Exercise Capacity in Children and Adolescents With Congenital Heart Disease: A Systematic Review and Meta-Analysis

Yenny Villaseca-Rojas1,5†, Javiera Varela-Melo1,2‡, Rodrigo Torres-Castro2,3,4,5†, Luis Vasconcello-Castillo3,4†, Guillermo Mazzucco6,7, Jordi Vilaró4,8† and Isabel Blanco6,9,10†

Background: Congenital heart disease (CHD) entails structural defects in the morphogenesis of the heart or its main vessels. Analyzing exercise capacity of children and adolescents with CHD is important to improve their functional condition and quality of life, since it can allow timely intervention on poor prognostic factors associated with higher risk of morbidity and mortality.

Objective: To describe exercise capacity in children and adolescents with CHD compared with healthy controls.

Methods: A systematic review was carried out. Randomized clinical trials and observational studies were included assessing exercise capacity through direct and indirect methods in children and adolescents between 5 and 17 years-old. A sensitive analysis was performed including studies with CHD repaired participants. Additionally, it was sub-analyzed by age range (< and ≥ 12 years old). Two independent reviewers analyzed the studies, extracted the data, and assessed the quality of the evidence.

Results: 5619 articles were found and 21 were considered for the review. Eighteen articles used the direct exercise capacity measurement method by cardiopulmonary exercise test (CPET). The CHD group showed significant differences in peak oxygen consumption ($VO_{2\text{peak}}$) with a value of $-7.9 \text{ ml/Kg/min}$ (95% CI: $-9.9, -5.9, p = 0.00001$), maximum workload ($W_{\text{max}}$) $-41.5$ (95% CI: $-57.9, -25.1$ watts, $p = 0.00001$), ventilatory equivalent ($VE/VCO_{2}$) slope $2.6$ (95% CI: $0.3, 4.8$), oxygen pulse ($O_{2}$ pulse)$-2.4 \text{ ml/beat}$ (95% CI: $-3.7, -1.1, p = 0.0003$), and maximum heart rate ($HR_{\text{max}}$) $-15$ bpm (95% CI: $-18, -12$ bpm, $p = 0.00001$), compared with healthy controls. Adolescents (≥ 12 yrs) with CHD had a greater reduction in $VO_{2\text{peak}}$ ($-10.0 \text{ ml/Kg/min}$ (95% CI: $-12.0, -5.3, p < 0.00001$), $W_{\text{max}}$ ($-45.5$ watts (95% CI: $-54.4, -36.7, p < 0.00001$) and $HR_{\text{max}}$ ($-21$ bpm (95% CI: $-28, -14, p<0.00001$).
WHAT IS KNOWN

Exercise capacity is one of the main factors that affect health-related quality of life, prognosis, risk of morbidity, and early mortality from cardiovascular, metabolic, or respiratory disease.

Analyzing exercise capacity in children and adolescents with CHD is important to improve their functional condition and quality of life, since it can allow timely intervention on poor prognostic factors associated with higher risk of morbidity and mortality.

WHAT THE STUDY ADDS

VO₂peak, HRmax, Wmax, and O₂ pulse were significantly lower in children and adolescents with partially or fully repaired CHD compared with healthy controls.

INTRODUCTION

Congenital heart disease (CHD) entails structural defects in the morphogenesis of the heart or its main vessels (1). They are the most common congenital defect in children worldwide, with an average prevalence of 8.22 per 1000 live newly born, ranging from 2.4 to 13.7 (2, 3). According to intracardiac morphology and physiology, they are classified as acyanotic and cyanotic, and according to its severity as either simple, or complex (1).

For its treatment, there are both corrective and palliative surgeries (1). Due to medical advances, greater and better diagnostic, surgical and postoperative care technology, it is expected that more than 90% of children with CHD will currently survive to adulthood (4). However, despite the increase in the life expectancy of children with CHD, the residual defects that may remain after surgery can have a negative effect on both morbidity and mortality (5).

It has been reported that physical capacity in children with CHD is lower compared to healthy controls with limited exercise capacity and a shorter lifespan related to health (6). Limited exercise capacity favors a more sedentary lifestyle, a situation that can be maintained into adulthood (7). Accordingly, less physical activity increases the risk of overweight and obesity in children with CHD, which means an additional health burden (8).

Exercise capacity is one of the main factors when assessing health-related quality of life, prognosis, risk of morbidity, and early mortality from cardiovascular, metabolic, or respiratory disease (9). It can be evaluated by a standardized laboratory test such as cardiopulmonary exercise test (CPET) or standardized field tests such as the six-minute walking test (6MWT), shuttle walking test (SWT), time up and go (TUG), or similar tests (10). The CPET, which assesses the maximum oxygen consumption (VO₂max) or peak (VO₂peak) and measures ventilatory efficiency, has obtained a prognostic value in adults with acquired heart failure and CHD, by identifying subjects with limited cardiovascular reserve (11). Studies that consider the measurement of VO₂peak in subjects with cyanotic CHD and palliative surgery for complex CHD highlighted it as an independent predictor of death or hospitalization due to a cardiovascular event (12, 13). In children with chronic diseases, VO₂peak can predict adverse or unfavorable outcomes (6). The ventilatory equivalent for carbon dioxide production (VE/VCO₂) has been shown to have high sensitivity as a predictor of mortality in subjects with various CHD (14).

Analyzing exercise capacity of children and adolescents with CHD is important to improve their functional condition and quality of life, since it can allow timely intervention on poor prognostic factors associated with higher risk of morbidity and mortality.

Conclusion: Suffering CHD in childhood and adolescence is associated with lower exercise capacity as shown by worse VO₂peak, Wmax, VE/VCO₂ slope, O₂ pulse, and HRmax compared with matched healthy controls. The reduction in exercise capacity was greater in adolescents.

Systematic Review Registration: www.crd.york.ac.uk/prospero/display_record.php?RecordID=208963, identifier: CRD42020208963.

Keywords: pediatrics, heart defects, congenital malformations, cardiopulmonary exercise test, oxygen consumption, six-minute walking test
**METHODS**

**Protocol and Registration**
We performed a systematic review using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines (15). The review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) CRD42020208963.

**Criteria for Considering the Studies in This Review**
We included randomized clinical trials (RCTs) or observational studies (cross-sectional, longitudinal, case-control, and cohort) in children and adolescents with a diagnosis of CHD. The included studies aimed to determine the physical capacity in patients with CHD. Additionally, the studies should report VO2peak, maximal workload (Wmax), distance walked in the 6MWT (6MWD), or similar measurements obtained from objective tests. All editorials, letters, conference publications, review articles, systematic reviews, meta-analyses, *in vivo* and *in vitro* studies were excluded.

**Search Strategies and Data Resources**
We reviewed seven databases: Embase, Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL, Web of Science, PubMed/MEDLINE, Scopus, and SciELO, from their inception to 01 June, 2021 and conducted manual searches using the followings terms: a) [(Congenital heart disease) OR (Congenital heart defects) OR (Congenital heart surgery) OR (Fontan operation) OR (Fontan circulation) OR (Fontan patient) OR (Fontan physiology) OR (Fontan procedure) OR (Tetralogy of Fallot) OR (Interventricular communication) OR...]

---

FIGURE 1 | PRISMA flowchart of the studies.
(Atrial communication]) AND [(Exercise capacity) OR (Physical capacity) OR (Exercise tolerance) OR (Cardiopulmonary exercise test) OR (CPET) OR (Walking test) OR (Walk test) OR (6MWT) OR (Shuttle walking test) OR (SWT) OR (distance walked) OR (Oxygen uptake) OR (Oxygen consumption) OR (Wingate Anaerobic Test) OR (Timed Up and Go) OR (TUG) OR (Exercise Test) OR (sit to stand) OR (step test) OR (STS)] AND [(Children) OR (Adolescents) OR (Pediatrics) OR (Childhood) OR (Pediatric)].

The selected terms were combined using Boolean logical operators (OR, AND, NOT). Moreover, we performed a manual search of the references that were included in the selected articles. All the references were analyzed in Rayyan software, a web-based tool (16).

Reviewing Procedure and Study Selection
The review was performed independently by two investigators (YVR-JVM), who independently reviewed all articles titles and abstracts identified in the search strategy. The full text of potentially eligible studies was then read to verify their suitability for final inclusion. All studies that did not fulfill the predefined criteria were excluded, and their bibliographic details were listed with the specific reason for exclusion.

Data Extraction and Methodological Quality Assessment
Two investigators (YVR-JVM) independently extracted data from the selected articles and recorded them in an ad hoc spreadsheet of relevant data. This included author, country, year of publication, sample size, study design, age of subjects, diagnoses, evaluation instruments, evaluated variables, and results. Data from the first assessment were considered for randomized or non-randomized clinical trials. Differences obtained from data extraction were resolved by consensus. In the case of not reaching an agreement, a third investigator (RTC) resolved the differences. If some relevant data were not in the article, the author was contacted to request the information.

Assessment of the methodological quality of the primary articles was carried out using the quality assessment tools from the National Heart, Lung, and Blood Institute (NHLBI) (17). Each tool contains criteria based on which internal validity and risk of bias are evaluated. The criteria are evaluated as “yes” “no” or “other” (not reported, not applicable, or not determinable), and an overall rating is provided for each study based on the items rated with an affirmative answer (> 75% = good, 50–75% = fair, < 50% = poor).

Data Synthesis and Analysis
We reported summaries of the association between the outcomes for each study in terms of mean differences using Review Manager 5 (RevMan, Copenhagen: The Nordic Cochrane Center, The Cochrane Collaboration, 2014). We obtained combined measurements of effect for each primary outcome through meta-analysis under a random-effect model, due to the expected heterogeneity between the studies. Statistical heterogeneity was measured through the $I^2$ statistic and classified as low ($I^2$ < 25%), moderate ($I^2$ 25–50%) or high ($I^2$ > 50%). A sensitivity analysis was conducted including studies with only children and adolescents surgically repaired. Additionally, when possible, a subanalysis by age group (< and ≥ 12 years) was performed in the group of patients with surgical correction.

RESULTS
Study Selection
The flow chart of the study selection process is shown in Figure 1. In the initial search of the selected databases, 5619 potential studies were identified. Of the 107 studies assessed as full text, we excluded 57 for wrong study designs, 16 for wrong population, 13 for wrong publication type, and nine due to a wrong outcome. In total, 21 studies fulfilled the criteria for eligibility and were included in the review.

Characteristics of the Included Studies
Fifteen studies were conducted in Europe (18–32), three in the United States (33–35), one in Brazil (36), one in Japan (37), and one was conducted in Egypt (38). Regarding the design, 20 were cross-sectional (18–23, 25–38), and only one was an RCT (24). The characteristics of the included studies are summarized in Table 1.

Participants
In total, 1540 participants with CHD and 1248 healthy controls were enrolled in the included studies. Among the studies, the CHD sample size ranged from 12 (30) to 496 (21). Age varied from 7.7 ± 1.7 (28) to 14 ± 2.72 (20). The majority of the studies included only complex CHD (18–20, 22, 25, 27, 31, 33–36, 38), and nine studies included both simple and complex CHD (21–24, 26, 28–30, 32, 37). Sixteen studies included only repaired CHD (18–20, 22, 24–27, 30, 31, 33–38); however, only ten studies reported the age of surgery, which was before 3 years old in the majority of the cases (19, 22, 26–28, 30, 33). A summary of patients’ characteristics is presented in Table 1.

Type of Assessment
To assess exercise capacity, 18 studies used the direct CPET method: seven of them performed the CPET on a treadmill (18–20, 27, 36–38) and 13 in a cycle ergometer (21–26, 29–35). One study used the 6MWT (24). The results of the studies that used the CPET to evaluate exercise capacity are shown in Table 2. The quantitative variables (VO$_2$peak, Wmax, VE/VO$_2$ slope, O$_2$ Pulse, and HRmax) expressed as mean and SD were analyzed using a meta-analysis method. Results from Bowyer et al. (18) and Binkhorst et al. (29) were not included in the meta-analysis because they reported their results in other units.

Risk of Bias Assessment
Of the selected cross-sectional articles (n = 20), all were rated as “fair” (50–75% affirmative answers). The RCT study (n = 1) obtained a “fair” rating. The quality assessment results for the
TABLE 1  | Characteristics of the included studies.

| Authors, year | Country     | Group                  | Participants diagnosis | Severity/Repaired | Participants n (Female/Male) | Age (years) | Anthropometrics Weight (kgs) Height (cms) BMI (Kg·m$^{-2}$) |
|--------------|-------------|------------------------|------------------------|------------------|------------------------------|-------------|---------------------------------------------------------------|
| Cross-sectional studies |             |                         |                        |                  |                              |             |                                                            |
| Bowyer et al., 1990 (18) | United States | CHD TGA post-surgery Mustard | Complex/repaired       | 20 (2F, 18M)     | 9 (6–12)*                    | Weight: 30  Height: 136 |
|                     |             | Control Healthy children |                        | 18 (3F, 15M)     | 9.5 (NR)                     | Weight: 31  Height: 137 |
| Tomassoni et al., 1991 (33) | United States | CHD TOF repaired Complex/repaired | 20 (9F, 11M)         | 9.93 ± 2.88 (SE) | 10.22 ± 2.48 (SE)           | Weight: 35.75 ± 11.47 (SE) Height: 139.98 ± 13.52 (SE) |
|                     |             | Control Healthy children |                        | 20 (9F, 11M)     |                             |                          |
| Balderston et al., 1992 (34) | United States | CHD CoA repaired Complex/repaired | 31 (9F, 22M)         | 11.2 (7–17)*      | NR                          |                          |
|                     |             | Control Healthy children |                        | 22 (NR)          | NR (7–17)*                   | NR           |
| Takagi et al., 1994 (37) | Japan       | CHD CHD acyanotic and cyanotic post-surgery Complex/simple/ repaired | Acyanotics: 15     | 10.7 ± 2.7               | NR             |
|                     |             | Control Healthy children |                        | 22 (NR)          | NR (7–17)                    | NR           |
| Douard et al., 1997 (19) | France      | CHD TGA post Senning surgery Complex/repaired | 43 (11F, 32M)       | 12 ± 3.1                | NR (7–17)                   | NR           |
|                     |             | Control Healthy children |                        | 43 (NR)          | NR                          | NR           |
| Buheitel et al., 2000 (25) | Germany     | CHD CHD complex post Fontan and TGA post Senning Complex/repaired | Fontan: 21         | 11.1 ± 2.5               | 11.2 ± 2.3                 | NR (7–17)   |
|                     |             | Control Healthy children | Fontan: 21           | 11.1 ± 2.5               | 11.2 ± 2.3                 | NR (7–17)   |
| Pfammatter et al., 2002 (26) | Switzerland | CHD ASD repaired Simple/repaired | 14 (9F, 5M)         | 11.4 (6.8-16.1)       | 11.2 ± 2.3                 | NR (7–17)   |
|                     |             | Control Healthy children |                        | 15 (9F, 6 M)      | 11 (7.8–15.8)**            | NR           |
| Zajac et al., 2002 (27) | Poland      | CHD CHD post Fontan Complex/repaired | 14 (8F, 6 M)        | 8.1 (5.7–17)           | NR (7–17)                   | NR           |
|                     |             | Control Healthy children |                        | 12 (6F, 6 M)      | 7.1 (6.1–16.8)*            | NR           |
| Norozi et al., 2005 (28) | Germany     | CHD TOF, PA, CoA, ASD/VSD Simple/repaired | TOF: 8.2 ± 2.0     | 7.8 ± 2.0               | 8.1 (5.7–17)               | NR (7–17)   |
|                     |             | Control Healthy children | PA: 8.0 ± 2.5        | 7.8 ± 2.0               | 8.1 (5.7–17)               | NR (7–17)   |
|                     |             |                         | CoA: 7.9 ± 2.2       | 7.8 ± 2.0               | 8.1 (5.7–17)               | NR (7–17)   |
|                     |             |                         | ASD/VSD: 7.7 ± 1.7   | 7.8 ± 2.0               | 8.1 (5.7–17)               | NR (7–17)   |
|                     |             |                         |                       | 7.8 ± 2.0               | 8.1 (5.7–17)               | NR (7–17)   |
|                     |             |                         |                       | 7.8 ± 2.0               | 8.1 (5.7–17)               | NR (7–17)   |

(Continued)
| Authors, year | Country | Group | Participants diagnosis | Severity/Repaired | Participants n (Female/Male) | Age (years) | Anthropometrics Weight (kgs) | Height (cms) | BMI (Kg·m\(^{-2}\)) |
|---------------|---------|-------|------------------------|------------------|-----------------------------|-------------|-----------------------------|--------------|-----------------|
| Binkhorst et al., 2008 (29) | Netherlands | CHD | VSD repaired and VSD with conservative treatment | Simple/repaired/not repaired | 27 (14F, 13M) | VSD repaired: 13 ± 2.5 | VSD conservative: 12.5 ± 3 | VSD repaired: Weight: 49 ± 15 | Height: 158 ± 16 | BMI: 19 ± 3 |
| Moalla et al., 2008 (30) | France | CHD | Complex CHDs repaired in NYHA Class II or III | Complex/repaired | 12 (NR) | 13.0 ± 1.2 | Weight: 48.8 ± 5.2 | Height: 159.4 ± 4.6 | BMI: 19.2 ± 1.9 |
| Van Beek et al., 2010 (31) | Netherlands | CHD | TGA post Arterial Switch | Complex/repaired | 17 (5F, 12M) | 12.1 ± 0.0 | Weight: 47.3 ± 14.1 | Height: 158.2 ± 14.6 | BMI: 19.1 ± 2.4 |
| Kotby et al., 2012 (33) | Egypt | CHD | TOF repaired | Complex/repaired | 21 (5F, 16M) | 8 (5-13) | | | |
| Müller et al., 2013 (32) | Germany | CHD | CHD simple, moderate, and complex. NYHA I or II | Simple/complex/repaired/no repaired | 88 (36F, 52M) | 12.7 (12-13.3) | | BMI:18.5 (16.7–21.6)*** | |
| Mazurek et al., 2016 (20) | Poland | CHD | TOF repaired, TGA repaired, CHD post Fontan NYHA I | Complex/repaired | 42 (NR) | 14 ± 2.72 | | | |
| Samos et al., 2016 (36) | Brazil | CHD | TGA post arterial switch | Complex/repaired | 31 (12F, 19M) | 10.2 ± 5.2 | | | |
| Amedro et al., 2018 (21) | France | CHD | Simple, moderate and complex CHD | Simple/complex/repaid/no repaired | 496 (NR) | 12.2 ± 3.3 | | | |
| Hock et al., 2018 (22) | Germany | CHD | CHD post Fontan | Complex/repaired | 41 (NR) | 12.0 ± 3.2 | | | |

(Continued)
Participants with CHD averaged $-9.9$, according to the type of test, those who performed the test on treadmill had on average $9.6$ ml/Kg/min (95% CI: $-22.6$) of Wmax compared with controls ($p < 0.00001$) ($Figure 2$). If we analyze only studies with patients surgically repaired ($22, 24, 27, 30, 31, 34, 35$) the participants with CHD averaged $-49.9$ watts (95% CI: $-77.2, -22.6$) of Wmax compared with controls ($p < 0.0003, I^2 = 95\%$) ($Supplementary File 2, Figure 2$). In addition, we sub-analyzed by age range and observed that the Wmax of the group under 12 years old was similar with the control group [$-79.7$ watts (95% CI: $-229.2, 69.8$), $p = 0.3$, $I^2 = 98\%$], and the group $\geq 12$ years old had a reduction of $-45.5$ watts (95% CI: $-54.4, -36.7$) compared to the control group ($p < 0.00001, I^2 = 0\%$) ($Figure 5$).

### Maximum Workload

Ten studies reported the Wmax in watts ($21–24, 27, 30–32, 34, 35$). These studies compared 1168 participants with CHD vs. 938 healthy controls. The heterogeneity of the comparison was high ($I^2 = 96\%$). Participants with CHD averaged $-41.5$ Wmax (95% CI: $-57.9, -25.1$ watts) compared with controls ($p < 0.00001$) ($Figure 4$). If we analyze only studies with patients surgically repaired ($22, 24, 27, 30, 31, 34, 35$) the participants with CHD averaged $-49.9$ watts (95% CI: $-77.2, -22.6$) of Wmax compared with controls ($p < 0.0003, I^2 = 95\%$) ($Supplementary File 2, Figure 2$).

### VE/VCO₂ Slope

Five studies examined the VE/VCO₂ slope ($19, 22, 32, 35, 36$). These studies compared 248 participants with CHD vs. 326 healthy controls. The heterogeneity of the comparison was high ($I^2 = 92\%$). Participants with CHD had on average 2.6 more VE/VCO₂ slope (95% CI: 0.3, 4.8) compared with controls ($p < 0.02$) ($Figure 6$). If we analyze only studies with patients surgically repaired ($19, 22, 35, 36$) the participants with CHD averaged 3.4 (95% CI: 1.7, 5.1) of VE/VCO₂ compared with controls ($p < 0.0001, I^2 = 77\%$) ($Supplementary File 2, Figure 3$).

### Oxygen Pulse

Four studies examined $O_2$ pulse in ml/beat ($19, 27, 32, 36$). These studies compared 176 participants with CHD vs 171 healthy
TABLE 2 | Results of the Cardiopulmonary Test of the included studies.

| Authors, year | Group     | Test Protocol | VO_{peak} (ml-min^{-1} \cdot kg^{-1}) | VE/VO_{CO}_2 Slope | Maximum load (Wmax) | Pulse of O_{2} (ml-beat^{-1}) | HR máx (bpm) |
|---------------|-----------|---------------|---------------------------------------|---------------------|---------------------|-------------------------------|----------------|
| Cross-sectional studies |           |               |                                       |                     |                     |                               |               |
| Bowyer et al., 1990 (18) | CHD       | Treadmill    | 38                                    | NR                  | NR                  | NR                            | 175            |
| Control       |           | Bruce Protocol|                                       |                     |                     |                               |               |
| Tomassoni et al., 1991 (33) | CHD       | Cycloergometer| 34.10 ± 2.98 (SE)                      | NR                  | NR                  | NR                            | 195            |
| Control       |           | Bruce and modified Bruce protocol in children under 8 years | 37.53 ± 2.45 (SE) | NR                  | NR                  | NR                            | 184.5 ± 2.9 (SE) |
| Balderson et al., 1992 (34) | CHD       | Cycloergometer| 48.1 ± 1.4                            | NR                  | 73 ± 4              | NR                            | 183 ± 21       |
| Control       |           | James Protocol|                                       |                     |                     |                               |               |
| Takagi et al., 1994 (37) | CHD       | Treadmill    | Acyanotics: 48.5 ± 11.0
Cyanotics: 36.1 ± 9.9 | NR                  | NR                  | NR                            | Acyanotics: 183.4 ± 16.1
Cyanotics: 178.1 ± 16.0 |
| Control       |           | Bruce protocol|                                       |                     |                     |                               |               |
| Douard et al., 1997 (19) | CHD       | Treadmill    | 52.7 ± 8.9                            | NR                  | NR                  | NR                            | 189.8 ± 9.1   |
| Control       |           | Bruce protocol|                                       |                     |                     |                               |               |
| Buheitel et al., 2000 (25) | CHD       | Cycloergometer| 44.7 ± 6.1                            | 31.4 ± 5.3          | NR                  | 10.7 ± 4.2                     | 188 ± 16      |
| Control       |           | Ramp protocol| Fontan: 36.5 ± 5.7
Senning: 37.5 ± 7.1 | NR                  | W/Kg Fontan: 2.0
Senning: 2.2 ± 0.4 | Fontan: 239 ± 48
Senning: 251 ± 78 (by Kg) |
| Pfammatter et al., 2002 (26) | CHD       | Cycloergometer| 44.3 (30.9-52.3)                      | NR                  | W/Kg 2.9
(2.0-4.0)**          | NR                            | 191 (152-202)** |
| Control       |           |               |                                       |                     |                     |                               |               |
| Zajac et al., 2002 (27) | CHD       | Treadmill    | 14.4 ± 6.1                            | NR                  | 80.8 ± 45.7          | 2.57 ± 1.23                     | 142.2 ± 24.8  |
| Control       |           | Modified bruce protocol|                                       |                     |                     |                               |               |
| Binkhorst et al., 2008 (29) | CHD       | Cycloergometer| 30.9 ± 7.6                            | NR                  | 238.4 ± 63.5         | 6.14 ± 2.23                     | 183.4 ± 23.6  |
| Control       |           | Ramp protocol| VSD repaired: 45 ± 9
VSD Conservative: 46 ± 7 | NR                  | VSD repaired: 3.4
VSD Conservative: 3.4 (W/Kg) | VSD repaired: 179
± 8 VSD Conservative: 188 ± 6 |
| Moalla et al., 2008 (30) | CHD       | Cycloergometer| 48 ± 8                               | NR                  | 3.7 ± 0.9            | NR                            | 188 ± 8       |
| Control       |           | Ramp protocol|                                       |                     |                     |                               |               |
| Van Beek et al., 2010 (31) | CHD       | Cycloergometer| 46.5 ± 6.7                            | NR                  | 159.6 ± 26.7         | NR                            | 197 ± 10      |
| Control       |           | Ramp protocol|                                       |                     |                     |                               |               |
| Müller et al., 2013 (32) | CHD       | Cycloergometer| 47.4 ± 6.4                            | NR                  | 179.3 ± 60.5         | NR                            | 189 ± 9       |
| Control       |           |               | 35.5 (31.3-41.0)**                     | 27.7 (25.4-29.8)*** | 117 (94-133)**      | ml/kg: 0.20
(0.18-0.24)**          | 175 (161-184)** |
| Müll et al., 2016 (20) | CHD       | Treadmill    | 34.6 ± 8.0*                          | NR                  | NR                  | NR                            | NR            |
| Control       |           | Ramp protocol|                                       |                     |                     |                               |               |
| Samos et al., 2016 (36) | CHD       | Treadmill    | 38.1 ± 8.1                            | NR                  | 105.2 ± 71.6         | NR                            | 174 ± 18.8    |
| Control       |           | Ramp protocol|                                       |                     |                     |                               |               |
TABLE 2 | Continued

| Authors, year | Group | Test Protocol | V̇O₂peak (ml·min⁻¹·kg⁻¹) | VE/VCO₂ Slope | Maximum load (Wmax) | Pulse of O₂ (ml·beat⁻¹) | HR máx (bpm) |
|---------------|-------|---------------|---------------------------|---------------|---------------------|-------------------------|-------------|
| Hock et al., 2018 (22) | CHD | Cycloergometer Ramp protocol | 34.8 ± 7.5 | 31.6 ± 3.3 | 125.2 ± 45.2 | NR | NR |
| Control | 42.1 ± 8.4 | 27.5 ± 2.9 | 165.7 ± 41.3 | NR | NR |
| Coormans et al., 2020 (35) | CHD | Cycloergometer Ramp protocol | 34.46 ± 8.14 | 27.37 ± 3.88 | 112.2 ± 42.4 | NR | 174.0 ± 13.8 |
| Control | 42.77 ± 8.14 | 25.09 ± 2.88 | 149.9 ± 65.7 | NR | 191.8 ± 9.4 |
| Gavotto et al., 2020 (23) | CHD | Cycloergometer Ramp protocol | 37.7 ± 6.9 | NR | 89.9 ± 44.3 | NR | 175.3 ± 15.8 |
| Control | 42.6 ± 6.9 | NR | 121.8 ± 44.2 | NR | 187.6 ± 15.9 |
| Controlled intervention studies | | | | | | |
| Moalla et al., 2005 (24) | CHD | Cycloergometer Ramp protocol | 28.9 ± 1.7 (SE) | NR | 105.5 ± 5.8 (SE) | NR | 163.5 ± 6 (SE) |
| Control | 46.5 ± 1.8 (SE) | NR | 159.6 ± 7.1 (SE) | NR | 197.2 ± 2.9 (SE) |

Data are shown as mean ± SD, **median (range), ***median (interquartile range).
CHD, congenital heart disease; NR, not reported; SE, standard error; VSD, ventricular septal defect.

FIGURE 2 | Forest plot for mean peak oxygen consumption for CHD in children and adolescents and healthy controls.

controls. The heterogeneity of the comparison was high ($I^2 = 73\%$). Participants with CHD had on average $-2.4 \text{ ml/beat of O}_2$ pulse (95% CI: $-3.7$, $-1.1 \text{ ml/beat}$) compared with controls ($p < 0.0003$) (Figure 7). If we analyse only studies with patients surgically repaired (19, 27, 36) the participants with CHD averaged $-3.1 \text{ ml/beat}$ (95% CI: $-4.0$, $-2.1$) of $\text{O}_2$ pulse compared with controls ($p < 0.00001$, $I^2 = 6\%$) (Supplementary File 2, Figure 4).

**Maximum Heart Rate**

Fifteen studies reported working HRmax in beats per minute (bpm) during CPET (19, 21, 23–27, 30–37). These studies
compared 1305 participants with CHD vs. 961 healthy controls. The heterogeneity of the comparison was high ($I^2 = 67\%$). Participants with CHD averaged $-15$ bpm (95% CI: $-18$, $-12$ bpm) of HRmax compared with controls ($p < 0.00001$) (Figure 8). When considering the analysis by subgroups according to the test type, those who performed the test on a treadmill included 124 subjects with CHD and 100 controls, while on the cycle ergometer it was 1181 CHD and 861 controls. Those who performed the test on a treadmill had an average of $-24$ bpm (95% CI: $-37$, $-11$) of HRmax compared with the control group; in contrast, those who performed the test on a cycle ergometer had an average of $-14$ bpm (95% CI: $-17$, $-11$) of HRmax compared with the control group ($p < 0.00001$). If we analyze only studies with patients surgically repaired (19, 24–27, 30, 31, 33–37) the participants with CHD averaged $-17$ bpm (95% CI: $-23$, $-12$) of HRmax compared with controls ($p < 0.0001$, $I^2 = 71\%$) (Supplementary File 2, Figure 5). In addition, we sub-analyzed by age range and observed that the HRmax of the group under 12 years old had a decrease of $-14$ bpm (95% CI: $-22$, $-6$) compared with the control group ($p = 0.0004$, $I^2 = 61\%$), and the group ≥ 12 years old had a reduction of $-21$ bpm (95% CI: $-28$, $-14$) compared with the control group ($p < 0.00001$, $I^2 = 82\%$) (Figure 9).
This systematic review with meta-analysis of observational studies showed that children and adolescents with CHD have a significant decrease in the exercise capacity compared with healthy controls of similar age. VO$_2$peak, HRmax, Wmax, and O$_2$ Pulse were significantly lower in children and adolescents with partially or fully repaired CHD compared with healthy controls.

Our results showed that children and adolescents with CHD have a reduction close to 8 ml/Kg/min, although 76% of the selected articles exclusively evaluated patients with repaired CHD, which shows a considerable residual effect of CHD. The significant impairment of VO$_2$peak directly impacts on exercise capacity.
capacity, morbidity and mortality and is a prognostic factor in this population, reaching clinical and functional relevance. The presence of pulmonary hypertension (PH) is also a condition that could affect exercise capacity evaluated through VO$_2$peak;
however, it was not reported in most articles. On the other hand, one of the few manuscripts which reported it did find that the presence of PH was significantly associated with lower VO\textsubscript{2peak} (21).

Coomans et al. (35) highlighted that, in patients with repaired Tetralogy of Fallot (TOF), VO\textsubscript{2peak} and HRmax is lower as compared with controls, attributing, in part, the lower performance to chronotropic insufficiency due to a positive and significant correlation between HRmax and VO\textsubscript{2peak} ($r = 0.418; p < 0.01$). Additionally, our results showed that patients with CHD, in the included studies, have a diminution close to 15 bpm compared with healthy peers. The decrease in HRmax is almost double in those who perform the test on a treadmill, which is in line with a greater decrease in VO\textsubscript{2peak} in this evaluation device. These results highlight the importance of chronotropic insufficiency in maximum exercise performance, limiting the physical performance of individuals with even repaired TOF and being in line with other publications with similar results (35).

The lower HRmax in subjects with CHD was also related to factors affecting the correct function of the sympathetic and parasympathetic nervous system, among which is ischemia and/or denervation resulting from various cardiac surgical procedures or, in cases of cyanotic CHD, due to chronic hypoxemia (39).

Since most of the articles investigated exercise capacity in subjects with repaired heart disease, we decided to perform a subanalysis with only this group. Surprisingly, the surgically repaired subjects had lower VO\textsubscript{2peak}, Wmax, O\textsubscript{2} pulse, and HRmax and higher VE/VCO\textsubscript{2}. Several factors could influence this result. On one hand, there could be a selection bias of the investigated subjects since the follow-up is stricter in those subjects who are more seriously sick. On the other hand, participants with surgical correction were more severe than those without surgery (23).

We also analyzed the influence of age on the reduced exercise capacity. Considering adolescents those subjects older than 12 years old, we showed a greater decrease in VO\textsubscript{2peak} and HRmax compared with children under 12. A special case was Wmax, which was shown to be reduced only in the group older than 12 years. These results lead us to think that the differences increase over the years and are more pronounced during adolescence. Although our research does not include adult patients, there are already reports with decreased exercise capacity similar or even greater than what we found in those over 12 years old (40, 41).

Subjects with incomplete CHD repair have significant reductions in age-adjusted peak work rates and peak ventilation compared with their counterparts who had complete repair surgery (42). Amedro et al. observed that, in 496 children with CHD who underwent CPET compared with controls, VO\textsubscript{2peak} alteration was more prevalent in most subjects with partial repair or complex CHD (single ventricles and complex anomalies of atroventricular connections) (21). The lower VO\textsubscript{2peak} in their study group was also associated with right ventricular systolic hypertension and tricuspid regurgitation, which are frequently common in many right heart complex CHD cases. The literature has also highlighted this situation, especially in patients with TOF; transposition of the great arteries, and univentricular heart with Fontan physiology (43).

Sequential CPET studies in young adult subjects with Fontan physiology have emphasized the prognostic value of this test regarding survival, mortality and the need for transplantation. There is often a decrease in VO\textsubscript{2peak} that precedes these events (44). Cooney et al. postulate that a change in VO\textsubscript{2peak} is an independent prognostic factor, which may allow early identification of subjects who could benefit from more intensive and preventive management (44). The change in VO\textsubscript{2peak} between sequential CPETs predicts transplant-free survival during and above any risk predicted by a single VO\textsubscript{2peak} measurement. Studies that have followed individuals with Fontan physiology from childhood to adulthood have documented a gradual decline in VO\textsubscript{2peak} over the years (14, 45). The decrease in VO\textsubscript{2peak} with age may be a factor to be identified and considered in subjects with CHD as a selection parameter for timely cardiac rehabilitation programmes starting even in the early stages of life (schooling).

The VE/VCO\textsubscript{2} slope is elevated in most subjects with heart failure as it is inversely related to CO at peak exercise and to pulmonary perfusion, a situation that could also be experienced in subjects with CHD (46). In addition, the elevation of this slope is commonly observed in pulmonary vascular anomalies such as PH (47), which can also be experienced in patients with partially repaired CHD due to greater physical exertion.

A decrease in the O\textsubscript{2} pulse during progressive exercise could indicate circulatory insufficiency or cardiovascular limitation (48). It is generally associated with the appearance of PH and impaired cardiac perfusion. In combination with a sudden decrease in the VO\textsubscript{2} / Wmax ratio, it could indicate myocardial ischemia (49). In addition, a low O\textsubscript{2} pulse is indicative of a reduced cardiac index (CI) or stroke volume, which implies a greater dependence on HR to increase CO (48, 50), a situation that may be common to certain CHD considered in the different subgroups that constitute the total of subjects with CHD of this revision.

Although our objective was to measure exercise capacity and not physical activity, it is important to note that some articles reported it (31, 32). This is important because a previous investigation of our group has shown that the moderate-to-vigorous physical activity of 46% of children with CHD is less than what is recommended by WHO (51). However, Van Beek et al. and Müller et al. found that exercise capacity is decreased in children with CHD, but physical activity showed no differences between groups (31, 32). Even in Müller’s study, both groups performed more physical activity than recommended by clinical guidelines (32).

Finally, although the search period was long, our results consider only studies from the last three decades that explored exercise capacity in a large cohort of children and adolescents with CHD worldwide, which gives high value to our main message.

**Limitations**

Our study has some limitations. Most of the studies included subjects with different types of CHD, which may limit the extrapolation of the results and recommendations to the entire spectrum of children and adolescents with CHD; even though...
our results were statistically significant. The heterogeneous nature of CHD implies that many lesions have different pathophysiological behaviors and conditions, a wide spectrum of severity, as well as the implication or impact that suffering from associated comorbidities may influence the congenital health condition they may have. Another important limitation is that most studies do not report whether patients presented PH. This point is key since it is well known that PH determines lower exercise capacity. In this context, it is important to systematically review associations in order to establish in more detail the factors that can condition a certain result.

Additionally, there was heterogeneity in the control participants since some of them performed the CPET to get the authorization to play sports (22) and others who presented any symptoms although the CPET showed no disease (21, 23, 35). On the other hand, physical activity analysis was not included, which could have provided us information on how sedentary the population was, and were not evaluated respiratory exchange ratio (RER) that indirectly shows the muscle’s oxidative capacity to get energy. Sedentarism, exercise and physically active lifestyles modify it.

Concerning the possible bias occurred in VO2peak and other CPET variables due to variability in different countries (with different daily levels of physical activity, for example, due to different cultural habits) it is important to remark that the comparisons of these parameters, both for the studies and the meta-analysis, were performed comparing patients to controls (adjusted for sex and age in each article) and not regarding their percentages of the predicted values. Therefore, using a control population was essential to avoid these biases.

CONCLUSION

In conclusion, suffering from CHD in childhood and adolescence is associated with a lower exercise capacity as shown by worse VO2peak, Wmax, VE/VCO2 slope, O2 pulse, HRmax compared with healthy controls, not only in CPET but also in other variables as shown in indirect exercise capacity tests. These findings highlight the importance of carrying out a continuous evaluation and early determination of the factors associated with a potential decrease in exercise capacity. In this way, it would be possible to intervene in time by planning rehabilitation programmes and promoting an active lifestyle, since a lower exercise capacity can lead to a greater risk of morbidity, mortality, and deterioration of functionality.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YV-R: conceptualization, formal analysis, methodology, reviewing procedure and data extraction, writing—original draft, and writing—review & editing. JV-M: conceptualization, formal analysis, methodology, writing—original draft, and writing—review & editing. RT-C: conceptualization, formal analysis, methodology, supervision, writing—original draft, and writing—review & editing. LV-C: reviewing procedure and data extraction, writing—original draft, and writing—review & editing. All authors contributed to the article and approved the submitted version.

FUNDING

This study has been funded by Instituto de Salud Carlos III (ISCIII) through the projects (PI17/01515 and PI21/00555) and co-funded by the European Union. RT-C was funded by a grant from the National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO BECAS CHILE/2018-72190117.

ACKNOWLEDGMENTS

RT-C is a Ph.D. candidate in Methodology of Biomedical Research and Public Health Program, at Universitat Autònoma de Barcelona, Barcelona, Spain.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcvm.2022.874700/full#supplementary-material

REFERENCES

1. Puri K, Allen HD, Qureshi AM. Congenital heart disease. Pediatr Rev. (2017) 38:471–86. doi: 10.1542/pir.2017-0032
2. Liu Y, Chen S, Zühlke L, Black GC, Choy M, Li N, et al. Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. (2019) 48:455–63. doi: 10.1093/ije/dyz009
3. Best KE, Rankin J. Long-Term survival of individuals born with congenital heart disease: a systematic review and meta-analysis. J Am Heart Assoc
4. Huisenga D, Gemert SLB-V, Bergen A Van, Sweeney J, Hadders-Algra M. Developmental outcomes after early surgery for complex congenital heart disease: a systematic review and meta-analysis. Dev Med Child Neurol. (2021) 63:29–46. doi: 10.1111/dmcn.14512
5. Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Endukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. (2014) 130:749–56. doi: 10.1161/CIRCULATIONAHA.113.008396
10. Takken T, Bongers BC, Brussel M. van, Haapala EA, Hulzebos EHJ.

11. Barker K, Eickmeyer S. Therapeutic exercise. Med Clin North Am. (2020) 105:1167–74. doi: 10.1016/j.mcna.2019.10.003

12. Giardini A, Specchia S, Tacy TA, Coutsoumbas G, Gargiulo G, Dondi A, et al. Exercise capacity and participation of children with a ventricular septal defect. Am J Cardiol. (2008) 102:1079–84. doi: 10.1016/j.amjcard.2008.05.063

13. Moalla WM, Dupont GD, Temfamo AT, Maingourd Y, Weston MW, Ahmadi SA. Assessment of exercise capacity and respiratory muscle oxygenation in healthy children and children with congenital heart diseases. Appl Physiol Nutr Metab. (2008) 33:434–40. doi: 10.1139/H07-196

14. Fernandez SM, Alexander ME, Graham DA, Khaire P, Clair M, Rodriguez E, et al. Exercise testing identifies patients at increased risk for morbidity and mortality following Fontan surgery. Congenit Heart Dis. (2011) 6:294–303. doi: 10.1111/j.1747-0803.2011.00500.x

15. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. (2009) 151:264–9. doi: 10.7326/0003-4819-151-4-200908180-00135

16. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. (2016) 5: doi: 10.1186/s13643-016-0384-4

17. National Heart, Lung and Blood Institute. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Available online at: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools [accessed May 25, 2020].

18. Bowyer JR, Busst CM, Till JA, Lincoln C, Shinebourne EA. Exercise ability after Mustard’s operation. Arch Dis Child. (1990) 65:8865. doi: 10.1136/adc.65.8865

19. Douard H, Labbé L, Barat JL, Broustet JP, Baudet E, Choussat E, et al. Exercise testing identifies patients at increased risk for morbidity and mortality following Fontan surgery. Congenit Heart Dis. (2011) 6:294–303. doi: 10.1111/j.1747-0803.2011.00500.x

20. Mazurek B, Szydlowski L, Mazurek M, Markiewicz-Loskot G, Pajak J, Morka M. Exercise capacity and participation of children with a ventricular septal defect. Am J Cardiol. (2008) 102:1079–84. doi: 10.1016/j.amjcard.2008.05.063

21. Moalla WM, Dupont GD, Temfamo AT, Maingourd Y, Weston MW, Ahmadi SA. Assessment of exercise capacity and respiratory muscle oxygenation in healthy children and children with congenital heart diseases. Appl Physiol Nutr Metab. (2008) 33:434–40. doi: 10.1139/H07-196

22. Beck E van, Binkhorst M, Hoog M de, Groot P de, Dijk A van, Scholking M, et al. Exercise performance and activity level in children with transposition of the great arteries treated by the arterial switch operation. Am J Cardiol. (2010) 105:398–403. doi: 10.1016/j.amjcard.2009.09.048

23. Müller J, Böhm B, Semsch S, Oberhofer R, Hess J, Hager A. Currently, children with congenital heart disease are not limited in their submaximal exercise performance. Eur J Cardio-Thoracic Surg. (2013) 43:1096–100. doi: 10.1093/ejcts/ezs112

24. Tomassoni TL, Gallioto EM, Vaccaro P. Cardiopulmonary exercise testing in children following surgery for tetralogy of Fallot. Am J Dis Child. (1991) 145:1290–3. doi: 10.1001/archpedi.1991.0216010082205

25. Balderston SM, Dabekrow E, Clarke DR, Wolfe RR. Maximal voluntary exercise variables in children with postoperative coarctation of the aorta. J Am Coll Cardiol. (1992) 19:154–8. doi: 10.1016/0735-1097(92)90067-W

26. Coomans I, Kinder S De, Bellegem VH Van, Groote K De, Panzer J, Wildc H De, et al. Analysis of the recovery phase after maximal exercise in children with repaired tetralogy of Fallot and the relationship with ventricular function. PLoS ONE. (2015) 10:244312. doi: 10.1371/journal.pone.0244312

27. Samos F, Fuenmayor G, Hossri C, Elias P, Ponce L, Souza R, et al. Exercise capacity long-term after arterial switch operation for transposition of the great arteries. Congenit Heart Dis. (2016) 11:155–9. doi: 10.1111/chd.12303

28. Takagi J. A new “Complex Exercise Test” for children with cardiac diseases. Karume Med J. (1994) 41:97–107. doi: 10.2339/kurumemed.41.97

29. Kotby AA, Elnavawy HM, El-Gindy WM, Elaziz RFA. Assessment of exercise testing after repair of tetralogy of fallot. ISRN Pediatr. (2012) 2012:324306. doi: 10.5402/2012/324306

30. Massin MM, Deyeh H, Malekzadeh-Milani S-G, Khalidi K, Topac B, Edelman R. Chronotropic impairment after surgical or percutaneous closure of atrial septal defect. Catheter Cardiovasc Interv. (2009) 73:564–7. doi: 10.1002/ccd.21857

31. Trojanowska O, Gwizdała A, Katarzyńska S, Katarzyńska A, Szyzka A, Lanocha M, et al. Evaluation of exercise capacity with cardiopulmonary exercise test and B-type natriuretic peptide in adults with congenital heart disease. Cardiol J. (2019) 16:133–41.

32. Eckerström F, Rex CE, Magaard M, Heiberg J, Rubak S, Redington A, et al. Cardiopulmonary dysfunction in adults with a small, unrepaird ventricular septal defect: a long-term follow-up. Int J Cardiol. (2020) 306:168–74. doi: 10.1016/j.ijcard.2020.02.069

33. Rosenblum O, Katz U, Revenu R, Williams CA, Dubnov-Raz G. Exercise performance in children and young adults after complete and
incomplete repair of congenital heart disease. *Pediatr Cardiol*. 36:1573–81. doi: 10.1007/s00246-015-1198-1
43. Trojnarska O, Gwizdała A, Katarzyński S, Katarzyńska A, Oko-Sarnowska Z, Breborowicz P, et al. Evaluation of exercise capacity with cardiopulmonary exercise testing and BNP levels in adult patients with single or systemic right ventricles. *Arch Med Sci.* (2010) 6:192. doi: 10.5114/ams.2010.13893
44. Cooney SJ, Campbell K, Wolfe K, DiMaria MV, Rausch CM. Is neurodevelopment related to exercise capacity in single ventricle patients who have undergone fontan palliation? *Pediatr Cardiol.* (2020) 42:408–16. doi: 10.1007/s00246-020-02497-7
45. Müller J, Christov F, Schreiber C, Hess J, Hager A. Exercise capacity, quality of life, and daily activity in the long-term follow-up of patients with univentricular heart and total cavopulmonary connection. *Eur Heart J.* (2009) 30:2915–20. doi: 10.1093/eurheartj/ehp305
46. Kaafarani M, Schroer C, Takken T. Reference values for blood pressure response to cycle ergometry in the first two decades of life: comparison with patients with a repaired coarctation of the aorta. *Expert Rev Cardiovasc Ther.* (2017) 15:945–51. doi: 10.1080/14779072.2017.1385392
47. Klaassen SHC, Liu LCY, Hummel YM, Damman K, van der Meer P, Voors AA, et al. Clinical and hemodynamic correlates and prognostic value of VE/VCO2 slope in patients with heart failure with preserved ejection fraction and pulmonary hypertension. *J Card Fail.* (2017) 23:777–82. doi: 10.1016/j.cardfail.2017.07.397
48. Torres-Castro R, Gimeno-Santos E, Vilaró J, Roqué-Figuls M, Moisés J, Vassoncello-Castillo L, et al. Effect of pulmonary hypertension on exercise tolerance in patients with COPD: a prognostic systematic review and meta-analysis. *Eur Respir Rev.* (2021) 30:200321. doi: 10.1183/16000617.0321-2020
49. Belardinelli R, Lacalaprice F, Tiano I, Muçai A, Perna GP. Cardiopulmonary exercise testing is more accurate than ECG-stress testing in diagnosing myocardial ischemia in subjects with chest pain. *Int J Cardiol.* (2014) 174:337–42. doi: 10.1016/j.ijcard.2014.04.102
50. Unnithan V, Rowland TW. Use of oxygen pulse in predicting doppler-derived maximal stroke volume in adolescents. *Pediatr Exerc Sci.* (2015) 27:412–8. doi: 10.1123/pes.2014-0215
51. Acosta-Dighero R, Torres-Castro R, Rodríguez-Núñez I, Rosales-Fuentes J, Vilaró J, Fregonezi G, et al. Physical activity assessments in children with congenital heart disease: a systematic review. *Acta Paediatr.* (2020) 109:2479–90. doi: 10.1111/apa.15478

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Villaseca-Rojas, Varela-Melo, Torres-Castro, Vassoncello-Castillo, Mazzucco, Vilaró and Blanco. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.