Associations between GLUT expression and SUV values derived from FDG-PET in different tumors—A systematic review and meta analysis

Hans-Jonas Meyer, Andreas Wienke, Alexey Surov

1 Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany, 2 Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany

☯ These authors contributed equally to this work.
* Hans-jonas.meyer@medizin.uni-leipzig.de

Abstract

Purpose
Fluorodeoxyglucose-Positron-emission tomography (FDG-PET), quantified by standardized uptake values (SUV), is one of the most used functional imaging modality in clinical routine. It is widely acknowledged to be strongly associated with Glucose-transporter family (GLUT)-expression in tumors, which mediates the glucose uptake into cells. The present systematic review sought to elucidate the association between GLUT 1 and 3 expression with SUV values in various tumors.

Methods
MEDLINE library was screened for associations between FDG-PET parameters and GLUT correlation cancer up to October 2018.

Results
There were 53 studies comprising 2291 patients involving GLUT 1 expression and 11 studies comprising 405 patients of GLUT 3 expression. The pooled correlation coefficient for GLUT 1 was $r = 0.46$ (95% CI 0.40–0.52), for GLUT 3 was $r = 0.35$ (95%CI 0.24–0.46). Thereafter, subgroup analyses were performed. The highest correlation coefficient for GLUT 1 was found in pancreatic cancer $r = 0.60$ (95%CI 0.46–0.75), the lowest was identified in colorectal cancer with $r = 0.21$ (95% CI -0.57–0.09).

Conclusion
An overall only moderate association was found between GLUT 1 expression and SUV values derived from FDG-PET. The correlation coefficient with GLUT 3 was weaker. Presumably, the underlying mechanisms of glucose hypermetabolism in tumors are more complex and not solely depended on the GLUT expression.
Introduction

Fluorodeoxyglucose -Positron-emission tomography (FDG-PET) is one of the most used functional imaging modality in clinical practice. The value of this imaging technique is based upon the display of glucose metabolism in vivo [1, 2]. This benefit has been extensively researched, especially in the field of oncologic imaging. The FDG uptake is routinely quantified by standardized uptake values (SUV), which is a robust and reliable imaging biomarker [1, 2].

Malignant tumors tend to show an altered, elevated glucose metabolism based upon aerobic glycolysis compared to normal tissue, which is called Warburg effect [3, 4].

Because of this fact, FDG-PET can be used in clinical routine to aid in discrimination between benign and malignant lesions [5–7], might predict treatment response [8–10] and might also be able to reflect histopathology parameters of tumors [11, 12].

The accumulation of the tracer FDG is acknowledged to be mainly mediated by the Glucose-transporter family (GLUT) [13, 14]. These proteins are located within the cell membranes and regulate the uptake of glucose into cells. According to the literature, especially the subtypes GLUT 1 and GLUT 3 are the most important proteins for the FDG-uptake and are overexpressed in tumors [14].

In brief, a tumor cell needs more glucose for proliferation and because of the ineffective aerobic glycolysis than a physiological cell. Thus, tumors might also express more GLUT proteins than physiological tissues to accumulate more glucose.

Moreover, it was identified that an increased glucose uptake is associated with chemotherapy resistance of gemcitabine in pancreatic cancer cells [15]. A key regulator is hypoxia-inducible factor 1-alpha, which mediates the metabolic pathways, including GLUT expression [15]. In another study on pancreatic cancers it was identified that GLUT 1 expression was abundantly higher in tumors and it was even the highest expressed protein of metabolic genes [16]. These findings suggest that metabolic protein expression is associated with tumor aggressiveness and treatment response.

This association between SUV and GLUT has been extensively investigated, both in experimental animal studies [17, 18] and as well as in clinical studies using immunohistochemical stainings of tumor specimens [14]. In most studies, GLUT 1 was investigated. Previously, some studies identified a strong positive correlation between GLUT expression and SUV values derived from FDG-PET, as it is hypothetically expected [19, 20]. However, there are also studies, which could not show any significant associations between SUV and GLUT [21]. The exact reason for this discrepancy is not known. Presumably, in some tumors the FDG-PET uptake may be predominantly influenced by GLUT expression. In other malignancies, however, other cellular pathways, such as the expression of hexokinase II, may be more important for FDG uptake.

Moreover, it is postulated that the cellular energy demand and tumor microenvironment show complex interactions, which go beyond a linear association between GLUT expression and FDG uptake alone [13].

The aim of the present analysis was to investigate the associations between GLUT 1 and GLUT 3 expression with SUV values derived from FDG-PET in a systemic review and to provide the first meta analysis of the published data.

Materials and methods

Data acquisition

MEDLINE and SCOPUS libraries were screened for associations between FDG-PET parameters and GLUT correlation cancer up to October 2018. The following search words were used:
PET or positron emission tomography and GLUT, SUV or standardized uptake value and GLUT or glucose-transporter. Overall 292 articles were identified.

After thorough review and exclusion due to doublets, review articles, case reports, non-English publications, and articles, which do not contain correlation coefficients between PET and GLUT, 53 articles were suitable for the meta-analysis [19–69]. In these articles 56 patient samples were acquired. Fig 1 displays the PRISMA flow chart of the paper acquisition.

The primary endpoint of the systematic review was the correlation between GLUT-1 and GLUT-3 expression with SUV values derived from FDG-PET.

Studies (or subsets of studies) were included if they satisfied all of the following criteria:
(1) patients with tumor with histopathological confirmation and expression analysis of GLUT-1 and/or GLUT-3; (2) FDG-PET quantified by SUV values; (3) correlation analysis between SUV values and GLUT 1 and/or GLUT 3 expression.

Exclusion criteria were (1) systematic review (2) case reports (3) treatment prediction or histopathology performed after treatment (4) non-English language (5) xenograft or mouse/rabbit model studies.

The following data were extracted from the literature: authors, year of publication, study design, tumor entity, GLUT subtype, number of patients, and correlation coefficients.

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA) was used for the paper acquisition [70].

The methodological quality of the acquired studies was independently checked by two observers (HJM and AS) using the Quality Assessment of Diagnostic Studies (QUADAS 2) instrument according to previous descriptions (Fig 2) [71].

The assessment revealed that a small portion of studies shows an unclear risk of patient selection due to non and or unclear inclusion criteria. Regarding flow and timing, some studies did not indicate whether the histopathology analysis was in a short amount of time after the PET to assure congruent results.

Associations between PET and GLUT expression were analyzed by Spearman’s correlation coefficient. The Pearson’s correlation coefficients in some studies were converted into Spearman’s correlation coefficients, as reported previously [72].

Finally, the meta-analysis was undertaken by using RevMan 5.3 (Computer Program, version 5.3, The Cochrane Collaboration, 2014, The Nordic Cochrane Centre, Copenhagen). Heterogeneity was calculated by means of the inconsistency index I^2 [73, 74]. Additionally, DerSimonian and Laird random-effects models with inverse-variance weights were used without any further correction [75].

Results

Associations between SUV and GLUT 1

Overall 53 studies with 56 patient samples overall comprising 2291 patients were analyzed for the meta analysis between SUVmax and GLUT 1 expression.

There were 13 (24.5%) prospective and 40 (75.5%) retrospective study designs.

Table 1 displays the included tumor entities of the GLUT 1 analysis.

The overall pooled correlation coefficient of the association between SUVmax and GLUT 1 expression was $r = 0.46$ (95% CI 0.40–0.52) (Fig 3).

Thereafter, subgroup analyses with tumor entities comprising more than one paper were performed (Fig 4). The highest correlation coefficient was found in pancreatic cancer ($r = 0.60$, 95% CI 0.46–0.75), and the lowest was identified in colorectal cancer ($r = 0.21$ (95% CI -0.57–0.09).
Fig 1. **PRISMA flow chart.** An overview of the paper acquisition. Finally, 53 articles were suitable for the analysis. From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097. For more information, visit www.prisma-statement.org.

https://doi.org/10.1371/journal.pone.0217781.g001

Associations between SUV and GLUT 3

Overall 11 studies comprising 405 patients analyzed associations between SUVmax and GLUT 3 were included into the meta analysis (Fig 5). Table 2 displays the included tumor entities.
The pooled correlation coefficient was $r = 0.35$ (95% CI 0.24–0.46). Only 2 subgroup analyses could be performed: in non-small cell lung carcinoma (NSCLC), the correlation coefficient was $r = 0.35$ (95% CI 0.18–0.53) and in head and neck squamous cell carcinoma (HNSCC), it was $r = 0.22$ (95% CI -0.06–0.51) (Fig 6).

Table 1. Overview of the included tumor entities of the GLUT 1 analysis.

Tumor entity	N (%)
Lung cancer	591 (25.8)
Head and neck cancer	216 (9.4)
Esophageal Cancer	191 (8.3)
Cervical cancer	190 (8.3)
Breast cancer	175 (7.6)
Pancreatic cancer	127 (5.5)
Lymph node metastasis	99 (4.3)
Papillary thyroid carcinoma	94 (4.1)
Hepatocellular carcinoma	94 (4.1)
Endometrial cancer	72 (3.1)
Sarcoma	63 (2.8)
Neuroendocrine tumor	59 (2.6)
Colorectal cancer	57 (2.5)
Mesenchymal uterine tumor	47 (2.0)
Thymic cancer	44 (1.9)
Gastrointestinal stromal tumor	40 (1.8)
Glioma	33 (1.4)
Pheochromocytoma	27 (1.2)
Bile duct cancer	26 (1.1)
Malignant melanoma	19 (0.9)
Ovarian cancer	17 (0.8)
Merkel cell carcinoma	10 (0.5)
Total	2291 (100)
Discussion

The present systematic review represents a meta analysis elucidating the associations between SUVmax derived from FDG-PET and GLUT expression in various tumors.
Fig 4. Subgroup analyses for the correlation between SUVmax and GLUT 1 expression. Forrest plots of the correlation coefficients between SUVmax and GLUT 1 in different primary tumors.

https://doi.org/10.1371/journal.pone.0217781.g004
As first reported by Otto Warburg over 90 years ago, a crucial characteristic of tumor cells is an increased glucose uptake resulting in an enhanced glycolytic metabolism [3, 4]. Therefore, various tumors show an overexpression of glucose transporters (GLUTs). There are 13 types of different GLUT proteins, among which, GLUT 1 is the dominant one, which is also abundantly overexpressed in tumors [16, 76].

Previous studies analyzed possible association between SUVmax and GLUT 1 and GLUT 3. Other GLUT subtypes were only sporadically investigated and could therefore not be included into the present analysis.

Early on, it was identified that FDG uptake might be associated with GLUT expression in studies investigating lung cancer and pancreatic carcinoma [36, 37, 77]. Thus, nowadays, it is an acknowledged fact that GLUT expression is one of the main mediators of FDG uptake in tumors.

However, in the present meta analysis only a moderate association was identified between SUVmax and GLUT 1 and a weak correlation between SUVmax and GLUT 3. This fact indicates that the interactions between glucose hypermetabolism displayed by FDG-PET and glucose uptake into the cells are more complex than the sole amount of GLUT expression within the cell membranes [13]. Thus, other important proteins of the glucose metabolism, such as the hexokinase II protein might have a crucial influence on the SUV value, which has been

Study or Subgroup	correlation	SE	Weight	IV, Random, 95% CI
Charnley 2008	-0.08	0.23	5.0%	-0.08 [-0.53, 0.37]
Chor 2015	0.41	0.11	13.3%	0.41 [0.19, 0.63]
de Gus-Oel 2007	0.35	0.21	5.7%	0.35 [-0.06, 0.76]
Deron 2011	0.22	0.19	6.7%	0.22 [-0.15, 0.59]
Hirose 2016	0.57	0.1	14.6%	0.57 [0.37, 0.77]
Kaida 2011	0.38	0.12	12.2%	0.38 [0.14, 0.62]
Marom 2001	0.14	0.12	12.2%	0.14 [-0.10, 0.38]
Park 2012	0.5	0.18	7.2%	0.50 [0.15, 0.85]
Suzuwa 2011	0.52	0.13	11.1%	0.52 [0.27, 0.77]
Tian 2004	0.23	0.22	5.3%	0.23 [-0.20, 0.66]
van Berkel 2014	0.17	0.19	6.7%	0.17 [-0.20, 0.54]
Total (95% CI)	0.35 [0.24, 0.46]			

Heterogeneity: Tau² = 0.01; Chi² = 15.64, df = 10 (P = 0.11); I² = 36%
Test for overall effect: Z = 6.15 (P < 0.00001)

Fig 5. Correlation between SUVmax and GLUT 3 expression. Forrest plots of the correlations coefficients between SUVmax and GLUT 3 in 11 studies comprising 405 patients. The pooled correlation coefficient was r = 0.35 (95% CI 0.24–0.46).

As first reported by Otto Warburg over 90 years ago, a crucial characteristic of tumor cells is an increased glucose uptake resulting in an enhanced glycolytic metabolism [3, 4]. Therefore, various tumors show an overexpression of glucose transporters (GLUTs). There are 13 types of different GLUT proteins, among which, GLUT 1 is the dominant one, which is also abundantly overexpressed in tumors [16, 76].

Previous studies analyzed possible association between SUVmax and GLUT 1 and GLUT 3. Other GLUT subtypes were only sporadically investigated and could therefore not be included into the present analysis.

Early on, it was identified that FDG uptake might be associated with GLUT expression in studies investigating lung cancer and pancreatic carcinoma [36, 37, 77]. Thus, nowadays, it is an acknowledged fact that GLUT expression is one of the main mediators of FDG uptake in tumors.

However, in the present meta analysis only a moderate association was identified between SUVmax and GLUT 1 and a weak correlation between SUVmax and GLUT 3. This fact indicates that the interactions between glucose hypermetabolism displayed by FDG-PET and glucose uptake into the cells are more complex than the sole amount of GLUT expression within the cell membranes [13]. Thus, other important proteins of the glucose metabolism, such as the hexokinase II protein might have a crucial influence on the SUV value, which has been

Table 2. Overview of the included tumor entities of the GLUT 3 analysis.

Tumor entity	N (%)
Non-small cell lung cancer	188 (46.4)
Papillary thyroid carcinoma	54 (13.3)
Esophageal Cancer	51 (12.6)
Head and neck cancer	46 (11.4)
Pheochromacytoma	27 (6.7)
Glioma	20 (4.9)
Malignant melanoma	19 (4.7)
Total	405 (100)

https://doi.org/10.1371/journal.pone.0217781.t002
shown in several tumor entities [78, 79]. Moreover, the FDG uptake visualized via PET might be influenced by very complex interactions of the tumor microenvironment, including inflammatory cells, extracellular matrix, microvessel density and other factors. This might be some reasons of the identified results in the present analysis.

Interestingly, the correlations between GLUT 1 and SUVmax varied significantly in different tumors. As seen, it was strong in cervical and pancreatic cancers, moderate in hepatocellular carcinoma, esophageal cancer and NSCLC, and weak in HNSCC, colorectal cancer, endometrial carcinoma and papillary thyroid cancer.

The exact cause of this phenomenon is unclear. Presumably, the above discussed complex interactions of tumor microenvironment differ between tumor types and might also influence the investigated linear association between GLUT expression and SUVmax.

For other tumor entities, such as gastric cancer, renal cell carcinoma, or urothel carcinomas, to date, there are no reports regarding associations between SUVmax and GLUT 1 or 3. According to the literature, GLUT expression is not only specific for tumor cells. So GLUT 1 is also expressed on erythrocytes and immune cells, which induces FDG uptake also in benign diseases, for example such as lung fibrosis [14] and lung inflammatory diseases [80]. However, the inflammatory tissues might express more less GLUT 1 and consecutively display a lower SUV value than malignant tissues [81].

Moreover, a small amount of tumors might express less GLUT proteins and are, therefore, negative on PET studies, which is a very important reason for false negativity of FDG-PET. For example, this was shown in lymph node staging in lung cancer patients [82, 83]. Other reasons for PET negativity are small tumor sizes and some good differentiated tumor types [84]. Furthermore, there are some tumor entities, which are inherently known to have a low FDG uptake despite their malignant nature, such as bronchioalveolar cell carcinoma and lung carcinoids, which is believed to be caused by none or low GLUT 1 expression [85]. Consecutively, no tumors entities with such a behavior could be included into the present study.
In various studies, the important prognostic benefit of SUV values derived from PET was elucidated in several tumor entities. For example, in lung cancer patients, a higher SUVmax indicates poorer overall survival and local control as well as higher chance for distant metastases [86]. Similar results were reported for head and neck cancer [87], soft tissue sarcomas [88], and breast cancer [89]. As another aspect, SUV values can guide to evaluate treatment response, for example shown in breast cancer patients after neoadjuvant radio-chemotherapy [90].

These findings are corroborated by recent meta analyses investigating the prognostic relevance of GLUT 1 and GLUT 3 expression in tumors [91–95]. So, an overexpression of these GLUT subtypes was overall associated with a poorer prognosis in various tumors, indicated by a hazard radio of 1.63 for GLUT 1 and 1.83 for GLUT 3 [91]. This association can at last be applied to pancreatic carcinoma, gastric cancers, colorectal carcinomas, esophageal cancer, lung cancer, ovarian and uterine cancer, and oral squamous cell carcinoma [91–94]. For other tumor entities data are still lacking. Presumably, the prognostic performance of FDG-PET and GLUT expression might be linked by the associations between these parameters.

Furthermore, FDG-PET is associated with other histopathology parameters in tumors. For example, SUVmax moderately correlated with proliferation index Ki67, and might therefore be a surrogate parameter of the amount of proliferating tumor cells [96]. As another aspect, SUVmax seems to be related to vessel density in tissues, as it was exemplarily shown for lung cancer [97, 98].

Albeit the identified correlation between GLUT 1 and SUV were moderate, FDG-PET might aid in treatment response evaluation of chemotherapy targeting hypoxia-inducible factor 1 alpha, which is one of the most important mediator of metabolic gene expression including GLUT 1 [15, 16, 99–101]. Preclinical studies also elucidated the possibility of direct GLUT 1 targeting for tumor treatment, which might also be evaluated by FDG-PET. However, clinical studies are needed to proof, whether FDG-PET is capable in reflecting these treatment changes.

Moreover, FDG-PET might assess metastatic potential of tumors due to its capability to reflect the mentioned metabolic alteration, as was stated in a preclinical study [102].

There are several limitations of the present analysis to address. Firstly, most involved studies were of retrospective nature with inherent known shortcomings of this study design. Moreover, only papers published in English were included. There might be suitable papers in other languages, which were therefore not included. Secondly, different PET scanners, imaging protocols and ROI-analyses were used, which might have an influence on the correlation analysis. Thirdly, GLUT expression was estimated upon histopathology specimens, which might not be representative of the whole tumor, whereas SUVmax derived from PET represents a small area of the tumor with the highest glucose metabolism. Therefore, there might be incongruences between imaging and histopathology. Fourthly, only GLUT 1 and GLUT 3 could be included into the present analysis due to the fact that other GLUT-subtypes have not previously been investigated.

Conclusions
In summary, the present systematic review identified only a moderate association between GLUT 1 expression and SUV values derived from FDG-PET. Moreover, the correlation between SUV and GLUT 1 varied significantly in different tumors. SUV correlated weakly with expression of GLUT 3. Presumably, the underlying mechanisms of glucose hypermetabolism in tumors are more complex and not solely depended on the GLUT expression.
Author Contributions

Conceptualization: Hans-Jonas Meyer, Alexey Surov.

Data curation: Hans-Jonas Meyer, Andreas Wienke.

Investigation: Hans-Jonas Meyer, Andreas Wienke.

Methodology: Andreas Wienke.

Supervision: Hans-Jonas Meyer, Alexey Surov.

Validation: Hans-Jonas Meyer, Andreas Wienke, Alexey Surov.

Visualization: Hans-Jonas Meyer.

Writing – original draft: Hans-Jonas Meyer.

Writing – review & editing: Andreas Wienke, Alexey Surov.

References

1. Kwee TC, Basu S, Saboury B, Ambrosini V, Torigian DA, Alavi A. A new dimension of FDG-PET interpretation: assessment of tumor biology. Eur J Nucl Med Mol Imaging. 2011; 38(6):1158–70. https://doi.org/10.1007/s00259-010-1713-9 PMID: 21225422

2. El-Galaly TC, Gormsen LC, Hutchings M. PET/CT for Staging; Past, Present, and Future. Semin Nucl Med. 2018; 48(1):4–16. https://doi.org/10.1053/j.semnuclmed.2017.09.001 PMID: 29195617

3. Warburg O. On respiratory impairment in cancer cells. Science.1956; 124:269–70. PMID: 13351639

4. Warburg O. On the origin of cancer cells. Science.1956; 123:309–14. PMID: 13298683

5. Shao D, Gao Q, Tian XW, Wang SY, Liang CH, Wang SX. Differentiation and diagnosis of benign and malignant testicular lesions using 18F-FDG PET/CT. Eur J Radiol. 2017; 93:114–20. https://doi.org/10.1016/j.ejrad.2017.05.001 PMID: 28668404

6. Hadiprodjo D, Ryan T, Truong MT, Mercier G, Subramaniam RM. Parotid gland tumors: preliminary data for the value of FDG PET/CT diagnostic parameters. AJR Am J Roentgenol. 2012; 198(2):W185–90. https://doi.org/10.2214/AJR.11.7172 PMID: 22268210

7. Ohno Y, Koyama H, Matsumoto K, Onishi Y, Takenaka D, Fujisawa Y, et al. Differentiation of malignant and benign pulmonary nodules with quantitative first-pass 320-detector row perfusion CT versus FDG PET/CT. Radiology. 2011; 258(2):599–609. https://doi.org/10.1148/radiol.10100245 PMID: 21273522

8. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, Lister TA. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014; 32(27):3059–68. https://doi.org/10.1200/JCO.2013.54.8800 PMID: 25113753

9. Turgeon GA, Iравani A, Akhurst T, Beaulieu A, Callahan JW, Bressel M, et al. What FDG-PET response-assessment method best predicts survival after curative-intent chemoradiation in non-small cell lung cancer (NSCLC): EORTC, PERCIST, Peter Mac or Deauville criteria? J Nucl Med. 2018.

10. Farag S, Geus-Oei LF, van der Graaf WT, van Coevorden F, Grunhagen D, Reyners AKL, et al. Early Evaluation of Response Using 18F-FDG PET Influences Management in Gastrointestinal Stromal Tumor Patients Treated with Neoadjuvant Imatinib. J Nucl Med. 2018; 59(2):194–6. https://doi.org/10.2967/jnumed.117.196642 PMID: 28970330

11. Surov A, Stumpp P, Meyer HJ, Gawilutz M, Höhn AK, Boehm A, et al. Simultaneous (18)F-FDG-PET/MRI: Associations between diffusion, glucose metabolism and histopathological parameters in patients with head and neck squamous cell carcinoma. Oral Oncol. 2016; 58:14–20. https://doi.org/10.1016/j.oraloncology.2016.04.008 PMID: 27311397

12. Surov A, Meyer HJ, Schob S, Höhn AK, Bremicker K, Exner M, et al. Parameters of simultaneous 18F-FDG-PET/MRI predict tumor stage and several histopathological features in uterine cervical cancer. Oncotarget. 2017; 8(17):28285–96. https://doi.org/10.18632/oncotarget.16043 PMID: 28423898

13. Wuest M, Hamann I, Bouvet V, Glubrecht D, Marshall A, Trayner B, et al. Molecular Imaging of GLUT1 and GLUT5 in Breast Cancer: A Multitracer Positron Emission Tomography Imaging Study in Mice. Mol Pharmacol. 2016; 93(1):79–89. https://doi.org/10.1124/mol.115.111007 PMID: 29142019

14. El-Chemaly S, Malidi D, Yao J, Nathan SD, Rosas IO, Gahl WA, et al. Glucose transporter-1 distribution in fibrotic lung disease: association with [18F]-2-fluoro-2-deoxyglucose-PET scan uptake,
15. Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, et al. MUC1 and HIF-1alpha Signal-Crossstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell. 2017; 32(3):392.

16. Chaika NV, Yu F, Purohit V, Mehla K, Lazenby AJ, DiMaio D, et al. Differential expression of metabolic genes in tumor and stromal components of primary and metastatic loci in pancreatic adenocarcinoma. PLoS One. 2012; 7(3):e32996. https://doi.org/10.1371/journal.pone.0032996 PMID: 22412968

17. Ong LC, Jin Y, Song IC, Yu S, Zhang K, Chow PK. 2-[18F]-2-deoxy-D-glucose (FDG) uptake in human tumor cells is related to the expression of GLUT-1 and hexokinase II. Acta Radiol. 2008; 49(10):1145–53. https://doi.org/10.1080/02841850802482486 PMID: 18979289

18. Robey IF, Stephen RM, Brown KS, Baggett BK, Gatenby RA, Gillies RJ. Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia. 2008; 10(8):745–56. PMID: 18670636

19. Kitamura S, Yanagi T, Inamura-Takashima Y, Imafuku K, Hata H, Uehara J, et al. Retrospective study on the correlation between 18-fluorodeoxyglucose uptake in positron emission tomography-computer tomography and tumor volume, cytological activity as assessed with Ki-67 and GLUT-1 staining in 10 cases of Merkel cell carcinoma. J Eur Acad Dermatol Venereol. 2018. 32(7):e285–7. https://doi.org/10.1111/jdv.14821 PMID: 29377285

20. Nakajo M, Kajiya Y, Tani A, Yoneda S, Shirahama H, Higashi M, Nakajo M. 18F-FDG PET for grading malignancy in thymic epithelial tumors: significant differences in 18F-FDG uptake and expression of glucose transporter-1 and hexokinase II between low and high-risk tumors: preliminary study. Eur J Radiol. 2012; 81(1):146–51. https://doi.org/10.1016/j.ejrad.2010.08.010 PMID: 20810231

21. Grönroos TJ, Lehtio K, Söderström KO, Kronqvist P, Laine J, Eskola O, et al. Hypoxia, blood flow and metabolism in squamous-cell carcinoma of the head and neck: correlations between multiple immunohistochemical parameters and PET. BMC Cancer. 2014; 14:876. https://doi.org/10.1186/1471-2407-14-876 PMID: 25421331

22. Avril N, Menzel M, Dose J, Schelling M, Weber W, Jänicke F, et al. Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med. 2001; 42(1):9–16. PMID: 11197887

23. Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF, et al. Biologic correlates of (18)fluorodeoxy glucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol. 2002; 20(2):379–87. https://doi.org/10.1200/JCO.2002.20.2.379 PMID: 11786564

24. Bucau M, Laurent-Bellue A, Poté N, Hentic O, Cros J, Mikail N, et al. 18F-FDG Uptake in Well-Differentiated Neuroendocrine Tumors Correlates with Both Ki-67 and VHL Pathway Inactivation. Neuroendocrinology. 2018; 106(3):274–82. https://doi.org/10.1159/000480239 PMID: 28803235

25. Charnley N, Airley R, Du Plessis D, West C, Brock C, Barnett C, et al. No relationship between 18F-fluorodeoxyglucose uptake and proliferation rate in human glioma. Oncol Rep. 2008; 20(3):537–42. PMID: 18695903

26. Chiu CH, Yeh YC, Lin KH, Wu YC, Lee YC, Chou TY, Tsai CM. Histologic subtypes of lung adenocarcinoma have differential 18F-fluorodeoxyglucose uptake on the positron emission tomography/computed tomography scan. J Thorac Oncol. 2011; 6(10):1697–703. https://doi.org/10.1097/JTO.0b013e3182266777 PMID: 21869716

27. Cho MH, Park CK, Park M, Kim WK, Cho A, Kim H. Clinicopathologic Features and Molecular Characteristics of Glucose Metabolism Contributing to 18F-fluorodeoxyglucose Uptake in Gastrointestinal Stromal Tumors. PLoS One. 2015; 10(10):e0141413. https://doi.org/10.1371/journal.pone.0141413 PMID: 26509967

28. Choi WH, Yoo IeR, O JH, Kim TJ, Lee KY, Kim YK. Is the Glut expression related to FDG uptake in PET/CT of non-small cell lung cancer patients? Technol Health Care. 2015; 23 Suppl 2:S311–8. https://doi.org/10.3109/09257519.2015.1037956

29. Christlieb SB, Strandholdt CN, Olsen BB, Mylam KJ, Larsen TS, Nielsen AL, et al. Dual time-point FDG PET/CT and FDG uptake and related enzymes in lymphadenopathies: preliminary results. Eur J Nucl Med Mol Imaging. 2016; 43(10):1824–36. https://doi.org/10.1007/s00259-016-3385-6 PMID: 27102266

30. Chung JK, Lee YJ, Kim SK, Jeong JM, Lee DS, Lee MC. Comparison of (18)F-fluorodeoxyglucose uptake with glucose transporter-1 expression and proliferation rate in human glioma and non-small-cell lung cancer. Nucl Med Commun. 2004; 25(1):11–7. PMID: 15061260

31. Chung JH, Lee WW, Park SY, Choe G, Sung SW, Chung JK, et al. FDG uptake and glucose transporter type 1 expression in lymph nodes of non-small cell lung cancer. Eur J Surg Oncol. 2006; 32(9):989–95. https://doi.org/10.1016/j.ejso.2006.05.017 PMID: 16859874
32. de Geus-Oei LF, van Krieken JH, Alredjo RP, Krabbe PF, Frielink C, Verhagen AF, et al. Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer. 2007; 55(1):79–87. https://doi.org/10.1016/j.lungcan.2006.08.018 PMID: 17046099

33. Deron P, Vangestel C, Goethals I, De Potter A, Peeters M, Vermeersch H, Van de Wiele C. FDG uptake in primary squamous cell carcinoma of the head and neck. The relationship between overexpression of glucose transporters and hexokinases, tumour proliferation and apoptosis. Nuklearmedizin. 2011; 50(1):15–21. https://doi.org/10.3413/nukmed-0324-10-06 PMID: 21052609

34. Gu J, Yamamoto H, Fukunaga H, Danno K, Takemasa I, Ikeda M, et al. Correlation of GLUT-1 overexpression, tumor size, and depth of invasion with 18F-2-fluoro-2-deoxy-D-glucose uptake by positron emission tomography in colorectal cancer. Dig Dis Sci. 2006; 51(12):2198–205. https://doi.org/10.1007/s10620-006-9428-2 PMID: 17080242

35. Han MW, Lee HJ, Cho KJ, Kim JS, Roh JL, Choi SH, et al. Role of FDG-PET as a biological marker for predicting the hypoxic status of tongue cancer. Head Neck. 2012; 34(10):1395–402. https://doi.org/10.1002/hed.21945 PMID: 22052623

36. Higashi T, Tamaki N, Torizuka T, Nakamoto Y, Sakahara H, Kimura T, et al. FDG uptake, GLUT-1 glucose transporter and cellularity in human pancreatic tumors. J Nucl Med. 1998; 39(10):1727–35. PMID: 9776278

37. Higashi K, Ueda Y, Sakurai A, Mingwang X, Xu L, Murakami M, et al. Correlation of Glut-1 glucose transporter expression with [(18)F]FDG uptake in non-small cell lung cancer. Eur J Nucl Med. 2000; 27(12):1778–85.

38. Izuishi K, Yamamoto Y, Sano T, Takebayashi R, Nishiya M, Mori H, et al. Molecular mechanism underlying the detection of colorectal cancer by 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography. J Gastrointest Surg. 2012; 16(2):394–400. https://doi.org/10.1007/s11605-011-1727-z PMID: 22065316

39. Jo MS, Choi OH, Suh DS, Yun MS, Kim SJ, Kim GH, Jeon HN. Correlation between expression of biological markers and [F]fluorodeoxyglucose uptake in endometrial cancer. Oncol Res Treat. 2014; 37(1–2):30–4. https://doi.org/10.1159/000358163 PMID: 2413906

40. Kaida H, Hiromatsu Y, Kurata S, Kawahara A, Hattori S, Taira T, et al. Relationship between clinicopathological factors and fluorine-18-fluorodeoxyglucose uptake in patients with papillary thyroid cancer. Nucl Med Commun. 2011; 32(8):690–8. https://doi.org/10.1097/MNM.0b013e32834754f1 PMID: 21606885

41. Kaida H, Kawahara A, Hayakawa M, Hattori S, Kurata S, Fujimoto K, et al. The difference in relationship between 18F-FDG uptake and clinicopathological factors on thyroid, esophageal, and lung cancers. Nucl Med Commun. 2014; 35(1):36–43. https://doi.org/10.1097/MNM.0000000000000019 PMID: 24169686

42. Kaida H, Azuma K, Kawahara A, Yasunaga M, Kitasato Y, Hattori S, et al. The correlation between FDG uptake and biological molecular markers in pancreatic cancer patients. Eur J Radiol. 2016; 85(10):1804–10. https://doi.org/10.1016/j.ejrad.2016.08.007 PMID: 27666620

43. Kaida H, Azuma K, Toh U, Kawahara A, Sadashima E, Hattori S, et al. Correlations between dual-phase 18F-FDG uptake and clinicopathologic and biological markers of breast cancer. J Nucl Med. 2018; 21(1):35–42 PMID: 29550845

44. Kitaoka K, Hattori H, Fujisawa E, Shimada K, Tsuchida T, Kawahara A, et al. Correlation between GLUT-1 and vascular endothelial growth factor expression and 18F-FDG uptake in esophageal squamous cell cancer patients. Clin Nucl Med. 2012; 37(5):447–52. https://doi.org/10.1097/RLU.0b013e31823924bb PMID: 22475893

45. Kobayashi M, Kaida H, Kawahara A, Hattori S, Kurata S, Hayakawa K, et al. The relationship between GLUT-1 and vascular endothelial growth factor expression and 18F-FDG uptake in esophageal squamous cell cancer patients. Clin Nucl Med. 2012; 37(5):447–52. https://doi.org/10.1097/RLU.0b013e31823924bb PMID: 22475893

46. Kurokawa T, Yoshida Y, Kawahara K, Tsuchida T, Okazawa H, Fujibayashi Y, et al. Expression of GLUT-1 glucose transporter, cellular proliferation activity and grade of tumor correlate with [F-18] fluoro(deoxy)glucose uptake by positron emission tomography in epithelial tumors of the ovary. Int J Cancer. 2004; 109(4):846–57. https://doi.org/10.1002/jic.20057 PMID: 15027127

47. Kobayashi M, Kaida H, Kawahara A, Hattori S, Kurata S, Hayakawa K, et al. The relationship between GLUT-1 and vascular endothelial growth factor expression and 18F-FDG uptake in esophageal squamous cell cancer patients. Clin Nucl Med. 2012; 37(5):447–52. https://doi.org/10.1097/RLU.0b013e31823924bb PMID: 22475893

48. Lee DW, Chong GO, Lee YH, Hong DG, Cho YL, Jeong SY, et al. Role of SUVmax and GLUT-1 Expression in Determining Tumor Aggressiveness in Patients With Clinical Stage I Endometrioid Endometrial Cancer. Int J Gynecol Cancer. 2015; 25(5):843–9. https://doi.org/10.1097/IGC.000000000000301 PMID: 25347093

49. Li SJ, Guo W, Ren GX, Huang G, Chen T, Song SL. Expression of Glut-1 in primary and recurrent head and neck squamous cell carcinomas, and compared with 2-[18F]fluoro-2-deoxy-D-glucose accumulation in positron emission tomography. Br J Oral Maxillofac Surg. 2008; 46(3):180–6. https://doi.org/10.1016/j.ijoms.2007.11.003 PMID: 18093707
49. Mamede M, Higashi T, Kitaichi M, Ishizu K, Ishimori T, Nakamoto Y, et al. [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia. 2005; 7(4):369–79. PMID: 15967114

50. Marom EM, Aloia TA, Moore MB, Hara M, Herndon JE 2nd, Harpole DH Jr, et al. Correlation of FDG-PET imaging with Glut-1 and Glut-3 expression in early-stage non-small cell lung cancer. Lung Cancer. 2001; 33(2–3):99–107. PMID: 11551404

51. Miyawaki A, Ikeda R, Hijikoa H, Ishaia T, Ushiyama M, Nozoe E, Nakamura N. SUVmax of FDG-PET correlates with the effects of neoadjuvant chemoradiotherapy for oral squamous cell carcinoma. Oncol Rep. 2010; 23(5):1205–12. PMID: 20372831

52. Nguyen XC, Lee WW, Chung JH, Park SY, Sung SW, Kim YK, et al. FDG uptake, glucose transporter type 1, and Ki-67 expressions in non-small-cell lung cancer: correlations and prognostic values. Eur J Radiol. 2007; 62(2):214–9. https://doi.org/10.1016/j.ejrad.2006.12.008 PMID: 17239556

53. Park SG, Lee JH, Lee WA, Han KM. Biologic correlation between glucose transporters, hexokinase-II, Ki-67 and FDG uptake in malignant melanoma. Nucl Med Biol. 2012; 39(8):1167–72. https://doi.org/10.1016/j.nucmedbio.2012.07.003 PMID: 22901702

54. Paudyal B, Paudyal P, Oriuchi N, Tsumishia Y, Nakajima T, Endo K. Clinical implication of glucose transport and metabolism evaluated by 18F-FDG PET in hepatocellular carcinoma. Int J Oncol. 2008; 33(5):1047–54. PMID: 18949368

55. Song YS, Lee WW, Chung JH, Park SY, Kim YK, Kim SE. Correlation between FDG uptake and glucose transporter type 1 expression in neuroendocrine tumors of the lung. Lung Cancer. 2008; 61(1):54–60. https://doi.org/10.1016/j.lungcan.2007.11.012 PMID: 18191496

56. Suzawa N, Ito M, Qiao S, Uchida K, Takao M, Yamada T, Takeda K, Murashima S. Assessment of factors influencing FDG uptake in non-small cell lung cancer on PET/CT by investigating histological differences in expression of glucose transporters 1 and 3 and tumour size. Lung Cancer. 2011; 72(2):191–8. https://doi.org/10.1016/j.lungcan.2010.08.017 PMID: 20884076

57. Tateishi U, Yamaguchi U, Seki K, Terauchi T, Ara Y, Hasegawa T. Glut-1 expression and enhanced glucose metabolism are associated with tumour grade in bone and soft tissue sarcomas: a prospective evaluation by [18F]fluorodeoxyglucose positron emission tomography. Eur J Nucl Med Mol Imaging. 2006; 33(6):683–91. https://doi.org/10.1007/s00259-005-0044-8 PMID: 16506050

58. Taylor MD, Smith PW, Brix WK, Wick MR, Theodossakis N, Swenson BR, Kozower BD, Jones DR. Correlations between selected tumor markers and fluorodeoxyglucose maximal standardized uptake values in esophageal cancer. Eur J Cardiothorac Surg. 2009; 35(4):699–705. https://doi.org/10.1016/j.ejcts.2008.11.029 PMID: 19136271

59. Tian M, Zhang H, Nakasone Y, Mogi K, Endo K. Expression of Glut-1 and Glut-3 in untreated oral squamous cell carcinoma compared with FDG accumulation in a PET study. Eur J Nucl Med Mol Imaging. 2004; 31(1):5–12. https://doi.org/10.1007/s00259-003-1316-9 PMID: 14551748

60. Toba H, Kondo K, Sadohara Y, Otsuka H, Morimoto M, Kajura K, et al. 18F-fluorodeoxyglucose position emission tomography/computed tomography and the relationship between fluorodeoxyglucose uptake and the expression of hypoxia-inducible factor-1α, glucose transporter-1 and vascular endothelial growth factor in thymic epithelial tumours. Eur J Cardiothorac Surg. 2013; 44(2):e105–12. https://doi.org/10.1093/ejcts/ezt263 PMID: 23674658

61. van Berkel A, Rao JU, Kusters B, Demir T, Visser E, Mensenkamp AR, et al. Correlation between 18F-FDG PET and immunohistochemical markers of glucose uptake and metabolism in pheochromocytoma and paraganglioma. J Nucl Med. 2014; 55(8):1253–9. https://doi.org/10.2967/jnumed.114.137034 PMID: 24925884

62. Zhang L, Sun H, Du S, Xu W, Xin J, Guo Q. Evaluation of 18F-FDG PET/CT parameters for reflection of aggressiveness and prediction of prognosis in early-stage cervical cancer. Nucl Med Commun. 2018; 39(11):1045–52. https://doi.org/10.1097/MMN.0000000000000909 PMID: 30204642

63. Li-Ou Z, Hong-Zan S, Xiao-Xi B, Zhong-Wei C, Zai-Ming L, Jun X, Qi-Yong G. Correlation Between Tumor Glucose Metabolism and Multiparametric Functional MRI (IVIM and R2*) Metrics in Cervical Carcinoma: Evidence From Integrated 18F-FDG PET/MR. J Magn Reson Imaging. 2018 Nov 3. https://doi.org/10.1002/jmri.26557 PMID: 30390401

64. Yamada T, Uchida M, Kwang-Lee K, Kitamura N, Yoshimura T, Sasabe E, Yamamoto T. Correlation of metabolism/hypoxia markers and fluorodeoxyglucose uptake in oral squamous cell carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012; 113(4):464–71. https://doi.org/10.1016/j.tripleo.2011.04.006 PMID: 22676927

65. Yang HJ, Xu WJ, Guan YH, Zhang HW, Ding WQ, Rong L, et al. Expression of Glut-1 and HK-II in Pancreatic Cancer and Their Impact on Prognosis and FDG Accumulation. Transl Oncol. 2016; 9(6):583–91. https://doi.org/10.1016/j.tranon.2016.08.004 PMID: 27916293
66. Yen TC, See LC, Lai CH, Yah-Huei CW, Ng KK, Ma SY, et al. 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. J Nucl Med. 2004; 45(1):22–9. PMID: 14734665

67. Yoon SO, Jeon TJ, Park JS, Ryu YH, Lee JH, Yoo JS, et al. Analysis of the roles of glucose transporter 1 and hexokinase 2 in the metabolism of glucose by extrahepatic bile duct cancer cells. Clin Nucl Med. 2015; 40(3):e178–82. https://doi.org/10.1097/RLU.0000000000000640 PMID: 25608150

68. Zhao Z, Yoshida Y, Kurokawa T, Kyono Y, Mori T, Okazawa H. 18F-FES and 18F-FDG PET for differential diagnosis and quantitative evaluation of mesenchymal uterine tumors: correlation with immunohistochemical analysis. J Nucl Med. 2013; 54(4):499–506. https://doi.org/10.2967/jnumed.112.113472 PMID: 23471314

69. Zhao K, Yang SY, Zhou SH, Dong MJ, Bao YY, Yao HT. Fluorodeoxy glucose uptake in laryngeal carcinoma is associated with the expression of glucose transporter-1 and hypoxia-inducible-factor-1α and the phosphoinositide 3-kinase/protein kinase B pathway. Oncol Lett. 2014; 7(4):984–90. https://doi.org/10.3892/ol.2014.1877 PMID: 24944654

70. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMID: 19621072

71. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011; 155(8):529–36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009 PMID: 22007046

72. Chalkidou A, Landau DB, Odell EW, Cornelius VR, O’Dohe rty MJ, Marsden PK. Correlation between Ki-67 immunohistochemistry and 18F-fluorothymidine uptake in patients with cancer: A systematic review and meta-analysis. Eur J Cancer. 2012; 48(18):3499–513. https://doi.org/10.1016/j.ejca.2012.05.001 PMID: 22658807

73. Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM. Systematic reviews of diagnostic test accuracy. Ann Intern Med. 2008; 149(12):889–97. PMID: 19075208

74. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. Meta-DiSc: A software for meta-analysis of test accuracy data. BMC Medical Research Methodology. 2006; 6:31. https://doi.org/10.1186/1471-2288-6-31 PMID: 16836745

75. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials. 1986; 7(3):177–88. PMID: 3802833

76. Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol. 2001; 18(4):247–56. PMID: 11780753

77. Reske SN, Grillenberger KG, Glattling G, Port M, Hildebrandt M, Gansauge F, Beger HG. Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic carcinoma. J Nucl Med. 1997; 38(9):1344–8. PMID: 9293784

78. Rasche L, Angtuaco E, McDonald JE, Buros A, Stein C, Pawlyn C, Thanendrarajan S, et al. Low expression of hexokinase-2 is associated with false-negative FDG-positron emission tomography in multiple myeloma. Blood. 2017; 130(1):30–4. https://doi.org/10.1182/blood-2017-03-774422 PMID: 28432222

79. Maddalena F, Lettini G, Gallicchio R, Sisinni L, Simeon V, Nardelli A, et al. Evaluation of Glucose Uptake in Normal and Cancer Cell Lines by Positron Emission Tomography. Mol Imaging. 2015; 14:490–8. PMID: 26461458

80. Wang ZG, Yu MM, Han Y, Wu FY, Yang GJ, Li DC, Liu SM. Correlation of Glut-1 and Glut-3 expression with F-18 FDG uptake in pulmonary inflammatory lesions. Medicine (Baltimore). 2016; 95(48):e5462.

81. Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med. 2001; 42(10):1551–5. PMID: 11585872

82. Baek HJ, Chung JH, Park JH, Zo JI, Cheon GJ, Choi CW, et al. FDG-PET in Mediastinal Nodal Staging of Non-small Cell Lung Cancer: Correlation of False Results with Histopathologic Finding. Cancer Res Treat. 2003; 35(3):232–8. https://doi.org/10.4143/crt.2003.35.3.232 PMID: 26680941

83. Taira N, Atsumi E, Nakachi S, Takamatsu R, Yohena T, Kawasaki H, et al. Comparison of GLUT-1, SGLT-1, and SGLT-2 expression in false-negative and true-positive lymph nodes during the 18F-FDG PET/CT mediastinal nodal staging of non-small cell lung cancer. Lung Cancer. 2018; 123:30–35. https://doi.org/10.1016/j.lungcan.2018.06.004 PMID: 30089592

84. Kumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A. Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer. Breast Cancer Res Treat. 2006; 98(3):267–74. https://doi.org/10.1007/s10549-006-9159-2 PMID: 16555126
85. Cheran SK, Nielsen ND, Patz EF Jr. False-negative findings for primary lung tumors on FDG positron emission tomography: staging and prognostic implications. AJR Am J Roentgenol. 2004; 182 (5):1129–32. https://doi.org/10.2214/ajr.182.5.1821129 PMID: 15100107

86. Dong M, Liu J, Sun X, Xing L. Prognostic significance of SUV_max on pretreatment 18F-FDG PET/CT in early-stage non-small cell lung cancer treated with stereotactic body radiotherapy: A meta-analysis. J Med Imaging Radiat Oncol. 2017; 61(5):652–9. https://doi.org/10.1111/j.1754-9485.12599 PMID: 28266166

87. Huang Y, Feng M, He Q, Yin J, Xu P, Jiang Q, Lang J. Prognostic value of pretreatment 18F-FDG PET-CT for nasopharyngeal carcinoma patients. Medicine (Baltimore). 2017; 96(17):e6721.

88. Li YJ, Dai YL, Cheng YS, Zhang WB, Tu CQ. Positron emission tomography (18)F-fluorodeoxyglucose uptake and prognosis in patients with bone and soft tissue sarcoma: A meta-analysis. Eur J Surg Oncol. 2016; 42(8):1103–14. https://doi.org/10.1016/j.ejso.2016.04.056 PMID: 27189833

89. Kitajima K, Miyoshi Y, Yamano T, Odawara S, Higuchi T, Yamakado K. Prognostic value of FDG-PET and DWI in breast cancer. Ann Nucl Med. 2018; 32(1):44–53. https://doi.org/10.1007/s12149-017-1217-9 PMID: 29134565

90. Lee HW, Lee HM, Choi SE, Yoo H, Ahn SG, Lee MK, et al. The Prognostic Impact of Early Change in 18F-FDG PET SUV After Neoadjuvant Chemotherapy in Patients with Locally Advanced Breast Cancer. J Nucl Med. 2016; 57(8):1183–8. https://doi.org/10.2967/jnumed.115.166322 PMID: 27033896

91. Chen X, Lu P, Zhou S, Zhang L, Zhao JH, Tang JH. Predictive value of glucose transporter-1 and glucose transporter-3 for survival of cancer patients: A meta-analysis. Oncotarget. 2017; 8(8):13206–13. https://doi.org/10.18632/oncotarget.14570 PMID: 28266166

92. Zhao ZX, Lu LW, Qiu J, Li QP, Xu F, Liu BJ, et al. Glucose transporter-1 as an independent prognostic marker for cancer: a meta-analysis. Oncotarget. 2017; 9(2):2728–38. https://doi.org/10.18632/oncotarget.18964 PMID: 29416806

93. Li CX, Sun JL, Gong ZC, Lin ZQ, Liu H. Prognostic value of GLUT-1 expression in oral squamous cell carcinoma: A prisma-compliant meta-analysis. Medicine (Baltimore). 2016; 95(45):e5324.

94. Sharen G, Peng Y, Cheng H, Liu Y, Shi Y, Zhao J. Prognostic value of GLUT-1 expression in pancreatic cancer: results from 538 patients. Oncotarget. 2017; 8(12):19760–7. https://doi.org/10.18632/oncotarget.15035 PMID: 28176665

95. Yang J, Wen J, Tian T, Lu Z, Wang Y, Wang Z, et al. GLUT-1 overexpression as an unfavorable prognostic biomarker in patients with colorectal cancer. Oncotarget. 2017; 8(7):11788–96. https://doi.org/10.18632/oncotarget.14352 PMID: 28052033

96. Deng SM, Zhang W, Zhang B, Chen YY, Lu Z, Wang Y, et al. Correlation between the Uptake of 18F-Fluorodeoxyglucose (18F-FDG) and the Expression of Proliferation-Associated Antigen Ki-67 in Cancer Patients: A Meta-Analysis. PLoS One. 2015; 10(6):e0129028. https://doi.org/10.1371/journal.pone.0129028 PMID: 26038827

97. Koh YW, Lee SJ, Park SY. 18F-fluorodeoxyglucose positron emission tomography is correlated with the pathological necrosis and decreased microvessel density in lung adenocarcinomas. Ann Nucl Med. 2018 Oct 15. https://doi.org/10.1007/s12149-018-1309-1 PMID: 30324426

98. Shuren A, Meyer HJ, Wiencek A. Standardized Uptake Values Derived from 18F-FDG PET May Predict Lung Cancer Microvessel Density and Expression of Ki 67, VEGF, and HIF-1α but Not Expression of Cyclin D1, PCNA, EGFR, PD-L1, and p53. Contrast Media Mol Imaging. 2018;9:57929.

99. Masoud GN, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015; 5(5):378–89. https://doi.org/10.1016/j.apsb.2015.05.007 PMID: 26579469

100. Evans A, Bates V, Troy H, Hewitt S, Holbeck S, Chung YL, et al. Glut-1 as a therapeutic target: increased chemoresistance and HIF-1-independent link with cell turnover is revealed through COM-PARE analysis and metabolomic studies. Cancer Chemother Pharmacol. 2008; 61(3):377–93. https://doi.org/10.1007/s00280-007-0480-1 PMID: 17520257

101. Lai IL, Chou CC, Lai PT, Fang CS, Shirley LA, Yan R, et al. Targeting the Warburg effect with a novel glucose transporter inhibitor to overcome gemcitabine resistance in pancreatic cancer cells. Carcinogenesis. 2014; 35(10):2203–13. https://doi.org/10.1093/carcin/bgu124 PMID: 24879635

102. Zhang M, Jiang H, Zhang R, Xu H, Jiang H, Pan W, et al. Noninvasive evaluation of 18F-FDG/18F-FMISO-based Micro PET in monitoring hepatic metastasis of colorectal cancer. Sci Rep. 2018; 8(1):17832. https://doi.org/10.1038/s41598-018-36238-x PMID: 30546057