Comparative prevalence of MDR S. typhi in Northern and Southern parts of Karnataka, South India

Rajeshkhar Sidrammappa, Channappa T. Shivannavar and Subhaschandra M. Gaddad*

Abstract

Typhoid fever due to infection of MDR Salmonella enterica serovar typhi resistance to Chloramphenicol, ampicillin and cotrimoxazole has posed a serious therapeutic challenge in many parts of the world, including South India. Till recently ciprofloxacin was the drug of choice for the treatment of the MDR S. typhi. However treatment failure to ciprofloxacin has been recorded with decreased susceptibility to nalidixic acid, which is the marker for ciprofloxacin resistance in S. typhi. Alternative drugs for the treatment of MDR S. typhi the cephalosporins; however, emergence of cephalosporin resistance is a matter of concern. This prompted us to study drug resistance patterns among S. typhi isolates from North Karnataka, which is endemic for typhoid fever and compared with South Karnataka which is non endemic region and formulate the appropriate drugs for the management of enteric fever.

Keywords: Typhoid fever, salmonella typhi, antibiogram, ESBL

1. Introduction

Typhoid fever caused by Salmonella enterica serovar typhi continues to remain a public health problem in many countries. An estimated 21.7 million illnesses and 2,17,000 deaths are caused worldwide. Incidence of Typhoid in Asia has been reported to be 274 per 1,00,000 persons. Salmonella enterica serovar typhi and Salmonella enterica serovar paratyphi A are the main etiological agents of enteric fever in India and S. typhi is predominant. Many outbreaks have been reported in the developing countries.

The emergence of multidrug resistance in S. typhi has further complicated the treatment and management of enteric fever, mainly resistance to ampicillin, chloramphenicol and cotrimoxazole which are the first line drugs for the treatment of enteric fever. In India multidrug resistant S. typhi (MDRST) was first reported from Calicut. Since then a steady increase in the MDRST over the next two decades has been recorded. There was a decline in MDR S. typhi with the introduction of nalidixic acid. Strains with decreased susceptibility to fluoroquinolones and increased incidence of nalidixic acid resistant S. typhi (NAST), especially that exhibit decreased susceptibility to most recent fluoroquinolones used for the treatment of Typhoid fever are reported. Interestingly there are reports on the gradual decrease in MDR S. typhi and increased sensitivity to the chloramphenicol. There are also reports on the third generation cephalosporin resistant S. typhi and ESBL S. typhi in India and various parts of the world.

The above background prompted us to determine the antibiotic resistance pattern of outbreak causing as well as sporadic isolates of S. typhi from two geographically different regions namely Northern and Southern parts of Karnataka in India and the Northern part of Karnataka is the endemic for S. typhi.

2. Methodology

The study was carried during April 2010 to October 2012 in Gulbarga and Raichur Districts in North Karnataka and from May 2011 to Sept 2012 in Bangalore, South Karnataka. The study included a total of 105 S. typhi isolates from blood samples of patients suffering from suspected typhoid fever who attended the outpatient clinics or were admitted in the private and government hospitals of these regions. A total of 1500 blood samples, 1200 from Northern part of Karnataka and 300 from Southern part of Karnataka were included in the study.

2.1 Isolation and Characterisation

Blood samples from the febrile patients 5 to 10 ml were collected by vein puncture and inoculated directly in to blood culture bottles containing 50 ml of brain heart infusion broth. The enriched samples after visible turbidity were streaked on MacConkey Agar and Wilson Blair Agar plates. The isolates producing characteristic colonies were identified by standard biochemical tests and confirmed by agglutination with salmonella O9 vi specific and Hd antisera (Kings Institute of Preventive Medicine Guindy, Chennai).

2.2 Antimicrobial susceptibility testing:

Antimicrobial susceptibility of the isolates was determined by the Kirby Bauer disc diffusion method according to CLSI guidelines using the following antibiotics (Hi media) – ampicillin (10µg), amoxyclav (30µg), amoxicillin (20µg) and clavulanic acid (10µg), Chloramphenicol (30µg), ciprofloxacin (5 µg), nalidixic acid (30 µg), cotrimoxazole (35 µg), imipenem (10 µg), ceftriaxide (30 µg), cefotaxine (30µg), cefoxitine (30µg), cefexime (30µg), cefotaxime (30 µg), cefuroxime (30 µg) and sulbactum (30 µg). E. coli ATCC 25922 was used as a control strain.

2.3 ESBL detection

The isolates that were resistant to the third generation cephalosporins by disc diffusion method were selected for ESBL screening by double disc synergy test (DDST). A disc of amoxyclav (30 µg) was placed on the centre of Mueller Hinton Agar plate. Each disc of cefotazidime, cefoxitine, ceftriaxide, and cefotaxime was placed around the amoxyclav disc, 20 mm apart and incubated for 24 hrs at 37°C. A perfect formation of edge of the inhibition zone of any of the antibiotics towards the disc containing amoxyclav was interpreted as positive for ESBL production.

Confirmation of ESBL producers was done by phenotypic confirmatory disc diffusion method using cefotaxime with and without clavulanic acid. A clear zone difference of ≥5mm with antibiotic + clavulanic acid disc when compared to antibiotic alone was considered confirmatory. Strains showing resistance to more than three different groups of antimicrobials as quinolones, tetracycline, cephalosporin’s etc. were grouped as multi drug resistant strains.
3. Results

The study included a total of 1500 blood samples. A total of 105 *S.typhi* were isolated from the samples showing an isolation rate of 7%, which was slightly higher (7.3%) in South Karnataka as compared to North Karnataka (6.9%). Among the 83 isolates from North Karnataka, 71 were *S.typhi* and 12 were *S.paratyphi A*, whereas in South Karnataka among the 22 isolates, 17 were *S.typhi*, 3 were *S.paratyphi A* and 2 were *S.typhimurium* (fig.1).

Antibiotic susceptibility of all the isolates is depicted in fig 2. A total of 67 (80.7%) isolates were MDR in Northern Karnataka and 15 (68.18%) in southern Karnataka. All the isolates of Southern Karnataka were sensitive to chloramphenicol and 71 (86.02%) were resistant to chloramphenicol in Northern region is one of the clear difference in drug resistance pattern between the two different geographical regions of Karnataka.

Out of the 83 isolates from North Karnataka, 4 (4.8%) were ESBL producers while only one isolate (4.5%) from South Karnataka was producing ESBL (Table-2). A comparative account of the antibiogram of the ESBL producers and ESBL non-producers from North Karnataka and South Karnataka is given in Table-3, which shows that the frequency of multidrug resistance is higher among ESBL producers than non ESBL producers from both the regions.

Antibiotics used	non ESBL *Salmonella* (n=100)	ESBL producing *Salmonella* (n=5)		
	North Karnataka (n=79)	South Karnataka (n=21)	North Karnataka (n=4)	South Karnataka (n=1)
Ampicillin	94.93%	100%	100%	100%
Chloramphenicol	89.87%	0.0%	75%	0.0%
Tetracyclin	89.87%	68.18%	75%	100%
Cotrimoxazole	79.74%	68.18%	75%	100%
Nalidixic acid	94.93%	90.4%	100%	100%
Ciprofloxacin	29.11%	90.4%	75%	100%
Ceftriaxone	5.06%	4.7%	100%	100%
Cefotaxim	3.79%	4.7%	100%	100%
Cefoxitin	3.79%	4.7%	100%	100%
Cefoperzone	3.79%	0.0%	50%	0%
Amoxyclyave	3.79%	0.0%	75%	100%
Imipenem	0.0%	0.0%	0%	100%
Multi drug resistant	84.81%	68.18%	100%	100%
4. Discussion

Enteric fever caused by the S. typhi continues to be the global burden causing considerable morbidity and mortality and 80% of the global burden of S. typhi is mainly seen in the Asian and African countries. It is a serious problem in endemic countries and travelers to these areas. It may be due to a combination of factors including poor sanitation and health care infrastructure. In the present study, the antimicrobial susceptibility of typhoidal Salmonellae isolated from two geographically distinct regions of Karnataka Southern India is reported. Northern part of Karnataka is endemic for typhoid fever and Southern parts mainly Bangalore city which is densely populated and a site of travelers from various regions.

The study highlighted the predominance of multi drug resistance among S. typhi isolates from both geographic areas. Further, increased nalidixic acid resistance is of concern. There is a decreased susceptibility to fluoroquinolones especially to ciprofloxacin which is the choice of drug for the treatment of MDR typhoid fever. Study also shows the increased drug resistance to first line drugs namely ampicillin, chloramphenicol and cotrimoxazole. A remarkable difference in chloramphenicol resistance has been observed among these two geographical areas. All the 22 isolates from South Karnataka region are susceptible to chloramphenicol whereas 71 (86.6%) isolates from Northern Karnataka are resistant to chloramphenicol. This shows a change in the drug resistance pattern between two geographical regions. Increase in the ciprofloxacin resistance has been recorded in both regions from North Karnataka, 27.7% and South Karnataka 86%, when compared with previous reports of 8% which may be attributed to the increased nalidixic acid resistance. Previous studies have indicated that increased nalidixic acid resistance results in the gradual increase in ciprofloxacin MIC (>0.125 μg/L). This indicates that there has been a situation to relook at the breakpoint and the zone diameters for reporting ciprofloxacin resistance for Salmonella. In the present study 4.7% of third generation cephalosporin resistant S.typhi have been isolated, which is a matter of concern.

We have screened for the ESBL producers among the third generation cephalosporin resistant strains by DDST phenotypic method. A total of 5 ESBL isolates have been recorded which is alarming in both the regions which are susceptible to imipenem which is promising.

To conclude this study demonstrates the increased MDR S.typhi in both the regions and difference in the susceptibility to the chloramphenicol stresses the need for a regular and regional monitoring of the antibiotic susceptibility and check the empirical use of antibiotics which is one of the causes for development of multi drug resistance. Third generation cephalosporin resistant and ESBL S. typhi are alarming which further stresses the necessity for rapid and economical techniques to detect and monitor the ESBL producers.

References

1. The World Health Report, Report of the Director General WHO (1996) World Health Organization: Geneva.
2. Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. *Ball World Health Organ*. 2004; 82:346-53.
3. Bhattacharya SS, Das U, Choudhury BK. Occurrence and antibiogram of Salmonella Typhi and S. ParatyphiA isolated from Rourkela, Orissa. *Indian J Med Res* 2011; 133: 431-3.
4. Multidrug-Resistant Salmonella typhi: A Worldwide Epidemic Bernard Rowe, Linda R. Ward, and E. John Threlfall From the WHO Collaborating Centre for Phase Typing and Drug Resistance in Enterobacteria, Laboratory of Enteric Pathogens, Central Public Health Laboratory, London, United Kingdom.
5. Ochiai RL, Acosta CJ, Danovaro-Holliday MC, Baiqing D, Bhattacharya SK, Agtini MD, et al. A study of typhoid fever in five Asian countries: disease burden and implications for control. *Ball World Health Organ* 2008; 86: 260-68.
6. Agarwal SC. Chloramphenicol resistance of salmonella species in India, 1956-61. *Ball World Health Organ* 1962; 17:331-5.
7. John A. Crump, Timothy J Barrett, Jennifer T. Nelson, and Fedeick J. Anglo. Reevaluating Fluoroquinolone Breakpoints for salmonella enterica serotype Typhi and for Non-Typhi salmonellae. *Antimicrob Resist. 2003; 1 JULY:7.5.
8. Gaind R., Paglietti B., Murgia M, Darwar R., Uzrau S. Cappuccinelli P., Deb M., Aggarwal P. and Rubino S. Molecular characterization of ciprofloxacin-resistant salmonella enterica iserovar Typhi and Paratyphi A causing enteric fever in India. *Journal of antimicrobial chemotherapy* (2006) 58, 1139-1144.
9. Krishnan P, Stalin M, Balasubramanian S. Changing trends in antimicrobial resistance of Salmonellaenterica serovar typhi and Salmonella entericaserovar paratyphi A in Chennai. *Indian J Pathol Microbiol*. 2009; 52: 505-8.
10. Khalid mahmood, mateen Izhak,Nakhshabad choudhry , Ghulam mujtaba and naem Rashid. Emergence of extende spectrum β-lactamase producing salmonella typhi in Pakistan. *African journal of Microbiology research* 2012; 6(4): 793-797.
11. Watson K.C. Clex culture in typhoid fever. *J Clin Pathol* 1954; 7:305-307.
12. Watson KC. Laboratory and clinical investigation of recovery of Salmonella typhi from blood. *J Clin Microbiol* 19787; 122-126.
13. Performance Standards for Antimicrobial disk Susceptibility Tests. CLSI, Wayne, PA, USA, 2005. NCCLS document M7-A
14. Wayne, PA. Clinical and Laboratory Standards Institute (2006) *Clinical and Laboratory Standards Institution: Methods for Dilation Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically*. Approved standard, CLSI document M7-A.
15. Shyamapada Mandal, Manisha Deb Mandal and Nishith Kumar. Changing Patterns of Antibiotic Resistances of Salmonella enterica Serovar Typhi in Kolkata, India *Advanced Bio Tech*. 2013; 13(02).
16. Syed Ahmed Zakri and Sunil Karande. Multidrug-resistant typhoid fever: A review *J Infect Dev Ctries* 2011; 5(5):324-337.
17. Ray P, Sharma J, Marak RS, Garg RK. Predictive efficacy of nalidixic acid resistance as a marker of fluoroquinolone resistance in Salmonella enterica var Typhi. *Indian J Med Res*, 2006; 124: 105-8.
18. Gokul BN, Menezes GA, Harish BN. ACC-1 beta-Lactamase-producing *Salmonella enterica* Serova Typhi, India. *Emerg Infect Dis*. 2010; 16: 1170-1.