Effect Of Mn On Structure And Corrosion Properties Of Co-Cr-Mo Alloys in Simulated Body Solutions

Aliya Qonita¹, Daniel Eka Perkasa¹, Bambang Soegijono¹,*

Department of Physics, Faculty of Mathematics and Natural Science, University of Indonesia

*Email: naufal@ui.ac.id

Abstract. Metal alloys applied as biomedical materials have been developed for decade, due to the need for devices implanted into the human body. One of them is a cobalt-based alloy which commonly used as an orthopedic implant for total hip replacement. The biocompatibility properties of CoCrMo alloys make these alloys superior to corrosive resistance when making direct contact with the biological environment of the body where Simulated Body Fluid (SBF) solution is a solution often used to test its compatibility. The presence of manganese elements in CoCrMo Alloy and influence of heat treatment at temperature 700 oC for 65 hours were characterized by using X ray diffraction and Potentiostat. The structure and corrosion behavior in Simulated Body Fluid were discussed. The results show different crystal parameter and corrosion behavior observed. It concludes that, heat treatment and the presence of Mn affect the significantly on the properties of CoCrMo Alloy.

1. Introduction

There are many challenges and new demands in order to meet the needs of biomedical applications which are the basis for the development of standard-compliant biomedical implants to meet the modern success achievements [1]. This aims to create devices that have superior properties, so that when the device is implanted in the human body, it is expected to provide characteristics for implant materials that are safe and non-toxic, lightweight, durable and corrosion resistant [4]. Cobalt alloys have long been developed as prosthetic devices or artificial devices that resemble body parts, one of which is orthopedic implants in hip replacements.

Cobalt alloys contain cobalt and chromium, and significant amounts of molybdenum, nickel, iron, manganese, carbon and silicon [1]. Cobalt (Co) is the main constituent element of alloys that provides mechanical properties, such as strength, hardness and modulus of elasticity of the material. Chromium (Cr) contributes to the corrosion properties of the material by forming a passive layer in the form of Cr2O3, while molybdenum (Mo) is added to create a fine grain surface for increased strength. Problems that can occur in the use of the CoCrMo alloy as an implant material are influenced by the alloy's resistance to corrosion. The interactions that occur between metal alloys and body fluids can cause metal degradation.

This research was conducted and focused on the CoCrMo material with manganese variations of 5 and 7.5 wt%, as well as a description of the microstructure and corrosion behavior of the alloy. The XRD method is used to determine the structure of the alloy, and electrochemical testing using solution body fluids is used to determine the corrosion behavior of the material.
2. Experiment Methods and Material

2.1. Sample Preparation
Table 1 displays the composition of the alloy in percentage weight. The sample in this study consisted of 2 types of alloys with different manganese contents, namely 5 and 7.5 wt%.

Type	Analyse (weight percentage)				
	Co	Cr	Mo	Mn	Si
CCM-1	Balance	20.3	6.1	5	1.1
CCM-2	Balance	20.3	6.1	7.5	1.1

2.2. Solution Body Fluid Preparation
Table 2 shows the composition contained in the SBF solution used in this study.

Number	Reagen	Composition (in 1000 ml)
1	NaCl	8,035 g
2	NaHCO₃	0,355 g
3	KCl	0,225 g
4	K₂HPO₄·3H₂O	0,231 g
5	MgCl₂·6H₂O	0,311 g
6	1,0 M HCl	39,0 ml
7	CaCl₂	0,292 g
8	Na₂SO₄	0,072 g
9	((HOCH₂)₃CNH₂)	6,118 g
10	1,0 M HCl adjusted to pH 7.4	

SBF solution is a solution containing inorganic ions with its composition which is adjusted to human body fluids.

2.3. X-Ray Diffraction
Through the XRD method, the results obtained in the form of crystal parameters and crystal size. Crystal size can be obtained using the Williamson-Hall method.

$$\beta_{tot} \cos \theta = \varepsilon 4 \sin \theta + \frac{K \lambda}{L}$$

Where θ is Bragg angle, λ is x-ray wavelength using Cu Kα radiation, k is Debye Scherrer constant of 0.9, and β_{tot} is a combination of size widening (β_L) and strain widening (β_e).

$$\beta_{tot} = \beta_L + \beta_e = C \varepsilon \tan \tan + \frac{K \lambda}{L \cos \theta}$$

2.4. Potentiodynamic Polarization Methods
The instrument used for this test is the Digi-Ivy © DY2300 series Potentiometer. The method used is Open Circuit Potential and Linear Sweep Voltammetry body fluid simulator in the form of Simulated Body Fluid. The type of testing conducted is Linear Sweep Voltammetry. Faraday's Law is used to calculate the corrosion rate.

$$r = C \frac{M_i}{nF}$$
C = Constant corrosion rate = 3.27 x 10^{-3} \text{mm}^3, M = \text{Atomic weight of each alloy element (gr / mol)}, i = \text{Current (ampere / cm}^2\text{)}, n = \text{Number of electrons involved in the corrosion process}, \rho = \text{density of each alloy element (gr / cm}^3\text{)}

3. Results and Discussion

3.1. XRD analysis

Through the results of XRD data processing, it is known that the alloy has two phases, namely the cubic and hexagonal crystal structures.

From the figure above, a comparison diagram is shown between the sample of the alloy which has been homogenized by heating for 65 hours at 700°C with the alloy not undergoing heating treatment. The XRD results show that the sample phases formed are not homogeneous, which is characterized by the presence of more than one phase. Less homogenisation time and less high temperature can cause the porosity of the combining elements can not diffuse completely, so that the solubility is not homogeneous and may affect the mechanical properties of the alloy.
Table 3. Lattice Parameter From the Highscore Database

Treatment	Type of samples	Phase formed	Lattice Parameter	Crystal Structure		
			a (Å)	b (Å)	c (Å)	
With Heat Treatment	CCM1	ε	2.52884	2.52884	4.086	Hexagonal
		γ	3.57098	3.57098	3.57098	Cubic
	CCM2	ε	2.61008	2.61008	4.15531	Hexagonal
		γ	3.62392	3.62392	3.62392	Cubic
Without Heat Treatment	CCM1	ε	3.60	3.60	5.15	Hexagonal
	CCM2	ε	3.58	3.58	5.13	Hexagonal

In addition to being able to find out the phases formed, the XRD data results can also be used to review the average size of crystals owned by a material sample. In this case, the Williamson-Hall method is applied to obtain data on the average crystal size.

Figure 2. Williamson-Hall Plot Alloy Co-20.3Cr-6.1Mo-5Mn After Heat Treatment Phase ε

Figure 3. Williamson-Hall Plot Alloy Co-20.3Cr-6.1Mo-7.5Mn After Heat Treatment phase ε
Figure 4. Williamson-Hall Plot Alloy Co-20.3Cr-6.1Mo-5Mn After Heat Treatment (a) phase ε (b) phase γ

Table 4. Parameter for Average Crystallite Size of Co-20.3Cr-6.1Mo-xMn Alloy (x = 5; 7.5 wt%)

	Treatment	Phase	Average crystallite size (nm)
	Without Heat Treatment	ε	19.95
			CCM1
	With Heat Treatment	ε	20.09
			CCM2
		Γ	20.17

3.2. Potentiodynamic Polarization Curve Analysis

Potentiodynamic polarization testing is based on tafel plot analysis. The voltage used in the Co-Cr-Mo alloy corrosion test is -2 V to 2 V. Tafel plot analysis shows that Co-Cr-Mo alloys with different manganese compositions have different potential values, so this can affect the rate of corrosion.
Figure 6. Potentiodynamic Polarization Plot Tafel Alloys Without Heat Treatment (a) at room temperature (b) at 36°C

Figure 7. Potentiodynamic Polarization Plot Tafel Alloys With Heat Treatment (a) at room temperature (b) at 36°C

In tafel plot, the results show the intersection of cathodic and anodic lines. The intersection between cathodic lines and anodic lines can identify corrosion current density (iCorr) and corrosion potential (ECorr) in Solution Body Fluid (SBF) solution.

The samples added with the elemental manganese showed different corrosion values in the solution body fluid. Samples with greater manganese application had a lower corrosion rate than samples containing less manganese. Based on the standard corrosion rate data for European medical applications, a material can be implanted into the human body if the corrosion rate is below 0.457 mpy.
Table 5. Effect of heat treatment and temperature on the corrosion rate of the samples

Treatment	Sample	Temperature	E_{corr} (V)	i_{corr} (A)	Corrosion Rate (mm/year)
Heat Treatment	Co-20.3Cr-6.1Mo-5Mn	Room Temperature	-0.357	1.512 x10^{-5}	0.0012
	Co-20.3Cr-6.1Mo-7.5Mn	Room Temperature	-0.797	2.421 x10^{-5}	0.0007
	Co-20.3Cr-6.1Mo-5Mn	36 °C	-0.670	2.707 x10^{-5}	0.0014
	Co-20.3Cr-6.1Mo-7.5Mn	36 °C	-0.500	3.245 x10^{-5}	0.0016
Without Heat Treatment	Co-20.3Cr-6.1Mo-5Mn	Room Temperature	-0.937	3.042 x10^{-5}	0.0045
	Co-20.3Cr-6.1Mo-7.5Mn	Room Temperature	-0.928	8.617 x10^{-6}	0.012
	Co-20.3Cr-6.1Mo-5Mn	36 °C	-0.562	4.418 x10^{-5}	0.0065
	Co-20.3Cr-6.1Mo-7.5Mn	36 °C	-0.528	3.322 x10^{-5}	0.0049

4. Conclusion
The phases formed in the Co-20.3Cr-6.1Mo-xMn alloy (x = 5; 7.5 wt%) are present in the form of phases γ (fcc) and phases ϵ (hcp) due to the heat treatment given to the alloys. Applying heat treatment to alloys will increase the size of the crystal when compared to alloys that do not receive heat treatment. Corrosion resistance of Co-20.3Cr-6.1Mo-xMn alloy (x = 5; 7.5 wt%) through heat treatment has a better corrosion rate than specimens without experiencing heat treatment.

Acknowledgement
The authors gratefully acknowledge financial support from Universitas Indonesia, Publikasi Terindeks Internasional, Proceding (PUTI) No: NKB-1014/UN2.RST/HKP.05.00/2020.

References
[1] Kauser, F., *Corrosion of CoCrMo alloys for biomedical applications*, in Department of Metallurgy and Materials, School of Engineering. 2007, University of Birmingham: Birmingham. P. 4-285.
[2] Sinnett-Jones, P.E., J.A. Wharton, and R.J.K. Wood, Micro-abrasion-corrosion of a CoCrMo alloy in simulated artificial hip joint environments. Wear, 2005. 259: p. 898-909.
[3] Yan, Y., A. Neville, and D. Dowson 2006 *Journal of Physics D-Applied Physics* 39(15): p.3206-3212.
[4] Bellfontaine G. *The corrosion of CoCrMo alloys for biomedical applications thesis*, 2010.
[5] Doni Z., Alves A. C., Toptan F., Gomes J.R., Ramalho A., Buciumeanu M., Palaghian L., and Silva F.S. *Dry sliding and tribocorrosion behavior of hot-pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys Mater. Des.*, 2013.
[6] Artioli G. *X-ray diffraction (XRD) Encycl. Earth Sci. Ser.*, 2017.
[7] Kaita W., Hagihara K., Rocha L.A., and Nakano T. *Plastic deformation mechanisms of biomedical Co-Cr-Mo alloy single crystals with hexagonal close-packed structure Scr. Mater.*, 2018. 142 111-5
[8] Yan X., Xu Y.X., Wu Y., Lin H. *Effects of heat treatment on metal-ceramic combination of selective-laser-melted cobalt-chromium alloy J. Prosthet Dent.*, 2018. 120 319. E1-319. E6
[9] Wang W., Hou Z., Lizarraga R., Tian Y., Babu R.P., Holmström E., Mao H., and Larsson H. *An experimental and theoretical study of duplex fcc+hcp cobalt-based entropic alloys Acta Mater.*, 2018. 176 11-8
[10] Mallik M.K., Rao C.S., and Kesava Rao V.V.S., *Effect of heat treatment on hardness of Co-Cr-Mo alloy deposited with laser engineered net shaping* Procedia Eng., 2014, 97 1718-23

[11] Valero Vidal C., and Igual Muñoz A 2008 *Electrochemical characterization of biomedical alloys for surgical implants in simulated body fluids* Corros. Sci.