Polymorphism of the endothelin-1 gene (rs5370) is a potential contributor to sickle cell disease pathophysiology

Kristen G. Navarro, Smith E. Agyingi, Chinedu K. Nwabuobi, Bolaji N. Thomas

Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA

Received 25 July 2016; accepted 9 September 2016
Available online 30 September 2016

Keywords
Endothelial nitric oxide synthase; Endothelin-1; Pathophysiology; Polymorphisms; Sickle cell disease

Abstract Sickle cell disease has been shown to demonstrate extensive variability in disease severity among and between individuals, the variability highlighted by differing genetic haplotypes. Despite the abundance of reports of functional significance due to polymorphisms of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) genes, the role of these polymorphisms in mediating sickle cell disease pathophysiology among African Americans is presently unclear. To deconvolute their potential significance among African Americans with sickle cell disease, we examined the genetic diversity and haplotype frequency of eNOS and ET-1 polymorphisms in disease (n = 331) and control (n = 379) groups, with a polymerase chain reaction restriction fragment length polymorphism assay. We report that genotypic and allelic frequencies of eNOS variants are not significantly different between groups. eNOS homozygote mutants, which had been shown to have clinical significance elsewhere, showed no statistical significance in our study. On the other hand, and contrary to previous report among Africans with sickle cell disease, the endothelin-1 homozygous mutant variant showed significant difference in genotypic (p = 2.84E-12) and allelic frequencies (p = 2.20E-16) between groups. The most common haplotype is the combination of T786C homozygote wild-type variant with homozygote mutant variants of G5665T (ET-1) and Glu298Asp (eNOS). These results show that endothelin-1 (rs5370) polymorphism, rather than endothelial nitric oxide synthase polymorphism might play a significant role in disease severity or individual clinical outcomes among African Americans with sickle cell disease. This would have profound
Introduction

Sickle cell disease, a red cell disorder with multiple acute and chronic complications, and differing pathophysiological outcomes, remains a healthcare challenge, especially in sub-Saharan Africa. The greatest toll of disease in the United States is in the black community among African Americans and immigrant populations from sub-Saharan Africa, some parts of the Middle East and Caribbean with an African descent, in addition to cases and other closely-related red cell disorders from the Indian sub-continent. Since sickle cell disease has a genetic basis, its pathophysiology (vaso-occlusive crises, stroke, leg ulceration, acute chest syndrome, pulmonary hypertension etc.) has been found to vary widely, at times following an interethnic pattern. Disease manifestations have been shown to be regulated by polymorphisms of genes reported to display clinical significance, among which are the endothelial nitric oxide synthase (eNOS) (polymorphisms include one in the promoter region (T-786C), one in exon 7 (Glu298Asp), and the variable number of tandem repeats (VNTR) in intron 4) and endothelin-1 (ET-1) genes. The T-786C variant of eNOS polymorphism (rs2070744) is a genetic risk factor for acute chest syndrome in female patients, while eNOS VNTR in intron 4 has been associated with plasma nitric oxide levels and vasculopathy. In fact, a study from India found an association between eNOS gene polymorphisms and sickle cell disease severity, concluding that eNOS gene is a genetic modifier of phenotypic variation among patients, or a marker of prognostic value, based on association with SCD clinical outcome. Endothelin-1 (rs37307) gene is another whose polymorphism has been implicated in disease pathophysiology, including progression of chronic glomerulosclerosis, pulmonary hypertension and vaso-occlusive episodes correlated with pain history. Its G5665T and T8002C variants have been associated with abnormal vascular reactivity, while the C8002 allele appears to increase the risk of acute chest syndrome in sickle cell disease. Published reports from our group and others, have shown that there is a significant interethnic diversity in the distribution of eNOS variants and this could be a potential contributor to differing sickle cell pathophysiology. Despite the reports from other populations, we showed previously that there is no difference in the genotypic or allelic frequencies of eNOS and endothelin-1 variants or significance of both polymorphisms among sickle cell disease patients from Africa. If this is the case, do endothelial nitric oxide synthase and endothelin-1 gene polymorphisms contribute to clinical pathophysiology among phenotypically-related African Americans with sickle cell disease? In this report, we investigated the genetic diversity implications for designing and/or advancing personalized care for sickle cell patients and relieving disease complications.

Materials and methods

This project was reviewed and approved by the Institutional Review Board, Rochester Institute of Technology, and is in accordance with Helsinki Declaration. Genomic DNA aliquots from African American sickle cell disease patients, as previously described were graciously provided by Betty Pace (Augusta University, GA) while control DNA samples (non-sickle cell patients; recruited from Shreveport, LA) were provided by Joann Moulds (Grifols Inc). PCR genotyping for all three endothelial nitric oxide synthase (a polymorphism in the promoter region T786C, rs2070744; another in exon 7 Glu298Asp, rs1799983; and the variable number of tandem repeats in intron 4) and endothelin-1 (G5665T) polymorphisms were carried out as published. Amplified PCR products were digested with specific restriction enzymes, as shown previously, while fragment size analysis was carried out as reported.

Data was analyzed with a simple PERL script and conversion of original data files to an EH program format was carried out as described. Differences in genotype and allele frequencies between disease and controls were assessed by odds ratio and chi square test. Haplotype frequencies were estimated and tested for disease differences with the EH program. Tests for deviation from Hardy–Weinberg equilibrium were performed, with SNP’s rejected based on the recommended threshold of $p < 0.05$ in control individuals.

Results and discussion

Sickle cell disease is an inheritable, single gene disorder, found between groups and a major contributor to significant childhood mortality, especially in sub-Saharan Africa, and has been reported to show significant interethnic variability in pathophysiology and disease severity. Previous reports have shown that endothelial nitric oxide synthase and endothelin-1 gene polymorphisms are significant in mediating or regulating sickle cell disease outcome or severity, plus roles in other diseases or pharmacological applications. Our previous work has shown that endothelial nitric oxide synthase and endothelin-1 gene polymorphisms have no significance among native Africans with sickle cell disease.
Following up on reports of clinical significance in other population groups, we evaluated the genotypic and allelic frequencies of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) gene polymorphisms among and between African American sickle cell disease patients and controls and estimated the haplotype frequencies between groups. The polymorphisms analyzed are eNOS $\text{C}786\text{T}$ (snp rs2070744) in the promoter region, the eNOS GGlu-Asp (snp rs1799983) in exon 7, and the ET-1 G5665T (snp rs5370) of the endothelin-1 gene. There was no statistically significant difference in the genotypic and allelic frequencies of eNOS variants between sickle cell disease and control groups. The homozygous wild type variants occurred at a higher and similar frequency in both groups (T/T (rs2070744) and Glu/Glu (rs1799983) respectively). eNOS homozygous mutant variants are less frequent (T/T (rs2070744) and Glu/Glu (rs1799983) respectively), contrary to published reports elsewhere. A similar pattern was observed for allelic frequencies, with no difference between sickle cell and control groups.

This current report shows the similarity of our previous observation on eNOS polymorphisms among and between Africans and African Americans. Following up on reports of clinical significance in other population groups, we evaluated the genotypic and allelic frequencies of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) gene polymorphisms among and between African American sickle cell disease patients and controls and estimated the haplotype frequencies between groups. The polymorphisms analyzed are eNOS $\text{C}786\text{T}$ (snp rs2070744) in the promoter region, the eNOS GGlu-Asp (snp rs1799983) in exon 7, and the ET-1 G5665T (snp rs5370) of the endothelin-1 gene. There was no statistically significant difference in the genotypic and allelic frequencies of eNOS variants between sickle cell disease and control groups. The homozygous wild type variants occurred at a higher and similar frequency in both groups (T/T (rs2070744) and Glu/Glu (rs1799983) respectively). eNOS homozygous mutant variants are less frequent (T/T (rs2070744) and Glu/Glu (rs1799983) respectively), contrary to published reports elsewhere. A similar pattern was observed for allelic frequencies, with no difference between sickle cell and control groups. Our data show that there

Table 1 Estimated eNOS and ET-1 gene haplotype frequencies between sickle cell disease and control groups.

Haplotypes	Haplotype frequencies			
Case	Control	Case vs control		
T786C	Glu298Asp G5665T			
T	Glu G	0.3364	0.1666	0.1682
T	Glu T	0.4188	0.5727	0.2306
C	Glu G	0.0794	0.0110	0.0446
C	Glu T	0.0640	0.1213	0.0446
T	Asp G	0.0479	0.0606	0.1028
T	Asp T	0.0246	0.0682	0.3185
C	Asp G	0.0120	0.0068	0.0081
C	Asp T	0.0167	0.0473	0.0826

Abbreviations: SCD, sickle cell disease; CI, confidence interval; eNOS, endothelial nitric oxide synthase.

Odds ratio and p-value was calculated by two-tailed Fisher’s exact test. Haplotype analysis was carried out with the EH program (lab.rocketefeller.edu/ott/programs).
is no statistically significant difference in the genotypic or allelic frequencies of endothelial nitric oxide synthase polymorphisms between African American sickle cell disease and control groups. In addition, eNOS gene polymorphisms (rs2070744 and rs1799983) were equally distributed, with no deviations from the Hardy–Weinberg equilibrium. This lack of difference in eNOS gene polymorphisms between African and American sickle cell disease groups imply observations made in one population could potentially be applied to the other, with disease following a similar pattern on eNOS polymorphisms in both populations. Potential contribution of genomic heterogeneity in the control group to our results would require further deconvolution, since significant admixture in this group could be a confounding factor to our observations and attributable conclusions. Following up with our previous report on the impact of geographical origin on genetic outcome among African American population, further studies evaluating this polymorphism in representative Nilo-Saharan speaking populations of coastal West Africa or the role of ancestry, traceable either to the Afroasiatic and hitherto unknown, of this variant in possibly other disease groups imply observations made in one population could be applied to the other, with disease stratification (severe versus mild) and sickle cell genetic haplotypes would provide a great benefit in elucidating their clinical and therapeutic implications in disease pathophysiology. Our report shows that endothelial nitric oxide synthase variants are less frequent with no significance among patients with sickle cell disease in either Africa or United States, while there is a potential role for endothelin-1 polymorphism in delineating clinical variability or disease pathophysiology, not seen in Africa but in United States.

Author contributions

BNT conceived, designed experiments and drafted the manuscript; KGN and SEA carried out genotyping and restriction digestion; CKN contributed to the discussion and scientific content. All authors read and approved the final version of the manuscript.

Conflicts of interest

There are no conflicts of interest.

Acknowledgements

We are grateful to Betty Pace and Joann Moulds who graciously provided us with the genomic DNA samples. We acknowledge the assistance of Yi Li, Shanxi University, China with data analysis. This project was supported by a Research Laboratory Support and Faculty Development Award, College of Health Sciences and Technology, Rochester Institute of Technology (BNT). An ABRCMS Travel Award (KGN) to present this work at the Annual Biomedical Research Conference for Minority Students, Seattle WA November 12–15, 2015 is acknowledged.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.gendis.2016.09.002.

References

1. Modell B, Darlison M. Global epidemiology of hemoglobin disorders and derived service indicators. Bull WHO. 2008;86:480–487.
2. Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115:4331–4336.
3. Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN. Global burden of sickle cell anaemia in children under five, 2010–2050: modelling based on demographics, excess mortality, and interventions. PLoS Med. 2013;10:e1001484.
4. Nishank SS, Singh MP, Yadav R, Gupta RB, Gadge VS, Gwal A. Endothelial nitric oxide synthase gene polymorphism is
associated with sickle cell disease patients in India. J Hum Genet. 2013;58:775–779.
5. Tarer V, Etienne-Julian M, Diara JP, et al. Sickle cell anemia in Guadeloupean children: pattern and prevalence of acute clinical events. Eur J Hematol. 2006;76:193–199.
6. Elumalai R, Periasamy S, Ramanathan G, Lakkavula BV. Role of endothelial nitric oxide synthase VNTR (intron 4a/b) polymorphism on the progress of renal disease in autosomal dominant polycystic kidney disease. J Ren Inj Prev. 2014;3:69–73.
7. Noble JA, Duru KC, Guindo A, et al. Interethnic diversity of the CD209 (rs4804803) gene promoter polymorphism in African but not American sickle cell disease. Peer J. 2015;3:e799.
8. Chaar V, Tarer V, Etienne-Julian M, Diara JP, Elion J, Romana M. ET-1 and eNOS gene polymorphisms and susceptibility to acute chest syndrome and painful vaso-occlusive crises in children with sickle cell anemia. Hematologica. 2006;91:1277–1278.
9. Sharan K, Surrey S, Ballas S, et al. Association of T-786C eNOS gene polymorphism with increased susceptibility to acute chest syndrome in females with sickle cell disease. Br J Hematol. 2004;124:240–243.
10. Tanatawy AA, Adly AA, Ismail EA, Aly SH. Endothelial nitric oxide synthase gene intron 4 VNTR polymorphism in sickle cell disease: relation to vasculopathy and disease severity. Pediatr Blood Cancer. 2015;62:389–394.
11. Yousry SM, Elithy NH, Shahin GH. Endothelial nitric oxide synthase gene polymorphisms and the risk of vasculopathy in sickle cell disease. Hematology. 2016;4:1–9.
12. Tharaux PL. Endothelin in renal injury due to sickle cell disease. Contrib Nephrol. 2011;172:185–199.
13. Li C, Mpollo MS, Gonsalves CS, Tahara SM, Malik P, Kalra VK. Peroxisome proliferator-activated receptor-α-mediated transcription of miR-199a2 attenuates endothelin-1 expression via hypoxia-inducible factor-1α. J Biol Chem. 2014;289:36031–36047.
14. Gonsalves CS, Li C, Malik P, Tahara SM, Kalra VK. Peroxisome proliferator-activated receptor-α-mediated transcription of miR-301a and miR-454 and their host gene SKA2 regulates endothelin-1 and PAI-1 expression in sickle cell disease. Biosci Rep. 2015;35. pii: e00275.
15. Smith TP, Schlenz AM, Schatz JC, Maitra R, Sweitzer SM. Modulation of pain in pediatric sickle cell disease: understanding the balance between endothelin mediated vasoconstriction and apelin mediated vasodilation. Blood Cells Mol Dis. 2015;54:155–159.
16. Tanus-Santos JE, Desai M, Flockhart DA. Effects of ethnicity on the distribution of clinically relevant endothelial nitric oxide variants. Pharmacogenet. 2001;11:719–725.
17. Marroni A5, Metzger IF, Souza-Costa DC, et al. Consistent interethnic differences in the distribution of clinically relevant endothelial nitric oxide synthase genetic polymorphisms. Nitric Oxide. 2005;12:177–182.
18. Serrano NC, Diaz LA, Casas JP, Hingorani AD, Moreno-De-Luca D, Paez MC. Frequency of eNOS polymorphisms in the Colombian general population. BMC Genet. 2010;11:54.
19. Thomas BN, Thakur TJ, Yi L, Guindo A, Diallo DA, Ott JG. Extensive ethnogenic diversity of endothelial nitric oxide synthase (eNOS) polymorphisms. Gene Reg Syst Biol. 2013;7:1–10.
20. Thakur TJ, Guindo A, Cullifer LR, Li Y, Imumorin IG, Thomas BN. Endothelin-1 but not endothelial nitric oxide synthase gene polymorphism is associated with sickle cell disease in Africa. Gene Reg Syst Biol. 2014;8:119–126.
21. Duru KC, Noble JA, Guindo A, et al. Extensive genomic variability of knops blood group polymorphisms is associated with sickle cell disease in Africa. Evol Bioinform. 2015;11:25–33.
22. Trousoulis D, Toli E, Miliou A, et al. The impact of G566ST polymorphism of endothelin-1 gene, on endothelin-1 levels and left ventricular function in ischemic heart disease. Int J Cardiol. 2013;168:1568–1569.
23. Thomas BN, Petrelia CR, Thakur TJ, Crespo SR, Diallo DA. Genetic polymorphism of Plasmodium falciparum merozoite surface protein-1 and 2 and diversity of drug resistance genes in blood donors from Bamako, Mali. Infect Dis Res Treat. 2012;6:49–57.
24. Terwilliger JD, Ott J. Handbook of Human Genetic Linkage. Baltimore: Johns Hopkins University Press; 1994.
25. Vargas AE, deSilva MAL, Silla L, Chies JAB. Polymorphisms of chemokine receptors and eNOS in Brazilian patients with sickle cell disease. Tissue Antigens. 2005;66:683–690.
26. Saini V, Bhattacharjee J. Association of endothelial dysfunction with endothelin, nitric oxide and eNOS Glu298Asp gene polymorphism in coronary artery disease. Dis Markers. 2011;31:215–222.
27. Sakai T, Shikishima K, Matsuhashi M, Tsuneoka H. Genetic polymorphisms associated with endothelial function in nonarteritic anterior ischemic optic neuropathy. Mol Vis. 2013;19:213–219.
28. Gregoski MJ, Buxbaum SG, Kapuku G, et al. Interactive influences of ethnicity, endothelin-1 gene, and everyday discrimination upon nocturnal ambulatory blood pressure. Ann Behav Med. 2013;45:377–386.
29. Matsa LS, Rangaraju A, Vengaladas V, et al. Haplotype of NO3S gene polymorphisms in dilated cardiomyopathy. PLoS One. 2013;8:e70523.
30. Lind L, Sylven AC, Axelsson T, Lundmark P, Hägg S, Larsson A. Variation in genes in the endothelin pathway and endothelium-dependent and endothelium-independent vasodilation in an elderly population. Acta Physiol (Oxf). 2013;208:88–94.
31. Figueiras-Alloy J, Gomez L, Rodriguez-Miguez JM, et al. Plasma nitrite/nitrate and endothelin-1 concentrations in neonatal sepsis. Acta Paediatr. 2003;92:582–587.