Introduction

The purposes of this note are

• To propose a direct and “elementary” proof of the main result of [3], namely that the semi-classical spectrum near a global minimum of the classical Hamiltonian determines the whole semi-classical Birkhoff normal form (denoted the BNF) in the non-resonant case. I believe however that the method used in [3] (trace formulas) are more general and can be applied to any non degenerate non resonant critical point provided that the corresponding critical value is “simple”.

• To present in the completely resonant case a similar problem which is NOT what is done in [3]: there, only the non-resonant part of the BNF is proved to be determined from the semi-classical spectrum!

1 A direct proof of the main result of [3]

1.1 The Theorem

Let us give a semi-classical Hamiltonian \hat{H} on \mathbb{R}^d (or even on a smooth connected manifold of dimension d) which is the Weyl quantization of the symbol $H \equiv H_0 + \hbar H_1 + \hbar^2 H_2 + \cdots$.

Let us assume that H_0 has a global non degenerate non resonant minimum E_0 at the point z_0: it means that after some affine symplectic change of variables
\[H_0 = E_0 + \frac{1}{2} \sum_{j=1}^{d} \omega_j (x_j^2 + \xi_j^2) + \cdots \] where the \(\omega_j \)'s are > 0 and independent over the rationals. We can assume that \(0 < \omega_1 < \omega_2 < \cdots < \omega_d \). We will denote \(E_1 = H_1(z_0) \).

We assume also that
\[
\lim_{(x,\xi) \to \infty} \inf H(x, \xi) > E_0.
\]

Let us denote by \(\lambda_1(\hbar) < \lambda_2(\hbar) \leq \cdots \leq \lambda_N(\hbar) \leq \cdots \) the discrete spectrum of \(\hat{H} \). This set can be finite for a fixed value of \(\hbar \), but, if \(N \) is given, \(\lambda_N(\hbar) \) exists for \(\hbar \) small enough.

Definition 1.1 The semi-classical spectrum of \(\hat{H} \) is the set of all \(\lambda_N(\hbar) \) (\(N = 1, \cdots \)) modulo \(O(\hbar^{\infty}) \). **NO uniformity with respect to** \(N \) **in the** \(O(\hbar^{\infty}) \) **is required.**

Definition 1.2 The semi-classical Birkhoff normal form is the following formal series expansion in \(\Omega = (\Omega_1, \cdots, \Omega_d) \) and \(\hbar \):
\[
\hat{B} \equiv E_0 + \hbar E_1 + \sum_{j=1}^{d} \omega_j \Omega_j + \sum_{l+|\alpha| \geq 2} c_{l,\alpha} \hbar^{l} \Omega^{\alpha}
\]
with \(\Omega_j = \frac{1}{2} (-\hbar^2 \partial_j^2 + x_j^2) \). The series \(\hat{B} \) is uniquely defined as being the Weyl quantization of some symbol \(B \) equivalent to the Taylor expansion at \(z_0 \) of \(H \) by some automorphism of the semi-classical Weyl algebra (see [2]).

The main result is the

Theorem 1.1 [3] Assume as before that the \(\omega_j \)'s are linearly independent over the rationals. Then the semi-classical spectrum and the semi-classical Birkhoff normal form determine each other.

The main difficulty is that the spectrum of \(\hat{B} \) is naturally labelled by \(d \)-uples \(k \in \mathbb{Z}_+^d \) while the semi-classical spectrum is labelled by \(N \in \mathbb{N} \). We will denote by \(\psi \) the bijection \(\psi : N \to k \) of \(N \) onto \(\mathbb{Z}_+^d := \{ k = (k_1, \cdots, k_d) | \forall j, k_j \in \mathbb{Z}, k_j \geq 0 \} \) given by ordering the numbers \(\langle \omega | k \rangle \) in increasing order: they are pair-wise distincts because of the non-resonant assumption.

2 From the semi-classical Birkhoff normal form to the semi-classical spectrum

We have the following result
Theorem 2.1 The semi-classical spectrum is given by the following power series in \hbar:

$$\lambda_N(\hbar) \equiv E_0 + \hbar \left(E_1 + \frac{1}{2} \langle \omega | \psi(N) \rangle + \frac{1}{2} \right) + \sum_{j=2}^{\infty} \hbar^j P_j(\psi(N)) \quad (1)$$

where the P_j's are polynomials of degree j given by

$$P_j(Z) = \sum_{\ell + |\alpha| = j} c_{\ell,\alpha} \left(Z + \frac{1}{2} \right)^\alpha.$$

This result is an immediate consequence of results proved by B. Simon [5] and B. Helffer-J. Sjöstrand [4] concerning the first terms, and by J. Sjöstrand in [6] (Theorem 0.1) where he proved a much stronger result.

3 From the semi-classical spectrum to the ω_j's

3.1 Determining the ω_j's

Because $E_0 = \lim_{\hbar \to 0} \lambda_1(\hbar)$, we can subtract E_0 and assume $E_0 = 0$.

By looking at the limits, as $\hbar \to 0$, $\mu_N := \lim \lambda_N(\hbar)/\hbar$ (N fixed), we know the set of all $E_1 + \sum_{j=1}^d \omega_j(k_j + \frac{1}{2})$, $(k_1, \ldots, k_d) \in \mathbb{Z}_+^d$.

Let us give 2 proofs that the μ_N's determine the ω_j's.

1. Using the partition function: from the μ_N's, we know the meromorphic function

$$Z(z) := \sum e^{-z \mu_N}.$$

$$Z(z) := e^{-z(E_1 + \frac{1}{2} \sum_{j=1}^d \omega_j)} \sum_{k \in \mathbb{Z}_+^d} e^{-z \langle \omega | k \rangle},$$

We have

$$Z(z) = e^{-z(E_1 + \frac{1}{2} \sum_{j=1}^d \omega_j)} \prod_{j=1}^d (1 - e^{-z \omega_j})^{-1}.$$

The poles of Z are $\mathcal{P} := \bigcup_{j=1,\ldots,d} \left(\frac{2\pi i \mathbb{Z}}{\omega_j} \right)$. The set of ω_j is hence determined up to a permutation. We fix now $\omega = (\omega_1, \ldots, \omega_d)$ with $\omega_1 < \omega_2 < \cdots$.

From the knowledge of the ω_j's, we get the bijection ψ.

2. A more elementary proof: substract $\mu_1 = E_1 + \frac{1}{2} \sum \omega_j$ from the whole sequence and denote $\nu_N = \mu_N - \mu_1$. Then $\omega_1 = \nu_2$. Then remove the multiples of ω_1. The first remaining term is ω_2. Remove all integer linear combinations of ω_1 and ω_2, the first remaining term is ω_3, \cdots
3.2 Determining the $c_{l,\alpha}$’s

Let us first fix N: from Equation (1) and the knowledge of $\lambda_N \mod O(\hbar^\infty)$ we know the $P_j(\psi(N))’s$ for all j’s.

Doing that for all N’s and using ψ determine the restriction of the P_j’s to \mathbb{Z}_+^d and hence the P_j’s.

4 A natural question in the resonant case

4.1 The context

For simplicity, we will consider the completely resonant case $\omega_1 = \cdots = \omega_d = 1$ and work with the Weyl symbols. Let us denote by $\Sigma = \frac{1}{2} \sum (x_j^2 + \xi_j^2)$.

The (Weyl symbol of the) QBNF is then of the form

$$B \equiv \Sigma + \hbar P_{0,1} + \sum_{n=2}^{\infty} \sum_{j+l=n} \hbar^j P_{2l,j}$$

where $P_{2l,j}$ is an homogeneous polynomial of degree $2l$ in (x, ξ), Poisson commuting with Σ: $\{ \Sigma, P_{2l,j} \} = 0$.

For example, the first non trivial terms are:

- for $n = 2$: $P_{4,0} + \hbar P_{2,1} + \hbar^2 P_{0,2}$
- for $n = 3$: $P_{6,0} + \hbar P_{4,1} + \hbar^2 P_{2,2} + \hbar^3 P_{0,3}$.

The semi-classical spectrum splits into clusters C_N of $N+1$ eigenvalues in an interval of size $O(\hbar^2)$ around each $\hbar(N + \frac{1}{2}d + P_{0,1})$ with $N = 0, 1, \cdots$.

The whole series B is however NOT unique, contrary to the non-resonant case, but defined up to automorphism of the semi-classical Weyl algebra commuting with Σ.

Let G be the group of such automorphisms (see [2]). The natural question is roughly:

Is the QBNF determined modulo G from the semi-classical spectrum, i.e. from all the clusters?

4.2 The group G

The linear part of G is the group M of all A’s in the symplectic group which commute with \hat{H}_2, i.e. the unitary group $U(d)$.

We have an exact sequence of groups:

$$0 \rightarrow K \rightarrow G \rightarrow M \rightarrow 0.$$

\footnote{The Moyal bracket of any A with \hat{H}_2 reduces to the Poisson bracket}

4
Let us describe K (the “pseudo-differential” part):
Let $S = S_3 + \cdots$ in the Weyl algebra (the formal power series in (\hbar, x, ξ) with the Moyal product and the usual grading degree $(\hbar^j x^\alpha \xi^\beta) = 2j + |\alpha| + |\beta|$)

$$g_S(H) = e^{iS/\hbar} H \ast e^{-iS/\hbar}$$

preserves Σ iff $\{S_n, \Sigma\} = 0$. This implies that n is even and S_n is a polynomial in $z_j \overline{z}_k$ ($z_j = x_j + i\xi_j$). Then K is the group of all g_S’s with $\{S, \Sigma\} = 0$.

References

[1] Laurent Charles & San Vũ Ngọc. Spectral asymptotics via the Birkhoff normal form. [ArXiv:math-sp/0605096] *Duke Math. Journal* 143:463–511 (2008).

[2] Yves Colin de Verdière. An extension of the Duistermaat-Singer Theorem to the semi-classical Weyl algebra. *Preprint 2008*.

[3] Victor Guillemin, Thierry Paul & Alejandro Uribe. “Bottom of the well” semi-classical wave trace invariants. [ArXiv:math-sp/0608617] and *Math. Res. Lett. 14:711–719* (2007).

[4] Bernard Helffer & Johannes Sjöstrand. Puis multiples en semi-classique I. *Commun. PDE*. 9:337–408 (1984).

[5] Barry Simon. Semi-classical analysis of low lying eigenvalues I: Non degenerate minima. *Ann. IHP (phys. théo.*) 38: 295–307 (1983).

[6] Johannes Sjöstrand. Semi-excited states in nondegenerate potential wells. *Asymptotic Analysis* 6:29–43 (1992).