Resectable pancreatic small cell carcinoma

Jordan M. Winter,1 Amol K. Narang,2 Aaron S. Mansfield,3 Joseph M. Herman,2 John L. Cameron,2 Dan Lalheru,1 Fred E. Eckhauser,1 Mathew T. Olson,4 Ralph H. Huban,4 Robert C. Miller,5 Dana K. Andersen1

1Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD;
2Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD;
3Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD;
4Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD;
5Department of Radiation Oncology, Mayo Clinic, Rochester, MN;
6Department of Oncology, Division of Hematology, Mayo Clinic, Rochester, MN, USA

Abstract

Primary pancreatic small cell carcinoma (SCC) is rare, with just over 30 cases reported in the literature. Only 7 of these patients underwent surgical resection with a median survival of 6 months. Prognosis of SCC is therefore considered to be poor, and the role of adjuvant therapy is uncertain. Here we report two institutions’ experience with resectable pancreatic SCC. Six patients with pancreatic SCC treated at the Johns Hopkins Hospital (4 patients) and the Mayo Clinic (2 patients) were identified from prospectively collected pancreatic cancer databases and re-reviewed by pathology. All six patients underwent a pancreaticoduodenectomy. Clinicopathologic data were analyzed, and the literature on pancreatic SCC was reviewed. Median age at diagnosis was 50 years (range 27-60). All six tumors arose in the head of the pancreas. Median tumor size was 3 cm, and all cases had positive lymph nodes except for one patient who only had five nodes sampled. There were no perioperative deaths and three patients had at least one postoperative complication. All six patients received adjuvant therapy, five of whom were given combined modality treatment with radiation, cisplatin, and etoposide. Median survival was 20 months with a range of 9-173 months. The patient who lived for 9 months received chemotherapy only, while the patient who lived for 173 months was given chemoradiation with cisplatin and etoposide and represents the longest reported survival time from pancreatic SCC to date. Pancreatic SCC is an extremely rare form of cancer with a poor prognosis. Patients in this surgical series showed favorable survival rates when compared to prior reports of both resected and unresectable SCC. Cisplatin and etoposide appears to be the preferred chemotherapy regimen, although its efficacy remains uncertain, as does the role of combined modality treatment with radiation.

Introduction

More than 42,000 cases of pancreatic cancer occur in the United States each year. The most common forms of pancreatic cancer in descending order of frequency are ductal adenocarcinoma, intraductal papillary mucinous neoplasms with invasive cancer, and well-differentiated neuroendocrine tumors. However, more than a dozen other rarer types have been described,1 many of which are biologically aggressive and present at an advanced stage. As imaging technology, chemotherapy, and access to health care improve, surgery will likely take on a more important role in the management of these rarer pancreatic cancer subtypes. Institutional series, reviews, and meta-analyses of these cancers are necessary so that surgeons and pathologists can identify them when encountered and render the appropriate diagnosis, prognosis, and treatment.

Small cell carcinoma (SCC) of the pancreas is an example of a rare pancreatic cancer, with just over 30 cases described in the literature. Most of the SCC literature to date focuses on small cell lung carcinoma (SCLC), which comprises 25% of all lung cancers.2 While 96% of small cell carcinomas originate in the lung,3 small cell carcinomas can arise from multiple sites in the body, including the gastrointestinal system, liver, lung, pharynx, paranasal sinuses, uterus, cervix, ovaries, bladder, and prostate. Furthermore peripanillary small cell carcinomas have been described in the duodenum,4 bile duct,4,44 ampulla of Vater,1 and pancreas.3 Historically considered an exocrine tumor, pancreatic SCC is now classified as a neuroendocrine carcinoma that can be distinguished from more common lower-grade pancreatic neuroendocrine tumors by its high mitotic rate (>20 mitoses per 10 high power fields), infiltrative pattern of growth, minimal cytoplasm, finely granular cytoplasm, and nuclear molding.44 We present the experience of two institutions, the Johns Hopkins Hospital and the Mayo Clinic, with resectable small cell carcinoma of the pancreas and provide an updated review of the literature, with a particular emphasis on resected pancreatic SCC.

Materials and Methods

This study was approved by the Institutional Review Boards of the Johns Hopkins Hospital, Baltimore and the Mayo Clinic, Rochester. At the Johns Hopkins Hospital, a prospectively collected pancreaticoduodenectomy database and the Department of Pathology patient database were queried for all surgical cases of pancreatic SCC. Between 1970 and 2007, of all patients undergoing a pancreaticoduodenectomy, four patients were identified with pancreatic SCC, representing 0.3% of all operable pancreatic cancer cases. At the Mayo Clinic, a prospectively collected database of all cases of pancreatic neoplasms was maintained from 1975 to 2005 through the Mayo Clinic Tumor Registry and updated through a retrospective chart review. There were 3,694 patients with ductal adenocarcinoma during this period, and 64 patients with other rare tumor types. Only two patients with resected pancreatic SCC were identified, representing 0.0065% of all pancreatic cancer cases seen at the Mayo Clinic. Baseline demographic, clinicopathologic, treatment, and long-term survival data were reviewed for each patient.

Key words: pancreas, small cell, carcinoma, resectable.

Correspondence: Jordan M. Winter, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA. E-mail: winterj@mshkcc.org

© Copyright J.M. Winter et al., 2011 License PAGEPress, Italy Rare Tumors 2011; 3:e5 doi:10.4081/rt.2011.e5
Results

There were six patients identified with SCC of the pancreas. Three of the six patients were male, and three of the patients were known smokers. Median age at diagnosis was 50 years (range 27-60 years). The most common presenting symptoms were abdominal pain (67%) and jaundice (67%). None of the patients died perioperatively, although three patients suffered postoperative complications, including two patients with wound infections, one of whom also experienced delayed gastric emptying, and a third patient with an intra-abdominal abscess requiring percutaneous drainage. Overall, the median length of hospital stay was 12 days (range 10-23). These data are summarized in Table 1. All six carcinomas originated in the head of the pancreas. One of the carcinomas directly extended into the duodenum, and another involved the portal vein. Median tumor diameter was 3 cm (range 3-4.5 cm). Lymph node metastases were identified in five patients, while the sixth patient only had five lymph nodes sampled and therefore may have been understaged. This patient was also the only one of the series to have positive resection margins. Three patients had microscopic vascular or perineural invasion. The pathology data are presented in Table 2.

All six patients are deceased. Median survival was 20 months (range 9-173 months). All six patients received adjuvant therapy, although the precise postoperative regimen is known only for the single patient treated adjuvantly at the Johns Hopkins Hospital. As first-line therapy, this individual received combined modality chemoradiation (50 Gy/2 Gy fraction) with concurrent cisplatin and etoposide. This patient’s cancer recurred in the liver seven months after surgery, and experimental palliative chemotherapy with a BCL-2 antagonist (obatoclax) and topotecan was given. Single-agent paclitaxel was used after the previous regimen was discontinued due to side effects, but disease progression continued in the liver, peritoneal cavity, and lungs. Of the remaining five patients, four received combined modality treatment with cisplatin, etoposide, and radiation therapy at other institutions. The remaining patient received neoadjuvant chemotherapy with 5-fluorouracil, Adriamycin, and mitomycin, after the cancer was initially deemed locally unresectable. While this patient was found to have positive resection margins, adjuvant radiation was not given, and it is unknown whether the patient received further adjuvant chemotherapy.

Discussion

Pancreatic SCC is now widely accepted as a high grade neuroendocrine carcinoma. Preoperatively, it is difficult to distinguish SCC from more common types of pancreatic cancers, because the lesions share similar clinical symptoms and features on imaging studies. Resectable pancreatic small cell carcinomas typically measure about 3 cm. On CT imaging, they are homogeneous, well-defined, hypoattenuated with minimal enhancement after intravenous contrast injection, and may be hypo- or hyperechoic on ultrasound (Figure 1).

Macropscopically, lesions appear grey-white in color and often contain areas of necrosis and hemorrhage. Microscopically, pancreatic SCC is indistinguishable from SCLC, consisting of sheets of discohesive, pleomorphic cells with scant cytoplasm and high mitotic activity (>20 mitoses per 10 high power fields). Apoptotic bodies and necrotic foci are usually widespread. The nuclei have hyperchromatic, finely granular chromatin and either absent or small nucleoli (Figure 2). Nuclear molding is often prominent.

Neuroendocrine differentiation is supported by the presence of cytoplasmic membrane-bound granules on electron microscopy although in modern practice this workup is unnecessary as the neoplastic cells are also usually reactive to antibodies specific for neuroendocrine differentiation, such as synaptophysin, chromogranin A, and CD57. Occasionally, the neoplastic cells react with antibodies to neurofilaments. Immunohistochemical labeling for neuron-specific enolase (NSE) has been used to characterize small cell

Patient	Tumor diameter (cm)	Node status	Local invasion	Positive margin	Vascular invasion	Perineural invasion
1	3	NR	Portal vein	Yes	NR	NR
2	NR	NR	NR	No	No	No
3	NR	NR	NR	No	No	No
4	3	13/22	Common bile duct	No	Yes	No
5	3	10/23	Duodenal wall, bile duct	No	NR	Yes
6	4.5	2/17	None	No	Yes	Yes

NR, no record.

Table 1. Postoperative data.

Patient	Surgery year	Complication	Length of hospital stay (day)
1	1988	Wound infection	14
2	1989	None	NR
3	1991	None	NR
4	1996	None	10
5	2007	Abdominal abscess	10
6	2007	Delayed gastric emptying and wound infection	23

NR, no record.

Table 2. Pathologic data.

![Figure 1. (A) Small cell carcinoma of the pancreas, Gross. (B) Computed tomography scan, arterial phase.](image-url)
carcinomas. Despite its high sensitivity, NSE lacks specificity as a neuroendocrine marker.2,13,14 In the practical work-up of SCC, immunohistochemistry is useful to discern SCC from high grade lymphoma; SCC labels with antibodies to high molecular weight cytokeratins but not with antibodies to leucocyte common antigen (CD45). Immunohistochemistry has not proven useful in distinguishing primary peri-ampullary SCC from metastatic SCLC.2,15 Although a high percentage of lung primaries express thyroid transcription factor 1 (TTF-1), this marker has shown variable positivity in patients with extra-pulmonary small cell carcinoma.13,16 Furthermore, the expression of TTF-1 has not been well explored in pancreatic SCC, with only one reported negative case in the literature to date.20 Recent studies have demonstrated that serum pro-gastrin releasing peptide (ProGRP) and serum neuron specific enolase (NSE) levels can be elevated in patients with pancreatic SCC, similar to the clinical experience with lung primaries.17,18 In fact, serum NSE levels were found to fluctuate with changes in disease burden in at least one patient with pancreatic SCC.21

Due to the rarity of pancreatic SCC, a pulmonary origin should be presumed in the setting of a suspicious pancreatic mass and a history of SCLC. Furthermore, any patient with a pancreatic mass that is suggestive of SCC on imaging or biopsy should be evaluated with a chest CT to rule out a lung primary. Somatostatin receptor scintigraphy (SRS) may also have a limited role in the workup of a patient with a pancreatic mass suggestive of SCC, although its value above a high quality CT scan is uncertain. The test has 90% sensitivity for detecting primary SCLC and has also been described for primary pancreatic SCC.22,23

In a 2004 comprehensive review of pancreatic SCC, Berkel et al. identified 23 cases in the literature, including one patient from the authors’ own experience. Since then, nine additional cases of pancreatic SCC have been described,21,22,24-27 which are listed in Table 3 in a format consistent with the summary table presented in the review by Berkel et al. Missing data prevented significant analysis for several of the patients in Berkel’s review, but a recent publication by Vos et al. examined a subset of the aforementioned 32 cases, focusing on patients for which adequate information was available. In this series of 23 patients, the median age was 62 years (range 37-75 years), and there was a male predominance (74%). The median tumor size was 4.2 cm, and the head of the pancreas was involved in 59% of cases. At diagnosis, disease was confined to the head of the pancreas in only two cases. Metastatic spread to the peripancreatic lymph nodes and the liver was noted in 62% and 38% of patients, respectively. Patients receiving either systemic or local therapy showed a significantly higher median survival compared to patients treated with symptomatic management alone (6 vs. 1 month, \(P<0.0001\)). However, the authors found no significant difference in median survival between patients receiving chemotherapy alone and patients given local treatment in addition to chemotherapy, although it should be noted that the latter group contained only three patients. Overall, median survival was just 3 months (range 0.5-50 months).20

Figure 2. Small cell carcinoma of the pancreas. Microscopic. At low magnification (100x, A), the diffuse architecture of the tumor on the left differs from the normal exocrine pancreas on the right. Mitotic figures and apoptotic bodies are abundant enough to be recognizable at this low magnification. Higher power views (400x, B) of the tumor cells demonstrate the disorganization, pleomorphism, high nuclear to cytoplasmic ratio, and finely granular cytoplasm. As in lower magnification fields, mitoses and apoptotic figures abound.

Table 3. Recent reported cases of small cell carcinoma of the pancreas.

Age/sex	Location	Treatment	Survival	Ref.
41/M	Tail	Surgery	56 months	(25)
58/M	Unknown	Cis/Et	Unknown	(27)
62/M	Head	Car/Et	9 months	(26)
62/F	Head	Cis/Et, Surgery	36 months	(24)
64/F	Body	Car/Et	56 months	(26)
68/M	Body	Cis/Et	4 months	(21)
69/F	Head	Cis/Et, Surgery	6 months	(22)
69/M	Head	Car/Et	14 months	(26)
69/M	Body	Car/Et	18 months	(26)

Table 4. Surgical cases of small cell carcinoma of the pancreas.

Age/sex	Location	Adjuvant therapy	Survival	Ref.
37/F	Head	IORT	6 months	(29)
40/M	Tail	Cis/Et, Doxorubicin	NR	(30)
41/M	Tail	None	56 months	(25)
62/F	Head	Cis/Et	64 months	(24)
65/F	NR	RT	1 month	(31)
69/F	Head	Cis/Et	6 months	(22)
71/M	Body	None	6 months	(32)

Table 4. Surgical cases of small cell carcinoma of the pancreas.

Age/sex	Location	Adjuvant therapy	Survival	Ref.
27/M	Head	RT, Cis/Et, SFU, Intrahepatic methotrexate	73 months	
47/F	Head	RT, Cis/Et	26 months	
48/M	Head	Neoadjuvant SFU, mitomycin C, Adriamycin	9 months	
51/M	Head	RT, Cis/Et	173 months	
53/F	Head	RT, Cis/Et	14 months	
60/F	Head	RT, Cis/Et, Ob/Top, Paclitaxel	13 months	

The majority of patients reported to date with pancreatic SCC did not have their tumors resected. Table 4 lists the seven previously reported patients who have had a pancreatic resection for SCC, along with the six patients from the present series.22,24-27 Three patients received adjuvant chemotherapy with cisplatin and etoposide, two received adjuvant radiation, and two were treated with surgery alone.

Figure 2. Small cell carcinoma of the pancreas, Microscopic. At low magnification (100x, A), the diffuse architecture of the tumor on the left differs from the normal exocrine pancreas on the right. Mitotic figures and apoptotic bodies are abundant enough to be recognizable at this low magnification. Higher power views (400x, B) of the tumor cells demonstrate the disorganization, pleomorphism, high nuclear to cytoplasmic ratio, and finely granular cytoplasm. As in lower magnification fields, mitoses and apoptotic figures abound.
No patient received combined adjuvant chemotherapy and radiation. The median survival was 6 months (range 1-56 months) for these patients. The present series of surgical patients almost doubles the reported experience of resected pancreatic SCC. Interestingly, all of the tumors originated in the head of the pancreas, supporting the observation that pancreatic SCC is more common in the head than in the body or tail. Five patients in the present series received combined modality adjuvant therapy using cisplatin and etoposide, in conjunction with radiation. To our knowledge, this represents the first report of tri-modality therapy for pancreatic SCC.

Surgical management remains the standard treatment for well differentiated neuroendocrine tumors. However, the benefit of surgery for high grade neuroendocrine carcinomas has not been established. Certainly, the poor survival after surgery reported to date (6 months median survival) might lead one to question the utility of pancreatectomy for high-grade neuroendocrine carcinoma. However, in the present series, three of six patients survived more than 2 years, and two patients survived over five years. The patient who lived for 173 months represents the longest reported survival for pancreatic SCC to date. The median survival was 20 months, which is comparable to patients with resected ductal adenocarcinoma of the pancreas (33-36) Despite the small patient size in our study, we believe that combined local and systemic treatments, such as surgery and adjuvant chemoradiotherapy, should be considered in resectable pancreatic small cell carcinoma.

Conclusions

Pancreatic SCC is an extremely rare form of pancreatic cancer and occurs primarily in the head of the pancreas. Although these carcinomas are associated with an extremely poor prognosis, survival beyond a few years is possible, as was observed in three patients in the present surgical series and two previously reported cases of resectable disease. The regimen of cisplatin, etoposide, and radiation is generally the favored treatment for pancreatic SCC. Surgery and adjuvant chemoradiation should be considered in patients with resectable small cell carcinoma of the pancreas.

References

1. Winter JM, Cameron JL, Campbell KA, et al. 423 pancreaticoduodenectomies for pancreatic cancer: A single-institution experience. J Gastrointest Surg 2006;10:1199-210; discussion 1210-1191.
2. Berkel S, Hummel F, Gaa J, et al. Poorly differentiated small cell carcinoma of the pancreas. A case report and review of the literature. Pancreatology 2004;4:521-6.
3. Kajikawa M, Kondo K, Kataoka M, et al. [A case of endocrine cell carcinoma (small cell carcinoma) of duodenum]. Nippon Shokakibo Gakkai Zasshi 2006;103:253-8.
4. Kailo T, Tanaka T, Tsuchiya S, et al. A case of small cell carcinoma of the common bile duct. Hepatogastroenterology 2005;52:363-7.
5. Kuraoka K, Taniyama K, Fujitaka T, et al. Small cell carcinoma of the extrahepatic bile duct: case report and immunohistochemical analysis. Pathol Int 2003;53:887-91.
6. Arakura N, Muraki T, Komatsu K, et al. Small cell carcinoma of the extrahepatic bile duct diagnosed with EUS-FNA and effectively treated with chemoradiation. Intern Med 2008;47:621-5.
7. Selvakumari E, Rajendran S, Balachandar TG, et al. Neuroendocrine carcinoma of the ampulla of Vater: a clinicopathologic evaluation. Hepatobiliary Pancreat Dis Int 2008;7:422-5.
8. Hruban RH, Klimstra DS, Pitman MB. Tumors of the pancreas. Nomenclature for Pancreatic Neoplasia. 4th ed. Washington D.C.: Armed Forces Institute of Pathology; 2006.
9. Klimstra DS, Modlin IR, Coppola D, et al. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas 2010;39:707-12.
10. Ichikawa T, Federle MP, Ohba S, et al. Atypical exocrine and endocrine pancreatic tumors (anaplastic, small cell, and giant cell types): CT and pathologic features in 14 patients. Abdom Imaging 2000;25:409-19.
11. Wang RF, Chou YH, Hwang JI, et al. Primary small cell carcinoma of the pancreas with an unusual sonographic appearance. J Clin Ultrasound 2007;35:82-4.
12. Chetty R, Clark SP, Pitson GA. Primary small cell carcinoma of the pancreas. Pathology 1993;25:240-2.
13. Zamboni G, Franzin G, Bonetti F, et al. Small-cell neuroendocrine carcinoma of the ampullary region: a clinicopathologic, immunohistochemical, and ultrastructural study of three cases. Am J Surg Pathol 1990;14:703-13.
14. Addis BJ, Hamid Q, Ibrahim NB, et al. Immunohistochemical markers of small cell carcinoma and related neuroendocrine tumors of the lung. Journal of Pathology 1987;153:157-50.
15. Lin X, Saad RS, Luckasevic RA, et al. Diagnostic value of CDX-2, and TTF-1 expressions in separating metastatic neuroendocrine neoplasms of unknown origin. Appl Immunohistochem Mol Morphol 2007;15:407-14.
16. Agoff SN, Lamps LW, Philip AT, et al. Thyroid transcription factor-I is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol 2000;13:238-42.
17. Beasley, MB. Immunohistochemistry of pulmonary and pleural Neoplasia. Arch Pathol Lab Med 2008;132:1062-72.
18. Kaufman O, Dietel M. Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. Histopathology 2000;36:415-20.
19. Li AF, Li AC, Hsu CY, et al. Small cell carcinomas in gastrointestinal tract: immunohistochemical and clinicopathologic features. J Clin Pathol 2010;63:620-5.
20. Ordonez NG. Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. Am J Surg Pathol 2000;24:1217-1223.
21. Matsubayashi H, Fujiwara S, Kobayashi Y, et al. A small cell carcinoma of the pancreas with a high level of serum ProGRP. J Clin Gastroenterol 2004;38:834-5.
22. Nakamura Y, Tajiri T, Uchida E, et al. Changes to levels of serum neuron-specific enolase in a patient with small cell carcinoma of the pancreas. J Hepatobiliary Pancreat Surg 2005;12:93-8.
23. Hoefer M, Schmidt S, Welter J, et al. Diagnostic value of somatostatin receptor scintigraphy with indium-111 pentetreotide in small-cell bronchial carcinoma. Pneumologie 1998;52:106-12.
24. Chung MS, Ha TK, Lee KG, Paik SS. A case of long survival in poorly differentiated small cell carcinoma of the pancreas. World J Gastroenterol 2008;14:4964-7.
25. Kinoshita K, Minami T, Ohmori Y, et al. Curative resection of a small cell carcinoma of the pancreas: report of a case of long survival without chemotherapy. J Gastroenterol Hepatol 2004;19:1087-91.
26. Sakamoto H, Kitano M, Komaki T, et al. Small cell carcinoma of the pancreas: role of EUS-FNA and subsequent effective chemotherapy using carboplatin and etoposide. J Gastroenterol 2009;44:1322-3.
27. Yamagami Y, Ueshima S, Mizutani S, et al. [An autopsied case of giant small cell carcinoma of the pancreas]. Gan To Kyokyo Ryoho 2009;36:123-5.
28. Vos B, Awada A, Hendlitz A. Primary small cell carcinoma of the pancreas: An extensive review of the literature with an
emphasis on therapy and prognosis.
Cancer Therapy 2008;6:857-64.
29. Ordonez NG, Cleary KR, Mackay B. Small
cell undifferentiated carcinoma of the pan-
creas. Ultrastruct Pathol 1997;21:467-74.
30. Morikawa T, Kobayashi S, Yamadori I, et
al. Three cases of extrapulmonary small
cell carcinoma occurring in the prostate,
stomach, and pancreas. Indian J Cancer
1994;31:268-73.
31. Eriksson B, Oberg K. Summing up 15 years
of somatostatin analog therapy in neu-
roendocrine tumors: Future outlook. Ann
Oncol 1999;10:31-8.
32. Namieno T, Koito K, Nagakawa T, et al.
Diagnostic features on images in primary
small cell carcinoma of the pancreas. Am J
Gastroenterol 1997;92:319-22.
33. Sohn TA, Yeo CJ, Cameron JL, et al.
Resected adenocarcinoma of the pancreas -
616 patients: Results, outcomes, and
prognostic indicators. J Gastroinest Surg
2000;4:567-79.
34. Oettle H, Post S, Neuhaus P, et al. Adjuvant
chemotherapy with gemcitabine vs obser-
vation in patients undergoing curative
intent resection of pancreatic cancer: a
randomized controlled trial. JAMA 2007;
297:267-77.
35. Regine, WF. Five-year Results of the Phase
III Intergroup Trial (RTOG 97-04) of
Adjuvant Pre- and Postchemoradiation
(CRT) 5-FU vs. Gemcitabine (G) For
Resected Pancreatic Adenocarcinoma:
Implications for Future International Trial
Design. Int J Radiat Oncol Biol Phys
2009;75:S55-S5.
36. Hsu CC, Herman JM, Corsini MM, et al.
Adjuvant chemoradiation for pancreatic
adeno carcinoma: the Johns Hopkins-Mayo
collaborative study. Ann Surg Oncol 2010;
4:981-90.