & Science University; Portland, OR, 97239; USA
2. Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR, 97239; USA
3. Department of Radiation Medicine; Oregon Health & Science University; Portland, OR, 97239; USA
4. Portland VA Research Foundation; Portland, OR, 97239; USA
5. Department of Medical Informatics and Clinical Epidemiology; Oregon Health & Science University; Portland, OR, 97239; USA
6. Division of Hospital and Specialty Medicine; VA Portland Healthcare System; Portland, OR, 97239; USA
7. Cancer Early Detection Advanced Research Center; Oregon Health & Science University; Portland, OR, 97239; USA
8. Department of Surgery; Oregon Health & Science University; Portland, OR, 97239; USA

♦ lead contact
* co-corresponding authors [thompsre@ohsu.edu, nellore@ohsu.edu]
these authors contributed equally

ABSTRACT
We compared cancer and non-cancer RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) Project, and the Sequence Read Archive (SRA). We found that: 1) averaging across cancer types, 80.6% of exon-exon junctions thought to be cancer-specific based on comparison with tissue-matched samples are in fact present in other adult non-cancer tissues throughout the body; 2) 30.8% of junctions not present in any GTEx or TCGA normal tissues are shared by multiple samples within at least one cancer type cohort, and 87.4% of these distinguish between different cancer types; and 3) many of these junctions not found in GTEx or TCGA normal tissues (15.4% on average) are also found in embryological and other developmentally associated cells. This study probes the distribution of putatively cancer-specific junctions across a broad set of publicly available non-cancer human RNA-seq datasets. Overall, we identify a subset of shared cancer-specific junctions that could represent novel sources of cancer neoantigens. We further describe a framework for characterizing possible origins of these junctions, including potential developmental and embryological sources, as well as cell type-specific markers particularly related to cell types of cancer origin. These findings refine the meaning of RNA splicing event novelty, particularly with respect to the human neoepitope repertoire. Ultimately, cancer-specific exon-exon junctions may affect the anti-cancer immune response and may have a substantial causal relationship with the biology of disease.

KEYWORDS
Alternative splicing, RNA-seq, cancer, immunotherapy, exon-exon junctions
INTRODUCTION
Aberrant RNA splicing is increasingly recognized as a feature of malignancy (Climente-González et al., 2017; Sebestyén et al., 2015; Srebow and Kornblihtt, 2006; Sveen et al., 2016; Xiong et al., 2015), with potential prognostic significance across many cancer types including non-small cell lung cancer, ovarian cancer, breast cancer, colorectal cancer, uveal melanoma, and glioblastoma (Björklund et al., 2017; Li et al., 2017; Marcelino Meliso et al., 2017; Robertson et al., 2018; Zhu et al., 2018; Zong et al., 2018). Due to its potential for generating novel peptide sequences, aberrant RNA splicing is also interesting as a potential source of neoantigens for cancer immunotherapy targeting. For instance, retained intronic sequences can give rise to numerous potential antigens among patients with melanoma, although they are not a significant predictor of cancer immunotherapy response (Smart et al., 2018), and a patient-specific neoantigen arising from a gene fusion has been shown to lead to complete response from immune checkpoint blockade (Yang et al., 2019). Novel cancer-specific exon-exon junctions have also been shown to be a source of peptide antigens (Kahles et al., 2018), and represent compelling potential targets for personalized anti-cancer vaccines (Slansky and Spellman, 2019).

However, the ability of the adaptive immune system to target a given antigen as “foreign” depends on a complex prior tolerogenic education, and in particular on whether or not a given antigen has been previously “seen” by the immune system in a healthy context (Klein et al., 2014). Therefore, prediction of cancer-specific antigens depends explicitly on their sequence novelty, and thus requires a comparison with non-cancer cells.

Choosing a “normal” tissue standard for comparison is difficult in the context of RNA sequencing (RNA-seq) data analysis, given the presence of alternative splicing throughout normal and cancerous biological processes (Norris and Calarco, 2012; Sveen et al., 2016; Yang et al., 2016). Previously, cancer-specific aberrant splicing has been detected by comparing tumor RNA-seq data against a single reference annotation (Tang and Madhavan, 2017) or a limited “panel of normals” (Smart et al., 2018). More recently, a TCGA network paper (Kahles et al., 2018) used the large publicly available datasets of The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research Network et al., 2013) and the Genotype Tissue Expression project (GTEx) (Cancer Genome Atlas Research Network et al., 2013; GTEx Consortium, 2015) to identify and validate thousands of novel splicing events including exon-exon junctions present in a specific TCGA cancer type but not in the corresponding normal adult tissue in GTEx. This study also predicted alternative splicing neoepitopes (ASNs) via this comparison, and validated several ASNs shared between multiple patients with the intracellular proteomics data available for select ovarian and breast cancer TCGA donors in the Clinical Proteomic Tumor Analysis Consortium dataset (Kahles et al., 2018).

RESULTS
Cancers harbor many novel shared exon-exon junctions not present in adult non-cancer tissues or cells
While cancer-specific exon-exon junctions identified using tissue-matched normal samples have the potential to give rise to neoantigens (Kahles et al., 2018), we reasoned that they could be expressed in other normal tissues due to variability in patterns of transcription and alternative splicing among different tissues (Saha et al., 2017). In such cases, these junctions might not yield bona fide neoantigens due to the prior tolerogenic education of the immune system. We therefore re-evaluated the incidence of cancer-specific junctions using RNA-seq data from TCGA and the large compendium of adult tissues from GTEx. We found that on average, across cancer types, 80.6% of junctions thought to be cancer-specific based on comparison only with tissue-matched samples are in fact present in other adult non-cancer tissues and cell types throughout the body. Across cancer types, an average of 90.2% of all junctions found in cancer samples are also present in one or more adult normal samples from GTEx or TCGA ["core normals"] (Figure 1A). The overall number of these novel junctions varies both within and across different cancer types, with ovarian carcinoma and uveal melanoma having the highest and lowest average number of junctions per sample, respectively (Figure 1B,
Table S1), although we find that the set of junctions defined as “novel” is highly sensitive to the filtering criteria used (see Figure S1A, Table S2, and “Selection of cancer-specific junctions” in Methods). We use lack of occurrence of a junction in core normals as a baseline definition of cancer specificity.

We next assessed the extent to which a given junction not found in core normals might be shared among multiple samples of the same cancer type. We observed that over half (52.8%) of these junctions are confined to individual samples, although a small but significant subset (0.41%) is shared across at least 5% of samples in at least one cancer-type cohort (Figure S1B). We also noted that 40.6% of novel junctions are shared between multiple cancer types, with a total of 1,609 junctions present in at least 5% of samples each across two or more TCGA cancer cohorts (Figure S1C). Sharedness was significantly higher among junctions that were also present in normal tissues (Figures 1C and 1D). We observed that the number of junctions not found in core normals per patient was comparable for patients with and without splicing factor-associated mutations across all cancer types, with the exception of breast adenocarcinoma (Figures S1E and S1F). We also observed that splicing-associated mutations had minimal effect on the sharedness within a cancer-type cohort of junctions not found in core normals (Figure S1G and S1H).

We finally assessed whether these junctions were also shared among independent cancer cohorts, using publicly available RNA-seq data in the SRA. Many TCGA cancer junctions not found in core normals were found to occur in cancer-type matched SRA samples: 11 of 14 cancer types had more than 50 junctions in common between the matched cohorts. Moreover, we found that junctions also present in matched SRA cancer cohorts were associated with significantly higher levels of sharedness in the TCGA cohort (H statistic = 3.85-2,803 and p = <0.0001-0.0495; Figure S1I).
Shared novel junctions in cancer distinguish cancer identity and subtype

We hypothesized that a high level of exon-exon junction sharedness across samples is likely to be reflective of underlying conserved biological processes (e.g., among normal tissues). We therefore investigated the sharedness of novel junctions present in different cancer types. Interestingly, these novel junctions can readily distinguish disparate cancer types and show similarities among cancer types with shared biology, such as cutaneous and uveal melanomas (Figure 2A). These novel junctions also reflect shared biology among additional cancer types with similar anatomic origins: colon and rectal adenocarcinoma, clear cell, chromophobe, and papillary renal cell carcinomas, low and high grade gliomas, and stomach and esophageal adenocarcinomas (Figure 2A). Shared junctions from several cancer types also demonstrate similarities by histological subtype despite their differing anatomical origins, for instance squamous cell carcinomas of the lung, cervix, and head and neck (Figure 2A, Figure S2A), consistent with previously published work (Lin et al., 2017). Moreover, shared novel junctions are readily able to distinguish distinct histological subtypes of sarcoma and cervical cancer, among other diseases (Figure 2B). Using non-cancer cell types from the Sequence Read Archive (SRA) (Leinonen et al., 2011) we found that “novel” junctions from cancers arising from cell and tissue types poorly represented in GTEx normal tissue samples (e.g., melanocytes), or not present in GTEx at all (e.g., thymus tissue), can be found in many samples of the corresponding cell or tissue types of origin (Figure 2C, Table S1). Sample-to-sample comparisons of all junctions from these rare-cell type cancers also show more similarity with cell type-matched normal samples from the SRA than with bulk tissue from GTEx (Figure S2B).
Novel junctions in cancer are found among developmental and known cancer-related pathways

As many cancers are thought to recapitulate normal developmental pathways (Borczuk et al., 2003; Huang et al., 2009; Naxerova et al., 2008), we further hypothesized that a subset of cancer-specific junctions may reflect embryological and developmental splicing patterns. We therefore compared cancer junctions not found in core normals with those from SRA samples pertaining to zygotic, placental, embryological, and fetal developmental processes (see Methods). On average, per cancer type, 15.4% of these junctions occur in SRA developmental cell or tissue samples, and 26.5% and 2.7% occur in samples from selected SRA normal adult tissues and cell types and SRA normal stem cell samples, respectively (Figures 3A and S3A). The remaining significant majority of these cancer junctions not found in core normals were also not present in any non-cancer SRA tissue or cell type studied (64.9% on average per cancer type cohort, Figures 3A and S3A). Many of these novel “unexplained” junctions still exhibit high levels of sharedness both within (Figures S3B and S3C) and between (Figure S3D) different cancer types. At the upper end, 16 of these shared junctions were found in more than 10% of samples in each of two or more cancer types (Table S4).

We note that the liberal set inclusion criterion we employed may reduce our ability to identify robust cancer-specific biology among unexplained junctions. For instance, the well-described deletion causing a splicing of exons 1 and 8 (EGFRvIII) occurs in 29.4% of TCGA patients with glioblastoma multiforme (GBM) and in no core normals, but is also present in a single read from a single human epithelial cell line sample on SRA, and therefore is classified not as an unexplained cancer-specific junction but as “adult non-cancer.” However, this
set inclusion condition does allow for the identification of some cancer-specific biology of interest. For instance, rarer alternative EGFR splicing events were detected in the unexplained set, such as EGFRvIII with an alternate exon 1 joined to exon 8 (chr7:55161631-55172981), detected in 2 patients with GBM and 1 patient with low grade glioma; the same alternate exon 1 joined with two alternate exon 16s (chr7:55161631-55168521 and chr7:55161631-55170305) (detected in 1 and 2 GBM patients, respectively); and the same alternate exon 1 joined with exon 20 (chr7:55161631-55191717) in 2 GBM patients. An alternative filtering approach that instead requires two samples per SRA category to define junction set membership yields a greater number of unexplained junctions (Table S1D and Figures S3E and S3F).

We observed a number of unexplained junctions shared by unusually large proportions of ovarian cancer (OV) samples in TCGA, including one cancer-specific junction (chr16:766903-768491 on the minus strand) present in the highest proportion of samples in any TCGA cohort (81.3%, or 350 of 430 samples in OV). This junction occurs in an antisense transcript of MSLN, which codes for a protein known to bind to the well-known ovarian cancer biomarker MUC16 (CA125) (Felder et al., 2014; Kaneko et al., 2009). Another unexplained junction (chr19:8865972-8876532 on the minus strand) is in the MUC16 region itself and is present in 42.8%, or 184 of 430 samples in OV. In all, we identified 34 cancer-specific junctions present in >40% of OV samples. We further identified several novel pan-cancer splice variants (chr16:11851406 with chr16:11820297, chr16:11821755, and chr16:11828391, each present across up to 8 different cancers) in RSL1D1 and its neighboring BCAR4, a long noncoding RNA known to promote breast cancer progression (Godinho et al., 2011; Li et al., 2016).

Among all otherwise unexplained junctions, an average of 4.78% across cancer types are associated with known cancer-predisposing or cancer-relevant loci. Further, an elevated proportion of otherwise unexplained junctions (on average, 40.9%) occur in likely antisense transcripts and may therefore be of reduced interest as candidate neoantigens, but sustained interest in terms of cancer biology (Figure 3B, Table S5).
Discussion

Previous studies have established the importance of alternative and aberrant splicing in cancer prognosis (Bjørklund et al., 2017; Li et al., 2017; Marcelino Meliso et al., 2017; Robertson et al., 2018; Zhu et al., 2018; Zong et al., 2018) and have begun to explore its potential relevance in cancer immunotherapy (Kahles et al., 2018; Wood et al., 2019). In this study, we explore “novel” exon-exon junction use among cancers with respect to a broad collection of normal tissues and cells. This is the largest such study to-date, integrating RNA-seq data from 10,549 tumor samples across 33 TCGA cancer types, 788 paired normal samples across 25 TCGA cancer types, 9,555 normal samples across 30 GTEx tissue types, and 12,231 human samples from the SRA (10,827 samples from 33 normal tissue and cell types and 1,404 samples from 14 cancer types) (Tables S1 and S2). To the best of our knowledge, this is also the first study to examine the novelty of cancer junctions from the perspective of immune tolerance, considering all adult normal tissue types as potential sources of tolerogenic peptides rather than only the closest matched normal tissues. Moreover, this is the first study to quantitatively interrogate the sharedness of novel exon-exon junctions both within and across cancer types, demonstrating that these junctions can distinguish cancers and their subtypes. We finally demonstrate that there is no one-size-fits-all definition of “novel” splicing, noting that purportedly cancer-specific junctions may in fact be present among, and perhaps biologically consistent with, a repertoire of embryological, developmentally-associated, and other cell types.

This study also has several limitations. We focus on the importance of exon-exon junctions as the predominant metric of alternative splicing. However, there are other sources of RNA variation (e.g. intron retention events (Smart et al., 2018) and RNA editing) that we do not explicitly study here, but which could be equally good sources of novel, cancer-specific protein sequence for immunotherapeutic and other applications. Additionally, there is substantial variability among analytical methods for identifying these exon-exon junctions. We note significant discordance between results of analyses of the same data using different junction filtering methods. While the same phenomena and general results appear to hold true independent of analytical technique, the
identity and relative novelty of individual “cancer-specific” junctions vary between our results and those previously published (Kahles et al., 2018). We also acknowledge that GTEx and the SRA combined do not account for all sources of normal tissue(s) in the human body, and further acknowledge that the sample metadata used to search the SRA may be an imperfect surrogate for actual tissue/sample identities. Our assessment of embryological and developmentally-associated junctions is also limited by a relatively small number of relevant RNA-seq samples available on the SRA. Finally, due to the short-read nature of these RNA-seq data, we make no attempt to predict putative neoepitopes from cancer-specific junctions as we cannot confidently recapitulate reading frame or broader sequence context from isolated exon-exon junctions.

While cancer-specific exon-exon junctions may indeed be a source of neoepitopes, their sharedness across individuals and occurrence in cancer-relevant loci (e.g. EGFR, MUC16) are suggestive of underlying but as-of-yet unexplored biology. This sharedness does not appear to be related to variants in splicing factor or splicing-associated proteins, and is not wholly explained by recapitulation of embryological/developmental transcriptional profiles. As such, we see this work as opening a broad area of future research into the role and relevance of these novel recurring exon-exon junctions.

Acknowledgements
We thank Paul Spellman for helpful discussions and Chris Wilks for facilitating Snaptron queries. We thank Mary Wood for her critical reading of the manuscript. The results published here are in part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS.

Disclaimers
The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Author Contributions
Conceptualization, J.K.D., R.F.T., and A.N.; Methodology, J.K.D., R.F.T., and A.N.; Software, J.K.D., B.R.W., S.K.M., and A.N.; Validation, J.K.D. and A.N.; Formal Analysis, J.K.D., B.R.W., S.K.M., and A.N.; Investigation, J.K.D., B.R.W., S.K.M., and A.N.; Resources, R.F.T. and A.N.; Data Curation, J.K.D. and B.R.W.; Writing – Original Draft, J.K.D., B.R.W., R.F.T., and A.N.; Writing – Review & Editing, J.K.D., B.R.W., S.K.M., R.F.T., and A.N.; Visualization, J.K.D., B.R.W., and S.K.M.; Supervision, R.F.T. and A.N.; Project Administration, R.F.T. and A.N.; Funding Acquisition, R.F.T. and A.N.

Declaration of Interests
The authors declare no competing interests.

References
Bernstein, M.N., Doan, A., and Dewey, C.N. (2017). MetaSRA: normalized human sample-specific metadata for the Sequence Read Archive. Bioinformatics 33, 2914–2923.

Bjørklund, S.S., Panda, A., Kumar, S., Seiler, M., Robinson, D., Gheeya, J., Yao, M., Alnæs, G.I.G., Toppmeyer, D., Riis, M., et al. (2017). Widespread alternative exon usage in clinically distinct subtypes of Invasive Ductal Carcinoma. Sci. Rep. 7, 5568.

Borczuk, A.C., Gorenstein, L., Walter, K.L., Assaad, A.A., Wang, L., and Powell, C.A. (2003). Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. Am. J. Pathol. 163, 1949–1960.

Broad Institute TCGA Genome Data Analysis Center (2016). Firehose stddata run. doi: 10.7908/C11G0KM9
Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M.,
Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013). The Cancer Genome Atlas
Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120.

Chakravarty, D., Gao, J., Phillips, S.M., Kundra, R., Zhang, H., Wang, J., Rudolph, J.E., Yaeger, R., Soumerai,
T., Nissan, M.H., et al. (2017). OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol 2017.

Climente-González, H., Porta-Pardo, E., Godzik, A., and Eyras, E. (2017). The Functional Impact of Alternative
Splicing in Cancer. Cell Rep. 20, 2215–2226.

Collado-Torres, L., Nellore, A., and Jaffe, A.E. (2017). recount workflow: Accessing over 70,000 human RNA-
seq samples with Bioconductor. F1000Res. 6, 1558.

Felder, M., Kapur, A., Gonzalez-Bosquet, J., Horibata, S., Heintz, J., Albrecht, R., Fass, L., Kaur, J., Hu, K.,
Shojaei, H., et al. (2014). MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol.
Cancer 13, 129.

Frankish, A., Diekhans, M., Ferreira, A.-M., Johnson, R., Jungreis, I., Loveland, J., Mudge, J.M., Sisu, C.,
Wright, J., Armstrong, J., et al. (2019). GENCODE reference annotation for the human and mouse genomes.
Nucleic Acids Res. 47, D766–D773.

Godinho, M., Meijer, D., Setyono-Han, B., Dorssers, L.C.J., and van Agthoven, T. (2011). Characterization of
BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. J. Cell. Physiol. 226,
1741–1749.

GTEx Consortium (2015). Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis:
multitissue gene regulation in humans. Science 348, 648–660.

Huang, S., Ernberg, I., and Kauffman, S. (2009). Cancer attractors: a systems view of tumors from a gene
network dynamics and developmental perspective. Semin. Cell Dev. Biol. 20, 869–876.

Kahles, A., Lehmann, K.-V., Toussaint, N.C., Hüsner, M., Stark, S.G., Sachsenberg, T., Stegle, O., Kohlbacher,
O., Sander, C., Cancer Genome Atlas Research Network, et al. (2018). Comprehensive Analysis of Alternative
Splicing Across Tumors from 8,705 Patients. Cancer Cell 34, 211–224.e6.

Kaneko, O., Gong, L., Zhang, J., Hansen, J.K., Hassan, R., Lee, B., and Ho, M. (2009). A binding domain on
mesothelin for CA125/MUC16. J. Biol. Chem. 284, 3739–3749.

Klein, L., Kyewski, B., Allen, P.M., and Hogquist, K.A. (2014). Positive and negative selection of the T cell
repertoire: what thymocytes see (and don’t see). Nature Reviews Immunology 14, 377–391.

Leinonen, R., Sugawara, H., Shumway, M., and on behalf of the International Nucleotide Sequence Database
Collaboration (2011). The Sequence Read Archive. Nucleic Acids Research 39, D19–D21.

Li, X.-P., Jiao, J.U., Lu, L.I., Zou, Q., Zhu, S., and Zhang, Y. (2016). Overexpression of ribosomal L1 domain
containing 1 is associated with an aggressive phenotype and a poor prognosis in patients with prostate cancer.
Oncology Letters 11, 2839–2844.

Li, Y., Sun, N., Lu, Z., Sun, S., Huang, J., Chen, Z., and He, J. (2017). Prognostic alternative mRNA splicing
signature in non-small cell lung cancer. Cancer Lett. 393, 40–51.

Lin, E.W., Karakasheva, T.A., Lee, D.-J., Lee, J.-S., Long, Q., Bass, A.J., Wong, K.K., and Rustgij, A.K. (2017).
Comparative transcriptomes of adenocarcinomas and squamous cell carcinomas reveal molecular similarities
that span classical anatomic boundaries. PLoS Genet. 13, e1006938.

Marcelino Meliso, F., Hubert, C.G., Favoretto Galante, P.A., and Penalva, L.O. (2017). RNA processing as an
alternative route to attack glioblastoma. Hum. Genet. 136, 1129–1141.
Naxerova, K., Bult, C.J., Peaston, A., Fancher, K., Knowles, B.B., Kasif, S., and Kohane, I.S. (2008). Analysis of gene expression in a developmental context emphasizes distinct biological leitmotifs in human cancers. Genome Biology 9, R108.

Norris, A.D., and Calarco, J.A. (2012). Emerging Roles of Alternative Pre-mRNA Splicing Regulation in Neuronal Development and Function. Frontiers in Neuroscience 6.

Robertson, A.G., Shih, J., Yau, C., Gibb, E.A., Oba, J., Mungall, K.L., Hess, J.M., Uzunangelov, V., Walter, V., Danilova, L., et al. (2018). Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell 33, 151.

Saha, A., Kim, Y., Gewirtz, A.D.H., Jo, B., Gao, C., McDowell, I.C., GTEx Consortium, Engelhardt, B.E., and Battle, A. (2017). Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res. 27, 1843–1858.

Sebestyén, E., Zawisza, M., and Eyras, E. (2015). Detection of recurrent alternative splicing switches in tumor samples reveals novel signatures of cancer. Nucleic Acids Res. 43, 1345–1356.

Slansky, J.E., and Spellman, P.T. (2019). Alternative Splicing in Tumors - A Path to Immunogenicity? N. Engl. J. Med. 380, 877–880.

Smart, A.C., Margolis, C.A., Pimentel, H., He, M.X., Miao, D., Adeegbe, D., Fugmann, T., Wong, K.-K., and Van Allen, E.M. (2018). Intron retention is a source of neoepitopes in cancer. Nat. Biotechnol. 36, 1056–1058.

Sondka, Z., Bamford, S., Cole, C.G., Ward, S.A., Dunham, I., and Forbes, S.A. (2018). The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18, 696–705.

Srebrob, A., and Komblihtt, A.R. (2006). The connection between splicing and cancer. Journal of Cell Science 119, 2635–2641.

Sveen, A., Kilpinen, S., Ruusulehto, A., Lothe, R.A., and Skotheim, R.I. (2016). Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 35, 2413–2427.

Tang, S., and Madhavan, S. (2017). neoaingenuR: An annotation based pipeline for tumor neoantigen identification from sequencing data. doi: https://doi.org/10.1101/171843

UniProt Consortium (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515.

Wilks, C., Gaddipati, P., Nellore, A., and Langmead, B. (2018). Snaptron: querying splicing patterns across tens of thousands of RNA-seq samples. Bioinformatics 34, 114–116.

Wood, M.A., Weeder, B.R., David, J.K., Nellore, A., and Thompson, R.F. (2019). Burden of tumor mutations, neoepitopes, and other variants are cautionary predictors of cancer immunotherapy response and overall survival. doi: https://doi.org/10.1165/665026

Xiong, H.Y., Alipanahi, B., Lee, L.J., Bretschneider, H., Merico, D., Yuen, R.K.C., Hua, Y., Gueroussov, S., Najafabadi, H.S., Hughes, T.R., et al. (2015). RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806.

Yang, W., Lee, K.-W., Srivastava, R.M., Kuo, F., Krishna, C., Chowell, D., Makarov, V., Hoen, D., Dalin, M.G., Wexler, L., et al. (2019). Immuneogenic neoantigens derived from gene fusions stimulate T cell responses. Nat. Med. 25, 767–775.

Yang, X., Coulombe-Huntington, J., Kang, S., Sheynkman, G.M., Hao, T., Richardson, A., Sun, S., Yang, F., Shen, Y.A., Murray, R.R., et al. (2016). Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing. Cell 164, 805–817.

Zhu, J., Chen, Z., and Yong, L. (2018). Systematic profiling of alternative splicing signature reveals prognostic predictor for ovarian cancer. Gynecologic Oncology 148, 368–374.

Zong, Z., Li, H., Yi, C., Ying, H., Zhu, Z., and Wang, H. (2018). Genome-Wide Profiling of Prognostic Alternative Splicing Signature in Colorectal Cancer. Frontiers in Oncology 8.
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Abhinav Nellore (nellore@ohsu.edu).

METHOD DETAILS

Data Download

Previously called exon-exon junction data including phenotype table, bed and coverage files for both TCGA and GTEx v6 were downloaded from the recount2 service at https://jhubiostatistics.shinyapps.io/recount/ (Collado-Torres et al., 2017). The metaSRA (Bernstein et al., 2017) web query form at http://metasra.biostat.wisc.edu/ was queried for experiment accession numbers for 1) non-cancer cell and tissue type samples (see Table S1 for cancer-matched samples and Table S3 for non-cancer samples, and “Selection of SRA tissue and cell types” for a description of how these samples were chosen) and 2) TCGA-matched cancer types (see Table S1). For the non-cancer samples, the term “cancer” was explicitly added as an excluded ontology term in the query, and the resulting files were filtered to remove any samples with “tumor” in the sample_name field. The resulting accession numbers were queried against the Snaptron junction database using the query snaptron tool (Wilks et al., 2018), yielding junctions for the tissue and cell types of interest that were downloaded. Patient somatic mutation calls were downloaded from the GDAC firehose (Broad Institute TCGA Genome Data Analysis Center, 2016), while a list of human splicing-associated gene mutations (keyword search “mRNA splicing [KW-0508]”) was downloaded from the UniProt database (UniProt Consortium, 2019). Two lists of cancer-associated genes were downloaded: the COSMIC cancer gene census cancer gene list from https://cancer.sanger.ac.uk/census (Sondka et al., 2018), and the OncoKB cancer gene list from https://oncokb.org/cancerGenes (Chakravarty et al., 2017).

Indexing of GTEx and TCGA junctions

The GENCODE gene transfer format (.gtf) file was parsed to collect full coordinates and left and right splice sites of junctions from annotated transcripts and a searchable tree of protein-coding gene boundaries. The GTEx phenotype file was parsed to collect tissue of origin information and donor gender; bone marrow samples derived from leukemia cell line cells were eliminated. The TCGA phenotype file was parsed to collect information on cancer type, cancer stage at diagnosis, patient gender, vital status, and sample type (primary tumor, matched normal sample, recurrent tumor, or metastatic tumor). Cancer subtype classifications were collected for five cancer types beyond their TCGA designations (Figure 2B, Table S1): cervical squamous cell carcinoma and endocervical adenocarcinoma was separated into cervical squamous cell carcinoma, endocervical adenocarcinoma, and cervical adenosquamous; esophageal carcinoma was separated into esophagus adenocarcinoma and esophagus squamous cell carcinoma; brain lower grade glioma was separated into astrocytoma, oligoastrocytoma, and oligodendroglioma; sarcoma was separated into leiomyosarcoma, myxofibrosarcoma, malignant peripheral nerve sheath tumors, desmoid tumors, dedifferentiated liposarcoma, synovial sarcoma, and undifferentiated pleomorphic sarcoma; and pheochromocytoma and paraganglioma were separated. A new SQLite3 database was created to index all GTEx and TCGA junctions, with linked tables containing 1) sample ids and associated junction ids; 2) sample ids and phenotype information for each sample; and 3) junction ids and junction information including 0-based closed junction coordinates, GENCODE annotation status, and location within protein coding gene boundaries. SQL indexes were created on junction ID and sample ID columns for fast and flexible querying.

Selection of cancer-specific junctions

For all analyses we apply a light filter, requiring a junction to have at least a two-read coverage across GTEx, TCGA, and the selected cancer and non-cancer SRA samples, to exclude false positive junctions but allow for the existence of splicing noise. To characterize junction novelty in cancer with respect to normal cells, we defined a hierarchical filter that specifies inclusion and exclusion of junctions in different RNA-seq datasets (Table 1). In order from most to least permissive, these filters are: 1) junctions not found in tissue-matched
GTEx or TCGA normal samples, 2) junctions not found in any GTEx or TCGA normal ("core normal") samples, and 3) junctions not found in any core normal samples or in selected SRA tissue and cell type non-cancer samples. For our analyses, we do not explicitly filter on whether a junction is annotated in GENCODE. We do not set a limit on presence in the core normal sample cohorts: any junction present at any coverage level in only one sample is counted as “in” these cohorts. This yields a more stringent filter on normality than that used by the TCGA splicing paper, which uses the term “neojunctions” to refer to junctions not found in tissue-matched GTEx or TCGA normal samples, with a 10-read coverage requirement in TCGA, and allowing through the filter lowly expressed junctions in GTEx tissue-matched samples (Kahles et al., 2018).

We queried the junction database to extract junctions of interest, specifically 1) all junctions for all tumor samples of each cancer type and 2) all junctions not present in any core normal samples for each cancer type cohort, with their cohort prevalence levels. All junctions are presented in a 0-based closed coordinate system. Protein coding region presence was determined for all junctions, with location assessment as follows: the junction is categorized as protein-coding if it is present in a protein-coding gene region (with at least one junction splice site within the gene boundaries) and antisense if it is present on the reverse strand of a protein-coding gene region, based on gene regions described in GENCODE v.28 (Frankish et al., 2019). Cancer-associated genes were collected from the OncoKB and the COSMIC cancer gene census; any gene listed in one or both lists was categorized as a cancer-associated gene. Any junction assigned to a protein-coding gene region corresponding to one of these genes was categorized as associated with cancer-relevant loci.

For comparison between cancer-sample junctions found vs. not found in core normal samples, we performed a Kruskal-Wallis H-test to determine the significance of the decreased sharedness levels, since the junction prevalence data is not normally distributed and there are many fewer cancer-specific junctions than junctions found in core normal samples.

Table 1: Junction novelty specification

Junction novelty stage	Definition
0	All junctions
1+	Junctions not found in tissue-matched GTEx or TCGA normal samples
2+	Junctions not found in any GTEx or TCGA normal ("core normal") samples
3+	Junctions not found in any core normal samples or in selected SRA non-cancer samples

Comparison with SRA tissue and cell types

Non-cancer sample types from the SRA were chosen via manual curation informed by a clustering of junctions according to ontology term prevalence, with commonly occurring terms that do not meaningfully distinguish junctions eliminated. The selected sample types in Table S3 comprise all non-cancer data from the SRA analyzed. All junctions for samples associated with these cell and tissue types but not with "cancer" were downloaded via Snaptron, translated to a 0-based closed coordinate system, and compared with those found in TCGA cancer samples. Junctions present in a TCGA cancer-type cohort and SRA samples from a specific assigned category determined set assignments, which were used for subsequent data analysis. To exclude false positive junctions but allow for the existence of splicing noise, only junctions with at least two reads across GTEx, TCGA, and the selected cancer and non-cancer SRA samples are considered true junctions. All SRA junctions not found in TCGA cancer samples were ignored. For the supplementary 2-sample minimum filter analysis, we retained all junctions that are present in only 1 SRA sample, but required at least two samples across the broad SRA category (adult, developmental, or stem cell) for inclusion in that set. (For
developmental subsets, only one sample within a subset category was required, as long as the 2-sample criterion across the full developmental category was met.)

For comparison between TCGA cancer-sample junctions not found in core normal samples with SRA junctions from matched cancer type samples, we performed a Kruskal-Wallis H-test to determine the significance of the increased sharedness levels, since the junction prevalence data is not normally distributed and the difference in junction counts between the two cohorts (TCGA junctions in or not-in the SRA matched cohort) is large.

Splicing Factor Mutation Analysis
Patient somatic mutation call files were downloaded from the GDAC firehose (http://gdac.broadinstitute.org/) and all silent mutations were removed. Using the remaining mutation calls, patients were classified based on two different separation criteria: 1) whether or not they had at least one mutation in a gene that codes for a protein annotated as involved in mRNA splicing, based on the UniProt protein annotation database, and 2) whether or not they had at least 1 mutation in a gene previously identified as sQTL associated (U2AF1, SF3B1, TADA1, PPP2R1A, and/or IDH1) in the TCGA cohort by the TCGA splicing paper (Kahles et al., 2018). For each cancer type, and each stratification method, the number of cancer-specific junctions per patient was compared for patients with and without at least one mutation in the defined set (Figures S1E and S1F). Differences in the number of novel junctions across cancer types and stratification groups was assessed via two-way ANOVA with a Benjamini-Hochberg p-value correction.

In addition to comparing the levels of cancer specific junctions between patients with and without splicing associated mutations, we also compared junction sharedness based on the same two stratification criteria used above. For each cancer type, all junctions identified in two or more patients were selected. For each, the number of junction occurrences in patients with mutations in splicing associated genes was calculated and compared to the overall number of occurrences in the corresponding cancer cohort, using a Fisher’s exact test (Figures S1G and S1H).

DATA AND SOFTWARE AVAILABILITY
All data is publicly available and accessible online. Python code and corresponding descriptors for the implementation of methods as described is publicly available on GitHub (https://github.com/JulianneDavid/shared-cancer-splicing).
Supplemental Information

(A)

(B)

(C)
Figure S1: Distribution and prevalences TCGA cancer sample junctions

(A) Log-scale sorted strip plots representing the number of high-support junctions per sample for each of 33 TCGA cancer types where each point is a single TCGA tumor sample and the width of each strip is proportional to the size of the cancer type cohort (Kahles et al., 2018). High support requires junction coverage within a sample to be equivalent to at least 5 out of 100 million 100-base pair reads. The upper panel counts junctions not found in GENCODE annotation or in tissue-matched normal GTEx or TCGA samples (Table S1); the lower panel counts junctions not found in GENCODE annotation or in any core normal samples, differing from Figure 1B in that here, GENCODE-annotated junctions are also removed and the coverage filter is applied. The gray bars highlight TCGA cancer types with no or few tissue-matched normal samples (Table S1); note that there are orders of magnitude fewer GENCODE-annotated junctions than junctions found in tissue-matched normal samples, partially explaining the high values for THYM, CESC, UVM, and DLBC in the upper panel.

(B) Log-scale scatter plot showing, for 33 TCGA cancer types, the number of junctions shared within each cancer-type cohort at each prevalence level, counting only junctions not found in any core normal samples. TCGA cancer type colors are as specified in Figures 1B, 2A, and S1A. Of interest with significant intra-cohort junction sharedness are, among others, ovarian carcinoma (tan), leukemia (pink), testicular germ cell tumors (red), and uveal melanoma (dark green).

(C) Log-scale histogram showing inter-cancer sharedness of junctions not found in core normal samples. Most junctions occur in only one cancer type, but many are shared between 2 or more.

(D) Log-scale box plots representing, for all TCGA cancer types individually, the prevalences within each cancer-type cohort of junctions occurring in at least 1% of cancer-type samples, separated into prevalences for (blue, left) junctions found in GTEx or TCGA tissue-matched normal samples (Table S1); (green, center) junctions not found in tissue-matched normals but found in other core normal samples; and (yellow, right) junctions found in no core normal samples. Any junction found in multiple cancer types is represented by multiple data points, one for each cancer type in which it is found. Figure 1C condenses all data from this figure into one pan-cancer set.

(E) Cancer specific splicing junctions in patients with and without splicing associated gene mutations: log count of junctions not found in any core normal samples for each patient are plotted (top) across each cancer type in TCGA. Within each cancer, boxplots represent either patients with mutations in UniProt annotated splicing-related genes (left) or patients without any related mutations (right). Overall prevalence of relevant mutations in splicing-related for each cancer type are plotted below.

(F) Presents data in the same manner as E, but with comparison between patients with mutations only in genes described in the TCGA splicing paper (Kahles et al., 2018) vs all other patients.

(G) Analysis of junction sharedness for patients within mutational cohorts: for each cancer, junctions not found in core normal samples are plotted based on sharedness across all patients in the cancer cohort (Y-axis) compared to deviation from expected shareness (estimated odds ratio (log scale) based on Fisher’s exact test) for only patients with mutations in UniProt annotated splicing-related genes (x-axis).

(H) Presents data in the same manner as G, but with deviation from expected sharedness calculated only for patients with mutations in genes described in the TCGA splicing paper (Kahles et al., 2018). We found that no specific junctions show significantly enriched sharedness in patients carrying relevant mutations (Fisher’s exact test FDR > 0.05 for all in both A and B), however there is a consistent shift towards higher than expected sharedness across the majority of cancers for patients carrying at least one of the mutations defined by the TCGA splicing paper (Kahles et al., 2018).

(I) Comparison of TCGA-cohort prevalence of junctions occurring vs. not occurring in SRA cancer samples: log-scale box plots representing, for selected TCGA cancer types, the prevalences within each cancer-type cohort of junctions occurring in at least 1% of cancer-type samples, separated into prevalences for junctions (orange, left) found or (blue, right) not found in type-matched cancer sample(s) from the SRA. Selected TCGA cancer types are those for which cancer-matched SRA sample junctions are available from Snaptron (Wilks et al., 2018) and at least 50 TCGA cancer junctions not found in core normal samples are present in the cancer-type matched SRA samples. Most junctions are TCGA-specific, but junctions that are also found in an type-matched SRA cancer cohort have on average higher TCGA-cohort prevalences.
Figure S2: Similarity of TCGA junctions and non-cancer SRA junctions

(A) Clustering by cohort prevalence of junctions not found in core normal samples: heatmap showing shared junction prevalences across all TCGA cancer type and associated histological subtypes with at least 20 samples. The clustered junctions are the 200 most prevalent junctions of each cancer type or subtype that are at least 1% prevalent in that subtype and are not found in any core normal samples but are found in at least one of the 22 non-cancer tissue and cell type SRA samples. Each heatmap row represents a junction's prevalence in each of the TCGA and SRA sample-type cohorts. The colorbar beneath the plot shows SRA tissue and cell types colored according to their assigned categories (Table S3), where white represents adult normal samples, light gray represents stem cell samples, and darker gray represents developmental samples.

(B) Samplewise comparison of junctions from TCGA melanoma samples and select normal samples: boxplots showing the percent of junctions shared for every pairwise combination of TCGA melanoma tumor samples with (brown) TCGA melanoma tumor samples, (grass green) the single TCGA melanoma paired normal sample, (pink) SRA normal melanocyte samples (see Tables S1 and S3), and (blue) GTEx normal skin samples. The percent of junctions shared between two samples is given by \(\% \text{ shared} = \frac{(\text{set } A \& \text{ set } B)}{\min(\text{len(set } A), \text{len(set } B))} \), where a set comprises all junctions identified in the single cancer or normal sample. TCGA melanoma cancer samples have on average a greater similarity of junctions to SRA normal melanocyte samples than to GTEx or TCGA bulk skin normal samples.
Figure S3: Distribution of junctions not found in core normal samples and unexplained junctions

(A) Expanded junction set assignments in normal tissue and cell type categories from the Sequence Read Archive, across cancers: upset-style plot with bar plots showing junction abundances across major sets and subsets (left) and set overlaps (top) across 33 cancers (error bars). Shown junctions are absent from all core normals. Unexplained junctions (red highlights) comprise junctions not present in any set categories studied (see also Figure 3A). The developmental set comprises human development-related junctions not present in the category placenta. Scale is log10 of percent of junctions not found in core normals, calculated for each cancer.

(B) Analysis of inter- and intra-cancer sharedness of stage-3+ “unexplained” junctions: log-scale box plots as in Figure S1I but including only stage-3+ unexplained junctions not found in core normal samples or selected SRA normal adult, developmental, or stem cell samples (Table 1). Plots are presented for TCGA cancer types for which cancer-matched SRA sample junctions are available from Snaptron (Wilks et al., 2018) and at least 30 unexplained junctions are present in the cancer-type matched SRA samples. Prevalences are given within each cancer-type cohort of junctions occurring in at least 0.5% of cancer-type samples, separated into prevalences for junctions (orange, left) found or (blue, right) not found in type-matched cancer sample(s) from the SRA. For all cancer types except DLBC, most junctions are TCGA-specific, but junctions that are also found in a type-matched SRA cancer cohort have on average higher TCGA-cohort prevalences.

(C) Log-scale scatter plot showing, for 33 TCGA cancer types, the number of level-3+ unexplained junctions shared within each cancer-type cohort at each prevalence level as in figure S1B. TCGA cancer type colors are as specified in Figures 1B, 2A, and S1A. Again, among others, ovarian carcinoma (tan), leukemia (pink), testicular germ cell tumors (red), and uveal melanoma (dark green) have significant intra-cohort junction sharedness.

(D) Log-scale histogram showing inter-cancer sharedness of stage-3+ unexplained junctions as in Figure S1C. Again, most junctions occur in only one cancer type, but many are shared between 2 or more.

(E) Upset-style plot with bar plots showing junction abundances across major sets (left) and set overlaps (top) across 33 cancers (error bars); similar to Figure 3A, but presence in 2 samples across the SRA sample-type category is required for inclusion in a set. Shown junctions are absent from all core normals. Unexplained junctions (red highlights) comprise junctions not present in any set categories studied. The developmental set comprises human development-related junctions not present in the category placenta. Scale is log10 of percent of junctions not found in core normals, calculated for each cancer.

(F) Upset-style plot with bar plots showing junction abundances across major sets and subsets (left) and set overlaps (top) across 33 cancers (error bars); similar to Figure 3A, but presence in 2 samples across the SRA sample-type category is required for inclusion in a set. Shown junctions are absent from all core normals. Unexplained junctions (red highlights) comprise junctions not present in any set categories studied. The developmental set comprises human development-related junctions not present in the category placenta. Scale is log10 of percent of junctions not found in core normals, calculated for each cancer.
TCGA cancer type (Abbreviation: # tumor samples)	# of TCGA paired normal samples	GTEx matched tissue(s) (# of normal samples)	# TCGA tumor sample junctions not in tissue-matched normal (avg #/sample)	# unique TCGA cancer-type junctions not in tissue-matched normals	Additional matched normals used: SRA cell type of origin (abbreviation: # of samples)	Histological subtypes (Abbreviation: # of tumor samples)	SRA matched cancer: # of SRA samples
Acute Myeloid Leukemia (LAML: 126)	0	Blood (595)	2,836,278 (22,510/sample)	2,264,159	NA	NA	Acute myeloid leukemia: 725
Bladder Urothelial Carcinoma (BLCA: 414)	19	Bladder (11)	5,627,108 (13,592/sample)	2,227,034	NA	NA	NA
Brain Lower Grade Glioma (LGG: 532)	48	Brain (1409)	1,608,421 (3,023/sample)	1,266,167	NA	Astrocytoma (AC: 196); Oligoastrocytoma (OAC: 135); Oligodendroglioma (ODG: 200)	NA
Breast Invasive Carcinoma (BRCA: 1134)	112	Breast (218)	6,287,963 (5,545/sample)	3,480,255	NA	NA	NA
Cervical Squamous Cell Carcinoma & Endocervical Adenocarcinoma (CESC: 306)	3	Cervix Uteri (11)	14,086,434 (46,034/sample)	2,263,326	NA	Cervical Adenosquamous (CASC: 6); Cervical squamous cell carcinoma (CSC: 253); Endocervical adenocarcinoma (ECAD: 47)	Cervical Carcinoma: 23
Colon Adenocarcinoma (COAD: 505)	41	Colon (376)	1,754,895 (3,475/sample)	1,268,454	NA	NA	NA
Esophageal Carcinoma (ESCA: 185)	13	Esophagus (788)	6,588,463 (35,613/sample)	4,827,828	NA	Esophagus Adenocarcinoma (ESAD: 89); Esophagus Squamous Cell Carcinoma (ESSC: 96)	NA
Glioblastoma Multiforme (GBM: 175)	5	Brain (1409)	922,811 (5,428/sample)	796,026	NA	NA	Glioblastoma multiforme: 20
Kidney Chromophobe (KICH: 66)	25	Kidney (36)	667,651 (10,116/sample)	471,050	NA	NA	NA
Kidney Renal Clear Cell Carcinoma (KIRC: 544)	72	Kidney (36)	4,593,062 (8,443/sample)	2,452,391	NA	NA	Renal Cell Carcinoma: 110
Kidney Renal Papillary Cell	32	Kidney (36)	2,066,360 (7,102/sample)	1,272,647	NA	NA	NA
Tumor Type	Tumor Code	Tumor Location	Sample Size	Somatic Mutation Count	Normal Cancer Cell Line	Normal Primary Cell Line	Additional Notes
--	------------	----------------	-------------	-------------------------	-------------------------	--------------------------	-----------------------------------
Liver Hepatocellular Carcinoma (LIHC: 374)	50	Liver (136)	1,968,456	1,187,750	NA	NA	Hepatocellular carcinoma: 115
Lung Adenocarcinoma (LUAD: 542)	59	Lung (374)	2,827,233	1,885,643	NA	NA	Lung adenocarcinoma: 35
Lung Squamous Cell Carcinoma (LUSC: 504)	51	Lung (374)	3,575,668	1,888,833	NA	NA	NA
Ovarian Serous Cystadenocarcinoma (OV: 430)	0	Ovary (108), Fallopian Tube (7)	30,141,239	11,483,211	NA	NA	NA
Pancreatic Adenocarcinoma (PAAD: 179)	4	Pancreas (197)	1,315,090	830,468	NA	NA	NA
Prostate Adenocarcinoma (PRAD: 506)	52	Prostate (119)	2,476,764	1,643,727	NA	NA	Prostate adenocarcinoma: 51
Skin Cutaneous Melanoma (SKCM: 472)	1	Skin (972)	1,935,123	1,198,791	NA	NA	NA
Rectum Adenocarcinoma (READ: 167)	10	Colon (376)	625,914	496,129	NA	NA	NA
Stomach Adenocarcinoma (STAD: 416)	37	Stomach (203)	12,378,838	7,764,375	NA	NA	NA
Testicular Germ Cell Tumors (TGCT: 156)	0	Testis (203)	935,595	573,824	NA	NA	Testicular cancer: 9
Thyroid Carcinoma (THCA: 513)	59	Thyroid (361)	1,783,492	1,296,521	NA	NA	Thyroid carcinoma: 52
Uterine Carcinosarcoma (UCS: 57)	0	Uterus (90)	593,740	413,469	NA	NA	NA
Uterine Corpus Endometrial Carcinoma (UCEC: 554)	35	Uterus (90)	3,542,334	1,968,191	NA	NA	NA
Disease	No.	Location	Tumor Count	Sampled Count	Mutation Count	Notes	
---------------------------------	-----	-------------------	-------------	---------------	----------------	--	
Sarcoma (SARC: 263)	2	Adipose Tissue (620), Muscle (475)	1,739,153 (6,613/sample)	1,069,549	NA	Desmoid Tumor (DT: 2); Leiomyosarcoma (LMS: 106); Malignant Peripheral Nerve Sheath Tumors (MPNT: 10); Myxofibrosarcoma (MFS: 25); Synovial Sarcoma (SYNS: 10); Undifferentiated Pleomorphic Sarcoma (ULPS: 52)	
Pheochromocytoma & Paraganglioma (PCPG: 184)	3	Adrenal Gland (159), Nerve (335)	1,168,368 (6,350/sample)	662,442	NA	Pheochromocytoma (PCHC: 151); Paraganglioma (PGG: 33)	
Adrenocortical Carcinoma (ACC: 79)	0	Adrenal Gland (159)	12,703,775 (160,807 /sample)	1,013,102	NA	NA	
Mesothelioma (MESO: 87)	0	Lung (374)	399,050 (4,587/sample)	317,630	NA	NA	
Head and Neck Squamous Cell Carcinoma (HNSC: 504)	44	Skin (972)	1,780,841 (3,533/sample)	1,262,383	NA	NA	
Cholangiocarcinoma (CHOL: 36)	9	Liver (136)	281,418 (7,817/sample)	220,929	NA	Cholangiocarcinoma: 7	
Thymoma (THYM: 120)	2	NA	4,228,476 (35,237 /sample)	1,206,043	Thymus primary cell (thym_pc: 20); Thymus tissue (thym_tis: 119)	Thymoma: 15	
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma(DLB C: 48)	0	NA	No match: 7,722,928 (160,894 /sample)	849,592	NA	Diffuse Large B-cell Lymphoma: 2	
Uveal Melanoma (UVM: 80)	0	NA	No match: 13,315,153 (166,439/sample)	899,967	Melanocyte cell line (mel_cl: 22); Melanocyte primary cell (mel_pc: 8)	Uveal Melanoma: 5	
NA	NA	Heart (489)	NA	NA	NA	NA	
NA	NA	Pituitary (124)	NA	NA	NA	NA	NA
NA	NA	Salivary Gland (70)	NA	NA	NA	NA	NA
NA	NA	Small Intestine (104)	NA	NA	NA	NA	NA
NA	NA	Spleen (118)	NA	NA	NA	NA	NA
NA	NA	Vagina (97)	NA	NA	NA	NA	NA
NA	NA	Blood vessel (750)	NA	NA	NA	NA	NA
Table S2: Percent of junctions not found in core normal samples, averaged across cancer types

SRA category:	Adult	Developmental	Stem Cells	Unexplained						
Number of samples per SRA category required for set membership	1	26.5%	15.4%	2.7%	64.9%					
	2	19.6%	5.92%	2.2%	76.4%					
SRA cell or tissue type	Sample types (abbreviation: # of samples)	Assigned category > subcategory (if applicable)								
------------------------	---	---								
Aorta	tissue (aor_tis: 266)	adult								
Astrocyte	cell line (ast_cl: 4), primary cells (ast_pc: 83)	adult								
Biliary Tree	combined group of tissue (4 samples) and stem cells (3 samples) (bt_all: 7)	adult								
Bone	cell line (bone_cl: 20), tissue (bone_tis: 58)	adult								
Ectoderm	cell line (ect_cl: 17)	developmental > embryonic								
Embryo	cell line (emb_cl: 929), primary cells (emb_pc: 904), stem cells (emb_sc: 34), tissue (emb_tis: 989)	developmental > embryonic								
Epithelial Cell	cell line (ec_cl: 853), primary cell (ec_pc: 621)	adult								
	stem cells (ec_sc: 57)	stem cells								
Eye	cell line (eye_cl: 42), primary cell (eye_pc: 4), tissue (eye_tis: 53)	adult								
Fallopian Tube	tissue (ft_tis: 13)	adult								
Fibroblast	cell line (fb_cl: 1660), primary cell (fb_pc: 351)	adult								
	stem cells (fb_sc: 9)	stem cells								
Glial Cell	cell line (gc_cl: 10), primary cells (gc_pc: 136)	adult								
Hematopoietic Cell	cell line (hpc_cl: 603), primary cell (hpc_pc: 2679)	adult								
	stem cells (hpc_sc: 18)	stem cells								
Hepatocyte	cell line (hep_cl: 7), primary cell (hep_pc: 77)	adult								
Induced Pluripotent Stem Cell	cell line (ips_cl: 139)	stem cells								
Islet of Langerhans	cell line (ilh_cl: 3), primary cell (ilh_pc: 285)	adult								
Leukocyte	cell line (lk_cl: 370), primary cell (lk_pc: 2178)	adult								
Lymphocyte	cell line (lym_cl: 255), primary	adult								
Cell Type	Description									
---	---									
Macrophage	cell line (mph_cl: 19), primary cell (mph_pc: 130)									
Melanocyte	cell line (mel_cl: 22), primary cell (mel_pc: 8)									
Mesenchymal Stem Cell	stem cells (msc_sc: 65)									
Mesenchyme	stem cells (mes_sc: 19)									
Mesothelium	cell line (mes_cl: 4)									
Myeloid Cell	cell line (myl_cl: 29), primary cell (myl_pc: 794)									
Myoblast	cell line (myo_cl: 7), primary cell (myo_pc: 402)									
Neonate	cell line (nn_cl: 250), primary cell (nn_pc: 105), tissue (nn_tis: 21)									
Oligodendrocyte	primary cell (odg_pc: 37)									
Oocyte	primary cell (ooc_pc: 11)									
Placenta	tissue (plc_tis: 264)									
Platelet	primary cell (plt_pc: 6)									
Pluripotent Stem Cell	cell line (pps_cl: 139), stem cells (pps_sc: 6)									
Somatic Stem Cell	stem cells (ssc_sc: 86)									
Thymus	primary cell (thym_pc: 20), tissue (thym_tis: 119)									
Zygote	primary cell (zyg_pc: 27)									
Unexplained stage 3+ junction (chr; left splice site; right splice site; strand)	Cancer count	Cancer type: % of cancer-type samples containing the junction								
---	-------------	---								
chr18;49501731;49524503;	-	3	Esophageal_Carcinoma: 21.0811%; Head_and_Neck_Squamous_Cell_Carcinoma: 28.7698%; Lung_Squamous_Cell_Carcinoma: 13.0952%							
chr19;58392528;58393026;+	3	Esophageal_Carcinoma: 11.3514%; Ovarian_Serous_Cystadenocarcinoma: 19.3023%; Stomach_Adenocarcinoma: 12.9808%								
chr11;2129478;2395551;+	2	Adrenocortical_Carcinoma: 13.9241%; Uterine_Carcinosarcoma: 10.5263%								
chr11;22900551;23057663;	-	2	Skin_Cutaneous_Melanoma: 11.4407%; Uveal_Melanoma: 12.5%							
chr12;15569284;15578851;+	2	Colon_Adenocarcinoma: 15.4455%; Rectum_Adenocarcinoma: 16.1677%								
chr12;15579385;15580037;+	2	Colon_Adenocarcinoma: 16.6337%; Rectum_Adenocarcinoma: 16.7665%								
chr14;100376176;100734652;+	2	Adrenocortical_Carcinoma: 17.7215%; Pheochromocytoma_and_Paraganglioma: 22.2826%								
chr18;49524635;49578176;	-	2	Esophageal_Carcinoma: 15.6757%; Head_and_Neck_Squamous_Cell_Carcinoma: 18.6508%							
chr19;3976571;3982811;	-	2	Acute_Myeloid_Leukemia: 13.4921%; Ovarian_Serous_Cystadenocarcinoma: 10.4651%							
chr19;41683816;41771127;	-	2	Esophageal_Carcinoma: 14.5946%; Stomach_Adenocarcinoma: 15.8654%							
chr19;41709948;41718251;+	2	Esophageal_Carcinoma: 11.3514%; Stomach_Adenocarcinoma: 10.8173%								
chr21;16971056;16971076;+	2	Esophageal_Carcinoma: 13.5135%; Ovarian_Serous_Cystadenocarcinoma: 18.1395%								
chr6;116004903;116119064;+	2	Esophageal_Carcinoma: 11.8919%; Stomach_Adenocarcinoma: 11.2981%								
chr6;116004910;116119071;+	2	Esophageal_Carcinoma: 11.8919%; Stomach_Adenocarcinoma: 11.2981%								
chr6;31944795;31944981;+	2	Ovarian_Serous_Cystadenocarcinoma: 19.5349%; Stomach_Adenocarcinoma: 11.7788%								
chrX;4542633;4895036;+	2	Esophageal_Carcinoma: 10.8108%; Stomach_Adenocarcinoma: 11.0577%								
TCGA cancer type	Core normals	Other adult non-cancer	Developmental	Stem cell	Unexplained					
--	--------------	------------------------	---------------	-----------	-------------					
	junction count	antisense prevalence								
Acute Myeloid Leukemia	1,745,361	27%	183,003	46%	46,261	48%	4,580	45%	427,768	47%
Adrenocortical Carcinoma	941,404	20%	7,830	39%	2,369	38%	326	33%	22,053	44%
Bladder Urothelial Carcinoma	2,401,749	24%	58,874	35%	17,652	31%	3,348	26%	155,124	42%
Brain Lower Grade Glioma	2,847,326	26%	64,093	40%	19,716	38%	3,129	32%	165,091	41%
Breast Invasive Carcinoma	4,013,058	27%	170,106	36%	44,855	36%	7,520	30%	441,104	37%
Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma	2,148,683	24%	45,625	36%	12,353	35%	2,361	27%	111,091	42%
Cholangiocarcinoma	754,166	15%	3,790	33%	900	33%	168	24%	8,399	37%
Colon Adenocarcinoma	2,228,830	25%	64,988	37%	19,894	31%	2,841	32%	155,589	42%
Esophageal Carcinoma	3,939,154	29%	349,351	43%	113,466	45%	13,813	38%	1,039,014	46%
Glioblastoma Multiforme	2,368,563	25%	35,154	36%	12,209	35%	2,024	26%	75,111	37%
Head and Neck Squamous Cell Carcinoma	2,571,867	24%	72,107	35%	19,318	34%	4,210	27%	177,027	40%
Kidney Chromophobe	1,042,201	22%	10,778	42%	3,081	37%	490	26%	28,961	42%
Kidney Renal Clear Cell Carcinoma	2,925,458	26%	93,435	38%	21,535	38%	3,160	32%	197,822	40%
Kidney Renal Papillary Cell Carcinoma	1,896,671	25%	33,239	39%	8,380	38%	1,255	33%	85,284	41%
Liver Hepatocellular Carcinoma	1,889,979	23%	43,871	36%	9,302	33%	1,486	27%	91,086	40%
Lung Adenocarcinoma	2,890,617	26%	95,291	37%	23,848	35%	4,387	30%	229,442	40%
Lung Squamous Cell Carcinoma	3,018,232	24%	92,301	33%	27,381	30%	5,604	22%	212,501	36%
Lymphoid Neoplasm Diffuse Large B cell Lymphoma	793,306	18%	9,851	30%	1,806	32%	277	30%	16,201	36%
Mesothelioma	1,150,647	20%	11,387	38%	3,060	39%	594	29%	27,214	43%
Ovarian Serous Cystadenocarcinoma	5,092,658	32%	542,738	46%	242,074	48%	24,032	41%	2,739,236	49%
Pancreatic Adenocarcinoma	1,593,779	22%	20,854	39%	5,087	41%	876	33%	49,429	44%
Pheochromocytoma and Paraganglioma	1,480,083	23%	19,085	40%	6,003	40%	832	35%	53,453	43%
Prostate Adenocarcinoma	2,423,109	26%	55,616	40%	15,372	40%	2,257	35%	159,220	43%
Rectum Adenocarcinoma	1,381,622	22%	21,823	37%	6,693	33%	945	28%	42,408	42%
Cancer Type	Cases	Incidence %	Deaths	Mortality %	New Cases	Death Rate	Total Deaths	5-year survival		
-----------------------------------	------------	-------------	--------	-------------	-----------	------------	--------------	-----------------		
Sarcoma	1,985,824	23%	31,671	35%	10,306	1,699	77,762	39%		
Skin Cutaneous Melanoma	2,493,051	24%	62,444	36%	17,376	2,973	148,206	38%		
Stomach Adenocarcinoma	4,844,395	31%	494,846	44%	172,922	19,099	1,787,745	47%		
Testicular Germ Cell Tumors	1,627,329	19%	26,027	26%	12,435	5,054	49,836	31%		
Thymoma	1,364,454	21%	19,938	32%	4,892	1,057	40,450	37%		
Thyroid Carcinoma	2,501,295	27%	54,285	42%	14,124	2,217	147,977	44%		
Uterine Carcinosarcoma	993,014	18%	8,062	35%	3,328	601	22,474	39%		
Uterine Corpus Endometrial Carcinoma	2,499,341	26%	70,746	36%	20,596	3,226	155,889	41%		
Uveal Melanoma	849,072	20%	7,281	40%	1,799	276	16,284	42%		