A REAL PART THEOREM FOR THE HIGHER DERIVATIVES OF ANALYTIC FUNCTIONS IN THE UNIT DISK

DAVID KALAJ AND NOAM D. ELKIES

Abstract. Let \(n \) be a positive integer. Let \(U \) be the unit disk, \(p \geq 1 \) and let \(h^p(U) \) be the Hardy space of harmonic functions. Kresin and Maz'ya in a recent paper found a representation for the function \(H_{n,p}(z) \) in the inequality
\[
|f^{(n)}(z)| \leq H_{n,p}(z) \|\Re(f - P_l)\|_{h^p(U)}, \quad \forall f \in h^p(U), \quad z \in U,
\]
where \(P_l \) is a polynomial of degree \(l \leq n - 1 \). We find or represent the sharp constant \(C_{p,n} \) in the inequality
\[
H_{n,p}(z) \leq C_{p,n} (1 - |z|^2)^{1/p} + n.
\]
This extends a recent result of Kalaj and Marković, where only the case \(n = 1 \) was considered. As a corollary, an inequality for the modulus of \(n \)-th derivative of an analytic function defined in a complex domain with the bounded real part is obtained. This result improves a recent result of Kresin and Maz'ya.

1. Introduction and statement of the results

A harmonic function \(f \) defined in the unit disk \(U \) of the complex plane \(\mathbb{C} \) belongs to the harmonic Hardy class \(h^p = h^p(U), \ 1 \leq p < \infty \) if the following growth condition is satisfied
\[
\|f\|_{h^p} := \left(\sup_{0<r<1} \left| \int_T |f(\rho e^{i\theta})|^p d\theta \right| \right)^{1/p} < \infty
\]
where \(T \) is the unit circle in the complex plane \(\mathbb{C} \). The space \(h^\infty(U) \) consists of all bounded harmonic functions.

If \(f \in h^p(U) \), then there exists the finite radial limit
\[
\lim_{r \to 1^-} f(r\zeta) = f^*(\zeta) \quad \text{(a.e. on } T) \]
and the boundary function \(f^* \) belong to the space \(L^p(T) \) of \(p \)-integrable functions on the circle.

It is well known that a harmonic function \(f \) in the Hardy class \(h^p(U) \) can be represented as the Poisson integral
\[
f(z) = \int_T P(z, \zeta) d\mu(\zeta), \ z \in U
\]
where
\[
P(z, \zeta) = \frac{1 - |z|^2}{|z - \zeta|^2}, \ z \in U, \ \zeta \in T
\]
is the Poisson kernel and \(\mu \) is a complex Borel measure. In the case \(p > 1 \) this measure is absolutely continuous with respect to the Lebesgue measure and

1991 Mathematics Subject Classification. Primary 31A05; Secondary 42B30 .
Key words and phrases. Harmonic functions, Bloch functions, Hardy spaces.

arXiv:1202.2520v5 [math.CV] 19 Feb 2013
\[d\mu(\zeta) = f^*(\zeta)d\sigma(\zeta). \] Here \(d\sigma \) is Lebesgue probability measure in the unit circle. Moreover we have
\[\|f\|_{h^p} = \|f^*\|_{p}, \quad p > 1 \]
and
\[\|f\|_{h^1} = \|\mu\| \]
where we denote by \(\|\mu\| \) the total variation of the measure \(\mu \).

For previous facts we refer to the book [1, Chapter 6]. In the sequel for \(p \geq 1 \) and \(m \) a positive integer, as in [10] we use the notation
\[E_{m,p}(\Re f) := \inf_{p \in \mathbb{P}_m} \|\Re(f - \mathcal{P}_l)\|_{h^p} \]
for the best approximation of \(\Re f \) by the real part of algebraic polynomials in the \(h^p(U) \)-norm, where \(\mathbb{P}_m \) is the set of all algebraic polynomials of degree at most \(m \).

The starting position of this paper is the following proposition of Maz’ya and Kresin [10] Proposition 5.1.

Proposition 1.1. Let \(f \) be analytic on \(U \) with \(\Re f \in h^p(U) \), \(1 \leq p \leq \infty \). Further, let \(n \geq 1 \), and let \(\mathcal{P}_l \) be a polynomial of degree \(l \leq n - 1 \). Then for any fixed point \(z, |z| = r < 1 \), the inequality
\[|f^{(n)}(z)| \leq H_{n,p}(r)\|\Re(f - \mathcal{P}_l)\|_{h^p} \]
holds with the sharp factor
\[H_{n,p}(r) = \frac{n!}{\pi} \sup_{\alpha} \left\{ \int_{|\zeta| = 1} \left| \Re \frac{\zeta e^{i\alpha}}{(\zeta - r)^{n+1}} \right|^q |d\zeta| \right\}^{1/q} \]
and \(1/q + 1/p = 1 \). In particular
\[|f^{(n)}(z)| \leq H_{n,p}(r)E_{n-1,p}(\Re f). \]

For \(p = 2 \) \((q = 2)\) and \(p = 1 \) \((q = \infty)\) the function \(H_{n,p}(r) \) has been calculated explicitly in [10]. We refer to [10] for the connection of (1.3) and the famous Hadamard-Borel-Carathéodory inequality:
\[|f(z) - f(0)| \leq \frac{2}{1 - |z|^2} \sup_{|\zeta| < 1} \Re[f(\zeta) - f(0)]. \]

The aim of this paper is to obtain some explicit estimations of \(H_{n,p}(r) \) for general \(p \). The results of this paper are

Theorem 1.2 (Main theorem). Let \(1 \leq p \leq \infty \) and let \(q \) be its conjugate. Let \(f \) be analytic on the unit disk \(U \) with \(\Re f \in h^p(U) \), \(1 \leq p \leq \infty \). Further, let \(n \geq 1 \), and let \(\mathcal{P}_l \) be a polynomial of degree \(l \leq n - 1 \). We have the following sharp inequality
\[|f^{(n)}(z)| \leq C_{p,n}(1 - r^2)^{-1/p-n}\|\Re(f - \mathcal{P}_l)\|_{h^p}, \]
where
\[C_{p,n} = \frac{n!}{\pi} 2^{n+1-1/q} \max_{0 \leq \beta \leq \pi/2} F_{q}^{1/q}(\beta) \]
and
\[F_{q}(\beta) = \int_{0}^{\pi} |\sin((n+1)-2/q) v \cos[v(n+1) + \beta - \frac{\pi}{2}(n-1)]|^{q} dv. \]
In particular
\[|f^{(n)}(z)| \leq C_{p,n}(1 - r^2)^{-1/p-n}E_{n-1,p}(\Re f). \]
Remark 1.3. In connection with Theorem 1.2 we conjecture that (c.f. Conjecture 4.1)

\[\max_{0 \leq \beta \leq \pi/2} F_q(\beta) = \max\{F_q(0), F_q(\pi/2)\}. \]

We have the solution for \(q = 1 \) presented in Theorem 1.4. We list some known partial solutions.

- The Hilbert case (see [10, Eq. 5.5.3] or [11, Eq. (6.1.4)]: for \(q = 2 \) and all \(n \), the corresponding function is

\[F_q(\beta) = \frac{2^n}{\pi^{3/4}} \sqrt{\frac{\Gamma[1/2 + n]}{\Gamma[1 + n]}}. \]

- For \(q = \infty \) and all \(n \) ([10, Eq. 5.4.2] for \(\gamma = 1 \)), \(F_q(\beta) = 2^{n+1} \).

- For \(n = 1 \) and all \(q \), (see [8]) we have

\[\max_{0 \leq \beta \leq \pi/2} F_q(\beta) = \begin{cases} F_q(0), & \text{if } q > 2, \\ F_q(\pi/2), & \text{if } q \leq 2. \end{cases} \]

We also refer to related sharp inequalities for the derivatives of analytic functions defined in the unit disk [13].

Theorem 1.4. Let \(f \) be analytic on the unit disk \(U \) with bounded real part \(\Re f \) and assume that \(\beta \in [0, \pi] \). Then

\[|f^{(n)}(z)| \leq C_n (1 - |z|^2)^{-n} O_{n, \Re f}(U), \quad (1.8) \]

where

\[C_n = \begin{cases} \frac{1}{n!} \frac{(2n)!}{(n!)^2}, & \text{if } n = 2m - 1; \\ \frac{1}{n!} \max\{F(\beta) : 0 \leq \beta \leq \pi\}, & \text{if } n = 2m. \end{cases} \]

\[F(\beta) = \frac{2^n}{n} \sum_{k=1}^{n+1} \frac{\sin^{n+1} \left(\frac{k\pi - \beta}{n+1} \right)}{k}, \]

and

\[O_{n, \Re f}(U) = \inf_{P \in P_{n-1}} O_{\Re (f - P)}(U) \]

and \(O_{\Re f}(U) \) is the oscillation of \(\Re f \) on the unit disk \(U \).

Remark 1.5. If \(w = \Re f \) is a real harmonic function, where \(f \) is an analytic function defined on the unit disk, then the Bloch constant of \(w \) is defined by

\[\beta_w = \sup_{z \in U} (1 - |z|^2)|\nabla w(z)| = \sup_{z \in U} (1 - |z|^2)|f'(z)| \]

and is less than or equal to \(C_1 = 4/\pi \) provided that the oscillation of \(w \) in the unit disk is \(\leq 1 \). This particular case is well known in the literature see e.g. [3] 6 [7]. In a similar manner we define the Bloch constant of order \(n \) of a harmonic function \(w = \Re f \):

\[\beta_{n, w} = \sup_{z \in U} (1 - |z|^2)^n |f^{(n)}(z)| \]

and by the previous corollary we find out that \(\beta_{n, w} \leq C_n \) provided \(n \) is an odd integer and the oscillation \(O_{n, \Re f}(U) \) is at most 1.

The following theorem improves one of the main results in [9] (see [9] Corollary 7.1).
Corollary 1.6. Let Ω be a subdomain of \mathbb{C}. Let $z \in \Omega$, and assume that $a_z \in \partial \Omega$ such that $|z - a_z| = d_z = \text{dist}(z, \partial \Omega)$ and that $[\zeta, a_z]$ is the maximal interval containing z with $d_{\zeta} = |\zeta - a_z|$. Let f be a holomorphic function in Ω with its real part in Lebesgue space $L^\infty(\Omega)$ and let $\|\text{Re} f\|_{L^\infty(\Omega)} \leq 1$. Then the inequality
\[d_z^n |f^{(n)}(z)| \leq \frac{C_n}{(2 - d_z/d_{\zeta})^n}, \quad z \in \Omega \] (1.9)
holds with $C_n := C_{\infty,n}$ defined in (1.6). In particular,
\[d_{2^{m-1}} |f(2^{m-1}) (z)| \leq \frac{1}{n!} \left(\frac{(2m)!}{2m!} \right)^2 \frac{1}{(2 - d_z/d_{\zeta})^n}, \quad z \in \Omega. \] (1.10)

Proof. Let $z \in \Omega$ and assume that $\zeta \in \Omega$ satisfies the condition of the theorem. Then $D_{\zeta} := \{ w : |w - \zeta| < d_{\zeta} \} \subset \Omega$. Define $g(w) = f(\zeta + wd_{\zeta})$, $w \in \mathbb{U}$. Then $\text{Re} g \in h^\infty(\mathbb{U})$ and $g^{(n)}(w) = d_z^n f^{(n)}(\zeta + wd_{\zeta})$. By the maximum principle we have
\[\|\text{Re} f\|_{h^\infty(D_{\zeta})} \leq \|\text{Re} f\|_{L^\infty(\Omega)}. \]
By applying Theorem 1.2 and Theorem 1.4 to g we have
\[(1 - |w|^2)^n d_z^n |f^{(n)}(\zeta + wd_{\zeta})| \leq C_n. \]
As $z \in [\zeta, a_z]$ it follows that $z = \zeta + s(a_z - \zeta) = \zeta + wd_{\zeta}$, where $w = se^{i\varphi} \in \mathbb{U}$. Since $d_{\zeta} = (1 - s)^{-1}d_z$, and $|w| = |(z - \zeta)/d_z| = s = (d_{\zeta} - d_z)/d_z$ we obtain that
\[(1 - s^2)^n (1 - s^{-n}) d_z^n |f^{(n)}(z)| \leq C_n, \]
and
\[d_z^n |f^{(n)}(z)| \leq C_n \frac{1}{(1 + s)^n} = C_n \frac{1}{(2 - d_z/d_{\zeta})^n}. \]

Remark 1.7. In [9] Corollary 7.1 Kresin and Maz'ya proved that
\[\lim_{\epsilon \to 0^+} \sup_{z \in D_{\epsilon}} d_z^{2^{m-1}} |f(2^{m-1})(z)| \leq 2^{-n} C_n, \] (1.11)
under the condition that Ω is a planar domain with certain smoothness condition on the boundary, namely assuming that there is $r > 0$ such that for $a \in \partial \Omega$, there is a disk $D_a \subset \Omega$ of radius r with $a \in D_a$. Then $d_{\zeta} \geq r$ for $z \in \Omega$. The inequality (1.11) follows by using (1.6) and letting $\epsilon \to 0$.

2. Proof of Theorem 1.2

In view of (1.6), we deal with the function
\[I_\alpha(r) = \int_0^{2\pi} \left| \frac{e^{i(\alpha + t)}}{r e^{i(\alpha + t)}} \right|^q dt, \quad 0 \leq r < 1. \] (2.1)

By making use of the change
\[e^{it} = \frac{r - e^{is}}{1 - re^{is}}, \]
we obtain
\[dt = \frac{1 - r^2}{|1 - re^{is}|^2} ds \]
and
\[r - e^{it} = \frac{(1 - r^2)e^{is}}{1 - re^{is}}. \]
We arrive at the integral
\[
I_\alpha(r) = \int_0^{2\pi} (1 - r^2)^{1 - q - nq} \left(1 + r^2 - 2r \cos s \right)^{-1 + q} \left| \Re \left[e^{i(\alpha + s)} (e^{i\alpha} - r)^{-1 + n} \right] \right|^q \, ds
\]
\[
= (1 - r^2)^{1 - q - nq} \int_0^{2\pi} f_\alpha(r, e^{is}) \, ds
\]
where
\[
f_\alpha(z, e^{is}) = \left| \Re \left[e^{i(\alpha + s)} (z - e^{i\alpha})^{n-1} \right] \right| z - e^{i\alpha} |z - e^{i\alpha}|^{2q-2}.
\]
In order to continue, let’s prove first two lemmas.

Lemma 2.1. \(f_\alpha \) is subharmonic in \(z \).

Proof. We refer to [12, Chapter 4] and [5, Chapter I § 6] for some basic properties of subharmonic functions. Recall that a continuous function \(g \) defined on a region \(G \subset \mathbb{C} \) is subharmonic if for all \(w_0 \in G \) there exists \(\varepsilon > 0 \) such that
\[
g(w_0) \leq \frac{1}{2\pi} \int_0^{2\pi} g(w_0 + re^{it}) \, dt, \quad 0 < r < \varepsilon.
\]
(2.2)

If \(g(w_0) = 0 \), since \(g \) is non-negative, then (2.2) holds. If \(g(w_0) > 0 \), then there exists a neighborhood \(U \) of \(w_0 \) such that \(g \) is of class \(C^1(U) \) and \(g(w) > 0 \) for \(w \in U \). Thus if \(g \) is \(C^2 \) where it is positive, then it is enough to check that the Laplacian is non-negative there.

Let \(w = e^{i\frac{\alpha + \pi}{n} \pi} z - e^{i\alpha} \) and define
\[
g(w) := f_\alpha(z, e^{i\alpha}) = \left| \Re \left[w^{n-1} \right] \right|^q |w|^{2q-2}.
\]
Assume that \(\Re(w^{n-1}) > 0 \). Then
\[
g_w = 2^{-q} \bar{w} (\bar{w}w)^{q-4} (\bar{w}^{n-1} + w^{n-1})^{q-2} [(-1 + q)\bar{w}^n w + (-1 + nq)\bar{w}^n w^n].
\]
Further
\[
g_w \bar{w} = \frac{(q - 1)(\bar{w}w)^{q-4} (\bar{w}^{n-1} + w^{n-1})^{q-2}}{2q+2}
\]
\[
\times ((-1 + nq)\bar{w}^2 w^2 + (-1 + nq)\bar{w}^2 w^{2n} + (-2 + q + n^2 q)\bar{w}^{1+n} w^{1+n}).
\]
Observe next that
\[
\frac{(q - 1)(\bar{w}w)^{q-4} (\bar{w}^{n-1} + w^{n-1})^{q-2}}{2q+2} = \frac{(q - 1)|w|^{2q-8} (\Re(w^{n-1}))^{q-2}}{16} \geq 0
\]
and
\[
(-1 + nq)\bar{w}^2 w^2 + (-1 + nq)\bar{w}^2 w^{2n} + (-2 + q + n^2 q)\bar{w}^{1+n} w^{1+n}
\]
\[
= (-2 + q + n^2 q)|w|^{2n+2} - 2(-1 + nq)\Re(\bar{w}^{1+n} w^{1+n})
\]
\[
\geq (n - 1)^2 |w|^{2n+2} \geq 0.
\]
Similarly we treat the case \(\Re(w^{n-1}) < 0 \). Therefore \(\Delta g = 4 g_w \bar{w} \geq 0 \) for \(\Re(w^{n-1}) \neq 0 \). This implies that \(g \) is subharmonic in the whole of \(\mathbb{C} \). Since
\[
f_\alpha(z, e^{i\alpha}) = g(e^{i\frac{\alpha + \pi}{n} \pi} z - e^{i\alpha} e^{-i(\frac{\alpha + \pi}{n} \pi)}),
\]
we have that \(\Delta f_\alpha(z, e^{i\alpha}) = \Delta g(az + b) \) which implies that \(z \to f_\alpha(z, e^{i\alpha}) \) is subharmonic. \(\square \)
Lemma 2.2. For \(\alpha \in [0, \pi] \) we have
\[
I_\alpha(r) \leq (1 - r^2)^{1-q-nq} \max_{0 \leq t \leq 2\pi} \int_0^{2\pi} f_\alpha(e^{it}, e^{is})ds
\]
\[
= (1 - r^2)^{1-q-nq} \int_0^{2\pi} f_\beta(1, e^{is})ds,
\]
for some \(\beta \) possibly different from \(\alpha \).

Proof. Since \(z \to f_\alpha(z, e^{it}) \) is subharmonic in \(|z| < 1\), and \((t, z) \to f_\alpha(z, e^{it})\) is continuous in \([0, \pi] \times U\), then the integral mean \(I(z) = \int_0^{2\pi} f_\alpha(z, e^{it})ds \) is a subharmonic function in \(|z| < 1\). Therefore
\[
\int_0^{2\pi} f_\alpha(z, e^{is})ds \leq \max_t \int_0^{2\pi} f_\alpha(e^{it}, e^{is})ds.
\]
Since
\[
f_\alpha(e^{it}, e^{is}) = |\Re[e^{i(\alpha+s)(e^{it} - e^{is})n^{-1})]}| e^{it} - e^{is}|^{2q-2}
\]
\[
= |\Re[e^{i(\beta+u)}(1 - e^{iu})n^{-1})]| |1 - e^{iu}|^{2q-2},
\]
for \(u = s - t \) and \(\beta = \alpha + nt \) we obtain the second statement of the lemma. \(\square \)

Proof of Theorem 1.2. As above, we have
\[
|\Re[e^{i(\alpha+s)(e^{it} - e^{is})n^{-1})]}|^{q}
\]
\[
= 2^{(n-1)q/2} \left| \cos[\beta - \frac{\pi}{2}(n-1) + \frac{n+1}{2}2u] \right|^q (1 - \cos u)^{(n-1)q/2}
\]
and
\[
(1 - e^{iu})^{2q-2} = 2^{q-1} (1 - \cos u)^{q-1}.
\]
In view of Lemma 2.2 we have
\[
I_\alpha(r) = 2^{(n+1)q/2-1} (1 - r^2)^{1-(1+n)q} F_q(\beta),
\]
where
\[
F_q(\beta) = \int_0^{2\pi} (1 - \cos u)^{(n+1)q/2-1} \left| \cos[\frac{n+1}{2} + \beta - \frac{\pi}{2}(n-1)] \right|^q du. \tag{2.3}
\]
Moreover
\[
F_q(\beta) = 2^{(n+1)q/2} \int_0^{\pi} |\phi_\beta(v)|^q dv
\]
where
\[
\phi_\beta(v) = \sin^{(n+1)-2/q} v \cos[v(n+1) + \beta - \frac{\pi}{2}(n-1)]. \tag{2.4}
\]
It can be proved easily that \(F_q(\beta) = F_q(\pi - \beta) \). The last fact implies that it is enough to find the maximum in \([0, \pi/2]\). \(\square \)

3. The case \(q = 1 \) and the proof of Theorem 1.4

We divide the proof into two cases and use the notation \(F = F_q \).
3.1. The odd \(n \).

For \(n = 2m - 1 \) and \(q = 1 \) we have

\[
F(\beta) = 2^m \int_0^\pi \sin^{n-1} v \cos[(n+1)v + \beta]|dv.
\]

(3.1)

Then

\[
\frac{d}{dx} \cos(\beta + nx) \sin^nx_n = (-1)^{m-1} \phi_\beta(x) = \sin^{a-1} x \cos[\beta + (n+1)x].
\]

Since \(F \) is \(\pi \)-periodic we can assume that \(-\pi/2 \leq \beta \leq \pi/2\). Assume that \(0 \leq \beta < \pi/2 \) (the second case can be treated similarly). Then \(\cos[\beta + 2mx] \geq 0 \) and \(0 \leq x \leq \pi \) if and only if one of the following relations hold

- \(\beta \leq \beta + 2mx < \pi/2 \)
- \(-\pi/2 + 2k\pi < \beta + 2mx < \pi/2 + 2k\pi, \) for \(1 \leq k \leq m - 1 \) or
- \(-\pi/2 + 2m\pi < \beta + 2mx < \beta + 2m\pi \)

or, what is the same, if:

- \(a_0 = 0 < x < b_0 = \frac{\pi - 2\beta}{4m} \)
- \(a_k := \frac{\pi + 4k\pi - 2\beta}{4m} < x < b_k := \frac{\pi + 4k\pi - 2\beta}{4m}, \) for \(1 \leq k \leq m - 1 \) or
- \(a_m := \frac{-\pi + 4m\pi - 2\beta}{4m} < x < b_m := \pi. \)

From (3.1) for

\[
g_n(x) = \frac{\cos(\beta + nx) \sin^n x}{n},
\]

because \(g_n(\pi) - g_n(0) = 0 \), we have

\[
F(\beta) = 2^m \int_0^\pi |\phi_\beta(v)|dv = 2 \cdot 2^m \int_{0 \leq v \leq \pi: \phi_\beta(v) \geq 0} \phi_\beta(v)dv - 2^m \int_0^\pi \phi_\beta(v)dv = 2^{m+1} \int_{0 \leq v \leq \pi: \phi_\beta(v) \geq 0} \phi_\beta(v)dv.
\]

Therefore

\[
\frac{F(\beta)}{2^{m+1}} = \sum_{k=0}^m [g_n(b_k) - g_n(a_k)] = g_n(b_0) - g_n(a_m) + \sum_{k=1}^{m-1} [g_n(b_k) - g_n(a_k)].
\]

But for \(1 \leq k \leq m \)

\[
g_n(b_k) = \frac{\sin^{2m} b_k}{n} \quad \text{and} \quad g_n(a_k) = -\frac{\sin^{2m} a_k}{n}.
\]

Therefore

\[
F(\beta) = \frac{2^{m+1}}{n} \sum_{k=1}^{2m} \sin^{2m} \left[\frac{-2\beta + (2k - 1)\pi}{4m} \right] = \frac{2^{m+1}}{n} \sum_{k=1}^{2m} \sin^{2m} \left[\frac{\gamma + k\pi}{2m} \right],
\]

where \(\gamma = -\pi/2 - \beta \). Now by invoking [2, Lemma 3.5], we have

\[
f(\beta) := \sum_{k=1}^{2m} \sin^{2m} \left[\frac{\gamma + k\pi}{2m} \right] = \frac{2}{B(\frac{1}{2}, m)},
\]

(3.2)

and therefore

\[
F(\beta) = \frac{4m}{n^{2m}} \binom{2m}{m}.
\]
3.2. The even \(n \). For \(n = 2m \) and \(q = 1 \)

\[
F(\beta) = 2^{(2m+1)/2} \int_0^{\pi} \sin^{n-1} v |\sin[v(n+1)+\beta]| dv. \tag{3.3}
\]

Let

\[
g(x) = \frac{\sin(\beta + nx) \sin x}{n}.
\]

Since

\[
d\frac{dx}{dx} g(x) = (-1)^m \phi_\beta(x) = \sin^{n-1} x \sin[\beta + (n+1)x],
\]

from (3.3) and

\[
F(\beta) = 2^{(n+1)/2} \int_0^{\pi} |\phi_\beta(v)| dv
\]

we obtain

\[
F(\beta) = 2^{(n+1)/2} \int_0^{\pi} \phi_\beta(v) dv - 2^{(n+1)/2} \int_0^{\pi} \phi_\beta(v) dv
\]

we obtain

\[
F(\beta) = 2^{(n+1)/2} \int_0^{\pi} \phi_\beta(v) dv - 2^{(n+1)/2} \int_0^{\pi} \phi_\beta(v) dv.
\]

After some elementary transformations we obtain

\[
2^{-(n+1)/2} m F(\beta) = \sum_{k=0}^{n+1} \sin^{1+n} \left[\frac{-\beta + k\pi}{1 + n} \right]. \tag{3.4}
\]

This fraction the proof of Theorem 1.4.

4. APPENDIX

In this section we include a possible strategy how to determine the maximum of the function \(F \) in \([0, \pi/2]\) provided that \(n = 2m \) is an even integer. First of all

\[
2^{-(2m+1)/2} m F'(\beta) = - \sum_{k=1}^{1+2m} \cos \left[\frac{-\beta + k\pi}{1 + 2m} \right] \sin^{2m} \left[\frac{-\beta + k\pi}{1 + 2m} \right].
\]

Let

\[
h_k(\beta) = \cos \left[\frac{-\beta + k\pi}{1 + 2m} \right] \sin^{2m} \left[\frac{-\beta + k\pi}{1 + 2m} \right].
\]

Then for \(1 \leq k \leq 2m \), \(h_k(0) + h_{2m+1-k}(0) = 0 \), \(h_{2m+1}(0) = 0 \) and \(h_{m+1}(\pi/2) = 0 \) and \(h_{m+1}(\pi/2) = 0 \). It follows that

\[
F'(0) = F'(\frac{\pi}{2}) = 0.
\]

Thus 0 and \(\pi/2 \) are stationary points of \(F \).

It can be shown that for \(\gamma = \beta + \pi/2 \) and for \(\pi/2 \leq \gamma \leq \pi \)

\[
\frac{m F(\beta)}{2^{(n+1)/2}} = \sum_{j=0}^{m} (-1)^j \frac{(1+n) \cos \left[\frac{(1+2j)\gamma}{1+n} \right]}{2^n (m-j)} + 2 \sin^{1+n} \left[\frac{\gamma - \pi/2}{1 + n} \right]. \tag{4.1}
\]
We expect that the formula (4.1) can be more useful than (3.4) in finding the maximum of the function $F(\beta)$, however it seems that the corresponding problem is hard. By using the software "Mathematica 8" we can see that $F(0) < F(\beta) < F(\pi/2)$ provided that $n = 4k$ and $0 < \beta < \pi/2$ and $F(\pi/2) < F(\beta) < F(0)$ provided that $n = 4k + 2$ and $0 < \beta < \pi/2$ (cf. Conjecture 4.1). We do not have a proof of the previous fact but we include in this paper the following special cases.

4.1. The case $m = 1$ ($n = 2$) and $q = 1$. We have

$$F(\beta) = \frac{\sqrt{2}}{2} \left(3\sqrt{3} \cos \frac{\beta}{3} + 4 \sin \frac{3\beta}{3} \right)$$

and

$$F'(\beta) = -\sin \frac{\beta}{2} \left(\sqrt{3} - 2 \sin \frac{2\beta}{3} \right).$$

Thus $F'(\beta) = 0$ if and only if $\beta = 0$ or $\beta = \pi/2$. The minimum of $F(\beta)$ is $F(\pi/2) = \frac{5\sqrt{2}}{2}$ and the maximum is $F(0) = \frac{3\sqrt{2}}{2}$.

4.2. The case $m = 2$ ($n = 4$) and $q = 1$. In this case

$$F(\beta) = \frac{\sqrt{2}}{8} \left(10\sqrt{5} + 2\sqrt{5} \cos[\beta/5] - 5\sqrt{5} - 2\sqrt{5} \cos[3\beta/5] + 16 \sin[\beta/5]^3 \right).$$

Then it can be proved that F is increasing in $[0, \pi/2]$ and

$$F(0) = 5/4 \sqrt{12.5 + \sqrt{5}} \approx 4.79845 < F(\pi/2) = \sqrt{381/32 + 5\sqrt{5}} \approx 4.80485.$$

By differentiating the subintegral expression (1.7) w.r.t β we can easily conclude that $\beta = 0$ and $\beta = \pi/2$ are stationary points of F provided that $q \geq 1$ and $n \in \mathbb{N}$. This and some experiments with the software "Mathematica 8" leads to the following conjecture

Conjecture 4.1. Denote by $[a]$ the integer part of a. We conjecture that:

- F_q is decreasing on $[0, \frac{\pi}{2}]$ for $q > 2$
- F_q is nondecreasing (nonincreasing) on $[0, \frac{\pi}{2}]$ for $q \leq 2$ and $\frac{(n+1)q}{2}$ is an even (odd) integer.

5. Appendix B

In this appendix we offer some numerical estimation that confirm that our conjecture is true, at least for $q = 1$. Whereas as is observed in (3.2) for $0 \leq \beta \leq \pi$

$$f(\beta) = f_n(\beta) = \sum_{k=1}^{s} \sin^s \left(-\beta + k\pi \right)$$

(5.1)

is the constant $2/B(\frac{1}{s}, \frac{1}{s})$ for even s, if $s = n + 1$ is odd the maximum exceeds $2/B(\frac{1}{s}, \frac{1}{s})$ by a tiny amount that is very nearly

$$\frac{4}{\pi} \cdot \frac{1}{s+2} \cdot \frac{2}{s+4} \cdot \frac{3}{s+6} \cdots \frac{s}{3s} = \frac{4}{\pi} \frac{s!!}{(3s)!!} = (27 + o(1))^{-s/2}$$

for large s. Here and later we use "$u!!" only for positive odd u to mean the product of all odd integers in $[1, u]$; that is, $u!! := u!/(2^uv)$ where $u = 2v + 1$. In order to outline the proof of the last statement we do as follows.
For \(s = 2m + 1 \) we define the function \(g \) as follows
\[
g(x) := f(x + \frac{\pi}{2}) = g(-x) = -g(x + s\pi),
\]
which has a finite Fourier expansion in cosines of odd multiples of \(X := x/s \), namely
\[
f(x) = (-1)^{m} 2^{-s} \sum_{j=0}^{s} (-1)^{j} \frac{s^{j}}{j} \frac{\cos tX}{\sin \frac{\pi}{2}}
\]
where \(t = s - 2j \). We deduce from (5.1) that
\[
f(\beta) - f(\beta + \pi) = 2 \sin s \left(\frac{\beta}{s} \right),
\]
from which it follows that \(g(x) \) is maximized somewhere in \(|x| \leq \pi/2 \), but that changing the optimal \(x \) by a small integral multiple of \(\pi \) reduces \(g \) by a tiny amount; this explains the near-maxima we observed at \(x = \pm \pi \) for \(2|m \), and indeed the further oscillations for both odd and even \(m \) that we later noticed as \(s \) grows further.

This also suggests that in and near the interval \(|x| \leq \pi/2 \) our function \(g \) should be very nearly approximated for large \(s \) by an even periodic function \(\tilde{g}(x) \) of period \(\pi \). We next outline the derivation of such an approximation, with \(\tilde{g}(x) \) having an explicit cosine-Fourier expansion
\[
\tilde{g}(x) = g_0 + \frac{1}{\pi} \sum_{l=0}^{\infty} \frac{(-1)^l s^{l-1}}{(2l)!} \cos \left(\frac{(2l+1)x}{s} \right)
\]
where \(g_0 = 2/B(\frac{1}{2}, \frac{s}{2}) \) and, for \(l > 0 \),
\[
g_l = (-1)^{m+l-1} \frac{4}{\pi} \frac{s^{l+1}}{2l+1} \frac{(2l-1)!!}{((2l+1)!!)}
\]
with the double-factorial notation defined as above. Thus
\[
\tilde{g}(x) = g_0 + \frac{4s}{\pi} \sum_{l=0}^{\infty} \frac{(-1)^l (2l-1)!!}{((2l+1)!!)} \left(\frac{s^{l}}{(3s)!!} \cos 2x - \frac{1}{3} \frac{(3s)!!}{(5s)!!} \cos 4x + \frac{1}{5} \frac{(5s)!!}{(7s)!!} \cos 6x \pm \cdots \right).
\]
For large \(s \), this is maximized at \(x = 0 \) or \(x = \pm \pi/2 \) according as \(m \) is even or odd. Since we already know by symmetry arguments that \(g'(0) = g'(|\pi/2|) = 0 \), this point or points will also be where \(g \) is maximized, once it is checked that \(g - \tilde{g} \) and its first two derivatives are even tinier there.

The key to all this is the partial-fraction expansion of the factor \(1/\sin(\pi t/2s) \) in the Fourier series of \(g \), obtained by substituting \(\theta = \pi t/2s \) into
\[
\frac{1}{\sin \pi \theta} = \frac{1}{\pi} \sum_{l=-\infty}^{\infty} \frac{(-1)^l}{\theta - l}
\]
with the conditionally convergent sum interpreted as a principal value or Cesàro limit etc. On the other hand the main term, for \(l = 0 \), yields the convolution of \(\cos^s(x/s) \) with a symmetrical square wave, which is thus maximized at \(x = 0 \) and almost constant near \(x = 0 \); we identify the constant with \(2/B(\frac{1}{2}, \frac{s}{2}) \) using the known product formula for
\[
\int_{-\pi/2}^{\pi/2} \cos X dX.
\]
The new observation is that each of the error terms \((-1)^l / (\theta - l) \) likewise yields the convolution with a square wave of
\[
(-1)^l \cos(2lx) \cos^s(x/s).
\]
If we approximate this square wave with a constant, we get the formula for g_1 displayed above, via the formula for the s-th finite difference of a function $1/(j_0 - j)$.

The error in this approximation is still tiny (albeit not necessarily negative) because $\cos^s(x/s)$ is minuscule when x is within $\pi/2$ of the square wave’s jump at $\pm \pi s/2$.

We’ve checked these approximations numerically to high precision (modern computers and gp make this easy) for s as large as 100 or so, in both of the odd congruence classes mod 4, and it all works as expected; for example, when $s = 99$ we have $f(0) - g_0 = 2.57990478176660 \ldots 10^{-70}$, which almost exactly matches the main term $g_1 = (4/\pi) 99! 99!!/297!!$ but exceeds it by $5.9110495 \ldots 10^{-102}$, which is almost exactly $g_2 = (4/\pi) 99! 297!!/(3 \cdot 495!!)$ but too large by $7.92129 \ldots 10^{-120}$, which is almost exactly $g_3 = (4/\pi) 99! 495!!/(5 \cdot 693!!)$, etc.; and likewise for $s = 101$ except that the maximum occurs at $\beta = \pi/2$ and is approximated by an alternating sum $g_1 - g_2 + g_3 \ldots$ (actually here this approximation is exact because $x = 0$).

Acknowledgement. We are thankful to the referee for some corrections and comments, that have improved this paper.

References
[1] S. Axler, P. Bourdon and W. Ramey: Harmonic function theory, Springer Verlag New York 1992.
[2] M. Beck, M. Halloran: Finite Trigonometric Character Sums Via Discrete Fourier Analysis. International Journal of Number Theory 6, no. 1 (2010), 51-67
[3] F. Colonna: The Bloch constant of bounded harmonic mappings. Indiana Univ. Math. J. 38 (1989), no. 4, 829–840.
[4] P. Duren, Theory of H^p spaces. Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London 1970 xii+258 pp.
[5] J. Garnett: Bounded analytic functions. Pure and Applied Mathematics, 96. Academic Press, Inc., New York-London, 1981. xvi+467 pp.
[6] D. Khavinson: An extremal problem for harmonic functions in the ball. Canad. Math. Bull., 35 (1992), 218-220.
[7] D. Kalaj and M. Vuorinen: On harmonic functions and the Schwarz lemma, Proc. Amer. Math. Soc. 140 (2012) 161-165.
[8] D. Kalaj, M. Marković: Optimal estimates for the gradient of harmonic functions in the unit disk, Complex analysis and operator theory: DOI: 10.1007/s11785-011-0187, arXiv:1012.3153
[9] G. Kresin and V. Maz’ya: Sharp real part theorems for higher order derivatives, J. of Math. Sciences, 181 (2012), no. 2, pp 107–125.
[10] G. Kresin and V. Maz’ya: Sharp Real-Part Theorems A Unified Approach, Lecture Notes in Mathematics, Springer, Volume 1903, 2007.
[11] A. J. Macintyre and W. W. Rogosinski: Extremum problems in the theory of analytic functions. Acta Math. 82, 1950, 275 - 325.
[12] M. Pavlović: Introduction to function spaces on the disk. 20. Matematički Institut SANU, Belgrade, 2004. vi+184 pp.
[13] S. Ruscheweyh: Two remarks on bounded analytic functions, Serdica, 11, s 2, 200–202, (1985).

University of Montenegro, Faculty of Natural Sciences and Mathematics, Cetinjski put b.b. 81000 Podgorica, Montenegro
E-mail address: davidk@ac.me

Department of Mathematics, Harvard University, Cambridge, MA 02138
E-mail address: elkies@math.harvard.edu