Prisoners’ dilemma in real-world acquaintance networks: Spikes and quasi-equilibria induced by the interplay between structure and dynamics

Petter Holme
Department of Physics, Umeå University, 901 87 Umeå, Sweden

Ala Trusina
Department of Physics, Umeå University, 901 87 Umeå, Sweden and NORDITA, Blegdamsvej 17, 2100 Copenhagen, Denmark

Beom Jun Kim
Department of Molecular Science and Technology, Ajou University, Suwon 442-749, Korea

Petter Minnhagen
NORDITA, Blegdamsvej 17, 2100 Copenhagen, Denmark and Department of Physics, Umeå University, 901 87 Umeå, Sweden

We study Nowak and May’s spatial prisoners’ dilemma game driven by mutations (random choices of suboptimal strategies) on empirical social networks. The time evolution of the cooperation level is highly complex containing spikes and steps between quasi-stable levels. A statistical characterization of the quasi-stable states and a study of the mechanisms behind the steps are given. We argue that the crucial structural ingredients causing the observed behavior is an inhomogeneous degree distribution and that the connections within vertices of highest degree are rather sparse. Based on these observations we construct model networks with a similarly complex time-evolution of the cooperation level.

PACS numbers: 87.23.Kg, 87.23.Ge, 02.50.Le, 89.75.Hc

I. INTRODUCTION

The prisoners’ dilemma (PD) game is a powerful metaphor for the situation where mutual trust and cooperation is beneficial in a long perspective but egoism and guile can produce big short-term profit. Applications range from evolution of RNA viruses (17), through westernization of central Africa (4), to the social situation of soldiers in trench warfare (2) and NASCAR drivers (15). One of the major achievements has been to establish the condition for cooperative behavior when two players meet repeatedly (2). Another direction has been to investigate the criteria for cooperation to be stable in social space. In this approach the spatial PD game by Nowak and May (13) has been the basic model; a model where there are a number \(N \) of players interacting only with players in its immediate surrounding. Traditionally, spatial games have been studied on regular lattices; but real social networks are very complexly organized (13)—being random to some extent, but also having structure reflecting the social forces. As a step in this direction people have studied the spatial PD on more realistic model networks (11,14). In this Communication we pursue this idea to the end and let the players’ encounters follow the ties of empirical social networks. The outcome is a very complex behavior arising from the interplay between the PD dynamics and the underlying network structure.

network	Ref.	\(N \)	\(M \)	\(k_{10} \)	\(\bar{k}_{10} \)
pussokram.com	(8)	29,341	115,684	1.6	6.0(1)
nioki.com	(16)	50,259	239,452	1.2	1.9(1)
emails	(7)	40,346	58,224	1.8	4.9(1)
karate club	(20)	34	78		

We represent the underlying networks as graphs \(G = (V,E) \) where \(V \) is the set of \(N \) players (or vertices) and \(E \) is the set of \(M \) ties (or edges—unordered pairs of vertices) between them. The networks we use are mostly acquired from online interaction—through contacts within two Internet communities (pussokram.com and nioki.com) and through email exchange. (A summary of the used networks can be seen in Table I) Even if the structure of online interaction network differs from regular acquaintance networks, we believe that our results will hold for a quite large class of social networks. As a small test network we also use an acquaintance data constructed from a field survey (the “karate club” network).

In Nowak and May’s spatial PD game (13) each player, at each time step, adopts one of two strategies: cooper-
ate C or defect D. To catch the dilemma one lets an encounter between two cooperators result in unity gain for both players, whereas a D-D encounter gives zero gain for both. However, if a cooperator meets a defector the cooperator scores zero and the defector scores for both. However, if a cooperator meets a defector the cooperator chooses the opposite strategy with a probability\(p\) of a player follows the high scoring neighbor. But, to drive the system (and model occasional irrational moves) a player chooses the opposite strategy with a probability \(p_m\). We use synchronous updating of the players, i.e. one time step of the algorithm consists of one sweep (over all the players) to calculate the individual gains, and one sweep to update the strategies.

II. EVOLUTION OF THE COOPERATOR LEVEL

Our key quantity is the cooperator density \(\rho\) — the fraction of players adopting the strategy C. In regular networks the cooperator level is characterized by random fluctuations and high-frequency oscillations (mostly of period two, so called ‘blinker’). But, as seen in Fig. 1 when a regular underlying network is replaced by empirical social networks we get a complex behavior of both upward and downward spikes and steps between a number of quasi-equilibrium levels. Other observations of quasi-stable states in games have been obtained for more complex update rules and larger strategy space \(\{1, 2\}\) or for some special types of directed networks [10].

The steps between quasi-equilibria in Fig. 1 suggest a scenario of relatively few stable states, where mutations on important vertices may cause a shift from one quasi-stable state to another. To get a better picture we plot a histogram over \(\rho\) (Fig. 2) that indeed has distinct peaks. For a given \(b\) the position and relative height of the peaks are \(p_m\)-independent (if \(p_m\) increases, the noise level of the histograms gets higher) and thus forms a kind of fingerprint of the network. We note that the histograms obtained from one long run or many shorter runs (with different random seeds) are the same, this indicates that the system is self-averaging.

III. CHARACTERISTICS OF THE QUASI-STABLE STATES

Now we turn to the structure of the quasi-stable states. To start with a concrete example, in Fig. 4 we study the karate-club network at the intermediate \(\rho\)-level of Fig. 1(d). In the Fig. 4(a)-configuration \(v_A\) and \(v_B\) scores highest among the border players (players with a neighbor of the opposite strategy). This makes many players, including the highly connected \(v_C\), change strategy to C. In the Fig. 4(b)-configuration, the defector \(v_B\) has enough cooperators in their neighborhood to score higher than \(v_A\), and thus complete the cycle. We note that a crucial point in sustaining the stability is that \(v_A\) and \(v_B\) is not connected. We also note that if \(v_D\) is mutated in the

\footnote{We speak of a configuration as the set of strategies of the players at a given time, and a state as the set of configurations comprising a period (if the system would evolve without mutations).}
Fig. 3(a) configuration the system would lose its periodicity and stay in a constant configuration (until the next mutation). This suggests that the quasi-equilibria in Fig. 1 does not correspond only to one state, but a set of states that are all close in Hamming distance.

How does the high-ρ states differ from the low-ρ states? From the update rule to follow the player with locally highest gain, one expects that defectors gain comparatively much in low-ρ and vice versa. This is indeed true as shown in Fig. 4 where we plot the average defector gain g_D and cooperator gain g_C along with ρ. One may therefore talk about a high-ρ "cooperator con

![Conference Proceedings](image-url)
specific configuration c of the local attractor state. Then we mutate vertex v and let the system evolve (without mutations) until one period is completed. Finally we let the system complete yet a period and look for the configurations comprising a state may vary much from one time-step to another. This fact explains the apparent lack of transitions to the $\rho \approx 0.35$ state—in fact, the transition to this state (around $t = 8250$) occurs from a single-player mutation from a configuration in the $\rho \approx 0.65$ peak. As expected, all vertices contributing to the lines in Fig. 3(a)-(d) have high degree (the low-est degree is 111). But, as mentioned above, it is not true that a high degree implies a high importance—for example, of the ten most connected vertices, on average 5.5 contributes to the ten most different $\hat{\rho}_v$ values plotted in Fig. 3(a)-(d). It is thus not only the structure but the interplay between the structure and dynamics that gives rise to the quasi-stable equilibria. As a last point we note that the quasi-equilibria are stable in the absence of mutations—if the system at the time steps of Fig. 3(a)-(d) is evolved without mutation, the largest shift in ρ is 0.008.

V. MINIMAL STRUCTURE CAUSING STEPS AND SPIKES

What features of the network structure are causing the nonstationary evolution of the cooperator density? As we have seen, the vertices have to have a highly skewed degree distribution—so that mutation on one vertex can cause many vertices, directly or indirectly, change strategy. Furthermore it should not be the case that the vertices of highest degree all are interconnected—then these would all follow the same strategy, and most of the other vertices too, so nothing more than small fluctuations of ρ, or steps involving almost all vertices, could occur. To test that there is a bias among the most connected vertices not to attach to each other, we sample different networks with the same degree sequence by randomly rewiring the original network with the restriction that the degree of each vertex is preserved. The average degree of the maximal subgraph of the ten vertices of highest degree, k_{10}, and the expectation value of the same quantity for random graphs with the same degree sequence as G, \bar{k}_{10}, for the four large networks are shown in Table I. (The value ten is chosen arbitrarily—any number of the same order would do.) We see that k_{10} is indeed significantly lower than \bar{k}_{10} for all four networks. Online interaction represent a somewhat special type of acquaintance network, even if such networks are interesting in their own right, the question if this structure exists in 'offline' acquaintance networks is open (and will be discussed further in Ref. 13). We also note that if one runs the PD dynamics on a rewired network one sees spikes but no quasi-stable states.

Networks with a broad degree distribution can be generated by, for example, Barabási and Albert’s (BA) scale-free network model. Start with m_0 disconnected vertices, and grow the network by adding a vertex v with degree m per time step. An edge from the new vertex are added to an old vertex w with a probability proportional to w's degree. We try to model the behavior of the cooperator density by starting from BA model networks with $m = m_0 = 3$ and 20 000 vertices. To tune how much mutually connected the vertices of highest degree are, we make the subset of the n_+ (or n_-) vertices of highest degree complete by adding the missing edges (or completely disconnected by removing existing edges). As seen in Fig. 5 the steps and spikes of the real-world networks can be qualitatively reproduced. The resemblance is closest for removed edges among a small number of hubs Fig. 5(c). If the edges are removed within a larger set of hubs, the steps are increasing in frequency and number until the the structure is completely blurred out. If all missing edges are added within the top n_+ connected vertices, the steps vanishes but the spikes increase in size and width. An explanation is that when the vertices of highest degree are fully connected, a mutation of one of these would momentarily increase the number of cooperators by a large amount and also decrease the speed of restoration of cooperation. At the same time it
is well-known that cooperation is promoted in highly-connected regions, which explains the high ρ-value of the quasi-stable state.

VI. SUMMARY AND CONCLUSIONS

In summary, we have studied Nowak and May’s spatial PD game on empirical social networks. We find a complex time-evolution of the cooperator level characterized by large spikes and transitions between a number of quasi-stable states. The quasi-stable states of low ρ are characterized by comparatively large gain for the defectors and large fraction of boundary edges, in quasi-stable states with high ρ this situation is reversed. We find that mutations on high-degree players are likely to be responsible for transitions between the quasi-stable states; but the outcome of a mutation of a high-degree vertex is also much dependent on the current configuration. These findings are presented for some specific sets of parameter values, but they are qualitatively the same for a broad range of values. We argue that the structure causing this behavior is a inhomogeneous degree distribution, and that the number of edges within the subset highest-degree vertices is relatively low. Based on this observation we also construct model networks that reproduces the steps and spikes of the real-world networks. To epitomize, we believe that we have illustrated how underlying acquaintance patterns can give rise to a complex time-development of social instability—a picture that could be empirically testable by carefully arranged social observations.

Acknowledgements

The authors are grateful for comments from C. Edling, F. Liljeros and K. Sneppen; and acknowledges support from Swedish Research Council through Contract No. 2002-4135 and (B.J.K.) the Korea Science and Engineering Foundation through Grant No. R14-2002-062-01000-0.

References

[1] G. Abramson and M. Kuperman, Social games in a social network, Phys. Rev. E 63 (2001), art. no. 030901.
[2] R. Axelrod, The evolution of cooperation (Basic Books, New York, 1984).
[3] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286 (1999), pp. 509–512.
[4] D. W. Bethlehem, The effect of westernization on cooperative behavior in Central Africa, Int. J. Psychol. 10 (1975), pp. 219–224.
[5] K. Brauchli, T. Killingback, and M. Doebeli, Evolution of cooperation in spatially structured populations, J. Theor. Biol. 200 (1999), pp. 405–417.
[6] M. D. Cohen, R. L. Riolo, and R. Axelrod, The role of social structure in the maintenance of cooperative regimes, Rationality and Society 13 (2001), pp. 5–32.
[7] H. Ebel, L.-I. Mielsch, and S. Bornholdt, Scale-free topology of e-mail networks, Phys. Rev. E 66 (2002), art. no. 035103.
[8] P. Holme, C. R. Edling, and F. Liljeros, Structure and time-evolution of the Internet community pussekram.com. e-print cond-mat/0210514
[9] P. Holme, A. Trusina, B. J. Kim, and P. Minnhagen, (unpublished).
[10] B. J. Kim, A. Trusina, P. Holme, P. Minnhagen, J. S. Chung, and M. Y. Choi, Dynamic instabilities induced by asymmetric influence: Prisoners’ dilemma game in small-world networks, Phys. Rev. E 66 (2002), art. no. 021907.
[11] S. Maslov and K. Sneppen, Specificity and stability in topology of protein networks, Science 296 (2002), pp. 910–913.
[12] M. Nowak and K. Sigmund, A strategy of win-stay, lose-shift that outperforms tit-for-tat in the prisoner’s dilemma game, Nature 364 (1992), pp. 56–58.
[13] M. A. Nowak and R. M. May, Evolutionary games and spatial chaos, Nature 359 (1992), pp. 826–829.
[14] J. M. Roberts Jr., Simple methods for simulating sociomatri-ces with given marginal totals, Social Networks 22 (2000), pp. 273–283.
[15] D. Ronfeldt, Social science at 190 MPH on NASCAR’s biggest superspeedways, First Monday 5 (2000). Available at http://www.firstmonday.dk/issues/issues5_2/ronfeldt/
[16] R. D. Smith, Instant messaging as a scale-free network.
cond-mat/0206378
[17] P. E. Turner and L. Chao, Prisoner’s dilemma in an RNA virus, Nature 398 (1999), pp. 441–443.
[18] S. Wasserman and K. Faust, Social network analysis: Methods and applications (Cambridge University Press, Cambridge, 1994).
[19] B. Wellman, Computer networks as social networks, Science 293 (2001), pp. 2031–2034.
[20] W. Zachary, An information flow model for conflict and fission in small groups, J. Anthropol. Res. 33 (1977), pp. 452–473.
[21] M. G. Zimmermann and V. M. Eguiluz, Cooperation, social networks and the emergence of leadership in a prisoners dilemma with adaptive local interactions. (submitted to Journal of Economic Dynamics and Control, 2002).