Stable complexation of lanthanide ions (Ln³⁺) in aqueous solution is a coordination chemistry problem that has received much attention in the last 3 decades. This interest is related to a great extent to the important medical and biomedical properties of some lanthanide complexes, which include (1) the use of Gd³⁺ complexes as contrast agents in magnetic resonance imaging (MRI), (2) the potential of luminescent Ln³⁺ complexes, particularly Eu³⁺ and Tb³⁺, in optical imaging and bioanalytical applications, and (3) the interesting properties of radioisotopes in the lanthanide series (i.e., ¹⁷⁷Lu) for radiopharmaceutical applications. All these applications require stable complexation of metal ions and slow dissociation kinetics to avoid undesirable effects (toxicity issues). Furthermore, the application of Ln³⁺ complexes as radiopharmaceuticals requires a fast complexation of the radioisotope under mild conditions. Chelates for the preparation of efficient luminescent complexes must contain chromophore units suitable for indirect excitation of the relevant Ln³⁺ excited state, while protecting the metal ion from the vibrational quenching associated to the coordination of water molecules.

The chelates used for stable Ln³⁺ complexes are often either macrocyclic or non-macrocyclic systems containing hard carboxylate or phosphonate donor groups whose denticity ranges from 7 to 10. Ligands with lower denticity like EDTA result in complexes endowed with low stability, while octa- or nonadentate ligands generally present favorable complexation properties. Macroyclic ligands often form complexes with superior thermodynamic stability and exceptional kinetic inertness, but in some cases lead to very slow complexation kinetics. On the other hand, non-macro cyclic ligands such as DTPA bisamides were considered to have superior kinetic inertness than the DTPA⁻⁻ analogue. However, more recent studies demonstrated that different anions present in vivo catalyze the dissociation of Gd³⁺ complexes with DTPA bisamides.
In 2004, we reported the potentially octadentate ligand H₄OCTAPA (Chart 1), whose Gd³⁺ complex was originally designed as a potential MRI contrast agent candidate. This study demonstrated the presence of a water molecule in the inner coordination sphere. Subsequent investigations performed by Mazzanti,27 Orvig,29,30 and our own group31 pointed to a high thermodynamic stability of the lanthanide complexes, which, however, exhibit fast dissociation kinetics. Orvig and co-workers showed that OCTAPA presents very promising properties for the development of ¹¹¹In, ⁹⁰Y, and ¹⁷⁷Lu radiopharmaceuticals.32,33 Bifunctional derivatives of H₄OCTAPA were also reported and successfully tested in vivo upon radiolabeling with these radioisotopes.34-36 The rigidified ligand CHXOCTAPA⁴⁻ (also known as H₄CDDADPA⁴⁻) was reported almost simultaneously by the group of Orvig and us.37,38 The corresponding Gd³⁺ complex is remarkably inert with respect to dissociation, with dissociation rate constants comparable to those of macrocyclic complexes such as [Gd(DO3A)].

In this paper, we present a detailed characterization of the Ln³⁺ complexes of CHXOCTAPA using a wide range of experimental and computational techniques. A multinuclear (^1H and ^13C) NMR study and density functional theory (DFT) calculations were used to establish the structure of the complexes in solution, including the analysis of the paramagnetic Yb³⁺-induced ^1H NMR shifts. These studies revealed unexpected features of the structure in solution of these complexes. We also present a full characterization of the relaxometric properties of the Gd³⁺ complex involving ^1H nuclear magnetic relaxation dispersion (NMRD) studies and ^17O NMR chemical shifts and relaxation rates. A detailed analysis of the photophysical properties of the Eu³⁺ and Tb³⁺ complexes, including quantum yield determination, is reported. Finally, we also determined the stability of some of the complexes across the lanthanide series and assessed their properties as potential MRI contrast agent candidates.26 This complex was found to be highly stable using the same electrolyte background. The relaxometric properties of the Gd³⁺ complex involving ^1H NMR study and density functional theory (DFT) calculations were used to establish the structure of the complexes.26,39 Relaxivity, r₁p, refers to the paramagnetic longitudinal relaxation rate enhancement of water protons for a 1 mM concentration of the paramagnetic Gd³⁺ ion.40 The relaxivity of [Gd(H₂O)₈]³⁺ is considerably higher than that of the [Gd(CHXOCTAPA)]⁻ complex, and thus complex dissociation provoked by the addition of competing metal ions (La³⁺, Yb³⁺, or Zn²⁺) causes an important increase of the relaxation rate of water protons (Figure 1). These experiments were carried out using the batch method and long equilibration times (4 weeks) to ensure that thermodynamic equilibrium was attained. The titration profiles observed for La³⁺ and Yb³⁺ are remarkably different, with addition of Yb³⁺ inducing a rather sharp inflection point. This anticipates that the stability of the Yb³⁺ complex is slightly higher than that of the La³⁺ analogue. The fit of the relaxation data confirms this qualitative analysis, yielding stability constants of log K₉⁵La = 19.60(5) and log K₉⁵La = 18.09(3).

The stability of the complexes with CHXOCTAPA⁴⁻ experiences a slight increase from La³⁺ to Gd³⁺ as the charge density of the metal ion increases. This is the most common trend observed for Ln³⁺ complexes,41 though it is often more pronounced than observed here.15 Only a few cases of reversed stability were reported for the complexes of macrocyclic...
The complexes with Gd³⁺ and Yb³⁺ present very similar stability. The complexes with DTPA⁻ present a similar trend, with an initial increase in stability for the light lanthanide ions, the stability constants becoming nearly similar. The complexes with DTPA⁻, DOTA⁻, and related ligands. The stability constants determined for the Ln³⁺ complexes of CHXOCTAPA⁻ and related ligands are in excellent agreement, being comparable with those obtained by relaxometry. These experiments afforded also the protonation constant of the complexes and also evidenced the formation of hydroxo complexes at high pH (log $K_{\text{Gal}} > 12$, Figures S7 and S8). This shows that Na⁺ cations form a relatively stable complex with DO3A⁻⁻ derivatives. Potentiometric titrations using a high ligand concentration (4.38 mM) in the presence of equimolar concentrations of La³⁺, Gd³⁺, and Yb³⁺ allowed for determining stability and protonation constants of the metal complexes. The log K_{Gal} values obtained for the La³⁺ and Yb³⁺ complexes are in excellent agreement with those obtained by relaxometry. These experiments afforded also the protonation constant of the complexes and also evidenced the formation of hydroxo complexes at high pH (log $K_{\text{Gal}} > 12$, Figures S7 and S8). For Gd³⁺, the stability constant determined by potentiometry is 19.92, which is slightly lower than that obtained previously by relaxometry (log $K_{\text{Gal}} = 20.68$). This slight discrepancy is related to the different set of ligand protonation constants used in the analysis.
The stability constants of the Mg\(^{2+}\) and Ca\(^{2+}\) complexes of CHXOCTAPA\(^{4-}\) could be determined using direct potentiometric titrations. Both cations form different protonated complex species in solution. Similarly, potentiometric titrations, using both 1:1 and 1:2 (M/L) stoichiometric ratios, allowed for determining the protonation constants of the complexes formed with Zn\(^{2+}\) and Cu\(^{2+}\). These metal ions also form relatively stable dinuclear complexes characterized by the corresponding equilibrium constants \(K_{ML}\) and different hydroxo complexes at basic pH, yielding rather complex species distributions in solution (Table 1; see also Figures S1–S8, Supporting Information).

The stability constant of the Zn\(^{2+}\) and Cu\(^{2+}\) complexes is too high to be determined using direct pH potentiometric titrations, and thus UV–vis spectrophotometric experiments were carried out under acidic pH to determine the stability of the Cu\(^{2+}\) complex, following the changes of the d–d absorption band at ca. 710 nm with pH (Figure S9, Supporting Information). The stability of the Zn\(^{2+}\) complex was obtained by competition titration with Gd\(^{3+}\) using relaxometry. The log \(K_{ML}\) values characterizing the formation of the Ca\(^{2+}\), Zn\(^{2+}\) and Cu\(^{2+}\) complexes with CHXOCTAPA\(^{4-}\) are 1–2 log \(K\) units lower than those of the corresponding complexes formed with OCTAPA\(^{4-}\). This is in contrast to previous studies, which evidenced a gain in complex stability with small metal ions upon incorporation of rigid cyclohexyl groups. This imparts CHXOCTAPA\(^{4-}\) with a higher selectivity for the Ln\(^{3+}\) ions than OCTAPA\(^{4-}\) over potentially competing divalent metal ions in vivo.

Photophysical Properties. Ligands containing picolinate moieties were found to act as rather efficient sensitizers of the luminescent emission of Eu\(^{3+}\) and particularly Tb\(^{3+}\). Furthermore, picolinate units can be easily functionalized to tune their photophysical properties and provide efficient two-photon absorption. Thus, we have investigated the emission spectra of the [Ln(CHXOCTAPA)]\(^{−}\) (Ln = Eu, Tb) complexes in aqueous solution. The emission spectrum of the Eu\(^{3+}\) complex is dominated by the \(\Delta J = 2\) transition and presents a rather intense \(\Delta J = 0\) transition (Figure 2). This spectral pattern is typical of Eu\(^{3+}\) in a coordination environment with a low symmetry. The lifetime of the excited \(\Delta J = 0\) state measured in H\(_2\)O solution (598 \(\mu\)s) is typical of Eu\(^{3+}\) complexes containing one coordinated water molecule \(q = 1\). Lifetime measurements recorded in D\(_2\)O solutions afford a much longer lifetime of 2363 \(\mu\)s, as would be expected considering the efficient vibrational quenching of Eu\(^{3+}\) luminescence provoked by O–H oscillators of coordinated water molecules. The use of the empirical relationship proposed by Horrocks gives a \(q\) value of 1.0 ± 0.1, confirming the presence of a water molecule coordinated to the metal center (Table 2).

The emission spectrum recorded for the Tb\(^{3+}\) complex presents the \(\Delta J = 2\) transitions expected for this metal ion, with \(J\) ranging from 6 to 3 (Figure S11, Supporting Information). The emission lifetimes of the excited \(\Delta J = 0\) state recorded in H\(_2\)O and D\(_2\)O provide a \(q\) value of 1.3, in agreement with the results obtained for Eu\(^{3+}\).

The emission quantum yields measured for the Eu\(^{3+}\) (3.4%) and Tb\(^{3+}\) (11%) complexes were obtained using the corresponding tris(picolinate) complexes as secondary standards and are within the normal range reported for monohydrated chelates containing picolinate units. Thus, it is surprising that quantum yields one order of magnitude lower were reported by Platas-Iglesias et al. for the OCTAPA\(^{4-}\) analogues using quinine sulfate as standard (0.3 and 1.9% for Eu\(^{3+}\) and Tb\(^{3+}\) respectively). Furthermore, higher quantum yields for the latter complexes were presented in a PhD thesis, suggesting that the values reported by Platas-Iglesias were incorrect. We therefore reexamined the photophysical properties of the complexes with OCTAPA\(^{4-}\) (Table 2). These studies confirmed that the emission quantum yields of the Eu\(^{3+}\) and Tb\(^{3+}\) complexes with CHXOCTAPA\(^{4-}\) and OCTAPA\(^{4-}\) are very similar. The emission lifetimes measured for the two families of complexes are also very close, confirming the formation of \(q = 1\) species in solution. The emission spectra recorded for the two Eu\(^{3+}\) complexes are rather similar, with a comparable splitting of the magnetic dipole \(\Delta J = 2\) transition (140 cm\(^{-1}\)). We notice that the hypersensitive \(\Delta J = 2\) transition is more intense in OCTAPA\(^{4-}\) than in CHXOCTAPA\(^{4-}\), while the intensity of the magnetic dipole \(\Delta J = 1\) transition remains very similar (Figure 2). This results in \(\Delta J / \Delta J = 1\) intensity ratios of 2.6 and 2.9 for the complexes with CHXOCTAPA\(^{4-}\) and OCTAPA\(^{4-}\), respectively. It has been shown that the relative intensity of these transitions is very sensitive to changes in the metal coordination environment. Because the nature of the donor atoms and the number of coordinated water molecules is identical in the two complexes, these results suggest that the two complexes are characterized by somewhat different coordination polyhedra.

Further insights into the sensitization efficiency of Eu\(^{3+}\) by the picolinate chromophores can be gathered by applying the methodology developed by Werts, which allows for estimating the radiative lifetime of the Eu\(^{3+}\)-centered emission \(\tau_{rad}\), the metal-centered emission quantum yield \(\Phi_{em}\), and the efficiency of the sensitization process \(\eta_{sen}\) (Table 2). The results of this analysis show that the observed emission quantum yields are limited by rather low \(\Phi_{em}\) values associated to the quenching effect of the coordinated water molecule and a modest sensitization efficiency.

Structure of the Ln\(^{3+}\) Complexes in Solution. The structure of the [Ln(CHXOCTAPA)]\(^{−}\) complexes was investigated in D\(_2\)O solutions at pH 7.0 using \(^{1}H\) and \(^{13}C\) NMR spectroscopy. We initiated the study by examining the NMR spectra of the diamagnetic La\(^{3+}\) and Lu\(^{3+}\) complexes. The spectra of the Lu\(^{3+}\) complex are consistent with the presence of a main isomer in solution and a C\(_1\) symmetry, as it shows 24 proton resonances and the same number of carbon

![Figure 2. Emission spectra of the Eu\(^{3+}\) complexes with CHXOCTAPA\(^{4-}\) (blue solid line) and OCTAPA\(^{4-}\) (green dashed line) recorded in H\(_2\)O solution at pH 7.1 (\(\lambda_{ex} = 279\) nm; absorption and emission slits 1 nm, 10\(^{−4}\) M).](image-url)
A full attribution of the NMR data was attained with the aid of 2D COSY, HSQC, and HMBC experiments. The spectrum points to a rigid structure of the complex in solution, as the 1H spectrum displays well-resolved AB spin systems for the methylene protons. The spectra of the La$^{3+}$ complex are, however, more complicated, evidencing the presence of two isomers in solution with very similar populations.

The 1H NMR spectrum of the paramagnetic Ce$^{3+}$ complex presents paramagnetically shifted signals in the approximate range 25 to −35 ppm (Figure 3). The spectrum is consistent with the presence of two isomers in solution, while only one isomer was observed previously for the Eu$^{3+}$ complex. All together, these results indicate that the complexes of the large lanthanide ions (La−Ce) are present in solution in the form of two diastereoisomers, while only one isomer is observed for Eu$^{3+}$ and the heavier Ln$^{3+}$ ions. DFT calculations were performed to understand the nature of the two diaster-

[Eu(CHXOCTAPA)$^-$]	[Eu(OCTAPA)$^-$]	[Tb(CHXOCTAPA)$^-$]	[Tb(OCTAPA)$^-$]	
λ_{max}/nm	272	272	271	272
ϵ/M$^{-1}$ cm$^{-1}$	7.66×10^3	7.50×10^3	8.34×10^3	9.36×10^3
τ_{HDO}/msa	0.598	0.584	1.527	1.473
τ_{DDO}/msa	2.363	2.292	2.822	2.863
Φ_{HDO}/%b	3.4	4.5	11	12
Q	1.0	1.1	1.3	1.2
τ_{HDO}/msa	6.57	6.07		
Φ_{HDO}/%b	9.60	9.10		
$\eta_{\text{-loss}}$	0.37	0.47		

a\(\lambda_{\text{exc}} = 279\) nm, estimated error $\pm 5\%$; $q_{\text{Eu}} = 1.11(\Delta k_{\text{obs}} = 0.31)$, ref 50; $q_{\text{Tb}} = 5.0(\Delta k_{\text{obs}} = 0.06)$, ref 51, with (\(\Delta k_{\text{obs}} = 1/\tau_{\text{HDO}} - 1/\tau_{\text{DDO}}\)).

bDetermined using the trispicolinate complexes are standard, refs 52 and 53, \(\lambda_{\text{exc}} = 279\) nm, estimated error $\pm 15\%$. cDetermined according to ref 54.

$Gd(^3\text{CHXOCTAPA})(\text{H}_2\text{O}) \cdot 2\text{H}_2\text{O}$ (second-sphere water molecules omitted for clarity) and relative energies calculated across the lanthanide series for the complexes with CHXOCTAPA$^-$ and OCTAPA4-.
trans isomer, which is in nice agreement with the X-ray structure reported by Mazzanti. A trans structure was also established for the light Ln$^{3+}$ complexes with OCTAPA$^{14-}$ by analysis of the paramagnetic 1H NMR shifts. The cis isomer is characterized by different configurations of the amine N atoms (S,R or R,S), while these N atoms have the same configuration in the trans isomer (S,S or R,R, Figure 3).

The 1H NMR spectra of Yb$^{3+}$ complexes encode structural information that can be used to validate structural models obtained with DFT calculations. The 1H NMR signals due to ligand nuclei in paramagnetic Yb$^{3+}$ complexes experience large frequency shifts induced by the pseudocontact mechanism (δ_{PC}), which is related to the anisotropy of the magnetic susceptibility associated to the 4f electrons. The pseudocontact shift can be expressed as in eq 1 when the reference frame coincides with the principal directions of the magnetic susceptibility tensor χ.

$$\delta_{PC} = \frac{1}{12\pi^2} \left[\Delta \chi_\alpha \left(\frac{2x^2 - x^2 - y^2}{r^2} \right) + \frac{3}{2} \Delta \chi_\beta \left(\frac{x^2 - y^2}{r^2} \right) \right]$$

where $r^2 = x^2 + y^2 + z^2$, x, y, and z are the Cartesian coordinates of a nucleus i relative to the location of a Yb$^{3+}$ ion placed at the origin, and $\Delta \chi_\alpha$ and $\Delta \chi_\beta$ are the axial and rhombic parameters of the symmetric magnetic susceptibility tensor.

The 1H NMR spectrum of the Yb$^{3+}$ complex of CHXOCTAPA is well resolved, presenting paramagnetically shifted resonances in the range +109 to −41 ppm (Figure 4).

Figure 4. 1H NMR spectrum of [Yb(CHXOCTAPA)]$^{2-}$ (300 MHz, 25 °C, pH 7.0) and plot of the calculated chemical shifts versus those obtained with eq 1 and the structure of the cis isomer. The line represents the identity line.

The spectrum was assigned on the basis of line-width analysis, as the paramagnetic contribution to the linewidths of 1H resonances depends on $1/\rho^6$. Thus, those protons located at shorter distances from the paramagnetic ion are characterized by broader resonances. Additional information for the assignment of the 1H NMR spectrum was gained from 1H−1H−COSY measurements, which show cross-peaks relating the protons of the pyridyl units, the geminal CH$_2$ protons of the acetate and picolinate groups, and the protons of the cyclohexyl unit placed at a three-bond distance. The analysis of the paramagnetic shifts was accomplished by using eq 1, using the diamagnetic shifts observed for the Lu$^{3+}$ analogue (Table S2, Supporting Information). Given the lack of any symmetry axis in the complex, the position of the magnetic axes cannot be anticipated. Thus, we performed a least squares fitting of the paramagnetic shifts to eq 1 by using five fitting parameters: The axial ($\Delta \chi_\alpha/12\pi$) and rhombic ($\Delta \chi_\beta/8\pi$) parts of the magnetic susceptibility tensor and three Euler angles relating the input orientation and that of the magnetic susceptibility tensor. The structure of the complex obtained with DFT calculations was used as a structural model.

The agreement of the chemical shifts observed for the Yb$^{3+}$ complex and those calculated with eq 1 (and the estimates of the diamagnetic shifts using the Lu$^{3+}$ complex) is excellent, with deviations <4.2 ppm and a mean deviation of 1.26 ppm (Figure 4, see also Table S2, Supporting Information). This is confirmed by the agreement factor $AF = 0.050$, which is similar to or better than those reported previously and considered to be satisfactory (0.06−0.11). Lower agreement factors were also calculated for symmetrical systems, but in those cases, the fit of the data involved a low number of experimental chemical shifts. This analysis indicates that the structure of the cis isomer obtained with DFT represents a good approximation of the actual structure of the complex in solution. Conversely, an unacceptable fit was obtained by using the trans isomer as the structural model ($AF = 0.363$), with deviations of the experimental and calculated data of up to ∼34 ppm. As would be expected, the magnetic susceptibility tensor determined for the fit of the data for the cis isomer is rhombic, with $\Delta \chi_\alpha/12\pi = −2379 ± 29$ ppm Å3 and $\Delta \chi_\beta/8\pi = 919 ± 65$ ppm Å3. The orientation of the magnetic axis is such that one of the picolinate lies close to the yz plane and one of the carboxylate groups on the xz plane (Figure S22, Supporting Information).

1H NMRD and 17O NMR Studies. The relaxivity of [Gd(CHXOCTAPA)]$^{2-}$ was investigated in the proton Larmor frequency range 0.01−80 MHz, corresponding to magnetic field strengths varying between 2.34×104 and 1.88 T (Figure 5). The relaxivities recorded at 20 MHz (Table 3) are slightly higher than those reported for [Gd(OCTAPA)]$^{3-}$, [Gd(DOTA)]$^{3-}$, and [Gd(DTPA)]$^{2-}$, but still consistent with the presence of a water molecule in the inner coordination sphere, as indicated by emission lifetime measurements (see above). As expected, fast rotation of the complex in solution limits proton relaxivity, which decreases with increasing temperature. Because the inner-sphere contribution to 1H relaxivity is affected by a relatively large number of parameters, we have also recorded reduced longitudinal ($1/T_2^L$) and transverse ($1/T_2^T$) 17O NMR relaxation rates and reduced chemical shifts ($\Delta \omega_r$) of an aqueous solution of the complex (19.9 mM, pH = 7.27). These studies provide independent information about some important parameters that control 1H relaxivity, especially the exchange rate of the coordinated water molecule(s) (k_e^{298}) and the rotational correlation time (τ_ϕ^{298}). The $1/T_2^T$ values increase with decreasing temperature at high temperatures, reach a maximum at ca. 322 K, and then decrease. This is typical of systems that experience a changeover from a slow exchange regime at low temperature to a fast exchange condition at high temperature. The inflection point observed for the $1/T_2^T$ values is also clearly visible in the chemical shift data.

A simultaneous fitting of the 1H NMRD and 17O NMR data of [Gd(CHXOCTAPA)]$^{2-}$ was performed using a well-established methodology that treats the inner-sphere contribution to relaxivity with the Solomon−Bloembergen−Morgan theory and the outer-sphere mechanism with the translational diffusion model proposed by Freed. The 17O NMR data were fitted with the standard Swift−
Connick87,88 equations. Several parameters have been fixed during the fitting procedure: the number of water molecules coordinated to the Gd3+ ion was fixed to \(q = 1\) on the basis of the luminescence lifetime measurements described above, the distance of closest approach for the outer-sphere contribution \(a_{\text{GdH}}\) was fixed at 3.5 \(\AA\), and the distances between the Gd3+ ion and the H and O atoms of the coordinated water molecule \((r_{\text{GdH}}\) and \(r_{\text{GdO}}\) were set to the values obtained from DFT calculations. The value of the \(^{17}\text{O}\) quadrupole coupling constant \(\chi(1 + \eta^{2}/3)^{1/2}\) was also estimated using DFT calculations. In previous studies, the quadrupole coupling constant was allowed to vary during the fitting procedure,9 providing fitted values that deviated markedly from that obtained for acidified water (7.58 MHz).90 As a result, the fits of the data gave low rotational correlation times \(\tau_{\text{R}}\) (Table 3). However, it has been demonstrated that coordination to Gd3+ provokes negligible changes in the quadrupole constant.91 Our calculations provided \(\chi = 7.77\) MHz and an asymmetry parameter \(\eta = 0.84\) (\(\chi = 0.68\) MHz and \(\eta = 0.93\) for pure water), yielding a \(\chi(1 + \eta^{2}/3)^{1/2}\) value of 10.7 MHz. Additional parameters that were fixed to reasonable values were the diffusion coefficient \(D_{\text{GdH}}\) \((20 \times 10^{-10} \text{ m}^{2} \text{ s}^{-1})\), its activation energy \(E_{\text{DGdH}}\) \((22 \text{ kJ mol}^{-1})\), and the activation energy for the modulation of the zero field splitting interaction \((E_{\text{v}} = 1 \text{ kJ mol}^{-1})\). The rotational correlation time \(\tau_{\text{R}}\) affects both the \(T_{1}\) \(^{17}\text{O}\) relaxation rates and \(r_{\text{ip}}\) values. However, it has been shown that rotational correlation time characterizing the Ln–H\textsubscript{\text{water}} vector is \(~65\%\) shorter than that of the Ln–O\textsubscript{water} vector.92 Thus, we included in the fitting two different \(\tau_{\text{R}}\) values with the constraint that \(\tau_{\text{RH}}/\tau_{\text{RO}} = 0.65\).

An excellent fit of the \(^{17}\text{O}\) NMR and \(^{1}\text{H}\) NMR data was obtained using the parameters listed in Table 3. The water exchange rate \(k_{\text{ex}}\) is lower than those determined for the complexes with OCTAPA4+ and DTPA5-. A faster average exchange rate was also determined for the complexes with DOTA4-, though in the latter case two isomers with very different water exchange parameters are present in solution.93 The rigidity of the CHXOCTAPA4+ ligand likely increases the energy cost required to reach the transition state responsible for the water exchange process, resulting in a rather low water exchange rate.94 A similar effect was observed previously upon rigidification of OCTAPA derivatives incorporating phosphonate groups.95 The parameters characterizing the relaxation of the electron spin are very similar to those obtained for OCTAPA4+, as would be expected from the similar relaxivities observed at low magnetic fields (<1 MHz). Complexes with DOTA4- derivatives display slower electron spin relaxation, as a result of lower squared zero field splitting energies (\(\Delta^{2}\)), than the \(\text{Ln}^{3+}\) complexes (Table 3). Finally, the value obtained for the hyperfine coupling constant \(A/\hbar\) is in excellent agreement with that estimated with DFT (3.10 \(\times 10^{6}\) \text{ rad s}^{-1}), which provides support to the reliability of the analysis.

Dissociation Kinetics. The slow dissociation of Ln3+ complexes is a key property for their application as both

Table 3. Parameters Obtained from the Simultaneous Analysis of \(^{17}\text{O}\) NMR and \(^{1}\text{H}\) NMR Data

Parameter	CHXOCTAPA4+	OCTAPA4-,b	DTPA5-,c	DOTA4-,c
\(r_{\text{R}}\) at 25/37 °C, 20 MHz/mM-1 s-1	5.6/4.5	5.0/3.9	4.7/4.0	4.7/3.8
\(k_{\text{ex}}\) \(\times 10^{10}\) s-1	1.58 ± 0.09	5.0	3.3	4.1
\(\Delta H^{2}\)/kJ mol-1	54.6 ± 1.8	40.1	51.6	49.8
\(\tau_{\text{ex}}\) 298/ps	75 ± 3	55b	58b	77
\(E_{\text{v}}\)/kJ mol-1	19.5 ± 1.2	17.9	17.3	16.1
\(E_{\text{v}}\) 298/ps	11.3 ± 0.06	12.6	25	11
\(E_{\text{v}}\)/kJ mol-1	1.0a	1.0a	1.6	1.0a
\(\Delta^{2}/10^{20}\) m2 s-1	1.04 ± 0.06	1.2	0.46	0.16
\(D_{\text{GdH}}\) 298/10-10 m2 s-1	20.0c	19	20	22
\(E_{\text{DGdH}}\)/kJ mol-1	22c	30.1	19.4	20.2
\(A/\hbar/10^{6}\) rad s-1	-3.06 ± 0.08	-2.31	-3.8	-3.7
\(\chi(1 + \eta^{2}/3)^{1/2}\)/MHz	10.7a	17b	14a	10
\(r_{\text{GdH}}\)/Å	3.005a	2.969a	3.1a	3.1a
\(r_{\text{GdO}}\)/Å	2.480a	2.54a	2.5a	2.5a
\(s_{\text{GdH}}\)/Å	3.5a	3.4a	3.5a	3.5a
\(g298\)	1a	1a	1a	1a

aParameters fixed during the fitting procedure. bData from ref 26. cData from ref 89.
MRI contrast agents and radiopharmaceuticals. In the case of MRI contrast agents, there is an increasing concern on potential toxicity issues related to the release of Gd\(^{3+}\) in vivo.\(^{36}\) Radiopharmaceuticals are injected in low doses, and thus chemical toxicity problems are likely not an important concern. However, complex dissociation may have negative effects by reducing the amount of radioisotope that reaches the desired target, thereby exposing to radiation healthy tissue.\(^{97}\) In a previous paper, we analyzed the dissociation kinetics of the Gd\(^{3+}\) complex, which was found to be remarkably inert.\(^{38}\) Herein, we present a detailed analysis of the dissociation kinetics of the Lu\(^{3+}\) analogue, given the potential of \(^{177}\)Lu for therapeutic applications. We have shown recently that the dissociation kinetics of Ln\(^{3+}\) complexes may vary by several orders of magnitude across the lanthanide series, and thus the remarkable inertness of the Gd\(^{3+}\) complex does not necessarily ensure that the Lu\(^{3+}\) analogue behaves in a similar way.

The dissociation of the Lu\(^{3+}\) complex with CHXOCTAPA\(^{4−}\) was investigated by following the rates of exchange reactions taking place with Cu\(^{2+}\) at different proton concentrations (pH 3.30–4.72). The reactions were monitored in the presence of at least 10-fold Cu\(^{2+}\) excess to ensure pseudo first-order conditions. The observed rate constants display a rather unusual behavior, as increasing \(c_{\text{H}^+}\) provokes a slight initial decrease of the dissociation rates, which subsequently increase at higher \(c_{\text{H}^+}\) values. Furthermore, Cu\(^{2+}\) is also affecting significantly the complex dissociation rates (Figure 6). This indicates that the Lu\(^{3+}\) complex experiences dissociation by following the proton-assisted and metal-assisted pathways, the latter involving formation of a hetero-dinuclear complex. The dinuclear complex appears to form a hydroxo complex at relatively low pH that is responsible for the increase in \(k_{\text{obs}}\) values in the low proton concentration side (Figure 6). Thus, the dissociation of the complex can be expressed as in eq 2, where \(k_\text{st}\) is the rate constant characterizing the spontaneous dissociation, \(k_{\text{H}^+}\) is the rate constant characterizing the proton-assisted dissociation, and \(k_{\text{Cu}}\) and \(k_{\text{Cu}(\text{OH})}\) are associated with the metal-assisted dissociation pathways, the latter with the formation of a hydroxo dinuclear complex.

\[
\frac{\text{d}[\text{Lu(L)}]}{\text{dt}} = k_{\text{obs}}[\text{Lu(L)}]
= k_{\text{st}}[\text{Lu(L)}] + k_{\text{H}^+}[\text{Lu(HL)}]
+ k_{\text{Cu}}[\text{Lu(L)}\text{Cu}] + k_{\text{Cu}(\text{OH})}[\text{Lu(L)Cu(OH)}]
\]

(2)

Considering that the total concentration of complexed Lu\(^{3+}\) is given by eq 3 and the equilibrium constants defined by eqs 4–6, the rate constants can be expressed as in eq 7, where \(k_1 = k_{\text{H}^+} \times K_{\text{H}^+}\), \(k_2 = k_{\text{Cu}}K_{\text{Cu}}\) and \(k_5 = k_{\text{Cu}(\text{OH})}K_{\text{Cu}(\text{OH})}K_{\text{Cu}}\).

\[
[\text{Lu(L)}] = [\text{LuL}] + [\text{Lu(HL)}] + [\text{Lu(L)}\text{M}]
+ [\text{Lu(L)}\text{MOH}]
\]

(3)

\[
K_{\text{H}^+} = \frac{[\text{Lu(HL)}]}{[\text{LuL}][\text{H}^+]} \quad (4)
\]

\[
K_{\text{Cu}} = \frac{[\text{Lu(L)}\text{Cu}]}{[\text{Lu(L)}][\text{Cu}^{2+}]} \quad (5)
\]

\[
K_{\text{Cu}(\text{OH})} = \frac{[\text{Lu(L)}\text{Cu}(\text{OH})]K_{\text{w}}}{[\text{Lu(L)}][\text{H}^+]^2} \quad (6)
\]

\[
k_{\text{obs}} = k_0 + k_{[\text{H}^+]} + k_{[\text{Cu}^{2+}]} + k_{[\text{Cu}(\text{OH})]K_{\text{Cu}(\text{OH})}[\text{Cu}^{2+}]}[\text{H}^+] + [\text{Cu}(\text{OH})\text{Cu}(\text{OH})][\text{Cu}^{2+}][\text{H}^+] + [\text{Cu}(\text{OH})][\text{Cu}(\text{OH})][\text{Cu}^{2+}][\text{H}^+] \quad (7)
\]

Attempts to fit the data to eq 7 including \(k_0\) as fitting parameter provided a small negative value, which indicates that spontaneous dissociation does not play any role under the conditions used for kinetic experiments. Furthermore, it is difficult to estimate the rate constant characterizing the spontaneous reaction pathway within the same pH range where the dissociation of the Lu(L)Cu(OH) complex takes

![Figure 6. Plot of the pseudo-first-order rate constants measured for the [Lu(CHXOCTAPA)]\(^{−}\) as a function of H\(^{+}\) ion concentration (50 mM DMP, 25 °C, 0.15 M NaCl) using different metal ion excess [10× (5.53 mM), 20× (11.07 mM), 30× (16.60 mM), and 40× (22.14 mM)] with pH 3.30, 3.50, 3.80, 4.17, and 4.49. The solid lines represent the fits of the data to eq 7.](https://doi.org/10.1021/acs.inorgchem.2c00501)

| Table 4. Rate and Equilibrium Constants Characterizing the Dissociation of the CHXOCTAPA\(^{4−}\) Complexes and Related Systems (25 °C) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | [LuCHXOCTAPA]\(^{−}\) | [GdCHXOCTAPA]\(^{−}\) | [GdOCTAPA]\(^{−}\) | [GdDTPA]\(^{2−}\) | [GdDO3A]\(^{−}\) |
| \(k_1\)/M\(^{−1}\) s\(^{−1}\) | 3.74 ± 0.06 \times 10\(^{−2}\) | 1.60 \times 10\(^{−2}\) | 11.8 | 0.58 | 0.023 |
| \(k_2\)/M\(^{−2}\) s\(^{−2}\) | 6.3 ± 0.3 \times 10\(^{−4}\) | 6.8 \times 10\(^{−4}\) | 22.5 | 0.93 | |
| \(k_3\)/M\(^{−4}\) s\(^{−1}\) | 5.1 ± 0.3 \times 10\(^{−4}\) | \times 10\(^{−4}\) | 5.0 \times 10\(^{9}\) | 100 | |
| \(K_{\text{H}^+}\) | 737 | 2.6 | 13 | 0.15 | 202 |
| \(K_{\text{Cu}}\) | 12.1 ± 1.6 | 48 | 1.49 \times 10\(^{3}\) | 2.10 \times 10\(^{5}\) |
| \(t_{1/2}/\text{h}\) | 876 | 1.49 \times 10\(^{3}\) | 0.15 | 202 | 2.10 \times 10\(^{5}\) |

\(^{a}\)Data from ref 38. \(^{b}\)Data from ref 26. \(^{c}\)Data from ref 25. \(^{d}\)Data from ref 47. \(^{e}\)Half-lives determined at pH 7.4 and [Cu\(^{2+}\)] = 1 μM.
place, as the latter acts as a competitive dissociation path to the spontaneous dissociation. A similar situation occurred for K_{sp} revealing that the $K_{sp}[H^+]$ term in the denominator of eq 7 has a negligible contribution to K_{obs}. This is expected considering the low protonation constants determined using potentiometry ($log K_{ion}$ in the range 1−2, Table 1) and the relatively low proton concentrations used for kinetic experiments ($<10^{-6}$ M, Figure 6). The results of the fit are shown in Table 4, together with a comparison with the data reported previously for the Gd$^{3+}$ complexes of CHXOCTAPA$^{4−}$, 18 OCTAPA$^{4−}$, 31 DTPA$^{−}$, 23 and DO3A$^{3−}$. 47 It is worth mentioning that the dissociation pathway through formation of a hydroxido dinuclear species was not detected for the Gd$^{3+}$ analogue, which was investigated in approximately the same pH range. The formation of hydroxido complexes is more likely to occur as the size of the lanthanide ion decreases across the series due to the lanthanide contraction, as indicated by the corresponding hydrolysis constants ($log K_{H}=−7.83$ and −7.27 for Gd$^{3+}$ and Lu$^{3+}$, respectively). 39 Alternatively, the structural change occurring close to the center of the lanthanide series could be responsible for the different behavior of the Gd$^{3+}$ and Lu$^{3+}$ complexes.

The rate constants shown in Table 4 indicate that the Gd$^{3+}$ and Lu$^{3+}$ analogues present similar inertness with respect to their dissociation following the proton-assisted and metal-assisted pathways, as judged by the values of the k_1 and k_2 rate constants. However, the metal-assisted pathway with the formation of a hydroxo complex, characterized by k_2, plays an increasingly important role in the dissociation of the complex as the concentration of OH$^−$ increases. As a result, this pathway is mainly responsible for complex dissociation at pH 7.4, a situation that is clearly reflected in the half-lives of the complex calculated at pH 7.4 using $[Ca^{2+}] = 1 \mu M$ (Table 4). Nevertheless, the half-life estimated for [Lu(CHXOCTAPA)$]^−$ remains three times longer than that of [Gd(DTPA)$]^−$, but clearly shorter than that of the macrocyclic complex [Gd(DO3A)]. The effect that the rigid cyclohexyl unit has in improving kinetic inertness is also obvious when comparing the half-lives of CHXOCTAPA$^{4−}$ and OCTAPA$^{4−}$ derivatives.

CONCLUSIONS

The present contribution has shown that the octadentate CHXOCTAPA$^{4−}$ ligand forms fairly stable complexes with the Ln$^{3+}$ ions, with stability constants in the range $log K_{stab} \sim 17.8−19.7$. The presence of the rigid cyclohexyl ring causes a slight increase of the selectivity of the ligand for the Ln$^{3+}$ ions over Cu$^{2+}$ and Zn$^{2+}$. The picolinate units are rather efficient in sensitizing the Eu$^{3+}$ and particularly Tb$^{3+}$ luminescence, with emission quantum yields comparable to those of the OCTAPA$^{4−}$ analogues. The complexes are monohydrated ($q=1$) in solution, as indicated by emission lifetime measurements. The exchange rate of the water molecule coordinated to Gd$^{3+}$ (as confirmed by 17O NMR studies) is rather low when compared with the OCTAPA$^{4−}$, DTPA$^{−}$, and DOTA$^{4−}$ analogues, likely as a result of the rigid structure of the complex.

The coordination chemistry reported in this paper provided two unexpected results. First, the analysis of the structural information encoded by the pseudocontact shifts, induced by Yb$^{3+}$, demonstrate that this complex presents an unusual cis structure in which the amine N atoms adopt S,R configurations. DFT calculations show that this conformation is stabilized across the lanthanide series over the trans R,R (or S,S) conformation. The presence of the cyclohexyl group causes a significant stabilization of the S,R conformation. A second unexpected effect was observed when investigating the dissociation of the Lu$^{3+}$ complex in the presence of exchanging Cu$^{2+}$ ions. Complex dissociation at physiological pH was found to occur mainly through the metal-assisted mechanism that involves the formation of a hydroxido complex, a pathway that was not observed previously for the Gd$^{3+}$ analogue. We hypothesize that this pathway may be relevant for the dissociation of complexes of acidic cations relevant for radiopharmaceutical applications (i.e., Sc$^{4+}$).

EXPERIMENTAL AND COMPUTATIONAL SECTION

Materials

The H$_2$CHXOCTAPA and H$_2$OCTAPA ligands were prepared as described in previous papers. 31,38 All other chemicals and solvents were purchased from commercial sources and used without further purification. The complexes used for NMR and photophysical studies were prepared by mixing stoichiometric amounts of the ligand and the corresponding Ln(OTf)$_3$ salts and subsequent adjustment of the pH with dilute NaOH/NaOD solutions.

NMR Spectroscopy

1H NMR spectra were recorded at 25 °C in solutions of the complexes in D$_2$O using Bruker Avance 300 or Bruker ARX400 spectrometers. Chemical shifts were referenced by using the residual solvent HDO proton signal ($\delta = 4.79$ ppm). 100

The 1H NMRD measurements were carried out by using a Stelar SMARTracer Fast Field Cycling relaxometer (0.01–10 MHz) and a Bruker WP80 NMR electromagnet adapted to variable field measurements (20–80 MHz) controlled by a SMARTracer PC-NMR console. The NMRDF profiles of the [Gd(CHXOCTAPA)$]^−$ complex ($\gamma_{complex} = 2.69$ mM) were recorded in aqueous solution at three different temperatures (25, 37 and 50 °C) in the presence of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer (25 mM, pH = 7.27) to maintain the pH constant. The temperature of the samples was managed by a VTC91 temperature control unit (calibrated by a Pt resistance temperature probe) and maintained by gas flow.

Transverse and longitudinal 17O relaxation rates (1/T_2, 1/T_1) and chemical shifts were measured in aqueous solutions of [Gd(CHXOCTAPA)$]^−$ (0.0199 mM, pH = 7.27) in the temperature range 274–354 K on a Bruker Avance 400 (9.4 T, 54.24 MHz) spectrometer. The temperature was calculated according to previous calibration with ethylene glycol and methanol. 101 An acidified water solution (HClO$_4$, pH 3.3) was used as an external reference. Longitudinal relaxation times (T_1) were obtained by the inversion−recovery method, and transverse relaxation times (T_2) were obtained by the Carr−Purcell−Meiboom−Gill spin-echo technique. 102 The technique used for 17O NMR measurements on Gd$^{3+}$ complexes has been described elsewhere. 103 The samples were sealed in glass spheres fitted into 10 mm NMR tubes to avoid susceptibility corrections of the chemical shifts. 104 To improve the sensitivity, 17O-enriched water (10% H$_2^{17}$O, CortecNet) was added to the solutions to reach around 2% enrichment. The 17O NMR data were treated according to the Solomon−Bloembergen−Morgan theory of paramagnetic relaxation. The least-squares fit of the 17O NMR and 1H NMRD data was performed using Micromath Scientist version 2.0 (Salt Lake City, UT, USA).

Absorption and Emission Electronic Spectroscopy

The absorption spectra of the Eu$^{3+}$ and Tb$^{3+}$ complexes were recorded with a Jasco V-650 spectrophotometer using 0.2 cm quartz cells. Steady-state emission spectra were obtained with a Horiba FluoroMax Plus-P spectrophluorometer using a 150 W ozone-free xenon arc lamp as the excitation source, a R928P photon counting emission detector, and an excitation source, a R928P photon counting emission detector, and an excitation source, a R928P photon counting emission detector. The emission spectra were obtained with a Horiba FluoroMax Plus-P spectrophluorometer using a 150 W ozone-free xenon arc lamp as the excitation source, a R928P photon counting emission detector, and an excitation source, a R928P photon counting emission detector. An integration time of 0.1 s. Luminescence lifetimes were measured using the time-correlated single photon counting technique and a pulse laser flash lamp as the excitation source. Quantum yields were determined using the Cs$_2$[Eu(pic)$_2$]$^3^+$ complexes (pic = 2,6-dipicolinate, Ln = Eu or Tb) as standards (Φ$_{Eu}$ = 24% in TRIS, pH 7.4, 7.5 × 10$^{-3}$ M; Φ$_{Tb}$ = 22% in TRIS, pH 7.4, 6.5 × 10$^{-3}$ M). 12,33
Equilibrium Studies. The chemicals (MCl3 and LnCl3 salts) used in the studies were of the highest analytical grade obtained from commercial sources (Sigma-Aldrich and Strem Chemicals Inc.). The concentration of the stock solutions was determined by complexometric titration using a standardized Na2H2EDTA solution and appropriate indicators (Patton & Reeder (CaCl2), Eriochrome Black T (MgCl2), xylence orange (ZnCl2 and LnCl3), and murexide (CuCl2)).

The pH potentiometric titrations were carried out with a Metrohm 888 Titrando titration workstation using a Metrohm-6.0233.100 combined electrode. The titrated solutions (6.00 mL) were thermostated at 25 °C, and samples were stirred and kept under an inert atmosphere (N2) to avoid the presence of CO2. The calibration of the electrode was performed by a two-point calibration (KH-phthalate (pH = 4.005) and borax (pH = 9.177) buffers) routine. The calculation of [H+] from the measured pH values was performed with the method proposed by Irving et al.105 by titrating a 0.01 M HCl solution (I = 0.15 M NaCl) with a standardized NaOH solution. The differences between the measured (pHmeas) and calculated pH (−log [H+]) values were used to obtain the equilibrium H+ concentrations from the pH data obtained in the titrations. The pH potentiometric titration curves were measured in the pH range 11.2–11.85.

The concentration of the CHXOCTAPA4-, chelator, was determined by pH potentiometric titration, comparing the titration curves obtained in the presence and absence of high Ca2+ excess (the concentration of the ligand in the titration was 4.38 mM). The protonation constants of CHXOCTAPA4-, the stability and protonation constants of the complexes formed with Mg2+, Ca2+, Cu2+ and Zn2+, as well as those of La3+, Gd3+, and Yb3+ were also determined by pH potentiometric titration. The metal-to-ligand concentration ratios were 1:1 and 2:1 (the concentration of the ligand in the titration was 4.38 mM). The pH potentiometric titration curves were measured in the pH range 1.70–11.85, while 122–356 mL NaOH-pH data pairs were recorded and fitted simultaneously.

Due to the high conditional stability of [Cu(CHXOCTAPA)3]2-, the formation of the complex was complete (nearly 100%) even at pH = 1.75 (starting point of the pH potentiometric titrations). For this reason, 12 out-of-cell (batch) samples containing a slight excess of ligand and the Cu2+ ion were prepared ([L] = 3.110 mM, [Cu2+] = 3.065 mM, 25 °C, 3.0 M (Na+ + H+)Cl). The samples, whose acidity was varied in the concentration range of 0.1005–3.007 M, were equilibrated for 1 day before recording the absorption spectra at 25 °C in Peltier thermostated semimicro 1 cm Hellma cells using a Jasco V-770 UV–vis spectrophotometer. The molar absorptivity of the [Cu(CHXOCTAPA)3]2- complex was determined at 25 wave-lengths (600–840 nm range) by recording the spectra of 1.501 × 10−3, 9.302 × 10−3, and 4.503 × 10−3 M solutions of the complex, while for the Cu2+ ion, previously published molar absorptivity values (determined under identical conditions) were used for data fitting.106

The molar absorption coefficients of the protonated [CuH3(CHXOCTAPA)]2- and [CuH2(CHXOCTAPA)] species were calculated during data refinement (UV–visible and pH potentiometric titration curves obtained at various metal to ligand concentrations were fitted simultaneously). The protonation (ligand and complexes) and stability constants (complexes) were calculated from the titration data with the PSEQUAD program.107

Stability constants of the [Zn(CHXOCTAPA)]2-, [La(CHXOCTAPA)]3-, and [Yb(CHXOCTAPA)]4- complexes were also determined by following the competition reaction of these metal ions with Gd3+ for the ligand, in a similar manner as it was performed for the [M(OCTAPA)]4- complexes.108 A total of 9–11 samples containing nearly 1 mM [Gd(CHXOCTAPA)]3- and 0.5–2.00 mM (La3+), 0.25–3.50 mM (Yb3+), or 0.5–20 mM (Zn2+) metal chlorides were prepared and equilibrated at constant pH (4.69 for La3+, 4.79 for Yb3+, and 4.81 for Zn2+). Longitudinal relaxation times of the samples were measured after 4 weeks (and repeated 4 weeks later to make sure that the equilibrium had been reached) and the formation constants determined by using the relaxivities of the Gd3+ aqua ion and [Gd(CHXOCTAPA)]2- (13.26 and 6.16 mM−1 s−1 at 25 °C and 0.49 T, respectively).109

Kinetic Studies. The rates of the metal exchange reactions involving the [Lu(CHXOCTAPA)]3- complex and Cu2+ were studied by using UV–vis spectrophotometry following the formation of the [Cu2(CHXOCTAPA)] complex. The conventional UV–vis spectroscopic method was applied to follow the destruction reactions of [Lu(CHXOCTAPA)]3-, as these reactions were very slow even at relatively low pH (in the pH range 3.27–4.39). The absorbance versus time kinetic curves were acquired by using a Jasco V-770 UV–vis–NIR spectrophotometer equipped with Peltier thermostatted multichannel holder. The temperature was maintained at 25 °C, and the ionic strength of the solutions was kept constant by using 0.15 M NaCl. For keeping the pH constant, 50 mM DMP buffer was used (log KHC = 4.19(5) as determined by using pH-potentiometry at 25 °C with the use of 0.15 M NaCl ionic strength). The exchange reactions were followed continuously at 300 nm for 4–5 days (80–95% conversion) and occasionally (one or two readouts per day) for another 5–7 days. The absorbance readings at equilibrium were determined 3–4 weeks after the start of the reaction depending on the pH of the samples (8–10 times longer than the half-life of the reaction). The concentration of the [Lu(CHXOCTAPA)]3- chelate was 0.52 mM, while the Cu2+ ion was applied at high excess (10.6–42.6 fold) in order to ensure pseudo-first-order conditions. The pseudo-first-order rate constants (kobs) were calculated by fitting the absorbance–time data pairs to eq 8

\[A_t = (A_0 - A_e) e^{-k_{obs} t} + A_e \]

where \(A_0, A_e, \) and \(A_t \) are the absorbance at time \(t \), at the start, and at equilibrium, respectively. The pseudo-first-order rate constants were fitted with the computer program Micromath Scientist, version 2.0 (Salt Lake City, UT, USA) by using a least-squares procedure.

Computational Studies. The geometries of the [Ln(OCTAPA)·(H2O)]2- and [Ln(CHXOCTAPA)·(H2O)]2- systems (Ln = La, Pr, Gd, Yb, or Lu) were optimised using DFT calculations with the M062X exchange correlation functional. Two explicit water molecules were considered in these models for a more appropriate description of the interaction between the metal ion and the coordinated water molecule.109 Relativistic effects were considered with the pseudopotential approximation using either the large-core quasi-relativistic effective core potentials (ECP) developed by Dolg et al. ([K]4d194p core) and the (14s6p5d)/[2s1p1d]-GTO valence basis sets ([Ln = Pr, Gd, Yb, and Lu]) or the small-core quasi-relativistic ECP (1s–3d electrons in the core) and the associated (4s26p20d8f)/[3s2p2d1f] valence basis set ([Ln = La]). All other atoms were described using the standard 6-311G(d,p) basis set. Bulk solvent effects were incorporated using the integral equation formalism implementation of the polarized continuum model.112 Frequency calculations were performed to confirm that geometry optimizations provided local energy minima on the corresponding potential energy surfaces. All pseudopotential calculations were carried out with the Gaussian 16 program.113

Hyperfine and quadrupole coupling constants114 of the O atoms of water molecules coordinated to Gd3+ were estimated with DFT using the ORCA4 program package115,116 and a Gaussian finite model.117 In these calculations, we used the hybrid meta-GGA TPSSh functional, which was found to provide good estimates of hyperfine coupling constants in Gd3+109,119 and other metal complexes.120 Relativistic effects were introduced with the Douglas–Kroll–Hess (DKH2) method,121,122 using the SARC2-DKH-QZVP123 for Gd and the DKH-def2-TZVPP124 basis set for all other atoms. The resolution of identity and chain of spheres125,126 algorithm was used to speed up the calculation with the aid of auxiliary basis sets generated with the Autox2 dram procedure for Gd and the SARC/ auxiliary basis set for all other atoms (decontracted Def2J).128 Bulk solvent effects were considered with the SMD solvation model developed by Truhlar.128
Absorption and emission spectra, NMR spectra, speciation diagrams, analysis of the Yb\(^{3+}\)-induced paramagnetic shifts, bond distances, and optimized geometries obtained with DFT (PDF)

REFERENCES

1. Wahnsch, J.; Gálé, E. M.; Rodríguez-Rodriguez, A.; Caravan, P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. *Chem. Rev.* 2019, 119, 957–1057.
2. Heffern, M. C.; Matosiuk, L. M.; Meade, T. J. Lanthanide Probes for Bioresponsive Imaging. *Chem. Rev.* 2014, 114, 4496–4539.
3. Li, H.; Meade, T. J. Molecular Magnetic Resonance Imaging with Gd(III)-Based Contrast Agents: Challenges and Key Advances. *J. Am. Chem. Soc.* 2019, 141, 17025–17041.
4. Pierre, V. C.; Harris, S. M.; Paulouis, S. L. Comparing Strategies in the Design of Responsive Contrast Agents for Magnetic Resonance Imaging: A Case Study with Copper and Zinc. *Acc. Chem. Res.* 2018, 51, 342–351.
5. Angelovski, G.; Tóth, É. Strategies for Sensing Neurotransmitters with Responsive MRI Contrast Agents. *Chem. Soc. Rev.* 2017, 46, 324–336.
6. Bünzli, J.-C. G. Lanthanide Luminescence for Biomedical Analyses and Imaging. *Chem. Rev.* 2010, 110, 2729–2755.
7. Bünzli, J.-C. G. On the Design of Highly Luminescent Lanthanide Complexes. *Coord. Chem. Rev.* 2015, 293–294, 19–47.
8. Nonat, A. M.; Charbonnière, L. J. Upconversion of Light with Molecular and Supramolecular Lanthanide Complexes. *Coord. Chem. Rev.* 2020, 409, 213192.
9. Kostelník, T. I.; Orvg, C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. *Chem. Rev.* 2019, 119, 902–956.
10. Vaughn, B. A.; Koller, A. J.; Chen, Z.; Ahn, S. H.; Loveless, C. S.; Cingoraneli, S. J.; Yang, Y.; Cirri, A.; Johnson, C. J.; Lapi, S. E.; Chapman, K. W.; Boros, E. Homologous Structural, Chemical, and Biological Behavior of Sc and Lu Complexes of the Pica Bifunetual Chelator: Toward Development of Matched Theranostic Pairs for Radiopharmaceutical Applications. *Bioconjugate Chem.* 2021, 32, 1232–1241.
11. Baranayi, Z.; Pálinkás, Z.; Uggeri, F.; Maiocchi, A.; Aime, S.; Brücher, E. Dissociation Kinetics of Open-Chain and Macrocyclic Gadolinium(III)-Aminopolycarboxylate Complexes Related to Magnetic Resonance Imaging: Catalytic Effect of Endogenous Ligands. *Chem.—Eur. J.* 2012, 18, 16426–16435.
12. Baranayi, Z.; Brücher, E.; Uggeri, F.; Maiocchi, A.; Tóth, I.; Andrási, M.; Gáspár, A.; Zékány, L.; Aime, S. The Role of Equilibrium and Kinetic Properties in the Dissociation of Gd[DTPA-Bis(Methylamide)] (Omniscan) at near to Physiological Conditions. *Chem.—Eur. J.* 2015, 21, 4789–4799.
13. Boros, E.; Packard, A. B. Radioactive Transition Metals for Imaging and Therapy. *Chem. Rev.* 2019, 119, 870–901.
14. Shuvaev, S.; Starck, M.; Parker, D. Responsive, Water-Soluble Europium(III) Luminescent Probes. *Chem.—Eur. J.* 2017, 23, 9974–9989.
15. Clough, T. J.; Jiang, L.; Wong, K.-L.; Long, N. J. Ligand Design Strategies to Increase Stability of Gadolinium-Based Magnetic Resonance Imaging Contrast Agents. *Nat. Commun.* 2019, 10, 1420.
Macrocyclic Polyaza Polycarboxylate Ligands: Detection and Laser-Excited Luminescence. Inorg. Chem. 2004, 33, 4070–4076.

(25) Sarka, L.; Burai, L.; Samu-Varga, L.; Tóth, É. Kinetics of Formation and Dissociation of Lanthanide(III) Complexes with the 13-Membered Macrocyclic Ligand TRITA4. Dalton Trans. 2005, 6, 1058–1065.

(26) Platas-Iglesias, C.; Mato-Iglesias, M.; Dikanos, N.; Elst, L. V.; Peters, J. A.; de Blas, A.; Rodriguez-Blas, T.; Llanes, J. A. Metal Ion Complexes Containing Pyridine Units with Potential Application as Contrast Agents in Magnetic Resonance Imaging. Chem.—Eur. J. 2000, 6, 719–724.

(27) Chatterton, N.; Gateau, C.; Mazzanti, M.; Pécaut, J.; Borel, A.; Helm, L.; Merbach, A. The Effect of Pyridinecarboxylate Chelating Groups on the Stability and Electronic Relaxation of Gadolinium Complexes. Dalton Trans. 2005, 6, 1129–1135.

(28) Borel, A.; Laus, S.; Ozarowski, A.; Gateau, C.; Nonat, A.; Mazzanti, M.; Helm, L. Multiple-Frequency EPR Spectra of Two Aqueous Gd(III) Polymamino Polypropyridine Carboxylate Complexes: A Study of High Field Effects. J. Phys. Chem. A 2007, 111, 5399–5407.

(29) Jaraquemada-Pelaz, M. d. G.; Wang, X.; Clough, T. J.; Cao, Y.; Choudhary, N.; Emler, K.; Patrik, B. O.; Orvig, C. H.Octa: Synthesis, Solution Equilibria and Complexes with Useful Radiopharmaceutical Metal Ions. Dalton Trans. 2017, 46, 14647–14658.

(30) Price, E. W.; Cawthray, J. F.; Bailey, G. A.; Ferreira, C. L.; Boros, E.; Adam, M. J.; Orvig, C. H.Octa: An Acyclic Chelator for 111In in Radiopharmaceuticals. J. Am. Chem. Soc. 2012, 134, 8670–8683.

(31) Kálmán, F. K.; Végó, A.; Requeijo-Figueroa, M.; Tóth, É.; Platas-Iglesias, C.; Tircsó, G. H.Octa: Highly Stable Complexation of Lanthanide(III) Ions and Copper(II). Inorg. Chem. 2015, 54, 2345–2356.

(32) Price, E. W.; Zheng, B. M.; Cawthray, J. F.; Lewis, J. S.; Adam, M. J.; Orvig, C. A What a Difference a Carbon Makes: H.Octa vs H3Cocpta, Ligands for In-111 and Lu-177 Radiochemistry. Inorg. Chem. 2014, 53, 10412–10431.

(33) Price, E. W.; Cawthray, J. F.; Adam, M. J.; Orvig, C. Modular Syntheses of H.Octa and H.Dedpa, and Yttrium Coordination Chemistry Relevant to 68Y and 90Y Radiopharmaceuticals. Dalton Trans. 2014, 43, 7176–7190.

(34) Price, E. W.; Zheng, B. M.; Cawthray, J. F.; Ramogida, C. F.; Ramos, N.; Lewis, J. S.; Adam, M. J.; Orvig, C. Versatile Acyclic Chelate System for 111In and 177Lu Imaging and Therapy. J. Am. Chem. Soc. 2013, 135, 12707–12721.

(35) Price, E. W.; Edwards, K. J.; Carnazza, K. E.; Carlin, S. D.; Zheng, B. M.; Adam, M. J.; Orvig, C.; Lewis, J. S. A Comparative Evaluation of the Chelators H.Octa and CHX-A-DTPA with the Therapeutic Radiometals 90Y and 177Lu. J. Nucl. Med. 2016, 43, 566–576.

(36) Li, L.; Kuo, H.-T.; Wang, X.; Merkens, H.; Colpo, N.; Radchenko, V.; Schaffer, P.; Lin, K.-S.; Bénard, F.; Orvig, C. H.Octa-Alkyl-NHS for Metalloradiopptide Preparation. Dalton Trans. 2010, 49, 616–625.

(37) Ramogida, C. F.; Cawthray, J. F.; Boros, E.; Ferreira, C. L.; Patrick, B. O.; Adam, M. J.; Orvig, C. H.CHX.Dedpa and H.CHX.Octa—Chiral Acyclic Chelating Ligands for 68Ga and 111In in Radiopharmaceuticals. Inorg. Chem. 2015, 54, 2017–2031.

(38) Tircsó, G.; Requeijo-Figueroa, M.; Nagy, V.; Garda, Z.; Garai, T.; Kálmán, F. K.; Esteban-Gómez, D.; Tóth, É.; Platas-Iglesias, C. Approaching the Kinetic Inertness of Macroyclic Gadolinium(III)-Based MRI Contrast Agents with Highly Rigid Open-Chain Derivatives. Chem.—Eur. J. 2016, 22, 896–901.

(39) Rodríguez-Rodriguez, A.; Garda, Z.; Ruscsák, E.; Esteban-Gómez, D.; de Blas, A.; Rodríguez-Blas, T.; Lama, L. M. P.; Beyler, M.; Trippier, R.; Tircsó, G.; Platas-Iglesias, C. Stable Mn2+, Cu2+ and Zn2+: A Kinetic Model for the Prediction of the In Vivo Stability of Macrocyclic Polyaza Polycarboxylate Ligands: Detection and Characterization of an Intermediate in the Eu(III)-Dota System by Laser-Excited Luminescence. Inorg. Chem. 1995, 34, 3724–3732.

(40) Helm, L.; Morrow, J. R.; Bond, C. J.; Carniato, F.; Botta, M.; Braun, M.; Baranyai, Z.; Pujales-Paradela, R.; Requeijo-Figueroa, M.; Esteban-Gómez, D.; Platas-Iglesias, C.; Scholl, T. J. Chapter 2: Gadolinium-Based Contrast Agents. In New Developments in NMR; Pierre, V. C., Allen, M. J., Eds.; Royal Society of Chemistry: Cambridge, 2017; pp 121–242.

(41) Requeijo-Figueroa, M.; Esteban-Gómez, D.; de Blas, A.; Rodríguez-Blas, T.; Platas-Iglesias, C. Understanding Stability Trends along the Lanthanide Series. Chem.—Eur. J. 2014, 20, 3974–3981.

(42) Roca-Sabio, A.; Mato-Iglesias, M.; Esteban-Gómez, D.; Tóth, É.; Platas-Iglesias, C.; Rodríguez-Blas, T.; Macrocyclic Receptor Exhibiting Unprecedented Selectivity for Light Lanthanides. J. Am. Chem. Soc. 2009, 131, 3331–3341.

(43) Ha, A.; MacMillan, S. N.; Wilson, J. J. Macrocyclic Ligands with an Unprecedented Size-Selectivity Pattern for the Lanthanide Ions. J. Am. Chem. Soc. 2020, 142, 13500–13506.

(44) Thiele, N. A.; Woods, J. J.; Wilson, J. J. Implementing F-Block Metal Ions in Medicine: Tuning the Size Selectivity of Expanded Macrocycles. Inorg. Chem. 2019, 58, 10483–10500.

(45) Baranyai, Z.; Tei, L.; Giovannanza, G. B.; Kálmán, F. K.; Botta, M. Equilibrium and NMR Relaxometric Studies on the s-Triazine-Based Heptadentate Ligand PTDTIA Showing High Selectivity for Gd(III). Inorg. Chem. 2012, 51, 2597–2607.

(46) Woods, J. J.; Unnerstall, R.; Hasson, A.; Abou, D. S.; Radchenko, V.; Thorek, D. L. J.; Wilson, J. J. Stable Chelation of the Uranyl Ion by Acyclic Hexadentate Ligands: Potential Applications for 235U Targeted α-Therapy. Inorg. Chem. 2022, 61, 3337–3350.

(47) Takács, A.; Napolitano, R.; Purgel, M.; Bényei, A. C.; Zékány, L.; Brücher, E.; Tóth, I.; Baranyai, Z.; Aime, S. Solution Structures, Stabilities, Kinetics, and Dynamics of DO3A and DO3A–Sulphonamide Complexes. Inorg. Chem. 2014, 53, 2858–2872.

(48) Göndüz, S.; Vihbute, S.; Botár, R.; Kálmán, F. K.; Tóth, I.; Tircsó, G.; Requeijo-Figueroa, M.; Esteban-Gómez, D.; Platas-Iglesias, C.; Angelovski, G. Coordination Properties of GdDO3A-Based Model Compounds of Bioreponsive MRI Contrast Agents. Inorg. Chem. 2018, 57, 5973–5986.

(49) Cacheris, W. P.; Nickle, S. K.; Sherry, A. D. Thermodynamic Study of Lanthanide Complexes of 1,4,7-Triazacyclododecane-NN',N''-Tetraacetic Acid and 1,4,7,10-Tetrazacyclododecane-NN',N''-Tetracetic Acid. Inorg. Chem. 1987, 26, 958–960.
Transition Metal Centers by Aminopolycarboxylate Spectator Ligands. J. Am. Chem. Soc. 2008, 130, 14556–14569.

(83) Solomon, I. Relaxation Processes in a System of Two Spins. Phys. Rev. 1955, 99, 559–565.

(84) Bloembergen, N. Proton Relaxation Times in Paramagnetic Solutions. J. Chem. Phys. 1957, 27, 572–573.

(85) Bloembergen, N.; Morgan, L. O. Proton Relaxation Times in Paramagnetic Solutions. Effects of Electron Spin Relaxation. J. Chem. Phys. 1961, 34, 842–850.

(86) Freed, J. H. Dynamic Effects of Pair Correlation Functions on Spin Relaxation by Translational Diffusion in Liquids. II. Finite Jumps and Independent T_2 Processes. J. Chem. Phys. 1978, 68, 4034–4037.

(87) Swift, T. J.; Connick, R. E. NMR-Relaxation Mechanisms of 17O in Aqueous Solutions of Paramagnetic Cations and the Lifetime of Water Molecules in the First Coordination Sphere. J. Chem. Phys. 1962, 37, 307–320.

(88) Swift, T. J.; Connick, R. E. Erratum: NMR-Relaxation Mechanisms of 17O in Aqueous Solutions of Paramagnetic Cations and the Lifetime of Water Molecules in the First Coordination Sphere. J. Chem. Phys. 1964, 41, 2553–2554.

(89) Powell, D. H.; Dhaubhail, O. M. N.; Pubanz, D.; Helm, L.; Lebedev, Y. S.; Schlaepfer, W.; Merbach, A. E. Structural and Dynamic Parameters Obtained from 17O NMR, EPR, and NMRD Studies of Monomeric and Dimeric Gd$^{3+}$ Complexes of Interest in Inorganic Chemistry pubs.acs.org/IC J. Am. Chem. Soc. Phys. Rev. 1961, 73, 2176–2179.

(90) Raiford, D. S.; Fisk, C. L.; Becker, E. D. Calibration of Methanol and Ethylene Glycol Nuclear Magnetic Resonance Thermometers. Anal. Chem. 1979, 51, 2050–2051.

(91) Meiboom, S.; Gill, D. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Rev. Sci. Instrum. 1958, 29, 688–691.

(92) Micskei, K.; Helm, L.; Brucher, E.; Merbach, A. E. Oxygen-17 NMR Study of Water Exchange on Gadolinium Polyaminopolycarboxylates [Gd(DTPA)(H$_2$O)$_6$]$^{3+}$ and [Gd(DOTA)(H$_2$O)$_3$]$^{3+}$ Related to NMR Imaging. Inorg. Chem. 1993, 32, 3844–3850.

(93) Hugi, A. D.; Helm, L.; Merbach, A. E. Water Exchange on Hexaaquavannadum(III): A Variable-Temperature and Variable-Pressure 17O-NMR Study at 1.4 and 4.7 Tesla. Helv. Chim. Acta 1985, 68, 508–521.

(94) Irving, H. M.; Miles, M. G.; Pettit, L. D. A Study of Some Problems in Determining the Stoichiometric Proton Dissociation Constants of Complexes by Potentiometric Titrations Using Glass Electrode. Anal. Chim. Acta 1967, 38, 475–488.

(95) Molnár, E.; Camus, N.; Patinec, V.; Rolla, G. A.; Botta, M.; Tirschč, G.; Kálmán, F. K.; Fodor, T.; Tripier, R.; Platas-Iglesias, C. Picolinate-Containing Macroyclic Mn$^{2+}$ Complexes as Potential MRI Contrast Agents. Inorg. Chem. 2014, 53, 5136–5149.

(96) Zekany, L.. PSEQUAD. Computational Methods for the Determination of Formation Constants; Modern Inorganic Chemistry; Springer: Boston, MA, 1985.

(97) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241.

(98) Requeiro-Figueroa, M.; Platas-Iglesias, C. Toward the Prediction of Water Exchange Rates in Magnetic Resonance Imaging Contrast Agents: A Density Functional Theory Study. J. Phys. Chem. A 2015, 119, 6436–6445.

(99) Dolg, M.; Stoll, H.; Savin, A.; Preuss, H. Energy-Adjusted Pseudopotentials for the Rare Earth Elements. Theor. Chim. Acta 1989, 75, 173–194.

(100) Cao, X.; Dolg, M. Segmented Contraction Scheme for Small-Core Lanthanide Pseudopotential Basis Sets. J. Mol. Struct.: THEOCHEM 2002, 581, 139–147.

(101) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094.

(102) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;Honda, Y.; Kitao, O.; Nakai, H.; Hasegawa, J.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Mennucci, B.; Piskorz, P.; Zuckerman, J. L.; Huo, C.; Sawbridge, J. R.; Arduini, A.; Alldredge, W. C.; Falldon, L. W.; Gillet, M.; Johnson, P. F.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian16, Revision C01, 2016.

(103) Neese, F. Prediction of Molecular Properties and Molecular Spectroscopy with Density Functional Theory: From Fundamental Theory to Exchange-Coupling. Coord. Chem. Rev. 2009, 253, 526–563.

(104) Neese, F. The ORCA Program System. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78.

(105) Neese, F. Software Update: The ORCA Program System, Version 4.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, No. e1327.
(117) Visscher, L.; Dyall, K. G. Dirac–Fock Atomic Electronic Structure Calculations Using Different Nuclear Charge Distributions. *At. Data Nucl. Data Tables* 1997, 67, 207−224.
(118) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. *Phys. Rev. Lett.* 2003, 91, 146401.
(119) Esteban-Gómez, D.; de Blas, A.; Rodríguez-Blas, T.; Helm, L.; Platas-Iglesias, C. Hyperfine Coupling Constants on Inner-Sphere Water Molecules of Gd III-Based MRI Contrast Agents. *ChemPhysChem* 2012, 13, 3640−3650.
(120) Kossmann, S.; Kirchner, B.; Neese, F. Performance of Modern Density Functional Theory for the Prediction of Hyperfine Structure: Meta-GGA and Double Hybrid Functionals. *Mol. Phys.* 2007, 105, 2049−2071.
(121) Reiher, M. Douglas–Kroll–Hess Theory: A Relativistic Electrons-Only Theory for Chemistry. *Theor. Chem. Acc.* 2006, 116, 241−252.
(122) Barysz, M.; Sadlej, A. J. Two-Component Methods of Relativistic Quantum Chemistry: From the Douglas–Kroll Approximation to the Exact Two-Component Formalism. *J. Mol. Struct.*: THEOCHEM 2001, 573, 181−200.
(123) Aravena, D.; Neese, F.; Pantazis, D. A. Improved Segmented All-Electron Relativistically Contracted Basis Sets for the Lanthanides. *J. Chem. Theory Comput.* 2016, 12, 1148−1156.
(124) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* 2005, 7, 3297.
(125) Kossmann, S.; Neese, F. Comparison of Two Efficient Approximate Hartree–Fock Approaches. *Chem. Phys. Lett.* 2009, 481, 240−243.
(126) Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, Approximate and Parallel Hartree–Fock and Hybrid DFT Calculations. A 'Chain-of-Spheres' Algorithm for the Hartree–Fock Exchange. *Chem. Phys.* 2009, 356, 98−109.
(127) Stoychev, G. L.; Auer, A. A.; Neese, F. Automatic Generation of Auxiliary Basis Sets. *J. Chem. Theory Comput.* 2017, 13, 554−562.
(128) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. *Phys. Chem. Chem. Phys.* 2006, 8, 1057−1066.
(129) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* 2009, 113, 6378−6396.