Convex optimization problems are common in hyperspectral unmixing. Examples are the constrained least squares (CLS) problem used to compute the fractional abundances in a linear mixture of known spectra, the constrained basis pursuit (CBP) to find sparse (i.e., with a small number of terms) linear mixtures of spectra, selected from large libraries, and the constrained basis pursuit denoising (CBPDN), which is a generalization of BP to admit modeling errors. In this paper, we introduce two new algorithms to efficiently solve these optimization problems, based on the alternating direction method of multipliers, a method from the augmented Lagrangian family. The algorithms are termed SUNSAL (sparse unmixing by variable splitting and augmented Lagrangian) and C-SUNSAI (constrained SUNSAL). C-SUNSAL solves the CBP and CBPDN problems, while SUNSAL solves CLS as well as a more general version thereof, called constrained sparse regression (CSR). C-SUNSAL and SUNSAL are shown to outperform off-the-shelf methods in terms of speed and accuracy.

1. INTRODUCTION

Hyperspectral unmixing (HU) is a source separation problem with applications in remote sensing, analytical chemistry, and other areas \cite{10,11,12}. Given a set of observed mixed hyperspectral vectors, HU aims at estimating the number of reference spectra (the endmembers), their spectral signatures, and their fractional abundances, usually under the assumption that the mixing is linear \cite{10,12}.

Unlike in a canonical source separation problem, the sources in HU (i.e., the fractional abundances of the spectra/materials present in the data) exhibit statistical dependency \cite{15}. This characteristic, together with the high dimensionality of the data, places HU beyond the reach of most standard source separation algorithms, thus fostering active research in the field.

Most HU methods can be classified as statistical or geometrical. In the (statistical) Bayesian framework, all inference relies on the posterior probability density of the unknowns, given the observations. According to Bayes’ law, the posterior probability density results from two factors: the observation model (the likelihood), which formalizes the assumed data generation model, possibly including random perturbations as additive noise; the prior, which may impose natural constraints on the endmembers (e.g., nonnegativity) and on the fractional abundances (e.g., belonging to the probability simplex, since they are relative abundances), as well as model spectral variability \cite{5,4,14,16}.

Geometrical approaches exploit the fact that, under the linear mixing model, the observed hyperspectral vectors belong to a simplex set whose vertices correspond to the endmembers. Therefore, finding the endmembers amounts to identifying the vertices of that simplex \cite{18,16,13,20,1,19}.

Sparse regression is another direction recently explored for HU \cite{9}, which has connections with both the statistical and the geometrical frameworks. In this approach, the problem is formulated as that of fitting the observed (mixed) hyperspectral vectors with sparse (i.e., containing a small number of terms) linear mixtures of spectral signatures from a large dictionary available a priori. Estimating the endmembers is thus not necessary in this type of methods. Notice that the sparse regression problems in this context are not standard, as the unknown coefficients (the fractional abundances) sum to one (the so-called abundance sum constraint – ASC) and are non-negative (abundance non-negativity constraint – ANC). These problems are thus referred to as constrained sparse regression (CSR).

Several variants of the CSR problem can be used for HU; some examples follow. In the classical constrained least squares (CLS), the fractional abundances in a linear mixture of known spectra are estimated by minimizing the total squared error, under the ANC and the ASC. Although no sparseness is explicitly encouraged in CLS, under some conditions (namely positivity of the spectra) it can be shown that the solutions are indeed sparse \cite{2}. Constrained basis pursuit (CBP) is a variant of the well-known basis pursuit (BP) criterion \cite{3} under the ANC and the ASC; as in BP, CBP uses the $l_1$ norm to explicitly encourage sparseness of the fractional abundance vectors. Finally, constrained basis pursuit denoising (CBPDN) is a generalization of CBP that admits modeling errors (e.g., observation noise).

1.1. Contribution

In this paper, we introduce a class of alternating direction algorithms to solve several CSR problems (namely CLS, CBP, and CBPDN). The proposed algorithms are based on the alternating direction method of multipliers (ADMM) \cite{8,7,6}, which decomposes a difficult problem into a sequence of simpler ones. Since ADMM can be derived as a variable splitting procedure followed by the adoption of an augmented Lagrangian method to solve the resulting constrained problem, we term our algorithms as SUNSAL (spectral unmixing by variable splitting and augmented Lagrangian) and C-SUNSAL (constrained SUNSAL).

The paper is organized as follows. Section 2 introduces notation and formulates the optimization problems. Section 3 reviews the ADMM and the associated convergence theorem. Section 4 introduces the SUNSAL and C-SUNSAL algorithms. Section 5 presents experimental results, and Section 6 ends the paper by presenting a few concluding remarks.

2. PROBLEM FORMULATION: CSR, CLS, CBP, CBPDN

Let $A \in \mathbb{R}^{k \times n}$ denote a matrix containing the $n$ spectral signatures of the endmembers, $x \in \mathbb{R}^n$ denote the (unknown) fractional abundance vector, and $y \in \mathbb{R}^k$ be an (observed) mixed spectral vector.
In this paper, we assume that \( A \) is known; this is the case for the CSR approach \([2]\), where it is a library with a large number of spectral signatures, thus usually \( n > k \). Matrix \( A \) can also be the output of an endmember extraction algorithm, in which case usually \( n \ll k \). The key advantage of the CSR approach is that it avoids the estimation of endmembers, quite often a very hard problem.

The general CSR problem is defined as

\[
(P_{CSR}): \quad \min_x \left( 1/2 \right) \|Ax - y\|_2^2 + \lambda \|x\|_1
\]

subject to: \( x \geq 0 \), \( 1^T x = 1 \),

where \( \|x\|_2 \) and \( \|x\|_1 \) denote the \( \ell_2 \) and \( \ell_1 \) norms of \( x \), respectively, \( \lambda \geq 0 \) is a parameter controlling the relative weight between the \( \ell_2 \) and \( \ell_1 \) terms, \( 1 \) denotes a column vector of \( 1 \)'s, and the inequality \( x \geq 0 \) is to be understood in the componentwise sense.

The constraints \( x \geq 0 \) and \( 1^T x = 1 \) correspond to the ANC and ASC, respectively. The CLS problem corresponds to \( P_{CSR} \) with \( \lambda = 0 \). The CBP and CBPDN problems are also equivalent to particular cases of \( P_{CSR} \), as stated next.

The CBP optimization problem is

\[
(P_{CBP}): \quad \min_x \|x\|_1 \tag{2}
\]

subject to: \( Ax = y \), \( x \geq 0 \), \( 1^T x = 1 \).

Notice that \( P_{CBP} \) corresponds to \( P_{CSR} \) with \( \lambda \to \infty \).

The CBPDN optimization problem is

\[
(P_{CBPDN}): \quad \min_x \|Ax - y\|_2 \leq \delta \quad x \geq 0, \quad 1^T x = 1. \tag{3}
\]

Problem \( P_{CSR} \) is equivalent to \( P_{CBPDN} \) in the sense that for any choice of \( \delta \) for which \( P_{CBPDN} \) is feasible, there is a choice of \( \lambda \) for which the solutions of the two problems coincide \([2]\). Finally, notice that \( P_{CBP} \) corresponds to \( P_{CBPDN} \) with \( \delta = 0 \).

### 3. THE ADMM

Consider an unconstrained problem of the form

\[
\min_{x \in \mathbb{R}^n} f_1(x) + f_2(Gx), \tag{4}
\]

where \( f_1 : \mathbb{R}^n \to \mathbb{R} \), \( f_2 : \mathbb{R}^P \to \mathbb{R} \), and \( G \in \mathbb{R}^{P \times n} \). The ADMM \([6, 7, 8]\), the key tool in this paper, is as shown in Fig. 1. The following is a simplified version of a theorem of Eckstein and Bertsekas stating convergence of ADMM.

**Theorem 1** \([6]\): Let \( G \) have full column rank and \( f_1, f_2 \) be closed, proper, and convex. Consider arbitrary \( \mu > 0 \) and \( u_0, d_0 \in \mathbb{R}^P \). Consider three sequences \( \{x_k \in \mathbb{R}^n, \ k = 0, 1, \ldots\} \), \( \{u_k \in \mathbb{R}^P, \ k = 0, 1, \ldots\} \), and \( \{d_k \in \mathbb{R}^P, \ k = 0, 1, \ldots\} \) that satisfy

\[
x_{k+1} = \arg \min_x f_1(x) + \frac{\mu}{2} \|Gx - u_k - d_k\|_2^2 \tag{5}
\]

\[
u_{k+1} = \arg \min_u f_2(u) + \frac{\mu}{2} \|G(x_{k+1} - u - d_k)\|_2^2 \tag{6}
\]

\[
d_{k+1} = d_k - (Gx_{k+1} - u_{k+1}) \tag{7}
\]

Then, if \( f_1 + f_2 \) has a solution, the sequence \( \{x_k\} \) converges to it; otherwise, at least one of the sequences \( \{u_k\} \) or \( \{d_k\} \) diverges.

**Algorithm ADMM**

1. Set \( k = 0 \), choose \( \mu > 0 \), \( u_0 \), and \( d_0 \).
2. Repeat
3. \( x_{k+1} \leftarrow \arg \min_x \left( 1/2 \right) \|Ax - y\|_2^2 + \lambda \|x\|_1 + \ell_1(1^T x) + \ell_{R^+}(x) \),
4. \( u_{k+1} \leftarrow \arg \min_u \left( 1/2 \right) \|u - u_k - d_k\|_2^2 + \lambda \|x_{k+1} - u - d_k\|_2^2 \),
5. \( d_{k+1} \leftarrow (Gx_{k+1} - u_{k+1}) \),
6. \( k \leftarrow k + 1 \),
7. Until stopping criterion is satisfied.

Fig. 1. The alternating direction method of multipliers (ADMM).

### 4. APPLICATION OF ADMM

In this section, we specialize the ADMM to each of the optimization problems stated in Section 2.

#### 4.1. ADMM for CSR and CLS: the SUnSAL Algorithm

We start by writing the optimization \( P_{CSR} \) in the equivalent form

\[
\min_x \left( 1/2 \right) \|Ax - y\|_2^2 + \lambda \|x\|_1 + \ell_{R^+}(x), \tag{8}
\]

where \( \ell_S \) is the indicator function of the set \( S \) (i.e., \( \ell_S(x) = 0 \) if \( x \in S \) and \( \ell_S(x) = \infty \) if \( x \not\in S \)). We now apply the ADMM using the following translation table:

\[
f_1(x) \equiv \frac{1}{2} \|Ax - y\|_2^2 + \ell_{R^+}(1^T x) \tag{9}
\]

\[
f_2(x) \equiv \lambda \|x\|_1 + \ell_{R^2}(x) \tag{10}
\]

\[
G \equiv I. \tag{11}
\]

With the current setting, step 3 (Fig. 1) of the ADMM requires solving a quadratic problem with linear equality constraint, the solution of which is

\[
x_{k+1} \leftarrow B^{-1}w - C(1^T B^{-1}w - 1) \tag{12}
\]

where

\[
B \equiv A^T A + \mu I \tag{13}
\]

\[
C \equiv B^{-1}(1^T B^{-1} - 1)^{-1} \tag{14}
\]

\[
w \equiv A^T y + \mu (u_k + d_k). \tag{15}
\]

Step 4 of the ADMM (Fig. 1) is simply

\[
u_{k+1} \leftarrow \arg \min_u \left( 1/2 \right) \|u - u_k\|_2^2 + \lambda \|u\|_1 + \ell_{R^2}(u) \tag{16}
\]

where \( \nu_k \equiv x_{k+1} - d_k \). Without the term \( \ell_{R^2} \), the solution of \( \ref{16} \) would be the well-known soft threshold \([3]\):

\[
u_{k+1} \leftarrow \text{soft}(\nu_k, \lambda/\mu). \tag{17}
\]

A straightforward reasoning leads to the conclusion that the effect of the ANC term \( \ell_{R^2} \) is to project onto the first orthant, thus

\[
u_{k+1} \leftarrow \max \{0, \text{soft}(\nu_k, \lambda/\mu)\}, \tag{18}
\]

where the maximum is to be understood in the componentwise sense. Fig. 2 shows the SUnSAL algorithm, which is obtained by replacing lines 3 and 4 of ADMM by \( \ref{12} \) and \( \ref{13} \), respectively.

The objective function \( \ref{4} \) is proper, convex, lower semi-continuous, and coercive, thus it has a non-empty set of minimizers.
Algorithm SUnSAL
1. Set $k = 0$, choose $\mu > 0$, $u_0$, and $d_0$.
2. repeat
  3. $w \leftarrow A^T y + \mu (u_k + d_k)$
  4. $x_{k+1} \leftarrow B^{-1} w - C (1^T B^{-1} w - 1)$
  5. $\nu_k \leftarrow x_{k+1} - d_k$
  6. $u_{k+1} \leftarrow \max\{ 0, \text{soft}(\nu_k, \lambda/\mu) \}$
  7. $d_{k+1} \leftarrow d_k - (x_{k+1} - u_{k+1})$
  8. $k \leftarrow k + 1$
  9. until stopping criterion is satisfied.

Fig. 2. Spectral unmixing by variable slitting and augmented Lagrangian (SUnSAL).

(see [19], for definitions of these convex analysis concepts). Functions $f_1$ and $f_2$ in (9) and (10) are closed and $G \equiv I$ is obviously of full column rank, thus Theorem 1 can be invoked to ensure convergence of SUnSAL.

Concerning the computational complexity, we refer that, in hyperspectral applications, the rank of matrix $B$ is not large that the number of bands, often of the order of a few hundred, thus $B^{-1}$ can be easily precomputed. The complexity of the algorithm per iteration is thus $O(n^2)$, corresponding to the matrix-vector products.

To solve the CLS problem, we simply run SUnSAL with $\lambda = 0$. Moreover, the ANC (non-negativity constraint) can be turned off by using (17) instead of (15) and the ASC (sum to one constraint) can be deactivated by setting $C = 0$ in (12).

4.2. ADMM for CBP and CBPDN: the C-SUnSAL Algorithm

Given that the CBP problem corresponds to CBPDN with $\delta = 0$, we address only the latter. Problem $P_{\text{CBPDN}}$ is equivalent to

$$\min_x \| x \|_1 + \epsilon_B(y, \delta) (Ax) + \epsilon_{\| \cdot \|_1} (1^T x) + \epsilon_{\| \cdot \|_2} (x),$$

where $B(y, \delta) = \{ z : \| z - y \|_2 \leq \delta \}$ is a radius-$\delta$ closed ball around $y$. To apply the ADMM we have to extend the following definitions:

$$f_1(x) = \epsilon_{\| \cdot \|_1} (1^T x)$$
$$f_2(u) = \epsilon_{B(y, \delta)} (u_1) + \lambda \| u_2 \|_1 + \epsilon_{\| \cdot \|_2} (u_2)$$

$$G = [A^T I]^T.$$  

where $u = [u_1^T, u_2^T]^T$. With the above definitions, the solution of line 3 of ADMM (Fig. 1), a quadratic problem with linear equality constraints, is

$$x_{k+1} \leftarrow B^{-1} w - C (1^T B^{-1} w - 1),$$

where

$$B \equiv A^T A + I$$
$$C \equiv B^{-1} (1^T B^{-1} 1)^{-1}$$
$$w \equiv A^T (u_{1,k} + d_{1,k}) + (u_{2,k} + d_{2,k}).$$

Because the variables $u_1$ and $u_2$ are decoupled, line 4 of ADMM (Fig. 1) consists in solving two separate problems,

$$u_{1,k+1} \leftarrow \arg \min_u \{ (1/2) \| u - \nu_{1,k} \|_2^2 + \epsilon_B(y, \delta) (u) \}$$
$$u_{2,k+1} \leftarrow \arg \min_u \{ (1/2) \| u - \nu_{2,k} \|_2^2 + (\lambda/\mu) \| u \|_1 + \epsilon_{\| \cdot \|_2} (u) \}$$

Algorithm C-SUnSAL
1. Set $k \leftarrow 0$, choose $\mu > 0$, $u_{1,0}, d_{1,0}, u_{2,0}$, and $d_{2,0}$.
2. repeat
  3. $w \leftarrow A^T (u_{1,k} + d_{1,k}) + (u_{2,k} + d_{2,k})$
  4. $x_{k+1} \leftarrow B^{-1} w - C (1^T B^{-1} w - 1)$
  5. $\nu_{1,k} \leftarrow Ax_{k+1} - d_{1,k}$
  6. $u_{1,k+1} \leftarrow B(y, \delta) (\nu_{1,k})$
  7. $\nu_{2,k} \leftarrow x_{k+1} - d_{2,k}$
  8. $u_{2,k+1} \leftarrow \max\{ 0, \text{soft}(\nu_{2,k}, \lambda/\mu) \}$
  9. $d_{1,k+1} \leftarrow d_{1,k} - (Ax_{k+1} - u_{1,k+1})$
  10. $d_{2,k+1} \leftarrow d_{2,k} - (x_{k+1} - u_{2,k+1})$
  11. $k \leftarrow k + 1$
  12. until stopping criterion is satisfied.

Fig. 3. Constrained spectral unmixing by variable slitting and augmented Lagrangian (C-SUnSAL).

where

$$\nu_{1,k} = Ax_{k+1} - d_{1,k}$$
$$\nu_{2,k} = x_{k+1} - d_{2,k}.$$

The solution of (27) is the projection onto the ball $B(y, \delta)$, given by

$$u_{1,k+1} \leftarrow B(y, \delta) (\nu_{1,k}) \equiv \left\{ \nu_{1,k}, \| \nu_{1,k} - y \|_2 \leq \delta \right\}$$
$$u_{2,k+1} \leftarrow \max\{ 0, \text{soft}(\nu_{2,k}, \lambda/\mu) \}.$$

Similarly to (18), the solution of (28) is given by

$$u_{2,k+1} \leftarrow \max\{ 0, \text{soft}(\nu_{2,k}, \lambda/\mu) \}.$$

5. EXPERIMENTS

We now report experimental results obtained with simulated data generated according to $y = Ax + n$, where $n \in \mathbb{R}^k$ models additive perturbations. In hyperspectral applications, these perturbations are mostly model errors dominated by low-pass components. For this reason, we generate the noise by low-pass filtering samples of zero-mean i.i.d. Gaussian sequences of random variables. We define the signal-to-noise ratio (SNR) as

$$\text{SNR} \equiv 10 \log_{10} \left( \frac{\| Ax \|_2^2}{\| n \|_2^2} \right).$$

The expectations in the above definition are approximated with sample means over 10 runs. The original fractional abundance vectors $x$ are generated in the following way: given $s$, the number of non-zero components in $x$, we generate random samples uniformly in the $(s - 1)$—simplex and distribute randomly these $s$ values among the
components of $\mathbf{x}$. We considered two libraries (i.e., matrices $A$): a $200 \times 400$ matrix with zero-mean unit variance i.i.d. Gaussian entries and a $224 \times 498$ matrix with a selection of 498 materials (different mineral types) from the USGS library denoted splib06\[^1\].

As far as we know, there are no special purpose algorithms for solving the CSR, CBP, and CBPDN problems. Of course these are canonical convex problems, thus they can be tackled with standard convex optimization techniques. Namely, the CLS, which is a particular case of CSR, can be solved with the MATLAB function \texttt{lsqnonneg}, which we use as baseline in our comparisons.

Table 1 and 2 report reconstruction SNR (RSNR), defined as

$$
\text{RSNR} = 10 \log_{10} \left( \frac{\mathbb{E}[\|\mathbf{y}\|^2]}{\mathbb{E}[\|\mathbf{y} - \hat{\mathbf{y}}\|^2]} \right),
$$

where $\hat{\mathbf{y}}$ is the estimated fractional abundance vector, and execution times, for the two libraries referred above. The \texttt{lsqnonneg} is run with its default options. SUnSAL and C-SUnSAL run 200 iterations, which was found to be more than enough to achieve convergence.

We highlight the following conclusions: (a) the proposed algorithms achieve higher accuracy in about two orders of magnitude shorter time. This is a critical issue in imaging application where an instance of the problem has to be solved for each pixel; (b) the lower accuracy obtained with the USGS matrix is due to the fact that the spectral signatures are highly correlated resulting in a much harder problem than with the Gaussian matrix.

### 6. CONCLUDING REMARKS

In this paper, we introduced new algorithms to solve a class of optimization problems arising in spectral unmixing. The proposed algorithms are based on the alternating direction method of multipliers, which decomposes a difficult problem into a sequence of simpler ones. We showed that sufficient conditions for convergence are satisfied. In limited set of experiments, the proposed algorithms were shown to clearly outperform an off-the-shelf optimization tool. Ongoing work includes a comprehensive experimental evaluation of the proposed algorithms.

### 7. REFERENCES

[1] J. Bioucas-Dias, "A variable splitting augmented Lagrangian approach to linear spectral unmixing", in First IEEE GRSS Workshop on Hyperspectral Image and Signal Processing-WHISPERS 2009, Grenoble, France, 2009.

[2] A. Bruckstein, M. Elad, and M. Zibulevsky, "A non-negative and sparse enough solution of an underdetermined linear system of equations is unique", IEEE Trans. Inf. Theo., vol. 54, pp. 4813–4820, 2008.

[3] C.-L. Chang, C.-C. Wu, W. Liu, and Y.-C. Ouyang, "A new growing method for simplex-based endmember extraction algorithm," IEEE Trans. Geosc. Remote Sensing, vol. 44, pp. 2804–2819, 2006.

[4] S. Chen and D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM review, vol. 43, no.1, pp. 129–159, 1995.

[5] N. Dobigeon, J.-Y. Tourneret, and C.-I Chang, “Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery,” IEEE Trans. Signal Proc., vol. 56, pp. 2684–2695, 2008.

[6] J. Eckstein, D. Bertsekas, “On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators”, Math. Progr., vol. 5, pp. 293-318, 1992.

[7] D. Gabay and B. Mercier, “A dual algorithm for the solution of non-linear variational problems via finite-element approximations”, Comp. and Math. Appl., vol. 2, pp. 17–40, 1976.

[8] R. Glowinski and A. Marroco, “Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires”, Rev. Française d’Automatique, Inform. Rech. Opérationnelle, vol. 9, pp. 41–76, 1975.

[9] M.-D. Iordache, A. Plaza, and J. Bioucas-Dias, “On the Use of Spectral Libraries to perform Sparse Unmixing of Hyperspectral Data”, in 2nd IEEE GRSS Workshop on Hyperspectral Image and Signal Processing-WHISPERS’2010, Reykjavik, Iceland, 2010 (submitted).

[10] N. Keshava and J. F. Mustard, “Spectral unmixing”, IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 44–57, 2002.

[11] M. Lopes, J.-C. Wolff, J. Bioucas-Dias, M. Figueiredo, “NIR hyperspectral unmixing based on a minimum volume criterion for fast and accurate chemical characterisation of counterfeit tablets”, Analytical Chemistry, vol. 82, pp. 1462-1469, 2010.

[12] D.G. Manolakis N. Keshava, J.P. kerekes and G.A. Shaw, “Algorithm taxonomy for hyperspectral unmixing,” Proc. SPIE Vol 4049, Algorithms for Multispectral, Hyperspectral, and Ultrasonic Imagery, vol. VI, pp. 42, 2000.

[13] L. Miao and H. Qi, “Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization,” IEEE Trans. Geosc. Remote Sensing, vol. 45, pp. 765–777, 2007.

[14] S. Moussaoui, H. Haukstädter, F. Schmidt, C. Jutten, J. Chanussot, D. Brie, S. Duté, and J. A. Benediksson, “On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation,” Neurocomputing, 2008, accepted.

[15] J. Nascimento and J. Bioucas-Dias, “Does independent component analysis play a role in unmixing hyperspectral data?” IEEE Trans. on Geoscience and Remote Sensing, vol. 43, pp. 175–187, 2005.

[16] J. Nascimento and J. Bioucas-Dias, “Hyperspectral unmixing algorithm via dependent component analysis,” IEEE Intern. Geoscience and Remote Sensing Symposium, pp. 4033–4036, 2007.

[17] R. Perez A. Plaza, P. Martinez and J. Plaza, “A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data,” IEEE Trans. on Geoscience and Remote Sensing, vol. 42, pp. 650–663, 2004.

[18] R. Perez A. Plaza, P. Martinez and J. Plaza, “Spatial/spectral endmember extraction by multidimensional morphological operations,” IEEE Trans. Geosc. Remote Sensing, vol. 40, pp. 2025–2041, 2002.

[19] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

[20] A. Zare and P. Gader, “Hyperspectral band selection and endmember detection using sparsity promoting priors”, IEEE Geoscience and Remote Sensing Letters, vol 5, no. 2, pp. 256–260, 2008.

\[^1\]http://speclab.cr.usgs.gov/spectral.lib06