Room Temperature Synthesis and Characterization of Novel Lead-free Double Perovskite Nanocrystals with a Stable and Broadband Emission

Yingying Tang,a Leyre Gomez,a,b Marco van der Laan,a Dolf Timmerman,c Victor Sebastian,d,e,f Chia-Ching Huang,a Tom Gregorkiewicz,a and Peter Schall *a

a. Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

b. Catalan Institute of Nanoscience and Nanotechnology, CSIC, BIST, and CIBER BBN, 08193 Bellaterra Barcelona, Spain

c. Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

d. Department of Chemical Engineering and Environmental Technology, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D, 50018 Zaragoza, Spain

e. Instituto de Nanociencia y Materiales de Aragón (INMA), University of Zaragoza-CSIC, c/ María de Luna 3, 50018 Zaragoza, Spain

f. Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
Fig. S1. (a) XRD patterns for precursor ratios of CsBr and BiBr$_3$ at 1.5:1 and 3:1 compared to simulated Cs$_3$Bi$_2$Br$_9$ and Cs$_3$BiBr$_6$ XRD pattern. (b) UV spectra of the Cs$_3$Bi$_2$Br$_9$ NCs.

Fig. S2. (a) HAADF-STEM image for Cs$_3$BiBr$_6$-5.5 NCs, the inset is the size distribution. (b) HAADF-STEM image for Cs$_3$BiBr$_6$-10 NCs, the inset is the size distribution. (c) HAADF-STEM image for Cs$_3$BiBr$_6$-10 NCs. (d) HRTEM image for Cs$_3$BiBr$_6$-10 NC with a lattice fringe of 0.22 nm.
Fig. S3. (a) Comparison of XRD patterns with the simulated XRD patterns of precursors (CsBr-1, \(Fm-3m\); CsBr-2, \(Pm-3m\); BiBr\(_3\), \(P2_1/c\)), Cs\(_3\)BiBr\(_6\) and Cs\(_3\)BiBr\(_6\)-5.5 NCs. (b) Zoom-in of the XRD pattern of Cs\(_3\)BiBr\(_6\)-7.5, Cs\(_3\)BiBr\(_6\)-10, Cs\(_3\)BiBr\(_6\)-20 NCs.

Fig. S4. XPS characteristics for Cs\(_3\)BiBr\(_6\)-5.5 NCs: (a) Survey spectra; b) Cs 3d; c) Bi 4f; d) Br 3d. For Cs 3d electrons, the two peaks centred at 724.4 eV and 738.4 eV correspond to the Cs 3d\(_{5/2}\) and Cs 3d\(_{3/2}\) states with a spin-orbit splitting of 14 eV. Similarly, in the Br 3d spectra, peaks at 68.1 eV and 69.3 eV are assigned to Br 3d\(_{5/2}\) and Br 3d\(_{3/2}\), with a well-resolved spin-orbit splitting of ~1.2 eV, while in the Bi 4f spectra, two peaks located at 159.2 eV and 164.6 eV, with a spin-orbit splitting of 5.4 eV, can be observed.
Fig. S5. Absorption spectra for Cs$_3$BiBr$_6$ NCs synthesized at 70 °C.

Fig. S6. Tauc’ plot for Cs$_3$BiBr$_6$ NCs.
Fig. S7. (a) PL contour map for OA ligands. (b) Cs$_3$BiBr$_6$ NCs with OA ligands.

Fig. S8. Gaussian fitting with three peaks: excitation peak, OA-ligand related peak and Cs$_3$BiBr$_6$-related emission for PL emission of Cs$_3$BiBr$_6$ NCs at 150 K.
Fig. S9. PL spectra for Cs$_3$BiBr$_6$ NCs at room temperature before and after three weeks by an excitation wavelength of 355 nm.

Table S1. Crystal data and structure refinements for the Cs$_3$BiBr$_6$ at 120 K.

formula	Cs$_3$BiBr$_6$			
fw	1087.17			
T, K	120 K			
λ, Å	0.71073			
Space group	$Pbcm$			
a, Å	8.637(3)			
b, Å	13.495(6)			
c, Å	27.532(6)			
α, deg	90			
β, deg	90			
γ, deg	90			
V, Å³	3209.3(5)			
Z	8			
D_{calcd}, g cm$^{-3}$	4.500			
μ, mm$^{-1}$	32.59			
GOF on F^2	1.345			
R1, wR2($	>2\sigma(I)$	0.0691, 0.1703
R1, wR2(all data)	0.0806, 0.1745			