Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022

CNCB-NGDC Members and Partners*†

Received September 15, 2021; Revised September 29, 2021; Editorial Decision September 30, 2021; Accepted October 08, 2021

ABSTRACT

The National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB), provides a family of database resources to support global research in both academia and industry. With the explosively accumulated multi-omics data at ever-faster rates, CNCB-NGDC is constantly scaling up and updating its core database resources through big data archive, curation, integration and analysis. In the past year, efforts have been made to synthesize the growing data and knowledge, particularly in single-cell omics and precision medicine research, and a series of resources have been newly developed, updated and enhanced. Moreover, CNCB-NGDC has continued to daily update SARS-CoV-2 genome sequences, variants, haplotypes and literature. Particularly, OpenLB, an open library of bioscience, has been established by providing easy and open access to a substantial number of abstract texts from PubMed, bioRxiv and medRxiv. In addition, Database Commons is significantly updated by cataloguing a full list of global databases, and BLAST tools are newly deployed to provide online sequence search services. All these resources along with their services are publicly accessible at https://ngdc.cncb.ac.cn.

INTRODUCTION

The National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB), was officially founded in 2019. Since then, CNCB-NGDC is constructed by joint efforts and collaborations from three institutions of Chinese Academy of Sciences, namely, Beijing Institute of Genomics, Institute of Biophysics and Shanghai Institute of Nutrition and Health as well as several partners (https://ngdc.cncb.ac.cn/partners). In the past several years, an increasing number of large-scale high-throughput sequencing projects have been carried out in biomedical research worldwide, resulting in vast amounts of multi-omics data that are continually generated at ever-growing rates and scales. Therefore, CNCB-NGDC is devoted to empowering accelerated progresses in life and health sciences by providing open access to a suite of database resources through big data archive, curation, integration and analysis (1–5).

Nowadays, rapid advances in single-cell sequencing technologies have opened a new era for biomedical research, paving the way to delineate cellular composition diversity and elucidate complex mechanisms of organ development and diseases at single-cell resolution (6,7). In addition, large-scale cohort-based precision medicine studies have identified new biomarkers and drug targets, greatly promoting the development of more effective means for disease diagnosis, molecular subtyping and medical treatment (8). To synthesize such growing data and knowledge, CNCB-NGDC has made considerable efforts in the past year by developing new resources and updating relevant resources. Particularly, due to the coronavirus disease (COVID-19) pandemic that is still a global health threat to our human being, CNCB-NGDC has continued to put enormous efforts in daily update of SARS-CoV-2 genome sequences, variants, haplotypes and literature (https://ngdc.cncb.ac.cn/ncov) (9,10). Moreover, Database Commons is significantly updated to provide open access to a full list of worldwide biological databases, and BLAST tools are newly deployed to

*To whom correspondence should be addressed. Tel: +86 10 84097261; Fax: +86 10 84097720; Email: ybxue@big.ac.cn
Correspondence may also be addressed to YiMing Bao. Tel: +86 10 84097858; Email: baoym@big.ac.cn
Correspondence may also be addressed to ZHANG ZHANG. Tel: +86 10 84097261; Email: zhangzhang@big.ac.cn
Correspondence may also be addressed to WENMING ZHAO. Tel: +86 10 84097636; Email: zhaowm@big.ac.cn
Correspondence may also be addressed to JINGFA XIAO. Tel: +86 10 84097443; Email: xiaojingfa@big.ac.cn
Correspondence may also be addressed to ShunMin He. Tel: +86 10 64807279; Email: heshunmin@ibp.ac.cn
Correspondence may also be addressed to GuoQing ZHANG. Tel: +86 21 54920086; Email: yxli@sibs.ac.cn
Correspondence may also be addressed to GuoQing ZHAO. Tel: +86 21 54923000; Email: gpzhao@sibs.ac.cn
Correspondence may also be addressed to RunSheng CHEN. Tel: +86 10 64888543; Email: crs@ibp.ac.cn

†The full list of authors is provided in Appendix.

© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
support online sequence search services. Here, we provide a brief overview of new developments and recent updates in CNCB-NGDC and present its core resources and services (Figure 1). All these resources and their derived services are publicly available in the home page of CNCB-NGDC at https://ngdc.cncb.ac.cn.

NEW DEVELOPMENTS

CancerSCEM

CancerSCEM (https://ngdc.cncb.ac.cn/cancerscem, detailed in (11) in this issue) is an open access database of cancer single-cell expression map. In the current version, it integrates a total of 638 341 high-quality cells from 208 samples across 20 human cancer types. CancerSCEM provides comprehensive metadata and multi-scale analyzed results, including cell type annotation, cell component statistics, gene expression profile (curated receptor–ligand gene pairs, oncogenes and tumor suppressor genes), cell–cell interaction network and survival analysis. Most importantly, equipped with the newly constructed comprehensive online analysis platform, CancerSCEM allows users to perform cancer scRNA-seq data exploration in a real-time and interactive mode.

CeDR Atlas

CeDR Atlas (https://ngdc.cncb.ac.cn/cedr, detailed in (12) in this issue) is a knowledge base reporting computational inference of cellular drug response for hundreds of cell types from various tissues. By collecting the fast-growing single-cell transcriptome profiles generated by multiple international consortiums and other available labeled datasets, tissue and cell type specific drug response analysis was conducted to provide direct references for cellular drug response profiles, including not only disease cell types but also normal cell types. Currently, CeDR Atlas maintains the results of 582 single-cell data objects for human, mouse and cell lines. Specifically, it hosts 188 157 significant cell type-drug associations for human, 42 660 for mouse and 10 299 for cell lines.

Cell Taxonomy

Cell Taxonomy (https://ngdc.cncb.ac.cn/celltaxonomy) is a curated repository of cell types and cell markers covering a wide range of species, tissues and conditions. Based on manual curation of 3402 publications, it presents a standardized and well-structured taxonomy for 2650 cell types and collects 25 087 associated cell markers in 157 conditions and 296 tissues across 21 species. In addition, Cell Taxonomy incorporates 564 single-cell RNA-seq datasets and provides multifaceted characterization for cell types and cell markers by enrichment analysis, cellular component similarity estimation and quality assessment of cell markers and cell clusters. Taken together, Cell Taxonomy is of great utility for cell type characterization and accurate selection of cell markers and reference datasets, functioning as a fundamental reference cellular resource for a wide range of single-cell research.

CompoDynamics

CompoDynamics (https://ngdc.cncb.ac.cn/compodynanics, detailed in (13) in this issue) is a comprehensive database of sequence compositions of coding sequences (CDSs) and genomes for a wide range of species. CompoDynamics characterizes rich sequence compositions (nucleotide content, codon usage and amino acid usage) and derived molecular features (coding potential, physicochemical property and phase separation) for 118 689 747 high-quality CDSs and 34 562 genomes across 24 995 species. In addition, multiple tools are provided to enable comparative analyses of sequence compositions and features across different species and gene groups. Collectively, CompoDynamics bears great potential to help us reveal sequence composition dynamics across genes and genomes, providing a fundamental resource for a broad spectrum of biological studies.

OMIX

The Open Archive for Miscellaneous Data (OMIX; https://ngdc.cncb.ac.cn/omix), a new member of the GSA family, aims to meet users’ needs for archiving miscellaneous data that are unsuitable for storing in GSA/GSA-Human. It allows different data types (e.g. microarray and genotype), accepts various omics data (e.g. lipidome, metabolome and proteome) and houses analyzed results and related research data (e.g. clinical information, demographic data and questionnaire). OMIX features straightforward submission interfaces and offers open-access and controlled-access data management strategies. As of September 2021, OMIX has archived 269 data submissions with 13.3 Terabytes (TB), among which 115 have controlled access.

OpenLB

The Open Library of Bioscience (OpenLB; https://ngdc.cncb.ac.cn/openlb) provides easy and open access to a large number of biological literatures. In the current version, it contains ~33 million abstract texts from PubMed (14), bioRxiv and medRxiv. OpenLB provides both simple keyword query and advanced search functionalities, in order to help users search publications in a convenient and customized manner. In addition, OpenLB aims to provide seamless links with CNCB-NGDC database resources, associating scientific literature with omics data and curated information if available so that users can easily find both publications and their related data/information. Ongoing efforts of OpenLB include the integration of more literature types, deployment of named entity recognition tool and development of manuscript submission service.

RDBSB

The Registry and Database of Bioparts for Synthetic Biology (RDBSB; https://www.biosino.org/rdbsb) is a finely curated resource for catalytic bioparts, incorporating comprehensive information of biopart sequence and functions (including catalytic processes, qualitative and quantitative parameters and biopart expression). RDBSB collects 366 045 catalytic bioparts, and 72 180 of them are manually curated.
Figure 1. Core database resources of CNCB-NGDC in terms of database categories. A full list of data resources, which contains links to each resource, is available at https://ngdc.cncb.ac.cn/databases.

with experimental evidence from literature mining. In addition, RDBSB collects relevant experimental conditions, such as pH, temperature and chassis, etc., which are crucial for pathway design in a given chassis.

Regeneration Roadmap

Regeneration Roadmap (https://ngdc.cncb.ac.cn/regeneration, detailed in (15) in this issue) is a comprehensive database collecting and standardizing experimental data generated in regeneration research. In the current version, Regeneration Roadmap systematically and comprehensively collects regenerative information over 1.96 million data entries across 10 species and 34 tissues, including regeneration-related genes, bulk and single-cell transcriptomics, epigenomics and pharmacogenomics data. In this database, users can easily explore regulatory and expression changes of regeneration-associated genes in different species or tissues. Together, Regeneration Roadmap provides the research community with a long awaited and valuable data resource featuring convenient computing and visualization tools.

RECENT UPDATES

BioProject and BioSample

BioProject (https://ngdc.cncb.ac.cn/bioproject) and BioSample (https://ngdc.cncb.ac.cn/biosample) are two public repositories of biological research projects and samples, respectively. They collect descriptive metadata on biological projects and samples investigated in experiments and provide centralized accesses to all public projects and samples as well as cross links to their related data resources. BioProject organizes a huge volume of projects, involving multi-omics sequencing efforts, genome-wide association studies and variation analyses. BioSample supports a wide scope of sample types, including human, plant, animal, microbe, virus, pathogen and metagenome. Up to September 2021, there are a total of 4514 biological projects and 482 577 samples submitted by 2538 users from 514 organizations (Figure 2A), presenting a rapid increase by comparison with 2288 projects and 176 288 samples in August 2020.

GSA and GSA-Human

The Genome Sequence Archive (GSA; https://ngdc.cncb.ac.cn/gsa) (16,17) is a public data repository for archiving raw sequence reads. GSA accepts worldwide data submissions, performs data curation and quality control, and provides free open access to all publicly available data without restrictions. In addition, GSA for Human (GSA-Human; https://ngdc.cncb.ac.cn/gsa-human) (17), serving as an important partner database of GSA, features controlled-access and security services for human genetics-related data and accepts data submissions of various studies, includ-
Figure 2. Statistics of data submissions. (A) Data statistics of BioProject and BioSample. (B) Data statistics of Experiments and Runs in GSA. (C) Timeline of data growth in GSA. (D) Statistics of genome assemblies in GWH. All statistics are frequently updated and publicly available at https://ngdc.cncb.ac.cn/bioproject, https://ngdc.cncb.ac.cn/biosample and https://ngdc.cncb.ac.cn/gsa and https://ngdc.cncb.ac.cn/gwh.

ing disease, cohort, cell line, clinical pathogen and human-associated metagenome. As of September 2021, GSA together with GSA-Human has reached a milestone of over 10 PB of raw sequencing data archived as well as 398 322 experiments and 465 245 runs (Figure 2B and C), showing the doubled volume by comparison with the previous release last August (∼4.6 PB). In particular, GSA-Human has accommodated 5.6 PB of raw sequenced data since its inception in 2018, demonstrating that human genetic data are growing at an unprecedented rate and scale.

Genome Warehouse

The Genome Warehouse (GWH; https://ngdc.cncb.ac.cn/gwh) is a public repository of genome-scale data for a wide range of species (18). By September 2021, GWH has housed a total of 20 606 submitted genome assemblies covering 1,251 species (Figure 2D), presenting a doubled increase in contrast to the previous release (9337 assemblies in 2020). Among them, 9886 genome assemblies have been publicly released and reported in 97 articles of 47 journals. Particularly, GWH has received the submission of 1660 SARS-CoV-2 genome assemblies, which were further integrated into the 2019 novel coronavirus resources (2019nCoVR) (9,10). Moreover, compared with the previous release, GWH has been significantly upgraded by providing sequence alignment service via BLAST (19) and supplying encrypted links for reviewing unpublic data. Collectively, GWH serves as an important resource for genome assembly data to support genomic research throughout the world.

Gene Expression Nebulas

The Gene Expression Nebulas (GEN; https://ngdc.cncb.ac.cn/gen) is a data portal integrating transcriptomic profiles at both bulk and single-cell levels in various conditions across multiple species (detailed in (20) in this issue). In the current version, GEN houses a collection of transcriptomic profiles of 323 datasets covering 50 500 samples and 15 540 169 cells across 30 species involving 17 animals, 10 plants, 2 protists, and 1 fungus, grown from 191 studies covering 23 073 experiments and 410 149 cells derived from human and 4 plants. In particular, GEN integrates a full range of transcriptomic profiles on gene expression, RNA editing and alternative splicing for 10 bulk datasets. Moreover, it accommodates value-added gene annotations based on differential expression analysis across diverse experimen-
LncRNA Wiki 1.0 in 2020, thus providing an up-to-date picture of experimentally validated and functionally annotated lncRNAs in human.

piRBase
The updated version of piRBase v3.0 (http://bigdata.ibp.ac.cn/piRBase) (29) is a comprehensive database of piRNA sequences. In current release of piRBase, the number of non-redundant piRNA sequence increases from 173 million in last August to 181 million, and the species reaches 44 compared to 21 in August 2020. In view of the huge amount of piRNAs, it provides users with gold standard piRNA sequence sets. In order to further expand the research on piRNA function, potential information of splicing-junction piRNA and piRNA variants is also included in piRBase, offering an alternative explanation for possible mechanism of piRNAs. In addition, it integrates piRNA-related information on a variety of diseases, like cancers, cardiovascular diseases, stroke and Alzheimer. Also, piRBase presents regulatory network of piRNAs in a visualized manner and provides the expression of piRNAs in different tissues and cell lines.

scMethBank
The single-cell methylation bank (scMethBank; https://ngdc.cncb.ac.cn/methbank/scm) is a public data portal that integrates a comprehensive collection of single-cell DNA methylation data (detailed in (26) in this issue). In the past year, scMethBank has rapidly grown from 3166 samples in August 2020 to 8328 samples currently, involving 21 cell types and 67 619 genes with curated metadata in human and mouse. Based on uniformed data processing, it presents whole-genome DNA methylation profiles at single-nucleotide resolution in various biological contexts and developmental stages. Accordingly, user-friendly web interfaces for data search, download, visualization and online tools for downstream analysis are implemented in scMethBank.

GWAS Atlas
GWAS Atlas (https://ngdc.cncb.ac.cn/gwas) (34) is a curated resource of genome-wide variant-trait associations in plants and animals. In contrast to 78 950 associations in August 2020, the current version of GWAS Atlas has archived a total of 96 141 associations across seven cultivated plants and five domesticated animals, manually curated from 1350 studies in 367 publications. As a result, a total of 23 880 genes and 862 traits were annotated and presented based on a set of ontologies. Together, GWAS Atlas provides high-quality curated GWAS associations for plants and animals, and accordingly serves as a valuable resource for genetic research of important traits and breeding application.
BrainBase

BrainBase (https://ngdc.cncb.ac.cn/brainbase, detailed in (35) in this issue) is a curated knowledgebase for brain diseases with the aim to provide a whole picture of brain diseases and associated genes. Compared to the previous version that contains 4248 associations and 3996 genes in August 2020, the current version houses 7175 disease-gene associations, spanning a total of 123 brain diseases and linking with 5662 genes. It also integrates 16 591 drug-target interactions covering 2118 drugs/chemicals and 623 genes, and presents specific genes in light of expression specificity in brain tissue/regions/cerebrospinal fluid/cells. In addition, BrainBase incorporates multi-omics datasets to identify glioma featured genes with potential clinical significance.

dbDEMC

The database of Differentially Expressed MicroRNAs in human Cancers (dbDEM C, https://www.biosino.org/dbDEMC) is an integrated database for storing and annotating potential cancer-related microRNAs (miRNAs), retrieved by analyzing large numbers of miRNA expression profiling studies. Compared with the previous version (2224 differentially expressed miRNAs [DEMs] in 36 cancer types from 209 expression profiling data sets), dbDEMC version 3.0 integrates more data entries, containing 3268 DEMs in 40 cancer types curated from 807 experiments in human, mouse and rat. It is also updated by enhancing the visualization functionalities for expression heatmap, regulatory network, gene ontology, KEGG pathway map and miRNA expression boxplot. In addition, dbDEMC incorporates experimentally validated targets for the DEMs. Therefore, dbDEMC will play an important role in characterizing molecular functions and regulatory mechanisms of DEMs in human cancers.

SARS-CoV-2 Resources

The 2019 Novel Coronavirus Resources (2019nCoVR; https://bigd.big.ac.cn/ncov) (36,37) contains a comprehensive collection of all publicly available SARS-CoV-2 genome sequences with quality evaluation and value-added manual annotations. Consequently, it houses a global landscape of genomic variants and haplotypes, visualizes the spatiotemporal change for each variant and constructs haplotype network maps for the course of the outbreak. More importantly, it provides the hierarchical epidemiological lineage browser to easily capture the leading edge of pandemic transmission (38). Besides, 2019nCoVR offers a set of online tools for SARS-CoV-2 genome assembly and annotation, variant identification and effect annotation, genome tracing and haplotype construction as well as a full collection of literatures on COVID-19 (9). Notably, all SARS-CoV-2 genome sequences, variants, haplotypes and literatures are updated daily since January 2020. Meanwhile, a patient-centric resource named integrative CT images and clinical features for COVID-19 (iCTCF) is developed to archive chest CT images and 130 types of clinical features as well as laboratory-confirmed SARS-CoV-2 clinical status, providing a useful tool for improving diagnosis and treatment of COVID-19 patients (39).

iDog

iDog (https://ngdc.cncb.ac.cn/idog) is an integrated omics data resource for domestic dog (Canis lupus familiaris) and wild canids (40). In the current version, iDog is updated by integrating 27 ancient dog samples with 6 544 496 unique SNPs and including 26 cell clusters with 105 057 single cells for dog brain tissue. As a result, a total of 71 050 194 unique SNPs in 722 samples, 481 breeds, 806 diseases and 1170 genotype-to-phenotype pairs from 1192 experiments and 62 high-quality RNA-seq projects are integrated, dramatically increasing from 42 871 184 SNPs and 594 genotype-to-phenotype pairs in August 2020. Additionally, iDog provides an online classification tool used to predict the dog breed by using deep learning method. As a data resource of the Dog 10K Genomes Project (http://dog10k.big.ac.cn), with these functions and data, iDog provides freely browse, search and download services for worldwide users.

iSheep

iSheep (https://ngdc.cncb.ac.cn/isheep) (41) is the most comprehensive genetic database specific for the Ovis species. It provides an integrated resource for sheep comprising 82 689 498 genetic variants from 2778 samples and a wealth of information on genotype and phenotype association. In the past year, 1418 world’s breed information entries are newly curated from 19 public databases, and new online tools are implemented for comparing the SNPs between two or more individual genomes and visualizing the genomic locations of variants. Additionally, iSheep also provides the reference and annotation resources of other 10 species.

SorGSD

The Sorghum Genome Science Database (SorGSD, previously named as Sorghum Genome SNP Database; https://ngdc.cncb.ac.cn/sorgsd) (42) is updated by expanding to 289 sorghum lines including 33 825 236 SNPs and 5 722 385 small INDELs compared with 48 sorghum lines in August 2020. It also added phenotypic data and panicle pictures of critical accessions. Currently, SorGSD also implements new tools including ID Conversion, Homologue Search, Blast and Genome Browser for online data analysis and provides general information related to sorghum research, such as 44 online sorghum resources and 162 literature references. Collectively, SorGSD contains large-scale genomic variations and phenotypic information and thus serves as a critical resource for the global sorghum researchers.

Database Commons

Database Commons (https://ngdc.cncb.ac.cn/databasecommons) is a catalogue of worldwide biological databases, aiming to provide open access to a full list of global databases and their descriptive metadata manually curated from their associated publications. Currently, with the efforts of 53 curators, it catalogues
a total of 5455 databases involving 8133 publications and 2095 organizations throughout the world, showing a growth by comparison with the previous version (5064 databases, 7595 publications and 1944 organizations) in August 2020. Based on this, Database Commons provides a global landscape of publicly available databases, allowing users to access and browse databases by customized filters and yielding a series of informative statistics in terms of country, institution, database category, year, citation, etc.

NGDC Education

NGDC Education (https://ngdc.cncb.ac.cn/education) is an open education resource that provides a series of educational materials. This past year, two courses, viz., Bioinformatics and Genomics Data Analysis, were newly added by the courtesy of Prof. Yu Xue from Huazhong University of Science and Technology and Prof. Cheng Li from Peking University, respectively. In addition, biographies of the late Prof. Xiaocheng Gu of Peking University and Bailin Hao of Fudan University were added. Early in the 1990s, Prof. Gu established the Center for Bioinformatics in Peking University to provide bioinformatics resources and services for domestic and international users. Prof. Hao made great contributions to the bioinformatics research, particularly his CVTree algorithm for bacterial genome classification (43,44) and advocate of establishing the CNCB since the 1990s. Their personal profiles, articles, and videos (if available) can be found at NGDC Education. In addition, in coordination with the Global Biodiversity and Health Big Data (BHBD) Alliance, we promote open sharing of educational materials as well as multi-omics data throughout the world.

Tools

Users’ needs of sequence search and comparison are growing with the expansion of various database resources in CNCB-NGDC. BLAST tools (https://ngdc.cncb.ac.cn/blast) are newly deployed, providing online services of different sequence alignment types developed by National Center for Biotechnology Information (NCBI) (45) with featured databases, for instance, GWH transcripts, LncBook human IncRNA sequences, 10K protist species genomes and SARS-CoV-2 genome sequences. In particular, to support worldwide studies on SARS-CoV-2, a series of genomic analysis tools on coronavirus are also established (https://ngdc.cncb.ac.cn/ncov/online/tools) (37), which cover sequencing quality control, de novo assembly and variant calling, haplotype network construction, genome tracing and lineage identification. Besides, computational identification of long non-coding RNAs (https://ngdc.cncb.ac.cn/lnc) (46) and EWAS Toolkit for functional enrichment and network visualization (https://ngdc.cncb.ac.cn/ewas/toolkit) (47) are also presented. And BIG Search, a distributed and scalable search engine, has been updated by including standardized data indexes from all resources in CNCB-NGDC, 39 partner resources (see details at https://ngdc.cncb.ac.cn/partners) as well as European Bioinformatics Institute (EBI) resources based on EBI Search RESTful API (48), NCBI resources powered by NCBI Entrez (49) and the AlphaFold Protein Structure Database (50).

CONCLUDING REMARKS

This year, several core resources of CNCB-NGDC have been listed as recommended repositories (e.g. nucleic acid sequences and genetic variations) by major publishers such as Cell Press, Elsevier and Springer Nature, greatly accelerating the rapid deposition and public sharing of biomedically big data at a global scale. Additionally, we keep paying efforts to build close collaborations with INSDC (International Nucleotide Sequence Database Collaboration) (51), as testified by the open sharing of SARS-CoV-2 genome data with NCBI. Importantly, 2019nCoVR has been significantly updated by frequent data integration and web interface improvement. Meanwhile, to deal with the explosive growth of multi-omics data, CNCB-NGDC provides a suite of database resources, which are newly developed and frequently updated, to accept worldwide data submissions and provide value-added annotations and curated knowledge. Ongoing efforts include, but not limited to, optimization and automation of data submission, curation and analysis procedures, infrastructure upgrade for big data storage and transfer, and development of new tools and pipelines to support worldwide genetic and genomic research. As one of the major global centers, CNCB-NGDC will continue to expand and offer a series of data resources and services to benefit a wide range of research in life and health sciences.

DATA AVAILABILITY

All the resources can be accessed at https://ngdc.cncb.ac.cn.

ACKNOWLEDGEMENTS

We thank our users for submitting data, sending suggestions, reporting bugs and getting involved in community curration. CNCB-NGDC is indebted to its funders, including the Ministry of Science and Technology and the Ministry of Finance of the People’s Republic of China as well as Chinese Academy of Sciences.

FUNDING

Strategic Priority Research Program of the Chinese Academy of Sciences [XDB38030200, XDB38050300, XDB38030400, XDA19050302, XDA19090116, XDA24040201, XDB38030100, XDA12030100, XDB38040300]; National Key Research and Development Program of China [2019YFA0801801, 2018YFA0801405, 2018YFD1000505, 2018YFC2000100, 2018YFC1406902, 2018YFC0901400, 2018YFC0310602, 2018YFA0903700, 2018YFA0900704, 2017YFC1201200, 2017YFC0908405, 2017YFC0908404, 2017YFC0908403, 2017YFC0907505, 2017YFC0907503, 2017YFC0907502, 2016YEF0206600, 2016YFC0906403, 2016YFC0903003, 2016YFC0901904, 2016YFC0901903, 2016YFC0901702, 2016YFC0901604, 2016YFC0901603, 2016YFB0201702, 2016YFA0501704, 2021YFC0863300, 2016YFC0902500, 2018YFA0900700]; National Natural Science Foundation of China [91731303, 91731302, 2017YFA0907503, 2017YFA0908403, 2017YFC0908402, 2017YFA0908401, 2017YFA0908400, 2017YFA0908404, 2017YFC0908403, 2017YFC0907505, 2017YFC0907503, 2017YFC0907502, 2016YEF0206600, 2016YFC0906403, 2016YFC0903003, 2016YFC0901904, 2016YFC0901903, 2016YFC0901702, 2016YFC0901604, 2016YFC0901603, 2016YFB0201702, 2016YFA0501704, 2021YFC0863300, 2016YFC0902500, 2018YFA0900700]; National Natural Science Foundation of China [91731303,
REFERENCES

1. CNCB-NGDC Members and Partners. (2021) Database resources of the national genomics data center, china national center for bioinformation in 2021. Nucleic Acids Res., 49, D18–D28.
2. National Genomics Data Center Members and Partners. (2020) Database resources of the national genomic data center in 2020. Nucleic Acids Res., 48, D24–D33.
3. BIG Data Center Members. (2019) Database resources of the big data center in 2019. Nucleic Acids Res., 47, D8–D14.
4. BIG Data Center Members. (2018) Database resources of the big data center in 2018. Nucleic Acids Res., 46, D14–D20.
5. BIG Data Center Members. (2017) The BIG Data Center: from deposition to integration to translation. Nucleic Acids Res., 45, D18–D24.
6. Wang,Y. and Navin,N.E. (2015) Advances and applications of single-cell sequencing technologies. Mol. Cell, 58, 598–609.
7. Potter,S.S. (2018) Single-cell RNA sequencing for the study of development, physiology and disease. Nat. Rev. Nephrol., 14, 479–492.
8. Bilkey,G.A., Burns,B.L., Coles,E.P., Mahede,T., Baynam,G. and Nowak,K.J. (2019) Optimizing precision medicine for public health. Front Public Health, 7, 42.
9. Zhao,W.M., Song,S.H., Chen,M.L., Zou,D., Ma,L.N., Ma,Y.K., Li,R.J., Hao,L.O., Li,C.P., Li,F. and et al. (2020) The 2019 novel coronavirus resource. Yi Chuan, 42, 212–221.
10. Song,S., Ma,L., Zou,D., Tian,D., Li,C., Zhu,J., Chen,M., Wang,A., Ma,Y., Li,M. and et al. (2021) The global landscape of SARS-CoV-2 genomes, variants, and haplotypes in 2019nCoVr. Genomics Proteomics Bioinformatics, 18, 749–759.
11. Zeng,J., Zhang,Y., Shang,Y., Mai,J., Shi,S., Lu,M., Bu,C., Zhang,Z., Zhang,Z., Li,Y. and et al. (2021) CancerSCEM: a database of single-cell expression map across various human cancers. Nucleic Acids Res., https://doi.org/10.1093/nar/gkab905.
12. Wang,Y., Kang,H., Xu,T., Hao,L., Bao,Y. and Jia,P. (2021) CeDR Atlas: a knowledgebase of cellular drug response. Nucleic Acids Res., https://doi.org/10.1093/nar/gkab972.
13. Jiang,S., Du,Q., Feng,C., Li,M. and Zhang,Z. (2021) CompoDynamics: a comprehensive database for characterizing sequence composition dynamics. Nucleic Acids Res., https://doi.org/10.1093/nar/gkab979.
14. Fiorini,N., Lipman,D.J. and Lu,Z. (2017) Towards PubMed 2.0. Elife, 6, e28801.
15. Kang,W., Hu,T., Zhang,T., Ma,S., Yan,H., Liu,Z., Ji,Z., Cai,Y., Wang,S., Song,M. and et al. (2022) Regeneration Roadmap: database resources for regenerative biology. Nucleic Acids Res., https://doi.org/10.1093/nar/gkab870.
16. Wang,Y., Song,F., Zhu,J., Zhang,S., Yang,Y., Chen,T., Tang,B., Dong,L., Ding,N., Zhang,Q. and et al. (2017) GSA: genome sequence archive. Genomics Proteom. Bioinform., 15, 14–18.
17. Chen,T., Chen,X., Zhang,S., Zhu,J., Tang,B., Wang,A., Dong,L., Zhang,Z., Yu,C., Sun,Y. and et al. (2021) The genome sequence archive family: toward explosive data growth and diverse data types. Genomics Proteom. Bioinform., https://doi.org/10.1016/j.gpb.2021.08.001.
18. Chen,M., Ma,Y., Wu,S., Zhong,X., Kang,H., Sang,J., Xu,X., Hao,L., Li,Z., Gong,Z. and et al. (2021) Genome warehouse: a public repository housing genome-scale data. Genomics Proteom. Bioinform., https://doi.org/10.1016/j.gpb.2021.04.001.
19. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402.
20. Zhang,Y., Zou,D., Zhu,T., Xu,T., Chen,M., Niu,G., Zong,W., Pan,R., Jing,W., Sang,J. and et al. (2022) Gene Expression Nebulas (GEN): a comprehensive data portal integrating transcriptomic profiles across multiple species at both bulk and single-cell levels. Nucleic Acids Res., https://doi.org/10.1093/nar/gkab787.
21. Li,M., Xia,L., Zhang,Y., Ma,L., Li,M., Wang,P., Zhang,Y., Sang,J., Zou,D., Hu,S. and et al. (2019) Plant edistome database: a curated database of RNA edistome in plants. Nucleic Acids Res., 47, D70–D74.
22. Niu,G., Zou,D., Li,M., Zhang,Y., Sang,J., Xia,L., Li,M., Liu,L., Cao,J., Zhang,Y. and et al. (2019) Edidome Disease Knowledgebase (EDK): a curated knowledgebase of edidome-disease associations in human. Nucleic Acids Res., 47, D78–D83.
23. Sang,J., Wang,Z., Li,M., Cao,J., Niu,G., Xia,L., Zou,D., Wang,F., Xu,X., Han,X. and et al. (2018) ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization. Nucleic Acids Res., 46, D121–D126.
24. Lir,L., Liang,F., Li,M., Zou,D., Sun,S., Zhao,Y., Zhao,W., Bao,Y., Xiao,J. and Zhang,Z. (2018) MethBank 3.0: a database of DNA methylomes across a variety of species. Nucleic Acids Res., 46, D288–D295.
25. Zou,D., Sun,S., Li,R., Liu,J., Zhang,J. and Zhang,Z. (2015) MethBank: a database integrating next-generation sequencing
single-base-resolution DNA methylation programming data. Nucleic Acids Res., 43, D54–58.

26. Zong, W., Kang, H., Xiong, Z., Ma, Y., Jin, T., Gong, Z., Yi, L., Zhang, M., Wu, S., Wang, G. et al. (2022) scMethBank: a database for single-cell whole genome DNA methylation maps. Nucleic Acids Res., https://doi.org/10.1093/nkab833.

27. Ma, L.L., Li, A., Zou, D., Xu, X.J., Xia, L., Yu, J., Bajic, V.B. and Zhang, Z. (2015) LncRNAWiki: harnessing community knowledge in collaborative curation of human long non-coding RNAs. Nucleic Acids Res., 43, D187–D192.

28. Liu, L., Li, Z., Liu, C., Zou, D., Li, Q., Feng, C., Jing, W., Luo, S., Zhang, Z. and Ma, L. (2021) LncRNAWiki 2.0: a knowledgebase of human long non-coding RNAs with enhanced curation model and database system. Nucleic Acids Res., https://doi.org/10.1093/nkab998.

29. Wang, J., Zhang, P., Lu, Y., Li, Y., Zheng, G., Yan, C., Chen, R. and He, S. (2019) piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res., 47, D1175–D1180.

30. Xiong, Z., Yang, F., Li, M., Ma, Y., Zhao, W., Wang, G., Li, Z., Zhang, X., Zou, D. and Zhang, W. (2021) EWAS Open Platform: integrated data, knowledge and toolkit for epigenome-wide association study. Nucleic Acids Res., https://doi.org/10.1093/nkab972.

31. Li, M., Zou, D., Li, G., Gao, S., Sang, J., Zhang, Y., Li, R., Xia, L., Zhang, T., Niu, G. et al. (2019) EWAS Atlas: a curated knowledgebase of epigenome-wide association studies. Nucleic Acids Res., 47, D983–D988.

32. Xiong, Z., Li, M., Ma, Y., Li, R. and Bao, Y. (2021) GMQN: A reference-based method for correcting batch effects as well as probes bias in HumanMethylation BeadChip. bioRxiv doi: https://doi.org/10.1101/2021.09.06.459116, 07 September 2021, preprint: not peer reviewed.

33. Xiong, Z., Li, M., Yang, F., Ma, Y., Sang, J., Li, R., Li, Z., Zhang, Z. and Bao, Y. (2020) EWAS Data Hub: a resource of DNA methylation array data and metadata. Nucleic Acids Res., 48, D890–D895.

34. Tian, D., Wang, P., Tang, B., Teng, X., Li, C., Liu, X., Zou, D., Song, S. and Zhang, Z. (2020) GWAS Atlas: a curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Res., 48, D927–D932.

35. Liu, L., Zhang, Y., Niu, G., Li, Q., Li, Z., Zhu, T., Feng, C., Liu, X., Zhang, Y., Xu, T. et al. (2022) BrainBase: a curated knowledgebase for brain diseases. Nucleic Acids Res., https://doi.org/10.1093/nkab987.

36. Song, S., Ma, L., Zou, D., Tian, D., Li, C., Zhu, J., Chen, M., Wang, A., Ma, Y. and Li, M. et al. (2020) The Global Landscape of SARS-CoV-2 Genomes, Variants, and Haplotypes in 2019nCoVR. Genomics Proteomics Bioinformatics, 18, 749–759.

37. Gong, Z., Zhu, J.W., Li, C.P., Jiang, S., Ma, L.N., Tang, B.X., Zou, D., Chen, M.L., Sun, Y.B. and Song, S.H. et al. (2020) An online coronavirus analysis platform from the National Genomics Data Center. Zool. J. Linn. Soc., 191, 705–708.

38. Rambaut, A., Holmes, E.C., O’Toole, A., Hill, V., McCrone, J.T., Ruis,C., du Plessis, L. and Pybus, O.G. (2020) A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol., 5, 1403–1407.

39. Ding, X., Li, W., Yang, Q., Yang, Q., Zhang, J., Wang, K. and Chen, H. et al. (2020) Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 4, 1197–1207.

40. Tang, B., Zhou, Q., Dong, L., Li, W., Zhang, X., Lan, L., Zhai, S., Xiao, J., Zhang, Z. and Bao, Y. et al. (2019) iDog: an integrated resource for domestic dogs and wild canids. Nucleic Acids Res., 47, D793–D800.

41. Wang, Z.H., Zhu, Q.H., Li, X., Zhu, J.W., Tian, D.M., Zhang, S.S., Kang, H.L., Li, C.P., Dong, L.L., Zhang, W. and Wu, S. et al. (2021) iSheep: an integrated resource for sheep genome, variant and phenotype. Front Genet., 12, 74852.

42. Liu, Y., Wang, Z., Wu, X., Zhu, J., Luo, H., Tian, D., Li, C.C., Luo, J., Zhao, W. and Hao, H. et al. (2021) SorQSD: updating and expanding the sorghum genome sequence database with new contents and tools. Biotechnol. Biofuels, 14, 165.

43. Qi, J., Luo, H. and Hao, B. (2004) CVTree: a phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res., 32, W45–W47.

44. Xu, Z. and Hao, B. (2009) CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Nucleic Acids Res., 37, W174–W178.

45. Altschul,S.F., Gish, W., Miller, W., Myers, E.W. and Lipman,D.J. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

46. Wang, G., Yin, H., Li, B., Yu, C., Wang, F., Xu, X., Cao, J., Bao, Y., Wang, L. and Abassi, A.A. et al. (2019) Characterization and identification of long non-coding RNAs based on feature relationship. Bioinformatics, 35, 2494–2956.

47. Li, M., Zou, D., Li, G., Gao, R., Sang, J., Zhang, Y., Li, R., Xia, L., Zhang, T., Niu, G. et al. (2019) EWAS Atlas: a curated knowledgebase of epigenome-wide association studies. Nucleic Acids Res., 47, D983–D988.

48. Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.R.N., Potter, S.C., Finn, R.D. et al. (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res., 47, W636–W641.

49. Gibney, G. and Baxevanis,A.D. (2011) Searching NCBI databases using entrez. Curr. Protoc. Hum. Genet., https://doi.org/10.1002/0471142905.hg0610s71.

50. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589.

51. Aria, M., Karsch-Mizrachi, I. and Cochrane, G. (2021) The international nucleotide sequence database collaboration. Nucleic Acids Res., 49, D121–D124.
PecRB: Chunhui Yuan30, Ming Chen30
PlantRegMap: Feng Tian39, Dechang Yang39, Ge Gao39
PLMD: Dachao Tang21, Yu Xue21
PucStres: Wenyi Wu30, Ming Chen30
PTMD: Yujie Gou1, Cheng Han1, Yu Xue21, Qinghua Cui21,41
RhesusBase: Xiangshang Li42, Chuan-Yun Li42
RMVar: Xiaotong Luo5, Jian Ren5
SEECancer: Xinxin Zhang28, Yun Xiao28, Xia Li28
* To whom correspondence should be addressed. Tel: +86 10 84097261; Email: ybxue@ibp.ac.cn
Correspondence may also be addressed to Yiming Bao. Tel: +86 10 84097858; Email: baoym@ibp.ac.cn
Correspondence may also be addressed to Zhang Zhang. Tel: +86 10 84097261; Email: zhangzhang@ibp.ac.cn
Correspondence may also be addressed to Wenming Zhao. Tel: +86 10 84097636; Email: zhaowm@ibp.ac.cn
Correspondence may also be addressed to Jingfa Xiao. Tel: +86 10 84097443; Email: xiaojingfa@ibp.ac.cn
Correspondence may also be addressed to Shunmin He. Tel: +86 10 64807279; Email: heshunmin@ibp.ac.cn
Correspondence may also be addressed to Guoqing Zhang. Tel: 13524783378; Email: gjqzhang@picb.ac.cn
Correspondence may also be addressed to Yixue Li. Tel: +86 21 54920086; Email: yxli@sibs.ac.cn
Correspondence may also be addressed to Guoping Zhao. Tel: +86 21 54924000; Email: gpzhao@sibs.ac.cn
Correspondence may also be addressed to Runsheng Chen. Tel: +86 10 64888543; Email: crs@ibp.ac.cn
\# The authors wish it to be known that, in their opinion, these authors should be regarded as Joint First Authors.
1 National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
2 China National Center for Bioinformation, Beijing 100101, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 National Genomics Data Center & Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
5 National Genomics Data Center & Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui, Shanghai 200031, China
6 CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Xuhui, Shanghai 200032, China
7 Center for Quantitative Synthetic Biology, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
8 Guangdong Geneway Decoding Bio-Tech Co. Ltd, Foshan, 528316, China
9 CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
10 CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
11 State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
12 Institute for Stem cell and Regenerative Medicine, CAS, Beijing 100101, China
13 Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
14 Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
15 Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
16 Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
17 Beijing Neurosurgical Institute, Capital Medical University, Beijing 100069, China
18 Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
19 Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
20 School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
21 Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
22 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
23 NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
24 College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
25 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
26 Engineering Laboratory for Grass-Based Livestock Husbandry, Chinese Academy of Sciences, Beijing, 100093, China
27 State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
28 College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
