LFA-1 STRUCTURE, FUNCTION, AND INSIDE-OUT ACTIVATION

Twenty-four different integrins are expressed in humans, each composed of non-covalently associated \(\alpha \) and \(\beta \) chains (Blyen, 2002). Integrins have large extracellular domains, single-pass transmembrane segments, and short intracellular tails. Lacking enzymatic activity, the short integrin cytoplasmic domains serve as scaffolds for signaling and structural proteins that allow integrins to be a conduit of bidirectional communication between the cytoplasm and extracellular ligands. Studies employing crystallography (Shimaoka et al., 2005), nuclear magnetic resonance (Huth et al., 2000; Legge et al., 2000), electron microscopy (Nishida et al., 2006), and molecular dynamics simulations (Jin et al., 2004) have suggested that LFA-1 can assume at least three distinct conformational states (Figure 1). In its inactive state, the LFA-1 extracellular domain has a bent structure shaped like an inverted V (Nishida et al., 2006) with the low affinity headpiece closely approaching the plasma membrane (Larson et al., 2005; Nishida et al., 2006), similar to what has been shown for other integrins (Xiong et al., 2001; Chiquet et al., 2003; Zhu et al., 2008; Xue et al., 2010). The inactive state is also characterized by inter-domain contacts between the N-terminal headpiece and membrane-proximal lower legs, with the lower legs of the \(\alpha \) and \(\beta \) chains, and between the \(\alpha \) and \(\beta \) transmembrane domains (TMDs; Takagi et al., 2002; Li et al., 2005; Luo et al., 2005; Partridge et al., 2005; Nishida et al., 2006). Based primarily on mutational studies, it is thought that close association of TMDs stabilizes the inactive state and disruption of this association leads to integrin activation (Hughes et al., 1996; Lu and Springer, 1997; Vinogradova et al., 2002; Luo et al., 2005).

In contrast to the compact structure of inactive LFA-1, active LFA-1 conformations exhibit an extended extracellular domain with the ligand-binding headpiece situated more than 20 nm above the membrane (Nishida et al., 2006). Extended structures of LFA-1 (Figure 1) differ in the conformation of the headpiece and \(\alpha \)I domain, the angle between the \(\beta \)I domain and hybrid domain into which the \(\beta \)I domain inserts, and the distance between the \(\alpha \) and \(\beta \) chains and TMDs in the plane of the plasma membrane. The extended ecodomain with a closed headpiece has also been termed the “intermediate affinity state” integrin (Luo et al., 2007).

It is thought that the spatial orientation of the headpiece of the extended intermediate affinity state may account for enhanced recognition of ligands, as steric hindrance may prevent large, immobilized ligands from accessing the \(\alpha \) domain in the act, inactive LFA-1 conformer. This idea is supported by data showing that the isolated LFA-1-\(\alpha \)I domain alone, in its basal state, can mediate transient interactions with intercellular ligands.
adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the adhesion molecule-1 (ICAM-1) that result in a rolling phenotype (Knorr and Dustin, 1997; Eniola et al., 2005), whereas the...
band 4.1/ezrin/radixin/moesin (FERM) domain with four independently folded subdomains (F1–F3). Moser et al. (2009b). While the FERM domain comprises the tail head that is sufficient for activating integrins (Calderson et al., 1999; Ye et al., 2010), talins also have a flexible rod domain that contains actin-binding sequences and mediates cytoskeletal association (Crichtley, 2009). Although many of the structural and functional studies that have dissected the role of talin in integrin activation have employed experimental systems where the talin head domain alone is used, the full-length molecule exists in a basal autoinhibited state that is mediated by contact between the integrin-binding F3 subdomain and rod domain (Goksoy et al., 2008). Binding to phospholipids, such as phosphatidylinositol 4,5-bisphosphate (PIP2), relieves this autoinhibition and activates talin for integrin binding (Martel et al., 2001; Goksoy et al., 2008). The ability of talins and Kindlins to activate integrins depends on their binding to membrane phospholipids. For talin, this occurs through positively charged surfaces within the F1, F2, and F3 subdomains (Anthis et al., 2009; Goud et al., 2010). Kindlins have a analogous surface within the F1 subdomain (Bouaouina et al., 2012) as well as an additional pleckstrin homology domain that is inserted within its F2 subdomain (Tu et al., 2003; Qi et al., 2011), both of which bind to membrane phospholipids and are important for integrin activation.

Talins and Kindlins mediate integrin activation by binding directly to separate NXY/YF motif within the integrin β chain short cytoplasmic tail (Tabloski et al., 2003; Harburger et al., 2009). Multiple lines of evidence demonstrate that talins contribute to the separation of the integrin TMDs (Kim et al., 2003; Wegener et al., 2007), but the mechanisms by which Kindlins are involved in regulating integrin conformation are largely unknown (Moser et al., 2009b; Shutt et al., 2010). Mutations of Kindlin-3, the Kindlin isoform expressed in hematopoietic cells, were found to underlie the leukocyte adhesion deficiency type III (LAD-III) pathology (Malinin et al., 2005; Moser et al., 2009a; Svensson et al., 2009) [Box 3]. Kindlin-3-deficient leukocytes are unable to arrest on inflamed endothelium, but their selectin-mediated rolling capacity is normal, indicating an important role for Kindlin-3 in LFA-1 activation (Moser et al., 2009a). The roles of talin-1 and Kindlin-3 in regulating LFA-1 in neutrophils are discussed in further detail below.

MODELS OF LFA-1 ACTIVATION

There are several models of integrin activation by inside-out signaling. The dynamic equilibrium that exists between the various integrin conformational states (Figure 1) appears to vary between the 24 different integrin subtypes and even amongst the four different β2 integrins (Nishida et al., 2006). Therefore, aside from the most basic structural commonalities, integrin activation mechanisms may exhibit significant variability.

The switchblade model of integrin activation stems from the delineation of the three distinct affinity states described above, and was formulated based on crystallography (Xiong et al., 2001; Xiao et al., 2004) and studies of isolated integrins by electron microscopy (Takagi et al., 2001; Nishida et al., 2006). The switchblade model postulates that only the closed, unliganded integrin headpiece can stably exist in the overall bent structure. The switchblade-like extension of the extracellular domain occurs as a result of disruption of headpiece–lower leg and αβ linker lower leg stabilizing contacts, either by separation of the TMDs or by ligand-induced hybrid domain swingout (Luo et al., 2007). The switchblade model received support from the recent finding that single, full-length αβ integrin embedded in membrane has the same compact structure observed in isolated extracellular domains and can undergo ectodomain extension in the presence of talin head domain bound to the integrin cytoplasmic tail (Ye et al., 2010). Most of the activated structures observed in this study, however, resembled the intermediate rather than the high affinity conformation. As discussed below, an important unresolved question is whether inside-out signaling alone (that is, in the absence of ligand binding) induces the high affinity structure with an open headpiece.

The deadbolt model of integrin activation was proposed (Xiong et al., 2003) based on the observation that crystals of the unbound (Xiong et al., 2001) and ligand-occupied (Xiong et al., 2002) integrin αβ2 exhibited the same compact, bent structure. The crystal structure of ligand-occupied, bent αβ2 was further supported by electron microscopy studies (Adair et al., 2005). In addition, FRET studies have shown that small ligand binding to αβ integrin (VLA-4) on the living cell surface can occur in the absence of ectodomain extension (Chigaev et al., 2007). The deadbolt model posits that a loop within the β subunit extracellular membrane-proximal β-tail domain contacts the α7 helix of the βI domain that regulates its conformation and affinity (Xiong et al., 2003). During activation, movement of the TMDs would disrupt the deadbolt and allow headpiece opening in the bent structure (Xiong et al., 2003). However, elimination of the β-tail domain loop that was proposed to form the deadbolt did not enhance ligand binding (Zhu et al., 2007).

More recent work suggests that inside-out integrin activation is more complicated than the switchblade and deadbolt models.
activation was very slow (Chigaev et al., 2011). These findings indicate that experiments with a fluorescent ligand probe of LFA-1 and found specifically recognize the extended/open high affinity conformation (Constantin et al., 2000; Shimaoka et al., 2003a,b). bind ICAM-1 in its soluble, rather than immobilized, form has an increase in the affinity of integrins. The ability of LFA-1 to activate stimuli. inside-out and ligand-induced outside-in activation, have both shared and distinct components between integrin subtypes and activating stimuli. It is clear that inside-out signal transduction pathways, such as those elicited by chemokine receptor engagement, stimulate an increase in the affinity of integrins. The ability of LFA-1 to bind ICAM-1 in its soluble, rather than immobilized, form has been utilized as a sensitive assay that specifically reports the high affinity state (Constantin et al., 2000; Shimazaki et al., 2003a,b). Further support for this assay as a means to discriminate between extended/closed and extended/open conformations of LFA-1 was provided by L Cannon and colleagues (Bolomini-Vittori et al., 2009) by showing that a signaling defect in headpiece opening due to silencing of phosphatidylinositol-4-phosphate 5-kinase type I gamma (PIPK5C) blocks chemokine-induced soluble ICAM-1 binding to T lymphocytes despite the ability of LFA-1 to become extended (as indicated by a reporter mAb) under the same conditions. Many studies have thus demonstrated that chemokines induce a high affinity state of LFA-1 that is competent for soluble ICAM-1 binding and that mediates T lymphocyte arrest (Constantin et al., 2008; Giagulli et al., 2004; Bolomini-Vittori et al., 2009).

Despite these extensive studies, it is not clear whether chemokine stimulation alone, in the absence of ligand, triggers opening of the LFA-1 headpiece. Chemokines induce the binding of epitope-specific reporter antibodies, such as 24 (Dransfield et al., 1992) and 32C mAb (Beals et al., 2001), that specifically recognize the extended/open high affinity conformation of LFA-1 (Bolomini-Vittori et al., 2009). However, these reporter antibodies also recognize ICAM-1-bound LFA-1 in the absence of cellular stimulation (Beals et al., 2001). Therefore, it remains possible that chemokines enhance the affinity of LFA-1 for ICAM-1 and permit a transition to the high affinity state, but do not directly induce opening of the headpiece associated with the high affinity αI domain. Rather, ligand engagement and a force pulling on the engaged integrin may subsequently be needed for LFA-1 to achieve its high affinity state. Affinity measurements of LFA-1 on the cell surface show that inside-out signaling in response to stromal cell-derived factor-1 (SDF-1, also known as chemokine CXCL12) or PMA, an activator of protein kinase C, enhanced binding of soluble monovalent ICAM-1, indicating affinity upregulation (Scharff and Springer, 2011). However, artificially stabilizing specific LFA-1 structures resulted in ICAM-1 binding affinities of the intermediate affinity state that were similar to those achieved by inside-out activation, and of the high affinity state that were much higher. In a novel assay in which antibodies that specifically recognize extended LFA-1 conformers (KIM127 mAb and NKI-L16 mAb) or the putative high affinity state of LFA-1 (32C7 mAb) were co-immobilized with the chemokine CXCL12, it was found that peripheral blood lymphocytes bound only KIM127 and NKI-L16, but not 32C7 (Shamri et al., 2005). These data all suggest that chemokines trigger LFA-1 extension, but cannot induce the full affinity of the ligand-binding headpiece.

If inside-out activation does not shift integrin affinity to its highest state, how then does ligand binding do so? The demonstration of a catch bond between LFA-1 and ICAM-1 provides insight into a possible mechanism and also suggests an important role for force in affinity maturation of the αI domain (Chen et al., 2010). Using a biomembrane probe to ligate single LFA-1 molecules and measure bond kinetics in the absence or presence of a pulling force, Zhu and colleagues (Chen et al., 2010) demonstrate that ICAM-1-occupied LFA-1 passes through three distinct bond lifetime regimes with increasing force. Pulling on the bond first enhanced LFA-1 affinity (catch bond) and then, for larger forces, resulted in a decrease in bond lifetime (slip bond). They propose that pulling on the αI domain results in its movement away from the βI domain, causing the anchored (to the βI MIDAS) α7 helix to experience a relative shift downward (as discussed above) and resulting in affinity upregulation of the αI domain (Chen et al., 2010). Thus, in the context of physiologic leukocyte-endothelial interactions in which LFA-1 bonds experience a force from blood flow acting on rolling or adherent cells, chemokines may stimulate LFA-1 extension while enhancing affinity of the headpiece only moderately. Upon ICAM-1 engagement, the bond would then undergo further affinity maturation and transition into the high affinity conformation supporting long-lived bonds. This model of force-mediated LFA-1 affinity maturation also suggests a role for cytoskeletal anchorage of the integrin tail (Alon and Dustin, 2007; Zhu et al., 2008). Talin represents the best candidate for mediating such actin linkage through sequences in its rod domain (Critchley, 2009), though a specific role for talin-mediated filament association in LFA-1 activation is yet to be described. A potential role for Kindlin-3 in mediating indirect cytoskeletal anchorage is also discussed below in further detail.

REGULATION OF LFA-1 ACTIVATION IN NEUTROPHILS

Neutrophils play a central role in immunity as the first leukocyte subset to enter tissues in response to infection or injury. Inflammatory cues produced locally in the tissue are relayed to neutrophils through the expression of adhesion molecules, such as E-selectin and ICAM-1, on the luminal surface of endothelial cells. This induced expression of adhesion molecules initiates a cascade of progressive interactions between leukocytes and the vascular wall that precede transmigration across the endothelial barrier and into the affected tissue (Ley et al., 2007).

Members of the βI integrin family (Box 2), whose expression is restricted to leukocytes and leukocyte-derived tissue cells, are
involved at several steps of the leukocyte adhesion cascade. Initial capture and rolling of neutrophils is mediated primarily by endothelial E- and P-selectins binding to P-selectin glycoprotein ligand-1 (PSGL-1) and other selectin ligands on the surface of neutrophils. In addition to its function as an adhesion receptor, PSGL-1 transduces an intracellular signal that partially activates LFA-1 (Zarbock et al., 2007b; Mitter et al., 2008; Kuwano et al., 2010; Figure 2). Although other leukocyte subsets, including some memory T lymphocytes, express functional PSGL-1, it seems that ligation of PSGL-1 triggers LFA-1 extension only in myeloid cells. It may be that the lymphoid homologs of one or more molecules downstream of PSGL-1 do not participate in this signaling pathway (Alon and Ley, 2008). The molecular details of the signal transduction pathway triggered by PSGL-1 engagement and leading to LFA-1 activation in neutrophils has been the subject of recent reviews (Zarbock et al., 2009, 2011), and new details on this signaling cascade continue to emerge (Stadtmann et al., 2011; Block et al., 2012; Lefort et al., 2012; Shao et al., 2012; Spertini et al., 2012). During neutrophil rolling interactions with P- and E-selectin, PSGL-1 signaling results in the conversion of LFA-1 from an inactive state to an extended conformation that then interacts with ICAM-1 to reduce neutrophil rolling velocity (Chesnutt et al., 2006; Zarbock et al., 2007b; Kuwano et al., 2010). Two main pieces of evidence demonstrate that the extended LFA-1 conformation with a closed headpiece mediates slow rolling in both murine and human neutrophils. First, an LFA-1 allosteric antagonist that binds to the β1 domain and blocks structural communication with the αI domain, thus preventing headpiece opening, completely abrogates soluble ICAM-1 binding (Shimaoka et al., 2003a) and neutrophil arrest, but does not impair LFA-1-dependent slow rolling (Zarbock et al., 2007b). Second, the KIM127 mAb (Robinson et al., 1992) and NKL-L16 mAb (van Kooyk et al., 1991) epitopes that report extension of the β2 and αI legs, respectively, are exposed in human neutrophils rolling on E-selectin in flow chambers (Kuwano et al., 2010). In the same assay, the mAb 24 (Dransfield et al., 1992) recognition site that is only accessible in the high affinity state remains buried unless neutrophils are activated by Mn2+ (Kuwano et al., 2010). Thus, ligation of PSGL-1 induces LFA-1 extension, but not (full) opening of the headpiece.

![FIGURE 2](https://www.frontiersin.org)
Another potential difference between these two signaling pathways (Kliche et al., 2012) associates with the common integrin activator Rap1 GTPase (chimeric mouse with genetic deletion of either Ferm1 encoding Kindlin-3 or Tn1 encoding talin-1, we tested the individual roles of these two proteins in neutrophil slow rolling and arrest mediated by LFA-1 (Lefort et al., 2012). We reasoned that since different conformations of LFA-1 are induced by stimulating either the PSGL-1 or CXCXR2 signaling cascades, it would be possible to separately test whether talin-1 and Kindlin-3 were involved in LFA-1 extension versus headpiece opening. We observed that LFA-1-dependent neutrophil slow rolling on E-selectin/ICAM-1 substrates in flow chambers and on inflamed endothelium in vivo was impaired in talin-1–deficient neutrophils, but was unaffected by knockout of Kindlin-3. In contrast, both talin-1 and Kindlin-3 were required for CXCXR1-stimulated rapid neutrophil arrest and soluble ICAM-1 binding to LFA-1, indicating an important role for these co-activators in reaching the high affinity state of LFA-1. Our findings in neutrophils were corroborated by studies measuring LFA-1 affinity states using the reporter antibodies KIM127 (Robinson et al., 1992), NKI-L16 (van Kooyk et al., 1991), mAb 24 (Dransfield et al., 1992), and 2E8 (Carreno et al., 2010) in human HL-60 cells stimulated with an active Rap1a peptide. Together, these results show that talin-1 is needed for LFA-1 extension, while Kindlin-3 is involved in transition of the LFA-1 headpiece to its high affinity state. These data are the first to demonstrate distinct functions of talin-1 and Kindlin-3 in inducing specific conformers of LFA-1. It remains to be shown whether talin-1 plays an additional role in LFA-1 headpiece opening to reach the high affinity state, or whether LFA-1 extension is a prerequisite for headpiece opening in the context of chemokine-induced neutrophil arrest. Furthermore, previous studies of cultured effector T lymphocytes derived from LAD-III patients suggest that Kindlin-3 is needed for LFA-1 extension in the context of chemokine stimulation (Manevich-Mendelson et al., 2009). It is apparent that there are diverse mechanisms among the various modalities of integrin activation in leukocytes.

What do these new insights into talin-1 and Kindlin-3 regulation of LFA-1 structure and affinity imply for our understanding of the mechanisms of inside-out signaling at the leukocyte receptor? Can we now predict the consequences of integrin chain-specific deletions in vivo? Can we now predict the consequences of integrin chain-specific deletions in vivo?

During inflammation, neutrophils encounter immobilized chemokines as they roll on the vascular wall. LFA-1 is the primary integrin receptor involved in leukocyte arrest on inflamed endothelium, with little or no detectable contribution of Mac-1 (Ding et al., 1999; Ley et al., 2007). SDF-1α (a ligand for CXCR4) and chemokine ligands for CXCR2 trigger soluble ICAM-1 binding and rapid lymphocyte arrest on immobilized ICAM-1 (Constantin et al., 2000; Giagulli et al., 2005; Shamri et al., 2005; Bolosini-Vittori et al., 2009). This has been interpreted to mean that high affinity LFA-1 is required to mediate leukocyte arrest. Intravital microscopy analysis of the mouse cremaster muscle, a thin tissue that envelops the testes, after intravenous injection of Cxcl1 provides a sensitive arrest assay, as neutrophils rapidly (within 15 s) transition from rolling to arrest on the endothelium. This assay provides the ability to distinguish the arrest step from adhesion stabilization, as neutrophils lacking signaling molecules involved in the latter process, such as Ptk2 (Smith et al., 2006) and Pkcg (Bertram et al., 2012), quickly detach and return to the bulk flow. Since chemokine signaling also contributes to the stabilization and strengthening of leukocyte adhesion following arrest by enhancing LFA-1 mobility and allowing clustering to occur (Constantin et al., 2000; Giagulli et al., 2004, 2006), the analysis of rapid arrest in vivo is critical for assessing the functional role of molecules in inside-out activation of LFA-1. Cxcl1 (also known as keratinocyte-derived chemokine) is the primary chemokine involved in murine neutrophil arrest through CXCR2 and activation of the Gαi signaling cascade (Ley, 2003; Smith et al., 2004; Zabrock et al., 2007a). In the context of inflammation, both the PSGL-1 and CXCR2 signaling pathways that regulate LFA-1 activation contribute to neutrophil adhesion and recruitment (Smith et al., 2004; Zabrock et al., 2007b). PSGL-1 signaling seems to induce only the extended conformation of LFA-1, and even pulling on LFA-1 as it transiently engages with ICAM-1 in slow rolling is not sufficient to induce rapid neutrophil arrest mediated by the high affinity conformation. By contrast, in the presence of chemokines, neutrophil LFA-1 requires its high affinity state and mediates arrest. Another potential difference between these two signaling pathways is that chemokine receptors trigger rapid and locally restricted LFA-1 activation (Shamri et al., 2005), whereas PSGL-1 signals to LFA-1 may not be spatially confined (Alon and Ley, 2008; Kaneko et al., 2010). It has been proposed that the downstream signaling proteins involved in integrin activation may be pre-assembled into complexes, thus allowing for leukocyte arrest to occur on the timescales observed experimentally (Alon and Ley, 2008). Consistent with this idea, a signaling module containing SKAP53 (Src kinase-associated phosphoprotein of 55 kDa), ADAP (adhesion and degranulation promoting adaptor protein), RIAM (Rap1-interacting adaptor molecule), and Kindlin-3 exists constitutively in unstimulated human T lymphocytes, and inducibly associates with the common integrin activator Rap1 GTPase (Kliche et al., 2012).
However, structural studies of LFA-1 suggest that the TMDs and lower legs are separated even further in high affinity than in intermediate affinity LFA-1 (Nishida et al., 2006). Thus, Kindlin-3 may be involved in inducing swingout of the hybrid domain by causing a further separation of the TMDs. It is also possible that Kindlin-3 mediates the indirect linkage of the β2 integrin tail to the actin cytoskeleton through a scaffolding function, thus providing an anchor for force-induced conversion of ligated integrins to the high affinity state. It was recently found that LFA-1-mediated neutrophil slow rolling is not dependent on the linkage of LFA-1 to the actin cytoskeleton (Shaq et al., 2012), but chemokine-stimulated arrest of lymphocytes (Shamri et al., 2005) and neutrophils (Shao et al., 2012) is impaired by reagents that disrupt actin microfilaments. These studies support the idea that LFA-1 extension and headpiece opening are distinctly regulated processes, and that Kindlin-3 may be involved in the transition to a high affinity state through an indirect interaction with the actin cytoskeleton. Kindlins have been shown to bind to several actin-binding proteins and complexes, including integrin-linked kinase (Mackinnon et al., 2002), migfilin (Tie et al., 2003), focal adhesion kinase, and α-actinin (Has et al., 2009). The expression and role of these adaptor molecules in LFA-1 activation will need to be tested in leukocyte arrest under flow conditions.

The distinct roles of talin-1 and Kindlin-3 in neutrophil slow rolling and arrest raise several questions about the two signaling pathways that stimulate these separate behaviors. Clearly, LFA-1 engages ICAM-1 during slow rolling interactions induced by PSGL-1 signaling. If chemokines directly stimulate only LFA-1 extension and not conversion to the high affinity state, why does CXCR2 engagement lead to neutrophil behavior qualitatively distinct from the PSGL-1 pathway that has also been shown to induce LFA-1 extension? Likewise, if force on the LFA-1/ICAM-1 bond tail to the actin cytoskeleton through a scaffolding function, thus providing an anchor for force-induced conversion of ligated integrins to the high affinity state. It was recently found that LFA-1-mediated neutrophil slow rolling is not dependent on the linkage of LFA-1 to the actin cytoskeleton (Shaq et al., 2012), but chemokine-stimulated arrest of lymphocytes (Shamri et al., 2005) and neutrophils (Shao et al., 2012) is impaired by reagents that disrupt actin microfilaments. These studies support the idea that LFA-1 extension and headpiece opening are distinctly regulated processes, and that Kindlin-3 may be involved in the transition to a high affinity state through an indirect interaction with the actin cytoskeleton. Kindlins have been shown to bind to several actin-binding proteins and complexes, including integrin-linked kinase (Mackinnon et al., 2002), migfilin (Tie et al., 2003), focal adhesion kinase, and α-actinin (Has et al., 2009). The expression and role of these adaptor molecules in LFA-1 activation will need to be tested in leukocyte arrest under flow conditions.

REFERENCES
Abram, C. L., and Lowell, C. A. (2009). Leukocyte adhesion deficiency syndrome: a controversy resolved. Immunol. Cell Biol. 87, 400–402.
Alon, R., Aker, M., Feigelson, S., Sokolovsky-Eisenberg, M., Staunton, D. E., Gromov, V., and Grishovsky, V. (2008). A novel genetic leukocyte adhesion deficiency in subsets of patients with leukocyte adhesion deficiency III, a novel group of leukocyte integrin deficiencies. Trends Immunol. 29, 561–566.
Alon, R., and Ley, K. (2008). Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells. Curr. Opin. Cell Biol. 20, 527–532.
Alon, R., and Introne, A. (2003). LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol. 24, 361–366.
Alon, R., and Introne, A. (2003). LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol. 24, 361–366.
Alon, R., and Introne, A. (2003). LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol. 24, 361–366.
Alon, R., and Introne, A. (2003). LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol. 24, 361–366.
Alon, R., and Introne, A. (2003). LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol. 24, 361–366.
neutrophils. J. Cell Biol. 183, 527–542.
Bode, C. R., Eberhardt, A. G., Gottschalk, R. I., Kuijpers, T. W., and Stauton, D. R. (2005). CD18 activation epitopes induced by leukocyte activation. J. Immunol. 174, 6131–6132.
Bergmann, W., Goss, T., Young, W. H., Cottinov, J. R., Balbi, A. C., Caleffi, S. M., Hossen, D. E., Greybald, A. M., and Wagner, D. D. (2007). MHC lacking the signaling molecule CalDAG-GEFI represses a model for leukocyte adhesion deficiency type III E. Clin. Immunol. 119, 1699–1707.
Bertram, A., Zhang, H., Van Vliet-Bloem, S., de Pilato, C., Haller, H., Shashoua, N., and Ley, K. (2012). Protein kinase C-θ is required for marine neutrophil recruitment and adhesion strengthening under flow. J. Immunol. 188, 4041–4051.
Block, H., Heter, J. M., Bossert, J., Stibouhan, A., Kliche, S., Lewell, C. A., and Zarembek, A. (2012). Critical role of SLP-76 and ASAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury. J. Exp. Med. 209, 487–497.
Bolimine-Vittorm, M., Montoree, A., Gaggl, C., Staunton, D., Rossi, B., Martinello, M., Constantin, G., and Laudanna, C. (2009). Regulation of conformer-specific activation of the integrin β1 by a chemokine-triggered β-fin signaling module. Nat. Immunol. 10, 185–194.
Boussetina, N., Gough, B. T., Hunt-Carlander, C., Boon, N., Brahm, N. N., Burasico, L. I., Crickley, D. R., and Hynes, R. O. (2004). A conserved lipid-binding loop in the talin head: a role in integrin activation. J. Cell Biol. 164, 433–441.
Cachard, C., D’Ambrosio, M., Gaugl, C., Pucillo, L., Kim, J. Y., Butcher, E. C., and Latos, A. L. (2008). Real-time analysis of the inside-out regulation of lymphocyte function-associated antigen-1 revealed similarities to and differences from very late antigen-4. J. Cell Biol. 206, 2037–2056.
Cachard, A., Walker, A., Amot, O., Halp, L., Bologa, C. G., and Latos, A. L. (2010). Real-time analysis of the inside-out regulation of lymphocyte function-associated antigen-1 determines new insights into integrin conformational regulation. J. Cell Biol. 284, 13570–13586.
Cachard, A., Walker, A., Zwarts, G. J., Burasico, T., and Sille, L. A. (2007). Regulation of cell adhesion by affinity and conformational unbinding of alphabeta integrin. J. Immunol. 178, 6828–6839.
Calderwood, C., Moulder, M., Gaugl, C., Pucillo, L., Kim, J. Y., Butcher, E. C., and Latos, A. L. (2010). Chemokine trigger immediate beta integrin affinity and mobilization and different regulation and roles in lymphatic arrest under flow. J. Immunol. 187, 719–729.
Crittenden, D. R. (2009). Biochemical and structural properties of the integrin-β1 β1C domain. Annu. Rev. Biochem. 78, 235–254.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (1989). T-cell receptor cross-sensitiveness through LFA-1.
Ding, Z. M., Babensee, J. E., and Simon, S. A. (2009). Real-time analysis of integrin-mediated outside-in signaling involves requiring beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involving in sustained adhesion. J. Immunol. 177, 604–611.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (2003). Real-time analysis of conformational-sensitive antibody binding provides new insights into integrin conformational regulation. J. Cell Biol. 164, 433–441.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (1997). The role of the ICAM-1 by engagement of E-selectin.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (2003). Real-time analysis of integrin-mediated outside-in signaling involves requiring beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involving in sustained adhesion. J. Immunol. 177, 604–611.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (1997). The role of the ICAM-1 by engagement of E-selectin.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (2003). Real-time analysis of integrin-mediated outside-in signaling involves requiring beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involving in sustained adhesion. J. Immunol. 177, 604–611.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (2003). Real-time analysis of integrin-mediated outside-in signaling involves requiring beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involving in sustained adhesion. J. Immunol. 177, 604–611.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (2003). Real-time analysis of integrin-mediated outside-in signaling involves requiring beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involving in sustained adhesion. J. Immunol. 177, 604–611.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (2003). Real-time analysis of integrin-mediated outside-in signaling involves requiring beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involving in sustained adhesion. J. Immunol. 177, 604–611.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (2003). Real-time analysis of integrin-mediated outside-in signaling involves requiring beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involving in sustained adhesion. J. Immunol. 177, 604–611.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (2003). Real-time analysis of integrin-mediated outside-in signaling involves requiring beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involving in sustained adhesion. J. Immunol. 177, 604–611.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (2003). Real-time analysis of integrin-mediated outside-in signaling involves requiring beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involving in sustained adhesion. J. Immunol. 177, 604–611.
Ding, Z. M., Babensee, J. E., Simon, S. A., Dustin, M. L., and Springer, T. A. (2003). Real-time analysis of integrin-mediated outside-in signaling involves requiring beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involving in sustained adhesion. J. Immunol. 177, 604–611.
mutations in FERM1. Blood 113, 4740–4746.

Kajipers, T. W., Van Lieber, A., Hannam, D., De Boer, M., Thang, L. Y., Wom-

ing, R. S., Vanhorssen, R., and Ross, D. (1997). Leukocyte adhesion deficiency type 1 (LAD-1) variant: a novel immunodeficiency syndrome characterized by dysfunctional beta2 integrins. J. Clin. Invest. 100, 1725–

1735.

Kaneko, T., Spethen, D., Zhang, F., Ley, K., and Zadeh, A. (2010). Rolling on E- or P-selectin extends the cellular and highly adhesive con-

formation of LFA-1 in neutrophils. J. Biol. Chem. 285, 6317–6324.

Larson, R. S., Dams, T., Bologa, C., Semencik, G., Vijayan, S., Li, Y., Oprea, T., Chignac, A., Burnside, T., Wagner, C. R., and Sklar, L. A. (2005). Dissection of 1 domain and global conformational changes in LFA-1 reconstituted in intact cells: domain structure–activity relationships. Blood 106, 4522–4531.

Leffert, C. F., R员nert, J., Mozer, M., Petersch, B. G., Zadeh, A., Monks-

ley, S. I., Cinkeldyk, D. R., Ginsberg, M. H., Fassler, R., and Ley, K. (2012). Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood 119, 4755–4762.

Legnani, K. R., and Fassler, R. (2009). Mechanisms that regulate adaptor binding to beta2 integrin cytoplasmic tails. J. Cell Sci. 122, 187–198.

Legge, G. B., Rzucwski, W. R., Zhang, C. H., Uremage, R., Abe, A., Dyson, H. I., and Wright, P. E. M. (2005). NMR structures of the inserted domain of human leuko-

cyte function-associate antigen-1. J. Biol. Chem. 280, 12507–12515.

Liu, C. F., and Springer, T. A. (1997). The alpha-subunit cytopla-

smic domain regulates the assembly and adhesive function of integrin leukocyte function-associate antigen-1. J. Immunol. 159, 248–258.

Luo, H. B., Carman, C. V., and Springer, T. A. (2007). Structural basis of inte-

grin regulation and signaling. Annu. Rev. Immunol. 29, 619–647.

Luo, H. B., Carman, C. V., Talagi, J., and Springer, T. A. (2005). Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. Proc. Natl. Acad. Sci. U.S.A. 102, 5078–5084.

Ma, T. Q., Qin, J., Wu, W., and Plop, E. F. (2008). Kindlin-2 (Mug-2): a co-

activator of beta2 integrins. J. Cell Biol. 181, 439–446.

Makwana, G. C., Quadri, H., Nor-

man, K. R., Morcuende, D. G., and Williams, B. D. (2001). An isolated, surface-

function mechanism for regulating integrin beta2 function. J. Biol. Chem. 276, 391–402.

Mackinnon, A. C., Qadota, H., Nor-

den, A., Grosdidier, C., Barl-

say, F., Shimaoka, M., Yama-

o, J., and Shimaoka, M. (2010). Small molecule integrin alphaIIbbeta3 antagonists that bind to the beta2 subunit I-domain and activate integrin- and platelet-dependent signaling mediated by endothelin-

bound chemokines. Nat. Immunol. 11, 497–506.

Mackinnon, A. C., Qadota, H., Nor-

den, A., Grosdidier, C., Barl-

say, F., Shimaoka, M., Yama-

o, J., and Shimaoka, M. (2010). Small molecule integrin alphaIIbbeta3 antagonists that bind to the beta2 subunit I-domain and activate integrin- and platelet-dependent signaling mediated by endothelin-

bound chemokines. Nat. Immunol. 11, 497–506.

Mackinnon, A. C., Qadota, H., Nor-

den, A., Grosdidier, C., Barl-

say, F., Shimaoka, M., Yama-

o, J., and Shimaoka, M. (2010). Small molecule integrin alphaIIbbeta3 antagonists that bind to the beta2 subunit I-domain and activate integrin- and platelet-dependent signaling mediated by endothelin-

bound chemokines. Nat. Immunol. 11, 497–506.

Mackinnon, A. C., Qadota, H., Nor-

den, A., Grosdidier, C., Barl-

say, F., Shimaoka, M., Yama-

o, J., and Shimaoka, M. (2010). Small molecule integrin alphaIIbbeta3 antagonists that bind to the beta2 subunit I-domain and activate integrin- and platelet-dependent signaling mediated by endothelin-

bound chemokines. Nat. Immunol. 11, 497–506.

Mackinnon, A. C., Qadota, H., Nor-

den, A., Grosdidier, C., Barl-

say, F., Shimaoka, M., Yama-

o, J., and Shimaoka, M. (2010). Small molecule integrin alphaIIbbeta3 antagonists that bind to the beta2 subunit I-domain and activate integrin- and platelet-dependent signaling mediated by endothelin-

bound chemokines. Nat. Immunol. 11, 497–506.

Mackinnon, A. C., Qadota, H., Nor-

den, A., Grosdidier, C., Barl-

say, F., Shimaoka, M., Yama-

o, J., and Shimaoka, M. (2010). Small molecule integrin alphaIIbbeta3 antagonists that bind to the beta2 subunit I-domain and activate integrin- and platelet-dependent signaling mediated by endothelin-

bound chemokines. Nat. Immunol. 11, 497–506.

Mackinnon, A. C., Qadota, H., Nor-

den, A., Grosdidier, C., Barl-

say, F., Shimaoka, M., Yama-

o, J., and Shimaoka, M. (2010). Small molecule integrin alphaIIbbeta3 antagonists that bind to the beta2 subunit I-domain and activate integrin- and platelet-dependent signaling mediated by endothelin-

bound chemokines. Nat. Immunol. 11, 497–506.

Mackinnon, A. C., Qadota, H., Nor-

den, A., Grosdidier, C., Barl-

say, F., Shimaoka, M., Yama-

o, J., and Shimaoka, M. (2010). Small molecule integrin alphaIIbbeta3 antagonists that bind to the beta2 subunit I-domain and activate integrin- and platelet-dependent signaling mediated by endothelin-

bound chemokines. Nat. Immunol. 11, 497–506.
Neutrophil arrest by LFA-1 activation

Lefort and Ley

(2006). Leukocyte phosphoinositide-3 kinase (gamma) is required for chemokine-induced, sustained adhesion under flow in vivo. J. Leukoc. Biol. 80, 1491–1499.

Smith, M. L., Olson, T. S., and Ley, K. (2006). Activation and E-selectin-induced neutrophil arrest during inflammation in vivo. J. Exp. Med. 200, 953–959.

Sportini, C., Baise, B., and Sportini, O. (2012). Extra-radixin-monofilamentous binding sequence of PSGL-1 glycoprotein regulates leukocyte rolling on selectins and arrestment of extracellular signal-regulated kinases. J. Biol. Chem. 287, 10965–10972.

Stroblmann, A., Brinkhaus, L., Mueller, H., Rossaint, J., Bokemier-Vittori, M., Bergner, W., Van Aken, H., Wagnen, D. D., Lazzana, C., Ley, K., and Zarbock, A. (2011). Rapta activation by CalMAG-GEFII and p38 MAPK is involved in E-selectin-dependent slow leukocyte rolling. Eur. J. Immunol. 41, 2074–2085.

Svensson, A., Howarth, K., McDowall, A., Velyvis, A., Velyviene, O., (2010). Structure of an integrin alpha(IIb)beta(3) ligand GMP-140 in complex with an Arg-Gly-Asp-Lys ligand. Science 328, 171–173.

Yan, W., Shimizu, M., Sato, A., Takagi, J., and Springer, T. A. (2014). Intramolecular signal transmission in integrins by a receptor-like interaction with a pull spring. Proc. Natl. Acad. Sci. U.S.A. 111, 10253–10258.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 07 April 2012; paper pending publication: 24 April 2012; accepted: 24 April 2012; published online: 12 June 2012.

Citation: Lefort C and Ley K (2012) Neutrophil arrest by LFA-1 activation. Front. Immunol. 3:157. doi: 10.3389/fimmu.2012.00157

This article was submitted to Frontiers in Chemoattractants, a specialty of Frontiers in Immunology.

Copyright © 2012 Lefort and Ley. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.