The Lonchaeidae family (lance flies) comprises an important group of fruit flies. Several species are associated with the decomposition of organic matter of plant origin. However, some species are considered of economic importance because they attack fruits and flower buds (McAlpine & Styskal 1982). Species of the genera Neosilba and Dasiops are reported as primary invaders of certain fruit trees, obtaining pest status for some plant species of Euphorbiaceae, Myrtaceae, Rutaceae, Sapotaceae and Passifloraceae (UchôA & Nicácio 2010; Raga et al. 2011; Gisloti et al. 2017; AdAime et al. 2017). Some lance fly species are polyphagous, and few species are known to be monophagous or oligophagous (Strikis 2011).

In around the State of São Paulo, Brazil, the distribution, infestation rate and infestation period of fruit flies (Tephritoidea) vary due to different agroecosystems, climatic diversity, peculiar phytophysiology and, the origin of the fruit sample (rural or urban region) (Raga et al. 2011).

Regional research is crucial to provide basic information for the management of insect pest populations (UchôA et al. 2002). Therefore, it is important to examine historical and current research data on lance flies (Lonchaeidae), their distribution and host plants to help understanding the population dynamics of this insect group insects and developing management strategies.

The first reports of Lonchaeidae associated with fruits in São Paulo occurred when Hempel (1901) associated Lonchaea glaberrima Wiedemann [Neosilba glaberrima (Wiedemann)] with passion fruit Passiflora sp. However, the main reports of association of lance flies with host fruits, occurred in the 1980s, when dozens of species of host fruits were listed for several Brazilian states, including São Paulo (Malavasi et al. 1980; Malavasi & Morgante 1980).

Here, after 30 years of random fruit collections in different regions of São Paulo, we compile the state records of lonchaeids, based on all available publications of plant hosts, monitoring, distribution, species descriptions, and unpublished records. The present study reinforces the biological diversity and the economic importance of Lonchaeidae species within superfamily Tephritoidea.

MATERIAL AND METHODS

An extensive search of available printed or digital publications on field-collected lance flies was carried out from 1980 to 2020. This search period was considered the resumption of scientific works on Lonchaeidae in São Paulo, after the taxon redefinition and description of many species.

For each publication, we provide the complete references on lance flies and their geographical distribution. Each study was categorized into two insect collection categories: fruit or trapping. This approach was used to relate the Lonchaeidae species with plant hosts. Data from traps helping to create specific maps. With the analysis of the data of all publications, a table of relation of lance fly/hosts and distribution maps were available.

We removed duplicate records from abstracts, conference proceedings and thesis. In addition to the list of records based on early publications, we add unpublished data of Lonchaeids recovered from plant samples collected in the Instituto Biológico, São Paulo, Brazil. In total, 18 species of Lonchaeidae, belonging to the genera Dasiops, Lonchaea and Neosilba were registered in São Paulo, and associated with 111 host plant species and 27 botanical families. New records are listed and geographical distribution is available by specific maps.

Keywords: Insecta; Tephritoidea; Neosilba; Dasiops; fruit hosts.
belonging to the genera *Dasiops*, *Lonchaea* and *Neosilba*. Currently, 111 host species of vonchaeids are identified, belonging to 27 botanical families (Table 1), from which 47 are introduced species (Table 1). Species of *Neosilba* are the most commonly lance flies found in São Paulo, where 15 species are reported: *N. glaberrima*, *Neosilba pendula* (Bezzi), *Neosilba zadolicha* McAlpine & Steyskal, *Neosilba certa* (Walker), *Neosilba dimidiata* (Curran), *Neosilba inesperata* Strikis & Prado, *Neosilba perezi* (Romero & Ruppel), *Neosilba laura* Strikis, *Neosilba bifida* Strikis & Prado, *Neosilba cornophallus* Strikis, *Neosilba pradoi* Strikis & Lorenz, *Neosilba parva* Hennig, *Neosilba bella* Strikis & Prado, *Neosilba delvechioi* Strikis and *Neosilba parameterolatus* Strikis. Only two *Dasiops* species were registered: *Dasiops inedulis* Steyskal and *Dasiops frieseni* Norrbom & McAlpine. Both species of *Dasiops* are associated with *Passiflora edulis* Sims. *Lonchaea* was exhibited only at the genus level according to the record of original paper.

Myrtaceae has the largest number of host plants of *Lonchaeidae*, followed by Rosaceae, Rutaceae, Fabaceae and Rubiaceae (Table 1). The botanical species with the greatest diversity of lance flies is *Eriobotrya japonica* (Thunb.) (Rosaceae), with 10 associated species (nine species of *Neosilba* and one *Lonchaea* sp.), followed by *Coffea* spp. with 9 species. *Neosilba zadolicha* is highly polyphagous species among Lonchaeids in São Paulo, where is associated with 75 hosts and 22 families.

The distribution of lonchaeids in São Paulo is represented in Figure 1. There are reports of lonchaeids in 99 municipalities of São Paulo. *Neosilba pendula*, *N. zadolicha*, *N. certa*, *N. inesperata* and *N. glaberrima* are the most widely distributed

Table 1. Lonchaeidae (Diptera: Tephritoidea) host plants (N = Native; I = Introduced) in São Paulo, Brazil.

Botanical Family (number of Lonchaeidae species)	Native Introduced	Lonchaeidae species	Reference
Anacardiaceae (4)			
Lithraea molleoides (Vell.) Engl.	N	*N. glaberrima*, *N. pendula*	RAGA et al. 2015
Mangifera indica L.	I	*N. zadolicha*	RAGA et al. 2015
Spondias dulcis Parkinson	I	*N. pendula*	RAGA et al. 2015
Spondias mombin L.	N	*N. certa*, *N. pendula*, *N. zadolicha*	GISLotti et al. 2017
Spondias purpurea L.	I	*N. pendula*, *N. zadolicha*	RAGA et al. 2015; GISLotti et al. 2017
Spondias tuberosa Arruda	N	*N. zadolicha*	GISLotti et al. 2017
Spondias venulosa (Engl.) Engl.	N	*N. zadolicha*	GISLotti et al. 2017
Annonaceae (4)			
Annona coriacea Mart.	N	*N. zadolicha*, *N. certa*	RAGA et al. 2015
Annona emarginata (Schldtl.) H. Rainer	N	*N. certa*	RAGA et al. 2015
Annona mucosa Jacq.	N	*N. zadolicha*, *N. certa*	RAGA et al. 2015
Annona reticulata L.	I	*N. zadolicha*	RAGA et al. 2015
Annona neoserica H. Rainer	N	*N. dimidiata*, *N. zadolicha*, *N. glaberrima*	RAGA et al. 2015
Annona squamosa L. x A. cherimola Mill.	I	*N. zadolicha*, *N. pendula*	RAGA et al. 2015
Annona sylhetica A. St.-Hil.	N	*N. zadolicha*	RAGA et al. 2015
Annona sylhetica A. St.-Hil.	N	*N. zadolicha*, *N. glaberrima*	GISLotti et al. 2017
Apocynaceae (1)			
Hancornia speciosa Gomes	N	*N. zadolicha*	GISLotti et al. 2017
Areaceae (2)			
Bactris gasipaes Kunth	N	*N. zadolicha*, *N. glaberrima*	GISLotti et al. 2017
Cactaceae (2)			
Pereskiopsis aculeata Mill.	I	*N. glaberrima*	New record
Hylocereus setaceus (Salm-Dyck ex DC.) Ralf Bauer	N	*N. zadolicha*, *N. glaberrima*	GISLotti et al. 2017
Caricaceae (1)			
Carica papaya L.	I	*Lonchaea* sp.	RAGA et al. 2015
Caryocaraceae (2)			
Caryocar brasiliensis A. St.-Hil.	N	*N. zadolicha*, *N. pendula*	GISLotti et al. 2017
Combretaceae (4)			
Terminalia catappa L.	I	*N. zadolicha*, *N. inesperata*, *N. certa*, *N. glaberrima*	RAGA et al. 2015
Cucurbitaceae (1)			
Cucurbita maxima Duchesne	N	*N. zadolicha*	RAGA et al. 2015
Cucurbita moschata Duchesne	I	*N. zadolicha*	RAGA et al. 2015

to be continued...
Botanical Family (number of Lonchaeidae species)	Native Introduced	Lonchaeidae species	Reference
C. moschata Duchesne x C. maxima Duchesne	I	N. zadolicha	RAGA et al. 2015
Ebenaceae (1)			
Diospyros kaki L.f.	I	N. zadolicha	RAGA et al. 2015
Euphorbiaceae (1)			
Manihot esculenta Crantz	N	N. perezi	LOURENÇÃO 1996; GISLOTI & PRADO 2011; RAGA et al. 2015
Fabaceae (9)			
Dalbergia brasiliensis Vogel	N	N. laura	STRIKIS 2011
Inga spp.	N	N. zadolicha; N. certa; N. glaberrima; N. pendula; N. laura; N. bifida; N. inesperata; N. cornphallus	STRIKIS 2011; RAGA et al. 2015
Inga vera Willd.	N	N. certa; N. pendula; N. pradoi; N. zadolicha	GISLOTI et al. 2017
Leucacena leucocephala (Lam.) de Wit	I	N. certa; N. pendula	RAGA et al. 2015
Swartzia langsdorffii Raddi	N	N. zadolicha; N. glaberrima; N. certa	RAGA et al. 2015
Ginkgoaceae (1)			
Ginkgo biloba L.	I	N. zadolicha	New record
Lauraceae (5)			
Persea americana Mill.	I	N. zadolicha; N. certa; N. glaberrima; N. pendula; N. parva	RAGA et al. 2015
Malpighiaceae (8)			
Bunchosia armeniaca (Cav.) DC.	I	N. pendula	RAGA et al. 2015
Byrsonima crassifolia (L.) Kunth	N	N. bella; N. glaberrima; N. inesperata; N. pendula; N. pradoi; N. zadolicha	GISLOTI et al. 2017
Malpigia emarginata DC.	I	N. pendula; N. inesperata; N. zadolicha; N. certa; N. cornphallus; N. glaberrima; N. perezi	STRIKIS & Lerena 2009; RAGA et al. 2015; GISLOTI et al. 2017
Malvaceae (1)			
Gossypium hirsutum L.	I	N. zadolicha	RAGA et al. 2015
Moraceae (6)			
Ficus carica L.	I	N. certa; N. zadolicha; N. glaberrima; N. bifida; N. cornphallus	RAGA et al. 2015
Ficus sp.	N	N. certa; N. pendula; N. zadolicha	RAGA et al. 2015
Morus nigra L.	I	N. zadolicha	RAGA et al. 2015
Musaceae (1)			
Musa x paradisiaca L. (cv. Nanica)	I	N. zadolicha	RAGA et al. 2015
Myrtaceae (11)			
Acca sellowiana (O. Berg) Burret	N	N. zadolicha	GISLOTI et al. 2017
Campomanesia auera O. Berg	N	N. pradoi	GISLOTI et al. 2017
Campomanesia guazumifolia (Cambess.) O. Berg	N	N. pradoi; N. zadolicha	GISLOTI et al. 2017
Campomanesia phaea (O. Berg.) Landrum	N	N. pradoi; N. zadolicha	GISLOTI et al. 2017
Eugenia brasiliensis Lam.	N	Neosilba sp.; N. pradoi; N. zadolicha	RAGA et al. 2015; GISLOTI et al. 2017
Eugenia dyssenterica DC.	N	N. inesperata; N. pendula; N. zadolicha	GISLOTI et al. 2017
Eugenia involucrata DC.	N	N. certa; N. pradoi; N. laura; N. pendula; N. zadolicha	RAGA et al. 2015; GISLOTI et al. 2017
Eugenia sellol B. D. Jacks.	N	N. pendula; N. zadolicha	GISLOTI et al. 2017
Eugenia leiptoni D. Legrand	N	N. glaberrima; N. zadolicha	RAGA et al. 2015
Eugenia pitanga (O. Berg) Nied.	N	N. zadolicha	GISLOTI et al. 2017
Eugenia pyriformis Cambess.	N	N. zadolicha; N. certa; N. pendula; N. pradoi; N. inesperata; N. laura	RAGA et al. 2015; GISLOTI et al. 2017
Eugenia lambertiana DC.	N	N. pendula; N. inesperata; N. zadolicha; N. bella	RAGA et al. 2015
Eugenia stipitata McVaugh	N	N. bella; N. pendula	GISLOTI et al. 2017

to be continued...
Botanical Family (number of Lonchaeidae species)	Native Introduced	Lonchaeidae species	Reference
Eugenia uniflora L.	N	N. bella; N. pendula; N. inesperata; N. zadolicha	RAGA et al. 2015; GISLOTI et al. 2017
Myrciaria dubia (Kunth) McVaugh	N	N. zadolicha	GISLOTI et al. 2017
Plinia cauliflora (Mart.) Kausel	N	N. certa	RAGA et al. 2015
Myrciaria glazioviana (Kiaersk.) G. M. Barroso ex Sobral	N	N. inesperata; N. pendula; N. certa	RAGA et al. 2015
Plinia edulis (Veit.) Sobral	N	N. bifida	RAGA et al. 2015
Psidium cattleianum Afzel. ex Sabine	N	N. certa; N. inesperata; N. pendula; N. pradoi; N. bifida; N. dimidiata; N. zadolicha	RAGA et al. 2015; GISLOTI et al. 2017
Psidium guajava L.	N	N. zadolicha; N. pendula; N. certa; N. glaberrima; N. bifida; N. cornuphallus; N. inesperata; N. bella; N. dimidiata	RAGA et al. 2015; GISLOTI et al. 2017
Psidium guineense Sw.	N	N. pendula; N. zadolicha	GISLOTI et al. 2017
Syzygium jambos (L.) Alston	I	N. pendula; N. zadolicha	RAGA et al. 2015
Syzygium samarangense (Blume) Merr. & L. M. Perry	I	N. pendula; N. certa	RAGA et al. 2015
Oxalidaceae (6)			
Averrhoa carambola L.	I	N. certa; N. inesperata; N. pendula; N. glaberrima; N. bella	RAGA et al. 2015
Passifloraceae (7)			
Passiflora alata Curtis	N	N. zadolicha; N. glaberrima; N. certa; Lonchaea sp.; Dasiops inedulis	RAGA et al. 2015
Passiflora edulis Sims	N	N. zadolicha; N. certa; N. inesperata; Lonchaea sp.; Dasiops inedulis; D. fieseni	RAGA et al. 2015
Rhamnaceae			
Ziziphus joazeiro Mart.	N	N. pendula	RAGA et al. 2015; GISLOTI et al. 2017
Rosaceae (10)			
Eriobotrya japonica (Thunb.) Lindl.	I	N. pendula; N. certa; N. zadolicha; N. glaberrima; N. inesperata; N. bella; N. bifida; N. pradoi; N. cornuphallus; Lonchaea sp.	STRIKS & PRADO 2005; STRIKS & PRADO 2009; RAGA et al. 2015
Malus domestica Borkh.	I	N. zadolicha; N. certa; N. pendula	RAGA et al. 2015
Prunus mume (Siebold) Siebold & Zucc.	I	N. certa	RAGA et al. 2015
Prunus persica (L.) Batsch.	I	N. zadolicha; N. certa; N. pendula; N. inesperata; N. glaberrima; N. bifida; Lonchaea sp.	RAGA et al. 2015
Prunus salicina Lindl.	I	N. certa; N. pendula; N. inesperata	RAGA et al. 2015
Pyrus communis L.	I	N. certa	RAGA et al. 2015
Rubus ulicifolius Poir.	N	N. inesperata; N. pendula	GISLOTI et al. 2017
Rubus sp.	N	N. zadolicha; N. pendula; N. certa	RAGA et al. 2015
Rubiaceae (9)			
Coffea spp.	I	N. pendula; N. zadolicha; N. inesperata; N. bella; N. certa; N. bifida; N. laura; N. delvechioi; Lonchaea sp.	RAGA et al. 1997; STRIKS 2011; RAGA et al. 2015
Rutaceae (9)			
Citrus x aurantium L.	I	N. zadolicha; N. glaberrima	RAGA et al. 2015
Citrus x microcarpa Bunge		N. delvechioi	STRIKS 2011
Citrus limon (L) Osbeck	I	N. zadolicha; N. glaberrima; N. pendula; N. certa	RAGA et al. 2015
Citrus mitis Blanco	I	N. pendula; N. glaberrima; N. zadolicha; N. certa; N. laura; N. inesperata	RAGA et al. 2015
Citrus reticulata Blanco cv. Ponkan	I	N. zadolicha; N. pendula; N. inesperata	RAGA et al. 2015
Citrus reticulata Blanco cv. Cravo	I	N. zadolicha; N. glaberrima; N. pradoi; N. parva	RAGA et al. 2015
C. reticulata Blanco x C. sinensis (L) Osbeck	I	N. zadolicha; N. certa	RAGA et al. 2015
Citrus sinensis (L) Osbeck	I	N. zadolicha; N. glaberrima; N. certa; N. pendula; N. inesperata; N. bifida	RAGA et al. 1997; RAGA et al. 2015

to be continued...
Table 1. Continue...

Botanical Family (number of Lonchaeidae species)	Native Introduced	Lonchaeidae species	Reference
Fortunella sp.	I	*N. zadolicha;* *N. certa;* *N. pendula*	RAGA et al. 2015
Salicaceae (2)			
Doyyalis abyssinica (A. Rich) Warb.	X	*N. zadolicha;* *N. pendula*	New records
Doyyalis hebecarpa (Gardner) Warb.	I	*N. zadolicha;* *N. pendula*	RAGA et al. 2015
Sapotaceae (7)			
Chrysophyllum cainito L.	I	*N. zadolicha;* *N. pendula*	RAGA et al. 2015
Chrysophyllum mexicanum Brandegee	I	*N. zadolicha*	RAGA et al. 2015
Manilkara zapota (L.) P. Royen	I	*N. zadolicha*	RAGA et al. 2015
Mimusops balata (Aubl.) C. F. Gaertn.	I	*N. glaberrima;* *N. certa*	RAGA et al. 2015
Pouteria caimito (Ruiz & Pav.) Radlk.	N	*N. zadolicha;* *N. glaberrima;* *N. pendula;* *N. bella;* *N. certa*	RAGA et al. 2015; GISLOTI et al. 2017
Pouteria torta (Mart.) Radlk.	N	*N. dimidiata;* *N. zadolicha;* *N. glaberrima;* *N. paramerolatus*	RAGA et al. 2015
Solanaceae (8)			
Capsicum sp.	I	*N. glaberrima;* *N. certa;* *N. zadolicha;* *N. pendula;* *N. inesperata;* *N. laura*	RAGA et al. 2015
Capsicum annuum L.	I	*N. parva;* *N. zadolicha;* *N. certa;* *N. glaberrima;* *N. pendula*	RAGA et al. 2015
Mandragora officinarum L.	I	*Neosilba* sp.	RAGA et al. 2015
Solanum aethiopicum L.	I	*N. zadolicha;* *N. parva;* *N. certa;* *N. pendula;* *N. glaberrima;* *N. pradoi;* *N. inesperata*	STRIKIS & PRAIO 2005; RAGA et al. 2015
Solanum lycopersicum L.	I	*N. zadolicha;* *N. certa*	RAGA et al. 2015
Solanum lycopersicum var. cerasiforme	I	*N. certa;* *N. parva*	New records
Solanum mammosum L.	N	*N. zadolicha;* *N. certa;* *N. parva*	RAGA et al. 2015
Solanum melongena L.	N	*N. zadolicha;* *N. parva;* *N. glaberrima*	STRIKIS & PRAIO 2005; RAGA et al. 2015
Solanum variabile Mart.	N	*N. inesperata*	RAGA et al. 2015
Verbenaceae (4)			
Citharexylum myrianthum Cham.	N	*N. pendula;* *N. cornuphalus;* *N. bifida;* *N. bella.*	STRIKIS 2011; RAGA et al. 2015

in the state, where they were registered on 64, 59, 40, 32 and 26 municipalities, respectively.

DISCUSSION

Until the 1980s, lance flies were neglected and often discarded in surveys of frugivorous flies in Brazil, due to a lack of taxonomic knowledge and, mainly because they were not considered fruit pests (GATTIELI et al. 2008). There has been a significant increase in the number of studies related to the Lonchaeidae family since the 1990s.

RAGA et al. (2011) recovered Lonchaeidae from the majority of Tephritidae host plants collected in São Paulo, and concluded that it is not an opportunistic group, although fruits with previous infestation by tephritids showed physical-chemistry changes and facilitate further lonchaeid infestation.

An extensive survey of fruit samples in 94 municipalities of São Paulo was performed by RAGA et al. (2015), totalling 113 botanical species related to 31 plant families. Lonchaeidae species were found in 77 plant species, corresponding to 68% of the plant species collected. GISLOTI et al. (2017) sampled fruits from 35 species and found that almost 90% of the sampled plants were colonized by Neosilba species. Although most of the bibliography mentioned in the present study recorded the occurrence of species of lonchaeids in plants of economic importance, some native botanical species were sampled in places bordering the conservation areas.

Neosilba zadolicha, *N. pendula,* *N. inesperata* and *N. glaberrima* are frequently recovered in fruit samples (UCHOA et al. 2012; LEMOS et al. 2015; RAGA et al. 2015). All mentioned species occur in São Paulo all year long (RAGA et al. 2015). Neosilba perezi occurs in cassava sprouts (LOURENÇO et al. 1996; GISLOTI & PRAIO 2011). Polyphagous species have a wider geographic distribution than species considered to be specialists, in many cases exhibit niche overlap, and many species can infest the same host (MALAVASI & MORGANTE 1980; RAGA et al. 2011). The polyphagia of Neosilba pendula and *N. zadolicha* represents high adaptation to introduced plant species, being responsible for their wide geographic distribution in the state of São Paulo (Figure 1). Twenty-four plant species reported here are both hosts of *N. zadolicha* and *Ceratitis capitata* (Wied.) (Tephritidae) in São Paulo. Neosilba zadolicha exhibits dominance similar to *C. capitata* in urban areas (RAGA et al. 2011).

Lonchaeidae’s knowledge in São Paulo is not yet consolidated. It is necessary to continue efforts to learn about the diversity of Lonchaeidae species, their host plants, and specially the economic losses in horticulture crops, as well as an increase in studies on biology and behaviour. The data from the present study emphasize the relevance of Lonchaeidae species to the main crops of economic importance in São Paulo.
Figure 1. The known distribution of *Neosilba* and *Dasiops* species (Lonchaeidae) in São Paulo, Brazil.
REFERENCES

Adaime, R, MDSM Sousa, CR Jesus-Barros, EDGD Deus, JF Pereira, PC Strikis & MF Souza-Filho, 2017. Frugivorous flies (Diptera: Tephritidae, Lonchaeidae), their host plants, and associated parasitoids in the extreme north of Amapá State, Brazil. Florida Entomologist, 100: 316-324. DOI: https://doi.org/10.1653/024.100.0229

Gattelli, T, FF Silva, RNMLR Redaelli & FKD Soglio, 2008. Moscas frugívoras associadas a mirtáceas e laranjeira “Céu” na região do Vale do Rio Cai, Rio Grande do Sul, Brasil. Ciência Rural, 38: 236-239. DOI: https://doi.org/10.1590/S0103-84782008000100038

Gisloti, LJ, MA Uchoa & A Prado, 2017. New records of fruit trees as host for Neosilba species (Diptera, Lonchacidae) in southeast Brazil. Biota Neotropica, 17: 1-6. DOI: https://doi.org/10.1590/1676-0611-bn-2016-0213

Hempel, A, 1901. Notas sobre moscas das frutas. Boletim de Agricultura, 2: 162-167.

Lemos, LN, R Adaime, SV Costa-Neto, EG Deus, CR Jesus-Barros & PC Strikis, 2015. New findings on Lonchacidae (Diptera: Tephritoidea) in the Brazilian Amazon. Florida Entomologist, 98: 1227-1237. DOI: https://doi.org/10.1653/024.098.0433

Lourenço, AL, JO Lorenzi & GMB Ambrosano, 1996. Comportamento de clones de mandioca em relação a infestação por Neosilba perezi (Romero & Ruppell) (Diptera: Lonchaeidae). Scientia Agricola, 53: 304-308. DOI: https://doi.org/10.1590/S0103-90161996000300004

Uchôa, MA, I Oliveira, RMS Molina & RA Zucchi, 2002. Species diversity of frugivorous flies (Diptera: Tephritoidea) from hosts in the cerrado of the state of Mato Grosso do Sul, Brazil. Neotropical Entomology, 31: 515-524. DOI: https://doi.org/10.1590/S1519-566X2002000400002

Uchôa, MA, CS Caires, JN Nicácio, M Duarte, 2012. Frugivory of Neosilba species (Diptera: Lonchaeidae) and Thepytus echeta (Lepidoptera: Lycaenidae) on Psittacanthus (Santalales: Loranthaceae) In Ecotonal Cerrado-South Pantanal, Brazil. Florida Entomologist, 95: 630-640. DOI: https://doi.org/10.1653/024.095.0314
