A Multicenter Survey about Companion Robot Acceptability in Caregivers of Patients with Dementia

Grazia D’Onofrio1, 2, Daniele Sancarlo1, Oscar James3, Francesco Ricciardi4, Dympna Casey3, Keith Murphy3, Francesco Giuliani4 and Antonio Greco1

1 Geriatrics Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy.

2 The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy

3 School of Nursing and Midwifery, National University of Ireland, Galway, Ireland.

4 ICT, Innovation and Research Unit, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy.
Age of Loneliness

In 2050 16% world population over 65
Dementia

- Another 20 people
- By 85 one person in every 3 will have dementia
- Dementia worsens over time,
- erodes your memory,
- language,
- communication,
- changes your moods and personality.
Alzheimer’s disease (AD) leads to severe social consequences:
- decreased quality of life and well-being
- increased family burdens and health care demand
- longer term utilization of care facilities that generate very significant impacts on health care services demand and consequently costs (Seelye A. et al., 2012).

To fight loneliness and the effects suffered by person with dementia, effective techniques include those that target change of a person’s perception of loneliness and those that increase a person’s resilience. Resilience is an adaptive capacity that refers to one’s ability to ‘bounce back’ and cope in the face of adversity.
Information and Communication Technologies (ICT) solutions can be used to increase psychological skills like resilience (Norris et al., 2008), and to manage active and healthy aging with the use of caring service robots as will be explored with the EU funded MARIO project (http://www.mario-project.eu/portal/).
Partners

- National University of Ireland, Galway
- ROBOSOFT
- RU Robot
- Ortelio Ltd
- City of Stockport
- Consiglio Nazionale delle Ricerche
- R2M Solution
- Casa Sollievo della Sofferenza Hospital
- Caretta-Net
- University of Passau
MARIO objectives 1/2

- To address and make progress on the challenging problems of **loneliness**, **isolation** and **dementia** in older persons through multi-faceted interventions delivered by service robots.
- To conduct near **project length interaction with end users** and assisted living environments.
- To assist caregivers and physicians in the **comprehensive geriatric assessment (CGA)** through the use of service robots.
- The **use of near state of the art robotic platforms** that are flexible, modular friendly, **low cost** and close to **market ready**.
• To make MARIO capable to support and receive “robot applications” similar to the developer and app community for smartphones.

• Through novel advances in machine learning techniques and semantic analysis methods to make MARIO more personable, useful, and accepted by end users (e.g. gain perception of non-loneliness).

• To bring MARIO service robot concepts out of the lab and into industry.
First model of robot suggested at the begin of the MARIO project
Survey of the needs

At the first stage of the MARIO project, Focus groups were performed and a questionnaire was designed to find out perceptions of the caregivers about robot companions, especially what they would like such a robot to do for them, and how robots could be designed to build the patient resilience.
Aims

The goal of these activities were to determine the needs and preferences of formal and informal caregivers for improving the assistance of dementia patients, and guiding the technological development of MARIO though a questionnaire.
2 Focus Groups

April and May 2015
Geriatrics Unit, Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy

1) 14 Participants: 4 patients with cognitive impairment, 3 caregiver/relatives, 3 geriatrician, 1 psychologist, 1 nurse, 1 physicist and 1 engineer.

2) 10 Participants: 1 geriatrician, 1 psychologist, 1 physicist, 1 office worker, 3 computer scientists and 3 engineers.
130 caregivers of patients with dementia consecutively recruited from May to November 2015 at:

- N = 70 - Geriatrics Unit, Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy (IRCCS)
- N = 39 - National University of Ireland, Galway, Ireland (NUIG)
- N = 21 - Alzheimer Association Bari, Italy (AAB)

Inclusion criteria:
- Caregiver of patients with diagnosis of dementia according to the criteria of the National Institute on Aging-Alzheimer's Association (NIAAA)
- The ability to provide an informed consent or availability of a proxy for informed consent.

Exclusion criteria:
- Caregivers of patients with serious comorbidity, tumors and other diseases that could be causally related to cognitive impairment (ascertained blood infections, vitamin B12 deficiency, anaemia, disorders of the thyroid, kidneys or liver), history of alcohol or drug abuse, head trauma, psychoactive substance use and other causes of memory impairment.
The following parameters were collected by a systematic interview about the caregivers:

- **Gender**
- **Age**
- **Educational level** (in years)
- **Caregiving type:**
 - ✓ Informal caregiver (unpaid)
 - ✓ Informal caregiver (paid)
 - ✓ Formal caregiver (Geriatrician)
 - ✓ Formal caregiver (Psychologist)
 - ✓ Formal caregiver (Nurse)
1) A five-minute video on the first model of robot suggested at the begin of the MARIO project:
(video weblink: https://www.youtube.com/watch?v=v1s2Hbad1l0).

2) A 42-item questionnaire that evaluated the potential role of:
A) Acceptability
B) Functionality
C) Support devices
D) Impact

3) Responses were expressed as:
- “Extremely important/likely/useful” or “YES, very useful” to
- “Not at all important/likely/useful” or “Not useful at all”.
MARIO Questionnaire 4/4

Section A: Acceptability	Section B: Functionality	Section C: Support device	Section D: Impact
How important is it that MARIO has:	How important is it that MARIO has:	Do you think that the following support devices in MARIO could be useful for your patients?	To what extent do you think MARIO could be useful in order to:
1 (Human like appearance)	1 (Face recognition)	1 (Bed rest)	1 (Quality of life)
2 (Human sounding voice)	2 (Voice recognition)	2 (Medication use)	2 (Quality of care)
3 (Familiar voice)	3 (Distinguishing individuals)	3 (Ambient environmental)	3 (Safety)
4 (Covering like to touch)	4 (Natural dialogue)	4 (Lighting, TV channels)	4 (Emergency communication)
5 (Height adjustable)	5 (Device for outside-home)	5 (CGA)	5 (Cognitive rehabilitation)
6 (Not verbally comunication)	6 (Prompts for appointments)	6 (Care planning)	6 (Detecting isolation)
7 (Displays emotional expression)	7 (Person’s life history)	7 (Physiological deterioration)	7 (Detecting health status changes)
8 (Daily assistance reminder)	8 (Communication by multimedia)	8 (Cognitive deterioration)	
9 (Monitor movement)	9 (Voice activation)		
10 (Entertainment)	10 (Gesture recognition)		
11 (Communication with caregivers)	11 (Help for walking)		
12 (Quiet robot)	12 (Understanding dialects)		
13 (Moving in home)	13 (GPS function)		
14 (Internet connection)			
Table 1. Characteristics of dementia caregivers.

	ALL	NUIG	IRCCS	AAB	P value
Gender (M/F)	36/55	-	28/42	8/13	0.876
Age (years)*	48.12 ±	-	48.74 ±14.90	45.72 ±19.25	0.473
	15.81	-	23–88	24–82	
	23–88	-			
Educational level (years)*	16.09 ± 6.00	18.88 ± 1.22	14.90 ± 7.06	15.61 ± 5.30	0.006
	0–24	18–23	0–23	5–24	
Caregiving types					
Informal caregiver (unpaid) N(%)	33 (25.3)	0 (0)	24 (72.7)	9 (27.3)	
Informal caregiver (paid) N(%)	7 (5.4)	0 (0)	6 (85.7)	1 (14.3)	
Formal caregiver (Geriatrician) N(%)	19 (14.6)	0 (0)	18 (94.7)	1 (5.3)	<0.0001
Formal caregiver (Psychologist) N(%)	7 (5.4)	0 (0)	0 (0)	7 (100.0)	
Formal caregiver (Nurse) N(%)	57 (43.9)	32 (56.1)	22 (38.6)	3 (5.3)	
Not indicated (N%)	7 (5.4)	7 (100.0)	0 (0)	0 (0)	

*Values are presented as mean ± standard deviation.
Figure 1. Rate of “Extremely important/likely/useful” or “YES, very useful” answer by caregivers of dementia patients to the MARIO Questionnaire.
Figure 2. “Extremely important/likely/useful” or “YES, very useful” answer by caregivers of dementia patients to the MARIO Questionnaire: effect of sex of caregivers

- Acceptability: p < 0.0001
- Functionality: p < 0.0001
- Support device: p < 0.0001
- Impact: p = 0.001
Figure 3. “Extremely important/likely/useful” or “YES, very useful” answer by caregivers of dementia patients to the MARIO Questionnaire: effect of age of caregivers.

- Acceptability: p = 0.005
- Functionality: p = 0.994
- Support device: p = 0.020
- Impact: p = 0.041

Age groups: 20-34 years, 35-49 years, ≥ 50 years
Figure 4. “Extremely important/likely/useful” or “YES, very useful” answer by caregivers of dementia patients to the MARIO Questionnaire: effect of educational level of caregivers.

![Graph showing the effect of educational level on acceptability, functionality, support device, and impact with p-values for each category: p = 0.006, p = 0.718, p = 0.990, p = 0.869.](image)
Customization of the CGA

The principal objective is to translate the CGA from a personal subjective based administration to a robotic objective system that can autonomously and continuously monitor a subject during an predefined time interval and can expand the possibility, accuracy and intervention efficacy

Reviewing process about ICT used for CGA domains were performed:
1. Cognitive stimulation and Information-Communication Technologies (ICT) in Alzheimer’s disease: a systematic review
2. Insomnia and Assistive Technologies in elderly people: a systematic review
3. Intelligent Technologies (IT) for the Activities of Daily Living in elderly patients with dementia: a systematic review
4. Literature review on Technologies used to monitoring vital signs
5. Literature review on Assessment of Nutritional status
6. Literature review on Compliance to drug Treatment
7. State of the art in speech-based robot socialization
8. State of the art in robotic and sensor technologies for human mobility, and gait evaluation
For MARIO implementation the following sensors and apps are developing:

- Beddit Sleep Monitor
- FITBIT
- ZephyrLIFE™
- CGA app
- Music and Flash game apps
- News app
- Hobby app
- Dementia Friendly Communities (DFC) app
MARIO arrived in Casa Sollievo della Sofferenza on August 24, 2016

The experimentation stage begins...
Experimentation stage (September 2016): Preliminary results (1/3)

We are administering a 13-item questionnaire that evaluates:
A) Acceptability
B) Functionality

19 patients with mild cognitive impairment (M=6, F=13) with a mean of educational level of 9.63 ± 5.64
Experimentation stage:
Preliminary results (2/3)

Acceptability

Feature	Rating
Appearance	100
Voice volume	70
Voice	90
Touch	90
Facial expression	100
Easy to use	90
Experimentation stage: Preliminary results (3/3)

Functionality

Category	Score
Screen when sitting down	100
Screen when standing up	80
Height	80
Reading text	90
Difficult communication	50
Problems using MARIO	10
Music app	100
Inclusion criteria:
1) age ≥ 65 years;
2) patients with diagnosis of mild dementia according to the criteria of the National Institute on Aging-Alzheimer's Association (NIAAA);
3) the ability to provide an informed consent or availability of a proxy for informed consent.

The patients were invited to use the following apps: My Music and My Games.

The patients interacted with MARIO 60 min/die in mean (respectively, a mean of 41 min/die for My Music app, and a mean of 19 min/die for My Games app) for a mean of 7.6±4.3 hospitalization days (range = 3-12 days).
Cognitive and affective assessment
1. Mini Mental State Examination (MMSE)
2. Clinical Dementia Rating (CDR)
3. Clock Drawing Test (CDT)
4. Frontal Assessment Battery (FAB)
5. Hachinski Ischemic Scale (HIS)
6. Neuropsychiatric Inventory (NPI)
7. Geriatric Depression Scale (GDS-15)
8. Hamilton Rating Scale for Depression (HDRS-21)

Clinical Assessment
1. Tinetti Balance Assessment (TBA)
2. Comprehensive Geriatric Assessment (CGA):
 - Activities of Daily Living (ADL)
 - Instrumental -ADL (IADL)
 - Short Portable Mental Status Questionnaire (SPMSQ)
 - Mini Nutritional Assessment (MNA)
 - Scala di Exton –Smith (ESS)
 - CIRS-comorbility (CIRS-CI)
 - Number of medications
 - Co-habitational status

Quality of life and Caregiver burden level assessment
1. Quality of Life in Alzheimer's Disease (QOL-AD)
2. Caregiver Burden Inventory (CBI)

Evaluation of social aspects and resilience
1. Multidimensional Scale of Perceived Social Support (MSPSS)
2. Social Dysfunction Rating Scale (SDRS)
3. Brief Resilience Scale (BRS)

Acceptability Assessment
1. Almere Model Questionnaire (AMQ)
5 patients (M = 3, F = 2) with an average age of 74.20 ± 10.06 years, range = 66 - 86 years.

At admission

- MMSE mean score = 19.66 ± 1.67
- CDT mean score = 2.20 ± 0.84
- FAB mean score = 13.00 ± 1.23
- NPI mean score = 24.40 ± 10.24
- GDS-15 mean score = 5.80 ± 1.64
- HRSD-21 mean score = 9.80 ± 3.46
- MSPSS mean score = 71.20 ± 14.96
- SDRS mean score = 28.20 ± 4.60
- BRS mean score = 16.80 ± 1.79
- QoL-AD mean score = 32.80 ± 5.72
- CBI mean score = 18.00 ± 6.93

At discharge

- TBA mean score = 8.80 ± 4.92
- CDT mean score = 4.20 ± 2.49
- FAB mean score = 4.80 ± 3.56
- NPI mean score = 2.60 ± 2.67
- GDS-15 mean score = 2.20 ± 1.30
- CIRS mean score = 2.20 ± 1.30
- MNA mean score = 23.00 ± 6.04
- ESS mean score = 23.00 ± 6.04
- N of medications (mean) = 5.60 ± 2.51

No significantly improvement was shown!
Code	Construct	Definition	%
ANX	Anxiety	Evoking anxious or emotional reactions when using the system	0
ATT	Attitude	Positive or negative feelings about the appliance of the technology	80
FC	Facilitating condition	Objective factors in the environment that facilitate using the system	100
ITU	Intention to use	The outspoken Intention to Use the system over a longer period in time	60
PAD	Perceived adaptivity	The perceived ability of the system to be adaptive to the changing needs of the user	60
PENJ	Perceived enjoiment	Feelings of joy or pleasure associated by the user with the use of the system	100
PEOU	Perceived Ease of use	The degree to which the user believes that using the system would be free of effort	40
Almere Model Questionnaire (2)

Code	Construct	Definition	%
PS	Perceived sociability	The perceived ability of the system to perform sociable behavior	80
PU	Perceived usefulness	The degree to which a person believes that using the system would enhance his or her daily activities	80
SI	Social influence	The user’s perception of how people who are important to him think about him using the system	60
SP	Social presence	The experience of sensing a social entity when interacting with the system	40
TRUST	Trust	The belief that the system performs with personal integrity and reliability	60
USE	Use/Usage	The actual use of the system over a longer period in time	60
Conclusion

The work is get started!
Thank you!

- Acknowledgements
 The research leading to these results has received funding from the European Union Horizons 2020 – the Framework Programme for Research and Innovation (2014-2020) under grant agreement 643808 Project MARIO “Managing active and healthy aging with use of caring service robots”

- Contact
 http://www.mario-project.eu/