Chloroplast phylogenomic analysis provides insights into the evolution of Paris liiana sp. nov

Xin Guan, Qingshu Yang, Shuang Wang, Haizhu Zhang, and Conglong Xia

*College of Pharmaceutical Science, Dali University, Dali, PR China; Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, PR China

ABSTRACT

Paris liiana sp. nov is a species of flowering herb of the genus Paris and widely distributed in the southwest of China. In this study, we sequenced the complete chloroplast (cp) genome of P. liiana sp. nov to investigate its phylogenetic relationship in genus Paris. The cp genome of P. liiana sp. nov was 163,860 bp in length, containing a large single-copy (LSC) region of 84,415 bp, a small single-copy (SSC) region of 12,947 bp, and a pair of inverted repeats (IRs) region of 33,249 bp. The overall GC content was 37.0%. The genome comprises of 135 genes, including 91 protein-coding genes, 37 tRNA genes, and 4 rRNA genes. Phylogenetic relationship analysis based on complete cp genome sequences exhibited that P. liiana sp. nov was most related to P. polyphylla var. yunnanensis.

ARTICLE HISTORY

Received 24 September 2020
Accepted 11 November 2020

KEYWORDS

Paris liiana sp. nov; genus Paris; complete chloroplast genome; phylogenetic analysis
were needed to accurately verify this species with increased sampling of *P. liiana* sp. nov and *P. polyphylla* var. *yunnanensis*. The cp genome sequence of *P. liiana* sp. nov reported in this study may provide useful resources for the taxonomy and phylogeny of *Paris* genus.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by National Natural Science Foundation of China [Grant No. 31860080], Major project of science and technology plan of Dali Prefecture [D2019NA03] and the Innovation Team Project for Traditional Chinese Medicine Resources and Ethnic Medicine of Dali University [ZKLX2019318].

Data availability statement

The data that support the findings of this study are openly available in NCBI GenBank database at https://www.ncbi.nlm.nih.gov/nuccore/MT857225 with the accession number is MT857225, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Darriba D, Taboada GL, Doallo R, Posada D. 2012. *jModelTest* 2: more models, new heuristics and parallel computing. Nat Methods. 9(8):772–772.

Fan ML, Jiang W. 2020. The first complete chloroplast genome sequence of *Paris polyphylla* var. *emeiensis*, a rare and endangered species. Mitochondrial DNA B. 5(3):2172–2173.

Fredrik R, Maxim T, Paul VDM, Ayres DL, Aaron D, Sebastian H, Bret L, Liang L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542.

Ji Y, Liu C, Yang J, Jin L, Yang Z, Yang J-B. 2020. Ultra-barcoding discov- ers a cryptic species in *Paris yunnanensis* (Melanthiaceae), a medicin- ally important plant. Front Plant Sci. 11:411.

Kazutaka K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Li H. 1998. The genus *Paris* (Trilliaceae). Beijing: Science Press.

Man S, Gao W, Zhang Y, Ma C, Yang L, Li Y. 2011. Paridis saponins inhibiting carcinoma growth and metastasis in vitro and in vivo. Arch Pharm Res. 1(34):43–50.

Tillich M, Lehwarz P, Pellizzer T, Ullrich-Jones ES, Fischer A, Bock R, Greiner S. 2017. GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45(W1):W6–W11.

Park J, Choi YG, Yun N, Xi H, Min J, Kim Y, Oh S-H. 2019. The second complete chloroplast genome sequence of *Viburnum erosum* (Adoxaceae) showed a low level of intra-species variations. Mitochondrial DNA A. 4(2):3278–3279.

Qin XJ, Sun DJ, Ni W, Chen CX, Hua Y, He L, Liu HY. 2012. Steroidal saponins with antimicrobial activity from stems and leaves of *Paris polyphylla* var. *yunnanensis*. Steroids. 77(12):1242–1248.
Wang GX, Han J, Zhao LW, Jiang DX, Liu YT, Liu XL. 2010. Anthelmintic activity of steroidal saponins from Paris polyphylla. Phytomedicine. 17(14):1102–1105.

Wang YH, Niu HM, Zhang ZY, Xiang-Yang Hu, Heng Li. 2015. Medicinal values and their chemical bases of Paris. China J Chin Mater Med. 5(40):833–839.

Wang YH, Shi M, Niu HM, Yang J, Xia MY, Luo JF, Chen YJ, Zhou YP, Li H. 2018. Substituting one Paris for another? In vitro cytotoxic and in vivo antitumor activities of Paris forrestii, a substitute of Paris polyphylla var. yunnanensis. J Ethnopharmacol. 218:45–50.

Yan LL, Zhang YJ, Gao WY, Man SL, Wang Y. 2009. In vitro and in vivo anticancer activity of steroid saponins of Paris polyphylla var. yunnanensis. Exp Hematol Oncol. 1(31):27.

Yang K, Shang M, Jiang Y, Qian J, Duan B, Yang Y. 2020. The complete chloroplast genome of Rumex hastatus D. Don and its phylogenetic analysis. Mitochondrial DNA B. 5(2):1681–1682.

Zhang XF, Cui Y, Huang JJ, Zhang YZ, Nie Z, Wang LF, Yan BZ, Tang YL, Liu Y. 2007. Immuno-stimulating properties of diosgenyl saponins isolated from Paris polyphylla. Bioorg Med Chem Lett. 17(9):2408–2413.