A luminescent view of the clickable assembly of LnF₃ nanoclusters

Jie Zhou¹,³, Yang Wei¹,³, Yue Pan¹,², Yue Wang¹, Ze Yuan¹, Fan Zhang¹, Hao Song¹, Jingyi Yue¹, Haiquan Su², Xiaoji Xie¹ & Ling Huang¹

Nanoclusters (NCs) bridge the gap between atoms and nanomaterials in not only dimension but also physicochemical properties. Precise chemical and structural control, as well as clear understanding of formation mechanisms, have been important to fabricate NCs with high performance in optoelectronics, catalysis, nanoalloys, and energy conversion and harvesting. Herein, taking advantage of the close chemical properties of Ln³⁺ (Ln = Eu, Nd, Sm, Gd, etc.) and Gd³⁺-Eu³⁺ energy transfer ion-pair, we report a clickable LnF₃ nanoparticle assembly strategy allowing reliable fabrication of diversely structured NCs, including single-component, dimeric, core-shelled/core-shell-shelled, and reversely core-shelled/core-shell-shelled, particularly with synergized optical functionalities. Moreover, the purposely-embedded dual luminescent probes offer great superiority for in situ and precise tracking of tiny structural variations and energy transfer pathways within complex nanoarchitectures.
Organic ligands have played an irreplaceable role in myriad of nanomaterials synthesis towards control of size12, morphology13, crystal structure5, and functionality4. Meanwhile, rational selection of the chemical groups on ligand molecules is also critical for post-modulations such as assembly, hybridization, and fabrication of micro or macroscorl architectures from individual nanoparticles (NPs) aiming at unprecedented chemical and physical properties8,9, particularly when other technologies such as Langmuir-Blodgett10,11, layer-by-layer12, and optical or electron-beam lithography are combined13,14.

Moreover, development of a library of ligand exchange methods through nanoscale chemical reactions has facilitated easy conversion of nanomaterials from hydrophobic to hydrophilic or vice versa14–17, which generates additional functionalities to realize various purposes such as QLED display18, trace analysis19, disease diagnosis20,21,22,23,24,25,26,27, and remarkable features that neither individual component possesses24,25. However, EuF3 NPs are metastable due to high surface energy29 and initiates the attack of H+23, which results in the semi-dissociation of EuOF NPs and release of non-bonded Eu3+ and F- ions. Then Eu3+ preferentially bonds with F- rather than O2- by forming tiny EuF3 NPs33. The chemical reaction can be expressed as:

\[
\text{EuOF} + \text{HCl} \rightarrow \text{EuF}_3 + \text{EuCl}_3 + \text{H}_2\text{O}
\]

(E1)

Moreover, disappearance of FT-IR peaks at ~2923, 2852, 1560 and 1466 cm\(^{-1}\) clearly indicates debond of OA- ligands from surface Eu3+. The conversion of EuOF NPs to EuF3 NPs completes at reaction time of 5 min (Supplementary Fig. 5). This is also consistent with the change of solution from opaque to transparent at 5 min (Supplementary Fig. 2), which is due to the improved solubility of EuF3 NPs through solvent molecule (H2O or C2H5OH) coordination, as proved by the broad hydroxyl peak at ~3400 cm\(^{-1}\) (ref. 34) (Fig. 2i).

Stage 2: Initiation of the assembly. Presence of OA- improves solubility and mitigates collision probability of NPs in solution, which allows long-term storage of LnOF NPs precursors without worrying about aggregation (Supplementary Fig. 1). However, surface ions become exposed once OA- is removed, causing sharply risen surface energy of EuF3 NPs29 and initiates the assembly (Fig. 2c).

Stage 3: Growth of EuF3 NCs. The size of EuF3 NCs grew from 3.1 to 21.8, 29.2, 35.7, 38.4, and 40.1 nm at the assembly time of 15, 30, 60, 120, 240, and 360 min, respectively (Fig. 2c–h, j and Supplementary Fig. 6). Parallelly, the FT-IR peaks at 2852 and 2923 cm\(^{-1}\) corresponding to –CH3 stretching vibration intensified from almost nil at 5 min to that of 30 min and further at 360 min (Fig. 2i). This is reasonable because trace amount of OA- on the surface of individual EuF3 NPs can’t produce sufficient FT-IR signal at stages 1 and 2. More and more ligands are accumulated (Fig. 1c, d) when NCS grow larger as assembly progresses, resulting in stronger signals. This also well agrees with the solubility change in ethanol solution from transparent to opaque (Supplementary Fig. 2b, c). Thus, the intensity variation of FT-IR peaks across whole range of assembly time (Fig. 2i) could qualitatively unveil the structural details of NCS formed at different assembly stages.

Driving force for EuF3 NCS assembly. As previously reported35, multiple interactions usually work together to make for the final structure of assemblies. In our case, removal of surface ligands from NPs not only exposes a large number of uncoordinated Eu3+, but...
also leads to increased surface energy. In this situation, unstable EuF$_3$ NPs tend to contact and attach with each other to decrease the total energy through interparticle interactions, and eventually assemble into NCs. The FT-IR peak at 3400 cm$^{-1}$ implies the existence of hydrogen bond among solvent molecules, while the partially fused crystal lattices (Fig. 1d) suggest the formation of Eu-F chemical bond among EuF$_3$ NPs, both of which are the main interactions responsible for the assembly of EuF$_3$ NCs through a random attachment process (Fig. 1c, d). Moreover, as widely reported36,37, dipole-induced interaction is a strong force at the nanoscale to drive self-assembly, which usually occurs in NPs with asymmetric crystal lattice. Considering the trigonal crystal structure of EuF$_3$ NPs with relatively low symmetry among the seven crystal systems and the big difference in electronegativity between F$^-$ and Eu$^{3+}$, there might exist electric dipole moment originated from the polarity of crystal lattice of EuF$_3$ NPs, which may generate dipole-dipole interactions between EuF$_3$ NPs and act as a driving force for the self-assembly process.

More intriguingly, although the as-assembled EuF$_3$ NCs are polycrystalline, they are readily to be converted into single crystals when annealed at temperatures as low as 50 °C (Supplementary Fig. 7). This principle might be instructive to the synthesis of nanocrystals or nanoalloys that are not possible at room temperature. Moreover, NCs of NdF$_3$, SmF$_3$, and GdF$_3$ were also successfully constructed by following the same strategy (Supplementary Figs. 8 and 9).

Working principle of Eu$^{3+}$ as luminescent probe. As two major photoluminescence (PL) emissions in Eu$^{3+}$, the intensity at 612 nm corresponding to the 5D$_0\rightarrow^7$F$_2$ electric dipole transition (I_g) is highly sensitive to the local site symmetry while that of the 5D$_0\rightarrow^7$F$_1$ magnetic dipole transition (I_m) at 591 nm is not38 (Fig. 3a). Considering that local site symmetry of luminescent ions, here means Eu$^{3+}$, usually links with surface coordination environment, evolution of the value of I_g/I_M may be used as a luminescent probe to track the changes of the proportion of surface Eu$^{3+}$ in different assemblies (Fig. 3a, b and Supplementary Table 1). Indeed, when excited at the characteristic working wavelength of Eu$^{3+}$ (395 nm), the calculated I_g/I_M decreases gradually from 3.80 in EuF$_3$ NPs to 1.14 in EuF$_3$ NCs, indicating that the amount of surface Eu$^{3+}$ keeps reducing with the size increase of NCs (Fig. 3b, c39). This well-agrees with the merging of NPs when forming NCs, which causes reduced surface area (Figs. 1d and 3a).

It is worth pointing out that the gradually decrescent full-width at half maximum (FWHM) at 591 nm is due to the increased site symmetry of Eu$^{3+}$ during NCs growth38. Generally, the crystallographic site symmetry significantly affects the spectral linewidth of Eu$^{3+}$, and a minor structural distortion may alter the crystal field symmetry of Eu$^{3+}$, which will be reflected by the gradual change of FWHM from 12.1 to 7.2 nm as the NCs grow from 3.1 to 40.1 nm40,41.

Construction of arbitrarily designed NCs. Clear understanding of the NC formation mechanisms, particularly the information extracted from luminescent probe has inspired us to further fabricate more complicated NCs and explore their structural relationships with the evolution of I_g/I_M. Instead of the above uninterrupted NC assembly (Fig. 2), the conversion of LnOF NPs to and the following assembly of LnF$_3$ NPs were purposely separated, which offers more freedom to grow NCs with widely varied structures and pre-designed chemical compositions. For example, dimeric NCs of EuF$_3$&GdF$_3$ and EuF$_3$&2GdF$_3$ could be reliably constructed by simply mixing NPs of EuF$_3$ and GdF$_3$ that were pre-converted from EuOF and GdOF NPs via a H$^+$-induced clickable reaction, at molar ratios of 1:1 and 1:2, respectively.

![Fig. 1 Self-assembly mechanism of NCs.](https://example.com/fig1.png)
Similarly, core-shelled NCs of EuF₃@GdF₃ and EuF₃@GdF₃@GdF₃ could also be fabricated by controlling the number of GdF₃ shells grown on pre-formed core of EuF₃ NCs (Fig. 4d–f) and alternatively, the reversely core-shelled NCs of GdF₃@EuF₃ and GdF₃@EuF₃@EuF₃ were further grown by reversing the assembly sequence of respective components (Fig. 4g–i).

Luminescent probes for tracking of structural variations and energy transfer pathways. Compared with previous assembly mechanism studies where HRTEM, XRD, and synchrotron characterizations were heavily relied, luminescent probes can be in situ, dynamic, precise, and particularly sensitive to its surrounding environment. Indeed, as depicted in Fig. 4, different Gd³⁺–Eu³⁺ energy transfer modes were clearly distinguished in their respective PL spectral evolution, which could be utilized to track the distribution variation of surface Eu³⁺ on NCs with different structures.

For pure EuF₃ NCs, there is only very weak PL because Eu³⁺ has almost no absorption at 273 nm (Supplementary Fig. 10a, b). However, a 70-fold emission enhancement (Fig. 5a) was seen in EuF₃@GdF₃ NCs, which is rational because 273 nm is the characteristic working wavelength of Gd³⁺ and more energy is transferred to Eu³⁺ in the co-assembled NCs (Fig. 4d and Supplementary Fig. 11). Subsequently, a 103-fold PL enhancement was obtained in EuF₃@2GdF₃ NCs due to further increased energy transfer from Gd³⁺ to Eu³⁺ (Fig. 4c). Consistently, the characteristic absorption peak of Gd³⁺ at 273 nm appeared in EuF₃@GdF₃ and became stronger in EuF₃@2GdF₃, proving the successful assembly of GdF₃ NPs at increased amount (Supplementary Fig. 10a). More excitingly, such PL evolution also agrees with the gradually intensified optical images of respective samples (Supplementary Fig. 12a) under 273 nm light excitation where EuF₃@2GdF₃ is the brightest. Correspondingly, the lifetime of Eu³⁺ (Fig. 5a and Supplementary Fig. 13a) shows similar trend of increase from EuF₃ NPs (0.59 ms) to EuF₃@GdF₃ (1.46 ms) as that from EuF₃@2GdF₃ (2.12 ms). As a stark contrast, neither emission intensity nor lifetime change was observed in Eu³⁺ under 273 nm light excitation (Supplementary Fig. 14) when solutions containing pre-formed NCs of GdF₃ and EuF₃ were physically mixed at the atomic ratios of 2:1, 1:1, and 0:1, respectively. This proves straightforwardly that Gd³⁺–Eu³⁺ energy transfer can hardly occur if without uniform co-assembly between EuF₃ and GdF₃ NPs (Fig. 4a–c).

Similarly, Gd³⁺ in GdF₃ shell keeps transferring energy to internal Eu³⁺, resulting in enhanced PL in EuF₃@GdF₃ NCs (Fig. 5b and Supplementary Fig. 10c, d). However, it is reasonable to see only 2.5-fold enhancement because there exists partial energy loss from surface Gd³⁺ to EuF₃@2GdF₃ (1.46 ms) to EuF₃@2GdF₃ (2.12 ms). As a stark contrast, neither emission intensity nor lifetime change was observed in Eu³⁺ under 273 nm light excitation (Supplementary Fig. 14) when solutions containing pre-formed NCs of GdF₃ and EuF₃ were physically mixed at the atomic ratios of 2:1, 1:1, and 0:1, respectively. This proves straightforwardly that Gd³⁺–Eu³⁺ energy transfer can hardly occur if without uniform co-assembly between EuF₃ and GdF₃ NPs (Fig. 4a–c).
Supplementary Fig. 13b) after growth of the second GdF$_3$ shell (from 1.07 to 2.43 ms) compared with that of the first GdF$_3$ shell (from 0.59 to 1.07 ms).

Interestingly, more enhanced (7.3-fold) PL is seen in GdF$_3$@EuF$_3$ NCs than that of 2.5-fold in EuF$_3$@GdF$_3$ NCs (Fig. 5b, c and Supplementary Fig. 10e, f). This is due to more efficient energy transfer from internal Gd$^{3+}$ to exterior Eu$^{3+}$ where energy loss in Fig. 4e was largely impressed in Fig. 4h. However, the reason that only 8.1-fold PL enhancement is gained after growth of a second EuF$_3$ shell is because the amount of energy transferred from Gd$^{3+}$ is fixed so that the second layer of Eu$^{3+}$ can only absorb the extra energy that passes through the first Eu$^{3+}$ shell (Fig. 4i). Rationally, the lifetime increase of Eu$^{3+}$ (Fig. 5c and Supplementary Fig. 13c) is not as much after growth of the second EuF$_3$ shell (from 0.59 to 1.33 ms). It is worth emphasizing that the calculated quantum yields39,44 of EuF$_3$ (Supplementary Equation (1) and Supplementary Table 2) are consistent with above-discussed PL intensity evolution, and variation of the calculated GdF$_3$-EuF$_3$ energy transfer rate$^{45-48}$ in different NCs based on simplified models (Supplementary Fig. 15) provides further support to our schematic illustrations in Fig. 4.

To dig out more structural information from another point of view, the PL evolution in different NCs was investigated by directly exciting Eu$^{3+}$ at 395 nm (Supplementary Fig. 16). For easy comparison, the PL intensity in pure EuF$_3$ NCs was set at 1.0 and the calculated enhancement factors in different NCs were shown in Fig. 5d-f. It is reasonable to see enhanced PL in EuF$_3$&GdF$_3$ and EuF$_3$&2GdF$_3$ because there exists a Eu$^{3+}$–Eu$^{3+}$ energy migration loop (Supplementary Fig. 16a and Supplementary Fig. 17a–c) in pure EuF$_3$ NCs49 that deteriorates the emission while insertion of co-assembled GdF$_3$ NPs breaks the loop and leads to enhanced PL in EuF$_3$&GdF$_3$. It is also reasonable to see a 2.6- and 2.0-fold enhancement because the unit number of Eu$^{3+}$ is diluted 2 and 3 times in EuF$_3$&GdF$_3$ and EuF$_3$&2GdF$_3$ (Fig. 5d), respectively. In another word, there shall be a 5.2- and 6-fold absolute PL enhancement in EuF$_3$&GdF$_3$ and EuF$_3$&2GdF$_3$, respectively. This phenomenon is quite instructive for materials design towards maximized PL intensity while minimizing the amount of activators used. Parallely, the lifetime of Eu$^{3+}$ also increases from 0.62 to 1.49, and 2.08 ms (Supplementary Fig. 16b).

Growth of a GdF$_3$ shell suppresses the energy loss of surface Eu$^{3+}$ similar to that of Gd$^{3+}$ in Fig. 4e and results in 3.6-fold PL enhancement in EuF$_3$@GdF$_3$, while the 6.0-fold PL enhancement in EuF$_3$@GdF$_3$@GdF$_3$ suggests that the second shell has even better energy loss suppression (Supplementary Fig. 16c). This is also consistent with the lifetime increase of Eu$^{3+}$ from 0.62 to 1.05, and 2.40 ms (Supplementary Fig. 16d). Alternatively, growth of a EuF$_3$ shell around pre-formed core of GdF$_3$ NCs results in larger inter-particle distance, which generates similar (3.8-fold) effect as that in EuF$_3$&GdF$_3$ (Supplementary Fig. 17a–c), that is, the broken energy migration loop and enhanced PL (Supplementary Fig. 17a, d and e). Growth of the second EuF$_3$ shell not only suppresses the energy loss of Eu$^{3+}$ in the first EuF$_3$ shell, the increased amount of Eu$^{3+}$ generates extra PL so that a total enhancement of 6.7-fold is obtained in EuF$_3$@EuF$_3$@EuF$_3$ NCs (Supplementary Fig. 16e). Accordingly, the lifetime of Eu$^{3+}$ increases from 0.62 to 1.35 and 1.65 ms (Fig. 5f and Supplementary Fig. 16f).

Moreover, based on the principle discussed in Fig. 3a, evolution of I_l/I_M value directly links with the variation of surface Eu$^{3+}$ proportion in different NCs where tiny structural difference may be precisely probed. Indeed, for EuF$_3$&GdF$_3$ NCs with different EuF$_3$/GdF$_3$ molar ratios, the I_l/I_M remains almost constant.
(Fig. 5g), which is reasonable because EuF$_3$ and GdF$_3$ NPs are mixed uniformly during co-assembly process. So, no matter what the EuF$_3$/GdF$_3$ molar ratio is, the proportion of surface Eu$^{3+}$ compared to internal Eu$^{3+}$ remains unchanged, which agrees exactly with the proposed structure in Fig. 4a.

Similarly, compared with pure EuF$_3$ NCs, growth of external GdF$_3$ shell sharply reduces the proportion of surface Eu$^{3+}$, so I_b/I_m value declined rapidly from 1.10 in EuF$_3$ NCs to 0.87 in EuF$_3$@GdF$_3$ and further to 0.78 in EuF$_3$@GdF$_3$@GdF$_3$ (Fig. 5h). The I_b/I_m value of Eu$^{3+}$ also declined (Fig. 5i) from 1.10 in EuF$_3$ NCs to 1.00 in GdF$_3$@EuF$_3$ NCs and 0.92 in GdF$_3$@EuF$_3$@EuF$_3$ NCs because enlarged NCs shows lower proportion of surface Eu$^{3+}$.

Although TEM images only show morphological and dimensional differences of the above NCs (Supplementary Figs. 18, 19 and 20), the elemental mapping results provide unambiguous evidence for the structural differences of the purposely fabricated NCs illustrated in Fig. 4. For example, uniform distribution of Eu and Gd signals in the structure of EuF$_3$&2GdF$_3$ (Fig. 6a) suggests the complete co-assembly of EuF$_3$ and GdF$_3$ NPs, as depicted in Fig. 4c. Similarly, the opposite Eu and Gd signal distribution in Fig. 6b and c perfectly matches the core-shelled structure of EuF$_3$@GdF$_3$@GdF$_3$ (Fig. 4d) and reversely core-shelled structure of GdF$_3$@EuF$_3$@EuF$_3$ (Fig. 4g), respectively. These results are also highly consistent with both our principle designs and the structural details extracted from PL signals generated by the embedded dual luminescent probes of Gd$^{3+}$ and Eu$^{3+}$.

Discussion

We have developed a clickable assembly strategy that allows facile construction of arbitrary NCs from individual LnF$_3$ NPs. As a
Fig. 5 The PL evolution in different-structured NCs.

a-c Variation of luminescence enhancement factor (orange lines) and lifetime (baby blue lines) of Eu$^{3+}$ in different NCs under 273 nm light excitation, through Gd$^{3+}$–Eu$^{3+}$ energy transfer.

d-f Luminescence enhancement factor (purple lines) and lifetime (baby blue lines) of Eu$^{3+}$ in different NCs under 395 nm light excitation.

g-i Normalized I_em/I_λ value of Eu$^{3+}$ in different NCs.

Fig. 6 Structural details of different NCs. High-angle annular dark-field scanning TEM images and corresponding energy-dispersive X-ray elemental mapping results of **a** EuF3@2GdF_3 dimeric, **b** EuF3@GdF_3@GdF$_3$ core-shelled, and **c** GdF$_3$@EuF$_3$@EuF$_3$ reversely core-shelled NCs.
complement to widely used one-step assembly, this two-step method enables fabrication of more versatile nanoarchitectures such as clusters, dimers, core-shells, and more importantly with multiple components and tunable functionalities without worrying about aggregation of precursors. It is worth emphasizing that the in-situ, sensitive, and dynamic PL signal generated by the embedded luminescent probes offers unparalleled superiority in precisely tracking not only tiny structural variations of but also energy transfer pathways in complex nanoarchitectures. Considering the large family of OA-stabilized NPs and principally other systems, this work has paved a potential avenue to the fabrication of widely diversified NCs with promising functionalities in the areas of catalysis, optoelectronics, energy conversion/ harvesting, nanoalloys, bioimaging, as well as theranostics.

Methods
Materials. Oxides of Ln2O3 (99.99%, Ln = Eu, Gd, Sm, and Nd) were purchased from Beijing HWKR Chem. Co. LTD. Oleic acid (OA, 90%) and oleyamine (OM, 70%) were purchased from Sigma-Aldrich. Trifluoroacetic acid (TFA) and hydrochloric acid (HCl) was purchased from Shanghai Lingfeng Chemical Company, China. All the chemicals were used as received without further purification.

Synthesis of LnOF NPs. Typical procedure: a given amount of Ln(CF3COO)3 (2 mmol) was added into the mixture of OA (20 mmol) and OM (20 mmol) in a three-necked flask (100 mL) at room temperature. The slurry was heated to 100 °C with vigorous magnetic stirring under vacuum for 10 min in a temperature-controlled reaction vessel to remove water and oxygen, thereby forming an optically transparent solution, which was then ramped to 310 °C at a heating rate of 10 °C/min and maintained for 2 h under N2 atmosphere. When cooling down to room temperature, the NPs were precipitated by adding absolute ethanol into the reaction solution, followed by washing with ethanol three times. Then the as-prepared NPs were dispersed into cyclohexane for further use.

Self-assembly of LnOF NPs into LnF3 NCs. The NCs assembled from LnOF NPs were obtained through an acid treatment process. Typically, a certain amount of LnOF NPs were added into 4 mL ethanol, which was then poured into a 20 mL beaker and stirred for 5 min. 200 μL diluted hydrochloric acid solution (1 M) was added into the above solution and stirred at around 1000 r/min. After 6 h, the assynthesized NCs were generated in the solution, which was centrifuged at a speed of 8000 r/min for 4 min to obtain the LnF3 NCs.

Self-assembly of EuF3&GdF3 dimeric NC. Take the EuF3&GdF3 dimeric NC (molar ratio of EuF3:GdF3 = 1:1) as an example: typically, a certain amount of EuOF NPs and GdOF NPs were transferred into 4 mL ethanol solution, respectively, which was poured into 20 mL beaker and stirred for 5 min for complete dispersion. Then, 200 μL diluted hydrochloric acid solution (1 M) was added respectively into the above EuOF and GdOF solutions and kept stirring at around 500 r/min. After 10 min, the EuOF NPs and GdOF NPs totally converted into EuF3 NPs and GdF3 NPs, respectively. Then, solutions of EuF3 NPs and GdF3 NPs were mixed together into 20 mL beaker, and stirred at 1000 r/min. After 6 h, the above solution was centrifuged at a speed of 8000 r/min for 4 min to obtain the EuF3:GdF3 dimeric NCs, which were then washed with ethanol twice under this condition to obtain the final NC samples.

Self-assembly of core-shell NCs. Take the EuF3@GdF3 core-shell NC (molar ratio of EuF3:GdF3 = 1:1) as an example: typically, a certain amount of EuOF NPs was transferred into 4 mL ethanol solution, poured into 20 mL beaker, and stirred for 5 min. 200 μL diluted hydrochloric acid solution (1 M) was then added into the above solution and kept stirring for 6 h, until the assembled EuF3 NPs were formed. The obtained EuF3 NPs were further used as core for EuF3@GdF3 core-shell structured NCs growth. Meanwhile, a certain amount of GdOF NPs was transferred into 4 mL ethanol solution, poured into 20 mL beaker, and stirred for 5 min. Subsequently, 200 μL diluted hydrochloric acid solution (1 M) was added into the above GdOF solution and kept stirring for 10 min, until GdOF NPs totally converted into GdF3 NPs. Then, solutions containing GdF3 NPs and EuF3 NPs were mixed together at certain ratio, and stirred for 6 h. The solution was centrifuged at 8000 r/min for 4 min to obtain the EuF3@GdF3 core-shell NPs, which were then washed twice with ethanol for future analysis.

Characterization. Powder X-ray diffraction (XRD) analysis was carried out on a Rigaku Smartlab (3 kW) X-ray diffractometer (Rigaku Corporation, Japan) using Cu Ka radiation (λ = 1.5406 Å) and the measurement was performed at ambient temperature in the range of 20 = 10–60 degree with 0.02 degree/step. Transmission electron microscope (TEM) images were recorded on a JEOL J-1400 Plus (JEOL Ltd., Japan) at an acceleration voltage of 120 kV. High-resolution TEM (HR-TEM) images and Energy-dispersive X-ray (EDX) spectra were obtained on a Tecnai G2 F20 TEM (FEI, America) at an acceleration voltage of 200 kV.

Fourier transform infrared (FT-IR) spectra were collected on a Nicolet 380 FT-IR spectrometer (Nicolet, America). Photoluminescence (PL) emission spectra were recorded on an Edinburgh FLS1000 Photoluminescence Spectrometer (Edinburgh Instruments, UK). All luminescence characterizations including PL emission spectra, excitation spectra, and luminescence decay curves were collected at 25 °C. Excitation and emission spectra were measured by using a 450 W continuous xenon arc lamp for sample excitation, and detailed parameters are shown in Supplementary Table 1. Luminescence decay curves were measured by using a compact 60 W xenon flash lamp (μF2) as excitation source with the frequency of 40 Hz.

Data availability
All data supporting the findings of this study are available within the paper and its supplementary information files.

Received: 24 June 2020; Accepted: 7 April 2021;
Published online: 19 May 2021

References
1. Duan, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 5, 3093 (2014).
2. Liu, D. et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat. Commun. 8, 10254 (2016).
3. Wiley, B., Sun, Y. & Xia, Y. Synthesis of silver nanostructures with controlled transparency and morphology. Nature 428, 873–875 (2004).
4. Peng, X. et al. Self-assembled monodisperse core–shell NCs. Small 6, 353–354 (2007).
5. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).
6. Jonathan, O. et al. The coordination chemistry of nanocrystal surfaces. Science 347, 615–616 (2015).
7. Kim, Y. et al. Transmutable nanoparticles with reconfigurable surface ligands. Science 351, 579–582 (2016).
8. Xia, Y. et al. Self-assembly of self-limiting monodisperse nanoparticles from polydisperse nanospheres. Nat. Nanotechnol. 6, 580–587 (2011).
9. Zhang, S. et al. All-inorganic colloidal silicon nanocrystals. Angew. Chem. Int. Ed. 58, 8730–8735 (2019).
10. Lü, J. et al. Gold nanowire chiral ultrafiltration films with ultrastrong and broadband optical activity. Angew. Chem. Int. Ed. 129, 5137–5142 (2017).
11. Lü, J. et al. Biomimetic chiral photonic crystals. Angew. Chem. Int. Ed. 58, 7783–7787 (2019).
12. Bai, F. et al. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem. Int. Ed. 119, 6770–6773 (2007).
13. Salaita, K., Wang, Y. & Mirkin, C. A. Applications of dip-pen nanolithography. Nat. Nanotechnol. 2, 145–155 (2007).
14. Ciszek, J. W. et al. Kinetically controlled, shape-directed assembly of nanorods. Small 4, 206–210 (2008).
15. Dong, A. et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133, 998–1006 (2011).
16. Dubois, F. et al. A versatile strategy for quantum dot ligand exchange. J. Am. Chem. Soc. 129, 482–483 (2007).
17. Wang, X. et al. A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005).
18. Dai, X. et al. Quantum-dot light-emitting diodes for large-area displays: the dawn of commercialization. Adv. Mater. 29, 1607022 (2017).
19. Deng, R. et al. Intracellular gluthathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc. 133, 20168–20171 (2011).
20. Qiao, R. et al. Ultrasensitive in vivo detection of primary gastric tumor and lymphatic metastasis using upconversion nanoparticles. ACS Nano 9, 2307–2319 (2015).
21. Carion, O. et al. Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nat. Protoc. 2, 2383–2390 (2007).
NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23176-y
ARTICLE

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-23176-y.

Correspondence and requests for materials should be addressed to X.X. or L.H.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021