Proteogenomic landscape of uterine leiomyomas from hereditary leiomyomatosis and renal cell cancer patients

Nicholas W. Bateman1,2,3,10, Christopher M. Tarney1,10, Tamara Abulez1,3, Anthony R. Soltis3,4, Ming Zhou5, Kelly Conrads1,3, Tracy Litzi1,3, Julie Oliver1,3, Brian Hood1,10, Paul Driggers6, Coralie Viollet4, Clifton Dalgard4, Matthew Wilkerson3,4, William Catherino7, Chad A. Hamilton1, Kathleen M. Darcy1,2, Yovanni Casablanca1,2, Ayman Al‑Hendy8, James Segars6, Thomas P. Conrads1,2,9, & G. Larry Maxwell1,2,5,10

Pathogenic mutations in fumarate hydratase (FH) drive hereditary leiomyomatosis and renal cell cancer (HLRCC) and increase the risk of developing uterine leiomyomas (ULMs). An integrated proteogenomic analysis of ULMs from HLRCC (n = 16; FH-mutation confirmed) and non-syndromic (NS) patients (n = 12) identified a significantly higher protein:transcript correlation in HLRCC (R = 0.35) vs. NS ULMs (R = 0.242, MWU p = 0.0015). Co‑altered proteins and transcripts (228) included antioxidant response element (ARE) target genes, such as thioredoxin reductase 1 (TXNRD1), and correlated with activation of NRF2‑mediated oxidative stress response signaling in HLRCC ULMs. We confirm 185 transcripts previously described as altered between HLRCC and NS ULMs, 51 co‑altered at the protein level and several elevated in HLRCC ULMs are involved in regulating cellular metabolism and glycolysis signaling. Furthermore, 367 S‑(2‑succino)cysteine peptides were identified in HLRCC ULMs, of which sixty were significantly elevated in HLRCC vs. NS ULMs (LogFC = 1.86, MWU p < 0.0001). These results confirm and define novel proteogenomic alterations in uterine leiomyoma tissues collected from HLRCC patients and underscore conserved molecular alterations correlating with inactivation of the FH tumor suppressor gene.

Uterine leiomyomas (ULMs) are the most common benign gynecologic tumor occurring in 70–80% of women in the United States by the end of their reproductive years1,2. Approximately 15–30% of women with ULMs will have significant symptoms including abnormal uterine bleeding, pelvic pain, and infertility3,4. The economic impact of ULMs is profound with recent estimates related to the cost of medical care being as high as $34 billion annually in the United States5. Despite the prevalence and burden of ULMs, there is a limited understanding of the molecular underpinnings and pathogenesis of this disease.

Examining hereditary syndromes associated with an increased risk of developing ULMs provides a unique opportunity to evaluate the underlying molecular causes of ULMs. Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal-dominant disease that is associated with cutaneous leiomyomas, uterine...
Non-syndromic patients in this analysis. The deviation (MAD) > 1) stratified HLRCC and NS patients (Fig. 2A). Notably, HLRCC patient 1805 clustered with derived (Supplemental Table 4). Unsupervised analyses of 991 variably abundant transcripts (median absolute signal transduction pathways that can further lead to angiogenesis and growth factor production8,9. To improve FH includes deleterious mutations of FH, as this alteration results in mitochondrial dysfunction and energy depletion, which can promote DNA damage as a product of elevated free radicals and activation of hypoxia-responsive signal transduction pathways that can further lead to angiogenesis and growth factor production8,9. To improve our understanding of the molecular etiology of ULMS, we conducted a comprehensive proteogenomic analysis of ULM tissue specimens from a cohort of HLRCC patients and those with non-syndromic (NS) ULMs. Our integrative analysis of whole genome sequencing (WGS), RNA-sequencing (RNA-seq) as well as quantitative mass spectrometry (MS)-based proteomics identified putative novel molecular drivers associated with disease pathogenesis in HLRCC patients. Integrated analyses of these data provide a comprehensive view into conserved proteogenomic alterations underlying the molecular etiology of uterine leiomyoma development in HLRCC patients as well as in tumors harboring deleterious mutations in FH.

Results

Integrated Proteogenomic Analyses of HLRCC and Non-Syndromic ULMS. We conducted a comprehensive proteogenomic analysis employing WGS, RNA-seq, and quantitative MS-based proteomics of fresh-frozen ULM specimens from NS women (n = 12) and from women (n = 16) with HLRCC based on genetic counseling and family history assessments (Supplemental Table 1). Analyses of mutational status in fumarate hydratase (FH) as well as Mediator Complex Subunit 12 (MED12), High Mobility Group AT-Hook 1 (HMGA1), Collagen Type IV Alpha 5 Chain (COL4A5) and collagen type IV alpha 6 chain (COL4A6)10,11. Structural variants in HLRCC patients with a subset (cases 1796, 1802 and 1687) exhibiting duplications or inversions in Collagen Type IV Alpha 5 Chain (COL4A5) and collagen type IV alpha 6 chain (COL4A6). Analyses of WGS data from matched myometrium for 7 of the 16 HLRCC patients identified a somatic mutation frequency of 0.587 ± 0.884/Mb in patient ULMs, a result that is consistent with tumors that have lower mutational burdens, such as Rhabdoid tumor and Ewing sarcoma11.

RNA sequencing quantified > 20 K (Supplemental Table 3) transcripts, among which 3,411 were co-quantified at the protein level. Proteins quantified without transcript-level evidence were largely predicted to be localized to the extracellular space, including multiple IgG isoforms and were enriched for cellular signaling pathways such as complement activation and immune regulation consistent with being immune cell or blood serum-derived (Supplemental Table 4). Unsupervised analyses of 991 variably abundant transcripts (median absolute deviation (MAD) > 1) stratified HLRCC and NS patients (Fig. 2A). Notably, HLRCC patient 1805 clustered with non-syndromic patients in this analysis.

Notes

FH mutation in patient 1805 is consistent with this case clustering with non-syndromic ULMs based on transcript and protein-level evidence (Fig. 2A,B, discussed below) and suggests this case is not an HLRCC patient. Non-syndromic patient samples largely exhibited deleterious mutations in MED12 as well as inversion variants in additional gene targets identified as commonly altered in ULMS10, namely high mobility group AT-hook 1 (HMGA1). Structural variants in MED12 and HMGA1 were also common in HLRCC patients with a subset (cases 1796, 1802 and 1687) exhibiting duplications or inversions in Collagen Type IV Alpha 5 Chain (COL4A5) and collagen type IV alpha 6 chain (COL4A6). Analyses of WGS data from matched myometrium for 7 of the 16 HLRCC patients identified a somatic mutation frequency of 0.587 ± 0.884/Mb in patient ULMs, a result that is consistent with tumors that have lower mutational burdens, such as Rhabdoid tumor and Ewing sarcoma11.
Global quantitative proteomic analyses using a multiplexed tandem mass tag (TMT-10) workflow quantified 3,510 proteins across all patient samples (Supplemental Table 5). These analyses included a subset of replicate ULMs collected from seven HLRCC patients where the majority, n = 5 replicate tumors, exhibited high correlation of protein abundances, Spearman R = 0.6 ± 0.15. However, the remaining n = 2 subset exhibited lower correlations, Spearman R = 0.21 ± 0.05 (Supplemental Table 6); suggesting most tumors from the same patient exhibit more conserved protein abundances, although we do observe higher heterogeneity in some instances which represents a limitation of comparative analyses of single patient tumors. Unsupervised analyses of 736 variably abundant proteins (MAD > 0.5) stratified HLRCC and NS patients (Fig. 2B). We again note that HLRCC patient 1805 clustered with NS patients based on unsupervised analysis of protein alterations. We further assessed the abundance of FH and found this protein was significantly decreased in HLRCC patients (median difference HLRCC versus NS ULMs, -1.39, MWU p < 0.0001 (Supplemental Table 5). Loss of FH protein abundance in HLRCC patients is consistent with the often protein-destabilizing, autosomal dominant mutations that are common in HLRCC 12.

Integrated analyses of transcriptome and proteome expression. Integrated analyses of co-quantified proteins and transcripts in individual ULMs revealed a median correlation of Spearman Rho = 0.28 across all ULMs (Fig. 3). We further observed that HLRCC tumors exhibited significantly higher correlation of co-quantified protein and transcript abundances (Spearman R = 0.35) versus NS ULMs (Spearman R = 0.242, MWU p = 0.0015) (Supplemental Table 7). As the total number of co-quantified proteins and transcripts is less than that reported by similar correlation analyses, such as in endometrial cancers (EC), e.g. Dou et al.13, who report correlation analyses of >10,000 proteins and transcripts, we investigated whether this reduced feature set may represent an analytical bias for our analyses. We performed correlation analyses of a subset of 3292 transcripts and proteins from those co-quantified in ULMs across n = 101 EC patient tumors; these subset features represent proteins and gene names that matched supplemental data in Dou et al., and we observed the median Spearman correlation for this feature subset was R = 0.52 ± 0.11. To confirm performance of our correlation method, we assessed correlation for all proteins and transcript co-quantified across n > 100 patient tumor samples, 10,986 pairs, and observed a median R = 0.49 ± 0.1 which is consistent with the median R = 0.48 reported by Dou Y et al.

Although ULMs and endometrial cancers represent distinct neoplasms, this comparative analyses suggests that our co-quantified feature subset is unlikely to bias our correlation analyses. Notably, a recent comparison of protein and transcript abundances measured in tumors and normal adjacent tissues from >100 lung cancer patients has shown that median transcript and protein abundance correlations trend as lower in normal in comparison to tumor tissues14. As ULMs are benign neoplasms, the lower overall median correlation of protein and transcript abundances that we observe in relation to malignant tumors is consistent with the benign status of ULMs. However, our observation that ULMs from HLRCC exhibit significantly higher protein and transcript correlations than NS ULMs suggest perhaps HLRCC ULMs may share this characteristic with more aggressive tumors. We further investigated proteins and transcripts exhibiting differential correlation abundance trends in HLRCC vs NS ULMs (Supplemental Table 8). We identified 347 pairs that exhibit highly variable (MAD > 0.5) correlation...
trends in HLRCC vs NS ULMs. Pathway analyses of those positively correlated (111, Spearman Rho > 0.6) in HLRCC ULMs revealed enrichment of pathways correlating with metabolism, namely the 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 (PFKFB4) pathways as well as aerobic respiration, (tricarboxylic acid cycle II). Highly correlated pairs in NS ULMS (46, Spearman Rho > 0.6) were enriched for mitochondrial dysfunction as well as VEGF signaling (Supplemental Table 8).

Pathway analyses of proteins (Supplemental Table 9) or transcripts (Supplemental Table 10) significantly (LIMMA adjusted p-value < 0.01) co-altered between confirmed HLRCC (n = 15) and NS ULMs (n = 13) revealed little overlap between top canonical signaling pathways predicted to be activated or inhibited in these tumors (Fig. 4, Supplemental Table 11). Co-altered pathways included glycolysis and gluconeogenesis signaling predicted to be functionally activated15 in HLRCC versus NS ULMs based on both protein and transcript alterations (Fig. 4,)

Figure 3. Correlation of protein and transcript abundance in ULMs from Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) and non-syndromic (NS) patients. Bar plot details Spearman Rho correlations calculated for each ULM analyses based on 3411 co-quantified proteins and transcripts. Median Spearman Rho for HLRCC, \(R = 0.35 \) was significantly higher than for non-syndromic ULMs, \(R = 0.242 \), Mann Whitney U \(p = 0.0015 \).

Figure 4. Canonical pathways enriched by proteins and transcripts significantly altered in ULMs from Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) and non-syndromic (NS) patients. Heatmap reflects the top 10 canonical pathways predicted as activated (positive z-score) or inhibited (negative z-score) based on proteins and transcripts significantly altered between HLRCC and non-syndromic ULMS (LIMMA adjusted \(p < 0.01 \)). Pathways colored white not among top pathways predicted to be activated or inhibited in protein or transcript level data. Functional enrichment and causal analyses performed using Ingenuity Pathway Analysis15.
As our patient cohort is racially diverse (for example the majority of HLRCC tumors are collected from European-American (EA) women whereas the NS tumors were from African-American (AA) women, Supplemental Table 1), we sought to identify the extent to which transcripts associated with central metabolism could be biased by patient race by comparison with a recently described multi-omic analyses of NS ULMs collected from EA (n = 8) and AA (n = 5) women. We assessed 16 transcripts associated with glycolysis and gluconeogenesis signaling in our dataset and found enolase 2 among this subset as significantly altered (ENO2, LogFC + 1.02 in HLRCC vs NS ULMs) in ULMs from EA vs AA women (LogFC − 0.64, LIMMA P < 0.05), suggesting alterations observed in the majority of these cases are not impacted by patient race. We further identified an additional 16 pathways co-enriched based on transcript and protein alterations, with a subset predicted to exhibit comparable activation trends, such as sucrose degradation V (mammalian) and superoxide radicals degradation, but others, such as calcium and thrombin signaling as well as unfolded protein response are predicted as activated at the protein level, but inhibited based on transcript level abundance. Notably, we observed activation of the “NRF2-mediated oxidative stress response” in HLRCC versus NS patients as a top altered pathway based on protein-level alterations that was also significantly enriched at the transcript level (Supplemental Table 11). We further investigated the 35 transcripts altered between HLRCC and NS tumors enriched for the NRF2-mediated oxidative stress response pathway for association with race in NS tumors and none were significantly altered in ULMs from EA vs AA women from George et al.; these were also not associated with racial status in our study (data not shown). As the NRF2 antioxidant response pathway and downstream transcriptional targets have been implicated as key drivers of tumorigenesis in FH mutant tumors, we investigated the prevalence of co-altered transcripts and proteins harboring antioxidant response element (ARE) promoter binding motifs. This comparison revealed 228 significantly co-altered protein:transcript pairs between HLRCC and NS ULMs that exhibited high quantitative correlation (Spearman Rho = 0.909, p < 0.0001) (Fig. 5A, Supplemental Table 12); 17 of which harbor high-confidence ARE promoter binding motifs, significantly elevated in HLRCC vs. NS ULMs (Table 1, Supplemental Table 13). Among this list, we observe both ferritin light chain (FTL) and ferritin heavy chain (FTH) to be significantly elevated at the protein and transcript level. Both FTL and FTH are NRF2 target genes that have been described as being increased in FH mutant cells and to further directly mediate a pro-proliferative signal. Pathway analyses of subset, co-altered protein:transcript pairs that further exhibit identical protein and transcript abundance trends (214totall) showed activation of pathways regulating proliferation of tumor cells as well as glycolysis signaling and inhibition of pathways regulating oxidative stress as well as cell spreading in HLRCC versus NS ULMs (Table 2, Supplemental Table 14). These co-altered candidates include multiple putative drug targets elevated in HLRCC versus NS patients, such as arsenic trioxide targeting the NRF2-target gene thioredoxin reductase (TXNRD1), as well as additional metabolic targets including the cyclic heptapeptide CAP-232 (TLN-232) targeting the glycolytic enzyme complex resident protein pyruvate kinase M2 (Table 3). We also compared transcript alterations in our study with a previously published cDNA microarray analysis of FH mutant (n = 7) versus FH wildtype (n = 15) ULMs (Vanharanta et al.). Of 360 altered probesets reported by Vanharanta S mapping to 234 genes in our dataset, we find 185 are significantly co-altered (LIMMA P < 0.05) between HLRCC vs NS ULMs including a subset of 123 significant (LIMMA adjusted p < 0.01) alterations that exhibit high quantitative correlation between these independent cohorts (Spearman Rho = 0.924, p < 0.001). Among these, ten proteins elevated in HLRCC versus NS harbor ARE binding elements (designated with * in Table 1) and several are known to participate in protein–protein interactions regulating carbon metabolism as well as cellular glycolysis (“Elevated”, Fig. 6). Further, several are decreased in HLRCC cases regulate muscle contraction (“Decreased”, Fig. 6). This subset of 51 transcript:protein pairs validate previously defined alteration trends and represent highly conserved alterations in HLRCC ULMs including multiple candidates containing ARE gene promoter motifs that are likely NRF2 transcriptional targets as well as those regulating key steps in glycolysis, such as alpha-enolase (ENO1) and gamma-enolase (ENO2), both involved in catalyzing the conversion of 2-phosphoglycerate to phosphoenolpyruvate, as well as phosphoglycerate kinase 1 (PGK1) regulating conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate.

To investigate alterations in HLRCC versus NS ULMs important for survival of FH mutant cells, we crossed significantly altered proteins with 340 gene targets previously identified as conferring synthetic lethality in FH mutant cell lines when co-silenced. We find that twenty-seven proteins significantly (LIMMA adjusted p < 0.01) altered in HLRCC versus non-syndromic ULMs overlapped with this target list (Supplemental Table 16). The majority of alterations, 18 candidates, were elevated in HLRCC cases and the most abundant included several metabolic regulatory targets, including lactate dehydrogenase (LDHA, + 1.54 LogFC in HLRCC versus NS), glucose transporter 1 (SLC2A1, + 1.06 LogFC), enolase 3 (ENO3, + 0.7 LogFC), succinate dehydrogenase (SDHA, + 0.64 LogFC) as well as proteasome activator complex subunit 1 (PSME1, + 0.67). We further identified 9 proteins that were decreased in HLRCC ULMs including several predicted to be localized to the extracellular matrix, such as fibulin 2 (FBNL2, − 1.35) and laminin subunit alpha 2 (LAMA2, − 1.11) as well as the transcription factor PRX homeobox 1 (PBX1, − 0.66).

HLRCC ULMs exhibit widespread S-(2-succino)cysteine (2SC) modified peptides. The accumulation of cellular fumarate resulting from mutated FH can result in succinization of cysteiny1-containing peptides, a post-translational modification (PTM) that contributes a static 116.1 Da mass addition to these peptides that is readily identifiable by MS. A targeted search of our proteomics data for this cysteinyl PTM quantified a total of 367 unique 2SC peptides, corresponding to 253 unique protein targets (Supplemental Table 17). We quanti-
fied 60 2SC peptides across all patient samples and observed that elevated abundance of these modified peptides was highly specific for HLRCC cases (Fig. 7A), significantly stratifying HLRCC from NS patients (Fig. 7B, principal component 1 and principal component 2 explain 67.1% and 5.9% of the total variance; HLRCC vs NS ULMs = 1.86, MWU p < 0.0001). Several co-quantified protein targets exhibited multiple 2SC peptides and include thioredoxin (TXN), a redox-regulated protein that mediates dithiol-disulfide exchanges and S-nitrosylation of cysteine residues in multiple target proteins and is a direct target of TXNRD1 that we quantified as elevated in HLRCC versus NS ULMs24,25. We quantified one such TXN PSM bearing 2SC modification of C73, a residue that is necessary for mediating nitrosylation of an active site cysteine residue in the pro-apoptotic protein caspase 325. We further correlated 2SC peptides with a recently published analyses of 2SC-containing peptides discovered in cell line models of HLRCC26 and validate fifty-three 2SC peptides described by this group including peroxiredoxin-5 (PRDX5), a peroxidase responsible for mitigating cellular oxidative stress, bearing 2SC modification of C204, a residue has been shown to be necessary for protein function as mutation of this residue results in loss of per-oxidase activity27. We further investigated functionally important cysteine residues by comparing 2SC peptides with metadata from the Uniprot knowledgebase and identified an additional five peptides where the role of the 2SC modified cysteine residue quantified on protein function has been characterized (Table 4). This target subset highlights proteins involved in regulating cellular redox states as significantly elevated in HLRCC versus NS ULMs, and include a 2SC peptide (C150) from protein microsomal glutathione S-transferase 3 (MSTG3) that is a target of post-translational modification by S-acylation28. We also quantify a 2SC peptide from the chloride

Figure 5. Correlation plot of co-altered proteins, transcripts and validated transcript alterations in Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) and non-syndromic (NS) patients. (A) Correlation plot reflects 228 co-altered proteins and transcripts significantly altered between HLRCC and NS ULMs (Spearman Rho = 0.909, MWU p < 0.0001). (B) Correlation plot reflects 123 transcripts co-altered in our dataset and Vanharanta et al.20 (Spearman Rho = 0.855, MWU p < 0.0001).
intracellular channel protein 1 (CLIC1) protein, a chloride ion channel that regulates cellular oxidation levels and has been shown to be associated with regulating cell cycle29, also significantly elevated at the protein level in HLRCC versus NS ULMs (Supplemental Table 9). The modified residue (C24) has been shown to be necessary for CLIC1 protein dimerization and ion channel activity following mutagenesis analyses30. Lastly, we observed a 2SC peptide from creatine kinase B-type (CKB), a protein intimately involved in maintaining cellular energy homeostasis and regenerating cellular ATP31. The modified residue (C283) is the catalytic cysteine for CKB that has been shown to result in complete loss of enzymatic activity when mutated32. Although this 2SC peptide was non-significantly elevated in HLRCC ULMs, we do observe that global CKB protein is significantly decreased in HLRCC versus NS ULMs (− 0.73 LogFC, LIMMA adjusted p = 0.0002).

Discussion

This comprehensive and integrated proteogenomic analysis of ULM tissues from an exceptionally rare cohort of HLRCC patients provides a comprehensive view into the impact of FH mutation-driven alterations on the transcriptome and proteome in this high-risk population. These efforts extend and substantially deepen our molecular view of HLRCC ULMs and include validation of multiple transcripts previously described as altered in ULMs from HLRCC patients20. We further show that many of these are significantly altered at the protein level as well and further underscore that alteration of cellular glycolysis and gluconeogenesis typifies HLRCC ULMs. We show that the Nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant response pathway is

Symbol	Entrez gene name	HLRCC vs. NS ULM	HLRCC vs NS ULM
NQO1*	NAD(P)H dehydrogenase [quinone] 1	3.06	1.42
HMOX1*	Heme oxygenase 1	2.48	0.47
FTL*	Ferritin light chain	2.34	1.70
TXNRD1	Thioredoxin reductase 1, cytoplasmic	2.33	1.47
SQSTM1*	Sequestosome-1	1.59	0.55
FTH1*	Ferritin heavy chain	1.49	1.24
GCLM*	Glutamate–cysteine ligase regulatory subunit	1.35	1.16
PRDX1*	Peroxiredoxin-1	1.35	1.25
SLC2A1	Solute carrier family 2, facilitated glucose transporter member 1	1.32	1.06
ETFB*	Electron transfer flavoprotein subunit beta	0.89	1.24
IDH3A*	Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial	0.70	1.00
CPB2	Carboxypeptidase B2	0.08	−0.75
CIRBP*	Cold-inducible RNA-binding protein	−0.94	−0.52
TAGLN	Transgelin	−1.25	−1.56
ITGA1	Integrin alpha-1	−1.39	−0.80
UCHL1	Ubiquitin carboxyl-terminal hydrolase isozyme L1	−1.73	−1.23
STMN2	Stathmin-2	−1.96	−1.90

Table 1. Protein and transcript alterations in HLRCC versus Non-Syndromic ULMs. with antioxidant response element (ARE) promoter binding motifs. Candidates designated with a * exhibit concordant abundance trends between HLRCC and NS ULMs in Vanharanta et al.20.

Diseases or Biofunctions	Activation z-score
Cell proliferation of tumor cell lines	3.699
Abdominal neoplasm	2.642
Glycolysis of cells	2.567
Growth of tumor	2.52
Cell proliferation of sarcoma cell lines	2.338
Migration of cells	−1.98
Cell spreading of tumor cell lines	−2.019
Shape change of tumor cell lines	−2.222
Cytostasis	−2.237
Quantity of reactive oxygen species	−2.318

Table 2. Pathway analyses of conserved protein and transcript alterations in HLRCC versus Non-Syndromic (NS) ULMs. Table denotes top 5 functional pathways predicted to be activated (positive z-score) or inhibited (negative z-score) in HLRCC vs NS ULMs (Ingenuity pathway analyses, p-value < 0.05).
Gene ID	Protein name	HLRCC vs. NS ULM	Drug(s)
TXNRD1	Thioredoxin reductase 1	1.471	Arsenic trioxide/tretinoin
MIF	Macrophage migration inhibitory factor	1.091	Imalumab
CDK6	Cyclin dependent kinase 6	1.027	Palbociclib
PKM	Pyruvate kinase M1/2	0.963	CAP-232
GSR	Glutathione-disulfide reductase	0.9	Carmustine/prednisone
TFRC	Transferrin receptor	0.856	CX-2029
AKR1C3	Aldo–keto reductase family 1 member C3	0.849	ASP9521
SRC	SRC proto-oncogene, non-receptor tyrosine kinase	0.47	Blinatumomab/dasatinib
HMOX1	Heme oxygenase 1	0.469	Tin mesoporphyrin
MAPKAPK2	MAPK activated protein kinase 2	0.411	cdc25C phosphatase (211–221)
GUCY1A2	Guanylate cyclase 1 soluble subunit alpha 2	–0.489	Nitroprusside
CTPS1	CTP synthase 1	–0.531	Cytidine triphosphate synthetase inhibitor
TUBB2A	TUBULIN beta 2A class Ia	–0.653	Epothilone B
DMD	dystrophin	–0.662	Golodirsen
COL#X#	Multiple collagen Isoforms COL6A1, COL6A3, COL5A1, COL12A1, COL16A1, COL1A1, COL15A1	≤ –0.586	Collagenase clostridium histolyticum
MARCKS	Myristoylated alanine rich protein kinase C substrate	–1.185	BIO-11006
CA3	Carbonic anhydrase 3	–2.035	Hydrochlorothiazide

Table 3. Conserved protein and transcript alterations in HLRCC versus Non-Syndromic (NS) ULMs that are putative drug targets. Table denotes top elevated or decreased alterations in HLRCC vs NS ULMs that are putative drug targets (Ingenuity pathway analyses).

Figure 6. Protein interaction network enriched from validated transcripts confirmed at the protein-level as altered between HLRCC versus non-syndromic (NS) ULMs. Validated transcripts confirmed at the protein level (51 total) were analyzed using MetaScape and resulting protein–protein interaction networks enriched by proteins elevated (highlighted in green) or decreased (heighted in red) in HLRCC vs NS ULMs were assembled using Cytoscape. The top pathways enriched by network proteins are also noted.
activated in HLRCC ULMs and that multiple NRF2 target genes are elevated at the protein level in these tumors. We also observe several targets shown to confer synthetic lethality when silenced in \(\text{FH} \) mutant cell lines\(^\text{22} \) to be altered within HLRCC vs NS ULMs including succinate dehydrogenase at the protein level in HLRCC ULMs (SDHA, 0.65 logFC, adjusted \(p = 7.77 \times 10^{-5} \)), which catalyzes the conversion of succinate to fumarate, as well as lactate dehydrogenase. However, the functional relevance of these alterations in the context of \(\text{FH} \) mutant ULMs will require further investigation in disease-relevant cell line models as the synthetic lethality screen described by Boettcher et al. was performed in human embryonic kidney cells (HEK-293). Integrated analyses of HLRCC versus NS ULMs further revealed higher overall correlation of protein and transcript abundance in HLRCC versus NS ULMs. We speculate that this may be due to the higher tumor cellularity of HLRCC ULMs\(^\text{33} \). However, recent evidence has shown that protein and transcript abundances trend as lower in normal adjacent versus tumor tissues from > 100 lung adenocarcinoma patient tumors\(^\text{14} \). Although ULMs are benign neoplasms, our observation that ULMs from HLRCC exhibit significantly higher protein and transcript correlations than NS ULMs suggest HLRCC ULMs may share this characteristic with more aggressive tumors. Interestingly, we investigated correlations for > 10 K proteins and transcripts in a subset of \(n = 13 \) normal endometrial tissues described by Dou et al.\(^\text{13} \) and compared to \(n = 86 \) endometrioid endometrial cancers (EEC) finding correlations were comparable between these tissue types; 0.493 and 0.49 respectively. We similarly assessed \(n = 13 \) uterine serous carcinomas analyzed in this study and identified these tumors exhibited significantly higher median correlations than normal and EEC patient tumors; 0.55 (MWU \(p < 0.006 \)). This would further suggest higher global protein and transcript correlations may be more characteristic of high-grade disease; 91% of EEC tumors analyzed by Dou et al. were grade 1–2. Again, although ULMs are benign neoplasms, ULMs from HLRCC patients

Table 4. Peptides quantified in HLRCC versus NS ULMs encoding functionally characterized 2-succinyl modified cysteine residues. 2SC modified PSMs elevated in HLRCC versus NS ULMs, denotes total number of ULMs candidates PSMs were quantified in, \(n \) cases quantified, as well as specific residue, impact on protein function and supporting citations (Pubmed ID).

Gene name	HLRCC vs NS \(\text{P-value} \) \(\text{HLRCC vs NS ULM (n cases quantified)} \)	Protein name	Modified Cysteine	Impact of cysteine modification	Citation \(\text{Pubmed ID} \)
CLIC1	2.78 \(< 0.0001 \) 15_13	Chloride intracellular channel protein 1 1C24	Loss of dimerization and of ion transport activity	14613939	
MGST3	2.56 \(< 0.0001 \) 15_13	Microsomal glutathione S-transferase 3 C150	Abolishes S-acylation; when associated with S-151	21044946	
PRDX5	0.51 0.4 4_3	Peroxiredoxin-5, mitochondrial C204	Complete loss of protein activity	10751410	
NFKB1	0.479 N/A 5_1	Nuclear factor NF-kappa-B p105 subunit C61	Suppresses S-nitrosylation-induced inhibition of DNA-binding activity	11466314	
CKB	0.263 0.22 10_10	Creatine kinase B-type C283	Complete loss of protein activity	8186255	

Figure 7. Unsupervised cluster analysis of quantified peptides exhibiting 2-succinyl modified cysteine residues in uterine leiomyomas (ULMs) from Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) and non-syndromic (NS) patients. (A) Heatmaps detail 60 peptide spectral matches (PSMs) encoding 2-succinyl modified cysteine residues quantified in HLRCC and non-syndromic ULMs; clusters organized by correlation and average linkage (ClustVis). (B) Principle component analyses of these 60 2SC-PSMs revealed the abundance of these features can explain 67.1% of the variance (PC1) and 5.9% of the variance (PC2) between these patient cohorts; median difference of 2SC-PSMs = 1.86, MWU \(p < 0.0001 \).
have been described to exhibit characteristics such as morphologic atypia in comparison to NS ULMs and to further parallel morphologic characteristics of renal cell carcinoma cells, a malignant neoplasm\(^1^\), suggesting HLRCC ULMs may exhibit more aggressive features versus NS ULMs. Our study has also identified alterations in HLRCC ULMs that have been explored in relation to therapeutic interventions for cancer treatment as well as in FH mutant backgrounds. We find thioredoxin reductase (TXNRD1) is elevated at both protein and transcript levels in HLRCC (Table 1). We further find 2SC-modified peptides from thioredoxin (TXN), a substrate of TXNRD1\(^3^4\), as elevated in HLRCC versus NS ULMs\(^2^4,2^5\). Arsenic trioxide targets TXNRD1\(^3^5\) and this drug has been assessed as a therapeutic strategy for the treatment of acute promyelocytic leukaemia (APL). Additionally, a recent study\(^3^6\) has shown that proteasome inhibition (marizomib) in FH mutant tumor cells in vitro and in vivo increases cell death by disrupting glycolysis through downregulation of ubiquitin-binding protein p62, also known as sequestosome-1 (SQSTM1) and the proto-oncogene MYC. We investigated these findings in our data and find SQSTM1, a downstream target gene of NRF2, to be significantly elevated at both the protein and transcripts levels (noted in results, Table 1) in HLRCC ULMs as well as MYC at the transcript level (+1.02 logFC, LIMMA adjusted p = 0.005) in HLRCC versus NS ULMs.

These data also provide insight into a post-translational modification event that results from the inactivation of FH activity in HLRCC characterized within clinically-relevant tissue samples, where 367 2SC-modified peptides were directly observed and quantified by MS, among which 53 have been observed in cell line models of HLRCC\(^2^6\) and 18 also described in FH mutant human tissues\(^2^7\) (Supplemental Table 17). We further show that proteome and transcriptome data generated for a ULM collected from an HLRCC patient (patient 1805) profiled as a NS ULM and did not harbor an FH mutation by WGS analyses, further exhibited very low abundance of 2SC modified peptides. These findings underscore the specificity of 2SC-modified protein targets in HLRCC tissues and the diagnostic potential of assessing this modification by immunohistochemistry\(^3^7\), or perhaps by quantifying specific 2SC modified peptides using targeted mass spectrometry approaches, such as using selected reaction monitoring (SRM) assays that could lead to prioritization of suspected HLRCC patients for genetic testing to confirm mutation in FH.

In conclusion, our data provides a deep proteogenomic analysis of ULMs from HLRCC patients and non-syndromic patients and further defines the impact of FH mutation on the proteome of disease-relevant tissues. Limitations of this study include that the majority of NS ULMs assessed were from women of AA descent while ULMs from HLRCC patients were largely from women of EA descent (Supplemental Table 1). As ULM incidence and disease prognosis is known to be racially disparate\(^3^8\), with higher incidence in AA women, interestingly we note that all HLRCC study subjects had multiple fibroids. This percentage is higher than expected based on the racial composition of the group\(^3^9–4^2\) and might be considered a limitation of the study; or alternately a characteristic of the HLRCC propensity to form ULMs. Such observations create an opportunity for future investigations to examine molecular alterations underlying the developmental program of ULMs correlating with patient race in the context of FH inactivation. Our study is further limited by the comparison of RNA extracted from ULM tissue sections with proteomic data generated from cryopulverized tissues which may underrepresent coordinated regulation of transcript and protein abundances impacted by intratumoral heterogeneity. Our findings underscore the implications of FH mutation on the HLRCC tumor proteome, highlight the dependence of these tumors on the NRF2 antioxidant response pathway and includes the description and validation of multiple transcripts and 2SC-modified protein targets that provide novel insights into molecular mechanisms underlying HLRCC disease pathogenesis.

Materials and methods

Uterine fibroid tissues. Flash-frozen uterine leiomyomas were obtained under an institutional-review board approved protocol IRB00093931 from Johns Hopkins University School of Medicine (Baltimore, MD). All study protocols were approved for use under institutional-review board approved protocols from Johns Hopkins University School of Medicine (IRB00093931, Baltimore, MD) and the Western IRB-approved protocol “An Integrated Molecular Analysis of Endometrial and Ovarian Cancer to Identify and Validate Clinically Informative Biomarkers” deemed exempt under US Federal regulation 45 CFR 46.102(f). All experimental protocols involving human data in this study were in accordance with the Declaration of Helsinki and informed consent was obtained from all patients. Tissues were scolled for DNA preparation or scraped for RNA preparation from sections generated using frozen, OCT-embedded samples into microfuge tubes. Tissues were cryopulverized for proteomic sample preparation, resuspended in 100 mM triethylammonium bicarbonate (TEAB), and sonicated.

Protein digestion, TMT labeling and offline fractionation of uterine fibroid samples. Protein was quantified by a bicinchoninic acid (BCA, Thermo Scientific) assay and 50 µg of total protein in 100 mM TEAB was transferred to MicroTubes (Pressure Biosciences, Inc) and incubated at 99 °C for 1 h. One microgram of SMART Digest Trypsin (Thermo Scientific) was added to each sample and MicroTubes were capped with MicroPestles. Pressure-assisted lysis and digestion was performed in a barocycler (2320 EXT, Pressure BioSciences, Inc) by sequentially cycling between 45 kpsi (50 s) and atmospheric pressure (10 s) for 120 cycles at 50 °C. The peptide digests were transferred to 0.5 mL microcentrifuge tubes, vacuum-dried, resuspended in 100 mM TEAB, pH 8.0 and the peptide concentration of each digest was determined by a BCA assay. Fifteen micrograms of peptide from each sample, along with a reference sample assembled by pooling equivalent amounts of peptide digests from individual patient samples, were aliquoted into a final volume of 100 µL of 100 mM TEAB and labeled with tandem-mass tag (TMT) isobaric labels (TMT10 Isobaric Label Reagent Set, Thermo Fisher Scientific) according to the manufacturer’s protocol. Each TMT sample multiplex was pooled and fractionated by basic reversed-phase liquid chromatography (bRP LC, 1260 Infinity II liquid chromatograph,
RNA extraction for uterine fibroid tissue samples. Optimal cutting temperature (OCT)-embedded fresh-frozen tissue was collected in ATL buffer (Qiagen Sciences LLC, Germantown, MD). Samples were normalized to 360 μL ATL buffer and 40 μL of proteinase K was added for lysis and incubated at 56 °C for 4 h with intermittent shaking. DNA isolation was performed according to the manufacturer’s protocol (DNA Purification from Tissues) using the QiAamp DNA Mini Kit (Qiagen Sciences LLC, Germantown, MD). DNA was eluted after a 10 min incubation with 40 μL of Buffer AE, followed by another 10 min incubation with 160 μL of nuclease-free water (Thermo Fisher Scientific) and reduced to 50 μL by vacuum centrifugation (CentriVap Concentrator, Labconco, Kansas City, MO). Quantity and purity (260/280 ratio) were determined using the Nanodrop 2000 Spectrophotometer (Thermo Fisher Scientific) and Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific) according to manufacturer’s protocols.

DNA extraction for uterine fibroid tissue samples. Tissue scrolls were generated from OCT-embedded fresh-frozen tumors or matched myometrium (n = 8 patient samples) and collected in ATL buffer (Qiagen Sciences LLC, Germantown, MD). Samples were normalized to 360 μL ATL buffer and 40 μL of proteinase K was added for lysis and incubated at 56 °C for 4 h with intermittent shaking. DNA isolation was performed according to the manufacturer’s protocol (DNA Purification from Tissues) using the QiAamp DNA Mini Kit (Qiagen Sciences LLC, Germantown, MD). DNA was eluted after a 10 min incubation with 40 μL of Buffer AE, followed by another 10 min incubation with 160 μL of nuclease-free water (Thermo Fisher Scientific) and reduced to 50 μL by vacuum centrifugation (CentriVap Concentrator, Labconco, Kansas City, MO). Quantity and purity (260/280 ratio) were determined using the Nanodrop 2000 Spectrophotometer (Thermo Fisher Scientific) and Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific) according to manufacturer’s protocols.

Proteomics analyses and data processing. The TMT sample multiplex bRPLC fractions were resuspended in 100 mM NH₄HCO₃ and analyzed by LC–MS/MS employing a nanoflow LC system (EASY-nLC 1200, Thermo Fisher Scientific) coupled online with an Orbitrap Fusion Lumos MS (Thermo Fisher Scientific). In brief, each fraction (~500 ng total peptide) was loaded on a nanoflow HPLC system fitted with a reversed-phase trap column (Acclaim PepMap100 C18, 20 mm, nanoViper, Thermo Scientific) and a heated (50 °C) reversed-phase analytical column (Acclaim PepMap RSLC C18, 2 μm, 100 Å, 75 μm × 500 mm, nanoViper, Thermo Fisher Scientific) coupled online with the MS. Peptides were eluted by developing a linear gradient of 2% mobile phase B (95% acetonitrile, 0.1% formic acid) to 32% mobile phase B over 75 min at a constant flow rate of 250 nL/min. For both instrument platforms, the electrospray source capillary voltage and temperature were set at 1.9 kV and 275 °C, respectively. High resolution (R = 120,000 at m/z 200) broadband (m/z 400–1600) mass spectra (MS) were acquired, followed by 3 s of selection of the most intense molecular ions in each MS scan for high-energy collisional dissociation (HCD). Instrument specific parameters were set as follows for each instrument platform. Orbitrap Fusion Lumos—Full MS: AGC, 5e5; RF Lens, 30%; Max IT, 50 ms; Charge State, 2–4; Dynamic Exclusion, 10 ppm/30 s; MS2: AGC, 5e4; Max IT, 120 ms; Resolution, 50 k; Quadrupole Isolation, 0.8 m/z; Isolation Offset, 0.2 m/z; HCD, 35; First Mass, 100.

Peptide identifications and protein quantitation for TMT multiplexes were performed as recently described44. Briefly,.RAW data files were searched with a publicly-available, nonredundant human proteome database (Uniprot, 07/12/2016) using Mascot (v2.6.0, Matrix Science) and Proteome Discoverer (v2.2.0.388, Thermo Fisher Scientific) using the following parameters: precursor mass tolerance of 10 ppm, fragment ion tolerance of 0.05 Da, dynamic modifications (e.g., Oxidation (M), Carbamidomethyl (C), Phosphorylation (S,T,Y), Acetyl (N-term), Triplet (K), Succinyl (2SC) (116.0109 Da) on cysteine residues for 2SC-specific searches and TMT reporter ion tags (229.1629 Da) on peptide N-termini and lysine residues. Peptide digests for seven ULMs were included as technical replicates in several TMT multiplexes and exhibited high quantitative correlation (median Spearman Rho = 0.83 ± 0.078) with the first technical replicate was included in downstream analyses. Technical replicates for proteomics analyses and data processing.

RNA-seq analyses and data processing. Sequencing libraries were prepared from 500 ng of total RNA input using the TruSeq Stranded mRNA Library Preparation Kit (Illumina) with index barcoded adapters. Sequencing library yield and concentration was determined using the Illumina/Universal Library Quantification Kit (KAPA Biosystems, Wilmington, MA, USA) on the CFX 384 real time system (BIO-RAD). Library size distribution was determined using the Fragment Analyzer TM (Advanced Analytical Technologies Inc.) with adapter dimer contamination confirmed to be less than 0.3%. Clustering and sequencing was performed using the HiSeq 500 (Illumina) using a High Output 150 cycle kit for paired-end reads of 75 bp length and an intended depth of 50 million reads per sample. Illumina bcl files were demultiplexed and converted to fastq files using bcl2fastq version 2.17. We aligned FASTQ files to hg19 by STAR aligner (2.4.2a) and quantified transcription abundance level using RSEM (1.2.22) package. Gencode v19 defined the gene models. Data were quality verified by parameters of alignment rate, base quality and GC content. Transcripts Per Kilobase Million mapped reads counts were log, normalized across ULMs and z-score normalized by patient sample for correlation analyses. Differential expression analyses was performed on log,(TPM count + 1) transformed data using the LIMMA package (version 3.8)45 in R (version 3.6.0).
DNA PCR-free library preparation and whole genome sequencing. TruSeq DNA PCR-free Library Preparation Kit (Illumina, San Diego, CA) was performed following manufacturer’s instructions. Briefly, genomic DNA (gDNA) was diluted to 20 ng/μL using Resuspension Buffer (RSB, Illumina) and 55 μL were transferred to Covaris microTubes (Covaris, Woburn, MA). The normalized gDNA was then sheared on an LE220 focused-ultrasonication system (Covaris) to achieve target peak of 450 bp with an Average Power of 81.0 W (SonoLab settings: duty factor, 18.0%; peak incident power, 45.0 watts; 200 cycles per burst; treatment duration, 60 s; water bath temperature, 5–8.5 °C). The quality of the final DNA libraries was assessed (High Sensitivity dsDNA, AATI). Per manufacturer’s protocol, library peak size was in the range of 550 to 620 bp. The DNA libraries were quantified by real-time quantitative PCR, using the KAPA SYBR FAST Library Quantification Kit (KAPA Biosystems, Boston, MA) optimized for the Roche LightCycler 480 instrument (Roche). DNA libraries were then normalized to 2 nM and clustered on the Illumina cBot 2 at 200 pM using a HiSeq X Flowcell v2 and the HiSeq X HD Paired-End Cluster Generation Kit v2. Paired-end sequencing was performed with the HiSeq X HD SBS Kit (300 cycles) on the Illumina HiSeq X. Mean genome coverage was 30X and all patient samples exceeded this expectation.

DNA WGS processing and variant calling. WGS sample raw reads were aligned to the hg19 reference genome and further processed through the Resequencing workflow within Illumina’s HiSeq Analysis Software (HAS; Isis version 2.5.55.1311; https://support.illumina.com/sequencing/sequencing_software/hiseq-analysis-software-v2-1.html). This workflow utilizes the Isaac read aligner (iSAAC-SAAC00776.15.01.27) and variant caller (starka-2.1.4.2)46, the Manta structural variant caller (version 0.23.1)47, and the Canvas CNV caller (version 1.1.0.5)48. We performed focused mutational and structural variant analyses of FH as well as driver genes known to underlie pathogenesis of uterine leiomyomas, including MED12, HMGA1, HMGA2, COL4A5, and COL6A4. We did not observe alterations for HMGA2 that were above next generation sequence caller thresholds. Notably, we identified mutations in the FH gene in matched myometrium tissues, but not in companion ULMs for a subset of ULM patients (patients 1796, 1802 and 1803). Although positive evidence for mutations in FH within ULM tumor WGS data was present, these fell short of thresholds imposed for mutational calls and these variants were thus flagged as “LowGQX” (Supplemental Table 2). We predicted patient sample super population ancestries (Supplemental Table 1) using the methods implemented in Peddy49. Briefly, principal component reduction was performed on genotype calls at specific loci from 2504 samples in the 1000 Genomes project and a support vector machine (SVM) classifier was trained on the resulting first four components, using known ancestries as the training labels. Genotype calls at the same loci from each sample collected in this study were then mapped to principal component space and the trained SVM was used to predict ancestries. All classifier prediction probabilities were > 0.89.

Data availability

Supplemental data tables include global proteome (logFC protein-abundance, Supplemental Table 5) and transcriptome (TPM level, Supplemental Table 3) level data. RAW LC–MS data files can be accessed at the ProteomeXchange Consortium using the PRIDE50 partner repository with the dataset identifier PXD024830Whole genome sequencing data will be deposited European Genome-phenome Archive (EGA).

Received: 23 October 2020; Accepted: 14 April 2021

Published online: 30 April 2021

References

1. Baird, D. D., Dunson, D. B., Hill, M. C., Cousins, D. & Schectman, J. M. High cumulative incidence of uterine leiomyoma in black and white women: Ultrasound evidence. Am. J. Obstet. Gynecol. 188, 100–107 (2003).
2. Laughlin, S. K. & Stewart, E. A. Uterine leiomyomas: Individualizing the approach to a heterogeneous condition. Obstet. Gynecol. 117, 396–403 (2011).
3. Catherino, W. H., Parrott, E. & Segars, J. Proceedings from the National Institute of Child Health and Human Development confer- ence on the Uterine Fibroid Research Update Workshop. Fertil. Steril. 95, 9–12 (2011).
4. Stewart, E. A. Uterine fibroids. Lancet 357, 295–298 (2001).
5. Cardozo, E. R. et al. The estimated annual cost of uterine leiomyomata in the United States. Am. J. Obstet. Gynecol. 206(211), e211–219 (2012).
6. Launonen, V. et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc. Natl. Acad. Sci. U.S.A. 98, 3387–3392 (2001).
7. Tomlinson, P. L. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).
8. Eng, C., Kiuru, M., Fernandez, M. J. & Aaltonen, L. A. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat. Rev. Cancer 3, 193–202 (2003).
9. Hodge, J. & Morton, C. Genetic heterogeneity among uterine leiomyomata: Insights into malignant progression. Hum. Mol. Genet. 16, R7–R13 (2007).
10. Mahine, M. et al. Characterization of uterine leiomyomas by whole-genome sequencing. N. Engl. J. Med. 369, 43–53 (2013).
11. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).
12. Stewart, L. et al. Association of germline mutations in the fumarate hydratase gene and uterine fibroids in women with hereditary leiomyomatosi s and renal cell cancer. Arch. Dermatol. 144, 1584–1592 (2008).
13. Blois, M. D. et al. Proteogenomic characterization of endometrial carcinoma. Cell 180(729–748), e726 (2020).
14. Gille et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182(200–225), e235 (2020).
15. Kramer, A., Green, J., Pollard, J. J. & Tugendreich, S. Causal analysis approaches iningenuity pathway analysis. Bioinformatics 30, 523–530 (2014).
expressed herein are those of the authors and do not reflect the official policy of the Department of Army/Navy/Services University of the Health Sciences (HU0001-16-2-0006 and HU0001-16-2-0014). Disclaimer: The views and data presented in this manuscript were prepared as a result of assistance in data preparation. This study was supported in part by the U.S. Department of Defense—Uniformed Services University of the Health Sciences (HU0001-16-2-0006 and HU0001-16-2-0014).

Thank you to Sara Scannell, BS for critical review of this manuscript and to Sasha Makohon-Moore, PhD for assistance in data preparation. This study was supported in part by the U.S. Department of Defense—Uniformed Services University of the Health Sciences (HU0001-16-2-0006 and HU0001-16-2-0014). Disclaimer: The views expressed herein are those of the authors and do not reflect the official policy of the Department of Army/Navy Air Force, Department of Defense, or U.S. Government.
Author contributions
Contributed to conception: N.W.B., C.M.T., T.P.C., J.S., A.A., G.L.M. Contributed to experimental design: N.W.B., C.M.T., K.C., T.L., J.O., M.Z., P.D., C.V., C.D., T.P.C. Contributed to identification and acquisition of the patient specimens: J.O., P.D. Contributed to acquisition, analysis and/or interpretation of data: N.W.B., C.M.T., T.A., A.R.S., M.Z., K.C., T.L., J.O., B.H., P.D., C.V., C.D., M.W. Drafted and/or revised the article: N.W.B., C.M.T., T.A., A.R.S., W.C., C.A.H., K.M.D., Y.C., A.A., J.S., T.P.C., G.L.M. Acquired funding for the research: Y.C., C.A.H., G.L.M. All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-88585-x.

Correspondence and requests for materials should be addressed to T.P.C. or G.L.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021