Observation of a transverse magnetization in the ordered phases of the pyrochlore magnet Gd$_2$Ti$_2$O$_7$.

V.N. Glazkov$^{1,2}$ and C. Marin and J.-P. Sanchez$^1$

$^1$Commissariat à l’Energie Atomique, DSM/DRFMC/SPSMS, 38054 Grenoble, Cedex 9, France
$^2$P. L. Kapitza Institute for Physical Problems RAS, 119334 Moscow, Russia

(Dated: September 24, 2018)

We have performed a detailed transverse magnetization study of the pyrochlore antiferromagnet Gd$_2$Ti$_2$O$_7$. A transverse magnetization of about $10^{-3}M_{sat}$ is observed in the low-temperature ordered phases. These measurements result in the refinement of the Gd$_2$Ti$_2$O$_7$ phase diagrams. Observation of a transverse magnetization indicates loss of the cubic symmetry in some of the magnetic phases and provides new information for a better understanding of the complicated magnetic ordering of Gd$_2$Ti$_2$O$_7$.

PACS numbers: 75.50.Ee, 75.30.Kz, 75.60.Ej

Gadolinium compounds Gd$_2$Ti$_2$O$_7$ and Gd$_2$Sn$_2$O$_7$ provide good examples of the Heisenberg antiferromagnets on the pyrochlore lattice. The magnetic Gd$^{3+}$ ions are located at the vertices of the network of corner sharing tetrahedra. The nearest neighbor Heisenberg exchange interaction is strongly frustrated in this geometry — nearest neighbor exchange coupling alone is not sufficient to select a unique ground state of the pyrochlore antiferromagnet. However, both of these compounds orders near 1K $^1$. This ordering is caused by the subtle interplay of weaker interactions (e.g. dipolar coupling, further neighbor exchange couplings and single-ion anisotropy).

The magnetic phase diagrams of Gd$_2$Ti$_2$O$_7$ $^2$, as determined from the specific heat measurements, reveal a variety of ordered magnetic phases. Two phase transitions are observed in zero external field at $T_{N1}=$1.05K and $T_{N2}=$0.75K. At low temperatures a transition to the saturated phase is observed at a field near 6T, while an additional phase transition is found near $H\sim 3T$ for the $H||[110]$, $[111]$. The later phase transition is reported to be absent for the $H||[211]$. The two-step phase transition in zero field and the field-induced transitions in this
compound are not understood yet. Moreover, the experimentally determined phase diagram for the $\mathbf{H}||[211]_2$ is not consistent with the general thermodynamic restrictions forbidding existence of a point where three second-order transition lines meet. Identification of the zero-field magnetic structure by the means of neutron scattering yields a $4\mathbf{k}$-structure with $\mathbf{k} = (1/2, 1/2, 1/2)$ and where $1/4$ of the Gd ions remains disordered at $T_{N2} < T < T_{N1}$. These ions order at the second phase transition at $T_{N2}$. The high-temperature ordered phase ($T_{N2} < T < T_{N1}$) preserves cubic symmetry, while the symmetry of the low-temperature phase is not clearly understood being hidden in the complications of the $4\mathbf{k}$-structure.

The present work was stimulated by the prediction of a possible appearance of a transverse magnetization in the classical Heisenberg pyrochlores above some critical fields. A transverse magnetization change is a sensitive indicator for the magnetic phase transition. The transverse magnetization could appear in the crystal if the magnetic field direction deviates from the main axes of the susceptibility tensor. In the case of the cubic symmetry the susceptibility tensor is isotropic. Thus, no transverse magnetization could be observed in the magnetic phases with cubic symmetry.

To measure the transverse magnetization we have used a capacitance torquemeter. The sensitive element of the torquemeter was a plane capacitor with the parallel plates formed by the rigid base and the flexible bronze cantilever. The sample was glued to the flexible cantilever and the experimental cell was mounted on the dilution refrigerator equipped with a 6T cryomagnet. The cantilever was thermalized with the mixing chamber. The magnetic field was applied perpendicular to the capacitor plates. The experimental cell was connected to the General Radio capacitance bridge, which was balanced before the measurements. The imbalance of the bridge was measured as a function of the applied magnetic field. Maximal capacitance change during the measurements was about 20%. Capacitance of the experimental cell at $H=0$ was about 1.4pF. Cantilever deformations were found to be always reversible. A Gd$_2$Ti$_2$O$_7$ single crystal was prepared following the same technique as described in [8]. Samples were oriented and cut in rectangular shape with the dimensions of about $0.6 \times 0.9 \times 1.3 \text{mm}^3$.

The ideal torquemeter response is only due to the transverse magnetization component $\mathbf{M}_\perp$ aligned along the flexible cantilever. As the magnetic field $\mathbf{H}$ is applied perpendicular to the cantilever plate, the torque $\mathbf{M}_\perp \times \mathbf{H}$ acts on the sample. This torque is compensated by the bending of the cantilever resulting in the change of the experimental cell capacitance.
FIG. 1: Field dependences of the torquemeter response for different field orientations. Inserts: field dependences of the field derivative of the torquemeter response for the corresponding orientations. Solid curves (main panels and inserts): data measured on increasing magnetic field. Dashed curves: examples of the data measured on decreasing field.
∆C detected as the bridge imbalance. Thus, the torquemeter output could be expressed as $U(T, H) \propto \Delta C \propto M_\perp H$.

A real torquemeter is also slightly sensitive to the longitudinal magnetization component $M_\parallel$ via the magnetic-balance response due to the small uncontrolled field gradient at the sample position. Another uncontrolled effect is a torque due to the demagnetization tensor anisotropy for the non-spherical samples — an elongated sample in a magnetic field tends to rotate its longest axis parallel to the field direction. These two parasitic effects should be present even for the cubic crystals. They are proportional to the $H^2$ at low fields and are expected to change their field dependence at the saturation field. They are expected to be almost temperature independent since the magnetic susceptibility of Gd$_2$Ti$_2$O$_7$ does not change strongly below 1K.

Field dependences of the torquemeter response taken at different temperatures are shown in Figure 1. Above 1K the occurrence of a transverse magnetization is forbidden by the cubic symmetry of the paramagnetic phase. The observed response is due to the parasitic effects of longitudinal magnetization and demagnetization-induced torque. The maximal amplitude of the response due to these parasitic effects can be estimated from the amplitude of
FIG. 3: (color) Field dependence of the specific heat (circles, green) and its correspondence with the results of transverse magnetization measurements. Dashed line — field derivative of the torquemeter output, squares — determined field dependences of the transverse magnetization measured at increasing (open, blue) and decreasing (closed, red) field. For all curves T = 620 mK, \( \mathbf{H} \parallel [211] \).

The torquemeter response at 6T in the paramagnetic phase. The shape of the torquemeter response changes as the temperature decreases below 1K, i.e, when the sample enters into the ordered state. For the \( \mathbf{H} \parallel [110], [111] \) a strong hump-shaped deviation of the torquemeter output from the high-temperature behavior appears near 3T. The amplitude of this hump at low temperatures exceeds significantly the response that could be ascribed to the parasitic effects, i.e., observed hump-shaped signals are due to the appearance of the transverse magnetization. At high fields the hump disappears and the torquemeter response is close to that observed in the paramagnetic state. For the \( \mathbf{H} \parallel [110] \) this hump has well defined low-field and high-field edges, which allow to estimate the critical fields of appearance and disappearance of the transverse magnetization. For the \( \mathbf{H} \parallel [111] \) the transverse magnetization signal has a sharp low-field edge only.

Evolution of the torquemeter response for the \( \mathbf{H} \parallel [211] \) geometry is different. As the sample is cooled down below 1K the low-field part of the torquemeter response deviates from the paramagnetic \( H^2 \) behavior. Developing hump demonstrates a sharp high-field edge. For this orientation we were unable to perform measurements below 400 mK for technical reasons. Amplitudes of the torquemeter response deviations from the high-temperature behavior is not high enough to ascribe unambiguously these changes to the transverse magnetization.
FIG. 4: Field dependences of the normalized transverse magnetization (see text). All curves correspond to the measurements done on increasing magnetic field.

effects. However, to attribute this signal to the parasitic effects, one has to assume that the sample magnetization at low fields (below 3T) almost reaches the saturation and then decreases. Neglecting this unlikely scenario, we conclude that this response is also connected with the appearance of the transverse magnetization.

A transition to the saturated phase can be found for the $H||[111], [211]$ orientations by taking the field derivatives of the torquemeter output (see inserts in Figure 1). They change sharply near 6T from the field-dependent behavior to a constant owing to the change of the field dependences of the parasitic effects at the saturation field.

A hysteresis both in the position and in the form of the transverse magnetization related hump is observed for all orientations (see Figure 1). At increasing fields appearance and disappearance of the transverse magnetization are always observed at higher field values than for decreasing field. The hump is also more pronounced on the experimental curves taken on increasing field. This hysteresis does not disappear as the magnetic field sweep rate is tenfold decreased.

Identified features of the torquemeter response (i.e., fields of appearance and disappearance of the transverse magnetization and fields of the transition to the saturated phase) were used to draw the $(H - T)$ diagrams shown in Figure 2. These features correlate very
well with the known phase diagrams \[2\] for the $H \parallel [110], [111]$ orientations of the applied magnetic field. However, our results for the $H \parallel [211]$ suggest that there is a phase transition line near $H=3T$ that was not detected in the known specific heat measurements \[2\]. This suggested phase transition line is in agreement with general thermodynamic restrictions \[3\].

We have measured the field dependence of the specific heat in the $H \parallel [211]$ geometry at $T = 620\text{mK}$ using a Quantum Design PPMS calorimeter (Figure 3). Our specific heat data demonstrates clear transitions near 3.1T and 6.1T in perfect agreement with the transverse magnetisation measurements.

Finally, we can recover the field dependences of the transverse magnetization. To account for the parasitic effects contribution, we subtracted the torque meter response measured in the paramagnetic phase (at $T_0 = 1.15\ldots 1.35\text{K}$) from the low temperature response. This approach yields the following expression for the transverse magnetization per unit mass:

$$|M_\perp(T, H)| \propto \frac{|U(T, H) - U(T_0, H)|}{H m}$$

(1)

here $m$ is the sample mass. The field dependences of the so extracted transverse magnetization are presented in Figure 4. Note, that for the $H \parallel [211]$ orientation at $T_{N1} > T > T_{N2}$ (810mK and 900mK curves) the transverse magnetization appears only above a given magnetic field. This observation is in agreement with the high symmetry of the high-temperature ordered phase, which forbids the transverse magnetisation. The critical field for the appearance of the transverse magnetization corresponds well to the known phase boundary between ordered phases.

The magnitude of the transverse magnetization can be roughly estimated from the elastic constant of the cantilever. This yields a value of $3 \cdot 10^{-3}M_{sat}$ for the maximal amplitude of the observed transverse magnetization.

Summarizing our results, we have observed a transverse magnetization in the low-temperature magnetically ordered phases of the pyrochlore antiferromagnet Gd$_2$Ti$_2$O$_7$. This means unambiguously that the cubic symmetry is lost in the low-temperature ordered phases of Gd$_2$Ti$_2$O$_7$. We have also refined the magnetic phase diagrams and have detected a new phase transition line for $H \parallel [211]$. 
Acknowledgments

The authors thank M.Zhitomirsky (CEA-Grenoble/DRFMC/SPSMS) for his continuous interest to this work and numerous fruitful and stimulating discussions, I.Sheikin (CNRS-Grenoble/HMFL) and C.Marcenat (CEA-Grenoble/DRFMC/SPSMS) for discussions concerning experimental techniques, S.S.Sosin and A.I.Smirnov (Kapitza Institute) for helpful discussions on the interpretation of the experimental results.

[1] Bonville P, Hodges J A, Ocio M, Sanchez J P, Vulliet P, Sosin S and Braithwaite D 2003 J.Phys.:Condens.Matter 15 7777
[2] Petrenko O A, Lees M R, Balakrishnan G, and McK Paul D 2004, Phys. Rev. B 70 012402
[3] Yip S K, Li T and Kumar P 1991 Phys. Rev. B 43 2742
[4] Stewart J R , Ehlers G, Wills A S, Bramwell S T and Gardner J S 2004 J.Phys.:Condens.Matter 16 L321
[5] As one can see from Ref.[4], at $T_{N1} > T > T_{N2}$ all $\langle 111 \rangle$ directions are the 3-rd order symmetry axes. Thus, the symmetry of this phase is at least tetrahedral and belongs to the cubic symmetry class.
[6] Glazkov V N, Zhitomirsky M E, Smirnov A I, Krug von Nidda H A, Loidl A, Marin C, and Sanchez J P 2005 Phys. Rev. B 72 020409(R)
[7] Abarzhi S I, Bazhan A N, Prozorova L A and Zaliznyak I A 1992 J.Phys.:Condens.Matter 4 3307
[8] Yaouanc A, Dalmas de Réotier P, Glazkov V, Marin C, Bonville P, Hodges J A, Gubbens P C M, Sakarya S, and Baines C 2005 Phys. Rev. Lett. 95 047203