Effect of alpha 2b interferon on inducement of mIL-2R and treatment of HCV in PBMC from patients with chronic viral hepatitis C

Jian Wang, Gui-Ju Xiang, Bing-Xiang Liu

AIM: To study the level of membrane interleukin-2 receptor (mIL-2R) on surface of peripheral blood mononuclear cells (PBMC) and the therapeutic efficacy of alpha 2b interferon on the treatment of HCV-RNA in PBMC of patients with chronic hepatitis C and to compare the negative rates of HCV-RNA in PBMC, HCV-RNA and anti-HCV in serum.

METHODS: Before and after treatment of alpha 2b interferon, the level of mIL-2R of patients with chronic hepatitis C was detected by biotin-streptavidin (BSA). The therapeutic group (26 cases) was treated with alpha 2b interferon (3 MU/d) and control therapeutic group (22 cases) was treated with routine drugs (VitC, aspartic acid). The total course of treatment with alpha 2b interferon and routine drug was six months and per course of the treatment was three months. The levels of HCV-RNA in PBMC, HCV-RNA and anti-HCV in serum were detected before and after a course of the treatment.

RESULTS: Before and after treatment of alpha 2b interferon and routine drugs, the levels of mIL-2R in silence stage were (3.44±0.77) % and (2.95±0.72) %, the levels of mIL-2R in inducement stage were (33.62±3.95) % and (30.04±3.73) %. There was a significant difference between two groups (P<0.01-P<0.05). After treatment of alpha 2b interferon with 3 MU/d for two courses of the treatment, the total negative rates of HCV-RNA in the PBMC and HCV-RNA, anti-HCV in serum were 42.31 % (11/26), 57.69 % (15/26), 65.38 % (17/26) respectively. After the treatment of routine drug, the negative rates of HCV-RNA in PBMC and HCV-RNA, anti-HCV in serum were 13.64 % (3/22), 22.73 % (5/22), 27.27 % (6/22) respectively. There was high significant difference in the group treated with alpha 2b interferon and the group treated with routine drugs (P<0.01-P<0.05).

CONCLUSION: The mIL-2R can be induced by alpha 2b interferon during the treatment. The alpha 2b interferon has a definite effect on the treatment of HCV-RNA in PBMC.

The curative effect of alpha 2b interferon is better than that of the routine drugs.

Wang J, Xiang GJ, Liu BX. Effect of alpha 2b interferon on inducement of mIL-2R and treatment of HCV in PBMC from patients with chronic viral hepatitis C. World J Gastroenterol 2003; 9(4): 751-754
http://www.wjgnet.com/1007-9327/9/751.htm

INTRODUCTION
Treatment of interferon on the chronic viral hepatitis C has been shown to have a good curative effect on inhibition of HCV replication, reduction in transmission level in serum and liver cells[1-8], but the improvement in clinical condition was not obvious and its effective rate was only 50 %-13]. The curative effect of interferon was based on virostatic replication of HCV in serum and some improvement of liver function. The literatures show that the peripheral blood mononuclear cells (PBMC) have large different active immune cells and membrane interleukin-2 receptor (mIL-2R) is an important symbol of active T cells, and the immune function of PBMC will be inhibited after being infected by HCV and the scavenging effect limited[18,19]. In order to study the effect of interferon on treatment of HCV in PBMC and the effect of interferon on inducement to mIL-2R, forty-eight patients with typical chronic hepatitis C were observed.

MATERIALS AND METHODS
Clinical data
Forty-eight patients with chronic viral hepatitis C were selected from the Second Miner Hospital of Huainan and our teaching hospital during 1997/03-2000/05. The total number of patients was 48 (male 27, female 21) and range of age was from 18 to 57 years old (average 37.3). The clinical diagnosis was based on the modified diagnosis criterion being affirmed on the Chinese viral hepatitis conference in Xian (2000). The patients all needed the following qualifications: (1) The positivity of anti-HCV in serum for more than six months. (2) The HCV-RNA in peripheral blood mononuclear cells and serum were positive. (3) The patients had been eliminated the infection of hepatitis A, B, D, E and G viruses. (4) There were no any systemic treatment of antiviral medicine, immunomodulator, cortical hormone for the patients. The normal control was 20 healthy students (male 12, female 8) with range age from 20 to 23 years old (average 22.5).

Treatment medicine
The alpha 2b interferon was produced by High Science and Technology of Anke Biology in Anhui Province.

Treatment methods
The patients with chronic hepatitis C were divided into two groups with treatment of alpha 2b interferon 3MU (26 cases)
and routine medicine (22 cases) respectively. The total course of treatment lasted sixty months, and per course was three months. Alpha 2b interferon was given intramuscularly injection (im) qd for two weeks and then alt dieb for two courses of treatment. The routine treatment group (22 cases) was given with Vit C, Aspactic acid, etc for six months.

Reagents

The diagnostic reagent of anti-HCV was purchased from Huamei Bioengineering Company of Shanghai, No.980811. The diagnostic reagent of HCV-RNA with RT-PCR was purchased from Shanghai Zhongya Gene Institute, No. 980805. The diagnostic reagent of mL-2R was purchased from Immunology Institute of Shanghai. The lymphocytes separation medium was purchased from the Second Reagent Factory of Shanghai, No.970505. The reagent of PRMI 1640 culture was produced by Sigma (USA).

Instruments

The analysis instrument of Spector-I was made in USA; MDF-135 CO₂ incubator was made in Japan; The instrument for gene amplification (Hema-8000) was made in Hema Company of China.

Methods

The total volume of 5 ml peripheral venous blood from patients with hepatitis C before breakfast was taken before and after treatment, and distributed a sterile Eppendorf tube and an anticoagulant tube (heparin) respectively. For detection of anti-HCV, the process was performed strictly according to the direction, and with two blank, two negative and two positive pores as controls in each test. The average titer was examined by the analyser Spector-I. The average OD titer of test sample ≥2.1 times of average OD titer in negative control was considered to be positive. Detection of HCV-RNA in PBMC with RT-nested-PCR: After the heparin anticoagulant blood mixed with the equal volume Hank’s liquid without Ca²⁺ and Mg²⁺, lymphocytes separation medium was used to separate the PBMC. The cells were washed twice with Hank’s liquid without Ca²⁺, Mg²⁺ and diluted to (1-3)×10⁷/ml before detection of HCV-RNA. A positive and a negative control were set up at the same time for comparison in each test. The RT-nested-PCR was made by reverse transcription and primer selected from non-coded region and part of C region of HCV. The specific amplified fragment length was 248 bp. The synthesis parameters for cDNA were 94°C 40 s, 55°C 40 s, 72°C 1 min, for 30 circles. The amplification parameters for cDNA were 94°C 50 s, 55°C 40 s and 72°C 90 s, 35 circles, including initial denaturation for 4 min at 94°C and last extension for 5 min at 72°C. The amplification product was run for electrophoresis on gel with 2% EB. The result that was uniform to the positive control was considered to be positive. Detection of mL-2R in silence and inducement stages: 10 µl suspension of the PBMC was smeared on the slide and left dry naturally and fixed with acetone for fifteen minutes or twenty minutes. The 10 µl anti-Tac antibody was mixed with the membrane of smears. The cells were grown in continuous culture (37°C, 50 ml·L⁻¹ CO₂ in atmosphere) for thirty minutes. The immune sheet glass pores were measured after staining with the color-developing agent and several washings with TBS. The total number of 200 PBMC was counted and its positive cells were statistically analyzed with the help of high power lens. The positive criterion was that the color of cytoplasm or cell membrane was brown.

Statistical analysis

Statistical analysis included analysis of Chi-square (χ²) and t test.

RESULTS

The forty-eight patients with chronic hepatitis C were divided into two groups and treated with alpha 2b interferon (26 cases) and routine drugs (22 cases) respectively. The results had been shown that the high negative rates of anti-HCV and HCV-RNA in serum were in the group with treatment of alpha 2b interferon. There was very significant difference before and after treatment of alpha 2b interferon (P<0.01-P<0.05, Table 1). The negative rate of HCV-RNA between in PBMC and in serum was similar (P>0.05, Table 2). The level of mL-2R in situation of silence and inducement stages after treatment with alpha 2b interferon was higher than that after treatment with routine drugs (P<0.05, Table 3).

Table 1 The detective results of HCV-RNA in serum and PBMC after treatment with alpha 2b interferon (n, %)

Group	HCV-RNA in PBMC	HCV-RNA in serum	Anti-HCV				
	Negative rate	Negative rate	Negative rate	Negative rate			
Interferon treatment							
Interferon treatment	26	11	42.3¹	57.69	17	65.30	
Routin treatment	22	3	13.64	5	22.73	6	27.27

P<0.05, P<0.01 vs interferon treatment.

Table 2 The results of negative rate of HCV-RNA in serum and PBMC

HCV-RNA in serum	HCV-RNA in PBMC	Total	χ²	P
+	7	4	11	
-	8	7	15	>0.05
Total	15	11	26	

Table 3 The level of mL-2R before and after treatment of interferon (n, x±s, %)

Group	mL-2R (in silence)	mL-2R (inducement)		
	Before treatment	After treatment	Before treatment	After treatment
Interferon treatment	26 2.63±0.70	2.95±0.72¹	30.34±3.55	33.62±3.95¹
Routin treatment	22 2.43±0.78	2.95±0.72¹	30.03±3.87	30.04±3.73²
Normal control	20 4.5±1.48	37.42±4.10		

P<0.05, P<0.01 vs before and after treatment; P<0.05, P<0.01 vs interferon treatment.

DISCUSSION

There are three kinds of interferon, α, β, γ. Interferon alpha is the most active one. Alpha 2b interferon can not enter into the host cells and kill the virus directly, but can induce the production of protein kinase (2', 5' AS) in the infected cells.
The protein kinase and 2', 5' AS can be produced after being infected by virus in cells. The degradation of virus-RNA can be made by endogenous ednonuclease induced with activated 2', 5' AS so that the necessary enzyme activity for synthesis of ribose is killed, the synthetic protein of virus can be decreased, the growth of hepatitis virus C is inhibited[30-33].

The reports have been shown that interferon has definite curative effect of the treatment of chronic hepatitis C and elimination of HCV-RNA, anti-HCV in serum. Therefore, HCV-RNA is an important index to evaluate condition of the patient's[34]. HCV-RNA in PBMC is a direct evidence of the existence of extrahepatic or latent infection, and is one of important reasons causing the chronicity of viral hepatitis C[28-31]. The results of Table 1 had shown that the rate of change HCV-RNA into negative in PBMC and serum after treatment of alpha 2b interferon was similar between two groups (P>0.05). The curative effect was higher in the treatment group with alpha 2b interferon than that with routine treatment (P=0.05-P<0.01). This result had showed that the inducing capability of alpha 2b interferon in lymphocytes of the patients was strong, and the high effect against HCV would be taken by activated lymphocytes obviously. Although the negative rate of HCV-RNA in PBMC was lower than that in serum, there was no significant difference (P>0.05). The results had shown that alpha 2b interferon had high effect on HCV-RNA both in PBMC and in serum. There were four cases of chronic hepatitis C with negative in serum and positive in PBMC. It indicated that with the T lymphocytes activation, multiple cell factors were released, that inhibited the replication of free HCV-RNA in serum, but not the HCV-RNA in PBMC. The cellular immune function was disorder in different extent in patients with chronic hepatitis C and so was their response to interferon and anti-HCV[32-37]. Otherwise, the low level of membrane interleukin-2 receptor (mIL-2R) on the surface of PBMC decreased the activity in chronic hepatitis C, which limited the induction of protein kinase and the activity of 2', 5' AS to eliminate HCV-RNA[38].

Anti-HCV is an important index for the diagnosis of HCV and is one of the evidences for evaluating the curative effect on the treatment of hepatitis C. The anti-HCV diagnostic kits of the second generation were used in our laboratory testing for core antigen, NS1, NS2 and had high specificity and sensitivity[39,40]. The rate of negative change of HCV-RNA was higher in alpha 2b interferon treatment group than that in routine treatment group (P<0.01). Among the twenty-six cases, there were six cases with anti-HCV(-) in serum and HCV-RNA (+) in PBMC, two cases with anti-HCV(-) in serum and HCV-RNA(+) in serum. This result showed that even the anti-HCV in serum became negative, HCV-RNA not stopping replication completely, some HCV-RNA could still be detected in some patients[41]. The probable reasons were: (1) After being treatment of alpha 2b interferon, the level of anti-HCV in serum decreased obviously and could not be detected by routine test. (2) The degree of variation of HCV is high, the hydrophilic peptid chain on core protein is subjective to escape the attack of CTL and keep the infection persist in chronic state. (3) The variant antigen of HCV can not match the antibody produced. mIL-2R is an important symbol of active T cells and plays key role on biologic effect of IL-2 and its level can reflect the course of activity of T cells and immune state[38-41]. The levels of mIL-2R in silence stage detected by BSA were lower in patients with hepatitis C than those in normal controls (P<0.01). The probable reasons are: (1) The mIL-2R on surface of some T cells can be restrained by HCV. (2) The degree of variation of HCV is high, the hydrophilic peptid chain on core protein is subjective to escape the attack of CTL and keep the infection persist in chronic state. (3) The variant antigen of HCV can not match the antibody produced. A lot of soluble interleukin-2 receptor (sIL-2R) can be released after replication of HCV-RNA in PBMC so that the expression of mIL-2R was restrained. It is not only a kind of manifestation of disorder and low cellular immune to HCV but also one of reasons of chronic hepatitis C. Some T cells receptor (TCR) on surface of some Tc cells can combine with the complement (HCV-MHC-I) and some perforation proteins can be released so that many liver cells will be injured. The sIL-2R, a kind of restrained factor, as well as mIL-2R all can combine with IL-2 competitively and induce infection of HCV from activity to chronicity. With the inducement of PHA, the level of mIL-2R in silence and inducement stages was obviously increased. This result showed that the mIL-2R could be induced by PHA and had strong compete ability against sIL-2R in serum.

After inducement of PHA, the level of mIL-2R of patients in inducement stage was higher than that in silence stage, and lower than that in normal controls (P<0.01). The results of our study showed that the effect of PHA was infirm for patients with hepatitis C and was similar to the reports published. The level of mIL-2R in silence and inducement stages were higher after treatment of alpha 2b interferon than that before treatment of alpha 2b interferon (P<0.01). The active T cells and high level of mIL-2R can be induced by alpha 2b interferon during the treatment. The results showed that alpha 2b interferon not only can induce the protein kinase and 2', 5' AS but also stimulate T cells and induce the effect of Tc cells against infected cells.

In conclusion, some active T cells and mIL-2R can be induced during the treatment of alpha 2b interferon. The patients with viremia are sensitive to treatment of alpha 2b interferon that have good effect on negative change of HCV-RNA in PBMC and serum and anti-HCV in serum. If the treatment time of alpha 2b interferon prolongs, the negative rate of anti-HCV and HCV-RNA will increase simultaneously. In treatment of HCV with alpha 2b interferon, the value of negative change of HCV-RNA in serum alone is limited. In well equipped hospital both HCV-RNA in serum and PBMC can be examined at the same time.

REFERENCES

1. Piekarska A, Sidorkiewicz M, Lewandowska U, Kuydowicz J. Evaluation of persistence of IFN-alpha treatment response in chronic hepatitis C patients according with HCV-RNA presence in PBMC. Pol Arch Med Wewn 2001; 106: 939-944
2. Piekarska A, Kuydowicz J, Omulecka J. Interferon alpha-treatment predictive response factors in group of adults patients with chronic hepatitis C. Pol Arch Med Wewn 2001; 106: 927-937
3. Patel K, McHutchison J. Peginterferon alpha-2b: a new approach to improving response in hepatitis C patients. Expert Opin Pharmacother 2001; 2: 1307-1315
4. Ibawuchi S, Takatsuka K. Dynamics of serum HCV RNA levels during IFN therapy in patients with chronic hepatitis C for prediction of outcome of IFN therapy and beneficial dosing. Niippon Rinsho 2001; 59: 1363-1368
5. Fornai C, Maggi F, Vallvitori ML, Pistello M, Marchi S, Caccorossi P, Antonidil G, Bandindil M. Rapid changes in hepatitis C virus quasispecies produced by a single dose of IFN-alpha in chronically infected patients. J Interferon Cytokine Res 2001; 21: 427-422
6. Malaguamer A, Di Fazio I, Trovato BA, Pistone G, Mazzoleni G. Alpha-interferon (IFN-alpha) treatment of chronic hepatitis C: analysis of some predictive factors for the response. Int J Clin Pharmacol Ther 2001; 39: 239-245
7. Malaguamer A, Laurino A, Di Fazio I, Pistone G, Castorina M, Guccione N, Rampello L. Neuropsychiatric effects and type of IFN-alpha in chronic hepatitis C. J Interferon Cytokine Res 2001; 21: 273-278
8. Reddy KR, Wright TL, Pockros PJ, Shiffman M, Everson G, Reindollar R, Fried MW, Purdum PP, Jensen D, Smith C, Lee WM, Boyer TD, Lin A, Pedder S, DePamphilis J. Efficacy and safety of pegylated (40-kd) interferon alpha-2a compared with...
interferon alpha-2a in noncirrhotic patients with chronic hepatitis C. H. patology. 2001; 33: 433-438

9 Kraus MR, Schafer A, Csef H, Faller H, Mork H, Scheuren M. Compliance with therapy in patients with chronic hepatitis C: associations with psychiatric symptoms, interpersonal problems, and mode of acquisition. Dig Dis Sci 2001; 46: 2060-2065

10 Suzuki T, Yonemura K, Miyaji T, Suzuki H, Takahira R, Fujigaki Y, Fujimoto T, Hishida A. Progressive renal failure and blindness due to retinal hemorrhage after interferon therapy for hepatitis C virus-associated membranoproliferative glomerulonephritis. Intern Med 2001; 40: 708-712

11 Nishiguchi S, Shiomi S, Enomoto M, Lee C, Jamura H, Tamori A, Habu D, Takeda Y, Yanagihara N, Shiraki K. Does ascorbic acid prevent retinopathy during interferon therapy in patients with chronic hepatitis C? J Gastroenterol 2001; 36: 486-491

12 Ho SB, Nguyen H, Tetrick LL, Opitz GA, Basara ML, Dieperink G. Chastang C. A short induction regimen of interferon-alpha is not effective for treatment of relapse in chronic hepatitis C: a randomized trial. For the multicentre GER-CYT-01 group. J Infect Dis 2000; 182: 105-109

13 Garcia-Suarez J, Burgaleta C, Hernanz N, Albarann F, Tobruada P, Alvaraz-Mon M. HCV-associated thrombocytopenia: clinical characteristics and platelet response after recombinant alpha2b-interferon therapy. Br J Haematol 2000; 110: 98-103

14 Hsieh MC, Yu ML, Chuang WL, Shin SJ, Dai CY, Chen SC, Lin ZY, Hsieh MY, Liu JP, Wang LY, Chang WY. Virologic factors related to interferon-alpha-induced thyroid dysfunction in patients with chronic hepatitis C. Eur J Endocrinol 2000; 142: 431-437

15 Hino K, Yamaguchi Y, Fujiwara D, Katoh Y, Korenaga M, Okazaki M, Okuda M, Okita K. Hepatitis C virus quasispecies and response to interferon therapy in patients with chronic hepatitis C: a prospective study. J Viral Hepat 2000; 7: 36-42

16 Sanders K, Dubois M, Pasquier C, Payen JL, Alric L, Duffaut M, Vinel JP, Pascal JP, Puel J, Izopet J. Genetic heterogeneity of hypervariable region 1 of the hepatitis C virus (HCV) genome and sensitivity of HCV to alpha interferon therapy. J Virol 2000; 74: 661-668

17 Peyrard T, Daurat V, Chevret S, Moussalli J, Degos F, Bailly F, Borotto E, Buffet C, Bartoletme-Portal I, Richardet JP, Riachi G, Calmuries Y, Brecht C, Vidaud M, Olivi M, Bedossa P, Riffaud PC, Chastang C. A short induction regimen of interferon-alpha is not effective for treatment of relapse in chronic hepatitis C: a randomized trial. For the multicentric GERT-CYT-01 group. J Viral Hepat 1999; 6: 381-386

18 Weiss G, Umlauf F, Urbanek M, Herold M, Lovevsky M, Offner F, Gordeuk VR. Associations between cellular immune effector function, iron metabolism, and disease activity in patients with chronic hepatitis C virus infection. J Infect Dis 1999; 180: 1452-1458

19 Vertuani S, Bazzaro M, Gualandi G, Micheletti F, Marastoni M, Fortini C, Candelia A, Marinon M, Tomatis R, Traniello S, Gavioli R. Effect of interferon-alpha therapy on epitope-specific cytotoxic T lymphocyte responses in hepatitis C virus-infected individuals. Eur J Immunol 2002; 32: 144-154

20 Fujiwara T, Kiura K, Ochi K, Matsubara H, Yamanari H, Shimomura H, Harada M. Giant negative T waves during interferon therapy in a patient with chronic hepatitis C. Intern Med 2001; 40: 105-109

21 Fukuda A, Kobayashi H, Teramura K, Yoshimoto S, Ohsawa N. Effects of interferon-alpha on peripheral neutrophil counts and serum granulocyte colony-stimulating factor levels in chronic hepatitis C patients. Cytokine 2000; 10: 149-154

22 Kakiizaki S, Takagi H, Yamada T, Ichikawa T, Abe T, Sohara N, Kosone T, Kaneko M, Takezawa J, Takayama H, Nagamine T, Morii M. Evaluation of twice-daily administration of interferon-beta for chronic hepatitis C. J Viral Hepat 1999; 6: 315-319

23 Jensen DM, Krawitt EL, Keeffe EB, Hollinger FB, James SP, Mullen K, Everson GT, Hooofcuc, Foust RM, Pittsmon RR, Heathcote J, Albert D. Biochemical and viral response to consensus interferon (CIFN) therapy in chronic hepatitis C patients: effect of baseline viral concentration. Consensus Interferon Study Group. J Gastroenterol 1999; 34: 3583-3588

24 Willson RA, Fischer SH, Ochs HD. Long-term interferon alpha maintenance therapy for chronic hepatitis C infection in a patient with common variable immune deficiency. J Clin Gastroenterol 1999; 29: 203-206

25 Fabris G, Del Forno M, Falleti E, Tonuotto P, Pirisi M. Kinetics of serum soluble tumour necrosis factor receptor (TNF-R) type I and type II after a single interferon-alpha (IFN-alpha) injection in chronic hepatitis C. Clin Exp Immunol 1999; 117: 556-560

26 Begemann F, Jablonski W. Enhancing the response to interferon-alpha. J Clin Virol 1999; 13: 1-7

27 Hurabi S, Tanizu D, Romesh SA, Quadri K, Al Ghandi G, Iqbal A, Abdulla A. Interferon-alpha in chronic hepatitis C infection in dialysis patients. Am J Kidney Dis 1999; 34: 55-60

28 Yagura M, Murai S, Kojima T, Tokita H, Kambusukasa H, Harada H. Interferon treatment in patients with chronic hepatitis C with normal alanine-amotranotransferase activity. Hepatogastroenterology 1999; 46: 1094-1099

29 Selfart C, Benninger J, Bohn BO, Wiest-Ladenburger U, Hahn EG, Hensens J. Augmentation of the immune response to islet cell antigens with development of diabetes mellitus caused by interferon-alpha therapy in chronic hepatitis C. Z Gastroenterol 1999; 37: 235-239

30 Boran M, Cetin S. The role of alpha-glutathione S-transferase in the monitoring of hemodialysis patients with hepatitis C virus infection undergoing high-dose interferon-alpha-2b therapy. Nephron 1999; 82: 22-26

31 Woitas RP, Petersen U, Moshage D, Brackmann HH, Matz B, Sauerbruch T, Spengler U. HCV-specific cytokine induction in monocytes of patients with different outcomes of hepatitis C. World J Gastroenterol 2002; 8: 562-566

32 Zeuzem S. The kinetics of hepatitis C virus infection. Clin Liver Dis 2001; 5: 917-930

33 Cramp ME, Rossol S, Chokshi S, Caruoci P, Williams R, Naoumov NV. Hepatitis C virus-specific T-cell reactivity during interferon and ribavirin treatment in chronic hepatitis C. Gastroenterology 2000; 118: 346-355

34 Kawamura C, Nakajima S, Kuroki T, Monna T. Two-dimensional analysis of production of IL-6 and TNF-alpha can predict the efficacy of IFN-alpha therapy. Hepatogastroenterology 1999; 46: 2941-2945

35 Song QZ, Hao F, Min F, Ma QY, Liu GD. Hepatitis C virus infection of human hepoblast cell line 7721 in vitro. World J Gastroenterol 2001; 7: 685-689

36 Fukutomi T, Fukutomi M, Iwao M, Watanabe H, Tanabe Y, Hiroshige K, Kinukawa N, Nakamuta M, Nawata H. Predictors of the efficacy of intravenous natural interferon-beta treatment in chronic hepatitis C. World J Gastroenterol 2000; 6: 692-696

37 Xu JZ, Yang ZG, LeM, Wang MR, He CL, Sri YH. A study on patogenicity of hepatitis G virus. World J Gastroenterol 2001; 7: 547-550

38 Li CP, Wang KX, Wang J, Pan BR, mL-LR, T cell subsets and hepatitis C. World J Gastroenterol 2002; 8: 298-300

39 Jimenez-Saenz M, Rojas M, Pinar A, Salas E, Rebollo J, Carmona I, Herreras-Esteban JM, Herreras-Gutierrez JM. Sustained response to combination therapy in a patient with chronic hepatitis C and thrombocytopenia secondary to alpha-interferon. J Gastroenterol Hepatol 2000; 15: 567-569

40 Yan FM, Chen AS, Hao F, Zhao XP, Gu CH, Zhao LB, Yang DL, Hao LJJ. Hepatitis C virus infect can extrahepatic tissues in patients with hepatitis C. World J Gastroenterol 2000; 6: 805-811

41 Oketani M, Higashi T, Yamaeaki N, Shimozu K, Osame M, Arima T. Complete responder to twice-a-day interferon-beta with standard interferon alpha therapy in acute hepatitis C after a needle-stick. J Clin Gastroenterol 1999; 28: 49-51

Edited by Zhang JZ