Delta and jagged are candidate target genes of RNAi biopesticides for the control of Nilaparvata lugens

Xifa Yang1†, Shaokai Liu2†, Wenhui Lu1, Mengfang Du1, Zhuangzhuang Qiao1, Zhen Liang1, Yiting An1, Jing Gao1 and Xiang Li1*

1State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China, 2Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture/College of Plant Protection, Northwest A&F University, Yangling, China

The brown planthopper (BPH; Nilaparvata lugens) is an important pest in rice cultivation, and chemical pesticide over-use and ineffectiveness of existing Bt transgenic rice against piercing-sucking insects make novel control methods necessary. RNA interference (RNAi) biopesticide is a new type of product with high efficiency and specificity and are simple to use. The Notch signaling pathway has extensive and important physiological functions and plays a key role in the development of insects. In this study, two key ligand genes of the Notch signaling pathway, delta (dl) and jagged (jag), were selected and their lethal effects and functional analysis were systematically evaluated using a stable short-winged population (Brachypterous strain) and a long-winged population (Macropterous strain) of BPHs. The full-length coding sequences of Nldl and Nljag comprised 1,863 and 3,837 base pairs, encoding 620 and 1,278 amino acids, respectively. The nucleic acid sequences of Nldl and Nljag were identical between the two strains. The expression levels of Nldl and Nljag were relatively high in the head of the nymphs, followed by those in the abdomen. Through RNAi treatment, we found that injection of BPH nymphs of both strains with dsNldl (10–50 ng/nymph) or dsNljag (100 ng/nymph) produced lethal or teratogenic effects. dsRNA treatment showed excellent inhibitory effects on the expression of target genes on days 1 and 5, suggesting that RNAi rapidly exhibits effects which persist for long periods of time in BPHs. Taken together, our results confirm the potential of Nldl and Nljag as target genes of RNAi biopesticides, and we propose optimized dosages for the control of BPHs.

KEYWORDS
Nilaparvata lugens, RNAi biopesticide, Notch signaling pathway, delta, jagged
Introduction

The brown planthopper (BPH; *Nilaparvata lugens*, Hemiptera: Delphacidae) is a notorious pest in rice cultivation which can cause devastating damage. Adults and nymphs prefer to gather at the base of the rice plexus and suck the sap from stems and leaves, resulting in the loss of rice nutrients and decreased yield and quality (Alagar et al., 2007; Vanitha et al., 2011). In addition to direct feeding, BPHs are also a vector of pathogens including *rice grassy stunt virus*, *rice ragged stunt virus*, and *rice wilted stunt virus* (Hibino, 1995; Li et al., 2011). Honeydew excreted by BPHs contains large amounts of sugar, which is highly conducive to the propagation of bacteria and fungi, leading to mildew and wilting of rice (Sōgawa, 2003; Wei et al., 2010). Depending on habitat quality, adult BPHs can develop into a highly mobile long-winged morph or a highly fecund short-winged morph (Liu et al., 2020; Li et al., 2021). The differential formation of two wing morphs aggravates the damage caused by BPH and increases the difficulty of controlling its spread. In normal years, BPH infestation can cause a reduction of 10%–20% in rice production, and in severe cases, it can result in crop failure (Heong and Hardy, 2009).

RNA interference (RNAi) is a conserved regulatory mechanism mediated by RNA in eukaryotes. RNAi effectors target genes paired with homologous sequences and effectively suppress gene expression at the transcriptional or post-transcriptional level (Carthew and Sontheimer, 2009; Chen et al., 2010). RNAi biopesticide is a new type of product with high efficiency and specificity and which are easy to use, thus they are expected to constitute a scientific and technological revolution and facilitate sustainable agricultural development (Li et al., 2022). RNAi biopesticides can specifically interfere with the expression of designated genes of agricultural pests, pathogens, and weeds, thereby hindering their growth or preventing them from exerting harmful effects. In 2002, the feasibility of RNAi technology for gene interference in insects was first demonstrated using *Hemolin*-RNAi in *Hyalophora cecropia* (Bettencourt et al., 2002). Since then, numerous studies have demonstrated that exogenous synthesized dsRNA applied through feeding, injecting, or spraying can induce RNAi effects in various insects (Kim et al., 2015; Vogel et al., 2019).

Genes that are essential for insect growth and development can serve as targets for RNAi biopesticides. A very wide range of targets available for RNAi biopesticides can decrease the upfront development cost, which constitutes an important advantage of RNAi-based pesticides, compared to chemical pesticides. In a previous study, 290 insect genes were selected and silenced, and most of them led to a lethal effect (some could also cause larval maldevelopment), thus they may serve as insecticidal targets (Baum et al., 2007). Similarly, 100 potential target genes were isolated from random genes of *Tribolium castaneum*, and dsRNA injection inhibited the expression of these genes at the larval or pupal stage and resulted in >90% mortality (Ulrich et al., 2015).

The Notch protein is a heterodimer formed by a non-covalent bond between an extracellular domain subunit and an intracellular domain subunit (Kopan and Ilagan, 2009). Notch is a highly conserved transmembrane protein of vertebrates and invertebrates that can transmit signals unidirectionally and regulate cell proliferation, differentiation, metabolism, and apoptosis through collateral inhibition (Palomero et al., 2006; Lewis et al., 2007; Joshi et al., 2009). During insect ontogeny, Notch can affect normal development of the embryonic ectoderm, mesoderm, central nervous system, germ cells, eyes, wings, etc. (Bray, 2006; Irles et al., 2016; Hu et al., 2022). If Notch is abnormally expressed in the early stage of embryonic development, it may lead to abnormal embryonic differentiation and death (Kidd and Lieber, 2016).

Notch ligands are transmembrane proteins located on the surface of cells in close proximity to the Notch receptors, and they are also composed of extracellular and intracellular domains (Schroeter et al., 1998). When performing its function, Notch must bind to a ligand protein, i.e., Delta (D1) or Jagged (Jag), and induce a conformational change to release the intracellular subunit. The modified intracellular subunits are transported into the nucleus and act as transcription factors to regulate the expression of downstream genes (Struhl and Adachi, 1998; Mumm et al., 2000; Mumm and Kopan, 2000; Gordon et al., 2007). Notch has both cis- and trans- regulation modes on its ligands. In addition, Notch exerts cis–inhibition effects on Jag, suggesting complex and diverse functions of Notch and emphasizing the critical role of ligands in signal transduction through the Notch signaling pathway (Matsuda and Chitnis, 2009; Fiuza et al., 2010; Yamamoto et al., 2012; Fleming et al., 2013).

In the current study, the cDNA sequences of the Notch ligand genes *Ndld* and *Nljag* were cloned and analyzed. Furthermore, the nucleotide homology and phylogenetic relationships of *Ndld/Nljag* between BPH and several common agricultural insects were investigated. The spatiotemporal expression profiles of *Ndld* and *Nljag* in BPH nymphs were measured by qPCR, and the effects of RNAi-*Ndld/Nljag* on the development and lethality of BPH were investigated by microinjection method. Taken together, this study evaluated the potential application of *Ndld* and *Nljag* as an RNAi biopesticides for BPH control.

Materials and methods

Insects

BPHs were collected from paddy fields of the Huazhong Agricultural University, Wuhan, China. According to Morooka
and Tojo (1992), BPHs were reared in growth chambers containing rice seedlings (variety: Taichung Native 1) and were screened for more than seventy successive generations to cultivate and obtain a stable long-winged population (Macropterous strain, long-winged rate approximately 85% ± 5%) and a short-winged strain (Brachypterous strain, short-winged rate approximately 95% ± 5%).

TABLE 1 Primers used in the current study.

Gene name (Genbank ID)	Primer sequence (5'-3')	Product size
qPCR primers		
Nlactin (EU179846.1)	F: CAAACCGTGAGAAAGATGACC	
 | R: GATGTCAAGCCGACTTTTCA
 | 296 bp |
| Nldelta (KP196804) | F: TCGCCAATCTGAAGCTTCTAGT
 | R: GTCTGGCAAGTGCGGTGTTAGT
 | 91 bp |
| Nljagged (KP196803) | F: GTCTGGCAAGTGCGGTGTTAGT
 | R: GTCTGGCAAGTGCGGTGTTAGT
 | 130 bp |
| **dsRNA primers** | | |
| daNldelta (KP196804) | F: T7: ATGCCCTTCTGGGTGTAGTA
 | R: T7: GGGTTGCTGGTCTGGGACA
 | 537 bp |
| daNljagged (KP196803) | F: T7: GACGAGATTGAGCCATAC
 | R: T7: GACGAGATTGAGCCATAC
 | 466 bp |
| dsGFP (U76561) | F: T7: GTAAAGCGCCAAGGTCAG
 | R: T7: TGGCCGCTGATGACGCTAG
 | 451 bp |

T7 sequence: GGATCCTAATACGACTCACTATAAG.
winged rate approximately 100%). The rearing conditions included a photoperiod of 14 h, 27 ± 1°C, and 60% ± 10% relative humidity. The BPHs of the Brachypterous and Macropterous strain tested in this study were generously donated by Professor Hongxia Hua from Huazhong Agricultural University.

cDNA cloning and sequence analysis

Total RNA was isolated and extracted from a mixture of BPH adults and nymphs at different instar stages of the Brachypterous or Macropterous strain using TsingZol Reagent (Tsingke Biotech, Beijing, China). cDNA synthesis reactions were performed using

Figure 2

Nucleotide and deduced amino acid sequences of Nljagged. The target sequence of dsNljagged is indicated in grey; the fragment amplified by qPCR is indicated by a box.
High-accuracy sequences were amplified with 2 × KOD PCR MasterMix (Bioman, Beijing, China). The correctness of PCR products was confirmed by sequencing of Tsingke Biotech. The experimental reaction parameters refer to the default parameters given by the kits. Nucleic acid homology analysis was performed in the Blast module (https://blast.ncbi.nlm.nih.gov/Blast.cgi) of the National Center for Biotechnology Information (NCBI) database. Expasy (http://web.expasy.org) was employed to predict the sequence structures of \(N\text{ldl} \) and \(N\text{ljag} \). MEGA 11.0 software was used to perform the sequence alignment and phylogenetic analysis with 1,000 replicates of the bootstrap test. STRING (https://cn.string-db.org/) was used to identify physical interactions and co-expression of the test proteins.

qRT-PCR

BPH nymphs were divided into three body segments, i.e., the head, thorax, and abdomen, and additional appendages: the legs. qPCR was employed to investigate the expression profiles of \(\text{Nldl} \) and \(\text{Nljag} \) in these tissues of second- to fifth-instar BPH nymphs. Each sample contained 50 corresponding nymph tissues of the Macropterous strain or the Brachypterous strain. Total RNA was isolated and extracted from different tissues of BPHs using TRIzol reagent (Sangon Biotech, Shanghai, China). cDNA synthesis was performed using 1 \(\mu \)g total RNA and a TransScript Uni All-in-One First-Strand cDNA Synthesis SuperMix for qPCR (TransGen Biotech, Beijing, China), according to the manufacturer’s instructions. The amplification efficiencies of the qPCR primers of \(\text{Nldl} \) and \(\text{Nljag} \) were determined by using more than five concentrations of cDNA templates for amplification on QuantStudio3 Real-time PCR system. Detection of gene expression levels by qPCR was performed on an Applied Biosystems 7,500 Fast Real-time PCR system using the Hieff qPCR SYBR Green Master Mix (Yeasen Biotech, Shanghai, China) according to the manufacturer’s instructions. The thermal cycle conditions for qPCR were 95°C for 5 min, followed by 40 cycles of 95°C for 10 s and 60°C for 30 s. The experimental reaction parameters refer to the default parameters given by the kits. The housekeeping gene \(\text{Nlactin1} \) (GenBank accession EU179846.1) was used as a reference. The relative expression level of the test gene was calculated and compared according to Livak and Schmittgen (2001). Signal intensities of the target genes are presented as average values. Each sample was examined using three independent replicates, and each treatment was performed using three biological replicates. qPCR primers are listed in Table 1.

dsRNA synthesis and microinjection

The PCR template (cDNA) for \(\text{Nldl} \) and \(\text{Nljag} \) was amplified using gene-specific primers containing T7 polymerase sites and with 2 × Taq Plus PCR Master Mix (Solarbio, Beijing, China). dsRNA was generated using a T7 RNAi Transcription Kit (Vazyme Biotech, Nanjing, China) and was dissolved in diethyl pyrocarbonate-treated. Third-instar nymphs were injected with ds\(\text{Nldl} \) (10, 25, or 50 ng/nymph) or ds\(\text{Nljag} \) (100 ng/nymph) dissolved in 20 nl volume of the nuclease-free water on the second day after eclosion from the ventral side of the thorax using a Nanoliter 2010 microinjector (WPI, Sarasota, United States). An equivalent amount of ds\(\text{GFP} \) (GenBank accession U76561) was injected as a control. The survival
numbers of injected BPHs were recorded daily until adult emergence. Three replicates were used per treatment, and each replicate comprised 50 nymphs. The whole bodies of five treated-BPH were sampled randomly on the first and fifth day after injection (corresponding to third- and fifth-instar nymphs) for evaluating RNAi delivery efficiency by qPCR. Adult phenotypes were observed and photographed using a stereomicroscope (Olympus sx16, Tokyo, Japan). Primers used for dsRNA synthesis are shown in Table 1.

Statistical analyses

Statistical analyses were performed using SPSS 20.0 software (IBM, Armonk, United States). Differences between treatments regarding RNAi efficiency and survival responses were compared using Student’s t-tests. Expression profiles of *Nldl* or *Nljag* in the same tissue of BPH nymph at different instars were analyzed using one-way analysis of variance followed by Tukey’s test for multiple comparisons. Statistical significance is reported at *p* < 0.05.

Results

Sequence cloning and analysis of Nldl and Nljag

cDNA of *dl* and *jag* was amplified using BPHs of the Brachypterous and Macropterous strain, respectively. The full-length coding sequence of *Nldl* comprised 1,863 base pairs (bp), encoding 620 amino acids, with a molecular weight of 67.25 kDa (Figure 1). The *Nljag* full-length coding sequence comprised 3,837 bp, encoding 1,278 amino acids; its molecular weight was 137.83 kDa (Figure 2). The nucleic acid sequences of *Nldl* and *Nljag* were identical between the two strains.

Phylogenetic analysis of delta and jagged

The amino acid sequences of Dl and Jag of 15 agriculturally important insects (including natural enemies and pests) of the Hemiptera, Coleoptera, Diptera, Orthoptera, Hymenoptera, etc. were collected and used for phylogenetic analyses. The
evolutionary pattern of Nldl and Nljag did not produce a consistent picture. With regard to Dl, N. lugens appeared to be more closely related to Drosophila melanogaster and Homalodisca vitripennis (Figure 3A). However, the Jag sequence of N. lugens suggested that it was more closely related to Hemipteran insects such as H. vitripennis, Bemisia tabaci, and Cimex lectularius (Figure 3B). Through the nucleic acid homology analysis in the Blast module of the NCBI database, it was found that the nucleotide sequence of dl had no more than 76% homology with other species (mainly insects), while the nucleotide sequence homology of jag and other species (mainly insects) is no more than 71%.

Expression analysis of Nldl and Nljag in brown planthopper

The amplification specificity and amplification efficiency of the qPCR primers of Nldl and Nljag were first examined. The results showed that the amplification efficiencies of the primers of Nldl and Nljag were 90.65% and 91.44%, respectively, and no non-specific amplification occurred, confirming the availability of these two pairs of qPCR primers. The expression levels of Nldl and Nljag were relatively high in the head, followed by those in the abdomen (Figure 4). Nldl expression was relatively high in the abdomen of fourth- to fifth-instar nymphs (Figures 4A,B). The expression of Nljag in the thorax of fourth-instar nymphs of the Macropterous strain was significantly higher than that in other instars (Figure 4D).

RNAi of Nldl and Nljag in brown planthopper

Different doses of dsRNA were injected from the ventral side of thorax into the third-instar BPH nymphs of the Brachypterous and Macropterous strain, respectively. dsRNA delivery efficiency was measured on the first and fifth day after treatment. Nldl-RNAi and Nljag-RNAi showed excellent interference efficiency and persistent effects (Figure 5). The expression levels of Nldl and Nljag decreased by 46.65% and 44.48%, respectively, in the Brachypterous strain on day 1 after treatment, and they decreased by 58.67% and 59.79% in the Macropterous strain (Figures 5A,C). On day 5, the expression levels of Nldl and Nljag in the Brachypterous strain were 58.67% and 52.35% of those in the control group, and 46.04% and 49.37% in the Macropterous strain, respectively (Figures 5B,D).
Third-instar nymphs treated with 50 ng dsNldl produced very high mortality rates in the current study, and no nymphs reached the adult stage (Figures 6A,B). We thus reduced the injection dose to 25 ng/nymph, and approximately 2% of the Brachypterous and Macropterous strain nymphs successfully emerged (Figures 6C,D). These few survivors of both the long-winged and short-winged morphs produced a phenotype unable to close its wings (Figure 7). At 10 ng/nymph, the survival rate 6 days after treatment was 34.67% in the Brachypterous strain and 18.67% in the Macropterous strain, and 19.33% and 6.67% of the treated nymphs, respectively, successfully emerged and showed deformities rendering them unable to close their wings (Figures 6E,F). This constitutes a reference dosage for the application of dsNldl in the field control of BPH.

Injection with 100 ng dsNlja caused a significant lethal effect on BPH nymphs. The survival rates after Nlja-RNAi injection in the Brachypterous and Macropterous strains were 22.00% and 18.00%, respectively, on day 6 after treatment, which were significantly lower than those of the control group (77.33%, \(p = 0.005328 \) and 74.00%, \(p = 0.002963 \), respectively).
On days 6 or 7 after dsNljag-treatment, the surviving nymphs developed into adults, and all of them showed curled wings (Figure 9). Neither dsNldl nor dsNljag injection caused obvious developmental delay.

Co-expressed protein prediction of NlDl and NlJag

At present, no respective data of BPH is available from public databases; however, the function of the Notch signaling pathway is conserved in most species. Therefore, we chose D. melanogaster as the model insect to predict the partner proteins of DI and Serrate (Ser, homologous to Jag). Through STRING analysis, both DI and Ser were found to be closely related to seven proteins including Notch, Mind-
Through spatiotemporal expression analysis by qPCR, we found that \textit{Nldl} and \textit{Nljag} were higher expressed in the head and abdomen, indicating that these two genes were involved more in neural activity and metabolism. In particular, the expression level of \textit{Nljag} was the highest in the thorax of fourth-instar nymphs of the Macropterous strain, representing the critical period of wing-pad development (Li et al., 2019b; Zhang et al., 2019). We therefore speculate that this gene may be involved in the wing development of BPH, as confirmed by adult wing deformity caused by \textit{Nljag}-knockdown.

Through RNAi treatment, we found that injection of BPH nymphs of both Brachypterous and Macropterous strain with ds\textit{Nldl} or ds\textit{Nljag} produced the expected lethal effects. ds\textit{Nldl} at only 10 ng/nymph caused failure to emerge in >80% of the nymphs. Even if some treated nymphs can survive to adulthood, wing development deformities caused by dsRNA treatment may also reduce their mobility, fitness, and reproductive success. dsRNA treatment showed excellent inhibitory effects on the expression of target genes on days 1 and 5, which suggested that RNAi works rapidly and its effects are persistent in BPH. We have also tried to increase the injection dosage to detect whether the interference efficiency can be improved, but the change is not obvious. However, this does not prevent us from obtaining the stable adult phenotypes. The phenotypes after dsRNA treatment can obtain 100% consistent phenotypes regardless of whether the dosages were increased or decreased. Our findings support the potential of these two genes as RNAi biocide targets for controlling BPH. It should be noted that with the same injection dosage of ds\textit{Nldl}, mortality differed between the Brachypterous and Macropterous strains. Interference efficiency of ds\textit{Nldl} was higher in the Macropterous than in the Brachypterous strain. This may be
related to the physiological tolerance of different strains of nymphs. Rice at the yellow-ripe stage (relatively low nutritional value) can stimulate the development of more long-winged BPH, whereas rice at the tillering-stage (relatively high nutritional value) induces development of more short-winged adults (Liu et al., 2020; Li et al., 2021). Therefore, in the future control and when dsNldl is used as an RNAi biopesticide, the dosage should be adjusted according to the different growth periods of rice.

To further explore the functions of Dl and Jag in insects, the associated proteins of these two ligands were predicted using STRING software. However, the database did not include data on *N. lugens*, nor on Hemiptera. Referring to the phylogenetic analysis of Dl, *N. lugens* is closely related to *D. melanogaster*, we thus used *D. melanogaster* as a model insect to predict the respective partner protein of Dl and Jag/Ser. As expected, most of these co-expressed proteins were associated with signal transduction and functioning of the Notch signaling pathway, and most of the predicted associated proteins of Dl and Jag/Ser were identical. According to our findings, the lethal effect produced by dsNldl injection was stronger than that of dsNljag treatment, and there were also obvious differences in the phenotype after emergence. We propose that these differences may originate from differences in associated proteins. In detail, Dl is specifically associated with Scabrous and Hairless, which may be responsible for the higher lethality. The Deltex and Mastermind associated with Jag/Ser may be the cause of the curling of wings in adults. However, these speculations need further verification.

Our study preliminarily investigated the expression profiles and functions of *dl* and *jag* in BPH and confirmed their application potential. This potential was manifested by the outstanding lethal and teratogenic effects of dl and jag on the BPH. We further propose dosages regarding target genes of RNAi biopesticide to control BPH. RNAi biopesticides can be delivered in a variety of ways, mainly divided into resistant plant-based plant-incorporated protectants and non-plant-incorporated protectants. It should be emphasized that studies have demonstrated that transgenic plants expressing dsRNA have poor control effects on a variety of piercing-sucking insects, including the BPH, mainly because these insects are difficult to effectively consume sufficient dsRNA during the feeding process (Kim and Zhang, 2022). Delivery of dsRNA by feeding is also a common method in research and production, especially for Coleoptera and Lepidoptera insects. But for oligophagous BPH, the attraction of food attractants is significantly lower than that of host rice plants in the field. Fortunately, RNAi biopesticides can also follow the application methods of traditional chemical pesticide and are designed to exert a pest control role by the means of spray or root-irrigation, although several problems remain to be addressed before practical application, including risk assessment, cost control, and application methods. No fully commercialized non-PIP RNAi-based biopesticide products have been released to the market thus far (Kunte et al., 2020; Liu et al., 2020). However, RNAi biopesticides bear considerable application value and are expected to become an important means of integrated pest control.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.
Author contributions

XY and XL contributed to the conception and design of the study. XL and MD wrote and revised the draft of the manuscript. ZQ, ZL, YA, and JG conducted the experiment, SL and WL performed the analysis. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (31970472); and the Henan Agricultural Research System (HARS-22-09-G3).

Acknowledgments

The brown planthoppers of the Brachypterous and Macropterous strain tested in this study were generously donated by Professor Hongxia Hua from Huazhong Agricultural University.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Alagar, M., Suresh, S., Samiyappan, R., and Saravanakumar, D. (2007). Reaction of resistant and susceptible rice genotypes against Brown planthopper (Nilaparvata lugens). *Phytoparasitica* 35 (4), 346–356. doi:10.1007/s10786-007-9089-y

Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., et al. (2007). Control of Coleopteran insect pests through RNA interference. *Nat. Biotechnol.* 25 (11), 1322–1326. doi:10.1038/nbt1359

Bettencourt, R., Terenius, O., and Faye, I. (2002). *Hemolin* gene silencing by ds–RNA injected into Cecropia pupae is lethal to next generation embryos. *Insect Mol. Biol.* 11 (3), 267–271. doi:10.1046/j.1365-2583.2002.00334.x

Bray, S. J. (2006). Notch signaling: A simple pathway becomes complex. *Nat. Rev. Mol. Cell Biol.* 7 (9), 678–689. doi:10.1038/nrm2009

Carthew, R. W., and Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. *Cell* 136 (4), 642–655. doi:10.1016/j.cell.2009.01.035

Chen, H. M., Chen, L. T., Patel, K., Li, Y. H., Baulcombe, D. C., and Wu, S. H. (2010). 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. *Proc. Natl. Acad. Sci. U. S. A.* 107 (34), 15269-15274. doi:10.1073/pnas.1001738107

Fiuza, U. M., Klein, T., Arias, M. A., and Hayward, P. (2010). Mechanisms of ligand–mediated inhibition in notch signaling activity in *Drosophila*. *Dev. Dyn.* 239 (3), 798–805. doi:10.1002/dvdy.22207

Fleming, R. J., Hori, K., Sen, A., Filhorano, G. V., Langer, J. M., Obar, R. A., et al. (2013). An extracellular region of serrate is essential for ligand-induced cis-inhibition of Notch signaling. *Development* 140 (9), 2039–2049. doi:10.1242/dev.087916

Gordon, W. R., Vardar-Ulu, D., Histen, G., Sanchez-Irizarry, C., Aster, J. C., Blacklow, S. C., et al. (2007). Structural basis for autoinhibition of Notch. *Nat. Struct. Mol. Biol.* 14 (4), 295–300. doi:10.1038/nsmb1227

Heong, K., and Hardy, B. (2009). *Planthoppers: New threats to the sustainability of intensive rice production systems in Asia*. Los Baños, the Philippines: International Rice Research Institute, 1–460.

Hibino, H. (1995). Biology and epidemiology of rice viruses. *Annu. Rev. Phytopathol.* 34, 249–274. doi:10.1146/annurev.phyto.34.1.249

Hu, D. B., Xiao, S., Wang, Y., and Hua, H. X. (2022). Notch is an alternative splicing gene in Brown planthopper, *Nilaparvata lugens*. *Arch. Insect Biochem. Physiol.* 110, e21894. doi:10.1002/arch.21894

Irles, P., Elshaer, N., and Puaclach, M. D. (2016). The Notch pathway regulates both the proliferation and differentiation of follicular cells in the panoptic ovaries of the *Blattella germanica*. *Open Biol.* 6 (1), 150197. doi:10.1098/rsbl.150197

Joshi, I., Minter, L. M., Telfer, J., Demarest, R. M., Capobianco, A. J., Aster, J. C., et al. (2009). Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. *Blood* 113 (8), 1689–1698. doi:10.1182/blood-2008-03-147967

Kidd, S., and Lieber, T. (2016). Mechanism of Notch pathway activation and its role in the regulation of olfactory plasticity in *Drosophila melanogaster*. *PLoS One* 11 (3), e0151279. doi:10.1371/journal.pone.0151279

Kim, D. S., and Zhang, J. (2022). Strategies to improve the efficiency of RNAi-mediated crop protection for pest control. *Entomol. Gen. (Early Access)*. doi:10.1121/entomologica/2022/1638

Kim, Y. H., Iosa, M. S., Cooper, A., and Zhu, K. Y. (2015). RNA Interference: Applications and advances in insect toxicology and insect pest management. *Pesticide Biochem. Physiology* 120, 109–117. doi:10.1016/j.pbi.2015.01.002

Kopan, R., and Ilagan, M. X. (2009). The canonical Notch signaling pathway: Unfolding the activation mechanism. *Cell* 137 (2), 216–233. doi:10.1016/j.cell.2009.03.045

Kunte, N., McGraw, E., Bell, S., Held, D., and Avila, L. A. (2020). Prospects, challenges and current status of RNAi through insect feeding. *Pest Manag. Sci.* 76 (1), 26–41. doi:10.1002/ps.5588

Lewis, H. D., Leveridge, M., Strack, P. R., Halden, C. D., O’Neil, J., Kim, H., et al. (2007). Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of Notch signaling. *Chem. Biol.* 14 (2), 209–219. doi:10.1016/j.chembiol.2006.12.010

Li, J., Chen, Q., Wang, L., Liu, J., Shang, K., and Hua, H. (2011). Biological effects of rice harbouring Rp114 and Rp115 on Brown planthopper. *Pest Manag. Sci.* 67 (5), 528–534. doi:10.1002/ps.2089

Li, X., Liu, F., Cai, W., Zhao, J., Hua, H., and Zou, Y. (2019a). The function of spineless in antenna and wing development of the Brown planthopper, *Nilaparvata lugens*. *Insect Mol. Biol.* 28 (2), 196–207. doi:10.1111/imb.12538

Li, X., Liu, F., Wu, C., Zhao, J., Cai, W., and Hua, H. (2019b). *Decapentaplegic* function in wing vein development and wing morph transformation in Brown planthopper, *Nilaparvata lugens*. *Dev. Biol.* 449 (2), 143–150. doi:10.1016/j.ydbio.2019.02.016

Li, X., Liu, X., Lu, W., Yin, X., and An, S. (2022). Application progress of plant-mediated RNAi in pest control. *Front. Bioeng. Biotechnol.* 10, 963026. doi:10.3389/fbioe.2022.963026

Li, X., Zhao, M., Tian, M., Zhao, J., Cai, W., and Hua, H. (2021). An InR/mir-9a/NUlX regulatory cascade regulates wing diphenism in Brown planthopper. *Insect Sci.* 28, 1300–1313. doi:10.1111/1744-7917.12872
Liu, F., Li, X., Zhao, M., Guo, M., Han, K., Dong, X., et al. (2020). Ultrabithorax is a key regulator for the dimorphism of wings, a main cause for the outbreak of planthoppers in rice. *Nat Sci. Rev.* 7 (7), 1181–1189. doi:10.1093/nsr/nwaa061

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. *Methods* 25 (4), 402–408. doi:10.1006/meth.2001.1262

Matsuda, M., and Chitnis, A. B. (2009). Interaction with notch determines endocytosis of specific delta ligands in zebrafish neural tissue. *Dev. Biol.* 333 (2), 197–206. doi:10.1016/j.ydbio.2009.08.020

Morooka, S., and Tojo, S. (1992). Maintenance and selection of strains exhibiting specific wing form and body colour under high density conditions in the Brown planthopper, *Nilaparvata lugens* (Homoptera: Delphacidae). *Appl. Entomol. Zool.* 27 (3), 445–454. doi:10.1303/aez.27.445

Mumm, J. S., and Kopan, R. (2000). Notch signaling: From the outside in. *Dev. Biol.* 228 (2), 151–165. doi:10.1006/dbio.2000.9960

Mumm, J. S., Schroeter, E. H., Saxena, M. T., Griesemer, A., Tian, X., Pan, D. J., et al. (2000). A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. *Mol. Cell* 5 (2), 197–206. doi:10.1016/s1097-2765(00)80416-5

Palomero, T., Lim, W. K., Odom, D. T., Sulte, M. L., Real, P. J., Margolin, A., et al. (2006). NOTCH1 directly regulates c-MYC and activates a feed-forward loop transcriptional net work promoting leukemic cell growth. *Proc. Natl. Acad. Sci. U. S. A.* 103 (28), 18261–18266. doi:10.1073/pnas.0606108103

Schroeter, E. H., Kislinger, J. A., and Kopan, R. (1998). Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. *Nature* 393 (6683), 382–386. doi:10.1038/30756

Sógawa, K. (2003). The rice Brown planthopper: Feeding physiology and host plant interactions. *Annu. Rev. Entomol.* 48 (1), 49–73. doi:10.1146/annurev.en.47.011802.000405

Struhl, G., and Adachi, A. (1998). Nuclear access and action of Notch in vivo. *Cell* 93 (4), 649–660. doi:10.1016/s0092-8674(00)81193-9

Ulrich, J., Dao, V. A., Majumdar, U., Schmitt-Engel, C., Schweirz, J., Schultheiset, D., et al. (2015). Large scale RNAi screen in tribolium reveals novel target genes for pest control and the proteasome as prime target. *BMC Genomics* 16 (1), 674. doi:10.1186/s12864-015-1880-y

Vanitha, K., Suresh, S., and Gunathilagaraj, K. (2011). Influence of Brown planthopper *Nilaparvata lugens* (Stål) feeding on nutritional biochemistry of rice plant. *Oryza* 48 (2), 142–146.

Vogel, E., Santos, D., Mingels, L., Verdonckt, T. W., and Broeck, J. V. (2019). RNA interference in insects: Protecting beneficials and controlling pests. *Front. Physiol.* 9, 1912. doi:10.3389/fphys.2018.01912

Wei, Z., Hu, W., Lin, Q., Cheng, X., Tong, M., Zhu, L., et al. (2010). Understanding rice plant resistance to the Brown planthopper (*Nilaparvata lugens*): A proteomic approach. *Proteomics* 9 (10), 2798–2808. doi:10.1002/pmic.200800840

Xu, H. J., Xue, J., Lu, B., Zhang, X. C., Zhuo, J. C., He, S. F., et al. (2015). Two insulin receptors determine alternative wing morphs in planthoppers. *Nature* 519 (7544), 464–467. doi:10.1038/nature14286

Yamamoto, S., Charg, W. L., Rana, N. A., Kakuda, S., Jaiswal, M., Bayat, V., et al. (2012). A mutation in EGF repeat-8 of Notch discriminates between Serrate/Jagged and Delta family ligands. *Science* 338 (6111), 1229–1232. doi:10.1126/science.1228745

Yang, E. L., Wang, B. T., Lei, G., Chen, G. C., and Liu, D. H. (2022). Advances in nanocarriers to improve the stability of dsRNA in the environment. *Front. Bioeng. Biotechnol.* 10, 974646. doi:10.3389/fbioe.2022.974646

Zhang, C. X., Brisson, J. A., and Xu, H. J. (2019). Molecular mechanisms of wing polymorphism in insects. *Annu. Rev. Entomol.* 64, 297–314. doi:10.1146/annurev-ento-011118-112448

Zhang, J., Khan, S. A., Heckel, D. G., and Bock, R. (2017). Next-generation insect-resistant plants: RNAi-mediated crop protection. *Trends Biotechnol.* 8 (9), 871–882. doi:10.1016/j.tibtech.2017.04.009