Domain-Independent Dynamic Programming: Generic State Space Search for Combinatorial Optimization

Ryo Kuroiwa and J. Christopher Beck
Toronto Intelligent Decision Engineering Laboratory (TIDEL)
Department of Mechanical and Industrial Engineering
University of Toronto
Domain-Independent Planning

Any planning problem

State-based PDDL model

AI planner

Model

Solve

Heuristic search is popular

(define (domain BLOCKS)
 (:predicates
 (on ?x ?y)
 (ontable ?x)
 (clear ?x)
 (handempty)
 (holding ?x)
)

 (:action pick-up

)
What We Propose: DIDP

Domain-Independent Dynamic Programming (DIDP)

Any combinatorial optimization problem

State-based DP model

DIDP solver

Model

Solve

compute $V(N \setminus \{0\}, 0)$

$V(U, i) = \min_{j \in U} c_{ij} + V(U \setminus \{i\}, j)$

$V(\emptyset, i) = c_{i0}$.

Current solvers are based on heuristic search
Our Modeling Interfaces

YAML (PDDL-like)

```
# objects:
- customer

# state variables:
- { name: unvisited, type: set, object: customer }
- { name: location, type: element, object: customer }

# tables:
- name: travel_time
  type: integer
  args: [customer, customer]

# transitions:
- name: visit
  parameters: { name: j, object: unvisited }
  cost: (+ cost (travel_time location j))
  effect:
    unvisited: (remove j unvisited)
    location: j
- name: return
  cost: (travel_time location 0)
  effect:
    location: 0
  preconditions:
    - (is_empty unvisited)
    - (!= location 0)

# base cases:
- conditions:
  - (is_empty unvisited)
  - (= location 0)
```

or

Python library

```
import didppy as dp

model = dp.Model()

customer = model.add_object_type(number=4)
unvisited = model.add_set_var(object_type=customer, target=[1, 2, 3])
location = model.add_element_var(object_type=customer, target=0)

travel_time = model.add_int_table(
    [[0, 3, 4, 5], [3, 0, 5, 4], [4, 5, 0, 3], [5, 4, 3, 0]]
)

for j in range(1, 4):
    visit = dp.Transition(
        name=f"visit {j}".format(j),
        cost=travel_time[location, j] + dp.IntExpr.state_cost(),
        effects=[(unvisited, unvisited.remove(j)), (location, j)],
        preconditions=[unvisited.contains(j)],
    )
    model.add_transition(visit)

return_to = dp.Transition(
    name="return",
    cost=travel_time[location, 0] + dp.IntExpr.state_cost(),
    effects=[(location, 0)],
    preconditions=[unvisited.is_empty(), location != 0],
)

model.add_transition(return_to)
model.add_base_case([unvisited.is_empty(), location == 0])

solver = dp.CAASDy(model)
solution = solver.search()
```
Background
Combinatorial Optimization

Traveling Salesperson Problem with Time Windows (TSPTW)
Minimize the travel time to visit all customers within time windows
Combinatorial Optimization

Traveling Salesperson Problem with Time Windows (TSPTW)
Minimize the travel time to visit all customers within time windows

Total cost: 14

Depot

[0, 10]

\(t=0 \)

[5, 16]

\(t=12 \)

[8, 14]

\(t=8 \) (wait until 8)
DP for Combinatorial Optimization

State-based model: visit customers one by one
DP for Combinatorial Optimization

Recursive equations of a value function of a state

compute $V(N \setminus \{0\}, 0, 0)$

$$V(U, i, t) = \begin{cases}
\min_{j \in U: t+c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t + c_{ij}, a_j\}) & \text{if } U \neq \emptyset \\
c_{i0} + V(\emptyset, 0, t + c_{i0}) & \text{if } i \neq 0 \\
0 & \text{otherwise}
\end{cases}$$

Visit a customer
Return to the depot
Base case

State variables:
- U: unvisited customers
- i: current customer
- t: current time

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij}: travel time from customer i to j
Recursive equations of a value function of a state

compute $V(N \setminus \{0\}, 0, 0)$

$$V(U, i, t) = \begin{cases}
\min_{j \in U : t + c_{ij} \leq b_j} \ c_{ij} + V(U \setminus \{j\}, j, \max\{t + c_{ij}, a_j\}) & \text{if } U \neq \emptyset \\
\ c_{i0} + V(\emptyset, 0, t + c_{i0}) & \text{else if } i \neq 0 \\
\ 0 & \text{otherwise}
\end{cases}$$

Visit a customer
Return to the depot
Base case

State variables:
- U: unvisited customers
- i: current customer
- t: current time

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij}: travel time from customer i to j
Recursive equations of a value function of a state

\[
V(U, i, t) = \begin{cases}
\min_{j \in U: t + c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t + c_{ij}, a_j\}) & \text{if } U \neq \emptyset \\
 0 & \text{else if } i \neq 0 \\
c_{i0} + V(\emptyset, 0, t + c_{i0}) & \text{otherwise}
\end{cases}
\]

Visit a customer
Return to the depot
Base case

State variables:
- \(U \): unvisited customers
- \(i \): current customer
- \(t \): current time

- \(N \): all customers (0: depot)
- \([a_i, b_i]\): time window for customer \(i \)
- \(c_{ij} \): travel time from customer \(i \) to \(j \)
Recursive equations of a value function of a state

\[V(U, i, t) = \begin{cases}
\min_{j \in U : t + c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t + c_{ij}, a_j\}) & \text{if } U \neq \emptyset \\
 c_{i0} + V(\emptyset, 0, t + c_{i0}) & \text{else if } i \neq 0 \\
 0 & \text{otherwise}
\end{cases} \]

State variables:
- \(U \): unvisited customers
- \(i \): current customer
- \(t \): current time

- \(\mathcal{N} \): all customers (0: depot)
- \([a_i, b_i] \): time window for customer \(i \)
- \(c_{ij} \): travel time from customer \(i \) to \(j \)
Recursive equations of a value function of a state

\[
V(U, i, t) = \begin{cases}
\min_{j \in U : t + c_{ij} \leq b_i} \ c_{ij} + V(U \setminus \{j\}, j, \max\{t + c_{ij}, a_j\}) & \text{if } U \neq \emptyset \\
\ c_{i0} + V(\emptyset, 0, t + c_{i0}) & \text{else if } i \neq 0 \\
0 & \text{otherwise}
\end{cases}
\]

State variables:
- \(U \): unvisited customers
- \(i \): current customer
- \(t \): current time
- \(N \): all customers (0: depot)
- \([a_i, b_i]\): time window for customer \(i \)
- \(c_{ij} \): travel time from customer \(i \) to \(j \)

Visit a customer
Return to the depot
Base case
Recursive equations of a value function of a state

\[
V(U, i, t) = \begin{cases}
\min_{j \in U : t + c_{ij} \leq b_j} \ c_{ij} + V(U \setminus \{j\}, j, \max\{t + c_{ij}, a_j\}) & \text{if } U \neq \emptyset \\
\ c_{i0} + V(\emptyset, 0, t + c_{i0}) & \text{else if } i \neq 0 \\
0 & \text{otherwise}
\end{cases}
\]

Visit a customer
Return to the depot
Base case

State variables:
- \(U \): unvisited customers
- \(i \): current customer
- \(t \): current time

- \(N \): all customers (0: depot)
- \([a_i, b_i] \): time window for customer \(i \)
- \(c_{ij} \): travel time from customer \(i \) to \(j \)
Recursive equations of a value function of a state

compute $V(N \setminus \{0\}, 0, 0)$

$$V(U, i, t) = \begin{cases}
\min_{j \in U: t + c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t + c_{ij}, a_j\}) & \text{if } U \neq \emptyset \\
 c_{i0} + V(\emptyset, 0, t + c_{i0}) & \text{else if } i \neq 0 \\
 0 & \text{otherwise}
\end{cases}$$

Visit a customer
Return to the depot
Base case

State variables:
- U: unvisited customers
- i: current customer
- t: current time

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij}: travel time from customer i to j
Recursive equations of a value function of a state

compute $V(N \setminus \{0\}, 0, 0)$

$V(U, i, t) = \begin{cases}
\min_{j \in U: t + c_{ij} \leq b_j} c_{ij} + V(U \setminus \{j\}, j, \max\{t + c_{ij}, a_j\}) & \text{if } U \neq \emptyset \\
0 & \text{otherwise}
\end{cases}$

Visit a customer

Return to the depot

Base case

State variables:
- U: unvisited customers
- i: current customer
- t: current time

- N: all customers (0: depot)
- $[a_i, b_i]$: time window for customer i
- c_{ij}: travel time from customer i to j

Solved by problem-specific algorithm implementations before DIDP
Our Modeling Formalism: DyPDL
State Variables

- Types: set, element, numeric
- Objective: compute the value of the **target state** (initial state)

Variable	Type	Domain	Target
U	set	$U \subseteq N$	$N \setminus \{0\}$
i	element	$i \in N$	0
t	numeric	$t \in \mathbb{Z}_0^+$	0

compute $V(N \setminus \{0\}, 0, 0)$
Transitions

- Define recursive equations by state transitions (actions)
- Value of a state: the minimum over all applicable transitions

Transition to visit a customer	Expression
Cost expression and effects	$c_{ij} + V(U \setminus \{j\}, j, \max\{t + c_{ij}, a_j\})$
Preconditions to apply	$j \in U \land t + c_{ij} \leq b_j$

Applicable transitions

State

Minum

Next state

...
Base Cases

- Conditions to stop recursion (goal conditions)
- Value of a satisfying state: defined non-recursively

\[U = \emptyset \land i = 0 \rightarrow V(U, i, t) = 0 \]
What DyPDL Can Do but PDDL Cannot
What DyPDL Can Do but PDDL Cannot

Explicitly modeling implications of the problem definition (very useful and common in OR!)
What DyPDL Can Do but PDDL Cannot

Explicitly modeling implications of the problem definition (very useful and common in OR!)

Dominance based on resource variables

$$V(U, i, t) \leq V(U, i, t') \text{ if } t \leq t'$$
What DyPDL Can Do but PDDL Cannot

Explicitly modeling implications of the problem definition (very useful and common in OR!)

Dominance based on resource variables

\[V(U, i, t) \leq V(U, i, t') \text{ if } t \leq t' \]

Dual bound (LB in minimization)

\[V(U, i, t) \geq 0 \]
What DyPDL Can Do but PDDL Cannot

Explicitly modeling implications of the problem definition
(very useful and common in OR!)

Dominance based on resource variables

\[V(U, i, t) \leq V(U, i, t') \text{ if } t \leq t' \]

Dual bound (LB in minimization)

\[V(U, i, t) \geq 0 \]

Other features skipped in this talk:

- State constraints
- Forced transitions
Our DIDP Solver: CAASDy

- Solve **DP as a shortest path** in the state space using A*
- **Heuristic:** dual bound defined in a DP model

Target state

- `{1, 2, 3}, 0, 0`
- `{1, 3}, 2, 4`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2, 3}, 1, 5`
- `{3}, 2, 10`
- `{2}, 3, 9`
- `{3}, 1, 10`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
- `{2}, 3, 9`
- `{3}, 1, 9`
- `{1}, 3, 8`
- `{2}, 1, 12`
- `{3}, 1, 9`
Experimental Results

Problem	Description	MIP (Gurobi)	CP (CP Optimizer)	DIDP
TSPTW (340)	TSP with time	227	47	257
CVRP (207)	vehicle routing	26	0	5
SALBP-1 (2100)	assembly line	1357	1584	1653
Bin Packing (1615)	bin packing	1157	1234	922
MOSP (570)	manufacturing	225	437	483
Graph-Clear (135)	building security	24	4	76

of optimality solved instances with 8GB and 30-min
Future Work

We need your ideas to advance DIDP!

- Visit our website: https://didp.ai
- Start DIDP with Python: `pip install didppy`
 Tutorials and API Reference: https://didppy.rtfd.io
- Start DIDP with YAML: `cargo install didp-yaml`
- Clone the repository:
 `git clone https://github.com/domain-independent-dp/didp-rs`
 Everything in Rust 🐙
Time vs. Coverage (Mean over All Problems)

Coverage ratio vs. Time in seconds

- DIDP
- CP
- MIP