Research of permafrost soil thawing under the structural foundation platform

I S Inzhutov¹, V I Zhadanov², R A Nazirov¹, V V Servatinskii¹, M Yu Semenov¹, S P Amelchugov¹, I N Archipov¹, Yu M Goncharov¹ and Chaikin E A¹

¹ Siberian Federal University, 82 Pr. Svobodny, Krasnoyarsk 660041 Russia
² Orenburg State University, 13 Pr. Pobedy, Orenburg 460018 Russia

Maximys_92@mail.ru

Abstract. The implementation of spatial foundation platforms on permafrost soils is justified in this paper. The stress-strain state of the spatial foundation platform under the building of a lens-shaped structure at different heights of the ventilated space is investigated. The structural solution of the spatial foundation platform is made in the form of a plate-and-rod structure. The calculation is carried out using the SCAD software package. The parameters of the rods and nodal joints of the spatial foundation platform are determined. With the help of the COMSOL Multiphysics software package, temperatures are investigated throughout the year in the central part of the platform under its lower belt.

1. Introduction

The modern policy of the Russian Federation is aimed at the development of the Arctic regions. The cryolith zone (the upper layer of the earth's crust, characterized by negative temperatures of rocks and soils and the presence or possibility of underground ice existence) stores huge reserves of hydroelectric resources. Construction in permafrost constantly requires improvement, energy and construction efficiency, reduction of the construction time due to the short summer period. Taking into account cryogenic permafrost processes and predicted global warming, it is important to develop foundation structures that ensure the stability of the building during the permafrost degradation [1].

The use of reinforced concrete foundations has its significant disadvantages due to the underdeveloped logistics of high-latitude construction and seasonality of installation works. Precast concrete is difficult to transport, and monolithic reinforced concrete significantly slows down the construction process. With all the known advantages, metal structures contribute to undesirable heat transfer to the soil.

Timber possesses a small coefficient of thermal conductivity, which significantly increases the energy efficiency of the structure as a whole. Such material can reduce heat transfer from the structure to the soil, which is important in the operation of the building on permafrost soils, built on the first principle. Timber structures improve logistics due to their transportability. In addition, due to the convenience assembling of timber structures the speed of construction increases.

On the whole, the construction of timber buildings and structures in the Northern latitudes is a promising direction due to the technical, aesthetic and geometric characteristics of structures and requires the development of special foundations [2, 3, 4].

According to the authors, the feasibility of using a spatial foundation platform is worth considering [5, 6, 7, 8]. Platforms can have solutions in the form of cross beams, structural plates, plate-rod
structures, as well as shells and folds. Regardless of the design solution, the spatial foundation platform is prefabricated.

The use of spatial foundation platforms is promising for a number of reasons:

- Reduction of engineering-geological surveys;
- The structure does not require a large amount of excavation, which in the case of frozen soils is quite time-consuming;
- The spatial foundation platform is less sensitive to the deformation of the footing soil due to the solid work of the structure; it is advisable to build it in seismic areas, on weak and structurally unstable soils, including permafrost soils;
- The possibility of the spatial foundation platform structure to be adjustable, for example, by means of jack devices;
- Availability of repair and the foundation structure reinforcement;
- The platform prefabrication solves the issues of transportation and improves logistics in the Northern latitudes;
- All-season construction;
- Reduction of construction time;
- Due to the thermal properties of timber, the energy efficiency of the construction built on such foundations in the Arctic regions is increased;
- The upper belt of construction elements can serve as floor;
- The use of a spatial foundation platform allows to implement the principle of building closure, which increases the energy efficiency of the first floor;
- Use of ventilated space for technical needs;
- Due to the low coefficient of thermal conductivity of timber and the ability of the spatial platform to be ventilated, the thawing risk of the soil is significantly reduced, which is effective in the process of the foundation building on a degraded permafrost soil.

Prefabrication and versatility of the spatial foundation platform allows it to be used for various buildings and structures (Figure 1, 2).

![Figure 1](image1.png)

Figure 1. Spatial foundation platform of plate-and-rod structure for a rectangular building.

![Figure 2](image2.png)

Figure 2. Spatial foundation platform of a plate-rod structure with a rounded shape for aerodynamic building forms.
2. Numerical research

The authors have analysed the spatial foundation platform made of timber elements for the lens-shaped form building (Figure 3). The structural solution of the spatial foundation platform is made in the plate-and-rod form structure.

![Design scheme](image)

Figure 3. Design scheme.

The frame of the building is formed by sixteen half-arches in an amount of 16 pieces with a cross section of 160×693 mm in increments of 5.209 m in the 30 m largest diameter of the building. The diameter of the lens base is 16 m. The height of the building is 13 meters. From the greatest diameter of the building the semi arches are located down to the footing and up to the key ring that unites the 6m columns. The 235×660 mm section columns are around the circumference in the number of 9 pieces. The supporting structures are made of the second grade glued timber (pine).

The spatial foundation platform in the form of plate-and-rod structure is designed from timber plates with 3×3 m dimensions, made of lamellas (CLT) cross-glued layers, forming the upper and lower construction belts. Timber elements are made of the second grade larch. The plates in the belts are connected to each other by a hinge. The CLT plate’s thickness of the upper and lower belt is 231 mm. The lattice rods, forming a spatial structure, are made of bars and are inclined. As a result, the spatial operation of the platform is provided, and favorable conditions for the transfer of impacts to the footing are created.

The authors have performed the stress-strain state (SSS) numerical studies of the spatial foundation platform under varied values of height: 1; 1.5 and 2 m. Calculation were performed with the SCAD software package. The structure was modeled on an elastic base with unfavorable characteristics. In calculation the elastic base deformation modulus is taken 350 MPa, the layer thickness - 10 meters, the Poisson ratio - 0.35. Preparation in the form of gravel bedding or crushed stone with a thickness of 100-200 mm is provided to prevent the negative impact of frozen soil and water on the design of the base. At different heights of the ventilated space, design features of the spatial foundation platform are being changed (Table 1). The plates of the upper belt are displaced relative to the lower belt by a different value. Depending on the height of the ventilated space, the number of nodal connections per plate and the angle of rods inclination are changed.
Table 1. Schemes of spatial foundation platform with different ventilated space heights.

Ventilated space height, m	Scheme	Rod inclination, rad (°)	Number of nodal connections per one plate, (pieces)
1		0.96 (55)	9
1.5		0.96 (55)	4
2		0.75 (43)	1

As a result of calculations, the maximum longitudinal forces in the rods and the maximum values of moments in the upper zone [9] are established (Table 2).

Comparative analysis (Table 3) of the main materials consumption shows that the economical benefit increases with decreasing of the platform height (i.e. the height of the ventilated space).
Table 2. Maximum longitudinal forces in the rods and the maximum values of moments in the upper zone.

Ventilated space height, m	"Bunch" of rods with N maximum tensile stress, kN	"Bunch" of rods with N maximum compression stress, kN	M maximum value, kN·m
1	22.7	25.15	0.054
	16.4	21.06	0.076
1.5	31.23	25.15	0.025
	50.5	21.06	0.054
	57.62	2.64	0.19
	45.89	1.9	0.05
2	92.86	38.64	0.06
	54.92	24.71	1.23

Table 3. Consumption of the main materials.

Platform height, m	Timber consumption for the lattice, m³	Cost of assembly (prices for 2018), thousand roubles
1.0	8.00	148
1.5	10.88	201.5
2.0	21.57	400

However, to ensure the operation reliability and for reasons of possible repair and maintenance of the foundation structures and communications, the ventilated space height is advisable at least 1.5 meters [10].

In Figure 4 the connection node of the upper belt and the lattice rods of the spatial foundation platform with the 1.5 m height of the ventilated space are given [11, 12]. The connection is designed with a support steel platform of the square 250×250×15 mm profile. For fastening the bars of the lattice, 6 mm thick gussets, welded to the specified plate of 8 mm thick and 100 mm wide are provided, which are based on the support platform. The gussets are attached to the timber brace with steel 16 mm diameter pin bolts. The plate is reinforced by a stiffener.

The further analysis of the spatial foundation platform was analysis of the with the COMSOL Multiphysics software package with the aim of determining the soil thawing parameters under the lower belt. The cross section with the largest amount of heat-conducting material (metal) was chosen for the calculation model (Figure 5). The calculation was performed without taking into account
convection and flowability of the ventilated space of the foundation platform. The spatial foundation platform rested directly on the ground without filling. The problem was solved with boundary conditions of the third kind. When calculating, the heat transfer coefficient was taken to be constant and equal to 23 W/m²·°C in accordance with [13]. The surface temperature was taken to be equal to the average monthly outdoor air temperatures for the city of Norilsk [14] (Table 4). At the lower boundary of the design area, at a depth of 10 meters, according to the literature and the calculated data, the heat flux of 2.72 W/m² was set. On the upper belt of the platform heat insulation with 150 mm thickness made of mineral wool was provided. The temperature on the surface of the heater was taken 20 °C, heat transfer coefficient equal to 8.7 W/m²·°C

Figure 4. The node connection of the plate and the rods of the spatial foundation platform structure.

In the course of the calculation performed for the 4 years duration, the soil temperatures were determined under the foundation platform. It was found that in the hottest month of the year the temperature in the central part of the platform under the lower belt was negative (Figure 6). This indicates the possibility of the design optimization from the position of minimizing the thermal impact on the ground base.
Table 4. The average monthly outdoor air temperatures for the city of Norilsk.

Month	January	February	March	April	May	June	July	August	September	October	November	December
Soil temperature T, K (°C)	245.85 (-27.3)	247.95 (-25.2)	252.95 (-20.2)	258.45 (-14.7)	267.95 (-5.2)	278.35 (5.2)	287.55 (14.4)	283.85 (10.7)	274.95 (1.8)	261.95 (-11.2)	251.35 (-21.8)	247.15 (-26)

Figure 5. A model for determining the thermal impact on the soil by the spatial foundation platform.

Figure 6. Isoline of the temperature equal to 273.15 K (0 °C) in the hottest month of the year.

3. Conclusions
- It is revealed that the minimum ventilated space height of the foundation platform is 1.5 meters because of the serviceability requirements;
- It was found that the foundation platform with the height of 1.5 meters provides negative soil temperature under the lower belt in the hottest month;
- The numerical experiment has proved that the suggested design reduces the risk of soil warming.
References

[1] Goncharov Yu M 2012 *Handbook on the history of design and construction of civil buildings in the North* (Krasnoyarsk: Siberian Federal University) p 316

[2] Abovsky N P, Endzhievskiy L V, Inzhutov I S, Deordiev S V and Palagushkin V I 2013 *Monograph on the Shaping of Building Structures* (Krasnoyarsk: Siberian Federal University) p 184

[3] Goncharov Yu M 1989 *Development and improvement of effective methods of foundation building on permafrost soils* (Yakutsk) p 42

[4] Abovsky N P 2004 *Active Shaping of Architectural Structures of Buildings and Constructions of Uniform Building Elements for the Construction under Special Soil Conditions and Seismic Areas* (Krasnoyarsk: State Academy of Architecture and Construction) p 241

[5] Abovsky N P 2004 *Spatial Prefabricated Solid Foundation Platforms for Building in Special Conditions and Seismicity* (Krasnoyarsk: State Academy Architecture Construction) p 202

[6] Mitasov V M, Panteleev N N, Adishev V V and Michailova N S 2007 *Spatial Foundation Platform* Patent RF 2007105795/22

[7] Abovsky N P, Andreev N P, Sidelev V A and Sapkalov V I 2007 *Spatial Foundation Platform under Buildings and Structures for Construction on Weak, Sagging, Heaving Soils and in Seismic Zones* Patent RF 2007110056/22

[8] Mitasov V M, Panteleev N N and Michailova N S 2009 *Spatial foundation platform* Patent RF 2008142905/22

[9] *Timber structures* Set of regulations 64.13330.2017 (Moscow: Mingegionstroy) p 102

[10] *Footings and foundations in permafrost soils* Set of regulations 25.13330.2012 (Moscow: Mingegionstroy) p 118

[11] Inzhutov I S, Dmitriev P A, Zhadanov V I, Deordiev S V and Zacharjuta V V 2012 *Atlas of the Nod Connection Systems of Structural Systems* (Krasnoyarsk – Orenburg) p 50

[12] Shmidt A B and Dmitriev P A 2001 *Atlas of Building structures Made of Laminated Timber and Water-Resistant Plywood* (Moscow: ASV Press) p 292

[13] *Thermal Protection of Buildings* Set of regulations 50.13330.2012 (Moscow: Mingegionstroy) p 139

[14] *Construction Climatology* Set of regulations 131.13330.2012 (Moscow: Mingegionstroy) p 109