Superstatistics and the effective QCD phase diagram

Alejandro Ayala1,2, Martin Hentschinski3 L. A. Hernández1,2, M. Loewe4,2,5, and R. Zamora6,7

1 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, CdMx 04510, Mexico.
2 Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700, South Africa.
3 Departamento de Actuaria, Física y Matemáticas, Universidad de las Américas Puebla, Santa Catarina Mártir, San Andrés Cholula, 72820 Puebla, Mexico.
4 Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile.
5 Centro Científico-Tecnológico de Valparaíso CCTVAL,
Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile.
6 Instituto de Ciencias Básicas, Universidad Diego Portales, Casilla 298-V, Santiago, Chile.
7 Centro de Investigación y Desarrollo en Ciencias Aeroespaciales (CIDCA), Fuerza Aérea de Chile, Santiago, Chile.

We study the effect of a partially thermalized scenario for chiral symmetry restoration at finite temperature and quark chemical potential, and in particular for the position of the critical end point in an effective description of the QCD phase diagram. We show that these effects produce the critical end point to be displaced towards larger values of temperature and lower values of the quark chemical potential as compared to the case when the system can be regarded as completely thermalized. We conclude that these effects may be important for relativistic heavy ion collisions where the number of subsystems making the whole interaction volume can be linked to the finite number of participants in the reaction.

Keywords: Superstatistics, QCD Phase Diagram, Critical End Point, Relativistic Heavy-Ion Collisions

I. INTRODUCTION

The usual thermal description of a relativistic heavy-ion collision relies on the assumption that the produced matter reaches equilibrium after some time from the beginning of the reaction. This equilibrium is characterized by values of temperature T and baryon chemical potential μ which are taken as common within the whole interaction volume. The system’s evolution is subsequently described by the time evolution of the temperature down to kinetic freeze-out, where particle spectra are established. This picture rests on two ingredients: the validity of Gibbs-Boltzmann statistics and a system’s adiabatic evolution.

Although, for expansion rates not too large compared to the interaction rate, the adiabatic evolution can perhaps be safely assumed, it is well known that the Gibbs-Boltzmann statistics can be applied only to systems in the thermodynamical limit, namely, long after the relaxation time has elapsed and randomization has been achieved within the system’s volume. In the case of a relativistic heavy-ion collision, the reaction starts off from nucleon-nucleon interactions. This means that the entire reaction volume is made, at the beginning, of a superposition of interacting nucleon pairs. If thermalization is achieved, it seems natural to assume that this starts off in each of the interacting nucleon pair subsystems, to later spread to the entire volume. In this scenario, the temperature and chemical potential within each subsystem may not be the same for other subsystems and thus a superposition of statistics, one in the usual Gibbs-Boltzmann sense for particles in each subsystem, and another one, for the probability to find particular values for T and μ for different subsystem, seems appropriate. This is described by the so-called superstatistics scenario.

An important characteristic of superstatistics is that a non extensive behavior naturally arises due to fluctuations in T or μ over the system’s volume. This feature could be of particular relevance when studying the position of the critical end point (CEP) in the QCD phase diagram, where one resorts to measuring ratios of fluctuations in conserved charges, with the expectation that the volume factor cancels out in the ratio. If thermalization is not complete, this expectation cannot hold and a more sophisticated treatment is called for.

From the theoretical side, efforts to locate the CEP employing several techniques such as finite energy sum rules [1], Schwinger-Dyson equations, functional renormalization methods, holography, and effective models [2–20] have been carried out in recent times. In all of these cases, a full thermalization over the whole reaction volume has been assumed. From the experimental side, the STAR BES-I program has recently studied heavy-ion collisions in the energy range 200 GeV $> \sqrt{s_{NN}} > 7.7$ GeV [21]. Future experiments [22-24] will keep on conducting a thorough exploration of the QCD phase diagram, using different system sizes and varying the temperature and baryon density using different collision energies down to about $\sqrt{s_{NN}} \approx 5$ GeV.

The superstatistics scenario has been explored in the context of relativistic heavy-ion collisions in a wide range of papers, e.g. Refs. [25-41] and references therein, with a particular focus on the study of the imprints of superstatistics on particle production, using a particular version, the so-called Tsallis statistics [42]. Its use in the context of the computation of the rapidity distribution profile for stopping in heavy ion collisions has been recently questioned in Ref. [43]. It has also been implemented to study generalized entropies and a generalized Newton’s law in Refs. [44-46]. In this work we explore...
the implications of superstatistics for the location of the CEP in the QCD phase diagram. The work is organized as follows: In Sec. II we briefly review the superstatistics scenario for the case where the fluctuating parameter is the inverse temperature. In Sec. III we apply a superstatistics analysis to the theory of a self interacting boson with spontaneously broken Z_2 symmetry and show how the critical temperature for symmetry restoration decreases as the number of subsystems making the whole system also decreases. In Sec. IV we analyze the superstatistics scenario within the Linear Sigma Model with quarks (LSMq). We compute the corrections to the effective potential at finite temperature and baryon chemical potential and show how these produce a displacement of the CEP towards larger values of the critical temperature and lower values of the quark chemical potential, as compared to the case where a full volume thermalization is assumed. Finally we summarize and give an outlook of the analysis in Sec. V.

II. SUPERSTATISTICS

The superstatistics concept is nicely described in Refs. [47, 48]. For completeness, we reproduce here the main ideas.

For a system that has not yet reached a full equilibrium and contains space-time fluctuations of an intensive parameter β, such as the temperature or chemical potential, one can still think of dividing the full volume into spatial subsystems, where β is approximately constant. Within each subsystem, one can apply the ordinary Gibbs-Boltzmann statistics, namely, one can use the ordinary matrix density giving rise to the Boltzmann factor $e^{-\beta H}$, where H corresponds to the Hamiltonian for the states in each subsystem. The whole system can thus be described in terms of a space-time average over the different values that β could take for the different subsystems. In this way, one obtains a superposition of two statistics, one referring to the Boltzmann factor $e^{-\beta H}$ and the other for $\hat{\beta}$, hence the name superstatistics.

To implement the scenario, one defines an averaged Boltzmann factor

$$B(\hat{H}) = \int_{0}^{\infty} f(\beta) e^{-\beta \hat{H}} d\beta,$$

where $f(\beta)$ is the probability distribution of β. The partition function then becomes

$$Z = \text{Tr}[B(\hat{H})] = \int_{0}^{\infty} B(E) dE,$$

where the last equality holds for a suitably chosen set of eigenstates of the Hamiltonian.

A possible choice for the probability distribution for the random variable β is the χ^2 distribution

$$f(\beta) = \frac{1}{\Gamma(N/2)} \left(\frac{N}{2\beta_0} \right)^{N/2} e^{-N\beta/2\beta_0},$$

where Γ is the Gamma function, N represents the number of subsystems that make up the whole system and

$$\beta_0 = \int_{0}^{\infty} \beta f(\beta) d\beta = \langle \beta \rangle,$$

is the average of the distribution. The χ^2 is the distribution that emerges for a random variable that is made out of the sum of the squares of random variables X_i, each of which is distributed with a Gaussian probability distribution with vanishing average and unit variance. This means that if we take

$$\beta = \sum_{i=1}^{N} X_i^2,$$

then β is distributed according to Eq. (3). Moreover, its variance is given by

$$\langle \beta^2 \rangle - \beta_0^2 = \frac{1}{N} \beta_0^2.$$

Given that β is a positive definite quantity, thinking of it as being made of a sum of positive definite random variables is an adequate model. Notice however that these variables do not necessarily correspond to the inverse temperature in each of the subsystems. However, since the use of the χ^2 distribution allows for an analytical treatment, we hereby take this as the distribution to model the possible values of β.

To consider superstatistics effects into the dynamics of a given system, we first find the effective Boltzmann factor. This is achieved by taking Eq. (9) and substituting it into Eq. (1). Integration over β, leads to

$$B(\hat{H}) = (1 + \frac{2}{N} \beta_0 \hat{H})^{-\frac{1}{2}}.$$

Notice that in the limit when $N \to \infty$, Eq. (7) becomes the ordinary Boltzmann factor. For large but finite N, Eq. (7) can be expanded as

$$B(\hat{H}) = \left[1 + \frac{1}{2} \left(\frac{N}{\beta_0} \right) \beta_0 \hat{H}^2 - \frac{1}{3} \left(\frac{N}{\beta_0} \right)^2 \beta_0^2 \hat{H}^3 + \cdots \right] e^{-\beta_0 \hat{H}}.$$

Working up to first order in $1/N$, Eq. (8), can be written as

$$B(\hat{H}) = \left[1 + \frac{\beta_0^2}{N} \left(\frac{\partial}{\partial \beta_0} \right)^2 \right] e^{-\beta_0 \hat{H}}.$$

Therefore, the partition function to first order in $1/N$ is given by

$$Z = \left[1 + \frac{\beta_0^2}{N} \left(\frac{\partial}{\partial \beta_0} \right)^2 \right] Z_0,$$

with

$$Z_0 = e^{-\beta_0 V_{\text{eff}}}.$$
where V and V_{eff} are the system’s volume and effective potential, respectively. After a bit of straightforward algebra we write the expression for the partition function in terms of $T_0 = 1/\beta_0$ as

$$Z = \left[1 + \frac{\beta_0^2}{N} \left(\frac{\partial}{\partial \beta_0} \right)^2 \right] Z_0$$

$$= Z_0 \left[1 + \frac{2T_0}{NZ_0} \left(\frac{\partial Z_0}{\partial T_0} + \frac{T_0 \partial^2 Z_0}{2 \partial T_0^2} \right) \right]. \quad (12)$$

and therefore

$$\ln[Z] = \ln[Z_0]$$

$$+ \ln \left[1 + \frac{2T_0}{NZ_0} \left(\frac{\partial Z_0}{\partial T_0} + \frac{T_0 \partial^2 Z_0}{2 \partial T_0^2} \right) \right]. \quad (13)$$

The question we set up to answer is how the CEP position changes when considering corrections coming from the second term in Eq. (13). In the realm of effective QCD models, the answer should be provided within a theory that involves meson as well as quarks degrees of freedom. However, before we embark into this problem, it is convenient to make a first exploratory study within a simpler theory involving only one boson degree of freedom, for which the Z_2 symmetry is spontaneously broken at $T_0 = 0$ but restored at high temperature. As we proceed to show, the correction term coming from superstatistics produces a modification of the temperature for symmetry restoration.

III. SUPERSTATISTICS IN THE ϕ^4 THEORY

To study the effects of superstatistics on the symmetry restoration temperature, we first consider a theory of a self-interacting scalar field that undergoes spontaneous symmetry breaking. This model is described by the Lagrangian

$$\mathcal{L} = \frac{1}{2} (\partial^\mu \phi)(\partial_\mu \phi) + \frac{\alpha^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4, \quad (14)$$

where $\alpha^2 > 0$ is the squared mass parameter and ϕ is a real, self-interacting scalar field, with an interaction strength $\lambda > 0$. To allow for an spontaneous breaking of symmetry, we let the ϕ field to develop a vacuum expectation value v

$$\phi \rightarrow \sigma + v, \quad (15)$$

which can later be taken as the order parameter of the theory. After this shift, the Lagrangian can be rewritten as

$$\mathcal{L} = \frac{1}{2} (\partial^\mu \sigma)(\partial_\mu \sigma) - \frac{1}{2} \left(\lambda v^2 - 2\alpha^2 \right) \sigma^2 - \frac{\lambda}{4!} \sigma^4$$

$$+ \frac{\alpha^2}{2} v^2 - \frac{\lambda}{4!} v^4. \quad (16)$$

From Eq. (16) we see that the mass of the σ field is given by

$$m_\sigma^2 = \lambda v^2 - 2\alpha^2. \quad (17)$$

In this work we consider the effective potential beyond the mean field approximation. We include radiative corrections up to the ring diagrams contribution. All matter terms are computed in the high temperature approximation. The effective potential is given by 49

$$V_{\text{eff}}(v, T_0) = -\frac{(a^2 + \delta a^2)}{2} v^2 + \left(\lambda + \delta \lambda \right) v^4$$

$$- \frac{m_\sigma^4}{64\pi^2} \left[\ln \left(\frac{a^2}{4\pi T_0^2} \right) - \gamma_E + \frac{1}{2} \right]$$

$$- \frac{\pi^2 T_0^4}{90} + \frac{m_\sigma^2 T_0^2}{24}$$

$$- \frac{[m_\sigma^2 + \Pi(T_0)]^{3/2} T_0}{12\pi}, \quad (18)$$

where we have chosen the renormalization scale $\mu = a e^{-1/2}$. γ_E is the Euler-Mascheroni constant and we have introduced the leading temperature plasma screening effects for the boson’s mass squared, encoded in the boson’s self-energy

$$\Pi = \lambda \frac{T_0^2}{24}. \quad (19)$$

Equation (18) contains the counter-terms δa^2 and $\delta \lambda$, given by

$$\delta a^2 = -a^2 \lambda \left[7 + 2 \ln(2) \right] \frac{64\pi^2}{64\pi^2}, \quad (20)$$

and

$$\delta \lambda = -3\lambda^2 \left[3 + 2 \ln(2) \right] \frac{64\pi^2}{64\pi^2}, \quad (21)$$

which ensure that the vacuum piece of the one-loop radiative corrections do not shift the minimum nor the σ-mass from their tree-level values 50. To implement superstatistics in the analysis, we substitute Eq. (18) into Eq. (11). In particular with

$$Z_0 = e^{-\frac{T_0}{V} V_{\text{eff}}(v, T_0)}, \quad (22)$$

we define an effective potential which takes into account effects due to superstatistics through,

$$Z = e^{-\frac{T_0}{V} V_{\text{eff}}(v, T_0, N)}, \quad (23)$$

which yields

$$V_{\text{eff}}(v, T_0, N) = -\frac{T_0}{V} \ln[Z]$$

$$= V_{\text{eff}}(v, T_0)$$

$$- \frac{T_0}{V} \ln \left[1 + \frac{2T_0}{NZ_0} \left(\frac{\partial Z_0}{\partial T_0} + \frac{T_0 \partial^2 Z_0}{2 \partial T_0^2} \right) \right]. \quad \text{(24)}$$
two degenerate minima at the critical temperature.

For a first order phase transition, V^sup in Eq. (24) exhibits both first and second order phase transitions. For increasing λv and $\lambda = 50$ MeV, the squares correspond to a second order phase transition, computed with $a = 50$ MeV. The circles correspond to a first order phase transition, computed with $\lambda = 0.01$ and $a = 50$ MeV.

degrees of freedom around the phase transition, we also include quarks in this model and work with the LSMq. The Lagrangian for the case when only the two lightest quark flavors are included is given by

$$L = \frac{1}{2} (\partial_{\mu} \sigma)^2 + \frac{1}{2} (\partial_{\mu} \vec{\pi})^2 + \frac{\lambda^2}{2} (\sigma^2 + \vec{\pi}^2) - \frac{\lambda}{4} (\sigma^2 + \vec{\pi}^2)^2$$

where ψ is an SU(2) isospin doublet, $\vec{\pi} = (\pi_1, \pi_2, \pi_3)$ is an isospin triplet and σ is an isospin singlet. λ is the boson’s self-coupling and g is the fermion-boson coupling. $\alpha^2 > 0$ is the squared mass parameter.

To allow for a spontaneous symmetry breaking, we let the σ field to develop a vacuum expectation value v

$$\sigma \to \sigma + v,$$

that serves as the order parameter to identify the phase transitions. After this shift, the Lagrangian can be rewritten as

$$L = \frac{1}{2} (\partial_{\mu} \sigma)^2 - \frac{1}{2} \left(3\lambda v^2 - \alpha^2 \right) \sigma^2$$

where the sigma, the three pions and the quarks have masses given by

$$m_{\sigma}^2 = 3\lambda v^2 - \alpha^2,$$

$$m_{\pi}^2 = \lambda v^2 - \alpha^2,$$

$$m_{\psi} = g v,$$

IV. SUPERSTATISTICS AND THE LINEAR SIGMA MODEL WITH QUARKS

To explore the QCD phase diagram from the point of view of chiral symmetry restoration, we use an effective model that accounts for the physics of spontaneous symmetry breaking at finite temperature and density, the Linear Sigma Model. In order to account for the fermion correlations at the critical temperature. One may anticipate that the critical temperature attains values for the parameters a and λ, the effective potential V^eff in Eq. (24) exhibits both first and second order phase transitions. For a first order phase transition, V^eff has two degenerate minima at the critical temperature T_c, one located at $v = 0$ and the other one at a finite value of v. In contrast, for a second order transition, V^eff has a single minimum and vanishing curvature at $v = 0$, at the critical temperature T_c. This is illustrated in Fig. 1.

Figure 2 shows the change of T_c, referred to as the critical temperature for a completely thermalized system T_c^0, as a function of the number of subsystems N making up the whole system. The dots correspond to the case of a first order phase transition, computed with $\lambda = 5$ and $a = 50$ MeV. The squares correspond to a second order phase transition, computed with $\lambda = 0.01$ and $a = 50$ MeV. For increasing N, T_c/T_c^0 approaches unity, both in the case of first and second order phase transitions. The limit $T_c/T_c^0 \to 1$ requires considerably larger values of N for the latter. This behavior is to be expected since for second order phase transitions, in the thermodynamical limit, large spatial correlations appear at the critical temperature. One may therefore anticipate that the critical temperature attains the value corresponding to a fully thermalized system only when N becomes infinity.

Figure 1. Effective potential as a function of the vacuum expectation value v for $N = 100$ and $a = 50$ MeV. The solid line corresponds to a first order transition and the dashed line to a second order transition, at their corresponding critical temperatures.

Figure 2. Critical temperature T_c for symmetry restoration, divided by the critical temperature for a completely thermalized system, T_c^0, as a function of the number of subsystems N that make up the whole volume. The full circles correspond to the case of a first order phase transition and are computed with $\lambda = 5$ and $a = 50$ MeV. The squares correspond to a second order phase transition, computed with $\lambda = 0.01$ and $a = 50$ MeV.
Equation (29) describes the interactions among the σ, π approximation. The effective potential is given by (20) we also work up to the ring diagrams contribution. All potential. In order to account for plasma screening effects, compute the finite temperature and density effective po-

\begin{align}
V_{\text{eff}}(v, T_0, \mu_q) &= -\left(a^2 + \delta a^2\right) v^2 + \frac{(\lambda + \delta \lambda)}{4} v^4 \\
&+ \frac{1}{2}\left[\ln\left(\frac{a^2}{4\pi T_0}\right) - \gamma_E + 1\right] \\
&- \frac{\pi T_0^4}{90} + \frac{m_0^2 T_0^2}{24} - \left(\frac{m_0^2 + \Pi(T_0, \mu_q)^{3/2}}{12\pi}\right) \\
&+ \frac{1}{16\pi^2}\left[\ln\left(\frac{a^2}{4\pi T_0}\right) - \gamma_E + 1\right] \\
&- \psi(1) \frac{1}{2} + \left(\frac{1}{2} - \frac{1}{2\pi T_0}\right) \\
&- 8m_0^4 T_0^4 \left[\text{Li}_2(-e^{\mu_q/T_0}) + \text{Li}_2(-e^{-\mu_q/T_0})\right] \\
&+ 32\pi^4 \left[\text{Li}_4(-e^{\mu_q/T_0}) + \text{Li}_4(-e^{-\mu_q/T_0})\right].
\end{align}

(30)

where the expression for Z is now based on the effective potential Eq. (30). As a consequence, the effective potential of Eq. (33) has four free parameters. Three of them come from the original model, namely, λ, g and a. The remaining one corresponds to the superstatistics correction, N. In the absence of superstatistics, the effective potential in Eq. (30) allows for second as well as for first order phase transitions, depending on the values of λ, g and a as well as of T_0 and μ_q. For given values of λ, g and a, we now proceed to analyze the phase structure that emerges when varying N, paying particular attention to the displacement of the CEP location in the T_0, μ_q plane.

Figure 3 shows the effective QCD phase diagram calculated with $a = 133$ MeV, $g = 0.51$ and $\lambda = 0.36$ for different values of the number of subsystems making up the whole system, N. For the different curves, the star shows the position of the CEP. Notice that this position moves to larger values of T and lower values of μ_q, with respect to the CEP position for $N = \infty$, that is, without superstatistics effects, as N decreases.

Figure 4 shows another example of the effective QCD phase diagram, this time calculated with $a = 133$ MeV, $g = 0.63$ and $\lambda = 0.4$. Notice that the systematics of the CEP displacement for this case are the same as for the case described in Fig. 3.

V. SUMMARY AND OUTLOOK

In this work, we have studied the effect of superstatistics for chiral symmetry restoration and in particular for the position of the CEP in an effective description of the QCD phase diagram.

We have implemented the superstatistics scenario to account for fluctuations in temperature in a system that initially can be considered as not fully thermalized and made out of a given number of subsystems N. We chose to describe these fluctuations in terms of a χ^2 distribution for the inverse temperature.

The analysis is based on the superstatistics modification to the system’s partition function to first order in $1/N$. To study these effects, we first resorted to find the change in the critical temperature for Z_2 symmetry restoration in a theory with a self-interacting real boson field. We found that this critical temperature decreases as N decreases. We then studied the LSMq at finite temperature and quark chemical potential. We found that the pattern for chiral symmetry restoration at high temperature and density changes from the case where $N = \infty$ (completely thermalized volume) to the case where the system is made out of a finite number of subsystems. In particular, the CEP position moves toward larger values of T and lower values of μ_q as N decreases. For the analyses, in both cases, the free energy is computed beyond the mean field approximation, including the plasma screening effects. All matter corrections are made in the high temperature approximation.
To apply these considerations in the context of relativistic heavy-ion collisions, we recall that temperature fluctuations are related to the system’s heat capacity by

\[
\frac{(1 - \xi)}{C_v} = \frac{\langle (T - T_0)^2 \rangle}{T_0^2},
\]
(34)

where the factor \((1 - \xi)\) accounts for deviations \([51]\) from the Gaussian \([52]\) distribution for the random variable \(T\). The right-hand side of Eq. \((34)\) can be written in terms of fluctuations in \(\beta\) as

\[
\frac{\langle (T - T_0)^2 \rangle}{T_0^2} = \frac{\beta^2}{\langle \beta^2 \rangle} \cdot \frac{\langle \beta^2 \rangle^2 - \langle \beta^2 \rangle}{\beta_0^2} = \left(\frac{\beta^2}{\langle \beta^2 \rangle}\right) \frac{\langle \beta^2 \rangle^2 - \langle \beta^2 \rangle}{\beta_0^2}.
\]
(35)

Notice that according to Eq. \((6)\)

\[
\left(\frac{\beta^2}{\langle \beta^2 \rangle}\right)^2 = \left(\frac{1}{1 + 2/N}\right)^2 \approx 1 - 4/N.
\]
(36)

Therefore, for \(N\) finite but large

\[
\frac{\langle (T - T_0)^2 \rangle}{T_0^2} \approx \frac{\beta^2}{\langle \beta^2 \rangle} \cdot \frac{\langle \beta^2 \rangle^2 - \langle \beta^2 \rangle}{\beta_0^2},
\]
(37)

and using Eqs. \((6)\) and \((34)\), we obtain

\[
\frac{\langle (T - T_0)^2 \rangle}{T_0^2} = \frac{2}{N}.
\]
(38)

This means that the heat capacity is related to the number of subsystems by

\[
\frac{(1 - \xi)}{C_v} = \frac{2}{N}.
\]
(39)

To introduce the specific heat \(c_v\) for a relativistic heavy-ion collision, it is natural to divide \(c_v\) by the number of participants \(N_p\) in the reaction. Therefore, Eq. \((33)\) can be written as

\[
\frac{2}{N} = \frac{1 - \xi}{N_p c_v}.
\]
(40)

In Ref. \([51]\), \(\xi\) is estimated as \(\xi = N_p/A\), where \(A\) is the smallest of the colliding nuclei mass number. Equation \((40)\) provides the link between the number of subsystems in a general superstatistics framework and a relativistic heavy-ion collision. It has been shown \([53]\) that, at least for Gaussian fluctuations, \(c_v\) is a function of the collision energy. Therefore, in order to make a thorough exploration of the phase diagram as the collision energy changes, we need to account for this dependence as well as to work with values of the model parameters \(\lambda\), \(g\) and \(a\), appropriate to the description of the QCD phase transition. Work along these lines is currently underway and will be reported elsewhere.

ACKNOWLEDGEMENTS

M. H., M. L. and R. Z. would like to thank ICNUNAM for their warm hospitality during a visit in June-July 2018. A. A. and L. A. H. would like to thank the Physics Department, PUC and CIDCA for their warm hospitality during a visit in July 2018. This work was supported by Consejo Nacional de Ciencia y Tecnología grant number 1170107, 1150471, 11508427, Conicyt/PIA/Basal (Chile) grant number FB0821. R. Z. would like to acknowledge support from CONICYT FONDECYT Iniciación under grant number 11160234.

Figure 3. Effective QCD phase diagram calculated with \(a = 133\) MeV, \(g = 0.51\) and \(\lambda = 0.36\), for different values of \(N\). The star shows the position of the CEP which moves towards larger values of \(T\) and lower values of \(\mu_q\), as \(N\) decreases.

Figure 4. Effective QCD phase diagram calculated with \(a = 133\) MeV, \(g = 0.63\) and \(\lambda = 0.4\), for different values of \(N\). The star shows the position of the CEP which moves towards larger values of \(T\) and lower values of \(\mu_q\), as \(N\) decreases.
