A FEW THOUGHTS ON DIABETIC STRIATOPATHY – CASE REPORT AND SHORT REVIEW

Ioan-Cristian Lupescu¹, Ioana-Gabriela Lupescu²³, Anca Arbune¹, Basel Toron¹, Adriana Octaviana Dulamea¹⁴

¹ Neurology Department, Fundeni Clinical Institute, Bucharest, Romania
² Radiology and Imaging Department, Fundeni Clinical Institute, Bucharest, Romania
³ Radiology and Imaging Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
⁴ Neurology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania

ABSTRACT

Diabetic striatopathy is an uncommon complication of diabetes mellitus, usually characterized by hemichorea-hemiballismus with T1-high signal intensities involving the contralateral striatum. We present the case of an 81 years-old woman with poorly controlled type 2 diabetes mellitus, who was rushed to the hospital for acute-onset right-sided hemiparesis, somnolence and aphasia. Blood analysis revealed hyperglycemia (412 mg/dl) and raised level of glycated hemoglobin (14.5%), while head CT examination showed a spontaneous hyperdensity involving the left caudate and lenticular nuclei, with no edema. Brain MRI was also performed and highlighted T1-hyperintensities at the level of the same structures, with no diffusion restriction. The patient improved significantly under adjustment of insulin therapy. Based on these observations, a diagnosis of diabetic striatopathy was established. We present a short review of the literature regarding this condition and its main characteristics.

Keywords: diabetes mellitus, hyperglycemic encephalopathy, striatopathy, hemichorea-hemiballismus, insulin therapy

INTRODUCTION

Hyperglycemic encephalopathy is a well-known complication of diabetes mellitus and can present either as hyperglycemia with ketoacidosis or as hyperosmolar nonketotic hyperglycemia [1]. The degree of insulin deficiency is what determines development of one or the other. Insulin deficiency is near absolute in diabetic ketoacidosis, leading to marked catabolism of glycogen, triglycerides and amino acids, with consequent synthesis of ketone bodies, while in hyperosmolar hyperglycemia, there is enough insulin to prevent ketogenesis, but not for glucose utilization [2].

A set of diagnostic criteria has been proposed for the two by the American Diabetes Association (see table 1) [3,4].
Under the term diabetic striatopathy, we describe a syndrome encountered usually in the hyperosmolar hyperglycemic state (and less often in diabetic ketoacidosis), manifested clinically by hemichorea-hemiballismus and radiologically by T1 hyperintensities in the contralateral basal ganglia [5]. Its recognition is important, since it is potentially life-threatening, but also reversible with correction of hyperglycemia [6].

**CASE PRESENTATION**

An 81 years-old woman was brought in by the ambulance for sudden onset of right-sided motor deficit and aphasia. Medical history revealed type 2 diabetes mellitus (complicated by neuropathy, retinopathy and grade IV peripheral artery disease with left thigh amputation), grade III hypertension, dyslipidemia, heart failure and silent coronary artery disease. The patient was receiving high doses of insulin therapy at home, both rapid-acting (24 units at breakfast, 24 units at lunch and 20 units at dinner) and slow-acting (24 units at breakfast and 52 units in the evening), as well as antiplatelet, lipid-lowering and antihypertensive medications.

The clinical picture was compatible with a stroke in the territory of the left middle cerebral artery, since the patient presented right-sided hemiparesis, right-sided Babinski sign, somnolence and was unable to speak or understand.

On admission, a series of abnormal blood parameters were highlighted, notably hyperglycemia (412 mg/dl), raised lactate (5.5 mmol/l) and raised glycated hemoglobin/HbA1c (14.5%) (see Table 2).

### TABLE 2. Abnormal biomarkers found in our patient

| Biomarker                        | Patient value | Normal range |
|----------------------------------|---------------|--------------|
| Glycemia (mg/dl)                 | 412           | 74 – 106     |
| Uric acid (mg/dl)                | 12.1          | 2.6 – 7.2    |
| Creatinine (mg/dl)               | 1.86          | 0.7 – 1.3    |
| Urea (mg/dl)                     | 116           | 12 – 45      |
| C-reactive protein (mg/dl)       | 78.4          | 0 – 3        |
| Fibrinogen (mg/dl)               | 612           | 180 – 350    |
| Aspartate transaminase (U/l)     | 143           | 0 – 34       |
| Alanine transaminase (U/l)       | 80            | 0 – 49       |
| Total bilirubin (mg/dl)          | 2.5           | 0.1 – 1.2    |
| Alkaline phosphatase (U/l)       | 178           | 35 – 130     |
| Gamma-glutamyl transferase (U/l) | 318           | 0 – 55       |

Head CT was urgently performed and revealed a spontaneous hyperdensity (between 40 and 55 Hounsfield units) at the level of the left caudate and lenticular nuclei, without peripheral edema (figure 1). Hemorrhage was excluded, since the lesion was well demarcated (and limited to the structures men-
tioned) and did not have a high enough density to be hemorrhage (which is between 60 and 80 Hounsfield units). As such, the hyperdensity was considered an abnormality secondary to the hyperglycemic state. Other changes consisted of diffuse white matter hypodensities in the frontal-parietal periventricular region (possibly due to small vessel disease) and hydrocephalus (Evans index of 0.37) without an obvious obstructive etiology.

Assessment was completed with brain MRI, which showed T1-hyperintense and T2/FLAIR-hypointense lesions involving the left caudate and lenticular nuclei, without diffusion restriction. There were also hemosiderinic spots (SWI-hypointense) bilaterally at the level of the temporal lobes, as well as T2* hypointensities involving the basal ganglia bilaterally (figures 2, 3).

Insulin therapy was reassessed by an endocrinologist, with clinical improvement soon afterwards. At discharge, the patient was conscious, with spontaneous and comprehensible speech and mild right-sided hemiparesis.

**DISCUSSIONS**

A rare condition, diabetic striatopathy (DS) was believed to be unique to Asians, however a study conducted by Shafran et al. noted its existence in the Western population too. Analyzing retrospectively 697 patients with elevated HbA1c (>10%), they found 4 patients who presented with hemichorea/choreoathetosis and imaging findings compatible with DS (only one of which was diagnosed as such during hospitalization) [7].

![FIGURE 2. Brain MRI – T1-hyperintense and T2/FLAIR hypointense lesion at the level of the left caudate and lenticular nuclei (white arrow). Periventricular white matter hyperintensities visible on FLAIR (leukoaraiosis). Slight cerebral atrophy](image)

![FIGURE 3. Brain MRI – The lesion shows no diffusion restriction on DWI](image)
By using MRI (in 6 patients), FDG-PET (in 1 patient) and biopsy of the striatum (in 1 patient), Abe et al. highlighted the main imaging and pathological characteristics of DS and attributed the condition to obliterative vasculopathy [8].

Table 3. Imaging and pathological findings in diabetic striatopathy (8)

| Method used         | Findings                                                                 |
|---------------------|--------------------------------------------------------------------------|
| MRI                 | T1-hyperintensity of the affected striatum                               |
| MR-Spectroscopy     | Affected striatum:                                                       |
|                     | – decreased NAA/creatin ratio                                            |
|                     | – normal choline/creatine ratio                                          |
|                     | – myoinositol peak                                                      |
|                     | Contralateral striatum:                                                  |
|                     | – decreased NAA/creatin ratio                                            |
|                     | – increased choline/creatine ratio                                       |
|                     | – no myoinositol peak                                                   |
| FDG-PET             | Decreased FDG accumulation in the affected striatum                     |
| Biopsy – Histopathology | Patchy necrosis, arteriolar wall thickening with hyaline degeneration,   |
|                     | capillary proliferation, erythrocyte extravasation and infiltration of   |
|                     | lymphocytes/macrophages                                                  |

DS affects primarily elderly females with hyperosmolar hyperglycemia, but cases have been described in other groups as well [9]. For example, Das et al. reported the occurrence of DS in two young males with diabetic ketoacidosis. There have been only a few cases of DS so far in children, including one in a teenager with subacute onset of hemichorea accompanied by weight loss, polydipsia and polyuria [10].

Although DS develops in the setting of nonketotic hyperglycemia, its onset may be delayed by some weeks after the episode, even when the hyperglycemic state has been controlled [11]. DS is considered reversible under insulin therapy, but if left untreated, DS may determine persistent symp-
toms and irreversible structural lesions [12]. Larsen et al. noted marked atrophy of the right caudate nucleus in a woman with poorly controlled type 2 diabetes and persistent choreic movements of the left upper limb (of 4 years duration). There is also the possibility of recurrence of DS, as was shown by Lin et al. in a 69-years-old female who suffered a relapse of hemichorea-hemiballismus during a period of normoglycemia. There was a corresponding waxing-and-waning T1 change of the striatum on MRI [13].

DS has been reported to occur without chorea and ballismus. Sato et al. described the case of a 58-years-old male with T1-hyperintense lesions of the striatum, but who presented only with severe altered consciousness [14]. DS can represent the first manifestation of diabetes mellitus and should be suspected in patients with sudden onset of hemichoreic movements without a prior history of diabetes [15].

Although usually unilateral, Udare et al. reported a case of bilateral DS in a 79-years-old male with known type 2 diabetes, who presented with bilateral chorea-ballismus and altered sensorium [16]. Noteworthy is also the case described by Lin et al., in which diabetic striatopathy coexisted with another rare diabetes-related complication, namely moyamoya disease [17].

CONCLUSIONS

Diabetic striatopathy is uncommon, but should be suspected in the appropriate setting of acute-onset movement disorder and hyperglycemia, in patients with or without prior history of diabetes mellitus. Our case was particular since the patient had no hemichorea-hemiballismus syndrome, but rather a clinical picture mimicking stroke.

REFERENCES

1. Allan HR, Martin AS, Joshua PK, Sashank P. The Acquired Metabolic Disorders of the Nervous System. In: Allan HR, Martin AS, Joshua PK, Sashank P. Adams and Victor’s Principles of Neurology – 11th Edition. McGraw-Hill Education, 2019:1165-1166.
2. Gosmanov AR, Gosmanova EO, Kitabchi AE. Hyperglycemic Crises: Diabetic Ketoacidosis (DKA) And Hyperglycemic Hyperosmolar State (HHS) [Updated 2018 May 17]. In: Feingold KR, Anawalt B, Boyce A et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000.
3. Kitabchi AE, Umpierrez GE, Murphy MB, Kreisberg RA. Hyperglycemic Crises in Adult Patients with Diabetes. A consensus statement from the American Diabetes Association. Diabetes Care. 2006; 29(12):2739-2748.
4. Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009; 32(7):1335-1343.
5. Ehrlich M. Diabetic Striatopathy with Isolated Sensorimotor Symptoms Masquerading as Intraparenchymal Hemorrhage (P1.038). Neurology. 2015; 84(14):P1.038.
6. Özgür A, Esen K, Kaleağası H et al. Diabetic striatopathy in a patient with hemiballism. Emerg Radiol. 2015;22(3):347-9.
7. Shafran I, Greenberg G, Grossman E et al. Diabetic striatopathy – Does it exist in non-Asian subjects? *Eur J Intern Med.* 2016; 35:51-54.

8. Abe Y, Yamamoto T, Soeda T et al. Diabetic striatal disease: Clinical presentation, neuroimaging, and pathology. *Intern Med.* 2009; 48(13):1135-1141.

9. Das L, Pal R, Dutta P, Bhansali A. “Diabetic striatopathy” and ketoacidosis. Report of two cases and review of literature. *Diabetes Res Clin Pract.* 2017; 128:1-5.

10. Faundez T, Klee P, Hanquinet S et al. Diabetic Striatopathy in Childhood: A Case Report. *Pediatrics.* 2016; 137(4).

11. Lin CJ, Huang P. Delayed onset diabetic striatopathy: Hemichorea-hemiballism one month after a hyperglycemic episode. *Am J Emerg Med.* 2017; 35(7):1036.

12. Lucassen EB, Dellyett WT, Stahl MC. Persistent Hemichorea and Caudate Atrophy in Untreated Diabetic Striatopathy: A Case Report. *Case Rep Neurol.* 2017; 9(3):299-303.

13. Lin YT, Chen SC, Yip PK et al. Magnetic resonance imaging volumetric analysis for diabetic striatopathy with two episodes of hemichorea-hemiballism syndrome: A case report. *Medicine (Baltimore).* 2019; 98(38):e17249.

14. Sato H, Hamano M, Fushimi E et al. Diabetic striatopathy manifesting as severe consciousness disturbance with no involuntary movements. *Diabet Med.* 2017; 34(12):1795-1799.

15. Vasudevan V, Laway BA, Wani AL, Wani MM. Chorea Associated with Nonketotic Hyperglycemia (Diabetic Striatopathy) in an Elderly Male. *Indian J Endocrinol Metab.* 2018; 22(6):859-860.

16. Udare AS, Sankhe S, Mondel PK. Bilateral diabetic striatopathy. *Asian J Neurosurg.* 2016; 11(2):169.

17. Lin JB, Sng AA, Wang FS et al. Acute hemichorea in a young type 1 diabetic. *Int J Neurolsci.* 2019; 1-3.