Observations on *Hoplolaimus indicus* Sher, 1963 and *Hoplolaimus seinhorstii* Luc, 1958 (Nematoda: Hoplolaimidae) from Southern Iran

Mahmoud Ahmadi Mansourabad, Reza Ghaderi*, Leila Kashi and Akbar Karegar

Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran.

Abstract: Morphological observations are made on several populations of *Hoplolaimus indicus* and *Hoplolaimus seinhorstii*, recovered from rhizosphere of mango, tamarind, sour orange and sugarcane from the southern regions of Iran. Detailed studies on the two species *Hoplolaimus dubius* and *H. indicus* being separated from each other based on some morphological characters, revealed each of them having intra-specific and overlapping variations in morphology and morphometric ranges, enough for not separating two closely related aforementioned species and as a result, *H. dubius* is considered as a junior synonym of *H. indicus*. Observations on *H. seinhorstii* also supported the Siddiqi’s decision on the synonymy of *Hoplolaimus sheri* with *H. seinhorstii*.

The results of the phylogenetic analyses using D2-D3 expansion segments of 28S rRNA gene were in agreement with the results of previous works, *i.e.* the classic scheme for assigning species of the genus into two "ancestral" and/or "derived" groups was supported. In phylogenetic trees inferred, using different analysis methods, the Iranian populations of *H. indicus* were located in the same clade with *H. seinhorstii* and *H. columbus*, belonging to "derived" group of species of the genus characterized by having six nuclei in pharyngeal glands, less than four incises at each lateral field and anteriorly situated position of excretory pore to hemizonid.

Keywords: 28S rRNA, *Hoplolaimus dubius*, *H. sheri*, identification, morphology

Introduction

The genus *Hoplolaimus* von Daday, 1905 presently has 29 species according to Sher (1963) and Handoo and Golden (1992), or 32 species in three subgenera, *Basirolaimus*, *Hoplolaimus* and *Ethiolaimus* according to Siddiqi (2000). While revising of the genus and describing four species, Sher (1963) described *H. indicus* based on the specimens associated with sugarcane, banana, pea and guava in India and he distinguished it from *H. columbus* Sher, 1963 by having the shorter female tail, anterior position of the excretory pore, smaller body size, shorter stylet and presence of a functional spermatheca in females and occurring of males. The most closely related species, *H. dubius* Chaturvedi, Singh and Khera, 1979 shares several morphological and morphometric characters with it, but differs from *H. indicus* in some characters such as the number of head annuli, the number of lateral incises, longitudinal markings on basal annulus of head, nature of epipygma (single vs single or double), extending of the intestine behind the anus,
Hoplolaimus species from southern Iran J. Crop Prot.

position of excretory pore and distance of dorsal gland orifice from knobs base (Chaturvedi and Khera, 1979; Handoo and Golden, 1992). Siddiqi (2000) noted that the large number of species of Hoplolaimus (including H. dubius) having been described from Southern Asia, need further studies to confirm their identity, since many of them are similar to either H. seinhorsti or H. indicus. Vovlas (1983) provided SEM data on a population of H. seinhorsti collected from Seri Lanka. Anderson (1983) studied a population of H. indicus from North America and stated that intra-specific variation of morphology and morphometric data ranges of this species extends the previously known ranges for the species. The sequences of the ITS1 and D2 - D3 segments of 28S rDNA regions have also been analyzed (Baé et al., 2008; 2009b) and used for rapid, easy and reliable identification of several Hoplolaimus species (Baé et al., 2009a). There is still no DNA data for H. indicus.

The review of the Iranian literature revealed that H. indicus and H. seinhorsti are the common species of the genus occurring in southern Iran. So far, H. indicus is reported from Hormozgan, Sistan and Baluchistan and Kerman provinces in association with citrus, banana, other fruit trees, cucurbits, date palm, mango, olive and sapodilla (Tanha Maafi and Kheiri, 1989; 1993; Nowrouzi and Barooti, 1997; Barooti et al., 2002; Jahanshahi Afsar et al., 2006). The other species, H. seinhorsti, occurs in Hormozgan, Khusestan, Sistan and Baluchistan and Kerman provinces, associated with citrus, banana, sugarcane and field crops (Barooti and Geraert, 1994; Kheiri, 1995; Tanha Maafi et al., 2006; Ali Ramaji et al., 2006; Jahanshahi Afsar et al., 2006). The aims of the present study were morphological and molecular characterisation of Iranian populations of H. indicus and morphological observations on H. seinhorsti from southern Iran.

Materials and Methods

Specimens of H. indicus were collected and identified from the rhizosphere of mango (Mangifera indica) in Ghasr-e-Ghand (Sistan and Baluchistan) and Minab (Hormozgan), tamarind (Tamarindus indica) in Minab (Hormozgan) and sour orange (Citrus aurantium) in Bandar-Abbas (Hormozgan), and those of H. seinhorsti from sugarcane (Saccharum officinarum) in Ahvaz (Khuzeastan). Nematodes were extracted from soil using the tray method (Whitehead and Hemming, 1965), killed and fixed by hot FPG (4:1:1 ratios of formaldehyde, propionic acid and glycerol) and processed to anhydrous glycerol (De Grisse, 1969). The specimens were subsequently mounted on permanent slides using paraffin wax and were studied using a light microscope, equipped with digital camera and corresponding Dino capture 2.0 software. The specimens were identified to the level of species using available identification keys (Anderson, 1983; Krall, 1990; Handoo and Golden, 1992). The voucher slides were deposited at Laboratory of Nematology, Department of Plant Protection, College of Agriculture, University of Shiraz, Shiraz, Iran.

The D2 - D3 expansion regions of 28S rRNA gene of the two H. indicus populations (single nematode from each population) were amplified by use of the forward D2A (5’_ACAAGTACCCTGAGGGAAAGTGT - 3’) and reverse D3B (5’_TCGGAAGGACCGACTA - 3’) primers according to Tanha Maafi et al. (2003) and Subbotin et al. (2007). The maximum likelihood (ML), maximum parsimony (MP) and neighbor - joining (NJ) methods were used to reconstruct the phylogenetic relationships of some of Hoplolaimus species including newly obtained sequences using MEGA5.05 software (Tamura et al., 2011). The software MrBayes 3.0 (Ronquist and Huelsenbeck, 2003) was used for inferring the Bayesian tree under GTR + I + G model of DNA substitution. Moreover, the MP tree was constructed using Mega5 with Close - Neighbor - Interchange (CNI) on random trees for search method. Consensus tree was bootstrapped 1000 times.

Results and Discussion

Morphometrics of the present population of H. indicus fit well with those of original
description (Sher, 1963), except the value b' slightly smaller in females (5.7 - 8.0 vs. 7.0 - 9.1) and males (6.1 - 7.3 vs. 6.2 - 9.0). The specimens of *H. seinhorsti* collected during present study have larger body (1480 - 1738 vs. 1060 - 1560 μm) and shorter pharynx (b = 10.2 - 12.8 vs. 8.8 - 10.1) compared with the data in original description (Sher, 1963). The results are presented in the Table 1 and Figs 1 - 3.

The species *H. dubius* has been separated from *H. indicus* based on some characters that are not so constant and powerful enough for diagnostic purposes. Chaturvedi and Khera (1979) believed that *H. dubius* differs from *H. indicus* in having less number of head annuli (three vs. four), variable number of lateral incisures, more longitudinal markings (14 vs. 11) on basal annulus of head, variable position of excretory pore and intestine not overlapping the rectum. Handoo and Golden (1992) used the post - anal intestinal sac (absent vs. present), O index (9 - 11 vs. 13 - 18) and epiptygma (single vs. single or double) as diagnostic characters for separating of these two species.

Table 1
Morphometric characters of *Hoplolaimus indicus* and *Hoplolaimus seinhorsti*, collected from southern Iran and their comparisons with the original populations.

Character	*Hoplolaimus indicus*	*Hoplolaimus seinhorsti*			
	Present study	Sher, 1963	Present study	Sher, 1963	
L	1170 ± 63 (1012 - 1271)	1087 ± 64 (1001 - 1202)	950 - 1400 900 - 1300	1631 ± 99 (1480 - 1738)	1060 - 1560
a	31.9 ± 2.1 (28.0 - 36.1)	32.7 ± 2.1 (29.4 - 35.9)	26 - 36 26 - 33	30.6 ± 2.9 (25.5 - 33.8)	25 - 34
b	9.6 ± 0.8 (8.4 - 11.6)	9.0 ± 0.7 (8.3 - 9.9)	9.1 - 12.6 9.4 - 12.0	11.2 ± 1.1 (10.2 - 12.8)	8.8 - 10.1
b'	7.0 ± 0.7 (5.7 - 8.0)	6.6 ± 0.5 (6.1 - 7.3)	7.0 - 9.1 6.2 - 9.0	7.9 ± 0.8 (7.1 - 9.2)	6.0 - 10.1
c	61.3 ± 8.6 (48.7 - 75.4)	39.4 ± 3.4 (35.8 - 44.5)	45 - 74 32 - 38	46.7 ± 8.2 (37.0 - 59.0)	38 - 74
c'	0.7 ± 0.1 (0.6 - 0.9)	1.5 ± 0.1 (1.2 - 1.6)	-	1.0 ± 0.2 (0.8 - 1.2)	-
V	56.2 ± 1.1 (54.4 - 58.8)	-	50 - 59	56.2 ± 2.9 (53.0 - 60.5)	52 - 60
Stylet	36.4 ± 1.5 (34.3 - 39.0)	33.9 ± 0.9 (33.0 - 35.0)	33 - 40 33 - 37	45.1 ± 1.2 (43.0 - 47.0)	40 - 49
Corus	18.4 ± 0.9 (16.8 - 20.0)	17.6 ± 0.8 (16.5 - 19.0)	-	22.6 ± 0.7 (21.0 - 23.0)	-
m	50.7 ± 1.7 (48.6 - 55.6)	51.8 ± 1.7 (49.5 - 54.3)	-	50.1 ± 0.9 (48.8 - 51.1)	-
DGO	4.6 ± 0.7 (4.0 - 5.9)	5.2 ± 1.0 (4.0 - 6.2)	-	5.3 ± 1.8 (4.0 - 9.0)	-
O	12.8 ± 2.6 (10.3 - 17.1)	15.6 ± 3.2 (11.8 - 18.6)	10 - 18 10 - 16	9.6 ± 1.9 (8.5 - 13.0)	9 - 13
Pharynx	123 ± 8.3 (102 - 143)	122 ± 4.7 (114 - 129)	-	147 ± 17 (129 - 170)	-
Phar. glands end	169 ± 15.0 (148 - 200)	166 ± 12.2 (145 - 181)	-	207 ± 17.5 (182 - 236)	-
Median bulb	85.1 ± 4.4 (73.1 - 92.0)	82.6 ± 4.1 (78.0 - 88.0)	-	110 ± 5.9 (99 - 116)	-
MB	69.5 ± 3.3 (61.9 - 77.6)	68.0 ± 1.6 (65.8 - 70.7)	-	75.4 ± 5.8 (68.2 - 81.3)	-
Excretory pore	114 ± 8.9 (93 - 132)	113 ± 8.3 (103 - 128)	-	146 ± 5.3 (140 - 153)	-
Hemizonid	127 ± 7.8 (115 - 142)	124 ± 2.2 (121 - 126)	-	167 ± 9.5 (157 - 182)	-
Nerve ring	102 ± 5.3 (90 - 112)	101 ± 5.9 (93 - 106)	-	130 ± 6.7 (118 - 138)	-
Head - vulva	658 ± 35.0 (572 - 707)	-	-	916 ± 56.8 (840 - 1009)	-
Tail length	19.4 ± 2.8 (16.0 - 26.0)	27.8 ± 2.3 (22.8 - 29.3)	-	36.0 ± 7.5 (28.0 - 47.0)	-
Body width	36.9 ± 3.3 (30.0 - 42.5)	33.4 ± 2.5 (31.0 - 37.0)	-	53.6 ± 4.9 (44.0 - 59.0)	-
Vulval body	35.9 ± 2.9 (30.0 - 40.0)	-	-	53.6 ± 4.9 (44.0 - 59.0)	-
Anal body width	26.8 ± 1.7 (23.5 - 30.0)	19.1 ± 1.1 (17.0 - 20.0)	-	35.6 ± 2.1 (33.0 - 38.0)	-
lip region width	13.0 ± 0.6 (12.0 - 13.5)	12.3 ± 0.7 (11.0 - 13.0)	-	15.1 ± 0.8 (14.0 - 17.0)	-
lip region height	6.8 ± 0.4 (6.0 - 7.5)	6.8 ± 0.5 (5.6 - 7.3)	-	8.0 ± 0.5 (7.0 - 9.0)	-
Annuulus width	2.2 ± 0.2 (1.9 - 2.6)	2.2 ± 0.2 (2.0 - 2.4)	-	2.3 ± 0.2 (2.1 - 2.5)	-
Tail annuli	11.4 ± 1.9 (9.1 - 17)	-	13	17.4 ± 1.8 (15.0 - 20.0)	10 - 15
Anterior phasmid	30 - 40	-	28 - 44	32 - 42	31 - 44
Posterior phasmid	72 - 85	-	76 - 86	70 - 78	74 - 83
Spicule	-	39.6 ± 1.6 (37.0 - 41.0)	-	37 - 42	-
Gubernaculum	-	17.4 ± 1.5 (15.0 - 19.0)	-	16 - 20	-

All measurements are in μm.
Sher (1963) pointed out that more than half specimens of his studied *H. indicus* population had three annuli on one or both sides of the head. He also noticed that sometimes two or three weakly-developed incomplete incisures could be observed in the lateral field of the specimens. The value of O index, another diagnostic character of *H. indicus*, is 10 - 18 and 10.3 - 17.1 in original description and also present study, respectively, that overlaps with the ranges of that index for *H. dubius*. Khan and Chawla (1975) and Anderson (1983) found that the number of longitudinal markings on basal annulus of head ranged from 6 - 12 and 6 - 20, respectively for populations of *H. indicus* from India and North America. Handoo and Golden (1992) considered the latter range (6-20) in their compendium. The variation in the position of excretory pore is evident in populations of Canada (Anderson, 1983) and Iran (Fig. 1 J - L). Anderson (1983) pointed out that the excretory pore could be observed at 27 µm anterior to 22 µm posterior to the pharyngo-intestinal junction. He also stated that intestine overlaps rectum to varying degrees and finally separated *H. dubius* from *H. indicus* only based on this character. However, he noticed that in the studied population, the intestine overlapping (on rectum) is so short and never extends into tail; moreover, overlapping was not observed in one specimen of Canadian population. Individuals with no or different lengths of overlapping could be found in populations from Iran (Fig. 3 C - H) and it appears that this character is too variable to be used as a character for separating of these two species. Finally, according to the abovementioned arguments, *H. dubius* is regarded as a junior synonym of *H. indicus*.

Suryavanshi (1971) described *H. sheri* from India and distinguished it from the closely related species, *H. seinhorsti* by having more longitudinal striations on the basal annulus of head (20 vs. 8 - 12), different number of the pharyngeal glands (five vs. six) and the number of lateral incisures (two vs. one). Handoo and Golden (1992) added absence of the epitygma as a further character. On the other hand, variation in number of longitudinal striations of the basal annulus of head has already been considered as intraspecific variation in *H. indicus*, *H. aegypti* Shafiei and Koura, 1969, *H. clarissimus* Fortuner, 1973 and *H. magnistylus* Robbins, 1982 (6 - 20, 13 - 22, 18 - 31 and 22 - 34, respectively). Although usually one incisures could be observed in lateral field of *H. seinhorsti*, but, sometimes two or three incomplete incisures are also visible (Vovlas, 1983; present study). However, specimens with distinct or indistinct epitygma (Fig. 2 K, L) were observed in the Iranian population (the present study). Regarding the pharyngeal glands' nuclei, Siddiqi (2000) stated that observing the six gland nuclei in the genus *Hoplolaimus* is due to occurrence of four similar-sized nuclei in the dorsal gland instead of one, not because of duplication of the original three nuclei. He further noted that presence of five nuclei, as described for some species, is an error, since one of the two subventral gland's nuclei is overlooked as the two nuclei are not in the same optical level. Based on the given discussion and according to Siddiqi (2000), *H. sheri* is a junior synonym of *H. seinhorsti*.

PCR amplification of the D2 - D3 expansion region of 28S rDNA of the two populations of *H. indicus* yielded a single fragment about 635 nucleotides. The results of the phylogenetic analyses using three maximum likelihood, maximum parsimony and neighbor joining methods revealed the used species of the genus for reconstructing of the phylogenetic trees are clustered in two main clades in all inferred trees using the three abovementioned methods (Figs 4 - 6). Two Iranian populations of *H. indicus* were located in clade II together with *H. seinhorsti* and *H. columbus*. According to Fortuner (1991), there are two ancestral and derived groups within *Hoplolaimus* species. The first group has three nuclei in pharyngeal glands, four incisures at each lateral field and excretory pore posterior to hemizonid (ancestral characters sensu Fortuner) vs. six nuclei, less than four incisures in lateral fiend and excretory pore anterior to hemizonid (derived characters sensu Fortuner) in second group. The three species *H. indicus*, *H. seinhorsti* and *H. columbus* have derived characters, but *H. stephanus*, *H. magnistylus*, *H. galeatus*, *H. concaudjuvencus* and *Hoplolaimus* sp1, sp2 and...
sp3 studied by Bae et al. (2008) have ancestral characters. Molecular results of the present study also support the intraspecies groupings of Bae et al., (2008) and Fortuner (1991) and confirm morphological characters are informative for depicting of phylogenetic relationships inside Hoplolaimus species. However, D2 - D3 expansion region of 28S rDNA could not separate closely related species in clade II (H. colombus, H. seinhorsti and H. indicus), a congruent result with previous study using the abovementioned genomic fragment (Bae et al., 2008). Currently, several other molecular markers like multiplex PCR and PCR - RFLP of ITS - rDNA (Bae et al., 2009a) or sequences of ITS1 fragments or the cytochrome c oxidase subunit 1 gene (Holguin et al., 2015) are successfully used for reliable identification of Hoplolaimus species.

Figure 1 Hoplolaimus indicus from southern Iran. A: Female and male entire body; B: Female pharyngeal region; C: Pharyngeal gland nuclei (n); D: Vulva region; E - G: Female anterior end; H: Male anterior end; I: Scutellum; J - L: Position of excretory pore (e), hemizonid (h) and cardia (c); M: Spermatheca (s). Scale bars: A = 200 µm; B = 20 µm; C - M = 10 µm.
Figure 2 *Hoplolaimus seinhorsti* from southern Iran. A: Female entire body; B: Female pharyngeal region; C: Pharyngeal gland nuclei (n); D: Scutellum; E - G: Female anterior end; H: Spermatheca (s); I - J: Position of excretory pore (e); K - L: Vulva region. Scale bars: A = 200 µm; B = 20 µm; C - M = 10 µm.
Figure 3 *Hoplolaimus indicus* (A - H; A and G from tamarind, Minab; B, D and E from mango, Ghasr-e-Ghand; C, F and H from sour orange, Bandar-Abbas) and *H. seinhorsti* (I - L from sugarcane, Ahvaz) from southern Iran. A - B: Male posterior end; C - L: Female posterior end and post-anal sac. All scale bars = 10 µm.
Figure 4 Phylogenetic relationships within *Hoplolaimus* species based on 28S rDNA, reconstructed using maximum likelihood under the GTR + I + G model and 1000 bootstraps. Bootstrap values more than 50% are assigned to the appropriate clades.
Figure 5 Phylogenetic relationships within *Hoplolaimus* species based on 28S rDNA, reconstructed using maximum parsimony with 1000 bootstraps. Bootstrap values more than 50% are assigned to the appropriate clades.
Figure 6 Phylogenetic relationships within Hoplolaimus species based on 28S rDNA, reconstructed using neighbor-joining method with 1000 bootstraps. Bootstrap values more than 50% are assigned to the appropriate clades.
References

Ali Ramaji, F., Pourjam, E. and Karegar, A. 2006. Some tylenchids associated with pistachio and almond trees in Iran. Proceedings of IVth IS on Pistachio and Almonds, Acta Horticulture, 726: 659-666.

Anderson, R. V. 1983. Morphological characteristics of Hoplolaimus indicus Sher, 1963 in Canada, a parasite of wild rice. Journal of Nematology, 15: 367-369.

Bae, C. H., Robbins, R. T. and Szalanski, A. L. 2009a. Molecular identification of some Hoplolaimus species from the USA based on duplex PCR, multiplex PCR and PCR-RFLP analysis. Journal of Nematology, 11: 471-480.

Bae, C. H., Szalanski, A. L. and Robbins, R. T. 2009b. Genetic variation of Hoplolaimus columbia populations in the United States using PCR-RFLP analysis of nuclear rDNA ITS regions. Journal of Nematology, 41: 187-193.

Bae, C. H., Szalanski, A. L. and Robbins, R. T. 2008. Molecular analysis of the lance nematode, Hoplolaimus spp., using the first internal transcribed spacer and the D1-D3 expansion segments of 28S ribosomal DNA. Journal of Nematology, 40: 201-209.

Barooti, S. and Geraert, E. 1994. Some plant parasitic nematodes (Tylenchida) from Iran. Abstracts of the 22th International Symposium of the European Society of the European Society of Nematologists, Gent, Belgium p. 33.

Barooti, S., Tanha Maafi, Z., Kheiri, A. and Gol-Mohammadzade Khiaban, N. 2002. Plant parasitic nematodes of southern regions of Baluchistan, Iran. Proceedings of 15th Iranian Plant Protection Congress. Volume II: Plant Diseases and Weeds, Kermanshah, Iran p. 304-305.

Chaturvedi, Y. and Khera, S. 1979. Studies on taxonomy, biology and ecology of nematodes associated with jute crop. Technical Monographs on Zoology Surveys, India 2: 1-105.

De Grisse, A. 1969. Redescription ou modification de quelques techniques utilisees dans l‘etude des nematodes phytoparasitaires. Meded. Rijksfaculteit der landbouwetenschappen Gent 34: 351-369.

Fortuner, R. 1991. The Hoplolaiminae. In: Nickle, W. R. (Ed.). Manual of Agricultural Nematology. Marcel Dekker, Inc., New York, USA. pp: 669-719.

Handoo, Z. A. and Golden, M. 1992. A key and diagnostic compendium to the species of the genus Hoplolaimus Daday, 1905 (Nematoda: Hoplolaimidae). Journal of Nematology, 24: 45-53.

Holguin, C. M., Baeza, J. A., Mueller, J. D. and Agudelo, P. 2015. High genetic diversity and geographic subdivision of three lance nematode species (Hoplolaimus spp.) in the United States. Ecology and Evolution, 5: 2929-2944.

Jahanshahi Afshar, M, Pourjam, E. and Kheiri, A. 2006. Tylenchs associated with Jiroft orchards and a description of four newly found species for the nematode fauna of Iran. Iranian Journal of Agricultural Science, 37: 529-543. (In Persian with English summary).

Khan, E. and Chawla, M. L. 1975. Hoplolaimus indicus. C. I. H. descriptions of plant-parasitic nematodes. Set 5, No. 66.

Kheiri, A. 1995. Plant parasitic nematode fauna of sugarcane in Iran. Abstracts of the 22th International Symposium of the European Society of the European Society of Nematologists, Gent, Belgium. Nematologica, 41: 277-356.

Krall, E. L. 1990. Root Parasitic Nematodes Family Hoplolaimidae. E. J. Brill Publishing Company, Leiden, 580 pp.

Nowruz, R. and Barooti, S. 1997. Predatory and plant parasitic nematodes from Hormozgan province. Applied Entomology and Phytopathology, 64: 14-16 [49-58]. (In Persian with English summary).

Ronquist, F. and Huelsenbeck, J. P. 2003. MR BAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 19: 1572-1574.

Sher, S. A. 1963. Revision of the Hoplolaiminae (Nematoda). II. Hoplolaimus Daday, 1905 and Aorolaimus n. gen. Nematologica, 9: 267-295.
Siddiqi, M. R. 2000. Tylenchida Parasites of Plants and Insects. 2nd edition. CABI Publishing, Wallingford, Oxon, UK, 833 pp.
Subbotin S. A., Sturhan, D., Vovlas, N., Castillo, P., Tanyi Tambe, J., Moens, M. and Baldwin, J.G. 2007. Application of the secondary structure model of rRNA for phylogeny: D2–D3 expansion segments of the LSU gene of plant-parasitic nematodes from the family Hoplolaimidae Filipjev, 1934. Molecular Phylogenetics and Evolution, 43: 881-890.
Suryawanshi, M. V. 1971. Studies on Tylenchida (Nematoda) from Marathawada, India, with descriptions of four new species. Nematologica, 17: 393-406.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731-2739.
Tanha Maafi, Z. and Kheiri, A. 1993. Plant parasitic nematodes of banana from Hormozgan province. Iranian Journal of Plant Pathology 29: 43-51. (In Persian with English summary).
Tanha Maafi, Z., Amani, M. and Ebrahimi, N. 2006. Plant parasitic nematodes of banana plantations in Systan and Balouchestan province. Proceedings of 16th Iranian Plant Protection Congress. Volume II: Plant Diseases and Weeds, Tabriz, Iran p. 330.
Tanha Maafi, Z., Subbotin, S. A. and Moens, M. 2003. Molecular identification of cyst-forming nematodes (Heteroderidae) from Iran and a phylogeny based on the ITS sequences of rDNA. Nematology, 5: 99-111.
Vovlas, N. 1983. Morphology of Hoplolaimus seinhorsti as seen by scanning electron microscope. Nematologia Mediterranea, 11: 145-149.
Whithead, A. G. and Hemming, J. R. 1965. A comparison of some quantitative methods of extracting vermiform nematodes from soil. Annual Applied Biology, 55: 25-38.
مطالعه:) H. seinhorsti Luc, 1958 و Hoplolaimus indicus Sher, 1963

جمع آوری شده از مناطق جنوبی ایران (Hoplolaimidae)

محمود احمدی منصورآباد، رضا قادری، لیلا کاشی و اکبر کارگر بیده

بخش گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران.

rghaderi@shirazu.ac.ir

پست الکترونیکی نویسنده مسئول مقاله: * rghaderi@shirazu.ac.ir

دریافت: ۲۳ آذر ۱۳۹۴

چکیده: چندین جمعیت جَمِعَ‌آَوَرِی‌شَدِه‌‌از‌ْفَرَارَیْشَه‌ آَنِی‌، ْتُم هندی. لیمو ترش و تمیزکر از مناطق جنوبی ایران مورد مطالعه برخوردار شدند. بررسی دقیق نشان داد که این دو گونه بر اساس ساختار یکدیگر متمایز شده‌اند که

Tغييرات درون گونه‌اي زيادي داشته و برای جدا سازی در سطح گونه مناسب نبودند. در نتیجه نيز نظر H. seinhorsti به عنوان متغیف H. indicus dubius نشان داد که این دو گونه مشابه هم‌دستی در نظر گرفته شد. بررسی دقیق جمعیت H. seinhorsti به ترتیب گفته است.

واژگان کلیدی: 28S rRNA، Hoplolaimus dubius، H. sheri

چنین جمعیت‌های جمع‌آوری شده از فراری‌سالیه‌ای، تمر هندی، لیمو ترش و تمیزکر از مناطق جنوبی ایران مورد مطالعه برخوردار شدند. بررسی دقیق نشان داد که این دو گونه بر اساس ساختار یکدیگر متمایز شده‌اند که

درخت‌های تابازابی ترسیم شده با روش‌های مختلف، جمعیت ایرانی در H. indicaus در کنار H. seinhorsti و در یک تاباز مشترک قرار گرفت. این تاباز شامل گونه‌های مختلف به گروه اشتقاقی است که دارای شش هسته در غد مربی بوده، تعداد شیارهای جانی آنها کمتر از چهار شیار است و روزنامه‌های ترشحی جلوتر از همیشه قرار گرفته است.

واژگان کلیدی: 28S rRNA، H. sheri

شناخت‌شناسی: شناسایی، ریخت‌شناسی