Two new *Rinodina* lichens from South Korea, with an updated key to the species of *Rinodina* in the far eastern Asia

Beeyoung Gun Lee¹, Jae-Seoun Hur²

¹ Baekdudaegan National Arboretum, Bonghwa, 36209, Republic of Korea ² Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Republic of Korea

Corresponding author: Beeyoung Gun Lee (gitanoblue@koagi.or.kr)

Abstract

Rinodina salicis Lee & Hur and *Rinodina zeorina* Lee & Hur are described as new lichen-forming fungi from forested wetlands or a humid forest in South Korea. *Rinodina salicis* is distinguishable from *Rinodina excrescens* Vain., the most similar species, by its olive-gray thallus with smaller areoles without having blastidia, contiguous apothecia, non-pruinose discs, paler disc color, wider ascospores in the *Pachysporaria*-type II, and the absence of secondary metabolites. *Rinodina zeorina* differs from *Rinodina hypobadia* Sheard by areolate and brownish thallus, non-pruinose apothecia, colorless and wider parathecium, narrower paraphyses with non-pigmented and unswollen tips, longer and narrower ascospores with angular to globose lumina, and the absence of pannarin. Molecular analyses employing internal transcribed spacer (ITS) sequences strongly support the two new species to be unique in the genus *Rinodina*. An updated key is provided to assist in the identification of all 63 taxa in *Rinodina* of the far eastern Asia.

Keywords

Biodiversity, corticolous, phylogeny, Physciaceae, taxonomy

Introduction

Rinodina, the largest genus in the family Physciaceae, comprises about three hundred species worldwide (Sheard et al. 2017; Wijayawardene et al. 2020). Several infrageneric groups have been studied since Malme (1902) introduced the ascospore-type
concept for the groups in *Rinodina* (Poelt 1965; Grube and Arup 2001). Although the classification based on different ascospore types has been coarsely accepted, the variety of ascospores does not always correspond to the infrageneric classification. As the pattern of ascospore ontogeny is considered more important than the spore type itself, it is understood that the ascospore types should be respected in developmental stages of a spore (Giralt 1994; Grube and Arup 2001; Sheard 2010; Resl et al. 2016).

The *Rinodina* has been studied in Europe (Mayrhofer and Poelt 1979; Giralt et al. 1995; Giralt 2001; Mayrhofer and Moberg 2002), North America (Sheard and Mayrhofer 2002; Sheard 2004, 2010, 2018; Sheard et al. 2011, 2012; Lendemer et al. 2012, 2019; Morse and Sheard 2020), islands of South America (Bungartz et al. 2016), Australia to New Zealand (Mayrhofer 1983, 1984b; Kaschik 2006; Elix 2011; Elix et al. 2020), Asia to Russian Far East (Mayrhofer 1984a; Galanina et al. 2011; Lendemer et al. 2012; Sheard et al. 2017; Galanina et al. 2018; Galanina and Ezhkin 2019; Zheng and Ren 2020; Galanina et al. 2021; Kumar et al. 2021), and South Africa (Matzer and Mayrhofer 1996; Mayrhofer et al. 2014). Molecular works have been accomplished over the continents (Grube and Arup 2001; Wedin et al. 2002; Nadyeina et al. 2010; Resl et al. 2016).

Sheard et al. (2017) achieved the first and comprehensive study on the genus *Rinodina* of the far eastern Asia (Korea, Japan, and Russian Far East). Several studies announced further more species in the genus, such as *R. badiexcipula* Sheard, *R. convexula* H. Magn., *R. occulta* (Körb.) Sheard, *R. oxneriana* S.Y. Kondr., Lőkös & Hur and *R. tephraspis* (Tück.) Herre from South Korea (Kondratyuk et al. 2016, 2017; Yakovchenko 2018; Kondratyuk et al. 2020) and *R. colobinoides* (Nyl.) Müll. Arg., *R. herrei* H. Magn., *R. laevigata* (Ach.) Malme, and *R. parasitica* H. Mayrhofer & Poelt from the Kuril Islands and the Magadan region, Russian Far East (Galanina and Ezhkin 2019; Galanina et al. 2021). Among them, *R. oxneriana* was discovered as a new species and other eight species were reported as new records to the far eastern Asia. The species of *Rinodina* in the far eastern Asia are mainly corticolous and the main genera of the substrate trees are *Quercus*, *Picea*, *Salix*, *Betula* and *Alnus* (Fig. 1) (Lendemer et al. 2012; Sheard et al. 2012; Joshi et al. 2013; Kondratyuk et al. 2013, 2016, 2017, 2020; Apton and Moon 2014; Sheard et al. 2017; Yakovchenko et al. 2018; Galanina and Ezhkin 2019; Gananina et al. 2021). Those main substrates vigorously grow in a humid forest, a valley or a wetland, and particularly the genera *Salix* and *Alnus* often inhabit the water. Inhabiting those tree barks, diverse *Rinodina* species are easily detected in shaded forests and forested wetlands in which are one of the representative lichens of the ecosystems.

This study describes two new lichen-forming fungi in the genus *Rinodina*. Field surveys for the lichen biodiversity in the forested wetlands of South Korea were carried out during the summer of 2020, and a couple of specimens of *Rinodina* were collected from barks of *Quercus* and *Salix*, the most common genera of the substrates for corticolous *Rinodina* species in the far eastern Asia, in a humid forest and a forested wetland on mountains (Fig. 2). The specimens were comprehensively analyzed in ecology, morphology, chemistry and molecular phylogeny and did not correspond to any
Figure 1. Substrates of *Rinodina* species in the far eastern Asia. *Rinodina* species of the far eastern Asia occur mainly on bark, and the genera *Quercus*, *Picea*, *Salix*, *Betula* and *Alnus* are the main substrates for corticolous *Rinodina* species of the far eastern Asia.

previously known species. We describe them as new species, *Rinodina salicis* and *R. zeorina*, and this discovery contributes to the taxonomy with overall 63 taxa in the genus *Rinodina* of the far eastern Asia. The type specimens are deposited in the herbarium of the Baekdudaegan National Arboretum (KBA, the herbarium acronym in the Index Herbariorum), South Korea.
Materials and methods

Morphological and chemical analyses

Hand sections were prepared manually with a razor blade under a stereomicroscope (Olympus optical SZ51; Olympus, Tokyo, Japan), scrutinized under a compound microscope (Nikon Eclipse E400; Nikon, Tokyo, Japan) and pictured using a software program (NIS-Elements D; Nikon, Tokyo, Japan) and a DS-Fi3 camera (Nikon, Tokyo, Japan) mounted on a Nikon Eclipse Ni-U microscope (Nikon, Tokyo, Japan). The ascospores were examined at 1000× magnification in water. The length and width of the ascospores were measured and the range of spore sizes was shown with average, standard deviation (SD), length-to-width ratio, and the number of measured spores. Thin-layer chromatography (TLC) was performed using solvent systems A and C according to standard methods (Orange et al. 2001).

Isolation, DNA extraction, amplification, and sequencing

Hand-cut sections of ten to twenty ascomata per collected specimen were prepared for DNA isolation and DNA was extracted with a NucleoSpin Plant II Kit in line with the manufacturer’s instructions (Macherey-Nagel, Düren, Germany). PCR amplifications

Figure 2. Specific collection sites for two new species A habitat/landscape for R. salicis B habitat/landscape for R. zeorina C location for R. salicis (a black star); locations for R. zeorina (two black diamonds).
for the internal transcribed spacer region (ITS1-5.8S-ITS2 rDNA) RNA genes were achieved using Bioneer’s AccuPower PCR Premix (Bioneer, Daejeon, Korea) in 20-μl tubes with 16 μl of distilled water, 2 μl of DNA extracts and 2 μl of the primers ITS5 and ITS4 (White et al. 1990). The PCR thermal cycling parameters used were 95 °C (15 sec), followed by 35 cycles of 95 °C (45 sec), 54 °C (45 sec), and 72 °C (1 min), and a final extension at 72 °C (7 min) based on Ekman (2001). The annealing temperature was occasionally altered by ±1 degree in order to get a better result. PCR purification and DNA sequencing were accomplished by the genomic research company Macrogen (Seoul, Korea).

Phylogenetic analyses

All ITS sequences (Table 1) were aligned and edited manually using ClustalW in Bi-oedit V7.2.6.1 (Hall 1999). All missing and ambiguously aligned data and parsimony-uninformative positions were removed and only parsimony-informative regions were finally analyzed in MEGA X (Stecher et al. 2020). The final alignment comprised 974 bp in which 167 variable regions were detected. The phylogenetically informative regions were 523. Phylogenetic trees with bootstrap values were obtained in RAxML GUI 2.0 beta (Edler et al. 2019) using the maximum likelihood method with a rapid bootstrap with 1000 bootstrap replications and GTR GAMMA for the substitution matrix. The posterior probabilities were obtained in BEAST 2.6.4 (Bouckaert et al. 2019) using the GTR 121343 model, as the appropriate model of nucleotide substitution produced by the bayesian model averaging methods with bModelTest (Bouckaert and Drummond 2017), empirical base frequencies, gamma for the site heterogeneity model, four categories for gamma, and a 10,000,000 Markov chain Monte Carlo chain length with a 10,000-echo state screening and 1000 log parameters. Then, a consensus tree was constructed in TreeAnnotator 2.6.4 (Bouckaert et al. 2019) with no discard of burnin, no posterior probability limit, a maximum clade credibility tree for the target tree type, and median node heights. All trees were displayed in FigTree 1.4.2 (Rambaut 2014) and edited in Microsoft Paint. The bootstrapping and posterior probability analyses were repeated three times for the result consistency and no significant differences were shown for the tree shapes and branch values. The phylogenetic trees and DNA sequence alignments are deposited in TreeBASE under the study ID 28192. Overall analyses in the materials and methods were accomplished based on Lee and Hur (2020).

Results and discussion

Phylogenetic analyses

An independent phylogenetic tree for the genus *Rinodina* and related genera was produced from 67 sequences from GenBank and 11 newly generated sequences for the two new species and related species (Table 1). The two new species were positioned in the genus *Rinodina* in the ITS tree. The ITS tree describes that *R. salicis*, a new species, is com-
Table 1. Species list and DNA sequence information employed for phylogenetic analysis.

No.	Species	ID (ITS)	Voucher
1	Amandinea lignicola	JX878521	Tønsberg 36426 (BG)
2	Amandinea punctata	HK650627	AFTOL-ID 1306
3	Buellia badia	MG250192	TS1767 (LCU)
4	Buellia bucongensis	MF399800	KolRI 041680
5	Buellia numerosa	LC153799	CBM:Wazanuki L01034
6	Rinodina afghanica	MT260860	500103 (XJU-L)
7	Rinodina alba	GU553290	GZU 000272655
8	Rinodina albana	GU553297	GZU 000272651
9	Rinodina anomala	MN587028	Sipman 6294
10	Rinodina archata	DQ492929	H. Mayrhofer 15752 (GZU)
11	Rinodina atrocinerea	AF540544	H. Mayrhofer 13.740 & U. Arup (GZU)
12	Rinodina balanina	KY266842	O-L-195705
13	Rinodina bischoffi	DQ849291	M. Lambauer 0044 (GZU)
14	Rinodina cacaoitana	DQ849295	H. Mayrhofer 10770 (HO)
15	Rinodina calcarea	GU553292	GZU 000272654
16	Rinodina cana	MN587029	Sipman 63008
17	Rinodina capensis	DQ849296	W. Obermayer 09230 (GZU)
18	Rinodina confregosa	DQ849297	W. Obermayer 09091 (GZU)
19	Rinodina congrugusula	DQ849298	M. Lambauer 0944 (GZU)
20	Rinodina degeliana	KX015681	Tønsberg 42631
21	Rinodina destituta	KT695382	BIOUG24047-H02
22	Rinodina disjuncta	MK812529	TRH-L-15387
23	Rinodina efforescens	KX015683	Malicek 5462
24	Rinodina exigua	GU553294	GZU 000272652
25	Rinodina gallowayi	DQ492929	M. Lambauer 0125 (GZU)
26	Rinodina gennarii	AJ544187	B44435
27	Rinodina glauca	GU553295	GZU 000272662
28	Rinodina berteliana	DQ849300	M. Lambauer 0177 (GZU)
29	Rinodina immersa	DQ849301	M. Lambauer 0129 (GZU)
30	Rinodina interpolata	AF250809	M263
31	Rinodina jamesii	DQ849303	H. Mayrhofer 10810 (GZU)
32	Rinodina lecanorina	AF540545	H. Mayrhofer 13.120 (GZU)
33	Rinodina lepida	AY143413	Trinkaus 137
34	Rinodina luridata	DQ49304	H. Mayrhofer 12122 (GZU)
35	Rinodina luridescens	AJ544183	B42835
36	Rinodina metaboliza	MT260864	20080224 (XJU-L)
37	Rinodina milvina	GU553299	KW 63379
38	Rinodina mniaroea	KX015689	Spribeille 21010 (GZU)
39	Rinodina mniaroea	KX015691	V. Wagner, 15.07.06/1 (GZU)
40	Rinodina mniaroea	KX015692	Spribeille 20391 (GZU)
41	Rinodina moziana	DQ49307	H. Mayrhofer 6729 (GZU)
42	Rinodina moziana var. moziana	DQ49305	M. Lambauer 0214 (GZU)
43	Rinodina nimsini	AJ544184	B42685
44	Rinodina obnascens	AJ544185	B42477
45	Rinodina oleae	DQ49308	M. Lambauer 0178 (GZU)
46	Rinodina oleace	GU553301	GZU 000272565
47	Rinodina olivaceobrunnea	AF540547	J. Rommeke 2.09.0300 (GOET)
48	Rinodina orcadata	DQ49309	H. Mayrhofer 15754 (GZU)
49	Rinodina orientalis	MW832807	BDNA-L-0000284
50	Rinodina orientalis	MW832808	BDNA-L-00000653
51	Rinodina orientalis	MW832809	BDNA-L-0000774
52	Rinodina oxydata	DQ49313	H. Mayrhofer 11406 (GZU)
53	Rinodina plana	AF250812	E34
54	Rinodina pyrina	AF540549	P. Bilovitz & H. Mayrhofer 483 (GZU)
55	Rinodina ramboldii	DQ49315	G. Rambold 5094 (M)
56	Rinodina reagens	DQ49316	M. Lambauer 0218 (GZU)
57	Rinodina roborri	MK811851	O-L-206765
58	Rinodina rosida	DQ49317	S. Kholod plot515 (GZU)
59	Rinodina salicina	MW832810	BDNA-L-0000558
60	Rinodina salicina	MW832811	BDNA-L-00000560
61	Rinodina septentrionalis	GU553303	GZU 000272561
62	Rinodina sheardii	MK778639	J. Malicek 10238
63	Rinodina sheardii	MK778640	J. Vondrak 15298 (PRA)
DNA sequences which were generated in this study, i.e., two new species such as *Rinodina salicis* and *R. zeorina*, and another compared species, *R. orientalis*, are presented in bold. All others were obtained from GenBank. The species names are followed by GenBank accession numbers and voucher information. ITS, internal transcribed spacer; Voucher, voucher information.

ing alone in a single clade. Several species such as *R. mniaroea* (Ach.) Körb., *R. rosicida* (Sommerf.) Arnold, *R. bischoffii* (Hepp) A. Massal., *R. luridata* (Körb.) H. Mayrhofer, Scheid. & Sheard, *R. metaboliza* Vain., *R. albana* (A. Massal.) A. Massal., *R. afghanica* M. Steiner & Poelt, *R. zwackhiana* (Kremp.) Körb., *R. calcula* (Hepp ex Arnold) Arnold, *R. immersa* (Körb.) J. Steiner, *R. tunicata* H. Mayrhofer & Poelt, *Rinodinella controversa* (A. Massal.) H. Mayrhofer & Poelt, and *R. dubyanoides* (Hepp) H. Mayrhofer & Poelt, are situated close to the new species; this particular clade lacks statistical support (bootstrap value of 58 and a posterior probability of 0.75). *Rinodina zeorina*, the other new species, was located in a clade with *R. sheardii* Tønsberg, represented by a bootstrap value of 89 and a posterior probability of 0.88 (not shown) for the branch (Fig. 3).

Taxonomy

Rinodina salicis B.G. Lee & J.-S. Hur sp. nov.

No: MB839186

Fig. 4

Diagnosis. *Rinodina salicis* differs from *R. excrescens* by olive-gray thallus with smaller areoles without blastidia, contiguous apothecia, the absence of pruina on disc, paler disc color, wider ascospores in the *Pachysporaria*-type, and the absence of secondary metabolites.

Type. South Korea, Gangwon Province, Gangneung, Seongsan-myeon, Eoheul-ri, a forested wetland, 37°43.61′N, 128°48.13′E, 212 m alt., on bark of *Salix koreensis* Andersson, 02 June 2020, B.G.Lee & H.J.Lee 2020-000358 (holotype: BDNA-L-0000558; GenBank MW832810 for ITS); same locality, on bark of *Salix koreensis*, 02 June 2020, B.G.Lee & H.J.Lee 2020-000360, with Caloplaca gordejevii (Tomin) Oxner, Lecanora sp., and Phaeophyscia sp. (*paratype*: BDNA-L-0000560; GenBank MW832811 for ITS).

Thallus corticolous, crustose, minutely bullate, some developing to conglomerate and continuous, rarely lobulated, thin, grayish-green to olive green, margin indeter-
Figure 3. Phylogenetic relationships among available species in the genus *Rinodina* based on a maximum likelihood analysis of the dataset of ITS sequences. The tree was rooted with the sequences of the genera *Amandinea* and *Buellia*. Maximum likelihood bootstrap values ≥ 70% and posterior probabilities ≥ 95% are shown above internal branches. Branches with bootstrap values ≥ 90% are shown as fatty lines. Two new species, *R. salicis* and *R. zeorina* are presented in bold as their DNA sequences were produced from this study. All species names are followed by the Genbank accession numbers.
Rinodina species of the far eastern Asia

Thallus olive-gray composed of tiny areoles and non-pruinose apothecia E well-developed amphitheium and algal layer extending to the base F asci clavate with eight spores G ascospores simple in the beginning and developed 1-septate, Pachysporaria-type II, rarely Physcia-type at mature. Scale bars: 1 mm (A–D); 200 μm (E); 10 μm (F, G).

Figure 4. Rinodina salicis (BDNA-L-0000558, holotype) in morphology A–D habitus and apothecia. Thallus olive-gray composed of tiny areoles and non-pruinose apothecia E well-developed amphitheium and algal layer extending to the base F asci clavate with eight spores G ascospores simple in the beginning and developed 1-septate, Pachysporaria-type II, rarely Physcia-type at mature. Scale bars: 1 mm (A–D); 200 μm (E); 10 μm (F, G).

minate, vegetative propagules absent, areoles 0.1–0.2 mm diam., 85–90 μm thick; cortex hyaline, 10 μm thick, cortical cells 5–9 μm diam.; medulla 60–65 μm thick, intermixed with algal cells, without crystals (PL–); photobiont coccoid, cells globose, 5–15 μm. Prothallus absent.

Apothecia abundant, rounded, often contiguous, emerging on the surface of thallus and sessile when mature, constricted at the base, 0.2–1.3 mm diam. Disc flat, not pruinose, pale brown or dark brown from early stages, 220–260 μm thick; margin persistent, generally entire or somewhat flexuous, a little crenulate, thalline margin concolorous to thallus but proper margin near disc distinctly pale brown. Amphitheium well-developed, with small crystals in both cortical layer and the algal-containing medulla, crystals extending to the base, not dissolving in K, 60–70 μm wide laterally, algal layers continuous to the base or solitary, algal cells 5–15 μm diam., cortical layer hyaline, 10–20 μm thick. Paratheicum hyaline but light brown at periphery, 45–50 μm wide laterally and 70–80 μm wide at periphery. Epithymenium brown, not granular, pigment slightly paler in K but not diluted, 5–10 μm high. Hymenium hyaline, 70–90 μm high. Hypotheicum generally hyaline, with pale yellow pigment, prosoplectenchymatous (irregular), 70–80 μm high. Oil droplets are present mainly in hypotheicum and a little in hymenium. Paraphyses septeate, anastomosing, 1–1.5 μm wide, simple or branched at tips, tips swollen, pigmented, epithymenium pigmented by paraphysial tips, 4.5–7.5 μm wide. Asci clavate, 8-spored, 68–90 × 20–25 μm (n
Ascospores ellipsoid, 1-septate, *Pachysporaria*-type II, rarely *Physcia*-type, Type A development, hyaline when young and light brown to brown in mature, 14–24 × 8–13.5 μm (mean = 18.2 × 10.5 μm; SD = 2.12(L), 1.19(W); L/W ratio 1.2–2.4, ratio mean = 1.7, ratio SD = 0.2; n = 105). Pycnidia not detected.

Chemistry. Thallus K–, KC–, C–, Pd–. Hymenium I+ purple-blue. UV–. No lichen substance was detected by TLC.

Distribution and ecology. The species occurs on the bark of *Salix koreensis*. The species is currently known from the type collections.

Etymology. The species epithet indicates the lichen's substrate preference, namely the substrate tree *Salix koreensis*.

Notes. The new species is similar to *R. excrescens* and *R. bullata* Sheard & Lendemer in having bullate thallus. However, the new species differs from *R. excrescens* by olive-gray thallus with smaller areoles without having blastidia, contiguous apothecia, the absence of pruina on disc, paler disc color, ascospore type, larger ascospore, and the absence of secondary metabolites (Sheard 1966; Sheard et al. 2012).

The new species is closer to *R. bullata* in having small bullate areoles without having blastidia. However, the new species differs from the latter by olive-gray thallus, contiguous and larger apothecia, proper margin with pale brown color, crystals present in both cortex and medulla in amphithecium, larger ascospores, K– reaction on thallus, and the absence of lichen substance (Sheard et al. 2012, 2017).

The new species is comparable to *R. granulans* Vain. as the latter represents thallus with minute areoles. However, the new species differs from the latter by thallus color, slightly smaller areoles without blastidia, abundance of apothecia without pruina, *Pachysporaria*-type II ascospores, K– reaction on thallus, and the absence of lichen substance (Giralt et al. 1994; Galanina et al. 2011). Reference Table 2 provides the key characteristics distinguishing *R. salicis* from the compared species above.

Table 2. Comparison of *Rinodina salicis* with closely-related species.

Species	*Rinodina salicis*	*Rinodina bullata*	*Rinodina excrescens*	*Rinodina granulans*
Thallus growth form	bullate without blastidia	bullate without blastidia	bullate with blastidia	bullate with blastidia, forming leprose crust
Areoles (mm in diam.)	0.1–0.2	0.1–0.15(–0.2)	up to c. 1.98	(0.1–)0.2–0.3(–0.5)
Thallus color	olive-gray	light gray	gray	gray to gray-brown
Apothecia (mm in diam.)	0.2–1.5	0.3–0.6	up to c. 1.26	up to 0.3
Apothecia contiguity	often contiguous	not contiguous	not contiguous	not contiguous
Apothecia abundance	abundant	abundant	abundant	abundant
Pruina	absent on disc	–	often present on disc	often present on disc
Disc color	pale to dark brown	brown	brown to black	reddish brown
Proper margin	pale brown	indistinct	–	indistinct
Crystals in amphithecium	present in medulla and cortex	present in cortex	–	present
Ascospore type	*Pachysporaria*-type II	*Pachysporaria*-type II	*Physcia*-type	*Physcia*-type to *Milvina*-type
Ascospores (μm)	14–24 × 8–13.5	14.5–16.5 × 8–9	17.5–19.5 × 8.5–9.5	18–25 × 10–14
Spot test	thallus K–	thallus K+ yellow	thallus K–	thallus K+ faint yellow
Substance	absent	atranorin	panarin, (rarely zeorin)	panarin
Reference	BDNA-L-0000558 (holotype), BDNA-L-0000560 (paratype)	Sheard et al. 2012, 2017	Sheard 1966; Sheard et al. 2012, 2017	Giralt et al. 1994; Galanina et al. 2011

The morphological and chemical characteristics of several species close to the new species are referenced from the previous literature. All information on the new species is produced from type specimens (BDNA-L-0000558 and BDNA-L-0000560) in this study.
Rinodina zeorina B.G. Lee & J.-S. Hur sp. nov.
No: MB839187
Fig. 5

Diagnosis. *Rinodina zeorina* differs from *R. hypobadia* by areolate, brownish thallus, apothecia without pruina, hyaline and wider parathecium, narrower paraphyses with hyaline and unswollen tips, longer and narrower ascospores with just angular to globose lumina, and the absence of pannarin.

Type. South Korea, North Gyeongsang Province, Bonghwa-gun, Seokpo-myeon, Mt. Cheongok, 37°01.89′N, 128°58.65′E, 1,104 m alt., on bark of *Quercus mongolica*, 16 June 2020, B.G. Lee & H.J. Lee 2020-000733, with *Biatora* sp., *Lecidella euphorea* (Flörke) Kremp., *Pertusaria multipuncta* (Turner) Nyl., and *Sagiolechia* sp. (holotype: BDNA-L-0000933; GenBank MW832817 for ITS).

Thallus corticolous, crustose, areolate, rimose to continuous, thin, light gray to light brownish gray, margin indeterminate or determinate with prothallus, vegetative propagules absent, 160–250 mm diam., 80–170 μm thick, areoles 0.1–0.5 mm diam.; cortex brown, 5–8 μm thick, with epinecral layer, hyaline, 3–7 μm thick; medulla 35–40 μm thick, intermixed with algal cells, without crystals (PL–); photobiont coccosid, cells globose, 5–9 μm. Prothallus absent or brownish black when present.

Apothecia abundant, rounded, erumpent in the beginning and sessile when mature, constricted at the base, 0.2–0.6 mm diam. Disc flat, not pruinose but epinecral debris shown in water, black to dark brown from early stages, 150–200 μm thick; margin persistent, prominent, generally entire or a little crenulate, concolorous to thallus. Amphithecium well-developed, with small crystals in the algal-containing medulla and particularly near the base, dissolving in K, 70–90 μm wide laterally, algal cells evenly distributed from periphery to base, 10–15 μm diam., cortical layer brownish, cortical cells granular, 2–3 μm diam., with epinecral layer, up to 5 μm thick. Parathecium hyaline but light brown at periphery, 5–10 μm wide laterally and 20–50 μm wide at periphery. Epihymenium red-brown, small granules not dissolving in K, 8–10 μm high. Hymenium hyaline, 90–95 μm high. Hypothecium brown with olive pigment in upper part, prosoplectenchymatous (irregular), 60–65 μm high. Oil droplets present a little in hypothecium. Paraphyses septate, anastomosing, 0.5–1 μm wide, simple or branched at tips, tips generally not swollen or little swollen, not pigmented, epihymenium pigmented by small granules, not by paraphysial tips, up to 1.5 μm wide. Asci clavate, 8-spored, 60–75 × 15–21 μm (n = 3). Ascospores ellipsoid, 1-septate, *Dirinaria*-type but lumina angular to globose, Type B development not detected, septum inflated a little or not, without a torus, hyaline when young and generally brown or dark brown in mature, 11–20 × 5–8.5 μm (mean = 15.4 × 7.1 μm; SD = 1.77(L), 0.70(W); L/W ratio 1.5–3.4, ratio mean = 2.2, ratio SD = 0.3; n = 105). Pycnidia raised, asymmetric, 175–225 μm wide. Pycnoconidia bacilliform, 3–4 × 0.5 μm.

Chemistry. Thallus K–, KC–, C–, Pd–. Hymenium I+ blue. UV–. Zeorin was detected by TLC.

Distribution and ecology. The species occurs on the bark of *Quercus mongolica*, *Tilia amurensis* Rupr., and *Maackia amurensis* Rupr. & Maxim. The species is currently known from a humid forest and a forested wetland of two mountainous sites.
Etymology. The species epithet indicates that the lichen’s substance, zeorin, is a major compound.

Notes. The new species is similar to *R. hypobadia*, *R. sheardii*, and *R. sp. A* in having a pigmented hypothecium. However, the new species differs from *R. hypobadia* by areolate, brownish thallus, apothecia without pruina, hyaline and wider paratheicum, narrower paraphyses with hyaline and unswollen tips, longer and narrower ascospores with just angular to globose lumina, and the absence of pannarin (Sheard et al. 2017).

The new species differs from *Rinodina sheardii* by the absence of vegetative propagules, and *Dirinaria*-type ascospores in smaller size (Sheard et al. 2017).

The new species differs from *Rinodina sp. A* by a wider paratheicum, narrower paraphyses with swollen tips, smaller ascospores *Dirinaria*-type, and the absence of pannarin (Sheard et al. 2017).
Table 3. Comparison of *Rinodina zeorina* with closely-related species.

Species	Rinodina zeorina	Rinodina hypobadia	Rinodina manshurica	Rinodina sheardii	Rinodina aff. oleae	Rinodina sp. A
Thallus growth from	areolate, rimose to continuous	rimose, not areolate	rimose, rimose-areolate	±areolate to continuous	continuous, rimose-areolate	continuous to areolate
Thallus color	light gray to light brownish gray	light to dark gray	gray-brown	yellow, yellow-brown, or pale brown or greenish	(dark gray to olive-green)	dark gray to gray-brown
Pruina	absent, but epinecral debris shown in water	slightly pruinose	absent	absent	(absent)	–
Parathecium color	hyaline and light brown at periphery	red-brown	–	red-brown to brown	(hyaline to brownish)	–
Parathecium at periphery (μm)	20–50	10–20	c. 20	c. 30	(up to 30)	c. 25
Paraphyses (μm)	up to 1.5	2–2.5	2.0	2.0	(1–2)	3.0
Paraphysial tips	not or little swollen, not pigmented	3–4 μm, lightly pigmented	c. 3 μm, light pigmented	c. 3 μm	–	c. 4.5 μm, pigmented
Hypothecium color	brown with olive pigment	reddish or chestnut brown	hyaline	dilute brown to red-brown	hyaline	light brown
Crystals in amphithecium	present in medulla	present in both cortex and medulla	absent	present	–	present in medulla
Ascospore type	*Dirinaria*-type with angular-globose lumina	*Dirinaria*-type with *Physcia*- or *Physconia*-like lumina	*Dirinaria*-type, with *Physcia*-like lumina	*Pachysporaria*-type I	*Dirinaria*-type with *Physcia*-like lumina	*Pachysporaria*-type I
Ascospores (μm)	11–20 × 5–8.5	12.5–18.5 × 6.5–10	14–16.5 × 7.5–8.5	16–35 × 8–17	15.5–19 × 6.5–9.5	22–28.5 × 10.5–15.5
Pycnidia	175–225	up to 300	–	–	–	–
Pycnoconidia (μm)	3–4 × 0.5	3.5 × 1.0	–	–	(4–5 × 1)	–
Substance	zeorin	pannarin, zeorin	absent	zeorin	(absent)	pannarin, zeorin
Reference	BDNA-L-0000933 (holotype), BDNA-L-0000642, BDNA-L-0000646, BDNA-L-0000650, BDNA-L-0000651, BDNA-L-0000668	Sheard et al. 2017	Sheard et al. 2017	Tønsberg 1992; Sheard et al. 2017	Joshi et al. 2013; Smith et al. 2009; Sheard et al. 2017	Sheard et al. 2017

The new species can be compared with *R. manshurica* and *R. aff. oleae* in having erumpent apothecia, small ascospores (<21 μm long) with swollen septum among corticolous species. However, the new species differs from *R. manshurica* by crystals present in the amphithecium, wider parathecium, narrower paraphyses without swollen tips, pigmented hypothecium, and longer and narrower ascospores (Tønsberg 1992; Sheard et al. 2017). The new species is distinguished from *R. aff. oleae* by narrower ascospores, and pigmented hypothecium (vs. hyaline hypothecium) (Sheard et al. 2017). Reference Table 3 provides the key characteristics distinguishing *R. zeorina* from the compared species above.

The new species is compared further with other *Rinodina* species having the substance zeorin, *R. ascociscana* (Tuck.) Tuck., *R. buckii* Sheard, *R. efflorescens* Malme, *R. luteonigra* Zahlbr., *R. subalbida* (Nyl.) Vain., *R. subminuta* H. Magn., and *R. willeyi*...
Sheard & Giralt. However, all of them are different from the new species because those species represent larger ascospores in _Physcia_ - to _Physconia_-type for _R. ascocisca_; sorediate thallus, mostly light brown hypothecium and _Teichophila_-type ascospores and the presence of pannarin for _R. buckii_; sorediate thallus, colorless hypothecium, _Pachysporaria_-type ascospores and the presence of pannarin and secalonic acid A for _R. efflorescens_; colorless hypothecium, larger ascospores in _Pachysporaria_-type and the presence of thiomelin for _R. luteonigra_; larger spores in _Pachysporaria_-type and the presence of pannarin for _R. subalbida_; larger spores in _Physcia_-type for _R. subminuta_; sorediate thallus and the presence of pannarin for _R. willeyi_ (Sheard et al. 2012, 2017).

Additional specimens examined. South Korea, Gangwon Province, Pyeongchang-gun, Daegwallyeong-myeon, Heonggye-ri, a forested wetland, 37°46.00’N, 128°42.33’E, 1,047 m alt., on bark of _Maackia amurensis_, 03 June 2020, B.G. Lee & H.J.Lee 2020-000442, with _Buellia disciformis_ (Fr.) Mudd, _Buellia_ sp., _Catillaria nigroclavata_ (Nyl.) J. Steiner, _Lecanora megalochelia_ (Hue) H. Miyaw., _Lecanora symmica_ (Ach.) Ach., _Lecidella euphora_, and _Lambiella cf. caeca_ (J. Lowe) Resl & T. Sprib. (BDNA-L-0000642; GenBank MW832812 for ITS); same locality, 37°46’0.02”N, 128°42’19.58”E, 1,047 m alt., on bark of _Maackia amurensis_, 03 June 2020, B.G. Lee & H.J.Lee 2020-000446 (BDNA-L-0000646; GenBank MW832813 for ITS); same locality, 37°46.00’N, 128°42.33’E, 1,047 m alt., on bark of _Maackia amurensis_, 03 June 2020, B.G. Lee & H.J.Lee 2020-000446 (BDNA-L-0000646; GenBank MW832814 for ITS); same locality, 37°46.00’N, 128°42.33’E, 1,047 m alt., on bark of _Maackia amurensis_, 03 June 2020, B.G. Lee & H.J.Lee 2020-000450 (BDNA-L-0000650; GenBank MW832815 for ITS); same locality, 37°46.00’N, 128°42.33’E, 1,047 m alt., on bark of _Tilia amurensis_, 03 June 2020, B.G. Lee & H.J.Lee 2020-000468, with _Amandinea punctata_ (Hoffm.) Coppins & Scheid., _Bacidia aff. beckhausii_ Körb., _Catillaria sp._, _Micarea prasina_ Fr., _Phaeophyscia limbata_ (Poelt) Kashiw., _Rinodina cf. oleae_ Bagl., _Traponora aff. varians_ (Ach.) J. Kalb & Kalb (BDNA-L-0000668; GenBank MW832816 for ITS).

Key to the species of Rinodina from the far eastern Asia (63 taxa)

Eleven more species have been recorded since Sheard et al. (2017), such as _Rinodina badiexcipula_, _R. colobinoides_, _R. convexula_, _R. herrei_, _R. laevigata_, _R. occulta_, _R. oxneriana_, _R. parasitica_, _R. tephraspis_ and two new species from this study (Kondratyuk et al. 2016, 2017; Yakovchenko et al. 2018; Galanina and Ezhkin 2019; Kondratyuk et al. 2020; Galanina et al. 2021). Particularly, _R. laevigata_ of Aptroot and Moon (2014) was rejected by Sheard et al. (2017), but Galanina et al. (2021) confirmed the species in the far eastern Asia. This key includes all above species except for _R. convexula_ because the species was just announced for a new record to Korea without any specific description for reference (Kondratyuk et al. 2020). _Rinodina confragosa_ (Ach.) Körb., _R. milvina_ (Wahlenb.) Th. Fr., and _R. olivaceobrunnea_ C.W. Dodge & G.E. Baker were reported from Korea and Russian Far East (Kondratyuk et al. 2016; Galanina et al. 2021) as expected to occur (Sheard et al. 2017). All expected species are remained with an asterisk mark(*).

Overall, 63 taxa of _Rinodina_ are currently recorded or expected to the far eastern Asia (Korea, Japan and Russian Far East).
	Substratum rock ..
2	
3	Thalli effigurate, typically with isidia; when fertile spores belong to the Physcia*-type; associated with seabird colonies; northern.
4	Thalli not effigurate, vegetative propagules blastidia with budding soredia; spores Pachysporaria*-type II; not coastal; southern.
5	Medulla orange, K+ red-violet; spores Pachysporaria*-type I, ultimately developing satellite apical lumina.
6	Medulla not orange, not K+ red-violet; spores of various types but never developing apical lumina.
7	
8	Apothecia 0.1–0.3 mm diam., hymenium 80–100 μm high, hypothecium 65–135 μm high, asci 75–80 × 16–19 μm, spores 17–27 × 8–13 μm.
9	Thallus plane; spores averaging <21 μm in length, rarely swollen at septum.
10	
11	
12	
13	
14	
15	
16	
15 Thallus thick, dark brown; spores constricted at septum when mature, *Milvina*-type; secondary metabolites absent ...\textit{R. milvina}
- Thallus thin, gray to light brown; spores *Physconia*-type; thalline margin C+ red (under microscope), gyrophoric acid in medulla .. \textit{R. sicula}
16 Apothecial discs pruinose; spores *Pachysporaria*-type\textit{R. compensata}
- Apothecial discs not pruinose; spores *Pachysporaria*-to *Milvina*-like \textit{R. kozukensis}
17 On soil, decaying ground vegetation, wood, bone or lichenicolous \textit{18}
- Strictly corticolous or lignicolous ... \textit{27}
18 Spores 1-septate .. \textit{19}
- Spores 3-septate or submuriform ... \textit{20}
19 Spores *Teichophila*-type .. \textit{R. herrei}
- Spores *Physcia*-type, rarely with apical satellite lumina \textit{21}
20 Spores strictly 3-septate, type B development (apical wall thickened prior to septum formation); secondary metabolites absent \textit{R. conradii}
- Spores 3-septate at first, typically becoming submuriform, type A development (apical wall thickening after septum formation); deoxylichesterinic acid present .. \textit{R. intermedia}
- Strictly lichenicolous, on *Aspicilia* or *Rhizocarpon* \textit{R. parasitica}
- Generally not lichenicolous ... \textit{22}
22 Sphaerophorin crystals in medulla (sometimes lichenicolous)............. \textit{R. turfacea}
- Sphaerophorin lacking in medulla (never lichenicolous) \textit{23}
23 Cortex K+ yellow or medulla orange, K+ red .. \textit{24}
- Cortex reaction absent .. \textit{25}
24 Thallus light gray; K+ yellow, atranorin in cortex \textit{R. mniaroeiza*}
- Thallus a shade of brown; medulla orange, K+ red, skyrin or other anthraquinones present ... \textit{R. cinnamomea*}
25 Spores averaging <23 μm in length .. \textit{R. olivaceobrunnea}
- Spores averaging >23 μm in length .. \textit{26}
26 Thallus and apothecia not pruinose; apothecial discs becoming convex, thalline margin then excluded; spores averaging 24.5–25.5 μm in length, l/w ratio 2.0–2.2 .. \textit{R. mniaroea}
- Thallus and apothecia typically pruinose; apothecial discs plane or concave, not convex, thalline margin never excluded; spores averaging 30–32 μm in length, l/w ratio 2.2–2.5 .. \textit{R. roscida}
27 Vegetative propagules present ... \textit{28}
- Vegetative propagules absent .. \textit{37}
28 Thallus typically golden yellow ... \textit{29}
- Thallus a shade of gray or brown ... \textit{30}
29 Thallus with small, dense isidia; very rarely with apothecia; spores *Pachysporaria*-type I ... \textit{R. chrysidiata}
- Thallus with marginal, labriform soralia, sometimes becoming pustulate; frequently, but not always, with apothecia; spores *Physcia*-type \textit{R. xanthophae}
30 Phyllidia present ... \textit{R. oxneriana}
- Blastidia or soredia present ... \textit{31}
Rinodina species of the far eastern Asia

31 Thallus mainly blastidiate, blastidia 35–60 μm diam.R. colobinoides
 – Thallus generally not blastidiate, but sorediate or sometimes blastidiate32
32 Blastidia present at margin, no substance, spores Teichophila-typeR. herrei
 – Soredia and/or blastidia present, atranorin or pannarin present, spores in various
 types ..33
33 Thallus light gray; soralia labriform at first, soredia whitish; K+, P+ yellow, cortical
 atranorin present, pannarin absent R. subparieta (syn. R. degeliana)
 – Thallus darker gray; soredia never whitish; K−, P+ cinnabar, atranorin absent, pannarin present ..34
34 Thallus usually of convex to bullate areoles; blastidia often present, sometimes
 breaking into soredia; zeorin typically absent, when fertile pannarin also in epiphy-
 menium ..35
35 Soredia typically yellowish, secalonic acid A present; spores Physcia-type when
 fertile, averaging <20 μm in length ...R. efflorescens
 – Soredia never yellowish, secalonic acid A absent; spores not Physcia-type, aver-
 ging >20 μm in length ...36
36 Thallus minutely verrucose, verrucae central on areoles, quickly forming raised
 soralia, later spreading over thallus surface; soredia >40 μm diam.; spores
 Teichophila-type ..R. buckii
 – Thallus with plane areoles, soredia developing marginally on areoles, never raised
 centrally on verrucae, later spreading over thallus surface; soredia <40 μm diam.;
 spores Pachysporaria-type I ...R. willeyi
37 Ascospores 3-septate or submuriform ..38
 – Ascospores 1-septate, rarely with satellite apical cells39
38 Spores strictly 3-septate, type B development (apical wall thickened prior to sep-
 tum formation); secondary metabolites absentR. conradii
 – Spores 3-septate at first, becoming submuriform, type A development (apical wall
 thickening after septum formation); deoxylichesterinic acid present
 ..39
39 Thallus brightly pigmented; xanthone present, UV+ orange40
 – Thallus a shade of gray or brown; xanthone absent, UV−41
40 Thallus citrine, thiomelin present; spores averaging 31.0–34.5×16.0–17.5 μm, Pach-
 ypsoraria-type I; not sorediate; subtropical, Tsushima Island, JapanR. luteonigra
 – Thallus golden yellow, secalonic acid A present; spores averaging 23.5–28.5×2.0–15.0 μm, Physcia-type; frequently sorediate; temperate, widely distributed
 ...41
41 Thallus K+ yellow or P+ cinnabar, atranorin or pannarin present42
 – Thallus K−, P−, both atranorin and pannarin absent43
42 Thallus K+ yellow, atranorin present, pannarin absent44
 – Thallus P+ cinnabar, pannarin present, atranorin absent45
43 Spores averaging >33 μm long, Pachysporaria-type IR. megistospora
 – Spores averaging <33 μm long, Physcia- or Physcionia-type46
44 Spores averaging >26 μm long, strictly Physcia-type; never sorediate; distribution limited to coastal foreshores .. R. macrosora
45 Hypothecium pigmented dark reddish brown; spores Dirinaria-type, (12–)14–16.5(–18)× (6.5–)7.0–8.5(–9.5) μm, lightly pigmented R. hypobadia
46 Spores averaging <20 μm in length, Physcia-type; thallus becoming bullate, often with minute blastidia .. R. excrescens
47 Thallus persistently plane; epihymenium lacking crystals, P−; spores averaging >29 μm ... R. tenuis (syn. R. adirondackii)
48 Epihymenium typically possessing pannarin crystals, P+ cinnabar; spores lacking apical canals; widely distributed in Japan and adjacent mainland..... R. subalbida
49 Spores 16 per ascus ... R. polyspora
50 Medulla with sphaerophorin crystals, PL+ 51
51 Thallus dark gray, typically dark brown; areoles becoming contiguous, plane, 0.40–0.55 mm wide; spores averaging 26.5–27.5 × 13.5–14.5 μm R. badiexcipula
52 Spores swollen at septum, more so in KOH, type B development (apical wall thickening prior to septum formation), Dirinaria-type 53
53 Thallus gray to ochraceous, rugose, areoles to 0.7 mm wide; apothecia to 0.8 mm in diam., discs plane, never convex; spores averaging 15.5–18.0 × 8.0–8.5 μm, l/w ratio 1.9–2.1 .. R. mongolica
54 Spores lacking wall thickening at maturity (septal and apical thickenings may be present briefly in immature spores) 55
55 Thallus gray to ochraceous, rugose, areoles to 0.7 mm wide; apothecia to 0.8 mm in diam., discs plane, never convex; spores averaging 15.5–18.0 × 8.0–8.5 μm, l/w ratio 1.9–2.1 .. R. mongolica
56 Apothecia not erumpent; spores averaging 17.5–21.5 × 9–11 μm R. metaboliza
57 Apothecia erumpent; spores smaller ...
Rinodina species of the far eastern Asia

57 Hypothecium pigmented with brown, spores 11–20 × 5–8.5 μm, zeorin present ... R. zeorina

– Hypothecium colorless, spores 15.5–18 × 8–9 μm, no substance ... 58

58 Spores averaging 15.5–16.0 μm in length... R. manshurica

– Spores averaging 16.5–18.0 μm in length... R. aff. oleae

59 Spores averaging >22 μm in length.. R. ascociscana (syn. R. akagiensis, R. melancholica)

60 Margins of apothecia often radially cracked; spores Physcia- to Physconia-type ...

... R. ascociscana (syn. R. akagiensis, R. melancholica)

– Margins of apothecia not radially cracked; spores Pachysporaria-type I R. dolichospora

61 Spores Pachysporaria-type II ... R. salicis

– Spores Physcia- or Physconia-type .. 62

62 Spores Physcia- to Physconia-type, some lumina becoming rounded at apices, at maturity thin-walled ... 63

– Spores strictly Physcia-type, apical walls remaining thick.. 67

63 Thallus dark brown, spores darkly pigmented at maturity, torus prominent; oro-arctic to coastal ... 64

– Thallus a shade of gray, sometimes brownish, spores typically pigmented at maturity, torus present but not prominent; boreal ... 66

64 Thallus inconspicuous; apothecia mostly crowded, typically broadly attached

... R. olivaceobrunnea*

– Thallus of dispersed or contiguous areoles; apothecia mostly dispersed, narrowly or broadly attached ... 65

65 Ascospores 20–21.5 × 10–11.5 μm, thallus well-developed, flat, scurfy or thick rugose areolate, apothecia broadly attached in the beginning then becoming narrow and even stipitate, discs convex when mature ... R. sibirica

– Ascospores 18.5–19.5 × 8.5–9.0 μm, thallus poorly developed, evanescent, thin or scabrid, sometimes areolate, apothecia broadly attached to thallus, discs typically flat ... R. laevigata

66 Thallus thick, rugose, areolate; apothecia crowded, discs persistently plane, thalline margins persistent ... R. archaea*

– Thallus thin, plane, continuous or rimose-areolate; apothecia dispersed, discs becoming convex, often excluding thalline margin ... R. trevisanii*

67 Spores averaging >18 μm long, zeorin present.. R. subminuta

– Spores averaging <18 μm long, zeorin absent .. 68

68 Apothecia erumpent at first, discs often becoming strongly convex; spores with lightly pigmented tori at maturity ... R. orientalis

– Apothecia never erumpent, discs persistently plane; spores with very dark, prominent tori at maturity ... 69

69 Apothecia crowded, broadly attached; thalli associated with leaf scars or other mesic microhabitats; areoles plane, contiguous, to >0.2 mm in diam. R. freyi

– Apothecia mostly scattered, narrowly attached; thalli typically in more xeric microhabitats; areoles convex, scattered, to 0.2 mm in diam. R. septentrionalis
Acknowledgements

This work was supported by a grant from the Korean Forest Service Program through the Korea National Arboretum (KNA-202003127AF-00) for the forested wetland conservation of Korea.

References

Aptroot A, Moon KH (2014) 114 new reports of microlichens from Korea, including the description of five new species, show that the microlichen flora is predominantly Eurasian. Herzogia 27(2): 347–365. https://doi.org/10.13158/heia.27.2.2014.347

Bouckaert RR, Drummond AJ (2017) bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC evolutionary biology 17(1): e42. https://doi.org/10.1186/s12862-017-0890-6

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu CH, Xie D, Zhang C, Stadler T, Drummond AJ (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15(4): e1006650. https://doi.org/10.1371/journal.pcbi.1006650

Bungartz F, Giralt M, Sheard JW, Elix JA (2016) The lichen genus *Rinodina* (Physciaceae, Telschostiales) in the Galapagos Islands, Ecuador. The Bryologist 119(1): 60–93. https://doi.org/10.1639/0007-2745-119.1.060

Edler D, Klein J, Antonelli A, Silvestro D (2019) raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML. bioRxiv. https://doi.org/10.1101/800912

Elix JA (2011) Australian Physciaceae (Lichenised Ascomycota). Australian Biological Resources Study, Canberra. Version 18 October 2011. http://www.anbg.gov.au/abrs/lichenlist/PHYSCIACEAE.html

Elix JA, Edler C, Mayrhofer H (2020) Two new corticolous species of *Rinodina* (Physciaceae, Ascomycota) from New Zealand. Australasian Lichenology 86: 95–101.

Ekman S (2001) Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota). Mycological Research 105: 783–797. https://doi.org/10.1017/S0953756201004269

Galanina IA, Ezhkin AK (2019) The genus *Rinodina* in the Kuril Islands (Russian Far East). Turczanianowia 22(4): 5–16. https://doi.org/10.14258/turczanianowia.22.4.1

Galanina IA, Yakovchenko LS, Tsarenko NA, Spribille T (2011) Notes on *Rinodina excrescens* in the Russian Far East (Physciaceae, lichenized Ascomycota). Herzogia 24(1): 59–64. https://doi.org/10.13158/heia.24.1.2011.59

Galanina IA, Ezhkin AK, Yakovchenko LS (2018) *Rinodina megistospora* (Physciaceae) in the Russian Far East. Novitates Systematicae Plantarum non Vascularium 52(1): 133–139. https://doi.org/10.31111/nsnr.2018.52.1.133

Galanina IA, Yakovchenko LS, Zheludeva EV, Ohmura Y (2021) The genus *Rinodina* (Physciaceae, lichenized Ascomycota) in the Magadan Region (Far East of Russia). Novitates
Giralt M (1994) Key to the corticolous and lignicolous species of the genus *Rinodina* present in the Iberian Peninsula and Balearic Islands. Bulletin de la Socie'te linne'enne de Provence 45: 317–326.

Giralt M (2001) The lichen genera *Rinodina* and *Rinodinella* (lichenized Ascomycetes, Physciaceae) in the Iberian Peninsula. Bibliotheca Lichenologica 79: 1–160.

Giralt M, Mayrhofer H, Obermayer W (1994) The species of the genus *Rinodina* (lichenized Ascomycetes, Physciaceae) containing pannarin in Eurasia with a special note on the taxonomy of *Rinodina granulans*. Mycotaxon 50: 47–59.

Grube M, Arup U (2001) Molecular and morphological evolution in the Physciaceae (Lecanorales, lichenized Ascomycotina), with special emphasis on the genus *Rinodina*. The Lichenologist 33(1): 63–72. https://doi.org/10.1006/lich.2000.0297

Hall TA (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Kondratyuk SY, Crişan F, Jayalal U, Oh SO, Hur JS (2013) New additions to lichen mycota of the Republic of Korea. Mycobiology 41(4): 177–182. https://doi.org/10.5941/MYCO.2013.41.4.177

Kondratyuk SY, Lőkös L, Roux C, Upreti DK, Schumm F, Mishra GK, Nayaka S, Farkas E, Park JS, Lee BG, Liu D, Woo JJ, Jayalal RGU, Oh SO, Hur JS (2016) New and noteworthy lichen-forming and lichenicolous fungi. Acta Botanica Hungarica 58(3–4): 319–396. https://doi.org/10.1556/034.59.2017.1-2.7

Kondratyuk SY, Lőkös L, Oh SO, Kondratiuk TO, Parnikoza IY, Hur JS (2020) New and noteworthy Lichen-Forming and Lichenicolous Fungi, 11. Acta Botanica Hungarica 62(3-4): 225–291. https://doi.org/10.1556/034.62.2020.3-4.3

Kumar V, Ngangom R, Nayaka S, Ingle KK (2021) New species and new records in the lichen genus *Rinodina* (Physciaceae) from India. Taiwania 66(2): 193–202. https://doi.org/10.6165/tai.2021.66.193

Lendemer JC, Sheard JW, Thor G, Tønsberg T (2012) *Rinodina chrysidiata*, a new species from far eastern Asia and the Appalachian Mountains of North America. The Lichenologist 44(2): 179–187. https://doi.org/10.1017/S0024282911000764
Lendemer JC, Hoffman JR, Sheard JW (2019) *Rinodina brauniana* (Physciaceae, Teloschistales), a new species with pseudoisidia from the southern Appalachian Mountains of eastern North America. The Bryologist 122(1): 111–121. https://doi.org/10.1639/0007-2745-122.1.111

Malme GO (1902) Die Flechten der ersten Regnell’schen Expedition. II. Die Gattung *Rinodina* (Ach.) Stiz. Bihang til Konghga Svenska Vetenskaps-Akademien Handlingar 28(111, 1): 1–53. https://doi.org/10.5962/bhl.part.9812

Matzer M, Mayrhofer H (1996) Saxicolous species of the genus *Rinodina* (lichenized Ascomycetes, Physciaceae) in southern Africa. Bothalia 26(1): 11–30. https://doi.org/10.4102/abc.v26i1.683

Mayrhofer H (1983) The saxicolous species of *Rinodina* in New Zealand. The Lichenologist 15: 267–282. https://doi.org/10.1017/S0024282983000407

Mayrhofer H (1984a) Die saxicolen Arten der Flechtengattungen *Rinodina* und *Rinodinella* in der Alten Welt. Journal Hattori Botanical Laboratory 55: 327–493.

Mayrhofer H (1984b) The saxicolous species of *Dimelaena*, *Rinodina* and *Rinodinella* in Australia. Nova Hedwigia 79: 511–536.

Mayrhofer H, Poelt J (1979) Die saxicolen Arten der Flechtengattung *Rinodina* in Europa. Bibliotheca Lichenologica 12: 1–186.

Mayrhofer H, Moberg R (2002) *Rinodina*. Nordic Lichen Flora 2: 41–69.

Mayrhofer H, Obermayer W, Wetschnig W (2014) Corticolous species of the genus *Rinodina* (lichenized Ascomycetes, Physciaceae) in southern Africa. Herzogia 27: 1–12. https://doi.org/10.13158/heia.27.1.2014.1

Morse CA, Sheard JW (2020) *Rinodina lecideopsis* (Teloschistales, Physciaceae) a new endemic species from the central United States related to *R. bischoffii*. The Bryologist 123(1): 31–38. https://doi.org/10.1639/0007-2745-123.1.031

Nadyeina O, Grube M, Mayrhofer H (2010) A contribution to the taxonomy of the genus *Rinodina* (Physciaceae, lichenized Ascomycotina) using combined ITS and mtSSU rDNA data. The Lichenologist 42(5): 521–531. https://doi.org/10.1017/S0024282910000186

Orange A, James PW, White FJ (2001) Microchemical Methods for the Identification of Lichens. The British Lichen Society, London.

Poelt J (1965) Zur Systematik der Flechtenfamilie Physciaceae. Nova Hedwigia 9: 21–32.

Rambaut A (2014) FigTree v1.4.2. Edinburgh: University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree

Resl P, Mayhofer H, Clayden SR, Spribille T, Thor G, Tønsberg T, Sheard JW (2016) Morphological, chemical and species delimitation analyses provide new taxonomic insights into two groups of *Rinodina*. The Lichenologist 48(5): 469–488. https://doi.org/10.1017/S0024282916000359

Schwarz G (1978) Estimating the dimension of a model. Annals of Statistics 6: 461–464. https://doi.org/10.1214/aos/1176344136

Sheard JW (1966) A revision of the lichen genus *Rinodina* in Europe and its taxonomic affinities. PhD thesis, University of London, England.

Sheard JW (2004) *Rinodina*. In: Nash III TH, Ryan BD, Diederich P, Gries C, Bungartz F (Eds) Lichen Flora of the Greater Sonoran Desert Region, Vol. II. Lichens Unlimited, Tempe, 467–502.
Sheard JW (2010) The Lichen Genus *Rinodina* (Ach) Gray (Lecanoromycetidae, Physciaceae) in North America, North of Mexico. NRC Research Press, Ottawa, 246 pp.

Sheard JW (2018) A synopsis and new key to the species of *Rinodina* (Ach.) Gray (Physciaceae, lichenized Ascomycetes) presently recognized in North America. Herzogia 31(1): 395–423. https://doi.org/10.13158/heia.31.1.2018.395

Sheard JW, Mayrhofer H (2002) New species of *Rinodina* (Physciaceae, lichenized Ascomycetes) from western North America. The Bryologist 105(4): 645–672. https://doi.org/10.1639/0007-2745(2002)105[0645:NSORPL]2.0.CO;2

Sheard JW, Lendemer JC, Spribille T, Thor G, Tønsberg T (2010) Further contributions to the genus *Rinodina* (Physciaceae, Lecanoromycetidae): two new species to science and a new record for the Canadian High Arctic. Herzogia 25(2): 125–143. https://doi.org/10.13158/heia.25.2.2010.125

Sheard JW, Knudsen K, Mayrhofer H, Morse CA (2011) Three new species of *Rinodina* (Physciaceae) and a new record from North America. The Bryologist 114(3): 453–465. https://doi.org/10.1639/0007-2745-114.3.453

Sheard JW, Ezkhin AK, Galanina IA, Himelbrant D, Kuznetsova E, Shimizu A, Stepanchikova I, Thor G, Tønsberg T, Yakovchenko LS, Spribille T (2017) The lichen genus *Rinodina* (Physciaceae, Calicicales) in north-eastern Asia. The Lichenologist 49(6): 617–672. https://doi.org/10.1017/S0024282917000536

Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, Wolseley PA (2009) The lichens of Great Britain and Ireland. The British Lichen Society, London.

Stecher G, Tamura K, Kumar S (2020) Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution 37(4): 1237–1239. https://doi.org/10.1093/molbev/msz312

Tønsberg T (1992) *Rinodina sheardii*, a new lichen species from northwest Europe and northwest North America. The Bryologist 95(2): 216–217. https://doi.org/10.2307/3243437

Wedin M, Baloch E, Grube M (2002) Parsimony analyses of mtSSU and nITS rDNA sequences reveal the natural relationships of the lichen families Physciaceae and Caliciaceae. Taxon 51(4): 655–660. https://doi.org/10.2307/1555020

White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18(1): 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfliegler WP, Horváth E, Bensch K, Kirk PM, Kolaríková K, Raja HA, Radek R, Papp V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawlowska JZ, Humber RA, Kodsueb R, Sánchez-Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somrithipol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Mešić A, Tkalčec Z, Maharachchikumbura SSN, Papizadeh M, Heredia
G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALCMA, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdoğanu M, Yurkov A, Schnittler M, Schepin ON, Novozhilov YK, Silva-Filho AGS, Gentekaki E, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathe MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP, Thines M (2020) Outline of Fungi and fungus-like taxa. Mycosphere 11(1): 1060–1456. https://doi.org/10.5943/mycosphere/11/1/8
Yakovchenko LS, Davydov EA, Paukov A, Frisch A, Galanina I, Han JE, Moon KH, Kashiwadani H (2018) New lichen records from Korea–I. Mostly arctic-alpine and tropical species. Herzogia 31(2): 965–981. https://doi.org/10.13158/heia.31.2.2018.965
Zheng XJ, Ren Q (2020) Three Rinodina species new to China. Mycotaxon 135(1): 195–201. https://doi.org/10.5248/135.195