Landau Theory of the Phase Transitions in Half Doped Manganites: Interplay of Magnetic, Charge and Structural Orders

Fan Zhong1,2, and Z. D. Wang1

1Department of Physics, University of Hong Kong, Hong Kong, People’s Republic of China
2Department of Physics, Zhongshan University, Guangzhou 510275, People’s Republic of China

(March 24, 2022)

The order parameters of the magnetic, charge and structural orders at half-doped manganites are identified. A corresponding Landau theory of the phase transitions is formulated. Many structural and thermodynamical behaviors are accounted for and clarified within the framework. In particular, the theory provides a unified picture for the scenario of the phase transitions and their nature with respect to the variation of the tolerance factor of the manganites. It also accounts for the origin of the incommensurate nature of the orbital order and its subsequently accompanying antiferromagnetic order.

PACS number(s): 71.10.-w, 75.10.-b, 75.30.Kz, 75.80.+q

The discovery of “colossal” magnetoresistance has stimulated a renaissance of interest in doped rare-earth manganites. Intensive investigation has revealed a diversity of novel phenomena due to the complex interplay among magnetic, charge, orbital and structural orders. A particular relevant issue is the competition between magnetic and charge orders in half doped manganites. It poses a great challenge to theorists upon how to deal with the strong correlation in models with magnetic, orbital and lattice degrees of freedom. Here we formulate a Landau theory of phase transitions based on the symmetry of the system in an attempt to understand a variety of sometime controversial structural and thermodynamical behaviors. Although it may be argued to be only a mean field theory which is incorrect at critical points, the structural information, among others it affords is robust. And it is the order parameters that exhibit singularity at the critical points.

The most prominent charge ordered (CO) behavior in perovskite manganites concerns with those doped at 0.5. These systems exhibit several classes depending on the tolerance factor of the resultant structure (see Fig. 1). For La0.5Sr0.5MnO3 with small distortions, which we classify as Class I hereafter though no charge order appears (neither does Class II below), a paramagnetic (PM) to ferromagnetic (FM) transition occurs at $T_C \sim 360$K. When La is replaced by a smaller ion Nd, T_C decreases with the tolerance factor. At 40 percent of Nd or so, an intermediate distorted class II appears which changes directly into a FM state, indicating the competition between the CO and A-type AFM states. For La1-xCaxSr0.5MnO3 with small distortions, the CO tendency in Class IV even extends to lower doping, although with a pseudo-CE-type structure due to the excess electrons.

The order parameters of the magnetic, charge and structural orders at half-doped manganites are identified. A corresponding Landau theory of the phase transitions is formulated. Many structural and thermodynamical behaviors are accounted for and clarified within the framework. In particular, the theory provides a unified picture for the scenario of the phase transitions and their nature with respect to the variation of the tolerance factor of the manganites. It also accounts for the origin of the incommensurate nature of the orbital order and its subsequently accompanying antiferromagnetic order.

PACS number(s): 71.10.-w, 75.10.-b, 75.30.Kz, 75.80.+q

The discovery of “colossal” magnetoresistance has stimulated a renaissance of interest in doped rare–earth manganites. Intensive investigation has revealed a diversity of novel phenomena due to the complex interplay among magnetic, charge, orbital and structural orders. A particular relevant issue is the competition between magnetic and charge orders in half doped manganites. It poses a great challenge to theorists upon how to deal with the strong correlation in models with magnetic, orbital and lattice degrees of freedom. Here we formulate a Landau theory of phase transitions based on the symmetry of the system in an attempt to understand a variety of sometime controversial structural and thermodynamical behaviors. Although it may be argued to be only a mean field theory which is incorrect at critical points, the structural information, among others it affords is robust. And it is the order parameters that exhibit singularity at the critical points.

The most prominent charge ordered (CO) behavior in perovskite manganites concerns with those doped at 0.5. These systems exhibit several classes depending on the tolerance factor of the resultant structure (see Fig. 1). For La0.5Sr0.5MnO3 with small distortions, which we classify as Class I hereafter though no charge order appears (neither does Class II below), a paramagnetic (PM) to ferromagnetic (FM) transition occurs at $T_C \sim 360$K. When La is replaced by a smaller ion Nd, T_C decreases with the tolerance factor. At 40 percent of Nd or so, an intermediate distorted class II shows up in which the FM phase transforms at a lower temperature T_{CO} to a metallic A-type antiferromagnetic (AFM) state. As more La is replaced by Nd, a new class III sets in which displays a CO CE-type AFM state below T_{CO}. Similar behavior has been reported in La0.5Ca0.5MnO3 and Pr0.5Sr0.5MnO3. Pr0.5Sr0.5MnO3 is somehow special. It was initially reported to be CO but later only A-type AFM order was found. However, Comparing the transport behavior of Pr0.5Sr0.5MnO3 with (La1-xNd1-z)0.5Sr0.5MnO3 of $0 < z \leq 0.4$, one finds similar behavior. Only the latter’s resistivity levels off to a presumed metallic state slightly slowly after a jump at T_{CO} or T_{AFM}. So the boundary between the CO and A-type AFM states seems to be not so clear-cut: there may be a transition from the CO state to the A-type AFM state. For the most distorted class IV such as Pr0.5Ca0.5MnO3 and Nd0.5Ca0.5MnO3, no FM order appears. The PM phase changes directly into a CO state below T_{CO} and then global AFM ordering shows up at a lower temperature (~ 150K). The CO tendency in Class IV even extends to lower doping, although with a pseudo-CE-type structure due to the excess electrons.

The PM to FM transition is continuous. All the other transitions shown in Fig. 1 are of first order with hysteresis. The most striking feature of the CO state is that it can be melt by an external magnetic field, pressure or electric field or even by x-ray or light irradiation, into a FM state, indicating the competition between them. The required magnetic field to melt the CO state in Class IV is almost twice as large as that in Class III. In this paper, we shall concentrate on the peculiar phenomena associated with CO. The lattice structure of interest is orthorhombic with a space group (March 24, 2022).
Continuous phase transition at $T = T_M$ paper. For simplicity, we leave it towards the end of the paper. However, such spots associate more with lattice features than with the charge and structural/orbital pattern. In particular, besides the magnetic, charge and structural/orbital pattern, primary characteristics are a simple picture that unifies the three classes characterized by a wave vector q_0 for Mn ions at positions 1,2 and 3,4, respectively. In La$_{0.5}$Ca$_{0.5}$MnO$_3$, the FM to AFM transition is described by an order parameter Q, which is characterized by a two-dimensional order parameter ξ_1 and ξ_2 for Mn ions at positions 1,2 and 3,4, respectively. In Class IV, the CE-type AFM order and the melting of CO state. As pointed out in our previous work, ξ_1 and ξ_2 are constants. Therefore, the free energy of the CO transition is given by

$$F_C = \frac{1}{2}a_2C^2 + \frac{1}{4}b_2C^4,$$

where $a_2 = a_{20}(T - T_2)$, and a_{20} and b_2 are constants. Below T_2 charge order appears, and the symmetry of the structure is lowered to $P2_1/m$.

On the other hand, the structural modulation at $k = (\frac{1}{4}00)$ is described by one of the two IR’s of the wave vector, namely, X_1 and X_2, which are both two dimensional. Accordingly, the structural transition is characterized by a two-dimensional order parameter (η_1, η_2). The physical meaning of the order parameter may be the displacement of the Mn$^{4+}$O$_6$ octahedra as modeled by Radaelli and coworkers to account for the distortion patterns. It can be shown that η_2 may represent an arbitrary linear combination of the x and z components and η_1 the y component of such displacements. Such a displacement pattern is consistent respectively with an orbital configuration of $d_{3z^2-r^2}$ and d_{xy-y^2}, which, when propagate half a period to X, switch to d_{xz-z^2} and d_{yz-z^2}, respectively. It may be possible to choose alternatively an orbital basis such as d_{xy-z^2} and $d_{y^2-x^2}$ and then represent the order parameter as the long-range order of a certain orbital which assumes a certain angle in the orbital space. We just note in passing that a certain displacement pattern corresponds to some orbital order.

Notice that the frequently observed $P2_1/m$ symmetry can only arise from the IR X_1. Therefore, the free energy for this structural transition is

$$F_0 = \frac{1}{2}a_3(\eta_1^2 + \eta_2^2) + \frac{1}{4}b_3(\eta_1^4 + \eta_2^4) + \frac{1}{4}d(\eta_1^2 + \eta_2^2)^2 + \kappa \left(m_1 \frac{\partial \eta_2}{\partial x} - m_2 \frac{\partial \eta_1}{\partial x} \right) + \frac{\sigma}{2} \left((\nabla \eta_1)^2 + (\nabla \eta_2)^2 \right),$$

where again $a_3 = a_{30}(T - T_3)$, and a_{30}, b_3, d, κ and σ are constants.

A peculiar feature of Eq. (2) is the appearance of the Lifshitz invariant, which frequently leads to IC modulations. Many characteristic features of an IC transition has been observed in the CO and structural transition in manganites. Therefore, the IC nature of the structural/orbital (but not charge) order has its origin in the Lifshitz invariant of the X point. Nevertheless, we shall neglect this IC feature of the structural modulation below for simplicity and focus on its interplay with the charge and magnetic orders. This is partly justified by the fact that commensurate structure is also frequently observed in the same experiments that display the reverse. In this case, Eq. (2) then exhibits
two possible phases below T_3. One has only one nonzero component equal to $\pm \sqrt{-a_3/(b_3 + d)}$ and so its symmetry is $P2_1/n$ if $b_3 + d > 0$ and $b_3 < 0$. The other satisfies $\eta_1 = \pm \eta_2 = \pm \sqrt{-a_3/(b_3 + 2d)}$ and belongs to Pm symmetry when $b_3 + 2d > 0$ and $b_3 > 0$.

Coupling of the charge to the structural degrees of freedom can be readily found by noting that $\eta_2^2 - \eta_3^2$ transforms as the same IR as C, and so the simplest coupling between them is

$$F_{C\eta} = g_{C\eta} C(\eta_1^2 - \eta_2^2),$$ \hspace{1cm} (4)

where $g_{C\eta}$ is a measure of the coupling. Assume $g_{C\eta}$ and C are positive without loss of generality. It is transparent then that the coupling will favor the ordering of η_2 once the charge is ordered, since the transition point for η_2 is now elevated to $a_3 - 2g_{C\eta} C$, while that for η_1 lowered to $a_3 + 2g_{C\eta} C$. This explains the reason for the often observed $P2_1/m$ symmetry. Possibility for ordering of both η_1 and η_2 still exists, which may account for the absence of the 2_1 screw axis in $Sm_{0.5}Ca_{0.5}MnO_3$, which should then be of Pm symmetry, though it was preferred to be $P2nm$ or $Pnmm$. This scenario is confirmed from the phase diagram illustrated in the inset of Fig. 2. It is seen that as b_3 increases, the boundary of the Pm phase moves to the right, reducing the region of the $P2_1/m$ phase. If $b_3 < 0$, only the Pm phase exists, while for $d < 0$, the Pm phase extends far to the right. Note that a large b_3 or small d means a large “lock-in” term [the b_3 term in Eq. 3] that tends to suppress the incommensurability.

This seems to be consistent with the observation that more distorted systems such as Sm and Gd tend to be more stoichiometric and so commensurate. We remark that the transition from $P2_1/m$ to Pm phase may accompany or be hidden by the IC to commensurate transition and PM to CE-type AFM transition.

Since M changes sign by time reversal, the only possible couplings of the magnetic to the charge and structural transition are bi-quadratic, i.e.,

$$F_{MC\eta} = \frac{1}{2}g_{M\eta} M^2(\eta_1^2 + \eta_2^2) + \frac{1}{2}g_{MC\eta} C^2 M^2,$$ \hspace{1cm} (5)

where both coupling coefficients are positive due to the competing orders.

Equations (3) constitute our theory of the magnetic and charge and structural or orbital transitions. Instead of going into detailed estimations of the various coefficients in the model, we are content here with global features that are believed to be relevant to the parameter regime of real materials. To this end, we study of a simplified version of the theory, in which we have taken $\eta_1 = 0$, i.e., disregarded the possibility of the Pm symmetry, relabeled $b_3 + d$ as b_3, and neglected the bi-quadratic coupling between the charge and magnetism, since their coupling to the structural order results in a lower-order CM^2-type coupling. This implies that long-range charge order always accompanies with structural order.

Figure 2 displays a generic phase diagram for several sets of the parameters in arbitrary units. It shows the strong coupling case $g_{M\eta}^2 > b_1 b_3$ between magnetism and lattice so that no mix magnetic and charge orders appears. It can be seen that as $g_{C\eta}$ increases, the sequence of phase transitions changes from a PM \rightarrow FM to a PM \rightarrow FM \rightarrow CO then to a PM \rightarrow CO phase directly as T is lowered. The real situations as in Fig. 2 are of course not simply only a variation of $g_{C\eta}$, but Fig. 2 exhibits in a simple way the relevance of the theory. Figure 3 shows the variation of the order parameters for three different $g_{C\eta}$. It is seen that the transition to CO phase is dis-
continuous. The variations of C and η are similar, but their coupling is not necessarily linear. Note that the CO and the structural transitions are so strongly coupled that they take place at a single transition temperature. Although the CO can still appear preceding the structural order when $q_{CO} < 1$, the reverse is not true, namely, $\eta = 0$ if $C = 0$. Therefore the structural or orbital order is driven by the charge order. The inset plots the corresponding free energy vs temperature, showing that the larger the q_{CO}, the lower the free energy, and so the bigger the magnetic field that lowers the upper curve [Eq. (1)] by HM to melt the CO state, being in agreement with experiments. This indicates that the magnetic field acts in melting the CO state more than the AFM state. An evidence for this is that above the CE-type AFM ordering temperature, no AFM for the field to melt. This also justifies the separate treatment of the AFM order.

Finally we discuss briefly the transition to the CE-type AFM order. Noting that in La$_{0.5}$Ca$_{0.5}$MnO$_y$ with the standard CE-type state, the magnetic moments lie in the a-c plane, we may choose the x and z components of the AFM vectors $L_1 = \mu_1 - \mu_2$ and $L_2 = \mu_3 - \mu_4$ as order parameters, since they transform as the two components of the two-dimensional IR’s τ^1 and τ^1 combining with its complex conjugate τ^3 associated respectively with the wave vectors $(00\pm\frac{1}{2})$ and $(\frac{1}{2}\pm\frac{1}{2})$ where μ_i is the magnetic moment of ion i. The two IR’s rather than one makes the transition discontinuous. Both IR’s give a magnetic symmetry of $P_\tau 2_1/m$ and a structural one of $PZ 2_1/m$ which is identical with the CO and structural transitions. The compatibility of the orbital and magnetic patterns implies an enhancement of both transitions and can be described by a coupling $(\eta_1^2 + \eta_2^2)(L_{1\alpha} L_{1\beta} + L_{2\alpha} L_{2\beta})$ with a negative coupling constant, where α and β denote x or z. As a result, ordering of one kind of the orders enhances the other, leading, for instance, to the accompanying of the AFM order with the IC to commensurate orbital order, as the AFM order promotes the contribution of the lock-in term, and to the increasing of resonant x-ray scattering intensity of charge and orbital orders as AFM ordering.

In conclusion, we have developed a Landau theory for the coupled phase transitions in half-doped manganites through the identification of the order parameters for the FM, CE-type AFM, CO and structural or orbital orders. The theory provides a unified picture for the scenario of the phase transitions and their nature with respect to the variation of the tolerance factor of the manganites via the symmetry-adapted coupling among the degrees of freedom. Many peculiar phenomena of half-doped manganites result from the interplay between the FM or A-type AFM and CO states, the CE-type AFM sets in only as a secondary factor. So an applied magnetic field primarily melts the CO state. The theory also accounts for the origin of the IC nature of the orbital order and its subsequently accompanying AFM order. As a phenomenological theory, it can make direct contact with the experimental results especially the symmetry of the involved structures that sensitively influence the transport behavior in manganites. Experimental clarifications are desirable of the symmetry of the CO state and its relation to the oxygen stoichiometry and commensurability, possible structural transition from $PZ 2_1/m$ to Pm, and the relation between A-type AFM and CO states.

This work was supported by a URC fund and a CRCG grant at the University of Hong Kong.

1. E. O. Wollan, and W. C. Koehler, Phys. Rev. 100, 545 (1955).
2. R. M. Kusters et al., Physica B 155, 141 (1989); K. Chahara et al., Appl. Phys. Lett. 63, 1990 (1993); R. von Helmolt et al., Phys. Rev. Lett. 71, 2331 (1993); S. Jin et al., Science 264, 413 (1994); F. Zhong, J. M. Dong, and Z. D. Wang, Phys. Rev. B 58, 15310 (1998).
3. H. Kawano et al., Phys. Rev. Lett. 78, 4253 (1997).
4. Y. Moritomo et al., Phys. Rev. B 55, 7549 (1997); T. Akimoto et al., Phys. Rev. B 57, R5594 (1998).
5. P. G. Radaelli et al., Phys. Rev. Lett. 75, 4488 (1995); and C. H. Chen, S. W. Cheong, ibid. 76, 4042 (1996).
6. P. G. Radaelli et al., Phys. Rev. B 55, 3015 (1997).
7. K. Knizek, et al., J. Solid State Chem. 100, 292 (1992); Y. Tomioka et al., Phys. Rev. Lett. 74, 5108 (1995).
8. Z. Jirak et al., J. Magn. Magn. Mater. 53, 153 (1985); Y. Tomioka et al., Phys. Rev. B 53, R1689 (1996); M. Tokunaga et al., Phys. Rev. B 57, 5259 (1998).
9. H. Yoshizawa et al., Phys. Rev. B 52, R13145 (1995); D. E. Cox et al., Phys. Rev. B 57, 3305 (1998).
10. H. Kuwahara et al., Science 270, 961 (1995).
11. A. Asamitsu et al., Nature (London) 388, 50 (1997).
12. V. Kiyukhin et al., Nature (London) 386, 813 (1997).
13. K. Miyano et al., Phys. Rev. Lett. 78, 4257 (1997).
14. M. Tokunaga et al., Phys. Rev. B 57, 5259 (1998).
15. G. Xiao et al., J. Appl. Phys. 81, 5324 (1997).
16. F. Zhong, and Z. D. Wang, Phys. Rev. B 60, (1999).
17. O. V. Kovaliev, Representations of the Crystallographic Space Groups, edited by H. T. Stokes and D. M. Hatch (Gordon and Breach, Yverson, 1993).
18. Y. Murakami et al., Phys. Rev. Lett. 80, 1932 (1998).
19. H. T. Stokes and D. M. Hatch, Isotropy Subgroups of the 230 Crystallographic Space Groups (World Scientific, Singapore, 1988).
20. E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 11, 255 (1941).
21. J. C. Tolédano and P. Tolédano, The Landau Theory of Phase Transitions (World Scientific, Singapore, 1987).
22. S. Mori et al., Phys. Rev. B 59, 15573 (1999).
23. A. Barnabe et al., J. Appl. Phys. 84, 5506 (1998); J. Mater. Chem. 8, 1405 (1998).
24. M. v. Zimmermann et al., cond-mat/9905282.
25. International Tables for Crystallography, Vol. A (Reidel, Boston, 1983).