THE SHAPE OF THE INITIAL CLUSTER MASS FUNCTION: WHAT IT TELLS US ABOUT THE LOCAL STAR FORMATION EFFICIENCY

G. Parmentier1,2,4, S. P. Goodwin3, P. Kroupa1 and H. Baumgardt1

ABSTRACT

We explore how the expulsion of gas from star-cluster forming cloud-cores due to supernova explosions affects the shape of the initial cluster mass function, that is, the mass function of star clusters when effects of gas expulsion are over. We demonstrate that if the radii of cluster-forming gas cores are roughly constant over the core mass range, as supported by observations, then more massive cores undergo slower gas expulsion. Therefore, for a given star formation efficiency, more massive cores retain a larger fraction of stars after gas expulsion. The initial cluster mass function may thus differ from the core mass function substantially, with the final shape depending on the star formation efficiency. A mass-independent star formation efficiency of about 20 per cent turns a power-law core mass function into a bell-shaped initial cluster mass function, while mass-independent efficiencies of order 40 per cent preserve the shape of the core mass function.

Subject headings: galaxies: star clusters — stars: formation — stellar dynamics

1. INTRODUCTION

One of the greatest discoveries made by the Hubble Space Telescope is that the formation of star clusters with mass and compactness comparable to those of old globular clusters is still ongoing in violent star forming environments, such as starbursts and galaxy mergers. The young cluster mass function (CMF: the number of objects per logarithmic cluster mass interval, dN/dlogm) is often reported to be a power-law of spectral index \(\alpha = -2 \) (i.e. equivalent to dN \(\propto m^{-2} dm \)) down to the detection limit [Fall & Zhang 2003; Bik et al. 2003; Hunter et al. 2003]. Similar results are obtained for the cluster luminosity function (e.g., Miller et al. 1997; Whitmore et al. 1999). However, old globular cluster systems are found to have a CMF which is Gaussian-like with a peak mass of \(\sim 10^5 \, M_\odot \) (Kavelaars & Hanes 1997). These very different CMFs between young and old systems present the greatest dissimilarity between the two populations, and perhaps the greatest barrier to identifying young massive clusters as analogues of young globular clusters.

Yet, it is worth keeping in mind that the luminosity/mass distribution of some young star cluster systems does not obey a power-law. Based on high resolution Very Large Array observations [Johnson 2008] rules out a power-law cluster luminosity function for the young star clusters formed in the starburst galaxy Hizense 2-10. In NGC 5253, an irregular dwarf galaxy in the Centaurus Group, Cresci et al. (2005) detect a turnover at \(5 \times 10^5 \, M_\odot \) in the mass function of the young massive star clusters in the central region. Last but not least, the case of the Antennae merger of galaxies NGC 4038/39 remains heavily debated. While Whitmore et al. (1999) infer from their HST/WFPC2 imaging data a power-law cluster luminosity function with a spectral index \(\alpha \approx -2.1 \), Anders et al. (2007) report the first statistically robust detection of a turnover at \(M_V \approx -8.5 \, mag \), corresponding to a mass of \(\approx 16 \times 10^5 \, M_\odot \). The origin of that discrepancy likely resides in differences in the data reduction and the statistical analysis aimed at rejecting bright-star contamination and disentangling completeness effects from intrinsic cluster luminosity function sub-structures.

These findings raise the highly interesting prospect that the shape of the CMF at young ages does vary from one galaxy to another. If it were conclusively proven that the shape of the initial cluster mass function (ICMF) is not universal among galaxies but, instead, depends on environmental conditions and/or on the star formation process, consequences would be far reaching since this would imply that the young CMF may help us decipher physical conditions prevailing in external galaxies.

In this contribution, we report the first results of a project investigating the evolution of the mass function of star forming cores into that of bound gas-free star clusters which have survived expulsion of their residual star forming gas. A similar study was carried out by Parmentier & Gilmore (2007) in which they showed that protoglobular cloud mass functions characterized by a mass-scale of \(\sim 10^6 \, M_\odot \) evolve into the observed globular cluster mass function. They propose that the origin of the universal Gaussian mass function of old globular clusters thus likely resides in a protoglobular cloud mass-scale common among galaxies and imposed in the protogalactic era. Present-day star forming cores, however, do not show any characteristic mass-scale as their mass function is a power-law down to the detection limit. Previously, Kroupa & Boily (2002) showed that a power-law embedded-cluster mass function can evolve into a mass function with a turnover near \(10^5 \, M_\odot \) if the physics of gas removal is taken into account. Taking advantage of the grid of \(N \)-body models recently compiled by Baumgardt & Kroupa (2007), we explore

\[M \sim m^{1/2} \]

\[N \sim m^{-2} \]

\[\alpha = -2 \]

\[M \sim m^{1/2} \]

\[N \sim m^{-2} \]

\[\alpha = -2 \]

\[M \sim m^{1/2} \]

\[N \sim m^{-2} \]

\[\alpha = -2 \]

\[M \sim m^{1/2} \]

\[N \sim m^{-2} \]

\[\alpha = -2 \]
in greater detail how a featureless core mass function evolves into the ICMF as a result of gas removal, which we model as the supernova-driven expansion of a supershell of gas. We also explore how the ICMF responds to model parameter variations so as to understand what may make the mass function of young star clusters vary from one galaxy to another. In a companion paper (Baumgardt, Kroupa & Parmentier 2008), we explore this issue from a different angle, that is, by defining an energy criterion, and we apply that alternative model to the mass function of the Milky Way old globular clusters.

2. NOTION OF INITIAL CLUSTER MASS FUNCTION

Before proceeding any further, it is worth defining the notion of the ICMF properly. Following the onset of massive star activity at an age of 0.5 to 5 Myr, a gas-embedded cluster expels its residual star forming gas. As a result, the potential in which the stars reside changes rapidly causing the cluster to violently relax in an attempt to reach a new equilibrium. This violent relaxation takes 10 – 50 Myr during which time the cluster loses stars ("infant weight-loss") and may be completely destroyed ("infant-mortality") (this process has been studied in detail by Hils (1980); Mathieu (1983); Elmegreen (1983); Lada, Margulis & Dearborn (1984); Elmegreen & Pinto (1983); Pinto (1987); Verschueren & David (1989); Goodwin (1997a); Goodwin (1997b); Kroupa, Aarseth & Hurley (2001)). The instantaneous mass of these young clusters thus follows: \(m_\text{cl} \lesssim \varepsilon \times m_c \). In the absence of any explicit dependence of \(\varepsilon \) on \(m_c \), the CMF at such a young age mirrors the core mass function. Any meaningful comparison of our model ICMFs therefore has to be limited to populations of clusters which have either re-virialized or been destroyed.

In our Monte-Carlo simulations, we assume that the SFE of a core is independent of its mass. The core mass function is assumed to follow a power-law of spectral index \(\alpha = -2 \) and we describe the probability distribution function of the SFE as a Gaussian of mean \(\bar{\varepsilon} \) and standard deviation \(\sigma_\varepsilon \), which we denote \(P(\varepsilon) = G(\varepsilon, \sigma_\varepsilon) \).

Clearly, if the bound fraction of stars after gas expulsion, \(F_{\text{bound}} \), depends upon the core mass, then the shape of the ICMF will differ from the (power-law) core mass function, an effect whose study was pioneered by Kroupa & Boily (2002). We now take this point further by combining the detailed N-body model grid of Baumgardt & Kroupa (2007), which provides the bound fraction \(F_{\text{bound}} \) as a function of the SFE \(\varepsilon \) and of the ratio between the gas removal time-scale \(\tau_{GR} \) and the cluster crossing-time \(\tau_{\text{cross}} \).

3. THE GAS EXPULSION TIME-SCALE

We model the gas expulsion from an (embedded) cluster as an outwardly expanding supershell whose radius \(r_s \) varies with time \(t \) as (Castor, McCray & Weaver 1975):

\[
r_s(t) = \left(\frac{125}{154\pi} \frac{\dot{E}_0}{\rho_g} \right)^{1/5} t^{3/5}.
\]

Here \(\dot{E}_0 \) is the energy input rate from Type II supernovae and \(\rho_g \) is the mass density of the residual star forming gas in the core. We assume the mass density profiles of the core and of the newly formed stars to be alike, that is, \(\rho_g = (1 - \varepsilon) \rho_c \).

The energy input rate from massive stars expelling the gas is

\[
\dot{E}_0 = \frac{N_{GR} \times E_{SN}}{\tau_{GR}},
\]

where \(N_{GR} \) is the number of supernovae expelling the gas, \(E_{SN} \) is the energy of one single supernova, and \(\tau_{GR} \) is the gas removal time-scale. At this stage, however, we know neither \(N_{GR} \) nor \(\tau_{GR} \). Since the energy input rate from massive stars is approximately constant with time over the whole supernova phase, we thus rewrite:
\[\dot{E}_0 = \frac{N_{SN} \times E_{SN}}{\Delta t_{SN}}. \]

(4)

\(\Delta t_{SN} \) is the supernova phase duration (i.e. the time from the first to the last supernova) and \(N_{SN} \) is the total number of supernovae formed in the core. We caution that a fraction only of these contribute to gas expulsion, that is, \(N_{SN} > N_{GR} \) and \(\Delta t_{SN} > t_{GR} \).

The gas removal time-scale corresponds to the instant when the supershell radius is equal to the core radius \(r_c \), namely, \(r_s(t = t_{GR}) = r_c \). The combination of that constraint on \(t_{GR} \) with eqs. 2 and 4 gives:

\[t_{GR} = \tau^2/3 \left(\frac{154.3 \Delta t_{SN}}{125.4 N_{SN} E_{SN}} (1 - \varepsilon) m_c \right)^{1/3}. \]

(5)

While gas-embedded cluster masses vary by many orders of magnitude, their radii are remarkably constant, always of order 1 pc (see table 1 in Kroupa (2005)). As \(N_{SN} \propto m_c \), it follows from eq. 5 that, for a given \(\varepsilon \), the gas removal time-scale \(t_{GR} \) is independent of the core mass \(m_c \). However, the impact of gas expulsion upon a cluster is not governed by the absolute value of \(t_{GR} \), but by its ratio with the core crossing time \(t_{cross} \), i.e. \(F_{bound} \) is a function of \(t_{GR}/t_{cross} \). The dynamical crossing-time of the star forming core is given by \(t_{cross} = (15/\pi G m_c)^{0.5} \) which, combined with eq. 5, gives:

\[\frac{t_{GR}}{t_{cross}} = 1.9 \times 10^{-4} \left(\frac{\Delta t_{61}}{E_{51}} \right)^{1/3} \left(\frac{m_c}{1 M_{\odot}} \right)^{1/2} \left(\frac{r_c}{1 \text{ pc}} \right)^{-5/6}. \]

(6)

In this equation, the number of supernovae, \(N_{SN} \), from eq. 5 is expressed as a function of the embedded cluster mass \(m_{ecl} = \varepsilon \times m_c \), assuming a Kroupa stellar initial mass function (Kroupa, 2001). We also assume that the upper stellar mass limit correlates with \(m_{ecl} \), as found by Weidner & Kroupa (2004), although the hypothesis of a fixed value for the mass of the most massive supernova progenitor (say, 60\(M_{\odot} \)) hardly affects the results presented in the next section. \(E_{51} \) and \(\Delta t_6 \) are the energy released per supernova in units of \(10^{51} \text{ ergs} \) and the duration of the supernova phase, in Myr, respectively. In what follows, we adopt \(E_{51} = 1 \) and \(\Delta t_6 = 30 \).

Eq. 6 shows that, in the absence of a mass-radius relation, the gas removal time-scale, expressed in units of the core crossing time, explicitly depends on the core mass. For a given \(\varepsilon \), the deeper potential well of more massive cores slows down gas expulsion when compared to low-mass cores. Massive clusters are therefore better able to adjust to the new gas-depleted potential, and have a larger bound fraction \(F_{bound} \). Eq. 6 is shown graphically in Fig. 1 as a match between bottom and top x-axes for \(\varepsilon = 0.33 \) and \(r_c = 1 \text{ pc} \). In the next section, we explore how the different ICMDs can be produced from the same (power-law) core mass function.

4. FROM THE CORE MASS FUNCTION TO THE INITIAL CLUSTER MASS FUNCTION

The core mass function is modelled as a power-law of spectral index \(\alpha = -2 \) (i.e. \(dN \propto m_c^{-2}dm_c \)) and the distribution function for the core (local) SFE is a Gaussian, as defined in Section 2. Both distributions are sampled independently, that is, the SFE is assumed to be independent of the core mass. The core radius is set to be \(r_c \approx 1 \text{ pc} \) and the ratio \(t_{GR}/t_{cross} \) is given by eq. 6.

The fraction \(F_{bound} \) of stars remaining bound to the cluster after gas removal is inferred by linearly interpolating the grid of Baumgardt & Kroupa (2007) (their table 1) which describes how \(F_{bound} \) varies with \(\varepsilon \) and \(t_{GR}/t_{cross} \).

According to our gas removal model, \(t_{GR} \) is the timescale over which the cluster expels the entirety of its gas. However, Baumgardt & Kroupa (2007) model gas removal as an exponential decrease with time of the cluster gas content, and their gas removal time-scale (\(t_{GR} \) in their eq. 1) corresponds to the time when the residual gas has a fraction \(e^{-1} = 0.37 \) of its initial value. Prior to using their results, we multiply \(t_{GR} \) by a factor of 3 (i.e. \(t_{GR} = 3t_{M} \)), so that \(t_{GR} \) now corresponds to a residual gas mass fraction of \(e^{-3} = 0.05 \), i.e., the cluster is practically devoid of gas. The corresponding grid is shown in Fig. 1. In this paper, we focus on clusters evolving in a low-density environment/weak tidal field and we thus consider the lowest half-mass radius to tidal radius ratio in the grid of Baumgardt & Kroupa (2007), i.e. \(r_h/r_t = 0.01 \). In stronger tidal fields the shape of the ICMD is likely to be more affected than what we find below, since low-mass clusters have smaller tidal radii and are, therefore, more easily disrupted by gas expulsion.

Our Monte-Carlo simulations, based on eq. 4 and shown in Fig. 2, show the evolution of the star forming core mass function into the ICMD. We have considered 9 different cases, combining three mean star formation efficiencies (\(\bar{\varepsilon} = 0.20, 0.33, 0.40 \)) with three standard deviations (\(\sigma_{\varepsilon} = 0.00, 0.03, 0.05 \)). Examination of the panels of Fig. 2 shows that depending on the assumed distribution of SFEs \(G(\bar{\varepsilon}, \sigma_{\varepsilon}) \), markedly different ICMDs are produced, ranging from a power-law shape (e.g. when \(\bar{\varepsilon} = 0.40 \), regardless of \(\sigma_{\varepsilon} \)) to a bell-shape (e.g. when \(\bar{\varepsilon} = 0.20 \) and \(\sigma_{\varepsilon} \lesssim 0.03 \)).
These different behaviours stem from how large the variations of the bound fraction F_{bound} with the core mass m_c are. In order to illustrate this, let us focus on the top panel of Fig. 2 for which $\sigma_c = 0$. A SFE as high as $\varepsilon = 0.4$ guarantees that F_{bound} is only a weak function of the core mass m_c as $0.35 \lesssim F_{\text{bound}} \lesssim 0.95$ over the core mass range $10^3 M_\odot \lesssim m_c \lesssim 10^8 M_\odot$ (see Fig. 1). As a result, the shape of the ICMF mirrors that of the core mass function and is close to a power-law of spectral index $\alpha = -2$.

In the case of a SFE of $\varepsilon = 0.33$, the same core mass range corresponds to an increase of the bound fraction with the core mass of almost two orders of magnitude (i.e. $0.01 \lesssim F_{\text{bound}} \lesssim 0.90$), making the ICMF significantly shallower than the core mass function. It is worth keeping in mind that the detailed form of this ICMF is uncertain, as the determination of the bound fraction F_{bound} depends on the fine details of the N-body modelling of gas expulsion when $F_{\text{bound}} \lesssim 0.1$. As for $\varepsilon = 0.33$, $F_{\text{bound}} \approx 0.01-0.04$ when $\log(\tau_{GR}/\tau_{cross}) \lesssim -0.5$ (see Fig. 1). If the bound fraction were larger over that range of gas removal time-scale to crossing time ratio, the shape of the ICMF would be closer to that of the core mass function, while if F_{bound} were zero before increasing at, say, $m_{\text{core}} \approx 10^3 - 3 \times 10^5 M_\odot$, this would result in a bell-shaped ICMF (see the case of $\varepsilon = 0.20$ below).

The core mass function is most affected when $\varepsilon = 0.20$. Fig. 1 shows that the formation of a bound-free star cluster requires its parent core to be more massive than $10^6 M_\odot$, since the bound fraction is zero otherwise (note that the top x-axis is rightward-shifted by ≈ 0.1 in $\log(\tau_{GR}/\tau_{cross})$ when $\varepsilon = 0.20$, see eq. (1)). Owing to the wide variations of F_{bound} over the core mass range ($0 \lesssim F_{\text{bound}} \lesssim 0.85$), the transformation of the core mass function into the ICMF is, in this case, heavily core mass dependent: the featureless power-law core mass function evolves into a bell-shaped ICMF. The time-scale for this evolution is that required for the exposed cluster to get back into virial equilibrium following gas expulsion, that is, 50Myr. Examination of the model grid computed by Baumgardt & Kroupa (2007) for the SFE and the gas removal time-scale of relevance ($\varepsilon = 0.20$ and $\tau_{GR} \gtrsim \tau_{cross}$) shows that the end of the violent relaxation phase occurs at about that age and the cluster mass is then as defined in eq. (1).

As indicated by the arrows in Fig. 1 and in the top panel of Fig. 2, the turnover location is determined by the core mass at which the bound fraction is a few per cent. For instance, a core mass of $2 \times 10^6 M_\odot$ with $\varepsilon = 0.20$ leads to $\log(\tau_{GR}/\tau_{cross}) = 0.13$ and $F_{\text{bound}} = 0.06$. The corresponding initial cluster mass is thus $m_{\text{init}} = (0.06) \times (0.20) \times (2 \times 10^6 M_\odot) \approx 2.4 \times 10^4 M_\odot$, roughly the mass of the ICMF turnover.

That $\varepsilon = 0.20$ leads to a bell-shaped ICMF directly results from the zero bound fraction of stars for core masses less than $\approx 10^6 M_\odot$. A SFE of $\varepsilon = 0.25$ would result in the same effect (see Fig. 1). This is equivalent to creating a truncated power-law for the cluster forming cores, even though the star forming core mass function is a featureless power-law down to the low-mass regime. That result is reminiscent of the detailed investigation performed by Parmentier & Gilmore (2007) who found that a system of cluster parent clouds devoid of low-mass objects, such as a power-law mass function truncated at low-mass, results in a bell-shaped ICMF. We emphasize that, if these clusters were observed at an age of 50Myr, their observed mass would closely match the mass predicted by our model. Actually, all clusters of the bell-shaped ICMF, irrespective of their mass, stem from gaseous progenitors more massive than $10^6 M_\odot$. This implies that unbound stars formed in the core leave the exposed cluster with velocities of order 60km.s^{-1} and do not linger as part of a halo around the bound part of the cluster. As a related consequence, note that if the very early Milky Way disc went through a violent star formation phase producing such massive clusters, then the corresponding high velocity dispersions lead naturally to the creation of a thick disc component (Kroupa, 2002).

In the middle and bottom panels of Fig. 2 we show the ICMF that results from the core mass function for SFE distributions with variance $\sigma_c = 0.03$ and 0.05 respectively. The general features of the panels are the
disruption of practically the whole original population of
mass 10^6 M⊙ (e.g. Harris & Pudritz 1994). ICMFs obtained with
mass-radius relation of virialised cores obeys a power-law. The amplitude of that evolution is greater
when core radii are assumed to follow the mass-radius
relation of virialised cores than when the core radius is
assumed to be constant. As illustrated by Figs. 2 and
3, that the mass function of young clusters observed in a variety of environments appears not to be universal is
not surprising.

5. SUMMARY

The shape of the mass function of young star clusters
remains much debated. Observational results are sorted
to two distinct, often opposed, categories: power-law or
bell-shaped mass functions. We have shown in this con-
tribution that both shapes can arise from the same phys-
ical process, namely, the supernova-driven gas expul-
sion from newly formed star clusters on a core mass dependent
time-scale. Specifically, more massive cores have a higher
gas removal time-scale to dynamical crossing-time ratio
by virtue of their deeper potential wells (assuming the
near constancy of core radii over the core mass range).
For a given SFE, this results in larger bound fractions F_{bound} of stars at the end of the violent relaxation which
follows gas expulsion. The shape of the ICMF is chiefly
governed by the probability distribution of the SFE ε. Bell-shaped ICMFs arise when most star forming cores
have ε ≲ 0.25. In that case, however, bound gas-free
star clusters only form out of cores more massive than
10^6 M⊙. This implies that bell-shaped ICMFs are also
associated with gas-rich environments so as to guarantee
that the core mass function is sampled to such a high
mass. In contrast, power-law ICMFs mirroring the core
mass function arise when ε ≈ 0.4 for most star forming
cores. This implies that the shape of the ICMF also
depends on the width σ_e of the SFE distribution. When
ε ≲ 0.25, an increasing σ_e enhances the contribution of
cores with ε ≈ 0.40 and turns a bell-shaped ICMF into a
power-law. The amplitude of that evolution is greater
when core radii are assumed to follow the mass-radius
relation of virialised cores than when the core radius is
assumed to be constant. As illustrated by Figs. 2 and
3, that the mass function of young clusters observed in a variety of environments appears not to be universal is
not surprising.

Vesperini (1998) pointed out that a power-law ICMF
of spectral index (-2) evolves to a bell-shaped mass func-
tion the turnover of which is located at a significantly
lower cluster mass than what is observed for the uni-
versal globular cluster mass function. For such models,
Parmentier & Gilmore (2003) showed that a power-law
ICMF with α = -2 also leads to a radial gradient in the
peak of the evolved mass function contrary to what is observed. Baumgardt, Kroupa & Parmentier (2008)
demonstrated that these two issues do not arise if the
ICMF is depleted in low-mass clusters compared to a
power-law of spectral index (-2) as a result of gas expul-
sion. In that case, it evolves within 13 Gyr into a cluster
mass function similar to that of old globular clusters both
in the inner and outer Galactic halo (see their fig. 4).
While a mean SFE of ε ≳ 0.40 preserves the shape of the
core mass function, a mean SFE not exceeding ε ≲ 0.25
leads to a low-mass cluster depleted ICMF (see Fig. 2).
The universality of the globular cluster mass function
may thus stem from the existence of an upper limit of,
say, 25 per cent on the mean SFE in all protogalaxies.

same as for zero variance, however there are increasing
differences, especially at the low-mass end of the ICMF.
These differences are due to the effect of the SFE not
being symmetric around the mean ε. For ε = 0.2, low-
mass gas-embedded clusters with ε = 0.2 are completely
destroyed (F_{bound} ∼ 0) and this is the case for any cluster
selected below the mean. However, a low-mass gas-
embedded cluster can be drawn with ε = 0.3 – 0.4, in
which case it will be able to survive and retain a signif-
ificant fraction of its mass. For this reason, the ICMF
flattens rather than turning-over in the bottom panel of
Fig. 2.

A key assumption underlying the above analysis is the
hypothesis of a constant radius for all star forming cores,
regardless of their mass. In Fig. 3 we examine the effect
of the core radius on the form of the ICMF produced from
a core mass function with ε = 0.20 (ie. a bell-shaped
ICMF). We explore how the cluster mass at the turnover
responds to core radius variations. A linear scaling for
the y-axis is adopted as it enables us to pinpoint the
turnover location more accurately. For the sake of com-
parison, the ICMFs obtained with σ_e = 0.00 and 0.03
and with r_c = 1 pc (dotted curves with crosses in top and
middle panels of Fig. 2) respectively are shown as solid
lines. ICMFs depicted with open symbols correspond to
constant core radius of r_c = 0.5 pc and r_c = 2 pc. A
larger core radius implies smaller core densities, thereby
increasing the disruptive effect of gas expulsion and low-
ering the number of bound gas-free star clusters. That
the turnover is at higher cluster mass arises from the
leftward-shift of the mass-scaling of the top x-axis of
Fig. 1 when the core radius is larger (see eq. 9).

As stated in Section 3 observations support the as-
sumption of an almost constant core radius. This, how-
ever, is at variance with theoretical expectations that the
mass-radius relation of virialised cores obeys r_c ∝ m_{cl}^{1/2}
(e.g. Harris & Pudritz 1994). ICMFs obtained with
r_c [pc] = 10^{-3}(m_{cl}/1 M⊙)^{1/2} are shown as lines with filled
symbols in Fig. 3. The normalisation is such that a core
of mass 10^6 M⊙ has a radius of 1 pc. Higher normali-
sations, corresponding to less dense cores, lead to the
disruption of practically the whole original population of
embedded clusters. While, for a constant core radius of
r_c = 1 pc, the bell-shape of the ICMF is preserved when
σ_e is increased from 0.00 to 0.03, the virial mass-radius
relation leads to a power-law ICMF for σ_e = 0.03. That
is, the sensitivity of the ICMF shape to the width of the
distribution function for the SFE is greater than in case of
a constant core radius.
The origin of that constraint on the mean SFE in the protogalactic era remains to be explained, however.

In this preliminary study, the energy input rate from massive stars encompasses the contribution made by supernovae only, i.e. that of stellar winds has been neglected. Consequently, the above results apply to the sole case of metal-poor environments. As noted in Section 2, we have assumed that the effect of gas expulsion depends on the actual star formation efficiency - i.e. we assume that the stars and gas (potential) are in virial equilibrium at the onset of gas expulsion. This assumption is reasonable if (the stellar component of) the cluster has had time to relax. A cluster will have been able to relax if the onset of gas expulsion occurs after a few crossing times. In a low-metallicity regime such as we are considering in this paper, gas expulsion will be driven by supernovae rather than stellar winds and so will not begin until a few Myr after the stars have formed. Such a time-scale is several crossing times, and so we could expect the eSFE to closely match the SFE. We note however, that there may well be a mass-eSFE dependence in higher metallicity cluster populations that may alter our conclusions (which would be applicable to populations such as those in the Antennae merger of disc galaxies).

In a follow-up paper, we will consider the additional impact of stellar winds and the case of star clusters forming out of dense environments where strong tidal fields prevail.

GP acknowledges support from the Alexander von Humboldt Foundation in the form of a Research Fellowship and from the Belgian Science Policy Office in the form of a Return Grant. GP and SG are grateful for research support and hospitality at the International Space Science Institute in Bern (Switzerland), as part of an International Team Programme. We acknowledge partial financial support from the UK’s Royal Society through an International Joint Project grant aimed at facilitating networking activities between the universities of Sheffield and Bonn.

REFERENCES

Anders, P., Bissantz, N., Boysen, L., de Grijs, R., Fritzenv. Alvensleben, U. 2007, MNRAS, 377, 91
Baumgardt, H., Kroupa, P. 2007, MNRAS, 380, 1589
Baumgardt, H., Kroupa, P., Parmentier, G., accepted in MNRAS, arXiv:0712.1581
Bik, A., Lamers, H.J.G.L.M., Bastian, N., Panagia, N., Romaniello, M. 2003, A&A, 397, 473
Boily, C. M. & Kroupa, P. 2003a, MNRAS, 338, 643
Boily, C. M. & Kroupa, P. 2003b, MNRAS, 338, 673
Castor, J., McCray, R., Weaver, R. 1975 ApJ, 200, 107
Cresci, G., Vanzl, L., Sauvage, M. 2005, A&A, 433, 447
Elmegreen, B. G. 1983, MNRAS, 267, 1011
Elmegreen, B. G. & Clemens, C. 1985, ApJ, 294, 523
Fall, S. M., Zhang, Q. 2001, ApJ, 561, 751
Geyer, M. P., Burkert, A. 2001, MNRAS, 323, 988
Goodwin, S. P. 1997a, MNRAS, 284, 785
Goodwin, S. P. 1997b, MNRAS, 286, 669
Goodwin, S. P., Bastian, N. 2006, MNRAS, 373, 752
Goodwin, S. P. 2008, in: Young massive star clusters: Initial conditions and environments, Perez, E., de Grijs R., and Gonzalez Delgado, R. (eds), Springer, in press
Harris W.E., Pottitiz B.E. 1994, ApJ, 429, 177
Hills, J. G. 1980, ApJ, 235, 986
Hunter, D. A., Elmegreen, B. G., Dupuy, T. J., Mortonson, M. 2003, AJ, 126, 1836
Johnson, K. E. 2008, in: Young massive star clusters: Initial conditions and environments, Perez, E., de Grijs R., and Gonzalez Delgado, R. (eds), Springer, in press
Kavelaars, J.J., Hanes D.A. 1997, MNRAS, 285, L31
Kroupa P. 2001, MNRAS, 322, 231
Kroupa, P., Aarseth, S., Hurley, J., 2001, MNRAS, 321, 699
Kroupa P. 2002, MNRAS, 330, 707
Kroupa, P., Boily, C.M. 2002, MNRAS, 336, 1188
Kroupa, P. 2005, In: Proceedings of ”The Three-Dimensional Universe with Gaia” (ESA SP-576) C. Turon, K.S. O’Flaherty, M.A.C. Perryman (eds), p.629
Lada, C. J., Margulis, M., Dearborn, D. 1984, ApJ, 285, 141
Mathieu, R. D. 1983, ApJ, 267, 97
Miller, B., Whitmore, B.C., Schweizer, F., Fall, S.M. 1997, AJ, 114, 2381
Parmentier, G., Gilmore, G.F. 2005, MNRAS, 363, 326
Parmentier, G., Gilmore, G.F., 2007, MNRAS, 377, 352
Piato, F. 1987, PASP, 99, 1161
Spitzer, L., 1987, in: Dynamical evolution of globular clusters, Princeton University Press
Verschueren, W. & David, M. 1989, A&A, 219, 105
Verschueren, W. 1990, A&A, 234, 156
Vesperini E. 1998, MNRAS, 299, 1019
Weidner, C., Kroupa, P. 2004, MNRAS, 348, 187
Whitmore, B.C., Zhang Q., Leitherer, C., Fall, S.M., Schweizer, P., Miller, B.W., 1999, AJ, 118, 1551