An intelligent design method and system for the silage harvester cutter

Baoxin Fan¹, Kang Niu¹,³, Qizhi Yang², Liming Zhou¹, Yanwei Yuan¹ and Xianfa Fang¹

¹Chinese Academy of Agricultural Mechanization Sciences, Beijing, China
²Jiangsu University, Zhenjiang, China
³E-mail: Young1737@163.com

Abstract. An intelligent design method is proposed to meet the requirements of multi-functional, customization and diversification of the silage harvester cutter. A reasoning model is built based on axiomatic design method. A hierarchical mapping structure and a design case library model are established. A precise search method classified by function is designed on the basis of the grey relational analysis. An intelligent design system for silage harvester cutter is developed according to axiomatic design and exemplary reasoning technology. A physical cutter is designed and manufactured. It turns out that the intelligent design system for silage harvester cutter works well. The intelligent design system can be used to design product efficiency and effectively.

1. Introduction
The cutter device is part of the most core components on the silage harvester. Its main function is tantamount to chop the material uniformly according to the pre-set length. At present, it is implemented mainly depends on the traditional design method. It is common to repeat the process of design, trial and error for many times, which is labor-intensive, time-consuming, and uneconomic [1-2]. Nowadays, to satisfy the requirements of user customization and diversification, it is particularly important to achieve the intelligent design for the cutter device of the silage feeder.

Axiomatic design is a scientific and systematic product design method. There is plenty of academic research achievements on intelligent design based on axiomatic design. Wang Tichun and others proposed a knowledge reuse method for design cases based on axiomatic design. Level case model was implemented with the reasoning of the case based on the retrieval algorithm [3]. Yang Jie et al. established a process decomposition model of the complex product design process under the axiomatic design framework, adopted a knowledge reuse retrieval algorithm based on similarity, and verified it with a case [4]. Therefore, with the advantages of the accumulated design experience and mature cases, the using of modern design theory and intelligent algorithms is feasible design method [5-12]. The application of axiomatic design theory for the intelligent design of agricultural machinery helps improve the accuracy and efficiency of design.

Therefore, this paper takes the silage harvester as a research object, applies the axiomatic design-based theories and methods to the intelligent design of the silage harvester, and develops an intelligent design system for the silage harvester.
2. Axiomatic design and case-based reasoning

2.1. A basic concept of axiomatic design

Axiomatic design (AD) [13] is a scientific and systematic product design method proposed by MIT Suh et al. Its purpose is to establish a scientific basis for different forms of design and to provide designers with an optimized design logically and rationally, including the concepts of domain, hierarchy, "Z" mapping, and two design axioms [14]. Axiomatic design summarizes design activities into a "Z" shape mapping between four domains (customer domains (CAs), functional domains (FRs), physical domains (DPs), and process domains (PVs)), as illustrated in Figure 1. Independent axioms guarantees the independence between sub-functions in the functional domain, while the axiom of information is that among all design schemes that meet the independent axiom, the one with the least amount of information is the optimal design scheme [15].

![Figure 1. Mutual mapping of domains in axiomatic design.](image)

![Figure 2. Intelligent design flow chart of cutter device.](image)
2.2. Intelligent design process of cutter device
According to the case-based reasoning technology based on axiomatic design, it is applied to the intelligent design of the cutter device of the silage machine, the reasoning process is illustrated in Figure 2.

3. Realization of cutter device case reasoning
According to the cutter intelligent design flow chart based on the axiomatic design, it’s easily to get product design methods for the cutter of the silage machine. Firstly, the case library of cutter design is constructed by case decomposition to obtain the functional requirement hierarchy table [16-18]; then a case retrieval algorithm is used to obtain the design case with the highest similarity by the case index.

3.1. Building cutter device library
According to the intelligent design flow chart of the cutter device, firstly based on the axiomatic design theory, the functional requirements of the cutter device design are decomposed to obtain the hierarchical structure of the functional domain, including productivity requirements (FR1) and cutting stability requirements (FR2) and cutting length requirements (FR3); the hierarchical structure of the functional domain, including three modules of moving knife (DP1), fixed knife (DP2), and roller (DP3). The mapping structure is illustrated in Figure 3.

According to the cutter device mapping structure model and design process, the design equation can be obtained:

\[
\begin{bmatrix}
FR1 \\
FR2 \\
FR3
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}\begin{bmatrix}
DP1 \\
DP2 \\
DP3
\end{bmatrix}
\]

(1)

Among them: "1" indicates that there is an association relationship, and "0" indicates that the association relationship is weak or can be ignored.

When the functional requirements of the cutter FR are used as a criterion, the FRs-DPs comparison matrix \(PM^1\) under the criterion is obtained by using the analytic hierarchy process (AHP):

When the design parameter DP of the cutter device is used as the criterion, the DPs-FRs comparison matrix \(PM^2\) under the criterion is obtained by using the analytic hierarchy process (AHP):

\[
PM^1 = \begin{bmatrix}
0.7314 & 0.1995 & 0.1153 \\
0.1414 & 0.7648 & 0.1464 \\
0.1547 & 0.1308 & 0.7351
\end{bmatrix}
\]

\[
PM^2 = \begin{bmatrix}
0.7309 & 0.0881 & 0.1435 \\
0.0992 & 0.7110 & 0.1364 \\
0.1665 & 0.1218 & 0.7384
\end{bmatrix}
\]

Then, the geometric average of \(PM^1\) and \(PM^2\) is geometrically averaged and normalized to obtain the correlation coefficient matrix \(PM\) between FRs and DPs:

\[
PM = \begin{bmatrix}
0.7371 & 0.1390 & 0.1374 \\
0.1122 & 0.7289 & 0.1323 \\
0.1502 & 0.1321 & 0.7303
\end{bmatrix}
\]

(3)

Among them:

\[
PM_{ij} = \sqrt[n]{\frac{pm^1_{ij}pm^2_{ij}}{\sqrt{pm^1_{ij}pm^1_{ij}pm^2_{ij}pm^2_{ij}pm^1_{ij}pm^2_{ij}pm^2_{ij}pm^2_{ij}pm^1_{ij}pm^2_{ij}pm^2_{ij}}}n}
\]

(4)

The domain experts score the FR and DP in the above design equations. The results are illustrated in Table 1:

Then through the formula [19]

\[
R = \prod_{i=1,n-1}^{i=1,n-1} \left[1 - \frac{(\sum_{k=1}^{K}PM_{ki}PM_{kj})^2}{(\sum_{k=1}^{K}PM_{ki})^2(\sum_{k=1}^{K}PM_{kj})^2} \right] \quad S = \prod_{i=1}^{n} \frac{|PM_{ij}|}{(\sum_{k=1}^{K}PM_{ki})^{1/2}}
\]

(5)

Calculate the intersection angle \(R = 0.9764\), the angle similarity \(S = 0.9071\), use Pareto's rule and set the correlation degree threshold value \(\delta = 0.8\). According to the experience of cutting device design experts, satisfy \(R \geq \delta\) and \(S \geq \delta\), and satisfy the independence. The axiom of the cutter device is feasible.
Therefore, according to the hierarchical map structure of the cutter device case decomposition illustrated in Figure 3, and the mapped physical case sub-case database model, the corresponding cutter machine case is established. A case library of crushing device design is illustrated in Figure 4.

Table 1. Scoring matrix between functional requirement FR and design parameter DP.

Criterion DP	FR1	FR2	FR3
DP1	1/3	1/7	1/9
DP2	3	1	1/5
DP3	7	5	1

Criterion FR	FR1	FR2	FR3
R1	1/8	1/3	1/4
FR2	3/5	7	1
FR3	2	1/5	8

Figure 3. Cutter device case decomposition hierarchical mapping structure.

Figure 4. Cutter device case library structure.

3.2. Case-based reasoning

Table 2 shows the attribute parameters of the roller module, moving knife module, fixed knife module, and target scheme in the sub-case library of the cutter device of the silage feeder. First, use the Formula (1) to normalize the attribute values of each case [20], and then use them. Equation (6) finds the similarity between the parameter value of the case sub-module and the corresponding parameter value of the target solution (see Table 3), and then uses Equation (7) to find the similarity of the m-level cases (see Table 3). Finally, use Equation (8) to find the similarity between the cutter device sub-module case and the corresponding device of the target solution as $S = (0.623, 0.535, 0.721)$. From this, it can be obtained that the cutter device of XDNZ2008 is most consistent with the new product solution design. The designer can then modify and improve the product design based on the actual needs of the product and the relevant knowledge base.

$$
\begin{align*}
\alpha_{EPI} &= \frac{\alpha_{TVI}'}{\alpha_{EPI}'} \quad \alpha_{TVI} \leq \alpha_{EPI} \\
\bar{\alpha}_{EPI} &= \frac{\alpha_{EPI}'}{\alpha_{TVI}'} \quad \alpha_{EPI} \leq \alpha_{TVI}
\end{align*}
$$

(6)
Where α_{EPI} is the case parameter value and α_{TVI} is the target solution parameter value.

$$s_j(\beta_{TVI}, \beta_{EPI}) = \frac{\min \min \sum_{i=1}^{\min} [1 - \alpha_{EPI} + \beta_{max} \max_{i=1}^{\max} 1 - \alpha_{EPI}]}{1 - \alpha_{EPI} + \beta_{max} \max_{i=1}^{\max} 1 - \alpha_{EPI}}$$ \hspace{1cm} (7)

Among them α_{TVI} is the attribute value of the jth sub-case library of the case, α_{EPI} is the parameter value of the target solution, β is the resolution coefficient, and is generally taken as 0.5.

Table 2. Cutter device case parameter values and target scheme parameter values.

Weights	Sub-module	Weights	Main design parameters	Cases	Target plan	
0.189	Drum module	0.2	Diameter	JAGUAR900	John Deere8500	XDNZ2008
				Parameter value	Parameter value	Parameter value
				Similarity	Similarity	Similarity
		0.3	Width	630	660	600
				0.966	0.881	0.933
		0.5	Rotating speed	750	800	780
				0.871	0.783	0.814
				1200	1150	1200
				0.730	0.775	0.730
				1000		
0.537	Moving knife module	0.3	Number of moving knives	24	40	20
				0.730	0.474	1
		0.4	Moving blade angle	25	20	25
				1	0.692	1
				1	0.700	25
0.390	Fixed knife module	0.5	Fixed knife configuration height	10	80	80
				0.333	0.333	0.692
		0.3	Fixed knife cutting gap	0.6	0.8	0.4
				0.759	0.783	0.512
				1	0.7	0.7

$$S_j = \sum_{k=1}^{r} \omega_{ij}^m * s_j$$ \hspace{1cm} (8)

ω_{ij}^m is the corresponding weight, which is determined by professional design and process designers.

Table 3. Cutter device sub module similarity.

Sub module	JAGUAR900	John Deere8500	XDNZ2008
Drum module	0.820	0.799	0.796
Moving knife module	0.619	0.419	0.700
Fixed knife module	0.347	0.407	0.500

Figure 5. System structure.

4. **Realization of intelligent design system of cutter device**

Figure 5 shows the system architecture of the intelligent design system of the cutter device, including the interface layer, the function layer and the tool layer. The tool layer consists of SolidWorks, Visual
Studio, SQL Server, and a Web server, and they provide development tools and data support for system building.

The functional layer includes the detailed parameter design module of the cutter device, the drive parameter design module, the engineering drawing generation module and the knowledge management module. The interface layer is the spot where the user interacts with the system. The system obtains the design parameter requirements which is entered by the user in the user interface, recommends the historical case with the highest similarity through the case reasoning module, and guides the scheme modification through the internal logic and operational rules set of the system. In order to obtain the target solution, so the user can input customized and diversified design personnel in the user interface to obtain the corresponding product design solution.

The customized design requirements are entered in the intelligent design system of the silage harvester, and the three-dimensional model was designed through the system, and then automatically converted into processing drawings, and finally processed by the agricultural machinery manufacturer. The trial production is illustrated in Figure 6. The similarity with the design requirements is 0.721, which can satisfy the corresponding design requirements, functional requirements and installation requirements.

![Figure 6. Cutter device prototype.](image)

5. Conclusions

This paper used axiomatic design theory to decompose the instance information, construct a cutter device-mapping model and design an instance library can realize the expression of complex product design, reduce the strong coupling relationship between sub-modules, and thereby improve the performance of case reasoning.

Matching and evaluation of the basic design parameters of the cutter device were achieved through a precise search method. This method can make the results of the case reasoning more accurate.

An intelligent design system for silage harvesters was developed and verified. A prototype of a cutter device was designed and manufactured. The system matching similarity was 0.721, and it could meet the customer's functional and design requirements.

Acknowledgements

This work was supported by the National Key Research and Development Plan of China (Project No. 2017YFD0700101 & 2017YFD0700205) and Project of Jiangsu Synergistic Innovation Center of Modern Agricultural Equipment and Technology (Project No. 4091600023).

References

[1] Geng Hong 1986 Discussion on Several Parameters of Cutter of Silage harvester Cereals and Oils Processing and Food Machinery 05 11-15
[2] Yang Jianwei 1979 Green silages harvesting machinery Cereals and Oils Processing and Food Machinery Z1 128-136
[3] Wang Tichun, Zhong Shisheng and Wang Wei 2008 Research on Knowledge Reuse Technology of Multi-level Cases Based on Axiomatic Design Computer Integrated Manufacturing System 14 833-841
[4] Yang Jie and Chen Xuezhao 2013 Key Technologies of Product Design Knowledge Reuse in the Axiomatic Design Framework *Computer Application* **33** 1294-1297+1312
[5] Jin Xiaoping, Song Zhenghe and Mao Enrong 2007 Human-computer interface design system based on case-based reasoning *Tractor and Agricultural Vehicle* **05** 66-69
[6] Zhao Xiuyan, Song Zhenghe, Zhang Kaixing and Liu Xianxi 2017 A Case-Based Reasoning Method for Agricultural Machinery Professional Chassis Based on Multi-Attribute Decision Making *Transactions of the Chinese Society of Agricultural Machinery* **48** 370-377
[7] Wang Pengjia, Li Linxi, Wang Hongjun and Liu Yongxian 2019 Case retrieval and evaluation system of machine tool products based on case-based reasoning *Modular Machine Tool & Automatic Manufacturing Technology* **06** 157-160
[8] Liu Hongxin, Zhou Xingyu, Jia Ru and Fu Lulu 2019 CBR-based design and reuse technology of soybean seed metering device *Transactions of the Chinese Society of Agricultural Machinery* **50** 39-50
[9] Mustafa F Abdelwahed, Amr E Mohamed and Mohamed Aly Saleh 2019 Solving the motion planning problem using learning experience through case-based reasoning and machine learning algorithms *Ain Shams Engineering Journal*
[10] Li Song, Li Yan, Li Wenqiang and Chen Chen 2019 An extended case-based reasoning method and corresponding product design process *Proceedings of the Institution of Mechanical Engineers* **233** 19-20
[11] Tian Yu and Chen Xingyu 2011 Development of axiomatic hydraulic parameterization system *Mechanical Design & Manufacturing* **04** 117-119
[12] Song Zhenghe, Bi Shuqin, Jin Xiaoping, Zhu Zhongxiang and Mao Enrong 2013 Rapid design inference method for drive system of crawler harvesting machinery *Transactions of the Chinese Society of Agricultural Machinery* **44(S2)** 268-272
[13] Suh N P 2011 Axiomatic design: advances and applications New York: Oxford university press
[14] Melvin J W and Suh N P 2002 Simulation within the axiomatic design framework *CIRP Annals - Manufacturing Technology* **51** 107-110
[15] Xiao Renbin, Cai Chilan and Liu Yong 2008 Research Status and Problems of Axiomatic Design *Journal of Mechanical Engineering* **44** 1-11
[16] China Academy of Agricultural Mechanization Science 2007 Design manual for agricultural harvesting machinery Beijing: China Agricultural Science and Technology Press
[17] Xue Fei 2017 Design and simulation of key components of self-propelled green silage harvester *Hebei Normal University of Science and Technology*
[18] Ren Dongmei 2017 Research and design of key technology of a full-gear green harvester *Shandong University*
[19] Zheng Chengde 2003 Basic Theory and Application Model of Axiomatic Design[J]. *Journal of Management Engineering* **02** 81-85
[20] He Xiao, Liu Jingning and Li Shuxia 2004 Application of Case-Based Reasoning Based on Grey Relation Theory in Intelligent Fault Diagnosis System *China Mechanical Engineering* **22** 48-52