Health anxiety and illness-related fears across diverse chronic illnesses: A systematic review on conceptualization, measurement, prevalence, course, and correlates

Sophie Lebel1*, Brittany Mutsaers1, Christina Tomei1, Caroline Séguin Leclair1, Georden Jones1, Danielle Petricone-Westwood1, Nicole Rutkowski1, Viviane Ta1, Geneviève Trudel1, Simone Zofia Laflamme1, Andrée-Anne Lavigne1, Andreas Dinkel2

1 School of Psychology, University of Ottawa, Ottawa, Ontario, Canada, 2 Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany

* slebel@uottawa.ca

Abstract

Background
Patients with chronic diseases commonly report fears of illness or symptoms recurring or worsening. These fears have been addressed from an illness-specific perspective (e.g., fear of cancer recurrence), a generic illness perspective (e.g., fear of progression), and a psychiatric perspective (DSM-5 illness anxiety disorder and somatic symptom disorder). The broader concept of health anxiety (HA) can also be applied to patients with a chronic disease. This review was conducted to investigate the conceptual, theoretical, measurement-overlap, and differences between these distinct perspectives. We also aimed to summarize prevalence, course, and correlates of these fears in different chronic illnesses.

Methods
We used PsycINFO, PubMed, CINAHL, Web of Science, SCOPUS, and PSYNDEX to conduct a systematic review of studies pertaining to these fears in chronic illness published from January 1996 to October 2017. A total of 401 articles were retained.

Results
There were commonalities across different conceptualizations and diseases: a high prevalence of clinical levels of fears (>20%), a stable course over time, and a deleterious impact on quality of life. Reviewed studies used definitions, models, and measures that were illness-specific, with only a minority employing a psychiatric perspective, limiting cross-disease generalizability. There appears to be some applicability of DSM-5 disorders to the experience of fear of illness/symptoms in patients with a chronic illness. While conceptualizing HA on a continuum ranging from mild and transient to severe may be appropriate, there is a lack of agreement about when the level of fear becomes ‘excessive.’ The definitions,
models, and measures of HA across chronic illnesses involve affective, cognitive, behavioral, and perceptual features.

Conclusions
The concept of HA may offer a unifying conceptual perspective on the fears of illness/symptoms worsening or returning commonly experienced by those with chronic disease.

Introduction
Rationale
Chronic diseases are long-term conditions that develop slowly and increase in severity over time. Most often, chronic diseases are incurable, and treatment is focused primarily on the management of symptoms [1]. Chronic diseases account for 60% of all deaths and 43% of the global burden of disease [2]. Those with chronic conditions must cope with the persistence and the unpredictability of their illness. They often report feeling anxious and worried about their condition or its symptoms recurring or worsening. This experience was aptly described by cancer survivors who likened their worry about cancer recurrence to the sword of Damocles that hangs over them for the rest of their lives [3]. As the population ages, and chronic diseases become increasingly prevalent, there is a growing body of literature examining the emotional state of chronically ill patients [3–8].

The fear and worry that occurs in response to living with a chronic illness has been called health anxiety (HA) [4–9]. Generally, HA arises when bodily sensations or changes are believed to be indicative of serious illness [10]. HA involves affective, cognitive, behavioral, and perceptual features [11]. More specifically, HA consists of distressing emotions (e.g., fear), thoughts of danger, and physiological arousal [12]. The experience of HA varies across individuals, and has therefore been conceptualized on a continuum ranging from mild and transient to severe and chronic [12]. In the context of chronic illness, there is evidence that moderate to high levels of HA are highly prevalent. For example, a systematic review suggested a prevalence of 49% for moderate to high fear of cancer recurrence among cancer survivors, where cancer is considered to be a chronic illness [13]. This review also found mixed results for the intensity of fear of cancer recurrence over time. Some studies suggested that the fear did not change, while others showed that it was highest after cancer diagnosis and treatment, followed by a decrease to a more stable level of intensity [13]. Few sociodemographic and medical predictors were identified by this review, with the exception of younger age and presence of somatic symptoms. Illness- and treatment-related factors seem to be of minor importance. Thus much work remains to identify individuals with a chronic illness who are most at risk of presenting with elevated HA.

As there are numerous chronic illnesses that involve a variety of symptom presentations, research on HA tends to be disease specific (i.e., fear of cancer recurrence/progression [14], fear of hypoglycemia [15], cardiac anxiety [16] etc.). Within each chronic illness, researchers have examined disease-specific worries and have developed measures and interventions for each of these manifestations. We refer to this approach as the disease- or symptom-specific perspective. This narrower view of HA in chronic illnesses has resulted in fairly isolated areas of research with limited cross-disease applicability in terms of models and treatments. A systematic review of interventions for HA found evidence of effective interventions for most of
these specific chronic illnesses. However, these were very diverse, ranging from pragmatic interventions that directly aim to reduce the risk of health problems in people with diabetes, to psychotherapeutic interventions targeting mechanisms of action (e.g., intolerance of uncertainty) underlying HA in cancer survivors. Few types of interventions were measured across diseases [17], limiting generalizability of findings. Developing an understanding of HA across chronic illnesses (rather than within specific diseases) would help to address this gap. Importantly, the Diagnostic and Statistical Manual of Mental Disorders [18] characterizes HA more generally, which differs from research that predominantly looks at presentations of HA within each chronic illness separately. We refer to this broader definition that relies on DSM-IV or DSM-5 concepts as the psychiatric perspective.

The meaning and connotations associated with the term “health anxiety” can strongly influence how this concept is understood [9]. For example, HA can be thought of as being synonymous with “hypochondriasis” and regarded as a mental disorder (i.e., the conviction of having a physical disease despite negative medical findings) [9]. Alternatively, HA can be considered a normative response to managing a chronic illness where a real threat to one’s health and well-being is present [8]. Given the variability in the meaning attributed to HA, significant changes were made to the diagnosis of “hypochondriasis” in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [18].

In the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV), the concepts of HA and hypochondriasis were used interchangeably and referred to excessive fear or worry about ill health, which is believed to result from a preoccupation with the incorrect belief that one has, or is in danger of developing, a serious disease or a medical condition [19]. Hypochondriasis has a low reported prevalence of about 1–2% in general population samples [20]. In contrast, the concern of becoming or possibly being ill, is more common, with a prevalence rate of about 3% in the general population and 20% in hospital out-patients [20]. With the introduction of the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) in 2013, hypochondriasis was redefined and replaced with two new concepts: somatic symptom disorder and illness anxiety disorder [18]. Somatic symptom disorder is characterized by somatic symptoms, whether medically explained or not, that are either very distressing, or result in noteworthy disruption of functioning. Somatic symptom disorder is also characterized by excessive and disproportionate thoughts, feelings, and behaviors relative to those specific symptoms [18]. Illness anxiety disorder entails a preoccupation with having or acquiring a serious medical illness, where somatic symptoms are either absent or mild, and with a specifier of either an avoidant or reassurance seeking presentation [18].

The introduction of these new diagnostic labels in DSM-5 is significant for two main reasons. First, a psychiatric diagnosis can now be applied to individuals experiencing excessive HA who also have a diagnosed physical disease, including chronically ill individuals. Second, this now explicitly unifies the concepts of HA and hypochondriasis, which may be considered an advantage because this could facilitate more consistency in how these terms are used in the literature. These revisions in the DSM-5 have been criticized and include debate over the reliability and validity of the new DSM-5 diagnoses for patients with chronic diseases. The concern is the risk of over diagnosing individuals as “mentally ill” when their fear could be considered realistic given their condition [21, 22].

Although much of the research on HA is disease-specific, the fear of progression has been introduced as a generic, integrative construct applicable across various chronic diseases [23, 24]. Fear of progression provides an alternative to the psychiatric view of HA/hypochondriasis where HA in people with chronic illness is seen to be a normal, non-neurotic reaction in the face of a real threat [23].
Research questions

In summary, researchers and clinicians currently have two very different ways of understanding fears about health/symptoms in people with chronic illnesses, each with advantages and disadvantages. The first is a disease- or symptom-specific perspective and the second is a psychiatric perspective. In order to understand which approach may be most relevant to the study of fears about health/symptoms in chronic illness, we examined two specific questions. How do researchers theoretically conceptualize, define, and measure these fears in their studies of individuals with a chronic disease? What is the prevalence, course, and who are the individuals most likely to be affected by these fears across chronic illnesses?

Objectives

To answer these questions, we undertook a systematic review of the literature on HA across chronic illnesses with the goal of providing a unified snapshot of research fields that have previously operated in silos. A narrative synthesis of the results was used rather than a statistical approach because of the anticipated heterogeneity in HA constructs, study design, populations, and measures. With this review of fears of illness/symptoms across diseases we are able to suggest a unifying perspective for this very broad field of research and are in a position to recommend specific terminology, a generic definition, and most suitable measures to inform future studies.

Method

Search strategy and data sources

The literature search was performed in two phases. During phase I, the following databases were used in September and October 2014: a) PsycINFO, b) PubMed, c) CINAHL, d) Web of Science and e) SCOPUS. These databases were chosen in consultation with our institution librarian to reflect specific fields (e.g. nursing and allied health with CINAHL) as well as a broad perspective (e.g. SCOPUS). To guide our search, we conceptualized HA as concerns or worry or fear that one’s illness or an aspect of or a symptom of one’s illness (i.e. hypoglycemia, falling) may worsen, progress, or recur. The keyword formula was developed based on the targeted chronic illnesses and the respective HA constructs (e.g., for searches on diabetes the HA construct of fear of hypoglycemia was used), as well as general constructs (e.g. fear of illness progression, HA, health concerns). For a complete list of keywords by illness type, please see Table 1.

In addition, to identify German-language articles not covered by the included databases, a literature search was conducted using the German database PSYNDEX in July 2015. This database includes literature published in German-speaking countries. Reference lists of relevant German-language publications were also searched. All duplicates were removed once the searches were complete. A second phase of literature search was performed to update the literature until October 2017 using the same search terms.

Once all searches were performed, all titles and abstracts were divided into four alphabetical sections and first screened by pairs of reviewers (with the exception of those written in German which were screened by one reviewer, AD). Of note two literature reviews on fear of cancer recurrence by Simard and colleagues [13] and Crist and Grunfeld [25] included articles up to 2010. Therefore only those articles pertaining to cancer published between 2011 and October 2017 were included in this review. Overall, articles were screened based on the following inclusion criteria: a) published in a peer-reviewed journal between January 1996 to October 2017 (we choose to limit ourselves to the last 20 years of literature to reduce the potential number of
articles we would have to review to a manageable amount and to correspond to DSM-IV and DSM-5 literature; b) written in English, French, or German; c) include an adult population; d) report quantitative results on HA-related constructs; and e) include individuals with a chronic illness.

Exclusion criteria consisted of: a) pediatric studies; b) studies with healthy individuals only; c) studies that did not separate data between healthy and chronically ill patients; d) no quantitative data; e) case reports; f) review articles; g) not a peer reviewed article (books, chapters, poster abstracts, conference proceedings, or dissertations); h) editorials; i) irrelevant publications (i.e., not pertaining to HA as defined above); j) language other than English, French, or German; and k) duplicate publications. Inter-rater agreement was obtained based upon consensus between paired reviewers and discrepancies were resolved through discussion. A second screening was performed, in which all retained articles were divided into four alphabetical sections and were read by pairs of reviewers (with the exception of articles written in German which were extracted by one reviewer, AD). The references in identified papers were reviewed for additional relevant articles.

Data extraction

Data extraction was performed using a standardized data spreadsheet to include the following information when available: a) details of the publication; b) study location; c) study design; d) sample and chronic illness studied; e) definition of the HA construct; f) HA measure; g) prevalence of HA; h) sociodemographic correlates of HA; i) physical and medical correlates of HA; j) psycho-social correlates of HA; and k) interventions. Inter-reviewer agreement was achieved by comparing data extraction between paired reviewers.

Quality ratings

To assess the quality of intervention and non-intervention articles appropriately, two assessment tools were used. We used a checklist for assessing the quality of qualitative and
quantitative studies developed by the Alberta Heritage Foundations for Medical Research [26] for all non-intervention studies. This 14-item scale can be used to rate a variety of quantitative study designs. Studies involving interventions were rated using a checklist for measuring study quality [27]. The checklist contains 27 items that assess validity, bias, and confounders.

Data analysis

Our aim was to draw comparisons among definitions and measures of HA across chronic illness to establish how this construct is most often defined and measured (i.e., what appear to be its core features across populations). In order to do so, we adopted a multidimensional perspective of this phenomenon and examined if existing definitions and measures tapped into some or all of the following four dimensions: a) affective, or the tendency to be excessively afraid about illness and health; b) cognitive, or the tendency to believe one is ill despite disbelief by others; c) behavioral, or the tendency to seek reassurance for perceived health concerns; and d) perceptual, or the tendency to focus on bodily sensations [11]. When possible, we calculated the frequency of different types of results across studies to describe patterns in the data. For example, we report on different ways of examining prevalence such as using a validated cut-off, percentile score, or percentage of respondents who endorse ‘high’ scores. For the course and correlates, we tabulated statistically significant and non-significant findings. This is a recommended first step in a preliminary synthesis of results and was further subjected to comparison across studies (e.g., not all studies necessarily get the same weight in the final interpretation of the data) [28].

Results

Study selection and characteristics

Please see Fig 1 for the PRISMA flow diagram of the article selection process. A total of 3229 publications were found at Phase I and an additional 1946 at Phase II. An additional 48 relevant articles were identified by reviewing the references of identified papers. A total of 927 articles were retained after title and abstract screening and were assessed for eligibility, resulting in 401 articles that were retained for data extraction.

Table 2 presents the location, sample size, study design, and type of chronic illness of the 401 articles. The majority of studies were conducted in Europe or North America, had less than 200 participants, used a cross-sectional design, and were conducted with cancer patients. Finally, a total of 366 non-intervention articles were rated using the manual for quality scoring of quantitative studies. Study scores ranged from 0.29–1, with a mean score of 0.88. The majority of the studies were found to have a high quality of data reporting. Lowest scores were attributable to insufficient information on methodology, patient recruitment/characteristics, and statistical analysis.

The remainder intervention articles (n = 45) were rated using a modified Downs and Black checklist [27]. Study scores ranged from 11 to 23 (28 being the highest score) with a mean score of 17.37. Studies typically had a moderate quality rating, and few had high ratings. Lowest scores were attributed to studies with single-group designs. It is important to note that several studies were not specifically designed to target HA, which limited these quality ratings as intervention studies. A detailed description of the interventions and their impact on HA can be found in Petricone-Westwood et al. [17]. In the present review, we are reporting on the definitions, models, measures, and correlates of HA, if applicable, that were reported in the intervention studies.
Synthesized findings

Part I: Conceptual issues

Definitions. Few articles defined the HA construct they employed. Of the 401 articles that were reviewed, only 86 (21.4%) cited a definition of the HA construct under investigation (cancer n = 45; Parkinson’s disease n = 14; cardiac disease n = 12; diabetes n = 5; other illnesses n = 10). For studies with cancer patients, the predominant HA construct was fear of cancer recurrence (FCR), defined as “the fear or worry that the cancer will return or progress in the same organ or in another part of the body” [29]. For studies with cardiac patients, authors focused on the construct of cardiac anxiety, defined as fear of cardiac-related stimuli and sensations based upon their perceived negative consequences [16]. For diabetes, studies focused...
on fear of hypoglycemia (FoH), which was defined as specific worries associated with hypoglycemia (i.e., low blood sugar levels and its accompanying symptoms) and included different behaviors to avoid hypoglycemia [30]. Last, articles on Parkinson’s disease focused on fear of falling (FoF), which is defined as lack of confidence or low self-efficacy to be able to perform activities without falling and a resulting avoidance of these across activities. See Table 3 for a complete description of definitions.

Overall, across all diseases, definitions were disease- or symptom-specific (n = 78; 91%) with only a minority employing a psychiatric perspective on HA (n = 8; 9%). The articles that used a psychiatric perspective were usually published before the change to DSM-5 and conceptualized the fear as irrational or exaggerated, often based on the misinterpretation of benign physical symptoms [4, 6, 7, 9, 100]. Across disease- or symptom-specific definitions, the emphasis is on the emotional (e.g., fear) and/or a cognitive (e.g., worry) aspect of HA (in 60 of the articles with a definition, each). This is congruent with both of the new DSM-5 disorders, which reflect the presence of anxiety or thoughts/concerns about health or symptoms.

Table 2. Description of studies by location, sample size, study design, and chronic illness (k = 401).

Location	Descriptor	# Studies
Europe	Germany	45
	UK	33
	Netherlands	27
	Others	55
	North America	145
	Asia	34
	China	9
	Japan	7
	Thailand	4
	South Korea	3
	Others	11
	Oceania	24
	Australia	19
	New Zealand	5
	Middle East	12
	Israel	8
	Iran	4
	Central/South America	5
	Brazil	3
	Puerto Rico	1
	Africa	3
	Nigeria	3
	Multiple	12
	Others	2
	Unknown	4
	Others	55
	Unknown	4
	Oceania	24

Sample Size	# Studies
<50	58
50–199	183
200–499	101
500–1000	28
1001+	31

Study Design	# Studies
Cross-sectional	238
Longitudinal or prospective	70
Randomized controlled trials	37
Instrument validation	32
Quasi-experimental	14
Other designs	10

Chronic Illness	# Studies
Cancer	169
Parkinson’s disease	67
Type 1 & 2 diabetes	65
Heart-related disease	38
HIV-AIDS & Hepatitis B & C	15
Neurological diseases	15
Respiratory diseases	10
Inflammatory bowel disease	4
Arthritis	1
Neuromuscular & Gait disorder	12
Multiple conditions	5

https://doi.org/10.1371/journal.pone.0234124.t002
Disease	Definitions	Dimensions
Cancer	1. Fear or anxiety of cancer recurrence in primary location or its metastasis in other organs [31]	E,C
	2. The fear that cancer could return or progress in the same place or in another part of the body. The degree of concern reported by subjects about the chances of cancer returning at a future time [32]	E,C
	3. The fear that cancer may return or progress in the same organ or another part of the body [33]	E
	4. The fear or worry that the cancer will return or spread in the same organ or to another part of the body [34]	E,C
	5. The fear that the illness will progress with all its biopsychosocial consequences or that it will recur [35]	E
	6. The fear associated with the possibility that the cancer will return or progress in the same place or in another part of the body [36]	E
	7. "Cancer worry" described as fear of future tests, new cancer, and recurrence. "Health worry" described as concerns about death and health [37]	E,C
	8. Health anxiety characterized by excessive fear or worry about ill health, resulting in incorrect belief that one has or is in danger of developing serious disease or medical condition [4]	E,C
	9. Health anxiety involves ruminating about having or developing an illness or having an existing illness worsen, preoccupation with bodily sensations, and behaviour such as seeking reassurance or medical attention [5]	C,P,B
	10. The fear or worry that the cancer will return or progress in the same organ or in another part of the body [38]	E,C
	11. Fear of recurrence is often viewed as a multidimensional phenomenon, including emotional components of anxiety and fear, and a cognitive dimension, including worry, preoccupation and intrusive thought [39]	E,C
	12. Fears of health, worries of future recurrence, concerns that current physical symptoms may signal a recurrence, concerns about developing another type of cancer, or worry about future diagnostic tests [40]	E,C,P
	13. A common form of subjective distress, often involving fears related to the cancer itself, to recurrence and metastasis, to follow-up care and periodic examinations, to relying on strangers for activities of daily living as well as to worry about the future life, disability or death [41]	E,C
	14. An adequate and realistic response to an extraordinary life event, such as the threatening diagnosis of cancer [42]	Could not classify
	15. Worry shares with FOR that both are cognitive behaviors aimed at reducing anxious arousal. FOR is a contextually specific and important worry [43]	C
	16. The degree of concern reported by subjects about the chances of cancer returning at a future time [44]	C
	17. The fear that cancer could recur or progress at the same site or in another part of the body after treatment, FCR manifests along a continuum that ranges from a normal reaction to cancer to a pathologic response associated with dysfunctional behaviours, depressive syndromes, and psychosocial distress [45]	E,B
	18. Health anxiety refers to excessive worry about and preoccupation with illness [6]	C
	19. Fear of progression or, more specifically, fear on the part of patients that their disease will progress and lead to either death or disability [46]	E
	20. FCR is defined as the fear or worry that cancer will return, progress or metastasize. FCR is often conceptualized as a multidimensional phenomenon, including emotional components of anxiety and fear, and a cognitive dimension, including worry, preoccupation and intrusive thoughts [47]	E,C
	21. Fear of the disease recurring or progressing in the same organ or a different area of the body [48]	E
	22. The fear or worry that cancer will return in the same organ or in another part of the body [49]	E,C
	23. The fear that cancer could return or progress in the same place or in another part of the body [50]	E
	24. Fear that cancer could return or progress in the same place or in another part of the body [51]	E
	25. The fear that cancer could return or progress in the same place or in another part of the body [52]	E
	26. Fear that cancer could progress or return in another part of the body [53]	E
	27. The fear or worry that their cancer will return or progress, in either the same organ or in another part of the body [54]	E,C
	28. Worry and concern about recurrence of cancer [55]	C
	29. The fear or worry that the disease will return or progress in the same organ or in another part of the body [56]	E,C
	30. Fear of future diagnostic tests, fear of second cancer, fear of metastasis not defined [57]	E
	31. Worry is repeated thoughts about a particular topic, even though continued thinking may not be helpful, and excessive worry may lead to worse health. In the context of a cancer diagnosis, worry might pertain to cancer recurrence or, in the case of recurrent disease, cancer progression [58]	C
	32. The fear of the disease recurring or progressing in the same organ or a different area of the body [59]	E

(Continued)
Health anxiety in chronic illnesses

Disease	Definitions	Dimensions
Cardiac diseases		
33. Fear of recurrence is often viewed as a multidimensional phenomenon, including emotional components of anxiety and fear, and a cognitive dimension, including worry, preoccupation and intrusive thoughts [60]	E,C	
34. The fear or worry that cancer will come back in the same organ or spread to another part of the body [61]	E,C	
35. Worry over cancer, and in particular, a fear that the cancer will return or progress [62]	E,C	
36. Fear of recurrence encompasses a variety of illness-related fears and is defined as the fear that cancer will recur, progress, or metastasize in the same or another part of the body [63]	E	
37. The fear or worry that cancer will return or progress in the same organ or in another part of the body [64]	E,C	
38. The worry that the cancer will return or progress in the same organ or in another part of the body [65]	C	
39. The fear associated with the possibility the cancer will return or progress in the same organ or another part of the body [66]	E	
40. The worry that cancer will return or progress, and it is one of the most common experiences following cancer diagnosis and treatment, affecting over half of all cancer survivors. Although fear of recurrence can be viewed as a normative response to the possibility of recurrence, it is possible for such fear to become excessive and problematic [67]	E,C	
41. The fear that cancer could return or progress in the same place or in another part of the body [68]	E	
42. Previous research has differentiated two levels of fear of disease progression: the mobilizing and the dysfunctional levels. The mobilizing level is defined as a reasonable response to a real threat over the period of disease diagnostics and treatment and suggests an increase in treatment adherence, resource activation, and use of more effective coping strategies. The dysfunctional subtype of fear of disease progression is, in turn, associated with psychological distress, a decrease in quality of life, and an intense cognitive-affective reaction to disease [89]	E,C,B	
43. The fear or worry that the disease will return or progress in the same organ or in another part of the body [69]	E,C	
44. Fear, worry, or concern about cancer returning or progressing [70]	E,C	
45. The fear or worry that cancer will return or progress in the same organ or a different part of the body [70]	E,C	
COPD		
58. Disease-specific fears defined by anxiety in face of severe physical symptoms and their consequences: fear of dyspnea, fear of physical activity, fear of progression, fear of social exclusion, and sleep-related worries due to COPD [103]	E	
59. COPD-related anxiety: realistic fears related to symptoms or the consequences of COPD symptoms [104]	E	
Diabetes		
60. Two key components or dimensions of fear of hypoglycaemia (FoH) have been identified: specific worries associated with insulin reaction and the different behaviours to avoid hypoglycaemia [15]	C,B	

(Continued)
Disease	Definitions	Dimensions
	61. Health anxiety is experienced when individuals are worried about their health and results in bodily sensations being misinterpreted as more serious and threatening than they actually are [7]	C,P
	62. Fear of hypoglycemia may promote anticipatory compensatory behaviors aimed at decreasing the likelihood of hypoglycemia, including injecting lower than the prescribed insulin dose, increasing caloric intake, and avoiding physical activity [85]	B
	63. Psychological insulin resistance (PIR) is various beliefs and negative insulin-related attitudes such as fear of injections, self-testing, and hypoglycemia, anticipated stigmatization due to insulin injections, and expected hardship from insulin therapy, among other factors [86]	E,C
	64. Health anxiety involves concern about one’s health or about having or acquiring a serious disease [8]	C
Mixed chronic disease sample	65. The fear that the illness will progress with all its biopsychosocial consequences or that it will recur [87]	E
	66. The fear that the disease will progress with all of its consequences [23]	E
	67. Fear of progression: a reactive, nonneurotic fear patients are fully aware of. It is based on the experience of a chronic, life-threatening or incapacitating illness [88]	E
	68. Fear of progression is a reactive, non-neurotic fear patients are fully aware of. It is based on the experience of a chronic, life-threatening or incapacitating illness [24]	E
Multiple sclerosis	69. Excessive or inappropriate fear that one has a serious illness based on the misinterpretation of bodily sensations or changes [100]	E,P
	70. Fear of falling which is defined as a lasting concern about falling that leads to an individual avoiding activities that he/she remains capable of performing [101]	C,B
	71. Fear of falling refers to the apprehension felt by an individual with regard to falling during particular activities [102]	C
Parkinson’s Disease	72. FoF is a lack of self-confidence that usual activities can be performed without falling [71]	C
	73. A constant concern about falling, a loss of balance confidence and an avoidance of activities [72]	C,B
	74. Fear of falling defined as a lack of confidence (low self-efficacy) to be able to perform activities without falling [73]	C
	75. Fear of falling construct described as ongoing concern about falling, a loss of balance confidence, a low fall-related efficacy, or activity avoidance [74]	C,B
	76. Fear of falling construct described as ongoing concern about falling, a loss of balance confidence, a low fall-related efficacy, or activity avoidance [75]	C,B
	77. Fear of falling is a disabling phenomenon common among patients with postural instability and gait disturbances; lack of balance confidence, fear of falling, self-imported restrictions on activities of daily living, especially in relatively challenging situations [76]	E,C,B
	78. FoF can be conceptualised in many ways: diminished perceived self-efficacy in performing a range of activities, avoidance of activity, loss of confidence and as a specific expression of anxiety [77]	E,C,B
	79. FOF is an umbrella term that covers fall-related self-efficacy, concerns about falling, balance confidence, and fall-related activity avoidance [78]	C,B
	80. A lasting concern about falling that leads to an individual avoiding activities that he/she remains capable of performing [79]	C,B
	81. A lasting concern about falling that leads to an individual avoiding activities that he/she remains capable of performing [80]	C,B
	82. Fear of falling can be described as low confidence (low self-efficacy) to carry out activities without falling [81]	C
	83. Reduced self-efficacy at avoiding falls during essential, non-hazardous activities of daily living [82]	C
	84. Low perceived self-efficacy at avoiding falls during essential, nonhazardous activities of daily living [83]	C
	85. Worries about illness, health and injury. This includes worries about ageing linked to health decline. This also includes worries about the impact of poor health on QoL [84]	C
Stroke	86. Fear of recurrence, fear of having another bleed, a tendency to catastrophize and misinterpret normal bodily sensations as indicating the onset of another SAH [105]	E,C,P

Dimensions total (k)

- **Emotional (E)**: 60
- **Cognitive (C)**: 60
- **Perceptual (P)**: 17
However, disease- or symptom-specific anxiety was conceptualized as a realistic [42, 106, 107] and non-neurotic [24, 88], fear in the presence of severe physical symptoms [103], going against the idea that the preoccupation is excessive or disproportionate (criterion B of illness anxiety disorder and somatic symptom disorder). Some authors, however, argue that disease-specific HA manifests along a continuum that ranges from a normal reaction to illness to a pathologic response associated with dysfunctional behaviours, depressive syndromes, and psychosocial distress [36, 37]. This would imply that the fear can become distressing for some individuals with chronic disease (Criterion A of somatic symptom disorder) or can be accompanied by excessive behaviors (Criterion B of illness anxiety disorder and somatic symptom disorder). Indeed, health-related behaviors such as avoidance or body checking were sometimes included in the definition of the disease- or symptom-specific HA (n = 16 articles). Also, indicators such as misinterpreting one’s physical symptoms or catastrophizing about them were included in some definitions (n = 17), which would again be congruent with the new DSM-5 disorders where the individual is easily alarmed about personal health status (Criterion C illness anxiety disorder) or has persistent thoughts about the seriousness of their symptoms (Criterion B somatic symptom disorder).

Thus it seems that the move away from an irrational fear of having a disease in DSM-IV to a preoccupation with having a serious illness (Criterion A of illness anxiety disorder) in DSM-5 results is a much better fit with how HA in conceptualized in people with chronic diseases. All definitions acknowledge the importance of fear/worry/concerns/anxiety about the disease itself or some of its symptoms such as falling in Parkinson’s disease or FoH in diabetes. There are two findings from our results that limit the applicability of the DSM-5 disorders to people with a chronic illness vs. the disease- or symptom-specific approach to HA. The first is a lack of agreement about the “normal” nature of these fears vs. the possibility that these fears may, in some cases, become “pathological”. Indeed, excessive or high anxiety about health and symptoms is a key feature of these psychiatric diagnoses but few of the reviewed articles acknowledged this possibility. Second, while some authors conceptualized HA in chronic illness as a multidimensional phenomenon with affective, cognitive, behavioral, and perceptual dimensions, most definitions did not comprise a perceptual or behavioral component. Furthermore, some researchers wonder if behaviors such as body checking in cancer patients or injecting lower than the prescribed insulin dose in diabetes patients should be part of the definition of HA in this context. They suggest that these behaviors are best conceptualized as maintaining features or consequences [108], the same way safety behaviors, such as carrying anti-anxiety medication with oneself at all times, are maintaining features of panic disorder, not diagnostic features. Thus in the absence of excessive health-related behaviors (Criterion D illness anxiety disorder) in most definitions, there appears to be only a partial applicability of illness anxiety disorder to HA in people with chronic illness. For somatic symptom disorder, a patient can have a mild, moderate, or severe presentation, depending on how many of the following are present: excessive thoughts, feelings, or behaviors related to the symptom. Thus, based on the definitions of FoH or FoF, one could in theory (if there was agreement about what constitutes excessiveness) apply the concept of mild or moderate somatic symptom...
disorder to patients who have excessive concerns and avoidance of activities related to their symptoms.

Thus it appears that researchers favor disease- or symptom-specific definitions over psychiatric definitions of HA. However, there appears to be some applicability of DSM-5 disorders to the experience of HA in patients with a chronic illness.

Theoretical models. Next, we wished to examine which theories were commonly used across various chronic diseases to explain the phenomenon of HA in these populations. There were 66 articles that described, cited, or referenced a theory or model to guide their research question(s) and/or the interpretation of their results, representing only 16% of reviewed studies. The three models that were commonly used were Bandura’s self-efficacy theory [109] (n = 8: Parkinson’s disease n = 6; cancer n = 2), Cognitive Behavioral Therapy (CBT) models of anxiety [110] or HA [111] (n = 10: cardiac n = 4; cancer n = 4; diabetes n = 1, neurological n = 1), and Leventhal’s Common Sense Model [112] (n = 7: cancer n = 4; cardiac n = 3).

According to Bandura, individuals will engage in behaviors they believe they can accomplish and avoid those they believe they cannot [109]. Bandura’s theory was used as a relevant framework to explain how an individual’s belief that they can perform certain tasks (e.g., manage their diabetes or perform certain activities without falling) can help them manage their chronic health condition and engage in health behaviors [113, 114] and adopt better coping strategies when faced with uncontrollable and threatening situations [42].

According to CBT models of HA [115], four underlying dysfunctional beliefs can lead to HA: one’s perception of the possibility of experiencing an illness, one’s perception of the consequences of experiencing an illness, one’s perception of the inability to cope with an illness, and one’s perception of the lack of external resources (e.g., availability of medical treatment). These four dysfunctional beliefs will, in turn, negatively influence the interpretation of bodily variations through four cognitive and behavioral processes: increase selective focus on health-related beliefs, increase in somatic monitoring and responses, usage of safety-seeking strategies (i.e., maladaptive coping strategies such as reassurance-seeking or excessive body checking), and increase in affective responses [116]. The CBT model of HA has been especially relevant to studies of cardiac patients, in its adaption to a disease-specific model of HA, Eifert’s cardiac anxiety model [16], which will be described in Part II.

Finally, Leventhal’s Common Sense Model postulates that patients represent their illness according to the following five dimensions: the causes of the illness; the disease label or identity and symptoms they associate with the condition; the curability or controllability of the illness; the timeline and cyclical nature of the illness; and the consequences of the illness on the patient’s life. These illness beliefs will influence how patients cope with their illness and their affective reactions. This model also recognizes the maladaptive nature of anxious preoccupation, personal checking behaviors, and over-seeking reassurance from doctors and/or family members [117]. Like the CBT model of HA with cardiac patients, Leventhal’s Common Sense Model has been adapted to cancer patients, specifically Lee-Jones’s model of FCR in cancer patients [117], which will be reviewed in Part II.

Thus it appears that researchers favor disease-specific models over CBT models of HA developed with psychiatric populations. However, all the disease-specific models emphasize the importance of decreasing behaviors such as avoidance, reassurance-seeking, or excessive body checking, and increasing the beliefs about one’s ability to cope with the disease or its symptoms, which is congruent with the psychiatric perspective of HA.

Measurement. A review of the instruments used to assess HA and illness-related fears revealed several issues. First, in a significant proportion of articles (54 out of the 401; 13.5%), authors did not use a validated measure, instead creating their own items or scale or using a visual analog scale. Most measures lack a validated cut-off score to indicate “excessive” or
clinical HA. As a result, researchers frequently resorted to a distribution-based approach, using median or standard deviation, to establish a pragmatic cut-off. In some cases, they classified patients as having HA or not based on their endorsement of the highest possible answer choice (i.e. those who picked 4 or 5 as their answer on a 1–5 Likert scale). Third, we found a high number of measures used (n = 41), with only six of these used with more than one disease population: the Falls Efficacy Scale-International [118], the Health Anxiety Questionnaire [119], the Activities-specific Balance Confidence Scale [120], the Fear of Recurrence Questionnaire [121], the Fear of Progression Questionnaire [23], and the Short Health Anxiety Inventory [122]. This makes comparison of HA across diseases challenging. Last, there was limited evidence of gold standard measures in most chronic diseases: the vast majority of scales (56.1%; 23 out of 41) were used in 1–4 studies and only 17.1% (7 out of 41) were used in more than 10 studies, making comparisons within samples of the same chronic disease difficult.

Overall, this review found that researchers tend to avoid the use of a psychiatric perspective in their choice of HA definitions and theoretical models. Similarly, only 4.7% of studies (n = 19) used measures of HA originally designed for healthy or psychiatric populations such as the Short Health Anxiety Inventory [122] or the Health Anxiety Questionnaire [119]. The vast majority used disease- or symptom-specific measures (reviewed below). The relation between both types of instruments was only measured in eight studies [7, 50, 53, 123, 124]. Of these, six reported correlations among the measures, ranging from $r = .35$ to $r = .77$ [7, 50, 53, 123, 125, 126]. Another study of HA in older cancer survivors using the Assessment of Survivors Concerns also found a moderate correlation between the two subscales of general health worry and cancer worry ($r = 0.47$) [127]. Furthermore, exploratory and confirmatory factor analyses revealed that these two subscales were distinct and showed different patterns of correlations with indicators of anxiety and depression. Thus, while the evidence is limited, it points towards moderate measurement overlap between general vs. disease-specific HA.

Table 4 presents the seven measures that were used in 10 studies or more, including some of their reported psychometric properties. All demonstrated adequate psychometric properties but only four have an established-cut-off score, which is needed to reliably distinguish between individuals with a chronic illness that have an elevated or “clinical” level of HA as compared to those in the more normative range. We examined their content using the affective, cognitive, behavioral, and perceptual dimensions of HA proposed by Longley and colleagues [11]. All seven scales had items that fell under the cognitive domain, asking about thoughts, worry, or concern about the illness or one of its symptoms worsening, progressing, or returning. Four had an affective component, asking about fears and other emotions that accompany the thoughts, concerns, or worry. Only two had items about perception of symptoms leading to worry about the illness and four addressed the behavioral domain, including body checking, reassurance seeking, and avoidance behaviors. Thus, few measures are designed to reflect the multidimensional nature of HA, few can reliably identify those that present with ‘high’ or ‘excessive’ HA, and few capture the avoidance or reassurance seeking behaviors outlined in the DSM-5. Also, all of these measures, with the exception of the Fear of Progression Questionnaire, have been used in only one or two chronic disease populations, limiting their generalizability.

Summary. There is modest overlap between the disease- or symptom-specific and the psychiatric perspectives of HA (see Fig 2). Overall, studies used disease- or symptom-specific definitions, models, and measures vs. psychiatric options when conceptualizing HA.
Name and authors	# of studies	Health anxiety domains	# of items	Subscales	Original validation sample(s)	Psychometric properties
Hypoglycemia Fear Survey [128]	37	Cognitive Behavioral	33	Behaviour Worry	777 adults with type 1 diabetes	Overall alpha = 0.94
					Behaviour subscale alpha = 0.85	
					Worry subscale alpha = 0.94	
					Overall test-retest reliability = 0.74	
					Test-retest reliability for the subscales = 0.63–0.81	
					Evidence of construct, discriminant, and convergent validity	
Falls Efficacy Scale-International [118]	21	Cognitive	16	N/A	704 people aged between 60–95 years old	Overall alpha = 0.96
					Test-retest reliability ICC = 0.96	
					Evidence of construct and discriminant validity	
					Cut-off score: yes	
Activities-specific Balance Confidence Scale [120]	24	Cognitive	16	N/A	60 community seniors (aged 65–95)	Overall alpha = 0.96
					Test-retest reliability = 0.92	
					Evidence of convergent, divergent, and discriminant validity	
					Cut-off score: yes	
Cardiac Anxiety Questionnaire [123]	30	Cognitive Emotional Perceptual Behavioral	18	Fear Avoidance Attention	178 post-angiography patients in a cardiology unit; 10 outpatients referred to a behavioral cardiology liaison program	Overall alpha = 0.83
					Evidence of convergent validity	
Concerns About Recurrence Scale [29]	15	Cognitive Emotional	30	Overall fear index Health Worries Womanhood Worries Role Worries Death Worries	169 women with breast cancer	Overall fear index alpha = 0.87
					For the Worries scale alpha = 0.89–0.94	
					Evidence of convergent validity	
Fear of Progression Questionnaire [23]	29	Cognitive Emotional Behavioral	43	Affective reactions Partnership/ family Work Loss of autonomy Coping	411 patients (188 cancer patients, 97 diabetes patients, 124 patients with rheumatic disease)	Overall alpha = 0.95
					Subscales alpha = 0.70–0.92	
					Overall test-retest reliability = 0.94	
					Test-retest reliability for the subscales = 0.77–0.91	
					Evidence of discriminant and convergent validity	
					Cut-off score (for the short-form version): yes [41, 130]	
Fear of Cancer Recurrence Inventory [131]	16	Cognitive Emotional Perceptual Behavioral	42	Triggers Severity Psychological distress Coping strategies Functioning impairments Insight Reassurance	1704 breast, prostate, lung and colon cancer patients	Overall alpha = 0.95
					Subscales alpha = 0.75–0.91	
					Overall test-retest reliability = 0.89	
					Test-retest reliability for the subscales = 0.58–0.83	
					Evidence of construct, discriminant, convergent and divergent validity	
					Cut-off score (for the short-form version): yes (68)	

https://doi.org/10.1371/journal.pone.0234124.t004
Part II: Prevalence, course, and correlates of health anxiety in chronic diseases

Overall prevalence. Table 5 reports the prevalence of HA across all the reviewed studies. Main results will be presented by chronic disease category below.

Cancer. The most frequently cited HA constructs are fear of cancer recurrence (FCR) and fear of disease progression (FoP) (see Table 3 for examples of definitions of these constructs).
Disease (k)	Mode of determination (k)	Range of prevalence	Author	Reported prevalence	Determination of prevalence scores
Cancer (58)	Cut-off (20)	0–86	Aghdam et al., 2014 [31]	49.6	Scale literature on FoP-Q-SF for “high FoP”
			Anderson et al., 2014 [134]	8	Scale literature cut-off for MAX-PC for “clinical fear of recurrence”
			Butow et al., 2014 [32]	44	Scale literature on FCRI for “clinical fear of cancer recurrence”
			Custers et al., 2013 [135]	51	Scale literature on CWS for “high fear of recurrence”
			Custers et al., 2014 [33]		ROC curve determining cut-off for high fear of recurrence for the CWS using 2-item CAS
			Dinkel et al., 2014 [35]	20	80th percentile on FoP-Q determined by authors
			Ghazali et al., 2013 [36]	35	Established algorithm on 7-item scale identifying “significant fear of recurrence”
			Halbach et al., 2016 [140]	16.9	1 SD above the mean on the FoP-Q-SF
			Hefner et al., 2016 [150]	16.2	1 SD above the mean on the FoP-Q-SF
			Hinz et al., 2015 [137]	16.7	Scale literature cut-off for FoP-Q-12
			Jones et al., 2014 [5]	23.4	Scale literature on SHAI for “clinically significant health anxiety”
			Lebel et al., 2013 [38]	58.3	Established in FCRI literature for “clinically elevated fear of cancer recurrence”
			Liu et al., 2011 [61]	24.8	Scale literature cut-off for CARS
			Mehnert et al., 2013 [41]	18.1	1 SD above the mean on the FoP-Q-SF
			Petzel et al., 2012 [45]	28–37	Established in FCRI literature for “fear of cancer recurrence”
			Rylands et al., 2016 [156]	23	Highest quartile on seven-item scale
			Sarkar et al., 2014 [47]	36	ROC curve analyses for determination of cut-off for “high fear of recurrence” on the FoP-Q-SF
			Savard & Ivers, 2013 [48]	44.0–56.1	Scale literature for FCRI “clinical levels of fear of cancer recurrence”
			Simard & Savard, 2015 [68]	42	Clinical level of fear of cancer recurrence identified by interview SIFCR
			Thewes et al., 2013 [52]	70	Scale literature for FCRI “clinical levels of fear of cancer recurrence”
Item severity (23)		0–69.2	Cho et al., 2017 [138]	36.1	Items means at “somewhat” or “very much” on ASC subscale fear of recurrence
				13	High
Disease (k)	Mode of determination (k)	Range of prevalence	Author	Reported prevalence	Determination of prevalence scores
------------	--------------------------	---------------------	--------	--------------------	-----------------------------------
Disease (k)	Mode of determination (k)	Range of prevalence	Author	Reported prevalence	Determination of prevalence scores
------------	--------------------------	---------------------	--------	---------------------	-----------------------------------
Matthew et al., 2017 [152]	Responses to author designed 5-item scale				
49.1 High-stable					
Moye et al., 2014 [43]	Indicating "sometimes" to "always" for items:				
44	fear of cancer coming back				
32.5	fear of another cancer				
39	fear of future diagnostic tests				
Myers et al., 2013 [145]	"Moderate-to-high" recurrence fears endorsed on CARS				
47					
Ness et al., 2013 [141]	Indicating severity on item on fear of recurrence:				
63	Any level				
17	Extreme				
O’Malley et al., 2017 [153]	Responses on single item on fear of cancer recurrence:				
12.3	Almost never				
17.9	Not very much				
45.9	Sometimes				
23.9	Very often				
Pedersen et al., 2012 [142]	Indicating severity on item on worry about risk of recurrence:				
47.2	A little				
19.3	Quite a bit				
8.5	Very much				
Rogers et al., 2016 [66]	New single item and 7-item scale assessing fear of recurrence				
12	Single item: No fear				
49	Single item: A little fear				
29	Single item: Sometimes having fearful thoughts				
5	Single item: A lot of fears				
5	Single item: Fearful all the time				
8–23	7-item measure: "a lot" or "all the time"				
Rogers et al., 2017 [155]	Responses on single item measure on fear of recurrence:				
9.3	No fear				
42.0	A little fear				
34.6	Sometimes having fearful thoughts				
9.3	A lot of fear				
4.9	Fearful all the time				
10–19	Responses to seven item scale "a lot" or "all the time"				
Smith et al., 2016 [157]	Reporting "very much" or "quite a bit" of fear of recurrence on single item				
30					
Tewari et al., 2014 [143]	Severity of score on frequency of worrying about cancer coming back:				
28.5	Rarely				
Table 5. (Continued)

Disease (k)	Mode of determination (k)	Range of prevalence	Author	Reported prevalence	Determination of prevalence scores
					19.5 Sometimes
					5.2 Often
					1.9 Always
			Waters et al., 2013 [144]	Indicating on item "worried about progression":	
					69.8 Not at all
					16.0 A little
					10.4 Somewhat
					3.3 Quite a bit
					0.4 Very much
	No cut-off (11)	18–86	Befort et al., 2011 [158]	52 Yes/no to "any fear of recurrence" from checklist of symptoms	
			Cheng et al., 2014 [162]	18 Reported unmet need of fears of cancer spreading	
			Kanatas et al., 2013 [159]	33 Percentage of clinic appointments when fear of cancer coming back was mentioned	
			Poduszny et al., 2016 [154]	86 “Yes” on at least one out of three yes/no items	
			Schlairct, 2011 [160]	73.2 Participants identifying "fear of recurrence"	
			Scott et al., 2013 [161]	25–52 Self-report for “any fear of cancer recurrence”	
			Shay et al., 2016 [67]	85.2/79.7 Yes/no item on fear of recurrence in younger/older cancer survivors	
			Taylor et al., 2012 [49]	67 Minimal possible score of “at least some fear of recurrence”	
			Van Liew et al., 2012 [136]	60.1 “Clinically significant levels of fear of recurrence” using FCR with cut-off not reported	
			Van Londen et al., 2014 [163]	67 Yes/no fear of cancer recurrence identified as concern	
			Wells et al., 2015 [164]	48 Report concerns of fear of cancer recurrence	
	Not specified (3)	51–80	Moretto et al., 2014 [165]	80 Unspecified fear of recurrence	
			Naidoo et al., 2013 [166]	69 Unclear fear of recurrence	
			Pandya et al., 2011 [167]	51 Unspecified feared recurrence	
Cardiac diseases (8)		11–48.6			
Cut-off (2)		31–48.6	Bunz et al., 2016 [98]	48.6 90th percentile of CAQ score in the general population	
			Hoyer et al., 2008 [90]	31 2 SD above the mean of the non-cardiac comparison group for “clinically elevated cardiac anxiety” on CAQ	
Item severity (5)		11–19	Koivula et al., 2010 [171]	“High” fear on CHDPF items for fear of:	
				19 Uncertainty about illness	
				15 Deterioration of coronary heart disease	
				12 Myocardial infarction	
				Pauli et al., 1999 [173]	Fear of dying before AICD implantation:
				59 None	
				23 Some	
				18 Definite	

(Continued)
Table 5. (Continued)

Disease (k)	Mode of determination (k)	Range of prevalence	Author	Reported prevalence	Determination of prevalence scores
			Rosman et al., 2015 [99]	17.6	"Often" or "always" on CAQ items:
			Schuster et al., 1998 [172]	14.6	I worry that I may have a heart attack.
COPD (2)			van Beek et al., 2012 [96]	62	None
				18	Slight
				10	Moderate
				3	Quite a bit
				8	Extreme
			Pollack et al., 2005 [174]	16.6	Clinically relevant heart-focused anxiety on CAQ
				No cut-off (1)	
				16.6	
			Heffner et al., 1996 [169]	94.3	Identified health concern among many concerns
				No cut-off (1)	
				94.3	
Diabetes (13)		0–81	Anarte Ortiz et al., 2011 [30]	ROC curve analyses on FH-15 for "fear of hypoglycemia" using single item as criterion	
	Cut-off (9)	0–81		45.4	FH-15
			Belendez et al., 2009 [15]	33	Unclear cut-off on HFS for "being worried about developing hypoglycaemia"
			Claude et al., 2014 [7]	34	Established in literature of SHAI for "elevated health anxiety"
			Cox et al., 1998 [195]	35	Established in literature of SHAI for "elevated health anxiety"
				34	Established in literature of SHAI for "elevated health anxiety"
				17	Established in literature of SHAI for "elevated health anxiety"
				14	Established in literature of SHAI for "elevated health anxiety"
				No cut-off (1)	
				94.3	
			Hajos et al., 2014 [196]	81	Four criteria to establish cut-off for "clinical fear of hypoglycemia" on HFS worry scale
				5	Modal distribution criterion
				31/21	Concurrent validity criterion

(Continued)
Disease (k)	Mode of determination (k)	Range of prevalence	Author	Reported prevalence	Determination of prevalence scores
Epilepsy (1)	Cut-off (0)				
	Item severity (0)				
	No cut-off (1)				
	Unspecified (0)				
Health anxiety in chronic illnesses					
HIV/AIDS (2)	Cut-off (0)				
	Item severity (1)				
	No cut-off (1)				
	Unspecified (0)				
Multiple sclerosis/neuromuscular disorders (4)	Cut-off (3)				
	Item severity (1)				
	No cut-off (1)				
	Unspecified (0)				

(Continued)
Disease (k)	Mode of determination (k)	Range of prevalence	Author	Reported prevalence	Determination of prevalence scores
Parkinson’s disease (22)		7–89			
	Cut-off (7)	25–48	Allen et al., 2012 [176]	45.7	Scale literature of FES-I for “high fear of falling”
			Bryant et al., 2014 [71]	44.3	Established in literature for ABC “high fear of falling”
			Chomiak et al., 2015 [177]		
			Franzen et al., 2016 [78]		
			Jonasson et al., 2015 [79]		
			Landers et al., 2014 [178]	46.4	Cut-off ≥20 on FABQ for “fear of falling avoidance behavior”
			O’Connell & Guidon, 2016 [82]	45.2	Scale literature of ABC for “high fear of falling”
	Item severity (1)	14	Grimbergen et al., 2013 [180]		Single item on fear of falling
	No cut-off (10)	35–89	Combs et al., 2014 [181]	44	Yes/no to feeling worried about falling
			Dennison et al., 2007 [182]	35	Yes/no to item “any fear of falling”
			Jonasson et al., 2014 [183]	55	Yes/no to item “fear of falling”
			Kader et al., 2016 [184]	48	Yes/no to item “are you afraid of falling”
			Kataoka et al., 2011 [185]	83	Present or not at any level “fear of falling”
			Lindholm et al., 2014 [73]	37	Yes/no to item “any fear of falling”
			Nilsson et al., 2010 [74]	43	Yes/no to item “fear of falling”
			Nilsson et al., 2010 [186]	38	Yes/no to item “fear of falling”
			Nilsson et al., 2012 [75]	45	Yes/no to item “fear of falling”
			Thomas et al., 2010 [187]	89	At least some fear of falling on FES

(Continued)
No single measure emerged as being preferred over others, with the Fear of Cancer Recurrence Inventory, the Fear of Progression Questionnaire, and Concerns About Recurrence Scale all being used in more than 10 studies (see Table 4). Due to the lack of an agreed upon gold standard measure, prevalence rates vary considerably across studies (see Table 5). Even studies that use the same instrument with an established cut-off score report a wide range of prevalence. For example, 28 to 70% of cancer survivors have been identified as having clinical FCR using the Fear of Cancer Recurrence Inventory. In terms of evolution over time, FCR was found to either be stable over time or initially decrease than stabilize [41, 42, 47, 48, 206].

When looking at conceptual differences between cancer-specific HA and other psychological disorders, a moderate degree of overlap emerged. For example, in a study of 341 cancer patients interviewed with the SCID and the Fear of Progression Questionnaire, 17.6% of patients had a diagnosis of anxiety disorder according to the SCID; 68.3% of patients suffered neither from an anxiety disorder nor from FoP; 13.4% suffered only from FoP; and only 6.7% had comorbid anxiety and FoP [35]. In a small study of 60 cancer patients, Simard and Savard [68], also using the SCID, found a slightly higher degree of comorbidity with 16.7% of patients having comorbid anxiety and FCR, mostly with panic disorder and Generalized Anxiety Disorder (GAD). Higher rates of comorbidity were observed in a study of young women with breast cancer using self-reported measures: among those identified as having clinical FCR,
36% were also likely cases of hypochondriasis (measured with a modified Whitely index), 43% were likely cases of GAD, and 20% met criteria for all three [50]. All together, it seems like cancer-specific HA is a distinct phenomenon but demonstrates some overlap with anxiety, especially GAD. Associations with PTSD symptoms [43, 56, 207, 208]; distress [56, 155, 209, 210], depression [39, 53, 63, 68, 106, 155, 209, 211–213], and lower quality of life (QOL) are frequently reported [44, 45, 49, 66, 106, 138, 143]. These relationships are likely bi-directional; for example, FCR predicts future depressive symptoms [211] and previous history of depression is a predictor of FCR [41].

In terms of theoretical model, Leventhal’s Common Sense Model (CSM) and its FCR-specific adaptation by Lee-Jones et al. [117] has been influential. The CSM postulates that FCR occurs when patients encounter an external or internal trigger, which then leads to an increased perception of personal risk of recurrence, both of which have been empirically supported [69, 106, 143, 214, 215]. This model also posits that illness beliefs will influence how patients cope with their illness and their affective reactions. It highlights the maladaptive nature of anxious preoccupation, personal checking behaviors, and over-seeking reassurance from doctors and/or family members [117]. There is good evidence that illness representations predict FCR. For example, in multiple regression analyses controlling for employment, anxiety and depression, illness perceptions, including lower beliefs about treatment control, more negative emotion associated with the diagnosis, longer timelines for the experience of breast cancer, and more symptoms attributed to breast cancer (identity) were significantly associated with FCR [216]. There is also good evidence that coping efficacy [63, 145, 217] and coping strategies [44, 64, 69, 207, 218, 219] influence FCR. For example, women with breast cancer and a pronounced FoP resorted to coping strategies such as “focus on and venting of emotions”, “mental disengagement”, and “behavioral disengagement” to a significantly greater extent than those with lower levels of FoP. They also displayed less confidence in their ability to overcome the consequences of disease and treatment [220].

Other theoretical models appear promising to our comprehension of HA in cancer patients (see Simonelli et al [221] for a comprehensive reviews of different FCR models). For example, social cognitive processing theory [222] can be useful to understand the impact of social interactions on the development and maintenance of HA. Indeed, social support appears to play a role in HA with one longitudinal study of social support at baseline predicting more FCR two years later [61] and additional studies finding that lower social support [4, 41, 140, 145, 223], including holding back [63, 145] correlates with increased FCR. Social constraints showed an indirect effect on FCR through worse cognitive processing (more intrusive thought and more cognitive avoidance). Meta-Cognitive Theory and CBT models of anxiety have also garnered evidence: participants with clinical FCR endorse more positive beliefs about worry, and beliefs about the uncontrollability and danger of worry than those with non-clinical fear [32]. They also report greater anxiety sensitivity [5], body vigilance [5], and the use of reassurance seeking and body checking [52,64,70].

A large body of evidence looked at sociodemographic and medical/physical predictors of HA in cancer patients. Younger age and female gender were consistent predictors of greater HA across studies. There was contradictory evidence for race, education, marital status, and limited available evidence on the relationship between sexual orientation and HA. There is limited evidence of the impact of treatment type such as radiation or chemotherapy on HA [35, 45, 207, 224] but higher levels of HA may influence women with breast cancer to choose contralateral prophylactic mastectomy [225]. Interestingly in the context of personalized medicine and greater treatment options, HA was correlated with concerns about the side effects and long-term effects of aromatase inhibitors [226, 227]. Also, breast cancer survivors who were taking adjuvant endocrine therapy (e.g. tamoxifen) more commonly reported HA than
those who have previously and never taken these therapies [163]. The impact of these newer therapies on HA appears to be an area for future research. There is consistent evidence that the presence of symptoms such as pain and fatigue predicts greater HA [33, 41, 45, 126, 142, 160, 226, 228–231]. There is limited evidence that time since diagnosis [35, 38, 41, 207] or stage of cancer [4, 50, 159] correlates with HA. HA was also not related to adherence to surveillance [232] and was inconsistently related with tobacco and alcohol use [54, 233].

HA was correlated with more frequent visits to the ER and outpatient visits to the oncology unit [38], greater use of complementary and alternative medicine and unscheduled visits to their GP but also less frequent ultrasounds or mammograms in the past year [52]. Patients with greater HA felt less satisfied with: a) the information they received [62] b) their care and the medical decisions they made [146, 234], and c) were less confident they had received good treatment [137]. They also reported lower patient activation (i.e., the knowledge, skills, and confidence to manage one’s health) [153]. This suggests that the medical team may play an important role in the management of HA in this population.

Of note, two literature reviews specific to studies of FCR up to 2010 were published in 2013 [13, 25]. As such, this literature review included cancer-specific studies from 2011 to October 2017 to prevent duplication. We report many similar findings to the two previously published reviews. Younger age was strongly associated with higher FCR in these previous reviews. One review had also found an association between female gender and higher FCR [13]. Both reviews found that higher FCR was associated with poorer quality of life. Finally, consistent with the present review, experiencing more pain-related symptoms was associated with FCR [13, 25], and social support was a predictor of lower FCR [13]. One difference is that the two previous reviews had reported inconsistent evidence supporting the association between psychological factors such as distress, anxiety, and depression and FCR.

Parkinson’s disease. The HA construct most often studied among those with Parkinson’s disease is fear of falling (FoF). FoF is typically studied with the Activities-specific Balance Confidence Scale or the Fall Efficacy Scale (see Table 4). There is consistent evidence that FoF is a predictor of QOL [180, 235] and that it may be a stronger predictor of QOL than falls themselves [236]. FoF results in limitations [75, 236], functional impairment [235], and less physical activity [71, 113, 237] or daily activities [238]. There is consistent evidence that people with Parkinson’s disease report more HA than age-matched controls [77, 188, 239–241]. The prevalence of FoF in this population, among articles employing established cut-off scores, is high with reported ranges of 25 to 48% (see details in Table 5). There is a lack of evidence of its evolution over time, with only one study examining changes in FoF over a two week period and finding that it remained stable [183].

Bandura’s self-efficacy theory is the theoretical framework most often cited with this population. As patients with Parkinson’s disease feel less self-confidence about performing some non-hazardous activities of daily living, they are less likely to perform these activities [82]. While avoidance of activities due to FoF may reduce the risk of falls in the short term, it is associated with reduced functional mobility and strength and increases the risk of future falls [82].

There is strong empirical support for this proposed bi-directional relationship between functional indicators and FoF. For example, impaired gait or slower gait speed [73, 177, 187, 239, 242–245] predicts greater FoF. On the other hand, FoF predicts current [184, 246] or future avoidance of activities [77, 247] and worse performance on balance or walking tests [73, 181, 239, 241, 242]. This reciprocal relationship may explain why a history of past falls [71,
predicts greater FoF and why the reverse is also true: FoF predicts more falls 6 [176] or 12 months later [252] or recurrent faller status [253].

Clearly, not all Parkinson’s patients who experience a fall will go on to develop FoF, and while the above factors contribute to the development of FoF, much remains to be discovered about how they interact with each other and over time to lead to FoF [82]. Studies that have taken a multifactor approach to predict FoF show that psychological factors also maintain FoF. For example, 73% of the variance in FoF was predicted by four variables, in order of decreasing importance: walking difficulties (measured objectively with a walking test), fatigue, needing help from others with daily activities, and functional balance [73]. Depressive symptoms and lower cognitive functioning have also shown an association with FoF [72, 78, 187]. More advanced disease stage and longer time living with the diagnosis are associated with greater HA [71–73, 81, 187, 240]. There is limited evidence of sociodemographic correlates of HA in Parkinson’s disease.

Cardiac disease. Consistent with other chronic diseases, cardiac patients who report HA display lower levels of QOL [90, 91, 254–256]. In this population, HA is most often conceptualized as cardiac anxiety and measured with the Cardiac Anxiety Questionnaire [123] (see Table 4). Eifert’s cardiac anxiety model has been influential in bringing awareness to the role of catastrophic misinterpretation and attention to cardiac-related sensations and avoidance of activities that induce these sensations (see [89] for a review). According to this model, avoidance behaviors, negative affective states (anxiety and depression symptoms), and increased somatic activity or arousal (e.g. pain) all contribute to maintain HA. There has been empirical evidence of a relationship between these three hypothesized mechanisms and HA in patients with cardiac conditions [90, 94, 96, 123, 171, 254, 256, 257]. In addition, illness representations indicating a more threatening perception of disease, predict greater HA in this population [93, 258, 259].

Patients with cardiac diseases report significantly more HA than healthy controls who are not reporting cardiac concerns [97, 260]. However, there is a vast literature on the differences between HA in people with a cardiac condition and those with cardiac preoccupation such as non-cardiac chest pain [123, 124, 261–263]. While a review of this literature is beyond the scope of this systematic review, it appears that patients with non-cardiac chest pain pay more attention to their symptoms, report more cardioprotective behaviors and greater disease conviction, and view their condition as significantly less controllable and less understandable than those with a cardiac condition [123, 124, 261–263].

In terms of prevalence, 31–48% of cardiac patients were found to have clinically significant cardiac anxiety, according to scale cut-off scores validated in cardiac populations. The evolution of HA is unclear, in part due to different measurement occasions across studies: one study found that HA either fluctuated or decreased over time from 6 weeks post surgery to 6 months later [90], one reported an increase from hospitalization to five years later [264], and one reported that HA was stable over time over a two-month period following a first consultation for chest pain [261]. To better understand these mixed findings, one may also have to consider the patient’s initial level of HA. Van Beek and colleagues [96] found evidence of 4 severity groups among patients hospitalized for a myocardial infarction followed five times over one year, with 7.7% starting with high HA after being hospitalized and remaining high for one year; another group (16.5%) that started high but decreased over the year; and the majority (75.8%) that showed a stable, low to moderate level of HA over time.

There is limited impact of actual disease severity on HA [94, 96, 98] while perceived health [171] and bothersome physical symptoms [171, 259] have been found to predict HA. There have been limited efforts to identify psychological correlates of HA in this population; for example, only one study looked at social support [171]. There is also scant evidence of
sociodemographic correlates, and the evidence is inconclusive among the most frequently reported sociodemographic factors, gender and age.

Diabetes. In this population, HA is most often conceptualized as fear of hypoglycemia (FoH) comprised of specific worries associated with insulin reaction and the different behaviours to avoid hypoglycemia (see definition above) and measured with the Hypoglycemia Fear Survey [128]. Like other manifestations of HA, it is associated with lower QOL, distress, anxiety, and depressive symptoms [7, 128, 196, 265–271]. Hypoglycemia is a common adverse event for people living with diabetes and can have very severe consequences if untreated, leading to coma and death. Unsurprisingly, studies indicate a high prevalence of this concern (see Table 5). However, there is a wide range of scores, 0 to 81%, due to measurement inconsistencies and the absence of an agreed upon cut-off score on the Hypoglycemia Fear Survey. To illustrate the impact of these measurement issues on prevalence estimates, one study compared four different ways of establishing a cut-off score with the Hypoglycemia Fear Survey and found a range of clinical FoH from 5 to 81% [196]. It appears to be more common among patients with type I vs. type II diabetes [272, 273]. There is a lack of evidence of its evolution over time, with only one study finding that it decreased over a 6 month period [274] and one finding that it remained stable [275].

Early models of the development of FoH suggest that hypoglycemia influences the fear/worry, which in turn triggers avoidance behaviors, which results in poor glycemic control. There is consistent evidence that a greater number of severe hypoglycemia episodes and the presence of more hypoglycemia symptoms are predictors of greater FoH [15, 85, 128, 198, 276]. Similarly, patients who reported needing help to overcome hypoglycemia in the past 6 months [30, 265, 267], difficulty managing their treatment [268], and having a hard time recognising the symptoms of hypoglycemia [277] had greater FoH. Congruent with models of FoH, the presence of avoidance predicts more FoH and hypoglycemia [278]. Patients who report more FoH engage in less exercise [202] and are more likely to restrict their insulin [279]. They also report being more afraid of self-injecting and self-testing [280, 281], and report more issues with insulin management [86] and less treatment satisfaction, which could compromise adherence [282]. However, the link between FoH and metabolic indictors like the HbA1c index is unclear [128, 198, 200].

Since not all patients who experience hypoglycemia will develop FoH, other predictors have been suggested, including the impact of symptoms on everyday life and on daily activities (i.e., not simply their presence) [199]. A link between FoH and trait anxiety has also been reported [15], perhaps because of the tendency to interpret stimuli as being dangerous. Among sociodemographic factors, several studies have reported more FoH in women [7, 128, 196, 265, 272, 283] and there is some evidence of younger patients reporting more FoH [7, 196, 284].

Other chronic diseases. Examination of findings across less frequent diseases yielded results similar to those found among patients with more common conditions. For example, patients with Chronic Obstructive Pulmonary Disease (COPD) who report HA also report lower QOL [104, 285], more depression and anxiety symptoms [103, 104, 286–288], and the use of avoidance coping [287]. HA is correlated with less adherence to treatment in HIV patients [289] and may act as a barrier to exercise in seizure patients [290]. As observed with more common chronic diseases, the presence of symptoms or disease-related disability predicts greater HA in patients with HIV [291–293] neurological conditions [175], irritable bowel disease [294, 295], and COPD [103, 288]. Psychological factors such as avoidance of activity [179], causal controllability [193], and social support [175] also appear to play a role in HA in these populations.

Summary. HA is prevalent, affecting more than 20% of patients in the studies that we reviewed. There is some evidence of either stability or initial decrease of HA in some chronic
illnesses. The presence of disability, limitations, or physical symptoms appears to be a better predictor of HA than more objective indicators of disease severity. There is consistent evidence of the impact of HA on QOL and other indicators of psychological adjustment across diseases. There are few established sociodemographic predictors of HA. Table 6 summarizes the main findings from Part II on prevalence, trajectory, and correlates of HA among patients with cancer, Parkinson’s disease, cardiac disease, and diabetes.

Discussion

Overall, it seems that fears of illness/symptoms represent a relevant field of study, given the large number of studies that were identified for this systematic review. Additionally, the impact of HA on QOL is well documented and there is some evidence that HA predicts: a) lower adherence to treatment; b) fewer positive health behaviours; and c) increased medical costs. Thus this is a very relevant issue for patients, their families, and healthcare providers. One of the most consistent findings of this review is that researchers favor a disease or symptom-specific vs. a psychiatric approach when defining, conceptualizing, or measuring HA in people with chronic diseases. This explains the apparent disconnection between different fields of study, which, in the end, focus on similar phenomena. It seems that the differences in labels (e.g., HA, FoP, FoH), in perspectives (broad vs. narrow), and potentially in professional identities (e.g., psychiatry, psychosomatic medicine, behavioral medicine, clinical health psychology, psycho-oncology) have precluded a unified conceptual view on realistic fears and worries in patients coping with chronic diseases. Therefore, the question remains: how should we conceptualize and name this phenomenon, which seems to be prevalent across many diseases?

One of the conclusions we can draw from this review is that there is a partial conceptual overlap between the current DSM-5 perspective and the way HA is currently studied in the

Prevalence	Cancer	Parkinson’s disease	Cardiac disease	Diabetes
0–86%	7–89%	11–48%	0–81%	
Trajectory	Stable over time or initial decrease followed by stabilization	Unclear; limited evidence	Unclear; may depend on patient’s initial level of HA	Unclear; limited evidence
Correlates	QOL	QOL	QOL	QOL

Anxiety and depression	Avoidance behaviors	Avoidance behaviors	Avoidance behaviors
GAD	Depression	Anxiety and depression	Distress
PTSD	Lower cognitive functioning	Increased somatic activity or arousal	Anxiety and depression
Distress	Physical limitations	Illness representations	Greater number of severe hypoglycemia episodes More hypoglycemia symptoms
Internal and external triggers	Functional impairment	Physical symptoms	
Perceived risk of recurrence	Less physical activity or daily activities	Social support	
Reassurance seeking and body checking	Impaired gait		
Illness representations	Slower gait speed		
Social support	History of past falls		
Female gender	Older age		
Younger age			
Presence of physical symptoms	Longer time living with the diagnosis		
Increased medical costs			
Satisfaction with care			

https://doi.org/10.1371/journal.pone.0234124.t006
context of chronic disease (see Fig 2). Specifically, the various disease- or symptom-specific definitions had affective (e.g., fear) and cognitive (e.g., worry or concern) dimensions in common, which are consistent with the constructs of somatic symptom disorder and illness anxiety disorder [18]. However, there was no clear consensus about the role of perceptual and behavioral features, which are central to the constructs of somatic symptom disorder and illness anxiety disorder [18]. To this effect, in a recent Delphi study attempting to identify the characteristics of "clinical" FCR, experts did not endorse behaviors such as avoidance or reassurance seeking as key criteria of this construct [296]. This partial overlap is supported by the empirical findings reported in the present review: 1) moderate measurement overlap between general HA and disease-specific HA when studied together, 2) differences between HA in people with a cardiac condition and healthy individuals with cardiac preoccupation, and 3) moderate comorbidity with other anxiety disorders based on structured psychiatric interviews. Thus it appears that worrying about one's health or symptoms in the context of a chronic illness is somewhat of a different phenomenon than worries in the absence of an illness. Furthermore, in this specific context, we found disease- or symptom-specific HA to be very prevalent, contrary to what has been reported in healthy individuals [20].

Indeed, there is consistent evidence across chronic diseases that HA is prevalent, affecting more than 20% of patients in most of the studied conditions. However, we do not have an agreement on how to distinguish normal from clinical fears and concerns among people with a chronic condition. This, coupled with measurement inconsistencies, leads to imprecise prevalence rates of HA across all the chronic diseases we reviewed. There is some evidence of either stability or initial decrease in some populations but this conclusion remains tentative. The evolution of HA over time may follow different trajectories depending on where patients are along the continuum from more normative responses to clinically significant problems. Those presenting with the highest levels may be more stable which would be in line with DSM-5 conceptualizations. Those in the more normative range may experience fluctuations over time. There is strong evidence across diseases that the presence of physical symptoms is associated with HA, especially those symptoms that are impacting daily living, which is in line with the DSM-5 diagnosis of somatic symptom disorder (Criterion A). However, in the absence of reliable cut-off scores or agreement about what constitutes excessive preoccupation or efforts to deal with these symptoms, the application of this diagnosis relies heavily on clinical judgment.

While it is possible that DSM-5 perspective can apply to the most severe cases, more studies are needed to establish the validity of the DSM-5 formulations of HA in people living with a chronic illness. We recently sought to establish an expert-based consensus on the use of these diagnoses to refer to the most severe forms of FCR. Specifically, we conducted a Delphi study with 65 international experts (psychologists, researchers, nurses, physicians, and allied health professionals) on features of clinical FCR and asked if they would apply the DSM-5 diagnoses of illness anxiety disorder and somatic symptom disorder to patients with high or 'clinical' FCR. Only 31% and 25% of respondents, respectively, found these diagnoses applicable to cancer patients with clinical FCR, preferring instead to create and use a list of features that characterize this construct [296]. Further studies are needed to clarify if researchers who study HA manifestations in chronic diseases consider these DSM-5 diagnoses as relevant to their patients' struggles with worries about their health or symptoms.

In the meantime, based on how the studies included in the present review defined, conceptualized, and measured HA in chronic illness, we think it is best to conceptualize it as HA focusing specifically on the disease or its symptoms that can range from normal to pathological [94]. In our view, the term HA is broad enough to be applicable to diseases with different severity, course, and prognosis. On the other hand, it is specific enough as it implies worries and fears relating to the patient's health status. We propose the adoption of the following...
definition of HA because of its multidimensional nature and recognition that the symptoms may, at least in some cases, be reality-based: "A multidimensional negative emotional state involving cognitive–affective “preparation” focused on bodily signs and symptoms because of their perceived or real negative consequences" [119].

Agreeing on a measure that could be used across diseases would strengthen and unify the field. Some of the generic measures of HA have been criticized for their content not being appropriate for individuals with a chronic illness [7, 100, 297]. Based on the present review of the literature, the Fear of Progression Questionnaire [23] appears to be the most promising candidate, since it was developed using a mixed chronic illness sample, has good psychometric properties, uses a multidimensional conceptualization of HA, and has already been used across several chronic illnesses [23, 24, 107]. Furthermore, a valid and reliable unidimensional short form which was developed for screening purposes is available [130, 137]. An empirically derived cut-off score of ≥ 34 has been suggested to identify those with clinical levels of FoP [47, 88].

Based on the findings of the present review, what indicators can we use to identify patients with severe HA? First, it is important to recognize that there have been few investigations of sociodemographic predictors of HA outside of studies with cancer patients and thus we have very limited evidence of vulnerable populations. Severe HA can be present in any patient, not necessarily those with the most advanced illnesses. However, those with more symptoms, disability, limitations, and impairments in daily functioning are most likely to report high HA. The presence of elevated distress, evidence of sustained use of avoidance or other safety behaviors, beliefs that one cannot cope with these symptoms or disease, and stable course over several months would be indicators of possible severe HA.

Limitations

Despite our efforts to exhaustively review the literature on HA across chronic diseases, there could be other symptom- or disease-specific terms that describe this phenomenon that were missed, leading us to inadvertently leave out relevant articles. Because we limited the review to articles reporting on HA in individuals with a known chronic condition, we did not include a large number of articles on pain and chronic pain. There are similarities between the activity avoidance pain models and CBT models of HA [104, 286] that would be interesting to explore in future studies. Most included studies (76%) were conducted in Europe and North America and thus our results may be biased towards a Western cultural context. Due to the large volume of articles reviewed, we used several pairs of raters, which may have influenced how systematically our data was reviewed and extracted. We attempted to remedy this by using a standardized data extraction form and consensus discussions to resolve discrepancies. Lastly, the quality of our findings is limited by the content of the articles we extracted data from, many of which were not focused primarily on HA.

Recommendations for future studies

While our review suggests that there are commonalities in the way HA is defined and measured across chronic illnesses, we need comparative studies of how people coping with different chronic illnesses experience HA. Both qualitative and quantitative designs could shed light on this issue. Studies that compare measures to identify which one best captures HA in chronically ill populations, especially in its most severe form, are needed combined with studies that validate the indicators of severe HA in these populations.

There is also a need for more studies that propose a theoretical framework and validate its use across more than one chronic illness. For example, future studies could validate the components of the Cognitive Behavioral Model of HA developed by Salkovskis and colleagues...
across chronic illnesses. This would answer the question as to whether this model can be applied to individuals with a chronic illness as it currently stands or if some of its components need to be revised. If the model is found to be applicable, perhaps with disease- or symptom-specific modifications, this could inform interventions that could be transferable across chronic illnesses.

Conclusions

The experience of fears and worries about the disease or its symptoms returning or progressing is ubiquitous among patients who live with a chronic illness. These fears and worries are often normative in response to living with a chronic disease, but nonetheless can become exaggerated, affecting quality of life and daily functioning. The distinction between psychiatric diagnoses such as illness anxiety disorder or somatic symptom disorder and normal health worries needs to be further studied to minimise the likelihood of ‘over-diagnosing’ and possibly stigmatising health-related concerns in patients with a chronic medical condition. The concept of HA might offer a unifying conceptual perspective on these common fears and worries.

Supporting information

S1 Checklist. PRISMA 2009 checklist. (DOC)

S1 Data. (XLSX)

Acknowledgments

We would like to thank Patrick Labelle, librarian at the University of Ottawa for his help developing the search methodology.

Author Contributions

Conceptualization: Sophie Lebel, Christina Tomei, Andreas Dinkel.

Data curation: Sophie Lebel, Brittany Mutsaers, Christina Tomei, Caroline Séguin Leclair, Georden Jones, Danielle Petricone-Westwood, Nicole Rutkowski, Viviane Ta, Geneviève Trudel, Simone Zofia Laflamme, Andrée-Anne Lavigne, Andreas Dinkel.

Formal analysis: Sophie Lebel, Brittany Mutsaers, Christina Tomei, Caroline Séguin Leclair, Georden Jones, Danielle Petricone-Westwood, Nicole Rutkowski, Viviane Ta, Geneviève Trudel, Simone Zofia Laflamme, Andrée-Anne Lavigne, Andreas Dinkel.

Methodology: Sophie Lebel, Brittany Mutsaers, Christina Tomei, Caroline Séguin Leclair, Georden Jones, Danielle Petricone-Westwood, Nicole Rutkowski, Andreas Dinkel.

Project administration: Sophie Lebel.

Supervision: Sophie Lebel, Andreas Dinkel.

Writing – original draft: Sophie Lebel, Brittany Mutsaers, Christina Tomei, Georden Jones, Danielle Petricone-Westwood, Nicole Rutkowski.

Writing – review & editing: Sophie Lebel, Brittany Mutsaers, Christina Tomei, Caroline Séguin Leclair, Georden Jones, Danielle Petricone-Westwood, Nicole Rutkowski, Viviane Ta, Geneviève Trudel, Simone Zofia Laflamme, Andrée-Anne Lavigne, Andreas Dinkel.
References

1. Ministry of Health and Long Term Care. Preventing and managing chronic disease: Ontario’s framework [Internet]. 2007. http://www.health.gov.on.ca/en/pro/programs/cdpm/pdf/framework_full.pdf

2. World Health Organization. Global status report on noncommunicable diseases 2014. Geneva: World Health Organization; 2014.

3. Muzzin LJ, Anderson NJ, Figueredo AT, Gudelis SO. The experience of cancer. Soc Sci Med. 1994; 38:1201–1208. https://doi.org/10.1016/0277-9536(94)90165-6 PMID: 8016685

4. Jones SL, Hadjistavropoulos HD, Sherry SB. Health anxiety in women with early-stage breast cancer: What is the relationship to social support? Can J Behav Sci. 2012; 44(2):108–116.

5. Jones SL, Hadjistavropoulos HD, Gullickson K. Understanding health anxiety following breast cancer diagnosis. Psychol Health Med. 2014; 19(5):525–535. https://doi.org/10.1080/13548506.2013.845300 PMID: 24102547

6. Rissling MB. Health anxiety and cognitive processes as risks for insomnia in women undergoing chemotherapy for breast cancer [Internet]. University of California, San Diego; 2012 [cited 2017 Mar 9]. http://sdsu-dspace.calstate.edu/handle/10211.10/3064

7. Janzen Claude JA, Hadjistavropoulos HD, Friesen L. Exploration of health anxiety among individuals with diabetes: prevalence and implications. J Health Psychol. 2014; 19(2):312–322. https://doi.org/10.1177/1359105312470157 PMID: 23349403

8. LeBouthillier DM, Thibodeau MA, Alberts NM, Hadjistavropoulos HD, Asmundson GJG. Do people with and without medical conditions respond similarly to the Short Health Anxiety Inventory? An assessment of differential item functioning using item response theory. J Psychosom Res. 2015; 78(4):384–390. https://doi.org/10.1016/j.jpsychres.2014.12.014 PMID: 25592160

9. Zvolensky MJ, Eifert GH, Feldner MT, Leen-Feldner E. Heart-Focused Anxiety and Chest Pain in Postangiography Medical Patients. J Behav Med. 2003; 26(3):197–209. https://doi.org/10.1023/a:1023456419736 PMID: 12845934

10. Asmundson GJG, Taylor S, Carleton RN, Weeks J, Hadjistavropoulos HD. Should health anxiety be carved at the joint? A look at the health anxiety construct using factor mixture modeling in a non-clinical sample. J Anxiety Disord. 2012; 26:246–251. https://doi.org/10.1016/j.janxdis.2011.11.009 PMID: 22169014

11. Longley SL, Watson D, Noyes R. Assessment of the hypochondriasis domain: The Multidimensional Inventory of Hypochondriacal Traits (MIHT). Psychol Assess. 2005; 17(1):3–14. https://doi.org/10.1037/1040-3590.17.1.3 PMID: 15769224

12. Taylor S, Asmundson GJG. Treating health anxiety: A cognitive behavioral approach. Guilford Press; 2004.

13. Simard S, Thewes B, Humphris G, Dixon M, Hayden C, Mireskandari S, et al. Fear of cancer recurrence in adult cancer survivors: a systematic review of quantitative studies. J Cancer Surviv. 2013; 7(3):300–322. https://doi.org/10.1007/s11764-013-0272-z PMID: 23473988

14. Label E, Ozakinci G, Humphris G, Mutsaers B, Thewes B, Prins J, et al. From normal response to clinical problem: definition and clinical features of fear of cancer recurrence. Support Care Cancer. 2016; 24(6):3265–3268. https://doi.org/10.1007/s00520-016-3272-6 PMID: 27169703

15. Beléndez M, Hernandez-Mijares A. Beliefs about insulin as a predictor of fear of hypoglycaemia. Chronic Illn. 2009; 5(4):250–256. https://doi.org/10.1177/1742395309346464 PMID: 19933244

16. Eifert GH. Cardiophobia: a paradigmatic behavioural model of heart-focused anxiety and non-anginal chest pain. Behav Res Ther. 1992; 30(4):329–345. https://doi.org/10.1016/0005-7967(92)90045-i PMID: 1616469

17. Petricone-Westwood D, Jones G, Mutsaers B, Seguin Leclair C, Tornyi C, Trudel G, et al. A systematic review of interventions for health anxiety presentations across diverse chronic illnesses. Intl J Behav Med. 2019; 26(1):3–16. https://doi.org/10.1007/s12529-018-9748-6 PMID: 30498918

18. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association; 2013.

19. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-IV-TR. Washington, DC: American Psychiatric Association; 2000.

20. Tyrer P. Recent advances in the understanding and treatment of health anxiety. Curr Psychiatry Rep. 2018; 20(7):49. https://doi.org/10.1007/s11920-018-0912-0 PMID: 29931576

21. Dimsdale JE, Levenson J. Diagnosis of somatic symptom disorder requires clinical judgment. J Psychosom Res. 2013; 75(6):588. https://doi.org/10.1016/j.jpsychres.2013.09.009 PMID: 24290054
22. Häuser W, Wolfe F. The Somatic Symptom Disorder in DSM 5 risks mislabelling people with major medical diseases as mentally ill. J Psychosom Res. 2013; 75(6):586. https://doi.org/10.1016/j.jpsychores.2013.09.005 PMID: 24290053

23. Herschbach P, Berg P, Dankert A, Duran G, Engst-Hastreiter U, Waadt S, et al. Fear of progression in chronic diseases: Psychometric properties of the Fear of Progression Questionnaire. J Psychosom Res. 2005; 58(6):505–511. https://doi.org/10.1016/j.jpsychores.2005.02.007 PMID: 16125517

24. Berg P, Book K, Dinkel A, Henrich G, Marten-Mittag B, Mertens D, et al. Progredienz angst bei chronischen Erkrankungen [Fear of progression in chronic diseases]. Psychother Psychosom Med Psychol. 2011; 61(01):32–37.

25. Crist JV, Grunfeld EA. Factors reported to influence fear of recurrence in cancer patients: a systematic review. Psychooncology. 2013; 22(5):978–986. https://doi.org/10.1002/pon.3114 PMID: 22674873

26. Kmet LM, Lee RC, Cook LS. Standard quality assessment criteria for evaluating primary research papers from a variety of fields. Alberta Heritage Foundation for Medical Research Edmonton; 2004. 1–22 p.

27. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998; 52(6):377–384. https://doi.org/10.1136/jech.52.6.377 PMID: 9764259

28. Popay J, Roberts H, Sowden A, Petticrew M, Arai L, Rodgers M, et al. Guidance on the conduct of narrative synthesis in systematic reviews: A product from the ESRC Methods Programme [Internet]. Lancaster University; 2006 [cited 2020 May 4]. http://rgdoi.net/10.13140/2.1.1018.4643

29. Vickberg SMJ. The Concerns About Recurrence Scale (CARS): a systematic measure of women’s fears about the possibility of breast cancer recurrence. Ann Behav Med. 2003; 25(1):16–24. https://doi.org/10.1207/S15324796ABM2501_03 PMID: 12581932

30. Anarte Ortiz MT, Caballero FF, Ruiz de Adana MS, Rondan RM, Carreira M, Dominguez-Lopez M, et al. Development of a New Fear of Hypoglycemia Scale: FH-15. Psychol Assess. 2011; 23(2):398–405. https://doi.org/10.1037/a0021927 PMID: 21381839

31. Aghdam AM, Rahmani A, Nejad ZK, Ferguson C, Mohammadpoorasi A, Sanaat Z. Fear of cancer recurrence and its predictive factors among Iranian cancer patients. Indian J Palliat Care. 2014; 20 (2):128–133. https://doi.org/10.4103/0973-1075.132632 PMID: 25158689

32. Butow P, Kelly S, Thewes B, Hruby G, Sharpe L, Beith J. Attentional bias and metacognitions in cancer survivors with high fear of cancer recurrence. Psychooncology. 2015; 24(4):416–423. https://doi.org/10.1002/pon.3659 PMID: 25156065

33. Custers JAE, van den Berg SW, van Laarhoven HWM, Bleiker EMA, Gielissen MFM, Prins JB. The Cancer Worry Scale: detecting fear of recurrence in breast cancer survivors. Cancer Nurs. 2014; 37 (1):E44–50. https://doi.org/10.1097/NCC.0b013e3182813a17 PMID: 23448956

34. De Vries J, Den Oudsten BL, Jacobs PMEP, Roukema JA. How breast cancer survivors cope with fear of recurrence: a focus group study. Support Care Cancer. 2014; 22(3):705–712. https://doi.org/10.1007/s00520-013-2025-y PMID: 24193220

35. Dinkel A, Kremsreiter K, Marten-Mittag B, Lahmann C. Comorbidity of fear of progression and anxiety disorders in cancer patients. Gen Hosp Psychiatry. 2014; 36(6):613–619. https://doi.org/10.1016/j.genhosppsych.2014.08.006 PMID: 25213227

36. Ghazali N, Cadwallader E, Lowe D, Humphris G, Ozakinci G, Rogers SN. Fear of recurrence among head and neck cancer survivors: longitudinal trends. Psychooncology. 2013; 22(4):807–813. https://doi.org/10.1002/pon.3069 PMID: 22451036

37. Hershman DL, Greenlee H, Awad D, Kalinsky K, Maurer M, Kranwinkel G, et al. Randomized controlled trial of a clinic-based survivorship intervention following adjuvant therapy in breast cancer survivors. Breast Cancer Res Treat. 2013; 138(3):795–806. https://doi.org/10.1007/s10549-013-2486-1 PMID: 23542954

38. Lebel S, Tomei C, Feldstain A, Beattie S, McCallum M. Does fear of cancer recurrence predict cancer survivors’ health care use? Support Care Cancer. 2013; 21(3):901–906. https://doi.org/10.1007/s00520-012-1685-3 PMID: 23269420

39. Lengacher CA, Shelton MM, Reich RR, Barta MK, Johnson-Mallard V, Moscoco MS, et al. Mindfulness based stress reduction (MBSR(BC)) in breast cancer: Evaluating fear of recurrence (FOR) as a mediator of psychological and physical symptoms in a randomized control trial (RCT). J Behav Med. 2014; 37(2):185–195. https://doi.org/10.1007/s10865-012-9473-6 PMID: 23184061

40. McGinty HL, Goldenberg JL, Jacobsen PB. Relationship of threat appraisal with coping appraisal to fear of cancer recurrence in breast cancer survivors. Psychooncology. 2012; 21(2):203–210. https://doi.org/10.1002/pon.1883 PMID: 22271541
41. Mehner A, Koch U, Sundermann C, Dinkel A. Predictors of fear of recurrence in patients one year after cancer rehabilitation: A prospective study. Acta Oncol. 2013; 52(6):1102–1109. https://doi.org/10.3109/0284186X.2013.760563 PMID: 23384721

42. Melchior H, Büscher C, Thorenz A, Grochocka A, Koch U, Watzke B. Self-efficacy and fear of cancer progression during the year following diagnosis of breast cancer. Psychooncology. 2013; 22(1):39–45. https://doi.org/10.1002/pon.2054 PMID: 21898655

43. Moya J, Wachen JS, Mulligan EA, Doherty K, Naik AD. Assessing multidimensional worry in cancer survivors. Psychooncology. 2014; 23(2):237–240. https://doi.org/10.1002/pon.3381 PMID: 24105759

44. Park CL, Cho D, Blank TO, Wortmont JH. Cognitive and emotional aspects of fear of recurrence: predictors and relations with adjustment in young to middle-aged cancer survivors. Psychooncology. 2013; 22(7):1630–1638. https://doi.org/10.1002/pon.3195 PMID: 23600271

45. Petzel MQB, Parker NH, Valentine AD, Simard S, Nogueras-Gonzalez GM, Lee JE, et al. Fear of cancer recurrence after curative pancreatectomy: a cross-sectional study in survivors of pancreatic and periampullary tumors. Ann Surg Oncol. 2012; 19(13):4078–4084. https://doi.org/10.1245/s10434-012-2566-1 PMID: 22875648

46. Sabariego C, Brach M, Herschbach P, Berg P, Stucki G. Cost-effectiveness of cognitive-behavioral group therapy for dysfunctional fear of progression in cancer patients. Eur J Health Econ. 2011; 12(5):489–497. https://doi.org/10.1007/s10198-010-0266-y PMID: 20689977

47. Sarkar S, Scherwath A, Schirmer L, Schulz-Kindermann F, Neumann K, Kruse M, et al. Fear of recurrence and its impact on quality of life in patients with hematological cancers in the course of allogeneic hematopoietic SCT. Bone Marrow Transplant. 2014; 49(9):1217–1222. https://doi.org/10.1038/bmt.2014.139 PMID: 25000458

48. Savard J, Ivers H. The evolution of fear of cancer recurrence during the cancer care trajectory and its relationship with cancer characteristics. J Psychosom Res. 2013; 74(4):354–360. https://doi.org/10.1016/j.jpsychores.2012.12.013 PMID: 23497839

49. Taylor TR, Huntley ED, Makambi K, Sween J, Adams-Campbell LL, Frederick W, et al. Understanding sleep disturbances in African-American breast cancer survivors: a pilot study. Psychooncology, 2012; 21(8):896–902. https://doi.org/10.1002/pon.21648016

50. Thewes B, Bell ML, Butow P, Beith J, Boyle F, Friedlander M, et al. Psychological morbidity and stress but not social factors influence level of fear of cancer recurrence in young women with early breast cancer: results of a cross-sectional study. Psychooncology. 2013; 22(12):2797–806. https://doi.org/10.1002/pon.3348 PMID: 24038525

51. Thewes B, Bell ML, Butow P. Fear of cancer recurrence in young early-stage breast cancer survivors: the role of metacognitive style and disease-related factors. Psychooncology. 2013; 22(9):2059–2063. https://doi.org/10.1002/pon.3252 PMID: 23408595

52. Thewes B, Butow P, Bell ML, Beith J, Stuart-Harris R, Grossi M, et al. Fear of cancer recurrence in young women with a history of early-stage breast cancer: a cross-sectional study of prevalence and association with health behaviours. Support Care Cancer. 2012; 20(11):2651–2659. https://doi.org/10.1007/s00520-011-1371-x PMID: 22328003

53. Thewes B, Zachariae R, Christensen S, Nielsen T, Butow P. The Concerns About Recurrence Questionnaire: validation of a brief measure of fear of cancer recurrence amongst Danish and Australian breast cancer survivors. J Cancer Surviv. 2015; 9(1):68–79. https://doi.org/10.1007/s11764-014-0383-1 PMID: 25135205

54. Van Liew JR, Christensen AJ, Howren MB, Hynd Karmell L, Funk GF. Fear of recurrence impacts health-related quality of life and continued tobacco use in head and neck cancer survivors. Health Psychol. 2014; 33(4):373–381. https://doi.org/10.1037/a0032680 PMID: 23772885

55. Boehmer U, Tripodis Y, Bazzi AR, Winter M, Clark MA. Fear of cancer recurrence in survivor and caregiver dyads: Differences by sexual orientation and how dyad members influence each other. J Cancer Surviv. 2016; 10(5):802–813. https://doi.org/10.1007/s11764-016-0526-7 PMID: 26899851

56. Custers JA, Gielissen MF, Janssen SH, de Wilt JH, Prins JB. Fear of cancer recurrence in colorectal cancer survivors. Support Care Cancer. 2016; 24(2):555–562. https://doi.org/10.1007/s00520-015-2808-4 PMID: 26108170

57. Gold M, Dunn LB, Phoenix B, Paul SM, Hamolsky D, Levine JD, et al. Co-occurrence of anxiety and depressive symptoms following breast cancer surgery and its impact on quality of life. Eur J Oncol Nurs. 2016; 20:97–105. https://doi.org/10.1016/j.ejon.2015.06.003 PMID: 26176660

58. Jones SMW, Ziebell R, Walker R, Neklyudov L, Rabin BA, Nutt S, et al. Association of worry about cancer to benefit finding and functioning in long-term cancer survivors. Support Care Cancer. 2017; 25(5):1417–1422. https://doi.org/10.1007/s00520-016-3537-z PMID: 27981365

59. Koch-Gallenkamp L, Bertram H, Eberle A, Holleczek B, Schmid-Hofner S, Waldmann A, et al. Fear of recurrence in long-term cancer survivors—Do cancer type, sex, time since diagnosis, and social
support matter? Health Psychol. 2016; 35(12):1329–1333. https://doi.org/10.1037/hea0000374 PMID: 27175578

60. Lengacher CA, Reich RR, Paterson CL, Ramesar S, Park JY, Alinat C, et al. Examination of Broad Symptom Improvement Resulting From Mindfulness-Based Stress Reduction in Breast Cancer Survivors: A Randomized Controlled Trial. J Clin Oncol. 2016; 34(24):2827–2834. https://doi.org/10.1200/JCO.2015.65.7874 PMID: 27247219

61. Liu Y, Perez M, Schootman M, Aft RL, Gilanders WE, Jeffe DB. Correlates of fear of cancer recurrence in women with ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res Treat. 2011; 130:165–173. https://doi.org/10.1007/s10549-011-1551-x PMID: 21553295

62. Maguire R, Hanly P, Drummond FJ, Gavin A, Sharp L. Regret and fear in prostate cancer: The relationship between treatment appraisals and fear of recurrence in prostate cancer survivors. Psychooncology. 2017; 26(11):1825–1831 https://doi.org/10.1002/pon.4384 PMID: 28124398

63. Manne SL, Myers-Virtue S, Kissane D, Ozga ML, Kashy DA, Rubin SC, et al. Group-based trajectory modeling of fear of disease recurrence among women recently diagnosed with gynecological cancers. Psychooncology. 2017; 26(11):1799–1809 https://doi.org/10.1002/pon.4223 PMID: 27421919

64. McGinty HL, Small BJ, Laronga C, Jacobsen PB. Predictors and patterns of fear of cancer recurrence in breast cancer survivors. Health Psychol. 2016; 35(1):1–9. https://doi.org/10.1037/hea0000238 PMID: 26030308

65. Otto AK, Szczesny EC, Soriano EC, Laurenceau J-P, Siegel SD. Effects of a randomized gratitude intervention on death-related fear of recurrence in breast cancer survivors. Health Psychol. 2016; 35(12):1320–1328. https://doi.org/10.1037/hea0000400 PMID: 27513475

66. Rogers SN, Cross B, Talwar C, Lowe D, Humphris G. A single-item screening question for fear of recurrence in head and neck cancer. Eur Arch Otorhinolaryngol. 2016; 273(5):1235–1242. https://doi.org/10.1007/s00405-015-3585-x PMID: 25749490

67. Shay LA, Carpentier MY, Vernon SW. Prevalence and correlates of fear of recurrence among adolescent and young adult versus older adult post-treatment cancer survivors. Support Care Cancer. 2016; 24(11):4689–4696. https://doi.org/10.1007/s00520-016-3317-9 PMID: 27387913

68. Simard S, Savard J. Screening and comorbidity of clinical levels of fear of recurrence. J Cancer Surviv. 2015; 9(3):481–491. https://doi.org/10.1007/s11764-015-0424-4 PMID: 25603948

69. van de Wal M, van de Poll-Franse L, Prins J, Gielissen M. Does fear of cancer recurrence differ between cancer types? A study from the population-based PROFILES registry. Psychooncology. 2016; 25(7):772–778. https://doi.org/10.1002/pon.4002 PMID: 26464337

70. van de Wal M, Langenberg S, Gielissen M, Thewes B, van Oort I, Prins J. Fear of cancer recurrence: a significant concern among partners of prostate cancer survivors. Psychooncology. 2017; 26(12):2079–2085. https://doi.org/10.1002/pon.4423 PMID: 28317267

71. Bryant MS, Rintala DH, Hou J-G, Protas EJ. Influence of fear of falling on gait and balance in Parkinson’s disease. Disabil Rehabil. 2014; 36(9):744–748. https://doi.org/10.3109/09638288.2013.814722 PMID: 23875814

72. Gazibara T, Stankovic I, Tomic A, Svetel M, Tepavcevic DK, Kostic VS, et al. Validation and cross-cultural adaptation of the Falls Efficacy Scale in patients with Parkinson’s disease in Serbia. Geriatr Gerontol Int. 2013; 13(4):936–941. https://doi.org/10.1111/ggi.12034 PMID: 23441828

73. Lindholm B, Hagell P, Hansson O, Nilsson MH. Factors associated with fear of falling in people with Parkinson’s disease. BMC Neurol. 2014; 14:19. https://doi.org/10.1186/1471-2377-14-19 PMID: 24456482

74. Nilsson MH, Hariz G-M, Wictorin K, Miller M, Forsgren L, Hagell P. Development and testing of a self-administered version of the Freezing of Gait Questionnaire. BMC Neurol. 2010; 10:85. https://doi.org/10.1186/1471-2377-10-85 PMID: 20863392

75. Nilsson MH, Hariz G-M, Iwarsson S, Hagell P. Walking ability is a major contributor to fear of falling in people with Parkinson’s Disease: implications for rehabilitation. Parkinsons Dis. 2012; 2012:713236 PMID: 21941686

76. Peretz C, Herman T, Hausdorff JM, Giladi N. Assessing fear of falling: Can a short version of the Activities-specific Balance Confidence scale be useful? Mov Disord. 2006; 21(12):2101–2105. https://doi.org/10.1002/mds.21113 PMID: 16991140

77. Rahman S, Griffin HJ, Quinn NP, Jahanshahi M. On the nature of fear of falling in Parkinson’s disease. Behav Neurol. 2011; 24(3):219–228. https://doi.org/10.3233/BEN-2011-0330 PMID: 21876261

78. Franzen E, Conradsson D, Hagstromer M, Nilsson MH. Depressive symptoms associated with concerns about falling in Parkinson’s disease. Brain Behav. 2016; 6(10):e00524. https://doi.org/10.1002/brb3.524 PMID: 27781138
79. Jonasson SB, Ullen S, Iwarsson S, Lexell J, Nilsson MH. Concerns about falling in Parkinson's disease: Associations with disabilities and personal and environmental factors. J Parkinsons Dis. 2015; 5 (2):341–349. https://doi.org/10.3233/JPD-140524 PMID: 25870024

80. Jonasson SB, Nilsson MH, Lexell J. Psychometric properties of the original and short versions of the Falls Efficacy Scale-International (FES-I) in people with Parkinson's disease. Health Qual Life Outcomes. 2017; 15:116. https://doi.org/10.1186/s12955-017-0689-6 PMID: 28569162

81. Meh dizadeh M, Lajavardi H, Habibi SAH, ArabBaniasad M, Baghoort D, Daneshjoo F, et al. The association between fear of falling and quality of life for balance impairments based on hip and ankle strategies in the drug on- and off-phase of patients with idiopathic Parkinson' disease. Med J Islam Repub Iran. 2016; 30:453. PMID: 28491828

82. O’Connell E, Guidon M. Fear of falling and dual-task performance in people with Parkinson's disease. Eur J Physiother. 2016; 18(3):167–172.

83. Teasdale H, Preston E, Waddington G. Proprioception of the ankle is impaired in people with Parkinson's disease. Mov Disord Clin Pract. 2017; 4(4):524–528. https://doi.org/10.1002/mdc3.12464 PMID: 30363454

84. Wright A, Hurt CS, Gorniak S, Brown RG. An exploration of worry content and catastrophic thinking in middle-aged and older-aged adults with and without Parkinson’s disease. Int J Geriatr Psychiatry. 2015; 30(4):376–383. https://doi.org/10.1002/gps.4146 PMID: 24931116

85. McCoy RG, Van Houten HK, Ziegenfuß JY, Shah ND, Wermers RA, Smith SA. Self-report of hypoglycemia and health-related quality of life in patients with type 1 and type 2 diabetes. Endocr Pract. 2013; 19(5):792–799. https://doi.org/10.4158/EP12382.OR PMID: 23756708

86. Petruk F, Herpertz S, Stridde E, Pfützn er A. Psychological insulin resistance in type 2 diabetes patients regarding oral antidiabetes treatment, subcutaneous insulin injections, or inhaled insulin. Diabetes Technol Ther. 2013; 15(8):703–711. https://doi.org/10.1089/dia.2012.0257 PMID: 23845751

87. Dinkel A, Herschbach P, Berg P, Waadt S, Duran G, Engst-Hastreiter U, et al. Determinants of long-term response to group therapy for dysfunctional fear of progression in chronic diseases. Behav Med. 2012; 38(1):1–5. https://doi.org/10.1080/01942638.2011.640364 PMID: 22356596

88. Herschbach P, Berg P, Waadt S, Duran G, Engst-Hastreiter U, Henrich G, et al. Group psychotherapy of dysfunctional fear of progression in patients with chronic arthritis or cancer. Psychosom Psychosom. 2010; 79(1):31–38. https://doi.org/10.1159/000254903 PMID: 19887899

89. Eifert GH, Zvolensky MJ, Lejuez CW. Heart-focused anxiety and chest pain: A conceptual and clinical review. Clin Psychol Sci Pract. 2000; 7(4):403–417.

90. Hoyer J, Eifert GH, Einsle F, Zimmermann K, Krauss S, Knaut M, et al. Heart-focused anxiety before and after cardiac surgery. J Psychosom Res. 2008; 64(3):291–297. https://doi.org/10.1016/j.jpsychores.2007.09.009 PMID: 18291244

91. Kovacs AH, Ong L, Lin J, Chessex C. Heart-focused anxiety: the role of socioeconomic status. J Card-Pulm Rehabil. 2006; 26(3):176–179.

92. Ong L, Nolan RP, Irvine J, Kovacs AH. Parental overprotection and heart-focused anxiety in adults with congenital heart disease. Int J Behav Med. 2011; 18(3):260–267. https://doi.org/10.1007/s12529-010-9112-y PMID: 20842471

93. Panzar u GM, Homan A. Type of treatment of cardiac disorders–quality of life and heart-focused anxiety: The mediating role of illness perceptions. Psychol Health Med. 2015; 20(5):551–559. https://doi.org/10.1080/13548506.2014.989863 PMID: 25495583

94. Sardinha A, Araújo CGS, Nardi AE. Psychiatric disorders and cardiac anxiety in exercising and sedentary coronary artery disease patients: a case-control study. Braz J Med Biol Res. 2012; 45(12):1320–1326. https://doi.org/10.1590/s0100-879x2012007500156 PMID: 23011407

95. Sardinha A, Nardi AE, de Araújo CGS, Ferreira MC, Eifert GH. Brazilian Portuguese validated version of the Cardiac Anxiety Questionnaire. Arq Bras Cardiol. 2013; 101(6):554–561. https://doi.org/10.5935/abc.201302027 PMID: 24145391

96. van Beek MHCT, Mingels M, Voshaar RCO, van Balkom AJLM, Lappenschaar M, Pop G, et al. One-year follow up of cardiac anxiety after a myocardial infarction: a latent class analysis. J Psychosom Res. 2012; 73(5):362–368. https://doi.org/10.1016/j.jpsychores.2012.09.004 PMID: 23062810

97. Einsle F, Köllner V, Herzberg PV, Bernardy K, Nitschke M, Dannemann S, et al. Psychometric Analyses zum Herzangstfragebogen bei kardiologischen Patienten [Psychometric analysis of the Cardiac Anxiety Questionnaire (German Version) in cardiac patients]. Verhaltensther Verhaltensmed. 2009; 30:439–457.

98. Bunz M, Lenski D, Wedegartner S, Ukena C, Karbach J, Bohm M, et al. Heart-focused anxiety in patients with chronic heart failure before implantation of an implantable cardioverter defibrillator:
baseline findings of the Anxiety-CHF Study. Clin Res Cardiol. 2016; 105(3):216–224. https://doi.org/10.1007/s00392-015-0909-1 PMID: 26481915

99. Rosman L, Whited A, Lampert R, Mosesso VN, Lawless C, Sears SF. Cardiac anxiety after sudden cardiac arrest: Severity, predictors and clinical implications. Int J Cardiol. 2015; 181:73–76. https://doi.org/10.1016/j.ijcard.2014.11.115 PMID: 25482282

100. Alberts NM, Sharpe D, Kehler MD, Hadjistravropoulos HD. Health anxiety: Comparison of the latent structure in medical and non-medical samples. J Anxiety Disord. 2011; 25(4):612–614. https://doi.org/10.1016/j.janxdis.2011.01.011 PMID: 21354766

101. Kalron A, Achiron A. Postural control, falls and fear of falling in people with multiple sclerosis without mobility aids. J Neurol Sci. 2013; 335(1–2):186–190. https://doi.org/10.1016/j.jns.2013.09.029 PMID: 24952570

102. Kalron A, Achiron A. The relationship between fear of falling to spatiotemporal gait parameters measured by an instrumented treadmill in people with multiple sclerosis. Gait Posture. 2014; 39(2):739–744. https://doi.org/10.1016/j.gaitpost.2013.10.012 PMID: 24200869

103. Keil DC, Stenzel NM, Kühl K, Vaske I, Mewes R, Rief W, et al. The impact of chronic obstructive pulmonary disease-related fears on disease-specific disability. Chron Respir Dis. 2014; 11(1):31–40. https://doi.org/10.1177/1479972313516881 PMID: 24431409

104. Kühl K, Kuhn C, Kenn K, Rief W. Der COPD-Angst-Fragebogen (CAF): ein neues Instrument zur Erfassung krankheitsspezifischer Ängste bei COPD-Patienten [The COPD-Anxiety-Questionnaire (CAF): a new instrument to assess illness specific anxiety in COPD patients]. Psychother Psychosom Med Psychol. 2011; 61(01):e1–e9.

105. Noble AJ, Baisch S, Covey J, Mukerji N, Nath F, Schenk T. Subarachnoid hemorrhage patients’ fears of recurrence are related to the presence of posttraumatic stress disorder. Neurosurgery. 2011; 69(2):323–333. https://doi.org/10.1227/NEU.0b013e318216047e PMID: 21475779

106. Koch L, Bertram H, Eberle A, Holleczek B, Schmid-Höpfner S, Waldmann A, et al. Fear of recurrence in long-term breast cancer survivors still an issue. Results on prevalence, determinants, and the association with quality of life and depression from the cancer survivorship—a multi-regional population-based study. Psychooncology. 2014; 23(5):547–554. https://doi.org/10.1002/pon.3452 PMID: 24293081

107. Mehnert A, Berg P, Henrich G, Herschbach P. Fear of cancer progression and cancer-related intrusive cognitions in breast cancer survivors. Psychooncology. 2009; 18(12):1273–1280. https://doi.org/10.1002/pon.1481 PMID: 19267364

108. Costa DSJ, Smith A “Ben”, Fardell JE. The sum of all fears: conceptual challenges with measuring fear of cancer recurrence. Support Care Cancer. 2016; 24(1):1–3. https://doi.org/10.1007/s00520-015-2943-y PMID: 26377307

109. Bandura A. Self-efficacy: The exercise of control. Macmillan; 1997.

110. Beck A. Cognitive Therapy and the Emotional Disorders. New York: Meridian; 1976.

111. Salkovskis PM, Warwick HMC. Morbid preoccupations, health anxiety and reassurance: a cognitive-behavioural approach to hypochondriasis. Behav Res Ther. 1986; 24(5):597–602. https://doi.org/10.1016/0005-7967(86)90041-0 PMID: 3753387

112. Diefenbach MA, Leventhal H. The Common-Sense Model of Illness Representation: Theoretic and Practical Considerations. J Soc Distress Homeless. 1996; 5(1):11–38.

113. Ellis T, Boudreau JK, DeAngelis TR, Brown LE, Cavanaugh JT, Earhart GM, et al. Barriers to exercise in people with Parkinson disease. Phys Ther. 2013; 93(5):628–636. https://doi.org/10.2522/ptj.20120279 PMID: 23288910

114. Kent DA. Factors that Impact Quality of Life in Young Adults with Type I Diabetes [Internet]. UNIVERSITY OF ILLINOIS AT CHICAGO, HEALTH SCIENCES CENTER; 2011 [cited 2016 Apr 28]. http://gradworks.umi.com/34/84/3484984.html

115. Salkovskis PM, Warwick HMC. Making sense of hypochondriasis: a cognitive theory of health anxiety. In: Asmundson G, Taylor S, Cox BJ, editors. Health Anxiety: Clinical and Research Perspectives on Hypochondriasis and Related Conditions [Internet]. New York: Wiley; 2001 [cited 2017 Mar 9], p. 46–64. http://opus.bath.ac.uk/20938/

116. Salkovskis PM, Warwick HMC, Deale AC. Cognitive-Behavioral Treatment for Severe and Persistent Health Anxiety (Hypochondriasis). Brief Treat Crisis Interv. 2003; 3(3):353–367.

117. Lee-Jones C, Humphris G, Dixon R, Bebbington Hatcher M. Fear of cancer recurrence—A literature review and proposed cognitive formulation to explain exacerbation of recurrence fears. Psychooncology. 1997; 6:95–105. https://doi.org/10.1002/(SICI)1099-1611(199706)6:2<95::AID-PON250>3.0.CO;2-B PMID: 9205967
118. Yardley L, Beyer N, Hauer K, Kempen G, Plot-Ziegler C, Todd C. Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age Ageing. 2005; 34(6):614–619. https://doi.org/10.1093/ageing/afz196 PMID: 16267188

119. Lucott MP, Morley S. The health anxiety questionnaire. Br J Health Psychol. 1996; 1(2):137–150.

120. Powell LE, Myers AM. The activities-specific balance confidence (ABC) scale. J Gerontol A Biol Sci Med Sci. 1995; 50(1):M28–M34.

121. Northouse LL. Mastectomy patients and the fear of cancer recurrence. Cancer Nurs. 1981; 4(3):213–220. PMID: 6909039

122. Salkovskis PM, Rimes KA, Warwick HMC, Clark DM. The Health Anxiety Inventory: development and validation of scales for the measurement of health anxiety and hypochondrias. Psychol Med. 2002; 32(05):843–853.

123. Eifert GH, Thompson RN, Zvolensky MJ, Edwards K, Frazer NL, Haddad JW, et al. The cardiac anxiety questionnaire: development and preliminary validity. Behav Res Ther. 2000; 38(10):1039–1053. https://doi.org/10.1016/s0005-7967(99)00132-1 PMID: 11004742

124. Eifert GH, Hodson SE, Tracey DR, Seville JL, Gunawardane K. Heart-focused anxiety, illness beliefs, and behavioral impairment: comparing healthy heart-anxious patients with cardiac and surgical inpatients. J Behav Med. 1996; 19(4):385–399. https://doi.org/10.1007/BF01904764 PMID: 8936828

125. Galligan NG, Hevey D, Coen RF, Harbison JA. Clarifying the associations between anxiety, depression and fatigue following stroke. J Health Psychol. 2016; 21(12):2863–2871. https://doi.org/10.1177/1359105316640742

126. Leonhart R, Tang L, Pang Y, Li J, Song L, Fischer I, et al. Physical and psychological correlates of high somatic symptom severity in Chinese breast cancer patients. Psychooncology. 2017; 26(5):656–663. https://doi.org/10.1002/pon.4203 PMID: 27350559

127. Deimling GT, Brown SP, Albitz C, Burant CJ, Mallick N. The relative importance of cancer-related and general health worries and distress among older adult, long-term cancer survivors. Psychooncology. 2017; 26(2):182–190. https://doi.org/10.1002/pon.4015 PMID: 26494568

128. Gonder-Frederick LA, Schmidt KM, Vajda KA, Greer ML, Singh H, Shepard JA, et al. Psychometric properties of the Hypoglycemia Fear Survey-II for adults with type 1 diabetes. Diabetes Care. 2011; 34(4):801–806. https://doi.org/10.2337/dc10-1343 PMID: 21346182

129. Lajoie Y, Gallagher S. Predicting falls within the elderly community: comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers. Arch Gerontol Geriatr. 2004; 38(1):11–26. https://doi.org/10.1016/s0167-4943(03)00082-7 PMID: 14959700

130. Mehnert A, Herschbach P, Berg P, Heinrich G, Koch U. Progredienzangst bei Brustkrebs-patientinnen — Validierung der Kurzform des Progredienzangstfragebogens PA-F-KF [Fear of progression in breast cancer patients—Validation of the short form of the Fear of Progression Questionnaire (FoP-Q-SF)]. Z Psychosom Med Psychother. 2006; 52(3):274–88. https://doi.org/10.13109/zptm.2006.52.3.274 PMID: 17156600

131. Simard S, Savard J. Fear of Cancer Recurrence Inventory: development and initial validation of a multidimensional measure of fear of cancer recurrence. Support Care Cancer. 2009; 17(3):241–251. https://doi.org/10.1007/s00520-008-0444-y PMID: 18414902

132. Sarna L, van Servellen G, Padilla G, Brecht ML. Quality of life in women with symptomatic HIV/AIDS. J Adv Nurs. 1999; 30(3):597–605. https://doi.org/10.1046/j.1365-2648.1999.01129.x PMID: 10499216

133. Kemppainen JK, Holzem er WL, Nokes K, Eller LS, Corless IB, Bunch EH, et al. Self-care management of anxiety and fear in HIV disease. J Assoc Nurses AIDS Care 2003; 14(2):21–29. https://doi.org/10.1055/s-0025-9591053125093

134. Anderson J, Burney S, Broker JE, Ricciardelli LA, Fletcher JM, Satasivam P, et al. Anxiety in the management of localised prostate cancer by active surveillance. BJU Int. 2014; 114(S1):55–61.

135. Custers J, Tielen R, Prins J, de Witt H, Gielen M, Van Der Graaf W. Fear of disease progression in patients with gastrointestinal stromal tumors (GIST). Psychooncology. 2013; 22(Suppl 3):42–43.

136. Van Liew J, Christensen AJ, Howren MB, Kannel LH, Funk GF. The association of fear of recurrence with lifestyle behaviours and quality of life in head and neck cancer survivors [Abstract]. Ann Behav Med. 2012; 43 (1 Suppl):s83.

137. Hinz A, Mehnert A, Ernst J, Herschbach P, Schulte T. Fear of progression in patients 6 months after cancer rehabilitation—a validation study of the fear of progression questionnaire FoP-Q-12. Support Care Cancer. 2015; 23(6):1579–1587. https://doi.org/10.1007/s00520-014-2516-5 PMID: 25412727

138. Cho D, Park CL. Moderating effects of perceived growth on the association between fear of cancer recurrence and health-related quality of life among adolescent and young adult cancer survivors. J

Health anxiety in chronic illnesses
139. De Padova S, Rosti G, Scarpi E, Salvioni R, Amadori D, De Giorgi U, et al. Expectations of survivors, caregivers and healthcare providers for testicular cancer survivorship and quality of life. Tumori. 2011; 97(3):367–373. https://doi.org/10.1700/912.10036 PMID: 21789018

140. Halbach SM, Enders A, Kowalski C, Pförtner T-K, Pfaff H, Wesselmann S, et al. Health literacy and fear of cancer progression in elderly women newly diagnosed with breast cancer—A longitudinal analysis. Patient Educ Couns. 2016; 99(5):855–862. https://doi.org/10.1016/j.pec.2015.12.012 PMID: 26746208

141. Ness S, Kokal J, Fee-Schroeder K, Novotny P, Satela D, Barton D. Concerns across the survivorship trajectory: results from a survey of cancer survivors. Oncol Nurs Forum. 2013; 40(1):35–42. https://doi.org/10.1188/13.ONF.35-42 PMID: 23269768

142. Pedersen AF, Rossen P, Olesen F, von der Maase H, Vedsted P. Fear of recurrence and causal attributions in long-term survivors of testicular cancer. Psychooncology. 2012; 21(11):1222–1228. https://doi.org/10.1002/pon.2030 PMID: 21919117

143. Tewari A, Chagpar AB. Worry about breast cancer recurrence: a population-based analysis. Am Surg. 2014; 80(7):640–645. PMID: 24987893

144. Waters EA, Liu Y, Schootman M, Jeffe DB. Worry about cancer progression and low perceived social support: implications for quality of life among early-stage breast cancer patients. Ann Behav Med. 2013; 45(1):57–68. https://doi.org/10.1007/s12160-012-9406-1 PMID: 22983622

145. Myers SB, Manne SL, Kissane DW, Rubin S, et al. Social-cognitive processes associated with fear of recurrence among women newly diagnosed with gynecological cancers. Gynecol Oncol. 2013; 128(1):120–127. https://doi.org/10.1016/j.ygyno.2012.10.014 PMID: 23088925

146. Handschel J, Naujoks C, Kübeler NR, Krüskemper G. Fear of recurrence significantly influences quality of life in oral cancer patients. Oral Oncol. 2012; 48(12):1276–1280. https://doi.org/10.1016/j.oraloncology.2012.06.015 PMID: 22818822

147. Cutshall SM, Cha SS, Ness SM, Stan DL, Christensen SA, Bhagra A, et al. Symptom burden and integrative medicine in cancer survivorship. Support Care Cancer. 2015; 23(10):2989–2994. https://doi.org/10.1007/s00520-015-2666-0 PMID: 25724408

148. Fang S-Y, Cheng H-R, Lin C-Y. Validation of the modified Chinese Cancer Survivor’s Unmet Needs (CaSUN-C) for women with breast cancer. Psychooncology. 2018; 27(12):1434–1440. https://doi.org/10.1002/pon.4076 PMID: 26863926

149. Fisher A, Beeken RJ, Heinrich M, Williams K, Wardle J. Health behaviours and fear of cancer recurrence in 10 969 colorectal cancer (CRC) patients. Psychooncology. 2016; 25(12):1391–1397.

150. Hefner J, Csef E-J, Kunzmann V. Fear of Progression in Outpatients With Chronic Myeloid Leukemia on Oral Tyrosine Kinase Inhibitors. Oncol Nurs Forum. 2016; 43(2):190–197. https://doi.org/10.1188/16.ONF.190-197 PMID: 26906130

151. Janz NK, Hawley ST, Mujahid MS, Griggs JJ, Alderman A, Hamilton AS, et al. Correlates of worry about recurrence in a multiethnic population-based sample of women with breast cancer. Cancer. 2011; 117:1827–1836. https://doi.org/10.1002/cncr.25740 PMID: 21445916

152. Matthew AG, Raz O, Currie KL, Louis AS, Jiang H, Davidson T, et al. Psychological distress and lifestyle disruption in low-risk prostate cancer patients: Comparison between active surveillance and radical prostatectomy. J Psychosoc Oncol. 2018; 36(2):159–174. https://doi.org/10.1080/07347332.2017.1342733 PMID: 28613997

153. O’Malley D, Dewan AA, Ohman-Strickland PA, Gunderson DA, Miller SM, Hudson SV. Determinants of patient activation in a community sample of breast and prostate cancer survivors. Psychooncology. 2018; 27(1):132–140. https://doi.org/10.1002/pon.4387 PMID: 28133892

154. Poslusny DM, Dew MA, Beckjord E, Booberg DH, Schmidt JE, Low CA, et al. Existential challenges experienced by lymphoma survivors: Results from the 2010 LIVESTRONG Survey. J Health Psychol. 2016; 21(10):2357–2366. https://doi.org/10.1177/1359105315576352 PMID: 25845834

155. Rogers SN, Mepani V, Jackson S, Lowe D. Health-related quality of life, fear of recurrence, and emotional distress in patients treated for thyroid cancer. Br J Oral Maxillofac Surg. 2017; 55(7):666–673. https://doi.org/10.1016/j.bjoms.2016.09.001 PMID: 28648407

156. Rylands J, Lowe D, Rogers SN. Influence of deprivation on health-related quality of life of patients with cancer of the head and neck in Merseyside and Cheshire. Br J Oral Maxillofac Surg. 2016; 54(6):669–676. https://doi.org/10.1016/j.bjoms.2016.03.030 PMID: 27130568

157. Smith A “Ben”, Butow P, Olver I, Luckett T, Grimison P, Toner GC, et al. The prevalence, severity, and correlates of psychological distress and impaired health-related quality of life following treatment for...
testicular cancer: A survivorship study. J Cancer Surviv. 2016; 10(2):223–233. https://doi.org/10.1007/s11764-015-0488-5 PMID: 26178326

158. Befort CA, Klemp J. Sequelae of breast cancer and the influence of menopausal status at diagnosis among rural breast cancer survivors. J Womens Health. 2011; 20(9):1307–1313.

159. Kanatas A, Ghazali N, Lowe D, Rogers SN. The identification of mood and anxiety concerns using the patients concerns inventory following head and neck cancer. Int J Oral Maxillofac Surg. 2012; 41(4):429–436. https://doi.org/10.1016/j.ijom.2011.12.021 PMID: 22264641

160. Schlairet MC. Needs of older cancer survivors in a community cancer care setting. J Gerontol Nurs. 2011; 37(1):36–41. https://doi.org/10.3928/00989134-20100730-05 PMID: 20795594

161. Scott B, Ghazali N, Lowe D, Bekiroglu F, Rogers SN. The Patients Concerns Inventory in head and neck cancer: comparison between self-completed paper and touch screen versions in the clinic setting. Eur J Oncol Nurs. 2013; 17(6):863–869. https://doi.org/10.1016/j.ejon.2013.05.002 PMID: 23732013

162. Cheng KKF, Devi RD, Wong WH, Koh C. Perceived symptoms and the supportive care needs of breast cancer survivors six months to five years post-treatment period. Eur J Oncol Nurs. 2014; 18(1):3–9. https://doi.org/10.1016/j.ejon.2013.10.005 PMID: 24315730

163. van Londen GJ, Beckjord EB, Dew MA, Cooper KL, Davidson NE, Bovbjerg DH, et al. Associations between adjuvant endocrine therapy and onset of physical and emotional concerns among breast cancer survivors. Support Care Cancer. 2014; 22(4):937–945. https://doi.org/10.1007/s00520-013-2041-y PMID: 24271937

164. Wells M, Cunningham M, Lang H, Swartzman S, Philp J, Taylor L, et al. Distress, concerns and unmet needs in survivors of head and neck cancer: A cross-sectional survey. Eur J Cancer Care. 2015; 24(5):748–760.

165. Moretto P, Jewett MAS, Basiuk J, Maskens D, Canil CM. Kidney cancer survivorship survey of urologists and survivors: The gap in perceptions of care, but agreement on needs. Can Urol Assoc J. 2014 May; 8(5–6):190–194. https://doi.org/10.5489/cuaj.1907 PMID: 25024789

166. Naidoo J, Hayes E, Teo MY, Horgan A, Calvert P, O’Connor M. An Irish breast cancer survivorship study: are we meeting our patients’ needs? Ir Med J. 2013; 106(9):262, 264–266. PMID: 24416846

167. Koivula M, Hautamaki-Lamminen K, Astedt-Kurki P. Predictors of fear and anxiety nine years after coronary artery bypass grafting. J Adv Nurs. 2010; 66(3):595–606. https://doi.org/10.1111/j.1365-2648.2009.05230.x PMID: 20423394

168. Stenzel N, Rief W, Kühl K, Pinzer S, Kenn K. Progredienzangst und End-of-Life-Ängste bei COPD-Patienten [Fear of progression and end-of-life fear in COPD patients]. Pneumologie. 2012; 66(2):111–118.

169. Heffner JE, Fahy B, Hilling L, Barbieri C. Attitudes regarding advance directives among patients in pulmonary rehabilitation. Am J Respir Crit Care Med. 1996; 154(6 Pt 1):1735–1740. https://doi.org/10.1164/ajrrc.154.6.8970363 PMID: 8970363

170. Guan Q, Jin LJ, Li YX, Han HJ, Zheng YG, Nie ZY. Multifactor analysis for risk factors involved in the fear of falling in patients with chronic stroke from mainland China. Top Stroke Rehabil. 2015; 22(5):368–373. https://doi.org/10.1179/1074935714Z.0000000048 PMID: 25920348

171. Kehler MD, Hadjistavropoulos HD. Is health anxiety a significant problem for individuals with multiple sclerosis? J Behav Med. 2009; 32(2):150–161. https://doi.org/10.1007/s10865-008-9186-z PMID: 19015971

172. Allen NE, Sherrington C, Paul SS, O’Rourke SD, Canning CG. Fear of falling and future falls in people with Parkinson’s disease. Mov Disord. 2012; 27(S1):S299–300.
177. Chomiak T, Pereira FV, Clark TW, Cihal A, Hu B. Concurrent arm swing-stepping (CASS) can reveal gait start hesititation in Parkinson's patients with low self-efficacy and fear of falling. Aging Clin Exp Res. 2015; 27(4):457–463. https://doi.org/10.1007/s40520-014-0313-0 PMID: 25577232

178. Landers MR, Lopker M, Newman M, Gorlie R, Sorensen S, Vong R. Individuals with Parkinson's Disease who report fear of falling avoidance behavior exhibit more depression, anxiety, and catastrophization than non-avoiders. Mov Disord. 2014; 29(5):186–187.

179. Pieterse AJ, Luttikhold TB, de Laat K,Bloem BR, van Engelen BG, Munneke M. Falls in patients with neuromuscular disorders. J Neurol Sci. 2006; 251(1–2):87–90. https://doi.org/10.1016/j.jns.2006.09.008 PMID: 17097113

180. Grimbergen YAM, Schrag A, Mazibrada G, Borm GF, Bloem BR. Impact of falls and fear of falling on health-related quality of life in patients with Parkinson's disease. J Parkinsons Dis. 2013; 3(3):409–413. https://doi.org/10.3233/JPD-120113 PMID: 23948987

181. Combs SA, Diehl MD, Filip J, Long E. Short-distance walking speed tests in people with Parkinson disease: reliability, responsiveness, and validity. Gait Posture. 2014; 39(2):784–788. https://doi.org/10.1016/j.gaitpost.2013.10.019 PMID: 24246801

182. Dennison AC, Noorijian JV, Robinson KM, Fisman DN, Cianci HJ, Moberg P, et al. Falling in Parkinson disease: identifying and prioritizing risk factors in recurrent fallers. Am J Phys Med Rehabil. 2007; 86(6):621–632. https://doi.org/10.1097/PHM.0b013e31611583 PMID: 17667192

183. Jonasson SB, Nilsson MH, Lexell J. Psychometric properties of four fear of falling rating scales in people with Parkinson's disease. BMC Geriatr. 2014; 14:66. https://doi.org/10.1186/1471-2318-14-66 PMID: 24884466

184. Kader M, Iwarsson S, Odin P, Nilsson MH. Fall-related activity avoidance in relation to a history of falls or near falls, fear of falling and disease severity in people with Parkinson's disease. BMC Neurol. 2016; 16:84. https://doi.org/10.1186/s12883-016-0612-5 PMID: 27250988

185. Kataoka H, Tanaka N, Eng M, Saeki K, Kiriyama T, Eura N, et al. Risk of falling in Parkinson's disease at the Hoehn-Yahr stage III. Eur Neurol. 2011; 66(5):298–304. https://doi.org/10.1159/000331635 PMID: 22057308

186. Nilsson MH, Drake A-M, Hagell P. Assessment of fall-related self-efficacy and activity avoidance in people with Parkinson's disease. BMC Geriatr. 2010; 10:78. https://doi.org/10.1186/1471-2318-10-78 PMID: 20973974

187. Thomas AA, Rogers JM, Amick MM, Friedman JH. Falls and the falls efficacy scale in Parkinson's disease. J Neurol. 2010; 257(7):1124–1128. https://doi.org/10.1007/s00415-010-5475-x PMID: 20157723

188. Bloem BR, Grimbergen YA, Cramer M, Willemsen M, Zwijnderman AH. Prospective assessment of falls in Parkinson’s disease. J Neurol. 2001; 248(11):1124–1128. https://doi.org/10.1007/s004150170047 PMID: 11757958

189. Lindholm B, Hagell P, Hansson O, Nilsson MH. Prediction of falls and/or near falls in people with mild Parkinson's Disease. Plos One 2015; 10:e0117018. https://doi.org/10.1371/journal.pone.0117018 PMID: 25635687

190. Pasmans EP, Murnaghan CD, Bloem BR, Carpenter MG. Balance problems with Parkinson’s disease: are they anxiety-dependent? Neurosci, 2011; 177:283–291. https://doi.org/10.1016/j.neuroscience.2010.12.050 PMID: 21219972

191. Peterson EW, Cho CC, Finlayson ML. Fear of falling and associated activity curtailment among middle aged and older adults with multiple sclerosis. Mult Scler J. 2007; 13(9):1168–1175.

192. Townend E, Tinson D, Kwan J, Sharpe M. Fear of recurrence and beliefs about preventing recurrence in persons who have suffered a stroke. J Psychosom Res. 2006; 61(6):747–755. https://doi.org/10.1016/j.jpsychores.2006.09.006 PMID: 17141662

193. Alizadeh AHM, Ranjbar M, Yadollahzadeh M. Patient concerns regarding chronic hepatitis B and C infection. Rev Santé Méditerranéen Orient. 2008; 14(5):1142–1147.

194. Cox DJ, Kiernan BD, Schroeder DB, Cowley M. Psychosocial sequelae of visual loss in diabetes. Diabetes Educ. 1998; 24(4):481–484. https://doi.org/10.1177/01457217980240406 PMID: 9830951

195. Hajas TRS, Polonsky WH, Pouver F, Gonder-Frederick L, Snoek FJ. Toward defining a cutoff score for elevated fear of hypoglycemia on the Hypoglycemia Fear Survey Worry Subscale in patients with Type 2 diabetes. Diabetes Care. 2014; 37(1):102–108. https://doi.org/10.2337/dc13-0971 PMID: 23990513

196. Majanovic SK, Janez A, Letterov I, Tasic S, Cikac T. The Real-Life Effectiveness and Care Patterns of Diabetes Management Study for Balkan Region (Slovenia, Croatia, Serbia, Bulgaria): A multicenter,
198. Nixon R, Pickup JC. Fear of hypoglycemia in type 1 diabetes managed by continuous subcutaneous insulin infusion: is it associated with poor glycemic control? Diabetes Technol Ther. 2011; 13(2):93–98. https://doi.org/10.1089/dia.2010.0192 PMID: 21284474

199. Shiu AT, Wong RY. Fear of hypoglycaemia among insulin-treated Hong Kong Chinese patients: implications for diabetes patient education. Patient Educ Couns. 2000; 41(3):251–261. https://doi.org/10.1016/s0738-3991(99)00084-1 PMID: 11042428

200. Martyn-Nemeth P, Quinn L, Penkofer S, Park C, Hofer V, Burke L. Fear of hypoglycemia: Influence on glycemic variability and self-management behavior in young adults with type 1 diabetes. J Diabetes Complications. 2017; 31(4):735–741. https://doi.org/10.1016/j.jdiacomp.2016.12.015 PMID: 28143733

201. Myers VH, Boyer BA, Herbert JD, Barakat LP, Scheiner G. Fear of hypoglycaemia and self reported posttraumatic stress in adults with type I diabetes treated by intensive regimens. J Clin Psychol Med Settings. 2007; 14(1):11–21.

202. Riaz M, Basit A, Fawwad A, Ahmedani MY, Rizvi ZA. Factors associated with non-adherence to insulin in patients with type 1 diabetes. Pak J Med Sci. 2014; 30(2):233–239. PMID: 24772118

203. Sakane N, Kotani K, Tsuzaki K, Nishi M, Takahashi K, Murata T, et al. Fear of hypoglycaemia and its determinants in insulin-treated patients with type2 diabetes mellitus. J Diabetes Investig. 2015; 6(5):567–570. https://doi.org/10.1111/jdi.12340 PMID: 26417415

204. van Beers CAJ, de Wit M, Kleijer SJ, Geelhoed-Duijvestijn PH, DeVries JH, Kramer MHH, et al. Continuous glucose monitoring in patients with Type 1 diabetes and impaired awareness of hypoglycaemia: also effective in patients with psychological distress? Diabetes Technol Ther. 2017; 19(10):595–599. https://doi.org/10.1089/dia.2017.0141 PMID: 28836833

205. Mameniskiene R, Sakalauskaite-Juodedziene E, Budrys V. People with epilepsy lack knowledge about their disease. Epilepsy Behav. 2015; 46:192–197. https://doi.org/10.1016/j.yebeh.2015.03.002 PMID: 25847428

206. Lengacher CA, Johnson-Malliard V, Barta M, Fitzgerald S, Moscoso MS, Post-White J, et al. Feasibility of a mindfulness-based stress reduction program for early-stage breast cancer survivors. J Holist Nurs. 2011; 29(2):107–117. https://doi.org/10.1177/0898010110385938 PMID: 21041554

207. Urbaniec OA, Collins K, Denson LA, Whitford HS. Gynecological cancer survivors: assessment of psychological distress and unmet supportive care needs. J Psychosoc Oncol. 2011; 29(5):534–551. https://doi.org/10.1080/07347332.2011.599829 PMID: 21882933

208. Boelter AF, Lange J, Anger B, Geiser C, Süß HM, Frommer J. Modifikation der IES-R zur Diagnostik posttraumatischer Belastung bei Traumatisierung durch die Diagnose Krebs [Modification of the IES-R for assessment of posttraumatic stress after traumatization through the diagnosis of cancer]. Diagnostica. 2011; 57(2):84–98.

209. Huang W-L, Liao S-C. Psychometric properties of the Chinese version of the Diagnostic Criteria for Psychosomatic Research. Psychother Psychosom. 2017; 86(2):119–120. https://doi.org/10.1159/000450714 PMID: 28183094

210. Jones SMW, LaCroix AZ, Li W, Zaslavsky O, Wassethell-Smoller S, Weitlauf J, et al. Depression and quality of life before and after breast cancer diagnosis in older women from the Women’s Health Initiative. J Cancer Surviv. 2015; 9(4):620–629. https://doi.org/10.1007/s11764-015-0438-y PMID: 25708515

211. Kyranou M, Puntillo K, Aouizerat BE, Paul SM, Cooper BA, West C, et al. Trajectories of depressive symptoms in women prior to and for 6 months after breast cancer surgery. J Appl Behav Res. 2014; 19(2):79–105.

212. Yoon HS, Lim YO, Choi K, Kim Y, Lee HJ. Depression of older adults with cancer in Korea. Clin Gerontol. 2015; 38(5):395–411.

213. Beutel ME, Fischbeck S, Binder H, Blettner M, Braehler E, Emrich K, et al. Depression, anxiety and quality of life in long-term survivors of malignant melanoma: A register-based cohort study. PLoS ONE. 2015; 10(1):e0116440. https://doi.org/10.1371/journal.pone.0116440 PMID: 25615573

214. Phillips KM, McGinty HL, Gonzalez BD, Jim HSL, Small BJ, Minton S, et al. Factors associated with breast cancer worry 3 years after completion of adjuvant treatment. Psychooncology. 2013; 22(4):936–939. https://doi.org/10.1002/pon.3066 PMID: 22419546

215. Ziner KW, Sledge GW, Bell CJ, Johns S, Miller KD, Champion VL. Predicting fear of breast cancer recurrence and self-efficacy in survivors by age at diagnosis. Oncol Nurs Forum. 2012; 39(3):287–295. https://doi.org/10.1188/12.ONF.287-295 PMID: 22543387
216. Freeman-Gibb LA, Janz NK, Katapodi MC, Zikmund-Fisher BJ, Northouse L. The relationship between illness representations, risk perception and fear of cancer recurrence in breast cancer survivors. Psychooncology. 2017; 26(9):1270–1277. https://doi.org/10.1002/pon.4143 PMID: 27146965

217. Dinkel A, Henrich G, Herschbach P. Coping effectiveness and fear of disease progression in cancer patients. Z Gesundheitspsychologie. 2011; 19(1):35–42.

218. Akechi T, Momino K, Yamashita T, Fujita T, Hayashi H, Tsunoda N, et al. Contribution of problem-solving skills to fear of recurrence in breast cancer survivors. Breast Cancer Res Treat. 2014; 145(1):205–210. https://doi.org/10.1007/s10549-014-2929-3 PMID: 24682677

219. Blanch-Hartigan D, Blake KD, Viswanath K. Cancer survivors’ use of numerous information sources for cancer-related information: Does more matter? J Cancer Educ. 2014; 29(3):488–496. https://doi.org/10.1007/s13187-014-0642-x PMID: 24699921

220. Sirot A, Moskovich D, Yaltosky VM, Guldan VV, Yaltoskaya AV. Strategies andresources for coping with fear of disease progression in women with reproductive-system cancer. Psychol Russ State Art. 2016; 9(2):15–29.

221. Simonelli LE, Siegel SD, Duffy NM. Fear of cancer recurrence: a theoretical review and its relevance for clinical presentation and management. Psychooncology. 2017; 26(10):1444–1454. https://doi.org/10.1002/pon.4168 PMID: 27246348

222. Lepore SJ. A social-cognitive processing model of emotional adjustment to cancer. In: Baum A, Andersen B, editors. Washington, DC: APA; 2001. p. 99–118.

223. Cohee AA, Adams RN, Johns SA, Von Ah D, Zoppi K, Fife B, et al. Long-term fear of recurrence in young breast cancer survivors and partners. Psychooncology. 2017; 26(1):22–28. https://doi.org/10.1002/pon.4008 PMID: 26490953

224. Sung T-Y, Shin Y-W, Nam K-H, Chang H-S, Rhee Y, Park CS, et al. Psychological impact of thyroid surgery on patients with well-differentiated papillary thyroid cancer. Qual Life Res. 2011; 20(9):1411–1417. https://doi.org/10.1007/s11136-011-9887-6 PMID: 21424541

225. Soran A, Ibrahim A, Kanbour M, McGuire K, Balci FL, Polat AK, et al. Decision making and factors influencing long-term satisfaction with prophylactic mastectomy in women with breast cancer. Am J Clin Oncol-Cancer Clin Trials. 2015; 38(2):179–183.

226. Corter AL, Findlay M, Broom R, Porter D, Petrie KJ. Beliefs about medicine and illness are associated with fear of cancer recurrence in women taking adjuvant endocrine therapy for breast cancer. Br J Health Psychol. 2013; 18(1):168–181. https://doi.org/10.1111/bjhp.12003 PMID: 23134580

227. Hall DL, Lennes IT, Pirl WF, Friedman ER, Park ER. Fear of recurrence or progression as a link between somatic symptoms and perceived stress among cancer survivors. Support Care Cancer. 2017; 25(5):1401–1407. https://doi.org/10.1007/s00520-016-3533-3 PMID: 27966025

228. Lopez C, Charles C, Rouby P, Boiron D, Laurent S, Ray A, et al. Relations between arthralgia and fear of recurrence: results of a cross-sectional study of breast cancer patients treated with adjuvant aromatase inhibitors therapy. Support Care Cancer. 2015; 23(12):3581–3588. https://doi.org/10.1007/s00520-015-2722-9 PMID: 25894881

229. Poort H, Kaal SEJ, Knoop H, Jansen R, Prins JB, Manten-Horst E, et al. Prevalence and impact of severe fatigue in adolescent and young adult cancer patients in comparison with population-based controls. Support Care Cancer. 2017; 25(9):2911–2918. https://doi.org/10.1007/s00520-017-3746-0 PMID: 28528350

230. Kowalkowski MA, Goltz HH, Petersen NJ, Amiel GE, Lerner SP, Latini DM. Educational opportunities in bladder cancer: Increasing cystoscopic adherence and the availability of smoking-cessation programs. J Cancer Educ. 2014; 29(4):739–745. https://doi.org/10.1007/s13187-014-0649-3 PMID: 24719024

231. Danker H, Herrmann E, Keszte J, Meyer A, Wollbrück D, Dietz A, et al. Tabakrauchen und Alkoholkonsum bei Patienten mit Kehlkopfrezisektion fünf Jahre nach der Diagnose Kehlkopfkrebs [Tabacco and alcohol consumption 5 years after laryngectomy for laryngeal cancer]. Z Gesundheitspsychologie. 2011; 19(1):13–22.
234. Torbit LA, Albiani JJ, Crangle CJ, Latini DM, Hart TL. Fear of recurrence: the importance of self-efficacy and satisfaction with care in gay men with prostate cancer. Psychooncolology. 2015; 24(6):691–698. https://doi.org/10.1002/pon.3630 PMID: 25060033

235. Franchignoni F, Martignoni E, Ferriero G, Pasetti C. Balance and fear of falling in Parkinson’s disease. Parkinsonism Relat Disord. 2005; 11(7):427–433. https://doi.org/10.1016/j.parkreldis.2005.05.005 PMID: 16154789

236. Brozova H, Stochl J, Roth J, Ruzicka E. Fear of falling has greater influence than other aspects of gait disorders on quality of life in patients with Parkinson’s disease. Neuro Endocrinol Lett. 2009; 30(4):453–457. PMID: 20010494

237. Elbers RG, van Wegen EEH, Verhool J, Kwakkel G. Is gait speed a valid measure to predict community ambulation in patients with Parkinson’s disease? J Rehabil Med. 2013; 45(4):370–375. https://doi.org/10.2340/16501977-1123 PMID: 23450464

238. Chong RKY, Morgan J, Mehta SH, Pawlikowska I, Hall P, Ellis AV, et al. Rapid assessment of postural instability in Parkinson’s disease (RAPID): a pilot study. Eur J Neurol. 2011; 18(2):260–265. https://doi.org/10.1111/j.1468-1331.2010.03115.x PMID: 20586791

239. Adkin AL, Frank JS, Jog MS. Fear of falling and postural control in Parkinson’s disease. Mov Disord. 2003; 18(5):496–502. https://doi.org/10.1002/mds.10396 PMID: 12722162

240. Foongsaporn C, Panyakaw P, Jitkritsadakul O, Bhidayasiri R. What daily activities increase the risk of falling in Parkinson patients? An analysis of the utility of the ABC-16 scale. J Neurol Sci. 2016; 364:183–187. https://doi.org/10.1016/j.jns.2016.03.037 PMID: 27084422

241. Mak MKY, Pang MYC. Balance self-efficacy determines walking capacity in people with Parkinson’s disease. Mov Disord. 2008; 23(13):1936–1939. https://doi.org/10.1002/mds.22251 PMID: 18759335

242. Shen X, Mak MKY. Balance and gait training with augmented feedback improves balance confidence in people with Parkinson’s Disease: a randomized controlled trial. Neurorehabil Neural Repair. 2014; 28(6):524–535. https://doi.org/10.1177/1545968313517752 PMID: 24407915

243. Danoudis M, Ganeshvaran G, Iansek R. Disturbances of automatic gait control mechanisms in higher level gait disorder. Gait Posture. 2016; 48:47–51. https://doi.org/10.1016/j.gaitpost.2016.04.026 PMID: 27477707

244. Paker N, Bugdayci D, Goksenoglu G, Demircioglu DT, Kesiktas N, Ince N. Gait speed and related factors in Parkinson’s disease. J Phys Ther Sci. 2015; 27(12):3675–3679. https://doi.org/10.1589/jpts.27.3675 PMID: 26834330

245. Toosizadeh N, Mohler J, Lei H, Parvaneh S, Sherman S, Najafi B. Motor performance assessment in Parkinson’s Disease: association between objective in-clinic, objective in-home, and subjective/semi-objective measures. PLoS ONE. 2015; 10(4):e0124763. https://doi.org/10.1371/journal.pone.0124763 PMID: 25909898

246. Landers MR, Lopker M, Newman M, Gourlie R, Sorensen S, Yong R. A cross-sectional analysis of the characteristics of individuals with Parkinson Disease who avoid activities and participation due to fear of falling. J Neurol Phys Ther. 2017; 41(1):31–42. https://doi.org/10.1097/NPT.0000000000000162 PMID: 27977519

247. Mak MKY, Pang MYC. Fear of falling is independently associated with recurrent falls in patients with Parkinson’s disease: A 1-year prospective study. J Neurol. 2009; 256(10):1669–1695. https://doi.org/10.1007/s00415-009-5184-5 PMID: 19479166

248. Mak MKY, Pang MYC. Balance confidence and functional mobility are independently associated with falls in people with Parkinson’s disease. J Neurol. 2009; 256(5):742–749. https://doi.org/10.1007/s00415-009-5007-8 PMID: 19240961

249. Mak MKY, Pang MYC. Parkinsonian single fallers versus recurrent fallers: Different fall characteristics and clinical features. J Neurol. 2010; 257(9):1543–1551. https://doi.org/10.1007/s00415-010-5573-9 PMID: 20449601

250. Paul SS, Canning CG, Sherrington C, Lord SR, Close JCT, Fung VSC. Three simple clinical tests to accurately predict falls in people with Parkinson’s disease. Mov Disord. 2013; 28(5):655–662. https://doi.org/10.1002/mds.25404 PMID: 23450694

251. Hoskovcova M, Dusek P, Sieger T, Brozova H, Zarubova K, Bezdieck O, et al. Predicting falls in Parkinson disease: What is the value of instrumented testing in off medication state? PLoS ONE. 2015; 10(10):e0138849 [Correction: PLoS ONE 2015;10(11):e0147685]. https://doi.org/10.1371/journal.pone.0138849 PMID: 26443998

252. Custodio N, Lira D, Herrera-Perez E, Montesinos R, Castro-Suarez S, Cuenca-Alfaro J, et al. Predictive model for falling in Parkinson disease patients. eNeurologicalSci. 2016; 5:20–24. https://doi.org/10.1016/j.ensci.2016.11.003 PMID: 29430553
253. Mak MK, Wong A, Pang MY. Impaired executive function can predict recurrent falls in Parkinson’s disease. Arch Phys Med Rehabil. 2014; 95(12):2390–2395. https://doi.org/10.1016/j.apmr.2014.08.006 PMID: 25175162

254. Dickens C, Cherrington A, McGowan L. Do cognitive and behavioral factors mediate the impact of depression on medical outcomes in people with coronary heart disease? J Cardiopulm Rehabil Prev. 2011; 31(2):105–110. https://doi.org/10.1097/HCR.0b013e318207d32b PMID: 21317798

255. Einstle F, Weidner K, Nitschke M, Stöbel-Richter Y, Bley S, Neumann K, et al. Unterscheiden sich Patientinnen und Patienten mit Herzrhythmusstörungen hinsichtlich ihrer gesundheitsbezogenen Lebensqualität? [Are there differences between female and male patients with cardiac arrhythmias regarding quality of life?]. Z Med Psychol. 2007; 16(4):161–170.

256. Tsartsalis D, Dragioti E, Kontogeorgos K, Pitsavos C, Sakkas P, Papadimitriou GN, et al. The impact of depression and cardiophobia on quality of life in patients with essential hypertension. Psychiatriki. 2016; 27(3):192–203. https://doi.org/10.22365/jpsych.2016.273.192 PMID: 27837573

257. van Beek MHCT, Oude Voshaar RC, van Balkom AJLM, Pop G, Speckens AEM. Inverse correlation between cardiac injury and cardiac anxiety: a potential role for communication. J Cardiovasc Nurs. 2014; 29(5):448–453. https://doi.org/10.1097/JCN.0b013e3182982550 PMID: 23782865

258. O’Donovan CE, Painter L, Lowe B, Robinson H, Broadbent E. The impact of illness perceptions and disease severity on quality of life in congenital heart disease. Cardiol Young. 2016; 26(1):100–109. https://doi.org/10.1017/S1047951114002728 PMID: 25599956

259. Bennett P, Patterson K, Noble S. Predicting post-traumatic stress and health anxiety following a venous thrombotic embolism. J Health Psychol. 2016; 21(5):863–871. https://doi.org/10.1177/1359105314540965 PMID: 25030797

260. Asbury EA, Creed F, Collins P. Distinct psychosocial differences between women with coronary heart disease and cardiac syndrome X. Eur Heart J. 2004; 25(19):1695–1701. https://doi.org/10.1016/j.ehj.2004.07.035 PMID: 15451147

261. Robertson N, Javed N, Samani NJ, Khunti K. Psychological morbidity and illness appraisals of patients with cardiac and non-cardiac chest pain attending a rapid access chest pain clinic: a longitudinal cohort study. Heart. 2008; 94(3):12. https://doi.org/10.1136/hrt.2006.105537 PMID: 17540685

262. Marker CD, Carmin CN, Owby RL. Cardiac anxiety in people with and without coronary atherosclerosis. Depress Anxiety. 2008; 25(10):824–831. https://doi.org/10.1002/da.20348 PMID: 17597101

263. Schroeder S, Gerlach AL, Achenbach S, Martin A. The relevance of accuracy of heartbeat perception in noncardiac and cardiac chest pain. J Behav Med. 2015; 22(2):258–267.

264. Tew R, Guthrie EA, Creed FH, Cotter L, Kisely S, Tomenson B. A long-term follow-up study of patients with ischaemic heart disease versus patients with non-specific chest pain. J Psychiatr Res. 1995; 39 (8):977–985. https://doi.org/10.1016/0022-3999(95)90065-8 PMID: 8926607

265. Anderbro T, Gonder-Frederick L, Bolinder J, Lins PE, Wredling R, Moberg E, et al. Fear of hypoglycemia: relationship to hypoglycemic risk and psychological factors. Acta Diabetol. 2015; 52(3):581–589. https://doi.org/10.1007/s00592-014-0694-8 PMID: 25528005

266. Cooke D, O’Hara MC, Beinart N, Heller S, La Marca R, Byrne M, et al. Linguistic and psychometric validation of the Diabetes-Specific Quality-of-Life Scale in U.K. English for adults with type 1 diabetes. Diabetes Care. 2013; 36(5):1117–1125. https://doi.org/10.2337/dc12-0076 PMID: 23250797

267. Graue M, Iversen MM, Wentzel-Larsen T, Rokne B, Haugstvedt A. Assessing fear of hypoglycemia among adults with type 1 diabetes–psychometric properties of the Norwegian version of the Hypoglycemia Fear Survey II questionnaire. Nor Epidemiol. 2013; 23(1):75–81.

268. Snoek FJ, Pouwer F, Welch GW, Polonsky WH. Diabetes-related emotional distress in Dutch and U.S. diabetic patients: cross-cultural validity of the problem areas in diabetes scale. Diabetes Care. 2000; 23(9):1305–1309. https://doi.org/10.2337/diacare.23.9.1305 PMID: 10977023

269. Hanna KM, Weaver MT, Stump TE, Fortenberry JD, DiMeglio LA. The relationship of worry about hypoglycemia with diabetes-specific and typical youth behavior among emerging adults with type 1 diabetes. Diabetes Educ. 2014; 40(4):533–542. https://doi.org/10.1177/0145721714528997 PMID: 24676275

270. Lam AYR, Xin X, Tan WB, Gardner DS-L, Goh S-Y. Psychometric validation of the Hypoglycemia Fear Survey-II (HFS-II) in Singapore. BMJ Open Diabetes Res Care. 2017; 5(1):e000329. https://doi.org/10.1136/bmjdrcc-2016-000329 PMID: 28761646

271. Martyn-nemeth P, Quinn L, Hacker E, Park H, Kujath AS. Diabetes distress may adversely affect the eating styles of women with type 1 diabetes. Acta Diabetol. 2014 Aug; 51(4):683–688. https://doi.org/10.1007/s00592-014-0575-1 PMID: 24615054

PLOS ONE | https://doi.org/10.1371/journal.pone.0234124 July 27, 2020 46 / 48
272. Banck-Petersen P, Larsen T, Pedersen-Bjergaard U, Bie-Olsen L, Hei-Hansen T, Thorsteinsson B. Concerns about hypoglycaemia and late complications in patients with insulin-treated diabetes. Eur Diabetes Nurs. 2007; 4(3):113–118.

273. Herpertz S, Kramer-Pauts R, Paust R, Schleppinghoff BS, Best F, Bierwirth R, et al. Association between psychosocial stress and psychosocial support in diabetic patients. Int Congr Ser. 2002; 1241 (0531–5131):51–58.

274. Kubiak T, Hermanns N, Schreckling H-J, Kulzer B, Haak T. Evaluation of a self-management-based patient education program for the treatment and prevention of hypoglycaemia-related problems in type 1 diabetes. Patient Educ Couns. 2006; 60(2):228–234. https://doi.org/10.1016/j.pec.2005.01.008 PMID: 16442464

275. Snoek FJ, van der Ven NC, Lubach CH, Chatrou M, Adèr HJ, Heine RJ, et al. Effects of cognitive behavioural group training (CBGT) in adult patients with poorly controlled insulin-dependent (type 1) diabetes: a pilot study. Patient Educ Couns. 2001; 45(2):143–148. https://doi.org/10.1016/s0738-3991(01)00113-6 PMID: 11642464

276. Shi L, Parasuraman S, Shao H, Fonseca V. Relationships among symptomatic hypoglycaemia, patient-reported fear of hypoglycemia and health-related quality of life (HRQoL) in type-2 diabetes mellitus (T2dm) patients. Value Health. 2013; 16(3):A170.

277. Anderbro T, Amsberg S, Adamson U, Bolinder J, Lins P-E, Wredling R, et al. Fear of hypoglycaemia in adults with Type 1 diabetes. Diabet Med. 2010; 27(10):1151–1158. https://doi.org/10.1111/j.1464-5491.2010.03078.x PMID: 20854368

278. Peyrot M, Rubin RR. Perceived medication benefits and their association with interest in using inhaled insulin in type 2 diabetes: a model of patients' cognitive framework. Patient Prefer Adherence. 2011; 5:255–265. https://doi.org/10.2147/PPA.S18799 PMID: 21792298

279. Goebel-Fabbri AE, Fikkan J, Franko DL, Pearson K, Anderson BJ, Weinker K. Insulin restriction and associated morbidity and mortality in women with type 1 diabetes. Diabetes Care. 2008; 31(3):415–419. https://doi.org/10.2337/dc07-2026 PMID: 18070998

280. Jha S, Panda M, Kumar S, Gupta R, Neemani A, Jacob J, et al. Psychological insulin resistance in patients with type 2 diabetes. J Assoc Physicians India. 2015; 63(7):33–39. PMID: 26731825

281. Mollema ED, Snoek FJ, Adèr HJ, Heine RJ, van der Ploeg HM. Insulin-treated diabetes patients with fear of self-injecting or fear of self-testing: psychological comorbidity and general well-being. J Psychosom Res. 2001; 51(5):665–672. https://doi.org/10.1016/s0022-3999(01)00229-x PMID: 11728507

282. Shi LZ, Shao H, Zhao YN, Thomas NA. Is hypoglycaemia fear independently associated with health-related quality of life? Health Qual Life Outcomes. 2014; 12:167. https://doi.org/10.1186/s12955-014-0167-3 PMID: 25433668

283. Suzuki T, Takei R, Inoguchi T, Sonoda N, Sasaki S, Kaise T, et al. Clinical significance of barriers to blood glucose control in type 2 diabetes patients with insufficient glycemic control. Patient Prefer Adherence. 2015; 9:837–845. https://doi.org/10.2147/PPA.S84268 PMID: 26170633

284. De Peuter S, Janssens T, Van Diest I, Stans L, Troosters T, Decramer M, et al. Dyspnea perception in COPD: association between anxiety, dyspnea-related fear, and dyspnea in a pulmonary rehabilitation program. Chest. 2011; 140(3):618–625. https://doi.org/10.1378/chest.10-3257 PMID: 21493698

285. Zöckler N, Rief W, Kühl K. Krankheitsbezogene Ängste und Depressivität bei COPD-Patienten [COPD-specific anxiety and depressive symptoms in COPD patients]. Pneumologie. 2012; 66(5):290–296.

286. Demmer C. Quality of life and risk perception among predominantly heterosexual, minority individuals with HIV/AIDS. AIDS Patient Care STDs. 2001; 15(9):481–489. https://doi.org/10.1089/108729101753145475 PMID: 11587634

287. Ablah E, Haug A, Konda K, Tinius A, Ram S, Sadler T, et al. Exercise and epilepsy: A survey of Mid-west epilepsy patients. Epilepsy Behav. 2009; 14(1):162–166. https://doi.org/10.1016/j.yebeh.2008.09.019 PMID: 18926931
291. Holmes WC, Shea JA. Two approaches to measuring quality of life in the HIV/AIDS population: HAT-QoL and MOS-HIV. Qual Life Res. 1999; 8(6):515–527. https://doi.org/10.1023/a:1008931006866 PMID: 10548867

292. Holmes WC, Shea JA. Performance of a new, HIV/AIDS-targeted quality of life (HAT-QoL) instrument in asymptomatic seropositive individuals. Qual Life Res. 1997; 6(6):561–571. https://doi.org/10.1023/a:1018464200708 PMID: 9330555

293. Rivero-Méndez M, Portillo C, Solís-Baez SS, Wantland D, Holzemmer WL. Symptoms and quality of life of people living with HIV infection in Puerto Rico. P R Health Sci J. 2009; 28(1):54–59. PMID: 19266741

294. Lix LM, Graff LA, Walker JR, Clara I, Rawsthorne P, Rogala L, et al. Longitudinal study of quality of life and psychological functioning for active, fluctuating, and inactive disease patterns in inflammatory bowel disease. Inflamm Bowel Dis. 2008; 14(11):1575–1584. https://doi.org/10.1002/ibd.20511 PMID: 18512245

295. Maunder RG, Greenberg GR, Hunter JJ, Lancee WJ, Steinhart AH, Silverberg MS. Psychobiological subtypes of ulcerative colitis: pANCA status moderates the relationship between disease activity and psychological distress. Am J Gastroenterol. 2006; 101(11):2546–2551. https://doi.org/10.1111/j.1572-0241.2006.00798.x PMID: 17029612

296. Mutsaers B, Butow P, Dinkel A, Humphris G, Maheu C, Ozakinci G, et al. Identifying the key characteristics of clinical fear of cancer recurrence: An international Delphi study. Psychooncology. 2020; 29(2):430–436. https://doi.org/10.1002/pon.5283 PMID: 31713279

297. Hadjistavropoulos HD, Janzen JA, Kehler MD, Leclerc JA, Sharpe D, Bourgault-Fagnou MD. Core cognitions related to health anxiety in self-reported medical and non-medical samples. J Behav Med. 2012; 35(2):167–178. https://doi.org/10.1007/s10865-011-9339-3 PMID: 21487723