Radiative and Semileptonic B Decays Involving Higher K-Resonances in the Final States

Hisaki Hatanaka and Kwei-Chou Yang

Department of Physics,
Chung-Yuan Christian University,
Chung-Li, Taiwan 320, R.O.C.

(Dated: January 13, 2010)

Abstract

We study the radiative and semileptonic B decays involving a spin-J resonant $K_J^{(*)}$ with parity $(-1)^J$ for K_J^* and $(-1)^{J+1}$ for K_J in the final state. Using the large energy effective theory (LEET) techniques, we formulate $B \to K_J^{(*)}$ transition form factors in the large recoil region in terms of two independent LEET functions $\zeta_{K_J^{(*)}}^{\perp}$ and $\zeta_{K_J^{(*)}}^{\parallel}$, the values of which at zero momentum transfer are estimated in the BSW model. According to the QCD counting rules, $\zeta_{K_J^{(*)}}^{\perp,\parallel}$ exhibit a dipole dependence in q^2. We predict the decay rates for $B \to K_J^{(*)}\gamma$, $B \to K_J^{(*)}\ell^+\ell^-$ and $B \to K_J^{(*)}\nu\bar{\nu}$. The branching fractions for these decays with higher K-resonances in the final state are suppressed due to the smaller phase spaces and the smaller values of $\zeta_{K_J^{(*)}}^{\perp,\parallel}$. Furthermore, if the spin of $K_J^{(*)}$ becomes larger, the branching fractions will be further suppressed due to the smaller Clebsch-Gordan coefficients defined by the polarization tensors of the $K_J^{(*)}$. We also calculate the forward backward asymmetry of the $B \to K_J^{(*)}\ell^+\ell^-$ decay, for which the zero is highly insensitive to the K-resonances in the LEET parametrization.

PACS numbers: 13.20.He, 14.40.Ev, 12.39.Hg
I. INTRODUCTION

The flavor-changing neutral current (FCNC) $b \to s$ processes suppressed in the standard model (SM) could receive sizable new-physics contributions. Recently BABAR and Belle have shown interesting results on the longitudinal fraction, forward-backward asymmetry and isospin asymmetry of the $B \to K^* \ell^+ \ell^-$ decays [1–6]. Although the data are still consistent with the SM predictions, they favor the flipped-sign c_{7}^{eff} models [7]. The minimal flavor violation supersymmetry models with large $\tan \beta$ can be fine-tuned to have the flipped sign c_{7}^{eff}, where the dominant contributions due to the charged Higgs exchange to c_9 and c_{10} are suppressed by $1/\tan^2 \beta$ for large $\tan \beta$ [8, 9]. The LHCb is devoted to the B physics studies. Due to the large cross section for $b \bar{b}$ production, the measurement for the rare decays can extend down to 10^{-9} branching ratio. It was estimated by the LHCb collaboration that with a data set of 2 fb$^{-1}$ the $B \to K^* \ell^+ \ell^-$ signal events can be improved by an order of magnitude compared with the present results.

Using the large energy effective theory (LEET) techniques [10], we have formulated the $B \to K_2^*(1430)$ form factors in the large recoil region [11], and further studied the decays $B \to K_2^*(1430)\gamma$, $B \to K_2^*(1430)\ell^+ \ell^-$ and $B \to K_2^*(1430)\nu \bar{\nu}$. In this paper we will generalize to the studies of $B \to K_j^{(s)}\gamma$, $B \to K_j^{(s)}\ell^+ \ell^-$ and $B \to K_j^{(s)}\nu \bar{\nu}$ decays.

\begin{table}[ht]
\centering
\caption{The data for branching ratios of the radiative and semi-leptonic B decays involving strange mesons.}
\begin{tabular}{lcc}
\hline
mode & \mathcal{B} [10$^{-6}$] & mode & \mathcal{B} [10$^{-6}$] \\
\hline
$B^+ \to K_2^*(892)\gamma$ & 43.6 ± 1.8 [12–15] & $B^0 \to K_2^*(892)\gamma$ & 43.3 ± 1.5 [12–15] \\
$B^+ \to K_3^+(1780)\gamma$ & 14.5 ± 4.3 [16] & $B^0 \to K_3^*(1780)\gamma$ & 12.4 ± 2.4 [16, 17] \\
$B^+ \to K_3^+(1892)\gamma$ & < 39 [18] & $B^0 \to K_2^*(1430)\gamma$ & < 83 [18] \\
$B^+ \to K_3^+(1430)\gamma$ & 143.5 ± 4.3 [16] & $B^0 \to K_3^*(1430)\gamma$ & 12.4 ± 2.4 [16, 17] \\
$B^+ \to K_3^+(1780)\gamma$ & < 39 [18] & $B^0 \to K_2^*(1780)\gamma$ & < 83 [18] \\

$B^+ \to K_1^+(1270)\gamma$ & 43 ± 12 [22] & $B^0 \to K_1^+(1270)\gamma$ & < 58 [22] \\
$B^+ \to K_1^+(1400)\gamma$ & < 15 [22] & $B^0 \to K_1^+(1400)\gamma$ & < 15 [22] \\

$B^+ \to K_1^+(1270)\gamma$ & 43 ± 12 [22] & $B^0 \to K_1^+(1270)\gamma$ & < 58 [22] \\
$B^+ \to K_1^+(1400)\gamma$ & < 15 [22] & $B^0 \to K_1^+(1400)\gamma$ & < 15 [22] \\

$b \to s \gamma$ & 352 ± 25 [23–25] & $b \to s \ell^+ \ell^-$ & $4.50^{+1.03}_{-1.01}$ [26–28] \\
\hline
\end{tabular}
\end{table}
within the SM, where K_J^* and K_J are the spin-J resonances with parities $(-1)^J$ and $(-1)^{J+1}$, respectively. We anticipate to see these modes at LHCb, compared with the current data in Table I. In the present study, we will show that the form factors for general $B \to K_J^{(*)}$ transitions can be parametrized in terms of two independent LEET functions, $\zeta_{\perp}^{K_J^{(*)}}(q^2)$ and $\zeta_{\parallel}^{K_J^{(*)}}(q^2)$ together with the Clebsch-Gordan coefficients, $\alpha_L^{(J)}$ and $\beta_T^{(J)}$. The values of $\zeta_{\perp}^{K_J^{(*)}}(0)$ and $\zeta_{\parallel}^{K_J^{(*)}}(0)$ will be estimated by using the Bauer-Stech-Wirbel (BSW) model. Moreover, we find that branching fractions with higher resonances, $K_J^{(*)}$, becomes smaller not only due to their smaller phase spaces, but also to the smaller $\zeta_{\perp,\parallel}^{K_J^{(*)}}$. Meanwhile, the branching fractions involving $K_J^{(*)}$ with higher spin J will be further suppressed due to smaller Clebsch-Gordan coefficients defined by the polarization tensors of the $K_J^{(*)}$.

There have been a few studies of radiative B decays into higher K-resonances in the literature. A discussion for the general cases was given in Ref. [32], where for various processes the authors parameterize the relevant form factors into four Isgur-Wise functions, which are estimated from Isgur-Scora-Grinstein-Wise (ISGW) model [36]. However, they obtained $B(B \to K_1(1270)\gamma) < B(B \to K_1(1400)\gamma) \simeq (2.4 - 5.2) \times 10^{-5}$, in contradiction to the observation (see Table I). One of the motivations for this work is further to re-examine the other radiative decay channels with higher K-resonances.

This paper is organized as follows. In Sec. II we formulate the $B \to K_J^{(*)}$ form factors using the LEET techniques. In Sec. III we estimate the LEET form factors, $\zeta_{\perp}^{K_J^{(*)}}(0)$ and $\zeta_{\parallel}^{K_J^{(*)}}(0)$, in the BSW model, and then numerically study the radiative and semileptonic B meson decays into the $K_J^{(*)}$, including the analyses for the forward-backward asymmetries and longitudinal fraction distributions for $B \to K_J^{(*)}\mu^+\mu^-$. We conclude with a summary in Sec. IV. The derivation of the $B \to K_J$ form factors is given in Appendix A.

II. $B \to K^*_J$ FORM FACTORS IN THE LARGE RECOIL REGION

In this section, using the LEET technique, we formulate $B \to K^*_J$ form factors in the large recoil region. The analogous formulation for $B \to K_J$ form factors is given in Appendix A. In this paper K^*_J and K_J stand for the higher spin-J K-resonances with parities $(-1)^J$ and $(-1)^{J+1}$, respectively. For simplicity we study in the rest frame of the
B meson (with mass \(m_B \)) and assume that the tensor meson \(K_J^* \) (with mass \(m_{K_J^*} \) and energy \(E \)) moves along the z-axis. In the LEET limit, \(E, m_B \gg m_{K_J^*}, \Lambda_{\text{QCD}} \), the momenta of the \(B \) and \(K_J^* \) are given by

\[
p_B^\mu = (m_B, 0, 0, 0) = m_B v^\mu, \quad p_{K_J^*}^\mu = (E, 0, 0, p_3) \simeq E n^\mu, \tag{1}
\]

respectively. Here \(v^\mu = (1, 0, 0, 0) \), \(n^\mu = (1, 0, 0, 1) \), and the tensor meson’s energy \(E \) is given by

\[
E = \frac{m_B}{2} \left(1 - \frac{q^2}{m_B^2} + \frac{m_{K_J^*}^2}{m_B^2} \right), \tag{2}
\]

with \(q = p_B - p_{K_J^*} \).

The polarization tensors \(\varepsilon(\lambda)^{\mu_1 \mu_2 \cdots \mu_J} \) of the massive spin-\(J \) meson with helicity \(\lambda \) that can be constructed in terms of the polarization vectors of a massless vector state with the mass \(m_{K_J^*} \)

\[
\varepsilon(0)^{\mu} = (p_3, 0, 0, E)/m_{K_J^*}, \quad \varepsilon(\pm 1)^{\mu} = (0, \mp 1, \mp i, 0)/\sqrt{2}, \tag{3}
\]

are given by

\[
\varepsilon(\pm 2)^{\mu\nu} \equiv \varepsilon(\pm 1)^{\mu} \varepsilon(\pm 1)^{\nu}, \tag{4}
\]

\[
\varepsilon(\pm 1)^{\mu\nu} \equiv \sqrt{\frac{1}{2}} \left[\varepsilon(\pm 1)^{\mu} \varepsilon(0)^{\nu} + \varepsilon(0)^{\mu} \varepsilon(\pm 1)^{\nu} \right], \tag{5}
\]

\[
\varepsilon(0)^{\mu\nu} \equiv \sqrt{\frac{1}{6}} \left[\varepsilon(+1)^{\mu} \varepsilon(-1)^{\nu} + \varepsilon(-1)^{\mu} \varepsilon(+1)^{\nu} \right] + \sqrt{\frac{2}{3}} \varepsilon(0)^{\mu} \varepsilon(0)^{\nu}, \tag{6}
\]

for \(J = 2 \) and

\[
\varepsilon(\pm 3)^{\mu\nu\rho} = \varepsilon(\pm 1)^{\mu} \varepsilon(\pm 1)^{\nu} \varepsilon(\pm 1)^{\rho}, \tag{7}
\]

\[
\varepsilon(\pm 2)^{\mu\nu\rho} = \sqrt{\frac{1}{3}} \left[\varepsilon(0)^{\mu} \varepsilon(\pm 1)^{\nu} \varepsilon(\pm 1)^{\rho} + \varepsilon(\pm 1)^{\mu} \varepsilon(0)^{\nu} \varepsilon(\pm 1)^{\rho} + \varepsilon(\pm 1)^{\mu} \varepsilon(\pm 1)^{\nu} \varepsilon(0)^{\rho} \right], \tag{8}
\]

\[
\varepsilon(\pm 1)^{\mu\nu\rho} = \sqrt{\frac{1}{15}} \left[\varepsilon(\mp 1)^{\mu} \varepsilon(\pm 1)^{\nu} \varepsilon(\pm 1)^{\rho} + \varepsilon(\pm 1)^{\mu} \varepsilon(\mp 1)^{\nu} \varepsilon(\pm 1)^{\rho} + \varepsilon(\mp 1)^{\mu} \varepsilon(\pm 1)^{\nu} \varepsilon(\mp 1)^{\rho} \right] \\
+ 2 \sqrt{\frac{1}{15}} \left[\varepsilon(\pm 1)^{\mu} \varepsilon(0)^{\nu} \varepsilon(\pm 1)^{\rho} + \varepsilon(0)^{\mu} \varepsilon(\pm 1)^{\nu} \varepsilon(\pm 1)^{\rho} + \varepsilon(0)^{\mu} \varepsilon(\pm 1)^{\nu} \varepsilon(0)^{\rho} \right], \tag{9}
\]

\[
\varepsilon(0)^{\mu\nu\rho} = \sqrt{\frac{1}{10}} \left[\varepsilon(0)^{\mu} \varepsilon(+1)^{\nu} \varepsilon(-1)^{\rho} + \varepsilon(+1)^{\mu} \varepsilon(0)^{\nu} \varepsilon(-1)^{\rho} + \varepsilon(+1)^{\mu} \varepsilon(-1)^{\nu} \varepsilon(0)^{\rho} + \varepsilon(0)^{\mu} \varepsilon(-1)^{\nu} \varepsilon(+1)^{\rho} + \varepsilon(-1)^{\mu} \varepsilon(0)^{\nu} \varepsilon(+1)^{\rho} + \varepsilon(-1)^{\mu} \varepsilon(+1)^{\nu} \varepsilon(0)^{\rho} \right] + \\
\sqrt{\frac{2}{5}} \varepsilon(0)^{\mu} \varepsilon(0)^{\nu} \varepsilon(0)^{\rho}, \tag{10}
\]
for $J = 3$, and so on. $\varepsilon(\lambda)^{\mu_1\mu_2\cdots\mu_J}$ is symmetric under interchange of any two of μ_j and μ_k ($1 \leq j, k \leq J$), and satisfies divergence-free conditions $p_{K^*} \varepsilon(\lambda)^{\mu_1\cdots\mu_{J-1}} = 0$, traceless conditions $g_{\mu_1\mu_2} \varepsilon(\lambda)^{\mu_1\mu_2\nu_1\cdots\nu_{J-2}} = 0$, and orthonormal conditions $\varepsilon(h_1)^{\mu_1\mu_2\cdots\mu_J} \varepsilon(h_2)^{\mu_1\mu_2\cdots\mu_J} = \delta_{h_1 h_2}$.

In the following, we calculate the $\overline{B} \rightarrow K^*_J$ transition form factors:

$$
\langle \overline{K}_J | V^\mu | \overline{B} \rangle, \quad \langle \overline{K}_J^* | A^\mu | \overline{B} \rangle, \quad \langle \overline{K}_J^* | T^{\mu\nu} | \overline{B} \rangle, \quad \langle \overline{K}_J^* | T_A^{\mu\nu} | \overline{B} \rangle, \quad (11)
$$

where $V^\mu = \bar{s} \gamma^\mu b$, $A^\mu = \bar{s} \gamma^\mu \gamma_5 b$, $T^{\mu\nu} = \bar{s} \sigma^{\mu\nu} b$ and $T_A^{\mu\nu} = \bar{s} \sigma^{\mu\nu} \gamma_5 b$. In the LEET limit one can easily write down the relevant form factors in terms of the following projectors

$$
(\beta_T^{(J)})^{-1} \left(\frac{m_{K^*}}{E} \right)^{J-1} [e(\lambda)^{\nu} \cdot (e(\lambda))^* n^\mu] = \begin{cases}
0 & \text{for } \lambda = \pm 2, \\
\varepsilon(\pm 1)^{\nu} & \text{for } \lambda = \pm 1, \\
0 & \text{for } \lambda = 0,
\end{cases} (12)
$$

$$
(\beta_T^{(J)})^{-1} \left(\frac{m_{K^*}}{E} \right)^{J-1} \epsilon^{\mu\nu\rho\sigma} e(\lambda)^{\nu} n_\rho v_\sigma = \begin{cases}
0 & \text{for } \lambda = \pm 2, \\
\epsilon^{\mu\nu\rho\sigma} (\pm 1)^{\nu} n_\rho v_\sigma & \text{for } \lambda = \pm 1, \\
0 & \text{for } \lambda = 0,
\end{cases} (13)
$$

$$
(\alpha_L^{(J)})^{-1} \left(\frac{m_{K^*}}{E} \right)^J (e(\lambda)^* \cdot v) n^\mu = \begin{cases}
0 & \text{for } \lambda = \pm 2, \\
0 & \text{for } \lambda = \pm 1, \\
n^\mu & \text{for } \lambda = 0,
\end{cases} (14)
$$

$$
(\alpha_L^{(J)})^{-1} \left(\frac{m_{K^*}}{E} \right)^J (e(\lambda)^* \cdot v) v^\mu = \begin{cases}
0 & \text{for } \lambda = \pm 2, \\
0 & \text{for } \lambda = \pm 1, \\
v^\mu & \text{for } \lambda = 0,
\end{cases} (15)
$$

Together with $\epsilon^{\mu\nu\rho\sigma}$, v^μ and n^μ, to project the relevant polarization states of the higher K-resonances, where Eqs. (12), (14) and (15) are the vectors, but Eq. (13) the axial-vector. Here $\epsilon^{0123} = -1$ and we have defined

$$
e(\lambda)^{\mu} \equiv \varepsilon(\lambda)^{\mu_1\mu_2\cdots\mu_{J-1}} v_{\nu_1} v_{\nu_2} \cdots v_{\nu_{J-1}} = \begin{cases}
\alpha_L^{(J)} \varepsilon(0)^\mu \left(\frac{p_3}{m_{K^*}} \right)^{J-1} & \text{for } \lambda = 0, \\
\beta_T^{(J)} \varepsilon(1)^\mu \left(\frac{p_3}{m_{K^*}} \right)^{J-1} & \text{for } \lambda = \pm 1,
\end{cases} (16)
$$

\[5\]
where $\alpha_L^{(j)}$ and $\beta_T^{(j)}$ are the Clebsch-Gordan coefficients of the specific terms of the polarization tensors:

$$
\varepsilon(0)^{\mu_1\cdots\mu_n} = \alpha_L^{(j)} \varepsilon(0)^{\mu} \varepsilon(0)^{\nu_1} \cdots \varepsilon(0)^{\nu_{j-1}} + \text{others},
$$

$$
\varepsilon(\pm 1)^{\mu_1\cdots\mu_n} = \beta_T^{(j)} \varepsilon(\pm 1)^{\mu} \varepsilon(0)^{\nu_1} \cdots \varepsilon(0)^{\nu_{j-1}} + \text{others},
$$

and are given by

$$
\alpha_L^{(j)} = J^{(j,0)} \cdot J^{(j-1,0)} \cdots J^{(2,0)},
$$

$$
\beta_T^{(j)} = J^{(j,1)} \cdot J^{(j-1,0)} \cdots J^{(2,0)},
$$

with $J^{(j,M)}$ being the short-hand notations of the following Clebsch-Gordan coefficients

$$
J^{(j,M)} = \langle (j_1 m_1), (j_2 m_2) | JM \rangle.
$$

The values of $\alpha_L^{(j)}$ and $\beta_T^{(j)}$ for $J = 1, 2, \cdots, 5$ are collected in Table II.

Matching the parities of the matrix elements and using the mentioned Lorentz structures, we can then easily parameterize the form factors to be

$$
\langle K_j | V^\mu | B \rangle = -2E \left(\frac{mk_f}{E} \right)^{J-1} \zeta_{\perp}^{K_j(v)} \varepsilon^{\mu\rho\sigma} \nu_\rho n_\sigma e^*_\rho,
$$

$$
\langle K_j | A^\mu | B \rangle = 2E \left(\frac{mk_f}{E} \right)^{J-1} \zeta_{\perp}^{K_j(a)} \left[e^*_\mu - (e^* \cdot \nu) n_\mu \right]
+ 2E \left(\frac{mk_f}{E} \right)^{J} (e^* \cdot \nu) \left[\zeta_{\parallel}^{K_j(a)} n_\mu + \zeta_{\parallel,1}^{K_j(a)} \nu_\mu \right],
$$

$$
\langle K_j | T^{\mu\nu} | B \rangle = 2E \left(\frac{mk_f}{E} \right)^{J} \zeta_{\parallel}^{K_j(t)(a)} (e^* \cdot \nu) \varepsilon^{\mu\rho\sigma} \nu_\rho n_\sigma
+ 2E \left(\frac{mk_f}{E} \right)^{J-1} \zeta_{\perp}^{K_j(t)} e^{\mu\rho\sigma} n_\rho [e^*_\sigma - (e^* \cdot \nu) n_\sigma]
+ 2E \left(\frac{mk_f}{E} \right)^{J-1} \zeta_{\perp,1}^{K_j(t)} e^{\mu\rho\sigma} n_\rho [e^*_\sigma - (e^* \cdot \nu) n_\sigma],
$$

where $J = 1, 2, \cdots, 5$.
Thus we find that there are only two independent form factors, \(\zeta_\perp \) and \(\zeta_\parallel \), for the \(B \to \bar{K}_J \) transition in the large recoil region. In the full theory, the \(B \to \bar{K}_J \) form factors which are independent,

\[
\begin{align*}
\langle \bar{K}_J | T_A^{\mu \nu} | B \rangle &= -i 2 E \left(\frac{m_{\bar{K}_J}}{E} \right)^{J-1} \zeta_\perp^{K_J(t_s)} \left\{ [e^\mu - (e^\mu \cdot v)] n^\nu - (\mu \leftrightarrow \nu) \right\} \\
&\quad - i 2 E \left(\frac{m_{\bar{K}_J}}{E} \right)^{J-1} \zeta_\perp^{K_J(t_s)} \left\{ [e^\mu - (e^\mu \cdot v)] n^\nu - (\mu \leftrightarrow \nu) \right\} \\
&\quad - i 2 E \left(\frac{m_{\bar{K}_J}}{E} \right)^J \zeta_\parallel^{K_J(t_s)} (e^\nu \cdot v) (n^\mu v^\nu - n^\nu v^\mu).
\end{align*}
\]

Note that the parity of the \(K_J^* \) is \((-1)^J\). \(\langle \bar{K}_J | T_A^{\mu \nu} | B \rangle \) is related to \(\langle \bar{K}_J | T_A^{\mu \nu} | B \rangle \) by the relation: \(\sigma^{\mu \nu} \gamma_5 \epsilon_{\mu \nu \rho \sigma} = 2i \sigma^{\rho \sigma} \). Note also that only the \(K_J^* \) with polarization helicities \(\pm 1 \) and \(0 \) contribute to the \(B \to \bar{K}_J \) transition in the LEET limit, where \(\zeta_\perp \)'s are relevant to \(K_J^* \) with helicity = \(\pm 1 \), and \(\zeta_\parallel \)'s to \(K_J^* \) with helicity = \(0 \).

We can further reduce the number for the \(B \to \bar{K}_J \) form factors which are independent, using the effective current operator \(\bar{s}_n \Gamma b_v \) (with \(\Gamma = 1, \gamma_5, \gamma_5 \gamma_5, \sigma^{\mu \nu}, \sigma^{\mu \nu} \gamma_5 \)) in the LEET limit, instead of the the original one \(\bar{s} \Gamma b \) \(\square \). Here \(b_v \) and \(s_n \) satisfy \(\not \! q b_v = b_v \), \(\not \! q s_n = 0 \) and \((\not \! q / 2) s_n = s_n \). Employing the Dirac identities

\[
\begin{align*}
\not \! q \gamma^\mu &= \frac{\not \! q}{2} (n^\mu \gamma^\nu - ie^{\mu \nu \rho \sigma} v_\nu \not \! n_\rho \gamma_\sigma \gamma_5), \\
\not \! q \sigma^{\mu \nu} &= \frac{\not \! q}{2} [i (n^\mu v^\nu - n^\nu v^\mu) - i (n^\mu \gamma^\nu - n^\nu \gamma^\mu) \not \! q - e^{\mu \nu \rho \sigma} v_\nu n_\rho \gamma_\sigma \gamma_5],
\end{align*}
\]

one can easily obtain the following relations:

\[
\begin{align*}
\bar{s}_n b_v &= v_\mu \bar{s}_n \gamma^\mu b_v, \\
\bar{s}_n \gamma^\mu b_v &= n^\mu \bar{s}_n b_v - ie^{\mu \nu \rho \sigma} v_\nu n_\rho \bar{s}_n \gamma_\sigma \gamma_5 b_v, \\
\bar{s}_n \gamma^\mu \gamma_5 b_v &= -n^\mu \bar{s}_n \gamma_5 b_v - ie^{\mu \nu \rho \sigma} v_\nu n_\rho \bar{s}_n \gamma_\sigma b_v, \\
\bar{s}_n \sigma^{\mu \nu} b_v &= i [n^\mu v^\nu \bar{s}_n b_v - n^\nu \bar{s}_n \gamma^\mu b_v - (\mu \leftrightarrow \nu)] - e^{\mu \nu \rho \sigma} v_\nu n_\rho \bar{s}_n \gamma_5 b_v, \\
\bar{s}_n \sigma^{\mu \nu} \gamma_5 b_v &= i [n^\mu v^\nu \bar{s}_n \gamma_5 b_v + n^\nu \bar{s}_n \gamma^\mu \gamma_5 b_v - (\mu \leftrightarrow \nu)] - e^{\mu \nu \rho \sigma} v_\nu n_\rho \bar{s}_n b_v.
\end{align*}
\]

We can then obtain

\[
\begin{align*}
\zeta_\perp^{K_J(t_s)} &= \zeta_\perp^{K_J(t_s)} (q^2), \\
\zeta_\parallel^{K_J(t_s)} &= \zeta_\parallel^{K_J(t_s)} (q^2), \\
\zeta_\perp^{K_J(t_s)} &= \zeta_\perp^{K_J(t_s)} (q^2).
\end{align*}
\]

Thus we find that there are only two independent form factors, \(\zeta_\perp^{K_J(t_s)} (q^2) \) and \(\zeta_\parallel^{K_J(t_s)} (q^2) \), for the \(B \to \bar{K}_J \) transition in the large recoil region. In the full theory, the \(B \to \bar{K}_J \) form factors
factors are defined as

\[
\langle \mathcal{K}_j(p_{K_j}, \lambda) | \bar{s} \gamma^\mu b | \mathcal{B}(p_B) \rangle = -i \frac{2}{m_B + m_{K_j}} \tilde{V}^{K_j}(q^2) e_{\mu\nu\rho\sigma} p_B p_{K_j}^\rho e(\lambda)^*_\sigma, \quad (36)
\]

\[
\langle \mathcal{K}^*_j(p_{K_j}, \lambda) | \bar{s} \gamma^\mu \gamma_5 b | \mathcal{B}(p_B) \rangle = 2m_{K_j} \tilde{A}_0^{K_j}(q^2) \left(\frac{e(\lambda)^* \cdot p_B}{q^2} - \frac{e(\lambda)^* \cdot p_B}{q^2} q^\mu \right) \left(e(\lambda)^* \cdot p_B \right) \left(p_B^\mu + p_{K_j}^\mu \right) \left(p_B^\mu + p_{K_j}^\mu \right) \left(q^\mu - \frac{q^2}{m_B^2 - m_{K_j}^2} \left(p_B^\mu + p_{K_j}^\mu \right) \right), \quad (37)
\]

\[
\langle \mathcal{K}^*_j(p_{K_j}, \lambda) | \bar{s} \sigma^{\mu\nu} q_\nu b | \mathcal{B}(p_B) \rangle = -2 \tilde{T}_1^{K_j}(q^2) e_{\mu\nu\rho\sigma} p_B p_{K_j}^\rho e(\lambda)^*_\sigma, \quad (38)
\]

\[
\langle \mathcal{K}^*_j(p_{K_j}, \lambda) | \bar{s} \sigma^{\mu\nu} \gamma_5 q_\nu b | \mathcal{B}(p_B) \rangle = -i \tilde{T}_2^{K_j}(q^2) \left(m_B^2 - m_{K_j}^2 \right) e(\lambda)^* \mu \left(e(\lambda)^* \cdot p_B \right) \left(p_B^\mu + p_{K_j}^\mu \right) \left(p_B^\mu + p_{K_j}^\mu \right) \left(q^\mu - \frac{q^2}{m_B^2 - m_{K_j}^2} \left(p_B^\mu + p_{K_j}^\mu \right) \right), \quad (39)
\]

where

\[
e(\lambda)^* \equiv e(p_{K_j}, \lambda)^*_{\mu_1 \nu_1 \cdots \mu_j-1} p_B p_{B, \nu_1} \cdots p_{B, \nu_j-1} / m_B^{j-1}, \quad \lambda = 0, \pm 1. \quad (40)
\]

Comparing Eqs. (36)-(39) with Eqs. (22)-(25), we obtain

\[
\tilde{A}_0^{K_j}(q^2) \left(\frac{p_{K_j}}{m_{K_j}} \right) \equiv A_0^{K_j}(q^2) \simeq \left(1 - \frac{m_{K_j}^2}{m_B^2} \right) \tilde{K}_j^\lambda(q^2) + \frac{m_{K_j}^2}{m_B^2} \tilde{K}_j^\lambda(q^2), \quad (41)
\]

\[
\tilde{A}_1^{K_j}(q^2) \left(\frac{p_{K_j}}{m_{K_j}} \right) \equiv A_1^{K_j}(q^2) \simeq \frac{2E}{m_B + m_{K_j}} \tilde{K}_j^\lambda(q^2), \quad (42)
\]

\[
\tilde{A}_2^{K_j}(q^2) \left(\frac{p_{K_j}}{m_{K_j}} \right) \equiv A_2^{K_j}(q^2) \simeq \left(1 + \frac{m_{K_j}^2}{m_B} \right) \left[\tilde{K}_j^\lambda(q^2) - \frac{m_{K_j}^2}{E} \tilde{K}_j^\lambda(q^2) \right], \quad (43)
\]

\[
\tilde{V}^{K_j}(q^2) \left(\frac{p_{K_j}}{m_{K_j}} \right) \equiv V^{K_j}(q^2) \simeq \left(1 + \frac{m_{K_j}^2}{m_B} \right) \tilde{K}_j^\lambda(q^2), \quad (44)
\]

8
\[
\tilde{T}_1^{K^*_j}(q^2) \left(\frac{p^2_{K^*_j}}{m^2_{K^*_j}} \right)^{J-1} \equiv T_1^{K^*_j}(q^2) \simeq \zeta_\perp^{K^*_j}(q^2),
\]

\[
\tilde{T}_2^{K^*_j}(q^2) \left(\frac{p^2_{K^*_j}}{m^2_{K^*_j}} \right)^{J-1} \equiv T_2^{K^*_j}(q^2) \simeq \left(1 - \frac{q^2}{m^2_B - m^2_{K^*_j}} \right) \zeta_\perp^{K^*_j}(q^2),
\]

\[
\tilde{T}_3^{K^*_j}(q^2) \left(\frac{p^2_{K^*_j}}{m^2_{K^*_j}} \right)^{J-1} \equiv T_3^{K^*_j}(q^2) \simeq \zeta_\perp^{K^*_j}(q^2) - \left(1 - \frac{m^2_{J^*}}{m^2_B} \right) \frac{m_{J^*}}{E} \zeta_\parallel^{K^*_j}(q^2),
\]

where we have used \(e^\mu \approx (p_{K^*_j}/m_{K^*_j})^{J-1} \bar{\epsilon}_J(\mu) \) with \(\bar{\epsilon}_J(\mu) = \alpha_L(\mu) \epsilon(\mu), \bar{\epsilon}_J(\pm 1) = \beta_T(\mu) \epsilon(\pm 1) \) and \(|\bar{p}_{K^*_j}|/E \simeq 1 \).

With the replacement \(\epsilon^\mu \rightarrow \bar{\epsilon}(\mu) \), we can easily generalize the studies for \(B \rightarrow K^*\gamma \), \(B \rightarrow K^*\ell^+\ell^- \) and \(B \rightarrow K^*\nu\bar{\nu} \) to the corresponding decays involving resonant strange tensor mesons.

III. NUMERICAL ANALYSIS

The properties of \(K^{(*)}_J \) mesons are summarized in Table III. In the following numerical study, we use the values of the parameters listed in Table IV.

A. The determination of form factors and \(B \rightarrow K^{(*)}_J \gamma \) Decays

The \(B \rightarrow K^{(*)}_J \gamma \) decay widths are given by

\[
\Gamma(B \rightarrow K^{(*)}_J \gamma) = \frac{G_F^2 \alpha_{EM}}{32\pi^4} |V_{ts} V_{tb}^*|^2 m^2_{b,\text{pole}} m^2_B \left(1 - \frac{m^2_{K^{(*)}_j}}{m^2_B} \right)^3 \times \left| c_7^{(0)\text{eff}} + A^{(1)}(\mu) \right|^2 \left| T_1^{K^{(*)}_j}(0) \right|^2 \left(\beta_T^{(J)} \right)^2.
\]

As for the case with \(J = 2 \), taking into account the data of \(\mathcal{B}(B^0 \rightarrow K^0_2 \gamma) \) and using \(c_7^{(0)\text{eff}} = -0.315, A^{(1)} = A^{(1)}_c + A^{(1)}_{\text{ver}} = -0.038 - 0.016i \), we have obtained [39]

\[
T_1^{K^*_j(1430)}(0) \simeq \zeta^{K^*_j(1430)}(0) = 0.28 \pm 0.03^{+0.00}_{-0.01},
\]

where the first and second errors are due to uncertainties of the data and the pole mass of the \(b \) quark, respectively. In the present paper we use the BSW model [31] to estimate
TABLE III: Properties of resonant $K_J^{(*)}$ mesons (with $J = 1, \cdots, 5$) 29, and $B \to K_J^{(*)}$ LEET form factors calculated in the BSW model 31. $K_1(1270)$ and $K_1(1400)$ are not considered in this paper (see Refs. $^{35, 37}$). States denoted by “(\dagger)” or “?” are not yet well confirmed. In the present paper we do not take into account 1^3G_3 and 1^3H_4 states.

$K_J^{(*)}$	J^{PC}	$n^{2S+1}L_J$	$m_{K_J^{(*)}}$ [MeV]	$\zeta_\perp(0)$	$\zeta_\parallel(0)$
$K^*(1410)$	1--	$2^3S_1^?$	1,414 ± 15	0.28 ± 0.04	0.22 ± 0.03
$K^*(1680)$	1--	1^3D_1	1,717 ± 32	0.24 ± 0.05	0.18 ± 0.03
$K_2^*(1430)$	2++	1^3P_2	1,425.6 ± 1.5 (K_2^{*0})	0.28 ± 0.04	0.22 ± 0.03
$K_2^*(1800)$	2+?	1^3F_2 or $2^3P_2^?$	1,973 ± 26	0.20 ± 0.05	0.14 ± 0.03
$K_3^*(1780)$	3--	1^3D_3	1,776 ± 7	0.23 ± 0.05	0.16 ± 0.03
$K_4^*(2045)$	4++	1^3F_4	2,045 ± 9	0.19 ± 0.05	0.13 ± 0.03
$K_5^*(2380)$	5−?	$1^3G_5^?$	2,382 ± 24	0.15 ± 0.05	0.10 ± 0.03
$K_1(1650)$	1+?	2^1P_1 or $2^3P_1^?$	1,650 ± 50	0.24 ± 0.05	0.18 ± 0.03
$K_2(1770)$	2−+	1^1D_2	1,773 ± 8	0.23 ± 0.05	0.17 ± 0.03
$K_2(1820)$	2−−	$1^3D_2^?$	1,816 ± 13	0.22 ± 0.05	0.16 ± 0.03
$K_2(2250)$	2−?	2^1D_2	2,247 ± 17	0.16 ± 0.05	0.11 ± 0.03
$K_3(2320)$	3+?	1^1F_3 or $1^3F_3^?$	2,324 ± 24	0.15 ± 0.05	0.10 ± 0.03
$K_4(2500)$	4−?	1^1G_4 or $1^3G_4^?$	2,490 ± 20	0.13 ± 0.04	0.09 ± 0.03
$K_5(2600?)$	5+?	1^1H_5 or $1^3H_5^?$	$\sim 2,600? $	0.12 ± 0.04	0.08 ± 0.02

the LEET form factors at zero momentum transfer, which are be written by

$$
\zeta_{\perp}^{K_J^{(*)}}(0) = \frac{m_b - m_s}{2E} J,
$$

$$
\zeta_{\parallel}^{K_J^{(*)}}(0) = \left(A_0^{K_J^{(*)}}(0) - \frac{m_{K_J^{(*)}}}{m_B} \zeta_{\perp}^{K_J^{(*)}}(0) \right) \left(1 - \frac{m_{K_J^{(*)}}^2}{m_B E} \right)^{-1},
$$

(50)
where, after integrating out the degrees of freedom of the spins,

$$ J = \sqrt{2} \int d^2 p_T \int_0^1 \frac{dx}{x} \Phi_{K_J^*}(p_T, x) \Phi_{m_B}(p_T, x), $$

$$ A_{0}^{K_J^*}(0) = \int d^2 p_T \int_0^1 dx \Phi_{K_J^*}(p_T, x) \Phi_{m_0}(p_T, x). \quad (51) $$

Here, for a meson with mass m its wave function can be parameterized as

$$ \Phi_m(p_T, x) = N_m \sqrt{x(1-x)} e^{-p_T^2/2\omega^2} e^{-\frac{m^2}{2x}(x-\frac{1}{2}) - \frac{m_q^2 - m_s^2}{2m^2}} \quad (52) $$

with N_m being a normalization factor such that

$$ \int d^2 p_T \int_0^1 dx \Phi_m^2 = 1 \quad (53) $$

and m_q and m_s the constituent quark masses of the non-spectator and spectator quarks participating in the quark decaying process. We use $\omega = 0.46 \pm 0.05$ GeV and the following constituent quark masses in the model calculation: $m_u = m_d = 0.33$ GeV, $m_s = 0.50$ GeV, $m_b = 4.9$ GeV. The value of ω, which determines the average transverse quark momentum and is approximately the same for mesons with the same light spectator quark [31], is fixed by the $B(B^0 \to \bar{K}_2^0 \gamma)$ data. The numerical results for $\zeta_{\perp}^{K_J^*}(0)$ and $\zeta_{\parallel}^{K_J^*}(0)$ are collected in Table III.

The detailed results for the branching fractions for $B \to K_{J}^{(*)} \gamma$ decays are given in Table V. Note that the decay with a heavier meson in the final state has a smaller branching fraction not only due to the smaller phase space and $\zeta_{\perp}^{K_J^*}(0)$ but also to the Clebsch-Gordan coefficient $\beta_T^{(J)}$ which is smaller for a larger spin J (see Table II). We find

$$ B(B \to K^*(1410) \gamma) > B(B \to K^*(1680) \gamma) > B(B \to K_{s}^*(1430) \gamma) $$

$$ > B(B \to K_2^*(1980) \gamma) > B(B \to K_3^*(1780) \gamma) > B(B \to K_{s}^*(2045) \gamma) $$

$$ > B(B \to K_5^*(2380) \gamma), \quad (54) $$

TABLE IV: Input parameters

Parameter	Value		
B lifetime (picosecond)	$\tau_B^+ = 1.638$, $\tau_B^0 = 1.530$		
b quark mass	$m_{b,pole} = 4.79^{+0.19}_{-0.08}$ GeV		
CKM parameter [38]	$	V_{tb}^*V_{tb}	= 0.040 \pm 0.001$
and

$$\mathcal{B}(B \to K_1(1650)\gamma) > \mathcal{B}(B \to K_2(1820)\gamma) \gtrsim \mathcal{B}(B \to K_2(1770)\gamma)$$

$$\gtrsim \mathcal{B}(B \to K_3(2250)\gamma) > \mathcal{B}(B \to K_3(2320)\gamma) > \mathcal{B}(B \to K_4(2500)\gamma)$$

$$\gtrsim \mathcal{B}(B \to K_5(2600)\gamma).$$

(55)

It is interesting to note that we obtain $1.5\mathcal{B}(B^- \to K^*(1680)\gamma) \sim \mathcal{B}(B^- \to K^*(1410)\gamma) = (27.2 \pm 8.3) \times 10^{-6}$, whereas Ali, Ohl, and Mannel [32] found $7\mathcal{B}(B^- \to K^*(1680)\gamma) \sim \mathcal{B}(B^- \to K^*(1410)\gamma) \approx (35 \pm 7) \times 10^{-6}$.

The total branching fractions of radiative B meson decays involving resonant strange mesons listed in Table V, together with $\mathcal{B}(B \to K^{(*)}(982)\gamma, K_1(1270)\gamma, K_1(1400)\gamma) [12–14, 35]$, are

$$\sum_{J=1}^{5} \mathcal{B}(B^0 \to K^{(*)}_J\gamma; E^B_\gamma \gtrsim 2.0 \text{ GeV}) = (237^{+40}_{-34}) \times 10^{-6},$$

(56)

$$\sum_{J=1}^{5} \mathcal{B}(B^- \to K^{(*)}_J\gamma; E^B_\gamma \gtrsim 2.0 \text{ GeV}) = (252^{+44}_{-36}) \times 10^{-6},$$

(57)

where E^B_γ is the photon energy in the B rest frame. Our result may hint at that the total branching fraction for the radiative B decays with (nonresonant) two-body or three-body hadronic final states is about 100×10^{-6} (see also Ref. [30]), compared to the inclusive $B \to X_s\gamma$ data [23–25].

$$\mathcal{B}(B \to X_s\gamma; E^B_\gamma > 1.7 \text{ GeV}) = (352 \pm 25) \times 10^{-6}.$$

(58)

The q^2-dependence of form factors can be estimated by using the QCD counting rules [11, 40]. We consider the Breit frame, where the B meson and final state $K^{(*)}_J$ move in the opposite directions but with the same magnitude of the momentum. In the large recoil region, where $q^2 \sim 0$, since the two quarks in mesons have to interact strongly with each other to turn around the spectator quark, the transition amplitude is dominated by the one-gluon exchange between the quark-antiquark pair and is therefore proportional to $1/E^2$. Thus we get $\langle K^*_J(p_{K^*_J}, \pm1)|V^\mu|B(p_B)\rangle \propto \epsilon^{\mu\nu\rho\sigma} p_{B\rho} p_{K^*_J} \epsilon^{*,(\pm)}(\pm)_{\sigma} \times 1/E^2$ and $\langle K^*_J(p_{K^*_J}, 0)|A^\mu|B(p_B)\rangle \propto p^{\mu}_{K^*_J} \times 1/E^2$. Consequently, we have $\zeta_{\perp,\parallel}(q^2) \sim 1/E^2$.

1 We do not include decays involving 1^3G_3 and 1^3H_4 states.
TABLE V: The branching fractions of the $B \to K_J^{(*)}\gamma$ decays in units of 10^{-6}, where the errors are mainly due to the uncertainties of form factors. The corresponding photon energies in the B rest frame are given in the last column.

$K_J^{(*)}$	J^{PC}	$n^{2S+1}L_J$	$\mathcal{B}(B^- \to K_J^{(*)}\gamma)$	$\mathcal{B}(\overline{B}^0 \to \overline{K}_J^{(*)0}\gamma)$	E_γ^{B} [GeV]
$K^*(1410)$	1$^-$ $^-$	2^3S_1?	27.2 ± 8.3	25.0 ± 7.7	2.45
$K^*(1680)$	1$^-$ $^-$	1^3D_1	17.8 ± 8.2	16.4 ± 7.6	2.36
$K_2^*(1430)$	2$^+$ $^+$	1^3P_2	13.5 ± 4.1	12.4 ± 3.8	2.45
$K_2^*(1890)$	2$^+$ $^+$	1^3F_2 or 2^3P_2?	5.5 ± 3.1	5.1 ± 2.9	2.27
$K_3^*(1780)$	3$^-$ $^-$	1^3D_3	4.3 ± 2.1	3.9 ± 1.9	2.34
$K_4^*(2045)$	4$^+$ $^+$	1^3F_4	1.4 ± 0.8	1.3 ± 0.8	2.24
$K_5^*(2380)$	5$^-$$^-$	1^3G_5	0.4 ± 0.3	0.3 ± 0.3	2.10
$K_1(1650)$	1$^+$ $^+$	2^1P_1 or 2^3P_1	18.3 ± 8.4	16.9 ± 7.8	2.38
$K_2(1770)$	2$^-$$^-$	1^3D_2	8.0 ± 3.9	7.4 ± 3.6	2.34
$K_2(1820)$	2$^-$$^-$	1^3D_2?	8.5 ± 3.9	7.9 ± 3.6	2.33
$K_2(2250)$	2$^-$$^-$	2^1D_2	3.0 ± 2.2	2.8 ± 2.0	2.16
$K_3(2320)$	3$^+$ $^+$	1^1F_3 or 1^3F_3?	1.4 ± 1.1	1.3 ± 1.0	2.13
$K_4(2500)$	4$^-$$^-$	1^1G_4 or 1^3G_4?	0.5 ± 0.4	0.5 ± 0.3	2.05
$K_5(2600?)$	5$^+$ $^+$	1^1H_5 or 1^3H_5?	0.2 ± 0.2	0.2 ± 0.2	2.00
Totala			135.9 ± 18.9	125.2 ± 17.4	

aWe have assumed that $\mathcal{B}(B \to 2^1P_1\gamma) \approx \mathcal{B}(B \to 2^3P_1\gamma)$ if 2^1P_1 and 2^3P_1 states do not mix. Analogously, we also assume that $\mathcal{B}(B \to 1^3F_2\gamma) \approx \mathcal{B}(B \to 2^3P_2\gamma)$, $\mathcal{B}(B \to 1^1F_3\gamma) \approx \mathcal{B}(B \to 1^3F_3\gamma)$, $\mathcal{B}(B \to 1^1G_4\gamma) \approx \mathcal{B}(B \to 1^3G_4\gamma)$ and $\mathcal{B}(B \to 1^1H_4\gamma) \approx \mathcal{B}(B \to 1^3H_4\gamma)$. The summation of the branching fractions should be independent of the mixture due to the unitarity. Here we do not include decays involving 1^3G_3 and 1^3H_4 states.

in the large recoil region. In other words, we can obtain that approximate forms:

$$\zeta_{\perp,\parallel}^{K_J^{(*)}}(q^2) = \zeta_{\perp,\parallel}^{K_J^{(*)}}(0) \cdot (1 - q^2/m_B^2)^{-2}. \quad \text{This result is consistent with that obtained by Charles, Yaouanc, Oliver, Pène and Raynal [10].}$$

They used the light-cone sum rule method to show that the $B \to V$ LEET parameters satisfy $1/E^2$ scaling law, where $V \equiv$
vector meson. Essentially, their result is also suitable for the present case.

\section{B. $B \to K_j^{(*)} \ell^+ \ell^-$ Decays}

The decay amplitude for $\bar{B} \to \bar{K}_j^{(*)} \ell^+ \ell^-$ is given by \footnote{For the amplitudes of $\bar{B} \to \bar{K}_j^{(*)} \ell^+ \ell^-$ decays, perform the following substitutions: $V^{K_j^*} \to A^{K_j}$, $A_i^{K_j} \to V_i^{K_j}$ and $T_i^{K_j} \to T_i^{K_j}$. The result for the decay amplitude for $\bar{B} \to \bar{K}^*(892)^{(*)} \ell^+ \ell^-$ can be found in Ref. 8.}

$$\mathcal{M} = -i \frac{G_F \alpha_{EM}}{2 \sqrt{2} \pi} V_{ts} V_{tb} m_B \left[\mathcal{T}_\mu^{K_j} \, \bar{s} \gamma^\mu b + \mathcal{U}_\mu^{K_j} \, \bar{s} \gamma^5 \gamma_5 b \right], \quad (59)$$

where

$$\mathcal{T}_\mu^{K_j} = \mathcal{A}^{(K_j)} \epsilon_{\mu \nu \rho \sigma} \bar{\epsilon}_{(J)}^{\nu} p_B^\rho \sigma_{P_{K_j}^*} - i m_B^2 \mathcal{B}^{(K_j)} \bar{\epsilon}_{(J)}^{\nu} + i \mathcal{C}^{(K_j)} (\bar{\epsilon}_{(J)}^{\gamma} \cdot p_B) p_\mu + i \mathcal{D}^{(K_j)} (\bar{\epsilon}_{(J)}^{\gamma} \cdot p_B) q_\mu, \quad (60)$$

$$\mathcal{U}_\mu^{K_j} = \mathcal{E}^{(K_j)} \epsilon_{\mu \nu \rho \sigma} \bar{\epsilon}_{(J)}^{\nu} p_B^\rho \sigma_{P_{K_j}^*} - i m_B^2 \mathcal{F}^{(K_j)} \bar{\epsilon}_{(J)}^{\nu} + i \mathcal{G}^{(K_j)} (\bar{\epsilon}_{(J)}^{\gamma} \cdot p_B) p_\mu + i \mathcal{H}^{(K_j)} (\bar{\epsilon}_{(J)}^{\gamma} \cdot p_B) q_\mu, \quad (61)$$

with $q_\mu \equiv p_B - p_{K_j}$. The $\mathcal{D}^{(K_j)}$-term vanishes when equations of motion of leptons are taken into account. The building blocks, $\mathcal{A}^{(K_j^*)}, \ldots, \mathcal{H}^{(K_j^*)}$ are given by

$$\mathcal{A}^{(K_j^*)} = \frac{2}{1 + \bar{m}_{K_j^{(*)}}} c_9^{\text{eff}}(s) V^{K_j^*}(s) + \frac{4 \bar{m}_b}{s} c_7^{\text{eff}} T_1^{K_j^*}(s), \quad (62)$$

$$\mathcal{B}^{(K_j^*)} = (1 + \bar{m}_{K_j^{(*)}}) \left[c_9^{\text{eff}}(s) A_1^{K_j^*}(s) + 2 \frac{\bar{m}_b}{s} c_7^{\text{eff}} T_2^{K_j^*}(s) \right], \quad (63)$$

$$\mathcal{C}^{(K_j^*)} = \frac{1}{1 - \bar{m}_{K_j^{(*)}}} \left[(1 - \bar{m}_{K_j^{(*)}}) c_9^{\text{eff}}(s) A_2^{K_j^*}(s) + 2 \bar{m}_b c_7^{\text{eff}} \left(T_3^{K_j^*}(s) + \frac{1 - \bar{m}_{K_j^{(*)}}}{s} T_2^{K_j^*}(s) \right) \right], \quad (64)$$

$$\mathcal{D}^{(K_j^*)} = \frac{1}{s} \left[c_9^{\text{eff}}(s) \left\{ (1 + \bar{m}_{K_j^{(*)}}) A_1^{K_j^*}(s) - (1 - \bar{m}_{K_j^{(*)}}) A_2^{K_j^*}(s) \right\} \right. \quad (65)$$

$$\quad \left. - 2 \bar{m}_b^{\text{eff}} A_0^{K_j^*}(s) - 2 \bar{m}_b c_7^{\text{eff}} T_3^{K_j^*}(s) \right]$$

$$\mathcal{E}^{(K_j^*)} = \frac{2}{1 + \bar{m}_{K_j^{(*)}}} c_{10}^{\text{eff}}(s), \quad (66)$$

$$\mathcal{F}^{(K_j^*)} = (1 + \bar{m}_{K_j^{(*)}}) c_{10}^{\text{eff}} A_1^{K_j^*}(s), \quad (67)$$

$$\mathcal{G}^{(K_j^*)} = \frac{1}{1 + \bar{m}_{K_j^{(*)}}} c_{10}^{\text{eff}} A_2^{K_j^*}(s), \quad (68)$$

$$\mathcal{H}^{(K_j^*)} = \frac{1}{s} c_{10}^{\text{eff}} \left[(1 + \bar{m}_{K_j^{(*)}}) A_1^{K_j^*}(s) - (1 - \bar{m}_{K_j^{(*)}}) A_2^{K_j^*}(s) - 2 \bar{m}_b c_7^{\text{eff}} T_3^{K_j^*}(s) \right]. \quad (69)$$
where \(\hat{s} = s/m_B^2 \), \(\hat{m}_{KJ} = m_{KJ}/m_B \), \(\hat{m}_b = m_b/m_B \) and \(e^\text{eff}_9(\hat{s}) = c_9 + Y_{\text{pert}}(\hat{s}) + Y_{\text{LD}}(\hat{s}) \) with the perturbative \(Y_{\text{pert}}(\hat{s}) \) and long-distance \(Y_{\text{LD}}(\hat{s}) \) corrections [41–43]. \(Y(\hat{s})_{\text{LD}} \) involves \(B \to K_J^*V(\bar{c}c) \) resonances, where \(V(\bar{c}c) \) are the vector charmonium states [42, 43].

\[
Y_{\text{LD}}(\hat{s}) = -\frac{3\pi}{\alpha_{\text{EM}}^2} c_0 \sum_{V = \psi(1S), \ldots} \kappa_V \frac{\hat{m}_V B(V \to \ell^+ \ell^-) \hat{\Gamma}_V^V}{\hat{s} - \hat{m}_V^2 + i\hat{m}_V \hat{\Gamma}_V^V},
\]

(69)

with \(\hat{\Gamma}_V^V \equiv \Gamma_{\text{tot}}^V / m_B \). The relevant parameters can be found in Ref. [37].

The longitudinal, transverse, and total differential decay widths are respectively given by

\[
\frac{d\Gamma}{d\hat{s}} = \frac{G_F^2 \alpha_{\text{EM}}^2 m_B^2}{2^{10} \pi^5} |V_{ts} V_{ub}|^2
\]

\[
\times \left\{ \frac{1}{6} |A^{(K^*)}|^2 \hat{u}(s) \hat{s} \beta_T^2 \left\{ 3 \left[1 - 2(\hat{m}_{KJ}^2 + \hat{s}) \right] + (\hat{m}_{KJ}^2 - \hat{s})^2 \right\} - \hat{u}(s)^2 \right\}
\]

\[
+ \beta_T^2 |E^{(K^*)}|^2 \hat{s} \hat{u}(s) \left\{ 3 \left[1 - 2(\hat{m}_{KJ}^2 + \hat{s}) \right] + (\hat{m}_{KJ}^2 - \hat{s})^2 \right\} - \hat{u}(s)^2 \right\}
\]

\[
+ \frac{1}{12 \hat{m}_{KJ}^2 \lambda} |F^{(K^*)}|^2 \hat{u}(s) \left\{ 3 \hat{\alpha}_L^2 \lambda^2 \right\}
\]

\[
+ \hat{u}(s)^2 \left[16 \hat{m}_{KJ}^2 \hat{s} \beta_T^2 - (1 - 2(\hat{m}_{KJ}^2 + \hat{s}) + \hat{m}_{KJ}^4 + \hat{s}^2 - 10 \hat{m}_{KJ}^2 \hat{s}) \hat{\alpha}_L^2 \right] \}
\]

\[
+ \hat{u}(s)^2 \left[\frac{1}{2 \hat{m}_{KJ}^2} \frac{1}{\hat{m}_{KJ}^2} \lambda \left[|C^{(K^*)}|^2 \left(\lambda - \frac{\hat{u}(s)^2}{3} \right) + |G^{(K^*)}|^2 \left(\lambda - \frac{\hat{u}(s)^2}{3} + 4 \hat{m}_{KJ}^2 (2 + 2 \hat{m}_{KJ}^2 - \hat{s}) \right) \right] \right]
\]

\[
- \hat{u}(s)^2 \frac{1}{2 \hat{m}_{KJ}^2} \sum_{\kappa' \kappa''} \left[\text{Re}(B^{(K^*)}) C^{(K^*)} \left(\lambda - \frac{\hat{u}(s)^2}{3} \right) (1 - \hat{m}_{KJ}^2 - \hat{s}) \right.
\]

\[
+ \text{Re}(F^*) \left\{ \left(\lambda - \frac{\hat{u}(s)^2}{3} \right) (1 - \hat{m}_{KJ}^2 - \hat{s}) + 4 \hat{m}_{KJ}^2 \lambda \right\} \right]
\]

\[
- 2 \hat{u}(s) \hat{m}_{KJ}^2 \lambda \left[\text{Re}(F^{(K^*)}) \mathcal{H}^{(K^*)} - \text{Re}(G^{(K^*)}) \mathcal{H}^{(K^*)} \right] (1 - \hat{m}_{KJ}^2)
\]

\[
+ \hat{u}(s) \hat{m}_{KJ}^2 \hat{s} \lambda \left[\mathcal{H}^{(K^*)} \right]^2 \right\}.
\]

(71)
Here \(\hat{u} \equiv u/m_B^2 \) and \(\hat{u}(s) \equiv u(s)/m_B^2 \), where \(u = -u(s) \cos \theta \),

\[
\begin{align*}
\hat{u}(s) & \equiv \sqrt{\lambda \left(1 - \frac{4\hat{m}^2}{s} \right)}, \\
\lambda & \equiv 1 + \hat{m}_{KJ}^4 s^2 - 2\hat{m}_{KJ}^2 - 2\hat{s} - 2\hat{m}_{KJ}^2 \hat{s},
\end{align*}
\]

and \(\theta \) is the angle between the moving directions of \(\ell^+ \) and \(B \) meson in the center of mass frame of the \(\ell^+ \ell^- \) pair. We show the decay distributions \(\frac{d\mathcal{B}(B^0 \rightarrow K_J^{(*)0} \mu^+ \mu^-)}{ds} \) in Fig. 1 and summarize the corresponding branching fractions in Table VI. Because the decays involving heavier \(K \)-resonances have the smaller phase spaces and LEET form factors and because the Clebsch-Gordan coefficients, \(\alpha_L^{(J)} \) and \(\beta_T^{(J)} \), are smaller for a larger spin \(J \), we obtain the following salient features:

\[
\begin{align*}
\mathcal{B}(B \rightarrow K^*(1410)\mu^+\mu^-) & > \mathcal{B}(B \rightarrow K_2^*(1430)\mu^+\mu^-) > \mathcal{B}(B \rightarrow K^*(1680)\mu^+\mu^-) \\
> \mathcal{B}(B \rightarrow K_2^*(1980)\mu^+\mu^-) & \approx \mathcal{B}(B \rightarrow K_3^*(1780)\mu^+\mu^-) > \mathcal{B}(B \rightarrow K_4^*(2045)\mu^+\mu^-) \\
> \mathcal{B}(B \rightarrow K_3^*(2380)\mu^+\mu^-),
\end{align*}
\]

and

\[
\begin{align*}
\mathcal{B}(B \rightarrow K_1(1650)\mu^+\mu^-) & > \mathcal{B}(B \rightarrow K_2(1770)\mu^+\mu^-) > \mathcal{B}(B \rightarrow K_3(1820)\mu^+\mu^-) \\
> \mathcal{B}(B \rightarrow K_3(2250)\mu^+\mu^-) & > \mathcal{B}(B \rightarrow K_3(2320)\mu^+\mu^-) > \mathcal{B}(B \rightarrow K_4(2500)\mu^+\mu^-) \\
> \mathcal{B}(B \rightarrow K_5(2600?)\mu^+\mu^-).
\end{align*}
\]

In Fig. 2, we plot the longitudinal fraction distributions for the \(\overline{B} \rightarrow \overline{K}_J^{(*)} \mu^+\mu^- \) decays, where

\[
\frac{dF_L}{ds} \equiv \frac{d\Gamma_L}{ds} / \frac{d\Gamma_{\text{total}}}{ds}.
\]

Our result indicates that the longitudinal fraction distribution \(dF_L/ds \) about 0.8 at \(s = 2 \text{ GeV}^2 \), which also apply to the inclusive process. It is interesting to note that, for the new-physics models with the flipped sign solution for \(c_T^{(J)} \), \(dF_L/ds \) can be reduced to be \(\sim 0.6 \) at \(s = 2 \text{ GeV}^2 \).
FIG. 1: Decay distributions of $\overline{B}^0 \rightarrow \overline{K}_J^{(*0)} \mu^+ \mu^-$ decays. The processes involving the confirmed $K_J^{(*)}$ are plotted. Solid [red], dashed [orange], dotted [green], dot-dashed [blue], and double-dot-dashed [black] curves from up to down correspond to $K_J^{(*)} = K^*(1680), K_2^*(1430), K_2(1770), K_3^*(1780)$, and $K_4^*(2045)$, respectively. The thick and thin curves stand for the decay widths with and without charmonium resonances, respectively (see Eq. (69)).

FIG. 2: Longitudinal fraction distributions dF_L/ds of $\overline{B} \rightarrow \overline{K}_J^{(*)} \mu^+ \mu^-$ decays as functions of s. Solid [red], dashed [orange], dotted [green], dot-dashed [blue] and double-dot-dashed [black] curves stand for $K_J^{(*)} = K^*(1680), K_2^*(1430), K_2(1770), K_3^*(1780)$, and $K_4^*(2045)$, respectively.
TABLE VI: Same as Table [V] except for nonresonant branching fractions of $\bar{B} \to \bar{K}_j^{(*)} \mu^+ \mu^-$ decays in units of 10^{-7}.

J^{PC}	$n^{2S+1}L_J$	$\mathcal{B}(\bar{B}^0 \to \bar{K}_j^{(*)0} \mu^+ \mu^-)$	$\mathcal{B}(B^- \to K_j^{(*)-} \mu^+ \mu^-)$	
$K^*(1410)$	1^{--}	2^3S_1	$5.4^{+1.6}_{-1.4}$	$5.8^{+1.7}_{-1.5}$
$K^*(1680)$	1^{--}	1^3D_1	$2.3^{+0.8}_{-0.7}$	$2.4^{+0.9}_{-0.8}$
$K_2^*(1430)$	2^{++}	1^3P_2	$3.1^{+0.9}_{-0.8}$	$3.3^{+1.0}_{-0.9}$
$K_2^*(1980)$	2^{++}	1^3P_2 or 2^3P_2	$0.6^{+0.3}_{-0.2}$	$0.6^{+0.3}_{-0.2}$
$K_3^*(1780)$	3^{--}	1^3D_3	$0.6^{+0.2}_{-0.2}$	$0.6^{+0.2}_{-0.2}$
$K_4^*(2045)$	4^{++}	1^3F_4	$0.1^{+0.1}_{-0.1}$	$0.2^{+0.1}_{-0.1}$
$K_5^*(2380)$	5^{--}	1^3G_5	$0.03^{+0.02}_{-0.01}$	$0.03^{+0.02}_{-0.01}$
$K_1(1650)$	1^{++}	2^1P_1 or 2^3P_1	$2.6^{+0.9}_{-0.8}$	$2.7^{+1.0}_{-0.8}$
$K_2(1770)$	2^{--}	1^1D_2	$1.1^{+0.4}_{-0.3}$	$1.2^{+0.4}_{-0.4}$
$K_2(1820)$	2^{--}	1^3D_2?	$0.9^{+0.4}_{-0.3}$	$1.0^{+0.4}_{-0.3}$
$K_2(2250)$	2^{--}	2^1D_2	$0.2^{+0.1}_{-0.1}$	$0.2^{+0.1}_{-0.1}$
$K_3(2320)$	3^{++}	1^1F_3 or 1^3F_3	$0.1^{+0.1}_{-0.1}$	$0.1^{+0.1}_{-0.1}$
$K_4(2500)$	4^{--}	1^3G_4 or 1^3G_4	$0.03^{+0.02}_{-0.02}$	$0.03^{+0.02}_{-0.02}$
$K_5(2600)?$	5^{++}	1^1H_5 or 1^3H_5?	$0.01^{+0.01}_{-0.01}$	$0.01^{+0.01}_{-0.01}$
Totala				\[19.9^{+6.2}_{-4.6} \] \[21.4^{+7.1}_{-5.2} \]

aSame as Table [V]

The forward-backward asymmetry of $\bar{B} \to \bar{K}_j^{(*)} \ell^+ \ell^-$ is given by

$$
\frac{dA_{FB}}{d\hat{s}} = -\left(\beta_T^{(j)}\right)^2 \frac{G_F^2 \alpha_EM_B}{210_{\pi}^5} \left|V_{ts}^*V_{tb}\right|^2 \hat{s} \hat{u}(s)^2 \left[Re \left(\mathcal{B}(\mathcal{K}_j^{(*)}) \mathcal{E}(\mathcal{K}_j^{(*)})\right) + Re \left(\mathcal{A}(\mathcal{K}_j^{(*)}) \mathcal{F}(\mathcal{K}_j^{(*)})\right)\right]
$$

$$
= -\left(\beta_T^{(j)}\right)^2 \frac{G_F^2 \alpha_EM_B}{210_{\pi}^5} \left|V_{ts}^*V_{tb}\right|^2 \hat{s} \hat{u}(s)^2 \left[Re \left[c_{10}^{\text{eff}}(s)\right] V^{K_j^{(*)}} A_1^{K_j^{(*)}} + \mathcal{M}_B \Re(c_{10}^{\text{eff}}) \left\{ (1 - \hat{m}_{K_j^{(*)}}) V^{K_j^{(*)}} T_2^{K_j^{(*)}} + (1 + \hat{m}_{K_j^{(*)}}) A_1^{K_j^{(*)}} T_1^{K_j^{(*)}} \right\} \right].
$$

In Fig. 3 we plot the normalized forward-backward asymmetry $d\hat{A}_{FB}/d\hat{s} \equiv (dA_{FB}/ds)/(d\Gamma_{total}/ds)$. Using the form factors in Eqs. (41)-(47), we can easily obtain
FIG. 3: Normalized forward-backward asymmetries for $\bar{B} \rightarrow \bar{K}_J^{(*)} \mu^+ \mu^-$ decay. Legends are the same as Fig. 2.

the forward-backward asymmetry zero, s_0, satisfying

$$Re \left[c_9^{\text{eff}}(\hat{s}_0) c_{10} \right] = -2 \frac{\hat{m}_b}{\hat{s}_0} Re(c_7^{\text{eff}} c_{10}) \frac{1 - \hat{s}_0}{1 + \hat{m}_{K_j}^{2(*)} - \hat{s}_0}. \quad (78)$$

We note that s_0 is independent of the form factors but depends only on $m_{K_j}^{2(*)}$. Under the variation of $\hat{m}_{K_j}^{2(*)}$, we get

$$\delta \hat{s}_0 \simeq - \frac{(\hat{s}_0 - 1) \hat{s}_0}{(\hat{s}_0 - 1)^2 + \hat{m}_{K_j}^{2(*)}} \delta \hat{m}_{K_j}^{2(*)}, \quad (79)$$

or

$$\delta s_0 \simeq - s_0 \cdot \frac{\delta m_{K_j}^{2(*)}}{m_{B}^{2}}. \quad (80)$$

Since $\delta m_{K_j}^{2(*)} \ll s_0$ and $m_{K_j}^{2(*)} \ll m_{B}^{2}$, we thus expect the following relation in the SM:

$$s_0^{K_{(980)}^*} \approx 3.5 \text{ GeV}^2 \gtrsim s_0^{K_{(1410)}^*} \gtrsim s_0^{K_{2}^{(1430)}^*} \gtrsim s_0^{K_{3}^{(1680)}^*} \gtrsim s_0^{K_{2}^{(1770)}^*} \gtrsim s_0^{K_{3}^{(1780)}^*} \gtrsim s_0^{K_{2}^{(1820)}^*} \gtrsim s_0^{K_2^{(1980)}^*} \gtrsim s_0^{K_2^{(2045)}^*} \gtrsim s_0^{K_2^{(2250)}^*} \gtrsim s_0^{K_3^{(2320)}^*} \gtrsim s_0^{K_3^{(2380)}^*} \gtrsim s_0^{K_3^{(2500)}^*} \gtrsim s_0^{K_3^{(2600)}^*}. \quad (81)$$

C. $\bar{B} \rightarrow \bar{K}_J^{(*)} \nu \bar{\nu}$ Decays

The effective weak Hamiltonian relevant to the $\bar{B} \rightarrow \bar{K}_J^{(*)} \nu \bar{\nu}$ decays are given by

$$\mathcal{H}_{\text{eff}} = c_L \bar{s} \gamma^\mu (1 - \gamma_5) b \bar{\nu} \gamma_\mu (1 - \gamma_5) \nu + c_R \bar{s} \gamma^\mu (1 + \gamma_5) b \bar{\nu} \gamma_\mu (1 - \gamma_5) \nu + \text{H.c.}, \quad (82)$$
where c_L and c_R are coefficients for left- and right-handed weak hadronic currents, respectively. In the SM, $c_L^{SM} = 0$ and

$$c_R^{SM} = \frac{G_F}{\sqrt{2}} \frac{\alpha_{EM}}{2\pi \sin^2 \theta_W} V_{tb} V_{ts}^* X(x_t) = 2.9 \times 10^{-9}, \quad (83)$$

where the detailed form of $X(x_t)$ has been given in Refs. [44, 45]. The missing invariant mass-squared distributions, corresponding to polarizations $h = 0, \pm 1$ of the final K^*_J for $\bar{B} \to \bar{K}^*_J \nu \bar{\nu}$ decays are

$$\frac{d\Gamma_0}{dq^2} = 3 \left(\frac{\alpha_L^{(j)}}{48\pi^3} \right)^2 \frac{|\vec{p}| |c_L - c_R|^2}{m_{K^*_J}^2} \left[(m_B + m_{K^*_J})(m_B E' - m_{K^*_J}^2)A_{1K^*_J}^1(q^2) - \frac{2m_B^2}{m_B + m_{K^*_J}^2} |\vec{p}'|^2 A_{2K^*_J}^1(q^2) \right]^2, \quad (84)$$

$$\frac{d\Gamma_{\pm1}}{dq^2} = 3 \left(\beta_T^{(j)} \right)^2 \frac{|\vec{p}'| q^2}{48\pi^3} \left[(c_L + c_R) \frac{2m_B |\vec{p}'|}{m_B + m_{K^*_J}^2} V_{K^*_J}^1(q^2) \mp (c_L - c_R)(m_B + m_{K^*_J}^2) A_{1K^*_J}^1(q^2) \right]^2, \quad (85)$$

where the factor 3 counts the numbers of the neutrino generations, (E', \vec{p}') is the \bar{K}^*_J energy-momentum in the B-meson rest frame, and q^2 is the invariant mass squared of the neutrino-antineutrino pair with $0 \leq q^2 \leq (m_B - m_{K^*_J})^2$. In Fig. 4, we show the differential distributions as functions of the missing invariant mass squared in the SM. The results for branching fractions are summarized in Table VII. At $q^2 = 0$, where the neutrino and antineutrino are nearly collinear in the B rest frame, the decay is predominated by the zero helicity amplitude. Moreover, as expected from the left-handed $b_L \to s_L$ transition in the SM, $d\Gamma_+/dq^2$ is always suppressed at least by $(m_s/m_b)^2$, compared with $d\Gamma_0/dq^2$ and $d\Gamma_-/dq^2$. We obtain the relation: $d\Gamma_0/dq^2 \gg d\Gamma_-/dq^2 \gg d\Gamma_+/dq^2$.

IV. SUMMARY

We have formulated $B \to K^{(*)}_J$ form factors using large energy effective theory techniques. We have studied the radiative and semileptonic B decays involving the higher strange resonance $K^{(*)}_J$ in the final state. The main results are as follows.

3 For the amplitudes of $\bar{B} \to \bar{K}^*_J \nu \bar{\nu}$ decays, perform the following replacements: $V_{K^*_J} \to A_{1K^*_J}^1$, $A_{iK^*_J}^1 \to V_{iK^*_J}^1$.

FIG. 4: The $dB(\overline{B} \to \overline{K}_J^{(*)} \nu \bar{\nu})/dq^2$ as functions of the missing invariant mass-squared q^2. The solid [black], dashed [blue], dotted [green] and dot-dashed [red] curves correspond to the total decay rate and the polarization rates with helicities $h = 0, -1, +1$, respectively.

- The transition form factors in the large recoil region can be represented in terms of two independent LEET form factors, $\zeta^{K_J^{(*)}}_\perp(q^2)$ and $\zeta^{K_J^{(*)}}_\parallel(q^2)$. According to the QCD counting rules, these two form factors exhibit the dipole q^2 dependence in the large recoil region (and in the LEET limit). We have further estimated $\zeta^{K_J^{(*)}}_\perp(0)$ and $\zeta^{K_J^{(*)}}_\parallel(0)$ in the BSW model.

- The branching fractions for decays $\overline{B} \to \overline{K}_J^{(*)} \gamma$, $\overline{B} \to \overline{K}_J^{(*)} \ell^+ \ell^-$ and $\overline{B} \to \overline{K}_J^{(*)} \nu \bar{\nu}$ with higher K-resonances are suppressed due to the smaller phase space and $\zeta^{K_J^{(*)}}_\perp$, $\zeta^{K_J^{(*)}}_\parallel$, and/or due to the smaller Clebsch-Gordan coefficients, $\beta^{(J)}_T$ and $\alpha^{(J)}_L$, in case of larger spin-J.

- We find that for $\overline{B} \to \overline{K}_J^{(*)} \ell^+ \ell^-$ decays, the longitudinal fraction distribution $dF_L/ds \simeq 0.8$ at $s = 2 \text{ GeV}^2$, and the forward-backward asymmetry zero $s_0 \approx 3.5 \text{ GeV}^2$. The asymmetry zero is independent of the form factors in the LEET limit and highly insensitive to $m_{K_J^{(*)}}$.

21
TABLE VII: The branching fractions of the $B \to K_j^{(*)} \nu \bar{\nu}$ decays in units of 10^{-6}. The first and second errors correspond to the uncertainties of the form factors $\xi_{K_j}^{K_j^{(*)}}$ and $\xi_{K_j^{(*)}}$, respectively.

J^{PC}	$n \, 2S+1 \, L_J$	$B(\overline{B} \to K_j^{(*)}0 \nu \bar{\nu})$	$B(B^- \to K_j^{(*)}0 \nu \bar{\nu})$	
$K^*(1410)$	1--	$2^3 S_1$?	$4.3^{+1.3}_{-1.1}$	$4.6^{+1.4}_{-1.2}$
$K^*(1680)$	1--	$1^3 D_1$	$1.8^{+0.7}_{-0.6}$	$2.0^{+0.7}_{-0.6}$
$K_2^*(1430)$	2++	$1^3 P_2$	$2.5^{+0.7}_{-0.6}$	$2.6^{+0.8}_{-0.7}$
$K_2^*(1980)$	2?	$1^3 F_2$ or $2^3 P_2$?	$0.4^{+0.2}_{-0.2}$	$0.5^{+0.2}_{-0.2}$
$K_3^*(1780)$	3--	$1^3 D_3$	$0.5^{+0.2}_{-0.2}$	$0.5^{+0.2}_{-0.2}$
$K_4^*(2045)$	4++	$1^3 F_4$	$0.11^{+0.05}_{-0.04}$	$0.11^{+0.06}_{-0.05}$
$K_5^*(2380)$	5?	$1^3 G_5$	$0.02^{+0.01}_{-0.01}$	$0.02^{+0.01}_{-0.01}$
$K_1^*(1650)$	1?	$2^1 P_1$ or $2^3 P_1$?	$2.1^{+0.7}_{-0.6}$	$2.2^{+0.8}_{-0.7}$
$K_2^*(1770)$	2+	$1^1 D_2$	$0.9^{+0.3}_{-0.3}$	$0.9^{+0.4}_{-0.3}$
$K_2^*(1820)$	2?	$1^3 D_2$?	$0.7^{+0.3}_{-0.2}$	$0.8^{+0.3}_{-0.3}$
$K_2^*(2250)$	2?	$2^1 D_2$	$0.2^{+0.1}_{-0.1}$	$0.2^{+0.1}_{-0.1}$
$K_3^*(2320)$	3?	$1^1 F_3$ or $1^3 F_3$	$0.07^{+0.05}_{-0.03}$	$0.07^{+0.05}_{-0.04}$
$K_4^*(2500)$	4?	$1^1 G_4$ or $1^3 G_4$	$0.02^{+0.02}_{-0.01}$	$0.02^{+0.01}_{-0.01}$
$K_5^*(2600)$	5?	$1^1 H_5$ or $1^3 H_5$	$0.008^{+0.006}_{-0.005}$	$0.008^{+0.007}_{-0.005}$
Total				
		$16.2^{+4.1}_{-3.0}$	$17.3^{+4.7}_{-3.5}$	

aSame as Table [V]

- For the $B \to K_j^{(*)} \nu \bar{\nu}$ decay, the branching fraction is predominated by the zero helicity amplitude at $q^2 = 0$, where the neutrino and antineutrino are nearly collinear in the B rest frame. As expected from the left-handed $b_L \to s_L$ current in the SM, $d\Gamma_+/dq^2$ is always suppressed at least by $(m_s/m_b)^2$, compared with $d\Gamma_0/dq^2$ and $d\Gamma_-/dq^2$. We thus predict the relation: $d\Gamma_0/dq^2 > d\Gamma_-/dq^2 \gg d\Gamma_+/dq^2$.

Acknowledgments

This research was supported in parts by the National Science Council of R.O.C. under Grant No. NSC96-2112-M-033-004-MY3 and No. NSC97-2811-033-003 and by the
National Center for Theoretical Science.

Appendix A: $\mathcal{B} \rightarrow \mathcal{K}_J$ form factors

$\mathcal{B} \rightarrow \mathcal{K}_J$ transition form factors in the LEET limit are given by

$$
\langle \mathcal{K}_J | A^{\mu} | \mathcal{B} \rangle = -i 2 E \left(\frac{m_{\mathcal{K}_J}}{E} \right)^{J-1} \zeta^{K_J(a)} \epsilon^{\mu \rho \sigma \sigma} v_{\rho} n_{\sigma}, \quad (A1)
$$

$$
\langle \mathcal{K}_J | V^{\mu} | \mathcal{B} \rangle = 2 E \left(\frac{m_{\mathcal{K}_J}}{E} \right)^{J-1} \zeta^{K_J(v)} \left[\epsilon^{\mu \mu} - (\epsilon^{\mu} \cdot v) n_{\mu} \right]
+ 2 E \left(\frac{m_{\mathcal{K}_J}}{E} \right)^{J} (\epsilon^{\mu} \cdot v) \left[\zeta^{K_J(v)} n_{\mu} + \zeta^{K_J(v)} 1 n_{\mu} \right],
$$

$$
\langle \mathcal{K}_J | T^{\mu \nu}_A | \mathcal{B} \rangle = -2 E \left(\frac{m_{\mathcal{K}_J}}{E} \right)^{J-1} \zeta^{K_J(t_a)} (\epsilon^{\mu} \cdot v) \epsilon^{\mu \rho \sigma \sigma} v_{\rho} n_{\sigma}
- 2 E \left(\frac{m_{\mathcal{K}_J}}{E} \right)^{J-1} \zeta^{K_J(t_a)} \epsilon^{\mu \rho \sigma \sigma} n_{\rho} \left[\epsilon^{\sigma} - (\epsilon^{\sigma} \cdot v) n_{\sigma} \right]
- 2 E \left(\frac{m_{\mathcal{K}_J}}{E} \right)^{J-1} \zeta^{K_J(t_a)} \epsilon^{\mu \rho \sigma \sigma} v_{\rho} \left[\epsilon^{\sigma} - (\epsilon^{\sigma} \cdot v) n_{\sigma} \right],
$$

$$
\langle \mathcal{K}_J | T^{\mu \nu} | \mathcal{B} \rangle = i 2 E \left(\frac{m_{\mathcal{K}_J}}{E} \right)^{J-1} \zeta^{K_J(t_a)} \left[\left[\epsilon^{\mu \mu} - (\epsilon^{\mu} \cdot v) n_{\mu} \right] n_{\nu} - (\mu \leftrightarrow \nu) \right]
+ i 2 E \left(\frac{m_{\mathcal{K}_J}}{E} \right)^{J} \zeta^{K_J(t_a)} \left[\left[\epsilon^{\mu \mu} - (\epsilon^{\mu} \cdot v) n_{\mu} \right] n_{\nu} - (\mu \leftrightarrow \nu) \right]
+ 2 E \left(\frac{m_{\mathcal{K}_J}}{E} \right)^{J} \zeta^{K_J(t_a)} (\epsilon^{\mu} \cdot v) \left(n_{\mu} n_{\nu} - n_{\nu} n_{\mu} \right),
$$

where $m_{\mathcal{K}_J}$ is the mass of the \mathcal{K}_J. $\langle \mathcal{K}_J | T^{\mu \nu}_A | \mathcal{B} \rangle$ is related to $\langle \mathcal{K}_J | T^{\mu \nu} | \mathcal{B} \rangle$ by the relation:

$$
\sigma^{\mu \nu} \epsilon_{\mu \rho \sigma} = 2 i \sigma^{\rho \sigma} \gamma_5. \quad \text{From operator relations Eqs. (23)-(32) and}
$$

$$
\bar{s}_a \gamma_5 b_v = - n_{\mu} \bar{s}_a \gamma_5 \gamma_5 b_v,
$$

we obtain

$$
\zeta^{K_J(v)} = \zeta^{K_J(a)} = \zeta^{K_J(t_a)} = \zeta^{K_J(t_5)} \equiv \zeta^{K_J \perp}, \quad (A6)
$$

$$
\zeta^{K_J(t_a)} = \zeta^{K_J(t_a)} = \zeta^{K_J(t_5)} \equiv \zeta^{K_J \parallel}, \quad (A7)
$$

$$
\zeta^{K_J(t_a)} = \zeta^{K_J(t_5)} = \zeta^{K_J(t)} = 0, \quad (A8)
$$

and thus find that there are only two independent form factors, $\zeta^{K_J(q^2)}$ and $\zeta^{K_J(q^2)}$.

23
\(\mathcal{B} \to \mathcal{K}_J \) form factors are given by

\[
\langle \mathcal{K}_J(p_{K_J}, \lambda) | \bar{s}\gamma^\mu\gamma_5 b | \mathcal{B}(p_B) \rangle = -i \frac{2}{m_B + m_{K_J}} \tilde{A}^{K_J}(q^2) e^\mu \rho \rho p_{B \rho} p_{K_J \rho} e(\lambda)_\sigma^*, \tag{A9}
\]

\[
\langle \mathcal{K}_J(p_{K_J}, \lambda) | \bar{s}\gamma^\mu b | \mathcal{B}(p_B) \rangle = 2m_{K_J} \tilde{V}_0^{K_J}(q^2) \frac{e(\lambda)^* \cdot p_B}{q^2} q^\mu \\
+ (m_B + m_{K_J}) \tilde{V}_1^{K_J}(q^2) \left[e(\lambda)^* - \frac{e(\lambda)^* \cdot p_B q^\mu}{q^2} \right] \\
- \tilde{V}_2^{K_J}(q^2) \frac{e(\lambda)^* \cdot p_B}{m_B + m_{K_J}} \left[p_B^\mu + p_{K_J}^\mu - \frac{m_B^2 - m_{K_J}^2}{q^2} q^\mu \right], \tag{A10}
\]

\[
\langle \mathcal{K}_J(p_{K_J}, \lambda) | \bar{s}\sigma^{\mu\nu}\gamma_5 q_{\mu} b | \mathcal{B}(p_B) \rangle = 2\tilde{T}_1^{K_J}(q^2) e^\mu e^\rho \rho p_{B \rho} p_{K_J \rho} e(\lambda)^*, \tag{A11}
\]

\[
\langle \mathcal{K}_J(p_{K_J^*}, \lambda) | \bar{s}\sigma^{\mu\nu} q_{\mu} b | \mathcal{B}(p_B) \rangle = i\tilde{T}_2^{K_J}(q^2) \left[(m_B^2 - m_{K_J}^2) e(\lambda)^* - (e(\lambda)^* \cdot p_B) (p_B^\mu + p_{K_J}^\mu) \right] \\
+ i\tilde{T}_3^{K_J}(q^2) (e(\lambda)^* \cdot p_B) \\
\times \left[q^\mu - \frac{q^2}{m_B^2 - m_{K_J}^2} (p_B^\mu + p_{K_J}^\mu) \right]. \tag{A12}
\]

We can further obtain the following relations,

\[
\tilde{V}_0^{K_J}(q^2) \left(\frac{|\bar{p}_{K_J}|}{m_{K_J}} \right)^{J-1} \equiv \tilde{V}_0^{K_J}(q^2) \approx \left(1 - \frac{m_{K_J}^2}{m_B E} \right) \zeta^{K_J}(q^2) + \frac{m_{K_J} \zeta^{K_J}}{m_B} \zeta^J(q^2), \tag{A13}
\]

\[
\tilde{V}_1^{K_J}(q^2) \left(\frac{|\bar{p}_{K_J}|}{m_{K_J}} \right)^{J-1} \equiv \tilde{V}_1^{K_J}(q^2) \approx \frac{2E}{m_B + m_{K_J}} \zeta^J(q^2), \tag{A14}
\]

\[
\tilde{V}_2^{K_J}(q^2) \left(\frac{|\bar{p}_{K_J}|}{m_{K_J}} \right)^{J-1} \equiv \tilde{V}_2^{K_J}(q^2) \approx \left(1 + \frac{m_{K_J}}{m_B} \right) \zeta^J(q^2) - \frac{m_{K_J}}{m_B} \zeta^J(q^2), \tag{A15}
\]

\[
\tilde{A}^{K_J}(q^2) \left(\frac{|\bar{p}_{K_J}|}{m_{K_J}} \right)^{J-1} \equiv \tilde{A}^{K_J}(q^2) \approx \left(1 + \frac{m_{K_J}}{m_B} \right) \zeta^J(q^2), \tag{A16}
\]

\[
\tilde{T}_1^{K_J}(q^2) \left(\frac{|\bar{p}_{K_J}|}{m_{K_J}} \right)^{J-1} \equiv \tilde{T}_1^{K_J}(q^2) \approx \zeta^J(q^2), \tag{A17}
\]

\[
\tilde{T}_2^{K_J}(q^2) \left(\frac{|\bar{p}_{K_J}|}{m_{K_J}} \right)^{J-1} \equiv \tilde{T}_2^{K_J}(q^2) \approx \left(1 - \frac{q^2}{m_B^2 - m_{K_J}^2} \right) \zeta^J(q^2), \tag{A18}
\]

\[
\tilde{T}_3^{K_J}(q^2) \left(\frac{|\bar{p}_{K_J}|}{m_{K_J}} \right)^{J-1} \equiv \tilde{T}_3^{K_J}(q^2) \approx \zeta^J(q^2) - \left(1 - \frac{m_{K_J}^2}{m_B^2} \right) \frac{m_{K_J}}{E} \zeta^J(q^2), \tag{A19}
\]

where use of \(p_B/E \approx 1 \) has been made. Recalling that

\[
\bar{\xi}(J)(0)^\mu = \alpha^{(J)}_L \varepsilon(0)^\mu, \quad \bar{\xi}(J)(\pm 1)^\mu = \beta^{(J)}_T \varepsilon(\pm 1)^\mu, \tag{A20}
\]

we can easily generalize the studies for \(B \to K_J^\gamma, B \to K_J^\ell^+ \ell^- \) and \(B \to K_J^\nu \overline{\nu} \) to \(B \to K_J^\gamma, B \to K_J^\ell^+ \ell^- \) and \(B \to K_J^\nu \overline{\nu} \) by the following replacements:

\[
V^{K_J} \to A^{K_J}, \quad A_i^{K_J} \to V_i^{K_J} \quad (i = 0, 1, 2), \quad T_j^{K_J} \to T_j^{K_J} \quad (j = 1, 2, 3). \tag{A21}
\]
[1] A. Ishikawa et al. [Belle Collaboration], Phys. Rev. Lett. 96, 251801 (2006) [arXiv:hep-ex/0603018].

[2] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73, 092001 (2006) [arXiv:hep-ex/0604007].

[3] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 79, 031102 (2009) [arXiv:0804.4412 [hep-ex]].

[4] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 102, 091803 (2009) [arXiv:0807.4119 [hep-ex]].

[5] I. Adachi et al. [Belle Collaboration], arXiv:0810.0335 [hep-ex].

[6] J. T. Wei and P. Chang [Belle collaboration], arXiv:0904.0770 [hep-ex].

[7] G. Eigen, arXiv:0807.4076 [hep-ex].

[8] A. Ali, P. Ball, L. T. Handoko and G. Hiller, Phys. Rev. D 61, 074024 (2000) [arXiv:hep-ph/9910221].

[9] T. Feldmann and J. Matias, JHEP 0301, 074 (2003) [arXiv:hep-ph/0212158].

[10] J. Charles, A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Phys. Rev. D 60, 014001 (1999) [arXiv:hep-ph/9812358].

[11] H. Hatanaka and K. C. Yang, Phys. Rev. D 79, 114008 (2009) [arXiv:0903.1917 [hep-ph]].

[12] T. E. Coan et al. [CLEO Collaboration], Phys. Rev. Lett. 84, 5283 (2000) [arXiv:hep-ex/9912057].

[13] M. Nakao et al. [BELLE Collaboration], Phys. Rev. D 69, 112001 (2004) [arXiv:hep-ex/0402042].

[14] B. Aubert et al. [BABAR Collaboration], arXiv:0808.1915 [hep-ex].

[15] B. Aubert [The BABAR Collaboration], arXiv:0906.2177 [hep-ex].

[16] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 70, 091105 (2004) [arXiv:hep-ex/0409035].

[17] S. Nishida et al. [Belle Collaboration], Phys. Rev. Lett. 89, 231801 (2002) [arXiv:hep-ex/0205025].

[18] S. Nishida et al. [Belle Collaboration], Phys. Lett. B 610, 23 (2005) [arXiv:hep-ex/0411065].
[19] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. D 79, 011104 (2009) [arXiv:0804.3908 [hep-ex]].
[20] K. F. Chen et al. [BELLE Collaboration], Phys. Rev. Lett. 99, 221802 (2007) [arXiv:0707.0138 [hep-ex]].
[21] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 78, 072007 (2008) [arXiv:0808.1338 [hep-ex]].
[22] H. Yang et al., Phys. Rev. Lett. 94, 111802 (2005) [arXiv:hep-ex/0412039].
[23] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 72, 052004 (2005) [arXiv:hep-ex/0508004].
[24] S. Chen et al. [CLEO Collaboration], Phys. Rev. Lett. 87, 251807 (2001) [arXiv:hep-ex/0108032].
[25] K. Abe et al. [Belle Collaboration], AIP Conf. Proc. 1078, 342 (2009) [arXiv:0804.1580 [hep-ex]].
[26] S. Glenn et al. [CLEO Collaboration], Phys. Rev. Lett. 80, 2289 (1998) [arXiv:hep-ex/9710003].
[27] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 93, 081802 (2004) [arXiv:hep-ex/0404006].
[28] M. Iwasaki et al. [Belle Collaboration], Phys. Rev. D 72, 092005 (2005) [arXiv:hep-ex/0503044].
[29] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008).
[30] E. Barberio et al. [Heavy Flavor Averaging Group], [arXiv:0808.1297 [hep-ex]].
[31] M. Wirbel, B. Stech and M. Bauer, Z. Phys. C 29, 637 (1985).
[32] A. Ali, T. Ohl and T. Mannel, Phys. Lett. B 298, 195 (1993) [arXiv:hep-ph/9208207].
[33] D. Ebert, R. N. Faustov, V. O. Galkin and H. Toki, Phys. Rev. D 64, 054001 (2001) [arXiv:hep-ph/0104264].
[34] H. Y. Cheng and C. K. Chua, Phys. Rev. D 69, 094007 (2004) [arXiv:hep-ph/0401141].
[35] H. Hatanaka and K. C. Yang, Phys. Rev. D 77, 094023 (2008) [Erratum-ibid. D 78, 059902 (2008)] [arXiv:0804.3198 [hep-ph]].
[36] N. Isgur, D. Scora, B. Grinstein and M. B. Wise, Phys. Rev. D 39, 799 (1989).
[37] H. Hatanaka and K. C. Yang, Phys. Rev. D 78, 074007 (2008) [arXiv:0808.3731 [hep-ph]].
[38] CKMfitter Group [http://ckmfitter.in2p3.fr], results as of summer in 2008.

[39] A. Ali and A. Y. Parkhomenko, Eur. Phys. J. C 23, 89 (2002) [arXiv:hep-ph/0105302].

[40] V. L. Chernyak and A. R. Zhitnitsky, Phys. Rept. 112, 173 (1984).

[41] A. J. Buras and M. Munz, Phys. Rev. D 52, 186 (1995) [arXiv:hep-ph/9501281].

[42] A. Ali, T. Mannel and T. Morozumi, Phys. Lett. B 273, 505 (1991).

[43] C. S. Lim, T. Morozumi and A. I. Sanda, Phys. Lett. B 218, 343 (1989).

[44] T. Inami and C. S. Lim, Prog. Theor. Phys. 65, 297 (1981) [Erratum-ibid. 65, 1772 (1981)].

[45] G. Buchalla and A. J. Buras, Nucl. Phys. B 400, 225 (1993).