ON SOME FANO–ENRIQUES THREEFOLDS

ILYA KARZHEMANOV

ABSTRACT. We give a classification of Fano threefolds X with canonical Gorenstein singularities such that X possess a regular involution, which acts freely on some smooth surface in $|-K_X|$, and the linear system $|-K_X|$ gives a morphism which is not an embedding. From this classification one gets, in particular, a description of some natural class of Fano–Enriques threefolds.

1. INTRODUCTION

In this article we use the following

Definition 1.1. Three-dimensional normal projective variety W with canonical singularities is called a Fano–Enriques threefold if the canonical divisor K_W is not Cartier, but $-K_W \sim QH$ for some ample Cartier divisor H. The number $g := \frac{1}{2}H^3 + 1$ is called genus of W.

In [7] G. Fano studied three-dimensional normal projective varieties W with general hyperplane section H which is a smooth Enriques surface (see also [8]). Such varieties are always singular (see [5]). Moreover, according to [2], if singularities of W are worse than canonical, then W is a cone over H. Hence, from the viewpoint of classification, the case when W has canonical singularities is of the main interest. If this holds, then by [2] W is a Fano–Enriques threefold with isolated singularities such that $-K_W \sim QH$. In [7] G. Fano was able to obtain only partial description of such varieties (see also [4], [5]).

A new approach became possible due to the Minimal Model Program (see [3]). First of all, according to Propositions 3.1 and 3.3 in [15], general element $H_0 \in |H|$ on a Fano–Enriques threefold W has only Du Val singularities and the minimal resolution of H_0 is a smooth Enriques surface. From this one can deduce that $2(K_W + H_0) \sim 0$ on W (see [2]). Further, take a global log canonical cover $\pi : X \to W$ with respect to $K_W + H_0$ (see, for example, [11]). Here morphism π has degree 2 and $\pi^*(K_W + H_0) \sim 0$. Moreover, π is ramified exactly at those points on W where K_W is not Cartier. Since W has canonical singularities, the number of such points is finite. In particular, we obtain that $-K_X \sim \pi^*(H_0)$ and X is a Fano threefold with canonical Gorenstein singularities and degree $-K_X^3 = 4g - 4$. Furthermore, Galois involution of the double cover π induces an automorphism τ on X of order 2 such that τ acts freely in codimension 2 and $W = X/\tau$.

The above construction has lead to the complete description of Fano–Enriques threefolds with terminal cyclic quotient singularities (see [1], [19]). Now let W be a Fano–Enriques threefold with isolated singularities. According to [15, Corollary 3.7], if $H^3 \neq 2$, then general element $H_0 \in |H|$ is a smooth Enriques surface. In this case on the corresponding Fano threefold X there is a τ-invariant smooth K3 surface $\pi^*(H_0) \in |-K_X|$ with a free action of τ.

The main result of the present paper is the following

Theorem 1.2. Let X be a Fano threefold with canonical Gorenstein singularities and $S \in |-K_X|$ be a smooth K3 surface. Suppose that there is an action of regular involution τ on X such that $\tau(S) = S$ and τ does not have fixed points on S. Then

- the factor X/τ is a Fano–Enriques threefold with isolated singularities;
- the linear system $|-K_X|$ does not have base points;

The work was partially supported by RFFI grant No. 08-01-00395-a and grant N.Sh.-1987.2008.1.
• if the morphism $\varphi_{|K_X}^{[1]}$ is not an embedding, then one has the following possibilities:
 A) X is the intersection of a quartic and a quadric in $\mathbb{P}(1,1,1,1,2)$, $-K_X^3 = 4$;
 B) X is the image of threefold V, which is a double cover of the scroll $\mathbb{F}(d_1,d_2,d_3) := \text{Proj} \left(\bigoplus_{i=1}^{3} \mathcal{O}_{\mathbb{P}^1}(d_i) \right)$ with ramification at some divisor in the linear system $|4M - 2(2 - \sum_{i=1}^{3} d_i)L|$, where M is the class of tautological divisor on $\mathbb{F}(d_1,d_2,d_3)$ and L is the class of a fibre of the natural projection $\mathbb{F}(d_1,d_2,d_3) \to \mathbb{P}^1$, under birational morphism, given by multiple anticanonical linear system $|-rK_V|$, $r \gg 0$. Furthermore, for $(d_1,d_2,d_3,-K_X^{(2)})$ only the following values are possible:

 $(2,1,1,8), (2,2,2,12), (2,2,0,8), (3,1,0,8), (3,3,0,12), (4,2,0,12), (4,4,0,16), (5,3,0,16), (6,4,0,20), (7,5,0,24), (8,6,0,28),$

 and each of the cases in [A] and in [B] does occur.

From Theorem 1.2 and the above arguments we obtain

Corollary 1.3. Let W be a three-dimensional normal projective variety with general hyperplane section which is a smooth Enriques surface. If W has canonical singularities, then it is a factor of some Fano threefold X with canonical Gorenstein singularities by the action of regular involution on X, which acts freely on some smooth surface in $|-K_X|$, so that one of the following holds:

• X is one of the threefolds from Theorem 1.2
• the linear system $|-K_X|$ gives an embedding.

Remark 1.4. In that case when Fano–Enriques threefold W has terminal singularities there exists a flat deformation of W to Fano–Enriques threefold with terminal cyclic quotient singularities (see [14]). For Fano threefolds X in case [B] of Theorem 1.2 which correspond to $\mathbb{F}(d_1,d_2,0)$, the same result for $W = X/\tau$ is not known. For such W it is not known also if the linear system $|H|$ is very ample.

The author would like to thank Yu. G. Prokhorov for setting the problem and for his attention to this paper. Also the author would like to thank I. A. Cheltsov, V. A. Iskovskikh, K. A. Shramov and V. S. Zhgun for helpful discussions.

2. Preliminaries

We use standard notions and facts from the theory of minimal models and Fano varieties (see [10], [3], [13]). All varieties are assumed to be projective and defined over \mathbb{C}. In what follows X is a threefold from Theorem 1.2.

Lemma 2.1. Factor X/τ is a Fano–Enriques threefold with isolated singularities.

Proof. Set $W := X/\tau$ and $\pi : X \to W$ to be the factorization morphism. Since τ acts freely on $S \in |-K_X|$, $H := \pi(S)$ is a smooth Enriques surface and an ample divisor on W. In particular, singularities of W are isolated. From this we get $-2K_W \sim 2H$ (see [2] Remark 2.8). Thus, it remains to show that W has canonical singularities.

By the above arguments W is \mathbb{Q}-Gorenstein. Then, according to [3], Proposition 6.7, W has log terminal singularities. Suppose that singularities of W are worse than canonical. Then, according to [2], contraction of the negative section E on the \mathbb{P}^1-fibration $\mathbb{P} := \text{Proj} (\mathcal{O}_H \oplus \mathcal{O}_H(H|_E))$ gives a birational morphism $g : \mathbb{P} \to W$ such that $K_{\mathbb{P}} = g^*(K_W) - E$. This implies that the discrepancy $a(E,W)$ equals -1, which is a contradiction.

Lemma 2.2. The degree $-K_X^3$ is divisible by 4.

$^{[1]}$ for a linear system \mathcal{L} we denote by $\varphi_{\mathcal{L}}$ corresponding rational map.
Proof. In the notation from the proof of Lemma 2.1 for the ample Cartier divisor $H = \pi(S)$ on a Fano–Enriques threefold W we have $-K_W \sim \mathbb{Q}H$. In particular, we get: $-K_X^3 = \pi^*(H)^3 = 2H^3$. On the other hand, according to [13, Lemma 2.2], H^3 is divisible by 2. Thus, $-K_X^3$ is divisible by 4.

\begin{lemma}
The linear system $| -K_X|$ does not have base points.
\end{lemma}

Proof. Suppose that $B := Bs| -K_X| \neq \emptyset$. If $\dim B = 0$, then, according to [20], B is a point. We have $B = \tau(B)$ and $B \in S$. On the other hand, τ acts freely on S, a contradiction.

Suppose now that $\dim B = 1$. Then, according to [20], we have $B \cong \mathbb{P}^1$. Thus, since $\tau(B) = B$, there are at least two τ-fixed points on B. On the other hand, $B \subset S$ and τ acts freely on S, a contradiction.

Let us consider the anticanonical morphism $\varphi_{| -K_X|} : X \to Y$ and assume that it is not an isomorphism. Then $\varphi_{| -K_X|}$ is a double cover of the threefold $Y := \varphi_{| -K_X|}(X) \subset \mathbb{P}^n$, where $n = -\frac{1}{2}K_X^3 + 2$ (see [10]). Let us denote by $D \subset Y$ the ramification divisor of $\varphi_{| -K_X|}$.

\begin{lemma}
Suppose that $-K_X^3 = 4$. Then X is the intersection of a quartic and a quadric in $\mathbb{P}(1, 1, 1, 1, 2)$.
\end{lemma}

Proof. This follows from [16, Remark 3.2].

\begin{remark}
From the proof of Theorem 1.1 in [19] it follows that there exists a smooth Fano threefold X, which is the intersection of a quartic and a quadric in $\mathbb{P}(1, 1, 1, 1, 2)$, with an action of regular involution which acts freely on some smooth surface in $| -K_X|$.
\end{remark}

\begin{lemma}
Threefold Y is not the cone over Veronese surface.
\end{lemma}

Proof. Suppose that Y is the cone over Veronese surface. Then the threefold X is isomorphic to a hypersurface of degree 6 in the weighted projective space $\mathbb{P} := \mathbb{P}(1, 1, 1, 2, 3)$ (see [16, Lemma 3.3]). Since $\text{Pic}(X) \cong \text{Pic}(\mathbb{P}) = \mathbb{Z}$ (see [16], [10, Proposition 1.2.1]) implies that for every $m \in \mathbb{N}$ automorphism τ naturally lifts to involution acting on the linear system $|O_{\mathbb{P}}(m)|$. This determines the lifting of τ to involution on \mathbb{P} which we again denote by τ.

Choose homogeneous coordinates x_0, x_1, x_2, x_3, x_4 on \mathbb{P}, where $\deg x_0 = \deg x_1 = \deg x_2 = 1$, $\deg x_3 = 2$, $\deg x_4 = 3$, such that x_i is an eigen function of τ with an eigen value ± 1. After multiplication by -1 and renumbering one can set x_0 and x_1 to be τ-invariant. Then the action of τ on \mathbb{P} is

\begin{equation}
[x_0 : x_1 : x_2 : x_3 : x_4] \mapsto [x_0 : x_1 : -x_2 : -x_3 : -x_4].
\end{equation}

Indeed, in any other expression the locus of τ-fixed points on \mathbb{P} contains a surface. But $\text{Pic}(\mathbb{P}) = \mathbb{Z}$ and X is a Cartier divisor. Hence the locus of τ-fixed points on X must contain a curve which is impossible because τ acts freely on $S \in | -K_X|$.

Further, according to (2.7), the locus of τ-fixed points on \mathbb{P} consists of the curves $C_1 = (x_2 = x_3 = x_4 = 0), C_2 = (x_0 = x_1 = x_3 = 0)$ and the point $O = [0 : 0 : 0 : 1 : 0]$. Since τ acts freely on $S \in | -K_X|$, we have $C_1, C_2 \not\subset X$. This and (2.7) imply, since $\tau(X) = X$ and $X \in |O_{\mathbb{P}}(6)|$, that the equation of X is

\begin{equation}
F_6(x_0 : x_1) + \alpha_1 x_0^6 + x_1^4 F_2(x_0 : x_1) + \alpha_2 x_0^2 x_1 + x_1^3 x_3 F_1(x_0 : x_1) +
+ x_2^2 F_4(x_0 : x_1) + x_2 x_3 F_3(x_0 : x_1) + x_2 x_4 F_2(x_0 : x_1) +
+ x_3^2 H_2(x_0 : x_1) + x_3 x_4 G_1(x_0 : x_1) + \alpha_3 x_3^4 = 0,
\end{equation}

where $\alpha_i \in \mathbb{C}, F_i, G_i$ are homogeneous polynomials in x_0, x_1 of degree i.

\footnote{for a linear system \mathcal{L} we denote by $Bs(\mathcal{L})$ its base locus.}
On the other hand, for the τ-invariant surface $S \in |-K_X|$ we have $S \cap (C_1 \cup C_2 \cup \{O\}) = \emptyset$ by assumption. This and (2.7) imply, since $\text{Pic}(X) \cong \text{Pic}(\mathbb{P}) = \mathbb{Z}$ and $-K_X \sim \mathcal{O}_X(2)$, that the equation of S on X is one of the following:

\[(2.9) \quad \alpha x_3 + x_2 H_1(x_0 : x_1) = 0\]

or

\[(2.10) \quad \beta x_2^2 + H_2(x_0 : x_1) = 0,\]

where $\alpha, \beta \in \mathbb{C}$, H_i are homogeneous polynomials in x_0, x_1 of degree i. But in case (2.9) one gets $S \cap C_1 \neq \emptyset$ and in case (2.10) we have $S \ni O$. Thus, in both cases S contains a τ-fixed point. The obtained contradiction proves Lemma 2.6.

Remark 2.11. From Lemmas 2.2, 2.4, Remark 2.5 and Lemma 2.6 we deduce that to prove Theorem 1.1 it remains to consider the case when $-K_X^3 \geq 8$ and the threefold Y is not the cone over Veronese surface. In what follows we assume these conditions to be satisfied for X.

Since the degree of $Y \subset \mathbb{P}^n$ equals $n - 2$, by Remark 2.11 and by Enriques Theorem (see [9, Theorem 3.11]) there is a birational morphism $\varphi_{|M|} : \mathbb{F}(d_1, d_2, d_3) \rightarrow Y$. Here $\mathbb{F}(d_1, d_2, d_3) := \text{Proj} \left(\bigoplus_{i=1}^{3} \mathcal{O}_{\mathbb{P}^i}(d_i) \right)$ is a rational scroll, M is the class of tautological divisor on $\mathbb{F}(d_1, d_2, d_3)$, $d_1 \geq d_2 \geq d_3 \geq 0$. Let us also denote by L the class of a fibre of the natural projection $\mathbb{F}(d_1, d_2, d_3) \rightarrow \mathbb{P}^1$.

Lemma 2.12. The equality $-K_X^3 = 2(d_1 + d_2 + d_3)$ takes place.

Proof. We have $-\frac{1}{2}K_X^3 = \text{deg}(Y) = M^3$. On the other hand, $M^3 = d_1 + d_2 + d_3$ by [18, A.4], which implies equality we need.

Lemma 2.13. If $d_3 \neq 0$, then $\varphi_{|M|}$ is an isomorphism and $D \in |4M - 2(\sum_{i=1}^{3} d_i - 2)L|$. Moreover, $(d_1, d_2, d_3) = (2, 1, 1)$ or $(2, 2, 2)$.

Proof. The fact that $\varphi_{|M|}$ is an isomorphism for $d_3 \neq 0$ follows from [18, Theorem 2.5]. Thus, we have $-K_X \sim \varphi^*_{-K_X}(M)$ and $K_Y \sim -3M + (d_1 + d_2 + d_3 - 2)L$ (see [18, A. 13]). This together with the Hurwitz formula gives $D \in |4M - 2(\sum_{i=1}^{3} d_i - 2)L|$. Finally, since $S \in |-K_X|$ is a smooth surface, the threefold X has isolated singularities. According to Table 1 in the proof of Theorem 1.5 in [16] and Lemmas 2.2, 2.12, this is possible only for $(d_1, d_2, d_3) = (2, 1, 1)$ and $(2, 2, 2)$.

Remark 2.14. Let X be a double cover of $\mathbb{F}(d_1, d_2, d_3)$, where $(d_1, d_2, d_3) = (2, 1, 1)$ or $(2, 2, 2)$, with ramification at general divisor in $D := |4M - 2(\sum_{i=1}^{3} d_i - 2)L|$. It is easy to write down the basis of the linear system D (see [18, 2.4] or [3.1] below) and obtain that D does not have base points. This together with the Hurwitz formula implies that X is a smooth Fano threefold, of degree 8 or 12. Moreover, according to [16, Remark 1.8], X belongs to the list from Theorem 1.1 in [19]. Hence there is an action of regular involution τ on X such that the factor $W := X/\tau$ is a Fano–Enriques threefold with isolated singularities. Since the genus of W equals 3 or 4, it follows from [15, Corollary 3.7] that τ acts freely on some smooth K3 surface in $|-K_X|$ (see arguments in Introduction). Moreover, by construction the linear system $|-K_X|$ gives a morphism of degree 2.

It follows from Lemma 2.13 and Remark 2.14 that to prove Theorem 1.2 it remains to consider the case when $d_3 = 0$. In what follows we assume this condition to be satisfied for X. Set $\mathbb{F} := \mathbb{F}(d_1, d_2, 0)$.

Lemma 2.15. In the above notation, morphism $\varphi_{|M|} : \mathbb{F} \rightarrow Y$ is a small birational contraction and $\varphi_{|M|}(D) \in |4M - 2(d_1 + d_2 - 2)L|$. The exceptional locus of $\varphi_{|M|}$ is an irreducible rational curve and the threefold Y is a cone with the unique singularity at the vertex.
Proof. We have $d_2 \neq 0$. Indeed, if $d_2 = 0$, then Y is a cone with a curve of singularities (see the proof of Theorem 2.5 in [18]). The latter implies that the singularities of X are non-isolated, which is impossible because $S \in |-K_X|$ is a smooth surface. Further, as in the proof of Lemma 2.13 we obtain that $\varphi_M^*(D) \in |4M - 2(d_1 + d_2 - 2)L|$. Finally, the fact that the exceptional locus of φ_M^* is an irreducible rational curve and Y is a cone with the unique singularity at the vertex follows from the proof of Theorem 2.5 in [18].

Lemma 2.16. In the above notation, let V be the double cover of \mathbb{F} with ramification divisor $\varphi_M^*(D)$. Then X is an image of V under birational morphism, given by the multiple anticanonical linear system $|-rK_V|$, $r \gg 0$.

Proof. This follows from [16] Remark 3.8.

Further, one has the following exact sequence:

$$1 \rightarrow G \rightarrow \text{Aut}(X) \xrightarrow{f} \text{Aut}(Y) \rightarrow 1,$$

where G is the group generated by Galois involution which corresponds to $\varphi_{-K_X}^*$. Set $\sigma := f(\tau)$.

Lemma 2.18. In the above notation, involution σ lifts to the regular involution on \mathbb{F}.

Proof. We have $K_\mathbb{F} \sim -3M + (d_1 + d_2 - 2)L$ (see [18] A.13). Let $C \simeq \mathbb{P}^1$ be the exceptional locus of φ_M^* (see Lemma 2.15). Then, since $C = M_1 \cdot M_2$ for general $M_1 \in |M - d_1L|$ and $M_2 \in |M - d_2L|$ (see the proof of Theorem 2.5 in [18]), we have $K_\mathbb{F} \cdot C = d_1 + d_2 - 2$ (see [18] A.14).

If $d_1 + d_2 - 2 \leq 0$, then by Lemma 2.12 we have $-K_X^3 = 2(d_1 + d_2) \leq 4$. This contradicts the assumption for $-K_X^3$ (see Remark 2.11).

Now let $d_1 + d_2 - 2 > 0$. Then the divisor $K_\mathbb{F}$ is ample over Y. Hence \mathbb{F} is a relatively minimal model over Y. But every such model, which is birational to \mathbb{F}, is either isomorphic to \mathbb{F} or connected with \mathbb{F} by a sequence of flops over Y (see [12] Theorem 4.3). Thus, in the present case all such relatively minimal models over Y are isomorphic to \mathbb{F}. In particular, this holds for the σ-equivariant canonical model of a σ-equivariant resolution of Y (see [13]).

Let us again denote by σ the lifting of involution σ on \mathbb{F}.

Lemma 2.19. In the above notation, linear system $|aM + bL|$ is σ-invariant on \mathbb{F} for every a, $b \in \mathbb{Z}$.

Proof. It follows from [18] Lemma 2.7] that every divisor B on \mathbb{F} is linearly equivalent to divisor $aM + bL$ for some a, $b \in \mathbb{Z}$. If B is numerically effective, then we have $a \geq 0$, since otherwise B has negative intersection with every curve in L. Moreover, for such B we have $b \geq 0$, since $M \cdot C = 0$ and $L \cdot C = 1$ in the notation from the proof of Lemma 2.18. Thus, divisors L and M generate the cone of numerically effective divisors on \mathbb{F}. Since σ preserves this cone, $L^3 = 0$ and $M^3 > 0$ (see [18] A.4), we obtain that the linear systems $|L|$ and $|M|$ are σ-invariant. This implies the result we need.

Remark 2.20. Since $\sigma^*|L| = |L|$ and $|L|$ is a pencil, there exist at least two σ-invariant fibres L_0, $L_1 \in |L|$ on \mathbb{F}.

Set $M_S := \varphi_M^*(\varphi_{-K_X}^*(S))$ for the smooth τ-invariant $K3$ surface $S \in |-K_X|$ on X. This is a σ-invariant divisor in $|M|$. Set also $D' := \varphi_M^*(D)$. This is a σ-invariant divisor in $|4M - 2(d_1 + d_2 - 2)L|$ (see Lemma 2.15 and (2.17)).

Lemma 2.21. In the above notation, the set $D' \cap M_S$ does not contain σ-fixed points.

Proof. If $D' \cap M_S$ contains a σ-fixed point, then the surface S contains a τ-fixed point (see (2.17)), which is impossible by assumption.
We use notation and conventions from Section 2. Threefold F is the factor of $(\mathbb{C}^2 \setminus \{0\}) \times (\mathbb{C}^3 \setminus \{0\})$ by an action of the group $(\mathbb{C}^*)^2$ (see [18, 2.2]). Let us denote by $[x_0 : x_1 : x_2]$ the projective coordinates on a fibre $L \simeq \mathbb{P}^2$ of the natural projection $F \longrightarrow \mathbb{P}^1$. Let also $[t_0 : t_1]$ be projective coordinates on the base \mathbb{P}^1. The functions t_i, x_j are restrictions of the coordinate functions on $\mathbb{C}^2 \setminus \{0\}$ and $\mathbb{C}^3 \setminus \{0\}$, respectively. For every a, $b \in \mathbb{Z}$ it then follows that linear system $|aM + bL|$ is generated by polynomials of the form

\[\frac{\partial}{\partial t_0} = x_0, \quad \frac{\partial}{\partial t_1} = x_1, \quad \frac{\partial}{\partial t_2} = x_2, \]

where $i_1 + i_2 + i_3 = a$, $i_j \geq 0$, $g_{i_1,i_2,i_3}(t_0 : t_1)$ is a homogeneous polynomial of degree $b + 2i_1 + 2i_2 \geq 0$ (see [18, 2.4]).

Lemma 3.2. General element in the linear system $|4M - 2(d_1 + d_2 - 2)L|$ is irreducible.

Proof. Let general element in $\mathcal{R} := |4M - 2(d_1 + d_2 - 2)L|$ be reducible. Then, according to Table 1 in the proof of Theorem 1.5 in [16], we have $d_1 > d_2$, and \mathcal{R} is generated by polynomials in (3.1) with $a = 4$, $b = 2(2 - d_1 - d_2)$ and $i_1 > 0$. In particular, divisor $D' = \varphi_{M}(D)$ contains the surface $R \in |M - d_1L|$, given by equation $x_0 = 0$.

Since $d_1 > d_2$, it follows from (3.1) that the linear system $|M - d_1L|$ is generated by x_0. Then by Lemma 2.19, we obtain that $R = \sigma(R)$. Let $L_0, L_1 \subset |L|$ be two σ-invariant fibres on F (see Remark 2.20). Then $R|_{L_0}$ and $M|_{L_0}$ are σ-invariant lines on $L_0 \simeq \mathbb{P}^2$, $i \in \{0, 1\}$. In particular, the sets $R \cap M \cap L_0$ contain at least one σ-fixed point each. But $R \cap M \cap L_0 \subset D' \cap M_0$. Thus, we get a contradiction with Lemma 2.21.

According to Table 1 in the proof of Theorem 1.5 in [16] and Lemmas 2.2, 2.12, 3.2, one gets only the following possibilities for (d_1, d_2):

\[(3.3) \quad (2, 2), (3, 1), (3, 3), (4, 2), (4, 4), (5, 3), (6, 4), (7, 5), (8, 6). \]

This and Lemmas 2.2, 2.10 imply that to prove Theorem 1.2 it remains to show that for every pair (d_1, d_2) in (3.3) there is a Fano threefold X with canonical Gorenstein singularities such that X possess a regular involution, which acts freely on some smooth K3 surface in $| - K_X|$, and the linear system $| - K_X|$ gives a morphism which is not an embedding.

Set $F := F(d_1, d_2, 0)$ for (d_1, d_2) in (3.3). Let us use previous notation for coordinates on the base \mathbb{P}^1 and on a fibre $L \simeq \mathbb{P}^2$ of the natural projection $F \longrightarrow \mathbb{P}^1$. We define regular involution σ on F by the following relations:

\[\sigma^*(t_0) = t_0, \quad \sigma^*(t_1) = -t_1 \]

and

\[\sigma^*(x_0) = -x_0, \quad \sigma^*(x_1) = x_1, \quad \sigma^*(x_2) = -x_2. \]

Remark 3.6. Since t_i, x_j are restrictions of the coordinate functions on $\mathbb{C}^2 \setminus \{0\}$ and $\mathbb{C}^3 \setminus \{0\}$, respectively, (3.4) and (3.5) commute with the action of the group $(\mathbb{C}^*)^2$, the action of σ on F is completely determined by relations (3.4) and (3.5). On the other hand, from Lemma 2.19 it is easy to see that up to the sign change every regular involution on F is determined by relations of the form (3.4) and (3.5).

Let us denote by C the curve on F, given by equations $x_0 = x_1 = 0$. We prove the following

Proposition 3.7. In the above notation, there are linear systems $D \subseteq |4M - 2(d_1 + d_2 - 2)L|$, $M \subseteq |M|$, where M is the class of tautological divisor on F, such that

- $\dim D, \dim M > 0$;
- D consists of σ-invariant divisors, $Bs(D) = C$ and $\text{mult}_C(D) \leq 3$;
- M consists of σ-invariant divisors and $Bs(M) \cap C = \emptyset$;
- double cover of F with ramification at general divisor in D has canonical singularities;
• for general divisors $D_0 \in \mathcal{D}$, $M_0 \in \mathcal{M}$ and the set of σ-fixed points \mathbb{F}^σ on \mathbb{F} we have $M_0 \cap D_0 \cap \mathbb{F}^\sigma = \emptyset$.

Proof. The conditions $\sigma(D_0) = D_0$, $\text{Bs}(\mathcal{D}) = C$, $\text{mult}_C(\mathcal{D}) \leq 3$ and \cite{3.1}, \cite{3.4}, \cite{3.5} imply that the equation of general divisor $D_0 \in \mathcal{D}$ for (d_1, d_2) in \cite{3.3} must be one of the following:

(d_1, d_2)	equation of D_0
$(2, 2)$	$\alpha x_0^2 x_2^2 + \beta x_1^2 x_2^2 + \gamma t_0^4 x_0^4 + \gamma' t_1^4 x_0^4 + \delta t_0^4 x_1^4 + \delta' t_1^4 x_1^4 + P_1 = 0$
$(3, 1)$	$\alpha t_0^2 x_0^2 x_2^2 + \alpha' t_1^2 x_0^2 x_2^2 + \beta x_1^4 + \gamma t_0^8 x_0^4 + \gamma' t_1^8 x_0^4 + P_2 = 0$
$(3, 3)$	$\alpha t_0^3 x_0^2 x_2 + 2 \beta t_1 x_1^3 x_2 + \gamma t_0^4 x_0^4 + \gamma' t_1^4 x_0^4 + \delta t_0^4 x_1^4 + \delta' t_1^4 x_1^4 + P_3 = 0$
$(4, 2)$	$\alpha x_0^2 x_2^2 + \beta x_1^4 + \gamma t_0^8 x_0^4 + \gamma' t_1^8 x_0^4 + P_4 = 0$
$(4, 4)$	$\alpha x_0^4 x_2 + \beta t_0^4 x_0^4 + \beta' t_1^4 x_0^4 + \gamma t_0^4 x_1^4 + \gamma' t_1^4 x_1^4 + P_5 = 0$
$(5, 3)$	$\alpha t_0^3 x_0^2 x_2 + \beta t_1 x_0^2 x_1 x_2 + \gamma x_1^4 + \delta t_0^8 x_0^4 + \delta' t_1^8 x_0^4 + P_6 = 0$
$(6, 4)$	$\alpha t_0^3 x_0^2 x_2 + \alpha' t_1^2 x_0^3 x_2 + \beta x_1^4 + \gamma t_0^8 x_0^4 + \gamma' t_1^8 x_0^4 + P_7 = 0$
$(7, 5)$	$\alpha t_0 x_0^4 x_2 + \beta x_1^4 + \gamma t_0^8 x_0^4 + \gamma' t_1^8 x_0^4 + P_8 = 0$
$(8, 6)$	$\alpha x_0^3 x_2 + \beta x_1^4 + \gamma t_0^8 x_0^4 + \gamma' t_1^8 x_0^4 + P_9 = 0$

Table 1.

Throughout the Table 1 $\alpha, \beta, \gamma, \delta, \alpha', \beta', \gamma', \delta' \in \mathbb{C}$, $P_i := P_i(t_0, t_1, x_0, x_1, x_2)$ is a polynomial of degree ≥ 3 in x_0, x_1 such that $\sigma^*(P_i) = P_i$ and $P_i(t_0, t_1, 0, 0, x_2) = 0$ for $1 \leq i \leq 9$.

Lemma 3.8. Double cover of \mathbb{F} with ramification at general divisor in \mathcal{D} has canonical singularities.

Proof. According to \cite{16} Corollary 2.7 and condition $\text{Bs}(\mathcal{D}) = C$, it is enough to show that for every point p on the curve C there is a divisor $D_0 \in \mathcal{D}$ such that the double cover $\varphi : V \to \mathbb{F}$ of \mathbb{F} with ramification at D_0 has canonical singularity at the point $o := \varphi^{-1}(p)$.

Put $x_0 = y$, $x_1 = z$, $x_2 = 1$ in equations from Table 1. We obtain:
Table 2.

Throughout the Table 2 $Q_i := P_i(t_0, t_1, x, y, 1)$. It follows that for $(d_1, d_2) \neq (7, 5)$ for every point $p = [t_0 : t_1]$ on the curve C there is a divisor $D_0 \in D$ such that $o = \varphi^{-1}(p) \in V$ is a cDV singularity and hence canonical (see [17]).

For $(d_1, d_2) = (7, 5)$ in the neighborhood of o with local coordinates x, y, z threefold V is given by equation (see Table 1):

\[
(3.9) \quad x^2 + \alpha_0 y^3 + \beta z^3 + \gamma t_0^8 y^4 + \gamma' t_1^8 y^4 + Q_8 = 0,
\]

where $Q_8 := P_8(t_0, t_1, x, y, 1)$. If $p = [t_0 : t_1]$ is a point on the curve C with $t_0 \neq 0$, then one may put $t_0 = 1, t_1 = t$ and find the equation of V in the neighborhood of o with local coordinates x, y, z, t:

\[
x^2 + \alpha y^3 + \beta z^3 + \gamma y^4 + \gamma' t^8 y^4 + Q'_8 = 0,
\]

where $Q'_8 := Q_8(1, t, x, y, 1)$. Then [16, Theorem 2.10] implies that for general divisor D_0 singularity $o \in V$ is cE_6.

Now let $p = [0 : 1]$. Then in (3.9) one may put $t_0 = t, t_1 = 1$ and find the equation of V in the neighborhood of o with local coordinates x, y, z, t:

\[
x^2 + \alpha y^3 + \beta z^3 + \gamma t^8 y^4 + \gamma' y^4 + Q'_8 = 0,
\]

where $Q'_8 := Q_8(t, 1, x, y, 1)$. It is easy to see that the weighted blow up $\tilde{V} \longrightarrow V$ at the point o with weights $(2, 1, 1, 1)$ is crepant (see the proof of Theorem 2.11 in [17]) and the threefold \tilde{V} is smooth. Hence for general divisor D_0 singularity $o \in V$ is canonical. Lemma 3.8 is completely proved.

Further, the conditions $\sigma(M_0) = M_0, \text{Bs}(\mathcal{M}) \cap C = \emptyset$ and $(3.1), (3.4), (3.5)$ imply that the equation of general divisor $M_0 \in \mathcal{M}$ for (d_1, d_2) in (3.3) must be one of the following:

\((d_1, d_2)\)	equation of \(M_0\)
\((2, 2)\)	\(at_0^2x_0 + bt_1^2x_0 + cx_2 + F_1 = 0\)
\((3, 1)\)	\(at_0^3x_0 + bt_1x_1 + cx_2 + F_2 = 0\)
\((3, 3)\)	\(at_0^3x_0 + bt_1^3x_1 + cx_2 + F_3 = 0\)
\((4, 2)\)	\(at_0^4x_0 + bt_1^4x_0 + cx_2 + F_4 = 0\)
\((4, 4)\)	\(at_0^4x_0 + bt_1^4x_0 + cx_2 + F_5 = 0\)
\((5, 3)\)	\(at_0^5x_0 + bt_1^3x_1 + cx_2 + F_6 = 0\)
\((6, 4)\)	\(at_0^6x_0 + bt_1^6x_0 + cx_2 + F_7 = 0\)
\((7, 5)\)	\(at_0^7x_0 + bt_1^5x_1 + cx_2 + F_8 = 0\)
\((8, 6)\)	\(at_0^8x_0 + bt_1^8x_0 + cx_2 + F_9 = 0\)

Table 3.

Throughout the Table 3 \(a, b, c \in \mathbb{C}, F_i := F_i(t_0, t_1, x_0, x_1)\) is a polynomial of degree 1 in \(x_0, x_1\) such that \(\sigma^*(F_i) = -F_i\) and \(F_i(t_0, t_1, 0, 0) = 0\) for \(1 \leq i \leq 9\).

Lemma 3.10. For general divisors \(D_0 \in \mathcal{D}, M_0 \in \mathcal{M}\) and the set of \(\sigma\)-fixed points \(\mathbb{F}^{\sigma}\) on \(\mathbb{F}\) we have \(M_0 \cap D_0 \cap \mathbb{F}^{\sigma} = \emptyset\).

Proof. From (3.4), (3.5) we obtain the equations for \(\mathbb{F}^{\sigma}\):

\[t_0t_1 = x_1x_0 = x_1x_2 = 0.\]

This implies that \(\mathbb{F}^{\sigma} = l_1 \cup l_2 \cup O_1 \cup O_2\), where \(l_i = (t_i = x_1 = 0)\) and \(l_i \not\subset O_i = (t_i = x_0 = x_2)\) are a curve and a point on the fibre \(L_i = (t_i = 0), i \in \{0, 1\}\), respectively.

It follows from equations in Tables 1 and 3 that \(O_i = \text{Bs}(\mathcal{M}|_{L_i})\), \(O_i \not\subset D_0\) and the set \(D_0 \cap l_i\) is finite, \(i \in \{0, 1\}\). Then, since \(\mathcal{M}|_{L_i}\) is a pencil of lines on \(L_i \simeq \mathbb{P}^2\), we obtain that \(M_0 \cap D_0 \cap \mathbb{F}^{\sigma} = \emptyset\).

From Lemmas 3.8, 3.10 and Tables 1, 3 we obtain the assertion of Proposition 3.7. \(\square\)

Let \(\mathcal{D}, \mathcal{M}\) be the linear systems from Proposition 3.7 and \(D_0 \in \mathcal{D}, M_0 \in \mathcal{M}\) be general divisors. Let us denote by \(\varphi : V \longrightarrow \mathbb{F}\) the double cover of \(\mathbb{F}\) with ramification at \(D_0\). By Proposition 3.7 threefold \(V\) has canonical singularities. Moreover, from the Hurwitz formula we obtain

\[(3.11)\]

\[-K_V \sim \varphi^*(M).\]

Thus, \(V\) is a weak Fano threefold with canonical Gorenstein singularities. Furthermore, by construction, \(V\) possess a regular involution \(\theta\), which acts non trivially on the fibres of \(\varphi\), such that the restriction of \(\theta\) on \(\mathbb{F}\) coincides with \(\sigma\).

Further, [13 Theorem 3.3], (3.11) and Lemma 2.15 imply that the linear system \(|-rK_V|\), \(r \gg 0\), gives a birational morphism \(\psi : V \longrightarrow X\) such that \(\psi\)-exceptional locus is the curve \(\varphi^{-1}(C)\) and \(X\) is a Fano threefold with canonical Gorenstein singularities which possesses a regular involution \(\tau\), the restriction of \(\theta\).

It follows from (3.11) and Proposition 3.7 that \(S := \varphi^*(M_0) \subset |-K_V|\) is a smooth K3 surface with a free action of involution \(\theta\) such that \(S \cap \varphi^{-1}(C) = \emptyset\). This implies that \(\psi(S) \subset |-K_X|\),
is a smooth K3 surface with a free action of involution τ. Finally, according to [16], the linear system $|-K_X|$ gives a morphism which is not an embedding. This completes the construction of Fano threefolds, which satisfy the conditions of Theorem 1.2 for (d_1, d_2) in (3.3).

Theorem 1.2 is completely proved.

REFERENCES

[1] Bayle L. Classification des variétés complexes projectives de dimension trois dont une section hyperplane générale est une surface d’Enriques // J. Reine Angew. Math. V. 449. 1995. P. 9–63.
[2] Cheltsov I. A. Singularity of three-dimensional manifolds possessing an ample effective divisor – a smooth surface of Kodaira dimension zero // Mat. Zametki. V. 59(4). 1996. P. 618–626.
[3] Clemens H., Kollar J., Mori S. Higher Dimensional Complex Geometry // Asterisque. V. 166. 1988.
[4] Conte A. Two examples of algebraic threefolds whose hyperplane sections are Enriques surfaces // Algebraic geometry – open problems (Ravello, 1982); Lecture Notes in Math. (Springer, Berlin, 1983). V. 997. P. 124–130.
[5] Conte A., Murre J. P. Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces // Ann. Scuola Norm. Sup. Pisa CL. Sci. V. 12(1). 1985. P. 43–80.
[6] Dolgachev I. V. Weighted projective varieties // Lecture Notes in Math. 1982. V. 956. P. 34–71.
[7] Fano G. Sulle varietà algebriche a tre dimensioni le cui sezioni iperpiane sono superficie di genere zero e bigenere uno // Mem. Mat. Sci. Fis. Natur. Soc. Ital. Sci. 1038. V. 3(24). P. 41–66.
[8] Godeaux L. Sur les variétés algébriques à trois dimensions dont les sections hyperplanes sont des surfaces et de bigenre un // Bull. Acad. Belgique Cl. Sci. 1933. V. 14. P. 134–140.
[9] Iskovskikh V. A. Anticanonical models of three-dimensional algebraic varieties // Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. V. 12. VINITI. Moscow. 1979. P. 59–157.
[10] Iskovskikh V. A., Prokhorov Yu. G. Fano varieties. Encyclopaedia of Mathematical Sciences // Algebraic geometry V / ed. Parshin A. N., Shafarevich I. R. V. 47. Berlin: Springer-Verlag. 1999.
[11] Kawamata Y. The crepant blowing-up of 3-dimensional canonical singularities and its application to the degeneration of surfaces // Ann. of Math. 1988. V. 127(2). P. 93-163.
[12] Kollár J. Flops // Cambridge, Massachussets: Harvard Univ. 1987.(Preprint).
[13] Kollár J., Mori S. Birational geometry of algebraic varieties // Cambridge Univ. Press. 1998.
[14] Minagawa T. Deformations of \mathbb{Q}-Calabi-Yao 3-folds and \mathbb{Q}-Fano 3-folds of Fano index 1 // J. Math. Sci. Univ. Tokyo. 1999. V. 6(2). P. 397–414.
[15] Prokhorov Yu. G. On algebraic threefolds whose hyperplane sections are Enriques surfaces // Russ. Acad. Sci. Sb. Math. 1995. V. 186 (9). P. 113–124.
[16] Przyjalkowsky V. V., Cheltsov I.A., Shramov K. A. Hyperelliptic and trigonal Fano threefolds // Russ. Acad. Sci. Izv. Math. 2005. V. 69(2). P. 145-204.
[17] Reid M. Canonical 3-folds // Algebraic Geometry, Angers. 1979. P. 273-310.
[18] Reid M. Chapters on algebraic surfaces // Complex algebraic geometry (Park City. Ut. 1993) P. 3–159.
[19] Sano T. Classification of non-Gorenstein \mathbb{Q}-Fano 3-folds of index 1 // J. Math. Soc. Japan. V. 47(2). 1995. P. 369–380.
[20] Shin K.-H. 3-dimensional Fano Varieties with Canonical Singularities // Tokyo J. Math. 1989. V. 12. P. 375–385.