Majorana fusion in interacting one-dimensional Kitaev chains

Bradraj Pandey1,2, Narayan Mohanta1,2, and Elbio Dagotto1,2

1Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
2Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

We employ a time-dependent real-space local density-of-states method to study the movement and fusion of Majorana zero modes in the 1D interacting Kitaev model, based on the time evolution of many-body states. We study the dynamics and both fusion channels of Majoranas using time-dependent potentials, either Wall or Well, focusing on the local density-of-states and charge-density of fermions varying with time. For a Wall, i.e. repulsive strong potential, after fusion of Majoranas the electron (or hole) forms at $\omega = 0$, whereas for a Well, i.e. attractive deep potential, electron (or hole) forms at $\omega \sim -V$, where V is the Coulomb repulsion. We also describe specific upper and lower limits on the Majorana movement needed to reduce non-adiabatic effects as well as to avoid poisoning due to decoherence, focusing on forming a full electron (or hole) after the fusion.

\textit{Introduction.} Majorana zero modes (MZMs) generate much interest because of potential applications in quantum information and computation \cite{1–3}. MZMs obey non-abelian exchange statistics and being topologically protected from local perturbations and disorder, they are of value as possible qubits \cite{4–6}. Signatures of MZMs are expected to develop in tunneling conductance experiments as zero bias peaks \cite{7–9}. The simplest setup to realize Majoranas are one-dimensional topological quantum wires, where MZMs develop at the two edges \cite{1,15}. For ferromagnetic atomic chains with strong spin-orbit coupling placed over a superconductor, MZMs were indeed reported at the edges in spatially and spectral resolved scanning tunneling experiments \cite{10,11}. In these nanowires, most theoretical work neglects repulsion among particles. However, Coulomb repulsion plays an important role in 1D MZMs because it suppresses the pairing-induced bulk gap and can destroy topological protection \cite{12,13}. Reciprocally, the Coulomb interaction may lower the Zeeman energy in nanowires and Majorana fermions could be accessed over larger regions of chemical potential (i.e. gates) \cite{14}.

In one dimension MZMs behave as Ising non-abelian anyons \cite{4,16} and obey the fusion rule \cite{17}: $\gamma \times \gamma = I + \psi$, which means two MZMs can fuse into a hole I, or into an electron ψ. The fusion process requires a slow adiabatic movement of Majoranas, which can be achieved by applying properly adjusted time-dependent local gates to the topological superconducting wire \cite{15}. The rapid progress in 1D quantum-wires with tunable local gates set-ups \cite{15,17,18}, provides a promising platform for creation, movement, and fusion of Majoranas \cite{19}.

Motivated by the experimental progress in nanowires \cite{20}, we employ a time-dependent real-space local density-of-states LDOS(ω,j,t) method to observe the movement and fusion rules of Majoranas in the Kitaev model with repulsive interaction of strength V. Compared to previous studies based on single particle states, here we use the exact-diagonalization method for the time evolution of the many-body states of interacting electrons in the 1D Kitaev model of 12 sites. With sequential application of time-dependent chemical potential gates (to generate either Walls or Wells depending on signs), we perform fusion of Majoranas in both channels (Electron : Ψ and Hole : I). For Walls, after fusion we find that the electron (or hole) appears at energy $\omega = 0$, whereas for Wells the electron (or hole) appear at $\omega \sim -V$. We also discuss the minimum required switching time of the local gates to observe a nearly full electron (or hole) in the fusion process for several V’s, i.e. the conditions needed for adiabatic movement.

\textit{Model and Method.} We consider the time-dependent interacting 1D Kitaev model for spinless fermions with open boundary condition:

\begin{equation}
H(t) = -t_h \sum_{i=1}^{N-1} \left(\varepsilon_i c_i^\dagger c_{i+1} + H.c. \right) + V \sum_{i=1}^{N-1} (n_i n_{i+1}) + \Delta \sum_{i=1}^{N-1} \left(\varepsilon_i c_i^\dagger c_{i+1} + H.c. \right) + \sum_{i}^{N} \mu_i(t)n_i,
\end{equation}

where $n_i = c_i^\dagger c_i$ and c_i^\dagger (c_i) is the fermionic creation (annihilation) operator, t_h is the hopping amplitude, and Δ is the p-wave pairing strength. The time dependence is incorporated in the chemical potential $\mu_i(t)$ as:

\begin{equation}
\mu_i(t) = 0 \ (i < i_0), \quad \mu_i(t) = \mu \ (i > i_0),
\end{equation}

\begin{equation}
\mu_i(t) = \mu \frac{n \Delta t}{\tau} \ (i = i_0),
\end{equation}

where $1/\tau$ is the quenched rate, $\Delta t = 0.001$ is the small time step we used, and n is the integer number of those steps, such that the on-site chemical potential $\mu_i(t)$ at $i = i_0$ increases approximately linearly from 0 to μ in a time τ (defined as the switching time of the local gate at site $i = i_0$). The sequential application of onsite gates $\mu_i(t)$ on the right half of the 1D chain, creates a moving Wall for $\mu > 0$ (or moving Well for $\mu < 0$), separating topological from non-topological regions at site $i = i_0$. Equating our number of sites with number of gates in a coarse-grained approach, this process leads to the slow movement of the
right edge Majorana zero mode $\langle \mu_j \rangle$ from the edge $i = N$ to site $i_0 = 1$ in a finite time $t = N_R \tau$, with N_R the number of sites where the chemical potential reached its maximum value (here being $|\mu| = 12$) at time t (Fig. 1).

To calculate the time-dependent local density-of-states (at zero temperature), we first time evolve the ground-state wave function $|\psi(t)\rangle$ up to time $t = N_R \tau$, using the time-dependent Hamiltonian $H(t)$ as:

$$|\psi(t)\rangle = \exp\left(-i \int_0^t H(s) ds\right) |\psi(0)\rangle,$$

where T is the time ordering operator [21]. Then, we calculate the double-time Green function $G(t, t')$ [22], using the time-independent Hamiltonian $H_f = H(t = t_f)$ at time $t_f = N_R \tau$:

$$G_{\text{elec}}(t, t') = \langle \psi(t) | e^{i H_f t'} c_j \rho_j e^{-i H_f t} c_j \rho_j | \psi(t) \rangle.$$

The time-dependent $\text{LDOS}_{\text{elec}}(\omega, j, t)$ for electrons is the Fourier transform with respect to t' of the local-Green function at site j:

$$\text{LDOS}_{\text{elec}}(\omega, j, t) = \frac{1}{\pi} \text{Im} \int_0^T dt' e^{i (\omega + in) t'} i G_{\text{elec}}(t, t'),$$

where we use $T = 70$, for the integration and broadening $\eta = 0.1$. Similarly we obtained the $\text{LDOS}_{\text{hole}}(\omega, j, t)$ for holes, using the Fourier transform of the Green function $G_{\text{hole}}(t, t') = \langle \psi(t) | c_j(t') c_j \rho_j e^{-i H_f t'} c_j \rho_j | \psi(t) \rangle$. The total local density-of-states at site j is, thus, $\text{LDOS}(\omega, j, t) = \text{LDOS}_{\text{hole}}(\omega, j, t) + \text{LDOS}_{\text{elec}}(\omega, j, t)$.

Slow movement of Majoranas. For fusion or braiding of MZMs, it is required to transfer the Majoranas slowly (i.e. close to the adiabatic limit) [23, 24]. At $t = 0$ with $\mu_i = 0$ (for all sites), and $t_h = \Delta = 1$ for simplicity, the MZMs are localized at the two edges. Figure 2(a) shows the real-space local density-of-states $\text{LDOS}(\omega = 0, j, t = 0)$ vs. site j. For small or zero Coulomb repulsion V, these peaks are sharply localized at the end sites $(i = 1$ and 12), whereas for nonzero values of V the $\omega = 0$ peaks are slightly delocalized over a few sites. In the inset, we plot $\text{LDOS}(\omega)$ at time $t = 0$ at the end site $j = 12$ and several values of V. We find a sharp peak at $\omega = 0$, signaling a MZM mode at the end site. Integrating in ω the $\text{LDOS}(\omega, j = 12)$ at $V = 0$ gives spectral weight 0.48, very close to the analytically expected value 0.5 [25]. Next, with sequential application of the time-dependent chemical potential $\mu_j(t)$, the right edge MZM $\langle \mu \rangle$ (site $j = 12$) is moved to the middle site $(j = 6)$ in a time $t = N_R \tau$ (i.e. $t/\tau = N_R = 6$ because we travel 6 sites). We study cases $\tau = 36, 60$ and 72 and interaction strengths $V = 0.0, 0.5$ and 1.0. In this case, $|\psi(t)\rangle$ remains close to the degenerate ground-state space (larger values of V require a slower-rate of increase in the onsite $\mu_{i_0}(t)$). As shown in Fig. 2(b), for $\mu = 12$ (i.e. when creating a potential Wall), the $\text{LDOS}(\omega = 0, j, t)$ has peaks at site $j = 1$ and $j = 6$ at time $t/\tau = 6$, indicating that the slow transfer of MZM $\langle \mu \rangle$ from $j = 12$ to $j = 6$ occurred. At $t/\tau = 6$, we also found that the peak height of the electron- and hole-components of the local
density-of-states at \(j = 6 \) are almost equal (satisfying one of the characteristic features of MZM, \(\gamma_i = \gamma_i^t \)) \cite{26}. The average density \(\langle n(j, t) \rangle \) takes values close to zero for \(j \geq 7 \), while it is close to 0.5 for \(j \leq 6 \) (inset of Fig. 2(b)).

Interestingly, at \(\mu_R = -12 \) (i.e. when creating a potential Well), the effect of interaction increases. In the non-topological region (\(j \geq 7 \)), each site is occupied by one fermion, whereas in the topological region (\(j \leq 6 \)) the mean occupancy of fermions is close to 0.5 (for \(V = 0 \)). Without nonzero \(V \), to minimize the Coulomb interaction between fermions at the topological to non-topological boundary, the fermions near the boundary become inhomogeneously distributed (see inset of Fig. 2(c)). This also leads to the delocalization of MZM\(^{t(R)}\) over more sites as \(V \) increases (see Fig. 2(c)).

Fusion of Majoranas. For the fusion of Majoranas, we move the right edge MZM\(^{t(R)}\) all the way to the left end (site \(j = 1 \)) using sequential operations of \(\mu(t) \) in a time interval \(t = \tau \) that allows for adiabatic movement. At \(t = 0 \), for \(V = 0 \), \(\nu = \Delta = 1 \), with \(\mu_i = 0 \) (for all sites), the system has degenerate many-body ground states (\(|\psi_1 \rangle \) and \(|\psi_2 \rangle \)). We find at \(t = 0 \), both states have equal occupancy (0.5) of electron at each site. These degenerate ground states can be distinguished using non-local operators \cite{27, 28} \(\hat{O} = i a_N b_N = c_N^1 c_1^1 + c_N^1 c_1^1 + H.c. \), in the standard notation. For \(V = 0 \), \(\nu = \Delta = 1 \), at time \(t = 0 \), we find \(\langle \psi_1 | \hat{O} | \psi_1 \rangle = -1 \) and \(\langle \psi_2 | \hat{O} | \psi_2 \rangle = +1 \) (increasing \(V \) this reduces in absolute value because the Majorana no longer is perfectly localized at one site). At \(t = 0 \), we start the time evolution with those initial states \(|\psi_s \rangle \) (\(s = 1 \) or 2) up to \(t = \tau = 11 \), to confirm both fusion channels (Electron : \(\Psi \) and Hole : \(\bar{\Psi} \)).

For positive chemical potential \(\mu(t) > 0 \) (Wall) and the initial states \(|\psi_s \rangle \) satisfying \(\langle \psi_s | \hat{O} | \psi_s \rangle = 1 \), the electron \(LDOS_{elec} (\omega) \) at \(j = 1 \) shows a sharp peak close to \(\omega = 0 \), for \(V = 0 \), 0.5, and 1 (Fig. 3(a)). Meanwhile, the hole \(LDOS_{hole} (\omega) \) at \(j = 1 \), displays no peak. The time-dependent density \(\langle n(j, 1, t) \rangle \) at site \(j = 1 \) takes values one at \(\tau = 11 \), giving a clear indication of the formation of a single electron (spinless) at site \(j = 1 \) after Majoranas fusion. On the other hand, for the initial state \(|\psi_s \rangle \) satisfying \(\langle \psi_s | \hat{O} | \psi_s \rangle = -1 \), the hole \(LDOS_{hole} (\omega) \) displays a sharp peak close to \(\omega = 0 \), for \(V = 0 \), 0.5, and 1 (Fig. 3(d)). The electron \(LDOS_{elec} (\omega) \) has no peak at \(t = \tau = 11 \), see Fig. 3(e). As shown in Fig. 3(e) the density \(\langle n(j, 1, t) \rangle \) at \(j = 1 \) approaches zero, confirming hole formation at \(t = \tau = 11 \). Because the MZM spread over more than one site as \(V \) grows, density fluctuations occur at site \(j = 1 \) as compared to \(V = 0 \) (Figs. 3(c),f)).

For negative chemical potential \(\mu(t) < 0 \) (Well), and for the initial state \(|\psi_s \rangle \) satisfying \(\langle \psi_s | \hat{O} | \psi_s \rangle = -1 \), the electron \(LDOS_{elec} (\omega) \) shows a sharp peak close to \(\omega = -V \), for \(V = 0.5 \) and 1.0 at \(t = \tau = 11 \) (Fig. 4(a)).
The hole $LDOS_{\text{hole}}(\omega)$ at $j = 1$ shows no peaks at $t/\tau = 11$, Fig. 3(b). These results suggest the formation of an electron at $\omega = -V$ for $\mu < 0$ after Majorana fusion. $\langle n(j = 1, t) \rangle$ takes value one at $t/\tau = 11$, also indicating electron formation after Majorana fusion (Fig. 4(e)). On the other hand, for the initial state satisfying $\langle \psi_s|\tilde{O}|\psi_s \rangle \sim 1$, the hole $LDOS_{\text{hole}}(\omega)$ at $j = 1$ displays a peak at $\omega = -V$ (Figs. 4(d,e)), while the electron $LDOS_{\text{elec}}(\omega)$ has no peak at $j = 1$ and $t/\tau = 11$. $\langle n(j = 1, t) \rangle$ approaches zero at $t/\tau = 11$ (Fig. 4(f)), confirming the formation of a hole after Majorana fusion.

The time-dependent density $\langle n(j = 1, t) \rangle$ at finite V shows larger fluctuations compared to the case $\mu(t) > 0$, as the effect of interactions are quite strong for $\mu(t) < 0$ at the topological-non-topological boundary. For $\mu(t) < 0$ (Wall), at $t/\tau = 11$ and initial state with $\langle \psi_s|\tilde{O}|\psi_s \rangle \sim -1$, each site is occupied with one fermion $|1, 1, 1, 1, \ldots, 1\rangle$ while for the initial states with $\langle \psi_s|\tilde{O}|\psi_s \rangle \sim 1$, at $t/\tau = 11$ the sites are occupied as $|0, 0, 0, \ldots, 1\rangle$. The strong repulsive nearest-neighbor V leads to a larger split in the ground state energies of the instantaneous Hamiltonian. For this reason after the fusion process, the electron or hole form close to $\omega = -V$. In the case of $\mu(t) > 0$ (Wall) at $t/\tau = 11$ the initial state with $\langle \psi_s|\tilde{O}|\psi_s \rangle \sim -1$ at $t/\tau = 11$ each site is empty i.e. $|0, 0, 0, 0, \ldots, 0\rangle$, whereas the initial states with $\langle \psi_s|\tilde{O}|\psi_s \rangle \sim 1$ at $t/\tau = 11$ the occupancy is $|1, 0, 0, 0, \ldots, 1\rangle$. Interactions are less important for fusion and, thus, there is not much splitting in ground state energies. For this reason even at finite V, in fusion the electron or hole form close to $\omega = 0$.

Non-adiabatic Fusion of Majoranas. In real Majorana nanowire setups, due to the quasi-particle "poisoning" [29, 30] it is necessary to move the Majoranas with sufficient speed (i.e. within the quasi-particle poisoning time) [17, 29–31]. Reciprocally, changing $\mu(t)$ employing a too fast rate (smaller τ), would lead to a too fast movement of MZMs[8] generating non-adiabatic effects [32, 33], because the time-evolved state $|\psi(t)\rangle$ can have finite overlaps to higher excited states (above the gap) of the instantaneous Hamiltonian $H(t)$. Starting the time evolution with initial states $|\psi_s\rangle$, following $\langle \psi_s|\tilde{O}|\psi_s \rangle \sim 1$ for $\mu(t) > 0$ (Wall), the electron $LDOS$ at finite time $t = N_R\tau$ can be written as:

$$LDOS_{\text{elec}}(\omega, t) = \frac{1}{\pi} \text{Im} \left(\sum_{m,n} \frac{\langle \Psi(t)|n\rangle\langle n|c_p^+|m\rangle\langle m|c_0|\Psi(t)\rangle}{e_n - e_m + \omega + i\eta} \right),$$

where $|m\rangle$ and $|n\rangle$ are eigenvectors of the instantaneous Hamiltonian $H(t)$ at time $t = 11\tau$, $\eta = 0.1$, and the rest of the notation is standard. For $V = 0$ ($\Delta = 1.0$), all many-body eigenstates of $H(t = 11\tau)$ develop in pairs and each states of a pair are degenerate [34, 35]. For smaller τ, $|\psi(t)\rangle$ have finite overlaps with these higher $|m\rangle$ states. Due to the degenerate pairs of excited states, we observe spectral weight from many higher energy degenerate-pair states at $\omega = e_n - e_m = 0$ (with $|m-n| = 1$) in $LDOS_{\text{elec}}(\omega, t)$ (Eq. 6) and $LDOS_{\text{hole}}(\omega, t)$. For $LDOS_{\text{hole}}(\omega, t)$ the spectral weight only arise from higher energy degenerate-pair states $|m, n\rangle$.[34, 35]. For this reason, even for smaller τ (faster-motion of MZM[8]), we have well-defined sharp peaks at $\omega = 0$ in $LDOS_{\text{elec}}(\omega)$ and $LDOS_{\text{hole}}(\omega)$ at $V = 0$ (see Figs. 5(a,b)). Increasing τ (slower-motion of MZM[8]), the peak at $\omega = 0$ for $LDOS_{\text{elec}}(\omega)$ starts increasing, while the $LDOS_{\text{hole}}(\omega)$ peak value at $\omega = 0$ decreases. At $\tau = 36$, we obtain a sharp electron peak for $V = 0$ close to $\omega = 0$. For $\tau \geq 36$, the contribution in the $LDOS_{\text{elec}}(\omega)$ peak at $\omega = 0$ arises from $m, n = 1$ or 2 in Eq. 6. There is no peak for the hole $LDOS_{\text{hole}}(\omega)$ close to $\omega = 0$, confirming the formation of a full electron (for $\tau \geq 36$).

![FIG. 5. Non-adiabatic fusion of Majoranas for $\mu(t) > 0$ (Wall) at different switching rates τ, starting with an initial state with $\langle \psi_s|\tilde{O}|\psi_s \rangle \sim +1$.](/content/5.png)

For $\tau < 60$, the contribution in the $LDOS_{\text{elec}}(\omega)$ peak at $\omega = 0$ arises from $m, n = 1$ or 2 in Eq. 6. Then, clearly the Coulomb repulsion reduces the topological protection by the reduction of the effective gap. Thus, a substantially slower movement of MZM[8] is needed (compared to $V = 0$) to reach the adiabatic limit.

In terms of SI units the switching time for $V = 0$ corresponds to $\tau h/\Delta \sim 0.13ns$ to 3.9ns (using $\tau = 36$, and $\Delta = 180\mu$eV or $\Delta = 6\mu$eV as in previous litera-
ture [19, 29]). This is the time required per gate, which, as example, was five in [19]. Independently, the quasiparticle “poisoning” time in nano-wire systems has been estimated in a broad range 10ns to 10ms [29, 30]. Because in the worse case of 3.9ns, five gates require a total time 19.5ns to move adiabatically the Majorana, and since this number is very close to the lower bound of poisoning time, we conclude that there should be a time range where moving Majoranas in chains can occur adiabatically before poisoning occurs for \(V = 0 \). As \(V \) increases, the situation deteriorates because at \(V = 2 \) we must use \(\tau = 60 \), but the new adiabatic time needed is only 33ns, still close to the experimental lower poisoning time.

Conclusion We performed real-time dynamics and fusion of Majoranas in the interacting 1D Kitaev chain model using sequential application of time-dependent chemical potentials (gates). We show that the movement model using sequential application of time-dependent Majoranas in the interacting 1D Kitaev chain with long hole) after the fusion. Due to advancements in the fabrication of Majorana nanowire devices [20, 36] with long quasiparticle poisoning time [29, 30], and considering our estimation for the times needed for adiabatic movement, we believe proper Majorana movement could be realized in realistic gate-control nanowire devices [20, 37].

Acknowledgments. B.P., N.M. and E.D. were supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division.

[1] A. Y. Kitaev, Phys. Usp. **44**, 131 (2001). https://doi.org/10.1070/1063-7869/44/10S/S29
[2] M. H. Freedman, A. Kitaev, M. J. Larsen, and Z. Wang, Bull. Amer. Math. Soc. **40**, 31-38(2003). https://doi.org/10.1090/S0273-0979-02-00964-3
[3] P. Bonderson, M. Freedman, and C. Nayak, Phys. Rev. Lett. **101**, 010501 (2008). https://doi.org/10.1103/PhysRevLett.101.010501
[4] C. Nayak, S. H. Simon, A. Stem, M. Freedman, S. D. Sarma, Rev. Mod. Phys. **80** 1083 (2008). https://doi.org/10.1103/RevModPhys.80.1083
[5] N. Mohanta, S. Okamoto, and E. Dagotto, Comm. Phys. (Nature) **4**, 163 (2021). https://doi.org/10.1038/s42005-021-00666-5
[6] S. D. Sarma, M. Freedman, and C. Nayak, npj Quantum Information, **1**, 15001 (2015). https://doi.org/10.1038/npjqi.2015.1
[7] C. J. Bolech and E. Demler, Phys. Rev. Lett. **98**, 237002 (2007). https://doi.org/10.1103/PhysRevLett.98.237002
[8] M. T. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krostrup, and C. M. Marcus, Science **354**, 1557 (2016). https://doi.org/10.1126/science.aaf3961
[9] D. Wang, L. Kong, P. Fan, H. Chen, S. Zhu, W. Liu, Lu Cao, Y. Sun, S. Du, J. Schneeloch, R. Zhong, G. Gu, L. Fu, H. Ding, and Hong-Jun Gao, Science **362**, 333 (2018). https://doi.org/10.1126/science.aao1797
[10] S. Nadji-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, A. Yazdani, Science **346**, 602 (2014). http://dx.doi.org/10.1126/science.1259327
[11] B. E. Feldman, M. T. Randeria, J. Li, S. Jeon, Y. Xie, Z. Wang, I. K. Drozdov, B. A. Bernevig, and A. Yazdani, Nature Physics, **13**, 286291 (2017). https://doi.org/10.1038/nphys3947
[12] S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss, Phys. Rev. Lett. **107**, 036801 (2011). https://doi.org/10.1103/PhysRevLett.107.036801
[13] R. Thomale, S. Rachel, and P. Schmitteckert, Phys. Rev. B **88**, 161103(R) (2013). https://doi.org/10.1103/PhysRevB.88.161103
[14] E. M. Stoudenmire, Jason A. Stone, Oleg A. Starykh, and Matthias P. A. Fisher, Phys. Rev. B **84**, 014503 (2011). https://doi.org/10.1103/PhysRevB.84.014503
[15] J. Alicea, Y. Oreg, G. Refael, F. von. Oppen, and M. P. A. Fisher, Nature Physics, **7**, 412417 (2011). https://doi.org/10.1038/nphys1915
[16] E. Grosfeld and K. Schoutens, Phys. Rev. Lett. **103**, 076803 (2009). https://doi.org/10.1103/PhysRevLett.103.076803
[17] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K. Flensberg, and J. Alicea, Phys. Rev. X, **6**, 031016 (2016). https://doi.org/10.1103/PhysRevX.6.031016
[18] M. C. Dartiailh, W. Mayer, J. Yuan, Kaushini S. Wickramasinghe, A. Matos-Abiague, I. Zutić, and J. Shabani, Phys. Rev. Lett. **126**, 036802 (2021). https://doi.org/10.1103/PhysRevLett.126.036802
[19] T. Zhou, M. C. Dartiailh, K. Sardashti, J. E. Han, A. Matos-Abiague, J. Shabani and I. Zutić, Nature Communications, **13**, 1738 (2022). https://doi.org/10.1038/s41467-022-29463-6
[20] H. Zhang, D. E. Liu, M. Wimmer, L. P. Kouwenhoven, Nature Communications, **10** 5128 (2019). https://doi.org/10.1038/s41467-019-13133-1
[21] G. Kells, D. Sen, J. K. Slingerland, and S. Vishveshwar, Phys. Rev. B 89, 235130 (2014). https://doi.org/10.1103/PhysRevB.89.235130
[22] D. M. Kennes, C. Klöckner, V. Meden, Phys. Rev. Lett. **113**, 116401 (2014). https://doi.org/10.1103/PhysRevLett.113.116401
[23] T. Karzig, A. Rahmani, F. von Oppen, and G. Refael, Phys. Rev. B **91**, 201404(R) (2015). https://doi.org/10.1103/PhysRevB.91.201404
[24] L. Coopmans, D. Luo, G. Kells, B. K. Clark, and J. Carraquilpa, PRX Quantum **2**, 020332 (2021). https://doi.org/10.1103/PRXQuantum.2.020332
[25] The value 0.48 instead of 0.5 of spectral weight might arise from an integration error due to finite \(\omega \) steps and the broadening \(\eta \) used.
[26] J. Herbrych, M. Šroda, G. Alvarez, M. Mierzejewski, and
[27] Jian-Jian Miao, Hui-Ke Jin, Fu-Chun Zhang, and Yi Zhou, Scientific Reports 8, 488 (2018). https://doi.org/10.1038/s41598-017-17699-y

[28] A. M. Turner, F. Pollmann, and E. Berg, Phys. Rev. B 83, 075102 (2011). https://doi.org/10.1103/PhysRevB.83.075102

[29] A.P. Higginbotham, S.M. Albrecht, G. Kirsanskas, W. Chang, F. Kuemmeth, P. Krogstrup, T.S. Jespersen, J. Nygård, K. Flensberg, and C.M. Marcus, Nat. Phys. 11, 1017 (2015). https://doi.org/10.1038/nphys3461

[30] D. Rainis and D. Loss, Phys. Rev. B 85, 174533 (2012). https://doi.org/10.1103/PhysRevB.85.174533

[31] G. Goldstein and C. Chamon, Phys. Rev. B 84, 205109 (2011). https://doi.org/10.1103/PhysRevB.84.205109

[32] M. S. Scheurer and A. Shnirman, Phys. Rev. B 88, 064515 (2013). https://doi.org/10.1103/PhysRevB.88.064515

[33] A. Conlon, D. Pellegrino, J. K. Slingerland, S. Dooley, and G. Kells, Phys. Rev. B 100, 134307 (2019). https://doi.org/10.1103/PhysRevB.100.134307

[34] G. Kells, Phys. Rev. B 92, 081401(R) (2015). https://doi.org/10.1103/PhysRevB.92.081401

[35] D. A. Huse, R. Nandkishore, V. Oganesyan, Arijee Pal, and S. L. Sondhi, Phys. Rev. B 88, 014206 (2013). https://doi.org/10.1103/PhysRevB.88.014206

[36] P. Krogstrup, N.L.B. Ziino, W. Chang, S.M. Albrecht, M.H. Madsen, E. Johnson, J. Nygård, C.M. Marcus, and T.S. Jespersen, Nat. Mater. 14, 400 (2015). https://doi.org/10.1038/nmat4176

[37] D. I. Pikulin, B. van Heck, T. Karzig, E. A. Martinez, B. Nijholt, T. Laeven, G. W. Winkler, J. D. Watson, S. Heedt, M. Temurhan, V. Svidenko, R. M. Lutchyn, M. Thomas, G. de Lange, L. Casparis, C. Nayak, arXiv:2103.12217. https://doi.org/10.48550/arXiv.2103.12217