Calcium channel blocker monotherapy versus combination with renin-angiotensin system inhibitors on the development of new-onset diabetes mellitus in hypertensive Korean patients

Yong Hoon Kim1,*, Ae-Young Her1,*, Seung-Woon Rha2,3,#, Byoung Geol Choi2, Se Yeon Choi3, Jae Kyeong Byun1, Yoonjee Park2, Dong Oh Kang2, Won Young Jang3, Woohyeun Kim2, Woong Gil Choi4, Tae Soo Kang5, Jihun Ahn6, Sang-Ho Park7, Ji Young Park8, Min-Ho Lee9, Cheol Ung Choi2, Chang Gyu Park2, Hong Seog Seo2

1Division of Cardiology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, South Korea
2Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
3Department of Medicine, Korea University Graduate School, Seoul, South Korea
4Cardiology Department, Konkuk University Chungju Hospital, Chungju, South Korea
5Department of Internal Medicine, Cardiovascular Division, Dankook University Hospital, Cheonan, South Korea
6Department of Cardiology, Soochunhyang University Gumi Hospital, Gumi, South Korea
7Cardiology Department, Soochunhyang University Cheonan Hospital, Cheonan, South Korea
8Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Novon Eulji Medical Center, Eulji University, Seoul, South Korea
9Department of Cardiology, Soochunhyang University College of Medicine, Seoul, South Korea

Abstract

Background In real practice, two or more antihypertensive drugs are needed to achieve target blood pressure. We investigated the comparative beneficial actions of combination therapy of renin-angiotensin system inhibitors (RASI), with calcium channel blockers (CCB) over CCB monotherapy on the development of new-onset diabetes mellitus (NODM) in Korean patients during four-year follow-up periods.

Methods A total of 3208 consecutive hypertensive patients without a history of diabetes mellitus who had been prescribed CCB were retrospectively enrolled from January 2004 to December 2012. These patients were divided into the two groups according to the additional use of RASI (the RASI group, n = 1221 and the no RASI group, n = 1987). Primary endpoint was NODM, defined as a fasting blood glucose ≥ 126 mg/dL or hemoglobin A1c ≥ 6.5%. Secondary endpoint was major adverse cardiac events (MACE) defined as total death, myocardial infarction (MI) and percutaneous coronary intervention (PCI).

Results After propensity score-matched (PSM) analysis, two propensity-matched groups (939 pairs, n = 1878, C-statistic = 0.743) were generated. The incidences of NODM (HR = 1.009, 95% CI: 0.700–1.452, P = 0.962), MACE (HR = 0.877, 95% CI: 0.544–1.413, P = 0.589), total death, MI, PCI were similar between the two groups after PSM during four years.

Conclusions The use of RASI in addition to CCB showed comparable incidences of NODM and MACE compared to CCB monotherapy in non-diabetic hypertensive Korean patients during four-year follow-up period. However, large-scaled randomized controlled clinical trials will be required for a more definitive conclusion.

Keywords: Calcium channel blocker; Diabetes mellitus; Renin-angiotensin system inhibitors

1 Introduction

Arterial hypertension and diabetes mellitus (DM) are well known important risk factors of cardiovascular diseases (CVD) and often these disease entities have intimate relationships with each other.1-3 According to a previous study the development of type 2 DM (T2DM) was about 2.5 times higher in hypertensive patients compared to normotensive patients.4 In patients with T2DM, the incidence of CVD is about two- and four-times higher than the general population.5 Therefore, hypertensive patients have a relatively higher risk of new-onset DM (NODM) and this may trigger further cardiovascular diseases.6 Antihypertensive drug
impacts on the blood glucose level are diverse according to the class of those drugs.[7–9] Among the antihypertensive drugs, the incidence of NODM is unchanged or increased by thiazide diuretics and beta-blockers (BB)[10–11] and unchanged or decreased by calcium channel blockers (CCB), angiotensin converting enzyme inhibitors (ACEI), and angiotensin receptor blockers (ARB).[12–13] Grimm, et al.[14] also reported that diuretics and BB can increase the incidence of NODM, but ARB as well as ACEI has a preventive effect and CCB has a neutral position in the development of NODM. Further, they also suggested these effects are much stronger when both substance classes are used in combination. In addition, Burke, et al.[15] reported antihypertensive drugs combination therapy including ACEI had lowered the risk of NODM more than antihypertensive drug combinations without an ACEI. But other meta-analysis demonstrated the risk of NODM was lower in patients treated ARB compared with ACEI.[16] There are rare studies[17] on the relationship between antihypertensive therapies and the incidence of NODM in hypertensive Asian patients especially, in Korean population. The purpose of this study was to investigate the comparative efficacy of combination therapy of renin-angiotensin system inhibitors (RASI) which include ACEI or ARB, with CCB over CCB monotherapy on the development of NODM during four-year follow-up period in non-diabetic hypertensive Korean patients.

2 Methods

2.1 Study population

This study was a non-randomized, single center, observational and retrospective study. Finally, a total of 3208 consecutive hypertensive patients without a history of DM who had been prescribed CCB were retrospectively enrolled using the electronic database of Korea University Guro Hospital from January 2004 to December 2012. All enrolled patients had undergone a glucose tolerance test. Inclusion criteria were both hemoglobin (Hb) A1c $\leq 5.7\%$ and a fasting glucose level ≤ 100 mg/dL and the exclusion criteria were the patients who had pre-diabetic disease, such as impaired glucose tolerance and impaired fasting glucose. The first prescription day within the study period was defined as the start day of the study. A total of 3208 hypertensive patients were divided into the two groups according to the additional use of RASI (RASI use group, $n = 1221$ and no use group, $n = 1987$) to CCB. The RASI use group was composed with ACEI prescribed patients ($n = 255$) or ARB prescribed patients ($n = 966$). To adjust for potential confounders, a propensity score-matched (PSM) analysis was performed using the logistic regression model (C-statics $= 0.743$). After PSM, 939 well-matched pairs ($n = 1878$) were generated and, the baseline characteristics of the two groups were balanced (Table 1).

2.2 Study definitions and study endpoints

NODM was defined as fasting blood glucose (FBG) ≥ 126 mg/dL or HbA1c $\geq 6.5\%$.[18] The primary study endpoint was the cumulative incidence of NODM during a four-year clinical follow-up periods. The secondary endpoints was major adverse cardiac events (MACE) defined as total death, myocardial infarction (MI) and percutaneous coronary intervention (PCI). The mean follow-up duration was 1825 \pm 1221 days in all groups before baseline adjustment and 1825 \pm 1268 days in the PSM group. The mean prescription duration of the RASI group (CCB with RASI) was 1564 \pm 1007 days and the no RASI group (CCB monotherapy) was 1689 \pm 1040 days in all patients. After PSM, the mean prescription duration of the CCB with RASI group was 1568 \pm 1016 days and the CCB group was 1796 \pm 1043 days. We followed up on the clinical data of all enrolled patients through face-to-face interviews at outpatient clinics, medical chart reviews and telephone calls.

2.3 Statistical analysis

For continuous variables, differences between the two groups were evaluated with the unpaired t-test or the Mann-Whitney rank test. Data were expressed as mean \pm SD. For discrete variables, differences were expressed as counts and percentages and analyzed with χ^2 or Fisher’s exact test between the groups as appropriate. To adjust for potential confounders, PSM analysis was performed using the logistic regression model. All data were processed with the Statistical Package for the Social Sciences version 20.0 (IBM, Armonk, NY, USA). We tested all available variables that could be of potential relevance: gender, age, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate, previous PCI, previous cerebrovascular accident (CVA), previous heart failure (HF), coronary artery spasm, atrial fibrillation and arrhythmia, current smokers, current alcoholics, laboratory findings [FBG, HbA1c, total cholesterol, triglyceride, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein-cholesterol, high-sensitivity C-reactive protein, Hb, serum creatinine] and medications (BB, diuretic, nitrate, lipid lowering agents, aspirin, clopidogrel, cilostazol). The logistic model by which the propensity score was estimated showed good a predictive value (C-statistic $= 0.743$). Patients with the CCB with RASI group were then one-to-one matched to the patients with the CCB group according to propensity
Table 1. Baseline clinical characteristics and laboratory results.

Variables	Entire patients	P-value	Propensity score-matched patients	P-value			
	CCB + RASI (n = 1221)		CCB + RASI (n = 939)		CCB (n = 1987)	CCB (n = 939)	
Gender, men	660 (54.1%)	< 0.001	487 (51.9%)	0.488			
Age, yrs	59.0 ± 11.9	0.088	59.2 ± 11.8	0.749			
Body mass index, kg/m²	24.9 ± 3.2	0.323	24.8 ± 3.1	0.421			
Systolic blood pressure, mmHg	137.8 ± 21.1	< 0.001	137.5 ± 20.9	0.182			
Diastolic blood pressure, mmHg	84.7 ± 13.9	< 0.001	83.8 ± 13.7	0.311			
Heart rate, beats/minute	75.5 ± 13.2	0.366	75.7 ± 13.4	0.718			
Previous PCI	151 (12.4%)	< 0.001	119 (12.7%)	0.172			
Previous cerebrovascular accident	186 (15.2%)	0.678	140 (14.9%)	0.555			
Previous heart failure	75 (6.1%)	0.001	85 (9.1%)	0.457			
Atrial fibrillation & arrhythmia	68 (5.6%)	0.776	52 (5.5%)	1.000			
Current smokers	277 (22.7%)	0.840	215 (22.9%)	0.783			
Current alcoholics	428 (35.1%)	0.029	324 (34.5%)	0.238			
Fasting blood glucose, mg/dL	95.3 ± 7.9	0.006	95.1 ± 7.8	0.955			
Hemoglobin A1c	5.62% ± 0.28%	< 0.001	5.60% ± 0.29%	0.640			
Total cholesterol, mg/dL	179.4 ± 36.7	0.421	178.2 ± 36.7	0.477			
Triglyceride, mg/dL	144.8 ± 93.5	< 0.001	138.0 ± 79.3	0.678			
HDL cholesterol, mg/dL	50.3 ± 12.9	0.006	50.3 ± 12.6	0.596			
LDL cholesterol, mg/dL	113.4 ± 33.5	0.559	112.7 ± 33.4	0.339			
High sensitivity CRP, mg/dL	3.1 ± 10.1	0.123	2.8 ± 7.2	0.731			
Hemoglobin, mg/dL	13.9 ± 1.7	0.003	13.8 ± 1.7	0.890			
Serum creatinine, mg/dL	0.9 ± 0.6	< 0.001	0.8 ± 0.6	0.720			
Medications							
Beta-blockers	339 (27.8%)	< 0.001	234 (24.9%)	0.790			
Diuretics	572 (46.8%)	< 0.001	306 (32.5%)	0.844			
Nitrates	338 (27.7%)	< 0.001	290 (30.8%)	0.842			
Lipid lowering agents	483 (39.6%)	0.012	384 (40.8%)	1.000			
Aspirin	28 (2.3%)	0.013	19 (2.0%)	0.736			
Clopidogrel	260 (21.3%)	< 0.001	196 (20.8%)	0.864			
Cilostazole	66 (5.4%)	0.058	52 (5.5%)	0.839			
ACEI	255 (20.9%)	0.001	239 (25.4%)	0.790			
Ramipril	135 (11.1%)	0.001	104 (11.1%)				
Perindopril	54 (4.4%)	0.001	49 (5.2%)				
Cilazapril	22 (1.8%)	0.001	17 (1.8%)				
Irinapril	19 (1.6%)	0.001	18 (1.9%)				
Moxepir	10 (0.8%)	0.001	8 (0.9%)				
Elnapril	9 (0.7%)	0.001	8 (0.9%)				
Captopril	6 (0.5%)	0.001	5 (0.5%)				
ARB	966 (79.1%)	0.001	730 (77.7%)				
Losartan	223 (18.3%)	0.001	171 (18.2%)				
Irbesartan	167 (13.6%)	0.001	123 (13.1%)				
Valsartan	159 (13.0%)	0.001	101 (10.7%)				
Telmisartan	107 (8.8%)	0.001	73 (7.8%)				
Olmesartan	107 (8.8%)	0.001	87 (9.3%)				
Candesartan	104 (8.5%)	0.001	87 (9.3%)				
Eprosartan	94 (7.7%)	0.001	84 (8.9%)				
Fimasartan	5 (0.4%)	0.001	4 (0.4%)				
Prescription duration, days	1564 ± 1007	0.157	1568 ± 1016	0.102			

Data are presented as means ± SD or n (%). The P-values for continuous data and categorical data were obtained from analysis of variance and chi-square test. ACEI: angiotensin converting enzyme inhibitor; ARB: angiotensin receptor blocker; CCB: calcium channel blocker; CRP: C-reactive protein; HDL: high-density lipoprotein; LDL: low-density lipoprotein; PCI: percutaneous coronary intervention; RASI: renin-angiotensin system inhibitor.
scores with the nearest available pair matching method. Subjects were matched with a caliper width equal to 0.01. The procedure yielded 939 well-matched pairs. For all analyses, a two-tailed P-value of < 0.05 was considered to be statistically significant. Various clinical outcomes at four-year were estimated with the Kaplan-Meier method, and differences between groups were compared with the log-rank test. In addition, multivariate Cox-regression analysis adjusted with the following variables was performed to determine the different impact of CCB with RASI versus CCB on the incidence of NODM. The following factors were co-analyzed in multivariate Cox-regression analysis: CCB with RASI vs CCB, age (≥ 65 years), gender (men), BMI (≥ 24 kg/m²), SBP, DBP, dyslipidemia, previous PCI, previous CVA, previous HF, current smokers, current alcohols, triglyceride, FBG, serum creatinine, BB, diuretics, nitrates and lipid lowering agents.

3 Results

A total of 3028 eligible hypertensive patients who prescribed CCB were finally enrolled for the analysis. After PSM analysis, 939 matched pairs (n = 1878) were generated and their baseline characteristics, laboratory findings, and medication history are summarized in Table 1. In the unmatched population, men, SBP, DBP, previous history of PCI, previous CVA, previous HF, current smokers, current alcohols, triglyceride, FBG, serum creatinine, BB, diuretics, nitrates and lipid lowering agents.

Table 2. Clinical outcomes by Kaplan-Meier curved analysis and Cox-proportional hazard ratio analysis at four years.

Outcomes	Cumulative events at four years	HR (95% CI)	P-value		
	CCB + RASI	CCB	Log rank		
Primary end point					
New-onset diabetes mellitus	81 (8.6%)	93 (6.8%)	0.149	0.803 (0.596–1.082)	0.150
Secondary end points					
MACE	52 (5.2%)	50 (3.3%)	0.033	0.657 (0.445–0.968)	0.034
Total death	12 (1.2%)	3 (0.3%)	0.003	0.178 (0.050–0.631)	0.008
Cardiac death	6 (0.7%)	1 (0.1%)	0.020	0.121 (0.015–1.009)	0.051
Myocardial infarction	9 (0.9%)	5 (0.3%)	0.072	0.381 (0.128–1.137)	0.084
Percutaneous coronary intervention	42 (3.4%)	48 (2.4%)	0.089	0.700 (0.462–1.059)	0.091
Propensity score-matched patients					
Primary end point					
New-onset diabetes mellitus	59 (8.5%)	56 (8.3%)	0.962	1.009 (0.700–1.452)	0.962
Secondary end point					
MACE	37 (4.8%)	31 (4.3%)	0.589	0.877 (0.544–1.413)	0.589
Total death	7 (0.9%)	3 (0.5%)	0.241	0.454 (0.117–1.757)	0.253
Cardiac death	2 (0.3%)	1 (0.1%)	0.606	0.537 (0.049–5.918)	0.611
Myocardial infarction	6 (0.9%)	2 (0.3%)	0.178	0.350 (0.071–1.734)	0.198
Percutaneous coronary intervention	30 (3.2%)	29 (3.1%)	0.893	0.966 (0.580–1.610)	0.895

Data are presented as n (%) unless other indicated. CCB: calcium channel blocker; HR: hazard ratio; MACE: major adverse cardiac event; RASI: renin-angiotensin system inhibitor.
Kim YH, et al. CCB and RASI in the incidence of NODM

Figure 1. Kaplan-Meier curved analysis for NODM in entire patients (A) and PSM patients (B) at four years. CCB: calcium channel blocker; HR: hazard ratio; NODM: new-onset diabetes mellitus; PSM: propensity score-matched; RASI: renin-angiotensin system inhibitor.

Table 3. The cumulative events of new-onset diabetes mellitus between ACEI and ARB at four years.

Variables	Events	ACEI	P-value	ARB	P-value	
		(Entire patients)	(PSM patients)			
ACEI	15/255 (5.9%)	1.056 (0.612–1.824)	0.844	12/209 (5.7%)	1.223 (0.657–2.276)	0.525
Ramipril	7/135 (5.2%)	1.230 (0.578–2.621)	0.591	4/104 (3.8%)	1.928 (0.711–5.225)	0.197
Perindopril	4/54 (4.5%)	0.708 (0.263–1.909)	0.495	4/49 (8.2%)	0.693 (0.255–1.877)	0.470
Cilazapril	1/22 (4.5%)	1.409 (0.197–10.06)	0.732	1/17 (5.9%)	1.172 (0.164–8.390)	0.875
Imidapril	1/19 (5.3%)	0.886 (0.124–6.324)	0.904	1/18 (5.6%)	0.893 (0.125–6.397)	0.911
Moxepiril	1/10 (10%)	0.388 (0.054–2.769)	0.345	1/8 (12.5%)	0.300 (0.042–2.160)	0.231
Enalapril	0/9 (0.0%)	-	-	0/8 (0.0%)	-	-
Captopril	1/6 (16.7%)	0.321 (0.045–2.290)	0.257	1/5 (20.0%)	0.260 (0.036–1.865)	0.180

Data are presented as n (%) unless otherwise indicated. ACEI: angiotensin converting enzyme inhibitor; ARB: angiotensin receptor blocker; HR: hazard ratio; PSM: propensity score-matched.
Table 4. Independent predictors of new-onset diabetes mellitus before and after PSM.

Variables	Entire patients		PSM patients	
	Unadjusted	Adjusted	Unadjusted	Adjusted
	HR (95% CI)	P-value	HR (95% CI)	P-value
CCB + RASI vs. CCB	0.822 (0.611–1.105)	0.194	0.960 (0.532–1.732)	0.892
			1.046 (0.728–1.501)	0.810
Age ≥ 65 years	0.610 (0.453–0.823)	0.001	1.162 (0.620–2.178)	0.639
			0.632 (0.439–0.911)	0.014
Gender, men	0.899 (0.669–1.207)	0.478	0.948 (0.484–1.857)	0.876
			1.258 (0.874–1.810)	0.217
BMI ≥ 24 kg/m²	1.194 (0.830–1.717)	0.339	1.250 (0.723–2.164)	0.424
			1.136 (0.724–1.784)	0.579
Systolic blood pressure	1.000 (0.990–1.010)	0.991	0.989 (0.981–1.018)	0.958
			0.997 (0.984–1.010)	0.651
Diastolic blood pressure	0.997 (0.981–1.013)	0.718	0.998 (0.968–1.029)	0.902
			0.993 (0.973–1.014)	0.519
Dyslipidemia	0.803 (0.480–1.342)	0.402	0.613 (0.270–1.391)	0.242
			1.059 (0.536–2.090)	0.869
Previous PCI	0.639 (0.416–0.984)	0.042	0.413 (0.175–0.976)	0.044
			0.633 (0.391–1.025)	0.063
Previous CVA	0.614 (0.430–0.877)	0.007	0.782 (0.332–1.843)	0.574
			0.623 (0.400–0.970)	0.036
Previous heart failure	0.747 (0.416–1.343)	0.330	0.043 (0.189–1.042)	0.062
			0.700 (0.354–1.381)	0.303
Current smokers	0.841 (0.591–1.196)	0.335	0.728 (0.375–1.410)	0.346
			0.844 (0.548–1.302)	0.444
Current alcoholics	0.920 (0.665–1.271)	0.612	0.976 (0.514–1.853)	0.941
			0.933 (0.626–1.389)	0.731
Triglyceride	1.001 (1.000–1.003)	0.033	1.001 (0.999–1.003)	0.205
			0.999 (0.996–1.004)	0.120
Fasting blood glucose	1.038 (1.018–1.058)	< 0.001	1.025 (0.987–1.064)	0.196
			1.039 (1.014–1.064)	0.002
Serum creatinine	1.119 (0.825–1.517)	0.470	0.498 (0.103–2.401)	0.385
			0.939 (0.523–1.686)	0.834
Beta blockers	0.704 (0.312–0.968)	0.031	0.778 (0.417–1.450)	0.429
			0.856 (0.578–1.261)	0.426
Diuretics	1.331 (0.981–1.807)	0.066	1.558 (0.826–2.937)	0.171
			1.250 (0.864–1.809)	0.237
Nitrates	0.818 (0.607–1.104)	0.190	0.758 (0.422–1.360)	0.353
			0.761 (0.525–1.103)	0.149
Lipid lowering agents	0.702 (0.522–0.944)	0.019	1.121 (0.590–1.732)	0.721
			0.833 (0.579–1.199)	0.325

BMI: body mass index; CCB: calcium channel blocker; CVA: cerebrovascular accident; HR: hazard ratio; PCI: percutaneous coronary intervention; PSM: propensity score-matched; RASI: renin-angiotensin system inhibitor.

Figure 2. Kaplan-Meier curved analysis for MACE in entire patients (A) and PSM patients (B) at four years. CCB: calcium channel blocker; HR: hazard ratio; MACE: major adverse cardiac event; PSM: propensity score-matched; RASI: renin-angiotensin system inhibitor.

4 Discussion

The main findings of this study were: (1) the development of NODM was not significantly different between the two groups (CCB with RASI group vs. CCB group) and (2) the incidences of MACE, total death, MI, PCI were also similar between the two groups in non-diabetic hypertensive Korean patients during four-year follow-up period.

One of important features of this study was that many
Figure 3. **Subgroup analysis for NODM in PSM patients.** CCB: calcium channel blocker; CVA: cerebrovascular accident; NODM: new-onset diabetes mellitus; PCI: percutaneous coronary intervention; PSM: propensity score-matched; RASI: renin-angiotensin system inhibitor.

Previous reports\cite{10-14} which showed the positive cause-effect relationship between antihypertensive drugs and NODM could be extended to hypertensive Asian patients, especially Korean patients. Several previous guidelines recommended CCB as one of the first-line drugs suitable for the beginning and maintenance of their antihypertensive role in hypertensive patients.\cite{19,20} In most patients, two or more antihypertensive drugs are needed to achieve target blood pressure and recent guidelines recommend combination therapy to control blood pressure levels.\cite{19-21} Therefore, the baseline study population of this study was composed of patients whom had been prescribed CCB to control their blood pressure, in addition, this inclusion was based on the premise that CCB may be associated with reduced possibility of NODM compared with diuretics and BB.\cite{10} Because there is some debate\cite{15-17,22} about the comparative superiority of beneficial effects between ACEI andARB on the incidence of NODM in hypertensive patients, we considered these two drugs, ACEI and ARB, as a one group (RASI group) and then we compared the different incidences of NODM between the CCB with RASI and CCB group.

DM in addition to hypertension may amplify the progression of vascular damage. Coexistence of DM and hypertension also are important factors of arterial stiffness and endothelial dysfunction compared with hypertensive non-diabetic patients.\cite{23} Several possible cause-effect relationships between DM and hypertension were hypothesized including obesity and insulin resistance, inappropriate activation of the renin-angiotensin-aldosterone system, oxidative stress, increased sympathetic nervous system activation, and abnormal renal handling of sodium.\cite{24} Also hypertension causes endothelial dysfunction, remodeling of small arteries and/or sustained sympathetic nervous system acti-
viation; these factors can cause insulin resistance and diabetes by reducing insulin delivery to muscles or causing pancreatic microvascular dysfunction.\[^4\]

Previous studies reported that CCB combined with ARB had metabolically neutral effects.\[^6\] Our study also showed that the use of RASI in addition to CCB did not show a significant reduction of the development of NODM. Although several possible mechanisms that cause change in insulin sensitivity were suggested, the precise mechanisms are not clear currently.\[^13\] Although we cannot precisely explain this result, we cautiously speculate several possible factors related to our results. Firstly, there may be similar or common pathways increasing insulin sensitivity between CCB and RASI and these pathways fail to show synergistic effects on insulin sensitivity of both drugs and may also leads to insignificant differences on the incidence of NODM. Secondly, as we know, there is some debate\[^15–17,22\] about comparative superiority of beneficial effects between ACEI and ARB on the incidence of NODM in hypertensive patients, the countervailing effect may have nullified the beneficial effect between these two groups. Thirdly, there are so many different kinds and numbers of drugs that compose the RASI group and diverse drug interactions also can decrease their beneficial effects on insulin sensitivity by interacting with each other (Table 3). Last but not least, this study was a single center retrospective study, so this may be another factor of this result.

Owing to the incidence of NODM differed in the studies and because they were sometimes combined with other antihypertensive drugs and no monotherapy was considered, the accurate estimation of the annual incidence to the different substance classes may be difficult. In general, independent from the substance class, the incidence was estimated at 1.7% annually.\[^14\] The incidence of NODM during treatment with CCB varies from 0.9% to 2.0% per year and from 1.1% to 1.7% per year by ACEI.\[^14\] Ahmad, et al.\[^25\] reported that the incidence of NODM was increased with the duration of antihypertensive drug therapy (three- and five-years) and the incidence of NODM was 12.5% by CCB during one- and five-years follow-up period. In our study, the incidence of NODM was similar with his study (8.6% vs. 6.8%, Table 2) during the four-year follow-up periods.

In our study, the higher rate of total death in RASI group before PSM may be caused by relatively higher baseline risk factors such as, SBP, DBP, previous PCI, current alcoholics, triglyceride, and the use of diuretics, statin, aspirin, and clopidogrel which were contained in this group.

Despite the above cited limitations, our study included real-world combination drug therapy in hypertensive Korean patients. We believe this study to be the first comparative study to investigate whether or not there are additional beneficial effects of RASI on the incidence of NODM over CCB monotherapy during four-year follow-up period in Korea.

4.1 Limitations

Our study has several limitations. Firstly, we have some deficits in several parameters such as family history, abdominal circumference, and socioeconomic status. Secondly, the study population of this study was relatively low-risk patients, so these results could be different in high-risk patients. Thirdly, though the first antihypertensive prescription for nearly all patients was monotherapy, the decision to add a second antihypertensive drug was dependent on each physician’s discretion; this could affect the end results and add a bias to this study. Fourthly, the RASI group was composed of so many diverse kinds and numbers of drugs and this factor also add bias. Last but not least, because this study was a single center retrospective study, large, randomized, and controlled clinical trials will be required for a more definitive conclusion.

4.2 Conclusions

In conclusion, the use of RASI in addition to CCB showed comparable incidence of NODM and MACE compared to CCB monotherapy in non-diabetic hypertensive Korean patients up to four years. However, large-scaled randomized controlled clinical trials will be required for a more definitive conclusion.

Acknowledgments

All authors had no conflicts of interest to disclose.

References

1. Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. *Lancet* 2010; 375: 2215–2222.
2. Sarwar N, Aspelund T, Eiriksdottir G, et al. Markers of dysglycaemia and risk of coronary heart disease in people without diabetes: Reykjavik prospective study and systematic review. *PLoS Med* 2010; 7: e1000278–e1000278.
3. Lonati C, Morganti A, Comarella L, et al. Prevalence of type 2 diabetes among patients with hypertension under the care of 30 Italian clinics of hypertension: results of the (Iper)tensione and (dia)bete study. *J Hypertens* 2008; 26: 1801–1808.
4. Bruno RM, Toddei S. New-onset diabetes in hypertensive patients and mortality: timing is everything. *Eur Heart J* 2016; 37: 975–977.
5 Haffner SM, Lehto S, Rönnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339: 229–234.

6 Yang Y, Xu H. Comparing six antihypertensive medication classes for preventing new-onset diabetes mellitus among hypertensive patients: a network meta-analysis. J Cell Mol Med 2017; 21: 1742–1750.

7 Lithell HO. Effect of antihypertensive drugs on insulin, glucose, and lipid metabolism. Diabetes Care 2013; 36: S67–S74.

8 Houston MC. The effects of antihypertensive drugs on glucose intolerance in hypertensive nondiabetics and diabetics. Am Heart J 1988; 115: 640–656.

9 Perez-Stabile E, Caralis PV. Thiazide-induced disturbances in carbohydrate, lipid, and potassium metabolism. Am Heart J 1983; 106: 245–251.

10 Kuti EL, Baker WL, White CM. The development of new-onset type 2 diabetes associated with choosing a calcium channel blocker compared to a diuretic or beta-blocker. Curr Med Res Opin 2007; 23: 1239–1244.

11 Gress TW, Nieto FJ, Shahar E, et al. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study. JAMA 2000; 342: 905–912.

12 Padwal R, Laupacis A. Antihypertensive therapy and incidence of type 2 diabetes: a systematic review. Diabetes Care 2004; 27: 247–255.

13 Jandeleit-Dahm KA, Tikellis C, Reid CM, et al. Why blockade of the renin-angiotensin system reduces the incidence of new-onset diabetes. J Hypertens 2005; 23: 463–473.

14 Grimm C, Köberlein J, Wiosna W, et al. New-onset diabetes and antihypertensive treatment. GMS Health Technol Assess 2010; 6: Doc03–Doc03.

15 Burke TA, Sturkenboom MC, Ohman-Strickland PA, et al. The effect of antihypertensive drugs and drug combinations on the incidence of new-onset type 2 diabetes mellitus. Pharmacoepidemiol Drug Saf 2007; 16: 979–987.

16 Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 2007; 369: 201–207.

17 Park JY, Rha SW, Choi BG, et al. Impact of angiotensin converting enzyme inhibitor versus angiotensin receptor blocker on incidence of new-onset diabetes mellitus in Asians. Yonsei Med J 2016; 57: 180–186.

18 American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2013; 36: S67–S74.

19 Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 2003; 289: 2560–2572.

20 European Society of Hypertension-European Society of Cardiology Guidelines Committee. 2003 European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003; 21: 1011–1053.

21 Japanese Society of Hypertension. Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2004). Hypertens Res 2006; 29: S1–S105.

22 Gillespie EL, White CM, Kardas M, et al. The impact of ACE inhibitors or angiotensin II type 1 receptor blockers on the development of new-onset type 2 diabetes. Diabetes Care 2005; 28: 2261–2266.

23 Bruno RM, Penno G, Daniele G, et al. Type 2 diabetes mellitus worsens arterial stiffness in hypertensive patients through endothelial dysfunction. Diabetologia 2012; 55: 1847–1855.

24 Lastra G, Syed S, Kurukulasuriya LR, et al. Type 2 diabetes mellitus and hypertension: an update. Endocrinol Metab Clin North Am 2014; 43: 103–122.

25 Ahmad MA, Kapur P, Khanam R, et al. Comparative effect of antihypertensive therapy on blood glucose level in hypertensive patients in an Indian population. Drug Res (Stuttg) 2014; 64: 276–280.