At-C-RNA database, a one-stop source for information on circRNAs in Arabidopsis thaliana in a unified format

Katarzyna Nowis, Paulina Jackowiak, Marek Figlerowicz and Anna Philips

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego str. 12/14, Poznan 61-704, Poland

Citation details: Nowis, K., Jackowiak, P., Figlerowicz, M. et al. At-C-RNA database, a one-stop source for information on circRNAs in Arabidopsis thaliana in a unified format. Database (2021) Vol. 2021: article ID baab074; DOI: https://doi.org/10.1093/database/baab074

Abstract
Circular RNAs (circRNAs) are a large class of noncoding RNAs with functions that, in most cases, remain unknown. Recent genome-wide analysis of circRNAs using RNA-Seq has revealed that circRNAs are abundant and some of them conserved in plants. Furthermore, it has been shown that the expression of circRNAs in plants is regulated in a tissue-specific manner. Arabidopsis thaliana circular RNA database is a new resource designed to integrate and standardize the data available for circRNAs in a model plant A. thaliana, which is currently the best-characterized plant in terms of circRNAs. The resource integrates all applicable publicly available RNA-seq datasets. These datasets were subjected to extensive reanalysis and curation, yielding results in a unified format. Moreover, all data were normalized according to our optimized approach developed for circRNA identification in plants. As a result, the database accommodates circRNAs identified across organs and seedlings of wild-type A. thaliana and its single-gene knockout mutants for genes related to splicing. The database provides free access to unified data and search functionalities, thus enabling comparative analyses of A. thaliana circRNAs between organs, variants and studies for the first time.

Database URL: https://plantcircrna.ibch.poznan.pl/

Introduction
Circular RNAs (circRNAs) are a class of noncoding alternatively spliced transcripts. It has been shown that circRNAs are present across the eukaryotic tree of life (1). Most efforts have been put into the identification and functional studies of circRNAs in animals (2) and humans (3–7). However, reliable identification and quantitation of plant circRNAs appear to be indispensable not only for the plant science field but also for the proper understanding of the universal rules that govern the formation and functioning of these RNAs across kingdoms and the significance of circRNAs in a broad evolutionary context.

The advent of RNA-Seq has driven the rapid expansion of circRNA studies. Next-generation sequencing technology can provide a comprehensive distribution of circRNAs in the whole organism and its particular organs. This situation is reflected in an increasing number of RNA-seq-based reports on plant circRNAs. Although A. thaliana circRNAs have been characterized in multiple studies, a comparison of their results reveals clear discrepancies. The main reason for this situation is a lack of standardization in the methods applied for circRNA analyses. For example, a large fraction of these molecules was identified based on RNA-seq data generated earlier to study gene expression levels. Moreover, the isolation, sequencing and bioinformatics protocols were rarely optimized for circRNA research and differed significantly between studies. This led to the situation that the results published on circRNAs were inconsistent and impossible to comprehensively analyze. The data obtained thus far have been deposited in PlantcircBase (8), which encompasses 19 plant species, including A. thaliana, in PlantCircNet (9) and in AtCircDB (10), dedicated exclusively to circRNAs in A. thaliana. Unfortunately, circRNAs included in these databases come from different studies and were not curated, nor were their representations unified or normalized. None of these databases include the circRNAs identified in A. thaliana knockout mutants. Given the above, comprehensive comparative analyses of circRNAs in this model species have been significantly hampered. To change this situation, we reanalyzed RNA-seq raw data available in the public domain with our protocol for circRNA identification in plants (11) and developed At-C-RNA database to integrate and standardize the available circRNA data (see Figure 1).

Materials and methods
Data source
The At-C-RNA database consists of circRNAs identified by reanalyzing publicly available RNA-seq data. CircRNAs do not have polyA tail and thus can only be identified in datasets generated for rRNA-depleted libraries (and not polyA-selected). In search for relevant data, we browsed SRA NCBI with the following criteria: A. thaliana species,
transcriptomic data, ncRNA, RNA-seq method, Illumina platform, paired-end library layout and rRNA-depleted data (‘reduced representation’ or ‘inverse RNA selection’, according to NCBI guidelines). SRA NCBI search query looked as follows: ‘Arabidopsis thaliana’[Organism] AND ‘transcriptomic’[Source] AND (‘rna seq’[Strategy] OR ‘ncrna seq’[Strategy]) AND ‘platform illumina’[Properties] AND ‘library layout paired’[Properties] AND (‘reduced representation’[Selection] OR ‘inverse rna’[Selection]). Moreover, we compared the sources used by other plant circRNA databases and we chose those that met our criteria. In total, we utilized third-party data from eight studies (100 SRA files) and two datasets (110 SRA files) from our previous studies (11, 12). All analyzed datasets are presented in Table 1.

Web server implementation

The website was developed in an easy-to-use format with a responsive interface using bootstrap 4, jquery, and CSS technologies. The web framework was designed in Django (python 2.7.15). For table representation jsgrid-1.5.3, select2 was used. Charts showing data from the tables were created with the Google Charts tool and jvenn (13). Excel reports were generated using python packages xlswriter, pandas and NumPy.

Results

At-C-RNA content

Currently, in At-C-RNA, 113,327 circRNAs are deposited. Notably, only 19.7%, 18.9% and 16.2%, are reported...
and thus possibly carry no biological function (the wide range of studies. We defined that a circRNA is reproducible if it is shown in both wild-type and mutant plants. The highest number of unique reproducible circRNAs (35) was found in the leaf. On the contrary, two other organs, root and flower, revealed only two and one circRNAs typical only to this tissue, respectively. No unique circRNA was found in the seedling. Most of the genes (362) giving rise to the reproducible circRNAs produced above five circRNAs isoforms and only 11 genes produced one circRNA isoform (see Figure 2B). Most reproducible circRNAs (91.6%) score ranges from 1 to 15 what corresponds to the rather low abundance, which most circRNAs display. Fifty-five of circRNAs (8.4%) exceeded an average score over 15 (see Figure 2C). The distribution of reproducible circRNAs on the chromosomes is shown in Figure 2D. Most reproducible circRNAs originated from genes located on chromosome 1 and none from mitochondrial.

At-C-RNA database utility

Novelty

At-C-RNA is the only resource where data across different studies have been reanalyzed, standardized and unified. Moreover, At-C-RNA is the only database that provides information on circRNA reproducibility and occurrence in both wild-type and mutant *A. thaliana* plants.

Data browsing and filtering

The At-C-RNA database aggregates circRNAs in a table that allows the user to define the filtering criteria. Data sorting by each column is possible. Each column has a window where filtering criteria can be typed. There is also a possibility to manually delete selected circRNAs from the table. Moreover,
Figure 2. (A) Distribution of reproducible circRNAs across organs/seeding and the whole plant, (B) circRNAs’ isoform number of genes producing reproducible circRNAs, (C) average score ranges for reproducible circRNAs and (D) distribution of reproducible circRNAs across chromosomes.

users can also filter the table by clicking on the interactive charts below the table.

Data download
A previously filtered collection of circRNAs can be downloaded with the ‘Excel Report’ button. Moreover, users can create pivot tables and generate plots from columns of interest.

Genomic region and gene information
The database also holds information from external databases (i.e. Ensembl and NCBI). CircRNA ID redirects the user to the Ensembl genome browser where the genomic region of the circRNA of interest can be explored. Moreover, users can read extended information about genes using an external link to NCBI.

Common use cases
A frequent task is to search for circRNAs that are produced in a reproducible manner, as only such molecules may carry biological functions. At-C-RNA is the only database where data were curated, and a reproducibility measure was defined for each circRNA. A default filter on the table enables the visualization of these reproducible circRNAs. Moreover, our database enables multilevel filtering, for example, users can filter the data table showing only reproducible circRNAs from a specific gene that are confirmed in RNase R-treated samples.

Data curation
All circRNAs deposited in At-C-RNA were reidentified from raw data by our in-home protocol developed for circRNAs identification in plants. We plan to update the database and successively reanalyze and add new circRNAs data, as they appear in the public domain.

Discussion
Currently, At-C-RNA is the biggest resource of circRNAs in A. thaliana, encompassing 113,327 circRNAs. The At-C-RNA database provides not only a comprehensive and convenient source of unified information on the circRNAs in A. thaliana but also a user-friendly interface that allows the user to run analyses, the results of which are available in the form of interactive graphical reports and summaries. This platform can be used in plant circRNA research as well as in all studies that focus on the general features of circRNAs and explore the functional potential of these molecules. By unifying data and providing essential tools, At-C-RNA is a robust platform for comparative analyses of circRNAs. The resource will be curated—we plan to successively reanalyze and add new data from the public domain. We believe that At-C-RNA resources will not only contribute to studies on circRNAs biogenesis and function in plants but also will help to understand the universal rules that govern the formation and functioning of circRNAs and their significance in a broad evolutionary context.
Acknowledgements
The authors thank Michal Stelmasczuk for making photos placed in At-C-RNA and Marcin Osuch for designing the database logo.

Funding
Polish National Science Centre grant (UMO-2014/15/D/NZ2/02305) to A.P.

Conflict of interest
The authors declare that they have no competing interests.

Data availability
Freely available at https://plantcircrna.ibch.poznan.pl/. Website implemented in Django, MySQL and Apache, with responsive design and all major browsers supported.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Authors’ contributions
A.P. conceived the overall idea of the study. A.P., P.J. and M.F. designed the study and discussed the results. A.P. and K.N. performed bioinformatics analyses. K.N. built the web application. K.N., A.P. and P.J. drafted the manuscript. A.P. was responsible for the final version of the manuscript. All authors contributed to the article and approved the submitted version.

References
1. Wang, P.L., Bao, Y., Yee, M.C. et al. (2014) Circular RNA is expressed across the eukaryotic tree of life. PLoS One, 9, e90859.
2. Menczak, S., Jens, M., Elefsinioti, A. et al. (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495, 333–338.
3. Czubak, K., Taylor, K., Piasecka, A. et al. (2019) Global increase in circular RNA levels in myotonic dystrophy. Front Genet., 10, 649.
4. Liu, J., Li, D., Luo, H. et al. (2019) Circular RNAs: the star molecules in cancer. Mol. Aspects Med., 70, 141–152.
5. Qu, S., Liu, Z., Yang, X. et al. (2018) The emerging functions and roles of circular RNAs in cancer. Cancer Lett., 414, 301–309.
6. Hansen, T.B., Jensen, T.I., Clausen, B.H. et al. (2013) Natural RNA circles function as efficient microRNA sponges. Nature, 495, 354–358.
7. Peng, Y., Song, X., Zheng, Y. et al. (2018) circCOL3A1-859267 regulates type I collagen expression by sponging miR-29c in human dermal fibroblasts. Eur. J. Dermatol., 28, 613–620.
8. Chu, Q., Zhang, X., Zhu, X. et al. (2017) PlantcircBase: a database for plant circular RNAs. Mol Plant, 10, 1126–1128.
9. Zhang, P., Meng, X., Chen, H. et al. (2017) PlantCircNet: a database for plant circRNA-miRNA-mRNA regulatory networks. Database (Oxford), 2017, bax089.
10. Ye, J., Wang, L., Li, S. et al. (2017) AtCircDB: a tissue-specific database for Arabidopsis circular RNAs. Brief Bioinform., 20, 58–65.
11. Philips, A., Nowis, K., Stelmasczuk, M. et al. (2020) Expression landscape of circRNAs in Arabidopsis thaliana seedlings and adult tissues. Front Plant Sci., 11, 576581.
12. Philips, A., Nowis, K., Stelmasczuk, M. et al. (2020) Arabidopsis thaliana cbp80, c2h2, and flk knockout mutants accumulate increased amounts of circular RNAs. Cells, 9, 1937.
13. Bardou, P., Mariette, J., Escudie, F. et al. (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinform., 15, 293.
14. Ye, C.Y., Chen, L., Liu, C. et al. (2015) Widespread noncoding circular RNAs in plants. New Phytol., 208, 88–95.
15. Sun, Z., Huang, K., Han, Z. et al. (2020) Genome-wide identification of Arabidopsis long noncoding RNAs in response to the blue light. Sci. Rep., 10, 6229.
16. Liu, T., Zhang, L., Chen, G. et al. (2017) Identifying and characterizing the circular RNAs during the lifespan of Arabidopsis leaves. Front Plant Sci., 8, 1278.
17. Chen, G., Cui, J., Wang, L. et al. (2017) Genome-wide identification of circular RNAs in Arabidopsis thaliana. Front Plant Sci., 8, 1678.
18. Coate, J.E., Schreyer, W.M., Kum, D. et al. (2020) Robust cytoplasmic coordination of transcription in nascent Arabidopsis thaliana autopolyploids. Genes (Basel), 11, 134.
19. Zhang, P., Fan, Y., Sun, X. et al. (2019) A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant J., 98, 697–713.
20. Parker, M.T., Knop, K., Sherwood, A.V. et al. (2020) Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m(6)A modification. Elife, 9, e49658.