ORIGINAL RESEARCH ARTICLE

BCG related complications: A single center, prospective observational study

Tariq S. Alfawaz*, Mohammed Alshehri, Dayel Alshahrani

Pediatric Infectious Diseases Section, Children Hospital, King Fahad Medical City, Riyadh, Saudi Arabia

Received 12 March 2015; received in revised form 18 May 2015; accepted 22 May 2015
Available online 11 June 2015

KEYWORDS
Bacillus Calmette-Guerin; Lymphadenitis; Tuberculosis

Abstract Background and objectives: Although the BCG vaccine is usually a safe vaccine, a number of complications can occur, such as adverse local reactions, regional lymphadenitis, osteomyelitis and disseminated infection in immunocompromised children, with lymphadenitis being the most common complication. Our objective to describe the associated clinical characteristics and outcomes.

Materials and methods: This was a prospective observational study conducted over two year’s period.

Results: 100 patients were enrolled with (62%) males and (38%) females. 93 cases (93%) have nodes involvement with a total of 103 nodes was reported as follow: Axillary, supraclavicle, cervical with number of 75(72.8%), 23(22.3%), 5(4.9%) respectively. (55.3%) resulted in suppurated, and (44.7%) with non-supuration. Only 3 cases (3%) had severe disease with dissemination, (88.3%) had small size nodes (<3 cm), and (11.7%) with large size nodes (>3 cm). (88%) had self-limited disease, and node disappears between (8–168 weeks).

Conclusion: In the Majority of BCG related lymphadenitis is a benign condition with spontaneous healing. Also there is increase incidence of association between BCG vaccine and serious disseminated infections in immunodeficiency cases.

Copyright © 2015, King Faisal Specialist Hospital & Research Centre (General Organization), Saudi Arabia. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Bacillus Calmette-Guerin (BCG) is a live attenuated vaccine derived from a strain of Mycobacterium bovis with a characteristics residual virulence, has been used to prevent tuberculosis since 1921 [1].

The World Health Organization (WHO) has recommended BCG vaccination as part of the global Expanded Program for
Immunization (EPI). Since Saudi Arabia has an annual tuberculosis (TB) incidence rate of 15 cases/100,000 people, the national immunization Program still includes neonatal BCG vaccination [2]. As of to date the BCG vaccine strain which is use to vaccinate babies in Saudi Arabia is Danish Strain. Although the BCG vaccine is usually a safe vaccine, a number of complications can occur, such as adverse local reactions, regional lymphadenitis, osteomyelitis and disseminated infection in immunocompromised children, with lymphadenitis being the most common complications [3].

We conducted this study to describe children with BCG vaccine related complications and highlight their presentation, course and treatment options.

2. Materials and methods

This study was conducted at King Fahad Medical City—Children’s Specialized Hospital, Riyadh. The hospital provides all levels of care for Riyadh City region as well as a referral center from all over the Kingdom of Saudi Arabia. All children who were referred to pediatric infectious disease clinics with any BCG vaccine complications were enrolled, date included between June 2011 and June 2013. All children had received the same type of vaccine (Danish strain) at birth administered intradermally at the governmental Centers. We used a standardized case report form with different variables. And all patients were followed prospectively till one year from their initial presentation with documented progress.

Data were presented as numbers (percentages), and median [minimum—maximum].

3. Results

A total of 100 children referred to infectious diseases Clinics as case of BCG vaccine related complications. Of whom 62 children (62%) were males and 38 (38%) were females (Table 1). (92%) were immunocompetent while only 8% were immunocompromised: 4 (4%) IL12 deficiency, 2 (2%) CGD, 1 (1%) SCID, 1 (1%) HIV, respectively.

Gender	Number (%)
Male	62 (62)
Female	38 (38)
Median age starting symptoms (weeks)	8 [3—46]
Median age at presentation (weeks)	16 [6—48]
Type of complication	Number (%)
Regional lymphadenitis	90 (90)
Disseminated (BCG iosis)	3 (3)
Local reaction (ulcer, discharge, abscess)	7 (7)
Immune status: number (%)	
Immunocompetent	92 (92)
Immunocompromised	8 (8)

Node involved	Number (%)
Axillary	75 (72.8)
Supraclavicle	23 (22.3)
Cervicle	5 (4.9)
Type of the node complication	Number (%)
Suppurative	57 (55.3)
Ruptured	50 (48.7)
Non ruptured	7 (7.3)
Non suppurative	46 (44.7)
Disseminated (BCG iosis)	3 (3)
Local reaction (ulcer, discharge, abscess)	16 (16)
Size of the node	Number (%)
<3 cm	91 (88.3)
>3 cm	12 (11.7)

Age at observed symptoms ranged between 3 and 46 weeks with a median of 8 weeks. While the time of initial presentation to the hospital was (6—48) weeks with a median of 16 weeks. 93 children (93%) have nodes involvement with a total of 103 nodes was reported as follow: Axillary, supraclavicle, cervical with number of 75 (72.8%), 23 (22.3%), 5 (4.9%) respectively. 91 (88.3%) of the nodes had small size (< 3 cm) while 12 nodes (11.8%) with large size (>3 cm).

57 cases (55.3%) resulted in suppuration, of which 50 cases (87.7%) the abscess ruptured, of which 2 (4%) complicated by superimposed bacterial infection. 46 cases (44.7%) were non suppurrative lymphadenitis (Table 2). Node disappears between (8—168) weeks with a median of 32 weeks. Delayed nodes healing was mostly observed in immunocompromised children.

Out of the 100 children; 16 (16%) have local reaction at BCG site in form of discharge scars or subcutaneous abscess or ulceration. Nine of them with associated lymph node and seven with only local complications. and 3 (3%) had severe disease with dissemination (BCGiosis) (Table 1), and all were immunocompromised with Interleukin-12 (IL 12) deficiency disease.

The treatment given for these children was assisted as follow: 84 children (84%) had no treatment due to self-limited disease, while 16 (16%) end with treatment as follow: 11 (9%) with antituberculous treatment, 2 (2%) with surgical intervention, and 3 (3%) with both medical and surgical intervention.

4. Discussion

In this study, we explored a common but relatively under recognized problem of post BCG lymphadenopathy. Post BCG vaccination complications are well recognized [4]. Mild adverse reactions are considered as part of the normal reaction [4]. The reported incidence of these events worldwide is 0.1—17% [5].

The explanation is not fully clear for the noted increase in BCG related complications [6,7]. The frequency of the lymphadenitis after vaccination correlates with the type of vaccine used. Teo et al. [8] had demonstrated an increase in the incidence of lymphadenitis after the introduction of Danish strain (SSI) type in the United Kingdom. Using this
5. Conclusion

Majority of BCG related lymphadenitis is a benign condition, and have spontaneous healing. Occasionally, with large size node, introducing of an antituberculous medications and/or surgical intervention will be as useful. This prospective study also shed light on a high rate of association between BCG vaccine and serious disseminated infections especially in immunodeficiency cases. Thus, it would be advisable to administer BCG vaccine at a time later than at birth.

Conflict of interest

Authors have no conflicts of interest to disclose.

Acknowledgments

We thank Dr. Mohammed AlTannir for reviewing the study, as well as Ms. Mona AlHarthi for her assistance in collecting the data.

References

[1] Behjati B, Ayatoallahi J. Post BCG, lymphadenitis in vaccinated infants in Yazd, Iran. Iran J Pediatr 2008;18:351–6.
[2] World Health Organization (WHO) Site: http://www.who.int
last accessed on 2012.
[3] Lotte A, Wasz-Hockert O, Poisson N, Dumitrescu N, Verron M, Couvet E. BCG complications. Estimates of risk among vaccinated subjects and statistical analysis of their main characteristics. Adv Tubers Res 1984;21:107–93.
[4] Bolger T, O'Connell M, Menon A, Butler A. Complications associated with the bacille calmette_guerin vaccination in Ireland. Arch Dis Child 2006;9:594–7.
[5] Mori T, Yamauchi Y, Shiozawa K. Lymph node swelling due to bacilli calmette_guerin vaccination with multipuncture method. Tuber Lung Dis 1996;77:269–73.
[6] Bahri A, Boudawara T, Makni S, Khrat M, Triki A, Ben Hamed S, et al. Disseminated BCG infection: a four case study. Med Mal Infect 2001;31:519–53.
[7] Victor N. Localized lymphadenitis, lymphadenopathy, and lymphangitis. In: Long SS, Pickering LK, Prober C, editors. Principles and practice of pediatric infectious diseases. 2nd ed. New York: Churchill Livingstone; 2003. p. 463–6.
[8] Teo SS, Smuelders N, Shingadia DV. BCG vaccine associated suppurative lymphadenitis. Vaccine 2005;23:2676–9.
[9] Chaves_carballo E, Sanchez GA. Regional lymphadenitis following BCG vaccination (BCGitis). Clinical based upon 25 instances among 1295 children. Cien Clin Pediatr (Phil) 1972;11:693–7.
[10] Goraya JS, Virdi VS. Bacille calmette_guerin lymphadenitis. Postgrad Med J 2002;78:327–9.
[11] Ali S, Al Moudaris M. BCG lymphadenitis. Arch Dis Child 2004;89:812.
[12] Talbot EA, Perkins MD, Silve SF, Fothingham R. Disseminated bacilli calmette-guerin disease after vaccination: case report and review. Clin Infect Dis 1997;24:1139–46.
[13] Casanova JL, Blanche S, Emile JF, Jouanguy E, Lathiere D, Altare F, et al. Idiopathic disseminated bacillus calmette_guerin infection; a French national retrospective study. Pediatrics 1996;98(4):774–8.
Sadeghi Shanbestari Mahnaz, Ansarin Khalil, Maljaei Seyed Hudieh, Rafeey Mandana, Pezeshki Zakaria, Kousha Ahmad, et al. Immunologic aspects of patients with disseminated bacilli calmette-guerin disease in north-west of Iran. Italian J Pediatr 2009;35:42.

Bukhari E, Alzahrani M, ALSubaie S, Alrabiiaah A, Alzamil F. Bacillus calmette – guerin lymphadenitis: a 6-year experience in two Saudi hospitals. Indian J Pathol Microbiol 2012;55:02–5.

Lotte A, Wasz-Hockert O, Poisson N, Engback H, Landmann H, Quast U, et al. Second IUATLD study on complications induced by intradermal BCG-vaccination. Bull Int Union Tubere Lung Dis 1998;63:47–59.

Abdullah MA, Adam KA, Shagla A, Mahgoub A. BCG Lymphadenitis; a report of eight cases. Ann Trop Paediatr 1985;5:77–81.

Hengster Paul, solder Brigitte, Fille Manfred, Menardi Gesine. Surgical treatment of Bacillus calmette guerin lymphadenitis. World J. Surg 1997;21:520–3.

Chan WM, Kwan YW, Leung CW. Management of Bacillus calmette-guerin lymphadenitis HK. J Paediatr New Ser 2011;16:85–94.

Abbas Banani S, Alborzi Abdolvahab. Needle aspiration for suppurative post-BCG adenitis. Arch Dis Child 1994;71:446–7.