Original Article

Nationwide survey of Streptococcus pneumoniae drug resistance in the pediatric field in Japan

Takafumi Okada,1,2 Yoshitake Sato,1,3 Yoshikiyo Toyonaga,1,4 Hideaki Hanaki5 and Keisuke Sunakawa1,6

1Drug-Resistant Pathogen Surveillance Group in Pediatric Infectious Disease,2Department of Pediatrics, Shikoku Medical Center for Children and Adults, Zentsuji, Kagawa, 3Department of Pediatrics, Fuji Heavy Industries Health Insurance Society, Ota Memorial Hospital, Ota, Gunma, 4Department of Pediatrics, Saitama Sekishinkai Hospital, Sayama, Saitama, 5Kitasato Institute, Kitasato University Research Center for Anti-infectious Drugs and 6Kitasato Institute, Kitasato University Research Organization for Infection Control Sciences, Tokyo, Japan

Abstract

Background: Streptococcus pneumoniae is a major causative pathogen of pneumonia in children. The Drug-Resistant Pathogen Surveillance Group in Pediatric Infectious Disease conducted a nationwide surveillance of S. pneumoniae in 2000–2001, 2004, 2007, 2010 and 2012, and investigated changes in drug resistance of S. pneumoniae.

Methods: All strains of S. pneumoniae were isolated from clinical specimens collected from pediatric patients. The minimum inhibitory concentration was measured and the strains were classified according to the Clinical Laboratory Standards Institute criteria. The isolation rates of penicillin-intermediate resistant S. pneumoniae (PISP) and penicillin-resistant S. pneumoniae (PRSP) were compared based on seven patient factors. Logistic regression analysis was also performed.

Results: The sum of the isolation rates for PISP and PRSP for each period was 64.6%, 67.0%, 56.2%, 76.9% and 49.5%, respectively. Among the patient factors, age category 1 (<3 years, ≥3 years), age category 2 (infant, toddler and preschooler, schoolchild), siblings (absence, presence), and pre-treatment with antimicrobial agents (absence, presence) were associated with significant differences in the isolation rate of PISP + PRSP. An interaction was observed between pre-treatment with antimicrobial agents and schoolchild, and the isolation rate of PISP + PRSP was higher in patients with both pre-treatment with antimicrobial agents and schoolchild.

Conclusion: Although some changes were observed in the rate of resistance of S. pneumoniae, an increasing trend was not observed. Both pre-treatment with antimicrobial agents and age were associated with resistance, and an interaction was observed between pre-treatment with antimicrobial agents and schoolchild.

Key words interaction, pediatric infectious disease, Streptococcus pneumoniae, surveillance, susceptibility.
Here we report the results of a retrospective analysis of changes in the drug susceptibility of *S. pneumoniae* and the relationship between the development of resistance by *S. pneumoniae* and patient characteristics, based on the results of the surveillance previously conducted in periods 1–5.

Methods

Bacterial strains

All strains of *S. pneumoniae* were isolated from clinical specimens collected from pediatric patients at 19–28 institutions that participated in the surveillance conducted in periods 1–5. Among those institutions, 10 institutions participated continuously. Nasopharyngeal, pharyngeal, and sputum specimens were mainly collected. After the strains isolated from the patients at each institution were cryopreserved with the Microbank system, they were transferred to the Research Center for Anti-infectious Drugs, Kitasato University.

Antimicrobial susceptibility testing

The minimum inhibitory concentration (MIC) was measured using the broth microdilution method according to Clinical Laboratory Standards Institute (CLSI) methods at the Research Center for Anti-infectious Drugs, Kitasato University, using frozen plates containing six predetermined antimicrobial agents (Eiken Chemical, Tokyo, Japan). Information on the drug susceptibility in periods 1–5 has already been reported. During these periods, the following 26 drugs were tested: penicillin G (PCG), ampicillin, amoxicillin, piperacillin, cefaclor (CCL), cefditoren, cefcapene (CFPN), cefpodoxime, cefdinir, cefotiam, ceftriaxone, cefotaxime (CTX), ceferam, faropenem (FRPM), panipenem, meropenem, doripenem, tebipenem (TBPM), azithromycin (AZM), clarithromycin (CAM), rokitamycin (RKM), vancomycin, teicoplanin, norfloxacine, levofloxacine and tosufloxacin (TFLX).

Susceptibility testing

The strains were classified according to the CLSI 2007 criteria (non-meningitis, oral penicillin). PCG sensitivity of \(\leq 0.06 \mu\text{g/mL}\) was classified as PSSP, sensitivity of \(0.12 \text{–} 1.0 \mu\text{g/mL}\) was classified as PISP, and sensitivity of \(\geq 2.0 \mu\text{g/mL}\) was classified as PRSP. Although PCG sensitivity \(\leq 2.0 \mu\text{g/mL}\) was classified as PSSP, sensitivity \(4 \mu\text{g/mL}\) as PISP, and sensitivity \(\geq 8.0 \mu\text{g/mL}\) as PRSP according to the CLSI 2013 guidelines, we used the CLSI 2007 guidelines in order to compare all data in periods 1–5 in the present report.

Patient characteristics and analysis

The isolation rates of PISP and PRSP were compared based on seven patient factors: sex, age category 1 (<3 years, \(\geq 3\) years), age category 2 (infant, toddler and preschooler, schoolchild), siblings (presence, absence), group day care (attendance, non-attendance), group day care (siblings) (attendance, non-attendance), and pre-treatment with antimicrobial agents within 1 month (presence, absence). Two-sided chi-squared test was used to identify whether significant difference existed. The level of significance was set at 5%.

Logistic regression analysis was performed using SAS version 9.2 (SAS Institute Inc., Cary, North Carolina, USA). Variables were pre-treatment with antimicrobial agents, sex, age category 2, siblings, group day care, and interaction between pre-treatment with antimicrobial agents and each other factor.

Results

S. pneumoniae isolation rate

Table 1 lists the number of strains of *S. pneumoniae* isolated from various specimens. The majority of specimens were collected from the nasopharynx, and the total number of strains of PSSP, PISP and PRSP isolated from the nasopharynx was 506, 565 and 268, respectively.

Strain	Specimen	Period 1	Period 2	Period 3	Period 4	Period 5	Total
PSSP	Nasopharynx	72	87	107	89	151	506
	Pharynx	26	11	4	3	5	49
	Sputum	8	6	8	7	19	48
	Others	12	5	4	7	12	40
	Unknown	10	1	1	0	0	12
PISP	Nasopharynx	66	82	117	187	113	565
	Pharynx	31	21	11	11	8	82
	Sputum	18	10	13	19	23	83
	Others	8	7	7	12	1	35
	Unknown	3	3	0	0	0	6
PRSP	Nasopharynx	65	71	9	100	23	268
	Pharynx	19	7	2	2	3	33
	Sputum	12	20	0	15	10	57
	Others	7	0	0	7	2	16
	Unknown	5	2	0	0	0	7

PISP, penicillin-intermediate resistant *Streptococcus pneumoniae*; PRSP, penicillin-resistant *Streptococcus pneumoniae*; PSSP, penicillin-susceptible *Streptococcus pneumoniae*.
Change in drug susceptibility

Table 2 lists the distribution of *S. pneumoniae* according to degree of resistance. The number of strains of PSSP in periods 1–5 was 128 (35.4%), 110 (33.0%), 124 (43.8%), 106 (23.1%), and 187 (50.5%), respectively. The number of strains of PISP + PRSP was 234 (64.6%), 223 (67.0%), 159 (56.2%), 353 (76.9%), and 183 (49.5%), respectively. The number of PRSP strains was 108 (29.8%), 100 (30.0%), 11 (3.9%), 124 (27.0%), and 38 (10.3%), respectively. The number of strains of PISP + PRSP was higher in patients pre-treated with antimicrobial agents, was higher in toddler and preschooler than in infant, was lower in schoolchild than in infant, and was lower in patients with siblings. Among the interactions, the isolation rate of PISP + PRSP was higher in patients pre-treated with antimicrobial agents and schoolchild, and was lower in patients pre-treated with antimicrobial agents and patients with siblings.

Susceptibility to antimicrobial agents

Tables 3 and 4 list the MIC$_{50}$ as well as MIC$_{90}$ (the MIC at which 50% and 90% strains are inhibited, respectively) for antimicrobial agents against *S. pneumoniae*. From periods 1 to 5, the drugs for which MIC$_{50}$ increased more than fourfold were CFPN, CTX, AZM, CAM, and RKM against PSSP strains; FRPM, AZM, CAM, and RKM against PRSP strains; and AZM, CAM, and RKM against PRSP strains. The drug for which MIC$_{50}$ increased more than fourfold was CAM against PRSP strains. The other drugs have in general retained susceptibility. The MIC$_{50}$ and MIC$_{90}$ of both TBPM and TFLX, which were newly launched after period 3, were ≤ 0.125 μg/mL and 0.25 μg/mL, respectively. The MIC$_{50}$ and MIC$_{90}$ of CCL against PSSP and PISP strains decreased to below one-fourth of the original values.

Patient factors

Table 5 lists the number of patients for each patient characteristic in periods 1–5. Among the patient factors, age category 1 (<3 years), age category 2 (infant, toddler and preschooler, schoolchild), siblings (absence, presence), and pre-treatment with antimicrobial agents (absence, presence) were associated with significant differences in the isolation rate of PISP + PRSP. The isolation rate of PISP + PRSP was higher in patients in age category 1 (<3 years) in period 1 ($P = 0.0002$) and period 3 ($P = 0.0039$); in patients in age category 2 (infant, toddler and preschooler) in period 1 ($P < 0.0001$) and period 4 ($P = 0.0105$); in patients with siblings (absence) in period 3 ($P = 0.0048$); and in patients with pre-treatment with antimicrobial agents (presence) in period 1 ($P = 0.0014$), period 2 ($P = 0.0365$), and period 5 ($P = 0.0370$). No significant difference was found in period 4.

Table 6 lists the isolation rates of PISP + PRSP for the whole period overall by patient characteristics. The isolation rate of PISP + PRSP was higher in patients in age category 1 (<3 years; $P < 0.0001$); in patients in age category 2 (infant, toddler and preschooler; $P < 0.0001$); in patients without siblings ($P = 0.0032$); and in patients pre-treated with antimicrobial agents ($P < 0.0001$).

Logistic regression analysis

Table 7 shows the results of logistic regression including interaction between pre-treatment with antimicrobial agents and each other factor. The isolation rate of PISP + PRSP was higher in patients pre-treated with antimicrobial agents, was higher in toddler and preschooler than in infant, was lower in schoolchild than in infant, and was lower in patients with siblings. Among the interactions, the isolation rate of PISP + PRSP was higher in patients pre-treated with antimicrobial agents and schoolchild, and was lower in patients pre-treated with antimicrobial agents and patients with siblings.

Discussion

Among the pathogens evaluated by the Surveillance Group from 2000 to 2012, we paid particular attention to *S. pneumoniae*. We retrospectively analyzed the changes in drug susceptibility of *S. pneumoniae* as well as the relationship between the development of resistance by *S. pneumoniae* and patient characteristics.

From periods 1 to 5, the change in MIC$_{50}$ and MIC$_{90}$ of β-lactams against PRSP strains was less than fourfold. The drug for which MIC$_{50}$ increased more than fourfold was CAM against PSSP strains, while the drugs for which MIC$_{50}$ increased more than fourfold were CAM, AZM and RKM against PSSP, PISP, and PRSP strains. From period 1 to 2, the MIC$_{50}$ of CAM and AZM increased from 0.25–1 to 128 μg/mL against PSSP strains, from 0.5–1 to >128 μg/mL against PISP strains, and from 0.5–4 to 4–32 μg/mL against PRSP strains, respectively. After period 3, MIC$_{50}$ and MIC$_{90}$ of both these drugs were >64 μg/mL. In Japan, the survey conducted from 2005 to 2006 in the otolaryngological field showed a high prevalence of CAM- and erythromycin-resistant strains, and the proportion of strains carrying both *mefA* and *ermB*, which are macrolide-resistant genes, increased in 2007. Therefore, it was considered that *S. pneumoniae* had become resistant to the macrolides before period 3 based on the results of surveillance.

The isolation rates of PISP + PRSP ranged from 49.5% to 76.9% for the whole period overall. The isolation rates of PRSP ranged from 3.9% to 30.0%, and lower rates were observed in periods 1 to 5.
Drugs	MIC\(_{50}\) (μg/mL)	PSSP	PISP	PRSP											
	Period 1	Period 2	Period 3	Period 4	Period 5	Period 1	Period 2	Period 3	Period 4	Period 5	Period 1	Period 2	Period 3	Period 4	Period 5
PCG	0.03	0.06	≤0.06	≤0.06	≤0.06	0.5	0.5	0.5	0.5	0.5	2	2	2	2	2
ABPC	0.03	0.03	≤0.06	≤0.06	≤0.06	0.5	0.5	1	0.5	1	2	2	2	2	2
AMPC	–	–	≤0.06	≤0.06	≤0.06	–	–	0.5	0.25	0.5	–	–	1	1	1
PIPC	–	–	≤0.06	≤0.06	≤0.06	–	–	0.5	1	1	–	–	2	2	2
CCL	4	0.5	0.5	1	0.5	64	8	16	16	8	>128	64	128	64	64
CDTR	0.06	0.125	≤0.06	0.125	0.125	0.25	0.5	0.25	0.25	0.25	0.5	0.5	0.5	0.5	0.5
CFPN	0.06	0.125	0.125	0.25	0.25	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
CPDX	0.125	0.25	0.25	0.25	0.25	1	2	2	2	1	1	1	1	1	1
CFDN	0.25	0.25	0.25	0.25	0.25	2	2	2	2	1	1	1	1	1	1
CTM	0.125	0.125	0.125	0.25	0.25	0.5	0.5	0.5	0.5	0.5	1	1	1	1	1
CTRX	0.125	0.125	0.125	0.25	0.25	0.5	0.5	0.5	0.5	0.5	1	1	1	1	1
CTX	0.06	0.25	0.125	0.25	0.125	0.25	0.5	0.5	0.5	0.5	0.5	1	1	1	1
CFTM	–	0.125	0.125	0.25	0.125	–	1	0.5	0.5	0.5	0.5	1	1	1	1
DRPM	–	–	–	≤0.06	≤0.06	≤0.06	≤0.06	≤0.06	≤0.06	≤0.06	≤0.06	≤0.06	≤0.06	≤0.06	≤0.06
FRPM	≤0.02	≤0.02	≤0.06	≤0.06	≤0.06	0.06	0.125	0.25	0.125	0.25	0.25	0.5	0.5	0.5	0.5
PAPM	≤0.02	≤0.02	≤0.06	≤0.06	≤0.06	0.06	0.125	≤0.06	≤0.06	≤0.06	0.125	0.25	≤0.06	≤0.06	0.125
MEPM	≤0.02	≤0.02	≤0.06	≤0.06	≤0.06	0.125	0.125	0.125	0.125	0.125	0.25	0.5	0.5	0.5	0.5
DRP	–	–	–	≤0.06	≤0.06	–	–	–	≤0.06	≤0.125	–	–	0.25	0.25	0.25
TBPM	–	–	–	≤0.06	≤0.06	–	–	–	≤0.06	≤0.06	–	–	≤0.06	≤0.06	≤0.06
AZM	1	128	>64	>64	>64	1	>128	>64	>64	>64	4	32	>64	>64	>64
CAM	0.25	128	>64	>64	>64	0.5	>128	>64	>64	>64	0.5	4	>64	>64	>64
RKM	0.125	1	2	8	4	0.25	8	1	2	1	0.5	1	>32	2	2
VCM	0.125	0.5	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.25	0.25	0.25
TEIC	–	0.06	–	–	–	–	0.06	–	–	–	–	0.06	–	–	–
NFLX	8	8	–	–	–	8	4	–	–	–	8	8	–	–	–
LVFX	–	1	1	1	1	–	–	1	1	1	–	–	1	1	1
TFLX	–	–	–	0.25	0.25	–	0.25	0.25	0.25	0.25	–	–	0.25	0.25	0.25

ABPC, ampicillin; AMPC, amoxicillin; AZM, azithromycin; CAM, clarithromycin; CCL, cefaclor; CDTR, cefditoren; CFDN, cefdinir; CFPN, cefcapene; CFTM, cefteram; CPDX, cefpodoxime; CTM, cefotiam; CTRX, ceftriaxone; CTX, cefotaxime; DRPM, doripenem; FRPM, faropenem; LVFX, levofloxacin; MEPM, meropenem; MIC\(_{50}\), minimum inhibitory concentration at which 50% strains are inhibited; NFLX, norfloxacin; PAPM, panipenem; PCG, penicillin G; PIPC, piperacillin; PISP, penicillin-intermediate resistant *Streptococcus pneumoniae*; PRSP, penicillin-resistant *Streptococcus pneumoniae*; PSSP, penicillin-susceptible *Streptococcus pneumoniae*; RKM, rokitamycin; TBPM, tebipenem; TEIC, teicoplanin; TFLX, tosufloxacin; VCM, vancomycin.
Table 4 MIC₉₀ of antimicrobial agents for *Streptococcus pneumoniae* (μg/mL)

Drugs	PSSP	PISP	PRSP												
	Period 1	Period 2	Period 3	Period 4	Period 5	Period 1	Period 2	Period 3	Period 4	Period 5	Period 1	Period 2	Period 3	Period 4	Period 5
PCG	0.06	0.06	≤0.06	≤0.06	≤0.06	1	1	1	1	1	4	4	2	2	2
ABPC	0.06	0.06	≤0.06	0.125	0.125	2	2	2	2	2	4	4	4	4	8
AMPC	–	–	–	≤0.06	≤0.06	–	–	1	1	1	–	–	4	2	2
PIPC	–	–	–	≤0.06	0.125	–	–	2	2	2	–	–	2	4	
CCL	8	1	4	2	1	>128	64	64	32	32	>128	128	128	64	
CDTR	0.25	0.125	0.25	0.5	0.25	1	0.5	0.5	0.5	0.5	1	2	0.5	1	1
CFN	0.5	0.5	0.5	0.5	0.5	1	1	1	1	1	2	2	1	2	2
CFDX	1	0.5	1	2	1	4	2	2	2	2	4	8	4	4	8
CFDN	0.5	0.25	1	1	0.5	8	4	4	4	4	8	16	8	8	
CTM	0.5	0.25	1	0.5	0.25	8	4	4	4	4	8	8	8	8	
CTRX	0.5	0.25	0.5	0.5	0.5	1	1	1	1	1	2	4	1	2	2
CTX	0.25	0.25	0.5	0.5	0.5	0.5	1	1	1	1	1	2	1	2	2
CFTM	–	0.5	0.5	0.5	0.5	–	–	1	1	1	–	2	1	2	4
FRPM	≤0.02	≤0.02	≤0.06	≤0.06	≤0.06	0.5	0.25	0.25	0.25	0.5	0.5	1	0.5	0.5	0.5
PAPM	≤0.02	≤0.02	≤0.06	≤0.06	≤0.06	0.25	0.125	0.125	0.125	0.125	0.125	0.25	0.25	0.25	0.25
MEPM	≤0.02	0.5	≤0.06	≤0.06	≤0.06	0.25	0.5	0.25	0.25	0.5	0.5	2	0.5	0.5	1
DRPM	–	–	–	≤0.06	≤0.06	–	–	–	–	–	–	–	–	0.5	
TBPM	–	–	–	≤0.06	≤0.06	–	–	–	–	–	≤0.06	≤0.06	–	–	
AZM	>128	>128	>64	>64	>64	>128	>128	>64	>64	>64	>128	>128	>64	>64	>64
CAM	16	>128	>64	>64	>64	>128	>128	>64	>64	>64	>128	>128	>64	>64	>64
RKM	16	>128	>32	>32	>32	>128	>128	>32	>32	>32	>128	>128	>32	>32	>32
VCM	0.25	0.5	0.25	0.5	0.25	0.25	0.5	0.25	0.5	0.25	0.25	0.5	0.25	0.5	0.25
TEIC	–	0.125	–	–	–	0.125	–	–	–	–	0.25	–	–	–	
NFLX	16	16	–	–	–	16	8	–	–	–	16	16	–	–	
LVFX	–	2	2	2	2	–	–	1	2	2	–	–	2	2	2
TFLX	–	–	–	0.25	0.25	–	–	–	0.25	0.25	–	–	–	0.25	0.25

ABPC, ampicillin; AMPC, amoxicillin; AZM, azithromycin; CAM, clarithromycin; CCL, cefaclor; CDTR, cefditoren; CFDN, cefdinir; CFN, cefcapene; CFTM, cefteram; CPDX, cefpodoxime; CTM, cefotiam; CTRX, ceftriaxone; CTX, cefotaxime; FRPM, faropenem; DRPM, doripenem; LVFX, levofloxacin; MEPM, meropenem; MIC₉₀, minimum inhibitory concentration at which 90% strains are inhibited.; NFLX, norfloxacin; PAPM, panipenem; PCG, penicillin G; PIPC, piperacillin; PISP, penicillin-intermediate resistant *Streptococcus pneumoniae*; PRSP, penicillin-resistant *Streptococcus pneumoniae*; PSSP, penicillin-susceptible *Streptococcus pneumoniae*; RKM, rokitamycin; TBPM, tebipenem; TEIC, teicoplanin; TFLX, tosufloxacin; VCM, vancomycin.
Table 5 Patient characteristics vs isolation rates

Patient characteristics	Period 1	Period 2	Period 3	Period 4	Period 5											
	PSSP	PISP + PRSP	P-value													
Sex	Male	70 (35.9)	125 (64.1)	0.8267	60 (32.4)	125 (67.6)	0.4760	66 (44.6)	82 (55.4)	0.7590	65 (23.9)	207 (76.1)	0.6441	110 (51.6)	103 (48.4)	0.6646
	Female	56 (34.8)	105 (65.2)	0.0002	50 (36.2)	88 (63.8)	0.53	53 (42.7)	71 (57.3)	0.0039	41 (22.0)	145 (78.0)	0.4714	76 (49.4)	78 (50.6)	
Age category 1	<3 years	64 (28.1)	164 (71.9)	0.0001	67 (32.2)	141 (67.8)	0.7955	69 (37.7)	114 (62.3)	0.0039	74 (22.2)	259 (77.8)	0.4714	121 (48.2)	130 (51.8)	0.1923
	≥3 years	62 (47.3)	69 (52.7)	0.393	39 (33.6)	77 (66.4)	0.556	55 (55.6)	44 (44.4)	0.0554	32 (25.4)	94 (74.6)	0.105	66 (55.5)	53 (44.5)	
Age category 2	Infant	21 (28.4)	53 (71.6)	0.0001	23 (35.9)	41 (64.1)	0.2361	25 (43.9)	32 (56.1)	0.0554	21 (21.4)	77 (78.6)	0.0105	41 (47.7)	45 (52.3)	0.7664
	Toddler and preschooler Schoolchild	80 (32.1)	169 (67.9)	0.841	64 (30.7)	156 (69.3)	0.516	84 (41.1)	119 (58.9)	0.715	71 (21.5)	259 (78.5)	0.129	129 (51.0)	124 (49.0)	
	Siblings Absence	38 (29.7)	90 (70.3)	0.0882	41 (31.5)	89 (68.5)	0.5969	45 (34.9)	84 (65.1)	0.0048	35 (18.9)	150 (81.1)	0.0812	65 (45.5)	78 (54.5)	0.4252
	Presence	86 (38.7)	136 (61.3)	0.2458	67 (34.4)	128 (65.6)	0.795	79 (51.6)	74 (48.4)	0.715	71 (25.9)	203 (74.1)	0.835	83 (50.0)	83 (50.0)	
Group day care	Non-attendance	58 (32.6)	120 (67.4)	0.2458	56 (35.2)	103 (64.8)	0.6641	51 (45.9)	60 (54.1)	0.9820	44 (24.4)	136 (75.6)	0.5377	74 (55.2)	60 (44.8)	0.0616
	Attendance	67 (38.5)	107 (61.5)	0.53	53 (32.9)	108 (67.1)	0.458	71 (45.8)	84 (54.2)	0.55	55 (21.9)	196 (78.1)	0.766	76 (44.4)	95 (55.6)	
Group day care (siblings)	Non-attendance	25 (36.8)	43 (63.2)	0.5978	14 (30.4)	32 (69.6)	0.4666	12 (48.0)	13 (52.0)	0.5663	10 (22.2)	35 (77.8)	0.4933	14 (42.4)	19 (57.6)	0.1980
	Attendance	60 (40.5)	88 (59.5)	0.53	53 (36.3)	93 (63.7)	0.353	63 (54.3)	53 (45.7)	0.56	56 (27.2)	150 (72.8)	0.655	65 (55.1)	53 (44.9)	
Pre-treatment of antimicrobial agents	Absence	71 (44.1)	90 (55.9)	0.0014	61 (39.6)	93 (60.4)	0.0365	61 (48.8)	64 (51.2)	0.1283	51 (25.0)	153 (75.0)	0.3861	101 (55.2)	82 (44.8)	0.0370
	Presence	52 (27.7)	136 (72.3)	0.4826	48 (28.6)	120 (71.4)	0.0365	62 (39.7)	94 (60.3)	0.55	55 (21.6)	200 (78.4)	0.52	52 (43.0)	69 (57.0)	

PISP, penicillin-intermediate resistant *Streptococcus pneumoniae*; PRSP, penicillin-resistant *Streptococcus pneumoniae*; PSSP, penicillin-susceptible *Streptococcus pneumoniae*.

© 2015 The Authors. Pediatrics International published by John Wiley & Sons Australia, Ltd on behalf of Japan Pediatric Society
The isolation rate of PRSP decreased in period 5, and two possible causes can be suggested. First, this be due to the presence of the pediatric heptavalent pneumococcal conjugate vaccination (PCV7), which became a government-supported vaccine in February 2011 following its introduction in February 2010. More than 90 serotypes of S. pneumoniae have been identified so far based on the immunogenicity of the capsule that encloses the cell,22 and the PCV7 vaccine was developed to induce antibodies against seven serotypes (4, 6B, 9 V, 14, 18C, 19 F, and 23 F),23 which are commonly detected in S. pneumoniae, which is responsible for causing IPD. In the West, PCV7 had already been introduced in the 2000s.24 In the USA, 1 year after the introduction of PCV7 (year 2000), the incidence of IPD in patients <5 years of age decreased by 59% compared with 1998–1999,23 and the incidence of IPD caused by serotypes covered by PCV7 in patients <5 years decreased by 98% in 2005.25 In addition, the isolation rate of PRSP was 21.5% in 1999–2000, and decreased to 14.6% in 2004–2005.26 Similarly, according to surveillance conducted in Spain in patients <14 years, the isolation rate of PISP + PRSP was >45% before the introduction of PCV7, and decreased to 27.4% in 2008 after the introduction of PCV7. Furthermore, the isolation rate of PRSP was in the range of 10% before the introduction of

Table 6 Overall isolation rates of PISP and PRSP vs patient characteristics

Background	n	PSSP, n (%)	PISP + PRSP, n (%)	P-value†
Sex				
Male	1013	371 (36.6)	642 (63.4)	0.8450
Female	763	276 (36.2)	487 (63.8)	
Unknown	31	8 (25.8)	23 (74.2)	
Age category 1				
<3 years	1203	395 (32.8)	808 (67.2)	<0.0001
≥3 years	591	254 (43.0)	337 (57.0)	
Unknown	13	6 (46.2)	7 (53.8)	
Age category 2				<0.0001
Infant	379	131 (34.3)	248 (65.4)	
Toddler and preschooler	1258	431 (34.3)	827 (65.7)	
Schoolchild	157	87 (55.4)	70 (44.6)	
Unknown	13	6 (46.2)	7 (53.8)	
Siblings				0.0032
Absence	715	224 (31.3)	491 (68.7)	
Presence	1010	386 (38.2)	624 (61.8)	
Unknown	82	45 (54.9)	37 (45.1)	
Group day care (patient)				0.4371
Non-attendance	762	283 (37.1)	479 (62.9)	
Attendance	912	322 (35.3)	590 (64.7)	
Unknown	133	50 (37.6)	83 (62.4)	0.1176
Group day care (siblings)				
Non-attendance	217	75 (34.6)	142 (65.4)	
Attendance	734	297 (40.5)	437 (59.5)	
Unknown	856	283 (33.1)	573 (66.9)	
Pre-treatment with antimicrobial agents				
Absence	827	345 (41.7)	482 (58.3)	<0.0001
Presence	888	269 (30.3)	619 (69.7)	
Unknown	92	41 (44.6)	51 (55.4)	

†Chi-squared test (with the exception of Unknown). PISP, penicillin-intermediate resistant Streptococcus pneumoniae; PRSP, penicillin-resistant Streptococcus pneumoniae; PSSP, penicillin-susceptible Streptococcus pneumoniae.

Table 7 Interaction between pre-treatment with antimicrobial agents and other factors (logistic regression analysis) (n = 1589)

Variables	Level	Estimates	SE	Wald χ²	P-value†
Intercept		0.4155	0.0772	28.9697	<0.0001
Pre-treatment of antimicrobial agents (Reference = Absence)	Presence	0.3778	0.0772	23.9519	<0.0001
Sex (Reference = Male)	Female	0.0033	0.0542	0.0037	0.9515
Age category 2 (Reference = Infant)	Toddler and preschooler	0.2482	0.0837	8.7997	0.0030
	Schoolchild	−0.6084	0.1291	22.2067	<0.0001
Siblings (Reference = Absence)	Presence	−0.1627	0.0558	8.5118	0.0035
Group day care (patient) (Reference = Non-attendance)	Attendance	0.0692	0.0565	1.4999	0.2207
Sex × Pre-treatment of antimicrobial agents	Female × Presence	−0.0170	0.0542	0.0983	0.7539
Age category 2 × Pre-treatment of antimicrobial agents	Toddler and preschooler × Presence	−0.1032	0.0837	1.5228	0.2172
Siblings × Pre-treatment of antimicrobial agents	Presence × Presence	−0.1116	0.0558	4.0088	0.0453
Group day care (patient) × Pre-treatment of antimicrobial agents	Attendance × Presence	−0.0528	0.0565	0.8733	0.3500

†Patients with at least one unknown factor were excluded from analysis. ×, interaction.
providing strong antibacterial activity. 28,29 Recent surveys of antibiotic (PBP), PBP1A, PBP2X, and PBP2B of *Streptococcus pneumoniae* that has a broad spectrum of activity against bacteria including *S. pneumoniae* and which prevent cross-resistance.

TBPM, launched in August 2009, is a β-lactam antibiotic that has a broad spectrum of activity against bacteria including *S. pneumoniae*, and has higher affinity for penicillin-binding protein (PBP), PBP1A, PBP2X, and PBP2B of *S. pneumoniae*, providing strong antibacterial activity. 28,29 Recent surveys have clearly shown the absence of drug resistance to TBPM in *S. pneumoniae*.14,15,30,31

TFLX, launched in 1990, is a fluoroquinolone that has been used for a wide variety of bacterial infections mainly in the field of adult respiratory tract infection, and has a high degree of clinical efficacy.32–34 TFLX shows strong antibacterial activity, inhibiting bacterial DNA gyrase and topoisomerase IV,35–37 and preventing cross-resistance of *S. pneumoniae*.38 TFLX also has low joint toxicity in juvenile animals, and was launched for pediatric patients in 2010 as a fine granular formulation.

These two newly launched antimicrobial agents, which have strong bactericidal activities and are likely to prevent cross-resistance in *S. pneumoniae* to β-lactams and macrolides, are considered to be one of the reasons for the decrease in the isolation rate of PRSP in period 5.

It has already been reported that the patient factors associated with resistance were age category 1 (<3 years), age category 2 (infant, toddler and preschooler), presence of siblings, attendance of patients at group day care, attendance of siblings at group day care, and pre-treatment with antimicrobial agents.13–15,38 During the surveillance, evaluation of the relationship between PISP + PRSP isolation rate and each patient factor indicated a higher isolation rate of PISP + PRSP in patients from age category 1 (<3 years), in patients from age category 2 (infant, toddler and preschooler), in patient without siblings, and in patients pre-treated with antimicrobial agents. Among these resistance factors, three of the four factors were consistent with those already reported, and the exception was absence of siblings.

The PISP + PRSP isolation rate in patients with siblings was lower in period 3 (P = 0.0048) and for the overall period (P=0.0032). The analysis of this result was affected by the confounding factor of age, because the surveillance had been conducted with pediatric patients for whom the sibling’s existence would depend on the age of the patient. We therefore analyzed the relationship between siblings (absence, presence) and age category 2 (infant, toddler and preschooler, schoolchild). Table 8 lists the isolation rate of PISP + PRSP by patient, taking into account the variables of siblings and age category 2. This analysis showed that the isolation rate of PISP + PRSP was lower in schoolchild than in infant or toddler and preschooler, despite the presence or absence of siblings in period 3 and in the overall period. An obvious difference was not observed according to the presence or absence of siblings. In previous studies, presence of siblings has been reported to be associated with resistance, but in the present surveillance the presence of siblings was not associated with resistance.

These results are based on data obtained in the retrospective analysis of the surveillance previously conducted in periods 1–5, and do not indicate an increasing tendency for the occurrence of PISP or PRSP. There has been an increasing number of *S. pneumoniae* serotypes not covered by PCV7 since its introduction;16,39 the pediatric 13-valent pneumococcal conjugate vaccination (PCV13) was launched in 2013, and new drug-resistant bacteria might be predicted to emerge due to the launch of new antimicrobial agents such as TBPM and TFLX. For these reasons, we believe it will be necessary to conduct a prospective analysis of the relationship between drug-resistant *S. pneumoniae* isolation rate and drug susceptibility, serotype,

Table 8 Isolation rates of PISP and PRSP in period 3 and overall vs siblings and age category 2

Period 3	Siblings	Presence	PISP	PRSP	PISP + PRSP	Subtotal	PISP	PRSP	PISP + PRSP	Subtotal	Overall period	Siblings	Presence	PISP	PRSP	PISP + PRSP	Subtotal	PISP	PRSP	PISP + PRSP	Subtotal
Infant, n (%)	Toddler and preschooler, n (%)	Schoolchild, n (%)	Total, n (%)																		
PISP																					
Period 3	Siblings	Presence	PISP	PRSP	PISP + PRSP	Subtotal	PISP	PRSP	PISP + PRSP	Subtotal	Overall period	Siblings	Presence	PISP	PRSP	PISP + PRSP	Subtotal	PISP	PRSP	PISP + PRSP	Subtotal
16 (47.1)	52 (50.5)	51 (49.5)	103	4 (26.7)	79 (52.0)	34	9 (39.1)	32 (32.0)	4 (56.7)	2 (48.0)	152										
18 (52.9)	51 (49.5)	103	4 (26.7)	73 (48.0)	34																
Subtotal																					
23 (103)	2 (33.3)	6 (65.1)	129																		
Overall period	Siblings	Presence	PISP	PRSP	PISP + PRSP	Subtotal	PISP	PRSP	PISP + PRSP	Subtotal	Overall period	Siblings	Presence	PISP	PRSP	PISP + PRSP	Subtotal	PISP	PRSP	PISP + PRSP	Subtotal
78 (34.1)	246 (36.6)	60 (57.7)	384 (38.2)	78 (34.1)	246 (36.6)	60 (57.7)	384 (38.2)	78 (34.1)	246 (36.6)	60 (57.7)	384 (38.2)	78 (34.1)	246 (36.6)	60 (57.7)	384 (38.2)						
151 (65.9)	427 (63.4)	44 (42.3)	622 (61.8)	151 (65.9)	427 (63.4)	44 (42.3)	622 (61.8)	151 (65.9)	427 (63.4)	44 (42.3)	622 (61.8)	151 (65.9)	427 (63.4)	44 (42.3)	622 (61.8)						
Subtotal																					
229	673	104	1006																		
Absence																					
45 (32.8)	154 (29.1)	22 (52.4)	221 (31.2)	45 (32.8)	154 (29.1)	22 (52.4)	221 (31.2)	45 (32.8)	154 (29.1)	22 (52.4)	221 (31.2)	45 (32.8)	154 (29.1)	22 (52.4)	221 (31.2)						
92 (67.2)	376 (70.9)	20 (47.6)	488 (68.9)	92 (67.2)	376 (70.9)	20 (47.6)	488 (68.9)	92 (67.2)	376 (70.9)	20 (47.6)	488 (68.9)	92 (67.2)	376 (70.9)	20 (47.6)	488 (68.9)						
Subtotal																					
137	530	42	709																		

PISP, penicillin-intermediate resistant *Streptococcus pneumoniae*; PRSP, penicillin-resistant *Streptococcus pneumoniae*; PSSP, penicillin-susceptible *Streptococcus pneumoniae*. © 2015 The Authors. Pediatrics International published by John Wiley & Sons Australia, Ltd on behalf of Japan Pediatric Society.
and history of pediatric pneumococcal conjugate vaccination, based on the results of surveillance.

In conclusion, on retrospective evaluation of the surveillance conducted from 2000 to 2012, some changes were observed in the rate of resistance of *S. pneumoniae* in pediatric patients, but an increasing trend was not observed. In addition, both pre-treatment with antimicrobial agents and age were associated with resistance, and an interaction between pre-treatment with antimicrobial agents and schoolchild was observed. Therefore, when treating infections it is important to considering the characteristics of the pediatric patients being treated, and to continue the surveillance in order to clarify the development of resistance in *S. pneumoniae*.

Acknowledgments

The authors would like to express their sincere appreciation to all the physicians who cooperated in the survey (listed in alphabetical order without honorifics; affiliations as at the last surveillance): Hiroonobu Akita (St Marianna University School of Medicine, Yokohama City Seibu Hospital), Haruhi Ando (Aichi Prefectural Colony Central Hospital), Tonomobu Aoki (Fukuoka Children’s Hospital and Medical Center for Infectious Diseases), Masahiro Bamba (Yokosuka Kyosai Hospital), Hiroko Endo (Tohoku Rosai Hospital), Tsumeuzu Haruta (Kobe City Medical Center General Hospital), Tadashi Hoshino (Chiba Children’s Hospital), Toshihide Ishihara (Fujuyoshida Municipal Hospital), Eichi Isoshita (Tokyo Metropolitan Kiyose Children’s Hospital), Naohisa Kawamura (Osaka Rosai Hospital), Takuma Kato (Ashikaga Red Cross Hospital), Tadashi Hoshino (Chiba Children’s Hospital), Toshihide Ishihara (Fujuyoshida Municipal Hospital), Eichi Isoshita (Tokyo Metropolitan Kiyose Children’s Hospital), Naohisa Kawamura (Osaka Rosai Hospital), Takuma Kato (Ashikaga Red Cross Hospital), Mitsuobu Kaneko (Shizuoka Red Cross Hospital), Naohisa Kawamura (Osaka Rosai Hospital), Satoru Kojika (Fujuyoshida Municipal Medical Center), Yoshihiro Kurosawa (Shizuoka Red Cross Hospital), Keita Matsubara (National Hospital Organization Tokyo Medical Center), Yoshiro Morikawa (Yodogawa Christian Hospital), Akira Nakamura (Chiba Children’s Hospital), Kenji Nanao (Kasumigaura Medical Center), Masato Nonoyama (Ehime General Hospital), Tomohiro Oishi (Niigata Prefectural Shibata Hospital), Kenji Okada (National Hospital Organization Fukuhoku Hospital), Takashige Okada (Kagawa National Children’s Hospital), Yoshiyuki Oтомo (Juntendo University Nerima Hospital), Kazunobu Ouchi (Kawasaki Medical School Hospital), Hiroshi Sakata (Asahikawa Kosei Hospital), Tomoaki Sano (Yamanashi Red Cross Hospital), Yasushi Shimamura (Ashikaga Red Cross Hospital), Tsunehiro Shimizu (Kyoto City Hospital), Hiroyuki Shiro (Yokohama Rosai Hospital), Keiji Shirosaki (Hiratsuka Kyosai Hospital), Takeshi Tajima (Hakujikai Memorial Hospital), Reiko Takayanagi (Tohoku Rosai Hospital), Miki Tanaka (Fukuoka University Hospital), Yoichi Taneda (Inazawa City Hospital), Koji Tomita (Ashikaga Red Cross Hospital), Etsushi Ueno (Saitama Social Insurance Hospital), Satoru Yamaguchi (Fukuoka University Hospital), Shinya Yamaguchi (National Kasumigaura Hospital), Yoshio Yamaguchi (Tochigi National Hospital) and Tetsuo Yokoyama (Tokyo Metropolitan Kiyose Children’s Hospital). Takuami Okada, Yoshitake Sato, Yoshikiyo Toyonaga, Hideaki Hanaki, and Keisuke Sunakawa belong to the Drug-Resistant Pathogen Surveillance Group in Pediatric Infectious Disease. The Drug-Resistant Pathogen Surveillance Group in Pediatric Infectious Disease has received research funds from Meiji Seika Pharma, Dainippon Sumitomo Pharma, Daiichi Sankyo, Chugai Pharmaceutical, Shionogi, and Toyama Chemical.

References

1. O’Brien KL, Wolfson LJ, Watt JP et al. Burden of disease caused by *Streptococcus pneumoniae* in children younger than 5 years: Global estimates. *Lancet* 2009; 374: 893–902.
2. Adam D. Global antibiotic resistance in *Streptococcus pneumoniae*. *J. Antimicrob. Chemother.* 2002; 50: 1–5.
3. Cynthia GW, Monica MF, James H et al. Increasing prevalence of multidrug-resistant *Streptococcus pneumoniae* in the United States. *N. Engl. J. Med.* 2000; 343: 1917–24.
4. Marchisio P, Bianchini S, Baggi E et al. A retrospective evaluation of microbiology of acute otitis media complicated by spontaneous otorrhea in children living in Milan, Italy. *Infection* 2013; 41: 629–35.
5. Granizo JJ, Aguilar L, Casal J et al. *Streptococcus pneumoniae* resistance to erythromycin and penicillin in relation to macrolide and beta-lactam consumption in Spain (1979–1997). *J. Antimicrob. Chemother.* 2000; 46: 767–73.
6. Goto H, Shimada K, Ikemoto H et al. Antimicrobial susceptibility of pathogens isolated from more than 10 000 patients with infectious respiratory diseases: A 25-year longitudinal study. *J. Infect. Chemother.* 2009; 15: 347–60.
7. Chiba N, Hasegawa K, Kobayashi R et al. Epidemiology of *Streptococcus pneumoniae* isolates from patients with meningitis between 1993 and 2002. *Jpn. J. Chemother.* 2003; 51: 551–60 (in Japanese).
8. Suzuki K, Nishimaki K, Okuyama K et al. Trends in antimicrobial susceptibility of *Streptococcus pneumoniae* in the Tohoku district of Japan: A longitudinal analysis from 1998 to 2007. *Tohoku J. Exp. Med.* 2010; 220: 47–57.
9. Ubukata K, Kobayashi R, Chiba N et al. Surveillance based on molecular epidemiology for *Streptococcus pneumoniae* isolates between 1998 and 2000 in Japan. *Jpn. J. Chemother.* 2003; 51: 60–70 (in Japanese).
10. Chiba N. Current status of invasive pneumococcal diseases and the preventive pneumococcal vaccines in Japan. *Jpn. J. Chemother.* 2011; 59: 561–72 (in Japanese).
11. Tina TQ. Pediatric invasive pneumococcal disease in the United States in the era of pneumococcal conjugate vaccines. *Clin. Microbiol. Rev.* 2012; 25: 409–19.
12. WHO. Pneumonia: Fact sheet No 331. *World Health Organization*, Geneva, 2013.
13. Sato Y, Toyonaga Y, Hanaki H et al. Nationwide survey of the development of drug resistant pathogens in the pediatric field: Drug sensitivity of *Streptococcus pneumoniae* in Japan. *J. Infect. Chemother.* 2009; 15: 396–401.
14. Tajima T, Sato Y, Toyonaga Y et al. Nationwide survey of the development of drug-resistant pathogens in the pediatric field in 2007 and 2010: Drug sensitivity of *Streptococcus pneumoniae* in Japan (second report). *J. Infect. Chemother.* 2013; 19: 510–6.
15. Sato Y, Toyonaga Y, Hanaki H et al. Nationwide survey of the development of drug resistance in the pediatric field in 2012: Drug sensitivity of *Streptococcus pneumoniae*, *Haemophilus influenzae*, and *Moraxella catarrhalis* in Japan. *Jpn. J. Chemother.* 2014; 62: 118–28 (in Japanese).
16. Clinical and Laboratory Standards Institute. *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard; Seventh Edition; M7-A7*, vol. 26(2). Clinical and Laboratory Standards Institute, Wayne, PA, 2006.
17. Clinical and Laboratory Standards Institute. *Performance Standards for Antimicrobial Susceptibility Testing; Seventeenth Edition, M7-A8*, vol. 18(2). Clinical and Laboratory Standards Institute, Wayne, PA, 2012.

© 2015 The Authors. Pediatrics International published by John Wiley & Sons Australia, Ltd on behalf of Japan Pediatric Society
