Classical Yang-Baxter equation from supergravity

Bakhmatov I., Kelekci O., Ó Colgáin E., Sheikh-Jabbari M.
Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2018 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the »https://creativecommons.org/licenses/by/4.0/» Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP 3. We promote the open-closed string map, originally formulated by Seiberg & Witten, to a solution generating prescription in generalized supergravity. The approach hinges on a knowledge of an antisymmetric bivector Θ, built from antisymmetric products of Killing vectors, which is specified by the equations of motion. In the cases we study, the equations of motion reproduce the classical Yang-Baxter equation (CYBE) and Θ is the most general r-matrix solution. Our work generalizes Yang-Baxter deformations to non-coset spaces and unlocks gravity as a means to classify r-matrix solutions to the CYBE.

http://dx.doi.org/10.1103/PhysRevD.98.021901

References

[1] J. Ehlers, Les Thories Relativistes de la Gravitation (CNRS, Paris, 1959).
[2] R. P. Geroch, A method for generating solutions of Einstein's equations, J. Math. Phys. 12, 918 (1971). JMAPAQ 0022-2488 10.1063/1.1665681
[3] T. H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194, 59 (1987). PYLBAJ 0370-2693 10.1016/0370-2693(87)90769-6
[4] T. H. Buscher, Path integral derivation of quantum duality in nonlinear sigma models, Phys. Lett. B 201, 466 (1988). PYLBAJ 0370-2693 10.1016/0370-2693(88)90602-8
[5] I. Bakas, O(2,2) transformations and the string Geroch group, Nucl. Phys. B428, 374 (1994). NUPBBO 0550-3213 10.1016/0550-3213(94)90205-4
[6] I. Bakas, Space-time interpretation of s duality and supersymmetry violations of t duality, Phys. Lett. B 343, 103 (1995). PYLBAJ 0370-2693 10.1016/0370-2693(94)01441-E
[7] M. Gasperini, R. Ricci, and G. Veneziano, A problem with non-Abelian duality?, Phys. Lett. B 319, 438 (1993). PYLBAJ 0370-2693 10.1016/0370-2693(93)91748-C
[8] E. Alvarez, L. Alvarez-Gaume, and Y. Lozano, On non-Abelian duality, Nucl. Phys. B424, 155 (1994). NUPBBO 0550-3213 10.1016/0550-3213(94)00426-F
[9] S. Elitzur, A. Giveon, E. Rabinovici, A. Schwimmer, and G. Veneziano, Remarks on non-Abelian duality, Nucl. Phys. B435, 147 (1995). NUPBBO 0550-3213 10.1016/0550-3213(94)90093-0
[10] X. C. de la Ossa and F. Quevedo, Duality symmetries from nonAbelian isometries in string theory, Nucl. Phys. B403, 377 (1993). NUPBBO 0550-3213 10.1016/0550-3213(93)90041-M
[11] A. Giveon and M. Rocek, On non-Abelian duality, Nucl. Phys. B421, 173 (1994). NUPBBO 0550-3213 10.1016/0550-3213(94)90230-5
[12] C. Klimcik and P. Severa, Dual non-Abelian duality and the Drinfeld double, Phys. Lett. B 351, 455 (1995). PYLBAJ 0370-2693 10.1016/0370-2693(95)00451-P
[13] J. Shelton, W. Taylor, and B. Wecht, Nongeometric flux compactifications, J. High Energy Phys. 10 (2005) 085. JHEPFG 1029-8479 10.1088/1126-6708/2005/10/085

[14] C. Klimcik, Yang-Baxter sigma models and dS/AdS T duality, J. High Energy Phys. 12 (2002) 051. JHEPFG 1029-8479 10.1088/1126-6708/2002/12/051

[15] C. Klimcik, On integrability of the Yang-Baxter sigma-model, J. Math. Phys. 50, 043508 (2009). JMAPAQ 0022-2488 10.1063/1.3162422

[16] F. Delduc, M. Magro, and B. Vicedo, An Integrable Deformation of the (Equation presented) Superstring Action, Phys. Rev. Lett. 112, 051601 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.051601

[17] I. Kawaguchi, T. Matsumoto, and K. Yoshida, Jordanian deformations of the (Equation presented) superstring, J. High Energy Phys. 04 (2014) 153. JHEPFG 1029-8479 10.1007/JHEP04(2014)153

[18] G. Arutyunov, R. Borsato, and S. Frolov, S-matrix for strings on (Equation presented)-deformed (Equation presented) superstring, J. High Energy Phys. 04 (2014) 002. JHEPFG 1029-8479 10.1007/JHEP04(2014)002

[19] G. Arutyunov, R. Borsato, and S. Frolov, Puzzles of (Equation presented)-deformed (Equation presented), J. High Energy Phys. 12 (2015) 049. JHEPFG 1029-8479 10.1007/JHEP12(2015)049

[20] G. Arutyunov, S. Frolov, B. Hoare, R. Roiban, and A. A. Tseytlin, Scale invariance of the (Equation presented)-deformed (Equation presented) superstring, T-duality and modified type II equations, Nucl. Phys. B903, 262 (2016). NUPBBO 0550-3213 10.1016/j.nuclphysb.2015.12.012

[21] L. Wulff and A. A. Tseytlin, Kappa-symmetry of superstring sigma model and generalized 10d supergravity equations, J. High Energy Phys. 06 (2011) 061. JHEPFG 1029-8479 10.1007/JHEP06(2011)061

[22] D. Andriot, M. Larfors, D. Lust, and P. Patalong, A ten-dimensional action for non-geometric fluxes, J. High Energy Phys. 09 (2011) 134. JHEPFG 1029-8479 10.1007/JHEP09(2011)134

[23] D. Andriot, O. Hohm, M. Larfors, D. Lust, and P. Patalong, A Geometric Action for Non-Geometric Fluxes, Phys. Rev. Lett. 108, 261602 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.261602

[24] S. Hellerman, D. Orlando, and S. Reffert, String theory of the Omega deformation, J. High Energy Phys. 01 (2012) 148. JHEPFG 1029-8479 10.1007/JHEP01(2012)148

[25] S. Hellerman, D. Orlando, and S. Reffert, The omega deformation from string and M-theory, J. High Energy Phys. 07 (2012) 061. JHEPFG 1029-8479 10.1007/JHEP07(2012)061

[26] G. W. Moore, N. Nekrasov, and S. Shatashvili, Integrating over Higgs branches, Commun. Math. Phys. 209, 97 (2000). CMPHAY 0010-3616 10.1007/PL00005525

[27] N. A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7, 831 (2003). 1095-0761 10.4310/ATMP.2003.v7.n5.a4

[28] T. Araujo, I. Bakhmatov, E. Ó Colgáin, J. Sakamoto, M. M. Sheikh-Jabbari, and K. Yoshida, Yang-Baxter (Equation presented)-models, conformal twists, and noncommutative Yang-Mills theory, Phys. Rev. D 95, 105006 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.105006

[29] T. Araujo, I. Bakhmatov, E. Ó Colgáin, J. Sakamoto, M. M. Sheikh-Jabbari, and K. Yoshida, Conformal twists, Yang-Baxter (Equation presented)-models and holographic noncommutativity, J. Phys. A 51, 235401 (2018). JPAMB5 1751-8113 10.1088/1751-8121/aac195

[30] T. Araujo, E. Ó Colgáin, J. Sakamoto, M. M. Sheikh-Jabbari, and K. Yoshida, (Equation presented) in generalized supergravity, Eur. Phys. J. C 77, 739 (2017). EPCCFFB 1434-6044 10.1140/epjc/s10052-017-5316-5

[31] D. N. Page, Classical stability of round and squashed seven spheres in eleven-dimensional supergravity, Phys. Rev. D 28, 2976 (1983). PRVDAQ 0550-2649 10.1103/PhysRevD.28.2976

[32] D. Marolf, Chern-Simons terms and the three notions of charge, arXiv:hep-th/0006117.

[33] I. Bakhmatov, E. Ó Colgáin, M. M. Sheikh-Jabbari, and H. Yavartanoo, Yang-Baxter deformations beyond coset spaces (a slick way to do TsT), arXiv:1803.07498.

[34] T. Araujo, E. Ó Colgáin, and H. Yavartanoo, Embedding the modified CYBE in supergravity, arXiv:1806.02602.

[35] M. Jimbo, Introduction to the Yang-Baxter equation, Int. J. Mod. Phys. A 04, 3759 (1989). IMPAEF 0217-751X 10.1142/S0217751X89001503

[36] J. H. H. Perk and H. Au-Yang, Yang-Baxter equations, Encycl. Math. Phys. 5, 465 (2006).

[37] V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk Ser. Fiz. 283, 1060 (1985).

[38] V. G. Drinfeld Sov. Math. Dokl. 32, 254 (1985). 0197-6788

[39] M. Chaichian, P. P. Kulish, K. Nishijima, and A. Tureanu, On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B 604, 98 (2004). PYLBG 0370-2693 10.1016/j.physletb.2004.10.045

[40] O. Lunin and J. M. Maldacena, Deforming field theories with (Equation presented) global symmetry and their gravity duals, J. High Energy Phys. 05 (2005) 103. JHEPFG 1029-8479 10.1088/1126-6708/2005/05/033
[42] S. F. Hassan, T duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys. B568, 145 (2000). NUPBBO 0550-3213 10.1016/S0550-3213(99)00684-7
[43] K. Sfetsos and D. C. Thompson, On non-abelian T-dual geometries with Ramond fluxes, Nucl. Phys. B846, 21 (2011). NUPBBO 0550-3213 10.1016/j.nuclphysb.2010.12.013
[44] R. Borsato and L. Wulff, Target space supergeometry of (Equation presented) and (Equation presented)-deformed strings, J. High Energy Phys. 10 (2016) 045. JHEPFG 1029-8479 10.1007/JHEP10(2016)045
[45] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevD.98.021901 for the EOMs of generalized supergravity, an explanation of the Classical Yang-Baxter Equation and the details of the (Equation presented) deformation.
[46] H. Kyono, S. Okumura, and K. Yoshida, Deformations of the Almheiri-Polchinski model, J. High Energy Phys. 03 (2017) 173. JHEPFG 1029-8479 10.1007/JHEP03(2017)173
[47] A. Stolin, On rational solutions of Yang-Baxter equation for (Equation presented), Math. Scand. 69, 57 (1991). MTSCAN 0025-5521 10.7146/math.scand.a-12369
[48] A. Stolin, Rational solutions of the classical Yang-Baxter equation and quasi Frobenius Lie algebras, J. Pure Appl. Algebra 137, 285 (1999). JPAAA2 0022-4049 10.1016/S0022-4049(97)00217-X
[49] A. Stolin, Constant solutions of Yang-Baxter equation for (Equation presented) and (Equation presented), Math. Scand. 69, 81 (1991). MTSCAN 0025-5521 10.7146/math.scand.a-12370
[50] C. Hull and B. Zwiebach, Double field theory, J. High Energy Phys. 09 (2009) 099. JHEPFG 1029-8479 10.1088/1126-6708/2009/09/099
[51] W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47, 5453 (1993). PRVDAQ 0556-2821 10.1103/PhysRevD.47.5453
[52] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48, 2826 (1993). PRVDAQ 0556-2821 10.1103/PhysRevD.48.2826
[53] F. Hassler, The topology of double field theory, arXiv:1611.07978.
[54] J. i. Sakamoto, Y. Sakatani, and K. Yoshida, Homogeneous Yang-Baxter deformations as generalized diffeomorphisms, J. Phys. A 50, 415401 (2017). JPAMB5 1751-8113 10.1088/1751-8121/aa8896