Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases

Alaattin Sen

ORCID number: Alaattin Sen (0000-0002-8444-376X).

Author contributions: Sen A wrote the article.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: January 12, 2020
Peer-review started: January 12, 2020
First decision: February 24, 2020
Revised: March 27, 2020
Accepted: May 1, 2020
Article in press: May 1, 2020
Published online: May 26, 2020

P-Reviewer: Liu J, Sun XT
S-Editor: Wang YQ
L-Editor: A
E-Editor: Ma YJ

Abstract

Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.

Key words: Oleanolic acid; Prophylactic; Anti-inflammatory; Anti-diabetics; Neuroprotective; Hepatoprotective

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Oleanolic acid (OA) is plentiful in many fruits and vegetables. Studies have shown that OA and its derivatives exert promising pharmacological actions including anti-inflammatory, neuroprotective, hepatoprotective, anti-osteoporotic and anti-diabetics at low doses. However, it is not a “cure-all” drug or drug candidate and could exert adverse effects at high doses, particularly its derivatives. In addition, information elucidating the drug-drug/drug-herb interactions associated with OA and its derivatives is inadequate. Nevertheless, there is a reasonable amount of literature, as fully explored in this review that OA and its derivatives have crucial prophylactic and therapeutic potential for diseases including ulcerative colitis, diabetes and cardiovascular diseases.

Citation: Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8(10): 1767-1792
URL: https://www.wjgnet.com/2307-8960/full/v8/i10/1767.htm
INTRODUCTION

Oleanolic acid (OA: 3β-hydroxyolean-12-en-28-oic acid, Figure 1) is a biologically active natural pentacyclic triterpenoid compound that is present in over 2000 plant species, as well as numerous food and medicinal plants[1]. The compound is particularly common in the Oleaceae family, among which olive (Olea europaea), the plant species after which the compound was entitled, is still the primary supply of mercantile OA.

OA is plentiful in apple skin, papaya fruit, persimmon fruit and leaf, plum, loquat, soybeans, filamentous fungi (Table 1)[2-4]. Several medicinal herbs such as ginseng contain OA as one of the active ingredients. The concentrations of OA are often as high as 1% in olive fruit, apple skin, ginseng, papaya fruit and dark plums[5]. It is not solely present as a free compound but also occurs as an aglycone precursor for triterpenoid saponins, in which it is bonded to one or more sugar chains[1,5]. As a triterpenoid, OA belongs to an oversized cluster of structurally diverse natural products, including sterols, steroids, and triterpenoid saponins[6].

The artificial modification of OA on its three “reactive” regions; the C3-OH, the C12=C13 double bond, and the C28-COOH, has led to a series of new synthetic oleanane triterpenoids[7-9]. Compared to OA, some of these compounds showed increased biological activity such as anti-inflammatory and hepatoprotective activities. One such compound with increased biological activity is 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) or its C-28 methyl ester (CDDO-Me; Figure 2)[1,7,10,11].

PHARMACOLOGY

OA and its derivatives have plenty of useful effects; including remarkable antioxidant, anti-inflammatory, antiviral, and anti-diabetic effects. They are efficacious against proliferation in tumour-bearing mice, such as breast cancer.

Anti-inflammatory effects

Inflammatory processes are characterised by extreme reactive oxygen species (ROS) levels and are related to many pathological conditions, including ulcerative colitis, AD, PD and cancer[12-14]. Table 2 summarises the recent studies investigating the in vivo anti-inflammatory effects and related mechanisms of action of OA and its natural or synthetic derivatives[14-26]. A proposed potential strategy is to examine the roles of OA and its derivatives in preventing inflammatory responses involving the nuclear factor erythroid-2-related factor 2 (NRF-2) and nuclear factor-κB (NF-κB) pathways[15,27] (Figure 3).

OA significantly inhibited DSS-induced colitis, as verified by the inhibition of Th17 cells and the downregulation of the expression of interleukin (IL)-1, NF-κB, MAPK and RORγt in the colon, whilst the FOX3 and IL-10 expression, macroscopic score, colon shortening, and myeloperoxidase activity increased. Thus, OA prevents and relieves inflammatory diseases such as colitis[14]. Similarly, a multifunctional semisynthetic OA-derivative, i.e., CDDO-Me prevented the high-fat diet (i.e., modelling obesity)-induced chronic low-grade inflammation in the rodent colon. It reduced the expression of F4/80, CD11c, COX-2, IL-6, KI67, NF-B, and tumour necrosis factor (TNF)-α but increased CD206 and IL-10, showing an anti-inflammatory mechanism[14]. Likewise, another synthetic OA derivative 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CDDO-Im) inhibited IL-6 and IL-17 and relieved DSS-induced colitis in mice. CDDO-Im also notably inhibited the signal transducer and activator of transcription-3 activation. Thus, OA and its derivatives have a unique anti-inflammatory potential as pharmacological therapies for inflammatory bowel disease[14,27].

Acetylated and methylated derivatives of OA isolated from Syzygium aromaticum L. generated a better anti-inflammatory response in models of inflammation in male Wistar rats than did OA[18,19]. Another natural OA derivative isolated from the leaves of Costus igneus showed anti-inflammatory action in a carrageenan-provoked rat model. This derivative inhibited inflammation-associated enzyme activities such as COX, LOX, MPO and NOS[20]. Maslinic acid and 3-epi-maslinic acid were assessed for their capacity to repress inflammatory gene expression in a mouse model of 12-O-
tetradecanoylphorbol-13 acetic acid (TDPAA)-induced skin inflammation. All examined compounds had the capacity to repress the expression of at least one or more inflammatory genes provoked by TDPAA in mouse skin, which were more effective than the OA\cite{21}. These results suggest that OA could be a potential prophylactic and therapeutic agent for the treatment of induced inflammatory responses\cite{22-29}.

Neuroprotective effects

Considering the pervasiveness of ageing-related diseases, studies investigating the neuroprotective impacts of natural compounds and their derivatives have become popular during recent years. The signalling pathways engaged with neuroprotection are the focus of studies their mechanism of the activity and intervene in their pleiotropic prophylactic action against neuronal harm. In the present review, the molecular mechanisms of the neuroprotection provided by OA and its derivatives are revised. By acting upon various systems simultaneously, OA is the highlight as a promising multi-targeting operator.

Several studies have shown that OA possesses neuroprotective effects (Table 3)\cite{30-41}. The prophylactic role of OA and its derivatives has been examined using different in vivo models of hydroxydopamine-induced neurodegeneration, Aβ25-35 injection-induced memory deficit in Alzheimer’s disease models, Parkinsonian rat models, stem cell differentiation, and brain slice model of neurodegeneration and ischemic stroke (Table 3 and Figure 4).

OA amazingly advanced the migration and proliferation of neural stem cells (NSCs). Differentiation included the increased expression of MAP-2, neuron-explicit marker tubulin-bIII and Mash1, while the astrocyte-explicit marker glial fibrillary acidic protein and Nestin diminished significantly. Moreover, both the phosphorylation of GSK-3β at Ser9 and β-catenin expression were promoted by OA\cite{42-44}. In a DNA microarray investigation, OA was found to differentially controlled 183 genes, and 87 of which were anticipated to share typical NKX-2.5 binding sequences\cite{42}. These outcomes demonstrated that OA is a viable inducer of NSCs differentiation into neurons via NKX-2.5 related components to some extent. Additionally, OA and its derivatives induce neural differentiation and synapse plasticity through a pathway involving histone deacetylase (HDAC) 5 phosphorylation\cite{45}. These results strongly suggest that OA might be a significant therapeutic for the treatment of neurodegenerative diseases under normal conditions or in response to tissue damage.

Animals treated with 6-hydroxydopamine (HDA) showed functional deficiency in a forelimb use asymmetry test and had less dopamine in the striatum, these effects were improved with OA treatment 7-d pre-injury and 1-d post-injury. In addition, pre- or post-injury OA treated rats recovered from HDA-caused membrane depolarisation, indicating that that pre-administration of OA protects dopamine neurons from the toxic effects of HDA\cite{31,32}. Similarly, OA exerted neuroprotective effects on HDA-induced PD in rats by alleviating microglial activation\cite{46,47}. In addition, OA derivatives displayed neuroprotective actions by repressing the
Table 1 The oleanolic acid contents of some fruits

Fruit	Content
Apple skin	0.96 mg/dry skin
Apples	16-28 µg/dm
Bilberries whole fruit	1679.2-2029.6 µg/dm
Grapes peel	176.2 µg/g dw
Jujube pulp	360 ± 10.7 µg/g dw
Lemon	0.62 ± 0.01 µg/dm
Loquat skin	1.46 mg/dry skin
Mandarin	1.05 ± 0.04 µg/dm
Olives pulp	27-29 µg/g fw
Olives skin	3094-4356 µg/g fw
Peach skin	1.49 mg/dry skin
Pear skin	1.25 mg/dry skin
Pears	164.3-3066.6 µg/g fw
Pears pulp	34.0-156.0 µg/g fw
Persimmon flesh	17.2 µg/g dw
Persimmon peel	367.7 µg/g dw
Pomegranate	1.12 - 26.96 µg/dm
Quince skin	0.25 mg/dry skin
S. adenocaulon	12.7 ± 0.2 µg/dm

expression of α-synuclein and the generation of ROS provoked by rotenone treatment. Additionally, an autophagy biomarker i.e., microtubule-associated protein 1A/1B-light chain 3 (LC3II), was increased significantly. These results suggest that OA and its derivatives could be a new class of prophylactic or therapeutic compounds for PD therapy⁶⁸.

OA injection during the last 14 d of fluoride treatment considerably recuperated the fluoride-induced brain injury by modulating brain metabolism. The beneficial neuroprotective impacts of OA in ischemic brain injury suppressed glial activities that promote neurotoxicity while raising glial activities that promote neuronal survival³₀,³₃,⁴₇.

The pretreatment of rats with OA before the induction of cortical hypoxia by cobalt chloride injection produced a decreased neuronal degeneration and glial activation and improved brain injury⁶⁸. Moreover, OA mitigated the neuronal degeneration and synaptic changes produced by Aβ25-35 in an AD model. OA treatment significantly increased the expression levels of brain-derived neurotrophic factor (BDNF), CaMKII, CaM KII, response element-binding (CREB) NMDAR2B, PKC and TRKB in an AD model. Thus, the ameliorative effect of OA was displayed as to maintain synaptic plasticity of the hippocampus in the Aβ-induced memory loss of AD rats⁶⁸.

Furthermore, it was reported that OA significantly hinders the Aβ23-35 induced differentiation of NSCs into astrocyte by down-regulating the JAK/STAT signalling pathway through increasing NGN1 expression. These outcomes suggest that OA might impede the progress of AD⁶⁸. Finally, OA confers specific neuroprotection against amyloid precursor protein and TAU-induced neurodegeneration and ischemic injury modelled by oxygen-glucose deprivation in organotypic brain slice models⁹⁹.

OA mitigated the memory deficits in a cholinergic blockade-induced cognitive deficit mouse model. A single injection of OA significantly improved the latency in a passive avoidance learning assay, spontaneous alternation behaviour in the Y-maze and the exploration time on the novel object recognition assay. These behavioural results implied that OA reverses the cognitive impairment caused by scopolamine. At the molecular level, it was revealed that OA intensified CREB protein and extracellular-signal-regulated kinase 1/2 (ERK1/2) phosphorylation and BDNF expression in the hippocampus⁹⁹. Similarly, augmented ERK/2, CREB and BNDF phosphorylation which was associated with the upregulation of miR-132 was reported for the antidepressant-like effect of OA. Yi et al.⁹⁹ showed that a 3 wk of OA treatment in a chronic unpredictable mild stress model attenuated anhedonic and anxiogenic behaviours. All these studies confirm that OA might be a potential therapeutic means for the treatment of cognitive deficits and depression.

OA treatment inhibited the development of experimental autoimmune
encephalomyelitis (EAE) in mice by reducing the activation of microglial cells, protecting blood-brain barrier (BBB) integrity, and preventing the infiltration of inflammatory cells into the CNS\cite{25,49-51}. EAE mice treated with OA exhibited decreased levels of TNF-α and cytokines in CNS tissue without toxicity\cite{52-56}. Similar results were also observed with a natural derivative isolated from caper\cite{57}. OA and its derivatives improved neuroinflammation by suppressing the secretion of pro-inflammatory cytokines CCL-5, CXCL-9, CXCL-10, IL-6, IL-1β, NF-κB and TNF-α\cite{57-59}. Additionally, the expression of genes involved in myelination/remyelination was increased significantly. Therefore, these studies have shown that OA possesses neuroprotective effects\cite{30-59}.

Hepatoprotective effects

One of the most remarkable pharmacological impacts of OA and its derivatives is hepatoprotection (Figure 5). OA protects against diverse range of hepatotoxic agents, including metals, alcohol, bile acids, natural and synthetic toxins, drugs, viral or microbial agents and ischaemic perturbations. OA and its derivatives perform important protective roles in the instigation of acute liver injury induced by alcohol, carbon tetrachloride (CCl₄), acetaminophen (APAP) and phalloidin (Table 4)\cite{59-70}.

The hepatoprotective eects of OA and its derivatives against CCl₄-caused liver injury involved decreasing the increased serum levels of alanine aminotransferase (ALT), lactic dehydrogenase, aspartate aminotransferase (AST) and hepatic malondialdehyde (MDA) levels and increasing SOD and GPX activities. These biochemical attenuations were further supported by histochemical analyses\cite{61-63}.

Esculentoside A (EsA) is an OA derivative that treatment attenuated CCl₄- and GalN/LPS-induced acute liver damage in mice. The prophylactic impact of EsA involved the inhibition of the inflammatory response such as IL-1β, IL-6 and TNF-α and oxidative stress, and the underlying mechanism included the peroxisome proliferator-activated receptor (PPAR)-γ, NF-κB and ERK signalling pathways\cite{63}. EsA also exhibited protective eects against APAP, which is known to account for overdose toxicity for the majority of acute liver failure cases. EsA treatment attenuated APAP-induced serum AST and ALT levels and stimulated NRF-2 activation and glutathione (GSH) production. Additionally, it significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and serine/threonine kinase (Akt), as well as glycogen synthase kinase-3 beta (GSK-3β) suggesting that EsA potentiates the NRF-2-controlled survival process through the AMPK/AKT/GSK-3β pathway\cite{71}. Similarly, the induction of antioxidant defence and suppression of ER stress and inflammatory responses by the NRF-2 battery as an OA-induced protection against phalloidin-induced hepatotoxicity were reported\cite{64}. OA reduced the liberation of inflammatory agents and liver enzymes and prevented ConA-induced liver injury. OA treatment decreased the phosphorylation of cJUN NH₂-terminal kinase (JNK) and increased the expression levels of PPAR-α\cite{72}. Another NRF-2 mediated protective role of OA was reported against LCA-induced hepatotoxicity and obstructive cholestasis, whereby NRF-2-mediated upregulation of multidrug resistance-associated proteins was possibly involved\cite{65,66}.

Alcoholic liver disease (ALD) is one of the main causes of death worldwide, and oxidative stress was found to be an important factor in the pathogenesis of ALD damage. OA plays an important role in preventing alcohol-induced oxidative injury by decreasing the upregulation of serum AST, ALT and ATP levels while increasing the reduced hepatic GSH level and SOD and CAT activity. The protective effect of OA involved the uprising of anti-oxidative pathways such as NRF-2, HO-1, SOD-1 and...
Disease model/physiology	Effect	Mechanism	Compound	Dose	Ref
Ulcerative colitis (mice, DDS)	Anti-ulcerative colitis restoring the balance of Th17/Treg cells and inhibiting NF-κB signaling	FOXp-3, IL-10, ZO-1, Occludin, Claudin-1, β2m, pP38	MPO, Th17, RORγt, IL-17, TNF-α, IL-1β, MAPK, pIkB, pTAK, pP65, iNOS, COX-2	OA 5-10 mg/kg·d, 3 d after DSS	[14]
Experimental mammary carcinogenesis	Anti-inflammatory	COX-2, HSP90, NF-κB, pIkB	OA-Xs 0.8-1.6 mg/kg·2 d, 2 wk before 16 wk after DSS	[15]	
Colonic inflammation (mice, HFD)	Prevent colon inflammation	CD206, IL-10, # goblet cells	NF-B, pNF-B, IL-6, TNF-α, COX-2, Ki67	OA-Xs (CDDO-Me) 10 mg/kg in drinking water, 21 wk	[16]
Ulcerative colitis (mice, DDS)	Anti-ulcerative colitis, anti-inflammatory via inhibiting STAT3	IL-17, STAT3	OA-Xs (CDDO-Im) 0.5-2 µmol/L	[17]	
Anti-inflammation and antinociception (rats)	Anti-inflammatory, anti-nociceptive	Pain latency	Paw volume	OA-Xn 40 mg/kg once	[18]
Anti-inflammation (rats)	Membrane stabilization	Paw volume, hemolysis	OA-Xs 20-40 µg	[19]	
Anti-inflammation (rats, hPMBCs)	Anti-inflammatory	COX-2, 5-LOX, NOS, MPO, edema, IL-6, NF-κB, PGE-2	OA-Xn 50 mg/kg, 100 µg	[20]	
Anti-inflammation (mouse skin)	anti-inflammatory properties	IL-1α, IL-1β, IL-6, IL-23	OA-X 2 µmol	[21]	
Allergic airway inflammation (rats)	Anti-inflammatory and immunomodulatory	DTH, NO, IL-4, 5, 13, 17, TLR2, NF-κB and TNF-α; sIgE, COX-2, and 5-LOX	Fe-OA and Zn-OA 2 mg/kg	[22]	
Anti-inflammation and antinociception (mice)	Analgesic action and expressed strong anti-inflammatory activity	IL-6	OA-Xs, OA-ASA 0.3-300.0 mg/kg, p.o.	[23]	
Lung injury (MLE-12, NDMA)	Anti-inflammatory, anti-oxidative stress and anti-apoptotic effects	SOD, GSH, SIRT-1, NRF-2, BCL-2, TNF-α, IL-6, IL-1β, MDA, BAX, NF-κB, NRP-L3, LDH, Ac-P65, BAX/BCL-2	OA 10-20 mg/kg	[24]	
Pulmonary inflammation and fibrosis (mice)	Anti-inflammatory response and anti-pulmonary fibrosis in the lungs	NLRP3	IL-1β, IL-6, TNF-α, TGF-β1, and fibrotenin, NRP-L3, ASC, CASP-1	OA 0.001-1 mg/kg·d, 5 d (nc)	[25]
Subarachnoid haemorrhage (r)	Alleviated SAH-induced vasogenic edema	VE-Cadherins, P120, ZO-1, Occludin, Claudin-1	HO-1	OA 5-20 mg/kg	[26]

DDS: Diaminodiphenyl sulfone; NF-κB: Nuclear factor-κB; JNK: cJUN NH2-terminal kinase; IL: Interleukin; TNF-α: Tumor necrosis factor-α; OA: Oleanolic acid; OA-Xn: Natural derivatives of oleanolic acid; OA-Xs: Synthetic derivatives of oleanolic acid; HFD: High-fat diet; CDDO: 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid; CDDO-Me: C-28 methyl ester of CDDO; CDDO-Im: COOD-imidazole; STAT3: Signal transducer and activator of transcription 3; GSH: Glutathione; LDH: Lactic dehydrogenase; NRF-2: Nuclear factor erythroid-2-related factor 2.

GR expression and the suppression of pro-inflammatory cytokines, for instance, TNF-α and IL-6[60]. One of the important enzymes in alcohol-instigated toxicity is CYP2E1, which produces both toxic aldehydes and free radicals from ethanol and is suppressed by OA[73]. Non-alcoholic fatty liver disease (NAFLD) is another highly prevalent liver disease involving disrupted metabolism. It was found that the neonatal administration of OA exhibited hepatoprotective effects on the subsequent development of dietary fructose-induced NAFLD in adulthood, as evidenced by lower NAFLD scores for inflammation and steatosis and liver lipid content[74]. In addition, OA significantly inhibited the transactivation of liver X receptor α and its target genes, resulting in the selective decrease in hepatocellular lipid content, which is beneficial in the treatment of fatty liver disease. OA and its derivatives exhibit remarkable therapeutic potential for treating fatty liver disease.
Figure 3 Anti-inflammatory impacts of oleanolic acid and its derivatives, illustrating the molecular mechanisms. OA: Oleanolic acid; NF-κB: Nuclear factor-κB; IL: Interleukin; TNF-α: Tumour necrosis factor-α; Akt: Serine/threonine kinase; GSH: Glutathione; LXR: Liver X receptor; NRF-2: Nuclear factor erythroid-2-related factor 2.

of NAFLD[75]. In addition, OA enhanced the phosphorylation of AMPK in hepatocytes. Similarly, 3-Acetyl-OA (AOA) exerted a protective effect on hyperlipidemia in NAFLD rats via AMPK-regulated pathways[67]. Thus, OA shows prophylactic and therapeutic effects against NAFLD complications and shows great promise as a possible natural therapeutic agent for the treatment of liver diseases[60-70,76].

Anti-diabetic effects

Diabetes is a complicated, progressive and chronic disorder that results from impaired insulin secretion or sensitivity. Type 2 diabetes (T2DM) is a common form of diabetes that is described as hyperglycaemia resulting from either insulin resistance or insufficient insulin secretion by pancreatic β-cells. Increasing evidence illustrates that T2DM is correlated with obesity, as well as with the development of several comorbidities, including cardiac, hepatic, and renal disorders. It is also consolidated with different metabolic complications affecting organs such as the arteries, eyes, kidney and nerves (Figure 6)[77-79].

Plant-derived OA alleviated hyperglycaemia by decreasing HBA-1c and EPO concentrations in streptozotocin (STZ)-induced diabetic rats. Furthermore, it notably increased RBC count and other RBC indices, increased the antioxidant status of the RBCs and decreased oxidative stress[80]. In addition, the anti-diabetic effect on the insulin signalling pathway in the skeletal muscle of STZ-induced rats was fully elucidated. It was found that phosphorylated (p)-AKT and p-glycogen synthase (pGS) expression was increased and that the activation of the insulin signalling pathway was enhanced by OA[81-83]. The protective effect of OA is also associated with therapeutic memory, as evidenced by the maintenance of reduced glycaemic levels in mice 4 wk after the termination of OA treatment. This therapeutic memory was associated with FOXO-1 acetylation[84]. Additionally, HDACs 4 and 5 and G6Pase expressions were suppressed while histone acetyltransferase 1 expression was increased, suggesting that enzymes involved in epigenetics may have a role in sustained glycaemic control in T2DM, particularly with OA treatment[84-86]. The anti-diabetic action of OA is mediated in part through the reduction of ghrelin expression, reduced food intake[87]. Furthermore, OA prevents and ameliorates the insulin resistance induced by Aroclor 1254 treatment in mice. It notably suppressed the Aroclor 1254-induced increase in ROS, oxidative agents, and NADPH oxidase 4 (NOX-4) expression while upregulating the decreased expressions of glutamate-cysteine ligase catalytic subunit (GC-LC), glutamate-cysteine ligase modifier (GC-LM) GPX-1, SOD-1 and SOD-2[88]. These effects were suggested to be mediated by an increase in PPAR-γ signalling through the upregulation of hepatocyte nuclear factor 1b[88]. These results strongly indicate the prophylactic effect of OA on insulin
Table 3: In vivo neuroprotective effects and related mechanisms of action of oleanolic acid and its natural and synthetic derivatives (2014-2020)

Disease model/physiology	Effect	Mechanism	Compound	Dose	Ref.	
Focal brain hypoxia (rats)	Neuroprotective, IBI, decreased neural damage suppressing glial activities	S-100b, MAP-2	GFAP, NADPH-Diaphorase, iNOS	OA 6 mg/kg · d, 6 d	[30]	
Parkinsonian model (rats)	Prevents AIM, anti-PD, ameliorated dyskinesis	CAT	Affected limbs, AIMs, ROS	OA 100 mg/kg · 2 d, 8 d	[31]	
Neurodegeneration (rats, hydroxydopamin)	Protects against neurodegeneration	Cerebral dopamine, contralateral limb use	OA	100 mg/kg · 2 d, 7 d pre or post	[32]	
Brain damage (rats, fluoride)	Brain damage	GSH, SOD, CAT, GPX, GST, GR	OA 5 mg/kg d, last 14 d,	[33]		
Alzheimer’s disease model (rats, Aβ25-35)	Anti-alzheimer, increased synaptic plasticity, decreased Aβ25-35 toxicity	CAMKII, PKC, BDNF, TRK-B, Ca2+- Latency time	OA 21.6 mg/kg	[34]		
Rat coronal brain slice	Neuroprotective, anti-alzheimer,		BDNF	OA-Xn	[35]	
Cognitive dysfunction (mice)	Ameliorates cognitive dysfunction	pERK-1,2; pCREB, BDNF, TRK-B	-	OA 0.625-5 mg/kg	[36]	
Chronic unpredictable mild stress (mice)	Anti-depressant	pERK-1,2; pCREB, BDNF, mTRK-B	-	OA 2.5-40 mg/kg d	[37]	
Cerbral IRI (mice, PC12 cells)	Cerbral protection and prevent IRI	Body weights, sgGLU, sINS, Neurological scores, BAX/BCL2, MDA, TNF-α, IL-6, CASP-3	OA-X (CHS)	pretreatment 30,60, 120 mg/kg d	[38]	
Experimental stress (mice, corticoid)	Anti-depressant	AKT/mTOR, BDNF, Adipo-R1, Adipo-R2, P viral-1, MAO	SGK1, GR	OA 10 mg/kg	[39]	
Mice	Anti-depressant	MAO-A	OA	0.1 mL/10g	[40]	
Mice	Anti-depressant	BNF, sleep duration	Behavioral tests, MAO	OA	5-40 mg/kg	[41]

OA: Oleanolic acid; GFAP: Glial fibrillary acidic protein; APP: Amyloid precursor protein; AIM: Abnormal involuntary movements; CREB: cAMP response element-binding; GSH: Glutathione; ERK: Extracellular-signal-regulated kinase; IRI: Ischemia-reperfusion injury; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase.

OA derivatives also exhibit significant anti-diabetic effects. 12,13 DihydroOA methyl ester (DKS26) reduced the plasma levels of glucose, glycosylated serum protein, ALT and AST. DKS26 also alleviated the glucose tolerance and plasma lipid profiles while raising plasma insulin levels and glucagon like peptide 1 (GLP-1) release, which was accompanied by increased levels of cAMP and phosphorylated PKA. Thus, DKS26 is a hypoglycaemic therapeutic that augments the release and expression of GLP-1 mediated by the activation of the cAMP/PKA signalling cascade[89,102]. Similarly, the natural OA derivative CHS isolated from the root bark of *Aralia taibaiensis* exerted an anti-diabetic effect by decreasing blood glucose, triglyceride, free fatty acid and LDL-cholesterol levels in STZ/nicotinamide-induced T2DM rats by activating AMPK[90]. One new OA derivative, 2a,3b,23a,29a tetrahydroxyolean-12(13)-en-28-oic acid, purified from *Malva parviflora* demonstrated a similar anti-diabetic effect on a T2DM mice model[91]. Furthermore, a series of synthetic OA derivatives showed inhibitory activity on protein tyrosine phosphatase 1B, which is known to be involved in insulin resistance[92-94]. The long-term neonatal intake of OA significantly increased AMPK, adipectin and GLUT-4 expression while decreasing TNF-α and IL-6 in rats that were fed a high fructose diet, suggesting a potential treatment for the long-term prevention of metabolic diseases such as T2DM and obesity[95,96]. Additionally, a nanof ormulation of OA ac eaciously mitigated the increased levels of NO and MDA and serum CAT and SOD activities in rats fed a high fat and fructose diet[97]. Thus, OA is a remarkable...
prophylactic agent for the long term prevention of diabetes.

In addition to animal models, pre-diabetic human patients were randomised to receive OA-enriched olive oil (equivalent dose, 30 mg OA/d) [intervention group (IG)] or the same oil not enriched with OA [control group (CG)] and followed for the incidence of new-onset of T2DM. The results showed that in total, 38 new T2DM onset events occurred, 31 in the CG and 17 in the IG. Therefore, the intake of OA-enriched olive oil reduced the risk of developing T2DM in pre-diabetic patients, suggesting that OA can be used as a functional food and therapeutic for the prevention of T2DM[92-101].

Anti-osteoporotic effects

Osteoporosis is a persistent skeletal disorder characterised by bone microarchitectural deterioration[105]. It has become a significant health issue within the elderly population and has led to a considerable socioeconomic burden in society. Scientists are working to develop new therapeutics to treat the development of the disease, and natural products become widespread worldwide[106].

OA is shown to be an anti-osteoporotic natural product, as it increases bone density and remodelling by regulating calcium and vitamin D metabolisms (Table 6 and Figure 7)[107-116]. Rats fed OA-enriched diets had improved bone characteristics, higher serum concentrations of 1,25(OH)2D3 and less endogenous calcium excretion than did the control group resulting in higher calcium mass[108]. Furthermore, the density and microarchitectural characteristics of the bones were significantly improved, 1,25(OH)2D3 was increased, the renal expression of CYP27B1 and increased, and urinary of Ca2+ excretion was increased in mature C57BL/6 ovariectomised (OVX) mice[107]. In addition, OA significantly induced the mRNA and protein expression of renal CYP27B1 while suppressing CYP24A1 in human proximal tubule HKC-8 cells, suggesting that its effects were associated with calcium and vitamin D metabolism. Additionally, OA acetate promoted the development and reshaping of bones by properly modulating osteoblast, osteoclast and inflammatory activities with TGF-β regulatory measures in an experimental periodontitis model in mice[109].

As demonstrated by the reversal of biochemical markers and bone density of the lumbar and femur, the OA defends against the osteoporosis caused by prednisone[110]. In a glucocorticoid-induced model of rat osteoporosis, a total of 25 possible biomarkers were identified, and OA had a regulatory effect on 17 of these biomarkers associated with some important metabolic pathways, for instance, linoleic acid, valine and isoleucine metabolism, phenylalanine, tyrosine, tryptophan, cysteine and methionine biosynthesis[111].

OA also suppressed the osteoclastogenesis at the early stage and possibly at the late...
Disease model/physiology	Effect	Mechanism	Compound	Dose	Ref.	
Hepatic injury (mice, EtOH)	Prevents ethanol induced liver injury, hepatotoxicity	nNRF-2, HO-1, SOD-1, CAT, GR, hepatic GSH, ATP	sALT, sAST, CYP2E1, ADH, TNF-α, IL-6, sTG, sLDH	OA	10 mg/kg·d, 30 d	[60]
Hepatic injury (rats, CCl₄)	Hepatoprotective	SOD, GPX	ALT, AST, LDH	OA, OA-Xs	15 mg/kg	[60]
Hepatic fibrosis (HSCs, HEPG2, BEL-7402, LO-2; mice, CCl₄)	Hepatoprotection	Apoptosis, Ca²⁺	MitMP, sALT, sAST	OA-amino acids	20 mg/kg, IC₅₀ > 50 µmol/L	[61]
Hepatic fibrosis (rats, CCl₄)	Anti-hepatic fibrosis	-	sALT, sAST, Liver indices	OA-Xs	14-28 mg/kg·d, 9 wk	[62]
Hepatic injury (mice)	Hepatoprotective	NQO1	mKc, MIP-2, OATP-1B2, GADD-45α, sALT, sMDA, pJNK, HO-1	OA	22.5 mg/kg·d, 3 d	[63]
Cholestasis (HEPG2)	Obstructive cholestasis	Urinary BA, MRP-3, MRP-4, MRP-2, NRF-2	sBA, sBil, sAST, sALT, sALP, nNRF-2, BSEP	OA	20 mg/kg, i.p, 1-50 µmol/L	[64]
Cholestasis (mice, LCA)	Cholestasis	MRP-2, MRP-3, MRP-4, NRF-2	sALT, sALP, sAST, tBA, tBIL, SULT-2A1	OA	5-20 µg/kg	[65]
Hepatic NAFLD (rats, HFD)	Anti-NAFLD via AMPK-related pathways	HGF, ICAM, IGF-1, IGFBP-3, IGFBP-5, IGFBP-6, Ipiocalin-2, MCP-1, M-CSF, Pref-1, RAGE, GLUT-2, LDLR, pAMPK, pAKT, pGSK-3β	TC, TG, LDL-C	OA-Xs	60 mg/kg·d, 4 wk	[66]
Hepatic IRI (mice)	HO-1/Sesn2 signaling pathway	PI3K, HO-1, pAKT	sAST, sALT	OA	30 mg/kg·d, 7 d	[67]
Hepatic IRI (rat)	Protects against hepatic IRI	pPI3K, pAKT, pGSK-3β	SALT, IL-1β	OA	100 mg/kg·d, 7 d before IRI	[68]
Hepatic IRI, (mice)	Alleviate hepatic IRI	BCL-2	apoptosis and autophagy, ALT, AST, CASP-3, CAPS-9, BAX, Beclin 1, LC3, TNF-α, HMG-B1, TLR-4, pJNK	OA	30-60 mg/kg, 7 d	[69]

OA: Oleanolic acid; OA-Xs: Natural derivatives of oleanolic acid; IRI: Ischemia-reperfusion injury; NRF-2: Nuclear factor erythroid-2-related factor 2; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; IL: Interleukin; TNF-α: Tumor necrosis factor-α; NAFLD: Non-alcoholic fatty liver disease; HFD: High-fat diet; LDH: Lactic dehydrogenase; MRPs: Multidrug resistance-associated proteins; JNK: cJUN NH²-terminal kinase.

Stages in bone marrow macrophages (BMMs), suggesting as a prophylactic and therapeutic agent for bone loss in postmenopausal women[111,112]. Mechanical studies revealed that the key parameters inhibited by OA were the c-FOS and nuclear factor of activated T-cells c1 (NFAT-c1), both in vitro RANKL-pretreated BMMs and in vivo in OPG-knockout mice[111]. In fact, reproducible results demonstrated that OA inhibited the functions of the osteoclastic genes, including tartrate-resistant acid phosphatase, cathepsin K, and matrix metalloproteinase 9, in the late stage of osteoclastogenesis[111,113]. Interestingly, the inhibition of RANKL-induced osteoclast differentiation in BMMs with the OA acetate (OAA) derived from Vigna angularis without cytotoxicity was also reported[114]. RANKL-induced osteoclastogenesis was blocked by OAA through PLCγ2-Ca²⁺-NFAT-c1 signalling[113,114]. The findings suggest that OA is a potential drug candidate for the management of postmenopausal osteoporosis and bone loss[107-116].

Anti-cancer effects

Cancer is surpassing cardiovascular diseases as the leading cause of death worldwide[117]. Thus, the search for the compounds that selectively kill cancer cells with a mild or no influence on healthy cells is still in progress. In this sense, OA and its derivatives have been observed to exert many anti-cancer actions on various types of cancer.
Figure 5 Hepatoprotective effects of oleanolic acid and its natural and synthetic derivatives. OA: Oleanolic acid; IRI: Ischemia-reperfusion injury; NAFLD: Non-alcoholic fatty liver disease; HCC: Hepatocellular carcinoma; HBV: Hepatitis B virus.

of tumours. Their molecular mechanisms of these substances are diverse, such as inhibiting the proliferation of cancer cells, preventing cancer cell migration and invasion, restraining angiogenesis, and inducing autophagy and apoptosis. Although a very large number of \textit{in vitro} studies have been carried out showing the inhibition of carcinogenesis, only a few \textit{in vivo} studies have confirmed that OA and its derivatives are promising anti-cancer agents (Table 7)\cite{118-125}. Researchers introduced various R groups, particularly at the C$_3$ and C$_{28}$ positions, to increase the anti-cancer potential of OA\cite{11,126,127}. Angiogenesis is one of the hallmarks of cancer and is targeted by OA\cite{128-130}. Angiogenesis is an essential means of cancer progression, and OA treatment significantly reduced the intratumoural microvessel density (MVD) in CRC mice and inhibited tumour growth\cite{131-133}. The anti-metastatic impact of novel synthetic OA derivatives might have resulted from the downregulation of the VEGF/pFAK/pJNK/pERK/NF-κB cascade\cite{132}. Therefore, OA inhibited the proliferation of highly invasive cells and acted as a chemopreventive agent in cancer\cite{8,11,118-126,134-137}.

\textbf{Other effects}

Although studies have mainly focused on anti-inflammatory, neuroprotective, anti-osteoporosis, anti-diabetes effects, OA and its derivatives are reported to possess broad biological activities such as antibacterial, antioxidant, anti-hyperlipidaemic, nephroprotective, cardiovascular protection, anti-infertility, and anti-obesity (Table 8)\cite{29,116,138-178}.

Since OA plays an important role in defending against pathogens in plants, it is expected to possess antimicrobial, antiviral, antifungal and antiparasitic activity against a wide range of pathogens. The antibacterial behaviour of OA and its derivatives was tested in specific bacterial strains\cite{179}. Further mechanistic investigations suggested that the antiparasitic effect of OA might have resulted from its interaction with the sterol 14-α-demethylase (CYP51), a therapeutic target for leishmaniasis, which impairs the oxidant capacity of the parasite\cite{138,139}. Importantly, OA also has the ability to improve parasitemia and anaemia through infection as an effective antimalarial agent\cite{140}. The use of an OA-pectin patch removed malaria parasites and improved abnormal HCT values. In comparison, the analysis proved that the levels of IL-6, IL-10 and TNF-α were decreased by day 12. The results indicate that the OA-pectin patch released therapeutic OA doses to alleviate the cytokine release and to ameliorate anaemia caused by malaria. Transdermally administered
OA can thus be a potent therapeutic agent for malaria and anaemia treatment\[140\]. OA and its derivatives are reported to exhibit pathogenic antiviral activities against HIV, hepatitis, porcine epidemic diarrhoea virus and influenza virus\[141,180-183\]. OA was shown to be a strong regulator of influenza haemagglutinin (HA). The conjugation of glucose with OA revealed that the HA inhibitory activity of OA was significantly increased with no obvious cytotoxic impact on the MDCK cells\[180\]. Similarly, another OA derivative exhibited anti-HBsAg, anti-HBeAg, and anti-hepatitis B virus antigens secretion activity in HepG2.2.15 cells with inhibitory effect on the viral replication rate superior to that of lamivudine\[141,182\].

As oxidative stress under different chronic conditions is considered to be involved in the pathogenic processes, the antioxidant impacts of OA have been investigated. For instance, a decreased intracellular oxidative stress in acute myocardial infarction (MI) was partly due to the protective function of OA\[184\]. OA has been reported to be a potential therapeutic for oxidative stress by inhibiting NO and activating NRF2-ARE signalling pathway\[185\]. It has also been found that OA exerts an anti-allergic effect in allergic diseases such as allergic conjunctivitis and asthma, that is modulated through the GATA-3 and RORγt pathways and through T-cell proliferation\[142,143\]. OA can, therefore, provide a modern prophylactic approach for allergic diseases and potential treatments.

Since cardiovascular diseases are among the leading causes of mortality and morbidity worldwide, the prophylactic and therapeutic effects of OA on cardiovascular disease have been observed. OA and OA derivative therapy also mitigated the high-fat diet mediated atherosclerosis in quail and ox-LDL provoked cytotoxicity in HUVECs by modulating LOX-1, through a decrease in NADPH oxidase and an increase in HO-1 and NRF2 expression\[144,145,186\]. A detailed study used three different animal models, including rabbits that mimicked atherosclerosis, C57BL/6j mice and low-density lipoprotein receptor knockout (LDLR−/−) mice, were applied to study the effect of OA on atherosclerosis\[146\]. All the models revealed that OA retarded the development of atherosclerosis by influencing serum lipid levels, lipid accumulation in the liver and intimal thickening of the artery, which involve genes in lipid metabolism: PPAR-γ, AdipoR1, and AdipoR2. Similarly, the protective effects of OA and its derivatives on diabetes-induced cardiomyopathy and
Table 5 In vivo antidiabetic effects and related mechanisms of action of oleanolic acid and its natural and synthetic derivatives (2014-2020)

Disease model/physiology	Effect	Mechanism	Compound	Dose	Ref.
STZ-induced diabetic rat	STZ induced diabetes	RBC, SOT, GPX	sGLU, HBA-1c, EPO, MDA	OA	80 mg/kg, twice, 5 wk
STZ-induced T2DM rats	Antidiabetic	p-AKT	pGS, GP	OA	80 mg/kg, 14 d
T2DM mice	Glycemic control	pFOXO-3, pFOXO-1, HAT-1, pHDAC-1, pAKT, pGSK-3β	sGLU, G6Ph, HDAC5/4, pAMPK, pSIRT-1, PEPCK, SCD-1, SREBP-1c	OA	100 mg/kg, 4 wk
STZ-induced T2DM rats	Antidiabetic	-	sGLU, sGhrelin	OA-Xn	80 mg/kg, 2 d, 5 wk
Aroclor 1254-treated mice	OA-stimulated HNF-1β-endogenous antioxidant activity, protects against adiposity	SOD1, SOD2, GC-LC, GC-LM, GPX-1 CAT, HNF-1β, GLUT-4	ROS, oxidant products, NOX-4, PPARG, Adionopectin, AGP-AT2, αP2, CD36	OA	50 mg/kg, 1 h before Aroclor 1254 treatment every 3 d for 10 wk
STZ-induced and db/db diabetic mouse models; NCI-H716	Anti-diabetic and hepatoprotective effects	GLP-1-pPKA, sINS	sGSP, sALT, sAST, sGLU, sFBG, sTG, sHDL-C	OA, OA-Xn	100 mg/kg, d
STZ-nicotinamide-induced type 2 diabetes in mice; C2C12 cells	Anti-diabetic	pAMPK, GLUT4, CPT1	sGLU, sLDL-C, sTFA, ACC, pPKB	OA-Xn (CHS)	25-200 mg/kg, 14 d; 0.1-10 µg/mL
STZ-nicotinamide-induced type 2 diabetes in mice	Against diabetes induced hyperlipidemia and hyperglycemia	HK, G6Pase, GKH, sHDL-C, SOD, CAT, GPX	SALP, sAST, sALT, sTC, sTG, LDL, IL-6, TNF-α	OA-Xn	20 mg/kg
HF diet-induced metabolic dysfunctions (rats)	Strategic intervention for the long-term prevention of metabolic diseases such as T2D and obesity via AMP-Activated Protein Kinase pathway	AMPK, GLUT-4, CPT-1, AdipoR1, AdipoR2	TNF-α, IL-6, MCP-1, VEGF	OA	60 mg/kg, 14 d
HF diet-induced metabolic dysfunctions (rats)	Potentially protects against the development of fructose-induced metabolic dysfunction	GLUT-4, GLUT-5 NRF-1, CPT-1, ALDO-B, FFAs	ACC-1, FAS	OA	60 mg/kg, 7 d
HFF diet-induced metabolic dysfunctions (rats)	Protected against the development of health outcomes associated with fructose	terminal body mass, visceral fat mass, epididymal fat	sINS	OA	60 mg/kg, 7 d
HFF diet-induced metabolic dysfunctions (rats)	Nano-OA was able to attenuate HFF diet-induced lipid accumulation in the liver	CAT, SOD	MDA, NO	Nano-OA	25 mg/kg, 2 d, wk
T2DM in prediabetic patients (Human)	Prevention of type 2 diabetes in prediabetic patients	-	sGLU, T2DM incidence	OA	30 mg/kg
α-glucosidase inhibition	α-glucosidase inhibition, decreased blood glucose	-	α-glucosidase	OA-Xn	0.330.98 µmol/L
db/db T2DM mice	Anti-diabetic	GS, pPEK, pAKT, pAMPK, pACC	sLDL, sTG, sTC, GP, FOG1a, PEPCK1, GLUT-2, G6Ph, pmTOR, PCREB, sGLU, sINS	OA + Metformin	250 mg/kg, 28 d
cardiomyocytes injuries were reported to involve anti-oxidative and anti-inflammatory mechanisms, PPARγ, and NLRP3 inflammasome signalling pathways[147,148,150,151]. Furthermore, the antihypertensive effects of OA synthetic derivatives are attributed to a decrease in vascular resistance with no negative inotropic effect on the heart[149]. OA could ameliorate hyperlipidaemia in animal models by modulating CACNA1B, FCN, STEAP3, AMPH, and NR6A expression levels[150]. In addition, OA significantly decreased the hepatic expression levels of peroxisome proliferator-activated receptor-g coactivator-1b and the serum levels of triglycerides, total cholesterol, and LDL cholesterol[151]. Additionally, a semisynthetic OA derivative at Cα position was designed and synthesised to demonstrate farnesoid X receptor modulatory activity in regulating HDL and LDL levels and was found to be more effective[159].

OA was demonstrated to increase the fertility of mice involving reversible contraception in male mice by increasing the permeability of the germinal epithelium via reconstitution of the paracellular junctions between adjacent Sertoli cells[152]. In addition, OA efficiently restored testicular function by alleviating germ cell DNA damage and apoptosis through the inactivation of the NF-xB, P53 and P38 cascades and differentiating mouse ES cells into germ cells[153,154].

The nephroprotective activity of OA against oxidative stress-induced renal inflammation, renal fibrosis, drug-induced nephropathy and renal injuries was revealed with in vivo studies[155,156,157,158]. The beneficial effects of OA on renal fibrosis include reducing renal oxidative stress, increasing the nuclear translocation of Nrf2, and mediating EMT in renal tubular epithelium[155,158]. Similarly, the activation of Nrf2/HO-1 signalling with CDDO-Me treatment in chronic cyclosporine-induced kidney injury and renal ischemia-reperfusion injury revealed beneficial effects[155,157]. Furthermore, an acetylate OA derivative reduced RORγT development and prevented kidney injury and renal ischemia-reperfusion injury revealed beneficial effects[155,156,157]. Additionally, the activation of inflammatory mechanisms, PPARγ, and NLRP3 inflammasome signalling pathways[147,148,150,151].

Adverse effects

Increasingly, the adverse effects of the application of herbs used as an ACT are of global concern. In this sense, the paradoxical toxic effects of OA at higher doses and during long-term use have been suggested, as evidenced by liver injury characterised by cholestasis[15]. Not only OA but also other OA derivatives, in particular CDDO-Im and CDDO-Me, exhibit this paradoxical hepatotoxicity. Because of these adverse effects, phase-3 clinical trials with CDDO-Me were terminated[159]. Although the toxic potential of OA and OA-type triterpenoids was first observed in primary rat hepatocyte cultures, the major concern comes from in vivo studies[155-158]. Although OA is relatively non-toxic, it was shown that repeated oral OA administration produced cholestatic liver injuries in mice, illustrating the hepatotoxic potential of a presumed hepatoprotective compound[156,159].

In addition, interactions with phase I and phase II drug-metabolising enzymes such as cytochrome P450 (CYP450) and UDP-glucuronosyl-transferases (UGTs) or with the transcriptional inducers of these enzymes might cause adverse reactions. It has been demonstrated that OA alters pregnane X receptor and constitutive androstane receptor promoter activities, which regulate the catalytic activities of CYP3A4 and CYP2B6[157]. Additionally, the week inhibition of CYP3A4, UGT1A3 and UGT1A4 and solute carrier transporters activities were reported[156,158]. Therefore, information

Model	Effect	Treatment	OA Dose	References	
Diet-induced pre-diabetic rat model	Prevent the onset of CVDs during pre-diabetes stage	-	OA	80 mg/kg 3 d, 12 wk	[99]
Diet-induced pre-diabetic rat model	Anti-diabetic	-	OA	80 mg/kg 3 d, 12 wk	[100]
MetS	Protects against fructose-induced oxidative damage; against MetS	GPX, SOD, CAT, GSH	OA	60 mg/kg	[101]

OA: Oleic acid; OA-Xn: Natural derivatives of oleic acid; OA-Xs: Synthetic derivatives of oleic acid; STZ: Streptozotocin; HAT-1: Histone acetyltransferase 1; FFA: Free fatty acid; CVDs: Cardiovascular diseases; PGC-1b: Peroxisome proliferator-activated receptor-g coactivator-1b; NRF-1: Nuclear factor erythroid-2-related factor 1; HNF: Hepatocyte nuclear factor; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; IL: Interleukin; TNF-a: Tumor necrosis factor-a; PPAR: Peroxisome proliferator-activated receptor; T2DM: Type 2 diabetes; MetS: metabolic syndrome; GSH: Glutathione.
Disease model/physiology	Effect	Mechanism	Compound	Dose	Ref.
OVX-mice	Increased bone mineral density	1,25(OH)_2_D_3, renal CYP27B1	Urinary Ca excretion, CYP24A1	OA	50 or 100 mg/kg·d, 6 wk [107]
OVX-mice	Better bone density	1,25(OH)_2_D_3	Decreased urinary excretion of Ca	OA	0.67 g/kg in diet, 6 wk [108]
Glucocorticoid-induced osteoporosis (rats)	Bone protection	Bone density of lumbar and femur were reversed, osteocalcin, sCa_2\^_	-	OA	9 mg/kg, 14 d [109]
Bone marrow macrophage (mice)	Inhibit osteoclastogenesis	c-FOS, NFAT-c1, TRAP, CTSK, MMP-9	-	OA	10 mg/kg·2 d, 12wk [111]
OVX-mice	Inhibit osteoclastogenesis	NFAT-c1, c-FOS, MMP-9, CTSK, TRAP, CAR-2	-	OA	10 mg/kg·2 d, 3 mo [112]
Cartilage degeneration in osteoarthritis (rats)	Anti-cartilage damage	Collagen II, MMP-3, MMP-1, MMP-13, ADAMTS-4, -5	-	OA	1-100 µmol/L, 50-100 µmol/L/rat single [113]
Experimental periodontitis (mice)	Bone formation and remodeling through proper modulation of osteoblast and osteoclast	BMP-2, 6, 7; AXIN-2, β-CAT, LEFT, TWIST	IL-6, OA-Xs	2µL (50 ng/µL)/d, 1-3 wk	[114]

OVX: Ovariectomised; OA: Oleanolic acid; TRAP: Tartrate-resistant acid phosphatase; CTSK: Cathepsin K; MMP: Matrix metalloproteinase; CAR: Constitutive androstane receptor; IL: Interleukin.

elucidating the drug-drug/drug-herb interactions associated with OA and its derivatives is essential to prevent these adverse reactions.

CONCLUSION

This review has presented multiple confirmations of the attenuation and amelioration of various diseases by applying either OA derived from plants or its synthetic and natural derivatives from *in vivo* investigations. OA and its derivatives have demonstrated diverse molecular mechanisms of action. However, it should be emphasised that there are no confirmations of that OA itself is a candidate for clinical trials since significant efforts have been made to synthesise OA derivatives with less toxic, more potent and bioavailable forms. Nevertheless, there is a reasonable amount of literature, as this literature fully explored in this review. OA and its derivatives have crucial prophylactic and therapeutic potential as an alternative and complementary therapies for diseases including ulcerative colitis, diabetes, cardiovascular diseases.
Table 7 In vivo anticancer effects and related mechanisms of action of oleanolic acid and its natural and synthetic derivatives (2014-2020)

Disease model/physiology	Effect	Mechanism	Compound	Dose/IC_{50}/K_{i}	Ref.	
Liver, lung and prostate cancer	Inhibits proliferation and induces apoptosis	pPARP-1, pAKT, NF-κB, pmtOR	OA-Xs	7.5 mg/kg·d	[113]	
PC3 prostate	Inhibits proliferation and induces apoptosis	HIF-1α, NAC-1	SENG-1	OA-Xn	10 mg/kg·d; 20d	[114]
Colorectal cancer mouse xenograft model	Induce apoptosis	BAX, P21, P53	BCL-2, CYC-D1, CDK-4, AKT p70S6K and MAPK	OA	16 mg/kg·d, 16d	[115]
Gastric cancer	Induce autophagy	pAMPK	pmTOR, pErK1/2, P38, pmTOR	OA	100 mg/kg·d; 7d	[116]
Kras G12D/+ ;Pdx-1-Cre (KC) pancreastic cancer	Inhibits infiltration	IL-6, CCL-2, VEGF, G-CSF	CDDO-imidazolide	25 or 100 mg/kg diet, 4 or 8 wk	[117]	
Lung carcinoma	Inhibits proliferation	miR122, HNF-1α, HNF-3b, HNF-4α, HNF-6	CCNG-1, MEF-2D	OA	40, 120 mg/kg·d; 4 wk	[118]
Ovarian and endometrial cancer	Inhibition of proliferation	PARP, BCL-2, CASP-8, -3, -7.	OA-Xs	10-40 mg/kg·d; 21 d	[119]	
Prostate cancer	Cell cycle arrest	AKT/mTOR, pAKT, pmtOR	OA-Xs	8.5-17 mg/kg·d; 21 d	[120]	

NF-κB: Nuclear factor-κB; OA: Oleanolic acid; OA-Xn: Natural derivatives of oleanolic acid; OA-Xs: Synthetic derivatives of oleanolic acid; CDDO: 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid; HNF: Hepatocyte nuclear factor; ERK: Extracellular-signal-regulated kinase.

Table 8 In vivo miscellaneous effects and related mechanisms of action of oleanolic acid and its natural and synthetic derivatives (2014-2020)

Disease model/physiology	Effect	Mechanism	Compound	Dose/IC_{50}/K_{i}	Ref.		
Atherosclerosis	Anti-atherosclerotic	Ang1-7, ANG, NO, eNOS	IL-1β, TNF-α, and IL-6	OA	0-160 µmol/L	[121]	
Immune suppression	Anti-protozoal	ZFP-459, FMO-2	OA-Xs	OA-X	3.3-89 µmol/L	[122]	
T. cruzi, L. braziliensis, L. infantum	Anti-parasitic	CYP51, ergosterol synthesis	OA	30.4-68.7 µmol/L	[123]		
Leishmania species	Anti-parasitic	P. berghei malaria	Anti-malaria	TNF-α, IL-6, IL-10, hepcidin	OA	34 mg/kg, 5 d	[124]
HBV	Anti-viral	HBS-Ag, HBE-Ag, HBV DNA replication	OA-Xs	8.6-38.1	[125]		
Allergic conjunctivitis	Anti-allergic and anti-inflammatory	IL-10	Allergen-specific IgG5, sPLA2-IIA, Th2, RWP-T-Cell dif, EOL-1, IL-33, MCP-1	OA	50 mg/kg·d, 5 d after sens	[126]	
Asthma	Anti-asthmatic	tBET, FOX-P3	IL-5, IL-13, IL-17, OVA-IgE, GATA-3, RORγt	OA	2 or 20 mg/kg·2 d, 5 wk	[127]	
Atherosclerosis	Anti-atherosclerotic	NRF-2, HO-1, SOX, NO, CAT, GPX, GSH, HDL	LOX, NADPH Ox, LDL, TC, TG, pGP91, pP67, pP7	OA	15-50 mg/kg·d, 3 wk; 5-20 µmol/L	[128]	
Vascular injury	Prevent endothelial oxLDL effect	CASP, NO, pAKT, peNOS	OA-Xn	5 and 100 µmol/L	[129]		
Condition	Treatment Details						
---------------------------------	--						
Low-density lipoprotein receptor knockout (LDLR−/−) mice	Review Atherosclerotic AdipoR1, PPAR-γ AdipoR2, TC, LDL-C OA 25 mg/kg·d, 5 wk						
Myocardial injury	Cardioprotection, hyperglycemia-induced myocardial injury CASP-3/9, BAX, pERK1/2, HOMER-1α, ERK1/2, SIRT1 BCL-2, ROS OA-Xn 12.5-50 µmol/L						
Carotid artery injury	Protects diabetes induced artery injury body weights, serum NO endothelin 1, IL-1β, IL-6, IL-18, NLRP-3, CASP-1 OA 100 mg/kg·d, 6 wk						
Vascular injury	Hypotensive physiological data physiologica data OA, OA-Xn 0.1-100 µmol/L						
Hiperlipidemia	Anti-hyperlipidemic 17 genes (microarray), CACNA-1B TC, TG, HDLC, 4 genes OA OA-Xn 12.5-50 µmol/L						
Fertility	Recovered fertility increasing the permeability of the germinal epithelium OA 30 mg/kg						
Fertility/Reproductive function	Rejuvenates testicular function BCL-2 pNF-kB, IL-1β, COX-2 TNF-α, H2AX, p533, BAX, P38 OA 5-25 mg/kg·d, 24 wk						
Renal fibrosis	Attenuates renal fibrosis NRF-2, HO, NQO-1, BAX, HSP-70 BCL-2, OA N.R.						
Nephropathy	Prevent diabetic nephropathy siNOS, SOD, adiponectin TG, BUN, Cr, TGF-β, SMAD1/2 OA 100 mg/kg·d, 20 wk						
Renal IRI	anti-Renal IRI SOD, GPX, TT, eNOS, NRF-2, PPAR-γ, DDAHs Cro, NAGL, TOS, NO, ADMA, NF-κB, ET-1 OA-Xs 20 mg/kg·d, 5 h before IR						
Nepritis Lupus/SLE	Inhibition of Th17 differentiation Th17, IL-17A, serum dsDNA, ROR-γt OA-Xs 0-10 µmol/L, 50 mg/kg						
MRSA	Anti-microbial Microbe concentration OA-Xs 10-30 µg/mL						
Circadian clock	Mediates circadian clock CLOK, ELO-VL1, TUBB-2A CLDN-1, BMA-1 AMY-2A5, USP-2, PER-3,THSRP OA 0.01% diet						
Cisplatin induced nephrotoxicity	Prevent nephrotoxicity MAP-1A/AB, LC1 CASP-3/9, PARP cleavage, ATG-5, ERK1/2, STAT3, NF-κB OA 10-40 mg/kg						
Dermatitis/TPA-treated mouse ears	Inhibit dermatitis MPO, COX-2, iNOS, TNF-α, IL-1β, pκB5 OA-Xn 2, 5 or 10 µmol/L						
Diabetes induced cardiomyopathy	Prevent diabetic induced cardiomyopathy via Nrf2 H0-1, SOD, NRF-2, Glycogen, MDA, p-GS OA 80 mg/kg·d, 14 d						
Diabetic mesangial cell injury	Diabetic renal fibrosis PDK/akt/mTOR Autophagy, PTEN, OA 10 µmol/L						
Gut atrophy/piglet model	Prevent gut atrophy TGR-5, FXR OA 50 mg/kg·d, 14 d						
Immune suppression	Immune suppressive, anti-RA IL-10 collagen specific sIgG, CD4 INF-γ, IL-17a, IL-2, /4/6/10, TNF-α, GM-CSF, MCP-1, MMP-1/3 OA-Xs 1-10 mg/kg·d, 18 times between 28 and 53 d after the initial immunisation						
Immune suppression/glucocorticoid resistance	Protecting DEX induced GC impairment Apoptosis, GR binding OA+I 100 mg/kg·d, 21 d						
Longevity	DAF-16, SOD-3, HSP-16·2 CTL-1 OA 0-600 µmol/L·2 d						
Metal (MeHg) toxicity	Mitigate low-dose MeHg toxicity accumulation of metals in organs OA-Xs 40 µg/kg ·d						
Condition	Treatment	Mechanism	Dose/Route				
----------------------------	--	---	------------				
Muscle Atrophy	Reduces denervation induced muscle atrophy	CNTF, JNK-2, STAT3, OA-Xs	0.2-1 µmol/L				
Muscle atrophy	Anti-muscle atrophy	mTORC-1, P70, S6K, FOXO-1, MURF-1, Atrogi-nl, OA-Xs	1 µmol/L, 1-10 mg/kg				
Myocarditis - myocardial Injury	EA myocarditis	IL-10, IL-33, HW/BW, BPN, IK-17, IL-6, TNF-α, Galectin	OA				
Obesity	Anti-obesity	octanoylated ghrelin production, PC-1/3, PC-2	OA				
Obesity	Improves gustatory perception of lipids and exerts protective effects in obesity	CD36, blood insulin and glucose, hepat,c TG, IL-6	OA				
Renal injury	Prevent nephropathy	nNRF-2/1NRF-2, HO-1, KEAP-1, BAX	N.R.				
Renal IRI	Anti-Renal IRI; antioxidant, anti-inflammatory, and anti-apoptotic activities	SOD, GPX, GSH, CAT, IL-10, NRF-2, GCLc, BUN, Cr, KIM-1, LDH, MDA, IL-6, INF-γ, MPO	OA				
Sepsis	Lung damage, experimental sepsis	NO, SOD, CAT, CASP-3, FAS, FASL, BCL-2	OA				
Vascular injury	Prevent oxidative stress induced cell injury by with AKT/eNOS signaling pathway	NO, SOD, CAT, CASP-3, FAS, FASL, BCL-2	OA				

IL: Interleukin; TNF-α: Tumor necrosis factor-α; OA: Oleanolic acid; OA-Xn: Natural derivatives of oleanolic acid; OA-Xs: Synthetic derivatives of oleanolic acid; LDH: Lactic dehydrogenase; ERK: Extracellular-signal-regulated kinase; IRI: Ischemia-reperfusion injury; NRF-2: Nuclear factor erythroid-2-related factor 2; JNK: cJUN NH2-terminal kinase; FXR: Farnesoid X receptor; MMP: Matrix metalloproteinase; PGC-1b: Peroxisome proliferator-activated receptor γ coactivator-1b; PPAR: Peroxisome proliferator-activated receptor; NF-κB: Nuclear factor-κB; STAT3: Signal transducer and activator of transcription 3; GSH: Glutathione.

Figure 7 Anti-osteoporotic and bone protective effects of oleanolic acid and its derivatives, illustrating the molecular mechanisms. OA: Oleanolic acid; PPAR: Peroxisome proliferator-activated receptor; CTSK: Cathepsin K; JNK: cJUN NH2-terminal kinase; MMP: Matrix metalloproteinase; NFAT-c1: Nuclear factor of activated T-cells c1; TRAP: Tartrate-resistant acid phosphatase.
REFERENCES

1. Pollier J, Goossens A. Oleanolic acid. Phytochemistry 2012; 77: 10-15 [PMID: 22377690 DOI: 10.1016/j.phytochem.2011.12.022]

2. Žiberna L, Šamec D, Mocan A, Nabavi SF, Bishayee A, Farooqi AA, Sureda A, Nabavi SM. Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy. Int J Mol Sci 2017; 18 [PMID: 28300756 DOI: 10.3390/ijms18030643]

3. Kalayçoğlu Z, Uraşiç D, Dirmitci T, Erım FB. α-Glucosidase enzyme inhibitory effects and ursolic and oleanolic acid contents of fourteen Anatolian Salvia species. J Pharm Biomed Anal 2018; 155: 284-287 [DOI: 10.1016/j.jpba.2018.04.014]

4. Luderia-Huanan MA, Ramos-Inquiltupa DA. Determination of the content of ursolic and oleanolic acid in the cuticular wax of fruits of different species of Rosaceae. Rev Colombo Quimica 2019; 48: 15-20 [DOI: 10.15446/rev.colomb.quim.v48n2.77046]

5. Liu J, Lu YF, Wu Q, Xu SF, Shi FG, Klaassen CD. Oleanolic acid reprograms the liver to protect against hepatotoxins, but is hepatotoxic at high doses. Liver Int 2019; 39: 427-439 [PMID: 30079536 DOI: 10.1111/liv.13940]

6. Phillips DR, Rasbery JM, Bartel B, Matsuda SP. Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 2006; 9: 305-314 [PMID: 16581287 DOI: 10.1016/j.pbi.2006.03.004]

7. Li X, Wang Y, Gao Y, Li L, Guo X, Liu D, Jing Y, Zhao L. Synthesis of methyl 2-cyano-3,12-dioxo-18β-olean-1,9(11)-dien-30-oate analogues to determine the active groups for inhibiting cell growth and inducing apoptosis in leukemia cells. Org Biol Chem 2014; 12: 6706-6716 [PMID: 25033318 DOI: 10.1039/c4ob00973d]

8. Oprean C, Micu M, Csányi E, Ambrus B, Bojin F, Tatu C, Cristea M, Ivan A, Danciu C, Dehelean C, Paunescu V, Sica C. Improvement of ursolic and oleanolic acids’ antimutagen activity by complexation with hydrophilic cyclodextrins. Biomed Pharmacother 2016; 83: 1095-1104 [PMID: 27551755 DOI: 10.1016/j.biopha.2016.08.030]

9. Reyes-Zurita FJ, Medina-O’Donnell M, Ferrer-Martin RM, Rufino-Palomares EE, Martin-Fonseca S, Rivas F, Martínez A, García-Granados A, Pérez-Jiménez A, García-Salgueiro L, Peragón J, Mokhtari K, Medina PP, Parra A, Lupiñézte JÁ. The oleanolic acid derivative, 3-O-succinyl-2β-camphor-17β-oxoolean-13(15)-en-28-oic acid, induces apoptosis in B16-F10 melanoma cells via the mitochondrial apoptotic pathway. RSC Adv; 2016; 6: 93590-93601 [DOI: 10.1039/C6RA18879F]

10. Cheng KG, Su CH, Yang LD, Liu J, Chen ZF. Synthesis of oleanolic acid dimers linked at C-28 and evaluation of anti-tumor activity. Eur J Med Chem 2015; 98: 480-489 [PMID: 25462260 DOI: 10.1016/j.ejmech.2014.10.066]

11. Tian T, Liu X, Lee ES, Sun J, Feng Z, Zhao L, Zhao C. Synthesis of novel oleanolic acid and ursolic acid in C-28 position derivatives as potential cancer agents. Arch Pharm Res 2017; 40: 458-468 [PMID: 28101738 DOI: 10.1007/s12207-016-0868-8]

12. Verdile G, Keane KN, Cruzat VF, Medic S, Sabale M, Rowles W, Wisjesekara N, Martins RN, Fraser PE, Newsholme P. Inflammation and Oxidative Stress: The Molecular Connectivity between Insulin Resistance, Obesity, and Alzheimer’s Disease. Mediators Inflamm 2015; 2015: 105828 [PMID: 26693205 DOI: 10.1155/2015/105828]

13. Khansri NR, Shikha Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov 2009; 3: 73-80 [PMID: 19147549 DOI: 10.3233/RPI-2009-00203]

14. Kang GD, Lim S, Kim DH. Oleanolic acid ameliorates dextran sodium sulfate-induced colitis in mice by restoring the balance of Th17/Treg cells and inhibiting NF-κB signaling pathway. Int Immunopharmacol 2015; 29: 393-400 [PMID: 26514300 DOI: 10.1016/j.intimp.2015.10.024]

15. Mandal A, Bhatia D, Bishayee A. Suppression of tumor angiogenesis is implicated in methyl umbelliferyl-mediated inhibition of experimental mammary carcinogenesis. Mol Carcinog 2014; 53: 999-1010 [PMID: 23846978 DOI: 10.1002/mc.22267]

16. Dinh CH, Yu Y, Szabo A, Zhang Q, Zhang P, Huang XF. Bardoxolone Methyl Prevents High-Fat Diet-Induced Colon Inflammation in Mice. J Histchem Cytochem 2016; 64: 237-255 [PMID: 26920068 DOI: 10.1369/jhc.2015.816180]

17. Fitzpatrick LR, Stonesifer E, Small JS, Liby KT. The synthetic triterpenoid (CDDO-Im) inhibits STAT3, a key regulator of inflammatory signaling, and reduces colon inflammation in mice. Inflammopharmacology 2017; 25: 237-255 [PMID: 28334347 DOI: 10.1007/s12880-016-0323-z]

18. Ralí S, Oyedeji OO, Areumu OO, Oyedeji AO, Nkeh-Chungag BN. Semisynthesis of Derivatives of Oleanolic Acid from Syzygium aromaticum and Their Antinociceptive and Anti-Inflammatory Properties. Inflammopharmacology 2016; 24: 373-385 [PMID: 27382191 DOI: 10.1156/2016.8401843]

19. Nkeh-Chungag BN, Oyedeji OO, Areumu AO. Anti-inflammatory and membrane-stabilizing properties of two semisynthetic derivatives of oleanolic acid. Inflammopharmacology 2015; 28: 61-69 [PMID: 25173889 DOI: 10.1016/j.inflam Phar.2015.03.004]

20. Krishnan K, Mathew LE, Vijayalakshmi NR, Helen A. Anti-inflammatory potential of β-amyrin, a triterpenoid isolated from Costus igneus. Inflammopharmacology 2014; 22: 373-385 [PMID: 25300965 DOI: 10.1007/s12880-014-0218-8]

21. Nelson AT, Camelio AM, Claussen KR, Cho J, Tremmell L, DiGiovanni J, Siegel D. Synthesis of oxygenated uralnicolic and ursolic acid derivatives with anti-inflammatory properties. Bioorg Med Chem Lett 2015; 25: 4342-4346 [PMID: 26259803 DOI: 10.1016/j.bmcl.2015.07.029]

22. Jehangir A, Shahzad M, Shahzad K, Waheed A, Ayub F. Zinc and iron complexes of oleanolic acid, (OA) attenuate allergic airway inflammation in rats. Inflammopharmacology 2019; 27: 1179-1192 [PMID: 31069605 DOI: 10.1007/s10777-019-00597-2]

23. Bednarczyk-Cwynar B, Wachowiak N, Szul M, Kaminska E, Bogacz A, Baratkowicz-Wieczorek Z, Zagurko L, Mikolajczak PL. Strong and Long-Lasting Antiinflammatory and Antiinflammatory Conjugate of Naturally Occurring Oleanolic Acid and Aspirin. Front Pharmacol 2016; 7: 202 [PMID: 27462270 DOI: 10.3389/fphar.2016.00202]

24. Peng XP, Li XL, Li Y, Huang XT, Luo XQ. The protective effect of oleanolic acid on NMDA-induced MLE-12 cells apoptosis and lung injury in mice by activating SIRT1 and reducing NF-κB acetylation. Int Immunopharmacol 2019; 70: 520-529 [PMID: 30901738 DOI: 10.1016/j.intimp.2019.03.015]

25. Kim MS, Han JY, Kim SH, Jeong D, Kim HY, Lee SW, Rho MC, Lee K. Oleanolic acid acetate attenuates polyhexamethylene guanidine phosphate-induced pulmonary inflammation and fibrosis in mice. Respir Physiol Neurobiol 2018; 252-253: 1-9 [PMID: 29505886 DOI: 10.1016/j.resp.2018.03.001]

Sen A. OA and derivatives as a therapeutic agent
Sen A. OA and derivatives as a therapeutic agent

26 Han YW, Liu XJ, Zhao Y, Li XM. Role of Oleomalic acid in maintaining BBB integrity by targeting p38MAPK/VEGF/Src signaling pathway in rat model of subarachnoid hemorrhage. *Eur J Pharmacol* 2018; 839: 12-20 [PMID: 29240794 DOI: 10.1016/j.ejphar.2018.09.018]

27 Li W, Guo Y, Zhang C, Wu R, Yang JY, Gaspar KJ, Kong AN. Dietary Phytochemicals and Cancer Chemoprevention: A Perspective on Oxidative Stress, Inflammation, and Epigenetics. *Chem Res Toxicol* 2016; 29: 2071-2095 [PMID: 27298132 DOI: 10.1021/acs.chemrestox.6b00413]

28 Xiang P, Chen T, Mou Y, Wu H, Xie P, Lu G, Gong X, Hu Q, Zhang Y, Ji H. NZ suppresses TLR4/NF-κB signaling and NLRP3 inflammasome activation in LPS-induced RAW264.7 macrophages. *Inflamm Res* 2015; 64: 799-808 [PMID: 26298161 DOI: 10.1007/s00011-015-0803-4]

29 Pan Y, Zhou F, Song Z, Huang H, Chen Y, Shen Y, Jia Y, Chen J. Oleomalic acid protects against pathogenesis of atherosclerosis, possibly via FXR-mediated angiotensin (Ang)(1-7) upregulation. *Biomed Pharmacother* 2018; 97: 1694-1700 [PMID: 29703333 DOI: 10.1016/j.biopha.2017.11.151]

30 Calitana L, Rutolo D, Nieto ML, Brusco A. Further evidence for the neuroprotective role of oleomalic acid in a model of focal brain hypoxia in rats. *Neurochem Int* 2014; 79: 79-87 [PMID: 25280833 DOI: 10.1016/j.neuint.2014.09.011]

31 Ndiouvo BC, Daniels WM, Mabandla MV. Amelioration of L-Dopa-Associated Dyskinesias with Triterpenoic Acid in a Parkinsonian Rat Model. *Neurotox Res* 2016; 29: 126-134 [PMID: 26459303 DOI: 10.1007/s12640-015-9567-3]

32 Mabandla MV, Nyoka M, Daniels WM. Early use of oleomalic acid provides protection against 6-hydroxydopamine induced dopamine neurodegeneration. *Brain Res* 2015; 1622: 64-71 [PMID: 26111646 DOI: 10.1016/j.brainres.2015.06.017]

33 Sarkar C, Pal S, Das N, Dinda B. Ameliorative effects of oleomalic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies. *Food Chem Toxicol* 2014; 66: 224-236 [PMID: 24466673 DOI: 10.1016/j.fct.2014.01.020]

34 Wang K, Sun W, Zhang L, Guo X, Wu J, Liu S, Zhou Z, Zhang Y. Oleomalic Acid Ameliorates AJ52-35 Injection-induced Memory Deficit in Alzheimer's Disease Model Rats by Maintaining Synaptic Plasticity. *CNS Neurol Disord Drug Targets* 2018; 18: 389-399 [PMID: 29743416 DOI: 10.2174/1871527318666180525113109]

35 Van Kanegan MJ, Dunn DE, Kaltenbach LS, Shah B, He DN, McCoy DD, Yang P, Peng J, Shen L, Du L, Chiechewicz RH, Newman RA, Lo DC. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke. *Sci Rep* 2016; 6: 25626 [PMID: 27172999 DOI: 10.1038/srep25626]

36 Jeon SJ, Lee HJ, Lee HE, Park SJ, Gwon Y, Kim H, Zhang J, Shin CY, Kim DH, Ryu JH. Oleomalic acid ameliorates cognitive dysfunction caused by cholinergic blockade via TrkB-dependent BDNF signaling. *Neuropharmacology* 2017; 113: 100-109 [PMID: 27470063 DOI: 10.1016/j.neuropharm.2016.07.029]

37 Yi LT, Li J, Liu BB, Lu O, Liu Q, Geng D. BDNF-ERK-CREB signalling mediates the role of miR-132 in the regulation of the effects of oleomalic acid in male mice. *J Psychiatr Res* 2014; 39: 348-359 [PMID: 25079084 DOI: 10.1016/j.jpsychires.2013.10.069]

38 Gutiérrez-Rebolledo GA, Siorida-Reyes AG, Meckes-Fischer M, Jiménez-Arellanes A. Hepatoprotective properties of oleomalic and ursolic acids in antituberular drug-induced liver damage. *Asian Pac J Trop Med* 2016; 9: 644-651 [PMID: 27393091 DOI: 10.1016/j.apjtm.2016.05.015]

39 Dong SQ, Wang SS, Zhu JX, Mu RH, Li CF, Geng D, Liu Q, Yi LT. Oleomalic acid decreases SGK1 in the hippocampus in corticosterone-induced mice. *Stemoids* 2019; 149: 1083-1094 [PMID: 31153932 DOI: 10.1016/j.steroids.2019.05.011]

40 Fajemiroje JO, Poleppally PR, Chaurasia NY, Tekwani BL, Zjawiony JK, Costa EA. Oleomalic acid acylate esters antidepressant-like effect mediated by 5-HT1A receptor. *Sci Rep* 2015; 5: 11582 [PMID: 26199018 DOI: 10.1038/srep11582]

41 Fajemiroje JO, Galdino PM, Florentino IF, Da Rocha FF, Ghedini PC, Poleppally PR, Zjawiony JK, Costa EA. Plurality of anxiety and depression alteration mechanism by oleomalic acid. *J Psychopharmacol* 2014; 28: 923-934 [PMID: 24920136 DOI: 10.1177/026988111456780]

42 Zhang SQ, Lin KL, Law CY, Liu B, Fu XQ, Tse WS, Wong SSM, Sze SCW, Yung KKL. Oleomalic acid enhances neural stem cell migration, proliferation in vitro, and inhibiting GSK3β activity. *Cell Death Discov* 2018; 4: 48 [PMID: 30345079 DOI: 10.1038/s41420-018-0111-0]

43 Ning Y, Huang J, Kalionis B, Bian Q, Dong J, Wu J, Tai X, Xia S, Shen Z. Oleomalic Acid Induces Differentiation of Neural Stem Cells to Neurons: An Involvement of Transcription Factor Nix-2.5. *Stem Cells* 2015; 2015: 672312 [PMID: 26240574 DOI: 10.1155/2015/672312]

44 Zhang YL, Zhou Z, Han WW, Zhang LL, Song WS, Huang JH, Liu S. Oleomalic Acid Inhibiting the Differentiation of Neural Stem Cells into Astrocyte by Down-regulating JAK/STAT Signaling Pathway. *Am J Chin Med* 2014; 42: 103-117 [PMID: 26916917 DOI: 10.1142/S0192415X15600075]

45 Jo HR, Wang SE, Kim YS, Lee CH, Son H. Oleomalic Acid Promotes Neuronal Differentiation and Histone Deacetylase 5 Phosphorylation in Rat Hippocampal Neurons. *Mol Cells* 2017; 40: 485-494 [PMID: 28681592 DOI: 10.14348/molcells.2017.0034]

46 Castellano JM, Garcia-Rodriguez S, Espinosa JM, Millan-Linares MC, Rada M, Perona JS. Oleomalic Acid Exerts a Neuroprotective Effect Against Microglial Cell Activation by Modulating Cytokine Release and Antioxidant Defense Systems. *Biomolecules* 2019; 9: 31638341 [PMID: 33909840 DOI: 10.3390/biom91108663]

47 Mecini R, Memariani Z, Asadi F, Bozorgi M, Gerey N. Pasticide as a Potential Neuropeptidial Neuroprotective Natural Products. *Planta Med* 2019; 85: 1326-1350 [PMID: 31604353 DOI: 10.1055/a-1043-1075]

48 Yang J, Guo HA, Thudory B, Seo JY, Kim H, Park J, Oh WK. 3,4-seco-28-Nor-oleanane triterpenes from Camellia japonica protect from neurotoxicity in a rotenone model of Parkinson’s disease. *Neuropharmacology* 2016; 103: 1-11 [PMID: 27069283 DOI: 10.1016/j.neuropharm.2016.07.010]
Diabetes Care: 3160-3167 [PMID: 14578255 DOI: 10.2337/db12-0073]

Taylor R. Insulin resistance and type 2 diabetes. Diabetes 2018; 67: 778-779 [PMID: 22442298 DOI: 10.2373/dib12-0073]

Genuth S, Alberti KG, Bennett P, Buse J, DeFronzo R, Kahn R, Kitabchi A, Knowler WC, Lebovitz H, Lernmark A, Nathan D, Palmer J, Rizza R, Saudek C, Shaw J, Steffer M, Stern M, Tuomilehto J, Zinman B, Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003; 26: 3160-3167 [PMID: 14578255 DOI: 10.1016/j.sbiog.2019.102951]
Sen A. OA and derivatives as a therapeutic agent

10.2337/diabetes.26.11.3160

79 Malchoff CD. Diagnosis and classification of diabetes mellitus. Conn Med 1991; 55: 625-629 [PMID: 1790693]

80 Babloy CM, Khatri A, Sibhia NH, Ngubane PS. The Haematological Effects of Oleanolic Acid in Streptozotocin-Induced Diabetic Rats: Effects on Selected Markers. J Diabetes Res 2019; 2019: 6753541 [PMID: 31828165 DOI: 10.1159/2019/6753541]

81 Mukundwa A, Mukarwirwa S, Masola B. Effects of oleanolic acid on the insulin signaling pathway in skeletal muscle of streptozotocin-induced diabetic male Sprague-Dawley rats. J Diabetes 2016; 8: 98-108 [PMID: 25564701 DOI: 10.1111/jtss.12260]

82 Silva FS, Oliveira PJ, Duarte MF. Oleanolic, Ursolic, and Betulinic Acids as Food Supplements or Pharmaceutical Agents for Type 2 Diabetes: Promise or Illusion? J Agric Food Chem 2016; 64: 2991-3008 [PMID: 27012451 DOI: 10.1021/acsjfcr.5b00021]

83 Nazaruk J, Borzym-Kluxycz M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem Rev 2015; 14: 675-690 [PMID: 26213326 DOI: 10.1007/s11101-014-9369-x]

84 Zhou X, Zeng XY, Wang H, Li S, Jo E, Xue CC, Tan M, Molero JC, Ye JM. Hepatic FoxO1 acetylation is involved in oleanolic acid-induced memory of glycemic control: novel findings from Study 2. PLoS One 2014; 9: e107231 [PMID: 25222566 DOI: 10.1371/journal.pone.0107231]

85 Takigawa-Iinuma H, Sekine T, Murata M, Takayama K, Nakazawa K, Nakagawa J. Stimulation of glucose uptake in muscle cells by prolonged treatment with scriptide, a histone deacetylase inhibitor. Biosci Biotechnol Biochem 2003; 67: 1499-1506 [PMID: 12913293 DOI: 10.1277/bb.67.1499]

86 McGee SL, Hargreaves M. Histone modifications and skeletal muscle metabolic gene expression. Clin Exp Pharmacol Physiol 2010; 37: 392-396 [PMID: 19793100 DOI: 10.1111/j.1440-1681.2009.05311.x]

87 Luuvo M, Mhongwa HP, Khatri A. The effects of Scygium aromaticum-derived triterpenes on gastrointestinal ghrelin expression in streptozotocin-induced diabetic rats. Afr J Tradit Complement Altern Med 2016; 13: 8-14 [PMID: 26827154 DOI: 10.21010/ajtcam.v13i4.2]

88 Su S, Wu G, Cheng X, Fan J, Peng J, Su H, Xu Z, Cao M, Long Z, Hao Y, Li G, Li S, Hai C, Wang X. Oleanolic acid attenuates PC12-induced adiposity and insulin resistance via HIF1α-mediated regulation of redox and PPAR signaling. Free Radic Biol Med 2018; 124: 122-134 [PMID: 29874433 DOI: 10.1016/j.freeradbiomed.2018.06.003]

89 Chen FF, Wang JT, Zhang LX, Xing SF, Wang YX, Wang K, Deng SL, Zhang JQ, Tang L, Wu HS. Oleanolic acid derivative DK526 exerts anti-diabetic and hepatoprotective effects in diabetic mice and promotes glucagon-like peptide-1 secretion and expression in intestinal cells. Br J Pharmacol 2017; 174: 2912-2928 [PMID: 26027773 DOI: 10.1111/bph.13921]

90 Li Y, Zhang T, Cui J, Jia N, Wu Y, Xu M, Wen A. Chikusetsu saponin IVa regulates glucose uptake and fatty acid oxidation: implications in antihyperglycemic and hypolipidemic effects. J Pharm Pharmacol 2015; 67: 997-1007 [PMID: 25877570 DOI: 10.1111/jphp.12392]

91 Gutiérrez RMP. Hypolipidemic and hypoglycemic activities of a oleanolic acid derivative from Malva parviflora on streptozotocin-induced diabetic mice. Arch Pharm Res 2017; 40: 550-562 [PMID: 27943105 DOI: 10.1007/s12207-016-0873-y]

92 Matumba MG, Ayelese AO, Nyakudya T, Erlwanger K, Chegoi NN, Mukwevho E. Long-Term Impact of Neonicotinal Intake of Oleanolic Acid on the Expression of AMP-Activated Protein Kinase, Adiponectin and Inflammatory Cytokines in Rats Fed with a High Fructose Diet. Nutrients 2019; 11 [PMID: 30681782 DOI: 10.3390/nu10020262]

93 Molepo M, Ayelese A, Nyakudya T, Erlwanger K, Mukwevho E. A Study on Neonicotinal Intake of Oleanolic Acid and Metformin in Rats (Rattus norvegicus) with Metabolic Dysfunction: Implications on Lipid Metabolism and Glucose Transport. Molecules 2018; 23 [PMID: 30282895 DOI: 10.3390/molecules23102528]

94 Nyakudya TT, Molepo M, Erlwanger KHI. The protective effect of neonicotinal oral administration of oleanolic acid against the subsequent development of fructose-induced metabolic dysfunction in male and female rats. Nutr Metab (Lond) 2018; 15: 82 [PMID: 30479649 DOI: 10.1186/s12966-018-0314-7]

95 Wang S, Du LB, Jin L, Wang Z, Peng J, Liao N, Zhao YY, Zhang JL, Pauluhn J, Hai CX, Wang X, Li WL. Nano-oleanolic acid alleviates metabolic dysfunctions in rats with high fat and fructose diet. Biomed Pharmacother 2018; 108: 1181-1187 [PMID: 30372819 DOI: 10.1016/j.biopha.2018.09.150]

96 Santos-Lozano JM, Rada M, Lapetra J, Guinda Á, Jiménez-Rodríguez MC, Cayuela JA, Ángel-Lugo A, Vilches-Arenas A, Gómez-Martin AM, Ortega-Calvo M, Castellano JM. Prevention of type 2 diabetes in prediabetic patients by using functional olive oil enriched in oleanolic acid: The PREDIABOLE study, a randomized controlled trial. Diabet Obes Metab 2015; 2015; 174: 2912-2928 [PMID: 28677570 DOI: 10.1111/dom.13838]

97 Zhong YY, Chen HS, Wu PP, Zhang BJ, Yang Y, Zhu QY, Zhang CG, Zhao SQ. Synthesis and biological evaluation of novel oleanolic acid analogues as potential n-glucosidase inhibitors. Eur J Med Chem 2019; 164: 706-716 [PMID: 30876669 DOI: 10.1016/j.ejmech.2018.12.046]

98 Wang X, Chen Y, Abdelkader D, Hassan W, Sun H, Liu J. Combination therapy with oleanolic acid and metformin as a synergistic treatment for diabetes. J Diabetes Res 2015; 2015: 973287 [PMID: 25789330 DOI: 10.1155/2015/973287]

99 Gamede M, Mabuza L, Ngubane P, Khatri A. Plant-Derived Oleanolic Acid (OA) Ameliorates Risk Factors of Cardiovascular Diseases in a Diet-Induced Pre-Diabetic Rat Model: Effects on Selected Cardiovascular Risk Factors. Molecules 2019; 24 [PMID: 30669379 DOI: 10.3390/5400203040]

100 Gamede M, Mabuza L, Ngubane P, Khatri A. The Effects of Plant-Derived Oleanolic Acid on Selected Parameters of Glucose Homeostasis in a Diet-Induced Pre-Diabetic Rat Model. Molecules 2018; 23 [PMID: 29569390 DOI: 10.3390/5400203040]

101 Nyakudya TT, Isaiah S, Ayelese A, Ndhlala AR, Mukwevho E, Erlwanger KH. Short-Term Neonatal Oral Administration of Oleanolic Acid Protects against Fructose-Induced Oxidative Stress in the Skeletal Muscles of Suckling Rats. Molecules 2019; 24 [PMID: 30781794 DOI: 10.3390/5400203040]

102 Yamamoto T, Nakade Y, Yamauchi T, Kobayashi Y, Ishii N, Ohashi T, Ito K, Sato K, Fukuzawa Y, Yoneda M. Glucagon-like peptide-1 analogues prevent nonalcoholic steatohepatitis in non-surgical nude mice. World J Gastroenterol 2016; 22: 2512-2523 [PMID: 26973139 DOI: 10.3748/wjg.v22.i22.2512]

103 Qian S, Zhang M, He Y, Wang W, Liu S. Recent advances in the development of protein tyrosine phosphatase 1B inhibitors for Type 2 diabetes. Future Med Chem 2016; 8: 1239-1258 [PMID: 27357615 DOI: 10.4155/fmc-2016-0064]

104 Yang L, Chen F, Gao C, Chen J, Li J, Liu S, Zhang Y, Wang Z, Qian S. Design and synthesis of tricyclic terpenoid derivatives as novel PTP1B inhibitors with improved pharmacological property and in vivo
antihyperglycemic efficacy. J Enzyme Inhib Med Chem 2020; 35: 152-164 [PMID: 31742469 DOI: 10.1080/14756629.2019.1690481]

105 Shah FA, Stoica A, Cardemil C, Palmquist A. Multiscale characterization of cortical bone composition, microstructure, and nanomechanical properties in experimentally induced osteoporosis. J Biomed Mater Res A 2018; 106: 997-1007 [PMID: 29143443 DOI: 10.1002/jbm.a.36294]

106 Zhang A, Sun H, Wang X. Potentiating therapeutic effects by enhancing synergism based on active constituents from traditional medicine. Phytother Res 2014; 28: 526-533 [PMID: 23913598 DOI: 10.1002/ptr.5032]

107 Cao S, Dong XL, Ho MX, Yu WX, Wong KC, Yao XS, Wong MS. Oleanolic Acid Exerts Osteoprotective Effects and Modulates Vitamin D Metabolism. Nutrients 2018; 10 [PMID: 29470404 DOI: 10.3390/nu10020247]

108 Cao S, Wastney ME, Lachek PJ, Xiao HH, Weaver CM, Wong MS. Both Oleanolic Acid and a Mixture of Oleanolic and Ursolic Acids Mimic the Effects of Fructus ligustri lucidi on Bone Properties and Circulating 1,25-Dihydroxycholecalciferol in Ovariectomized Rats. J Nutr 2018; 148: 1895-1902 [PMID: 30398660 DOI: 10.1093/jn/nxy242]

109 Adhikari N, Neupane S, Aryal YP, Choi M, Sohn WJ, Lee Y, Jung JK, Ha JH, Choi SY, Suh JY, Kim JY, Rho MC, Lee TH, Yannamoto H, An CH, Kim SH, An SY, Kim JY. Effects of oleanolic acid acetate on bone formation in an experimental periodontitis model in mice. J Periodontal Res 2019; 54: 533-545 [PMID: 30982986 DOI: 10.1111/1jre.12657]

110 Xu Y, Chen S, Yu T, Qiao J, Sun G. High-throughput metabolomics investigates anti-osteoporosis activity of oleanolic acid via regulating metabolic networks using ultra-performance liquid chromatography coupled with mass spectrometry. Nutrigenetics Nutrigenomics 2018; 51: 68-76 [PMID: 30466629 DOI: 10.1016/j.njng.2018.09.235]

111 Zhao D, Shu B, Wang C, Zhao Y, Cheng W, Sha N, Li C, Wang Q, Lu S, Wang Y. Oleanolic acid exerts inhibitory effects on the late stage of osteoclastogenesis and prevents bone loss in osteoprotegerin knockout mice. J Cell Biochem 2020; 121: 152-164 [PMID: 31318102 DOI: 10.1002/jcb.29894]

112 Xie BP, Shi LY, Li JP, Zeng Y, Liu W, Tang SY, Jia LJ, Zhang J, Gan GX. Oleanolic acid inhibits RUNX1-induced osteoclastogenesis in RAW 264.7 cells. Biomed Pharmacother 2019; 117: 105905 [PMID: 31716670 DOI: 10.1016/j.biopha.2019.105905]

113 Zhao D, Li X, Zhao Y, Qiao P, Tang D, Chen Y, Xue C, Li C, Liu S, Wang J, Lu S, Shi Q, Zhang Y, Dong Y, Wang Y, Shu B, Feng X. Oleanolic acid exerts bone protective effects in ovariectomized mice by inhibiting osteoclastogenesis. J Pharmaco 2018; 137: 76-85 [PMID: 29730642 DOI: 10.1016/j.jps.2018.03.007]

114 Kim JY, Cheon YH, Oh HM, Rho MC, Erkhembaatar M, Kim MS, Lee CH, Kim JJ, Choi MK, Yoon KH, Lee MS, Oh J. Oleanolic acid acetate inhibits osteoclast differentiation by downregulating PLCγ2-Ca2+-NFATc1 signaling, and suppresses bone loss in mice. Bone 2014; 60: 104-111 [PMID: 24361669 DOI: 10.1016/j.bone.2013.12.013]

115 Kang DG, Lee HJ, Kim KT, Hwang SC, Lee CJ, Park JS. Effect of oleanolic acid on the activity, secretion and gene expression of matrix metalloproteinase-3 in articular chondrocytes in vitro and the production of matrix metalloproteinase-3 in vivo. Korean J Physiol Pharmacol 2017; 21: 197-204 [PMID: 28820413 DOI: 10.4196/kjpp.2017.21.2.197]

116 Kitohama K, Tsachiyama H, Maeda A, Oshida K, Miyamoto Y. Immunosuppressive potential of bardoxolone methyl using a modified murine local lymph node assay (LLNA). J Toxicol Sci 2014; 39: 545-550 [PMID: 25056779 DOI: 10.2131/jts.39.545]

117 Howard J. Cancer now tops heart disease as the No. 1 cause of death in these countries. 2019. Available from: https://edition.cnn.com/2019/09/03/health/leading-cause-of-death-cancer-heart-disease-study/index.html

118 Gao X, Xue J, Liu Y, Liu P, Zhang Y, Shaw J, Gautham SC. CDDO-Me inhibits tumor growth and prevents recurrence of pancreatic ductal adenocarcinoma. Int J Oncol 2015; 47: 2100-2106 [PMID: 26497549 DOI: 10.3822/ijon.2015.3212]

119 Wu J, Lei H, Zhang J, Chen X, Tang C, Wang W, Xu H, Xiao W, Gu W, Wu Y. Monodrin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation. Oncotarget 2016; 7: 58995-59005 [PMID: 27442955 DOI: 10.18632/oncotarget.10636]

120 Li W, Wei L, Shen A, Chu J, Lin J, Peng J. Oleanolic acid modulates multiple intracellular targets to inhibit colorectal cancer growth. Int J Oncol 2015; 47: 2247-2254 [PMID: 26459681 DOI: 10.3822/ijon.2015.3198]

121 Nie H, Wang Y, Qin Y, Gong G. Oleanolic acid induces autophagic death in human gastric cancer cells in vitro and in vivo. Cell Biol Int 2016; 40: 770-778 [PMID: 27079177 DOI: 10.1002/cbi.10612]

122 Leaf AS, Sporn MB, Pioli PA, Liby KT. The trimeripedin CDDO-imidazolidine reduces immune cell infiltration and cytokine secretion in the KrasG12D,Pdx1-Cre (KC) mouse model of pancreatic cancer. Carcinogenesis 2016; 37: 1170-1179 [PMID: 27659181 DOI: 10.1002/carcin.22699]

123 Zhao X, Liu M, Li D. Oleanolic acid suppresses the proliferation of lung carcinoma cells by miR-122/Cyclin G1/MEF2D axis. Mol Cell Biochem 2015; 400: 1-7 [PMID: 25472877 DOI: 10.1007/s11010-014-2228-7]

124 Jo H, Oh JH, Park DW, Lee C, Min CK. Oleanolic acid 3-acetate, a minor element of ginsenosides, induces apoptotic cell death in ovarian and endometrial carcinoma cells via the involvement of a reactive oxygen species-independent mitochondrial pathway. J Ginseng Res 2020; 44: 96-104 [PMID: 32905907 DOI: 10.1016/j.jgr.2018.09.003]

125 Ai Y, Hu Y, Kang F, Lai Y, Jia Y, Huang Z, Peng S, Ji H, Tian J, Zhang Y. Synthesis and Biological Evaluation of Novel Olean-28,13β-lactams as Potential Antiproliferative Agents. J Med Chem 2015; 58: 4506-4520 [PMID: 25592974 DOI: 10.1021/jm502023c]

126 Piet M, Paduch R. Ursolic and Oleanolic Acids as Potential Anticancer Agents Acting in the Gastrointestinal Tract. Mini Rev Org Chem 2018; 16: 78-91 [DOI: 10.2174/1570199X1566180612090816]

127 Fontana G, Bruno M, Notarbartolo M, Labbozzetta M, Poma P, Spinella A, Rosselli S. Cytotoxicity of oleanolic and ursolic acid derivatives toward hepatocellular carcinoma and evaluation of NF-κB involvement. Bioorg Chem 2019; 90: 103054 [PMID: 31212180 DOI: 10.1016/bioorg.2019.103054]

128 Li Y, Xu Q, Yang W, Wu T, Lu X. Oleanolic acid reduces aerobic glycolysis-associated proliferation by inhibiting yes-associated protein in gastric cancer cells. Gene 2019; 712: 143956 [PMID: 31271843 DOI: 10.1016/j.gene.2019.143956]

129 Gao F, Zhao Q, Jiang T, Song H, Zhou J. A newly synthesized oleanolic acid derivative inhibits the growth
of osteosarcoma cells in vitro and in vivo by decreasing c-MYC-dependent glycolysis. J Cell Biochem 2019; 120: 9264-9276 [PMID: 30552712 DOI: 10.1002/jcb.28202]

Liu J, Zheng L, Wu N, Mu L, Zhong J, Liu G, Lin X. Oleanolic acid induces metabolic adaptation in cancer cells by activating the AMP-activated protein kinase pathway. J Agric Food Chem 2020; 68: 5528-5537 [PMID: 32486665 DOI: 10.1021/acs.jafc.0c02357]

Li L, Lin J, Sun G, Wei L, Shen A, Zhang M, Peng J. Oleanolic acid inhibits colorectal cancer angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways. Mol Med Rep 2016; 13: 5276-5282 [PMID: 27108756 DOI: 10.3892/mmr.2016.5171]

Niu G, Sun L, Pei Y, Wang D. Oleanolic Acid Inhibits Colorectal Cancer Angiogenesis by Blocking the VEGFR2 Signaling Pathway. Anticancer Agents Med Chem 2018; 18: 583-590 [PMID: 29065844 DOI: 10.1017/ajmcc.2018.202]

Duan L, Yang Z, Jiang X, Zhang J, Guo X. Oleanolic acid inhibits cell proliferation migration and invasion and induces SW579 thyroid cancer cell line apoptosis by targeting forkhead transcription factor A. Anticancer Drug Des 2019; 30: 812-820 [PMID: 30852357 DOI: 10.1016/j.cad.2019.04.001]

Sánchez-Quesada C, López-Biedma A, Gaforio JJ. Oleanolic Acid, a Compound Present in Grapes and Olives, Protects against Genotoxicity in Human Mammary Epithelial Cells. Molecules 2015; 20: 13670-13688 [PMID: 26225949 DOI: 10.3390/molecules200813670]

Guo Y, Han B, Luo K, Ren Z, Cai L, Sun L. NOX2-RDS-HIF-1α signaling is critical for the inhibitory effect of oleanolic acid on rectal cancer cell proliferation. Biomed Pharmacother 2017; 85: 733-739 [PMID: 27938946 DOI: 10.1016/j.biopha.2016.11.091]

Xu N, Shi YN, Zhong X, Cao Y, Wang L, Jia TZ. A new saikogenin from the roots of Bupleurum bicaule. Chin J Nat Med 2014; 12: 305-308 [PMID: 24863539 DOI: 10.1007/s13577-013-0084-5]

Ball MS, Shipman EP, Kim H, Liby KT, Pošl PA. CDDO-Me Redirections Activation of Breast Tumor Associated Macropages. PLoS One 2016; 11(1): e0149600 [PMID: 26918785 DOI: 10.1371/journal.pone.0149600]

Pertino MW, Vega C, Rolón M, Coronel C, Rojas de Arias A, Schmeda-Hirschmann G. Antiproteasomal Activity of Triazole Derivatives of Dehydroacetic Acid and Oleanolic Acid. Molecules 2017; 22 [PMID: 28226405 DOI: 10.3390/molecules22030369]

Meló TS, Gattass CR, Soares DC, Cunha MR, Ferreira C, Tavares MT, Saraira E, Parise-Filho R, Braden H, Delorenci JC. Oleanolic acid (OA) as an antileishmanial agent: Biological evaluation and in silico mechanistic insights. Parasitol Int 2016; 65: 227-237 [PMID: 26772973 DOI: 10.1016/j.parint.2016.01.001]

Sibuya H, Musabayane CT, Mahandia MV. Transdermal delivery of oleanolic acid attenuates pro-inflammatory cytokine release and ameliorates anaemia in P. bergheri malaria. Acta Trop 2017; 171: 24-29 [PMID: 28283442 DOI: 10.1016/j.actatropica.2017.03.005]

Yan W, Zhang C, Li B, Xu X, Liang M, Gu S, Chu F, Xu B, Ren J, Wang P, Lei H. A Series of Oleanolic Acid Derivatives as Anti-Hepatitis B Virus Agents: Design, Synthesis, and in Vivo and in Vivo Biological Evaluation. Molecules 2016; 21: 402 [PMID: 27023498 DOI: 10.3390/molecules21040402]

Córdova C, Gutiérrez B, Martínez-García C, Martín R, Gallego-Muñoz P, Hernández M, Nieto ML. Oleanolic acid controls allergic and inflammatory responses in experimental allergic conjunctivitis. PLoS One 2014; 9: e12826 [PMID: 24699201 DOI: 10.1371/journal.pone.012826]

Kim SH, Hong JH, Lee YC. Oleanolic acid suppresses ovalbumin-induced airway inflammation and Th2-mediated allergic asthma by modulating the transcription factors T-bet, GATA-3, RORγt and Foxp3 in asthma mice. Int Immunopharmacol 2014; 18: 311-324 [PMID: 24374304 DOI: 10.1016/j.intimp.2013.12.009]

Jiang Q, Wang D, Han Y, Han Z, Zhong W, Wang C. Modulation of oxidized-LDL receptor-1 (LOX1) contributes to the antiatherosclerotic effect of oleanolic acid. Int J Biochem Cell Biol 2015; 69: 142-152 [PMID: 26510581 DOI: 10.1016/j.biocel.2015.10.023]

Lai P, Liu Y. Echinocystic acid, isolated from Gleditsia sinensis A. Schmeid-Hirschmann G. Antiproteasomal Activity of Triazole Derivatives of Dehydroacetic Acid and Oleanolic Acid. Molecules 2017; 22 [PMID: 28226405 DOI: 10.3390/molecules22030369]

Luo H, Liu J, Ouyang Q, Xuan C, Wang L, Li T, Liu J. The effects of oleanolic acid on atherosclerosis in different animal models. Acta Biochim Biophys Sin (Shanghai) 2017; 49: 349-354 [PMID: 28338883 DOI: 10.1093/abbs/gmx013]

Duan J, Yin Y, Wei G, Cui J, Zhang E, Guan Y, Yan J, Guo C, Zhu Y, Mu F, Weng Y, Wang Y, Xu X, Xi M, Wen A. Chikusetsu saponin IVa confers cardioprotection via SIRT1/ERK1/2 and Homer1a pathway. Sci Rep 2015; 5: 18123 [PMID: 26648253 DOI: 10.1038/srep18123]

An Q, Hu Q, Wang B, Cui W, Wu F, Ding Y. Oleanolic acid alleviates diabetic rat carotid artery injury through the inhibition of NLRP3 inflammasome signaling pathways. Mol Med Rep 2017; 16: 8413-8419 [PMID: 28944913 DOI: 10.3892/mmr.2017.7594]

Madlala HP, Metzinger T, van Heerden FR, Musabayane CT, Mughabgab K, Dassy C. Vascular Endothelium-Dependent and Independent Actions of Oleanolic Acid and Its Synthetic Oleane Derivatives as Possible Mechanisms for Hypotensive Effects. PLoS One 2016; 11: e0147395 [PMID: 26799746 DOI: 10.1371/journal.pone.0147395]

Luo HQ, Shen J, Chen CP, Mu X, Lin C, Ouyang Q, Xuan CX, Liu J, Sun HB, Liu J. Lipid-lowering effects of oleanolic acid in hyperlipidemic patients. Chin J Nat Med 2018; 16: 339-346 [PMID: 29860994 DOI: 10.1016/S1875-5364(18)30065-7]

Chen S, Wen X, Zhang W, Wang C, Liu J, Liu C. Hypolipidemic effect of oleanolic acid is mediated by the mTOR-5′p-PGC-1α axis in high-fat diet-induced hyperlipidemic mice. FASEB J 2017; 31: 1085-1096 [PMID: 27903618 DOI: 10.1096/fasebj.201602228]

Fisher D, Mosavai F, Tharp DL, Bowles DK, Henkel R. Oleanolic Acid causes reversible contraception in male mice by increasing the permeability of the germinal epithelium. Reprod Fertil Dev 2019; 31: 1589-1596 [PMID: 31027245 DOI: 10.1071/RF18484]

Wang Q, Lu H, Deng Y, Xiang J, Liang L. Oleanolic acid has similar effects as retinoic acid in inducing mouse embryonic stem cell 1B10 to differentiate towards germ cells. Hum Cell 2014; 27: 5-11 [PMID: 24254972 DOI: 10.1016/j.humce.2013.08.004]

Zhao H, Liu J, Song L, Liu Z, Han G, Yuan D, Wang T, Dun Y, Zhou Z, Liu Z, Wang Y, Zhang C. Oleanolic acid rejuvenates testicular function through attenuating germ cell DNA damage and apoptosis via deacetylation of NF-κB, p53 and p38 signalling pathways. J Pharm Pharmacol 2017; 69: 295-304 [PMID: 27035635 DOI: 10.1111/jphp.12663]

Chuang S, Yoon HE, Kim SJ, Kim SJ, Koh ES, Hong YA, Park CW, Chang YS, Shin SJ. Oleanolic acid
attenuates renal fibrosis in mice with unilateral ureteral obstruction via facilitating nuclear translocation of Nrf2. *Nutr Metab (Lond)* 2014; 11: 2 [PMID: 24393202 DOI: 10.1186/1743-7075-11-2]

Lee ES, Kim HM, Kang JS, Lee EY, Yadoa D, Kwon MH, Kim YM, Kim HS, Chung OH. Oleic acid and N-acetylcysteine alleviate diabetic nephropathy and endoplasmic reticulum stress in a type 2 diabetic rat model. *Nephrol Dial Transplant* 2016; 31: 391-400 [PMID: 26567248 DOI: 10.1093/ndt/gfv377]

Kocak C, Kocak FE, Akcilar R, Bayaz A, Aras B, Metineren MH, Yuecel M, Simsek H. Effects of captopril, telmisartan and bardoxolone methyl (CDDO-Me) in ischemia-reperfusion-induced acute kidney injury in rats: an experimental comparative study. *Clin Exp Pharmacol Physiol* 2016; 43: 230-241 [PMID: 26515498 DOI: 10.1111/1440-1681.12511]

Zhou X, Chen H, Wei F, Zhao Q, Su Q, Liang J, Yin M, Tian X, Liu Z, Yu B, Bai C, He X, Huang Z. 3β-Acetoxy-oleanolic Acid Attenuates Pristane-Induced Lupus Nephritis by Regulating Th17 Differentiation. *J Immunol Res* 2019; 2019: 2431617 [PMID: 31240232 DOI: 10.1155/2019/2431617]

Blanco-Cabra N, Vega-Granados K, Moya-Anderico L, Vokounamov M, Parra A, Alvarez de Cienfuegos L, Torres E. Novel Oleic and Maslinic Acid Derivatives as a Promising Treatment against Bacterial Biofilm in Nosocomial Infections: An in Vitro and in Vivo Study. *ACS Infect Dis* 2019; 5: 1581-1589 [PMID: 31266735 DOI: 10.1021/acsinfecdis.9b00125]

Gabás-Rivera C, Martínez-Beamonte R, Rios JL, Navarro MA, Surra JC, Arnal C, Rodriguez-Yoldi MJ, Osada J. Dietary oleic acid mediates circadian clock gene expression in liver independently of diet and animal model but requires apolipoprotein A1. *J Nutr Biochem* 2013; 24: 2100-2109 [PMID: 24231102 DOI: 10.1016/j.jnutbio.2013.07.010]

Pešun K, Šnajder T, Šafrančič K, Potočnik D, Pečar DJ, Froscio M, Poeschla EM. Oleic acid and derivatives inhibit *Streptococcus mutans* biofilm formation in vitro. *Antimicrob Agents Chemother* 2017; 61: 290-298 [PMID: 27927560 DOI: 10.1128/AAC.00207-17]

Gómez-González Y, Gómez-González E, García-Medina R, Fernández-Caballero E. Anti-inflammatory effects of oleic acid and derivatives in experimental autoimmune encephalomyelitis. *Arch Pharm Res* 2014; 37: 250-262 [PMID: 24732212 DOI: 10.1007/s12272-013-0092-8]

Sen A. OA and derivatives as a therapeutic agent.
Sen A. OA and derivatives as a therapeutic agent

Su Y, Meng L, Sun J, Li W, Shao L, Chen K, Zhou D, Yang F, Yu F. Design, synthesis of oleanolic acid-saccharide conjugates using click chemistry methodology and study of their anti-influenza activity. *Eur J Med Chem* 2019; **182**: 1116-22 [PMID: 31425909 DOI: 10.1016/j.ejmech.2019.111622]

Yang H, Ha TK, Dhodary B, Pyo E, Nguyen NH, Cho H, Kim E, Oh WK. Oleane triperpenes from the flowers of *Camellia japonica* inhibit porcine epidemic diarrhea virus (PEDV) replication. *J Med Chem* 2015; **58**: 1268-1260 [PMID: 25568928 DOI: 10.1021/jm501567]

Khwaza V, Oyedji OO, Aderibigbe BA. Antiviral Activities of Oleandrosic Acid and Its Analogues. *Molecules* 2018; **23** [PMID: 30203592 DOI: 10.3390/molecules23062160]

Cheng SY, Wang CM, Cheng HL, Chen HI, Hsu YM, Lin YC, Chou CH. Biological activity of oleanane triperpen derivatives obtained by chemical derivatization. *Molecules* 2013; **18**: 13003-13019 [PMID: 24145793 DOI: 10.3390/molecules181013003]

Miriyala S, Chandra M, Maxey B, Day A, St Clair DK, Panchatcharam M. Arjunic acid ameliorates reactive oxygen species via inhibition of p47(phox)-serine phosphorylation and mitochondrial dysfunction. *Int J Biochem Cell Biol* 2015; **68**: 70-77 [PMID: 26391953 DOI: 10.1016/j.biocel.2015.08.015]

Hwang YJ, Song J, Kim HR, Hwang KA. Oleanolic acid regulates NF-κB signaling by suppressing MaFk expression in RAW 264.7 cells. *BMB Rep* 2014; **47**: 524-529 [PMID: 25059280 DOI: 10.5483/BMBRep.2014.47.9.149]

Cao J, Li G, Wang M, Li H, Han Z. Protective effect of oleanolic acid on oxidized-low density lipoprotein induced endothelial cell apoptosis. *Biosci Trends* 2015; **9**: 315-324 [PMID: 26559024 DOI: 10.5582/bst.2015.01104]

Tian Y, Sun Z, Wang W, Shang H, Wang B, Deng D, Ma G, Wu H, Zhu N, Xu X, Sun G, Sun X. Semisynthesis and Biological Evaluation of Oleandric Acid 3-O-J-D-Glucuronopyranoside Derivatives for Protecting H9C2 Cardiomyoblasts against HO-Induced Injury. *Molecules* 2018; **23** [PMID: 29204319 DOI: 10.3390/molecules23101044]

Zhang Z, Jiang M, Xie X, Yang H, Wang X, Xiao L, Wang N. Oleanic acid ameliorates high-glucose-induced endothelial dysfunction via PPARα activation. *Sci Rep* 2017; **7**: 40237 [PMID: 28067284 DOI: 10.1038/srep40237]

Wang SR, Xu T, Deng K, Wang CW, Liu J, Fang WS. Discovery of Farnesoid X Receptor Antagonists Based on a Library of Oleanolic Acid 3-O-Esters through Diverse Substituent Design and Molecular Docking Methods. *Molecules* 2017; **22** [PMID: 28445411 DOI: 10.3390/molecules22050690]

He WM, Yin JQ, Cheng XD, Lu X, Ni L, Xi Y, Yin GD, Lu GY, Sun W, Wei MG. Oleanic acid attenuates TGF-β1-induced epithelial-mesenchymal transition in NRK-52E cells. *BMC Complement Altern Med* 2018; **18**: 205 [PMID: 29973206 DOI: 10.1186/s12906-018-2265-y]

Atilano-Roque A, Aleksunes LM, Joy MS. Bardoxolone methyl modulates efflux transporter and detoxifying enzyme expression in cisplatin-induced kidney injury. *Toxicol Lett* 2016; **259**: 52-59 [PMID: 27480280 DOI: 10.1016/j.toxlet.2016.07.021]

de Zeeuw D, Akizawa T, Audhya T, Bakes GL, Chin M, Christ-Schmidt H, Goldshberry A, Houser M, Krauth M, Lammers Heerspink HJ, McMurray JJ, Meyer CJ, Parving HH, Remuzzi G, Toto RD, Vaziri ND, Wanner C, Wittes J, Wrolstad D, Chertow GM; BEACON Trial Investigators. Bardoxolone methyl in stage 4 chronic kidney disease. *N Engl J Med* 2013; **369**: 2492-2503 [PMID: 24206549 DOI: 10.1056/NEJMoa1306033]

Yuan B, Yang R, Ma Y, Zhou S, Zhang X, Lu Y. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications. *Pharm Biol* 2017; **55**: 620-635 [PMID: 27951737 DOI: 10.1080/13880209.2016.1262433]

Yang F, Dong X, Yin X, Wang W, You L, Ni J. *Radix Bupleuri*: A Review of Traditional Uses, Botany, Phytochemistry, Pharmacology, and Toxicology. *Biomed Res Int* 2017; **2017**: 7597596 [PMID: 28593176 DOI: 10.1155/2017/7597596]

Lv YF, Wan XL, Xu Y, Liu J. Repeated oral administration of oleanolic acid produces cholestatic liver injury in mice. *Molecules* 2013; **18**: 3060-3071 [PMID: 23470335 DOI: 10.3390/molecules18033060]

Liu J. Pharmacology of oleanolic acid and ursolic acid. *J Ethnopharmacol* 1995; **49**: 57-68 [PMID: 84878856 DOI: 10.1016/0378-8749(95)01210-5]

Lin YN, Chen CJ, Chang HY, Cheng WK, Lee YR, Chen JJ, Lin YP. Oleanolic Acid-Mediated Inhibition of Pregnane X Receptor and Constitutive Androstane Receptor Attenuates Rifampin-Isoniazid Cytotoxicity. *J Agric Food Chem* 2017; **65**: 8606-8616 [PMID: 28945086 DOI: 10.1021/jafc.7b02696]

Sun M, Tang Y, Ding T, Liu M, Wang X. Investigation of cytochrome P450 inhibitory properties of maslinic acid, a bioactive compound from Olea europaea L., and its structure-activity relationship. *Phytochemistry* 2015; **22**: 56-65 [PMID: 25366872 DOI: 10.1016/j.phytochem.2014.10.003]

Xie H, Wu J, Liu D, Liu M, Zhang H, Huang S, Xiong Y, Xia C. In vitro inhibition of UGT1A3, UGT1A4 by ursolic acid and oleanolic acid and drug-drug interaction risk prediction. *Xenobiotica* 2017; **47**: 785-792 [PMID: 27600106 DOI: 10.1080/01420882.2016.1234807]

Li Z, Wang K, Zheng J, Cheung FS, Chan T, Zhu L, Zhou F. Interactions of the active components of Punica granatum (pomegranate) with the essential renal and hepatic human Solute Carrier transporters. *Pharm Biol* 2014; **52**: 1510-1517 [PMID: 25026340 DOI: 10.3109/13880209.2014.908099]
