Investigations in the boletes (Boletaceae) of southeastern USA: four novel species and three novel combinations

Farid A, Bessette AE, Bessette AR, Bolin JA, Kudzma LV, Franck AR, and Garey JR

Abstract

The Boletaceae is the largest family of fleshy fungi in the Boletales. Despite the extensive history of work in the Boletaceae in North America, novel species and genera are continually being described. Multigene molecular phylogenetic analyses of five loci were combined with thorough morphological studies to investigate the taxonomy of several boletes from the southeastern USA. Based on our results, we describe four new species: *Aureoboletus pseudoauriporus*, *Cyanoboletus bessettei*, *Hemileccinum floridanum*, and *Xerocomellus bolinii*. We also propose three combinations to reflect the results of our molecular analyses: *Cyanoboletus cyanetinctus* comb. nov., a bolete that is widespread across the eastern USA, *C. cyanetinctus* f. *reticulatus*, and *Lannmaoa sublurida*, a rarely-documented bolete that is so far known only from Florida.

Keywords – Boletales – ectomycorrhizal – phylogeny

Introduction

The boletes of the southeastern USA are diverse but poorly studied. Perhaps the first taxonomic work on the southeastern boletes began with Thomas Walter’s (Walter 1788) *Boletus dimidiatus*, nom. illeg. Several more southeastern boletes were described by von Schweinitz (1822) and Berkeley & Curtis (1853). Peck and Frost were both prolific with bolete studies in the late 1800s (Halling 1983, Both & Ortiz-Santana 2010). Murrill (1909) published the first monograph of the boletes of North America, although after its publication, he described many more species of boletes (Halling 1986), especially from Florida (Weber 1961, Halling 1986). Coker & Beers (1943) published a monograph of the boletes of North Carolina. Rolf Singer published a monograph on the boletes of Florida (Singer 1945a, b, 1947), which treated species common to the southeastern USA, endemic to Florida, and extralimital species from around the globe. Later, Murrill (1948) published a summation of Florida boletes, one of the last broad treatments of the boletes of the region. Other works broadly focused on boletes in the southeastern USA included Thiers (1963) and Grand (1970a, b, c). Both (1993) published a compendium of all boletes described in North America, providing diagnostic features as well as taxonomic notes on each species. Despite the extensive history and monographic treatments, novel species of boletes from the southeastern USA are continually being described...
Molecular phylogenetic analyses have redefined our understanding of the boletes. Once considered to consist of only a few genera, the Boletaceae has now increased to over 70 genera (Nuhn et al. 2013, Wu et al. 2014, 2016). In part, this expansion is due to the recognition of sequestrate (Yang et al. 2006, Smith et al. 2015, Castellano et al. 2016, Vadthanarat et al. 2018, Wu et al. 2018) and new lamellate (Farid et al. 2018, Zhang & Li 2018) genera. This increase of genera is also due to molecular phylogenetic analyses allowing taxonomists to better recognize synapomorphies, as many of the traditional characters used to classify the boletes were homoplastic. The broad relationships between genera are also better understood with analyses of molecular data. An analysis of 290 operational taxonomic units (OTUs) across 59 genus-level clades by Wu et al. (2014) also revealed six subfamily-level recognitions (Xerocomoideae, Leccinoideae, Boletoideae, Austroboletoideae, Zangioidae, and Chalcioporoideae), although some genera did not resolve to any of the known subfamilies (Solioccasus Trappe, Osmundson, Manfr. Binder, Castellano & Halling, Bothia Halling, T.J. Baroni & Manfr. Binder, Gymnogaster J.W. Cribb, Baorangia G. Wu & Zhu L. Yang, and Pseudoboletus Šutara), including one large grouping of genera (the Pulveroboletus group).

Boletes serve vital ecological roles as ectomycorrhizae of the primary forest trees (Quercus and Pinus) of the southeastern USA, yet the extent of their diversity in this region is largely unknown. The aim of this paper is to update our understanding of boletes in southeastern North America, through multigene phylogenetic analyses. The name Boletus cyanetinctus is resurrected for a species closely related to Cyanoboletus pulverulentus (Opat.) Gelardi, Vizzini & Simonini. This paper provides the first phylogenetic analyses of a rarely documented bolete, Suillellus sublurid Murrill, which is transferred to Lanmaoa. We also describe four novel species, including one of Xerocomellus, an uncommon species of Cyanoboletus, a species that resembles Hemileccinum subglabripes (Peck) Halling, and one that resembles Aureoboletus auriporus (Peck) Pouzar. We also generated protein-coding sequences from the epitype of Pulchroboletus rubricitrinus, as well as from specimens of western Xerocomellus. Finally, we generated sequences from an herbarium specimen of Exsudoporus floridanus from Florida and discuss the generic concepts of Exsudoporus and Butyriboletus.

Materials & Methods

Sampling and morphological studies
Specimens were collected in situ between 2015–2020 and deposited at the University of South Florida Herbarium (USF). Additional collections were obtained on loan from Florida Museum of Natural History (FLAS) for study. Macroscopic descriptions were made using fresh basidiomes. Micromorphological features were observed with a phase contrast microscope (AmScope, Irvine, CA, USA). Distilled H₂O, lactoglycerol, KOH, and Phloxine B were used to rehydrate and stain sections (Singer 1986). Measurements were made at 1000 × with a calibrated ocular micrometer in Piximètre 5.9 R 1532 (http://piximetre.fr). Basidiospore dimensions are reported as length by width, with each measurement reported as the minimum, the average minus the standard deviation, the average plus the standard deviation, and the maximum. Spore dimensions are followed by the number of spores counted, N, and the average quotient mean, Q, where Q is the average length divided by the average width. Scanning Electron Microscopy (SEM) was performed at the Electron Microscopy Core Facility at the University of South Florida on an Aquila Hybrid Scanning Electron Microscope (Topcon, Tokyo, Japan).

DNA Extraction, PCR amplification, and sequencing
Genomic DNA was isolated as described in Farid et al. (2017). A subset of the samples was
extracted using the NucleoSpin Plant II Kit (Macherey-Nagel Inc. Bethlehem, Pennsylvania, USA). Portions of five gene regions were targeted for phylogenetic analysis: nuc rDNA internal transcribed spacer ITS1-5.8S-ITS (ITS), nuc 28S rDNA (28S), RNA polymerase II subunit 1 (RPB1), RNA polymerase II subunit 2 (RPB2), and translation elongation factor 1-alpha (TEF1) were amplified according to Farid et al. (2019). The primer pair ITS1-F/ITS4 (White et al. 1990). Gardes & Bruns (1993) were used to amplify ITS, LR0R/LR7 (Vilgalys & Hester 1990) for 28S. The bolete-specific primer pairs EF1-BF1/EF1-B-R, RPB1-B-F/RPB1-B-R, and RPB2-B-F1/RPB2-B-R (Wu et al. 2014) were used to amplify TEF1, RPB1, and RPB2, respectively. Crude PCR product was purified and sequenced at the DNA laboratory at Arizona State University with a 3730 DNA Analyzer (applied Biosystems, Carlsbad, CA, USA) using the same PCR primers for amplification, and additionally the internal 28S primers LR5 and LR3R were used (Vilgalys & Hester 1990).

A subset of samples (JAB 95 and JAB 80) was obtained using a nested PCR method. First, the primer pair gRPB1-Af/rRPB1-Cr (Matheny et al. 2002) were used to amplify a portion of the RPB1 gene; PCR products were then diluted in nanoPure H2O in a 1:100 ratio used in a second hemi-nested PCR using one of the original primers gRPB1-Af or rRPB1-Cr paired with an internal primer chosen from either RPB1-B-F or RPB1-B-R or one of two novel Boletales specific primers (Table 1).

Table 1 Primer design Boletales-specific **RPB1** primers

Primer name	Sequence (5’ → 3’)
RPB1mexF1bol	CGRCATGTYGCGATCC
RPB1mexR2bol	GGWTCTRCAGYTTCGCA

Alignments, model selection, and phylogenetic analyses

A multi-locus phylogeny consisting of ITS, 28S, RPB1, RPB2, and TEF1. Alignments of each locus were made in R (R Core Team 2017) using MAFFT v. 7.471; alignments of rDNA used the predicted secondary structure to improve the alignment. Gblocks v. 0.91b (Katoh & Standley 2013) was used to remove ambiguous regions of the resultant alignments to improve phylogenetic inference. Models were selected for each locus using jModelTest 2.1.10 (Guindon & Gascuel 2003, Darriba et al. 2012). Bayesian information criterion models were selected for each partition, though we report all the models selected (Table 2). The resultant alignments were combined in Sequence Matrix (http://www.ggvaidya.com/taxondna/), with taxa missing target loci encoded as missing data (Felsenstein 2004). Seventeen genera from the Boletaceae were included in the phylogenetic analyses (Fig. 1): *Aureoboletus* Pouzar, *Heimieccinum* Šutara, *Pulchroboletus* Gelardi, Vizzini & Simonini, *Heimioporus* E. Horak, *Alessioporus* Gelardi, Vizzini & Simonini, *Xerocomellus* Šutara, *Nigroboletus* Gelardi, Vizzini, E. Horak, T.H. Li & Ming Zhang, *Hortiboletus* Simonini, Vizzini & Gelardi, *Boletus* L., *Baorangia* G. Wu & Zhu L. Yang, *Cyanooboletus* Gelardi, Vizzini & Simonini, *Lammaoa* G. Wu & Zhu L. Yang, *Butyrboletus* D. Arora & J.L. Frank, *Suillellus* Murrill, *Gymnogaster* J.W. Cribb, *Chalciopus* Bataille, and *Buchwaldoboletus* Pilát.

Phylogenetic analyses were conducted using the CIPRES Gateway server V3.3 (Miller et al. 2010). Maximum likelihood (ML) was conducted with RAXML-HPC 8.2.10 (Stamatakis 2014) using 1000 non-parametric bootstrap replicates (BS) and a partitioned model. Bayesian inference (BI) was conducted with MrBayes 3.2.6 on XSEDE platform of the CIPRES Science Gateway server (Ronquist et al. 2012). Four Markov chain Monte Carlo simulations were run for ten million generations, sampling trees every thousand generations. Chain convergence was determined using Tracer V1.6 (Rambaut et al. 2018). The first 25% were discarded as burn-in, and a majority rule consensus tree was computed to obtain estimates for Bayesian posterior probabilities (BPP). BI trees were visualized in Figtree (Rambaut 2007) and exported into Inkscape, where bootstrap values were added to node labels. BPP above 0.90 and bootstrap values above 70% were reported. Alignment and phylogenetic trees were uploaded to http://www.treebase.org/ (submission ID 27951).
Table 2 Models selected for each locus using different model strategies in jModelTest 2.1.10. Abbreviations: AICc = Akaike information criterion. BIC = Bayesian information criterion. DT = Decision theory. GTR = Generalized time reversible model. HKY = Hasegawa, Kishino and Yano 1985 model. K80 = Kimura’s two parameter model. SYM = Symmetrical model. I = Invariant. G = Gamma

Model Strategy	ITS	28S	RPB1	RPB2	TEF
AICc	GTR+I+G	GTR+I+G	HKY+I+G	SYM+I+G	HKY+I+G
BIC	GTR+I+G	GTR+I+G	K80+I+G	K80+I+G	HKY+I+G
DT	HKY+I+G	GTR+I+G	K80+I+G	K80+I+G	HKY+I+G

Figure 1 – Phylogram generated from MrBayes based on ITS, 28S, RPB1, RPB2, and TEF1 sequence data. Nodes labeled with PP (≥ 0.90) followed by bootstrap replicate support (≥ 70). Colors represent
distinct genera. Specimens with molecular data generated in this study are bolded. Inset phylogeny depicts portion of phylogeny shown in figure.

Figure 1 – Continued.
Figure 1 – Continued.
Figure 1 – Continued.
Results

Phylogenetic analyses

The final dataset consisted of 305 specimens comprising 141 ITS, 234 28S, 140 RPBI, 165 RPB2, 216 TEF1 sequences (Supplementary Table 1). A total of 143 sequences were generated for this study. The six species from this study were distributed across five genera. One species of *Aureoboletus* forms a strongly supported clade (0.96 BPP, 96 bootstrap replicate support), with somewhat strong support (0.91 BPP, 94 bootstrap replicate support) as a sister clade with *Aureoboletus auriporus* (Peck) Pouzar. A strongly supported clade in *Hemileccinum* with somewhat strong support (0.96 BPP, but <70 bootstrap replicate support) was sister to a clade of *Hemileccinum subglabripes* (Peck) Halling. In *Xerocomellus*, a strongly supported clade was sister to an unnamed *Xerocomellus* sp. (HKAS 56311) from China. Three specimens of *Nigroboletus roseonigrescens* Gelardi, Vizzini, E. Horak, T.H. Li & Ming were strongly supported as basal to all *Xerocomellus* sequences included in the analyses. Two species in *Cyanoboletus* were recovered in the analyses. This first *Cyanoboletus* species is in a strongly supported clade (1 BPP, 98 bootstrap replicate support) containing *Cyanoboletus pulverulentus* s.str., and *Cyanoboletus sinopulverulentus* (Gelardi & Vizzini) Gelardi, Vizzini & Simonini, although *C. sinopulverulentus* did not receive strong support as sister to either of these species. The second *Cyanoboletus* species formed a strongly supported sister clade to an unnamed *Cyanoboletus* sp. (HKAS 76850) from China, and a clade containing *Cyanoboletus instabilis* (W.F. Chiu) G. Wu & Zhu L. Yang. A species of *Lannmaoa* formed a strongly supported sister clade to *Lannmaoa roseocrispans* A.E. Bessette, A.R. Bessette, Nuhn & Halling. *Pulchroboletus rubricitrinus* (Murrill) Farid & A.R. Franck, which was strongly supported as a sister clade to *Pulchroboletus roseoilbidus* (Alessio & Littini) Gelardi, Vizzini & Simonini, was consistent with the results from the nucDNA analysis in Farid et al. (2017). Our collection of *Exsudoporus floridanus* formed a strongly supported clade with *Exsudoporus floridanus* from Belize (1.0 BPP, 100 bootstrap replicate support), while the *Exsudoporus* clade was strongly supported as sister to *Butyriboletus* (1.0 BPP, 0.96 bootstrap replicate support).

Aureoboletus pseudoauriporus J.A. Bolin, A.R. Bessette, A.E. Bessette, L.V. Kudzma, A. Farid & J.L. Frank sp. nov.

Mycobank number: MB840856; Facesoffungi number: FoF 10467

Etymology – The epithet *pseudoauriporus* is from the Latin “pseudo” = false in reference to this bolete so closely resembling, but differing from, *Aureoboletus auriporus*.

Typification – USA, Florida, Palm Beach County, Jupiter, Abacoa Natural Area, 1 Mar 2019, J.A. Bolin 320 (holotype USF 301510).

Diagnosis – Medium-sized basidiocarps with a glabrous, non-viscid pinkish tan unchanging pileus that becomes tan with age, or sometimes retains pinkish tones. The hymenophore is bright yellow when young, becomes darker yellow and then dingy yellow with age, and does not stain when bruised or cut. The stipe is typically longitudinally striate for one-third or more of its length. Basidiospores measure (14-)15–17(-18) × 5–6.5 μm.

Description – *Pileus* 5–8.5 cm broad, convex at first, remaining so well into maturity; surface glabrous, color variable, pinkish to pinkish red or pinkish tan, usually losing pinkish tones when mature, unchanging when bruised, tastes acidic; margin incurved, even or narrowly sterile; staining pale yellow-orange then fading to light brown with the application of KOH, pale blue-green fading quickly or slowly with NH$_4$OH, slowly staining light greenish gray or negative with FeSO$_4$. Context white, unchanging or faintly and slowly turning pink or light yellow near the hymenium; staining yellow-orange with KOH, slowly light greenish gray or negative with NH$_4$OH, and light blue-green or negative with FeSO$_4$. Odor and taste not distinctive. *Hymenophore* tubulose, bright yellow when young, becoming darker yellow and then dingy yellow with age, not staining when bruised or cut; pores rounded, 1–2 per mm; tubes 4–12 mm deep. *Stipe* 4–6 cm long, 8–12 mm at the apex, 1–1.4 cm thick at the base, typically equal or slightly enlarged downward, sometimes with a pinched base; surface typically dry but viscid when wet, typically longitudinally striate for one-third or more of its...
length, whitish, sometimes with pale pink tones, not staining when bruised; context white, firm and woody toward the base, often staining faintly pinkish; with white basal mycelium.

Basidiospores light to medium brown in fresh deposit, (14–)15–17(–18) × 5–6.5 µm, n = 30, Q = 2.79, elliptical in face view, inequilateral in profile, thick-walled, smooth, lacking an apical pore, yellow-brown in KOH or Melzer’s. **Basidia** 25–38 × 8–13 µm, clavate, 2-sterigmate, hyaline in KOH or Melzer’s. **Basidioles** 12–23 × 6.5–8 µm, clavate, thin-walled, hyaline in KOH or Melzer’s. **Hymenial cystidia** 30–50 × 10–15 µm, cylindrical, sometimes with a capitate to capitulate apex. **Hymenophoral trama** boletoid, with lateral elements, 4–12 µm wide, moderately divergent, hyaline in KOH or Melzer’s. **Pileipellis** an ixotrichoderm, terminal elements 7–22 µm wide, highly variable, thin-walled, smooth, hyaline in KOH, with golden yellow contents in Melzer’s. **Pileus trama** hyphae loosely interwoven, highly variable, 6–32 µm wide, smooth, thin-walled, hyaline in KOH or Melzer’s. **Stipitipellis** mostly parallel, slightly interwoven, 4–12 µm wide, hyaline in KOH or Melzer’s, with fascicles of clavate or fusiform caulocystidia. **Caulocystidia** of two types; clavate, 24–42 × 12–22 µm, with yellowish contents in KOH, thin-walled, smooth; fusiform 32–39 × 8–12 µm, hyaline in KOH, thin-walled, smooth. **Stipe trama** interwoven, 6–13 µm wide, hyaline in KOH or Melzer’s, thin-walled, smooth. Clamp connections absent.

Figure 2 – Field photograph of *Aureoboletus pseudoauriporus*. A J.A. Bolin 488. B J.A. Bolin 157. C J.A. Bolin 124. D J.A. Bolin 130. Photo credit: J.A. Bolin.
Habit, Habitat & Distribution – solitary or scattered in sandy soil with oak in a scrubby flatwood community; known from central Florida, distribution limits yet to be determined.

Material examined – USA, Florida, Hillsborough County, Brandon, S of Camden Visconti entrance pond, adjacent to canal, 27°55’27.9"N 82°20’22.9"W, 5 Oct 2016, A. Farid 501 (USF 288287); Tampa, Violet Cury Nature Preserve, 4 Jun 2017, A. Farid 592 (USF 301502); Tampa, Trout Creek Nature Preserve, Xeric hammock beneath Quercus geminata, 3 May 2019, A. Farid 919 (USF 301507); Lake County, Lake Louisa State Park, Clermont, 24 Oct 2019, J.A. Bolin 448 (USF 301492); Miami-Dade County, Everglades National Park, 5 Jul 2019, A. Farid 959 with A.R. Franck and R.E. O’Donovan (EVER 144770); Palm Beach County, Frenchman’s Forest natural Area, 28 May 2018, J.A. Bolin 167 (USF 301497); Hypoluxo Scrub Natural Area, Lantana, 21 Nov 2017, J.A. Bolin 80 (USF 301487); ibid., 70 Sep 2019, 7 Sep 2019, J.A. Bolin 106 (USF 301489); ibid., 6 Nov 2017, J.A. Bolin 130, (USF 301493); Jupiter, Abacoa Natural Area, 1 Mar 2019, J.A. Bolin 320 (holotype USF 301510); ibid., 13 Aug 2019, J.A. Bolin 418 (USF 301483).

Notes – This species is a part of a cryptic species complex. It greatly resembles Aureoboletus auriporus (Peck) Pouzar, and its distribution limits are yet to be established. Aureoboletus auriporus differs from A. pseudoauriporus by the lack of longitudinal striations on the stipe. The pileus of A. auriporus is reported to turn red with the application of NH₂OH (Baroni 2017). The spore size of A. auriporus was not originally reported in the protologue, though Peck (1889) later provided an expanded description and reported the spores as 7.5–10 × 4–5 µm. Both (1998) studied the type specimen, obtaining a spore size of 9.8–15.5 × 3.96–5.75 µm, with a mean dimension of 13.15 × 4.73 µm, Q = 2.12–3.39, Qm = 2.75. Both (1998) also provided a description based on collections primarily from New York and Rhode Island, but also included a specimen from Tennessee, and did not include the type specimen. The spores reported were slightly larger than the type, at 11.0–16.05 × 4.4–6.38 µm, mean dimension 14.36 × 5.19 µm, and the spore quotient was similar, at Q = 2.2–3.19, Qm = 2.78. The spores of A. pseudoauriporus are somewhat larger, at (14–)15–17(–18) × 5–6.5 µm, x = 16.45 × 5.92 µm, and the spore quotient is nearly identical, at Q = 2.79.

Aureoboletus viridiflavus Coker & Beers ex Klofac is a similar species, and has been treated as a synonym of A. auriporus in the past (Singer 1947, Both 1998), which differs primarily by the pileus colors, which was described as “olivaceous gold with reddish areas”, the pileus when young tomentose-felted, less viscid, a lack of distinctly projecting margin, the hymenophore longer, to 17.5 mm (4–12 mm in A. pseudoauriporus), and the stipe, which bruises “brick red” and is not viscid (white, sometimes with pale pink tones, and not bruising in A. pseudoauriporus). The spore size is similar to A. auriporus, reported as 11.5–15(–16.6) × 4–5 µm in the protologue. Aureoboletus pseudoauriporus has somewhat longer and wider spores, measuring (14–)15–17(–18) × 5–6.5 µm. Aureoboletus subacidus (Murrill ex Singer) Pouzar is a somewhat similar species that shares reddish tones in the pileus, citrine yellow tubes, a whitish stipe, occurs in Florida, and is associated with Quercus spp. It can readily be distinguished from A. pseudoauriporus by the presence of the floccose yellow velar remnants left on the upper portion of the stipe, the scrobiculate pileus, and the yellow pileal context (Singer 1947).

So far, A. pseudoauriporus is the only species in the complex known from Florida. Although A. pseudoauriporus has been observed in southeastern Georgia (USA) by the authors, no collections were made. Aureoboletus innixus (Frost) Halling, A. R. Bessette & A. E. Bessette is similar but it has a dry, somewhat velutinous, dull reddish-brown pileus, and lacks longitudinal striations on its stipe. Aureoboletus roxanae (Frost) Klofac has whitish pores when young which eventually become pale yellow, and a yellow to pale orange-yellow stipe with a distinct dull orange zone at the apex.

Cyanoboletus bessettei A.R. Bessette, L.V. Kudzma, & A. Farid sp. nov.
Figs 3, 10G–I
Mycobank number: MB 840857; Facesoffungi number: FoF 10466

Etymology – The epithet bessettei honors American mycologist, Alan E. Bessette.

Typification – USA, South Carolina, Berkeley County, Francis Marion National Forest, State Route 402, approximately 1.25 mi. north of Huger, under oak and pine, 17 Sep 2016, A.R. Bessette ARB1393 (Holotype USF 301500).
Diagnosis – Medium-sized basidiocarps with a dry, reddish brown to buffy brown pileus and a reddish-brown stipe with a pale-yellow apex and white basal mycelium. The hymenophore surface is pale yellow and stains blue-green then olive when bruised. It has pale yellow context that stains blue-green then slowly turns peach to dull pinkish orange when exposed. The basidiospores measure (8–)9–11(–12) × 3.5–5 µm and are narrowly ovate to subelliptic. It fruits on the ground with oak and pine during fall.

Description – Pileus 2.7–8 cm broad, convex with an incurved margin that remains into maturity; surface subtomentose to nearly glabrous, dry, buffy brown overall when very young, becoming paler toward the margin and retaining darker brownish coloration on the disc at maturity, staining blue-green then dark olive-green and finally brown when bruised; margin with a narrow band of sterile tissue, sometimes undulating or lobed in age; context pale yellow, staining blue-green then slowly turning peach to dull pinkish orange when exposed; odor unpleasant, odd, chemical-like; taste slightly acidic or not distinctive. Cuticle stains dark amber with the application of KOH, pale olive with FeSO₄, and amber with an expanding blue-green outer ring with NH₄OH. Context stains yellow, then pale orange with the application of KOH or NH₄OH and is negative with FeSO₄. Hymenophore tubulose, pale yellow, staining blue-green, then olive when bruised; pores angular to irregular, 2–3 per mm; tubes 4–8 mm deep. Stipe 2.5–4 cm long, 1–2 cm thick, nearly equal or flaring at the apex, pinched at the base; surface longitudinally striate, dry, distinctly pale yellow at the apex, reddish brown below, with white basal mycelium, staining blue-green then reddish-brown; context pale yellow, slowly staining blue-green at the apex, then becoming bright chrome yellow.

Figure 3 – Field photograph of *Cyanoboletus bessettei* (ARB 1393). Photo credit: A.R. Bessette.

Basidiospores olive-brown in fresh deposit, (8–)9–11(–12) × 3.5–5 µm, n = 30, Q = 2.30, narrowly ovate to subelliptic in face view, obscurely inequilateral in profile, thin-walled, smooth, lacking an apical pore, yellowish in KOH or Melzer’s, inamyloid; spores sometimes collapsing when mounted in Melzer’s. *Basidia* 23–36 × 5.5–9 µm, mostly clavate, few cylindro-clavate, (2)4-sterigmate, hyaline in KOH, grayish yellow in Melzer’s. *Basidioles* 19–31 × 5–8.5 µm, clavate.
Cyanoboletus cyaneitinctus (Murrill) A. Farid, A.R. Franck & J.A. Bolin comb. nov.

Figs 4, 5A–G, 10A–C

MycoBank number: MB 840858; Facesoffungi number: FoF 10465

Basionym – Ceriomyces cyaneitinctus Murrill, Lloydia 6: 225 (1943).

Synonyms – Boletus cyaneitinctus (Murrill) Murrill, Lloydia 6: 228 (1943).

Typification – USA, Florida, Alachua County, Gainesville, Kelley’s Hammock, 3 Aug 1938, West and Murrill s.n. (holotype FLAS-F-17986); Hillsborough County, Tampa, Learning Gate Community grounds, 4 May 2019, A. Farid 920 (epitype here designated USF 301499).

= Boletus mutabilis Morgan, J. Cincinnati Soc. Nat. Hist. 7: 6 (1884), nom. illegit., Art. 53.1.

Diagnosis – Brownish or rarely reddish pulvinate pileus, bright yellow hymenophore, stipe, and context, all surfaces rapidly and brilliantly cyanescent.

Description – Pileus 3–8 cm wide, pulvinate or convex when young becoming broadly convex at maturity, bister, umber, mahogany, and dark brown overall, rarely entirely red in the pileus, glabrous to tomentose, tacky when wet, sometimes rimulose at maturity, blackening instantly where handled. Hymenophore tubulose, yellow, darkening to a gold color when mature, tubes 5–20 mm long, bluing instantly and strongly when handled; pore mouths subangular when mature, 0.5–1 mm in diameter. Stipe 3–6 × 0.5–2 cm, equal to ventricose, bright yellow, smooth or sometimes reticulate on the upper third, sometimes with flashes of reddish to brownish-red floccons, particularly towards the base of the stipe, bluing instantly and strongly when handled, basal mycelium white to yellowish white. Context concolorous with stipe surface, often with red pigments at the very base of the stipital context, blueing instantly and strongly, fading to pale yellow. KOH on pileus dark maroon to black, red elsewhere; FeSO₄ negative, erasing blue stains from flesh.

Basidiospores (11)11.5–15(16) × 4–6 µm, n = 30, Q = 2.4, fusiform, sometimes with a suprahilar depression present. Basidia 25–50 × 8–10 µm, 4-spored, thin-walled, hyaline, clavate to pyriform; sterigmata 1–2 µm, occasionally pigmented like pleurocystidia. Basidioles similarly sized and shaped. Pleurocystidia 30–60 × 7–10 µm, fusoid to ampullaceous, hyaline or sometimes encrusted. Cheilocystidia similar to pleurocystidia. Pileipellis a trichodermium of strongly interwoven, filamentous, sinuous, rarely branched hyphae, erect or repent in most of the terminal elements, collapsing into a cutis, terminal elements cylindrical, apices rounded or somewhat pointed, 20–70 × 5–10 µm, smooth-walled, inamyloid, hyaline to golden-yellow or somewhat brownish in water and 5% KOH. Clamp connections absent.

Habitat and Distribution – Basidiomes typically occurring singly or more rarely gregariously, widely distributed in eastern North America.
Material examined – USA, Florida, Alachua Co., Gainesville, 2 Oct 1949, W.A. Murrill s.n. (FLAS F16163); *ibid.*, lawn under pecan [*Carya illinoinensis*], 7 Nov 1947, W.A. Murrill s.n. (FLAS F40835); *ibid.*, Kelley’s Hammock, 3 Aug 1938, West and W.A. Murrill s.n. (holotype FLAS F17986); *ibid.*, yard at 936 NW 30th Ave., 9 Aug 1980, G.L. Benny s.n. (FLAS F52704); *ibid.*, lawn under laurel oak [*Quercus laurifolia*], 1 Aug 1947, Murrill s.n. (FLAS F19093); *ibid.*, shaded yard, 6 Nov. 1950, R. Bennett s.n. (FLAS F59706); *ibid.*, lawn under hardwoods, 13 Oct 1950, R. Bennett s.n. (FLAS F19647); *ibid.*, 19 × 1950, R. Bennett s.n. (FLAS F 40863); *ibid.*, lawn on 18th block of NW 11 place, Sept 12 1968, J. Kimbrough s.n. (FLAS F48020); *ibid.*, under large live oak [*Quercus virginiana*] 10 mi. SE of Gainesville, on Palatka Rd., 2 Nov 1947, G.F. Weber s.n. (FLAS F40837); Hillsborough Co., Alafia River State Park, 17 Jul 2018, J. Bolin 177 (USF 300090); Hillsborough County, Tampa, University of South Florida Tampa Campus, entrance area off of Leroy Collins Boulevard, 11 Jun 2016, A. Farid 340 (USF 288424); USF campus, 22 May 2018, Franck 4352 (USF 297911); Tampa, Learning Gate Community grounds, 4 May 2019, A. Farid 920 (epitype here designated USF 301499); Palm Beach Co., Frenchman’s Reserve, 1 III 2019, J. Bolin 324 (USF 300081); Prosperity Oaks, 2 Mar 2019, J. Bolin 325 (USF 300080). OHIO: Hocking Co., 4 Aug 2018, J. Bolin 185 (USF 300091); Vinton Co. 5 Aug 2018, J. Bolin 184 (USF 300085). TENNESSEE: Knox Co., Knoxville, Tobler Rd., 4 Sept 1949, A.J. Sharps s.n. with L.R. Hesler (FLAS-F-53755).

Figure 4 – Field photographs of *Cyanoboletus cyaneitinctus*. A A. Farid 920. B A. Farid 340. Macrochemical tests of basidiomes are labelled. The scale in the top is in centimeters. C JAB 324. D JAB 389. Photo credits: J.A. Bolin.

Notes – *Cyanoboletus* Gelardi, Vizzini, & Simonini is in the *Pulveroboletus* clade, and is comprised of eight species. *Cyanoboletus* was described in 2014 (Vizzini 2014) with *Boletus pulverulentus* Opat. as the type species for the genus. Although no molecular analysis was provided in the protologue, previous molecular analyses demonstrated several species (now in *Cyanoboletus*)
were not related to *Boletus* L. s. str. (Gelardi et al. 2013, Wu et al. 2014). *Cyanoboletus* is distinguished from other boletoid genera by its yellowish brown to dark brown pileus, rapidly blueing context and hymenophore, and smooth basidiospores.

Cyanoboletus cyaneitinctus is very similar to the closely related *C. pulverulentus* (Opat.) Gelardi, Vizzini & Simonini. Both are boletes with a dark brown pileus, small pores (1–2 per mm), and yellow stipes with brown punctae; all surfaces instantly bruise blue. The European name has historically been applied to this species in North America (Singer 1947, Smith & Thiers 1971, Bessette et al. 2000, 2017), but we are here treating them as separate species based on our molecular analyses (Fig. 1) and morphological studies. The spore quotient Q is lower in *C. cyaneitinctus* at Q = 2.4 (with the Q usually between 2.3–2.5) compared to 2.6–2.9 in *C. pulverulentus* (Gelardi et al. 2013). These two species are geographically separated, with *C. cyaneitinctus* occurring in eastern North America and the latter found in Europe. *Cyanoboletus sinopulverulentus*, which is sister to *C. cyaneitinctus* (Fig. 1) is distinguished from *C. cyaneitinctus* and *C. pulverulentus* by its evenly dark brown stipe (lacking the reddish and yellow tones often present in the other two species), which is more heavily pruinose to scissurate. *Cyanoboletus sinopulverulentus* has predominately 2-spored basidia (4-spored in the other two taxa), and can also be distinguished on the basis of its Q value, which is reported as 2.17–2.45 (Gelardi et al. 2013), smaller than either of the other two *Cyanoboletus* species mentioned here.

Boletus mutabilis Morgan is an earlier but illegitimate name for this American species (see Art. 53.1). Thus, the oldest name we have to apply to the North American species is *C. cyaneitinctus*. Singer (1947) treated *C. cyaneitinctus* as a synonym of *C. pulverulentus*. The type of *C. cyaneitinctus* was examined, and matched the other North American collections examined. This type material is quite old and not in good condition; thus, we have designated an epitype, and have included images (Figs 4, 5A–G) as well as published molecular data. *Cyanoboletus cyaneitinctus* and *C. pulverulentus* are difficult to distinguish morphologically.

Cyanoboletus cyaneitinctus forma reticulatus (Snell, E.A. Dick & Hesler) A. Farid comb. nov.

Fig. 5H

Mycobank number: MB 840859; Facesoffungi number: FoF 10465
Basionym – *Boletus pulverulentus* f. *reticulatus* Snell, E.A. Dick & Hesler, Mycologia 43(3): 362. 1951.
Typification – USA, Tennesse, Knox County, Knoxville, on an old sod yard near Robinia and Ligustrum and not far from Ulmus but with no accurate indication of mycorrhizal associate, 4 Sept 1949, L.R. Hesler 19314 (holotype TENN-F-019314, isotype SFSU-F-000439).
Material examined – USA, Florida, Hillsborough Co., Brandon, under Quercus laurifolia, 5 Jun 2020, Farid 1035 (USF 301495).

Notes – *Cyanoboletus cyaneitinctus* f. *reticulatus* differs from the type form by the reticulation present over the upper stipe. The protologue states all other macro- and micromorphological characters are consistent, and this is consistent with our observations.

Hemileccinum floridanum J.A. Bolin, A.E. Bessette, A.R. Bessette, L.V. Kudzma, A. Farid & J.L. Frank sp. nov.

Fig. 6, 10J–L

Mycobank number: MB 840861; Facesoffungi number: FoF 10464
Etymology – A reference to Florida where this species was first collected and described.
Typification – USA, Florida, Lake County, Lake Louisa State Park, 4 Sep 2016, J. A. Bolin 142 (holotype USF 301495).

Diagnosis – Medium-sized to large basidiocarps with a dry to slightly tacky, reddish brown to chestnut brown pileus and a whitish stipe that becomes pale yellow at the apex and has a white basal mycelium. The hymenophore is bright yellow when young, becomes darker brownish yellow as it matures, and does not stain when bruised. It has white context that slowly stains yellow often from the margin toward the center. The basidiospores measure (10-)13-16(-17) × 4.5-6 µm and are elliptical. It fruits on the ground with oak from late spring through fall.
Figure 5 – Field photographs of Cyanoboletus cyaneitinctus. A JAB 325. B JAB 185. C–G JAB 324. H Cyanoboletus cyaneitinctus f. reticulatus Farid 1035. Photo credits: A–G J.A. Bolin, H A Farid.

Description – Pileus 2.8–12.5 cm wide, convex becoming broadly convex to nearly plane in age; surface dry to slightly tacky, smooth to somewhat wrinkled and uneven, glabrous to finely velvety, sometimes with a whitish bloom when young, reddish brown to chestnut brown, cuticle acidic tasting or not distinctive; margin even or nearly so. Hymenophore tubulose 3–12 mm deep, pore surface bright yellow when young, maturing to darker brownish-yellow, not staining when bruised, depressed near the stipe in age, easily detached from the pileus context; pores angular to irregular, 2–3 per mm. Stipe 4–9.5 cm long × 1–3 cm thick, nearly equal or enlarged in either direction, with a pinched base; surface dry, longitudinally striate, nearly glabrous to very weakly scurfy-punctate, not reticulate; whitish overall on young specimens, becoming pale yellow at the apex with variable reddish tints and streaks over a whitish to pale yellow ground color below, with white basal mycelium. Context in the pileus white, slowly staining yellowish often from the margin toward the center, with a slight pinkish-red coloration beneath the cuticle; in the stipe, white, slowly staining yellowish from the pileus trama just above the hymenophore partly downward along the exterior stipe trama when exposed. Cuticle stains brownish red or light orange sometimes fading to light green with the application of KOH, olive and then orange or amber with a green ring with NH₄OH, and
dark orange-amber to orange with FeSO₄. The context stains pale orange to yellow then fades with KOH, is negative with NH₄OH, and negative or light greyish olive green with FeSO₄. Odor slightly sour to not distinctive; taste not distinctive.

Basidiospores olive-brown in fresh deposit, (10–)13–16(–17) × 4.5–6 µm, n = 30, Q = 2.86, elliptical in face view, inequilateral in profile, thin-walled, smooth, lacking an apical pore, grayish yellow in KOH, brownish yellow in Melzer’s. **Basidia** 32–38 × 8.5-10.5 µm, clavate, 4-sterigmate, sometimes 3- or 2-sterigmate, hyaline in KOH, yellow in Melzer’s, with granular, inamylloid contents. **Basidioles** 22–29 × 7.5–8.5 µm, clavate, hyaline in KOH, yellow in Melzer’s. **Pleurocystidia** 25–50 × 6–10 µm, hyaline, ventricose in the middle, ampullaceous at the apex, frequent near the pores. **Pileipellis** a cutis of loosely interwoven cylindric hyphae with markedly inflated, sphaerocyst-like oval to subglobose terminal cells, 11–33 × 15–22 µm, grayish yellow in KOH, yellow to orange-yellow with granular contents in Melzer’s; hyphae of the pileipellis 4-8.5 µm wide, thin-walled, smooth, grayish yellow in KOH, yellow in Melzer’s. **Pileus trama** hyphae loosely interwoven, highly variable, 4–16 µm, with rounded terminal ends, thin-walled, smooth, hyaline in KOH, yellow in Melzer’s, inamylloid. **Hymenophoral trama** boletoid, with lateral elements 5–9 µm, moderately divergent, thin-walled, smooth, hyaline to pale grayish yellow in KOH, pale grayish yellow in Melzer’s. **Stipitipellis** 4–17 µm wide, hyphae subparallel, highly variable, tubular with rounded ends and granular contents, thin-walled, smooth, hyaline in KOH, yellow-brown in Melzer’s, caulocystidia not observed. Stipe trama interwoven, 9–27 µm, highly variable, tubular with rounded ends, thin-walled, smooth, hyaline in KOH, hyaline to pale yellow in Melzer’s. **Clamp connections** absent.

Figure 6 – Field photographs of *Hemileccinum floridanum*. A J.A. Bolin 142. B. J.A. Bolin 454. D J.A. Bolin 157. E J.A. Bolin 201. Photo credits: J.A. Bolin. C, F are SEM images of basidiospores from J.A. Bolin 454 (white bar = 4 µm).

Habit, Habitat and Distribution – Solitary, scattered or in groups on the ground with oak; known from Florida, potentially to North Carolina (Singer 1947).

Material examined – USA, Florida, Hillsborough County, Violet Cuery Nature Preserve, 14 June 2017, A. Farid 625 (USF 301503); University of South Florida Tampa campus, trails near tennis courts in NE corner of campus, 4 Jun 2018, A. Farid 790 (USF 297572), *ibid.*, 30 Oct 2019, A. Farid
Lanmaoa sublurida (Murrill) A. Farid & A.R. Franck comb. nov.

MycoBank number: MB 840862; Facesoffungi number: FoF 10463

Basionym – Suillellus subluridus Murrill, Mycologia 30(5): 524 (1938).

Typification – USA. FLORIDA: Alachua Co., Gainesville, Murrill (holotype FLAS-F-15869).

Synonyms – Boletus miniato-olivaceus var. subluridus (Murrill) Singer, Mycologia 37(6): 798 (1945); Boletus subluridus (Murrill) Murrill, Mycologia 30(5): 525 (1938).

Description – Pileus 3–14 cm wide, pulvinate when young, margin entire or wrinkled, becoming convex to nearly plane at maturity, smooth, somewhat tacky when wet, bright red to ruby red when young, becoming mixed with various shades of bright red, orange red, or a peach-colored orange, especially at the margins, or sometimes turning brown entirely at maturity, sometimes becoming rimulose, revealing the context color beneath the cuticle. Hymenophore tubulose, 5–12 mm deep at maturity, tubes sulphur yellow, bluing on injury, fading to olive green; pores initially orange when young, stuffed, slowly and unevenly maturing to reveal red pore mouths at maturity. Stipe 5–8 × 1.5–3 cm, equal, tapering upwards, or sometimes ventricose, pale yellow, especially when young, with a small network of reticulation forming isodiametric meshes in a narrow zone to 2 (–5) mm long at the apex of the stipe, but sometimes absent, especially in younger specimens, and the rest of the stipe glabrous when young with fine floccules which develop over the stipe surface as it matures, appearing smooth without a hand lens or without close inspection, at maturity these floccules giving the appearance of a stipe that is red to purplish-red, stipe surface bruising a light blue, especially when young; basal mycelium white to pale yellow. Context yellow throughout, or sometimes yellow only in the stipital context (especially so when mature), not bluing or only very weakly and slowly bluing when young, mature specimens bluing in the stipital and pileal context around the hymenophore. Taste mild, odor disagreeable, fetid, ammonia-like and slightly alliaceous.

Basidiospores (8.7)9.3–10.8(12.6) × (3)3.4–4(4.6) μm, n = 71, Q = 2.8, boletoid thick-walled, ellipsoid-oblong to subcylindric or subfusoid, smooth, melleous. Basidia 20–25 × 6–8 μm, 2- or 4-spored, thin-walled, hyaline, clavate to pyriform; sterigmata 1–2 μm, occasionally pigmented like pleurocystidia. Basidioles similarly sized and shaped. Pleurocystidia 30–35 × 10–15 μm, pigmented a light golden brown in KOH, NH₄OH, H₂O, and Melzer’s, spores generally are clustered onto cystidia. Cheilocystidia 15–50 × 5–10 μm, moderately thin-walled (0.5 μm), usually pigmented like the pleurocystidia, but occasionally hyaline. Hymenophoral trama divergent. Pileipellis elements septate, terminal elements 20–65 × 4–10 μm, thin-walled, cylindrical, with filiform apices that are occasionally clavate, forming an ixotrichodermium of erect elements, occasionally becoming prostrate and forming an ixosubcutis. Pileal trama composed of interwoven hyphae 3–10 μm wide, thin-walled, cylindrical.

Material examined – USA, Florida, Alachua County, Gainesville, Beneath Laurel Oak [Quercus laurifolia], 3 Jul 2020, A. Farid 1058 with R.E. O’Donovan and C. Peyer (USF 301505).
Hillsborough County, Brandon, S of Camden Visconti pond at main entrance, 19 June 2016, A. Farid 343 (USF 288426); ibid., 26 Jun 2017, A. Farid 631 (USF 301506); ibid., 11 Jun 2018, A. Farid 805 (USF 298026); 22 Oct 2019; ibid., 11 Jun; A. Farid 1023 (USF 300104); Lithia, beneath Quercus laurifolia, 15 Jul 2020, A. Farid 1072 (USF 301508); ibid., 16 Jul 2020, A. Farid 1073 (USF 301504).

Notes – *Lanmaoa* G. Wu & Zhu L. Zang is a genus of boletes which is typically distinguished by its thin hymenophore (1/3–1/5 the thickness of the pileal context at a position halfway to the pileal center), which stains blue when bruised, a light-yellow context which stains pale blue slowly when cut, and an interwoven trichodermium to subcutis pileipellis. Although no molecular diagnosis was provided in the paper describing the genus (Wu et al. 2015), the phylogenetic placement was based on the work by Wu et al. (2014). Chai et al. (2018) describe the overlapping features of *Lanmaoa rubriceps* N.K. Zeng & Hui Chai with *Cyanoboletus*, including hymenophore size, and staining features. *Lanmaoa sublurida* is distinguished from similar looking boletes by the combination of its characteristic odor, a pileus that varies in reds and orange that matures to a peach-orange, sometimes brown, yellow tubes with pores that appear yellow and mature to carmine, and a light-yellow stipe with fine floccons that densely cover it at maturity.

![Field photographs of *Lanmaoa sublurida*.](image)

Figure 7 – Field photographs of *Lanmaoa sublurida*. A. Farid 1072. B. Farid 343. C. Farid 1073. Photo credits: A Farid.
There are several species in the southeastern USA that might be confused with *L. sublurida*. *Boletus carminiporus* Bessette, Both & Dunaway, described from Mississippi, could be confused with *L. sublurida*, although *B. carminiporus* differs in the lack of staining in the context at any stage, lacks any distinctive odor, and its stipe is usually redder, and stains olive-brown, olive-green, to olive-yellow. *Lanmaoa borealis* (A.H. Sm. & Thiers) A.E. Bessette, M.E. Nuhn & R.E. Halling is similar, but has larger spores (11–13[15] µm long) and has only been documented from the northeastern USA. The similar *Boletus sensibilis* Peck, found in the eastern USA, bruises similarly on the stipe, but the pore mouths are yellow (never red), the stipe develops a flush of red on the bottom half (never the purplish red that *L. sublurida* develops at maturity), and the context blues more readily throughout.

Xerocomellus bolinii J.A. Bolin, A.E. Bessette, A.R. Bessette, L.V. Kudzma, J.L. Frank & A. Farid, sp. nov.

MycoBank number: MB 840863; Facesoffungi number: FoF 10462

Typification – USA, Florida: Broward County, Davie, Tree Tops Park, 27 Jan 2017, J.A. Bolin 43 (holotype USF 301496).

Etymology – The epithet bolinii honors Franklin Alexander Bolin, a biologist, naturalist and educator who for more than twenty-five years introduced thousands of students to the fields of mycology, herpetology and lepidoptery. Franklin was born and raised in Northeastern Ohio and attended Ohio State University where he earned a master’s degree in both Field Zoology and Herpetology. He went on to become an Advanced Biology teacher at Grove City High School from 1963–1988. Using his unique and progressive classroom style which immersed students in “hands on learning”, Bolin developed a curriculum for the entire school district known as “The Natural History of Ohio”.

Diagnosis – Small to medium-sized basidiocarps with a dry, blue-staining, appressed-fibrillose to squamulose pileus with pinkish brown fibrils with white to creamy white context visible in the
cracks. The cap context is creamy white or a mixture of creamy white and yellow, becoming yellow to orange in the stipe and rapidly stains blue when exposed. The pore surface is yellow when young, becomes dull yellow at maturity, and rapidly stains blue when bruised. The stipe has reddish brown punctae over a whitish to pale yellow ground color that darkens toward the base and staining blues when bruised. Basidiospores measure (10–)12–13(–14) × 4.5–6 µm. It fruits on the ground with Quercus and Pinus.

Description – Pileus 4-8 cm wide, convex becoming broadly convex to nearly plane in age; pileus appressed-fibrillose to squamulose with pinkish brown fibrils and white to creamy white context visible in the cracks, dry, staining blue, sometimes slowly or weakly; margin incurved at first remaining so well into maturity, sterile, sometimes undulating, becoming conspicuously cracked with age. Hymenophore tubulose, pale yellow, becoming dull yellow in age, quickly staining dark blue; pores 1–2 per mm, angular to irregular or slightly elongated; tubes 2-6 mm deep, rapidly staining blue when exposed. Stipe: 50–90 × 8–15 mm wide, nearly equal or slightly tapered downward, with a pinched based, solid; surface dry, weakly longitudinally striate, with reddish brown punctae over a whitish to pale yellow ground color often with reddish tints extending from the base upward, staining blue when bruised, basal mycelium white to creamy white. Context of pileus creamy white or a mixture of creamy white and yellow to orange in the stipe and staining blues when exposed. Odor and taste not distinctive. Macrochemical Testing: Pileus of mature specimens showed light green fading to yellow with NH₄OH; younger specimens turn orange with faint green outline of stained area, eventually fading to yellow. Orange to amber, fading to brown with KOH. Older specimens light brown and younger specimens light green with FeSO₄. Context in both mature and younger specimens pale orange to NH₄OH, orange to amber fading to brown with the application of KOH and yellow with FeSO₄. Cuticle stains light green, fading to yellow with NH₄OH; younger specimens develop orange with a faint green outline that eventually fades to yellow; KOH produces orange to amber that fades to brown; with FeSO₄ mature specimens turn light brown, and younger specimens light green.

Figure 9 – Field photographs of Xerocomellus bolinii. A J.A. Bolin 238. B J.A. Bolin 274. C J.A. Bolin 232. D J.A. Bolin 208. Photo credits: J.A. Bolin.
Figure 10 – Microscopic structures of the boletes from this study. A–C Cyanoboletus cyaneitinctus. D–F Aureoboletus pseudoauriporus. G–I Cyanoboletus bessettei. J–L Hemileccinum floridanum. M–O Lanmaoa sublurida. P–R Xerocomellus bolinii. A, D, G, J, M, P depict the pileipellis for each species (black bar = 50 µm), D showing a gelatinized pileipellis, B, E, H, K, N, Q depict basidiospores with guttules (black bar = 10 µm), and C, F, I, L, O, R depict basidia, basidioles, and cystidia (black bar = 20 µm), with guttules present. Drawing credits: A. Farid.

Basidiospores light brown to olive-brown in fresh deposit, (10–)12–13(–14) × 4.5–6 µm, n = 30, Q = 2.40, elliptical in face view, obscurely inequilateral in profile, thin-walled, smooth, lacking an apical pore, pale grayish yellow in KOH, dull yellow in Melzer’s. Basidia 32-36 × 9-12 µm, mostly clavate, occasionally cylindro-clavate, 2(4)-sterigmate, hyaline in KOH, grayish yellow in Melzer’s. Basidioles 21.5–30 × 6.5–10 µm, clavate. Hymenophoral trama boletoid, with lateral elements, 5-8 µm wide, moderately divergent, hyaline in KOH, grayish yellow in Melzer’s. Pileipellis a tangled layer or repent tubular hyphae, 5–9.5 µm wide, with cylindrical, rounded to slightly inflated end cells, thin-walled, smooth, hyaline in KOH, yellowish in Melzer’s. Pileipellis a tangled layer or repent tubular hyphae, 5–9.5 µm wide, with cylindrical, rounded to slightly inflated end cells, thin-walled, smooth, hyaline in KOH, yellowish in Melzer’s. Pileipellis a tangle of somewhat interwoven, 5–11 µm wide, smooth, thin-walled, hyaline in KOH or Melzer’s. Cheilocystidia and pleurocystidia scattered, 36–48.5 × 9–11.5 µm, fusoid-ventricose, smooth, thin-walled, hyaline to ochraceous in KOH, ochraceous in Melzer’s. Stipitipellis hyphae mostly parallel, slightly interwoven, 4.5–9.5 µm wide, hyaline to yellowish in KOH or Melzer’s, with fascicles of clavate to distorted caulocystidia 34–52 × 9–21 µm, that are dull yellow to brownish yellow in KOH or Melzer’s. Stipe trama subparallel, interwoven, 5–11.5 µm wide, hyaline to yellowish in KOH or Melzer’s. Clamp connections absent.
Habit, Habitat and Distribution – Solitary or scattered in sandy soil associated with *Quercus* and *Pinus*, along woodland edges, typically near saw palmetto (*Serenoa repens*) and/or cabbage palm (*Sabal palmetto*). Currently only documented from Florida. There are several images that we believe to be *X. bolinii* on the citizen science platform MushroomObserver.org (observation nos.: 430943, 412138, 293427, 289394), but no herbarium samples were made.

Specimens examined – USA, Florida, Broward County, Davie, Tree Tops Park, 14 Oct 2017, J.A. Bolin 124 (USF holotype 301494); Lake County, Lake Louisa State Park, Clermont, 13 Jun 2020, A. Farid 1047 with R.E. O'Donovan, C. Matson, and J.A. Bolin (USF 301498); Palm Beach County, Delray Beach, Morikami Museum and Japanese Gardens, 23 Sep 2017, Jason Bolin 110 (USF 300098); *ibid.*, 17 Oct 2018, J.A. Bolin 232 (USF 300082); *ibid.*, 12 Sep 2018, J.A. Bolin 208 (USF 301486); West Palm Beach, Okeeheelee Park, 20 Nov 2017, J.A. Bolin 133 (USF 300094); *ibid.*, 13 Nov 2018, J.A. Bolin 238 (USF 301485); *ibid.*, 23 Nov 2018, J.A. Bolin 274 (USF 301484).

Notes – *Xerocomellus chrysenteron* is similar but has a dark olive to olive-brown or greyish-brown cracked cap with exposed red to pinkish context, stains slowly or erratically greenish-blue on the hymenophore and cap context and has a more northern distribution. *Xerocomellus zelleri* has a dull black to blackish-brown or dark olive-brown pileus, context that is white to pale yellow that is unchanging or sometimes bluing and is reported from the Pacific Northwest south to California and into Mexico.

Discussion

Contextualizing the species treated in this study

The species treated in this paper further our understanding of the boletes, both in terms of biodiversity and systematics. Our analyses (Fig. 1) of *Aureoboletus pseudoauriporus* and its allies indicate that *A. auriporus* (Peck) Pouzar represents a species complex. *Aureoboletus auriporus* was described from New York as *Boletus auriporus* Peck (Peck 1873), with the protologue indicating a grayish-brown, sometimes tinged with red pileus color. The name has been applied widely to specimens across eastern North America, but specimens sequenced from Florida differ phylogenetically from specimens in the northeast. The pileus in *A. pseudoauriporus* is pinkish-tan, which differs from the grayish colors described in the protologue of *Boletus auriporus*. Our phylogenetic analyses placed *A. pseudoauriporus* sister to a clade containing two specimens of *A. auriporus* from Indiana and Tennessee and *A. viridiflavus* from North Carolina. Three other specimens of *A. auriporus* (from Massachusetts, North Carolina, and Costa Rica) fell separately outside of this group (see Fig. 1). *Aureoboletus viridiflavus*, described from North Carolina, is a rarely documented species that is often confused for *A. auriporus*. In a monograph of *Aureoboletus*, Klofac (2010) noted most authors took *A. viridiflavus* as *A. auriporus*, but noted the subtle morphological characters separating the two species.

We have expanded our understanding of North American *Cyanoboletus* with the resurrection of *C. cyaneitinctus* as well as the addition of the novel species *C. bessettei*. *Cyanoboletus cyaneitinctus* is widely distributed across North America. Many previous works on North American boletes applied the European name *C. pulverulentus* to the North American species (Singer 1947, Bessette et al. 2017). Phylogenies consistently show significant divergence between specimens from North America and those from Europe (Gelardi et al. 2013, 2015, Braeuer et al. 2018, Fig. 1), supporting the recognition of North American material as the species *C. cyaneitinctus*. So far, the only other *Cyanoboletus* species known from North America now includes *C. bessettei*. *Cyanoboletus bessettei* is only known from the type location in South Carolina, but we expect future studies will better establish its geographical limits. Although briefly treated as a *Cyanoboletus* in a study by Vizzini (2014), molecular analyses by Frank et al. (2020) have since shown *Xerocomellus rainisiae* (Bessette & O.K. Mill.) N. Siegel, C.F. Schwarz & J.L. Frank is not a member of *Cyanoboletus*. Morphological characters that *X. rainisiae* shares with *Xerocomellus Šutara include the pileus that becomes rimose in age, the deep red pigmentation of the basal stipital context (though less extensive than typical *Xerocomellus*), and the bright yellow, blue-staining hymenium.
Similar to Chai et al. 2018, we have found Lanmaoa and Cyanoboletus to be closely related (Fig. 1) and morphologically intergrading, although Cyanoboletus tends to have dull brown colors and Lanmaoa often has bright red or yellow coloration (Wu et al. 2014, 2016, Chai et al. 2018). Cyanoboletus bessettei and C. instabilis both share the 1/3–1/5 hymenophore-to-pileal-context ratio found in Lanmaoa (and some Baorangia). Chai et al. (2018) suggested future research may consider treating Cyanoboletus and Lanmaoa as one genus, in which Cyanoboletus would have priority over Lanmaoa (Art. 11.3 of the Shenzhen Code). This is complicated by Vadthanarat et al.’s (2019) phylogenetic inference of the genus Cacaoporus Raspé & Vadthanarat, which used the loci TEF1, RPB2, atp6, and cox3 to place two named and one unnamed species of Cacaoporus sister to Cyanoboletus, while receiving no phylogenetic support for Lanmaoa and Cyanoboletus as sister genera. Due to the limited overlap of data between our dataset and Vadthanarat et al.’s dataset, sequences of Cacaoporus were not included in our final analyses. We believe the suggestion by Chai et al. (2018) to lump Lanmaoa and Cyanoboletus should be carefully re-considered in future studies of this clade as more data become available.

Hemileccinum floridanum forms a well-supported sister clade to *Hemileccinum subglabripes*, the species it most closely resembles (Fig. 1). Using Singer (1947), *Hemileccinum floridanum* keys out to *Leccinum subglabripes* (Peck) Sing. (= *Hemileccinum subglabripes*). Insightfully, under his *L. subglabripus*, Singer (1947) gave a separate description for the Florida collections, which here conform to the new species *H. floridanum*. *Leccinum subglabripes* var. *corrugatoides* Singer was also described in Singer (1947), but differs from *H. floridanum* by a very rugose, “light brownish olive” pileus and a “light brownish olive” spore print (Singer 1947). Our collections do not possess these features, and it remains to be determined if this taxon is distinct from *H. floridanum*. Molecular analyses by Kuo & Ortiz-Santana (2020) revised the concept of *Hemileccinum* to include *H. rubropunctum*, a widespread species in North America which forms tuberculate ectomycorrhizas with *Quercus* spp. (Smith & Pfister 2009). Roots beneath several collections of *Hemileccinum floridanum* were examined for tuberculate ectomycorrhizas, but none were located. Thus far *H. rubropunctum* is unique in its ability to form tuberculate ectomycorrhizas within the Boletaceae, though other Boletales are capable of this (e.g. *Suillus* and *Rhizopogon*).

Xerocomellus bolinii is here placed as sister to a clade of Eurasian species, one of which has been considered part of the genus *Rheubarbariboletus* Vizzini, Simonini & Gelardi. Similar to Frank et al. (2020), our phylogenetic analysis finds *Heliogaster* Orihara & K. Iwase and *Rheubarbariboletus* embedded in the *Xerocomellus* lineage and *Nigroboletus* to be sister to this broadly defined *Xerocomellus* lineage. Vizzini (2015) cited the ITS-based phylogeny in Gelardi et al. (2013) and unpublished data as the molecular basis for establishing *Rheubarbariboletus*, differing from *Xerocomellus* by its smooth, non-striate and non-truncate spores, smooth or finely incrusted pileipellis, conglutulous plaques on the hyphal surface, tapered and rooting stipe base, the bright yellow-ochreous to orange-rhubarb and unchangeable context in the stipe base, and the dark blue-green blackish reaction with FeSO₄ on the pileus surface and the base of the stipe context. *Xerocomellus bolinii*, while sharing the non-bluing basal stipital context, smooth, non-truncate spores, and smooth pileipellis of *Rheubarbariboletus*, differs in its reaction to the application of FeSO₄ to the context by only turning light brown to light green (in old and young specimens, respectively), and by lacking a rooting stipe. In light of these molecular and morphological data, it seems best to include *Heliogaster* and *Rheubarbariboletus* within *Xerocomellus* at this time.

We follow Bozok et al. (2019) in recognizing *Exsudoporus* as a genus separate from *Butyriboletus*. Wu et al. (2016) treated the genus as a synonym of *Butyriboletus*, citing the reticulation and interwoven trichodermium to subcutis pileipellis as shared characters with the genus *Butyriboletus*. Bozok et al. (2019) reported on the positive amyloid reaction in the stipe tissues of *E. permagnificus*, a feature not shared with *Butyriboletus*. Our observations of *E. floridanus* show that the stipe base context exhibits a dextrinoid reaction in the stipe base (pers. obs.). Also, *Exsudoporus* species have pores that are discolorous with the tubes, and the basidiomes bruise blue much darker and heavier than *Butyriboletus* species. The guttation on the pores is regularly found, especially in younger specimens of *Exsudoporus* species, and is a useful distinguishing character. Wu et al. (2016)
reported species which were sister to the clade containing *Exsudoporus* and *Butyriboletus*, but these species remain undescribed. Additional analyses and thorough morphological comparison of those undescribed species might justify a broader concept of *Butyriboletus*, however until those analyses are produced, retaining the genus *Exsudoporus* is preferred.

Conclusions

This paper updates our understanding of the boletes in southeastern USA. Four novel species are described, as well as resurrecting and applying the name *Cyanoboletus cyaneitinctus* to the *Cyanoboletus* species widespread across North America. Our molecular analyses (Fig. 1) provide a DNA-based approach to aid morphological classification of these boletes and to better understand the distribution of these species. Our analyses also support the many genera found in recent Boletaceae phylogenetic reconstructions (Wu et al. 2014, 2016). By analyzing the protein-coding loci (*RPB1, RPB2, TEF1*) from a collection of *Butyriboletus floridanus* on GenBank, we have also confirmed a disjunct distribution for this tropical species. Inclusion of additional data from the epitype of *Pulchroboletus rubricitrinus* also lends the specimen to broader phylogenetic analyses. We also provide sequences of western USA *Xerocomellus*, which will aid future bolete phylogenetic reconstructions, as many species of *Xerocomellus* from North America lack protein coding loci.

This paper increases the knowledge of biodiversity present in the region. The potential for robust future studies is impeded by a lack of baseline knowledge of biodiversity. As molecular phylogenetic analyses continuously update the taxonomy of our classifications of the boletes, the need for further investigations into the boletes of the southeastern USA becomes readily apparent. Important aspects, such as morphological traits, host-specificity and geographic distribution, have been shown to be incredibly important with regards to boletes. Species-level concepts which were once broadly defined and applied widely across eastern North America have been shown to encompass several species, sometimes with clear morphological characters to distinguish them, as well as cryptic species in which geography seems to play a key role. Increasing and updating our understanding of boletes allows researchers to obtain richer species-level sequence-based identifications in environmental studies (Hibbett et al. 2011, Truong et al. 2017, Xu 2016), which is important for ecological studies, and paramount to better understanding threatened ecosystems in the southeastern USA. Macrofungal species have shown the potential for introduction and spread, e.g. *Favolaschia, Clathrus archeri, Perenniporia ochroleuca*, and the bolete *Aureoboletus projectellus* (Desprez-Loustau et al. 2007, Pringle et al. 2009, Vizzini et al. 2009, Wrzosek et al. 2017, Banasiak et al. 2019). Considering many species of boletes in the southeastern USA are geographically restricted, there is the potential that exotic mycorrhizal fungi may outcompete these endemic species.

Acknowledgements

This work was funded by the Cooley and Lakela funds at USF. The authors would like to thank the herbaria staff and faculty who assisted in facilitating loans for this study. We would also like to thank Hillsborough County Conservation and Environmental Lands Management, the Southwest Florida Water Management District, the Florida Park Service’s Bureau of Natural & Cultural Resources, and the Everglades National Park for granting us research permits that enabled us to sample fungi from their respective parks and are grateful to the park managers and staff for their support and assistance. We would also like to thank Jonathan Frank for sending USF specimens of western *Xerocomellus* for our phylogenetic analyses, and Clare Dennison for her help at the SEM lab at USF.

References

Banasiak Ł, Pietras M, Wrzosek M, Okrasińska A et al. 2019 – *Aureoboletus projectellus* (Fungi, Boletales) – an American bolete rapidly spreading in Europe as a new model species for studying expansion of macrofungi. Fungal Ecology 39, 94-9.
Baroni TJ. 1998 – *Boletus aurantiosplendens* sp. nov. from the southern Appalachian Mountains with notes on *Pulveroboletus auriflammeus, Pulveroboletus melleouluteus* and *Boletus auripes*. Bull Buff Soc Nat Sci 36, 245–255.

Baroni TJ. 2017 – Mushrooms of the northeastern United States and eastern Canada. Timber Press. 600 p.

Baroni TJ, Bessette AE, Roody WC. 1998 – *Boletus patrioticus* – A new species from the eastern United States. Bull Buff Soc nat Sci 36, 265–268.

Berkeley MJ, Curtis MA. 1853 – Centuries of North American Fungi. Annals and Magazine of Natural History 12(72), 417–435.

Bessette AE, Bessette AR, Roody WC. 2000 – North American Boletes: a color guide to the fleshy pored mushrooms. Syracuse University Press. 146 p.

Bessette AE, Roody WC, Bessette AR. 2017 – Boletes of Eastern North America. Syracuse University Press, Syracuse.

Both EE. 1993 – The Boletes of North America: A compendium. Buffalo Society of Natural Sciences, New York.

Both EE. 1998 – New taxa of boletes and two boletes with identity problems. Bulletin of the Buffalo Society of Natural Sciences, 36, 215–232.

Both EE, Ortiz-Santana B. 2010 – Clinton, Peck and Frost: The dawn of North American boletology. Bulletin of the Buffalo Society of Natural Sciences, 39, 11–28.

Bozok F, Assyov B, Taşkin H. 2019 – First records of *Exsudoporus permagnificus* and *Pulchroboletus roseoalbidus* (Boletales) in association with non-native Fagaceae, with taxonomic remarks. Phytologia Balcanica 25(1), 13–27.

Braeuer S, Goessler W, Kameníková T et al. 2018 – Arsenic hyperaccumulation and speciation in the edible ink stain bolete (*Cyanoboletus pulverulentus*). Food chemistry 242, 225–31.

Castellano MA, Elliott TF, Truong C, Séné O et al. 2016 – *Kombocles bakaiana* gen. sp. nov. (Boletaceae), a new sequestrate fungus from Cameroon. IMA fungus 7(2), 239.

Chai H, Liang ZQ, Jiang S, Fu XL, Zeng NK. 2018 – *Lanmaoa rubriceps*, a new bolete from tropical China. Phytotaxa 347(1), 71–80.

Coker WC, Beers AH. 1943 – The boleti of North Carolina. Dover, New York. (1971 reprint.)

Crous PW, Wingfield MJ, Lombard L, Roets F et al. 2019 – Fungal Planet description sheets: 951–1041. Persoonia: Molecular Phylogeny and Evolution of Fungi 43, 223–425.

Darriba D, Taboada GL, Doallo R, Posada D. 2012 – *jModelTest 2*: more models, new heuristics and parallel computing. Nature methods 9(8), 772.

Desprez-Loustau ML, Robin C, Buee M, Courtecuisse R et al. 2007 – The fungal dimension of biological invasions. Trends in Ecology & Evolution 22(9), 472–80.

Farid A, Franck AR, Bolin J, Garey JR. 2020 – Expansion of the genus *Imelira* in North America to include *Imelira floridanana*, sp. nov., and *Imelira pallida*, comb. nov. Mycologia 112(2), 423–37.

Farid A, Franck AR, Garey JR. 2017 – *Boletus rubricitrinus* belongs in *Pulchroboletus* (Boletaceae). Czech Mycology 69(2), 143–162.

Farid A, Gelardi M, Angelini C, Franck AR et al. 2018 – *Phylloporus* and *Phylloboletellus* are no longer alone: *Phylloporopsis* gen. nov. (Boletaceae), a new smooth-spored lamellate genus to accommodate the American species *Phylloporus boletinoides*. Fungal Systematics and Evolution 2(1), 341–359.

Frank J, Bessette AR, Bessette AE. 2017 – *Alessioporus rubriflavus* (Boletaceae), a new species from the eastern United States. North American Fungi 28 12, 1–8.

Frank JL, Siegel N, Schwarz CF, Araki B, Vellinga EC. 2020 – *Xerocomellus* (Boletaceae) in western North America. Fungal Systematics and Evolution 5(1), 265–288.

Felsenstein J, Felsenstein J. 2004 – Inferring phylogenies. Sinauer associates, Sunderland, Massachusetts.
Gelardi M, Simonini G, Ercole E, Davoli P, Vizzini A. 2015 – *Cupreooboletus* (Boletaceae, Boletineae), a new monotypic genus segregated from *Boletus* sect. *Luridi* to reassign the Mediterranean species *B. poikilochromus*. Mycologia 107(6), 1254–1269.

Gelardi M, Vizzini A, Ercole E, Voyron S et al. 2013 – *Boletus sinopulverulentus*, a new species from Shaanxi Province (central China) and notes on *Boletus* and *Xerocomus*. Sydowia 65(1), 45–57.

Gardes M, Bruns TD. 1993 – ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular ecology 2(2), 113–138.

Grand LF. 1970a – Notes on North Carolina Boletes. I. Species of *Boletellus, Phylloporus, Strobilomyces, Tylopilus*, and *Xanthoconium*. Journal of the Elisha Mitchell Scientific Society 1, 49–56.

Grand LF. 1970b – Notes on North Carolina boletes. II. Species of *Gyrodon, Gyroporus, Xerocomus*, and *Leccinum*. Journal of the Elisha Mitchell Scientific Society 1, 57–61.

Grand LF. 1970c – Notes on North Carolina boletes. III. Species of *Suillus*. Journal of the Elisha Mitchell Scientific Society 1, 209–213.

Guindon S, Gascuel O. 2003 – A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systeatic biology 52(5), 696–704.

Halling RE. 1983 – Boletes described by Charles C. Frost. Mycologia 75(1), 70–92.

Halling RE. 1986 – An annotated index to species and infraspecific taxa of Agaricales and Boletales described by William A. Murrill. Memoirs of the New York Botanical Garden, New York.

Halling RE, Nuhn M, Fechner NA, Osmundson TW et al. 2012 – *Sutorius*: a new genus for *Boletus eximius*. Mycologia 104(4), 951–961.

Hibbett DS, Ohman A, Glotzer D, Nuhn M et al. 2011 – Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal biology reviews 25(1), 38–47.

Katoh K, Standley DM. 2013 – MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution 30(4), 772–80.

Klofac W. 2010 – The genus *Aureoboletus*, a world-wide survey. a contribution to a monographic treatment. Österreichische Zeitschrift für Pilzkunde 2010(19), 133–174.

Kuo M, Ortiz-Santana B. 2020 – Revision of leccinoid fungi, with emphasis on North American taxa, based on molecular and morphological data. Mycologia 112(1), 197–211.

Matheny PB, Liu YJ, Ammirati JF, Hall BD. 2002 – Using RPB1 sequences to improve phylogenetic inference among mushrooms (*Inocybe, Agaricales*). American Journal of Botany 89(4), 688–698.

Miller MA, Pfeiffer W, Schwartz T. 2010 – Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 gateway computing environments workshop (GCE). IEEE. New Orleans.

Murrill WA. 1909 – The Boletaceae of North America – I. Mycologia 1(1), 4–18.

Murrill WA. 1948 – Florida Boletes. Lloydia 11, 21–35.

Nuhn ME, Binder M, Taylor AF, Halling RE, Hibbett DS. 2013 – Phylogenetic overview of the Boletineae. Fungal Biology 117(7–8), 479–511.

Ortiz-Santana B, Bessette AE, McConnell OL. 2016 – *Boletus durhamensis* sp. nov. from North Carolina. Mycotaxon 131(3), 703–715.

Ortiz-Santana B, Roody WC, Both EE. 2009 – A new arenicolous Boletus from the Gulf Coast of northern Florida. Mycotaxon 107, 243–247.

Peck CH. 1873 – Report of the Botanist (1869). Annual Report on the New York State Museum of Natural History 23, 27–135.

Peck CH. 1889 – Boleti of the United States. Bulletin of the New York State Museum 2(8). 73–166.

Pringle A, Adams RI, Cross HB, Bruns TD. 2009 – The ectomycorrhizal fungus *Amanita phalloides* was introduced and is expanding its range on the west coast of North America. Molecular Ecology 18(5), 817–833.
R Core Team. 2017 – R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rambaut A. 2007 – FigTree, a graphical viewer of phylogenetic trees. Institute of Evolutionary Biology, University of Edinburgh.

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018 – Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic biology 67(5), 901–904.

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL et al. 2012 – MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61(3), 539–542.

von Schweinitz LD. 1822 – Synopsis fungorum Carolinæ superioris secundum observationes Ludovici Davidis de Schweinitz. Leipzig: Johann Ambrosius Barth.

Singer R. 1945a – The Boletineae of Florida with notes on extralimital species I. The Strobilomycetaceae. Farlowia 2, 97–141.

Singer R. 1945b – The Boletineae of Florida with notes on extralimital species. II. The Boletaceae. Farlowia 2, 223–303

Singer R. 1947 – The Boletoideae of Florida with Notes on Extralimital Species III. The American Midland Naturalist 37(1), 1–135.

Singer R. 1986 – The Agaricales in modern taxonomy. 4 edn. Vaduz, Germany: Koeltz. 726 p.

Singer R, Williams R. 1992 – Some boletes from Florida. Mycologia 84(5), 724-728.

Smith AH, Thiers HD. 1971 – Boletes of Michigan. University of Michigan Press, Ann Arbor.

Smith ME, Amses KR, Elliott TF, Obase K et al. 2015 – New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costastiporus cyanescens gen. sp. nov. (Boletaceae, Boletales). IMA fungus 6(2), 297–317.

Smith ME, Pfister DH. 2009 – Tuberculate ectomycorrhizae of angiosperms: the interaction between Boletus rubropunctus (Boletaceae) and Quercus species (Fagaceae) in the United States and Mexico. American Journal of Botany, 96(9), 1665–1675.

Stamatakis A. 2014 – RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313.

Šutara J. 2008 – Xerocomus s. l. in the light of the present state of knowledge. Czech Mycol 60(1): 29–62.

Thiers HD. 1963 – The bolete flora of the Gulf coastal plain. I. The Strobilomycetaceae. Journal of the Elisha Mitchell Scientific Society, 79(1), 32–41.

Truong C, Mujic AB, Healy R, Kuhar F et al. 2017 – How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytologist 214(3), 913–9.

Vizzini A. 2014 – Nomenclatural novelties. Index Fungorum 176, 1.

Vizzini A. 2015 – Nomenclatural novelties. Index Fungorum 244, 1.

Vizzini A, Zotti M, Mello A. 2009 – Alien fungal species distribution: the study case of Favolaschia calocera. Biological invasions 11(2), 417–429.

Vadthanarat S, Lumyong S, Raspé O. 2019 – Cacaoporus, a new Boletaceae genus, with two new species from Thailand. MycoKeys 54, 1–29.

Vadthanarat S, Raspé O, Lumyong S. 2018 – Phylogenetic affinities of the sequestrate genus Rhodactina (Boletaceae), with a new species, R. rostratispora from Thailand. MycoKeys 2018(29), 63–80.

Vilgalys R, Hester M. 1990 – Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of bacteriology 172(8), 4238–4246.

Walter T. 1788 – Flora Caroliniana. Flora caroliniana. J. Fraser, London. 263 p.

Weber GF. 1961 – William Alphonso Murrill. Mycologia 53(6), 543–557.

White TJ, Bruns T, Lee SJ, Taylor J. 1990 – Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18(1), 315–322.
Supplementary Table 1 GenBank accession number and other information of sequences used in phylogenetic analyses in this study. Sequences in bold were generated in this study.

Species	GenBank voucher	Location	ITS	28S	RPB1	RPB2	TEF
Alessioporus ichnusanus	AMB 12756	KJ729491	KJ729504	–	–	–	KJ729513
Alessioporus ichnusanus	MG420a	KJ729496	KJ729509	–	–	–	
Alessioporus rubriflavus	ARB1356	KU736957	MH656696	–	–	–	
Alessioporus rubriflavus	JLF2561	KU736958	KC812306	–	–	–	
Aureoboletus auriflammeus	CFMR BOS 699	–	MK601706	–	MK766269	MK721060	
Aureoboletus auriporus	35 97	–	DQ534636	–	–	–	
Aureoboletus auriporus	AB11	MH796985	–	–	–	–	
Aureoboletus auriporus	AB12	MH796989	–	–	–	–	
Aureoboletus auriporus	BDCR0431	–	HQ161871	HQ161840	–	–	
Aureoboletus auriporus	FLAS F 60185	MH796985	–	–	–	–	
Aureoboletus auriporus	FLAS F 60914	MH211684	–	–	–	–	
Aureoboletus auriporus	FLAS F 60985	MH016931	–	–	–	–	
Aureoboletus auriporus	MAC09 TENN	MF755267	–	–	–	–	
Aureoboletus auriporus	S D Russell MycoMap	MK560093	–	–	–	–	
Aureoboletus catenarius	GDGM45142	–	MN204514	–	–	–	
Aureoboletus catenarius	HKAS54463	–	KT990509	KT990890	KT990348	KT990710	
Supplementary Table 1 Continued.

Species	GenBank voucher	Locus ITS	28S	RPB1	RPB2	TEF
Aureoboletus catenarius	HKAS54467	–	KT990510	–	KT990349	KT990711
Aureoboletus clavatus	GDGM42962	–	KR052045	KR052056	–	–
Aureoboletus clavatus	GDGM42963	–	KR052046	KR052057	–	KR052054
Aureoboletus clavatus	GDGM42984	–	KR052047	–	–	KR052055
Aureoboletus clavatus	HKAS59802	–	KR052044	–	–	KR052053
Aureoboletus duplicatoporus	HKAS63009	–	KT990511	KT990891	KT990350	KT990712
Aureoboletus duplicatoporus	HKAS83115	–	KT990512	KT990892	KT990351	KT990713
Aureoboletus gentilis	ADK4865	–	–	–	KT823994	KT824027
Aureoboletus gentilis	MG372a	–	KF112344	KF112557	KF112741	KF134014
Aureoboletus gentilis	Pug1	–	DQ534635	–	–	KF030399
Aureoboletus griseorufescens	GDGM28490	–	MH670278	–	MH700241	–
Aureoboletus griseorufescens	ZM131	–	MH670279	MH700220	MH700242	–
Aureoboletus innixus	CFMR BOS 544	–	MK601707	–	MK766270	MK721061
Aureoboletus innixus	MB03 104	–	KF030239	–	–	KF030400
Aureoboletus mirabilis	HKAS57776	–	KF112360	KF112624	KF112743	KF112229
Aureoboletus mirabilis	REH9765	–	KP327661	–	–	KP327709
Aureoboletus moravicus	MG374a	–	KF112421	KF112559	KF112745	KF112232
Aureoboletus moravicus	VDKO1120	–	–	–	MG212615	MG212573
Aureoboletus moravicus f luteus	PARMA 1544 11	KJ676960	KJ676958	–	–	KJ676959
Aureoboletus nephrosporus	HKAS67931	–	KT990516	KT990895	KT990357	KT990720
Aureoboletus nephrosporus	HKAS74929	–	KT990517	KT990896	KT990358	KT990721
Aureoboletus projectellus	MICH KUO 09111014	–	MK601708	–	MK766271	MK721062
Aureoboletus projectellus	NYBG13392	–	KP327622	–	–	KP327675
Aureoboletus quercus	spinosae	KY039954	KY039967	KY039963	KY039958	–
Aureoboletus quercus	GDGM43755	KY039955	KY039968	KY039964	KY039959	–
Aureoboletus quercus	GDGM43758	–	KY039969	KY039965	KY039960	–
Aureoboletus raphanaceus	GDGM44832	–	MH670268	MH700218	MH700236	MH700194
Species	GenBank voucher	Locus	Locus	Locus	Locus	
-----------------------	-----------------	---------	---------	---------	---------	
		ITS	28S	RPB1	RPB2	TEF
Aureoboletus raphanaceus	GDGM52543	MH670271	–	MH700237	–	
Aureoboletus raphanaceus	GDGM52590	MH670272	MH700219	MH700238	MH700193	
Aureoboletus roxanae	CFMR BOS 698	–	MK601709	–	MK766272	MK721063
Aureoboletus roxanae	DS626 07	–	KF030311	KF030381	–	KF030402
Aureoboletus russellii	CFMR BOS 716	–	MK601710	–	MK766273	MK721064
Aureoboletus sp tenuis	CFMR BZ 2395 BOS 468	MN250221	MK601711	–	MK766274	MK721065
Aureoboletus sp tenuis	GDGM44829	–	KY039970	–	KY039961	–
Aureoboletus sp tenuis	GDGM42601	KF265358	KF534789	–	KT291754	KT291745
Aureoboletus tenuis	HKAS75104	–	KT990518	KT990897	KT990359	KT990722
Aureoboletus thibetanus	HKAS57692	–	KT990524	KT990901	KT990365	KT990728
Aureoboletus thibetanus	HKAS76655	–	KF112420	KF112626	KF112752	KF112236
Aureoboletus thibetanus	HKAS89494	–	KT990525	KT990902	KT990366	KT990729
Aureoboletus tomentosus	HKAS59694	–	KT990513	KT990893	KT990352	KT990714
Aureoboletus tomentosus	HKAS80485	–	–	KT990894	KT990353	KT990715
Aureoboletus viridiflavus	–	AY612805	–	–	–	–
Aureoboletus viscidipes	HKAS77103	–	KT990519	–	KT990360	KT990723
Aureoboletus viscosus	OR0361	–	–	–	MH614751	MH614703
Aureoboletus yunnanensis	HKAS75050	–	KT990520	KT990898	KT990361	KT990724
Aureoboletus zangii	HKAS74751	–	KT990521	KT990899	KT990362	KT990725
Aureoboletus zangii	HKAS74766	–	KT990522	KT990900	KT990363	KT990726
Baorangia alexandri	EE 2018a LE 254265	MH043612	MH036170	–	–	–
Baorangia alexandri	EE 2018a LE 254266	MH043611	MH036169	–	–	–
Baorangia bicolor	MB07 001 GS 10213	–	KF030246	KF030370	–	KF030405
Baorangia emileorum	PRM 934960	MH043616	MH036174	–	–	–
Baorangia emileorum	TO HG131114	MH043617	MH036175	–	–	–
Baorangia emileorum	TO HG171015	MH043615	MH036173	–	–	–
Baorangia emileorum	TO HG191015	MH043614	MH036172	–	–	–
Baorangia major	OR209	–	–	–	MG897441	MG897431
Baorangia sp	GDGM44829	–	–	–	–	–
Baorangia sp	GDGM42601	KF265358	KF534789	–	KT291754	KT291745
Baorangia sp	HKAS75104	–	KT990518	KT990897	KT990359	KT990722
Baorangia sp	HKAS57692	–	KT990524	KT990901	KT990365	KT990728
Baorangia sp	HKAS76655	–	KF112420	KF112626	KF112752	KF112236
Baorangia sp	HKAS89494	–	KT990525	KT990902	KT990366	KT990729
Baorangia sp	HKAS59694	–	KT990513	KT990893	KT990352	KT990714
Baorangia sp	HKAS80485	–	–	KT990894	KT990353	KT990715
Baorangia sp	–	AY612805	–	–	–	–
Supplementary Table 1 Continued.

Species	GenBank voucher	Locus	ITS	28S	RPB1	RPB2	TEF
Baorangia major							
OR404							
OR486							
Baorangia pseudocalopus	HKAS75739						
Boarangia rufomaculata	BOTH4411						
Boletellus longicollis	HKAS53398						
Boletellus projectellus	AFTOL ID 713						
Boletellus singeri	VB4530						
4588							
Boletus abruptibulbus	HKAS57262						
Boletus aff amygda linus	REH8790						
Boletus melobr unnecens	112605ba						
Boletus amygda linus	REH8969						
Boletus austroedulis	BD380						
Boletus edulis	Be3						
Boletus edulis	HMJAU4637						
Boletus edulis	Trudell 03 289						
Boletus rubriceps	Arora11331						
Boletus rubriceps	MIC KUO 081507						
Boletus semigastroideus	PBM 3076						
Boletus separans	DPL 2704						
Boletus separans	MIC KUO 06201002						
Buchwaldoboletus lignicola	HKAS76674						
Buchwaldoboletus lignicola	HKAS84904						
Buchwaldoboletus lignicola	Pul1						
Buchwaldoboletus lignicola	VDKO1140						
Butyriboletus appendiculatus	BR502008929						
55							
Butyriboletus appendiculatus	BR502008933						
90							
Butyriboletus appendiculatus	Bap1						
Butyriboletus appendiculatus	MB0000286						
Butyriboletus brunneus	NY00013631						
Butyriboletus pseudoregius	BR502015335						
59 51							
Supplementary Table 1

Continued.

Species	GenBank voucher	**Locus**	**ITS**	**28S**	**RPB1**	**RPB2**	**TEF**
Butyriboletus pseudoregius	BR502016184 65 02	KT002602	KT002613	KT002625	–		KT002637
Butyriboletus pseudospeciosus	HKAS63513	–	KT990541	KT990909	KT990380	KT990743	
Butyriboletus pseudospeciosus	HKAS63596	–	KT990542	KT990910	KT990381	KT990744	
Butyriboletus pseudospeciosus	N K Zeng2127	MH885349	MH879687	–	–	MH879716	
Butyriboletus regius	11265	–	–	–	–	–	
Butyriboletus regius	MB 000287	KT002605	KT002616	KT002628	–	–	KT002640
Butyriboletus roseoflavus	HKAS54099	KJ909519	KY418892	KF739741	KF739703	KF739779	
Butyriboletus roseoflavus	HKAS63593	KJ909517	KJ184559	–	–	KJ184571	
Butyriboletus subsplendidus	HKAS50444	–	KT990540	KT990908	KT990379	KT990742	
Butyriboletus yicibus	HKAS57503	KT002608	KT002620	KT002632	–	–	KT002644
Butyriboletus yicibus	HKAS68010	–	KT002619	KT002631	–	–	KT002643
Chalciporus aff piperatus	HKAS50214	JQ928610	JQ928621	JQ928594	–	–	
Chalciporus piperatus	HKAS84882	–	KT990562	–	KT990397	KT990758	
Chalciporus pseudorubinellus	4302	–	KF030284	–	–	KF030441	
Chalciporus rubinelloides	HKAS57362	–	KT990563	–	KT990398	KT990759	
Chalciporus rubinelloides	HKAS58728	–	KT990564	–	KT990399	KT990760	
Chalciporus rubinelloides	HKAS74952	–	KT990565	–	KT990400	KT990761	
Corneroboletus indecorus	OR0863	–	–	–	MH614772	MH614726	
Cyanoboletus	HKAS76850	–	KF112343	KF112527	KF112697	KF112187	
Cyanoboletus brunneoruber	HKAS80579 1	–	KT990568	KT990926	KT990401	–	
Cyanoboletus brunneoruber	HKAS80579 2	–	KT990569	KT990927	KT990764	–	
Cyanoboletus hymenoglutinosus	AB 2016	KT860060	–	–	–	–	
Cyanoboletus pulverulentus	18188	–	–	–	–	–	
Cyanoboletus pulverulentus	A21	JX434686	–	–	–	–	
Cyanoboletus pulverulentus	A7	JX434685	–	–	–	–	
Cyanoboletus pulverulentus	ASIS22672	KP004920	–	–	–	–	
Cyanoboletus pulverulentus	B21 specimen PRM 935923	–	–	–	–	–	
Supplementary Table 1 Continued.

Species	GenBank voucher	Locus	28S	RPB1	RPB2	TEF	
Cyanoboletus pulverulentus	B23 specimen PRM 944014	ITS	LT714705	–	–	–	
Cyanoboletus pulverulentus	B24 specimen PRM 944001	28S	LT714706	–	–	–	
Cyanoboletus pulverulentus	B25 specimen PRM 944013	RPB1	LT714707	–	–	–	
Cyanoboletus pulverulentus	B26 specimen PRM 944022	RPB2	LT714708	–	–	–	
Cyanoboletus pulverulentus	B27 specimen PRM 935997	TEF	LT714709	–	–	–	
Cyanoboletus pulverulentus	CA050916 04 PRM 944013	–	–	–	–	–	
Cyanoboletus pulverulentus	JMP0012	–	–	–	–	–	
Cyanoboletus pulverulentus	MG 126a KT157053 KT157062	–	–	–	–	–	
Cyanoboletus pulverulentus	MG 456a KT157054 KT157063	–	–	–	–	–	
Cyanoboletus pulverulentus	MG 628a KT157055 KT157064 KT157069	–	–	–	–	–	
Cyanoboletus pulverulentus	RT00004 EU819502	–	–	–	–	–	
Cyanoboletus pulverulentus	RW109	–	–	–	–	KT824013	
Cyanoboletus sinopulverulentus	HMAS 266894 KC579402	–	–	–	–	–	
Cyanoboletus sp	B28 HKAS 59554	ITS	LT714710	MF373585	–	–	–
Cyanoboletus instabilis	CFMR BZ 3170 MN250222	28S	KF1112412 KF112528	KF112698 KF112186			
Exsudoporus floridanus	TENN 067311	RPB1	KT002601 KT002612 KT002624	–	–	–	
Exsudoporus frostii	NY01194009	RPB2	KT990572 KT990928 KT990406 KT990768				
Gymnogaster boletoides	REH9455	–	JX889673	–	–	JX889683	
Gymnogaster boletoides	REH9288	–	KP327652	–	–	KP327703	
Heimioporus australis	N K Zeng3109 HKAS 59554	28S	MH241052 MH241051	–	–	MH241053	
Heimioporus conicus	REH9817	–	KP327664	–	–	KP327710	
Heimioporus cooloolae	REH9852	–	KP327655	–	–	KP327711	
Heimioporus cooloolae	N K Zeng2788 HKAS 59554	RPB1	MF962380	–	–	MF962400	
Heimioporus gaojiaocong	N K Zeng2791	RPB2	MF962398 MF962383	–	–	MF962412	
Heimioporus gaojiaocong	N K Zeng2792	TEF	MF962399 MF962384	–	–	MF962413	
Heimioporus gaojiaocong	N K Zeng2864	–	MF962400 MF962385	–	–	MF962415	
Heimioporus gaojiaocong	Z L Yang5901	–	MF962394 MF962377	–	–	MF962409	
Species	GenBank voucher	ITS	28S	RPB1	RPB2	TEF	
-------------------------	-----------------------	---------	---------	--------	--------	---------	
Heimioporus japonicus	HKAS52237	–	KF112347	KF112618	KF112806	KF112228	
Heimioporus japonicus	Lancang Y J Hao84	MF962402	MF962386	–	–	MF962416	
Heimioporus japonicus	N K Zeng1335	MF962404	MF962388	–	–	MF962418	
Heimioporus japonicus	N K Zeng1566	–	MF962389	–	MF962424	MF962419	
Heimioporus japonicus	OR114	–	–	–	–	KT824004	KT824037
Heimioporus subretisporus	HKAS80581	–	KT990573	–	KT990407	KT990769	
Heimioporus subretisporus	HKAS80582	–	KT990574	–	KT990409	KT990770	
Hemileccinum depilatum	AF2845	–	–	–	–	MG212633	MG212591
Hemileccinum impolitum	Bim1	–	–	–	–	JQ327034	
Hemileccinum impolitum	HKAS84869	–	KT990575	KT990930	KT990410	KT990771	
Hemileccinum rubropunctum	FH MES116	FJ480434	–	–	–	–	
Hemileccinum rubropunctum	FH MES117	FJ480433	–	–	–	–	
Hemileccinum rubropunctum	JLF5666	MH190826	MK874830	–	–	–	
Hemileccinum rubropunctum	NY01193924	–	MK601769	–	MK766328	MK721123	
Hemileccinum rubropunctum	NY792788	–	MK601768	–	MK766327	MK721122	
Hemileccinum rugosum	HKAS50284	–	KT990576	–	KT990411	KT990772	
Hemileccinum rugosum	HKAS84355	–	KT990578	KT990931	KT990413	KT990774	
Hemileccinum rugosum	HKAS84970	–	KT990577	–	KT990412	KT990773	
Hemileccinum rugosum	MICHI KUO	–	MK601737	–	MK766299	MK721091	
Hemileccinum subglabripes	MICH KUO 07070202	–	MK601738	–	MK766300	MK721092	
Hemileccinum subglabripes	MICH KUO 07230802	–	MK601739	–	MK766301	MK721093	
Hemileccinum subglabripes	MICH KUO 08301402	–	MK601740	–	MK766302	MK721094	
Hemileccinum subglabripes	MICH KUO 08240502	–	MK601740	–	MK766302	MK721094	

Supplementary Table 1 Continued.
Supplementary Table 1 Continued.

Species	GenBank voucher	Locus	28S	RPB1	RPB2	TEF	
Hortiboletus cf rubellus	East Coast		–	–	KF030371	–	KF030419
	MB03 033		–	–	–	–	–
Hortiboletus cf rubellus	West Coast		–	–	–	–	KF030420
	PBM 1331		–	–	–	–	–
Hortiboletus indorubellus	DC 14	KT319647	KU566807	–	–	–	
Hortiboletus indorubellus	LS15	MK002767	MK002872	–	–	–	
Hortiboletus rubellus	MICH KUO 06081002	–	MK601741	–	MK766303	MK721095	
Hortiboletus rubellus	VDKO0403	–	–	–	–	–	–
Hymenogaster behrii	OSC 12988	KJ882288	–	–	–	–	–
Hymenogaster behrii	OSC 17620	KJ882290	–	–	–	–	–
Hymenogaster macmurphyi	OSC MES282b	KJ882289	KJ882291	–	–	–	
Lanmaoa angustispora	HKAS74752	–	KM605139	KM605166	KM605177	KM605154	
Lanmaoa angustispora	HKAS74759	–	KM605140	KM605167	KM605178	KM605155	
Lanmaoa asiatica	HKAS54095	–	KM605141	KM605164	KM605174	KM605151	
Lanmaoa asiatica	HKAS63516	–	KT990584	KT990935	KT990419	KT990780	
Lanmaoa asiatica	HKAS63592	–	KM605142	KM605163	KM605175	KM605152	
Lanmaoa asiatica	HKAS63603	–	KM605143	KM605165	KM605176	KM605153	
Lanmaoa asiatica	N K Zeng2125	MG030477	MG030470	–	–	MG030481	
Lanmaoa asiatica	N K Zeng2795	MG030469	MG030469	–	–	MG030480	
Lanmaoa asiatica	OR0228	KM605142	KM605167	–	–	MG030480	
Lanmaoa borealis	2858	JQ326998	–	–	–	JQ327021	
Lanmaoa carminipes	MB06 061	JQ327001	KM030363	–	–	JQ327022	
Lanmaoa cf borealis	borealis AB35	MH796994	–	–	–	–	
Lanmaoa flavorubra	NY775777	JQ924339	–	–	–	–	
Lanmaoa macrocarpa	N K Zeng3021	–	–	–	–	MH879713	
Lanmaoa macrocarpa	N K Zeng3251	MH885347	MH879685	–	–	MH885347	
Lanmaoa pallidorosea	BOTH4432	–	–	–	–	MG897437	
Lanmaoa pallidorosea	MO 210760	–	MH216001	–	–	MH318610	
Lanmaoa pallidorosea	MO 247881	MH234471	MH230088	–	–	MH337278	
Lanmaoa pseudosensibilis	DS615 07	KF030257	–	–	–	KF030407	
Lanmaoa roseocrispans	HOLOTYPE	MH036169	–	–	–	KP327616	
Lanmaoa rubriceps	N K Zeng2773	MG030475	MG030468	–	–	MG030479	
Species	GenBank voucher	Locus	28S	RPB1	RPB2	TEF	
-------------------------------	-----------------	----------	-----------	----------	----------	---------	
Lanmaoa rubriceps	N K Zeng3006	ITS	MH885346	MH879683	–	–	
Nigroboletus roseonigrescens	GDGM 43238	28S	KT220584	KT220588	KT220591	–	
Nigroboletus roseonigrescens	MG 524a	RPB1	KT220586	KT220590	KT220593	–	
Nigroboletus roseonigrescens	ZT 13553	RPB2	KT220585	KT220589	KT220592	KT220594	
Pulchroboletus roseoalbidus	AMB 12757	TEF	–	–	–	–	
Pulchroboletus roseoalbidus	MCVE 17577		KJ729490	KJ729503	–	–	
Pulchroboletus roseoalbidus	MCVE 18217		KJ729488	KJ729501	–	–	
Pulchroboletus roseoalbidus	MG416a		KJ729489	KJ729502	–	–	
Pulchroboletus roseoalbidus	MG532a		KJ729487	KJ729500	–	–	
Pulchroboletus sclerotorum	FLAS F 60333		MF098659	MF614166	MF614168	MF614167	
Pulchroboletus sclerotorum	FLAS F 60334		MF098660	–	–	MF614164	
Pulchroboletus sclerotorum	MO 243879		MH257545	–	–	MH337281	
Pulveroboletus auriporus	DD971		–	–	–	–	
Sinoboletus duplicatoporus			–	–	–	–	
Suillellus amygdaлинus			–	–	–	–	
Suillellus amygdaлинus			–	–	–	–	
Suillellus queletii			–	–	–	–	
Suillellus subamygdalinus			–	–	–	–	
Suillellus subamygdalinus			–	–	–	–	
Suillellus subamygdalinus			–	–	–	–	
Xerocomellus armeniacus			–	–	–	–	
Xerocomellus armeniacus			–	–	–	–	
Xerocomellus armeniacus			–	–	–	–	
Xerocomellus armeniacus			–	–	–	–	
Xerocomellus armeniacus			–	–	–	–	
Xerocomellus armeniacus			–	–	–	–	
Xerocomellus armeniacus			–	–	–	–	
Xerocomellus armeniacus			–	–	–	–	
Xerocomellus armeniacus			–	–	–	–	
Xerocomellus armeniacus			–	–	–	–	
Xerocomellus armeniacus			–	–	–	–	
Xerocomellus armeniacus			–	–	–	–	
Supplementary Table 1

Species	GenBank voucher	Locus				
Xerocomellus chrysenteron	MICH KUO 09260903	ITS	28S	RPB1	RPB2	TEF
Xerocomellus chrysenteron	VDKO0821	–	–	–	KT824017	KT824050
Xerocomellus chrysenteron	Xch1	–	–	KF030365	–	KF030415
Xerocomellus citalpinus	ADK4864	–	–	–	KT823993	KT824026
Xerocomellus citalpinus	AT2005034	–	–	KF030367	–	KF030417
Xerocomellus citalpinus	PDD94421	–	JQ924322	KF112525	KF112686	KF112171
Xerocomellus communis	HKAS50467	–	KT990670	KT991008	KT990494	KT990858
Xerocomellus communis	HKAS68204	–	–	KT991009	KT990495	KT991009
Xerocomellus corneri	HKAS52503	–	KT990668	KT991006	KT990492	KT990856
Xerocomellus corneri	HKAS90206	–	KT990669	KT991007	KT990493	KT990857
Xerocomellus porosporus	VDKO0311	–	–	–	MH614773	MH614727
Xerocomellus ripariellus	VDKO0404	–	–	–	MH614793	MH614746
Xerocomellus sp	HKAS50466	–	KF112372	KF112549	KF112049	KF112183
Xerocomellus sp	HKAS50467	–	KF112489	KT991008	KT12770	KT12173
Xerocomellus sp	HKAS51292	–	KF112369	KF112547	KF112692	KF112181
Xerocomellus sp	HKAS56311	–	KF112340	KF112524	KF112684	KF112170
Xerocomellus sp	HKAS59608	–	KF112371	KF112551	KF112696	KF112185
Xerocomellus sp	HKAS76673	–	KF112370	KF112548	KF112693	KF112182
Xerocomellus zelleri	JLF2977	KM213666	KU144799	–	–	–
Xerocomellus zelleri	REH8724	–	KF030271	KF030366	–	KF030416
Xerocominus	MICH-KUO 07050706	ITS		MK601821	MK766377	MK721175
Xerocomellus	MA-Fungi	AJ419221		–	–	–
Xerocomellus	47678	–	–	–	–	–
Xerocomellus	ML41842RP	MH011927		–	–	–
Boletus	JQ178324	–	–	–	–	–
Bovista himalaica	JN411938	–	–	–	–	–
Xerocomellus	17602	JF908795		–	–	–
Xerocomellus	SOMF12854	MH011931		–	–	–
Xerocomellus	SOMF29860	MH011932		–	–	–
Xerocomellus	CM058	KP823760		–	–	–
Aureoboletus	Farid 501	MW675741	MW662576	MW737500	MW737463	–
Aureoboletus	JAB 124	MW675754	–	–	–	–
Aureoboletus	JAB 130	MW675725	MW662581	–	–	–
Aureoboletus	JAB 320	MW675726	MW662585	MW737508	MW737468	MW737489
Species	GenBank voucher	Locus	Locus	Locus	Locus	
---------------------------------	----------------	--------	--------	--------	--------	
aureoboletus pseudoauriporus	JAB 80	ITS	28S	RPB1	RPB2	TEF
cyanoboletus bessettei	ARB 1393A	MW675734	MW662571	–	MW737457	MW737482
cyanoboletus bessettei	ARB 1393B	MW675735	–	–	MW737458	MW737483
cyanoboletus cyanitinctus	JAB 324	MW675732	MW662586	MW737505	MW737469	–
cyanoboletus cyanitinctus	JAB 325	MW675733	–	MW737506	MW737470	–
cyanoboletus cyanitinctus	Farid 340	MW675739	MW662574	MW737502	MW737461	–
cyanoboletus cyanitinctus f. reticulatus	Farid 1035	MZ746113	–	–	–	–
exsudoporus floridanus						
hemileccinum floridanum	AB16	MW675745	MW662570	–	–	MW737481
hemileccinum floridanum	Farid 1032	MW675746	MW662573	–	–	–
hemileccinum floridanum	Farid 625	MW675742	MW662577	–	–	–
hemileccinum floridanum	JAB 142	MW675730	MW662583	–	–	MW737488
lanmaoa sublurida	Farid 1023	MW675736	MW662572	MW737498	MW737460	MW737485
lanmaoa sublurida	Farid 343	MW675740	MW662575	MW737499	MW737462	MW737486
lanmaoa sublurida	Farid 631	MW675743	MW662578	MW737501	MW737464	MW737487
pulchroboletus rubricitrinus	Farid 335	MF193884	MG026638	MW737512	MW737466	–
xerocomellus bolinii	JAB 110	MW675728	MW662580	MW737507	–	–
xerocomellus bolinii	JAB 43	MW675734	MW662587	MW737509	–	–
xerocomellus bolinii	JAB 133	MW675729	MW662582	–	–	–
xerocomellus bolinii	JAB 95	MW675735	MW662589	MW737511	MW737472	MW737491
xerocomellus salicicola	B391	MK552408	MW662569	MW737496	–	–
hortiboletus coccyginus	JLF 3093	KU144805	–	MW737513	MW737473	–
xerocomellus amylosporus	JLF 3498	KU144743	–	MW737514	MW737474	MW737492
xerocomellus rainisiae	JLF 3523	KU144789	KU144790	MW737515	MW737475	–
xerocomellus	JLF 3558	KU144785	KU144786	MW737516	MW737476	–
Supplementary Table 1 Continued.

Species	GenBank voucher	ITS	28S	RPB1	RPB2	TEF
Xerocomellus atropurpureus	JLF 3620	KU144749	KU144750	MW737517	MW737477	MW737495
Xerocomellus dryophilus	JLF 4134	KX534076	KY659593	–	MW737478	MW737493
Xerocomellus dryophilus	JLF 4791	–	–	–	MW737479	MW737494
Xerocomellus mendocinensis	JLF 5684	MH168533	MN294419	MW737518	MW737480	–
Xerocomellus diffractus	JLF 5745	MH168534	–	MW737519	–	–