Photolytic degradation of methylmercury enhanced by binding to natural organic ligands

Tong Zhang1 and Heileen Hsu-Kim1,*

1 Duke University, Department of Civil & Environmental Engineering, 121 Hudson Hall, Durham, NC 27708 USA

Abstract

Monomethylmercury is a neurotoxin that poses significant risks to human health1 due to its bioaccumulation in food webs. Sunlight degradation to inorganic mercury is an important component of the mercury cycle that maintains methylmercury at low concentrations in natural waters. Rates of photodecomposition, however, can vary drastically between surface waters2–5 for reasons that are largely unknown. Here, we show that photodegradation occurs through singlet oxygen, a highly reactive form of dissolved oxygen generated by sunlight irradiation of dissolved natural organic matter. The kinetics of degradation, however, depended on water constituents that bind methylmercury cations. Relatively fast degradation rates (similar to observations in freshwater lakes) applied only to methylmercury species bound to organic sulfur-containing thiol ligands such as glutathione, mercaptoacetate, and humics. In contrast, methylmercury-chloride complexes, which are dominant in marine systems, were unreactive. Binding by thiols lowered the excitation energy of the carbon-mercury bond on the methylmercury molecule6–7 and subsequently increased reactivity towards bond breakage and decomposition. Our results explain methylmercury photodecomposition rates that are relatively rapid in freshwater lakes2–4 and slow in marine waters5.

Demethylation of methylmercury (MeHg) in natural waters occurs through both biological8–9 and photochemical processes3. In sunlit waters, the photochemical process is the dominant removal pathway and has been estimated to account for as much as 80% of MeHg flux out of lakes3,10. While sunlight is known to induce MeHg degradation, rates vary among different types of water. Photodegradation is rapid in remote lakes in North America and the Arctic2–4, but relatively slow in seawater, especially compared to microbial processes5. The reason for such variability is unknown because the photodemethylation process is poorly understood.

*Corresponding Author: hsukim@duke.edu, phone: (919) 660-5109.

Author contributions
T.Z. performed all experiments and data analysis. H.H. conceived the study, supervised the research, and performed speciation calculations. Both authors drafted the manuscript.

Competing Financial Interests
The authors have no competing financial interests.
MeHg degradation is likely to be induced by the ultraviolet spectrum (<400 nm) of sunlight. Hydroxyl radicals (‘OH), which are produced via photo-Fenton reactions or by photolysis of nitrate, have been proposed as the reactive intermediates responsible for photodegradation. However, with previously reported ‘OH demethylation rates (k = 2 to $9 \times 10^9 \text{M}^{-1} \text{s}^{-1}$) [1,2], significant MeHg degradation by this pathway would require large steady state ‘OH concentrations that would occur only under specific conditions: agriculturally-impacted waters (with high nitrate and low dissolved organic carbon) or in acidic waters (pH ≤ 6) with sufficient soluble Fe to drive photo-Fenton processes [3].

While production of ‘OH is possible at neutral pH, production rates are highly sensitive to pH shifts, dissolved natural organic matter (NOM) content, and filtration of samples (in which removal of particulate Fe-oxides would decrease ‘OH production). Such patterns are inconsistent with previous field studies on MeHg photodegradation in which pH variations (from 6 to 7.5) and filtration of the sample did not change photodegradation rates [2,4,10].

Such discrepancies point to another photoreactive intermediate (in addition to ‘OH) that can induce MeHg degradation in surface waters.

MeHg degradation can also occur through singlet oxygen ($^{1}\text{O}_2$) [17], which is generated by sunlight sensitization of dissolved NOM [18,19]. Here, we show that reaction rates between $^{1}\text{O}_2$ and MeHg are sufficient to account for sunlight-induced degradation. However, these rates apply only to certain types of MeHg species in water: CH$_3$Hg-thiol complexes.

We performed photodegradation experiments in a simulated freshwater containing MeHg, Suwannee River humic acid, and a phosphate buffer (pH 7 to 7.4). In two separate experiments, sample containers (Teflon FEP) were exposed to natural sunlight over 4 days in October and December 2008 on a building roof top in Durham, North Carolina. During the exposure period, MeHg did not degrade in appreciable amounts in samples that contained only the phosphate buffer (Figure 1a). MeHg degradation was observed only when humic acid was present and when the MeHg concentration was low (15 nM) relative to humic acid. The differences observed between the 15 nM and 1500 nM MeHg treatments could be caused by complexation between MeHg and thiols associated with the humic. In the sample with 2 mg-C/L humic, the reduced-sulfur concentration from the humic acid was estimated at 150 nM (assuming 7.3×10^{-5} moles reduced-S per g C) and greater than total MeHg (15 nM). In contrast, the sample with 1.1 mg-C/L humic and 1500 nM MeHg contained 80 nM reduced-S, less than MeHg concentration.

We performed similar photodegradation experiments using a laboratory UV-A reactor (λ = 365 nm) to show that degradation rates depended on the concentration of MeHg relative to humic acid. MeHg degradation occurred only if humic acid was present (Supplementary Figure S1). Furthermore, degradation was observed only at MeHg concentrations (0.5 nM and 125 nM) that were less than the estimated reduced-S content of the humic (200 nM) (Figure 1b). We observed similar trends demonstrating the concentration dependence for MeHg degradation in samples formulated in seawater (Supplementary Figure S1). The UV-B component of the solar spectrum may also contribute to photodegradation but was not tested in our study.
Sunlight irradiation of chromophoric NOM is known to generate reactive intermediates such as \(^{\cdot} \text{OH} \), superoxide, and \(^{1} \text{O}_2 \). In additional photodegradation experiments, we utilized selective probes to identify the reactive intermediate that was responsible for MeHg decomposition (Figure 2). The addition of \(\beta \)-carotene and sodium azide (NaN\(_3\)), which are probes for \(^{1} \text{O}_2 \), resulted in slower MeHg degradation kinetics (Figure 2a). Experiments were also repeated in 98.5% deuterated water (D\(_2\)O), a solvent that is \(~13\) times slower than H\(_2\)O at quenching singlet oxygen\(^{19,22}\) and thus, increases steady state \(^{1} \text{O}_2 \) levels. The use of D\(_2\)O appeared to increase the rate of decomposition; however, this enhancement was smaller than expected. The addition of isopropyl alcohol (a probe for \(^{\cdot} \text{OH} \)) and isoprene (a probe for photosensitized triplet state NOM\(^{23,24}\)) did not appreciably change photodegradation rates (Figure 2b). MeHg degradation was not observed in dark controls: the recovery of MeHg was 92\% (\(\pm 8.3\% \)) after 120 hr. Additional dark experiments with enzyme-generated superoxide indicated that superoxide was not capable of decomposing MeHg within this time frame (Supplementary Figure S2). Collectively these results suggested that \(^{1} \text{O}_2 \) was the reactive intermediate responsible for photodegradation in our experiments and not other types of intermediates such as \(^{\cdot} \text{OH} \), photosensitized NOM, and superoxide.

The experiments with \(\beta \)-carotene, NaN\(_3\), and D\(_2\)O demonstrated the consequence of a heterogeneous distribution of \(^{1} \text{O}_2 \) in humic acid solutions and the binding of MeHg to NOM. According to Latch and McNeill\(^{19}\), singlet oxygen is generated in the light-absorbing regions of dissolved NOM and quickly quenched by water. Therefore, the steady state \(^{1} \text{O}_2 \) concentration can be orders of magnitude greater in close proximity to dissolved NOM molecules than in bulk solution\(^{19}\). In our experiments, this concentration gradient may explain why hydrophilic modifiers such as NaN\(_3\) and D\(_2\)O had less effect on MeHg degradation rates than would be predicted based on known reaction rates between the modifiers and \(^{1} \text{O}_2 \) (Supplementary Table S1). In contrast, \(\beta \)-carotene is a hydrophobic modifier that sorbed to NOM macromolecules and subsequently inhibited MeHg degradation to an extent that was predicted (Table S1). These results indicated that MeHg was sorbed to or complexed by humic molecules and, consequently, reacted with \(^{1} \text{O}_2 \) molecules in the hydrophobic regions of the NOM.

In our experiments water composition was an important factor controlling degradation kinetics. Rates depended on the relative concentrations of MeHg and humic acid (Figure 1). Direct interactions between MeHg and NOM (such as metal-ligand complexation) may be critical to photodemethylation kinetics.

We tested the importance of complexation by quantifying second-order rate constants \(k_{^{1} \text{O}_2, \text{CH}_3 \text{Hg}^{+}} \) for reactions between \(^{1} \text{O}_2 \) and \(\text{CH}_3 \text{Hg}^{+} \)-ligand complexes. Glutathione (GSH) and mercaptoacetate (MA) were selected as surrogates of thiol-containing ligands that are expected to bind to \(\text{CH}_3 \text{Hg}^{+} \) ions in NOM-containing freshwater\(^{25,26}\). Cl\(^{-}\) and OH\(^{-}\) ligands are relevant for saline or low-NOM water. Singlet oxygen was generated by UV-A irradiation of rose bengal. Dark controls were also performed to ensure that the reactants did not cause degradation (Supplementary Figure S3). Additional experiments with amendments (D\(_2\)O or NaN\(_3\)) and with Eosin-Y (instead of rose bengal) were performed to demonstrate that singlet oxygen, and not sensitized rose bengal, was the reactive intermediate for the degradation experiments (Supplementary Figure S4). Reaction rate constants were
quantified by competition kinetics in which the simultaneous degradation of 2-chlorophenol was monitored in the same solution.

In water containing GSH and MA, we observed faster MeHg decomposition by \(^1\text{O}_2\) than in water containing \(\text{Cl}^-\) or the phosphate buffer alone (Figure 3a). We observed similar trends in experiments with seawater (Supplementary Figure S5). These results indicated that \(^1\text{O}_2\)-induced degradation was faster for \(\text{CH}_3\text{Hg-GSH}\) and \(\text{CH}_3\text{Hg-MA}\) complexes than for \(\text{CH}_3\text{HgCl}\) and \(\text{CH}_3\text{HgOH}/\text{CH}_3\text{HgHPO}_4^-\) complexes (corresponding to \(\text{PO}_4^-\)-buffered water with no additional ligands).

Complexation of sulfhydryl groups by mercury was expected to slow thiol oxidation by reactive oxygen species\(^{27}\). However, the total thiol concentration was in excess of total Hg in the samples. Thus, the thiols were decomposing simultaneously during the reaction (Supplementary Figure S6), producing compounds such as organic sulfur radicals that may be capable of inducing demethylation. We tested the reactivity of thiol oxidation products by performing dark experiments with hydrogen peroxide (\(\text{H}_2\text{O}_2\)), which oxidized GSH and MA to form sulfhydryl radical intermediates\(^{28}\). Decomposition of \(\text{CH}_3\text{Hg-GSH}\) complexes was not observed, even as GSH (which was in excess of MeHg) was oxidized by \(\text{H}_2\text{O}_2\) (Supplementary Figure S7). Therefore, we concluded that sulfhydryl radicals were not the cause of MeHg degradation.

Second-order rates constants (Table 1) calculated from the \(^1\text{O}_2\) experiments indicated that \(k_{1\text{O}_2,\text{CH}_3\text{HgL}}\) values for \(\text{CH}_3\text{Hg-GSH}\) and \(\text{CH}_3\text{Hg-MA}\) complexes were 2 to 4 times greater than the rate constant measured for the \(\text{CH}_3\text{HgOH}/\text{CH}_3\text{HgHPO}_4^-\) mixture. Degradation of \(\text{CH}_3\text{HgCl}\) was not detected for the time scale of our experiments (34 hr). Thus, the \(\text{CH}_3\text{HgCl}\) rate constant with \(^1\text{O}_2\) was at least an order of magnitude slower. For the \(^*\text{OH}\) degradation pathway, rate constants did not appear to differ between \(\text{CH}_3\text{Hg-thiol}\) complexes and \(\text{CH}_3\text{HgOH}/\text{CH}_3\text{HgHPO}_4^-\) mixed speciation (Table 1).

The increased reactivity between \(\text{CH}_3\text{Hg-thiol}\) complexes and \(^1\text{O}_2\) may be caused by shifts in carbon-mercury bond energies induced by thiol complexation. In theoretical studies, Ni et al.\(^6\) demonstrated that coordination of a reduced sulfur residue (-SH) to \(\text{CH}_3\text{Hg}^+\) resulted in greater electronegativity at the carbon atom (and presumably increased reactivity with electrophiles). Tossel\(^7\) also utilized quantum mechanical calculations to show that sulfhydrl coordination decreased electron transition energies to a range where irradiation by low UV wavelengths (\(\lambda<270\) nm) could induce demethylation.

We confirmed these theoretical calculations by performing direct photolysis experiments with UV-C radiation (\(\lambda = 254\) nm) to demonstrate that thiol complexation alters electron transition energies of the \(\text{CH}_3\text{Hg-ligand}\) molecule. Degradation of MeHg by UV-C was observed only if methylmercury was in the form of \(\text{CH}_3\text{Hg-GSH}\) complexes (Figure 3b). Degradation was not observed in the phosphate buffer alone, where methylmercury consisted of 90% \(\text{CH}_3\text{HgOH}\) and 10% \(\text{CH}_3\text{HgHPO}_4^-\). Moreover, the observed decomposition rates increased as the GSH:MeHg molar ratio increased from zero to 1, and remained constant for all mixtures where GSH was in excess of MeHg. GSH did not decompose during direct UV-C exposure (91.9% \(\pm\) 1.4% GSH recovered after 2600 mJ/cm\(^2\))
fluence). These results showed that GSH complexation altered the reactivity of the MeHg molecule to make it more susceptible to photodegradation.

Speciation-dependent MeHg degradation rates can explain the variability observed between freshwater lakes and seawater. MeHg speciation differs greatly in these two ecosystems due to ligand competition between Cl\(^-\) and thiolate (R-S\(^-\)) functional groups associated with NOM. CH\(_3\)Hg\(_2\)Cl complexes are expected to be the major species in coastal marine waters with Cl\(^-\) concentration greater than 0.1 M (Supplementary Figure S8). In contrast, most freshwater systems contain enough dissolved NOM (>1 mg-C/L) and low Cl\(^-\) such that CH\(_3\)Hg\(^+\) ions are bound to thiol ligands associated with NOM\(^{26, 29, 30}\).

In sunlit surface water containing NOM, the steady state concentration of \(^1\)O\(_2\) can be as high as \(10^{-13}\) to \(10^{-12}\) M \(^{19}\). Using the CH\(_3\)Hg-thiol rate constants in Table 1, we calculated pseudo-first order photodegradation rates ranging from 0.04 to 0.6 d\(^{-1}\), values that are close to rates quantified in lakes\(^{2-4}\). Overall, our results indicate that ecosystem mass balances for MeHg must consider water composition and MeHg speciation when estimating losses from photodegradation. With this new understanding of how photodemethylation occurs, we can improve efforts to predict mercury cycling in the aquatic environment and prevent bioaccumulation of MeHg in food webs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank K. Linden for assistance with UV photolysis experiments and K. McNeill and B.M. Voelker for helpful discussions regarding this study. This work was supported by Duke’s Pratt School of Engineering and Duke’s Center for Comparative Biology of Vulnerable Populations funded by the National Institute of Environmental Health Science.

References

1. Mergler D, et al. Methylmercury exposure and health effects in humans: A worldwide concern. Ambio. 2007; 36:3–11. [PubMed: 17408186]
2. Lehnherr I, St Louis VL. Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems. Environ Sci Technol. 2009; 43:5692–5998. [PubMed: 19731664]
3. Sellers P, Kelly CA, Rudd JWM, MacHutchon AR. Photodegradation of methylmercury in lakes. Nature. 1996; 380:694–697.
4. Hammerschmidt CR, Fitzgerald WF. Photodecomposition of methylmercury in an Arctic Alaskan lake. Environ Sci Technol. 2006; 40:1212–1216. [PubMed: 16572777]
5. Whalin L, Kim EH, Mason R. Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar Chem. 2007; 107:278–294.
6. Ni B, Kramer JR, Bell RA, Werstiuk NH. Protonolysis of the Hg-C bond of chloromethylmercury and dimethylmercury. A DFT and QTAIM study. Journal of Physical Chemistry A. 2006; 110:9451–9458.
7. Tossell JA. Theoretical study of photodecomposition of methyl Hg complexes. Journal of Physical Chemistry A. 1998; 102:3587–3591.
8. Marvin-Dipasquale MC, Oremland RS. Bacterial methylmercury degradation in Florida Everglades peat sediment. Environ Sci Technol. 1998; 32:2556–2563.
9. Oremland RS, Culbertson CW, Winfrey MR. Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation. Appl Environ Microbiol. 1991; 57:130–137. [PubMed: 16348388]

10. Sellers P, Kelly CA, Rudd JWM. Fluxes of methylmercury to the water column of a drainage lake: The relative importance of internal and external sources. Limnol Oceanogr. 2001; 46:623–631.

11. Hoigne, J.; Bader, H. Organometals and organometalloids. In: Brinckman, FE.; Bellama, JM., editors. Occurence and fate in the environment; ACS Symposium Series 82; American Chemical Society: 1978. p. 292-313.

12. Chen J, Pehkonen SO, Lin CJ. Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters. Water Res. 2003; 37:2496–2504. [PubMed: 12727262]

13. Hoigne J. Comment on "Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters". Water Res. 2004; 38:3470–3471. [PubMed: 15276766]

14. Zepp RG, Hoigne J, Bader H. Nitrate-Induced Photooxidation of Trace Organic- Chemicals in Water. Environ Sci Technol. 1987; 21:443–450. [PubMed: 12296131]

15. Southworth BA, Voelker BM. Hydroxyl Radical Production via the Photo-Fenton in the Presence of Fulvic Acid. Environ Sci Technol. 2003; 37:1130–1136. [PubMed: 12680665]

16. Vermilyea AW, Voelker BM. Photo-Fenton Reaction at Near Netural pH. Environ Sci Technol. 2009; 43:6927–6933. [PubMed: 19806722]

17. Suda I, Suda M, Hirayama K. Degradation of methyl and ethyl mercury by singlet oxygen generated from sea water exposed to sunlight or ultraviolet light. Archives of Toxicology. 1993; 67:365–368. [PubMed: 8368946]

18. Grandbois M, Latch DE, McNeill K. Microheterogeneous Concentrations of Singlet Oxygen in Natural Organic Matter Isolate Solutions. Environ Sci Technol. 2008; 42:9184–9190. [PubMed: 19174890]

19. Latch DE, McNeill K. Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions. Science. 2006; 311:1743–1747. [PubMed: 16497888]

20. Waples JS, Nagy KL, Aiiken GR, Ryan JN. Dissolution of cinnabar (HgS) in the presence of natural organic matter. Geochim Cosmochim Acta. 2005; 69:1575–1588.

21. Brezonik, PL. Chemical Kinetics and Process Dynamics in Aquatic Systems. CRC Press; 1993.

22. Schmidt R, Afshari E. Collisional deactivation of O-2(1-Delta-G) by solvent molecules - comparative experiments with O-16(2) and O-18(2). Ber Bunsen-Ges Phys Chem Phys. 1992; 96:788–794.

23. Boreen AL, Edhlund BL, Cotner JB, McNeill K. Indirect photodegradation of dissolved free amino acids: The contribution of singlet oxygen and the differential reactivity of DOM from various sources. Environ Sci Technol. 2008; 42:5492–5498. [PubMed: 18754466]

24. Zepp RG, Schlotzhauer PF, Sink RM. Photosensitized transformations involving electronic-energy transfer in natural waters: Role of humic substances. Environ Sci Technol. 1985; 19:74–81.

25. Hintelmann H, Keppel-Jones K, Evans RD. Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environ Toxicol Chem. 2000; 19:2204–2211.

26. Amirbahman A, Reid AL, Haines TA, Kahl JS, Arnold C. Association of methylmercury with dissolved humic acids. Environ Sci Technol. 2002; 36:690–695. [PubMed: 11878384]

27. Hsu-Kim H. Stability of Metal-Glutathione Complexes During Oxidation by Hydrogen Peroxide and Cu(II)-Catalysis. Environ Sci Technol. 2007; 41:2338–2342. [PubMed: 17438784]

28. Abedinzadeh Z, Gardes-Albert M, Ferradini C. Kinetic study of the oxidation mechanism of glutathione by hydrogen peroxide in neutral aqueous solution. Can J Chem. 1989; 67:124701255.

29. Hintelmann H, Welbourn PM, Evans RD. Measurement of complexation of methylmercury(II) compounds by freshwater humic substances using equilibrium dialysis. Environ Sci Technol. 1997; 31:489–495.

30. Karlsson T, Skyllberg U. Bonding of ppb levels of methyl mercury to reduced sulfur groups in soil organic matter. Environ Sci Technol. 2003; 37:4912–4918. [PubMed: 14620818]
Figure 1. Concentration dependence of MeHg photodegradation rates

a) MeHg degradation by sunlight in water containing Suwannee River humic acid (SRHA) and phosphate (1 mM, pH = 7). The high MeHg treatment (1500 nM) was exposed in October 2008 (15.2°C average noon temperature). The low MeHg treatment (15 nM) was exposed in December 2008 (8.9°C). Error bars represent ±1 s.d. for replicate measurements (n=2–3) of the same sample.

b) MeHg degradation by artificial UV-A (λ=365 nm) in water containing SRHA (2.8 mg-C/L) and phosphate (10 mM, pH 7.4). Data points represent the average MeHg concentration (±1 s.d.) for duplicate samples.
Figure 2. MeHg degradation via generation of 1O_2 from photosensitized humic acid
MeHg was degraded by UV-A in simulated water containing MeHg (0.5 nM), SRHA (2.8 mg-C/L), and phosphate (10 mM, pH 7.3). a) Replicate samples were amended with either D$_2$O (a singlet oxygen enhancer), NaN$_3$ or β-carotene (singlet oxygen quenchers); b) No difference was observed in replicates amended with isoprene (a quencher for triplet state dissolved NOM) or isopropyl alcohol (quencher for 1OH). Error bars represent ±1 s.d. for replicate measurements (n=2–3).
Figure 3. Effect of ligand complexation on degradation of MeHg

a) Singlet oxygen-induced degradation of MeHg (350 nM) complexed with GSH, MA, Cl⁻, or OH⁻/HPO₄²⁻ in water containing 2-chlorophenol (40 μM) and phosphate (10 mM, pH=7.3). ^1O₂ was generated by UV-A (λ =365 nm) irradiation of rose bengal. Lines indicate model predictions from rate constants. Error bars represent ±1 s.d. for replicate measurements (n=2–3); b) Direct UV-C (λ =254 nm) degradation of MeHg at varying initial ratios of MeHg and GSH (4 μM initial MeHg, 1 mM phosphate, pH 7.4). Solid line indicates a linear regression of data for [GSH]₀: [MeHg]₀ ≤1.
Table 1

Degradation rate constants for methylmercury complexes. Values represent average (± 1 standard deviation) of duplicate photochemical experiments at 25–26 °C.

MeHg species	1O$_2$-induced degradation $k_{^1O_2/MeHg}$ (M$^{-1}$ s$^{-1}$)	$^\cdot$OH-induced degradation $k_{^\cdotOH/MeHg}$ (M$^{-1}$ s$^{-1}$)	Direct UV (λ = 254 nm) degradation k_D (cm2/mJ)
CH$_3$HgCl	<0.32×106(b)	NA	NA
CH$_3$HgOH, CH$_3$HgHPO$_4^-$ mix (a)	1.9 (±0.04)×106	1.9 (±0.09)×106	<0.23×10$^{-4}$ (c)
CH$_3$Hg-GSH	7.4 (±0.2)×106	1.9 (±0.04)×106	2.2 (±0.02)×10$^{-4}$
CH$_3$Hg-MA	4.9 (±0.5)×106	NA	NA

(a) The initial methylmercury speciation (in phosphate buffer) was 49% CH$_3$HgOH and 51% CH$_3$HgHPO$_4^-$ in the 1O$_2$-induced degradation experiments (pH = 7.3), and 90% CH$_3$HgOH and 10% CH$_3$HgHPO$_4^-$ in the $^\cdot$OH-induced and direct UV-C degradation experiments (pH = 7.4).

(b) Calculated limit of quantification based on >95% of the initial MeHg measured in solution after exposure to UV-generated 1O$_2$ for the maximum duration of the experiment (34 hr).

(c) Calculated limit of quantification based on >94% of the initial MeHg measured in solution after the maximum UV fluence (2600 mJ/cm2) for the experiment.

NA: Not available