Mathematical model of motor vehicle air suspension with a combined damping system

D A Chumakov¹, K V Chernyshov¹, V V Novikov¹, A S Diakov²,³ and A S Suchenina²

¹ Volgograd State Technical University, Lenin avenue, 28, 400005, Volgograd, Russia
² Bauman Moscow State Technical University, 2th Baumanskaya str., 5/1, 105005, Moscow, Russia

E-mail: ³Diakov57@list.ru

Abstract. The article presents a design scheme and a mathematical model of a spatial four-support pneumatic suspension of a car with a combined damping system, which includes: a hydraulic shock absorber of small capacity, air damping, an inertial-friction shock absorber and a dynamic damper.

1. Introduction
Currently, various types of elastic elements and telescopic hydraulic shock absorbers (HSA) are used in motor vehicle suspensions (MV). At the same time to improve smoothness of movement metal springs are replaced with adjustable pneumatic springs (PS) with rubber-cord shells (RCS) and hydraulic absorbers are tuned to the mode of damping oscillations of a loaded car.

However, the uncontrollability of the characteristics of the HSA does not allow optimal damping of body and wheel vibrations under various conditions of suspension operation, which results in decreasing smoothness of the HSA and significant energy losses in them. One of the possible ways to solve this problem is the use of combined damping systems of various types (hydraulic, pneumatic, friction, inertial and dynamic), which are automatically activated depending on the oscillation modes and provide effective vibration protection. Therefore, development and study of such a pneumatic suspension with a combined damping system (CDS), enhancing vibration-proof properties of an MV suspension, remains an urgent problem [1 ... 22].

2. Description of the mathematical model
A spatial 4-way model of the air suspension of the vehicle with a combined air, hydraulic, inertial and dynamic damping has been developed to study the effect of the combined damping on the vibration-protective properties of the suspension system (Figure 1). In this suspension, inertial and dynamic damping are realized due to flywheel dampers (FD) 12 and 15, they are made in the form of inertial-friction shock absorbers, elastically installed on unsprung masses 6 and 7 in the suspension of front and rear wheels.

The following assumptions were made in developing this model:
- a car of full mass is considered, the body is symmetric about the longitudinal axis x, the torsional and bending frame deformations can be neglected;
- characteristics of stiffness of the front and rear suspensions, characteristics of shock absorbers and radial load characteristics of tires are linearized;
- dry friction in springs and suspension elements is reduced to viscous;
- the movement of the car is stationary, the center of gravity of the body is located in the longitudinal plane, the center of gravity of a uniformly distributed load corresponds to its geometric center of gravity;
- only vertical impact is taken into account; the transverse and longitudinal reactions of the road are neglected;
- axles (bridges) move in planes perpendicular to the plane frame, and their moments of inertia about the axis of rotation of the wheels are equal to zero;
- contact of the tire with the road point, takes into account only one force, characterized by the ordinate road surface under the center of the wheel;
- wheels have two-way communication with the road, i.e. there is no wheel breakaway from the road.

Figure 1. Scheme of 4-axle car suspension with combined damping system: 1 – pressed mass; 2, 3 and 4, 5 – front and rear elastic elements and shock absorbers; 6 and 7 – front and rear unsprung mass; 8, 10 and 9, 11 – front and rear tires with elastic and damping properties; 12, 15 – front and rear FD; 13, 14 and 16, 17 – elastic and damping element of the anterior and posterior FD; \(a \) – distance between the axis of rotation of the FD lever; \(M \) – spring-loaded mass (body); \(J_x \) and \(J_y \) are moments of inertia of the body relative to the axes \(x \) and \(y \); \(l \) – length of lever; \(l_1, l_2 \) – distance from the center of the car body to the front and rear axes; \(B \) – distance from the middle of the car body to the wheels along the \(y \) axis; \(i_k \) – gear ratio of FD; \(m_{FD} \) – mass of FD; \(c_{FD} \) – stiffness of the FD spring; \(k_{FD} \) – coefficient of resistance of HSA FD; \(T \) – Dry friction of RCS; \(2c_1 \) and \(2c_2 \) – rigidity of front and rear wheels; \(2a_1 \) and \(2a_2 \) – coefficient of resistance of the above the front and rear wheels; \(2k_{t1}, 2k_{t2} \) – damping in the front and rear tires; \(2c_{t1} \) and \(2c_{t2} \) – tire strength of the front and rear wheels; \(2m_1, 2m_2 \) – mass of front and rear wheels.

Dynamic system shown in Figure 1 simulates three body movements: translational along the \(y \) axis and rotating with respect to the \(x \) and \(z \) axes. Thus three degrees of freedom can be designated in the pressed part of the car: in the coordinate \(y \), that is, the vertical movement of the body on the springs together with the center of mass; by a generalized coordinate \(\theta \), which characterizes the longitudinal-angular oscillations, that is, the turns of the body relative to the \(z \)-axis; by a generalized coordinate \(\varphi \), which characterizes the transverse angular vibrations of the body relative to the \(x \) axis. Taking into account the vertical displacements of unsprung masses along the coordinates and the flywheel shifter by the coordinates \(\varsigma \) and \(\theta \), the dynamic model of the car is a system with 15 degrees of freedom, which is described by the system of equations(1):
\[
\dot{z} + k_1 \cdot L_1 + k_2 \cdot L_2 + Mg - Mg \cdot O1 \cdot E1 - p_{atm} \cdot S \cdot D1 - D1 - Mg \cdot O1 \cdot E2 - p_{atm} \cdot S \cdot D2 - MG \cdot O2 \cdot E3 - p_{atm} \cdot S \cdot D3 - Mg \cdot O2 \cdot E4 - p_{atm} \cdot S \cdot D4 + \frac{M_{fr}}{l} \cdot F1 + \frac{M_{fr}}{l} \cdot F2 + \frac{M_{fr}}{l} \cdot F3 + \frac{M_{fr}}{l} \cdot F4 = 0
\]

\[
J_y \ddot{\psi} + k_1 \cdot L_1 \cdot l_1 - k_2 \cdot L_2 \cdot l_2 - O3 \cdot E1 - p_{atm} \cdot S \cdot l_1 \cdot D1 \cdot O4 \cdot E2 - p_{atm} \cdot S \cdot l_1 \cdot D2 \cdot O5 \cdot E3 - p_{atm} \cdot S \cdot l_2 \cdot D3 + O6 \cdot E4 + p_{atm} \cdot S \cdot l_2 \cdot D4 + \frac{M_{fr}}{l} \cdot F1 + \frac{M_{fr}}{l} \cdot F2 + \frac{M_{fr}}{l} \cdot F3 + \frac{M_{fr}}{l} \cdot F4 = 0
\]

\[
F_4 \cdot \frac{B}{2} = 0,
\]

\[
m_{1/2} \ddot{\xi}_{11} + k_{11} \left(\ddot{\xi}_{11} - \ddot{\theta}_{11} \right) + c_{11} \left(\dot{\xi}_{11} - \dot{\theta}_{11} \right) - k_1 \left(\ddot{z} + \dot{\phi}_l - \frac{\psi}{z} - \ddot{\xi}_{11} \right) + Mg \frac{l_2}{l_1 + l_2} - Mg \frac{l_2}{l_1 + l_2} \cdot E1 - p_{atm} \cdot S \cdot D1 - \frac{M_{fr}}{l} \cdot \lambda \cdot F1 = 0.
\]

\[
m_{1/2} \ddot{\xi}_{1r} + k_{1r} \left(\ddot{\xi}_{1r} - \ddot{\theta}_{1r} \right) + c_{1r} \left(\dot{\xi}_{1r} - \dot{\theta}_{1r} \right) - k_1 \left(\ddot{z} + \dot{\phi}_l - \frac{\psi}{z} - \ddot{\xi}_{1r} \right) + Mg \frac{l_2}{l_1 + l_2} - Mg \frac{l_2}{l_1 + l_2} \cdot E2 - p_{atm} \cdot S \cdot D2 - \frac{M_{fr}}{l} \cdot \lambda \cdot F2 = 0.
\]

\[
m_{1/2} \ddot{\xi}_{21} + k_{21} \left(\ddot{\xi}_{21} - \ddot{\theta}_{21} \right) + c_{21} \left(\dot{\xi}_{21} - \dot{\theta}_{21} \right) - k_2 \left(\ddot{z} + \dot{\phi}_l - \frac{\psi}{z} - \ddot{\xi}_{21} \right) + Mg \frac{l_1}{l_1 + l_2} - Mg \frac{l_1}{l_1 + l_2} \cdot E3 - p_{atm} \cdot S \cdot D3 - \frac{M_{fr}}{l} \cdot \lambda \cdot F3 = 0.
\]

\[
m_{1/2} \ddot{\xi}_{2r} + k_{2r} \left(\ddot{\xi}_{2r} - \ddot{\theta}_{2r} \right) + c_{2r} \left(\dot{\xi}_{2r} - \dot{\theta}_{2r} \right) - k_2 \left(\ddot{z} + \dot{\phi}_l - \frac{\psi}{z} - \ddot{\xi}_{2r} \right) + Mg \frac{l_2}{l_1 + l_2} - Mg \frac{l_2}{l_1 + l_2} \cdot E4 - p_{atm} \cdot S \cdot D4 - \frac{M_{fr}}{l} \cdot \lambda \cdot F4 = 0.
\]

\[
\begin{align*}
\text{Where } E1 & = \left(\frac{l_0}{l_0 + z + \phi_l + \psi_2 - \zeta_{21}} \right)^n; \\
E2 & = \left(\frac{l_0}{l_0 + z + \phi_l_2 + \psi_2 - \zeta_{21}} \right)^n; \\
E3 & = \left(\frac{l_0}{l_0 + z + \phi_l + \psi_2 - \zeta_{21}} \right)^n;
\end{align*}
\]

\[
\begin{align*}
E4 & = \left(\frac{l_0}{l_0 + z + \phi_l + \psi_2 - \zeta_{21}} \right)^n; \\
D1 & = \left(\frac{l_0 - (l_0 + z + \phi_l + \psi_2 - \zeta_{21})}{l_0 + z + \phi_l + \psi_2 - \zeta_{21}} \right)^n; \\
D2 & = \left(\frac{l_0 - (l_0 + z + \phi_l + \psi_2 - \zeta_{21})}{l_0 + z + \phi_l + \psi_2 - \zeta_{21}} \right)^n; \\
D3 & = \left(\frac{l_0 - (l_0 + z + \phi_l + \psi_2 - \zeta_{21})}{l_0 + z + \phi_l + \psi_2 - \zeta_{21}} \right)^n; \\
F1 & = \text{sgn} \left(\ddot{z} + \dot{\phi}_l + \frac{B}{z} - (1 - \lambda) \zeta_{11} - \lambda \dot{\zeta}_{11} - \dot{\theta}_{11} \frac{l}{l_1} \right);
\end{align*}
\]

\[
\begin{align*}
O2 & = Mg \frac{l_1}{l_1 + l_2}; \\
F2 & = \text{sgn} \left(\ddot{z} + \dot{\phi}_l + \frac{B}{z} - (1 - \lambda) \zeta_{1r} - \lambda \dot{\zeta}_{1r} - \dot{\theta}_{1r} \frac{l}{l_1} \right);
\end{align*}
\]

\[
\begin{align*}
F3 & = \text{sgn} \left(\ddot{z} + \dot{\phi}_l + \frac{B}{z} - (1 - \lambda) \zeta_{21} - \lambda \dot{\zeta}_{21} - \dot{\theta}_{21} \frac{l}{l_1} \right); \\
O8 & = Mg \frac{l_1}{l_1 + l_2}; \\
F4 & = \text{sgn} \left(\ddot{z} + \dot{\phi}_l + \frac{B}{z} - (1 - \lambda) \zeta_{2r} - \lambda \dot{\zeta}_{2r} - \dot{\theta}_{2r} \frac{l}{l_1} \right); \\
L1 & = \left(2 \ddot{z} + 2 \dot{\phi}_l - \zeta_{11} - \dot{\zeta}_{11} \right); \\
L2 & = \left(\psi_2 - \zeta_{11} + \dot{\zeta}_{11}; \lambda = \frac{l}{a} \right)
\end{align*}
\]
\[L4 = (\ddot{\psi}B - \zeta_{2l} + \zeta_{2r}); \quad O4 = \frac{Mgl_1}{l_1 + l_2}; \quad O5 = \frac{Mgl_2}{l_1 + l_2}; \quad O6 = \frac{Mgl_1}{l_1 + l_2}; \quad O7 = \frac{Mgl_2}{l_1 + l_2}; \]

\[\dot{z}, \ddot{z} - \text{vertical movements, speeds and accelerations of the pressurized mass}; \quad \psi, \dot{\psi}, \ddot{\psi} - \text{displacement, speed and acceleration of the sprung mass regarding to the longitudinal axis x and the transverse axis y}; \quad \zeta_{1l}, \zeta_{1r}, \zeta_{2l}, \zeta_{2r} - \text{movement of FD over the front and rear right and left wheels}; \quad \theta_{1l}, \dot{\theta}_{1l}, \ddot{\theta}_{1l}, \theta_{1r}, \dot{\theta}_{1r}, \ddot{\theta}_{1r}, \theta_{2l}, \dot{\theta}_{2l}, \ddot{\theta}_{2l}, \theta_{2r}, \dot{\theta}_{2r}, \ddot{\theta}_{2r} - \text{angle, speed and acceleration of the FD flywheel above each wheel}; \quad \zeta_{1l}, \zeta_{1r}, \zeta_{2l}, \zeta_{2r} - \text{moving the speed and acceleration of the wheels.} \]

It should be noted that this research was carried out at the Bauman Moscow State Technical University, with financial support from the government in the face of the Russian Ministry of Education under the project: №14.577.21.0272. (Identification number: RFMEFI57717X0272)

References

[1] Novikov V V, Ryabov I M and Chernyshov K V 2009 Vibro-protective properties of vehicle suspensions: monograph Volgograd 338
[2] Pozdeev A V, Novikov V V, Dyakov A S, Pokhlebin A V, Ryabov I M and Chernyshov K V 2013 Adjustable pneumatic and pneumohydraulic springs of vehicle suspensions: monograph VSTU. Volgograd 244
[3] Novikov V V, Pozdeev A V, Chumakov D A and Golyatkin I A 2015 Vibro-protective properties of a pneumatic drive with a dynamic wheel oscillation damper and dry friction Defense technology. M: NTC "Informtekhnika" 9-10 102-106.
[4] Novikov V V, Pozdeev A V, Chumakov D A and Kovalev A M 2017 The joint operation of the pneumatic suspension PBX with a dynamic oscillation damper and hydraulic shock absorber Bulletin of mechanical engineering 7 34-39
[5] Novikov V V, Ryabov I M, Chernyshov K V, Pozdeev A V and Chumakov D A 2018 Rear air suspension of car wheels with a combined damping system Progress of vehicles and systems - 2018: materials of the Intern. Scientific-practical conf. 65-67
[6] Novikov V V, Ryabov I M, Pozdeev A V, Chernyshov R V and Chumakov D A 2018 Experimental study of air suspension with combined damping Gruzovik 9 3-7
[7] Ryabov I M, Novikov V V, Vorobev V V, Danilov S V and Smolyanov O V 2005 Inertial shock absorbers with a delivery element for PBX suspensions Truck &. M.: Engineering 4 9-10
[8] Novikov V V 2007 Bench tests of the pneumatic suspension of the bus "VZTM-32731" with hydraulic shock absorbers of different power Truck &. - M.: Engineering 6 41-44
[9] Novikov V V 2007 Bench tests of air suspension with air damper in the form of a throttle and non-return valve Truck &. - M.: Engineering 7 43-46
[10] Novikov V V, Bukaev S O and Dyakov A S 2008 Joint operation of the air damper and hydraulic shock absorber Automotive industry. M.: Engineering 1 20-22
[11] Novikov V V, Ryabov I M, Kolmakov V I and Chernyshov K V 2008 Universal stand for testing suspensions and tires of motor vehicles Assembly in mechanical engineering, instrument making. - M.:Engineering 3 45 - 50
[12] Novikov V V and Smolyanov O V 2009 Vibroprotective properties of the suspension when hydraulic and inertial-friction shock absorbers work together Bulletin of mechanical engineering. M.: Engineering 1 81-83
[13] Ryabov I M, Novikov V V, Pozdeev A V, Chernyshov K V and Mitroshenko A S 2013 Types of inertial-friction shock absorber design, modeling and testing Tractors and agricultural machinery. M.: LLC Editorial office of the magazine “TSM” 4 23 - 26
[14] Novikov V V, Ryabov I M, Dyakov A S, Pozdeev A V and Pokhlebin A V 2013 Stands for testing suspensions of ground vehicles VSTU. Volgograd 114
[15] Novikov V V, Pozdeev A V and Dyakov A S 2015 Scientific test complex for the study of vehicles suspension units Prom-Engineering: proceedings of the Intern. Scientific and technical conf. Federal State Budgetary Educational Institution of Higher Professional Education "South Ural State University" (National Research University) Chelyabinsk 36-39.
[16] Novikov V V, Ryabov I M, Chernyshov K V and Kolmakov V I 2009 Dynamics of movement. Part 3. Vibro-protective properties of suspensions with hydraulic, pneumatic and inertial shock absorbers: Proc. benefit (neck). Add. UMO universities for university polytechnic education 112

[17] Novikov V V, Lapynin Y G, Ryabov I M, Gorobtsov A S, Chernyshov K V, Dyakov A S, Bukaev S O, Pozdeev A V and Nikolaev D A 2009 Rear suspension wheels of the car. P. m. 85403 of the Russian Federation

[18] Varfolomeev V D, Vlasov V V and Ryabov I M 2013 Shock absorber Pat. 2486385 of the Russian Federation

[19] Novikov V V, Pozdeev A V, Pokhlebin A V, Ryabov I M, Chernyshov K V, Dyakov A S, Chumakov D A and Golyatkin I A 2015 P. m. 157974 of the Russian Federation

[20] Novikov V V, Pozdeev A V, Pokhlebin A V, Ryabov I M, Chernyshov K V, Dyakov A S, Chumakov A D, Golyatkin I A and Bondarenko A V 2015 P. m. 158085 of the Russian Federation

[21] Novikov V V, Pozdeev A V, Ryabov I M, Chernyshov K V and Chumakov D A 2016 P. m. 167265 of the Russian Federation

[22] Novikov V V, Pozdeev A V, Ryabov I M, Chernyshov K V and Chumakov D 2017 P. m. 169805 of the Russian Federation

[23] Kotiev G O, Padalkin B V, Kartashov A B and Dyakov A S 2017 Designs and development of Russian scientific schools in the field of cross-country ground vehicles building. ARPN Journal of Engineering and Applied Sciences 12 – 4 1064-1071

[24] Kotiev G O and Diakov A S 2017 Advanced development and testing of off-road vehicle DEStech Transactions on COMPUTER SCIENCE and ENGINEERING. 2017 2nd International Conference on Computer, Mechatronics and Electronic Engineering (CMEE 2017) 464-467 DOI 10.12783/dtcse/cmee2017/20021