Fast greedy algorithms for dictionary selection with generalized sparsity constraints

Kaito Fujii & Tasuku Soma (UTokyo)

Neural Information Processing Systems 2018, spotlight presentation
Dec. 7, 2018
Dictionary

If real-world signals consist of a few patterns, a "good" dictionary gives sparse representations of each signal.
If real-world signals consist of a few patterns, a “good” dictionary gives sparse representations of each signal patch.
If real-world signals consist of a few patterns, a "good" dictionary gives sparse representations of each signal.
If real-world signals consist of a few patterns, a “good” dictionary gives sparse representations of each signal.
Dictionary selection [Krause–Cevher’10]

Union of existing dictionaries
- DCT basis
- Haar basis
- Db4 basis
- Coiflet basis

Selected atoms as a dictionary

Atoms for each patch y_t ($\forall t \in [T]$)
Dictionary selection [Krause–Cevher’10]

Union of existing dictionaries

- **DCT basis**
- **Haar basis**
- **Db4 basis**
- **Coiflet basis**

Selected atoms as a dictionary

Atoms for each patch $\mathbf{y}_t \ (\forall t \in [T])$
Dictionary selection [Krause–Cevher’10]

Union of existing dictionaries

- DCT basis
- Haar basis
- Db4 basis
- Coiflet basis

Selected atoms as a dictionary

Atoms for each patch y_t ($\forall t \in [T]$)

$\approx w_1 + w_2 + w_3$
Dictionary selection [Krause-Cevher’10]

Union of existing dictionaries

- DCT basis
- Haar basis
- Db4 basis
- Coiflet basis

Selected atoms as a dictionary

Atoms for each patch $y_t (\forall t \in [T])$

$\approx w_1 + w_2 Z_1 + w_3$
Dictionary selection with sparsity constraints

Maximize
\[
\max_{(Z_1, \ldots, Z_T) \in \mathcal{I} : Z_t \subseteq X} \sum_{t=1}^{T} f_t(Z_t) \quad \text{subject to } |X| \leq k
\]
Dictionary selection with sparsity constraints

Maximize \(\max_{X \subseteq V} \sum_{t=1}^{T} f_t(Z_t) \) subject to \(|X| \leq k \)

2nd maximization:
selecting a set \(Z_t \subseteq X \) of atoms
for a sparse representation of each patch
under sparsity constraint \(\mathcal{I} \)
Dictionary selection with sparsity constraints

Maximize \(X \subseteq V\) \[\max_{(Z_1, \ldots, Z_T) \in \mathcal{I}: Z_t \subseteq X} \sum_{t=1}^{T} f_t(Z_t)\]
subject to \(|X| \leq k\)

set function representing the quality of \(Z_t\) for patch \(y_t\)
sparsity constraint
Dictionary selection with sparsity constraints

Maximize \(X \subseteq V \)

\[
\begin{align*}
\max_{(Z_1, \ldots, Z_T) \in \mathcal{I}} \quad & \sum_{t=1}^{T} f_t(Z_t) \\
\text{s.t.} \quad & |X| \leq k
\end{align*}
\]

Our contributions

1. Replacement OMP:
 A fast greedy algorithm with approximation ratio guarantees
Dictionary selection with sparsity constraints

Maximize \[X \subseteq V \]
subject to \[|X| \leq k \]

\[\max_{(Z_1, \ldots, Z_T) \in \mathcal{I}} \sum_{t=1}^{T} f_t(Z_t) \]

Our contributions

1. Replacement OMP:
 A fast greedy algorithm with approximation ratio guarantees

2. \(p \)-Replacement sparsity families:
 A novel class of sparsity constraints generalizing existing ones
Replacement Greedy for two-stage submodular maximization [Stan+’17]
Replacement Greedy for two-stage submodular maximization [Stan+’17]

1st result: application to dictionary selection

Replacement Greedy: $O(s^2dknT)$ running time
Replacement Greedy for two-stage submodular maximization [Stan+’17]

1st result
Replacement Greedy \(O(s^2dknT) \) running time

2nd result
Replacement OMP \(O((n + ds)kT) \) running time

application to dictionary selection

O(\(s^2d\)) acceleration with the concept of OMP
Replacement OMP

Algorithm	Approximation Ratio	Running Time	Empirical Performance
SDS$_{MA}$ [Krause–Cevher’10]	✓	✓	✓
SDS$_{OMP}$ [Krause–Cevher’10]		✓	✓
Replacement Greedy	✓	✓	✓
Replacement OMP	✓	✓	✓
2. p-Replacement sparsity families

- Average sparsity [Cevher–Krause’11]
- Average sparsity w/o individual sparsity
- Block sparsity [Krause–Cevher’10]
- Individual sparsity [Krause–Cevher’10]
- Individual matroids [Stan+’17]
\section{p-Replacement sparsity families}

- (3k − 1)-replacement sparse
 - Average sparsity
 - [Cevher–Krause’11]
 - Average sparsity w/o individual sparsity
- (2k − 1)-replacement sparse
- k-replacement sparse
 - Block sparsity
 - [Krause–Cevher’10]
 - Individual sparsity
 - [Krause–Cevher’10]
 - Individual matroids
 - [Stan+’17]
We extend Replacement OMP to \(p \)-replacement sparsity families

Theorem

Replacement OMP achieves
\[
\frac{m_{2s}^2}{M_{s,2}^2} \left(1 - \exp \left(- \frac{k M_{s,2}}{p m_{2s}} \right) \right) \text{-approximation}
\]
if \(\mathcal{I} \) is \(p \)-replacement sparse

Assumption

\[
f_t(Z_t) \triangleq \max_{w_t: \text{supp}(w_t) \subseteq Z_t} u_t(w_t)
\]

where \(u_t \) is \(m_{2s} \)-strongly concave on \(\Omega_{2s} = \{ (\mathbf{x}, \mathbf{y}) : \| \mathbf{x} - \mathbf{y} \|_0 \leq 2s \} \)

and \(M_{s,2} \)-smooth on \(\Omega_{s,2} = \{ (\mathbf{x}, \mathbf{y}) : \| \mathbf{x} \|_0 \leq s, \| \mathbf{y} \|_0 \leq s, \| \mathbf{x} - \mathbf{y} \|_0 \leq 2 \} \)
Overview

1 Replacement OMP: A fast algorithm for dictionary selection
2 p-Replacement sparsity families: A class of sparsity constraints

Other contributions

- Empirical comparison with dictionary learning methods
- Extensions to online dictionary selection

Poster #78 at Room 210 & 230 AB, Thu 10:45–12:45