INTRODUCTION

Girardinia heterophylla, commonly known as ‘DansKandali’, is abundantly found in the Himalayas. It can be seen growing extensively as an underutilized biomass in the forest areas situated in outskirts of the villages. Swollen base of roots of Girardinia heterophylla is used as soap/shampoo for washing. The leaves of this plant are boiled and cooked for vegetables. The whole plant is also used as cattle fodder to improve milk production. The stem portion of the plant yields the valuable fiber, which has been traditionally used by the tribal for making rope based products used for packing grains and transportation purpose. After extracting the fiber from the stem, residue of the bark portion is used as fuel wood. Traditionally, bark powder is also used as a bandage material for faster healing of wounds and setting of broken bones.

Girardinia heterophylla is among those plant species which have not been systematically studied for their biological active constituents in order to establish their potential use through its different parts viz. leaves, stem and roots. The availability, different uses and phytochemical examination of Girardinia heterophylla (Danskandali) have not been studied in

Phytochemical Studies from the Roots of Girardinia heterophylla

NISHA TRIPATHI*, SUNITA KUMAR1, RAKESH SINGH2, C.J. SINGH3, PRASHANT SINGH4 and V.K. VARSHNEY5

1Department of Chemistry, M.K.P.P.G. College, Dehradun, India.
2Department of Chemistry, D.B.S.P.G. College, Dehradun, India.
3Forest Conservation Division, Ministry of Environment and Forest, Delhi, India.
4Department of Chemistry, D.A.V.P.G. College, Dehradun, Uttarakhand, India.
5Chemistry Division, Forest Research Institute (FRI), Dehradun, Uttarakhand, India.

*Corresponding author E-mail:- tripnisha30@gmail.com

DOI: http://dx.doi.org/10.13005/ojc/290342

(Received: July 16, 2013; Accepted: August 20, 2013)

ABSTRACT

Girardinia heterophylla (Family: Urticaceae) roots has not been studied so far. The swollen base of roots were collected from and extracted with petroleum ether. The dried petroleum extract was subjected to column chromatography and TLC. Three compounds were isolated from the roots of Girardinia heterophylla. On the basis of spectral analysis they were identified as β-sitosterol, γ-sitosterol and ursolic acid. In this study the presence of γ-sitosterol and Ursolic acid in roots of Girardinia heterophylla has been reported for the first time.

Keywords: Girardinia heterophylla, β-sitosterol, γ-sitosterol, ursolic acid.
It is of immense importance to screen the medicinal plants growing in nature to find the additional source of bioactive compounds to be used for human welfare. The increasing global interest towards this interface between chemistry and biology has gained more importance and the public demand is continuously rising for the cost effective medications and biological agents from sustainable and natural resources.

The study mainly focuses on the phytochemical examination of species of *Girardinia heterophylla* grown in Mussoorie hills of Dehradun district of Uttarakhand state.

MATERIAL AND METHODS

General experimental procedures

TLC Plates coated with silica gel G to a thickness of 0.25 mm were used. SD-fine silica gel (100-200 mesh) was used for column chromatography. Melting point was determined on a melting point apparatus in a sealed glass capillary tube and mixed melting point (m.m.p.) by authentic sample. GC-MS conditions for analyzing the compounds were TRAC-MS (Finnigan company).

Plant material

The plant samples were collected from the Middle Himalayas at an altitudinal range of 22,00m to 25,00m in Mussoorie and Dhanaulti areas of Dehradun District. The plant samples of leaves, stem and roots were collected in the month of November 2010.

Extraction and Isolation

The roots (600g) of *Girardinia heterophylla* were milled after air drying and were extracted with the solvent petroleum ether (60-80°C) and methanol. The petroleum ether extract (2.57%) was obtained and further examined. Petroleum ether extract is column chromatographed over silica gel and elution of the column with varying amount of ethyl acetate in petroleum ether afforded three compounds having code of GHRPTA, GHRPTB and GHRPTC.

- Weight of petroleum ether extract = 15.42gm
- Weight of silica gel used for adsorption of extract = 75gm
- Weight of silica gel used for building of column = 322gm
- Solvent used for packing column = Petroleum ether
- Retention volume = 435
- Volume of each fraction = 100 ml

The further details are given in table-1.

RESULTS AND DISCUSSION

Three compounds were isolated from roots of *Girardinia heterophylla* having code numbers GHRPTA (β-sitosterol), GHRPTB (γ-sitosterol) and GHRPTC (Ursolic acid) are described hereunder.

Compound GHRPTA (β-sitosterol)

It was eluted with petroleum ether: ethyl acetate (98:2) on concentrating yielded white silky needles (45mg, 0.008%, m.p. 136-137°C, $[\alpha]_D^{100} = 100^\circ$ (0.05 in CHCl₃). It gave Liebermann Burchard test for terpenoids and steroids, having molecular formula $\text{C}_{29}\text{H}_{50}\text{O}$. (M⁺, m/z 414). The GC-MS spectrum

Table-1: Compounds of Petroleum Ether Extract of Root and their TLC system with Eluents

Compounds	Eluents	Fraction no.	Volume	Solvent system for TLC
GHRPTA	Petroleum ether:	1-132	132x100	Petroleum ether:
	Ethyl acetate (98:2)			Ethyl acetate (95:5)
GHRPTB	Petroleum ether:	133-283	150x100	Petroleum ether:
	Ethyl acetate (97:3)			Ethyl acetate (93:7)
GHRPTC	Petroleum ether:	428-551	123x100	Petroleum ether:
	Ethyl acetate (90:10)			Ethyl acetate (1:1)
Fig. 1: Mass Spectra of β-Sitosterol

Fig. 2: Structure of GHLPA (β-Sitosterol)

Fig. 5(a): Mass Spectra of Compound γ-Sitosterol

Fig. 5(b): Structure of Compound GHLPB (γ-sitosterol)
revealed the compound to be the β-sitosterol [Fig. 1,2]. It was identified as β-sitosterol by direct comparison with an authentic sample (m.m.p., Co-TLC and superimposable IR) and by comparison of its mass spectrum (Figure-4A) with that provided in the NIST standard chart library.

β-sitosterol has antidiabetic activity. It reduces the symptoms of Benign Prostatic Hyperplasia (BPH) and also found as an anti-inflammatory agent.

Compound GHRPTB (γ-sitosterol)

It was eluted with petroleum ether: ethyl acetate (97:3) on concentrating yielded as white crystals (30mg), m.p. 147-148°C, [α]D – 45 (CHCl3). The yield of the γ-sitosterol was found to be 0.010%.

It gave Liebermann Burchard test having molecular formula C29H50O, (M+, m/z 414). The compound GHRPB was analyzed by GC-MS. It was identified as γ-sitosterol by comparison of its mass spectra given in figure-3 with that of γ-sitosterol provided in the NIST standard chart library. The mass spectral values correspond to literature. γ-sitosterol has been shown to be an epimer of β-sitosterol. The only difference of these two epimers was the 24-ethyl substituent. The 24-ethyl is present in the side chain of γ-sitosterol [Figure-4]. GC-MS assisted the characterization of γ-sitosterol has been reported in the literature has beta-chirality which was indicated as 24S in the NIST standard chart library. This is the first report of isolation of γ-sitosterol in the leaves of Girardinia heterophylla.

Plantpart	Type of Extract	Class of Compound	Name of Compound	Yield(%)
Root	Petroleum ether extract	Phytosterol	β-sitosterol	0.008
	Phytosterol		γ-sitosterol	0.010
	Pentacyclictriterpene acid	Ursolic acid		0.001
γ-sitosterol reduces the hyperglycemia in STZ- induced diabetic rats due to increased insulin secretion and inhibition of glucogenesis. It can be used in *Diabetes mellitus*. Docking studies of the ligand γ-sitosterol with four different target proteins showed that this is a good molecule which docks well with various targets related to *Diabetes mellitus*, thus γ-sitosterol can be considered for developing into a protein antidiabetic drug.

Compound GHRPTC (Ursolic acid)

The fractions were eluted with petroleum ether: ethyl acetate (90:10) on concentrating a white silky needles (8.0mg) was obtained having m.p. 286°C with 0.001% yield. It was identified as ursolic acid given in [Figure-5,6] and by direct comparison with an authentic sample (m.m.p., Co-TLC and superimposable IR). This is the first report of isolation of ursolic acid [Figure 11(C)] in the plant of *Girardinia heterophylla*.

It possesses diverse pharmacological actions like anticancerous, antiulcer, hypoglycaemic, antihyperlipidemic, antiviral, anti-inflammatory, CNS depressant, Hepatoprotective, cardiotonic, sedative and tonic effects.

CONCLUSION

The phytochemical constituents were isolated from swollen base of root of *Girardinia heterophylla* found in Mussoorie hills of Uttarakhand. Phytosterols are obtained having 0.008% yield (β-sitosterol), 0.010% yield (γ-sitosterol), and a pentacyclic triterpene acid having 0.001% (Ursolic acid) from roots using petroleum ether extract given in Table-2. In this study the presence of γ-sitosterol and Ursolic acid in roots of *Girardinia heterophylla* has been reported for the first time. It has been reported to possess many biological activities like antiulcer, anti-diabetic, anti-inflammatory etc.

Given the attire of identified chemical compounds having potential of being utilized for commercial purposes, the plant can be integrated with region specific developmental activities. Indian Himalayas showcases vast varieties of such plants, many of which are still beyond the ambit of contemporary research. Thus, present study also paves the way for the researchers to carry out further phytochemical investigations in the Himalayan region to identify other plants that may have commercial potential to be used in various industries.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Uttarakhand Bamboo and Fiber Development Board (UBFDB) Dehradun for technical guidance

REFERENCES

1. Gupta, R., Sharma, A. K., Dobhal, M. P., Sharma, M. C. and Gupta, R. S. (2011); Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin induced experimental hyperglycemia, Jour. of Diabetes, 3 (29).
2. Wilt, T. J., Macdonald, R. and Ishani, A., Beta-sitosterol for the treatment of benign prostatic hyperplasia (a systematic review). B. J. U. Int., 83(9): 976 (1999).
3. Loizou, S., Lekakis, I., Chrousos, G. P. and Moutsatsou, P., Beta-sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells, *Mol. Nut. Food Res.*, 54: 551 (2010).
4. Jain, S. P., Bari, B. S. and Surana, J. S., Isolation of stigmasterol and γ-sitosterol from petroleum ether extract of woody stem of *Abelmoschus manihot*, *Asian. J. Biol. Sci.*, 2: 112 (2010).
5. Piironen, V., Lnsday, G. D. and Miettinen, Plant sterols: Biosynthesis, biological function and their importance to human nutrition, *J. Sci. of Food and Agric.*, 80: 939 (2000).
6. Thompson, J. M., Robbins, E. W. and Baker, L. G., The non homegenity of soybean-gamma sitosterol, *J. Steroids*, 29(6): 407 (1963).
7. Nishihoka, I., Ikekawa, N. and Yagi, A.,
Studies on plant sterols and triterpenes, *Chem. Pharm. Bull.*, **11**(5): 579 (1965).

8. Balamurugan, R., Duraipandiyan, V. and Ignacimuthu, S., Antidiabetic activity of γ-sitosterol isolated from *Lippianodiflora* L. in streptozotocin induced diabetic rats, *European J. of Pharmacol.*, **667**: 410 (2011).

9. Balamurugan, R., Stalin, A. and Ignacimuthu, S., Molecular docking of γ-sitosterol with some targets related to diabetes, *European J. of Med. Chem.*, **47**: 39 (2012).

10. Kim, K. W., Anticancer activities of plant triterpenoids, ursolic acid and oleanolic acid, *J. Korean Assoc. Cancer Preven. Metas. and antitumor.*, **2**: 38 (1997).

11. Young, H. S., Lee, C. K., Park, S. W., Park, K.Y., Kim, K. W., Chung, H. Y., Yokozawa, T. and Oura, H., Anti-tumorigenic effects of ursolic acid isolated from the leaves of *Eriobotrya japonica*, *Nat. Med.*, **49**: 190 (1995).

12. S.V. Kalhe and D.T. Tayade, *Orient J. Chem.*, **28**(1): 603-606 (2012).

13. Wrzeciono, U., Malecki, I., Budzianowski, J., Kierylowicz, H., Zaprutko, L., Beimvik, E. and Kostepska, H., Nitrogenous triterpene derivatives, Part 10: Hemisuccunates of some derivatives of oleanolic acid and their antiulcer effects, *Pharmaz.*, **40**: 542 (1985).

14. Ivorra, M. D., Paya, M. and Villar, A., A Review of Natural Products and Plants as Potentials Antidiabetic Drugs, *J. Ethnopharmacol.*, **27**: 243 (1989).

15. Ma, B. L., Hyperlipidemic effects of oleanolic acid, *Traditional Med. and Pharmacol.*, **2**: 28 (1986).

16. Collins, M. A. and Charles, H. Y, Antimicrobial activity of carnosol and ursolic acid: two anti-oxidant constituents of *Rosmarinusofficinalis*, *Food Microbiol.*, **4**: 311 (1989).

17. Newali C. A., Anderson, L. A. and Phillipson, J. D, Herbal medicine – A Guide for Health Care Professionals, The Pharmaceutical Press, London, 296 (1996).

18. Kashiwada Y., Wang, H. K., Nagao, T., Kitana, S., Yasuda, I., Fujikoa, T., Yamagishi, T., Cosentino, L. M., Kozuka, M., Okabe, H., Ikeshiro, Y., Hu, C. Q., Yeh E. and Lee, K., Anti-AIDS agents, 30 Anti-HIV activity of oleanolic acid, promolic acid and structurally related triterpenoids, *J. Nat. Prod.*, **61**(19): 1090 (1998).

19. Chattopadhay, D., Arunachalam, G., Mandal, A. B., Bhadra, R., and Mandal, S. C., CNS activity of *Mallotuspellatus* Murell, Arg. Leaf extract: An ethnomedicine of Bay Islands, *J. Ethnopharmacol.*, **81**(1): 99 (2003).

20. Tsuruga, T., Chun, Y., Ebizuka, Y. and Sankawa, U., Biologically active constituents of *Melaleucaleucadendron*, inhibitors of induced histamine release from rat mast cells, *Chem. Pharm. Bull.*, **39**(12): 3276 (1991).

21. Wang, B.H., Polya, G. M. Selective inhibition of cyclic AMP-Dependent protein kinase by amphiphilictriterpenoids and related compounds, *Phytochem. Anal.*, **27**: 393 (1996).

22. Kosuge, T., Yokota, M., Sugiyama, K., Mure, T., Yamazawa, H. and Yamamoto, T., Studies on bioactive substances in crude drugs used for arthritic disease in trational Chinese medicine-III. Isolation and identification of anti-inflammatory and analgesic principles from the whole herb of *Pyrolarotundifolia*, *Chem. and Pharm. Bull.*, **33**: 5355 (1985).

23. Duke, J. A., Handbook of biologically active phytochemicals and their activities, Boca Raton, F L. CRC Press (1992).

24. Shukla, B., Visen, P. K. S., Patnaik, G. K., Tripathi, S. C., Srimal, R. C., Dayal, R. and Dobhal, P. C., Hepatoprotective activity in the rat of ursolic acid isolated from *Eucalyptus Hybrid*, *Phytother.*, **6**: 74 (1992).

25. Liu, J, Pharmacology of oleanolic and ursolic acid, *J. Ethnopharmacol.*, **49**(2): 57 (1995).