Curves $Dy^2 = x^3 - x$ of odd analytic rank

Noam D. Elkies

Department of Mathematics, Harvard University, Cambridge, MA 02138 USA
elkies@math.harvard.edu

Abstract. For nonzero rational D, which may be taken to be a square-free integer, let E_D be the elliptic curve $Dy^2 = x^3 - x$ over \mathbb{Q} arising in the “congruent number” problem. It is known that the L-function of E_D has sign -1, and thus odd analytic rank $r_{an}(E_D)$, if and only if $|D|$ is congruent to 5, 6, or 7 mod 8. For such D, we expect by the conjecture of Birch and Swinnerton-Dyer that the arithmetic rank of each of these curves E_D is odd, and therefore positive. We prove that E_D has positive rank for each D such that $|D|$ is in one of the above congruence classes mod 8 and also satisfies $|D| < 10^6$. Our proof is computational: we use the modular parametrization of E_1 or E_2 to construct a rational point P_D on each E_D from CM points on modular curves, and compute P_D to enough accuracy to usually distinguish it from any of the rational torsion points on E_D. In the 1375 cases in which we cannot numerically distinguish P_D from $(E_D)_{tors}$, we surmise that P_D is in fact a torsion point but that E_D has rank 3, and prove that the rank is positive by searching for and finding a non-torsion rational point. We also report on the conjectural extension to $|D| < 10^7$ of the list of curves E_D with odd $r_{an}(E_D) > 1$, which raises several new questions.

1 Introduction

1.1 Review: The curves E_D and their arithmetic

For nonzero rational D let E_D be the elliptic curve

$$E_D : Dy^2 = x^3 - x$$

over \mathbb{Q}. Since E_D and E_{c2D} are isomorphic for any nonzero rational c, D, we may assume without loss of generality that D is a squarefree integer. The change of variable $x \leftrightarrow -x$ shows that E_D is also isomorphic with E_{-D}; this may also be seen from the Weierstrass equation $y^2 = x^3 - D^2x$ for E_D.

\footnote{The problem is: for which D does E_D have nontrivial rational points, or equivalently positive rank? Such D are called “congruent”, because they are precisely the numbers that arise as the common difference (“congruum”) of a three-term arithmetic progression of rational squares, namely the squares of $(x^2 - 2x - 1)/2y$, $(x^2 + 1)/2y$, and $(x^2 + 2x - 1)/2y$. See the Preface and Chapter XVI of [Di] for the early history of this problem, and [Ko] for a more modern treatment of the curves E_D.}
The arithmetic of the curves E_D has long attracted interest, both for its connection with the classical “congruent number” problem (see [Di, Ch.XVI]; $|D|$ is a “congruent number” if and only if E_D has positive rank) and, more recently, as a paradigmatic example and test case for results and constructions concerning elliptic curves in general (see for instance [Kob]). The curves E_D have some special properties that make them more accessible than general elliptic curves over \mathbb{Q}. They have complex multiplication and are quadratic twists of the curve E_1. This led to the computation of the sign of the functional equation of the L-function $L(E_D/\mathbb{Q}, s)$: it depends on $|D|$ mod 8, and equals $+1$ or -1 according as $|D|$ is in $\{1, 2, 3\}$ or $\{5, 6, 7\}$ mod 8. We shall be concerned with the case of sign -1.

The conjecture of Birch and Swinnerton-Dyer (BSD) predicts that the (arithmetic) rank of any elliptic curve E over a number field K, defined as the \mathbb{Z}-rank of its Mordell-Weil group $E(K)$, should equal the order of vanishing at $s = 1$ of $L(E/K, s)$, known as the “analytic rank” $r_{an}(E/K)$. The BSD conjecture implies the “BSD parity conjecture”: the arithmetic rank is even or odd according as the functional equation of $L(E/K, s)$ has sign $+1$ or -1. It would follow that if the sign is -1 then E always has positive rank. In our context, where $K = \mathbb{Q}$ and $E = E_D$, this leads to the conjecture that E_D has positive rank (and thus that $|D|$ is a “congruent number”) if $|D|$ is any integer of the form $8k+5$, $8k+6$, or $8k+7$.

1.2 New results and computations

We prove:

Theorem 1. Let D be an integer such that $|D|$ is congruent to 5, 6, or 7 mod 8 and also satisfies $|D| < 10^6$. Then E_D has positive rank over \mathbb{Q}.

In our ANTS-1 paper [E1] we announced such a result for $|D| < 2 \cdot 10^5$. Our main tool for proving Theorem 1 is the same: we use the modular parametrization of E_1 or E_2 to construct a rational point P_D on each E_D from CM points on modular curves, and usually compute P_D to enough accuracy to distinguish it from any of the rational torsion points on E_D. Faster computer hardware and new software were both needed to extend the computation to 10^6. The faster machine made it feasible to compute P_D for more and larger D. Cremona’s program mwrank, not available when [E1] was written, found rational points on the curves E_D on which we could neither distinguish P_D from a torsion point nor find a rational nontorsion point by direct search. This happened for 1375 values of $|D|$ — less than 0.5% of the total, but too many to list here a rational point on E_D for each such D. These tables, and further computational data on the curves E_D, can be found on the Web starting from <www.math.harvard.edu/~elkies/compnt.html>.

2 We have dropped the hypothesis that D be squarefree because $c^2 D \equiv D$ mod 8 for any odd integer c. Our integers D are not divisible by 4, and therefore cannot be of the form $c^2 D$ for any even c.

Noam D. Elkies
Our computations also yield conjectural information on the rank of \(E_D\): the rank should equal 1 if and only if \(P_D\) is nontorsion. In half the cases, those for which \(|D|\) or \(|D|/2\) is of the form \(8k + 7\), we obtain this connection from Kolyvagin’s theorem \([Ko]\), which gives the “if” direction unconditionally, and the Gross-Zagier formula \([GZ]\), which gives the “only if” direction under the BSD conjecture. Neither Kolyvagin nor Gross-Zagier has been proved to extend to the remaining cases, when \(|D|\) or \(|D|/2\) is of the form \(8k + 5\). But we expect that similar results do hold in these cases, and hence that \(E_D\) has rank 1 if and only if \(P_D\) is nontorsion also when \(|D|\) or \(|D|/2\) is congruent to 5 mod 8.

One piece of evidence in this direction is that whenever we found \(P_D\) to be numerically indistinguishable from a torsion point, the Selmer groups for the 2-isogenies between \(E_D\) and the curve \(Dy^2 = x^3 + 4x\) were large enough for \(E_D\) to have arithmetic rank at least 3. We extended the list of curves \(E_D\) of conjectural rank \(\geq 3\) to \(|D| < 10^7\) by imposing the 2-descent condition from the start and computing \(P_D\) only for those \(D\) that pass this test. We find a total of 8740 values of \(|D|\). The list not only provides new numerical data on the distribution of quadratic twists of rank \(> 1\) with large \(|D|\), but also suggests unexpected biases in the distribution that favor some congruence classes of \(|D|\)’s.

2 Proof of Theorem \([\dagger]\)

Let \(D\) be a squarefree integer such that \(|D|\) is congruent to 5, 6, or 7 mod 8. Set \(K_D = \mathbb{Q}(\sqrt{-|D|})\) if \(D\) is odd, and \(K_D = \mathbb{Q}(\sqrt{-|D|/2})\) if \(D\) is even. Then \(K_D\) is an imaginary quadratic field in which the rational prime 2 splits if \(D = 8k + 7\) or \(D = 16k + 14\), ramifies if \(D = 8k + 5\), and is inert if \(D = 16k + 6\). A point \(P \in E_D(\mathbb{Q})\) is equivalent to a \(K_D\)-rational point \(Q\) of \(E_1\) or \(E_2\) (according as \(D\) is odd or even) whose complex conjugate \(\overline{Q}\) equals \(-Q\). If \(Q'\) is any point of \(E_1\) or \(E_2\) over \(K_D\) then \(Q = Q' - \overline{Q'}\) satisfies \(\overline{Q} = -Q\), and thus amounts to a point of \(E_D\) over \(\mathbb{Q}\). To prove Theorem \([\dagger]\) for \(E_D\), it will be enough to find \(Q_D \in E_1(K_D)\) or \(E_2(K_D)\) and show that the point \(P_D \in E_D(\mathbb{Q})\) corresponding to \(Q_D - \overline{Q_D}\) is not in \((E_D(\mathbb{Q}))_{\text{tors}} = E_D[2]\).

We use the modular parametrizations of \(E_1\) and \(E_2\) by the modular curves \(X_0(32)\) and \(X_0(64)\). These curves have “CM points” parametrizing cyclic isogenies of degree 32 or 64 between elliptic curves of complex multiplication by the same order in \(K_D\). If the prime 2 splits in \(K_D\), these points are defined over the class field of \(K_D\); otherwise they are defined over a ray class field. (In the former case, the CM points are often called “Heegner points”; in the latter, \([Mr]\) applies the term “mock Heegner points”, though Birch points out that Heegner’s seminal paper \([He]\) already used both kinds of points to construct rational points on \(E_D\), and the distinction between the two cases was a later development.) In either case, we obtain a point \(Q_D\) defined over \(K_D\) by taking a suitable subset of these CM points, mapping them to \(E_1\) or \(E_2\) by the modular parametrization, and adding their images using the group law of the curve. See \([Bi1, Bi2, Mo]\) for more details on these subsets.
Now the key computational point is that the size of each subset is proportional to the class number of \(K_D \), and thus to \(|D|^{1/2} \) when averaged over \(D \). This is much smaller than the number of terms of the series needed to numerically estimate \(L'(E_D/\mathbb{Q}, 1) \), which is on the order of \(D \): as explained for instance in [BGZ], for a general elliptic curve \(E/\mathbb{Q} \) of conductor \(N(E) \) it takes \(N^{1/2+\epsilon} \) terms to adequately estimate \(L'(E/\mathbb{Q}, 1) \), and \(N(E_D) = 32D^2 \) or \(64D^2 \) (according as \(D \) is odd or even) so \(N^{1/2} \) is of order \(D \). As explained in [E1], the numerical computation of each CM point as a point on the complex torus \(E_1(\mathbb{C}) \) or \(E_2(\mathbb{C}) \) to within say \(10^{-25} \) takes essentially constant time: find a representative \(\tau \) in a fundamental domain for the upper half-plane mod \(\Gamma_0(32) \) or \(\Gamma_0(64) \), and sum enough terms of a power series for \(\int_{\infty}^{\tau} \varphi \, dq/q \) where \(\varphi \) is the modular form for \(E_1 \) or \(E_2 \). Thus it takes time \(\Delta^{3/2+\epsilon} \) (and negligible space) to approximate \(Q_D \) for each \(|D| < \Delta \).

We implemented this computation in GP and ran it for \(\Delta = 10^6 \). For all but 1375 of the 303979 squarefree values of \(|D| < 10^6 \) congruent to 5, 6, or 7 mod 8, we found that \(P_D \) is at distance at least \(10^{-8} \) from the nearest 2-torsion point of \(E_D \), and is thus a rational point of infinite order.

For each of the remaining \(D \), the point \(P_D \) is numerically indistinguishable (at distance\(^3\)) at most \(10^{-20} \), usually much less) from a 2-torsion point. We believe that \(P_D \) then actually is a torsion point, and thus that we must find a nontorsion rational point on \(E_D \) in some other way. We did this as follows. We first searched for rational numbers \(x = r/s \) with \(|r|, |s| < 5 \cdot 10^7 \) such that \(s^4x = rs(r^2 - s^2) \) is \(D \) times a square for \(|D| < 10^6 \). This is a reasonable search since we may assume that \(\gcd(r, s) = 1 \), require that one of the factors \(r, s, r+s, r-s \) of \(rs(r^2 - s^2) \) have squarefree part \(f < (4 \cdot 10^6)^{1/3} \) and that another have squarefree part at most \((4 \cdot 10^6/f)^{1/4} \) and loop over those factors.\(^4\) This took several hours and found points on all but 70 of our 1375 \(E_D \)’s. The remaining curves were handled by Cremona’s mwrank program, which used a 2-descent on each curve (exploiting its full rational 2-torsion) to locate a rational point. This completed the proof of Theorem\(^\boxd\).

3 Curves \(E_D \) of conjectural rank \(\geq 3 \)

It might seem surprising that we were able to find a rational point on each of the 1375 \(E_D \)’s for which we could not use \(P_D \). Many curves \(E_D \), even with \(D \)

\(^3\) This computation is particularly efficient in our setting, in which \(\varphi \) is a CM form (so most of its coefficients vanish) and the normalizers of \(\Gamma_0(32), \Gamma_0(64) \) in \(\text{SL}_2(\mathbb{R}) \) can be used to obtain an equivalent \(\tau \) with imaginary part at least 1/8 and \(\sqrt{3}/16 \) respectively. These efficiencies represent a considerable practical improvement, though they contribute negligible factors \(O(\Delta^2) \) to the asymptotic running time of the computation.

\(^4\) Here, as in the preceding paragraph, the distance is measured on the complex torus representing \(E_1(\mathbb{C}) \) or \(E_2(\mathbb{C}) \).

\(^5\) In fact we removed the factors of 4 by using the squarefree parts of \((r \pm s)/2 \) instead of \(r \pm s \) when \(r \equiv s \mod 2 \).
well below our upper limit of 10^6, have rank 1 but generator much too large to locate with repeated 2-descents (see for instance [E1]). The reason we could find nontorsion points on the curves E_D with $P_D \in E_D[2]$ is that these are precisely the curves E_D of odd sign that should have rank at least 3, which makes the minimal height of a non-torsion point much smaller than it can get in the rank-1 case. We explain these connections below, and then report on our computations that extend to 10^7 the list of $|D|$ such that $r_{\text{an}}(E_D)$ is odd and conjecturally at least 3.

3.1 P_D and the rank of E_D

Consider first the cases $D = 8k + 7$ and $D = 16k + 14$. In these cases the prime 2, which is the only prime factor of the conductors of E_1 and E_2, is split in K_D. Therefore the results of Gross-Zagier [GZ] and Kolyvagin [Kol] apply to P_D. The former result gives the canonical height of P_D as a positive multiple of $L'(E_D, 1)$. Therefore $r_{\text{an}}(E_D) > 1$ if and only if P_D is torsion. The latter result shows that if P_D is nontorsion then in fact the arithmetic rank of E_D also equals 1. Hence any E_D of rank 3 or more must be among those for which we could not distinguish P_D from a torsion point.

The hypotheses of the theorems of Gross-Zagier and Kolyvagin are not satisfied in the remaining cases $D = 8k + 5$ and $D = 16k + 6$. However, numerical evidence suggests that both theorems generalize to these cases as well. For instance, when P_D is numerically indistinguishable from a torsion point, E_D seems to have rank 3. For small $|D|$ we readily find three independent points; for all $|D|$ in the range of our search, E_D and each of the curves $Dy^2 = x^3 + 4x$ and $Dy^2 = x^3 - 11x \pm 14$ isogenous with E_D has a 2-Selmer group large enough to accommodate three independent points. When P_D is nontorsion but has small enough height to be recovered from its real approximation by continued fractions, we find that it is divisible by 2 if and only if the 2-Selmer group has rank at least 5, indicating that E_D has either rank ≥ 3 or nontrivial $\Sha[2]$. (The former possibility should not occur, and can often be excluded by 2-descent on one of the curves isogenous to $E_D.$) Both of these observations are consistent with a generalized Gross-Zagier formula and the conjecture of Birch and Swinnerton-Dyer, and would be most unlikely to hold if the vanishing of P_D had no relation with the arithmetic of E_D. We thus expect that also in these cases E_D should have rank > 1 if and only if P_D is a torsion point.

3.2 Rank and minimal nonzero height

The conjecture of Birch and Swinnerton-Dyer also explains why curves E_D of rank ≥ 3 have nontorsion points of height much smaller than is typical of curves E_D of rank 1. This conjecture relates the regulator of the Mordell-Weil group of E_D with various invariants of the curve, including its real period and the leading coefficient $L^{(r)}(E_D, 1)/r!$ (where $r = r_{\text{an}}(E_D)$). Now the real period is proportional to $|D|^{-1/2}$. The leading coefficient is $\ll |D|^{o(1)}$ under the generalized Riemann hypothesis for $L(E_d, s)$, or even the weaker assumption of the
Lindelöf conjecture for this family of L-series (see for instance [IS, p.713]). One expects, and in practice finds, that it is also $\gg |D|^{-\alpha(1)}$ (otherwise $L(E_d, s)$ has zeros $1 + it$ for very small positive t). Thus we expect the regulator to grow as $|D|^{1/2+\alpha(1)}$, at least if Γ is small, which should be true for most $|D|$. Hence the minimal nonzero height would be at most $|D|^{1/2r}$. When $r = 1$ this grows so fast that already for $|D| < 10^4$ there are many curves E_D with generators much too large to be found by 2-descents. But for $r \geq 3$ the minimal nonzero height is at most $|D|^{1/6+\alpha(1)}$, so $|D|$ must grow much larger before a 2-descent search becomes infeasible.

Remark on curves curves E_D of even sign: For such curves we readily determine whether $r_{an}(E_D) > 0$ by using the Waldspurger-Tunnell formula to compute $L(E_D, 1)$. If $L(E_D, 1) \neq 0$ then $r_{an}(E_D) = 0$ and E_D also has arithmetic rank 0 by Kolyvagin (or even Coates-Wiles because E_D has CM). If $L(E_D, 1) = 0$ then $r_{an}(E_D) \geq 2$, and we can prove that E_D has positive arithmetic rank if we find a nontorsion point. We expect that the minimal height of such a point is $|D|^{1/4+\alpha(1)}$. This grows slower than the $|D|^{1/2+\alpha(1)}$ estimate for rank 1, but fast enough that 2-descent searches fail for $|D|$ much smaller than our bound of 10^6. Even in the odd-rank case that concerns us in this paper, it is the curves of rank 3 that make it hard to extend Theorem 3 much beyond $\Delta = 10^6$: searching for points on those curves take time roughly $\Delta^{1/6}$, which eventually swamps the polynomial time $\Delta^{3/2+\epsilon}$ required to find those curves.

3.3 Computing E_D of conjectural rank ≥ 3 with $|D| < 10^7$

We extended to $\Delta = 10^7$ our search for P_D numerically indistinguishable from torsion points. These are the curves that we expect to have rank at least 3. Since we do not expect to extend Theorem 3 to 10^7, we saved time by requiring that the Selmer groups for the isogenies between E_D and $Dy^2 = x^3 + 4x$ be large enough to together accommodate an arithmetic rank of 3. For very large Δ this is a negligible saving because most D pass this test. But it saved a substantial factor in practice for $\Delta = 10^7$: the test eliminated all but 35% of choices of $|D| = 16k + 14$, all but 32.1% of $|D| = 16k + 6$, all but 21.6% of $|D| = 8k + 5$, and all but 16.2% of $|D| = 8k + 7$. We found a total of 8740 values of D for which P_D appears to be a torsion point. We expect that each P_D is in fact torsion and that the corresponding E_D all have rank at least 3. Some P_D might conceivably be a nontorsion point very close to $E_D[2]$, but this seems quite unlikely; at any rate no P_D came closer than 10^{-8} but far enough to distinguish from $E_D[2]$. All the curves probably have rank exactly 3: the smallest $|D|$ known for a curve E_D of rank 5 exceeds $4 \cdot 10^9$. At any rate none of our curves with $|D| < 2 \cdot 10^6$ can have rank 5: we applied mwrank’s descents-only mode to each of these E_D

6 The generators can be obtained using the CM-point construction in time $|D|^{O(1)}$, but not $|D|^{1/2+\alpha(1)}$ because P_D must be computed to high accuracy to recognize its coordinates as rational numbers from their real approximations. Note that in our computations we showed only that P_D is nontorsion and did not attempt to determine it explicitly in $E_D(\mathbb{Q})$.

Noam D. Elkies
Curves $Dy^2 = x^3 - x$ of odd analytic rank

and the isogenous curves, and in each case obtained an upper bound of 3 or 4 on the rank. Our curves E_D and the isogenous curves include many examples of conjectural rank 3 and nontrivial III[2].

There are striking disparities in the distribution of our 8740 values of $|D|$ among the allowed congruence classes. The odd classes $8k+5$ and $8k+7$ account for 2338 and 2392 curves E_D of presumed rank 3. But even $|D|$'s are much more plentiful: there are 4010 of them, almost as many as in the two odd classes combined. This might be explained by the behavior of the 2-descent, which depends on the factorization of $|D|$, or the fact that we are twisting a different curve: E_1 for odd D and E_2 for even D. But the 4010 even D's are themselves unequally distributed between the $16k+6$ and $16k+14$ cases, the former being significantly more numerous: 2225 as against 1785. (See Figure 1.) This disparity is much larger than would be predicted by the 2-descent test, which in the range $|D| < 10^7$ favors $16k+16$ but only by a factor of 1.09 whereas 2225 exceeds 1785 by almost 25%. Note too that the 2-descent survival rates would predict a preponderance of $|D| = 8k + 7$ over $8k + 5$, whereas the two counts are almost identical. Do these disparities persist as Δ increases, and if so why? Naturally we would also like to understand the overall distribution of quadratic twists of rank ≥ 3, not only for the “congruent number” family but for an arbitrary initial curve in place of E_D. We hope that the computational data reported here, and more fully at <www.math.harvard.edu/~elkies/compnt.html>, might suggest reasonable ideas and conjectures in this direction.

Acknowledgments

Thanks to Peter Sarnak for the reference [S], and to the referee for several suggestions that improved the paper. I am grateful to the Packard Foundation for partial financial support during the preparation of this work.

References

Bi1. Birch, B.J.: Elliptic curves and modular functions. *Symp. Math.* 4 (1970), 27–37.
Bi2. Birch, B.J.: Heegner points of elliptic curves. *Symp. Math.* 15 (1975), 441–445.
BGZ. Buhler, J.P., Gross, B.H., Zagier, D.: On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3. *Math. of Computation* 44 (1985) #175, 473–481.
CW. Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer, *Invent. Math.* 39 (1977) #3, 223–251.
Di. Dickson, L.E.: *History of the Theory of Numbers, Vol. II: Diophantine Analysis*. New York: Stechert 1934.
E1. Elkies, N.D.: Heegner point computations, *Lecture Notes in Computer Science* 877 (proceedings of ANTS-1, 5/94), 122–133.
GZ. Gross, B.H., Zagier, D.: Heegner points and derivatives of L-series. *Invent. Math.* 84 (1986), 225–320.
He. Heegner, K.: Diophantische Analysis und Modulfunktionen. *Math. Z.* 56 (1952), 227–253.
IS. Iwaniec, H., Sarnak, P.: Perspectives on the analytic theory of \(L\)-functions. Geom. Funct. Anal. 2000, Special Volume (GAFA 2000, Tel Aviv 1999), Part II, 705–741.

Kob. Koblitz, N.: Introduction to elliptic curves and modular forms. New York: Springer 1984.

Kol. Kolyvagin, V.A.: Euler systems. Pages 435–483 of The Grothendieck Festschrift Vol. II, Birkhäuser: Boston 1990.

Mo. Monsky, P.: Mock Heegner points and congruent numbers. Math. Z. 204 (1990) #1, 45–67.

Ro. Rogers, N.F.: Rank Computations for the Congruent Number Elliptic Curves. Experimental Mathematics 9 (2000) #4, 591–594.

Si. Silverman, J.H.: The Arithmetic of Elliptic Curves. New York: Springer 1986.

Tu. Tunnell, J.B.: A classical Diophantine problem and modular forms of weight \(3/2\), Invent. Math. 72 (1983) #2, 323–334.

\[f(N) := \text{number of } D < N \text{ of the form } 16k+6 \text{ (upper curve) or } 16k+14 \text{ (lower curve)} \]
\[\text{such that the elliptic curve } D y^2 = x^3 - x \text{ has presumed rank at least } 3\]

\[f(N) = 2000\]

\[f(N) = 1000\]

\[\text{Figure 1. Twists with } |D| \equiv 6 \mod 16 \text{ seem to have rank 3 much more often than those with } |D| \equiv 14 \mod 16\]