Single-cycle surface plasmon polaritons on a bare metal wire excited by relativistic electrons

Citation for published version (APA):
Op't Root, W. P. E. M., Brussaard, G. J. H., Smorenburg, P. W., & Luiten, O. J. (2016). Single-cycle surface plasmon polaritons on a bare metal wire excited by relativistic electrons. Nature Communications, 7, Article 13769. https://doi.org/10.1038/ncomms13769

DOI:
10.1038/ncomms13769

Document status and date:
Published: 23/12/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Single-cycle surface plasmon polaritons on a bare metal wire excited by relativistic electrons

W.P.E.M. op ‘t Root¹, G.J.H. Brussaard¹, P.W. Smorenburg¹ & O.J. Luiten¹,²

Terahertz (THz) pulses are applied in areas as diverse as materials science, communication and biosensing. Techniques for subwavelength concentration of THz pulses give access to a rapidly growing range of spatial scales and field intensities. Here we experimentally demonstrate a method to generate intense THz pulses on a metal wire, thereby introducing the possibility of wave-guiding and focussing of the full THz pulse energy to subwavelength spot sizes. This enables endoscopic sensing, single-shot subwavelength THz imaging and study of strongly nonlinear THz phenomena. We generate THz surface plasmon polaritons (SPPs) by launching electron bunches onto the tip of a bare metal wire. Bunches with 160 pC charge and $\approx 6 \text{ ps}$ duration yield SPPs with 6–10 ps duration and $0.4 \pm 0.1 \text{ MV m}^{-1}$ electric field strength on a 1.5 mm diameter aluminium wire. These are the most intense SPPs reported on a wire. The SPPs are shown to propagate around a 90° bend.

¹Coherence and Quantum Technology, Department of Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands. ²Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands. Correspondence and requests for materials should be addressed to O.J.L. (email: o.j.luiten@tue.nl).
The terahertz (THz) part of the electromagnetic spectrum (0.1–10 THz) is ideal for probing and manipulating fundamental excitations in solids and rotational states in molecules. The development of THz techniques in recent years has led to many exciting applications, such as medical imaging, characterization of materials, security screening and industrial process control. In particular, the development of high-intensity, pulsed THz sources based on rectification of femtosecond laser pulses has revolutionized THz science and technology. Even more spectacular progress in this vibrant field is expected from the development of THz plasmonics, presently a very active area of research, enabling new ways to control and manipulate THz radiation.

By providing guided delivery of intense THz pulses, THz waveguides open up new opportunities in photonics, such as single-shot, subwavelength THz imaging and possibly new applications based on nonlinear THz phenomena. In cancer research, endoscopic systems based on wave-guiding intense THz pulses could greatly extend THz cancer detection schemes, which are today limited to tissue that can be reached with optical techniques. By tapering a THz wire waveguide into a tip, the THz pulses can be focussed to subwavelength spot-sizes, which further increases the intensity. One interesting application of this is a new class of pulsed electron guns that use the wire tip as an electron emitter with record brightness. Moreover, the subwavelength focussing of THz pulses provided by tapered wire waveguides greatly improves the spatial resolution of THz experiments. In recent years, several methods have been devised to localize free-space THz radiation to nanometre-sized structures such as atomic force microscopic tips and nanolithography-based slits, in which a small fraction of the THz pulse is locally enhanced to the kV cm⁻¹ range at the sample with spatial resolutions in the nanometre range. Even subcycle temporal resolution of 10 fs has been achieved based on gated, multi-shot measurements using multicycle THz pulses. This fascinating field can be further developed by using strong subcycle THz pulses that are wire-guided, which enables focussing of the full THz pulse energy to subwavelength distances, while providing temporal resolution through the subcycle THz pulse length. This will enable single-shot subwavelength THz imaging and the study of strongly nonlinear THz phenomena.

Accelerator-based systems and optical techniques exist to produce short intense THz pulses propagating in free space. Such THz pulses have been coupled onto wire waveguides where they propagate as surface plasmon polaritons (SPPs) along the surface of the wire. Unfortunately, creating SPPs by coupling free-space THz radiation onto a metal wire is inefficient owing to the very poor spatial overlap between the linearly polarized free-space mode and the radially polarized waveguide mode. Additionally, direct SPP excitation techniques involving electron beams interacting with flat surfaces have been demonstrated but not on a wire. In 2008, we proposed a method in which ultrashort bunches of relativistic electrons generate coherent transition radiation (CTR) at the tip of a thin wire. The radiation produced then propagates as a powerful SPP along the wire, which serves as a waveguide. This hybrid technique integrates accelerator-based CTR methods and plasmonic techniques to produce intense subcycle pulses in the THz frequency range directly on a bare metal wire waveguide. By this method, extremely intense and highly localized THz pulses can be created using state-of-the-art table-top-sized accelerators. The GeV electron bunches currently driving X-ray free electron lasers (X-FELs) would enable nonlinear ‘THz pump—X-ray probe’ experiments in which micron-sized pieces of material are excited by extreme THz field strengths and subsequently probed by X-ray pulses to study structural dynamics at femtosecond timescales.

The proposed method relies on the natural match of the Coulomb field of relativistic electron bunches with the radially polarized electric field of the guided surface wave. Firing electron bunches onto the tip of a tapered metal wire causes the radially polarized field of the electron bunches to transfer to the wire. This results in SPPs propagating along the wire. The physical mechanism behind this process can be understood using a field line model as described by Purcell, which is described in the Methods section. From this model, the estimated peak electric field strength of the SPP generated on the wire is given by

$$E = C_q/q \times 2 \pi \nu_0 e c R, \quad (1)$$

where \(q\) is the electron bunch charge, \(\tau\) the bunch duration, \(R\) the radius of the wire, \(\epsilon_0\) the vacuum permittivity and \(c\) the speed of light. The numerical dimensionless constant \(C_q\) takes the three-dimensional bunch shape into account and depends mildly on the beam energy; \(C_q\) can be calculated using more elaborate methods. For ellipsoidal bunches with a length \(\epsilon\) (semiaxis) and 2 MeV energy, \(C_q \approx 0.7\). Meanwhile, the length of the SPP is comparable to that of the generating electron bunch, with a spectrum coherent up to frequencies \(\sim 1/\tau\).

Here we experimentally demonstrate the method proposed in ref. 34. By firing electron bunches with an energy of 3.1 MeV, bunch charge \(q = 160 \text{ pC}\) and full-width-at-half-maximum (FWHM) duration of \(\tau \approx 6.6 \text{ ps}\) on a sharp conical tip of an aluminum wire with a diameter of 1.5 mm, we generate SPPs with a FWHM duration of 6–10 ps and electric field strength of 0.4 ± 0.1 MV m⁻¹ on the surface of the wire. This yields the possibility of wave-guiding and subwavelength focussing of the full THz pulse, enabling endoscopic delivery and study of strongly nonlinear THz phenomena. Equation (1) shows that the SPP field strength on the wire is proportional to the peak electron beam current \(q/\tau\). Using the 100 fs, 100 pC, 3.7 MeV bunches that can be produced in a table-top radio frequency photogun setup comparable to ours, THz field strengths of tens of MV m⁻¹ could be generated on a millimetre-diameter wire. A fortiori, the sub-100 fs, nanocoulomb electron bunches driving X-FELs have the potential to generate THz pulses on a millimetre-diameter wire in excess of 1 GV m⁻¹, comparable to the record field strengths obtained by free-space CTR at Stanford Linear Accelerator Center (SLAC).

Results

Experimental setup. The basic principle of using an ultrashort bunch of relativistic electrons to produce CTR at the tip of a thin wire, which subsequently propagates along the wire as a powerful SPP, is illustrated in Fig. 1 and is explained in more detail in the Methods section. We have demonstrated the method in a small-scale experimental setup, which is schematically illustrated in Fig. 2. An animation of the experiment (Supplementary Movie 1) can be found in Supplementary Information. Electron bunches from a 3.1 MeV accelerator containing 160 pC of charge are focussed onto the conical tip of an aluminium wire. The radius \(R\) of the wire is 0.75 mm and the conical tip has an opening angle of \(25 \sim 8^\circ\). At the tip of the wire, the electron bunches have a radius of 0.2 mm (root mean square (RMS)). When the electrons hit the wire, they are absorbed into the wire, setting up a pulse of transition radiation that propagates along the surface of the wire as an SPP. This surface wave is analysed at the end of the straight part (1) of the wire (see Fig. 2), 80 mm from the tip, by placing a ZnTe \(<110>\) crystal (5 × 5 × 0.5 mm³) directly on the surface of the wire. A circularly polarized pulse (50 fs, \(\sim 1\) μJ, 800 nm) from the Ti:Sapphire laser system is used to probe the crystal. These probe pulses come from the same laser system that is used to generate the electrons through photo-emission in the accelerator.
and are therefore synchronous with the electron bunches and the SPP. The ZnTe crystal is imaged through a polarizer cube onto two charge-coupled device (CCD) cameras. By taking the relative difference of the two images \([A - B]/(A + B)\], an image of the field strength of the surface wave in the ZnTe crystal is obtained. Just behind the ZnTe crystal, the wire forms a bend, with a radius of curvature of 33 mm. After the bent section (2) of the wire, a second ZnTe crystal is placed on the wire to determine the field strength of the SPP at this position. Because the electric field of the SPP is weaker after the bend, we do not image this crystal but instead use a balanced diode setup to record the change in polarization of the probe pulses induced by the SPP in the ZnTe crystal. By varying the path length of the probe pulses with respect to the photo-emission pulses, a time scan of the signal is formed\(^{37-40}\).

SPP measurements before the bend. Fig. 3a shows the image of the first ZnTe crystal, illuminated by the probe pulse at the moment the SPP passes the crystal. The probe pulse grazes the wire to allow imaging of the point at which the crystal touches the wire. As the probe pulse comes in at a slight angle in the \(x\) direction (see Fig. 2) and the \(y\) direction (not shown in Fig. 2), this causes the wire to shade off the lower left corner of the crystal. The relative difference between the intensities reaching both cameras is proportional to the vertical component of the electric field of the SPP inside the ZnTe crystal. The procedure that we used to calculate the absolute value of the electric field and colour code the image of Fig. 3a is described in the Methods section. The image was taken at the maximum field strength of the SPP. The line-out along the vertical axis at \(x = 0\) is plotted in Fig. 3b. For a cylindrically symmetric SPP on a metal wire with radius much larger than the skin-depth, one expects the radial component of the electric field to fall off as \(r^{-1}\) (ref. 36,41), with \(r\) the radial distance from the wire centre. However, the ZnTe crystal, with a dielectric constant of approximately 10 for the relevant frequencies, artificially enhances the field near the wire surface owing to refraction. We modelled this effect using CST Microwave Studio. At \(r \geq 2R\), the electric field shows the expected \(r^{-1}\) dependence in both the measurement of Fig. 3b and the CST simulation. To extract the undistorted field from the measurements, we therefore fit the data between \(y = 1.25\) mm and 2.75 mm with this \(r^{-1}\) dependence and extrapolate to the wire’s edge at \(y = 0.75\) mm (dashed line in Fig. 3b). Finally, we correct for the transmission coefficient of the crystal (\(t_{\text{ZnTe}} = 0.48\) at 1 THz) to calculate what the electric field of the SPP would have been without the crystal present. This is shown as the dotted line in Fig. 3b. We thus find that SPPs have been generated directly on a wire by relativistic electron bunches and that the maximum field strength of the SPPs was \(0.4 \pm 0.1\) MV m\(^{-1}\).

By changing the delay between the photo-emission laser pulse and the probe pulse through the ZnTe crystal, we can now determine the field strength on the wire surface as a function of time. The result of such a scan is shown in Fig. 4a. The RMS length of the pulse is between 2 and 3 ps, depending on the level of the baseline that has an uncertainty of \(\pm 0.1\) MV m\(^{-1}\). The signal does not quite return to zero for short delay times, which may be a result of drift in the calibration of the electro-optical system. We are therefore cautious to put a more precise number on the measured pulse duration.

SPP measurements after the bend. To demonstrate that the SPP is guided by the wire, we have also measured the electric field strength after the 90° bend in the wire using the second ZnTe crystal (see Fig. 2). The laser probe pulses were focussed on the crystal with a spot size of \(120 \pm 20\) µm (FWHM), at a distance of \(1.0 \pm 0.8\) mm from the edge of the wire. During these measurements, the crystal before the bend was removed to avoid disturbing the SPP. Using the same \(r^{-1}\) scaling as in the imaging
Equation (1), we can now calculate the expected maximum pulse duration of the SPP of 2–3 ps. With 160 pC in the present setup. This is in reasonable agreement with simulations predicting an RMS bunch length of 2.7 ps for bunches of bunches at the moment they enter the tip of the wire. These results are consistent with the SPP before the bend. The measured field strength on the surface of the wire, corrected for the presence of the ZnTe crystal is 0.4 MV m\(^{-1}\) (Fig. 3b), that is, approximately a factor 4 lower than predicted for the experimental conditions used here. A possible explanation may be found if we consider the fact that the range of 3 MeV electrons in aluminium is 6 mm. The electrons therefore penetrate only the initial part of the conical tip and a significant part of the bunch is scattered into large angles, that is, sideways out of the wire. These electrons do not contribute to the CTR pulse. Furthermore, electrons that are absorbed by the wire may eject secondary electrons, which partly cancel the transition radiation field of the absorbed electrons. Nevertheless, the measured field strength is the highest reported to date measured at the surface of a metal wire. Comparison of these results to other techniques that generate SPPs directly on a wire is difficult, as the field strength is often reported in arbitrary units. In fact, we could not find any article reporting the electric field of SPPs on a metal wire surface.

Discussion

We performed particle tracking simulations (General Particle Tracer\(^{42}\)) to calculate the expected duration of the electron bunches at the moment they enter the tip of the wire. These simulations predict an RMS bunch length of 2.7 ps for bunches of 160 pC in the present setup. This is in reasonable agreement with the observed RMS pulse duration of the SPP of 2–3 ps. With Equation (1), we can now calculate the expected maximum electric field of the SPP. Taking an equivalent ellipsoidal electron bunch with the same RMS bunch length, this gives a peak electric field of 1.7 MV m\(^{-1}\). The measured field strength on the surface of the wire, corrected for the presence of the ZnTe crystal is 0.4 MV m\(^{-1}\) (Fig. 3b), that is, approximately a factor 4 lower than predicted for the experimental conditions used here.

Figure 4 | Electric field of the SPP at the surface of the wire as a function of time. (a) Measurements of the field strength on the wire surface taken at the position \(z = 80\) mm from the tip of the wire. For each setting of the time delay between the probe pulse and the laser pulse used for photoemission of the electron bunch, the electric field strength at the surface of the wire was extracted from images recorded in the same manner as Fig. 3. (b) Field strengths measured after the bend in the wire (33 mm radius of curvature) using a balanced diode set-up instead of the double-CCD camera used in (a). Zero delay is arbitrary for both (a,b).

Figure 3 | Field strength of the SPP at 80 mm from the tip of the wire. (a) Image of the ZnTe crystal touching the wire surface. The colour code represents the relative intensity of the laser pulse passing through the crystal and an analyser and is a measure of the change in polarization caused by the birefringence induced in the crystal by the y-component of the electric field of the SPP. The hatched region is the shadow of the wire; the dashed line indicates the edge of the crystal. (b) Line-out along the vertical axis of (a) (blue solid line).
amplitude transmission of around 15% for the bend in our setup. Our results are therefore in approximate agreement with ref. 43. The difference in path length in the xz plane between the inner and outer wire surface (see Fig. 2) along the 90° bend is 2.4 mm. This corresponds to 8 ps time lag of waves travelling along the outside of the bend with respect to the inside of the bend, in agreement with the observed dispersion of the SPP.

These first experiments demonstrate that intense SPPs can be excited by grazing incidence CTR, generated by ultrashort relativistic electron bunches at the conical tip of a bare metal wire. The strong fields allow quantitative analysis and comparison to the theoretical predictions to use these waves for THz plasmonics and the possibility to develop endoscopic THz systems. Using state-of-the-art table-top-sized accelerators35, extremely intense THz pulses can be created by concentrating the full THz pulse on a small tip. A particularly exciting prospect is to use the measured field value using the scaling of Equation (1), such bunches should generate 0.4 GV m\(^{-1}\) THz SPPs on a millimetre-diameter wire. By tapering this wire into a sharp point12–20, these THz pulses could be delivered in a micron-sized spot, resulting in unprecedented THz field strengths of 100 GV m\(^{-1}\) and beyond.

Method

SPP excitation by transition radiation. By firing electron bunches onto the tip of a tapered metal wire, the radially polarized field of the electron bunches is transferred to the wire and continues to propagate along the wire as an SPP. The physical mechanism behind this process can be elucidated using the field line model for transition radiation as described by Purcell26. Consider an electron travelling with velocity v in the z direction, reaching the tip of a metal wire with small cone angle at t = 0. This situation is sketched in Fig. 1. For t < 0, the field is that of an undisturbed charge travelling in vacuum. The thin metal wire has negligible influence because the field of the electron at relativistic speeds is confined to a thin disk perpendicular to the direction of motion. For t > 0 when the electron is inside the metal wire, the electric fields are screened for an observer outside the metal. However, the screening is not instantaneous; instead it occurs on a sphere travelling outwards with the speed of light. Outside the sphere, indicated as region II in Fig. 1, the electric field is still that of the undisturbed charge in motion. Within the sphere, indicated as region I in Fig. 1, there is no electric field. However, the electric field lines in region II cannot abruptly end at the sphere; instead they follow the surface of the sphere where they induce a surface charge. This combination of electric fields and co-propagating surface charge is an SPP. As the electric field of an electron is very well matched to the axially symmetric mode of a wire, it will excite a strong SPP. In case of an electron bunch rather than a single electron, the shell of field lines has a thickness \(n \), where \(n \) is the time it takes the bunch to pass the metal surface. We can easily calculate the electric field on the metal wire at the location of the expanding shell using Gauss’s law on the closed surface indicated by the red dashed line in the figure. Because this Gauss volume does not enclose any charge, the net flux through the surface is zero. Therefore, the flux contained in the expanding sphere equals the flux crossing the Gaussian surface near the wire of the bunch, both being equal to \(E_0 \) with \(q \) the bunch charge. On the surface of the wire, this flux is spread over an annulus with radius \(R \) and width \(c \). This yields the field strength given by Equation (1).

Experimental setup. The experimental setup contains a 1.5 cell, 3 GHz radio frequency accelerator operating at a repetition frequency of 3 Hz. A Ti:Sapphire laser system produces pulses of 35 μJ at 267 nm wavelength (generated by frequency tripling of the Ti:Sapphire fundamental wavelength at 800 nm) with a duration of approximately 1.20 fs and a (RMS) radius of 1.5 mm. These pulses hit the copper cathode of the accelerator and generate bunches with a charge of 160 pC. The electrons are accelerated to 3.1 MeV and focussed by a quadrupole triplet onto the tip of the aluminium wire. The laser spot on the cathode is slightly elliptical, with an RMS radius of 0.1 mm in the horizontal direction and 0.15 mm in the vertical direction. At the position of the wire tip, the electron bunch is nearly circular with an RMS radius of 0.2 mm. The RMS-bunch duration at the tip of the wire, calculated by particle tracking simulations (General Particle Tracer27) is 2.7 ps. The wire has a radius of 0.75 mm and a conical tip with a cone angle \(2^\circ \). The distance between the cathode surface and the tip of the wire is 1.5 mm. The physical mechanism behind this process can be elucidated using the field line model for transition radiation as described by Purcell26. Consider an electron travelling with velocity \(v \) in the z direction, reaching the tip of a metal wire with small cone angle at \(t = 0 \). This situation is sketched in Fig. 1. For \(t < 0 \), the field is that of an undisturbed charge travelling in vacuum. The thin metal wire has negligible influence because the field of the electron at relativistic speeds is confined to a thin disk perpendicular to the direction of motion. For \(t > 0 \) when the electron is inside the metal wire, the electric fields are screened for an observer outside the metal. However, the screening is not instantaneous; instead it occurs on a sphere travelling outwards with the speed of light. Outside the sphere, indicated as region II in Fig. 1, the electric field is still that of the undisturbed charge in motion. Within the sphere, indicated as region I in Fig. 1, there is no electric field. However, the electric field lines in region II cannot abruptly end at the sphere; instead they follow the surface of the sphere where they induce a surface charge. This combination of electric fields and co-propagating surface charge is an SPP. As the electric field of an electron is very well matched to the axially symmetric mode of a wire, it will excite a strong SPP. In case of an electron bunch rather than a single electron, the shell of field lines has a thickness \(n \), where \(n \) is the time it takes the bunch to pass the metal surface. We can easily calculate the electric field on the metal wire at the location of the expanding shell using Gauss’s law on the closed surface indicated by the red dashed line in the figure. Because this Gauss volume does not enclose any charge, the net flux through the surface is zero. Therefore, the flux contained in the expanding sphere equals the flux crossing the Gaussian surface near the wire, both being equal to \(E_0 q \) with \(q \) the bunch charge. On the surface of the wire, this flux is spread over an annulus with radius \(R \) and width \(c \). This yields the field strength given by Equation (1).

References

1. Auston, D. H. & Nuss, M. C. Electrooptic generation and detection of femtosecond electrical transients. IEEE J. Quantum Electron. 24, 184–197 (1988).
2. Yeh, K.-L., Hoffmann, M. C., Helbing, I. & Nelson, K. A. Generation of 10 μl ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 90, 171121 (2007).
3. Bartel, T., Gaal, P., Reimann, K., Woerner, M. & Elsesser, T. Generation of single-cycle THz transients with high electric-field amplitudes. Opt. Lett. 30, 2805–2807 (2005).
4. Sell, A., Leitenstorfer, A. & Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV per cm. Opt. Lett. 33, 2767–2769 (2008).
5. Reimann, K. Terahertz radiation: a table-top source of strong pulses. Nat. Photon. 2, 596–597 (2008).
6. Mittleman, D. M. Frontiers in terahertz sources and plasmonics. Nat. Photon. 7, 666–669 (2013).
7. Andrews, S. R. Microstructured terahertz waveguides. J. Phys. D Appl. Phys. 47, 374004 (2014).
8. Wang, K. & Mittleman, D. M. Metal wires for terahertz wave guiding. Nature 432, 376–379 (2004).
9. Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).
10. Yu, C., Fan, S., Sun, Y. & Pickwell-MacPherson, E. The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 3, 33–45 (2013).
11. Wallace, V. P. et al. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br. J. Dermatol. 151, 424–432 (2004).
12. Maier, S. A., Andrews, S. R., Martin-Moreno, L. & Garcia-Vidal, F. J. Terahertz surface plasma-phonon propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805 (2006).
13. Awdal, M., Nagel, M. & Kurs, H. Tapered Sommerfeld wire terahertz near-field imaging. Appl. Phys. Lett. 94, 051107 (2009).
14. Astley, V., Mends, R. & Mittleman, D. M. Characterization of terahertz field confinement at the end of a tapered metal waveguide. Appl. Phys. Lett. 95, 031104 (2009).
15. Wächter, M., Nagel, M. & Kurz, H. Tapered photoductive terahertz field probe tip with subwavelength spatial resolution. Appl. Phys. Lett. 95, 041112 (2009).
16. Liang, H., Ruan, S. & Zhang, M. Terahertz surface wave propagation and focusing on conical metal wires. Opt. Express 16, 18241–18248 (2008).
17. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).
18. Schnell, M. et al. Nanofocusing of mid-infrared energy with tapered transmission lines. Nat. Photon. 5, 283–287 (2011).
19. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010).
20. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).
21. Huang, W. R. et al. Towards a THz-driven electron gun. Sci. Rep. 5, 14899 (2015).
31. Mittleman, D. M. Frontiers in terahertz sources and plasmonics. Nature 420, 153–156 (2002).
32. Edelmann, A., Moeller, L. & Jahns, J. Coupling of terahertz radiation to metallic wave using end-fire technique. Electron Lett. 49, 884–886 (2013).
33. Gong, S. et al. Electron beam excitation of surface plasmon polaritons. Opt. Express 22, 19252–19261 (2014).
34. Smorenburg, P. W., Op't Root, W. P. E. M. & Luiten, O. J. Direct generation of terahertz radiation on a cylindrical wire using electron bunches. Phys. Rev. ST Accel. Beams 10, 10642–10650 (2013).
35. Jeon, T.-I., Zhang, J. & Grischkowsky, D. THz Sommerfeld wave propagation of terahertz radiation to cylindrical wire waveguides. Opt. Express 14, 270–290 (2006).
36. Zheng, Z., Kanda, N., Konishi, K. & Kuwata-Gonokami, M. Efficient coupling of broadband terahertz radial beams to metal wires. Opt. Express 21, 10642–10650 (2013).
37. Zhu, W., Agrawal, A., Cao, H. & Nahata, A. Generation of broadband radially polarized terahertz radiation directly on a cylindrical metal wire. Opt. Express 16, 8433–8439 (2008).
38. Edelmann, A., Moeller, L. & Jahns, J. Coupling of terahertz radiation to metallic wire using end-fire technique. Electron Lett. 49, 884–886 (2013).
39. Chen, Q., Tani, M., Jiang, Z. & Zhang, X.-C. Electro-optic transceivers for terahertz-wave applications. J. Opt. Soc. Am. B 18, 823–831 (2001).
40. Planken, P. C. M., Nienhuys, H.-K., Bakker, H. J. & Wenczkebach, T. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J. Opt. Soc. Am. B 18, 313–317 (2001).
41. Goubau, G. Surface waves and their application to transmission lines. J. Appl. Phys. 21, 1119–1128 (1950).
42. Poiplau, G., van Rienen, U., van der Geer, B. & de Loos, M. Multigrid algorithms for the fast calculation of space-charge effects in accelerator design. IEEE Trans. Magn. 40, 714–717 (2004).
43. Astley, V., Scheiman, J., Mendis, R. & Mittleman, D. M. Bending and coupling losses in terahertz wire waveguides. Opt. Lett. 35, 553–555 (2010).

Acknowledgements
We thank the technical staff, Eddy Rietman, Harry van Doorn, and Ar Demter, who were pivotal in constructing the experiment. We are also indebted to Koen Pieterse and his team of the TU/e ICMS Animation Studio for a beautiful and very instructive movie of the experiment. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

Author contributions
O.J.L. conceived the experiments; W.P.E.M.R. performed the experiments; all the authors developed the theoretical background; W.P.E.M.R., G.J.H.B. and O.J.L. analysed the data; all the authors co-wrote the paper.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications.

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Op’t Root, W. P. E. M. et al. Single-cycle surface plasmon polaritons on a bare metal wire excited by relativistic electrons. Nat. Commun. 7, 13769 doi: 10.1038/ncomms13769 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.