Photometric redshifts for the next generation of deep radio continuum surveys – II. Gaussian processes and hybrid estimates

Kenneth J Duncan,1* Matt J. Jarvis,2,3 Michael J. I. Brown4,5 and Huub J. A. Röttgering1

1Leiden Observatory, Leiden University, NL-2300 RA Leiden, Netherlands
2Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
3Physics and Astronomy Department, University of the Western Cape, Bellville 7535, South Africa
4School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
5Monash Centre for Astrophysics, Monash University, Clayton, Victoria 3800, Australia

Accepted 2018 April 11. Received 2018 April 11; in original form 2017 December 11

ABSTRACT

Building on the first paper in this series (Duncan et al. 2018), we present a study investigating the performance of Gaussian process photometric redshift (photo-z) estimates for galaxies and active galactic nuclei (AGNs) detected in deep radio continuum surveys. A Gaussian process redshift code is used to produce photo-z estimates targeting specific subsets of both the AGN population – infrared (IR), X-ray, and optically selected AGNs – and the general galaxy population. The new estimates for the AGN population are found to perform significantly better at \(z > 1 \) than the template-based photo-z estimates presented in our previous study. Our new photo-z estimates are then combined with template estimates through hierarchical Bayesian combination to produce a hybrid consensus estimate that outperforms both of the individual methods across all source types. Photo-z estimates for radio sources that are X-ray sources or optical/IR AGNs are significantly improved in comparison to previous template-only estimates – with outlier fractions and robust scatter reduced by up to a factor of \(\sim 4 \).

The ability of our method to combine the strengths of the two input photo-z techniques and the large improvements we observe illustrate its potential for enabling future exploitation of deep radio continuum surveys for both the study of galaxy and black hole coevolution and for cosmological studies.

Key words: galaxies: active – galaxies: distances and redshifts – radio continuum: galaxies.

1 INTRODUCTION

Photometric redshifts (photo-zs hereafter) have become a fundamental tool for both the study of galaxy evolution and for modern cosmology experiments. The main driving force behind recent developments in photometric redshift estimation methodology has been the stringent requirements set by the coming generation of weak-lensing cosmology experiments (e.g. Euclid; Laureijs et al. 2011). However, the need for accurate and unbiased redshift estimates for large samples of galaxies (\(\sim 10^6 \)–\(10^9 \)) represents a near universal requirement for all future extragalactic surveys.

Through either template-based (e.g. Arnouts et al. 1999; Benítez 2000; Bolzonella, Miralles & Pello 2000; Brammer, van Dokkum & Coppi 2008) or empirical/machine learning (e.g. Collister & Lahav 2004; Geach 2011; Carrasco Kind & Brunner 2013, 2014a) estimation techniques, it is now possible to produce the precise and reliable photometric redshifts required for optically selected galaxy samples (Bordoloi, Lilly & Amara 2010; Carrasco Kind & Brunner 2014b; Sanchez et al. 2014; Drlica-Wagner et al. 2017). However, typically such methods are applied to, or optimized for, the galaxy emission due to stellar populations, with galaxies dominated by emission from active galactic nuclei (AGNs) either removed from the analysis (where possible) or not explicitly accounted for. This therefore presents a problem in surveys where a larger fraction of the population is composed of AGNs, for example, in radio-continuum selected surveys (and for the \(\sim 3 \) million X-ray selected AGNs and quasi-stellar objects, or QSOs, observed by the eRosita mission; see Merloni et al. 2012). The population of radio-detected sources is extremely diverse, with radio emission tracing both black hole accretion in AGN and star formation activity.

Probing to unprecedented depths, deep radio continuum surveys from MeerKAT (Booth et al. 2009), the Australian SKA Pathfinder (Johnston et al. 2007), and the Low Frequency Array (LOFAR; van Haarlem et al. 2013) will increase the detected population of radio
sources by more than an order of magnitude and probe deep into the earliest epochs of galaxy formation and evolution (Rottgering 2010; Norris et al. 2013; Jarvis et al. 2017). Accurate and unbiased photometric redshift estimates for the full radio source population will be essential for studying the faint radio population and achieving the scientific goals of these deep radio continuum surveys – both for galaxy evolution and cosmological studies.

In Duncan et al. (2018, hereafter Paper I), we investigated the performance of template-based photometric redshift estimates for the radio-continuum detected population over a wide range of optical and radio properties. Specifically, three photometric redshift template sets, representative of those available in the literature, were applied to two optical/infrared (IR) data sets and their performance investigated as a function of redshift, radio flux/luminosity, and IR/X-ray properties.

Furthermore, by combining all three photo-z estimates through hierarchical Bayesian (HB) combination (Dahlen et al. 2013; Carasco Kind & Brunner 2014b), we were able to produce a new consensus estimate that outperforms any of the individual estimates that went into it. Although the consensus redshift estimates were found to offer some improvement, the overall quality of template photo-z estimates for radio sources that are X-ray sources or optical/IR AGNs was still relatively poor. The measured outlier fractions and scatter relative to the spectroscopic training sample remained unacceptable for some science goals, including multimessenger cosmological studies (Camera et al. 2012; Ferramacho et al. 2014; Jarvis et al. 2015), radio weak-lensing experiments (Brown et al. 2015), and galaxy/AGN evolution studies that rely on optical quasar samples (Morabito et al. 2017). An alternative methodology is therefore needed to either replace the template-based photo-z estimates for these difficult populations or help to improve the consensus estimate.

Empirical (or machine learning) photo-z estimates have already been shown to offer a potential solution for improving photo-zs for the AGN population (e.g. Richards et al. 2001; Brodin et al. 2006; Bovy et al. 2012). In this paper, we investigate how such machine learning photo-z techniques perform when applied to the same samples and data where template-based methods were found to struggle the most in Paper I. Specifically, we explore the use of Gaussian processes (GPs) using the framework presented by Almosallam et al. (2016a) and Almosallam, Jarvis & Roberts (2016b, GPz). GPz offers several key advantages that make it an ideal choice for tackling the problems posed by large samples of radio-selected galaxies. First, it has been shown to outperform other empirical photo-z tools in the literature when applied to sparse data sets. Secondly, it incorporates cost-sensitive learning, i.e. the ability to give more or less weight to certain sources during the optimization procedure. These additional weights potentially allow for biases in the available training sample to be accounted for. Finally, by modelling the non-uniform noise intrinsic in photometric data sets, it offers estimations of the variance on the predicted photo-z – meaning that its outputs can also be easily incorporated into the HB combination framework presented in Paper I.

This paper is organized as follows: Section 2 presents the data used in this study along with details of the multiwavelength classifications employed throughout the work. Section 3 then outlines the application of the GPz framework to photometric data from deep survey fields such as those explored in Paper I and the improvements that can be made in photometric redshift quality for the most difficult radio source populations. In Section 4, we present the results of incorporating the new GP photo-zs within the Bayesian combination framework presented in Paper I. Finally, Section 5 presents a brief summary of the results in this paper and the key conclusions we draw.

Throughout this paper, all magnitudes are quoted in the AB system (Oke & Gunn 1983) unless otherwise stated. We also assume a Λ-cold dark matter cosmology with $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.3$, and $\Omega_{\Lambda} = 0.7$.

2 DATA

In Paper I, we made use of two samples of galaxies drawn from both a wide area optical survey (NDWFS Boötes; Jannuzi & Dey 1999) and a smaller but deeper optical survey field (COSMOS; Laigle et al. 2016). Although we apply the method outlined in the following section to both samples, in this paper we will concentrate mainly on the ‘Wide’ field sample in our subsequent analysis. The reasons for this are two-fold: First, the target selection criteria of the AGN and Galaxy Evolution Survey (AGES; Kochanek et al. 2012) spectroscopic survey in the field result in a larger sample of AGN sources (see fig. 1 of Paper I) for training and testing the GP redshift estimates. Although the overall spectroscopic training sample available in COSMOS is larger than that of Boötes, the number of training sources available for some subsets of the AGN population (IR and optically selected) is lower by up to a factor of 4.

Secondly, the optical filter coverage and depth of the available photometry in the field are more representative of the large optical survey fields that are being observed with deep radio continuum surveys such as LOFAR. Furthermore, the poorer quality of AGN template estimates in the ‘Wide’ data is such that these data sets are where the desired improvements are greatest. Nevertheless, we apply the method to both samples and the results for the ‘Deep’ field are summarized and discussed with respect to the ‘Wide’ field in Section 4.3.

We refer the reader to Paper I and references therein for full details on the Boötes photometric catalogue itself, along with details on the spectroscopic redshift information available in the field. As in Paper I, the radio continuum observations from this field are taken from the LOFAR observations presented in Williams et al. (2016). Details of the cross-matching procedure between the radio data and the optical catalogue used in this work can be found in Williams et al. (2018).

Given its importance in the subsequent analysis, it is worth summarizing the multiwavelength AGN classifications applied to the data. We classify all sources in the Boötes spectroscopic comparison samples using the following additional criteria:

(i) IR AGNs are identified using the updated IR colour criteria presented in Donley et al. (2012).

(ii) X-ray AGNs in the Boötes field were identified by cross-matching the positions of sources in our catalogue with the X-Boötes Chandra survey of NDWFS (Kenter et al. 2005). We calculate the X-ray-to-optical flux ratio, $X/O = \log_{10}(f_X/f_O)$, based on the I band magnitude following Brand et al. (2006) and for a source to be selected as an X-ray AGN, we require that an X-ray source has $X/O > -1$ or an X-ray hardness ratio >0.8 (Bauer et al. 2004).

(iii) Optical AGNs were also identified through cross-matching the optical catalogue with the Million Quasar Catalogue compilation of optical AGNs, primarily based on SDSS (Alam et al. 2015) and other literature catalogues (Flesch 2015).

Note however, these classifications are not expected to be distinct physical classifications but rather selection methods through which a wide variety of the most luminous AGNs can be identified.
Depending on data available in a given field, further subclassifications or alternative criteria might be warranted. As shown in Fig. 1, there is significant overlap between different selection criteria with the majority of radio sources selected as AGNs belonging to at least two of the subsets. Despite these overlaps, there is also potentially a very wide variety of intrinsic spectral energy distributions within the full AGN sample, both between these subsets of AGNs and within the subsets themselves. As in Paper I, spectroscopic redshifts for sources in Boötes are taken from a compilation of observations within the field comprising primarily of the results of the AGES (Kochanek et al. 2012) spectroscopic survey, with additional redshifts provided by a large number of smaller surveys in the field, including Lee et al. (2012, 2013, 2014), Stanford et al. (2012), Zeimann et al. (2012, 2013), and Dey et al. (2016).

In total, the combined sample consists of 22,830 redshifts over the range $0 < z < 6.12$, with 88 per cent of these at $z < 1$. Due to the nature of the AGES target selection criteria, identified AGN sources have a higher degree of spectroscopic completeness than the general galaxy population (≈ 11 per cent of AGNs have spectroscopic redshifts available compared to ≈ 1 per cent of the rest of the galaxy population). Nevertheless, as is the case in most spectroscopic training samples, the available sources do not necessarily sample the full photometric colour space. In the following section, we present the weighting strategy employed to minimize the potential effects caused by the biased training sample. The limitations of the training sample and ways in which this can be mitigated in the future will also be revisited in Section 4.4.

3 GP PHOTOMETRIC REDSHIFTS FOR AGNS IN DEEP FIELDS

The use of GP for regression (Rasmussen & Williams 2006) has become increasingly popular in recent years, primarily due to its advantages of being a Bayesian method that is both non-linear and non-parametric. The GP photometric redshift code, GPz (Almosallam et al. 2016a) extends the standard GP method to add several features suited to photo-z estimation. First, Almosallam et al. (2016a) introduce sparse GPs that lower the computational requirements without significantly affecting accuracy of the models. Secondly, Almosallam et al. (2016b) extend the method to account for non-uniform and variable noise (heteroscedastic) within the input data – modeling both the intrinsic noise within the photometric data and model uncertainties due to limited training data. Finally, the code incorporates the option for cost-sensitive learning, allowing the weights of different parts of parameter space to be varied in order to optimize the analysis for a specific science goal.

Given a training set of input magnitudes and corresponding uncertainties, GPz models the distribution of functions that map those inputs on to the desired output (in this case, the spectroscopic redshift). After optimization, the model can then be used to predict the redshift and corresponding uncertainties (consisting of both noise and model components) for a new set of inputs. Detailed descriptions of the theoretical background and methodology of GPz are presented in Almosallam et al. (2016a) and Almosallam et al. (2016b). In this section, we therefore outline only the details of how GPz was applied to our data set.

3.1 GP method

Although the three different AGN selection criteria outlined in Section 2 contain significant overlap in their populations, we choose to train and calibrate the GP estimates of each subset separately. Due to both inhomogeneity in the coverage of different filters and the relatively shallow depth of some of these observations in the Boötes data set, only a small fraction of sources is detected in all of the filters available in the field. For example, only ≈ 9 per cent of the full Boötes photometric catalogue has magnitude values available in the 13 bands extending from u-band to IRAC 8 μm. The number and combination of magnitudes input to GPz for each subset were therefore chosen to cover as broad a wavelength as possible while trying to ensure as many sources as possible were detected in the corresponding bands. Starting with the detection band of the multiwavelength catalogue, additional filter choices were added and the fraction of sources with magnitudes available in those filters calculated until the fraction fell to ≈ 80 per cent. For cases where several different filter combinations offer a similar number of available sources, the combination that produces the best estimates in limited trials is chosen. We note, however, that systematic searches for the best filter combinations have not been performed. We also note that an extension to GPz is being developed to account for missing data in a fully consistent way (Almosallam et al. in preparation) such that these issues will be further minimized in future.

For the purposes of training each GPz classifier, each input sample was split at random into training, validation, and test samples consisting of 80 per cent, 10 per cent, and 10 per cent of the full sample, respectively. Note, all statistics reported in Section 3.1 are for only the test sample, which is not included in the training in any way. The filter selections and the sizes of the corresponding Boötes training samples are as follows:

(i) IR AGNs – For the subset of IR AGNs, the input data set includes the optical R and I magnitudes in addition to the four IRAC magnitudes used in the colour selection of the subset. In the spectroscopic training set and full photometric IR AGN subsets, 98.9 per cent and 82.6 per cent of sources, respectively, have magnitudes in these bands. Of the 1751 spectroscopic sources classified as IR AGNs, the final training, validation, and test samples therefore consist of 1385, 173, and 173 sources, respectively.

(ii) X-ray AGNs – The final filter choice for the X-ray AGN sources is B_n, R, I, K_s, and Spitzer/IRAC 3.6 and 4.5 μm. Detection fractions in the spectroscopic and full photometric samples are almost identical to the IR AGN subset, with frac-
tions of 98.8 per cent and 82.7 per cent, respectively. There are 1133 spectroscopic sources classified as X-ray AGNs, resulting in training, validation, and test samples of 895, 112, and 112, respectively.

(iii) Optical AGNs – Although optically bright by definition, the chosen filter selection for the optical AGN subset consists of I in combination with the near and mid-IR bands of $J, K_s, Spitzer$/IRAC 3.6/4.5 μm, and $Spitzer$/MIPS 24 μm. In these filters, the available training and full sample fractions are 96.6 per cent and 84.2 per cent, respectively. For the 1382 optical AGN sources in the spectroscopic training sample, this results in 1067, 134, and 134 sources in the training, validation, and test samples.

In addition to the three GPz estimators targeted at subsets of the AGN population, we also produce an additional estimator trained on optical sources that do not satisfy any of the AGN selection criteria – corresponding to the significant majority of both the training sample and photometric catalogue. As illustrated in the bottom panel of Fig. 2 (dashed blue line), the magnitude distribution for the full ‘galaxy’ sample extends to significantly fainter magnitudes than those in the AGN subsets. To find the optimum combination of optical bands, we systematically calculated the fraction of sources with measured magnitudes in every possible combination of five bands out of those available in the field. The two sets of filters that would allow estimates for the largest fraction of catalogue sources are \{\(u, B_w, R, I, z\)\} and \{\(B_w, R, I, z, 3.6 \mu \text{m}\)\}, with 38.3 per cent and 34.2 per cent of the full photometric catalogue, respectively (87.3 per cent and 92.8 per cent of the training samples).

In all four cases, GPz was trained using 25 basis functions and allowing variable covariances for each basis function (i.e. the ‘GPVC’ of Almosallam et al. 2016a). We choose these parameters based on the tests of Almosallam et al. (2016a) who found minimal performance gain above 25 basis functions and significant improvements when using fully variable covariances compared to other assumptions. Finally, we also follow the practices outlined in section 6.2 of Almosallam et al. (2016a) by pre-processing the input data to normalize the data and de-correlate the features (also known as ‘sphering’ or ‘whitening’).

3.2 Weighting scheme

One of the key advantages offered by GPz with respect to some other empirical methods in the literature is its option of using cost-sensitive learning, allowing for potential biases in the training sample to be taken into account or certain regions of parameter space to be prioritized if desired. In this work, we make use of two different weighting schemes. As a reference, we first employ a flat weighting scheme (i.e. the ‘Normal’ weighting of Almosallam et al. 2016a). Secondly, we employ a weighting scheme that takes into account the colour and magnitude distribution of the training sample and photometric catalogue. As illustrated in the bottom right corner of each plot – ‘ch1’ and ‘ch2’ correspond to the $Spitzer$/IRAC 3.6 and 4.5 μm filters, respectively.

Next, for each galaxy, \(i\), in the spectroscopic training set, we compute the distance to the ninth nearest neighbour, \(r_{n9}\), in the colour–magnitude space of the training set. We then find the corre-

1 The ninth nearest neighbour was chosen to provide marginally more localization in the colour–magnitude space than the 16th nearest neighbour chosen in Lima et al. (2008) while still minimizing the effects of small-number statistics. However, as illustrated by the minimal effect on results for \(4 < n < 64\) (Lima et al. 2008), we do not expect this choice to have any significant effect on the results presented.
The trained models for the new photometric samples. In both cases, the weighting scheme does a good job of reproducing the distribution of the full photometric sample. However, as there are very few spectroscopic redshifts available at the very faintest optical magnitudes, the weighted training sample becomes somewhat noisy due to the small number of faint training objects being assigned high weights. Possible methods of minimizing the effects of very small samples of faint training objects will be discussed further in Section 4.4.

3.3 GPz photo-\(z\) results

In Fig. 3, we present the results of our two GPz photo-\(z\) estimates for the Boötes AGN in comparison to the consensus estimates produced through template fitting in Paper I. In each set of figures, we show the distribution of photo-\(z\) versus spectroscopic redshift for the consensus template estimates from Paper I, left, the GPz estimate with no weighting included in the cost-sensitive learning (centre), and the GPz estimate incorporating the colour- and magnitude-dependent weights as presented in Section 3.2 (right). The sample plotted in each row contains only the subset of test sources not included in the training of the GPz classifiers.

To compare the quality of the different photo-\(z\) estimates, we make use of the same metrics as outlined in Paper I; we include the definitions in Table 1. In Table 2, we present these photo-\(z\) quality metrics for each of the AGN/galaxy subsamples.

Visually, the poor performance of the template estimates for AGN populations between 1 \(\lesssim z \lesssim 3\) is clear in the left-hand column of Fig. 3. Within this spectroscopic redshift range, many AGN sources are erroneously pushed towards \(z \sim 2\), although with large uncertainties that keep the photo-\(z\) estimate within error of the true estimate. Alternatively, sources at 1 \(\lesssim z \lesssim 3\) can have template estimates that are catastrophic failures, leading to estimated redshifts at \(z \ll 1\).

Statistically, the overall improvement offered by the GPz estimates is illustrated in the reduction in scatter for the IR and optically selected AGN samples by a factor of 2. The improvement in scatter for the X-ray selected AGN subset is less drastic, but still very significant – again most noticeably at \(z > 1\). As noted by Salvato et al. (2008, 2011), many X-ray selected AGNs are more accurately described by purely stellar SEDs – the template-based photo-\(z\) may therefore be expected to perform better for this subset than for the IR or optical AGN population. Improvement in the measured outlier fractions is consistent across all three subsets, with the outlier fraction, \(O_i\) (Table 1), measured for the GPz estimates typically a factor of 2 lower.

When applied to the remaining majority of galaxies that do not satisfy any of our AGN selection criteria, GPz is not able to significantly improve upon the estimates produced through template fitting – at least not when restricted to using a set of filters that maximizes the number of sources that can be fitted. The performance of GPz with respect to the consensus template estimates is mixed, with \(\approx 20\) per cent worse scatter, but \(\approx 20–40\) per cent better outlier fractions for the machine learning estimates.

3.3.1 Accuracy of the error estimates

Following Paper I and Wittman, Bhaskar & Tobin (2016), we quantify the overconfidence or underconfidence of our photometric redshift estimates by calculating the distribution of threshold credible intervals, \(c\), where the spectroscopic redshift intersects the redshift posterior. For a set of redshift posteriors that perfectly represent the redshift uncertainty, the expected distribution of \(c\) values should be constant between 0 and 1, with the cumulative distribution \(\Phi(c)\) following a straight 1:1 relation as in a quantile-quantile plot (Q–Q). Curves that fall below this expected 1:1 relation therefore indicate that there is overconfidence in the photometric redshift errors; the \(P(z)\) are too sharp.

In the case of GPz, which provides only unimodal Gaussian posterior redshift prediction with centre \(z_{\text{phot}}\) and width \(\sigma_i\) (see Section 3.1), \(c\) can be calculated for an individual galaxy analytically following

\[
c_i = \Phi(n_i) - \Phi(-n_i) = \text{erf} \left(\frac{n_i}{\sqrt{2}} \right),
\]

where \(\Phi(n_i)\) is the normal cumulative distribution function and \(n_i\) can be simply calculated as \(\left| z_i - z_{\text{phot}} \right|/\sigma_i\).

For each GPz estimate, we then implement the additional magnitude-dependent error calibration in a similar fashion to Paper I, varying the width of the Gaussian errors in order to minimize the Euclidean distance between the calculated distribution and the optimum 1:1 relation (see also Gomes et al. 2017 for a similar analysis on uncertainty calibration for GPz estimates). During the error calibration procedure, optimization of the magnitude-dependent scaling parameters that minimize the Euclidean distance between observed and ideal distributions is done using only the test subsample (consisting of a random subset of 80 per cent of the total object).

In Fig. 4, we present the Q–Q plots of the raw and calibrated error distributions for each of the three AGN estimators, plotting the results for the combined validation and test subsets (20 per cent of the complete subset) that were not included in the error calibration in any way. Although GPz includes the accuracy of the uncertainties within the metric it aims to minimize, the redshift posterior output still typically underestimates the photometric redshift uncertainty. This overconfidence is consistent across all three AGN estimators, but is noticeably worse when using the colour–magnitude weights in the cost-sensitive learning. After the error calibration procedure has been applied, we see significant improvement in the accuracy of the redshift posteriors in almost all cases and errors that are close to the ideal solution.
Figure 3. Comparison of photometric redshift estimates versus the spectroscopic redshifts for each of the three Boötes AGN population subsets. The left column shows the consensus template-based photo-z as calculated in Paper I. The centre and right-hand columns show the results from the GP estimates when trained using the flat and colour-based weighting schemes, respectively. The dashed grey line corresponds to the 1:1 relation, while the dotted lines correspond to the outlier definition adopted in this work.

Table 1. Definitions of statistical metrics used to evaluate photometric redshift accuracy and quality along with notation used throughout the text.

Metric	Definition		
σ_{NMAD}	Normalized median absolute deviation $1.48 \times \text{median}(\Delta z	/(1 + z_{\text{spec}}))$
Bias	$\text{median}(\Delta z)$		
O_f	Outlier fraction $	\Delta z	/(1 + z_{\text{spec}}) > 0.2$
CRPS	Mean continuous ranked probability score $\text{CRPS} = \frac{1}{N} \sum_{i=1}^{N} \int_{-\infty}^{+\infty} (\text{CDF}_{i}(z) - \text{CDF}_{z_{\text{spec}}}(z))^2 dz$ – Hersbach (2000)		
Table 2. Photometric redshift quality statistics for the derived combined consensus redshift predictions in the Boötes field. The statistical metrics (see Table 1) are shown for the full spectroscopic sample, the radio-detected sources, and for various subsets of the radio population.

Estimate	σ_{NMAD}	Bias	O_{f}
IR AGN	0.2429	0.0159	0.4425
GPz – unweighted	0.1431	–0.0187	0.2184
GPz – weighted	0.1183	–0.0072	0.1494
X-ray AGN			
Template consensus	0.1067	0.0185	0.3214
GPz – unweighted	0.1241	0.0090	0.1339
GPz – weighted	0.0882	0.0090	0.0893
Optical AGN			
Template consensus	0.2351	0.0169	0.4552
GPz – unweighted	0.1280	0.0195	0.1970
GPz – weighted	0.1147	0.0084	0.2313
Galaxies			
Template consensus	0.0287	–0.0037	0.0416
GPz – unweighted	0.0323	0.0038	0.0220
GPz – weighted	0.0343	0.0033	0.0265

3.4 ‘Features’ in the observed photometry

The strong performance of the GP redshift estimates in the regime where those from template fitting struggle raises the question of what features in the optical/IR photometry is GPz using to derive the redshift information? And secondly, are those features missing from the template sets employed in the previous photo-z estimates? Or is the failure due to other factors such as variability in the photometry?

Investigating the cause of each template-based photo-z failure individually is beyond the scope of this paper. However, we can very easily verify the existence of redshift-dependent colour or magnitude relations upon which the empirical photo-z might be deriving their results. To illustrate this, in Fig. 5, we show how two example colours and corresponding apparent magnitudes evolve with redshift for the IR-selected AGN population. In the redshift regime of $1 < z < 2$ where GPz performs exceedingly well, it is clear that there is a strong evolution in the $3.6-4.5$ μm colour (with a strong feature at $z \sim 1.7$), while the typical $I-3.6$ μm also becomes increasingly blue over this range. Coupled with the colour-redshift relations are complementary magnitude-redshift relations for the optical and mid-IR bands – the evolution of I-band magnitude for a fixed $I-3.6$ μm colour with redshift at $z \gtrsim 1$ remains relatively constant, while the apparent 3.6 μm magnitude shows a much clearer trend of fainter magnitudes at higher redshift. Altogether, it is therefore clear that at least for the IR AGN population, there are redshift-dependent magnitude or colour features to which we can anchor empirical photo-z estimates.

The follow-up question raised at the beginning of this section was whether the features GPz is basing its redshift predictions on are absent within the templates. Sticking with the example of IR AGN, the bump in $3.6-4.5$ μm at $z \sim 1.7$ is not well represented in the Brown et al. (2014) library – which does not include powerful AGN. But as illustrated by the colour tracks in Fig. 5, the Salvato et al. (2011; see also Hsu et al. (2014)) template set is able to fill the broad colour region of interest at most redshifts.

There are areas within the colour inhabited by the IR-selected AGN population that the templates do not cover; specifically, they do not extend to blue enough $I-3.6$ μm colours at $z > 1$ and at $3.6-4.5$ μm, the templates are no longer representative for this population in this colour space. Nevertheless, these deficiencies alone are unlikely to account for the very poor template performance at $z < 2$ and there may be an additional root cause for these failures. Examination of the average residuals measured for the best-fitting templates (both for the free redshift determination and when the redshift is fixed to the known spectroscopic redshift) finds no clear indication that any one individual band or colour is responsible for causing incorrect fits.

Future extensions to the existing template libraries that better sample the full AGN colour space (Brown et al. in preparation) will still likely offer significant improvements in this regime. Furthermore, imposing a strong mid-IR magnitude prior specific to the source-type may aid the template-based estimates by breaking degeneracies in colour space (e.g. see the lower panel of Fig. 5). Due to the focus of this study on the GPz estimates, we defer any further investigation of the AGN template properties to future studies and instead concentrate the rest of our analysis on the machine learning estimates and those derived from them.

4 ‘HYBRID’ PHOTO-ZS – COMBINING GP REDSHIFT ESTIMATES WITH TEMPLATE ESTIMATES

One of the key conclusions of Paper I and earlier studies in the literature (e.g. Dahlen et al. 2013; Carrasco Kind & Brunner 2014b) was that no single photometric estimate can perform the best for all source types or in all metrics. Furthermore, the combination of multiple estimates within a statistically motivated framework can yield consensus estimates that perform better than any of the individual inputs. Given the very different limitations and systematics observed in the template and GPz photo-z estimates, a consensus photo-z that compounds the advantages of both methods is clearly desirable.

To incorporate the GPz predictions within the HB combination framework presented in Paper I, normal distributions based on position and corrected variance estimate for each source are evaluated on to the same redshift grid as used during the template-fitting procedure. For any source in the full training sample that does not have a photo-z estimate for a given GPz estimator (either through not satisfying the selection criteria for a given subset or lack of observations in a required band), we assume a flat redshift posterior over the range of the redshift grid ($P(z) = 1/7$). These sources therefore contribute no information in the HB combination procedure, so in the cases where only one estimate exists, the consensus estimate is entirely based on that single prediction.

For comparison with the template-based consensus estimates from Paper I, we calculate two different HB estimates from our GPz estimates. First, we calculate the HB consensus photo-z based only on the four separate GPz estimates (optical, X-ray and IR AGN estimates plus the additional galaxy-only estimate). Secondly, we then calculate the HB consensus estimate incorporating all three of the template-based estimates calculated in Paper I and the four machine learning estimates from this paper to produce a hybrid estimate. In both cases, we follow the practice of Paper I and adopt a magnitude-based prior when an observation is assumed to be ‘bad’.

In Fig. 6, we present the photo-z versus spectroscopic redshift distribution of the three separate HB consensus estimates. To better illustrate the overall uncertainty and scatter given the large number of sources, we show the stacked redshift probability distributions within a spectroscopic redshift bin rather than individual point estimates. The left-hand panel of Fig. 6 illustrates the previously known limitations of template-based photo-z estimates for most
Figure 4. Q–Q (\(\hat{F}(c)\)) plots for the redshift predictions for the two GP photo-z estimates using unweighted (blue) and colour–magnitude weighted (red) Boötes training samples. The dot–dashed and continuous lines show the results for the raw (as estimated by GPz) and calibrated distributions, respectively. Lines that fall above the 1:1 relation illustrate underconfidence in the photo-z uncertainties (uncertainties overestimated), while lines that fall under illustrate overconfidence (uncertainties underestimated).

Figure 5. Selected observed colours as a function of redshift for the Boötes IR-selected AGN population. The upper panel shows the optical to mid-IR colour between the I and IRAC 3.6 \(\mu\)m bands, while the lower panel shows the mid-IR colour between the IRAC 3.6 and 4.5 \(\mu\)m bands. In each panel, the colour of the data points corresponds to the apparent magnitude in one of the observed bands. Dashed red lines indicate the colour tracks as a function of redshift for the XMM–COSMOS (Salvato et al. 2011) templates that satisfy the IR AGN selection criteria of Donley et al. (2012) at any redshift up to \(z = 3\).

AGN sources. At \(z < 1\), the template estimates perform well, but between \(1 < z < 3\), the photo-z probability distributions are extremely broad, possibly due to the lack of strong photometric features in the optical SEDs in this regime. Additionally, the degradation of the template photo-z quality towards higher redshift may be a result of differences in the source population selected at higher redshift; the galaxy templates work well for the low-luminosity AGNs, but fail for higher luminosity AGNs where the host galaxy no longer dominates the optical emission. At \(z \gtrsim 3\), the template-based estimates begin to perform well again due to the redshifted Lyman-continuum break moving into the observed optical bands.

It is worth noting that the extent of the template photo-z issues at \(1 < z < 3\) is partly field specific, in that the relative depths of the near-IR data available in the Boötes field are shallow with respect to the optical and mid-IR data at wavelengths either side. As such, sources that may have high signal-to-noise (S/N) detections in the optical regime may still have very low S/N in the near-IR bands that probe the rest-frame optical features (both in spectral breaks and emission lines) at \(z \gtrsim 1\). Fig. 5 of Paper I shows that in fields with deeper photometry and finer wavelength coverage (e.g. the COSMOS field, Laigle et al. 2016), the trends are not as extreme, particularly at \(1 < z < 2\). Nevertheless, the improvement seen here is particularly encouraging for photo-z estimates in surveys without the same levels of exceptional filter coverage as available in COSMOS.

In contrast to the trends observed in our template estimates, and consistent with the trends seen in individual AGN estimates shown in Fig. 6, the GPz-only consensus estimates perform best in the region of \(1 \lesssim z \lesssim 2\). At lower (\(z \lesssim 0.5\)) and higher (\(z \gtrsim 2.5\)) redshifts, the GPz consensus estimate becomes increasingly biased. It is these wavelength regimes in which the training samples for the AGN population are most sparse, as can be seen visually in the right-hand column of Fig. 3.

Most encouraging, however, is the HB consensus estimate incorporating both the template and machine learning based predictions (right-hand panel of Fig. 6). Visually, it is immediately clear that the total combined consensus estimate combines the advantages of both of the input methods.

This improvement can also be seen more quantitatively by looking at the measured photo-z scatter and outlier fraction for the AGN population as a function of redshift (Fig. 7). At \(z < 1\), the hybrid estimates match or improve upon the scatter from the template estimates. Then, at \(1 < z < 3\), the hybrid estimates match the improved scatter and outlier fractions of the GPz estimates, while the template-based estimates perform very poorly. Finally, at \(z \gtrsim 3\) when strong continuum features result in improved
Figure 6. Stacked probability distributions for the combined AGN population (IR, X-ray, or optically selected) as a function of spectroscopic redshift for each consensus HB photo-z estimate. To improve the visual clarity at higher redshifts where there are few sources within a given spectroscopic redshift bin, the distributions have been smoothed along the x-axis. The same smoothing has been applied to all three estimates consistently. The dashed grey line corresponds to the 1:1 relation, while the dotted lines correspond to the outlier definition adopted in this work. The superior performance of the hybrid template + GPz estimates is well illustrated by the side-by-side comparison.

Figure 7. Photometric redshift scatter (σ_{NMAD}) and outlier fraction as a function of spectroscopic redshift for AGN in the Boötes field. Lines show the results for sources that pass any of the X-ray/Optical/IR AGN criteria outlined in Section 2. Shaded regions around each line represent the standard deviation on the corresponding metric from Bootstrap resampling. For all three estimates, the hybrid estimates are still able to perform comparably.

Fig. 8 shows the measured scatter and outlier fraction as a function of apparent I-band magnitude. At all magnitudes brighter than $I \approx 23.5$, the hybrid estimates perform better than either the template- or GPz-only estimates. The observed improvement in scatter for the GPz-only estimates at the very faintest magnitudes (as compared to the template or hybrid method) likely results from the cost-sensitive learning, increasing the importance of these faint AGNs during the optimization procedure. However, it is evident that the hybrid estimates are most similar in performance to the template-only estimates in this regime, with the rise in scatter and outlier fraction at $I > 23$ closely mirroring the observed rise. The apparent inability of the hybrid consensus estimates to mirror the performance of the best performing estimate could be seen as a failure of the HB combination method at faint magnitudes.

For all three estimates, the posterior distributions are very broad at faint magnitudes. Evidence for this can be seen in Fig. 9, where we show the median difference between the median of the primary redshift peak and the upper 80 per cent highest probability density (HPD) credible interval as a function of magnitude for the three consensus estimates.

Visual inspection of the three different consensus redshift posteriors for the very faintest sources ($I > 24$) therefore reveals that for the GPz-only consensus estimate, the uncertainties on the individual estimates are so large at the faint magnitudes that the consensus
$P(z)$ is dominated by the redshift prior. The apparent improvement in the accuracy of the GPz redshift estimates is therefore something of a conspiracy, with the median redshift of the redshift prior (for $I > 24$) lying close to the average spectroscopic redshift for these sources.

We note here that this magnitude regime is at the limits of the Boötes optical data; beyond $I \sim 24$, the typical source S/N becomes very low and the catalogues increasingly incomplete. As such, we do not expect photo-z performance to remain good enough at these magnitudes for most scientific purposes.

4.1 Comparison to Brodwin et al. (2006)

As mentioned in the introduction, this study is not the first to attempt to combine the different strengths of template-based and empirical photo-z estimates. In addition to the comparison of different methods for Bayesian combination of template and machine learning estimates presented in Carrasco Kind & Brunner (2014b), Brodwin et al. (2006) have also previously explored a hybrid photo-z method aimed at improving estimates for AGN within the Boötes field.

Based on predominantly the same underlying photometry as used in this analysis, Brodwin et al. (2006) estimated photo-zs using two approaches – first using template fitting and secondly employing an empirical method using neural networks (Collister & Lahav 2004). The most direct comparison we are able to make between the results of Brodwin et al. (2006) and those presented in this work is via their quoted estimates of the 95 per cent-clipped photo-z scatter (σ_{95}).

For AGNs between $0 < z < 3$ in the AGES (Kochanek et al. 2012) spectroscopic sample, Brodwin et al. (2006) find a scatter of $\sigma_{95}/(1+z) = 0.12$ and for galaxies between $0 < z < 1.5$, a lower scatter of $\sigma_{95}/(1+z) = 0.047$. Restricting our spectroscopic sample to contain only those from AGES and requiring a 4.5 μm detection to best match the Brodwin et al. selection criteria, our hybrid photo-z estimates have comparable 95 per cent-clipped scatters of $\sigma_{95}/(1+z) = 0.11$ and $\sigma_{95}/(1+z) = 0.045$ for sources classified by AGES as AGN and galaxies, respectively.

When comparing the two results, it is important to recognize that the template fitting and the GPz estimates trained for the galaxy population make use of additional photometry not available at the time of Brodwin et al. (2006; e.g. u, z, and y). Some small improvement is therefore to be expected.

A key improvement offered by the Bayesian combination framework employed in this work is that it is able to make maximal use of the redshift information available for a given source. In Brodwin et al. (2006), the choice of template or neural network-based estimates for a given source is a binary based on where a source lies with respect to the Stern et al. (2005) IRAC colour criteria (similar to the criteria we have used for selecting IR AGN). As seen in Fig. 3, the performance of machine learning estimates for these sources is significantly better over the redshift range of interest, so this choice is well motivated. However, at higher redshifts, the machine learning estimates become increasingly biased due to the sparsity of the training samples in this regime. This bias is clearly visible both in Fig. 5 of Brodwin et al. (2006) and in the centre panel of Fig. 6 of this work. Although still imperfect, the HB combination procedure is able to fall back on the more accurate and reliable template-based estimates at $z \gtrsim 2.5$.

4.2 Hybrid photo-z performance for the radio source population

Given our motivation in producing the best possible photo-z estimates for the diverse population selected objects in forthcoming radio continuum surveys, it is interesting to see how the improvement seen in the optical/IR/X-ray selected AGN population propagates through into the hybrid photo-z performance for radio-selected objects. In Fig. 10, we illustrate the σ_{NMAD}, O_{I}, and CRPS2 performance of the template, GPz and hybrid consensus redshift estimates in each of the source population subsets. Across all subsets of the radio-detected populations, the hybrid photo-z estimates either match or significantly improve upon the scatter and outlier fraction performance of the best single method.

Furthermore, across all subsets of the radio population, the scatter is now $\sigma_{\text{NMAD}} \lesssim 0.1$, an improvement of up to a factor of 4 compared to the template estimates. Despite them not performing significantly better than the template estimates for sources not optically classified as AGNs, the inclusion of GPz estimates in the HB photo-zs results in a factor of ~ 2 improvement in outlier fraction for the radio-detected subset of these sources.

Exploring the key quality statistics as a function of radio luminosity (Fig. 11) and flux density (Fig. 12), we can see more clearly that the greatest gain in improvement is for the most luminous radio sources. For a given apparent radio flux, the GPz and hybrid estimates offer no clear improvement in terms of scatter but do improve the outlier fraction. This behaviour is something we would expect to see, bearing in mind that lower luminosity sources at low redshift dominate the spectroscopic sample we are comparing (≈ 90 per cent of the spectroscopic sample is at $z < 1$). The rarer high-luminosity radio sources for which GPz produces more accurate photo-z estimates have a broad range of apparent fluxes and therefore the robust scatter is not strongly affected but the outlier fraction is.

The performance of the GPz-only estimates compared to the template-only estimates as a function of radio power could shed further light on the discussion in Section 3.4 on the causes of failures in the template fitting. That GPz performs best for the most
luminous radio AGN could support the idea that our selected template fits struggle most in the regime where the AGN dominates the optical emission. Although in the local Universe the most powerful radio sources are typically host-dominated in their optical emission, at higher redshifts the population of QSO/Seyfert-like sources becomes increasingly dominant (e.g. Heckman & Best 2014; Williams et al. 2018, and references therein). Within a deep survey field such as that used in this work, the larger volume probed at high redshift means that \(z > 1 \) sources dominate the high-luminosity end of our sample. Further exploration of the different methods as a more detailed function of radio luminosity and redshift would clearly be valuable in better understanding our methods and their strengths and limitations; however, the currently limited training sample makes this impractical.

4.3 Performance in deep optical fields

As outlined in Section 2, the decision to concentrate the analysis in this paper on the shallower and wider Boötes data was motivated partly by the more limited training sample available for AGNs in the COSMOS field – a field with significantly deeper and more extensive optical data. Nevertheless, we apply the hybrid methodology to the COSMOS sample to explore how the hybrid method performs in a regime where template photo-zs generally perform exceptionally, i.e. with extensive deep photometric data sets that
We refer the reader to the underlying photometric catalogue, Laigle et al. (2016), for details of the photometry and information for the filters described above.

Fig. 13 shows the scatter and outlier fraction for the COSMOS redshifts as a function of redshift for the template-only, GPz-only, and hybrid consensus estimates after Bayesian combination. Relative to the template estimates, the performance of GPz-only consensus is poorer than in Boötes. Across all redshifts, the template estimates have a much lower outlier fraction than the GPz-only estimates (as for the Boötes, this is the region for which the training sample is least sparse).

Looking at the performance of the COSMOS hybrid estimates, we see a similar behaviour to that observed for the Boötes sample. In general, the hybrid estimate fairly closely matches the performance of the best individual method—with the scatter comparable to that of the template estimates across all redshifts but with improved outlier fraction of the GPz estimates at $1 < z < 2.5$.

There are, however, some regimes where the hybrid estimate does not perform as well as the best individual estimate, notably in the redshift regimes where GPz performs very badly. As seen in the previous section, at $z < 1$ and $z > 3$, the GPz estimates become increasingly biased. Our earlier conclusion that the bias issues in this regime are primarily due to the sparsity of the training sample is supported by tests on other data sets. In a forthcoming work, Duncan et al. (in preparation), we apply the hybrid photo-z method to over 400 deg2 of shallower ‘all-sky’ data to accompany the release of new LOFAR radio continuum survey data. Despite the poorer quality optical data, the significantly larger training sample results in much better GPz photo-z estimates at $z < 1$ than either the Boötes or COSMOS samples. Future applications of the hybrid methodology to deep fields may therefore actually benefit from incorporating additional estimates that use optical data in common with other surveys that may have shallower optical photometry but significantly larger samples upon which to train.

Finally, in Fig. 14 we show the overall performance for different subsamples of the radio population for the new COSMOS estimates. As expected given the performance statistics as a function of redshift, the hybrid method performs closest to that of the template estimates. In some subsets of the radio AGN population (X-ray and optical AGN population as well as the main galaxy population (see Paper I for details on the AGN classifications used for COSMOS)).

We apply the GPz method to the COSMOS data set in the same way as for Boötes, with GPz trained on subsets of the IR, X-ray, and optical AGN population as well as the main galaxy population (see Paper I for details on the AGN classifications used for COSMOS).

The bands chosen for each subset and the total number of training sources available for those bands (with 80 per cent used for training, 10 per cent for validation, and 10 per cent for testing) are as follows:

(i) IR AGN: r, i, z^+, 3.6, 4.5, 3.6, and 4.5 μm bands (325 training sources)
(ii) X-ray AGN: b, r, i, z^+, 3.6 and 4.5 μm (1488)
(iii) Optical AGN: b, r, i, z^+, 3.6, 4.5 μm (784)
(iv) Normal galaxy population: v, r, i, z^+, 3.6, 4.5 μm (42 672).

Looking at the performance of the COSMOS hybrid estimates, we see a similar behaviour to that observed for the Boötes sample. In general, the hybrid estimate fairly closely matches the performance of the best individual method—with the scatter comparable to that of the template estimates across all redshifts but with improved outlier fraction of the GPz estimates at $1 < z < 2.5$.

There are, however, some regimes where the hybrid estimate does not perform as well as the best individual estimate, notably in the redshift regimes where GPz performs very badly. As seen in the previous section, at $z < 1$ and $z > 3$, the GPz estimates become increasingly biased. Our earlier conclusion that the bias issues in this regime are primarily due to the sparsity of the training sample is supported by tests on other data sets. In a forthcoming work, Duncan et al. (in preparation), we apply the hybrid photo-z method to over 400 deg2 of shallower ‘all-sky’ data to accompany the release of new LOFAR radio continuum survey data. Despite the poorer quality optical data, the significantly larger training sample results in much better GPz photo-z estimates at $z < 1$ than either the Boötes or COSMOS samples. Future applications of the hybrid methodology to deep fields may therefore actually benefit from incorporating additional estimates that use optical data in common with other surveys that may have shallower optical photometry but significantly larger samples upon which to train.

Finally, in Fig. 14 we show the overall performance for different subsamples of the radio population for the new COSMOS estimates. As expected given the performance statistics as a function of redshift, the hybrid method performs closest to that of the template estimates. In some subsets of the radio AGN population (X-ray and optical AGN population as well as the main galaxy population (see Paper I for details on the AGN classifications used for COSMOS)).
optically selected AGN), the hybrid method is not able to match or improve upon the scatter. However, it is able to improve upon the outlier fraction and CRPS by a small margin for these same subsamples.

Overall, we conclude that our hybrid methodology can still perform well in deep fields, but the gains to be had over more traditional template fitting are currently much smaller than for typical wide-area surveys. We note that with the addition of more of the available filters in the field, it will be possible to improve the COSMOS GPz estimates. However, for data sets such as COSMOS, it may never be possible for generalized methods such as ours to match the performance of detailed and well-curated template estimates for specific subsets of the AGN population (e.g. Salvato et al. 2008, 2011; Marchesi et al. 2016).

4.4 Prospects and strategies for further improvements

Despite the substantial improvement in photo-z accuracy and reliability for the GPz and hybrid estimates, the inhomogenous photo-z quality across the subpopulations within the radio-detected subset indicates that there is still potential for further improvements to be gained. With regard to the GPz and resulting hybrid estimates, such improvements could potentially come from several different aspects of the methodology.

First, as is the case in all empirical photo-z estimates, the accuracy of GPz is limited by the training sample being used. Key to the production of accurate photo-zs based on training samples is not necessarily the sheer size of the training sample, but rather its ability to fully represent the parameter space probed by the catalogues to which the method will be applied. The effect of limited training samples can be seen in the performance of GPz at both the very lowest and highest redshifts, the regimes in which the training sample is particularly sparse. Although our implementation of colour- and magnitude-based weights within the cost-sensitive learning is able to account for regions of parameter space that are entirely missing data can be jointly predicted with the redshift (Almosallam et al. in preparation) will be of great benefit in the future and could result in significant improvements to the empirical photo-z estimates in these heterogeneous deep fields.

Finally, there is also potential for further improvements that can be made to the Bayesian combination. With additional improvements to the input redshifts themselves, suboptimal combinations of the various estimates such as those seen at $z \sim 3$ in Fig. 7 will have less of an effect on the final consensus redshifts. Nevertheless, more informative priors could be incorporated into the combination procedure that gives more weight to individual estimates in regions of parameter space in which they are known to perform better. Such an improvement is illustrated in Carrasco Kind & Brunner (2014b), with the performance of Bayesian Model Averaging and Bayesian Model Combination exceeding that of HB combination in their implementation. However, in the context of photo-zs for AGNs, we believe these gains will be very small compared to the other strategies outlined in this section.

5 SUMMARY

Building on the first paper in this series that explored the performance of template-based estimates (Duncan et al. 2018, Paper I), we have presented a study exploring how new estimates from machine learning can be used to significantly improve photo-z estimates for both the radio-continuum selected population and the wider AGN population as a whole within the NDWFS Bootes field. Using the GP redshift code, GPz, we have produced photo-z estimates targeted at different subsets of the galaxy population – IR, X-ray, and optically selected AGN – as well as the general galaxy population. The GPz photo-z estimates for the AGN population perform significantly better at $z > 1$ than photo-z estimates produced through template fitting presented in Paper I. Compared to the template-based photo-zs, GPz estimates for the IR/X-ray/Optical AGN population have lower scatter and outlier fractions by up to a factor of 4.

By combining these specialized GPz photo-z estimates with the existing template estimates through HB combination (Dahlen et al. 2013; Carrasco Kind & Brunner 2014b), we are able to produce a new hybrid consensus estimate that outperforms either of the individual methods across all source types. The overall quality of photo-z estimates for radio sources that are X-ray sources or optical/IR AGNs is vastly improved with respect to Paper I, with outlier fractions and scatter with respect to spectroscopic redshifts reduced by up to a factor of ~ 4. When applied to a data set with deeper photometry and much finer wavelength sampling, we find that the improvement from including GPz is much smaller than for...
the Bo"otes sample. We attribute this effect to the ability of the template estimates to make full use of the increased precision offered by medium or narrow-band photometry.

For both the radio-detected populations with no strong optical signs of AGN (i.e. radio AGN hosted in quiescent galaxies or star-forming sources), our new methodology also provides significant improvement in the Bo"otes field. Despite the template and GPz estimates performing very comparably when treated separately, the combination of the two sets of estimates yields outlier fractions that are a factor of ≈ 2 lower. Investigating the new photo-z estimates as a function of radio properties (flux and luminosity), we find that the improvement observed for the radio-selected population can likely be attributed to the highest luminosity radio sources for which the GPz estimates (and hence the resulting hybrid estimates) offer huge improvements.

The success of the method despite the small training samples and heterogeneous data sets available is encouraging for future exploitation of deep radio continuum surveys for both the study of galaxy and black hole co-evolution and for cosmological studies.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013/ under grant agreement number 607254. This publication reflects European Union Seventh Framework Programme FP7/2007-2013/ the investigator programme NewClusters 321271.

This paper has been typeset from a TEX/LATEX file prepared by the author.

REFERENCES

Alam S. et al., 2015, ApJS, 219, 12
Almosallam I. A., Lindsay S. N., Jarvis M. J., Roberts S. J., 2016a, MNRAS, 455, 2387
Almosallam I. A., Jarvis M. J., Roberts S. J., 2016b, MNRAS, 462, 726
Arnouts S., Cristiani S., Moscardini L., Matarrese S., Lucchin F., Fontana A., Giallongo E., 1999, MNRAS, 310, 540
Bauer F. E., Alexander D. M., Brandt W. N., Schneider D. P., Treister E., Hornschemeier A. E., Garmire G. P., 2004, AJ, 128, 2048
Benitez N., 2000, ApJ, 536, 571
Bolzonella M., Miralles J. M., Pello R., 2000, A&A, 363, 476
Booth R. S., de Blok W. J. G., Jonas J. L., Fanaroff B., 2009, preprint (arXiv:0910.2935)
Bordoloi R., Lilly S. J., Amara A., 2010, MNRAS, 406, 881
Bovy J. et al., 2012, ApJ, 749, 41
Brammer G. B., van Dokkum P. G., Coppi P., 2008, ApJ, 686, 1503
Brand K. et al., 2006, ApJ, 641, 140
Broadwin M. et al., 2006, ApJ, 651, 791
Brown M. J. I. et al., 2014, ApJS, 212, 18
Brown M., et al., 2015, Weak gravitational lensing with the Square Kilometre Array, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 023
Bordoloi R., Lilly S. J., Amara A., 2010, MNRAS, 406, 881
Bovy J. et al., 2012, ApJ, 749, 41
Brammer G. B., van Dokkum P. G., Coppi P., 2008, ApJ, 686, 1503
Brand K. et al., 2006, ApJ, 641, 140
Broadwin M. et al., 2006, ApJ, 651, 791
Brown M. J. I. et al., 2014, ApJS, 212, 18
Brown M., et al., 2015, Weak gravitational lensing with the Square Kilometre Array, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 023
Camera S., Santos M. G., Bacon D. J., Jarvis M. J., Mcalpine K., Norris R. P., Raccanelli A., Röttgering H., 2012, MNRAS, 427, 2079
Carrasco Kind M., Brunner R. J., 2013, MNRAS, 432, 1483
Carrasco Kind M., Brunner R. J., 2014a, MNRAS, 438, 3409
Carrasco Kind M., Brunner R. J., 2014b, MNRAS, 442, 3380
Collister A. A., Lahav O., 2004, ASP Conf. Ser. Vol. 116, ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks. Astron. Soc. Pac. San Francisco, p. 345
Dahlen T. et al., 2013, ApJ, 775, 93
Dey A., Lee K.-S., Reddy N., Cooper M., Inami H., Hong S., Gonzalez A. H., Jannuzi B. T., 2016, ApJ, 823, 11
Donley J. L. et al., 2012, ApJ, 748, 142
Drlica-Wagner A. et al., 2017, ApJS, 235, 35
Duncan K. J. et al., 2018, MNRAS, 473, 2655
Ferramacho L. D., Santos M. G., Jarvis M. J., Camera S., 2014, MNRAS, 442, 2511
Flesch E. W., 2015, Publ. Astron. Soc. Aust., 32, e010
Geach J. E., 2011, MNRAS, 419, 2633
Gomes Z., Jarvis M. J., Almosallam I. A., Roberts S. J., 2017, MNRAS, 475, 331
Heckman T. M., Best P. N., 2014, Annu. Rev. Astron. Astrophys., 52, 589
Herschbach, H., 2000, Weather Forecast., 15, 559
Hsu L.-T. et al., 2014, ApJ, 796, 60
Jannuzi B. T., Dey A., 1999, in Weymann R., Storrie-Lombardi L., Sawicki M., Brunner R., ASP Conf. Ser. Vol. 191, The Young Universe: Galaxy Formation and Evolution at Intermediate and High Redshift, Astron. Soc., Pac., San Francisco, p. 111
Jarvis M., Bacon D., Blake C., Brown M., Lindsay S., Raccanelli A., Santoses M., Schwarz D. J., 2015, Proc. Sci., Cosmology with SKA Radio Continuum Surveys. SISSA, Trieste, Po#018
Jarvis M. J. et al., 2017, preprint (arXiv:1709.01901)
Johnston S. et al., 2007, Publ. Astron. Soc. Aust., 24, 174
Kenter A. et al., 2005, ApJS, 161, 9
Kochanek C. S. et al., 2012, ApJS, 200, 8
Laigle C. et al., 2016, ApJS, 224, 24
Laurejs R. et al., 2011, preprint (arXiv:1110.3193)
Lee K.-S., Alberts S., Atlee D., Dey A., Pope A., Jannuzi B. T., Reddy N., Brown M. J. I., 2012, ApJ, 758, L31
Lee K.-S., Dey A., Cooper M. C., Reddy N., Jannuzi B. T., 2013, ApJ, 771, 25
Lee K.-S., Dey A., Hong S., Reddy N., Wilson C., Jannuzi B. T., Inami H., Gonzalez A. H., 2014, ApJ, 796, 126
Lima M., Cunha C. E., Oyaizu H., Frieman J., Lin H., Sheldon E. S., 2008, MNRAS, 390, 118
Marchesi S. et al., 2016, ApJ, 827, 150
Merloni A. et al., 2012, preprint (arXiv:1209.3114)
Morabito L. K. et al., 2017, MNRAS, 469, 1883
Norris R. P. et al., 2013, Publ. Astron. Soc. Aust., 30, e020
Oke J. B., Gunn J. E., 1983, ApJ, 266, 713
Rasmussen C. E., Williams C. K. I., 2006, Gaussian Processes for Machine Learning, The MIT Press, Cambridge, Massachusetts
Richards G. T. et al., 2001, AJ, 122, 1151
Röttgering H. J. A., 2010, LOFAR and the low frequency Universe, Proceedings of the ISKAF2010 Science Meeting. Assen. p. 50
Salvato M. et al., 2008, ApJ, 690, 1250
Salvato M. et al., 2011, ApJ, 742, 61
Sanchez C. et al., 2014, MNRAS, 445, 1482
Smith D. J. B. et al., 2016, pre print (arXiv:1611.02706)
Stanford S. A. et al., 2012, ApJ, 753, 164
Stern D. et al., 2005, ApJ, 631, 163
Vaccari M., 2016, in Napolitano N. R., Longo G., Marconi M., Paolillo M., Iodice E., Astrophysics and Space Science Proceedings, Vol. 42, The Universe of Digital Sky Surveys. Springer International Publishing, Switzerland, p. 71
van Haarlem M. P. et al., 2013, A&A, 556, A2
Williams W. L. et al., 2016, MNRAS, 460, 2385
Williams W. L. et al., 2018, MNRAS, 475, 3429
Wittman D., Bhaskar R., Tobin R., 2016, MNRAS, 457, 4005
Zeimann G. R. et al., 2012, ApJ, 756, 115
Zeimann G. R. et al., 2013, ApJ, 779, 137

This paper has been typeset from a TExLATEX file prepared by the author.