On strongly starlike and convex functions of order α and type β

IKKEI HOTTA

Division of Mathematics, Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
Telephone number: +81-22-795-4636

MAMORU NUNOKAWA
Gunma University, Hoshikuki 798-8, Chuou-Ward, Chiba 260-0808, Japan

Abstract

In this note we investigate the inclusion relationship between the class of strongly starlike functions of order α and type β, $\alpha \in (0, 1]$ and $\beta \in [0, 1)$, which satisfy

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} - \beta \right\} \right| < \frac{\pi}{2\alpha}$$

and the class of strongly convex functions of order α and type β which satisfy

$$\left| \arg \left\{ 1 + \frac{zf''(z)}{f'(z)} - \beta \right\} \right| < \frac{\pi}{2\alpha}$$

in the unit disk, where f is an analytic function defined on the unit disk and satisfies $f(0) = f'(0) - 1 = 1$. Some applications of our main result are also presented which contains various classical results for the typical subclasses of starlike and convex functions.

Key words: univalent function, strongly starlike function, strongly convex function

2000 MSC: primary; 30C45

1. Introduction

Let \mathcal{A} denote the set of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ which are analytic in the unit disk $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$.

Let α be a real number with $\alpha \in (0, 1]$. A function $f \in \mathcal{A}$ is called strongly starlike of order α if it satisfies

$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi}{2\alpha}$$
for all \(z \in \mathbb{D} \) and strongly convex of order \(\alpha \) if
\[
\left| \arg \left(1 + \frac{zf''(z)}{f'(z)} \right) \right| < \frac{\pi}{2\alpha}
\]
for all \(z \in \mathbb{D} \). Let us denote by \(S^*(\alpha) \) the class of functions strongly starlike of order \(\alpha \), and by \(\mathcal{K}(\alpha) \) the class of functions strongly convex of order \(\alpha \). The class \(S^*(\alpha) \) was introduced first by Stankiewicz [13] and by Brannan and Kirwan [2], independently. It is clear from the definitions that \(S^*(\alpha_1) \subset S^*(\alpha_2) \) and \(\mathcal{K}(\alpha_1) \subset \mathcal{K}(\alpha_2) \) for \(0 < \alpha_1 < \alpha_2 \leq 1 \). The case when \(\alpha = 1 \), i.e., \(S^*(1) \) and \(\mathcal{K}(1) \) correspond to well known classes of starlike and convex functions respectively, and therefore all the functions which belong to \(S^*(\alpha) \) or \(\mathcal{K}(\alpha) \) are univalent in \(\mathbb{D} \). We denote by \(S^* \) and \(\mathcal{K} \) the classes of starlike and convex functions. For the general reference of classes of starlike and convex functions, see, for instance [3].

Mocanu [9] obtained the following result (see also [11]). Here, set
\[
\rho(\alpha) = \tan^{-1}\left(\frac{\alpha}{1-\alpha} \left(\frac{1-\alpha}{1+\alpha} \right)^{\frac{\pi}{2\alpha}} \sin \left(\frac{\pi}{2} (1-\alpha) \right) \right) - \frac{1}{1+\left(\frac{\alpha}{1-\alpha} \left(\frac{1-\alpha}{1+\alpha} \right)^{\frac{\pi}{2\alpha}} \cos \left(\frac{\pi}{2} (1-\alpha) \right) \right) - \frac{\alpha}{1-\alpha} \left(\frac{1-\alpha}{1+\alpha} \right)^{\frac{\pi}{2\alpha}}}
\]

and
\[
\gamma(\alpha) = \alpha + \frac{2}{\pi} \rho(\alpha).
\]

Theorem A. \(\mathcal{K}(\gamma(\alpha)) \subset S^*(\alpha) \) for each \(\alpha \in (0, 1] \).

We remark that the function \(\gamma(\alpha) \) is continuous and strictly increases from 0 to 1 when \(\alpha \) moves from 0 to 1. Further investigations for the above theorem can be found in [3].

Now we shall introduce the class of functions \(S^*(\alpha, \beta) \) and \(\mathcal{K}(\alpha, \beta) \), \(\alpha \in (0, 1] \) and \(\beta \in [0, 1) \), whose members satisfy the conditions
\[
\left| \arg \left(1 + \frac{zf''(z)}{f'(z)} - \beta \right) \right| < \frac{\pi}{2\alpha}
\]
and
\[
\left| \arg \left(\frac{zf''(z)}{f'(z)} - \beta \right) \right| < \frac{\pi}{2\alpha}
\]
for all \(z \in \mathbb{D} \), respectively. We call a function \(f \in S^*(\alpha, \beta) \) strongly starlike of order \(\alpha \) and type \(\beta \). In the same way, a function \(f \in \mathcal{K}(\alpha, \beta) \) is strongly convex of order \(\alpha \) and type \(\beta \). It is obvious that \(S^*(\alpha, 0) = S^*(\alpha) \) and \(\mathcal{K}(\alpha, 0) = \mathcal{K}(\alpha) \). Also the following relations are true from the definitions;

i) \(S^*(\alpha_1, \beta) \subset S^*(\alpha_2, \beta) \),
ii) \(\mathcal{K}(\alpha_1, \beta) \subset \mathcal{K}(\alpha_2, \beta) \),
iii) \(S^*(\alpha, \beta_1) \supset S^*(\alpha, \beta_2) \),
iv) \(\mathcal{K}(\alpha, \beta_1) \supset \mathcal{K}(\alpha, \beta_2) \).
for $0 < \alpha_1 < \alpha_2 \leq 1$ and $0 \leq \beta_1 < \beta_2 < 1$. That is why all functions belong to $S^*(\alpha, \beta)$ or $K(\alpha, \beta)$ are univalent on \mathbb{D}.

A sufficient condition for which $f \in A$ lies in $S^*(\alpha, \beta)$ was proved by the second author et al. [12]. The authors also proposed in [12] the open problem about an inclusion relationship between $K(\alpha, \beta)$ and $S^*(\alpha, \beta)$. However, it seems that no results concerning this question have been known.

Our main result is the following;

Theorem 1. $K(\gamma(\alpha), \beta) \subset S^*(\alpha, \beta)$ for each $\alpha \in (0, 1]$ and $\beta \in [0, 1)$.

The above theorem includes Theorem A as the case when $\beta = 0$.

We should notice the reader that this estimation is not sharp for each $\alpha \in (0, 1]$ and $\beta \in [0, 1)$ (see also [5]). We will discuss about this problem in section 2 with the proof of Theorem 1. Our main theorem yields several applications which will be shown in the last section.

2. Proof of Theorem 1

Our proof relies on the following lemma which was obtained by the second author [10, 11];

Lemma B. Let $p(z)$ be analytic and satisfies $p(0) = 1$, $p(z) \neq 0$ in \mathbb{D}. Let us assume that there exists a point $z_0 \in \mathbb{D}$ such that $|\arg p(z)| < \pi\alpha/2$ for $|z| < |z_0|$ and $|\arg p(z_0)| = \pi\alpha/2$ where $\alpha > 0$. Then we have

$$\frac{z_0p'(z_0)}{p(z_0)} = i\alpha k$$

where $k \geq \frac{1}{2}(a + \frac{1}{a})$ when $\arg p(z_0) = \pi\alpha/2$ and $k \leq -\frac{1}{2}(a + \frac{1}{a})$ when $\arg p(z_0) = -\pi\alpha/2$, where $p(z_0)^{1/\alpha} = \pm i\alpha$ and $a > 0$.

The next result will be used later;

Lemma 2. $\tan^{-1}\alpha \geq \rho(\alpha)$ for all $\alpha \in (0, 1)$, where ρ is defined by (1).

Proof. Put $\phi(\alpha) = (1/(1 - \alpha))/((1 - \alpha)/(1 + \alpha))^{1/\alpha}$. It is enough to prove that

$$\alpha \geq \frac{\alpha\phi(\alpha) \sin[\pi(1 - \alpha)/2]}{1 + \alpha\phi(\alpha) \cos[\pi(1 - \alpha)/2]}$$

for all $\alpha \in (0, 1]$. Since $\phi(\alpha) < 1$ because of $\phi(0) = 1$ and $\phi'(\alpha) < 0$, we obtain $\alpha > \phi(\alpha)$ and therefore

$$\frac{\alpha \sin[\pi(1 - \alpha)/2]}{1 + \alpha \cos[\pi(1 - \alpha)/2]} > \frac{\alpha\phi(\alpha) \sin[\pi(1 - \alpha)/2]}{1 + \alpha\phi(\alpha) \cos[\pi(1 - \alpha)/2]}.$$

It remains to show that

$$\alpha \geq \frac{\alpha \sin[\pi(1 - \alpha)/2]}{1 + \alpha \cos[\pi(1 - \alpha)/2]}$$

for all $\alpha \in (0, 1]$ and this is clear. \qed
Proof of Theorem[4] Let us suppose that \(f \) satisfies the assumption of the theorem and let

\[
p(z) = \frac{1}{1 - \beta} \left(\frac{zf'(z)}{f(z)} - \beta \right).
\]

Then \(p(0) = 1 \), and calculations show that

\[
1 + \frac{zf''(z)}{f'(z)} - \beta = (1 - \beta)p(z) \left\{ 1 + \frac{zp'(z)}{p(z)} \right\}.
\]

We note that \(p(z) \neq 0 \) holds for all \(z \in \mathbb{D} \) since \(1 + zf''(z)/f'(z) - \beta \neq \infty \) on \(\mathbb{D} \) from our assumption.

Now we derive a contradiction by using Lemma[5]. If there exists a point \(z_0 \) such that \(\left| \arg p(z) \right| < \pi \alpha/2 \) for \(|z| < |z_0| \) and \(\left| \arg p(z_0) \right| = \pi \alpha/2 \), where \(\alpha \in (0, 1) \), then by Lemma[5], \(p \) must satisfy \(z_0p'(z_0)/p(z_0) = i\alpha k \) when \(k \geq \frac{1}{2} \left(a + \frac{1}{a} \right) \) when \(\arg p(z_0) = \pi \alpha/2 \) and \(k \leq -\frac{1}{2} \left(a + \frac{1}{a} \right) \) when \(\arg p(z_0) = -\pi \alpha/2 \), where \(p(z_0)^{1/\alpha} = \pm ia \) and \(a > 0 \).

At first we suppose that \(\arg p(z_0) = \pi \alpha/2 \). Then from (3) we have

\[
\arg \left\{ 1 + \frac{z_0f''(z_0)}{f'(z_0)} - \beta \right\} = \arg \left\{ (1 - \beta)p(z_0) \left\{ 1 + \frac{zp'(z_0)}{p(z_0)} \right\} \right\}.
\]

We shall estimate the second term of the second line of above. Geometric observations show that the point \(1 + [iak/((1 - \beta)p(z_0) + \beta)] \) lies on the subarc \(C \) of the circle which passes through \(1, 1 + iak \) \(\text{ and } \) \(1 + [iak/p(z_0)] \), where \(C \) connects \(1 + iak \) \(\text{ and } \) \(1 + [iak/p(z_0)] \) and does not pass through \(1 \). Further, we can find out that the value \(\{\arg z : z \in C\} \) attains its minimum at the end points of \(C \). Therefore we have

\[
\arg \left\{ 1 + \frac{iak}{(1 - \beta)p(z_0) + \beta} \right\} \geq \min \left\{ \arg \{1 + iak\}, \arg \left\{ 1 + \frac{iak}{p(z_0)} \right\} \right\}.
\]

Here, the first value in the above minimum can be evaluated by \(\arg(1 + iak) \geq \tan^{-1} \alpha \) since \(k \geq 1 \). For the second value, we note that \(a^{1-\alpha} + a^{-1-\alpha} \) takes its minimum value at \(a = \sqrt{(1 + \alpha)/(1 - \alpha)} \). Therefore

\[
\arg \left\{ 1 + \frac{iak}{p(z_0)} \right\} = \arg \left\{ 1 + e^{z(1-\alpha)i} \cdot \frac{\alpha}{2} \left[a^{1-\alpha} + a^{-1-\alpha} \right] \right\} \geq \arg \left\{ 1 + e^{z(1-\alpha)i} \cdot \frac{\alpha}{2} \left[\left(1 + \frac{1}{1 - \alpha} \right)^{1/\alpha} + \left(1 + \frac{1}{1 - \alpha} \right)^{-1/\alpha} \right] \right\} = \rho(\alpha).
\]
By Lemma 2 we conclude that
\[
\arg \left\{ 1 + \frac{z_0 f''(z_0)}{f'(z_0)} \right\} - \beta \geq \frac{\pi}{2} \alpha + \min \left\{ \tan^{-1} \alpha, \rho(\alpha) \right\} = \frac{\pi}{2} \gamma(\alpha)
\]
and this contradicts our assumption.

In the same fashion, if \(p(z_0) = -\pi \alpha / 2 \) then a similar argument shows that
\[
\arg \left\{ 1 + \frac{z_0 f''(z_0)}{f'(z_0)} \right\} - \beta \leq -\frac{\pi}{2} \alpha + \max \left\{ \tan^{-1}(-\alpha), -\rho(\alpha) \right\} = -\frac{\pi}{2} \gamma(\alpha).
\]
This also contradicts our assumption and our proof is completed. □

We remark that we expect this theorem to be room for improvement in our method because the inequality (4) is a rough estimation except the case when \(\beta = 0 \), whereas it seems to be not easy to give a precise estimation for the left hand side of (4).

3. Applications

We would like to give a further discussion to the relationship between \(S^*(\alpha, \beta) \) and \(\mathcal{K}(\alpha, \beta) \) by using Theorem 1.

3.1.

It is well known that a convex function is a starlike function, that is, \(\mathcal{K} \subset S^* \). Furthermore, Mocanu [8] showed that \(\mathcal{K}(\alpha) \subset S^*(\alpha) \) for all \(\alpha \in (0, 1] \). Now we give the next result which includes these properties as special cases;

Corollary 3. \(\mathcal{K}(\alpha, \beta) \subset S^*(\alpha, \beta) \) for each \(\alpha \in (0, 1] \) and \(\beta \in [0, 1) \).

Proof. Since \(\alpha \leq \gamma(\alpha) \) for all \(\alpha \in (0, 1] \), \(\mathcal{K}(\alpha, \beta) \subset \mathcal{K}(\gamma(\alpha), \beta) \subset S^*(\alpha, \beta) \) by ii) in (2) and Theorem 1 which is our desired inclusion. □

Corollary 3 yields the following property;

Corollary 4. If \(z f'(z) \in S^*(\alpha, \beta) \), then \(f \in S^*(\alpha, \beta) \).

Proof. It is obvious that \(g \in \mathcal{K}(\alpha, \beta) \) if and only if \(zg'(z) \in S^*(\alpha, \beta) \). Thus if \(zg'(z) \in S^*(\alpha, \beta) \) then \(g \in \mathcal{K}(\alpha, \beta) \subset S^*(\alpha, \beta) \) from Corollary 3. Hence our assertion follows if we put \(f(z) = zg'(z) \). □

This corollary is equivalent to the following: \(S^*(\alpha, \beta) \) is preserved by the Alexander transformation, where the Alexander transformation \([1]\) is the integral transformation defined by
\[
f(z) \mapsto \int_0^\infty \frac{f(u)}{u} du
\]
for \(f \in \mathcal{A} \).
3.2.
If \(\alpha = 1 \), then the class \(S^*(1, \beta) \) and \(K(1, \beta) \) is called \textit{starlike of order} \(\beta \) and \textit{convex of order} \(\beta \), respectively. It is easy to see that \(f \in S^*(1, \beta) \) satisfies

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \beta
\]

and \(f \in K(1, \beta) \) satisfies

\[
\text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \beta.
\]

Marx [7] and Strohhäcker [14] showed that \(K(1, 0) \subset S^*(1, 1/2) \). Jack [4] proposed the more general problem; What is the largest number \(\beta_0 \) which satisfies \(K(1, \beta) \subset S^*(1, \beta_0) \)? Later MacGregor [6] and Wilken and Feng [15] answered the problem to give the exact value of \(\beta_0 \);

\textbf{Theorem C.} \(K(1, \beta) \subset S^*(1, \delta(\beta)) \) for all \(\beta \in [0, 1) \), where

\[
\delta(\beta) = \begin{cases}
1 - 2\beta & \text{if } \beta \neq \frac{1}{2}, \\
\frac{1}{2 \log 2} & \text{if } \beta = \frac{1}{2}.
\end{cases}
\]

This estimation is sharp for each \(\beta \in [0, 1) \).

Setting \(\beta = 0 \), we have the result of Marx and Strohhäcker. We can obtain a similar estimation to above that “\(K(\gamma(\alpha), \delta(\beta)) \subset S^*(\alpha, \beta) \) for all \(\alpha \in (0, 1] \) and \(\beta \in [0, 1) \)” by Theorem I since \(\beta < \delta(\beta) \) for all \(\beta \in [0, 1) \). However, the following problem is still open;

\textbf{Open Problem.} \(K(\gamma(\alpha), \beta) \subset S^*(\alpha, \delta(\beta)) \) for each \(\alpha \in (0, 1] \) and \(\beta \in [0, 1) \).

This problem implies Theorem I because \(S^*(\alpha, \delta(\beta)) \subset S^*(\alpha, \beta) \) for all \(\alpha \in (0, 1] \) and \(\beta \in [0, 1) \), and Theorem C as the case when \(\alpha = 1 \).

\textbf{References}

[1] J. W. Alexander, \textit{Functions which map the interior of the unit circle upon simple regions}, Ann. of Math. \textbf{17} (1915), no. 1, 12–22.
[2] D. A. Brannan and W. E. Kirwan, \textit{On some classes of bounded univalent functions}, J. London Math. Soc. (2) \textbf{1} (1969), 431–443.
[3] P. L. Duren, \textit{Univalent functions}, Springer-Verlag, New York, 1983.
[4] I. S. Jack, \textit{Functions starlike and convex of order \(\alpha \)}, J. London Math. Soc. (2) \textbf{3} (1971), 469–474.
[5] S. Kanas and T. Sugawa, \textit{Strong starlikeness for a class of convex functions}, J. Math. Anal. Appl. \textbf{336} (2007), no. 2, 1005–1017.
[6] T. H. MacGregor, \textit{A subordination for convex functions of order \(\alpha \)}, J. London Math. Soc. (2) \textbf{9} (1975), 530–536.
[7] A. Marx, \textit{Untersuchungen über schlichte abbildungen}, Math. Ann. \textbf{107} (1933), no. 1, 40–67.
[8] P. T. Mocanu, \textit{On strongly-starlike and strongly-convex functions}, Studia Univ. Babeş-Bolyai Math. \textbf{31} (1986), no. 4, 16–21.
[9] \textit{Alpha-convex integral operator and strongly-starlike functions}, Studia Univ. Babeş-Bolyai Math. \textbf{34} (1989), no. 2, 18–24.
[10] M. Nunokawa, *On properties of non-Carathéodory functions*, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 6, 152–153.

[11] ———, *On the order of strongly starlikeness of strongly convex functions*, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 7, 234–237.

[12] M. Nunokawa, S. Owa, H. Saitoh, A. Ikeda, and N. Koike, *Some results for strongly starlike functions*, J. Math. Anal. Appl. 212 (1997), no. 1, 98–106.

[13] J. Stankiewicz, *Quelques problèmes extrémaux dans les classes des fonctions α-angulairement étoilées*, Ann. Univ. Mariae Curie-Skłodowska Sect. A 20 (1966), 59–75.

[14] E. Strohhäcker, *Beiträge zur Theorie der schlichten Funktionen*, Math. Z. 37 (1933), no. 1, 356–380.

[15] D. R. Wilken and J. Feng, *A remark on convex and starlike functions*, J. London Math. Soc. (2) 21 (1980), no. 2, 287–290.