Online Resource

Studies on the formation of formaldehyde during 2-ethylhexyl 4-(dimethylamino)benzoate demethylation in the presence of reactive oxygen and chlorine species

Waldemar Studziński¹, Alicja Gackowska¹, Maciej Przybyłek² and Jerzy Gaca¹
¹Faculty of Chemical Technology and Engineering, University of Technology and Life Science, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
²Department of Physical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland

I. Selected quantum-chemical calculations results

Table S1 Bond lengths of optimized 2-ethylhexyl 4-(dimethylamino)benzoate (ODPABA) molecule (atoms numbering according to Fig. 3a)

No.	Atom1	Atom2	Cyclicity	Length [Å]
1	H1	C36	acyclic	1.0905
2	H2	C36	acyclic	1.1005
3	H3	C36	acyclic	1.0964
4	H4	C47	acyclic	1.0906
5	H5	C47	acyclic	1.1004
6	H6	C47	acyclic	1.0963
7	H7	C34	acyclic	1.0827
8	H8	C33	acyclic	1.0852
9	H9	C30	acyclic	1.0828
10	H10	C31	acyclic	1.0843
11	H11	C43	acyclic	1.0949
12	H12	C43	acyclic	1.0963
13	H13	C39	acyclic	1.1003
14	H14	C41	acyclic	1.0957
15	H15	C41	acyclic	1.1000
16	H16	C45	acyclic	1.0967
17	H17	C45	acyclic	1.0954
18	H18	C45	acyclic	1.0953
19	H19	C42	acyclic	1.0998
20	H20	C40	acyclic	1.0993
21	H21	C40	acyclic	1.0988
22	H22	C42	acyclic	1.0983
23	H23	C46	acyclic	1.0965
24	H24	C44	acyclic	1.0990
25	H25	C44	acyclic	1.0990
26	H26	C46	acyclic	1.0954
27	H27	C46	acyclic	1.0966
28	C28	C32	acyclic	1.4795
29	C28	O37	acyclic	1.3580
30	C28	O38	acyclic	1.2212
31	C29	C34	cyclic	1.4194
No.	Atom1	Atom2	Cyclicity	Length [Å]
-----	-------	-------	-----------	------------
32	C29	C30	cyclic	1.4188
33	C29	N35	acyclic	1.3810
34	C30	C31	cyclic	1.3888
35	C31	C32	cyclic	1.4039
36	C32	C33	cyclic	1.4038
37	C33	C34	cyclic	1.3872
38	N35	C47	acyclic	1.4554
39	N35	C36	acyclic	1.4552
40	O37	C43	acyclic	1.4451
41	C39	C40	acyclic	1.5538
42	C39	C41	acyclic	1.5428
43	C39	C43	acyclic	1.5292
44	C40	C42	acyclic	1.5366
45	C41	C45	acyclic	1.5332
46	C42	C44	acyclic	1.5342
47	C44	C46	acyclic	1.5331

Table S2 Bond angles of optimized 2-ethylhexyl 4-(dimethylamino)benzoate (ODPABA) molecule (atoms numbering according to Fig. 3a)

No.	Atom1	Atom2	Atom3	Angle [°]
1	C32	C28	O37	112.81
2	C32	C28	O38	124.66
3	O37	C28	O38	122.53
4	C34	C29	C30	117.36
5	C34	C29	N35	121.31
6	C30	C29	N35	121.34
7	H9	C30	C29	120.41
8	H9	C30	C31	118.56
9	C29	C30	C31	121.03
10	H10	C31	C30	119.31
11	H10	C31	C32	119.49
12	C30	C31	C32	121.20
13	C28	C32	C31	123.21
14	C28	C32	C33	118.69
15	C31	C32	C33	118.10
16	H8	C33	C32	118.57
17	H8	C33	C34	120.04
18	C32	C33	C34	121.39
19	H7	C34	C29	120.45
20	H7	C34	C33	118.64
21	C29	C34	C33	120.91
22	C29	N35	C47	119.96
23	C29	N35	C36	119.97
24	C47	N35	C36	118.78
No.	Atom1	Atom2	Atom3	Angle [°]
-----	-------	-------	-------	-----------
25	H1	C36	H2	108.21
26	H1	C36	H3	107.64
27	H1	C36	N35	109.09
28	H2	C36	H3	108.15
29	H2	C36	N35	112.39
30	H3	C36	N35	111.21
31	C28	O37	C43	116.24
32	H13	C39	C40	108.42
33	H13	C39	C41	108.02
34	H13	C39	C43	106.94
35	C40	C39	C41	113.18
36	C40	C39	C43	108.98
37	C41	C39	C43	111.06
38	H20	C40	H21	105.44
39	H20	C40	C39	109.69
40	H20	C40	C42	107.96
41	H21	C40	C39	109.47
42	H21	C40	C42	109.38
43	C39	C40	C42	114.49
44	H14	C41	H15	106.27
45	H14	C41	C39	108.52
46	H14	C41	C45	109.05
47	H15	C41	C39	108.44
48	H15	C41	C45	109.36
49	C39	C41	C45	114.86
50	H19	C42	H22	105.98
51	H19	C42	C40	108.95
52	H19	C42	C44	109.17
53	H22	C42	C40	109.81
54	H22	C42	C44	109.25
55	C40	C42	C44	113.41
56	H11	C43	H12	107.66
57	H11	C43	O37	108.42
58	H11	C43	C39	111.19
59	H12	C43	O37	108.95
60	H12	C43	C39	111.56
61	O37	C43	C39	108.97
62	H24	C44	H25	106.04
63	H24	C44	C42	109.20
64	H24	C44	C46	109.43
65	H25	C44	C42	109.21
66	H25	C44	C46	109.42
67	C42	C44	C46	113.28
68	H16	C45	H17	107.59
No.	Atom1	Atom2	Atom3	Angle [°]
-----	-------	-------	-------	-----------
69	H16	C45	H18	107.68
70	H16	C45	C41	111.23
71	H17	C45	H18	107.37
72	H17	C45	C41	110.71
73	H18	C45	C41	112.06
74	H23	C46	H26	107.66
75	H23	C46	H27	107.53
76	H23	C46	C44	111.16
77	H26	C46	H27	107.67
78	H26	C46	C44	111.43
79	H27	C46	C44	111.20
80	H4	C47	H5	108.23
81	H4	C47	H6	107.64
82	H4	C47	N35	109.08
83	H5	C47	H6	108.14
84	H5	C47	N35	112.42
85	H6	C47	N35	111.17

Table S3 Dihedral angles of optimized 2-ethylhexyl 4-(dimethylamino)benzoate (ODPABA) molecule (atoms numbering according to Fig. 3a)

No.	Atom1	Atom2	Atom3	Atom4	Dihedral angle [°]
1	O37	C28	C32	C31	-0.85
2	O37	C28	C32	C33	179.13
3	O38	C28	C32	C31	179.05
4	O38	C28	C32	C33	-0.96
5	C32	C28	O37	C43	178.72
6	O38	C28	O37	C43	-1.19
7	C30	C29	C34	H7	-179.07
8	C30	C29	C34	C33	1.01
9	N35	C29	C34	H7	1.27
10	N35	C29	C34	C33	-178.66
11	C34	C29	C30	H9	179.15
12	C34	C29	C30	C31	-0.98
13	N35	C29	C30	H9	-1.19
14	N35	C29	C30	C31	178.68
15	C34	C29	N35	C47	-6.59
16	C34	C29	N35	C36	-173.48
17	C30	C29	N35	C47	173.76
18	C30	C29	N35	C36	6.87
19	H9	C30	C31	H10	0.17
20	H9	C30	C31	C32	-179.74
21	C29	C30	C31	H10	-179.71
22	C29	C30	C31	C32	0.38
23	H10	C31	C32	C28	0.30
----	-----	-----	-----	-----	-----
24	H10	C31	C32	C33	-179.69
25	C30	C31	C32	C28	-179.79
26	C30	C31	C32	C33	0.22
27	C28	C32	C33	H8	-0.37
28	C28	C32	C33	C34	179.82
29	C31	C32	C33	H8	179.62
30	C31	C32	C33	C34	-0.19
31	H8	C33	C34	H7	-0.17
32	H8	C33	C34	C29	179.76
33	C32	C33	C34	H7	179.63
34	C32	C33	C34	C29	-0.44
35	C29	N35	C47	H4	177.95
36	C29	N35	C47	H5	-62.00
37	C29	N35	C47	H6	59.40
38	C36	N35	C47	H4	-15.00
39	C36	N35	C47	H5	105.05
40	C36	N35	C47	H6	-133.55
41	C29	N35	C36	H1	-178.47
42	C29	N35	C36	H2	61.52
43	C29	N35	C36	H3	-59.90
44	C47	N35	C36	H1	14.48
45	C47	N35	C36	H2	-105.53
46	C47	N35	C36	H3	133.06
47	C28	O37	C43	H11	-60.19
48	C28	O37	C43	H12	56.72
49	C28	O37	C43	C39	178.65
50	H13	C39	C40	H20	104.57
51	H13	C39	C40	H21	-140.19
52	H13	C39	C40	C42	-16.96
53	C41	C39	C40	H20	-135.61
54	C41	C39	C40	H21	-20.36
55	C41	C39	C40	C42	102.86
56	C43	C39	C40	H20	-11.50
57	C43	C39	C40	H21	103.75
58	C43	C39	C40	C42	-133.03
59	H13	C39	C41	H14	-64.90
60	H13	C39	C41	H15	-179.93
61	H13	C39	C41	C45	57.41
62	C40	C39	C41	H14	175.05
63	C40	C39	C41	H15	60.02
64	C40	C39	C41	C45	-62.64
65	C43	C39	C41	H14	52.08
66	C43	C39	C41	H15	-62.95
67	C43	C39	C41	C45	174.40
68	H13	C39	C43	H11	-63.28
---	---	---	---	---	---
69	H13	C39	C43	H12	176.51
70	H13	C39	C43	O37	56.17
71	C40	C39	C43	H11	53.72
72	C40	C39	C43	H12	-66.48
73	C40	C39	C43	O37	173.18
74	C41	C39	C43	H11	179.07
75	C41	C39	C43	H12	58.87
76	C41	C39	C43	O37	-61.48
77	H20	C40	C42	H19	-63.45
78	H20	C40	C42	H22	-179.12
79	H20	C40	C42	C44	58.35
80	H21	C40	C42	H19	-177.71
81	H21	C40	C42	H22	66.63
82	H21	C40	C42	C44	-55.91
83	C39	C40	C42	H19	59.02
84	C39	C40	C42	H22	-56.65
85	C39	C40	C42	C44	-179.18
86	H14	C41	C45	H16	63.87
87	H14	C41	C45	H17	-55.69
88	H14	C41	C45	H18	-175.53
89	H15	C41	C45	H16	179.69
90	H15	C41	C45	H17	60.12
91	H15	C41	C45	H18	-59.72
92	C39	C41	C45	H16	-58.15
93	C39	C41	C45	H17	-177.72
94	C39	C41	C45	H18	62.44
95	H19	C42	C44	H24	64.75
96	H19	C42	C44	H25	-179.70
97	H19	C42	C44	C46	-57.47
98	H22	C42	C44	H24	-179.77
99	H22	C42	C44	H25	-64.23
100	H22	C42	C44	C46	58.00
101	C40	C42	C44	H24	-56.92
102	C40	C42	C44	H25	58.62
103	C40	C42	C44	C46	-179.15
104	H24	C44	C46	H23	-62.22
105	H24	C44	C46	H26	57.87
106	H24	C44	C46	H27	178.00
107	H25	C44	C46	H23	-178.02
108	H25	C44	C46	H26	-57.93
109	H25	C44	C46	H27	62.20
110	C42	C44	C46	H23	59.87
111	C42	C44	C46	H26	179.97
112	C42	C44	C46	H27	-59.90
Table S4 List of frequencies, reduced masses, force constants and IR intensities, calculated for optimized ODPABA molecule

No	Frequencies [cm\(^{-1}\)]	Reduced mass [AMU]	Force constants [mDyne/Å]	IR intensity [km/mol]
1	15.1631	3.8713	0.0005	0.6975
2	20.5029	3.2435	0.0008	1.0581
3	34.0201	2.7473	0.0019	4.5793
4	38.7171	3.5672	0.0032	1.3155
5	42.2815	2.5833	0.0027	1.0839
6	67.9098	4.2676	0.0116	2.1992
7	71.9738	1.7523	0.0053	0.1883
8	81.2458	2.4840	0.0097	0.1178
9	88.1116	3.1223	0.0143	1.2784
10	105.4334	2.5937	0.0170	0.9067
11	120.6005	2.5202	0.0218	0.3225
12	126.0891	2.3628	0.0221	0.1304
13	166.0810	2.8863	0.0469	0.2039
14	179.1672	2.2347	0.0423	0.4852
15	190.4113	1.9476	0.0416	1.3255
16	195.2767	1.9041	0.0428	1.0174
17	215.6932	2.3957	0.0657	8.2620
18	234.9577	1.8200	0.0592	4.7826
19	249.3847	1.4127	0.0518	2.0713
20	251.1058	1.4840	0.0551	0.7425
21	270.6109	1.7595	0.0759	0.6332
22	300.7940	5.3882	0.2872	10.7097
23	314.3866	3.9226	0.2284	1.0634
24	320.3445	3.8179	0.2308	2.8299
25	370.1971	2.3769	0.1919	0.4085
26	390.4327	2.7715	0.2489	0.6180
27	432.6829	3.0523	0.3367	0.0017
28	452.3379	2.8283	0.3410	0.5617
29	469.8858	3.7137	0.4831	5.4074
30	496.4195	3.1197	0.4530	7.0583
31	513.5783	2.5833	0.4015	20.0392
32	520.1591	3.1007	0.4943	17.4713
33	561.3670	4.3118	0.8006	3.6309
34	609.5726	4.4345	0.9708	13.9151
35	644.4602	7.1576	1.7515	4.1636
36	704.6661	3.2381	0.9473	32.3723
37	729.6401	1.0802	0.3388	7.0232
38	758.2935	5.1088	1.7308	5.4754
39	773.6519	5.3342	1.8811	71.2879
40	780.0289	1.1912	0.4270	4.4539
41	782.7223	1.4799	0.5342	6.7163
No	Frequencies [cm⁻¹]	Reduced mass [AMU]	Force constants [mDyne/Å]	IR intensity [km/mol]
----	-------------------	------------------	--------------------------	---------------------
42	808.5866	1.2607	0.4856	0.6037
43	825.1791	1.7710	0.7105	6.6252
44	835.9577	2.1484	0.8846	58.8164
45	864.5351	5.4850	2.4154	10.4753
46	899.9372	1.8128	0.8650	2.5986
47	928.0165	1.3052	0.6623	4.4040
48	956.4867	3.3574	1.8097	1.0167
49	962.6871	3.2190	1.7577	67.6974
50	968.2586	1.3818	0.7633	3.5246
51	972.2200	1.3300	0.7407	1.1339
52	980.3835	1.3403	0.7590	0.0449
53	996.0501	2.4799	1.4496	58.5877
54	1009.2700	3.0134	1.8085	7.0886
55	1022.1680	3.3227	2.0454	15.0862
56	1044.4160	2.7069	1.7397	7.0240
57	1061.8900	2.1364	1.4194	0.3610
58	1067.1490	1.6378	1.0989	4.2590
59	1080.2050	1.5535	1.0680	43.6374
60	1087.2950	1.7576	1.2242	3.7757
61	1133.6790	3.8501	2.9154	330.8127
62	1135.4920	1.2380	0.9405	0.6717
63	1137.9450	1.3321	1.0163	52.2656
64	1146.5660	2.3258	1.8008	67.7831
65	1152.4730	1.4849	1.1620	0.3338
66	1162.6880	2.3420	1.8653	12.0823
67	1186.6570	1.9314	1.6024	9.2230
68	1197.2580	1.5944	1.3465	4.7476
69	1198.7450	1.3454	1.1391	905.0415
70	1242.7870	1.3610	1.2386	0.4867
71	1255.1630	1.2009	1.1147	8.6813
72	1267.1390	2.8335	2.6805	51.7245
73	1268.5880	1.2666	1.9209	1.6701
74	1295.4690	2.5841	2.5551	987.2576
75	1299.6740	1.2580	1.2520	1.4721
76	1313.4920	1.1577	1.1768	18.9608
77	1324.7030	1.0967	1.1339	12.3443
78	1333.0200	1.2157	1.2728	36.3769
79	1342.2420	1.5131	1.6062	103.5930
80	1346.5510	1.2592	1.3453	3.2104
81	1373.7960	1.4866	1.6530	0.5913
82	1374.8940	5.1324	5.7162	19.7524
83	1390.4600	1.5747	1.7937	31.8408
84	1395.3410	2.8879	3.3128	403.2864
No	Frequencies [cm⁻¹]	Reduced mass [AMU]	Force constants [mDyne/Å]	IR intensity [km/mol]
----	---------------------	-------------------	--------------------------	----------------------
85	1402.0890	1.4918	1.7279	4.8766
86	1410.3020	1.2545	1.4700	3.5627
87	1411.8690	1.4154	1.6623	22.6769
88	1415.3590	1.3574	1.6021	7.0071
89	1450.3570	1.2573	1.5583	4.5610
90	1469.3680	2.2861	2.9081	20.7738
91	1478.0940	1.0667	1.3731	0.1962
92	1483.8320	1.0385	1.3711	0.6324
93	1485.0500	1.0724	1.3934	2.0033
94	1486.9630	1.2170	1.5854	55.9909
95	1488.3190	1.0638	1.3884	0.3907
96	1489.6450	1.0460	1.3675	20.1267
97	1495.9160	1.0405	1.3718	8.9571
98	1498.4840	1.0732	1.4198	10.5941
99	1499.8980	1.0814	1.4334	5.7480
100	1501.9700	1.0620	1.4116	3.4284
101	1507.5870	1.0768	1.4420	19.1450
102	1509.8610	1.0766	1.4461	8.0158
103	1510.4330	1.1304	1.5195	3.3381
104	1526.5790	1.1242	1.5436	79.3379
105	1560.2640	2.5834	3.7055	268.4185
106	1582.7860	6.1504	9.0782	27.2050
107	1639.3640	5.5818	8.8384	1031.4300
108	1689.0450	11.2117	18.8453	588.8097
109	2981.2800	1.0837	5.6751	3.6772
110	3003.0290	1.0607	5.6360	4.1502
111	3003.8060	1.0612	5.6412	2.6860
112	3005.9180	1.0400	5.5367	112.8523
113	3009.9400	1.0666	5.6932	18.9500
114	3011.8760	1.0674	5.7050	144.1304
115	3012.6810	1.0436	5.5807	90.6296
116	3023.6780	1.0364	5.5826	50.4438
117	3029.9520	1.0411	5.6312	40.1115
118	3033.5520	1.0894	5.9068	32.6502
119	3038.4690	1.0972	5.9685	18.8009
120	3041.8270	1.0623	5.7909	30.1728
121	3062.4820	1.1037	6.0991	102.0408
122	3063.7610	1.1018	6.0936	36.9144
123	3064.6450	1.1016	6.0959	48.2166
124	3065.2680	1.0959	6.0668	27.2018
125	3089.7940	1.1029	6.2035	96.2116
126	3094.8410	1.1022	6.2198	35.8778
127	3094.9350	1.1024	6.2213	57.4240
No	Frequencies [cm\(^{-1}\)]	Reduced mass [AMU]	Force constants [mDyne/Å]	IR intensity [km/mol]
----	--------------------------	-------------------	---------------------------	---------------------
128	3095.5280	1.1089	6.2606	62.7141
129	3104.1350	1.1017	6.2544	70.3538
130	3145.1660	1.0989	6.4046	3.0332
131	3156.8310	1.0962	6.4362	23.1319
132	3158.3950	1.0925	6.4212	1.3056
133	3180.4530	1.0906	6.4959	0.1561
134	3203.6130	1.0919	6.6024	2.1513
135	3204.0860	1.0933	6.6130	3.1831

II. Supplementary experimental results

Fig. S1 UV spectra of ODPABA aqueous solution used in photodegradation experiments (green plot) and provided by the manufacturer emission spectra of Heraeus TQ 150W medium pressure mercury lamp used in the study (black plot)

Fig. S2 Mass spectra of 2-ethylhexyl 4-aminobenzoate identified in ODPABA/UV reaction mixture (retention time, \(t_R=18.02\) min.)
Fig. S3 Mass spectra of 2-ethyl-1-hexanol identified in ODPABA/UV reaction mixture (retention time, $t_R=4.17$ min.)

Fig. S4 Mass spectra of ODPABA identified in ODPABA/H$_2$O$_2$ reaction mixture (retention time, $t_R=19.44$ min.)

Fig. S5 Mass spectra of 2-ethylhexyl 4-(methylamino)benzoate identified in ODPABA/H$_2$O$_2$ reaction mixture (retention time, $t_R=19.11$ min.)

Fig. S6 Mass spectra of dichlorinated 2-ethylhexyl 4-(methylamino)benzoate identified in ODPABA/NaOCl reaction mixture (retention time, $t_R=20.38$ min.)
Fig. S7 Mass spectra of dichlorinated 2-ethylhexyl 4-aminobenzoate identified in ODPABA/NaOCl reaction mixture (retention time, t_R=19.79 min.)

III. Resonance structures

Selected resonance structures of potential ODPABA demethylation transitional product are presented below (Fig. S7).

Fig. S7 The selected resonance structures of the radical formed through hydrogen abstraction from ODPABA ($R=\text{CH}_2\text{CH(C}_2\text{H}_5\text{)}\text{C}_4\text{H}_9-n$)