Exactly solved models and beyond: a special issue in honour of R J Baxter’s 75th birthday

Abstract
This is an introduction to Exactly Solved Models and Beyond, a special issue collection of articles published in J. Phys. A: Math. Theor. in honour of R J Baxter’s 75th birthday.

(Some figures may appear in colour only in the online journal)

Rodney J Baxter’s pioneering contributions to the study of exactly solved models in statistical mechanics, dating back to the early 1970s, continue to have a profound impact in both mathematics and physics. His body of work includes both finding remarkable new solutions of key models and the invention of powerful techniques for calculating their physical properties. Baxter’s concepts of commuting transfer matrices, functional relations and corner transfer matrices have inspired developments across a broad spectrum of mathematical physics. The notion of Yang–Baxter integrability originating from lattice models led to profound advances in quantum field theory, in knot theory and in the development of quantum groups. Such integrable models have played a central role in the AdS/CFT correspondence in string theory and are also being realized in experiments in low-dimensional physics.

Accordingly Baxter has received a number of distinctions and awards throughout his career. These include:

• Pawsey Medal, Australian Academy of Science, 1975
• Elected Fellow of the Australian Academy of Science, 1977
• Boltzmann Medal, International Union of Pure and Applied Physics, 1980
• Elected Fellow of the Royal Society of London, 1982
• Lyle Medal, Australian Academy of Science, 1983
• Dannie Heineman Prize, American Physical Society, 1987
• Elected Royal Society Research Professor at Cambridge, 1992
• Harrie Massey Medal, British Institute of Physics, 1994
• Centenary Medal, Australian Government, 2003
• Lars Onsager Prize, American Physical Society, 2006
• Lars Onsager Lecture and Medal, Norwegian University of Science and Technology, 2006
• Royal Medal, Royal Society of London, 2013

Baxter’s work has involved finding brilliant solutions to highly non-trivial mathematical problems. Colleagues who have glanced over Rodney’s shoulder while he calculates will attest to the Baxter wizardry at deriving and manipulating formulae. When Baxter started his
research 50 years ago the classical culture of ‘working with formulas’ had been seemingly forgotten by many mathematicians in their pursuit of abstractions. Baxter is one of the few who stimulated the renaissance of this culture in modern mathematics. To perpetuate the culture that his work has also inspired at the Australian National University for well over half a century, the Rodney Baxter Endowment has been established to provide a Baxter Fellowship to support a prominent theoretician, a rising-star or established leader, to visit the ANU each year for a period of three months.

This special issue is a collection of articles in honour of Baxter’s 75th birthday. Previous publications celebrating Baxter milestones are the surveys marking his 50th \cite{1} and 60th \cite{2} birthdays. The collection of research papers \cite{3} was based around the conference Baxter2000 held in Canberra, Australia in August 2000. The title of the present collection of articles is shared with the conference Exactly Solved Models and Beyond held in Cairns, Australia in July 2015\footnote{See http://baxter2015.anu.edu.au}.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{baxter.jpg}
\caption{Rodney J Baxter taking a break from ‘doing sums’. Baxter’s name is associated with many mathematical terms, concepts and models in statistical mechanics and beyond. Photo credit: Elizabeth Baxter.}
\end{figure}
This special issue includes some of Baxter’s academic and personal reminiscences covering three career highlights [4]. There are also two review articles, one on the early history of the integrable chiral Potts model [5], the other on the impact of Yang–Baxter integrable models in experiments, from condensed matter to ultracold atoms [6].

Moreover, [7] contains a comprehensive review of all known solutions of the star-triangle relation. Indeed the spread and depth of the articles in this special issue are testament to the broad impact of Baxter’s work and to the vitality of work in the related areas of mathematical physics. There are a number of contributions on various aspects of the Yang–Baxter or star-triangle relation [7–11], the tetrahedron equation [12, 13] and fusion in the one-dimensional Hubbard [14] and RSOS [15] models. There are also contributions on CSOS [16], SOS [17], non-unitary RSOS [18], non-Abelian anyons [19], dimer [20], six-vertex [21, 22], eight-vertex [23], spin-boson [24], generalized Rabi [25] and dilute orientated loop [26] models.

New results are also presented for scalar products, form factors and correlation functions in integrable models [27–32]. Other topics included are Baxter’s Q-operators [33, 34], Q-colourings of the triangular lattice [35], periodic Temperley–Lieb algebras [36], the random-cluster model on isoradial graphs [37], discrete-time exclusion processes [38], susceptibility of the square lattice Ising model [39], diffusion processes [40], compressed self-avoiding walks, bridges and polygons [41], and discrete holomorphicity in the chiral Potts model [42].

An exact solution is given for three interacting friendly walks in the bulk [43] and topological defects are considered for the Ising model [44].

In other contributions, the Bethe Ansatz method is established for an XXZ type model associated to quantum toroidal gl_1 [45], the off-diagonal Bethe Ansatz scheme is discussed for the prototypical XXZ spin [46] and by the same method Bethe states are constructed for the integrable spin-s chain with generic open boundaries [47]. The counting of Bethe roots is also discussed [48, 49].

Contributions on the more mathematical side include a general method to produce flat connections for the two-boundary quantum Knizhnik–Zamolodchikov equations [50], the study of generalizations of the Rogers–Ramanujan q-series [51], quantum Bäcklund transforms and topological quantum field theory [52], dynamics of a q-difference Painlevé equation [53], matrix product formula for Macdonald polynomials [54], invariants of the vacuum module associated with the Lie superalgebra $gl(1|1)$ [55], and the discussion of diagonals of rational functions occurring in lattice statistical mechanics and enumerative combinatorics [56]. Closer to the physics side, there are contributions on integrable pairing models [57, 58], bosons in a four-well ring [59] and multi-component Fermi gases [60].

This special collection of articles reflects the profound and ongoing influence of Baxter’s work, which we are sure will continue to inspire further developments in this important and widely influential area of mathematical physics and beyond for many decades to come.

Murray T Batchelor
Centre for Modern Physics, Chongqing University, Chongqing 400044, People’s Republic of China
Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 2601, Australia
Mathematical Sciences Institute, Australian National University, Canberra ACT 2601, Australia

Vladimir V Bazhanov
Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 2601, Australia
Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable
{mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12pt; font-family:"Times New Roman"; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;}

Vladimir V Mangazeev
Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 2601, Australia

References

[1] Barber M N 1991 Statistical mechanics: a perspective on the work of R J Baxter Physica A 170 221
[2] McCoy B M 2001 The Baxter revolution J. Stat. Phys. 102 375
[3] Batchelor M T, Bazhanov V V and Pearce P A 2001 The Baxter revolution in mathematical physics J. Stat. Phys. 102 373
[4] Baxter R J 2015 Some academic and personal reminiscences of Rodney James Baxter J. Phys. A: Math. Theor. 48 254001
[5] Perk J H H 2016 The early history of the integrable chiral Potts model and the odd-even problem J. Phys. A: Math. Theor. 49 153001
[6] Batchelor M T and Foerster A 2016 Yang–Baxter integrable models in experiments: from condensed matter to ultracold atoms J. Phys. A: Math. Theor. 49 173001
[7] Bazhanov V V, Kels A P and Sergeev S M 2016 Quasi-classical expansion of the star-triangle relation and integrable systems on quad-graphs J. Phys. A: Math. Theor. 48 394001
[8] Yamazaki M and Yan W 2015 Integrability from 2d \(\mathbb{Z}_2 \) dualities J. Phys. A: Math. Theor. 48 394001
[9] Kels A P 2015 New solutions of the star-triangle relation with discrete and continuous spin variables J. Phys. A: Math. Theor. 48 435201
[10] Levin A, Olshanetsky M and Zotov A 2016 Yang-Baxter equations with two Planck constants J. Phys. A: Math. Theor. 48 435201
[11] Kashaev R 2016 The Yang-Baxter relation and gauge invariance J. Phys. A: Math. Theor. 49 164001
[12] Kuniba A, Okado M and Sergeev S M 2015 Tetrahedron equation and generalized quantum groups J. Phys. A: Math. Theor. 43 304001
[13] Kuniba A, Maruyama S and Okado M 2016 Multispecies TASEP and the tetrahedron equation J. Phys. A: Math. Theor. 49 144001
[14] Beisert N, de Leeuw M and Nag P 2015 Fusion for the one-dimensional Hubbard model J. Phys. A: Math. Theor. 48 324002
[15] Tartaglia E and Pearce P A 2016 Fused RSOS lattice models as higher-level nonunitary minimal cosets J. Phys. A: Math. Theor. 49 144003
[16] Au-Yang H and Perk J H H 2016 CSOS models descending from chiral Potts models: degeneracy of the eigenspace and loop algebra J. Phys. A: Math. Theor. 49 184002
[17] Finch P E, Weston R and Zinn-Justin P 2016 Theta function solutions of the quantum Knizhnik-Zamolodchikov-Bernard equation for a face model J. Phys. A: Math. Theor. 49 064001
[18] Bianchi D and Ravanini F 2016 Entanglement entropy from corner transfer matrix in Forrester-Baxter non-unitary RSOS models J. Phys. A: Math. Theor. 49 154005
[19] Frahm H and Karaiskos N 2015 Non-Abelian \(SU(3)_k \) anyons: inversion identities for higher rank face models J. Phys. A: Math. Theor. 48 484001
[20] Morin-Duchesne A, Rasmussen J and Ruelle P 2016 Integrability and conformal data of the dimer model J. Phys. A: Math. Theor. 49 174002
[21] Martins M J 2015 The symmetric six-vertex model and the Segre cubic threefold J. Phys. A: Math. Theor. 48 334002
[22] Tavares T S, de Souza Ribeiro G A P and Korepin V E 2015 Influence of boundary conditions on bulk properties of six-vertex model J. Phys. A: Math. Theor. 48 454004
[23] Ricci-Stella R and Terras V 2016 The eight-vertex model with quasi-periodic boundary conditions J. Phys. A: Math. Theor. 49 044001
[24] Lukyanov S L 2016 Fidelities in the spin-boson model J. Phys. A: Math. Theor. 49 164002
[25] Li Z-M and Batchelor M T 2015 Algebraic equations for the exceptional eigenspectrum of the generalized Rabi model J. Phys. A: Math. Theor. 48 454005
[26] Vernier E, Jacobsen J L and Saleur H 2016 Dilute oriented loop models J. Phys. A: Math. Theor. 49 064002

J. Phys. A: Math. Theor. 50 (2017) 010301

Preface
Cao J, Yang W-L, Shi K and Wang Y 2015 On the complete-spectrum characterization of J. Phys. A: Math. Theor. 49 254001

Joshi N and Lobb S B 2016 Singular dynamics of a J. Phys. A: Math. Theor. 49 104002

Korff C 2016 From quantum Bäcklund transforms to topological quantum J. Phys. A: Math. Theor. 49 104001

Beffara V, Duminil-Copin H and Smirnov S 2015 On the critical parameters of the J. Phys. A: Math. Theor. 48 454003

Ikhlef Y and Weston R 2015 Discrete holomorphicity in the chiral Potts model J. Phys. A: Math. Theor. 48 454001

Gainutdinov A M, Hao W, Nepomechie R I and Sommese A J 2015 Counting solutions of the J. Phys. A: Math. Theor. 48 454003

Beaton N R, Guttmann A J, Jensen I and Lawler G F 2015 Compressed self-avoiding walks, J. Phys. A: Math. Theor. 48 324001

Feigin B, Jimbo M, Miwa T and Mukhin E 2015 Quantum toroidal J. Phys. A: Math. Theor. 48 324001

Vernier E, Jacobsen J L and Salas J 2016 Critical points of Potts and O J. Phys. A: Math. Theor. 49 174007

Jacobsen J L 2015 Critical points of Potts and O J. Phys. A: Math. Theor. 48 354001

Frassek R 2015 Algebraic Bethe ansatz for J. Phys. A: Math. Theor. 48 214001

Aasen D, Mong R S K and Fendley P 2016 Topological defects on the lattice: I. The Ising model J. Phys. A: Math. Theor. 48 204002

Tabbara R, Owczarek A L and Rechnitzer A 2016 An exact solution of three interacting friendly walks in the bulk J. Phys. A: Math. Theor. 49 154004

Asen D, Mong R S K and Fendley P 2016 Topological defects on the lattice: I. The Ising model J. Phys. A: Math. Theor. 49 154001

Beaton N R, Guttmann A J, Jensen I and Lawler G F 2015 Compressed self-avoiding walks, bridges and polygons J. Phys. A: Math. Theor. 48 454001

Crampe N, Maillet J, Miccoli G and Terras V 2016 On determinant representations of scalar products and form factors in the SoV approach: the XXX case J. Phys. A: Math. Theor. 49 104002

Tabbara R, Owczarek A L and Rechnitzer A 2016 An exact solution of three interacting friendly walks in the bulk J. Phys. A: Math. Theor. 49 104001

Ikhlef Y and Weston R 2015 Discrete holomorphicity in the chiral Potts model J. Phys. A: Math. Theor. 48 294001

Gainutdinov A M, Hao W, Nepomechie R I and Sommese A J 2015 Counting solutions of the J. Phys. A: Math. Theor. 48 294002

Dugave M, Göhmann F, Koslowski K K and Suzuki J 2015 Low-temperature spectrum of correlation lengths of the XXZ chain in the antiferromagnetic massive regime J. Phys. A: Math. Theor. 48 334001

Aasen D, Mong R S K and Fendley P 2016 Topological defects on the lattice: I. The Ising model J. Phys. A: Math. Theor. 48 214001

Kiteit S and Leurent M 2016 Singular dynamics of a J. Phys. A: Math. Theor. 49 104002

Ikhlef Y and Weston R 2015 Discrete holomorphicity in the chiral Potts model J. Phys. A: Math. Theor. 48 294001

Isaev A P, Kirillov A N and Tarasov V O 2016 Bethe subalgebras in af J. Phys. A: Math. Theor. 49 204001
[54] Cantini L, de Gier J and Wheeler M 2015 Matrix product formula for Macdonald polynomials
J. Phys. A: Math. Theor. 48 384001

[55] Molev A I and Mukhin E E 2015 Invariants of the vacuum module associated with the Lie
superalgebra $\mathfrak{gl}(1|1)$ J. Phys. A: Math. Theor. 48 314001

[56] Bostan A, Boukraa S, Maillard J-M and Weil J-A 2015 Diagonals of rational functions and
selected differential Galois groups J. Phys. A: Math. Theor. 48 504001

[57] Links J, Marquette I and Moghaddam A 2015 Exact solution of the $p + ip$ Hamiltonian revisited:
duality relations in the hole-pair picture J. Phys. A: Math. Theor. 48 374001

[58] Lukyanenko I, Isaac P S and Links J 2016 An integrable case of the $p + ip$ pairing Hamiltonian
interacting with its environment J. Phys. A: Math. Theor. 49 084001

[59] Tonel A P, Ymai L H, Foerster A and Links J 2015 Integrable model of bosons in a four-well ring
with anisotropic tunneling J. Phys. A: Math. Theor. 48 494001

[60] Jiang Y, He P and Guan X-W 2016 Universal low-energy physics in 1D strongly repulsive multi-
component Fermi gases J. Phys. A: Math. Theor. 49 174005