Prevalence, Outcomes, and Risk Factors of New-Onset Atrial Fibrillation in Critically Ill Patients
A Systematic Review

Zesheng Wu,1 MD, Jinyan Fang,1 MD, Yi Wang,1 MD and Fanghui Chen,1 MD

Summary
The purpose of this article is to systematically evaluate the prevalence, outcomes, and risk factors of new-onset atrial fibrillation (AF) in critically ill patients.

Medline, Embase, Science Citation Index, Wanfang, CNKI, and Wiley Online Library were thoroughly searched to identify relevant studies. Studies were assessed for methodological quality using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. Odds ratio (OR) and weighted mean difference (WMD) with 95% confidence interval (CI) were used to assess the strength of the association. Heterogeneity, subgroup, sensitivity analyses, and publication bias were conducted.

A total of 25 studies were included. The prevalence of new-onset AF ranged from 4.1% to 46%. The random-effects pooled prevalence was 10.7%. The pooled result jumped up to 35.8% in patients with septic shock. Pooled analysis showed significant associations between new-onset AF with intensive care unit (ICU) mortality and in-hospital mortality over those patients without AF (OR = 3.11; 95%CI 2.45-3.96 and OR = 1.63; 95%CI 1.27-2.08). The pooled analysis also indicated that both ICU and hospital length of stay are longer in patients with new-onset AF than those without AF (WMD = 1.87; 95%CI 0.89-2.84 and WMD = 2.73; 95%CI 0.77-4.69). Independent risk factors included increasing age, shock, sepsis, use of a pulmonary artery catheter and mechanical ventilation, fluid loading, and organ failures.

New-onset AF incidence rate is high in critically ill patients. New-onset AF is associated with worse outcomes. Further studies should be done to explore how to prevent and treat new-onset AF in critically ill patients.

(Int Heart J 2020; 61: 476-485)

Key words: Intensive care unit

Critical illness can induce the development of AF in patients without previous history of arrhythmia. New-onset AF is the most common complication in critically ill patients, with reported incidence ranging from 4% to 15% in general intensive care unit (ICU), even up to 46% in septic shock patients. In critically ill patients, new-onset AF can cause hemodynamic instability, acute heart failure, and thromboembolism. Multiple studies demonstrated that new-onset AF during critical illness is associated with poor outcome. Several studies also found that development of new-onset AF in the ICU indicates increased mortality. However, it is unclear whether the association between poor outcomes and AF in critical illness is due to AF itself or is only a marker of severity of disease. Despite the large number of studies reported the development of new-onset AF in critically ill patients, data on the risk factors to development of new-onset AF in critically ill patients is scarce. The higher susceptibility of new-onset AF is probably due to critical illness and concurrent presence of predisposing and precipitating risk factors. In addition, identification of patients at high risk for new-onset AF in critically ill patients is also important.

This meta-analysis aims to evaluate the prevalence, outcome (ICU and in-hospital mortality, ICU and hospital length of stay, stroke incidence), and prognostic factors (age, comorbidities, severity of ill, gender) of new-onset AF in critically ill patients.

Methods
The PRISMA guidelines for systematic reviews and meta-analysis (Supplemental Figure 1) and the Cochrane Handbook were followed.

Search strategy: A comprehensive electronic search of Medline, Embase, Science Citation Index, Wanfang, CNKI, and Wiley Online Library was undertaken. All resources were searched from inception to May 2019. The search terms were “intensive care” or “intensive care unit” or “critical illness” or “critically ill patient” and “atrial fibril-
The reference list of included articles and systematic reviews were searched for additional studies.

Inclusion and exclusion criteria:

Types of studies: All types of studies were included if written in English or Chinese.

Type of patients: Adult patients admitted to ICU for greater than 24 hours.

Contents: We included studies describing the prevalence, risk factors, and outcomes of new-onset AF during ICU stay in adult patients. Studies were excluded if there is no any description of settings as ICU or no clear definition of new-onset AF. We also excluded reviews and commentaries that contained no original data and reports that were published only in abstract form.

Types of outcome measures: The primary outcome was mortality measured at ICU and during in-hospital stay. The secondary outcomes were length of stay (ICU and hospital), risk of stroke incidence at ICU discharge, and the survival rates at hospital discharge more than 6 months of follow-up.

Study selection and data extraction: Two authors (JYF and YW) performed the screening of titles and abstracts, reviewed full-text articles, and confirmed their eligibility. Data were extracted by two independent authors (ZSW and FHC). Disagreements were resolved using consensus and by a third author (YW) if necessary. When the data extraction was unclear or required further details, studies’ authors were contacted by e-mail for clarification of results.

Quality assessment: Studies were evaluated for their methodological quality using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines. The following items were assessed: study design, risk of bias, sample size, and indirectness, which included details of diagnosis of new-onset AF, applicability of each study population, and reported outcome. We scored all items on a four-point scale from very low to high.

Data analysis: Odds ratios (ORs), or prevalence ratios, were used to estimate effect size. The risk ratios and hazard ratios were directly considered equivalent to OR. For continuous variables such as length of stay in ICU or hospital were carried out using the weighted mean difference (WMD) as the summary statistic. The ORs for the relations between new-onset AF and mortality were calculated based on the crude data provided in the article, and then the adjusted effect results and the rough ones were pooled in separately. Risk factors were considered to have a high level of evidence if a significant association ($P < 0.05$) was reported in two studies using multivariable analyses.

Clinical heterogeneity was checked by Q-test. If the heterogeneity was high ($I^2 > 50\%$), the random-effects model was used for meta-analysis. Otherwise, the fixed-effects model was used. Subgroup and sensitivity analyses were done to examine the effect of heterogeneity on the estimated effect size. Egger’s test and Begg’s funnel plot were used for diagnosis of potential publication bias, and $P < 0.05$ was considered statistically significant.

Results

The flowchart of the studies selected is shown in Figure 1. We identified 1,016 potential articles from our search of published work, and 971 were rejected after review of title and abstract. After full-text-level selection, 25 studies which consist of 78,877 patients were included in this meta-analysis. Two studies did not specify whether the patients were managed in ICU or in general ward. However, the conditions of included patients were
were included in this meta-analysis. The vast majority suffered severe sepsis and acute respiratory distress syndrome patients, so the two studies were included in this meta-analysis.

Overall characteristics of included studies were summarized in Table I. Fourteen studies used a method of prospective collection, while the remaining studies were
The prevalence of new-onset AF ranges from 4.5% to 31.9% in 12 studies performed in the medical ICU.2,26,27,29,31,34,35,39) The prevalence of new-onset AF ranges from 5.3% to 7.8% in three studies performed in the surgical ICU.4,7,22) The prevalence of new-onset AF ranges from 7.4%, 17.3%, and 35.8% in patients with non-sepsis, sepsis, and septic shock, respectively. Subgroup analyses were done by setting and study design, and we found that new-onset AF incidence was increasing in medical ICU and retrospective studies. Five studies were multi-center study designed, whereas the others were single-center. The number of included patients in each study ranges from 61 to 49,082. Due to retrospective study designs, small sample sizes, flawed diagnosis of new-onset AF, and lack of mortality evaluation, the overall methodological quality of the studies was very low to moderate (GRADE scores 1.7 to 4.9, 108). Due to retrospective study designs, small sample sizes, flawed diagnosis of new-onset AF, and lack of mortality evaluation, the overall methodological quality of the studies was very low to moderate (GRADE scores 1.7 to 4.9, 108).

Table II shows the prevalence of new-onset AF and severity scores in critically ill patients. The prevalence of new-onset AF ranges from 5.3% to 7.8% in three studies performed in the surgical ICU.4,7,22) The prevalence of new-onset AF ranges from 4.1% to 44% in eight studies in the medical ICU.2,26,27,29,31,34,35,39) The prevalence of new-onset AF ranges from 4.5% to 31.9% in 12 studies performed in the mixed ICU.3,9,11,12,23-25,28,32,33,36-38) The prevalence of new-onset AF ranges from 5.9% to 23.5% in septic patients.9,10,28,33,35) The incidence is even higher in patients with septic shock, and 46% of patients with septic shock developed new-onset AF. As shown in Figure 2, the pooled prevalence of new-onset AF was 10.7%, 95%CI 9.1-12.4, heterogeneity was observed (P < 0.05; I² = 97.7%). The pooled prevalence of new-onset AF was 7.4%, 17.3%, and 35.8% in patients with non-sepsis, sepsis, and septic shock, respectively. Subgroup analyses were done by setting and study design, and we found that new-onset AF incidence was increasing in medical ICU and retrospective study designs (Supplemental Table II). The severity of illness was reported in most studies by Simplified Acute Physiology Score (SAPS) II, Acute Physiology and Chronic Health Evaluation II/III/IV; OASIS, Oxford Acute Severity of Illness Score; ISS, injury severity score; and NR, no report.

Table II. The Prevalence of New-onset AF and Severity Scores in Critically Ill Patients

Name	Year	Case	Incidence of AF (no.)	Severity index	Severity score
Seguin	2004	453	5.3% (24)	SAPS II	45 ± 20/31 ± 17
Seguin	2006	293	5.5% (16)	SAPS II	47 ± 12/31 ± 16
Arora	2007	61	29.5% (18)	APACHE II	25.4 ± 6.4/20 ± 6.4
Goodman	2007	611	9% (52)	APACHE II	23 ± 8/16 ± 8
Christian	2008	272	5.9% (16)	APACHE II	NR
Salman	2008	81	31% (25)	APACHE III	106 ± 31/95 ± 33
Meierhenrich	2010	628	All patients 7.8% (49/628)	NR	NR
Walkin	2011	49082	5.9% (2896)	NR	NR
Wells	2011	1466	22.7% (328)	NR	NR
Della Ayed	2012	377	7% (26)	APACHE II	19 ± 7/15 ± 9
Kanji	2012	3081	4.5% (139)	APACHE II	22.6 ± 9.0/N
Makrygiannis	2014	133	15% (20)	APACHE II	17.9 ± 5/15 ± 6.8
Chen	2015	741	7.2% (53)	APACHE II	27 ± 7/22 ± 9.2
Ambrus	2015	282	10% (28)	APACHE III	91 ± 28/97 ± 32
Guenancia	2015	66	44% (29)	SAPS II	56 ± 45/71/50 (39-57)
Gupta	2015	2018	12.6% (254)	APACHE II	19 (15-23)/16 (11-19)
Shaver	2015	1770	7% (123)	APACHE II	27 (21-33)/25 (20-31)
Klouwenberg	2016	1782	23.5% (418)	APACHE IV	89 (72-108)/74 (58-94)
Tseng	2016	285	21.8% (62)	APACHE II	18.6 ± 4.2/18.0 ± 5.1
Liu	2016	503	All patients 47.7% (240)	APACHE II	NR
NeOAF to SR	(31.1%)	APACHE II	22.8 ± 5.8/21.6 ± 5.5		
NeOAF to AF	(14.9%)	APACHE II	24.6 ± 6.1/21.6 ± 5.5		
Moss	2017	8556	9% (749)	OASIS	NR
New subclinical AF	New subclinical AF (626)	OASIS	30 (24-36)/26 (21-32)		
New clinical AF	New clinical AF (123)	OASIS	32 (28-38)/26 (21-32)		
Duby	2017	506	4.1% (106)	ISS	20.5 ± 14.2/15.8 ± 10.9
Arrigo	2018	1841	12% (212)	SAPS II	NR
Fu	2018	1673	4.5% (75)	APACHE II	27.7 ± 8/23.4 ± 7.1

AF indicates atrial fibrillation; SAPS II, Simplified Acute Physiologic Score II; APACHE II/III/IV, Acute Physiology and Chronic Health Evaluation II/III/IV; OASIS, Oxford Acute Severity of Illness Score; ISS, injury severity score; and NR, no report.
from 1.07 (95% CI 1.04-1.11) to 3.31 (95% CI 1.54-7.13). As shown in Figure 3, the pooled analysis of adjusted OR showed a significant association between new-onset AF and in-hospital mortality (adjusted OR, 1.63; 95% CI 1.27-2.08, \(P < 0.05 \)), and substantial heterogeneity was observed \((P < 0.05; \chi^2 = 74.2\%) \). The pooled analysis of crude OR was 2.69 (Supplemental Figure 3). Subgroup analysis was done in all of the outcome by severity of illness, setting, and study design. (Supplementary Table II)

Table III shows the length of stay in ICU and hospital. Nineteen studies were compared between patients with and without new-onset AF. As shown in Figure 4 (Supplemental Figure 4), the pooled analysis indicated that both
Table III. Hospital and ICU Length of Stay

Name	Year	ICU LOS (days) AF/without AF	Hospital LOS (days) AF/without AF	Stroke (%)	Follow-up (year, mean)
Seguin	2004	16 ± 14/7 ± 9	34 ± 30/22 ± 21		
Seguin	2006	22 ± 23/10 ± 10	32 ± 28/25 ± 26		
Arora	2007	10 (5-18)/4 (2-13)	47 (12-63)/22 (10-50)		
Goodman	2007	15 ± 13/11 ± 17	34 ± 36/21 ± 21		
Christian	2008	17.7/8.3	32.1/28.5		4-year survival
Salman	2008	8 (5-13)/3 (2-11)	NR		
Meierhenrich	2010	30 (9-125)/17 (4-48)	NR		
Walkey	2011	NR	NR		2.6% (75/2896)/0.6% (306/46186), P < 0.01
Wells	2011	NR	NR		
Della Ayed	2012	13 ± 12/7 ± 10	15 ± 11/10 ± 10		
Kanji	2012	10 (1-117)/NR	24 (1-165)/NR		
Chen	2015	6 ± 10.2/3 ± 3.6	15 ± 19/7 ± 9		
Guenancia	2015	10 (4-17)/7 (4-14)	NR		
Gupta	2015	4.1 (1.9-8.1)/1.23 (0.9-2.8)	17.5 (10.8-33)/10.7 (6.4-20.9)	6.3% (16/254)/4.1% (6/145), P = 0.32	
Shaver	2015	6 (3-13)/5 (2-11)	12 (7-22)/11 (6-19)		
Klouwenberg	2016	7.6 (4.0-14.8)/4.1 (2.2-8.2)	NR		1-year survival
Tseng	2016	24.7 ± 16.0/20.7 ± 15.4	65.6 ± 47.4/51.8 ± 45.7		
Liu	2016	NR	NR		
NeOAF to SR	2016	16.7 ± 13.6/11.4 ± 11.1	NR		
NeOAF to AF	2016	17.3 ± 23.3/11.4 ± 11.1	NR		
Duarte	2017	NR	NR		0.8-year survival
New subclinical AF	2017	4.5 (2.1-10.1)/1.8 (1.0-3.4)	11 (6-21)/7 (4-12)		
New clinical AF	2017	7.4 (3.9-14.5)/1.8 (1.0-3.4)	16 (10-25)/7 (4-12)		
Arrigo	2018	15 (9-28)/12 (7-21)	NR		1-year survival

AF indicates atrial fibrillation; NR, no report; and LOS, length of stay.

ICU and hospital length of stay are longer in patients with new-onset AF than those without AF (WMD =1.87; 95% CI 0.89-2.84 and WMD =2.73; 95%CI 0.77-4.69, respectively). Two studies reported the in-hospital ischemic stroke incidence, and one study found that patients with new-onset AF have increased risk for in-hospital stroke (adjusted OR, 2.70; 95% CI 2.05-3.57, P < 0.05).10 In contrast, another study did not find significant
Table IV. Risk Factors for New-onset Atrial Fibrillation in Critically Ill Patients

Risk factor category	Variables	Reference1# (P < 0.05)	Reference2# (P > 0.05)
Demographics	Increased age	3, 4, 7, 10, 11, 22-25, 27, 29, 31-34, 39	9, 30, 36
	Male sex	11, 33	3, 4, 7, 10, 22-25, 29, 30, 34, 36
	White race	10, 26, 30, 33	25, 29
Past history	Diabetes mellitus	24, 33	3, 10, 11, 25-27, 29-31, 34, 36
	Cardiovascular disease	7, 33	3, 22-24, 30, 39
	Coronary artery disease	24, 29	4, 11, 22, 25-27, 31, 34, 36
	Myocardial infarction	11	10, 24
	COPD	24	4, 10, 22, 25-27, 36
	Stroke	10.25	34
	Hypertension	3, 4, 11, 25	10, 22, 25, 27, 30, 34, 36
	Cancer	33	10, 30, 34, 36
	Heart failure	10, 24	4, 11, 29
	Smoking	10	3, 11, 23, 24, 31, 34, 36
	Alcohol use	23, 36	
Severity of ill	APACHE II	23-25, 27, 32, 33	3, 11, 29, 30, 34, 36, 39
	SAPS II	7, 22, 23, 27	9, 4, 31
	Shock	7, 9, 11, 22, 24, 27, 39	
	Organ failures	9, 10, 33	11
Infection	Primary blood stream		
	Respiratory tract	10	
	Abdominal	10	
	Urinary tract	10	
	Skin or soft tissue	10	
	Sepsis	3, 9, 10, 24-26, 31, 33, 35	
Intervention	Pulmonary artery catheter	7, 9, 10, 27	
	Mechanical ventilation	9, 33, 34, 36	
Fluid loading	Increased loading	7, 22	

COPD indicates chronic obstructive pulmonary disease; SAPS II, Simplified Acute Physiologic Score II; and APACHE II, Acute Physiology and Chronic Health Evaluation II.

Discussion

New-onset AF occurred frequently in critically ill patients. Meierhenrich’s study reported a high rate of new-onset AF among septic shock patients (46.0%). Echahidi’s study even found that the incidence of AF was as high as 50%. This study has shown that the prevalence of new-onset AF is 10.7% in pooled analysis. The pooled prevalence is higher than the 5 to 8% occurrence rates reported for surgical ICU populations and consistent with the 9 to 11% rates in mixed ICU populations but far lower than the 23 to 46% rates in sepsis patients. Moreover, we found that the incidence of new-onset AF in critically ill patients varies widely between studies, which may be due to sample sizes of included studies, difference of patient populations, severity of illness, and study design. So, we also carried out a subgroup analysis based on above factors and found that the incidence of new-onset AF was higher in septic shock patients, medical ICU, and prospective study design. Reinelt’s study reported that up to about 15% of medical ICU patients show periods of AF, and Sleeswijk’s review carried out special analysis on the incidence and treatment of new-onset AF in medical ICU. Prospective studies use strict and continuous monitoring methods that can detect even short episodes of new-onset AF that may have only mild clinical symptoms, while retrospective studies definition of AF based on available administrative databases will likely lead to underestimating the incidence of AF. A standardized approach to the definition and method of timely detection of new-onset AF is likely needed.

Previous studies have shown that critically ill patients with new-onset AF have higher mortality. However,
in a large, retrospective, cohort study in cardiac surgery patients, new-onset AF was not an independent predictor for in-hospital mortality.49 Two systematic reviews by Yoshida et al. and Kuipers et al.44,46 reported higher mortality in critically ill patients with new-onset AF, but pooled analysis was not performed in two studies. Gandhi’s study also found that new-onset AF is significantly increased in-hospital mortality in critically ill patients with sepsis (pooled relative risk (RR): 1.45).50 The latest meta-analysis by Kanjanahattakij et al.48 reported that there has been significant association between new-onset AF and in-hospital mortality (pooled OR: 2.70), but the meta-analysis only pooled the crude OR. Our study found 1.63-fold increase in-hospital mortality in critically ill patients with new-onset AF compared with patients without AF by pooled adjusted OR. The pooled crude OR was 2.69, which is consistent with Kanjanahattakij’s result. Liu et al.51 found that the new-onset AF group has higher in-hospital mortality rate (61.3%) compared with no new-onset AF groups (17.5%) in critically ill patients with sepsis (adjusted OR: 3.31). However, there are not enough studies that reported adjusted OR in critically ill patients with sepsis. Notwithstanding, many studies have reported that new-onset AF was associated with higher ICU mortality in critically ill patients, but only two studies reported adjusted OR.33,34 We found 3.11-fold increase ICU mortality in critically ill patients with new-onset AF by pooled crude OR. However, we were unable to explore if this association is because of confounders that were not adjusted.

The lengths of stay in ICU and hospital were longer in critically ill patients with new-onset AF across all studies. Prior studies in ICU population10,44-48 have found a 1.8-3.1-fold increase in both the mean ICU and hospital lengths of stay in patients with new-onset AF, similar to our observed 1.9- and 2.7-fold increase in the ICU and hospital lengths of stay, respectively. Furthermore, patients who developed new-onset AF are at an increased risk of systemic embolization and stroke.50 Walkey’s study presented increased risks of stroke associated with new-onset AF in septic shock patients.50 However, the relationship may also result from the indiscriminate use of anticoagulants in patients with AF, particularly in an ICU setting.50 On the other hand, Kanji’s study found that the incidence of stroke was 0% in new-onset AF patients who have received systemic anticoagulation during the course of AF.50 So, an evidence-based guidelines for the use of anticoagulant prophylaxis in critically ill patients with new-onset AF are urgently needed.

Multiple studies have reported risk factors for the development of AF in the critically ill patients, but only six studies used multivariate analyses to evaluate risk factors.7,10,22-24,27 Advanced age is the important determinant factor for developing AF. The incidence and prevalence rise with age (> 60 years: 1%; > 80 years: 5-15%).7,15,42,50 Issac’s study found systemic inflammatory response syndrome (SIRS) associated with the occurrence of AF,51 and they suggest that SIRS might be a significant predictor of AF occurrence. Moreover, known risk factors for new-onset AF in the critically ill patients are pulmonary artery catheter, mechanical ventilation, and increased fluid load-
epidemiological study. Anesthesia Intensive Ther 2015; 47: 309-14.
6. Arrigo M, Gayat E, Parenica J, et al. Precipitating factors and 90-day outcome of acute heart failure: a report from the intercontinental Great registry. Eur J Heart Fail 2017; 19: 201-8.
7. Seguin P, Signouret T, Branger B, Laviolle B, Malledant Y. Incidence and risk factors of atrial fibrillation in a surgical intensive care unit. Crit Care 2004; 8: 92.
8. Annane D, Sebbire V, Duboc D, et al. Incidence and prognosis of sustained arrhythmias in critically ill patients. Am J Respir Crit Care Med 2008; 178: 20-5.
9. Christian SA, Schorr C, Ferchau L, Jarbrink ME, Parrillo JE, Gerber DR. Clinical characteristics and outcomes of septic patients with new-onset atrial fibrillation. J Crit Care 2008; 23: 532-6.
10. Walkey AJ, Wiener RS, Ghobrial JM, Curtis LH, Benjamin EJ. Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. JAMA 2011; 306: 2248-54.
11. Shaver CM, Chen W, Janz DR, et al. Atrial fibrillation is an independent predictor of mortality in critically ill patients. Crit Care Med 2015; 43: 2104-11.
12. Rivero-Ayerza M, Scholte Op Reimer W, Lenzen M, et al. New-onset atrial fibrillation is an independent predictor of in-hospital mortality in hospitalized heart failure patients: results of the Euro Heart Failure Survey. Eur Heart J 2008; 29: 1618-24.
13. Yucel E, Hollenberg S. Atrial fibrillation in critical illness: innocent bystander or Guilty Party? Crit Care Med 2015; 43: 2254-5.
14. Fuster V. American College of Cardiology Foundation/American Heart Association Task Force. 2011 ACCP/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2011; 123: e269-367.
15. Carrera P, Thongprayoon C, Cheungpasitporn W, Iyer VN, Moua T. Epidemiology and outcome of new-onset atrial fibrillation in the medical intensive care unit. J Crit Care 2016; 36: 102-6.
16. Kourliouros A, Savelieva I, Kiotsekoglou A, Jahangiri M, Camm AJ. Clinical characteristics and outcomes of new-onset atrial fibrillation in critically ill patients: a single center experience in a medical-cardiological ICU. Intensive Care Med 2015; 41: A209.
17. Alshehri K, Arif T, Alshehri M, et al. Impact of new-onset atrial fibrillation on in-hospital mortality following cardiac surgery. J Am Coll Cardiol 2008; 51: 793-801.
18. Ganguly S, Brown T, Pritchett C, Edie S, Allan P, Spivey M. Atrial fibrillation in intensive care. Intensive Care Med Exp 2015; 3: A209.
19. Kuipers S, Klein Klouwenberg PM, Cremer OL. Incidence, risk factors and outcomes of new-onset atrial fibrillation in patients with sepsis: a systematic review. Crit Care 2014; 18: 688.
20. Kalavrouziotis D, Buth KJ, Ali IS. The impact of new-onset atrial fibrillation on in-hospital mortality following cardiac surgery. Chest 2007; 131: 833-9.
21. Yoshida T, Fuji T, Uchino S, Takahashi T. Factors associated with the incidence and severity of new-onset atrial fibrillation in medical intensive care patients. J Crit Care 2007; 22: 398-404.
22. Kalavrouziotis D, Sebbire V, Leclercq C, Malledant Y. Atrial fibrillation in trauma patients requiring intensive care. J Crit Care 2015; 30: 994-7.
23. Wells GL, Morris PE. Incidence and prognosis of atrial fibrillation in patients with sepsis. Cardiol Res 2011; 2: 293-7.
24. Ayed SD, Ayed SA, Tilouche N, et al. New onset of atrial fibrillation in a medical ICU: prevalence and risk factors. Int J Clin Med 2012; 3: 582-6.
25. Kanji S, Williamson DR, Yaghchi BM, Albert M, McIntyre L. Incidence, risk factors and outcomes of new-onset atrial fibrillation in patients requiring intensive care. Ann Pharmacother 2015; 49: 523-7.
26. Arrigo M, Ishihara S, Feliot E, et al. Atrial fibrillation on in-hospital mortality following cardiac surgery. J Am Coll Cardiol 2008; 51: 793-801.
vention, and treatment of new-onset atrial fibrillation in critically ill: a systematic review. J Intensive Care 2015; 3: 19.
47. Gandhi S, Litt D, Narula N. New-onset atrial fibrillation in sepsis is associated with increased morbidity and mortality. Neth Heart J 2015; 23: 82-8.
48. Kanjanahattakij N, Rattanawong P, Krishnamoorthy P, et al. New-onset atrial fibrillation is associated with increased mortality in critically ill patients: a systematic review and meta-analysis. Acta Cardiol 2019; 74: 162-9.
49. Cavaliere F, Volpe C, Soave M. Atrial fibrillation in intensive care units. Curr Anaesth Crit Care 2006; 17: 367-74.
50. Naccarelli GV, Varker H, Lin J, Schulman KL. Increasing prevalence of atrial fibrillation and flutter in the United States. Am J Cardiol 2009; 104: 1534-9.
51. Issac TT, Dokainish H, Lakkis NM. Role of inflammation in initiation and perpetuation of atrial fibrillation: a systematic review of the published data. J Am Coll Cardiol 2007; 50: 2021-8.
52. Trohman RG. Atrial fibrillation in the critically ill: common sense for a common problem. Crit Care Med 2008; 36: 1681-2.
53. Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet 2009; 373: 739-45.
54. Shiba T, Kondo Y, Senoo K, et al. Proximal occlusion in the right coronary artery involving the atrial branch as a strong predictor of new-onset atrial fibrillation in acute myocardial infarction. Int Heart J 2019; 60: 1308-14.
55. Schnabel RB. Can we predict the occurrence of atrial fibrillation? Clin Cardiol 2012; 35: 5-9.

Supplemental Files
Supplemental Tables I-IV
Supplemental Figures 1-5
Please see supplemental files; https://doi.org/10.1536/ihj.19-511