PrEPping for a healthier future – a concise update of current pharmacological HIV-prophylaxis practices

SF Steyn, DW Wolmarans, L Brand

Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, South Africa

Corresponding author, email: dewet.wolmarans@nwu.ac.za

Introduction

Pre-exposure prophylaxis (PrEP) refers to the use of antiretroviral drugs to prevent one from acquiring human immunodeficiency virus (HIV) infection when engaging in high-risk sexual behaviour. Adequate PrEP initiation is key in the clinical outcome and survival of not only vulnerable and high-risk populations, but also to ensure that a society which is free of HIV, is built. By the end of June 2019, 24.5 million people worldwide were accessing antiretroviral (ARV) therapy, with almost two million newly infected patients reported the year before.1,2 Still, approximately eight million are people naïve to the fact that they are living with HIV.1,2 Although meta-analyses have demonstrated a significant reduction in new HIV infections as a result of proper medication adherence,5-6 resistance towards antiretroviral (ARV) drugs remains a relevant health consideration. This is of note since an optimal functioning immune system is critical during times of a pandemic, such as the current global COVID-19 crisis. Due to the rapid nature of this review, a detailed overview of the complete pharmacological profile of and viral resistance mechanisms towards ARVs falls beyond the current scope. Rather, we will focus on current treatment guidelines, most frequently reported side-effects and novel alternatives of PrEP, and whether viral resistance towards ARVs is significantly affected by PrEP in populations with yet undiagnosed HIV.

Current PrEP guidelines

Importantly, individuals initiated on PrEP should be HIV-negative, willing and able to adhere to the treatment regimen, undergo quarterly HIV testing and should not portray symptoms of acute HIV infection.6 Proper PrEP use has been shown to reduce the risk for acquiring HIV infection by between 70–92% across all populations (including pregnant and lactating women, as well as those who become pregnant whilst on PrEP) with a side-effect profile comparable to that of placebo.5,7,2 To quote Dr Anthony Fauci of the US National Institute of Allergy and Infectious Diseases (NIAID): “The argument is over about PrEP. If you take the drug, it works.”9 Conversely, improper use offers no significant protective effects.4

Current South African and international guidelines recommend a fixed-dose combination of 300 mg tenofovir (TDF) and 200 mg emtricitabine (FTC) daily, adenosine and cytosine analogue nucleoside reverse transcriptase inhibitors (NRTI), respectively. This should preferably be offered as an additional prevention method.10 However, unintended high-risk incidents, e.g. needle prick incidents aside, the ultimate goal of PrEP is to prevent the acquisition of HIV under high-risk circumstances. Hence, it should be considered that PrEP users may practise unprotected sex.9 In general uninterrupted treatment periods of at least seven days (before anal intercourse) and 20 days (before vaginal intercourse) are recommended to reach adequate protective tissue levels.6 This is based on the fact that TDF/FTC demonstrate significantly different pharmacokinetic profiles in colorectal vs vaginal tissue.10,11 Indeed, TDF/FTC penetrates colorectal tissue between 10–100 times more effectively and reaches peak concentrations quicker, compared to its uptake in vaginal and cervical tissue.10 However, recent World Health Organization (WHO) dosing regimens for men who have anal sex with men (MSM), suggest a loading dose of 600 mg TDF and 400 mg FTC 24 to two hours before sex, which should be followed by a single daily dose every 24 hours thereafter for two days.12 Further, if individuals continue to engage in high-risk sexual practices after this time, dosing should continue every 24 hours until at least two doses, i.e. for 48 hours, following the last high-risk episodes have been taken; on average, this approach results in an 86% reduction in the risk for HIV infection.5

The most clinically concerning side-effects associated with TDF/FTC PrEP include the TDF-induced nephrotoxicity and reduced bone mineral density. Although these effects will likely only transpire in susceptible individuals following chronic uninterrupted use, two recent meta-analyses found no evidence to support severe TDF-induced renal or bone damage.13,14 Interestingly, a recent in vitro study described the interaction between probenecid and TDF as well as the potential of such a combination to further reduce the risk of nephrotoxicity.15 The efficacy of TDF in HIV is partly based on the accumulation of TDF in peripheral blood mononuclear cells (lymphocytes) and the consequent prolonged exposure thereof.16 Essentially, the risk for nephrotoxicity is also increased via this prolonged exposure mechanism in kidney cells. Concurrent probenecid administration would therefore reduce the daily required TDF dose without decreasing plasma concentrations and potentially decrease the overall nephrotoxicity risk.15 Importantly, although...
these findings hold promise, further validation and investigation is required. FTC is known to induce hyperpigmentation of the palms and soles with long-term use.17 Still, the prevalence of this adverse effect is relatively low18 and transient.19 Nevertheless, this should be communicated, especially to non-Caucasian patients, who appear to have an increased risk.19,20 Importantly, although comorbid hepatitis B (HBV) infection is not an absolute contraindication for PrEP initiation,6 liver function should as far as possible be monitored as abrupt treatment cessation could result in hepatitis flare-ups.18 Specialist referral should be encouraged in HBV-positive patients. Taken together, current data support the widespread use of PrEP since the benefits far outweigh the risk of potential unwanted effects.

Finally, although oral preparations are easy to use, studies have indicated that certain populations would prefer alternative dosage forms, such as long-acting injectable formulations.21 To this extent, bimonthly injectable cabotegravir, an investigational integrase inhibitor is currently being tested in Phase III clinical trials for the prevention and treatment of HIV in combination with rilpivirine (a second generation non-nucleoside reverse transcriptase inhibitor [NNRTI]).22 Other possible alternatives include the sustained release dapivirine, an NNRTI which is administered in the form of a monthly administered vaginal ring.23

PrEP and ARV resistance

Regardless of PrEP regimen, antimicrobial misuse is generally associated with increased organism resistance towards treatment and consequently, poor clinical outcome. However, considering that PrEP is intended for the HIV-negative cohort, the likelihood of ARV resistance will only be of concern in those with a positive, but undiagnosed viral load.24 The outcomes of PrEP use in this population will ultimately also speak to whether such prophylaxis was ‘successful’ or not. As alluded to earlier, current PrEP guidelines are NRTI-based, with novel alternatives under investigation also including NNRTI-based regimens. Importantly, protease inhibitors (PI), such as lopinavir and ritonavir (LPV/r) are not currently considered as part of PrEP regimens, largely due to the robust efficacy of PIs against HIV and their attractive safety profile;25,26 as such, PIs are reserved for HIV treatment. Nevertheless, chances that current NRTI-based regimens will induce viral resistance in patients with a positive viral load of HIV strains that are not already resistant to TDF and or FTC, are slim. Briefly, HIV develops resistance to ARVs via various drug-specific mutations that ultimately decrease the general drug penetration and accumulation within the virus. Although viral mutation-induced resistance towards both TDF and FTC have been reported,27 various studies have concluded that the benefits of properly adhered to PrEP, outweigh the possible increase in HIV drug resistance prevalence.3,28-30 Still, acquiring ARV-resistant HIV, despite proper PrEP adherence, remains a possibility.28 Against the background of current PrEP guidelines, adherence entails more than mere daily drug use. It also includes proper social support of users and a commitment on their behalf to perform quarterly HIV testing.6,28 Further, users should be cognisant of the fact that PrEP is also intended for use in addition to other healthy habits, including but not limited to condom use, sexually transmitted disease management, regular HIV screening and proper counselling.6

Conclusion

The use of PrEP is associated with a significant reduction in the risk of acquiring HIV across all populations. Proper use of PrEP regimens is effective in preventing HIV infection and is associated with a low risk for viral resistance in the HIV-infected, but undiagnosed population. Further, the side-effect profile associated with current PrEP regimens is also attractive, with renal and bone density monitoring only being considered in high-risk individuals with underlying conditions. Overall, patient adherence to PrEP treatment appears to be the one factor that will have the most robust influence on prophylaxis efficacy, highlighting the need for adequate counselling of users prior to its initiation.

References

1. United Nations Programme on AIDS. Global HIV & AIDS statistics - 2019 fact sheet. 2019. [cited 2020 08 Apr]. Available from: https://www.unaids.org/en/resources/factsheets.
2. World Health Organization. WHO fact sheet: HIV/AIDS. 2020. [cited 2020 08 Apr]. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids.
3. Huang X, Hou K, Song A, et al. Efficacy and safety of oral TDF-based pre-exposure prophylaxis for men who have sex with men: a systematic review and meta-analysis. Frontiers in Pharmacology. 2018;9:799. https://doi.org/10.3389/fphar.2018.00799.
4. Forner V, Dalgish S, Kennedy C, et al. Effectiveness and safety of oral HIV preexposure prophylaxis for all populations. AIDS. 2016;30(12):1973-83. https://doi.org/10.1097/QAD.0000000000001145.
5. World Health Organization. WHO PrEP guidance. 2019. [cited 2020 08 Apr]. Available from: https://www.who.int/srh-Search-2019/adolescent-health/pdf/WHO-PrEP-guidance-2019.pdf.
6. Department of Health. Standard treatment guidelines: Essential medicine list for South Africa - Pre-exposure prophylaxis. National Department of Health. South Africa; 2020.
7. Grant RM, Lama JR, Anderson PL, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. New England Journal of Medicine. 2010;363(27):2587-99. https://doi.org/10.1056/NEJMoa1011205.
8. Aidsmap. Evidence for PrEP efficacy grows, but implementation presents challenges. 2015. [cited 2020 08 Apr]. Available from: http://www.aidsmap.com/news/dec-2015/evidence-prep-efficacy-grows-implementation-presents-challenges.
9. Murname PM, Celum C, Mugo N, et al. Efficacy of preexposure prophylaxis for HIV-1 prevention among high risk heterosexuals: subgroup analyses from the Partners PrEP Study. AIDS. 2013;27(13):2155-60. https://doi.org/10.1097/QAD.0b013e3283629037.
10. Patterson KB, Prince HA, Kraft E, et al. Penetration of tenofovir and emtricitabine in mucosal tissues: implications for prevention of HIV-1 transmission. Science Translational Medicine. 2011;3(12):112re4. https://doi.org/10.1126/scitranslmed.3031714.
11. Louissaint NA, Cao YJ, Skipper PL, et al. Single dose pharmacokinetics of oral tenofovir in plasma, peripheral blood mononuclear cells, colonic tissue, and vaginal tissue. AIDS Research and Human Retroviruses. 2013;29(11):1443-50. https://doi.org/10.1089/aid.2013.0044.
12. Glidden DV, Anderson PL, Grant RM. Pharmacology supports on-demand PrEP. The Lancet HIV. 2016;3(9):e405-e406. https://doi.org/10.1016/ S2352-3018(16)30114-X.
13. Pilkington V, Hill A, Hughes S, Nwokolo N, Pozniak A. How safe is TDF/FTC as PrEP? A systematic review and meta-analysis of the risk of adverse events in 13 randomised trials of PrEP Journal of Virus Eradication. 2018;4(4):215-224.
14. Baranek B, Wang S, Cheung AM, Mishra S, Tan DHS. The effect of tenofovir disoproxil fumarate on bone mineral density: a systematic review and meta-analysis. Antiviral Therapy. 2020. Epub ahead of print. https://doi.org/10.3851/IMP3346.
15. Liu SN, Desta Z, Gufford BT, Probenecid-boosted tenofovir: a physiologically-based pharmacokinetic model-informed strategy for on-demand HIV preexposure prophylaxis. Cpt: Pharmacometrics & Systems Pharmacology. 2019;9(1):40-47. https://doi.org/10.1002/psp4.12481.

16. Seifert SM, Chen X, Meditz AL, et al. Intracellular tenofovir and emtricitabine anabolites in genital, rectal, and blood compartments from first dose to steady state. AIDS Research and Human Retroviruses. 2016;32(10-11):981-991. https://doi.org/10.1089/aid.2016.0008.

17. Saravolatz LD, Saag MS. Emtricitabine, a new antiretroviral agent with activity against HIV and hepatitis B virus. Clinical Infectious Diseases. 2006;42(1):126-131. https://doi.org/10.1086/498348.

18. Tetteh RA, Yankey BA, Narrey ET, et al. Pre-exposure prophylaxis for HIV prevention: safety concerns. Drug Safety. 2017;40(4):273-283. https://doi.org/10.1007/s40264-017-0505-6.

19. Mondou E, Hinkle J, Shaw A, et al. Incidence of skin discoloration across phase 3 clinical trials of emtricitabine (FTC) in adults. International AIDS conference; 11–16 July 2004. Bangkok, Thailand.

20. Nahhas AF, Braunberger TL, Hamzavi IH. An update on drug-induced pigmentation. American Journal of Clinical Dermatology. 2019;20(1):75-96. https://doi.org/10.1007/s40257-018-0393-2.

21. Meyers K, Wu Y, Qian H, et al. Interest in long-acting injectable PEP in a cohort of men who have sex with men in China. AIDS and Behavior. 2017;22(4):1217-1227. https://doi.org/10.1007/s10461-017-1845-z.

22. AIDSinfo. Cabotegravir. 2019. [cited 08 Apr 2020]. Available from: https://aidsinfo.nih.gov/drugs/513/cabotegravir/0/patient.

23. Das Neves J, Martins JP, Sarmento B. Will dapivirine redeem the promises of anti-HIV microbicides? Overview of product design and clinical testing. Advanced Drug Delivery Reviews. 2016;103:20-32. https://doi.org/10.1016/j.addr.2015.12.015.

24. Powell VE, Gibas KM, DuBow J, Krakower DS. Update on HIV preexposure prophylaxis: effectiveness, drug resistance, and risk compensation. Current Infectious Disease Reports. 2019;21(8):28. https://doi.org/10.1007/s11908-019-0685-6.

25. Kanters S, Socias ME, Paton NI, et al. Comparative efficacy and safety of second-line antiretroviral therapy for treatment of HIV/AIDS: a systematic review and network meta-analysis. The Lancet HIV. 2017;4(10):e433-e441. https://doi.org/10.1016/S2352-3021(17)30109-1.

26. Huang Y, Huang X, Luo Y, et al. Assessing the efficacy of lopinavir/ritonavir-based preferred and alternative second-line regimens in HIV-infected patients: a meta-analysis of key evidence to support WHO recommendations. Frontiers in Pharmacology. 2018;9:890. https://doi.org/10.3389/fphar.2018.00890.

27. Gibas KM, Van den Berg P, Powell VE, Krakower DS. Drug resistance during HIV pre-exposure prophylaxis. Drugs. 2019;79(6):609-619. https://doi.org/10.1007/s40265-019-01108-x.

28. Cohen SE, Sachdev D, Lee SA, et al. Acquisition of tenofovir-susceptible, emtricitabine-resistant HIV despite high adherence to daily pre-exposure prophylaxis: a case report. The Lancet HIV. 2019;6(1):e43-e50. https://doi.org/10.1016/S2352-3018(18)30288-1.