Decay of charged scalar field around a black hole: quasinormal modes of R-N, R-N-AdS and dilaton black holes

R.A.Konoplya
Department of Physics, Dniepropetrovsk National University
St. Naukova 13, Dniepropetrovsk 49050, Ukraine
konoplya@ff.dsu.dp.ua

Abstract

It is well known that the charged scalar perturbations of the Reissner-Nordstrom metric will decay slower at very late times than the neutral ones, thereby dominating in the late time signal. We show that at the stage of quasinormal ringing, on the contrary, the neutral perturbations will decay slower for RN, RNAdS and dilaton black holes. The QN frequencies of the nearly extreme RN black hole have the same imaginary parts (damping times) for charged and neutral perturbations. An explanation of this fact is not clear but, possibly, is connected with the Choptuik scaling.

1 Introduction

The response of a Schwarzschild black hole as a Gaussian wave packet impinges upon it consists of decaying quasinormal oscillations, dominating after time $t \approx 70 M$, and inverse power-law tails, dominating after time $t \approx 300 M$, where M is the black hole mass (see [1] and references therein). The quasinormal ringing can be caused by either external fields or by the formation of a black hole itself, and, the characteristic frequencies do not depend on a form of perturbations, giving us a "footprint" of a black hole.

Due to AdS/CFT correspondence [2] the investigation of the quasinormal frequencies of AdS black holes is appealing now: it gives the thermalization time scale for a field perturbation [3], namely, the imaginary part of the quasinormal frequency, being inversely proportional to the damping time of a given mode, determines the relaxation time of a field. Thus the more imaginary part of ω the faster a given field comes to an equilibrium.

The investigation of the QN modes within the ADS/CFT correspondence was initiated on the ADS gravity side by Horowitz and Habeny in [3] for massless scalar field. Then quasinormal modes associated with perturbations of different fields were considered in a lot of works [4]- [10]. An exact expression for the three-dimensional BTZ black hole QN modes corresponding to fields of different spin was obtained by Cardoso and Lemos in [4]. Recently the similar work for the BTZ black hole was done on the CFT side [6].
On the AdS gravity side, it was found that for the neutral massless scalar field in the background of RNAdS black hole with small charge, the more the black hole charge is, the quicker for its approach to thermal equilibrium in CFT [8], and after the black hole charge approaches some critical value the situation changes on contrary [9]. This repeats the behaviour of the usual R-N quasinormal spectrum, where the imaginary part of ω grows with the black hole charge up to some maximum, and then begin to decrease.

Summarizing the results of the papers [9], [11], [12], and [13], one can see that the late time radiative behaviour of a neutral scalar field for asymptotically flat (R-N) and asymptotically (anti)-de-Sitter (RNdS and RNAdS) black hole space-times is essentially different: in the first case the inverse power-law tails are dominating, while in the second it is an exponential decay. This decay is oscillatory for RNAdS, and for RNdS when a scalar field strongly coupled to curvature.

When collapsing a charged matter, a charged black hole forms. Thus the evolution of a charged scalar field outside the R-N black hole is a most relevant. The late time behaviour of a charged scalar field was considered by S.Hod and T.Piran [14]. There was shown that in the radiative tails the neutral perturbations decay faster than the charged ones and therefore dominate at very late times. In addition, while at timelike and null infinity inverse power-law tails appear, along the future black hole event horizon, an oscillatory behaviour accompanies this tail.

Thus there is a quite clear picture of asymptotic behaviour of the radiation corresponding to charged perturbations, while its behaviour during the stage of quasinormal ringing is lacking. This motivated us to study the behaviour of a complex (charged) scalar field during the quasinormal ringing through the computing of its resonant characteristic frequencies for R-N and R-N AdS black holes. In Sec.2 we shall compute the quasinormal frequencies of the R-N black hole for different multipole numbers l, in Sec.3 the case of the R-N-AdS black hole is considered, and in Sec.4 the dilaton black QN frequencies are obtained. We have found that the modes of the nearly extremal R-N black holes have the same damping times for charged and neutral perturbations. The possible connection of this fact with the critical collapse is discussed in Sec.4.

2 Reissner-Nordsrom black hole

We shall consider the evolution of the charged scalar perturbations field in the background of the Reissner-Nordstrom metric:

$$ds^2 = -f(r)dt^2 + f^{-1}(r)dr^2 + r^2 d\Omega_2^2,$$

where $f(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$. The wave equation of the complex scalar field has the form:

$$\phi_{,ab}g^{ab} - ieA_a g^{ab}(2\phi_{,b} - i e A_b \phi) - i e A_a g^{ab} \phi = 0,$$

here the electromagnetic potential $A_t = C - \frac{Q}{r}$, C is a constant. After representation of the charged scalar field into spherical harmonics and some algebra the equation of motion takes the form [14]:

$$\psi_{,tt} + 2i e \frac{Q}{r} \psi_{,t} - \psi_{,r,r} + V\psi = 0,$$
frequencies of charged and neutral perturbations coincide in the extremal limit, but also
the procedure of finding of the QN frequencies is the following: one finds, with the trial and error way, \(\omega \) which satisfies the equation (5). It is essential that for \(l = 0 \) modes the WKB formula gives the worse precision: a relative error, for example, for scalar perturbations of Schwarzschild BH, may be of order 10 per cents \([18]\). Nevertheless the more \(l \) (and the less \(n \)), the more accurate WKB formula is, and already for \(l = 3, n = 0 \), according to general experience, a relative error may be of order \(10^{-2} \) per cents. Thus in order to be sure that not only the WKB frequencies of charged and neutral perturbations coincide in the extremal limit, but also

\(Q \)	\(l = 1 \)	\(l = 2 \)
0	0.2911 - 0.0980i	0.4832 - 0.0968i
0.1	0.2916 - 0.0981i	0.4840 - 0.0969i
0.3	0.2958 - 0.0984i	0.4908 - 0.0973i
0.5	0.3049 - 0.0991i	0.5056 - 0.0980i
0.7	0.3212 - 0.0996i	0.5322 - 0.0986i
0.8	0.3337 - 0.0992i	0.5527 - 0.0983i
0.9	0.3509 - 0.0972i	0.5815 - 0.0966i
0.95	0.3622 - 0.0946i	0.6011 - 0.0945i
0.99	0.3729 - 0.0907i	0.6205 - 0.0902i

Table 1: The quasinormal frequencies for RN BH, \(l = 1, 2 \), \(n = 0 \), \(e = 0 \) (first line) and \(e = 0.1 \) (second line).

where

\[
V = f(r) \left(\frac{l(l + 1)}{r^2} - \frac{2M}{r^3} - \frac{2Q^2}{r^4} \right) - e^2 \frac{Q^2}{r^2}, \tag{4}
\]

and \(\psi = \psi(r)e^{-i\omega t} \). One can compute the quasinormal frequencies stipulated by the above potential by using the third order WKB formula of S.Iyer and C.Will \([15]\):

\[
\frac{iQ_0}{\sqrt{2Q_0}} - \Lambda(n) - \Omega(n) = n + \frac{1}{2}, \tag{5}
\]

where \(\Lambda(n) \), \(\Omega(n) \) are second and third order WKB correction terms depending on the potential \(V \) and its derivatives in the maximum. Here \(Q = -V + \omega^2 - 2eQ \omega \). Since \(Q \) depends on \(\omega \), the procedure of finding of the QN frequencies is the following: one fixes all the parameter of the QN frequency, namely, the multipole index \(l \), the overtone number \(n \), the black hole mass and charge \(M \) and \(Q \), and \(e \); then one finds the value of \(r \) at which \(V \) attains a maximum as a numerical function of \(\omega \) and substituting it into the formula (5) one finds, with the trial and error way, \(\omega \) which satisfies the equation (5).
Figure 1: Real part of ω, $l = 3$, $n = 0$, $e = 0$ (star), $e = 0.1$ (diamond) and $e = 0.3$ (box), for Q, running from 0 to 0.995 (R-N BH).

the true frequencies do the same, one needs to proceed computations to higher l. We can see it from the Fig.2-3, where $l = 3$ frequencies are presented. For higher multipole indexes, precision is better.

Real part of ω for both neutral and charged scalar fields grows with increasing of charge Q, ω_{ln} is more for charged perturbations than for a neutral one. In addition, and this is the most interesting feature of charged QN spectrum, the imaginary part of a given "charged mode" approaches the neutral one in the limit of the extremal black hole. Within the third order WKB method one can check it with a high accuracy for higher multipole number perturbations.

3 Reissner-Nordsrom-Anti-de-Sitter black hole

The Reissner-Anti-de-Sitter metric has the form

$$ds^2 = -f(r)dt^2 + f^{-1}(r)dr^2 + r^2d\Omega^2,$$

where

$$f(r) = 1 - \frac{r_+}{r} - \frac{r^2}{rR^2} - \frac{Q^2}{rr_+} + \frac{Q^2}{r^2} + \frac{r^2}{R^2}.$$ (7)

Quasinormal oscillations associated with the decay of the charged scalar field in the background of RNAdS are governed by the wave equation (3), which can be transformed to the form

$$f(r)\frac{d^2\psi(r)}{dr^2} + \left(f'(r) - 2i\omega\right)\frac{d\psi(r)}{dr} - V(r)\psi(r) = 0.$$ (8)

Here the $V(r)$ is, again, a frequency dependent potential, determined by the formula:

$$V(r) = \frac{f'(r)}{r} + \frac{l(l+1)}{r^2} + \frac{1}{f(r)} \left(2\frac{eQ}{r}\omega - e^2\frac{Q^2}{r^2}\right).$$ (9)

By rescaling of r we can put $R = 1$. The effective potential is infinite at spatial infinity. Thus the wave function is considered to vanish at infinity and satisfies the purely ingoing wave condition at the black hole horizon. Then one can compute the quasinormal
frequencies stipulated by the potential \(\mathcal{H} \) following the procedure of G.Horowitz and V.Habeny \([3]\). The main point of that approach is to expand the solution to the wave equation (8) around \(x^+ = \frac{1}{r_+} (x = 1/r) \):

\[
\psi(x) = \sum_{n=0}^{\infty} a_n(\omega) (x - x^+)^n
\]

and to find the roots of the equation \(\psi(x = 0) = 0 \) following from the boundary condition at infinity. In fact, one has to truncate the sum (10) at some large \(n = N \) and check that for greater \(n \) the roots converge.

While the quasinormal modes of an asymptotically flat black hole are proportional to its mass, those of an asymptotically anti-de-Sitter black hole depend upon the radius of a black hole. For large \(r_+ \) is much greater than the anti-de-Sitter radius \(\mathcal{R} \) and intermediate Schwarzschild-Anti-de-Sitter black holes, both \(\omega_{Re} \) and \(\omega_{Im} \) are proportional to the black hole temperature. For small black holes \(r_+ \ll \mathcal{R} \) this linearity breaks and in the limit \(r_+ \to 0 \) the QNM approaches the pure Anti-de-Sitter modes \([3],[17]\). Since it is a large black hole which is of direct interest for AdS/CFT correspondence, we shall restrict ourselves to this black hole regime.

From the Fig.5,6 one can see that \(\omega_{Re} \) and \(\omega_{Im} \) grow with increasing of the charge conjugation \(e \), i.e. the real oscillation frequency is more for charged perturbations than for a neutral ones and the damping time of a given mode is more for neutral perturbations. Yet we managed to compute only the lowly charged case, due to the two difficulties. First, when \(Q \) and \(e \) grow, the number of terms in the truncated sum representing the wave function \(\psi \) increases: one has to sum over \(N \sim 10^3 \) and more, and thus one has to guess new modes through the trial and error way. At the same time, the minimums of the truncated sum corresponding to the quasinormal frequencies are a most narrow in the \(\omega \) plane and one has to guess a lot of figures in the quasinormal frequency in order to catch the above minimum. Thus for highly charged case one has to resort to another method of calculations of QN modes.
Figure 3: Imaginary part of ω, $l = 0$, $n = 0$ for $e = 0$, $e = 5 \cdot 10^{-5}$, and $e = 10^{-4}$ from the bottom to the top (R-NAdS BH).

Figure 4: Real part of ω, $l = 0$, $n = 0$ for $e = 0$, $e = 5 \cdot 10^{-5}$, and $e = 10^{-4}$ from the bottom to the top (R-NAdS BH).
4 Dilaton black hole

A wide class of theories includes the stationary spherically symmetric black hole solution with massless scalar field of some specific form (the so called dilaton):

\[ds^2 = \lambda^2 dt^2 - \lambda^{-2} dr^2 - R^2 d\theta^2 - R^2 \sin^2 \theta d\phi^2 \]

(11)

where

\[\lambda^2 = \left(1 - \frac{r_+}{r}\right) \left(1 - \frac{r_+}{r}\right)^{\frac{1 - a^2}{1 + a^2}}, \quad R^2 = r^2 \left(1 - \frac{r^-}{r}\right)^{\frac{1 + a^2}{1 - a^2}}, \]

(12)

and

\[2M = r_+ + \left(\frac{1 - a^2}{1 + a^2}\right) r_-, \quad Q^2 = \frac{r_- r_+}{1 + a^2}. \]

(13)

Here the dilaton and electromagnetic fields are given by the formulas:

\[e^{2a\Phi} = \left(1 - \frac{r_+}{r}\right)^{\frac{2a^2}{1 + a^2}}, \quad F_{tr} = \frac{e^{2a\Phi} Q}{R^2}, \]

(14)

where \(a\) is a non-negative dimensionless value representing coupling. The case \(a = 0\) corresponds to the classical Reissner-Nordström metric, the case \(a = 1\) is suggested by the low energy limit of the superstring theory, and \(a = \sqrt{3}\) corresponds to the dimensionally reduced Kaluza-Klein black hole.

Following the above WKB method we shall compute here the quasinormal modes corresponding to the neutral and charged massless scalar test field. We do not consider interaction with the dilaton, i.e. the scalar field simply propagates in the black hole background.

The wave function obeys the equation (3) with the effective potential

\[V(r) = \frac{R_r r^* r^*}{R} + \frac{l(l + 1)\lambda^2}{R^2} - e^2 \frac{Q^2}{r^2} \]

(15)

This potential is broadening near the extremal limit \(\star\).

In case of dilaton BH both real and imaginary parts of \(\omega\) grow with increasing of either \(Q\) or \(e\). Nevertheless the imaginary part of \(\omega\) of the charged field does not approach that of the neutral one in the nearly extremal regime. One can see it on example of \(l = 3\), \(n = 0\) modes where the WKB method gives reasonable accuracy.

Recently it has been obtained that at late times the neutral scalar field falls off faster than the charged field in the dilaton BH background \(\ddagger\). Thus we see that for a dilaton black hole the situation changes on contrary as well: domination of a neutral field during the quasinormal ringing and of charged field at late times.

5 Discussion

We have learnt here that the damping time of the quasinormal oscillations associated with a charged scalar field in the background of the Reissner-Nordstrom black hole is less than that of a neutral one. Thus that is the neutral perturbations which will dominate at later stages of quasinormal ringing. Yet, we know that at late times the charged perturbations
Table 2: The quasinormal frequencies for $a = 1$ dilaton black hole $l = 3$, $n = 0$, $e = 0$ and $e = 0.1$.

are dominating, and one could expect, possibly, that, the same sort of perturbations must dominate in the earlier stages of radiation. The logic of the process, however, is different. As was shown in [14], the late time behaviour of the charged scalar field is entirely determined by the flat space-time effects, while that of the neutral perturbations is depend on the relation between the "tortoise" r^* coordinate and r, i.e. by the space-time curvature. In other words, the radiative tail of the charged field arises due to the backscattering of this field off the electromagnetic potential far away from the black hole, while in the case of the neutral fields it is the effects of gravitation near the black hole (curvature effects). In this context it seems natural that in the earlier periods of radiation (quasinormal ringing) the curvature effects are dominating, and the neutral perturbations will damp slower.

Another interesting point of this study is the coincidence of the imaginary parts of ω for charged and neutral perturbations for the nearly extremal black hole. It leaps to the eyes at once that since the universal index appearing in the phenomena of critical collapse β equals 0.37 both for charged [22] and neutral [23] scalar fields, then there may be a connection between the behavior of the quasinormal spectrum of nearly extremal black holes and the critical exponent for a given black hole. Yet the latter conjecture seems be too strong, and the black hole quasinormal modes may be related to the critical exponent in some specific space-time geometries [3],[24].

In this connection it is interesting to remind that the nearly extremal R-N black hole is effectively described by the AdS_2 black hole after spherically symmetric dimensional reduction [25]. For such a reduced nearly extremal black hole an exact relation between the quasinormal modes and the critical exponent is obtained in [24].

Yet the coincidence of the damping times for charged and neutral modes of the nearly extremal black hole is, apparently, an exclusive property of RN BH, and is not appropriate to other black holes. It is possible, also that this coincidence takes place only for a massless scalar field, since for a massive one the situation is qualitatively different [24].

Thus any kind of satisfactory explanation of the above coincidence from physical point of view is lacking.
Whether the damping times of charged and neutral perturbations in the nearly extremal limit will coincide for RNAdS BH, and, for an asymptotically non-flat black hole in general, is a question for further investigation.

6 Acknowledgments

I wish to thank S.Ulanov and A.Gulov for invaluable discussions, and F.Piazza for pointing out Ref. [20].
References

[1] K.Kokkotas and B.Schmidt, "Quasi-normal modes of stars and black holes" in Living Reviews in Relativity: www.livingreviews.org (1999)
[2] J.Maldacena, Adv.Theor.Math.Phys. 2 231 (1998)
[3] G.T.Horowitz and V.Habeny Phys.Rev. D62 024027 (2000)
[4] V.Cardoso and J.P.S.Lemos Phys.Rev. D63 124015 (2001)
[5] V.Cardoso and J.P.S.Lemos, Phys.Rev. D63 084017 (2001)
[6] V.Cardoso and J.P.S.Lemos, gr-qc/0206084 (2002)
[7] D. Birmingham, I. Sachs, and S.N. Solodukhin, Phys. Rev. Lett. 88 151301 (2002)
[8] B.Wang, C.Y.Lin, and E.Abdalla, Phys.Lett. B481, 79 (2000)
[9] B.Wang, C.M.Mendes, and E.Abdalla, Phys.Rev. D63 084001 (2001)
[10] I.G.Moss and J.P.Norman, Class.Quant.Grav. 19, 2323 (2002)
[11] P.Brady, C.Chambers, W.Krivan and P.Laguna, Phys.Rev. D55 7538 (1997)
[12] P.Brady, C.Chambers, W.Laarakkers and E.Poison, Phys.Rev. D60 064003 (1999)
[13] R.Price, Phys.Rev. D5 2419 (1972)
[14] S.Hod and T.Piran, Phys. Rev. D 58, 024017 (1998)
[15] S.Iyer and C.M.Will, Phys.Rev. D35 3621 (1987)
[16] S.Iyer, Phys.Rev. D35 3632 (1987)
[17] R.A.Konoplya, to be published in Phys.Rev. D, hep-th/0205132 (2002)
[18] C.F.E.Holzhey and F.Wilczek Nucl.Phys. B298 447 (1992)
[19] R.Moderski and M Rogatko Phys.Rev. D63 084014 (2001)
[20] V.Ferrari, M.Pauri and F.Piazza. Phys.Rev. D63 064009 (2001)
[21] R.A.Konoplya, Gen.Rel.Grav. 34, 329 (2002).
[22] S.Hod and T.Piran, Phys.Rev. D55 3485 (1997)
[23] M.W.Choptuik, Phys. Rev. Lett. 70 9 (1993)
[24] W.T.Kim and J.J.Oh, Phys.Lett.B514 155 (2001)
[25] M.Spradlin and A.Strominger, JHEP 9911 021 (1999)
[26] L. Xue, B.Wang and R-K. Su, hep-th/0205267 (2002)