Research Article

The Regularity Criteria and the A Priori Estimate on the 3D Incompressible Navier-Stokes Equations in Orthogonal Curvilinear Coordinate Systems

Fan Geng, Shu Wang, and Yongxin Wang

1School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China
2School of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China

Correspondence should be addressed to Fan Geng; gengfan@e.gzhu.edu.cn

Received 14 July 2020; Revised 13 August 2020; Accepted 28 September 2020; Published 13 October 2020

Academic Editor: Fanglei Wang

Copyright © 2020 Fan Geng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The paper considers the regularity problem on three-dimensional incompressible Navier-Stokes equations in general orthogonal curvilinear coordinate systems. We establish one regularity criteria of the weak solutions involving only in a vorticity component \(\omega_3 \) and one a priori estimate on the solution that \(k H_3 u_3 k_{L^\infty(0,T;L^p(\mathbb{R}^3))} \) is bounded for \(1 \leq p \leq \infty \) to three-dimensional incompressible Navier-Stokes equations in orthogonal curvilinear coordinate systems. These extent greatly the corresponding results on axisymmetric cylindrical flow.

1. Introduction

In this paper, we investigate the regularity problem on the following three-dimensional (3D) incompressible Navier-Stokes equations

\[
\begin{align*}
\partial_t u + u \cdot \nabla u + \nabla P &= \Delta u, \\
\text{div } u &= 0, \\
u_0(x) &= u_0(x),
\end{align*}
\]

in general orthogonal curvilinear coordinate systems. Here, \(x = (x_1, x_2, x_3) \in \mathbb{R}^3 \), \(u = (u_1, u_2, u_3) \) \((t, x)\) denotes the velocity fields, \(P = P(t, x) \) is the scalar pressure, and \(u_0 \) is a given initial velocity with \(\text{div } u_0 = 0 \).

The existence of global weak solutions to (1) is known since the famous work of Leray [1] (see also Hopf [2] for the bounded domain case) for initial data \(u_0 \in L^2(\mathbb{R}^3) \) with \(\text{div } u_0 = 0 \). The uniqueness and global regularity of Leray-Hopf weak solutions is still one of the most challenging open problems in the mathematical fluid dynamics [1–6]. Many researchers are devoted to looking for certain sufficient conditions to ensure the smoothness of solutions, called the regularity criterion or Serrin-type criterion. Thanks to the pioneering work by [6–8], we have known that the weak solution \(u \) will be smooth as long as

\[
\|H_3 u^1\|_{L^{3/2}(\mathbb{R}^3)} < \infty,
\]

(2)

Afterwards, there are many progresses on the regularity criteria involving only one component of the velocity fields, one can refer to [9–12] for details.

An interesting problem is to study the globally stabilizing effects of the geometry structures of the domain or/solutions on the evolution of solution in time to the 3D incompressible Navier-Stokes equations. For example, the axisymmetric flow makes the 3D flow close to 2D flow, that is, all velocity components (radial, angular (or swirl) and \(x_3 \)-component) and the pressure are independent of the angular variable in the cylindrical coordinates. It is well known that the 3D incompressible axisymmetric Navier-Stokes equations without swirl have the unique global smooth solution [13–16]. However, it is still open for the global regularity with swirl ([17–20] and therein). These
results indicate that the swirl of the fluid plays a crucial role in the issue of global regularity. Subsequently, to understand this problem better, many efforts have been devoted to looking for suitable regularity criteria, see [21–26] for details.

The paper is motivated by the studies on the axisymmetric flow (see [5, 13, 14, 16]) and the helical flow (see [27] and references therein) of the 3D incompressible flows and on the absence of simple hyperbolic blow-up for the 3D incompressible Euler and quasigeostrophic equations [28], we investigate the regularity criteria of the weak solutions to the 3D incompressible Navier-Stokes equations in general orthogonal curvilinear coordinate systems. Recently, global well-posedness results on the smooth solution for 3D incompressible Navier-Stokes equations in spherical coordinates are obtained in [29–31]. The main purpose of this paper is to establish the a priori estimate and the regularity criteria for the 3D incompressible Navier-Stokes equations in general orthogonal curvilinear coordinate systems.

To state our main results in this paper, let us begin with some notations, see [32]. A point in \mathbb{R}^3 is denoted by $x = (\xi_1, \xi_2, \xi_3)$, where (ξ_1, ξ_2, ξ_3) is general orthogonal curvilinear coordinates with a line element ds given by

$$ds = H_1 d\xi_1 e_{\xi_1} + H_2 d\xi_2 e_{\xi_2} + H_3 d\xi_3 e_{\xi_3}, \quad (3)$$

Here, $e_{\xi_i} = e_{\xi_i}(\xi)(i = 1, 2, 3)$ are orthogonal, of unit length and parallel to the coordinate lines with ξ_i increasing; the nonnegative functions $H_i(i = 1, 2, 3)$ are the G.Lamé coefficients corresponding to the vectors $e_{\xi_1}, e_{\xi_2}, e_{\xi_3}$, respectively. Throughout this paper, we assume $H_i(i = 1, 2, 3)$ are independent of ξ_i, i.e., $H_i = H_0(\xi, \xi)(i = 1, 2, 3)$, and the measure of the set $\{(\xi_1, \xi_2) \in D : (H_1 H_2 H_3)(\xi_1, \xi_2) = 0\}$ is zero in the sense of Lebesgue measure in \mathbb{R}^2.

In this paper, we consider the solution (u, P) to the 3D incompressible Navier-Stokes (1) of having the form

$$u(t, x) = u^1(t, \xi_1, \xi_2)e_{\xi_1} + u^2(t, \xi_1, \xi_2)e_{\xi_2} + u^3(t, \xi_1, \xi_2)e_{\xi_3} + u_0^3(t, \xi_1, \xi_2)$$

$$+ u^3(t, \xi_1, \xi_2)e_{\xi_3}, P(t, x) = P(t, \xi_1, \xi_2), \quad (4)$$

with the initial data

$$u_0(x) = u_0^1(\xi_1, \xi_2)e_{\xi_1} + u_0^2(\xi_1, \xi_2)e_{\xi_2} + u_0^3(\xi_1, \xi_2)e_{\xi_3} \quad (5)$$

Our main results are the a priori estimates and the regularity criteria involving only in a vorticity component ω^3 on 3D incompressible Navier-Stokes equations in general orthogonal curvilinear coordinate systems.

Theorem 1 (the a priori estimate of $\|H_j u^3\|_{L^2(0, T; L^p(\mathbb{R}^3))}$). Suppose that u be a smooth solution of system (1) with the form (4) and the initial data (5) satisfying $\text{div} u_0 = 0$ and $H_3 u_3^3 \in L^p(\mathbb{R}^3)$ for $p \in [1, \infty]$. Then, we have for any $T > 0$,

$$H_j u^3 \in L^2(0, T; \mathbb{R}^3) \quad (6)$$

and, moreover, if assume that the G.Lamé coefficient $H_j(\xi_1, \xi_2)$ satisfies

$$|\Delta(\ln H_j)| \leq C < \infty, \quad (7)$$

it holds, for any $T > 0$ and any $p \in [1, 2] \cup (2, \infty)$, that

$$H_j u^3 \in L^{\infty}(0, T; L^p(\mathbb{R}^3)) \quad (8)$$

Theorem 2 (the regularity criteria involving ω^3). Let u be a weak solution of system (1) with the form (4) and the initial data (5) satisfying $u_0 \in H^2(\mathbb{R}^3)$ and $\text{div} u_0 = 0$. Then, the solution u is smooth in $(0, T] \times \mathbb{R}^3$, if

$$\omega^3 \in L^p(0, T; L^q(\mathbb{R}^3)), \quad (9)$$

where $(2/p) + (3/q) \leq 2, 1 \leq p \leq \infty, 3/2 \leq q \leq \infty.$

Remark 3. The assumption (7) comes from the geometry on the harmonic mapping in some sense. It is easy to see that

$$\Delta(\ln H_j) = \Delta(\ln H_3) \quad (10)$$

in (7), based on the notation Δ introduced in Section 2, because H_3 is independent of ξ_3. Thus, if H_3 is a radial function in \mathbb{R}^3, i.e.,

$$H_3 = H_3(r) \quad (11)$$

with

$$r = \sqrt{x_1^2 + x_2^2} \quad \text{or} \quad r = \sqrt{x_1^2 + x_2^2}, \quad (12)$$

then

$$\Delta(\ln H_3) \equiv 0. \quad (13)$$

In this case, the assumption (7) is naturally true because the function $\ln H_3$ is the harmonic one.

Remark 4. The assumption (7) of Theorem 1 is satisfied in the cases of cylindrical coordinates. More precisely, we have the known results on 3D problem in the case of cylindrical coordinate system in \mathbb{R}^3 are be covered in Theorem 1 and Theorem 2, i.e., let

$$\xi_1 = r = \sqrt{x_1^2 + x_2^2}, \quad \xi_2 = x_3, \quad \xi_3 = \theta = \arctan \frac{x_3}{x_1};$$

$$u^1(t, \xi_1, \xi_2) = u^1(t, r, x_3), u^2(t, \xi_1, \xi_2) = u^2(t, r, x_3), \quad (14)$$

$$e_{\xi_1} = e_1 = \left(\frac{x_1}{r}, \frac{x_2}{r}, 0\right), \quad e_{\xi_2} = e_3 = (0, 0, 1), \quad e_{\xi_3},$$

$$e_{\xi_3} = \left(\frac{x_2}{r}, \frac{x_1}{r}, 0\right);$$
we consider an axisymmetric solution of the Navier-Stokes equations of the form (4) in the cylindrical coordinate system, where the mapping is taken as \(x = x(\xi_1, \xi_2, \xi_3) = (\xi_1 \cos \xi_2, \xi_2, \xi_1 \sin \xi_3) \), and G.Lamé coefficients are \(H_1 = H_2 = 1, H_3 = \xi_1 \), satisfying the assumption in Theorem 1. Then, Theorem 1 is equivalent to Proposition 1 in [9], Theorem 2 is equivalent to Theorem 1.3 in [21].

Remark 5. This difference from the case of curvilinear cylindrical coordinates may be imply that one should care about the advantage or overcome the difficulty brought by the choice of curvilinear coordinates, including nonorthogonal curvilinear coordinates, which will be discussed in the future.

The remaining of this paper is organized as follows. In Section 2, we will derive the Navier-Stokes equations in orthogonal curvilinear coordinate systems. In Section 3, we introduce some basic lemmas and one estimate used for the proof of main theorems. In Section 4 and Section 5, we prove Theorem 1 and Theorem 2 separately.

2. Navier-Stokes Equations in Orthogonal Curvilinear Coordinate Systems

In this section, we will first derive the incompressible Navier-Stokes equations in orthogonal curvilinear coordinate systems \(\xi_1, \xi_2, \xi_3 \), given by Section 1.

We assume that \(x = x(\xi) \), being one-to-one and onto mapping, transforms \(\xi \in \Omega \subset \mathbb{R}^3 \) into \(x \in \Omega \subset \mathbb{R}^3 \) with \(\Omega = D \times [\alpha, \beta] \subset \mathbb{R}^3 \) and

\[
\Omega = \{(x_1, x_2, x_3) = (x_1, x_2, x_3)(\xi) \in \mathbb{R}^3 : (\xi_1, \xi_2, \xi_3) \in D \subset \mathbb{R}^3,
-\infty < \alpha \leq \xi_3 \leq \beta < \infty\},
\]

where the domain \(D \) is the bounded or unbounded domain of \(\mathbb{R}^2 \) with the smooth boundary \(\partial D \) if \(D \) is bounded, and the constants \(\alpha \) and \(\beta \) satisfy \(-\infty < \alpha \leq \beta < \infty\).

Since \(H_i = H_i(\xi_1, \xi_2)(i = 1, 2, 3) \), by the derivatives of the unit vectors \(e_{\xi_i}, e_{\xi_2}, e_{\xi_3} \), we have

\[
\frac{\partial e_{\xi_i}}{\partial \xi_3} = -e_{\xi_i} \frac{\partial H_3}{\partial \xi_3}, \quad \frac{\partial e_{\xi_i}}{\partial \xi_1} = e_{\xi_i} \frac{\partial H_1}{\partial \xi_1}, \quad \frac{\partial e_{\xi_i}}{\partial \xi_2} = e_{\xi_i} \frac{\partial H_2}{\partial \xi_2},
\]

\[
\frac{\partial e_{\xi_1}}{\partial \xi_3} = -e_{\xi_1} \frac{\partial H_3}{\partial \xi_3}, \quad \frac{\partial e_{\xi_1}}{\partial \xi_1} = e_{\xi_1} \frac{\partial H_1}{\partial \xi_1}, \quad \frac{\partial e_{\xi_1}}{\partial \xi_2} = e_{\xi_1} \frac{\partial H_2}{\partial \xi_2},
\]

\[
\frac{\partial e_{\xi_2}}{\partial \xi_3} = -e_{\xi_2} \frac{\partial H_3}{\partial \xi_3}, \quad \frac{\partial e_{\xi_2}}{\partial \xi_1} = e_{\xi_2} \frac{\partial H_1}{\partial \xi_1}, \quad \frac{\partial e_{\xi_2}}{\partial \xi_2} = e_{\xi_2} \frac{\partial H_2}{\partial \xi_2}.
\]

(16)

Using the definition of gradient, we get the expression of the gradient operator \(\nabla \) in orthogonal curvilinear coordinate systems:

\[
\nabla = e_{\xi_i} \frac{1}{H_i} \frac{\partial}{\partial \xi_1} + e_{\xi_2} \frac{1}{H_i} \frac{\partial}{\partial \xi_2} + e_{\xi_3} \frac{1}{H_3} \frac{\partial}{\partial \xi_3},
\]

(17)

we also obtain the expression of Laplacian operator \(\Delta \) in orthogonal curvilinear coordinate systems:

\[
\Delta = \frac{1}{H_1 H_2 H_3} \left[\frac{\partial}{\partial \xi_1} (H_2 H_3 \frac{\partial}{\partial \xi_1}) + \frac{\partial}{\partial \xi_2} (H_1 H_3 \frac{\partial}{\partial \xi_2}) + \frac{\partial}{\partial \xi_3} (H_1 H_2 \frac{\partial}{\partial \xi_3}) \right].
\]

(18)

Furthermore, for a vector field \(V = V(\xi_1, \xi_2, \xi_3) = V_1 e_{\xi_1} + V_2 e_{\xi_2} + V_3 e_{\xi_3} \), we get the expressions of \(\text{div} \ V \) and \(\text{rot} \ V \) in orthogonal curvilinear coordinate systems:

\[
\text{div} \ V = \frac{1}{H_1 H_2 H_3} \left[\frac{\partial}{\partial \xi_1} (H_2 H_3 V_1) + \frac{\partial}{\partial \xi_2} (H_1 H_3 V_2) + \frac{\partial}{\partial \xi_3} (H_1 H_2 V_3) \right],
\]

(19)

\[
\text{rot} \ V = \frac{1}{H_1 H_2 H_3} \left| \begin{array}{ccc}
H_1 e_{\xi_1} & H_2 e_{\xi_2} & H_3 e_{\xi_3} \\
\frac{\partial}{\partial \xi_1} & \frac{\partial}{\partial \xi_2} & \frac{\partial}{\partial \xi_3} \\
H_1 V_1 & H_2 V_2 & H_3 V_3
\end{array} \right|.
\]

(20)

By the above expressions (17)–(19), then taking the inner product of equation (1), with \(e_{\xi_i}, e_{\xi_2}, e_{\xi_3} \), respectively, we can derive the Navier-Stokes equations in orthogonal curvilinear coordinate systems as follows:
where \((\xi_1, \xi_2) \in D \subset \mathbb{R}^2, t > 0\) and

\[
\nabla_{\xi_1, \xi_2} = \frac{1}{H_1} \frac{\partial}{\partial \xi_1} + \frac{1}{H_2} \frac{\partial}{\partial \xi_2},
\]
\[
\Delta = \Delta_{\xi_1, \xi_2} = \frac{1}{H_1 H_2 H_3} \left(\frac{\partial}{\partial \xi_1} (H_1 H_3 \frac{\partial}{\partial \xi_1}) + \frac{\partial}{\partial \xi_2} (H_2 H_3 \frac{\partial}{\partial \xi_2}) \right),
\]
\[
L_1 = \Delta_{\xi_1, \xi_2} - \frac{1}{(H_1 H_2)^2} \left(\left(\frac{\partial H_1}{\partial \xi_1} \right)^2 + \left(\frac{\partial H_2}{\partial \xi_2} \right)^2 \right),
\]
\[
L_2 = \frac{1}{H_1 H_2 H_3} \left(2H_3 \frac{\partial H_1}{\partial \xi_1} \frac{\partial}{\partial \xi_1} + \frac{\partial}{\partial \xi_1} (H_1 \frac{\partial H_1}{\partial \xi_1}) + \frac{\partial H_2}{\partial \xi_2} \frac{\partial}{\partial \xi_2} \left(\frac{\partial H_1}{\partial \xi_1} \right) \right),
\]
\[
L_3 = \Delta_{\xi_1, \xi_2} - \frac{1}{(H_1)^2} \left(\left(\frac{\partial H_3}{\partial \xi_1} \right)^2 + \left(\frac{\partial H_3}{\partial \xi_2} \right)^2 \right). \tag{22}
\]

The incompressible constraint is

\[
\frac{\partial}{\partial \xi_1} (H_2 H_3 u^1) + \frac{\partial}{\partial \xi_2} (H_3 H_1 u^2) = 0. \tag{23}
\]

It is clear that equations (21) and (23) completely determine the evolution of 3D Navier-Stokes equations in orthogonal curvilinear coordinate systems, respectively, once the initial value and/or boundary conditions are given.

We take initial condition for the system (21) as follows:

\[
(u^1, u^2, u^3) (t = 0, \xi_1, \xi_2) = (u_0^1, u_0^2, u_0^3)(\xi_1, \xi_2). \tag{24}
\]

Moreover, the boundary condition \(u \to 0\) as \(|x| \to \infty, t \geq 0\) is equivalent to the condition

\[
(u^1, u^2, u^3) \big|_{\partial D} = 0, t \geq 0, \tag{25}
\]

if the domain \(D\) is bounded or of having partially bounded boundary.

By the expressions (4) and (20), using the vorticity \(\omega = \nabla \times u\), in orthogonal curvilinear coordinate systems, we have

\[
\omega (t, x) = \omega^1 (t, \xi_1, \xi_2) e_{\xi_1} + \omega^2 (t, \xi_1, \xi_2) e_{\xi_2} + \omega^3 (t, \xi_1, \xi_2) e_{\xi_3}, \tag{26}
\]

with the initial vorticity

\[
\omega_0 = \omega (t = 0, x) = \omega_0^1 (\xi_1, \xi_2) e_{\xi_1} + \omega_0^2 (\xi_1, \xi_2) e_{\xi_2} + \omega_0^3 (\xi_1, \xi_2) e_{\xi_3}, \tag{27}
\]

where

\[
\omega^1 = \frac{1}{H_2 H_3} \left(\frac{\partial}{\partial \xi_1} (H_3 u^1) \right), \omega^2 = \frac{1}{H_1 H_3} \left(\frac{\partial}{\partial \xi_2} (H_3 u^2) \right), \omega^3 = \frac{1}{H_1 H_2} \left(\frac{\partial}{\partial \xi_1} (H_2 u^3) - \frac{\partial}{\partial \xi_2} (H_1 u^1) \right). \tag{28}
\]

Moreover, with the help of (28), we can get the equation of \(\omega^3\) from (21) as follows:

\[
\frac{\partial \omega^3}{\partial t} + \frac{u^1}{H_1} \frac{\partial \omega^3}{\partial \xi_1} + \frac{u^2}{H_2} \frac{\partial \omega^3}{\partial \xi_2} = L_3 \omega^3 + \frac{\omega^3}{H_3} \left(\frac{\partial u^1}{\partial \xi_1} H_2 + \frac{\partial u^2}{\partial \xi_2} H_1 \right) + \frac{1}{H_1 H_2 (H_3)^2} \left[\frac{\partial H_3}{\partial \xi_1} \left(\frac{\partial (H_3 u^3)^2}{\partial \xi_1} - \frac{\partial H_3}{\partial \xi_1} \left(\frac{\partial (H_3 u^3)^2}{\partial \xi_2} \right) \right) \right]. \tag{29}
\]

3. Some Useful Estimates

To study the main estimates of Theorem 1 and Theorem 2, we need to introduce two basic lemmas and one estimate relates to \(\omega^3\) in orthogonal curvilinear coordinate systems.

Lemma 6 (see [6–8]). Suppose that the initial data \(u_0 \in H^2(\mathbb{R}^3)\) in (1), then any Leray-Hopf weak solution \(u\) of 3D incompressible Navier-Stokes equations (1) is also a smooth solution in \((0, T] \times \mathbb{R}^3\), if there holds that

\[
u \in L^p(0, T; L^3(\mathbb{R}^3)), \tag{30}
\]

in which \(p, q\) satisfy the conditions

\[
\frac{2}{p} + \frac{3}{q} \leq 1 \text{ with } 3 < q \leq \infty, 2 \leq p < \infty \text{ or } 3 \leq q < \infty, p = \infty. \tag{31}
\]

And we would like to recall the well-known relation between the velocity and vorticity of 3D flow.

Lemma 7 (see [33]). Let \(u \in W^{1, p}(\mathbb{R}^3)\) be a velocity field with its vorticity \(\omega = \nabla \times u\), then the inequality

\[
\|\nabla u\|_{L^p(\mathbb{R}^3)} \leq C_p \left(\|\omega\|_{L^q(\mathbb{R}^3)} + \|\text{div } u\|_{L^3(\mathbb{R}^3)} \right) \tag{32}
\]

holds for any \(p \in (1, \infty)\), where the constant \(C_p\) depends only on \(p\).

As one kind of fluid with the special geometry structure of form (4), the incompressible 3D flow also has one particular property, which is shown as follows.

Proposition 8. Suppose that \(u \in W^{1, p}(\mathbb{R}^3)\) with the form (4) be a field with zero divergence, then the estimate

\[
\|\nabla u\|_{L^p(\mathbb{R}^3)} \leq C_p \|\omega\|_{L^q(\mathbb{R}^3)} \tag{33}
\]

holds for any \(p \in (1, \infty)\), where

\[
\dot{u} = u^1 (t, \xi_1, \xi_2) e_{\xi_1} + u^2 (t, \xi_1, \xi_2) e_{\xi_2}, \tag{34}
\]

and the constant \(\tilde{C}_p\) depends only on \(p\).
Proof. Since \(\text{div } \mathbf{u} = 0 \) and we have

\[
0 = \nabla \cdot \mathbf{u} = \frac{1}{H_1 H_2 H_3} \left[\frac{\partial}{\partial \xi_1} (H_2 H_3 u^1) + \frac{\partial}{\partial \xi_2} (H_1 H_3 u^2) + \frac{\partial}{\partial \xi_3} (H_1 H_2 u^3) \right]
\]

\[
= \frac{1}{H_1 H_2 H_3} \left[\frac{\partial}{\partial \xi_1} (H_2 H_3 u^1) + \frac{\partial}{\partial \xi_2} (H_1 H_3 u^2) \right].
\]

Thus, we obtain

\[
\text{div } \mathbf{u} = \frac{1}{H_1 H_2 H_3} \left[\frac{\partial}{\partial \xi_1} (H_2 H_3 u^1) + \frac{\partial}{\partial \xi_2} (H_1 H_3 u^2) \right] = 0.
\]

(36)

On the other hand, by the expressions (20), (34), and (28), we get

\[
\nabla \times \mathbf{u} = \frac{1}{H_2 H_3} \left[-\frac{\partial}{\partial \xi_3} (H_2 u^2) \right] \epsilon_i + \frac{1}{H_1 H_3} \left[-\frac{\partial}{\partial \xi_3} (H_1 u^1) \right] \epsilon_i,
\]

\[
+ \frac{1}{H_1 H_2} \left[\frac{\partial}{\partial \xi_1} (H_2 u^2) - \frac{\partial}{\partial \xi_2} (H_1 u^1) \right] \epsilon_i
\]

\[
= \frac{1}{H_1 H_2} \left[\frac{\partial}{\partial \xi_1} (H_2 u^2) - \frac{\partial}{\partial \xi_2} (H_1 u^1) \right] \epsilon_i = \omega^3 \epsilon_i.
\]

(37)

Consequently, by Lemma 7 and using (36) and (37), one has

\[
\| \nabla \mathbf{u} \|_{L^p(\mathbb{R}^3)} \leq \tilde{C}_p \| \omega^3 \|_{L^p(\mathbb{R}^3)} = \tilde{C}_p \| \omega^3 \|_{L^p(\mathbb{R}^3)}.
\]

(38)

This finishes the proof of the proposition.

4. Proof of Theorem 1

In this section, we prove Theorem 1.

Proof of Theorem 1. Let \(F(t, \xi_1, \xi_2) = H_3 (\xi_1, \xi_2) u^1(t, \xi_1, \xi_2) \) then putting \(u^1(t, \xi_1, \xi_2) = F(t, \xi_1, \xi_2)/H_3(\xi_1, \xi_2) \) into (21), we can obtain the equation for \(F \)

\[
\frac{\partial}{\partial t} F + \frac{u_1}{H_1} \frac{\partial F}{\partial \xi_1} + \frac{u_2}{H_2} \frac{\partial F}{\partial \xi_2} + \frac{u_3}{H_3} \frac{\partial F}{\partial \xi_3}
\]

\[
= \Delta_{\xi_1, \xi_2} F - \frac{1}{H_1 H_2 H_3} \left(\frac{\partial}{\partial \xi_1} \left(H_2 \frac{\partial H_3}{\partial \xi_1} \right) + \frac{\partial}{\partial \xi_2} \left(H_1 \frac{\partial H_3}{\partial \xi_2} \right) + \frac{\partial}{\partial \xi_3} \left(H_1 H_2 \frac{\partial H_3}{\partial \xi_3} \right) \right) + \frac{2 H_2}{H_1} \frac{\partial}{\partial \xi_1} \frac{\partial H_3}{\partial \xi_1}
\]

\[
+ \frac{2 H_1}{H_2} \frac{\partial}{\partial \xi_2} \frac{\partial H_3}{\partial \xi_2}
\]

\[
- \frac{F}{H_3} \left[\frac{1}{H_1} \frac{\partial H_3}{\partial \xi_1} + \frac{1}{H_2} \frac{\partial H_3}{\partial \xi_2} \right]^2,
\]

(39)

with the help of the following calculations

\[
\partial_t u^1 = \frac{1}{H_1} \frac{\partial F}{F} u_1,
\]

\[
u_1 \frac{\partial F}{\partial \xi_1} + u_2 \frac{\partial F}{\partial \xi_2} + \frac{u_3}{H_3} \frac{\partial F}{\partial \xi_3}
\]

\[
= \frac{u_1}{H_1} \left(\frac{\partial}{\partial \xi_1} \left(\frac{F}{H_1} \frac{\partial H_3}{\partial \xi_1} \right) - \frac{F}{H_1} \frac{\partial^2 H_3}{\partial \xi_1^2} \right) + \frac{u_1}{H_2} \left(\frac{\partial}{\partial \xi_2} \left(\frac{F}{H_2} \frac{\partial H_3}{\partial \xi_2} \right) - \frac{F}{H_2} \frac{\partial^2 H_3}{\partial \xi_2^2} \right)
\]

\[
+ \frac{1}{H_3} \left(\frac{\partial}{\partial \xi_1} \left(\frac{F}{H_1} \frac{\partial H_3}{\partial \xi_1} \right) + \frac{\partial}{\partial \xi_2} \left(\frac{F}{H_2} \frac{\partial H_3}{\partial \xi_2} \right) + \frac{\partial}{\partial \xi_3} \frac{F}{H_3} \frac{\partial H_3}{\partial \xi_3} \right).
\]

(40)

Multiplying the both sides of equation (39) by \(|F|^{p-2} F \) and integrating over \(\mathbb{R}^3 \), we have

\[
\frac{1}{p} \frac{d}{dt} \| F \|_{L^p(\mathbb{R}^3)} + \frac{d}{dt} \| \nabla F \|_{L^p(\mathbb{R}^3)}
\]

\[
+ \int_{\mathbb{R}^3} \left(\frac{u^1}{H_1} \frac{\partial F}{\partial \xi_1} + \frac{u^2}{H_2} \frac{\partial F}{\partial \xi_2} + \frac{u^3}{H_3} \frac{\partial F}{\partial \xi_3} \right) dx
\]

\[
= -\int_{\mathbb{R}^3} \frac{H_1}{H_2 H_3} \left(\frac{\partial}{\partial \xi_1} \left(\frac{H_2}{H_1} \frac{\partial H_3}{\partial \xi_1} \right) \right)^p + \frac{2 H_2}{H_1} \frac{\partial}{\partial \xi_1} \frac{\partial H_3}{\partial \xi_1} \frac{\partial F}{\partial \xi_1}
\]

\[
+ \frac{H_1}{H_2 H_3} \left(\frac{\partial}{\partial \xi_2} \left(\frac{H_1}{H_2} \frac{\partial H_3}{\partial \xi_2} \right) \right)^p + \frac{2 H_1}{H_2} \frac{\partial}{\partial \xi_2} \frac{\partial H_3}{\partial \xi_2} \frac{\partial F}{\partial \xi_2}
\]

\[
- \int_{\mathbb{R}^3} \frac{F}{H_3} \left[\frac{1}{H_1} \frac{\partial H_3}{\partial \xi_1} + \frac{1}{H_2} \frac{\partial H_3}{\partial \xi_2} \right] dx
\]

\[
= \int_{\mathbb{R}^3} \left(\frac{1}{H_1 H_3} \frac{\partial^2 H_3}{\partial \xi_1^2} \right)^p + \frac{1}{H_1 H_3} \frac{\partial H_3}{\partial \xi_1} \frac{\partial^2 F}{\partial \xi_1^2}
\]

\[
+ \frac{H_1}{H_2 H_3} \left(\frac{\partial}{\partial \xi_2} \left(\frac{H_1}{H_2} \frac{\partial H_3}{\partial \xi_2} \right) \right)^p + \frac{1}{H_1 H_3} \frac{\partial H_3}{\partial \xi_2} \frac{\partial^2 F}{\partial \xi_2^2}
\]

\[
- \int_{\mathbb{R}^3} \frac{F}{H_3} \left[\frac{1}{H_1} \frac{\partial H_3}{\partial \xi_1} + \frac{1}{H_2} \frac{\partial H_3}{\partial \xi_2} \right] dx.
\]

Here, thanks to (15) and (25) and the incompressibility condition (23), by the fact of \(dx = H_1 H_2 H_3 d\xi_1 \xi_2 \), we have
\[
\int_{\mathbb{R}^n} |F|^p (u' \cdot \nabla F_{1} + u'' \cdot \nabla F_{2}) dx \\
= \frac{1}{p} \mathbf{p} - a \int_{\mathbb{R}^n} (u' \cdot \nabla F_{1} + u'' \cdot \nabla F_{2}) |F|^p (t, \xi, \bar{\xi}) \partial_{\xi} H_{1} H_{2} dx_{\xi} \\
- \frac{1}{p} \mathbf{p} - a \int_{\mathbb{R}^n} (H_{1} H_{2} u') \partial_{\xi} H_{1} H_{2} dx_{\xi} + (H_{1} H_{2} u') \partial_{\xi} F_{1} (t, \xi, \bar{\xi}) dx_{\xi}
\]

For the \(I_1 \) and \(I_2 \) on the right of (41), by simple integration, one has

\[
I_1 = - \left[\frac{1}{p} \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \left(H_{1} H_{2} \partial_{\xi} H_{1} \partial_{\xi} F_{1} + H_{1} H_{2} \partial_{\xi} H_{2} \partial_{\xi} F_{2} \right) dx_{\xi} \right) \right]
\]

Combining (42)–(44) with (41), we have

\[
\frac{1}{p} \mathbf{p} - a \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \left(H_{1} H_{2} \partial_{\xi} H_{1} \partial_{\xi} F_{1} + H_{1} H_{2} \partial_{\xi} H_{2} \partial_{\xi} F_{2} \right) dx_{\xi} \right)
+ \frac{4(p-1)}{p} \left\| \nabla \xi, \partial_{\xi} F_{1} \right\|^2_{L^2(\mathbb{R}^n)}
\]

Note that \(\| \xi, \partial_{\xi} F_{1} \|_{L^2(\mathbb{R}^n)} = \| \xi \|_{L^2(\mathbb{R}^n)} \).

If \(p = 2 \), it has, immediately, by Gronwall's inequality,

\[
\sup_{0 \leq t \leq T} \left\| H_{1} u' \right\|^2_{L^2(\mathbb{R}^n)} + C \int_{0}^{T} \left\| \nabla |H_{1} u' | \right\|^2_{L^2(\mathbb{R}^n)} dt
\]

and, then, by Gronwall's inequality again, one also has

\[
\sup_{0 \leq t \leq T} \left\| H_{1} u' \right\|^2_{L^2(\mathbb{R}^n)} + C \int_{0}^{T} \left\| \nabla |H_{1} u' | \right\|^2_{L^2(\mathbb{R}^n)} dt
\]

The case \(p = \infty \) is immediate if we let \(p \to \infty \) in (48).

Thus, we finish the proof of Theorem 1.

5. Proof of Theorem 2

In this section, we prove Theorem 2.

Proof of Theorem 2. From (1:1), we have the basic energy inequality, for any \(T > 0 \),

\[
\sup_{0 \leq t \leq T} \| u \|^2_{L^2(\mathbb{R}^n)} + 2 \int_{0}^{T} \left\| \nabla u \right\|^2_{L^2(\mathbb{R}^n)} \leq \| u_0 \|^2_{L^2(\mathbb{R}^n)}.
\]
It is known that the vorticity equation for the vorticity \(\omega = \nabla \times u \) for 3D incompressible Navier-Stokes equation is the following:

\[
\partial_t \omega + (u \cdot \nabla) \omega - \Delta \omega = (\omega \cdot \nabla) u.
\]

(50)

Using the expressions (4), (17), and (26), we have

\[
(\omega \cdot \nabla) u = (\omega^i e_i + u^i e_i + \omega^i e_i)
\]

\[
\left(e_i \frac{1}{H_1} \frac{\partial}{\partial x_i} + e_i \frac{1}{H_2} \frac{\partial}{\partial x_i} + e_i \frac{1}{H_3} \frac{\partial}{\partial x_i} \right) (u^i e_i + u^i e_i + u^i e_i)
\]

\[
= \omega^i \frac{1}{H_1} \frac{\partial}{\partial x_i} + \omega^i \frac{1}{H_2} \frac{\partial}{\partial x_i} + \omega^i \frac{1}{H_3} \frac{\partial}{\partial x_i} (u^i e_i + u^i e_i + u^i e_i)
\]

\[
= \omega^i \frac{1}{H_1} \left(\frac{\partial}{\partial x_i} + \frac{u^i}{H_2} \right) \left(\frac{\partial}{\partial x_i} + \frac{u^i}{H_3} \right) + \left(\frac{\partial}{\partial x_i} + \frac{u^i}{H_1} \right) \left(\frac{\partial}{\partial x_i} + \frac{u^i}{H_2} \right) + \left(\frac{\partial}{\partial x_i} + \frac{u^i}{H_1} \right) \left(\frac{\partial}{\partial x_i} + \frac{u^i}{H_3} \right)
\]

\[
= (\omega^i u^i) H_1 + (\omega^i u^i) H_2 + (\omega^i u^i) H_3.
\]

(51)

Then, by multiplying \(\omega \) on the both sides of equation (50) and integrating over \(\mathbb{R}^3 \), we get

\[
\frac{1}{2} \frac{d}{dt} \left[\|\omega\|^2_{L^2(\mathbb{R}^3)} + \|\nabla \omega\|^2_{L^2(\mathbb{R}^3)} \right] = \int_{\mathbb{R}^3} (\omega \cdot \nabla) u \cdot \omega \, dx
\]

\[
= \int_{\mathbb{R}^3} \left[(\omega^i u^i) H_1 + (\omega^i u^i) H_2 + (\omega^i u^i) H_3 \right] dx
\]

\[
= \sum_{i=1}^{3} \int_{\mathbb{R}^3} \left[(\omega^i u^i) H_1 + (\omega^i u^i) H_2 + (\omega^i u^i) H_3 \right] dx
\]

\[
= \sum_{i=1}^{3} \int_{\mathbb{R}^3} \left[(\omega^i u^i) H_1 + (\omega^i u^i) H_2 + (\omega^i u^i) H_3 \right] dx.
\]

(52)

Just for the sake of clarity, we give the expressions as follows:

\[
\nabla u = \left(e_i \frac{1}{H_1} \frac{\partial}{\partial x_i} + e_i \frac{1}{H_2} \frac{\partial}{\partial x_i} + e_i \frac{1}{H_3} \frac{\partial}{\partial x_i} \right) (u^i e_i + u^i e_i + u^i e_i)
\]

\[
= e_i \otimes e_i \left(\frac{\partial u^i}{\partial x_i} - \frac{\partial u^j}{\partial x_j} \right) + e_i \otimes e_i \left(\frac{\partial u^i}{\partial x_i} - \frac{\partial u^i}{\partial x_i} \right) + e_i \otimes e_i \left(\frac{\partial u^i}{\partial x_i} - \frac{\partial u^i}{\partial x_i} \right)
\]

\[
= e_i \otimes e_i \left(\frac{\partial u^i}{\partial x_i} - \frac{\partial u^i}{\partial x_i} \right) + e_i \otimes e_i \left(\frac{\partial u^i}{\partial x_i} - \frac{\partial u^i}{\partial x_i} \right) + e_i \otimes e_i \left(\frac{\partial u^i}{\partial x_i} - \frac{\partial u^i}{\partial x_i} \right).
\]

(53)

\[
\begin{align*}
\nabla u &= \left(e_i \frac{1}{H_1} \frac{\partial}{\partial x_i} + e_i \frac{1}{H_2} \frac{\partial}{\partial x_i} + e_i \frac{1}{H_3} \frac{\partial}{\partial x_i} \right) (u^i e_i + u^i e_i + u^i e_i) \\
&= e_i \otimes e_i \left(\frac{\partial u^i}{\partial x_i} - \frac{\partial u^i}{\partial x_i} \right) + e_i \otimes e_i \left(\frac{\partial u^i}{\partial x_i} - \frac{\partial u^i}{\partial x_i} \right) + e_i \otimes e_i \left(\frac{\partial u^i}{\partial x_i} - \frac{\partial u^i}{\partial x_i} \right) \\
&= e_i \otimes e_i \left(\frac{\partial u^i}{\partial x_i} - \frac{\partial u^i}{\partial x_i} \right) + e_i \otimes e_i \left(\frac{\partial u^i}{\partial x_i} - \frac{\partial u^i}{\partial x_i} \right) + e_i \otimes e_i \left(\frac{\partial u^i}{\partial x_i} - \frac{\partial u^i}{\partial x_i} \right).
\end{align*}
\]

(54)

Then, we estimate each integral \(I_i (i = 1, \ldots, 9) \) in the right-hand side of (52) by using the relation (53) and the relation (54), respectively.

On the one hand, by applying Proposition 8, H"older inequality, Sobolev's imbedding inequality, and Young inequality, it follows, with the help of the relation (54), that

\[
J_1 = \int_{\mathbb{R}^3} \left[\omega^i u^i \frac{\partial u^i}{\partial x_i} + \frac{\partial u^i}{\partial x_i} \right] dx \leq \int_{\mathbb{R}^3} \left[\omega^i \omega^i \frac{\partial u^i}{\partial x_i} + \frac{\partial u^i}{\partial x_i} \right] dx \leq \int_{\mathbb{R}^3} \left[\omega^i \frac{\partial u^i}{\partial x_i} \right] dx
\]

\[
\leq C \| \omega \|_{L^5(\mathbb{R}^3)} \| \nabla u \|_{L^5(\mathbb{R}^3)} \leq C \| \omega \|_{L^5(\mathbb{R}^3)} \| \nabla u \|_{L^5(\mathbb{R}^3)} \leq C \| \omega \|_{L^5(\mathbb{R}^3)} \| \nabla u \|_{L^5(\mathbb{R}^3)} + \frac{1}{18} \| \omega \|^2_{L^2(\mathbb{R}^3)}.
\]

(55)

The term \(J_2 \) can be estimated similarly to \(J_1 \) as

\[
J_2 = \int_{\mathbb{R}^3} \left[\omega^i u^i \frac{\partial u^i}{\partial x_i} + \frac{\partial u^i}{\partial x_i} \right] dx \leq \int_{\mathbb{R}^3} \left[\omega^i \frac{\partial u^i}{\partial x_i} \right] dx \leq C \| \omega \|^2_{L^2(\mathbb{R}^3)} + \frac{1}{18} \| \omega \|^2_{L^2(\mathbb{R}^3)}.
\]

(56)
Similarly,

\[
J_4 = \int_{\mathbb{R}^3} \frac{\omega^2}{H_2} \left(\frac{\partial u_1}{\partial \xi_2} - \frac{u_2^2}{H_1} \frac{\partial H_2}{\partial \xi_1} \right) dx \leq \int_{\mathbb{R}^3} |\omega| |\nabla \tilde{u}| dx
\]

\[
\leq C \left| \omega \right|^2_{L^2(\mathbb{R}^3)} \left| \nabla \tilde{u} \right|^2_{L^2(\mathbb{R}^3)} + \frac{1}{18} \left| \nabla \omega \right|^2_{L^2(\mathbb{R}^3)}
\]

\[
J_5 = \int_{\mathbb{R}^3} \frac{\omega^2}{H_2} \left(\frac{\partial u_1}{\partial \xi_2} + \frac{u_1 \partial H_2}{\partial \xi_1} \right) dx \leq C \int_{\mathbb{R}^3} |\omega| |\nabla \tilde{u}| dx
\]

\[
\leq C \left| \omega \right|^2_{L^2(\mathbb{R}^3)} \left| \nabla \tilde{u} \right|^2_{L^2(\mathbb{R}^3)} + \frac{1}{18} \left| \nabla \omega \right|^2_{L^2(\mathbb{R}^3)}.
\]

(57)

On the other hand, by using Lemma 7, Hölder inequality, Sobolev imbedding inequality, and Young inequality, it yields, with the help of the relation (53), that

\[
J_3 = \int_{\mathbb{R}^3} \frac{\omega^2}{H_1} \frac{\partial u_3}{\partial \xi_1} dx \leq \int_{\mathbb{R}^3} |\omega| |\nabla u| \omega^3 dx
\]

\[
\leq \left| \omega \right|^{1/2}_{L^2(\mathbb{R}^3)} \left| \nabla u \right|^{1/2}_{L^2(\mathbb{R}^3)} \left| \omega \right|^3_{L^1(\mathbb{R}^3)}
\]

\[
\leq C \left| \omega \right|^2_{L^2(\mathbb{R}^3)} \left| \nabla \tilde{u} \right|^2_{L^2(\mathbb{R}^3)} + \frac{1}{18} \left| \nabla \omega \right|^2_{L^2(\mathbb{R}^3)}.
\]

(58)

The terms \(J_6, J_7, J_8\) and \(J_9\) can be estimated similarly to \(J_3\) as

\[
J_6 + J_7 + J_8 + J_9 \leq C \int_{\mathbb{R}^3} \left| \omega \right| |\nabla u| \omega^3 dx
\]

\[
\leq C \left| \omega \right|^2_{L^2(\mathbb{R}^3)} \left| \nabla \tilde{u} \right|^2_{L^2(\mathbb{R}^3)} + \frac{2}{9} \left| \nabla \omega \right|^2_{L^2(\mathbb{R}^3)}.
\]

(59)

Combining all above estimates about \(J_i (i = 1, \ldots, 9)\), from (52), we obtain

\[
\frac{d}{dt} \left| \omega \right|^2_{L^2(\mathbb{R}^3)} + \left| \nabla \omega \right|^2_{L^2(\mathbb{R}^3)} \leq C \left| \omega \right|^2_{L^2(\mathbb{R}^3)} \left| \nabla \tilde{u} \right|^2_{L^2(\mathbb{R}^3)}.
\]

(60)

Applying Gronwall’s inequality, it yields, for any \(0 \leq t \leq T\)

\[
\omega \in L^\infty(0, T; L^2(\mathbb{R}^3)).
\]

(61)

Together with Lemma 7 and (49), it implies that, for any \(0 \leq t \leq T\)

\[
u \in L^\infty(0, T; H^1(\mathbb{R}^3)).
\]

(62)

By Sobolev’s imbedding Theorem, we obtain that, for any \(0 \leq t \leq T\)

\[
u \in L^\infty(0, T; L^6(\mathbb{R}^3)).
\]

(63)

Hence, with the help of Lemma 6, we finish the proof of Theorem 2.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Authors’ Contributions

All authors contributed equally to writing of this paper. All authors read and approved the final manuscript.

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant Nos. 11831003, 11771031, and 11531010).

References

[1] J. Leray, “Sur le mouvement d’un liquide visqueux emplissant l’espace,” *Acta Mathematica*, vol. 63, pp. 193–248, 1934.

[2] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet,” *Mathematische Nachrichten*, vol. 4, no. 1-6, pp. 213–231, 1950.

[3] L. Caffarelli, R. Kohn, and L. Nirenberg, (Partial regularity of suitable weak solutions of the Navier-Stokes equations,” *Communications on Pure and Applied Mathematics*, vol. 35, no. 6, pp. 771–831, 1982.

[4] F. Lin, “A new proof of the Caffarelli-Kohn-Nirenberg theorem,” *Communications on Pure and Applied Mathematics*, vol. 51, no. 3, pp. 241–257, 1998.

[5] A. Majda and A. Bertozzi, *Vorticity and Incompressible Flow* (Cambridge Texts in Applied Mathematics), Cambridge University Press, 2010.

[6] G. Prodi, “Un teorema di unicità per le equazioni di Navier-Stokes,” *Annali di Matematica Pura ed Applicata*, vol. 48, no. 1, pp. 173–182, 1959.

[7] L. Escauriaza, G. A. Seregin, and V. Sverak, “L3-co-solutions of the Navier-Stokes equations and backward uniqueness,” *Russian Mathematical Surveys*, vol. 58, no. 2, pp. 211–250, 2003.

[8] J. Serrin, “On the interior regularity of weak solutions of the Navier-Stokes equations,” *Archive for Rational Mechanics and Analysis*, vol. 9, no. 1, pp. 187–195, 1962.

[9] C. S. Cao and E. S. Titi, “Regularity criteria for the three-dimensional Navier-Stokes equations,” *Indiana University Mathematics Journal*, vol. 57, no. 6, pp. 2643–2662, 2008.

[10] I. Kukavica and M. Ziane, “One component regularity for the Navier-Stokes equations,” *Nonlinearity*, vol. 19, no. 2, pp. 453–469, 2006.

[11] J. Neustupa, A. Novotný, and P. Penel, “An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity,” *Topics in Mathematical Fluid Mechanics*, *Quaderni di Matematica*, vol. 10, pp. 163–183, 2002.
[12] Y. Zhou and M. Pokorný, “On the regularity of the solutions of the Navier-Stokes equations via one velocity component,” Nonlinearity, vol. 23, no. 5, pp. 1097–1107, 2010.

[13] O. A. Ladyžhenskaya, "Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry," Seminar in Mathematics, VA Steklov Mathematical Institute, Leningrad, vol. 7, pp. 155–177, 1968.

[14] S. Leonardi, J. Málek, J. Nečas, and M. Pokorný, “On axially symmetric flows in \mathbb{R}^3,” Zeitschrift für Analysis und ihre Anwendungen, vol. 18, no. 3, pp. 639–649, 1999.

[15] P. Serfati, “Régularité stratifiée et équation d’Euler 3D à temps grand,” Comptes Rendus de l’Académie des Sciences, vol. 318, pp. 925–928, 1994.

[16] M. R. Ukhovskii and V. I. Iudovich, “Axially symmetric flows of ideal and viscous fluids filling the whole space,” Journal of Applied Mathematics and Mechanics, vol. 32, no. 1, pp. 52–62, 1968.

[17] T. Y. Hou, Z. Lei, G. Luo, S. Wang, and C. Zou, “On finite time singularity and global regularity of an axisymmetric model for the 3D Euler equations,” Archive for Rational Mechanics and Analysis, vol. 212, no. 2, pp. 683–706, 2014.

[18] T. Y. Hou, Z. Shi, and S. Wang, “On singularity formation of a 3D model for incompressible Navier-Stokes equations,” Advances in Mathematics, vol. 230, no. 2, pp. 607–641, 2012.

[19] Q. Jiu, J. Liu, School of Mathematical Sciences & Beijing Center of Mathematics and Information Sciences, Capital Normal University, Beijing, 100048, and The Institute of Mathematical Sciences, The Chinese University of Hong Kong, “Global regularity for the 3D axisymmetric MHD equations with horizontal dissipation and vertical magnetic diffusion,” Discrete & Continuous Dynamical Systems - A, vol. 35, no. 1, pp. 301–322, 2015.

[20] Q. Jiu and J. Liu, “Regularity criteria to the axisymmetric incompressible magneto-hydrodynamics equations,” Dynamics of Partial Differential Equations, vol. 15, no. 2, pp. 109–126, 2018.

[21] H. Chen, D. Y. Fang, T. Zhang, and School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China, “Regularity of 3D axisymmetric Navier-Stokes equations,” Discrete & Continuous Dynamical Systems - A, vol. 37, no. 4, pp. 1923–1939, 2017.

[22] Z. Lei and Q. Zhang, “Criticality of the axially symmetric Navier-Stokes equations,” Pacific Journal of Mathematics, vol. 289, no. 1, pp. 169–187, 2017.

[23] D. Wei, “Regularity criterion to the axially symmetric Navier-Stokes equations,” Journal of Mathematical Analysis and Applications, vol. 435, no. 1, pp. 402–413, 2016.

[24] W. M. Zajączkowski, “A regularity criterion for axially symmetric solutions to the Navier-Stokes equations,” Journal of Mathematical Sciences, vol. 178, no. 3, pp. 265–273, 2011.

[25] Z. Zhang, “A pointwise regularity criterion for axisymmetric Navier-Stokes system,” Journal of Mathematical Analysis and Applications, vol. 461, no. 1, pp. 1–6, 2018.

[26] Z. Zhang, “On weighted regularity criteria for the axisymmetric Navier-Stokes equations,” Applied Mathematics and Computation, vol. 296, pp. 18–22, 2017.

[27] A. Mahalov, E. S. Titi, and S. Leibovich, “Invariant helical subspaces for the Navier-Stokes equations,” Archive for Rational Mechanics and Analysis, vol. 112, no. 3, pp. 193–222, 1990.

[28] C. G. Diego, Absence of simple hyperbolic blow-up for the quasi-geostrophic and Euler equations, Ph.D. Thesis, Princeton University, 1998.

[29] S. Wang, “The Viscosity Vanishing Limit and Global Well-Posedness of the Three-Dimensional Incompressible Navier-Stokes Equations with Smooth Large Initial Data in Spherical Coordinates,” Applied Mathematics Letters, vol. 103, p. 106195, 2020.

[30] S. Wang and Y. X. Wang, Existence and uniqueness of global smooth solutions to the 3D incompressible Navier-Stokes and Euler equations in spherical coordinates, Preprint, 2019.

[31] S. Wang and Y. X. Wang, Existence and uniqueness of global smooth solutions to the 3D incompressible Boussinesq equations with large initial data in spherical coordinates, Preprint, 2019.

[32] G. K. Bachelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1967.

[33] D. Chae and J. Lee, “On the regularity of the axisymmetric solutions of the Navier-Stokes equations,” Mathematische Zeitschrift, vol. 239, no. 4, pp. 645–671, 2002.