Shoulder Arthroplasty Options for Glenohumeral Osteoarthritis in Young and Active Patients (<60 Years Old): A Systematic Review

Hélder Fonte, MD1, Tiago Amorim-Barbosa, MD1, Sara Diniz, MD1, Luis Barros, MD1, Joaquim Ramos, MD1 and Rui Claro, MD1

Abstract
Aim: This study aims to describe the shoulder arthroplasty options for young and active patients (<60 years old) with glenohumeral osteoarthritis.

Methods: A systematic review of the literature was conducted by searching on Pubmed database. Studies that reported outcomes of patients with glenohumeral arthritis, younger than 60 years, that underwent shoulder arthroplasty [(Hemiarthroplasty (HA), Hemiarthroplasty with biological resurfacing (HABR), Total shoulder arthroplasty (TSA), Reversed total shoulder arthroplasty (RSA)] were included. Data include patient characteristics, surgical technique, range of motion, pain relief, outcome scores, functional improvement, complications, need for and time to revision.

Results: A total of 1591 shoulders met the inclusion criteria. Shoulder arthroplasty provided improvements in terms of ROM on the 3 plains, forward flexion (FF), abduction (Abd) and external rotation (ER), in different proportions for each type of implant. Patients submitted to RSA had lower preoperative FF (p = 0.011), and the highest improvement (Δ) in Abd, but the worst in terms of ER (vsTSA, p = 0.05). HA had better ER postoperative values (vsRSA p = 0.049). Pain scores improved in all groups but no difference between them (p = 0.642). TSA and RSA groups had the best CS Δ (p = 0.012). HA group had higher complication rates (21.7%), RSA (19.4%, p = 0.034) and TSA (19.4%, p = 0.629) groups the lowest, and HABR had the highest rate of revisions (34.5%).

Conclusions: HA had the highest rate of complications and HABR unacceptable rates of revision. These implants have been replaced by modern TSAs, with RSA reserved for complex cases. Surgeons should be aware of the common pitfalls of each option.

Keywords
Shoulder, Arthroplasty, Glenohumeral, Osteoarthritis, Young patients

Introduction
The incidence of glenohumeral osteoarthritis continues to increase as the population ages. Elderly patients reproducibly have success with current shoulder arthroplasty techniques, however, replacement options are less successful in young and active patients (<60 years old).1–5 Even though they represent only approximately 5% to 10% of the shoulder arthroplasty population, the management of glenohumeral arthritis is particularly challenging in contrast to that in older individuals because: 1) more likely to be in their working prime and higher activity levels further heightening the need for greater durability of the reconstruction; 2) greater functional expectations on the part of the patient; and 3) the greater prevalence of types of arthritis more complex than primary osteoarthritis.4

Treatment options for this demographic have been pursued with varying outcomes.2 The best treatment management remains controversial6,7 and despite the benefits of arthroplasty on pain and functional improvement,8–13 concerns...
about implant longevity and the need for revision remain a dilemma. Numerous surgical options have been proposed including arthroscopic management, hemiarthroplasty (HA), hemiarthroplasty with glenoid biological resurfacing (HABR), anatomical total shoulder arthroplasty (TSA), and reverse total shoulder arthroplasty (RSA). Generally, TSA consistently improves symptoms and shoulder function, although, glenoid component loosening and need for revisions remain a concern. HA may be an attractive solution, however, this technique provides significantly less pain relief and functional improvement than does TSA. HABR was introduced as an alternative and several tissue sources have been used to resurface the glenoid, including autogenous fascia lata (AFL), anterior shoulder joint capsule (ASJC), lateral meniscus allograft (LMA), and Achilles tendon allograft (ATA) but despite the promising initial results, the high rate of associated complications and revisions identified with longer follow-ups has been discouraging this option.

Although initially implanted in elderly patients with cuff-deficient shoulders, RSA is been used for revision of previously failed shoulder arthroplasty in younger patients, for nonfunctional shoulders after irreparable cuff tears or fracture sequelae, and increasingly in the setting of primary arthritis. The role of shoulder arthroplasty in young patients with primary glenohumeral osteoarthritis is not clearly defined and most of the literature consists of smaller single-centre studies with heterogeneous patient populations.

This study aimed to gather the available data about the main four shoulder arthroplasty solutions for young patients (<60 years old) with glenohumeral osteoarthritis and to present a descriptive review for each option; secondarily, a comparison between outcomes to address any relevant distinction.

Materials and Methods

Literature Search

An electronic search was conducted in January 2021 by searching on Pubmed database the following term: “(shoulder OR glenohumeral) AND (arthroplasty OR replacement) AND (young OR younger)” We analyzed the titles and abstracts and when the abstract indicated a clinical study including patients younger than 60 years who were treated with shoulder arthroplasty, then the study was selected for further analysis.

Eligibility Criteria

A comprehensive systematic review of the literature was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The selected study titles and abstracts were analyzed according to the eligibility criteria. Inclusion criteria were (1) clinical therapeutic studies in the English language; (2) studies reporting outcomes after surgical management of primary or secondary glenohumeral osteoarthritis; (3) mean-age less or equal to 60 years and (4) cases treated with HA, HABR, TSA or RSA. The exclusion criteria were (1) non-pertinent studies as reviews of the literature, technical notes and non-therapeutic studies; (2) case reports and case series with less than 10 patients; (3) studies reporting Arthroscopic Debridement or Ream-to-Run of the glenoid; (4) clinical follow-up of fewer than 18 months; and (5) clinical outcomes not reported at the final of the follow-up. No restrictions were imposed on the publication date or the prosthesis designs. Full articles were reviewed for eligible studies, and their references were screened to identify additional studies that may have been missed. Other three systematic reviews were founded and missed papers were integrated. A PRISMA trial flow shows the study selection algorithm (Figure 1).

Data Abstraction and Synthesis

Data were extracted to include study and patient characteristics, surgical technique, range of motion, pain relief, outcome scores, complications, need for and time to revision. Patients were stratified into the following treatment groups: HA, HABR, TSA and RSA. After collecting all available data about arthroplasty options for this population, and reviewing descriptively, statistical comparisons between these groups were performed. Continuous data were analyzed through computation of the mean and standard deviation, which were frequency weighted for the sample size. All statistical analyses were performed with SPSS® (v.26, IBM®) and statistical significance was defined by p < 0.05.

Results

Literature Search

The search of Pubmed identified 424 studies. After the application of the English language filter, 405 titles and abstracts were assessed. After the application of eligibility criteria, 29 studies published from 2002 to 2019 were included in the systematic review. Five additional references from three systematic reviews were added, encompassing 34 eligible studies [HA (n = 4), HABR (n = 13), TSA (n = 5), RSA (n = 6), more than one type of prosthesis (n = 6)], a total of 1535 shoulders (Figure 1).

Patient Characteristics

Twenty studies presented a mean age under 50 years old, eight from 51 to 55, and six from 56 to 60. The total mean age was 47.61 years, ranging from 44.3 (HABR) to 56.6 years (RSA). The male sex varied from 40.8% (RSA) to 77.5% (HABR). Staging of arthritis was infrequently reported and was conducted using multiple heterogeneous
staging systems. There were some differences in patient demographics and preoperative clinical characteristics across treatment groups, including the follow-up interval, age, and sex distribution (Tables 1 and 2).

Surgical Technique

Patients were treated with HA (n = 341), HABR (n = 371), TSA (n = 561) or RSA (n = 262). Concomitant procedures, e.g. biceps tenotomy or tenodesis, repair of rotator cuff tendons, among others, were performed in 16 studies. Studies variably used cemented or uncemented components, stemmed or resurfacing humeral components (HA and TSA), metal-backed versus polyethylene (TSA), standard or lateralized RSA (Tables 2a-d).

Range of Motion (ROM)

Shoulder arthroplasty provided improvements in terms of ROM on the 3 plains - forward flexion (FF), abduction (Abd) and external rotation (ER), in different proportions for each type of prosthesis.

- Twenty-two studies reported pre and postoperative FF angle values (Table 2a-d).
- Patients submitted to RSA had lower preoperative FF (71.2°, p = 0.011). There were no postoperative variances or improvement (Δ) differences between groups (Table 4).
- Fifteen studies reported pre and postoperative range of active Abd and twenty of ER (Tables 2a-d).
- RSA group had the highest Δ in terms of Abd (51°) but the worst in terms of ER (11.4°), particularly when compared to TSA (29.8°, p = 0.05). When we compare exclusively postoperative ER values, there is a difference between HA and RSA groups (46.3° vs. 31.7°, p = 0.049). Moreover, there were no other statistically differences at the end of the follow-up (Table 4).
- Internal rotation (IR) values were listed whenever present, but a comparison was not made due to the high heterogeneity on the way they were presented in each study (Tables 2a-d).

Outcome Scores

Improvement in pain status, using an aggregate of standardized pain scores, was reported in twenty-two
Table 1. Included Studies and Characteristics by Year.

Author	Year	Location of study	Type of Prosthesis	Study design	No.	Mean age, yr (range)	Number of males (% distribution)	Follow-up length (months, range)
Sperling et al	2002	USA	HA, TSA	Retrospective	HA: 10	46 (21-72)	NR	84 (8.4-252)
					TSA: 21			
					Total: 31			
Burroughs et al	2003	USA	HA, TSA	Retrospective	HA: 16	38.6 (23-50)	NR	67.2 (26-155)
					TSA: 4			
					Total: 20			
Johnson et al	2007	USA	HABR (LMA)	Retrospective	16	<50	NR	24
Krishnan et al	2007	USA	HABR (ASJC, AFL, ATA)	Prospective	ASJC: 7	51 (30-75)	88.2	84 (24-180)
					AFL: 11			
					ATA: 18			
					Total: 36			
Nicholson et al	2007	USA	HABR (LMA)	Retrospective	30	42 (18-52)	66.7	18 (12-48)
Levy et al	2008	USA	TSA	Retrospective	11	39 (16-64)	32	37.2
Rais et al	2008	Germany	TSA	Prospective	21	55 (37-60)	57.1	84 (60-108)
Bailie et al	2008	USA	HA	Retrospective	36	42.3 (28-54)	NR	38.1 (24-60)
Elhassan et al	2009	USA	HABR (ATA, ASJC, AFL)	Retrospective	ATA: 11	34 (18-49)	69.2	48 (6-102)
					ASJC: 1			
					AFL: 1			
					Total: 13			
Wirth	2009	USA	HABR (LMA)	Retrospective	27	43 (24-53)	63.3	36 (24-60)
Lee et al	2009	Singapore	HABR (LMA)	Retrospective	17	54.8 (36-68)	82.4	57.6 (24-127.2)
de Beer et al	2010	South Africa	HABR (HADM)	Retrospectively of prospectively collected data	32	57.5 (36-69)	68.8	33.5 (24-52)
Obi et al	2010	France	HA	Retrospective	19	54.5 (42-79)	26.7	45.8 (26-108)
Lollino et al	2011	Italy	HABR (LMA)	Retrospective	18	32 (23-53)	100	NR
Bartelt et al	2011	USA	TSA	Retrospective	TSA: 46	49 (21-55)	71.7	72 (24-NR)
					HA: 20	49 (26-55)	80	
					Total: 66			
Gadea et al	2012	France	HA	Retrospective	229	59 (16-82)	31	134.4 (96-199.2)
Levine et al	2012	USA	HA	Retrospective	28	55.5 (26-81)	50	206.4 (145-252)
Hammond et al	2013	USA	HA	Retrospective	HA :20	33.9 ± 9.4	50	45.6 (12-88.8)
					HABR: 20	37.7 ± 8.9	59	
Denard et al	2013	France	TSA	Retrospective	50	50.5 (35-55)	56	115.5 (60-211)
Ek et al	2013	Switzerland	RSA	Retrospective	35	60.0 (46-64)	52.2	93 (60-171)
Merolla et al	2013	Italy	HABR (LMA)	Retrospective	LMA: 12	48 (8.4)	60	44 (24-62)
					HADM: 8			
					N/A: 40			
					Total: 60			
Muh et al	2014	USA	HABR (HADM, ATA)	Retrospective	HADM: 7	36.1 (14-45)	75	60 (24-96)
					ATA: 6			
					Total: 16			
Pain scores improved in all groups but no difference between them ($p = 0.642$). TSA and RSA groups had the best CS improvement (33.8 and 34.6) and the HABR group had the poorer, with a statistical difference between them all ($p = 0.012$).

Patients with HA and TSA had the highest postoperative SSV values (73.2 and 72.3) and the HABR the lowest (41; $p = 0.003$), however, the Δ was not possible to quantify due to the lack of preoperative data. There were no differences regarding other functional outcomes (ASES and SST). (Table 4)

Complications

Twenty-three studies reported the complication rates associated to the surgical treatment ($p = 0.031$) (Tables 2a-d). HA group had a complication rate of 21.7%, HABR of 19.7% and RSA of 19.4%. After eliminating the outliers of TSA metal-back glenoid prosthesis (complication rate of 91% in the only study reporting this outcome) the complication rate was 19.4%, the same as the RSA group. There was a statistical difference in the multivariable analysis between HA and RSA groups ($p = 0.031$) (Tables 3 and 4).

Thirty-one studies reported Revision rates. Thirty-one studies reported Revision rates ($p = 0.031$) (Tables 2a-d). HABR group had the highest with 34.5%, HA 25.7%, TSA 25.6%, and RSA 13.1% (Table 3). Two papers reported the need for revision that includes MB-TSA (Gauci et al; Sperling et al), however, the latter didn’t stratify the results for each...
Table 2a. Hemiarthroplasty Outcomes.

Study	Type of Arthroplasty	Concomitant procedures	No.	Range of Motion (°)	Pain Scores	Outcome Scores	Patient Satisfaction
Neyton (2019)28	HA stemmed metallic	21		Plane Pre Pos NR FF	136	27	5.6 points
Schoch (2015)18	HA Neer	56		Abd Pre Pos NR NR FF	87	38	NR
Hammond (2013)25	HA	15		Abd Pre Pos NR NR FF	116	71	NR
Gadea (2012)24	HA	110		Abd Pre Pos NR NR FF	28	20	61
Levine (2012)29	HA Neer II prosthesis	28		Abd Pre Pos NR NR FF	104	20	61
Bartelt (2011)3	HA	20		Abd Pre Pos NR NR FF	103	20	61
Ohi (2010)17	HA anatomic (6); resurfacing (13)	19		Abd Pre Pos NR NR FF	90	30	61
Bailie (2008)64	HA uncemented	36		Abd Pre Pos NR NR FF	94	43	61
Burroughs (2003)2	HA	16		Abd Pre Pos NR NR FF	94	43	61
Sperling (2002)18	HA	10		Abd Pre Pos NR NR FF	94	43	61

HA: Hemiarthroplasty; FF: Forward Flexion; Abd: Abduction; ER: External Rotation; IR: Internal Rotation; NR: Not Reported.
Study	Type of arthroplasty	Concomitant procedures	No.	Range of Motion (°)	Pain Scores	Outcome Scores	Patient Satisfaction	
Muh (2014)	HABR	NR	16	Plane	Pre 128.1	Pos 134.4	Type VAS 8.1 Pos 5.8	ASES 23.2 Pos 57.7
	HADM (7), ATA (6)			Abd	Pre NR	Pos NR		
				ER	Pre 28	Pos 32		
				IR	Pre L4	Pos L4		
Strauss (2014)	HABR	Biceps tenodesis (45);	45	Plane	Pre 106	Pos 138	Type VAS 6.3 Pos 3.0	ASES 36.8 Pos 62
	LMA (31), ADM (10)	capsulorrhaphy (4);		Abd	Pre NR	Pos NR		
		hardware removal (3);		ER	Pre 31	Pos 51		
		glenoid bone grafting		IR	Pre NR	Pos NR		
Hammond (2013)	HABR	Lesser tuberosity	17	Plane	Pre 119	Pos 123	Type VAS 4.8	ASES 59.5
		osteotomy (60);		Abd	Pre NR	Pos NR		
		microfracture (10)		ER	Pre 28	Pos 51		
				IR	Pre 32	Pos 38		
Merolla (2013)	HABR	LMA	60	Plane	Pre 90	Pos 135	Type VAS 8.16 Pos 2.4	Constant 36.2 Pos 9.2
	LMA (12), ADM (8),	Arthroscopic debridement,		Abd	Pre NR	Pos NR		
	N/A (40)	correction of abnormal glenoid biconcavity with/without LHB tenotomy (19)		ER	Pre 10	Pos 50		
Lollino (2011)	HABR	NR	18	Plane	Pre NR	Pos Constant	Type DASH 49.8 Pos 62	
de Beer (2010)	HABR			Abd	Pre NR	Pos NR		
	LMA	Arthroscopic debridement, correction of abnormal glenoid biconcavity with/without LHB tenotomy (19)		ER	Pre 30	Pos 50		
Elhassan (2009)	HABR	Biceps tenodesis (13), lesser tuberosity osteotomy (13)	13	Plane	Pre NR	Pos Constant	Type SSV 24 Pos 43	
	TA (11), ASJC (1),			Abd	Pre NR	Pos NR		
	FLA (1)			ER (add)	Pre NR	Pos 122		
				IR (add)	Pre 8.9	Pos 38.5		
				IR (add)	Pre 2.1	Pos 4.3		
Lee (2009)	HABR	NR	18	Plane	Pre NR	Pos 130	Type VAS 3.5 Pos 4.8	SST 24 Pos 8
	LMA			Abd	Pre NR	Pos 122		Satisfied (83.3%)
				ER (add)	Pre NR	Pos 39		
				IR (add)	Pre NR	Pos NR		
Wirth (2009)	HABR	NR	27	Plane	Pre 83.7	Pos 122.8	Type VAS 4.6 Pos 1.48	ASES 30 Pos 67
	LMA			Abd	Pre NR	Pos NR		
				ER (add)	Pre 8.9	Pos 38.5		
				IR (add)	Pre 2.1	Pos 4.3		
Johnson (2007)	HABR	NR	16	Plane	Pre NR	Pos 102	Type VAS 4.4 Pos 4.8	SST 16 Pos 7.3
	LMA			Abd	Pre NR	Pos NR		
				ER	Pre NR	Pos 29		
				IR	Pre NR	Pos NR		
Study	Type of arthroplasty	Concomitant procedures	No.	Range of Motion (°)	Pain Scores	Outcome Scores	Patient Satisfaction	
---------------	----------------------	------------------------	-----	---------------------	-------------	----------------	---------------------	
Krishnan (2007)	HABR ASJC (7), AFL (11), ATA (18)	NR	36	FF 70	VAS 7.7	ASES 39	Satisfied (91.2%)	
Nicholson (2007)	HABR LMA; metallic Biceps tenodesis (30), subscapularis lengthening (6)	30	FF 96	VAS 6.4	ASES 34.8	SST 3.3	Satisfied (93.3%)	
Bois (2014)	HABR LMA	NR	26	FF 89.6	VAS 45.5	ASES 31.6	SST 2.8	NR
Puskas (2015)	HABR HADM	NR	6	FF 83	VAS 4	Constant 32	SSV 23	NR
Puskas (2015)	HABR LMA	NR	5	FF 100	VAS 6	Constant 40	SSV 22	NR
Puskas (2015)	HABR ASJC	NR	6	FF 100	VAS 6	Constant 43	SSV 32	NR

HABR: hemiarthroplasty with biologic resurfacing; LMA: lateral meniscus allograft; HADM, human acellular dermal tissue matrix; ASJC: anterior shoulder joint capsule; AFL: autogenous fascia lata; ATA: Achilles’ tendon allograft; FF: Forward Flexion; Abd: Abduction; ER: External Rotation; IR: Internal Rotation; NR: Not Reported.
Table 2c. Total Shoulder Arthroplasty Outcomes.

Study	Type of arthroplasty	Concomitant Procedures	N°	Range of Motion (°)	Pain Scores	Outcome Scores	Patient Satisfaction	
Peel (2019)	TSA	“Equinoxe TS system, Exactech”	NR	FF 118	Plane Pre Pos Type Pre Pos Type Pre Pos Type Pre Pos	Better/much	3.8 10.2	Better (87%)
Neyton (2019)	TSA	Glenoid: all-PE-humeral: stemmed metallic	202	FF NR 118	Pain (1-15) NR 12.5	Constant SST	72.6 NR	79.6 NR
Gaucci (2018)	TSA	Cemented all-PE (36); cementless metal-backed (7)	43	FF 84	VAS 7 3	Constant Constant (mean adj%) SSV %	NR 28 64	NR
Schoch (2015)	TSA	Neer	NR 19	FF 110	VAS 4.6 2.1	Excellent (42%) Satisfied (75%)		
Denard (2013)	TSA	Glenoid: PE; reaming (25); curettage (25)	50	FF 128	Constant 3.9 10.1	Constant 31.6 58.4	Very satisfied (46%) Satisfied (22%) Disappointed (32%)	
Bartelt (2011)	TSA	Press-fit (4)	NR 46	FF 121	VAS 4.4 2.0	NR	Better or much better (87%) Same (NR) Worse (NR)	
Levy (2008)	TSA	Anatomic; cemented	NR 11	FF 110	ASES (total) 37.0 77.5	Excellent (64%) Good (27%) Satisfied (9%)		
Raiss (2008)	TSA	Anatomic; cemented	NR 21	FF 100	Constant 3.4 12.6	Constant 24.1 64.5	Very satisfied (86%) Satisfied (10%) Not satisfied (4%)	

TSA: Total Shoulder Arthroplasty; PE: polyethylene; FF: Forward Flexion; Abd: Abduction; ER: External Rotation; IR: Internal Rotation; NR: Not Reported.
Table 2d. Reverse Total Shoulder Arthroplasty Outcomes.

Study	Type of arthroplasty	Concomitant Procedures	No	Range of Motion (°)	Pain Scores	Outcome Scores	Patient Satisfaction		
Monir (2020)	RSA	Subscapularis repair (21)	54	Plane	FF 91	Pre 126	Type VAS 6.3 Pre 1.7	Type Constant 33.6 Pre 62.8 Pos NR	
				Abd 80	108	ER 17	IR 3.4 4.5	SST 3 8.7	
Otto (2016)	RSA	Bone grafting of the glenoid (6)	32	FF 64.8	113.2	NR	ASES 28.1	58.6	Satisfied (96%)
				Abd 51.8	107.8	ER 11.3	IR 30 G.Troch. L3-L4	SST 1.3 4.5	
Samuelson (2016)	RSA	Bone grafting of the glenoid (5)	67	FF 57.5	132.4	NR	ASES 62	Satisfied (90%)	
	- Comprehensive (DePuy) (40)			Abd 57.5	39.4	ER NR	IR NR	Better/much better (85%)	
Sershon (2014)	RSA	Bone grafting of the glenoid (5)	36	FF 57	121	VAS 6.0	NR	Constant - 54.3	
	- glenoid: cemented			Abd NR	NR	ER 23	IR NR	SSS 31.4 65.8	
	- humeral: cemented or uncemented			NR	SSS 1.4 6.2				
Black (2014)	RSA	Latissimus dorsi tendon transfer (11)	33	FF NR	112	VAS 7.0	NR	SSS 19 76	
				Abd NR	NR	ER 35	IR NR		
Ek (2013)	RSA	Latissimus dorsi tendon transfer (2)	40	FF 72	119	Constant 5.9	Constant 12.7	SSV 34 74	
	- Delta III (DePuy), lateralized humeral PE (32)			Abd 67	112	RE 27	RI NR		
	- ASR (Zimmer), + 6 mm medialized cup (8)			NR	SSV 23 66				
	- cemented (29)								
	- uncemented (11)								

RSA: Reverse Shoulder Arthroplasty; FF: Forward Flexion; Abd: Abduction; ER: External Rotation; IR: Internal Rotation; NR: Not Reported.
implant. For that reason, the outliers were not eliminated in this section. Despite the range of values between groups (34.5-13.1%, \(p = 0.170\)), the modest number or contributing papers didn’t allow a reliable statistical analysis (Table 4).

Table 3. Complications.

Study	No.	Complication rate (%)	Revision rate (%)	Time to Revision (yrs)
HA				
Neyton (2019)	31	29	16.1	5
Schoch (2014)	56	NR	26.7	20 HA <20yrs
Hammond (2013)	25	NR	15	3.9
Gadea (2012)	229	14.85	16.31	NR
Levine (2012)	28	NR	28.57	NR
Bartelt (2011)	20	15	30	3.9
Saltzman (2011)	65	NR	13.85	NR
Ohl (2010)	19	10.53	NR	NR
Balle (2008)	36	10.87	11.11	2
Burroughs (2003)	16	NR	12.5	1.25
Sperling (2002)	10	50	30	6.67
HABR				
Bois (2015)	26	34.6	30	NR
Puskas (2015)				
-HADM	6	NR	83.3	1.33
-LMA	5	NR	60	1.83
-ASJC	6	NR	66.7	2.83
Muh (2014)	16	NR	43.75	3
Hammond (2013)	21	NR	30	2
Merolla (2013)	60	NR	8.33	NR
Strauss (2014)	45	11.11	17.78	NR
Lollino (2011)	18	11.11	NR	NR
de Beer (2010)	32	15.63	15.63	0.6
Elhassan (2009)	13	46.15	76.92	1.17
Lee (2009)	18	11.11	NR	NR
McNicke (2009)	8	NR	25	NR
Wirth (2009)	27	11.11	18.52	0.32
Krishnan (2007)	36	19.44	11.11	3.3
Nicholson (2007)	30	16.67	16.67	NR
TSA				
Patel (2019)	118	5.1	33.3	5
Neyton (2019)	202	26.7	16.3	15
Gauci (2018)				
-PE	36	28.26	26	12
-MB	7	91.3	76	12
Schoch (2014)	19	NR	16.67	5 TSA <20yrs
Denard (2013)	50	34	34	7.4
Bartelt (2011)	46	17.39	6.52	10.9
Levy (2008)	11	NR	9.09	NR
Raiss (2008)	21	4.76	0	NR
Burroughs (2003)	4	NR	NR	NR
Sperling (2002)	21	NR	38.1	NR
RSA				
Monir (2019)		NR	5.8	7.5
Samuelsen (2016)	67	9	3	NR
Otto (2016)	32	18.7	15.6	7.4
Black (2014)	33	18.2	NR	NR
Sershon (2014)	36	13.8	8.33	1.15
Ek (2013)	46	37.5	32.6	NR

Discussion

The correct management of young and active patients with glenohumeral arthritis continues to be debated in the literature. Although TSA is more common and has been reported...
as a reliable treatment for pain secondary to glenohumeral degenerative disease, historically the results in younger patients have not been as favorable as in older patients and concerns remain regarding the early failure of the glenoid component.20,26 HA avoids complications related to prosthetic loosening of the TSA glenoid component,67,68 thus the optimal candidate would be the young patient with unipolar involvement of the humeral head and a relatively preserved glenoid articular surface.2,68,69 HA alone has been reported to provide short-term pain relief and improved function, but studies with longer follow-up have demonstrated progressive joint space narrowing, glenoid erosion, and diminishing outcomes.32,69–71 Levine et al17 reported that 74% of shoulders achieved satisfactory results, with outcomes correlated most significantly with the status of posterior glenoid wear, thus suggesting that HA be reserved for patients with a concentric glenoid. These patients were reevaluated at an average follow-up period of 17.2 years and 25% were satisfied. In a review of 78 hemiarthroplasties, Sperling et al19 reported that at 15 years of follow-up, unsatisfactory results in 45% of their patients. According to the literature, this option is not recommended due to early failure rate, poor pain and functional outcomes. In our analysis, HA had the highest rate of complications (21.7%), which is statistically different from RSA (19.4%, \(p = 0.031 \)). The same lower rate was reported in the TSA group when we don’t consider patients with the metal-backed glenoid component.

Table 4. Aggregated Demographic and Outcome Statistics.

Demographics	HA	HABR	TSA	RSA	\(p \)
-N. of studies	10	14	10	6	.007
-N. of shoulders	341	371	561	262	<0.001
-Age, yr (SD)	47.03 (8.41)	44.3 (7.07)	48.4 (6.4)	56.6 (4.75)	
-Male sex (%)	48.3	77.4	49.5	40.8	
ROM (preoperatively)					
-FF	107.7	98.8	97.7	71.2	.011
-Abd	88.5	86.5	79	64.1	.045
-ER	21.6	22.9	10.7	19.7	.071
ROM (postoperatively)					
-FF	130.5	125.5	132.3	118.2	.306
-Abd	122	107.6	120.2	115.1	.601
-ER	46.3	42.6	40.2	31.7	.061
ROM (\(\Delta \))					
-FF	20.9	28.3	31.8	48.6	.169
-Abd	33.5	17.5	41.2	51	.116
-ER	27.9	21.2	29.8	11.4	.05
VAS (preoperatively)					
FF	5.3	6.7	4.6	6.4	.041
VAS (postoperatively)					
-FF	3.03	4.2	2.6	1.97	.175
VAS (\(\Delta \))					
-FF	2.3	2.5	2.02	4.47	.642
CS (preoperatively)					
CS	33	37.9	30.2	33.8	.318
CS (postoperatively)					
CS (\(\Delta \))					
CS	63.2	52.6	65.5	63.7	.09
CS (\(\Delta \))					
CS	29.6	14.8	33.8	34.6	.012
SSV (preoperatively)					
SSV	24.5	41	73.2	66	.003
SSV (postoperatively)					
SSV (\(\Delta \))					
SSV	2.3	16.5	-	43	.055
ASES (preoperatively)					
ASES	28.3	32.6	35.4	31	.472
ASES (postoperatively)					
ASES (\(\Delta \))					
ASES	66.1	66.5	63.6	66.9	.991
ASES (\(\Delta \))					
ASES	49.1	35.2	42.9	35.2	.245
SST (preoperatively)					
SST	3.9	3.5	3.3	1.9	.063
SST (postoperatively)					
SST (\(\Delta \))					
SST	7.9	7.6	8.7	6.3	.222
SST (\(\Delta \))					
SST	3.6	4.3	5.4	4.6	.494

Complications

Overall (%) | 21.7 | 19.7 | 19.41 | 19.4 | \(p = 0.125 \) |

Need for revision (%) | 25.7 | 34.5 | 25.62 | 13.1 | \(p = 0.170 \)

1After removing outliers (TSA with metal-backed glenoid component – MB-TSA); there is only one paper with this type of implant (Gauci et al) reporting complication rates (\(n = 7; 91.3\% \)).

2There are two papers reporting the need for revision that include MB-TSA (Gauci et al; Sperling et al), however the latter didn’t stratify the results; for that reason, the outliers were not eliminated for this item.
To improve the results seen after HA and to avoid the complications associated with the glenoid component of TSAs, biological resurfacing of the glenoid was reassessed in 1988 by Burkhead and Hutton, and since then variable results have been seen. Options include Achilles’ tendon, lateral meniscus, and fascia lata autografts, and acellular dermal matrix-based scaffold grafts. Besides, conflicting reports exist in the literature. Encouraging results were reported by Krishnan et al in their 2 to 15-year follow-up of 36 patients. Other studies, however, have reported contrasting outcomes, with rapid deterioration, return of pain, and a high rate of conversion to TSA. Significantly worse outcomes were reported by Elhassan et al in their retrospective review of 13 patients aged younger than 50 years treated with HABR with a 92.3% failure rate. The authors concluded that this treatment is unreliable. More recently, Lee et al reported their experience and among their 19 treated patients monitored for a mean of 4.25 years, poor clinical outcomes, and a complication rate of 32%, all requiring revision surgery, leading the authors to conclude that glenoid resurfacing produced inconsistent results with a high incidence of complications. Strauss et al reported an unacceptable failure rate of 51.2%, alongside persistent pain, poor function, and poor outcome scores postoperatively, leading to a conversion to TSA or RSA. In our review, patients that underwent HABR experienced less improvement in terms of outcome scores as CS and SSV, with a high rate revisions (34%).

Although originally thought to be more suited for lower-demand patients, TSA outcomes have been improved through time, and there is increasing evidence supporting this option for the treatment of this population. The American Academy of Orthopaedic Surgeons (AAOS) clinical practice guidelines support its use. In comparison with HA, TSA leads to a significantly better pain score and range of motion improvements but with similar satisfaction and revision needs. Some authors have noted unsatisfactory results despite improvements in pain and motion for this patient demographic, others have considered it a viable treatment option with low complication rates and excellent intermediate to long term results. Bartelt et al reported an implant survival rate of 92% at 10 years for TSA and significantly less pain, greater active FF, and higher satisfaction than their counterparts who underwent HA. Raiss et al prospectively evaluated 21 patients with a mean age of 55 years, and at a mean follow-up of 7 years, there were no revision requirements, and 95% of patients were either “very satisfied” or “satisfied”. The subjective outcome scores increased significantly and no clinical or radiologic signs of periprosthetic loosening were reported. Denard et al examined 52 TSAs, and the survivorship of the glenoid component was 98% at 5-year follow-up and 62.5% at 10-year follow-up. On the largest meta-analysis to date, Radnay et al reported that TSA resulted in significantly better pain relief, postoperative range of motion, and patient satisfaction, with a lower revision rate. In our review TSA group had the highest ER improvement, with the lowest improvement in terms of Abd; better CS and SSV when compared to HABR. After eliminating the TSA metal-back glenoid prosthesis outliers with a complication rate of 91.3%, the rate was 19.4%. This is the lowest value along with the RSA group as stated before. Although the worries over glenoid component loosening with TSA over time have been legitimized in some recent follow-up studies, some authors refer that these potential complications seem to occur over the long-term, providing the patient with years of symptom-free improved function. For appropriately selected patients, TSA decreases pain and improves shoulder function.

In patients mainly with secondary and complex forms of osteoarthritis, as severe rotator cuff deficiency, which is uncommon in young patients (<60 years old), TSA may not be a viable treatment option. These patients represent a rare and special population that needs to be prudently addressed. Reports of primary repair of the rotator cuff at the time of arthroplasty have had good results with function and pain, though these patients must be carefully selected. RSA has been used in elderly patients with biconcave or severe glenoid bone loss. In 2013, several authors started to report their results of RSA in younger and active patients with more severe forms of arthritis, with a growing body of literature since 2017. In a recent systematic review, Chelli et al reported a rate of 17% of postoperative complications, leading to a new surgical procedure in 10% of cases at a mean follow-up of 4.2 years. FF and ER were restored in most patients, although the functional results were modest. The results of these authors tend to support the idea that younger patients expect higher functional levels and experience less satisfaction. The range of motion obtained with RSA seems lower than what is reported with anatomic TSA. Thus, RSA can be a potential option in young patients with a critical cuff-deficient shoulder, with a glenoid with severe bone erosion, or a failed previous arthroplasty, when nonoperative treatment has failed, with reliable clinical improvements and midterm complication rates comparable to those of older patients. In our study, we found that this group of patients experienced the highest improvement in terms of Abd but the worst in terms of ER, particularly when compared to CSA (p = 0.05). When we compare exclusively postoperative ER, the RSA group experienced lower improvements, especially when we compared with HA (p = 0.049). We need to keep in mind that patients receiving RSA probably present distinctive and more severe forms of the disease. Moreover, this solution interestingly presented a low associated rate of complications (19.4%) and a low rate of revisions (13%), which might be considered a promising solution for selected patients. However, studies with longer follow-ups are needed for reliable conclusions.

This review has several limitations. The data were obtained from non-randomized trials, but to date, no high level prospective randomized trials have been published. Twelve papers included some patients who were older than 60 years. As the data were not stratified for each patient in...
each study, a subgroup analysis of those exclusively under this age wasn’t possible. With 82.4% of the studies presenting a mean age lower than 55, we consider that this aspect hasn’t a major impact on this review. Underlying diagnoses in cases of secondary osteoarthritis aren’t presented consistently, and not including them weakens further comparisons. Regarding the concomitant procedures and implant variability, the goal is to be mainly descriptive, and all this data is presented in the tables. A variety of techniques and graft choices in the HABR group were also used. Although a difference in the type of soft tissue covering is a confounding variable, we believe including a comparison of all is needed as one is not definitively clinically superior. There isn’t enough data available regarding the wear pattern or the Walch classification of glenoid morphologies, and the eventual influence of this feature on the treatment modality choice and respective outcomes. Despite the descriptive nature of this review, heterogeneous results were reported in each paper, which limited a comprehensive statistical comparison between groups. There is a relevant variance in the clinical and outcomes scores chosen through the different studies, and we opted to use those that were more reliable. Though, we believe relevant conclusions can still be drawn from the comparisons.

Conclusion
The management of young, active patients with symptomatic glenohumeral arthritis continues to be debated in the orthopaedic surgery literature. Alternative treatments to total shoulder arthroplasty have been investigated in this patient population to improve postoperative outcomes and avoid the likely need for revision surgery secondary to failure of the glenoid component over time. Hemiarthroplasty has the highest rate of complications in this population and hemiarthroplasty with glenoid resurfacing has been abandoned gradually due to the unacceptable rate of revisions. These implants have largely been replaced by modern TSAs with cemented polyethylene glenoid components, with reverse shoulder arthroplasty as an increasingly utilized treatment of severe cases. Optimal management of young patients with end-stage disease remains an important topic of investigation. Surgeons should be aware of the common complications and pitfalls of each option.

Author Contributions
The authors declare the contribution of Carolina Lemos PhD, from the School of Medicine and Biomedical Sciences, University of Porto, Portugal, in the preparation of the statistical analysis of the results of this study.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval
Not applicable, because this article does not contain any clinical trials.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Informed Consent
Not applicable, because this article does not contain any clinical trials.

Trial Registration
Not applicable, because this article does not contain any clinical trials.

ORCID iDs
Helder Fonte https://orcid.org/0000-0002-8009-8305
Rui Claro https://orcid.org/0000-0003-4836-2994

References
1. Chong PY, Srikumaran U, Kuye IO, et al. Glenohumeral arthritis in the young patient. J Shoulder Elbow Surg. 2011; 20(2): S30–S40
2. Saltzman BM, Leroux TS, Verma NN, et al. Glenohumeral osteoarthritis in the young patient. J Am Acad Orthop Surg 2018; 26(17): e361–e370
3. Bartelt R, Sperling JW, Schleck CD, et al. Shoulder arthroplasty in patients aged fifty-five years or younger with osteoarthritis. J Shoulder Elb Surg 2011; 20(1): 123–130
4. Saltzman MD, Mercer DM, Warme WJ, et al. Comparison of patients undergoing primary shoulder arthroplasty before and after the age of fifty. J Bone Jt Surg - Ser A 2010; 92(1): 42–47
5. Sowa B, Thierjung H, Bühlhoff M, et al. Functional results of hemi- and total shoulder arthroplasty according to diagnosis and patient age at surgery. Acta Orthop 2017; 88(3): 310–314
6. Provenccher MT, et al. Glenohumeral arthritis in the young adult. Instr Course Lect. 2011; 60(1): 137–53 f.
7. Bhatia S, Hsu A, Lin EC, et al. Surgical treatment options for the young and active middle-aged patient with glenohumeral arthritis. Adv Orthop 2012; 2012(1): 1–8
8. Edwards TB, Kadakia NR, Boulahaia A, et al. A comparison of hemiarthroplasty and total shoulder arthroplasty in the treatment of primary glenohumeral osteoarthritis: results of a multicenter study. J Shoulder Elb Surg 2003; 12(3): 207–213
9. Gartsman GM, Roddey TS, Hammerman SM. Shoulder arthroplasty with or without resurfacing of the glenoid in patients who have osteoarthritis. J Bone Jt Surg - Ser A 2000; 82(1): 26–34
10. Lo IKY, Litchfield RB, Griffin S, et al. Quality-of-life outcome following hemiarthroplasty or total shoulder arthroplasty in patients with osteoarthritis: a prospective, randomized trial. J Bone Jt Surg - Ser A 2005; 87(10): 2178–2185
11. Norris TR, Iannotti JP. Functional outcome after shoulder arthroplasty for primary osteoarthritis: a multicenter study. J Shoulder Elb Surg 2002; 11(2): 130–135
12. Radnay CS, Setter KJ, Chambers L, et al. Total shoulder replacement compared with humeral head replacement for the
treatment of primary glenohumeral osteoarthritis: a systematic review. J Shoulder Elb Surg 2007; 16(4): 396–402.

13. Zarkadas PC, Throckmorton TQ, Dahm DL, et al. Patient reported activities after shoulder replacement: total and hemiarthroplasty. J Shoulder Elb Surg 2011; 20(2): 273–280.

14. Denard PJ, Raiss P, Sowa B, et al. Mid- to long-term follow-up of total shoulder arthroplasty using a keeled glenoid in young adults with primary glenohumeral arthritis. J Shoulder Elb Surg 2013; 22(7): 894–900.

15. Dillon MT, Inacio MCS, Burke MF, et al. Shoulder arthroplasty in patients 59 years of age and younger. J Shoulder Elb Surg 2013; 22(10): 1338–1344.

16. Eichinger JK, Miller LR, Hartshorn T, et al. Evaluation of satisfaction and durability after hemiarthroplasty and total shoulder arthroplasty in a cohort of patients aged 50 years or younger: an analysis of discordance of patient satisfaction and implant survival. J Shoulder Elb Surg 2016; 25(5): 772–780.

17. Levine WN, Fischer CR, Nguyen D, et al. Long-term follow-up of shoulder hemiarthroplasty for glenohumeral osteoarthritis. J Bone Jt Surg - Ser A 2012; 94(2): 1–7.

18. Schoch B, Schleck C, Cofield RH, et al. Shoulder arthroplasty in patients younger than 50years: minimum 20-year follow-up. J Shoulder Elb Surg 2015; 24(5): 705–710.

19. Sperling JW, Cofield RH, Rowland CM. Neer hemiarthroplasty and Neer total shoulder arthroplasty in patients fifty years old or less: long-term results. J Bone Jt Surg - Ser A 1998; 80(4): 464–473.

20. Strauss EJ, Verma NN, Salata MJ, et al. The high failure rate of biologic resurfacing of the glenoid in young patients with glenohumeral arthritis. J Shoulder Elb Surg 2014; 23(3): 409–419.

21. Henry P, Razmjou H, Dwyer T, et al. Relationship between probability of future shoulder arthroplasty and outcomes of arthroscopic debridement in patients with advanced osteoarthritis of glenohumeral joint. BMC Musculoskelet Disord 2015; 16(1): 1–7.

22. Millett PJ, Horan MP, Pennock AT, et al. Comprehensive Arthroscopic Management (CAM) procedure: clinical results of a joint-preserving arthroscopic treatment for young, active patients with advanced shoulder osteoarthritis. Arthrosc - J Arthrosc Relat Surg 2013; 29(3): 440–448.

23. Skelley NW, Namdar S, Chamberlain AM, et al. Arthroscopic debridement and capsular release for the treatment of shoulder osteoarthritis. Arthrosc - J Arthrosc Relat Surg 2015; 31(3): 494–500.

24. Sperling JW, Cofield RH, Rowland CM. Minimum fifteen-year follow-up of Neer hemiarthroplasty and total shoulder arthroplasty in patients aged fifty years or younger. J Shoulder Elb Surg 2004; 13(6): 604–613.

25. Wirth MA, Tapscott RS, Southworth C, et al. Treatment of glenohumeral arthritis with a hemiarthroplasty: a minimum five-year follow-up outcome study. J Bone Jt Surg - Ser A 2006; 88(5): 964–973.

26. Sperling JW, Antuna SA, Sanchez-Sotelo J, et al. Shoulder arthroplasty for arthritis after instability surgery. J Bone Jt Surg - Ser A 2002; 84(10): 1775–1781.

27. Burroughs PL, Gearen PF, Petty WR, et al. Shoulder arthroplasty in the young patient. J Arthroplasty 2003; 18(6): 792–798.

28. Bailie DS, Llinas PJ, Ellenbecker TS. Cementless humeral resurfacing arthroplasty in active patients less than fifty-five years of age. J Bone Jt Surg - Ser A 2008; 90(1): 110–117.

29. Ohl X, Nérot C, Saddiki R, et al. Shoulder hemiarthroplasty radiological and clinical outcomes at more than two years follow-up. Orthop Traumatol Surg Res 2010; 96(3): 208–215.

30. Gadea F, Alami G, Pape G, et al. Shoulder hemiarthroplasty: outcomes and long-term survival analysis according to etiology. Orthop Traumatol Surg Res 2012; 98(6): 659–665.

31. Hammond L, Lin E, Harwood D, et al. Clinical outcomes of hemiarthroplasty and biological resurfacing in patients aged younger than 50 years. J Shoulder Elb Surg 2013; 22(10): 1345–1351.

32. Pfähler M, Jena F, Neyton L, et al. Hemiarthroplasty versus total shoulder prosthesis: results of cemented glenoid components. J Shoulder Elb Surg 2006; 15(2): 154–163.

33. Neyton L, Kirsch JM, Colloite P, et al. Mid- to long-term follow-up of shoulder arthroplasty for primary glenohumeral osteoarthritis in patients aged 60 or under. J Shoulder Elb Surg 2019; 28(9): 1666–1673.

34. Krishnan SG, Nowinski RJ, Harrison D, et al. Humeral hemiarthroplasty with biologic resurfacing of the glenoid for glenohumeral arthritis: two to fifteen-year outcomes. J Bone Jt Surg - Ser A 2007; 89(4): 727–734.

35. Bois AJ, Whitney JJ, Somerson JS, et al. Humeral head arthroplasty and meniscal allograft resurfacing of the glenoid: a concise follow-up of a previous report and survivorship analysis. J Bone Jt Surg - Am 2014; 97(19): 1571–1577.

36. Puskas GJ, Meyer DC, Lebschi JA, et al. Unacceptable failure of hemiarthroplasty combined with biological glenoid resurfacing in the treatment of glenohumeral arthritis in the young. J Shoulder Elb Surg 2015; 24(12): 1900–1907.

37. Nicholson GP, Goldstein JL, Romeo AA, et al. Lateral meniscus allograft biologic glenoid arthroplasty in total shoulder arthroplasty for young shoulders with degenerative joint disease. J Shoulder Elb Surg 2007; 16(5): 261–266.

38. Johnson D, Humphrey S, Norris T. Glenoid resurfacing with use of a lateral meniscal allograft. Tech Orthop 2007; 22(1): 55–61.

39. Wirth MA. Humeral head arthroplasty and meniscal allograft resurfacing of the glenoid. J Bone Jt Surg - Ser A 2009; 91(5): 1109–1119.

40. Lee KT, Bell S, Salmon J. Cementless surface replacement arthroplasty of the shoulder with biologic resurfacing of the glenoid. J Shoulder Elb Surg 2009; 18(6): 915–919.

41. Elhassan B, Ozbaydar M, Diller D, et al. Soft-tissue resurfacing of the glenoid in the treatment of glenohumeral arthritis in active patients less than fifty years old. J Bone Jt Surg - Ser A 2009; 91(2): 419–424.

42. de Beer JF, Bhatia DN, van Rooyen KS, et al. Arthroscopic debridement and biological resurfacing of the glenoid in glenohumeral arthritis. Knee surgery, Sport Traumatol Arthrosc 2010; 18(12): 1767–1773.

43. Lollino N, Pellegrini A, Paladini P, et al. Gleno-Humeral arthroplasty with a lateral meniscal allograft. Arthrosc Relat Surg 2011; 95(sup): 59–63.

44. Merolla G, Bianchi P, Lollino N, et al. Clinical and radiographic mid-term outcomes after shoulder resurfacing in patients aged 50 years old or younger. Musculoskelet Surg 2013; 97(1): 23–29.

45. Muh SJ, Streit JJ, Shishany Y, et al. Biologic resurfacing of the glenoid with humeral head resurfacing for glenohumeral arthritis in the young patient. J Shoulder Elb Surg 2014; 23(8): 1–6.
46. Fox TJ, Cil A, Sperling JW, et al. Survival of the glenoid component in shoulder arthroplasty. *J Shoulder Elb Surg* 2009; 18(6): 859–863.

47. Kusnezov N, et al. Clinical Outcomes of Anatomical Total Shoulder Arthroplasty in a Young, Active Population. *Am J Orthop* 2016; 45(5): e273-82.

48. Raiss P, Aldinger PR, Kasten P, et al. Total shoulder replacement in young and middle-aged patients with glenohumeral osteoarthritis. *J Bone Jt Surg - Ser B* 2008; 90(6): 764–769.

49. Levy MC, Virani NA, Frankle MA, et al. Young patients with shoulder chondrolysis following arthroscopic shoulder surgery treated with total shoulder arthroplasty. *J Shoulder Elb Surg* 2008; 17(3): 380–388.

50. Patel RB, Muh S, Okoroha KR, et al. Results of total shoulder arthroplasty in patients aged 55 years or younger versus those older than 55 years: an analysis of 1135 patients with over 2 years of follow-up. *J Shoulder Elb Surg* 2019; 28(5): 861–868.

51. Ek ETH, Neukom L, Catanzaro S, et al. Reverse total shoulder arthroplasty for massive irreparable rotator cuff tears in patients younger than 65 years old: results after five to fifteen years. *J Shoulder Elb Surg* 2013; 22(9): 1199–1208.

52. Sershon RA, Van Thielt GS, Lin EC, et al. Clinical outcomes of reverse total shoulder arthroplasty in patients aged younger than 60 years. *J Shoulder Elb Surg* 2014; 23(3): 395–400.

53. Levy O, Tsvili O, Merchant J, et al. Surface replacement arthroplasty for glenohumeral arthropathy in patients aged younger than fifty years: results after a minimum ten-year follow-up. *J Shoulder Elb Surg* 2015; 24(7): 1049–1060.

54. Samuelsen BT, Wagner ER, Houdek MT, et al. Primary reverse shoulder arthroplasty in patients aged 65 years or younger. *J Shoulder Elb Surg* 2017; 26(1): e13–e17.

55. Otto RJ, Clark RE, Frankle MA. Reverse shoulder arthroplasty in patients younger than 55 years: 2- to 12-year follow-up. *J Shoulder Elb Surg* 2017; 26(5): 792–797.

56. Monir JG, Abeyewardene D, King JJ, et al. Reverse shoulder arthroplasty in patients younger than 65 years, minimum 5-year follow-up. *J Shoulder Elb Surg* 2020; 29(6): e215–e221.

57. Barrett WP, Franklin JL, Jackins SE, et al. Total shoulder arthroplasty. *J Bone Jt Surg - Ser A* 1987; 69(6): 865–872.

58. Fehring E V, Kopjar B, Boorman RS, et al. Characterizing the functional improvement after total shoulder arthroplasty for osteoarthritis. *J Bone Jt Surg - Ser A* 2002; 84(8): 1349–1353.

59. Pollock RG, Higgs GB, Codd TP, et al. Total shoulder replacement for the treatment of primary glenohumeral osteoarthritis. *J Shoulder Elb Surg* 1995; 4(1): S12.

60. Bryant D, Litchfield R, Sandow M, et al. A comparison of pain, strength, range of motion, and functional outcomes after hemiarthroplasty and total shoulder arthroplasty in patients with osteoarthritis of the shoulder: a systematic review and meta-analysis. *J Bone Joint Surg - Ser A* 2005; 87(9): 1947–1956.

61. Sinha I, Lee M, Cobiella C. Management of osteoarthritis of the glenohumeral joint. *British Journal of Hospital Medicine MA Healthcare Ltd* 2008; 69(5): 264–268.

62. Burkhead WZ, Hutton KS. Biologic resurfacing of the glenoid with hemiarthroplasty of the shoulder. *J Shoulder Elb Surg* 1995; 4(4): 263–270.

63. Saltzman MD, Chamberlain AM, Mercer DM, et al. Shoulder hemiarthroplasty with concentric glenoid reaming in patients 55 years old or less. *J Shoulder Elb Surg* 2011; 20(4): 609–615.

64. Gauci MO, Bonnevieille N, Moineau G, et al. Anatomical total shoulder arthroplasty in young patients with osteoarthritis: all-polyethylene versus metal-backed glenoid. *Bone Jt J* 2018; 100B(4): 485–492.

65. Lee BK, Vaishnav S, Rick Hatch GF, et al. Biologic resurfacing of the glenoid with meniscal allograft: long-term results with minimum 2-year follow-up. *J Shoulder Elb Surg* 2013; 22(2): 253–260.

66. Black EM, Roberts SM, Siegel E, et al. Reverse shoulder arthroplasty as salvage for failed prior arthroplasty in patients 65 years of age or younger. *J Shoulder Elb Surg* 2014; 23(7): 1036–1042.

67. Sayegh ET, Mascarenhas R, Chalmers PN, et al. Surgical treatment options for glenohumeral arthritis in young patients: a systematic review and meta-analysis. *Arthrosc - J Arthrosc Relat Surg* 2015; 31(6): 1156–1166.

68. Johnson MH, Paxton ES, Green A. Shoulder arthroplasty options in young (<50 years old) patients: review of current concepts. *J Shoulder Elb Surg* 2015; 24(2): 317–325.

69. Levine WN, Djurasovic M, Glasson JM, et al. Hemiarthroplasty for glenohumeral osteoarthritis: results correlated to degree of glenoid wear. *J Shoulder Elb Surg* 1997; 6(5): 449–454.

70. Parsons IV IM, Millet PJ, Warner JJP. Glenoid wear after shoulder hemiarthroplasty: quantitative radiographic analysis. *Clin Orthop Relat Res* 2004; 421: 120–125.

71. Rispoli DM, Sperling JW, Athwal GS, et al. Humeral head replacement for the treatment of osteoarthritis. *J Bone Jt Surg - Ser A* 2006; 88(12): 2637–2644.

72. Khazzam M, Gee AO, Pearl M. Management of glenohumeral joint osteoarthritis. *J Am Acad Orthop Surg* 2020; 28(19): 781–789.

73. Iannotti JP, Norris TR. In *Orthop Res Rev* 2003; 258: 2644.

74. Ansok CB, Muh SJ. Optimal management of glenohumeral osteoarthritis. *Orthop Res Rev* 2018; 10(1): 9–18.

75. Chelli M, Lo Cunsolo L, Gauci M-O, et al. Reverse shoulder arthroplasty in patients aged 65 years or younger: a systematic review of the literature. *JSES* 2019; 3(3): 162–167.