The Number System of the Permutations Generated by Cyclic Shift

Stéphane Legendre
Team of Mathematical Eco-Evolution
Ecole Normale Supérieure
75005 Paris
France
legendre@ens.fr

Abstract

A number system coding for the permutations generated by cyclic shift is described. The system allows to find the rank of a permutation given how it has been generated, and to determine a permutation given its rank. It defines a code describing the symmetry properties of the set of permutations generated by cyclic shift. This code is conjectured to be a combinatorial Gray code listing the set of permutations: this corresponds to an Hamiltonian path of minimal weight in an appropriate regular digraph.

1 Introduction

Since the work of Laisant in 1888 [4] – and even since Fischer and Krause in 1812 [1] according to Hall and Knuth [2] –, it is known that the factorial number system codes for the permutations generated in lexicographic order. More precisely, when the set of all permutations on n symbols is ordered by lexicographic order, the rank of a permutation written in the factorial system provides a code determining the permutation. The code specifies which interchanges of the symbols according to lexicographic order have to be performed to generate the permutation. Conversely, the rank of a permutation can be computed from its code. This coding has been rediscovered several times since (e.g., Lehmer [5]).

In this study, we describe a number system on the finite ring $\mathbb{Z}_n!$ coding for the permutations generated by cyclic shift. When the set S_n of permutations is ordered according to generation by cyclic shift, the rank of a permutation written in this number system entirely specifies how the permutation has been generated. Conversely, the rank can be computed from the code. This number system is a special case of a large class of methods presented by Knuth [3] for generating S_n.

We shall describe properties of S_n generated by cyclic shift:

1. A decomposition into k-orbits;

2. The symmetries;
3. An infinite family of regular digraphs associated with \(\{S_n; n \geq 1\} \);

4. A conjectured combinatorial Gray code generating the permutations on \(n \) symbols. The adjacency rule associated with this code is that the last symbols of each permutation match the first symbols of the next optimally.

2 Number system

For any positive integer \(a \), the ring \((\mathbb{Z}/a\mathbb{Z}, +, \times)\) of integers modulo \(a \) is denoted \(\mathbb{Z}_a \). The set \(\mathbb{Z}_a \) is identified with a subset of the set \(\mathbb{N} \) of natural integers.

Proposition 1. For \(n \geq 2 \), any element \(\alpha \in \mathbb{Z}_{n!} \) can be uniquely represented as

\[
\alpha = \sum_{i=0}^{n-2} \alpha_i \varpi_{n,i}, \quad \alpha_i \in \mathbb{Z}_{n-i},
\]

with the base elements

\[
\varpi_{n,0} = 1, \quad \varpi_{n,i} = n(n-1) \cdots (n-i+1), \quad i = 1, \ldots, n-2.
\]

The \(\alpha_i \)'s are the *digits* of \(\alpha \) in this number system, which we call the \(\varpi \)-system. Any element of \(\mathbb{Z}_{n!} \) can be written uniquely

\[
\alpha = \alpha_{n-2} \cdots \alpha_1 \alpha_0 \varpi.
\]

Unless \(\alpha_{n-2} = 1 \), the rightmost digits are set to 0, so that the sum always involves \(n - 1 \) elements, indexed \(0, \ldots, n-2 \).

For example, in \(\mathbb{Z}_{5!} \) the base is \(\{\varpi_{5,0} = 1, \varpi_{5,1} = 5, \varpi_{5,2} = 20, \varpi_{5,3} = 60\} \). The element 84 writes

\[
84 = 1 \times 60 + 1 \times 20 + 0 \times 5 + 4 \times 1 = 1104_{\varpi},
\]

and the element 35 writes

\[
35 = 0 \times 60 + 1 \times 20 + 3 \times 5 + 0 \times 1 = 0130_{\varpi}.
\]

Proof. For simplicity, we denote \(\varpi_i = \varpi_{n,i} \). For \(n = 2 \), there is a single base element, \(\varpi_0 = 1 \), and the result clearly holds. For \(n \geq 3 \), and \(\alpha \in \mathbb{Z}_{n!} \), we set

\[
\alpha^{(0)} = \alpha,
\]

\[
\alpha_i = \alpha^{(i)} \mod (n-i), \quad \alpha^{(i+1)} = \alpha^{(i)} \div (n-i), \quad i = 0, \ldots, n-2,
\]

where \(\div \) denotes the integer division. These relations imply

\[
\alpha^{(i)} = (n-i)\alpha^{(i+1)} + \alpha_i, \quad i = 0, \ldots, n-2.
\]

We multiply by \(\varpi_i \) on both sides. For \(i = 0, \ldots, n-3 \), we use the identity \(\varpi_{i+1} = (n-i)\varpi_i \), and for \(i = n-2 \), we use the identity \(2\varpi_{n-2} = 0 \) in \(\mathbb{Z}_{2} \), to get

\[
\varpi_i\alpha^{(i)} - \varpi_{i+1}\alpha^{(i+1)} = \alpha_i\varpi_i, \quad i = 0, \ldots, n-3,
\]

\[
\varpi_{n-2}\alpha^{(n-2)} = \alpha_{n-2}\varpi_{n-2}.
\]
Adding these relations together, and accounting for telescoping cancellation on the left side,
\[\varpi_0\alpha^{(0)} = \alpha_{n-2}\varpi_{n-2} + \cdots + \alpha_0\varpi_0. \]

We obtain the representation
\[\alpha = \alpha_{n-2}\varpi_{n-2} + \cdots + \alpha_0\varpi_0. \]

By construction, \(\alpha_i \in \mathbb{Z}_{n-i} \) for \(i = 0, \ldots, n-2 \). The digits \(\alpha_i \) are uniquely determined, so that the representation is unique.

Arithmetics can be performed in the ring \((\mathbb{Z}_n!, +, \times)\) endowed with the \(\varpi \)-system. The computation of the sum and product works in the usual way of positional number systems, using the ring structure of \(\mathbb{Z}_{n-i} \) for the operations on the digits of the operands. There is no carry to propagate after the rightmost digit.

Lemma 1. The base elements verify

\[\varpi_{n,i+k} = \varpi_{n-k,i}\varpi_{n,k}; \quad (1) \]

\[\sum_{i=0}^{k-1} (n-i-1)\varpi_{n,i} = \varpi_{n,k} - 1, \quad k \in \{1, \ldots n-2\}, \quad (2) \]

\[\sum_{i=0}^{n-2} (n-i-1)\varpi_{n,i} = -1. \quad (3) \]

Proof. The verification of the first relation is straightforward. For the two other relations, let

\[\xi = \sum_{i=0}^{k-1} \alpha_i\varpi_{n,i}, \quad \alpha_i = n - i - 1 \in \mathbb{Z}_{n-i}. \]

In \(\mathbb{Z}_{n-i} \), \(\alpha_i + 1 = 0 \). Therefore, when computing \(\xi + 1 \), the carry propagates from \(\alpha_0 \) up to \(\alpha_{k-1} \), and the \(\alpha_i \)'s are set to 0. If \(k \leq n-2 \), the digit \(\alpha_k = 0 \) gets the carry and is replaced by 1. In this case, \(\xi + 1 = \varpi_{n,k} \). If \(k = n-1 \), there is no carry to propagate after the rightmost digit, and all digits of \(\xi + 1 \) are set to 0. In this case, \(\xi + 1 = 0 \).

Corollary 1. For \(\alpha, \alpha' \in \mathbb{Z}_n! \), with digits \(\alpha_i, \alpha'_i \in \mathbb{Z}_{n-i} \),

\[\alpha + \alpha' = -1 \iff \alpha_i + \alpha'_i = -1, \quad i = 0, \ldots, n-2. \]

Proof. We write

\[\alpha + \alpha' = \sum_{i=0}^{n-2} (\alpha_i + \alpha'_i)\varpi_{n,i}. \]

In \(\mathbb{Z}_{n-i} \), \(\alpha_i + \alpha'_i = -1 \) if and only if \(\alpha_i + \alpha'_i = n - i - 1 \). By uniqueness of the decomposition in the \(\varpi \)-system, the result follows from (3).
It can be noted that (3) leads in \(\mathbb{N} \) to the identity
\[
\sum_{i=0}^{n-2} (n - i - 1) \frac{n!}{(n - i)!} = n! - 1,
\]
which is related to the identity
\[
\sum_{i=1}^{n-1} i \cdot i! = n! - 1,
\]
associated with the factorial number system. Identities (2) and (3) are instances of general identities of mixed radix number systems.

3 Code

The set of permutations on \(n \) symbols \(x_1, \ldots, x_n \) is denoted \(\mathcal{S}_n \). From a permutation \(q \) on the \(n - 1 \) symbols \(x_1, \ldots, x_{n-1} \), \(n \) permutations on \(n \) symbols are generated by inserting \(x_n \) to the right and cyclically permuting the symbols. The insertion of \(x_n \) to the right defines an injection
\[
\mathcal{S}_{n-1} \ni q = (a_1 \cdots a_{n-1}) \rightarrow \mathcal{S}_n \ni (a_1 \cdots a_{n-1} x_n) = \tilde{q}.
\]
We define the cyclic shift \(S : \mathcal{S}_{n-1} \rightarrow \mathcal{S}_n \) by \(S = C \circ \iota \), where \(C : \mathcal{S}_n \rightarrow \mathcal{S}_n \) is the circular permutation, so that
\[
S^0 q = (a_1 a_2 \cdots a_{n-1} x_n) = C^0 \tilde{q} = \tilde{q},
S^1 q = (a_2 \cdots a_{n-1} x_n a_1) = C^1 \tilde{q},
\]
\[
\vdots
S^{n-1} q = (x_n a_1 a_2 \cdots a_{n-1}) = C^{n-1} \tilde{q}.
\]
The set \(\mathcal{O}(q) = \{ S^0 q, \ldots, S^{n-1} q \} \) is the orbit of \(q \). As \(S^i = S^j \) is equivalent to \(i = j \mod n \), the exponents of the cyclic shift are elements of \(\mathbb{Z}_n \).

Lemma 2. The set of permutations \(\mathcal{S}_n \) is the disjoint union of the orbits \(\mathcal{O}(q) \) for \(q \in \mathcal{S}_{n-1} \).

Proof. If \(q, r \in \mathcal{S}_{n-1} \), their orbits are disjoint subsets of \(\mathcal{S}_n \). Indeed, if \(S^i q = S^j r \) there exists \(k \in \mathbb{Z}_n \) such that \(S^k q = S^0 r = \tilde{r} \). The only possibility is \(k = 0 \), implying \(S^0 q = \tilde{q} = \tilde{r} \), and \(q = r \). There are \((n - 1)! \) disjoint orbits, each of size \(n \), so that they span \(\mathcal{S}_n \). \(\square \)

According to Lemma 2 the set \(\mathcal{S}_n \) can be generated by cyclic shift. The generation by cyclic shift defines an order on the set of permutations, \(\mathcal{S}_n = \{ p_0, \ldots, p_{n!-1} \} \), indexed from 0 (a cyclic order in fact). For this order, the rank \(\alpha \) of a permutation \(p_\alpha \in \mathcal{S}_n \) is an element of \(\mathbb{Z}_{n!} \).

The generation by cyclic shift of \(p \in \mathcal{S}_n \) from (1) \(\in \mathcal{S}_1 \) can be schematized:
\[
\begin{cases}
p^{(1)} = (1) \xrightarrow{\alpha_{n-2}} p^{(2)} \xrightarrow{\alpha_n} \cdots \xrightarrow{\alpha_2} p^{(n-2)} \xrightarrow{\alpha_1} p^{(n-1)} \xrightarrow{\alpha_0} p^{(n)} = p, \\
p^{(n-i)} = S^{\alpha_{n-i}}_{n-i} p^{(n-i-1)},
\end{cases}
\]

(5)
where \(p^{(n-i)} \in S_{n-i} \) is generated from \(p^{(n-i-1)} \in S_{n-i-1} \) by the cyclic shift

\[
S_{n-i} : S_{n-i-1} \rightarrow S_{n-i}
\]

with the exponent \(\alpha_i \in \mathbb{Z}_{n-i} \).

Definition 1. The sequence of exponents associated with successive cyclic shifts leading from \((1) \in S_1 \) to \(p \in S_n \) is the code of \(p \) in the \(\varpi \)-system:

\[
\alpha = \alpha_{n-2} \cdots \alpha_0 \varpi \in \mathbb{Z}_n!.
\]

Theorem 1. The rank of a permutation on \(n \) symbols generated by cyclic shift is given by its code. A permutation on \(n \) symbols generated by cyclic shift is determined by writing its rank in the \(\varpi \)-system.

For example, the permutation \(p_{84} = (51324) \in S_5 \) is generated:

\[
(1) \xrightarrow{\alpha_3=1} (21) \xrightarrow{\alpha_2=1} (132) \xrightarrow{\alpha_1=0} (1324) \xrightarrow{\alpha_0=4} (51324).
\]

Its code is \(1104_{\varpi} = 84 \).

Proof. We use induction on \(n \). For \(n = 2 \), in \(S_2 = \{(12), (21)\} \), the rank of the permutation \((12) \) is \(0 = 0_{\varpi} \), and the rank of the permutation \((21) \) is \(1 = 1_{\varpi} \). For \(n > 2 \), let \(p = p_\alpha \in S_n \) of rank \(\alpha \), generated by cyclic shift from \(q = q_\beta \in S_{n-1} \) of rank \(\beta \). Then \(p = S_{\text{rank}} q \) for some \(\alpha_0 \in \mathbb{Z}_n, \alpha_0 \) being the rank of \(p \) within the orbit of \(q \). As the orbits contain \(n \) elements and as \(\beta \) is the rank of \(q \) in \(S_{n-1} \), the rank of \(p \) in \(S_n \) is

\[
\alpha = \beta n + \alpha_0 = \beta \varpi_{n,1} + \alpha_0 \varpi_{n,0}.
\]

By induction hypothesis, the rank \(\beta \) of \(q \) is given by the code

\[
\beta = \sum_{i=0}^{n-3} \beta_i \varpi_{n-1,i}, \quad \beta_i \in \mathbb{Z}_{n-1-i}.
\]

For \(k = 1 \), Eq. (1) gives

\[
\varpi_{n,i+1} = \varpi_{n-1,i} \varpi_{n,1},
\]

so that

\[
\beta \varpi_{n,1} = \sum_{i=0}^{n-3} \beta_i \varpi_{n-1,i} \varpi_{n,1} = \sum_{i=0}^{n-3} \beta_i \varpi_{n,i+1} = \sum_{i=1}^{n-2} \beta_{i-1} \varpi_{n,i}.
\]

Let \(\alpha_i = \beta_{i-1} \) for \(i = 1, \ldots, n-2 \). As \(\beta_i \in \mathbb{Z}_{n-1-i}, \alpha_i \in \mathbb{Z}_{n-i} \). We obtain that

\[
\alpha = \beta \varpi_{n,1} + \alpha_0 \varpi_{n,0} = \sum_{i=0}^{n-2} \alpha_i \varpi_{n,i}, \quad \alpha_i \in \mathbb{Z}_{n-i},
\]

is the code of \(p_\alpha \). Conversely, let \(p_\alpha \in S_n \). We write the rank \(\alpha \) in the \(\varpi \)-system, \(\alpha = \alpha_{n-2} \cdots \alpha_0 \varpi \), and use scheme (5) – from right to left – with the exponents \(\alpha_0, \ldots, \alpha_{n-2} \) to determine \(p_\alpha \).
We end the section by a package of algorithms performing the correspondence rank ↔ permutation of Theorem 1. Permutations are represented by strings indexed from 1. Algorithm C in Knuth generates S_n by cyclic shift in a simple version of the scheme described in this section.

```
INT2Num(n, α) { conversion from integer to $\varpi$-system }
for i ← 0 to n – 2 do
    A[i] ← α mod (n – i)
    α ← α div (n – i)
end for
return A

NUM2Int(n, A) { conversion from $\varpi$-system to integer }
α ← 0
base ← 1
for i ← 0 to n – 2 do
    α ← α + A[i] * base
    base ← base * (n – i)
end for
return α

CIRC(m, k, p) { Circular permutation of exponent k on m symbols }
for i ← 1 to k do
    c ← p[1]
    for j ← 2 to m do
        p[j – 1] ← p[j]
    end for
    p[m] ← c
end for
return p

Pos(m, p) { Position of $x_m$ in a permutation $p$ on m symbols }
for j ← 1 to m do
    if p[j] = $x_m$ then
        return m – j
    end if
end for

PERM2Rank(n, p) { Find the rank of a given permutation p }
for i ← 0 to n – 2 do
    m ← n – i
    A[i] ← Pos(m, p)
    p ← CIRC(m, m – A[i], p)
end for
α ← NUM2Int(n, A)
return A

RANK2PERM(n, α) { Determine a permutation given its rank α }
A ← INT2Num(n, α)
```
\begin{verbatim}
p ← x_1
for i ← n - 2 downto 0 do
 m ← n - i
 p ← CIRC(m, A[i], p + x_m)
end for
return p
\end{verbatim}

SetPerm(n) \{ Generation of the permutations on n symbols \}

for \(\alpha \leftarrow 0 \) to \(n! - 1 \) do
 \(p \leftarrow \text{Rank2Perm}(n, \alpha) \)
end for

In the sequel, we assume that the set of permutations \(S_n \) is ordered according to generation by cyclic shift.

\(\alpha \)	\(p_\alpha \)	\(\alpha_2 \)	\(\alpha_1 \)	\(\alpha_0 \)
0	1234	0	0	0
1	2341	0	0	1
2	3412	0	0	2
3	4123	0	0	3
4	2314	0	1	0
5	3142	0	1	1
6	1423	0	1	2
7	4231	0	1	3
8	3124	0	2	0
9	1243	0	2	1
10	2431	0	2	2
11	4312	0	2	3
12	2134	1	0	0
13	1342	1	0	1
14	3421	1	0	2
15	4213	1	0	3
16	1324	1	1	0
17	3241	1	1	1
18	2413	1	1	2
19	4132	1	1	3
20	3214	1	2	0
21	2143	1	2	1
22	1432	1	2	2
23	4321	1	2	3

Table 1: The codes of the permutations of \(\{1, 2, 3, 4\} \) generated by cyclic shift.

4 \(k \)-orbits

In this section, structural properties of \(S_n \) are described using the \(\omega \)-system.
Proposition 2. Let \(k \in \{0, \ldots, n-2\} \) and \(p_\alpha \in S_n \) with code \(\alpha \in \mathbb{Z}_n \). There exists a permutation \(q_\beta \in S_{n-k} \) with code \(\beta \in \mathbb{Z}_{(n-k)!} \) such that

\[
\alpha = \beta \varpi_{n,k} + \gamma, \quad \gamma \in \{0, \ldots, \varpi_{n,k} - 1\}.
\]

The code \(\beta \) is made of the \(n-k-1 \) leftmost digits of \(\alpha \), and \(\gamma \) is made of the \(k \) rightmost digits of \(\alpha \).

Proof. We have the decomposition

\[
\alpha = \alpha_{n-2} \cdots \alpha_0 = \alpha_{n-2} \cdots \alpha_k 0 \cdots 0_0 + 0 \cdots 0 \alpha_{k-1} \cdots \alpha_0 = \bar{\alpha} + \gamma.
\]

Let \(\beta_i = \alpha_{i+k} \) for \(i = 0, \ldots, n-k-2 \), so that the \(\beta \)'s are the \(n-k-1 \) leftmost digits of \(\alpha \). As \(\alpha_i \in \mathbb{Z}_{n-i} \), \(\beta_i = \alpha_{i+k} \in \mathbb{Z}_{n-k-i} \). Hence

\[
\beta = \sum_{i=0}^{n-k-2} \beta_i \varpi_{n-k,i}, \quad \beta_i \in \mathbb{Z}_{n-k-i},
\]

is an element of \(\mathbb{Z}_{(n-k)!} \), which is the code of a permutation \(q_\beta \in S_{n-k} \). Using relation \((1)\), we obtain

\[
\bar{\alpha} = \sum_{i=k}^{n-2} \alpha_i \varpi_{n,i} = \sum_{i=0}^{n-k-2} \alpha_{i+k} \varpi_{n,i+k} = \sum_{i=0}^{n-k-2} \alpha_{i+k} \varpi_{n-k,i} \varpi_{n,k} = \left(\sum_{i=0}^{n-k-2} \beta_i \varpi_{n-k,i} \right) \varpi_{n,k}.
\]

The term

\[
\gamma = \sum_{i=0}^{k-1} \alpha_i \varpi_{n,i}
\]

is made of the \(k \) rightmost digits of \(\alpha \). It is an element of \(\mathbb{Z}_{n-k+1} \times \cdots \times \mathbb{Z}_n \) ranging from 0 to \(\sum_{i=0}^{k-1} (n-i-1) \varpi_{n,i} \), which equals \(\varpi_{n,k} - 1 \) by \((2)\). We obtain

\[
\alpha = \bar{\alpha} + \gamma = \beta \varpi_{n,k} + \gamma.
\]

\(\square \)

Definition 2. For \(k \in \{0, \ldots, n-2\} \), and \(q_\beta \in S_{n-k} \), the \(k \)-orbit of \(q_\beta \) in \(S_n \) is the subset

\[
\mathcal{O}_{n,k}(q_\beta) = \{ p_\alpha \in S_n; \quad \alpha = \beta \varpi_{n,k} + \gamma, \quad \gamma = 0, \ldots, \varpi_{n,k} - 1 \}.
\]

For \(k = 0 \), the 0-orbit of \(q \in S_n \) is \(\{ q \} \). Indeed, for \(k = 0 \), \(\varpi_{n,0} = 1 \), \(\gamma = 0 \), and \(p = p_\alpha \). For \(k \geq 1 \), a \(k \)-orbit \(\mathcal{O}_{n,k}(q) \) can be described as the subset of \(S_n \) generated from \(q \in S_{n-k} \) by \(k \) successive cyclic shifts. Indeed, by Proposition 2, the code of \(p_\alpha \in \mathcal{O}_{n,k}(q_\beta) \) is obtained by appending \(\alpha_{k-1} \cdots \alpha_0 \) to the code \(\beta_{n-k-2} \cdots \beta_0 \varpi \) of \(q_\beta \). By scheme \((5)\), the digits \(\alpha_{k-1}, \ldots, \alpha_0 \) describe the generation of \(p_\alpha \) from \(q_\beta \). In particular, for \(k = 1 \), the 1-orbit \(\mathcal{O}_{n,1}(q) \) of \(q \in S_{n-1} \) is the orbit \(\mathcal{O}(q) \). We may further define the \((n-1)\)-orbit \(\mathcal{O}_{n,n-1}(q) \) as the whole set \(S_n \), with \(q = (1) \in S_1 \).

We have the following generalization of Lemma 2.
Proposition 3. For \(k \in \{0, \ldots, n-2\} \), the set of permutations \(S_n \) is the disjoint union of the \(k \)-orbits \(O_{n,k}(q) \) for \(q \in S_{n-k} \).

Proof. The \(k \)-orbits are disjoint by uniqueness of the decomposition \([5] \). They are in number \((n-k)!\) and contain \(\omega_{n,k} \) elements each. As \((n-k)!\omega_{n,k} = n! \) in \(\mathbb{N} \), the \(k \)-orbits span \(S_n \). \(\square \)

In decomposition \([4] \), \(\beta \) specifies to which \(k \)-orbit \(p_\alpha \) belongs and \(\gamma \) specifies the rank of \(p_\alpha \) within the \(k \)-orbit. The first element of the \(k \)-orbit has rank \(\alpha^{\text{first}} = \beta \omega_{n,k} \) (i.e., \(\gamma = 0 \)). The last element has rank \(\alpha^{\text{last}} = \beta \omega_{n,k} + \omega_{n,k} - 1 \) (i.e., \(\gamma = \omega_{n,k} - 1 \)). The element next to the last has rank \(\alpha^{\text{last}} + 1 = \beta \omega_{n,k} + \omega_{n,k} = (\beta + 1) \omega_{n,k} \). It is the first element of the next \(k \)-orbit \(O_{n,k}(q_{\beta+1}) \), where \(q_{\beta+1} \) is the element next to \(q_\beta \) in \(S_{n-k} \).

Proposition 4. For \(k \in \{0, \ldots, n-2\} \), the digit \(\alpha_k \) of the code of \(p_\alpha \) is the rank of the \(k \)-orbit within the \((k+1)\)-orbit containing \(p_\alpha \).

For example, Table [1] shows that \(S_4 \) contains two 2-orbits within the 3-orbit \(S_4 \). The ranks 0, 1 of these 2-orbits in \(S_4 \) are specified by the digit \(\alpha_2 \).

Proof. The number of \(k \)-orbits within a \((k+1)\)-orbit is \(n-k \) (indeed, \((n-k)!/(n-(k+1))! = n-k \)). When performing \(\beta \to \beta + 1 \), the digit \(\beta_0 = \alpha_k \) ranges from 0 to \(n-k-1 \) in \(\mathbb{Z}_{n-k} \). It specifies the rank of the \(k \)-orbit within the \((k+1)\)-orbit. \(\square \)

Lemma 3. Let \(p_\alpha \in S_n \). There exists a largest \(k \in \{0, \ldots, n-2\} \) and \(q_\beta \in S_{n-k} \) such that \(p_\alpha \) is the last element of the \(k \)-orbit \(O_{n,k}(q_\beta) \), and not the last element of the \((k+1)\)-orbit containing this \(k \)-orbit.

Proof. If \(p_\alpha \) is not the last element of the 1-orbit it belongs to, it is the last element of the 0-orbit \(\{p_\alpha\} \). In this trivial case, \(k = 0 \) and \(p_\alpha = q_\beta \). Otherwise the last digit of \(p_\alpha \) is \(\alpha_0 = n-1 \). There exists a largest \(k \geq 1 \) such that \(\alpha_i = n-i-1 \) for \(i = 0, \ldots, k-1 \), and \(\alpha_k \neq n-i-1 \). This means that \(p_\alpha \) is the last element of nested \(j \)-orbits, \(j = 1, \ldots, k \). \(\square \)

5 Symmetries

For compatibility with the cyclic shift, we adopt the convention that the positions of the symbols in a permutation are computed from the right and are considered as elements of \(\mathbb{Z}_n \) (the position of the last symbol is 0 and the position of the first symbol is \(n-1 \)).

According to scheme \([5] \), symbol \(x_{n-i} \) \((i \geq 2) \) appears at step \(n-i \) with the digit \(\alpha_i \) as exponent of the cyclic shift. Its position in the generated permutation \(p^{(n-i)} \) is therefore

\[
\text{pos}_{n-i}(x_{n-i}, p^{(n-i)}) = \alpha_i.
\]

In particular,

\[
\text{pos}_n(x_n, p^{(n)}) = \alpha_0.
\]

For a permutation \(p = (a_1a_2\cdots a_{n-1}a_n) \in S_n \), we introduce the mirror image of \(p \), \(\overline{p} = (a_na_{n-1}\cdots a_2a_1) \).
Proposition 5. The permutations p_α and $p_{\alpha'}$ are the mirror image of one another if and only if

$$\alpha + \alpha' = -1.$$

For example, in $\mathbb{Z}_5!$ we have $84 + 35 = -1$, and in S_5, $p_{84} = (51324)$ is the mirror image of $p_{35} = (42315)$.

Proof. The proof is by induction on n. For $n = 2$, $p_0 = (12)$, $p_1 = (21)$, and $0 + 1 = -1$ in \mathbb{Z}_2. Let $n > 2$. By Proposition 6,

$$\alpha = \beta \omega_n, 1 + \alpha_0' \omega_n, \quad \alpha' = \beta' \omega_n, 1 + \alpha'_0 \omega_n, \quad q_\beta, q_{\beta'} \in S_{n-1}, \quad \alpha_0, \alpha'_0 \in \mathbb{Z}_n.$$

By Corollary 1, the condition $\alpha + \alpha' = -1$ is equivalent to $\beta + \beta' = -1$ and $\alpha_0 + \alpha'_0 = -1$. By induction hypothesis, q_β is the mirror image of $q_{\beta'}$ in S_{n-1} if and only if $\beta + \beta' = -1$. The condition $\alpha + \alpha'_0 = -1$ is equivalent to $\alpha'_0 = n - 1 - \alpha_0$, i.e., the ranks of α_0 and α'_0 are symmetrical in \mathbb{Z}_n. As these ranks are the positions of symbol x_n when p_α and $p_{\alpha'}$ are generated by cyclic shift from q_β and $q_{\beta'}$ respectively, we obtain the result.

Corollary 2. The word constructed by concatenating the symbols of the permutations generated by cyclic shift is a palindrome.

Proof. Let $p_\alpha \in S_n$. The rank symmetrical to α in $\mathbb{Z}_n!$ is $(n! - 1) - \alpha = -(\alpha + 1)$. By Proposition 5 $p_{-(\alpha+1)}$ is the mirror image of p_α.

The set S_n has in fact deeper symmetries, coming from the recursive structure of the k-orbits.

According to Theorem 1, the generation of S_n by cyclic shift is obtained by performing $\alpha \to \alpha + 1$ for $\alpha \in \mathbb{Z}_n!$, and writing α in the ω-system. This determines each permutation p_α. As α runs through $\mathbb{Z}_n!$, p_α runs through the k-orbits of S_n. For a fixed k, and by Proposition 6, p_α leaves a k-orbit to enter the next when, in the computation of $\alpha + 1$, the carry propagates up to the digit α_k, incrementing the rank β of the k-orbit. This occurs when $\alpha = \beta \omega_n, k + \omega_n, k - 1$.

Proposition 6. Any two successive permutations of S_n are written as

$$p_\alpha = \overline{AB}, \quad p_{\alpha + 1} = BA,$$

with an integer $k \in \{0, \ldots, n - 2\}$ such that

$$|A| = k + 1.$$

For example, in S_5, $p_{39} = (54231\overline{1})$ and $p_{40} = (3\overline{1}245)$, with $39 = 0134_{\omega}$ and $40 = 0200_{\omega}$.

Proof. If p_α and $p_{\alpha + 1}$ are in the same 1-orbit then

$$p_\alpha = (a_1 a_2 \cdots a_n), \quad p_{\alpha + 1} = (a_2 \cdots a_n a_1).$$

The result holds with $A = (a_1)$, $B = (a_2 \cdots a_n)$, and this corresponds to $k = 0$. Otherwise, by Lemma 3 there exists a largest $k \geq 1$ such that p_α is the last element of a k-orbit, and not
the last element of a \((k + 1)\)-orbit. The elements of a \(k\)-orbit are generated by successively inserting the symbols \(x_{n-k+1}, \ldots, x_n\) from a permutation \(q_\beta \in S_{n-k}\). The last element is

\[
(x_n \cdots x_{n-k+1} b_1 \cdots b_{n-k}),
\]

where \(q_\beta = (b_1 \cdots b_{n-k})\) is a permutation of the symbols \(x_1, \ldots, x_{n-k}\). The first element of the next \(k\)-orbit is

\[
(c_1 \cdots c_{n-k} x_{n-k+1} \cdots x_n),
\]

where \(q_{\beta+1} = (c_1 \cdots c_{n-k})\). As \(S_{n-k}\) is generated by cyclic shift, \(q_{\beta+1} = C_{n-k} q_\beta\), with \(C_{n-k}\) the circular permutation in \(S_{n-k}\). We can now write

\[
\begin{align*}
p_\alpha &= (x_n \cdots x_{n-k+1} b_1 b_2 \cdots b_{n-k}) = AB \\
p_{\alpha+1} &= (b_2 \cdots b_{n-k} b_1 x_{n-k+1} \cdots x_n) = BA,
\end{align*}
\]

where \(A = (b_1 x_{n-k+1} \cdots x_n)\) contains \(k + 1\) symbols.

According to the Proposition, \(k + 1\) symbols have to be erased to the left of \(p_\alpha\) so that the last symbols of \(p_\alpha\) match the first symbols of \(p_{\alpha+1}\). We define the weight \(e_n(\alpha) \in \{1, \ldots, n-1\}\) of the transition \(\alpha \rightarrow \alpha + 1\) as the number of symbols of \(A\) in the above decomposition of \(p_\alpha\) and \(p_{\alpha+1}\).

We define the \(\varpi\)-ruler sequence as

\[
E_n = \{e_n(\alpha); \quad \alpha = 0, \ldots, n! - 2\}.
\]

Proposition 7. The \(\varpi\)-ruler sequence is a palindrome.

Proof. If the ranks of \(\alpha\) and \(\alpha'\) are symmetrical in \(\mathbb{Z}_n\), \(\alpha + \alpha' = -1\), and \(\alpha_i + \alpha'_i = -1\) for \(i = 0, \ldots, n - 2\) by Corollary [1]. By the definition of \(e_n(\alpha)\), we want to show that \(e_n(\alpha) = e_n(\alpha' - 1)\). If \(p_\alpha\) is the last element of a \(k\)-orbit, then \(\alpha_i = -1\) for \(i = 0, \ldots, k - 1\), so that \(\alpha'_i = 0\) for \(i = 0, \ldots, k - 1\): \(p_{\alpha'}\) is the first element of a \(k\)-orbit and \(p_{\alpha'-1}\) is the last element of the previous \(k\)-orbit. Hence \(e_n(\alpha) = e_n(\alpha' - 1) = k + 1\). If \(p_\alpha\) is not the last element of a \(k\)-orbit, then \(\alpha_0 \neq -1, \alpha'_0 \neq 0\), \(p_{\alpha'}\) is not the first element of a 1-orbit. In this case \(e_n(\alpha) = e_n(\alpha' - 1) = 1\). \(\square\)

Proposition 8. The number of terms of the \(\varpi\)-ruler sequence such that \(e_n(\alpha) = k\) is

\[
(n - k)(n - k)!.
\]

The sum of its \(n! - 1\) terms is

\[
W_n = 1! + 2! + \ldots + n! - n.
\]

Proof. We have \(e_n(\alpha) = k \geq 1\) if and only if \(p_\alpha\) is the last element of a \((k - 1)\)-orbit, and not the last element of a \(k\)-orbit. The number of \((k - 1)\)-orbits within a \(k\)-orbit is \(n - k + 1\) (see Proposition [4]). We exclude the last \((k - 1)\)-orbit, giving \(n - k\) possibilities. The number of \(k\)-orbits is \((n - k)!\) so that there are \((n - k)(n - k)!\) possibilities for \(e_n(\alpha) = k\).
The formula for the sum is shown by induction. We have \(W_2 = 1 = 1! + 2! - 2 \), and for \(n > 2 \),

\[
W_n = \sum_{k=1}^{n-1} k(n-k)(n-k)! = \sum_{k=0}^{n-2} (k+1)(n-1-k)(n-1-k)!
\]

\[
= \sum_{k=1}^{n-2} k(n-1-k)(n-1-k)! + \sum_{k=0}^{n-2} (n-1-k)(n-1-k)!
\]

\[
= W_{n-1} + \sum_{i=1}^{n-1} i.i! = 1! + \cdots + (n-1)! - (n-1) + n! - 1 = 1! + \cdots + n! - n.
\]

In the last line, we have used identity (1) and the induction hypothesis. \(\square \)

The \(\varpi \)-ruler sequence is analogous to the ruler sequence (sequence A001511 in Sloane [6]). The difference is that the number of intermediate ticks increases with \(n \) (Table 2).

\(n \)	\(E_n \)
2	1
3	1^2 21^2
4	1^3 21^3 31^3 21^3 21
5	1^4 21^4

Table 2: The \(\varpi \)-ruler sequence for \(n = 2, 3, 4, 5 \) (\(1^j \) denotes 1 repeated \(j \) times).

6 Combinatorial Gray code

A combinatorial Gray code is a method for generating combinatorial objects so that successive objects differ by some pre-specified adjacency rule involving a minimality criterion (Savage [7]). Such a code can be formulated as an Hamiltonian path or cycle in a graph whose vertices are the combinatorial objects to be generated. Two vertices are joined by an edge if they differ from each other in the pre-specified way.

The code associated with the \(\varpi \)-system corresponds to an Hamiltonian path in a weighted directed graph \(G_n \).

Definition 3. The vertices of the digraph \(G_n \) are the elements of \(S_n \). For two permutations (vertices) \(p_\alpha \) and \(p_\alpha' \), there is an arc from \(p_\alpha \) to \(p_\alpha' \) if and only if the last symbols of \(p_\alpha \) match the first symbols of \(p_\alpha' \) (there is no arc when there is no match). Let \(p_\alpha, p_\alpha' \in S_n \) be two connected vertices in \(G_n \). The weight \(f_n(\alpha, \alpha') \in \{1, \ldots, n-1\} \) associated with the arc \((p_\alpha, p_\alpha')\) is the number of symbols that have to be erased to the left of \(p_\alpha \) so that the last symbols of \(p_\alpha \) match the first symbols of \(p_\alpha' \).

By Proposition 3 for each \(\alpha \), there is an arc of weight \(e_n(\alpha) = f_n(\alpha, \alpha + 1) \) joining \(p_\alpha \) to \(p_{\alpha+1} \). This allows to define the Hamiltonian path

\[
w_n = \{(p_\alpha, p_{\alpha+1}); \ \alpha = 0, \ldots, n! - 2\} \]
joining successive permutations. This path has total weight $W_n = 1! + \ldots + n! - n$ by Proposition 8. The path w_n can be closed into an Hamiltonian cycle by joining the last permutation $p_{n!-1}$ to the first p_0 by an arc of weight $n - 1$:

\[(x_n \cdots x_2x_1) \xrightarrow{n-1} (x_1x_2 \cdots x_n).\]

Hence, an oriented path exists from any vertex to any other, so that G_n is strongly connected.

Table 3 displays the weighted adjacency matrix of the digraph G_4 and the Hamiltonian path w_4.

| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|----|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0 | 0 | 1 | 2 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 3 |
| 1 | 3 | 0 | 1 | 2 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 3 |
| 2 | 2 | 3 | 0 | 1 | 3 | 0 | 0 | 0 | 2 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 3 |
| 3 | 1 | 2 | 3 | 0 | 2 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 3 |
| 4 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 2 | 3 |
| 5 | 0 | 3 | 0 | 0 | 3 | 0 | 1 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 |
| 6 | 0 | 2 | 3 | 0 | 2 | 3 | 0 | 1 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 3 |
| 7 | 3 | 0 | 0 | 0 | 1 | 2 | 3 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 3 |
| 8 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 1 | 2 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 |
| 9 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 1 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 2 |
| 10 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 2 | 3 | 0 | 1 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 |
| 11 | 2 | 3 | 0 | 0 | 1 | 2 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 3 | 0 |
| 12 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 1 | 2 | 3 | 0 | 0 | 0 | 3 | 0 | 0 |
| 13 | 0 | 3 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 3 | 0 | 1 | 2 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 |
| 14 | 3 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 3 | 0 | 1 | 2 | 0 | 0 | 3 | 0 | 0 | 3 | 0 |
| 15 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 1 | 2 | 0 | 0 | 3 | 0 | 0 | 3 | 0 |
| 16 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 1 | 2 | 0 | 0 | 3 | 0 | 0 |
| 17 | 3 | 0 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 1 | 2 | 0 | 0 | 3 | 0 | 0 |
| 18 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 2 | 3 | 0 | 2 | 3 | 0 | 1 | 3 | 0 | 0 |
| 19 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 1 | 2 | 0 | 0 | 3 | 0 |
| 20 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 1 | 2 | 3 | 0 |
| 21 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 1 | 2 | 3 | 0 |
| 22 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 2 | 3 | 0 | 0 | 3 | 0 | 1 | 2 | 3 | 0 |
| 23 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 2 | 3 | 0 | 0 | 3 | 0 | 1 | 2 | 3 | 0 |

Table 3: The adjacency matrix of the digraph G_4. Lines delineate the 1-orbits. Double lines delineate the 2-orbits. Bold entries on the upper diagonal indicate the Hamiltonian path corresponding to the \(\varepsilon\)-system code, and forming the \(\varepsilon\)-ruler sequence.

Proposition 9. Each vertex of G_n has exactly $j!$ in-arcs of weight j and $j!$ out-arcs of weight j, $j = 1, \ldots, n - 1$. Hence the vertices of G_n have $L = 1! + \cdots + (n - 1)!$ as in- and out-degree, and G_n is L-regular.

Proof. Let us consider the arcs of weight $j \in \{1, \ldots, n - 1\}$ joining a vertex to another in G_n:

\[(a_1 \cdots a_jb_1 \cdots b_{n-j}) \xrightarrow{j} (b_1 \cdots b_{n-j}c_1 \cdots c_j),\]

where the c's are a permutation of the a's. There are $j!$ possibilities for the c's, the a's and the b's being fixed. Hence $j!$ arcs of weight j leave each vertex. Similarly, there are $j!$ possibilities for the a's, the b's and the c's being fixed, so that $j!$ arcs of weight j enter each vertex.

We conjecture that the Hamiltonian path w_n joining successive permutations in the digraph G_n is of minimal total weight. Assuming this conjecture we may state:

The \(\varepsilon\)-system is a combinatorial Gray code listing the permutations generated by cyclic shift. The adjacency rule is that the minimal number of symbols is erased to the left of a permutation so that the last symbols of the permutation match the first symbols of the next permutation.
7 Acknowledgements

Marco Castera initiated the problem which motivated this study. Philippe Paclet discovered the weighted directed graph described in section 6.

References

[1] L. J. Fischer and K. C. Krause. 1812. Lehrbuch des Combinationslehre und der Arithmetik, Dresden.

[2] M. Hall and D. E. Knuth. 1965. Combinatorial analysis and computers. The American Mathematical Monthly, Vol. 72, No. 2, Part 2: Computers and Computing, 21-28.

[3] D. E. Knuth. 2005. The Art of Computer Programming, Vol. 4, Combinatorial Algorithms, Section 7.2.1.2, Generating All Permutations. Addison Wesley.

[4] C.-A. Laisant. 1888. Sur la numération factorielle, application aux permutations. Bulletin de la Société Mathématique de France, Vol. 16, 176–183.

[5] D. H. Lehmer. 1960. Teaching combinatorial tricks to a computer. Proc. Sympos. Appl. Math. Combinatorial Analysis, Amer. Math. Soc., Vol. 10, 179–193.

[6] Neil Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences

[7] C. Savage. 1997. A Survey of combinatorial Gray codes. SIAM Review, Vol. 39, Issue 4, 605–629.

2000 Mathematics Subject Classification: Primary 05A05.
Keywords: permutations, cyclic shift, number system, palindrome, combinatorial Gray code.