COVID-19: measuring the impact on healthcare demand and capacity and exploring intervention scenarios

James Van Yperen¹, Eduard Campillo-Funollet², and Anotida Madzvamuse¹

¹School of Mathematical and Physical Sciences, Department of Mathematics, University of Sussex, Brighton, BN1 9QH, UK
²School of Life Sciences, Centre for Genome Damage and Stability, University of Sussex, Brighton, BN1 9QH, UK

1 Introduction

The resurgence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (now commonly known as COVID-19 [11]) and its mutant variants (for example, the UK variant known as VUI–202012/01) are putting National Health Systems (NHS) in most western countries under significant pressure/strain due to an increase in COVID-19 hospitalisations and the provision of critical care for patients in need. The new UK variant, VUI–202012/01 or lineage B.1.1.7, was first announced by M. Hancock, the UK Health Secretary, on 14th December 2020. Subsequently confirmed by Public Health England and the UK’s COVID-19 sequencing consortium [27], its origins were then traced through databases of SARS-CoV-2 to the county of Kent on the 20th September 2020. Since then, cases of the new variant have been confirmed in the UK and mainland Europe and is thought to be a key driver of the resurgence of COVID-19 infections across many parts of the country. The UK government has responded to this new surge in infections by placing some regions, including Greater London, under new stricter coronavirus restrictions, known as Tier 4. For example, people in Tier 4 areas or regions are not allowed to gather with anyone outside their household, while those in the rest of the country can only gather under less stringent conditions. Tier 4 represents a stay at home order, where non-essential shops, gyms and hairdressers are closed. Proposals to move into Tier 5 are currently under consideration and this will be the equivalent of the national lockdown experienced during the first wave of COVID-19. It is reported that the new variant could increase transmission of COVID-19 by as much as 70% and increase the reproduction number R_t by 0.4.

As a result, critical care in most western countries is currently undergoing enormous strain due to a rapid increase in healthcare demand and capacity for COVID-19 patients [3]. In the UK, NHS hospitals are at their most vulnerable during the winter period and COVID-19 is contributing significantly to huge strains on the provision of critical care. The bed capacity for non-COVID patients is being diverted at an alarming speed to provide invasive ventilated and/or critical care
bed capacity for COVID-19 patients. This implies that vacant and/or available bed capacity is also under huge demand and in some cases, is fast running out. In some cases, emergency responders seek to find the closest bed available rather than the closest hospital due to shortages of COVID-19 critical care capacity. Hence, it is imperative that local hospitals have clear and well-defined interventions to understand and mitigate the impact of COVID-19 hospitalisations as well as critical planning on death management, mortuary and funeral care provision. As of 28th December 2020, the UK has seen over 70752 deaths, and more than 2.3 million COVID-19 cases. In this study, we present plausible intervention measures within the Sussex region of the UK where hospital bed capacity and demand are currently experiencing enormous strain from COVID-19 patience and burial capacity is at an all time high.

As local NHS Hospital Trusts are seeing record numbers of people with COVID-19 requiring hospitalisation and subsequently critical care, NHS managers, planners and healthcare analysts are struggling to make robust and accurate predictions due to the lack of a national model applicable at regional levels. This study plugs this gap by proposing an SEIR-D model that is fitted to local NHS datasets and is driven by novel statistical methods and techniques for parameter estimation [4]. The resulting computational framework allows us to predict and forecast COVID-19 hospitalisations and deaths in a more quantitative approach that allows NHS managers and Public Health Analysts to plan accordingly. Our aim is to provide scenarios and situational awareness driven by an epidemiological model using real-time data to simulate the effects of various public policy interventions.

In the literature, there is a plethora of pre-prints and peer-reviewed articles that present work on forecasting COVID-19 dynamics [4, 7, 10, 11, 12, 14, 16, 18, 21]. However, most of these works use national datasets which are then averaged for regional purposes [24]. Furthermore, very few studies couple dynamical models with statistical inference techniques in a rigorous approach [25, 26]. The novelty of our approach is reflected in two strands: (i) we couple innovatively a data-driven SEIR-D model such that the flow compartments are directly linked to the available data and (ii) an observational model, in terms of rewriting the SEIR-D model purely in terms of the observable and obtainable data, is derived that allows to fit the model to data and rigorously justify uniqueness of the parameters and their identifiability [4]. Our computational modelling approach is then rigorously validated with current datasets as well as with subsets of the data to demonstrate the forecasting capability of our techniques. Such an approach has the capability to make forecasting long into the future with high accuracy provided the parameters do not undergo changes, like a change in average transmission due to the region going from tier 3 to tier 4 for example. In this work, we will use this approach to measure the impact of COVID-19 hospitalisations on healthcare demand and capacity through COVID-19 forecasting as well as exploring intervention scenarios under which bed capacity may be breached. This allows for robust and agile NHS planning and management.

2 A data-driven SEIR-D model

In this section we will present a simple data-driven susceptible-exposed-infected-recovered-dead (SEIR-D) model proposed in [4] which breaks down the typical infectious compartment of an SEIR-
D model into two compartments, one strand to model individuals who become infectious with COVID-19 and will be going to hospital, and the other strand to model individuals who will not need to go to hospital and thus remain undetected by hospital healthcare requirements. Using this model we will explore some theoretical uses of these models by modelling an intervention as a social distancing effect, by reducing the average transmission rate, as well as modelling early warning indicators. Throughout this study we will be measuring the “success” of an intervention by the percentage of individuals who have died throughout the simulation, in the sense that reducing this statistic means a more successful intervention. Note, although the parameters are inferred using Sussex regional datasets, the results and outputs in this study are hypothetical and are used for theoretical purposes to gain an insight on plausible management or policy-related scenarios.

As part of the national COVID response, all the National Health Service (NHS) hospitals in England treating COVID-19 patients submitted a Daily Situation Report to NHS England. The Sussex regional data was then sent to the Sussex Clinical Commissioning Group (CCG) who aggregated the data and combined it to occurrences of deaths per week in the death data from the Office of National Statistics (ONS). This is the main reason as to why the model is configured using the two strands, as demonstrated in Figure 1. The hospital dataset contained daily hospital admissions, the red dashed arrow from the I compartment to the H compartment in Figure 1, daily discharges, the red dashed arrow from the H compartment to the R_H compartment in Figure 1 and daily occupancy, the red dashed H compartment in Figure 1. The death dataset contains the weekly number of deaths recorded outside of hospitals, the red dashed arrow from the U compartment to the D_U compartment in Figure 1 and the weekly number of deaths recorded within hospitals, the blue double dashed arrow from the H compartment to the D_H compartment, with COVID-19 as the underlying cause of death.

The mathematical model takes the following form of a simple temporal epidemiological dynamic sys-
tem of ordinary differential equations, governed by the interactions depicted in Figure 1, supported
by non-negative initial conditions

\[
\begin{align*}
\dot{S} &= -\beta \frac{U + I}{N} S, & t \in (0, T], & S(0) = N - 1, \\
\dot{E} &= \beta \frac{U + I}{N} S - \gamma_E E, & t \in (0, T], & E(0) = 1, \\
\dot{U} &= p \gamma_E E - \gamma_U U, & t \in (0, T], & U(0) = 0, \\
\dot{I} &= (1 - p) \gamma_E E - \gamma_I I, & t \in (0, T], & I(0) = 0, \\
\dot{H} &= \gamma_I I - (\gamma_H + \mu_H) H, & t \in (0, T], & H(0) = 0, \\
\dot{R}_U &= (1 - m_U) \gamma_U U, & t \in (0, T], & R_U(0) = 0, \\
\dot{R}_H &= \gamma_H H, & t \in (0, T], & R_H(0) = 0, \\
\dot{D}_U &= m_U \gamma_U U, & t \in (0, T], & D_U(0) = 0, \\
\dot{D}_H &= \mu_H H, & t \in (0, T], & D_H(0) = 0.
\end{align*}
\]

Here, the dot above the notation denotes the time derivative. In this setting, let \(N \) denote the
total regional population in the Sussex region of the UK (with \(N \) approximately 1.7 million, as per
the ONS Mid-Year Estimates in 2018). Then, \(S(t) \) denotes the proportion of the total population
\(N \) who are susceptible to the disease, COVID-19. Susceptible individuals become exposed to
the disease, i.e. they are carrying the disease but are not currently infectious, to form the \(E(t) \)
subpopulation at rate \(\lambda(t) \) which represents the current infectivity. The rate \(\lambda(t) \) is the product
between \(\beta \), the average transmission rate, and the probability of meeting an infectious person
\((U(t) + I(t))N^{-1}\). The \(E(t) \) subpopulation is an incubation compartment and further evolves in
two ways. A proportion of \(E(t) \) becomes infectious but, in the spirit of the hospital healthcare
demand, remains undetected with probability \(p \), denoted \(U(t) \), at a rate \(\gamma_E \), or a proportion of \(E(t) \)
becomes infectious and will require hospitalisation in the future with a probability of \(1 - p \), denoted
\(I(t) \), at a rate \(\gamma_I \). The \(I(t) \) subpopulation that does not require hospitalisation can either progress
to recover with a probability of \(1 - m_U \), at rate \(\gamma_U \), to form the recovered population, denoted
by \(R_U(t) \), or die with a probability of \(m_U \), at rate \(\gamma_U \), to form the dead population, denoted by
\(D_U(t) \). Considering the infectious population that will be going to hospital, these individuals will
become hospitalised, denoted by \(H(t) \), and thus be in hospital care at rate \(\gamma_H \). We assume that once
a patient has been admitted into hospital, they are no longer infectious or rather they no longer
transmit to other non-COVID-19 patients, visitors or workers. Once in hospital, patients can evolve
in two separate pathways, a proportion of the hospitalised population can fully recover at rate \(\gamma_H \)
to form the subpopulation denoted by \(R_H(t) \). Alternatively, if they can not recover, then they
die while in hospital at rate \(\mu_H \), to form the dead population denoted by \(D_H(t) \). The outbreak is
regarded to have been contained at a time \(T > 1 \) such that \(E(T) + U(T) + I(T) < 1, \mathcal{R}_t < 1 \) and
there is no ongoing intervention. This implies that there are no more infectious individuals within
the population and thus the system has reached its steady state.

As is standard for epidemiological models of this nature, \(\beta \) denotes the average transmission rate,
\(\gamma_E^{-1} \) denotes the average incubation time, \(p \) denotes the proportion of infectious individuals who
will not require hospital treatment, \(\gamma_U^{-1} \) denotes the average infectious period for those not needing
hospital treatment, \(m_U \) denotes the infected fatality ratio for undetected cases, \(\gamma_H^{-1} \) denotes the
average infectious period from becoming infectious to being admitted to hospital, \(\gamma_I^{-1} \) denotes the
average hospitalisation period for those who recover and μ_H^{-1} represents the average hospitalisation period for those who die.

In [4] we use the equations (2.1)–(2.9) to infer values of the model parameters which best fit the available NHS England datasets provided at the time. These are displayed in Table 1. The data used to fit the model was recorded during the first lockdown in March 2020 within the UK and is reflected in the value of R_0. Using the method of next generation matrices [9], we derive the formula for R_0 as the following

$$R_0 := \beta \left(\frac{p}{\gamma_U} + \frac{1-p}{\gamma_I} \right) \approx 0.85. \quad (2.10)$$

Progressing through this study we will scale β so that there will be an epidemic.

Parameter	Value	Epidemiological meaning
β	0.151 days^{-1}	Transmission rate
γ_E^{-1}	6.51 days	Average incubation period
p	0.929	Fraction of undetected cases
γ_{U}^{-1}	6.10 days	Average infectious period (undetected cases)
γ_{I}^{-1}	6.28 days	Average infectious period (hospital cases)
γ_H^{-1}	19.74 days	Average hospitalisation period (recovered)
m_U	0.022	Infected fatality ratio (undetected cases)
μ_H^{-1}	12.91 days	Average hospitalisation period (deaths)

Table 1: Description of the SEIR-D model parameters in (2.1)–(2.9), and their estimated inferred values as presented in [4].

We numerically approximate the solutions to the system (2.1)–(2.9) by using the SciPy implementation of the Fortran ODE solver lsoda, which is a combination of the Adams methods and the Backward Differentiation Formula (BDF) family of methods [3, 15, 23]. Given the multi-step approach of the ODE solver, each time we manipulate the parameters during a simulation, to initiate an intervention, we stop the current solver and start it again using initial conditions as the final values of the last solver. This bypasses difficulties of having a discontinuous ODE system. One notes that this can also be bypassed by using a much simpler solver, like the forward Euler scheme, however this would result in the need for significantly smaller timesteps.

3 Intervention measures based on hospital occupancy

3.1 The “do-nothing” approach

As a reference point to how the interventions are working, we use this section to demonstrate the “do-nothing” approach, which is simply to let the disease take its course. This will provide us with statistics to compare to the interventions later on to demonstrate their effectiveness. In reality, we are aware that this approach will not be implored and an intervention will occur, as has
happened all over the globe with national level lockdowns and social distancing measures. Since the parameters presented in Table 1 depict a lockdown scenario, we scale \(\beta \) accordingly to several values to establish an epidemic, i.e. so that \(R_0 > 1 \). An increase in average transmission rate can simply be interpreted as more individuals meeting each other and spreading the disease. In Table 2 we measure the maximum hospital capacity needed, the day in the simulation that maximum is reached and the percentage of dead individuals at the end of the outbreak. In Figure 2 we demonstrate the effective reproduction number \(R_t \), calculated by

\[
R_t := R_0 \frac{S(t)}{N}.
\]

As intuitively expected, as \(R_0 \) increases the maximum number of patients in the hospital increases, the day of that peak is sooner and the percentage of dead individuals increases. Similarly, the actual outbreak is much shorter in length and reaches much smaller values of \(R_t \). This description follows the notion that the larger the value of \(R_0 \), the more aggressive the disease is following the exponential growth of those who are infectious, as can be seen in Figure 2 by the steep decline in \(R_t \).

\(R_0 \)	Max hospital occupancy	Day of peak of hospital occupancy	% dead individuals
1.3	2135	564	2.67%
1.4	3328	451	3.23%
1.5	4593	379	3.68%
1.6	5882	330	4.05%
1.7	7161	294	4.36%
1.8	8411	266	4.63%
1.9	9620	244	4.84%
2.0	10781	226	5.03%

Table 2: Measurements using the “do-nothing” approach.
Figure 2: R_t using the “do-nothing” approach.

3.2 Intervention

In the following sections we want to investigate how one can use hospital capacity as a measurement for whether interventions are put into place. We aim to model the situation where an intervention is triggered when hospital capacity is almost full, and then finish the intervention when the hospital capacity has reached an “opening” threshold, denoted β_t, of significantly lower patients. For ease of computation we will simply set a threshold that once breached will trigger the intervention. It is well known that post-intervention spread of an infectious disease is actually sub-exponential [20], in the sense that contacts will still be reduced from the pre-intervention amount for a period of time after an intervention has finished, however we do not consider this here as it will simply elongate the outbreak. For this investigation we will initiate an intervention once 800 patients are in hospital. This takes the form

$$\beta(t; \ell) := \begin{cases}
\beta & \text{if } H(t) > 800, \\
\beta & \text{if } H(t) > \beta_t \text{ and } \ell = 1, \\
C_{R_0}\beta & \text{otherwise,}
\end{cases}$$

where β is defined as in Table I, ℓ is set to 1 when H goes above 800 and is then set to 0 when H drops to below some threshold β_t, and C_{R_0} is the scaling constant that allows the system to be in an epidemic. One thing to consider with this study is that we are considering the capacity of all the hospitals in Sussex as one due to modelling constraints and data access. This means that we are assuming hospitals can move patients around throughout Sussex due the physical constraints of each hospital, in response to the bed capacity of each individual hospital.
3.3 Changing R_0

In this section, we will be changing R_0 and setting $\beta_\ell = 200$ or $\beta_\ell = 400$ patients for the threshold to finish the intervention. In Tables 3 and 4 we measure the number of interventions needed, the length of each intervention, the day of the initiation of the intervention and the percentage of total deaths at the end of the epidemic. We demonstrate a few of the simulations in Figure 3 and illustrate the effective reproduction number over each outbreak in Figure 4. The black (dashed) lines in each plot depict when the intervention has occurred.

Comparing Table 2 to Tables 3 and 4 we can see that the intervention has dramatically decreased the percentage of total deaths for larger values of R_0, as expected. We can see that as we increase R_0, the number of interventions needed increases and also the length of the initial intervention increases. This is due to the number of future patients in the exposed compartment E and the infectious compartment I. This is emphasised by the fact that the initial intervention is sooner for a larger value of R_0 due to the increased average transmission. It can also be seen that the time between each intervention decreases as R_0 increases. We can also see, by comparing Figure 2 with Figure 4, that the epidemic actually lasts significantly longer. These observations are realistically expected, however there are some results which are not necessarily expected or intuitive like the percentage of total dead for $R_0 = 1.9$ being smaller than for $R_0 = 1.8$ in Table 3 but not in Table 4. This is not specific to this value of R_0, rather to the circumstance that this simulation finds itself after the final intervention. Namely, at this stage of the simulation for $R_0 = 1.9$, herd immunity has almost been reached, i.e. R_t is only slightly larger than 1. A value of R_t slightly larger than 1 means that although there is still an increase in the number of infectious individuals, the rate of that increase is much slower comparatively to an R_t value of, say, 1.5. At this stage, the number of incubating and infectious individuals in the case of $R_0 = 1.9$ is also small which means that the final bump in the simulation for $R_0 = 1.8$ is much larger than the respective bump for $R_t = 1.9$ (the bump for $R_0 = 1.9$ reaches no more than 300 individuals rather than over 600 for $R_0 = 1.8$). This interplay between parameter values, herd immunity and R_t is difficult to analyse and demonstrates that intuition is not necessarily enough to predict the best plan of action.

R_0	Length and # of interventions	Day of intervention initiations	% total deaths
1.3	152 days	466	2.19%
1.4	155, 128 days	337, 604	2.35%
1.5	158, 118, 60 days	292, 515, 755	2.46%
1.6	159, 114, 111 days	249, 461, 653	2.97%
1.7	161, 112, 103, 154 days	218, 423, 595, 798	3.00%
1.8	162, 111, 98, 106 days	195, 396, 558, 727	3.40%
1.9	163, 112, 97, 99, 174 days	177, 375, 530, 685, 881	3.35%
2.0	163, 113, 95, 92, 110 days	162, 357, 508, 652, 815	3.69%

Table 3: Measurements using the hospital capacity intervention approach, changing R_0 and fixing $\beta_\ell = 200$.
R_0	Length and # of interventions	Day of intervention initiations	% total deaths
1.3	103, 47 days	406, 645	1.98%
1.4	106, 89, 37 days	357, 506, 696	2.25%
1.5	110, 86, 96 days	292, 433, 566	2.75%
1.6	112, 84, 82, 132 days	249, 388, 507, 645	2.88%
1.7	115, 83, 76, 83, 31 days	218, 356, 468, 582, 747	2.98%
1.8	117, 84, 74, 76, 103 days	195, 333, 441, 546, 668	3.35%
1.9	120, 84, 74, 73, 80, 29 days	177, 315, 420, 520, 628, 776	3.37%
2.0	120, 85, 73, 71, 75, 112 days	162, 299, 403, 499, 599, 718	3.66%

Table 4: Measurements using the hospital capacity intervention approach, changing R_0 and fixing $\beta_\ell = 400$.

Figure 3: Number of patients in hospitals using the hospital capacity intervention approach, changing R_0 and fixing $\beta_\ell = 200$ or $\beta_\ell = 400$.

9
3.4 Changing β_ℓ

In this section, we will be changing β_ℓ, the lower threshold of patients that signals the ending of the intervention, and setting $R_0 = 1.4$ or $R_0 = 1.5$. In Tables 5 and 6 we measure the number of interventions needed, the length of each intervention (measured in days), the day of the initiation of each intervention and the percentage of the total deaths at the end of the epidemic. We demonstrate a few of the simulations in Figure 5 and we demonstrate the effective reproduction number over each outbreak in Figure 6. The black (dashed) lines in each plot depict when the intervention has occurred.

Comparing Table 2 to Tables 5 and 6 we can see that again the intervention has dramatically decreased the percentage of total deaths compared to the “do-nothing” approach. Interestingly, changing the threshold β_ℓ does not have that much of an effect on the percentage of total deaths, unlike the difference we saw in Tables 3 or 4 when changing R_0, but it does have a large effect on the length of the outbreak. This can also be seen by looking at the length of the interventions, considering $\beta_\ell = 20$, say, the length of the interventions are much longer than for those with $\beta_\ell = 600$. Similarly to the previous section, in Table 5 we see that a threshold of $\beta_\ell = 400$ actually
decreases the percentage of total deaths, whereas the trend would suggest otherwise. Likewise we see this in Table 6 with $\beta_\ell = 200$. If we look at the purple line ($\beta_\ell = 400$) and the dashed red line ($\beta_\ell = 200$) in Figure 5 we see that, after the third intervention, the value of R_t is only slightly above 1 which implies a very slow increase in infections and, as alluded to previously, the state of the system is very close to herd immunity. This slow increase is demonstrated by the difference in the length of the outbreaks and the sharpness of the increase after the final intervention in Figure 5.

Both conclusions made in this section and the previous imply that the timing of interventions and the lengths are extremely important. Getting closer to herd immunity when ending an intervention has the potential to save a huge amount of lives. However, calculating R_t in real life is in general very challenging which leaves the process of timing for herd immunity difficult. One also notices that, although the percentage of total deaths decreases with an intervention, the length of most of the interventions is large due to the criteria set. This is mainly due to the fact that the average hospitalisation period is large and that the scenario we are simulating means that intervention will be in place until hospitals go from full capacity to between 2% and 60% capacity. Fortunately, we see that as the target capacity percentage increases, the percentage of total deaths does not increase dramatically, and the length of interventions decreases from the best part of 10 months to the best part of 3 months. Similarly, as the outbreak progresses, one would expect the average hospitalisation length to decrease, since awareness of the disease and treatment gets better, as well as an increase in resources. This final point is important as it means realistic interventions can be implemented as circuit breakers and still maintain a large decrease in the number of total deaths. However, one aspect of this which is overlooked in this study is the potential for outbreaks within hospitals, whereby the probability of an outbreak increases with a larger number of infectious patients.

β_ℓ	Length and # of interventions	Day of intervention initiations	% total deaths
20	300, 238 days	357, 906	2.11%
50	243, 201 days	357, 788	2.16%
100	200, 168 days	357, 698	2.23%
200	155, 128 days	357, 604	2.35%
400	106, 89, 37 days	357, 506, 696	2.25%
600	75, 66, 78 days	357, 450, 541	2.52%

Table 5: Measurements using the hospital capacity intervention approach, changing β_ℓ and fixing $R_0 = 1.4$. 11
β_ℓ	Length and # of interventions	Day of intervention initiations	% total deaths
20	301, 212 days	292, 766	2.74%
50	245, 175 days	292, 668	2.77%
100	202, 147 days	292, 593	2.81%
200	158, 118, 60 days	292, 515, 755	2.46%
400	109, 86, 96 days	292, 433, 566	2.75%
600	79, 64, 64, 86 days	292, 395, 474, 560	2.77%

Table 6: Measurements using the hospital capacity intervention approach, changing β_ℓ and fixing $R_0 = 1.5$.

Figure 5: Number of patients in hospitals using the hospital capacity intervention approach, changing β_ℓ and fixing $R_0 = 1.4$ or $R_0 = 1.5$.

12
3.5 Early warning indicators based on hospital capacity

In this section we will discuss how we can use the above notions of interventions to generate some early warning indicators. We ask the question, how many patients can the hospital take before an intervention needs to be initiated so that the maximum capacity of 1000 patients is never reached? The answer is not as simple as 1000, since there will be a significant number of people in the incubation stage before the intervention occurs, thus going above the 1000 mark, as seen by the red lines ($R_0 = 1.9$) in Figure 3 for example. In this section we measure what that number is for different values of R_0 and also how long it takes from the moment there is an intervention to when the occupancy reaches 1000 patients. These two measurements are depicted in Figure 7. We can see that as R_0 increases, the cap on the occupancy for the intervention decreases, which is as expected. This measurement is useful as depending on the value of R_0, one can know what the cap is on occupancy and thus can judge when to take steps to reduce transmission. We also see that as R_0 increases, the time from the initiation of an intervention until the peak also increases, which is not to be expected. This is, however, intuitive since the larger the value of R_0 the more patients are expected to be hospitalised, as demonstrated in Table 2. Hence, the quicker the threshold for initiating an intervention is met, as can be seen in the first plot of Figure 7. This means that, in
the intervention phase, a lot more patients need to be admitted to reach the 1000 patient capacity in comparison to a smaller value of R_0 but at a similar rate, hence the longer time. The final plot has a larger implication for modelling, namely that we need accurate two-three week forecasting in order to be able to use early warning indicators in this manner.

Figure 7: Early warning measurements considering hospital capacity.
4 Conclusion

In this study, we have presented a computational approach for measuring the impact of healthcare demand and capacity due to surges in COVID-19 infections and hospitalisations. We have used the notion of hospital capacity as a measure for exploring intervention scenarios that will allow hospitals to predict and forecast when demand and capacity are close to being bridged and therefore allow resource allocations where necessary.

The key findings are:

- we have demonstrated that interventions will make a significant impact of the percentage of individuals who will die as a result of COVID-19;
- we have described an easily definable and understandable method of introducing an intervention which doesn’t depend on prior knowledge of when the peak of infections will be;
- we have computationally shown the number of interventions expected for different values of R_0;
- we have described a method of using epidemiological SEIR-D systems to derive early warning indicators as to when hospital demand and capacity could be breached.

Our approach is built around using a simple SEIR-D model coupled with novel statistical methods for parameter estimation to allow us to explore various plausible hypothetical scenarios that are of interest to the NHS local planners and death management teams [4]. The theoretical and computational approach has a strong interplay between data and the model, whereby data drives the optimal parameter estimates and these in turn drive model predictions through a dynamic SEIR-D model.

5 Further Work

Given the simplicity of the mathematics for models like (2.1)–(2.9), extra compartments can be added to model other aspects of the outbreak like the use of intensive care units (ICU) or care homes, both useful to have in the model for death management services, provided reliable datasets become available. ICU services will have its own notion of maximum capacity, especially due to the dangerous nature of the units and the increased need for extra resources such as ventilation assistance, and the results here can easily be extended to include conditions on the ICU compartment that can be included in the equations.

Another aspect of the outbreak which we have not included in this study is the possibility of re-infection post recovery [27, 28]. This would turn the model from an SEIR-D type model into an SEIS-D type model [1], which brings forward a whole host of new questions to be asked and answered. On a similar vein, the current research into vaccines will prove pivotal in the role to stop COVID-19 [2, 19]. Mathematically, the addition of a vaccine into the model has been undertaken...
in previous works of this nature [13], but as with the other aspects we have mentioned, getting reliable data and understanding the appropriate mathematical additions remains the challenge.

An oversight of the work here is that the county is not homogeneous with respect to age. Different age-groups have different social structures, something which we have not explored in this work. In general, the lockdown we impose on our system is a total lockdown of all ages, similar to the national lockdown during the first wave, however utilising age-groups within the model will allow for dedicated forecasting into the effect some social events like schools opening or returning to offices will have on interventions [8, 17, 22].

Sticking to the model presented here, we can take steps forward to consider that maximising capacity and having longer lockdowns might not be more beneficial than small “circuit breaker” lockdowns when one considers the cost of hospital use and the local economy. For example, by associating a cost to hospital usage or to a lockdown in general, we can find the threshold β_f or maximum capacity threshold to go into a lockdown such that, for a specific value of R_0, we minimise the total costs by using some of the measurements we presented here such as the length of lockdown, number of lockdowns, and the time until the peak from the initiation of a lockdown. A similar study was conducted in [10] where they calculated the cost of capital (e.g. extra hospitals, provision of hand-washing stations) and one-time costs (e.g. hiring consultants to adapt policy, prepare online training courses), the cost of commodities (e.g. extra single use masks, specific increase in drugs) and the cost of human resources (e.g. extra doctors, extra cleaners) and combined it with the estimated number of cases from the Imperial College model [11] after four weeks and twelve weeks, using an increase and decrease of 50% transmission rate for an interval of costs. Since their model is on a national scale and uses national derived parameters, one can extend their results to Sussex by using our fitted model.

From a practical perspective, the next question to ask is: now we know what levels the hospital can take, what about the recovery procedure? It is well known that recovering from COVID-19 is not as easy as recovering from the common cold [5, 29]. In this sense, it is natural to extend the model here to include, what the Clinical Commission Group (CCG) label as, the discharge pathways, which describe the nature of the discharge of a patient and what recovery services they will need. Each pathway describes the level of need of a discharged patient, each level having an associated requirement and cost. Hence the following question arises: what will the burden to healthcare across the country be in one year, five years, and so on? Understanding the pressure on the discharge pathways due to COVID-19 may give an indication on recovery costs post COVID-19 infection and/or hospitalisation.
References

[1] Linda JS Allen and Amy M Burgin. Comparison of deterministic and stochastic sis and sir models in discrete time. *Mathematical biosciences*, 163(1):1–33, 2000.

[2] Naor Bar-Zeev and Tom Inglesby. Covid-19 vaccines: early success and remaining challenges. *The Lancet*, 2020.

[3] John Charles Butcher and Nicolette Goodwin. *Numerical methods for ordinary differential equations*, volume 2. Wiley Online Library, 2008.

[4] Eduard Campillo-Funollet, James Van Yperen, Phil Allman, Michael Bell, Warren Beresford, Jacqueline Clay, Graham Evans, Matthew Dorey, Kate Gilchrist, Pannu Gurprit, et al. Forecasting covid-19: Using seir-d quantitative modelling for healthcare demand and capacity. *medRxiv*, 2020.

[5] Angelo Carfì, Roberto Bernabei, Francesco Landi, et al. Persistent symptoms in patients after acute covid-19. *Jama*, 324(6):603–605, 2020.

[6] Nicholas G Davies, Rosanna C Barnard, Christopher I Jarvis, Timothy W Russell, Malcolm G Semple, Mark Jit, W John Edmunds, et al. Association of tiered restrictions and a second lockdown with covid-19 deaths and hospital admissions in england: a modelling study. *The Lancet Infectious Diseases*, 2020.

[7] Jonas Dehning, Johannes Zierenberg, F Paul Spitzner, Michael Wibral, Joao Pinheiro Neto, Michael Wilczek, and Viola Priesemann. Inferring change points in the spread of covid-19 reveals the effectiveness of interventions. *Science*, 2020.

[8] Francesco Di Lauro, Luc Berthouze, Matthew D Dorey, Joel C Miller, and István Z Kiss. The impact of network properties and mixing on control measures and disease-induced herd immunity in epidemic models: a mean-field model perspective. *arXiv preprint arXiv:2007.06975*, 2020.

[9] Odo Diekmann, JAP Heesterbeek, and Michael G Roberts. The construction of next-generation matrices for compartmental epidemic models. *Journal of the Royal Society Interface*, 7(47):873–885, 2010.

[10] Tessa Tan-Torres Edejer, Odd Hanssen, Andrew Mirelman, Paul Verboom, Glenn Lolong, Oliver John Watson, Lucy Linda Boulanger, and Agnès Soucat. Projected health-care resource needs for an effective response to covid-19 in 73 low-income and middle-income countries: a modelling study. *The Lancet Global Health*, 2020.

[11] Neil Ferguson, Daniel Laydon, Gemma Nedjati Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, ZULMA Cucunuba Perez, Gina Cuomo-Dannenburg, et al. Report 9: Impact of non-pharmaceutical interventions (npis) to reduce covid19 mortality and healthcare demand. 2020.

[12] Johannes Opsahl Ferstad, Angela Jessica Gu, Raymond Ye Lee, Isha Thapa, Andrew Y Shin, Joshua A Salomon, Peter Glynn, Nigam H Shah, Arnold Milstein, Kevin Schulman, et al. A model to forecast regional demand for covid-19 related hospital beds. *medRxiv*, 2020.
[13] Shujing Gao, Zhidong Teng, Juan J Nieto, and Angela Torres. Analysis of an sir epidemic model with pulse vaccination and distributed time delay. *Journal of Biomedicine and Biotechnology*, 2007.

[14] Maria Isabella Gariboldi, Vivian Lin, Jessica Bland, Mallika Auplish, and Amy Cawthorne. Foresight in the time of covid-19. *The Lancet Regional Health-Western Pacific*, 6:100049, 2020.

[15] David F Griffiths and Desmond J Higham. *Numerical methods for ordinary differential equations: initial value problems*. Springer Science & Business Media, 2010.

[16] Nicholas P Jewell, Joseph A Lewnard, and Britta L Jewell. Predictive mathematical models of the covid-19 pandemic: Underlying principles and value of projections. *Jama*, 323(19):1893–1894, 2020.

[17] Petra Klepac, Adam J Kucharski, Andrew JK Conlan, Stephen Kissler, Maria Tang, Hannah Fry, and Julia R Gog. Contacts in context: large-scale setting-specific social mixing matrices from the bbc pandemic project. *medRxiv*, 2020.

[18] Meng Liu, Raphael Thomadsen, and Song Yao. Forecasting the spread of covid-19 under different reopening strategies. *medRxiv*, 2020.

[19] Nicole Lurie, Melanie Saville, Richard Hatchett, and Jane Halton. Developing covid-19 vaccines at pandemic speed. *New England Journal of Medicine*, 382(21):1969–1973, 2020.

[20] Benjamin F Maier and Dirk Brockmann. Effective containment explains subexponential growth in recent confirmed covid-19 cases in china. *Science*, 368(6492):742–746, 2020.

[21] Amaryllis Mavragani and Konstantinos Gkillas. Covid-19 predictability in the united states using google trends time series. *Scientific reports*, 10(1):1–12, 2020.

[22] Barbara Nussbaumer-Streit, Verena Mayr, Andreea Iulia Dobrescu, Andrea Chapman, Emma Persad, Irma Klerings, Gernot Wagner, Uwe Siebert, Claudia Christof, Casey Zachariah, et al. Quarantine alone or in combination with other public health measures to control covid-19: a rapid review. *Cochrane Database of Systematic Reviews*, (4), 2020.

[23] Linda Petzold. Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. *SIAM journal on scientific and statistical computing*, 4(1):136–148, 1983.

[24] Chiara Poletto, Samuel V Scarpino, and Erik M Volz. Applications of predictive modelling early in the covid-19 epidemic. *The Lancet Digital Health*, 2(10):e498–e499, 2020.

[25] Julia Shen. A recursive bifurcation model for early forecasting of covid-19 virus spread in south korea and germany. *Scientific Reports*, 10(1):1–10, 2020.

[26] Jichao Sun, Xi Chen, Ziheng Zhang, Shengzhang Lai, Bo Zhao, Hualuo Liu, Ruilui Zhao, Alexander Ng, and Yefeng Zheng. Forecasting the long-term trend of covid-19 epidemic using a dynamic model. 2020.

[27] Kelvin Kai-Wang To, Ivan Fan-Ngai Hung, Jonathan Daniel Ip, Allen Wing-Ho Chu, Wan-Mui Chan, Anthony Raymond Tam, Carol Ho-Yan Fong, Shuofeng Yuan, Hoi-Wah Tsoi, Anthony Chin-Ki Ng, et al. Covid-19 re-infection by a phylogenetically distinct sars-coronavirus-2 strain confirmed by whole genome sequencing. *Clinical Infectious Diseases*, 2020.
[28] Jan Van Elslande, Pieter Vermeersch, Kris Vandervoort, Tony Wawina-Bokalanga, Bert Vanmechelen, Elke Wollants, Lies Laenen, Emmanuel André, Marc Van Ranst, Katrien Lagrou, et al. Symptomatic sars-cov-2 reinfection by a phylogenetically distinct strain. *Clinical infectious diseases: an official publication of the Infectious Diseases Society of America*, page ciaa1330, 2020.

[29] Dana Yelin, Eytan Wirtheim, Pauline Vetter, Andre C Kalil, Judith Bruchfeld, Michael Runold, Giovanni Guaraldi, Cristina Mussini, Carlota Gudiol, Miquel Pujol, et al. Long-term consequences of covid-19: research needs. *The Lancet. Infectious Diseases*, 2020.