Role of the rain and macrophytes on temporal and spatial pattern of ichthyoplankton in the Caatinga Biome, Brazil

Papel da chuva e das macrófitas no padrão temporal e espacial do ictioplâncton no Bioma Caatinga, Brasil

DOI: 10.34188/bjaerv3n4-094

Received: 20/08/2020
Accepted for publication: 20/09/2020

Ana Karla Araujo Montenegro
Doutora em Ciências Biológicas pela Universidade Federal da Paraíba, Campus I, Centro de Ciências Exatas e da Natureza, Departamento de Sistemática e Ecologia. Centro Universitário AGES, Avenida Universitária, 23 - Parque das Palmeiras, Paripiranga - BA, Brasil.
E-mail: biokarla_21@hotmail.com

Maria Marcolina Lima Cardoso
Doutora em Ecologia pela Universidade Federal do Rio Grande do Norte, Brasil. Escola Estadual de Ensino Médio José Lins do Rêgo, R Horacio Trajano de Oliveira Cristo Redentor. João Pessoa - PB, Brasil.
E-mail: maria.marcolina.eco@gmail.com

Maria Cristina Basílio Crispim da Silva
Doutora em Ecologia e Biossistematização pela Universidade de Lisboa. Universidade Federal da Paraíba, Campus I, Centro de Ciências Exatas e da Natureza, Departamento de Sistemática e Ecologia. Laboratório de Ecologia Aquática. João Pessoa – PB, Brasil.
E-mail: ccrispim@hotmail.com

David Augusto Reynalte Tataje
Doutor em Ecologia de Ambientes Aquáticos Continentais pela Universidade Estadual de Maringá. Universidade Federal da Fronteira do Sul, Ciências Biológicas, Campus Cerro Largo, R. Jacob Haupenthal, 1580, Bloco A, Santo Antonio. Cerro Largo – RS – Brasil.
E-mail: reynalted@hotmail.com

ABSTRACT

Semiarid areas are characterized by extremes of flood and drought. The flood is one of the best predictors of fish reproduction, however semiarid areas such as the Caatinga Biome, Brazil, are affected by prolonged drought (9 months), during which the fish are confined on ponds and reservoirs after the intermittent river drying. The aims of this work were evaluate the role of environmental variables, such as rain and subsequent flood, on fish reproduction, by analyzing the density of eggs and larvae in an intermittent river and a reservoir of Caatinga; and identify the spawning and nursery areas, accessing the role of macrophytes for ichthyoplankton distribution. Two years of samples were made, in eight sample locations: one in the intermittent river, one in the reservoir inlet, two in the middle and two in the reservoir dam, all open areas; and two in macrophyte beds. Our results show that the rain is the main triggering factor of the reproduction for the large amount of fish species in Caatinga, but some opportunistic species have a continuous reproduction. The macrophyte beds have
a strong role as shelter for ichthyoplankton since that harbored the highest densities of eggs and larvae. These results provide important information for fish conservation in semiarid areas once anthropogenic impacts such as eutrophication and river transposition can reduce the macrophyte occurrence, which would affect the diversity and the production of important fish species of the region.

Keywords: Semiarid, reservoirs, intermittent rivers, freshwater fishes, eggs and larvae.

RESUMO

As áreas semiáridas são caracterizadas por extremos de enchentes e secas. A enchente é um dos melhores preditores da reprodução dos peixes, porém, áreas semiáridas como o Bioma Caatinga, Brasil, são afetadas por estiagem prolongada (9 meses), durante a qual os peixes ficam confinados em lagos e reservatórios, após a seca intermitente do rio. Os objetivos deste trabalho foram avaliar o papel de variáveis ambientais, como chuva e consequente inundação, na reprodução dos peixes, por meio da análise da densidade de ovos e larvas em um rio intermitente e um reservatório da Caatinga; e identificar as áreas de desova e berçário, avaliando o papel das macrófitas na distribuição do ictioplâncton. Foram realizados dois anos de amostragem, em oito pontos de amostragem: um no rio intermitente, um na entrada do reservatório, duas no meio e duas na barragem do reservatório, todas áreas abertas; e dois em bancos de macrófitas. Nossos resultados mostram que a chuva é o principal fator desencadeante da reprodução para a grande quantidade de espécies de peixes da Caatinga, mas algumas espécies oportunistas apresentam reprodução contínua. Os bancos de macrófitas têm um papel importante como abrigo para o ictioplâncton, uma vez que comportavam as maiores densidades de ovos e larvas. Esses resultados fornecem informações importantes para a conservação de peixes em áreas semiáridas, uma vez que impactos antrópicos como eutrofização e transposição de rios podem reduzir a ocorrência de macrófitas, o que afetaria a diversidade e a produção de importantes espécies de peixes da região.

Palavras-chaves: Semiárido, reservatórios, rios intermitentes, peixes de água doce, ovos e larvas.

1 INTRODUCTION

Temporal and spatial pattern of fish reproduction has been broadly evaluated for floodplains and permanent rivers reporting the important role of flooding and water speed (Lowe-McConnell 1987; Turner et al 1994; Vazzoler 1996; Höök et al 2001; Grenouillet and Pont 2001; Bialetzki et al 2002; Ochoa-Orrego et al 2015), as well as the role of resource availability and shelter for ichthyoplankton distribution (Junk et al 1989; Turner et al 1994; Martin and Paller 2007; Reynalte-Tataje et al 2012). However, the spatial and temporal distribution of fish larvae on tropical semiarid areas with intermittent rivers are still poorly understood.

Extremes of flood and drought characterize the semiarid areas, where an ample amount of water bodies is intermittent. The events of flood with the rivers run, and drought confining the biota into temporary ponds can have strong influence on reproductive patterns of fishes. Previous studies in arid and semiarid areas report two possible scenarios for fish reproduction: the flood triggering the reproduction and the low flow recruitment (Humphries et al 1999; Pease et al 2006; Balcombe et al 2007). Balcombe et al. (2007) show that some fish have a seasonal pattern of reproduction responding
to flow events, while other fishes reproduces on low-flow seasons. Alkins-koo (2000) and Maltchik and Medeiros (2006) discussed the activation of fish reproduction by flooding in intermittent rivers and the subsequent role of temporary ponds as breeding sites for fishes after drying of the rivers (Alkins-koo 2000; Maltchik and Medeiros 2006). During the dry season, the biota is confined to the temporary ponds with high availability of autochthonous resources like plankton and periphyton, providing good conditions for fish growth and reproduction (Alkins-koo 2000). Rainy season, otherwise, favors migratory fishes that depend on the water flow to reproduce.

The Caatinga Biome is a semiarid area located in northeastern Brazil in which most of the rivers dry up completely after the short rainy season (Maltchik and Medeiros 2006). The fish fauna is adapted to the drastic changes once the population dynamic and diversity seems to be driven by the hydrological regime (Medeiros and Maltchik 2001; Maltchik and Medeiros 2006). However, because of the dense human population in the semiarid, the construction of dams becomes an important strategy to ensure the water supply (Gurgel and Fernando 1994). The river dams has been a problem reported for many systems because can disrupt the migration patterns of several species of fishes (Agostinho et al 2004; Suzuki et al 2011; Fitzgeral et al., 2018), even relocating the spawning and nursery areas (Álvares et al 2017), since, recruitment depends heavily on the integrity of these environments (Andrade et al., 2014). On the other hand, given the intermittent nature of the rivers and the importance of the small ponds to sustain fish population (Alkins-koo 2000; Medeiros and Maltchik 2001), the dams on northeastern semiarid areas of Brazil may constitute an important shelter, at least, for non-migratory fishes.

Studies of fish spawning and conditions that favors the breeding in water bodies of the semiarid areas are scarce, and this is the first work to report the temporal and spatial pattern of ichthyoplankton in Caatinga. The aims of this paper is to evaluate the importance of environmental variables on temporal pattern of ichthyoplankton, and identify the spawning and nursery areas of fishes on Caatinga paying special attention for the reservoir and macrophyte as lentic areas with high availability of food, investigating the implications for conservation and management practices. So, we made samples in a intermitant river and a reservoir in Caatinga during two years, covering two periods of both rain and drought in eight sample locations.

2 MATERIAL AND METHODS

The study was performed on Taperoá River sub-basin, located on the semiarid area of Caatinga Biome, northeastern Brazil. This semiarid area has the lowest annual rainfall index of Brazil (a maximum of 400 and 800 mm), and the short rainy season lasts three or four months, in contrast with the long dry season (eight or nine months) (Maltchik and Medeiros 2006) in which most of the
rivers dry completely. The Taperoá II dam is part of the Taperoá River basin, located in the State of Paraíba (07°11'44" S and 07°13'44" S and 36°52'03" W and 36°50'09" W). The reservoir has a maximum capacity of water accumulation of 15,148,900 m³, with a maximum depth of 5.7 m and mean of 3.3 m.

The samples were performed semimonthly in the intermittent Taperoá river and in the Taperoá II dam during July 2009 to May 2011. We divided the sample stations in five areas related to placement and macrophyte presence. Four areas without macrophyte: river (P1); transition (P2 - a semi-lotic area in the reservoir inlet); middle of reservoir (P3 and 4); and, the reservoir dam (P5 and P6); and two areas with macrophyte beds, at the middle (P3M) and reservoir dam (P5M) (Fig. 1).

Fig. 1 Taperoá intermittent river and Taperoá II reservoir, semiarid area of Brazil. Sample points: P1 - Taperoá river; P2 – beginning of reservoir (transition area); P3-P6 open areas of reservoir; P3M and P5M – macrophytes beds

The ichthyoplankton were collected using a drift net and a rectangular net of 1.5 x 1.0 m, both of 500 μm mesh size. In the river, the drift net were anchored to the stream and rested for 10 minutes. Horizontal hauls of 10 minutes using the drift net were made on open water of the reservoir. The water speed was measured by a flowmeter for the calculation of filtered volume (Filtered volume = area x number of flowmeter rotation x calibration factor). The rectangular net was used in macrophyte beds inserting it below the macrophyte. As the movement performed describe an area of 1/8 of a cylinder, based on the radius (R) equal to the minor lateral and height (h) equal to the greater side of
the net, the sample volume (v) can be estimated following \(V = \frac{1}{8} \times h \pi R^2 \). The water volume filtered by the drift net and by the rectangular net was standardized on larvae or eggs by 10m³.

The eggs and larvae were identified by stages following Ahlstrom and Ball (1954), Kendall et al (1984) and Nakatani et al (2001). Stages of eggs: early cleavage (EC); early embryo (EE); free tail (FT); embryo end (EEnd). Larval stages: larval yolk (LY); pre-flexion (Pre-F); flexion (F); post-flexion (Post-F).

At each sample site was measured the water temperature, pH, electrical conductivity, dissolved oxygen, depth, nitrite, nitrate, ammonia, phosphate, chlorophyll-\(\alpha \) and zooplankton. Also, water volume and monthly precipitation were used. The colorimetric method was performed for nitrite (Eaton et al 1997); Nitrate by the cadmium reduction column (Eaton et al 1998); Ammonia by the phenol method (Eaton et al 1998); Total phosphorous was analyzed by ascorbic acid method after persulphate digestion (Eaton et al 1998). For chlorophyll-\(\alpha \), the samples were filtered in glass microfiber filter GF/C Whatman and the pigment were extracted with 90\% acetone during 24 hours (Lorenzen 1967; Lorenzen and Downs 1986). The zooplankton was preserved with a 4\% formalin saturated with sugar (Haney and Hall 1973), and was counted and identified to species or genus level with subsamples of 1ml in a Sedwick-Rafter chamber. Density was calculated by the mean of subsamples multiplied by the sample volume and divided by the filtered volume in the field.

2.1 DATA ANALYSIS

Non-parametric tests were chosen due to the high frequency of zero values of ichthyoplankton. Spearman correlation tests were performed considering physical, chemical and biological parameters and ichthyoplankton density. A glm with binomial function was used to know the main predictors of ichthyoplankton density, and the model averaging was chosen for model selection with Akaike’s information criterion (AIC). The model averaging calculates the weighted average of parameter estimates from the candidate models (Burnham and Anderson 2002). Only predictors of best models (ΔAIC<2) were used for model-averaging of estimates. Predictors variables were standardized before analysis.

A Permutation Multivariate Analysis of Variance (PERMANOVA) was used to examine the effect of habitat (open or macrophyte) and sample location (river, inlet, middle and reservoir dam) over ichthyoplankton density and predictors variables. A correspondence analysis was used to look for a spatial pattern of distribution of eggs and larval stages. To test if larval species had a heterogeneous distribution we used chi-squared test. All the analysis was performed with R software (R DEVELOPMENT CORE TEAM, 2011).
3 RESULTS

We identify 244 larvae into 13 taxa, *Apareiodon davisi* (Fowler, 1941), *Astronotus ocellatus* (Agassiz, 1831), *Astyanax bimaculatus* (Linnaeus, 1758), *Astyanax fasciatus* (Cuvier, 1819), *Characidium bimaculatum* (Fowler, 1941), *Hoplias malabaricus* (Bloch, 1794), *Leporinus piau* (Fowler, 1941), *Prochilodus brevis* (Seindachner, 1875), *Psectrogaster rhomboides* (Eigenmann & Eigenmann, 1889), *Steindachnerina notonota* (Miranda-Ribeiro, 1937), and non-identified species of Characiformes, Characidae and Hypoptopomatinae.

3.1 TEMPORAL PATTERN

The highest catches of total larvae were observed on rainy periods, showing a significant correlation with precipitation ($r=0.83$, $p<0.01$; Fig. 2a). However, total eggs did not show any significant relationship with precipitation ($r=0.37$, $p=0.22$). The highest eggs density took place shortly after the rain (Fig. 2a). Eight of the 13 taxa found had a significant correlation with precipitation (*P. rhomboides*, $r=0.59$; *P. brevis*, $r=0.83$; *L. piau*, $r=0.82$; *H. malabaricus*, $r=0.56$; *C. bimaculatum*, 0.55; *A. fasciatus*, $r=0.68$; Non-identified Characidae, $r=0.67$; Non-identified Characiforme, $r=0.75$) (Fig. 2b). Precipitation was among the best predictors for total larval density, and for larvae of *H. malabaricus*, *L. piau*, *P. brevis* and *P. rhomboides* (Table 1). Also, phosphate, pH and chl-a were important predictors for total larvae. Only temperature was important for total eggs density, showing that high eggs densities were caught on lower temperatures. Further, temperature was important for *H. malabaricus* and *A. fasciatus*. The density of *L. piau* and *P. brevis* also increased with water volume and zooplankton density. In addition, phosphate was a predictor for *H. malabaricus* and *P. rhomboides*.
Fig. 2 a) Precipitation and abundance of total larvae (open triangle) and eggs of fish (filled square); b) Abundance of larval species in the Taperoá River and Taperoá II Reservoir in the Bioma Caatinga, Brazil. *A. bimaculatus* (open square); *A. fasciatus* (open triangle); *L. piau* (open diamond); *S. notonota* (open circle); *H. malabaricus* (filled square); *P. rhomboids* (filled triangle); *P. brevis* (filled diamond); *A. oscelattus* (cross); *A. davisi* (plus); *C. bimaculatum* (star); non-identified Hypoptomatinae (filled circle); non-identified Characidae (grey square); non-identified Characiforme (grey circle).
Table 1 Parameter estimates by the model-averaged standardized regression for the temporal relationship among eggs and larval densities and environment variables. Only predictors of best models (AIC<2) were used for model-averaging of estimates. Absence of estimates means non-important variable.

Parameter estimates	Precip.	Water Vol.	DO	Temp.	pH	Depth	Phosph.	Ammonia	Nitrite
Larvae	0.701	-	-	0.062	-0.498	-	-	-	-
Eggs	-	-	-	-	-	-0.372	-	-	-
A. davisi	-	-	-	-	-	-	-	-	-
A. oscelatus	-	-	-	-	-	-	-	-	-
A. bimaculatus	-	-	-	-	-	-	-	-	-
A. fasciatus	-	-	-	-	-	-0.338	-1.227	-	-
S. notonota	-	-	-	-	-	-	-	-	-
C. bimaculatum	-	-	-	-	-	-	-	-	-
H. malabaricus	31.751	-24.43	-	51.821	-	79.468	-	-	-
L. piau	1.885	2.277	-	-	-	-	-	-	-
P. brevis	2.069	3.516	-	-	-	-	-	-	-
P. rhomboides	1.851	-	-	-	-	-	1.462	-	-
NI Hypoptomatinae	-	-	-	-	-	-	-	-	-
NI Characidae	-	-	-	-	-	-	-	-	-
NI Characiformes	-	-	-	-	-	-	-	-	-

3.2 SPATIAL PATTERN

The density of total larvae and eggs were influenced by habitat type (macrophyte banks, open water lentic, open water lotic), but did not vary in relation to sample position (river, inlet, middle and reservoir dam) (PERMANOVA results on Table 2). A marginal interaction was found among habitat type and sample position for eggs density. Higher densities of larvae and eggs occur in the macrophyte beds and lower densities in the open areas, regardless if they are lentic areas of reservoir or in the river (Fig. 3). The limnetic areas in the middle and reservoir dam had the lowest densities.

Table 2 Permanova results for effects of sample location and habitat type

Location	Habitat	Location x habitat				
F	P	F	P	F	P	
Ichtyoplankton						
Eggs density	0.948	0.452	2.797	0.024***	3.666	0.081*
Larval density	0.415	0.736	7.137	0.003***	0.576	0.801
Environmental variables						
Dissolved oxygen	1.770	0.170	0.089	0.762	0.268	0.606
pH	0.335	0.801	0.111	0.746	0.439	0.507
Depth	22.438	0.000***	7.568	0.007***	0.082	0.780
Electric conductivity	0.946	0.425	0.054	0.812	0.167	0.675
Temperature	0.185	0.903	0.049	0.825	0.022	0.884
Zooplankton	0.856	0.441	0.281	0.644	0.108	0.761
Chlorophyll-a	0.464	0.719	0.638	0.433	0.031	0.862
Nitrite	1.438	0.229	0.590	0.453	0.116	0.729
Nitrate	3.380	0.030***	0.071	0.794	0.405	0.524
Ammonia	0.124	0.960	0.143	0.709	0.254	0.625
Phosphorous	1.573	0.195	0.318	0.577	0.001	0.973

***p<0.01; **p<0.05; * p<0.10
Fig. 3 Spatial variation of ichthyoplankton along Taperoá II reservoir, Paraíba, Brazil. P1 - Taperoá river; P2 – beginning of reservoir (transition area); P3-P4 – middle of reservoir; P5 and P6 reservoir dam; MB(P3) and MB(P5) macrophytes beds. Each bar represent the mean and standard deviation of larvae and eggs densities along all the studied years.

Only depth and nitrate were significant different among sample areas (Table 2). However, solely depth shows a negative correlation with eggs (Spearman r=-0.52, p<0.01) and a marginal relation with larvae (Spearman r=-0.38, p=0.06).

The correspondence analysis to test the distribution of larval and eggs stages along the reservoir shows that the early stage of eggs (early cleavage) was primarily associated to samples in the river, while early embryo stage was found in inlet, middle and macrophyte beds, and free tail associated to the reservoir dam (Fig. 4a). A similar pattern occurred for larval stages. Larval yolk were associated to river, pre-flexion to the inlet and middle of reservoir, flexion to the dam, and post-flexion larval stages at macrophyte beds (Fig. 4b).
The river and reservoir inlet showed the highest number of species (12 species). Nine species were found in the middle of reservoir and macrophyte bed, and five species in the reservoir dam (Fig. 5). The most abundant species were *A. bimaculatus*, *A. fasciatus* e *C. bimaculatum*. The main species found in macrophytes were *P. brevis*, *L. piau*, *A. ocellatus*, *A. bimaculatus*, *A. fasciatus* e *C. bimaculatum*. While, *H. malabaricus* and Hypoptomatinae exhibit the highest abundance in river and
inlet samples. A chi-square test showed that the most abundant species had heterogeneous distribution in the sample areas (A. bimaculatus \(\chi^2 = 61.13; \) g.l. = 7; \(p < 0.01 \)), A. fasciatus \(\chi^2 = 40.00; \) g.l. = 7; \(p < 0.01 \) and L. piau \(\chi^2 = 27.14; \) g.l. = 7; \(p < 0.01 \)).

Fig. 5 Relative abundance of larval species in the semiarid intermittent Taperoá river and Taperoá II reservoir (inlet, middle, reservoir dam and macrophyte beds), Brazil. Ad, A. davisii; Ao, A. ocellatus; Ab, A. bimaculatus; Af, A. fasciatus; Cb, C. bimaculatum; Hm, H. malabaricus; Lp, L. piau; Pb, P. brevis; Pho, P. rhomboides; Sn, S. notonota; Hy, non-identified Hypopominae; Ch, non-identified Characidae; Cf, non-identified Characiforme

4 **DISCUSSION**

In the Caatinga, the reproductive response to the rain suggests that semiarid fishes have a similar reproductive pattern as fishes in other tropical areas (Alkins-koo 2000; Castro et al 2002; Suzuki et al 2009; Reynalte-Tataje et al 2012; Pareja-Carmona et al 2014; Dourado et al 2017; Chaves et al 2017; Zacardi et al 2017), as highest densities of larvae occur on rainy months and densities of eggs just after the rainy. Balcombe et al (2007), studying the relationship of fish larvae in an arid zone of Australia, shows that the spawning of some species occurred even before the flood, which provides better habitat conditions and food for ichthyoplankton. In our study, we cannot infer the exact moment of fishes spawning, but the increase in larval density and the highest eggs density after rainy indicates a possible role of rainy trigging the fish reproduction.

The increase in water volume by the rainfall expands the habitat and decreases the crowding and the predation pressure (Alkins-koo 2000), but also, increases the foraging area and the availability of allochthonous resources (Agostinho et al. 2004). During dry season, the reduction of water volume in ponds or reservoirs causes the nutrient concentration and increase autochthonous resources like algae and invertebrates. As large amount of tropical fish are omnivorous (Lowe-McConnell 1987;
González-Bergonzoni et al. (2012), they can be opportunistic and benefit in both seasons. Although most of the species have shown a significant correlation with the rain, the selection of models showed that rain was a decisive factor for only four species, among them three are migratory (L. piau, P. brevis and P. rhomboïdes) that depends of water flow to reproduce. Other species, such as the omnivorous A. bimaculatus, A. fasciatus and the non-identified Characiforms showed a less clear pattern of response to rain, and seems to have parcelled spawning throughout the year. The multiple spawning is an important behavior for small species like the above, which are susceptible to strong predation (Winemiller 1989). The multiple spawning reduces the generation time and the investment per offspring, but allow a constant input of new individuals in the system, comprising r-selection proposed by (Pianka 1970). Therefore, our results do not seem indicate a reproductive pattern related to low-flow events, but correspond to seasonal patterns linked to rain or the opportunistic strategies of continuous reproduction related to evolutionary life-history traits.

The macrophyte presence and low depth seems to provide the best conditions for fish eggs and larvae. According to Reynalte-Tataje et al. (2008), breeding sites of fish larvae may be permanent or temporary habitat, however, it provides favorable conditions for the development of a particular species. This development and even the survival of the larvae of different species are affected by water temperature, pH, dissolved oxygen concentration, interactions with other organisms and mainly the water velocity, food availability and the predation. However, our study demonstrate that chemical and biological variables play a little role on the ichthyoplankton spatial distribution, except the depth, once the highest densities of eggs and larvae are in the low depth areas with macrophyte.

The presence of macrophyte was the determining factor for the spatial distribution of the ichthyoplankton, where the larger densities of eggs and larvae were found. The initial stages of the fishes are critical due to high susceptibility to predation and the need for easily available food resources for growth. In this way, the macrophyte provide shelter and food resource to increase the habitat heterogeneity for young fishes (Fischer and Eckmann 1997; Grenouillet and Pont 2001; Sánchez-Botero et al. 2007). We did not detect a significant correlation of food resource (zooplankton and phytoplankton) with total larval and eggs density, once no difference among sample locations was found for these resources. However, it may indicate a large role of macrophyte as shelter for initial stages of fishes.

Because macrophyte increase the habitat complexity, species richness are commonly increased in macrophyte beds (Petry et al. 2003). However, although our results show that the macrophyte beds have the highest larvae and eggs densities, they do not indicate a trend toward the greater number of species, once other areas also account for a high number of species (maximum of 10 species in macrophyte bed and open areas, and 12 species on the river). The similarity between
the number of species inside and outside of the macrophyte indicates that species occupy the entire area of the reservoir, although they are found mainly in macrophyte. The macrophyte provide shelter also for larvae of migratory fishes like *Prochilodus brevis* and *Leporinus piau*. Although, the construction of reservoir interrupts the river course, our results shows that the migratory species reproduce when the river flows and macrophyte serve as a nursery site for these species.

The river flow is one of the main processes on the transport of fish larvae leading the larvae from higher portions of rivers to the nursery sites (Nakatani et al 1997; Araújo-lima and Oliveira 1998; Silva et al 2011; Lima et al 2013; Ponte et al 2017; Mounic-Silva et al 2019). The results show a gradient of development stages from the river to the dam and macrophyte beds. Most of the early larval and eggs stages (early cleavage of eggs and larval yolk) were found in the river, while late stages of eggs (free tail, embryo end of eggs, and pre-flexion, flexion and post-flexion) were found along the reservoir (from the middle to the dam). The longitudinal gradient of development stages can demonstrate the importance of river flow for the fish spawning. The presence of early eggs stages in lotic areas and larvae in lentic areas or in macrophyte have well been demonstrated by Bialetzki et al (2002), Baumgartner et al (1997) on floodplain and e Ávila-Simás et al (2014). Despite of this, in our study the highest amount of eggs and larvae were found in macrophyte beds, but, early eggs and larval stages tended to occur more in the river and inlet while larval stages were found in the middle and in the reservoir dam.

Our results demonstrate that fish reproduction in tropical semiarid areas is strongly driven by the rainfall, and that the macrophyte beds in reservoirs play a major role on the sustainability of fish community, providing data for environmental policies of semiarid rivers and reservoirs. Although our work have not been able to perform collections in temporary ponds, our results indicate the role of reservoirs and the importance of protecting the macrophyte beds for the permanence of fish species in Caatinga. In this semiarid area, a river transposition, for permanent waters, is coming soon, so the lack of high and low waters can produce a negative impact in fish reproduction, since water flow regime is one of the most important clues to induce reproduction in fish species. Still, the river transposition can keep the water quality more homogeneous and lead a lack of macrophyte, since several macrophyte species only occur during low water volume period of the reservoir. The monitoring of fish reproduction must be conducted in order to register the presence or not of these impacts.

In addition, the eutrophication is an important way of macrophyte reduction in shallow lakes (Scheffer et al 1993; Scheffer and Jeppesen 2007). The absence of macrophyte can promote huge implications for fish diversity and fishery sustainability of semiarid. Important fish species for local human population like *Prochilodus brevis* and *Leporinus piau* can be doubly affected by the human
actions of river dams and macrophyte reductions. Also, changes in fish community driven by the presence or absence of macrophyte may lead to changes on trophic structure of semiarid reservoirs. Further comparative studies about water bodies in semiarid areas with different macrophyte coverage could clarify the macrophyte role on the fish spatial and temporal dynamic.

ACKNOWLEDGMENTS
We thank PELD/Caatinga – CNPq, for financially supporting the project, UFPB for infrastructure and CNPq for providing a PhD scholarship to Ana Karla Araujo Montenegro.

REFERENCES
Agostinho AA, Gomes LC, Veríssimo S, Okada EK (2004) Flood regime, dam regulation and fish in the Upper Parana assemblage attributes, reproduction and recruitment. Rev Fish Biol Fish 14:11–19

Ahlstrom E, Ball O (1954) Description of eggs and larvae of jack mackerel (Trachurus symmetricus) and distribution and abundance of larvae in 1950 and 1951. Fish Bull 56:209–245

Alkins-koo M (2000) Reproductive timing of fishes in a tropical intermittent stream. Environ Biol Fishes 57:49–66

Álvarez, A.; Garrido, G.; Balatti, C. A estrutura do Ictioplâncton durante diferentes fases de enchimento no Reservatório Yacyretá (Argentina). Revista Bioika, Edição 1, 2017.

Andrade, F.F; Makrakis, M.C; Lima.A.F.de; Assumpção, L de; Makrakis, S; Pini, S.F.R. Desenvolvimento embrionário, larval e juvenil de Hemisorubim platyrhynchos (Siluriformes, Pimelodidae) da bacia do rio Paraná. Rev. Iheringia, Série Zoologia 104(1):70-80, 2014.

Ávila-Simas, S.; Reynalte-Tataje, D. A.; Zaniboni-Filho, E. Pools and rapids as spawning and nursery areas for fish in a river stretch without floodplains. Neotropical Ichthyology, vol. 12, n. 3, p. 611-622, 2014.

Araújo-lima CA, Oliveira E (1998) Transport of larval fish in the Amazon. J Fish Biol 53:297–306

Balcombe SR, Bunn SE, Arthington a. H, et al (2007) Fish larvae, growth and biomass relationships in an Australian arid zone river: links between floodplains and waterholes. Freshw Biol 52:2385–2398. doi: 10.1111/j.1365-2427.2007.01855.x

Baumgartner G, Nakatani K, Cavicchioli M, Baumgartner M (1997) Some aspects of the ecology of fish larva in the floodplain of high Paraná River, Brazil. Brazilian J Zool 15:551–563

Bialetzki a, Nakatani K, Sanches P V, Baumgartner G (2002) Spatial and temporal distribution of larvae and juveniles of Hoplias aff. malabaricus (Characiformes, Erythrinidae) in the Upper Paraná River floodplain, Brazil. Braz J Biol 62:211–22
Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information - theoretic approach, 2nd edn. 488p.

Castro RJ, Nakatani K, Bialetzki A, et al (2002) Temporal distribution and composition of the ichthyoplankton from Leopoldo’s Inlet on the Upper Paraná River floodplain (Brazil). J Zool Lond 256:437–443. doi: 10.1017/S095283690200047X

Chaves, C. S.; Carvalho, J. S.; Ponte, S. C. S.; Ferreira, L. C.; Zacardi, D. M. Distribuição de larvas de Pimelodidae (Pisces, Siluriformes) no trecho inferior do Rio Amazonas, Santarém, Pará. Scientia Amazonia, v. 6, n. 1, 19-30, 2017.

Dourado, E. C. S.; Castro, A. C. L.; Sousa, O. V.; Izquierdo, R. C. Composição taxonômica e abundância do ictioplâncton do Baixo Itapecuru (Maranhão, Brasil). Revista Espacios, vol. 38, n. 41, 2017.

Eaton A, Greenberg A, Clecseri L (1997) Standard Methods for the Examination of Water and Wastewater, 17th edn. Washington, DC

Fischer P, Eckmann R (1997) Spatial distribution of littoral fish species in a large European lake, Lake Constance, Germany. Arch für Hydrobiol 140:91–116.

Fitzgerald, D.B., Perez, M.H.S., Sousa, L.M., Gonçalves, A.P., Py-daniel, L.R., Lujan, N.K., … Lundberg, J.G. (2018). Diversity and community structure of rapids-dwelling fishes of the Xingu River: Implications for conservation amid large-scale hydroelectric development. Biological Conservation, 222, 104–112. https://doi.org/10.1016/j.biocon.2018.04.002

González-Bergonzoni I, Meerhoff M, Davidson T a., et al (2012) Meta-analysis Shows a Consistent and Strong Latitudinal Pattern in Fish Omnivory Across Ecosystems. Ecosystems 15:492–503. doi: 10.1007/s10021-012-9524-4

Grenouillet G, Pont D (2001) Juvenile fishes in macrophyte beds: influence of food resources, habitat structure and body size. J Fish Biol 59:939–959. doi: 10.1006/jfbi.2001.1707

Gurgel J, Fernando C (1994) Fisheries in semi-arid northeast Brazil with special reference to the role of tilapias. Int Rev ges Hydrobiol 79:77–94.

Haney J, Hall D (1973) Sugar-coated Daphnia: a preservation technique for Cladocera. Limnol Oceanogr 18:331–333

Höök TO, Eagan NM, Webb PW (2001) Habitat and human influences on larval fish assemblages in northern Lake Huron Costal Marsh Bays. Wetlands 21:281–291

Humphries P, King AJ, Koehn JD (1999) Fish, flows and flood plains: links between freshwater fishes and their environment in the Murray-Darling River system, Australia. Environ Biol Fishes 56:129–151

Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can J Fish Aquat Sci 106:110–127

Kendall A, Ahlstrom E, Moser H (1984) Early life history stages of fishes and their characters. Ontog. Syst. fishes based Int. Symp. Dedic. to Mem. Elbert Halvor Ahlstrom. American Society of Ichthyologists and Herpetologists, pp 11–22
Lima, A. F.; Makrakis, M. C.; Silva, P. S.; Azevedo, A. V.; Makrakis, S. Assumpção, L. Andrade, F. F.; Dias, J. H P. Padrões de distribuição e ocorrência espaço-temporal de ovos e larvas de peixes nos rios Pardo e Anhanduí, bacia do alto rio Paraná, Brasil. Revista Brasileir de Biociências, R. bras. Bioci., Porto Alegre, v. 11, n. 1, p. 7-13, 2013

Lorenzen C (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–347.

Lorenzen C, Downs J (1986) The Specific Absorption-Coefficients of Chlorophyllide-A and Pheophorbide-A in 90-Percent Acetone, and Comments on the Fluorometric-Determination of Chlorophyll and Pheopigments. Limnol Oceanogr 31:449–452

Lowe-McConnell RH (1987) Ecological Studies in Tropical Fish Communities. 382. doi: 10.1017/CBO9780511721892

Maltchik L, Medeiros ESF (2006) Conservation importance of semi-arid streams in north-eastern Brazil: implications of hydrological disturbance and species diversity. Aquat Conserv Mar Freshw Ecosyst 16:665–677. doi: 10.1002/aqc

Martin FD, Paller MH (2007) Ichthyoplankton transport in relation to floodplain width and inundation and tributary creek discharge in the lower Savannah River of Georgia and South Carolina. Hydrobiologia 598:139–148. doi: 10.1007/s10750-007-9146-6

Medeiros ESF, Maltchik L (2001) Fish assemblage stability in an intermittently flowing stream from the Brazilian semi-arid region. Austral Ecol 26:156–164. doi: 10.1046/j.1442-9993.2001.01099.x

Mounic-Silva, C. E.; Lopes, C. A.; Porto-Ferreira, L. B.; Nunes, M. E.; Reynalte-Tataje, D. A.; Zaniboni-Filho, E. Spawning and recruitment areas of migratory fish in the Uruguay river: applying for rivers connectivity conservation in South America. Boletim do Instituto de Pesca, vol. 45, n. 3. 2019

Nakatani K, Agostinho AA, Baumgartner G, et al (2001) Ovos e larvas de peixes de água doce: Desenvolvimento e manual de identificação. 378.

Nakatani K, Baumgartner G, Cavichioli M (1997) Ecologia de ovos e larvas de peixes. In: Vazzoler A, Agostinho AA, Hanh N (eds) A planície inundação do alto rio Paraná Asp. físicos, biológicos e socioeconômicos. EDUEM, pp 281–306

Ochoa-Orrego, L. E.; Jiménez, L. F.; Palacio, J. Ictioplancton en la Ciénaga de Ayapel, Río San Jorge (Colombia): cambios espacio-temporales. Bol. Cient. Mus. Hist. Nat., vol. 19, n. 1, enero-junio, 2015. 103-114.

Pareja-Carmona, M. I.; Jiménez-Segura, L. F.; Ochoa-Orrego, L. E. Variación espacio-temporal de las larvas de tres especies de peces migratorios en el cauce del río Magdalena (Colombia), durante el ciclo hidrológico 2006-2007. Actual Biol, vol. 36, N. 100, 2014.

Pease A a., Justine Davis J, Edwards MS, Turner TF (2006) Habitat and resource use by larval and juvenile fishes in an arid-land river (Rio Grande, New Mexico). Freshw Biol 51:475–486. doi: 10.1111/j.1365-2427.2005.01506.x
Petry P, Bayley PB, Markle DF (2003) Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain. J Fish Biol 63:547–579. doi: 10.1046/j.1095-8649.2003.00169.x

Pianka E (1970) On r and k-selection. Am Nat 100:592–597

Ponte, S. C. S.; Silva, Á. J. S.; Zacardi, D. M. Áreas de dispersão e de berçário para larvas de Curimatidae (Pisces, Characiformes), no trecho Baixo do rio Amazonas, Brasil. Interciencia, vol. 42, n. 11, 2017.

Reynalte-Tataje DA, Agostinho AA, Bialetzki A, et al (2012) Spatial and temporal variation of the ichthyoplankton in a subtropical river in Brazil. Environ Biol Fishes 94:403–419. doi: 10.1007/s10641-011-9955-3

Reynalte-Tataje DA, Hermes-Silva S, Silva M, et al (2008) Distribuição de ovos e larvas de peixes na área de influência do reservatório de Itá (Alto Rio Uruguai). In: Zaboni-Filho E, Nuñer A (eds) Reserv. Itá Estud. Ambient. Desenvolv. Tecnol. Cultiv. e Conserv. da ictiofauna. Editora UFSC, pp 127–158

Sánchez-Botero J, Leitão R, Caramashi E, Garcez D (2007) The aquatic macrophytes as refuge, nursery and feeding habitats for freshwater fish from Cabiúnas Lagoon, Restinga de Jurubatiba National Park, Rio de Janeiro, Brazil. Acta Limnol Bras 19:143–153

Scheffer M, Hosper S, Meijer M-L, et al (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

Scheffer M, Jeppesen E (2007) Regime Shifts in Shallow Lakes. Ecosystems 10:1–3. doi: 10.1007/s10021-006-9002-y

Silva, E. B.; Picapedra, P. H. S.; Sanches, P. V.; Rezende, R. E. O.; Gavião, A. M.; Mendonça, M. M.; Gonçalves, E. D. V. Conte, R. B. Larvae occurrences of Rhamdia quelen (Quoy & Gaimard, 1824) (Siluriformes: Heptapteridae) in an area under dam influence in the upper Paraná River region, Brazil. Neotropical Ichthyology, vol. 9, n. 2, p. 419-426, 2011.

Suzuki HI, Agostinho AA, Bailly D, et al (2009) Inter-annual variations in the abundance of young-of-the-year of migratory fishes in the Upper Paraná River floodplain: relations with hydrographic attributes. Brazilian J Biol 69:649–60

Suzuki, F. M.; Pires, L. V; Pompeu, P. S. Passage of fish larvae and eggs through the Funil, Itutinga and Camargos Reservoirs on the upper Rio Grange (Minas Gerais, Brazil). Neotropical Ichthyology, vol. 9, n. 3, p. 617-622, 2011.

Turner TF, Trexler JC, Miller GL, Toyer KE (1994) Temporal and Spatial Dynamics of Larval and Juvenile Fish Abundance in a Temperate Floodplain River Temporal and Spatial Dynamics of Larval and Juvenile Fish Abundance in a Temperate Floodplain River. Copeia 1:174–183

Vazzoler A (1996) Biologia da reprodução de peixes teleósteos: teoria e prática. EDUEM, Maringá

Winemiller KO (1989) Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81:225–241
Zacardi, D. M.; Bittencourt, S. C. S.; Nakayama, L.; Queiroz, H. L. Distribution of economically important fish larvae (Characiformes, Prochilodontidae) in the Central Amazonia, Brazil. Fish Manag Ecol., vol. 24, p. 283–291, 2017.