Synthesis and Characterization of TiO$_2$/CuO/WO$_3$ Ternary Composite and its Application as Photocatalyst

H. Koohestani*, R. Ezoji
Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran

Abstract

Photocatalytic removal of water and air pollution has received much attention today. Many photocatalysts based on semiconductors have been developed and used. Binary and even ternary composites have been developed to solve the drawback of semiconductors, including high band gaps and short life time of charge carriers. In this study, a three-component composite of TiO$_2$/CuO/WO$_3$ was synthesized by adding WO$_3$ to TiO$_2$/CuO. Their structural properties were evaluated by analyzes X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and diffusive reflectance spectra (DRS) and their performance by methylene orange dye removal. The results of XRD and SEM analysis showed purity and uniform distribution of elements. The combination of TiO$_2$/10%CuO and 15%WO$_3$ with band gap 2.66 eV showed the highest rate constant of dye removal (0.0301 min$^{-1}$).

1. INTRODUCTION

Due to the increasing demand for solar energy, treated water and air, and the removal of hazardous and toxic pollutants, the use of semiconductor photocatalysts that have a wide variety of capabilities in these fields have attracted considerable attention [1-4]. Especially TiO$_2$, which due to its good photocatalytic activity in the removal of organic pollutants such as rhodamine B [5], tetracycline [6], phenols [7], dye reagents [8], etc., has been further studied under ultraviolet irradiation.

Heterogeneous photocatalysts based on advanced oxidation processes using semiconductor materials such as TiO$_2$ have been of great interest over the past two decades for the treatment of environmental pollution in water and air. However, this technique can not significantly improve the practical quality of water [9]. Because TiO$_2$ has drawbacks such as: rapid recombination of photo-excited charge carriers (electron-hole) and extensive band gaps [10-14]. The excited direction of TiO$_2$ in practical applications, due to its low efficiency in photon utilization and relatively high band gap energy (3.0-3.2 eV), requires a source of ultraviolet light irradiation, which is only a small part of sunlight (3-5%) [15].

Many strategies have been used to solve these problems to develop the TiO$_2$ photocatalytic system with improved activity under UV-vis irradiation. Some of these strategies include: use of transition metal ions, precious metal deposition, dye sensitized TiO$_2$ and coupling with other semiconductors such as ZnO, CdS and WO$_3$ [16, 17]. Among semiconductors, WO$_3$ and CuO coupling have been extensively studied. WO$_3$ with band gap energy of 2.5-2.9 eV improves the photocatalytic efficiency of TiO$_2$ in various ways. It prevents the recombination of e$_{cb}$/h$_{vb}$ pairs and transmits the useful region of the excitation beam to the visible spectrum [14, 16]. In addition, the presence of WO$_3$ increases the surface acidity on TiO$_2$ particles [18]. They are composed in different ways to adsorb more OH$^-$ or H$_2$O molecules and produce larger amounts of HO$^+$ radicals [11, 19]. Accordingly, many studies have evaluated the photocatalytic activity of WO$_3$/TiO$_2$ to reduce the amount of methylene blue and methyl orange using light irradiation [16, 20].

Another TiO$_2$ composite, as a successful combination of monoxide properties, is the CuO/TiO$_2$ composite,
which is particularly attractive due to its low p-CuO band gap and high n-TiO$_2$ reactivity [21, 22]. The p-n junction coupling is expected to produce an improved lifetime of the charge carriers with positive effects on photocatalytic activity [23, 24]. The high photocatalytic activity of CuO/TiO$_2$ has been attributed to the transfer of photo-excited electrons from the TiO$_2$ conduction band to the CuO conduction band. This accumulation of extra electrons in the CuO conduction band causes a negative shift in Fermi level and thus improves its photocatalytic performance in removing organic pollutants from water as well as hydrogen production from water [25].

Recently, a number of composites with three compounds have been fabricated and their photocatalytic performance has been investigated. Miwa et al. [26] synthesized CuO/Al$_2$O$_3$/TiO$_2$ composite by mechanical method. They showed that the combination of 0.2wt% CuO/0.3wt% Al$_2$O$_3$/TiO$_2$ had a better performance in the photocatalytic production of hydrogen. Yanyan et al. [27] synthesized the WO$_3$/TiO$_2$/SiO$_2$ composite by sol-gel method. The results of photocatalytic performance in photodegradation of Ace showed that 3% WO$_3$/TiO$_2$/SiO$_2$ had the highest efficiency of 88%. Li et al. [28] showed that the simultaneous addition of 15% MoS$_2$/MoO$_3$ to TiO$_2$ produced a fast degradation rate (maximum ~0.138 min$^{-1}$), of rhodamine B degradation (95%) in 20 min under visible-light irradiation.

Because in the three compounds due to the difference in the edge of the conduction band and the valence band, after the production of photo-excited charge carriers, electrons and holes are transferred at the junction of these semiconductors, the timelife of the charge carriers increases and the chance their participation in oxidation reactions increases. Therefore, in this work, WO$_3$/TiO$_2$/CuO ternary nanocomposites are synthesized. The samples were examined by X-ray diffraction (XRD), Field-emission scanning electron microscopy (FESEM) and diffusive reflectance spectra (DRS) analyzes. To study the photocatalytic performance of synthesized composites, methyl orange removal test is performed.

2. MATERIALS AND EXPERIMENTS

2.1. Materials

In this research, Titanium tetraisopropoxide (TTIP) from Daejung (Korea), hydrochloric acid (HCl), 2-propanol, methyl orange (MeO), WO$_3$ nanopowder, ascorbic acid and Cupric sulfate pentahydrate (CuSO$_4$5H$_2$O) from Merck (Darmstadt, Germany) were purchased.

2.2. Synthesis of TiO$_2$-based Composites

To make the ternary nanocomposite of TiO$_2$/CuO/WO$_3$, initially similar to the flowchart of Figure 1 and by adjusting the time and amount of each compound, two solutions were prepared as follows:

Solution A: 6 ml of 2-propanol was mixed with 6 ml of hydrochloric acid and 85 ml of distilled water for 10 min. Then 6 ml of TTIP was added dropwise into the solution and the temperature was slowly raised to 50 °C. The solution was stirred for 60 min.

Solution B: 0.4 g of copper sulfate was dissolved in 100 ml of distilled water and stirred for 20 min. 30 ml of sodium hydroxide 0.05 M was added to the solution. After stirring for 30 min, 30 ml of ascorbic acid 0.05 M was added and stirred for 30 min.

To prepare a ternary composite with a specific composition, certain ratio of solution B were added dropwise into solution A (to achieve a TiO$_2$ to CuO ratio of 1:9). Also, a certain amount of WO$_3$ nanoparticle powder was added to it. The resulting solution was stirred for 1 h and then allowed to precipitate for 24 h. The precipitate was calcined after drying for 2 h at 400 °C. The resulting samples were named 5WTC, 10WTC, 15WTC and 20WTC according to the composition of 90TiO$_2$-10CuO and the amount of WO$_3$ at 5, 10, 15 and 20%.

2.3. Characterizations

In order to investigate the phases formed in the composite samples, the XRD

![Flowchart of synthesis of TiO$_2$/CuO/WO$_3$ ternary composite](image-url)
diffractometer (Bruker D8) with Cu Kα radiation (λ=1.54056 Å) was used, which shows X-ray diffraction patterns with intensity in terms of diffraction angle (2θ). Field-emission scanning electron microscopy (MAIA3, Tescan) was used to evaluate the microstructure of the samples. EDS and map analyzer capabilities were used to more accurately investigate the presence of elements and how they are distributed. The diffusive reflectance spectra (DRS) of the composites were recorded by a UV-Vis spectrophotometer (Avaspec-2048-TEC) using BaSO₄ as a reference in the region from 200 to 900 nm.

Photocatalytic activities were investigated by adding 150 mg/l of composite to 50 ml solutions of MeO (with 5 mg/l initial concentration). At first, solution was stirred for 60 min in full darkness to achieve adsorption-desorption equilibrium. UV irradiation from two 6 W lamp (Philips) was then applied to the catalyst containing solution. Samples were then taken out for analysis at the intervals of 30 min. The concentration of dye in the solution was measured spectrophotometrically at the wavelength of the maximum absorbance (λ_max: 612 nm).

3. RESULTS AND DISCUSSIONS

The diffraction pattern of TiO₂/10%CuO binary samples and 15WTC ternary samples is shown in Figure 2. In both patterns, the anatase (JCPDS 21-1272) and rutile (JCPDS 21-1276) peaks can be seen well. In the binary sample, CuO phase peaks appeared, but in the ternary sample, due to the low CuO value, the peak was not seen. In the pattern of the ternary sample, the peaks of the orthrombic phase WO₃ (JCPDS 20-1324) are identified. Ke et al. [9] reported that in the TiO₂/WO₃ composite the conversion of the anatase phase to rutile occurs at lower temperatures. WO₃ leads to the formation of W⁵⁺ and excess oxygen vacancies by the ability to absorb electrons from the TiO₂ conduction band [9, 16]. These oxygen vacancies accelerate the phase transformation in TiO₂ from anatase to rutile. Akhlaghian et al. [29] were observed WO₃ effect in the reduction of anatase phase transformation to rutile phase.

The presence of rutile peaks in Figure 2b may be due to this. On the other hand, the presence of CuO does not cause a significant change in the size of anatase and rutile crystals and their transformation [25].

Figure 3 shows the FESEM and EDS images of TiO₂/CuO binary and 15WTC ternary samples. Figure 3a indicates relatively spherical particles approximately 15-30 nm diameter, and EDS Figure 3c confirms the presence of three elements Ti, Cu, and O. The particle morphology of the 15WTC ternary sample is shown in Figure 3b. As can be seen, TiO₂/CuO nanoparticles have coated the surface of WO₃ coarse particles. EDS in Figure 3d demonstrates the presence of elements W, Ti, Cu and O.

In, The distribution of elements in the ternary sample along with the map images is shown Figure 4. As can be seen, the elements W, Ti and Cu are evenly distributed throughout the sample surface.

Band gap is one of the most important properties of semiconductors in photocatalytic processes and
applications. Figure 5 shows the DRS analysis results including the absorption spectrum (Figure 5a) and how to determine the band gap (Figure 5b). The value of optical band gap obtained from the diagrams is represented in Table 1. The band gap of the samples was obtained using the kubelka-Munk relationship from the absorption spectrum [25]:

\[
(\alpha h\nu) = \beta (h\nu - E_g)^n
\]

where \(E_g\) is the sample band gap energy (eV), \(\nu\) is the light frequency (s\(^{-1}\)), \(h\) is the Planck constant (J.s), \(\beta\) is the absorption constant and \(\alpha\) is the absorption coefficient. The value of index \(n\) is considered to be 1.2, 3.2 and 2 for direct transition, forbidden direct transition or indirect transition, respectively. The band gap can be determined by extrapolating the linear portion of the \((\alpha h\nu)^n\) curve. \(n=1/2\) value better defines our composites [25].

It should be noted that the band gap energy of TiO\(_2\), CuO and WO\(_3\) are 3.20, 1.70 and 2.70, respectively [30]. According to the results, the addition of other compounds to TiO\(_2\) has reduced the band gap energy. For example, the band gap value has been reduced to 2.95 eV for TiO\(_2\)/10%CuO. A shift in the absorption edge for TiO\(_2\)/CuO composites with CuO is shown to be possibly related to the formation of a defect levels in an energy range in TiO\(_2\) [31].

Addition of WO\(_3\) to the binary compound further reduces the band gap. Baia et al. [32] in the presence of WO\(_3\), were only able to reduce the gap of composite to 3.02 eV. Therefore, in order to further reduce the band gap energy, the presence of both components is required. The lowest band gap energy (2.66 eV) was obtained for the 15WTC sample, and then by adding more WO\(_3\) value, due to the fact that a higher level of the TC compound was covered; the ability to absorb the compound decreased, resulting in an increase in the band gap.

Table 2 presents the edge of the conduction band and edge of the valance band for TiO\(_2\), CuO and WO\(_3\) [30]. Because the conduction band of tungsten oxide is lower than that of TiO\(_2\), electron transfer from titanium particles to WO\(_3\) is possible. This action effectively separates the charge carriers and increases their lifetime. In the case of

![Figure 4. Map images of the distribution of Ti, W and Cu elements in a 15WTC ternary sample](image)

Figure 4. Map images of the distribution of Ti, W and Cu elements in a 15WTC ternary sample

Samples	Band gap energy, \(E_g\) (eV)
TiO\(_2\)	3.20*
TC	2.95
5WTC	2.70
10WTC	2.68
15WTC	2.66
20WTC	2.71

* ref. [25]

![Figure 5. synthesized nanocomposites (a) UV-Vis diffuse reflectance spectra (b) Tauc plot obtained from UV-Vis DRS spectra](image)

Figure 5. synthesized nanocomposites (a) UV-Vis diffuse reflectance spectra (b) Tauc plot obtained from UV-Vis DRS spectra
Table 2. valance and conduction band edge of different semiconductor [30]

	Conduction Band edge (eV)	Valence Band edge (eV)
TiO2	-4.21	-1.01
CuO	-4.96	-3.26
WO3	-5.24	-2.54

TiO2/WO3 composition, due to the lower valance band of WO3 than TiO2, the transfer of holes in WO3 is possible. In the case of CuO, the unequilibrium transfer of charge carriers at the TiO2/CuO junction causes holes to move from TiO2 to CuO and electrons to move from CuO to TiO2.

In the case of the TiO2/CuO/WO3 ternary compound, UV light excites electrons in the conduction band WO3 and CuO, which are transferred to the conduction band TiO2. On the other hand, the holes travel in the opposite direction and migrate from the TiO2 valence band to the WO3 and CuO valence bands. These migrations of charge carriers restrict their recombination rate and thus enhances the separation of electron-hole pair. The photo-generated electrons can be trapped by oxygen molecules in the organic solution to form superoxide radical anions (‘O2•−), which can effectively degrade organic pollutants. These holes convert the water molecules into OH• and react with organic pollutants to generate H2O and CO2.

Figure 6 shows the function of the compounds in removing methylene orange dye. The photocatalytic performance kinetics of the samples can be evaluated according to the following relation and rate constant comparison [17]:

\[
\ln \left(\frac{C}{C_0} \right) = -k_{app}t
\]

where \(C_0 \) is the initial concentration of dye, and \(k_{app} \) is the apparent constant (min\(^{-1}\)). Investigating the changes in \(\ln (C/C_0) \) over time for different samples, it is observed that the addition of CuO and WO3 to the TiO2 constant speed is improved. The highest rate constant is for the 15WTC sample and is 0.0301 min\(^{-1}\). Akhlaghian et al. [29] in a study showed that the 28.11% CuO/2.1%WO3/TiO2 composition was very successful in phenol photodegradation and had a rate constant of 0.0621 min\(^{-1}\). These results indicate that the charge transfer between the compounds and an increase in electron-hole life, their photocatalytic performance is improved.

4. CONCLUSIONS

In this study, ternary TiO2/CuO/WO3 composites were synthesized and evaluated by different analyzes (XRD, FESEM, DRS and etc.). The results of XRD and FESEM analysis showed purity and uniform distribution of elements. With the production of the ternary composites, the band gap decreased. Due to the difference in the edge of the conduction band and the valence band, after the production of excited charge carriers with light, electrons and holes are moved at the junction of these semiconductors. This will increase their lifetime and give them a greater chance of participating in redox reactions to remove water pollutions. The results of methylene orange dye removal showed that the ternary composite TiO2/10%CuO with 15%WO3 and 2.66 eV band gap, had the highest performance.

5. REFERENCES

1. Bi, D. and Y. Xu, “Synergism between Fe3O4 and WO3: particles: Photocatalytic activity enhancement and reaction mechanism”, Journal of Molecular Catalysis A: Chemical, Vol. 367, 103-107. https://doi.org/10.1016/j.molcata.2012.09.031
2. Feng, C., S. Wang and B. Geng, “Ti (iv) doped WO3 nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance,” Nanoscale, Vol. 3, No. 9, (2011), 3695-3699. https://doi.org/10.1039/C1NR10460H
3. Liu, Y., C. Xie, J. Li, T. Zou and D. Zeng, “New insights into the relationship between photocatalytic activity and photocurrent of TiO2/WO3 nanocomposite.” Applied Catalysis A: General, Vol. 433, (2012), 81-87. https://doi.org/10.1016/j.apcata.2012.05.001
4. Karácsonyi, É., L. Baia, A. Dombi, V. Danciu, K. Mogyorósi, L.C. Pop, O. Kovács, V. Cosoveanu, A. Vulpoi, S. Simon and Zs. Pap, “The photocatalytic activity of TiO2/15%WO3/noble metal (Au or Pt) nanoarchitectures obtained by selective photodeposition.” Catalysis today, Vol. 208, (2013), 19-27. https://doi.org/10.1016/j.cattod.2012.09.038
5. Zhuang, J., W. Dai, Q. Tian, Z. Li, L. Xie, J. Wang, P. Liu, X. Shi and D. Wang, “Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location.” Langmuir, Vol. 26, No. 12, (2010), 9686-9694. Doc: 10.1021/la100302m
6. Reyes, C., J. Fernández, J. Freer, M.A. Mondac, C. Zaror, S. Malato and H.D. Mansill, “Degradation and inactivation of tetracycline by TiO2 photocatalysis.” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 184, No. 1-2, (2006), 141-146. https://doi.org/10.1016/j.photochem.2006.04.007
7. Laoufi, N., D. Tassalit and F. Bentahar, "The degradation of phenol in water solution by TiO₂ photocatalysis in a helical reactor," Global NEST Journal, Vol. 10, No. 3, (2008), 404-418. https://doi.org/10.1016/j.gnest.2012.11.011

8. Kuo, W. and P. Ho, "Solar photocatalytic decolorization of dyes in solution with TiO₂ film." Dyes and Pigments, Vol. 71, No. 3, (2006), 212-217. https://doi.org/10.1016/j.dyespig.2005.07.003

9. Ke, D., H. Liu, T. Peng, X. Liu and K. Dai, "Preparation and photocatalytic activity of WO₃/TiO₂ nanocomposite particles." Materials Letters, Vol. 62, No. 3, (2008), 447-450. https://doi.org/10.1016/j.matlet.2007.05.060

10. Iheu, V., D. Tomova, S. Rakovsky, A. Eliyus and G. Li Puma, "Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO₃/TiO₂ photocatalysts under UV and visible light irradiation." Journal of Molecular Catalysis A: Chemical, Vol. 327, No. 1-2, (2010), 51-57. https://doi.org/10.1016/j.molcata.2010.05.012

11. Li, X., F.B. Li, C.L. Yang and W.K. Ge, "Photocatalytic activity of WO₃-TiO₂ under visible light irradiation." Journal of Photochemistry and Photobiology A: Chemistry, Vol. 141, No. 2-3, (2001), 209-217. https://doi.org/10.1016/S1010-6030(01)00446-4

12. Sajjad, A.K.L., S. Shamaile, B. Tian, F. Chen and J. Zhang, "Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WO₃/TiO₂ photocatalyst." Journal of Hazardous Materials, Vol. 177, No. 1-3, (2010), 781-791. https://doi.org/10.1016/j.jhazmat.2009.12.102

13. Kwon, Y.T., K.Y. Song, W.I. Lee, G.J. Choi and Y.R. Do, "Photocatalytic behavior of WO₃-loaded TiO₂ in an oxidation reaction." Journal of Catalysis, Vol. 191, No. 1, (2000), 192-199. https://doi.org/10.1006/jcat.1999.2776

14. Leghari, S.A.K., S. Sajjad, F. Chen and J. Zhang, "WO₃/TiO₂ composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst." Chemical Engineering Journal, Vol. 166, No. 3, (2011), 906-915. https://doi.org/10.1016/j.cej.2010.11.065

15. Lv, K., J. Li, X. Qing, W. Li and Q. Chen, "Synthesis and photo-degradation application of WO₃/TiO₂ hollow spheres." Journal of Hazardous Materials, Vol. 189, No. 1-2, (2011), 329-335. https://doi.org/10.1016/j.jhazmat.2011.02.038

16. Koohestani, H., "Characterization of TiO₂/WO₃ composite produced with recycled WO₃ nanoparticles from W-Ni-Fe alloy." Materials Chemistry and Physics, Vol. 229, (2019), 251-256. https://doi.org/10.1016/j.matchemphys.2019.03.027

17. Koohestani, H. and S.K. Sadmezhad, "Improvement in TiO₂ photocatalytic performance by ZrO₂ nanocompositing and immobilizing." Desalination and Water Treatment, Vol. 57, No. 58, (2016), 28450-28459. DOI: 10.1080/19443994.2016.1183233

18. Papp, J., B. Podolsky, and N. Rosen, "Surface acidity and photocatalytic activity of TiO₂, WO₃/TiO₂ and MoO₃/TiO₂ photocatalysts." Chemistry of Materials, Vol. 6, No. 4, (1994), 496-500. DOI: 10.1021/cm00040a026

19. Sajjad, A.K.L., S. Shamaile, B. Tian, F. Chen and J. Zhang, "One step activation of WO₃/TiO₂ nanocomposites with enhanced photocatalytic activity." Applied Catalysis B: Environmental, Vol. 91, No. 1-2, (2009), 397-405. https://doi.org/10.1016/j.apcata.2009.06.005

20. Ramos-Delgado, N., L. Hinojosa-Reyes, I.L. Guzman-Mar, M.A. Gracia-Pinilla and A. Hernández-Ramírez, "Synthesis by sol-gel of WO₃/TiO₂ for solar photocatalytic degradation of malathion pesticide." Catalysis Today, Vol. 209, (2013), 35-40. https://doi.org/10.1016/j.cattod.2012.11.011

21. Scuderi, V., G. Amiard, R. Sanz, S. Boninelli, G. Impellizzeri and V. Privitera, "TiO₂ coated CuO nanowire array: Ultrathin p-n heterojunction to modulate cationic/anionic dye photodegradation in water." Applied Surface Science, Vol. 416, (2017), 885-890. https://doi.org/10.1016/j.apsusc.2017.04.229

22. Sawicka-Chudy, P., M. Sibinski, G. Wisz, E. Rýbak-Wilusz and M. Cholewa, "Numerical analysis and optimization of CuO/TiO₂, CuO/TiO₂, heterojunction solar cells using SCAPS." Journal of Physics: Conference Series, (2018). IOP Publishing. https://doi.org/10.1088/1742-6596/1033/1/012002

23. Zhang, X. and A. Tang, "Novel CuO/TiO₂ nanocomposite films with a graded band gap for visible light irradiation." Materials Express, Vol. 2, No. 3, (2012), 238-244. https://doi.org/10.1016/j.mlex.2012.10.069

24. Koohestani, H. and A. Khelnijead, "Hydrogen Generation and Pollution Degradation from Wastewater Using TiO₂-CuO Nanocomposite." Journal of Nanoscience and Nanotechnology, Vol. 20, No. 9, (2020), 5970-5975. https://doi.org/10.1166/jnn.2020.18544

25. Koohestani, H. and S.K. Sadmezhad, "Photocatalytic degradation of methyl orange and cyanide by using TiO₂/CuO composite." Desalination and Water Treatment, Vol. 345, No. 244, (2016), 22029-22038. https://doi.org/10.1080/19443994.2015.1132395

26. Miwa, T., S. Kanecho, H. Katsumata, T. Suzuki, K. Ohta, S. Chand Verma and K. Sugihara, "Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al₂O₃/TiO₂ nanocomposite." International Journal of Hydrogen Energy, Vol. 35, No. 13, (2010), 6554-6560. https://doi.org/10.1016/j.ijhydene.2010.03.128

27. Yanyan, L., T.A. Kurniawan, Z. Ying, A.B. Albadarin and G. Walker, "Enhanced photocatalytic degradation of acetalophenin from wastewater using WO₃/TiO₂/SiO₂ composite under UV-vis irradiation." Journal of Molecular Liquids, Vol. 243, (2017), 761-770. https://doi.org/10.1016/j.molliq.2017.08.092

28. Li, Z., F. Cao, L. Wang, Z. Chen and X. Ji, "A novel ternary MoS₂/MoO₃/TiO₂ composite for fast photochemical reduction of rhodamine B under visible-light irradiation." New Journal of Chemistry, Vol. 44, No. 2, (2020), 537-542. https://doi.org/10.1039/CN040107A

29. Akhlaghian, F. and A. Najafi, "CuO/WS₂/TiO₂ photocatalyst for degradation of phenol wastewater." Scientia Iranica, Vol. 25, No. 6, (2018), 3345-3353. https://doi.org/10.24200/sci.2018.20611

30. Xu, Y. and M.A. Schoonen, "The absolute energy positions of conduction and valence bands of selected semiconducting minerals." American Mineralogist, Vol. 85, No. 3-4, (2000), 543-556. https://doi.org/10.2138/am.2000-0416

31. Lebedev, V., V.V. Sudin, D.A. Kozlov and A.V. Garichev, "Photocatalytic properties of nanocrystalline TiO₂ modified with CuO and WO₃." Nanotechnologies in Russia, Vol. 11, No. 1-2, (2016), 20-28. DOI: 10.1134/S1995078016010002

32. Baia, L., E. Orbán, S. Fodor, B. Hampel, E.Z. Kedves, K. Saszet and I. Székely, "Preparation of TiO₂/WO₃ composite photocatalysts by the adjustment of the semiconductors' surface charge." Materials Science in Semiconductor Processing, Vol. 42, (2016), 66-71. https://doi.org/10.1016/j.mssp.2015.08.042
چکیده
حذف فتوکاتالیستی آسپارگالهای آب و هوایی، در این زمان به‌صورت نوین توجه قرار گرفته است. فتوکاتالیست‌های زیادی بر پایه اکسید شیشه هوایی تولید شده و مورد استفاده قرار گرفته‌اند. برای رفع مشکلات
نیمه‌چندی، از جمله کاهش اثرات نارنجی و طول عمر پایین دادن خواص ویژه دارایی‌های آسپارگالهای آب و هوایی به‌صورت نوین توجه قرار گرفته است. در این پژوهش، ترکیب CuO/TiO2، با افزودن نانوذرات WO3 از X تولید شده است. خواص ساختاری و عملکرد آنها با حذف رنگ نارنجی به‌صورت نوین توانسته‌اند تغییرات ترکیبی و ساختاری را نشان دهند. ترکیب 15%TiO2/10%CuO و 15%WO3 با تولید نارنجی کاهش حذف رنگ نارنجی و گاز اکسیژن توانایی بیشتری نسبت به ترکیب‌های دیگر را نشان داد.