Baicalin ameliorates APEC-induced intestinal injury in chicks by inhibiting the PI3K/AKT-mediated NF-κB signaling pathway

Xinyi Cheng, Zhanyou Cao, Junrong Luo, Ruiming Hu, Huabin Cao, Xiaoquan Guo, Chenghong Xing, Fan Yang, Yu Zhuang, and Guoliang Hu¹

Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China

ABSTRACT Avian pathogenic *Escherichia coli* (APEC) is the causative agent of avian colibacillosis. Baicalin (BA) possesses multiple pharmacological effects, but the mechanism underlying its activity in APEC-induced intestinal injury remains unknown. This study aims to investigate the protective effects and possible mechanism of BA against APEC-induced intestinal injury. Sixty 1-day-old chicks were randomly divided into 4 groups: the control group (basal diet), *E. coli* group (basal diet), BAI10 group (10 mg/kg BA), and BAI20 group (20 mg/kg BA). After pretreatment with BA for 15 d and subsequent induction of APEC infection by pectoralis injection, the ileum was collected and analyzed. The results showed that BA-pretreatment demonstrated an alleviation of chicks in diarrhea rate, mortality, and histopathological changes in intestinal tissues after APEC infection. Additionally, following APEC infection, BA improved the intestinal barrier by elevating zona occludens (ZO)s (ZO-1, 2, 3), Claudins (Claudin1, 2, 3), Occludin, avian β-defensin (AvBD)s (AvBD1, 2, 4), lysozyme (Lyz) mRNA levels and ZO-1, Claudin1, and Occludin protein levels. Besides, the activities of total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and the SOD-1 and CAT mRNA levels and SOD-1 protein level were elevated by BA pretreatment. BA pre-treatment also decreased the malondialdehyde (MDA) content, heme oxygenase-1 (HO-1) and NADH quinone oxidoreductase 1 (NQO1) mRNA levels, and HO-1 protein level after APEC infection. BA alleviated the APEC-induced inflammatory response, including down-regulating the mRNA levels of proinflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin [IL]-1β, IL-6, IL-8) and upregulating the mRNA levels of anti-inflammatory cytokines (IL-4, IL-10, IL-13, transforming growth factor-β [TGF-β]). Furthermore, BA decreased the mRNA and protein levels of phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), and nuclear factor kappa-B (NF-κB) as well as the expression of the phosphorylated forms of these proteins after APEC infection. Collectively, our findings indicate that BA exerts a protective effect against APEC-induced intestinal injury in chicks by inhibiting the PI3K/AKT-mediated NF-κB pathway, suggesting that BA may be a potential therapeutic approach for avian colibacillosis.

Key words: Baicalin, avian pathogenic *Escherichia coli*, intestinal injury, PI3K/AKT/NF-κB, chick

INTRODUCTION

Avian colibacillosis, a disease caused by avian pathogenic *Escherichia coli* (APEC), is one of the principal bacterial diseases that affect birds of all ages, and it is especially severe in the chick phase (Azam et al., 2020). The bacterium causes a substantial economic burden on the poultry industry worldwide by decreasing growth performance and egg production and increasing mortality and condemnation rates (Korf et al., 2020). In addition, Yuan et al. (2021) verified that severe diarrhea was linked with inflammation, leading to rapid electrolyte imbalance and death in chicks and other young animals. A recent study showed that the major pathological phenomenon induced by APEC in chicks was intestinal inflammation, which affects the development of intestinal injury and can lead to diarrhea and even death (Lin et al., 2018). Increasing evidence has shown that the intestinal injury induced by APEC is closely related to the inflammatory response.

The inflammatory response is normally identified as the main line of defense against pathogenic invasion, but the inflammatory response also serves as the major...
pathological feature of APEC invasion (Peng et al., 2019). Thus, inhibition of inflammation plays an active role in APEC prevention. Nuclear factor kappa-B (NF-κB) is considered to be one of the most important regulators of the inflammatory process and is a widely expressed nuclear transcription factor (Lai et al., 2017). Activation of NF-κB can exacerbate the early immune response and the inflammatory reaction by releasing many inflammatory mediators (Kannian et al., 2020). Peng et al. (2019) showed that APEC can significantly increase the protein level of p-NF-κB and that baicalin (BA) can alleviate APEC-induced lung injury by inhibiting the activation of NF-κB. A recent study showed that the phosphatidylinositol 3-kinase-3 (PI3K)/protein kinase B (AKT) pathway was considered to have a remarkable role in the inflammatory response, and when the PI3K/AKT pathway was inhibited with pharmacological compounds, the cellular inflammatory response was attenuated due to downregulation of inflammatory genes (Erasalo et al., 2018). Interestingly, PI3K and AKT were deemed to play a pivotal role in APEC onset and development (Lv et al., 2019; Peng et al., 2019). In addition, PI3K and AKT are involved in the regulation of the NF-κB pathway by activating the phosphorylation of NF-κBα (IkBα; Wang et al., 2016; Sun et al., 2018). Therefore, to alleviate inflammatory status, restraining the activation of the PI3K/AKT-mediated NF-κB pathway may have potential application value.

In recent years, the application of functional additives in intestinal health care and disease control has been a research focus worldwide. BA is a flavonoid compound isolated from medicinal plants such as Scutellaria baicalensis (Shi et al., 2020). Numerous studies have shown that BA has a variety of pharmacological effects, such as anti-inflammatory, antioxidant, and anticancer effects on the lung, uterus, and other organs (Zhang et al., 2015; Liu et al., 2020). Cui et al. (2014) reported that BA could alleviate colitis through blockade of the toll-like receptor (TLR)4/NF-κB pathway in mice. Moreover, BA also possesses strong antioxidant activity, which inhibits the activities of superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and glutathione (GSH; Jia et al., 2021). However, the effects of BA on APEC-induced intestinal injury have not been fully elucidated.

In this regard, we speculated that dietary inclusion of BA could alleviate APEC-induced intestinal injury and the inflammatory response by improving the intestinal morphology and intestinal barrier and increasing whole-body antioxidant levels in chicks.

MATERIALS AND METHODS

Experimental Animals

All animals in this experiment were approved by the Committee of Animal Welfare of Jiangxi Agricultural University. Animal care and experimental procedures also complied with the criteria of the Ethics Committee of Jiangxi Agricultural University. In this experiment, 60 healthy 1-day-old Hy-line brown laying hens were selected to establish the animal model.

Experimental Design and Treatment

BA was provided by Sigma—Aldrich Company (Darmstadt, Germany). Escherichia coli APAP-O78 was purchased from the China Institute of Veterinary Drug Control (#CVCC1418). All chickens were reared for 1 d under standard chick-rearing conditions (12-h light/dark cycle, relative humidity 60 ± 5%, and relative temperature 37 ± 2°C). Afterward, the chickens were randomly divided into 4 groups: the control group (basic diet), E. coli group (basic diet), BA110 group (basic diet + 10 mg/kg BA), and BA120 group (basic diet + 20 mg/kg BA; n = 15 per group). The basic diet is based on a chick diet developed by the National Research Council, and all chicks were provided with the same access to water and food. The compositions of the diets are shown in Table 1. At 15 d, the chicks in the E. coli, BA110 and BA120 groups were injected with 3.39 × 10^9 CFU/mL E. coli liquid by pectoralis injection at a volume of 0.5 mL, and the chicks in the control group were injected with the same dose of saline. Two days later, the chicks were anesthetized with an overdose of sodium pentobarbital through intravenous injection. Then, the ileum was collected on ice and stored at −80°C for the subsequent analyses.

Table 1. Composition and nutrients levels of diets %.

Dietary composition %	Control group	E. coli group	BA110 group	BA120 group
Corn	66.00	66.00	66.00	66.00
Soybean meal	29.00	29.00	29.00	29.00
Premix*	5.00	5.00	5.00	5.00
Total	100.00	100.00	100.00	100.00
Nutrient level				
DL-Methionine %	0.26	0.26	0.26	0.26
Lysine %	0.88	0.88	0.88	0.88
Metabolic energy (MJ/kg)	11.92	11.92	11.92	11.92
Crude protein %	17.61	17.61	17.61	17.61

*Premix: Copper: 8 g; Iron: 67 g; Zinc: 87 g; Cobalt: 94 g; Sodium selenite: 11.25 g; Potassium iodide: 8.75 g; DL-Methionine: 300 g; Polysaccharide vitamin: 100 g; Sodium chloride: 2,000 g; Mountain flour: 13,000 g; Calcium hydrogen phosphate: 6,000 g.
Hematoxylin-Eosin Staining

Hematoxylin-eosin (H&E) staining and observation was carried out as in Lin et al. (2018). Briefly, the ilea were fixed for at least 24 h in 4% polyformaldehyde, embedded in paraffin wax, sectioned into approximately 5-μm-thick pieces, and stained with hematoxylin. The pathological changes in the ilea were evaluated under a light microscope (Olympus, Japan).

Immunofluorescence Staining

Immunofluorescence (IF) staining observation was carried out as in Huan et al. 2020. In brief, the sections were incubated with myeloperoxidase (MPO) (1:200, diluted) at 4°C overnight. After washing out excess antibody with phosphate-buffered saline (PBS), the sections were incubated with fluorescein (FITC)-conjugated goat anti-rabbit or anti-mouse immunoglobulin. The sections were washed with PBS and stained with 4', 6-Diamidino-2-Phenylindole (DAPI) (1:500, diluted). The sections were observed and photographed under a fluorescence microscope (Nikon Eclipse C1, Tokyo, Japan). Then, the fluorescence intensity values were measured with ImageJ software.

Determination of Oxidative Stress Indices

Determination of antioxidant indices was carried out as in Zhang et al. (2021). Measurements of the activity of superoxide dismutase (T-SOD) (Nanjing JianCheng Bioengineering Institute, China), catalase (CAT) (Nanjing JianCheng Bioengineering Institute), and glutathione peroxidase (GSH-Px; Nanjing JianCheng Bioengineering Institute, China) and the content of malondialdehyde (MDA; NanJing JianCheng Bioengineering Institute) in the ilea were performed strictly according to the commercial kit manuals. All the indexes were measured by microplate method.

Real-Time Quantitative Polymerase Chain Reaction Analysis

Total RNA was isolated from ileum samples using TransZol Up Reagent (Vazyme, Nanjing, China) according to the manufacturer’s instructions, and then a GeneQuant 1300 spectrophotometer was used to determine the RNA concentration. The total RNA extraction method followed that of Dai et al. (2019). The RNA was reverse transcribed into cDNA using HiScript III RT-PCR (Vazyme, Nanjing, China) according to the manufacturer’s instructions. The primers, shown in Table 2, were designed by using NCBI. Then, real-time quantitative polymerase chain reaction (RT-qPCR) was performed using ChamQ SYBR qPCR Master Mix (Vazyme, Nanjing, China) and carried out using the Real-time PC Detection System (Bio-Rad CFX384 Touch, Foster City, CA). The relative mRNA expression levels were calculated by the 2−ΔΔCT method, and GAPDH was used as an internal reference gene to normalize gene transcription.

Western Blotting

Western blotting was carried out as in Zhuang et al. (2019). The protein levels of GAPDH, p-PI3K, PI3K, p-AKT, AKT, p-NF-κB, NF-κB, zonula occludens (ZO)-1, Claudin1, Occludin, SOD1, and heme Oxygenase-1 (HO-1) were determined by Western blot analysis. The primary antibodies used in this study were p-PI3K (1:1,000; BioGot, China), PI3K (1:1,000; Proteintech, Wuhan, China), p-AKT (1:1,000; Bioget, China), AKT (1:1,000; Bioget), NF-κB (1:500; BioGot), ZO-1 (1:1,000; Abclonal, China), Claudin1 (1:500; Wanleibo, China), Occludin (1:500; Wanleibo, China), SOD1 (1:2,000; BioGot), GAPDH (1:500; Wanleibo, China), HSP27 (1:500; BioGot), and HSP70 (1:500; BioGot). The expression of the target genes was detected using a Licor Odyssey Infrared Imaging System (LI-COR, USA). The protein levels were normalized to GAPDH, and the result was expressed as the ratio of the target protein to GAPDH in each experimental group.
Proteintech, Wuhan, China), HO-1 (1:500; Wanleibio). The anti-rabbit and anti-mouse secondary antibodies were purchased from Cell Signaling Technology (Danvers, MA). Protein bands were imaged by Image Lab Software (Bio-Rad) and analyzed by ImageJ software. The GAPDH (1:5,000; Proteintech, Wuhan, China) band was used as a control to perform standardized quantitative analysis on Western blots.

Statistical Analysis

The statistical analysis was performed using IBM SPSS Statistics 26 and Microsoft Excel 2019 software. The data are expressed as the mean ± standard deviation (SD). Date among all treatments were analyzed by One-way analysis of variance (ANOVA) followed by Dunnett multiple comparison if the data were Gaussian distribution and had equal variance, or analyzed by Kruskal-Wallis followed by Dunn’s multiple comparisons if the data were not normally distributed. The Gaussian distribution of data was analyzed by D’Agostino-Pearson omnibus normality test and Kolmogorov-Smirnov test was tested for multiple comparisons. Finally, data graphs were generated using Prism 8.0 software. Differences were considered significant at $P < 0.05$ and are indicated as follows: $ns \, P > 0.05$, $*P < 0.05$, $**P < 0.01$, and $***P < 0.001$.

RESULTS

Effect of Dietary BA Supplementation on Diarrhea Rate and Mortality

After injecting the *E. coli* fluid, the number of diarrhea events and the mortality rate of the chicks were recorded. The results showed that when BA was added to the diet 15 d prior to *E. coli* infection, the BAI10 group and BAI20 group demonstrated a reduction in the diarrhea rate after injection of *E. coli* from 73.3 to 33.3 and 20%, respectively, in a dose-dependent manner (Table 3). Additionally, the mortality rate was decreased from 53.3 to 6.7% in the BA prevention groups (BAI10 and BAI20 groups) after injection of *E. coli* (Table 3). Overall, the results indicate that dietary BA supplementation could decrease the incidence of diarrhea and the mortality rate.

Histopathological Analysis of Ileum Tissues

HE staining of chick ileum tissues showed that the intestinal villi were intact and clear in the control group and that columnar epithelial cells were tightly connected. However, compared with that in the control group, the intestinal villi in the *E. coli* group were atrophied, and the crypts were hyperplastic. In particular, inflammatory cell infiltration and swelling and bleeding of the intestinal villi were observed in the *E. coli* group (arrowheads in Figure 1B). Nevertheless, compared with that in the *E. coli* group, the numbers of lesions in the BAI10 and BAI20 groups were reduced, and goblet cells were expanded to resist invasion (Figures 1C–1D).

Group	Diarrheic rate (%)	Dead rate (%)
Control	0.0	0.0
E. coli	73.3	53.3
BAI10	33.3	6.7
BAI20	20.0	6.7

Table 3. Diarrheic rate and mortality.
IF Staining

IF staining of chick ileum tissue showed that the MPO content in the *E. coli* group was dramatically (*P* < 0.001) improved compared with that in the control group, indicating an increased inflammatory response and elevated oxidative stress levels in vivo. However, in the BAI10 and BAI20 groups, the expression of MPO was noticeably (*P* < 0.01 or *P* < 0.001) decreased compared with that in the *E. coli* group, and the expression levels were basically the same as that in the control group (Figures 2A–2B).

Effects of *E. coli* and BA on Oxidative Stress Response

As shown in Figures 4A–4D, the activities of CAT, GSH-Px, and T-SOD were considerably depressed in the *E. coli* group (*P* < 0.05 or *P* < 0.01), whereas the activity of MDA was increased but not significantly (*P* > 0.05) compared with the control group. However, in the BAI10 and BAI20 groups, there was a significant (*P* < 0.05 or *P* < 0.01, or *P* < 0.001) increase in the activities of CAT and T-SOD and a decrease (*P* > 0.05) in the content of MDA compared with that in the *E. coli* group.

The RT-qPCR results verified that the mRNA levels of HO-1 and NQO-1 were increased in the *E. coli* group compared with the control group; however, the levels of HO-1 and NQO-1 were downregulated in the BAI10 and BAI20 groups compared with the *E. coli* group (Figures 4E–4F). In contrast, compared to those in the *E. coli* and the control groups, the mRNA levels of SOD-1 and CAT were markedly (*P* < 0.05 or *P* < 0.01) decreased, but the mRNA levels of SOD-1 and CAT were markedly (*P* < 0.01 or *P* < 0.001) increased in the BAI10 and BAI20 groups (Figures 4E–4F). Consistently, compared with the control group, the protein level of HO-1 was upregulated (*P* < 0.05), notably in the *E. coli* group (Figures 4G–4H). In addition, compared to that in the *E. coli* and control groups, the protein expression of SOD-1 in the BAI10 and BAI20 groups was noticeably (*P* < 0.01) downregulated (Figures 4G–4H). However, the BAI10 and BAI20 groups showed robust decreases (*P* < 0.05 or *P* < 0.001) in the protein level of HO-1 and increases (*P* < 0.05 or *P* < 0.01) in the protein level of SOD-1 compared with the *E. coli* group (Figures 4G–4H).

Effect of BA on Inflammatory Factors

RT-qPCR analysis confirmed that the relative mRNA levels of proinflammatory factors (IL-1β, IL-6, IL-8, and...
TNF-α) were markedly ($P < 0.05$ or $P < 0.001$) increased in the *E. coli* group compared with the control group (Figures 5A–5B). The BAI10 and BAI20 groups exhibited a significant ($P < 0.05$ or $P < 0.01$ or $P < 0.001$) reduction in the levels of the above proinflammatory factors compared with the *E. coli* group (Figures 5A–5B). The relative mRNA expression levels of anti-inflammatory factors (IL-4, IL-10, and TGF-β) were markedly ($P < 0.01$ or $P < 0.001$) decreased in the *E. coli* group compared with the control group. However, compared with the *E. coli* group, the BAI10 and BAI20 groups exhibited a noticeable ($P < 0.05$ or $P < 0.001$) increase in the expression of the above anti-inflammatory factors (Figures 5C–5D).

BA Increases p-PI3K, p-AKT and p-NF-κB mRNA, and Protein Levels

As shown in Figures 6A–6B, the RT-qPCR results revealed that the mRNA levels of AKT and NF-κB in the *E. coli* group were dramatically ($P < 0.05$ or $P < 0.01$) improved compared with those in the control group. However, the mRNA levels of PI3K were
increased but were not significantly different (\(P > 0.05 \)) from those in the control group. However, the mRNA levels of PI3K, AKT, and NF-\(\kappa \)B in the BAI10 and BAI20 groups were decreased dramatically (\(P < 0.05 \) or \(P < 0.01 \)) compared with those in the \(E. \ coli \) group. Further confirming the levels of PI3K/AKT/NF-\(\kappa \)B signaling pathway-related proteins, there were notable (\(P < 0.01 \)) increases in the protein levels of p-PI3K, p-AKT, and p-NF-\(\kappa \)B in the \(E. \ coli \) group compared with the control group (Figures 6C–6G). Additionally, the protein levels of p-PI3K/PI3K, p-AKT/AKT, and p-NF-\(\kappa \)B/NF-\(\kappa \)B were increased (\(P < 0.01 \) or \(P < 0.001 \)) in the \(E. \ coli \) group compared with the control group (Figure 6F). However, the BAI10 and BAI20 groups exhibited a marked (\(P < 0.05 \)) decrease in the protein levels of p-PI3K/PI3K, p-AKT/AKT, and p-NF-\(\kappa \)B/NF-\(\kappa \)B compared with the \(E. \ coli \) group (Figure 6F).

DISCUSSION

Avian colibacillosis is a complex disease in poultry that is caused by APEC and frequently has serious effects on mortality, diarrhea rates, and egg production losses in birds and causes extreme economic losses in global poultry production (Korf et al., 2020). Because of the imbalance in the nutrition levels of chicks and the instability of their intestinal flora, chicks are more likely to be affected by external pathogens at the early stage of growth, especially \(E. \ coli \) (Wang et al., 2021).
BA is a polyphenolic compound isolated from a variety of traditional Chinese medicines that has been reported to possess multiple biological activities, such as antioxidant, anti-inflammatory, and anticancer activities (Dinda et al., 2017; Ren et al., 2017). In the present study, we verified that BA can effectively alleviate intestinal damage and intestinal inflammation induced by APEC by improving the antioxidant capacity of the body and upregulating the expression of intestinal barrier proteins.

Severe watery diarrhea and dehydration are the main symptoms of APEC-induced colibacillosis, which causes high mortality in chicks (Peng et al., 2019). Recent studies have indicated that the intestinal tract is considered to be one of the primary target organs affected by APEC-induced colibacillosis (Kathayat et al., 2021). Moreover, chicks infected by APEC frequently show intestinal morphological damage, destruction of intestinal barrier integrity and so on. (Kathayat et al., 2021). Therefore, the intestinal barrier, which can resist the invasion of external pathogens, is particularly important. In the present study, BA significantly reduced the diarrhea rate and mortality of chicks and improved intestinal villus atrophy, bleeding, inflammatory cell infiltration, and other conditions caused by APEC infection. MPO is a marker of intestinal damage that can regulate the inflammatory response of the organism, leading to the formation of oxides and tissue cell damage (Alvarenga et al., 2016). In addition, the amount of MPO can be used to represent the degree of intestinal injury and the degree of inflammatory response. Interestingly, in the present study, BA significantly reduced the amount of MPO in the ileum after APEC injection.

The intestinal epithelial barrier is an important barrier for resistance against pathogenic microorganisms and the maintenance of organism health, and a healthy intestinal barrier is also important in reducing the inflammatory response in vivo (Wang et al., 2020). The intestinal barrier primarily consists of physical (intestinal mechanical barrier and mucus layer), chemical, and immunological barriers (antimicrobial peptides and Lyz; Suzuki, 2020). Claudins, ZOs, and Occludin are key backbone proteins, peripheral membrane proteins and transmembrane proteins of tight junctions (TJs), and the intestinal mechanical barrier (Shen et al., 2020; Yuan et al., 2021). Wu et al. (2020) revealed that the protein levels of Claudin-1, Occludin, and ZO-1 were markedly decreased in patients with predominant rotavirus damp heat diarrhea. Mucoprotein 2 (MUC2), the major protective mucin in the mucus layers, is a large, gel-forming glycoprotein secreted by intestinal goblet cells. Antimicrobial peptides (AvBD1, AvBD2, and AvBD4) and Lyz are important components of the intestinal chemical barrier, which can protect the intestinal mucosa from damage (Fusco et al., 2016).
In addition, multiple studies have found that BA can strengthen the intestinal barrier and maintain intestinal health by affecting multiple functions of the body, including alleviating the inflammatory response and enhancing antioxidant capacity (Liu et al., 2020; Rizzo et al., 2021). Notably, the results of the present study showed that after APEC infection, the mRNA and/or protein levels of TJs, MUC2, AvBDs, and Lyz were markedly downregulated, indicating that the intestinal barrier had been destroyed; these results are consistent with Wu et al. (2020). However, BA treatment significantly upregulated the mRNA and/or protein levels of the above genes. These results are consistent with the intestinal morphological alterations in the group of chicks pretreated with BA. According to our results, APEC can affect intestinal health and damage the intestinal barrier, and BA can significantly improve these conditions.

Intestinal injury is manifested not only by damage to the intestinal barrier but also by weakening the antioxidant capacity of the body. Antioxidant enzymes (CAT, GSH-Px, and T-SOD) play key roles in protecting cells from oxidative stress by eliminating free radicals produced in metabolic reactions and/or activated by immunostimulants (Reyes-Becerril et al., 2019). In addition, as a marker of lipid peroxidation, the MDA content can reveal the extent of lipid peroxidation, which indirectly reflects the formation of free radicals and in turn the degree of organism damage (Duan et al., 2019). The present study showed that the activities of CAT, GSH-
and then activate NF-κB (Fu et al., 2016). Moreover, studies have shown that the PI3K/AKT signaling pathway mediates the anti-inflammatory response by inhibiting the NF-κB/cyclooxygenase-2 (COX-2)/TNF-α/IL-1β inflammatory signaling pathway in experimental ischemic stroke (Tu et al., 2015). Therefore, we hypothesized that inhibition of the PI3K/AKT pathway could reduce the inflammatory response by inhibiting the activation of NF-κB. The results from the present study showed that the mRNA and protein levels of PI3K, AKT, and NF-κB were markedly increased, proving that the PI3K/AKT/NF-κB signaling pathway was activated by AEPC. However, the mRNA and protein levels of p-PI3K, p-AKT, and p-NF-κB were significantly decreased by BA treatment. It was further verified that BA can inhibit inflammation by inhibiting the activation of the PI3K/AKT/NF-κB signaling pathway.

Collectively, our findings showed that BA attenuated pathological changes in the ileum, oxidative stress and the inflammatory response in APEC-infected chicks. The mechanism may be attributed to the suppression of PI3K/AKT-mediated NF-κB signaling pathways. All the above results strongly suggest that BA is a viable therapeutic agent in the treatment of inflammatory diseases induced by bacteria, especially E. coli.

ACKNOWLEDGMENTS

This study was supported by the National Natural Science Foundation of China (No. 32000819, Beijing, P.R. China), the by the National Key Research and Development Program (2018YFD0501302), Jiangxi Province Postgraduate Innovation Special Fund Project (YC2020-S239). All authors thank all members of clinical veterinary medicine laboratory in the College of Animal Science and Technology, Jiangxi Agricultural University, for help in the experimental process.

DISCLOSURES

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

Alvarenga, E. M., L. K. Souza, T. S. Araujo, K. M. Nogueira, F. B. Sousa, A. R. Araujo, C. S. Martins, D. M. Pacífico, B. G. de C, E. P. Souza, D. P. Sousa, and J. V. Medeiros. 2016. Carvacrol reduces irinotecan-induced intestinal mucositis through inhibition of inflammation and oxidative damage via TRPA1 receptor activation. Chem. Biol. Interact. 260:129–140.

Azmari, M., M. Mohsin, T. J. Johnson, E. A. Smith, A. Johnson, M. Umar, and M. K. Saleemi. 2020. Sajjad-Ur Rahman. 2020. Genomic landscape of multi-drug resistant avian pathogenic Escherichia coli recovered from broilers. Vet. Microbiol. 247:108766.

Borges, B. C., D. Garcia-Galiano, R. Rorato, L. Elias, and C. F. Elias. 2016. P1Bk p110beta subunit in leptin receptor expressing cells is required for the acute hypophagia induced by endotoxemia. Mol. Metab. 5:379–391.
Korf, I., S. Kittler, A. Bierbrodt, R. Mengden, C. Rohde, M. Rohde, D. Yuan, X. D. J. Jiang, P. Wu, Y. Liu, J. J. Guo, and J. L. Li. 2018. Lycopene triggers Nrf2-AMPK cross talk to alleviate atrazine-induced nephrotoxicity in mice. J. Agric. Food Chem. 66:12385–12394.

Liu, B., X. Piao, W. Niu, Q. Zhang, C. Ma, T. Wu, Q. Gu, T. Cui, and S. Li. 2020. Kuijjeyuan decoction improved intestinal barrier injury of ulcerative colitis by affecting TLR4-dependent PI3K/AKT/ NF-kappaB oxidative and inflammatory signaling and gut microbiota. Front. Pharmacol. 11:1030.

Liu, X., S. Wang, and G. Zhao. 2020. Baicalin relieves lipopolysaccharide-induced inflammatory injury through regulation of miR-21 in H9c2 cells. Phytother. Res. 34:1134–1141.

Lv, H., J. Li, and Y. Q. Che. 2019. CXCL8 gene silencing promotes neurogal cells activation while inhibiting neuroinflammation through the PI3K/Akt/NF-kappaB-signaling pathway in mice with ischemic stroke. J. Cell Physiol. 234:7341–7355.

Peng, L. Y., M. Yuan, Z. M. Wu, K. Song, C. L. Zhang, Q. An, F. Xin, J. L. Yu, P. F. Yi, B. D. Fu, and H. Q. Shen. 2019. Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses. Sci. Rep. 9:4063.

Qian, Y. Q., Z. H. Feng, X. B. Li, Z. C. Hu, J. W. Xuan, X. Y. Wang, H. C. Xu, and J. X. Chen. 2018. Downregulating PI3K/Akt/NF-kappaB signaling with allicin for ameliorating the progression of osteoarthritis: in vitro and vivo studies. Food Funct. 9:4865–4875.

Rahman, F., F. Asgharzadeh, A. Avan, F. Barneh, M. R. Parizadeh, G. A. Ferns, M. Ryzhikov, M. R. Ahmadian, E. Giovannietti, M. Jafari, M. Khazaei, and S. M. Hassanian. 2020. Rigosertib potently protects against colitis-associated intestinal fibrosis and inflammation by regulating PI3K/AKT and NF-kappaB signaling pathways. Life Sci. 240:117470.

Ren, X., Z. Zhang, J. Tian, H. Wang, G. Song, Q. Guo, J. Tian, Y. Han, Q. Liao, G. Liu, H. Ding, and G. Jiang. 2017. The downregulation of e-Myc and its target gene hTERT is associated with the antiinflammatory effects of baicalin on HL-60 cells. Oncol. Lett. 14:6833–6840.

Reyes-Becerril, M., C. Angulo, V. Sanchez, A. Cuesta, and A. Cruz. 2019. Methymercury, cadmium and arsenic (III)-induced toxicity, oxidative stress and apoptosis in pacific red snapper livers. Aquat. Toxicol. 213:105223.

Rizzo, V., N. Ferlazzo, M. Curro, G. Isola, M. Matarese, M. P. Bertuccio, D. Caccamo, G. Matarese, and R. Ientile. 2021. Baicalin-induced autophagy preserved LPS-stimulated intestinal cells from inflammation and alterations of paracellular permeability. Int. J. Mol. Sci. 22:5.

Shen, J., J. J. Chen, B. M. Zhang, J. Zhao, L. Chen, Q. Y. Ye, Q. H. Ling, Y. Y. Chen, Z. Y. Zhong, and Q. W. Huang. 2020. Baicalin is curative against rotavirus damp heat diarrhea by tuning colonic mucosal barrier and lung immune function. Dig. Dis. Sci. 65:2234–2245.

Shi, T., S. Li, X. Jiang, X. Jiang, Q. Zhang, Y. Wang, Y. Zhang, L. Wang, X. Qin, W. Zhang, and Y. Zheng. 2020. Baicalin protects mice from infection with methcillin-resistant Staphylococcus aureus via alleviating inflammatory response. J. Leukoc. Biol. 108:1829–1839.

Sun, W., Y. Li, and S. Wei. 2018. miR-4262 regulates chondrocyte viability, apoptosis, autophagy by targeting SIRT1 and activating PI3K/AKT/mTOR signaling pathway in rats with osteoarthritis. Exp. Ther. Med. 15:1123–1129.

Suzuki, T. 2020. Regulation of the intestinal barrier by nutrients: the role of tight junctions. Anim. Sci. J. 91:e13357.

Szczepankiewicz, D., M. Skrzypski, E. Pruszynska-Osmałek, A. P. Kolodziejski, M. Sassek, B. Stefanska, K. W. Nowak, and A. Szczepankiewicz. 2018. Interleukin 4 affects lipid metabolism and the expression of pro-inflammatory factors in mature rat adipocytes. Immunobiology 223:677–683.

Tu, X. K., W. Z. Yang, J. P. Chen, Y. Chen, Q. P. Chen, P. P. Chen, and S. Shi. 2015. Hypoxic preconditioning attenuates inflammatory reaction and brain damage after focal cerebral ischemia in rats; involvement of PI3K/Akt and ERK1/2 signaling pathway. J. Mol. Neurosci. 55:912–922.

Wang, C., L. Zeng, T. Zhang, J. Liu, and W. Wang. 2016. Tennigenin prevents IL-1beta-induced inflammation in human osteoarthritis chondrocytes by suppressing PI3K/AKT/NF-kappaB signaling pathway. Inflammation 39:807–812.
Wang, Y., J. Li, Y. Xie, H. Zhang, J. Jin, L. Xiong, and H. Liu. 2021. Effects of a probiotic-fermented herbal blend on the growth performance, intestinal flora and immune function of chicks infected with Salmonella pullorum. Poult. Sci. 100:101196.

Wang, Y., J. Yang, W. Wang, K. Z. Sanidad, M. A. Cinelli, D. Wan, S. H. Hwang, D. Kim, K. Lee, H. Xiao, B. D. Hammock, and G. Zhang. 2020. Soluble epoxide hydrolase is an endogenous regulator of obesity-induced intestinal barrier dysfunction and bacterial translocation. Proc. Natl. Acad. Sci. U.S.A. 117:8431–8436.

Wu, Y., Y. Li, Z. Ruan, J. Li, L. Zhang, H. Lu, and Z. Xu. 2020. Puerarin rebuilding the mucus layer and regulating mucin-utilizing bacteria to relieve ulcerative colitis. J. Agric. Food Chem. 68:11402–11411.

Xue, V. W., J. Y. Chung, C. Cordoba, A. H. Cheung, W. Kang, E. W. Lam, K. T. Leung, K. F. To, H. Y. Lan, and P. M. Tang. 2020. Transforming growth factor-beta: a multifunctional regulator of cancer immunity. Cancers (Basel) 12:11.

Yao, W., Y. Sun, Y. Sun, P. Chen, Z. Meng, M. Xiao, and X. Yang. 2019. A preliminary report of the relationship between gene polymorphism of IL-8 and its receptors and systemic inflammatory response syndrome caused by wasp stings. DNA Cell Biol. 38:1512–1518.

Yuan, J., S. Che, L. Zhang, and Z. Ruan. 2021. Reparative effects of ethanol-induced intestinal barrier injury by flavonoid luteolin via MAPK/NF-kappaB/MLCK and Nrf2 signaling pathways. J. Agric. Food Chem. 69:4101–4110.

Zhang, L., F. Yang, Y. Li, H. Cao, A. Huang, Y. Zhuang, C. Zhang, G. Hu, Y. Mao, J. Luo, and C. Xing. 2021. The protection of selenium against cadmium-induced mitophagy via modulating nuclear xenobiotic receptors response and oxidative stress in the liver of rabbits. Environ. Pollut. 285:117301.

Zhang, Y., X. Li, B. Ciric, C. G. Ma, B. Gran, A. Rostami, and G. X. Zhang. 2015. Therapeutic effect of baicalin on experimental autoimmune encephalomyelitis is mediated by SOCS3 regulatory pathway. Sci. Rep. 5:17407.

Zhuang, Y., C. Xing, H. Cao, C. Zhang, J. Luo, X. Guo, and G. Hu. 2019. Insulin resistance and metabonomics analysis of fatty liver haemorrhagic syndrome in laying hens induced by a high-energy low-protein diet. Sci. Rep. 9:10141.