I am indebted to Daron Acemoglu, David Dorn, Amy Finkelstein, Juliette Fournier, Claudia Goldin, Colin Gray, Gordon Hanson, Lawrence Katz, James Poterba, Anna Salomons, and Evan Soltas for ideas, insights, and critiques that enriched this work. Anne Beck, Emiel Van Bezooijen, Pepe (Jose Ignacio Velarde) Morales, Edwin Song, and Sunny (Liang) Tan provided abundant and ingenious hard work to put these ideas to the test. I thank Accenture LLP, the IBM Global Universities Program, the Schmidt Futures Foundation, and the Smith Richardson Foundation, for generous financial support. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2019 by David Autor. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
ABSTRACT

Labor markets in U.S. cities today are vastly more educated and skill-intensive than they were five decades ago. Yet, urban non-college workers perform substantially less skilled work than decades earlier. This deskillings reflects the joint effects of automation and international trade, which have eliminated the bulk of non-college production, administrative support, and clerical jobs, yielding a disproportionate polarization of urban labor markets. The unwinding of the urban non-college occupational skill gradient has, I argue, abetted a secular fall in real non-college wages by: (1) shunting non-college workers out of specialized middle-skill occupations into low-wage occupations that require only generic skills; (2) diminishing the set of non-college workers that hold middle-skill jobs in high-wage cities; and (3) attenuating, to a startling degree, the steep urban wage premium for non-college workers that prevailed in earlier decades. Changes in the nature of work—many of which are technological in origin—have been more disruptive and less beneficial for non-college than college workers.
One of the enduring paradoxes that has accompanied the rise of wage inequality over the last four decades in industrialized economies is the sustained fall in real wages experienced by less-educated workers.\(^1\) This fall is seen in the U.S., Germany, and the U.K., among other nations Dustmann et al. 2009; Acemoglu and Autor 2011; Blundell et al. 2018. It is illustrated for the U.S. in Figure 1, which plots cumulative changes in real log weekly wage and salary earnings of full-time, full-year workers between 1963 and 2017.

The progression of inequality over these five and a half decades can be roughly divided into three epochs: (1) the ten-year interval between 1963 and 1972, when real wages rose robustly and evenly among all education by gender groups; (2) the interregnum between 1973 and 1979 when, following the first U.S. oil shock, real earnings growth stagnated throughout the distribution; and (3) the era of secularly rising wage inequality from 1980 forward, where wages rose robustly among the most-educated and fell in real terms among the least-educated—most strikingly, among men with less than a bachelor’s degree.\(^2\) Among high school dropouts, high school graduates, and those with some college, real weekly earnings among full-time male workers in 2018 were 10 to 20 log points below their real levels in 1980. While the evolution of real wages was less adverse among non-college women, there was a fifteen-plus year period between 1981 and 1997 when women with high school or lower education earned less than their counterparts in 1980.

\(^1\)While inequality has many facets—inequality of labor versus non-labor income, income versus consumption inequality, transient versus permanent earnings inequality, ‘between-group’ versus residual inequality, inequality of top incomes (i.e., ‘the one percent’) versus inequality elsewhere in the distribution (‘the other 99 percent’)—my focus here is on the inequality of wage and salary earnings by education and sex. For discussion of other aspects of inequality, see Lemieux 2006; Autor 2014; Piketty and Saez 2014; Aguiar and Bils 2015

\(^2\)Within this post-1979 epoch, two sub-periods of robust wage growth deserve mention: the years 1995 to 2000, corresponding to the so-called ‘Dot Com’ boom; and the sustained economic expansion from 2012 to present, following the end of the Great Recession. While the 1995–2000 interval saw rapid wage growth without any reduction in wage inequality, Figure 1 suggests that during the current expansion, wages are rising particularly rapidly among the least educated.
Figure 1: Cumulative Change in Real Weekly Earnings of Working Age Adults Ages 18-64, 1963-2017

Figure uses March Current Population Survey Annual Social and Economic Supplement data for earnings years 1963 to 2017. Series correspond to (composition-adjusted) mean log wage for each group, using data on full-time, full-year workers ages 16 to 64. The data are sorted into sex-education-experience groups of two sexes, five education categories (high school dropout, high school graduate, some college, college graduate, and post-college degree), and four potential experience categories (0–9, 10–19, 20–29, and 30–39 years). Educational categories are harmonized following the procedures in Autor et al. (2008). Log weekly wages of full-time, full-year workers are regressed in each year separately by sex on dummy variables for four education categories, a quartic in experience, three region dummies, black and other race dummies, and interactions of the experience quartic with three broad education categories (high school graduate, some college, and college plus). The (composition-adjusted) mean log wage for each of the forty groups in a given year is the predicted log wage from these regressions evaluated for whites, living in the mean geographic region, at the relevant experience level (5, 15, 25, or 35 years depending on the experience group). Mean log wages for broader groups in each year represent weighted averages of the relevant (composition-adjusted) cell means using a fixed set of weights, equal to the mean share of total hours worked by each group over 1963–2005. All earnings numbers are deflated by the chain-weighted (implicit) price deflator for personal consumption expenditures. Earnings of less than $67/week in 1982 dollars ($112/week in 2000 dollars) are dropped. Allocated earnings observations are excluded in earnings years 1967 forward using either family earnings allocation flags (1967–1974) or individual earnings allocation flags (1975 earnings year forward).

It is far harder to rationalize the falling real wages of non-college workers in this same framework, however. If college and non-college workers are gross complements, as we have just
assumed, an increase in the relative supply of college workers or a rise in their productivity should boost the productivity—and hence the wages—of non-college workers. This assertion is no more mysterious than the notion that capital complements labor, which implies that capital deepening should raise labor productivity and hence wages. But this outcome has demonstrably not occurred. Over the course of nearly four decades, non-college workers in the United States have not as a group benefited from the rising supply and productivity of college-educated workers.

Figure 2: Share of Hours Worked in the U.S. Economy by Education Group, 1963 - 2017

Data source is as in Figure 1. Sample consists of all persons aged 16 to 64 who reported having worked at least one week in the earnings years, excluding those in the military. For each individual, hours worked are the product of usual hours worked per week and the number of weeks worked last year. Individual hours worked are aggregated using CPS sampling weights.

That paradox is the subject of this paper. There are of course many potential explanations, including but not limited to eroding union penetration and bargaining power, falling federal and state minimum wages, rising trade pressure accompanying China’s rise as a manufacturing power, and the ‘fissuring’ of the workplace, wherein less-educated workers no longer share in the gains from rising productivity and profitability in the core activities of their employers (Card, 1996; Lee, 1999; Autor et al., 2013; Weil, 2014; Autor et al., 2016). Literature
has shown that all of these factors are important. My focus here, however, is on one economic force that stands at the intersection of technological progress and worker productivity: occupational change. It is well understood that the structure of work in industrialized countries has polarized, with employment increasingly concentrated in high-education, high-wage occupations and low-education, low-wage occupations, at the expense of traditionally middle-skill career jobs (Autor et al., 2006, 2008; Goos and Manning, 2007; Autor, 2013; Michaels et al., 2013; Goos et al., 2014). Less widely recognized is the tight connection between this polarization and the changing structure of work and wages across geographic regions. While the polarization of the occupational structure has unfolded smoothly over four decades, it has not unfolded evenly across places. In the decades following WWII, there was a steep, positive urban gradient in the skill level and wage level of non-college jobs: Non-college urban adults disproportionately held middle-skill, blue-collar production and white-collar office, administrative, and clerical jobs. Because these workers labored in close collaboration with the high-skill, urban professional, managerial, and technical workers who oversaw factories and offices, middle-skill jobs for non-college workers were prevalent in cities and metropolitan areas but scarce in suburbs and rural labor markets.

Starting in the 1970s, however, this distinctive feature of dense labor markets began to recede. As rising automation and international trade encroached on employment in production, administrative support, and clerical work, the non-college urban occupational skill gradient diminished and ultimately disappeared. While workers are vastly more educated and jobs are vastly more skill-intensive in today’s cities compared to five decades ago, non-college workers in these places perform substantially less skilled work than they did decades earlier. Polarization thus reflects an unwinding of the distinctive structure of work in dense cities and metro areas relative to suburban and rural areas.

I argue here that this unwinding—concretely, the differential polarization of urban labor markets—has contributed profoundly to the decline of non-college wages documented in Figure 1. While the analysis here is largely descriptive, I sketch three mechanisms by which polarization may have contributed to falling non-college wages: It has shunted non-college workers from middle-skill career occupations that reward specialized and differentiated skills into traditionally low-education occupations that demand primarily generic skills; it has

3It has long been understood that cities and skills are deeply entwined (Glaeser and Mare, 2001; Florida, 2002). And to be sure, I am not the first to study differential polarization across places (cf. Autor 2013; Mazzolari and Ragusa 2013; Akerman et al. 2015.). The primary contribution of this paper is to demonstrate the centrality of geography to both the prevalence of middle-skill jobs in earlier decades and to their steep decline in recent decades.

4Of course non-college workers in both urban and non-urban labor markets performed traditionally low-education, low-wage manual labor, transportation, construction, and in-person service jobs. Distinctively, many non-college workers in urban labor markets held middle-skill jobs.
disproportionately depressed middle-wage employment among non-college workers in urban labor markets, thus directly reducing average non-college wages and—to a startling degree—attenuating the urban non-college wage premium that prevailed in earlier decades; and it has created an excess supply of less-educated workers that serves to depress non-college wages across occupations and geographic areas.

The paper proceeds as follows: Section 1 describes the advance of occupational polarization over four decades, documents the disproportionate prevalence of this polarization among non-college workers, and presents initial evidence that this aggregate phenomenon can partly account for falling non-college wages. Section 2 reports a key new result: Wage polarization has been disproportionately urban and reflects the undoing of a previously robust urban occupational skill gradient among non-college workers. Complementing this evidence, Section 3 documents the striking secular decline in the urban wage premium among non-college workers, and shows how the urban concentration of occupational polarization further contributes to the falling wages of non-college workers. Section 4 concludes by asking whether the growth of new urban occupations will lead to a renaissance of urban middle-skill work.

1 Occupational Polarization

1.1 The big picture

Figure 3 depicts the familiar polarization of the occupational structure of the U.S. labor market that has unfolded over the course of more than four decades. The nine exhaustive and mutually exclusive occupational categories depicted in this figure are ordered from lowest to highest by mean log wage level. These nine categories are further clustered into three broad occupational groups depicted in distinct colors: service and manual occupations; production, office, administrative, and sales occupations; and technical, professional, and managerial occupations. The ‘barbell’ shape of this figure reflects the secular bifurcation of the occupational structure in the U.S. (and many other industrial economies) into high-education, high-wage professional, managerial, and technical occupations, on the one hand, and non-credentialed and typically low-paid service and laborer occupations on the other (see Autor et al. 2006; Goos and Manning 2007; Goos et al. 2014; Autor 2015; Acemoglu and Restrepo 2017; Alabdulkareem et al. 2018).\(^5\)

\(^5\)Plotted bars correspond to the proportional change in the share of employment in each category; smaller categories can have large growth rates without accounting for a large change in employment and vice versa for larger categories.
Figure 3: Percent Changes in Occupational Employment Shares among Working Age Adults, 1970 - 2016

Data source is as in Figure 1. Sample consists of all persons aged 16 to 64 who reported having worked at least one week in the earnings years, excluding those in the military. For each individual, hours worked are the product of usual hours worked per week and the number of weeks worked last year. Individual hours worked are aggregated using CPS sampling weights. Occupational classifications are harmonized following Dorn (2009), and updated through 2017. Further details on occupational classification are provided in the supporting data supplements for the paper.

Figure 4 brings these patterns into sharper focus by aggregating the nine occupation categories into three broad clusters of manual and service occupations (‘low’ skill); production, office, and sales occupations (‘middle’ skill); and professional, technical, and managerial occupations (‘high’ skill). At the start of this interval in 1970, U.S. employment was roughly evenly divided among these three categories: 31.4 percent of total hours were in low-skill occupations, 38.4 percent were middle-skill, and 30.2 percent were high-skill. Over the subsequent four-and-a-half decades, middle-skill employment fell steeply, from 38.4 to 23.3 percent of hours. This trend might be concerning were it not the case that more

6In 1980, these shares were 30.3, 36.1, and 33.5 percent, respectively.
than the entirety of this fall was offset by a rise in employment in high-skill occupations, which grew from 30.2 to 46.2 percent of hours. Meanwhile, the share of employment in low-skill occupations fell by almost a percentage point, from 31.4 to 30.6 percent. Thus, in aggregate, occupational polarization appears to be a case of the middle-class joining the upper-class, which is not something that economists should worry about.

Figure 4: Changes in Occupational Employment Shares among Working Age Adults, 1970 - 2016

Data source is as in Figure 1. Sample consists of all persons aged 16 to 64 who reported having worked at least one week in the earnings years, excluding those in the military. For each individual, hours worked are the product of usual hours worked per week and the number of weeks worked last year. Individual hours worked are aggregated using CPS sampling weights. Occupational classifications are harmonized following Dorn (2009), and updated through 2017. Further details on occupational classification are provided in the supporting data supplements for the paper.

Figure 5 tempers that conclusion. Among college workers (those with some college or higher education), occupational movement has been modestly, though not uniformly, upward. Between 1980 and 2016, the fraction of college workers in high-skill occupations rose
from 57.2 percent to 60.7 percent, the share in middle-skill occupations fell from 27.1 to 20.2 percent, and the share in low-skill occupations increased from 15.6 to 19.0 percent.\(^7\) Thus, occupational polarization among college workers has broken roughly evenly between reallocation toward traditionally high- and low-skill jobs.

Among non-college workers (those with high school or lower education), the picture is radically different. In 1980, employment of non-college workers was roughly split between low- and middle-skill occupations, with 42 percent in the former category, 43 percent in the latter, and the remaining 15 percent in high-skill occupations. Over the ensuing decades, the share of non-college employment in middle-skill occupations fell by 14 percentage points, from 43 to 29 percent, while the share in high-skill occupations very slightly increased, from 15.4 to 16.8 percent. Thus, the remaining 12.3 percentage points of decline in non-college middle-skill employment is explained by the movement of non-college workers from middle-skill into traditionally low-skill work. This is a qualitatively large change, and I will argue next that it has been economically consequential.\(^8\)

A foundational assumption of the modern literature on skill demand, dating at least to Tinbergen (1974), is that technological progress complements—and hence raises demand for—educated workers. This framing might suggest that highly-educated workers should see their work transformed by technology. While this transformation has to some degree occurred, a clear takeaway from this descriptive analysis is that changes in the nature of work—many of which are technological in origin—have been far more profound and, arguably, far more disruptive for less-educated workers than they have been for more-educated workers. In broad strokes, the work performed by college adults has changed little over four decades. While they perform fewer middle-skill jobs than four decades earlier, this contraction has been modest, and it has been substantially offset by their upward movement in the occupational hierarchy. Among non-college workers, conversely, polarization has exerted pressure almost exclusively downward: Almost all occupational change among non-college workers reflects a movement from the middle toward the bottom of the occupational distribution. Thus, not only has technology change been transformational, it has been broadly deskilling—by which I mean that it has narrowed the set of jobs in which non-college workers perform specialized work that historically (and currently, as I show below) commanded higher pay levels.

\(^7\) When splitting the data according to educational attainment, I focus on the period from 1980 forward because incompatibilities in Census occupational codes between 1970 and 1980 are greatly amplified when the data are split by education.

\(^8\) Although somewhat counterintuitive, it is not a violation of adding up for the low-skill share to rise among both college and non-college workers and yet fall in aggregate. The resolution is that college workers are much less likely than non-college workers at all times to work in low-skill occupations, and the fraction of college versus non-college workers is rising throughout this period.
1.2 A simple calibration

A natural question that follows from the data above is whether occupational change can in part explain the sharp, post-1980 divergence in real wages by education seen in Figure 1. To explore that question, I perform a simple partial-equilibrium calculation to construct counterfactual wage series in which I hold the occupational wage structure fixed at its 1978 level while allowing the distribution of workers by education and gender to shift across occupations as observed in the data.9 Formally, we can write the change in the mean log wage

9The precise interval of this calculation, 1978-2016, is determined by occupational comparability at the start of the interval and by the need to take centered means across three years to smooth the series. The last
of education group j between two years t_0 and t_1 using the identity
\[\Delta \bar{w}_{jt} = \sum_k \left(\alpha_{jkt_1} \omega_{jkt_1} - \alpha_{jkt_0} \omega_{jkt_0} \right), \]
where the α_{jkt} terms correspond to the fraction of group j workers employed in occupation k in year t, while ω_{jkt} is their mean log wage in that occupation and year. Manipulating this expression, I calculate a counterfactual wage series for each education group j that isolates the occupational change component (the $\Delta \alpha$ terms) while holding the wage structure (ω_{jkt_0}) terms fixed.

\[\Delta \tilde{w}_{jt} = \sum_k \bar{w}_{jkt_0} \left(\alpha_{jkt_1} - \alpha_{jkt_0} \right). \]

Figure 6 reports estimates of $\Delta \tilde{w}_{jt}$, alongside observed changes in mean log real hourly wages, by education group for earnings years 1978 through 2016. Superficially, this exercise appears to capture the general evolution of wages by education group. It clearly captures the fanning out of wage levels by education group, the fall in real wages of non-college workers, and also the notable divergence between earnings of college graduates and those with a post-college degree throughout this period—and particularly after the late 1990s. Closer inspection reveals two substantive disjunctures. A first is that the actual figure shows considerable real wage growth among workers with a college degree and higher, something that is absent from the counterfactual series. In part, this divergence is an artifact: since real wages used in the exercise are fixed at their 1978 levels, the counterfactual series omits any wage-augmenting productivity growth that occurs in the ensuing three decades.

The more serious departure between the series is evident from comparing the y-axis ranges of the two series: the y-range of the observed series is five times the range of the counterfactual series, meaning that the counterfactual series is qualitatively on target but quantitatively way off. Hence, changes in occupational composition alone cannot explain (most of) the evolution of between-group wage inequality in these three decades. This conclusion should not come as a surprise. An occupation is not a labor market—hence changes in labor demand in one occupation should affect wages in other occupations. A general decline in demand for non-college workers in production and clerical jobs—occupations that employed 43 percent of non-college workers in 1978—should reduce non-college wages both by inducing displaced workers to take lower paid service and manual jobs and by placing downward supply pressure on the equilibrium wage of non-college workers generally. Thus, this partial equilibrium

\footnote{The twelve occupational categories that comprise this calculation (and are used throughout the paper) are, from low to high mean wages: Agriculture and mining; Health services; Personal services; Cleaning and protective services; Construction and mechanics; Transportation; Production and operatives; Clerical and administrative support; Retail sales minus financial and advertising; Technicians, fire and police; Professionals plus financial and advertising sales; Managers and executives. In implementing this calculation, I further allow mean log wages and employment shares to differ by gender within education groups j.}
exercise arguably provides a (loose) lower bound on the extent to which the reallocation of non-college labor from middle- to low-skill occupations could potentially affect wages for non-college workers.

Figure 6: Real Log Wage Growth by Education Group, 1978 to 2016: Observed versus Between Occupation Reallocation Component, 1970 - 2016

Data source is as in Figure 1. Each data point is a three-year centered average of the mean log wage for the relevant education group using earnings years 1977 - 2017. Series are normalized to zero in 1978. See equation (1) and body text for details of construction.

This is not the end of the story, however. The exercise above implicitly assumes that the decline of middle-skill occupations has occurred at the average (log) wage level within each occupation-education-gender group. While this is a reasonable baseline assumption, it would be violated if the marginal declining (or growing) job within an occupation differed from the average of that occupation. One scenario in which this would arise is if the decline of middle-wage occupations were particularly concentrated in cities and metro areas where wage levels are consistently higher. As I show in the next two sections, this scenario, in large part, is what has played out over the last four decades.

This assumption is built into the ω_{jkt_o} terms in equation (1). Since these terms correspond to the mean (start-of-period) wage in each occupation × education × gender cell, they do not admit within-cell wage heterogeneity.
2 The geography of polarization

The structure of work differs across places: local labor markets are often specialized in particular industries and services such as manufacturing, education, entertainment, or healthcare. One of the key predictors of occupational structure is population density. Some activities intrinsically take place in low-density areas, such as agriculture. U.S. manufacturing was concentrated in large cities at the start of the twentieth century, and it slowly migrated towards less dense areas as transportation networks improved (Glaeser, 2011). Knowledge-intensive industries tend to locate in cities, where educated workers are most prevalent (Glaeser and Mare, 2001; Moretti, 2004; Berry and Glaeser, 2005). These regularities suggest that occupational structure should vary systematically with population density—if so, the expansion or contraction of specific industries and occupations would be expected to have non-neutral impacts on the structure of occupations across urban, metropolitan, suburban, and rural areas. As it turns out, these simple regularities apply with startling clarity to the evolving occupational geography of U.S. labor markets.

Figure 7 presents a bin-scatter depicting the aggregate relationship between population density and occupational structure at the level of commuting zones (CZs) covering the contiguous U.S. states over the course of the five-and-a-half decades between 1970 and 2015. The three panels of this figure report the CZ-level share of employment among working-age adults in the three broad occupational categories referenced previously: services, transportation, laborer, and construction workers (‘low skill’); clerical, administrative support, sales, and production workers (‘mid skill’); and professional, technical, and managerial workers (‘high skill’).\footnote{In each panel, I subtract off the overall working age mean share of employment in the relevant occupational category in 1970, so plotted points correspond to the CZ’s share of employment in the occupational cluster relative to the aggregate mean share in that cluster in 1970.} The run variable in this and subsequent figures is the natural log of population density (i.e., number of residents divided by CZ land area). To enforce consistency of CZ rankings across time permits, I use each CZ’s population density in 1970 as the run variable throughout. The data are weighted by the count of working-age adults in each CZ. Hence, each plotted point in the bin-scatter represents approximately 5 percent of all workers in each year.

Figure 7 strongly reinforces the conclusion that the decline of middle-skill employment is fully absorbed by a simultaneous rise in high-skill employment—that is, there is essentially no aggregate change in the share of workers employed in traditionally low-skill jobs over the course of 45 years. This figure also conveys three fresh insights. First, while denser CZs have traditionally been more intensive in high-skill work, the level and slope of this density-skill-intensity relationship rose consistently over multiple decades. In 1970, for example, the
high-skill occupation share in the densest CZs was about five percentage points above the corresponding share in the least dense CZs. By 2015, this gap had increased to approximately fifteen percentage points. Second, the fraction of workers engaged in low-skill occupations has historically been considerably smaller in high-density CZs, and this gradient has changed little over decades. From 1970 through 2000, the low-skill occupation share was consistently 20 percentage points lower in the most versus least dense CZs, after which the fraction of low-skill work in the densest CZs rose by several percentage points over the next 15 years.

Figure 7: Occupational Employment Shares among Working-Age Adults by Commuting Zone Population Density, 1970 – 2015: Level Relative to 1970 Mean

Figure is constructed using U.S. Census of Population data for 1970, 1980, 1990, and 2000, and pooled American Community Survey (ACS) data for years 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Occupational classifications are harmonized across decades using the classification scheme developed by Dorn (2009) and distilled to the level of 722 consistent local labor markets (AKA, Commuting Zones) following the procedures in Autor and Dorn (2013). Each plotted point represents approximately 5 percent of the working-age population in the relevant year.

Perhaps most strikingly, Figure 7 reveals that denser CZs were exceptional in the 1970s in having far more middle-skill work than suburban and rural CZs. But this exceptional feature attenuated and subsequently reversed sign over the next four decades. In 1970, there was a strong positive density gradient in middle-skill employment, with an urban-rural difference of approximately 15 percentage points in the share of workers engaged in clerical,
administrative, sales, and production work. This gradient sharply eroded between 1970 and 1990 and eventually reversed sign—from positive to negative—over the subsequent 25 years. While middle-skill work was differentially present in cities and metro areas in the 1970s, it was differentially absent from those locales 45 years later and less prevalent everywhere in absolute terms.

Since Figure 7 shows that the urban expansion of high-skill occupations has almost precisely offset the urban contraction of middle-skill occupations, this figure appears to convey the march of workers up the occupational skill ladder. We know, however, from Figure 5 that this aggregate pattern masks strong compositional shifts within education groups—specifically, an increase in the share of non-college workers employed in historically low-skill occupations. The two panels of Figure 8 show how this reallocation of labor across occupations has unfolded across geographic areas. The upper panel of this figure shows that there has been almost no increase in the share of college adults (i.e., those with some college or more) employed in high-skill professional, technical, and managerial occupations. There was, however, a modest decline of about eight percentage points over 45 years in the share of college workers working in middle-skill occupations and a commensurate rise in the share working in low-skill occupations; moreover, this shift was most pronounced in denser CZs.

Occupational polarization among non-college workers has, however, been far more dramatic, as shown in the lower panel of Figure 5. At no point from (at least) 1970 forward was there any meaningful density gradient in high-skill work among non-college workers. But there was a steep density gradient in middle-skill work. In 1970, non-college workers in the densest CZs were approximately 25 percentage points more likely to work in middle-skill occupations (and 25 percentage points less likely to work in low-skill occupations) than were non-college workers in low density CZs. This gradient became shallower and its intercept fell over the ensuing 45 years. By 2015, the low-skill employment share among non-college workers was several points higher in the most versus least dense CZs, while the middle-skill employment share was correspondingly several points lower.

\[13\] Of course, the fraction of college adults has risen substantially (see Figure 2), so no decline in the prevalence of high-skill work among this group implies a substantial increase in the share of workers in high skill occupations.
Figure 8: Occupational Employment Shares among (A) College Adults and (B) by Commuting Zone Population Density, 1970 – 2015: Level Relative to 1970 Mean

A. College Adults

B. Non-College Adults

Figure is constructed using U.S. Census of Population data for 1970, 1980, 1990, and 2000, and pooled American Community Survey (ACS) data for years 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Occupational classifications are harmonized across decades using the classification scheme developed by Dorn (2009) and distilled to the level of consistent local labor markets (AKA, Commuting Zones) following the procedures in Autor and Dorn (2013). Each plotted point represents approximately 5 percent of the working-age population in the relevant year.
Thus, the decline of middle-skill occupations has meant a profound reallocation of non-college workers in urban and metro areas from middle-skill production and office work to low-skill services, transportation, and laborer occupations. This reallocation has been so sweeping that nothing remains of the density gradient in middle-skill work for non-college workers that was strongly evident just four decades earlier.14

\subsection*{2.1 Polarization and immigration}

The urban workforce is disproportionately college-educated and foreign-born, and it has become more so over time. Figure 9 illustrates the rising urban gradient in college degree holding that is noted by multiple scholars (Costa and Kahn, 2000; Glaeser and Mare, 2001; Florida, 2002; Moretti, 2013; Diamond, 2016). In 1970, working-age adults in the densest CZs were approximately five percentage points more likely to hold a four-year (or higher) degree than were those in the least dense CZs. This gap rose to 15 percentage points between 1970 and 1990. By 2015, it had risen further to approximately 25 percentage points. There was no analogous urban-rural divergence in the distribution of the least-educated adults. While the high school dropout share of the working-age adult population fell by approximately two-thirds between 1970 and 2015 (see Figure 2), the rural-urban gap in the high school dropout share was little changed. In net, the educational distribution in high-density CZs has become increasingly right-skewed but it has not become increasingly left-skewed.15

Figure 10 depicts the second differentiating feature of urban labor markets alluded to above: the rise in immigrant intensity. In 2015, the rural-urban gap in the foreign-born share of college adults was approximately 35 percentage points, roughly twice as large as in 1970. Similarly, the rural-urban gap in the foreign-born share of non-college adults was approximately 25 percentage points in 2015, again roughly double the gap in 1970. Foreign-born workers in turn have a bimodal education distribution: they are disproportionately likely to either have completed post-baccalaureate education or to lack a high school diploma.16

14These findings are consistent Frank Morgan R. et al. (2018), who document that as of 2014, small U.S. cities were substantially less specialized in hard-to-automate managerial and technical professional occupations than are larger cities, and thus face greater potential impacts from automation.

15Employing the simple college/non-college classification used above (i.e., college refers to some college or above and non-college refers to high school graduate or below), the data suggest even less of an overall educational divergence. The urban-rural divide in working-age college residents rose from approximately 5 percentage points in 1970 to 10 percentage points in 2015, while the urban-rural divide in non-college residents fell by the same amount. This is not a dramatic change.

16Using the pooled 2014 - 2016 ACS files, I find that 12.2 percent of foreign-born versus 10.7 percent of U.S. born working-age adults had a post-college education in 2015, and 23.1 percent of foreign-born versus 10.5 percent of U.S. born working-age adults lacked a high school diploma.
Figure plots the share of working-age adult residents by CZ who have either four-plus years of college or less than a high school degree. Source: U.S. Census of Population data for 1970 and 1990 and pooled American Community Survey (ACS) data for years 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Each plotted point represents approximately 5 percent of the working-age population in the relevant year.

These observations raise the possibility that the shifting density gradient in occupational structure is in part an artifact of the increasingly bimodal educational and nativity structure of denser CZs. I explore this possibility by plotting changes in occupational composition by population density separately for native-born and foreign-born non-college workers in Figure 11. This figure makes clear that occupational polarization has been equally pronounced among foreign-born and native-born non-college adults. And among both groups, the decline of middle-skill employment and the rise of low-skill employment has been steeper in denser CZs.\footnote{Though the fall in the urban gradient in middle skill work has been even steeper for U.S.-born than foreign-born workers, the overall decline is about equally large for both groups.} Appendix Figure A2 further shows that the overall patterns of occupational change are highly comparable among foreign- and native-born college adults. Polarization is therefore not concentrated among foreign-born workers. While one could postulate a more complex dynamic in which rising urban immigration leads to occupational polarization among both non-college natives and non-college immigrants, this story runs counter to the influential...
finding in Peri and Sparber (2009) that rising immigrant penetration catalyzes occupational upgrading among similarly educated natives. It therefore seems unlikely that simple supply-side factors such as immigration can explain the polarization of urban employment.

Figure 10: Foreign Born Share of Working Age Adults, 1970 - 2015

Figure plots the share of working age adult residents by CZ among college and non-college workers who are foreign born. Source: U.S. Census of Population data for 1970 and 1990 and pooled American Community Survey (ACS) data for years 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Each plotted point represents approximately 5 percent of the working age population in the relevant year.
Figure 11: Occupational Employment Shares among Foreign-Born Non-College Adults by Commuting Zone Population Density, 1970 - 2015: Level Relative to 1970 Mean

Figure plots the share of working age adult residents by CZ among college and non-college workers who are foreign born. Source: U.S. Census of Population data for 1970 and 1990 and pooled American Community Survey (ACS) data for years 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Each plotted point represents approximately 5 percent of the working-age population in the relevant year.
2.2 The decline of urban production, clerical, and administrative occupations

Much evidence suggests that the pronounced polarization of urban employment likely stems from two secular demand-side forces: (1) the decline of manufacturing production work in the face of advancing automation and rising trade pressure and (2) the proliferation of office computing that has hollowed out the ranks of clerical and administrative workers (Autor and Dorn, 2013; Autor et al., 2016; Acemoglu and Restrepo, 2017). I suspect that the latter force has been particularly significant for non-college workers, who performed the relatively routine subset of office clerical tasks. Both phenomena are visible in Figure 12, which plots the shrinking employment shares of non-college workers in production work and in administrative and clerical work between 1970 and 2015. In 1970, production employment followed an inverted-U in population density—strongly increasing in density through most of the distribution, but tailing off sharply in the densest CZs, reflecting the secular suburbanization of manufacturing (Glaeser, 2011). Between 1970 and 1990, the production employment share of non-college workers fell by at least 10 percentage points in mid-size metropolitan areas and then fell by approximately that amount again over the next 25 years. By 2015, there was almost no density gradient remaining in production employment: manufacturing was scarce in rural areas (as always), even scarcer in the densest urban areas, and just a few percentage points higher in mid-density CZs.\(^\text{18}\)

The analogous pattern of declining non-college clerical and administrative employment begins later in this time interval but culminates even more starkly. In 1970, the share of non-college workers in clerical and administrative occupations was 15-plus percentage points higher in the most versus least dense CZs. Though not shown in the figure, this relationship was essentially unchanged between 1970 and 1980. With the advent of ubiquitous office computing in the 1980s, clerical and administrative employment among non-college workers fell steeply. This decline was already apparent by 1990 and accelerated thereafter. By 2015, there was almost no remaining (positive) density gradient in office work among non-college workers. Logically, this trend was even steeper among women, with a fall of 25 percentage points in the share of non-college women in office work in the densest CZs between 1970 and 2015 (Appendix Figure A1).

In sum, this evidence underscores how much the secular decline in middle-skill employment has reflected the reversal of a distinctive, long-standing feature of urban versus non-urban areas: the employment of less-educated workers in more skill-intensive occupations. It has, of course, long been recognized that less-educated workers earn higher wages in urban

\(^{18}\) The fall of production employment has been much steeper among non-college men than women, consistent with expectations (see Appendix Figure A1).
areas (Glaeser and Mare, 2001; Moretti, 2004). What was previously unknown is that non-college workers performed distinctly different—more skilled—work in metro and urban labor markets. The erosion of this occupational skill gradient over recent decades, particularly in the 2000s, may in turn augur a fall in the non-college urban wage premium.

Figure 12: Production and Administrative and Clerical Employment Shares among Non-College Adults, 1970 – 2015

Figure is constructed using U.S. Census of Population data for 1970, 1980, 1990, and 2000, and pooled American Community Survey (ACS) data for years 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Occupational classifications are harmonized across decades using the classification scheme developed by Dorn (2009) and distilled to the level of consistent local labor markets (AKA, Commuting Zones) following the procedures in Autor and Dorn (2013). Each plotted point represents approximately 5 percent of the working-age population in the relevant year.

3 Polarization and the urban wage premium

It is a robust empirical regularity that urban workers earn more than observably similar non-urban workers (Glaeser and Mare, 2001; Moretti, 2004; Glaeser and Resseger, 2010). Given that land prices are intrinsically higher in dense locations, it is logical that higher urban wages compensate workers for the higher cost of urban living (holding amenities con-
stant). For this to be an equilibrium, however, the productivity of urban workers must also be commensurately higher; otherwise, firms would locate elsewhere. These basic observations imply that some set of agglomerative forces—for example, market thickness, ready exchange of ideas, or external economies of scale—must generate higher productivity in urban areas, ideas that have received extensive empirical study (see Glaeser and Gottlieb 2009). While the underlying productive forces behind urban agglomerations are not fully understood, it is easy to imagine how these forces might arise for high skill workers: In knowledge-intensive work, in-person interactions appear to have few close substitutes, meaning that proximity is critical to productivity (Gaspar and Glaeser, 1998; Glaeser and Resseger, 2010). It is less obvious, however, why these productivity spillovers accrue to low-skill workers. One possibility suggested by the evidence above is that, in past decades, less-educated workers performed higher-skilled work in urban areas: specifically production, clerical, and administrative jobs. Although the productivity of non-college production and office workers may or may not have been directly augmented by urban siting, their work was necessarily colocated alongside the highly-educated knowledge workers who oversaw it. This geographic complementarity could plausibly generate a positive occupational and wage density gradient for non-college workers. These observations, if correct, imply that the secular decline of middle-skill urban occupations could have served to depress the urban wage premium among non-college workers.\(^{19}\) I investigate this possibility here.

3.1 The fading non-college urban wage premium

Figure 13 provides strong confirmation that the urban non-college wage premium has in fact declined steeply over the course of several decades, most dramatically after 2000.\(^{20}\) To my knowledge, this pattern has largely escaped notice in the literature, with the important recent exception of Baum-Snow et al. (2018), discussed below.\(^{21}\) While it is tempting to attribute this declining premium to wage structure shifts in urban vs. non-urban labor markets, it could alternatively be driven by a number of compositional changes in these markets, including age structure, educational composition of the broad ‘non-college’ category, lingering after-effects of the Great Recession, and immigrant penetration. I explore these confounds in succession, starting with age structure.

\(^{19}\)One would nevertheless expect a modest urban non-college wage gradient to compensate workers for higher urban living costs, and this appears present in the data.

\(^{20}\)This is opposite in sign to the steeply rising urban wage premium among college workers reported by Diamond (2016) and hence does not reflect a general decline in urban wages.

\(^{21}\)Ironically, Baum-Snow et al.’s work had escaped my notice prior to obtaining the results above. Given that they seem to run against the grain of recent literature on urban inequality (see for example Diamond 2016, Table 8, indicating that rising college worker productivity in cities raises non-college wages), it is reassuring that this pattern is independently documented elsewhere.
Figure 13: Real Log Hourly Wages of College and Non-College Adults, 1970 – 2015: Working-Age Adults

Autor and Fournier (2019) report a pronounced inversion of the relationship between population density and population age in the U.S. over the last six decades. Given that the college/non-college wage premium typically rises over the lifecycle (Card and Lemieux, 2001), the shifting age composition of urban vs. non-urban CZs could potentially skew raw comparisons of college vs. non-college wages. Figure 14 confronts this concern by plotting college and non-college wages for subcategories of prime-age workers ages 25 to 39 and 40 to 54. The falling urban non-college wage premium is clearly evident within these groups of prime-age workers.
Figure 14: Real Log Hourly Wages of College and Non-College Men and Women Ages (a) 25 - 39 and (b) 40 - 54

Figure is constructed using U.S. Census of Population data for 1970, 1980, and 2000, and pooled American Community Survey (ACS) data for years 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Occupational classifications are harmonized across decades using the classification scheme developed by Dorn (2009) and distilled to the level of consistent local labor markets (AKA, Commuting Zones) following the procedures in Autor and Dorn (2013). Each plotted point represents approximately 2.5 percent of the working age population in the relevant year.
Given the coarseness of the college and non-college education categories, a further concern is that changes in the non-college urban wage gradient could in part reflect changes in the composition of educational attainment within these broad buckets. Figure 15 explores this possibility by plotting wage gradients separately for five detailed education categories: high school dropouts, high school graduates, some college, four-year degree, and post-college educated. The falling urban non-college wage premium is highly visible within subgroups of workers with less than a four-year college education, particularly among high school dropouts and high school graduates, but also among those with some college. Apparently, the declining non-college urban wage premium is not an artifact of the aggregation of educational categories.

A separate concern is that the declining non-college urban wage premium might primarily reflect a lingering consequence of the Great Recession. Figure 15 addresses this concern by presenting panels for both the pre-recession year of 2007 and the post-recession year of 2015. As is evident in the figure and detailed in Appendix Tables A1 through A3, the fall in the urban wage premium for non-college workers commences well before the Great Recession (indeed, it is visible by 1990) and becomes cumulatively more pronounced. Appendix Figure A5 further documents that the non-college urban wage premium was at least as steep in the 1950s as in the 1970s, 1980s, and 1990s—so, the post-1990 decline is recent and atypical. Appendix Figures A3 and A4 further document that the decline is equally prevalent among men and women and, in keeping with the evidence above, visible among both foreign-born and native-born workers (see also Appendix Tables A4 and A5). I conclude that the falling premium is unlikely to be a compositional artifact.

The declining non-college urban wage premium was (to my knowledge) first reported by Baum-Snow et al. (2018) in their study of the causes of rising urban wage inequality from 1980 through 2007. Fitting a structural model that admits both capital skill-complementarity and urban agglomeration, Baum-Snow et al. (2018) estimate that cities and skills have become more complementary over time—formally, agglomerative forces for skilled workers have risen—which can rationalize the rising urban college wage premium and falling non-college

22Wage estimates for the year 1950, reported in the appendix tables though excluded from figures for clarity, confirm that the non-college urban wage gradient was at least as steep in that decade as the corresponding gradient among college workers. Thus, the fall in the non-college urban wage gradient after 1990 reflects a sharp departure from the prior four decades.

23Use the same IPUMS source data used here (though for a shorter time interval), Baum-Snow et al. (2018) find that not only did the urban wage gradient rise for workers with college or higher education over the last several decades (as is well known), it fell between 1990 and 2000 among workers with high school or lower education. Their measure of economic geography and urban/non-urban differ slightly from those used here: Baum-Snow et al. use Core-Based Statistical Areas rather than Commuting Zones as geographies, and they measure urbanicity using CBSA log population rather than CZ log population density.
wage premium. In related work, Giannone (2018) employs a structural model to interpret the decline of regional wage convergence among U.S. cities after 1980. Like Baum-Snow et al. (2018), Giannone concludes that wage divergence among skilled workers across locations is driven by rising agglomerative forces for skilled labor that, in the model, interact positively with skill-biased technical change.24

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure15.png}
\caption{Real Log Hourly Wages by Detailed Education Category, 1970 - 2015}
\end{figure}

Figure is constructed using U.S. Census of Population data for 1970, 1980, 1990, 2000, and pooled American Community Survey (ACS) data for years 2006 through 2008 and for 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Occupational classifications are harmonized across decades using the classification scheme developed by Dorn (2009) and distilled to the level of consistent local labor markets (AKA, Commuting Zones) following the procedures in Autor and Dorn (2013). Each plotted point represents approximately 3.3 percent of the working age population in the relevant year.

The evidence here complements these inferences by identifying a reason why agglomerative forces may have diverged among skill groups—specifically, the withering of the urban occupational skill gradient among non-college workers. This gradient was a vital feature24 Giannone notes that regional wage divergence has occurred among high but not low-skill workers. She does not report a decline in the urban low-skill wage premium.
of U.S. economic geography in 1970. It declined modestly in that decade, eroded far more rapidly in the 1980s and 1990s, and was completely absent by 2015.25 Distinct from earlier decades, non-college workers now perform essentially the same work in both urban and non-urban labor markets: custodial work, food services, protective services, recreation, and health services; transportation services; and laborer occupations. The agglomerative forces that plausibly contributed to the steep non-college urban wage gradient in earlier decades appear to have substantially attenuated.26

One supplementary piece of evidence that lends support to this interpretation is the evolution of wages among non-college workers in high-, medium-, and low-skill occupations in the intervening decades. As shown in Appendix Figure A6, the urban wage gap between high- and medium-skill occupations expanded over recent decades while, simultaneously, the urban wage gap between medium- and low-skill occupations contracted, especially for men. These patterns are consistent with falling relative demand for middle-skill work in cities and metro areas. This suggestive evidence should be read cautiously, however. As noted above, an occupation is not a labor market. Similarly, urban and non-urban wage structures are not independent since they are linked by worker migration and firm arbitrage. It would be premature to conclude that the collapse of middle-skill urban employment explains the flattening of the urban non-college wage premium. Clearly, this is a ripe topic for theoretical and empirical exploration.

\subsection*{3.2 Accounting for the geography of polarization: Wage implications}

I hypothesized above that, by shunting non-college workers into traditionally low-skill occupations, the ongoing encroachment of occupational polarization may in part explain the perplexing fall in real wages of non-college workers over the last three decades. Given the evidence in Section 3 that occupational polarization has disproportionately occurred in high-wage urban and metro labor markets, it appears likely that the geography of polarization has magnified its wage impacts. I explore this possibility by using the kernel density reweighting technique of DiNardo et al. (1996, DFL hereafter) to answer the following question: How

25This gradient appears even more pronounced in 1950 than in 1970, but incompatibilities across historical occupational classification schemes reduce my confidence in this inference. Supplementary plots are available from the author.

26These findings may also help to address the puzzling decline of low-skill migration towards high-income U.S. states explored in Ganong and Shoag (2017). Their work attributes this decline to steep increases in housing prices and housing regulations in wealthy regions that increasingly deter new low-skill entrants. The above results suggest a complementary explanation: the flattening urban non-college wage gradient has reduced the incentive for low-skill workers to move to high-income cities.
would the wages of college and non-college workers have changed between 1970 and 2015 had occupational composition *and* occupational geography evolved as observed while wage levels by occupation and location are held fixed at their 1970 levels. This partial equilibrium clearly abstracts from the many economic forces causing wages to evolve within occupations and across places during the intervening decades; concretely, it varies quantities while holding prices fixed. In this application, however, I suspect that this exercise systematically underestimates the contribution of occupational change to wage changes by skill group—particularly for the non-college workers who are my focus.

Following DiNardo et al. (1996), I write the observed wage distribution \(f(w) \) in year \(t_0 \) as the joint distribution of wages \(w \) and covariates \(x \) (i.e., education, occupation, sex, and location) integrated over the domain of covariates in year \(t_0 \), denoted as \(\Omega_x \):

\[
 f_{t_0}(w) = \int_{x \in \Omega_x} dF(w,x|t_w,x = t_0).
\]

Iterating expectations, this can be rewritten as

\[
 f_{w_{t_0}}^{x_{t_0}}(w) = \int f(w|x,t_w = t_0) dF(x|t_x = t_0).
\]

Here, the distribution of \(w \) is conditioned on \(x \) and the distribution of \(x \) is conditioned on \(t_0 \), as indicated by the subscript and superscript, respectively. Using this identity, we can substitute in the \(x \) distribution from a subsequent time period, \(t_1 \):

\[
 f_{w_{t_0}}^{x_{t_1}}(w) = \int f(w|x,t_w = t_0) dF(x|t_x = t_1)
 = \int f(w|x,t_w = t_0) dF(x|t_x = t_1) \psi_x(x) dF(x|t_z = t_0).
\]

In this expression, the function \(\psi_x(x) = dF(x|t_x = t_1)/dF(x|t_x = t_0) \) reweights the distribution of covariates in period \(t_0 \) to match those in \(t_1 \) (i.e., quantities change). The conditional distribution of wages given covariates \(x \) is meanwhile held at its start of period \((t_0) \) level (i.e., prices are held fixed).

Figure 16 reports the results of this reweighting exercise. The first panel reports the familiar pattern of wage inequality in these decades: Real and relative wages of college-educated workers fall between 1970 and 1980 (see Katz and Murphy 1992), then rise steeply over the next three and a half decades, until the onset of the Great Recession; real wages of workers with high school or lower education drop steeply during the 1980s and modestly rebound during the 1990s, though high school dropout wages have not regained their 1980

27DFL generalizes the venerable Oaxaca-Blinder decomposition from decomposing wage means to decomposing wage distributions.

28In practice, estimating the odds ratio for each value of a high-dimensional vector is fraught with indeterminacies. Following DFL, I invert the problem using Bayes’ Rule to write

\[
 \hat{\psi}_x = \left[\frac{\Pr(t_x = t_1|x) / \Pr(t_x = t_0|x)}{\Pr(t_x = t_0) / \Pr(t_x = t_1)} \right],
\]

which I estimate with a logit model.
level even 35 years later. The second panel shows the effect of reweighting the 1970 wage distribution to reflect the subsequent occupational distribution during each subsequent decade (1980, 1990, 2000, 2007, and 2015).\footnote{29} Consistent with the reweighting exercise presented in Section 1 above, Figure 16 shows that occupational reallocation can proximately account for a substantial share of the fall in non-college wages over this time interval.

Figure 16: Observed and Counterfactual Changes in Log Hourly Wages by Education Group, 1970 - 2015

Figure is constructed using U.S. Census of Population data for 1970, 1980, 1990, 2000, and pooled American Community Survey (ACS) data for years 2006 through 2008 and for 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Occupational classifications are harmonized across decades using the classification scheme developed by Dorn (2009) and distilled to the level of consistent local labor markets (AKA, Commuting Zones) following the procedures in Autor and Dorn (2013). The first panel reports cumulative changes in real log hourly wages by education group for years 1970 - 2015. The second panel reports a DFL reweighting exercise where the 1970 conditional wage distribution is reweighted to match the employment distribution across the twelve occupational categories used above in each subsequent post-1970 period. The third panel repeats this exercise while reweighting the 1970 conditional wage distribution to match the subsequent occupation distribution and the geographic distribution of occupations in each major category (low-, middle-, and high-skill) across more vs. less dense commuting zones.

\footnote{29}I use the same twelve broad occupation categories as applied in Figure 6 and discussed in footnote 10 for each of five education groups. This exercise does not distinguish between male and female workers within each occupation by education cell.
The third panel of Figure 16 additionally considers the contribution of occupational geography to changing wage structure. Here, I reweight the 1970 wage distribution to reflect subsequent changes in occupational structure and subsequent changes in the locations where high-, medium-, and low-skill work occurs by adding to the reweighting vector interaction terms between 1970 log CZ population density and three broad occupation dummies corresponding to low-, middle-, and high-skill occupations as defined above. Accounting for the geography of polarization substantially adds to the explanatory power of this exercise. As is visible in the figure, it can now account for the entirety of the fall in wages of high school dropouts and high school graduates. Consistent with the fact that polarization has occurred disproportionately among urban, non-college workers, reweighting the 1970 wage distribution to account for the changing geography of occupations magnifies the estimated adverse impact of occupational polarization on wages of non-college workers but has essentially no effect on the wages of college workers.

As with the earlier reweighting exercise in 6, this simulation cannot account for the rising real wages of highly educated workers. Mechanically, there has been only modest occupational change among college workers, so occupational reweighting has little impact. Substantively, holding the 1970 wage distribution fixed over the next 45 years omits all productivity growth among highly-educated workers—frequently referred to as ‘skill biased technical change’—that has occurred in the interim. More fundamentally, this exercise abstracts from all supply and demand forces that affect wage levels within and between occupations. It likely understates the downward pressure that polarization places on wages in low-skill occupations by inducing would-be middle-skill workers to bid for historically low-skill jobs. Similarly, it neglects the impact that rising demand for high-skill workers—seen in the rapid growth of professional, technical, and managerial occupations—exerts on college wages across all occupational categories.

4 Conclusion: Where is the land of opportunity?

Labor markets in U.S. cities today are vastly more educated and skill-intensive than they were five decades ago. Yet, urban non-college workers perform substantially less skilled work than decades earlier, and the once robust non-college urban wage premium has largely flat-lined. The evidence presented here offers a circumstantial case that the hollowing out of middle-skill, non-college blue-collar production and white-collar administrative support jobs, which were once abundant in dense urban labor markets, provides at least a partial explanation for these adverse trends in the composition and remuneration of non-college employment.

A critical question that remains unanswered by this evidence is whether a countervailing
set of economic forces will soon reverse the decline of middle-skill work, and thereby possibly restore the steep urban occupational skill and wage escalator that afforded greater opportunities to non-college workers in prior decades. Theoretical work by Acemoglu and Restrepo (2018) posits one such set of countervailing forces: increased labor abundance stemming from labor-displacing automation yields an incentive for firms to develop new labor-using tasks that ‘reinstate’ labor’s comparative advantage in a broader range of tasks. Consistent with the arguments of Acemoglu and Restrepo (2018), pioneering work by Lin (2011) documents that ‘new work’—concretely, the creation of new Census occupational titles—is concentrated in cities (see also Berger and Frey, 2016). These findings offer some grounds for optimism about the potential for endogenous technological change to restore labor demand.

Tempering these conclusions, Autor and Salomons (2019) find that new Census occupational titles—as defined by Lin—are themselves strongly polarized among skill categories. Consistent with Lin (2011), Autor and Salomons identify one rapidly growing set of occupations, which they label ‘frontier jobs,’ that involve producing, installing, maintaining, and deploying new generations of technologies (e.g., robot integration, search engine optimization, radiological medicine). Census data confirm that these occupations are relatively highly paid and are disproportionately held by college-educated men. Conversely, Autor and Salomons (2019) document a second category of new occupations, also growing in dense urban labor markets, that provide labor-intensive, in-person services to affluent consumers, many of whom reside in high-wage urban labor markets. Examples of these occupations, which Autor and Salomons term ‘wealth work,’ include yoga instruction, sommelier services, pet care, and many forms of personal training and counseling. Distinct from frontier jobs, most wealth work is neither technologically novel nor broadly demanding of technical skills. It is also not highly paid. Workers in wealth work occupations typically earn close to the mean of the wage distribution within their local labor markets and a disproportionate share are women. Finally, Autor and Salomons document a third category of new work that involves carrying out nearly-automated tasks that retain a residual set of human components, such as call-center operators, order fulfillment workers, and data entry clerks. These occupations, which Autor and Salomons dub ‘last mile’ jobs, are less prevalent in non-urban areas than in urban labor markets, likely because most do not require face-to-face contact with customers. Perhaps unsurprisingly, wage and education levels in last mile jobs are typically considerably below average. In net, these findings support the contention that a disproportionate share of ‘new work’ is generated within dense urban labor markets. But the bifurcated structure of new work does not suggest that a technology-driven ‘reinstatement’ of middle-skill, non-college jobs is currently underway.

Where is the land of opportunity for non-college workers? Recent literature that points to
dense urban areas as a growth escalator for U.S. productivity and wages laments, accordingly, the slowing geographic mobility of non-college workers into these locations (see (Moretti, 2015; Ganong and Shoag, 2017; Austin et al., 2018)). The evidence here points in the opposite direction: the skill escalator that non-college workers once ascended as they entered urban labor markets has lost elevation. And the slowing inflow of non-college workers into urban labor markets may reflect less a failure of arbitrage than a fall in the economic allure that these labor markets once held for less-skilled workers. I view this as a positive development: the slowing migration of non-college workers into high-wage cities should ultimately boost low-skill wages in high-skill labor markets. Simultaneously, the disproportionate aging of suburban and rural U.S. populations during the last four decades (Autor and Fournier, 2019) augurs rapidly rising demand for certain labor-intensive, low-skill occupations, such as in-person care, transportation, repair, and other services for the non-urban elderly. This secular demographic change may generate new employment opportunities for non-college workers in low-density locations, and could further reduce or even reverse the long-standing urban non-college wage gradient.

References

Acemoglu, D. and D. Autor (2011). Skills, Tasks and Technologies: Implications for Employment and Earnings. In Handbook of Labor Economics, Volume 4, pp. 1043–1171. Elsevier.

Acemoglu, D. and P. Restrepo (2017, March). Robots and Jobs: Evidence from US Labor Markets. Working Paper 23285, National Bureau of Economic Research.

Acemoglu, D. and P. Restrepo (2018, June). The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment. American Economic Review 108(6), 1488–1542.

Aguiar, M. and M. Bils (2015, September). Has Consumption Inequality Mirrored Income Inequality? American Economic Review 105(9), 2725–2756.

Akerman, A., I. Gaarder, and M. Mogstad (2015, November). The Skill Complementarity of Broadband Internet. The Quarterly Journal of Economics 130(4), 1781–1824.

Alabdulkareem, A., M. R. Frank, L. Sun, B. AlShebli, C. Hidalgo, and I. Rahwan (2018, July). Unpacking the polarization of workplace skills. Science Advances 4(7), eaao6030.

Austin, B., E. Glaeser, and L. Summers (2018). Jobs for the Heartland: Place-Based Policies in 21st Century America. Brookings Papers on Economic Activity (Spring), 151–240.

Autor, D. and J. Fournier (2019, February). No Country for Old Men: The Inversion of the Rural-Urban Age Gradient.
Autor, D. and A. Salomons (2019, February). What Works in the Future?

Autor, D. H. (2013, February). The “Task Approach” to Labor Markets: An Overview. *Journal for Labour Market Research* 46(3), 185–199.

Autor, D. H. (2014, May). Skills, Education, and the Rise of Earnings Inequality Among the "Other 99 Percent". *Science* 344(6186), 843–851.

Autor, D. H. (2015, August). Why Are There Still So Many Jobs? The History and Future of Workplace Automation. *Journal of Economic Perspectives* 29(3), 3–30.

Autor, D. H. and D. Dorn (2013, August). The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market. *American Economic Review* 103(5), 1553–1597.

Autor, D. H., D. Dorn, and G. H. Hanson (2013, October). The China Syndrome: Local Labor Market Effects of Import Competition in the United States. *American Economic Review* 103(6), 2121–2168.

Autor, D. H., D. Dorn, and G. H. Hanson (2016, September). The China Shock: Learning from Labor Market Adjustment to Large Changes in Trade. *Annual Review of Economics* 8(1), 205–240.

Autor, D. H., L. F. Katz, and M. S. Kearney (2006, May). The Polarization of the U.S. Labor Market. *American Economic Review Papers and Proceedings* 96(2), 189–194.

Autor, D. H., L. F. Katz, and M. S. Kearney (2008). Trends in U.S. Wage Inequality: Revising the Revisionists. *Review of Economics and Statistics* 90(2), 300–323.

Autor, D. H., A. Manning, and C. L. Smith (2016, January). The Contribution of the Minimum Wage to US Wage Inequality over Three Decades: A Reassessment. *American Economic Journal: Applied Economics* 8(1), 58–99.

Baum-Snow, N., M. Freedman, and R. Pavan (2018, October). Why Has Urban Inequality Increased? *American Economic Journal: Applied Economics* 10(4), 1–42.

Berger, T. and C. B. Frey (2016, March). Did the Computer Revolution shift the fortunes of U.S. cities? Technology shocks and the geography of new jobs. *Regional Science and Urban Economics* 57, 38–45.

Berry, C. R. and E. L. Glaeser (2005). The Divergence of Human Capital Levels Across Cities. *Papers in Regional Science* 84(3), 407–444.

Blundell, R., R. Joyce, A. Norris Keiller, and J. P. Ziliak (2018, June). Income Inequality and the Labour Market in Britain and the US. *Journal of Public Economics* 162, 48–62.

Card, D. (1996). The Effect of Unions on the Structure of Wages: A Longitudinal Analysis. *Econometrica* 64(4), 957–979.
Card, D. and T. Lemieux (2001, May). Can Falling Supply Explain the Rising Return to College for Younger Men? A Cohort-Based Analysis. *The Quarterly Journal of Economics* 116(2), 705–746.

Costa, D. L. and M. E. Kahn (2000, November). Power Couples: Changes in the Locational Choice of the College Educated, 1940-1990. *The Quarterly Journal of Economics* 115(4), 1287–1315.

Diamond, R. (2016, March). The Determinants and Welfare Implications of US Workers’ Diverging Location Choices by Skill: 1980-2000. *American Economic Review* 106(3), 479–524.

DiNardo, J., N. M. Fortin, and T. Lemieux (1996). Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach. *Econometrica* 64(5), 1001–1044.

Dorn, D. (2009, September). *Essays on Inequality, Spatial Interaction, and the Demand for Skills*. Ph. D. thesis, University of St. Gallen.

Dustmann, C., J. Ludsteck, and U. Schonberg (2009, May). Revisiting the German Wage Structure. *The Quarterly Journal of Economics* 124(2), 843–881.

Florida, R. L. (2002). *The Rise of the Creative Class*. New York, NY: Basic Books.

Frank Morgan R., Sun Lijun, Cebrian Manuel, Youn Hyejin, and Rahwan Iyad (2018, February). Small cities face greater impact from automation. *Journal of The Royal Society Interface* 15(139), 20170946.

Ganong, P. and D. Shoag (2017, November). Why has Regional Income Convergence in the U.S. Declined? *Journal of Urban Economics* 102, 76–90.

Gaspar, J. and E. L. Glaeser (1998). Information Technology and the Future of Cities. *Journal of Urban Economics* 43, 136–156.

Giannone, E. (2018, June). Skill-Biased Technical Change and Regional Convergence. *University of Chicago Working Paper*.

Glaeser, E. (2011). *Triumph of the City*. Penguin.

Glaeser, E. L. and J. D. Gottlieb (2009, December). The Wealth of Cities: Agglomeration Economies and Spatial Equilibrium in the United States. *Journal of Economic Literature* 47(4), 983–1028.

Glaeser, E. L. and D. C. Mare (2001, April). Cities and Skills. *Journal of Labor Economics* 19(2), 316–342.

Glaeser, E. L. and M. G. Resseger (2010). The Complementarity Between Cities and Skills. *Journal of Regional Science* 50(1), 221–244.
Goos, M. and A. Manning (2007). Lousy and Lovely jobs: The Rising Polarization of Work in Britain. *Review of Economics and Statistics* 89(1), 118–133.

Goos, M., A. Manning, and A. Salomons (2014, August). Explaining Job Polarization: Routine-Biased Technological Change and Offshoring. *American Economic Review* 104(8), 2509–2526.

Katz, L. F. and K. M. Murphy (1992). Changes in Relative Wages, 1963-1987: Supply and Demand Factors. *The Quarterly Journal of Economics* 107(1), 35–78.

Lee, D. S. (1999, August). Wage Inequality in The United States During The 1980s: Rising Dispersion Or Falling Minimum Wage? *The Quarterly Journal of Economics* 114(3), 977–1023.

Lemieux, T. (2006, June). Increasing Residual Wage Inequality: Composition Effects, Noisy Data, or Rising Demand for Skill? *American Economic Review* 96(3), 461–498.

Lin, J. (2011). Technological Adaptation, Cities, and New Work. *The Review of Economics and Statistics* 93(2), 554–574.

Mazzolari, F. and G. Ragusa (2013, March). Spillovers from High-Skill Consumption to Low-Skill Labor Markets. *Review of Economics and Statistics* 95(1), 74–86.

Michaels, G., A. Natraj, J. Van Reenen, and J. Reenen (2013). Has ICT Polarized Skill Demand? Evidence from Eleven Countries over 25 Years. *Review of Economics and Statistics* 96(1), 60–77.

Moretti, E. (2004, July). Estimating the Social Return to Higher Education: Evidence from Longitudinal and Repeated Cross-Sectional Data. *Journal of Econometrics* 121(1-2), 175–212.

Moretti, E. (2013). Real Wage Inequality. *American Economic Journal: Applied Economics* 5(1), 65–103.

Moretti, E. (2015). Are Cities the New Growth Escalator. In E. L. Glaeser and Joshi-Ghani (Eds.), *The Urban Imperative: Towards Competitive Cities*, pp. 116–148. New Delhi, India: Oxford University Press.

Peri, G. and C. Sparber (2009, June). Task Specialization, Immigration, and Wages. *American Economic Journal: Applied Economics* 1(3), 135–169.

Piketty, T. and E. Saez (2014). Inequality in the Long Run. *Science* 344(6186), 838–843.

Ruggles, S., S. Flood, R. Goeken, J. Grover, E. Meyer, J. Pacas, and M. Sobek (2018). IPUMS USA: Version 8.0. type: dataset.

Tinbergen, J. (1974). Substitution of Graduate Labor by Other. *Kyklos* 27(2), 217–226.

Weil, D. (2014, February). *The Fissured Workplace*. Harvard University Press.
Appendix

Figure A1: Production and Administrative and Clerical Employment Shares 1970 – 2015 among (A) Non-College Men and (B) Non-College Women

Figure is constructed using U.S. Census of Population data for 1970, 1980, 1990, and 2000, and pooled American Community Survey (ACS) data for years 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Occupational classifications are harmonized across decades using the classification scheme developed by Dorn (2009) and distilled to the level of consistent local labor markets (AKA, Commuting Zones) following the procedures in Autor and Dorn (2013). Each plotted point represents approximately five percent of the working age population in the relevant year.
Figure A2: Low-, Middle-, and High-Skill Occupation Shares 1970 – 2015: Relative to 1970 Mean among (A) Foreign-Born and (B) Native-Born College Adults

Figure is constructed using U.S. Census of Population data for 1970, 1980, 1990, and 2000, and pooled American Community Survey (ACS) data for years 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Occupational classifications are harmonized across decades using the classification scheme developed by Dorn (2009) and distilled to the level of consistent local labor markets (AKA, Commuting Zones) following the procedures in Autor and Dorn (2013). Each plotted point represents approximately five percent of the working age population in the relevant year.
Figure A3: Real Log Hourly Wages by Detailed Education Level, 1970 - 2015, among Working-Age (a) Men and (b) Women

Figure is constructed using U.S. Census of Population data for 1970, 1980, 1990, 2000, and pooled American Community Survey (ACS) data for years 2006 through 2008 and for 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Occupational classifications are harmonized across decades using the classification scheme developed by Dorn (2009) and distilled to the level of consistent local labor markets (AKA, Commuting Zones) following the procedures in Autor and Dorn (2013). Each plotted point represents approximately 3.3 percent of the working age population in the relevant year.

A. Working Age Men

B. Working Age Women
Figure A4: Real Log Hourly Wages by Detailed Education Level, 1970 - 2015, among Working-Age (a) Men and (b) Women

A. Foreign-Born Workers

B. Native-Born Workers

Figure is constructed using U.S. Census of Population data for 1970, 1980, 1990, 2000, and pooled American Community Survey (ACS) data for years 2006 through 2008 and for 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Occupational classifications are harmonized across decades using the classification scheme developed by Dorn (2009) and distilled to the level of consistent local labor markets (AKA, Commuting Zones) following the procedures in Autor and Dorn (2013). Each plotted point represents approximately 3.3 percent of the working age population in the relevant year.
Figure A5: Real Log Hourly Wages of College and Non-College Workers, 1950 – 2015: Working-Age Adults

A. Working Age Men

B. Working Age Women

Figure is constructed using U.S. Census of Population data for 1950, 1970, 1990, 2000, and pooled American Community Survey (ACS) data for years 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Occupational classifications are harmonized across decades using the classification scheme developed by Dorn (2009) and distilled to the level of consistent local labor markets (AKA, Commuting Zones) following the procedures in Autor and Dorn (2013). Each plotted point represents approximately 2.5 percent of the working age population in the relevant year.
Figure A6: Log Real Hourly Wages by Broad Occupation Group, 1970 - 2015, among Non-College (a) Men and (b) Women

Figure is constructed using U.S. Census of Population data for 1970, 1980, 1990, 2000, and pooled American Community Survey (ACS) data for years 2006 through 2008 and for 2014 through 2016, sourced from IPUMS Ruggles et al. (2018). Occupational classifications are harmonized across decades using the classification scheme developed by Dorn (2009) and distilled to the level of consistent local labor markets (AKA, Commuting Zones) following the procedures in Autor and Dorn (2013). Each plotted point represents approximately 3.3 percent of the working age population in the relevant year.
Table A1: The Urban Wage Gradient among Working Age Adults, 1950 - 2015

	1950	1970	1980	1990	2000	2007	2015
A. Less Than High School Education							
Log pop density	0.098	0.081	0.050	0.066	0.035	0.031	0.016
(0.005)	(0.004)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)	
Intercept	1.521	2.133	2.270	2.117	2.309	2.323	2.347
(0.026)	(0.020)	(0.016)	(0.014)	(0.011)	(0.012)	(0.013)	
R²	0.368	0.407	0.294	0.508	0.325	0.240	0.072
B. High School Degree							
Log pop density	0.073	0.068	0.051	0.076	0.056	0.047	0.028
(0.003)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	
Intercept	1.781	2.320	2.402	2.241	2.417	2.472	2.504
(0.018)	(0.014)	(0.014)	(0.013)	(0.012)	(0.012)	(0.012)	
R²	0.400	0.522	0.365	0.608	0.512	0.404	0.190
C. Some College							
Log pop density	0.071	0.079	0.060	0.090	0.076	0.069	0.051
(0.004)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	
Intercept	1.904	2.347	2.396	2.271	2.444	2.497	2.516
(0.021)	(0.012)	(0.013)	(0.013)	(0.013)	(0.013)	(0.013)	
R²	0.304	0.648	0.470	0.673	0.621	0.550	0.412
D. College Graduate							
Log pop density	0.065	0.081	0.061	0.078	0.078	0.083	0.078
(0.005)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.003)	
Intercept	2.136	2.668	2.691	2.658	2.759	2.782	2.757
(0.027)	(0.013)	(0.011)	(0.012)	(0.012)	(0.014)	(0.016)	
R²	0.191	0.620	0.550	0.664	0.649	0.623	0.540
E. Post-College Education							
Log pop density	0.015	0.075	0.064	0.082	0.077	0.090	0.086
(0.008)	(0.003)	(0.002)	(0.002)	(0.002)	(0.003)	(0.003)	
Intercept	2.308	2.774	2.808	2.863	2.983	3.017	3.008
(0.043)	(0.015)	(0.011)	(0.012)	(0.012)	(0.016)	(0.018)	
R²	0.005	0.513	0.579	0.668	0.639	0.616	0.531

Each column of each panel reports a separate log wage regression of log hourly earnings of the indicated education group on log population density and a constant. N is 722 Commuting Zones in all years except in 1950, where N is 722 in Panels A through C, 711 in Panel D, and 685 in Panel E. Log population density equals the ratio of residents to land area in the indicated decade, and regressions are weighted by CZ working-age population in the indicated year. Data sources: U.S. Census of Population data for 1970, 1980, 1990, 2000, and pooled American Community Survey (ACS) data for years 2006 through 2008 and for 2014 through 2016 (Ruggles et al., 2018).
Table A2: The Urban Wage Gradient among Working Age Men, 1950 - 2015

Year	1950	1970	1980	1990	2000	2007	2015
A. Less Than High School Education							
Log pop density	0.100	0.083	0.051	0.064	0.031	0.025	0.008
(0.005)	(0.004)	(0.003)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)
Intercept	1.623	2.259	2.414	2.241	2.420	2.441	2.473
(0.025)	(0.021)	(0.019)	(0.016)	(0.012)	(0.013)	(0.014)	(0.014)
R²	0.390	0.407	0.235	0.427	0.230	0.143	0.016
B. High School Degree							
Log pop density	0.077	0.070	0.051	0.067	0.047	0.037	0.021
(0.004)	(0.003)	(0.003)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)
Intercept	1.887	2.477	2.580	2.421	2.574	2.616	2.621
(0.020)	(0.015)	(0.018)	(0.015)	(0.014)	(0.013)	(0.014)	(0.014)
R²	0.381	0.501	0.255	0.468	0.354	0.266	0.102
C. Some College							
Log pop density	0.074	0.079	0.058	0.083	0.067	0.061	0.043
(0.005)	(0.002)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Intercept	2.016	2.479	2.564	2.444	2.605	2.647	2.661
(0.024)	(0.013)	(0.016)	(0.014)	(0.014)	(0.014)	(0.014)	(0.014)
R²	0.274	0.618	0.371	0.607	0.531	0.482	0.329
D. College Graduate							
Log pop density	0.078	0.093	0.069	0.080	0.078	0.084	0.077
(0.006)	(0.003)	(0.002)	(0.002)	(0.002)	(0.003)	(0.003)	(0.003)
Intercept	2.185	2.705	2.788	2.763	2.874	2.896	2.892
(0.034)	(0.015)	(0.013)	(0.013)	(0.013)	(0.015)	(0.017)	(0.017)
R²	0.179	0.635	0.550	0.649	0.614	0.599	0.499
E. Post-College Education							
Log pop density	0.026	0.081	0.072	0.089	0.081	0.096	0.089
(0.010)	(0.003)	(0.002)	(0.002)	(0.002)	(0.003)	(0.003)	(0.003)
Intercept	2.290	2.795	2.848	2.916	3.061	3.118	3.144
(0.054)	(0.017)	(0.013)	(0.013)	(0.013)	(0.017)	(0.019)	(0.019)
R²	0.010	0.496	0.590	0.667	0.630	0.603	0.523

Each column of each panel reports a separate log wage regression of log hourly earnings of the indicated education group on log population density and a constant. N is 722 Commuting Zones in all years except in 1950, where N is 722 in Panels A and B, 716 in Panel C, 685 in Panel D, and 664 in Panel E. Log population density equals the ratio of residents to land area in the indicated decade, and regressions are weighted by CZ working-age population in the indicated year. Data sources: U.S. Census of Population data for 1970, 1990, 2000, and pooled American Community Survey (ACS) data for years 2006 through 2008 and for 2014 through 2016 (Ruggles et al., 2018).
Table A3: The Urban Wage Gradient among Working Age Women, 1950 - 2015

	1950	1970	1980	1990	2000	2007	2015
A. Less Than High School Education							
Log pop density	0.120	0.090	0.059	0.073	0.045	0.044	0.032
	(0.006)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Intercept	1.065	1.731	1.937	1.873	2.100	2.082	2.098
	(0.030)	(0.018)	(0.010)	(0.012)	(0.012)	(0.013)	(0.014)
R²	0.389	0.525	0.607	0.614	0.415	0.347	0.199

| B. High School Degree |
Log pop density	0.076	0.077	0.065	0.094	0.073	0.065	0.042
	(0.004)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Intercept	1.561	1.999	2.096	2.072	2.182	2.245	2.292
	(0.021)	(0.012)	(0.010)	(0.013)	(0.012)	(0.013)	(0.013)
R²	0.339	0.644	0.641	0.696	0.637	0.530	0.347

| C. Some College |
Log pop density	0.054	0.078	0.069	0.102	0.086	0.079	0.060
	(0.005)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Intercept	1.783	2.080	2.128	2.055	2.261	2.331	2.356
	(0.028)	(0.012)	(0.011)	(0.014)	(0.013)	(0.014)	(0.014)
R²	0.135	0.661	0.644	0.697	0.672	0.588	0.471

| D. College Graduate |
Log pop density	0.015	0.042	0.046	0.077	0.078	0.079	0.077
	(0.007)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.003)
Intercept	2.196	2.630	2.508	2.486	2.623	2.665	2.629
	(0.037)	(0.014)	(0.009)	(0.012)	(0.012)	(0.014)	(0.015)
R²	0.008	0.298	0.512	0.638	0.652	0.597	0.547

| E. Post-College Education |
Log pop density	0.002	0.050	0.049	0.072	0.070	0.080	0.077
	(0.011)	(0.004)	(0.002)	(0.002)	(0.002)	(0.003)	(0.003)
Intercept	2.327	2.728	2.693	2.765	2.888	2.925	2.910
	(0.061)	(0.021)	(0.011)	(0.012)	(0.012)	(0.015)	(0.017)
R²	0.000	0.204	0.467	0.626	0.615	0.584	0.504

Each column of each panel reports a separate log wage regression of log hourly earnings of the indicated education group on log population density and a constant. N is 722 Commuting Zones in all years except in 1950, where N is 722 in Panel A, 721 in Panel B, 712 in Panel C, 652 in Panel D, and 515 in Panel E. Log population density equals the ratio of residents to land area in the indicated decade, and regressions are weighted by CZ working-age population in the indicated year. Data sources: U.S. Census of Population data for 1970, 1980, 1990, 2000, and pooled American Community Survey (ACS) data for years 2006 through 2008 and for 2014 through 2016 Ruggles et al. (2018).
Table A4: The Urban Wage Gradient among Native-Born Men and Women, 1950 - 2015

	1950	1970	1980	1990	2000	2007	2015
A. Less Than High School Education							
Density	0.099	0.084	0.057	0.081	0.053	0.050	0.025
	(0.005)	(0.004)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)
Intercept	1.518	2.121	2.247	2.068	2.246	2.257	2.313
	(0.025)	(0.020)	(0.016)	(0.014)	(0.011)	(0.013)	(0.013)
R²	0.380	0.430	0.365	0.609	0.537	0.419	0.146

| B. High School Degree |
Density	0.072	0.070	0.054	0.083	0.070	0.064	0.041
	(0.003)	(0.002)	(0.003)	(0.002)	(0.002)	(0.002)	(0.002)
Intercept	1.788	2.315	2.393	2.213	2.362	2.406	2.453
	(0.018)	(0.014)	(0.014)	(0.014)	(0.012)	(0.013)	(0.013)
R²	0.392	0.532	0.393	0.629	0.603	0.525	0.313

| C. Some College |
Density	0.070	0.080	0.061	0.096	0.084	0.078	0.057
	(0.004)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Intercept	1.909	2.347	2.394	2.252	2.412	2.464	2.494
	(0.021)	(0.012)	(0.013)	(0.014)	(0.013)	(0.014)	(0.014)
R²	0.303	0.654	0.482	0.679	0.649	0.586	0.449

| D. College Graduate |
Density	0.064	0.085	0.063	0.083	0.086	0.095	0.084
	(0.005)	(0.002)	(0.002)	(0.002)	(0.002)	(0.003)	(0.003)
Intercept	2.141	2.653	2.686	2.641	2.729	2.737	2.737
	(0.027)	(0.013)	(0.012)	(0.013)	(0.013)	(0.015)	(0.016)
R²	0.183	0.644	0.558	0.663	0.670	0.667	0.582

| E. Post-College Education |
Density	0.017	0.079	0.067	0.089	0.088	0.101	0.090
	(0.008)	(0.003)	(0.002)	(0.002)	(0.002)	(0.003)	(0.003)
Intercept	2.305	2.764	2.795	2.836	2.939	2.975	2.983
	(0.043)	(0.016)	(0.012)	(0.013)	(0.013)	(0.016)	(0.017)
R²	0.007	0.522	0.590	0.675	0.686	0.649	0.568

Each column of each panel reports a separate log wage regression of log hourly earnings of the indicated education group on log population density and a constant. N is 722 Commuting Zones in all years except in 1950, where N is 722 in Panels A through C, 711 in Panel D, and 685 in Panel E. Log population density equals the ratio of residents to land area in the indicated decade, and regressions are weighted by CZ working-age population in the indicated year. Data sources: U.S. Census of Population data for 1970, 1980, 1990, 2000, and pooled American Community Survey (ACS) data for years 2006 through 2008 and for 2014 through 2016 (Ruggles et al., 2018).
Table A5: The Urban Wage Density Gradient among Foreign-Born Men and Women, 1950 - 2015

	1950	1970	1980	1990	2000	2007	2015
A. Less Than High School Education							
Log pop density	0.067	0.082	0.061	0.072	0.034	0.033	0.012
Intercept	1.773	2.076	2.129	2.015	2.265	2.258	2.353
R²	0.060	0.165	0.177	0.288	0.161	0.122	0.016
B. High School Degree							
Log pop density	0.072	0.062	0.064	0.074	0.045	0.045	0.025
Intercept	1.819	2.297	2.246	2.146	2.354	2.336	2.415
R²	0.069	0.110	0.255	0.415	0.289	0.231	0.102
C. Some College							
Log pop density	0.068	0.111	0.074	0.086	0.061	0.062	0.053
Intercept	1.927	2.124	2.250	2.211	2.441	2.436	2.429
R²	0.039	0.178	0.283	0.463	0.412	0.325	0.273
D. College Graduate							
Log pop density	0.062	0.029	0.066	0.068	0.062	0.073	0.082
Intercept	2.227	2.895	2.571	2.611	2.760	2.709	2.655
R²	0.031	0.014	0.158	0.271	0.307	0.270	0.348
E. Post-College Education							
Log pop density	0.028	0.055	0.041	0.054	0.035	0.062	0.067
Intercept	2.265	2.839	2.933	2.964	3.168	3.139	3.137
R²	0.004	0.050	0.083	0.126	0.082	0.145	0.187

Each column of each panel reports a separate log wage regression of log hourly earnings of the indicated education group on log population density and a constant. N is 722 Commuting Zones in all years except in 1950, where N is 618 in Panel A, 373 in Panel B, 272 in Panel C, 178 in Panel D, and 154 in Panel E. Log population density equals the ratio of residents to land area in the indicated decade, and regressions are weighted by CZ working-age population in the indicated year. Data sources: U.S. Census of Population data for 1970, 1980, 1990, 2000, and pooled American Community Survey (ACS) data for years 2006 through 2008 and for 2014 through 2016 (Ruggles et al., 2018).