A RELATION BETWEEN MILNOR’S μ-INVARAENTS AND HOMFLYPT POLYNOMIALS

YUKA KOTORII

Abstract. Polyak showed that any Milnor’s μ-invariant of length 3 can be represented as a combination of Conway polynomials of knots obtained by certain band sum of the link components. On the other hand, Habegger and Lin showed that Milnor invariants are also invariants for string links, called μ-invariants. We show that any Milnor’s μ-invariant of length $\leq k + 2$ can be represented as a combination of the HOMFLYPT polynomials of knots obtained from the string link by some operation, if all μ-invariants of length $\leq k$ vanish. Moreover, μ-invariants of length 3 are given by a combination of the Conway polynomials and linking numbers without any vanishing assumption.

1. Introduction

For an ordered oriented link in the 3-sphere, J. Milnor [14, 15] defined a family of invariants, known as Milnor’s $\overline{\mu}$-invariants. For an n-component link L, Milnor invariant is determined by a sequence I of elements in $\{1, 2, \ldots, n\}$ and denoted by $\overline{\mu}_L(I)$. It is known that Milnor invariants of length two are just linking numbers. In general, Milnor invariant $\overline{\mu}_L(I)$ is only well-defined modulo the greatest common divisor $\Delta_L(I)$ of all Milnor invariants $\overline{\mu}_L(J)$ such that J is a subsequence of I obtained by removing at least one index or its cyclic permutation. If the sequence is of distinct numbers, then this invariant is also a link-homotopy invariant and we call it Milnor’s link-homotopy invariant. Here, the link-homotopy is an equivalence relation generated by ambient isotopy and self-crossing changes.

In [3], N. Habegger and X. S. Lin showed that Milnor invariants are also invariants for string links, and these invariants are called Milnor’s $\hat{\mu}$-invariants. For any string link σ, $\mu_\sigma(I)$ coincides with $\overline{\mu}_\sigma(I)$ modulo $\Delta_\sigma(I)$, where $\hat{\sigma}$ is a link obtained by the closure of σ. Milnor’s μ-invariants of length k are finite type invariants of degree $k − 1$ for any natural integer k, as shown by D. Bar-Natan [1] and X. S. Lin [10].

In [16], M. Polyak gave a formula expressing Milnor’s $\bar{\mu}$-invariant of length 3 by the Conway polynomials of knots. His idea was derived from the following relation. Both Milnor’s μ-invariant of length 3 for string link and the second coefficient of the Conway polynomial are finite type invariants of degree 2. He gave this relation by using Gauss diagram formulas.

Then, in [13], J-B. Meilhan and A. Yasuhara generalized it by using the clasper theory introduced by K. Habiro [4]. They showed that general Milnor’s $\bar{\mu}$-invariants can be represented by the HOMFLYPT polynomials of knots under some assumption. Moreover the author and A. Yasuhara improved it in [8].

In this paper, we give a formula expressing Milnor’s μ-invariant by the HOMFLYPT polynomials of knots under some assumption (Theorem 1.1) by using the clasper theory in [4]. The course of proof is similar to that in [13] and [8]. Moreover, Milnor’s μ-invariants of length 3 for any string link are given by the HOMFLYPT polynomial, which is a finite type invariant of degree 2, and the linking number.

A part of this work was supported by Platform for Dynamic Approaches to Living System from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Because a finite type knot invariant of degree 2 is only the second coefficient of the Conway polynomial essentially, Milnor’s μ-invariants of length 3 are given by the second coefficient of the Conway polynomial and the linking number (Theorem 1.3). It is a string version of Polyak’s result, and by taking modulo $\Delta(I)$, our result coincides with Polyak’s result.

Given a sequence I of elements of $\{1,2,\ldots,n\}$, $J < I$ will be used for any subsequence J of I, possibly I itself, and $|J|$ will denote the length of the sequence J.

Let σ be an n-string link. Given a sequence $I = i_1i_2\ldots i_m$ obtained from $12\ldots n$ by deleting some elements and permuting it, and a subsequence $J = j_1j_2\ldots j_k$ of I, we define a knot $\sigma_{I,J}$ as the closure of the product $b_I\sigma_J$. Here σ_J is the m-string link obtained from σ by deleting the ith string, for all $i \in \{1,2,\ldots,n\} \setminus \{i_1,i_2,\ldots,i_m\}$ and replacing the ith string with a trivial string underpassing all other components, for all $i \in \{i_1,i_2,\ldots,i_m\} \setminus \{j_1,j_2,\ldots,j_k\}$, and b_I is the m-braid associated with the permutation $b = (i_1i_2\ldots i_m)$. Here Δ is the second coefficient of the Conway polynomial and the linking number (Theorem 1.3). It is a string version of Polyak’s result, and by taking modulo $\Delta(I)$, our result coincides with Polyak’s result.

Theorem 1.1. Let σ be an n-string link ($n \geq 4$) with vanishing Milnor’s link-homotopy invariants of length $\leq n - 2$. Then for any sequence I obtained from $12\ldots n$ by deleting $n - m$ elements and permuting it, we have

$$\mu_\sigma(I) = \frac{(-1)^{m-1}}{(m-1)!2^{m-1}} \sum_{J \subset I} (-1)^{|J|} P^{(m-1)}(\sigma_{I,J};1),$$

where $P^{(m-1)}(\cdot; 1)$ is the $(m-1)$th derivative of the 0th coefficient $P_0(\cdot; t)$ of the HOMFLYPT polynomial evaluated at $t = 1$.

Note that the above vanishing assumption for string link is equivalent to that any $(m-2)$-substring link is link-homotopic to the trivial string link.

Remark 1.2. Theorem 1.1 remains valid if we use one of the following two alternative definitions of b_I. One is that we use “overpasses” instead of “underpasses”. The other is that we use “any $i \in \{i_1,i_2,\ldots,i_m\}$” instead of “$i_1$”.

We also give the case of μ-invariants of length 3 without the assumption.

Theorem 1.3. Let σ be an n-string link and $I = i_1i_2i_3$ be a length 3 sequence with distinct numbers in $\{1,2,\ldots,n\}$. We then have

$$\mu_\sigma(I) = -\sum_{J \subset I} (-1)^{|J|} a_2(\sigma_{I,J}) - lk_\sigma(i_1i_2)lk_\sigma(i_2i_3) + A_I,$$

where a_2 is the second coefficient of the Conway polynomial, $lk_\sigma(ij)$ is the linking number of the ith component and jth component of σ, and

$$A_I = \begin{cases} lk_\sigma(i_1i_2) & (i_2 < i_3 < i_1) \\ -lk_\sigma(i_1i_2) & (i_1 < i_3 < i_2) \\ 0 & \text{(otherwise)}. \end{cases}$$

Remark 1.4. This operation from a string link to a knot corresponds to Y-graph sum of links defined by M. Polyak. By taking this formula modulo $\Delta(I)$, we get Polyak’s relation between Milnor’s $\overline{\mu}$-invariants and Conway polynomials [16].

Remark 1.5. K. Taniyama gave a formula expressing Milnor’s $\overline{\mu}$-invariants of length 3 for links by the second coefficient of the Conway polynomial assuming that all linking numbers vanish.
Remark 1.6. In [11], J.B. Meilhan showed that all finite type invariants of degree 2 for string link was given a formula by some invariants (Theorem 2.8). So the formula in Theorem 1.3 could also be derived from [11].

This paper is organized as follows. In section 2, we prepare some known results. In section 3, we prove Theorem 1.1 and Theorem 1.3. In section 4, we show examples.

ACKNOWLEDGEMENTS

The author thanks Professor Sadayoshi Kojima for comments and suggestions. She also thanks Professor Akira Yasuhara for discussions and comments. She also thanks Professor Michael Polyak for valuable advices. She also thanks Professor Jean-Baptiste Meilhan for many useful comments. She also thanks Professor Kouki Taniyama for comments.

2. Some known results

2.1. String link. Let n be a positive integer and $D^2 \subset \mathbb{R}^2$ the unit disk equipped with n marked points x_1, x_2, \ldots, x_n in its interior, lying in the diameter on the x-axis of \mathbb{R}^2 as in Figure 1. Let $I = [0, 1]$. An n-string link σ is the image of a proper embedding $\bigcup_{i=1}^{n} I_i \to D^2 \times I$ of the disjoint union of n copies of I in $D^2 \times I$, such that $\sigma|_{I_i}(0) = (x_i, 0)$ and $\sigma|_{I_i}(1) = (x_i, 1)$ for each i as in Figure 1. Each string of a string link inherits an orientation from the usual orientation of I. The n-string link $\{x_1, x_2, \ldots, x_n\} \times I$ in $D^2 \times I$ is called the trivial n-string link and denoted by 1_n or 1 simply.

Given two n-string links σ and σ', we denote their product by $\sigma \cdot \sigma'$, which is given by stacking σ' on the top of σ and reparametrizing the ambient cylinder $D^2 \times I$. By this product, the set of isotopy classes of n-string links has a monoid structure with unit given by the trivial string link 1_n. Moreover, the set of link-homotopy classes of n-string links is a group under this product.

2.2. Milnor’s μ-invariant for string links. Let $\sigma = \bigcup_{i=1}^{n} I_i \sigma_i$ in $D^2 \times I$ be an n-string link. We consider the fundamental group $\pi_1(D^2 \times I \setminus \sigma)$ of the complement of σ in $D^2 \times I$, where we choose a point b as a base point and curves $\alpha_1, \cdots, \alpha_n$ as meridians in Figure 2.

By Stallings’ theorem [17], for any positive integer q, the inclusion map $\iota : D^2 \times \{0\} \setminus \{x_1, \cdots, x_n\} \to D^2 \times I \setminus \sigma$
induce an isomorphism of the lower central series quotients of the fundamental groups

\[\iota_* : \frac{\pi_1(D^2 \times \{0\} \setminus \{x_1, \ldots, x_n\})}{\pi_1(D^2 \times \{0\} \setminus \{x_1, \ldots, x_n\})} \longrightarrow \frac{\pi_1(D^2 \times I \setminus \sigma)}{\pi_1(D^2 \times I \setminus \sigma)_q}, \]

where given a group \(G \), \(G_q \) means the \(q \)th lower central subgroup of \(G \). The fundamental group \(\pi_1(D^2 \times \{0\} \setminus \{x_1, \ldots, x_n\}) \) is a free group generated by \(\alpha_1, \ldots, \alpha_n \). We then consider the \(j \)th longitude \(l_j \) of \(\sigma \) in \(D^2 \times I \), where \(l_j \) is the closure of the preferred parallel curve of \(\sigma_j \), whose endpoints lie on the \(x \)-axis in \(D^2 \times \{0,1\} \) as in Figure 2. We then consider the image of the longitude \(\iota_*^{-1}(l_j) \) by the Magnus expansion and denote \(\mu(i_1, \ldots, i_k, j) \) the coefficient of \(X_{i_1}X_{i_2}\cdots X_{i_k} \) in the Magnus expansion.

Theorem 2.1 ([3]). For any positive integer \(q \), if \(k < q \), then \(\mu(i_1, \ldots, i_k, j) \) is invariant under isotopy. Moreover, if the sequence \(i_1, \ldots, i_k, j \) is of distinct numbers, then \(\mu(i_1, \ldots, i_k, j) \) is also link-homotopy invariant.

We call this invariant Milnor’s \(\mu \)-invariant.

2.3. Claspers

The theory of claspers was introduced by K. Habiro [4]. Here, we define only simple tree clasper. For a general definition, we refer the reader to [4].

Let \(L \) be a (string) link. A disk \(T \) embedded in \(S^3 \) (or \(D^2 \times I \)) is called a simple tree clasper (we will call it tree, simply in this paper) for \(L \) if it satisfies the following four conditions:

1. The disk \(T \) is decomposed into disks and bands. Here, the band connects two distinct disks, and are called edges.
2. The disks attach either 1 or 3 edges. We call a disk attached with only one edge a leaf.
3. The disk \(T \) intersects the (string) link \(L \) transversely and the intersections are contained in the interiors of the leaves.
4. Each of leaves of \(T \) intersects \(L \) at exactly one point.

A simple tree clasper \(T \) with \(k \) leaves is called a \(C_k \)-tree.

Given a \(C_k \)-tree \(T \) for a (string) link \(L \), there exists a procedure to construct a framed link \(\gamma(T) \) in a regular neighborhood of \(T \). We call surgery along \(\gamma(T) \) surgery along \(T \). Because there is an orientation-preserving homeomorphism, fixing the boundary, from the regular neighborhood \(N(T) \) of \(T \) to the manifold obtained from \(N(T) \) by surgery along \(T \), the surgery along \(T \) can be regarded as a local move on \(L \). We denote by \(L_T \) a (string) link obtained from \(L \) by surgery along \(T \). For example, surgery along a \(C_k \)-tree is a local move as illustrated in Figure 3. In this paper, the drawing convention for \(C_k \)-trees are those of [4, Figure 7].
Similarly, let $T_1 \cup \ldots \cup T_m$ be a disjoint union of trees for L, we can define $L_{T_1 \cup \ldots \cup T_m}$ as the link obtained by surgery along $T_1 \cup \ldots \cup T_m$.

The C_k-equivalence is an equivalence relation on (string) links generated by surgeries along C_k-tree claspers and isotopy, and denoted by \sim_{C_k}.

Theorem 2.2 ([4]). A finite type invariant of degree $\leq k - 1$ is an invariant of C_k-equivalence.

2.4. Moves for claspers.

In [4], the following moves for tree claspers, called a leaf slide and an edge crossing change are given.

Lemma 2.3 ([4]). Let T_1 be a C_{k_1}-tree for a (string) link L and T_2 a C_{k_2}-tree for L, where T_1 and T_2 are disjoint.

1. (Leaf slide) Let $T'_1 \cup T'_2$ be obtained from $T_1 \cup T_2$ by sliding a leaf f_2 of T_2 over a leaf of T_1 (see the left-hand side of Figure 4). Then, $L_{T_1 \cup T_2}$ is $C_{k_1 + k_2 + 1}$-equivalent to $L_{T'_1 \cup T'_2 \cup Y}$, where Y denotes a $C_{k_1 + k_2}$-tree obtained by inserting a vertex v_1 in the edge e_1 of T_1 and connecting v_1 to the edge incident to f_2 as shown in Figure 4.

2. (Edge crossing change) Let $T'_1 \cup T'_2$ be obtained from $T_1 \cup T_2$ by passing an edge of T_2 across an edge of T_1 (see the right-hand side of Figure 4). Then, $L_{T_1 \cup T_2}$ is $C_{k_1 + k_2 + 2}$-equivalent to $L_{T'_1 \cup T'_2 \cup H}$, where H denotes a $C_{k_1 + k_2 + 1}$-tree obtained by inserting a vertex in both edges and connecting them by an edge as shown in Figure 4.

2.5. Presentation of link-homotopy classes for string links.

Define the set M_r of sequences as follows: Any subsequence $m_0 m_1 \ldots m_r$ of $12 \cdot \ldots \cdot n$ with length $r + 1$ and its permutation $\sigma(m_1) \ldots \sigma(m_r-1)m_r$. That is,

$$M_r = \{m_0 \sigma(m_1) \ldots \sigma(m_{r-1})m_r \mid m_0 m_1 \ldots m_r < 12 \cdot \ldots \cdot n, \sigma \in S_{r-1}\}.$$

Let T_M be a C_r-tree for $1_n (= 1)$ as illustrated in Figure 5, where σ is the unique positive $(r - 1)$-braid defined by the permutation σ and such that every pair of strings crosses at most one. Let T_M^{-1} be the C_r-tree obtained from T_M by inserting a positive half-twist in the * marked edge in Figure 5.
Theorem 2.4 (cf. [19 Theorem 4.3], [13 Theorem 4.1]). For any n-string link l, there are canonical string links l_r's such that l is link-homotopic to a string link $l_1 \cdot l_2 \cdot \cdots \cdot l_{n-1}$, where

$$l_r = \prod_{M \in \mathcal{M}_r} (1_{T_M})^{x_M}(M \text{ in the product appears in the lexicographic order of } \mathcal{M}_r),$$

$$x_M = \begin{cases} \mu_l(M) & \text{if } r = 1 \\ (-1)^{r+1} \{\mu_l(M) - \mu_{l_1 \cdots l_{r-1}}(M)\} & \text{if } r \geq 2, \end{cases} \text{ and } \epsilon = \begin{cases} 1 & \text{if } x_M > 0 \\ -1 & \text{if } x_M \leq 0. \end{cases}$$

Remark 2.5. In [13], the statement slightly differs from the original one in [19], because the authors used a different definition for the C_r-trees T_M and T_M^{-1} from [19]. But in [13 Theorem 4.1], when $r \geq 2$, a sign $(-1)^{r+1}$ of $\mu_l(M) - \mu_{l_1 \cdots l_{r-1}}(M)$ seems to be missing. In this paper, we use the definition for C_r-trees T_M and T_M^{-1} as in [13]. But Theorem 2.4 is different from [13] Theorem 4.1] only by a sign.

Lemma 2.6 (Lemma 3.3 [12]). Let l and l' be n-string links. Let h and h' be the integers. If $\mu_l(I) = 0$ for any I with $|I| \leq h$ and $\mu_{l'}(I) = 0$ for any I with $|I| \leq h'$, then for any J with $|J| \leq h + h'$

$$\mu_{l \cdot l'}(J) = \mu_l(J) + \mu_{l'}(J).$$

2.6. HOMFLYPT polynomial. Recall the definition of the HOMFLYPT polynomial, and mention useful properties.

The HOMFLYPT polynomial $P(L; t, z) \in \mathbb{Z}[t^\pm, z^\pm]$ of an oriented link L is defined by the following two formulas:

1. $P(U; t, z) = 1$, and
2. $t^{-1}P(L_+; t, z) - tP(L_-; t, z) = zP(L_0; t, z),$

where U denotes the trivial knot and L_+, L_- and L_0 are link diagrams which are identical everywhere except near one crossing, where they look as follows:

$$L_+ = \quad ; \quad L_- = \quad ; \quad L_0 = \quad .$$

Recall that the HOMFLYPT polynomial of a knot K is of the form $P(K; t, z) = \sum_{k=0}^{N} P_{2k}(K; t)z^{2k}$, where $P_{2k}(K; t) \in \mathbb{Z}[t^\pm]$ is called the $2k$th coefficient polynomial of K. Then the following theorem is known.

Theorem 2.7 ([2]). Let K be a knot. $P_{2k}^{(j)}(K; 1)$ is a finite type invariant of degree $2k + j$, where $P_{2k}^{(j)}(K; 1)$ is the jth derivative of $P_{2k}(K; t) \in \mathbb{Z}[t^\pm]$ evaluated at $t = 1$.

It is known that the HOMFLYPT polynomial of knots is multiplicative under connected sum. So $P_0(K; t)$ is also multiplicative under connected sum. For any
knots K and K' and any integer n, we have

$$P_0^{(n)}(K_2K'; 1) = P_0^{(n)}(K; 1) + P_0^{(n)}(K'; 1) + \sum_{k=1}^{n-1} \binom{n}{k} P_0^{(k)}(K) P_0^{(n-k)}(K'; 1),$$

because $P_0(K; 1) = 1$ for any knot K. Moreover, if the knot K is C_{n+1}-equivalent to the trivial knot, we have

$$P_0^{(n)}(K_2K'; 1) = P_0^{(n)}(K; 1) + P_0^{(n)}(K'; 1),$$

because finite type invariants of degree less than $n - 1$ are C_{n+1}-equivalence invariants and $P_0^{(k)}(K; 1) = 0$ for any knot K.

3. Proof of Theorem 1.1 and Theorem 1.3

Proof of Theorem 1.1 Let $n \geq 4$ and $\sigma = \bigcup_{i=1}^{n} \sigma_i$ be an n-string link with vanishing Milnor link-homotopy invariants of length $\leq m - 2$ ($\leq n$). We assume that I is a sequence of length l ($4 \leq l \leq m$) with distinct number in \{1, 2, ..., n\}. It is sufficient to consider the case $l = m$ because the case $l = m$ contains the case $l = m - 1$ (that is the first non-vanishing case), and the case $m = n$ because we have that $\mu_*(I) = \mu_{\bigcup_{i \in \{t\}} \sigma_i}(I)$ if $m < n$. So we may consider $l = m = n$ and $I = i_1 i_2 \ldots i_n$.

We will prove Theorem 1.1 in three steps. In Step 1, we represent a string link by the trivial string link with tree claspers by Theorem 2.4 and make a knot represented by the trivial knot with the tree claspers of this string link by some closure operation. In Step 2, we transform the tree claspers preserving the value of the HOMFLYPT polynomial by Lemma 2.5. In Step 3, we calculate the $(n - 1)$th derivative of the 0th coefficient of the HOMFLYPT polynomial by Theorem 2.7 and Theorem 2.8. In the proof, we will simply write σT for $\sigma T \cup T$.

Step1:

By combination of Theorem 2.4 and the assumption that Milnor link-homotopy invariants of length $\leq n - 2$ vanish, σ is link-homotopic to $l_{n-2} \cdot l_{n-1}$, where $l_r = \prod_{M \in M_r} (1 T_M)^{|x_{r(M)}|}$. Moreover there is an integer $x_{r(M)}$ such that $l_{n-2} \cdot l_{n-1}$ is C_n-equivalent to $l_{n-2} \cdot (c^{-1}_{l_1} \cdot l_{n-1} - c)$, where $l_{n-1} = \prod_{M \in M_{n-1}} (1 T_M)^{|x_{r(M)}|}$ and $c = (i_1 i_2 \ldots i_{n-1} i_n)$, and c_t is the positive permutation braid associated with c (See [5, §4.2]).

Set

$$\mathcal{F} := \left(\bigcup_{M \in M_{n-2}} (T_M)^{|x_M|} \right) \cup \left(\bigcup_{M \in M_{n-1}} (T_M)^{|x_{r(M)}|} \right),$$

where ϵ is 1 if $x_M > 0$ and otherwise -1. We then can regard $l_{n-2} \cdot (c^{-1}_{l_1} \cdot l_{n-1} - c)$ as a string link $(1_n \cdot (c^{-1}_{l_1} \cdot 1_n \cdot c))_T$ obtained from $1_n \cdot (c^{-1}_{l_1} \cdot 1_n \cdot c)$ by surgery along the union of trees \mathcal{F}. Because $1_n \cdot (c^{-1}_{l_1} \cdot 1_n \cdot c)$ is ambient isotopic to 1_n, we can also regard $l_{n-2} \cdot (c^{-1}_{l_1} \cdot l_{n-1} - c)$ as a string link 1_T. Moreover there is a disjoint union \mathcal{R}_1 of C_t-trees whose leaves intersect a single component of the string link $l_{n-2} \cdot (c^{-1}_{l_1} \cdot l_{n-1} - c)$ such that

$$\sigma \sim_{C_n} (l_{n-2} \cdot (c^{-1}_{l_1} \cdot l_{n-1} - c))_{\mathcal{R}_1} = (1_T)_{\mathcal{R}_1}.$$

We then can regard σ as C_n-equivalent to a string link $1_T \cup \mathcal{R}_1$, obtained from 1_n by surgery along the union of trees $\mathcal{F} \cup \mathcal{R}_1$.

In the canonical diagram of 1_n, a tree for 1_n is in good position if each component of 1_n underpasses all edges of the tree. Note that each tree of \mathcal{F} with $M \in M_{n-2}$
is in good position. On the other hand, a tree of F with M in \mathcal{M}_{n-1} and a tree of \mathcal{R}_1 may not be in good position. We now replace F and \mathcal{R}_1 with some trees in good position up to C_n-equivalence. By Lemma \[2.3\](2) and repeated applications of \[4\] Proposition 4.5, we have

$$1_{F \cup \mathcal{R}_1} \sim_{C_n} 1_{F' \cup \mathcal{R}} ,$$

where

$$F' := \left(\bigcup_{M \in \mathcal{M}_{n-2}} (T'_M)^{|x_M|} \right) \cup \left(\bigcup_{M \in \mathcal{M}_{n-1}} (T'_c)^{|x_c(M)|} \right) ,$$

where ϵ is 1 if $x_M > 0$ and otherwise -1, and \mathcal{R} is a disjoint union of trees for 1_n in good position and intersecting some component of 1_n more than once. We note that $T'_c(M)$ intersects 1_n associated with the order $c(M)$.

It follows from \[13\] Lemma 3.2 and the fact $b_I \cdot 1_n$ is the trivial knot that for any subsequence J of I,

$$P_0 \left(\overline{1_{F' \cup \mathcal{R}}} \right)_J = P_0 \left(\overline{1_{\mathcal{G} \cup \mathcal{R}}} \right)_J ,$$

where

$$\mathcal{G} = \left(\bigcup_{M \in \mathcal{M}_{n-2}, M \in I} (T'_M)^{|x_M|} \right) \cup T'_I^{|x_I|} ,$$

meaning that we can ignore the M’s in \mathcal{M}_{n-2} and \mathcal{M}_{n-1} such that $M \notin I$ and $c(M) \notin I$ respectively when computing 0th coefficient polynomial P_0 of the HOMFLYPT polynomial.

Step 2:

By leaf slides and edge crossing changes, we will separate the union of trees for the trivial knot U up to C_n-equivalence. That is, we translate trees preserving a knot obtained from the trivial knot U, all intersections with leaves of each of the trees are adjacent and each tree does not link other trees on the standard trivial knot U. We then represent the knot as the connected sum of some knots, up to C_n-equivalence. We then have to remember to which string each tree belongs and from which each new tree is derived. So we give each tree more information, called a weight. Here, we denote the set of element of J as $\{J\}$.

First of all, we assign to each tree of $\mathcal{G} \cup \mathcal{R}$ the collection of all integers i such that the tree intersects the ith component of 1_n as weight. Then, since $\mathcal{G} \cup \mathcal{R}$ is in good position for 1_n, it is obvious that for any subsequence J of I,

$$\overline{(1_{\mathcal{G} \cup \mathcal{R}})}_J = T_I(\bigcup_{w(T) \subseteq \{J\}} T) = U(\bigcup_{w(T) \subseteq \{J\}} T) ,$$

where $\bigcup_{w(T) \subseteq \{J\}} T$ means the union of trees T’s of $\mathcal{G} \cup \mathcal{R}$ whose weight is contained in $\{J\}$.

Secondly, we define the weight of new trees obtained by leaf slides or edge crossing changes. Now, we consider a knot $U_{T_1 \cup T_2 \cup X}$, where T_1 is a C_{k_1}-tree with weight $w(T_1)$, T_2 a C_{k_2}-tree with $w(T_2)$ and X is the union of some trees. When we perform a leaf slide or an edge crossing change between T_1 and T_2 (see Lemma \[2.3\]), we assign the weight $w(T_1)$ and $w(T_2)$ to T'_1 and T'_2 respectively, and the union $w(T_1) \cup w(T_2)$ of weights as the weight of Y (resp. of H).

So for any subsequence J of I, a knot obtained from the trivial knot U by surgery along the union of trees of $T_1 \cup T_2 \cup X$ with weight in $\{J\}$ is $C_{k_1+k_2+1}$-equivalent.
to the knot obtained by surgery along the union of trees $T'_1 \cup T'_2 \cup X$ with weight in $\{J\}$. The case of edge crossing changes is similar to leaf slides.

We separate some unions of trees for the trivial knot U up to C_n-equivalence, by using leaf slides and edge crossing changes. We separate $|x_I|$ copies of the tree T'_I and then each T'_M ($M \in M_{n-2}$, $M < I$). We move T'_M through the only strings corresponding to $\{M\}$, that is, we must not do a leaf slide between T'_M and a tree whose weight is not contained in $\{M\}$. We need to consider the following two types of move.

(1) Leaf slide or edge crossing change between T'_M $(M \in M_{n-2}$, $M < I)$ and a repeated tree R.
(2) Leaf slide or edge crossing change between T'_M and $T'_{M'}$ $(M, M' \in M_{n-2}, M < I, M' < I)$.

(1) If $w(R) \cap w(T'_M) = \emptyset$ (i.e. $|w(R)| = 1$), we only have to consider the edge crossing change. The new tree obtained by the edge crossing change is a C_1-tree ($l = n + 1$). Therefore we do not have to consider it, up to C_n-equivalence. If $w(R) \subset w(T'_M)$ and $w(R) \cap w(T'_M) \neq \emptyset$, then R is not a C_1-tree. So the new tree obtained by the leaf slide or edge crossing change is a C_l-tree ($l = n$). Therefore we do not have to consider it, up to C_n-equivalence. If $w(R) \supset w(T'_M)$, then the new tree obtained by the leaf slide or edge crossing change is a repeated tree.

(2) New trees obtained by a leaf slide or edge crossing change are C_1-trees ($l \geq n$). So we do not have to consider it, up to C_n-equivalence.

By separating trees, the knot $U_{G \cup R} = (\overline{1_{G \cup R}})_I$ is C_n-equivalent to the connected sum as follows.

\[
\sharp_{x_I, T'_I} \sharp_{M \in M_{n-2}, M < I}(\sharp_{x_M, T'_M}) \sharp_{R'} U_{R'},
\]

where $U_{T'_I}$ means $\overline{(1_{T'_I})_I}$, $U_{T'_M}$ means $\overline{(1_{T'_M})_I}$ and R' is a disjoint union of some repeated trees for the trivial knot U. We note that $\overline{(1_{G \cup R})}_J$ is also C_n-equivalent to the above connected sum whose weights are in $\{J\}$.

Step3:
We calculate $\sum_{J \subset I} (-1)^{|J|} P_0^{n-1}(\overline{1_{T'_I}}, 1)$. It follows from Theorem 2.2 and Theorem 2.4 that $P_0^{n-1}(\overline{1_{T'_I}}, 1)$ is invariant under C_n-equivalence. Moreover by using Equation (2.1), for any subsequence J of I, we have

\[
\sum_{J \subset I} (-1)^{|J|} P_0^{n-1}(\overline{1_{T'_I}}, 1) = \sum_{J \subset I} (-1)^{|J|} P_0^{n-1}(\overline{1_{G \cup R}})_J (\overline{1_{T'_I}}); 1)
\]

\[
= (-1)^{|I|} |x_I| P_0^{n-1}(U_{T'_I}; 1) + \sum_{J \subset I} (-1)^{|J|} \sum_{M < J, |M| = n-1} |x_M| P_0^{n-1}(U_{T'_M}; 1) + \sum_{J \subset I} (-1)^{|J|} P_0^{n-1}(U_{R'_J}; 1),
\]

where R'_J is the subset of R' whose index is in J. We then can cancel the second term because for each M ($M < J$, $|M| = n - 1$)

\[
\sum_{M < J \subset I} (-1)^{|J|} = (-1)^{|I|} + (-1)^{|M|} = 0,
\]

and by Claim 6.1, the third term is also 0. So we have

\[
\sum_{J \subset I} (-1)^{|J|} P_0^{n-1}(\overline{1_{T'_I}}, 1) = (-1)^{|I|} |x_I| P_0^{n-1}(U_{T'_I}; 1).
\]
Let K_m^δ be the knot as illustrated in Figure 6 with $\delta = (\delta_0, \delta_1, \ldots, \delta_{m+1})$. Here, an edge has a negative half-twist if $\delta = -1$ and an edge is a non-twist edge if $\delta = 1$.

![Figure 6. The knot K_m^δ](image)

By using [13, Lemma 3.1], we have

$$P_0^{(m+1)}(K_m^\delta; 1) = (-1)^{m+1}2^{m+1}(m+1)! \prod_{i=0}^{m+1} \delta_i.$$ \hspace{1cm} (3.2)

Now U_I is K_{n-2}^δ with $\delta = (-\epsilon, 1, \ldots, 1)$. So we have

$$(-1)^{|I|}x_I P_0^{(n-1)}(U_I; 1) = -x_I 2^{(n-1)(n-1)!}.$$ \hspace{1cm} (3.1)

By Theorem 2.4 and Lemma 2.6, for $n \geq 4$,

$$x_I = (-1)^{|I|} \mu_\sigma(I).$$

Therefore, we have

$$\mu_\sigma(I) = (-1)^{|I|}x_I = \frac{(-1)^{n-1}}{(n-1)!2^{n-1}} \sum_{J < I} (-1)^{|J|} P_0^{(n-1)}(\sigma_J; 1).$$

\[\square \]

Proof of Theorem 1.3 We consider the case $n = 3$. First of all, we assume that $I = 123, 231$ or 312. This proof is similar to that of Theorem 1.1. In the Step 2 of the proof of Theorem 1.1, if $x_{12}, x_{13}, x_{23} > 0$, we obtain that σ_I is C_3-equivalent to the following connected sum.

$$\sharp x_{12} U_{T_I} \sharp x_{13} U_{T_I} \sharp x_{23} U_{T_I} K_{1}^\delta \sharp U_{R'},$$

where $\delta_1 = (-1,1,-1)$ and $\delta_2 = (-1,1,-1)$, and R' is a disjoint union of some repeated trees.

By using Equations (2.1) and (3.2), we have

$$\sum_{J \leq I} (-1)^{|J|} P_0^{(2)}(\sigma_J; 1) = \sum_{J \leq I} (-1)^{|J|} P_0^{(2)}((1 \cap \sigma_R) J; 1)$$

$$= (-1)^{|I|} \{ x_{12} P_0^{(2)}(U_I; 1) + x_{13} P_0^{(2)}(K_{1}^\delta; 1) + x_{23} P_0^{(2)}(K_{1}^\delta; 1) \}$$

$$= (-1)^3 \{ x_{12} (-1)^2 2^2 2! + x_{13} x_{13} (-1)^3 2^2 2! + x_{23} x_{23} (-1)^3 2^2 2! \}$$

$$= -8 \{ x_{12} x_{13} x_{23} - x_{13} x_{13} x_{23} \}.$$

If the case of other signs of x_{12}, x_{13}, x_{23}, we have the same formula.

By the definition of x_{ij} ($1 \leq i < j \leq 3$) and x_{123}, we have

$$x_{ij} = lk_\sigma(ij) (1 \leq i < j \leq 3),$$

$$x_{123} = -\{ \mu_\sigma(123) - lk_\sigma(12) lk_\sigma(13) - lk_\sigma(13) lk_\sigma(23) + lk_\sigma(12) lk_\sigma(23) \}.$$
Therefore, we have
\[\sum_{J < I} (-1)^{|J|} P_0^{(2)}(\sigma_J, 1) = 8\{\mu_\sigma(123) + lk_\sigma(12)lk_\sigma(23)\}. \]

Therefore, we have
\[\mu_\sigma(123) = \frac{1}{8} \sum_{J < I} (-1)^{|J|} P_0^{(2)}(\sigma_J, 1) - lk_\sigma(12)lk_\sigma(23). \]

Because \(-\frac{1}{8}P_0^{(2)}\) coincides with the second coefficient \(a_2\) of the Conway polynomial, this equation can be rewritten as
\[\mu_\sigma(123) = -\sum_{J < I} (-1)^{|J|}a_2(\sigma_J) - lk_\sigma(i_1i_2)lk_\sigma(i_2i_3). \]

Similarly, we have
\[
\begin{cases}
 x_{231} = -\mu_\sigma(231) + lk_\sigma(12)lk_\sigma(13) \\
 x_{312} = -\mu_\sigma(312) + lk_\sigma(13)lk_\sigma(23) + lk_\sigma(13).
\end{cases}
\]

Therefore we have the formulas in Theorem 1.3.

Next, we consider the other case; \(I = 132, 213\) or \(321\). If \(x_{12}, x_{23} > 0\), we obtain that \(\sigma_J\) is \(C_3\)-equivalent to
\[\hat{\sigma}_{[x_1]}U_{[J]}\hat{\sigma}_{[x_2]x_{23}}K^{d_3}_I\hat{U}_R', \]
where \(d_3 = (-1, 1, -1)\) and \(R'\) is a disjoint union of some repeated trees.

We then have
\[\sum_{J < I} (-1)^{|J|} P_0^{(2)}(\sigma_J, 1) = -8\{x_I - x_{12}x_{23}\} \]

If the case of other signs of \(x_{12}, x_{23}\), we have the same formula.

On the other hand, we have
\[
\begin{cases}
 x_{132} = -\mu_\sigma(132) + lk_\sigma(12)lk_\sigma(23) - lk_\sigma(13)lk_\sigma(23) + lk_\sigma(13) \\
 x_{213} = -\mu_\sigma(213) - lk_\sigma(12)lk_\sigma(13) + lk_\sigma(12)lk_\sigma(23) \\
 x_{321} = -\mu_\sigma(321).
\end{cases}
\]

Therefore we have the formulas in Theorem 1.3.

\[\square \]

4. Examples

Example 4.1. Let \(\sigma\) be a 3-string link showed by Figure 4. Then \(\mu_{123}(\sigma) = -1, \mu_{122}(\sigma) = \mu_{213}(\sigma) = 1\) and \(\mu_{231}(\sigma) = \mu_{312}(\sigma) = \mu_{321}(\sigma) = 0\). And \(lk_\sigma(12) = \mu_\sigma(12) = 13, 23) = 1\) and \(lk_\sigma(13) = 0\).

On the other hand, \(\sigma_{123,123}\) and \(\sigma_{123,23}\) are the figure-eight knot, and \(\sigma_{123,J}\) \((J \neq 123, 23)\) is the trivial knot. Therefore we obtain
\[-\sum_{J < 123} (-1)^{|J|} a_2(\sigma_{123,J}) - lk_\sigma(12)lk_\sigma(23) = a_2(41) - a_2(41) - 1 \cdot 1 = -1. \]

Similarly, we have
\[
\begin{align*}
-\sum_{J < 12} (-1)^{|J|} a_2(\sigma_{231,J}) - lk_\sigma(23)lk_\sigma(31) & = a_2(31) - a_2(31) - a_2(41) - 1 \cdot 0 = 0, \\
-\sum_{J < 312} (-1)^{|J|} a_2(\sigma_{312,J}) - lk_\sigma(31)lk_\sigma(12) + lk_\sigma(13) & = a_2(31) - a_2(31) - 0 \cdot 1 + 0 = 0.
\end{align*}
\]
Moreover, $\sigma_{132,32}$ is the figure-eight knot and $\sigma_{132,J}$ ($J \neq 32$) is the trivial knot. Therefore we obtain

$$- \sum_{J < 132} (-1)^{|J|} a_2(\sigma_{132,J}) - lk_{\sigma}(13)lk_{\sigma}(32) - lk_{\sigma}(13) = -a_2(41) - 0 \cdot 1 - 0 = 1.$$

Similarly, we have

$$- \sum_{J < 213} (-1)^{|J|} a_2(\sigma_{213,J}) - lk_{\sigma}(21)lk_{\sigma}(13) = a_2(7_6) - a_2(3_1) - a_2(41) - 0 \cdot 1 = 1,$n

$$- \sum_{J < 321} (-1)^{|J|} a_2(\sigma_{321,J}) - lk_{\sigma}(32)lk_{\sigma}(21) = a_2(5_2) - a_2(3_1) - 1 \cdot 1 = 0.$$

\[\text{Figure 7.} \]

Example 4.2. Let σ be a 3-string link showed by Figure 8. Then $\mu_{132}(\sigma) = -1$, $\mu_{312}(\sigma) = 1$ and $\mu_{231}(\sigma) = \mu_{123}(\sigma) = \mu_{321}(\sigma) = \mu_{213}(\sigma) = 0$. And $lk_{\sigma}(12) = lk_{\sigma}(23) = 0$ and $lk_{\sigma}(13) = 1$.

On the other hand, any $\sigma_{132,J}$ is the trivial knot. Therefore we obtain

$$- \sum_{J < 132} (-1)^{|J|} a_2(\sigma_{132,J}) - lk_{\sigma}(12)lk_{\sigma}(23) = 0 \cdot 0 = 0.$$

Similarly, we have

$$- \sum_{J < 213} (-1)^{|J|} a_2(\sigma_{213,J}) - lk_{\sigma}(21)lk_{\sigma}(13) = 0,$n

$$- \sum_{J < 321} (-1)^{|J|} a_2(\sigma_{321,J}) - lk_{\sigma}(32)lk_{\sigma}(21) = 0,$$

Moreover, $\sigma_{132,32} = \sigma_{132,13}$ (In fact, both $\sigma_{132,32}$ and $\sigma_{132,13}$ are the figure-eight knot) and $\sigma_{132,J}$ ($J \neq 132, 13$) is the trivial knot. Therefore we obtain

$$- \sum_{J < 132} (-1)^{|J|} a_2(\sigma_{132,J}) - lk_{\sigma}(13)lk_{\sigma}(32) - lk_{\sigma}(13) = -1.$$

Similarly, we have

$$- \sum_{J < 213} (-1)^{|J|} a_2(\sigma_{213,J}) - lk_{\sigma}(21)lk_{\sigma}(13) = 0,$n

$$- \sum_{J < 321} (-1)^{|J|} a_2(\sigma_{321,J}) - lk_{\sigma}(32)lk_{\sigma}(21) = 0.$$
A relation between Milnor’s μ-invariants and Homflypt polynomials

Figure 8.

References

[1] D. Bar-Natan, Vassiliev homotopy string link invariants, J. Knot Theory Ram. 4, no. 1 (1995), 13–32.
[2] T. Fleming, A. Yasuhara, Milnor’s invariants and self C_k-equivalence, Proc. Amer. Math. Soc. 137 (2009), no. 2, 761–770.
[3] N. Habegger and X.S. Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc. 3 (1990), 389–419.
[4] K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1–83.
[5] K. Habiro, J.B. Meilhan, Finite type invariants and Milnor invariants for Brunnian links, Int. J. Math. 19, no. 6 (2008), 747–766.
[6] T. Kanenobu, C_n-moves and the HOMFLY polynomials of links, Bol. Soc. Mat. Mexicana (3) 10 (2004), 263–277.
[7] T. Kanenobu, Y. Miyazawa, HOMFLY polynomials as Vassiliev link invariants, in Knot theory, Banach Center Publ. 42, Polish Acad. Sci., Warsaw (1998,) 165–185.
[8] Y. Kotorii, A. Yasuhara, Milnor invariants of length $2k+2$ for links with vanishing Milnor invariants of length $\leq k$, arXiv:math/1304.1870.
[9] W. B. R. Lickorish, K. C. Millett, A polynomial invariant of oriented links, Topology 26 (1987), 107–141.
[10] X.S. Lin, Power series expansions and invariants of links, in “Geometric topology”, AMS/IP Stud. Adv. Math. 2.1, Amer. Math. Soc, Providence, RI (1997) 184–202.
[11] J.B. Meilhan, On Vassiliev invariants of order two for string links, J. Knot Theory Ram. 14 (2005), No. 5, 665–687.
[12] J.B. Meilhan, A. Yasuhara, On C_n-moves for links, Pacific J. Math. 238 (2008), 119–143.
[13] J.B. Meilhan, A. Yasuhara, Milnor invariants and the HOMFLYPT polynomial, Geom. Topol. 16 (2012), 889–917.
[14] J. Milnor, Link groups, Ann. of Math. (2) 59 (1954), 177–195.
[15] J. Milnor, Isotopy of links, Algebraic geometry and topology, A symposium in honor of S. Lefschetz, pp. 280–306, Princeton University Press, Princeton, N. J., 1957.
[16] M. Polyak, On Milnor’s triple linking number, C. R. Acad. Sci. Paris S̆é. I Math. 325 (1997), no. 1, 77–82.
[17] J. Stallings, Homology and central series of groups, J. Algebra,2 (1965), 170–181.
[18] K. Taniyama, Link homotopy invariants of graphs in \mathbb{R}^3, Rev. Mat. Univ. Complut. Madrid 7 (1994), no. 1, 129–144.
[19] A. Yasuhara, Self Delta-equivalence for Links Whose Milnor’s Isotopy Invariants Vanish, Trans. Amer. Math. Soc. 361 (2009), 4721–4749.