Non-coding stem-bulge RNAs are required for cell proliferation and embryonic development in C. elegans

Madzia P Kowalski, Howard A Baylis, and Torsten Krude

Supplementary figure legends

Figure S1. sbRNAs from the Nematoda phylum. (A) Phylogenetic distribution of sbRNAs identified in nematodes, adapted from Boria and co-workers (J Mol Evol 70, 346-358, 2010). Species phylogeny is represented as a cladogram with arbitrary branch lengths. sbRNAs that were synthesised and tested in vitro are indicated. (B) Nucleotide sequences and predicted secondary structures of representative sbRNAs from four nematode species that were synthesised and tested in vitro. (C) sbRNAs can substitute for Y RNAs in a cell-free DNA replication initiation system. Template nuclei from late G1 phase cells were incubated with protein fractions QA and ArFT, supplemented with the indicated RNAs from C. elegans (CeN133 and CeN135) and other nematode species. Human U2 snRNA and hY1 RNA served as negative and positive controls, respectively. Proportions of replicating nuclei were determined by immunofluorescence microscopy. Mean values ± standard error of the mean (SEM) are shown for four experiments (n=4). * P < 0.01 when compared to background level with no RNA added, as determined by Student’s t-tests.

Figure S2. Design of antisense Morpholino oligonucleotides to bind sbRNAs. Nucleotide sequences and predicted secondary structures of six sbRNAs in C. elegans. The positions of antisense morpholino oligonucleotides (MOs) are indicated by black lines along the complementary nucleotide sequences on the RNAs.
A

Clade I
- C. elegans: 19 sbRNAs identified
- C. briggsae: 26 sbRNAs tested
- C. remanei: 19 sbRNAs
- C. brenneri: 8 sbRNAs
- C. japonica: 4 sbRNAs

Clade III
- A. caninum: 16 sbRNAs
- N. brasiliensis: 6 sbRNAs
- H. contortus: 0 sbRNAs

Clade IV
- P. pacificus: 23 sbRNAs
- H. glycines: 0 sbRNAs
- G. pallida: 1 sbRNA
- M. hapla: 5 sbRNAs
- M. incognita: 10 sbRNAs

Clade V
- A. suum: 0 sbRNAs
- B. malayi: 0 sbRNAs
- T. spiralis: 0 sbRNAs

(9) [see Fig. 2]

B

Hc41 (83nt)
- Mh6 (72nt)
- Mi4 (92nt)

Pp11 (79nt)

C

% of nuclei replicating in vitro

none hU2 hY1 CaN133 CaN135 Hc41 Pp11 Mi6 Mi4

Figure S1
Table S1. Durations of S phase and mitosis in AB and P₁ blastomeres in wild-type and MO-loaded *C. elegans* embryos. Values are mean duration (in seconds) ± SEM. The number of embryos (n) analysed for each condition is given in brackets. *These values are significantly different from the coMO-loaded and WT embryos (P < 0.05, Student's t-tests).
Durations of S phase and mitosis in C. elegans WT and MO-loaded embryos.

Treatment	S phase	mitosis	S phase	mitosis	asynchrony
None (WT)	603.2 ± 14.0 (12)	174.6 ± 7.3 (13)	758.8 ± 19.8 (12)	168.2 ± 5.9 (15)	149.4 ± 6.8 (15)
coMO	634.6 ± 17.0 (7)	154.4 ± 14.4 (12)	789.0 ± 22.8 (7)	161.0 ± 6.1 (12)	148.1 ± 9.3 (12)
CeN77 MO	780.2 ± 31.4 (5)*	182.7 ± 21.9 (7)	1073.2 ± 47.8 (5)*	186.0 ± 14.2 (6)	450.7 ± 43.8 (9)*
MOs combined	754.5 ± 43.4 (7)*	188.5 ± 9.7 (11)	970.0 ± 50.8 (7)*	184.3 ± 12.8 (10)	362.5 ± 26.2 (11)*
Non-coding stem-bulge RNAs are required for cell proliferation and embryonic development in *C. elegans*

Madzia P Kowalski, Howard A Baylis, and Torsten Krude

Supplementary Table S2.

Nucleotide sequences of nematode sbRNAs. Mutated nucleotides are underlined.

Name	Length	Sequence
CeY	109 nt	GGGCCUCGGUCCGAGUUACAUUGUCUCCAAUUGUGUGUGUGUGUUUUCUUUAGGAACCUCGGUUCUCCAAUUGUGACCUUGCAGGCUCCUUUU
Ce1	81 nt	CCGACCACCCGUGCAGUUCUUGGCCGCUUUAACAAUUGUGAUAUCCCAUCUCCACCAGACCUCC
Ce2	85 nt	GUGGCCGUGCUGCGGCUUCAAUGUGAUCUUCUGCUUACCCAGACCUUCC
Ce3	155 nt	CACUUCGGUCCGAGUAGGUAUCUCAAAUUGCUUACUCCACUUAACAAUUGGCUUCAAACCUU
Ce4	120 nt	CAGUUCGGUCCGAGUAGGUAUCUCAAAUUGCUUACUCCACUUAACAAUUGGCUUCAAACCUU
Ce5	121 nt	CAGUUCGGUCCGAGUAGGUAUCUCAAAUUGCUUACUCCACUUAACAAUUGGCUUCAAACCUU
Ce6	83 nt	GUAUCGGUCCGAGUAGGUAUCUCAAAUUGCUUACUCCACUUAACAAUUGGCUUCAAACCUU
Ce7	98 nt	GUUCAAAAUAUAUAUAUCGGUCCGCGCAUAUGGUUAUCUCAAAUUGCUUACUCCACUUAACAAUUGGCUUCAAACCUU
CeN71	78 nt	CGAAUUCUCUGCCGUAUCGGGUUAUCUCAAAUUGCUUACUCCACUUAACAAUUGGCUUCAAACCUU
CeN72	101 nt	AUCAUCGGUCCGAGUAGGUAUCUCAAAUUGCUUACUCCACUUAACAAUUGGCUUCAAACCUU
CeN73-1	136 nt	CACAUCCGUAAGCAGGAGACCGCATCUCAGGACGACCUCGUGUCC
CeN73-2	136 nt	CACAUCCGUAAGCAGGAGACCGCATCUCAGGACGACCUCGUGUCC

Journal of Cell Science | Supplementary Material
CeN74-1 (83 nt):
GUCUCGGUCCGGUCAGUUGGGUUAUCGUAUUCUCUCCUUGGGAUUACCUCACCUUACGCAUCA
ACUUGACCGUGCCGUUUU

CeN74-2 (81 nt):
GUACUCGGUCCGGUCAGUUGGGUUAUCGUAUUCUCUCCUUGGGAUUACCUCACCUUACGCAUCA
ACUUGACCGUGCCGUUUU

CeN75 (71 nt):
AAUACCGUCCGGAGUCCGUGGUGGUAUCUGAGAAAGCCCCCAUCGACACCAACUUGACCGGAUAAA
AUUUU

CeN76 (80 nt):
CAGACAGGCGUCCGGAGUCCGUGGUGUACCUUUAGAAACCUCACCCUCACCCUCACCGACCAACUU
UUGACCGGUUCCGUUUU

CeN77 (70 nt):
CAAUUCGGUCCGGAGUCCGUGGUAUCUUUUCACUAACCCACCCACAUUGACAAACUUACUUGACCGGCUU
UUU

CeN133 (100 nt):
CCCCAUCCGUCGAAGUUGAUGGGUUACCCAUUGAAUCUCUGUUUCUUUUAAGGAACUCACCAU
CCCCAUACUAUCACUUUGACGAAAAACUUUUU

CeN133 mU US (100 nt):
CCCCAUCCGUCGAAGUUGAUGGGUUACCCAUUGAAUCUCUGUUUCUUUUAAGGAACUCACCAU
CCCCAUACUAUCACUUUGACGAAAAACUUUUU

CeN133 mt Loop (100 nt):
CCCCAUCCGUCGAAGUUGAUGGGUUACCCAUUGAAUCUCUGUUUCUUUUAAGGAACUCACCAU
CCCCAUACUAUCACUUUGACGAAAAACUUUUU

CeN135 (74 nt):
AUCAGGCAUAGGUGCCGAGUCGGGUGGUAUCUGAGAAACCACCCACCGGCAAAACUUACUUGACU
UCUGUUUUU

CeN135 mt US (74 nt):
AUCAGGCAUAGGUGCCGAGUCGGGUGGUAUCUGAGAAACCACCCACCGGCAAAACUUACUUGACU
UCUGUUUUU

CeN135 mt Loop (74 nt):
AUCAGGCAUAGGUGCCGAGUCGGGUGGUAUCUGAGAAACCACCCACCGGCAAAACUUACUUGACU
UCUGUUUUU

Hc41 (83 nt):
CAUGUUGGUCGGCGGUGGUAAGGGUUAUCAAUUCUGCGUCCCCUGGGAUUACCUCACCUUACGCGA
CUUUGACCUACUAUUUU

Pp11 (79 nt):
AUGCCAAAGGUCGGAAGGUCGUGGGUUAUCGCGGACACUAGGUAUCCAGCCACAGGCACCCACCGGCUA
UCUGCCUUUGUUGGUUU

Mh6 (72 nt):
GCGAAAGGUCGGAAGGUGGUGGUAUCUAGUACUGCAAUUACGAAAUUGGUUUAAACUAACCUUGACCCCA
CUUUGACGAAACCUUUGGUUU

Mi4 (92 nt):
GCAAAAGGUCGGAAGGUGGUGGUAUCUAGUACUGCAAUUACGAAAUUGGUUUAAACUAACCUUGACCCCA
CUUUGACGAAACCUUUGGUUU
Supplementary Table S3.
Nucleotide sequences of DNA oligonucleotides used as primers for qRT-PCR.

Primer	Forward Sequence	Reverse Sequence
CeY fwd	CCGAGTTTCATGGTCTCCAA	GTCAAGATGAGGTTGGAACC
Ce1 fwd	GTCCGGAGTTTGGGTGAC	GTCTATGGGGGGATTCAAT
Ce2 fwd	GCCGTCGCGTCTGCGTTT	GGGAGATGGATTCAAGAAAT
Ce3 fwd	CTTCGGTGCCGAGATATTG	TGGGAAGGGTGGTTGTATTC
Ce4 fwd	CAGTTCCGGTCCGAGTTGAT	AAGCATTAATACCACTGTG
Ce5 fwd	CAGTTCCGGTCCGAGTTGAT	TGAACCATTGTTAAGCATT
Ce6 fwd	GTATCGGTCCGGCAGCAGT	AATGTAACGTCAAGTTGAT
CeN71 fwd	TATTATATATCGGTCCGGC	GAAGTGGAATAGGAATG
CeN72 fwd	CGAATTCCTGCGGTCCCGA	TCGTATGGGCTGTTGAGAA
CeN74-1 fwd	GGCGTCAGTGGGTTACCA	AAGGGGTTGTATTGTAG
CeN74-2 fwd	AGGTGGCTGCCAATCCGTC	AAGGGTGTATTGTAG
CeN74-3 fwd	GCCGTCAGTGGGTTATCGTA	TCAAGTTGATGCCGATGGGA
CeN75 fwd	CAATACGGTCCGAGCTCGGT	GTCAGTGGGCTTCTCAG
CeN76 fwd	CAGACAGCGCTGGTCCCGGA	CAAGTTGATGCCGATGGGA
CeN77 fwd	CAAATCCGGTCCGAGTCAAT	GTCAGTGGGCTTCTCAG
CeN133 fwd	TCCGAAGTTGATGGGTTACC	AAAGAACAGAGAGAATTCAA
CeN135 fwd	ATCAAGGCGATGGGTTACC	GATGGGCTTCTCAG
Supplementary Table S4.

Nucleotide sequences of DNA oligonucleotides used as primers for template synthesis by PCR. The first two primers for each template are in the forward orientation (fwd1, fwd 2) and the third is in the reverse orientation (rev). Sequences for the SP6 promoter are underlined.

CeY:
- ATTTAGGTGACACTATAAGGCGTCCGAGTT (34 nt);
- GGGCTCGGTCAGGTTCTATAGTGCTCAATGGTGAATGCTCTCTAGAATTCAATTTTTAAGGACCGCTCTGAGGT (87 nt);
- AGGAGCGGTCAAAGTAGTTTCCAGGGATGAGATGAGGT (37 nt)

CeN71:
- ATTTAGGTGACACTATAGCGAATTCCTGCGGTCC (34 nt);
- CGAATTCCTGCGGTCCGGATCGTATGGGTTATCAATTCTCAACCACCCCATACGAATGTA (59 nt);
- AAAATCCGGTAGTCAATGGATTCTGGATATGAGGGTTGTT (37 nt)

CeN72:
- ATTTAGGTGACACTATAAGATCATCGGTCCGGTGTT (34 nt);
- ATCATCGGTCCGGTGTTGATGGGTTATTATCGTGTGCTGATCGACATCCACCAGTCC (82 nt);
- AAAACATCGGTCAAAGTTGAGATGAGATGAGGT (37 nt)

CeN73-1:
- ATTTAGGTGACACTATATAGCAATTCGTCGCTCC (34 nt);
- CACATCGGTCCGGAGTATGTTGATGTTCAATAGGAGGGGTTGTT (36 nt)

CeN74-2
- ATTTAGGTGACACTATAAGATCATCGGTCCGGCGTC (34 nt);
- GTATCGGTCCGGTGTTGATGGGTTATTCATTCTGCCTCCAGGAGGCGTTGCTCC (62 nt);
- AAAAGCAGTGCAAGTTGAGATGAGATGAGGTTG (37 nt)

CeN76
- ATTTAGGTGACACTATAGCAATTCGTCGCTCC (34 nt);
- CAGACAGCGTGGTTGCTCCAGGTGGTATCCTCTTTGGAAGCCCCTCCGTCGCAAC (61 nt);
- AAAACAGGAAACGTCGCAAGTTGAGATGAGATGAG (37 nt)

CeN77
- ATTTAGGTGACACTATAAGCAATTCCGTCGCTCC (35 nt);
- CATTCCGGTGCCATATGTTTATCTTTCTTTAAGGAAAAACCGCTATAG (50 nt);
- AAAACGCGCCTGCAATATGAGGGGG (36 nt)

CeN133:
- ATTTAGGTGACACTATAGCAATTCGTCGCTCCAAG (34 nt);
- CCCCATCGGTCCGAATGTAGGGTACATCCTCTCTCTCTTTAAGGAATCCACCATCCC (81 nt);
- AAAATGGTTTTCGATCGAGTTGGAGTGGGAG (37 nt)

CeN133 mt US
- ATTTAGGTGACACTATAAGGCGTCCGAGAG (34 nt);
- CCCCATCGGTCCGAATGTAGGGTACATCCTCTCTCTCTCTTTAAGGAATCCACCATCCC (81 nt);
- AAAATGGTTTTCGATCGAGTTGGAGTGGGAG (37 nt)
CeN133 mt Loop:
ATTTAGGTGACACTATAGCCCATCGGTCCGAAG (34 nt);
CCCCATCGGTCCGAAGTTGATGGGCGCAAAATTGAATTCTCTCTTTTAAAGAACTACCCATCCC
ATCAACATCAAC (81 nt);
AAAAATGTTTTTCGATCAAGTTGATGGGATGGGAT (37 nt)

CeN135:
ATTTAGGTGACACTATAGATCAGGCATAGGTCCG (34 nt);
ATCAGGCATAGGTCCGGAGTCGGTGGGTATCTGAAGAAACCACCAACGAAGCAACT (55 nt);
AAAAACAGGAAGTCAAGTTGTTGCTCTGGGATTCGTTG (32 nt)

CeN135 mt US:
ATTTAGGTGACACTATAGATCAGGCATAGGTCCG (34 nt);
ATCAGGCATAGGTCCGGAGTTTCGTTGTTATCTGAAGAAACCACCAACGAAGCAACT (60 nt);
AAAAACAGGAAGTCAAGTTGTTGCTCTGGGATTCGTTG (37 nt)

CeN135 mt Loop:
ATTTAGGTGACACTATAGATCAGGCATAGGTCCG (34 nt);
ATCAGGCATAGGTCCGGAGTCGGTGGGCGCAATGAAGAAACCACCAACGAAGCAACT (60 nt);
AAAAACAGGAAGTCAAGTTGTTGCTCTGGGATTCGTTG (37 nt)

Hc41:
ATTTAGGTGACACTATAGCATGTGGTCCGGCGTT (34 nt);
CATGTGGTCCGGCGTTGAAGGGTTATCAATTACTGCGTCCCTCTGGGAATTCCCTCAACAC (64
nt);
AAAATAGAGCTGGTCAAGGAGGTGGTTGAGGGAATTC (37 nt)

Pp11:
ATTTAGGTGACACTATAGATGCCAAGGTCCGAAG (34 nt);
ATGCCAAGGTCCGAAGGCTGTGGGTATCGCCACTATGAAGTCCCACAGTCACCACCCT (60 nt);
TACAAACAAAAGGCAGAATGCAAGGTGGTTGCTACTGCGG (37 nt)

Mh6:
ATTTAGGTGACACTATAGGCCAAAGGTCCGGAGT (34 nt);
GGCGAAAGGTCCGGAGTGATTGGGTATCCAAGATTTCCAATTTCAATATACAAATGCT (53 nt);
AAAAGCGAAGGTCAATTAATTGTAATTTGGACTT (37 nt)

Mi4:
ATTTAGGTGACACTATAGGCAGAAAGGTCCGGAGT (34 nt);
GCAGAAAGGTCCGGATGTGGGTATCATGTCAATAAGCAATTTGTTTTAATCTAAAGGCCCAT
GCA (73 nt);
AAAAATCAGTGGTCAGATTCTGGGCTCTTTTTA (37 nt)
Supplementary Table S5.

Nucleotide sequences of DNA oligonucleotides used directly as templates for RNA synthesis by *in vitro* transcription. The first oligonucleotide for each template is in the forward orientation (fwd1) and the second is in the reverse orientation (rev). Each oligonucleotide pair was annealed to form a double-stranded DNA template for *in vitro* transcription. Sequences for the SP6 promoter are underlined.

Template	Forward Oligonucleotide	Reverse Oligonucleotide
CeN133 US	GATTTAGGTGACACTATAGTTGATGGGTTCTTCCCATCAACTT;	AAGTTGATGGAAGAACCATCAACTATAGTGTCACCTAAAATC
CeN133 USLM	GATTTAGGTGACACTATAGTTGATGGGTTACCCCCATCAACTT;	AAGTTGATGGAAGAACCATCAACTATAGTGTCACCTAAAATC
CeN135 US	GATTTAGGTGACACTATAGTCGGTGGTTCTTCCCATCGGCTT;	AAGCCGATGGAAGAACCACCAGACTATAGTGTCACCTAAAATC
CeN135 USLM	GATTTAGGTGACACTATAGTCGGTGGTTATCCCCATCGGCTT;	AAGCCGATGGAAGAACCACCAGACTATAGTGTCACCTAAAATC
Supplementary Table S6.
Nucleotide sequences of antisense morpholino oligonucleotides (MOs).

	Sequence
coMO (standard control MO)	CCTCTTACCTCAGTTACAATTTATA
CeN71 MO	GGTGGTTGAGAATTGATAACCCATA
CeN72 MO	ACGGTGAATGTGATCAGCGACGACA
CeN74-2 MO	AGAAATTCCCGAAGGGAGGCAAACCT
CeN77 MO	AACGCCTCGTCAAGTTGTTGTCATG
CeN133 MO	ATGTGTAGGGATGGGTAGTTCTTT
CeN135 MO	GTGGTTTCTTCAGATAACCCACCGA