Investigation of high p_t events in Nucleus-Nucleus collisions using the Hijing event generator

Natasha Sharma and Madan M. Aggarwal

Panjab University, Chandigarh, India

In recent years lot of interest has been observed in the nucleus-nucleus collisions at RHIC energies in phenomena related to high p_t physics [1]. The suppression of high p_t particles and disappearance of back-to-back jets compared to the scaling with number of binary nucleon-nucleon collisions indicates that a nearly perfect liquid is produced in these collisions. Results on self shadowing of high p_t events are presented using hadron multiplicity associated to high p_t and unbiased events in nucleus-nucleus collisions [2] obtained from the hijing event generator.

I. INTRODUCTION AND THEORY

It has been shown by Cunqueiro, Deus and Pajares [2] that the difference between the multiplicity associated to high p_t events and unbiased multiplicity is given by the normalised variance of the unbiased multiplicity indicating thereby the self-shadowing of the high p_t events. We here reproduce some of the equations of ref.[2] for the sake of clarity. In hadron-nucleus collisions, the inelastic unbiased cross section is defined as:

$$\sigma^{hA}(b) = \sum_{n=1}^{A} \binom{A}{n} (\sigma T(b))^n (1 - \sigma T(b))^{A-n}$$

where $\sigma T(b)$, the collision probability, is further divided into two classes viz., a collision giving rise to high p_t particle termed as events of type C with cross-section σ_C and rest of the events without high p_t particle i.e., non-C type events with cross-section σ_{NC}. Thus :

$$(\sigma T(b))^n = \sum_{i=0}^{n} \binom{A}{n} (\sigma_C)^i (\sigma_{NC})^{n-i} T(b)^n,$$

The final cross section for events of type C must contain at least one elementary σ_C in the sum [3] i.e.,

$$\sigma_C^{hA} = \sum_{n=1}^{A} \sigma_C^{n-i} \sigma_{NC}^{n-i} T(b)^n X (1 - (\sigma_C + \sigma_{NC})T(b))^{A-n}$$

$$= 1 - (1 - \sigma_C T(b))^A$$

This equation shows that C-events are self-shadowed, in the sense that their cross section depends only on their cross section in nucleon-nucleon collision. This is also true for nucleus-nucleus collisions [4, 5]. Taking α_C as the probability for an elementary collision to be of type C, $N(\nu)$ total
number of events, and $N_C(\nu)$ total number of events of type C, the probability distribution for C type events with ν collisions in the limit of small α_c can be written as [2]:

$$P_C(\nu) = \frac{\alpha C \nu N(\nu)}{\sum \nu N_C(\nu)} = \frac{\nu N(\nu)}{\nu \sum \nu N(\nu)} = \frac{\nu P(\nu)}{<\nu>} \quad (5)$$

It was proposed [2] that if the total multiplicity $P(n)$ is obtained by the convolution of the elementary multiplicity distributions $p(n)$, the total dispersion D is related to the dispersion d and multiplicity \bar{n}, of the distribution of elementary interaction as

$$D^2 < n >^2 = <\nu^2> - <\nu>^2 + \frac{d^2}{<\nu>\bar{n}^2} \quad (6)$$

As in nucleus-nucleus collision ν is very high so neglecting Ind term one gets:

$$D^2 < n >^2 = <\nu^2> - <\nu>^2 \quad (7)$$

Hence, normalized dispersion of the total multiplicity is approximated by the normalized dispersion of the number of elementary interactions. This argument is used to extend Eq. 5 to the multiplicity distribution [2] i.e.,

$$P_C(n) = \frac{n P(n)}{<n>} \quad (8)$$

which can be written as:

$$< n >_C - < n > = \frac{D^2}{<n>} \quad (9)$$

Therefore, the difference between the average multiplicity associated with high p_t events and unbiased average multiplicity is given by the normalized variance of the unbiased multiplicity distribution if high p_t events are self-shadowed.

II. RESULTS AND DISCUSSION

We generated one million Au+Au minimum bias events at $\sqrt{s_{NN}} = 200$ GeV and 100K Pb+Pb minimum bias events at $\sqrt{s_{NN}} = 11$ TeV using Hijing Event generator with default setting. The analysis was done in the range $1.0 < y < 1.0$ and $0^o \leq \phi \leq 360^o$ for different p_t cuts. The centrality bins were calculated using the number of participants in a collision. We used eight equal spacing centrality bins of N_{part} i.e., 0-50, 50-100, 150-200, 200-250, 250-300, 300-350, and 350-400 representing, respectively, as centralities 1, 2, 3, 4, 5, 6, 7, and 8 for Au+Au collisions. In case of Pb+Pb collisions we also used the centrality bin corresponding to $400 < N_{part} < 450$, representing the 9th centrality bin. Events having at least one high p_t track are termed as “events of type C”. We have used different high p_t cuts to check the self shadowing effects in these event samples.

Figure 1(left) shows the plot of normalized variance ($D^2/<N>$) of unbiased multiplicity distribution versus centrality bin for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. It is observed that normalized variance decreases monotonically with increasing centrality. Similar trend is observed for Pb+Pb collisions at $\sqrt{s_{NN}} = 11$ TeV (Fig.1 (right)). Non-monotonic decrease of normalized variance with increasing centrality is not observed for both Au+Au and Pb+Pb collisions.

From Eq. 9, we expect the ratio(R)

$$R = \frac{(< n >_C - < n >) <n>}{D^2} = 1$$
In Fig. 2(left), the ratio, R, is plotted versus centrality bin for Au+Au data for different p_t cuts i.e., $p_t > 2$ GeV/c, $p_t > 3$ GeV/c, $p_t > 4$ GeV/c and $p_t > 5$ GeV/c. It is seen that for $p_t < 4$ GeV/c ratio decreases with increasing centrality whereas for $p_t > 4$ GeV/c it stays constant as expected from Eq. 10 for self-shadowing of high p_t events. Fig. 2(right) exhibits similar plots for Pb+Pb collisions for $p_t > 6$ GeV/c, $p_t > 8$ GeV/c, $p_t > 10$ GeV/c and $p_t > 12$ GeV/c. Here also it is noticed that for $p_t < 10$ GeV/c ratio decreases with increase in centrality but almost stays constant for $p_t > 10$ GeV/c indicating thereby self shadowing effect for high p_t events. It is observed that p_t cut changes with change in the collision energy for observing self-shadowing effect.

An attempt has also been made to see if this trend is valid for photon multiplicity distributions.
which can be observed with Photon Multiplicity Detector (PMD) in STAR [6] at RHIC and in ALICE [7] at LHC. Here we have termed events as high p_t if an event has at least one high p_t charged particle and studied the photon multiplicity distributions for different p_t cuts on charged particles as PMD does not carry the information about the momenta of photons. Fig. 3(left) displays the ratio for photons versus centrality bin for Au+Au collisions. Here again we observed similar trend as is seen in Fig. 2(left) for charged particles indicating that self shadowing effect can be studied using photon multiplicity distributions as well. In Fig. 3(right), we present the plot of ratio for photons versus centrality bin for Pb+Pb collisions which again indicates that high p_t events are self shadowed.

III. SUMMARY

Au+Au at $\sqrt{s_{NN}}=200$ GeV and Pb+Pb at $\sqrt{s_{NN}}=11$ TeV Hijing events exhibits self shadowing effect for high p_t events. It is observed that p_t cut changes with change in the collision energy for observing self-shadowing effect. Photon multiplicity distribution also shows similar self-shadowing for high p_t events. This can be checked using Photon Multiplicity Detector in STAR at RHIC and ALICE at LHC.

References

[1] K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A 757 (2005) 184, Phys. Rev. C 66 (2002) 024901; J. Adams et al.,(STAR Collaboration), Nucl. Phys. A 757 (2005) 102.
[2] L. Cunqueiro, J. Dias de Deus and C. Pajares, Phys. Rev. C 74 (2006) 034901.
[3] C. Pajares and A. V. Ramallo, Phys. Lett. B 107 (1981) 106.
[4] J. Dias de Deus, C. Pajares, and C. A. Salgado, Phys. Rev. B 408 (1997) 417.
[5] C. Pajares and A. V. Ramallo, Phys. Rev. D 31 (1985) 2800.
[6] J. Adams et al.,(STAR Collaboration) Phys. Rev. Lett. 95 (2005) 062301.
[7] ALICE PMD, Technical Design Report, CERN/LHCC 99-32(1999).