Hemoglobinopathies: Slicing the Gordian Knot of Plasmodium falciparum Malaria Pathogenesis

Steve M. Taylor1,2*, Carla Cerami2, Rick M. Fairhurst3

1 Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, United States of America, 2 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America, 3 Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America

Abstract: *Plasmodium falciparum* malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and *P. falciparum* parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits—including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia—are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for *P. falciparum* infection, suggesting that these hemoglobinopathies specifically neutralize the parasite’s *in vivo* mechanisms of pathogenesis. These hemoglobin variants thus represent a “natural experiment” to identify the cellular and molecular mechanisms by which *P. falciparum* produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of *P. falciparum* erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the “Gordian knot” of host and parasite interactions to confer malaria protection, and offer a translational model to identify the most critical mechanisms of *P. falciparum* pathogenesis.

Introduction

In the 4th century BC, Alexander the Great conquered the known Western world [1]. Prior to his conquests in Asia, he encountered the Gordian knot, a complex knot of bark affixing a mythic ox-cart to a post in the town of Gordium. Alexander—a pupil of Aristotle—set his mind to untangling the knot, but, like others before him, could not find the ends (and thus the means) to do so. Faced with this intractable problem, Alexander sliced through the Gordian knot with a stroke of his sword and freed the cart. As one of history’s greatest military commanders, Alexander subsequently assembled and ruled an empire stretching from the Eastern Mediterranean to the Himalayas while remaining undefeated in battle. These military conquests were presaged by his “Alexandrian solution” to the Gordian knot, demonstrating decisiveness and imagination in the face of a complex and seemingly unsolvable problem.

Malaria is an ancient disease that has persisted to our modern age, intractably killing over 500,000 children in sub-Saharan Africa each year [2]. While current interventions are succeeding in reducing its morbidity in some contexts [3–5], further improvements in our fundamental understanding of the pathogenesis of *Plasmodium falciparum* malaria are clearly needed to identify the molecular and cellular targets of next-generation therapeutics and preventive measures. The mechanisms of falciparum malaria pathogenesis remain obscure owing to the complex tangle of parasite virulence factors, host susceptibility traits, and innate and adaptive immune responses that modulate the development of distinct malaria syndromes [6,7].

We propose that hemoglobinopathies slice the Gordian knot of falciparum malaria pathogenesis to protect children from the severe, life-threatening manifestations of the disease. Most strikingly, heterozygous hemoglobin S (HbAS, or sickle-cell trait) and homozygous hemoglobin C (HbCC, or hemoglobin C disease) reduce the risk of severe falciparum malaria in sub-Saharan African children by 90% and 70%, respectively [8]. These structural hemoglobin variants do not protect from *P. falciparum* infection [8], suggesting they interfere with the specific molecular mechanisms responsible for the morbidity of falciparum malaria. By isolating these pathogenic processes and solving the Gordian knot of malaria pathogenesis, hemoglobinopathies offer an attractive

Citation: Taylor SM, Cerami C, Fairhurst RM (2013) Hemoglobinopathies: Slicing the Gordian Knot of Plasmodium falciparum Malaria Pathogenesis. PLoS Pathog 9(5): e1003327. doi:10.1371/journal.ppat.1003327

Editor: Chetan E. Chitnis, International Centre for Genetic Engineering and Biotechnology, India

Published May 16, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This research was supported in part by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health (RMF, the NIAID under award number K08AI100924 (SMT), and the National Institute of Child Health and Human Development under award number U01HD061235 (CC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: CC has read the journal’s policy and is on the Scientific Advisory Board and owns stock in Warren Pharmaceuticals, which is pursuing the clinical development of tissue-protective cytokines and peptides. SMT and RMF declare that they have no competing interests. This does not alter our adherence to all PLoS Pathogens policies on sharing data and materials.

* E-mail: steve.taylor@duke.edu

Citation: Taylor SM, Cerami C, Fairhurst RM (2013) Hemoglobinopathies: Slicing the Gordian Knot of Plasmodium falciparum Malaria Pathogenesis. PLoS Pathog 9(5): e1003327. doi:10.1371/journal.ppat.1003327

Editor: Chetan E. Chitnis, International Centre for Genetic Engineering and Biotechnology, India

Published: May 16, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This research was supported in part by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health (RMF, the NIAID under award number K08AI100924 (SMT), and the National Institute of Child Health and Human Development under award number U01HD061235 (CC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: CC has read the journal’s policy and is on the Scientific Advisory Board and owns stock in Warren Pharmaceuticals, which is pursuing the development of tissue-protective cytokines and peptides. SMT and RMF declare that they have no competing interests. This does not alter our adherence to all PLoS Pathogens policies on sharing data and materials.

* E-mail: steve.taylor@duke.edu
“natural experiment” to identify the molecular correlates of clinical morbidity. These correlates may be amenable to exploitation by future parasiticidal, adjunctive, or preventive therapies, thereby yielding targets for a new “Alexandrian solution” to the world’s falciparum malaria problem.

Here we review the proposed mechanisms by which hemoglobinopathies (and fetal hemoglobin) protect against falciparum malaria.

The Red Blood Cell and *Plasmodium falciparum* Parasites

The red blood cell (RBC) is critical for the propagation of malaria parasites (Figure 1A). After inoculation into a human by a mosquito and a brief, clinically silent incubation in the liver, *P. falciparum* parasites enter the erythrocytic stage of their life-cycle. It is during this time that parasites sequentially invade and egress from their host RBCs and cause the signs and symptoms of malaria. While developing within the RBC, the parasite traffics proteins to the RBC surface that mediate binding to extracellular host receptors and enable the parasite to sequester in the placenta, brain, and virtually every other organ. The attenuation of malaria by repeated, sub-lethal *P. falciparum* infections suggests a significant role for adaptive immunity, but the targets of this attenuating immune response remain largely obscure. Though this adaptive immunity can be protective, the development of maladaptive and dysregulated immune responses can also contribute to the pathogenesis of malaria.

Variant RBCs are produced from some of the most common human genetic polymorphisms, and for over 60 years their

![Figure 1. General mechanisms by which hemoglobinopathies may attenuate the pathogenesis of falciparum malaria.](image)

(A) Restriction of red blood cell (RBC) invasion or intraerythrocytic growth, thereby suppressing parasite densities in vivo; (B) interference with parasite-derived mediators of pathogenesis, including those involved in the binding of parasite-infected RBCs (iRBCs) to extracellular host receptors; (C) modulation of innate host defenses to favor protective, anti-inflammatory responses over those that drive pathogenic, pro-inflammatory responses; (D) enhancement of adaptive cell-mediated and humoral immune responses that clear iRBCs from the blood.

doi:10.1371/journal.ppat.1003327.g001
widespread prevalence has been hypothesized to result from their evolutionary selection by severe, life-threatening falciparum malaria [9]. This natural selection is supported convincingly by clinical data for several common hemoglobin disorders (reviewed in [8]). Hemoglobin is the oxygen-carrying component and major protein of the RBC, and is normally formed as a tetramer of two α-globins and two β-globins which constitute adult hemoglobin Α (HbA). The major hemoglobinopathies result from molecular lesions that either decrease the production of α- or β-globins (in α- and β-thalassemia, respectively) or encode single amino acid substitutions in β-globin (in HbS, HbC, and hemoglobin E [HbE]) (Table 1) [10]. The most severe hemoglobinopathies—HbSS homozygosity (sickle-cell disease) and the thalassemias major—are typically incompatible with life beyond early childhood without sophisticated medical care. Other hemoglobin traits such as HbAS, HbAC, HbAE, HbEE, and the thalassemias minor are associated with essentially normal life-spans and far less directly attributable morbidity. Remarkably, these simple polymorphisms confer dramatic levels of protection from a complex disease: for HbAS, the substitution of glycine with valine at amino acid position 6 in only one of two β-globin chains reduces a child’s risk of severe falciparum malaria by about 90% [8].

The current understanding of falciparum malaria pathogenesis suggests four general hypotheses for investigating the nature of malaria protection by hemoglobinopathies (Figure 1): 1) restriction of RBC invasion or intraerythrocytic parasite growth, 2) interference with parasite-derived mediators of pathogenesis, 3) modulation of innate host responses, and 4) enhancement of the host’s adaptive immune clearance of parasite-infected RBCs (iRBCs). While these mechanisms may be occurring simultaneously in vitro, we review the evidence for each of them separately.

Do Hemoglobinopathies Restrict *P. falciparum* Invasion of or Growth in RBCs?

Numerous investigations of the invasion and growth of *P. falciparum* in RBCs containing variant hemoglobins rapidly followed the development of in-vitro cultivation systems by Trager and Jensen, and Haynes et al. in 1976 (Table 2) [11,12]. Reductions in RBC invasion have been reported for a variety of hemoglobinopathies including α-thalassemia trait [13], HbH disease [14,15], HbEE [13,15], HbAE [15], and the compound heterozygous β-thalassemia/HbE disorder [13,15,16]: reductions in the intraerythrocytic growth or maturation of parasites have

| Table 1. The major hemoglobinopathies: epidemiology, molecular pathology, and clinical phenotype. |
|---|---|---|---|---|
| Hemoglobinopathy | Epidemiology | Genotype | Molecular Pathology | Clinical Phenotype |
| **α-thalassemias** | | | | |
| Trait | Global | Loss of one α-globin gene (αα/α-) | Asymptomatic; normal RBC size, quantity, and peripheral blood smear |
| α²-thal trait | Global | Loss of two α-globin genes (αα/-) | Mild anemia |
| Hemoglobin H (HbH) disease | Global | Loss of three α-globin genes (α/-) | Accumulation of unpaired β-chains that form HbH and precipitate in RBCs |
| Hydrops fetalis/ Hb Barts | Global | Loss of all four α-globin genes (-/-) | Chronic hemolytic anemia with hepatic, splenic, skeletal, and metabolic sequelae; transfusion support required in 2nd to 3rd decade of life |
| **β-thalassemias** | | | | |
| Minor/trait/heterozygosity | Global | Reduced expression of one β-globin gene | Typically asymptomatic; normal hematocrit, low mean corpuscular volume |
| Major | Global | Reduced expression of both β-globin genes | Profound anemia leading to transfusion dependence, complicated by iron overload |
| Hemoglobin S | Central, East, and West Africa; Arabian peninsula; South Asia | Glu→Val at position 6 of β-globin | Aggregation of deoxygenated HbS into polymers, leading to RBC deformation, hemolysis, and microcirculatory obstruction |
| Hemoglobin C | West Africa, centered on western Burkina Faso and northern Ghana | Glu→Lys at position 6 of β-globin | Formation of hexagonal HbC crystals |
| Hemoglobin E | Southeast Asia, centered on border of Thailand, Laos, and Cambodia | Glu→Lys at position 26 of β-globin | Mildly reduced expression of β-globin due to insertion of splice site and resulting mRNA degradation |
| Hemoglobin F* | >50% of hemoglobin at birth, largely absent by 6 months of age | Normal | Tetramer consisting of two α-chains and two γ-chains | Greater oxygen affinity within RBCs than adult hemoglobin A due to attenuated interactions with 2,3-bisphosphoglycerate |

The human genome normally contains four copies of α-globin genes (in paired copies on chromosome 16: genotype αα/αα) and two copies of β-globin genes (on chromosome 11). Normal adult hemoglobin (HbAA) is a tetramer of two α-globin and two β-globin proteins.

*Not technically a hemoglobinopathy but rather a normal hemoglobin variant of all newborns and infants.

10.1371/journal.ppat.1003327.t001
Table 2. Studies of *P. falciparum* invasion of and development in RBCs containing hemoglobin variants.

Hemoglobin, study	Reference	Parasite	Invasion	Development	Note
α'-thal trait (αα/α-)	Friedman, 1979	FCR-3	NR	Normal	Growth significantly attenuated by cultivation at 30% O_2
	Ifediba et al., 1985	NF-77	NR	Normal	
	Bunyaratvej et al., 1992	K1	Normal	NR	
	Udomsangpetetch et al., 1993	TM267R	Normal	Reduced	
α²-thal trait (αα/α--)	Ifediba et al., 1985	NF-77	NR	Variably reduced	
	Luzzi et al., 1991	IT	NR	Normal	
	Bunyaratvej et al., 1992	K1	Reduced	NR	
	Williams et al., 2002	A4U	Normal	Normal	
HbH disease (α/α-)	Ifediba et al., 1985	NF-77	Reduced	Reduced	
	Brockelman et al., 1987	T9/94	NR	Reduced	
	Chotivanich et al., 2002	TM267R, TAB106, TAM169, TAB183	Reduced	NR	
β-thalassemia minor	Friedman, 1979	FCR-3	NR	Normal	Growth significantly attenuated by cultivation at 30% O_2
	Brockelman et al., 1987	T9/94	NR	Reduced	
	Luzzi et al., 1991	IT	NR	Normal	
	Bunyaratvej et al., 1992	K1	Normal	NR	
HbSS	Friedman, 1978	FCR-3	NR	Normal	Growth significantly attenuated by cultivating HbAS and HbSS iRBCs at low O_2 tension
	Pasvol et al., 1978	Parasite isolates	Increased	Reduced	Invasion and growth rates reduced in HbSS iRBCs at low O_2 tension
	Pasvol, 1980	Parasite isolates	Increased	Reduced	Growth attenuated in HbSS iRBCs at low O_2 tension
	LaMonte et al., 2012	3D7	NR	Reduced	
HbAS	Friedman, 1978	FCR-3	NR	Normal	Growth significantly attenuated by cultivating HbAS iRBCs at low O_2 tension
	Pasvol et al., 1978	Parasite isolates	Normal	Reduced	Invasion and growth rates reduced in HbAS iRBCs at low O_2 tension
	Pasvol, 1980	Parasite isolates	Normal	Normal	Growth attenuated in HbAS iRBCs at low O_2 tension
	LaMonte et al., 2012	3D7	NR	Reduced	
HbCC	Friedman et al., 1979	FCR-3	NR	Reduced	
	Olson & Nagel, 1986	FCR-3	Normal	Reduced	Lysis of HbCC iRBCs was restricted, preventing merozoite egress
	Fairhurst et al., 2003	7G8, FCR-3, TM284, GB4, ITG, 3D7, Indochina, FCB	NR	Reduced	
HbAC	Friedman et al., 1979	FCR-3	NR	Normal	
	Olson & Nagel, 1986	FCR-3	Normal	Normal	
HbSC	Friedman et al., 1979	FCR-3	NR	Normal	Growth significantly attenuated by cultivating HbSC iRBCs at low O_2 tension
	Bunyaratvej et al., 1992	K1	Normal	NR	
been reported for HbH disease [14,16], β-thalassemia minor [16], HbSS [17,18], HbAS [17], HbCC [19–21], HbEE [22], HbAE [16], and HbF [23–26]. In addition to these positive findings, conflicting data have been reported from many of these investigations (see Table 2).

For HbS-containing RBCs specifically, several reports have implicated enhanced sickling of iRBCs as a mechanism of malaria protection. Luzzatto et al. [27] and Roth et al. [28] separately reported increased sickling of HbAS iRBCs at low oxygen tension compared to HbAA iRBCs. Similarly, Friedman [29] described comparable parasite growth rates in HbAS, HbAA, and HbSS RBCs at high oxygen tension (18%), but sickling and destruction of parasites in HbAS and HbSS RBCs at lower oxygen tensions (1%–5%) that more closely mimic the micro-aerophilic environment of post-capillary venules in vivo. Conversely, exposure of iRBCs with either α- or β-thalassemia traits to high oxygen tensions restricted parasite growth, suggesting a reduced ability to tolerate oxidative stress [24].

A recent study proposes a novel mechanism of *P. falciparum* growth inhibition in HbS-containing RBCs. Both HbAS and HbSS RBCs manifest host microRNA (miRNA) profiles that are distinct from those of HbAA RBCs [30,31]. Employing multiple independent approaches, LaMonte et al. [32] describe the translocation of several host RBC miRNAs into *P. falciparum* parasites, as well as the fusion of these human miRNAs with extant parasite mRNA transcripts to subsequently inhibit the translation of enzymes that are critical for parasite development. Specifically, the host miRNAs miR-451 and let-7i were significantly more abundant in HbAS and HbSS RBCs, and were associated with attenuated parasite growth in these cells. In addition, the inhibition of these two miRNAs by experimental transfection of RBCs with antisense oligonucleotides partially restored parasite growth. Downstream, miR-451 appears to fuse with transcripts of the regulatory subunit of the parasite’s cAMP-dependent protein kinase (PKA-R) to reduce its translation, thereby upregulating activity of its substrate PKA and ultimately disrupting multiple parasite developmental pathways. Thus, the aberrant miRNA profile of HbS-containing RBCs may modulate the intraerythrocytic maturation of *P. falciparum* in a way that restricts parasite growth.

Do Hemoglobinopathies Interfere with Intrinsic Pathogenic Mechanisms of *P. falciparum* Malaria?

Two major pathogenic phenotypes of iRBCs have been described: those that mediate binding of iRBCs to endothelial receptors (“cytoadherence”) [33] and those that mediate binding of iRBCs to uninfected RBCs (“rosetting”) [34,35].
adherence phenotypes are conferred by the expression of P. falciparum erythrocyte membrane protein 1 (PfEMP1) [36–38], a family of highly variant proteins that are concentrated in protuberant structures called “knobs” on the iRBC surface. Different PfEMP1 variants mediate the binding of iRBCs to microvascular endothelial cells (via CD36, ICAM-1, etc.) [39], placental syncytiotrophoblasts (via chondroitin sulfate A) [40,41], and uninfected RBCs (via complement receptor 1, A and B blood group antigens, and heparin sulfate-like antigens) [42–44]. Other pathogenic mechanisms that may be associated with disease include the production of cytokines in response to P. falciparum glycosylphosphatidylinositol (PGPI) [45] and parasite-derived uric acid [46], direct hemolysis due to parasite egress from RBCs, and PfEMP1-mediated suppression of inflammatory cytokines (discussed below) [47].

A series of investigations suggests that the weakening of cytoadherence interactions partially governs malaria protection by the hemoglobinopathies. Early studies by Udomsangphet et al. [48] described impaired rosetting and binding to human umbilical-vein endothelial cells by α- and β-thalassemic iRBCs, although many of these RBCs contained additional hemoglobin mutations that may have influenced this phenotype. Additionally, impaired rosetting and cytoadherence were not clearly associated with reductions in the levels of surface antigens implicated in binding interactions. Similarly, Fairhurst et al. [21] found that the density of PfEMP1-laden knobs was markedly lower on the surface of HbAC and HbCC iRBCs (compared to HbAA iRBCs) despite comparable total iRBC levels of knob-associated histidine-rich protein (KAHRP), a major parasite-produced component of knobs. Further investigation of this phenomenon found that HbAC and HbCC markedly impaired the binding of iRBCs to human microvascular endothelial cells (HMVECs) under both static and physiologic flow conditions [49]. Subsequent investigations also found significant reductions in the binding of HbAS iRBCs [50], HbF-containing iRBCs [51], and β-thalassemic iRBCs [52] to HMVECs. Taken together, these reports support a common pathway for reducing the pathogenicity of parasites infecting hemoglobinopathic RBCs, whereby aberrant surface expression of PfEMP1 attenuates the binding of iRBCs to host cells within microvesicles [53].

A recent study supports this candidate mechanism of malaria protection. Cyriklaff et al. [54] investigated the protein-trafficking network of the iRBC and demonstrated that the parasite remodels the RBC’s actin cytoskeleton to enable the export of parasite-derived proteins to knobs on the iRBC surface. In HbSC and HbCC iRBCs, this actin cytoskeleton is disrupted and the export of parasite proteins to surface knobs is relatively inhibited, possibly due to the inhibition of actin polymerization by hemichromes. These forms of oxidized, denatured hemoglobin are known to accumulate in HbS- and HbC-containing RBCs, thus providing a potential link between hemoglobin instability and abnormal PfEMP1/knob display. Further studies are needed to explore the impact of this phenomenon upon both in-vivo measures of parasite virulence—including PfEMP1 expression and iRBC binding to host cells—and in-vitro measures of malaria severity.

Do Hemoglobinopathies Impact the Innate Host Defense Responses to P. falciparum?

There is an emerging recognition of the impact of aberrant host responses in the pathogenesis of malaria, particularly severe falciparum malaria (reviewed in [55–57]). Studies of adjunctive interventions to modulate this response in humans have not yielded sustained successes [58], but experiments in murine models continue to demonstrate benefit [59], and new modalities remain under active investigation [59,60,61].

The innate host defense response encompasses myriad stereotypical pathways that are activated by microorganisms and orchestrated to mitigate insults while minimizing collateral toxicity (reviewed in [62]). Typically initiated by the recognition of pathogen-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs) on leukocytes, these responses subsequently progress through: 1) a pro-inflammatory phase marked by release of cytokines, activation of endothelial cells, and recruitment of circulating and locally resident immune effector cells; 2) a counter-regulatory phase in which tissue-protective molecules such as erythropoietin [63,64], heme oxygenase-1 (HO-1) [65,66], and angiotensin-1 [67] are deployed to limit inflammatory damage; and 3) a repair phase mediated by vascular- and tissue-specific stem cells [68,69]. These phases result from host and pathogen factors that collectively balance these pro-inflammatory and counter-regulatory responses.

In falciparum malaria, these innate immune responses are potently initiated through the activation of TLRs on leukocytes by both PGPI [70] and hemozoin (the product of heme polymerization) [71,72], as well as by microvascular inflammation caused by PfEMP1-mediated binding of iRBCs to endothelium (see above) [73]. In murine models, the outcome of malaria is sensitive to experimental manipulation of multiple host innate response molecules, such as tumor necrosis factor (TNF), interferon-γ [74], and erythropoietin [75], suggesting their role in mediating differential infection outcome. In human studies, severe malaria has been associated with increased angiotensin-2, decreased angiotensin-1, and decreased endothelial nitric oxide levels [76–78], and the upregulation of counter-regulatory molecules including HO-1 and erythropoietin [78–80].

Few studies have investigated the impact of hemoglobinopathies on these responses, though recent murine and human studies have shed light on a possible role for HO-1. Normally, HO-1 catalyzes and thus mitigates the cytotoxicity of free heme, which is released by the degradation of the RBC’s hemoglobin. Recent studies in murine models identified HO-1 as a protective counter-regulatory molecule in sepsis [81] and malaria [82,83]. In addition, a recent study by Cunningham et al. has demonstrated that when HO-1 is upregulated in response to hemolysis during murine Plasmodium infection, resistance to non-typhoidal Salmonella disease is abrogated [84]. In combining mouse models of human cerebral malaria and of human sickle-cell trait, Ferreira et al. [85] demonstrated that mice carrying RBCs with human HbS were protected from cerebral malaria. Furthermore, they provided evidence that this protection is associated with chronically elevated production of HO-1 and with reduced production of inflammatory cerebral chemokines during infection. However, the interpretation that HO-1 activity may mediate HbS-associated protection from malaria in mice is complicated by elegant recent work on severe malaria in humans [86]. In Gambian children, the association of HO-1 levels with severe malaria was variable, and HO-1 promoter polymorphisms that confer higher constitutive levels of HO-1 were associated with increased risk of severe malaria. These findings, gathered mostly from patients with HbAA, suggest that HO-1 may be either protective or deleterious across a wide spectrum of levels in vivo.

Despite the paucity of investigations of hemoglobinopathies and innate host defenses, a separate line of investigations of nitric oxide (NO) and severe malaria highlights the importance of interactions between iRBC and endothelium in the pathogenesis of severe malaria. As noted above, severe falciparum malaria is associated with low NO bioavailability [87,88], and a polymorphism in the
nitric oxide synthase 2 (NOS2) promoter—which increases NO production and is prevalent in Kenyan and Tanzanian children—was associated with substantial protection from severe malaria [99]. Data support diverse roles for NO in mediating parasite death [90] and in acquiring immune memory [91]. NO also manifests anti-inflammatory activity by reducing the expression of host receptors used by iRBCs to bind microvascular endothelial cells [92]. Indeed, the addition of NO to an *in vitro* model of endothelial binding downregulated the endothelial expression of ICAM-1 and VCAM-1, and attenuated the cytoadherence of iRBCs under flow conditions [93]. Thus, both hemoglobinopathies and increased NO production are associated with protection from severe malaria *in vivo*, and both are also associated with reduced binding of iRBCs to endothelium *in vitro*. These findings suggest that similar molecular phenomena—the disruption of iRBC–endothelium interactions—may also occur *in vivo*.

Do Hemoglobinopathies Enhance the Adaptive Immune Response to *P. falciparum*?

Evidence from field studies supports an association between several hemoglobinopathies, adaptive immunity, and protection from malaria [94,95], though investigations of these relationships are complicated by the absence of reliable correlates of immune protection.

A central role for antibodies in malaria immunity is suggested by the ability of polyclonal IgG from malaria-immune adults to clear parasitemias in children with malaria [96]. Several field studies have investigated differences in antigen seroreactivity in children with hemoglobinopathies. Cross-sectional studies of children with hemoglobinopathies in Nigeria [97], the Gambia [98], Cameroon [99], Gabon [100,101], and Burkina Faso [102] have yielded inconsistent results, with some demonstrating higher seroreactivity to specific or variant surface *P. falciparum* antigens of heterologous parasites in HbAS children, and others reporting no differences. These findings were explored by measuring seroreactivity to a panel of 491 *P. falciparum* proteins in Malian children before and after a well-defined malaria transmission season [103]; though IgG responses to antigens were enhanced after the transmission season, there were no qualitative or quantitative differences in antigen recognition between HbAx, HbAS, and HbAC children. Given the methodological strengths of this study and the broad spectrum of antigens investigated, it seems clear that these hemoglobinopathies do not generally enhance the acquisition of antibodies to *P. falciparum* antigens. It remains to be fully investigated whether they enhance IgG recognition of specific variants of PfEMP1 or other surface antigens that are known to play a role in malaria immunity.

Antibody-mediated phagocytosis of iRBCs is believed to be an important effector mechanism in protection from malaria. Investigations with normal RBCs have demonstrated that monocytes preferentially phagocytose iRBCs compared to uninfected RBCs, and that this preference is potentiated by the binding of IgG to iRBCs [104]. Additionally, polyclonal IgG from hyper-immune sera binds more avidly to both iRBCs and HbAS RBCs when incubated with iRBCs [105,106] and β-thalassemic iRBCs [105] compared to non-thalassemic iRBCs, suggesting that this mechanism may preferentially clear iRBCs harboring hemoglobin variants. Indeed, Ayi et al. [107] demonstrated that ring-parasitized HbAS, β-thalassemic, and HbH RBCs had higher levels of membrane-bound hemichromes, C3c fragments, and aggregated band 3 proteins, and were phagocytosed more readily than ring-parasitized HbAA RBCs. While these data suggest that hemoglobinopathies functionally enhance the clearance of iRBCs, the precise mechanism of this enhancement remains obscure, evidence for this role in parasite clearance by other hemoglobinopathies is lacking, and the correlation between this mechanism and protection from clinical disease has not been specifically investigated.

Multiple lines of evidence support the hypothesis that *P. falciparum* parasites interfere with the acquisition of immunologic memory responses that contribute to subsequent control of parasitemia (reviewed in [100]). Several mechanisms are supported by murine and human studies, including the depletion by circulating parasites of dendritic cells [109], parasite-specific CD4+ T cells [110,111], and memory B cells [112] by either soluble factors [111] or interactions between iRBCs and antigen-presenting cells [113]. It is unknown whether hemoglobinopathies impact the efficiency or magnitude of the cellular and molecular mechanisms that suppress immune memory directed at *P. falciparum* parasites.

An Integrated Hypothesis

In this review, we have artificially partitioned the evidence for diverse mechanisms of protection, but pathogenic pathways overlap substantially, and it is similarly likely that protective mechanisms *in vivo* also involve multiple pathways. As noted above, field evidence indicates that hemoglobinopathies do not impair parasite infection but instead attenuate malaria; this pattern suggests that protection from malaria syndromes is not mediated against the pre-erythrocytic stages of the *P. falciparum* life-cycle, immunologic memory responses that contribute to subsequent control of parasitemia (reviewed in [100]). Several mechanisms are supported by murine and human studies, including the depletion by circulating parasites of dendritic cells [109], parasite-specific CD4+ T cells [110,111], and memory B cells [112] by either soluble factors [111] or interactions between iRBCs and antigen-presenting cells [113]. It is unknown whether hemoglobinopathies impact the efficiency or magnitude of the cellular and molecular mechanisms that suppress immune memory directed at *P. falciparum* parasites.

Box 1. Questions for future translational investigations

1. Do microRNAs impact the maturation of parasites in HbC, HbE, α-thalassemic, or HbF RBCs? Is their profile or impact in HbAS RBCs modified by the presence of α-globin deletions?
2. Does microRNA manipulation of HbS-containing iRBCs impact their ability to cytoadhere to human microvascular endothelial cells or rosette with uninfected RBCs?
3. How does the presence of α-thalassemia modify the effects of HbS, HbC, or HbE on parasite growth, maturation, microvascular adhesion, or endothelial cell activation?
4. Do hemoglobinopathies quantitatively or qualitatively restrict the expression of specific variants of PfEMP1?
5. Does reduced binding to human endothelial cells *in vitro* correlate with reductions in markers of endothelial activation *in vivo*?
6. How do other malaria-protective polymorphisms, such as type O blood group antigen and glucose-6-phosphate dehydrogenase (G6PD) deficiency, interact with co-inherited hemoglobinopathies in mitigating pathogenesis?
7. How do hemoglobinopathies impact the resting endogenous levels of angiopoietin-1, angiopoietin-2, and heme oxygenase-1?
8. Do hemoglobinopathies augment cell-mediated immunity to *P. falciparum* antigens?
9. Do hemoglobinopathies quantitatively or qualitatively enhance the acquisition of antibodies to specific variants or domains of PfEMP1?
10. Do hemoglobinopathies impair the mechanisms by which the iRBC and the parasite interfere with the acquisition of immune memory?
and that hemoglobinopathies may influence the transition from parasite infection to disease. Embroidering the positive and negative evidence summarized above suggests a model of malaria protection in which hemoglobinopathies impair the parasite’s trafficking of PfEMP1 and other knobs. PfEMP1 is a parasite surface knob, possibly due to the association of hemoglobinopathies with elevated hemichrome levels [49,54]. Abnormal PfEMP1/knob display weakens the molecular interactions involved in the cytoadherence [49] and rosetting [48,49] of iRBCs in microvessels. The attenuation of these host-parasite interactions not only mitigates microvascular obstruction and ischemia, but also impairs the activation of endothelial cells and limits the elaboration of inflammatory mediators including TNF [114]. Additionally, given the role of PfEMP1 in downregulating the release of pro-inflammatory cytokines like IL-12 [113] and IFN-γ [47] from PBMCs, abnormal PfEMP1/knob display may inhibit the parasite’s ability to blunt both innate and adaptive immune responses. Finally, this attenuation of host-cell coupling, coupled with mechanisms of parasite growth restriction in hemoglobinopathic iRBCs, may be involved in prolonging the asymptomatic phase of parasitemia. This delay in developing symptoms (and thus delay in seeking antimarial treatment) may offer a greater amount of time for erythrocytic-stage antigens and markers of RBC senescence to be exposed to the immune system, thereby enhancing both the acquisition and maintenance of the adaptive and memory immune responses that ultimately protect individuals from developing the deadliest complications of P. falciparum infection. This model is based upon currently available data largely obtained from in-vivo experimental and in-vivo animal model studies, and most commonly for HbAS and Ψ-thalassemia. Clearly, many opportunities exist to interrogate these phenomena in translational studies involving human populations that carry diverse hemoglobinopathies (Box 1).

Conclusions

In the spirit of Alexander, we propose that hemoglobinopathies may be nature’s “Alexandrian solution” to the problem of understanding fundamental aspects of falciparum malaria. This bold slice through the Gordian knot of malaria pathogenesis represents a unique opportunity to isolate and identify the molecular correlates of falciparum malaria pathogenesis in humans in vivo, and to translate these findings into future interventions to prevent, treat, and eliminate this ancient and intractable scourge.

References

1. Yenne B (2010) Alexander the Great: lessons from history’s undefeated general. New York, Palgrave Macmillan.
2. World Health Organization (2012) World malaria report: 2012. Available: http://www.who.int/malaria/publications/world_malaria_report_2012/en/ molex.html. Accessed 19 March 2013.
3. Bejon P, Lusingu J, Obita A, Leach A, Lievens M, et al. (2008) Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age. N Engl J Med 359: 2521–2532.
4. The RTS,S Clinical Trials Partnership (2011) First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N Engl J Med 365: 1863–1875.
5. O’Meara WP, Bejon P, Mwangi TW, Okiro EA, Peshu N, et al. (2008) Effect of a fall in malaria transmission on morbidity and mortality in Kilifi, Kenya. Lancet 372: 1555–1560.
6. Miller LH, Baruch DI, Marsh K, Dahaoum OK (2002) The pathogenic basis of malaria. Nature 415: 673–679.
7. Amarantunga C, Loper-Nansanat T, Cao Y, Aitken EN, Konno KE, et al. (2010) Invasion and growth of Plasmodium falciparum in human erythrocytes infected with abnormal hemoglobins and relation with susceptibility to Plasmodium falciparum invasion. Blood 116: 2460–2465.
8. Haldane JB (1949) The rate of mutation of human genes. Heredity 35: 267–273.
9. Weatherhall DJ, Provan AB (2000) Red cells I: inherited anaemias. Lancet 355: 1169–1173.
10. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193: 675–675.
11. Haynes JD, Diggis CL, Hines FA, Desjardins RE (1976) Culture of human malaria parasites Plasmodium falciparum. Nature 263: 767–769.
12. Bunnarajtev A, Buthpe P, Sae-Ung N, Fucharoen S, Yuwavong Y (1992) Reduced deformability of thalassemic erythrocytes and erythrocytes with abnormal hemoglobin and relation with susceptibility to Plasmodium falciparum invasion. Blood 79: 2460–2465.
13. hodgins TC, Stern A, Ibrahim A, Rieder RF (1985) Plasmodium falciparum in vitro diminished growth in human H disease erythrocytes. Blood 65: 452–455.
14. Chotivanich K, Udomsangruek P, Pattapanayakun K, Chierakul W, Simpson J, et al. (2002) Hemoglobin E: a balanced polymorphism protective against high parasitaemias and thus severe P. falciparum malaria. Blood 100: 1172–1176.
15. Brockelman CR, Wongsattayanont B, Tan-ariya P, Fucharoen S (1987) Reduced deformability of thalassemic erythrocytes and erythrocytes with abnormal hemoglobin and relation with susceptibility to Plasmodium falciparum invasion. Blood 79: 2460–2465.
16. Wilson RJ, Pasvol G, Weatherall DJ (1977) Invasion and growth of Plasmodium falciparum in different types of human erythrocyte. Bull World Health Organ 55: 179–186.
17. Luzzatto L, Nwecha-Jarrett ES, Reddy S (1970) Increased sickling of parasitised erythrocytes as mechanism of resistance against malaria in the sickle-cell trait. Lancet 1: 319–321.
18. Roth EF, Jr., Friedman M, Ueda Y, Teller I, Trager W, et al. (1978) Sickle cells of human AS red cells infected in vitro with Plasmodium falciparum malaria. Science 202: 650–652.
19. Friedman MJ (1979) Oxidant damage mediates variant red cell resistance to malaria. Nature 282: 245–247.
20. Friedman MJ, Passmore DJ (1976) The role of hemoglobins in malaria. Nature 260: 171–173.
21. Wilson RJ, Pasvol G, Weatherall DJ (1975) A review of the pathogenesis of falciparum malaria in humans. Nature 250: 245–247.
22. Pasvol G, Weatherall DJ, Wilson RJ, Smith DH, Gilles HM (1976) Fetal haemoglobin and malaria. Lancet 1: 1269–1272.
23. Pasvol G, Weatherall DJ, Wilson RJ (1977) Effects of beta haemoglobin on susceptibility of red cells to Plasmodium falciparum. Nature 270: 171–173.
24. Friedman MJ (1979) Oxidant damage mediates variant red cell resistance to malaria. Nature 282: 245–247.
25. Friedman MJ (1978) Erythrocytic mechanism of sickle cell resistance to malaria. Proc Natl Acad Sci U S A 75: 1994–1997.
26. Chen SY, Wang Y, Telen MJ, Chi JT (2008) The genomic analysis of erythrocyte microRNA expression in sickle cell disease. PLoS One 3: e2360. doi:10.1371/journal.pone.0002360
27. Sanglokaya C, Telen MJ, Chi JT (2010) microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 116: 4338–4348.
28. Lamotte J, Phillip N, Reardon J, Lacomia JR, Majoros W, et al. (2012) Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 12: 187–199.
29. Baruch DI, Gornely JA, Ma C, Howard RJ, Padoske BL (1996) Plasmodium falciparum erythrocyte membrane protein 1 is a paracrythocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1. Proc Natl Acad Sci U S A 93: 3497–3502.
30. Carlsen J, Helmy H, Hill AV, Brewster D, Greenwood BM, et al. (1990) Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet 336: 1457–1460.
31. Kaul DK, Roth EF, Jr., Nagel RL, Howard RJ, Handunnetti SM (1992) Rosetting of Plasmodium falciparum-infected red blood cells with uninfected red blood cells enhances microvascular obstruction under flow conditions. Blood 78: 812–819.
32. Su XZ, Hwang J, Guinette SV, Herreiter F, Herrfeldt JA, et al. (1995) The large diverse gene family var encodes proteins involved in cytoadherence.

PLOS Pathogens | www.plospathogens.org 8 May 2013 | Volume 9 | Issue 5 | e1003327
and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82: 89–100.

37. Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, et al. (1995) Switches in expression of Plasmodium falciparum var genes correlate with changes in parasitemia and cytoadherent phenotypes of infected erythrocytes. Cell 82: 101–110.

38. Baruch DI, Paskoske BL, Singh HB, Bi X, Ma XC, et al. (1995) Cloning the P. falciparum gene encoding PEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82: 77–87.

39. Rassool-Saareen C, Karlsson CA, Lopera-Mesa TM, Grau GE (1993) Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 80: 3192–3193.

40. Fried M, Duffy PE (1996) Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272: 1502–1504.

41. Salanti A, Staaböe T, Lavstsen T, Jensen AT, Søs MP, et al. (2003) selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol 49: 179–191.

42. Rowe JA, Mould J, Newbold CI, Miller LH (1997) P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 388: 292–295.

43. Carlson J, Wahlgren M (1992) Plasmodium falciparum erythrocyte rosetting is mediated by promiscuous lectin-like interactions. J Exp Med 176: 1311–1317.

44. Chen Q, Barragan A, Fernandez V, Sunndonstrom A, Schliederle M, et al. (1998) Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med 187: 15–26.

45. Schofield L, Hackett F (1993) Signal transduction in host cells by a glycosphingomyelinase toxin of malaria parasites. J Exp Med 174: 145–153.

46. Lopera-Mesa TM, Mita-Mendoza NK, van de Hoef DL, Doumbia S, Konate NH, et al. (2012) Plasma Uric Acid Levels Correlate with Inflammation and Disease Severity in Malian Children with Plasmodium falciparum Malaria. PLoS One 7: e1002579. doi:10.1371/journal.pone.1002579

47. Cholera R, Brittain NJ, Gillrie MR, Lopera-Mesa TM, Diakite SA, et al. (2008) A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Med 15: 235–241.

48. Udomsangpetch R, Sueblinvong T, Pattanapanyasat K, Dharmkrong-at A, Rattanastatasiri P, et al. (2007) Serum angiopoietin-1 and -2 levels of erythropoietin are associated with protection against neurological sequelae in African children with cerebral malaria. Proc Natl Acad Sci U S A 105: 10435–10440.

49. Fairhurst RM, Baruch DI, Brittain NJ, Ostera GR, Wallach JS, et al. (2005) Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am J Pathol 165: 1045–1053.

50. Cholera R, Higgs S, Liles WC, Kain KC (2011) Endothelial activation and dysregulation in malaria: a potential target for novel therapeutics. Curr Opin Hematol 18: 177–183.

51. Koh SH, Noh MY, Cho GW, Kim KS, Kim SH (2009) Erythropoietin increases the motility of human bone marrow-multipotent stromal cells hBM-MSCs) and enhances the production of neurotrophic factors from hBM-MSCs. Stem Cells Dev 18: 411–421.

52. Schelbert AH, Eckert RL, Lopera-Mesa TM, Baker ME, Konate NH, et al. (2010) Neuroprotective effect of recombinant human erythropoietin on brain damage in cerebral malaria. PLoS Pathog 6: e1000974. doi:10.1371/journal.ppat.1000974

53. Pickup D, de Souza JB, Riley EM (2012) Malaria impairs innate immunity. Expert Rev Anti Infect Ther 8: 997–1008.

54. Achtman AH, Pilat S, Law CW, Lynn DJ, Janot L, et al. (2012) Effective induction of proinflammatory responses in macrophages by the glycosphingolipid trisaccharides of Plasmodium falciparum: cell signaling receptors, glycosphingolipid function, GPI structural requirement, and regulation of GPI activity. J Biol Chem 287: 6066–6066.

55. Hunt NH, Grau GE (2003) Cytokines: accelerators and brakes in the pathogenesis of malaria. J Infect Dis 187: 153–162.

56. Clark IA, Alleva LM, Mills AC, Cowden WB (2004) Pathogenesis of malaria. Clin Microbiol Rev 17: 1053–1062.

57. Parroche P, Laum WN, Goutagny N, Zemt E, Monks BG, et al. (2007) Malaria hemoglobin is immunologically inert but radically enhances innate immune responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci U S A 104: 1919–1924.

58. Tripathi AK, Sha W, Shalvev S, Sims MF, Sullivan DJ, Jr. (2009) Plasmodium falciparum-infected erythrocytes induce NF-kappab regulated inflammatory pathways in human endothelial cell. Blood 114: 4243–4252.

59. Gupta S, Arie T, Brittain NJ, Gillrie MR, Konate NH, et al. (2007) Serum angiopoietin-1 and -2 levels discriminate cerebral malaria from uncomplicated malaria and predict clinical outcome in African children. PLoS One 2: e4912. doi:10.1371/journal.pone.0004912

60. Pelosi A, Proietti F, Marzorati M, Negri M, Lopera-Mesa TM, et al. (2012) MSCs) and enhances the production of neurotrophic factors from hBM-MSCs. Stem Cells Dev 18: 411–421.

61. Tjipapata AS, Sha W, Shalvev S, Sims MF, Sullivan DJ, Jr. (2009) Plasmodium falciparum-infected erythrocytes induce NF-kappab regulated inflammatory pathway in human endothelial cell. Blood 114: 4243–4252.

62. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, et al. (2001) Abnormal display of PfEMP-1 on erythrocytes carrying haemoglobin C may mediate its preferential sequestration in the brain in falciparum malaria. J Infect Dis 184: 1077–1082.

63. Villa P, Bigini P, Mennini T, Agenello D, Laragione T, et al. (2003) Erythropoietin selectively attenuates cytokine production and inflammation in cerebral malaria by targeting neuronal apoptosis. J Exp Med 198: 971–975.

64. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, et al. (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A 98: 4044–4049.

65. Fried MA, Eggert A, Boereman OC, Oyen WJ, Verhofstadt A, et al. (2001) Epo is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 98: 1002–1011.

66. Kapturczak MH, Wasserfall C, Buki T, Campbell-Thompson M, Ellis TM, et al. (2004) Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am J Pathol 165: 1045–1053.

67. Kam AU, Higgs S, Liles WC, Kain KC (2011) Endothelial activation and dysregulation in malaria: a potential target for novel therapeutics. Curr Opin Hematol 18: 177–183.

68. Koh SH, Noh MY, Cho GW, Kim KS, Kim SH (2009) Erythropoietin increases the motility of human bone marrow-multipotent stromal cells (hBM-MSCs) and enhances the production of neurotrophic factors from hBM-MSCs. Stem Cells Dev 18: 411–421.

69. Wirawan M, Yilmaz O, Coleman T, Tjandra N, et al. (2007) Heme oxygenase-1 affords protection against noncerebral forms of severe malaria. Science 318: 1502–1504.
100. Luty AJ, Ulbert S, Lell B, Lehman L, Schmidt-Ott R, et al. (2000) Antibody
99. Le Hesran JY, Personne I, Personne P, Fievet N, Dubois B, et al. (1999)
98. Allen SJ, Bennett S, Riley EM, Rowe PA, Jakobsen PH, et al. (1992) Morbidity
97. Cornille-Brogger R, Fleming AF, Kagan I, Matsushima T, Molineaux L (1979)
96. Cohen S, Mc GI, Carrington S (1961) Gamma-globulin and acquired
95. Gong L, Maiteki-Sebuguzi C, Rosenthal PJ, Hubbard AE, Drakeley CJ, et al.
94. Williams TN, Mwangi TW, Roberts DJ, Alexander ND, Weatherall DJ, et al.
93. Serirom S, Raharjo WH, Chotivanich K, Loareesuwan S, Kubes P, et al.
92. De Caterina R, Libby P, Peng HB, Thamneckal VJ, Rajavashisth TB, et al.
91. Rockett KA, Awburn MM, Rockett EJ, Cowden WB, Clark IA (1994) Possible
90. Rockett KA, Awburn MM, Rockett EJ, Cowden WB, Clark IA (1991) Killing of
89. Hobbs MR, Udhayakumar V, Levesque MC, Booth J, Roberts JM, et al. (2002)
88. Yeo TW, Lampah DA, Gitawati R, Tjitra E, Kenangalem E, et al. (2007)
87. Lopansri BK, Anstey NM, Weinberg JB, Stoddard GJ, Hobbs MR, et al. (2003)
86. Leazes MC, Sugimoto M, Tadros ME, Cerretti DH, Wang C, et al. (1998)
85. Cornuelle-Brogger R, Fleury AF, Kagan I, Matsushima T, Molineaux I (1979)
84. Cohen S, Mc GI, Carrington S (1961) Gamma-globulin and acquired
83. Cornuelle-Brogger R, Fleury AF, Kagan I, Matsushima T, Molineaux I (1979)
82. Lopansri BK, Anstey NM, Stoddard GJ, Hobbs MR, et al. (2003) Low plasma
81. Allen SJ, Bennett S, Riley EM, Rowe PA, Jakobsen PH, et al. (1992) Morbidity
80. Rockett KA, Awburn MM, Rockett EJ, Cowden WB, Clark IA (1994) Possible
79. De Caterina R, Libby P, Peng HB, Thamneckal VJ, Rajavashisth TB, et al.
78. Lopansri BK, Anstey NM, Weinberg JB, Stoddard GJ, Hobbs MR, et al. (2003)
77. Leazes MC, Sugimoto M, Tadros ME, Cerretti DH, Wang C, et al. (1998)
76.זכיר suk, theo, rhino, mg, helen, l. smith, it, et al. (2000) Antibody
75. Rockett KA, Awburn MM, Rockett EJ, Cowden WB, Clark IA (1994) Possible
74. de couron, b, raharjo, ih, chote, k, loareesuwan, s, kubes, p, et al. (2002)
73. Leazes MC, Sugimoto M, Tadros ME, Cerretti DH, Wang C, et al. (1998)
72. Lopansri BK, Anstey NM, Weinberg JB, Stoddard GJ, Hobbs MR, et al. (2003)
71. Allen SJ, Bennett S, Riley EM, Rowe PA, Jakobsen PH, et al. (1992) Morbidity
70. Rockett KA, Awburn MM, Rockett EJ, Cowden WB, Clark IA (1994) Possible
69. de couron, b, raharjo, ih, chote, k, loareesuwan, s, kubes, p, et al. (2002)
68. Lopansri BK, Anstey NM, Weinberg JB, Stoddard GJ, Hobbs MR, et al. (2003)
67. Allen SJ, Bennett S, Riley EM, Rowe PA, Jakobsen PH, et al. (1992) Morbidity
66. Rockett KA, Awburn MM, Rockett EJ, Cowden WB, Clark IA (1994) Possible
65. Dehner, b, raharjo, ih, chote, k, loareesuwan, s, kubes, p, et al. (2002)
64. Leazes MC, Sugimoto M, Tadros ME, Cerretti DH, Wang C, et al. (1998)
63. de couron, b, raharjo, ih, chote, k, loareesuwan, s, kubes, p, et al. (2002)
62. Lopansri BK, Anstey NM, Weinberg JB, Stoddard GJ, Hobbs MR, et al. (2003)
61. Allen SJ, Bennett S, Riley EM, Rowe PA, Jakobsen PH, et al. (1992) Morbidity
60. Rockett KA, Awburn MM, Rockett EJ, Cowden WB, Clark IA (1994) Possible
59. Dehner, b, raharjo, ih, chote, k, loareesuwan, s, kubes, p, et al. (2002)
58. Lopansri BK, Anstey NM, Weinberg JB, Stoddard GJ, Hobbs MR, et al. (2003)