Molecular Cloning and Expression of the cDNA for α_3 Subunit of Human $\alpha_3\beta_1$ (VLA-3), an Integrin Receptor for Fibronectin, Laminin, and Collagen

Yoshikazu Takada,* Elizabeth Murphy,† Pieter Pil,‡ Christopher Chen,‡ Mark H. Ginsberg,* and Martin E. Hemler‡

*Committee on Vascular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037; and ‡Division of Tumor Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115

Abstract. $\alpha_3\beta_1$ (VLA-3), a member of the integrin family of cell adhesion receptors, may function as a receptor for fibronectin, laminin, and collagen. A partial cDNA clone (2.4 kb) for the human α_3 subunit was selected from an endothelial cell Agt11 cDNA library by specific antibody screening. Several overlapping cDNA clones were subsequently obtained, of a total length of 4.6 kb from various cDNA libraries. The reconstructed α_3 cDNA was expressed on the surface of Chinese hamster ovary cells as detected by an α_3-specific mAb after transfection, suggesting that the cDNA is authentic. Within this sequence was an open reading frame, encoding for 1,051 amino acids, including a signal peptide of 32 residues, a long extracellular domain (959 residues), a transmembrane domain (28 residues), and a short cytoplasmic segment (32 residues). Overall, the α_3 amino acid sequence was 25–37% similar to the other integrin α subunits that are cleaved, with most similarity to the α_6 sequence (37%), and less similarity to those α subunits that have I domains (15–20%, excluding the I domain sequence itself). Features most like those in other α subunits are (a) the positions of 18/19 cysteine residues, (b) three potential metal binding domains of the general structure DX(D/N)X(D/N)GXXD, and (c) the predicted transmembrane domain. The mass of α_3 calculated from its amino acid sequence is 113,505. The human α_3 sequence was 89% identical to hamster galactoprotein b3, and 70% similar to the chicken CSAT antigen band 2 protein partial sequence, suggesting that these two polypeptides are homologues of human α_3.

$\alpha_3\beta_1$ (VLA-3), a cell surface heterodimer composed of α_3 and β_1 subunits, is an integrin (1, 6, 19, 23, 27) that has been implicated as a receptor for collagen, laminin, and fibronectin (13, 17, 18, 49, 54). The role of $\alpha_3\beta_1$ has been somewhat difficult to assess, partly because its adhesive functions are often obscured by other collagen, laminin, and fibronectin receptors such as $\alpha_2\beta_1$, $\alpha_5\beta_1$, and $\alpha_5\beta_1$ (13). The binding of $\alpha_3\beta_1$ to its different ligands appears to be accomplished by multiple binding mechanisms. For example, $\alpha_3\beta_1$ binding to fibronectin differs substantially from binding to collagen and laminin with respect to both the divalent cation requirements and the influence of RGD peptides (13). In addition to being a receptor for extracellular matrix ligands, $\alpha_3\beta_1$ could possibly also bind to cell surface ligands, as inferred from $\alpha_3\beta_1$ localization to cell–cell contact sites (7, 31, 35).

In normal tissue, $\alpha_3\beta_1$ expression is limited to a few cell types, including kidney glomeruli, and the basal cells of epidermis and other epithelia (7, 16, 34, 35). In contrast, nearly all cultured cell lines express $\alpha_3\beta_1$, except for lymphoid cells (16). Underscoring the likely importance of $\alpha_3\beta_1$-mediated cell adhesion, its expression levels have been noted to vary on different cell types and with different growth conditions. For example, $\alpha_3\beta_1$ levels diminished in response to TGFβ in one case (22), but were increased in other examples (21). Also, $\alpha_3\beta_1$ can be induced by attachment of some cultured cells to extracellular matrix (40) while $\alpha_3\beta_1$ levels decrease upon shifting of fibroblasts from exponential growth to quiescence (14).

On rat (37) and human (34) transformed cells, $\alpha_3\beta_1$ levels were elevated, suggesting that $\alpha_3\beta_1$ could possibly contribute to tumorigenicity and/or invasiveness. However, in several other studies, $\alpha_3\beta_1$ levels were either unchanged or decreased on malignant cells (11, 35, 36), emphasizing that regulation of $\alpha_3\beta_1$ expression on cancer cells is complex.

In this paper we have cloned, sequenced, and expressed in eukaryotic cells the cDNA for the α_3 subunit of $\alpha_3\beta_1$. We have found that α_3 resembles other integrin α subunits in having a signal peptide, a long extracellular domain (959 residues) and a putative transmembrane domain and a short cytoplasmic segment (32 residues). The extracellular domain includes 18 conserved cysteine residues and three metal binding domains of the general structure DX(D/N)-X(D/N)GXXD. The α_3 subunit amino acid sequence was...
and then used for immunoaffinity purification of α301 heterodimer from placental cell extracts as previously described (49). The α3 and β subunits were 89% identical to hamster galactoprotein b3, a protein reportedly upregulated in oncogene-transformed fibroblasts (52), and was 70% similar to the avian CSAT antigen band 2 partial amino acid sequence (43), suggesting that they are homologues of human α3 subunit.

Materials and Methods

Purification of αβ, and Preparation of α-specific Antiserum

The anti-α2 mAb J143 (16) was coupled to CNBr-Sepharose (Pharmacia Fine Chemicals, Piscataway, NJ) according to the manufacturer's instructions and then used for immunoaffinity purification of αβ heterodimer from placental cell extracts as previously described (49). The α3 and β subunits from purified αβ complex (containing 30-50 μg of α3 subunit) were then separated using preparative 5% SDS-PAGE and transferred to nitrocellulose. After localization of the α3 band relative to 125I-labeled α3 subunit by autoradiography, that band was cut out and solubilized in the minimum amount of DMSO. After multiple (5-10 μg) injections of purified α3 material in Freund's adjuvant, rabbit anti-α3 antiserum was obtained.

To obtain antibodies enriched for anti-α3 binding activity, purified αβ complex (isolated using the J143 mAb column as described above) was used to prepare an immunoaffinity column. First, purified αβ was denatured by boiling for 5 min in the presence of 1% SDS, and coupled to CNBr-Sepharose according to the manufacturer's instructions (except that coupling buffer included 0.1% SDS). Then crude rabbit anti-α3 serum was passed over the αβ-Sepharose affinity column, and the column was washed successively with 3 column vol each of PBST (0.14 M NaCl, 10 mM sodium phosphate, 0.2% Tween 20), 0.2 M KSCN, and then PBST again. For elution of anti-α3 antibodies, 3.5 M KSCN was added, and then the eluate (with 0.1% hemoglobin carrier protein) was desalted using a Sephadex G-25 column equilibrated with PBST.

Several putative α3 cDNA clones (isolated as described below) were used to produce β-galactosidase fusion proteins in a yeastigenic Y1089 Escherichia coli as described (26). The insoluble fusion proteins from these clones were purified by repeated washing of the insoluble pellet with 1% NP-40, 0.14 M NaCl and 10 mM sodium phosphate, pH 7.4. The NP-40-insoluble fusion protein was further separated by SDS-PAGE and the stained band was cut out from the gel, electrodissolved, coupled to Sepharose and then used to positively select anti-fusion protein antibodies from crude anti α3 serum.

Isolation of α3 cDNA

An oligo dT primed λgt11 expression cDNA library, made from endothelial cells was the kind gift of Dr. Tucker Collins (Brigham and Women's Hospital, Boston, MA). That library was screened using affinity-purified α3 antibodies according to the method of Young and Davis (55). Positive clones from phage screening were plaque purified and the phage DNA was prepared by the plate lysate method (33). The insert cDNA was cut out from the phage DNA by EcoRI digestion and subcloned into either pGEM-3 (Promega Biotec, Madison, WI) or Bluescript KS+ plasmid (Stratagene Corp., La Jolla, CA) as previously described (46, 50).

The initially selected clone 3.24 included only the 3' noncoding region and ~100 COOH-terminal amino acid residues. Using 32P-labeled 3.24 cDNA as a probe, additional clones (3.122, 3.285) were selected from a λgt11 cDNA library made from the hepatocarcinoma cell line Hep G2; a kind gift from Drs. M. Muckler (Massachusetts Institute of Technology, Boston) and M. Krangel (Dana Farber Cancer Institute, Boston). Using 32P-labeled 3.122 cDNA as probe, further screening was carried out to finally select clones (3.410 and 3.520) from a different human endothelial cell λgt11 cDNA library (from Dr. J. E. Sadler, Washington University, St. Louis, MO). The insert cDNA was cut out from the phage DNA by SalI digestion in this case. Clone 3.410 included the translation initiation site and 5' noncoding region of the α3 mRNA (see Fig. 3, below).

Immunoprecipitation of α3 Subunit

A polyclonal anti-peptide serum was prepared in the laboratory of Dr. J. McDonald (Washington University, St. Louis) using the synthetic peptide CRIQPSETERLTDDY. This peptide contains the COOH-terminal 14 amino acids predicted for a putative chicken CSAT antigen band 2 sequence (28), and the COOH-terminal 12 amino acids are identical to those predicted for human α3 (see Fig. 4, below). The rabbit anti-α3 COOH-terminal peptide serum and the anti-α3 mAb J143 (16) were used to immunoprecipitate α3 protein from detergent lysate of LOX cells (melanoma line), and these were analyzed by SDS-PAGE as previously described (24).

DNA Sequencing

The DNA sequences were determined by the dideoxy nucleotide chain-termination method of Sanger et al. (41), using adenosine [35S]5'-[a-thio]triphosphate. To facilitate complete sequencing of both cDNA strands, a series of overlapping deletion clones was made in both directions as described (25) by using the Erase-a-base system (Promega Biotec). Alternatively, synthetic oligonucleotides (~20 bases) corresponding to known α3 sequence regions were used as sequencing primers. Clones 3.24 and 3.285, and 5'-1 kb of clone 3.410 were sequenced in both directions.

1. Abbreviations used in this paper: PBST, PBS plus 0.2% Tween-20.
Figure 2. Immunoprecipitation of the α3 subunit. Immunoprecipitation was carried out using extract from the surface 125I-radiolabeled melanoma cell line LOX. After immunodepletion of labeled material reacting with negative control antibody (lanes a–c), the anti-α3 MAb J143 (lanes d–f), or rabbit anti-α3 peptide serum (lanes g–i), the remaining LOX extract was then subjected to a second round of immunoprecipitation using J143 (lanes a, d, g), rabbit anti-α3 peptide (lanes b, e, h), or a negative control antibody (lanes c, f, i).

Results

Immunoscreening of α3 cDNA Clones

An antisera preparation made against purified placental α3 protein was enriched for α3 specific antibodies using an α3β1 Sepharose affinity column. The purified anti-α3 antibody preparation strongly recognized a band (M, 150,000)

Isolation of Clones Corresponding to Full-Length α3 cDNA

When a human Hep G2 λgt11 cDNA library was screened using the cDNA clone 3.24 as a probe, additional clones (3.285 and 3.122) were selected which extended 1.8 kb beyond the 5′ end of clone 3.24. Finally, a clone (3.410) was isolated from another endothelial cell cDNA library that from crude cellular extracts and purified α3β1 preparation with very little background (not shown). We then used the purified antibody for immunoselection of α3 cDNA clones from a λgt11 cDNA library from endothelial cells which are known to express substantial amount of α3 protein (2). From a few representative isolates, cDNA clones 3.22 and 3.24 were found to cross-hybridize to each other by Southern blotting. Then β-galactosidase fusion proteins (Fig. 1, a–e) were prepared from several clones, and of these, the fusion proteins from clones 3.22 and 3.24 were recognized by antiserum enriched for anti-α3 antibodies (Fig. 1 B, lanes a, b). Two other fusion proteins (lanes c, d) and E. coli strain Y1089 control protein (lane e) were not recognized by anti-α3 antibodies. In a reciprocal experiment, clone 3.22 fusion protein was coupled to Sepharose and then used to enrich for anti-fusion protein antibodies. This antibody preparation (derived from the original crude antiserum) was immunologically reactive with both the fusion protein itself and with purified α3 (Fig. 1 C). The cDNA clone 3.24 was subcloned into a plasmid and sequenced, and found to have an amino acid sequence (about 100 residues) similar to the COOH-terminal regions of other known integrin α subunits.

Immunological Evidence for the Identity of the α3 Clone

To further assess the identity of the putative α3 cDNA, rabbit antiserum against a synthetic peptide containing the COOH-terminal 12 amino acids from the predicted α3 amino acid sequence was used to immunoprecipitate a 150,000-M protein from radiolabeled LOX cells (Fig. 2, lane b) which comigrates with authentic α3 immunoprecipitated using the mAb J143 (lane a). In addition, prior immunodepletion of the LOX cell extract with either the mAb J143 (lanes d–f), or with anti-peptide rabbit serum (lanes g–i), almost completely eliminated subsequent immunoprecipitation by either J143 (lanes d, g) or by the anti-peptide serum (lanes e, h).

Figure 3. Overlapping α3 cDNA fragments. cDNA clone 3.24 was obtained from an endothelial cell λgt11 cDNA library, clones 3.122 and 3.285 from that of Hep G2 hepatic carcinoma cell line, and 3.410 and 3.520 from another endothelial cell cDNA library. Sites of restriction enzymes used for reconstruction of α3 cDNA coding region are shown. B, BamHI; E, EcoRI; H, HindIII; N, NdeI.

From crude cellular extracts and purified α3β1 preparation with very little background (not shown). We then used the purified antibody for immunoselection of α3 cDNA clones from a λgt11 cDNA library from endothelial cells which are known to express substantial amount of α3 protein (2). From a few representative isolates, cDNA clones 3.22 and 3.24 were found to cross-hybridize to each other by Southern blotting. Then β-galactosidase fusion proteins (Fig. 1, a–e) were prepared from several clones, and of these, the fusion proteins from clones 3.22 and 3.24 were recognized by antiserum enriched for anti-α3 antibodies (Fig. 1 B, lanes a, b). Two other fusion proteins (lanes c, d) and E. coli strain Y1089 control protein (lane e) were not recognized by anti-α3 antibodies. In a reciprocal experiment, clone 3.22 fusion protein was coupled to Sepharose and then used to enrich for anti-fusion protein antibodies. This antibody preparation (derived from the original crude antiserum) was immunologically reactive with both the fusion protein itself and with purified α3 (Fig. 1 C). The cDNA clone 3.24 was subcloned into a plasmid and sequenced, and found to have an amino acid sequence (about 100 residues) similar to the COOH-terminal regions of other known integrin α subunits.

Immunological Evidence for the Identity of the α3 Clone

To further assess the identity of the putative α3 cDNA, rabbit antiserum against a synthetic peptide containing the COOH-terminal 12 amino acids from the predicted α3 amino acid sequence was used to immunoprecipitate a 150,000-M protein from radiolabeled LOX cells (Fig. 2, lane b) which comigrates with authentic α3 immunoprecipitated using the mAb J143 (lane a). In addition, prior immunodepletion of the LOX cell extract with either the mAb J143 (lanes d–f), or with anti-peptide rabbit serum (lanes g–i), almost completely eliminated subsequent immunoprecipitation by either J143 (lanes d, g) or by the anti-peptide serum (lanes e, h).

Isolation of Clones Corresponding to Full-Length α3 cDNA

When a human Hep G2 λgt11 cDNA library was screened using the cDNA clone 3.24 as a probe, additional clones (3.285 and 3.122) were selected which extended 1.8 kb beyond the 5′ end of clone 3.24. Finally, a clone (3.410) was isolated from another endothelial cell λgt11 cDNA library that
Figure 4. Complete nucleotide sequence of α3 subunit cDNA and deduced amino acid sequence. The initiation codon, stop codon, and potential metal binding domains are boxed. The NH$_2$-terminal amino acid sequence, putative transmembrane domain, and polyadenylation signal (AATAAA) are underlined. N*, a potential N-glycosylation site. These sequence data are available from EMBL/GenBank/DDBJ under accession number M59911.
Takada et al. Primary Structure of Human Integrin α3 Subunit
encoded an NH₂-terminal sequence (FNLDTRFLVVKEAG) which exactly corresponds to the NH₂-terminal sequence of the mature α₃ subunit (48). The clone 3.410 also contained a putative ATG start site and a region of 5' noncoding sequence.

From the various overlapping cDNA clones (Fig. 3), the complete sequence for the α₃ coding region, and some of the 3' and 5' untranslated regions was obtained (Fig. 4). The 3' untranslated region contained the poly A addition signal AATAAA. Translation of the α₃ cDNA yielded 1,051 amino acids including a signal sequence (32 residues). The predicted mass of mature α₃ subunit peptide is calculated as 113,505. The α₃ subunit sequence has 13 potential N-glycosylation sites (Asn-X-Ser/Thr, where X is not Pro). If carbohydrate chains with an average molecular weight of 2,500 are assumed to attach to all 13 putative glycosylation sites, the total molecular weight of the mature α₃ subunit would be 146,000. This value is consistent with the estimated size from the relative mobility on SDS-PAGE (M, 145,000-150,000). The α₃ subunit has been reported to be cleaved to heavy and light chains upon reduction (M, 110,000 and 30,000, respectively). Consistent with this, there are two potential cleavage sites (QRRRR and (AKKAK), characterized by dibasic residues, which are located in the same region (residues 839-864) as cleavage sites predicted for the integrin α₅, CG, α₃, Subunits. As noted for other published integrin α subunits (3-5, 9, 10, 15, 29, 32, 38, 39, 45-47, 51), the NH₂-terminal portion of the α₃ sequence contains seven similar repeating units (I, residue 18-60; II, 99-131; III, 165-193; IV, 295-329; V, 352-390; VI, 415-447; VII, 475-512), which are each 28-42 amino acids in length, and are 20-30% similar. Repeating domains V, VI, and VII each contain a putative divalent cation binding region, of the general structure of DX(D/N)(D/N)GXXD. This sequence is found among a variety of Ca²⁺ and Mg²⁺ binding proteins including integrins.

Nucleotide and Amino Acid Sequence for Human α₃ cDNA

From the various overlapping cDNA clones (Fig. 3), the complete sequence for the α₃ coding region, and some of the 3' and 5' untranslated regions was obtained (Fig. 4). The 3' untranslated region contained the poly A addition signal AATAAA. Translation of the α₃ cDNA yielded 1,051 amino acids including a signal sequence (32 residues). The predicted mass of mature α₃ subunit peptide is calculated as 113,505. The α₃ subunit sequence has 13 potential N-glycosylation sites (Asn-X-Ser/Thr, where X is not Pro). If carbohydrate chains with an average molecular weight of 2,500 are assumed to attach to all 13 putative glycosylation sites, the total molecular weight of the mature α₃ subunit would be 146,000. This value is consistent with the estimated size from the relative mobility on SDS-PAGE (M, 145,000-150,000). The α₃ subunit has been reported to be cleaved to heavy and light chains upon reduction (M, 110,000 and 30,000, respectively). Consistent with this, there are two potential cleavage sites (QRRRR and (AKKAK), characterized by dibasic residues, which are located in the same region (residues 839-864) as cleavage sites predicted for the integrin α₅, CG, α₃, Subunits. As noted for other published integrin α subunits (3-5, 9, 10, 15, 29, 32, 38, 39, 45-47, 51), the NH₂-terminal portion of the α₃ sequence contains seven similar repeating units (I, residue 18-60; II, 99-131; III, 165-193; IV, 295-329; V, 352-390; VI, 415-447; VII, 475-512), which are each 28-42 amino acids in length, and are 20-30% similar. Repeating domains V, VI, and VII each contain a putative divalent cation binding region, of the general structure of DX(D/N)(D/N)GXXD. This sequence is found among a variety of Ca²⁺ and Mg²⁺ binding proteins including integrins.

Figure 4.

Nucleotide and Amino Acid Sequence for Human α₃ cDNA

From the various overlapping cDNA clones (Fig. 3), the complete sequence for the α₃ coding region, and some of the 3' and 5' untranslated regions was obtained (Fig. 4). The 3' untranslated region contained the poly A addition signal AATAAA. Translation of the α₃ cDNA yielded 1,051 amino acids including a signal sequence (32 residues). The predicted mass of mature α₃ subunit peptide is calculated as 113,505. The α₃ subunit sequence has 13 potential N-glycosylation sites (Asn-X-Ser/Thr, where X is not Pro). If carbohydrate chains with an average molecular weight of 2,500 are assumed to attach to all 13 putative glycosylation sites, the total molecular weight of the mature α₃ subunit would be 146,000. This value is consistent with the estimated size from the relative mobility on SDS-PAGE (M, 145,000-150,000). The α₃ subunit has been reported to be cleaved to heavy and light chains upon reduction (M, 110,000 and 30,000, respectively). Consistent with this, there are two potential cleavage sites (QRRRR and (AKKAK), characterized by dibasic residues, which are located in the same region (residues 839-864) as cleavage sites predicted for the integrin α₅, CG, α₃, Subunits. As noted for other published integrin α subunits (3-5, 9, 10, 15, 29, 32, 38, 39, 45-47, 51), the NH₂-terminal portion of the α₃ sequence contains seven similar repeating units (I, residue 18-60; II, 99-131; III, 165-193; IV, 295-329; V, 352-390; VI, 415-447; VII, 475-512), which are each 28-42 amino acids in length, and are 20-30% similar. Repeating domains V, VI, and VII each contain a putative divalent cation binding region, of the general structure of DX(D/N)(D/N)GXXD. This sequence is found among a variety of Ca²⁺ and Mg²⁺ binding proteins including integrins.

Figure 5.

Fluorescence Intensity

Fluorescence Intensity

Fluorescence Intensity

Fluorescence Intensity

Fluorescence Intensity
Figure 6. RNA hybridization analysis. From the leukemic cell lines MOLT-4 and HSB and from the fibroblast cell line MRC, total RNA (5 ug per lane) was electrophoretically separated on 1% agarose-formaldehyde gels, transferred to nylon membrane (Nytran; Schleicher & Schuell, Inc., Keene, NH), and then probed with 32P-labeled α3 cDNA clone 3.24. In a control experiment (below), the same RNA samples were probed with actin ODNA.

Whereas several other integrin α subunits contain a 180-200 amino acid insert (called I domain) between repeating domains II and III (4, 9, 10, 29, 32, 39, 47), α3 subunit has no such domain.

Transient Expression of Human α3 Subunit in CHO Cells

The α3 expression plasmid was constructed as described in Materials and Methods and was transfected into CHO cells by electroporation. After 72 h, the human α3 subunit was expressed on the surface of 20% of the transfected cells as detected by α3-specific mAb J143 (Fig. 5), further indicating that the α3 cDNA is authentic. Because integrin α subunit expression at the cell surface is known to require an associated β subunit, and because human α3 has previously been found to associate with rodent β (30), it is presumed that transfected α3 in this experiment is associated with hamster β1 at the cell surface.

Northern Blotting Analysis

Upon probing of total RNA with α3 clone 3.24, a single band (5 kb) was obtained from the fibroblast cell line MRC (Fig. 6, lane c). In contrast, only a faint band was seen from the leukemic T cell lines MOLT-4 and HSB. These results are consistent with the relative levels of surface expression of α3 protein on these cells (23). Hybridization of the same blot with cDNA probe for the human actin gene gave comparable signals in all lanes.

Discussion

This paper describes the cloning, sequencing, and expression in eukaryotic cells of cDNA for the human integrin α3 subunit of the VLA-3 (α3β1) heterodimer. The α3 cDNA is authentic because (a) the NH2-terminal amino acid sequence deduced from the nucleotide sequence is identical to that from purified α3 peptides (48), (b) α3 fusion proteins were immunologically cross-reactive with purified α3 protein, (c) rabbit antiserum against a predicted α3 COOH-terminal synthetic peptide recognized the α3 subunit, and (d) the anti α3 mAb J143 recognized CHO cells transfected with α3 cDNA in CDM8 vector.

This paper shows that hamster galactoprotein b3 (Gap3) is 89% homologous to the human α3 subunit with uniform similarity throughout the two molecules. There is high conservation (100%) of the 40 COOH-terminal residues (52). Also a partial amino acid sequence of chicken CSAT band 2 protein (28) is 70% similar to the corresponding region (COOH-terminal 170 residues) of the human α3 sequence (Fig. 7). Thus, it is proposed that Gap3 and CSAT antigen band 2 are homologues of the human α3 subunit. In this regard, CSAT protein and α3β1 were previously shown to be immunologically cross-reactive (48), and CSAT band 2 cDNA cross-hybridized with α3 cDNA in Southern blots (not shown).

Whereas Tsuji et al. (1990) (52) showed the homology of Gap3 to human α3 subunit from only a very limited NH2-terminal amino acid sequence comparison (14 residues), this work provides compelling evidence of the homology of human and hamster protein.

Alignment of α3 with α1, α2, α4, α5, α6, α8 shows that the essential features of integrin α subunits are conserved in the α3 subunit (Fig. 8). From the alignment of these α subunits, along with the other integrin α subunits αβ1, αα3, αα5, α8, PS2α, an α subunit similarity tree was constructed (Fig. 9). Overall, the α3 amino acid sequence was 25-37% similar to the other integrin α subunits that are cleaved into disulfide-linked fragments, and less similar to those α subunits that have I domains (15-20%, excluding the I domain sequence itself). The similarity of the α3 subunit...
Figure 8. Alignment of α3 protein sequence with other integrin α subunits that associate with the β1 subunit. Amino acid sequences for human α3, α2, (46), α5 (50), α0 (3, 15), α4 (51), α3 (45), and rat α2 (29) are aligned, and residues conserved in at least six of the sequences are marked with "*"; and conserved cysteines are marked with "**". Regions corresponding to the seven repeating domains are underlined, and regions corresponding to the α domains in α1 and α2 (201 and 190 amino acids, respectively) have been omitted. Initial alignments were carried out using the computer program of Smith and Smith, and then minor adjustments were made by eye to improve the alignment, with emphasis on maintaining conserved cysteines.
Integrin Alpha Subunit Similarities

![Integrin Alpha Subunit Similarities Diagram](image)

Figure 9. Integrin α subunit similarity tree. Amino acid sequences for the human subunits α1 (45), α2 (3, 15), α3 (38), α4 (31), α5 (46), α6 (47), α7 (32), α8 (4, 9), α9 (10), the *Drosophila* PS2a (5), hamster Gapj (52), rat α1r (29), and mouse α1M (39) were aligned using the program of Smith and Smith (42) and similarity scores were generated, and then averaged similarity scores were used to construct the similarity tree.

(37%) to the α9 subunit is much higher than the average similarity (~25%) between α9 and other integrin α subunits, suggesting that α9 is evolutionarily closer to α9 than the others. This pair of α9 subunits also has an unusually high degree of similarity within their short cytoplasmic domains (15/30 = 43% identity). No other pair of α9 subunits is that similar in their cytoplasmic domains. For example, even though α5 and α9 are 60% similar overall, and α4 and α5 are 43% similar overall, these pairs are only 25 and 24% similar, respectively, in their cytoplasmic domains. Recently, both α9β1 and α9β1 have been shown to recognize the E8 fragment of laminin, which is located COOH-terminal of the laminin cross (17, 20, 44). It is possible, based on the evolutionary similarity of the two subunits, that they recognize the same site of laminin by a similar mechanism.

The present human α9 subunit cDNA clone will be useful in future studies (a) to directly evaluate the role of α9β1 in migration, invasion and metastasis and (b) to study the mechanism of recognition of multiple ligands by α9β1. For example, it will be particularly interesting to examine the behavior in vitro and in vivo of the transfected CHO cells or other cells overproducing human α9β1.

We wish to thank David Mandelman for help in transfection and FACS analysis.

Supported by National Institutes of Health grants HL-28235 (M. H. Ginsberg), GM47157 (Y. Takada), and GM38903 (M. E. Hemler). This is publication no. CVB-6624 from the Research Institute of Scripps Clinic.

Received for publication 18 April 1991 and in revised form 14 June 1991.

References

1. Akiyama, S. K., N. Nagata, and K. M. Yamada. 1990. Cell surface recep-

tors for extracellular matrix components. *Biochim. Biophys. Acta Rev. Biomembr.* 1039:91-110.

2. Albelda, S. M., M. Daise, E. M. Levine, and C. A. Buck. 1989. Identification and characterization of cell-substrate adhesion receptors on cultured human endothelial cells. *J. Clin. Invest.* 83:1992-2002.

3. Argarves, W. S., S. Suzuki, H. Arai, K. Thompson, M. D. Pierrotschbar, and E. Ruoslahti. 1987. Amino acid sequence of the human fibronectin receptor. *J. Cell Biol.* 105:1183-1190.

4. Arnaout, M. A., S. K. Gupta, M. W. Pierce, and D. G. Tenen. 1988. Amino acid sequence of the alpha subunit of human leukocyte adhesion receptor Mol (complement receptor type 3). *J. Cell Biol.* 106:2153-2158.

5. Brown, N. H., D. L. King, M. Wilcox, and F. C. Kafatos. 1989. Developmentally regulated alternative splicing of drosophila integrin P52 alpha transcripts. *Cell.* 59:185-195.

6. Buck, C. A., and A. F. Horwitz. 1987. Cell surface receptors for extracel-

ular matrix molecules. *Annu. Rev. Cell Biol.* 3:179-205.

7. Carter, W. G., E. A. Wayner, T. S. Bouchard, and P. Kaur. 1990. The role of integrins alpha 2 beta 1 and alpha 5 beta 1 in cell-cell and cell-substrate adhesion of human epidermal cells. *J. Cell Biol.* 110:1387-1404.

8. Chu, G., H. Hayakawa, and P. Berg. 1987. Electroporation for the efficient transfection of mammalian cells with DNA. *Nucleic Acids Res.* 15:1311-1326.

9. Corbi, A. L., J. M. Miller, K. O'Connor, R. S. Larson, and T. A. Springer. 1987. cDNA cloning and complete primary structure of the alpha subunit of a leukocyte adhesion glycoprotein, p150,95. *EMBO (Eur. Mol. Biol. Organ.)* J. 6:4023-4028.

10. Corbi, A. L., T. K. Kishimoto, L. J. Miller, and T. A. Springer. 1988. The human leukocyte adhesion glycoprotein Mac-1 (Complement recep-

tor type 3, CD11b) a subunit: Cloning, primary structure, and relation to the integrins, von Willebrand factor and factor B. *J. Biol. Chem.* 263:12403-12411.

11. Deehan, S., and R. Saulnier. 1990. Alterations in integrin receptor expres-

sion on chemically transformed human cells: Specified enhancement of laminin and collagen receptor complexes. *J. Cell Biol.* 110:481-489.

12. Deveraux, J., P. H. Haerib, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. *Nucleic Acids Res.* 12:387-395.

13. Elices, M. J., J. A. Urry, and M. E. Hemler. 1991. Receptor functions for the integrin VLA-3: Fibronectin, collagen, and laminin binding are differentially influenced by ARG-GLY-ASP peptide and by divalent cations. *J. Cell Biol.* 112:169-181.

14. Fingerman, E., and M. E. Hemler. 1988. Regulation of proteins in the VLA cell substrate adhesion family: Influence of cell growth conditions on VLA-1, VLA-2, and VLA-3 expression. *Exp. Cell Res.* 177:132-142.

15. Fitzgerald, L. A., M. Poncz, B. Steiner, S. C. Rall, J. S. Bennett, and D. R. Phillips. 1987. Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor alpha subunits and platelet glycoprotein Iib. *Biochemistry.* 26:8158-8165.

16. Frader, Y., C. Cordon-Cardo, T. Thompson, M. E. Daly, M. W. F. White-
more, Jr., K. O. Lloyd, M. R. Melamed, and L. J. Old. 1984. Cell sur-

face antigens of human bladder cancer defined by mouse monoclonal antibo-
sides. *Proc. Natl. Acad. Sci. USA.* 81:224-228.

17. Gehlsen, K. R., K. Dickerson, W. S. Argraves, E. Engvall, and E. Ruos-

lahti. 1987. Subunit structure of a laminin-binding integrin and localiz-

ation of its binding site on laminin. *J. Biol. Chem.* 264:19034-19038.

18. Gehlsen, K. R., L. Dillner, E. Engvall, and E. Ruoslahti. 1988. The human laminin receptor is a member of the integrin family of cell adhesion recep-

tors. *Science (Wash. DC).* 241:1228-1229.

19. Ginsberg, M. H., J. Lootus, and E. F. Plow. 1988. Platelets and the adhe-

sion receptor superfamily. In *Platelet Membrane Receptors: Molecular Biology, Immunology, Biochemistry, and Pathology* (Progress in Clini-

cal and Biological Research). G. A. Jamieson, editor. Alan R. Liss, Inc., NY. 171-195.

20. Hall, D. E., L. F. Reichardt, E. Crowley, B. Hooley, H. Mocca, A. Son-

nenberg, and C. H. Damsky. 1990. The alpha 1 beta 1 and alpha 6 beta 1 int-

egrin heterodimers mediate cell attachment to distinct sites on laminin. *J. Cell Biol.* 110:2175-2184.

21. Heino, J., R. A. Ignatz, M. E. Hemler, C. Crouse, and J. Massague. 1989. Regulation of cell adhesion receptors by transforming growth factor-2, Concomitant regulation of integrins that share a common β subunit. *J. Biol. Chem.* 264:380-388.

22. Heino, J., and J. Massague. 1989. Transforming growth factor-β switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of cell adhesion to laminin. *J. Biol. Chem.* 264:21806-21811.

23. Hemler, M. E. 1990. VLA proteins in the integrin family: Structures, func-

tions, and their role on leukocytes. *Annu. Rev. Immunol.* 8:365-400.

24. Hemler, M. E., C. Huang, and L. Schwarz. 1987. The VLA protein family. Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight beta subunit. *J. Biol. Chem.* 262:3300-3309.

25. Henikoff, S. 1984. Unidirectional digestion with exonuclease III creates tar-

ged breakpoints for DNA sequencing. *Gene (Amst.)* 28:351-359.
26. Huynh, T. V., R. A. Young, and R. W. Davis. 1985. Construction and screening cDNA libraries in λ gt10 and λ gt11. In DNA Cloning. Vol. 1. D. M. Glover, editor. IRL Press, Oxford/Washington DC. 49-78.

27. Hynes, R. O. 1987. Integrins: A family of cell surface receptors. Cell. 48:549-554.

28. Hynes, R. O., E. E. Marcantonio, M. A. Stepp, L. A. Urry, and G. H. Yee. 1989. Integrin heterodimer and receptor complexity in avian and mammalian cells. J. Cell Biol. 109:409-420.

29. Ignatius, M. J., T. H. Large, M. Houdé, J. W. Tawil, A. Barton, S. Esch, S. Carbonetto, and L. F. Reichardt. 1990. Molecular cloning of the rat integrin αIβ subunit: a receptor for laminin and collagen. J. Cell Biol. 111:709-720.

30. Kantor, R. R. S., N. H. Bander, C. L. Finstad, L. H. Graf, Jr., K. O. Lloyd, L. J. Old, and A. P. Albino. 1987. DNA-mediated gene transfer of a human cell surface 170-kilodalton glycoprotein. J. Biol. Chem. 262:15166-15171.

31. Kaufmann, R., D. Frösch, C. Westphal, L. Weber, and C. E. Klein. 1989. Integrin VLA-3: Ultrastructural localization at cell-cell contact sites of human cell cultures. J. Cell Biol. 109:1807-1815.

32. Larson, R. S., A. L. Corbi, I. Berman, and T. A. Springer. 1989. Primary structure of the leukocyte function-associated molecule-1 α subunit: An integrin with an embedded domain defining a protein superfamily. J. Cell Biol. 110:703-712.

33. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 545 pp.

34. Morhenn, V. B., A. B. Schreiber, O. Soriero, W. McMillan, and A. C. Allison. 1985. A monoclonal antibody against basal cells of human epidermis. J. Clin. Invest. 76:1978-1983.

35. Peltonen, J., S. Larjava, S. Jaakkola, H. Gralnick, S. K. Akiyama, K. M. Yamada, and J. Itto. 1989. Localization of integrin receptors for fibronectin, collagen and laminin in human skin. J. Clin. Invest. 84:1916-1923.

36. Pignatelli, M., M. E. F. Smith, and W. F. Bodmer. 1990. Low expression of collagen receptors in moderate and poorly differentiated colorectal adenocarcinoma. Br. J. Cancer. 61:636-638.

37. Plantefabre, L. C., and R. O. Hynes. 1989. Changes in integrin receptors on oncogenically transformed cells. Cell. 56:281-290.

38. Poncz, M., R. Eisman, R. Heidenreich, S. M. Silver, G. Vilaire, S. Surrey, E. Schwartz, and J. S. Bennett. 1987. Structure of the platelet membrane glycoprotein Ibβ. Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors. J. Biol. Chem. 262:8476-8482.

39. Pytel, R. 1988. Amino acid sequence of the murine Mac-1 alpha chain reveals homology with the integrin family and an additional domain related to von Willebrand factor. EMBO (Eur. Mol. Biol. Organ.) J. 7:1371-1378.

40. Rettig, W. J., V. V. S. Murty, M. J. Mattes, R. S. K. Chaganti, and L. J. Old. 1986. Extracellular matrix-modulated expression of human cell surface glycoproteins A42 and 1143: Intrinsic and extrinsic signals determine antigenic phenotypes. J. Exp. Med. 164:1581-1599.

41. Sanger, F., S. Nicklen, and R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463-5467.

42. Smith, R. F., and T. F. Smith. 1990. Automatic generation of primary sequence patterns from sets of related protein sequences. Proc. Natl. Acad. Sci. USA. 87:118-122.

43. Sołowska, J., J. L. Guan, E. E. Marcantonio, J. E. Trevithick, C. A. Buck, and R. O. Hynes. 1989. Expression of normal and mutant avian integrin subunits in rodent cells. J. Cell Biol. 109:853-861.

44. Sosenberg, A., C. J. Linders, P. W. Modderman, C. H. Damsky, M. Aumailley, and R. Timpl. 1990. Integrin recognition of different cell-binding fragments of laminin (P1, E3, EB) and evidence that alpha 6 beta 1 but not alpha 6 beta 4 functions as a major receptor for fragment E8. J. Cell Biol. 110:2145-2155.

45. Suzuki, S., W. Argraves, H. Arai, L. R. Languino, M. D. Pierschbacher, and E. Ruoslahti. 1987. Amino acid sequence of the vitronectin receptor alpha subunit and comparative expression of adhesion receptor mRNAs. J. Biol. Chem. 262:14080-14085.

46. Takada, Y., and M. E. Hemler. 1989. The primary structure of the VLA-2/collagen receptor α2 subunit (platelet GPIa): Homology to other integrins and the presence of a possible collagen-binding domain. J. Cell Biol. 109:397-407.

47. Takada, Y., C. Huang, and M. E. Hemler. 1987. Fibronectin receptor structures in the VLA family of heterodimers. Nature 326:607-609.

48. Takada, Y., J. L. Strominger, and M. E. Hemler. 1987. The very late antigen family of heterodimers is part of a superfamily of molecules involved in adhesion and embryogenesis. Proc. Natl. Acad. Sci. USA. 84:3239-3243.

49. Takada, Y., E. A. Wayne, W. G. Carter, and M. E. Hemler. 1988. Extracellular matrix receptors, ECMRII and ECMRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers. J. Cell. Biochem. 37:385-393.

50. Takada, Y., M. J. Elcits, C. Crouse, and M. E. Hemler. 1989. The primary structure of the αIβ subunit of VLA-4: Homology to other integrins and a possible cell-cell adhesion function. EMBO (Eur. Mol. Biol. Organ.) J. 8:1361-1368.

51. Tamura, R. N., C. Rozzo, L. Starr, J. Chambers, L. F. Reichardt, H. M. Cooper, and V. Quaranta. 1990. Epithelial integrin alpha 6 beta 4: Complete primary structure of alpha 6 and variant forms of beta 4. J. Cell Biol. 111:1593-1604.

52. Tsuji, T., F. Yamamoto, Y. Miura, K. Takio, K. Titani, S. Pawar, T. Osawa, and S. Hakomori. 1990. Characterization through cDNA cloning of galactoprotein B3 (Gap b3), a cell surface membrane glycoprotein showing enhanced expression on oncogenic transformation. Identification of Gap b3 as a member of the integrin superfamily. J. Biol. Chem. 265:7016-7021.

53. Van Eldik, L. J., J. G. Zendegei, D. R. Marshak, and D. M. Watterson. 1982. Calcium binding proteins and the molecular basis of calcium action. Int. Rev. Cytol. 77:1-61.

54. Wayne, E. A., and W. G. Carter. 1987. Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique a and b subunits. J. Cell Biol. 105:1873-1884.

55. Young, R. A., and R. W. Davis. 1983. Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. USA. 80:1194-1198.