A proton shelter inspired by the sugar coating of acidophilic archaea

Xiumei Wang1,2,3, Bei’er Lv1,3,4, Guixin Cai1, Long Fu1, Yuanzi Wu1, Xiang Wang5, Bin Ren5 & Hongwei Ma1

1Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China, 2Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China, 3Graduate University of Chinese Academy of Sciences, Beijing, 100049, P. R. China, 4Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, 5Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China.

The acidophilic archaea are a group of single-celled microorganisms that flourish in hot acid springs (usually pH < 3) but maintain their internal pH near neutral. Although there is a lack of direct evidence, the abundance of sugar modifications on the cell surface has been suggested to provide the acidophiles with protection against proton invasion. In this study, a hydroxyl (OH)-rich polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacetal molecule as a probe, we studied the proton-resisting property and found that a 10-nm-thick polymer layer was able to raise the pH from 1.0 to 5.0, indicating that the densely packed OH-rich layer is a proton shelter. As strong evidence for the role of sugar coatings as proton barriers, this biomimetic study provides insight into evolutionary biology, and the results also could be expanded for the development of biocompatible anti-acid materials.

Results

Design of the biomimicry regime. Three tools made a detailed study of the above enigma possible: (1) a newly designed acid-probing dithioacetal molecule (Compound 1, Fig. 2a), (2) the surface-initiated polymerization (SIP) to prepare the finely tuned polymer brushes12 (Fig. 2b) and (3) the quartz crystal microbalance (QCM) that is sensitive to interfacial changes13–15 (Fig. 3a).

Compound 1 is a novel pH-sensitive initiator of the SIP that forms self-assembled monolayers16 (SAMs) on a gold surface that is stable at neutral pH values (down to 5.0), whereas undergoes partial disassembly when exposed to dilute hydrochloric acid (HCl, pH 1.0, Supplementary Fig. S2). The SAM of 1 plays two roles in this study: (1) because of its acid-sensitivity, it was used as a sensing layer that could probe local pH changes, and (2) because of the bromoisobutyryloxy end it contains, it was used as a layer of initiators from which the poly(oligo(ethylene glycol) methacrylate) (hereafter abbreviated as poly(OEGMA)) brushes were grafted via the SIP (Fig. 2b). The monomer OEGMA526 (Mn = 526 g mol⁻¹) was used to prepare the OH-rich brushes to mimic the OH-rich sugar coating on acidophilic archaea, whereas OEGMA475 (Mn = 475 g mol⁻¹) was used to prepare the OCH₃-rich brushes as the control.
Supplementary Fig. S7). The surface mass was also evidenced by atomic force microscopy confirming that the mass loss in Fig. 3a (red line) was driven by mercaptoundecyl bromoisobutyrate SAMs (Supplementary Figs S6 and S7).

The SAM and polymer brushes were prepared on the gold electrode of a QCM chip for QCM measurements under various pH solutions. QCM is an acoustic-based sensor that detects interfacial mass losses as frequency increases (Δf > 0). The polymer-coated chip was treated with HCl (pH 1.0) to mimic the environmental pH of acidophiles (Fig. 2b). If the H⁺ from the HCl reached the Au-S bonds, one would observe frequency increases due to the partial disassembly of the SAM and attached polymer chains. If the polymer layer exerted any inhibiting effect on proton permeation, the frequency response would be weakened or silenced.

Examination of the effect of the OH-rich polymer as a proton shelter. First, the chips grafted with poly(OEGMA475) were challenged with HCl. As shown by the red line in Fig. 3a, the QCM frequency remained unresponsive to the pH 5.0 HCl but increased significantly when exposed to the pH 1.0 HCl, indicating that the H⁺ from HCl penetrated the poly(OEGMA475) layer and reached the Au-S bonds. As a control, poly(OEGMA475) was also grafted from the acid-treated 1 SAMs and thiol initiator (mercaptoundecyl bromoisobutyrate) SAMs (Supplementary Figs S5 and S6). The resulting chips showed no acid responses, confirming that the mass loss in Fig. 3a (red line) was driven by the acid-sensitivity of the 1 SAMs. The acid-induced partial loss of surface mass was also evidenced by atomic force microscopy (Supplementary Fig. S7).

The poly(OEGMA475)-covered chips were also investigated. As shown in Fig. 3a (black line), no significant Δf was recorded when the pH value dropped from 5.0 to 1.0, indicating that the H⁺ from HCl did not fully penetrate the poly(OEGMA475) coating and that the local pH near the Au-S bonds was at least > 5.0. This is a strong evidence that the replacement of –OCH₃ groups to –OH groups enabled the polymer coating to act as a proton shelter. Similar results were observed when OEGMA300 (Mn = 300 g mol⁻¹, –OCH₃ terminated) and OEGMA360 (Mn = 360 g mol⁻¹, –OH terminated) were used as another pair of –OCH₃/-OH-presenting monomers in the SIP (Supplementary Figs S8 and S9).

To confirm the inhibition effect of –OH groups on H⁺ penetration further, we designed the following series of experiments. First, we copolymerized OEGMA526 and OEGMA475 at different feed ratios to tune the relative content between the –OCH₃ and –OH ends (Supplementary Fig. S10). The result demonstrated that the pH response was completely silenced when the proportion of OEGMA526 in the copolymer was as low as 10%; a significant proton-resistant effect was still observed even when that ratio dropped to 0.1%. Second, when the –OH ends in the 10% OEGMA526-containing copolymer were converted to –OCH₃ groups using MeI, the pH-responsiveness was regained, as expected (Supplementary Fig. S11). Cyclic voltammetry (CV) experiments also indicated a higher electronic resistance of poly(OEGMA526) than poly(OEGMA475), consistent with proton-blocking property (Supplementary Figs S12–14). All of these results support the notion that the OH-rich polymer brushes could act as a proton shelter.

The --OH groups must be presented in a brush form to gain the proton-shelter function, i.e., the –OH groups must be spatially confined. When a poly(OEGMA475)-grafted chip was treated with a pH 1.0 HCl solution containing 1 mM OEGMA526 monomer, a Δf > 0 was observed (Supplementary Fig. S15), indicating that the free form of the –OH groups in solution did not suppress the pH response. Therefore, the surface-grafted polymer brushes were necessary for the confinement and enrichment of the -OH groups, a mimic to the conditions in glycolipids.

To assess further the effect in three-dimensional compartments, the proton-shelter was lifted up from the SAM surface by block copolymerization in which a "proton-conductive" layer containing exclusively poly(OEGMA475) was first prepared as a spacer to set the distance between the "proton shelter layer" and the SAM (Fig. 3b). The chips with this two-layer architecture were subjected to acid treatment, and a prominent proton-resisting function was observed, even when the distance increased to 80 nm (24 nm of dry thickness of the poly(OEGMA475) layer corresponded to 80 nm of wet thickness in HCl), proving the proton resistance effect of the -OH groups in three-dimensional space.

Discussion

In dramatic contrast to those in bacteria or eukaryotic cells, the majority of the lipids in the cell membrane of acidophilic archaea are glycolipids or glycosphosphatidylinositols that contain at least one sugar residue on the extracellular side (Fig. 1b). When the environmental pH decreased from 3.0 to 1.2, the content of glycolipids in the plasma membrane of Thermoplasma acidophilum increased and the percentage of the lipids that contained 2-4 sugar units rose from 14% to 35%, suggesting an adaptation to low pH values by extending the sugar chains on the cell surface¹. As a systematic investigation of the
The effect of –OH groups on proton resistance, our study presents strong evidence for that adaptation mechanism and pinpoints the effective site as –OH groups. The layer remained resistant to proton permeation after 1,000-fold dilution of the –OH group concentration, suggesting that there a redundancy still exists with regard to the amount of –OH groups in our experiments. Thus it is reasonable to suppose that a layer of a few sugar units (1–2 nm in thickness) is capable of exerting moderate effects on acid defense (Fig. 1c).

The concentration of –OH groups inside the poly(OEGMA526) brushes was estimated to be 0.5 M (see Supplementary Information for the detailed calculation), which is on the similar order of magnitude with that on the cell surfaces of acidophilic archaeons, thus justifying our simulation.

Figure 2 | Chemical structures of the initiator and monomers (a) and the construction of the three-layered system (b). (a) Chemical structure of the dithioacetal compound (Compound 1, the W-shaped initiator) and two monomers: OEGMA475 and OEGMA526. (b) SAM of 1 acted as the initiator for the SIP. The polymer brushes with –OCH3 or –OH side chains were prepared via SIP. When the pH shifted from 5.0 to 1.0, proton penetration was largely blocked by the OH-rich poly(OEGMA526) layer, leaving a local pH value of at least 5.0 and resulting in no significant loss of surface mass. The acid-sensitive and -insensitive types of 1 were represented in red and black. Note that a non-existent magnifying glass was drawn to highlight the –OCH3 and –OH side chain ends.

Figure 3 | Proton-resisting effect of OH-rich poly(OEGMA526) brushes. (a) Different responses to acid stimulation of poly(OEGMA526)- and poly(OEGMA475)-coated chips, as monitored by QCM in real time. When the HCl (pH 5.0) was introduced, the frequency decreased due to the switch from the gaseous to liquid phases, reaching a baseline for both chips. When the pH changed to 1.0, the frequency of the poly(OEGMA475)-grafted chip (10.6 nm thick polymer layer, red line) increased significantly, whereas the poly(OEGMA526)-grafted (9.2 nm) chip showed no response (< 20 Hz for over 1 hour, black line). The blue line indicates the frequency level corresponding to the complete loss of the surface mass. (b) When a poly(OEGMA475) layer (a) was covered with a proton shelter copolymer layer (β) (the gray bars), the acid-responsiveness (measured as the desorption ratio: ratio of the detached mass to the whole mass) was significantly inhibited compared with those without the proton shelter layer (the white bars). The bottom axis label shows the dry thickness of each layer.

Our study proves the strong proton-resistance of surface confined –OH groups and also paves the way for the investigation of the underlying mechanism. The proton-resistance properties of other groups, such as –NH2 and epoxy groups, could be studied by changing the monomers, the direction of our ongoing experiments. The results, combined with a theoretical analysis, are expected to reveal the mechanisms.

The bioinspired poly(OEGMA526) membrane possesses a strong proton-sheltering effect that has been quantitatively defined as...
raising the pH from 1.0 to > 5.0. Therefore, our biomimetic study may be expanded for the development of biocompatible anti-acid strategies, such as tooth protection and drug-carriers that withstand gastric acid digestion\(^2\). Our conclusion also provides information for the design of novel paints that offer protection to vehicles, buildings and infrastructures against acid rain corrosion, an area for which realistic solutions are still lacking. Furthermore, as the first organosulfur compound that has been found to form an acid-sensitive Au-S bond, compound \(1\) could be used to study the nature of Au-S bonds.

Methods

2-Bromo-2-methyl-propionic acid 4-[bis-(11-hydroxy-undecylsulfonyl)-methyl]-phenyl ester (1). The dihydroacetal initiator (1) was synthesized using the following procedure:

\[
\begin{align*}
\text{OH} & \quad \text{CHO} \\
\text{Br} & \quad \text{Br} \\
\text{EtOCH}_2\text{CH}_2\text{Cl} & \quad 0^\circ\text{C} \quad \text{c-t} \\
\text{OHC} & \quad \text{CHO} \\
\end{align*}
\]

(1) Synthesis of 4-formylphenyl -2-bromo-2-methylpropanoate\(^2\):

Hydroxynbenzaldehyde (0.61 g, 5 mmol), triethylamine (0.75 mL, 1.03 mmol), and dry dichloromethane (25 mL) were added to a 50 mL round-bottom flask with a stir bar. The mixture was cooled to 0°C, followed by the dropwise addition of ice-cold bromoisobutyl bromide (0.67 mL, 5.39 mmol). After stirring at 0°C for 1 h, the reaction was continued for another 12–16 h at room temperature. Water (20 mL) and dichloromethane (10 mL) were added to the mixture for a two-phase extraction. The aqueous phase was further extracted with dichloromethane (2 × 50 mL) and then concentrated under vacuum. The final product (4-formylphenyl-2-bromo-2-methylpropanoate) was a white solid, obtained in high purity and with a purity of 96.51%. It was washed with a saturated sodium bicarbonate solution (3 × 40 mL) and dried over MgSO\(_4\). The removal of the dichloromethane resulted in a yellowish oil, which was passed through a column (silica gel, neutral, with petroleum ether: ethyl acetate 2:1) and then vacuum dried overnight. The final product (4-formylphenyl-2-bromo-2-methylpropanoate) was a white solid, obtained in high purity and with a yield of (0.2168 ± 0.80%)%.

(2) Synthesis of dihydroacetal initiator\(^2\): Mercaptoundecane (0.48 g, 2 mmol): 4-formylphenyl -2-bromo-2-methylpropanoate (0.271 g, 1 mmol) and toluene (10 mL) were added to a 50 mL round-bottom flask with a stir bar. The mixture was refluxed to 110°C, followed by the addition of p-toluenesulfonyl chloride (0.009 mmol, 0.05 mmol). After stirring at 110°C for 3 h, the reaction was stopped by the addition of triethylamine (3 mL). The mixture was concentrated by rotary evaporation to remove the toluene. The removal of the toluene resulted in an orange oil, which was passed through a column (silica gel, neutral, with petroleum ether: ethyl acetate = 2:1 with 2% triethylamine as eluent) and then vacuum dried overnight. The final product was a white solid, obtained in high purity and with a yield of (1.040 ± 9.31%)

SCAMs

The QCM chips were incubated in 1 mM ethanol solution of Hafnium triflate and dried over MgSO\(_4\). The removal of the dichloromethane resulted in a yellowish oil, which was passed through a column (silica gel, neutral, with petroleum ether: ethyl acetate 2:1) and then vacuum dried overnight. The final product (4-formylphenyl-2-bromo-2-methylpropanoate) was a white solid, obtained in high purity and with a yield of (0.2168 ± 0.80%)%

Acknowledgments

This work was supported by the CASSAFE International Partnership Program for Creative Research Teams, Special Foundation of President of CAS, NSFC Grant (20174144, 20171461), and National Basic Research Program of China (2009CB930030). The authors

References

1. Baker-Austin, C. & Dopson, M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 15, 165–171 (2007).
2. van de Vossenberg, J. L. C. M., Driessen, A. J. M. & Konings, W. N. The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2, 163–170 (1998).
3. Konings, W., Albers, S.-V., S. & Driessen, A. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie van Leeuwenhoek 81, 61–72 (2002).
4. Auerik, K. S., Cooper, C. R. & Kelly, R. M. Life in hot acid: pathway analyses in extremely thermophilic archaea. Curr. Opin. Biotechnol. 19, 445–453 (2008).
5. Effering, M. G. L., De Wit, T. J., Driessen, A. J. M. & Konings, W. N. Stability and proton-permeability of liposomes composed of archaeal tetraether lipids. Biochim. Biophys. Acta. Biomembr. 1193, 247–254 (1994).
6. Hanford, M. & Peeples, T. Archaeal tetraether lipids. Appl. Biochem. Biotechnol. 97, 45–62 (2002).
7. Albers, S. V., Szabo, Z. & Driessen, A. J. Protein secretion in the Archaea: multiple paths towards a unique cell surface. Nat. Rev. Microbiol. 4, 537–547 (2006).
8. Chong, P. L. Archaeabacterial bipolar tetraether lipids: Physico-chemical and membrane properties. Chem. Phys. Lipids 163, 253–265 (2010).
9. De Rosa, M., Gambacorta, A. & Nicolaus, B. A New type of cell membrane, in thermophilic archaeabacteria, based on bipolar ether lipids. J. Membr. Sci. 16, 287–294 (1993).
10. Mathai, J. C., Sprott, G. D. & Zeidel, M. L. Molecular mechanisms of water and solute transport across archaeal lipid membranes. J. Biol. Chem. 276, 27266–27271 (2001).
11. Shimada, H., Nemoto, N., Shida, Y., Oshima, T. & Yamagishi, A. Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. J. Bacteriol. 190, 5404–5411 (2008).
12. Ma, H., Walls, M., Reese, T. P. & Chilkoti, A. Surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methyl methacrylate from a mixed self-assembled monolayer on gold. Adv. Funct. Mater. 16, 640–648 (2006).
13. Ward, M. D. & Buttry, D. A. In situ interfacial mass detection with piezoelectric transducers. Science 249, 1000–1007 (1990).
14. Zhang, Y., Du, B., Chen, X. & Ma, H. Convergence of dissipation and impedance analysis of quartz crystal microbalance studies. Anal. Chem. 81, 642–648 (2009).
15. Zhang, Y., Yue, J. A., Zhu, Y. C., Chen, H. & Ma, H. Directly observed Au-S bond breakage due to swelling of the anchored polyelectrolyte. Chem. Commun. 47, 1190–1192 (2011).
16. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiocarbates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).
17. Fu, L. Chen, Y. & Ma, H. Solidified liquid layer model expands the application fields of quartz crystal microbalance. Macromol. Rapid Commun. 33, 735–741 (2012).
18. Zhou, F. et al. Polyelectrolyte brush amplified electroactuation of microcantilevers. Nano Letters 8(2), 725–730 (2008).
19. Alberts, B. et al. in Molecular Biology of The Cell Ch. 1, Garland Science, New York, 617–629 (2008).
20. Patel, G. B. & Sprott, G. D. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. J. Am. Chem. Soc. 132, 3526–3527 (2010).
21. Wu, Y.-C. & Zhu, J. Hafnium trifluoromethanesulfonate (hafnium triflate) as a highly efficient catalyst for chemoselective thioacetalization and transthioacetalization of carbohydrate compounds. J. Org. Chem. 73, 9322–9324 (2008).
thank Dr. J. Y. Zhang for CV test and the support of Public Center for Characterization and Test, SINANO, CAS.

Author contributions

X.W. and G.C. carried out organic synthesis, SIP and QCM measurements. B.L. carried out SIP and was involved in CV tests. Y.W., X.W. and B.R. conducted the STM study. L.F. and G.C. participated in discussions and interpretations of the experiments. X.W., B.L. and H. M. designed this study and wrote the paper.

Additional information

Supplementary information accompanies this paper at www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests

License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Wang, X. et al. A proton shelter inspired by the sugar coating of acidophilic archaea. *Sci. Rep.* 2, 892; DOI:10.1038/srep00892 (2012).