Effect of dietary supplementation of xylanase on apparent ileal digestibility of nutrients, viscosity of digesta, and intestinal morphology of growing pigs fed corn and soybean meal based diet

Adsos Adami Passosa, Inkyung Park, Peter Ferket, Elke von Heimendahl, Sung Woo Kim

North Carolina State University, Raleigh 27695, USA
Lohmann Animal Nutrition GmbH, Cuxhaven 27472, Germany

Abstract

This study was to determine apparent ileal digestibility of acid detergent fiber (ADF), neutral detergent fiber (NDF), dry matter (DM), energy, organic matter (OM), crude ash, digesta viscosity, and gut morphology in nursery pigs fed diets containing xylanase (Lohmann Animal Nutrition GmbH, Cuxhaven, Germany). The diet (61% corn, 35% soybean meal, 1% poultry fat, and 3% minerals and vitamins) was mixed with 3 levels of xylanase (0, 700, and 1400 LXU/kg). Thirty-six barrows (17.6 ± 3.3 kg) received one of 3 treatment diets based on a randomized complete block design with the initial body weight (BW) as a block. Pigs were individually housed and received experimental diets twice daily (0700 and 1700 h) at a fixed amount based on BW of pigs (0.09 x BW0.75 kg). Pigs were fed diets for 10 d, and chromium oxide (0.3%) was added to the diets from d 6 as an indigestible external marker. Pigs were euthanized at the end of d 10 for the collection of digesta and tissues. Jejunal digesta were centrifuged to measure viscosity using a viscometer (Brookfield Engineering Laboratories, Stoughton, MA). Diets and freeze-dried ileal digesta were used to measure ADF, NDF, and chromium to calculate apparent ileal digestibility of ADF and NDF. Villus height and crypt depth of jejunum were measured using a microscope (Fisher Scientific, Hampton, NH). Data were analyzed using polynomial contrasts in the MIXED procedure of SAS version 9.3 (SAS Inc., Cary, NC, USA). Morphological measurements and ileal ADF digestibility were not affected by increasing xylanase. However, increasing xylanase supplementation from 0 to 1400 LXU/kg enhanced ileal digestibility of NDF (P < 0.042, linear) from 27.9 to 40.3%, DM (P < 0.006, linear) from 55.4 to 64.6%, OM (P < 0.006, linear) from 59.2 to 67.7%, and energy (P < 0.003, linear) from 58.8 to 68.0%. Viscosity of jejunal digesta decreased (P < 0.023) in a non-linear manner from 2.9 to 2.5 centipoises (cP). In conclusion, the usage of xylanase in corn and soybean meal based pig diets linearly enhanced digestibility of nutrients and affected viscosity of digesta in a non-linear manner.

1. Introduction

Efforts to improve nutrient digestibility by the pigs can have effects on profitability of the pork industry (National Pork Board, 2012). Studies indicate that non-starch polysaccharides (NSP) in corn and soybean meal negatively affect nutrient digestibility (Mooser et al., 2002; van Kempen et al., 2006). Whole corn grain contains 27–32 g of xylose/kg (Knudsen, 1997) as arabinoxylans in pericarp and aleurone (Landis et al., 2001). Soybean meal contains 18–19 g of xylose/kg (Knudsen, 1997; Irish and Balnave, 1993) as xyloglucan in the structural polysaccharides (Karr-Lilienthal et al., 2005).

Feed enzymes supplementation to corn (Cozannet et al., 2012; Li et al., 2010), soybean meal (Cozannet et al., 2012), and complete feed (Ji et al., 2008; Jo et al., 2012; Kim et al., 2003; Pettey et al., 2002) fed to pigs were previously reported. Endo-1,4-β-xylanase (xylanase) catalyzes endo-hydrolysis of 1,4-β-D-xylosidic linkages...
in xylans (International Union of Biochemistry and Molecular Biology, 1992) releasing oligosaccharides from corn and wheat fiber (Katapodis and Christakopoulos, 2008; Katapodis et al., 2003). Xylanase has been evaluated to improve nutrient digestibility in pigs (Moehn et al., 2007; Nortey et al., 2007; Woyengo et al., 2008). The mechanism proposed to explain the effect of fiber degrading enzymes involves degradation of polysaccharides in the cell wall (Adeola and Cowieson, 2011; Masey et al., 2012; Meng et al., 2005; Tervila-Wilo et al., 1996) and reduction of digesta viscosity (Garcia et al., 2008; Mathlouthi et al., 2002). However, viscosity might not be the most important factor affecting nutrient digestibility in pigs (Bartelt et al., 2002). Type of fiber and intestinal fermentation should be considered (Hooda et al., 2010; Jensen, 1996).

The hypothesis of this study is that supplementation of xylanase in corn-soybean meal based diets reduces digesta viscosity and thus enhances digestibility of nutrients. The objective of this study is to measure viscosity of jejunum digesta, intestinal morphology, and ileal digestibility of dry matter (DM), energy, acid detergent fiber (ADF), neutral detergent fiber (NDF), and crude ash of a corn-soybean meal based diet supplemented with xylanase fed to pigs.

2. Materials and method

The experimental protocol was approved by North Carolina State University Animal Care and Use Committee.

2.1. Experimental diets and pigs

The experiment was conducted at the Swine Educational Unit at the North Carolina State University (Raleigh, NC). Pigs were used to evaluate digestibility of DM, energy, protein, ADF, NDF, and crude ash of a diet (Table 1) supplemented with feed enzyme. Corn was ground to 400 μm. Xylanase (Carboxfel, Lohmann Animal Nutrition GmbH, Cuxhaven, Germany) was supplemented at 0 (C), 100 (T1), and 200 mg/kg of diet (T2) to provide 0, 700, and 1400 LXU of xylanase/kg of diet respectively. LXU is the amount of enzyme which releases 1 μmol of reducing sugars equivalents (as xylose or glucose) from birch xylan or barley glucan per minute at pH 5.5 and 50 °C (EURL, 2013).

Thirty six barrows (17.6 ± 3.3 kg) were placed in metabolic cages (0.6 m wide, 1.8 m long) equipped with stainless-steel feeder and nipple water drinker next to the feeder, and slatted flooring. There were 12 cages available for the study and 3 groups of 12 pigs were allotted in the metabolism room. Pigs received one of the 3 treatment diets based on a randomized complete block design with initial body weight as block. The experimental period consisted of 10 days. ileum content of ADF and NDF, ileal digestibility of ADF and NDF, villus height/crypt depth in jejunum and digesta viscosity were measured.

2.2. Experimental procedures, chemical analyses, and digesta viscosity

Pigs received experimental diets twice daily (0700 and 1700 h) at a fixed amount based on BW of pigs (0.09 × BW0.75 kg). Dietary treatments were fed to pigs for 10 days. Chromium oxide was added to experimental diets (0.3%) from day 6 as an indigestible external marker for calculation of ileal digestibility. Pigs were euthanized via captive-bolt stunning and exsanguination at day 10 for sample collection 8 h after the last meal. Immediately after the euthanasia, an ileal portion (a portion of 20 cm prior to ileo-cecal connection) of small intestine was used to obtain digesta in ileum. Digesta from ileum was stored in sterile container and kept frozen at −20 °C. Jejunum tissue sample (3 cm) was collected and stored in formaline for further histological analysis. Intestine (20 cm) from distal portion of jejunum was also used to obtain digesta to measure viscosity. Jejunal contents were emptied into 50 mL tubes, samples were kept on ice and viscosity was measured immediately after the collection.

Frozen ileal digesta were freeze-dried (24D × 48, Virtis, Gardiner, NY) for storage and chemical analysis. Diets and freeze-dried digesta were analyzed for moisture (Method 934.01, AOAC, 1995), crude protein; Ca; and P; total, % 0.61 0.61 0.61 P available, % 0.33 0.33 0.33

Calculated composition

ME, MJ/kg 14.02 14.02 14.02 SID Lys, % 1.01 1.01 1.01 SID Met + Cys, % 0.59 0.59 0.59 SID Thr, % 0.63 0.63 0.63 SID Trp, % 0.21 0.21 0.21 Ca, % 0.89 0.89 0.89 P total, % 0.61 0.61 0.61 P available, % 0.33 0.33 0.33

Analyzed composition

DM, % 89.17 89.13 89.66 GE, MJ/kg 18.26 18.30 18.70 CP, % 20.36 20.73 21.01 Fat, % 2.55 2.91 2.39 Ca, % 0.76 0.71 0.78 P, % 0.56 0.58 0.56 Ash, % 4.64 4.82 4.31 Xylanase, LXU/kg <200 674 1231

Table 1

Ingredient composition of experimental diets (as-fed basis).

Ingredient	Xylanase, LXU/kg
Yellow corn, ground	61.12
Soybean meal	35.30
Limestone	1.10
Monocalcium phosphorus	1.00
Salt	0.30
Trace mineral premix^a	0.15
Vitamin premix^b	0.03
Xylanase	0.00
Calculated composition	
DM, %	91.77
GE, MJ/kg	16.86
CP, %	20.36
Fat, %	2.55
Ca, %	0.76
P, %	0.56
Ash, %	4.64
Xylanase, LXU/kg	<200

GE = gross energy; CP = crude protein; Ca = calcium; P = phosphorus.

^a LXU is the amount of enzyme which releases 1 μmol of reducing sugars equivalents (as xylose or glucose) from birch xylan or barley glucan per minute at pH 5.5 and 50 °C.

^b Trace mineral premix supplied per kg of feed: 16.5 mg/kg of Cu as copper sulfate, 165.3 mg/kg of Fe as ferrous sulfate, 39.0 mg/kg of Mn as manganous oxide, 165.30 mg/kg of Zn as zinc sulfate, 0.30 mg/kg of as ethylenediamine dihydroiodide and 0.30 mg/kg of Se as sodium selenite.

^c Vitamin premix supplied per kg of feed: 6171 IU of vitamin A as vitamin A acetate, 880 IU of vitamin D as cholecalciferol, 35 IU of vitamin E as tocopheryl acetate, 0.02 mg/kg of vitamin B₁₂ as cyanocobalamin, 0.18 mg/kg of biotin, 2.91 mg/kg of vitamin K as menadione sodium bisulfite, 4.40 mg/kg of riboflavin, 17.64 mg/kg of pantothenic acid as calcium pantothenate, 26.45 mg/kg of niacin as nicotidamide, 1.32 mg/kg of folate as folic acid.

^d Standardized ileal digestibility.
0.5 mL of digesta supernatant was placed in the viscometer. Viscosity measurement was the average between 45.0 s⁻¹ and 22.5 s⁻¹ shear rates.

2.3. Histology

Jejunum morphology were analyzed according to Fan et al. (2001) to obtain villus height, crypt depth and the relation villus height to crypt depth. Jejunum samples (2 sections per pig) were fixed in formaline and sent to North Carolina State University histology laboratory for hematoxylin and eosin staining and sectioning according to standard histological technique. The sections were dehydrated and embedded in paraffin. Staining was done using hematoxylin and eosin dyes (Junqueira and Carneiro, 2005).

Villus height, crypt depth, and relation villus height and crypt depth were measured in the microscope (Micromaster, Fisher Scientific International Inc., Pittsburgh, PA). For each section, 15 measurements of adjacent villus height and crypt depth were obtained. The measurements were done with ImageJ software (NIH, 2013) and transferred to Microsoft Excel software. The relation villus height to crypt depth of each measurement was calculated. The averages of the 30 measurements per pig were calculated and reported as one number per pig.

2.4. Statistical analysis

Data were analyzed using polynomial contrasts in the Mixed procedure of SAS version 9.3 (SAS Inc., Cary, NC, USA). The experiment was a randomized complete block design using initial BW and group of pigs allotted in the metabolism as blocking factor. The experimental unit was the individual pig. Initial BW and group of pigs were considered random effect. Statistical differences were considered significant with \(P < 0.05 \). Probabilities less than 0.10 and equal or greater than 0.05 were considered as a tendency.

3. Results

The average BW of pigs utilized on this study was 17.6 kg and average daily feed intake (ADFI) was 757 g/d (Table 2). The weight gain of the pigs during the metabolism study was 352 g/d and the feed conversion ratio (G:F) was 0.47 in average. Increasing the level of xylanase in the diet (0–1400 LU/kg) did not affect \((P > 0.10) \) growth performance of pigs individually housed in the metabolism cages. Pigs received a limited amount of feed based on their BW and this study was not designed to measure growth performance.

Increasing xylanase in the diet from 0 to 1400 LU/kg did not affect histological measurements (Table 3) including villus height, crypt depth, and relation villus height to crypt depth. Increasing xylanase resulted in a quadratic change \((P = 0.023) \) in viscosity of jejunal digesta from 2.94 to 2.52 centipoises (cP) when xylanase increased from 0 to 700 LU/kg and from 2.52 to 3.20 cP when xylanase increased from 700 to 1400 LU/kg respectively.

Increasing xylanase (0–1,400 LU/kg) yielded greater AID of DM (linear increase from 55.43 to 64.58%, \(P = 0.006 \)), organic matter (OM) (linear increase from 59.19 to 67.70%, \(P = 0.006 \)), and energy (linear increase from 58.78 to 68.04%, \(P = 0.003 \)). Similarly, AID of crude ash increased by 16% (quadratic increase from 18.71 to 34.34%, \(P = 0.045 \)) and AID of NDF by 12% (linear increase from 27.91 to 40.32%, \(P = 0.042 \)). However AID of ADF was not affected by supplementation of xylanase \((P > 0.10) \).

4. Discussion

The digesta viscosity obtained on this study ranged from 2.52 to 3.20 cP. The viscosity can be affected by the type of ingredient in the diet (Willamil et al., 2012). Digesta viscosity in the ileum was reported to be 2.8 cP for a corn-soybean meal based diet (Willamil et al., 2012), 1.7 cP in corn-soybean meal-DDGS based diet (Agyekum et al., 2012), 4.6 cP in a wheat based diet (Mavromichalis et al., 2000), and 7.0 cP in a rye-wheat based diet (Bartelt et al., 2002). Corn was the major ingredient in the diet of the present study, and it has lower content of soluble NSP than wheat, rye, barley, and oats (Knudsen, 1997) yielding low viscous solutions (Mathlouthi et al., 2002).

This study indicated that by increasing the use of xylanase yields a quadratic change in the viscosity of the digesta in pigs fed corn-soybean meal based diets. Corn grain NSP contains arabinoxylan (Landis et al., 2001), and contains 30 g total xylose/kg of corn (Knudsen, 1997). Soybean meal contains 18–19 g xylose/kg of soybean meal (Irish and Balnave, 1993; Knudsen, 1997) as xyloglucan (Karr-Lilienthal et al., 2005), therefore the main substrate for xylanase in a corn-soybean meal-based diet will be the arabinoylxs in the corn. The effect of xylanase on corn fiber was previously demonstrated by in vitro studies (Grabber et al., 1998; Hu et al., 2008; Saha, 2001). The limitations regarding the xylanase activity on corn fiber (Rose and Inglett, 2011) involve the arabinose side-chains in the xylan back-bone of the arabinoxylan (Doner et al., 2001; Rose et al., 2010). However, arabinofuranosyl groups attached to xylan can be partially released under acidic pH conditions in the stomach (Zhang et al., 2003). In addition, the corn fiber utilization on xylanase production increases the number of side activity enzymes \((\beta\text{-xylosidase and } \alpha\text{-arabinofuranosidase}) \) that enhance the release of arabinose and xylose from arabinoylxs (Saha, 2001). Arabinoylxs can form viscous solutions (Izydorczyk and Biliaderis, 1982, 1992) and increase viscosity of digesta (Choct and Ammon, 1992). Xylanase can break arabinoylxs (Grabber et al., 1998; Pedersen et al., 2012) and reduce viscosity of in vitro solutions (Mathlouthi et al., 2002) and also digesta viscosity (Adeola and Bedford, 2004; Yin et al., 2001).

Increasing supplementation of xylanase yields a quadratic response on digesta viscosity. Corn contains a greater proportion of xylan (Passos et al., 2013) and transferred to Microsoft Excel software. The relation villus height to crypt depth of each measurement was calculated. The averages of the 30 measurements per pig were calculated and reported as one number per pig.

Table 2

Item	Xylanase, LU/kg	SEM	Linear	Quadratic
Initial BW, kg	17.4	17.4	17.7	1.0
ADFI, g/d	753	756	763	28
ADG, g/d	340	351	364	57
G:F	0.458	0.471	0.482	0.093

BW – body weight; **ADFI** – average daily feed intake; **G:F** – feed conversion ratio.

Table 3

Item	Xylanase, LU/kg	SEM	Linear	Quadratic
Villus height, μm	431	407	403	18
Crypt depth, μm	233	212	226	14
Viscosity, cP	2.94	2.52	3.20	0.12

cP – centipoise (1 cP = 1/100 dyne s/cm²).

Data were analyzed using polynomial contrasts in the Mixed procedure of SAS version 9.3 (SAS Inc., Cary, NC, USA). The experiment was a randomized complete block design using initial BW and group of pigs allotted in the metabolism as blocking factor. The experimental unit was the individual pig. Initial BW and group of pigs were considered random effect. Statistical differences were considered significant with \(P < 0.05 \). Probabilities less than 0.10 and equal or greater than 0.05 were considered as a tendency.
The ileal nutrient digestibility of a corn-soybean meal based diet improved when dietary xylanase supplementation level increased from 0 to 1400 L/XU/kg. There was a quadratic change in viscosity of jejunal digesta, but no effect on intestinal morphology. The results confirm our hypothesis that xylanase can be supplemented to swine diets in order to improve nutrient digestibility.

References

Adeola O, Bedford MR. Exogenous dietary xylanase ameliorates viscosity-induced anti-nutritional effects in wheat-based diets for White Pekin ducks (Anas platyrhynchos domesticus). Br J Nutr 2004;92:87–94.
Adeola O, Cowieson AJ. Opportunities and challenges in using exogenous enzyme to improve non ruminant animal production. J Anim Sci 2011;89:3189–218.
Aggelis AK, Slominski BA, Nyachoti CM. Organ weight, intestinal morphology, and fasting whole-body oxygen consumption in growing pigs fed diets containing distillers dried grains with solubles alone or in combination with a multienzyme supplement. J Anim Sci 2012;90:3032–40.
AGAC. Official methods of analysis of AGAC international. 18th ed. Maryland: Association of Official Analytical Chemists; 2006.
Bahar R, Modi A, Vipul K, Tan YC, Amin R, Lailani N. In vitro digestion of grass and legume forages using an enzyme preparation in relation to rumen fermentation. Anim Feed Sci Technol 2005;118:237–53.
Bartlett J, Jadamus A, Wiese F, Swiec E, Buraczewska L, Simon O. Apparent precaecal digestibility of nutrients and level of endogenous nitrogen in digesta of the small intestine of growing pigs as affected by various digesta viscosities. Arch Anim Nutr 2002;56:93–107.
Choc M, Annison G. Anti-nutritive effect of wheat pentosans in broiler chickens: roles of viscosity and gut microflora. Br Poult Sci 1992;33:821–34.
Choc M, Kocher A, Wouters DLE, Petersson D, Ross G. A comparison of three xyananases on the nutritive value of two wheats for broiler chickens. Br J Nutr 2004;92:53–61.
Connerton I, Cummings N, Harris GW, Debeire P, Breton C. A single domain thermonophilic xylanase can bind insoluble xylan: evidence for surface aromatic clusters. Biochim Biophys Acta 1999;1433:110–21.
Coozen P, Preynat A, Noblet J. Digestible energy values of feed ingredients with or without addition of enzymes complex in growing pigs. J Anim Sci 2012;90:2011–8.
Doner LW, Johnston DB, Singh V. Analysis and properties of arabinoxylans from discrete corn wet-milling fiber fractions. J Agric Food Chem 2001;49:1266–9.
European Union Reference Laboratory for Feed Additives (EURL). EURL evaluation report “enz hy carboplus® & enzy carboplus®”. Geel, Belgium: EURL; 2013 [Accessed 22.06. 13], https://irmm.jrc.ec.europa.eu/ SiteCollectionDocuments/FinRep-FAD-2013-0013EnzyCarboplus.doc.pdf.
Fan MF, Stoll B, Jiang R, Burin DG. Enteroocyte digestive enzyme activity along the crypt-villus and longitudinal axes in the neonatal pig small intestine. J Anim Sci 2009;77:391–81.
Garza M, Lazaro R, Latorre MA, Gracia M, Mateos GG. Influence of enzyme supplementation and heat processing of barley on digestive traits and productive performance of broilers. Poult Sci 2008;87:940–8.
Grabber BH, Hatfield RD, Ralph J. Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. J Sci Food Agric 1998;77:193–200.
He J, Yin J, Wang L, Yu B, Chen D. Functional characterization of a recombinant xylanase from Pichia pastoris and effect of the enzyme on nutrient digestibility in weaned pigs. Br J Nutr 2010;103:1507–13.
Hooda S, Metzler-Zebeli BU, Vasanthan T, Zijlstra RT. Effects of viscosity and fermentability of purified arabinoxylanase from Pichia pastoris on ileal and total tract nutrient digestibility in ileal-cannulated grower pigs. Livest Sci 2010;134:79–81.
Hu YB, Wang Z, Xu SY. Treatment of corn bran dietary fiber with xylanase increases its ability to bind bile salts, in vitro. Food Chem 2008;106:113–21.
International Union of Biochemistry and Molecular Biology. Enzyme Nomenclature: recommendations of the nomenclature committee of international union of biochemistry and molecular biology on the nomenclature and classification of enzymes. New York: Academic Press; 1992.
Irish GG, Balnave D. Non-starch polysacharides and broiler performance on diets containing soybean meal as the sole protein concentrate. Aust J Agric Res 1994;45:99–112.
Izardocyrz MS, Biladeris CG. Effect of molecular size on physical properties of wheat arabinoxylan. J Agric Food Chem 1982;40:561–8.
Izardocyrz MS, Biladeris CG. Influence of structure on the physicochemical properties of wheat arabinoxylan. Carbohydr Polym 1992;17:237–47.
Jensen BR. Methanogenesis in monogastric animals. Environ Monit Assess 1996;42:119–22.
Ji F, Casper DP, Brown PK, Spangler DA, Haydon KD, Pettigrew JE. Effects of dietary supplementation of an enzyme blend on the ileal and fecal digestibility of nutrients in growing pigs. J Anim Sci 2012;90:3041–8.
Junqueira LC, Carneiro J. Basic histology. 11th ed. New York: The McGraw-Hill; 2005.
Karr-Lilenthal KL, Kadzere CT, Grieshop CM, FAhey JR. GC. Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: a review. Livest Prod Sci 2005;97:1–12.
Katapodi P, Christakopoulos P. Enzymic production of feroloyl xylo-oligosaccharides from corn cobs by a family 10 xylanase from Thermus aquaticus. Food Sci Technol 2008;41:1229–41.

Table 4

Item	Xylanase, LXU/kg	SEM	P-value
	0	700	1400
DM	55.43	68.60	64.58
OM	59.19	69.80	67.70
Energy	58.78	69.00	68.04
Crude ash	18.71	34.34	29.40
NDF	27.91	43.63	40.32
ADF	1.54	13.20	8.77

DM – dry matter; OM – organic matter; NDF – neutral detergent fiber; ADF – acid detergent fiber.
Pedersen NR, Yardakou M, Kalogéris E, Kekos D, Macris BJ, Christakopoulos P. Enzymic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan. Eur J Nutr 2003;42:55–60.

Kim SW, Knabe DA, Hong KJ, Easter RA. Use of carboxylates in corn–soybean meal-based nursery diet. J Anim Sci 2003;81:2496–504.

Knudsen KEB. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim Feed Sci Tech 1997;67:319–38.

Landis W, Johnston Doner DB, Singh V. Analysis and properties of arabinoxylans from discrete corn wet-milling fiber fractions. J Agric Food Chem 2001;49:1266–9.

Li Y, Fang Z, Dai J, Partridge G, Ru Y, Peng J. Corn extrusion and enzyme addition improves digestibility of corn/soy-based diets by pigs: in vitro and in vivo studies. Anim Feed Sci Tech 2010;158:146–54.

Masey O'Neill, Liu N, Wang JP, Diallo A, Hill S. Effect of xylanase on performance and apparent metabolizable energy in starter broilers fed diets containing one maize variety harvested in different regions of China. Asia-Pac J Anim Sci 2012;25:515–23.

Matthlouthi N, Saulnier L, Quemener B, Larhier M. Xylanase, β-glucanase, and other side enzymatic activities have greater effects on the viscosity of several feedstuffs than xylanase and β-glucanase used alone or in combination. J Agric Food Chem 2002;50:5121–7.

Maeriomichalis I, Hancock JD, Senne BW, Gugle TL, Kennedy GA, Hines RH, et al. Enzyme supplementation and particle size of wheat in diets for nursery and finishing pigs. J Anim Sci 2000;78:3086–95.

Meng X, Słominski BA, Nyachoti CM, Campbell LD, Guenter W. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poult Sci 2005;84:37–47.

Moehn S, Atakora JKA, Sands J, Ball RO. Effect of phytase-xylanase supplementation to wheat-based diets on energy metabolism in growing-finish pigs fed ad libitum. Livest Sci 2007;109:271–4.

Moers J, Kim IB, van Heugten E, Kempen TA. The nutritional value of degermed, dehulled corn for pigs and its impact on the gastrointestinal tract and nutrient excretion. J Anim Sci 2002;80:2629–38.

Montagne L, Pluske JR, Hampson DJ. A review of interactions between dietary fiber and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Tech 2003;108:95–117.

National Pork Board. Pork industry nutritional efficiency consortium research 2007–2011. 2012 [Accessed 23.11.13]. http://www.pork.org/ilelibrary/Research/NEC/NutritionalEfficiency.pdf.

Nian F, Guo YM, Ru YJ, Péron A, Li FD. Effect of xylanase supplementation on the net energy for production, performance and gut microflora of broilers fed corn/soy-based diet. Asian–Aust J Anim Sci 2011;24:1282–7.

National Institutes of Health (NIH). ImageJ. Image processing and analysis in Java. Bethesda, MD: NIH; 2013 [Accessed 22.07.13]. http://rsb.info.nih.gov/ij/index.html.

Nortey TN, Patience JF, Simmins PH, Trotter NL, Zijlstra RT. Effects of individual or combined xylanase and phytase supplementation on energy, amino acid, and phosphorus digestibility and growth performance of grower pigs fed wheat-bases diets containing wheat millrun. J Anim Sci 2007;85:142–43.

Pedersen NR, Åzem E, Broj Z, Guggenbühl P, Le DM, Fojan P, et al. The degradation of arabinoxylan-rich cell walls in digesta obtained from piglets fed wheat-based diets varies depending on digesta collection site, type of cereal, and source of exogenous xylanase. J Anim Sci 2012;90:149–51.

Pettey LA, Carter SD, Senne BW, Shriver JA. Effects of beta-mannanase addition to corn-soybean meal diets on growth performance, carcass traits, and nutrient digestibility of weanling and growing-finish pigs. J Anim Sci 2002;80:1012–9.

Rajagopalan G, Yew WK, He J, Yang KL. Production, purification, and characterization of a xylooligosaccharides forming xylanase from high butanol producing strain Clostridium sp. BOH3. Bioenerg Res 2013;6:448–57.

Rose DJ, Inglott GE. A method for the determination of soluble arabinoxylan released from insoluble substrates by xylanases. Food Anal Method 2011;4:66–72.

Rose DJ, Patterson JA, Hamaker BR. Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles. J Agric Food Chem 2010;58:493–9.

Saha BC. Xylanase from a newly isolated Fusarium verticilloides capable of utilizing corn fiber xylan. Appl Microbiol Biotechnol 2001;556:762–6.

Sun J, Sakka K, Karita S, Kimura T, Ohmiya K. Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBDs to xylan hydrolysis. J Ferment Bioeng 1998;85:63–8.

Tervila-Wilo A, Parkkonen T, Morgan A, Hopeakoski-Nurminen M, Poutanen K, Heikkonen P, et al. In vitro digestion of wheat microstructure with xylanase and cellulase from Trichoderma reesi. J Cereal Sci 1996;24:215–25.

Van Kempen TA, van Heugten E, Moers AJ, Muley NS, Sewalt VJH. Selecting soybean meal characteristics preferred for swine nutrition. J Anim Sci 2010;84:1387–95.

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583–97.

Willamil J, Badiola I, Devillard E, Geraert PA, Tarrallardon D. Wheat-barley-rye or corn fed growing pigs respond differently to dietary supplementation with a carbohydrase complex. J Anim Sci 2012;90:824–32.

Williams CH, David DJ, Issmna O. The determination of chromium oxide in faeces samples by atomic absorption spectrophotometry. J Agric Sci 1962;59:1–8.

Woyengo TA, Sands JS, Guenter W, Nyachoti CM. Nutrient digestibility and performance responses of growing pigs fed phytase and xylanase supplemented wheat based diets. J Anim Sci 2008;86:848–57.

Yin YL, Baidoo SK, Schulze H, Simmins PH. Effects of supplementing diets containing hulless barley varieties having different levels of non-starch polysaccharides with β-glucanase and xylanase on the physiological status of the gastrointestinal tract and nutrient digestibility of weaned pigs. Livest Prod Sci 2001;71:97–107.

Zanella I, Sakomura NK, Silversides FG, Fiqueirdo A, Pack M. Effect of enzyme supplementation of broiler diets based on corn and soybeans. Poult Sci 1999;78:561–8.

Zhang P, Zhang Q, Whistler RL. L-arabinose release from arabinoxylan and arabinogalactan under potential gastric acidities. Cereal Chem 2003;80:252–4.