Band Structure Engineering of Multinary Chalcogenide Topological Insulators

Shiyou Chen1,2, X. G. Gong2, Chun-Gang Duan1, Zi-Qiang Zhu1, Jun-Hao Chu1, Aron Walsh3, Yu-Gui Yao4, Jie Mu5 and Su-Huai Wei5
1 Laboratory of Polar Materials and Devices, East China Normal University, Shanghai 200241, China
2 Laboratory for Computational Physical Sciences and Surface Physics Laboratory, Fudan University, Shanghai 200433, China
3 Department of Chemistry, University College London, London WC1E 6BT, UK
4 Institute Of Physics, Chinese Academy of Sciences, Beijing 100190, China and
5 National Renewable Energy Laboratory, Golden, CO 80401, USA
(Dated: January 18, 2013)

Topological insulators (TIs) have been found in strained binary HgTe and ternary I-III-VI2 chalcopyrite compounds such as CuTlSe2 which have inverted band structures. However, the non-trivial band gaps of these existing binary and ternary TIs are limited to small values, usually around 10 meV or less. In this work, we reveal that a large non-trivial band gap requires the material having a large negative crystal field splitting Δ_{CF} at top of the valence band and a moderately large negative $s-p$ band gap E_{g}^{s-p}. These parameters can be better tuned through chemical ordering in multinary compounds. Based on this understanding, we show that a series of quaternary I-2-II-IV-VI4 compounds, including Cu$_2$HgPbSe$_4$, Cu$_2$CdPbSe$_4$, Ag$_2$HgPbSe$_4$ and Ag$_2$CdPbTe$_4$ are TIs, in which Ag$_2$HgPbSe$_4$ has the largest TI band gap of 47 meV because it combines the optimal values of Δ_{CF} and E_{g}^{s-p}.

PACS numbers: 73.20.At, 71.15.Dx, 71.18.+y, 73.61.Le

The search for new topological insulators (TIs) has intensified recently due to their scientific importance as a novel quantum state and the associated technological applications in spintronics and quantum computing[1, 2]. So far, experimental realizations have been limited to a few classes of simple materials, including zinc-blende based HgTe quantum wells[3-5], Bi$_2$-xSb$_x$ alloys[6, 7] and binary tetradymite semiconductors such as Bi$_2$Se$_3$ and Bi$_2$Te$_3$. Most recently, the search for TIs has extended to ternary compounds[11-14], e.g., strained Half-Heusler compounds, in the hope that the presence of more chemical elements would bring greater material flexibility. Despite the success of identifying these TIs, the design of new TI materials with the following advantages is still desired: (i) realizing a topological insulating state with a significant non-trivial band gap (i.e., larger than kT at room temperature) at its natural equilibrium state (i.e., not under external strain), (ii) easy integration with electronic and spintronic devices based on tetrahedral semiconductors, and (iii) easy to be synthesized or already have been synthesized.

Based on the direct evaluation of the Z_2 topological invariant, Feng et al.15 proposed that a series of I-III-VI2 chalcopyrite compounds (such as CuTlSe2) could have topologically non-trivial band structure, and some of them can realize a topological insulating phase in their natural equilibrium structure. This is an important observation because the chalcopyrite structure is derived from the zinc-blende structure, and the band structure properties are well understood, mostly for solar cell applications[16, 17]. Some of the proposed Cu and Ag based TIs, such as CuTlSe2 and AgTlTe2, have already been synthesized experimentally[16, 18]. However, the predicted band gaps of these TIs are very small, usually around 10 meV or less, similar to that observed in strained HgTe[4].

In this Letter, we show that the non-trivial band gaps of zinc-blende derived compounds with inverted band structure are mainly determined by the crystal field splitting Δ_{CF} at top of the valence band and the size of the inverted s-p band gap E_{g}^{s-p}, which can be better tuned by changing the component elements in a multinary ordered compounds. A large non-trivial band gap requires the material having a large negative Δ_{CF} and a large negative E_{g}^{s-p} as long as it has no band crossing at the Fermi energy. For I-III-VI2 topological insulators, because the band inversion requires the group-III elements to be large and heavy, whereas a large negative Δ_{CF} requires group-III elements to be small and light, the possibilities for obtaining a large TI band gap are limited. Through further cation mutation[19], large negative Δ_{CF} and E_{g}^{s-p} is achievable in quaternary I-2-II-IV-VI4 compounds. We have identified four topological insulators (Cu$_2$HgPbSe$_4$, Cu$_2$CdPbSe$_4$, Ag$_2$HgPbSe$_4$ and Ag$_2$CdPbTe$_4$), in which Ag$_2$HgPbSe$_4$ has the largest TI band gap of 47 meV. In the following, we will discuss the evolution of the band structure of zinc-blende derived structures and explain what kind of band structure can lead to the largest TI band gap.

For a normal zinc-blende semiconductors such as CdTe, the band gap is between the s-like conduction band minimum (CBM) Γ_{6c} state and the p-like valence band maximum (VBM) Γ_{8v} state, as shown in Fig. 1. The non-trivial band structure of a TI is characterized by the band inversion in the Brillouin zone[6, 12], i.e., the position of the conduction and valence bands is switched. In zinc-blende compounds, the band inversion means that the Γ_{6c} level falls below the Γ_{8v} level. In the inverted band structure, the Γ_{6c} level is occupied, while the quadruply-degenerate Γ_{8v} level is half occupied, making the Fermi
level stay at the Γ8v level and the system become a zero-gap semi-metal. This is the case for bulk HgTe.

To open a band gap and change the zinc-blende semi-metal HgTe into a topological insulator, one has to induce a crystal field splitting Δ_{CF} by reducing the D_{2d} symmetry to, e.g., D_{3d}, by applying an epitaxial strain or forming a quantum well [4]. For D_{2d} symmetry, the half-filled Γ_{8v} state splits into Γ_{6v} and Γ_{7v} state, and a gap can be opened around the occupied Γ_{7v} (Γ_{6v}) and unoccupied Γ_{6v} (Γ_{7v}) levels (Fig. 1(b)) if Δ_{CF} is positive. On the other hand, the crystal field splitting can also be induced by chemical ordering, e.g., by mutating two Hg (group II) atoms into one Cu (group I) and one Tl (group III), forming ordered I-III-VI$_2$ chalcopyrite compounds such as CuTlTe$_2$ [17, 20].

In Fig. 2(a) we plot the calculated band structure of HgTe under an $\epsilon = 0.02$ (001) tensile strain with $\Delta_{CF} = 76$ meV and CuTlTe$_2$ in the chalcopyrite structure with $\Delta_{CF} = 76$ meV. As we can see, a small gap is opened near the Γ point for both systems. Although the size is small, this anticrossing gap is protected by the lattice symmetry [21]. For the band structure calculation we employed density functional theory with a hybrid exchange-correlation functional, which can correctly predict the band gaps of many zinc-blende and chalcopyrite semiconductors [22–24].

Comparing the band structure of HgTe under an $\epsilon = 0.02$ (001) tensile strain and CuTlTe$_2$, we find that the overall shape is very similar, especially near the band gap. In both systems, the s-like Γ_{6c} state falls below the p-like Γ_{6v} and Γ_{7v} states, and the minimum gap occurs along the $\Gamma - X_Z$ line. This similarity between strained HgTe and CuTlTe$_2$ indicates that the strain and chemical ordering have the same effect in producing the crystal field splitting Δ_{CF} at the top of valence band [20], therefore, it could be an efficient way to tune the TI band gap.

To achieve this goal, it is important to understand first how the splitting at the top of valence band is influenced by chemical ordering and what is the resulting dependence of the TI band gap. Based on the quasi-cubic model [25, 26], and assuming the Γ_{6c} state is far away from the band edge, we know that the splitting of the Γ_{8v} level into Γ_{6v} and Γ_{7v} under the tetragonal symmetry depends on two quantities: the spin-orbit splitting Δ_{SO} and the crystal field splitting Δ_{CF}. Δ_{CF} is defined to be positive if the doubly-degenerate Γ_{5v} is above the singly-degenerate Γ_{4v} state when the spin-orbit interaction is not considered, as shown in Fig. 1(a). For systems where Δ_{SO} is much larger than Δ_{CF}, the splitting between Γ_{6c} and Γ_{7v} is close to $2/3$ of Δ_{CF}. Previous studies on strained zinc-blende compound showed that the non-trivial gap depends on the sign and size of Δ_{CF}: (i) when $\Delta_{CF} < 0$ the gap occurs along of the $\Gamma - X_X$ line near the Γ point and the gap increases quickly as a function of the magnitude of Δ_{CF}; (ii) when $\Delta_{CF} > 0$, the gap occurs along the $\Gamma - X_Z$ line near the Γ point and the gap increases slowly as a function of Δ_{CF}. This can be seen clearly in Fig. 3(a), where the dependence of the non-trivial band gap on the size of Δ_{CF} for HgTe is plotted. For example, when $\Delta_{CF} = -100$ meV, the gap is almost 40 meV, but when $\Delta_{CF} = 100$ meV, the gap is only 5 meV. The reason for the more significant gap increase with negative Δ_{CF} is that, $\Gamma - X_X$ line has lower symmetry than $\Gamma - X_Z$ line, so the band anticrossings is more significant when the gap shifts to the $\Gamma - X_X$ line. CuTlTe$_2$ has a calculated $\Delta_{CF} = 76$ meV. This positive value explains why the gap shifts to the $\Gamma - X_Z$ line with only a small value of about 14 meV [Fig. 2(b)]. Based on this observation, we know that large gap TI can only exist in zinc-blende derived compounds with large negative Δ_{CF}.

In Fig. 3(b) we plot the calculated Δ_{CF} of CuAlTe$_2$, CuGaTe$_2$, CuInTe$_2$ and CuTlTe$_2$. As we can see, Δ_{CF} increases from negative to positive as the group-III cations change from Al to Tl, i.e., from small light to large heavy elements. Considering that large negative Δ_{CF} enlarges the non-trivial gap, one may intend to search compounds with small group-III cation as candidates for TIs. However, the requirement of band inversion at the Γ point excludes Al, Ga and In compounds because Γ_{6c} state has s-like anti-bonding character localized on group-III cation and group-VI anion, whereas Γ_{6v} and Γ_{6c} states mainly have the p component of the group-VI anion hybridized with the d component of the group-I cation [27, 28]. Two factors shift the Γ_{6c} level down from Al to Ga to In compounds [17, 20, 28]: (i) the s orbital energy of Ga is

FIG. 1: (Color online) (a) The conduction and valence band splitting of cubic and tetragonal semiconductors. (b) A plot showing how the band structure of normal semiconductors transfers into the inverted and topological insulator band structures. Note that the subscript v (c) represents the state belongs to the valence (conduction) band in the normal band structure.
Fortunately, CuTlTe below the p-like states at Γ point (band inversion). Un-
only a small TI band gap of about 14 meV.

However, if the Γ point is between the unoccupied Γ6c and the occupied Γ6v (or Γ6c, if it has a higher energy than Γ6v) derived state. The coupling between the Γ6c and Γ6v states pushes the Γ6v level up in energy, thus reduces the effective crystal field splitting between the Γ7v and Γ6v state and the non-
trivial band gap. This is what we find for AgTISe2 and AgTITe2. According to our calculation, the non-trivial gap of AgTISe2 is limited at Γ point with a very small size, 1 meV, although it has a large negative ∆g = 50 meV. Therefore, to reduce the interaction between the Γ6c and Γ6v states, one should move the Γ6c level down, i.e., increase the magnitude of negative Eg−p as much as possible.

The above analysis indicates that to design large gap chalcopyrite I-III-VI2 TIs, we face two contradictory requirements (large negative ∆g and large negative Eg−p). This severely limits the largest non-trivial gap obtainable for I-III-VI2 compounds. Through the direct calculation, we find that most of the already-
synthesized I-III-VI2 have positive Eg−p and are normal semiconductors14, except CuTISe2, CuTITe2, AgTISe2 and AgTITe2. But the non-trivial gaps of these four TIs are all small due to the positive ∆g for CuTISe2 and CuTITe2, and small Eg−p for AgTISe2 and AgTITe2.

To further increase the non-trivial band gap, we need to make both the ∆g and Eg−p more negative. We find that this can be done by mutating two group-III cations in I-III-VI2 compounds to one group-II and one group-IV cation, thus forming the I2-II-IV-VI4 (I=Cu, Ag, II=Zn, Cd, Hg, IV=Si, Ge, Sn, Pb, VI=S, Se, Te) quaternary compounds. These compounds crystallize in either tetrahedral kesterite or stannite structures. Due to the increased chemical and structural freedom in the quaternary compounds, their band structure can be better tuned. Also, because they are structurally derived from chalcopyrites, their band structures maintain similar characteristics20, 21. Therefore, if these compounds have inverted band structure, they can also be TIs.

FIG. 2: (Color online) The calculated band structure along the high symmetry lines, X_X : \(\frac{2\pi}{a}(1 0 0) \rightarrow \Gamma : (0 0 0) \rightarrow X_Z : \frac{2\pi}{a}(0 0 1) \) of (a) HgTe with a (001) tensile strain and \(\Delta g = 70 \) meV, (b) CuTITe2 and (c) AgZnHgPbSe4 at their equilibrium states. X_X and X_Z are the notations of zinc-blende structure, and X_Z corresponds to T in the chalcopyrite structure. Red and blue color are used to show the two spin-dependent bands clearly.

FIG. 3: (Color online) (a) The calculated non-trivial band gap as a function of \(\Delta g \) for HgTe. Here \(\Delta g \) is changed by tuning the (001) strain \(\epsilon \). (b) The calculated \(\Delta g \) and (c) \(E_g^{−p} \) of Cu-III-Te2 with III=Al, Ga, In, Tl.

In the above discussion, we have assumed that the Γ6c state is deep inside the valance band, thus has no effect on the band splitting and the non-trivial gap of the TIs. However, if the Γ6c is close to the band edge, then we have to consider its interaction with the band edge states. This is because when \(\Delta g < 0 \), the band gap of the TI at Γ point is between the unoccupied Γ7v and the occupied Γ6v deeper than Al and (ii) In is much larger than Ga. For Tl, its s orbital energy, like Hg, is very deep due to the large relativistic effect, so its band gap is much lower than that of the corresponding In compounds. This is confirmed in Fig. 3(c), where we plot the calculated \(E_g^{−p} \) of CuAlTe2, CuGaTe2, CuInTe2 and CuTITe2; only CuTITe2 has negative \(E_g^{−p} \), i.e., its s-like Γ6c state falls below the p-like states at Γ point (band inversion). Unfortunately, CuTITe2 has a positive \(\Delta g = 76 \) meV, thus only a small TI band gap of about 14 meV.
TABLE I: The calculated E_g^{s-p} of I$_2$-II-Pb-VI$_4$ (I=Cu, Ag, II=Cd, Hg, VI=Se, Te) in their ground-state structure. TM, TI and NI in the parentheses represent topological metal, topological insulator and normal insulator, respectively.

Structure	Te$_4$	Se$_4$	S$_4$
Cu$_2$HgPb	-0.46	-0.32	0.07
Cu$_2$CdPb	-0.21	-0.07	0.32
Ag$_2$HgPb	-0.37	-0.14	0.40
Ag$_2$CdPb	-0.12	0.18	0.72

Similar to the chalcopyrites, we need to have compounds that contain heavy group-IV elements so that the Γ_{6c} level could fall below the Γ_{6v} and Γ_{7v} levels. Table I lists the calculated E_g^{s-p} of I$_2$-II-Pb-VI$_4$ compounds. The results show that most of the Pb-Te and Pb-Se compounds have negative E_g^{s-p} at Γ and are therefore candidates for TIs. The calculation also shows all sulphides and compounds containing other group-IV cations (Sn, Ge, Si) have positive E_g^{s-p} and are normal semiconductors.

We first look at the band structure of Cu$_2$HgPbTe$_4$ which has the most negative E_g^{s-p}. The overall shape near the Γ point is similar to those of ternary CuTiTe$_2$ and binary HgTe under (001) strain as shown in Fig. 2(a) and 2(b), indicating that the band structure character is kept in the cation mutation. However, Cu$_2$HgPbTe$_4$ is actually a topological metal (TM), because the conduction band near L(N):$\frac{2\pi}{a}$ (0.5 0.5 0.5) point drops below VBM and crosses the Fermi level. The reason is that the conduction band state at L(N) point has similar character to the Γ_{6c} state, so when the Γ_{6c} energy is too low, the L_{1c}(N_{1c}) state energy is also below VBM, making the system metallic. To avoid this situation, therefore, we should search for TI material with mildly negative E_g^{s-p}.

Our previous study has shown that replacing Cu by Ag or replacing Te by Se can increase E_g^{s-p}, i.e., raising the Γ_{6c} and L_{1c} energy level relative to Γ_{6v} and Γ_{7v}, because (i) at the top valence band, the lower 4d level and larger size of Ag compared to Cu weakening the p-d hybridization, and the 4p level of Se is lower than 5p level of Te, which both shift the Γ_{6v} and Γ_{7v} levels down, (ii) the displacement of anion towards Pb in the Ag compounds and the smaller size of Se than Te also both reduce the Pb-anion bond lengths, increasing the energy of the Pb(s)-anion(s) antibonding states at the bottom conduction band. This expectation is supported by the calculated band structure of Ag$_2$HgPbSe$_4$, which has no band crossing at the Fermi level and thus is a topological insulator, as shown in Fig. 2(c). Similarly, we predict that Cu$_2$CdPbTe$_4$ and Ag$_2$HgPbTe$_4$ are topological metals, while Cu$_2$HgPbSe$_4$, Cu$_2$CdPbSe$_4$ and Ag$_2$CdPbTe$_4$ are topological insulators. The results are shown in Table I.

Among the four identified quaternary TIs, Ag$_2$HgPbSe$_4$ has the largest non-trivial gap of 47 meV. This is because Ag$_2$HgPbSe$_4$ is more stable in the low symmetry kesterite structure with large group-I element, therefore, it has a large negative Δ_{CF} (-51 meV). It also has a reasonably large negative E_g^{s-p} gap, so the coupling between the Γ_{6c} and the Γ_{6v} state is weak. Its band structure is shown in Fig. 2(c). As expected, we see the gap of Ag$_2$HgPbSe$_4$ occurs at a position along the low symmetry Γ – X line, consistent with our discussion above.

In conclusion, we have shown that the non-trivial band gaps of zinc-blende derived topological insulators depend on the crystal field splitting at the top valence band as well as the size of the inverted s-p band gap. In general, a material with large TI band gap should have a large negative crystal field splitting and a moderate size of the inverted band gap. Compared to binary zinc-blende and ternary chalcopyrite compounds, these parameters can be more easily tuned through the chemical ordering in quaternary compounds. Based on this understanding, we have identified four ground state quaternary topological insulators, among which Ag$_2$HgPbSe$_4$ has the largest TI band gap of 47 meV because it has the optimal band structure parameters.

This work is supported by NSF of Shanghai (No. 10ZR1408800) and China (No. 10934002, 1095101324 and 10974231), the Research Program of Shanghai municipality and MOE, the Special Funds for Major State Basic Research, the Fundamental Research Funds for the Central Universities, PCSIRT and 973 Program (No. 2007CB924900). The work at NREL is funded by the U.S. Department of Energy, under Contract No. DE-AC36-08GO28308.

[1] X. L. Qi and S. C. Zhang, Physics Today 63, 33 (2010).
[2] J. E. Moore, Nature (London) 464, 194 (2010).
[3] M. König et al., Science, 318, 766 (2007).
[4] B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).
[5] J. W. Luo and A. Zunger, Phys. Rev. Lett. 105, 176805 (2010).
[6] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[7] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature (London) 452, 970 (2008).
[8] Y. Xia et al., Nature Phys. 5, 398 (2009).
[9] Y. L. Chen et al., Science 325, 178 (2009).
[10] H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nature Physics 5, 438 (2009).
[11] H. Lin et al., Nature Mater. 9, 546 (2010).
[12] D. Xiao et al., Phys. Rev. Lett. 105, 096404 (2010).
[13] S. Chadov, X. Qi, J. Kibler, G. H. Fecher, C. Felser, and S. C. Zhang, Nature Materials 9, 541 (2010).
[14] H. Lin et al., Phys. Rev. Lett. 105, 036404 (2010); B. Yan et al., Europhys. Lett. 90, 37002 (2010); Y. Chen et al., Phys. Rev. Lett. 105, 266401 (2010); T. Sato et al., Phys. Rev. Lett. 105, 136802 (2010).

[15] W. Feng, D. Xiao, J. Ding, and Y. Yao, Phys. Rev. Lett. 106, 016402 (2011).

[16] O. M. Madelung, Semiconductors: Data Handbook (Springer, Berlin, 2004), 3rd ed.

[17] S.-H. Wei and A. Zunger, J. Appl. Phys. 78, 3846 (1995).

[18] M. Bohm, G. Huber, A. MacKinnon, O. Madelung, A. Scharmann, and E.-G. Scharmer, Physics of Ternary Compounds (Springer, New York, 1985).

[19] The band structures are calculated within the DFT formalism as implemented in the VASP code. For the exchange-correlation potential, we used the HSE hybrid functional ($\alpha=0.25$, $\mu=0.2$ Å$^{-1}$). The d states of group-III and IV elements are treated explicitly. An energy cut-off of 300 eV was employed for the plane-wave basis set. A 4×4×4 Monkhorst-Pack k-point mesh is used for the Brillouin-zone integration of the 8-atom chalcopyrite and kesterite cells. All lattice vectors and atomic positions were fully relaxed.

[20] S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, Phys. Rev. B 79, 165211 (2009).

[21] C.-Y. Moon and S.-H. Wei, Phys. Rev. B 74, 045205 (2006).

[22] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. Gerber, and J. Angyan, J. Chem. Phys. 124 (2006).

[23] K. Hummer, A. Gruneis, and G. Kresse, Phys. Rev. B 75 (2007).

[24] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

[25] J. E. Rowe and J. L. Shay, Phys. Rev. B 451, 3 (1971).

[26] S.-H. Wei and A. Zunger, Phys. Rev. B 49, 14337 (1994).

[27] J. E. Jaffe and A. Zunger, Phys. Rev. B 28, 5822 (1983).

[28] S. Chen, X. G. Gong, and S.-H. Wei, Phys. Rev. B 75, 205209 (2007).

[29] S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett. 94, 041903 (2009).