Expression Analysis of Taste Signal Transduction Molecules in the Fungiform and Circumvallate Papillae of the Rhesus Macaque, *Macaca mulatta*

Yoshiro Ishimaru1*, Miki Abe1, Tomiko Asakura1, Hiroo Imai2, Keiko Abe1*

1 Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan, 2 Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan

Abstract

The molecular mechanisms of the mammalian gustatory system have been examined in many studies using rodents as model organisms. In this study, we examined the mRNA expression of molecules involved in taste signal transduction in the fungiform papillae (FuP) and circumvallate papillae (CvP) of the rhesus macaque, *Macaca mulatta*, using *in situ* hybridization. *TAS1R1*, *TAS1R2*, *TAS2Rs*, and *PKD1L3* were exclusively expressed in different subsets of taste receptor cells (TRCs) in the FuP and CvP. This finding suggests that TRCs sensing different basic taste modalities are mutually segregated in macaque taste buds. Individual *TAS2Rs* exhibited a variety of expression patterns in terms of the apparent level of expression and the number of TRCs expressing these genes, as in the case of human *TAS2Rs*. *GNAT3*, but not *GNA14*, was expressed in TRCs of FuP, whereas *GNA14* was expressed in a small population of TRCs of CvP, which were distinct from *GNAT3*- or *TAS1R2*-positive TRCs. These results demonstrate similarities and differences between primates and rodents in the expression profiles of genes involved in taste signal transduction.

Citation: Ishimaru Y, Abe M, Asakura T, Imai H, Abe K (2012) Expression Analysis of Taste Signal Transduction Molecules in the Fungiform and Circumvallate Papillae of the Rhesus Macaque, *Macaca mulatta*. PLoS ONE 7(9): e45426. doi:10.1371/journal.pone.0045426

Editor: Hiroaki Matsunami, Duke University, United States of America

Received: May 21, 2012; Accepted: August 17, 2012; Published: September 21, 2012

Copyright: © 2012 Ishimaru et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by a Grant-in-Aid for Young Scientists (A) 22680101 to YI and Grants-in-Aid for Scientific Research 20380183 to K.A. from the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Cooperation Research Program of the Primate Research Institute, Kyoto University to YI; and a Research and Development Program for New Bio-industry Initiatives to K.A. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Co-author Yoshiro Ishimaru is a PLoS ONE Editorial Board member. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: ayishi@mail.ecc.u-tokyo.ac.jp (YI); aka7308@mail.ecc.u-tokyo.ac.jp (KA)

Introduction

The five basic taste modalities, namely, sweet, bitter, umami (savory), sour, and salty, are detected by taste receptors that are localized at the apical ends of taste receptor cells (TRCs) that form taste buds [1,2,3]. Previous studies, mainly in rodents, have demonstrated that sweet, bitter, and umami tastes are mediated by two families of G protein-coupled receptors: T1rs and T2rs [1,3]. T1r1 and T1r2 form heteromers with T1r3 to function as umami and sweet taste receptors, respectively [4,5,6]. The Ta2rs, which encode bitter taste receptors, comprise approximately 30 members in mammals [7,8,9]. Acting as downstream signal transduction molecules, two G protein α subunits, Gnat3 (which encodes gustducin) and Gna14, phospholipase C-β2 (Plcb2), and transient receptor potential melastatin-5 (Trpm5) are expressed in subsets of TRCs and play important roles in taste signal transduction [10,11,12,13,14]. Polycystic kidney disease 1-like 3 (Pkd1l3) and polycystic kidney disease 2-like 1 (Pkd2l1) are expressed in sour-sensing TRCs [15,16,17,18,19,20]. Expression analysis demonstrated that certain genes involved in taste signal transduction exhibited different expression patterns between the fungiform papillae (FuP) and the circumvallate papillae (CvP), which are located on the anterior and posterior regions of the tongue, respectively. *Tas1r1*, *Tas2r1*, *Pkd1l3*, and *Gna14* were expressed primarily in the CvP [7,10,13,17,19,21]. In contrast, *Tas1r3*, *Pkd2l1*, *Gnat3*, *Plcb2*, and *Trpm5* were expressed in both the FuP and the CvP [4,14,17,19,22].

The expression profiles of genes involved in taste signal transduction have been partially uncovered in primates, including humans [23,24,25,26,27]. In *in situ* hybridization (ISH) demonstrated that human *TAS2Rs* were expressed in heterogeneous populations of TRCs [23], whereas the expression of multiple *Tas2rs* occurred in the same subset of TRCs in mice [7]. On the other hand, Matsunami and colleagues demonstrated that each *Tas2r* was expressed in a much smaller number of TRCs than *Gnat3* in mice [9]. The tissue distribution of expression of genes involved in taste signal transduction, including *TAS1Rs*, *TAS2Rs*, Pkds, and *TRPM5*, was examined in the CvP of the cynomolgus macaque, *Macaca fascicularis* [24], but the co-expression relationships among these genes largely remain to be elucidated. Moreover, the tissue distribution of expression of the majority of genes in the FuP has not been examined by ISH, except for *PDKDL3* and *TRPM5* [25].

In this study, we examined the mRNA expression of genes involved in taste signal transduction in more detail in the FuP and CvP of the rhesus macaque, *Macaca mulatta*, by ISH. We compared the gene expression profiles in the FuP and CvP and examined the co-expression relationships among various genes. We found both similarities and differences between macaques and rodents. This
Figure 1. The mRNA expression of genes encoding taste receptors and signal transduction molecules in the fungiform and circumvallate papillae of the rhesus macaque. (A) In situ hybridization revealed that three TAS1Rs, TAS2R13, PKD1L3, GNAT3, GNA14, and PLCB2 were robustly expressed in subsets of the TRCs in the CvP. These genes, except for GNA14, were also expressed in subsets of the TRCs in the FuP. n=2
study may provide new insights into the molecular mechanisms underlying taste sensation in primates, including humans.

Materials and Methods

Macaques

This study was carried out in strict accordance with recommendations in the Guide for Care and Use of Nonhuman Primates of the Primate Research Institute, Kyoto University (Version 3, issued in 2010). This guideline was prepared based on the provisions of the Guidelines for Proper Conduct of Animal Experiments (June 1, 2006; Science Council of Japan), Basic Policies for the Conduct of Animal Experiments in Research Institutions under the Jurisdiction of the Ministry of Health, Labor and Welfare (effective on June 1, 2006; Ministry of Health, Labor and Welfare [MHLW]), Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions (Notice No. 71 of the Ministry of Education, Culture, Sports, Science and Technology [MEXT] dated June 1, 2006), and Standards Relating to the Care and Management of Laboratory Animals and Relief of Pain (Notice No. 85 of the Ministry of the Environment dated April 28, 2006). All of the animal experiments were approved by the Animal Ethics Committee of the Primate Research Institute, Kyoto University (Permit Numbers: 2010-C-24 and 2011-B-17). Briefly, animals were kept in cages with sufficient space (780 mm wide, 650 mm depth, and 800 mm height) in the air conditioned room with sufficient environmental enrichment. The animals were housed in 12-hour light-dark cycle conditions with a daylight light intensity of 150–300 lux and their intake of water, food, or selected nutrients was not restricted. In addition to normal pellet foods, vegetables for nutrimental enrichment. To ameliorate suffering, the animals were occasionally fed sweet potatoes, fruits, and nuts. In the public genome database of the rhesus macaque (http://www.ensembl.org/Macaca_mulatta/Info/Index), the macaque TAS2Rs were named following the nomenclature proposed by Dong et al [28]. The cDNA sequence corresponding to G756-E852 of T1R3, which was unknown due to the lack of a genomic sequence, was obtained by 3’-RACE using 3’-Full RACE Core Set (Takara Bio Inc., Shiga, Japan). The entire coding regions of TAS1R1, TAS1R2, TAS1R3, TAS2R5, GNAT3, and GNA14 and partial coding regions of PKD1L3 (C42-Y749) and PLCB2 (M1-K192), which were amplified from macaque cDNA synthesized from epithelial tissues containing circumvallate papillae or genomic DNA extracted from tongue tissue, were used as probes.

In Situ Hybridization (ISH)

Fresh frozen sections of tongue, 10 µm thick, were placed on MAS-coated glass slides (Matsunami Glass, Kishiwada, Japan). For ISH, the sections were fixed with 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) and treated with proteinase K (6.4 µg/ml for 5 min) followed by acetylation. Prehybridization (at 58°C for 1 hour), hybridization (at 58°C, 2 O/N), washing (0.2 x SSC at 58°C), and development (NBT-BCIP) were performed using digoxigenin-labeled probes as described previously [17]. Double-label fluorescence ISH was performed with digoxigenin- and fluorescein-labeled RNA probes as described previously [29]. In brief, the probes were detected by incubation with a peroxidase-conjugated anti-digoxigenin antibody and a peroxidase-conjugated anti-fluorescein antibody (Roche, Indianapolis, IN, USA), followed by incubation with TSA-AlexaFluor 555 and TSA-AlexaFluor 488 (Invitrogen, Carlsbad, CA, USA) using the tyramide signal amplification method. Stained images were obtained using a fluorescence microscope (BX51; Olympus, Tokyo, Japan) equipped with a cooled CCD digital camera (DP71; Olympus) or a confocal laser-scanning microscope (FV500; Olympus).

Results and Discussion

Expression of Taste Receptors and Signal Transduction Molecules in the Fungiform and Circumvallate Papillae

To examine the tissue distributions of expression of genes involved in taste signal transduction, we conducted in situ hybridization on sections of the FuP and CvP using the following genes as probes: TAS1R1, TAS1R2, TAS1R3, TAS2R5, PKD1L3, GNAT3, GNA14, and PLCB2. In the CvP, three TAS1Rs, PKD1L3, GNAT3, GNA14, and PLCB2 were robustly expressed in subsets of TRCs (Figure 1A). Certain TAS2Rs, such as TAS2R13, were robustly expressed in subsets of TRCs, whereas only weak signals were observed for other TAS2Rs, including those located on chromosomes 3 and 6 (Figures 1A and B; Figure S1). In the FuP, three TAS1Rs, GNAT3, and PLCB2, but not GNA14, were robustly expressed in subsets of TRCs, whereas TAS2R13 and PKD1L3 were weakly expressed in subsets of TRCs (Figure 1A). It should be noted that TAS1R1, TAS1R2, and TAS2R13, as well as PKD1L3, were expressed in both the FuP and the CvP.
Co-expression Relationships among Taste Signal Transduction Molecules

To compare the TRCs expressing each taste signal transduction molecule, we next performed double-label fluorescence ISH. T1R1 and T1R2 form heteromers with T1R3 to function as umami (savory) and sweet taste receptors, respectively [4,5,30]. TAS1R1 and TAS1R2 were exclusively expressed in different subsets of TAS1R3-positive TRCs in the FuP and CvP (Figure 2; Tables S1 and S2). In the CvP, approximately 20% and 40% of TAS1R3-positive TRCs were also positive for TAS1R1 and TAS1R2, respectively. Experiments using a mixed probe for TAS1R1 and TAS1R2 combined with a probe for TAS1R3 confirmed that approximately 40% of TAS1R3-positive TRCs were negative for both TAS1R1 and TAS1R2 (Figure 2A and data not shown). In the FuP, approximately 40% and 30% of TAS1R3-positive TRCs were also positive for TAS1R1 and TAS1R2, respectively (Figure 2B; Table S2). In summary, TAS1R3-positive TRCs in the FuP and CvP can be classified into three types of cells: cells expressing TAS1R1+TAS1R3, those expressing TAS1R2+TAS1R3, and those expressing TAS1R3 alone.

A previous gene expression analysis using microarrays in the taste buds of the cynomolgus macaque collected by laser capture microdissection revealed that TAS1R1 and TAS1R2 were more highly expressed in the taste buds of the FuP than in those of the CvP [24]. Our ISH analysis quantified the expression of the genes involved in taste signal transduction at the cellular mRNA level. Consequently, the majority of genes, including TAS1R1 and TAS1R2, showed more uniform expression patterns in the FuP and

Figure 2. The co-expression relationships among three TAS1Rs. (A) TAS1R1 and TAS1R2 were exclusively expressed in different subsets of the TAS1R3-positive TRCs in the CvP. In situ hybridization using a mixed probe for TAS1R1 and TAS1R2 combined with a probe for TAS1R3 revealed the presence of TRCs expressing TAS1R3 alone. n = 2 (numbers of sections ≥4). (B) TAS1R1 and TAS1R2 were exclusively expressed in different subsets of the TAS1R3-positive TRCs in the FuP. The TAS1R3-positive TRCs in the FuP and CvP were classified into three types of cells: cells expressing TAS1R1+TAS1R3, those expressing TAS1R2+TAS1R3, and those expressing TAS1R3 alone. n = 1 or 2 (numbers of sections ≥10). Scale bars: 50 μm. doi:10.1371/journal.pone.0045426.g002
Figure 3. The co-expression relationships among TAS2Rs. (A) TAS2R13, TAS2R15, and TAS2R23 reside in different TAS2R gene clusters on chromosome 11. Almost all of the TAS2R15- and TAS2R23-positive TRCs were also positive for TAS2R13, whereas TAS2R15-positive TRCs partially overlapped with those expressing TAS2R23. n = 1 or 2 (numbers of sections ≥2). (B) When we compared the TRCs expressing TAS2Rs located on different chromosomes, almost all of the TRCs labeled with a mixed probe for TAS2R2-6 were also positive for TAS2R13, but they partially overlapped with the TRCs expressing TAS2R15 or TAS2R23. n = 1 or 2 (numbers of sections ≥2). (C) A Venn diagram illustrating the co-expression relationships among the TAS2Rs. Each TRC sensing bitter compounds expresses various combinations of TAS2Rs. Scale bar: 50 μm.

doi:10.1371/journal.pone.0045426.g003
Figure 4. The co-expression relationships among taste receptors. (A) In the CvP, the TAS1R3-positive TRCs were negative for TAS2R13. The PLCB2-positive TRCs, which include TAS1R1-, TAS1R2-, TAS1R3-, and TAS2R13-positive TRCs, were negative for PKD1L3. n = 1 (numbers of sections ≥ 2). (B) In the FuP, the TAS1R3-positive TRCs were negative for TAS2R13. The PLCB2-positive TRCs, which include TAS1R1-, TAS1R2-, TAS1R3-, and TAS2R13-positive TRCs, were negative for PKD1L3. n = 1 or 2 (numbers of sections ≥ 10). Scale bars: 50 μm.

doi:10.1371/journal.pone.0045426.g004
the CvP of macaques than in those of rodents. These results are consistent with previous findings from gustatory nerve recordings in the rhesus macaque showing that both the chorda tympani and glossopharyngeal nerves, which innervate the FuP and CvP, respectively, responded to a variety of basic taste compounds [31].

TAS2Rs for positive TRCs (Figure 2). It should be noted that **TAS1R1** which partially overlapped with **GNAT3** in the FuP (Figure 4B), as in the case of other vertebrates such as rodents [10,13,22,33].

TAS2Rs located on chromosome 11, although precise location of **TAS2Rs** are located on chromosome 3, whereas only **TAS2R23** is located on chromosome 6. The other 15 **TAS2Rs** are located on different chromosomes, as most all the **TAS2Rs** positive TRCs labeled with the mixed probe were also positive for **TAS2R13**, TAS2R13-positive TRCs partially overlapped with those expressing **TAS2R23** (Figure 3A; Table S3). We used a mixed probe for **TAS2R13**, **TAS2R9**, **TAS2R4**, **TAS2R5**, and **TAS2R6** because only weak signals were detected for each **TAS2R** located on chromosome 3 (Figure 1B). When we compared the TRCs expressing **TAS2R6** located on different chromosomes, almost all the TRCs labeled with the mixed probe were also positive for **TAS2R13**, but they partially overlapped with TRCs expressing **TAS2R13** or **TAS2R23** (Figure 3B; Table S3). These results demonstrate that each TRC sensing bitter compounds expresses various combinations of **TAS2R**s (Figure 3C), as in the case of human **TAS2R**s [23].

We next compared the TRCs expressing taste receptors for different basic taste modalities. We chose **TAS2R13** as a representative **TAS2R** because almost all the TRCs expressing other **TAS2R**s that we tested were included in the **TAS2R13**-positive TRCs, as described above (Figure 3; Table S3). **TAS1R1** and **TAS1R2** were exclusively expressed in different subsets of **TAS1R3**-positive TRCs (Figure 2). **TAS1R3**-positive TRCs were negative for **TAS2R13** in the CvP (Figure 4A) and in the FuP (Figure 4B). **TAS1R1**, **TAS1R2**, **TAS1R3**, and **TAS1R3**-positive TRCs were also positive for **PLCB2** in the CvP (Figure 4A; Table S1) and in the FuP (Figure 4B), as in the case of other vertebrae such as rodents and fish [29,32]. **PLCB2**-positive TRCs were negative for **PKD1L3** in the CvP (Figure 4A) and in the FuP (Figure 4B). In summary, **TAS1R1**, **TAS1R2**, **TAS2R2**, and **PKD1L3** were exclusively expressed in different subsets of the TRCs in the FuP and CvP (Figure 5D). Thus, these results suggest that the TRCs detecting different basic taste modalities are mutually segregated in macaque taste buds.

Finally, we focused on two genes encoding G protein α subunits, **GNAT3** and **GNA14**, which are specifically expressed in subsets of rodent TRCs [10,15,22,33]. In the CvP, **GNA14** was expressed in a much smaller population of TRCs than **GNAT3** and in a mutually exclusive manner. The **GNA14**-positive TRCs were distinct from those expressing **TAS2R2** and **TAS2R13**, but they were subsets of the **TAS1R3**-positive TRCs and partially overlapped with the **TAS1R1**-positive TRCs, n ≥ 1 (numbers of sections ≥2). In the FuP, **TAS1R2** and **TAS2R13** were expressed in subsets of the **GNAT3**-positive TRCs, which partially overlapped with the **TAS1R1**- and **TAS1R3**-positive TRCs, n ≥ 2 (numbers of sections ≥4). In the FuP, **TAS1R1**, **TAS1R2**, **TAS1R3**, and **TAS2R13** were expressed in subsets of **GNAT3**-positive TRCs (Figure 5C; Table S2). These results suggest that **GNAT3** plays a pivotal role in mediating sweet, bitter, and umami tastes in macaques.

Conclusions

We investigated the expression of taste receptors and signal transduction molecules in the FuP and CvP of the rhesus macaque and further examined the co-expression relationships among these genes. The majority of genes exhibited more uniform expression patterns in the macaque FuP and CvP than in these papillae in rodents (Figure 5D). Intriguingly, there were several differences between the expression profiles of macaques and rodents. First, **TAS1R1** and **TAS1R2** were more uniformly expressed in both the FuP and the CvP of macaques than in rodents. Second, **TAS1R2** was co-expressed with **GNAT3** in the CvP but not with **GNA14**. Third, macaque **TAS2R**s were expressed in heterogeneous populations of TRCs in the CvP. These results suggest that the molecular mechanisms underlying taste transduction in primates, including humans, may be different from those in rodents and that the macaque is an important model organism for taste perception in humans.

Supporting Information

Figure S1 Schematic drawing illustrating the locations of macaque **TAS2Rs** on the chromosomes. **TAS2R1-8, TAS2R11, and TAS2R38** are located on chromosome 3, whereas only **TAS2R26** is located on chromosome 6. The other 15 **TAS2Rs** are located on chromosome 11, although precise location of **TAS2R9** has not been determined. **TAS2R13, TAS2R15, and TAS2R23** reside in different **TAS2R** gene clusters on the chromosome 11. (TIF)

Table S1 The percentages of **TAS1R5, GNAT3, GNA14**, and **PLCB2** co-expression in the circumvallate taste buds. The percentage values were calculated by dividing the number of cells expressing both gene X and gene Y by the number of cells expressing gene X. (DOCX)

Table S2 The percentages of **TAS1R5, TAS2R13, and GNAT3** co-expression in the fungiform taste buds. The percentage values were calculated by dividing the number of cells expressing both gene X and gene Y by the number of cells expressing gene X. (DOCX)

Table S3 The percentages of **TAS2R** co-expression in the circumvallate taste buds. The percentage values were calculated by dividing the number of cells expressing both gene X and gene Y by the number of cells expressing gene X. (DOCX)

Author Contributions

Conceived and designed the experiments: YI. Performed the experiments: YI MA. Analyzed the data: YI MA. Contributed reagents/materials/analysis tools: HI. Wrote the paper: YI TA KA.
References

1. Ishimaru Y (2009) Molecular mechanisms of taste transduction in vertebrates. Odontology 97: 1–7.
2. Ishimaru Y, Matsunami H (2009) Transient receptor potential (TRP) channels and taste sensation. J Dent Res 88: 212–218.
3. Yarmolinsky DA, Zuker CS, Ryba NJ (2009) Common sense about taste: from mammals to insects. Cell 139: 234–244.
4. Nelson G, Hoon MA, Chandrahek A, Zhang Y, Ryba N, et al. (2001) Mammalian sweet taste receptors. Cell 106: 381–390.
5. Nelson G, Chandrahek A, Hoon MA, Feng L, Zhao G, et al. (2002) An amino-acid taste receptor. Nature 416: 199–202.
6. Zhao GQ, Zhang Y, Hoon MA, Chandrahek A, Erlenbach I, et al. (2003) The receptors for mammalian sweet and umami taste. Cell 115: 253–266.
7. Adler E, Hoon MA, Mueller KL, Chandrahek A, Ryba N, et al. (2000) A novel family of mammalian taste receptors. Cell 100: 693–702.
8. Chandrahek A, Mueller KL, Hoon MA, Adler E, Feng L, et al. (2000) T2Rs function as bitter taste receptors. Cell 100: 703–711.
9. Matsunami H, Montmayeur JP, Buck LB (2000) A family of candidate taste receptors in human and mouse. Nature 404: 601–604.
10. Tzianos M, Devyanychikov G, Barrows J, Kim S, Chaudhari N, et al. (2008) Expression of Galpha14 in sweet-transducing taste cells of the posterior tongue. BMC Neurosci 9: 110.
11. Perez CA, Huang L, Rong M, Kozak JA, Preuss AK, et al. (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5: 1169–1176.
12. Wong GT, Gannon KS, Margolskee RF (1996) Transduction of bitter and sweet taste by gustducin. Nature 381: 796–800.
13. Shindo Y, Miura H, Carninci P, Kawai J, Hayashizaki Y, et al. (2008) G alpha14, a candidate mediator of sweet/umami signal transduction in the posterior region of the mouse tongue. Biochem Biophys Res Commun 376: 504–508.
14. Zhang Y, Hoon MA, Chandrahek A, Mueller KL, Cook B, et al. (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112: 293–301.
15. Kawaguchi H, Yamakana A, Uchida K, Shibasaki K, Yasuo T, Jyotaki M, Murata Y, et al. (2009) A family of candidate taste receptors in fishes. Mech Dev 122: 1310–1321.
16. Yoshida R, Miyauchi A, Yasuo T, Jyotaki M, Murata Y, et al. (2009) The mouse odorant receptor gene family: expression pattern of the human TAS2R bitter receptor gene family reveals a heterogeneous population of bitter responsive taste receptor cells. J Neurosci 27: 12630–12640.
17. Behrens M, Foerster S, Staehler F, Raguine JD, Meyerhof W (2007) Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogeneous population of bitter responsive taste receptor cells. J Neurosci 27: 12630–12640.
18. Hevezi P, Moyer BD, Lu M, Gao N, White E, et al. (2009) Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes. PLoS One 4: e6395.
19. Moyer BD, Hevezi P, Gao N, Lu M, Kalabat D, et al. (2009) Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations. PLoS One 4: e6392.
20. Max M, Shanker VG, Huang L, Rong M, Liu Z, et al. (2001) Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 28: 58–63.
21. Wang H, Iguchi N, Rong Q, Zhou M, Ogunkorde M, et al. (2009) Expression of the voltage-gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its null-mutation on taste preferences. J Comp Neurol 512: 104–119.
22. Dong D, Jones G, Zhang S (2009) Dynamic evolution of bitter taste receptor genes in vertebrates. BMC Evol Biol 9: 12.
23. Ishimaru Y, Okada S, Naito H, Nagai T, Yasuoka A, et al. (2005) Two families of candidate taste receptor cells in fishes. Mech Dev 122: 1310–1321.
24. Xu H, Staszewski I, Tang H, Adler E, Zoller M, et al. (2004) Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci U S A 101: 14258–14263.
25. Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, et al. (1999) Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96: 541–551.
26. Huang AL, Chen X, Hoon MA, Chandrahek A, Guo W, et al. (2006) The cells and logic for mammalian sour taste detection. Nature 442: 934–938.
27. Huang Y, Maya Y, Stumac R, Roper SD (2006) Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste. J Physiol 586: 2903–2912.
28. Hevezi P, Moyer BD, Lu M, Gao N, White E, et al. (2009) Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes. PLoS One 4: e6395.
29. Moyer BD, Hevezi P, Gao N, Lu M, Kalabat D, et al. (2009) Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations. PLoS One 4: e6392.
30. Zhang Y, Hoon MA, Chandrahek A, Mueller KL, Cook B, et al. (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112: 293–301.
31. Kawaguchi H, Yamakana A, Uchida K, Shibasaki K, Sokabe T, et al. (2010) Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD2L1 complex by acid in mouse taste cells. J Biol Chem 285: 17277–17281.
32. Yoshida R, Miyauchi A, Yasuo T, Jyotaki M, Murata Y, et al. (2009) Discrimination of taste qualities among mouse fungiform taste bud cells. J Physiol 587: 4425–4439.
33. Ishimaru Y, Inada H, Kobota M, Zhuang H, Tominaga M, et al. (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A 103: 12569–12574.
34. Kataoka S, Yang K, Ishimaru Y, Matsunami H, Sevigny J, et al. (2008) The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. Chem Senses 33: 245–254.