\[\bar{B}_s \rightarrow K \] semileptonic decay from an Omnès improved nonrelativistic quark model

C Albertus\(^1\), E Hernández\(^2\), C Hidalgo-Duque\(^3\) and J Nieves\(^3\)

\(^1\) Departamento de Física Atómica, Nuclear y Molecular e Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Avenida de Fuentenueva s/n, E-18071 Granada, Spain
\(^2\) Departamento de Física Fundamental e IUFFyM, Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca, Spain
\(^3\) Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Apartado 22085, E-46071 Valencia, Spain

E-mail: albertus@ugr.es, gajatee@usal.es, carloshd@ific.uv.es, jmnieves@ific.uv.es

Abstract. We study the \(f^+ \) form factor for the \(\bar{B}_s \rightarrow K^+ \ell^- \bar{\nu}_\ell \) semileptonic decay in a nonrelativistic quark model. The valence quark contribution is supplemented with a \(\bar{B}^* \)-pole term that dominates the high \(q^2 \) region. To extend the quark model predictions from its region of applicability near \(q^2_{\text{max}} = (M_{\bar{B}_s} - M_K)^2 \), we use a multiply-subtracted Omnès dispersion relation. We fit the subtraction constants to a combined input from previous light cone sum rule results in the low \(q^2 \) region and the quark model results (valence plus \(\bar{B}^* \)-pole) in the high \(q^2 \) region. From this analysis, we obtain \(\Gamma(\bar{B}_s \rightarrow K^+ \ell^- \bar{\nu}_\ell) = (5.47^{+0.54}_{-0.46}) V_{ub}^2 \times 10^{-9} \text{MeV} \), which is about 10% and 20% higher than predictions based on Lattice QCD and QCD light cone sum rules respectively.

1. Introduction

Playing a critical role in testing the consistency of the Standard Model of particle physics and, in particular, the description of CP violation, \(V_{ub} \) is still the well known element of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix. Any new information that can be obtained from experimentally unexplored reactions is thus relevant. This is the case of the \(B_s \rightarrow K^+ \ell^- \bar{\nu}_\ell \) semileptonic decay which is expected to be observed at LHCb and Belle and that it could be used to obtain an independent determination of \(|V_{ub}| \). In this contribution we present a study of this reaction. All the details and further results to those presented here can be found in Ref. [1].

The hadronic matrix element for the reaction can be parameterized in terms of the \(f^+ (q^2) \) and \(f^0 (q^2) \) form factors, of which only \(f^+ (q^2) \) plays a significant role for the case of a light lepton in the final state \((l = e, \mu) \). In fact, for zero lepton masses, the differential decay width is given solely in terms of \(f^+ (q^2) \) as

\[\frac{d\Gamma}{dq^2} = \frac{G_F^2}{192\pi^3} |V_{ub}|^2 \frac{\lambda^{3/2}(q^2, M_{\bar{B}_s}^2, M_K^2)}{M_{\bar{B}_s}^3} |f^+(q^2)|^2 \] (1)

with \(G_F \) the Fermi decay constant and \(\lambda \) the Källen function defined as \(\lambda(a, b, c) = a^2 + b^2 + c^2 - 2ab - 2ac - 2bc \).
2. Results and discussion

To obtain the $f^+(q^2)$ form factor we shall follow our earlier work in Ref. [2], where similar decays were analyzed, and then we use the quark model to evaluate the valence plus B^*-pole contributions to the form factors. Calculational details can be found in [1] and references therein. Results are shown in figure 1. Taking into account theoretical uncertainties, shown as a band in the figure, we obtain a reasonable description of the form factor in the high q^2 region, as compared to the preliminary lattice data recently reported in Ref. [4]. For high q^2, the B^*-pole term dominates but the valence contribution accounts for around 20% of the total. However, there is a large discrepancy in the low q^2 region between the quark model and the light cone sum rule (LCSR) results obtained in Ref. [3]. Since the latter are reliable for low q^2, it is clear that the non-relativistic quark model does not provide a good reproduction of the form factor in that region of q^2 where large relativistic effects are to be expected.

To obtain an $f^+(q^2)$ form factor valid for the whole q^2 region spanned by the decay, we adopt the scheme in Refs. [5, 6, 7], assuming a multiply subtracted Omnès functional ansatz that provides a parameterization of the form factor constrained by unitarity and analyticity properties. We take

$$
f^+(q^2) \approx \frac{1}{M_{B^*}^2 - q^2} \prod_{j=0}^{q_0} \left[f^+(q_j^2) \left(M_{B_j}^2 - q_f^2 \right) \right]^{\alpha_j(q^2)}, \quad \alpha_j(q^2) = \prod_{j=0}^{q_0} \frac{q_j^2 - q_k^2}{q_f^2 - q_k^2}
$$

for $q^2 < s_{th} = (M_{B^*} + M_K)^2$ and where $q_0, \cdots, q_n^2 \in] - \infty, s_{th}]$ are the $(n+1)$ subtraction points. Note that despite the factor $\frac{1}{M_{B^*}^2 - q^2}$, the functional form is not given by a single pole. The values of $f^+(q_j^2)$ are taken as free parameters and we fix them by making a combined fit to our quark model results in the high q^2 region and to the LCSR results, taken from Ref. [3], in the low q^2 part. As in Ref. [7] we only use four subtraction points corresponding to $q_j^2 = 0, q_1^2/3, 2q_1^2/3, q_1^2$. Our final result for $f^+(q^2)$ together with its 68% confidence level band is displayed in figure 2. There, we show a comparison with different calculations using LCSR [3], LCSR+B^*-pole fit [8], relativistic quark model (RQM) [9], light front quark model (LFQM) [10], perturbative QCD (PQCD) [11] and the extrapolation to the physical region done in Ref. [12] of the lattice QCD (LQCD) results obtained in Ref. [4] (also shown). In the LCSR calculation in Ref. [3] the results are only given up to $q^2 = 10$ GeV2, whereas in Ref. [10] no B^*-pole contribution is included as can be seen by the behavior of the predicted form factor in the high q^2 region. All other calculations include the B^*-pole mechanism, but with different strengths. In Ref. [9], where a RQM is used, they obtain a form factor similar to ours for high q^2 values. However, their approach for low and intermediate values of q^2 should not be as appropriate as a LCSR one,
which we include in our combined analysis. Calculations in Refs. [11] and [8] give similar results at high \(q^2\) but the one in Ref. [11] deviates from LCSR evaluations at small \(q^2\) values. The high \(q^2\) results obtained in LQCD [4, 12] are in between the results obtained in the approaches of Refs. [8, 11] and the quark model ones (both this work and the RQM calculation of Ref. [9]).

For very low \(q^2\) however, the central values of the LQCD extrapolation in Ref. [12] lie in the upper part of the LCSR band. Our combined approach should be more adequate in that region of \(q^2\) since we use LCSR data to constrain our form factor.

The differential decay width, together with its 68\% confidence level band, is displayed in figure 3. We also show the differential decay width from the calculations in Refs. [8, 9, 10, 11, 12]. For the integrated decay width we obtain

\[
\Gamma(\bar{B}_s \to K^+ \ell^- \bar{\nu}_\ell) = (5.47^{+0.54}_{-0.46}) |V_{ub}|^2 \times 10^{-9} \text{MeV} \tag{3}
\]

and a comparison with the results in other approaches is shown in table 1. The calculations in Refs. [8, 9] obtain results that are some 15\% smaller than ours. The fact that their results are so similar when compared to each other seems to be a coincidence. As seen in figure 3, their differential decay widths deviate both for small and large \(q^2\) values, but those differences
compensate in the integrated width. The result of the PQCD calculation in Ref. [11] is also similar but with a larger uncertainty, around 50%. The LFQM calculation in Ref. [10] gives a much smaller result, in part because no B^*-pole contribution seems to be included in that approach. The LQCD result in Ref. [12] is the one closest to ours. Its large uncertainty comes from the form factor extrapolation from high q^2, where the lattice points were obtained, to the low q^2 region. Our result is the largest although we are compatible within uncertainties with the predictions of Refs. [8, 9, 11, 12].

Table 1. Decay width in units of $|V_{ub}|^2 \times 10^{-9}$ MeV from several approaches. For the result of Ref. [8] we have propagated a 10\% uncertainty in the form factor. Results for Refs. [9, 10, 11] have been adapted from Table IV in Ref. [13].

This work	LCSR+B^*-pole	RQM	LFQM	PQCD	LQCD			
$\Gamma (V_{ub}	^2 \times 10^{-9} \text{ MeV})$	$5.47^{+0.34}_{-0.46}$	$4.63^{+0.97}_{-0.88}$	4.50 ± 0.45	2.75 ± 0.24	4.2 ± 2.2	5.1 ± 1.0

Acknowledgments
This research was supported by the Spanish Ministerio de Economía y Competitividad and European FEDER funds under Contracts Nos. FPA2010-21750-C02-02, FIS2011-28853-C02-02, and the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), by Generalitat Valenciana under Contract No. PROMETEO/20090090, by Junta de Andalucía under Contract No. FQM-225, by the EU HadronPhysics3 project, Grant Agreement No. 283286, and by the University of Granada start-up Project for Young Researches contract No. PYR-2014-1. C.A. wishes to acknowledge a CPAN postdoctoral contract and C.H.-D. thanks the support of the JAE-CSIC Program.

References
[1] Albertus C, Hernández E, Hidalgo-Duque C and Nieves 2014 Phys. Lett. B 738 144
[2] Albertus C, Flynn J M, Hernández E, Nieves J and Verde-Velasco J M 2005 Phys. Rev. D 72 033002
[3] Duplancic G and Melic B 2008 Phys. Rev. D 78 054015
[4] Bouchard C M, Lepage G P, Monahan C J, Na H and Shigemitsu J 2013 B and B_s semileptonic decay form factors with NRQCD/HISQ quarks Preprint arXiv:1310.3207 [hep-lat]
[5] Flynn J M and Nieves J 2007 Phys. Rev. D 75 013008
[6] Flynn J M and Nieves J 2007 Phys. Lett. B 649 269
[7] Flynn J M and Nieves J 2007 Phys. Rev. D 76 031302
[8] Li Z H, Liang F Y, Wu X Y and Huang T 2001 Phys. Rev. D 64 057901
[9] Faustov R N and Galkin V O 2013 Phys. Rev. D 87 094028
[10] Verma R C 2012 J. Phys. G 39 025005
[11] Wang W F and Xiao Z J 2012 Phys. Rev. D 86 114025
[12] Bouchard C M, Lepage G P, Monahan C, Na H and Shigemitsu J 2014 Phys. Rev. D 90 054506
[13] Meißner U G and Wang W 2014 JHEP 1401 107