Entanglement sharing through noisy qubit channels: One-shot optimal singlet fraction

Rajarshi Pal
Optics & Quantum Information Group, The Institute of Mathematical Sciences, C. I. T. Campus, Taramani, Chennai 600113, India

Somshubho Bandyopadhyay
Department of Physics and Center forAstroparticle Physics and Space Science, Bose Institute, Block EN, Sector V, Bidhan Nagar, Kolkata 700091, India

Sibasish Ghosh
Optics & Quantum Information Group, The Institute of Mathematical Sciences, C. I. T. Campus, Taramani, Chennai 600113, India

Maximally entangled states—a resource for quantum information processing—can only be shared through noiseless quantum channels, whereas in practice channels are noisy. Here we ask: Given a noisy quantum channel, what is the maximum attainable purity (measured by singlet fraction) of shared entanglement for single channel use and local trace preserving operations? We find an exact formula of the maximum singlet fraction attainable for a qubit channel and give an explicit protocol to achieve the optimal value. The protocol distinguishes between unital and nonunital channels and requires no local post-processing. In particular, the optimal singlet fraction is achieved by transmitting part of an appropriate pure entangled state, which is maximally entangled if and only if the channel is unital. A linear function of the optimal singlet fraction is also shown to be an upper bound on the distillable entanglement of the mixed state dual to the channel.

1. Introduction: Shared entanglement between two separated observers (Alice and Bob) is a critical resource for quantum information processing (QIP) tasks such as dense coding [6], cryptography [7], distributed quantum computation [8], and quantum teleportation [9]. Faithful implementation of QIP tasks require maximally entangled states, which can only be shared through noiseless quantum channels, where Alice prepares a maximally entangled state of two particles (say, qubits) and sends one of them to Bob through the channel. In practice, available channels are noisy resulting in mixed states. Entanglement distillation [12,14-16] provides a solution by converting these mixed states to fewer almost-perfect entangled states of purity close to unity while requiring many uses of the channel and joint measurements on many copies of the output. Clearly, the yield in an entanglement distillation protocol depends on the purity of the mixed states, which in turn is a function of the amount of noise present in the quantum channel. Thus, in the simplest case of entanglement sharing, a basic question is: Given a noisy quantum channel what is the maximum achievable purity for single use of the channel?

In this paper, we answer the above question for qubit channels within the paradigm of trace-preserving local operations (TP-LOCC). By restricting to this class of operations, where no subsystem is thrown away, our results provide the conditions and an explicit protocol when every single use of the channel is maximally efficient. Our result also characterizes qubit channels by quantifying reliable transmission of quantum information via teleportation for single channel use and TP-LOCC.

In the simplest scenario, the general protocol of sharing entanglement works as follows: Alice prepares a bipartite pure entangled state $|\psi\rangle$ and sends one half of it to Bob through a quantum channel, say Λ. This results, in general, in a mixed entangled state $\rho_{\psi,\Lambda} = (I \otimes \Lambda)|\psi\rangle\langle \psi|$, where $|\psi\rangle = |\psi\rangle\langle \psi|$. The purity of this state is characterized by its singlet fraction [12,14,16,18] defined as:

$$F(\rho_{\psi,\Lambda}) = \max_{|\Phi\rangle} \langle \Phi | \rho_{\psi,\Lambda} | \Phi \rangle,$$

(1)

where $|\Phi\rangle$ is a maximally entangled state. The singlet fraction quantifies how close the state $\rho_{\psi,\Lambda}$ is to a maximally entangled state, and therefore how useful the state is for QIP tasks. For example, it is related to the teleportation fidelity f for teleportation of a qudit via the following relation:

$$f(\rho_{\psi,\Lambda}) = \frac{dF(\rho_{\psi,\Lambda}) + 1}{d+1}$$

(2)

In this paper we are interested in the optimal singlet fraction for the channel Λ defined as:

$$F(\Lambda) = \max_{|\psi\rangle} \left\{ \max_L F(L(\rho_{\psi,\Lambda})) \right\},$$

(3)

where the maximum is taken over all pure state transmissions and trace preserving LOCCs L. Note that, by virtue of Eq. (2) $F(\Lambda)$ also quantifies reliable transmission of quantum states via teleportation, albeit for single channel use, where the optimal teleportation fidelity for the channel is expressed as $f(\Lambda) = \frac{dF(\Lambda) + 1}{d+1}$. This is in contrast with the known measures such as, channel fidelity [16], which quantifies, on an average, how close the output state is to the input state, and entanglement
fidelity [3, 4], which captures how well the channel preserves entanglement [3] of the transmitted system with other systems.

For qubit channels such as depolarizing [13] and amplitude damping [17] the value of $F(\Lambda)$ is known, but no general expression has been found yet for a generic qubit channel. In this work, we obtain an exact formula of $F(\Lambda)$ for a qubit channel and give an explicit protocol to achieve this value. Surprisingly, we also find that to attain the optimal value no local post processing is required, even though it is known that local post-processing can increase the singlet fraction of a state. In particular, we show that the optimal value is attained by sending part of a maximally entangled state down the channel if and only if the channel is unital. This means that for nonunital channels one must necessarily transmit part of an appropriate nonmaximally entangled state. We also prove that the optimal singlet fraction is equal to a linear function of the negativity of the mixed state $\rho_{\phi+,\Lambda}(18)$, where $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. Thus a linear function of $F(\Lambda)$ is an upper bound on the distillable entanglement of the mixed state $\rho_{\phi+,\Lambda}$.

Let us note a couple of implications of our results. As noted earlier, an entanglement distillation [12, 17] protocol uses many copies of the mixed state $\rho_{\phi,\Lambda}$ for some transmitted pure state $|\psi\rangle$ of purity $F(\rho_{\psi,\Lambda})$ and converts them to a fewer number of near-perfect entangled states of purity close to unity. Following the prescription in this paper, for a given noisy qubit channel Alice and Bob can now prepare states with maximum achievable purity for each channel use so as to maximize the yield in their distillation protocol. Second, by virtue of Eq. (2) we are able to provide the optimal teleportation fidelity for any qubit channel, albeit for single channel use.

2. Preliminaries: A quantum channel Λ is a trace preserving completely positive map characterized by a set of Kraus operators $\{A_i\}$ satisfying $\sum A_i^\dagger A_i = I$. Its dual $\hat{\Lambda}$ is described in terms of the Kraus operators $\{A_i^\dagger\}$. Note that while Λ is trace-preserving, its dual $\hat{\Lambda}$ may not necessarily be so (e.g. the amplitude damping channel).

A channel Λ is said to be unital if its action preserves Identity: $\Lambda(I) = I$, and nonunital if it does not, i.e., $\Lambda(I) \neq I$. Sending half of pure state $|\phi\rangle$ down the channel $\$ \in \{\Lambda, \hat{\Lambda}\}$ gives rise to a mixed state

$$\rho_{\phi,\$} = (I \otimes \$) \rho_{\phi},$$

where $\rho_{\phi} = |\phi\rangle\langle\phi|$. For the channel $\$ with a set of Kraus operators $\{K_i\}$, the above equation takes the form

$$\rho_{\phi,\$} = \sum_i (I \otimes K_i) \rho_{\phi} \left(I \otimes K_i^\dagger \right).$$

3. Optimal singlet fraction for qubit channels. Recall that, by transmitting one half of a pure entangled state $|\psi\rangle$ through a noisy channel Λ results in a mixed state $\rho_{\psi,\Lambda}$ of singlet fraction $F(\rho_{\psi,\Lambda})$. Simply maximizing $F(\rho_{\psi,\Lambda})$ over all transmitted pure states $|\psi\rangle$ may not yield the optimal value we are looking for because it is known [19, 21] that TP-LOCC can enhance singlet fraction of two qubit states. Thus for a given $\rho_{\psi,\Lambda}$, the maximum achievable singlet fraction is defined as [21]

$$F^*(\rho_{\psi,\Lambda}) = \max_L F(L(\rho_{\psi,\Lambda})), \tag{6}$$

where the maximization is over all TP-LOCC L carried out by Alice and Bob on their respective qubits. Note that, unlike F, which can increase under TP-LOCC, F^* is an entanglement monotone [21] and can be exactly computed [21] by solving a convex semi-definite program for any given two-qubit density matrix. Maximizing F^* over all transmitted pure states $|\psi\rangle$ yields the optimal singlet fraction defined earlier in Eq. (3):

$$F(\Lambda) = \max_{|\psi\rangle} F^*(\rho_{\psi,\Lambda}). \tag{7}$$

It is clear from the above definitions that for any shared pure state $|\psi\rangle$, the following inequalities hold:

$$F(\Lambda) \geq F^*(\rho_{\psi,\Lambda}) \geq F(\rho_{\psi,\Lambda}). \tag{8}$$

Our first result gives an exact formula for the optimal singlet fraction defined in Eq. (7) and an explicit protocol how the optimal value can be achieved. We show that there exists an “optimal” two-qubit pure state $|\psi_0\rangle$, not necessarily maximally entangled, such that all the inequalities in (8) become equalities.

Theorem 1. The optimal singlet fraction of a qubit channel Λ is given by

$$F(\Lambda) = \lambda_{\max}(\rho_{\phi+,\Lambda}), \tag{9}$$

where $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$, and $\lambda_{\max}(\rho_{\phi+,\Lambda})$ is the maximum eigenvalue of the density matrix $\rho_{\phi+,\Lambda}$. Moreover, the following equalities hold:

$$F(\Lambda) = F^*(\rho_{\psi_0,\Lambda}) = F(\rho_{\psi_0,\Lambda}), \tag{10}$$

where $|\psi_0\rangle$ is the eigenvector corresponding to the maximum eigenvalue of the density matrix $\rho_{\phi+,\Lambda}$.

The detailed proof is given in Appendix C. Here we sketch the proof. We first define the maximum preprocessed singlet fraction as

$$F_1(\Lambda) = \max_{|\psi\rangle} F(\rho_{\psi,\Lambda}), \tag{11}$$

$$= \max_{|\psi\rangle} \max_{|\phi\rangle} <\Phi|\rho_{\psi,\lambda}|\Phi>, \tag{12}$$

where $|\Phi\rangle$ is maximally entangled and show that $F_1(\Lambda) = \lambda_{\max}(\rho_{\phi+,\Lambda})$. Thus, $F(\Lambda) \geq F_1(\Lambda) = \lambda_{\max}(\rho_{\phi+,\Lambda})$. We then show that this lower bound is also an upper bound on $F(\Lambda)$ thereby completing the proof.
Thus, Eq. 10 tells us that the optimal singlet fraction given by Eq. 9 corresponds to the singlet fraction of the density matrix \(\rho_{\Phi^+,\Lambda} \), resulting from the transmission of part of a pure entangled state \(|\psi_0\rangle \) through the channel and moreover, requires no local post-processing.

What can we say about \(|\psi_0\rangle \)? Evidences so far are mixed: \(|\psi\rangle \) can be either maximally entangled (e.g., depolarizing channel [10]) or nonmaximally entangled (e.g., amplitude damping [17]), but the answer for a generic TP map. We will now show that if \(|\psi_0\rangle \) is maximally entangled and for which it is not.

Theorem 2. The state \(|\psi_0\rangle \), as defined in Theorem 1, is maximally entangled if and only if the channel \(\Lambda \) is unital.

Thus according to Theorem 2, if the channel is nonunital the optimal singlet fraction cannot be obtained by sending part of a maximally entangled state.

Proof. Recall that \(|\psi_0\rangle \) is the eigenvector corresponding to the maximum eigenvalue of \(\rho_{\Phi^+,\Lambda} \). Let \(|\psi_0'\rangle \) be the eigenvector corresponding to the maximum eigenvalue of \(\rho_{\Phi^+,\Lambda} \). The following lemma (proof in Appendix D) establishes the correspondence between the vectors \(|\psi_0\rangle \) and \(|\psi_0'\rangle \).

Lemma 1. Let \(V \) be the swap operator defined by the action \(V|\eta\rangle|\chi\rangle = |\chi\rangle|\eta\rangle \). Then \(V|\psi_0\rangle = |\psi_0'\rangle \).

Therefore, if \(|\psi_0'\rangle \) is maximally entangled, then so is \(|\psi_0\rangle \) and vice versa. We will prove the theorem by showing that \(|\psi_0'\rangle \) is maximally entangled if and only if \(\Lambda \) is unital.

We first show that if \(|\psi_0'\rangle \) is maximally entangled then \(\Lambda \) must be unital. We first note that the Kraus operators of the channel \(\Lambda \) can be obtained from the action of the channel on the maximally entangled state \(|\Phi^+\rangle \). Let

\[
\rho_{\Phi^+,\Lambda} = \sum_{k=0}^{3} p_k |\psi'_k\rangle \langle \psi'_k|, \tag{13}
\]

be the spectral decomposition with \(p_0 \geq p_1 \geq p_2 \geq p_3 \). Now for every \(k \), we can write \(|\psi'_k\rangle \) as

\[
|\psi'_k\rangle = (I \otimes G_k)|\Phi^+\rangle, \tag{14}
\]

where \(G_k \) is a \(2 \times 2 \) complex matrix. It was shown in [10] that the channel \(\Lambda \) can be described in terms of the Kraus operators \(\{ \sqrt{p_k} G_k \} \). Noting that (a) \(|\psi'_0\rangle \langle \psi'_0| = \delta_{ij} \), and (b) for any operator \(O \), \(\langle \Phi^+ | I \otimes O |\Phi^+\rangle = \frac{1}{2} \text{Tr} O \), it follows that the Kraus operators \(\{ \sqrt{p_k} G_k \} \) are trace orthogonal. That is,

\[
\text{Tr} A_k^\dagger A_l = 2 \sqrt{p_k p_l} \delta_{kl}, \tag{15}
\]

where \(A_k = \sqrt{p_k} G_k \). The Kraus operators thus obtained through the spectral decomposition of \(\rho_{\Phi^+,\Lambda} \) are trace orthogonal. They also satisfy \(\sum A_k^\dagger A_k = I \), as \(\Lambda \) is a TP map.

Suppose now the channel \(\Lambda \) is non-unital, i.e., \(\Lambda (I) \neq I \). This implies that

\[
\sum A_k A_k^\dagger \neq I \tag{16}
\]

None of our considerations change if we consider a channel \(U \circ \Lambda \) with Kraus operators \(U A_k \) where \(U \in SU(2) \). This is because the eigenvectors of \(\rho_{\Phi^+,\Lambda} \) and \(\rho_{\Phi^+,\Lambda} \) are local unitarily connected and eigenvalues are same. Let us now assume that one of the eigenstates (\(|\psi_0'\rangle \) say) in the spectral decomposition of \(\rho_{\Phi^+,\Lambda} \) in Eq. (13) is maximally entangled. This necessarily implies one of the Kraus operators say, \(A_0 \) is proportional to a unitary. Now because of the post-processing freedom, without any loss of generality we can take \(A_0 \) to be \(\sqrt{pI} \), with \(p \in [0, 1] \). Due to trace-orthogonality [Eq. (15)] we will have

\[
\text{Tr} (A_k) = 0, k = 1, 2, 3. \tag{17}
\]

We can thus take \(A_k = \alpha_k^* \cdot \vec{\alpha}_k \), where \(\vec{\alpha}_k \in \mathbb{C}^3 \) and \(\vec{\alpha} = \{ \sigma_x, \sigma_y, \sigma_z \} \), for \(j = 1, 2, 3 \). The trace preservation condition \(\sum A_k^\dagger A_k = I \) now becomes,

\[
pI + \sum_{k=1}^{3} (\alpha_k^* \cdot \vec{\alpha}_k)I + i(\alpha_k^* \times \vec{\alpha}_k) \cdot \vec{\sigma} = I, \tag{18}
\]

from which we obtain,

\[
p + \sum_{k=1}^{3} (\alpha_k^* \cdot \vec{\alpha}_k) = 1,
\]

\[
\sum_{k=1}^{3} \alpha_k^* \times \vec{\alpha}_k = 0. \tag{19}
\]

On the other hand the condition for non-unitality [Eq. (10)] of the channel gives us,

\[
pI + \sum_{k=1}^{3} (\alpha_k^* \cdot \vec{\alpha}_k)I - i(\alpha_k^* \times \vec{\alpha}_k) \cdot \vec{\sigma} \neq I. \tag{20}
\]

which is clearly in contradiction with Eqn. (19). Thus \(\rho_{\Phi^+,\Lambda} \) cannot have a maximally entangled eigenvector if \(\Lambda \) is non-unital. Hence, \(|\psi_0'\rangle \) is not maximally entangled. Therefore it follows that if \(|\psi_0'\rangle \) is maximally entangled, then the channel must be unital.

We will now show that if \(\Lambda \) is unital then \(|\psi_0'\rangle \) is maximally entangled. In [25] it was proved that that for any unitary qubit channel \(\Lambda, \rho_{\Phi^+,\Lambda} \) is local unitarily connected to the Bell-diagonal state \(\sum_{i=0}^{3} p_i (I \otimes \sigma_i)|\Phi^+\rangle \langle \Phi^+|(I \otimes \sigma_i) \) with \(\sigma_0 = I, 1 \geq p_i \geq 0 \) and \(\sum p_i = 1 \). It immediately follows that \(|\psi_0'\rangle \) is maximally entangled. This completes the proof of the theorem.

4. **Optimal singlet fraction and the maximum output negativity:** Here we show that \(F(\Lambda) \) is related to the
negativity of the density matrix $\rho_{\Phi+\Lambda}$. We first note that an upper bound on $F^* (\rho_{\psi, \Lambda})$ can be given in terms of its negativity $N (\rho_{\psi, \Lambda})$:

$$F^* (\rho_{\psi, \Lambda}) \leq \frac{1}{2} [1 + N (\rho_{\psi, \Lambda})], \quad (21)$$

where $N (\rho_{\psi, \Lambda}) = \max \{0, -2\lambda_{\min} (\rho^T_{\psi, \Lambda}) \}$ and $\rho^T_{\psi, \Lambda}$ is the partially transposed matrix obtained from $\rho_{\psi, \Lambda}$. Maximizing over all input states $|\psi\rangle$ we get,

$$F (\Lambda) \leq \frac{1}{2} [1 + N (\Lambda)], \quad (22)$$

where $N (\Lambda) = \max_\psi N (\rho_{\psi, \Lambda})$. An interesting question here is, does the optimal singlet fraction always reach the above upper bound for all channels Λ? In order to answer this question, we first prove the following:

Lemma 2. For a qubit channel Λ, the optimal singlet fraction $F (\Lambda)$ is related to the negativity $N (\rho_{\Phi^+, \Lambda})$ of the state $\rho_{\Phi^+, \Lambda}$ by the following relation:

$$F (\Lambda) = \frac{1}{2} [1 + N (\rho_{\Phi^+, \Lambda})] \quad (23)$$

The proof follows by using the formula of negativity, simple application of Lemma 4 (see appendix B) and Thm 1:

$$\frac{1}{2} [1 + N (\rho_{\Phi^+, \Lambda})] = \frac{1}{2} [1 - 2\lambda_{\min} (\rho^T_{\Phi^+, \Lambda})] = \lambda_{\max} (\rho_{\Phi^+, \Lambda}) = F (\Lambda) \quad (24)$$

In appendix E we have shown that, $F (\Lambda)$ does not reach the upper bound in Eq. (22) for all non-unital channels as there are examples for which $N (\Lambda) > N (\rho_{\Phi^+, \Lambda})$. Thus, even though the ordering of negativity may change under one-sided channel action $I \otimes \Lambda$ the optimal singlet fraction obeys the bound in Eq. (21) for maximally entangled input. For unital channels we have, $N (\Lambda) = N (\rho_{\Phi^+, \Lambda})$.

5. **Nonunital channels and maximally entangled input:** It is important to recognize that Theorems 1 and 2 put together only prescribes a method to attain the optimal singlet fraction. It does not, however, rule out the possibility that the optimal singlet fraction for a nonunital channel may still be attained by sending part of a maximally entangled state followed by local post-processing. As it turns out this is not the case.

Theorem 3. For a nonunital qubit channel Λ,

$$F^* (\rho_{\Phi^+, \Lambda}) < F (\Lambda) \quad (25)$$

Proof. Using the bound in Eq. (21) for the the density matrix $\rho_{\Phi^+, \Lambda}$ we have

$$F^* (\rho_{\Phi^+, \Lambda}) \leq \frac{1}{2} [1 + N (\rho_{\Phi^+, \Lambda})]. \quad (26)$$

It follows from Lemma 2 that to prove theorem 3 it suffices to show that for a nonunital channel Λ,

$$F^* (\rho_{\Phi^+, \Lambda}) < \frac{1}{2} [1 + N (\rho_{\Phi^+, \Lambda})]. \quad (27)$$

As shown in [21], for any two qubit density matrix ρ the optimal fidelity $F^* (\rho)$ can be found by solving the following convex semidefinite program:

$$\text{maximize} \quad F^* = \frac{1}{2} - \text{Tr}(X \rho^T),$$

under the constraints

$$0 \leq X \leq I_4, \quad -\frac{I_4}{2} \leq X^\Gamma \leq \frac{I_4}{2}$$

with X^Γ being the partial transpose of X. In addition, the optimal X is known to be of rank one.

The proof is now by contradiction. Suppose that $F^* (\rho_{\Phi^+, \Lambda}) = \frac{1}{2} [1 + N (\rho_{\Phi^+, \Lambda})]$; thus to achieve this equality we must necessarily have,

$$\frac{1}{2} - \text{Tr}(X_{\text{opt}} \rho^T_{\Phi^+, \Lambda}) = \frac{1}{2} [1 + N (\rho_{\Phi^+, \Lambda})]. \quad (31)$$

from which it follows that

$$\text{Tr}(X_{\text{opt}} \rho^T_{\Phi^+, \Lambda}) = \lambda_{\min} \frac{\rho^T_{\Phi^+, \Lambda}}{2}. \quad \lambda_{\min} (\rho^T_{\Phi^+, \Lambda}) = \min (\rho^T_{\Phi^+, \Lambda}) \quad (29)$$

Using the facts that X_{opt} is a positive rank one operator (proved in [21]) and there is only one negative eigenvalue for $\rho^T_{\Phi^+, \Lambda}$ (which means λ_{\min} is negative), we obtain

$$X_{\text{opt}} = |\alpha\rangle\langle\alpha|, \quad (33)$$

where $\rho^T |\alpha\rangle = \lambda_{\min} (\rho^T |\alpha\rangle).$ Clearly X_{opt} in the above eqn. is of rank one and satisfies $0 \leq X \leq I_4$. As eigenvalues of X and X^Γ are invariant under local unitaries it is sufficient to take ,

$$X = P (\sqrt{\lambda} |00\rangle + \sqrt{(1-\lambda)} |11\rangle), \quad (34)$$

with $P (|\alpha\rangle)$ denoting projector on $|\alpha\rangle$.

The spectrum of X^Γ for X in Eq. (34) is given by ,

$$\lambda (X^\Gamma) = \lambda (1-\lambda), \pm \sqrt{\lambda (1-\lambda)}. \quad (35)$$

Thus the constraint (29) is only satisfied for $\lambda = \frac{1}{2}$, i.e. if $|\alpha\rangle$ is maximally entangled. Therefore, under the assumption $F^* (\rho_{\Phi^+, \Lambda}) = \frac{1}{2} [1 + N (\rho_{\Phi^+, \Lambda})]$ the eigenvector $|\alpha\rangle$ corresponding to the negative eigenvalue $\lambda_{\min} (\rho^T_{\Phi^+, \Lambda})$ is maximally entangled.

But then this implies that

$$F (\rho_{\Phi^+, \Lambda}) = \frac{1}{2} [1 + N (\rho_{\Phi^+, \Lambda})] = \lambda_{\max} (\rho_{\Phi^+, \Lambda}) \quad (36)$$
because for any two qubit entangled density matrix σ, $F(\sigma) = \frac{1}{2} [1 + N(\sigma)]$ if and only if the eigenvector corresponding to the negative eigenvalue of σ^T is maximally entangled. The last equality in eqn. (36) follows from Lemma 2.

Now from Theorem 1 we have,

$$F(\Lambda) = F(\rho_{\psi_0, \Lambda}) = \lambda_{\max}(\rho_{\Phi^+, \Lambda})$$

(37)

where $|\psi_0\rangle$ is the eigenvector corresponding to the maximum eigenvalue of $\rho_{\Phi^+, \Lambda}$. Now from Theorem 2 we know that $|\psi_0\rangle$ is necessarily nonmaximally entangled when the channel Λ is nonunital. Thus for a nonunital channel Λ,

$$F(\rho_{\Phi^+, \Lambda}) < F(\Lambda) = \lambda_{\max}(\rho_{\Phi^+, \Lambda})$$

(38)

which contradicts Eq. (36).

\[\square \]

V. Conclusions: Shared entanglement is a critical resource for quantum information processing tasks such as quantum teleportation. Typically, quantum entanglement is shared by sending part of a pure entangled state through a quantum channel which, in practice is noisy. This results in mixed entangled states, purity of which is characterized by singlet fraction. Because faithful implementation of quantum information processing tasks require near-perfect entangled states (states with very high purity), a basic question is: What is the optimal singlet fraction attainable for single use of the channel and trace-preserving local operations? In this paper, we have given an exact expression of optimal singlet fraction and also prescribed a protocol to attain the optimal value. For unital channels, the protocol consists of sending part of a maximally entangled state through the channel, whereas for nonunital channels the transmitted state is necessarily nonmaximal. An interesting observation is that in the optimal case, no local post-processing is necessary even though it’s known that TP LOCC can increase singlet fraction of a density matrix. The framework that we have considered in this paper is completely general and can be naturally extended to consider a similar problem in higher dimensions.

R. Pal wants to thank Ajit Iqbal Singh for useful discussions.

\[\star \] Electronic address: rajarshi@imsc.res.in
\[\dagger \] Electronic address: som@jcbose.ac.in
\[\ddagger \] Electronic address: sibasish@imsc.res.in

[1] A. S. Holevo, V. Giovannetti, Quantum channels and their entropic characteristics, Rep. Prog. Phys. 75 046001 (2012).
[2] G. Smith and J. A. Smolin, Detecting Incapacity, Phys. Rev. Lett. 108, 230507 (2012).
[3] B. Schumacher, Sending entanglement through noisy quantum channels Phys. Rev. A 54, 2614 (1996).
[4] H. Barnum, M. A. Nielsen, and B. Schumacher, Information transmission through a noisy quantum channel, Phys. Rev. A 57, 4153 (1998).
[5] E. Schrodinger, Naturwissenschaften 23, 807 (1935); For a recent review see, R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).
[6] C.H. Bennett and Stephen J. Wiessner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69, 2881 (1992)
[7] A. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
[8] H. Buhrman, and H. Rohrig, Distributed Quantum Computing, Lectures Notes in Computer Science, 2747, pages 1-20 (2003).
[9] C. H. Bennett, G. Brassard, C. Crepeau, R. Joyeza, A. Peres, and W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895 (1993).
[10] M. Horodecki, P. W. Shor, and M. B. Ruskai, Entanglement breaking channels, Rev. Math. Phys. 15, 629 (2003).
[11] M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature?, Phys. Rev. Lett. 80, 5239 (1998).
[12] C. H. Bennett, D.P. Divincenzo, J.A. Smolin, and W.K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54, 3824 (1996).
[13] D. Deutsch, A. Ekert, R. Joyez, C. Macchiavello, S. Popescu, and A. Sanpera, Quantum privacy amplification and the security of quantum cryptography over noisy channels, Phys. Rev. Lett., 77, 2818 (1996).
[14] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W.K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76, 722 (1996).
[15] M. Horodecki, P. Horodecki, and R. Horodecki, Inseparable Two Spin- 1/2 Density Matrices Can Be Distilled to a Singlet Form, Phys. Rev. Lett. 78, 574 (1997)
[16] M. Horodecki, P. Horodecki, and R. Horodecki, General teleportation channel, singlet fraction, and quasidistillation, Phys. Rev. A 60, 1888 (1999).
[17] S. Bandyopadhyay and A. Ghosh, Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states, Phys. Rev. A 86, 020304(R) (2012).
[18] F. Verstraete and H. Verschelde, Fidelity of mixed states of two qubits, Phys. Rev. A 66, 022307 (2002).
[19] P. Badziag, M. Horodecki, P. Horodecki, and R. Horodecki, Local environment can enhance fidelity of quantum teleportation, Phys. Rev. A 62, 012311 (2000).
[20] S. Bandyopadhyay, Origin of noisy states whose teleportation fidelity can be enhanced through dissipation, Phys. Rev. A 65, 022302 (2002).
[21] F. Verstraete and H. Verschelde, Optimal Teleportation with a Mixed State of Two Qubits, Phys. Rev. Lett. 90, 090701 (2003).
[22] F. Verstraete and H. Verschelde, On quantum channels, arXiv:quant-ph/0202124v2.
[23] Frank Verstraete, Koenraad Audenaert, Jeroen Dehaene and Bart De Moor, A comparison of the entanglement measures negativity and concurrence, J. Phys. A: Math. Gen., 34, 10327 (2001).
[24] G. Vidal, R. F. Werner, Computable measure of entanglement...
glement, Phys. Rev. A 65, 032314 (2002).
[25] M. B. Ruskai, S. Szarek, and E. Werner, An Analysis of Completely positive Trace preserving maps on M2, Linear Algebra and its Applications 347, 159 (2002).
[26] M.D Choi, Completely Positive Linear Maps on Complex matrices, Lin. Alg. Appl., 10, 285 (1975).
[27] A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness of operators, Rep. Math. Phys., 3, 275 (1972).
[28] Note that due to convexity of optimal singlet fraction our results remain valid even if $d \otimes 2$ dimensional mixed states are shared through the channel.

APPENDIX

A. Technical Lemma

Lemma 3. $\lambda_{\text{max}}(\rho_{\Phi^+, A}) = \lambda_{\text{max}}(\rho_{\Phi^+, L})$

Proof. We first obtain a relationship between the states $\rho_{\Phi^+, A}$ and $\rho_{\Phi^+, L}$. Recall that these states are given by

$$\rho_{\Phi^+, A} = \sum_{i} (I \otimes A_i) |\Phi^+\rangle \langle \Phi^+ | (I \otimes A_i^\dagger).$$

(39)

$$\rho_{\Phi^+, L} = \sum_{i} (I \otimes A_i^\dagger) |\Phi^+\rangle \langle \Phi^+ | (I \otimes A_i).$$

(40)

Eqn. (39) can be written as,

$$\rho_{\Phi^+, A} = \sum_{i} \langle A_i^\dagger | I \rangle |\Phi^+\rangle \langle \Phi^+ | (A_i^\dagger I)$$

$$\Rightarrow \rho_{\Phi^+, A} = \sum_{i} (A_i I) |\Phi^+\rangle \langle \Phi^+ | (A_i^\dagger I),$$

(41)

where the complex conjugation is taken with respect to the computational basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$. Now using the SWAP operator V defined by the action $V|ij\rangle = |ji\rangle$, we have

$$(A_i I) |\Phi^+\rangle = \frac{1}{\sqrt{2}} \sum_{k=0}^{1} A_i |k\rangle \otimes |k\rangle$$

and so,

$$V(A_i I) |\Phi^+\rangle = \frac{1}{\sqrt{2}} \sum_{k=0}^{1} |k\rangle \otimes A_i |k\rangle$$

$$= (I \otimes A_i) |\Phi^+\rangle.$$

(42)

Hence,

$$\rho_{\Phi^+, A} = V^\dagger \rho_{\Phi^+, L} V,$$

$$\Rightarrow \rho_{\Phi^+, A} = (V^\dagger \rho_{\Phi^+, L} V)^\dagger.$$

(43)

From the above equation it therefore follows that

$$\lambda_{\text{max}}(\rho_{\Phi^+, A}) = \lambda_{\text{max}}(\rho_{\Phi^+, L}).$$

(44)

B. Technical Lemma

Lemma 4. Let $\sigma_{AB} \in \mathbb{C}^2 \otimes \mathbb{C}^2$ be a bipartite density matrix such that $\text{Tr}_B (\sigma_{AB}) = \frac{1}{2} I$. Then,

$$\lambda_{\text{min}}(\sigma_{A')B}^\dagger) + \lambda_{\text{max}}(\sigma_{AB}) = \frac{1}{2}$$

(45)

where $\lambda_{\text{min}}(X)$ and $\lambda_{\text{max}}(X)$ denote the minimum and maximum eigenvalue of $X \in \{\sigma_{AB}, \sigma_{A')B}^\dagger\}$ and I denotes partial transposition.

Proof. Let $\sigma_{AB} \in \mathbb{C}^2 \otimes \mathbb{C}^2$ be a bipartite density matrix such that $\text{Tr}_B (\sigma_{AB}) = \frac{1}{2} I$. From the Choi-Jamiołkowski isomorphism [27, 20] we have that σ_{AB} can be written as,

$$\sigma_{AB} = (I \otimes \Lambda)(|\Phi^+\rangle \langle \Phi^+ |),$$

where Λ is trace preserving completely positive map (TPCP), mapping $\mathcal{B}(\mathbb{C}^2)$ to itself.

In [25] it was shown that any such map Λ can be written as,

$$\Lambda(\rho) = U_1 \circ \Lambda' \circ U_2(\rho)$$

(46)

with Λ' being a canonical TPCP map and U_1 and U_2 being unitary maps. If $\rho = \frac{1}{2} (I + \sigma_1 y \sigma_2 + z \sigma_3)$ and $\rho' = \Lambda'(\rho) = \frac{1}{2} (I + \sigma_1 y \sigma_2 + z \sigma_3)$ then in the Bloch sphere representation the map Λ' is given by,

$$\begin{pmatrix}
1 & x' \\
\lambda' & y' \\
\lambda' & z'
\end{pmatrix} = \begin{pmatrix}
t_1 & 0 & 0 \\
t_2 & 0 & \lambda_2 \\
t_3 & 0 & \lambda_3
\end{pmatrix} \begin{pmatrix}
1 & x \\
0 & y \\
0 & z
\end{pmatrix},$$

(47)

with t_i and λ_i being real for all i.

Now as local unitaries do not affect the eigenvalues of σ_{AB} or $\sigma_{A')B}^\dagger$, for the rest of the proof we can focus on $(I \otimes \Lambda')(|\Phi^+\rangle \langle \Phi^+ |) = \rho_{A'}$ with the map Λ' given by eqn. [47]. We have,

$$\rho_{A'} = \frac{1}{2} \begin{pmatrix}
a & b & 0 & d \\
b^* & (1 - a) & f & 0 \\
0 & f & c & b \\
d & 0 & b^* & (1 - c)
\end{pmatrix}$$

(48)

with $a = \frac{1 + t_1 + \lambda_1}{2}, b = \frac{1 - t_3}{2}, c = \frac{1 + t_2 + \lambda_2}{2}, d = \frac{\lambda_1 - \lambda_2}{2}, f = \frac{\lambda_1 + \lambda_2}{2}$. Now complete positivity of Λ' implies positivity of $\rho_{A'}$ and hence the spectrum of $\rho_{A'}$ is same as that of $\rho_{A'}^\dagger$. Now the eigenvalue equation of $\rho_{A'}^\dagger$ is

$$\begin{pmatrix}
\frac{3}{2} - \lambda & \frac{b^*}{2} & 0 & \frac{d}{2} \\
\frac{b}{2} & \frac{3}{2} - \lambda & \frac{c}{2} & \frac{f^*}{2} \\
0 & \frac{c}{2} & \frac{3}{2} - \lambda & \frac{b^*}{2} \\
\frac{d}{2} & \frac{f^*}{2} & \frac{b}{2} & \frac{3}{2} - \lambda
\end{pmatrix} = 0$$

(49)
Now, the partial transpose w.r.t first party of ρ_A is given by,

$$\rho^{\Gamma}_A = \frac{1}{2} \begin{bmatrix} a & b & 0 & f \\ b^* (1-a) & d & 0 & f \\ 0 & d & c & b \\ f^* & 0 & b^* (1-c) & 0 \end{bmatrix}. \quad (50)$$

The eigenvalue equation of ρ^{Γ}_A is given by,

$$\begin{vmatrix} \frac{b}{2} - \lambda \\ \frac{1-a}{2} - \lambda \\ 0 \\ \frac{b^*}{2} - \lambda \end{vmatrix} = 0. \quad (51)$$

Replacing $\lambda = \left(\frac{1}{2} - \lambda'\right)$, in eqn. (51) we have,

$$\begin{vmatrix} \frac{b}{2} - \lambda' \\ \frac{1-a}{2} - \lambda' \\ 0 \\ \frac{b^*}{2} - \lambda' \end{vmatrix} = 0. \quad (52)$$

In eqn. (52) interchanging column 1 \Leftrightarrow column 2 and column 3 \Leftrightarrow column 4 we have,

$$\begin{vmatrix} \frac{b}{2} - \lambda' \\ \frac{1-a}{2} - \lambda' \\ 0 \\ \frac{b^*}{2} - \lambda' \end{vmatrix} = 0. \quad (53)$$

In eqn. (53) interchanging row 1 \Leftrightarrow row 2 and row 3 \Leftrightarrow row 4 we have,

$$\begin{vmatrix} \frac{b}{2} - \lambda' \\ \frac{1-a}{2} - \lambda' \\ 0 \\ \frac{b^*}{2} - \lambda' \end{vmatrix} = 0. \quad (54)$$

Now multiplying the 1st row by -1, 2nd column by -1, 3rd row by -1 and 4th column by -1 successively in eqn. (53) we get back eqn. (51). Thus if eigenvalues of ρ_A are λ_i with $i = 1, 2, 3, 4$, that of ρ^{Γ}_A are $\left(\frac{1}{2} - \lambda_i\right)$. Thus we have,

$$\lambda_{\min}(\rho^{\Gamma}_A) = \frac{1}{2} - \lambda_{\max}(\rho_A)$$

$$\Rightarrow \lambda_{\min}(\rho^{\Gamma}_A) + \lambda_{\max}(\rho_A) = \frac{1}{2}$$

$$\Rightarrow \lambda_{\min}(\sigma_{AB}) + \lambda_{\max}(\sigma_{AB}) = \frac{1}{2} \quad (55)$$

C. Proof of Theorem 1:

We begin by obtaining an exact expression of the maximum pre-processed singlet fraction. As given in the main text, the maximum pre-processed fidelity is defined as

$$F_1 (\Lambda) = \max_{|\psi\rangle} F (\rho_{\psi, \Lambda}), \quad (56)$$

$$= \max_{|\psi\rangle} \max_{|\Phi\rangle} \langle \Phi | \rho_{\psi, \Lambda} | \Phi \rangle, \quad (57)$$

where $|\Phi\rangle$ is maximally entangled. Noting that every maximally entangled state $|\Phi\rangle$ can be written as $U \otimes V |\Phi^+\rangle$, for some $U, V \in SU(2)$, we can rewrite Eq. (57) as

$$F_1 (\Lambda) = \max_{|\psi\rangle, U, V} \langle \Phi^+ | (U^\dagger \otimes V^\dagger) \rho_{\psi, \Lambda} (U \otimes V) | \Phi^+ \rangle. \quad (58)$$

Let, $\rho_{\psi} = |\psi\rangle \langle \psi|$ and $\rho_{\psi^+} = |\Phi^+\rangle \langle \Phi^+|$. Using the fact that $(I \otimes V) |\Phi^+\rangle = (V^T \otimes I)|\Phi^+\rangle$, we now simplify the above equation:

$$F_1 (\Lambda) = \max_{|\psi\rangle, U, V} \langle \Phi^+ | (U^\dagger \otimes V^\dagger) \rho_{\psi, \Lambda} (U \otimes V) | \Phi^+ \rangle$$

$$= \max_{|\psi\rangle, U, V} \langle \psi | \sum_{i} (I \otimes A_i) \rho_{\psi} (I \otimes A_i^\dagger) (U \otimes V) | \Phi^+ \rangle$$

$$= \max_{|\psi\rangle, U, V} \langle \psi | \sum_{i} (I \otimes A_i^\dagger) (U \otimes V) (I \otimes A_i) | \psi \rangle$$

$$= \max_{|\psi\rangle, U, V} \langle \psi | (U^T \otimes I) (V^T \otimes I) | \psi \rangle$$

$$= \max_{|\psi\rangle} \langle \psi | \rho_{\psi, \Lambda} (V^T \otimes I) | \psi \rangle,$$

$$\quad (59)$$
Therefore,
\[F_1(\Lambda) = \max_{|\psi\rangle} \langle \psi | \rho_{\Phi^+,\Lambda} | \psi\rangle \]
(60)

From the above equation it immediately follows that,
\[F_1(\Lambda) = F(\rho_{\psi,\Lambda}) = \lambda_{\max} (\rho_{\Phi^+,\Lambda}) \]
(61)

where \(\lambda_{\max} \) denotes the maximum eigenvalue of \(\rho_{\Phi^+,\Lambda} \) and \(|\psi\rangle\) the corresponding eigenvector. Using the result,
\[\lambda_{\max} (\rho_{\Phi^+,\Lambda}) = \lambda_{\max} (\rho_{\Phi^+,\Lambda}) \]
(62)

proved in lemma 3, we have therefore proven that
\[F(\Lambda) \geq F_1(\Lambda) = \lambda_{\max} (\rho_{\Phi^+,\Lambda}) \]
(63)

The following lemma now gives an upper bound on the optimal singlet fraction \(F(\Lambda) \).

Lemma 5. For a qubit channel \(\Lambda \)
\[F(\Lambda) \leq \lambda_{\max} (\rho_{\Phi^+,\Lambda}) , \]
(64)

where \(\lambda_{\max} \) denotes the maximum eigenvalue of the density matrix \(\rho_{\Phi^+,\Lambda} \).

Proof. Recall that by definition, \(F(\Lambda) = \max_{\rho_{\Lambda}} F^*(\rho_{\Lambda}) \); in particular,
\[F^*(\rho_{\psi,\Lambda}) = \max_{L} F(L(\rho_{\psi,\Lambda})) = F(\rho_{\psi,\Lambda}) , \]
(65)

where \(\rho_{\psi,\Lambda} \) is the state obtained from \(\rho_{\psi,\Lambda} \) by optimal TP-LOCC for a given \(\rho_{\psi,\Lambda} \). It was shown [21] that the optimal TP-LOCC is an 1-way LOCC protocol, where any of the parties apply a state dependent filter. In case of success the other party does nothing, and in case of failure, Alice and Bob simply prepare a separable state. We have, therefore,
\[\rho_{\psi,\Lambda}^s = p \rho_1 + (1 - p) \rho_s , \]
(66)

where \(\rho_1 = \frac{1}{p} (A \otimes I) \rho_{\psi,\Lambda} (A^\dagger \otimes I) \) with \(\Lambda \) being the optimal filter, is the state arising with probability \(p = \text{Tr} [(A^\dagger A \otimes I) \rho_{\psi,\Lambda}] \) when filtering is successful and \(\rho_s \) is a separable state which Alice and Bob prepare when the filtering operation is not successful. \(F^* \) is given by (21),
\[F^*(\rho_{\psi,\Lambda}) = F(\rho_{\psi,\Lambda}^s) \]
\[= p F(\rho_1) + \frac{1 - p}{2} \]
(67)
\[= p \langle \Phi^+ | \rho_1 | \Phi^+ \rangle + \frac{1 - p}{2} . \]
(68)

Observe that the filter is applied at Alice’s end, that is, on the qubit she holds and not on the qubit that was sent through the channel to Bob. In eqns. (69) and (68), the separable state \(\rho_s \) is chosen so that \(\langle \Phi^+ | \rho_s | \Phi^+ \rangle = \frac{1}{2} \) and optimality of the filter \(\Lambda \) implies that \(F(\rho_1) = \langle \Phi^+ | \rho_1 | \Phi^+ \rangle \) (if the latter is not the case we will get another filter unitarily connected with \(\Lambda \) which yields higher singlet fraction). We will now show that \(F(\rho_1) \leq \lambda_{\max} (\rho_{\Phi^+,\Lambda}) . \) First we observe that
\[F(\rho_1) = \frac{1}{p} \langle \Phi^+ | (A \otimes I) (I \otimes \Lambda) | \psi \rangle \langle \psi | (A^\dagger \otimes I) | \Phi^+ \rangle \]
\[= \frac{1}{p} \langle \Phi^+ | (I \otimes \Lambda) (A \otimes I) | \psi \rangle \langle \psi | (A^\dagger \otimes I) | \Phi^+ \rangle , \]
(69)

where \(|\psi\rangle = \frac{1}{\sqrt{q}} (A \otimes I) | \psi \rangle \) is a normalized vector with \(q = p = \langle \psi | (A^\dagger A \otimes I) | \psi \rangle . \) Hence from eqns. (60) and (63) we have,
\[F(\rho_1) \leq F_1(\Lambda) = \lambda_{\max} (\rho_{\Phi^+,\Lambda}) . \]
(72)

Thus from Eq. (68) we have,
\[F^*(\rho_{\psi,\Lambda}) \leq p \lambda_{\max} (\rho_{\Phi^+,\Lambda}) + \frac{1 - p}{2} \]
(73)
\[\leq \lambda_{\max} (\rho_{\Phi^+,\Lambda}) . \]

The last inequality follows from the fact that \(\lambda_{\max} (\rho_{\Phi^+,\Lambda}) > 1/2 \) (as the channel is not entanglement...
breaking, this follows by applying Lemma 4 (Appendix B) on \(\rho_{\Phi^+ \Lambda} \).

Since Inequality (63) holds for any transmitted pure state \(|\psi\rangle \), we therefore conclude that

\[
F(\Lambda) \leq \lambda_{\text{max}}(\rho_{\Phi^+ \Lambda}) \tag{74}
\]

From Eqs. (63) and (64) we have, \(F(\Lambda) = \lambda_{\text{max}}(\rho_{\Phi^+ \Lambda}) \).

Now, as \(F(\Lambda) \geq F^*(\rho_{\psi_0 \Lambda}) \geq F(\rho_{\psi_0 \Lambda}) \) from eqns. (61) and (63) we have,

\[
F(\Lambda) = F^*(\rho_{\psi_0 \Lambda}) = F(\rho_{\psi_0 \Lambda}) \tag{75}
\]

This completes the proof of theorem 1. \(\square \)

D. Proof of Lemma 1

Let us now consider the spectral decomposition of \(\rho_{\Phi^+ \Lambda} \).

\[
\rho_{\Phi^+ \Lambda} = \sum_{\alpha} \lambda_{\alpha} |\psi_{\alpha}^0\rangle \langle \psi_{\alpha}^0|, \tag{76}
\]

From eqn. (63) we have,

\[
\rho_{\Phi^+ \Lambda} = \sum_{\alpha} \lambda_{\alpha} (V^\dagger |\psi_{\alpha}^0\rangle \langle \psi_{\alpha}^0| V). \tag{77}
\]

For different values of \(\alpha \), \((V^\dagger |\psi_{\alpha}^0\rangle \rangle^* \) are orthogonal as \(V \) is unitary.

Hence we see that eqn. (77) is in fact a spectral decomposition of \(\rho_{\Phi^+ \Lambda} \) with eigenvectors

\[
|\psi_{\alpha}\rangle = (V^\dagger |\psi_{\alpha}^0\rangle \rangle^*. \tag{78}
\]

The Schmidt coefficients of \(|\psi_{\alpha}^0\rangle \) are same as that of \(|\psi_{\alpha}\rangle \). The entanglement of \(|\psi_{\alpha}^0\rangle \) is thus also same as that of \(|\psi_{\alpha}\rangle \).

Let \(\psi_0 \) be the eigenvector corresponding to the maximum eigenvalue of \(\rho_{\Phi^+ \Lambda} \). We have from eqn. (78),

\[
|\psi_0\rangle = (V^\dagger |\psi_0^0\rangle \rangle^*. \tag{79}
\]

E. Proof of \(N(\Lambda) = N((\rho_{\Phi^+ \Lambda})) \) for unital channels and counterexample for non-unital channels

The most general two qubit pure state in the Schmidt form is given by, \(|\alpha\rangle = \sqrt{\lambda} |e_1 f_1\rangle + \sqrt{1-\lambda} |e_2 f_2\rangle = (U \otimes V)(\sqrt{\lambda}|00\rangle + \sqrt{1-\lambda}|11\rangle) \), with \(\lambda \in [0, 1] \) and the \(2 \times 2 \) unitary matrices \(U \) and \(V \) being given by: \(U|0\rangle = |e_1\rangle, V|0\rangle = |f_1\rangle, U|1\rangle = |e_2\rangle \) and \(V|1\rangle = |f_2\rangle \).

For \(\lambda \in [0, 1] \), let

\[
W_\lambda = \sqrt{\lambda}|0\rangle \langle 0| + \sqrt{1-\lambda}|1\rangle \langle 1|. \tag{80}
\]

Now using the fact that \(\Lambda \) is a trace-preserving map it is easy to show that,

\[
\rho_{\alpha, \Lambda} = (I \otimes \Lambda)|\alpha\rangle \langle |\alpha| = (A_1 \otimes I)\rho_{\Phi^+ \Lambda}(A_1^\dagger \otimes I) = Tr((A_1^\dagger A_1 \otimes I)\rho_{\Phi^+ \Lambda}), \tag{81}
\]

with the filter \(A_1 = UW_\Lambda V^T \).

For a unital channel \(\Lambda_{\Phi^+ \Lambda} \) is Bell-diagonal (see proof of theorem 3). In (23) it was shown that negativity of a Bell-diagonal state cannot be increased by local filtering. Hence, for a unital qubit channel \(\Lambda \),

\[
N(\Lambda) = N((\rho_{\Phi^+ \Lambda})). \tag{82}
\]

Counterexample for non-unital channels

Let us consider the amplitude damping channel, with Krauss operators \(K_0 = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-p} \end{pmatrix} \) and \(K_1 = \begin{pmatrix} 0 & \sqrt{p} \\ 0 & 0 \end{pmatrix} \) with \(1 \leq p \leq 0 \). The channel is non-unital.

It was shown in [17] that the optimal input state for attaining optimal singlet fraction of the channel is given by, \(|\chi\rangle = \frac{1}{\sqrt{2p}} |00\rangle + \frac{1}{\sqrt{2-2p}} |11\rangle \).

Using theorem 1 for the amplitude damping channel \(\Lambda \) we therefore get, \(F(\Lambda) = \lambda_{\text{max}}(\rho_{\Phi^+ \Lambda}) = F^*(\rho_{\chi, \Lambda}) = F(\rho_{\chi, \Lambda}) \). Now from eqn. (24) we get \(F^*(\rho_{\chi, \Lambda}) = \frac{1}{2} [1 + N(\rho_{\chi, \Lambda})] \), while from lemma 2 we get \(F(\Lambda) = \frac{1}{2} [1 + N(\rho_{\Phi^+ \Lambda})] \). Hence we must have, \(N(\rho_{\Phi^+ \Lambda}) \leq N(\rho_{\chi, \Lambda}) \).

For the amplitude damping channel for input states \(|\phi(\lambda)\rangle = \sqrt{\lambda}|00\rangle + \sqrt{1-\lambda}|11\rangle (\lambda \in [0, 1]) \) we have,

\[
N(\rho_{\phi(\lambda), \Lambda}) = \frac{p^2(1-\lambda)^2 + 4\lambda(1-\lambda)(1-p) - (1-\lambda)p}{4} \tag{83}
\]

Thus,

\[
N(\rho_{\Phi^+ \Lambda}) = \sqrt{\frac{p^2}{4} + 1 - p} - \frac{p}{2}
\]

and,

\[
N(\rho_{\phi(\frac{1}{2-p^2}), \Lambda}) = \frac{1-p}{2-p} (\sqrt{p^2 + 4} - p).
\]

It is easy to see that \(N(\rho_{\Phi^+ \Lambda}) < N(\rho_{\phi(\frac{1}{2-p^2}), \Lambda}) \) for all \(1 > p > 0 \) and hence \(N(\rho_{\Phi^+ \Lambda}) < N(\Lambda) \).