Cardiovascular risk scores do not account for the effect of treatment: a review

S M Liew,1,2 J Doust,3 P Glasziou2,3

ABSTRACT

Objective To compare the strengths and limitations of cardiovascular risk scores available for clinicians in assessing the global (absolute) risk of cardiovascular disease.

Design Review of cardiovascular risk scores.

Data sources Medline (1966 to May 2009) using a mixture of MeSH terms and free text for the keywords ‘cardiovascular’, ‘risk prediction’ and ‘cohort studies’.

Eligibility criteria for selecting studies A study was eligible if it fulfilled the following criteria: (1) it was a cohort study of adults in the general population with no prior history of cardiovascular disease and not restricted by a disease condition; (2) the primary objective was the development of a cardiovascular risk score/equation that predicted an individual’s absolute cardiovascular risk in 5–10 years; (3) the score could be used by a clinician to calculate the risk for an individual patient.

Results 21 risk scores from 18 papers were identified from 3536 papers. Cohort size ranged from 4372 participants (SHS) to 1591209 records (QRISK2). More than half of the cardiovascular risk scores (11) were from studies with recruitment starting after 1980. Definitions and methods for measuring risk predictors and outcomes varied widely between scores. Fourteen cardiovascular risk scores reported data on prior treatment, but this was mainly limited to antihypertensive treatment. Only two studies reported prior use of lipid-lowering agents. None reported on prior use of platelet inhibitors or data on treatment drop-ins.

Conclusions The use of risk-factor-modifying drugs—for example, statins—and disease-modifying medication—for example, platelet inhibitors—was not accounted for. In addition, none of the risk scores addressed the effect of treatment drop-ins—that is, treatment started during the study period. Ideally, a risk score should be derived from a population free from treatment. The lack of accounting for treatment effect and the wide variation in study characteristics, predictors and outcomes causes difficulties in the use of cardiovascular risk scores for clinical treatment decision.

INTRODUCTION

For many years, the Framingham cardiovascular risk equation has been the preferred method of cardiovascular risk assessment. However, in February 2010, the National Institute for Health and Clinical Excellence (NICE) announced that the Framingham equation should be considered as just one of several acceptable methods.1 The same guideline included a systematic review, which found 110 different cardiovascular risk-scoring methods. Clinicians are now able and expected to select, from these 110 cardiovascular risk scores, one that is appropriate for their patients. How should they decide which one is appropriate?

Despite guidelines advocating the use of cardiovascular risk scores to calculate global risk instead of focusing on single risk modification, adoption of cardiovascular risk scores has been slow.1 2 One survey in three countries showed that only 48% of physicians regularly use cardiovascular risk scores.3 In another survey in six European countries, 85% of respondents recognised the importance of global risk assessment; yet, the majority (62%) used a subjective assessment of cardiovascular risk rather than specific risk calculators in practice.4 Subjective risk assessment often disagrees with assessment by cardiovascular risk scores.5 6 Doctors who use cardiovascular risk scores can rate individual risk factors more accurately5 and are more likely to correctly prescribe treatment in given scenarios than non-users.6

Why don’t doctors use cardiovascular risk scores in practice? Many physicians do not trust the validity of the risk scores2 and believe their own estimation to be more accurate.3 Another reason may simply be that there is too much choice. The Framingham risk equations were first published in 1976.8 Since then, many other cohort studies have developed their own equations such as PROCAM,9 SCORE10 and QRISK.11 These cohort studies differ significantly in terms of study population characteristics, risk predictors and outcomes.12 Cardiovascular risk scores measure baseline risk factors to predict future cardiovascular morbidity...
and mortality, but most do not account for changes in treatment during the years of follow-up. Failure to adjust for such treatment effects will cause cardiovascular risk scores to systematically underestimate predicted risk. This problem is greater for more recent studies with the progressive increase in the use of effective medication for blood pressure and lipids over the past 20–30 years.13 14

We aimed to review the strengths and limitations of current cardiovascular risk scores, to assess how these may impact on the classification of patients’ risk of cardiovascular disease, and to identify the scores that may be most appropriate for use in clinical care.

METHODS OF REVIEW

Objectives

The objective of this review is to assess the strengths and limitations of cardiovascular risk scores available to clinicians for the assessment of global or absolute risk of cardiovascular disease. A particular focus was on how the risk scores dealt with the effects of treatment during follow-up.

Search methods for identification of studies

We searched Medline (1966 to May 2009) using a mixture of MeSH terms and free text for the keywords ‘cardiovascular’, ‘risk prediction’ and ‘cohort studies’. To identify other studies that answered our question, we also used our own literature files, previous reviews of cardiovascular scores, and citation tracking.

A study was eligible if it fulfilled the following criteria: (1) it was a cohort study of adults in the general population with no prior history of cardiovascular disease and not restricted by a disease condition; (2) the primary objective was the development of a cardiovascular risk score/equation that predicted an individual’s absolute cardiovascular risk in 5–10 years; and (3) the score could be used by a clinician to calculate the risk for an individual patient.

Identifying studies

We screened the titles and abstracts of all retrieved records to identify exclusions. Full copies or reprints of records not excluded were then assessed to determine if they met with the inclusion criteria for the review. Any disagreements were resolved through discussion.

Data extraction

Two reviewers, LSM and JD, appraised and selected the studies, then extracted information from each study for analysis. Information extracted included study demographics, outcomes, predictors and treatment effect.

Analytical methods

Study methods were assessed using criteria adapted from Wasson et al15 and Royston et al,16 including sampling, predictors, follow-up, outcomes, data quality and performance of the rule.

RESULTS

A total of 3536 papers were retrieved after removal of duplicates from records identified through the Medline search and other sources. Figure 1 shows the PRISMA flow diagram. The PRISMA statement and review protocol are available online as supplemental material.

Description of studies

We identified 21 risk scores eligible for the review (table 1) from 18 papers. Five were from Framingham,8 17–19 three from the

Figure 1 PRISMA flow diagram.

Munster group (PROCAM)9 20 and ARIC (Atherosclerosis Risk in Communities),21 22 two each from QRISK11 23 and Reynolds,24 25 one each from the Scottish Heart Health Extended Cohort,26 Strong Heart Study,27 USA-PRC (People’s Republic of China Collaborative Study of Cardiovascular Epidemiology)28 and NHIFS (National Health and Nutrition Examination Survey NHANES 1 Epidemiologic Follow-up Study).29 Some risk scores used multiple cohorts: SCORE10 was derived from a pool of 12 European cohorts, and Progetto CUORE30 from a pool of Italian cohorts. Twelve are from North America, eight are European, and one from China.

Figure 2 shows a timeline chart of the reviewed cohort studies and the introduction of several drugs.13 14

Analytical methods

Table 2 compares the analytical methods of the reviewed risk scores.

The areas in which most of the risk equations did poorly were: (1) reporting loss to follow-up; (2) percentage of missing values; and (3) blind assessment of outcomes.

Risk predictors and their definitions

The final number of risk predictors ranged from five (PROCAM stroke) to 15 in QRISK 2 (table 3). Selection of predictors was mostly by significance testing (table 2). All scores included age, gender, blood pressure and smoking, and most included lipids and diabetes. Lipid levels were not used in the non-laboratory model of the 2008 Framingham risk score, the PROCAM 2007 risk equation for stroke, or the NHIFS risk score. Diabetes, glucose intolerance or HbA1c level was a predictor for all except the European SCORE. Other risk predictors included by some scores were left ventricular hypertrophy, antihypertensive medication use, body mass index, ethnicity, family history, socioeconomic status, medical diseases, biomarkers (hsCRP and albuminuria) and physical activity.

Definitions for risk predictors differed from score to score. In the original Framingham cohort, diabetes was defined as a random blood glucose measurement ≥150 mg/dl (8.3 mmol/l) or treatment with insulin or oral hypoglycaemics. In the
Framingham Offspring cohort, this definition was broadened to a fasting plasma glucose level ≥ 140 mg/dl (7.7 mmol/l) or treatment requirement.18 This in turn differs from the current definition used by the World Health Organization (WHO) of fasting plasma glucose ≥ 126 mg/dl (7.0 mmol/l).31 Hence, patients with fasting plasma glucose between 126 and 150 mg/dl (7–8.3 mmol/l) would be classed as non-diabetics by the first Framingham score. Systolic blood pressure measurement Table 1 Description of the studies

Study	Country	Population	Sample size	Age	% Female	Recruitment period
Framingham 1976	USA	Population cohort	5209	35–64	55	1948–1952
Framingham 1991	USA	Population cohort	5573	30–74	54	1966–1971; 1971–1975
Framingham 1998	USA	Population cohort (original + offspring)	5345	30–74	53	1968–1971; 1971–1975
Framingham 2008	USA	Population cohort (original + offspring)	8491	30–74	53	1968–1971; 1971–1975
PROCAM 2002	Germany	Occupational cohort	5389	35–65	0	1979–1985
PROCAM 2007	Germany	Occupational cohort	26975	20–75	32	1978–1995
CHD Stroke	Germany	Occupational cohort	8130	35–65	27	1978–1995
SCORE 2003	Europe	Pooled dataset of cohort studies	205178	45–64	43	1967–1991
ARIC 2003	USA	Population cohort	14054	45–64	57	1987–1989
Progetto CUORE 2004	Italy	Pooled dataset of cohort studies	20647	35–69	64	1983–1997
Strong Heart Study 2006	USA	Population cohort - American Indian	4372	45–74	61	1989–1991
USA-PRC 2006	China	Population cohort	9903	39–59	51	1983–1984
ASSIGN 2007	UK	Population cohort	13287	30–74	51	1984–1995
Reynolds women 2007	USA	Women’s Health Study trial subjects	16400	45+	100	1992–1995
Reynolds men 2008	USA	Physician Health Study trial subjects	17240	50–80	0	1995–1997
Personal Heart 2007	USA	Population cohort	14343	45–64	57	1987–1989
QRISK 2007	UK	Electronic medical database	1283174	35–74	50	1995–2007
QRISK2 2008	UK	Electronic medical database	1535583	35–74	50	1993–2008
NHEFS 2008	USA	Population cohort	6186	25–74	54	1971–1975

Framingham Offspring cohort, this definition was broadened to a fasting plasma glucose level ≥ 140 mg/dl (7.7 mmol/l) or treatment requirement.18 This in turn differs from the current definition used by the World Health Organization (WHO) of fasting plasma glucose ≥ 126 mg/dl (7.0 mmol/l).31 Hence, patients with fasting plasma glucose between 126 and 150 mg/dl (7–8.3 mmol/l) would be classed as non-diabetics by the first Framingham score. Systolic blood pressure measurement

Figure 2 Timeline of studies.
Study	Prospective	Predictors defined	Predictor selection	Follow-up loss	Missing values	Outcomes defined	Objective outcomes	Blinded assessment of outcomes	Model used	Results of rule	
Framingham 1976	Yes	EGC-LVH	NR	NR	Complete data - IC	Yes	Includes angina	NR	Logistic regression	NR	
Framingham 1991	Yes	EGC-LVH	Significance testing	NR	Complete data - IC	Yes	Includes angina	NR	Weibull model	c statistic	
Framingham 1998	Yes	EGC-LVH	Significance testing	NR	Complete data - IC	Yes	Includes angina	NR	Cox model	c statistic	
Framingham 2008	Yes	Significance testing	NR	NR	Complete data - IC	Yes	Includes angina	Adjudication committee	Cox model	c statistic and calibration	
PROCAM 2002	Yes	Significance testing	Yes	NR	NR	Yes	Yes	NR	Cox model	ROC + calibration	
PROCAM 2007	Yes	Yes	Significance testing	NR	NR	Yes	Yes	NR	Weibull model	ROC	
Stroke	Yes	Yes	Significance testing	NR	NR	Yes	Yes	Yes	Cox model	ROC	
SCORE 2003	Yes	Pooled cohorts	A priori	NR	No HDL in some cohorts	Yes	Yes	Used diagnostic codes	Weibull model	ROC	
ARIC 2003	Yes	Yes	Significance testing	Yes	Complete data - IC	Yes	Includes revascularisation	NR	Cox model	ROC	
Progetto CUORE 2004	Yes	Pooled prospective cohorts	Yes	NR	NR	Yes	Includes revascularisation	Used diagnostic codes	Cox model	ROC	
Strong Heart Study 2006	Yes	Yes	Significance testing	Yes	Yes	Yes	Yes	Includes angina and revascularisation	NR	Cox model	ROC + calibration
USA-PRC 2006	Yes	Yes	Significance testing	Yes	Complete data - IC	Yes	Yes	Adjudication committee	Cox model	ROC + calibration	
ASSIGN 2007	Yes	Yes	Significance testing	NR	NR	Yes	Includes angina and revascularisation	Used diagnostic codes	Cox model	ROC	
Reynolds women 2007	Yes	Trial data	Model testing - BIC	NR	NR	Yes	Includes revascularisation	NR	Cox model	ROC + calibration	
Reynolds men 2008	Yes	Trial data	Model testing - BIC	NR	Complete data - IC	Yes	Includes revascularisation	Adjudication committee	Not specified	ROC + calibration	
Personal Heart 2007	Yes	Self report	Significance testing	NR	NR	Yes	Includes revascularisation	NR	Cox model	c statistic	
QRISK 2007	No	Retrospective GP record	Model testing - BIC	NR	Significant missing data	Diagnosis from GP records or death certificate	Includes angina	Used diagnostic codes	Cox model	ROC + calibration	
QRISK 2 2008	No	Retrospective GP record	Model testing - BIC	NR	Significant missing data	Diagnosis from GP records or death certificate	Includes angina	Used diagnostic codes	Cox model	ROC + calibration	
NHEFS 2008	Yes	Yes	A priori	NR	Complete data - IC	Yes	Includes revascularisation	Used diagnostic codes	Cox model	ROC + calibration	

ECG-LVH, left ventricular hypertrophy on electrocardiogram; NR, not reported; IC, inclusion criteria; ROC, receiver operating characteristic; CHD, coronary heart disease; HDL, high density lipoprotein cholesterol; BIC, Bayes Information Criteria; GP, general practice.
Table 3 Predictors

Study	Age	Sex	Smoking	SBP	DSB	SBP str. Code	HDL	TG	Diabetes	LVM	Arterial disease	BMI	Dyslipidemia	Family history	Risks	Chronic disease	Ancestry	Physical activity	Race of predicted risk score predictors
Framingham 1976	35-79	M/F	Y/N	average of 3 readings	TC	RBS + FBS > 8.3	uric acid + ECG-LVM	7/19+											
Framingham 1985	35-79	M/F	Y/N	average of 2 readings	SBP alternative	TC	Original RBS + uric acid + Offspring FBS > 7.7	8/19+											
Framingham 1996	35-79	M/F	Y/N	average of 3 readings	SBP alternative	TC or LDL	Offspring RBS + uric acid	7/19+											
Framingham 2001	35-79	M/F	Y/N	average of 2 readings	SBP alternative	TC	Original RBS + uric acid	8/19+											
PROCAM 2005	35-79	M/F	Y/N	average of 2 readings	SBP alternative	TC	Original RBS + uric acid	7/19+											
PROCAM 2007	35-79	M/F	Y/N	average of 2 readings	SBP alternative	TC	Original RBS + uric acid	7/19+											
SCORE 2009	35-79	M/F	Y/N	previous diagnosis	TC or LDL	Original RBS + uric acid	7/19+												
ARIC 2003	35-79	M/F	Y/N	previous diagnosis	TC	Original RBS + uric acid	7/19+												
Progetto CUORE 2006	35-79	M/F	Y/N	previous diagnosis	TC	Original RBS + uric acid	7/19+												
SHS 2006	35-79	M/F	Y/N	previous diagnosis	TC	Original RBS + uric acid	7/19+												
SCORE 2007	35-79	M/F	Y/N	previous diagnosis	TC	Original RBS + uric acid	7/19+												
SCORE 2008	35-79	M/F	Y/N	previous diagnosis	TC	Original RBS + uric acid	7/19+												
SCORE 2009	35-79	M/F	Y/N	previous diagnosis	TC	Original RBS + uric acid	7/19+												
SCORE 2010	35-79	M/F	Y/N	previous diagnosis	TC	Original RBS + uric acid	7/19+												
SCORE 2007	35-79	M/F	Y/N	previous diagnosis	TC	Original RBS + uric acid	7/19+												
SCORE 2008	35-79	M/F	Y/N	previous diagnosis	TC	Original RBS + uric acid	7/19+												

Shaded areas. Predictors not included in risk score: SBP, systolic blood pressure; DSB, diastolic blood pressure; Sr. Code, serum cholesterol; HDL, high density lipoprotein cholesterol; TG, triglycerides; LVM, left ventricular hypertrophy; Arterial disease, antihypertensive medication; BMI, body mass index; Family history, family history; SCE, socioeconomic; Rh arthritis, rheumatoid arthritis; Atrial fibrillation; M, male; F, female; Y, yes; N, no; TC, total cholesterol; FBS, random blood sugar; FBST, fasting blood sugar; LDL, low density lipoprotein cholesterol; Non-lab, non-laboratory; NA, not applicable; Cigs, cigarettes; SIMD, Scottish Index of Multiple Deprivation; HbA1c, haemoglobin A1c; hsCRP, high sensitivity c-reactive protein; GP, general practice.

Methods included averages taken from two readings (Framingham, Progetto CUORE, ASSIGN), average of last two of three readings (ARIC, SHS, NHEFS), average of three readings (USA-PRC) and second reading taken from two readings (PROCAM). For some scores, the measurement method was ill defined: self-report (Reynolds Study), general practitioner record (QRISK studies) or a previous diagnosis of hypertension (Personal HEART), to not being stated (SCORE).

Outcomes predicted

The outcomes predicted differ widely between the risk scores (table 4), ranging from general cardiovascular risk to specific disease outcomes. Almost all scores predict myocardial infarction and death from coronary heart disease. Only 12 of the 21 scores included cerebrovascular events. SCORE only predicts fatal cardiovascular events.

Methods to assess outcome events also differed. The SCORE and ASSIGN scores used hard outcomes with diagnostic codes such as ICD 9/10 codes. ‘Hard outcomes’ can be defined as irrevocable events that have permanent consequences, such as myocardial infarction and death, as opposed to ‘soft events’, such as hospitalisation for angina. The Framingham studies included a broader composite of hard and soft end points. Diagnostic criteria for outcomes in Progetto CUORE and the USA-PRC cohorts followed the WHO-MONICA Study (WHO—MONItoring trends and determinants in Cardiovascular disease project). 28 30 Expert panels reviewed medical records and hospital notes in the Framingham studies, PROCAM scores, ARIC, SHS, Reynolds studies and the NHEFS. QRISK1 and 2 used general practice electronic recorded diagnosis or death certificates linked to the computer system.

Adjustment for treatment effects

Methods used to adjust for the effect of medication were absent or weak (table 5). The effect of treatment is not fully assessed or adjusted for by any of the reviewed risk scores. Treatment effect includes (1) which occurs by risk factor modification (eg, blood pressure-lowering medication), (2) which works independently of risk factors (eg, platelet inhibitors such as aspirin), and (3) which works by both means (eg, statins). Twelve of the cardiovascular risk score studies (Framingham 1998, Framingham 2008, ARIC, Progetto CUORE, SHS, USA-PRC, Reynolds 2007, Reynolds 2008, Personal Heart, QRISK1, QRISK2, and NHEFS) reported data on prior treatment, but this was mainly limited to antihypertensive treatment. Only seven (Framingham 2008, ARIC, Progetto CUORE, SHS, QRISK1, QRISK2, and NHEFS) included the use of antihypertensive drugs as a risk predictor. The Reynolds studies were the only ones to report prior use of lipid-lowering agents. None of the studies reported on the prior use of platelet inhibitors.

Two treatment effects need to be considered: (1) prior treatment (started before enrolment in the study) and (2) subsequent...
None of the risk scores addressed the effect of treatment drop-ins. For early studies, such as the older Framingham Study, this may be minimal. Recent cohorts such as QRISK may have had more than half of their study population receiving treatment with their blood pressure under control (see NHANES data in figure 2).

Table 4 Outcomes
Outcomes
Framingham 1976
Framingham 1991
Framingham 1998
Framingham 2008
PROCAM 2002
PROCAM 2007
SCORE 2003
ARIC 2003
Progetto CUORE 2004
SHS 2006
USA-PRC 2006
ASSIGN 2007
Reynolds women 2007
Reynolds men 2008
Personal Heart 2007
QRISK 2007
QRISK 2 2008
NHEFS 2008

Shaded areas, outcomes not included in risk score; I, includes other fatal CVD; F, only if fatal; A, only if admitted; CHD, coronary heart disease; MI, myocardial infarct; TIA, transient ischaemic attack; PAD, peripheral artery disease; CCF, congestive cardiac failure; CVD, cardiovascular disease.

DISCUSSION
For users of cardiovascular risk scores, this review has two main findings: that cardiovascular risk scores differ considerably in terms of population, predictors and outcomes, which may not match those used by clinicians, and that treatment ‘drop-in’ is poorly accounted for by most rules.

Whichever risk equation they choose, clinicians should know which outcomes are predicted. As the outcomes predicted differ significantly, the risk scores are not interchangeable. For example, the Framingham risk scores predict a broad range of cardiovascular events (including cerebrovascular events), whereas SCORE only predicts fatal cardiovascular events. The Framingham Study risk scores have been criticised for the inclusion of ‘soft’ (subjective) outcomes such as angina, although the Framingham investigators argue that such outcomes estimate the total cardiovascular disease burden and are clinically important to both patient and doctor. Revascularisation interventions may also be criticised as being subjective.

Time is a major obstacle to the use of risk scores by physicians; obtaining more information from a patient will further decrease the use of risk calculators. Of the risk scores, QRISK had the most predictors, which included disease conditions such as atrial fibrillation and chronic renal disease. QRISK2 score is designed to use data in the patient’s electronic health record, with imputed values for missing data. However, the proportion with missing data for these factors in the derivation cohorts was substantial (>70% for ethnicity; >60% for cholesterol).

The second limitation is that the effect of treatment has not been considered fully by any of the reviewed risk scores. Treatment decreases the true effect of risk factors on outcomes, as illustrated by figure 3. The combined effects of risk reduction due to treatment can be as much as 50%. If 25% of the population started treatment during follow-up, it would mean

Table 4 Outcomes
Outcomes
Framingham 1976
Framingham 1991
Framingham 1998
Framingham 2008
PROCAM 2002
PROCAM 2007
SCORE 2003
ARIC 2003
Progetto CUORE 2004
SHS 2006
USA-PRC 2006
ASSIGN 2007
Reynolds women 2007
Reynolds men 2008
Personal Heart 2007
QRISK 2007
QRISK 2 2008
NHEFS 2008
a population risk reduction of 12.5%. But this would be greater in the high-risk groups, who are more likely to be treated. These differences are similar to those found between QRISK 2 and Framingham (11.6%), which was obtained in a recent validation study of QRISK 2.41

Ideally, a cardiovascular risk score to determine the risk of a cardiovascular event and to stratify patients for risk factor modification should be derived in a population receiving no treatment at the start of and during the study. Such an ideal study is not tenable or ethical. We know of three possible

Table 5 Treatment effect	Risk Predictors	Prior Treatment	Treatment during the study				
	Measurement	Follow-up	Treatment exclusions	Treatment assessed	Adjustment methods	Trial medication	Treatment drop ins
Framingham 1976	Single	2 yearly exams					
Framingham 1991	Single	2-4 yearly exams					
Framingham 1998	Single	2-4 yearly exams			Antihypertensive	SBP if treated and SBP if not treated included as predictor	
Framingham 2008	Single	2-4 yearly exams		Antihypertensive			
PROCAM 2002	Single	2 yearly questionnaire					
PROCAM 2007	Single	2 yearly questionnaire					
SCORE 2003	Single	Varies between cohorts					
ARIC 2003	Single	3 yearly exams. Outcomes from yearly interviews	Antihypertensive		Included as predictor		
Progetto CUORE 2004	Single	Varies between cohorts	Antihypertensive		Included as predictor		
SHS 2006	Single	3-4 yearly exams. Outcomes from yearly interviews and records	Antihypertensive		Included as predictor		
USA-PRC 2006	Single	2-4 yearly exams	Antihypertensive and OCP			*	
ASSIGN 2007	Single	None for pred. Outcomes from record linkage					
Reynolds women 2007	Single	None for pred. Outcomes from 6-12 monthly questionnaire	Several Antihypertensive, lipid lowering, hormone therapy, vitamins			Aspirin, vitamin E	
Reynolds men 2008	Single	None for pred. Outcomes from annual questionnaire	Vitamins Antihypertensive, lipid lowering			Beta carotene, vitamin C, vitamin E, multivitamins	
Personal HEART 2007	Single	3 yearly exams. Outcomes from yearly interviews		Antihypertensive			
QRISK 2007	Single	None for pred. Outcomes from record linkage		Antihypertensive	Included as predictor		
QRISK 2 2008	Single	None for pred. Outcomes from record linkage	Those on statins Antihypertensive	Included as predictor			
NHEFS 2008	Single	None for pred. Outcomes from 5 to >10 yearly survey interviews		Antihypertensive	Included as predictor in model but not risk chart		

*Shaded areas, information not reported; Antihypertensive medication; SBP, systolic blood pressure; pred, predictors.

*Corrected for change in risk factors by factoring in changes at midpoint of follow-up—that is, 1993/1994.
solutions. First, we could favour the use of older studies, when less aggressive treatment occurred. Second, treatment uptake could be monitored and appropriate adjustments such as the application of a penalised Cox model made to account for the effect of treatment. Until such studies have been performed, study cohorts where there is minimal treatment drop-in during follow-up should be preferred. Alternatively, to minimise treatment drop-in, we could study cohorts with much larger numbers over much shorter periods (Rod Jackson, personal communication).

We have not addressed how risk scores may change over time. However, a common misconception is that the strength of the risk scores change with population health status. Changes in the prevalence of a risk factor should not change the underlying relationship of a risk predictor to a disease outcome. For example, lower rates of smoking will not change the RR reduction due to smoking. Study participants may have changed their risk behaviour—for example, stopped smoking during the study. However, that is another treatment effect and should ideally be measured.

The lack of accounting for treatment makes the use of most cardiovascular risk scores for treatment decisions problematic. We need to examine how doctors use cardiovascular risk scores in clinical practice. If the aim is to discuss with patients the risk of remaining untreated, then the use of the majority of these risk scores would be incorrect.

Strengths and weaknesses of the study

The review was limited to studies in which participants had no previous history of cardiovascular disease and excluded those who were restricted to a disease condition. A prior diagnosis of cardiovascular disease or a disease such as diabetes raises the patient into the high-risk category, removing the need for risk scoring. This has also been advocated by the NICE guidelines, which states that risk equations should not be used for those with a previous history of cardiovascular disease or other high-risk diseases such as diabetes. Furthermore, the majority of these patients would have received treatment, potentially altering study outcomes.

This is a detailed review with a clear and focused question and explicit methodology. The review is particularly relevant to the recent modification of the NICE guidelines and offers the most up-to-date comparison of available cardiovascular risk scores. It has also identified a major gap in risk assessment studies, namely, the effect of treatment.

Strengths and weaknesses in relation to other studies, discussing particularly any differences in results

The 2005 review by Beswick et al included the appendix of the NICE guidelines identified 110 studies, with 70 meant specifically for application in primary prevention. The difference in the number of studies identified is due to their wider inclusion criteria, which included studies restricted to a disease condition, studies that had participants with prior cardiovascular disease, studies that were recalibrations or modifications of the original cohort study, studies that did not use absolute risk scoring, and studies where the duration of prediction was not specified. More recent studies such as Q-risk and Reynolds scores are not included, as their search concluded in April 2005.

Meaning of the study: possible mechanisms and implications for clinicians or policymakers

The recent change in the NICE guidelines has major implications for clinical practice. Selecting an appropriate risk score is likely to be difficult because of the wide variation in available risk scores. This review has attempted to address the problem by comparing features of all the cardiovascular risk scores.

Unanswered questions and future research

This review did not address the effectiveness or accuracy of the cardiovascular risk scores, which would require a review of validation studies instead of the original cohort studies. The reviews by Beswick et al and Brindle et al have tried to assess this, but do not include the more recent studies. However, it should be pointed out that any validation study of risk scores might also suffer the same problem of treatment drop-in, which would attenuate the true cardiovascular risk. Researchers should also attempt to address the effect of treatment in future studies in this field by collecting data on treatment at the start and during the course of cohort studies, as this will impact on the final outcomes.

Authors’ conclusions

Implications

These results show that there are substantial differences in the available cardiovascular risk scores in terms of study characteristics, predictors and outcomes. The effect of treatment on the study population has not been taken into account by these cohort studies. Further study is required for the translation of such research into clinical practice.

Funding

This study was funded in part by the NHMRC Project Grant 511217 and Prof Glasziou’s NHMRC Fellowship.

Competing interests

None.

Contributors

SM, JD and PG are responsible for the study concept and design. SM and JD extracted data. SM and PG undertook analysis and interpretation of the data. SM drafted the manuscript, and JD and PG undertook critical revisions of the manuscript. All three authors read and approved the final manuscript and as such act as guarantors for the study.

Provenance and peer review

Not commissioned; internally peer reviewed.

REFERENCES

1. Cooper A, Nerhaer L, Calvert N, et al. Clinical Guidelines and Evidence Review for Lipid Modification: cardiovascular risk assessment and the primary and secondary prevention of cardiovascular disease. London, National Collaborating Centre for Primary Care and Royal College of General Practitioners, 2008.

2. British Cardiac Society, British Hypertension Society, Diabetes UK, HEART UK, Primary Care Cardiovascular Society, Stroke Association. JBS 2: Joint British Societies’ guidelines on prevention of cardiovascular disease in clinical practice. Heart 2005;91(Suppl 5):v1–52.

3. Saposnik AC, Ramirez JAF, Jukema JW, et al. Physicians’ attitudes and adherence to use of risk scores for primary prevention of cardiovascular disease: cross-sectional survey in three world regions. Can Med Res Qpn 2008;25:1171–8.

4. Graham IM, Stewart M, Hertog MG. Cardiovascular Round Table Task Force. Factors impeding the implementation of cardiovascular prevention guidelines: findings from a survey conducted by the European Society of Cardiology. Eur J Cardiovasc Prev Rehabil 2008;15:399–45.
5. Montgomery AA, Fahy T, MacKintosh C, et al. Estimation of cardiovascular risk in hypertensive patients in primary care. Br J Gen Pract 2000;50:127–8.
6. Imms A, Quinn S, Nelson M. General practitioners’ use of cardiovascular risk calculators. Aust Fam Physician. 2010;39:376–80.
7. Eichler K, Zoller M, Tschudi P, et al. Barriers to apply cardiovascular prediction rules in primary care: a postal survey. BMC Fam Pract 2007;8:1.
8. Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: the Framingham Study. Am J Cardiol 1978;38:46–51.
9. Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 2002;105:310–15.
10. Conroy RM, Pyorala K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003;24:987–1003.
11. Hippius-Cox J, Coupland C, Vinogradova Y, et al. Derivation and validation of QRISK, a new cardiovascular risk score for the United Kingdom: prospective open cohort study. BMJ 2007;335:136.
12. Ferket BS, Collesken EB, Visser LJ, et al. Systematic review of guidelines on cardiovascular risk assessment: which recommendations should clinicians follow for a cardiovascular health check? Arch Intern Med 2010;170:27–40.
13. Piepho RW, Beal J. An overview of anthypertensive therapy in the 20th century. J Clin Pharmacol 2000;40:967–72.
14. Endo A. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res 1992;33:1569–82.
15. Wasson JH, Sux HC, Neff RK, et al. Clinical prediction rules. applications and methodological standards. N Engl J Med 1985;313:793–9.
16. Rosotton P, Moons KG, Altman DG, et al. Prognosis and prognostic research: developing a prognosis model. BMJ 2006;333:1594.
17. Anderson KM, Wilson PW, Odell PM, et al. Cardiovascular health check? J Clin Pharmacol 2008;48:2263–5.
18. Chowdhury R, Brindle P, Bulpitt CJ, et al. A systematic review of risk scoring methods and clinical decision aids used in the primary prevention of coronary heart disease. BMJ 2010;340:c2442.
19. Simes J, Voysey M, O’Connell R, et al. FIELD Study Investigators. A novel method to adjust efficacy estimates for uptake of other active treatments in long-term clinical trials. PLoS One 2010;5:e9590.