Tumors of ampulla of Vater: A case series and review of chemotherapy options

Adriana Romiti, Viola Barucca, Angelo Zullo, Ida Sarcina, Roberta Di Rocco, Chiara D’Antonio, Marco Latorre, Paolo Marchetti

Abstract
Carcinomas of the Ampulla of Vater are rare tumors, accounting for 0.2% of gastrointestinal cancers. Compared with other biliary tract neoplasms, these tumors have a relatively favorable prognosis after surgical resection. Based on their epithelium of origin, two subtypes of ampullary carcinoma have been recently distinguished: intestinal and pancreatobiliary. This study evaluates histopathological features and outcomes of ampullary carcinoma and to compares the survival of these tumors to that of other biliary tract tumors. The chemotherapeutic options available for ampullary cancer are also reviewed. We analyzed data from 20 consecutive patients with ampullary carcinomas and 26 patients with other biliary tract carcinomas, observed in our Institution. Statistical analysis was performed by using either Fisher’s exact test or χ^2 test for categorical variables. Median time of survival was calculated and compared using the Log-Rank test. Similar distribution of demographic characteristics and stage between ampullary and other biliary tract cancers was observed. Patients with ampullary cancer underwent surgery more frequently than other biliary cancers while chemotherapy and radiotherapy were used equally. In accordance with the literature, a longer median survival was observed in the group of ampullary carcinomas.

INTRODUCTION
In clinical trials concerning chemotherapy treatments, tumors of the ampulla of Vater are usually included in the group of pancreatic-biliary tumors, although some data recognize their histological and clinical peculiarities. Only a few studies have focused on this specific group of tumors and the available case series are generally small. This study aimed to describe our own series of ampullary cancers, including the histopathological features and outcome. Moreover the survival of these patients was compared with that of a group of other biliary tract tumors. A review of chemotherapy options available for ampullary cancer was also carried out.
TUMORS OF THE AMPULLA OF VATER: AN OVERVIEW

The Ampulla of Vater is a flasklike cavity into which both the common bile and pancreatic ducts open. However, in 42% of patients, the ampulla is the termination of common bile duct alone and the pancreatic duct enters the duodenum separately, adjacent to the ampulla. The ampulla is 1.5 cm long or less, traverses the duodenal wall, opens into the duodenal lumen through (major) duodenal papilla (papilla of Vater) and is surrounded by the pancreas and duodenum. The area within 2 cm of the ampulla is called periampullary region. Periampullary cancers account for 5% of all gastrointestinal cancers, whilst cancer of the ampulla is rare (0.2% of the cases).

Most ampullary tumors are adenocarcinomas, but are occasionally papillary, adenosquamous or mucinous. Recent studies have reviewed histopathological findings of such tumors, identifying two distinct histological types of adenocarcinoma based on their epithelium of origin: intestinal and pancreatobiliary. Intestinal ampullary adenocarcinomas originate from the intestinal epithelium overlying the ampulla whereas pancreatobiliary ampullary carcinomas originate from the epithelium of the distal common bile duct and distal pancreatic duct. The intestinal subtype usually expresses cytokeratin (CK)20 and caudal homebox gene transcription factor 2 (CDX2), whereas biliopancreatic differentiation is generally characterized by a positive immunostaining for apomucins (MUC 1, MUC5a), CK7, CK17 and negativity for CDX2. Moreover, with MUC 2 mostly positive in intestinal subtype, positivity for MUC2 and CDX2 is used to exclude pancreatobiliary origin whereas positivity for MUC1 and CK17 is used to exclude intestinal origin.

The study of microsatellite instability (MSI) pattern in ampullary tumours showed a significant association between high-MSI and intestinal mucinous differentiation. A high proportion of ampullary carcinomas have both COX-2 and vascular endothelial growth factor highly expressed.

Curative surgery is feasible in about 50% of ampullary cancer whilst a rate of up to 10% is reported for intestinal subtype. Positivity for MUC2 and CDX2 is used to exclude pancreatobiliary origin whereas positivity for MUC1 and CK17 is used to exclude intestinal origin.

The study of microsatellite instability (MSI) pattern in ampullary tumours showed a significant association between high-MSI and intestinal mucinous differentiation. A high proportion of ampullary carcinomas have both COX-2 and vascular endothelial growth factor highly expressed.

Curative surgery is feasible in about 50% of ampullary cancer whilst a rate of up to 10% is reported for intestinal subtype. Positivity for MUC2 and CDX2 is used to exclude pancreatobiliary origin whereas positivity for MUC1 and CK17 is used to exclude intestinal origin.

Case Series

Medical records of patients diagnosed with ampullary and other biliary tract tumors, observed at our Institution from 2005 to 2010 were reviewed. In particular, we analyzed demographic characteristics, tumor histology, UICC stage, treatments employed and survival time for consecutive ampullary and biliary tract carcinoma patients. According to the Kimura classification, ampullary cancers were divided in intestinal and pancreatobiliary, depending on their histological differentiation. To compare characteristics, Student’s T test, Fisher’s exact test or χ² tests for categorical variables were used, as appropriate. Median time of survival was calculated and compared using the Log-Rank test.

Overall, we identified 20 patients with ampullary and 26 patients with other biliary tract carcinomas (gallbladder: 11 cases, intrahepatic bile duct: 10, extrahepatic bile duct: 5). The median age at diagnosis was 64 years (range: 33-83 years) and 68 years (range: 55-80 years), respectively. Other demographic characteristics, histological features, stage, treatment received and outcome of patients with ampullary cancer are shown in Table 1. In detail, 11 patients (55%) were classified as intestinal type, 8 (40%) as pancreatobiliary and 1 as neuroendocrine. Nineteen (95%)

The assessment and staging of ampullary neoplasms is based on several diagnostic modalities, including extracorporeal ultrasonography (US), computed tomography (CT), magnetic resonance cholangiopancreatography, esophagogastro-duodenoscopy, endoscopic US (EUS), endoscopic-retrograde cholangiopancreatography, intra-ductal US (IDUS) and biopsy. Detection of ampullary carcinoma and both tumor extension and metastatic lymph nodes is better with EUS than US and CT scan and equal to magnetic resonance imaging (MRI). Transpapillary IDUS demonstrates good accuracy in the detection of tumor infiltration of ampullary cancer, whereas CT and MRI are recommended for the detection of distant metastases.

Pancreatoduodenectomy (Wipple procedure) is regarded as the standard treatment for ampullary cancers whereas endoscopic ampullectomy is typically reserved for benign ampullary lesions. DEFINITIVE consensus guidelines for the use of adjuvant or neoadjuvant chemotherapy and radiation therapy in ampullary cancer are lacking and, in general, treatment is individualized and/or based on institutional protocols. In locally unresectable or metastatic cancer, both chemoradiotherapy and chemotherapy can be applied although the lack of randomized controlled trials prevents the choice of any treatment as standard. Fluoropyrimidines, cisplatin, and gemcitabine are the most commonly used drugs in ampullary carcinoma, but the best combination and protocol remain to be identified.

Medical records of patients diagnosed with ampullary and other biliary tract tumors, observed at our Institution from 2005 to 2010 were reviewed. In particular, we analyzed demographic characteristics, tumor histology, UICC stage, treatments employed and survival time for consecutive ampullary and biliary tract carcinoma patients. According to the Kimura classification, ampullary cancers were divided in intestinal and pancreatobiliary, depending on their histological differentiation. To compare characteristics, Student’s T test, Fisher’s exact test or χ² tests for categorical variables were used, as appropriate. Median time of survival was calculated and compared using the Log-Rank test.

Overall, we identified 20 patients with ampullary and 26 patients with other biliary tract carcinomas (gallbladder: 11 cases, intrahepatic bile duct: 10, extrahepatic bile duct: 5). The median age at diagnosis was 64 years (range: 33-83 years) and 68 years (range: 55-80 years), respectively. Other demographic characteristics, histological features, stage, treatment received and outcome of patients with ampullary cancer are shown in Table 1. In detail, 11 patients (55%) were classified as intestinal type, 8 (40%) as pancreatobiliary and 1 as neuroendocrine. Nineteen (95%)
patients underwent a surgical resection and 13 (68.4%) of these also received an adjuvant therapy, including chemotherapy alone in 5 cases and a combined chemo-radiotherapy (CCRT) in the remaining patients. Ten (50%) patients experienced disease progression. In most of these cases a first-line chemotherapy was administered [gemcitabine-oxaliplatino: 4 cases, gemcitabine-cisplatin: 1, gemcitabine-capcashitabine: 1, gemcitabine: 1, 5-fluorouracil (5FU): 1], whilst the neuroendocrine tumor patient received topotecan. Median survival was 22 mo (range: 4-57 mo). Twelve (46.1%) of the 26 patients with other biliary tract tumors underwent surgical resection, and 8 (66.7%) of these also received a adjuvant therapy, comprising chemotherapy alone in 3 cases and a CCRT in the remaining patients. Seventeen (65.4%) patients experienced disease progression, and 12 of these patients received first-line chemotherapy (gemcitabine-oxaliplatino: 4 cases, gemcitabine-cisplatin: 1, gemcitabine-capcashitabine: 1, gemcitabine: 1, 5-fluorouracil (5FU): 1), whilst the neuroendocrine tumor patient received topotecan. Median survival was 11.5 mo (range: 1-60 mo). As shown in Table 2, surgical resection was more frequently feasible in patients with ampullary cancers (95%) than in those with biliary cancers at other sites (46.1%), the difference being statistically significant ($P < 0.05$). Overall, patients with ampullary carcinoma showed a significantly higher median survival than those patients with other biliary tumors (22 mo vs 11.5 mo, $P < 0.05$).

REVIEW OF THE LITERATURE

Early disease and adjuvant treatment

Postoperative (adjuvant) treatments, such as chemotherapy and/or radiotherapy, can be used to reduce the loco-

Table 1 Demographics, histological features, stage, treatment received and outcome of 20 cases of ampullary carcinoma

No.	Age (yr)	Gender	Tumor subtype	Stage	Adjuvant therapy	Site of failure	First Line Therapy	Response (mo)	TTP (mo)	Status	OS (mo)	
1	77	M	Intestinal	G2	LD	Op + 5FU-CCRT	NA	NA	NA	NA	DOD	14
2	63	M	Intestinal	G3	LD	Op + FOLFOX	-----	-----	-----	-----	NED	17
3	45	M	Pancreatobiliary	G2	LD	Op + 5FU-CCRT	NA	NA	NA	NA	DOD	48
4	70	M	Intestinal	G2	LD	Op	Lymphnodes	CDDP-Gem	PD	11	DOD	20
5	73	F	Intestinal	G1	LD	Op	-----	-----	-----	-----	NED	57
6	60	M	Intestinal	G2	LD	Op + 5FU-FA	-----	-----	-----	-----	DOD	36
7	73	M	Pancreatobiliary	-----	-----	PERIENTOM	Lamicta Cap-Gem	PD	3	DOD	4	
8	79	F	Pancreatobiliary	-----	LD	Op + Cap-CRT	-----	-----	-----	-----	NED	22
9	68	F	Pancreatobiliary	G2	LD	Op	-----	-----	-----	-----	219	
10	83	F	Intestinal	G2	LD	Op	-----	-----	-----	-----	NED	41
11	65	M	Neuroendocrine	G4	LD	Op + CDDP-VPI6	Liver	Topotecan PD	2	DOD	10	
12	68	M	Intestinal	G3	LD	Op + FOLFOX	-----	-----	-----	-----	NED	22
13	48	F	Intestinal	G3	LD	Op + 5FU-CCRT	Lung	Gem-Oxa	PD	2	DOD	23
14	49	F	Intestinal	G1	LD	Op + Cap-CRT	-----	-----	-----	-----	NED	24
15	71	F	Pancreatobiliary	G1	LD	Op	-----	-----	-----	-----	NED	44
16	61	M	Pancreatobiliary	G1	LD	Op + Gem + RT	Multiple	5FU PD	12	DOD	16	
17	65	F	Intestinal	G3	LD	Op + FOLFOX	Liver	Gem PD	14	DOD	19	
18	79	M	Pancreatobiliary	G3	LD	Op	Liver	Gem-Oxa	NA	4	LOF	---
19	45	F	Pancreatobiliary	G3	LD	Op + 5FU-CCRT	Lung	Gem-Oxa	PD	4	DOD	10
20	33	F	Intestinal	G1	LD	Op + Cap-CRT	-----	-----	-----	-----	NED	30

PS: ECOG Performance status; TTP: Time to progression; LD: Limited disease; ED: Extended disease; Op: Operation; CCRT: Concurrent chemoradiotherapy; 5FU: 5-fluorouracil; OXA: Oxaliplatin; FOLFOX: 5FU + FA + OXA; Cap: Capecitabine; CDDP: Cisplatin; VP16: Etoposide; Gem: Gemcitabine; NA: Not applicable; PD: Progressive disease; DOD: Died of disease; NED: No evidence of disease; DOO: Died of other cause; LOF: Lost of follow-up; OS: Overall survival.

Table 2 Demographics, histological features, stage, treatment received and outcome of patients affected with ampullary or other biliary tract tumors (n %)

Treatment	Ampullary tumors ($n = 20$)	Other biliary tumors ($n = 26$)	P-value
Gender	9 (45)	10 (38.5)	NS
Female	11 (55)	16 (61.5)	
Tumor subtype			
Intestinal	11 (55)	19 (68.8)	
Pancreatobiliary	8 (40)	8 (30.8)	
Others	1 (5)	1 (5)	
Grade			
1-2	11 (55)	7 (66.7)	NS
3-4	7 (45)	5 (33.3)	
UICC Stage			
I	4 (20)	4 (15.4)	NS
II	10 (50)	10 (38.5)	
III	4 (20)	3 (11.5)	
IV	2 (10)	9 (34.6)	
Surgery	19 (95)	12 (46.1)	< 0.05
Chemotherapy	9 (45)	14 (53.8)	NS
Chemo-radiotherapy	8 (40)	7 (26.9)	NS

NS: Not significant.
Few studies are available on the use of intraoperative radiation therapy [34-38], with data generally drawn from studies on adjuvant CCRT (Table 3) [39-43]. Unfortunately, the benefit achieved following postoperative chemoradiation in patients with pancreatic, peripancreatic, and ampullary cancer observed in some studies [38,40,42,43] was not confirmed in others, including two randomized studies [37,39,41,43]. In the EORTC 40891 study, 218 patients with T1-2 N0-1 aM0 pancreatic and T1-3N0-1aM0 peripancreal cancer were randomized to either chemoradiotherapy regimen (5-FU given as a continuous infusion during radiotherapy) or observation [49]. The overall survival (OS) did not significantly differ between the two treatment groups, although the 10-year OS was 29% and 8% in the peripancreal and pancreatic cancer, respectively. In another randomized study, 120 patients with pancreatic or peripancreal cancer received either adjuvant intrarterial chemotherapy (mitoxantrone, 5-FU, leucovorin, and cisplatinum) combined with radiotherapy or no adjuvant treatment [61]. Disappointingly, no significant survival advantage was observed in the treatment group although CCRT produced a significant reduction in the appearance of liver metastases in peripancreal tumors. One study evaluated the role of an additive chemotherapy following CCRT in patients with histologically confirmed, nonmetastatic adenocarcinoma of extrahepatic biliary tract excluding gallbladder and peripancreal cancer [43]. Both 3-year disease-free and OS were increased by the use of chemotherapy after a CCRT, when compared to CCRT alone (45.2% vs 26.6% and 62.6% vs 30.8%, respectively, P < 0.05).

One phase III multicenter randomized trial tested the role of adjuvant chemotherapy in 508 pancreatoco-biliary carcinoma [40]. The study recruited patients with resected pancreatic (n = 173), bile duct (n = 139), gallbladder (n = 140), or ampulla of Vater (n = 56) carcinomas in two arms: adjuvant therapy with mitomycin C and 5-FU (MF arm) and surgery alone (control arm). A significantly higher 5-year survival rate in gallbladder carcinoma patients was detected in the MF group as compared to the control group (26% vs 14.4%, P < 0.05). Conversely, no survival advantage was reported between patients with pancreatic, bile duct, or ampullary carcinomas. The primary role of the adjuvant chemotherapy in the treatment of pancreatic cancer firstly emerged in the ESPAC study [47], and more recently confirmed by the CONKO 001 study [46]. The former, a 2 × 2 factorial design study including more than 280 patients, demonstrated a survival benefit in patients receiving postoperative 5-FU-based chemotherapy and a detrimental effect of postoperative CCRT. The latter detected, in the group of patients receiving postoperative gemcitabine, a statistically significant benefit, both in the disease-free and in OS. The efficacy of a gemcitabine-based as compared to a 5FU-based adjuvant treatment was also emphasized by another trial, in which chemotherapy for 3 wk prior and for 12 wk after CCRT was administered [50]. In agreement with these data, adjuvant gemcitabine-based chemotherapy was found to be a significant independent predictor of a favourable prognosis in patients with hilar cholangiocarcinoma [51]. In the ESPAC-3 study, 304 patients with ampullary cancer were randomized to adjuvant chemotherapy (n = 199, 101 5FU, 98 Gemcitabine) and 105 to observation [52]. Compared to the control group, a survival benefit was observed in patients, with a R0 resection treated with adjuvant chemotherapy (P = 0.057).

Locally advanced and metastatic disease

Surgery represents the main therapeutic approach for ampullary cancer, whilst unresectable tumors can be treated with either radiotherapy or chemotherapy. However, due to the limited data available, the role of radiation therapy remains to be defined. To achieve better results, external beam radiation therapy has been combined with intraluminal brachytherapy and/or chemotherapy [53]. Metastatic/advanced ampullary adenocarcinoma has a poor prognosis, with an OS rate at 2 years ranging from 5% to 10% [54]. There is no standard chemotherapeutic regimen for metastatic disease. The role of chemotherapy in advanced biliary cancer was assessed in a study in which palliative chemotherapy achieved survival advantage and improved quality of life when compared with best supportive care [55]. A pooled analysis of 104 clinical trials, comprising 2810 patients, showed that a single-agent

Table 3: Studies on adjuvant chemo-radiotherapy

Treatment group	Control group	Treatment benefit	Author	
Pancreatic + periampullary	CCRT	Observation	No	Klinkenbijl et al. [36] 1999
Ampullary	CCRT	Observation	No	Sikora et al. [37] 2005
Ampullary	RT	Observation	Yes (node+)	Bhatia et al. [38] 2006
Pancreatic + periampullary	CCRT	Observation	No	Smeenk et al. [39] 2007
Ampullary	RT	Observation	Yes	Krishnan et al. [40] 2008
Pancreatic + periampullary	RT	Observation	Yes	Morak et al. [41] 2008
Ampullary	RT	Observation	Yes	Kim et al. [42] 2009
Ampullary	RT	Observation	No	Zhou et al. [43] 2009
Extra hepatic biliary cancer	CCRT + CT	Observation	Yes	Lim et al. [44] 2009

RCT: Randomized controlled trial; CCRT: Combined chemio-radiotherapy; CAI: Celiac axis infusion (intra-arterial chemotherapy); RT: Radiotherapy; CT: Chemotherapy.
antimetabolite (5FU or gemcitabine) is better than any other single drug, as well as that a combined schedule of antimetabolites plus platinum salts is more effective than a single agent or any other doublet, the most promising combinations being gemcitabine plus cisplatin, and gemcitabine plus oxaliplatin. Several clinical trials have reported a wide range of response rate (RR) and OS time, using a regimen of 5-FU, cisplatin and epirubicin (RR: 10%-40%; median OS: 5-11 mo) to treat biliary tract neoplasms. The combination of 5-FU, doxorubicin and mitomycin (FAM regimen), in 38 patients with advanced small bowel adenocarcinoma and ampullary adenocarcinoma, demonstrated a RR of 18% and a median OS of 8 mo. A combination regimen comprising capcitabine and oxaliplatin, in 30 patients with advanced small bowel adenocarcinoma and ampullary adenocarcinoma (n = 12), achieved a RR of 33% in ampullary tumors, whilst the median TTP and OS of all patients were 11.3 and 20.4 mo, respectively. Another phase II study evaluated outcomes in 29 patients with advanced ampullary adenocarcinoma using 3 different schedules with cisplatin and 5-FU or capcitabine or gemcitabine. Overall, a RR of 27.5% and median survival of 12.5 mo, with no significant differences among different regimens used, were observed.

Combination of gemcitabine with either oxaliplatin or capcitabine achieved a RR of about 30% and a median PFS from 5.7 to 7 mo. The GERCOR study investigated gemcitabine plus oxaliplatin (GEMOX regimen) in a cohort of 56 patients with advanced biliary tract adenocarcinoma, including 3 cases of ampullary adenocarcinoma. Patients were divided in 2 subgroups: group A (n = 33) included patients with eligible criteria for phase II studies and group B (n = 23) included patients who would normally be excluded from such studies (PS > 2 and/or bilirubin > 2.5 × normal and/or prior chemotherapy). In group A, there was an objective response in 36% of cases, with median PFS of 5.7 mo and OS of 15.4 mo, whilst in group B objective response was 22%, PFS 3.9 mo, and OS 7.6 mo. A gemcitabine plus capcitabine schedule was tested in 45 patients with advanced biliary cancer and no prior chemotherapy. The overall objective RR and stable disease were 31% and 42%, respectively, the median PFS was 7 mo and OS was 14 mo. A recent study was conducted on 37 patients with advanced biliary tract adenocarcinoma (19% patients had an ampullary adenocarcinoma) using a 4-drug regimen (PEFG: Cisplatin 40 mg/mq + Epirubicin 40 mg/mq on Day 1; Gemcitabine 600 mg/mq on Day 1 and 8; 5-FU 200 mg/mq daily as continuous infusion). Overall, 43% of patients achieved a partial response, with median survival of 12.1 mo, and a 1-year OS rate of 52%. In this study, ampullary cancer was significantly more responsive to chemotherapy than biliary tract (P < 0.05) and gallbladder cancer (P = 0.057), although the sample size of each subgroup was too small to allow reliable conclusions. A recent randomized phase III study assigned 410 patients with locally advanced or metastatic biliary tract cancer to receive cisplatin (25 mg/mq D1) + gemcitabine (1000 mg/mq D1 and 8) or gemcitabine alone. There were 206 patients in the gemcitabine-group (ampullary: 11 cases, 5.3%) and 204 patients in the cisplatin + gemcitabine-group (ampullary: 9 cases, 4.4%). The median PFS was 8 mo in the cisplatin+gemcitabine-group and 5 mo in the gemcitabine-group. The median OS was 11.7 mo and 8.1 mo in the doublet-regimen and in the gemcitabine-group, respectively, indicating a significant survival advantage. This UK study defined a new standard of care and demonstrated that it is now possible to perform large scale studies in advanced biliary cancer.

Targeted therapies represent a new, interesting chapter in cancer treatment. To date, there are no consistent data concerning biliary tree tumors and antiangiogenic drugs and only a few studies concerning anti-epidermal growth factor receptor (EGFR) drugs. Results of one phase II study, evaluating GEMOX plus Cetuximab in 30 cholangiocarcinoma patients, showed a surprisingly high RR (63.3%) along with good tolerability. The French BINGO trial, a multicenter randomized phase II study, tested the efficacy of GEMOX alone or in combination with bi-weekly Cetuximab in the first-line treatment of advanced biliary cancer. Overall 101 patients were divided in two treatment groups: arm A received GEMOX (Gemcitabine 1000 mg/mq D1 + Oxaliplatin 100 mg/mq D2) and arm B received GEMOX plus Cetuximab (500 mg/mq bi-weekly). The preliminary results (4-mo at interim analysis) from 36 patients showed a PFS of 44% in arm A and 61% in arm B, indicating a significant activity of Cetuximab. Since EGFR overexpression strongly correlates with tumor progression in biliary cancer, the use of anti EGFR seems to be a promising therapeutic option. However, well conducted prospective clinical trials are needed to understand the role of such drugs in ampullary cancer.

CONCLUSION

What did we learn from our study and what suggestions come from the literature? There is no conclusive data that confirm the usefulness of adjuvant radiotherapy or CCRT in biliary tract cancer whereas favorable results support the use of adjuvant chemotherapy. An acceptable standard of chemotherapy in a setting of advanced ampullary adenocarcinoma may be the cisplatin+gemcitabine regimen. However, the small sample size of patients with ampullary carcinoma recruited in the ABC 02 study, and lack of other randomized trials, make the optimal treatment for these patients still debatable. Histopathology, molecular features and clinical outcome clearly identify two distinct types of ampullary cancer, and their differences should be taken into account both in selecting medical treatments and in planning clinical trials.

REFERENCES

1 Kim RD, Kundhal PS, McGillvray ID, Catrall MS, Taylor B, Langer B, Grant DR, Zogopoulos G, Shah SA, Greig PD, Gallinger S. Predictors of failure after pancreaticoduodenectomy
for ampullary carcinoma. J Am Coll Surg 2006; 202: 112-119
2 Howe JR, Klimstra DS, Moccia RD, Conlon KC, Brennan MF. Factors predictive of survival in ampullary carcinoma. Ann Surg 1998; 228: 87-94
3 Kimura W, Futakawa N, Zhao B. Neoplastic diseases of the papilla of Vater. J Hepatobiliary Pancreat Surg 2004; 11: 223-231
4 Zhou H, Schaefer N, Wolff M, Fischer HP. Carcinoma of the ampulla of Vater: comparative histologic/immunohistochemical classification and follow-up. Am J Surg Pathol 2004; 28: 875-882
5 Agoff SN, Crispin DA, Bronner MP, Dail DH, Hawes SE, Haggitt RC. Neoplasms of the ampulla of vater with concurrent pancreatic intraductal neoplasia: a histological and molecular study. Mod Pathol 2001; 14: 139-146
6 Kimura W, Futakawa N, Yamagata S, Wada Y, Kuroda A, Muto T, Esaki Y. Different clinicopathologic findings in two histologic types of carcinoma of papilla of Vater. Jpn J Cancer Res 1994; 85: 161-166
7 Sessa F, Furlan D, Zampatti C, Carnevali I, Franzoi F, Capella C. Prognostic factors for ampullary adenocarcinomas: tumor stage, tumor histology, tumor location, immunohistochemistry and microsatellite instability. Virchows Arch 2007; 451: 649-657
8 Chu PG, Schwarz RE, Lau SK, Yen Y, Weiss LM. Immunohistochemical staining in the diagnosis of pancreatobiliary and ampulla of Vater adenocarcinoma: application of CDX2, CK17, MUCI, and MUC2. Am J Surg Pathol 2005; 29: 359-367
9 Rueemmele P, Dietmaier W, Terracciano L, Tornillo L, Bataille D, Sucha JS, Santini D, Verzi A, Vincenzi B, Borzomati D, Vecchio F, Coppola R, Antinori A, Magistrelli P, Tonini G, Rabitti C. COX-2 expression in ampullary carcinoma: correlation with angiogenesis process and clinicopathological variables. J Clin Pathol 2006; 59: 492-496
10 Perrone G, Santini D, Verzi A, Vincenzi B, Borzomati D, Vecchio F, Coppola R, Antinori A, Magistrelli P, Tonini G, Rabitti C. CDX-2 expression in ampullary carcinoma: correlation with angiogenesis process and clinicopathological variables. J Clin Pathol 2006; 59: 492-496
11 Beger HG, Treitschke F, Gansauge F, Harada N, Hiki N, Mattfeldt T. Tumor of the ampulla of Vater: experience with local or radical resection in 171 consecutively treated patients. Arch Surg 1999; 134: 526-532
12 Riall TS, Cameron JL, Lillemoe KD, Winter JM, Campbell KA, Hruban RH, Chang D, Yao CJ. Resected periampullary adenocarcinoma: 5-year survivors and their 6- to 10-year follow-up. Surgery 2006; 140: 764-772
13 Yeo CJ, Sohn TA, Cameron JL, Hruban RH, Lillemoe KD, Pitt HA. Periampullary adenocarcinoma: analysis of 5-year survivors. Ann Surg 1998; 227: 821-831
14 Michelassi F, Erro F, Dawson PJ, Pietrabissa A, Noda S, Handcock M, Block GE. Experience with 647 consecutive tumors of the duodenum, ampulla, head of the pancreas, and distal common bile duct. Ann Surg 1989; 210: 544-554; discussion 554-556
15 O’Connell JB, Maggard MA, Manunga J, Tomlinson JS, Reber HA, Ko CY, Hines OJ. Survival after resection of ampullary carcinoma: a national population-based study. Ann Surg Oncol 2008; 15: 1820-1827
16 Balachandran P, Sikora SS, Kapoor S, Krishnani N, Kumar A, Saxena R, Kapoor VK. Long-term survival and recurrence patterns in ampullary cancer. Pancreas 2006; 32: 390-395
17 de Castro SM, van Heek NT, Kuhlmann KB, Busch OR, Ofnerhaus GJ, van Gulik TM, Obertop H, Gouma DJ. Surgical management of neoplasms of the ampulla of Vater: local resection or pancreatoduodenectomy and prognostic factors for survival. Surgery 2004; 136: 994-1002
18 Di Giorgio A, Alfieri S, Rotondi F, Prete F, Di Miceli D, Ridolfini MP, Rosa F, Covino M, Doglietto GB. Pancreateoduodenectomy for tumors of Vater’s ampulla: report on 94 consecutive patients. World J Surg 2005; 29: 513-518
19 Duffy JP, Hines OJ, Liu JH, Ko CY, Cortina G, Isacco WH, Nguyen H, Leonardi M, Tompkins RK, Reber HA. Improved survival for adenocarcinoma of the ampulla of Vater: fifty-five consecutive resections. Arch Surg 2003; 138: 941-948; discussion 948-950
20 Park JS, Yoon DS, Kim KS, Choi JS, Lee WJ, Chi HS, Kim BR. Factors influencing recurrence after curative resection for ampulla of Vater carcinoma. J Surg Oncol 2007; 95: 286-290
21 Qiao ZL, Zhao YG, Ye ML, Yang YM, Zhao JX, Huang YT, Wan YL. Carcinoma of the ampulla of Vater: factors influencing long-term survival of 127 patients with resection. World J Surg 2007; 31: 137-143; discussion 144-146
22 Sudo T, Murakami Y, Umemura K, Hayashidani Y, Hashimoto Y, Ohge H, Shimamoto F, Sueda T. Prognostic impact of perineural invasion following pancreatoduodenectomy with lymphadenectomy for ampullary carcinoma. Dig Dis Sci 2008; 53: 2281-2286
23 Todoroki T, Koike N, Morishita Y, Kawamoto T, Ohkobuchi N, Shoda J, Fukuda Y, Takahashi H. Patterns and predictors of failure after curative resections of carcinoma of the ampulla of Vater. Ann Surg Oncol 2003; 10: 1176-1183
24 Woo SM, Ryu JK, Lee SH, Yoo JW, Park JK, Kim YT, Jang JY, Kim SW, Kang GH, Yoon YB. Recurrence and prognostic factors of ampullary carcinoma after radical resection: comparison with distal extrabiliary cholangiocarcinoma. Ann Surg Oncol 2007; 14: 3195-3201
25 Hsu HP, Yang TM, Hsieh VH, Shan YS, Lin PW. Predictors for patterns of failure after pancreatoduodenectomy in ampullary cancer. Ann Surg Oncol 2007; 14: 50-60
26 Carter JT, Grentert JP, Rubenstein L, Stewart L, Way LW. Tumors of the ampulla of vater: histopathologic classification and predictors of survival. J Am Coll Surg 2008; 207: 210-218
27 Westgaard A, Tafjord S, Farstad IN, Vancarova M, Eide TJ, Mathisen O, Clausen OP, Gladhaga IP. Pancreateobiliary versus intestinal histologic type of differentiation is an independent prognostic factor in resected peripancreatic adenocarcinoma. BMC Cancer 2008; 8: 170
28 Skordilis P, Mouzas IA, Dimoulios PD, Alexandrakis G, Moschandrea J, Kouroumalis E. Is endosonography an effective method for detection and local staging of the ampullary carcinoma? A prospective study. BMC Surg 2002; 2: 1
29 Chen CH, Yang CC, Yeh YH, Chou DA, Nien CK. Reappraisal of endosonography of ampullary tumors: correlation with transabdominal sonography, CT, and MRI. J Clin Ultrasound 2009; 37: 18-25
30 Ito K, Fujita N, Noda Y, Kobayashi G, Horaguchi J, Takasawa O, Obana T. Preoperative evaluation of ampullary neoplasm with EUS and transapillary intraductal US: a prospective and histopathologically controlled study. Gastrointest Endosc 2007; 66: 740-747
31 Kamada T, Saitou H, Takamura A, Nojima T, Okushiba SI. The role of radiotherapy in the management of extrabiliary bile duct cancer: an analysis of 145 consecutive patients treated with intraluminal and/or external beam radiotherapy. Int J Radiat Oncol Biol Phys 1996; 34: 767-774
32 Pitt HA, Nakeeb A, Abrams RA, Coleman J, Piantadosi S, Yeo CJ, Lillemoe KD, Cameron JL. Perihilar cholangiocarcinoma: Postoperative radiotherapy does not improve survival. Ann Surg 1995; 221: 788-797; discussion 797-798
33 Kobayashi S, Nagano H, Marubashi S, Takeda Y, Tanemura M, Konishi K, Yoshioka Y, Inoue T, Doki Y, Mori M. Impact of postoperative irradiation after non-curative resection of hilar biliary cancer. J Surg Oncol 2009; 100: 657-662
34 O’Connor JK, Sause WT, Hazard LJ, Belnap LP, Noyes RD. Survival after attempted surgical resection and intraoperative radiation therapy for pancreatic and peripancreatic adenocarcinoma. Int J Radiat Oncol Biol Phys 2005; 63: 1060-1066
35 Nakano K, Chijinwa K, Toyonaga T, Ueda J, Takamatsu Y,...
Kimura M, Nakamura K, Yamaguchi K, Tanaka M. Combination therapy of resection and intraoperative radiation for patients with carcinomas of extrahepatic bile duct and ampulla of Vater: prognostic advantage over resection alone? Hepato-gastroenterology 2003; 50: 928-933

Klinkenbijl JH, Jeekel J, Sahmoud T, van Pel R, Couvreur ML, Veenhof CH, Arnaud JP, Gonzalez DG, de Wit LT, Henripin AM, Wils J. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region: phase III trial of the EORTC gastrointestinal tract cancer cooperative group. Ann Surg 1999; 230: 776-782; discussion 782-784

Sikora SS, Balachandran P, Dimri K, Rastogi N, Kumar A, Saxena R, Kapoor VK. Adjuvant chemo-radiotherapy in ampullary carcinomas. Eur J Surg Oncol 2005; 31: 158-163

Bhatia S, Miller RC, Haddock MG, Donohue JH, Krishnan S. Adjuvant therapy for ampullary carcinomas: the Mayo Clinic experience. Int J Radiat Oncol Biol Phys 2006; 66: 514-519

Smeenk HG, van Eijck CH, Hop WC, Erdmann J, Tran KC, Debois M, van Cutsem E, van Dekken H, Klinkenbijl JH, Jeekel J. Long-term survival and metastatic pattern of pancreatic and periampullary cancer after adjuvant chemotherapy or observation: long-term results of EORTC trial 40891. Ann Surg 2007; 246: 734-740

Krishnan S, Rana V, Evans DB, Varadharachy G, Das P, Bhatia S, Delcos ME, Janjan NA, Wolf RF, Crane CH, Pisters PW. Role of adjuvant chemoradiation therapy in adenocarcinomas of the ampulla of vater. Int J Radiat Oncol Biol Phys 2006; 70: 735-743

Morak MJ, van der Gaast A, Incrocci L, van Dekken H, Hermans JJ, Jeekel J, Hop WC, Kazemier G, van Eijck CH. Adjuvant intra-arterial chemotherapy and radiotherapy versus surgery alone in resectable pancreatic and periampullary cancer: a prospective randomized controlled trial. Ann Surg 2008; 248: 1031-1041

Zhou J, Hsu CC, Winter JM, Pawlik TM, Laheru D, Hughes MA, Donehower R, Wolfgang C, Akbar U, Schuilk R, Cameron J, Herman JM. Adjuvant chemoradiation versus surgery alone for adenocarcinoma of the ampulla of Vater. Radiat Oncol 2009; 2: 244-248

Lim KH, Oh DY, Chie EK, Jang JY, Im SA, Kim TY, Bang YJ, Ha SW. Role of adjuvant chemoradiation for ampulla of Vater cancer. Int J Radiat Oncol Biol Phys 2009; 75: 436-441

Narang AK, Miller RC, Hsu CC, Bhatia S, Pawlik TM, Laheru D, Hruban RH, Zhou J, Winter JM, Haddock MG, Donohue JH, Schulick RD, Wolfgang CL, Cameron JL, Herman JM. Evaluation of adjuvant chemoradiation therapy for ampullary adenocarcinoma: the Johns Hopkins Hospital-Mayo Clinic collaborative study. Radiat Oncol 2011; 6: 126

Takada T, Amano H, Yasuda H, Nimura Y, Matsushiro T, Kato H, Nagakawa T, Nakayama T. Is postoperative adjuvant chemotherapy useful for gallbladder carcinoma? A phase III multicenter prospective randomized controlled trial in patients with resected pancreatic carcinoma. Cancer 2002; 95: 1470-1479

Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, Beger H, Fernandez-Cruz L, Derenvis C, Lacaine F, Falconi M, Pedrizzoli P, Pap A, Spooner D, Kerr DJ, Büchler MW. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 2004; 350: 1200-1210

Oettle H, Post S, Neuhaus P, Gellert L, Langrehr J, Ridwelski K, Schramm H, Fahlike J, Zuelke C, Burkart C, Gutberlet K, Kettner E, Schmalenberg H, Weigang-Koehler K, Bechstein WO, Niedergerthmann M, Schmidt-Wolf I, Roll I, Doerken B, Riess H. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 2007; 297: 267-277

Neuhaus P, Riess H, Post S, Gellert L, Ridwelski K, Schramm H, Zuelke C, Fahlike J, Langrehr J, Oettle H, Deutsche Krebsgesellschaft (CAO/AIO), CONKO-001: Final results of the randomized, prospective, multicenter phase III trial of adjuvant chemotherapy with gemcitabine versus observation in patients with resected pancreatic cancer (PC). J Clin Oncol 2008; 26 Suppl. abstr LBA4504

Regine WF, Winter KA, Abrams RA, Safran H, Hoffman JP, Konski A, Benson AB, Macdonald JS, Kudumotri MR, Fromm ML, Haddock MG, Schafer P, Willett CG, Rich TA. Fluorouracil vs gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma: a randomized controlled trial. JAMA 2008; 299: 1019-1026

Murakami Y, Uemura K, Sudo T, Hayashidani Y, Hashimoto Y, Nakamura H, Nakashima A, Sueda T. Gemcitabine-based adjuvant chemotherapy improves survival after aggressive surgery for hilar cholangiocarcinoma. J Gastrointest Surg 2009; 13: 1470-1479

Neoptolemos JP, Moore MJ, Cox TF, Valle JW, Palmer DH, Mclonald A, Carter R, Tebbutt NC, Derenvis C, Smith M, Glimelius B, Coxon FY, Lacaine F, Mitchell MR, Gahne P, Bassi C, Halloran C, Olah A, Rawcliffe CL, Büchler MW, European Study Group for Pancreatic Cancer. Ampullary cancer ESPAC-3 (v2) trial: A multicenter, international, open-label, randomized controlled phase III trial of adjuvant chemotherapy versus observation in patients with adenocarcinoma of the ampulla of vater. J Clin Oncol 2011; 29 Suppl. abstr LBA4006

Saito H, Takada T, Miyazaki M, Miyakawa S, Tsukada K, Nagino M, Kondo S, Puruse J, Tsuyuguchi T, Kimura F, Yoshitomi H, Nozawa S, Yoshida M, Wada K, Amano H, Miura F. Radiation therapy and photodynamic therapy for biliary tract and ampullary carcinomas. J Hepatobiol Pancreat Surg 2008; 15: 63-68

Key C, Meisner ALW. Cancers of the liver and biliary tract. In: Ries LAG, Young JL, Keel GE, Eisner MP, Lin YD, Horner MJ, editors. SEER survival monograph: cancer survival among adults: US SEER Program, 1988-2001, patient and tumor characteristics, Bethesda, MD: National Cancer Institute, SEER Program, 2007: 49-58

Glimelius B, Hoffman K, Sjöden PO, Jacobsson G, Sellström E, Enander LK, Linne T, Svensson C. Chemotherapy improves survival and quality of life in advanced pancreatic and biliary cancer. Ann Oncol 1996; 7: 593-600

Eckel F, Schmid RM. Chemotherapy in advanced biliary tract carcinoma: a pooled analysis of clinical trials. Br J Cancer 2007; 96: 896-902

Valle JW, Wasan H, Johnson P, Jones E, Dixon L, Swindell R, Baka S, Maraveyas A, Corrie P, Falk S, Gollins S, Lofts F, Evans L, Meyer T, Anthony A, Iveson T, Highley M, Osborne R, Bridgewater J. Gemcitabine alone or in combination with cisplatin in patients with advanced or metastatic cholangiocarcinomas or other biliary tract tumours: a multicentre randomised phase II study - The UK ABC-01 Study. Br J Cancer 2009; 101: 621-627

André T, Reya-Esvid JM, Fortaux L, Ross P, Leslie M, Rosmorduc O, Clemens MR, Louvet C, Perez N, Mehmud F, Scheithauer W. Gemcitabine and oxaliplatin in advanced biliary tract carcinoma: a phase II study. Br J Cancer 2008; 99: 862-867

Ellis PA, Norman A, Hill A, O'Brien ME, Nicolson M, Hick, I.T., Cunningham D. Epirubicin, cisplatin and infusional 5-fluorouracil (5-FU) (ECF) in hepatobiliary tumours. Eur J...
Cancer 1995; 31A: 1594-1598

60 Morizane C, Okada S, Okusaka T, Ueno H, Saisho T. Phase II study of cisplatin, epirubicin, and continuous-infusion 5-fluorouracil for advanced biliary tract cancer. Oncology 2003; 64: 475-476

61 Rao S, Cunningham D, Hawkins RE, Hill ME, Smith D, Daniel F, Ross PJ, Oates J, Norman AR. Phase III study of 5FU, etoposide and leucovorin (FELV) compared to epirubicin, cisplatin and 5FU (ECF) in previously untreated patients with advanced biliary cancer. Br J Cancer 2005; 92: 1650-1654

62 Lee MA, Woo IS, Kang JH, Hong YS, Lee KS. Epirubicin, cisplatin, and protracted infusion of 5-FU (ECF) in advanced intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol 2004; 130: 346-350

63 Gibson MK, Holcroft CA, Kvols LK, Haller D. Phase II study of 5-fluorouracil, doxorubicin, and mitomycin C for metastatic small bowel adenocarcinoma. Oncologist 2005; 10: 132-137

64 Overman MJ, Varadhachary GR, Kopetz S, Adinin R, Lin E, Morris JS, Eng C, Abbruzzese JL, Wolff RA. Phase II study of capetibatin and oxaliplatin for advanced adenocarcinoma of the small bowel and ampulla of Vater. J Clin Oncol 2009; 27: 2598-2603

65 Kim ST, Lee J, Lee KT, Lee JK, Lee KH, Choi SH, Heo JS, Choi DW, Park SH, Park JO, Lim HY, Park YS, Kang WK. The efficacy of frontline platinum-based combination chemotherapy in advanced adenocarcinoma of the ampulla of Vater. Med Oncol 2010; 27: 1149-1154

66 André T, Tournigand C, Rosmorduc O, Provent S, Mandard-Goebel F, Avenin D, Selle F, Paye F, Hammou L, Houry S, Gayet B, Lotz JP, de Gramont A, Louvet C. Gemcitabine combined with oxaliplatin (GEMOX) in advanced biliary tract adenocarcinoma: a GERCOR study. Ann Oncol 2004; 15: 1339-1343

67 Knox JJ, Hedley D, Oza A, Feld R, Siu LL, Chen E, Nematollahi M, Pond GR, Zhang J, Moore MJ. Combining gemcitabine and capecitabine in patients with advanced biliary cancer: a phase II trial. J Clin Oncol 2005; 23: 2332-2338

68 Cereda S, Passoni P, Reni M, Viganò MG, Aldrighetti L, Nicoletti R, Villa E. The cisplatin, epirubicin, 5-fluorouracil, gemcitabine (PEFG) regimen in advanced biliary tract adenocarcinoma. Cancer 2010; 116: 2288-2294

69 Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP, Roughton M, Bridgewater J. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362: 1273-1281

70 Gruenberger B, Schueller J, Heubrandtner U, Wrba F, Tamandl D, Kaczirek K, Roka R, Freimann-Pircher S, Gruenberger T. Cetuximab, gemcitabine, and oxaliplatin in patients with unresectable advanced or metastatic biliary tract cancer: a phase 2 study. Lancet Oncol 2010; 11: 1142-1148

71 Malka D, Trarbach T, Fastaux L, Mendiboure J, de la Foucauldire C, Viret F, Assenat E, Boucher E, Rosmorduc O, Greten T. A multicenter, randomized phase II trial of gemcitabine and oxaliplatin (GEMOX) alone or in combination with bi-weekly cetuximab in the first-line treatment of advanced biliary cancer: Interim analysis of the BINGO trial. J Clin Oncol 2009; 27 Suppl: Abstr 4520

72 Yoshikawa D, Ojima H, Iwasaki M, Hiraoka N, Koseuge T, Kasai S, Hirohashi S, Shibata T. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer 2008; 98: 418-425

S- Editor Wang JL L- Editor Hughes D E- Editor Zheng XM

Romiti A et al. Tumors of ampulla of Vater