Leucocyte and Platelet-rich Fibrin: a carrier of autologous multipotent cells for regenerative medicine

Rosa Di Liddo a, b, *, Thomas Bertalot a, Alessio Borean c, Ivan Pirola c, Alberto Argentoni b, Sandra Schrenk a, Carola Cenzi a, d, Stefano Capelli c, Maria Teresa Conconi a, b, #, Pier Paolo Parnigotto b, #

a Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
b Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) ONLUS, Padova, Italy
c Department of Immunohematology and Transfusion Medicine, San Martino Hospital, Belluno, Italy
d Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Italy

Received: August 1, 2017; Accepted: October 23, 2017

Abstract

The wound healing is a complex process wherein inflammation, proliferation and regeneration evolve according to a spatio-temporal pattern from the activation of coagulation cascade to the formation of a plug clot including fibrin matrix, blood-borne cells and cytokines/growth factors. Creating environments conducive to tissue repair, the haemoderivatives are commonly proposed for the treatment of hard-to-heal wounds. Here, we explored in vitro the intrinsic regenerative potentialities of a leucocyte- and platelet-rich fibrin product, known as CPL-MB, defining the stemness grade of cells sprouting from the haemoderivative. Using highly concentrated serum-based medium to simulate wound conditions, we isolated fibroblast-like cells (CPL-CMCs) adhering to plastic and showing stable in vitro propagation, heterogeneous stem cell expression pattern, endothelial adhesive properties and immunomodulatory profile. Due to their blood derivation and expression of CXCR4, CPL-CMCs have been suggested to be immature cells circulating in peripheral blood at quiescent state until activation by both coagulation event and inflammatory stimuli such as stromal-derived factor 1/SDF1. Expressing integrins (CD49f, CD103), vascular adhesion molecules (CD106, CD166), endoglin (CD105) and remodelling matrix enzymes (MMP2, MMP9, MMP13), they showed a transendothelial migratory potential besides multipotency. Taken together, our data suggested that a standardized, reliable and economically feasible blood product such as CPL-MB functions as an artificial stem cell niche that, under permissive conditions, originate ex vivo immature cells that could be useful for autologous stem cell-based therapies.

Keywords: circulating multipotent cells ● haemoderivatives ● in vivo guided regeneration ● autologous cell therapies

Introduction

Over the last three decades, the enormous progress in cell processing technology has enhanced a general shift from heterologous to autologous stem cell-based therapies. In the prospect of having biomaterials and bioactive surgical additives with predictable outcome in regenerative medicine, several techniques have been developed to process peripheral blood and to obtain products useful for controlling inflammation and enforcing the physiological events of haemostasis and wound healing [1–4]. Depending on their contents of platelets, leucocytes and fibrin architecture, they are commonly classified into four families: (i) pure platelet-rich plasma (P-PRP, in liquid or gel form); (ii) leucocyte- and platelet-rich plasma (L-PRP, in liquid or gel form); (iii) pure platelet-rich fibrin (P-PRF); and (iv) leucocyte- and platelet-rich fibrin (L-PRF) [5]. Among them, L-PRF offers overall higher amounts of released TGF-β1, a sustained, long-term release of growth factors (VEGF, IGF1, PDGF-AB) and cytokines (IL-1β), and stronger induction of cell migration in vitro [6]. Obtained by different production methods and devices, the haemoderivatives demonstrate to be beneficial for tissues with restricted blood supply, slow cell turnover, limited extracellular matrix restoration facilitating the recruitment, proliferation and maturation of cells participating in regeneration. They are commonly used in clinics for numerous medical applications including (i) the healing of recalcitrant ulcers and burns; (ii) the stimulation of tissue regeneration in dentistry, implantology, and maxillofacial and plastic surgery; (iii) the treatment of knee osteoarthritis; and (iv) the repair of musculoskeletal tissue, tendon, and ligament lesions [1, 7, 8]. To date, the intrinsic regenerative potentialities of L-PRP have been

*These authors contributed equally to this work.
*Correspondence to: Prof. Rosa Di LIDDO
E-mail: rosa.diliddo@unipd.it
doi: 10.1111/jcmm.13468

© 2018 The Authors.
Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
commonly attributed to platelet- and leucocyte-derived factors (co-
agulation factors, growth factors and cytokines) and fibrin matrix
that synergistically orchestrate the recruitment of stem cells or
progenitor cells following an inflammatory response driven by
neutrophils, M1-polarized macrophages and T lymphocytes (early-
phase), and M2 macrophages (late-phase) [9]. A growing body of
evidence demonstrates that the contribution of L-PRF to
angiogenesis and vasculogenesis at injury site is mediated by
intrinsically carried haematopoietic stem cells (HSCs) (CD34+) and
endothelial progenitor cells (EPCs) (CD34+/VEGFR-2+/CD133+) [10].
Although fibroblast-like multipotent cells with proliferative and
multidifferentiative properties have been identified in human
peripheral blood [11–13], to date, no evidence about their pres-
ence has been reported in L-PRF products. As the discovery of
multipotent stem cells in L-PRF products could have important
implications for the future of regenerative medicine confirming
(i) the active role of the haemoderivatives in the so-called in vivo
guided regeneration and (ii) the development of a standardized
method to extract autologous stem cells, in this study, a leuco-
ocyte-platelet-concentrated membrane, prepared according to the
Caloprisco protocol [10] and called CLP-MB, has been cultured
in vitro to characterize the stemness grade of sprouted cells under
permissive conditions.

Materials and methods

Haemoderivatives

Following the Italian standards of quality assurance, leucocyte- and
platelet-rich fibrin membranes (CLP-MB) were prepared at the Immunohae-
matology and Transfusion Medicine Department, San Martino Hospital of
Belluno, Italy. Under Italian ethic committee authorization and informed
consent, ten male volunteer donors were submitted to a multicomponent
apheresis procedure, and blood samples were processed according to
the procedure published by Caloprisco et al. [10]. In Table 1, haemato-
logic values of blood samples and blood derivatives are reported.

Isolation of fibroblast stem-like cells

Rounded patches of CPL-MB were prepared and seeded in polystyrene
culture dishes (BD, Franklin Lakes, NJ, USA) preconditioned with foetal bovine
serum (Invitrogen-Thermo Fisher Scientific, Waltham, MA, USA). Thus,
samples were maintained at 37°C, 95% humidity and 5% CO2, in prolifera-
tion culture medium (Alpha-modified Eagle’s medium (MEM) without
nucleosides, 50% foetal bovine serum, 1% antibiotic solution, 1% Gluta-
max (all from Invitrogen-Thermo Fisher Scientific, Inc)). When cell sprout-
ing was observed, CPL-MB patches were discarded, and culture medium

Table 1 Haematologic values of blood samples before apheresis (pre-AP) and at final phase of concentrated leucocyte/platelet membrane (CLP-MB)

Patient	Phase	RBC (×10^6/l)	PLT (×10^9/l)	WBC (×10^9/l)	NE (×10^9/l)	LY (×10^9/l)	MO (×10^9/l)						
1	CLP-MB	5.23	0.58	183	1452	6.58	22.40	4.70	4.85	1.10	9.22	0.60	10.17
2	CLP-MB	4.46	0.37	249	1511	6.27	23.20	4.40	2.80	1.40	16.00	0.30	3.60
3	CLP-MB	5.53	0.37	184	1464	4.36	17.60	2.70	0.80	1.30	12.80	0.30	4.00
4	CLP-MB	5.40	0.39	185	1700	6.38	30.00	3.20	0.80	1.90	21.20	0.60	8.00
5	CLP-MB	4.18	0.30	206	1800	4.66	18.00	2.90	1.20	1.10	12.40	0.30	4.00
6	CLP-MB	4.96	0.53	171	1801	4.26	29.40	2.30	2.70	1.50	20.30	0.30	6.20
7	CLP-MB	4.87	1.06	153	1502	3.47	30.80	1.60	1.60	1.40	22.30	0.40	6.90
8	CLP-MB	5.13	0.55	188	1808	3.12	21.00	1.60	1.20	1.00	13.30	0.40	6.50
9	CLP-MB	5.33	0.64	234	1508	4.04	25.20	1.60	3.20	1.6	15.40	0.50	6.60
10	CLP-MB	4.33	0.28	199	1794	4.58	23.25	2.10	0.60	1.80	17.10	0.50	5.55

RBC: red blood cells; PLT: platelets; WBC: total leucocytes; NE: neutrophils; LY: lymphocytes; MO: monocytes. The representative data of RBC, PLT and leucocytes from CLP-MB are reported in bold.

© 2018 The Authors.
Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Table 2. Antibodies used for flow cytometry analysis, Western blot and immunofluorescence

Primary antibodies	Manufacturing company
FITC mouse anti-human CD11c	BD Biosciences
APC mouse anti-human CD13	BD Biosciences
PE mouse anti-human CD14	Santa Cruz Biotecnology, Inc
FITC mouse anti-human CD29	Santa Cruz Biotecnology, Inc
PE mouse anti-human CD31	BD Biosciences
PE-Cy5 mouse anti-human CD33	BD Biosciences
PE-Cy7 mouse anti-human CD34	BD Biosciences
Rabbit anti-human CD38	Santa Cruz Biotecnology, Inc
PE mouse anti-human CD40	BD Biosciences
PE mouse anti-human CD44	Santa Cruz Biotecnology, Inc
PE mouse anti-human CD45	Santa Cruz Biotecnology, Inc
FITC mouse anti-human CD49f	ImmunoTools
PE mouse anti-human CD73	BioLegend, Inc
PE-Cy5 mouse anti-human CD80	BD Biosciences
APC mouse anti-human CD86	BD Biosciences
FITC mouse anti-human CD90	Santa Cruz Biotecnology, Inc
Mouse anti-human CD103	Santa Cruz Biotecnology, Inc
PE mouse anti-human CD105	Santa Cruz Biotecnology, Inc
FITC mouse anti-human CD106	Acris Antibodies GmbH
APC mouse anti-human CD133/1	Miltenyi Biotec
PE mouse anti-human CD133/2	Miltenyi Biotec
FITC mouse anti-human CD146	Santa Cruz Biotecnology, Inc
FITC mouse anti-human CD166	Santa Cruz Biotecnology, Inc
Rabbit anti-human CD206	Santa Cruz Biotecnology, Inc
PE mouse anti-human PDGFRβ	BD Biosciences
FITC mouse anti-human VEGFR2	R&D Systems, Inc.
Rabbit anti-human FGFR1	Santa Cruz Biotecnology, Inc
APC mouse anti-human FGFR2	R&D Systems, Inc.
Rabbit anti-human EGFR	Santa Cruz Biotecnology, Inc
FITC mouse anti-human N62	Santa Cruz Biotecnology, Inc
Rabbit anti-human VE-cadherin	Santa Cruz Biotecnology, Inc
Mouse anti-human αSMA	EMD Millipore

Table 2. Continued

Primary antibodies	Manufacturing company
Mouse anti-human vimentin	Santa Cruz Biotecnology, Inc
Rabbit anti-human vWF	Abcam
Mouse anti-human FVIII	Abcam
Rabbit anti-human TGFβ1	Santa Cruz Biotecnology, Inc
Rabbit anti-human Wnt3a	Immunological Sciences
Rabbit anti-human IL-10	Immunological Sciences
Rabbit Anti-human TNFα	Immunological Sciences
PE mouse anti-human CXCR4	Santa Cruz Biotecnology, Inc
Rabbit anti-human Frizzled 1	Acris Antibodies GmbH
PE mouse anti-human Frizzled 2	Santa Cruz Biotecnology, Inc
Goat anti-human Frizzled 3	Santa Cruz Biotecnology, Inc
Goat anti-human Frizzled 9	Santa Cruz Biotecnology, Inc
PE mouse anti-human SEEA4	BD Biosciences
Alexa Fluor® 488 mouse anti-human TLR4	Bioss Antibodies
Rabbit anti-human SIRPα	eBiosciences
FITC mouse anti-human GR-1/Ly6G	BD Biosciences
PE-Cy7 mouse anti-human HLA-ABC	BD Biosciences
PE-Cy5 mouse anti-human HLA DR	BD Biosciences

Secondary antibodies

PE goat antimouse	Santa Cruz Biotecnology, Inc
PE goat anti-rabbit	Santa Cruz Biotecnology, Inc
PE donkey anti-goat	Santa Cruz Biotecnology, Inc
Alexa Fluor® 488 antimouse	EMD Millipore

Isotype controls

FITC Isotype Control	Santa Cruz Biotecnology, Inc; BD Biosciences; Immunotoools; Acris Antibodies GmbH; R&D Systems, Inc
PE Isotype Control	Santa Cruz Biotecnology, Inc; BD Biosciences; BioLegend, Inc; Miltenyi Biotec
PE-Cy5 Isotype Control	BD Biosciences
was changed with fresh one every 2 days. Cell expansion was performed for 21 days before detecting fibroblastoid cells (CPL-CMCs) with proliferative potential. At 80% confluency, CPL-CMC cells were detached using 0.02% EDTA/0.25% trypsin solution, and subcultures were seeded (5 × 10^3 cells/cm^2) in proliferation culture medium containing 16.5% FBS. In alternative to commercial FBS, autologous serum has been suggested to be used in the perspective of clinical use of CPL-CMCs. During cell isolation and expansion phases, the samples were daily observed by optical microscope DM/IL (Leica, Wetzlar, Germany), and pictures were taken with Nikon Digital Sight DS-5MC camera (Nikon Corporation, Tokyo, Japan). In order to correlate the activation of circulating multipotent cells to the inflammatory environment promoted by haemoderivatives, the expression of TNFα, IL-10, Wnt3a, TGFβ1, CD206 was investigated by Western blot in cells sprouted from CPL-MB. In parallel, the expression pattern of CPL-CMCs was used as a reference.

Proteomic analysis of CPL-derived adherent cells

Using antibodies reported in Table 2, Western blot analysis was performed on total protein extract of CLP membranes and cells isolated from early (inflammatory cells) and late (CLP-CMCs) sprouted populations. The protein extraction was carried out using a RIPA buffer containing 0.25% TWEEN®20 (Sigma-Aldrich, St. Louis, MO, USA). After quantification using BCA Protein Assay Reagent Kit (Thermo Fisher Scientific, Inc.), 20 μg of total protein extracts from each sample was separated by reducing SDS-PAGE (Bio-Rad Laboratories Inc., Hercules, CA, USA) and then electrophoretically transferred to 0.45-μm nitrocellulose membrane (Immunological Sciences, Rome, Italy). The immunoblot was performed by incubating samples overnight at 4°C with primary antibodies against CD206, TGFβ1, Wnt3a, IL-10, TNFα (Table 2). After washing with 0.25% TWEEN®20 in PBS, the membranes were treated for 1 h with peroxidase-conjugated secondary goat antianmous and anti-rabbit antibodies (Immunological Sciences) and then developed using enhanced chemiluminescence substrate (Immunological Sciences). The immunoreactive sites were visualized using VersaDoc Imaging System (Bio-Rad Laboratories Inc.). The protein expression level was normalized to glyceraldehyde 3-phosphate dehydrogenase/GAPDH housekeeping gene expression of 5 × 10^3 cells/cm^2. After 24 hrs, the cells were detached using EDTA/trypsin solution and counted with a hemocytometer. The average number of cells and standard deviation (SD) for each passage was used to define the doubling population time (DPT).

Stemness gene profile

The expression of OCT4, NANOG, SOX2, KLF4, NOTCH, STAT3 and REX1 was investigated by quantitative PCR (qPCR) in subcultures evolving from 4th generation to 20th generations, using oligonucleotides (Thermo Fisher Scientific, Inc.) listed in Table 3. Reverse transcription and amplification reaction were carried out using Sensifast™ SYBR® One-Step kit (BioLine Inc., London, UK) and AriaMx Real-time PCR System (Agilent Technology, Santa Clara, CA, USA). For statistical significance of data, three independent analyses of each target per subpopulation were performed preparing multiple technical replicates. The hypoxanthine phosphoribosyltransferase 1/HPRT1 housekeeping gene was considered as control. For quantification of gene expression level, the comparative CT method (2^(-ΔΔCT)) was used.

Immunophenotyping of CPL-CMCs

Using anti-human antibodies reported in Table 2, subcultures from 4th to 20th generations were analysed by flow cytometry (FCM) for the expression of typical markers related to stemness, lineage commitment, cell-ECM interactions and enzyme/signalling molecules. Flow cytometry analysis was performed with FACSCount II Flow cytometer (BD Biosciences, CA, USA) and FACS Diva software (BD). Data were reported as mean percentage of positive cells and relative mean fluorescence intensity (MFI) calculated on n = 3 replicates of each sample for all target markers. Samples treated with only secondary antibodies or isotype control antibodies (Table 2) were prepared as references.

Differentiative plasticity of CPL-CMCs

CLP-CMCs were seeded at 1.5 × 10^4 cells/cm² and induced to differentiate under the conditions described below. In parallel, cultures in proliferation medium were prepared as controls. After 7 and 14 days, the analysis by cytochemistry, immunofluorescence, PCR, WB and FCM was performed to confirm the lineage-specific differentiation. In all experiments, resting cells were used as reference. Antibodies and oligonucleotides are reported in Table 2 and Table 3, respectively. For gene expression analysis, the housekeeping HPRT1 was considered for normalization of data.

Adipogenic induction

The stimulation was performed with DMEM high-glucose medium (Sigma-Aldrich) supplemented with 10% PBS (Invitrogen-Thermo Fisher Scientific, Inc), 1% antibiotic solution (Sigma-Aldrich) and adipogenic supplements (1 mM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine, 10 mg/ml insulin, 60 mM indomethacin) (all from Sigma-Aldrich). After 3, 7 and 14 days from induction, the adipogenic commitment was evaluated detecting the expression of perilipin/PLIN1 and leptin/LEP genes by qPCR. In parallel, samples were fixed with...
Genes	Primer sequences	Accession	Amplicon length
TGFA	F: CACACTCTGCTCTTCCTCAA	NM_003236.3	151 bp
	R: GTGATGGCTCTCTTCT		
TGFB1	F: CGTGGAGCTGTACCAGAAATAC	NM_000660.6	158 bp
	R: CTAAGGCGAAAGCCCTCAAT		
LIF	F: TCTGACTGGAAACATGGG	NM_002309.4	104 bp
	R: CTGATCTGTTCTGAGTGTTG		
IL1A	F: AGTGAGACACACCTCTCTTT	NM_000575.4	108 bp
	R: ACACCAGCTCTGCTTTGTT		
IL1B	F: ATGGAACCTTGAGAGATG	NM_000576.2	114 bp
	R: CCCATGTGTCGAAAGATAGG		
IL4	F: CACCGAGTGGACCTGAAACA	NM_000589.3	138 bp
	R: CTTCCATCTGCTGCAGAA		
IL6	F: GAGCTGTCAGATGAGTACAA	NM_000600.4	190 bp
	R: GGACCTGAGGAACCTTCTAAA		
IL10	F: GCTGAGAGCTTTAAGGGTTAC	NM_000572.2	105 bp
	R: GATGTCTGCTGTGTTGCT		
IL12	F: ATCCACAGAGACCTCTCTTCAAAC	NM_000882.3	124 bp
	R: CTGCCATCGCTTGACTAC		
TNFA	F: CCAAGGCACTCTCTCATTCAC	FJ795028.1	106 bp
	R: TCAGCTGCTGGGCTAGTTGCT		
TNFR1	F: GGACAGGGAGAAGAGATAGT	AH003016.2	115 bp
	R: TGACGCGGCTATTTGACAGTAGG		
TNFR2	F: TGACATCGTGAGCTCTGTAG	NM_001066.2	84 bp
	R: GGACCTTGCTGCTCCATTTG		
REX1	F: GAGATGGGTAAGGGGAGAGATG	NM_174900.3	105 bp
	R: ATGGACAGCTGAGAGATG		
SOX2	F: ATCCACAGAGACCTCTCTTCAAAC	NM_003106.3	191 bp
	R: TACCTTCTGCGGGTGAAGGT		
STAT3	F: AAAGACACGTAACGTGGGTCAGGAA	NM_213662.1	175 bp
	R: AGAAACAGCGAAGCGCAAGAAGAT		
NOTCH	F: AGGATCACACACAGTGCGCCATATT	NM_017617.3	112 bp
	R: AGCTAAGAA6GCGAAGCAAACCTTGG		
OCT4	F: TCGAGAAATAGTGCTAAAGTGCTGG	NM_002701.4	102 bp
	R: ACAACAGCCTGGAAGAAGTAAAC		
KLF4	F: GAAGATGCGACAGCGAAGATT	NM_004235.4	106 bp
	R: ACTCTCTGCTGCTGCTTCT		
NANOG	F: AGAATAGCACCAGCCGCGAGAAGT	NM_024865.2	106 bp
	R: AGCTAAGAGCTTGGTCTGCTGCTG		
TUBβ3	F: ACAGCAGGCCTCTTCTCACAAGT	NM_006086.3	225 bp
	R: ATACTCTCAGCAGCTCTTCGTGAT		
Table 3. Continued

Genes	Primer sequences	Accession	Amplicon length
vWF	F: ACTCAGTGCATTGGTGAGGATGGA R: TCGGACACACTCATTGATGAGGCA	NM_000552.4	842 bp
CD31	F: ACTGGACAAGAAAGAGGCCATCCA R: TCCTTCTGGATGGTGAAGTTGGCT	NM_000442.4	677 bp
HPRT1	F: ATGGACAGGACTGACGTCCTTGCT R: TTGAGCACAGAGGGCTACAATG	NM_000194.2	79 bp

Fig. 1 Compared to other blood-derived stem cell populations, CLP-CMCs have a distinctive stemness signature. Morphological study and stemness characterization of human CLP-CMCs. (A) Optical microscopy image of CLP-MB and CLP-CMC sprouted cells at early and late-phases during 21 days of in vitro culturing. Scale bar: 25 μm. (B) Calculation of doubling population time (DPT) over a total of 16 divisions. (C) Gene expression analysis of pluripotency markers by quantitative PCR in cells grown in proliferative medium. The comparative CT method ($2^{-\Delta\Delta Ct} \pm S.D$) was used to quantify the gene expression level. HPRT was considered as housekeeping gene.
10% formalin solution (Sigma-Aldrich) and stained with Oil Red O solution (5 mg/ml in isopropanol) (Sigma-Aldrich) to verify the presence of cytoplasmic lipid droplets. Nuclei were counterstained with haematoxylin (Sigma-Aldrich) according to the standard procedure.

Myogenic induction

Subconfluent (~90%) CLP-CMCs were grown in standard medium supplemented with 100 ng/ml IGF (ImmunoTools, Friesoythe, Germany) and 200 μM ascorbic acid (Sigma-Aldrich Co.). At different time-points (3, 7, 14 days), myogenic differentiation was verified by qPCR investigating the expression of genes related to early (myogenic differentiation 1/MYOD1), intermediate (myogenin/MYOG) and late (tropomyosin 1/TPM1) differentiation phases. At 14 days from induction, the expression of vimentin was evaluated by immunofluorescence to detect the formation of syncytium-like structures.

Neurogenic induction

Neurogenic differentiation was induced in subconfluent (~60%) cells using DMEM/F-12 medium (Thermo Fisher Scientific, Inc.)
supplemented with 2% FBS, 50 U/ml penicillin, 50 μg/ml streptomycin and 0.1% dimethyl sulphoxide (DMSO) (all from Sigma-Aldrich). After 3 and 7 days, the samples were submitted to the analysis of brain-derived neurotrophic factor/BDNF, nerve growth factor/NGF, tubulin beta 3 class III/TUBB3 and synaptophysin/SYP by qPCR.

endothelial induction

CLP-CMCs (2x10^4 cells/cm^2) were seeded on 24-well plates coated with 0.5 ml of Matrigel (diluted 1:10 in standard medium) (BD Bioscience) and cultured in a humid atmosphere with 5% CO2. At 3 and 7 days from induction, the gene expression of platelet endothelial cell adhesion molecule/CD31 was analysed by one-step reverse transcriptase-PCR (Qiagen, Hilden, Germany). In parallel, we evaluated the formation of capillary-like structures by optical microscopy using an inverted microscope Motic AE2000 (Motic, Wetzlar, Germany) equipped with Nikon DS-L1 camera (Nikon, Düsseldorf, Germany), and the expression of blood-clotting protein factor VIII/FVIII by immunofluorescence. Finally, to better explore the endothelial potential of CLP-CMC cells, extracellular vesicles/exosomes (EVs/exs) were isolated using Cell Culture-Nanovesicles kit (Biofield Innovation Srl, Padova, Italy) from conditioned media according to the manufacturer’s protocol. After labelling with PKH26 Red Fluorescent Cell Linner Kit for General Cell Membrane Labeling (Sigma-Aldrich), all samples were characterized by FCM for size, using as reference polystyrene beads supplied in Flow Cytometry Size Calibration Kit (Molecular Probes, Inc, Eugene, OR), and expression of CD9 or CD63 by indirect staining, according to the Pospichalova protocol [14]. Moreover, we analysed by WB the expression of tetraspanin family protein/CD9, FVIII, Wnt3a ligand. Extracellular vesicles/exosomes from resting cells were considered as reference. For excluding cells from the analysis, cis-Golgi marker/GM-130 was considered as staining control. All antibodies used are listed in Table 2.

Statistical analysis

It was performed with paired Student’s *t*-test, and results were considered significant when *P* < 0.05.
Results

Isolation and growth of human CPL-CMC cells

The study included 10 male volunteers under therapy with haemoderivatives for impaired wound healing. After 21 days from seeding, all samples showed an active cell sprouting with spindle- or flat-like shaped cells at early-phase and cells with fibroblastic morphology at late-phase (Fig. 1A). Accordingly, a different expression pattern of the inflammatory cytokine TNF-α and the protective molecule IL-10 was observed (Fig. 1A), suggesting a possible correlation among in vivo regeneration following the implantation of CLP-MB and the in vitro development of cells with anti-inflammatory functionality, proliferative activity and high grade of stemness. In particular, CPL-CMC subcultures from 4th to 20th generation demonstrated a doubling population time of 21 ± 1.85 hrs, which was significantly shorter than that of other multipotent cells [12, 13] isolated from human peripheral blood (Fig. 1B). During in vitro short and prolonged expansion, a high positive expression of transcription factors NANOG, SOX2, KLF4, STAT3 was detected (Fig. 1C), suggesting a high stemness grade of CPL-CMCs. In parallel, normal karyotype of 46 chromosomes with no aneuploidy, tetraploidy or other visible abnormalities was verified (data not shown).

Multipotency of CPL-CMCs

By FACS analysis, the immunophenotypic profile of CMC was determined (Fig. 2). Interestingly, all populations extracted from CPL membranes showed an almost homogenous expression of CD44/HCELL, CD49f and CD184/CXCR4 (Fig. 2A) that are markers related to bone marrow derivation [15], multipotency [16] and migratory potentialities [17]. As expected, several markers typically expressed in multipotent stem cells or mediating transendothelial migration, angiogenic potentiality, cell–matrix and cell–cell interactions, and finally immune properties were detected in CPL-CMCs. They included CD13, CD73, CD105, SSEA4, NG2 as stem cell markers; CD106, CD144, CD146, CD166, von Willebrand factor/vWF as endothelial stem/progenitor phenotype cues; and CD34 and CD38, were assumed as indicative of both adhesive properties to endothelium and possible derivation from bone marrow. Other markers such as CD14, CD29, CD31, CD45, CD90, CD117, CD133, PDGFRα were not detected (Fig. 2B). Moreover, CPL-CMCs demonstrated by FCM to possess immune properties and engraftment potential expressing tetraspanin CD9 [22], TGFβ [23] and SIRPα [24] (Fig. 2B). For CD9, a role in migration, adhesion and homing is also considered [25, 26]. The null expression of HLA Class II and the low level of HLA Class I confirmed the potentialities of CPL-CMCs for both allogeneic and autologous therapies [27].

Fig. 4 Under permissive in vitro conditions, CLP-CMCs acquire adipocyte-like phenotype. (A) Gene expression analysis of perilipin/PLIN1 and leptin/LEP. (B) Detection of cytoplasmic lipid droplets by Oil Red O staining. Nuclei were counterstained with haematoxylin. Scale bar: 25 μm.
together, our collected data demonstrated distinctive immunophenotypic properties of CPL-CMCs as compared to other blood-derived stem cell populations.

Responsiveness of CPL-CMC cells to environmental stimuli

As reported in Fig. 3A, CPL-CMCs showed by WB the expression of numerous growth factors, including EGF, FGF, neurotrophins and Wnt ligands. The synthesis of pro- and anti-inflammatory cytokines (Fig. 3B), receptors of TNFα (Fig. 3B) and matrix remodelling enzymes such as MMP-2, MMP-9 and MMP-13 (Fig. 3C) was detected at mRNA level.

Differentiative potentialities of CPL-CMCs

After specific differentiation induction, the plasticity of CMCs towards adipogenic, myogenic and neurogenic lineages was demonstrated evaluating the gene expression of lineage-specific markers (Fig. 4A, Fig. 5A, Fig. 6A), the accumulation of lipid droplets (Fig. 4B), the acquisition of cell-orientated distribution (Fig. 5B) and the assembling of cytoskeleton components (Fig. 6B). CPL-CMCs displayed the gene expression of CD31 (Fig. 7A), an increased protein expression of CD166 and vWF (Fig. 7B) and the formation of capillary-like network structures (Fig. 7C). The acquired endothelial-like phenotype was furtherly confirmed by the protein expression of FVIII together with EGF and vWF, in CD9-tagged mixed population of extracellular vesicles and exosomes (Fig. 7D). In parallel, resting cells cultured on polystyrene culture dishes showed elongated morphology at maximum confluence (Fig. 7C) and expressed Wnt3a by Evs/exs (Fig. 7D).

Discussion

Offering the cellular, physical and chemical cues implicated in haemostatic response and tissue restoration, the haemoderivatives show great potentials for regenerative medicine [28].

Opening new perspectives in autologous stem cell research, L-PRF products prepared according to Caloprisco’s method [10] have been found to deliver stem cell-like cells with unique phenotypic features, functionality and differentiative potentialities in comparison with endothelial/haematopoietic progenitors [29, 30], mesenchymal stem cells (MSCs) [27, 31, 32], embryonic-like stem cells [11, 33–36] and circulating multipotent cells [12, 13, 25, 37]. Isolated by minimal in vitro manipulation of CPL membranes, CMC cells showed fibroblast-like morphology, long-lasting proliferative activity and high expression of CD44/HCELL, CD49f and CXCR4. The overlapping expression of embryonic (SSEA-4), mesenchymal (CD13, CD105, CD106, CD73, CD146), haematopoietic (CD38, CD34) and endothelial (CD144, CD166, vWF) stem cell markers highlighted the presence of distinct immature subsets. Moreover, specific immunomodulatory
(CD9, SIRPα, pro- and anti-inflammatory cytokines) properties and receptors for Wnt ligands (FZD1/2/3/9), growth factors (EGFR, FGFR2, p75, VEGFR2) and inflammatory stimuli (TNFR1/2) confirmed high environmental responsiveness of CPL-CMCs. Lacking integrin β1, CD90 and PDGFRβ, CMC cells showed distinct immunophenotype and origin in comparison with circulating multipotent progenitor cells [12, 38] and perivascular multipotent progenitor cells [22, 39]. Primed by the interaction with fibrin matrix and P-selectins on activated platelets [40, 41], the immunophenotypic heterogeneity of CPL-CMCs has been suggested to reflect a dynamic equilibrium between the acquired responsivity to extracellular signals and the retained self-renewal potential [42]. Based on the expression profile of adhesion molecules (CAMs) and glycolipids/proteoglycans, the physiological and regulatory processes underlying the trafficking of CLP-CMCs in peripheral blood were defined as similar to those of leucocytes.

Likely haematopoietic stem and progenitor cells, CLP-CMCs displayed the specialized glycoform of CD44 known as HCELL, suggesting to have a possible haematopoietic origin, bone marrow derivation and transendothelial migration potential. As reported by Sackstein [15], the cell migration from vascular to extravascular compartments develops by two different mechanisms: the canonical multistep process and the so-called step 2-bypass pathway. In the canonical pathway, following the initial tethering/rolling contact of blood-borne cells with endothelium, CXCR4 binds to its cognate ligand CXCL1/SDF-1, thereby triggering G protein-coupled VLA-4 activation, with subsequent firm adhesion and transmigration. In the ‘step 2-bypass pathway’, the activation of VLA-4 occurs via G protein-mediated mechanosignaling after HCELL binding to E-selectin and/or CD44 interaction with endothelial HA. As suggested by the intracellular expression of CXCR4, the extravasation of CPL-CMCs is likely to progress by the canonical pathway.

The stemness signature of CPL-CMCs was further confirmed by both the gene expression of the key components of self-renewal machinery (NANOG, SOX2, KLF4, STAT3) [43–45] and the almost homogenous expression of CD49f [46], that is known for transducing survival signals, mediating endothelial progenitor cell migration/adhesion and enhancing multipotency through OCT4, SOX2 and NANOG [12, 43]. Collectively, our data pointed out that the self-renewal of CPL-CMCs could be regulated likely in embryonic stem cells wherein KLF4 connects STAT3 activation with NANOG expression after interacting with SOX2 and OCT4 [45].

A growing body of evidence suggests that L-PRF products, including CPL-MB, are attractive biomaterials for regenerative medicine due to their ability to promote in vivo a guided tissue regeneration by ‘endogenous cell homing’. Our findings add a novel aspect to the complex picture of stem cell research demonstrating that CPL-MB...
functions as a reservoir of autologous stem cells that could be isolated under permissive conditions by culturing ex vivo the haemoderivatives. Currently, apart from HSC transplantation for haematologic diseases, the clinical experience with somatic stem cell therapy appears promising but still restricted by biological questions about the safety of cell manufacturing, the route of administration, the irreversibility of treatment and the not predictable long-term survival of engrafted cells [47, 48]. Due to these limitations, and considering that, during in vitro expansion of multipotent stem cells, the homing molecules could be lost causing a significant reduction in cell

Fig. 7 In comparison with resting cells (−), CLP-CMCs respond to the stimulation with BD Matrigel™ (+) acquiring endothelial-like phenotype. (A) Analysis of CD31 gene by one-step RT-PCR. (B) WB analysis of vascular adhesion molecules (CD18, CD106, CD166), vWF and GAPDH housekeeping protein. (C) Optical microscopy (left side) and immunofluorescence (right side) detecting FVIII in cells counterstained with DAPI. Scale bar: 25 μm. (D) FCM characterization of PKH26-tagged extracellular vesicles/exosomes [isolated from the conditioned culture media of CLP-CMCs stimulated with BD Matrigel™ (+) or resting cells (−)]. The vesicles were discriminated by size, using polystyrene beads as reference, and by expression of characteristic markers, CD9 and CD63. (E) WB analysis of FVIII, WNT3a, EGF, vWF, CD9 in extracellular vesicles/exosomes isolated from the conditioned culture media of CLP-CMCs stimulated with BD Matrigel™ (+) or resting cells (−). To verify the absence of cells, the expression of cis-Golgi marker/GM-130 was considered as negative control.

© 2018 The Authors.
Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
migratory efficiency [49–51], circulating endogenous stem/progenitor cells could represent a valid and alternative source of immature cells for medical autologous applications [52]. Responding to a temporally defined sequence of instructive cues mostly derived from platelets, haematopoietic and not haematopoietic cells from CPL membranes shape a co-ordinated progression from inflammation to regenerative-like phases, mimicking the response of living tissues to injury [53–56]. One of the key findings of our study was the recognition of CPL-CMCs as cells expressing striking morphological and immunophenotypic similarities to alternatively activated M2 macrophages [57] and myeloid angiogenic cells (MACs) [58]. Showing an elongated/spindle shape and the expression of mannose receptor/CD206, IL-10, TGFβ1 and Wnt3a [59, 60], CPL-CMC cells have been suggested to function by dampening inflammatory responses, scavenging cellular debris and promoting angiogenesis. Furthermore, the engagement of CD206 signalling could be also involved in the cell trafficking of CPL-CMCs through the stimulated production of MMPs (i.e. MMP-2, MMP-9) and matrix remodelling [61]. Indeed, in the early-phase of in vitro culture, CPL membranes showed a significant cell sprouting, thus indirectly suggesting that a proteolytic activity and fibrinolysis were active. The fibrinolytic system, with its main player plasmin, plays a crucial role in cell migration, bioavailability of growth factors and regulation of other protease systems during inflammation and tissue regeneration [28, 62]. As the internalization and the degradation of plasminogen activator require the mannose receptor [63], it is likely that CPL-CMCs could modulate the process of fibrinolysis within CPL membranes for regulating their proliferation, differentiation [62, 64, 65] and migration [61].

Finally, based on their abilities to respond to differentiative stimuli, a broad range of medical applications of CPL-CMCs could have been suggested, including the treatment of (i) blood disorders, such as haemophilia [66]; and (ii) defects of adipose tissue, skeletal muscle and nervous system [67].

Conclusion

As a direct evolution of fibrin glue technologies, autologous platelet preparations are a new generation of biomaterials used in regenerative medicine for improving tissue healing. In this study, we demonstrated that the leucocyte- and platelet-rich fibrin product called CPL-MB functions not only as a reservoir of bioactive factors (PDGF, TGF-β, VEGF, fibrinogen, fibronectin and vitronectin), useful to recruit stem cells to wound site, but acts also as an artificial stem cell niche containing haematopoietic and multipotent cells, similarly to bone marrow and perivascular niches. Our in vitro model provides the first evidence that multipotent cells could be mobilized to peripheral blood under physiological conditions and not only under stress conditions (i.e. inflammation, tissue damage, stimulation by drugs or growth factors), as commonly reported. Likely the haematopoietic stem cell niche, CPL-MB results as a complex milieu that regulates, by structural and bioactive factors, the survival, expansion, differentiation and transendothelial migration of immature cells. Although a growing body of evidence suggests the existence of multipotent cells in peripheral blood, to date, the use of blood as an alternative source of autologous stem cells in regenerative medicine is limited by several important questions concerning the predictability of successful isolation and ex vivo expansion by a standardized protocol. Produced according to Italian standards of quality assurance and Caloprisco’s method, CPL-MB could represent a valid strategy to bypass the intrinsic heterogeneity of blood samples and to normalize the cell content of blood derivatives for obtaining autologous cells with a defined stemness signature.

Acknowledgements

This study was supported by Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (TES) ONLUS (Padova, Italy), Associazione Volontari Italiani del Sangue/A.V.I.S. Regionale Veneto (Treviso, Italy) and Associazione Bellunese Volontari del Sangue/A.B.V.S (Belluno, Italy).

Conflict of interest

The authors indicated no potential conflict of interests.

Author contributions

D.L.R. and P.P.P.: involved in the study conception and design; D.L.R.: involved in the data analysis and interpretation, manuscript writing and final approval of manuscript; B.T. and S.S.: involved in the collection and assembly of data and contributed to manuscript writing; B.A., P.I. and C.S.: contributed to the preparation and quality control of CPL-MB; A.A.: contributed to scientific and financial support; C.C.: contributed to collection and assembly of data; and C.M.T. and P.P.P.: contributed to data interpretation and final approval of manuscript.

References

1. Burnouf T, Goubran HA, Chen T-M, et al. Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev. 2013; 27: 77–89.
2. Marenzi G, Riccitiello F, Tia M, et al. Influence of Leukocyte- and Platelet-Rich Fibrin (L-PRF) in the healing of simple postextraction sockets: a split-mouth study. Biomed Res Int. 2015; 2015: 369273, 6 pages.
3. Dohan Ehrenfest DM, Pinto NR, Pereda A, et al. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. Platelets. 2017; 2: 1–14.
4. Castro AB, Meschi N, Temmerman A, et al. Regenerative potential of leukocyte- and platelet-rich fibrin. Part A. intra-bony defects, furcation defects and periodontal plastic
surgery. A systematic review and meta-analysis. J Clin Periodontol. 2017; 44: 67–82.

5. Dohan Ehrenfest DM, Bielecki T, Mishra A, et al. In search of a consensus terminology in the field of platelet concentrates for surgical use: platelet-rich plasma (PRP), platelet-rich fibrin (PRF), fibrin gel polymerization and leukocytes. Curr Pharm Biotechnol. 2012; 13: 1131–7.

6. Schar MO, Diaz-Romero J, Kohl S, et al. Platelet-rich concentrates differentially release growth factors and induce cell migration in vitro. Clin Orthop Relat Res. 2015; 473: 1635–43.

7. Bielecki T, Dohan Ehrenfest DM. Leukocyte- and platelet-rich Plasma (L-PRP)/fibrin (L-PRF) in medicine - past, present, future. Curr Pharm Biotechnol. 2012; 13: i–ii.

8. Masoudi E, Ribas J, Kaushik G, et al. Platelet-rich blood derivatives for stem cell-based tissue engineering and regeneration. Curr Stem Cell Repor. 2016; 2: 33–42.

9. Hart J. Inflammation 1: its role in the healing of acute wounds. J Wound Care. 2002; 11: 205–9.

10. Calopriso G, Borouan A, De Angelis S, et al. New method to produce homocomponents for regenerative use from peripheral blood: integration among platelet growth factors monocytes and stem cells. Transfus Aspher Sci. 2010; 42: 117–24.

11. Kucia MJ, Wysoczynski M, Wu W, et al. Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells. 2008; 26: 2083–92.

12. Cesselli D, Beltrami AP, Rigo S, et al. Multipotent progenitor cells are present in human peripheral blood. Circ Res. 2009; 104: 1225–34.

13. Scapin G, Bertalot T, Vicentini N, et al. Neuronal commitment of human circulating multipotent cells by carbon nanotube-polymer scaffolds and biomimetic peptides. Nanomedicine (Lond). 2016; https://doi.org/10.2217/nmm-2016-0150.

14. Pospichalova V, Svoboda J, Dave Z, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles. 2015; 4: 25530, 15 pages.

15. Sackstein R. The biology of CD44 and HCELL in hematopoiesis: the “step 2-bypass pathway” and other emerging perspectives. Curr Opin Hematol. 2011; 18: 239–48.

16. Yu K-R, Yang S-R, Jung J-W, et al. CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and Sox2. Stem Cells. 2012; 30: 876–87.
undifferentiated state of mouse embryonic stem cells. *EMBO J.* 1999; 18: 4261–9.

45. Zhang P, Andrianakos R, Yang Y, et al. Kruppel-like factor 4 (KLF4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. *J Biol Chem.* 2010; 285: 9180–9.

46. Yu K-R, Yang S-R, Jung J-W, et al. CD49f enhances multipotency and maintains stemness through the direct regulation of OCT4 and SOX2. *Stem Cells.* 2012; 30: 876–87.

47. Herberts CA, Kwa MSG, Hermansen HPW. Risk factors in the development of stem cell therapy. *J Transl Med.* 2011; 9: 29, 14 pages.

48. Mousavinnejad M, Andrews PW, Shoraki EK. Current biosecurity considerations in stem cell therapy. *Cell J.* 2016; 18: 281–7.

49. Steingen C, Brenig F, Baumgartner L, et al. Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. *J Mol Cell Cardiol.* 2008; 44: 1072–84.

50. Tondreau T, Meuleman N, Stamatoopoulos B, et al. In vitro study of matrix metalloprotease/tissue inhibitor of metalloproteinase production by mesenchymal stromal cells in response to inflammatory cytokines: the role of their migration in injured tissues. *Cytotherapy.* 2009; 11: 559–69.

51. Devine SM, Cobbs C, Jennings M, et al. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. *Blood.* 2003; 101: 2999–3001.

52. Chen F-M, Wu L-A, Zhang M, et al. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: promises, strategies, and translational perspectives. *Biomaterials.* 2011; 32: 3189–209.

53. Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. *Cell Signal.* 2014; 26: 192–7.

54. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. *Nat Rev Immunol.* 2008; 8: 958–69.

55. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. *Nat Rev Immunol.* 2011; 11: 750–61.

56. Lee Y-L, Lee L-W, Su C-Y, et al. Virally inactivated human platelet concentrate lysate induces regulatory T cells and immunosuppressive effect in a murine asthma model. *Transfusion.* 2013; 53: 1918–28.

57. Ferrari G, Mavilio F. Myogenic stem cells from the bone marrow: a therapeutic alternative for muscular dystrophy? *Neuromuscul Disord.* 2002; 12(Suppl 1): S7–10.

58. Medina RJ, O’Neill CL, O’Doherty TM, et al. Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8. *J Mol Med.* 2011; 17: 1045–55.

59. Geem D, Medina-Conteras O, Kim W, et al. Isolation and characterization of dendritic cells and macrophages from the mouse intestine. *J Vis Exp.* 2012; 63: e4040, 6 pages.

60. Cosin-Roger J, Ortiz-Masia D, Calatayud S, et al. M2 macrophages activate WNT signaling pathway in epithelial cells: relevance in ulcerative colitis. *PLoS ONE.* 2013; 8: e78128, 12 pages.

61. Almalki SG, Agrawal DK. Effects of matrix metalloproteinases on the fate of mesenchymal stem cells. *Stem Cell Res Ther.* 2016; 7: 129, 12 pages.

62. Heissig B, Lund LR, Akiyama H, et al. The plasminogen fibrinolytic pathway is required for hematopoietic regeneration. *Cell Stem Cell.* 2007; 1: 658–70.

63. Allavena P, Chiappa M, Monti P, et al. From pattern recognition receptor to regulator of homeostasis: the double-faced macrophage mannose receptor. *Crit Rev Immunol.* 2004; 24: 179–92.

64. Gong Y, Hoover-Plow J. The plasminogen system in regulating stem cell mobilization. *J Biomed Biotechnol.* 2012; 2012: 1–7.

65. Andronicos NM, Chen EI, Baik N, et al. Proteomics-based discovery of a novel, structurally unique, and developmentally regulated plasminogen receptor, Plg-RKT, a major regulator of cell surface plasminogen activation. *Blood.* 2010; 115: 1319–30.

66. Fomin ME, Togarlapu PP, Muench MO. Progress and challenges in the development of a cell-based therapy for hemophilia A. *J Thromb Haemost.* 2014; 12: 1954–65.

67. Muller-Sieburg CE, Sieburg HB, Bernitz JM, et al. Stem cell heterogeneity: implications for aging and regenerative medicine. *Blood.* 2012; 119: 3900–7.