Multi-triangulations as complexes of star polygons

Vincent Pilaud (École Normale Supérieure)
& Francisco Santos (Universidad de Cantabria)

Brussels, March 2008
Definitions
Multi-triangulations

Let k and n be two integers with $n \geq 2k + 1$.
Let V_n be the set of vertices of a convex n-gon.
Let E_n be the set of the edges of the complete graph on V_n.

Two edges $[a, b]$ and $[c, d]$ cross if the corresponding open segments $]a, b[\text{ and }]c, d[$ intersect.
An ℓ-crossing is a subset of E_n of ℓ mutually intersecting edges.

A k-triangulation of the n-gon is a maximal subset of E_n without $(k + 1)$-crossing.
The **length** of an edge $[a, b]$ is

$$\ell([a, b]) = \min(|a, b|, |b, a|).$$

The only edges that may appear in a $(k + 1)$-crossing are those of length $> k$.
The length of an edge $[a, b]$ is

$$\ell([a, b]) = \min(||a, b||, ||b, a||).$$

The only edges that may appear in a $(k + 1)$-crossing are those of length $> k$.

We say that $[a, b]$ is a

(i) k-relevant edge if $\ell(\{a, b\}) > k$;
(ii) k-boundary edge if $\ell(\{a, b\}) = k$;
(iii) k-irrelevant edge if $\ell(\{a, b\}) < k$.

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons
The length of an edge $[a, b]$ is

$$\ell([a, b]) = \min(||a, b||, ||b, a||).$$

The only edges that may appear in a $(k + 1)$-crossing are those of length $> k$.

We say that $[a, b]$ is a

(i) k-relevant edge if $\ell(\{a, b\}) > k$;
(ii) k-boundary edge if $\ell(\{a, b\}) = k$;
(iii) k-irrelevant edge if $\ell(\{a, b\}) < k$.

Any k-triangulation of the n-gon contains all the k-irrelevant and the k-boundary edges of E_n.
Remarks & examples

A general construction

The complete graph K_{2k+1} is the unique k-triangulation of the $(2k+1)$-gon.

All k-triangulations of the $(2k+2)$-gon are obtained by suppression of a long diagonal of the complete graph K_{2k+2}.
There are 14 2-triangulations of the heptagon:

There are 30 3-triangulations of the nonagon:
Remarks & examples

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons
ALREADY KNOWN RESULTS

Théorème.

1. A \(k \)-triangulation of the \(n \)-gon contains \(k(2n - 2k - 1) \) edges. \[\text{[Nak], [DKM]}\]
2. Any relevant edge can be flipped and the graph of flips is connected. \[\text{[Nak], [Jon]}\]
3. There exists a deletion/insertion operation that transforms a \(k \)-triangulation of the \((n + 1)\)-gon into a \(k \)-triangulation of the \(n \)-gon and reciprocaly. \[\text{[Nak], [Jon]}\]
4. The \(k \)-triangulations of the \(n \)-gon are counted by a Catalan determinant: \[\det(C_{n-i-j})_{i,j\leq k} \]. \[\text{[Jon]}\]
5. If \(n \geq 2k + 3 \), any \(k \)-triangulation of the \(n \)-gon has at least \(2k \) ears. \[\text{[Nak]}\]

V. Capoyleas & J. Pach, A Turán-type theorem on chords of a convex polygon, 1992

T. Nakamigawa, A generalization of diagonal flips in a convex polygon, 2000

A. Dress, J. Koolen & V. Moulton, On line arrangements in the hyperbolic plane, 2002

J. Jonsson, Generalized triangulations and diagonal-free subsets of stack polyominoes, 2005
Already known results

Théorème.

1. A k-triangulation of the n-gon contains $k(2n - 2k - 1)$ edges. \[\text{[NAK], [DKM]}\]
2. Any relevant edge can be flipped and the graph of flips is connected. \[\text{[NAK], [JON]}\]
3. There exists a deletion/insertion operation that transforms a k-triangulation of the $(n+1)$-gon into a k-triangulation of the n-gon and reciprocally. \[\text{[NAK], [JON]}\]
4. The k-triangulations of the n-gon are counted by a Catalan determinant: $\det(C_{n-i-j})_{i,j \leq k}$. \[\text{[JON]}\]
5. If $n \geq 2k + 3$, any k-triangulation of the n-gon has at least $2k$ ears. \[\text{[NAK]}\]

Two remarks.

– undirect proofs :

\[
\begin{array}{c}
\text{1} \\
\text{2} \\
\text{3} \\
\text{4} \\
\text{5}
\end{array}
\]

– generalisation of triangles?
Let s_0, \ldots, s_{2k} be $2k + 1$ points of the unit circle in counterclockwise order.

We say that the polygon

- whose vertices are s_0, \ldots, s_{2k},
- and whose edges are $[s_0, s_k], [s_1, s_{1+k}], \ldots, [s_k, s_{2k}], [s_{k+1}, s_0], \ldots, [s_{2k}, s_{k-1}]$

is a \textit{k-star}.

\begin{center}
\includegraphics[width=\textwidth]{diagram.png}
\end{center}
An angle of a subset F of E_n is a couple

$$\angle(u, v, w) = ([u, v], [v, w])$$

of edges of F such that
- $u \prec v \prec w$ (for the counterclockwise order),
- for all $t \in [w, u]$, the edge $\{v, t\}$ is not in F.

v is the vertex of the angle $\angle(u, v, w) = (\{u, v\}, \{v, w\})$.

For all $t \in [w, u]$, the edge $\{v, t\}$ is a bisector of $\angle(u, v, w)$.

An angle $\angle(u, v, w)$ is k-relevant if its edges are both either k-relevant, or k-boundary.
Results
Let T be a k-triangulation.

Any angle of a k-star of T is a k-relevant angle of T.

Reciprocally, any k-relevant angle of T is contained in a k-star of T.

Vincent Pilaud
Multi-triangulations as complexes of star polygons
Corollary.
Let e be an edge of a k-triangulation T. Then
1. if e is a k-relevant edge, it belongs to exactly two k-stars of T,
2. if e is a k-boundary edge, it belongs to exactly one k-star of T,
3. if e is a k-irrelevant edge, it does not belong to any k-star of T.
Theorem.
Every pair of k-stars of a k-triangulation have a unique common bisector.

Proposition.
Let T be a k-triangulation. Any edge which is not in T is the common bisector of a unique pair of k-stars of T.

Corollary.
Any k-triangulation of the n-gon contains exactly $n - 2k$ k-stars and thus $k(2n - 2k - 1)$ edges.
Flips

Theorem.
Let T be a k-triangulation of the n-gon. Let e be an edge of T. Let R and S be the two k-stars of T containing e. Let f be the common bisector of R and S.

Then T and $T \triangle \{e, f\}$ are the only two k-triangulations of the n-gon containing $T \setminus \{e\}$.

The k-triangulation $T \triangle \{e, f\}$ is obtained by **flipping** the edge e in the k-triangulation f.
Let $G_{n,k}$ be the graph of flips of the set of k-triangulations of the n-gon.

Theorem.

The graph $G_{n,k}$ is connected, regular of degree $k(n - 2k - 1)$, and its diameter is at most $2k(n - 2k - 1)$.

Remark.

(i) if $n > 8k^3 + 4k^2$, the bound on the diameter can be improved to be $2nk - (8k^2 + 2k)$. [Nak]

(ii) for $k = 1$, this bound is optimal.

D.D. Sleator, R.E. Tarjan & W.P. Thurston,

Rotation distance, triangulations and hyperbolic geometry, 1988

For $k > 1$ and $n > 4k$, we only know that the diameter is at least $k(n - 2k - 1)$.
Let assume here that $n > 2k + 3$.
A k-ear is an edge of length $k + 1$.
We say that a k-star is internal if it does not contain any k-boundary edge.

Proposition.
The number of k-ears of a k-triangulation T equals the number of internal k-stars plus $2k$.
In particular, T contains at least $2k$ k-ears.
We say that a k-triangulation is k-colorable if there exists a coloration with k color of its k-relevant edges such that there is no monochromatic crossing.

A k-accordion of E_n is a set $Z = \{[a_i, b_i] \mid 1 \leq i \leq n - 2k - 1\}$ of $n - 2k - 1$ edges such that

- $b_1 = a_1 + k + 1$
- $[a_i, b_i] \in \{[a_{i-1}, b_{i-1} + 1], [a_{i-1} - 1, b_{i-1}]\}$, for all i.

Proposition.

Let T be a k-triangulation, with $k > 1$. The following assertions are equivalent

(i) T is k-colorable;

(ii) T contains exactly $2k$ k-ears;

(iii) T has no internal k-star;

(iv) the set of k-relevant edges of T is the disjoint union of k k-accordions.

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons
Flattening a k-star/inflattening a k-crossing

Theorem.

There is a bijection between

(i) the set of k-triangulations of the $(n + 1)$-gon with a marked boundary edge, and

(ii) the set of k-triangulations of the n-gone with a marked k-crossing with k consecutives vertices.
Flattening a k-star/inflattting a k-crossing

Theorem.
There is a bijection between

(i) the set of k-triangulations of the $(n + 1)$-gon with a marked boundary edge, and

(ii) the set of k-triangulations of the n-gone with a marked k-crossing with k consecutives vertices.

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons
Further topics and open questions
Multi-Dyck Paths

Theorem.

The number of k-triangulations of the n-gon is

\[
\det(C_{n-i-j})_{1 \leq i,j \leq k} = \left| \begin{array}{cccc}
C_{n-2} & C_{n-3} & \cdots & C_{n-k} & C_{n-k-1} \\
C_{n-3} & C_{n-4} & \cdots & C_{n-k-1} & C_{n-k-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
C_{n-k-1} & C_{n-k-2} & \cdots & C_{n-2k+1} & C_{n-2k} \\
\end{array} \right|,
\]

where

\[
C_m = \frac{1}{m + 1} \binom{2m}{m}.
\]

[Jon]

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons
Theorem.

The number of k-triangulations of the n-gon is

$$\det(C_{n-i-j})_{1 \leq i,j \leq k} = \begin{vmatrix} C_{n-2} & C_{n-3} & \ldots & C_{n-k} & C_{n-k-1} \\ C_{n-3} & C_{n-4} & \ldots & C_{n-k-1} & C_{n-k-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{n-k-1} & C_{n-k-2} & \ldots & C_{n-2k+1} & C_{n-2k} \end{vmatrix},$$

where $C_m = \frac{1}{m+1}{2m \choose m}$.

A Dyck path of semi-length ℓ is a lattice path using north steps $N = (0, 1)$ and east steps $E = (1, 0)$ starting from $(0, 0)$ and ending at (ℓ, ℓ), and such that it never goes below the diagonal $y = x$.

The set of Dyck paths of semi-length $n - 2$ is in bijection with the set of triangulations of the n-gon.
The number of \(k \)-triangulations of the \(n \)-gon is

\[
\det(C_{n-i-j})_{1 \leq i,j \leq k} = \begin{vmatrix}
C_{n-2} & C_{n-3} & \ldots & C_{n-k} & C_{n-k-1} \\
C_{n-3} & C_{n-4} & \ldots & C_{n-k-1} & C_{n-k-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
C_{n-k-1} & C_{n-k-2} & \ldots & C_{n-2k+1} & C_{n-2k}
\end{vmatrix},
\]

where \(C_m = \frac{1}{m+1} \binom{2m}{m} \).

A Dyck path of semi-length \(\ell \) is a lattice path using north steps \(N = (0,1) \) and east steps \(E = (1,0) \) starting from \((0,0)\) and ending at \((\ell,\ell)\), and such that it never goes below the diagonal \(y = x \).

A \(k \)-Dyck path of semi-length \(\ell \) is a \(k \)-tuple \((d_1, \ldots, d_k)\) of Dyck paths of semi-length \(\ell \) such that each \(d_i \) never goes above \(d_{i-1} \), for \(2 \leq i \leq k \).
Theorem.

The number of k-triangulations of the n-gon is

\[
\det(C_{n-i-j})_{1 \leq i, j \leq k} = \left| \begin{array}{cccc}
C_{n-2} & C_{n-3} & \cdots & C_{n-k} & C_{n-k-1} \\
C_{n-3} & C_{n-4} & \cdots & C_{n-k-1} & C_{n-k-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
C_{n-k-1} & C_{n-k-2} & \cdots & C_{n-2k+1} & C_{n-2k}
\end{array} \right|,
\]

where $C_m = \frac{1}{m+1}\binom{2m}{m}$.

Theorem.

The number of k-Dyck paths of semi-length $n - 2k$ is $\det(C_{n-i-j})_{1 \leq i, j \leq k}$.

M. Desaïnt-Catherine & G. Viennot,
Enumeration of certain Youg tableaux with bounded height, 1986

We have explicit bijections only when $k = 1$ and $k = 2$.

S. Elizalde, A bijection between 2-triangulations and pairs of non-crossing Dyck paths, 2006
Rigidity

A graph $G = (V, E)$, embedded in \mathbb{R}^d, is said to be rigid if any continuous movement of its vertices that preserves all edges lengths is an isometry of \mathbb{R}^d.

A triangulation is a **minimally rigid graph** of the plane.
RIGIDITY

A graph $G = (V, E)$, embedded in \mathbb{R}^d, is said to be rigid if any continuous movement of its vertices that preserves all edges lengths is an isometry of \mathbb{R}^d.

A triangulation is a minimally rigid graph of the plane.

Conjecture.
A k-triangulation is a minimally rigid graph in dimension $2k$.

Two remarks.
- k-triangulations have $2k$-Laman property.
- we have a proof for $k = 2$.

Vincent Pilaud ▪ Multi-triangulations as complexes of star polygons
Let $\Delta_{n,k}$ be the complex of all subsets of k-relevant edges of E_n that do not contain any $(k + 1)$-crossing.

When $k = 1$, this complex is known to be the boundary complex of the associahedron.

C. Lee, The associahedron and triangulations of an n-gon, 1989
Let $\Delta_{n,k}$ be the complex of all subsets of k-relevant edges of E_n that do not contain any $(k + 1)$-crossing. When $k = 1$, this complex is known to be the boundary complex of the associahedron.

C. Lee, The associahedron and triangulations of an n-gon, 1989

When $k \geq 2$, we only know that $\Delta_{n,k}$ is topologically a sphere.

Conjecture.

There exists a simple polytope of dimension $k(n - 2k - 1)$ with boundary complex $\Delta_{n,k}$.

Remark. area of stars and rigidity can help.

L. Billera, P. Filliman & B. Sturmfels, Constructions and complexity of secondary polytopes, 1990

G. Rote, F. Santos & I. Streinu, Expansive motions and the polytope of pointed pseudo-triangulaitons, 2003

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons
Let T be a k-triangulation of the n-gon.

The polygonal complex $\mathcal{C}(T)$ associated to T is a polygonal decomposition of an orientable surface with boundary $S_{n,k}$.

The genus of $S_{n,k}$ is $g_{n,k} = \frac{1}{2}(2 - f + e - v - b) = \frac{1}{2}(2 - n + k + kn - 2k^2 - \gcd(n, k))$.

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons
Surfaces

Flips define a morphism between

(i) the fundamental group $\pi_{n,k}$ of the graph of flips $G_{n,k}$ (i.e. the set of loops in $G_{n,k}$, up to homotopy), and

(ii) the mapping class group $\mathcal{M}_{n,k}$ of the surface $S_{n,k}$ (i.e. the set of diffeomorphisms of the surface $S_{n,k}$ into itself that preserve the orientation and that fix the boundary of $S_{n,k}$, up to isotopy).
Conclusion

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons
Conclusion

Vincent Pilaud ■ Multi-triangulations as complexes of star polygons
Multi-triangulations as complexes of star polygons
Vincent Pilaud & Francisco Santos
arXiv: 0706.3121v2