Adherence in allergen immunotherapy: Current situation and future implications

Francesca Gehrt1*, Qingqing Xu2,3*, Ilaria Baiardini4,5, Giorgio Walter Canonica4,5, and Oliver Pfaar1

1Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany, 2Department of Allergy, Beijing Tong Ren Hospital, Capital Medical University, 3Department of Otolaryngology Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, Beijing, PR China, 4Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center, IRCCS, Rozzano, and 5Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy

Abstract. Allergen immunotherapy (AIT) is the only disease-modifying treatment in allergy. However, clinical trials as well as real-life studies revealed poor treatment adherence. This article is intended to provide an overview of the current literature of the last 10 years, to outline reasons for poor treatment adherence in AIT and to provide possible solutions for improving adherence.

Introduction

Allergic rhino-conjunctivitis affects ~ 30% of the world population, and studies indicate that prevalence rates are increasing worldwide [1].

To date, allergen immunotherapy (AIT) is the only disease-modifying therapeutic option available and has been applied for over a century since its introduction by Leonard Noon [2, 3, 4]. Even though the mechanisms of action behind AIT have not been fully understood yet, the sustained effect, the efficacy, and safety of AIT have been demonstrated in various randomized controlled trials (RCTs) as well as meta-analyses [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. AIT further has been associated with reducing the risk of developing asthma [16] or other sensitizations [17]. However, a quite long therapy duration of at least 3 years is required to achieve long-term benefit [18, 19, 20, 21].

Unfortunately, treatment adherence has shown to be critical in clinical trials and real-life studies [22, 23, 24]. AIT can be administered subcutaneously (SCIT) or sublingually (SLIT). Both forms of administration are associated with aspects that could hinder adherence. SCIT, for instance, requires regular visits in the physician’s office, which may be associated with an increased time commitment, whereas successful therapy with SLIT requires daily intake [25, 26]. Lack of adherence reduces the effectiveness of AIT and further entails the use of limited resources without achieving the desired benefit [25, 27]. The aim of this review is to provide a targeted analysis of recent literature, to provide a picture of adherence in allergy immunotherapy in terms of extent and barriers.

Definition of adherence

The World Health Organization defines adherence as the degree to which a pa-
tient’s behavior – e.g., taking medication – reflects the agreed recommendations of a healthcare provider [28, 29]. It is a process that encompasses three different phases: initiation (the event of taking the first dose of a medication), implementation (the extent to which the drug was used by the patient as prescribed during a specific period of active treatment), and persistence (the time period between initiation and discontinuation) [30]. More than one series of these stages are usually detected in routine practice [30]. Chronic diseases are widespread in Western countries [31]. For affected patients, adequate treatment of chronic illnesses is of great importance in order to prevent complications in their progression and to improve health outcomes and therefore the overall quality of life. Furthermore, the treatment of chronic diseases and their complications poses a relevant cost factor to the healthcare system [32].

Despite the fact that poor compliance reduces treatment benefit significantly and is associated with an increased risk of hospitalization and higher morbidity and mortality, compliance in chronically ill patients appears to be poor [29, 33]. Studies regarding this issue showed that only about half of the patients with chronic diseases take their medications as prescribed [34].

Measurement of adherence in AIT

Adherence research is generally compromised by the lack of standardization of adherence measures [35]. There is further no consensus on what percentage is considered good adherence and no gold standard established for quantifying adherence [33].

In general, measuring adherence requires determination of the number of doses actually taken by the patient. In the case of SLIT, this is technically difficult without the definite structures of a double-blind, placebo-controlled study. Some studies approached the problem by contacting the patients through unscheduled phone calls. However, questioning patients about their medication intake might not be very reliable, as patients are probably hesitant to admit incorrect or irregular use [6]. In addition, it should be noted that patients are aware of the study and fear consequences when reporting irregular intake; thus such studies might obtain an inherent bias [33].

Reported adherence to AIT in the literature

To date, several studies have been published on SCIT [6, 7, 36, 37, 38] and SLIT [22, 39, 40, 41, 42, 43, 44], showing overall poor adherence rates.

Studies examining adherence to SCIT showed mixed results with adherence rates ranging from 23 to 89% [6, 12]. Studies examining adherence in SLIT showed rates varying from 64 to more than 95% [45, 46, 47].

There is still a controversial debate whether SCIT or SLIT might result in higher adherence. Some argue that SCIT might provide better adherence due to the regular visits at the physicians’ practice for the injections while others assume that SLIT results in better adherence because of its greater convenience [2, 23]. A German investigation based on a national prescription database comparing adherence rates with grass pollen SLIT to grass pollen SCIT over 3 years on a per-patient basis showed higher adherence to SLIT [23]. Furthermore, studies analyzing the literature on adherence in AIT found rates for SLIT to be better than SCIT [6, 12].

However, a survey in Italy reported an alarming rate of SLIT discontinuation, which was up to 90% at 3 years after prescription [48]. This particular study analyzed sales data from manufacturers and revealed an adherence rate to SLIT of only 15% at the 3rd year. Such studies are of particular interest because they can circumvent the influence on patients that results from participation in a controlled trial. Real-life studies showed further great variations regarding adherence to AIT, from less than 50 to up to 90% [24, 26, 49, 50].

Factors associated with adherence to AIT

Age

With regard to age, differences in adherence could be demonstrated in various stud-
ies [2, 51, 52]. It is well known that genetic factors influence the development of allergic diseases. For this reason, parents of allergic children are often affected by allergic diseases themselves. We therefore assume that the experiences of disease burden might motivate parents to ensure that their children are adherent to AIT. Adherence among children generally depends heavily on their caregivers, and the motivation in parents to achieve a good therapeutic outcome for their children is likely to be high overall, regardless of whether the parents themselves are affected.

Besides better adherence in children, there might be good adherence in elderly patients as well. A study conducted in the USA analyzed adherence in a group of veterans. Adherence rates were higher in patients older than 66 years than in young and middle-aged veterans. Considering that older patients are more likely to be retired, these findings suggest higher adherence in patients with less day-to-day commitment [51].

Physicians

Understanding the influence of physicians on patient adherence is of utmost importance as problems can be strategically addressed by healthcare providers themselves.

Frequent visits and loss of working hours have been identified as reasons for patients to discontinue treatment. However, a trial by Vita et al. [22] actually found an improvement in adherence when performing regular therapy check-ups. A minimum of four visits per year was identified to ensure continuation of therapy. A further study by Egert-Schmidt et al. [2] confirmed these findings. The investigation showed better adherence in patients receiving perennial SCIT, who attended consultations more regularly.

Moreover, the physician’s specialization seems to affect adherence. One study showed higher adherence in patients who were treated by general practitioners than in those treated by medical specialists [7]. In addition, compliance to AIT has also been shown to be improved when prescribed and supervised by pediatricians [2]. Considering these results, it can be assumed that the trust relationship between doctor and patient is pivotal for adherence as it is greater when treated by general practitioners or pediatricians, and withdrawal rates can be reduced with regular visits. These results may be due to a greater overall extent of responsibility for the patient. In addition, patients may see their primary care physicians and pediatricians more regularly, apart from AIT, and therefore have more opportunities to address and improve problems related to treatment. Therefore, a standardized check-up schedule should be introduced, and the patient-doctor relation should be strengthened.

Efficacy

AIT has been proven to be an effective treatment; however, its efficacy is limited by the compliance of the patient. Some studies showed good adherence in the beginning of therapy and rising drop-out rates in the 2nd and 3rd years of treatment [25, 52]. These findings probably reflect the greater motivation at the beginning of the therapy due to initial severity of symptoms. However, in cases where patients dropped out within the 1st year of therapy, a lack of efficacy was often reported [37]. The 1st year of therapy and the patients’ expectations can be assumed to have major impact on determining whether patients will adhere to therapy. For example, patients with milder disease courses may not have experienced a significant impact on their quality of life and may be less motivated to continue therapy in case of adverse effects or inconveniences. Other patients may have experienced sudden and significant results with other forms of therapy, such as nasal steroids and antihistamines, and therefore have unreasonably high expectations at the initiation of AIT [53].

Inconvenience

Studies by Musa et al. [25] and Hsu et al. [37]) found inconvenience to be a main reason for discontinuation of SCIT. Factors contributing to the inconvenience were the long duration of therapy as well as the high frequency of applications. Further, the application form itself and commuting to the place of administration were mentioned [25, 37]. Further reasons for discontinuation were adverse effects to the treatment [25, 54].
The latter was also stated to be the main reason for premature termination of a SLIT [25]. However, in this context it is interesting to note that new approaches to modify the AIT preparations have been investigated, which might be associated with a reduced occurrence of adverse advents [55, 56].

Patients’ education

A study by Sade et al. [57] in 2003 suggested that a significant number of patients receiving immunotherapy holds various misunderstandings and has a serious lack of knowledge about therapy duration, adverse effects, and their illness itself. However, a cross-sectional observational survey conducted in 2010 in Italy showed rather adequate levels of knowledge in patients. This investigation further showed the physicians to be the main source of information for patients [58]. Based on these results, it can be assumed that the patients’ knowledge gap is less grave than previously assumed. Nevertheless, there are numerous misunderstandings and a definite need for educating patients, which must be primarily addressed by the treating physician.

Studies conducted in 2010 and 2020 demonstrated that investing time and resources in educating patients intensively about the received therapy might also improve adherence [59, 60]. A trial by Sanchez et al. [61] further suggested that patients should not only be provided with intensive information about their disease and the treatment process, but they should also be involved in the treatment decision. Their investigation showed that if patients could choose between SCIT and SLIT, adherence was significantly better [61].

As AIT is comparable to other long-term therapies, it might be useful to implement adherence measures, which have been found to be successful in research of other chronic diseases. Promising adherence interventions include standardized follow-up-schedules, improving communication and education via tools, and incorporating telecommunication technologies [62]. The use of new technologies appears particularly promising to improve treatment adherence in everyday life, as shown in a review article by Braido et al. [63].

Reimbursement of AIT

Financial aspects might also play a role in adherence. Vaswani et al. [64] study showed that inadequate reimbursement for allergen extract and allergy injections by health insurers is a common reason for non-adherence to SCIT [64]. A study investigating adherence to AIT in Turkey also found financial problems as main cause for discontinuation of therapy [65].

Another study demonstrated higher adherence in patients with a higher socio-economic status [7]. Therefore, socioeconomic and work status may also be contributing factors to adherence to AIT. It is further important to consider regional differences depending on the healthcare system and the conditions for reimbursement of therapy costs.

Personalized medicine

Previously, AIT was thought to take longer to achieve symptom reduction and to be less effective than other common symptom-relieving medications. Newer analyses implied however, that AIT in form of SCIT might be equally effective [66]. A decrease in allergic symptoms and the use of other medication can be observed within the 1st year of therapy. However, a therapy duration of 3 years is necessary to achieve a lasting therapy effect.

In order to achieve greater adherence, patients should be approached individually and included in the choice of therapy to improve acceptance.

In general, SLIT might be more suitable for patients who work in time-consuming jobs, patients with needle phobia, or young children. SCIT on the other hand includes frequent check-ups and is preferred by patients who require greater support by their physician [67, 68, 69].

In order to improve adherence it must be considered that multiple factors are involved. As already emphasized in a previous review article, it therefore seems reasonable to apply different strategies that take into account the above-mentioned influencing factors [70].

Monitoring adherence

Various methods for measuring adherence have been applied while the reliability seems limited for each of them.
Subjective measures such as questionnaires can lead to bias for several reasons. For example, the so-called Hawthorne effect can occur. In this case, an unconscious change in behavior occurs due to awareness of the survey. On the other hand, the additional attention that accompanies the examination can cause patients to respond according to a social desirability. In the context of this kind of examination, this means that respondents tend to answer questions in a way that is seen positively by others, in this case the doctor.

As no method has been considered as gold standard for measuring adherence and no cut-off level for acceptable adherence rates has been set, further research is needed to provide adequate methods. Moreover, consensus on the application methodologies should be sought to achieve more standardization within the literature.

Real-life evaluations

As mentioned, trials that investigate adherence usually contain a bias due to the patient’s awareness of the endpoint [6]. For this reason, data from RCTs may not adequately reflect adherence as participants are strictly followed and observed. Therefore, more consistency in data might be achieved via conducting real-life studies. The design of these studies is often retrospective in nature and relies on databases as primary sources [23, 52, 71]. This may be advantageous in this case because it allows a large number of patients and long periods of time to be observed without influencing the patients and therefore the outcome. Adherence rates in randomized controlled trials have been significantly higher which may be due to selecting and advising patients as well as effects due to the observation. Real-life studies bypass these effects and show results comparable to those in other chronic diseases with respect to adherence [72].

Multi-national studies

The literature on adherence to AIT is characterized by a strong heterogeneity which hinders deducing consequences for everyday clinical practice. In order to achieve large sample sizes in studies and to avoid bias due to region- and culture-specific influences, multi-national studies are needed [6, 73].

Conclusion

This review is intended to describe the data on adherence in AIT within the last 10 years, taking into account factors that influence adherence and highlight future perspectives and unmet needs. Adherence to AIT remains a pivotal point.

To improve adherence, the following four points are of particular importance:

- Improving the patients’ knowledge about the treatment and their illness.
- Strengthening the partnership between doctors and patients.
- Providing reliable data in the form of real-life studies and multi-national studies with large numbers of participants.
- Standardization of measurement methods.

Funding

The manuscript was produced without financial help from a third party.

Conflict of interest

Prof. Pfaar reports grants and personal fees from ALK-Abelló, grants and personal fees from Allergopharma, grants and personal fees from Stallergenes Greer, grants and personal fees from HAL Allergy Holding B.V./HAL Allergie GmbH, grants and personal fees from Bencard Allergie GmbH/Allergy Therapeutics, grants and personal fees from Lofarma, grants from Biomay, grants from Circassia, grants and personal fees from ASIT Biotech Tools S.A., grants and personal fees from Laboratorios LETI/LETI Pharma, personal fees from MEDA Pharma/MYLAN, grants and personal fees from Anergis S.A., personal fees from Mobile Chamber Experts (a GA2LEN Partner), personal fees from Indoor Biotechnologies, grants and personal fees from...
Adherence in allergen immunotherapy: current situation and future implications

FEES FROM GlaxoSmithKline, PERSONAL FEES FROM Astellas Pharma Global, PERSONAL FEES FROM EUFOREA, PERSONAL FEES FROM ROXALL Medizin, PERSONAL FEES FROM Novartis, PERSONAL FEES FROM Sanofi-Aventis and Sanofi-Genzyme, PERSONAL FEES FROM Med Update Europe GmbH, PERSONAL FEES FROM strameDmV GmbH, GRANTS FROM Pohl-Boskamp, GRANTS FROM Immunotek S.L., PERSONAL FEES FROM John Wiley and Sons, AS, PERSONAL FEES FROM Paul-Martini-Stiftung (PMS), PERSONAL FEES FROM Regeneron Pharmaceuticals Inc., PERSONAL FEES FROM RG Aertzefortbildung, PERSONAL FEES FROM Institut für Disease Management, PERSONAL FEES FROM Springer GmbH, PERSONAL FEES FROM AstraZeneca, PERSONAL FEES FROM IQVIA Commercial, PERSONAL FEES FROM Ingress Health, OUTSIDE THE SUBMITTED WORK, AND MEMBER OF EAACI Excom, MEMBER OF EXT. BOARD OF DIRECTORS DGAKI; COORDINATOR, MAIN- OR CO-AUTHOR OF DIFFERENT POSITION PAPERS AND GUIDELINES IN RHINOLGY, ALLERGOLGY AND ALLERGEN-IMMUNOTHERAPY. THE REST OF THE AUTHORS DECLARE THAT THEY HAVE NO RELEVANT CONFLICTS OF INTEREST.

References

[1] Weinberg EG. The WAO white book on allergy 2011 – 2012. Current Allergy and Clinical Immunology. 2011; 24: 156-157.

[2] Egert-Schmidt AM, Kolbe JM, Mussler S, Thumb-Ohlmer S. Patients’ compliance with different administration routes for allergen immunotherapy in Germany. Patient Prefer Adherence. 2014; 8: 1475-1481. CrossRef PubMed

[3] Pfaar O, Agache I, de Blay F, Bonini S, Chaker AM, Durham SR, Gawlik R, Hellings PW, Jutel M, Kleine-Tebbe J, Klimek L, Kopp MV, Nandy A, Rabin RL, van Ree R, Renz H, Roberts G, Salapatek AM, Schmidt-Weber CB, Shamiy MH, et al. Perspectives in allergen immunotherapy: 2019 and beyond. Allergy. 2019; 74 (Suppl 108): 3-25. CrossRef PubMed

[4] Pfaar O, Bousquet J, Durham SR, Kleine-Tebbe J, Larché M, Roberts G, et al. One hundred and ten years of Allergen Immunotherapy: A journey from empiric observation to evidence. Allergy. 2021; 77: 454-468. PubMed

[5] Burks AW, Calderon MA, Casale T, Cox L, Demoly P, Jutel M, Nelson H, Akdis CA. Update on allergy immunotherapy: American Academy of Allergy, Asthma & Immunology/European Academy of Allergy and Clinical Immunology/PRACTALL consensus report. J Allergy Clin Immunol. 2013; 131: 1288-96.e3. CrossRef PubMed

[6] Makatsori M, Senna G, Pitsios C, Lleonart R, Klimek L, Nunes C, Rukhadze M, Rogala B, Gawlik R, Panzer P, Pfaar O, Calderon M. Prospective adherence to specific immunotherapy in Europe (PASTE) survey protocol. Clin Transl Allergy. 2015; 5: 17. CrossRef PubMed

[7] Kiel MA, Röder E, Gerth van Wijk R, Al MJ, Hop WC, Rutten-van Molken MR. Real-life compliance and persistence among users of subcutaneous and sublingual allergen immunotherapy. J Allergy Clin Immunol. 2013; 132: 353-60.e2. CrossRef PubMed

[8] Bousquet J, KHALTAEV N, Cruz AA, Denburg J, Fokkens WJ, TOGIAS A, Zuberbier T, Boaeno-Cagnani CE, Canonica GW, van Weel C, Agache I, Aît-Khaled N, Bachtet C, Blass MS, Bonini S, Boulet LP, Bousquet PJ, Camargos P, Carlsen KH, Chen Y, et al; World Health Organization; AllerGen. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 2008; 63 (Suppl 86): B-160. CrossRef PubMed

[9] van Cauwenberge P, Bachtet C, Passalacqua G, Bousquet J, Canonica GW, Durham SR, Fokkens WJ, Howarth PH, Lund V, Malling HJ, Mygind N, Passali D, Scadding GK, Wang DY; European Academy of Allergology and Clinical Immunology. Consensus statement on the treatment of allergic rhinitis. Allergy. 2000; 55: 116-134. CrossRef PubMed

[10] Calderon MA, Alves B, Jacobson M, Hurwitz B, Sheikh A, Durham S. Allergen injection immunotherapy for seasonal allergic rhinitis. Cochrane Database Syst Rev. 2007: 2007; CD001936. CrossRef PubMed

[11] Radulovic S, Calderon MA, Wilson D, Durham S. Sublingual immunotherapy for allergic rhinitis. Cochrane Database Syst Rev. 2010; CD002893. PubMed

[12] Passalacqua G, Baiardini I, Senna G, Canonica GW. Adherence to pharmacological treatment and specific immunotherapy in allergic rhinitis. Clin Exp Allergy. 2013; 43: 22-28. CrossRef PubMed

[13] Canonica GW, Bousquet J, Casale T, Lockey RF, Boaeno-Cagnani CE, Pawankar R, Potter PC, Bousquet PJ, Cox JS, Durham SR, Nelson HS, Passalacqua G, Ryan DP, Brozek JL, Compalati E, Dahi D, Delgado L, van Wijck RG, Gower RG, Ledford DK, et al. Sublingual immunotherapy: World Allergy Organization Position Paper 2009. Allergy. 2009; 64 (Suppl 91): 1-59. CrossRef PubMed

[14] Muraro A, Roberts G, Halken S, Agache I, Angier E, Fernandez-Rivas M, Gerth van Wijk R, Jutel M, Lau S, Pijoan G, Pfaar O, Ryan D, Sturm GJ, van Ree R, Varga EM, Bachtet C, Calderon M, Canonica GW, Durham SR, Malling HJ, et al. EAACI guidelines on allergen immunotherapy: Executive statement. Allergy. 2018; 73: 739-743. CrossRef PubMed

[15] Roberts G, Pfaar O, Akdis CA, Ansotegui I, Durham SR, Gerth van Wijk R, Halken S, Lorenas-Linnemann D, Pawankar R, Pitsios C, Sheik A, Worm M, Arasi S, Calderon MA, Cingi C, Dhami S, Fauguet JL, Hamelmann E, Hellings P, Jacobsen L, et al. EAACI Guidelines on Allergen Immunotherapy: Allergic rhinoconjunctivitis. Allergy. 2018; 73: 765-798. CrossRef PubMed

[16] Novembre E, Galli E, Loddi F, Caffarelli C, Pifferi M, De Marco E, Burastro SE, Colari G, Benetti L, Bonazza R, Puccinelli P, Parmiani S, Bernardini R, Vierucci A. Seasonal sublingual immunotherapy reduces the development of asthma in children.
with allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2004; 114: 851-857. CrossRef PubMed

[17] Pajno GB, Barberio G, De Luca F, Morabito L, Parmiani S. Prevention of new sensitizations in asthmatic children monosensitized to house dust mite by specific immunotherapy. A six-year follow-up study. Clin Exp Allergy. 2001; 31: 1392-1397. CrossRef PubMed

[18] Canonica GW, Cox L, Pawankar R, Baena-Cagnani CE, Blais M, Bonini S, Bouzqer J, Calderon M, Comolato E, Durham SR, van Wijk RG, Lorenz-Linnemann D, Nelson H, Passalacqua G, Pfaor O, Rosario N, Ryan D, Rosenwasser L, Schmid-Grendelmeier P, Senna G, et al. Sublingual immunotherapy: World Allergy Organization position paper 2013 update. World Allergy Organ J. 2014; 7: 6. CrossRef PubMed

[19] Durham SR, Walker SM, Varga EM, Jacobson MR, O’Brien F, Noble W, Till SJ, Hamid QA, Nouri-Aria KT. Long-term clinical efficacy of grass-pollen immunotherapy. N Engl J Med. 1999; 341: 468-475. CrossRef PubMed

[20] Durham SR, Emminger W, Kopp A, de Monchy JG, Rak S, Scadding GK, Wurtzen PA, Andersen JS, Tholstrup B, Rils B, Dahl R. SQ-standardized sublingual grass immunotherapy: confirmation of disease modification 2 years after 3 years of treatment in a randomized trial. J Allergy Clin Immunol. 2012; 129: 717-725.e5. CrossRef PubMed

[21] Pfaor O, Ankermann T, Augustin M, Bubel P, Böing S, Brehler R, Eng PA, Fischer PJ, Gerstlauer M, Hamelmann E, Jakob T, Kleine-Tebbe J, Kopp MV, Lau S, Mülleneisen N, Müller C, Nemtak K, Pfitzner W, Saloga J, Strömer K, Schmid-Grendelmeier P, Schuster A, Worm M, Wedi B. Commenting participation and process support; Kaul S, Mohler V, Schwalfenberg A. Guideline on allergen immunotherapy in IgE-mediated allergic diseases: 52K Guideline of the German Society of Allergology and Clinical Immunology (DGAKI), Society of Pediatric Allergology and Environmental Medicine (GPA), Medical Association of German Allergologists (AeDA), Austrian Society of Allergology and Immunology (ÖGAI), Swiss Society for Allergology and Immunology (SSAI), German Dermatological Society (DDG), German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNO-KHC), German Society of Pediatrics and Adolescent Medicine (DGKJ), Society of Pediatric Pulmonology (GPP), German Respiratory Society (DGfP), German Professional Association of Otolaryngologists (BVHNO), German Association of Paediatric and Adolescent Care Specialists (BVKJ), Federal Association of Pneumologists, Sleep and Respiratory Physicians (BdP), Professional Association of German Dermatologists (BVDD). Allergol Select. 2022; 6: 167-232. PubMed CrossRef

[22] Vita D, Caminiti L, Ruggeri P, Pajno GB. Sublingual immunotherapy: adherence based on timing and monitoring control visits. Allergy. 2010; 65: 668-669. CrossRef PubMed

[23] Sieber J, De Geest S, Shah-Hosseini K, Müsses R. Medication persistence with long-term, specific grass pollen immunotherapy measured by prescription renewal rates. Curr Med Res Opin. 2011; 27: 855-861. CrossRef PubMed

[24] Senna G, Rialdi E, Calderon M, Lombardi C, Canonica GW, Passalacqua G. Evidence of adherence to allergen-specific immunotherapy. Curr Opin Allergy Clin Immunol. 2009; 9: 544-548. CrossRef PubMed

[25] Musa F, Al-Ahmad M, Arifhodizic N, Al-Hezr W. Compliance with allergen immunotherapy and factors affecting compliance among patients with respiratory allergies. Hum Vaccin Immunother. 2017; 13: 514-517. CrossRef PubMed

[26] Incorvaia C, Mauro M, Leo G, Ricaldi E. Adherence to Sublingual Immunotherapy. Curr Allergy Asthma Rep. 2016; 16: 12. CrossRef PubMed

[27] Baiardini I, Novakova S, Mihalicuta S, Oguzulgen IK, Canonica GW. Adherence to treatment in allergic respiratory diseases. Expert Rev Respir Med. 2019; 13: 53-62. CrossRef PubMed

[28] Reisacher WR, Visopy JM. Patient adherence to immunotherapy. Curr Opin Otolaryngol Head Neck Surg. 2013; 21: 256-262. CrossRef PubMed

[29] Burkhart PV, Sabaté E. Adherence to long-term therapies: evidence for action. J Nurs Scholarsh. 2003; 35: 207. PubMed

[30] Vrijens B, Dima AL, Van Gasse E, van Boven JF, Eakin MN, Foster JM, de Bruin M, Chisholm A, Price D. What We Mean When We Talk About Adherence in Respiratory Medicine. J Allergy Clin Immunol Pract. 2016; 4: 802-812. CrossRef PubMed

[31] van der Heide I, Snoeijis S, Melchiorre MG, Quattrini S, Boerma W, Schellevis F, Rijken M; On behalf of the ICARE4EU project team. Innovating care for people with multiple chronic conditions in Europe: An overview. Brussels: ICARE4EU. 2015.

[32] Lorig KR, Ritter P, Stewart AL, Sobel DS, Brown BW Jr, Bandura A, Gonzalez VM, Laurent DD, Holman HR. Chronic disease self-management program: 2-year health status and health care utilization outcomes. Med Care. 2001; 39: 1217-1223. CrossRef PubMed

[33] Osterberg L, Blaschke T. Adherence to medication. N Engl J Med. 2005; 353: 487-497. CrossRef PubMed

[34] Sabaté E, Sabaté E. Adherence to long-term therapies: evidence for action: World Health Organization; 2003.

[35] Arnet I, Koolj MJ, Messorli M, Hersberger KE, Heerdrink ER, Bouvy M. Proposal of Standardization to Assess Adherence With Medication Records: Methodology Matters. Ann Pharmacother. 2016; 50: 360-368. CrossRef PubMed

[36] Mahesh PA, Vedanthan PK, Amrutha DH, Girdhar BH, Prabhakar AK. Factors associated with non-adherence to specific allergen immunotherapy in management of respiratory allergy. Indian J Chest Dis Allied Sci. 2010; 52: 91-95. CrossRef PubMed

[37] Hsu NM, Reisacher WR. A comparison of attrition rates in patients undergoing sublingual immunotherapy vs subcutaneous immunotherapy. Int Forum Allergy Rhinol. 2012; 2: 280-284. CrossRef PubMed

[38] Silva D, Pereira A, Santos N, Plácido J. Costs of treatment affect compliance to specific subcutaneous immunotherapy. Eur Ann Allergy Clin Immunol. 2014; 46: 87-94. PubMed

[39] Marogna M, Spadolini I, Massolo A, Canonica GW, Passalacqua G. Randomized controlled open study of sublingual immunotherapy for respira-
Adherence in allergen immunotherapy: current situation and future implications

[50] Lemberg ML, Berk T, Shah-Hosseini K, Kasche EM, Mösges R. Sublingual versus subcutaneous immunotherapy: patient adherence at a large German allergy center. Patient Prefer Adherence. 2017; 11: 247-257. CrossRef PubMed

[51] Guenechea-Sola M, Harir S, Galosioa A, Yusin JS. A retrospective review of veterans’ adherence to allergen immunotherapy over 10 years. Ann Allergy Asthma Immunol. 2014; 112: 79-81. PubMed

[52] Vogelberg C, Brüggenjürgen B, Richter H, Jutel M. Real-World Adherence and Evidence of Subcutaneous and Sublingual Immunotherapy in Grass and Tree Pollen-Induced Allergic Rhinitis and Asthma. Patient Prefer Adherence. 2020; 14: 817-827. CrossRef PubMed

[53] Calderon MA, Cox L, Casale TB, Mösges R, Pfaar O, Mailly H-J, Sastre J, Khatou M, Demoly P. The effect of a new communication template on anticipated willingness to initiate or resume allergen immunotherapy: an internet-based patient survey. Allergy Asthma Clin Immunol. 2015; 11: 17. CrossRef PubMed

[54] Huang YN, Huang Y, Dai JH, Yang FF. [Causes of stopping subcutaneous specific immunotherapy in asthmatic children]. Zhongguo Dang Dai Er Ke Za Zhi. 2012; 14: 671-674. PubMed

[55] Wraith DC, Krishna MT. Peptide allergen-specific immunotherapy for allergic airway diseases-State of the art. Clin Exp Allergy. 2021; 51: 751-769. CrossRef PubMed

[56] Pfaar O, Bonini S, Cardona V, Demoly P, Jakob T, Jutel M, Kleine-Tebbe J, Klimek L, Klynsner S, Kopp MV, Kuna P, Larché M, Muraro A, Schmidt-Weber CB, Shamji MH, Simonsen K, Somoza C, Valovirta E, Ziegelmayer P, Zuberbier T, et al; FASIT group. Perspectives in allergen immunotherapy: 2017 and beyond. Allergy. 2018; 73 (Suppl 104): 5-23. CrossRef PubMed

[57] Sade K, Berkun Y, Dolev Z, Shalti M, Kivity S. Knowledge and expectations of patients receiving aeroallergen immunotherapy. Ann Allergy Asthma Immunol. 2003; 91: 444-448. PubMed

[58] Baiardini I, Puggioni F, Menoni S, Boot JD, Diamant Z, Braid F, Canonica GW. Patient knowledge, perceptions, expectations and satisfaction on allergen-specific immunotherapy: a survey. Respir Med. 2013; 107: 361-367. CrossRef PubMed

[59] Incorvaia C, Rapetti A, Scarruti S, Puccinelli P, Capece M, Frati F. Importance of patient’s education in favouring compliance with sublingual immunotherapy. Allergy. 2010; 65: 1341-1342. CrossRef PubMed

[60] Paolelli G, Keber E, Heffner E, Malipiero G, Baiardini I, Canonica GW, Giua C, Comar C, Vaiarelli G, Gioiella G, Aprili C, Basile A, Battisti A, Cavalli C, Cirino M, Bella MD, Demontis R, Di Donato G, Di Gangi R, Esposito A, et al; SIFAC Group of Clinical community Pharmacists (SGCP). Effect of an educational intervention delivered by pharmacists on adherence to treatment, disease control and lung function in patients with asthma. Respir Med. 2020; 174: 106199. CrossRef PubMed

[61] Sánchez J. Adherence to allergen immunotherapy improves when patients choose the route of administration: Subcutaneous or sublingual. Allergol Immunopathol (Madr). 2015; 43: 436-441. CrossRef PubMed

[62] Bender BG, Oppenheimer J. The special challenge of nonadherence with sublingual immunotherapy. J Allergy Clin Immunol Pract. 2014; 2: 152-155. CrossRef PubMed

[63] Braido F, Baiardini I, Puggioni F, Garuti S, Powankar R, Walter Canonica G. Rhinitis: adherence to treatment and new technologies. Curr Opin Allergy Clin Immunol. 2017; 17: 23-27. CrossRef PubMed

[64] Vassavi R, Garg A, Parikh L, Vassavi S. Non-adherence to subcutaneous allergen immunotherapy: inadequate health insurance coverage is the...
leading cause. Ann Allergy Asthma Immunol. 2015; 115: 241-243. PubMed

[65] Tat TS. Adherence to Subcutaneous Allergen Immunotherapy in Southeast Turkey: A Real-Life Study. Med Sci Monit. 2018; 24: 8977-8983. CrossRef PubMed

[66] Matricardi PM, Kuna P, Panetta V, Wahn U, Narkus A. Subcutaneous immunotherapy and pharmacotherapy in seasonal allergic rhinitis: a comparison based on meta-analyses. J Allergy Clin Immunol. 2011; 128: 791-799.e6. CrossRef PubMed

[67] Jutel M, Bartkowski-Emeryk M, Bręborowicz A, Cichocka-Jarosz E, Emeryk A, Gaweł R, Gonerko P, Rogala B, Nowak-Węgrzyń A, Samoliński B, Pta ITS; IT Section, PTA. Sublingual immunotherapy (SLIT) – indications, mechanism, and efficacy: Position paper prepared by the Section of Immunotherapy, Polish Society of Allergy. Ann Agric Environ Med. 2016; 23: 44-53. CrossRef PubMed

[68] Marseglia GL, Incorvaia C, La Rosa M, Frati F, Marcucci F. Sublingual immunotherapy in children: facts and needs. Ital J Pediatr. 2009; 35: 31. CrossRef PubMed

[69] Campbell DE. Sublingual immunotherapy for children: Are we there yet? Defining its role in clinical practice. Paediatr Respir Rev. 2009; 10: 69-74, quiz 74. CrossRef PubMed

[70] Braido F, Baiardini I, Blasi F, Pawankar R, Canonica GW. Adherence to asthma treatments: “we know, we intend, we advocate”. Curr Opin Allergy Clin Immunol. 2015; 15: 49-55. CrossRef PubMed

[71] Devillier P, Molimard M, Ansolabehere X, Bardoulet I, Coulombel N, Maurel F, Le Jeunne P, Demoly P. Immunotherapy with grass pollen tablets reduces medication dispensing for allergic rhinitis and asthma: A retrospective database study in France. Allergy. 2019; 74: 1317-1326. CrossRef PubMed

[72] Koca Kalkan I, Ates H, Aksu K, Yesilkaya S, Topel M, Cuhadar Ercelebi D, Turkyilmaz S, Oncul A, Demir S. Real-life adherence to subcutaneous immunotherapy: What has changed in the era of the COVID-19 pandemic. World Allergy Organ J. 2021; 14: 100558. CrossRef PubMed

[73] Cox LS, Hankin C, Lockey R. Allergy immunotherapy adherence and delivery route: location does not matter. J Allergy Clin Immunol Pract. 2014; 2: 156-160. CrossRef PubMed