Simply Generated Trees, B-Series
and Wigner Processes

Christian Mazza
Section de Mathématiques
2-4 Rue du Lièvre, CP 240
CH-1211 Genève 24 (Suisse)
christian.mazza@math.unige.ch

Abstract
We consider simply generated trees, like rooted plane trees, and consider the problem of computing generating functions of so-called bare functionals, like the tree factorial, using B-series from Butcher’s theory. We exhibit a special class of functionals from probability theory: the associated generating functions can be seen as limiting traces of product of semi-circular elements.

Key words and phrases. B-series, random matrices, rooted plane trees, Runge-Kutta methods, simply generated trees.

2000 AMS Subject Classification. Primary 05a15 Secondary 05c05, 30b10, 46l54, 81s25

1 Introduction

Let F_n denote the set of rooted plane trees of size n. Simply generated trees are families of trees obtained by assigning weights $\omega(t)$ to the elements $t \in F = \cup_n F_n$ using a degree function $\psi(z) = 1 + \sum_{k \geq 1} \psi_k z^k$ (see [20]). Basically, the weight $\omega(t)$ of some $t \in F$ is obtained by multiplying the factors $\psi_{d(v)}$ over the nodes v of t, where $d(v)$ denotes the outdegree of v. Our main topic is the study of generating functions

$$Y(z) = \sum_{t \in F} \omega(t) B(t) z^{|t|},$$

associated with multiplicative functions $B : F \rightarrow \mathbb{R}$ defined recursively by using a sequence of real numbers $\{B_k\}_{k \in \mathbb{N}^+}$. We call such multiplicative functions bare Green functions: $\sum_{t \in F_n} B(t) \omega(t)$ represents the sum of the
Feynman amplitudes associated to the relevant diagrams of size n in some field theory, and the generating function is then a part of the perturbative expansion of the solution of some equation describing the system (see $[3, 6, 8, 15]$).

In Section 4, we give an equation satisfied by Y when the weights B_k come from some master function $L(z) = \sum_{m \geq 0} L_m z^m$, with $B_k \equiv L(k)/k$, $\forall k \in \mathbb{N}^+$. We use series indexed by trees, the so-called B-series, as defined in $[13, 14]$, to show in Theorem 1 that Y solves

$$Y' = L(1 + \theta)\Psi(Y),$$

where θ is the differential operator $\theta = zd/dz$. $[1]$ considers a similar problem for additive tree functionals $s(t)$ defined on varieties of increasing trees, like $s(t) = \ln(B(t))$. Assuming some constraints on the degree function $\Psi(z)$, it is proven that the exponential generating function

$$S(z) = \sum_{t \in \mathcal{F}} \omega(t)s(t)z^{|t|}/|t|!,$$

is given by the formula

$$S(z) = W'(z) \int_0^z \frac{F'(u)/W'(u)}{u} du,$$

where $F(u) = \sum_{m \geq 0} \ln(B_m)W_m u^m/m!$ and $W(z) = \sum_{m \geq 0} W_m z^m/m!$ solves $W' = \Psi(W)$. We also consider a central functional called the tree factorial, denoted by $t!$ in the sequel, which is relevant in various fields, like algorithmics $[9, 18]$, stochastics $[11, 21]$, numerical analysis (see example $[5, 14]$), and physics $[6, 15]$. We focus on its negative powers $1/(t!)^{l+1}$, $l \in \mathbb{N}$, which do not admit a master function when $l \geq 1$. $[6]$ solved the case $l = 1$ by using the so-called Butcher’s group (see for example $[13, 14]$). We provide in Theorem 2 a differential equation for the associated generating function, $\forall l \in \mathbb{N}$.

In Section 5, we define special multiplicative functionals for which the weights B_k are related to the covariance function r of some gaussian process, as $B_k = \beta^2 r(2k - 1)$, for some positive constant $\beta > 0$. We show that the generating function Y is related to the mean normalized trace of products of large symmetric random matrices having independent and identically distributed versions of the process as entries. Theorem 3 gives then a differential equation for the evolution of the trace of a stationary Wigner processes. It follows that most of the examples given in $[3, 15]$ can be expressed in terms of traces of large random matrices. In Section 6, we show how B-series can be useful for studying traces of triangular operators appearing in free probability.
2 Basic notions

A rooted tree \(t \in \mathcal{R} \) is a triple \(t = (r, V, E) \) such that i) \((V, E)\) is a non-empty directed tree with node set \(V \) and edge set \(E \), ii) all edges are directed away from the root \(r \in V \). The set of rooted trees of order \(n \) is denoted by \(\mathcal{R}_n \), and the set of rooted trees is \(\mathcal{R} = \bigcup_n \mathcal{R}_n \). A rooted plane tree \(t \in \mathcal{F} \) is a quadruple \(t = (r, V, E, L) \) satisfying i) and ii) and iii) \(L := \{ (\{w : vw \in E\}, L_v) : v \in V \} \) is a collection of \(|V|\) linear orders. Given \(v \in V \), let \(\text{ch}(v) := \{ w : vw \in E \} \) be the set of children of \(v \). \(d(v) := |\text{ch}(v)| \) is the outdegree of \(v \). A rooted planar tree can be seen in the plane with the root in the lowest position, such that the orders \(L_v \) coincide with the left-right order. Next consider the partial ordering \((V, \leq)\) defined by \(u \leq v \) if and only if \(u \) lies on the path linking \(r \) and \(v \). Given \(v \in V \) and \(t \in \mathcal{R} \) let \(t_v \) be the subtree of \(t \) rooted at \(v \) spanned by the subset \(\{ w : v \leq w \} \). A rooted labelled tree is a quadruple \(t = (r, V, E, l) \) satisfying i) and ii), with a labelling \(l : V \setminus \{ r \} \to [|V|] := \{1, \ldots ,|V|\} \) such that \(l(u) < l(v) \) when \(u < v \). The set of rooted labelled trees of order \(n \) is denoted by \(\mathcal{L}_n \). Let \(\mathcal{L} = \bigcup_n \mathcal{L}_n \). This family is a special variety of increasing trees, as defined in [1, 12]. We next assign weights to the elements of \(\mathcal{F}_n \), the set of rooted planar trees of order \(n \): the resulting family of trees is said to be simply generated (see [21]). Given a sequence \(\psi = \{ \psi_k \}_{k \in \mathbb{N}} \) of real numbers with \(\psi_0 = 1 \), define recursively the weight \(\omega(t) \) of \(t \in \mathcal{F} \) as

\[
\omega(t) = \psi_k \prod_{i=1}^k \omega(t_i), \quad k = d(r), \quad \omega(t) = \prod_{v \in V} \psi_{d(v)}.
\]

where \(t_1, \ldots , t_k \) are the \(d(r) \) subtrees of \(t \) rooted at \(\text{ch}(r) \). Let \(\psi(z) := 1 + \sum_{k=1}^{\infty} \psi_k z^k \) be the generating function of the weight sequence \(\psi \). Our favourite example is \(\psi(z) = 1/(1 - z) \), with \(\omega(t) = 1, \forall t \) (see [11, 20] for various interesting choices).

We will be concerned with functionals \(B : \mathcal{F} \to \mathbb{R} \), where \(\mathcal{F} = \bigcup_n \mathcal{F}_n \), called bare Green functions. This terminology is taken from quantum field theory where bare Green functions occur during the action of the renormalization group (see for example [3], § 4.2 or [4], § 6.1). Let \(\mathcal{B} \) denote the set of bare Green functions. Any element \(B \in \mathcal{B} \) is given through a sequence of functions \(B_k : \mathbb{R} \to \mathbb{R} \), \(k \in \mathbb{N}^+ \), which are usually Laurent series in some variable \(x \) (see for example [3]). In what follows, we simply write the sequence as \(\{ B_k \}_{k \in \mathbb{N}^+} \).

Definition 1 The bare Green function \(B \in \mathcal{B} \), \(B : \mathcal{F} \to \mathbb{R} \), associated
with the sequence of functions $\{B_k\}_{k \in \mathbb{N}_+}$ is defined recursively as

$$B(t) = B_{|t|} \prod_{i=1}^{k} B(t_i),$$

where t_1, \cdots, t_k are the $d(r)$ subtrees of t rooted at $\text{ch}(r)$, and where $|t|$ denotes the number of nodes of t.

Notice that the value of B at $t \in \mathcal{F}$ does not depend on the linear orders and is independent of the labellings. When dealing with rooted trees, we will adopt the notation $t = B_+(t_1, \cdots, t_k)$ for the operation of grafting the rooted trees t_1, \cdots, t_k, that is by considering the tree t obtained by the creation of a new node r (the root) and then joining the roots of t_1, \cdots, t_k to r. Bare Green functions appeared also in the probabilistic literature in specific situations. The basic example, in algorithmics [9, 18], in numerical analysis (see [4, 5, 14]), in stochastics [11, 20] and in physics (see for example [6]) is the tree factorial, defined by

Definition 2 Let $t \in \mathcal{R}$ with $t = B_+(t_1, \cdots, t_k)$. Then the tree factorial $t!$ is the functional $B \in \mathcal{B}$ defined by $t! = |t| \prod_{i=1}^{k} t_i!$, associated with the sequence $\{B_k\}$ given by $B_k \equiv k$.

Remark 3 It should be pointed out that the functional acting on trees, given as $s(t) = \ln(B(t))$, for $B \in \mathcal{B}$ with $B_k > 0$, $\forall k \geq 1$, is an inductive map or an additive tree functional, as defined in [17]. Interestingly, $B(t) = 1/t!$ is used in [18] to define a probability measure on random search binary trees, and [9, 11] provide precise asymptotics for $\ln(t!)$.}

3 Generating functions

We first give some basic results on tree factorials, symmetry factors, and generating functions associated with bare Green functions.

Definition 4 Let $t \in \mathcal{R}$. Then $\alpha(t)$ is the number of rooted labelled trees $t' \in \mathcal{L}$ of shape $t \in \mathcal{R}$, where the shape of a labelled tree (r, V, E, l) is (r, V, E), $\kappa(t)$ is the number of rooted plane trees of shape t, and $\sigma(t)$ is the symmetry factor of the tree, to be defined later. Moreover, let $\omega_\mathcal{L}$ be the weight function associated with elements of \mathcal{L}, with weights given by $\psi_k \equiv 1/k!$.

Notice that $\alpha(t)$ is the Connes-Moscovici weight in quantum field theory (see [3, 7]). The symmetry factor satisfies the recursive definition:

$$\sigma(\{r\}) = 1,$$
where the indices n_i means that t is obtained by grafting n_1 times the tree t_1, and so on, where we assume that the t_i are all different as rooted trees.

Lemma 5 Let $t \in \mathcal{R}$. Then

$$\alpha(t)\sigma(t) = \frac{|t|!}{t!},$$

(1)

and

$$\alpha(t)t! = |t|\omega_L(t)\kappa(t).$$

(2)

Proof: (1) is well known (see for example [5]). Suppose that $t \in \mathcal{R}$ is such that $t = B_+(t_{n_1}^{n_1}, \ldots, t_{n_k}^{n_k})$, the grafting of n_1 times the tree t_1, and so on, where we set that the trees t_1, \ldots, t_k are different as rooted trees. Then

$$\kappa(t) = \left(\frac{n_1 + \cdots + n_k}{n_1! \cdots n_k!}\right)^{n_1} \cdots \kappa(t_1)^{n_1} \cdots \kappa(t_k)^{n_k}.$$

Using the recursive definition of $\omega(t)$ and the definition of ω_L, we have

$$\omega_L(t) = \frac{1}{(n_1 + \cdots + n_k)!^{n_1} \cdots \omega_L(t_1)^{n_1} \cdots \omega_L(t_k)^{n_k}}.$$

Therefore

$$\frac{1}{\omega_L(t)\kappa(t)} = n_1! \cdots n_k!(\frac{1}{\omega_L(t_1)\kappa(t_1)})^{n_1} \cdots (\frac{1}{\omega_L(t_k)\kappa(t_k)})^{n_k},$$

and the results follows from the recursive definition of the symmetry factor. □

Then

$$\sum_{t \in \mathcal{F}_n} B(t)\omega(t) = \sum_{t \in \mathcal{R}_n} B(t)\frac{\omega(t)}{\omega_L(t)}\alpha(t)\frac{t!}{|t|!}\frac{t!}{|t|!},$$

(3)

where we have used (2) of Lemma 5.

Consider the generating function

$$Y(z) = \sum_{n \in \mathbb{N}^+} \sum_{t \in \mathcal{R}_n} z^n \sum_{i \in \mathcal{R}_n} \alpha(i)B(i)!\omega(i)/\omega_L(i).$$

(4)

Given $t \in \mathcal{R}$, the ratio ω/ω_L is associated with the weight sequence $\psi_k \equiv \psi_k k!$; using the expansion $\psi(z) = 1 + \sum_{k \geq 1} \psi_k z^k = 1 + \sum_{k \geq 1} (\psi_k/k!) z^k$, we see that $\psi_k \equiv \psi^{(k)}(0)$. Consider the elementary differentials δ (see Section 4) defined by
Definition 6

\[\delta_{\{s\}} = 1, \quad \delta_t = \psi^{(k)}(0) \prod_{i=1}^{k} \delta_t_i, \quad \frac{\omega}{\omega_L} = \delta, \]

when \(t = B_+(t_1, \ldots, t_k) \), where * denotes the tree of a single node. For a map \(a : \mathcal{R} \cup \{\emptyset\} \rightarrow \mathbb{R} \), a formal power series of the form \(Y(z) = a(\emptyset) y_0 + \sum_{t \in \mathcal{R}} z^{\|t\|} a(t) \alpha(t) / |t|! \) is called a B-series \([13, 14]\).

Remark 7 When \(B(t) = t! \), the series \(Y \) is given by

\[Y(z) = \sum_{t \in \mathcal{L}} (\omega(t)/\omega_L(t)) z^{|t|}/|t|!. \]

Set \(\phi_k = \psi_k k!, \forall k \), and consider the degree function \(\phi(z) = 1 + \sum_{k \geq 1} (\phi_k/k!) z^k \).

Following \([13]\), \(Y \) solves \(Y' = \phi(Y) \) (see also \([20]\)). We shall see in the next section that it is a natural consequence of B-series expansions of solutions of ordinary differential equations.

4 Runge-Kutta methods for functionals over trees

Consider a dynamical system on \(\mathbb{R} \)

\[\frac{d}{ds} X(s) = F(X(s)), \quad X(s_0) = X_0, \]

for some smooth \(F : \mathbb{R} \rightarrow \mathbb{R} \). The solution of this dynamical system has a B-series expansion of the form

\[X(s) = X_0 + \sum_{t \in \mathcal{R}} \frac{(s - s_0)^{|t|}}{|t|!} \alpha(t) \delta_t(s_0), \]

where the elementary differentials \(\delta \) is defined recursively by

\[\delta_{\{s\}} = f(s_0), \quad \delta_t = \frac{\partial^k F}{\partial s^{k_1} \delta t_1 \cdots \delta t_k}, \]

when \(t = B_+(t_1, \ldots, t_k) \). These kinds of expansions have been treated in great detail in \([4]\) and \([5]\) and developed independently in combinatorics (see for example \([16, 17]\)). Suppose that \(s_0 = 0 \) for simplicity. Butcher considered what happens with numerical approximations of the exact solution, the Runge-Kutta methods, which are themselves B-series \([13, 14]\); here we focus on specific B-series, which are associated to bare Green functions. Let \(B \in \mathcal{B} \) be such that there exists a power series

\[L(z) = \sum_{m \geq 0} L_m z^m, \]
Given a power series $Y(z) = \sum_{m=0}^{\infty} a_m z^m$ converging for $|z| \leq 1$, we can define $L(\theta + 1)(Y)(z) := \sum_{m=0}^{\infty} a_m L(m + 1)z^m$, which converges for $|z| \leq 1$ when the sequence $(L(k))_{k \geq 1}$ grows subexponentially. We will not focus on convergence questions here, and work at the formal level. Let L be a bare Green function with weights $(B_k)_{k \geq 1}$, such that \[(5)\] holds for some power series L. It should be pointed out that [3, 6, 15] deal with the master function L, but do not give explicitly an equation for Y. The next Theorem provides an equation; its proof uses explicitly B-series.

Theorem 1 The formal power series

$$Y(z) = \sum_{t \in R} \frac{z^{\left| t \right|}}{\left| t \right|!} \alpha(t)! B(t) \delta_t,$$

solves $Y' = L(1 + \theta)\psi(Y)$.

Proof:

$$\psi(Y(z)) = \sum_{k \geq 0} \frac{\psi^{(k)}(0)}{k!} \sum_{(t_1, \ldots, t_k) \in R^k} \frac{z^{\sum_{i=1}^{k} \left| t_i \right|}}{\left| t_1 \right|! \cdots \left| t_k \right|!} \prod_{i=1}^{k} \alpha(t_i) B(t_i) \delta_{t_i}.$$

For given $(t_1, \ldots, t_k) \in R^k$, set $t = B_{+}(t_1, \ldots, t_k)$. Then $\sum_i |t_i| = |t| - 1$, $\psi^{(k)}(0) \delta_{t_1} \cdots \delta_{t_k} = \delta_t$, and $B(t_1) \cdots B(t_k) = B(t)/B_{|t|}$. The associated term becomes

$$z^{\left| t \right| - 1} \frac{B(t)}{B_{|t|}} \delta_t \frac{\alpha(t_1) \cdots \alpha(t_k) \ t!}{\left| t_1 \right|! \cdots \left| t_k \right|! |t|}.$$

Next, every rooted tree $t \in R$ can be decomposed uniquely as $t = B_{+}(t_1^{n_1}, \ldots, t_m^{n_m})$, meaning that t is obtained by grafting n_1 times t_1 and so on, where the t_i are different as rooted trees, with $k = n_1 + \cdots + n_m$. Collecting the terms associated with t, we get the contribution

$$\frac{z^{\left| t \right| - 1}}{k!} \frac{B(t)}{B_{|t|}} \delta_t \frac{\alpha(t_1) \cdots \alpha(t_k) \ t!}{|t|} \sum_{(t'_1, \ldots, t'_k) \in R^k} \frac{\alpha(t'_1) \cdots \alpha(t'_k)}{|t'_1|! \cdots |t'_k|!}.$$

with

$$B_k = \frac{L(k)}{k!}, \quad \forall k \in \mathbb{N}^+.$$
where * means that the sum is taken over all the collections \((t'_1 \cdots t'_k) \in \mathcal{R}^k\) such that \(t = B_+(t_1', \ldots, t_k')\). The above sum reduced then to
\[
\frac{(n_1 + \cdots + n_m)! \alpha(t_1)^{n_1} \cdots \alpha(t_m)^{n_m}}{n_1! \cdots n_m!} \cdot \frac{k! |t_1|!^{n_1} \cdots |t_m|!^{n_m}}{\sigma(t_1)t_1!^{n_1} \cdots \sigma(t_m)t_m!^{n_m}} = \frac{1}{n_1!} \left(\frac{1}{\sigma(t_1)t_1!^{n_1}} \right)^{n_1} \cdots \frac{1}{n_m!} \left(\frac{1}{\sigma(t_m)t_m!^{n_m}} \right)^{n_m},
\]
where we use the first identity of Lemma \(\text{E}\). Using the recursive definition of the symmetry factor \(\sigma\), we obtain
\[
\sum_{(t'_1 \cdots t'_k) \in \mathcal{R}^k} \frac{\alpha(t'_1) \cdots \alpha(t'_k)}{k! |t'_1|! \cdots |t'_k|!} = \frac{1}{t_1!^{n_1} \cdots t_m!^{n_m} \sigma(B_+(t_1, n_1, \ldots, t_m, n_m))} = \frac{|t| \alpha(t)}{t! \sigma(t)} = \frac{|t| \alpha(t)}{|t|!}.
\]
We thus get that the contribution associated with \(t \in \mathcal{R}\) is given by
\[
\frac{z^{|t| - 1} B(t)}{k! B_{|t|}} \delta_t \frac{1}{|t|!} \frac{|t| \alpha(t)}{|t|!} = \frac{z^{|t| - 1} B(t)}{|t|!} \alpha(t) \delta_t !.
\]
Therefore
\[
L(\theta + 1) \psi(Y) = \sum_{t \in \mathcal{R}} \frac{B(t)}{B_{|t|}} \alpha(t) t! \delta_t \frac{L(\theta + 1)(z^{|t| - 1})}{|t|!} = \sum_{t \in \mathcal{R}} \frac{B(t)}{B_{|t|}} \alpha(t) t! \delta_t \frac{L(|t|)z^{|t| - 1}}{|t|!} = \sum_{t \in \mathcal{R}} \frac{B(t)}{B_{|t|}} \alpha(t) t! \delta_t \frac{B_{|t|} |t| z^{|t| - 1}}{|t|!} = \sum_{t \in \mathcal{R}} \frac{z^{|t| - 1}}{(|t| - 1)!} B(t) t! \delta_t = \frac{dY}{dz}.
\]

\(\Box\)

Remark 8 As we have observed in Remark \(\text{E}\), \(s(t) = \ln(B(t))\) is an inductive map when the weights \(B_k\) are positive. It turns out that the exponential generating function associated with \(s\) can be given as an integral transform for varieties of increasing trees (see for example Section \(\text{I}\)). This is the topic of \(\text{I}\).

Example 9

When \(L(z) = z\), with \(B_k \equiv 1\), and \(\psi(z) = 1/(1 - z)\), one has \(\sum_{t \in \mathcal{R}_{n+1}} B(t) = C_n\), the Catalan number of order \(n\), with \(C_n = \binom{2n}{n}/(n + 1)\). Then \(Y(z) = \ldots\)
$z \sum_{n \geq 0} z^n C_n$ is solution of the differential equation $Y''(z) = L(1 + \theta)(1/(1 - Y(z)))$, that is $Y''(z) = (z/(1 - Y(z)))'$. The unique solution with $Y(0) = 0$ satisfies $Y(z) = z/(1 - Y(z))$, or $Y(z) = (1 - \sqrt{1 - 4z})/2$, corresponding to a well known result.

\[\square\]

\[6\], § 5.3, considers the case where $B(t) = (1/t!)^2$, which is not of the form given in \[5\]; in this situation, $B_k = 1/k^2$, with $L(z) = 1/z$. The solution is obtained by using the structure of the so-called Butcher’s group of B-series (that is series of the form \[6\]), where the group structure is given in \[13\] \[14\] by tensoring known B-series:

Example 10

Consider the bare functional given by $B_k \equiv 1/k^2$, with $B(t) = 1/t^2$. Following Brouder, the associated B-series, as given in \[6\], is solution of the second order differential equation

$$zY'' + Y' = \psi(Y).$$

When $\psi(z) = \exp(z)$, the solution is given by

$$Y(z) = -2 \ln(1 - z/2) = \sum_{n=1}^{\infty} z^n \frac{1}{n2^{n-1}},$$

giving

$$\sum_{t \in \mathbb{R}_n} \frac{\alpha(t)}{t!} = \frac{(n - 1)!}{2^{n-1}}.$$

\[\square\]

We study the general moment problem $B(t) = (1/t!)^{l+1}$, $l \in \mathbb{N}$, by working directly on a suitable differential equation as follows: the operator $L(\theta + 1)$ takes the form $L(\theta + 1) = 1/(\theta + 1)^l$. Assume that the differential operator $L(\theta + 1)$ is invertible. Then the formal systems becomes

$$L(\theta + 1)^{-1} \frac{d}{dz} Y = \psi(Y). \quad (7)$$

Consider again the second moment problem for the tree factorial, with $B_k \equiv 1/k^2$ and $L(k) \equiv 1/k$. Choose L such that $L(z) = 1/z$; the inverse operator might be equal to $L(\theta + 1)^{-1} = \theta + 1$, and, if this is the case,

$$(\theta + 1) \frac{d}{dz} Y = \psi(Y),$$

with $(\theta + 1)(d/dz) = z(d^2/dz^2) + (d/dz)$, see Example \[10\].

9
More generally, if one considers the moment of order \(l + 1 \in \mathbb{N} \) of the inverse tree factorial, the choice \(L(k) = 1/k^l \) should give \((\theta + 1)^l \frac{d}{dz} Y(z) = \psi(Y) \). Our result, Theorem 2 below shows that the formalism of inversion is correct in term of power series. This result sheds some light and extends the computations done in [6] for the second moment, and its proof avoids computations in the Butcher’s group.

Theorem 2 The B-series \(Y(z) \) associated with the moment of order \((l + 1)\) of the inverse tree factorial satisfies the differential equation

\[
(\theta + 1)^l \frac{d}{dz} Y = \psi(Y).
\]

Proof: Let

\[
Y(z) = \sum_{t \in \mathcal{R}} \frac{z^{|t|}}{|t|!} \alpha(t) \frac{1}{t!^{l+1}} t! \delta_t.
\]

Then

\[
\psi(Y(z)) = \sum_{k \geq 0} \frac{\psi^{(k)}(0)}{k!} \sum_{(t_1 \cdots t_k) \in \mathcal{R}^k} \frac{z^{\sum_i |t_i|}}{|t_1|! \cdots |t_k|!} \alpha(t_1) \cdots \alpha(t_k) (t_1! \cdots t_k!) \cdot \delta_{t_1} \cdots \delta_{t_k}.
\]

For given \((t_1 \cdots t_k) \in \mathcal{R}^k\), set \(t = B_+(t_1, \cdots, t_k) \). Then \(\sum_i |t_i| = |t| - 1 \), \(\psi^{(k)}(0) \delta_{t_1} \cdots \delta_{t_k} = \delta_t \), and \((t_1! \cdots t_k!) = t! / |t|\). The associated term becomes

\[
\frac{z^{|t|-1} |t|^l}{t!} \cdot \alpha(t_1) \cdots \alpha(t_k) \frac{1}{|t_1|! \cdots |t_k|!} \cdot \delta_{t_1} \cdots \delta_{t_k}.
\]

Proceeding as in the proof of Theorem 1, we get that the contribution associated with \(t \in \mathcal{R} \) is given by

\[
\frac{z^{|t|-1} |t|^l}{t!} \cdot \delta_t \cdot \frac{|t| \cdot \alpha(t)}{|t|!} = \frac{z^{|t|-1} |t|^l}{(|t| - 1)!} \cdot \frac{2^{|t|}}{t!} \cdot \alpha(t) \cdot \delta_t.
\]

On the other hand,

\[
(\theta + 1)^l \frac{d}{dz} Y(z) = (\theta + 1)^l \sum_{t \in \mathcal{R}} \frac{z^{|t|-1}}{|t|!(|t| - 1)!} \cdot \alpha(t) \cdot \frac{1}{t!^l} \cdot \delta_t
\]

\[
= \sum_{t \in \mathcal{R}} \frac{|t|^l z^{|t|-1}}{|t|!(|t| - 1)!} \cdot \alpha(t) \cdot \frac{1}{t!^l} \cdot \delta_t.
\]

\(\square \)

In the next section, we show that traces of certain products of Wigner matrices (see for example [24]) provide natural examples of bare Green functions.
5 Wigner processes

Definition 11 The N-dimensional random matrices $\Gamma_N := (\gamma_{i,j})_{1 \leq i,j \leq N}$ are called Wigner matrices of variance β^2 if the following holds.

- Each Γ_N is symmetric, that is, $\gamma_{i,j} = \gamma_{j,i}$.
- For $i \leq j$, the random variables $\gamma_{i,j}$ are independent and centered.
- For $i \neq j$, $E(\gamma_{i,j}^2) = \beta^2$.
- For any $k \geq 2$, $E(|\gamma_{i,j}|^k) \leq c_k$, where c_k is independent of $i \leq j$.

Definition 12 The sequence $\Gamma_N(k) := (\gamma_{i,j}(k))_{1 \leq i,j \leq N}$ of N-dimensional random matrices, indexed by $k \geq 1$, is called a Wigner process of variance β^2 and correlation function r, $r(k,k) = 1$, $|r(k,m)| \leq 1$ and $r(k,m) = r(m,k)$ if the following holds.

- Each $\Gamma_N(k)$ is a Wigner matrix of variance β^2 in the sense of definition 11.
- For $i \leq j$, each process $(\gamma_{i,j}(k))_k$ is independent of the others.
- For $i \neq j$, the process $(\gamma_{i,j}(k))_k$ is r-correlated, that is, for any $k \geq m$,
 \[E(\gamma_{i,j}(k)\gamma_{i,j}(m)) := \beta^2 r(k,m). \] (9)

A Wigner process is stationary when r is such that $r(k,m) = r(|k-m|)$.

Let D_N be a sequence of random diagonal matrices, with independent and identically distributed entries of law μ, having finite moment $\mu_k = \mu(X^k)$, $k \geq 1$, with $\mu_1 = 1$. Let

\[Q_N^k := N^{-k/2}D_N \prod_{m=1}^{k} (\Gamma_N(m)D_N), \]

and set

\[B_N^k(r) = N^{-1}E(\text{tr}(Q_N^k)). \]

Involutions, Dyck paths and rooted plane trees

For $k \geq 1$, $[k] := \{1,2,\ldots,k\}$, $I(k)$ is the set of the involutions of $[k]$ with no fixed point, $J(k)$ is the subset of $I(k)$ of the involutions σ with
no crossing. This means that the configurations $i < j < \sigma(i) < \sigma(j)$ do not appear in $\sigma \in \mathcal{J}(k)$. Let $i \in \text{cr}(\sigma)$ denote the fact that $i < \sigma(i)$. Let $\mathcal{D}(2k)$ be the set of the Dyck paths of length $2k$, that is, of the sequences $c := (c_n)_{0 \leq n < 2k}$ of nonnegative integers such that $c_0 = c_{2k} = 0$, $c_n - c_{n-1} = \pm 1$, $n \in [2k]$. Thus, exactly k indices $n \in [2k]$ correspond to ascending steps (c_{n-1}, c_n), that is, to steps when $c_n = c_{n-1} + 1$. We denote this by $n \in \text{asc}(c)$. The k others indices correspond to descending steps, that is, to steps when $c_n = c_{n-1} - 1$, and we denote this by $n \in \text{desc}(c)$. We make use of bijections between $\mathcal{D}(2k)$ and $\mathcal{J}(2k)$ [2]. If $c \in \mathcal{D}(2k)$, $\phi(c) := \sigma \in \mathcal{J}(2k)$ is an involution which maps each element of $\text{desc}(c)$ to a smaller element of $\text{asc}(c)$. Thus, $\text{cr}(\sigma) = \text{asc}(c)$. More specifically, if $n \in \text{desc}(c)$, $\sigma(n)$ is the greatest $m \leq n$ such that $(c_{m-1}, c_m) = (c_n, c_{n-1})$. Finally, the set $\mathcal{D}(2k)$ is in bijection with \mathcal{F}_{k+1}, the set of rooted plane trees on $k + 1$ nodes, where the bijection is given by the walk on the tree from the right to the left (see for example [25]). Let σ_t denote the involution of $\mathcal{J}(2(|t| - 1))$ corresponding to $t \in \mathcal{F}$. Given $t \in \mathcal{F}_{k+1}$, consider the walk on t from the right to the left: every edge (v, w) with $w \in \text{ch}(v)$, is crossed at some instant $s_v \in [2k]$ as $(v \rightarrow w)$ and at a later time $s_w \in [2k]$ as $(w \rightarrow v)$. Clearly, $s_w = s_v + 2(|t_w| - 1) + 1$, where t_w is the subtree of t rooted at node w, that is the subgraph of t induced by the nodes u with $u \geq w$. σ_t is such that $\sigma_t(s_v) = s_w$ and vice versa.

![Fig 1. Bijections between \mathcal{F}_{k+1}, $\mathcal{D}(2k)$ and $\mathcal{J}(2k)$ ($s_v = 2$ and $s_w = 5$).](image)

Proposition 13 Assume that the covariance r is such that $r(l, m) = r(|l - m|)$. Then, the functional $B^r \in B$ given by the weights

$$B^r_k = \beta^2 r(2k - 1), \forall k \geq 1,$$

is such that

$$\frac{B^r(t)}{B^r_{|t|}} = \prod_{i \in \text{cr}(\sigma_t)} (\beta^2 r(i, \sigma_t(i))).$$

12
Proof: Let $t \in \mathcal{F}$. Let $s_v < s_w$ be the instants where the oriented edges $(v \to w)$ and $(w \to v)$, $w \in \text{ch}(v)$, are crossed during the walk on the tree. $r(s_v, \sigma_t(s_v)) = r(s_w - s_v) = r(2|t_w| - 1)$, and thus $\beta^2 r(s_v, \sigma_t(s_v)) = B^r_{t_w}$. Finally, $\prod_{i \in \text{cr}(\sigma_t)} \beta^2 r(i, \sigma_t(i)) = \prod_{w \neq \text{root}} B^r_{|t_w|} = B^r(t)/B^r_0$, as required.

As we have just seen, every Wigner process with covariance r such that $r(l, m) = r(|l - m|)$ produces a bare Green function $B^r \in \mathcal{B}$. The converse is not true, that is, there exists $B \in \mathcal{B}$ such that B is not of the form $B = B^r$ for some covariance function r. Set $\mathcal{B}^w = \{B \in \mathcal{B}; \exists \text{ a covariance } r \text{ with } B = B^r\}$.

Let ψ_μ be the generating function of the weight sequence $\psi_k = \mu_{k+1}$, and let $\omega_\mu(t)$, $t \in \mathcal{F}$ be the associated weight function.

Theorem 3 Let $(\Gamma_N(k))_{k \geq 1}$ be a stationary Wigner process of covariance function r and variance β^2, and let D_N be a sequence of random diagonal matrices, independent of the Wigner process, with i.i.d. entries λ_j of law μ, with $\mu_1 = \mu(\lambda) = 1$ and finite moments $\mu_k = \mu(\lambda^k)$, $\forall k$. Then

$$B^N_{2k}(r) \longrightarrow B_{2k}(r) = \frac{1}{B^r_{k+1}} \sum_{t \in \mathcal{F}_{k+1}} B^r(t) \omega_\mu(t),$$

and $B^N_{2k+1}(r) \longrightarrow 0$, $N \to \infty$. Assume that the covariance is such that there exists a power series $L^r(z)$ with $B_k^r = L^r(k)/k$, $\forall k$. Then the formal power series

$$Y(z) = \sum_{k \geq 1} z^k B_k^r B_{2(k-1)}(r),$$

solves

$$Y' = L^r(\theta + 1) \psi_\mu(Y).$$

Moreover

$$\sum_{k \geq 1} z^k B_{2(k-1)}(r) = z \psi_\mu(Y). \quad (10)$$

Example 14

Let $B(t) = 1/t!$. If a tree t has n nodes and $n - 1$ edges, then the requirement $B_n = 1/n$ is satisfied iff $\beta^2 r(2n - 1) = 1/n$, that is r must be such that $\beta^2 r(k) = 2/(k + 1)$, $k \in 2\mathbb{N} + 1$. By construction, $r(0) = 1$ and therefore $\beta^2 = 2$. $1/(x + 1)$ is positive definite, which implies that $B(t) = 1/t!$ is element of \mathcal{B}^w. Next, from Theorem 2 the generating function $Y(z) = \sum_{t \in \mathcal{F}} z^{|t|} B^r(t) \omega_\mu(t)$ is solution of the system $(d/dz)Y(z) = \psi_\mu(Y)$.

13
Assume that μ is the point mass δ_1, that is each matrix D_N is the identity matrix of size N, with $\psi_{\mu}(z) = 1/(1-z)$. The solution of the system is $Y(z) = 1 - \sqrt{1-2z} = 2\bar{Y}(z/2)$, where \bar{Y} is the series given in Example 9. On the other hand, Proposition 13 and Theorem 3 show that $Y(z) = \sum_{k \geq 1} z^kB_k^2B_{2(k-1)}(r)$. Therefore the limiting mean normalized trace $B_{2k}(r)$ of the product of correlated random matrices $\prod_{m=1}^{2k} \Gamma_N(m)$ is such that $B_{2k}(r) = E(Z^{2k})/k!$, where Z denotes a normal N(0,1) random variable.

\[\square \]

Example 15

Consider as in Example 9 the special case where $L(z) = z$. The associated inductive parameter (see Remark 8) is the tree size. The covariance r is constant with $r(k) \equiv 1$, and $B_k^N \equiv 1$. Then the generating function Y is solution of the fixed point equation $Y(z) = z\psi_{\mu}(Y(z))$ (either by Theorem 11 or by (10)). Notice that in this situation, $\Gamma_N(m) \equiv \Gamma_N(1)$, and thus $B_k^N(r)$ describes the mean normalized moment of the spectral measure of the random matrix $D_N(\Gamma_N(1)D_N)^k$. This example can be extended by considering $L(z) = z\rho^z$, for some $0 < \rho \leq 1$. When D_N is the identity matrix, $Y(z)$ is related to the Rogers-Ramanujan continued fraction [19], and corresponds to the generating function associated with path length, see [11, 25].

\[\square \]

Proof of Theorem 5 The first part is a generalization of Theorem 1 of [19]. Set $\tilde{\gamma}_{ij}(m) = \gamma_{ij}(m)\lambda_j$, and $\tilde{\Gamma}_N(m) = \Gamma_N(m)D_N$. The mean normalized trace adds the contributions $E(i) = E(\lambda_{i_0}\tilde{\gamma}_{i_0i_1}\cdots\tilde{\gamma}_{i_{k-1}i_k})$, for paths $i = (i_0)_{0 \leq l \leq k}$, with $i_l \in [N]$ and $i_0 = i_k$. The $\tilde{\gamma}_{ij}$ are centered, so that any edge (i, j) appearing once appears at least twice. Given i, define $\varepsilon_l = 1$ and $\varepsilon_l = -1$ otherwise, and consider the walk $c = (c_l)$ defined by $c_l = \sum_{j=1}^{l} \varepsilon_j$, with $c_k \leq 0$. The support of i is $s(i) = \{i_l; 0 \leq l \leq k\}$, of size $s = |s(i)|$, with $s \leq 1 + k/2$. The contribution $E(i)$ is independent of the labels i_l; they are $N(N-1)\cdots(N-s+1)$ labellings giving the same walk c, with the same contribution. Thus, the normalization $N^{-1+(1+k)/2}$ shows that the only walks surviving in the large N limit are those with $s = 1 + k/2$. This shows that $B_k^N(r) \to 0$ when k is odd. Concerning $B_k^N(r)$, $s = 1 + k$ means that every edge occurring in the path occurs exactly twice, in opposite directions. c is a Dyck path of $D(2k)$; let $t \in F$ be the associated rooted plane tree, with involution σ_t. Using the right to left walk on t and the independence of the random variables, the contribution $E(i)$ of any path leading to c or t is $E(i) = \prod_{m \in cr(\sigma_t)} E(\gamma(m)\gamma(\sigma_t(m)))E(\prod_v \lambda_v^{d(v)+1})$ where $d(v) = |ch(v)|$.

\[\square \]
From Proposition 13 one obtains \(E(i) = (B^r(t)/B_{k+1}^r) \prod_v \mu_{d(v)+1} \), with \(B_{2k}(r) = \sum_{t \in F_{k+1}} (B^r(t)/B_{k+1}^r) \prod_v \mu_{d(v)+1} \), as required. (10) is a consequence of the multiplicative form of bare Green functions and of Lemma 1.9, chap. III.1 of [14].

□

These results show that the elements of \(B^w \) appear naturally in the computation of normalized traces of products of large random matrices (see for example [23]). In the next Section we illustrate B-series by considering triangular operators from free probability.

6 On Dykema-Haagerup triangular operator

Let \(B \) be an algebra and \(A \) be a \(B \) bi-module. Let \(\kappa : A \times A \rightarrow B \) be a bilinear map. We follow [22] by defining the product \(a_1 \ast \kappa a_2 = \kappa(a_1, a_2) \), \(a_1, a_2 \in A \), and setting

- \(i \) \((ba_1) \ast \kappa a_2 = b(a_1 \ast \kappa a_2)\),
- \(ii \) \((a_1b) \ast \kappa a_2 = a_1 \ast \kappa (ba_2)\),
- \(iii \) \(a_1 \ast \kappa (a_2b) = (a_1 \ast \kappa a_2)b\).

Let \(\sigma \in J(2n) \) be an involution of \([2n]\) without fixed point and without crossing. Given a word \(a = a_1 \cdots a_{2n} \) in \(A \), \(\sigma \) induces parentheses on \(a \), and the previous rules permit the evaluation of this parenthesized word. This extends to a map \(\kappa_\sigma \) on \(A^{2n} \). Sniady defines such maps to prove a conjecture of Dykema and Haagerup on generalized circular elements. Let \((B \subset A, E)\) be an operator valued probability space, that is \(A \) is a unital \(\ast \)-algebra, \(B \subset A \) an unital \(\ast \)-subalgebra and \(E : A \rightarrow B \) be a conditional expectation (linear, \(E(1) = 1 \), and \(E(b_1ab_2) = b_1E(a)b_2 \), \(\forall b_1, b_2 \in B, a \in A \)).

Definition 16 \(T \in A \) is a generalized circular element if there is a bilinear map \(\kappa \) satisfying the rules i), ii) and iii) such that

\[
E(b_1T^{s_1}b_2T^{s_2} \cdots b_{2n}T^{s_{2n}}) = \sum_{\sigma \in J(2n)} \kappa_\sigma(b_1T^{s_1}, \cdots , b_{2n}T^{s_{2n}}),
\]

\[
E(b_1T^{s_1}b_2T^{s_2} \cdots b_{2n+1}T^{s_{2n+1}}) = 0,
\]

\(\forall b_1, \cdots , b_{2n+1} \in B \) and \(\forall s_1, \cdots , s_{2n+1} \in \{1, \ast\} \).

The triangular operator \(T \) of Dykema and Haagerup is obtained from \(B = \mathbb{C}[x] \), the \(\ast \)-algebra of complex polynomials of one variable by setting

\[
[k(T, bT^\ast)](x) = \int_x^1 b(s)ds,
\]
\[[\kappa(T^*, bT)](x) = \int_0^x b(s)ds, \]
\[[\kappa(T, bT)](x) = [\kappa(T^*, bT^*)](x) = 0. \]

\(T \) is the limit for the convergence of *-moments of large upper triangular random matrices \(T_N \) \((\text{10})\). Define a trace \(\tau \) as (see \((\text{22})\))

\[\tau(a) = \tau(E(a)), \quad \tau(b) = \int_0^1 b(s)ds. \]

In what follows, we use P-series (where P stands for partitioned differential systems, see \((\text{13})\)). We follow \((\text{6})\), and adapt his notations to P-series. Given some function \(\psi \), and two kernels \((a^x(u,v))_{u,v \in [0,1]} \) and \((a^y(u,v))_{u,v \in [0,1]} \), consider the iterated integrals \(\phi^x_u(t) \) and \(\phi^y_u(t) \) which are functionals over \(\mathcal{R} \) defined by \(\phi^x_u(*) = \phi^y_u(*) = 1 \), and, for \(t = B_+(t_1, \cdots, t_k) \),

\[
\phi^x_u(t) = \prod_{i=1}^k \int_0^1 a^x(u,v)\phi^y_v(t_i)dv, \\
\phi^y_u(t) = \prod_{i=1}^k \int_0^1 a^y(u,v)\phi^x_v(t_i)dv.
\]

Lemma 17 Let \(a^x(u,v) = I_{[0,u]}(v) \) and \(a^y(u,v) = I_{[u,1]}(v) \). Then

\[
\tau((TT^*)^n) = \sum_{t \in \mathcal{F}_{n+1}} \int_0^1 \phi^x_v(t)dv = \sum_{t \in \mathcal{F}_{n+1}} \int_0^1 \phi^y_v(t)dv.
\]

Proof: The word \(W = (TT^*) \cdots (TT^*) \) is of the generic form with \(b_1 = \cdots b_{2n} = 1 \) (Definition \((\text{16})\)). Let \(t \in \mathcal{F}_{n+1} \) with associated involution \(\sigma_t \) (see Section \((\text{5})\)). Let \(s_v \) and \(s_w \) be the instants where the walk on \(t \) crosses the oriented edges \((v \to w) \) and \((w \to v) \), with \(w \in \text{ch}(v) \). We colour these edges by giving colour ‘1’ to \((v \to w) \) when the symbol in \(W \) located at position \(s_v \) is \(T \), and give the colour ‘*’ otherwise. Clearly, both edges have different colours, and the elements of the set of edges \{ \((v \to w); \ w \in \text{ch}(v) \} \) (the children of \(v \) in \(t \)) have the same colour. The result is then a consequence of the definition of the product with the rules i), ii) and iii).

\(\square\)

Remark 18 Iterated integrals are natural objects to consider in the setting of Butcher’s Theory. For example, in the framework of Theorem \((\text{7})\) the iterated integrals \(\phi_u(t) \) defined by \(\phi_u(t) = \prod_{i=1}^k \int_0^a L(\theta + 1)(\phi_v(t_i))dv, \) when \(t = B_+(t_1, \cdots, t_k) \), are such that \(\phi_1(t) = B(t), \ \forall t \in \mathcal{F}. \)
Proposition 19 The P-series

\[X_u(s) = X_0 + \sum_{t \in \mathbb{R}} \frac{s^{|t|}}{|t|!} \alpha(t) t! \delta_t \int_0^1 a^x(u, v) \phi^x_v(t) dv, \]

and

\[Y_u(s) = Y_1 + \sum_{t \in \mathbb{R}} \frac{s^{|t|}}{|t|!} \alpha(t) t! \delta_t \int_0^1 a^y(u, v) \phi^y_v(t) dv, \]

are solutions of the integral system

\[X_u(s) = X_0 + s \int_0^1 a^x(u, v) \psi(Y_v(s)) dv, \]

\[Y_u(s) = Y_1 + s \int_0^1 a^y(u, v) \psi(X_v(s)) dv. \]

Proof: This is consequence of Butcher’s general theory (see [4]). To prove it more directly, proceed as in the proof of Theorem [4].

\[\square \]

Corollary 20 Let \(X_0 = Y_1 = 0 \). Assume that \(a^x(u, v) = I_{[0,u]}(v) \) and \(a^y(u, v) = I_{[u,1]}(v) \). Suppose that \(\psi(z) = 1/(1 - z) \). Then

\[Y_0(s) = \sum_{t \in \mathbb{R}} \frac{s^{|t|}}{|t|!} \alpha(t) t! \delta_t \int_0^1 \phi^x_v(t) dv = \sum_{t \in \mathcal{F}} s^{|t|} \tau(TT^*)^{|t| - 1}. \]

This result shows that the generating function of the *-moments of the operator \(TT^* \) can be obtained by solving the system given in Proposition 19. We recover in this way a result of [10], Lemmas 8.5 and 8.8.

Lemma 21 In the setting of Corollary 20, the generating function \(Y_0(s) \) solves

\[G \left(\frac{s}{1 - Y_0(s)} \right) = s, \] \hspace{1cm} (11)

where \(G(z) = z \exp(-z) \), that is, \(L(s) = s/(1 - Y_0(s)) \) and \(G \) are inverse with respect to composition. Moreover \(\tau(TT^*)^n = n^n/(n + 1)! \).

Proof: We solve the integral system by looking for solutions of the form \(X_u(s) = 1 - \exp(\lambda u) \) and \(Y_u(s) = 1 - \exp(\lambda'(u - 1)) \), with \((d/du)X_u(s) = s/(1 - Y_u(s))\) and \((d/du)Y_u(s) = -s/(1 - X_u(s))\). We deduce that \(\lambda' = -\lambda \) is solution of the equation \(\lambda + s \exp(-\lambda) = 0 \). The formula for the moments of \(TT^* \) is a consequence of Lagrange’s inversion formula.

\[\square \]
Acknowledgment

We gratefully acknowledge our debt to the referees who carefully read the paper and provided us with very useful comments and relevant references.

References

[1] F. Bergeron, F. Flajolet and B. Salvy Varieties of increasing trees in Lect. Notes in Comp. Sc., vol. 581, J.-C Raoult Ed., 24-48, 1992.

[2] P. Biane Permutations suivant le type d’excédances et le nombre d’inversions et interprétation combinatoire d’une fraction continue de Heine European J. Combin., 14(4):277-284, 1993.

[3] D.J. Broadhurst and D. Kreimer Renormalization automated by Hopf algebra J. Symbolic Comp. 27, no.6: 581-600, 1999.

[4] J.C. Butcher An algebraic theory of integration methods Math. Compu., 26:79-107, 1972.

[5] J.C. Butcher Numerical Methods for Ordinary Differential Equations Wiley, Chichester, 2003.

[6] C. Brouder Runge-Kutta methods and renormalization Eur. Phys. Journal C, 12: 521, 2000.

[7] A. Connes and D. Kreimer Hopf algebras, Renormalization and Non-commutative Geometry Commun. Math. Phys., 199: 203-242, 1998.

[8] R. Delbourgo and D. Kreimer Using the Hopf algebra structure of QFT in calculations Phys. Rev. D, 60:105025, 1999.

[9] R. Dobrow and J. Fill On the Markov chain for the move-to-root rule for binary search trees. Ann. Appl. Probab., 5: 1-19, 1995.

[10] K. Dykema and U. Haagerup DT-operators and decomposability of Voiculescu’s circular operator. arXiv:math.OA/0205077 2002.

[11] J. Fill On the distribution of binary search trees under the random permutation model. Rand. Struct. Algo., 8(1):1-25, 1996.

[12] F. Flajolet and R. Sedgewick Analytic combinatorics, symbolic combinatorics, Book in preparation, available at http://pauillac.inria.fr/algo/flajolet/Publications/books.html

[13] E. Hairer, S. Nørsett ans G. Wanner Solving Ordinary Differential Equations I Springer, Berlin, second edition. 1993.
[14] E. Hairer, C. Lubich and G. Wanner *Geometric Numerical Integration Structure-Preserving Algorithms for Ordinary Differential Equations* Springer Series in Computational Mathematics 31, 2002.

[15] D. Kreimer Chen’s Iterated Integral represents the Operator Product Expansion *Adv. Theor. Math. Phys.*, **3**: 627-670, 1999.

[16] P. Leroux and G. Viennot Combinatorial resolution of systems of differential equations I: Ordinary differential equations. In *Combinatoire énumérative* (1986), G. Labelle and P. Leroux, Eds, no. 1234 in Lecture Notes in Mathematics, Springer Verlag, p. 210-245.

[17] P. Leroux and G. Viennot Combinatorial resolution of systems of differential equations. IV. separation of variables. *Discrete Mathematics*, **72**:237-250, 1988.

[18] H. Mahmoud *Evolution of random search trees*. Wiley, New York, 1992.

[19] C. Mazza and D. Piau Products of large correlated symmetric matrices and q-Catalan numbers *Probab. Theory Relat. Fields*, **124**:574-594, 2002.

[20] A. Meir and J. Moon On the altitude of nodes in random trees *Canad. J. Math.*, **30**: 997-1015, 1978.

[21] A. Meir and J. Moon On the Log-Product of the Subtree-Sizes of Random Trees *Rand. Struct. Algo*, **12**: 197-212, 1997.

[22] P. Sniady Multinomial identities arising from the free probability theory *J. Combin. Theory Ser. A*, **101**(1):1-19, 2003.

[23] R. Speicher A new example of ”independence” and ”white noise” *Probab. Theory Related Fields*, **84**(2):141-159, 1990.

[24] A. Soshnikov Universality at the Edge of the Spectrum in Wigner Random Matrices. *Comm. Math. Phys.*, **207**(3):697-733, 1999.

[25] L. Takacs A Bernoulli excursion and its various applications *Adv. Appl. Prob.*, **23**:557-585, 1991.