Cholangiocarcinoma (CCA) is a subtype of highly malignant hepatic tumor, which has a low 5-year survival rate and poor clinical outcome. Only a few patients can be detected early and accepted with the surgery. Most of CCA patients are diagnosed in advanced stage, and the treatments are limited. For the inoperable, advanced CCA patients, chemotherapies are the main treatments, due to lacking molecular targets, therapeutic effect is limited.

Materials and methods: To explore potential therapeutic targets for CCA, we analyzed three microarray datasets derived from the Gene Expression Omnibus (GEO) database. Then, we used GEO2R tools of NCBI to discover the differentially expressed genes (DEGs) from the CCA and normal liver tumor microarrays (TMA). Subsequently, we used the Database for Annotation, Visualization and Integrated Discovery (DAVID) to perform the Gene Ontology function (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Then, we carried out the Cytoscape software to search for the hub genes downregulated in CCA and identify the protein–protein interaction (PPI) of these genes. Besides, we used the GEPIA tool to evaluate the differential expressions of hub genes in CCA patients. Then, we also used MEXPRESS database to detect the promoter methylation levels of hub genes in CCA and normal tissue samples. In addition, we evaluated the expression of these genes in CCA lines and normal bile tract cells after 5-AZA (DNA methyltransferase inhibitor) treatment.

Results: A total of 115 downregulated DEGs were identified. Among them, 10 hub genes with a high degree of connectivity were picked out. Among these 10 hub genes, F2, AHSG, ALDH8A1, SERPIND1 and AGXT showed higher DNA methylation levels of promoter in CCA and normal liver tissues. Therefore, these 5 genes may be the potential DNA methylation biomarkers and therapeutic targets in CCA.

Keywords: cholangiocarcinoma, hub genes, expression profiling data, methylation
are limited. For advanced CCA patients, the chemotherapy regimen of gemcitabine and cisplatin is the main treatment. Unfortunately, most CCAs showed resistant to chemotherapy and relapse or metastasize quickly after chemotherapy treatment. Thus, it is for us to ascertain novel therapeutic targets and effective treatment options for this disease.

In carcinogenesis, methylation could be a symbolic event through epigenetic studies. Several kinds of methylation, such as promoter methylation and CpG island methylation, are strongly associated with CCA. Therefore, we tried to discover novel DNA methylation biomarkers in CCA patients and provide potential therapeutic targets for this indicating disease. Through analyzing GEO expression profiling data, we detected the downregulated genes between CCA and normal liver tissues. Gene Ontology (GO) functional annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the screened DEGs. Next, we used a protein–protein interaction (PPI) network to identify hub suppress genes related to CCA. Then, through MEXPRESS database, we performed methylation levels detection to find out that F2, AHSG, ALDH8A1, SERPIND1 and AGXT were higher methylated in promoter in CCA compared to normal samples. Besides, these results were also further proved in CCA cell lines using RT-PCR. Therefore, we put forward that these five genes may be the DNA methylation biomarkers in CCA.

Methods And Materials

Cell Culture

In this study, we used four kinds of CCA cell lines (CCLP-1, HuCCT-1, HCCC-9810, and RBE) and a normal human biliary epithelial cell line (HIBEC). We purchased these cell lines from Cell Bank of Type Culture Collection of Chinese Academy of Sciences (Shanghai, China). According to their supplier’s protocol, all cell lines were cultured in RPMI-1640 complete medium (Biological Industries, Kibbutz Beit-Haemek, Israel) supplied with 10% fetal bovine serum (FBS; Moregate Biotech, Brisbane, Australia) and were cultured in an incubator of 37°C and 5% CO₂ environment.

Data Source

Datasets we analyzed in this research were obtained mainly from GEO database (http://www.ncbi.nlm.nih.gov/geo/) after searching for keywords related to CCA. Totally, we obtained 101 series about CCA from GEO database. Then, we selected three separate gene expression profiles (GSE107943, GSE26566, and GSE119337) for our study, about 228 human cholangiocarcinoma samples information were retrieved from these profiles. Among them, GSE107943 was based on the GPL18573 platform, GSE26566 was based on GPL6104, and GSE119337 was based on platform GPL11154.

Data Processing Of DEGs

In order to find out the DEGs between CCA and normal liver samples, we used the GEO2R online analysis tool in NCBI (https://www.ncbi.nlm.nih.gov/geo/geo2r/). We also used this tool to calculate the adjusted P-value and |logFC|. We considered the genes which meet cutoff standard requirements (adjusted P<0.05 and |logFC|≥2.0) as DEGs. Statistical analysis was carried out for each dataset. The Venn diagram was performed by using the web tool (bioinformatics.psb.ugent.be/webtools/Venn/).

GO And KEGG Pathway Analysis Of DEGs

Gene Ontology (GO) is used widely in functional annotation and enrichment analysis; biological process (BP), molecular function (MF), and cellular component (CC) are the three major components of gene function. KEGG is a database resource for collecting large number of data about molecular-level information, biological pathways, chemical substances which is generated by high-throughput experimental technologies. Through the Database for Annotation, Visualization and Integrated Discovery (DAVID) tools (https://david.ncifcrf.gov/), we carried out the GO annotation analysis and KEGG pathway enrichment analysis of DEGs. P<0.01 and gene counts≥10 were considered statistically significant.

PPI Network Construction And Hub Gene Identification

In order to obtain a PPI map, we upload the data of DEGs to the database analysis platform named Search Tool for the Retrieval of Interacting Genes (STRING). If the PPI pairs have the combined score >0.4, we extracted these pairs and visualize the PPI network using Cytoscape software (www.cytoscape.org/). Nodes with higher degree of connection, which were more essential for maintaining the stability of the entire network. The top 10 genes in the central index are considered to be core candidate genes.
RNA Isolation And Quantitative Real-Time PCR (qRT-PCR)
We isolated the total RNA using TRIzol reagent (TaKaRa, China) and then it was transcribed into cDNA using the PrimeScript RT Reagent Kit (TaKaRa, China). With an SYBR Green PCR Kit (Takara, China), the quantitative real-time PCR was carried out by an ABI 7500 FAST RT-PCR system (Applied Biosystems, USA). Relative quantification of mRNA expression was based on the 2ΔΔCt method after normalization to the endogenous reference GAPDH. Table S1 presented the primers we used in this research.

The Correlation Between Gene Expression And Methylation Around In The Promoter Region
MEXPRESS is a web tool which could offer the visualized analysis of clinical data, the expression (normalized RNASeqV2 value), and methylation TCGA and detect the relationship between them for one single gene in the specific tumor type. In this webtool, it executed the Pearson correlation to evaluate the difference between expression value and methylation level. When MEXPRESS faced with clinical parameter contains only two levels, the system will use a P value to compare the difference. The false discovery rate was used to correct for multiple comparisons.

Results
Identification Of DEGs
In this study, we selected three groups of gene expression profiles (GSE107943, GSE26566, and GSE119337). As shown in Table 1, GSE107943 contained 31 CCA specimens and 30 normal specimens, GSE26566 contained 104 CCA specimens and 65 normal liver specimens, and GSE119337 included 30 CCA samples and 30 normal liver samples. Matched with the criteria of \(P<0.05 \) and \(|\log FC| \geq 2\), 576 upregulated genes and 851 downregulated genes were identified through comparing the CCA specimens to liver normal specimens. In GSE26566 expression profile, 1076 DEGs were identified; 463 genes were upregulated and 613 genes were downregulated. And from GSE65194 dataset, 586 DEGs including 212 upregulated genes and 374 downregulated genes were discovered. The DEGs levels were illustrated by Heatmap in Figure S1. Subsequently, we carried out Venn analysis to get the intersection of the DEG profiles. On the whole, 115 DEGs were downregulated in all three groups (Figure 1A).

Functional Enrichment Analyses Of Downregulated DEGs
Then, we evaluate the downregulated DEGs biological functions in CCAs, GO function and KEGG pathway enrichment analysis were carried out by DAVID (Table 2). CC, BP, and MF ontologies are the three components of enriched GO terms. The GO analysis results showed that

Dataset ID	CCA	Normal	Total number
GSE107943	31	30	61
GSE26566	104	65	169
GSE119337	30	30	60

Abbreviations: GEO, Gene Expression Omnibus; CCAS, cholangiocarcinoma.
Table 2 Significantly Enriched GO Terms And KEGG Pathways Of DEGs

Category	Term	Count	P-Value
GOTERM_BP_DIRECT	GO:0007596~blood coagulation	5	1.85E-04
GOTERM_BP_DIRECT	GO:0006631~fatty acid metabolic process	4	2.32E-04
GOTERM_BP_DIRECT	GO:0042730~fibrinolysis	3	0.00125223
GOTERM_BP_DIRECT	GO:0006953~acute-phase response	3	0.003411943
GOTERM_BP_DIRECT	GO:0006562~proline catabolic process	2	0.013589326
GOTERM_BP_DIRECT	GO:0006508~proteolysis	4	0.018398902
GOTERM_BP_DIRECT	GO:0030212~hyaluronan metabolic process	2	0.026996152
GOTERM_BP_DIRECT	GO:0042632~cholesterol homeostasis	3	0.037632588
GOTERM_BP_DIRECT	GO:0030195~negative regulation of blood coagulation	2	0.040222898
GOTERM_BP_DIRECT	GO:0030194~positive regulation of blood coagulation	2	0.04676949
GOTERM_BP_DIRECT	GO:0000050~urea cycle	2	0.04676949
GOTERM_BP_DIRECT	GO:0046889~positive regulation of lipid biosynthetic process	2	0.053271956
GOTERM_BP_DIRECT	GO:0032967~positive regulation of collagen biosynthetic process	2	0.059730589
GOTERM_BP_DIRECT	GO:0007588~excretion	2	0.066145683
GOTERM_BP_DIRECT	GO:0009395~phospholipid catabolic process	2	0.072517526
GOTERM_BP_DIRECT	GO:0006562~proline catabolic process	2	0.091376427
GOTERM_BP_DIRECT	GO:0000050~urea cycle	2	0.091376427
GOTERM_CC_DIRECT	GO:0005777~peroxisome	9	2.43E-09
GOTERM_CC_DIRECT	GO:0005793~mitochondrial inner membrane	5	0.026206649
GOTERM_CC_DIRECT	GO:0031410~cytoplasmic vesicle	4	0.026268419
GOTERM_CC_DIRECT	GO:0045252~oxoglutarate dehydrogenase complex	2	0.028151225
GOTERM_CC_DIRECT	GO:0031012~extracellular matrix	20	3.83E-06
GOTERM_CC_DIRECT	GO:0034366~spherical high-density lipoprotein particle	2	0.041931204
GOTERM_MF_DIRECT	GO:0004252~serine-type endopeptidase activity	10	7.74E-07
GOTERM_MF_DIRECT	GO:0004867~serine-type endopeptidase inhibitor activity	7	1.54E-05
GOTERM_MF_DIRECT	GO:0003857~3-hydroxyacyl-CoA dehydrogenase activity	3	0.001269378
GOTERM_MF_DIRECT	GO:0016597~oxoglutarate dehydrogenase complex	2	0.0016597
GOTERM_MF_DIRECT	GO:0016401~palmitoyl-CoA oxidase activity	2	0.02357063
GOTERM_MF_DIRECT	GO:0004591~oxoglutarate dehydrogenase (succinyl-transferring) activity	2	0.02357063
GOTERM_MF_DIRECT	GO:0030976~thiamine pyrophosphate binding	2	0.038978219
GOTERM_MF_DIRECT	GO:0005543~phospholipid binding	3	0.053278698
GOTERM_MF_DIRECT	GO:0005509~calcium ion binding	9	0.062233451
GOTERM_MF_DIRECT	GO:0050660~flavin adenine dinucleotide binding	3	0.070305747
GOTERM_MF_DIRECT	GO:0070403~NAD+ binding	2	0.091034894
GOTERM_MF_DIRECT	GO:0052890~oxidoreductase activity, acting on the CH-CH group of donors, with a flavin as acceptor	2	0.098240201
KEGG_PATHWAY	cfa04610:Complement and coagulation cascades	18	1.97E-19
KEGG_PATHWAY	cfa04010:Metabolic pathways	41	5.49E-13
KEGG_PATHWAY	cfa04146: Peroxisome	11	1.51E-08
KEGG_PATHWAY	cfa01130: Biosynthesis of antibiotics	15	4.52E-08
KEGG_PATHWAY	cfa00260: Glycine, serine and threonine metabolism	7	3.20E-06
KEGG_PATHWAY	cfa00610: Glycine, serine and threonine metabolism	6	1.25E-05
KEGG_PATHWAY	cfa00380: Tryptophan metabolism	6	7.13E-05
KEGG_PATHWAY	cfa03320: PPAR signaling pathway	7	1.16E-04
KEGG_PATHWAY	cfa00120: Primary bile acid biosynthesis	4	8.81E-04
KEGG_PATHWAY	cfa00220: Arginine biosynthesis	4	0.001038498
KEGG_PATHWAY	cfa01200: Carbon metabolism	7	0.00131818
downregulated DEGs were mainly enriched in CCs, including extracellular exosome, extracellular space, mitochondrion, and blood microparticle. The results of MF analysis indicated that the downregulated DEGs were significantly enriched in serine-type endopeptidase activity, calcium ion binding, and serine-type endopeptidase inhibitor activity. In addition, terms associated with complement and coagulation cascades, metabolic pathways, peroxisome, and biosynthesis of antibiotics were obtained from the results of KEGG pathway enrichment analysis.

PPI Network Construction And Hub Gene Identification

As shown in Table 2, 28 terms for KEGG pathway enrichment analysis were significantly over-represented among these downregulated DEGs. Then, the probability of relationships between pathways was evaluated by STRING tools. The PPI network was presented in Figure 1B. Besides, the top 10 genes evaluated by connectivity degree in the PPI network were identified (Table 3). From Table 3, we found that the degree of Coagulation factor II (F2) was 27, which ranked first among these 10 genes. Then, the following genes were plasminogen (PLG; degree= 21), enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH; degree= 20), alanine-glyoxylate and serine–pyruvate aminotransferase (AGXT; degree= 15), alpha 2-HS glycoprotein (AHSG; degree= 15), carboxypeptidase B2 (CPB2; degree= 14), aldehyde dehydrogenase 8 family member A1 (ALDH8A1; degree= 14), serpin family D member 1 (SERPIND1; degree= 12), serpin family F member 2 (SERPINF2; degree= 11), serine hydroxymethyltransferase 1 (SHMT1; degree= 11).

Table 2 (Continued).

Category	Term	Count	P-Value
KEGG_PATHWAY	cfa00280:Valine, leucine and isoleucine degradation	5	0.001710259
KEGG_PATHWAY	cfa00310:Lysine degradation	5	0.002303427
KEGG_PATHWAY	cfa00410:beta-Alanine metabolism	4	0.00439003
KEGG_PATHWAY	cfa05020:Prion diseases	4	0.004806921
KEGG_PATHWAY	cfa01230:Biosynthesis of amino acids	5	0.007444094
KEGG_PATHWAY	cfa00071:Fatty acid degradation	4	0.009639138
KEGG_PATHWAY	cfa05150:Staphylococcus aureus infection	4	0.010989001
KEGG_PATHWAY	cfa00770:Pantothenate and CoA biosynthesis	3	0.01412888
KEGG_PATHWAY	cfa01212:Fatty acid metabolism	3	0.01566785
KEGG_PATHWAY	cfa00670:One carbon pool by folate	3	0.01751769
KEGG_PATHWAY	cfa00650:Butanoate metabolism	3	0.029480134
KEGG_PATHWAY	cfa04976:Bile secretion	4	0.03418247
KEGG_PATHWAY	cfa00640:Propanoate metabolism	3	0.038810035
KEGG_PATHWAY	cfa00020:Citrate cycle (TCA cycle)	3	0.04129577
KEGG_PATHWAY	cfa00250:Alanine, aspartate and glutamate metabolism	3	0.060260422
KEGG_PATHWAY	cfa00620:Pyruvate metabolism	3	0.07219424
KEGG_PATHWAY	cfa00330:Arginine and proline metabolism	3	0.094694621

Abbreviations: BP, biological process; CC, cellular component; DEG, differentially expressed gene; ECM, extracellular matrix; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, molecular function.

Gene Symbol	Gene Description	Degree
F2	Coagulation factor II	27
PLG	Plasminogen	21
EHHADH	Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase	20
AGXT	Alanine–glyoxylate and serine–pyruvate aminotransferase	15
AHSG	Alpha 2-HS glycoprotein	15
CPB2	Carboxypeptidase B2	14
ALDH8A1	Aldehyde dehydrogenase 8 family member A1	14
SERPIND1	Serpin family D member 1	12
SERPINF2	Serpin family F member 2	11
SHMT1	Serine hydroxymethyltransferase 1	11

Table 3 Top 10 Hub Genes With Higher Degree Of Connectivity
F2, AHSG, ALDH8A1, SERPIND1 And AGXT Might Be The Potential DNA Methylation Biomarkers For CCA

To further clarify the expression of these hub genes in CCA and normal tissues, we performed the differential expression analysis by using GEPIA tools. From the box-profiles in Figure 2, these results indicated that all these 10 hub genes were lower expressed in CCA than normal liver tissues \((p<0.05)\), in other words, 10 hub genes could be the suppressor gene in CCA. DNA promoter hyper-methylation is an important pattern which impact tumorigenesis of cancers, and this pattern could be found in various tumor suppressor genes. Therefore, we speculated whether these 10 hub genes were associated with DNA promoter methylation in CCA. Then, the methylation levels of hub genes in CCA were detected by MEXPRESS database. The results revealed that the promoter region of F2, AHSG, ALDH8A1, SERPIND1 and AGXT showed significantly higher methylation levels \((p<0.05)\) in CCA compared to normal tissues (Figure 3). However, the left 5 genes showed no significant methylation level change between tumor and normal tissues (Figure S2).

In addition, we detected the relationship between the five hub genes and the survival of CCA patients. Using GEPIA database, as Figure 4 showed, higher expression of these five genes would predict the better prognosis of CCA patients.

Then, we evaluated F2, AHSG, ALDH8A1, SERPIND1 and AGXT expressions level in a panel of five cell lines: four CCA (CCLP-1, HuCCT-1, HCCC-9810 and RBE) cell lines and one non-tumorigenic or benign (HIBEC) cell line. The mRNA expression measured by RT-PCR revealed that F2, AHSG, ALDH8A1, SERPIND1 and AGXT transcription levels in cancerous cell lines were lower than those in the non-tumorigenic or benign control cells (Figure 5A). Moreover, the expression of five genes above in CCLP-1, HuCCT-1, HCCC-9810 and RBE cells was significantly increased after treatment with 5-Aza, a DNA methyltransferase inhibitor (Figure 5B). And, we also analyzed the methylation sequencing data form TCGA, we found out that compared with the adjacent normal liver tissues the CCA have the higher methylation levels in the promoter (Figure S3). All these results indicated that F2, AHSG, ALDH8A1, SERPIND1 and AGXT may be the potential DNA methylation biomarkers for CCA.
Figure 3 Visualization of the TCGA data for F2, AHSG, ALDH8A1, SERPIND1, and AGXT in cholangiocarcinoma using MEXPRESS. Samples were ordered by their expression value. This figure showed the negative correlation between hub gene expression and promoter methylation (highlighted part with red box), with the Pearson correlation coefficients on the right (*p<0.05, **p<0.01, ***p<0.001).
Figure 4 The five hub genes (F2, AHSG, ALDH8A1, SERPIND1, and AGXT) impacted the survival rate of CCA patients.
Results of quantitative real-time PCR revealed that F2, AHSG, ALDH8A1, SERPIND1, and AGXT transcription levels in four cancerous cell lines and benign cells. Error bars represent the SD from three independent experiments. Quantitative real-time PCR indicated that 5-Aza treatment for 96 hrs increased the expression of F2, AHSG, ALDH8A1, SERPIND1, and AGXT in CCA cells (*p<0.05, **p<0.01).
Discussion

In order to identify the potential key genes associated with CCA, gene expression and protein–protein interaction analysis were executed in our study. We found 115 downregulated DEGS in CCA compared with normal tissue by comparing gene expression profiling data from the three GEO datasets. Then, we constructed the PPI network to detect the inner-relationship of the downregulated DEGs, and 10 hub genes were identified, including F2, PLG, EHHADH, AGXT, AHSG, CPB2, ALDH8A1, SERPIND1, SERPINF2 and SHMT1.

In various cancers, DNA methylation plays an important role in the gene expression regulation. Several methylated genes are often shared among the gastrointestinal tract. Then we identified the relationship between DEGs expression and DNA methylation using MEXPRESS. As Figure 4 showed, default MEXPRESS plot for hub genes in CCA with the samples sorted based on their expression value. The MEXPRESS analysis results have indicated that there was a negative correlation between the expression and methylation around the promoter region which is highlighted with red box, which showed that the expressions of F2, AHSG, ALDH8A1, SERPIND1 and AGXT might be regulated through promoter DNA methylation (the left 5 hub genes showed no significant methylation level change between tumor and normal tissues).

Totally, we have shown the panel in this research included F2, AHSG, ALDH8A1, SERPIND1, and AGXT might be the novel biomarkers for CCA. Although the role of these genes in cancer is not fully understood, the high performance of the identified five-gene biomarker panel suggests that it could be suitable for discriminating the DNA methylation expression changes during the carcinogenic process in bile tract epithelium. Some research have shown that DNA methylation always occurred in the early stage of cancers. This panel may be of early stage of cancers.

Conclusion

Through our bioinformatics analysis, we identified 112 genes were downregulated in CCA. Based on the GO analysis and PPI network, 10 hub genes were found out from these DEGs, including F2, PLG, EHHADH, AGXT, AHSG, CPB2, ALDH8A1, SERPIND1, SERPINF2, and SHMT1. Epigenetics is the main factor which causes the reduction of tumor suppressor gene expression in tumor, and DNA methylation plays an important role in the epigenetic modification. Using MEXPRESS and RT-PCR, we found that F2, AHSG, ALDH8A1, SERPIND1 and AGXT could be methylated in the promoter. These 5 genes may be the potential DNA methylation biomarkers and therapy targets for CCA.

Acknowledgment

This study was supported by grants from the National Natural Science Foundation of China (81874228).

Disclosure

The authors report no conflicts of interest in this work.

References

1. Razumilava N, Gores GJ. Cholangiocarcinoma. *Lancet*. 2014;383(9935):2168–2179. doi:10.1016/S0140-6736(13)61903-0
2. Blechacz B, Komuta M, Roskams T, Gores GJ. Clinical diagnosis and staging of cholangiocarcinoma. *Nat Rev Gastroenterol Hepatol*. 2011;8(9):512–522. doi:10.1038/nrgastro.2011.131
3. Komuta M, Govaere O, Vandecaveye V, et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. *Hepatology*. 2012;55(6):1876–1888. doi:10.1002/hep.25595
4. Khan SA, Davidson BR, Goldin RD, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. *Gut*. 2012;61(12):1657–1669. doi:10.1136/gutjnl-2011-301748
5. Liau JY, Tsai JH, Yuan RH, Chang CN, Lee HJ, Jeng YM. Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features. *Mod Pathol*. 2014;27(8):1163–1173. doi:10.1038/modpathol.2013.241
6. Klutstein M, Nejman D, Greenfield R, Cedar H. DNA methylation in cancer and aging. *Cancer Res*. 2016;76(12):3446–3450. doi:10.1158/0008-5472.CAN-15-3278
7. Liang G, Weisenberger DJ. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers. *Epigenetics*. 2017;12(6):416–432. doi:10.1080/15592294.2017.1311434
8. Andersen K, Boberg KM, Vedeld HM, et al. Four DNA methylation biomarkers in biliary brush samples accurately identify the presence of cholangiocarcinoma. *Hepatology*. 2015;61(5):1651–1659. doi:10.1002/hep.27707
9. Gazzard BG, Lewis ML, Ash G, Rizza CR, Bidwell E, Williams R. Coagulation factor concentrate in the treatment of the haemorrhagic diathesis of fulminant hepatic failure. *Gut*. 1974;15(12):993–998. doi:10.1136/gut.15.12.993
10. Suhniute R, Shen Y, Guo YZ, et al. Plasminogen is a critical regulator of cutaneous wound healing. *Thromb Haemost*. 2016;115(5):1001–1009. doi:10.1160/TH15-08-0653
11. Housten SM, Denis S, Argmann CA, et al. Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. *J Lipid Res*. 2012;53(7):1296–1303. doi:10.1194/jlr.M024463
12. Isiyel E, Ezgu SA, Caliskan S, et al. Molecular analysis of the AGXT gene in patients suspected with hyperoxaluria type 1 and three novel mutations from Turkey. *Mod Genet Metab*. 2016;119(4):311–316. doi:10.1016/j.mgenmet.2016.10.011
13. Dabrowska AM, Tarach JS, Wojtysiak-Duma B, Duma D. Fetuin-A (AHSG) and its usefulness in clinical practice. Review of the literature. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159(3):352–359. doi:10.5507/bp.2015.018

14. Cagliani R, Fumagalli M, Riva S, et al. Polymorphisms in the CPB2 gene are maintained by balancing selection and result in haplotype-preferential splicing of exon 7. Mol Biol Evol. 2010;27(8):1945–1954.

15. Kent T, Arnold SL, Fasnacht R, et al. ALDH enzyme expression is independent of the spermatogenic cycle, and their inhibition causes misregulation of murine spermatogenic processes. Biol Reprod. 2016;94(1):12. doi:10.1095/biolreprod.115.131458

16. Wong JH, Dukes J, Levy RE, et al. Sex differences in thrombosis in mice are mediated by sex-specific growth hormone secretion patterns. J Clin Invest. 2008;118(8):2969–2978. doi:10.1172/JCI34957

17. Boehme B, Schelski N, Makridakis M, et al. Role of cytosolic Serine Hydroxymethyl Transferase 1 (SHMT1) in phosphate-induced vascular smooth muscle cell calcification. Kidney Blood Press Res. 2018;43(4):1212–1221. doi:10.1159/000492248

18. Flanagan JM, Wilson A, Koo C, et al. Platinum-based chemotherapy induces methylation changes in blood DNA associated with overall survival in patients with ovarian cancer. Clin Cancer Res. 2017;23(9):2213–2222. doi:10.1158/1078-0432.CCR-16-1754

19. Kulis M, Esteller M. DNA methylation and cancer. Adv Genet. 2010;70:27–56. doi:10.1016/B978-0-12-380866-0.60002-2

20. Emmett RA, Davidson KL, Gould NJ, Arasaradnam RP. DNA methylation patterns in ulcerative colitis-associated cancer: a systematic review. Epigenomics. 2017;9(7):1029–1042. doi:10.2217/epi-2017-0025

21. Weisenberger DJ. Characterizing DNA methylation alterations from the cancer genome atlas. J Clin Invest. 2014;124(1):17–23. doi:10.1172/JCI69740

22. Njei B, McCarty TR, Varadarajulu S, Navaneethan U. Cost utility of ERCP-based modalities for the diagnosis of cholangiocarcinoma in primary sclerosing cholangitis. Gastrointest Endosc. 2017;85(4):773–781.e710. doi:10.1016/j.gie.2016.08.020