Evaluating Inundation in Urban Drainage Systems in Tamalanrea District Makassar Based Ecodrainase

Rizky Alfidhdha\(^1\) and Nieke Karnaningroem\(^2\)

\(^1\)Sanitation Environmental Master Program Engineering Department, Faculty of Civil and Planning, Sepuluh Nopember Institute of Technology, Indonesia
\(^2\)Sanitation Environmental Engineering Department, Faculty of Civil and Planning, Sepuluh Nopember Institute of Technology, Indonesia

Email: rizkyalfidhdha@gmail.com

Abstract— Makassar City is one of the major cities in Indonesia with a population of approximately 1.7 million inhabitants, which continues to grow and followed the development of urban infrastructure facilities. The development also resulted in adverse effects on the environment, especially for water catchment area turns into a watertight region resulting changes in surface runoff were greater, especially in the rainy season because the drainage coefficient values are increasing as well. The purpose of this study was to analyze the capacity of the capacity of drainage channels in terms of technical aspects, analyze and formulate efforts to address flooding in a drainage channel system environmentally friendly in terms of environmental aspects, and Calculating the cost and benefit the development of the handling of flooding with a drainage channel system environmentally friendly in terms of financial aspects. The results obtained from the analysis of the technical aspects there are 14 of 41 channel capacity is insufficient accommodation capacity, resulting in the analysis of environmental aspects require 867 infiltration wells, and 3.19 rate of Benefit Cost Ratio (BCR).

1. Introduction
Currently the drainage system has become one of the most important urban infrastructure. The quality management of a city can be seen from the quality of the existing drainage system. Good drainage system can liberate the city from puddles. Stagnant water causes the environment dirty and slovenly, become mosquito breeding, and sources of other diseases, which can degrade the quality of the environment and public health. One way of realizing a good drainage system will require a valid network data associated drainage system from upstream to downstream. The existence of a map of the flow of drainage network can facilitate the identification of the interference problem drainage and land-use planning Sustainable drainage (sustanable) and Environmental (Ecology). The drainage system in the district has a primary drainage Tamalanrea with a length of 14.65 km 33.63 km of secondary channels. The water level reaches 50 cm in Tamalanrea and Tamalanrea Jaya village, 150 cm in the village Tamalanrea Beautiful, Kapasa, Parangloe, and Bira with an average time of low tide more than 2 hours. With an area of inundation varied, but the overall total inundation area in District Tamalanrea of 649.7 ha (BPBDs Makassar, 2014). The number of roads that run into puddles in the district as much as 670 road, or about 40% of the roads in 1708 with an area of 375,017.4 m\(^2\). Now, then the concept of the drainage needs to be changed from the conventional concept (old concept), a principled drain surface water as soon as possible to the body of water, into a new concept of urban drainage environmentally sound principled drain excess water to accommodate and absorb into the body of water. Therefore, the analysis of the environmental aspects is necessary so that the drainage
system has the goal of accommodating, soak, drain, and maintain, so that soil water conservation is maintained and can take place continuously and dimensions can be more efficient drainage infrastructure. In addition to technical and environmental analysis, financial analysis needs to be reviewed in this study.

2. Material and Methods

In this study, the method used is descriptive quantitative method to evaluate the condition of existing drainage channels are supported by primary data, the survey results in the determination of alternative ways control inundation accordance with the conditions of research areas. Activities carried out by conducting site surveys, analyze and interpret the data obtained for solutions and solving problems found in the field. Data obtained derived from the information society and institutions.

Figure 1. The Flowchart of research step.

3. Result and Discussions

3.1 Technical Aspect
The technical aspects include: rainfall averages region, analysis of rainfall plan, analysis of the frequency of the maximum daily rainfall (HHM) plan, test the suitability of the distribution, analysis of arch rainfall plans, analysis discharge storm water runoff, water analysis household waste, the analysis of the flow rate channel.

3.1.1. Capacity of Drainage Channels

Hydraulics analysis includes the calculation capacity of the existing channels. Hydraulics analysis calculation is hereinafter used as the basis for the evaluation of the capacity of existing channels. Channel capacity is analyzed to determine the amount of water flow capable drained by the channel cross section. Water discharge capable drained by the channel are affected by such broad dimensions, hydraulic radius and velocity of flow or runoff.

Table 1. The capacity of drainage channel

Channel orientation	Location	L	Shape Of Channel	Dimension	S	m	n	A	P	R	V	Capacity		
Secondary 1	870		Trapesium	1	0.7	0.8	0.005	1.25	0.023	0.7	3.56	0.191	4.37	2.972
Secondary 2	120		Trapesium	0.8	0.6	0.6	0.071	1.33	0.023	0.4	2.80	0.150	3.26	1.371
Secondary 3	350		Trapesium	0.6	0.5	0.6	0.034	1.00	0.023	0.3	2.30	0.144	2.19	0.722
Secondary 4	870		Trapesium	0.6	0.5	0.6	0.047	1.00	0.023	0.3	2.30	0.144	2.59	0.855
Secondary 2 ke 4	620		Trapesium	1	0.8	1	0.046	1.00	0.023	0.9	3.83	0.235	3.56	3.205
Secondary A	800		Trapesium	1.5	1	1	0.024	1.50	0.023	1.3	5.11	0.245	2.65	3.312
Secondary 5	170		Trapesium	1.2	0.6	0.8	0.032	1.50	0.023	0.7	4.08	0.176	2.44	1.759
Secondary 6	180		Trapesium	0.7	0.6	0.6	0.013	1.17	0.023	0.4	2.54	0.153	1.42	0.556
Secondary 7	500		Trapesium	0.8	0.5	0.5	0.006	1.60	0.023	0.3	2.69	0.121	0.84	0.274
Secondary 8	470		Trapesium	0.5	0.4	0.4	0.042	1.25	0.023	0.2	1.78	0.101	1.92	0.346
Secondary 9	340		Trapesium	0.6	0.4	0.4	0.031	1.50	0.023	0.2	2.04	0.098	1.62	0.323
Secondary 10	90		Trapesium	0.5	0.4	0.3	0.037	1.67	0.023	0.1	1.67	0.081	1.57	0.212
Secondary 11	100		Trapesium	0.6	0.5	0.5	0.041	1.20	0.023	0.3	2.16	0.127	2.22	0.610
Secondary 12	650		Trapesium	0.6	0.5	0.5	0.071	1.20	0.023	0.3	2.16	0.127	2.92	0.804
Secondary 13	610		Trapesium	0.3	0.2	0.3	0.061	1.00	0.023	0.1	1.15	0.065	1.74	0.130
Secondary 14	310		Trapesium	1	0.5	0.8	0.029	1.25	0.023	0.6	3.56	0.168	2.25	1.352
Secondary 15	200		Trapesium	0.7	0.5	0.6	0.009	1.17	0.023	0.4	2.54	0.142	1.13	0.407
Secondary 16	1330		Trapesium	1.2	0.8	0.8	0.061	1.50	0.023	0.8	4.08	0.196	3.61	2.886
Secondary 17	720		Trapesium	2	1.5	1.2	0.003	1.67	0.023	2.1	6.94	0.303	1.07	2.253
Secondary 18	210		Trapesium	0.4	0.3	0.5	0.010	0.80	0.023	0.2	1.68	0.104	0.96	0.168
Secondary 19	720		Trapesium	1.2	0.8	0.8	0.009	1.50	0.023	0.8	4.08	0.196	1.40	1.124
Secondary 20	320		Trapesium	0.8	0.5	0.5	0.061	1.60	0.023	0.3	2.69	0.121	2.62	0.851
Secondary 21	310		Trapesium	0.7	0.5	0.5	0.037	1.40	0.023	0.3	2.42	0.124	2.08	0.625
Secondary 22	900		Trapesium	2	1.5	0.8	0.003	2.50	0.023	1.4	6.31	0.222	0.87	1.222
Secondary 23	820		Trapesium	0.6	0.5	0.5	0.010	1.20	0.023	0.3	2.16	0.127	1.10	0.302
Secondary 24	2360		Trapesium	1.5	1.5	2	0.010	0.75	0.023	3.5	7.00	0.500	2.74	9.584
Primary	6700		Trapesium	4	3	2	0.010	2.00	0.023	7.0	12.94	0.541	2.89	20.197
Secondary 26	830		Trapesium	0.8	0.6	0.6	0.032	1.33	0.023	0.4	2.80	0.150	2.19	0.921
Secondary 27	510		Trapesium	2	1.2	1	0.031	2.00	0.023	1.6	6.47	0.247	3.00	4.799
Secondary 28	1460		Trapesium	1.8	0.9	1	0.029	1.80	0.023	1.4	5.92	0.228	2.76	3.723
Secondary 29	520		Trapesium	0.7	0.6	0.5	0.003	1.40	0.023	0.3	2.42	0.134	0.62	0.203
3.1.2. Condition of existing drainage

Based on previous calculations that the calculation of the existing channel capacity to discharge the design flood drainage channel conditions at this time can be evaluated. Design flood discharge is the sum of debits that go into the channel. The results of the evaluation will indicate that the channel is still able to function optimally, or is not able to function optimally. Based on the analysis evaluation in District Tamalanrea channel capacity of 41 channels that exist, there are 14 channel capacity is not able to accommodate the design discharge. So as to channel that does not meet the capacities, will be planned one of the technologies that is well catchment ecodrainage for handling. The technically meet the capacities but in the field occurred inundation for trash and sediment that much on the line, so it is necessary for handling channel normalization.

Channel orientation	Location	L.	Shape Of Channel	Dimension	S	m	n	A	P	R	V	Capacity		
Secondary	30	840	Trapesium	0.6	0.5	0.8	0.024	0.75	0.023	0.4	2.60	0.169	2.07	0.941
Secondary	31	2500	Trapesium	1	0.5	0.5	0.024	2.00	0.023	0.4	3.24	0.116	1.61	0.603
Secondary	32	1670	Trapesium	2.5	1.5	1	0.009	2.50	0.023	2.0	7.89	0.254	1.67	3.339
Secondary	33	3940	Trapesium	3	4	2	0.024	1.50	0.023	7.0	10.21	0.686	5.27	36.858
Secondary	34	790	Trapesium	2	1.5	0.8	0.006	2.50	0.023	1.4	6.31	0.222	1.26	1.769
Secondary	35	3000	Trapesium	1.8	0.8	1	0.009	1.80	0.023	1.3	5.92	0.220	1.52	1.972
Secondary	36	2160	Trapesium	1	0.8	0.6	0.010	1.67	0.023	0.5	3.33	0.162	1.29	0.697
Secondary	37	1500	Trapesium	1	0.8	0.6	0.010	1.67	0.023	0.5	3.33	0.162	1.29	0.697
Secondary	38	140	Trapesium	0.5	0.4	0.3	0.010	1.67	0.023	0.1	1.67	0.081	0.81	0.110
Secondary	39	910	Trapesium	1	0.8	0.6	0.029	1.67	0.023	0.5	3.33	0.162	2.20	1.186

Location	Flood Discharge with Sediment	Capacity with Sediment	Inundation with Sediment	Requires	Capacity > Flood Disc.	No Sediment	Inundation	Requires	Capacity > Flood Disc.	No Sediment	Inundation
1	1.98	2.23	0.25	Qualify	Capacity > Flood Disc.	2.97	1.00	Qualify			
2	0.04	1.12	1.08	Qualify	Capacity > Flood Disc.	1.37	1.34	Qualify			
3	0.54	0.63	0.08	Qualify	Capacity > Flood Disc.	0.72	0.18	Qualify			
4	1.46	0.68	-0.77	Not Qualify	Capacity > Flood Disc.	0.86	-0.60	Not Qualify			
2 to 4	0.64	2.56	1.92	Qualify							
A	3.03	2.32	-0.71	Not Qualify	Capacity > Flood Disc.	3.31	0.28	Qualify			
5	1.40	1.52	0.11	Qualify	Capacity > Flood Disc.	1.76	0.35	Qualify			
6	0.77	0.37	-0.40	Not Qualify	Capacity > Flood Disc.	0.56	-0.21	Not Qualify			
7	1.37	0.26	-1.11	Not Qualify	Capacity > Flood Disc.	0.27	-1.10	Not Qualify			
8	0.36	0.17	-0.18	Not Qualify	Capacity > Flood Disc.	0.35	-0.01	Not Qualify			
9	0.39	0.25	-0.14	Not Qualify	Capacity > Flood Disc.	0.32	-0.07	Not Qualify			
10	0.45	0.19	-0.26	Not Qualify	Capacity > Flood Disc.	0.21	-0.24	Not Qualify			
11	0.10	0.50	0.40	Qualify	Capacity > Flood Disc.	0.61	0.51	Qualify			
12	0.63	0.66	0.03	Qualify							
13	1.01	0.09	-0.93	Not Qualify	Capacity > Flood Disc.	0.13	-0.88	Not Qualify			

Table 2. The condition of existing drainage
3.2 Environmental Aspect

Alternative inundation reduction referred to in this research is the need for change in the concept of conventional drainage systems become environmentally friendly drainage system in this study is the use of Infiltration wells.

Location	Flood Discharge with Sediment (m³/sec)	Capacity > Inundation with Sediment (m³/sec)	Requires Capacity > No Sediment Disc. (m³/sec)	Inundation Area Of Disc. (m²)	Height Of Inundation (m)	Period Of Inundation (Hour)				
14	0.23	1.01	0.78	Qualify	1.35	1.12	Qualify	-	-	-
15	0.05	0.34	0.28	Qualify	0.41	0.35	Qualify	-	-	-
16	1.31	2.16	0.86	Qualify	2.89	1.58	Qualify	-	-	-
17	0.44	1.50	1.06	Qualify	2.25	1.81	Qualify	-	-	-
18	0.19	0.16	-0.03	Not Qualify	0.17	-0.03	Not Qualify	452.98	0.15-0.20	1
19	0.57	0.70	0.14	Qualify	1.12	0.56	Qualify	-	-	-
20	0.05	0.82	0.77	Qualify	0.85	0.81	Qualify	-	-	-
21	0.14	0.50	0.36	Qualify	0.63	0.48	Qualify	-	-	-
22	0.57	0.92	0.34	Qualify	1.22	0.65	Qualify	-	-	-
23	1.14	0.24	-0.90	Not Qualify	0.30	-0.84	Not Qualify	30,173.3	0.15-0.20	2
24	9.87	6.57	-3.29	Not Qualify	9.58	-0.28	Qualify	-	-	-
25	20.95	16.16	-4.79	Not Qualify	20.20	-0.75	Qualify	-	-	-
26	1.61	0.61	-0.99	Not Qualify	0.92	-0.68	Not Qualify	36,961.1	0.15-0.20	3
27	4.73	2.88	-1.85	Not Qualify	4.80	0.07	Qualify	-	-	-
28	1.36	2.98	1.62	Qualify	3.72	2.36	Qualify	-	-	-
29	0.91	0.16	-0.74	Not Qualify	0.20	-0.70	Not Qualify	37,929.7	0.15-0.20	3
30	0.50	0.85	0.35	Qualify	0.91	0.41	Qualify	-	-	-
31	2.25	0.51	-1.74	Not Qualify	0.60	-1.64	Not Qualify	59,128.8	0.25-0.30	3
32	5.94	3.00	-2.93	Not Qualify	3.34	-2.60	Not Qualify	140,217.95	0.35-0.4	6
33	30.56	25.80	-4.76	Not Qualify	36.86	6.29	Qualify	-	-	-
34	0.27	1.33	1.05	Qualify	1.77	1.50	Qualify	-	-	-
35	4.28	1.77	-2.50	Not Qualify	1.97	-2.31	Not Qualify	124,612.45	0.35-0.4	6
36	1.29	0.65	-0.64	Not Qualify	0.70	-0.60	Not Qualify	32,138.7	0.15-0.20	3
37	0.54	0.64	0.10	Qualify	0.70	0.16	Qualify	-	-	-
38	0.07	0.08	0.01	Qualify	0.11	0.04	Qualify	-	-	-
39	1.23	0.99	-0.24	Not Qualify	1.19	-0.04	Qualify	-	-	-
Table 3. The condition of existing drainage

Channel	Location	Type Of Infiltration Well	Inundation (m³/sec)	A (km²)	I	C	Recharge (m³/sec)	Quantity Housing Infiltration wells	Quantity Road Infiltration wells
Secondary 4	Housing	-0.60	0.00048	223.59	0.65	0.01939	31		
Secondary 6	Road	-0.21	0.00050	224.69	0.56	0.01749	12		
Secondary 7	Road	-1.10	0.00050	222.52	0.41	0.01268	86		
Secondary 9	Housing	-0.07	0.00048	224.41	0.42	0.01258	6		
Secondary 10	Housing	-0.24	0.00048	225.24	0.45	0.01343	18		
Secondary 13	Housing	-0.88	0.00048	229.79	0.44	0.01315	67		
Secondary 18	Housing	-0.03	0.00048	224.35	0.62	0.01856	1		
Secondary 23	Housing	-0.84	0.00048	221.80	0.44	0.01302	64		
Secondary 26	Housing	-0.68	0.00048	223.34	0.55	0.01639	42		
Secondary 29	Housing	-0.70	0.00048	221.36	0.49	0.01447	49		
Secondary 31	Housing	-1.64	0.00048	218.72	0.37	0.01077	153		
Secondary 32	Road	-2.60	0.00050	219.51	0.54	0.01648	158		
Secondary 35	Road	-2.31	0.00050	215.44	0.51	0.01527	151		
Secondary 36	Housing	-0.60	0.00048	217.54	0.53	0.01550	38		
Amount Of Infiltration Wells	468	407							

3.3 Economic Aspect
A development activity is said to be economically viable if the cost of the investment (cost) required is less than the benefits (benefits) obtained. Gains on drainage activity generally in the form of indirect revenue, for example, loss or reduction in loss due to waterlogging or flooding, environmental improvements, improved public health and aesthetic improvements.

Table 4. The Benefit, and Cost of infiltration wells

Channel	Location	Type Of Infiltration Well	Quantity Housing Infiltration Wells	Quantity Road Infiltration Wells	Cost Housing Infiltration Wells (Rupiah)	Cost Road Infiltration Wells (Rupiah)	Losses due to flood 5 years period (Rupiah)
Secondary 4	Housing	31	88,149,124.38	88,149,124.38	188,364,242.40		
Secondary 6	Road	12	32,122,742.46	32,122,742.46	95,555,452.15		
Secondary 7	Road	86	226,597,999.24	226,597,999.24	606,187,637.35		
Secondary 9	Housing	6	15,835,193.80	15,835,193.80	16,041,598.05		
Secondary 10	Housing	18	50,133,549.37	50,133,549.37	163,801,440.45		
Secondary 13	Housing	67	191,642,432.65	191,642,432.65	495,236,725.25		
Secondary 18	Housing	1	3,864,162.97	3,864,162.97	5,422,266.45		
Secondary 23	Housing	64	183,428,266.79	183,428,266.79	184,273,040.45		
Secondary 26	Housing	42	119,010,380.62	119,010,380.62	304,315,418.35		
Secondary 29	Housing	49	138,311,010.28	138,311,010.28	206,394,904.30		
Secondary 31	Housing	153	434,641,123.13	434,641,123.13	665,015,858.80		
Secondary 32	Road	158	412,895,579.29	412,895,579.29	2,366,032,290.45		
Secondary 35	Road	151	395,868,155.86	395,868,155.86	2,044,322,741.15		
Secondary 36	Housing	38	109,424,652.98	109,424,652.98	2,725,533,562.95		
Amount	468	407	1,334,439,896.98	1,334,439,896.98	7,613,497,178.55		
4. Conclusion
Urban street drainage need of improvement by infiltration wells viewed groundwater conditions of diminishing returns. Based on the analysis technical aspect found that there are 14 channel in Tamalanrea district was not qualify to accommodate wastewater and rainwater. Based on the analysis environmental aspect Infiltration wells absorb water into the soil and also reduce the inundation that occur in urban areas. Diameter 1.0 m, depth of water 4 m and soil permeability 0.00015 m/sec. Discharge of infiltration wells 0.0019 m³/sec. Based on the analysis inundation treatment with the application of absorption wells in Sub Tamalanrea able to absorb 100% to the total amount of recharge wells as many as 875 pieces. Total costs required to manufacture 875 unit of infiltration wells is IDR 2,401,924,372.00. Based on analysis economic aspect (BCR) benefit cost ratio the result of rate is 3.19 and its mean that feasible to develop.

5. References

[1] Andayani S and Yuwono E B 2012 *Indikator Tingkat Layanan Drainase Perkotaan* (Jakarta: Universitas trisakti) vol 11 pp 148 -157

[2] Bachtiar S 1998 *Studi Penggunaan Sumur Resapan Untuk Mengurangi Masalah Genangan Di Dps Amprong Kecamatan Kedungkandang Kota Malang* (Malang: Jurusan Teknik Pengairan Fakultas Teknik Universitas Brawijaya) p 103

[3] Chow V T 1989 *Open Channel Hydraulics Alih Bahasa* (Jakarta: Erlangga) pp 16-28

[4] Suripin 2010 *Sistem Drainase Perkotaan yang Berkelanjutan* (Semarang: Andi Publishing) pp 4-19

[5] Mulyanto H R 2013 *Penataan Drainase Perkotaan* (Jakarta: Graha Ilmu) p 33