A CHARACTERIZATION OF SEMIAMPLENESS AND CONTRACTIONS OF RELATIVE CURVES

STEFAN SCHRÖER

Abstract. I give a cohomological characterization of semiample line bundles. The result is a generalization of both the Fujita–Zariski Theorem on semiampleness and the Grothendieck–Serre Criterion for ampleness. As an application of the Fujita–Zariski Theorem I characterize contractible curves in 1-dimensional families.

Introduction

The Fujita–Zariski Theorem asserts that a line bundle \mathcal{L} that is ample on its base locus is semiample. Semiampleness means that a multiple $\mathcal{L}^\otimes n$, $n > 0$ is globally generated. For discrete base locus the result goes back to Zariski ([17], Thm. 6.2), and the general form is due to Fujita ([3], Thm. 1.10). This note contains two applications of the Fujita–Zariski Theorem.

The first section contains a generalization of both the Fujita–Zariski Theorem and the cohomological criterion for ampleness due to Grothendieck–Serre. The result is the following characterization: A line bundle \mathcal{L} is semiample if and only if the modules $H^1(X, I \otimes \text{Sym}\mathcal{L})$ are finitely generated over the ring $\Gamma(X, \text{Sym}\mathcal{L})$ for every coherent ideal $I \subset \mathcal{O}_B$. Here $B \subset X$ is the stable base locus of \mathcal{L}. This gives a positive answer to Fujita’s question ([3], 1.16) whether it is possible to weaken the assumption in the Fujita–Zariski Theorem.

In the second section I generalize results of Piene [14] and Emsalem [2]. They used the Fujita–Zariski Theorem to obtain sufficient conditions for contractions in normal arithmetic surfaces. Our result is a characterization of contractible curves in 1-dimensional families over local noetherian rings in terms of complementary closed subsets. This also sheds some light on the noncontractible curve constructed by Bosch, Lütkebohmert, and Raynaud ([1], chap. 6.7). For proper normal algebraic surfaces, similar results appear in [15].

1. Characterization of semiampleness

Throughout this section, R is a noetherian ring, X is a proper R-scheme, and \mathcal{L} is an invertible \mathcal{O}_X-module. According to the Grothendieck–Serre Criterion ([3], Prop. 2.6.1) \mathcal{L} is ample if and only if for each coherent \mathcal{O}_X-module \mathcal{F} there is an integer $n_0 > 0$ so that $H^1(X, \mathcal{F} \otimes \mathcal{L}^\otimes n) = 0$ for all $n > n_0$. Let me reformulate this in terms of graded modules. For a coherent \mathcal{O}_X-module \mathcal{F}, set

$$H^p_c(\mathcal{F}, \mathcal{L}) = H^p(X, \mathcal{F} \otimes \text{Sym}\mathcal{L}) = \bigoplus_{n \geq 0} H^p(X, \mathcal{F} \otimes \mathcal{L}^\otimes n).$$
This is a graded module over the graded ring $\Gamma_*(\mathcal{L}) = \Gamma(X, \text{Sym} \mathcal{L})$. The Grothendieck–Serre Criterion takes the form: \mathcal{L} is ample if and only if the modules $H^1_i(\mathcal{F}, \mathcal{L})$ are finitely generated over the ring $\Gamma_0(\mathcal{L}) = \Gamma(\mathcal{O}_X)$ for all coherent \mathcal{O}_X-modules \mathcal{F}. In this form it generalizes to the semiample case. Following Fujita, we define the stable base locus $B \subset X$ of \mathcal{L} to be the intersection of the base loci of $\mathcal{L}^\otimes n$ for all $n > 0$. We regard it as a closed subscheme with reduced scheme structure.

\textbf{Theorem 1.1.} Let $B \subset X$ be the stable base locus of \mathcal{L}. Then the following are equivalent:

(i) The invertible sheaf \mathcal{L} is semiample.

(ii) The modules $H^1_i(\mathcal{F}, \mathcal{L})$ are finitely generated over the ring $\Gamma_*(\mathcal{L})$ for each coherent \mathcal{O}_X-module \mathcal{F} and all integers $p \geq 0$.

(iii) The modules $H^1_i(\mathcal{I}, \mathcal{L})$ are finitely generated over the ring $\Gamma_*(\mathcal{L})$ for each coherent ideal $\mathcal{I} \subset \mathcal{O}_B$.

\textit{Proof.} The implication (i)⇒(ii) is well known, and (ii)⇒(iii) is trivial. To prove (iii)⇒(i) we assume that \mathcal{L} is not semiample. According to the Fujita–Zariski Theorem the restriction $\mathcal{L}|_B$ is not ample. By the Grothendieck–Serre Criterion there is a coherent ideal $\mathcal{I} \subset \mathcal{O}_B$ with $H^1(X, \mathcal{I} \otimes \mathcal{L}^\otimes n) \neq 0$ for infinitely many $n > 0$. Thus $H^1_*(\mathcal{I}, \mathcal{L})$ is not finitely generated over $\Gamma_0(\mathcal{L})$. Since $B \subset X$ is the stable base locus, the maps $\Gamma(X, \mathcal{L}^\otimes n) \to \Gamma(B, \mathcal{L}^\otimes n_B)$ vanish for all $n > 0$. Consequently, the irrelevant ideal $\Gamma_+(\mathcal{L}) \subset \Gamma_*(\mathcal{L})$ annihilates $H^1_*(\mathcal{I}, \mathcal{L})$, which is therefore not finitely generated over $\Gamma_*(\mathcal{L})$. \hfill\Box

Sommese introduced a quantitative version of semiampleness: Let $k \geq 0$ be an integer; a semiample invertible sheaf \mathcal{L} is called k-ample if the fibers of the canonical morphism $f : X \to \text{Proj} \Gamma_*(\mathcal{L})$ have dimension $\leq k$. For example, 0-amplesness means ampleness.

\textbf{Theorem 1.2.} Let \mathcal{L} be a semiample invertible \mathcal{O}_X-module. Then \mathcal{L} is k-ample if and only if the modules $H^{k+1}_*(\mathcal{F}, \mathcal{L})$ are finitely generated over the ground ring R for all coherent \mathcal{O}_X-modules \mathcal{F}.

\textit{Proof.} Set $Y = \text{Proj} \Gamma_*(\mathcal{L})$ and let $f : X \to Y$ be the corresponding contraction. Suppose \mathcal{L} is k-ample. Choose $m_0 > 0$ so that $\mathcal{L}^\otimes m_0 = f^*(\mathcal{M})$ for some ample invertible \mathcal{O}_Y-module \mathcal{M}. Put $\mathcal{G} = \mathcal{F} \otimes (\mathcal{L} \oplus \mathcal{L}^\otimes 2 \oplus \ldots \oplus \mathcal{L}^\otimes m_0)$. Choose $m_0 > 0$ with $H^p(Y, R^q f_*(\mathcal{G} \otimes \mathcal{M}^\otimes m)) = 0$ for $p > 0$, $q \leq k+1$, and $m > m_0$. Consequently, the edge map $H^{k+1}_*(X, \mathcal{G} \otimes \mathcal{L}^\otimes m) \to H^0(Y, R^{k+1} f_*(\mathcal{G} \otimes \mathcal{M}^\otimes m))$ in the spectral sequence

$$H^p(Y, R^q f_*(\mathcal{G} \otimes \mathcal{M}^\otimes m)) \Rightarrow H^{p+q}(X, \mathcal{G} \otimes \mathcal{L}^\otimes m)$$

is injective for $m > m_0$. The fibers of $f : X \to Y$ are at most k-dimensional, so $R^{k+1} f_*(\mathcal{G}) = 0$. Thus $H^{k+1}_*(X, \mathcal{F} \otimes \mathcal{L}^\otimes m) = 0$ for all $n > n_0$. Conversely, assume that the condition holds. Seeking a contradiction we suppose that some fiber of $f : X \to Y$ has dimension $> k$. Using we find a coherent \mathcal{O}_X-module \mathcal{F} with $R^{k+1} f_*(\mathcal{F}) \neq 0$. Replacing \mathcal{L} by a suitable multiple, we have $\mathcal{L} = f^*(\mathcal{M})$ for some ample invertible \mathcal{O}_Y-module \mathcal{M}. Passing to a higher multiple if necessary, $H^p(Y, R^q f_*(\mathcal{F} \otimes \mathcal{M}^\otimes m)) = 0$ holds for $p > 0$, $q \leq k$, and $n > 0$. Then the edge map $H^{k+1}_*(X, \mathcal{F} \otimes \mathcal{L}^\otimes m) \to H^0(Y, R^{k+1} f_*(\mathcal{F} \otimes \mathcal{M}^\otimes m))$ is surjective for $n > 0$. Choose a global section $s \in \Gamma(Y, \mathcal{M}^\otimes n)$ for some $n > 0$ so that the open subset $Y_s \subset Y$ contains the set of associated points for $R^{k+1} f_*(\mathcal{F})$. Then $s \in \Gamma_*(\mathcal{M})$
is not a zero divisor for $H^0_*(R^{k+1}f_*(\mathcal{F}), \mathcal{M})$. It follows that $H^0_*(R^{k+1}f_*(\mathcal{F}), \mathcal{M})$ is nonzero for infinitely many degrees. Consequently, the same holds for $H^{k+1}_*(\mathcal{F}, \mathcal{L})$, which is therefore not finitely generated over R.

\textbf{Remark 1.3.} For a vector bundle \mathcal{E}, it might happen that $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ is semiample, whereas $\text{Sym}^n(\mathcal{E})$ fails to be globally generated for all $n > 0$. For example, let k be an algebraically closed field of characteristic $p > 0$, and X be a smooth proper curve of genus $g > p - 1$ so that the absolute Frobenius $\text{Fr}_X : H^1(\mathcal{O}_X) \to H^1(\mathcal{O}_X)$ is zero. For an example see [11], p. 348, ex. 2.14. Let $D \subset X$ be a divisor of degree 1. According to the commutative diagram

\[\begin{array}{cccc}
H^0(\mathcal{O}_X) & \longrightarrow & H^0(\mathcal{O}_D) & \longrightarrow & H^1(\mathcal{O}_X) \\
\text{Fr}_X & & \text{Fr}_X & & \text{Fr}_X \\
H^0(\mathcal{O}_X) & \longrightarrow & H^0(\mathcal{O}_{pD}) & \longrightarrow & H^1(\mathcal{O}_X(-pD)) \quad \longrightarrow \quad H^1(\mathcal{O}_X),
\end{array} \]

the p-linear map $\text{Fr}_X : H^1(\mathcal{O}_X(-D)) \to H^1(\mathcal{O}_X(-pD))$ is not injective. Hence there is a nontrivial extension

\[0 \to \mathcal{O}_X \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}_X(D) \longrightarrow 0 \]

whose Frobenius pull back $\text{Fr}_X(\mathcal{E})$ splits. The surjection $\mathcal{E} \to \mathcal{O}_X(D)$ gives a section $A \subset \mathbb{P}(\mathcal{E})$ representing $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ with $A^2 = 1$ ([11], Prop. 2.6, p. 371). The Fujita–Zariski Theorem implies that $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ is semiample, and we obtain a birational contraction $\mathbb{P}(\mathcal{E}) \to Y$. It is easy to see that the exceptional set is an integral curve $R \subset \mathbb{P}(\mathcal{E})$ which has degree p on the ruling. Hence $\mathbb{P}(\mathcal{E}) \to Y$ does not restrict to closed embeddings on the fibers of $\mathbb{P}(\mathcal{E}) \to X$. Consequently, $\text{Sym}^n(\mathcal{E})$ is not globally generated at any point $x \in X$.

2. Constructions of relative curves

Throughout this section, R is a local noetherian ring, and X is a proper R-scheme with 1-dimensional closed fiber $X_0 \subset X$. Then all fibers of the structure morphism $X \to \text{Spec}(R)$ are at most 1-dimensional. For example, X could be a flat family of curves.

A Stein factor of X is a proper R-scheme Y together with a proper morphism $f : X \to Y$ so that $\mathcal{O}_Y \to f_*(\mathcal{O}_X)$ is bijective (compare [13], sec. 5). Our objective is to describe the set of all Stein factors for a given X.

Let C_i, $i \in I$ be the finite collection of all 1-dimensional integral components of the closed fiber X_0. A subset $J \subset I$ yields a subcurve $C = \bigcup_{i \in J} C_i$. We call such a curve $C \subset X$ contractible if there is a Stein factor $f : X \to \tilde{Y}$ so that $f(C_i)$ is a closed point if and only if $i \in J$. According to [13], Theorem 5.4.1, a Stein factor is determined up to isomorphism by its restriction $f_0 : X_0 \to Y_0$. The task now is to determine the contractible curves $C \subset X$. It follows from [14] and [2] that all curves $C \subset X$ are contractible provided that the ground ring R is henselian. In particular this holds if R is complete. On the other hand, a noncontractible curve is discussed in [13], chapter 6.7.

We seek to describe contractible curves $C \subset X$ in terms of complementary closed subsets $D \subset X$. We need a definition: Suppose $D \subset X$ is a closed subset of codimension ≤ 1. Let $R \subset R^\prime$ be the completion with respect to the maximal ideal, X' the normalization of $X \otimes_R R^\prime$, and $C'_i, C'', D' \subset X'$ the preimages of
$C_i, D \subset X$, respectively. Let $h : X' \to Z'$ be the contraction of all $C'_i \subset X'_0$ disjoint from C'. We call D persistent if $h(D') \subset Z'$ has codimension ≤ 1.

Example 2.1. Suppose R is a discrete valuation ring with residue field k and fraction field K. Let X be the proper R-scheme obtained from $X' = \mathbb{P}_R^1$ by identifying the closed points $0, \infty \in \mathbb{P}_k^1$. Then the closure $D \subset X$ of the point $0 \in \mathbb{P}_K^1$ is not persistent.

Theorem 2.2. Suppose $J \subset I$ is a subset so that the curve $C = \bigcup_{i \in J} C_i$ is connected. Then $C \subset X_0$ is contractible if and only if there is a persistent closed subset $D \subset X$ of codimension ≤ 1 disjoint from C and intersecting each irreducible component $C_i \subset X_0$ with $i \notin J$.

Proof: Assume that C is contractible. The corresponding contraction $f : X \to Y$ maps C to a single point. Let $V \subset Y$ be an affine open neighborhood of $f(C)$. Set $U = f^{-1}(V)$ and $D = X - U$. Clearly $D \cap C = \emptyset$. Furthermore, $D \cap C_i \neq \emptyset$ for $i \notin J$; otherwise $f(C_i)$ would be a proper curve contained in the affine scheme V, which is absurd. Let X', Y' be the normalizations of $X \otimes_R R^\wedge, Y \otimes_R R^\wedge$, respectively. The induced morphism $f' : X' \to Y'$ is the contraction of the preimage $C' \subset X'$ of C. The preimage $V' \subset Y'$ of V is affine, so $Y - V$ is of codimension ≤ 1 (II, 2.2.6). Hence the preimage $D' \subset X'$ of D is of codimension ≤ 1. Obviously, the same holds if we contract the preimages $C'_i \subset X'$ of C_i disjoint from C'. Thus $D \subset X$ is of codimension ≤ 1 and persistent.

Conversely, assume the existence of such a subset $D \subset X$. Set $U = X - D$. We claim that the affine hull $U^{\text{aff}} = \text{Spec } \Gamma(U, \mathcal{O}_X)$ is of finite type over R and that the canonical morphism $U \to U^{\text{aff}}$ is proper.

Suppose this for a moment. Then $U \to U^{\text{aff}}$ contracts C and is a local isomorphism near each $x \in U_0 - C$. Choose for each $x \in X_0 - C$ an affine open neighborhood $U_x \subset X$ of x disjoint to the exceptional set of $U \to U^{\text{aff}}$. Then $U_x \cap U \to U^{\text{aff}}$ is an open embedding. It is easy to see that the schemes $U_x \bigcup_{U_x \cap U} U^{\text{aff}}, x \in X_0 - C$ and U^{aff} form an open cover of a proper R-scheme Y. The induced morphism $f : X \to Y$ is the desired contraction.

It remains to verify the claim. Let $R \subset R^\wedge$ be the completion. According to [2], VIII Corollary 3.4, the scheme U^{aff} is of finite type if and only if $U^{\text{aff}} \otimes_R R^\wedge$ is of finite type. Furthermore, $U \to U^{\text{aff}}$ is proper if and only if $U^{\text{aff}} \otimes_R R^\wedge$ is proper if and only if U^{aff} is proper after tensoring with R^\wedge ([2], VIII Cor. 4.8). Since $U^{\text{aff}} \otimes_R R^\wedge = (U \otimes_R R^\wedge)^{\text{aff}}$ by [4], Proposition 21.12.2, it suffices to prove the claim under the additional assumption that R is complete.

Now each curve in X_0 is contractible. Observe that the contraction of C does not change U^{aff}, so we can as well assume that C is empty. Now our goal is to prove that U is affine. Since R is complete, hence universally Japanese, the normalization $X' \to X$ is finite. Using Chevalley’s Theorem ([2], Thm. 6.7.1), we reduce the problem to the case that X is normal. Now the irreducible components of X are the connected components. Treating them separately we may assume that X is connected. Contracting the curves C_i contained in D we can assume that D_0 is finite and intersects each C_i. If $D = X$ or $D = \emptyset$ there is nothing to prove. Assume that $D \subset X$ is of codimension 1, in other words a Weil divisor. The problem is that it might not be Cartier. To overcome this, consider the graded quasicoherent \mathcal{O}_X-algebra $\mathcal{R} = \bigoplus_{n \geq 0} \mathcal{O}_X(nD)$. The graded subalgebra $\mathcal{R}' \subset \mathcal{R}$ generated by $\mathcal{R}_1 = \mathcal{O}_X(D)$ is of finite type over \mathcal{O}_X. Set $X' = \text{Proj } (\mathcal{R}')$ and let $g : X' \to X$
be the structure morphism. Then g is projective and $\mathcal{O}_{X'}(1)$ is a g-very ample invertible \mathcal{O}_{X}-module. The canonical maps $D: \mathcal{O}_{X}(nD) \to \mathcal{O}_{X}((n+1)D)$ induce a homomorphism $\mathcal{R}' \to \mathcal{R}'$ of degree one, hence a section $s: \mathcal{O}_{X'} \to \mathcal{O}_{X'}(1)$. It follows from the definition of homogeneous spectra that s is bijective over U and vanishes on $g^{-1}(D)$. Thus the corresponding Cartier divisor $D' \subset X'$ representing $\mathcal{O}_{X'}(1)$ has support $g^{-1}(D)$.

Let $A \subset X'_0$ be a closed integral subscheme of dimension $n > 0$. If $g(A) \subset X_0$ is a curve, then A is not contained in D' but intersects D'. Hence $D' \cdot A > 0$. If $g(A) \subset X$ is a point, then $\mathcal{O}_{A}(1)$ is ample, so $(D')^n \cdot A > 0$. By the Nakai criterion for ampleness we conclude that $\mathcal{O}_{X'}(1)$ is ample on its base locus. Now the Fujita–Zariski Theorem tells us that $\mathcal{O}_{X'}(1)$ is semiample. It follows that $U \simeq X' - D'$ is affine. This finishes the proof.

Let us consider the special case that the total space X is a normal surface. Replacing R by $\Gamma(X, \mathcal{O}_X)$, we are in the following situation: Either R is a discrete valuation ring, such that $X \to \text{Spec}(R)$ is a flat deformation of X_0, or R is a local normal 2-dimensional ring, hence $X \to \text{Spec}(R)$ is the birational contraction of X_0. In either case we call a Weil divisor $H \in Z^1(X)$ horizontal if it is a sum of prime divisors not supported by X_0.

Suppose $J \subset I$ is a subset with $C = \bigcup_{i \in J} C_i$ connected. Let $V \subset X_0$ be the union of all C_i disjoint from C.

Corollary 2.3. Notation as above. Then $C \subset X_0$ is contractible if and only if there is a horizontal Weil divisor $H \subset X$ disjoint from C with the following property: For each C_i, $i \not\in J$, either H intersects C_i, or H intersects a connected component $V' \subset V$ with $V' \cap C_i \neq \emptyset$.

Proof. Suppose $C \subset X_0$ is contractible. Let $D \subset X$ be a persistent Weil divisor as in Theorem 2.2. Then its horizontal part $H \subset D$ satisfies the above conditions. Conversely, assume there is a horizontal Weil divisor $H \subset X$ as above. It follows that $D = H + V$ is a persistent Weil divisor disjoint from C intersecting each C_i with $i \not\in J$. Thus $C \subset X_0$ is contractible.

References

[1] S. Bosch, W. Lütkebohmert, M. Raynaud: Néron models. Ergeb. Math. Grenzgebiete 21. Springer, Berlin, 1990.

[2] J. Emsalem: Projectivité des schémas en courbes sur un anneau de valuation discrète. Bull. Soc. Math. France 101, 255–263 (1974).

[3] T. Fujita: Semipositive line bundles. J. Fac. Sci. Univ. Tokyo 30, 353–378 (1983).

[4] A. Grothendieck: Eléments de géométrie algébrique II: Étude globale élémentaire de quelques classes de morphismes. Publ. Math., Inst. Hautes Etud. Sci. 8 (1961).

[5] A. Grothendieck: Eléments de géométrie algébrique III: Étude cohomologique des faisceaux cohérent. Publ. Math., Inst. Hautes Etud. Sci. 11 (1961).

[6] A. Grothendieck: Eléments de géométrie algébrique IV: Étude locale des schémas et de morphismes de schémas. Publ. Math., Inst. Hautes Etud. Sci. 24 (1965).

[7] A. Grothendieck: Eléments de géométrie algébrique IV: Étude locale des schémas et de morphismes de schémas. Publ. Math., Inst. Hautes Etud. Sci. 28 (1966).

[8] A. Grothendieck: Eléments de géométrie algébrique IV: Étude locale des schémas et de morphismes de schémas. Publ. Math., Inst. Hautes Etud. Sci. 32 (1967).

[9] A. Grothendieck et al.: Revêtements étals et groupe fondamental. Lect. Notes Math. 224, Springer, Berlin, 1971.

[10] A. Grothendieck et al.: Théorie des intersections et théorème de Riemann-Roch. Lect. Notes Math. 225. Springer, Berlin, 1971.
[11] R. Hartshorne: Algebraic geometry. Grad. Texts Math. 52. Springer, Berlin, 1977.
[12] S. Kleiman: Toward a numerical theory of ampleness. Ann. Math. 84, 293–344 (1966).
[13] S. Kleiman: On the vanishing of $H^n(X, F)$ for an n-dimensional variety. Proc. Amer. Math. Soc. 18, 940–944 (1967).
[14] R. Piene: Courbes sur un trait et morphismes de contraction. Math. Scand. 35, 5–15 (1974).
[15] S. Schröer: On contractible curves on normal surfaces. J. Reine Angew. Math. 524, 1–15 (2000).
[16] A. Sommese: Submanifolds of Abelian varieties. Math. Ann. 233, 229–256 (1978).
[17] O. Zariski: The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface. Ann. Math. 76, 560–615 (1962).

Mathematisches Institut, Ruhr-Universität, 44780 Bochum, Germany

Current address: M.I.T. Department of Mathematics, 77 Massachusetts Avenue, Cambridge MA 02139-4307, USA

E-mail address: s.schroeer@ruhr-uni-bochum.de