Modulation and Validation of *YashtimadhuKalpa* (formulated from *Glycyrrhiza glabra*) as *MedhyaRasayana*: A Neuro-nutrient

Mrudul Y Chitrakar¹, Subhash S Kudale², Manish P Deshmukh³, Ashish B Budhrani*⁴

¹Department of Swasthavritta and Yoga, School of Ayurveda, D. Y. Patil University, Mumbai-400706, Maharashtra, India
²Department of Biotechnology and Bioinformatics, D. Y. Patil University, Mumbai-400706, Maharashtra, India
³Department of Pharmacology, Datta Meghe College of Pharmacy, Datta Meghe Institute of Medical Sciences (DU), Wardha-442001, Maharashtra, India
⁴Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Medical Sciences (DU), Wardha-442001, Maharashtra, India

Article History:
Received on: 14 Oct 2020
Revised on: 14 Nov 2020
Accepted on: 17 Nov 2020

Keywords:
Standardization, Yashtimadhu, Granules, Medhya, Nootropic, Neuroprotective, Glycyrrhiza Glabra, Glycyrrhizin

Abstract

The present study was aimed to develop an adapted formulation of the *MedhyaRasayan*, i.e. *YashtimadhuKalpa* to make *Yashtimadhu* (*Glycyrrhiza glabra*) more palatable and well-preserved. The classical reference from Charak-Samhita (ChikitsaSthana 1-3/30) elaborates the use of *YashtimadhuChurna* (coarse powder) along with milk as a *MedhyaRasayana*. The novel modified version, i.e. *YashtimadhuKalpa* (formulation), was prepared from *YashtimadhuChurna*. In HPTLC fingerprinting clear evident bands with medium intensity were observed at *R_f* values 0.19 (pink), 0.24 (light brown), and 0.49 (yellow) in *YashtimadhuKalpa* as well as *YashtimadhuChurna*. The content of glycyrrhizin was quantified from *YashtimadhuChurna* and YashtimadhuKalpa by HPLC and HPTLC by comparing the peak area of the standard. It was confirmed that the same active component was present in the *YashtimadhuKalpa* and *YashtimadhuChurna*. The content of glycyrrhizin was identified and quantified and showed the same comparable amounts in *YashtimadhuKalpa* and *YashtimadhuChurna*. In this study, we presented the classic Ayurvedic *Medhya Rasayan* in a novel formulation-*YashtimadhuKalpa*- in a simplified manner. The authenticity of the formulation was corroborated by HPTLC and HPLC. This study enforces the fact that the modification of classic Ayurvedic formulations is possible such that simplified and adapted formulations can be generated.

*Corresponding Author
Name: Ashish B Budhrani
Phone: +91-8888944700
Email: ashu.budhrani123@gmail.com

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v11iSPL4.4536

© International Journal of Research in Pharmaceutical Sciences 2020 | All rights reserved.
Glycyrrhiza glabra, also known as Yashrimadhu, is one of the most used medicinal plants. It is a hardy perennial shrub, which is consumed as a dried powder prepared from the roots and rhizome of this herbal plant. The active molecules of the plant include glabridin, glycyrrhizin, glycyrrhetenic acid, liquiritigenin, isoliquiritigenin, glabridin, and licochalcone A and E. (Pastorino et al., 2018) These different molecules contribute to different medicinal properties including anti-inflammatory, hepatoprotective, neuroprotective, sedative, oestrogenic, antiviral, anticarcinogenic, antimicrobial, and anti-oxidant activities and affects the skin in a good way. (Pastorino et al., 2018) The extracts of this herb are known to boost brain functioning, trigger the central nervous system (CNS) by increasing circulation, and act as a moderator for levels of blood sugar. (Rathee et al., 2008)

Despite the plethora of beneficial effects of the MedhyaRasayan, the potential of these MedhyaRasayan drugs have not yet been explored to its maximum capacity; there is an unmet need to further develop or refine the existing products such that they are easily taken up by the patients. To work towards this unmet need, the present study was carried out with an aim to develop an adapted formulation of one of the nootropic agents, Glycyrrhiza glabra, such that the adapted formulation, i.e., YashrimadhuKalpa, has a longer shelf life and is more palatable. Yashrimadhuis a time-tested Ayurvedic medicine indicated for mental health that has shown promising results in attaining optimal intelligence in children. (Sheshagiri et al., 2015) It is available as YashrimadhuChurnatorm that is less palatable and has shorter shelf-life. Here, we present the analyses of the properties of the novel YashrimadhuKalpaformulation.

MATERIALS AND METHODS

Preparation of YashrimadhuKalpa

The roots of Glycyrrhizaere converted to a coarse powder using a pulveriser. Next, coarse Yashrimadhu powder (250g) was mixed in of water (4L), heated till volume reduced to 500 mL, forming the YashrimadhuKwatha (decoction). The decoction was filtered using a cotton cloth to which 1kg of Sita (candy sugar) was added and heated at a temperature of 100 °C with continuous stirring till it became sticky. At this point, the heating was turned off and the mixture was stirred continuously to attain granules of YashrimadhuKalpa.

High-Performance Thin Layer Chromatography

HPTLC was outsourced to Anchrom Enterprises Pvt. Ltd., India and performed using Linomat 5 (CAMAG). The 0.2 mm pre-coated plates of silica gel 60 F254 (Merck Millipore, US) were used with the solvent system consisting of ethyl acetate: formic acid: water: glacial acetic acid in the ratio 15:1:2:1 (v/v/v/v). To prepare the test solution, extract (1g) was mixed with 70% ethanol (10ML) in Soxhlet apparatus consecutively three times. The mixture was then filtered and concentrated under vacuum to attain the powder that was resuspended in ethanol (10ML). The standard solution was glycyrrhizin (10mg) dissolved in ethanol (10ML).

The calibration curve was prepared where 2, 5, and 7 µl of the standard solution were spotted onto the TLC plate in duplicates. The plate was developed, dried for 5 minutes, and scanned for density at 254 and 366 nm using densitogram CAMAG TLC Scanner 4 (Camag, Muttenz, Switzerland) and image profiles using CAMAG TLC Visualizer 2 (Camag, Muttenz, Switzerland). Parameters used for high-performance thin-layer chromatography are shown in Table 1.

Later, the plate was subjected to derivatisation for detection of analytes which cannot be detected using visible or UV spectrum. The first derivatisation was done using a solution of 2-aminoethyl diphenylborinate in ethyl acetate and the second derivatisation was done using a solution of anisaldehyde sulphuric acid reagent. After each derivatisation, images were captured using CAMAG TLC Scanner 4 and image profiles using CAMAG TLC Visualizer 2. Peak areas were recorded using the densitogram for each spot to prepare the standard curve by plotting area under the peak versus the concentration of glycyrrhizin at each spot. HPTLC fingerprints before and after derivatization are shown in Figure 1.

To estimate the glycyrrhizin present in the test solution (YashrimadhuChurna, YashimadhuKwatha, and YashimadhuKalpa), 2, 5, and 7 µl of the test solution was applied to the TLC plate in triplicate and the plate was developed and dried. The peak area and R_f were then plotted on the calibration curve to estimate the amount of glycyrrhizin present in the test solution. HPTLC densitograms showing the mean area are shown in Figure 2.

High-Performance Liquid Chromatography

To assess the presence of glycyrrhizin in YashrimadhuChurna, YashimadhuKwatha, and YashimadhuKalpa, HPLC was done. The extracts from Yashit
Table 1: Parameters used for high-performance thin-layer chromatography (HPTLC)

Parameters	ID method
Stationary phase	200 × 100 mm plates Silica gel 60 F254
SST	Ethyl acetate
Preparation of standards for limit test	0.1 mg/mL (Glycyrrhizin ammonical hydrate)
Application volume	2, 5, and 7 μL of test and standards solutions
Developing solvent	Ethyl acetate, glacial acetic acid, formic acid, water (15:1:1:2 V/V/V/V)
Development	20 min saturation, 10 min conditioning at 33% relative humidity (MgCl2), 70 mm distance from lower edge, room temperature (23–27 °C)
Documentation prior to derivatization	UV 254 nm, UV 366 nm and white light
Derivatization 1	Plates were derivatised by dipping (speed: 5, time: 0) in Natural product A reagent and then heated at 100 °C for 3 min
Derivatization 2	Plates were dipped (speed: 5, time: 0) in AnisaldehydeSulphuric acid reagent and heated at 100 °C for 3 min
Documentation after derivatization 1 or 2	UV 366 nm, UV 256 nm and white light

Figure 1: HPTLC fingerprints of Decoction (Raw material), Yashtimadhuchuran (Extract), and Yashtimadhukalpa (Formula) before and after derivitization of TLC screen
Figure 2: HPTLC densitograms showing the mean area of *Yashtimadhu Churan*, decoction, and *Yashtimadhu Kalpa*. Peak 1 corresponded to the glycyrrhizin.

Figure 3: HPLC profiles of *Yashtimadhu Churan*, decoction, and *Yashtimadhu Kalpa*

Yashtimadhu Churna, *Yashimadhu Kwatha*, and *Yashtimadhu Kalpa* were examined on Kromasil C18 column using phosphate buffer and acetonitrile as the mobile phase (65:35; v/v). Detection was done according to the method previously described by De et al. (2012) Commercially available glycyrrhizic acid was used as the standard control, for identification of glycyrrhizin in *Yashtimadhu Churna*, *Yashimadhu Kwatha*, and *Yashtimadhu Kalpa*. Shown in Figure 3.

Microbial Analysis

The novel formulation, *Yashtimadhu Kalpa*, was further analyzed for the total bacterial count and total fungal count. It was specifically tested for pathogens such as *Escherichia coli*, *Salmonella*, *Pseudomonas aeruginosa*, and *Staphylococcus aureus* and microbial analysis of novel *Glycyrrhiza glabra* formulation – *Yashtimadhu Kalpa* has shown in Table 2. Additionally, the formulation was also examined for organoleptic parameters of novel *Glycyrrhiza glabra* formulation - *Yashtimadhu Kalpa* has shown in Table 3.

RESULTS

Synthesis of Yashtimadhu Kalpa

In pilot preparation, in 1 hour 30 minutes *Yashimadhu Kwatha* was obtained and finally, 1.1 kg of *Yashtimadhu Kalpa* was obtained in 3 hours 45 minutes. It was observed that continuous stirring was required due to the sticky nature of the mixture.
High-Performance Thin Layer Chromatography

The YashtimadhuChurna, YashimadhuKwatha, and YashtimadhuKalpa were individually investigated for the presence of glycyrrhizin using the HPTLC method. The fingerprints thus generated were analysed to calculate the R_f values. After derivatisation clear evident bands with medium intensity were obtained with R_f values 0.19 (pink), 0.24 (light brown) and 0.49 (yellow) for YashtimadhuKalpa as well as YashtimadhuChurna. The light brown band having R_f around 0.25 was observed in all the samples confirming the presence of glycyrrhizin. The fingerprint of YashtimadhuKalpa was comparatively intense for the 0.24 band than the YashimadhuKwatha and the YashtimadhuChurna.

Table 2: Microbial Analysis of novel Glycyrrhiza glabra formulation - YashtimadhuKalpa

Test	Result
Total Plate Count	20 CFU/gram
Total Yeast & Mold Count	<10 CFU/gram
Escherichia coli	Absent; MPN< 1 CFU/gram
Staphylococcus aureus	Absent/25 gram
Salmonella	Absent/25 gram
Pseudomonas aeruginosa	Absent/25 gram

In YashtimadhuChurna, YashimadhuKwatha, and YashtimadhuKalpa, the content of glycyrrhizin was quantified by the HPTLC method using a known standard solution containing glycyrrhizin at 0.1 mg/mL. The percentage of glycyrrhizin was calculated in the above-mentioned samples using the area values under the curve obtained after densitometric scans of the TLC sheet. YashtimadhuChurnawas found to contain 8.7% of glycyrrhizin, YashimadhuKwatha had 3.8% of glycyrrhizin and 7.4% of glycyrrhizin was found to be present in YashtimadhuKalpa. The amount of glycyrrhizin present in YashtimadhuKalpa was comparable to that in the YashtimadhuChurna.

High-Performance Liquid Chromatography

HPLC resulted in similar findings as compared to the HPTLC. In HPLC, the retention time for glycyrrhizin ranged from 1.4 to 1.5 minutes. HPLC confirmed the presence of homogenous glycyrrhizin in the same proportion and purity in the YashtimadhuChurna, YashimadhuKwatha, and YashtimadhuKalpa, confirming the composition of YashtimadhuKalpa to be similar to that of YashtimadhuChurna. These results confirmed and lead us to an agreement that YashtimadhuKalpa contained the active molecule glycyrrhizin in considerable amounts as compared to YashtimadhuChurna.

Microbial Analysis

The newly formulated YashtimadhuKalpa was further examined for organoleptic parameters, physicochemical and microbial contaminants viz. Escherichia coli, Salmonella, Pseudomonas aeruginosa, and Staphylococcus aureus. The organoleptic evaluation showed that the YashtimadhuKalpa was light brown in colour, having its characteristic odour. The final formulation was solid crystalline granules having a sweet, yet slightly bitter, taste. The microbial growth test determined that the total plate count was 20 colony-forming unit (CFU)/g. Total yeast and mold count was less than 10 CFU/g, and Escherichia coli was absent with the most probable unit being less than 1 CFU/g. Additionally, Salmonella, Pseudomonas aeruginosa, and Staphylococcus aureus were absent in the novel Glycyrrhiza glabra formulation. All these analyses validated the safety of YashtimadhuKalpa for internal use.

Table 3: Organoleptic parameters of novel Glycyrrhiza glabra formulation - YashtimadhuKalpa

Parameters	Observations	Inference
Color	Light brown	Acceptable
Odor	Characteristic odor	Acceptable
Taste	Sweet slightly bitter	Acceptable
Yin et al., 2017) Glycyrrhizin has also been used for the treatment of ulcers as it stimulates mucus secretion in the stomach and the prostaglandins. (Jafarian et al., 2007)

Yashitmadhu, traditionally, has been used as the powdered YashitmadhuChurna, ingested with milk. This causes low palatability, shorter shelf life and difficult patient compliance. As it is a well-stated fact that our cognitive system starts developing from the gestation period, and therefore, it is necessary to have supplements like Yashitmadhu to inculcate in our food habits to aid the process of cognitive development, apart from other health benefits. Studies on mice model have speculated Yashitmadhu to be neuroprotective and to enhance the functioning of the brain; therefore, it might be used to develop the treatment of diseases like Alzheimer where the patient loses the memory, inflammation of certain parts of the brain and eventually suffers from dementia as one of the symptoms. (Chakravarthi and Avadhani, 2013; Dhingra and Sharma, 2006)

This study showed that YashitmadhuChurna and YashitmadhuKalpa have the same proportion of glycyrrhizin, indicating that the novel YashitmadhuKalpaformulation might also have similar effects as conferred by the conventional YashitmadhuChurna. In the study, YashitmadhuChurnawas transformed into YashitmadhuKalpa, which rendered it increased shelf-life and more palatability. The HPLC and HPTLC data, lead us to conclude that the active component of the Glycyrrhiza, i.e. glycyrrhizin is intact in YashitmadhuKalpa and is safe for consumption. The essentiality of this study was due to the fact that the synthesis of YashitmadhuKalparquires extensive boiling that may lead to de-activation of the active component.

The effects of YashitmadhuKalpa on cognitive health need to be further studied and validated through pre-clinical and clinical studies. The longer shelf-life and enhanced palatability of the YashitmadhuKalpa is promising for its use as an alternative to currently used YashitmadhuChurna. The outcomes of pre-clinical and clinical studies will demonstrate the activity and role of YashitmadhuKalpa.

CONCLUSIONS

In this study, we presented the classic Ayurvedic Medhya Rasayan— in a simplified manner. The authenticity of the formulation was corroborated by HPTLC and HPLC. This study enforces the fact that the modification of classic Ayurvedic formulations is possible such that simplified and adapted formulations can be generated.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

Funding Support

The authors declare that they have no funding support for this study.

REFERENCES

Chakravarthi, K. K., Avadhani, R. 2013. The beneficial effect of aqueous root extract of Glycyrrhiza glabra on learning and memory using different behavioral models: An experimental study. Journal of natural science, 4(2):420–425.

Cinatl, J. 2003. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet, 361(9374):2045–2046.

De, A. K., et al. 2012. Quantitative analysis of Glycyrrhizic acid from a polyherbal preparation using the liquid chromatographic technique. Journal of advanced pharmaceutical technology & research, 3(4):210–215.

Dhama, K., et al. 2018. Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens-current knowledge and future prospects. Current drug metabolism, 19(3):236–263.

Dhingra, D., Sharma, A. 2006. Antidepressant-like activity of Glycyrrhiza glabra L. in mouse models of immobility tests. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30(3):449–454.

Grippaudo, F. R., Russo, P. P. D. 2016. Effects of topical application of B-Resorcinol and Glycyrrhetinic acid monotherapy and in combination with fractional CO2 laser treatment for benign hand hyperpigmentation treatment. Journal of Cosmetic Dermatology, 15(4):413–419.

Jafarian, M. M., et al. 2007. In Vitro Susceptibility Of Helicobacter Pylori To Licorice Extract. Iranian journal of pharmaceutical research (IJPR), 6(1):69–72.

Karahan, F., et al. 2016. Antimicrobial and antioxidant activities of medicinal plant Glycyrrhiza glabra var. glandulifera from different habitats. Biotechnology & Biotechnological Equipment, 30(4):797–804.

Karkanis, A., et al. 2018. Phytochemical composition, health effects, and crop management of liquorice (Glycyrrhiza glabra L.): A medicinal plant. Food reviews international, 34(2):182–203.

Kulkarni, R., et al. 2012. Nootropic herbs (Medhya
Ashish B Budhrani et al., Int. J. Res. Pharm. Sci., 2020, 11 (SPL4), 2655-2661

Rasayana) in Ayurveda: An update. *Pharmacognosy Reviews*, 6(12):147–153.

Kuo, K. K. 2009. Water Extract of Glycyrrhiza uralensis Inhibited Enterovirus 71 in a Human Foreskin Fibroblast Cell Line. *The American Journal of Chinese Medicine*, 37(02):383–394.

Michaelis, M., et al. 2011. Glycyrrhizin Exerts Antioxidative Effects in H5N1 Influenza A Virus-Infected Cells and Inhibits Virus Replication and Pro-Inflammatory Gene Expression. *Plos one*, 6(5):e19705.

Pastorino, G., et al. 2018. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. *Phytotherapy research*, 32(12):2323–2339.

Rathee, P., et al. 2008. Natural memory boosters. *Pharmacognosy Reviews*, 2(4):249–256.

Račková, L., et al. 2007. Mechanism of anti-inflammatory action of liquorice extract and glycyrrhizin. *Natural Product Research*, 21(14):1234–1241.

Rossum, T. G. V., et al. 1999. Pharmacokinetics of intravenous glycyrrhizin after single and multiple doses in patients with chronic hepatitis C infection. *Clinical therapeutics*, 21(12):2080–2090.

Sasaki, H., et al. 2002. Effect of glycyrrhizin, an active component of licorice roots, on HIV replication in cultures of peripheral blood mononuclear cells from HIV-seropositive patients. *Pathobiology*, 70(4):229–236.

Sharma, P. C., et al. 2005. Database on Medicinal plants used in Ayurveda and Sidha. *New Delhi: CCRAS, Dept. of Ayush, Ministry of Health and Family Welfare, Govt. of India*, 1:265–271.

Sheshagiri, S., et al. 2015. Randomized placebo-controlled clinical study on enhancement of Medha (intelligence quotient) in school going children with Yahstimadhu granules. *AYU (An International Quarterly Journal of Research in Ayurveda)*, 36(1):56–62.

Yin, X., et al. 2017. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in d-galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M. *Toxicology and Applied Pharmacology*, 320:8–16.

Yt, A. 1994. Caraka Samhita with Chakrapani’s Ayurveda Deepika Teeka. Varanasi: Choukhamba Samskrita Samsthana. Agnivesha, 385.