Quantum b-functions of prehomogeneous vector spaces of commutative parabolic type

Atsushi KAMITA

Abstract. We show that there exists a natural q-analogue of the b-function for the prehomogeneous vector space of commutative parabolic type, and calculate them explicitly in each case. Our method of calculating the b-functions seems to be new even for the original case $q = 1$.

0 Introduction

Among prehomogeneous vector spaces those called of commutative parabolic type have special features since they have additional information coming from their realization inside simple Lie algebras. In [7] we constructed a quantum analogue $A_q(V)$ of the coordinate algebra $A(V)$ for a prehomogeneous vector space (L, V) of commutative parabolic type. If (L, V) is regular, then there exists a basic relative invariant $f \in A(V)$. In this case a quantum analogue $f_q \in A_q(V)$ of f is also implicitly constructed in [7]. The aim of this paper is to give a quantum analogue of the b-function of f.

Let $t^f(\partial)$ be the constant coefficient differential operator on V corresponding to the relative invariant t^f of the dual space (L, V^*). Then the b-function $b(s)$ of f is given by $t^f(\partial)f^{s+1} = b(s)f^s$. See [8], [13] and [3] for the explicit form of $b(s)$.

For $g \in A_q(V)$ we can also define a (sort of q-difference) operator $t^g(\partial)$ by

$$\langle t^g(\partial)h, h' \rangle = \langle h, gh \rangle \quad (h, h' \in A_q(V)),$$

where $\langle \ , \ \rangle$ is a natural non-degenerate symmetric bilinear form on $A_q(V)$ (see Section 3 below). We can show that there exists some $b_q(s) \in \mathbb{C}(q)[q^s]$ satisfying

$$t^f_q(\partial)f_q^{s+1} = b_q(s)f_q^s \quad (s \in \mathbb{Z}_{\geq 0}).$$

2000 Mathematics Subject Classification: Primary 17B37; Secondary 17B10, 20G05.

Keywords and Phrases: quantum groups, semisimple Lie algebras, highest weight modules, b-functions.
Our main result is the following.

Theorem 0.1. If we have $b(s) = \prod_i(s + a_i)$, then we have

$$b_q(s) = \prod_i q_0^{s+a_i-1}[s + a_i]_{q_0} \quad (up \ to \ a \ constant \ multiple),$$

where $q_0 = q^2$ (type B, C) or q (otherwise), and $[n]_t = \frac{t^n - t^{-n}}{t - t^{-1}}$.

We shall prove this theorem using an induction on the rank of the corresponding simple Lie algebra. We remark that this result was already obtained for type A in Noumi-Umeda-Wakayama [14] using a quantum analogue of the Capelli identity.

The author expresses gratitude to Professor A. Gyoja and Professor T. Tanisaki.

1 Quantized enveloping algebra

Let \mathfrak{g} be a simple Lie algebra over the complex number field \mathbb{C} with Cartan subalgebra \mathfrak{h}. Let $\Delta \subset \mathfrak{h}^*$ be the root system and $W \subset \text{GL}(\mathfrak{h})$ the Weyl group. For $\alpha \in \Delta$ we denote the corresponding root space by \mathfrak{g}_α. We denote the set of positive roots by Δ^+ and the set of simple roots by $\{\alpha_i\}_{i \in I_0}$, where I_0 is an index set. For $i \in I_0$ let $h_i \in \mathfrak{h}$, $\varpi_i \in \mathfrak{h}^*$, $s_i \in W$ be the simple coroot, the fundamental weight and the simple reflection corresponding to i respectively. We denote the longest element of W by w_0. Let $(\ , \) : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ be the invariant symmetric bilinear form such that $(\alpha, \alpha) = 2$ for short roots α. For $i, j \in I_0$ we set

$$d_i = \frac{\langle \alpha_i, \alpha_i \rangle}{2}, \quad a_{ij} = \frac{2\langle \alpha_i, \alpha_j \rangle}{(\alpha_i, \alpha_i)}.$$

We define the antiautomorphism $x \mapsto {}^tx$ of the enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} by ${}^tx_\alpha = x_{-\alpha}$ and ${}^th_i = h_i$, where $\{x_\alpha | \alpha \in \Delta\}$ is a Chevalley basis of \mathfrak{g}.

The quantized enveloping algebra $U_q(\mathfrak{g})$ of \mathfrak{g} (Drinfel’d [4], Jimbo [3]) is an associative algebra over the rational function field $\mathbb{C}(q)$ generated by the elements $\{E_i, F_i, K_i^{\pm 1}\}_{i \in I_0}$.
satisfying the following relations
\[K_i K_j = K_j K_i, \quad K_i K_i^{-1} = K_i^{-1} K_i = 1, \]
\[K_i E_j K_i^{-1} = q_i^{a_{ij}} E_j, \quad K_i F_j K_i^{-1} = q_i^{-a_{ij}} F_j, \]
\[E_i F_j - F_j E_i = \delta_{ij} \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}}, \]
\[\sum_{k=0}^{1-a_{ij}} (-1)^k \left[\begin{array}{c} 1 - a_{ij} \\ k \end{array} \right] E_i^{1-a_{ij}-k} E_j F_i^k = 0 \quad (i \neq j), \]
\[\sum_{k=0}^{1-a_{ij}} (-1)^k \left[\begin{array}{c} 1 - a_{ij} \\ k \end{array} \right] F_i^{1-a_{ij}-k} F_j F_i^k = 0 \quad (i \neq j), \]
where \(q_i = q^i \), and
\[[m]_t = \frac{t^m - t^{-m}}{t - t^{-1}}, \quad [m]_t! = \prod_{k=1}^{m} [k]_t, \quad \binom{m}{n}_t = \frac{[m]_t!}{[n]_t! [m-n]_t!} \quad (m \geq n \geq 0). \]

For \(\mu = \sum_{i \in I_0} m_i \alpha_i \) we set \(K_\mu = \prod_i K_i^{m_i} \).

We can define an algebra antiautomorphism \(x \mapsto t^x \) of \(U_q(\mathfrak{g}) \) by
\[t^K_i = K_i, \quad t^E_i = F_i, \quad t^F_i = E_i. \]

We define subalgebras \(U_q(\mathfrak{b}^\pm), U_q(\mathfrak{h}) \) and \(U_q(\mathfrak{n}^\pm) \) of \(U_q(\mathfrak{g}) \) by
\[U_q(\mathfrak{b}^+) = \langle K_i^{\pm 1}, E_i \mid i \in I_0 \rangle, \quad U_q(\mathfrak{b}^-) = \langle K_i^{\pm 1}, F_i \mid i \in I_0 \rangle, \quad U_q(\mathfrak{h}) = \langle K_i^{\pm 1} \mid i \in I_0 \rangle, \]
\[U_q(\mathfrak{n}^+) = \langle E_i \mid i \in I_0 \rangle, \quad U_q(\mathfrak{n}^-) = \langle F_i \mid i \in I_0 \rangle. \]

We set \(\mathfrak{h}_Z^+ = \oplus_{i \in I_0} \mathbb{Z} \varpi_i \). For a \(U_q(\mathfrak{h}) \)-module \(M \) we define the weight space \(M_\mu \) with weight \(\mu \in \mathfrak{h}_Z^+ \) by
\[M_\mu = \{ m \in M \mid K_i m = q_i^{\mu(h_i)} m \ (i \in I_0) \}. \]

The Hopf algebra structure on \(U_q(\mathfrak{g}) \) is defined as follows. The comultiplication \(\Delta : U_q(\mathfrak{g}) \to U_q(\mathfrak{g}) \otimes U_q(\mathfrak{g}) \) is the algebra homomorphism satisfying
\[\Delta(K_i) = K_i \otimes K_i, \quad \Delta(E_i) = E_i \otimes K_i^{-1} + 1 \otimes E_i, \quad \Delta(F_i) = F_i \otimes 1 + K_i \otimes F_i. \]

The counit \(\epsilon : U_q(\mathfrak{g}) \to \mathbb{C}(q) \) is the algebra homomorphism satisfying
\[\epsilon(K_i) = 1, \quad \epsilon(E_i) = \epsilon(F_i) = 0. \]
The antipode $S : U_q(g) \to U_q(g)$ is the algebra antiautomorphism satisfying

$$S(K_i) = K_i^{-1}, \quad S(E_i) = -E_iK_i, \quad S(F_i) = -K_i^{-1}F_i.$$

The adjoint action of $U_q(g)$ on $U_q(g)$ is defined as follows. For $x, y \in U_q(g)$ write $\Delta(x) = \sum_k x_k^{(1)} \otimes x_k^{(2)}$ and set $\text{ad}(x)(y) = \sum_k x_k^{(1)} y S(x_k^{(2)})$. Then $\text{ad} : U_q(g) \to \text{End}_{\mathbb{C}(q)}(U_q(g))$ is an algebra homomorphism.

For $i \in I_0$ we define an algebra automorphism T_i of $U_q(g)$ (see Lusztig [10]) by

$$T_i(K_j) = K_j K_i^{-\alpha_{ij}},$$

$$T_i(E_j) = \begin{cases} -F_iK_i & (i = j) \\ \sum_{k=0} \left(-q_i \right)^{-k} E_i^{(-\alpha_{ij}-k)} E_j E_i^{(k)} & (i \neq j), \end{cases}$$

$$T_i(F_j) = \begin{cases} -K_i^{-1}E_i & (i = j) \\ \sum_{k=0} (-q_i)^k F_i^{(k)} F_j F_i^{(-\alpha_{ij}-k)} & (i \neq j), \end{cases}$$

where

$$E_i^{(k)} = \frac{1}{[k]_{q_i}} E_i^k, \quad F_i^{(k)} = \frac{1}{[k]_{q_i}!} F_i^k.$$

For $w \in W$ we choose a reduced expression $w = s_{i_1} \cdots s_{i_k}$, and set $T_w = T_{i_1} \cdots T_{i_k}$. It does not depend on the choice of the reduced expression by Lusztig [11].

It is known that there exists a unique bilinear form $(\ , \) : U_q(b^-) \times U_q(b^+) \to \mathbb{C}(q)$ such that for any $x, x' \in U_q(b^+), y, y' \in U_q(b^-)$, and $i, j \in I_0$

$$(y, xx') = (\Delta(y), x' \otimes x), \quad (yy', x) = (y \otimes y', \Delta(x)),$$

$$(K_i, K_j) = q^{-(\alpha_i, \alpha_j)}, \quad (F_i, E_j) = -\delta_{ij}(q_i - q_i^{-1})^{-1},$$

$$(F_i, K_j) = 0, \quad (K_i, E_j) = 0,$$

(See Jantzen [4], Tanisaki [19]).

For $\mu \in \sum_{i \in I_0} \mathbb{Z}_{\geq 0} \alpha_i$ let $U_q(n^-)_-\mu$ be the weight space with weight μ relative to the adjoint action of $U_q(h)$ on $U_q(n^-)$. For any $y \in U_q(n^-)_-\mu$ and $i \in I_0$ the elements $r_i(y)$ and
$r'_i(y)$ of $U_q(n^-)_{-(\mu - \alpha_i)}$ are defined by

$$
\Delta(y) \in y \otimes 1 + \sum_{i \in I_0} K_i r_i(y) \otimes F_i + \bigoplus_{0 < \nu \leq \mu \atop \nu \not\in \alpha_i} K_\nu U_q(n^-)_{-(\mu - \nu)} \otimes U_q(n^-)_{-\nu},
$$

$$
\Delta(y) \in K_\mu \otimes y + \sum_{i \in I_0} K_{\mu - \alpha_i} F_i \otimes r'_i(y) + \bigoplus_{0 < \nu \leq \mu \atop \nu \not\in \alpha_i} K_{\mu - \nu} U_q(n^-)_{-\nu} \otimes U_q(n^-)_{-(\mu - \nu)}.
$$

Lemma 1.1. (see Jantzen [4])

(i) We have $r_i(1) = r'_i(1) = 0$ and $r_i(F_j) = r'_i(F_j) = \delta_{ij}$ for $j \in I_0$.

(ii) We have for $y_1 \in U_q(n^-)_{-\mu_1}$ and $y_2 \in U_q(n^-)_{-\mu_2}$

$$
r_i(y_1y_2) = q_i^{\mu_i(h_i)} y_1 r_i(y_2) + r_i(y_1)y_2, \quad r'_i(y_1y_2) = y_1 r'_i(y_2) + q_i^{\mu_i(h_i)} r'_i(y_1)y_2.
$$

(iii) We have for $x \in U_q(n^\pm)$ and $y \in U_q(n^-)_{-\mu}$

$$(y, E_i x) = (F_i, E_i)(r_i(y), x), \quad (y, x E_i) = (F_i, E_i)(r'_i(y), x).$$

(iv) We have $\text{ad}(E_i)y = (q_i - q_i^{-1})^{-1}(K_i r_i(y) K_i - r'_i(y))$ for $y \in U_q(n^-)_{-\mu}$.

From Lemma 1.1 (ii) we have $r_i(F_i^n) = r'_i(F_i^n) = q_i^{-n-1}[n]_{q_i} F_i^{n-1}$.

2 Commutative parabolic type

For a subset I of I_0 we set

$$
\Delta_I = \Delta \cap \sum_{i \in I} \mathbb{Z}\alpha_i, \quad l_I = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta_I} \mathfrak{g}_\alpha, \quad n_I^\pm = \bigoplus_{\alpha \in \Delta^+ \setminus \Delta_I} \mathfrak{g}_{\pm \alpha}, \quad W_I = \langle s_i \mid i \in I \rangle.
$$

Let L_I be the algebraic group corresponding to l_I. Assume that $n_I^- \neq 0$ and $[n_I^+, n_I^-] = 0$. Then it is known that $I = I_0 \setminus \{i_0\}$ for some $i_0 \in I_0$ and (L_I, n_I^\pm) is a prehomogeneous vector space. Since n_I^- is identified the dual space of n_I^\pm via the Killing form, we have $\mathbb{C}[n_I^\pm] \simeq S(n_I^-) = U(n_I^-)$. There exists finitely many L_I-orbits $C_1, C_2, \ldots, C_r, C_{r+1}$ on n_I^\pm satisfying the closure relation $\{0\} = C_1 \subset C_2 \subset \cdots \subset C_r \subset \overline{C_{r+1}} = n_I^\pm$. In the remainder of this paper we denote by r the number of non-open orbits on n_I^\pm. For $p \leq r$ we set
Fig. 1:

\[\mathcal{I}(\mathcal{C}_p) = \{ f \in \mathbb{C}[n^+ I_p] \mid f(\mathcal{C}_p) = 0 \} \]. We denote by \(\mathcal{I}^m(\mathcal{C}_p) \) the subspace of \(\mathcal{I}(\mathcal{C}_p) \) consisting of homogeneous elements with degree \(m \). It is known that \(\mathcal{I}^p(\mathcal{C}_p) \) is an irreducible \(\mathfrak{t}_r \)-module and \(\mathcal{I}(\mathcal{C}_p) = \mathbb{C}[n^+ I_p] \mathcal{I}^p(\mathcal{C}_p) \). Let \(f_p \) be the highest weight vector of \(\mathcal{I}^p(\mathcal{C}_p) \), and let \(\lambda_p \) be the weight of \(f_p \). We have the irreducible decomposition

\[\mathbb{C}[n^+ I_p] = \bigoplus_{\mu \in \sum_{p=1}^{r} \mathbb{Z}_{\geq 0} \lambda_p} V(\mu), \]

where \(V(\mu) \) is an irreducible highest weight module with highest weight \(\mu \) and \(V(\lambda_p) = \mathcal{I}^p(\mathcal{C}_p) \) (see Schmid \[17\] and Wachi \[21\]).

If the prehomogeneous vector space \((L_I, n^+_I)\) is regular, there exists a one-codimensional orbit \(C_r \). Then it is known that \(\mathcal{I}^r(\mathcal{C}_r) = \mathbb{C} f_r \), \(f_r \) is the basic relative invariant of \((L_I, n^+_I)\) and \(\lambda_r = -2 \omega_{i_0} \), where \(I = I_0 \setminus \{i_0\} \). The pairs \((g, i_0)\) where \((L_I, n^+_I)\) are regular are given by the Dynkin diagrams of Figure [1]. Here the white vertex corresponds to \(i_0 \).

Assume that \((L_I, n^+_I)\) is regular. For \(1 \leq p \leq r \) we set \(\gamma_p = \lambda_{p-1} - \lambda_p \), where \(\lambda_0 = 0 \). Then we have \(\gamma_p \in \Delta^+ \setminus \Delta_I \). We denote the coroot of \(\gamma_p \) by \(h_{\gamma_p} \), and set \(\mathfrak{h}^- = \sum_{p=1}^{r} \mathbb{C} h_{\gamma_p} \).
We set

\[\Delta^+_p = \{ \beta \in \Delta^+ \setminus \Delta_I \mid \beta|_{\mathfrak{h}^+} = (\gamma_j + \gamma_k)/2 \text{ for some } 1 \leq j \leq k \leq p \} \cup \{ \gamma_1, \ldots, \gamma_p \}, \]

\[n^+_p = \sum_{\beta \in \Delta^+_p} g_{\pm \beta}, \]

\[I_p = [n^+_p, n^+_p] \]

(see Wachi [21] and Wallach [22]). Note that \(\alpha_{i_0} \in \Delta^+_p \) for any \(p \) and \(\Delta^+_p = \Delta^+ \setminus \Delta_I \). Then it is known that \((L_p, n^+_p) \) is a regular prehomogeneous vector space of commutative parabolic type, where \(L_p \) is the subgroup of \(G \) corresponding to \(I_p \). Moreover \(f_j \in \mathbb{C}[n_p] \) for \(j \leq p \), and \(f_p \) is a basic relative invariant of \((L_p, n^+_p) \). The regular prehomogeneous vector space \((L_{(r-1)}, n^+_{(r-1)}) \) is described by the following.

Lemma 2.1. (i) For \((A_{2n-1}, n) \) we have \(r = n \) and \((L_{(n-1)}, n^+_{(n-1)}) \cong (A_{2n-3}, n-1) \).

(ii) For \((B_n, 1) \) we have \(r = 2 \) and \((L_{(1)}, n^+_{(1)}) \cong (A_1, 1) \).

(iii) For \((C_n, n) \) \((n \geq 3)\) we have \(r = n \) and \((L_{(n-1)}, n^+_{(n-1)}) \cong (C_{n-1}, n-1) \).

(iv) For \((D_n, 1) \) we have \(r = 2 \) and \((L_{(1)}, n^+_{(1)}) \cong (A_1, 1) \).

(v) For \((D_{2n}, 2n) \) \((n \geq 3)\) we have \(r = n \) and \((L_{(n-1)}, n^+_{(n-1)}) \cong (D_{2n-2}, 2n-2) \).

(vi) For \((E_7, 1) \) we have \(r = 3 \) and \((L_{(2)}, n^+_{(2)}) \cong (D_6, 1) \).

3 Quantum deformations of coordinate algebras

In this section we recall basic properties of the quantum analogue of the coordinate algebra \(\mathbb{C}[n_I^+] \) of \(n_I^+ \) satisfying \([n_I^+, n_I^+] = 0 \) (see [7]). We do not assume that \((L_I, n_I^+) \) is regular. We take \(i_0 \in I_0 \) as in Section 2.

We define a subalgebra \(U_q(I_I) \) by \(U_q(I_I) = \langle K_i^{\pm 1}, E_j, F_j \mid i \in I_0, j \in I \rangle \). Let \(w_I \) be the longest element of \(W_I \), and set

\[U_q(n_{I_I}^-) = U_q(n^-) \cap T_{w_I}^{-1} U_q(n^-). \]

We take a reduced expression \(w_I w_0 = s_{i_1} \cdots s_{i_k} \) and set

\[\beta_t = s_{i_1} \cdots s_{i_{t-1}}(\alpha_{i_t}), \quad Y_{\beta_t} = T_{i_1} \cdots T_{i_{t-1}}(F_{i_t}) \]

7
for $t = 1, \ldots, k$. In particular $Y_{\beta_t} = F_{i_0}$. We have $\{\beta_t | 1 \leq t \leq k\} = \Delta^+ \setminus \Delta_I$. The set
\[\{Y_{\beta_1}^{n_1} \cdots Y_{\beta_k}^{n_k} | n_1, \ldots, n_k \in \mathbb{Z}_{\geq 0}\}\] is a basis of $U_q(n^-_I)$.

Proposition 3.1. (see [7])

(i) We have $\text{ad}(U_q(I_t)) U_q(n^-_I) \subset U_q(n^-_I)$.

(ii) The elements $Y_{\beta} \in U_q(n^-_I)$ for $\beta \in \Delta^+ \setminus \Delta_I$ do not depend on the choice of a reduced expression of $w_I w_0$, and they satisfy quadratic fundamental relations as generators of the algebra $U_q(n^-_I)$.

We regard the subalgebra $U_q(n^-_I)$ of $U_q(n^-)$ as a quantum analogue of the coordinate algebra $\mathbb{C}[n_+^I]$ of n_+^I.

Since $\mathbb{C}[n_+^I]$ is a multiplicity free I-module, for the L_I-orbit C_p on n_I there exist unique $U_q(I_t)$-submodules $\mathcal{I}_q(C_p)$ and $\mathcal{I}_p(C_p)$ of $U_q(n^-_I)$ satisfying
\[\mathcal{I}_q(C_p)_{|q=1} = \mathcal{I}(C_p), \quad \mathcal{I}_p(C_p)_{|q=1} = \mathcal{I}^p(C_p)\]
(see [7]).

Proposition 3.2. (see [7]) $\mathcal{I}_q(C_p) = U_q(n^-_I) \mathcal{I}_p(C_p) = \mathcal{I}_q(C_p) U_q(n^-_I)$.

Let $f_{q,p}$ be the highest weight vector of $\mathcal{I}_q(C_p)$. We have the irreducible decomposition
\[U_q(n^-_I) = \bigoplus_{\mu \in \Sigma_p} \mathcal{V}_q(\mu),\]
where $\mathcal{V}_q(\mu)$ is an irreducible highest weight module with highest weight μ and $\mathcal{V}_q(\lambda_p) = \mathcal{I}_q(C_p)$. Explicit descriptions of $U_q(n^-_I)$ and $f_{q,p}$ are given in [8] in the case where g is classical, and in [12] for the exceptional cases.

Let f be a weight vector of $U_q(n^-_I)$ with the weight $-\mu$. If $\mu \in m\alpha_{i_0} + \sum_{i \in I} \mathbb{Z}_{\geq 0}\alpha_i$, then f is an element of $\sum_{\beta_1, \ldots, \beta_m \in \Delta^+ \setminus \Delta_I} C(q) Y_{\beta_1} \cdots Y_{\beta_m}$. So we can define the degree of f by $\text{deg} f = m$. In particular $\text{deg} f_{q,p} = p$.

4 Quantum deformations of relative invariants

In the remainder of this paper we assume that (L_I, n_+^I) is regular, and $\{i_0\} = I_0 \setminus I$. Then we regard the highest weight vector $f_{q,r}$ of $\mathcal{I}_q(C_r)$ as the quantum analogue of the basic relative invariant. We give some properties of $f_{q,r}$ in this section.
By $T_q\left(\mathbb{C}^r\right) = \mathbb{C}(q) f_{q,r}$ and $\lambda_r = -2w_{i_0}$, we have the following.

Proposition 4.1. We have

$$\text{ad}(K_i) f_{q,r} = f_{q,r}, \quad \text{ad}(E_i) f_{q,r} = 0 \quad \text{and} \quad \text{ad}(F_i) f_{q,r} = 0,$$

for any $i \in I$, and $\text{ad}(K_{i_0}) f_{q,r} = q_{i_0}^{-2} f_{q,r}$.

Lemma 4.2. (i) For $i \in I$ we have $r_i(U_q(n^-)) = 0$.

(ii) For $\beta \in \Delta^+ \setminus \Delta_I$ we have $r'_{i_0}(Y_{\beta}) = \delta_{\alpha_{i_0},\beta}$.

Proof. (i) By Jantzen [4] we have

$$\{y \in U_q(n^-)| r_i(y) = 0\} = U_q(n^-) \cap T_i^{-1} U_q(n^-).$$

On the other hand we have $U_q(n^-) \subseteq U_q(n^-) \cap T_i^{-1} U_q(n^-)$ for $i \in I$. Hence we have $r_i(U_q(n^-)) = 0$ for $i \in I$.

(ii) We show the formula by induction on β.

By the definition of r'_{i_0}, it is clear that $r'_{i_0}(Y_{\alpha_{i_0}}) = r'_{i_0}(F_{i_0}) = 1$.

Assume that $\beta > \alpha_{i_0}$ and the statement is proved for any root β_1 in $\Delta^+ \setminus \Delta_I$ satisfying $\beta_1 < \beta$. For some $i \in I$ we can write

$$Y_{\beta} = c \text{ ad}(F_i) Y_{\beta'} = c \left(F_i Y_{\beta'} - q^{-\langle\alpha_i,\beta'\rangle} Y_{\beta'} F_i \right),$$

where $\beta' = \beta - \alpha_i$ and $c \in \mathbb{C}(q)$. Hence we have

$$r'_{i_0}(Y_{\beta}) = c \left(F_i r'_{i_0}(Y_{\beta'}) - q^{\langle\alpha_i,\alpha_{i_0} - \beta'\rangle} r'_{i_0}(Y_{\beta'}) F_i \right).$$

If $\beta' = \alpha_{i_0}$, we have $r'_{i_0}(Y_{\beta'}) = 1$. If $\beta' \neq \alpha_{i_0}$, we have $r'_{i_0}(Y_{\beta'}) = 0$ by the inductive hypothesis. \(\square\)

Proposition 4.3. The quantum analogue $f_{q,r}$ is a central element of $U_q(n^-)$.

Proof. For $i \in I$ we have $[F_i, f_{q,r}] = \text{ad}(F_i)f_{q,r}$. By Proposition [4] we have to show $[F_{i_0}, f_{q,r}] = 0$.

9
The q-analogue $f_{q,r}$ is a linear combination of $Y_{\beta_1} \cdots Y_{\beta_r}$ satisfying $\sharp \{ \beta_i | \beta_i = \alpha_{i_0} \} \leq 1$ (see [3] and [12]). By using Lemma 4.2 it is easy to show that $r_{i_0}' (f_{q,r}) \neq 0$ and $r_{i_0}'^2 (f_{q,r}) = 0$. Hence we have

$$r_{i_0}'^2 (F_{i_0} f_{q,r}) = r_{i_0}'^2 (f_{q,r} F_{i_0}) = (q_{i_0}^{d_{i_0}} + 1) r_{i_0}' (f_{q,r}).$$

On the other hand there exists $c \in \mathbb{C}(q)$ such that $F_{i_0} f_{q,r} = c f_{q,r} F_{i_0}$ by Proposition 3.2, hence we have $(q_{i_0}^{d_{i_0}} + 1) r_{i_0}' (f_{q,r}) = c (q_{i_0}^{d_{i_0}} + 1) r_{i_0}' (f_{q,r})$. Therefore we obtain $c = 1$.

\[5\] b-functions and their quantum analogues

We recall the definition of the b-function.

For $h \in S(n_+^2) \simeq \mathbb{C}[n_+^-]$, we define the constant coefficient differential operator $h(\partial)$ by

$$h(\partial) \exp B(x,y) = h(y) \exp B(x,y) \quad x \in n_+^+, y \in n_+^-,$$

where B is the Killing form on \mathfrak{g}. It is known that there exists a polynomial $b_r(s)$ called the b-function of the relative invariant f_r such that for $s \in \mathbb{C}$

$$t^r f_r(\partial) f_r^{s+1} = b_r(s) f_r^s.$$

Then we have $\deg b_r = r$. The explicit description of $b_r(s)$ is given by

- (A_{2n-1}, n) \quad $b_n(s) = (s + 1)(s + 2) \cdots (s + n)$
- $(B_n, 1)$ \quad $b_2(s) = (s + 1) \left(s + \frac{2n - 1}{2} \right)$
- (C_n, n) \quad $b_n(s) = (s + 1) \left(s + \frac{3}{2} \right) \left(s + \frac{4}{2} \right) \cdots \left(s + \frac{n + 1}{2} \right)$
- $(D_n, 1)$ \quad $b_2(s) = (s + 1) \left(s + \frac{2n - 2}{2} \right)$
- $(D_{2n}, 2n)$ \quad $b_n(s) = (s + 1)(s + 3) \cdots (s + 2n - 1)$
- $(E_7, 1)$ \quad $b_3(s) = (s + 1)(s + 5)(s + 9)$

(see [3], [13] and [14]).

We define a symmetric non-degenerate bilinear form \langle , \rangle on $S(n_+^2) \simeq \mathbb{C}[n_+^-]$ by $\langle f, g \rangle = \langle (g(\partial) f)(0).$
Lemma 5.1. (see Wachi [21]) For $f, g, h \in S(n^-_I) \simeq \mathbb{C}[n^+_I]$ we have

(i) $\langle \text{ad}(u)f, g \rangle = \langle f, \text{ad}(u)g \rangle$ for $u \in U(I)$,

(ii) $\langle f, gh \rangle = \langle t^g(\partial)f, h \rangle$.

We have for $\beta, \beta' \in \Delta^+ \setminus \Delta_I$

$$\langle x^-_{-\beta}, x^-_{-\beta'} \rangle = \delta_{\beta, \beta'} \frac{2}{(\beta, \beta)}.$$

The comultiplication Δ of $U(g)$ is defined by $\Delta(x) = x \otimes 1 + 1 \otimes x$ for $x \in g$. We define the algebra homomorphism $\widetilde{\Delta}$ by $\widetilde{\Delta}(x) = \tau \Delta(t^x)$, where $x \in U(g)$ and $\tau(y_1 \otimes y_2) = t^{y_1} \otimes t^{y_2}$.

Since $t^x_{-\beta}(\partial)(fg) = t^x_{-\beta}(\partial)(f)g + f t^x_{-\beta}(\partial)(g)$, we have

$$\langle fg, h \rangle = \langle f \otimes g, \widetilde{\Delta}(h) \rangle.$$

We shall define the q-analogue of the differential operator $t^f(\partial)$ using the q-analogue of \langle , \rangle.

We define the bilinear form \langle , \rangle on $U_q(n^-_I)$ by

$$\langle f, g \rangle = (q^{-1} - q)^{\deg f} \langle f', g' \rangle,$$

for the weight vectors f, g of $U_q(n^-_I)$. It is easy to show that this bilinear form \langle , \rangle is symmetric. We have the following.

Proposition 5.2. Let $f, g, h \in U_q(n^-_I)$.

(i) $\langle fg, h \rangle = \langle f \otimes g, \widetilde{\Delta}(h) \rangle$, where $\widetilde{\Delta}(h) = \tau \Delta(t^h)$ and $\tau(h_1 \otimes h_2) = t^{h_1} \otimes t^{h_2}$.

(ii) For $u \in U_q(I)$ we have

$$\langle \text{ad}(u)f, g \rangle = \langle f, \text{ad}(t^u)g \rangle.$$

(iii) The bilinear form \langle , \rangle is non-degenerate.

Proof. (i) It is clear from the definition.

(ii) It is sufficient to show that the statement holds for the weight vectors f, g and the canonical generator u of $U_q(I)$. If $u = K_i$ for $i \in I_0$, then the assertion is obvious.
Let $u = E_i$ for $i \in I$. By Lemma 1.1 and Lemma 4.2 we have

$$(\text{ad}(E_i)f, t g) = (q_i^{-1} - q_i)^{-1}(r_i(f), t g) = (f, t g E_i).$$

On the other hand we have

$$(f, t (\text{ad}(F_i)g)) = (f, t g E_i - q_i^{-\mu(h_i)} E_i t g),$$

where $-\mu$ is the weight of g. Since $(U_q(n^-), E_i U_q(n^+)) = 0$ by Lemma 1.1 and Lemma 4.2 we have $(\text{ad}(E_i)f, t g) = (f, t (\text{ad}(F_i)g))$. We have $\deg f = \deg (\text{ad}(F_i)f)$, and hence the statement for $u = E_i$ holds. By the symmetry of \langle , \rangle it also holds for $u = F_i$.

(iii) We take the reduced expression $w_0 = s_{i_1} \cdots s_{i_k} s_{i_{k+1}} \cdots s_{i_m}$ such that $w_I w_0 = s_{i_1} \cdots s_{i_m}$. We define Y_{β_j} as in Section 3. Then $\{Y_{\beta_1}^n \cdots Y_{\beta_k}^n Y_{\beta_{k+1}}^n \cdots Y_{\beta_l}^n\}$ is a basis of $U_q(n^-)$, and for $j > k$ we have $Y_{\beta_j} \in U_q(n^-) \cap U_q(I)$. Hence we have $U_q(n^-) = U_q(n^-) + \sum_{i \in I} U_q(n^-) F_i$.

Since $t U_q(n^-) = U_q(n^+)$, we have $U_q(n^+) = t U_q(n^-) + \sum_{i \in I} E_i U_q(n^+)$. Moreover, we have $(U_q(n^-), E_i U_q(n^+)) = 0$ for $i \in I$. Hence if $\langle f, g \rangle = 0$ for any $g \in U_q(n^-)$, then $\langle f, u \rangle = 0$ for any $u \in U_q(n^+)$. Thus the assertion follows from the non-degeneracy of \langle , \rangle.

\[\square \]

Proposition 5.3. For $\beta, \beta' \in \Delta^+ \setminus \Delta_I$ we have

$$\langle Y_\beta, Y_{\beta'} \rangle = \delta_{\beta, \beta'} \left[\frac{(\beta, \beta)}{2} \right]^{-1}_q.$$

Proof. By the definition it is clear that $\langle Y_\beta, Y_{\beta'} \rangle = 0$ if $\beta \neq \beta'$. In the case where $\beta = \beta'$ we shall show the statement by the induction on β.

Since $Y_{\alpha_{i_0}} = F_{i_0}$, we obtain $\langle Y_{\alpha_{i_0}}, Y_{\alpha_{i_0}} \rangle = \left[\frac{(\alpha_{i_0}, \alpha_{i_0})}{2} \right]^{-1}_q$.

Assume that $\beta > \alpha_{i_0}$ and the statement holds for any root β_1 in $\Delta^+ \setminus \Delta_I$ satisfying $\beta_1 < \beta$. Then there exists a root γ ($< \beta$) in $\Delta^+ \setminus \Delta_I$ such that

$$Y_\beta = c_{\gamma, \beta} \text{ad}(F_i) Y_\gamma, \quad Y_\gamma = c'_{\gamma, \beta} \text{ad}(E_i) Y_\beta,$$

where $i \in I$ satisfying $\beta = \gamma + \alpha_i$ and $c_{\gamma, \beta}, c'_{\gamma, \beta} \in \mathbb{C}(q)^*$. We denote by R the set of the pairs $\{\gamma, \beta\}$ as above. By Proposition 1.2 we have for $\{\gamma, \beta\} \in R$

$$\langle Y_\beta, Y_{\beta} \rangle = \langle Y_\beta, c_{\gamma, \beta} \text{ad}(F_i) Y_\gamma \rangle = c_{\gamma, \beta} \langle \text{ad}(E_i) Y_\beta, Y_\gamma \rangle = c_{\gamma, \beta} c'_{\gamma, \beta} \langle Y_\gamma, Y_\gamma \rangle = c_{\gamma, \beta} c'_{\gamma, \beta} \left[\frac{(\gamma, \gamma)}{2} \right]^{-1}_q.$$

12
On the other hand we have for \(\{ \gamma, \beta \} \in R \)

\[
\begin{align*}
 c_{\gamma, \beta} &= c'_{\gamma, \beta} = 1 & \text{if } (\beta, \beta) = (\gamma, \gamma),
 \\
 c_{\gamma, \beta} &= (q + q^{-1})^{-1}, c'_{\gamma, \beta} = 1 & \text{if } 4 = (\beta, \beta) > (\gamma, \gamma) = 2,
 \\
 c_{\gamma, \beta} &= 1, c'_{\gamma, \beta} = (q + q^{-1})^{-1} & \text{if } 2 = (\beta, \beta) < (\gamma, \gamma) = 4
\end{align*}
\]

(see [1] and [2]). Hence we obtain \(\langle Y_\beta, Y_\beta \rangle = \left[\frac{(\beta, \beta)}{2} \right]_q^{-1} \).

By Proposition 5.2 and 5.3 we can regard \(\langle , \rangle \) on \(U_q(\mathfrak{n}_-^\gamma) \) as the \(q \)-analogue of \(\langle , \rangle \) on \(S(\mathfrak{n}_-^\gamma) \simeq \mathbb{C}[\mathfrak{n}_-^\gamma] \).

Proposition 5.4. (i) For any \(g \in U_q(\mathfrak{n}_-^\gamma) \) there exists a unique \(^t g(\partial) \in \text{End}_{\mathbb{C}(q)}(U_q(\mathfrak{n}_-^\gamma)) \)

such that \(\langle ^t g(\partial)f, h \rangle = \langle f, gh \rangle \) for any \(f, h \in U_q(\mathfrak{n}_-^\gamma) \). In particular we have

\[
^t Y_{a_i}(\partial) = [d_i]_q^{-1}r_i',
\]

and for \(\beta > \alpha_i \)

\[
^t Y_\beta(\partial) = c_{\gamma'}\beta(\gamma')^t \text{ad}(E_i) - q_i^{-\beta'(h_i)} \text{ad}(E_i)Y_{\beta'}(\partial),
\]

where \(Y_\beta = c_{\gamma', \beta} \text{ad}(E_i)Y_{\beta'} \).

(ii) For \(f \in U_q(\mathfrak{n}_-^\gamma)_{-\mu} \) and \(g \in U_q(\mathfrak{n}_-^\gamma)_{-\nu} \) we have \(^t g(\partial)f \in U_q(\mathfrak{n}_-^\gamma)_{-(\mu, -\nu)} \).

Proof. (i) The uniqueness follows from the non-degeneracy of \(\langle , \rangle \). If there exist \(^t g(\partial) \) and \(^t g'(\partial) \), then we have \(^t (gg')(\partial) = ^t g'(\partial)^t g(\partial) \). Therefore we have only to show the existence of \(^t Y_\beta(\partial) \) for any \(\beta \in \Delta^+ \setminus \Delta_L \). By Lemma 1.1 we have \(^t Y_{a_i}(\partial) = [d_i]_q^{-1}r_i' \). Let \(\beta > \alpha_i \). Then there exists a root \(\beta'(< \beta) \) such that \(Y_\beta = c_{\gamma', \beta} \text{ad}(F_i)Y_{\beta'} \) \((c_{\gamma', \beta} \in \mathbb{C}(q)) \). By Proposition 5.2 we can show that \(^t Y_\beta(\partial) = c_{\gamma', \beta}(Y_{\beta'}(\partial)\text{ad}(E_i) - q_i^{-\beta'(h_i)}\text{ad}(E_i)Y_{\beta'}(\partial)) \) easily.

(ii) The assertion follows from (i).

Lemma 5.5. For \(i \in I \) \(\text{ad}(E_i)^t f_{q, r}(\partial) = f_{q, r}(\partial)\text{ad}(E_i) \) and \(\text{ad}(F_i)^t f_{q, r}(\partial) = f_{q, r}(\partial)\text{ad}(F_i) \).

13
PROOF. Let \(y_1, y_2 \in U_q(n^-_I) \). Since \(\text{ad}(F_i) f_{q,r} = 0 \) for \(i \in I \), we have \(\text{ad}(F_i)(f_{q,r} y_2) = f_{q,r} \text{ad}(F_i) y_2 \). Hence we obtain

\[
\langle \text{ad}(E_i) f_{q,r}(\partial)(y_1), y_2 \rangle = \langle y_1, f_{q,r} \text{ad}(F_i) y_2 \rangle = \langle y_1, \text{ad}(F_i)(f_{q,r} y_2) \rangle = \langle f_{q,r}(\partial) \text{ad}(E_i)(y_1), y_2 \rangle.
\]

Similarly we obtain \(\text{ad}(F_i) f_{q,r}(\partial) = t f_{q,r}(\partial) \text{ad}(F_i) \) \(\square \)

By Proposition 5.4 and Lemma 5.5, the element \(t f_{q,r}(\partial)(f_{q,r}^{s+1}) \) \((s \in \mathbb{Z}_{\geq 0}) \) is the highest weight vector with highest weight \(s \lambda_r = -2s \varpi_{i_0} \). Since \(U_q(n^-_I) \) is a multiplicity free \(U_q(S_I) \)-module, there exists \(\tilde{b}_{q,r,s} \in \mathbb{C}(q) \) such that

\[
t f_{q,r}(\partial)(f_{q,r}^{s+1}) = \tilde{b}_{q,r,s} f_{q,r}^s.
\]

Proposition 5.6. There exists a polynomial \(\tilde{b}_{q,r}(t) \in \mathbb{C}(q)[t] \) such that \(\tilde{b}_{q,r,s} = \tilde{b}_{q,r}(q_{i_0}^s) \) for any \(s \in \mathbb{Z}_{\geq 0} \).

Proof. Let \(\psi = \psi_1 \cdots \psi_m \), where \(\psi_j = r'_{i_0} \) or \(\text{ad}(E_i) \) for some \(i \in I \). Set \(n = n(\psi) = \sharp \{ j \mid \psi_j = r'_{i_0} \} \). For \(k \in \mathbb{Z}_{\geq 0} \) and \(y \in U_q(n^-_I)_{-\mu} \) we have

\[
r'_{i_0}(f_{q,r}^k y) = q_{i_0}^{k-1+\mu(h_{i_0})} [k]_{q_{i_0}} f_{q,r}^{k-1} r'_{i_0}(f_{q,r}) y + f_{q,r}^{k} r'_{i_0}(y)
\]

by the induction on \(k \). Note that \(q_{i_0}^{k-1+\mu(h_{i_0})} [k]_{q_{i_0}} = (q_{i_0} - q_{i_0}^{-1})^{-1} q_{i_0}^{\mu(h_{i_0})-1} ((q_{i_0}^k)^2 - 1) \). Moreover \(\text{ad}(E_i)(f_{q,r}^k y) = f_{q,r}^k \text{ad}(E_i)y \) for \(i \in I \). Hence we have

\[
\psi(f_{q,r}^{s+1}) = \sum_{p=1}^n c_p(q_{i_0}^s) f_{q,r}^{s+1-p} y_p,
\]

where \(c_p \in \mathbb{C}(q)[t] \) and \(y_p \in U_q(n^-_I) \) does not depend on \(s \).

By Proposition 5.4 \(t f_{q,r}(\partial) \) is a linear combination of such \(\psi \) satisfying \(n(\psi) = r \). The assertion is proved. \(\square \)

We set \(b_{q,r}(s) = \tilde{b}_{q,r}(q_{i_0}^s) \) for simplicity. By definition we have

\[
\langle f_{q,r}^{s+1}, f_{q,r}^{s+1} \rangle = b_{q,r}(s) b_{q,r}(s-1) \cdots b_{q,r}(0).
\]
6 Explicit forms of quantum \(b\)-functions

Our main result is the following.

Theorem 6.1. Let \(b_r(s) = \prod_{i=1}^{r}(s + a_i)\) be a \(b\)-function of the basic relative invariant of the regular prehomogeneous vector space \((L_I, n_I^+)\). Then the quantum analogue \(b_{q,r}(s)\) of \(b_r(s)\) is given by

\[
b_{q,r}(s) = \prod_{i=1}^{r} q_{i_0}^{s+a_i-1} [s + a_i]_{q_{i_0}} \text{ (up to a constant multiple)},
\]

where \(\{i_0\} = I_0 \setminus I\).

We prove this theorem by calculating \(b_{q,r}(s)\) in each case.

For \(p = 1, \ldots, r\) we define \(\Delta_{(p)}^+, L_{(p)}\) and \(n_{(p)}^\pm\) as in Section 2. We define the subalgebra \(U_q(n_{(p)}^-)\) of \(U_q(n_I^-)\) by

\[U_q(n_{(p)}^-) = \langle Y_{\beta} | \beta \in \Delta_{(p)}^+ \rangle.\]

Then \(U_q(n_{(p)}^-)\) is a \(q\)-analogue of \(\mathbb{C}[n_{(p)}^+]\), and \(f_{q,p} \in U_q(n_{(p)}^-)\) is a \(q\)-analogue of basic relative invariant \(f_p\) of the regular prehomogeneous vector space \((L_{(p)}, n_{(p)}^+)\). We denote by \(b_{q,p}(s)\) the \(q\)-analogue of the \(b\)-function of \(f_p\).

The regular prehomogeneous vector space \((L_{(1)}, n_{(1)}^+)\) is of type \((A_1, 1)\), and we have

\[U_q(n_{(1)}^-) = \langle F_{i_0} | c \in \mathbb{C}(q)^* \rangle.\]

Since \(r'_{i_0}(F_{i_0}^{s+1}) = q_{i_0}^{s+1} [s + 1]_{q_{i_0}} F_{i_0}^s\), we obtain

\[b_{q,1}(s) = c^2 [d_{i_0}]_q^{-1} q_{i_0}^s [s + 1]_{q_{i_0}}.\]

If we determine \(a_p(s) \in \mathbb{C}(q)\) by

\[
\langle f_{q,p}^s, f_{q,p}^s \rangle = a_p(s) \langle f_{q,p-1}^s, f_{q,p-1}^s \rangle,
\]

then we have \(b_{q,p}(s) = \frac{a_p(s + 1)}{a_p(s)} b_{q,p-1}(s)\). Therefore we can inductively obtain the explicit form of \(b_{q,r}\).

The next lemma is useful for the calculation of \(a_p(s)\).

Lemma 6.2. (i) For \(\beta \in \Delta^+ \setminus \Delta_I\) we have

\[t^i Y_{\beta}(\partial)(f_{q,r}^n y) = t^i Y_{\beta}(\partial)(f_{q,r}^m y) \text{ad}(K_{\beta}^{-1}) y + f_{q,r}^n Y_{\beta}(\partial) y \quad (y \in U_q(n_I^-)).\]
Proof. (i) This is proved easily by the induction on β. Note that $\operatorname{ad}(E_i)(f_{q,r}) = 0$ for $i \in I$.

(ii) Since $f_{q,r}$ is a central element of $U_q(\mathfrak{n}_r)$, this follows from (i).

(iii) Let $\beta \in \Delta^+_p \setminus \Delta^+_{p-1}$. Then there exists some $j \in I$ such that $\beta = \mathbb{Z}_{\geq 0} \alpha_j + \sum_{i \neq j} \mathbb{Z}_{\geq 0} \alpha_i$ and $\gamma \in \sum_{i \neq j} \mathbb{Z}_{\geq 0} \alpha_i$ for any $\gamma \in \Delta^+_{p-1}$. Hence we have $U_q(\mathfrak{n}^-_{(p-1)})(\lambda_{p-1}-\beta) = \{0\}$, and the statement follows.

Let us give $a_p(s)$ in each case.

Let (L_I, \mathfrak{n}_r^+) be the regular prehomogeneous vector space of type (A_{2n-1}, n). Then the number of non-open orbits r is equal to n, and $d_i = d_n = 1$. Here we label the vertices of the Dynkin diagram as in Figure 1.

Let $1 \leq i, j \leq n$. We set $\beta_{ij} = \alpha_{n-i+1} + \alpha_{n-i+2} + \cdots + \alpha_{n+j-1}$, and $Y_{ij} = Y_{\beta_{ij}}$. For two sequences $1 \leq i_1 < \cdots < i_p \leq n$, $1 \leq j_1 < \cdots < j_p \leq n$ we set

$$(i_1, \ldots, i_p|j_1, \ldots, j_p) = \sum_{\sigma \in S_p} (-q)^{\ell(\sigma)} Y_{i_1,j_{\sigma(1)}} \cdots Y_{i_p,j_{\sigma(p)}}.$$

Then we have $f_{q,p} = (1, \ldots, p|1, \ldots, p)$ (see (6)). It is easy to show the following formula.

$$(6.1) f_{q,p} = \sum_{k=1}^{p} (-q)^{p-k} Y_{p,k}(1, \ldots, p-1|1, \ldots, k, \ldots, p).$$

Note that $\beta_{p,k} \in \Delta^+_p \setminus \Delta^+_{p-1}$ and $(1, \ldots, p-1|1, \ldots, k, \ldots, p) = \operatorname{ad}(F_{n+k} \cdots F_{n+p-1}) f_{q,p-1}$ in (6.1).

Since $\beta_{p,i} \in \Delta^+_p \setminus \Delta^+_{p-1}$ for $1 \leq i \leq p$, by Lemma 5.2 we have

$$tY_{p,i}(\theta)(f_{q,p} f_{q,p-1}^{s_2}) = q^{s_2-1}[s_1]_q f_{q,p-1} f_{q,p}^{s_2} tY_{p,i}(\theta)(f_{q,p}) \operatorname{ad}(K_{\beta_{p,i}}^{-1})(f_{q,p-1}).$$

On the other hand we have the following.

Lemma 6.3.

$$(i,j)(\theta) f_{q,p} = (-q)^{i+j-2}(1, \ldots, \tilde{i}, \ldots, p|1, \ldots, \tilde{j}, \ldots, p) \quad (1 \leq i, j \leq p).$$

Proof. By Proposition 5.4, the statement is proved by the induction on i, j easily. □
Since $\text{ad}(K_{p,i}^{-1})(f_{q,p-1}) = qf_{q,p-1}$ if $i \leq p - 1$ and $f_{q,p-1}$ if $i = p$, we have

$$
\langle f_{q,p}^{s_1}f_{q,p}^{s_2}, f_{q,p}^{s_1}f_{q,p}^{s_2} \rangle = \sum_{i=1}^{p}(-q^{-1})^{p-i}\langle Y_{p,i}(\partial)(f_{q,p}^{s_1}f_{q,p}^{s_2}), g_i f_{q,p}^{s_1-1}f_{q,p}^{s_2} \rangle
$$

$$
= \sum_{i=1}^{p-1}(-q)^{2i-2}q^{s_1+s_2-1}\langle s_1 | q (f_{q,p}^{s_1-1}g_i f_{q,p}^{s_2-1}, f_{q,p}^{s_1-1}g_i f_{q,p}^{s_2-1})
+ (-q)^{2p-2}q^{s_1-1}\langle s_1 | q (f_{q,p}^{s_1-1}f_{q,p}^{s_2+1}, f_{q,p}^{s_1-1}f_{q,p}^{s_2+1}),
$$

where $g_i = (1, \ldots, p - 1|1, \ldots, \tilde{i}, \ldots, p)$.

Now we have for $1 \leq i \leq p - 1$

$$
g_i = \text{ad}(F_{n+i})g_{i+1}, \quad g_{i+1} = \text{ad}(E_{n+i})g_i,
$$

$$
\text{ad}(E_{n+i})f_{q,p} = f_{q,p-1} = 0, \quad \text{ad}(F_{n+i})f_{q,p} = 0, \quad \text{ad}(F_{n+i})f_{q,p-1} = \delta_{i,p-1}g_{p-1}
$$

(see [1]). Therefore we have

$$
\text{ad}(E_{n+p-1} \ldots E_{n+i+1}E_{n+i})(f_{q,p}^{s_1-1}g_i f_{q,p}^{s_2}) = \text{ad}(E_{n+p-1} \ldots E_{n+i+1})(f_{q,p}^{s_1-1}g_i f_{q,p}^{s_2})
= \ldots = \text{ad}(E_{n+p-1})(f_{q,p}^{s_1-1}g_{p-1}f_{q,p}^{s_2}) = q^{-s_2}f_{q,p}^{s_1-1}f_{q,p}^{s_2+1},
$$

and

$$
f_{q,p}^{s_1-1}g_i f_{q,p}^{s_2-1} = \text{ad}(F_{n+i})(f_{q,p}^{s_1-1}g_{i+1} f_{q,p}^{s_2}) = \ldots = \text{ad}(F_{n+i} \ldots F_{n+p-2})(f_{q,p}^{s_1-1}g_{p-1}f_{q,p}^{s_2}).
$$

Here we have $g_{p-1}f_{q,p-1} = q^{-1}f_{q,p-1}g_{p-1}$, and hence

$$
f_{q,p}^{s_1-1}g_i f_{q,p}^{s_2-1} = q^{-s_2}[s_2 + 1]_q^{-1} \text{ad}(F_{n+i} \ldots F_{n+p-2})f_{q,p}^{s_1-1}f_{q,p}^{s_2+1}.
$$

By Proposition 5.2 we obtain

$$
\langle f_{q,p}^{s_1}, f_{q,p}^{s_2}, f_{q,p}^{s_1}, f_{q,p}^{s_2} \rangle = q^{s_1+1}\langle s_1 | q (q^{-s_2}[s_2 + 1]_q^{-1} \sum_{i=1}^{p-1}q^{2i-2} + q^{2p-2})(f_{q,p}^{s_1-1}f_{q,p}^{s_2+1}, f_{q,p}^{s_1-1}f_{q,p}^{s_2+1})
$$

$$
= q^{p+s_2-2}\langle s_1 | q (p + s_2) (q^{-s_2}[s_2 + 1]_q^{-1} f_{q,p}^{s_1-1}f_{q,p}^{s_2+1}, f_{q,p}^{s_1-1}f_{q,p}^{s_2+1}).
$$

From this formula we have the following.

Proposition 6.4. Let (L, n^-) be a regular prehomogeneous vector space of type (A_{2n-1}, n).

We have

$$
a_p(s) = q^{\frac{s(s + 2p - 3)}{2}} \prod_{i=1}^{s}[i + p - 1].
$$
In particular $b_{q,p}(s) = q^{s+p-1}[s + p]_q b_{q,p-1}(s)$, and we have the quantum b-function

$$b_{q,n}(s) = \prod_{p=1}^{n} q^{s+p-1}[s + p]_q.$$

Next, we assume that (L_I, n^+_I) is regular of type $(D_{2n}, 2n)$. We label the vertices of the Dynkin diagram as in Figure [1], then $d_{i_0} = d_{2n} = 1$. There exist n non-open orbits on n^+_I. Let $1 \leq i < j \leq 2n$. Set

$$\beta_{ij} = \{ \alpha_i + \cdots + \alpha_{j-1} + 2\alpha_j + \cdots + 2\alpha_{2n-2} + \alpha_{2n-1} + \alpha_{2n} \ (j < 2n),$$

$$\alpha_i + \cdots + \alpha_{2n-2} + \alpha_{2n} \ (j = 2n),$$

and $Y_{ij} = Y_{\beta_{ij}}$. For a sequence $1 \leq i_1 < i_2 < \cdots < i_{2p} \leq 2n$, we set

$$(i_1, i_2, \ldots, i_{2p}) = \sum_{\sigma \in \hat{S}_{2p}} (-q^{-1})^{l(\sigma)} Y_{i_{\sigma(1)}, i_{\sigma(2)}} \cdots Y_{i_{\sigma(2p-1)}, i_{\sigma(2p)}}$$

where $\hat{S}_m = \{ \sigma \in S_m \mid \sigma(2k-1) < \sigma(2k+1), \sigma(2k-1) < \sigma(2k) \text{ for all } k \}$. Then we have $f_{q,p} = (j^p_1, j^p_2, \ldots, j^p_{2n})$, where $j^p_i = 2n - 2p + k$ (see [4]). We can easily show the following description of $f_{q,p}$ similar to (6.1).

$$f_{q,p} = \sum_{k=2}^{2p} (-q)^{2-k} Y_{j^p_1, j^p_k} (j^p_2, \ldots, j^p_k, \ldots, j^p_{2p}) = \sum_{k=2}^{2p} (-q)^{2-k} Y_{j^p_1, j^p_k} \text{ad}(F_{j^p_{k-1}} \cdots F_{j^p_{k-2}}) f_{q,p-1}.$$

Note that $\beta_{j^p_1, j^p_k} \notin \Delta^+_{(p-1)}$. Hence we can use Lemma 6.2.

By using the induction on i, j, we can show the following lemma.

Lemma 6.5. We have

$$t_{Y_{j^p_1, j^p_k}}(\partial) f_{q,p} = (-q)^{4n-1-k-k'} (j^p_1, \ldots, j^p_k, \ldots, j^p_{2p})$$

for $1 \leq k < k' \leq 2p$.

Similarly to the case of type A, we obtain the following.

Proposition 6.6. Let (L_I, n^-_I) be a regular prehomogeneous vector space of type $(D_{2n}, 2n)$. We have

$$a_p(s) = q^{\frac{(4p+k-5)}{2}} \prod_{j=1}^{s} [j + 2p - 2]_q.$$

18
In particular \(b_{q,p}(s) = q^{s+2p-2}[s + 2p - 1]q b_{q,p-1}(s) \) we have the quantum \(b \)-function

\[
b_{q,n}(s) = \prod_{p=1}^{n} q^{s+2p-2}[s + 2p - 1]q.
\]

Let \((L_I, n^+_I) \) be the regular prehomogeneous vector space of type \((B_n, 1) \). We label the vertices of the Dynkin diagram as in Figure 1, then \(d_{i_0} = d_1 = 2 \). There exist two non-open orbits on \(n^+_I \). Let \(1 \leq i \leq 2n - 1 \). We set \(Y_i = Y_{\beta_i} \), where

\[
\beta_i = \begin{cases}
\alpha_1 + \cdots + \alpha_i & (1 \leq i \leq n) \\
\alpha_1 + \cdots + \alpha_{2n-i} + 2\alpha_{2n-i+1} + \cdots + 2\alpha_n & (n + 1 \leq i \leq 2n - 1).
\end{cases}
\]

We have

\[
f_{q,1} = Y_1 = F_1,
\]

\[
f_{q,2} = \sum_{i=1}^{n-1} (-q_{i_0})^{i+1-n} Y_{n+i} Y_{n-i} + (q + q^{-1})^{-2} q^{-1} (-q_{i_0})^{1-n} Y^2_n
\]

(see 4). Note that \(\beta_i \notin \Delta^+_1 \) if \(i \neq 1 \). On the other hand we have the following.

Lemma 6.7.

\[
i Y_i(\partial)f_{q,2} = \begin{cases}
(q + q^{-1})^{-1}(-q_{i_0})^{i-1} Y_{2n-i} & (1 \leq i \leq n) \\
-(q + q^{-1})^{-1}(-q_{i_0})^{i-2} Y_{2n-i} & (n + 1 \leq i \leq 2n - 1).
\end{cases}
\]

Similarly to the case of type \(A \), we obtain the following.

Proposition 6.8. Let \((L_I, n^{-}_I) \) be a regular prehomogeneous vector space of type \((B_n, 1) \). We have

\[
a_2(s) = (q + q^{-1})^{-s} q_{i_0}^{-\frac{s(s+2n-4)}{2}} \prod_{i=1}^{s} \left[i + \frac{2n - 3}{2} \right]_{q_{i_0}}.
\]

In particular we have the quantum \(b \)-function

\[
b_{q,2}(s) = (q + q^{-1})^{-2} q_{i_0}^s [s + 1]_{q_{i_0}} q_{i_0}^{s + \frac{2n-3}{2}} \left[s + \frac{2n - 1}{2} \right]_{q_{i_0}}.
\]

Let \((L_I, n^+_I) \) be the regular prehomogeneous vector space of type \((D_n, 1) \). We label the vertices of the Dynkin diagram as in Figure 1, then \(d_{i_0} = d_1 = 1 \). There exist two non-open
orbits on \(\mathfrak{n}_1^+ \). Let \(1 \leq i \leq 2n - 2 \). We set \(Y_i = Y_{\beta_i} \), where
\[
\beta_i = \begin{cases}
\alpha_1 + \cdots + \alpha_i & \text{for } 1 \leq i \leq n - 1 \\
\alpha_1 + \cdots + \alpha_{n-2} + \alpha_n & \text{for } i = n \\
\alpha_1 + \cdots + \alpha_{2n-i} + 2\alpha_{2n-i+1} + \cdots + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_n & \text{for } n + 1 \leq i \leq 2n - 2.
\end{cases}
\]

Then we have \(f_{q,1} = Y_1 = F_1 \), and \(f_{q,2} = \sum_{i=1}^{n-1} (-q)^{i+1-n}Y_{n+i-1}Y_{n-i} \) (see [3]). We have the following results similar to those of type \((B_n, 1)\).

Lemma 6.9.
\[
\text{Y}^i(\partial) f_{q,2} = \begin{cases}
(-q)^i Y_{2n-1-i} & \text{for } 1 \leq i \leq n - 1 \\
(-q)^i Y_{2n-1-i} & \text{for } n \leq i \leq 2n - 2.
\end{cases}
\]

Proposition 6.10. Let \((L_I, \mathfrak{n}_I^-)\) be a regular prehomogeneous vector space of type \((D_n, 1)\).
We have
\[
a_2(s) = q^{s(s+2n-5)/2} \prod_{i=1}^{s} [i + n - 2]_q.
\]
In particular we have the quantum \(b\)-function
\[
b_{q,2}(s) = q^s [s + 1]_q q^{s + n - 2} [s + n - 1]_q.
\]

Let \((L_I, \mathfrak{n}_I^+)\) be the regular prehomogeneous vector space of type \((E_7, 1)\). We label the vertices of the Dynkin diagram as in Figure [4], then \(d_{10} = d_1 = 1\). There exist three non-open orbits on \(\mathfrak{n}_1^+ \).

For \(1 \leq j \leq 27 \), we denote by \(Y_j \) and \(\psi_j \) the generators of irreducible \(U_q(I_I) \)-modules \(V_q(\lambda_1) \) and \(V_q(\lambda_2) \) respectively (see [12] for the explicit descriptions of \(Y_j \) and \(\psi_j \)). Note that \(Y_j = Y_{\beta_j} \) for some \(\beta_j \in \Delta^+ \setminus \Delta_I \), \(U_q(\mathfrak{n}_2^-) = \langle Y_1, \ldots, Y_{10} \rangle \), and \(\psi_{27} = f_{q,2} \). Now \((L_{(2)}, \mathfrak{n}_{(2)}^+)\) is of type \((D_6, 1)\), hence we have \(b_{q,2}(s) = q^s [s + 1]_q q^{s + 4} [s + 5]_q \).

The \(q\)-analogue \(f_{q,3} \) of the basic relative invariant is given by
\[
f_{q,3} = \sum_{j=1}^{27} (-q)^{|\beta_j|} - 1 Y_j \psi_j
\]
\[
= (1 + q^8 + q^{16})Y_{27} \psi_{27} + \frac{q^{-10} + q^{-8} - q^{-4} + 1 + q^4}{1 + q^2} \sum_{j=11}^{26} (-q)^{|\beta_j|} - 1 Y_j \psi_j,
\]
where \(|\beta| = \sum_{i=1}^{7} m_i \) for \(\beta = \sum_{i=1}^{7} m_i \alpha_i \).
Lemma 6.11. For $1 \leq j \leq 27$ we have $tY_j(\partial) f_{q,3} = \left(1 + q^8 + q^{16}\right)(-q)^{|\beta_j|} \psi_j$.

Then we have the following.

Proposition 6.12. Let (L_I, n_I^{-}) be a regular prehomogeneous vector space of type $(E_7, 1)$. We have

$$a_3(s) = \left(1 + q^8 + q^{16}\right)^2 q^{8[s+15]} \prod_{i=1}^{8} [i+8] q.$$

Therefore we have the quantum b-function

$$b_{q,3}(s) = \left(1 + q^8 + q^{16}\right)^2 q^{s+8} [s + 9] q b_{q,2}(s)$$

$$= \left(1 + q^8 + q^{16}\right)^2 q^s [s + 1] q q^{s+4} [s + 5] q q^{s+8} [s + 9] q.$$

Finally, we assume that (L_I, n_I^{+}) is the regular prehomogeneous vector space of type (C_n, n). We label the vertices of the Dynkin diagram as in Figure 1, and then $d_{i_0} = d_n = 2$. There exist n non-open orbits on n_I^{+}. Let $1 \leq i \leq j \leq n$. We set $\beta_{ij} = \alpha_i + \cdots + \alpha_{j-1} + 2\alpha_j + \cdots + 2\alpha_{n-1} + \alpha_n$ and $Y_{ij} = c_{ij} Y_{\beta_{ij}}$, where $c_{ij} = q + q^{-1}$ if $i = j$ and 1 if $i \neq j$. For $i < j$ we define Y_{ji} by $Y_{ji} = q^{-2} Y_{ij}$. Then we can write for $1 \leq p \leq n$

$$f_{q,p} = \sum_{\sigma \in S_p} (-q)^{-l(\sigma)} Y_{i_{p(1)}, i_{p(1)}}^{p} \cdots Y_{i_{p(n), i_{p(n)}}}^{p},$$

where $i_k^p = n + k - p$ (see [5]).

Lemma 6.13.

$$f_{q,p} = Y_{i_{1,1}}^{p} f_{q,p-1} + \sum_{k=2}^{p} \frac{(-q)^{1-k}}{q + q^{-1}} Y_{i_{k-1,1}}^{p} \text{ad}(F_{i_{k-1}} \cdots F_{i_{2}} F_{i_{1}}) f_{q,p-1}.$$

Proof. We denote the right handed side of the statement by g_p. It is easy to show that the coefficient of $Y_{i_{1,1}}^{p} \cdots Y_{i_{p-1,1}}^{p}$ in $f_{q,p}$ is equal to that in g_p. Moreover the weight of $f_{q,p}$ is equal to that of g_p. Hence it is sufficient to show that g_p is the highest weight vector. Since $(L_{(p)}, n_{(p)}^+ \simeq (C_p, p)$, we have only to show the statement in the case where $p = n$. We can easily show that $\text{ad}(E_j) g_n = 0$ for $2 \leq j \leq n - 1$.

21
Let us show $\text{ad}(E_1)g_n = 0$. For $2 \leq j \leq n$ we define φ_j by $\varphi_2 = \text{ad}(E_1)g_n$ and $\varphi_{j+1} = \text{ad}(E_j)\varphi_j$. We denote the weight of φ_j by μ_j. Then we have $\mu_j \in -\alpha_1 + \sum_{i \neq 1} \mathbb{Z} \alpha_i$. It is easy to show that $\text{ad}(E_k)\varphi_j = 0$ for any $k \neq j$. In particular $\text{ad}(E_k)\varphi_n = 0$ for any $k \in I$.

On the other hand we have the irreducible decomposition

$$U_q(n^-) = \bigoplus_{\mu \in \sum_{j=1}^n \mathbb{Z} \lambda_j} V_q(\mu),$$

and if $\mu \in \sum_{j=1}^n \mathbb{Z} \lambda_j$, then $\mu \in 2\mathbb{Z} \alpha_1 + \sum_{i \neq 1} \mathbb{Z} \alpha_i$. Hence $\mu_n \notin \sum_{j=1}^n \mathbb{Z} \lambda_j$, and we have $\varphi_n = 0$. We obtain $\varphi_j = 0$ for any j by the induction. \[\square\]

Note that $Y_{i_1i_p}^{p-1} \notin U_q(n_{(p-1)}^-)$ for $1 \leq k \leq p$. Hence we can use Lemma 5.2.

We can prove the following lemma.

Lemma 6.14.

$$i Y_{i_1i_k}^{p-1}(\partial) f_{q,p} = \begin{cases} (-q)^{2p-2}(q + q^{-1}) f_{q,p-1} & (k = 1) \\ (-q)^{2p-k} \text{ad}(F_{i_1}^{p-1} \cdots F_{i_k}^{p-1})(f_{q,p-1}) & (k \leq 2). \end{cases}$$

Similarly to the case of type A, we obtain the following.

Proposition 6.15. Let (L_I, n^-) be a regular prehomogeneous vector space of type (C_n, n). We have

$$a_p(s) = (q + q^{-1})^s q_0^{\frac{s(s+p-2)}{2}} \prod_{i=1}^s \left[i + \frac{p-1}{2} \right]_q.$$

In particular $b_{q,p}(s) = (q + q^{-1}) q_0^{\frac{s+p+1}{2}} \left[s + \frac{p+1}{2} \right]_q b_{q,p-1}(s)$, and we have the quantum b-function

$$b_{q,n}(s) = (q + q^{-1})^n q_0^{\frac{n+p+1}{2}} \left[s + \frac{p+1}{2} \right]_q.$$

References

[1] V. G. Drinfel’d, Hopf algebra and the Yang-Baxter equation, *Soviet Math. Dokl.* 32 (1985), 254–258.
[2] A. Gyoja, Highest weight modules and b-functions of semi-invariants, *Publ. RIMS, Kyoto Univ.* **30** (1994), 353–400.

[3] R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity free actions, *Math. Ann.* **290** (1991), 565–619.

[4] J. C. Jantzen, *Lectures on quantum groups*, Graduate Studies in Mathematics, **6**, American Mathematical Society, 1995.

[5] M. Jimbo, A q-difference analogue of $U(g)$ and the Yang-Baxter equation, *Lett. Math. Phys.* **10** (1985), 63–69.

[6] A. Kamita, Quantum deformations of certain prehomogeneous vector spaces III, *Hiroshima Math. J.* **30** (2000), 79–115.

[7] A. Kamita, Y. Morita and T. Tanisaki, Quantum deformations of certain prehomogeneous vector spaces I, *Hiroshima Math. J.* **28** (1998), 527–540.

[8] T. Kimura, The b-functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces, *Nagoya Math. J.* **85** (1982), 1–80.

[9] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, *Adv. in Math.* **70** (1988), 237–249.

[10] G. Lusztig, Quantum groups at roots of 1, *Geometriae Dedicata* **35** (1990), 89–114.

[11] G. Lusztig, *Introduction to quantum groups*, Progress in Mathematics, Birkhäuser, Boston, 1993.

[12] Y. Morita, Quantum deformations of certain prehomogeneous vector spaces II, to appear in *Osaka J. Math*.

[13] I. Muller, H. Rubenthaler and G. Schiffmann, Structure des espaces préhomogènes associés à certains algèbres de Lie graduées, *Math. Ann.* **274** (1986), 95–123.

[14] M. Noumi, T. Umeda and M. Wakayama, A quantum analogue of the Capelli identity and an elementary differential calculus on $GL_q(n)$, *Duke Math. J.* **76** (1994), 567–594.
[15] H. Rubenthaler and G. Schiffmann, Opérateurs différentiels de Shimura et espaces préhomogènes, *Invent. Math.* **90** (1987), 409–442.

[16] T. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, *Nagoya Math. J.* **65** (1977), 1–155.

[17] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, *Invent. Math.* **9** (1969), 61–80.

[18] S. Suga, Highest weight modules associated with classical irreducible regular prehomogeneous vector spaces of commutative parabolic type, *Osaka J. Math.* **28** (1991), 323–346.

[19] T. Tanisaki, Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras, in: *Infinite Analysis, Part B*, 941–961 (eds. A. Tsuchiya, T. Eguchi and M. Jimbo) Proc. Kyoto 1991 (Advanced Series in Mathematical Physics **16**), River Edge, N. J., 1992 (World Scientific)

[20] T. Tanisaki, Highest weight modules associated to parabolic subgroups with commutative unipotent radicals, in: *Algebraic Groups and their Representations*, 73–90 (eds. R. W. Carter and J. Saxl) 1998 Kluwer Academic Publishers.

[21] A. Wachi, Contravariant forms on generalized Verma modules and b-functions. *Hiroshima Math. J.* **29** (1999), 193–225.

[22] N. R. Wallach, The analytic continuation of the discrete series. II, *Trans. Amer. Math. Soc.* **251** (1979), 19–37.