Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Liver, Pancreas and Biliary Tract

Clinical update on risks and efficacy of anti-SARS-CoV-2 vaccines in patients with autoimmune hepatitis and summary of reports on post-vaccination liver injury

Ana Lleo a,b,∗, Nora Cazzagon c, Cristina Rigamonti d, Giuseppe Cabibbo e, Quirino Lai f, Luigi Muratori e,b, Marco Carbone i, on behalf of the Italian Association for the Study of the Liver

a Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
b Internal Medicine and Hepatology Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
c Gastroenterology Unit, Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
d Department of Translational Medicine, Università del Piemonte Orientale and Division of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
e Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
f Unità di Chirurgia Generale e Trapianti d’Organo, Dipartimento di Chirurgia Generale e Specialistica, Sapienza Università di Roma, Azienda Ospedaliero-Universitaria Policlinico Umberto I di Roma, Italy
g Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
h Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
i Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy

A R T I C L E I N F O

Article history:
Received 25 January 2022
Accepted 21 March 2022
Available online 28 March 2022

Keywords:
SARS-CoV-2
mRNA vaccines
autoimmune hepatitis
immunosuppression

A B S T R A C T

Patients with liver diseases, especially those with cirrhosis, have an increased mortality risk when infected by SARS-CoV-2 and therefore anti-SARS-CoV-2 vaccine has been recommended by leading Scientific Associations for all patients with chronic liver diseases. However, previous reports have shown a reduced antibody response following the full course of vaccination in immunosuppressed patients, including liver transplant recipients and several rheumatic diseases.

This document, drafted by an expert panel of hepatologists appointed by the Italian Association for the Study of the Liver (AISL), aims to present the updated scientific data on the safety and efficacy of anti-SARS-CoV-2 mRNA vaccines in patients with autoimmune hepatitis (AIH). Furthermore, given the recent reports of sporadic cases of AIH-like cases following anti-SARS-CoV-2 mRNA vaccines, we summarize available data. Finally, we provide experts’ recommendations based on the limited data available.

© 2022 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

1. 2022 AISL recommendation on anti-SARS-CoV-2 vaccines for patients with known autoimmune hepatitis

Patients with chronic liver diseases (CLD), especially those with cirrhosis, have an increased mortality risk when infected by SARS-CoV-2 [1]. One of the largest international studies currently available, showed an observed mortality of 32% in patients with cirrhosis compared to 8% in those without [2]. Therefore, the European Association for the Study of the Liver (EASL) has recommended vaccination against SARS-CoV-2 for all patients with CLD [3]. Although contrasting data have been published, patients with AIH with or without cirrhosis under immunosuppressive therapy represent an at-risk category of developing severe COVID-19 when infected [4,5]. Therefore, based on the data available, the benefit of anti-SARS-CoV-2 vaccination outweighs the potential risk for disease exacerbation in AIH.

Although the registration trials of mRNA vaccines enrolled patients with CLD (217 patients in Pfizer trial and 196 patients in Moderna trial), subjects under immunosuppressive therapy were excluded. A recent study by Thuluvath and colleagues found that 75% of patients with CLD without cirrhosis and 77% of patients with cirrhosis had adequate antibody response to anti-SARS-CoV2 vaccines [6]. The authors included 233 patients with CLD with 61
being affected by immune mediated liver diseases, including AIH, primary biliary cholangitis, and primary sclerosing cholangitis. Also 62 patients were liver transplant (LT) recipients, 79 had cirrhosis, and 92 had CLD without cirrhosis. Antibody levels were undetectable in 11 patients who had LT, 3 with cirrhosis, and 4 without liver cirrhosis. LT and treatment with two or more immunosuppressive drugs were associated with poor antibody responses. However, only 3 patients out of 18 with undetectable antibody were AIH patients on immunosuppression (2 on prednisone plus mycophenolate mofetil (MMF) and 1 on prednisone plus azathioprine).

Reports have shown a reduced antibody response following the full course of vaccination in liver transplant recipients [7]. It has also been formerly demonstrated that specific drugs (i.e. methotrexate, abatacept, and rituximab) reduced the immune response to influenza or pneumococcal vaccines in a number of different rheumatic diseases [8–10]. The efficacy of anti-SARS-CoV-2 vaccination in preventing COVID-19 in patients with AIH on immunosuppressive therapies [11,12], as well as the risk of disease reactivation after anti-SARS-CoV-2 vaccination, have been poorly investigated. Similarly, cellular immunity to SARS-CoV-2 in AIH patients has not been studied.

The American College of Rheumatology (ACR) has recently proposed a guidance [13] suggesting a short-term withdrawal of methotrexate, JAK inhibitors, abatacept, and MMF, and deferral of rituximab and cyclophosphamide infusion if possible before anti-SARS-CoV-2 vaccination, according to rheumatic disease activity. However, there is no solid evidence as to whether it is appropriate or not to suspend or reduce the dose of immunosuppressive drugs immediately before or following the administration of the vaccine in AIH patients. Importantly, this strategy may be potentially associated with an increased risk of AIH reactivation particularly dangerous in patients with cirrhosis. Of interest, high doses of MMF and rituximab remain independent predictors of failure to develop an antibody response after vaccination in rheumatic diseases [14]; however, no data are available in AIH. At the present time, the available data do not justify withdrawal or reduction of immunosuppression before or immediately after vaccination in patients with AIH.

Finally, no clear evidence of reactivation of AIH after anti-SARS-CoV-2 vaccination has been reported in the literature. Interestingly, the presence of significant fibrosis at the liver histology of a small number of newly diagnosed AIH following anti-SARS-CoV-2 vaccination might suggest the possibility of disease reactivation [15–17]. However, until new multicenter studies are available there is no current indication for routine testing of transaminases levels in AIH patients after vaccination.

2. 2022 aif recommendation on autoimmune hepatitis like onset following anti-SARS-CoV-2 vaccination

The COVID-19 pandemics has necessitated the development and registration of several vaccines in record time. The monitoring for safety, side effect and efficacy is ongoing in the post-marketing surveillance. Recent reports inform on the possible occurrence of immune mediated hepatitis or AIH-like disease in predisposed individuals. Autoimmunity is widely accepted to develop in genetically predisposed individuals and some polymorphisms have been identified in AIH [18]; unfortunately, they are not yet of clinical use and cannot be of help to identify individuals at risk.

Considering that 58% of the world population has received at least one dose of anti-SARS-CoV-2 vaccine, with 9.2 billion doses been administered globally, it is unclear whether this is a pure coincidence rather than a causality.

The fact that someone developed immune-mediated acute hepatitis after vaccination does not necessarily mean that this was caused by the vaccine.

The European Medicine Agency (EMA)’s Pharmacovigilance Risk Assessment Committee (PRAC) has recently started an assessment following the very small number of cases reported after vaccination with Spikevax® and Comirnaty® (known as Moderna and Pfizer vaccines, respectively) in the medical literature and EudraVigilance (www.emaeurope.eu). Further data and analyses have been requested from the marketing authorization holder to support the ongoing assessment by PRAC. Given the small number of cases currently reported, the issue seems to be rare; however, specific studies should be performed to define the number and severity of cases.

At the time these recommendations are drafted, 17 reports have been published in the medical literature that overall include 31 cases of suspected AIH-like triggered by the vaccine (Table 1). Patients were more often women (F:M 21:10), age ranging from 32 to 89 years old (median 58 years). In eleven cases a pre-existent autoimmune condition (i.e., seven Hashimoto thyroiditis, one primary biliary cholangitis, two rheumatoid arthritis, one systemic lupus erythematosus) is reported. Two patients had experienced COVID-19 infection before the vaccine. All except four presented with a acute onset of AIH-like with jaundice. All patients underwent liver biopsy and in six of them fibrosis was already present, which might suggest that they had a previous liver disease, possibly an undiagnosed AIH. All were treated with steroid therapy, and all improved the liver function tests (LFTs), although details on the biochemical response are not thoroughly reported.

Adverse effects of the vaccine are possible, and abnormal liver function tests following vaccination represent an important clinical issue. AIH is a relatively rare, chronic immune-mediated liver disease, which develops in genetically predisposed individuals following environmental triggers; viral infections and drug exposures have been suggested to trigger the disease, but not definitive evidence is available [19,20]. AIH-like onset after vaccination - other than anti-SARS-CoV-2 - has been also previously reported [21]. However, even if it can be speculated that the vaccines can disturb self-tolerance and trigger autoimmune responses through cross-reactivity with host cells, it might be hard to definitively state that AIH is induced by a vaccine. Considering the reported AIH-like cases following SARS-CoV-2 vaccination, timing of occurrence of acute hepatitis from vaccination in some of them is very short (less than 7 days), suggesting that a dysregulation of immune system has already occurred before vaccination in those cases. So far, given the availability of only observational literature without a structured collection of AIH-like cases after anti-SARS-CoV-2 vaccines, no definitive conclusions can be drawn. There is a need for population-based studies to gather data on the incidence, severity, and clinical features of anti-SARS-CoV-2 vaccination-induced AIH under the umbrella of the national and European Scientific Societies.

In the meantime, while intensive vaccination against SARS-CoV-2 continues, healthcare providers should include the diagnosis of AIH triggered by vaccines in the differential diagnosis in cases of acute hepatitis of unexplained etiology and manage them as drug-induced AIH or AIH-like liver injury as recommended by current guidelines [22].

3. RECOMMENDATIONS

*These recommendations will be reviewed periodically as further information becomes available.

- **AIH patients should receive anti-SARS-CoV-2 vaccination** consistent with the age restriction of the local approval. In Italy, as
Table 1
Cases of suspected AIH triggered by the vaccine reported in the literature.

Reference	Vaccine	Patient’s characteristics	Clinical presentation and laboratory data	Therapy	Outcome
Avcı & Abasiyanik	mRNA Pfizer/BioNTech, 1 month before	61, F	Yes, mild, 8 months before	Acute icteric ANA, ASMA, hyper-IgG, F2	35 days follow-up, mild transaminases and bilirubin
Bril et al. [16]	mRNA Pfizer/BioNTech, 7 days before	35, F	No	Acute icteric, normal IgG, no fibrosis	Prednisone 20 mg/day, transaminases normalization
Cao et al. [17]	Inactivated whole-vision SARS-CoV2	57, F	No	Acute icteric, pruritus IgG, no fibrosis	Methylprednisolone, UDCA + azathioprine add-on
Clayton-Chubb et al. [23]	ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca), 26 days before	36, M	No	Acute, sub-icteric, asymptomatic, ANA+, F2, fibrosis	Prednisolone 60 mg/day, 24 days, normalization of bilirubin, marked reduction of ALT
Garrido et al. [24]	mRNA Moderna, 2 weeks before	65, F	No	Acute icteric severe, ANA, hyper-IgG, no fibrosis	Prednisolone 60 mg/day, 1 month, improvement of LFTs and IgG normalization
Ghielmetti et al. [25]	mRNA-1273, 7 days before	63, M	No, unknown but anti-cardiolipin+	Acute icteric, hyper-IgG, ANA+, AMA+ (different from PBC) APCA+, no fibrosis	Prednisone 40 mg/day, rapidly tapered
Goulas et al. [26]	mRNA Moderna, 2 weeks before	52, F	No	Acute icteric, ANA+, ASMA+, hyper-IgG, no fibrosis reported	Prednisolone 50 mg/day, azathioprine add-on, 14 days follow-up
Londono et al. [27]	mRNA Moderna, 7 days after the II dose	41, F	No	Acute icteric, ANA, ASMA, anti-SLA/IC+, hyper-IgG, no fibrosis	Prednisone 1 mg/Kg, Normalization of LFTs
Palla et al. [28]	mRNA Pfizer/BioNTech 1 month after II dose	40, F	Transaminases 3–4 x ULN fluctuation, ANA+, hyper-IgG, active hepatitis, fibrosis with sepsis	Prednisolone 40 mg/day, Transaminases decline after 7 days of prednisolone	
Rela et al. [29]	ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca), 20 days before	38, F	Acute icteric, ANA+, IgG mildly elevated, multicentric hepatic necrosis, no fibrosis	Prednisolone 30 mg/day and tapering after 4 weeks, Persistent cholestasis → death in 21 days for economic constraints regarding liver transplantation 3 months of follow-up, progressive improvement	
Rocco et al. [30]	Pfizer/BioNTech 1 week before (II dose)	89, F	Previous acute glomerulonephritis, pravastatin and low-dose aspirin for primary prevention	Prednisolone 1 mg/Kg/day and tapering, 1 month of follow-up normal LFTs	

(continued on next page)
Reference	Vaccine	Patient’s characteristics	Clinical presentation and laboratory data	Therapy	Outcome
Reference	**Vaccine**	**Patient’s characteristics**	**Clinical presentation and laboratory data**	**Therapy**	**Outcome**
		Age, gender, Autoimmune comorbidities, Previous COVID-19 infection, Other comorbidities			
Tan et al. [31]	mRNA Moderna, 6 weeks before	56, F, Not reported, No	Acute icteric, ANA+, ASMA+, hyper-IgG, also eosinophil, early fibrosis	Rosuvastatin	1 week of follow-up
Tun et al. [32]	mRNA Moderna, 3 days before (I dose) and 2 days before (II dose)	47, M, Not reported, No	Acute icteric, ANA+, hyper-IgG, rapidly resolved and then reappeared 2 days after the II dose, minimal fibrosis	Not reported	2 weeks of follow-up
Vuille-Lessard et al. [33]	mRNA Moderna, 3 days before	76, F, Hashimoto thyroiditis, Yes, 3 months before (mild disease)	Acute icteric, hyper-IgG, ANA+, ASMA+, ANCA+, steatosis, active AIH, fibrosis not evaluable	Prednisolone 40 mg/day	4 months follow-up: LFTs normalization after 4 weeks, stop azathioprine and 6 weeks after no relapse
Suzuki Y et al. [34]	mRNA Pfizer/BioNTech 10 days before (II dose)	80, F, Not reported, Not reported	Acute icteric, ANA+, hyper-IgG	Gastroesophageal reflux esophagitis	Prednisone at an initial dose of 0.8 mg/kg/day, then tapered to 10 mg/week
	mRNA Pfizer/BioNTech 4 days before (II dose)	75, F, Not reported, Not reported	Acute icteric, ANA+, AMA+, hyper-IgG	Dyslipidemia	Prednisone at an initial dose of 1 mg/kg/day, then tapered to 10 mg/week
	mRNA Pfizer/BioNTech 7 days before (I dose)	78, F, Primary biliary cholangitis, Not reported, No	Acute, ANA+, AMA+, hyper IgG	No	Prednisone at an initial dose of 0.6 mg/kg/day, then tapered to 10 mg/week
Torrente et al. [35]	ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca), 3 weeks before	49, F, Hypothyroidism (?), ANA+	Acute AIH, ANA+, hyper-IgG, no fibrosis	Hypothyroidism treated with levothyroxine	Prednisone / prednisolone +/- azathioprine
Rigamonti C et al. [36]	mRNA Pfizer/BioNTech, 7 patients	median age 62 years (range 32–80)	10 acute onset, 8 jaundice, 8 positive autoantibodies (6 ANA, 1 SMA, 1 LKM-1)	3 thyroiditis, 2 rheumatoid arthritis, 1 systemic lupus erythematosus	Transaminases normalization after 2 weeks
	mRNA Moderna, 2 patients	ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca), 3 patients	10 acute onset, 8 jaundice, 8 positive autoantibodies (6 ANA, 1 SMA, 1 LKM-1)	3 thyroiditis, 2 rheumatoid arthritis, 1 systemic lupus erythematosus	Transaminases decrease after 2 weeks
Efe C et al. [37]	mRNA Pfizer/BioNTech, 1 patient	53, M, None, Not reported, None	Acute icteric hepatitis, no ANA, hyper-IgG, no fibrosis	Prednisolone (40 mg/day) and plasma exchange	Liver transplantation

AN: antinuclear antibodies, ASMA: anti-smooth muscle autoantibodies, AIH: autoimmune hepatitis, AMAN: anti-mitochondrial antibodies, ANCA: antineutrophil cytoplasmic antibodies, ANA: antinuclear antibodies, ASMA: anti-smooth muscle autoantibodies, BSG: bone specific globulin, CHOL: cholesterol, CRP: C-reactive protein, D-Dimer: D-dimer, F: female, FIB: fibrinogen, FPG: fasting plasma glucose, GPT: gamma-glutamyltransferase, GGT: gamma-glutamyltransferase, HDL: high-density lipoprotein, HOMA: homeostasis model assessment, LFT: liver function test, LKM: liver-kidney microsomal, M: male, MCH: mean corpuscular hemoglobin, MCHC: mean corpuscular hemoglobin concentration, MCV: mean corpuscular volume, N: neutrophil, PMN: polymorphonuclear leukocyte, P: platelet, PT: prothrombin time, RBC: red blood cell, TC: total cholesterol, THT: total hyperthyroidism, TSH: thyroid stimulating hormone, TPO: thyroid peroxidase antibodies, U: uric acid, V: vitamin, WBC: white blood cell.
recommended by the Italian Ministry of Health for all immuno-
suppressed patients, mRNA vaccines should be used. Based on the data for the mRNA vaccines available, there is no preference for one vaccine over another.

• Patients with AIH are suggested to undergo vaccination when the disease activity is controlled by immunosuppressive therapy. To date there are no data available to establish variations on the interval between doses of anti-SARS-CoV2 vaccine.

• There is no current evidence to recommend suspension or reduction of immunosuppressive drugs in AIH patients before or immediately after anti-SARS-CoV-2 vaccination.

• The risk of AIH flare or disease worsening following anti-SARS-CoV-2 vaccination has not been assessed to date and specific studies are required before defining a line of recommendation. Based on available data routine testing of transaminases levels in AIH patients after vaccination could be suggested in selected patients although the timing needs to be defined.

• Testing of antibody levels for IgM and/or IgG to spike or nucleocapsid proteins to assess immunity to SARS-CoV-2 after vaccination in AIH patients is not recommended, nor to assess the need for vaccination in an unvaccinated AIH patient.

• Patients with new acute onset of liver injury following anti-
SARS-CoV-2 vaccine should be managed as suggested by current guidelines and known clinical algorithms, including the indication to liver biopsy. Considering the lack of evidence currently available to exclude drug induced AIH in this setting, immunosuppressive therapy should be carefully considered and used if AIH diagnosis is confirmed; long-term immunosuppressive therapy needs to be assessed on a patient-by-patient basis.

• Patients with newly diagnosed AIH or AIH flare after anti-
SARS-CoV-2 vaccine should be considered for vaccine booster; however, the timing of the booster could be personalised based on the disease activity and ongoing therapy and discussed case-by-case by an expert center in autoimmune liver diseases.

• Given the limited number of cases compared to the number of vaccinated subjects, extended testing of transaminases level after vaccination in the general population is not sustainable nor suggested.

• EMA’s PRAC encourages all healthcare professionals and patients to report any cases of autoimmune hepatitis and other adverse events in people after vaccination.

Declaration of Competing Interest

None declared.

References

[1] Laurrone M, D’Ambrosio R, Soria A, Trisciò M, Pugliese N, Del Poggetto P, et al. High rates of 30-day mortality in patients with cirrhosis and COVID-19. J Hepatol 2020;73:1063–71.
[2] Marjot T, Moon AM, Cook JA, Abd-Elslam S, Aloman C, Armstrong MJ, et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: an international registry study. J Hepatol 2021;74:567–77.
[3] Cornberg M, Buiti M, Eberhardt CS, Grossi PA, Shouval D. EASL position paper on the use of COVID-19 vaccines in patients with chronic liver diseases, hepatobiliary cancer and liver transplant recipients. J Hepatol 2021;74:944–51.
[4] Efe C, Lammert C, Tasiclar K, Dhaaneakaran R, Ehlk B, Higuera-de la Tijera F, et al. Effects of immunosuppressive drugs on COVID-19 severity in patients with autoimmune hepatitis. Liver Int 2021.
[5] Marjot T, Buescher C, Sebode M, Barnes E, Barratt AST, Armstrong MJ, et al. SARS-CoV-2 infection in patients with autoimmune hepatitis. J Hepatol 2021;74:1335–43.
[6] Thuluvath PJ, Robarts P, Chauhan M. Analysis of antibody responses after COVID-19 vaccination in liver transplant recipients and those with chronic liver diseases. J Hepatol 2021;75:1434–9.
[7] Boyarsky BJ, Werbel WA, Avery RK, Tobian AAR, Massie AB, Segev DL, et al. Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients. JAMA 2021;325:2204–6.
[8] Westra J, Rondaan C, van Assen S, Bijl M. Vaccination of patients with auto-
immune inflammatory rheumatic diseases. Nature Reviews Rheumatology 2015;11:135–45.
[9] Mahan KH, Bingham CO 3rd. Effects of biological and non-biological immu-
nomodulatory therapies on the immunogenicity of vaccines in patients with rheumatic diseases. Arthritis Res Ther 2014;16:506.
[10] Oesterreich S, Lindemann M, Goldblatt D, Horn PA, Wilde B, Witzke O. Hu-
moral response to a 13-valent pneumococcal conjugate vaccine in kidney transplant recipients. Vaccine 2020;38:3339–50.
[11] Walsh EE, French RW Jr, Falsey AR, Kitchin N, Abelson J, Gurtman A, et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med 2020;383:2439–50.
[12] Widge AT, Roupshaig NG, Jackson LA, Anderson EJ, Roberts PC, Makhene M, et al. Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. N Engl J Med 2021;384:80–2.
[13] Curtis JR, Johnson S, Thompson DD, Arasarathnam RJ, Baden LR, Bass AR, et al. American College of Rheumatology Guidance for COVID-19 Vaccination in Patients With Rheumatic and Musculoskeletal Diseases: version 1. Arthritis Rheumatol 2021;73:1093–107.
[14] Trioufas AG, Rakakis AD, Goules AV, Bitzigi K, Cinouki IL, Chatzis LG, et al. A prospective multicenter study assessing humoral immunogenicity and safety of the mRNA SARS-CoV-2 vaccines in Greek patients with systemic autoimmune and autoinflammatory rheumatic diseases. J Autoimmun 2021;125:102743.
[15] Avi E, Abya-yank A. Autoimmune hepatitis after SARS-CoV-2 vaccine: new-onset or flare-up? J Autoimmun 2021;125:102745.
[16] Briil F. Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: one or even several swallows do not make a summer. J Autoimmun 2021;125:1295–7.
[17] Cao Z, Gui H, Sheng Z, Xin H, Xie Q. Letter to the editor: exacerbation of auto-
immune hepatitis after COVID-19 vaccination. Hepatology 2022;75:757–9.
[18] de Boer YS, van Gerven NM, Zweers A, Verwer BJ, van Hoek B, van Erpemck J, et al. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology 2014;147:443–52 e5.
[19] Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol 2019;25:6579–606.
[20] Christen U, Hintzmann E. Pathogens and autoimmune hepatitis. Clin Exp Immuno-
unol 2019;195:35–51.
[21] van Gemeren MA, van Wijngaarden P, Doukas M, de Man RA. Vaccine-related autoimmune hepatitis: the same disease as idiopathic autoimmune hepatitis? Two clinical reports and review. Scand J Gastroenterol 2017;52:18–22.
[22] European Association for the Study of the L. ESLC Clinical Practice Guidelines: autoimmune hepatitis. J Hepatol 2015;63:971–1004.
[23] Clayton-Chubb D, Schneider D, Freeman E, Kemp W, Roberts SK. Autoimmune hepatitis developing after the ChAdOx1 nCOV-19 (Oxford-AstraZeneca) vaccine. J Hepatol 2021;73:1249–50.
[24] Garrido I, Lopes S, Simoes MS, Liberal R, Lopes J, Carneiro F, et al. Autoim-
une hepatitis after COVID-19 vaccine – more than a coincidence. J Autoim-
mun 2021;125:102741.
[25] Ghielmetti M, Schaufelberger HD, Mieli-Vergani G, Cerny A, Dayer E, Vergani D, et al. AE and acute autoimmune-like hepatitis with atypical anti-mitochondrial anti-
body after mRNA COVID-19 vaccination: a novel clinical entity? J Autoimmun 2021;123:102706.
[26] Goulas A, Kafiri G, Kramidi H, Manolakopoulou S. A typical autoimmune hepatitis (AIH) case following Covid-19 mRNA vaccination. More than a coinci-
dence? Liver Int 2021;42:254–5.
[27] Londono MC, Gratasos-Gines J, Saez-Penarato J. Another case of autoim-
une hepatitis after SARS-CoV-2 vaccination - still causality? J Hepatol 2021;75:1248–9.
[28] Pallà F, Vergadis C, Sakellarioiu S, Androutsakos T. Letter to the editor: auto-
imune hepatitis after COVID-19 vaccination: a rare adverse effect? Hepatology 2022;75:689–90.
[29] Rola M, Jothimani D, Vij M, Rajakumar A, Ram Mohan A. Auto-immune hepatici-
tis following COVID vaccination. J Autoimmun 2021;123:102688.
[30] Rocco A, Sgarmato C, Compare D, Nardone G. Autoimmune hepatitis following SARS-CoV-2 vaccine: may not be a causality. J Hepatol 2021;75:728–9.
[31] Tan CK, Wong YJ, Wang LM, Ang TL, Kumar R. Autoimmune hepatitis fol-
lowing COVID-19 vaccination: true causality or mere association? J Hepatol 2021;75:1250–2.
[32] Zin Tan GS, Gleeson D, Al-Joudeh A, Dube A. Immune-mediated hepatitis with the Moderna vaccine, no longer a coincidence but confirmed. J Hepatol 2022;76:747–9.
[33] Vuille-Leppard E, Montani M, Bosch J, Semmo N. Autoimmune hepatitis trig-
gered by SARS-CoV-2 vaccination. J Autoimmun 2021;123:102770.
[34] Suzuki Y, Kakioka K, Takikawa Y. Letter to the editor: autoimmune hepatitis after COVID-19 vaccination: need for population-based epidemiological study. Hepatology 2022;75:759–60.
[35] Torrecs S, Castella A, Garmendia M, Zapata E. Probable autoimmune hepatitis reactivated after COVID-19 vaccination. Gastroenterol Hepatol 2021.
[36] Rigamonti C, Coco B, Brunetto M, Labanca S, Giannini E, Magro B, et al. Clinical features of patients with new onset of autoimmune hepatitis following SARS-
CoV-2 vaccination. Dig Liver Dis 2022 in press.
[37] Efe C, Harputluoglu M, Karadag Soyulu N, Yilmaz S. Liver transplantation fol-
lowing SARS-CoV-2 vaccination-induced liver failure. Hepatology 2022.