Alleviative effects of Fara-darmani Consciousness Field on
Triticum aestivum L. under salinity stress [version 1; peer review: 1 approved with reservations]

Sara Torabi1, Mohammad Ali Taheri2, Farid Semsarha3

1Department of Plant Biology, School of Biology, College of sciences, University of Tehran, Tehran, 14155-6455, Iran
2Sciencefact Research Center, Cosmointel Ltd. Research Center, Ontario, Canada, Ontario, Canada
3Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, 13145-1384, Iran

Abstract

Background: The Fara-darmani Consciousness Field was founded by Mohammad Ali Taheri. It is a novel field and is described similarly to the field of gravity, or the electromagnetic field. This field is neither matter nor energy, and therefore does not possess a quantity. Even though there is no direct scientific evidence for the Consciousness Field, it is possible to investigate its effects on objects through controlled experiments. The aim of the present work was to study the alleviative effects of the Fara-darmani Consciousness Field on common wheat *Triticum aestivum* L. var Star under salt stress.

Methods: Plants were grown under 0 mM NaCl (control) and 150 mM NaCl with or without the influence of Fara-darmani Consciousness Field for 3 weeks. Chlorophyll, hydrogen peroxide (H2O2), malondialdehyde (MDA) content and activity of antioxidant enzymes such as superoxide dismutase (SOD), polyphenol oxidase (PPO), and peroxidase (POX) were measured in all groups of plants.

Results: In the salt-treated plants under the influence of the Fara-darmani Consciousness Field, the contents of total chlorophyll, as well as a and b chlorophyll forms, were elevated compared with the salt-treated plants without Fara-darmani CF (34.8%, 17.8%, and 169% respectively). Additionally, Fara-darmani increased H2O2 (57%) and the activity of SOD and PPO by 220% and 168%, respectively, under salinity compared with the salt-treated plants without Fara-darmani CF. MDA content and activity of peroxidase were decreased by 12.5% and 34%, respectively.

Conclusion: These results suggest the Fara-darmani Consciousness Field as a qualitative intervention strategy to withstand salt stress in...
plants, by increasing the contents of chlorophyll, antioxidant enzyme activities, and decreasing MDA content under salinity.

Keywords
Antioxidant enzymes, Fara-darmani, Consciousness Field, Salt stress, Wheat

This article is included in the Plant Science gateway.

Corresponding authors: Sara Torabi (sara.torabi1986@gmail.com), Farid Semsarha (semsarha@alumni.ut.ac.ir)

Author roles: Torabi S: Conceptualization, Data Curation, Formal Analysis, Investigation, Software, Writing – Original Draft Preparation; Taheri MA: Conceptualization, Methodology, Supervision, Validation, Visualization; Semsarha F: Writing – Review & Editing

Competing interests: Mohammad Ali Taher is the innovator of Fara-darmani Consciousness Field used as the main method of the present study. His contribution to the study was general supervision over the start and end of the Fara-darmani CF treatment in the study.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2020 Torabi S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Torabi S, Taheri MA and Semsarha F. Alleviative effects of Fara-darmani Consciousness Field on *Triticum aestivum* L. under salinity stress [version 1; peer review: 1 approved with reservations] F1000Research 2020, 9:1089 https://doi.org/10.12688/f1000research.25247.1

First published: 03 Sep 2020, 9:1089 https://doi.org/10.12688/f1000research.25247.1
Introduction
Most criticism about complementary therapy is the lack of scientific research. In order to be accepted, academic studies using different study designs are necessary. Since one of the critical objections occurring when human beings are treated with complementary therapy is the placebo responses, biochemical plant-based studies can be a suitable method to clarify the phenomenon (Betti et al., 2003). Among the different plant model systems, the wheat plant has been repeatedly selected for homeopathic research. Baumgartner et al. (2000) showed that homeopathic drugs improved plant resistance, which exerted their effect through detoxification processes.

In arid and semi-arid areas of the world, salinity is considered as a major factor in reducing crop productivity (Poonia et al., 1972). Plant growth is adversely affected by multiple environmental stresses, including biotic (e.g., fungi, bacteria, viruses, herbivores) and abiotic (e.g., low temperature, salt, drought, heavy metal toxicity). Among these the salination of arable land is one of the key factors that threatens the sustainability of the agricultural industry. Thus, many studies have attempted to explore processes that contribute to plant survival under salt stress (Ashraf & Harris, 2004) as a strategy to improve productivity and fertility. It is well documented that plants that are exposed to biotic or abiotic stresses have biochemical changes that exert oxidative damage through Reactive Oxygen Species (ROS) (Smirnoff, 1993). These free radicals disrupt cell membrane stability by peroxidation of polyunsaturated fatty acids in the plant cell membranes (Bor et al., 2003; Hernández & Almansa 2002; Shalata et al, 2001) and denature protein and nucleic acids (Chen et al., 1993). To alleviate adverse effects of oxidative stress, plants have developed diverse strategies, which are categorized as enzymatic, such as catalase, superoxide dismutase (SOD), peroxidase (POX), polyphenol oxidase (PPO) and ascorbate peroxidase, and non-enzymatic that directly scavenge ROS, such as glutathione, tocopherol, flavonoids and ascorbates (Agarwal & Pandey, 2004). Plants that have developed an antioxidant system that participates in ROS scavenging have better resistance to oxidative damage (Parida & Das, 2005).

To date, there have been many studies to explore the relationship between the intangible and physical world, especially the interaction between the human mind and outside the human physical world. For instance, it has been reported that the mind can affect dice tosses (Rhine, 1944). Researchers have previously focused on probabilistic systems, like tossing coins, using random number generators (RNGs). The first RNG study was conducted by Radin & Nelson (1989), which included 597 experiments and 235 control studies. This type of research was considered as “micro-psychokinesis” (micro-PK) (Jahn et al., 1980; Vavoglis & Bancel, 2015). However, micro-PK is not completely acceptable to science because of the null effects and failure to replicate previous positive results (Jahn et al., 2000).

Throughout history, studies can be found that explain the interaction between the human mind and body, such as ‘distant healing’, or the effects of the mind on inanimate physical systems, like morphological changes in a thin strip of metal (Randall & Davis, 1982).

Fara-darmani is one of the many Consciousness Field (CFs) founded by Mohammad Ali Taheri. In this theoretical concept, cosmic consciousness is the collection of consciousness, wisdom or intelligence governing the world of existence, which is also called ‘Awareness’. Consciousness, according to Taheri, is one of the three existing elements of the universe apart from matter and energy. By defining Consciousness as neither matter nor energy, we cannot associate a quantity to it. Since consciousness isn’t measurable, its existence can only be known through experience (Taheri, 2013). According to this theory, any living creature, including animals and plants, may be cured via humans by connecting to internet-like facilities called the Cosmic Consciousness Network (CCN). In this type of affection, mind-matter interaction occurs through connecting to the CCN by a Fara-therapist. Fara-darmani establishes a consciousness bond between the ‘whole’ consciousness and the ‘parts’ where all constituents will be scanned and corrected (Taheri, 2013). Although the mechanism of this linkage is not yet definable by science, its consequences can be measured and studied scientifically.

The aim of this study was to determine the effects of Fara-darmani CF on alleviating the effects of salt stress in a spring wheat variety (Star).

Methods
Fara-darmani Consciousness Field application
In Fara-darmani, subjects of study become connected to that Consciousness Field via Fara-therapist by ‘announcement’ which is a process in which Taheri or any Fara-therapist (announcer) declares and sends the information of the subjects under study (e.g. the number of groups) to the CCN. The influence of Consciousness Field begins with the connection between the human mind and the CCN. In other words, the Fara-therapist’s mind acts as an intermediary between the subject of the study and the CCN. The first author of this study is an announcer and at the same time as the seedlings were subjected to salt stress, two groups of treatments became connected to the CCN (group 2: 0 mM NaCl and group 4: 150 mM NaCl). This exposure occurs without any kind of physical intervention, since consciousness according to Taheri’s concepts is neither matter nor energy, receiving this treatment is possible from close and far distances.

This experiment can easily be repeated by any researcher even from far distances by registering on the COSMOintel website (the Assign Announcement section) COSMOintel is a research center, under the supervision of the innovator of the method (Mohammad Ali Taheri) that has been established to design and
implement repeatable and reproducible studies in the world of science.

Plants
In this research, we used a spring wheat variety *Triticum aestivum* L. var Star (Seed and Plants Improvement Institute, Karaj, Alborz Province). Seeds were surface sterilized with 2.5% sodium hypochlorite for 10 min and washed thoroughly with sterile distilled water. After sterilization, seeds were soaked in distilled water for 24 hours at room temperature. For each treatment three pots were prepared and six seeds were initially sown in plastic pots (10 × 10 cm) containing perlite soil. After the germination they were thinned to five plants per pot. First, all pots were irrigated daily with 100ml distilled water for four days. Then received 100ml half-strength Hoagland’s nutrient solution (pH= 5.7) (Hoagland & Arnon, 1950) every other day for another 12 days (chemicals purchased from Sigma-Aldrich).

Applying salinity stress
The sixteen-day-old seedlings were treated with salinity. The salts were added to the nutrient solution. To prevent osmotic shock, salt stress was started gradually on 50 mM NaCl (100ml). Every other day the concentration was increased by 50mM until 150 mM was attained. Salt stress was continued for three weeks (150mM NaCl was added every other day). Initial Fara-darmani connection treatment occurred at the same time as adding the first NaCl solution. Four treatment groups (n=3 pots/group) were performed as follows: group 1, control – grown with no NaCl and did not receive Fara-darmani CF; group 2 – grown with no NaCl and did receive Fara-darmani CF; group 3 – treated with 150 mM NaCl for three weeks and did not receive Fara-darmani CF treatment; group 4 – treated with 150 mM NaCl for three weeks and did receive Fara-darmani CF treatment.

After three weeks, four fully expanded leaves were picked per replicate for future analyses. They were frozen in liquid N₂ and transferred to -20°C for imminent bench experiments.

Determination of chlorophyll content
For measuring photosynthetic pigments, we used the method by Arnon (1949). 0.5 gram of fresh leaf material placed in acetone 80% and homogenized to extract chlorophyll. The resulting solution was filtered through Whatman’s No.1 filter paper. After extracting of photosynthetic pigments in acetone 80%, absorbance of chlorophyll a and b was recorded by UV-visible spectrophotometer (Shimadzu UV-160) at 645 and 663 nm respectively. According to Arnon (1949) chlorophyll concentrations were calculated using the formulas below:

\[
\text{Chl.a (mg l}^{-1} \text{)} = [12.7 (A_{663}) - 2.69 (A_{645})] * 0.5 \text{ ml of extracted sample}
\]

\[
\text{Chl.b (mg l}^{-1} \text{)} = [22.9 (A_{663}) - 4.69 (A_{645})] * 0.5 \text{ ml of extracted sample}
\]

Total chlorophyll = Chl a + Chl b

Determination of hydrogen peroxide content
Measurement of the hydrogen peroxide (H₂O₂) content was performed according to Velikova et al., (2000). One gram of leaf tissue was homogenized on ice with 5 ml of trichloroacetic acid (TCA; Sigma-Aldrich) 0.1% (w/v) and centrifuged at 12000 rpm for 15 min. Subsequently, 0.5 ml of 10 mM potassium phosphate buffer (pH 7) and 1 ml of 1M potassium iodide was added to 0.5 ml of supernatant. The absorbance of supernatant was determined at 390 nm wavelength.

Determination of lipid peroxidation
Malondialdehyde (MDA), which is a product of lipid peroxidation, has been considered as an indicator of membrane destruction. MDA content was determined according to Stewart & Bewley (1980). We added 5 ml of TCA to 0.2 g of fresh leaf. After homogenization, the solution was centrifuged at 13000 × g for 10 min. The mixture of 1 ml of supernatant with 4 ml of 0.5% thioarbituric acid in 20% TCA was heated for 30 min at 95°C and quickly placed in an ice bucket. Subsequently, we centrifuged the solution at 10000 × g for 10 minutes and recorded the absorbance of supernatant at 532 and 600 nm. The calculation of MDA was done from the extinction coefficient of 155 mM⁻¹ cm⁻¹.

Determination of enzymes activity
To determine enzyme activity, 0.1 g of fresh third leaves were ground in 3 ml of 50 mM Tris-HCl buffer (pH 6.8) at 4°C. The homogenate was centrifuged at 13000 × g for 20 min at 4°C. The supernatants were then collected and stored at -70°C for determination of enzymes activity.

SOD activity was determined using the assay system described by Giannopolitis & Ries (1977). The reaction mixture consisted of 50 mM phosphate buffer pH 7.5, 13 mM methionine, 0.1 mM Na-EDTA, 75µM NBT, 75 µM Riboflavin and 100 µL of enzyme extract in a final volume of 3 ml (all the chemicals were purchased from Sigma-Aldrich). The mixture in glass test tubes was placed 30 cm from 30 W fluorescent lamps. Identical solutions without illumination and enzyme extract were considered as blanks. Since SOD has the ability to inhibit the photochemical reduction of nitroblue tetrazolium (NBT), the amount of inhibition was estimated by reducing the generation of color in the presence of light. One unit of
SOD was described as the amount of enzyme that lead to 50% inhibition of NBT reduction. After 16 min, the absorbance at 560 nm was recorded against the blank. SOD activities were calculated as units per milligram of protein.

POX activity was measured based on the method of Abeles & Biles (1991). The activity of POX was estimated by adding 0.01 ml of enzyme extract to 4 ml of 0.2 M acetate buffer (pH 5), 0.4 ml H$_2$O$_2$ (3%), 0.2 ml 20 mM benzidine. The absorbance was recorded at 530 nm using spectrophotometer and POX activity was expressed as U mg$^{-1}$ protein.

PPO was assayed according to Raymond et al. (1993). The reaction solution contained 2.5 ml of 200 mM sodium phosphate buffer (pH 6.8), 0.2 ml of 20 mM pyrogallol and 0.01 ml enzyme extract. The temperature of the reaction mixture was 40°C. The changes in absorbance were recorded at 430 nm.

Statistical analysis

Each experiment was repeated three times. Data were statistically analyzed using analysis of variance one-way (ANOVA) with SPSS software (version 18). Means were compared by Duncan’s test at the 0.05 level of confidence.

Results

Salinity decreased the contents of chlorophyll (Chl) a, Chl b and total Chl (Figure 1a-c). Under the influence of Fara-darmani CF with 150 mM NaCl, the contents of total Chl, Chl a and Chl b were elevated (34.8%, 17.8% and 169%, respectively) compared to the plants treated with 150mM without Fara-darmani CF.

The effect of NaCl treatment on H$_2$O$_2$ is shown in (Figure 1d). Results of the present study showed that H$_2$O$_2$ content remained unchanged under salinity condition whereas for the Fara-darmani CF treated groups (control and 150mM NaCl) showed significant enhancement 100% and 57.1%, respectively.

MDA content was assessed as an oxidative indicator. Salinity stress caused an increase of 59.5% in MDA content as compared to that of control. The Fara-darmani CF treatment to the salt-stressed plant decreased MDA content by about 12.5% (Figure 2d).

POX activity was significantly increased by NaCl treatment up to 244 % compared with control while under salinity treatment exposure to Fara-darmani CF decreased the activity of enzyme by 34 % (Figure 2b).

Figure 1. Effects of Fara-darmani Consciousness Field treatment on (a) chlorophyll a, (b) total chlorophyll, (c) chlorophyll b, (d) hydrogen peroxide (H$_2$O$_2$). Plants were treated with 0 mM NaCl (control) or 150mM NaCl Vertical bars indicate mean ± standard error of three replicates. Means followed by the same letter were not significantly different at P<0.05.
Figure 2. Effects of Fara-darmani Consciousness Field treatment on antioxidant enzyme activities. (a) polyphenol oxidase (PPO), (b) peroxidase (POX), (c) superoxide dismutase (SOD) and (d) malondialdehyde (MDA) content. Plants were treated with 0 mM NaCl (control) or 150 mM NaCl. Vertical bars indicate mean ± standard error of three replicates. Means followed by the same letter were not significantly different at P<0.05.

SOD activity was slightly increased under salinity. However, it was found that with Fara-darmani CF the activity of SOD in salinity condition was about 220 % higher than that in salinity without Fara-darmani CF treatment (Fig 2c).

Similarly, PPO activity was not significantly higher than non-saline condition (control). However, the PPO activity showed an increase of 168% under salinity in response to Fara-darmani CF compared to the salinity treated without Fara-darmani CF treatment (Figure 2a).

Discussion
In this study, chlorophyll a and b, and total chlorophyll contents decreased remarkably under salinity conditions (Figure 1). This is supported by previous data reported in tomato plants (Al-aghabary et al., 2005) and wheat (Ashraf et al., 2002), where salt stress unfavorably affects chlorophyll content. The decrease in chlorophyll content might be due to the formation of ROS in salinity stress that leads to lipid peroxidation and damages thylakoid membranes (Mittler, 2002). There are no previous studies of alleviative effects of Fara-darmani CF on salt-stressed plants to compare to this study. However, observations in the present study showed that under salinity treatment, Fara-darmani CF ameliorated the adverse effects of salt stress, probably by improving antioxidant systems, scavenging ROS and increasing the chlorophyll a and b contents (Figure 1).

Various abiotic stresses, including salinity, contribute to formation of ROS (Navari-Izzo et al., 1998). Data of this study showed that under salinity conditions there was an increase in H_2O_2 content with Fara-darmani CF treatment, which coincided with an increase in SOD activity (about 220%). SOD converts superoxide radicals to H_2O_2 and molecular oxygen. It is possible that increasing H_2O_2 could therefore be attributed to Fara-darmani-induced enhancement of SOD activity. This function may have a key role in mitigating oxidative stress. SOD is the first enzyme involved in antioxidative processes (Rubio et al., 2002). Increasing the activity of SOD was observed similarly in the leaves of sugar beet (Bor et al., 2003) and in Lycopersicon (Koca et al., 2006) under salt stress. However, under salinity conditions, Fara-darmani CF decreased POX activity, which decomposes the H_2O_2 produced by SOD. These results suggest that H_2O_2 may take part in the signaling networks. It has been reported that seed pretreatment with H_2O_2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins (Wahid et al., 2007). Additionally, accumulation of H_2O_2 is thought to be a
signal for induction of pathogenesis-related (PR) genes (Chen et al., 1993). Kuźniak & Urbanek (2000) reported that H$_2$O$_2$ contributes to signal transduction, gene expression and cellular defense under oxidative stress conditions.

In the present study, Fara-darmani CF also induced PPO activity. PPO may play a key role in scavenging H$_2$O$_2$ in salt-stressed plant. Agarwal & Pondey (2004) found that in Cassia angustifolia PPO activity increased under salinity stress. The mechanism of action of Fara-darmani CF as an inducer of antioxidant enzymes activity is not clear; therefore, future studies are needed to gain additional insights on biological and biochemical effects of this CF on various plants under biotic and abiotic stresses.

MDA content, which is a product of lipid peroxidation, reflects membrane destruction under oxidative stresses (Hernández & Almensa, 2002). According to Torabi & Niknam (2011), salinity tolerance of Salicornia persica (salt-tolerant species) is associated with lower MDA content compared to S. europaea (salt-sensitive species). Fara-darmani as a CF decreased MDA content under salinity stress. It seems that decreased MDA content is correlated with increased activity of antioxidant enzymes under the influence of Fara-darmani CF and a strategy developed by plant to withstand salt stress.

From these results, it can be concluded that Fara-darmani CF minimizes the negative effects of salt stress in the wheat plant with evidence of increased activity of antioxidant enzymes, increased chlorophyll content and less membrane damage. The main challenge of this study is the fact that Consciousness Field doesn’t possess a quantity and isn’t directly measurable. Therefore, in order to identify its specific effects, we have measured Fara-darmani CF effects indirectly on a plant’s biochemical processes. We suggest that other researchers repeat similar experiment with different plants. It seems that botanical bioassays are suitable for screening the effect of such treatments, and apart from the placebo responses by humans, these assays can be beneficial to save time and resources.

Data availability

Underlying data

Harvard Dataverse: Alleviatory Effects of Fara-darmani Consciousness Field on Triticum aestivum L. under Salinity Stress, https://doi.org/10.7910/DVN/XNMRMV (Torabi, 2020).

This project contains the following underlying data:

- Raw data of chlorophyll a, chlorophyll b, hydrogen peroxide, MDA, POX, PPO, SOD, and total chlorophyll content in control and salinity conditions with and without receiving Fara-darmani consciousness field (separate .tab files).
- Charts of chlorophyll a, chlorophyll b, hydrogen peroxide, MDA, POX, PPO, SOD, and total chlorophyll content in control and salinity condition with and without receiving Fara-darmani consciousness field (separate .docx files).

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Acknowledgements
The authors thank Dr. Noushin Nabavi for revising the English.

References

Abeles FB, Biles CL: Characterization of peroxidases in lignifying peach fruit endocarp. Plant Physiol. 1991; 95(1): 269–273.
PubMed Abstract | Publisher Full Text | Free Full Text

Agarwal S, Pandezy V: Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum. 2004; 48(4): 555–560.
Publisher Full Text

Ahaghasbary K, Zhu Z, Shi Q: Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidant enzyme activities in tomato plants under salt stress. J Plant Nutr. 2005; 27(12): 2101–2115.
Publisher Full Text

Arnon DI: COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949; 24(1): 1.
PubMed Abstract | Publisher Full Text | Free Full Text

Ashraf M, Rasul E: Interactive effects of gibberellic acid (GA$_3$) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regulation. 2002; 36(1): 49–59.
Publisher Full Text

Ashraf M, Harris P: "Potential biochemical indicators of salinity tolerance in plants." Plant Science. 2004; 166(1): 3–16.
Publisher Full Text

Baumgartner SM, Shah D, Heussner R, et al.: Homeopathic dilutions: is there a potential for application in organic plant production? IFQAM (2000)-the world Grows Organic.
Reference Source

Betti L, Lazzerato L, Trequ R, et al.: Effects of homeopathic arsenic on tobacco plant resistance to tobacco mosaic virus: theoretical suggestions about system variability, based on a large experimental data set. Homeopathy. 2003; 92(4): 195–202.
PubMed Abstract | Publisher Full Text

Bor M, Özdemir F, Türkan I: The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science. 2003; 164(1): 77–84.
Publisher Full Text

Chen Z, Silva H, Klessig DF: Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993; 262(5141): 1883–1886.
PubMed Abstract | Publisher Full Text

Giannopolitis CN, Ries SK: Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977; 59(2): 309–314.
PubMed Abstract | Publisher Full Text | Free Full Text

Hernández JA, Almansa MS: Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant. 2002; 115(2): 251–257.
PubMed Abstract | Publisher Full Text

Hoagland DR, Arnon DI: The Water-Culture Method for Growing Plants.
Without Soil. Circular 347. Agricultural Experiment Station, University of California, Berkeley, 1950.

Reference Source

Jahn RG, Dunne BJ, Jahn EG, et al.: Analytical judging procedure for remote perception experiments. J Parapsychol. 1980; 44: 207–231.

Jahn R, Dunne B, Bradish G, et al.: Mind/machine interaction consortium: PortREG replication experiments. J Sci Explor. 2000; 14: 499–555.

Reference Source

Koca H, Ozdemir F, Turkan I: Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. penneillii. Biologia Plantarum. 2006; 50(4): 745–748.

Publisher Full Text

Kuzniak E, Urbanek H: The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol Plant. 2000; 22(2): 195–203.

Publisher Full Text

Mittler R: Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002; 7(9): 405–410.

PubMed Abstract | Publisher Full Text

Navari-Izzo F, Hendry G, del Rio I: Proceedings of the Third International Conference on Oxygen, Free Radicals and Environmental Stress in Plants, Munksgaardintpublltd 35 norresogade, poBbox 2148, dk-1016 copenhagen, denmark. 1998.

Publisher Full Text

Parida AK, Das AB: Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 2005; 60(3): 324–349.

PubMed Abstract | Publisher Full Text

Poonia SR, Virmani SM, Bhimba DR: Effect of ESP (exchangeable sodium percentage) of soil on the yield, chemical composition and uptake to applied calcium by wheat. J Indian Soc Soil Sci. 1972; 20: 183–185.

Publisher Full Text

Radin DI, Nelson RD: Evidence for consciousness-related anomalies in random physical systems. Found Phys. 1983; 19: 1499–1514.

Publisher Full Text

Randall JL, Davis CP: Paranormal deformation of nitinol wire: A confirmatory experiment. Journal of the Society for Psychical Research. 1982; 51(792): 368–373.

Publisher Full Text

Raymond J, Rakarayitham N, Azanza J: Purification and some properties of polyphenoloxidase from sunflower seeds. Phytochemistry. 1993; 34(4): 927–931.

Publisher Full Text

Rhine JB: “Mind over matter” or the PK effect. J Am Soc Psych Res. 1944; 38: 185–201.

Rubio MC, Gonzalez EM, Minchin FR, et al.: Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa over expressing superoxide dismutases. Physiol Plant. 2002; 115(4): 531–540.

PubMed Abstract | Publisher Full Text

Shalata A, Mitzova V, Volokita M, et al.: Response of the cultivated tomato and its wild salt-tolerant relative Lycopersiconpenneillii to salt-dependent oxidative stress: The root antioxidative system. Physiol Plant. 2001; 112(4): 487–494.

PubMed Abstract | Publisher Full Text

Smirnoff N: Tansley Review No. 52. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 1993; 125(1): 27–58.

Publisher Full Text

Stewart RR, Bewley JD: Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology. 1980; 65(2): 245–248.

PubMed Abstract | Publisher Full Text | Free Full Text

Taheri MA: “Human from another outlook” Interuniversal Press; 2nd Edition (September 26, 2013). ISBN-13: 978-1939507006, ISBN-10: 1939507006 2013.

Torabi S: Alleviative Effects of Fara-darmani Consciousness Field on Triticum aestivum L. under Salinity Stress. Harvard Dataverse, V1, UNF:6: C7bjiWjS06sDuQMzKpWQ==. [fileUNF] 2020. http://www.doi.org/10.7910/DVN/XNMRMV

Torabi S, Niknam V: Effects of iso-osmotic concentrations of NaCl and mannitol on some metabolic activity in calluses of two salicornia species. In Vitro Cell Dev Biol Plant. 2011; 47(6): 734–742.

PubMed Abstract

Varvoglis M, Barcelo PA: ‘Micro-Psychokinesis’. In: Parapsychology: A Handbook for the 21st Century, eds E. Cardena, J. Palmer, and D. Marcusson-Clavertz (Jefferson NC: McFarland & Company), 2015; 266–281.

Reference Source

Velikova V, Yordanov I, Edreva A: Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000; 151(1): 59–66.

Publisher Full Text

Wahid A, Perveen M, Gelani S, et al.: Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol. 2007; 164(3): 283–294.

PubMed Abstract | Publisher Full Text
Open Peer Review

Halimeh Hassanpour
Aerospace Research Institute, Ministry of Science Research and Technology, Tehran, Iran

This research investigated the effect of Fara-darmani Consciousness Field on alleviation of salt stress. It has some interests for the readers and me. Fara-darmani Consciousness Field increased antioxidant systems in plants against stress. But there are some questions about this art, and need to answer by authors:

Why did the authors select just 0 and 150 mM NaCl for this research?

The intensity or wavelength are not clear, and isn't the device regulates for intensity or wave?

How Fara-darmani Consciousness Field affect the cell, how is perceived by the cell, what is the effect on organisms? The discussion needs to improve.

If there isn’t any research about Fara-darmani Consciousness Field, the author can use some article for the discussion:

- Impact of the Static Magnetic Field on Growth, Pigments, Osmolytes, Nitric Oxide, Hydrogen Sulfide Phenylalanine Ammonia-Lyase Activity, Antioxidant Defense System, and Yield in Lettuce.¹

- Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field.²

References
1. Hassanpour H, Niknam V: Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field. Plant Cell, Tissue and Organ Culture (PCTOC). 2020; 142 (3): 583-593 Publisher Full Text
2. Abdel Latef AAH, Dawood MFA, Hassanpour H, Rezayian M, et al.: Impact of the Static Magnetic Field on Growth, Pigments, Osmolytes, Nitric Oxide, Hydrogen Sulfide, Phenylalanine Ammonia-
Lyase Activity, Antioxidant Defense System, and Yield in Lettuce. *Biology (Basel)*. 2020; 9 (7). PubMed

Abstract | Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
No

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 22 Nov 2020

Sara Torabi

Dear Dr. Hassanpour

Thank you very much for your kind words about our paper. In the following sections, you will find our responses to each point and suggestions. We have carefully reviewed the comments and have revised the manuscript accordingly.

Why did the authors select just 0 and 150 mM NaCl for this research?

In the past, various investigations have been made into salinity stresses and attempts to minimize the losses of plant productivity, such as the effects of Coumarin (Saleh and Madany, 2015), Ascorbic acid (Athar et al, 2008, Azzedin et al, 2011, Khan et al, 2006), Oligochitosan (Ma, et al, 2012), Melatonin (Ke, et al, 2018), etc. on the wheat plant. Therefore, based on previous investigations, we screened ameliorative effects of Fara-darmani CF with two similar concentrations of NaCl including 0 and 150 mM. We suggest that the effects of the Fara-darmani CF be investigated with different NaCl concentrations and with different types of plants.

Ahmed Mahmoud Saleh, M.M.Y. Madany. *Coumarin pretreatment alleviates salinity stress in...*
wheat seedlings, Plant Physiology and Biochemistry, Volume 88, 2015, Pages 27-35, ISSN 0981-9428, https://doi.org/10.1016/j.plaphy.2015.01.005.

Habib-ur-Rehman Athar, Ameer Khan, Muhammad Ashraf, Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat, Environmental and Experimental Botany, Volume 63, Issues 1–3, 2008, Pages 224-231, ISSN 0098-8472, https://doi.org/10.1016/j.envexpbot.2007.10.018

Azzedine, F, Gherroucha, H, Baka, M. Improvement of salt tolerance in Durum Wheat by Ascorbic acid application. Journal of Stress Physiology & Biochemistry, Vol. 7, 2011, No. 1, pp. 27-37 ISSN 1997-0838

Khan A, Ahmad MSA, Athar HUR, Ashraf M. Interactive effect of foliarly applied ascorbic acid and salt stress on wheat (Triticum aestivum L.) at the seedling stage. Pakistan Journal of Botany. 2006 Dec;38(5):1407-1414.

Ma, L., Li, Y., Yu, C. et al. Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma 249, 393–399 (2012). https://doi.org/10.1007/s00709-011-0290-5

Ke Qingbo, Ye Jun, Wang Bomei, Ren Jianhong, Yin Lina, Deng Xiping, Wang Shiwen. Melatonin Mitigates Salt Stress in Wheat Seedlings by Modulating Polyamine Metabolism, Frontiers in Plant Science, VOLUME 9, 2018, PAGES 914. ISSN 1664-462X. DOI: 10.3389/fpls.2018.00914.

The intensity or wavelength are not clear, and isn't the device regulates for intensity or wave?
As it was mentioned in the introduction section (paragraph 4, lines 5), according to Taheri, consciousness is one of the three existing elements of the universe apart from matter and energy. By defining consciousness as neither matter nor energy we cannot associate a quantity to it. Therefore, we cannot register it by any device and must be mediated by human mind.

How Fara-darmani Consciousness Field affect the cell, how is perceived by the cell, what is the effect on organisms? The discussion needs to improve.
As stated in the last paragraph, the main challenge of this study is the fact that Consciousness Field doesn't possess a quantity and isn't directly measurable. Therefore, in order to identify its specific effects, we have measured Fara-darmani CF effects indirectly on a plant's biochemical processes. At this point, more biochemical and histological studies can collaborate to clarify this phenomenon. In addition, more explanation was added in the discussion section (paragraph 2).

If there isn't any research about Fara-darmani Consciousness Field, the author can use some article for the discussion:
Thank you for this suggestion. We have put a significant effort in improving the discussion section and these two references were added to the paragraph 1 and 2. In addition, we improved the discussion with more references.

Competing Interests: No competing interests were disclosed.
According to theory developed by Taheri who proposed the concept of the consciousness fields (CFs), Fara-darmani CF is neither matter nor energy so we cannot measure it directly but it's possible to investigate its effects indirectly by experiments. In other words, in the light of the scientific experiments, Consciousness fields can be understood. During the past years a wealth of information describing complementary therapy has been obtained but in order to be accepted, academic studies which using a well-structured design are necessary. Since botanical trials do not present neither placebo effect nor ethical problem, we decided to screen the effects of Fara-darmani CF on wheat plant. In addition, we propose a range of tests for CFs in physics, chemistry, biology etc.

Competing Interests: No competing interests were disclosed.

frank sadler, UKISA (independent), London, UK

It would be exceptionally interesting to see the peer reviews of this paper. If this can be laboratory demonstrated and measured independently under agreed controlled conditions then we have a rather unique potential solution for some of the world’s food production issues. Reading the comments so far, I do note, however, that some commenters forget that science is about pushing out frontiers of knowledge by experiment and proof which is why peer reviews and independent experimentation are key factors. There is also no issue in our day and age in theories being put forward based on individual experimentation and measurement. That is what this is about not individual egos, likes or dislikes of particular people or organisations, or any other particular personal agendas.

Competing Interests: An open mind

Pantea Aghajani, Halque, Canada, Canada

Hello

I have to say I am so happy that such an article could be here today. I know there would be lots of doubts and thoughts on how nonsense this article is which is all normal. But the thing is it can be re-experienced over and over again, so hopefully consciousness field will be proven some how
from its affecting. Another thing is the terminology which is used here might be different than what people used to. But after the explanation on what does those mean and the tests talks for themselves, there would be no need to explain more. Thank you Mohammad Ali Taheri our beloved teacher and thank you all for making it happen. I can't wait to see the results.

Competing Interests: No competing interests were disclosed.

Reader Comment 11 Sep 2020

F1000 Research, F1000Research, London, UK

Hi Michael,

We appreciate your interest in our publishing model and welcome your feedback. Our publishing model allows us to publish articles with no prior editorial bias. We strongly believe that the research community is best placed to determine which findings are scientifically valid. In accordance with this belief, F1000Research has no academic editors or editorial board members who make decisions on whether to publish a paper. Before an article is published, we run a number of objective checks to ensure that reviewers are not unduly burdened with peer review invitations. To ensure that editorial censorship is avoided, these prepublication checks are primarily focused around authorship. To publish in F1000Research, authors must have a formal appointment at a recognised institution and hold a certain level of research-based qualification. We feel that it is very important that researchers can share any research findings they wish on F1000Research, without editorial selection.

I hope this comment has been able to provide some clarity about our editorial processes. If you would like any further information on our editorial requirements and peer review model, please feel free to contact a member of our editorial team at research[at]f1000.com.

Competing Interests: No competing interests were disclosed.

Reader Comment 08 Sep 2020

m mokhtarian, faradarmangar, Iran

Greetings to the Master of Love and Knowledge and congratulations to the pioneers in the field of introducing consciousness and awareness. Wish good for human advancement.

Competing Interests: No competing interests were disclosed.

Reader Comment 07 Sep 2020
yaser Beheshti, Interuniversal, I., Iran

Greetings to the Master of Love and Knowledge and congratulations to the pioneers in the field of introducing consciousness and awareness

Peace be upon the great teacher who taught us to think

Competing Interests: No competing interests were disclosed.

Reader Comment 07 Sep 2020
Vida Majidzadeh, Faradarmanghar, Iran

Master of Love; Master Mohammad Ali Taheri; sincerely congratulate me. I wish you more and more success.

Competing Interests: No competing interests were disclosed.

Reader Comment 06 Sep 2020
Michael Müller, Cosmic Unconsciousness Network, Germany

I can't even comment on how ridiculous this exercise in absurdity is.

F1000research.com has become a joke by letting this kind of manuscripts slip through its first pre-scanning process. What are editors doing. Not even skimming through the text once? I doubt that even Arxiv would allow such a shenanigan on its website.

Quotes from text: "by connecting to internet-like facilities called the Cosmic Consciousness Network (CCN)" any living creature, including animals and plants can be healed by humans.

In Fara-darmani, subjects of study become connected to that Consciousness Field via Fara-therapist by 'announcement' which is a process in which Taheri or any Fara-therapist (announcer) declares and sends the information of the subjects under study (e.g. the number of groups) to the CCN. The influence of Consciousness Field begins with the connection between the human mind and the CCN.

This exposure occurs without any kind of physical intervention, since consciousness according to Taheri's concepts is neither matter nor energy, receiving this treatment is possible from close and far distances.

Competing Interests: I have to confess that I have bias toward science and logic.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com