Role of Adiponectin in Endoscopic Gastritis

Huda S.H. Al-Khalidy¹, Riyadh Mohamad Hasan², Laith Hikmet Muhsun³, Batool Mutar Mahdi⁴* and Raghad Kassem Mohammed⁵

¹Department of clinical Biochemistry, Al-Kindy College of Medicine, University of Baghdad, Iraq.
²Department of Surgery, Al-Kindy College of Medicine, University of Baghdad, Iraq.
³CABM, FICMS, Al-Kindy Teaching Hospital, Iraq.
⁴Consultant Clinical Immunology, Head of HLA Research Unit, Department of Microbiology, Al-Kindy College of Medicine, Baghdad University, Iraq.
⁵BSc Chemical Science, Iraq.

http://dx.doi.org/10.22207/JPaM.12.3.47
(Received: 10 June 2018; accepted: 20 July 2018)

Endoscopic gastritis is a term used when there is an inflammatory change in the gastric mucosa like color and/or structure that was noticed by endoscope. To assess the effect of these factors and association of adiponectin with these factors. This is a case-controlled study. The study consists from 100 subjects. Eighty of them had gastritis by endoscopy and Forty of them were H. pylori positive and the rest were H. pylori negative. The rest twenty persons were healthy control group. Demographic information's were taken like age, sex and others by questionnaire. Endoscopy and lipid profile were done for them. Adiponectin was significantly lower (P=0.001) in gastritis patients whether infected (8.783±0.968) with H pylori or not (8.278 ±0.838) when compared with control group (9.119±0.1593) (Table-1-). Regarding lipid profile, there was a significant in all parameters of lipid profile in gastritis patients than healthy group (Table-1-). Analysis of correlation between adiponectin and BMI and weight demonstrated a negative correlation with gastritis with h pylori infection (r= -0.068 and r=0.356 respectively). This study shows that adiponectin had an important role in gastritis especially when there is an h pylori infection. Its level had a negative correlation with BMI and lipid profile.

Keywords: Adiponectin, gastritis, h pylori.
is an important factor in gastritis and its prevalence was decreased in Western countries and in some Asian countries like Japan13. It found that treatment and eradication of these bacteria leads to increased circulating adiponectin levels in Japanese patients and could be helpful for preventing gastritis and its progression to other diseases14.

Consequently, there are several important factors that related with endoscopic gastritis like BMI, \textit{Helicobacter pylori}, lipid profile and adiponectin. This study assesses the effect of these factors and association of adiponectin with these factors.

Patients and methods

This is a case-controlled study done by Al-Kindy College of Medicine from January 2017 to June 2018. The approval of medicinal morals board was obtained for contributors in this study. The proposal was accepted by the Al-Kindy College of Medicine and Al-Kindy Teaching Hospital. The knowledgeable permission was obtained from all of them. The Scientific and Ethical Committee of Al-Kindy medical college and Al-Kindy Teaching Hospital had approved and registered the study. Written informed consents were obtained from the patients and control normal blood donors.

The inclusion criteria were patients complaining from dyspepsia, upper abdominal pain, acid regurgitation, heartburn. The exclusion criteria were patients who had history of gastric surgery, peptic ulcer, gastric cancer, previous \textit{H. pylori} eradication, esophageal avarices and patients who were on medications like antacids, H2 blockers, proton pump inhibitors and non-steroidal anti-inflammatory drugs.

Data were collected from 100 subjects. Eighty of them had gastritis by endoscopy. Forty of them were \textit{H. pylori} positive and the rest were \textit{H. pylori} negative. The rest twenty persons were healthy control group. Demographic information’s were taken like age, sex and others by questionnaire.

Endoscopy

All patients examined for upper gastrointestinal endoscopic using gastroscope: GIF-H260; Olympus, Tokyo, Japan and Display screen; Olympus OEV-261H liquid crystal display monitor; Olympus, Tokyo, Japan. Endoscopic examinations performed by well-trained gastroenterologists. The presence or absence of endoscopic gastritis was determined by endoscopist according to their criteria15.

Anthropometric Measurements

All measurement like weight, height, waist circumference, body mass index was calculated as weight in kilograms divided by the square of height in meters (16):

1. Normal Weight group: BMI 18.5 - 24.9 kg/m2.
2. Over Weight group: BMIs 25.0 - 29.9 kg/m2.
3. Obese group : BMIs \geq 30 kg/m2.

Waist circumference was measured in centimeters (cm)17.

Biochemical analysis

Five ml of venous blood were obtained from all subjects. Serum was analysis for lipid profile (cholesterol, triglyceride, HDLP, LDLP (Human-Germany), adiponectin (Human-Germany), and \textit{H pylori} (Eco test-Chain).

Statistical analysis

was done using MiniTab version 3.0 software. Data analysis was done using chi-square test for frequencies, while ANOVA test for means and standard deviation. Correlation coefficient used to assess the correlation between different parameters by Pearson correlation. P-value less than 0.05 were considered statistically significant.

RESULTS AND DISCUSSION

The total numbers of study groups were one hundred subjects; forty of them were gastritis with \textit{H pylori} infection and the other group was gastritis alone without \textit{H pylori} infection and the rest were twenty control healthy subjects. There was no significant differences among their ages and gender (P=0.134 and P=0.334 respectively)(Table-1). There was a significant increase in BMI(P=0.000), weight(P=0.000), waist circumference (P=0.018) in patients with gastritis with or without \textit{H pylori} when compared with control group(Table-1).

In this study, adiponectin was significantly lower (P=0.001) in gastritis patients whether infected (8.783±0.968) with \textit{H pylori} or not (8.278 ±0.838) when compared with control group (9.119±0.1593) (Table-1). Regarding lipid profile, there was a significant in all parameters of lipid profile in gastritis patients than healthy group (Table-1). Analysis of correlation between adiponectin and BMI and weight demonstrated a negative correlation with gastritis with \textit{H pylori}.
Al-Khalidy et al.: Adiponectin & Gastritis

Table 1. Demographic differences of various parameters among patients with gastritis with and without H pylori infection and control group

P- value	Control Group	Gastritis patients with H pylori -ve	Gastritis patients with H pylori +ve	Parameters
	No.=20X±SD	NO.=40X±SD	NO.=40X±SD	
0.134	37.30±12.43 (25-68)	46.25±21.07(14-83)	40.70±14.95 (12-68)	Age (year)
0.334	14(70%)	20(50%)	22(55%)	Male %
0.024	06(30%)	20(50%)	18(45%)	Female %
0.000	73.72±2.54	78.39±3.42	82.23±3.79	Weight (Kg)
0.000	24.40±0.777	27.30±1.05	27.13±0.853	BMIKg/m²
0.018	93.45±13.30	95.80±15.41	103.90±16.14	Waist circumferene Cm
0.994	1.03±2.15	1.09±3.46	1.11±2.36	Waist to Hip Ratio
0.001	9.11±0.1593	8.27±0.883	8.78±0.968	Adiponectinng/ml
0.000	2007±35.9	253.6±16.6	285.3±14.8	Cholesterol Mg/dl
0.000	160.0±30.2	290.0±36.4	174.5±17.9	TriglycerideMg/dl
0.000	40.92±1.20	48.60±3.39	52.48±3.41	HDLMg/dl
0.001	162.4±27.7	175.1±15.7	179.2±13.4	LDLmg/dl
0.000	3.54±0.0385	4.33±0.0734	6.70±0.197	LDL/HDL

It has been reported that obesity and increased BMI are related to gastrointestinal symptoms and endoscopic gastritis. Adiponectin is an anti-inflammatory and its serum concentrations are reduced in obesity with increased visceral fat accumulation. In this study, gastritis developed when there is increase in BMI especially with H pylori infection. This is associated with decreased adiponectin serum level. This is in agreement with other results that showed adiponectin promotes

Table 2. Pearson correlation analysis of adiponectin with different parameters in GERD patients

P- value	Gastritis patients with H pylori -ve	P- value	Gastritis patients with H pylori +ve	Parameters
	NO.=40r	NO.=40r		
0.266	-0.180	0.266	-0.180	Age (year)
0.527	0.103	0.000	-0.601	Height (Cm)
0.007	-0.418	0.024	-0.356	Weight (Kg)
0.184	0.214	0.677	-0.068	BMIKg/m²
0.001	-0.506	0.429	-0.129	Waist (Cm)
0.103	-0.026	0.927	0.015	Hip Waist Ratio
0.013	-0.391	0.791	-0.043	Cholesterol Mg/dl
0.337	-0.156	0.030	-0.344	TriglycerideMg/dl
0.809	0.040	0.001	0.487	HDLMg/dl
0.047	-0.315	0.735	-0.055	LDLmg/dl
0.184	0.214	0.308	0.165	LDL/HDL
ulcer healing, decrease ulcer area, reduce edema and leukocytes infiltration in submucosal layer18,19. It is well known that adiponectin is associated with better inflammation reduction and healing20. The gastric protective effect of adiponectin might be due to reduction of neutrophil infiltration, decrease in gastric motility and relaxation of circular muscles, flattening of the folds and reduce the volume of the gastric irritants on the rugal crest21,22. In addition to that, adiponectin activates AMP-activated protein kinase (AMPK) system that regulates growth arrest and apoptosis by stimulating p53 and p21 and decreases production of reactive oxygen species (ROS) which may result in decreased activation of mitogen-activated-protein-kinase (MAPK)23,24,25. So increase level of adiponectin reduce the risk of development of many diseases26. There is a negative correlation with body mass index and adiponectin in gastritis with \textit{H pylori} and in general there is in agreement with other studies that demonstrated plasma adiponectin concentrations are inversely related to BMI, weight and waist circumference27. The possible mechanism is that during adipogenesis, a feedback inhibition in its production may occur due to increase in the production of other adipocytokines like TNF-\textgreek{z} that decrease adipocyte expression and secretion of adiponectin28. In addition to that infection with \textit{H pylori} leads to decrease in adiponectin serum level which in agreement with other studies 12,29. This study demonstrated a negative correlation between adiponectin with Cholesterol, triglyceride and LDL. Adiponectin has been shown to regulate weight reduction as well as free fatty acid oxidation. The mechanism underlying this is regulation of production proteins associated with triglyceride metabolism including acyl CoA oxidase, activated protein kinase, and peroxisome proliferator-activated receptor 3 (PPAR\textgreek{r}) which is in agreement with other studies30.

CONCLUSIONS

This study shows that adiponectin had an important role in gastritis especially when there is an \textit{H pylori} infection. Its level had a negative correlation with BMI and lipid profile.

REFERENCES

1. Genta RM. Review article: gastric atrophy and atrophic gastritis—nebulous concepts in search of a definition. *Aliment Pharmacol Ther.* 1998; **12**:17–23.
2. Lee S. Endoscopic Gastritis: What Does It Mean? *Dig Dis Sci* 2011; **56**: 2209–2211.
3. Ahn SY, Lee SY, Hong SN, et al. Endoscopic diagnosis of opentype atrophic gastritis is related to the histological diagnosis of intestinal metaplasia and Cdx2 expression. *Dig Dis Sci.* 2011; **56**: 1119–1126.
4. Kim HJ, Yoo TW, Park DI, Park JH, Cho YK, Sohn CI, Jeon WK, Kim BI: Influence of overweight and obesity on upper endoscopic findings. *J Gastroenterol Hepatol* 2007; **22**: 477–481.
5. Csendes A, Burgos AM, Smok G, Beltran M: Endoscopic and histologic findings of the foregut in 426 patients with morbid obesity. *Obes Surg* 2007; **17**: 28–34.
6. Yamamoto S, Watabe K, Takehara T. Is obesity a new risk factor for gastritis? *Gastroenterol Hepatol* 2007; **22**: 108-10.
7. Yamamoto S, Watabe K, Tsutsui S, et al. Lower serum level of adiponectin is associated with increased risk of endoscopic erosive gastritis. *Dig Dis Sci.* 2011; **56**: 2209-2211.
8. Ishikawa M, Kitayama J, Kazama S, Hiramatsu T, Hatano K, Nagawa H. Plasma adiponectin and gastric cancer. *Clin Cancer Res.* 2005; **11**: 466–472.
9. Fang H, Judd RL. Adiponectin Regulation and Function. *Compr Physiol.* 2018; **8**:1031-1063.
10. Kashiwagi R, Yamada Y, Ito Y, Mitsui Y, Sakaue T, Iwamoto R, Saisuh K, Tamba S, Yamamoto K, Watanabe T, Fujimoto T, Iwashashi H, Matsuzawa Y. Increase in Adiponectin Level Prevents the Development of Type 2 Diabetes in Japanese Men With Low Adiponectin Levels. *J Endocr Soc.* 2018; **14**: 753-764.
11. Duval F, Dos Santos E, Maury B, Serazin V, Fathallah K, Vialard F, Dieudonne MN. Adiponectin regulates glycogen metabolism at the human fetal-maternal interface. *J Mol Endocrinol*, 2018: pii: JME-18-0013.
12. Chen MJ, Wang TE, Chang WH, Liao TC, Lin CC, Shih SC. Nodular gastritis: an endoscopic indicator of Helicobacter pylori infection. *Dig Dis Sci.* 2007; **52**: 2662–2666.
13. Rothenbacher D, Brenner H: Burden of *Helicobacter pylori* and *H. pylori*-related diseases in developed countries: recent developments and future implications. *Microbes Infect.* 2003; 5: 693–703.

14. Ando T, Ishikawa T, Takagi T, Imamoto E, Kishimoto E, Okajima A, Uchiyama K, Handa O, Yagi N, Kokura S, Naito Y, Mizuno S, Asakawa A, Inui A, Yoshikawa T. Impact of Helicobacter pylori eradication on circulating adiponectin in humans. *Helicobacter.* 2013; 18:158-64.

15. Dixon MF, Genta RM, Yardley JH, et al. Classification and grading of gastritis. The updated Sydney System. International workshop on the histopathology of gastritis, Houston 1994. *Am J Surg Pathol.* 1996; 20:1161–1181.

16. Suman S Dambal, Suchetha Kumari N. Evaluation of lipid peroxidation and total antioxidant status in human obesity; *International Journal of Institutional Pharmacy and Life Sciences* 2012; 2: 2249-6807.

17. WHO . Steps Manual. Part 3 Training and Practical Guides. Geneva: WHO 2008.

18. Dutta SK, Arora M, Kireet A, Bashandy H, Gandasas A: Upper gastrointestinal symptoms and associated disorders in morbidly obese patients: a prospective study. *Dig Dis Sci,* 2009; 54: 1243–1246.

19. Fard AA, Hajrezaie M, Kadir FA, Sefideh FA, Salama SM, Al-Najar ZA. The Effects of Combined Adiponectin-Metformin on Glucose and Lipids Levels in Mice and Acute Toxicity and Anti-Ulcerogenic Activity of Adiponectin Against Ethanol-Induced Gastric Mucosal Injuries in Rat. *Molecules* 2011, 16: 9534-9552.

20. Schulze, M.B.; Rimm, E.B.; Shai, I.; Rifai, N.; Hu, F.B. Relationship between adiponectin and glycemic control, blood lipids, and inflammatory markers in men with type 2 diabetes. *Diabetes Care* 2004, 27: 1680-1687.

21. Abdulla, M.A.; Ahmed, K.A.A.; Al-Bayaty, F.H.; Masood, Y. Protective effect of Carica papaya L. leaf extract against alcohol induced acute gastric damage and blood oxidative stress in rats. *West Indian Med. J.* 2008, 57: 323-326.

22. Kashiwagi R, Yamada Y, Ito Y, Mitsui Y, Sakaue T, Iwamoto R. Increase in Adiponectin Level Prevents the Development of Type 2 Diabetes in Japanese Men With Low Adiponectin Levels. *Journal of the Endocrine Society.* 2018; 2: 753–764.

23. Takashi K and Toshimasa Y. ’’Adiponectin and Adiponectin Receptors.’’ Japan; and Core Research for Evolutional Science and Technology of Japan Science and Technology Agency. 2005; 3:32-42.

24. Polyzos SA, Kountouras J, Zavos C, Pyrrou N, Tantsi N. Helicobacter pylori infection and serum adiponectin. *Helicobacter.* 2013; 18:321-2.

25. Ursula Meier and Axel M. Gressner .’’Endocrine Regulation of Energy Metabolism: Review of Pathobiochemical and Clinical Chemical Aspects of Leptin, Ghrelin, Adiponectin, and Resistin.’’ *Clinical Chemistry :* 2009:1511–25.