A novel filter for three-phase power factor correction voltage feedback loop under heavy DC voltage ripple condition

Authors: LONG YINGWEN, SUN YUHONG

Abstract: THD and the amplitude balance of three-phase input current are an important index for the performance of three-phase power factor correction (PFC). In general, when the hardware and the load of three-phase PFC are confirmed, the THD and amplitude balance of three-phase input current mainly depend on voltage and current feedback loop of PFC. Firstly, this paper designs the traditional voltage and current feedback loop for three-phase PFC according to traditional small signal theory. Secondly, this paper studies the designing difficulty of large dc voltage ripple for PFC voltage controller and puts forward a new dc voltage ripple filter which can eliminate the ac component of sampling dc bus voltage. Finally, this paper proposes a novel filter with dc voltage ripple frequency adaption function to copy with the frequency variety of the voltage ripple caused by the change of the output inverter frequency. With the help of the proposed algorithm the distortion of three-phase 3 input current reference decreases rapidly, therefore, the low THD and good amplitude balance of three phase input current will be achieved.

Keywords: PFC, filter, harmonic, THD (total harmonic distortion)

References

[1] Youn, H.S. Park, J.S., Park, K.B., Baek, J.I. and Moon, G.W. (2015): A Digital Predictive Peak Current Control for Power Factor Correction With Low-Input Current Distortion[J]. IEEE Transactions on Power Electronics, 31(1):900-912.

[2] Xie, X, Li, J., Peng, K., Zhao, C. and Lu, Q. (2015): Study on the Single-Stage ForwardFlyback PFC Converter With QR Control[J]. IEEE Transactions on Power Electronics,31(1):430-442.

[3] Maciel, R.S., Freitas, L.C.D., Coelho, E.A.A., Vieira, J.B. and Freitas., LCGD (2015): FrontEnd Converter With Integrated PFC and DC–DC Functions for a Fuel Cell UPS With DSP-Based Control[J]. IEEE Transactions on Power Electronics, 30(8):4175-4188.

[4] Chen, Y.L., Chen H.J.HJ, Chen, Y.M. and Liu, K. (2015): A Stepping On-Time Adjustment Method for Interleaved Multichannel PFC Converters[J]. IEEE Transactions on Power Electronics, 30(3):1170-1176.

[5] Sreekala, B.T.V. and Seema. P.N. (2015): Sepic. PFC converter with notch filter based control[J]. International Conference on Advancements in Power & Energy, 239- 243.

[6] Aroudi, A.E., Haroun, R., Cid-Pastor, A. and Martinez-Salamero, L. (2013): Suppression of Line Frequency Instabilities in PFC ACDC Power Supplies by Feedback Notch Filtering the Pre-Regulator Output Voltage. IEEE Transactions on Circuits & Systems I Regular Papers, 60(3):796-809.

[7] Sun, D., Sun, W.,Wang, Q., Xu,S. and Lu. S. (2014): A novel digital controller for boost PFC converter with high power factor and fast dynamic response. IEEE International Conference on Asic, 1-4.

[8] Lai, L. and Luo. P. (2015): An FPGA-based Fully Digital Controller for Boost PFC Converter. Journal of Power Electronics, (3):644-651.
[9] Ma, J, Wang, S. and Li, Y. (2015): Power system multi-parameter small signal stability analysis based on 2nd order perturbation theory. International Journal of Electrical Power & Energy Systems, 67:409-416.

[10] Bo, Yuan, Ming, Zhou, Li Gengyin and Zhang Xiao-Ping (2015): Stochastic Small Signal Stability of Power Systems With Wind Power Generation. IEEE Transactions on Power Systems, 30(4):1680-1689.