Keywords: Arabidopsis; Decontamination; Nanosilver; Plant in vitro culture; Potato; Tomato

Abstract

Plant tissue culture is a basic and fundamental component of plant biotechnology, and progress in different fields of biotechnology greatly depends on the improvement of this technique. Nowadays, nanomaterials especially Nanosilver (NS), are regularly being used as an antimicrobial agent in medical and environmental fields. In order to assay the efficiency of NS in sterilizing plant seeds and fragile tissues, such as leaf and cotyledon, two important model plants, Arabidopsis and tomato, as well as potato as an important cultivated crop, were used as explants in this study. Briefly, samples soaked in different concentrations of NS with various exposure times, and then transferred onto the MS medium. Results showed that at lower concentrations, NS could function as an antimicrobial agent with no side effect on the explant viability, and consequently, all decontaminated seeds germinated, and leaf and cotyledon explants survived.

Introduction

Currently, plant tissue culture has direct commercial importance, and its application in basic research such as cell biology, genetics, biochemistry and biotechnology is evidence for its usefulness [1]. Tissue culture not only provides a method for mass propagation, but also makes possible the production of disease-free and genetically modified plants. It also provides a way for secondary metabolite production [2,3]. Despite all advantages of this technique, some methodological obstacles, mainly contamination of explants, hinders its exploiting as an efficient technique for biotechnological research. By the way, internal and external contamination of plant tissues turns out to be a prevailing problem, because microorganisms, mostly fungi and bacteria, can grow much faster than plant cells and take up all the nutrients, preventing the plants from growing [4].

Although there are a variety of techniques to minimize the possibility of bacterial and fungal contaminations during in vitro propagation, such as meristem culture (the pathogen-free part of the plant) and repetitive subcultures, designing a more efficient approach to sterilize plant tissues still seems necessary to eliminate labor intensive trial and errors, and time-consuming decontamination procedures. In order to eliminate the persistent fungal and bacterial contaminations, treatment with antibiotics and antifungal agents may be used to lessen the contamination; whereas it has been reported that antibiotics are normally phytotoxic, and have an inhibitory effect on multiplication, callus induction, regeneration, and explant survival [5,6]. On the other hand, lack of an optimal protocol for sterilization of field-, orchard- or greenhouse-derived (ex vitro) explants may result in a paucity of samples for further research.

The antimicrobial effects of silver against a broad range of microorganisms have been noticed since ancient times, and nowadays, silver nanoparticles having a very small size down to 1 nm, have numerous medical and pharmaceutical applications [7-10]. At nanoscale, silver exhibits surprisingly unusual physical, chemical and biological properties. Excellent functional durability, heat resistance, ease of application, wide range of utility, leaving no resistant bacteria, being environmental friendly and non-toxic, wide range of anti-microbial spectrum, cost-effective manufacturing process and availability, are the significant characteristics of NS [7,11].

In contrast to the attention paid to new applications of NS in medicine, only negligible studies remarked the application of NS in plant biotechnology. Therefore, because of the importance of plant cell and tissue culture, and to tackle the problems such as contamination as a dominant barrier in plant tissue culture, in this research, we have evaluated the decontaminating efficiency of silver nanoparticles on in vitro-derived explants.

In a recent research, using nanosilver has been reported to be an efficient method for decontamination of valerian explants; however, a complete decontamination was never obtained [12]. So, this is the first report in which a complete decontamination has been achieved through NS treatment.

Materials and Methods

To evaluate the efficiency of NS in sterilizing plant seeds and tissues, explants from Arabidopsis thaliana cv. Col-0 and tomato (Lycopersicon esculentum cv. Micro-Tom), as well as potato (Solanum tuberosum), as an important cultivated crop were used in this study. The NS used in this research was Nanocid L-2000 (Nanoshad Co., Tehran, Iran), whose properties has been shown in table 1. Different concentrations of NS were used (100, 250, 500, 1000 and 2000 ppm), as well as five exposure times (5, 10, 20, 30 and 60 min). Each of 25 treatments was carried...
out in a petri plate, with at least 30 seeds of Arabidopsis as replicates and two petri plates as control, in which no NS was used. To evaluate the effect of NS on seeds, the percentages of germinated seeds were calculated. In the other experiment, tomato cv. Micro-Tom leaves were collected from ex vitro plants. Cotyledons of greenhouse grown tomato cv. Micro-Tom were treated with NS at different concentrations, ranging from 10, 100, 250 and 500 ppm for different periods (i.e. 5, 10, 20 min), with four replicates. The cotyledons treated in sterile distilled water were used as control. After treatment, the cotyledons and seeds of control and experimental samples were thoroughly washed in sterile distilled water, then placed on MS medium [13], containing 0.8% agar. The controls were all contaminated when the samples diminished (Table 3). At this concentration, when the concentration of the solutions examined after two weeks. However, the concentration of the solutions was a critical parameter. When NS was used at lower concentrations of 100 ppm for Arabidopsis seeds, it could function as an antimicrobial agent leaving no harmful effect on seeds and their germination, so that all were germinated. It has been illustrated that the toxicity of NS to microbial cells is apparent even at very low concentrations [19]. Increasing the concentration of NS decreased the germination percentage of the seeds, and finally in the concentrations of 1000 and 2000 ppm, none of the seeds were germinated (Table 2). Treating explants with 10 ppm NS was not effective in their decontamination.

We obtained similar results with the seeds of rapeseed plant, with the concentration of 150 ppm. It seems that at higher concentrations, NS is toxic for plant seeds and hampers seed germination. The same results obtained from potato leaves, so that NS in all exploited concentrations and exposure times was able to decontaminate the leaf explants; however, at the concentration of 500 ppm survival of the samples diminished (Table 3). At this concentration, when the exposure time reached 20 minutes, none of the explants survived.

In the experiment of tomato cotyledons, efficient decontamination of cotyledons occurred with all three concentrations of NS in three exposure times, while complete survival was observed only at lower concentrations and exposure times. The survival decreased with increasing the factor levels, and finally at 2.5 and 5 min, all explants died (Table 4).

As a matter of fact, providing enough sterile fast growing explants

Time (min)	NS concentration (ppm)	Arabidopsis seed Decontaminated (%)	Survived* (%)
Control	0	100	
5	100	99 ± 1	
	250	100	
	500	99 ± 0.5	
	1000	98 ± 0.8	
10	100	99 ± 0.4	
	250	97 ± 1.2	
	500	96 ± 2.1	
	1000	98 ± 1.0	
20	100	99 ± 0.9	
	250	97 ± 1.3	
	500	1 ± 0.2	
	1000	1.3 ± 0.3	
	2000	0	
30	100	100	
	250	100	
	500	100	
	1000	100	
60	100	100	
	250	100	
	500	100	
	1000	100	
	2000	100	

*mean ± standard deviation

Table 2: The effect of different concentrations and exposures of NS on Arabidopsis

Table 1: The properties of NS (Nanocid L-2000) used in this study.
Nano-Ag can also disturb the integrity of the plasma membrane processes are also recorded as antimicrobial actions of NS [20,23-damaging bacterial cell envelopes, interaction with hydrogen bonding dependent Na transport in membrane, inhibition of cell division and leakage through membrane, discharging K groups can inactivate vital cell surface enzymes and hinder the cell membrane [8,20-22]. The formation of complexes with sulfhydryl with electron transport, binding to DNA, and interaction with the distinguished, three possible mechanisms have been proposed for cells. Although the inhibitory mechanism of NS is not obviously with a number of components of bacterial, fungal and protozoal similar research by Abdi et al. [12].

Table 4: The effect of different concentrations and exposures of NS on tomato cotyledons.

Time (min)	Concentration (ppm)	Tomato cotyledon	Decontaminated (%)	Survived (%)
1	25	98 ± 1.9	100	
50	99 ± 0.7	99 ± 0.9		
100	69 ± 4.6	99 ± 0.5		
2.5	25	97 ± 2.3	97 ± 2.1	
50	98 ± 1.8	99 ± 0.5		
100	100	0		
5	25	100	65 ± 3.3	
50	100	32 ± 5.5		
100	100	0		

The possible mechanism through which NS acts as a disinfectant agent in this process may lie on the properties of silver. Ag ions interact with a number of components of bacterial, fungal and protozoal cells. Although the inhibitory mechanism of NS is not obviously distinguished, three possible mechanisms have been proposed for inhibition of microorganisms by silver nanoparticles: interfering with electron transport, binding to DNA, and interaction with the cell membrane [8,20-22]. The formation of complexes with sulfhydryl groups can inactivate vital cell surface enzymes and hinder the respiration at the cell membrane [8,20]. Inducing a massive proton leakage through membrane, discharging K+ ions, inhibition of energy-dependent Na transport in membrane, inhibition of cell division and damaging bacterial cell envelopes, interaction with hydrogen bonding processes are also recorded as antimicrobial actions of NS [20,23-25]. Nano-Ag can also disturb the integrity of the plasma membrane of fungal cell [26]. The association of silver nanoparticles with the envelope of certain viruses has been suggested to prevent them from being infective [10].

It can be concluded that a colloidal solution of NS at lower concentrations (e.g. 100 ppm) can be used as a disinfectant for plant seeds, especially in *in vitro* cultures; however, at high concentrations, it hinders seed germination, maybe due to its toxicity against eukaryotic cells. In tomato plant, use of NS at more than 100 ppm could decontaminate *ex vitro* leaves.

Although the cytotoxicity of nanoparticles towards mammalian germ line stem cells has been identified, the effect of NS on plant growth is still unknown, and only few studies have been reported [7,27,28]. It is reported that the treated meristem cells showed various types of chromosomal and mitotic abnormalities, such as fragments, C-metaphase, stickiness, laggard, anaphasic bridge, and disturbed anaphase [29]. These abnormalities were observed in a dose and duration dependent manner. So, nanosilver may cause potential damage to the genetic material in higher concentration, and therefore, the use of nanosilver in plant cell culture warrants a detail toxicological investigation to justify its safety. Unique interactions with bacteria and viruses have been demonstrated of silver nanoparticles of certain size ranges and shapes [7].

Table 3: The effect of different concentrations and exposures of NS on potato leaves.

Time (min)	Concentration (ppm)	Potato leaf	Decontaminated (%)	Survived (%)
5	10	0	0	
100	100	100	100	
250	100	100	100	
500	100	74 ± 3		
10	10	0	0	
100	100	100	100	
250	100	100	100	
500	100	70 ± 5		
20	10	0	0	
100	100	100	100	
250	100	65 ± 9		
500	100	0		

Acknowledgments

The authors would like to acknowledge the Nano Nasb Pars Company (Tehran, Iran), for providing NS, and Plant tissue culture lab Head, Dr. Motallebi-Azar, for providing lab facilities and space.

References

1. Gamborg OL (2002) Plant tissue culture: Biotechnology Milestones. In: *In Vitro Cell Dev Biol Plant* 38: 84-92.
2. Khosroushahi AY, Valizadeh M, Ghasempour A, Khosrowshahi M, Naghdbadi H, et al. (2008) Improved Taxol production by combination of inducing factors in suspension cell culture of *Taxus baccata*. Cell Biol Int 30: 262-269.
3. Murashige T (1974) Plant propagation through tissue cultures. Ann Rev Plant Physiol 25: 135-156.
4. Cassells AC (1991) Problems in tissue culture: Culture contamination. In: Micropropagation: technology and application (Eds. Debergh PC and Zimmerman RH), Springer.
5. Leffert C, Camotta H, Waits WM (1992) Effect of combinations of antibiotics on micropropagated *Clematis*, *Delphinium*, *Hosta*, *Iris* and *Photinia*. Plant Cell Tissue Organ Cult 29: 153-160.
6. Tekeiirada Silva JA, Nhat DT, Tanaka M, Fukai S (2003) The effect of antibiotics on the *in vitro* growth response of *chrysanthemum* and *tobacco* stem transverse thin cell layers (ITCL5). SciTechnol 97: 397-410.
7. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176: 1-12.
8. Sondi I, Saldpek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on *E. coli* as a model for Gram-negative bacteria. J Colloid Interface Sci 275: 177-182.
9. Tiwari DK, Behari J, Seri P (2008) Application of nanoparticles in waste water treatment. World Appl Sci J 3: 417-433.
10. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, et al. (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology 3: 6.
11. Lansdown AB (2002) Silver: I. Its antibacterial properties and mechanism of action. J Wound Care 11: 125-130.

12. Abdi G, Salehi H, Khosh-Khui M (2008) Nano silver: A novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol Plant 30: 709-714.

13. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497.

14. Herman EB (1996) Microbial contamination of plant tissue cultures. Agritech Consultants Inc, Shrub Oak, USA.

15. Hussain S, Lane SD, Price DN (1994) A preliminary evaluation of the use of microbial culture filtrates for the control of contaminants in plant tissue culture systems. Plant Cell Tissue Organ Cult 36: 45-51.

16. Leifert C, Waites B, Keetley JW, Wright SM, Nicholas JR, et al. (1994) Effect of medium acidification on filamentous fungi, yeasts and bacterial contaminants in Delphinium tissue cultures. Plant Cell Tissue Organ Cult 42:149-155.

17. Nomiya K, Yoshizawa A, Tsukagoshi K, Kasuga NC, Hirakawa S, et al. (2004) Synthesis and structural characterization of silver (I), aluminium (III) and cobalt (II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver (I)-oxygen bonding complexes on the antimicrobial activities. J Inorg Biochem 98:46-60.

18. Sarmast MK, Salehi H, Khosh-Khui M (2011) Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R. Br. var. glauca explants. Acta Biol Hung 62: 477-484.

19. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zecilote and its comparison with that of silver nitrate. Appl Environ Microbiol 69: 4278-4281.

20. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, et al. (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74: 2171-2178.

21. Yakabe Y, Sano T, Ushio H, Yasumaga T (1980) Kinetic studies of the interaction between silver ion and deoxyribonucleic acid. Chem Lett 9: 373-376.

22. Baltarsh K (2004) Anomaly and correlation of killing in the therapeutic properties of silver (I) chelation with glutamic and tartaric acids. J Antimicrob Chemother 54: 546-548.

23. Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag (+) in Vibrio cholerae. AntimicrobAgents Chemother 46: 2668-2670.

24. Richards RM, Odelola HA, Anderson B (1984) Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios 39: 151-157.

25. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31: 351-370.

26. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, et al. (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22: 235-242.

27. Panyala NR, Pena-Mendez EM, Havel J (2008) Silver or silver nanoparticles: A hazardous threat to the environment and human health? J Appl Biomed 6: 117-129.

28. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88: 412-419.

29. Babu K, Deepa M, Shankar SG, Rai S (2008) Effect of nano-silver on cell division and mitotic chromosomes: A prefatory siren. Internet J Nanotechnol 2: 2.