Amygdala-cortical collaboration in reward learning and decision making

Kate M Wassum¹,²,³,⁴*

¹Department of Psychology, University of California, Los Angeles, Los Angeles, United States; ²Brain Research Institute, University of California, Los Angeles, Los Angeles, United States; ³Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, United States; ⁴Integrative Center for Addictive Disorders, University of California, Los Angeles, Los Angeles, United States

Abstract Adaptive reward-related decision making requires accurate prospective consideration of the specific outcome of each option and its current desirability. These mental simulations are informed by stored memories of the associative relationships that exist within an environment. In this review, I discuss recent investigations of the function of circuitry between the basolateral amygdala (BLA) and lateral (lOFC) and medial (mOFC) orbitofrontal cortex in the learning and use of associative reward memories. I draw conclusions from data collected using sophisticated behavioral approaches to diagnose the content of appetitive memory in combination with modern circuit dissection tools. I propose that, via their direct bidirectional connections, the BLA and OFC collaborate to help us encode detailed, outcome-specific, state-dependent reward memories and to use those memories to enable the predictions and inferences that support adaptive decision making. Whereas lOFC→BLA projections mediate the encoding of outcome-specific reward memories, mOFC→BLA projections regulate the ability to use these memories to inform reward-pursuit decisions. BLA projections to lOFC and mOFC both contribute to using reward memories to guide decision making. The BLA→IOFC pathway mediates the ability to represent the identity of a specific predicted reward and the BLA→mOFC pathway facilitates understanding of the value of predicted events. Thus, I outline a neuronal circuit architecture for reward learning and decision making and provide new testable hypotheses as well as implications for both adaptive and maladaptive decision making.

Introduction

To make good decisions we use the time machine that is our brain to cast ourselves into the future, consider the likely outcomes of our choices, and evaluate which one is currently most desirable. This time machine is programed by our memories. To know what is in the future, we often rely on the past. Previously learned associative relationships (e.g. stimulus-outcome) support decision making by enabling us to mentally simulate likely future outcomes Balleine and Dickinson, 1998a; Delamater, 2012; Fanselow and Wassum, 2015. These memories support understanding of the predictive ‘states’ that signal available or forthcoming outcomes. Such states are fundamental components of the internal model of environmental relationships, aka cognitive map Tolman, 1948, we use to generate the predictions and inferences needed for flexible, advantageous decision making Delamater, 2012; Fanselow and Wassum, 2015; Dayan and Daw, 2008; Balleine, 2019. For example, during the 2020 quarantine many of us learned that the stimuli (e.g. restaurant logos) embedded in food-delivery apps signal the availability of specific types of food (e.g. tacos, sushi, pizza). These cues allow us to mentally represent each predicted food, consider its value, and decide if it is a suitable dinner option. To ensure flexible behavior, these representations must be detailed. To choose the best dinner option, it is not

*For correspondence: kwassum@ucla.edu

Competing interest: The author declares that no competing interests exist.

Funding: See page 17

Received: 09 June 2022
Accepted: 22 August 2022
Published: 05 September 2022

Reviewing Editor: Mihaela D Iordanova, Concordia University, Canada

© Copyright Wassum. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
sufficient to know that each leads to something ‘good’ or to ‘food’. Rather, the identifying, sensory features of each food (e.g., flavor, texture, nutritional content) must be represented. You might have just had Mexican for lunch, rending tacos undesirable. If you develop gluten intolerance, you will know to avoid pizza. After your doctor suggests increasing your Omega-3 intake, you may consider sushi a better option. Rich, outcome-specific, appetitive, associative memories enable expectations, ensure rapid behavioral adjustments to internal and environmental changes, and allow one to infer the most advantageous option in novel situations Balleine and Dickinson, 1998a; Delamater, 2012; Fanselow and Wassum, 2015; Delamater and Oakeshott, 2007. Failure to properly encode or use such memories can lead to absent or inaccurate reward expectations and, thus, ill-informed motivations and decisions. This is characteristic of the cognitive symptoms underlying substance use disorder and many other psychiatric conditions, including obsessive-compulsive disorder, compulsive overeating, schizophrenia, depression, anxiety, autism, and even aspects of neurodegenerative disease Hogarth et al., 2013; Morris et al., 2015; Seymour and Dolan, 2008; Alves et al., 2014; Gleichgerrcht et al., 2010; Hogarth et al., 2013; Dayan, 2009; Voon et al., 2015; Heller et al., 2018; Chen et al., 2015; Huys et al., 2015; Culbreth et al., 2016. Thus, my broad goal here is to discuss recent findings.

Table 1. Key findings.

Pathway	Stimulus-Outcome	Action-outcome	Incentive value	Pavlovian-to-instrumental transfer	Pavlovian responses	Instrumental choice	Incentive value
BLA	Necessary Sias et al., 2021						
IOFC	Necessary Sias et al., 2021						
mOFC	Necessary Sias et al., 2021						

Pavlovian-to-instrumental transfer refers to outcome-selective Pavlovian-to-instrumental transfer; X, not necessary; ?, no evidence known to the author currently in the literature.
on the neuronal systems that support outcome-specific, appetitive, associative memory and its influence on decision making.

In recent years, our understanding of the neuronal circuits of appetitive associative learning and decision making has grown dramatically. There has been considerable work on the bidirectional connections between the basolateral amygdala and orbitofrontal cortex. I review recent discoveries made about the function of this circuit using sophisticated behavioral approaches to diagnose the content of appetitive memory in combination with modern circuit dissection tools. Table 1 summarizes key findings. I focus on work in experimental rodents in which these tools have been most commonly applied, but provide some functional comparison to primates, including humans. I finish with emergent conclusions, hypotheses, and future directions.

Anatomy

Basolateral amygdala

The amygdala is a highly conserved, temporal lobe, limbic system structure with basolateral, central, and medial subcomponents Duvarc and Pare, 2014; Ehrlich et al., 2009; Janak and Tye, 2015; Sah et al., 2003; LeDoux, 2007. I focus on the basolateral amygdala (BLA) which consists of lateral, basal, and basomedial nuclei and contains glutamatergic principle neurons, inhibitory interneurons, and potentially GABAergic projection neurons Birnie et al., 2022. GABAergic intercalated cells flank the BLA Ehrlich et al., 2009; Marowsky et al., 2005. The BLA is heavily innervated by glutamatergic projections from sensory thalamus and cortex McDonald and Jackson, 1987; Ledoux et al., 1987; Linke et al., 2000; McDonald, 1998. It also receives midbrain monoaminergic input Sadikot and Parent, 1990; Lutas et al., 2019; Brinley-Reed and McDonald, 1999; Fallon and Cioffi, 1992. The BLA sends unidirectional projections to the central amygdala, ventral and dorsal striatum, and the bed nucleus of the stria terminalis Kelley et al., 1982; Kita and Kitai, 1990; McDonald, 1991b; McDonald, 1991a. The glutamatergic projections between the BLA and cortex are reciprocal, positioning the BLA to both influence and be influenced by cortical activity. Thus, the BLA is a site of anatomical convergence well positioned to influence the activity of the broader learning and decision-making circuit.

Orbitofrontal cortex

The orbitofrontal cortex (OFC) is a prefrontal cortical region in the ventral frontal lobe Izquierdo, 2017; Hoover and Vertes, 2011; Heilbrunner et al., 2016. OFC structure differs between rodents and primates, in particular, granular cortex (dense granular cells in layer IV), which rodents lack Preuss, 1995. But rodent OFC has anatomical and functional homology with portions of primate OFC (Heilbrunner et al., 2016; Price, 2007; Rudebeck and Izquierdo, 2022). The OFC is divided into lateral (IOFC) and medial (mOFC) subdivisions. The IOFC, as opposed to mOFC, receives inputs from sensory-processing regions Carmichael and Price, 1995; Ongür and Price, 2000. There is also evidence of distinct connectivity based on the anterior-posterior axis Barreiros et al., 2021. The OFC has many cortico-cortical connections Carmichael and Price, 1995; Ongür and Price, 2000. It also receives input from the hippocampus and midbrain Ongür and Price, 2000; Barreiros et al., 2021. The OFC is reciprocally connected with mediodorsal thalamus, hypothalamus, and amygdala Lichtenberg et al., 2021; Ongür and Price, 2000; Barreiros et al., 2021. Among the OFC outputs are critical projections to the striatum, with anatomical segregation between OFC subregions Heilbrunner et al., 2016. Thus, IOFC and mOFC are well positioned to detect associations between external and internal information and to support learning and decision making within a broad network.

Orbitofrontal cortex-basolateral amygdala circuit

Owing to their well-documented, dense, excitatory, bidirectional connections reported in both rodents and primates Malvaez et al., 2019; Lichtenberg et al., 2021; Kita and Kitai, 1990; Hoover and Vertes, 2011; Heilbrunner et al., 2016; Barreiros et al., 2021; Reppucci and Petrovich, 2016; Lichtenberg et al., 2017; Morecraft et al., 1992, the BLA and OFC are long-standing collaborators. Both IOFC and mOFC send dense intermingled projections across the anterior-posterior extent of the BLA Malvaez et al., 2019. The BLA also projects back to both IOFC and mOFC, with IOFC-projectors being slightly more prominent in anterior BLA Lichtenberg et al., 2021. The BLA pathways to mOFC
and IOFC are largely distinct, with very few BLA neurons collateralizing to both IOFC and mOFC Lichtenberg et al., 2021. Thus, the BLA and OFC are well positioned to engage in bidirectional communication.

Basolateral amygdala function

The BLA is widely known as a processing hub for emotionally significant events. Such events are major contributors to learning and decision making and, thus, the BLA is a good entry point to understanding the neuronal circuits of such processes. The BLA’s function in aversive emotional learning has been well demonstrated. BLA lesion or inactivation severely disrupts the acquisition and expression of conditional fear and active avoidance Davis and Smith, 1992; Fanselow and LeDoux, 1999; Killcross et al., 1997; Lázaro-Muñoz et al., 2010. By contrast, such manipulations have little or no effect on general measures of appetitive Pavlovian (e.g. goal- or cue approach responses to reward-predictive stimuli) or instrumental (e.g. pressing a lever that earns reward) behavior Wassum and Izquierdo, 2015. This has led to the notion that the BLA is a brain locus for fear.

But the BLA does way more than fear. Null effects of BLA manipulations can arise because behavior can be guided by multiple different control systems. Humans and other animals can encode the relationship between a Pavlovian cue and the specific outcome it predicts (stimulus-outcome), as well as an instrumental action and the outcome it earns (action-outcome). These associative memories contribute to an internal model of the structure of an environment that enables predictions and inferences for flexible, advantageous decision making Delamater, 2012; Fanselow and Wassum, 2015; Dayan and Daw, 2008; Balleine, 2019; Doll et al., 2012, for example, considering which dinner option to choose based on current circumstances. However, this is not the only type of memory we form. For example, we and other animals also form habits Balleine, 2019; Sutton and Barto, 2022; Malvaez and Wassum, 2018, response policies performed relatively automatically based on their past success without forethought of their consequences, e.g., always order pizza on Fridays. Specific predicted outcomes are not encoded in this memory system Balleine, 2019; Sutton and Barto, 2022; Malvaez and Wassum, 2018. General Pavlovian or instrumental behaviors do not typically require any consideration of their specific outcome, so they can be controlled by either system. Thus, BLA lesion or inactivation could shift behavioral control strategy without any ostensible effect on behavior.

Using tests that reveal the content of associative memory and, thus, behavioral control system guiding behavior, the BLA has been shown to play a fundamental role in encoding, updating, and retrieving detailed, outcome-specific reward memories critical for the predictions and inferences that support flexible decision making Wassum and Izquierdo, 2015; Chesworth and Corbit, 2017; Balleine and Killcross, 2006. The most canonical of these tests is outcome-selective devaluation. When making a decision, we consider the current value of the potential outcome. If using a stimulus-outcome or action-outcome memory, we will reduce performance of a behavior when its outcome has been devalued by selective satiation or pairing with illness. This will occur even without the opportunity to learn that the particular behavior leads to a devalued outcome. Memories of the predicted reward allow inferences about how advantageous it would be to pursue. For example, you can infer Mexican might not be great for dinner if you just had tacos for lunch (sensory-specific satiety) or you will avoid ordering sushi from a particular restaurant if you became ill the last time you had it (conditioned taste aversion). Similarly, animals will press less on a lever that earns a devalued outcome relative to a valuable reward, or will show fewer food-port approach responses to a cue signaling a devalued outcome relative to a valuable one. Although BLA lesion or inactivation does not disrupt general Pavlovian or instrumental behavior, it does render these behaviors insensitive to post-training devaluation of the predicted outcome Parkes and Balleine, 2013; Hatfield et al., 1996; Johnson et al., 2009; Murray and Izquierdo, 2007; Málková et al., 1997; West et al., 2012; Balleine et al., 2003; Coutureau et al., 2009; Pickens et al., 2003. Thus, the BLA is important for stimulus-outcome and action-outcome memory.

The BLA also helps to learn the value of a reward and adapt decisions accordingly. A reward’s value as an incentive is dependent on current motivational state. For example, a food item has a high value and incentivizes robust pursuit when hungry, but low value supporting less pursuit when sated. This incentive information is encoded during experience in a relevant motivational state (i.e. incentive learning; Wassum et al., 2011; Dickinson and Balleine, 1994; Dickinson and Balleine, 1990; Balleine et al., 1995). For example, if a friend serves you pizza when you are hungry, you will learn that
pizza is delicious and satisfying (i.e. valuable) when you are hungry and will be more likely to order it yourself when hungry again in the future. Likewise, after being trained sated to lever press for a particular food reward, non-continent experience with that food while hungry will cause animals to increase pressing when they are hungry subsequently. The converse is also true; after experiencing a particular food when sated, animals will decrease actions that earn that food when they are sated again in the future. The BLA mediates such incentive learning Malvaez et al., 2019; Parkes and Balleine, 2013; Wassum et al., 2009; Wassum et al., 2011.

In both these cases, the value manipulation is outcome specific. For example, having tacos for lunch will make you less inclined to select them for dinner, but will not affect the desirability of pizza or sushi. What you learn about the pizza at your friend's house is unlikely to change your decisions for sushi or tacos. Likewise, changes to the value of one food reward (e.g. sucrose) by feeding to satiety, pairing with malaise, or experiencing it while hungry, will primarily affect behaviors for that specific and not other foods (e.g. pellets; Dickinson and Balleine, 1994). Thus, the BLA is critical for detailed, outcome-specific reward memory.

Further supporting BLA function in outcome-specific reward memory is evidence that the BLA is required for outcome-specific Pavlovian-to-instrumental transfer (PIT) Ostlund and Balleine, 2008; Corbit and Balleine, 2005; Hatfield et al., 1996; Blundell et al., 2001; Malvaez et al., 2015. Subjects first learn that two different cues each predict a unique food reward (e.g., pellets or sucrose) and, separately, that they can press on one lever to earn one of the foods and another lever to earn the other. The PIT test assesses the ability to use the cues to mentally represent which specific reward is predicted and use this to motivate choice of the action known to earn that same unique reward Kruse et al., 1983; Colwill and Motzkin, 1994; Gilroy et al., 2014; Corbit and Balleine, 2016. This is consistent with the notion that the subjects use the cue to infer which reward is more likely to be available and, thus, which action is most advantageous. For example, a billboard advertising an appetizing pizza on your way home may make you think about pizza and order it for dinner instead of tacos or sushi. Pre- or post-training BLA lesions will disrupt the expression of outcome-specific PIT Ostlund and Balleine, 2008; Corbit and Balleine, 2005; Hatfield et al., 1996; Blundell et al., 2001; Malvaez et al., 2015. BLA lesion will not, however, prevent cues from motivating behavior more broadly. For example, the BLA is not needed for general Pavlovian-to-instrumental transfer in which, absent the opportunity to seek out the specific predicted reward, a cue will invigorate performance of an action that earns a different reward (although typically one of the same class, e.g. food) Corbit and Balleine, 2005. Thus, the BLA is critical when adaptive appetitive behavior requires a detailed representation of a specific predicted outcome Janak and Tye, 2015; Wassum and Izquierdo, 2015; Balleine and Killcross, 2006.

Recent evidence indicates that the BLA contributes to both forming and using outcome-specific reward memories. During appetitive Pavlovian conditioning, BLA principle neurons are robustly activated at the time of stimulus-outcome pairing (reward delivery during the cue) Sias et al., 2021; Crouse et al., 2020. This activity is necessary for outcome-specific, appetitive associative memories to be formed, so that they can later influence decision making Sias et al., 2021. Similarly, BLA glutamate activity tracks the encoding of a reward's value Malvaez et al., 2019. BLA NMDA Malvaez et al., 2019; Parkes and Balleine, 2013 and mu opioid receptors Wassum et al., 2009; Wassum et al., 2011 support such incentive learning. Thus, the BLA is activated by rewarding events and this is necessary to link the specific reward to the associated cue and to encode its incentive value. Following conditioning, the BLA is activated by reward-predictive cues Sias et al., 2021; Malvaez et al., 2015; Lutas et al., 2019; Crouse et al., 2020; Schoenbaum et al., 1998; Tye and Janak, 2007; Paton et al., 2006; Belova et al., 2008; Sugase-Miyamoto and Richmond, 2005; Beyeler et al., 2016; Schoenbaum et al., 1999; Muramoto et al., 1993; Tye et al., 2008; Beyeler et al., 2018. During the cue, transient outcome-specific BLA glutamate signals selectively precede and predict choice of the action that earns the predicted reward Malvaez et al., 2015. Correspondingly, the BLA is required to use outcome-specific stimulus-outcome memories to guide adaptive behavior and choice (e.g. express PIT) Ostlund and Balleine, 2008; Malvaez et al., 2015; Johnson et al., 2009; Lichtenberg and Wassum, 2017. BLA glutamate activity prior to bouts of reward seeking Wassum et al., 2012 also reflects the learned value of the predicted reward Malvaez et al., 2019; Wassum et al., 2012 and activation of both BLA NMDA and AMPA receptors is necessary for value-guided reward-seeking Malvaez et al., 2019. Thus, the BLA is activated by cues and during
decision making and this activity is critical for using information about the predicted reward to guide choice.

These data indicate that the BLA mediates both the formation of outcome-specific reward memories and the use of these memories to inform decision making. They also suggest the BLA is important for using states to predict information about associated rewards. Stimulus-outcome memories are state-dependent: the external cue sets the state predicting a specific rewarding outcome. Incentive value is gated by motivational state. Internal physiological conditions dictate the incentive value of a particular reward. Thus, BLA activity is critical for linking specific rewarding events to the states, defined by both by external cues and internal physiological signals, with which they are associated and for using those memories to guide adaptive reward pursuit choices.

Other recent evidence also supports a role for the BLA in appetitive learning and decision making. For example, optical inhibition of BLA neurons disrupts risky decision making Orsini et al., 2017. When applied prior to choice, BLA inhibition will decrease choices of the larger risky reward Orsini et al., 2017, likely by preventing the subject from retrieving the incentive value of that large reward. This can also occur with less temporally-specific BLA inactivation Ghods-Sharifi et al., 2009. When applied during outcome experience, BLA inhibition will promote risky decision making, perhaps by preventing encoding of the punishing outcome Orsini et al., 2017 or by forcing learning to occur via another, less punishment-sensitive system. Indeed, post-training BLA lesions will also increase risky choice Zeeb and Winstanley, 2011; Orsini et al., 2015 and chemogenetic BLA inhibition prevents learning from positive or negative outcomes to update cue-response strategies Stolyarova et al., 2019.

The BLA also encodes information relevant for learning and using state-dependent, outcome-specific reward memories. BLA neurons can signal the unsigned Roesch et al., 2010; Esber et al., 2012, positive, or negative Esber and Holland, 2014 prediction errors that support learning. Populations of BLA neurons can reflect taste-specific gustatory information Fontanini et al., 2009 and respond selectively to unique food rewards Liu et al., 2018; Courtin et al., 2022, which could support the generation of outcome-specific reward memories. In both rodents and primates, BLA neuronal responses to predictive cues can encode the value of the predicted reward Schoenbaum et al., 1998; Paton et al., 2006; Belova et al., 2008; Jenison et al., 2022; Saddoris et al., 2005; Belova et al., 2007, inferences about reward magnitude Lucantonio et al., 2015, prospectively reflect goal plans Hernádi et al., 2015, and predict behavioral choices Grabenhorst et al., 2012. BLA neurons also encode state-dependent exploratory behaviors in distinct neuronal ensembles Fustiñana et al., 2021. Thus, during decision making BLA activity reflects critical state-dependent decision variables. The extent to which BLA neuronal ensembles encode outcome-specific predictions during decision making is an exciting open question.

Both reward learning and expectation signals have also been detected in human amygdala Elliott et al., 2004; Hampton et al., 2007; Yacubian et al., 2006, with some evidence that these occur in BLA in particular Prévost et al., 2011. BLA activity in humans also relates to the ability to use an internal model of environmental structure to guide decision making Prévost et al., 2013, including the ability to use cues to generate the outcome-specific reward expectations that influence PIT Prévost et al., 2012. Thus, BLA function in learning and using outcome-specific reward memories is conserved in humans.

Orbitofrontal cortex → basolateral amygdala pathway

The OFC is a likely candidate for supporting the BLA’s function in forming state-dependent, outcome-specific reward memories and using them to guide decision making. It has been implicated in both learning and using information about rewarding events to inform flexible decision making Wilson et al., 2014; Schuck et al., 2016; Bradfield and Hart, 2020; Shields and Gremel, 2020; Sharpe et al., 2019; Wikenheiser and Schoenbaum, 2016; Rudebeck and Rich, 2018; Gardner and Schoenbaum, 2020. Like the BLA, OFC lesion or inactivation does not disrupt general Pavlovian conditional approach responses but does render this behavior insensitive to devaluation of the predicted outcome Ostlund and Balleine, 2007; Pickens et al., 2003; Gallagher et al., 1999; Pickens et al., 2005. The OFC is also required to use cues to both bias choice in the PIT test Ostlund and Balleine, 2007 and to make inferences about available reward Jones et al., 2012. Thus, much like the BLA, the OFC is critical for using cues to represent future possible rewards and inform predictions and inferences.
about how advantageous a particular course of action might be. Such findings have contributed to the notion that the OFC is a critical element in the brain’s cognitive map Wilson et al., 2014; Schuck et al., 2016; Bradfield and Hart, 2020; Shields and Gremel, 2020; Sharpe et al., 2019; Wikenheiser and Schoenbaum, 2016; Rudebeck and Rich, 2018, an internal model of the associative relationships (e.g. stimulus-outcome) within an environment required for mentally simulating future potential outcomes to inform decisions. The OFC may achieve this function via its interactions with the BLA. Indeed, as described above, the BLA also mediates the formation and use of the state-dependent reward memories that contribute to cognitive maps. Both IOFC and mOFC participate in appetitive behavior, though have unique functions Izquierdo, 2017; Bradfield and Hart, 2020; Wallis, 2011. Accordingly, recent evidence indicates unique functions of IOFC→BLA and mOFC→BLA projections.

Lateral orbitofrontal cortex → basolateral amygdala pathway

The IOFC→BLA pathway helps to link specific rewarding events to predictive states. Optical inhibition of IOFC→BLA projections during stimulus-outcome pairing attenuates the encoding of specific stimulus-outcome memories as evidenced by the inability of subjects to later use those memories to allow cues to bias choice behavior during a PIT test Sias et al., 2021. Similarly, inhibition of IOFC→BLA projections attenuates encoding of the positive incentive value of a particular food reward Malvaez et al., 2019. Thus, IOFC→BLA pathway activity mediates encoding of state-dependent, outcome-specific reward memories. IOFC→BLA activity is also sufficient to drive subjects to assign a high value to a particular reward Malvaez et al., 2019. Pairing optical stimulation of IOFC→BLA projections with non-contingent experience of a food reward causes animals to subsequently seek out that specific food, but not other foods, more vigorously. Thus, IOFC→BLA pathway activity is capable, at least in part, of elevating the incentive value of a specific reward, information that later informs reward-seeking decisions. Together these data indicate that IOFC via its direct projections to the BLA mediates the ability to link rewarding events to the external and internal states with which they are associated and, thus, regulates the formation of an internal model, aka cognitive map, that enables the predictions and inferences needed for flexible, advantageous decision making.

This is consistent with evidence that IOFC is important for learning about rewarding events. The IOFC mediates incentive learning Baltz et al., 2018 and helps link cues to their value in dynamic learning environments Noonan et al., 2010; Walton et al., 2010; Chau et al., 2015; Noonan et al., 2017. It is also consistent with evidence, across species, that IOFC can encode high-dimensional, outcome-specific representations of predicted rewards and their value Wilson et al., 2014; Rudebeck and Rich, 2018; McDannald et al., 2014; Howard et al., 2015; Klein-Flügge et al., 2013; Gottfried et al., 2003; Howard and Kahnt, 2017; Rich and Wallis, 2016; Farovik et al., 2015; Lopatina et al., 2015; Suzuki et al., 2017; Rudebeck and Murray, 2014. IOFC neurons respond to rewarding events during learning to signal reward expectations that may support learning in downstream structures, such as the BLA Stalnaker et al., 2018b; Stalnaker et al., 2018a. Indeed, OFC lesion disrupts expected outcome and decision-related activity in BLA Wassum et al., 2012; Saddoris et al., 2005; Lucantoni et al., 2015.

IOFC→BLA projections do not mediate the retrieval of reward memories or use of this information to guide decisions. Chemogenetic inhibition of IOFC→BLA projections does not disrupt value-guided reward seeking Malvaez et al., 2019 or the ability to use reward cues to bias choice (express PIT) Lichtenberg et al., 2017. Stimulation of this pathway will not promote reward seeking Malvaez et al., 2019. Thus, IOFC→BLA projections mediate the encoding, but not retrieval or use of state-dependent reward memories. This is not to imply that the IOFC does not participate in using reward memories to guide decision making. It does Ostlund and Balleine, 2007; Pickens et al., 2005; Jones et al., 2012; Howard et al., 2020; West et al., 2018. This function is likely to be achieved via projections other than those to the BLA, for example to the striatum Hoover and Vertes, 2011; Gremel and Costa, 2018; Gremel et al., 2016; Gourley et al., 2013.

This conclusion seemingly contradicts evidence that optical inhibition of IOFC→BLA projections disrupts cue-induced reinstatement of cocaine seeking Arguello et al., 2017, ostensibly a task in which cue-drug memory influences drug seeking. This effect could be due to unintended inhibition of collateral projections to other brain regions. However, it is more easily reconciled by considering that cue-induced reinstatement contains a learning process: action reinforcement by drug cues. This conditional reinforcement could be mediated by IOFC→BLA projections.
The IOFC→BLA pathway also supports performance in more dynamic learning and decision scenarios. For example, IOFC→BLA lesion influences performance during reversal learning, in which subjects must learn, integrate, and use information about reward availability and option value [Groman et al., 2019a]. The above evidence from tasks that parse learning and retrieval processes suggests that IOFC→BLA projections may primarily support reward learning in such dynamic scenarios.

Medial orbitofrontal cortex → basolateral amygdala pathway

In contrast to the IOFC→BLA pathway, mOFC→BLA projections do regulate the influence of reward memories over decision making. mOFC→BLA projection activity is critical for using environmental cues to know which specific reward is predicted and the current value of that option. Chemogenetic inactivation of this pathway disrupts the ability to use reward cues to guide choice during an outcome-specific PIT test and prevents subjects from adapting cue responses following selective devaluation of the predicted reward [Lichtenberg et al., 2021]. mOFC→BLA projections are also necessary for using the previously encoded incentive value of an expected reward to ensure its adaptive pursuit [Malvaez et al., 2019]. Stimulation of this pathway can even facilitate the ability to use a subthreshold reward value memory to incentivize seeking of a specific reward [Malvaez et al., 2019]. Thus, mOFC→BLA projections mediate the use of the current state, defined both by external cues and internal physiological signals, to inform decision making. In each above experiment, the tests were non-reinforced, forcing subjects to use their memories of the predicted rewards to guide decisions. When such memories are not required or have not been encoded, mOFC→BLA projection activity is dispensable [Malvaez et al., 2019]. mOFC→BLA projections, therefore, mediate the use of state-dependent, outcome-specific reward memories to guide decisions.

This is consistent with evidence that mOFC itself participates in appetitive decision making [Malvaez et al., 2019; Bradfield et al., 2015; Bradfield et al., 2018; Gourley et al., 2016; Noonan et al., 2010; Noonan et al., 2017; Stopper et al., 2014; Münster and Huber, 2018; Dalton et al., 2016; Bray et al., 2010; Rudebeck and Murray, 2011; Yamada et al., 2018] and is especially important for using knowledge of the structure of the environment to make predictions about currently unobservable events [Bradfield et al., 2015]. It also accords with data that mOFC represents general information about expected events that is used to make decisions based on value estimations or comparisons [Suzuki et al., 2017; Rudebeck and Murray, 2011; Lopatina et al., 2016; Burton et al., 2014; Kennerley et al., 2011; Plassmann et al., 2010; Levy and Glimcher, 2011; Lopatina et al., 2017; Padoa-Schioppa and Assad, 2006; Pritchard et al., 2005]. These data suggest that mOFC’s function in representing future events to guide decision making is, at least in part, achieved via direct projections to BLA.

Although critical for using state-dependent reward memories to guide decision making, the mOFC→BLA pathway is not needed to encode these memories. Chemogenetic inactivation of mOFC→BLA projections does not disrupt incentive learning, and optical activation of this pathway will not promote value encoding [Malvaez et al., 2019]. Thus, IOFC→BLA and mOFC→BLA pathway function in forming and using reward memories is doubly dissociable. This specialization of OFC→BLA pathways for learning associative information (IOFC→BLA) v. using it to make decisions (mOFC→BLA) is consistent with similar evidence of IOFC v. mOFC encoding v. decision functions in non-human primates and humans [Noonan et al., 2010; Noonan et al., 2017]. The primate IOFC has been shown to be involved in credit assignment [Noonan et al., 2017; Rudebeck and Murray, 2011] and value updating following devaluation [Murray et al., 2015]. Whereas primate mOFC has been implicated in value-guided decision making [Noonan et al., 2017; Rudebeck and Murray, 2011]. These functions are achieved, at least in part, via projections to the BLA. Together these data indicate that the IOFC→BLA pathway mediates the formation of state-dependent, outcome-specific reward memories and the mOFC→BLA pathway facilitates the use of this information to guide adaptive reward-related decisions.

Basolateral amygdala → orbitofrontal cortex pathway

Projections back to the OFC are likely candidates for the BLA output pathways responsible for using state-dependent, outcome-specific appetitive memories to guide decision making. Indeed, the OFC-BLA circuit is bidirectional and the OFC has been implicated using knowledge of the associative
relationships within an environment to inform the predictions and inferences necessary for flexible decision making [Wilson et al., 2014; Schuck et al., 2016; Bradfield and Hart, 2020; Shields and Gremel, 2020; Sharpe et al., 2019; Wikenheiser and Schoenbaum, 2016; Rudebeck and Rich, 2018; Gardner and Schoenbaum, 2020]. Pathway-specific BLA→OFC manipulations indicate these functions are facilitated, in part, via input from the BLA and are distinct between the BLA→IOFC and BLA→mOFC pathways.

Basolateral amygdala → lateral orbitofrontal cortex pathway
BLA→IOFC projections mediate the ability to use state-dependent, outcome-specific stimulus-outcome memories to guide reward-seeking decisions. Chemogenetic inactivation of this pathway disrupts the ability to use reward cues to guide choice behavior during a PIT test and to adapt cue responses following devaluation of a predicted reward [Lichtenberg et al., 2017]. IOFC→BLA projections are particularly important when predicted outcomes are not readily observable and memories of environmental relationships must be used to guide decisions [Lichtenberg et al., 2017]. Thus, BLA→IOFC projections are critical for using stimulus-outcome memories to inform decision making, including the identity and current desirability of the predicted reward. Whether BLA→IOFC function in value is secondary to representing reward identity (if you do not know which reward is predicted, then you cannot represent its value) is a critical open question.

BLA→IOFC projection function in using stimulus-outcome memories to enable cues to inform decision making is consistent with evidence that the BLA itself is activated by reward-predictive cues [Sias et al., 2021; Malvaez et al., 2015; Lutas et al., 2019; Crouse et al., 2020; Schoenbaum et al., 1998; Tye and Janak, 2007; Paton et al., 2006; Belova et al., 2008; Sugase-Miyamoto and Richmond, 2005; Beyeler et al., 2016; Schoenbaum et al., 1999; Muramoto et al., 1993; Tye et al., 2008; Beyeler et al., 2018] and necessary for using outcome-specific, stimulus-outcome memories to guide adaptive behavior and choice [Ostlund and Balleine, 2008; Malvaez et al., 2015; Johnson et al., 2009; Lichtenberg and Wassum, 2017]. This BLA function is mediated, at least in part, via BLA→IOFC projections. IOFC is critical for using stimulus-outcome memories to inform flexible reward-related behaviors and choice [Ostlund and Balleine, 2007; Pickens et al., 2003; Gallagher et al., 1999; Pickens et al., 2005] and can encode high-dimensional rewarding representations [Wilson et al., 2014; Rudebeck and Rich, 2018; McDannald et al., 2014; Howard et al., 2015; Klein-Flügge et al., 2013; Gottfried et al., 2003; Howard and Kahnt, 2017; Rich and Wallis, 2016; Farovik et al., 2015; Loapatina et al., 2015; Suzuki et al., 2017; Rudebeck and Murray, 2014]. This is likely achieved via direct input from the BLA. Indeed, BLA lesion will disrupt outcome encoding in IOFC [Schoenbaum et al., 2003b].

The IOFC and BLA are well positioned to collaborate in a bidirectional circuit to form (IOFC→BLA) and subsequently use (BLA→IOFC) outcome-specific reward memories. This was recently tested using a pathway-specific, serial, circuit disconnection, achieved by multiplexing unilateral optogenetic inhibition of IOFC→BLA projections during stimulus-outcome learning with unilateral, contralateral chemogenetic inhibition of BLA→IOFC projections during the use of those memories at a PIT test. This indicated that the outcome-specific associative information that requires IOFC→BLA projections to be encoded also requires activation of BLA→IOFC projections to be used for decision making. Thus, IOFC→BLA→IOFC is a functional learning and decision circuit. IOFC→BLA projections regulate the encoding of state-dependent, outcome-specific reward memories and BLA→IOFC projections mediate the subsequent use of these memories for adaptive decision making.

Basolateral amygdala → medial orbitofrontal cortex pathway
The BLA→mOFC pathway also mediates BLA function in using reward memories to influence decisions, but differently than the BLA→IOFC pathway. Unlike BLA→IOFC, chemogenetic inactivation of BLA→mOFC projections does not disrupt the expression of outcome-specific PIT [Lichtenberg et al., 2021]. The BLA→mOFC pathway is, therefore, not required to retrieve outcome-specific stimulus-outcome memories or use them to influence decision making. BLA→mOFC inactivation does, however, prevent subjects from adapting cue responses following devaluation of the predicted reward [Lichtenberg et al., 2021]. Thus, the BLA→mOFC pathway is critical for using cues to represent the value, but not identity, of future rewards. This value information is critical for inferring how advantageous it would be to respond to the cue.
BLA→mOFC pathway function in adapting behavior based on the current value of a predicted reward is consistent with evidence that the BLA itself is needed for the sensitivity of cue responses to devaluation. Ostlund and Balleine, 2008; Johnson et al., 2009 and with evidence that BLA neuronal responses to cues can represent the value of the predicted reward. Schoenbaum et al., 1998; Paton et al., 2006; Belova et al., 2008; Saddoris et al., 2005; Belova et al., 2007. This function is achieved, at least in part, via BLA→mOFC projections. mOFC is itself critical, across species, for appetitive decision making. Malvaez et al., 2019; Bradfield et al., 2015; Bradfield et al., 2018; Noonan et al., 2010; Noonan et al., 2017; Stopper et al., 2014; Münster and Hauber, 2018; Dalton et al., 2016, especially when the value of rewarding options must be mentally simulated. Bradfield et al., 2015; Bray et al., 2010 and/or compared Gourley et al., 2016; Noonan et al., 2010; Stopper et al., 2014; Rudebeck and Murray, 2011; Yamada et al., 2018. mOFC neuronal activity can represent a cue-reward memory. Namboodiri et al., 2019 and unobservable future states. Lopatina et al., 2017; Elliott Wimmer and Büchel, 2019. The mOFC can also represent general information about expected events to make value estimations. Suzuki et al., 2017; Rudebeck and Murray, 2011; Lopatina et al., 2016; Burton et al., 2014; Kennerley et al., 2011; Plassmann et al., 2010; Levy and Glimcher, 2011; Lopatina et al., 2017; Padoa-Schioppa and Assad, 2006; Pritchard et al., 2005. BLA→mOFC projections might facilitate the ability to use cues to generate value estimations in mOFC, at least for deciding whether or not to respond to a cue.

The function of the BLA→mOFC pathway is different from the mOFC→BLA pathway. mOFC→BLA projections are critical for using predictive states to know which specific reward is predicted and the current value of that option. Malvaez et al., 2019; Lichtenberg et al., 2021. BLA→mOFC projections are only needed for the latter. Lichtenberg et al., 2021. Whether BLA and mOFC function in a bidirectional circuit, like the IOFC-BLA circuit, is an important open question. For example, do mOFC→BLA projections enable BLA→mOFC projection function in using cues to adapt behavior based on the value of the predicted reward, or vice versa? This is plausible, if not likely, given that both mOFC→BLA and BLA→mOFC projections are needed for this behavior. But the BLA→mOFC pathway is unlikely to contribute to mOFC→BLA function in using cues to predict reward identity. This mOFC→BLA function is likely achieved via another BLA output, perhaps that to IOFC, which is also needed for such predictions. Lichtenberg et al., 2017. Another important open question is whether the BLA→mOFC pathway mediates the use of internal state-dependent incentive value, like the mOFC→BLA pathway. BLA→mOFC projections have thus far only been studied in the context of external states.

Together these data indicate that BLA outputs to the OFC mediate the ability to use stimulus-outcome memories to influence adaptive reward choices. The BLA→IOFC pathway allows one to use cues to predict specific available rewards, whereas BLA→mOFC pathway enables predictions of the value of forthcoming events. The extent to which BLA→IOFC and BLA→mOFC pathways participate in encoding reward memories is a ripe question for future investigation.

What the orbitofrontal cortex – basolateral amygdala circuit does not do

Although the boundary conditions of OFC-BLA function remain to be fully delineated, emerging evidence suggests the OFC-BLA circuit may specialize in learning about and using states to make predictions about available rewards and their value, information that supports flexible decision making.

The OFC-BLA circuit is not necessary for the acquisition or expression of general conditional response policies. Inactivation of neither OFC→BLA, nor BLA→OFC pathways prevents subjects from approaching the goal location (e.g. food-delivery port) during a cue. Lichtenberg et al., 2021; Lichtenberg et al., 2017. This is consistent with evidence that neither the BLA, IOFC, nor mOFC is needed for this behavior. Corbit and Balleine, 2005; Hatfield et al., 1996; Malvaez et al., 2015; Bradfield et al., 2015; Bradfield et al., 2018; Everitt et al., 2000; Parkinson et al., 2000; Morse et al., 2020. Although influenced by positive outcome valence, such general cue responses do not require an outcome expectation and can be executed via a previously learned response policy that relies instead on past success. The BLA→OFC circuit is not necessary for stamping in or expressing such a response policy and, therefore, is not simply necessary for assigning valence to predictive events. Rather the BLA→OFC circuit is critical when one must use cues to access a representation of the predicted reward to support reward pursuit or decision making.
Thus far, the OFC-BLA circuit has not been found to be important for accessing knowledge of the specific consequences of an instrumental action (i.e. action-outcome memories). OFC-BLA pathway manipulations do not affect general instrumental activity, consistent with evidence from BLA and OFC lesions.

Ostlund and Balleine, 2008; Corbit and Balleine, 2005; Murray and Izquierdo, 2007; Balleine et al., 2003; Ostlund and Balleine, 2007 and BLA-OFC disconnection. Fiuzat et al., 2017; Baxter et al., 2000; Zeed and Winstanley, 2013. BLA→IOFC, BLA→mOFC, or mOFC→BLA pathway inactivation also does not disrupt sensitivity of instrumental choice to devaluation of one of the predicted rewards Lichtenberg et al., 2021; Lichtenberg et al., 2017. Thus, these pathways are not needed to retrieve or use simple action-outcome memories. Both BLA and mOFC are required for this Ostlund and Balleine, 2008; Johnson et al., 2009; Balleine et al., 2003; Bradfield et al., 2015; Bradfield et al., 2018; Gourley et al., 2016. They likely achieve this function via alternate projections, perhaps those to the striatum Corbit et al., 2013; Gremel and Costa, 2018; Gremel et al., 2016; Morse et al., 2020; van Holstein et al., 2020, a region heavily implicated in action-outcome memory Malvaez and Wassum, 2018; Malvaez et al., 2018; Malvaez, 2020; Yin et al., 2005. It remains unknown whether IOFC→BLA projections are important for sensitivity of instrumental choice to devaluation. This is unlikely because IOFC→BLA projections are not needed for other tasks that require action-outcome and outcome value information Malvaez et al., 2019; Lichtenberg et al., 2017 and this pathway has generally been found to be primarily important for learning, rather than using, reward memories. The IOFC is also itself not required for sensitivity of instrumental choice to devaluation Parkes et al., 2018; Ostlund and Balleine, 2007. The IOFC is, however, involved in action-outcome memory. It becomes needed for sensitivity of instrumental choice to devaluation after action-outcome contingencies have been switched Parkes et al., 2018. This nuanced function in action-outcome memory may rely on IOFC function in state-dependent memory. After the contingencies change, one must use the latent state to know which set of action-outcome contingencies are at play. This may also explain why IOFC-BLA disconnection will disrupt choice behavior following a degradation of one action-outcome contingency Zimmermann et al., 2017. Thus, a critical open question is whether components of the OFC-BLA circuit contribute to action-outcome memory by facilitating the use of states to retrieve current action-outcome relationships.

That OFC-BLA circuitry is not necessary for the sensitivity of instrumental choice to outcome devaluation (at least in its simple form) ostensibly contradicts evidence from BLA-OFC disconnections Fiuzat et al., 2017; Baxter et al., 2000; Zeed and Winstanley, 2013. Using cross lesions to disconnect OFC and BLA, these studies demonstrate OFC-BLA connectivity is critical for adapting choices following post-training devaluation of the predicted reward. There are three ways to reconcile these findings. First, cross lesions will disconnect both direct and multisynaptic OFC-BLA connections. The broader effects of OFC-BLA disconnection could be via the multisynaptic connections. Second, cross lesions disrupt the devaluation learning process, which is spared with more temporally-restricted manipulations. This may account for their effects on later choice. Indeed, IOFC→BLA projections mediate reward value learning Malvaez et al., 2019. Third, although involving instrumental choices, the disconnection tasks included cues (e.g. objects, visual stimuli) associated with the actions and outcomes, such that OFC-BLA disconnection could have impacted the ability to use those cues to guide instrumental performance, similar to pathway-specific OFC circuit function Lichtenberg et al., 2021; Lichtenberg et al., 2017.

That the mOFC→BLA pathway is required for adjusting instrumental reward seeking based on the hunger-state-dependent incentive value of the predicted reward Malvaez et al., 2019 but not for sensitivity of instrumental choice to sensory-specific satiety devaluation Lichtenberg et al., 2021 is another seemingly contradictory set of results. This discrepancy may be explained by differences in the type of value learning. Incentive value is a long-term, consolidated, motivational state-dependent memory Dickinson and Balleine, 1994. Subjects learn the value of the reward in a particular state (e.g. hunger) and then 24 hr or more later are tested for their ability to use that information to guide their reward seeking. By contrast, the influence of sensory-specific satiety devaluation is typically tested immediately, with no opportunity for sleep or consolidation. The mOFC→BLA pathway is, therefore, important for using consolidated memories of the relationship between an internal physiological state and an expected outcome’s value to guide reward-pursuit decisions. This interpretation is consistent with mOFC→BLA function in the expression of outcome-specific PIT and sensitivity of Pavlovian conditional responses to devaluation, both of which require the use of consolidated external...
cue state memories to know which specific rewards are predicted. Thus, the mOFC→BLA pathway is important when previously learned states, whether internal or external, are needed to generate reward predictions. This implies that the mOFC→BLA pathway is recruited to support decision making with memory consolidation. This could be further tested by comparing mOFC→BLA pathway activity and necessity in instrumental choice following sensory-specific satiety devaluation with Balleine and Dickinson, 1998b and without the opportunity for memory consolidation.

Orbitofrontal cortex – basolateral amygdala circuit function

The OFC-BLA circuit is critical for learning and memory processes that support decision making. There is a tendency to think BLA is primarily important for assigning general valence to predictive cues Pignatelli and Beyeler, 2019; Smith and Torregrossa, 2021; O’Neill et al., 2018; Correia and Goosens, 2016; Tye, 2018. It is. But, the above data reveal that the BLA, with support from OFC, helps to link information beyond valence, sensory-specific features of rewarding events to the external and internal states with which they are associated. And then, via its outputs to OFC to use that information to enable the predictions and inferences needed for flexible decision making. Thus, the BLA, via its connections with the OFC, is a critical contributor to decision making. The OFC has long been thought to support adaptive decision making. The data above reveal that many of these functions are supported via direct connections with BLA.

Each pathway in the OFC-BLA circuit makes a unique contribution to its overall function in forming state-dependent, outcome-specific reward memories and using this information to inform the predictions and inferences that guide reward-seeking decisions (Figure 1). When a rewarding event is experienced, activity in the lOFC→BLA pathway helps to link that specific reward to predictive states. For example, while eating the pizza you ordered via delivery, the lOFC→BLA pathway helps you link that specific pizza to the associated logos in the food-delivery app and to learn that meal is desirable when you are hungry. Later, activity in the mOFC→BLA pathway helps you link that information to guide decision making Sias et al., 2021; Malvaez et al., 2019; Lichtenberg et al., 2021. When you are hungry and see those logos in the future, the mOFC→BLA pathway helps you know pizza might be a good dinner option. Activity in BLA neurons projecting to the OFC enable state-dependent reward memories to guide decision making. BLA→IOFC projections contribute to using detailed representations of expected rewards to support decision making Sias et al., 2021; Lichtenberg et al., 2017. This pathway helps you to know what specific food is predicted by the restaurant logos (e.g. New York style pepperoni pizza). BLA→mOFC projections mediate the ability to adapt behavior based on the
value of the predicted upcoming event Lichtenberg et al., 2021. This pathway helps you to know how desirable that pizza is, making you less likely to order it if you just had pizza for lunch. Together this circuit helps to form the associative memories we need to build an internal model of the world that we can later use to generate predictions about forthcoming events and inferences about how advantageous a certain course of action might be.

Hypotheses and future directions

Recent work on the OFC-BLA circuit has opened many questions critical for understanding the function of this circuit and the neuronal substrates of appetitive associative memory and decision making more broadly.

Neuronal encoding

Perhaps the most obvious question is the precise information content conveyed by each component of the OFC-BLA circuit and how it is used to shape neuronal encoding and representations in the receiving structure. Bulk activity recordings of each pathway will provide a useful entry point. Such investigations would benefit from multisite recordings to assess information flow across the circuit. A full understanding of OFC-BLA circuit function will, however, require cellular resolution investigation of each pathway’s activity during reward learning and decision making. These will, ideally, include pathway-specific manipulations to ask how each pathway contributes to the neuronal encoding downstream. These studies will have strong footing in the deep existing literature on the neuronal activity patterns of OFC and BLA Wassum and Izquierdo, 2015; Sharpe et al., 2019; Wikenheiser and Schoenbaum, 2016; Gardner and Schoenbaum, 2020; Wallis, 2011; O’Neill et al., 2018; Bissonette and Roesch, 2016; Salzman et al., 2007; Morrison and Salzman, 2010; Knudsen and Wallis, 2022; Enel et al., 2021; Sosa et al., 2021; Rich et al., 2018; Murray and Rudebeck, 2018; Averbeck and Costa, 2017; Sharpe and Schoenbaum, 2016. Several exciting hypotheses have emerged from these hub recordings and the pathway-specific functional investigations described above. Broadly, individual and/or ensembles of neurons in the OFC-BLA circuit are likely to be activated predictive states and to convey multifaceted information about predicted rewards, including their sensory-specific features and value, that is important for decision making. IOFC→BLA neurons might be activated by rewarding events during learning and encode information important for linking the sensory-specific and value features of those rewards to predictive states. mOFC→BLA neurons may carry information about reward-predictive states that relates to choices made in those states. BLA→IOFC projection neurons may show selective responses to unique reward-predictive cues and encode identifying features of the predicted reward and/or be required for such encoding in IOFC. BLA→mOFC projection neurons are also likely to be activated by reward-predictive cues and to either encode themselves or to facilitate encoding in mOFC of expected reward value.

Mechanism

Of course, there are many levels at which mechanism can, and should, be explored. One possibility is that BLA cells that project to the IOFC and mOFC undergo synaptic, morphological, and/or molecular changes during learning to enable their function in state-dependent reward memory. Indeed, the ionotropic glutamate receptors known to regulate BLA synaptic plasticity Bauer et al., 2002; Müller et al., 2009 are required for encoding and using reward memories to guide decision making. An enticing hypothesis is that these neuroplastic changes are, at least in part, driven by IOFC→BLA input, and that mOFC→BLA inputs access activity in these neurons to mediate the ability to use predictive states to guide decision making. IOFC and mOFC axons are intermingled in the BLA Malvaez et al., 2019, but whether they make synaptic contact with the same cells or networks of cells is unknown. More broadly, information on direct and multisynaptic connections between each pathway is needed to better understand the extent and mechanisms of their interactions. The role of OFC and BLA interneurons will be important in this regard. It will also be important to explore the role of memory system consolidation in the neuroplastic changes that enable OFC-BLA circuit function. Although OFC-BLA projections are known to be excitatory, glutamatergic neurons Malvaez et al., 2019; Kita and Kitai, 1990; Hoover and Vertes, 2011; Heilbrunner et al., 2016; Barreiros et al., 2021; Reppucci and Petrovich, 2016; Morecraft et al., 1992, little else is known about them. Whether the pathways
between the OFC and BLA include molecularly-unique subpopulations and whether such potential populations are functionally distinct are ripe questions for future mechanistic investigation.

Refining function

The tasks that have defined OFC-BLA circuit function all involved decisions in novel situations. For example, the PIT test is the first time subjects choose between the two actions and, moreover, those actions are unreinforced. Faced with these novel circumstances, subjects must use their knowledge of stimulus-outcome relationships to infer what to do. The incentive learning test requires subjects to pursue a reward for the first time while hungry. Following outcome-specific devaluation, the external environment is unchanged, but the internal state is new, the predicted reward is devalued. The OFC-BLA circuit is critical for the learning and memory processes that support decisions in these novel situations. Is this circuitry also involved in even more novel situations that require one to construct the value of a predicted reward on-the-fly using its attributes? Studies in humans suggest so. IOFC can represent an expected outcome’s constituent features Suzukiet al., 2017. The outcome’s value can be decoded from this information and is integrated to compute value in more medial cortical regions, including mOFC Suzukiet al., 2017. Is this circuitry involved in more well-practiced decision scenarios? Recent theories suggest perhaps not Gardner and Schoenbaum, 2020. OFC is needed for the learning that supports decision making, but not always for decision making itself Constantinople et al., 2019; Miller et al., 2020; Keiflin et al., 2013; Gardner et al., 2020. For example, neither IOFC nor mOFC are required for well-practiced, but still model-based, decisions Gardner et al., 2020. The extent to which novelty, inference, and on-the-fly decision making are critical features of OFC-BLA circuit function is a ripe question for future investigation.

Another critical question is whether the mOFC—BLA, BLA—IOFC, and BLA—mOFC pathways participate in memory retrieval v. the use of those memories to support decision making. That is, accessing memories of predicted rewards so they can be mentally represented v. using those representations to support the predictions and inferences that enable decisions. Given the BLA’s long-standing role in emotional memory Janak and Tye, 2015; Wassum and Izquierdo, 2015; LeDoux, 2000, it is a reasonable speculation that the BLA supports decision making, at least in part, via a memory retrieval process. One view is that memories are stored in the activity of ensembles of neurons Poo et al., 2016; Josselyn et al., 2015; Tonegawa et al., 2015. The BLA is one hub for this. Indeed, during fear conditioning the neuronal ensemble representing a cue becomes similar to that of the predicted aversive event. Thus, the BLA encodes the aversive association. These neurons are reactivated during memory retrieval Reijmers et al., 2007; Gore et al., 2015 and regulate the behavioral expression of that learning Han et al., 2009; Yiu et al., 2014. The information content of these BLA memory traces is not well known. Nonetheless, these findings suggest learning and memory retrieval processes might subserve BLA function and interactions with the OFC in decision making. However, the OFC is not required for well-practiced model-based decisions Gardner et al., 2020 that, presumably, require memory retrieval, but not on-the-fly inferences about option value. Thus, whereas the BLA may be important for retrieving reward memories, its projection to the OFC may be primarily important for using that information for the inferences that support decisions in novel situations. The BLA’s function in encoding and, likely, retrieving stimulus-outcome memories could serve other decision processes, including more practiced decisions, via alternate pathways including to the dorsal and ventral striatum and other cortical regions.

Many BLA-OFC pathway investigations capitalized on experimental control to parse reward learning from the use of this information to guide decisions. This enabled dissociation of function in learning (e.g. IOFC—BLA) v. using (mOFC—BLA) reward memories. But learning and decision making are often intertwined. For example, when cue- and action-reward contingencies are volatile. Reversal learning is one such dynamic scenario in which OFC, BLA, and IOFC—BLA projections have been implicated Groman et al., 2019a; Schoenbaum et al., 2002; Schoenbaum et al., 2003a; Burke et al., 2009; Izquierdo et al., 2013; Rudebeck and Murray, 2008; Churchwell et al., 2009; Chudasama et al., 2009; Butter et al., 1963; Boulougouris et al., 2007; Manning et al., 2021. More information is needed on the contribution of the OFC-BLA circuit to learning and decision making in dynamic and volatile situations.

Here I focused on state-outcome associative structures. These are important, but simple, components of the internal model of associative relationships that exist in the world. Environments often...
contain more complex and sequential structures. Particular actions are often needed to transition between states in these structures. For example, there are many intervening steps between seeing the pizza restaurant logo in a food-delivery app and actually eating the pizza. You select the pizza and place it in your cart, then check out, receive a notification that your order was placed, then picked up, then delivered, at which point you gather your meal, open the packaging, and then, finally, enjoy the pizza. Whether and how the OFC-BLA circuit participates in the encoding and use of complex sequential associations and the actions required to transition between states are important open questions. Evidence of hub function across species suggests the OFC-BLA circuit is likely involved. Human OFC activity can reflect multistage Pavlovian stimulus-stimulus contingencies Pauli et al., 2019 and encode a cognitive map of a complex state space Schuck et al., 2016. Non-human primate amygdala neurons can reflect plans in a multistage task Hernádi et al., 2015. In rodents, OFC dopamine tone correlates with model-based behavior in a multistage decision task Miller et al., 2020; Groman et al., 2019b and OFC inactivation disrupts model-based planning in such a task Miller et al., 2017. Even putatively single-step associative structures involving food reward (e.g. tone-pellet), such as those in which the OFC-BLA circuit was implicated above, actually include multiple state transitions. The tone signals the food, which can be more immediately signaled by tone offset and/or the subtle click of the pellet dispenser, food-port entry is required to transition from the state predicting the pellet to actually consuming it, the taste of the pellet itself predicts subsequent satiation. Thus, an important question for future investigation is the extent to which the OFC-BLA circuit contributes to encoding and using multistage associative models that are characteristic of model-based reinforcement learning and planning. In such investigations it will be important to evaluate whether OFC-BLA circuitry encodes each step in a multistage association and/or links initial predictive states to rewarding outcomes further away in the state space. Both navigational (e.g. maze) and multistage operant tasks will benefit these investigations Behrens et al., 2018. Of course, OFC-BLA circuit activity may not perfectly map onto existing model-based reinforcement learning structures, but such structures will provide a crucial theoretical framework.

Generalizing function

Another important question is whether OFC-BLA circuit function in encoding state-dependent, outcome-specific memories and using such memories to guide decision making applies to the aversive domain. It does seem plausible, if not likely. Like the BLA, both IOFC and mOFC contribute to aversive behavior Orsini et al., 2015; Plassmann et al., 2010; Zimmermann et al., 2018; Ma et al., 2020; Verharen et al., 2019; Turner et al., 2021; Jean-Richard-Dit-Bressel and McNally, 2016; Ishikawa et al., 2020; Shih and Chang, 2021; Metereau and Dreher, 2015; O’Doherty et al., 2001; Fullana et al., 2016. IOFC activity influences sensitivity to punishment. In some cases, it is important for guiding choices away from punishment Jean-Richard-Dit-Bressel and McNally, 2016. In others, it is important for pursuing reward despite risk of punishment Orsini et al., 2015; Ishikawa et al., 2020. mOFC is critical for sensitivity to punishment Ma et al., 2020; Verharen et al., 2019, especially when it is infrequent requiring subjects to rely on their memory of the aversive outcome Ma et al., 2020. Both IOFC and mOFC are also needed to use contexts to know when aversive events are and are not expected Shih and Chang, 2021. Thus, OFC is involved in making choices based on both potential appetitive and aversive outcomes. Whether the OFC-BLA circuit mediates state-dependent, outcome-specific aversive memories and their influence over decision making is, thus, a ripe question. To answer this question, it will be important to assess outcome-specific aversive memories. This has been procedurally difficult. Classic outcome revaluation tasks from Rescorla, 1973; Rescorla, 1974 and aversive PIT Lewis et al., 2013; Campese, 2021 will be a good start. These investigations will also benefit from consideration of the procedural differences between aversive and appetitive learning. For example, aversive learning typically involves far fewer training trials and days than appetitive learning. Aversive shocks can be immediately delivered, whereas appetitive outcomes typically have to be collected from a delivery port. There may also be inherent differences in the nature of the outcomes. Foods produce a taste and later satiation. Aversive events produce an immediate aversive experience that can have longer-lasting emotional consequences. Such differences are likely to contribute to the neuronal circuitry involved.

The BLA and OFC have also been implicated in learning about different types of rewarding events Wassum and Izquierdo, 2015; Rosenberger et al., 2019; Walum and Young, 2018; Song et al.,
2021. So, it will be also interesting to explore the extent to which the OFC-BLA circuit supports the encoding and use state-dependent, outcome-specific memories of non-food rewards, including social interactions and addictive substances. These investigations will also benefit from new methods to access memory content, state dependency, and inference.

Of course, it will also be important to uncover how the OFC-BLA circuit works with broader cortical-thalamic-basal ganglia systems to support learning and decision making. For example, it will be interesting to know whether the BLA supports other prefrontal cortex regions in their contributions to decision making in a manner similar to its support of OFC. Likewise, it will be important to know what other subcortical regions support the OFC in learning and decision making. BLA and OFC interactions at the level of the striatum, a major interface for action execution, is also an important avenue for investigation. In understanding the broader circuit, it will help to know whether the architecture exposed here relates to other bidirectional corticolimbic circuits. For example, are there other corticolimbic systems with separate learning v. retrieval input channels or top-down learning signals that drive bottom up retrieval?

Implications for learning and decision models

These neurobiological investigations have implications for our understanding of the psychological processes that control learning and decision making.

A reward’s identity can be neurobiologically dissociable from its value. When the BLA→mOFC pathway is inactivated subjects can use cues to represent the identity of the predicted reward (needed to express outcome-specific PIT) but cannot represent its value (needed for sensitivity of the conditional response to devaluation). Thus, reward identity and value are likely separate nodes in the associative structure that animals use to allow cues to generate predictions for adaptive behavior and choice.

External and internal states may share some associative coding structure. The states that access information about reward identity and value can be both external (i.e. environmental cues) and internal (e.g. physiological, homeostatic signals). The encoding and use of both forms of memory have partially overlapping neuronal substrates: iOFC→BLA and mOFC→BLA pathways. There are neurobiological similarities in how we learn that a logo predicts a specific food and that a particular food will be tasty when we are hungry. Thus, there may be associative coding structures that support both state types. External and internal state information could converge in the BLA-OFC circuit or could be coded in different streams, perhaps defined by different cell types, within the circuit. Regardless, external and internal states are poised to interact in the OFC-BLA circuit. Indeed, the BLA receives and integrates information about external cues and internal homeostatic states Livneh et al., 2017.

Implications for maladaptive learning and decision making

Deficits in the ability to learn and/or use information about expected rewarding outcomes can lead to ill-informed decisions and this is characteristic of the cognitive symptoms that can underlie several psychiatric illnesses, including substance use disorder Hogarth et al., 2013; Dayan, 2009; Voon et al., 2015; Schoenbaum et al., 2016; Everitt and Robbins, 2016; Volkow et al., 2013, depression Seymour and Dolan, 2008; Heller et al., 2018; Chen et al., 2015; Huys et al., 2015, anxiety Alves et al., 2014, and schizophrenia Morris et al., 2015; Culbreth et al., 2016. These conditions have also been associated with altered activity in BLA and OFC as well as OFC-BLA connectivity Ressler and Mayberg, 2007; Price and Drevets, 2010; Sladky et al., 2015; Liu et al., 2014; Passamonti et al., 2012; Goldstein and Volkow, 2011; Tanabe et al., 2009; Linke et al., 2012; Hahn et al., 2011; Xie et al., 2021. Thus, OFC-BLA circuit dysfunction might underlie some of the learning and decision-making symptoms of substance use disorder and other mental illnesses. The above data exposed vulnerabilities in the circuit whereby disrupted activity might cause maladaptive decision making. For example, one may be able to know which rewards are available but unable to understand their current value (e.g., BLA→mOFC dysfunction). This could lead to continued drug pursuit despite negative consequences or, conversely, lack of motivation for actions that earn valuable outcomes, despite knowledge of those outcomes (e.g. consuming healthy food or going to work). Or one might have learned about a predicted reward but be unable to use that memory to inform choices in the moment (mOFC→BLA dysfunction). For example, one may have learned about the negative consequences of a drug, or positive effects of eating healthy foods, but be unable to use that information when
presented with drug or food cues, leading to poor decisions. Further understanding of the function of the OFC-BLA circuit in both adaptive and maladaptive decision making is likely to aid our understanding and treatment of substance use disorder and other mental illnesses.

Conclusion

The OFC-BLA circuit helps us to encode detailed, outcome-specific memories of rewarding events and to access those memories under the right circumstances to enable the predictions and inferences that support adaptive decision making. There is much to be learned about the precise function of each pathway, information flow through the circuit, and the extent to which the circuit function generalizes to other types of outcomes. More mechanistic insight is clearly needed. Yet, the recent investigations make clear that the OFC-BLA circuit is a critical contributor to learning and memory processes that underlie the considerations we use to make daily decisions and that are disrupted in myriad psychiatric diseases.

Acknowledgements

We acknowledge the very helpful discussions and feedback from Dr. Melissa Sharpe, Dr. Melissa Malvaez, Dr. Alicia Izquierdo, and PhD candidate Ana Sias. Funding: This work was supported by grant DA035443 from NIDA.

Additional information

Funding

Funder	Grant reference number	Author
National Institutes of Health	DA035443	Kate M Wassum

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions

Kate M Wassum, Conceptualization, Funding acquisition, Investigation, Writing – original draft, Writing – review and editing

Author ORCIDs

Kate M Wassum http://orcid.org/0000-0002-2635-7433

References

Alvares GA, Balleine BW, Guastella AJ. 2014. Impairments in goal-directed actions predict treatment response to cognitive-behavioral therapy in social anxiety disorder. PLOS ONE 9:e94778. DOI: https://doi.org/10.1371/journal.pone.0094778, PMID: 24728288

Arguelles AA, Richardson BD, Hall JL, Wang R, Hodges MA, Mitchell MP, Stuber GD, Rossi DJ, Fuchs RA. 2017. Role of a lateral orbital frontal cortex-basolateral amygdala circuit in cue-induced cocaine-seeking behavior. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 42:727–735. DOI: https://doi.org/10.1038/npp.2016.157, PMID: 27534268

Averbeck BB, Costa LD. 2017. Motivational neural circuits underlying reinforcement learning. Nature Neuroscience 20:505–512. DOI: https://doi.org/10.1038/nn.4506, PMID: 28352111

Balleine BW, Garner C, Gonzalez F, Dickinson A. 1995. Motivational control of heterogeneous instrumental chains. Journal of Experimental Psychology 21:203–217. DOI: https://doi.org/10.1037/0097-7403.21.3.203

Balleine BW, Dickinson A. 1998a. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropsychopharmacology 37:407–419. DOI: https://doi.org/10.1016/s0002-8908(98)00033-1, PMID: 9704982

Balleine BW, Dickinson A. 1998b. The role of incentive learning in instrumental outcome revaluation by sensory-specific satiety. Animal Learning & Behavior 26:46–59. DOI: https://doi.org/10.3758/BF03199161

Balleine BW, Killcross AS, Dickinson A. 2003. The effect of lesions of the basolateral amygdala on instrumental conditioning. The Journal of Neuroscience 23:666–675. DOI: https://doi.org/10.1523/JNEUROSCI.23-02-00666.2003, PMID: 12533626
Burton AC, Kashtelyan V, Bryden DW, Roesch MR. 2014. Increased firing to cues that predict low-value reward in the medial orbitofrontal cortex. Neuroscience 460:53–68. DOI: https://doi.org/10.1016/j.neuroscience.2021.02.017, PMID: 33609638

Bauer EP, Schae GE, LeDoux JE. 2002. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. The Journal of Neuroscience 22:5239–5249. DOI: https://doi.org/10.1523/JNEUROSCI.22-12-05239.2002, PMID: 12077219

Baxter MG, Parker A, Lindner CC, Izquierdo AD, Murray EA. 2000. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. The Journal of Neuroscience 20:4311–4319. DOI: https://doi.org/10.1523/JNEUROSCI.20-11-04311.2000, PMID: 10818166

Beyeler A, Namburi P, Glober GF, Simonnet C, Calhoon GG, Conyers GF, Luck R, Wildes CP, Tye KM. 2018. Organization of valence-encoding and projection-defined neurons in the basolateral amygdala. Cell Reports 22:905–918. DOI: https://doi.org/10.1016/j.celrep.2017.12.097, PMID: 29386133

Birnie MT, Short AK, de Carvalho GB, Pham AL, Itoga CA, Xu X, Chen LY, Mahler SV, Chen Y, Balleine BW. 2018. Inferring action-dependent outcome representations depends on neuronal subpopulations in the rat basolateral amygdala. Neuron 104:47–62. DOI: https://doi.org/10.1016/j.neuron.2018.09.008, PMID: 30243849

Bissonnette GB, Roesch MR. 2016. Neurophysiology of reward-guided behavior: correlates related to predictions, value, motivation, errors, attention, and action. Current Topics in Behavioral Neurosciences 27:199–230. DOI: https://doi.org/10.1016/j.cbtb.2015.03.001, PMID: 26276036

Blundell P, Hall G, Killcross S. 2001. Lesions of the basolateral amygdala disrupt selective aspects of reinforcer representation in rats. The Journal of Neuroscience 21:9018–9026. DOI: https://doi.org/10.1523/JNEUROSCI.21-22-09018.2001, PMID: 11698812

Boulougouris V, Dalley JW, Robbins TW. 2007. Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behavioural Brain Research 179:219–228. DOI: https://doi.org/10.1016/j.bbr.2007.02.005, PMID: 17337305

Bradfield LA, Dezfouli A, van Holstein M, Chieng B, Balleine BW. 2015. Medial orbitofrontal cortex mediates outcome retrieval in partially observable task situations. Neuron 88:1268–1280. DOI: https://doi.org/10.1016/j.neuron.2015.10.044, PMID: 26627310

Bradfield LA, Hart G, Balleine BW. 2018. Inferring action-dependent outcome representations depends on anterior but not posterior medial orbitofrontal cortex. Neurobiology of Learning and Memory 155:463–473. DOI: https://doi.org/10.1016/j.nlm.2018.09.008, PMID: 30243849

Bradfield LA, Hart G. 2020. Rodent medial and lateral orbitofrontal cortices represent unique components of cognitive maps of task space. Neuroscience and Biobehavioral Reviews 108:287–294. DOI: https://doi.org/10.1016/j.neubiorev.2019.11.009, PMID: 31743727

Bray S, Shimono S, O’Doherty JP. 2010. Human medial orbitofrontal cortex is recruited during experience of imagined and real rewards. Journal of Neurophysiology 103:2506–2512. DOI: https://doi.org/10.1152/jn.01030.2009, PMID: 20200121

Brisley MB, Scrase J, Correll J, Brown PL, Schoenbaum G. 2009. Orbitofrontal inactivation impairs reversal of pavlovian learning by interfering with “disinhibition” of responding for previously unrewarded cues. The European Journal of Neuroscience 30:1941–1946. DOI: https://doi.org/10.1111/j.1460-9568.2009.06992.x, PMID: 19912335

Burton AC, Kashleyan V, Bryden DW, Roesch MR. 2014. Increased firing to cues that predict low-value reward in the medial orbitofrontal cortex. Cerebral Cortex 24:3310–3321. DOI: https://doi.org/10.1093/cercor/bht189, PMID: 23901075
Butter CM, Mishkin M, Rosvold HE. 1963. Conditioning and extinction of a food-rewarded response after selective ablations of frontal cortex in rhesus monkeys. Experimental Neurology 7:65–75. DOI: https://doi.org/10.1016/0014-4886(63)90094-3, PMID: 14017412

Campese VD. 2021. The lesser evil: pavlovian-instrumental transfer & aversive motivation. Behavioural Brain Research 412:113431. DOI: https://doi.org/10.1016/j.bbr.2021.113431, PMID: 34175357

Carmichael ST, Price JL. 1995. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. The Journal of Comparative Neurology 363:615–641. DOI: https://doi.org/10.1002/cne.903630408, PMID: 8847421

Chau BKH, Sallet J, Papageorgiou GK, Noonan MP, Bell AH, Walton ME, Rushworth MFS. 2015. Contrasting roles for orbitofrontal cortex and amygdala in credit assignment and learning in macaques. Neuron 87:1106–1118. DOI: https://doi.org/10.1016/j.neuron.2015.08.018, PMID: 26335649

Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I. 2015. Reinforcement learning in depression: A review of computational research. Neuroscience and Biobehavioral Reviews 55:247–267. DOI: https://doi.org/10.1016/j.neubiorev.2015.05.005, PMID: 25979140

Chesworth R, Corbit L. 2017. In the amygdala: where emotions shape perception, learning and memories. Ferry B (Ed). Intech. IntechOpen. p. 305–325.

Chudasama Y, Passetti F, Rhodes SEV, Lopian D, Desai A, Robbins TW. 2009. Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behavioural Brain Research 146:105–119. DOI: https://doi.org/10.1016/j.bbr.2003.09.020, PMID: 14643464

Churchwell JC, Morris AM, Heurtelou NM, Kesner RP. 2009. Interactions between the prefrontal cortex and amygdala during delay discounting and reversal. Behavioral Neuroscience 123:1185–1196. DOI: https://doi.org/10.1037/a0017734, PMID: 20001103

Colwill RM, Motzkin DK. 1994. Encoding of the unconditioned stimulus in pavlovian conditioning. Animal Learning & Behavior 22:384–394. DOI: https://doi.org/10.3758/BF03209158

Constantinople CM, Piet AT, Bibawi P, Akrami A, Brody CD. 2019. Lateral orbitofrontal cortex promotes trial-by-trial learning of risky, but not spatial, biases. eLife 8:e49744. DOI: https://doi.org/10.7554/eLife.49744, PMID: 31692447

Corbit LH, Balleine BW. 2005. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. The Journal of Neuroscience 25:962–970. DOI: https://doi.org/10.1523/JNEUROSCI.4507-04.2005, PMID: 15673677

Corbit LH, Leung BK, Balleine BW. 2013. The role of the amygdala-striatal pathway in the acquisition and performance of goal-directed instrumental actions. The Journal of Neuroscience 33:17682–17690. DOI: https://doi.org/10.1523/JNEUROSCI.3271-13.2013, PMID: 24198361

Corbit LH, Balleine BW. 2016. Learning and motivational processes contributing to pavlovian-instrumental transfer and their neural bases: dopamine and beyond. Current Topics in Behavioral Neurosciences 27:259–289. DOI: https://doi.org/10.1007/7854_2015_388, PMID: 26695169

Correia SS, Goosens KA. 2016. Input-specific contributions to valence processing in the amygdala. Learning & Memory 23:534–543. DOI: https://doi.org/10.1101/lm.037887.114, PMID: 27634144

Courtin J, Bitterman Y, Müller S, Hinz J, Hagihara KM, Müller C, Lüthi A. 2022. A neuronal mechanism for learning & behavior. eLife 2022;11:e80926. DOI: https://doi.org/10.7554/eLife.80926

Couture E, Marchand AR, Di Scala G. 2009. Goal-directed responding is sensitive to lesions to the prelimbic cortex or basolateral nucleus of the amygdala but not to their disconnection. Behavioral Neuroscience 123:443–448. DOI: https://doi.org/10.1037/a0014818, PMID: 19331467

Crouse RB, Kim K, Batchelor HM, Girardi EM, Kamaletdinova R, Chan J, Rajebhosale P, Pittenger ST, Role LW, Talmage DA, Jing M, Li Y, Gao X-B, Mineur YS, Picciotto MR. 2020. Acetylcholine is released in the basolateral amygdala or basolateral nucleus of the amygdala but not to their disconnection. Behavioral Neuroscience 36:1996–2006. DOI: https://doi.org/10.1016/j.jneurosci.3366-15.2016, PMID: 26865622

Davis JD, Smith GP. 1992. Analysis of the microstructure of the rhythmic tongue movements of rats ingesting maltose and sucrose solutions. Behavioural Neuroscience 106:217–228. DOI: https://doi.org/10.1037/0735-7044.106.1.217, PMID: 1554433

Dayan P, Daw ND. 2008. Decision theory, reinforcement learning, and the brain. Cognitive, Affective & Behavioral Neuroscience 8:429–453. DOI: https://doi.org/10.3758/CABN.8.4.429, PMID: 19033240

Dayan P. 2009. Dopamine, reinforcement learning, and addiction. Pharmacopsychiatry 42 Suppl 1:S56–S65. DOI: https://doi.org/10.1055/s-0028-1124107, PMID: 1943556

Delamater AR, Oakeshott S. 2007. Learning about multiple attributes of reward in pavlovian conditioning. Annals of the New York Academy of Sciences 1104:1–20. DOI: https://doi.org/10.1196/annals.1390.008, PMID: 17344542

Delamater AR. 2012. On the nature of CS and US representations in pavlovian learning. Learning & Behavior 40:1–23. DOI: https://doi.org/10.3758/s13420-011-0036-4, PMID: 21786019

Wassum. eLife 2022;11:e80926. DOI: https://doi.org/10.7554/eLife.80926

19 of 29
Dickinson A, Balleine B. 1990. Motivational control of instrumental performance following a shift from thirst to hunger. The Quarterly Journal of Experimental Psychology. B, Comparative and Physiological Psychology 42:413–431 PMID: 2284440.

Dickinson A, Balleine BW. 1994. Motivational control of goal-directed action. Animal Learning & Behavior 22:1–18. DOI: https://doi.org/10.3758/BF03199951

Doll BB, Simon DA, Daw ND. 2012. The ubiquity of model-based reinforcement learning. Current Opinion in Neurobiology 22:1075–1081. DOI: https://doi.org/10.1016/j.conb.2012.08.003, PMID: 22959354

Duvard S, Pare D. 2014. Amygdala microcircuits controlling learned fear. Neuron 82:966–980. DOI: https://doi.org/10.1016/j.neuron.2014.04.042, PMID: 24908482

Ehrlich I, Humeau Y, Grenier F, Cicchetti S, Herry C, Löthi A. 2009. Amygdala inhibitory circuits and the control of fear memory. Neuron 62:757–771. DOI: https://doi.org/10.1016/j.neuron.2009.05.026, PMID: 19555645

Elliott R, Newman JL, Longe OA, William Deakin JF. 2004. Instrumental responding for rewards is associated with enhanced neuronal response in subcortical reward systems. NeuronImage 21:984–990. DOI: https://doi.org/10.1016/j.neuroimage.2003.10.010, PMID: 15006665

Elliott Wimmer G, Büchel C. 2019. Learning of distant state predictions by the orbitofrontal cortex in humans. Neuron 108:3328–3337. DOI: https://doi.org/10.1523/JNEUROSCI.1351-19.2019, PMID: 31033689

Elliott Wimmer G, Büchel C. 2019. Learning of distant state predictions by the orbitofrontal cortex in humans. Neuron 108:3328–3337. DOI: https://doi.org/10.1523/JNEUROSCI.1351-19.2019, PMID: 31033689

Enel P, Perkins AQ, Rich EL. 2021. Heterogeneous value coding in orbitofrontal populations. Behavioral Neuroscience 135:245–254. DOI: https://doi.org/10.1037/bne0000457, PMID: 34060877

Esber GR, Roesch MR, Bali S, Trageser J, Bissonette GB, Puche AC, Holland PC, Schoenbaum G. 2012. Attention-related pearce-kay-effect signal in basolateral amygdala require the midbrain dopaminergic system. Biological Psychiatry 72:1012–1019. DOI: https://doi.org/10.1016/j.biopsych.2012.05.023, PMID: 22763185

Fallon J, Ciofi P. 1992. Distribution of monoamines within the amygdala. Aggleton JP (Ed). The Amygdala: A Functional Analysis. Academic Press. p. 97–114.

Fanselow MS, LeDouc JE. 1999. Why we think plasticity underlying pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:229–232. DOI: https://doi.org/10.1016/s0896-6273(00)80775-8, PMID: 10399930

Fanselow MS, Wassum KM. 2010. The origins and organization of vertebrate pavlovian conditioning. Cold Spring Harbor Perspectives in Biology a021717. DOI: https://doi.org/10.1101/cshperspect.a021717, PMID: 26552417

Farovik A, Place RJ, McKenzie S, Porter B, Munro CE, Eichenbaum H. 2015. Orbitofrontal cortex encodes memories within value-based schemas and represents contexts that guide memory retrieval. The Journal of Neuroscience 35:8333–8344. DOI: https://doi.org/10.1523/JNEUROSCI.034-15.2015, PMID: 26019346

Fluza T, Rhodes SEV, Murray EA. 2017. The role of orbitofrontal-amygdala interactions in updating action-outcome valuations in macaques. The Journal of Neuroscience 37:2463–2470. DOI: https://doi.org/10.1523/JNEUROSCI.1839-16.2017, PMID: 28148725

Fontanini A, Grossman SE, Figueroa JA, Katz DB. 2009. Distinct subtypes of basolateral amygdala taste neurons reflect palatability and reward. The Journal of Neuroscience 29:2486–2495. DOI: https://doi.org/10.1523/JNEUROSCI.3898-08.2009, PMID: 19244523

Fullana MA, Harrison BJ, Soriano-Mas C, Vervliet B, Cardoner N, Ávila-Parcet A, Radua J. 2016. Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies. Molecular Psychiatry 21:500–508. DOI: https://doi.org/10.1038/mp.2015.88, PMID: 26122585

Fustiñana MS, Eichlsberger T, Bouwmeester T, Bitterman Y, Löthi A. 2021. State-dependent encoding of exploratory behaviour in the amygdala. Nature 592:267–271. DOI: https://doi.org/10.1038/s41586-021-03301-z, PMID: 33658711

Gallagher M, McMahan RW, Schoenbaum G. 1999. Orbitofrontal cortex and representation of incentive value in associative learning. The Journal of Neuroscience 19:6610–6614. DOI: https://doi.org/10.1523/JNEUROSCI.19-15-06610.1999, PMID: 10419498

Gardner MPH, Sanchez D, Conroy JC, Wikenheiser AM, Zhou J, Schoenbaum G. 2020. Processing in lateral orbitofrontal cortex is required to estimate subjective preference during initial, but not established, economic choice. Neuron 108:526–537. DOI: https://doi.org/10.1016/j.neuron.2020.08.010, PMID: 32888408

Gardner MPH, Schoenbaum G. 2020. The Orbitofrontal Cartographer. [PsyArXiv]. DOI: https://doi.org/10.31234/osf.io/4mrxy

Ghods-Sharifi S, St Onge JR, Floresco SB. 2009. Fundamental contribution by the basolateral amygdala to different forms of decision making. The Journal of Neuroscience 29:5251–5259. DOI: https://doi.org/10.1523/JNEUROSCI.0315-09.2009, PMID: 19386921

Gilroy KE, Everett EM, Delamater AR. 2014. Response-outcome versus outcome-response associations in pavlovian-to-instrumental transfer: effects of instrumental training context. International Journal of Comparative Psychology 27:585–597. DOI: https://doi.org/10.46867/ijcp.2014.27.04.02, PMID: 26028812
Gleichgerricht E, Ibáñez A, Roca M, Torralva T, Manes F. 2010. Decision-making cognition in neurodegenerative diseases. Nature Reviews. Neurology 6:611–623. DOI: https://doi.org/10.1038/nrneurol.2010.148, PMID: 201045795

Goldstein RZ, Volkow ND. 2011. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews. Neuroscience 12:652–669. DOI: https://doi.org/10.1038/nrn3119, PMID: 22011681

Gore F, Schwartz EC, Brangers BC, Aladi S, Stujenske JM, Likhite E, Russo MJ, Gordon JA, Salzman CD, Axel R. 2015. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 162:134–145. DOI: https://doi.org/10.1016/j.cell.2015.06.027, PMID: 26140594

Gottfried JA, O’Doherty J, Dolan RJ. 2003. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:1104–1107. DOI: https://doi.org/10.1126/science.1087919, PMID: 12934011

Gourley SL, Olevska A, Zimmermann KS, Ressler KJ, Dileo RJ, Taylor JR. 2013. The orbitofrontal cortex regulates outcome-based decision-making via the lateral striatum. The European Journal of Neuroscience 38:2382–2388. DOI: https://doi.org/10.1111/j.1460-9568.2013.07561.x, PMID: 23651226

Gourley SL, Zimmermann KS, Allen AG, Tyszka MJ, O’Doherty JP. 2007. Contributions of the amygdala to reward expectancy and choice signals in human prefrontal cortex. Neuron 53:734–746. DOI: https://doi.org/10.1016/j.neuron.2007.05.042, PMID: 17698008

Han J-H, Kushner SA, Hsiang H-LL, Buch T, Waisman A, Bontempi B, Neve RL, Frankland PW, Josselyn SA. 2009. Selective erasure of a fear memory. Science 323:1492–1496. DOI: https://doi.org/10.1126/science.1164139, PMID: 19286560

Hatfield T, Han JS, Conley M, Gallagher M, Holland P. 1996. Neurotoxic lesions of basolateral, but not central, amygdala interfere with pavlovian second-order conditioning and reinforcer devaluation effects. The Journal of Neuroscience 16:5256–5265. DOI: https://doi.org/10.1523/JNEUROSCI.16-16-05256.1996, PMID: 8756453

Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN. 2016. Circuit-based corticostriatal homologies between rat and primate. Comparative Neurology 376:37–52. DOI: https://doi.org/10.1002/cne.23717, PMID: 26707796

Heller AS, Stein P, Windischberger C, Weissenbacher A, Moser E, Kasper S, Lanzenberger R. 2015. Identity-specific coding of future rewards in the human orbitofrontal cortex. Nature Communications 6:7340. DOI: https://doi.org/10.1038/ncomms8364, PMID: 23921250

Groman SM, Keistler C, Keip AJ, Hammarlund E, DiLeone RJ, Pittenger C, Lee D, Taylor JR. 2019a. Orbitofrontal circuits control multiple reinforcement-learning processes. Neuron 103:734–746. DOI: https://doi.org/10.1016/j.neuron.2019.05.042, PMID: 31253468

Groman SM, Massi B, Mathias SR, Curry DW, Lee D, Taylor JR. 2019b. Neurochemical and behavioral dissections of decision-making in a rodent multistage task. The Journal of Neuroscience 39:295–306. DOI: https://doi.org/10.1523/JNEUROSCI.2219-18.2018, PMID: 30413646

Hahn A, Stein P, Windischberger C, Weissenbacher A, Spindelegger C, Moser E, Kasper S, Lanzenberger R. 2011. Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. NeuroImage 58:881–889. DOI: https://doi.org/10.1016/j.neuroimage.2011.02.064, PMID: 21356318

Hampton AN, Adolphs R, Tyszka MJ, O’Doherty JP. 2007. Contributions of the amygdala to reward expectancy and choice signals in human prefrontal cortex. Neuron 55:545–555. DOI: https://doi.org/10.1016/j.neuron.2007.07.023, PMID: 17698008

Han J-H, Kushner SA, Yiu AP, Hsiang H-LL, Buch T, Waisman A, Bontempi B, Neve RL, Frankland PW, Josselyn SA. 2009. Selective erasure of a fear memory. Science 323:1492–1496. DOI: https://doi.org/10.1126/science.1164139, PMID: 19286560

Hatfield T, Han JS, Conley M, Gallagher M, Holland P. 1996. Neurotoxic lesions of basolateral, but not central, amygdala interfere with pavlovian second-order conditioning and reinforcer devaluation effects. The Journal of Neuroscience 16:5256–5265. DOI: https://doi.org/10.1523/JNEUROSCI.16-16-05256.1996, PMID: 8756453

Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN. 2016. Circuit-based corticostriatal homologies between rat and primate. Biological Psychiatry 80:509–521. DOI: https://doi.org/10.1016/j.biopsych.2016.05.012, PMID: 27450032

Heller AS, Ezie CEC, Otto AR, Timpano KR. 2018. Model-based learning and individual differences in depression: the moderating role of stress. Behaviour Research and Therapy 111:19–26. DOI: https://doi.org/10.1016/j.brat.2018.09.007, PMID: 30273768

Hernádi I, Grabenhorst F, Schultz W. 2015. Planning activity for internally generated reward goals in monkey amygdala neurons. Nature Neuroscience 18:461–469. DOI: https://doi.org/10.1038/nn.3925, PMID: 25622146

Hegarth L, Balline BW, Corbit LH, Killcross S. 2013. Associative learning mechanisms underpinning the transition from recreational drug use to addiction. Annals of the New York Academy of Sciences 1282:12–24. DOI: https://doi.org/10.1111/j.1749-6632.2012.06768.x, PMID: 23126270

Hoover WB, Vertes RP. 2011. Projections of the medial orbital and ventral orbital cortex in the rat. The Journal of Comparative Neurology 519:3766–3801. DOI: https://doi.org/10.1002/cne.22733, PMID: 21800317

Howard JD, Gottfried JA, Tobler PN, Kahnt T. 2015. Identity-specific coding of future rewards in the human orbitofrontal cortex. PNAS 112:5195–5200. DOI: https://doi.org/10.1073/pnas.1503550112, PMID: 25848032

Howard JD, Kahnt T. 2017. Identity-specific reward representations in orbitofrontal cortex are modulated by selective devaluation. The Journal of Neuroscience 37:2627–2638. DOI: https://doi.org/10.1523/JNEUROSCI.3473-16.2017, PMID: 28159906

Howard JD, Reynolds R, Smith DE, Voss JL, Schoenbaum G, Kahnt T. 2020. Targeted stimulation of human orbitofrontal networks disrupts outcome-guided behavior. Current Biology 30:490–498. DOI: https://doi.org/10.1016/j.cub.2019.12.007, PMID: 31956033

Huys QJM, Daw ND, Dayan P. 2015. Depression: a decision-theoretic analysis. Annual Review of Neuroscience 38:1–23. DOI: https://doi.org/10.1146/annurev-neuro-071714-033928, PMID: 25705929
Ishikawa J, Sakurai Y, Ishikawa A, Mitsumura D. 2020. Contribution of the prefrontal cortex and basolateral amygdala to behavioral decision-making under reward/punishment conflict. Psychopharmacology 237:639–654. DOI: https://doi.org/10.1007/s00213-019-05398-7, PMID: 31912190

Izquierdo A, Darling C, Manos N, Pozos H, Kim C, Ostrander S, Cazares V, Stepp H, Rudebeck PH. 2013. Basolateral amygdala lesions facilitate reward choices after negative feedback in rats. The Journal of Neuroscience 33:4105–4109. DOI: https://doi.org/10.1523/JNEUROSCI.4942-12.2013, PMID: 23447618

Izquierdo A. 2017. Functional heterogeneity within rat orbitofrontal cortex in reward learning and decision making. The Journal of Neuroscience 37:10529–10540. DOI: https://doi.org/10.1523/JNEUROSCI.1678-17.2017, PMID: 29093055

Janak PH, Tye KM. 2015. From circuits to behaviour in the amygdala. Nature 517:284–292. DOI: https://doi.org/10.1038/nature14188, PMID: 25592533

Jean-Richard-Dit-Bressel P, McNally GP. 2016. Lateral, not medial, prefrontal cortex contributes to punishment and aversive instrumental learning. Learning & Memory 23:607–617. DOI: https://doi.org/10.1101/lm.042820.116, PMID: 27918280

Jenison RL, Rangel A, Oya H, Kawasaki H, Howard MA. 2022. Value encoding in single neurons in the human amygdala during decision making. Nature Neuroscience 31:331–338. DOI: https://doi.org/10.10523/JNEUROSCI.4461-10.2011, PMID: 21209219

Johnson AW, Gallagher M, Holland PC. 2009. The basolateral amygdala is critical to the expression of pavlovian and instrumental outcome-specific reinforcer devaluation effects. The Journal of Neuroscience 29:696–704. DOI: https://doi.org/10.1523/JNEUROSCI.3758-08.2009, PMID: 19158296

Jones JL, Everitt BJ. 1991. Amygdaloid and orbital prefrontal cortex in Pavlovian and instrumental choice behavior are reinforcer specific. Learning and Motivation 14:165–181. DOI: https://doi.org/10.1016/0023-9690(82)90067-7, PMID: 7070669

Kennerley SW, Behrens TEJ, Wallis JD. 2011. Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nature Neuroscience 14:1581–1589. DOI: https://doi.org/10.1038/nn.2961, PMID: 22037498

Killcross S, Robbins TW, Everitt BJ. 1997. Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature 388:377–380. DOI: https://doi.org/10.1038/41097, PMID: 9237754

Kita H, Kitai ST. 1990. Amygdaloid projections to the frontal cortex and the striatum in the rat. The Journal of Comparative Neurology 298:40–49. DOI: https://doi.org/10.1002/cne.902980104, PMID: 1698828

Klein-Flügge MC, Barron HC, Brodersen KH, Dolan RJ, Behrens TEJ. 2013. Segregated encoding of reward-identity and stimulus-reward associations in human orbitofrontal cortex. The Journal of Neuroscience 33:3202–3211. DOI: https://doi.org/10.1523/JNEUROSCI.2532-12.2013, PMID: 23407973

Knudsen EB, Wallis JD. 2022. Taking stock of value in the orbitofrontal cortex. Nature Reviews. Neuroscience 23:428–438. DOI: https://doi.org/10.1038/s41583-023-01572-7, PMID: 35468999

Kruse JM, Overmier JB, Konz WA, Rokke E. 1983. Pavlovian conditioned stimulus effects upon instrumental choice behavior are reinforcer specific. The Journal of Neuroscience 3:3202–3211. DOI: https://doi.org/10.1523/JNEUROSCI.0026-13.2013, PMID: 24089003

Lázaro-Muñoz G, LeDoux JE, Cain CK. 2010. Sidman instrumental avoidance initially depends on lateral and basolateral amygdala and is constrained by central amygdala-mediated pavlovian processes. Biological Psychiatry 67:1120–1127. DOI: https://doi.org/10.1016/j.biopsych.2009.12.002, PMID: 20110085

LeDoux JE, Ruggiero DA, Forest R, Stornetta R, Reis DJ. 1987. Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. The Journal of Comparative Neurology 298:1120–1127. DOI: https://doi.org/10.1002/cne.902980104, PMID: 1698828

Le Doux JE. 2000. The amygdala and emotion: a view through fear. Aggleton JP (Ed). The Amygdala: A Functional Analysis. Oxford University Press. p. 289–310.

LeDoux J. 2007. The amygdala. Current Biology 17:R868–R874. DOI: https://doi.org/10.1016/j.cub.2007.08.005, PMID: 17956742

Levy DJ, Glimcher PW. 2011. Comparing apples and oranges: using reward-specific and reward-general subjective value representation in the brain. The Journal of Neuroscience 31:14693–14707. DOI: https://doi.org/10.1523/JNEUROSCI.2218-11.2011, PMID: 21994386

Lewis AH, Niznikiewicz MA, Delamater AR, Delgado MR. 2013. Avoidance-based human pavlovian-to-instrumental transfer. The European Journal of Neuroscience 38:3740–3748. DOI: https://doi.org/10.1111/ejn.12377, PMID: 24118624

Lichtenberg NT, Pennington ZT, Holley SM, Greenfield VY, Cepeda C, Levine MS, Wassum KM. 2017. Basolateral amygdala to orbitofrontal cortex projections enable cue-triggered reward expectations. The Journal of Neuroscience 37:8374–8384. DOI: https://doi.org/10.1523/JNEUROSCI.0486-17.2017, PMID: 28743727
Lichtenberg NT, Wassum KM. 2017. Amygdala mu-opioid receptors mediate the motivating influence of cue-triggered reward expectations. The European Journal of Neuroscience 45:381–387. DOI: https://doi.org/10.1111/ejn.13477, PMID: 27862489

Lichtenberg NT, Sepe-Forrest L, Pennington ZT, Lamparelli AC, Greenfield VY, Wassum KM. 2021. The medial orbitofrontal cortex-basolateral amygdala circuit regulates the influence of reward cues on adaptive behavior and choice. The Journal of Neuroscience 41:7267–7277. DOI: https://doi.org/10.1523/JNEUROSCI.0901-21.2021, PMID: 34272313

Linke R, Braune G, Schweger H. 2000. Differential projection of the posterior paralaminar thalamic nuclei to the amygdaloid complex in the rat. Experimental Brain Research 134:520–532. DOI: https://doi.org/10.1007/s002200000475, PMID: 11081834

Linke J, King AV, Rietschel M, Strohmaier J, Hennerici M, Gass A, Meyer-Lindenberg A, Wessa M. 2012. Increased medial orbitofrontal and amygdala activation: evidence for a systems-level endophenotype of bipolar I disorder. The American Journal of Psychiatry 169:316–325. DOI: https://doi.org/10.1176/appi.ajp.2011.11050711, PMID: 22267184

Liu H, Tang Y, Womer F, Fan G, Lu T, Driesen N, Ren L, Wang Y, He Y, Blumberg HP, Xu K, Wang F. 2014. Differentiating patterns of amygdala-frontal functional connectivity in schizophrenia and bipolar disorder. Schizophrenia Bulletin 40:469–477. DOI: https://doi.org/10.1093/schbul/sbt044, PMID: 23599250

Liu J, Lyu C, Li M, Liu T, Song S, Tsien JZ. 2018. Neural coding of appetitive food experiences in the amygdala. J Neurophysiol 119:986–997. DOI: https://doi.org/10.1152/jn.00957.2017, PMID: 29405069

Malvaez M, Greenfield VY, Wang AS, Yorita AM, Feng L, Linker KE, Monbouquette HG, Wassum KM. 2015. Basolateral amygdala rapid glutamate release encodes an outcome-specific representation vital for reward-predictive cues to selectively invigorate reward-seeking actions. Scientific Reports 5:12521. DOI: https://doi.org/10.1038/srep12521, PMID: 26212790

Malvaez M, Greenfield VY, Yang S, China-interconnected. Nature Neuroscience 22:1820–1833. DOI: https://doi.org/10.1038/s41593-019-0506-0, PMID: 31611706

Mátková L, Gaffan D, Murray EA. 1997. Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. The Journal of Neuroscience 17:6011–6020. DOI: https://doi.org/10.1523/JNEUROSCI.17-15-06011.1997, PMID: 9221797

Malvaez M, Greenfield VY, Wang AS, Yorita AM, Feng L, Linker KE, Monbouquette HG, Wassum KM. 2015. Basolateral amygdala rapid glutamate release encodes an outcome-specific representation vital for reward-predictive cues to selectively invigorate reward-seeking actions. Scientific Reports 5:12521. DOI: https://doi.org/10.1038/srep12521, PMID: 26212790

Malvaez M, Greenfield VY, Mathes DS, Angelillo NA, Murphy MD, Kennedy PJ, Wood MA, Wassum KM. 2018. Habits are negatively regulated by histone deacetylase 3 in the dorsal striatum. Biological Psychiatry 84:383–392. DOI: https://doi.org/10.1016/j.biopsych.2018.01.025, PMID: 29571524

Malvaez M, Wassum KM. 2018. Regulation of habit formation in the dorsal striatum. Current Opinion in Behavioral Sciences 20:67–74. DOI: https://doi.org/10.1016/j.cobeha.2017.11.005, PMID: 29713658

Malvaez M, Sizemore CA, Murphy MD, Greenfield VY, Wassum KM. 2019. Distinct cortical-amygdala projections drive reward value encoding and retrieval. Nature Neuroscience 22:762–769. DOI: https://doi.org/10.1038/s41593-019-0374-7, PMID: 30962632

Malvaez M. 2020. Neural substrates of habit. Journal of Neuroscience Research 98:986–997. DOI: https://doi.org/10.1002/jnr.24552, PMID: 31693205

Manning EE, Geramita MA, Piantadosi SC, Pierson JL, Ahmari SE. 2021. Distinct patterns of abnormal lateral orbitofrontal cortex activity during compulsive grooming and reversal learning normalize after fluoxetine. Biological Psychiatry 1:50006-3223(21)01798-4. DOI: https://doi.org/10.1016/j.biopsych.2021.11.018, PMID: 35094880

Marowsky A, Yanagawa Y, Obata K, Vogt KE. 2005. A specialized subclass of interneurons mediates dopaminergic facilitation of amygdala function. Neuron 48:1025–1037. DOI: https://doi.org/10.1016/j.neuron.2005.10.029, PMID: 16364905

The American Journal of Psychiatry 155:261–275. DOI: https://doi.org/10.1016/j.nm.2018.08.012, PMID: 30125697

The American Journal of Psychiatry 169:101–106. DOI: https://doi.org/10.1176/appi.ajp.2011.1011046, PMID: 21687171

Andermann ML. 2019. State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala. Nature Neuroscience 22:1820–1833. DOI: https://doi.org/10.1038/s41593-019-0506-0, PMID: 31611706

Ma C, Jean-Richard-Dit-Bressel P, Roughley S, Vissel B, Balleine BW, Killcross S, Bradfield LA. 2020. Medial orbitofrontal cortex regulates instrumental conditioned punishment, but not pavlovian conditioned fear. Cerebral Cortex Communications 1:tgaa039. DOI: https://doi.org/10.1093/texcom/tgaa039, PMID: 34296108

Mátková L, Gaffan D, Murray EA. 1997. Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. The Journal of Neuroscience 17:6011–6020. DOI: https://doi.org/10.1523/JNEUROSCI.17-15-06011.1997, PMID: 9221797
McDannald MA, Esber GR, Wegener MA, Wied HM, Liu T-L, Stalnaker TA, Jones JL, Trageser J, Schoenbaum G. 2014. Orbitofrontal neurons acquire responses to “valueless” pavlovian cues during unblocking. eLife 3:e02653. DOI: https://doi.org/10.7554/eLife.02653, PMID: 25037263

McDonald AJ, Jackson TR. 1987. Amygdaloid connections with posterior insular and temporal cortical areas in the rat. The Journal of Comparative Neurology 262:59–77. DOI: https://doi.org/10.1002/cne.902620106, PMID: 2442208

McDonald AJ. 1991a. Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44:1–14. DOI: https://doi.org/10.1016/0361-9209(91)90247-I, PMID: 1722886

McDonald AJ. 1991b. Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience 44:15–33. DOI: https://doi.org/10.1016/0361-9209(91)90248-m, PMID: 1722890

McDonald AJ. 1998. Cortical pathways to the mammalian amygdala. Progress in Neurobiology 55:257–332. DOI: https://doi.org/10.1016/s0301-0082(98)00003-3, PMID: 9643556

Metereu E, Dreher JC. 2015. The medial orbitofrontal cortex encodes a general unsigned value signal during anticipation of both appetitive and aversive events. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior 63:42–54. DOI: https://doi.org/10.1016/j.cortex.2014.08.012, PMID: 25243988

Miller KJ, Botvinick MM, Brody CD. 2017. Dorsal hippocampus contributes to model-based planning. Nature Neuroscience 20:1269–1276. DOI: https://doi.org/10.1038/nn.4613, PMID: 28758995

Miller KJ, Botvinick MM, Brody CD. 2020. Value Representations in the Rodent Orbitofrontal Cortex Drive Learning, Not Choice. [bioRxiv]. DOI: https://doi.org/10.1101/245720

Morecraft RJ, Geula C, Mesulam MM. 1992. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. The Journal of Comparative Neurology 323:341–358. DOI: https://doi.org/10.1002/cne.903230304, PMID: 1460107

Morris RW, Quall S, Griffiths KR, Green MJ, Balleine BW. 2015. Corticostriatal control of goal-directed action is impaired in schizophrenia. Biological Psychiatry 77:187–195. DOI: https://doi.org/10.1016/j.biopsych.2014.06.005, PMID: 25062683

Morrison SE, Salzman CD. 2010. Re-valuing the amygdala. Current Opinion in Neurobiology 20:221–230. DOI: https://doi.org/10.1016/j.conb.2010.02.007, PMID: 20289204

Morse AK, Hauber W. 2018. Medial orbitofrontal cortex mediates effort-related responding in rats. Cerebral Cortex 28:4379–4389. DOI: https://doi.org/10.1093/cercor/bhx293, PMID: 29161356

Muramoto K, Ono T, Nishijo H, Fukuda M. 1993. Rat amygdaloid neuron responses during auditory discrimination. Neuroscience 52:621–636. DOI: https://doi.org/10.1016/0306-4522(93)90411-8, PMID: 8450963

Murray EA, Izquierdo A. 2007. Orbitofrontal cortex and amygdala contributions to affect and action in primates. Annals of the New York Academy of Sciences 1121:273–296. DOI: https://doi.org/10.1196/annals.1401.021, PMID: 17846154

Murray EA, Moylan EJ, Saleem KS, Basile BM, Turchi J. 2015. Specialized areas for value updating and goal selection in the primate orbitofrontal cortex. eLife 4:e11695. DOI: https://doi.org/10.7554/eLife.11695, PMID: 26673891

Murray EA, Rudebeck PH. 2018. Specializations for reward-guided decision-making in the primate ventral prefrontal cortex. Nature Reviews. Neuroscience 19:404–417. DOI: https://doi.org/10.1038/s41583-018-0013-4, PMID: 29795133

Namboodiri VMK, Otis JM, van Heeswijk K, Voets ES, Alghorazi RA, Rodriguez-Romaguera J, Mihalas S, Stuber GD. 2019. Single-cell activity tracking reveals that orbitofrontal neurons acquire and maintain a long-term memory to guide behavioral adaptation. Nature Neuroscience 22:1110–1121. DOI: https://doi.org/10.1038/s41593-019-0408-1, PMID: 31160741

Noonan MP, Walton ME, Behrens TEJ, Sallet J, Buckley MJ, Rushworth MFS. 2010. Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. PNAS 107:20547–20552. DOI: https://doi.org/10.1073/pnas.1012246107, PMID: 21059901

Noonan MP, Chau BKH, Rushworth MFS, Fellows LK. 2017. Contrasting effects of medial and lateral orbitofrontal cortex lesions on credit assignment and decision-making in humans. The Journal of Neuroscience 37:7023–7035. DOI: https://doi.org/10.1523/JNEUROSCI.0692-17.2017, PMID: 28630257

O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C. 2001. Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience 4:95–102. DOI: https://doi.org/10.1038/82959, PMID: 11135651

O’Neill PK, Gore F, Salzman CD. 2018. Basolateral amygdala circuitry in positive and negative valence. Current Opinion in Neurobiology 49:175–183. DOI: https://doi.org/10.1016/j.conb.2018.02.012, PMID: 29525574

Ongür D, Price JL. 2000. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex 10:206–219. DOI: https://doi.org/10.1093/cercor/10.3.206, PMID: 10731217
Neuroscience

Orsini CA, Trotta RT, Bizon JL, Setlow B. 2015. Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment. The Journal of Neuroscience 35:1368–1379. DOI: https://doi.org/10.1523/JNEUROSCI.3586-14.2015, PMID: 25632115

Orsini CA, Hernandez CM, Singhal S, Kelly KB, Frazier CJ, Bizon JL, Setlow B. 2017. Optogenetic inhibition reveals distinct roles for basolateral amygdala activity at discrete time points during risky decision making. The Journal of Neuroscience 37:11537–11548. DOI: https://doi.org/10.1523/JNEUROSCI.2344-17.2017, PMID: 29079687

Ostlund SB, Balleine BW. 2007. Orbitofrontal cortex mediates outcome encoding in pavlovian but not instrumental conditioning. The Journal of Neuroscience 27:4819–4825. DOI: https://doi.org/10.1523/JNEUROSCI.5443-06.2007, PMID: 17475789

Ostlund SB, Balleine BW. 2008. Differential involvement of the basolateral amygdala and medialdorsal thalamus in instrumental action selection. The Journal of Neuroscience 28:4398–4405. DOI: https://doi.org/10.1523/JNEUROSCI.5472-07.2008, PMID: 18434518

Padoa-Schioppa C, Assad JA. 2006. Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–226. DOI: https://doi.org/10.1038/nature04676, PMID: 16633341

Parkes SL, Balleine BW. 2013. Incentive memory: evidence the basolateral amygdala encodes and the insular cortex retrieves outcome values to guide choice between goal-directed actions. The Journal of Neuroscience 33:8753–8763. DOI: https://doi.org/10.1523/JNEUROSCI.5071-12.2013, PMID: 23678118

Parkes SL, Ravassard PM, Cerpa JC, Wolff M, Ferreira G, Coutureau E. 2018. Insular and ventrolateral orbitofrontal cortices differentially contribute to goal-directed behavior in rodents. Cerebral Cortex 28:2313–2325. DOI: https://doi.org/10.1093/cercor/bhx132, PMID: 28541407

Parkinson JA, Robbins TW, Everitt BJ. 2000. Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. The European Journal of Neuroscience 12:405–413. DOI: https://doi.org/10.1046/j.1460-9568.2000.00960.x, PMID: 10651899

Passamonti L, Fairchild G, Fornito A, Goodyer IM, Nimmo-Smith I, Hagan CC, Calder AJ. 2012. Abnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorder. PLOS ONE 7:e48799. DOI: https://doi.org/10.1371/journal.pone.0048799, PMID: 23144970

Paton JJ, Belova MA, Morrison SE, Salzman CD. 2006. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439:865–870. DOI: https://doi.org/10.1038/nature04490, PMID: 16482160

Pauli WM, Gentile G, Collette S, Tyszka JM, O’Doherty JP. 2019. Evidence for model-based encoding of pavlovian contingencies in the human brain. Nature Communications 10:1099. DOI: https://doi.org/10.1038/s41467-019-08922-7, PMID: 30846685

Pickens CL, Saddoris MP, Setlow B, Gallagher M, Holland PC, Schoenbaum G. 2003. Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. The Journal of Neuroscience 23:11078–11084. DOI: https://doi.org/10.1523/JNEUROSCI.23-35-11078.2003, PMID: 14657165

Pickens CL, Saddoris MP, Gallagher M, Holland PC. 2005. Orbitofrontal lesions impair use of cue-outcome associations in a devaluation task. Behavioral Neuroscience 119:317–322. DOI: https://doi.org/10.1037/0735-7044.119.1.317, PMID: 15727536

Pignatelli M, Beyeler A. 2019. Valence coding in amygdala circuits. Current Opinion in Behavioral Sciences 26:97–106. DOI: https://doi.org/10.1016/j.cobeha.2018.10.010, PMID: 32832584

Plattsmann H, O’Doherty JP, Rangel A. 2010. Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. The Journal of Neuroscience 30:10799–10808. DOI: https://doi.org/10.1523/JNEUROSCI.0788-10.2010, PMID: 20702709

Poo M-M, Pignatelli M, Ryan TJ, Tonegawa S, Bonhoeffer T, Martin KC, Rudenko A, Tsai L-H, Tsien RW, Fishell G, Mullins C, Goncalves JT, Shtrahman M, Johnston ST, Gage FH, Dan Y, Long J, Buzsaki G, Stevens C. 2016. What is memory? the present state of the engram. BMC Biology 14:40. DOI: https://doi.org/10.1186/s12915-016-0261-6, PMID: 27197636

Preuss TM. 1995. Do rats have prefrontal cortex? the rose-woolsey-akert program reconsidered. Journal of Cognitive Neuroscience 7:1–24. DOI: https://doi.org/10.1162/jocn.1995.7.1.1, PMID: 23961750

Prévost C, McCabe JA, Jessup RK, Bossaerts P, O’Doherty JP. 2011. Differentiable contributions of human amygdalar subregions in the computations underlying reward and avoidance learning. The European Journal of Neuroscience 34:134–145. DOI: https://doi.org/10.1111/j.1460-9568.2011.07686.x, PMID: 21535456

Prévost C, Liljeholm M, Tyszka JM, O’Doherty JP. 2012. Neural correlates of specific and general pavlovian-to-instrumental transfer within human amygdalar subregions: a high-resolution fmri study. The Journal of Neuroscience 32:8383–8390. DOI: https://doi.org/10.1523/JNEUROSCI.6237-11.2012, PMID: 22699918

Prévost C, McNamee D, Jessup RK, Bossaerts P, O’Doherty JP. 2013. Evidence for model-based computations in the human amygdala during pavlovian conditioning. PLOS Computational Biology 9:e1002918. DOI: https://doi.org/10.1371/journal.pcbi.1002918, PMID: 23436990

Price JL. 2007. Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Annals of the New York Academy of Sciences 1121:54–71. DOI: https://doi.org/10.1196/annals.1401.008, PMID: 17698999

Price JL, Drevets WC. 2010. Neurocircuitry of mood disorders. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology 35:192–216. DOI: https://doi.org/10.1038/npp.2009.104, PMID: 19693001
Pritchard TC, Edwards EM, Smith CA, Hilgert KG, Gavlick AM, Maryniak TD, Schwartz GJ, Scott TR. 2005. Gustatory neural responses in the medial orbitofrontal cortex of the old world monkey. The Journal of Neuroscience 25:6047–6056. DOI: https://doi.org/10.1523/JNEUROSCI.0430-05.2005, PMID: 15987934

Reijmers LG, Perkins BL, Matsu N, Mayford M. 2007. Localization of a stable neural correlate of associative memory. Science 317:1230–1233. DOI: https://doi.org/10.1126/science.1143839, PMID: 17761885

Reppucci CJ, Petrovich GD. 2016. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Structure & Function 221:2937–2962. DOI: https://doi.org/10.1007/s00429-015-1081-0, PMID: 26169110

Rescorla RA. 1973. Effect of US habituation following conditioning. Journal of Comparative and Physiological Psychology 82:137–143. DOI: https://doi.org/10.1037/h0033815, PMID: 4684968

Rescorla RA. 1974. Effect of inflation of the unconditioned stimulus value following conditioning. Journal of Comparative and Physiological Psychology 86:101–106. DOI: https://doi.org/10.1037/h0035964

Ressler KJ, Mayberg HS. 2007. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nature 10:1116–1124. DOI: https://doi.org/10.1038/nn1944, PMID: 17726478

Rich EL, Wallis JD. 2016. Decoding subjective decisions from orbitofrontal cortex. Nature Neuroscience 19:973–980. DOI: https://doi.org/10.1038/nn.4320, PMID: 27273768

Rich EL, Stoll FM, Rudebeck PH. 2018. Linking dynamic patterns of neural activity in orbitofrontal cortex with decision making. Current Opinion in Neurobiology 49:24–32. DOI: https://doi.org/10.1016/j.conb.2017.11.002, PMID: 29169086

Roesch MR, Calu DJ, Esber GR, Schoenbaum G. 2010. Neural correlates of variations in event processing during learning in basolateral amygdala. The Journal of Neuroscience 30:2464–2471. DOI: https://doi.org/10.1523/JNEUROSCI.5781-09.2010, PMID: 20164330

Rosenberger LA, Eisenegger C, Naeff M, Terburg D, Fourie J, Stein DJ, van Honk J. 2019. The human basolateral amygdala is indispensable for social experiential learning. Current Biology 29:3532–3537. DOI: https://doi.org/10.1016/j.cub.2019.08.078, PMID: 31607530

Rudebeck PH, Murray EA. 2008. Amygdala and orbitofrontal cortex lesions differentially influence choices during object reversal learning. The Journal of Neuroscience 28:8338–8343. DOI: https://doi.org/10.1523/JNEUROSCI.2272-08.2008, PMID: 18701696

Rudebeck PH, Murray EA. 2011. Balkanizing the primate orbitofrontal cortex: distinct subregions for comparing and contrasting values. Annals of the New York Academy of Sciences 1239:1–13. DOI: https://doi.org/10.1111/j.1749-6632.2011.06267.x, PMID: 22145870

Rudebeck PH, Murray EA. 2014. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron 84:1143–1156. DOI: https://doi.org/10.1016/j.neuron.2014.10.049, PMID: 25521376

Rudebeck PH, Rich EL. 2018. Orbitofrontal cortex. Current Biology 28:R1083–R1088. DOI: https://doi.org/10.1016/j.cub.2018.07.018, PMID: 30253144

Rudebeck PH, Izquierdo A. 2022. Foraging with the frontal cortex: A cross-species evaluation of reward-guided behavior. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology 47:134–146. DOI: https://doi.org/10.1038/s41386-021-01140-0, PMID: 34408279

Sadikot AF, Gallagher M, Schoenbaum G. 2005. Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron 46:321–331. DOI: https://doi.org/10.1016/j.neuron.2005.02.018, PMID: 15848809

Sadikot AF, Parent A. 1990. The monoaminergic innervation of the amygdala in the squirrel monkey: an immunohistochemical study. Neuroscience 36:431–447. DOI: https://doi.org/10.1016/0306-4522(90)90439-b, PMID: 19771010

Sah P, Faber ESL, Lopez De Armentia M, Power J. 2003. The amygdaloïd complex: anatomy and physiology. Physiological Reviews 83:803–834. DOI: https://doi.org/10.1152/physrev.00002.2003, PMID: 12843409

Salzman CD, Paton JJ, Belova MA, Morrison SE. 2007. Flexible neural representations of value in the primate brain. Annals of the New York Academy of Sciences 1121:336–354. DOI: https://doi.org/10.1196/annals.1401.034, PMID: 17872400

Schoenbaum G, Chiba AA, Gallagher M. 1998. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neuroscience 1:155–159. DOI: https://doi.org/10.1038/407, PMID: 10195132

Schoenbaum G, Chiba AA, Gallagher M. 1999. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. The Journal of Neuroscience 19:1876–1884. DOI: https://doi.org/10.1523/JNEUROSCI.19-05-01876.1999, PMID: 10024371

Schoenbaum G, Nugent SL, Saddoris MP, Setlow B. 2002. Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport 13:885–890. DOI: https://doi.org/10.1097/00001756-200205070-00030, PMID: 11997707

Schoenbaum G, Setlow B, Nugent SL, Saddoris MP, Gallagher M. 2003a. Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learning & Memory 10:129–140. DOI: https://doi.org/10.1016/j.nlm.2001.11.011, PMID: 12663751

Schoenbaum G, Setlow B, Saddoris MP, Gallagher M. 2003b. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39:855–867. DOI: https://doi.org/10.1016/s0896-6273(03)00474-4, PMID: 12948451
Schoenbaum G, Chang CY, Lucantoni F, Takahashi YK. 2016. Thinking outside the box: orbitofrontal cortex, imagination, and how we can treat addiction. *Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology* **41**:2966–2976. DOI: https://doi.org/10.1038/npp.2016.147, PMID: 27510424

Schuck NW, Cai MB, Wilson RC, Niv Y. 2016. Human orbitofrontal cortex represents a cognitive map of state space. *Neuron* **91**:1402–1412. DOI: https://doi.org/10.1016/j.neuron.2016.08.019, PMID: 27657452

Seymour B, Dolan R. 2008. Emotion, decision making, and the amygdala. *Neuron* **58**:662–671. DOI: https://doi.org/10.1016/j.neuron.2008.05.020, PMID: 18549779

Sharpe MJ, Schoenbaum G. 2016. Back to basics: making predictions in the orbitofrontal-amygdala circuit. *Neurobiology of Learning and Memory* **131**:201–206. DOI: https://doi.org/10.1016/j.nlm.2016.04.009, PMID: 27112314

Sharpe MJ, Stalnaker T, Schuck NW, Killcross S, Schoenbaum G, Niv Y. 2019. An integrated model of action selection: distinct modes of cortical control of striatal decision making. *Annual Review of Psychology* **70**:53–76. DOI: https://doi.org/10.1146/annurev-psych-010418-102824, PMID: 30260745

Shields CN, Gremel CM. 2020. Review of orbitofrontal cortex in alcohol dependence: A disrupted cognitive map? *Alcoholism, Clinical and Experimental Research* **44**:1952–1964. DOI: https://doi.org/10.1111/acer.14441, PMID: 32852095

Shih CW, Chang CH. 2021. Medial or lateral orbitofrontal cortex activation during fear extinction differentially regulates fear renewal. *Behavioural Brain Research* **412**:113412. DOI: https://doi.org/10.1016/j.bbr.2021.113412, PMID: 34118296

Sias AC, Morse AK, Wang S, Greenfield YV, Goodpaster CM, Wrenn TM, Wikenheiser AM, Holley SM, Cepeda C, Levine MS, Wassum KM. 2021. A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories. *eLife* **10**:e617. DOI: https://doi.org/10.7554/eLife.68617, PMID: 34142660

Sladky R, Höflich A, Küblböck M, Kraus C, Baldinger P, Moser E, Lanzenberger R, Windischberger C. 2015. Disrupted effective connectivity between the amygdala and orbitofrontal cortex in social anxiety disorder during emotion discrimination revealed by dynamic causal modeling for fMRI. *Cerebral Cortex* **25**:895–903. DOI: https://doi.org/10.1093/cercor/bhs279, PMID: 24108801

Smith DM, Torregrossa MM. 2021. Valence encoding in the amygdala influences motivated behavior. *Behavioural Brain Research* **411**:113370. DOI: https://doi.org/10.1016/j.bbr.2021.113370, PMID: 34051230

Song Z, Swarna S, Manns JR. 2021. Prioritization of social information by the basolateral amygdala in rats. *Neurobiology of Learning and Memory* **184**:107489. DOI: https://doi.org/10.1016/j.nlm.2021.107489, PMID: 34271138

Sosa JLR, Buonomano D, Izquierdo A. 2021. The orbitofrontal cortex in temporal cognition. *Behavioral Neuroscienece* **135**:154–164. DOI: https://doi.org/10.1037/bne0000430, PMID: 34060872

Stalnaker TA, Franz TM, Singh T, Schoenbaum G. 2018a. Basolateral amygdala lesions abolish orbitofrontal-dependent reversal impairments. *Neuron* **54**:51–58. DOI: https://doi.org/10.1016/j.neuron.2007.02.014, PMID: 17408577

Stalnaker TA, Liu TL, Takahashi YK, Schoenbaum G. 2018b. Orbitofrontal neurons signal reward predictions, not reward prediction errors. *Neurobiology of Learning and Memory* **153**:137–143. DOI: https://doi.org/10.1016/j.nlm.2018.01.013, PMID: 29408053

Stolyarova A, Rakshan M, Hart EE, O’Dell TJ, Peters MAK, Lau H, Soltani A, Izquierdo A. 2019. Contributions of anterior cingulate cortex and basolateral amygdala to decision confidence and learning under uncertainty. *Nature Communications* **10**:4704. DOI: https://doi.org/10.1038/s41467-019-12725-1, PMID: 31624264

Stopper CM, Green EB, Floresco SB. 2014. Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice. *Cerebral Cortex* **24**:154–162. DOI: https://doi.org/10.1093/cercor/bhs297, PMID: 23042736

Sugase-Miyamoto Y, Richmond BJ. 2005. Neuronal signals in the monkey basolateral amygdala during reward schedules. *The Journal of Neuroscience* **25**:11071–11083. DOI: https://doi.org/10.1523/JNEUROSCI.1796-05.2005, PMID: 16319307

Sutton RS, Barto A. 2022. Cognitive Science Society. In Proceedings of the ninth annual conference of the cognitive science society. 355–378.

Suzuki S, Cross L, O’Doherty JP. 2017. Elucidating the underlying components of food valuation in the human orbitofrontal cortex. *Nature Neuroscience* **20**:1780–1786. DOI: https://doi.org/10.1038/s41593-017-0008-x, PMID: 29184201

Tanabe J, Tregellas JR, Dalwani M, Thompson LP, Owens E, Crowley T, Banich M. 2009. Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals. *Biological Psychiatry* **65**:160–164. DOI: https://doi.org/10.1016/j.biopsych.2008.07.030, PMID: 18801475

Tolman EC. 1948. Cognitive maps in rats and men. *Psychological Review* **55**:189–208. DOI: https://doi.org/10.1037/h0061626

Tonegawa S, Liu X, Ramirez S, Redondo R. 2015. Memory engram cells have come of age. *Neuron* **87**:918–931. DOI: https://doi.org/10.1016/j.neuron.2015.08.002, PMID: 26335640

Turner KM, Balleine BW, Bradfield LA. 2021. Does disrupting the orbitofrontal cortex alter sensitivity to punishment? A potential mechanism of compulsivity. *Behavioral Neuroscience* **135**:174–181. DOI: https://doi.org/10.1037/bne0000443, PMID: 34060874

Tye KM, Janak PH. 2007. Amygdala neurons differentially encode motivation and reinforcement. *The Journal of Neuroscience* **27**:3937–3945. DOI: https://doi.org/10.1523/JNEUROSCI.5281-06.2007, PMID: 17428967
Tye KM, Stoiber GD, de Ridder B, Bonci A, Janak PH. 2008. Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning. Nature 453:1253–1257. DOI: https://doi.org/10.1038/nature06963, PMID: 18469802

Tye KM. 2018. Neural circuit motifs in valence processing. Neuron 100:436–452. DOI: https://doi.org/10.1016/j.neuron.2018.10.001, PMID: 30359607

van Holstein M, MacLeod PE, Floresco SB. 2020. Basolateral amygdala - nucleus accumbens circuitry regulates optimal cue-guided risk/reward decision making. Progress in Neuro-Psychopharmacology & Biological Psychiatry 98:109830. DOI: https://doi.org/10.1016/j.pnpbp.2019.109830, PMID: 31811876

Verhaaren JPH, van den Heuvel MW, Luijendijk M, Vanderschuren LJMJ, Adan RAH. 2019. Corticolimbic mechanisms of behavioral inhibition under threat of punishment. The Journal of Neuroscience 39:4353–4364. DOI: https://doi.org/10.1523/JNEUROSCI.2814-18.2019, PMID: 30902886

Volkow ND, Wang GJ, Tomasi D, Baler RD. 2013. Unbalanced neuronal circuits in addiction. Molecular Psychiatry 20:345–352. DOI: https://doi.org/10.1038/mp.2014.44, PMID: 24840709

Wallis JD. 2011. Cross-species studies of orbitofrontal cortex and value-based decision-making. Nature Neuroscience 15:13–19. DOI: https://doi.org/10.1038/nn.2956, PMID: 22101646

Walton ME, Behrens TEJ, Buckley MJ, Rudebeck PH, Rushworth MFS. 2010. Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron 65:927–939. DOI: https://doi.org/10.1016/j.neuron.2010.02.027, PMID: 20346766

Walum H, Young LJ. 2018. The neural mechanisms and circuitry of the pair bond. Nature Reviews. Neuroscience 19:643–654. DOI: https://doi.org/10.1038/s41583-018-0072-6, PMID: 30319513

Wassum KM, Ostlund SB, Maidment NT, Balleine BW. 2009. Distinct opioid circuits determine the palatability and the desirability of rewarding events. PNAS 106:12512–12517. DOI: https://doi.org/10.1073/pnas.0905874106, PMID: 19597155

Wassum KM, Cely IC, Balleine BW, Maidment NT. 2011. Micro-opioid receptor activation in the basolateral amygdala mediates the learning of increases but not decreases in the incentive value of a food reward. The Journal of Neuroscience 31:1591–1599. DOI: https://doi.org/10.1523/JNEUROSCI.3102-10.2011, PMID: 21289167

Wassum KM, Tolosa VM, Tseng TC, Balleine BW. 2009. Basolateral amygdala mediates cue-reward learning. The Journal of Neuroscience 32:2734–2746. DOI: https://doi.org/10.1523/JNEUROSCI.5780-11.2012, PMID: 22357857

Wassum KM, Izquierdo A. 2015. The basolateral amygdala in reward learning and addiction. Neuroscience and Biobehavioral Reviews 57:271–283. DOI: https://doi.org/10.1016/j.neubiorev.2015.08.017, PMID: 26341938

West EA, Forcelli PA, Murnen AT, McCue DL, Gale K, Malkova L. 2012. Transient inactivation of basolateral amygdala during selective satiation disrupts reinforcer devaluation in rats. Behavioral Neuroscience 126:563–574. DOI: https://doi.org/10.1037/a0029080, PMID: 22845705

West EA, DesJardin JT, Gale K, Malkova L. 2018. Transient inactivation of orbitofrontal cortex blocks reinforcer devaluation in macaques. Journal of Neuroscience 31:15128–15135. DOI: https://doi.org/10.1523/JNEUROSCI.3295-11.2011, PMID: 22016546

Wilkenheiser AM, Schoenbaum G. 2016. Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex. Nature Reviews. Neuroscience 17:513–523. DOI: https://doi.org/10.1038/nrn.2016.56, PMID: 27256552

Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. 2014. Orbitofrontal cortex as a cognitive map of task space. Neuron 81:267–279. DOI: https://doi.org/10.1016/j.neuron.2013.11.005, PMID: 24462094

Xie C, Jia T, Rolls ET, Robbins TW, Sahakian BJ, Zhang J, Liu Z, Cheng W, Luo Q, Zac Lo CY, Wang H, Banaschewski T, Barker GJ, Bokde ALW, Büchel C, Quinlan EB, Desrivières S, Flor H, Grigis A, Garavan H, et al. 2021. Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging 6:259–269. DOI: https://doi.org/10.1016/j.bpsc.2020.08.017, PMID: 33221327

Yacubian J, Gläscher J, Schroeder K, Sommer T, Braus DF, Büchel C. 2006. Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. The Journal of Neuroscience 26:9530–9537. DOI: https://doi.org/10.1523/JNEUROSCI.2915-06.2006, PMID: 16971537

Yamada H, Louie K, Tymula A, Glimcher PW. 2018. Free choice shapes normalized value signals in medial orbitofrontal cortex. Nature Communications 9:162. DOI: https://doi.org/10.1038/s41467-017-02614-w, PMID: 29323110

Yin HH, Ostlund SB, Knowlton BJ, Balleine BW. 2005. The role of the dorsomedial striatum in instrumental conditioning. The European Journal of Neuroscience 22:513–523. DOI: https://doi.org/10.1111/j.1460-9568.2005.04218.x, PMID: 16045504

Yiu AP, Mercaldo V, Yan C, Richards B, Rashid AJ, Hsiang HLL, Pressey J, Mahadevan V, Tran MM, Kushner SA, Woodin MA, Frankland PW, Josselyn SA. 2014. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83:722–735. DOI: https://doi.org/10.1016/j.neuron.2014.07.017, PMID: 25102562
Zeeb FD, Winstanley CA. 2011. Lesions of the basolateral amygdala and orbitofrontal cortex differentially affect acquisition and performance of a rodent gambling task. The Journal of Neuroscience 31:2197–2204. DOI: https://doi.org/10.1523/JNEUROSCI.5597-10.2011, PMID: 21307256

Zeeb FD, Winstanley CA. 2013. Functional disconnection of the orbitofrontal cortex and basolateral amygdala impairs acquisition of a rat gambling task and disrupts animals’ ability to alter decision-making behavior after reinforcer devaluation. The Journal of Neuroscience 33:6434–6443. DOI: https://doi.org/10.1523/JNEUROSCI.3971-12.2013, PMID: 23575841

Zimmermann KS, Yamin JA, Rainnie DG, Ressler KJ, Gourley SL. 2017. Connections of the mouse orbitofrontal cortex and regulation of goal-directed action selection by brain-derived neurotrophic factor. Biological Psychiatry 81:366–377. DOI: https://doi.org/10.1016/j.biopsych.2015.10.026, PMID: 26786312

Zimmermann KS, Li CC, Rainnie DG, Ressler KJ, Gourley SL. 2018. Memory retention involves the ventrolateral orbitofrontal cortex: comparison with the basolateral amygdala. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 43:674. DOI: https://doi.org/10.1038/npp.2017.219, PMID: 29326434