Ozone and Limonene in Indoor Air: A Source of Submicron Particle Exposure

Thomas Wainman,1* Junfang Zhang,1 Charles J. Weschler,2 and Paul J. Lioy1

1Environmental and Occupational Health Sciences Institute, UMDNJ-Robert Wood Johnson Medical School and Rutgers University, Piscataway, New Jersey, USA; 2Telcordia Technologies, Red Bank, New Jersey, USA

Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1–0.2 μm and 0.2–0.3 μm size fractions in all of the experiments. Particle formation in the 0.1–0.2 μm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2–0.3 μm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to overall particle exposure. This study provides data for assessing the impact of outdoor ozone on indoor particles. This is important to determine the efficacy of the mass-based particulate matter standards in protecting public health because the indoor secondary particles can vary coincidently with the variances of outdoor fine particles in summer. Key words: indoor air chemistry, limonene, ozone, particulate matter, secondary organic aerosol. Environ Health Perspect 108:1139–1145 (2000). [Online 6 November 2000] http://ehpnet1.niehs.nih.gov/docs/2000/108p1139-1145wainman/abstract.html

Over the past two decades, research focused on human exposure to air pollutants has demonstrated the dependence of exposure on individual activity patterns. A review of activity pattern data has revealed that people do not spend much time outdoors in the regulated ambient atmosphere, but instead spend most of their time indoors in either a home or workplace (1). While efforts will undoubtedly continue to regulate pollutant concentrations in ambient air, many people will still receive their highest exposures in indoor environments. Assessing exposure to fine particulate matter (PM) is currently a topic of great interest due to the results of the epidemiologic studies, the U.S. Environmental Protection Agency (U.S. EPA) found the evidence compelling enough to adopt new National Ambient Air Quality Standards for PM2.5 (PM < 2.5 μm in diameter), in addition to the PM10 standard, as a means of protecting public health (16). The annual PM2.5 standard was set at 15 μg/m³ and a 24-hour standard was set at 65 μg/m³. The existing PM10 standard remains at 50 μg/m³. (At the time this paper was prepared, the authority of the U.S. EPA to implement the new standard was being argued in court.) The efficacy of the new PM2.5 standard would depend on its success in reducing exposure to fine particles. The PM data used in the epidemiologic studies were obtained by either using area monitors, which collected ambient PM samples in proximity to the study population, or through inference from visibility measurements. Because people spend most of their time indoors, the epidemiologic findings make the assumption that indoor PM concentrations consistently track ambient PM concentrations. In a review, Wallace (17) examined the results of three large-scale studies that focused on PM concentrations inside homes in the United States and also briefly reviewed a number of other studies conducted in homes and buildings. Wallace estimated that 65% of PM2.5 from outdoor sources penetrates indoors but also found that the PM2.5 concentrations in nearly all of the homes exceeded the predicted value based on 65% penetration of outdoor particles, suggesting that most homes have sources of indoor particles. It was concluded that for a given home, there is little variation in the relationship of indoor air to outdoor air on a daily basis and that differences in fine particle concentrations between two homes in close proximity result from differences in indoor sources. A significant finding of this review is that unknown sources were found to account for approximately 25% of the PM10 and PM2.5 in one of the major studies based on the geometric means reported, this translates to unexplained daytime concentrations of 19.5 μg/m³ for PM10 and 8.7 μg/m³ for PM2.5. The unexplained nighttime concentrations for PM10 and PM2.5 are 13.25 μg/m³ and 6.75 μg/m³, respectively.

The results of the analysis by Wallace (17) show that, although a baseline indoor PM concentration may be predicted by ambient PM concentrations and the air exchange rate, actual indoor PM concentrations will be determined by indoor sources. The increase in the baseline PM10 concentration by

Address correspondence to J. Zhang, Environmental and Occupational Health Sciences Institute, UMDNJ-Robert Wood Johnson Medical School and Rutgers University, 170 Frelinghuysen Rd., Piscataway, NJ 08854-8020 USA. Telephone (732) 445-0158. Fax: (732) 445-0116. E-mail: jjzhang@ehsi.rutgers.edu.

*Current address Oak Ridge National Laboratory, Oak Ridge, TN.

We thank M. Robson, executive director of EOHSI, for his friendship, advice, and support, which made this research possible.

The financial support for this research was provided by the Environmental and Occupational Health Sciences Institute (EOHSI). J. Zhang and P.J. Lioy are supported in part by a NIEHS center grant ES05022-10 to EOHSI.

Received 2 June 2000; accepted 31 July 2000.
unknown indoor sources alone may have adverse health impacts on susceptible populations, such as asthmatics and the elderly. We believe that, under appropriate conditions, at least a portion of the unknown sources is likely to be the result of indoor gas to particle transformation processes, one of which may involve the reaction of ozone \(O_3 \) with unsaturated volatile organic compounds (VOCs) \(\times_{18,19} \).

Terpenes are naturally occurring, unsaturated volatile organic compounds whose sources include vegetation and trees. In indoor settings they are emitted by wood products, are used as solvents (e.g., solvents based on pine oil), and are often used as odorants in cleaning products and air fresheners. Because of their widespread use, terpenes are a result of increased use for the молекул of pine oil), and are often used as odorants in cleaning products and air fresheners.

Because of their widespread use, terpenes are commonly found in indoor air at higher concentrations than in the ambient air (20–29). Limonene, a terpene with a citrus/lemon fragrance, is among the terpenes most often identified in indoor settings.

Ozone is also commonly found in indoor air during warm weather. Weschler et al. (30) measured simultaneous indoor and outdoor \(O_3 \) measurements for 150 days during the summer at three locations in a New Jersey office complex. The indoor ozone concentrations closely tracked outdoor concentrations and were dependent on the air exchange rate. At the location with the highest air exchange rate, there were 4 days in which the indoor ozone concentration exceeded 120 ppb and 17 days in which it exceeded 80 ppb. Ozone levels frequently remained elevated for 8 hr and on some occasions for 24 hr. Similar results were obtained over a 14-month monitoring period in a commercial building in Burbank, California (31). Zhang et al. (32) found that indoor ozone concentrations tracked outdoor concentrations in six New Jersey homes. Indoor ozone concentrations in excess of 120 ppb were measured on several occasions.

The formation of secondary particles through the reaction of \(O_3 \) and terpenes has been investigated in a number of smog chamber studies (33–42). The smog chamber studies have all used static chambers that have no air exchange with the outdoor environment. Homes and offices typically exchange air with the outdoors, which affects the lifetime of indoor air pollutants. A survey of 2,884 U.S. residences found the geometric mean air exchange rate for these residences to be 0.53 exchanges/hr (43). To be of any significance in terms of indoor PM, the formation of particles must occur faster than the removal of the particle precursors by ventilation. The reaction of \(O_3 \) with limonene, for example, is relatively fast, with a reaction rate constant of \(5.1 \times 10^{-6} \) ppb/sec (or a limonene half-life of 45 min when the \(O_3 \) concentration is 50 ppb) (44), and so is likely to be important in indoor environments.

Although both terpenes and \(O_3 \) are present in indoor air, at least during a portion of the year, little information exists concerning the particle concentrations and size distributions resulting from their reaction in indoor environments. A recent study that investigated secondary particle formation caused by the reaction of outdoor-generated \(O_3 \) into an office building found that high concentrations of fine particles were formed in offices where a source of terpenes was present (18). It was clearly shown that the particles were formed by the reaction of \(O_3 \) with the terpenes, demonstrating the importance of this reaction in indoor air. Here we report the results of a series of experiments designed to further investigate the potential for secondary particle formation through the reaction of \(O_3 \) and limonene in indoor environments.

Methods

The experiments were conducted in a two-stage environmental chamber, consisting of a smaller chamber nested inside a larger one. This is a dynamic system in which air exchange occurs between the two chambers. The outer chamber is the Controlled Environmental Facility (CEF) located at the Environmental and Occupational Health Sciences Institute (EOHSI) at Rutgers University Busch Campus, Piscataway, New Jersey. The CEF is a stainless-steel exposure chamber designed for human studies and was used to maintain constant temperature and humidity for each experiment and to provide an activated carbon/HEPA-filtered air supply free from volatile organic contaminants and ozone. The CEF has a volume of 50 m\(^3\) and was operated at approximately 45 air exchanges per hour (ach) at 75°F (24°C). The inner chamber was constructed specifically for this and other indoor air quality experiments (45) and was operated at an air exchange rate below 1 ach. The inner dimensions of this chamber are 181 cm long by 120 cm wide by 115 cm high with a volume of 25 m\(^3\), a surface area of 11.1 m\(^2\), and a surface-to-volume ratio of 4.4 m\(^{-1}\). The walls of the inner chamber were lined with Teflon. The premise behind using a nested chamber approach is that the CEF will serve as a model for the ambient atmosphere and the inner chamber will serve as a model indoor environment.

In each set of the experiments, ozone was reacted with limonene, and particle formation was measured in real time. In the first series of experiments, we injected d-limonene directly into the inner chamber and reacted it with \(O_3 \) under three different conditions of relative humidity (RH): 30%, 50%, and 70%. We conducted a second series of experiments at 50% RH using a solid, lemon-scented air freshener (Wakeman Foods, Inc., Elizabeth, NJ) as the limonene source. All of the experiments were conducted at 24°C (75°F).

An estimate of peak limonene concentrations in a home due to the use of a lemon-scented furniture polish was made by applying the product to a wooden coffee table and measuring the limonene concentration over time. A wooden coffee table, 22 inch × 40 inch, was placed inside the CEF and was sprayed for 15 sec with a lemon-scented furniture polish. The polish was wiped off using a clean, cotton cloth, and the cloth and the can of spray wax were removed from the chamber immediately after the application. Limonene measurements were made for a period of 3 hr until the concentration was no longer detectable. We determined the air exchange rate of the CEF’s passive ventilation rate after the monitoring period ended. The chamber conditions were 22°C and 45%–50% RH during this experiment. A background sample was collected in the CEF before the spray wax application.

Ozone was produced using an ozone generator manufactured by Ozone Research and Equipment Corporation (Phoenix, AZ). This generator produces ozone by passing oxygen over an ultraviolet lamp. Ozone was introduced into the chamber through Teflon tubing, 0.25 inch OD, 0.125 inch ID. The ozone flow was turned off when a concentration of 60–100 ppb was reached.

We introduced limonene into the model indoor environment in two ways. In the first series of experiments, 10 mL of d-limonene (Aldrich Chemical, Inc., Milwaukuee, WI) was injected into a heated 100-mL, three-necked flask which had zero air flowing through it at a rate of 1 L/min. The air stream flowed out of the flask through a 60-cm length of Teflon tubing (0.25 inch OD, 0.125 inch ID) and entered a port in the side of the chamber. After the injection, the flask was flushed with zero air for 5 min before the air flow was turned off. In the second series of experiments, a solid lemon-scented air freshener was placed on the floor of the inner chamber to serve as a limonene emission source. This series of experiments was conducted at 50% RH. The air freshener used was unopened before the start of the experiments. We used the same air freshener for all of the experiments and redealed it between experiments. The emission rate of limonene from the air freshener may have changed during the course of the experiments.

We determined the air exchange rate between the inner chamber and the CEF by spiking the inner chamber with methane and measuring its decay over time. Methane was
introduced into the chamber from a certified

cylinder until a nominal concentration of 10

ppm was obtained. A Gow-Mac model

23–500 total hydrocarbon analyzer (Gow

Mac Instrument Co., Bethlehem, PA) was

used to monitor the methane concentration

on a real-time basis for a period of 1–2 hr.

We determined air exchange before and

immediately after each set of experiments.

For the experiments described in this paper,

the air exchange rate varied from 0.52 to

0.76 exchanges/hr.

We measured ozone concentrations using a Thermo Environmental Model 560

ozone analyzer (Thermo Environmental

Instruments, Franklin, MA). This instru-
m ent measures ozone by using the chemilu-

minescent reaction between O3 and ethylene.

We measured limonene using a Varian

Model 3300 gas chromatograph (Varian

Inc., Walnut Creek, CA) equipped with a

flame ionization detector (FID) and a 10

port gas sampling valve (Valco Instruments,

Inc., Houston, TX).

Real-time particle measurements were

made using a LASAIR model 1002 eight

channel optical particle counter (Particle

Measurement Systems, Boulder, CO). The

eight channels correspond to the following

particle size ranges (optical diameter): 0.1–0.2

µm, 0.2–0.3 µm, 0.3–0.4 µm, 0.4–0.5 µm,

0.5–0.7 µm, 0.7–1.0 µm, 1.0–2.0 µm, and

> 2.0 µm. The instrument has a nominal

sample flow rate of 50 mL/min and was op-
arated in a continuous sampling mode using

60-sec sample intervals. We synchronized

the clock on the particle counter with the clock

on the data acquisition computer, which was

connected to the real-time gas analyzers.

We estimated the mass concentration for

each particle size range by using the particle

counts and sample volume. For a given size

range, we estimated the volume of a single

particle using the geometric mean of the

minimum and maximum diameters. The

geometric mean was used instead of the

arithmetic mean based on the assumption

that the particles within the size range were

log-normally distributed. We calculated the

total particle volume for the size range by

multiplying the volume of a single particle

by the number of particles counted during

the sample interval. An estimate of the total

mass for the size interval was made by multi-

plying the total particle volume by the par-

ticle density. Dividing the result by the air

sample volume resulted in the estimate of

the mass concentration for the size range.

We assumed that the particles were spherical

with unit density.

Results and Discussion

An increase in the 0.1–0.2 µm particle con-

centration began in all of the experiments as

soon as O3 was introduced into the cham-

ber. This is not always apparent in the data

plots, especially for the initial O3 injec-

tions, due to the scale of the ordinate. Measurable

particle formation and growth occurred

almost exclusively in the 0.1–0.2 µm and

0.2–0.3 µm size fractions in all of the experi-

ments. These two size fractions combined

account for 99.50% to 99.99% of the par-

ticle number (Dp > 0.1 µm) present at the

peaks concentrations. (Unfortunately, we did

not have an instrument available to measure

ultramine particles with Dp < 0.1 µm.)

Results of the d-limonene injection ex-

periments The results of the experiments in

which d-limonene was injected into the cham-

ber at the three different conditions of

relative humidity are presented in Figure 1. A

significant increase in particle concentrations

in the 0.1–0.2 µm size range occurred during

all three experiments. The sharp decline in

the particle concentration at the end of each

of the three plots is due to the flushing of the

chamber with fresh air at the end of the par-

ticle growth measurement period. The

numeric values above the plot of the

0.1–0.2 µm particles are estimates of the par-

ticle mass concentration corresponding to the

peak particle concentrations (see “Methods”).

Each of the three experiments produced

a large number of particles between 0.1–0.3

µm in diameter. As can be seen in Figure 1,

significant particle growth occurred over

time in the 0.2–0.3 µm size range in the experi-

ments at 50% and 70% RH. The

increase in the 0.2–0.3 µm particle concen-

tration corresponds to a decrease in the

0.1–0.2 µm particle concentration in both

experiments, indicating the occurrence of

particle growth processes. Figure 2 shows the

mass concentration estimates resulting from

the O3 injection at 110 min for the two

smallest particle size ranges at 50% RH

(Figure 1B). The data at 120 min represent

the mass concentrations at the time that cor-

responds to the peak concentration in the

0.1–0.2 µm size range. The data at 138 min

represent the mass concentrations at the time

that corresponds to the peak particle concen-

tration in the 0.2–0.3 µm size range. The

absolute difference between the mass concen-

tration at 120 min and 138 min for each size

range is also shown in Figure 2. The fact that

the loss in mass concentration of the 0.1–0.2

µm size range is less than the gain in mass

concentration of the 0.2–0.3 µm size range is

consistent with continued condensation/parti-

tioning in both size ranges.

Of the three experiments, the largest

increase in the particle number concentra-

tion in the 0.2–0.3 µm size range occurred at

50% RH and the least at 30% RH. There was

no increase in the particle number concen-

tration in this size range as a result of the

initial ozone injection for any of the RH

conditions tested. The second ozone injec-

tion resulted in an increase in the particle

number concentration in this size range at

30% and 50% RH but not at 70%. The

third ozone injection resulted in an increase

in concentration in this size range at both

50% and 70% RH. There was no third

ozone injection at 30% RH. A comparison

of Figure 1A, B, and C shows that there

were differences in both the number and
timing of the O3 injections. The greatest

increase in particle number concentration

in the 0.2–0.3 µm size range resulted when

three O3 injections occurred over a period of

approximately 80 min (Figure 1B), followed
by a smaller increase when three O₃ injections occurred over 45 min (Figure 1C) and a very small increase when two O₃ injections occurred over 80 min (Figure 1A). These observations indicate that the increases in the number of 0.2–0.3 µm particles were not the direct result of the reaction of ozone with limonene but via the growth of smaller particles. Because the data are limited to particles >0.1 µm in diameter, there is no measure of particle concentration in the ultrafine particle fraction, which is undoubtedly of great importance in explaining particle growth in the measureable size fractions.

As shown in Figure 1, the initial concentrations of limonene during the first (30% RH) and the second (50% RH) experiments were up to two times higher than those for the third experiment (70% RH). However, the highest particle (0.1–0.2 µm) number concentrations were measured in the third experiment. This result suggests that relative humidity may play a role in the formation of particles via the ozone-limonene reaction. However, this interpretation must be made with caution because the experimental conditions (i.e., the timing and number of ozone injections) were slightly different for the three humidities examined.

We have quantitatively examined the effect of relative humidity on particle growth during that portion of the experiment that is directly comparable for each of the humidities examined—namely, the first 29 min after the initial ozone injection. (Direct comparisons are not valid beyond this point because of differences in the timing of subsequent ozone injections.) For this period, the limonene data points have been fitted with a continuous curve. The ozone concentrations at 1-min intervals were then multiplied by the corresponding fitted limonene concentrations. These values were summed and the resulting value, Σ[O₃][limonene], is directly proportional to the amount of reaction that has occurred during this 29-min period. The particle counts in the 0.1–0.2 µm diameter size-range were also summed for the same 29-min period, Σ[0.1 µm particles], and this sum was divided by Σ[O₃][limonene]. The results are presented in Table 1. The indicated ratio is similar for the experiments conducted at 30% and 50% (1.04 vs. 1.03), but is somewhat larger for the experiment conducted at 70% RH (1.21). That is, the results in Table 1 are consistent with a modest relative humidity effect on the growth of 0.1–0.2 µm particles. Such a result is expected for a mechanism in which Criegee biradicals can react with water to form low-volatility oxidized organics, including organic acids (46). These results are also consistent with the recent findings by Tobias et al. (47) regarding the effect of relative humidity on the chemical composition of secondary organic aerosol formed from reactions of 1-tetradecene and ozone.

Results of the lemon-scented air freshener experiments. The results of the two particle formation experiments using the solid air freshener are presented in Figures 3 and 4. The limonene concentrations in the chamber resulting from the air freshener were lower than the concentrations achieved by the direct injections of d-limonene and resulted in lower particle concentrations. There are no limonene data in Figure 4 due to an equipment failure. The estimated mass concentrations are shown at the peaks in the plot of the 0.1–0.2 µm particles.

Although particles were formed immediately upon the first ozone injection, there was a time lag of approximately 30 min before any appreciable growth occurred in the 0.1–0.2 µm size range. There was no time lag for particle growth for subsequent ozone injections. There were no measurable particles formed in the 0.2–0.3 µm size range during the experiment shown in Figure 3. The experiment presented in Figure 4 shows significant particle growth in the 0.2–0.3 µm size range resulting from the fourth ozone injection. The estimated particulate mass concentration at the peak of the 0.2–0.3 µm particle concentration was 23.5 µg/m³. As in the case of the direct limonene injections, the increase in the 0.2–0.3 µm particle concentration corresponds to a decrease in the 0.1–0.2 µm particle concentration, indicating the occurrence of particle growth.

The major difference between the experiment shown in Figure 3 and the one shown in Figure 4 is the duration. The third O₃ injection in the second experiment occurred 453 min after the air freshener was placed in the chamber (Figure 4), compared to 218 min in the first air freshener experiment (Figure 3), and produced more than twice the particle concentration in the 0.1–0.2 µm size range than the first experiment. The fourth O₃ injection was made 586 min after the air freshener was placed in the chamber, 460 min after the first O₃ injection, and resulted in the production of a significant particle concentration in the 0.2–0.3 µm size range (Figure 4).

The above results are consistent with the theory that aerosol yield in a given ozone/terpene system is not constant but varies with the existing particle surface area/unit volume. The greater the existing surface area of airborne particles, the greater the yield (48).

Results of the spray wax experiment. The limonene concentrations measured over time after the spray wax application are presented in Figure 5. The highest limonene concentration measured was 175 ppb (975 µg/m³). This concentration is higher than most indoor limonene concentrations reported in the literature (20–29); however, the data reported in the literature are typically derived from integrated samples, which do not reflect information about short-term peak concentrations.

We determined the decay rate of the limonene in the chamber after the injection by plotting the natural log of the limonene concentration against time. The slope of the regression line yields a decay rate of 0.52/hr. The air exchange rate in the chamber was determined to be 0.76 exchanges/hr. This indicates the continued limonene emission (net rate = 0.24/hr) from the coffee table after the peak limonene concentration was reached. The data collected suggest that peak

![Figure 2](image1.png)

Figure 2. Growth in the mass of 0.2–0.3 µm particles resulting from condensation onto and/or partitioning into 0.1–0.2 µm particles at 50% RH (Figure 1B).

![Figure 3](image2.png)

Figure 3. Particle formation resulting from injecting ozone into the chamber containing a lemon-scented, solid air freshener: multiple particle formation events. The numerical values above the solid line are estimates of the particle mass concentration (Dₐ < 0.3 µm) corresponding to the peak particle concentrations (based on unit density). The inner chamber was operated at an air exchange rate of 0.65 exchanges/hr during this experiment.

Table 1. The sum of particle concentrations (0.1–0.2 µm size range) at 1-min intervals divided by the sum of [O₃][limonene] at corresponding 1-min intervals.*

Relative humidity (%)	Σ [0.1 µm particles]	Σ [O₃][limonene]
30	1.04	1
50	1.03	1
70	1.21	1

*The resulting quotient is for the first 29 min of each experiment following the initial injection of ozone.
limonene concentrations in homes and offices may easily exceed 100 ppb through the use of lemon-scented furniture polish and that the waxed surfaces may emit limonene for a period of time after the wax is applied. If the time at which this product is used were to correspond with a period of elevated O$_3$ in the home or office, significant particle formation and exposure is likely to result.

Comparison to previous study. The overall results of the present research are in agreement with the results of a study investigating particle formation in an office building resulting from O$_3$/terpene reactions (18). In that investigation, a terpene source was placed in one of two adjacent offices. Ozone was introduced to the peak particle concentrations (based on unit density). The inner chamber was operated at an air exchange rate of 0.52 exchanges/hr during this experiment.

The products of the ozone–limonene reaction to secondary particle formation over forested areas. The common occurrence of O$_3$ in indoor air coupled with the common use of terpene-based products is likely to produce secondary aerosols in indoor air as well.

When the findings of the ambient air investigations into secondary particle formation are considered in conjunction with the findings of the present research, it is clear that particle formation can be a significant problem in indoor environments. The study by Wechler and Shields (49) examined the contribution of the ozone–limonene reaction to indoor particle growth under conditions of low and high ventilation rates. The authors found that the concentrations of 0.1–0.2 µm particles were much larger at the lower air exchange rates even though the ozone concentrations were higher at the higher air exchange rates. Therefore, even though lower ventilation rates are common in many indoor environments, the potential for indoor ozone–terpene reactions to contribute to submicron particle exposure is significant. Maintaining adequate ventilation in indoor environments can reduce the exposure to secondary particle formation.
of this research and the work by Weschler and Shields (18), it is clear that the impact of elevated ambient O_3 concentrations on indoor particle concentrations is 2-fold. First, the baseline indoor particle concentration increases due to the penetration of elevated ambient concentrations of fine particles into indoor air (provided sufficient concentrations of VOCs with particle-forming potential are present in ambient air). Second, the indoor particle concentration increases due to the secondary particles formed by the reaction of O_3 (present by outdoor to indoor transport) with indoor sources of unsaturated volatile organic compounds, such as limonene. Exposure assessments based on ambient air monitoring data alone are likely to underestimate indoor particle exposures in buildings where the precursors for secondary particle formation are present.

Conclusions and Recommendations

The experiments conducted in this study produced significant number and mass concentrations of submicron particles as a result of the ozone–limonene reaction. The common occurrence in indoor air of both outdoor-generated O_3 and indoor-generated limonene, their fast rate of reaction, and particle-forming potential is well documented. This study shows a clear potential for secondary particle formation in indoor environments through the ozone-limonene reaction.

The results of the present research, along with the results of the study conducted by Weschler and Shields (18) show that the potential exists for the accumulation of PM_{2.5} in excess of 20 µg/m³ in indoor air as a result of using terpene-based products in the presence of elevated outdoor-generated O_3 concentrations. When the increase in the baseline particle concentration infiltrating from ambient air is considered in addition to the particle concentration resulting from indoor air chemistry, the impact of outdoor O_3 on total particle concentrations in indoor air is significant. In view of the epidemiologic evidence of adverse health effects of fine PM and the fact that indoor sources of particles contribute a significant fraction of the total particle exposure, it is important to obtain an understanding of the physicochemical properties and concentrations of the particles formed by gas-to-particle conversion processes occurring in both ambient and indoor air. Determining the contribution of secondary aerosols to overall particle exposure is necessary to determine the efficacy of the mass-based PM_{2.5} standards in protecting human health because the indoor particles generated from ozone–terpene reactions can vary coincidently with the variations of outdoor summertime fine particles. Studies are needed that track indoor, outdoor, and personal particle concentrations as well as indoor O_3 and indoor/outdoor particle counts and size distributions. Such studies will also provide information as to how much of the unexplained fraction of indoor particles, as presented by Wallace (17), is the result of secondary particle formation. Because the ultrafine particle fraction (≤0.1 µm) is undoubtedly of great importance in explaining particle growth in the size fractions commonly measured, it is important to include measurements of ultrafine particles in future studies.

References and Notes

1. U.S. Environmental Protection Agency. Exposure Factors Handbook, Vol 3: Activity Factors. EPA600P95002FC. Washington, DC,U.S. EPA, 1996.
2. Dockery D, Pope A. Epidemiology of acute health effects: summary of time-series studies. In: Particles in Our Air: Concentrations and Health Effects (Wilson R, Spengler D, eds). Cambridge, MA:Harvard University Press, 1996:123–147.
3. Pope A, Dockery, D. Epidemiology of chronic health effects: cross-sectional studies. In: Particles in Our Air: Concentrations and Health Effects (Wilson R, Spengler J D, eds), Cambridge, MA:Harvard University Press, 1996:149–187.
4. Fainley D. Daily mortality and air pollution in Santa Clara County, California: 1989–1996. Environ Health Perspect 107:637–641 (1999).
5. Ilabaca M, Delta I, Campos E, Villarre J, Teles-Rejo M M, Romieu I. Association between the levels of fine particulate and emergency visits for pneumonia and other respiratory illnesses among children in Santiago Chile. J Air Waste Manag Assoc 49:154–163 (1999).
6. M. Connel R, Berhane K, Gilliland F, London S J, Vora H, Avol E, Gauderman W J, Margolis H G, Lurmann F, Thomas DC, et al. Air pollution and bronchitic symptoms in Southern California children with asthma. Environ Health Perspect 107:757–760 (1999).
7. Naehler LP, Holford TR, Beckett WS, Belanger K, Triche EW, Bracken MB, Leaderer BP. Healthy women’s PEF variations with ambient summer concentrations of PM_{10}, PM_{2.5}, SO_2, CO, and O_3. Am J Respir Crit Care Med 160:117–125 (1999).
8. Liao D, Creason J, Shy C, Williams R, Watts R, Zweidinger R. Daily variation of particulate air pollution and poor cardiac control in the elderly. Environ Health Perspect 107:521–525 (1999).
9. Norris G, Young P, S.Koenig J Q, Larson TV, Sheppard L, Stout J W. An association between fine particles and asthma emergency department visits for children in Seattle. Environ Health Perspect 107:489–493 (1999).
10. Neas LM, Dockery DW, Koutrakis P, Spiezer FE. Fine particles and peak flow in children, acidity versus mass. Epidemiology 10:550–559 (1999).
11. Burnett RT, Smith-Dorrin M, Steh D, Cakmak S, Brok JR. Effects of particulate and gaseous air pollution on cardiopulmonary hospitalizations. Arch Environ Health 54:130–139 (1999).
12. Gold DR, Damokosh A, Pope C A, Dockery DW, M Chanell WF, Serrano P, Retama A, Castillojos M. Particulate and ozone pollutant effects on the respiratory function of children in Southwest Mexico City. Epidemiology 10:18–16 (1999).
13. Sheppard L, Levy D, Norris G, Larson TV, Koenig J Q. Effects of ambient air pollution on nonelderly hospital admissions in Seattle, Washington, 1987–1994. Epidemiology 10:23–30 (1999).
14. Borja-Aburto VH, Castillojos M, Gold DR, Bierzinski S, Loomis D. Mortality and ambient fine particles in southwest Mexico City, 1988–1995. Environ Health Perspect 106:849–855 (1998).
15. Kaiser J. Air pollution. Evidence mounts that tiny particles can kill [News]. Science 283:1999.
16. U.S. Environmental Protection Agency. National ambient air quality standards for particulate matter; final rule. Fed Reg 62:38651–38703 (1997).
17. Wallace L. Indoor particles: a review. J Air Waste Manag Assoc 46:98–126 (1996).
18. Weschler C, Shields HC. Indoor ozone/terpene reactions as a source of indoor particles. Atmos Environ 33:2353–2362 (1999).
19. Weschler C, Shields HC. Measurements of the hydroxyl radical in a manipulated but realistic indoor environment. Environ Sci Technol 31:3718–3722 (1997).
20. Weschler C, Shields HC. Indoor concentrations of volatile organic compounds at a building with health and comfort complaints. Am Ind Hyg Assoc J 51:261–268 (1990).
21. Jenks P L, Phillips T J, Mulberg E H, Hui P S. Activity patterns of Californians: use of and proximity to indoor pollutant sources. Atmos Environ 26:2141–2148 (1992).
22. Rotterdam H, Wager PA, Schlatter C. Volatile organic compounds and some very volatile organic compounds in new and recently renovated buildings in Switzerland. Atmos Environ 26:2219–2225 (1992).
23. Shields H, Weschler CJ. Volatile organic compounds measured at a telephone switching center from 5/30/85 to 6/16/86: a detailed case study. J Air Waste Manag Assoc 42:792–804 (1992).
24. Brown SK, Hodgson AT, Fisk WJ, Modell MJ, Brinke J T. Volatile organic compounds in twelve California office buildings: classes, concentrations and sources. Atmos Environ 28:3557–3565 (1994).
25. Otson R, Feinle P, Tran Q. VOCs in representative Canadian residences. Atmos Environ 28:3563–3569 (1994).
26. Otson R, Feinle P, Shields HC, Fleischer DM, Weschler CJ. Comparisons among VOCs measured in three types of U.S. commercial buildings with different occupant densities. Indoor Air 6:2–17 (1996).
27. Weschler C, Shields HC, Naik DV. Indoor ozone exposure sources. J Air Pollut Control Assoc 39:1565–1568 (1989).
28. Weschler C, Shields HC, Naik DV. Indoor chemistry involving O_3, NO, and NOx as evidenced by 14 months of measurements at a site in California. Environ Sci Technol 28:2120–2134 (1994).
29. Wang W, Lioy P J. Sources of organic acids in indoor air: a field study. J Expo Asses Environ Epidemiol 4:25–47 (1994).
30. Schuetzle D, Rasmussen RA. The molecular composition of secondary aerosol particles formed from terpenes. J Air Pollut Control Assoc 28:236–240 (1978).
31. Grosjean D, Williams E, Seinfeld, J H. Atmospheric oxidation of selected terpenes and related carbonyls: gas-phase carbonyl products. Environ Sci Technol 26:1526–1533 (1992).
32. Grosjean D, Williams EL, Grosjean E, Andjil M J, Seinfeld J H. Atmospheric oxidation of biogenic hydrocarbons: Reaction of ozone with ω-pi,piene, ω-pimene and trans-caryophyllene. Environ Sci Technol 27:2754–2758 (1993).
33. Hoffmann T, Oudm J R, Bowman F, Collins D, Klockow D, Flagan RC, Seinfeld J H. Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J Atmos Chem 26:169–222 (1997).
34. Palen E J, Allen DT, Pandis SN, Paulson SE, Seinfeld J H, Flagan RC. Fourier transform infrared analysis of aerosol formed in the photo-oxidation of isoprene and ω-pi,piene. Atmos Environ 26:1229–1251 (1992).
35. Jiang G, Kamens RM. Newly characterized products and assessment of secondary aerosol particles formed from the reaction of α-pi,piene with ozone. Atmos Environ 33:459–474 (1999).
36. Pandis SN, Paulson SE, Seinfeld J H, Flagan RC. Aerosol formation in the photooxidation of isoprene and beta-pi,piene. Atmos Environ 29:1007 (1999).

1144

VOLUME 108 | NUMBER 12 | December 2000 • Environmental Health Perspectives
40. Virkkula A, Van Dingenen R, Raes F, Hjorth J. Hygroscopic properties of aerosol formed by oxidation of limonene, alpha-pinene and beta-pinene. J Geophys Res 104:3569–3579 (1999).
41. Yu J, Cocker DR, Griffin RJ, Flagan R, Seinfeld JH. Gas-phase ozone oxidation of monoterpenes: gaseous and particulate products. J Atmos Chem 34:207-258 (1999).
42. Glasius M, Lahaniati M, Calogirou A, Bella DD, Jensen NR, Hjorth J, Kotzias D, Larsen BR. Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone. Environ Sci Technol 34:1001-1010 (2000).
43. Murray DM, Burmaster DE. Residential air exchange rates in the United States: empirical and estimated parametric distributions by season and climatic region. Risk Anal 15:459-465 (1995).
44. Atkinson R, Hasegawa D, Aschmann SM. Rate constants for the gas-phase reactions of ozone with a series of monoterpenes and related compounds at 298K. Int J Chem Kinet 22:871-887 (1990).
45. Wainman T. Use of a Two Tiered Dynamic Chamber to Investigate Indoor Air Chemistry [PhD Thesis]. New Brunswick, NJ: Rutgers University, 1999.
46. Finlayson-Pitts BJ, Pitts JN. Chemistry of Upper and Lower Atmosphere: Theory, Experiments, and Applications. London: Academic Press, 1999.
47. Tobias Hj, Docherty KS, Beving DE, Ziemann PJ. Effect of relative humidity on the chemical composition of secondary organic aerosol formed from reactions of 1-tetradecene and O3. Environ Sci Technol 34:2116-2125 (2000).
48. Turpin BJ, Huntzicker J. Secondary formation of organic aerosol in the Los Angeles Basin: a descriptive analysis of organic and elemental carbon concentrations. Atmos Environ 25A:207-215 (1991).
49. Weschler CJ, Shields HC. The influence of ventilation on reactions among indoor pollutants: modeling and experimental observations. Indoor Air 10:92-100 (2000).
50. Pratsinis S, Novakov T, Ellis EC, Freidlander SK. The carbon containing component of the Los Angeles aerosol: source apportionment and contributions to the visibility budget. J Air Pollut Control Assoc 34:643-650 (1984).
51. Schauer J, Rogge WF, Hildemann LM, Mazurek MA, Cass GR. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 30:3837-3850 (1996).
52. Kavouras IG, Mihalopoulous N, Stephanou EG. Formation of atmospheric particles from organic acids produced by forests. Nature 395:683-686 (1998).
53. Kavouras IG, Mihalopoulous N, Stephanou EG. Formation and gas/particle partitioning of monoterpenes photo-oxidation products over forests. Geophys Res Lett 26:55-58 (1999).

Environmental Health Perspectives (EHP) publishes monographs on important environmental health topics and an annual review issue as supplements to the monthly journal. The June supplement (Volume 108, Supplement 3) consists of two monographs focusing on children’s environmental health issues. The theme of the first monograph is the association between exposure to toxic chemicals and various neurodevelopmental disorders such as learning disabilities, intellectual retardation, dyslexia, attention deficit/hyperactivity disorder, autism, and propensity to violence. The theme of the second monograph is the effect of the timing of the exposure on the development of various childhood disorders.