DEVELOPMENT OF SIMULATION MODEL OF CENTRIFUGAL BLOWERS FOR GAS PUMPING UNIT TAKING INTO ACCOUNT BYPASS

After a thorough analysis of failures in the compressor stations that operate centrifugal blowers HT-16, which are the object of this research, it was found that a significant proportion of failures are the failures caused by surge phenomenon (25 %). One way to improve reliability is to introduce high-speed multi-parametric and fuzzy controllers in a system structure that will prevent a surge.

Gas dynamic characteristics of a centrifugal blower are approximated by regression model as a quintic polynomial. Characteristics of anti-blowing valve were approximated by a quintic polynomial, and characteristics of the actuator — derived from an active experiment, where rotation angle of the actuator output shaft was fixed by position sensor for abrupt change of the control signal. Moore-Greitzer model was used for describing of blower dynamics.

Based on the above parameters obtained from the studies, simulation model of centrifugal blower of compressor unit that synthesized in the software Matlab will make it possible to simulate surge phenomenon.

Based on the developed simulation model of automatic anti-surge control (ASC) system, multi-parametric and fuzzy controllers were synthesized. They were shown high rates of ASC speed.

Keywords: surge, centrifugal blower, simulation, anti-surge valve, control, speed.

References
1. Abed, E. H., Houpt, P. K., Hosny, W. M. (1993). Bifurcation Analysis of Surge and Rotating Stall in Axial Flow Compressors. Journal of Turbomachinery, Vol. 115, № 4, 817–824. doi:10.1115/1.2929320
2. Greaveldahl, J. T. (1998). Modeling and Control of surge and rotating stall in compressor. Trondheim: Norwegian University of Science and Technology, 152. Available: http://folk.ntnu.no/omgra/papers/thesis.pdf
3. Greitzer, E. (1976). Surging and rotating stall in axial compressors. Experimental results and comparison with theory. Energy systems and machines, 73–96.
4. Moore, F. K. (1984). A Theory of Rotating Stall of Multistage Axial Compressors: Part I — Small Disturbances. Journal of Engineering for Gas Turbines and Power, Vol. 106, № 3, 313–320. doi:10.1115/1.3242555
5. Moore, F. K., Greitzer, E. M. (1986). A Theory of Post-Stall Transients in Axial Compression Systems: Part I — Development of Equations. Journal of Engineering for Gas Turbines and Power, Vol. 108, № 1, 68–76. doi:10.1115/1.3259887
6. Greitzer, E. M. (1976). Surge and Rotating Stall in Axial Flow Compressors — Part I: Theoretical Compression System Model. Journal of Engineering for Power, Vol. 98, № 2, 190–198. doi:10.1111/1.3446138
7. Kozakiewicz, V. (1974). Self-oscillations (surge) in the compressors. Moscow: Mashinostroenie, 264.
8. Tsinbenko, M., Sadovoy, A., Volynsky, R. (2010). Mathematical models eliminate the surge in a centrifugal compressor. Bulletin of KSU n.e. M. Ostrohatsy, 4 (63), 167–169.
9. Sadovoy, A., Tsinbenko, M., Nagorny, D. (2014). Dynamic model of electronic electromagnetic system «centrifugal compressor — engine». Bulletin of NTU «KPI», 15 (1058), 134–140.
10. Wołanska, L. (2005). Dynamics loss of gas-dynamic resistance in the axial compressor. Bulletin of NAU, 3, 104–107.
11. Savchenko, E., Sidorets, A., Sidorets, I. (2009). Anti-surge control valve centrifugal blower natural gas. Bulletin of Sum SU, 4, 83–89.
12. Sementsov, G., Lagoya, A. (2014). Antisurge management of gas pumping units using polyvalent controllers. Eastern-European Journal Of Enterprise Technologies, 4(670), 34–39. doi:10.15387/1729-4061.2014.26260
13. Sementsov, G., Lagoya, A. (2015). Improvement optimal control of gas pumping units on the basis of multi regulators. Oil and Gas Energy, 1 (23), 61–68.

DEVELOPMENT OF A MODEL FOR IDENTIFYING AND FORECASTING THE HUMAN CONDITION AS THE MAIN INDICATOR OF SAFETY MONITORING SYSTEM IN THE ENTERPRISE

The article is focused on the development of new and improvement of existing mathematical models for identifying the human condition as the main safety indicators in the framework of an industrial enterprise. Existing models and methods for solving problems on safety are aimed at the formation and maintenance of accounting and reference documentation, and inadequate for solve the problem of quantitative monitoring, analysis, prediction and control of situations.

Safety protection in the workplace and the health preservation of employees is possible only at the account, control, analysis of their conditions and forecast of the changes in this during the labor process. Solution of these problems is possible only with the help of the information monitoring system covering the first level of the hierarchical management structure — the workplace, and implementing accounting, supervisory and regulatory system tasks, the results of which can be used for planning or regulation of safety on the object of management or its individual processes.

The proposed consideration of an employee condition is described by a set of parameters characterizing the activity of the organism. The use of this indicator in determining the employee condition and a change of condition under the joint influence of the complex of harmful factors will allow to realize the functional tasks of accounting, control and analysis of employee condition in the monitoring system that allows management decisions to ensure safety.

Use of the proposed models for condition determination under the joint impact of harmful factors on the human body make it possible according to set of quantitative parameters of body functioning:
— Determine the human conditions and predict changes in it.
— Take into account the initial condition of the employee.
— Take into account the change of condition under the influence of the complex of harmful factors.
— Take into account the possible effect of the combined effects of this complex.

Keywords: labor safety, complex of harmful factors, parameters of employee condition, monitoring system.

References
1. Bobrova-Golikova, L. P., Maltseva, O. M., Kohnova, N. A., Strokina, A. N. (1985). Ergonomika i bezopasnost’ truda. Moscow: Mashinostroenie, 112.
2. Dzundziruk, B. V. (1990). Osnovy bezopasnosti ergicheskikh sistem. Kyiv: UKM VO, 56.
3. Popovich, P. R., Guibinski, A. I., Kolesnikov, G. M. (1985). Ergonomicheskoe obshchestvene desiatel’nosti l’chovnogo. Moscow: Mashinostroenie, 272.
4. OHSAS 18001:2007. Sistema upravlenija gigienoi i bezopasnost’u truda. (2014). Konsultatsiono-metodicheskoe tsentr po sertifikat-s v sistemah ISO. Available: http://kons.sert-is0.ru/18001.html
5. DSTU OHSAS 18001-2010. Sistema upravlinnia hhihiienoiu ta bezpekoiu pratsi. (2014). DNAP — Zakonodavcha baza. Available: http://www.dnapa.com/html/34112/doc
6. Seria standartov ISO 9000. Standart ISO 9001, ISO 9000, ISO 90004 and duirige. (08.10.2011). INTERCERT-UKRAINE. Available: http://intercert.com.ua/articles/regulatory-documents/66-iso-9001
7. Seria standartov ISO 14000. (08.10.2011). INTERCERT-UKRAINE. Available: http://intercert.com.ua/articles/regulatory-documents/66-iso-9001
8. Serdyuk, N. (2013). Functional task of assessing the influence of harmful production factors on people. Eastern-European Journal Of Enterprise Technologies, 4(4(61)), 22–26. Available: http://journals.uran.ua/oejet/article/view/16334
9. Efremov, A. A. (2012). Kompleksnia otsenka uslovi truda prizvodstvennoho personala. Available: http://www.rusnauka.com/20_ DNN2012/Tecnic/13_114146.doc.htm
Management of repair and restore of the building objects is the object of this research. The main disadvantage of the object is a process management according to planned in advance, before the start, project network, which doesn’t take into account in the process of repairing and restoring the numerous effects of internal and external environments in the process of repair and restore that slowing and expensing the process and deteriorating the quality of its results. At the same time it is shown that repair and restore of the building structure is a mechanism always is their reengineering, has a unique and performed in conditions of significant restrictions on resources in all functional areas that makes this kind of activity as the project by definition and its management — project management. A reengineering management method for the building is developed. It is based on the project approach in resource-limited conditions. The method allowed to evaluate and predict the reengineering in terms of not only purely technological constraints, but also taking into account the turbulent environmental impact in all functional areas. A «REBUS» system for optimization and support of design decisions, as well as reducing the cost and timing of project work, was developed on the basis of the proposed method. It was implemented in Odessa «Geomoras» LTD (Ukraine) with the positive technical and economic effect. This effect was achieved by replacing an open-loop reengineering management (planned — realized) to the closed-loop (planned — realized under constant monitoring and intervention), which allowed to quickly predict, prevent and eliminate the consequences of all possible risks that accompany a real unique reengineering.

Keywords: reengineering in the building, project management, resource limits, functional areas.

References

1. Novitskii, N. I. (2004). Organizatsiya i planirovanie proizvodstva. Minsk: Novoe znanie, 256.
2. Tshevo, A. F., Vinniukova, M. A., Klimova, T. G., Karlikova, M. A. (2010). Upravlenie proektami: osnovy teorii i praktiki. Almaty: Akhr, 200.
3. Karenov, K. M. (2012). Teoreticheskie i metodicheskie osnovy optimizatsii setevykh modelей po vremenii. Vestnik KarGU. Available: http://artekiz.ru/content/3678. Last accessed: 11.06.2015.
4. Bushueva, N. S. (2007). Modeli i metody proaktivnogo upravleniya programmi iz organizatsionnogo razvitiya. Kyiv: Naukovi svit, 200.
5. Bushuev, S. D. (2015). Modeli i metody prosrizhninga upravleniya proektami. Upravlenie proektami ta prohramami orhanizatsiino rozvytku. Kyiv: Knyazh-Kaia, 200.
6. Nesterenko, S. A., Punich, D. A., Stanovskii, A. A., Monova, D. A. (2015). SAPR reengineering of mehanicheskikh sistem v eksploatacii. Suchumi tehnikh veshchey v mashinobudovani, 1 (23), 99–115.
7. Upravlenie kachestvom produktsii. Instrumenty i metody mezhimmonta kachestva. 5.4. Reinskhrining — metodologiya radikal’nogo ulechshenia. (2005). Bo’shinaia biblioteka. Available: http://libr­rary.ru/category38/book135/part41/. Last accessed: 25.09.2016.
8. Remont. (2016, May 4). Wikipedia. Available: http://ru.wikipedia.org/wiki/%D0%91%E5%EC%EE%ED%F2. Last accessed: 14.06.2015.
9. Appredid. (2014). Slovoborg. Available: http://slovoborg.su/defini­mion/aupravlenie.
10. Poslodovatel’nost’ proizvodstva rabot i vozvodenia zdanii. Tehnolog­iya vozvodenia zdanii i sooruzhenii. Avail­able: http://tvis.rz/gj/index2.html. Last accessed: 11.02.2013.
11. Bushuev, S. D. (2005). Razvitiie sistem znanii i tehnologii upravleniia proektami. Upravlenie proektami i programmi iz. 2, 20–25.
12. Rakodostrство k Stodu znanii po upravleniia proektami. Rakodostrство PMBOK®. Ed. 3 (2004). USA: Project Management Institute, 388.
13. Fleming, F. W., Hoppelman, J. M. (1996). Earned Value Project Management. N.Y. Project Management Institute, 141.
14. Vaisman, V. A., Gogunska, D. V., Rudenko, S. V. (2005). Formirovание struktuir organizatsionnogo upravleniya proektami. Avtomatika. Aktu­matizatsiya. Elektroteh­nikeskie kompleksy i sistemy (AAEKS), 1, 111–113.
15. Karenov, K. M. (2012). Teoreticheskie i metodicheskie osnovy optimizatsii setevykh modelей po vremenii. Vestnik KarGU. Available: http://ru.wikipedia.org/wiki/%D0%91%E5%EC%EE%ED%F2. Last accessed: 25.09.2016.
16. Indelicato, G. (2009). A guide to the project management body of knowledge (PMBOK® guide), fourth edition. Project Management Journal, Vol. 40, № 2, 104–104. doi:10.1002/pmj.20125
17. Bushuev, S. D., Bushueva, N. S., Zavarov, A. M. (2006). Modeli i metody strategicheskogo reinskhrininga bystrostrustushchikh organizatsii. Uprav­lenie proektami ta prohramami orhanizatsiino rozvytku, 1 (17), 5–13.
18. Flippborg, B., Bruzelius, N., Rotengatter, V. (2005). MegaproektY: istoria nedostroev, pereravok i prichii stratos VII. Moscow: Vershina, 207–219.
19. GOST 53778-2010. Zdaniia i sooruzheniia. Pravila obsledovaniia i monitoringa tehnicheskogo sostoianiia. Kodeks. Elektronnyi fond pravo­cii i normativno-tehnicheskoi dokumentatsii. Available: http:// docs.cntd.ru/document/gost-r-53778-2010
20. Kosko, B. (1994). Fuzzy systems as universal approximators. IEEE Transactions on Computers, Vol. 43, № 11, 1329–1333. doi:10.1109/12.34256
21. Kundasami, W. B. V., Smarnadachle, F. (2003). Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps. Xiquan Ed, Phoenix, 213.
22. Upravlenie po Ogranicheniiam. (30.03.2013). Available: http://slovoborg.su/defini­mion/aupravlenie.
23. Flipborg, B., Bruzelius, N., Rotengatter, V. (2005). MegaproektY: istoria nedostroev, pereravok i prichii stratos VII. Moscow: Vershina, 207–219.
24. GOST 53778-2010. Zdaniia i sooruzheniia. Pravila obsledovaniia i monitoringa tehnicheskogo sostoianiia. Kodeks. Elektronnyi fond pravocii i normativno-tehnicheskoi dokumentatsii. Available: http:// docs.cntd.ru/document/gost-r-53778-2010
25. Kosko, B. (1994). Fuzzy systems as universal approximators. IEEE Transactions on Computers, Vol. 43, № 11, 1329–1333. doi:10.1109/12.34256
26. Kundasami, W. B. V., Smarnadachle, F. (2003). Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps. Xiquan Ed, Phoenix, 213.
27. Upravlenie po Ogranicheniiam. (30.03.2013). Available: http://slovoborg.su/defini­mion/aupravlenie.
28. Monova, D. A., Perperi, A. A., Shvets, P. S. (2011). Kompleksnyi geneticheskiy algoritms. Odessa: Politekhnichnii Univerzitet. Pratsi, 1 (21), 176–180.
29. Shvets, P. S., Stanovskii, O. L., Monova, D. A. (2011). Metod kompleksnoho henetychnoho alhorytmu optymizatsii system z obied­
An elastic interaction of angular motion of the helicopter fuselage with the operating table panel is analyzed as the object of research. An urgent surgery for victim immediately after its delivery to the helicopter is made possible through three-axis stabilization of the operating table panel of mobile hospital in the vehicle, in particular, in the form of modular construction in a helicopter.

Functional content is based on the use of Petrov two-channel principle for formation of operating table structure that is invariant to external disturbances.

A mathematical model of mobile hospital is developed and construction accuracy of horizontal panel in a stochastic structure of the angular motion of the helicopter is evaluated. The values of mathematical expectation of the platform drift relative to the stabilization axes are defined. It is recommended to use differential two inertial sensors for angular motion of the helicopter is evaluated. The values of mathematical expectation of the horizontal panel in a stochastic structure of the external disturbances.

The research results can be used by medical services in conjunction with transport organizations responsible for the maintenance of mobile hospitals. Advantages of two-channel scheme for inertial sensors are in suppressing the influence of instantaneous values of external disturbances as a stochastic angular motion of the vehicle.

Keywords: three-axis gyroscopic platform, two-channel autocompensation, crosstalks, inertial sensor, gyroscope.

References
1. Mel’nick, V., Karachun, V., Shybetskij, V.; assignee: Mel’nick, V., Karachun, V., Shybetskij, V. (10.08.2015). Operatsiyini stil mobilnoho shyp’talu. Patent of Ukraine № 109393, MPK (2015.01). Appl. № a201411683. Filed 28.10.2014. Bull. № 15, 6.
2. Odintsov, A. A. (1971). Ob un’em shemi pogreshnostei integralnuiushchego giroskopa, vyzvyhnyh uglovymi kolebaniami osnovania. Izvestie vuzov. Prirodostroenie, Vol. XIV, № 2, 34–37.
3. Nazarov, B. I. (1963). O pogreshnosti girosistimlizatorov. Izvestie AN SSSR, OTN: Tsennicheskaia kibermetika, 2, 81–86.
4. Karachun, V. V., Mel’nick, V. N. (2012, July). Influence of diffraction effects on the inertial sensors of a gyroscopically stabilized platform: three-dimensional problem. International Applied Mechanics, Vol. 48, № 4, 458–464. doi:10.1007/s10778-012-0533-y
5. Karachun, V. V. (1988, November). Vibration of a plate under an acoustic load. Soviet Applied Mechanics, Vol. 24, № 11, 1110–1115. doi:10.1007/bf00889149
6. Karachun, V. V. (1990, October). Special features of the state of stress and strain of plates with finite dimensions under acoustic load. Strength of Materials, Vol. 22, № 10, 1512–1516. doi:10.1007/bf00767241
7. Mel’nick, V. N., Karachun, V. V. (2002). Some Aspects of the Gyroscopic Stabilization in Acoustic Fields. International Applied Mechanics, Vol. 38, № 7, 74–80. doi:10.1023/a:1015360094892
8. Barbour, N. M. (2010). Inertial Navigation Sensors. Report. Cambridge, 25. Available: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA581016
9. Nwe, T. T. et al. (2008). Application of an Inertial Navigation System to the Quad-rotor UAV using MEMS Sensors. Engineering and Technology, Vol. 42, 278–382.
10. Woodman, O. J. (2007). An introduction to inertial navigation. Technical Report № 696. Cambridge, 37. Available: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-696.pdf
11. Lee, Min, Hung, V. (2011). Indoor Navigation System for Handheld Devices. Worcester, 198.
12. Casinovi, G., Norouzpour-Shirazi, A., Dalal, M., Ayazi, F. (2016, April). Gyroscope sensing and self-calibration architecture based on signal phase shift. Sensors and Actuators A: Physical, Vol. 241, 1–11. doi:10.1016/j.sna.2016.01.045
13. Lłtiznci, I., Tajmar, M. (2015, September). Identification of error sources in high precision weight measurements of gyroscopes. Measurement, Vol. 73, 453–461. doi:10.1016/j.measurement.2015.05.034
14. Zhang, J., Jiang, J. (2007). Modelling of Rate Gyrosopes with Consideration of Faults. Fault Detection, Supervision and Safety of Technical Processes 2006. Elsevier BV, 168–173. doi:10.1016/b978-008044857-3/00294-7
15. McQueen, C., Nutbeam, T., Crombie, N., Lecky, F., Lawrence, T., Hathaway, K., Wheaton, S. (2015, July). Enhanced care team response to incidents involving major trauma at night: Are helicopters the answer? Injury, Vol. 46, № 7, 1262–1269. doi:10.1016/j.injury.2015.03.026
16. Foster, N. A., Ellenheim, D. M., Kelley, W. Jr., Brown, C. R., Foley, C., Scarborough, J. E., Vasele, S. N., Shapiro, M. L. (2014, July). Comparison of helicopter versus ground transport for the interfacility transport of isolated spinal injury. The Spine Journal, Vol. 14, № 7, 1147–1154. doi:10.1016/j.spinee.2013.07.478
17. Danilin, V. P. (1965). Girnokspicheskii pribor. Moscow: Vyysheia shkola, 539.
18. Zhel’ovich, S. M., Maltinsky, I. M., Okon, I. I., Ostromouh, Ya. G. (1976). Akustomesheniya instrumenta plyh pogreshnostii girostema. Leningrad: Sudstroenie, 255.
19. Ishlinskii, A. Yu. (1963). Mehanika girospicheskikh sistem. Moscow: AN SSSR, 362.
20. Besekersky, V. A., Fabrikant, E. A. (1968). Dinamicheskii sintez sistem girospicheskoi stabilizatsii. Leningrad: Sudstroenie, 387.
21. Molokonov, G. P. (1963). Primenenie shumovykh funktsii dla issledovaniia nelin’eini sistemy mechnichniu nonlineinoiveno. Izvestie AN SSSR, OTN: Tsennicheskaia kibermetika, 2, 31–37.

DEVELOPING OF ADAPTIVE MODEL PREDICTIVE CONTROL SYSTEM FOR HEAT TREATMENT OF IRON-ORE PELLETS WITH USING RECURSIVE LEAST SQUARE ALGORITHM FOR ONLINE PARAMETER ESTIMATION

The article discusses the problems of development of the system of adaptive predictive control of pellets heat treatment with online estimation of parameters of the process model. Due to non-stationarity in time of the process parameters caused by fluctuations of particle size distribution and fractional void of the layer, changes in the process equipment characteristics and the presence of noise in measurement channels, the existing automation systems of pellets heat treatment do not always allow to solve the problem of stabilization temperature profile in the pellets layer, as well as reduce the specific consumption of energy. To overcome these disadvantages the recursive least squares algorithm is proposed to use for estimating the parameters of process model which subsequently is the base for calculating the manipulated variable (the gas flow to the burner of the leading side of the indurating machine) with using the methods of Model Predictive Control theory that provides maintenance of a preset temperature regime of pellets indurating under conditions of uncontrolled disturbances. In accordance with the described approach it is suggested the variant of the structure of the system of adaptive predictive control of the temperature regime of pellets indurating in the separate gas-air chamber of indurating machine, and the simulation of this system was performed in Simulink package with the use of real data about the dependence of temperature in the heart of firing zone from gas consumption on the burner of leading side, which were obtained in a mode of passive experiment at the indurating machine OK-324 of JSC «Central GOK (ME)». The resulting system has demonstrated the high quality of the online estimation of parameters and sufficient convergence rate for conditions of pellets heat treatment. The obtained results allow us to recommend the developed method of formation of adaptive predictive control for automation of pellets heat treatment.

Keywords: adaptive model predictive control, heat treatment of iron-ore pellets, online parameter estimation, recursive least square algorithm.
APPLICATION OF NEURAL NETWORKS IN THE STATISTICAL SYSTEM OF ANALYSIS AND MONITORING OF TELECOMMUNICATION NETWORKS

page 35–41

In this paper, based on the analysis of practical use of telecommunication systems, the necessity of a broad and scientifically proven implementation of statistical methods of their analysis and monitoring on the basis of open flow information is determined.

A promising approach to processing of implicit knowledge forms is developed on the basis of the technology of neural structures. The architecture of neural networks allows to implement them using the technology of a high degree of integration. An effectiveness of using neural networks and their analog models is proved to solve the approximation problems of continuous functions of several variables and forecast of the processes that take place in telecommunication networks over the time.

The procedures for initial processing parameters of telecommunication network for use as input data to the neural network are proposed. The developed procedures allow a closer consider and analysis the dynamics of information flows circulating in networks and identify the characteristics of random sequences and implementation of neural networks allows to predict the network behavior depending on seasonality and trend.

Keywords: information and telecommunication network, intelligent technology, neuron, neural network, traffic.

References

1. Lukatskiy, A. V. (2003). Omlanazenie atak. St. Petersburg: BHV — Petersburg, 624. ISBN 5-94157-246-8.
2. Uskov, A. A., Kuzmin, A. V. (2004). Intellektualnye technologii upravleniya. Isskzestvennye neyronnye seti i nechetkaia logika. Moscow: Goriachka lineia — Telekom, 124.
3. Enikov, I. S., Retinskaya, I. V. (2004). Statisycheski analiz i monitoring nauchno-observativnykh internet-setei. Moscow: Finam i statistika, 320.
4. Artemenko, M. Yu., Berkman, L. N., Tolupa, S. V. (2007). Neironnye merneryi za rikh zastosuvanny v telekomunikatsiyah systemakh. Radiodekhinika, 134, 45–53.
5. Clerckx, B. (2013, May). Interference management in wireless networks: Practice and Theory. Eurecom, 50.
6. Kulchin, Y. N., Zakasovskaya, E. V. (2010, September). Optimizing algebraic and neural methods for information processing in distributed fiber-optical measuring systems. Optical Memory and Neural Networks, Vol. 19, № 3, 237–247. doi:10.3103/1060099210030057
7. Ohwari, Y., Miki, N., Abe, T., Nagata, S., Okumura, Y. (2011, March). Investigation on improvement in channel estimation accuracy using data signal muting in downlink coordinated multipoint transmission and reception in LTE-Advanced. Proceedings of the IEEE Wireless Communications and Networking Conference, Quimana-Boso, Mexico, 28-31 March, 2011. Institute of Electrical and Electronics Engineers (IEEE), 1288–1293. doi:10.1109/wcnc.2011.5779315
8. Schaaf, M., Wilke, G., Mikkola, T., Bunn, E., Hela, I., Wache, H., Gries, S. G. (2015). Towards a Timely Root Cause Analysis for Complex Situations in Large Scale Telecommunications Networks. Procedia Computer Science, Vol. 60, 160–169. doi:10.1016/j.procs.2015.08.115
9. Simeone, O., Somehk, O., Poor, H. V., Shamai (Shitz), S. (2009). Downlink Multicell Processing with Limited-Backhaul Capacity. EURASIP Journal on Advances in Signal Processing, Vol. 2009, 1–11. doi:10.1155/2009/848814
10. Zakasovskaya, E. V., Faddeev, V. V. (2007). Restoration of Point Influences by the Fiber-Optical Network in View of a Prior Information. SPIE Proc. APCOM, Vol. 6675.
11. Haykin, S. (2006). Neural Networks: A Comprehensive Foundation. Ed. 2. Translated from English. Moscow: Williams, 1104.

INFORMATION AND CONTROL SYSTEMS
Service quality of passenger transport services, which are the object of this research, has a complex structure, needs to formalize its structure and revealing of the principles of state evaluation of its compliance with the requirements of social and marketing customers.

To solve this problem it is offered to use SERVQUAL methodology, which confirmed its practical adaptability to evaluate the service quality in the field of consumer services. The basis of the proposed approach is the principle of service quality evaluation of urban passenger transport services through the perception of parameters of customer value by providing their compliance with social and marketing requirements of the passengers. The structure and the type of service quality performance of transport services are proposed on the basis of social and marketing criteria and their properties.

Service quality evaluation of transport services is realized by providing gap between the levels of its formation by determining the state of compliance of technical proposal with the necessary conditions for the formation of the consumer potential of transport services. It is established that the level of service quality of transport services greatly affects the level of technical proposal, which formed on the basis of its internal resource capabilities and organization of technological processes.

Keywords: service quality, transport services, urban public passenger transport services, social and marketing needs.

References

1. Alves, J. H. G. (2007, August 17). The quality of a passenger transport services — quantitative characteristic of one or more consumer properties of services that make up its quality. Transport Policy, Vol. 18, № 2, 318–325. doi:10.1016/j.tranpol.2010.09.003

2. Lai, W.-T., Chen, C.-F. (2011, March). Behavioral intentions of public transit passengers — The roles of service quality, perceived value, satisfaction and involvement. Transport Policy, Vol. 18, № 2, 318–325. doi:10.1016/j.tranpol.2010.09.003

3. Iscki, H., Taylor, B. (2010, September). Style versus Service? An Analysis of User Perceptions of Transit Stops and Stations. Journal of Public Transportation, Vol. 13, № 3, 23–48. doi:10.5038/2375-2901.13.3.2

4. Mahmoud, M., Hine, J., Kaspry, A. (2011). Bus Transit Service Quality Monitoring in UK. A Methodological Framework. Proceedings of the Irish Transport Research Network Conference; Vol. 31, 31–40.

5. Fedoskina, L. A. (2008). Metodika «SERVQUAL» ka element povyshenii innovatsionnoi aktivnosti v organizatsiakh sfery uslug. Kreativnaya ekonomika, 3 (15), 73–83.

6. Melnyk, T. S., Khryzstofor, O. V. (2011). Pokazyvnyx Becky pasazhirskskoho transportu v sistemi SERVQUAL ta kompleksni otsint konkurentsospromouznosti. Transportne systemi i tehnologii pererezok, 2, 69–73.

THE DEVELOPMENT OF METHODS TO IMPROVE PERFORMANCE OF THE LOGISTICS CHAIN WITHIN THE TRANSPORT AND LOGISTICS CLUSTER

The problems are irreversibly occurred during the transportation process. It is lead to loss of quantity, quality of the cargo and increase of the transportation time, so that the cargo «hangs» in the turnaround. The main disadvantage is the quality performance of the transport services — quantitative characteristic of one or more customer properties of services that make up its quality. Transportation quality is measured at the aggregate of characteristics that determine their suitability to meet the needs of consignors and consignees in the corresponding transportations. This disadvantage is associated with low functional performance of transport, such as maneuverability, low speed, ease of delivery and reception of the cargo, and closure of the service system, adaptability to customer requirements.

The research is focused on the development of measures to improve performance during the transportation process. A process chain analysis on the basis of risk analysis is applied in order to develop these activities. At the same time, a reliable criterion based on the functional parameters of the object is proposed to reduce the risks of action on the logistics chain. Its essence lies in the fact that the criterion shows the degree of reliability of the transport company, thus creating potential and information to determine transportation priorities (quantity/quality).

This method can be used to create a database for characteristics of the transport company.

Keywords: transport and logistics cluster, transportation process, cargo owner, reliability, process chain, cluster approach.

References

1. Drai, Draft Law of Ukraine «On Railway Transport of Ukraine» (2015, May 29). Ministry of Infrastructure of Ukraine. Available: http://mtu.gov.ua/news/200.html?PrintVersion

2. Waters, D. (2003). Logistics: An Introduction to Supply Chain Management. Palgrave Macmillan, 364.

3. Alechinsky, E., Mischeryakov, V., Lapushkin, I., Riabovol, E. (2013). Increasing of rail transport competitiveness by forming transportation and logistics clusters. Eastern-European Journal Of Enterprise Technologies, 3(365), 39–45. Available: http://journals.uran.ua/ejet/article/view/18500

4. Kuei, C. (2002, September). Supply Chain — Logistics Management.20021Bowserox, D.J., Closs, D.J. and Cooper, M.B.Supply Chain — Logistics Management. Irwin/McGraw-Hill, 2002.
This article focuses on the process of developing intelligent subsystem for reliability forecasting of discrete devices «FORECAST». Created system enables according to the physical characteristics to perform analysis of discrete device to predict the reliability of its work in time.

Reliability forecasting of the discrete devices taking into account interphase layer will allow without financial and time costs accurately answer the question about depending a reliability of discrete unit on area interphase layer formed by the interaction of two basic materials of discrete device element.

The disadvantage of created system can be considered a necessity of its setting for separate type of discrete device. Later, this disadvantage will be eliminated by creating libraries of parameters.

Software implementation of intelligent subsystem for reliability forecasting of discrete devices allowed to implement a method of forecasting technical condition of discrete device on the basis of proposed model by taking into account the physical properties of composite materials. Set of the reliability function values is obtained during the test of discrete device elements.

Verification of the results of intelligent subsystem for reliability forecasting «FORECAST» based on the physical condition of discrete devices is conducted to assess the working capacity of electronic control unit of the car system.

Accuracy of the results of the reliability values using the method of reliability forecasting of discrete devices based on modeling the degradation process of computer components is 7%.

The workers of technical section spent 5% more time to diagnostics by hardware maintenance compared with the time of application of intelligent subsystem for reliability forecasting «FORECAST».

References
1. Knipachev, P. I. (1977). Strukturnye tipy internetdistribsioneks soedinenii. Moscow: Nauka, 290.
2. Tareev, B. M. (1982). Fizika dielektricheskih materialov. Moscow: Energia, 320.
3. Kapur, K. C., Lamberson, L. R.; Translated from English: Kovaleiko, E. G.; In: Ushakov, I. A. (1980). Reliability in Engineering Design. Moscow: Mir, 604.
4. Gotra, Z. Yu., Nikolaev, I. M. (1978). Kontrol’ kachestva i nadezhnost’ mikroshemi. Moscow: Radio i sviaz, 168.
5. Kuts, Yu. V., Reutskiy, Ye. A., Sheberbak, L. M. (2011). Zadachi modelirovaniya i otsenyvki tekhnichnoho stanu enerhetychnykh i transportnykh ahrehativ tryvaloi ekspluatatsii. Kyiv, 159.
6. Kravchenko, O. (2015). Analiz logisticheskikh riskov na primere predpriyatiya ООО Liask-T. SCI-ARTICLE, 4. Available: http://sci-article.ru/stat.php?i=analiz_logisticheskikh_riskov_na_primere_predpriyatija_o_o_liask-t
7. Pantelev, A. V., Letova, T. A. (2008). Metody optimizatsii v primereh i zashchite Moskvy. Vysshaya shkola, 544.
8. Kustrin, S. V., Tabilov, A. V., Barkov, E. V., Poddubnyi, A. R. (1973). Ekonomiko-matematicheskie modeli v planirovaniy i upravleniy narodnym hoziaistvom. Kyiv: Vishcha shkola, 310.
9. Lushnikova, M. A. (2013, December). Analiz logisticheskikh riskov na primere predpriyatiya ООО Liask-T. SCI-ARTICLE, 4. Available: http://sci-article.ru/stat.php?i=analiz_logisticheskikh_riskov_na_primere_predpriyatija_o_o_liask-t
10. Enkina, E. G.; In: Ushakov, I. A. (1980).
11. Kravchenko, O. (2015). Reliability prediction of discrete devices by modeling the process of material degradation. Technology Audit And Production Reserves, 1(2(21)), 57–60. doi:10.15587/2312-8372.2015.37697
12. Shuizhenko, M. H., Yefremov, Yu. H., Tsybulko, V. Y., Deparna, O. V. (2016). Rosneft mobilnomu baloto/funkcionalnogo vymiruvno-dosluchynoho kompleksu nerynuvnoho kontroliu i otsenyk tekhnichnoho stanu enerhetychnykh i transportnykh ahrehativ tryvaloi ekspluatatsii. Tehnichnaya diagnostika i nerezhuvnoh khovalis kontroliu, 1, 32–38.
13. Kuts, Yu. V., Tabilov, A. V. (2012, August 31). Software of Information-Measurement System for Standardless Diagnostic of Composite Materials. International Journal of Software Engineering, 2, No. 3, 65–76. doi:10.5923/j.se.20120203.04
14. Lee, H., Cho, S. W., Yi, Y. (2016, December). Interfacial electronic structure for high performance organic devices. Current Applied Physics, Vol. 16, No. 12, 1533–1549. doi:10.1016/j.cap.2016.09.009
15. Natali, M., Kenny, J. M., Torre, L. (2016, December). Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review. Progress in Materials Science, Vol. 84, 192–275. doi:10.1016/j.pmatsci.2016.08.003
16. Li, S., Ren, Y., Biwas, P., Tse, S. D. (2016, January). Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics. Progress in Energy and Combustion Science, Vol. 55, 1–59. doi:10.1016/j.pecs.2016.04.002
17. Kheradmand, R., Aghdami, K. M., Talouneh, K. (2016, October). The switching of dark and bright soliton in 1D discrete cavity laser. Chaos, Solitons & Fractals, Vol. 91, 511–515. doi:10.1016/j.chaos.2016.07.005
18. Kheradmand, R., Aghdami, K. M., Talouneh, K. (2016, October). The switching of dark and bright soliton in 1D discrete cavity laser. Chaos, Solitons & Fractals, Vol. 88, No. 2, 372–382. doi:10.1016/j.chaos.2016.07.005
19. Dumas, J. M., Puang, J., LeMonelle, C., Boulaire, J. Y. (1983). Long Term Degradation of GaAs Power MESFET’s Induced by Surface Effects. 21st International Reliability Physics Symposium, Phoenix, Arizona, April 5–7, 1983. New York: Institute of Electrical and Electronics Engineers (IEEE), 226–228.
ENSURING A STABLE WIRELESS COMMUNICATION IN CYBER-PHYSICAL SYSTEMS WITH MOVING OBJECTS

page 58–64

The data transmission process in cyber-physical system (CFS) with wireless communication channels between cyber-physical objects (CFO) is studied in the article. In the presence of obstacles (mechanical and electromagnetic) zero direct visibility or exceeding the allowable distance between CFO (Wi-Fi communication modules of unmanned vehicles — UVM — and/or mobile devices) that need to share data, it is necessary to take measures to restore broken communication line or to stabilization of the data transmission rate.

The method for regularly radio situation overriding in CFS coverage area is proposed. The stability of wireless communication is achieved by changing energy and frequency characteristics of the communication line between CFO, as well as through the use of intermediate CFO as the signal transmitters. An algorithm for performing the specified settings depending on the model of used cyber-physical components, the distance between CFO and the delay of time interval is described. The full-scale experiment in the field using real hardware and software and with the presence of electromagnetic interference has been recreated to verify the algorithm. It is shown that for certain set of initial parameters, reducing a Wi-Fi module maximum power by 50% improves the quality of communication in almost 8 times.

Assessment of changes in the data transmission rate depending on the number of retransmissions is conducted. The stability performances of data transmission rate up to 90% are improved by transition of communication line to another frequency range with less interference and introduction of signal retransmission function using intermediate CFO.

The direction of future research is dependent on trends in the market of construction materials for UVM and computer components with built-in Wi-Fi communication modules.

Keywords: moving objects, stability of wireless communications, cyber-physical objects, computer components, Wi-Fi transmitting modules.

References

1. Melnyk, A. (2016). Cyber-Physical Systems Multilayer Platform and Research Framework. Advanced of Cyber-Physical Systems, Vol. 1, № 1, 1–6.
2. Musiyenko, M., Zhuravskaya, I., Burlachenko, I., Denysyov, O. (2016). The Principles of the Cyber-Physical Components’ Organization Based on the Methods of the Multi-Agent Interaction of the Moving Objects. Advanced of Cyber-Physical Systems, Vol. 1, № 1, 51–60.
3. Friese, L., Jenzen-Jones, N. R., Smallwood, M. (2016). Emerging Unmanned Threats: The use of commercially-available UAVs with armed non-state actors: Special Report № 2. Perth, Australia: Armament Research Services (ARES), 66. ISBN 978-0-9924624-7-5.
4. Single Chip IEEE 802.11a/b/g/n MAC/ Baseband/ Radio with Integrated Bluetooth® 4.0 + HS and FM Transceiver: Preliminary Data Sheet BCM4330. Available: http://www.realtek.com.tw/products/productsView.aspx?Conn=4&LangId=1&Level=5&PfId=48 &ProdId=277. Last accessed: 15.09.2016.
5. Effesip ESP8266, Qualcomm Atheros AR9331. Datasheet. Available: http://www.espressif.com/products/productsView.aspx?Conn=4&LangId=1&Level=5&PfId=48 &ProdId=277. Last accessed: 15.09.2016.
6. RaLink RT3290, RT3530. Fast Datasheets. Available: http://datasheet-pdf.com/PDF/. Last accessed: 15.09.2016.

IDENTIFICATION OF THE CONTEXT ELEMENTS OF KNOWLEDGE-INTENSIVE BUSINESS PROCESSES BASED ON THE LOG ANALYSIS

page 65–71

Knowledge-intensive business processes are studied. They are characterized by the direct influence of performer’s knowledge on the sequence of process execution. Performers use formalized personal knowledge for correcting of the process. Therefore, to increase the control effectiveness of knowledge-intensive business processes it is necessary to formalize the performer’s knowledge and include them in the process model. Relationship between the context elements and process actions is shown based on the analysis of business processes logs. Context elements are displayed in the log using the event attribute values, and that leads to the ability to highlight the links between the context and process. The method for extraction of context elements of knowledge-intensive business processes is proposed based on the log analysis. The method allows to identify context elements, change the values of which are associated with process activities. The method creates the conditions for increasing the efficiency of process control by inclusion of dependencies, which identified by analyzing the context elements, in the process model.

Keywords: knowledge-intensive business process, intelligent process analysis, process control.

References

1. Vom Brocke, J., Rosemann, M. (2015). Handbook on Business Process Management 1. Introduction, Methods, and Information Systems. Springer-Verlag Berlin Heidelberg, 709. doi:10.1007/978-3-642-45100-3
2. Van der Aalst, W. M. P. (2011). Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer Berlin Heidelberg, 532. doi:10.1007/978-3-642-19343-5
3. La Rosa, M., Dumus, M., ter Hofstede, A. H. M., Mendling, J. (2011, April). Configurable multi-perspective business process models. Information Systems, Vol. 36, № 2, 313–340. doi:10.1016/j.is.2010.07.001
4. Müller, D., Reichert, M., Herbst, J. (2007). Data-Driven Modeling and Coordination of Large Process Structures. On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS. Springer Science + Business Media, 131–149. doi:10.1007/978-3-540-70848-7_10
5. Cohn, D., Hull, R. (2009, September). Business artifacts: A data-centric approach to modeling business operations and processes. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, Vol. 32, № 3, 1–7.
6. Bhattacharya, K., Correll, N. S., Kumaran, S., Nigam, A., Wu, F. Y. (2007). Artifact-centered operational modeling: Lessons from customer engagements. IBM Systems Journal, Vol. 46, № 4, 703–721. doi:10.1147/sj.46.4.0703
IDENTIFICATION OF THE STANDBY INTERVALS IN THE BUSINESS PROCESSES BASED ON ANALYSIS OF THE SEQUENCE OF EVENTS

page 71–76

Business processes that share resources are studied. It is shown that reduction of control efficiency of these processes associated with waiting for access to shared resources. The necessary and sufficient conditions for the occurrence of standby intervals during the process execution are identified based on the study of business processes logs. A method for identifying standby intervals of process resources is proposed based on the attribute analysis, recorded in the event log, in the case that the number of available resource varies during process execution. The method allows to obtain association rules, which establish a change connection of the event attributes to the transition from the process action to the expectation interval. The inclusion of such rules in the business process model, which is obtained by the methods of process mining, allows to predict the emergence of delays in the process implementation. This method creates conditions for improving the process control efficiency by reducing delays in practice.

Keywords: business process, intelligent process analysis, process control, resources, expectation interval.

References

1. Weske, M. (2007). Business Process Management: Concepts, Languages, Architectures. Springer Berlin Heidelberg. doi:10.1007/978-3-540-73522-9
2. Maier, R., Remus, U. (2002). Defining process-oriented knowledge management strategies. Knowledge and Process Management, Vol. 9, № 2, 103–118. doi:10.1002/kpm.136
3. Van der Aalst, W. M. P. (2011). Process Mining in the Large: A Tutorial. Business Intelligence. Springer Science + Business Media, 33–76. doi:10.1007/978-3-642-17722-4_5
4. Bose, R. P. C., van der Aalst, W. M. P., Zliobaite, I., Pechenizkiy, M. (2011). Handling Concept Drift in Process Mining. Advanced Information Systems Engineering. Springer Berlin Heidelberg. doi:10.1007/978-3-642-19345-3
5. Gunther, C. W., Ma, S. R., Reichert, M., van der Aalst, W. M. P., Recker, J. (2008). Using process mining to learn from process changes in evolutionary systems. International Journal of Business Process Integration and Management, Vol. 3, № 1, 61–78. doi:10.1504/ijbpm.2008.019348