Neurotransmitter Secretion along Growing Nerve Processes: Comparison with Synaptic Vesicle Exocytosis

Stanislav Zakharenko, Sunghoe Chang, Michael O’Donoghue, and Sergey V. Popov
Department of Physiology and Biophysics M/C 901, University of Illinois, Chicago, Illinois 60612

Abstract. In mature neurons, synaptic vesicles continuously recycle within the presynaptic nerve terminal. In developing axons which are free of contact with a postsynaptic target, constitutive membrane recycling is not localized to the nerve terminal; instead, plasma membrane components undergo cycles of exoendocytosis throughout the whole axonal surface (Matteoli et al., 1992; Kraszewski et al., 1995). Moreover, in growing X. spinal cord neurons in culture, acetylcholine (ACh) is spontaneously secreted in the quantal fashion along the axonal shaft (Evers et al., 1989; Antonov et al., 1998). Here we demonstrate that in X. neurons ACh secretion is mediated by vesicles which recycle locally within the axon. Similar to neurotransmitter release at the presynaptic nerve terminal, ACh secretion along the axon could be elicited by the action potential or by hypertonic solutions. We found that the parameters of neurotransmitter secretion at the nerve terminal and at the middle axon were strikingly similar. These results lead us to conclude that, as in the case of the presynaptic nerve terminal, synaptic vesicles involved in neurotransmitter release along the axon contain a complement of proteins for vesicle docking and Ca2+-dependent fusion. Taken together, our results support the idea that, in developing axons, the rudimentary machinery for quantal neurotransmitter secretion is distributed throughout the whole axonal surface. Maturation of this machinery in the process of synaptic development would improve the fidelity of synaptic transmission during high-frequency stimulation of the presynaptic cell.

Key words: secretion • exocytosis • synaptic vesicle • acetylcholine • dynamin

Neurotransmitter secretion from the nerve terminal plays an important role in synaptic competition and plasticity (Thoenen, 1995; Bonhoeffer, 1996; Rao and Craig, 1997). In the developing nervous system, neurotransmitters present in the extracellular medium may participate in axonal pathfinding and navigation by modulating the rate and direction of axonal growth (Kater et al., 1988; Lipton et al., 1988; Zheng et al., 1994; Buzhnikov et al., 1996). In mature neurons, neurotransmitter secretion depends on the exocytosis of neurotransmitter-containing synaptic vesicles (Hanson et al., 1997). These synaptic vesicles are clustered at the active zones specialized for neurotransmitter release and local recycling of synaptic vesicles (Burns and Augustine, 1995). Although the fusion of synaptic vesicles is tightly regulated by the influx of Ca2+ during action potential propagation (Bennett, 1997), synaptic vesicles may fuse with the plasma membrane spontaneously. These spontaneous exocytotic events result in the release of neurotransmitter packets (quanta) and a transient change in the membrane potential in the postsynaptic cell (Del Castillo and Katz, 1954; Xie and Poo, 1986).

Spontaneous neurotransmitter secretion can also be detected in developing axons where it is believed to be localized largely to the growth cone region (Hume et al., 1983; Young and Poo, 1983). In the majority of cases, the insertion of newly synthesized membrane material and the endocytosis of plasma membrane components are also restricted to the distal axon (Craig et al., 1995; Dai and Sheetz, 1995; Futerman and Banker, 1996; Vogt et al., 1996; Zakharenko and Popov, 1998). The confinement of endocytotic activity to the growth cone region may reflect a unique molecular composition of the distal axon, such as the localization of target (1)-SNAREs (Rothman, 1994) to the growth cone area. However, in hippocampal neurons (Galli et al., 1995; Garcia et al., 1995) and X. embryo neurons (Antonov et al., 1998), t-SNAREs were found to have a widespread distribution throughout the axon and were not restricted to the nerve terminal. Moreover, constitutive membrane recycling (Matteoli et al., 1992; Dai and Peng, 1996a), insertion of newly synthesized plasma membrane components (Popov et al., 1993; de

S. Zakharenko and S. Cheng contributed equally to this work.
Address correspondence to S.V. Popov, Department of Physiology and Biophysics M/C 901, University of Illinois, 835 S. Wolcott Ave., Chicago, IL 60612. Tel: (312) 413-5682. Fax: (312) 996-1414. E-mail: spopov@uic.edu

© The Rockefeller University Press, 0021-9525/99/02/507/12 $2.00
The Journal of Cell Biology, Volume 144, Number 3, February 8, 1999 507–518
http://www.jcb.org
Materials and Methods

Cell Culture

Cultured *Xenopus* spinal cord neurons were prepared according to previously reported methods (Spitzer and Lamborghini, 1976; Anderson et al., 1977). The cells were plated on acid-washed coverslips and grown in the culture medium consisting of (vol/vol) 50% Leibovitz L-15 medium (GIBCO BRL), 49% Ringer’s solution (115 mM NaCl, 2 mM CaCl₂, 2.5 mM KCl, 10 mM Hepes, pH 7.6) and 1% fetal bovine serum (GIBCO BRL). The cultures were used for experiments after 1 d incubation at 20°C. *Xenopus* myocytes were plated separately on Petri dishes, grown in a culture medium supplemented with 3% fetal bovine serum, and then used for experiments after a 24–48 h incubation at 20°C.

Manipulation

Manipulation of *Xenopus* myocytes followed the procedures described previously (Girod et al., 1995; Morimoto et al., 1995). In brief, coverslips with plated neurons were transferred to the Petri dish containing previously (Girod et al., 1995; Morimoto et al., 1995). In brief, coverslips were transferred to the Petri dish containing previously reported methods (Spitzer and Lamborghini, 1976; Anderson et al., 1977). The cells were plated on acid-washed coverslips and grown in the culture medium consisting of (vol/vol) 50% Leibovitz L-15 medium (GIBCO BRL), 49% Ringer’s solution (115 mM NaCl, 2 mM CaCl₂, 2.5 mM KCl, 10 mM Hepes, pH 7.6) and 1% fetal bovine serum (GIBCO BRL). The cultures were used for experiments after 1 d incubation at 20°C. *Xenopus* myocytes were plated separately on Petri dishes, grown in a culture medium supplemented with 3% fetal bovine serum, and then used for experiments after a 24–48 h incubation at 20°C.

Micromanipulation

Manipulation of *Xenopus* myocytes followed the procedures described previously (Girod et al., 1995; Morimoto et al., 1995). In brief, coverslips with plated neurons were transferred to the Petri dish containing *Xenopus* myocytes. Myocytes were gently detached from the surface of the Petri dish by heat-polished micropipettes attached to a hydraulic micromanipulator (Newport). The cells were transferred into the vicinity of the axon, allowed to reattach to the glass surface, and then manipulated into the contact with axon. In the majority of patch clamp recording, the myocyte was firmly attached to the surface of the coverslip and was in tight contact with the axon. We found that attachment of the myocyte to the coverslip greatly improved the stability of whole-cell patch clamp recordings.

Electrophysiology

Gigaohm-seal whole-cell recording methods followed those described previously (Hamill et al., 1981). Patch pipettes were fabricated from glass micropipets (VWR) and pulled with a two-step puller (Narishige). After heat polishing, the pipette tip diameter was 1.5–2 μm and the resistance was 2–5 MΩ. The intrapipette solution for the whole-cell recording from myocytes contained 140 mM KCl, 1 mM NaCl, 1 mM MgCl₂, and 10 mM Hepes, pH 7.4. Electrical stimulation of the presynaptic neuron was made by a patch electrode filled with Ringer’s solution at the cell body under loose seal conditions. All recordings were done at room temperature. The membrane currents were monitored by a patch clamp amplifier (Warner PC500-A). The data were digitized and stored on a videotape recorder for later playback onto a storage oscilloscope (model 5113; Tektronix) or a chart recorder (model RS3200; Gould). The data were analyzed with the SCAN program, kindly provided by J. Dempster (University of Strathclyde at Glasgow, Glasgow, UK). The threshold for detection of current events was typically set at the level of 20–25 pA. All data reported are mean ± SEM. To determine significant differences between averages, unpaired t tests assuming equal variance or analysis of variance (ANOVA) tests were performed.

Image Acquisition and Data Analysis

An Olympus IX 50 inverted microscope equipped with differential interference contrast optics and a 100-W mercury arc lamp was used for fluorescence microscopy. Images were acquired with a charge-coupled device camera (ImagePoint or Sensys, Photometrics) driven by IPLab (Signal Analytics) imaging software, and background subtracted. Images were processed with IPLab and Photoshop (Adobe Systems). Quantitation of data was performed using IPLab software. The distribution of fluorescence intensity along the axon was obtained by measuring the average intensity within circular sampling areas 1 μm in diameter. The sampling was started at the growth cone with regular spacing of ~2.5 μm along the axon.

Application of Hypertonic Solution

For the fast-flow application of hypertonic solution, a micropipette with tip diameter 7–10 μm was positioned within 100–200 μm of the site of recording. A pulse of positive pressure was applied with a Picospritzer. The hypertonic solution contained 300 mM sucrose in culture medium. Application of the hypertonic solution visibly distorted the plasma membranes of both the axon and the myocyte by inducing shrinkage. Withdrawal of the pipette resulted in a rapid (within a few seconds) recovery of both axonal and myocyte membranes to original shape.

FM1-43 Staining

Cells were labeled by superfusion into the chamber with FM1-43 (Molecular Probes) at a concentration of 2 μM in a 60 mM KCl solution for 3–5 min followed by washing in normal culture medium for 30–50 min. Destaining was induced by superfusion with 60 mM KCl in Ringer’s solution. In a series of control experiments neuronal cultures were stained with FM1-43, washed in the culture medium supplemented with 5 mM EGTA (Ca²⁺-free medium), and superfused with Ringer’s solution containing 60 mM KCl and 5 mM EGTA. The average fluorescence intensity of FM1-43-stained vesicle clusters was measured within rectangular sampling areas (0.22 × 0.22 μm²).

Staining of Mitochondria

To view mitochondria in living neurons, we added 1 μg/ml Rhodamine 123 (Molecular Probes) to the culture medium for 15–20 min, and then extensively washed the cells with fresh culture medium.

Microinjection of Cy3-Tubulin into Xenopus Embryos

Cy3-tubulin was a generous gift of G.G. Borisy (University of Wisconsin, Madison, WI). Details of Cy3-tubulin preparation can be obtained from http://borisy.bocklabs.wisc.edu. Before microinjection, a 10-μl aliquot of Cy-3 tubulin was centrifuged at 15,000 g for 60 min at 4°C to remove particulate material and to reduce pipette clogging and was stored on ice until the time of injection. *Xenopus* embryos were injected with 10–25 nl of 10 μg/ml Cy3-tubulin.
mg/ml Cy3-tubulin as described before (Chang et al., 1998). The eggs were allowed to develop to stages 19–24 and were then used for the preparation of neuronal cultures.

Detergent Extraction

Neurons labeled with Cy3-tubulin were extracted in a microtubule-stabilizing buffer (60 mM Pipes, 1 mM MgCl₂, 5 mM EGTA, 0.1% Triton X-100, 10 μM taxol, pH 6.8) for 5 min and examined under a fluorescent microscope.

Immunocytochemistry

Monoclonal antibodies to dynamin-1 were purchased from Upstate Biological. Polyclonal anti-α-adaptin antibodies were from Transduction Laboratories. Polyclonal anti-ARF1 antibodies and polyclonal antibodies that recognize α3 subunit of AP-3 complex were generously provided by V. Faundez and R.B. Kelly (University of California, San Francisco, CA). The secondary antibody was FITC-conjugated anti-mouse or anti-rabbit IgG (Jackson ImmunoResearch). Cells were prepared on concanavalin A (1 μg/cm²)-coated coverslips. The cells were fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS) for 20 min, washed three times with PBS, and then permeabilized with 0.1% Triton X-100 in PBS. Cells were incubated with a primary (1:100) and then with a secondary antibody (1:200) for 1 h at room temperature. All antibody solutions were prepared in PBS containing 2 mg/ml bovine serum albumin. Cells were mounted in Vectashield mounting medium (Vector Labs) to resist bleaching.

Results

Spontaneous Secretion of ACh along the Axon Is Due to the Local Recycling of ACh-containing Vesicles

Experiments were performed on 1-d-old nerve muscle cultures prepared from *Xenopus* embryos. Neurons and myocytes in culture formed contacts spontaneously. We will refer to these developing neuromuscular synapses as preformed synapses. Quantal release of ACh at the preformed synapses can be detected by the whole-cell voltage clamp recordings from the postsynaptic myocyte (Hamill et al., 1981). Individual spontaneous synaptic currents (SSCs) in recordings from myocytes reflect spontaneous exocytosis of ACh-containing synaptic vesicles and release of ACh quanta (Chow and Poo, 1985; Evers et al., 1989). To detect the release of ACh in growing axons we chose axon-bearing neurons that were free of contact with other cells. An isolated *Xenopus* myocyte was detached from the substrate, voltage clamped at the resting membrane potential (−70 mV) using whole-cell patch clamp technique, and then manipulated into contact with the axon. At each site the whole-cell patch clamp recording was performed for ~5 min. A representative example of membrane current recorded from a voltage-clamped myocyte. Downward deflections represent SSCs. SSCs could be detected immediately after establishment of contact between the myocyte and the axon (horizontal black bars). (C) Changes in the frequency and amplitude of the current events with time after the onset of recording, normalized to the values at the beginning of the recording. Data from eight recordings at preformed synapses (circles) and from 10 recordings at the middle axonal segment (squares). Membrane current was continuously recorded for a period of 35 min. In recordings from the middle axon the data were collected immediately after establishment of contact between the myocyte and the axon. Notice that the SSC frequency and SSC amplitude do not significantly change during the period of recording.

Figure 1. Spontaneous release of ACh from *Xenopus* neurons. (A) Schematic diagram or recording configuration. An isolated *Xenopus* myocyte was detached from the substrate, clamped at the resting membrane potential (~70 mV) using whole-cell patch clamp technique, and then sequentially manipulated into contact with three different sites along the axon. At each site the whole-cell patch clamp recording was performed for ~5 min. (B) A representative example of membrane current recorded from a voltage-clamped myocyte. Downward deflections represent SSCs. SSCs could be detected immediately after establishment of contact between the myocyte and the axon (horizontal black bars). (C) Changes in the frequency and amplitude of the current events with time after the onset of recording, normalized to the values at the beginning of the recording. Data from eight recordings at preformed synapses (circles) and from 10 recordings at the middle axonal segment (squares). Membrane current was continuously recorded for a period of 35 min. In recordings from the middle axon the data were collected immediately after establishment of contact between the myocyte and the axon. Notice that the SSC frequency and SSC amplitude do not significantly change during the period of recording.
2 D), and inhibited transport of mitochondria along the axon (Fig. 3). Therefore, the treatment with nocodazole is expected to disrupt the delivery of cell body-derived vesicles to the growing axon. However, spontaneous neurotransmitter secretion persisted after nocodazole application both along the axon (Fig. 2 B) and at the preformed synapses (data not shown). Moreover, the disruption of axonal microtubules resulted in a significant increase in the SSC frequency at the middle axonal segment (detailed quantitative analysis of the effects of axonal microtubules on neurotransmitter secretion will be presented elsewhere). These results strongly suggest that constitutive ACh secretion along the axon is not directly related to the exocytosis of cell body-derived vesicles. Instead, ACh secretion is likely to be mediated by a local exoendocytic recycling of ACh-containing vesicles.

To directly demonstrate that ACh secretion along the axon was due to the local recycling of ACh-containing vesicles, we transected the axon from the soma with a microelectrode. Previously it has been shown that this procedure results in the transient increase in SSC frequency at the preformed synapses (Stoop and Poo, 1995) due to the influx of Ca^{2+} (Stoop and Poo, 1995; Ziv and Spira, 1997). Within 15–20 min after transection, both the concentration of cytoplasmic Ca^{2+} and SSC frequency return to control (before transection) values (Stoop and Poo, 1995). To investigate whether spontaneous ACh secretion persisted along the distal axonal fragments after axotomy, we manipulated the myocyte into contact with the middle axon and recorded SSCs before and for a period of 30 min after

Figure 2. Spontaneous release of ACh in isolated Xenopus neurons is mediated by the local recycling of ACh-containing vesicles along the axon. (A) Schematic diagram of recording configuration. Myocyte (M) was manipulated into contact with the middle axonal segment 1 d after cell culture preparation. Whole-cell configuration was established ~1–2 min after manipulation. Patch clamp recordings from the myocytes were performed for ~30 min. The neurons chosen for experiments were free of contact with other cells and had a single axon ~300–500 μm in length. (B) The trace is a representative example of membrane current recorded from whole-cell voltage-clamped myocyte (V_h = −70 mV) manipulated into contact with the middle axonal segment. Downward deflections represent SSCs. SSCs could be detected immediately after establishment of whole-cell configuration (start of the recording). Nocodazole (5 μg/ml, arrow) was applied to the bath ~5 min after the start of recording. (C) Representative fluorescent images of Xenopus neurons loaded with Cy3-Rhodamine before (top) and after (bottom) detergent extraction in a microtubule-stabilizing buffer. In control cells (left panels) the bulk of tubulin was retained in the neuron after extraction. In neurons treated for 30 min with nocodazole (5 μg/ml, right panels), most of the tubulin was removed during the extraction procedure. Similar results were obtained in experiments performed on 10 control neurons and on 10 nocodazole-treated neurons. (D) Nocodazole treatment arrests axonal growth. Representative differential interference contrast (DIC) images of neurite 1 d after cell culture preparation. Numbers indicate time in minutes. Nocodazole (5 μg/ml) was applied 30 min after the start of the experiment. Within 30 min after nocodazole application, axonal elongation slowed down and the growth cone retracted. Similar results were observed in nine different experiments.

Figure 3. Treatment with nocodazole inhibits transport of mitochondria along Xenopus neurites. Representative fluorescent images of mitochondria in a control neuron and in a neuron treated for 30 min with nocodazole (5 μg/ml). Mitochondria were stained with Rhodamine 123 and visualized with digital fluorescence microscopy. Transport of individual mitochondria (arrows) could be detected in control cells. In neurons treated with nocodazole, none of the ~300 observed mitochondria displayed episodes of long-range transport. Numbers indicate the time in seconds after the start of experiment.
transection (Fig. 4). In agreement with previously reported data (Stoop and Poo, 1995), we observed a dramatic increase in the SSC frequency immediately after transection (Fig. 4 B). With time, the frequency of SSC decreased. For a period of 20–30 min after transection, the average frequency of SSCs, determined for 3-min bins, was not significantly different from that recorded at the middle axonal segment before transection (Fig. 4 B).

Taken together, these results strongly suggest that the majority of ACh secretion events along the developing Xenopus axons in culture is mediated by the local recycling of ACh-containing vesicles, rather than by constitutive exocytosis of the cell body-derived vesicles.

ACh Release along the Axon Is Calcium-dependent

Endocytic membrane compartments in the neuron can be stained with fluorescent membrane dye FM1-43. Depolarization-induced destaining of the neurons is believed to reflect the Ca\(^{2+}\)-dependent fusion of FM1-43–labeled synaptic vesicles with the plasma membrane and release of the dye into the extracellular medium (Betz and Bewick, 1992; Ryan et al., 1993). In agreement with previously published data (Kraszewski et al., 1995; Dai and Peng, 1996a) we found that after incubation with FM1-43, staining of neurites was not uniform. Occasionally individual fluorescent spots could be resolved (Fig. 5). These spots are likely to represent clusters of synaptic vesicles (Kraszewski et al., 1995). Repeated images were acquired while the neuron was superfused with a 60 mM KCl. The average brightness of the spots rapidly decreased with time during superfusion. No destaining of FM1-43–labeled organelles was observed when superfusion with 60 mM KCl was done in the Ca\(^{2+}\)-free medium. This result suggests that, similar to the nerve terminal, exocytosis of synaptic vesicles along the axon is Ca\(^{2+}\)-dependent.

As a more direct test for the Ca\(^{2+}\) dependence of synaptic vesicle exocytosis, we investigated whether ACh release can be induced by the action potential. Electrical stimulation of the neuronal cell body results in evoked synaptic currents (ESCs) in recordings from the postsynaptic myocyte in Xenopus neuromuscular synapses (Fig. 6 A). Action potential-evoked currents reflect simultaneous release of a number of ACh quanta from the nerve terminal. ESCs follow the excitation pulse with a characteristic delay of a few milliseconds (Sun and Poo, 1987). To investigate whether ACh secretion along the axon can be induced by an action potential, we stimulated the neuron at the soma with an extracellular patch electrode. Simultaneously we recorded spontaneous and evoked currents from the myocyte manipulated into contact with the mid-
Middle axon 6.2
by
ously formed synapses (Preformed synapse). All parameters of SSCs and ESCs were determined for each recording before averaging. In each experiment at least 20 SSCs and five
Preformed synapse 10.4
Table I. Characteristics of Spontaneous and Evoked Synaptic Currents at the Preformed Synapses and the Middle Axon

	Average SSC frequency	Average SSC amplitude	Average ESC amplitude	Delay of onset of ESC	Ratio of ESC amplitude/SSC frequency	Coefficient of variation for ESC
Preformed synapse	10.4 ± 0.7*	158 ± 12	2,334 ± 179*	1.96 ± 0.04	266 ± 32	0.52 ± 0.11
Middle axon	6.2 ± 0.8*	112 ± 9	1,135 ± 82*	1.89 ± 0.05	286 ± 54	0.68 ± 0.14

Data were obtained by recording membrane currents in the myocytes manipulated into contact with the middle axonal segment of a neuron (Middle axon) and from the spontaneously formed synapses (Preformed synapse). All parameters of SSCs and ESCs were determined for each recording before averaging. In each experiment at least 20 SSCs and five ESCs were analyzed. The data are presented as mean ± SEM of 15–54 different experiments. The data at the preformed synapses and the middle axonal segments were compared by t test. *, P < 0.05.

The Journal of Cell Biology, Volume 144, 1999 512

Figure 6. Evoked synaptic currents (ESCs) at different axonal segments. Continuous traces depict the membrane current recorded at the preformed synapse (A) and at the middle axon (B). The neurons were extracellularly stimulated (0.5 ms duration, 0.2 Hz) to generate action potentials. ESCs (arrows) are shown as downward deflections among randomly occurring SSCs.

Figure 7. Evoked ACh secretion is inhibited by ω-conotoxin GVIA. Traces are representative examples of the membrane currents recorded from myocytes at the preformed synapses (A) and the middle axonal segment (B). Evoked synaptic currents (small arrows) were elicited by electrical stimulation of the cell body to generate action potentials. Bath application of ω-conotoxin GVIA (1 µM, large arrow) rapidly inhibited ESCs both at the preformed synapses and at the middle axon. Samples of ESCs before and after ω-conotoxin GVIA application are shown below at a higher resolution.

ddle axonal segment. Low frequency electrical stimulation of the neuron consistently elicited ESCs in the manipulated myocyte (Fig. 6 B). The average amplitude of ESCs was 2.3 ± 0.2 nA (mean ± SEM, n = 16) and 1.1 ± 0.1 nA (n = 14) at the preformed synapses and the middle axon, respectively (Table I). The somewhat higher ESC amplitude at the preformed synapses may reflect a tighter excitation-secretion coupling, or higher density of docked vesicles at the nerve terminal, as compared with that at the middle axon. However, we noticed that the ESC amplitude at the middle axonal segment seemed to depend on the contact area between axonal plasmalemma and the myocyte (see Evers et al., 1989). To take into account the differences in the contact area between the myocyte and the axon, we calculated the ratio of the average ESCs to the average SSC frequency for each recording. Since both of these parameters are expected to be proportional to the area of contact between the myocyte and the neuron, this ratio may serve as an indicator of the efficacy of the excitation-secretion coupling at different axonal segments. The average ratio ESC amplitude/SSC frequency at the preformed synapses and the middle axon showed no significant difference (Table I), suggesting a similar efficiency of evoked neurotransmitter secretion at the middle axon and at the preformed synapses. This conclusion was further supported by the analysis of the delay of ESC onset (as defined by the time between the end of 0.5-ms stimulus and the onset of ESCs), and the fluctuation of the ESC amplitude (as assessed by calculating the coefficient of variation, or SD/mean, of the ESC amplitude observed in each recording). The delay of ESC onset and the fluctuations of the ESC amplitude are believed to reflect the speed and reliability of evoked neurotransmitter secretion (Sun and Poo, 1987; Wang et al., 1995). No statistically significant differences in these parameters were found between preformed synapses and the middle axon (Table I).

The action potential-induced neurotransmitter release is triggered by the rapid elevation of the cytoplasmic Ca\(^{2+}\) due to the opening of Ca\(^{2+}\) channels (Bennett, 1997). In Xenopus spinal cord neurons, evoked neurotransmitter release is mediated primarily by N-type Ca\(^{2+}\) channels (Yazejian et al., 1997). Application of a specific blocker of N-type Ca\(^{2+}\) channels, ω-conotoxin GVIA, dramatically inhibited evoked neurotransmitter secretion both at the presynaptic nerve terminal and at the middle axonal segment (Fig. 7). Hence, as seen in the presynaptic nerve terminal, the evoked ACh release at the middle axon is mediated largely by N-type Ca\(^{2+}\) channels.

The induction of ESCs by electrical stimulation of the neuron suggests that a population of fusion-competent synaptic vesicles is docked at the plasma membrane throughout the axon. To further test this prediction, we applied a pulse of hypertonic solution to neuronal cultures, while continuously recording SSCs at the preformed synapse or at the middle axon (Fig. 8). Application of a hypertonic solution is known to induce an immediate exocytosis of the fusion-competent vesicles at the nerve terminal (Stevens and Tsujimoto, 1995; Rosenmund and Stevens, 1996). The readily releasable pool of quanta defined in this assay appears to be identical to the one drawn upon by action potential-evoked release (Stevens and Tsujimoto, 1995; Rosenmund and Stevens, 1996). We found that a hypertonic solution containing 300 mM sucrose in the culture medium induced a rapid and highly reproducible increase in the frequency of SSCs both at the nerve terminal (Fig. 8 A) and at the middle axon (Fig. 8 B). For a period of 20–60 s...
after the onset of sucrose application, the average frequency of SSCs was 526 ± 87 events/min (mean \pm SEM, $n = 10$) and 373 ± 112 events/min ($n = 14$) in recordings from the preformed synapses, and from the middle axon, respectively. These values were ~ 50-fold higher than that before the application of the hypertonic solution (Fig. 8 C). The increase in the SSC frequency at the preformed synapse induced by the hypertonic solution showed no statistically significant difference compared with the middle axonal segment.

Synaptic Vesicle Recycling and Short-term Plasticity at the Nerve Terminal and along the Axon

Generation of carrier vesicles from the intracellular membrane compartments requires GTP-binding proteins and coats (Rothman and Wieland, 1996; Schekman and Orci, 1996). In many cases, coat assembly is regulated by a small GTP-binding protein ARF1 (Donaldson et al., 1992). To test whether synaptic vesicle recycling at the preformed synapses and at the middle axon is mediated by ARF proteins, we treated neuronal cultures with Brefeldin A (BFA), a specific inhibitor of ARF1-mediated processes. 1 h after the onset of BFA treatment ($10 \mu g/ml$), the frequency of SSCs at the preformed synapses did not change significantly in comparison with control (untreated with BFA) neurons (Fig. 9). Surprisingly, neurotransmitter secretion in the middle segment of neurite was dramatically inhibited. The inhibition of secretory activity by BFA was completely reversible and is unlikely to reflect permanent damage to the neurons.

Brefeldin A treatment induces a collapse of the Golgi complex into ER (Doms et al., 1989; Lippincott-Schwartz et al., 1989; Dascher and Balch, 1994), and rapidly arrests axonal growth (Jareb and Banker, 1997; Chang et al., 1998), presumably by blocking the supply of newly synthesized membranes from the trans-Golgi network (Craig et al., 1995). Although we cannot completely exclude the direct contribution of the Golgi-derived vesicles to the ACh secretion along the axon, it appears that SSCs, both at the preformed synapses and along the axon, reflect local recycling of synaptic vesicles. This exocytotic cycle does not directly depend on the supply of Golgi-derived material (see Figs. 2–4). Additional support for this model is provided by a series of experiments in which we measured the SSC frequency along the distal axonal segments that were transected from the soma. Recordings were started 20 min after the transection and the SSC frequency was constant throughout the period of recording (Fig. 10 and also see Fig. 4). Within 5–10 min after BFA application ($10 \mu g/ml$), the spontaneous neurotransmitter secretion along the axonal fragments was significantly inhibited (Fig. 10). 25 min after the onset of BFA treatment, the frequency of SSCs along the distal axonal fragment dropped to 27% of that at the start of recording (Fig. 10). Since the transected axonal fragments lack the Golgi apparatus, the results strongly suggest an inhibitory action of BFA on local synaptic vesicle recycling along the axon.

To compare the properties of synaptic vesicle recycling along the axon and at the nerve terminal, we used two assays for short-term synaptic plasticity of transmitter release. First, we measured the depression of evoked responses following repetitive high-frequency stimulation of the presynaptic cell. This depression is a characteristic of many synapses and reflects depletion of fusion-competent synaptic vesicles (Zucker, 1996). We compared the rate of
ACh Secretion Can Be Induced by α-Latrotoxin

α-Latrotoxin is a potent stimulator of neurosecretion. Its action is mediated by the binding of the toxin to high-affinity presynaptic receptors (Petrenko et al., 1991; Krasnoperov et al., 1997). An unidentified signaling cascade leads to massive release of neurotransmitter from neurons and neuroendocrine cells (Longenecker et al., 1970; Rosenthal and Meldolesi, 1989). To investigate whether α-latrotoxin elicits ACh release from Xenopus neurons, we recorded quantal ACh release from the presynaptic nerve terminal and from the middle axon. Fig. 13 illustrates the result of a typical experiment. At both axonal regions, bath application of α-latrotoxin resulted in a dramatic increase in the SSC frequency (Fig. 13, A and B). 20 min after the onset of α-latrotoxin treatment, the SSC frequency increased ~12 fold as compared with the control level of secretion. Potentiation of ACh release followed a similar kinetics at the preformed synapses and at the middle axon (Fig. 13 C).

Distribution of Dynamin, Adaptor Complexes AP-2, AP-3, and ARF in Xenopus Neurons

Synaptic vesicle endocytosis at the nerve terminal requires clathrin adaptor complex AP-2 and dynamin (Cremona and De Camilli, 1997). The localization of AP-2 and dynamin in Xenopus neurons which were free of contact with other cells was investigated by immunofluorescence using antibodies to these proteins. Immunoreactivity to dynamin and AP-2 was found to have a widespread distribution throughout the axon (Fig. 14). Quantitative analysis of the fluorescence intensity profiles indicated that the intensity of staining was approximately fivefold higher at the growth cone region in comparison with the middle axonal segment.

Inhibition of ACh secretion at the middle axonal segment after Brefeldin A treatment suggests involvement of small GTP-binding protein ARF in synaptic vesicle recycling. Previous reconstitution studies demonstrated that in addition to ARF, synaptic vesicle generation from endosomes requires AP-3 coat complex (Faundez et al., 1998). In Xenopus neurites immunoreactivity for ARF and AP-3 was detected both at the growth cone and along the axon (Fig. 14). The intensity of immunofluorescence staining was very close to uniform throughout the whole axonal length.

Discussion

In mature neurons, synaptic vesicle exocytosis is restricted to the active zones of the presynaptic nerve terminals (Burns and Augustine, 1995; Cremona and De Camilli, 1997). However, in developing Xenopus neurons, quantal...
ACh secretion can be detected throughout the entire axonal surface. In this study we compared and contrasted the functional properties of neurotransmitter secretion at the nerve terminal and at the middle axonal segment of neurites.

Spontaneous ACh Release along Developing Neurites

Characteristically rapid membrane currents (SSCs) were detected both in recordings from the nerve terminal and from the middle axon. The individual SSCs reflected a simultaneous release of ACh packets from the neuron (Dan and Poo, 1992; Sakmann, 1992). The average number of ACh molecules in the packet can be roughly estimated from the average amplitude of SSCs (110–160 pA, Table I); this number is $\approx 10^3$. Although it is hard to completely exclude the possibility that the quantal ACh release that we observed might be mediated by the activity of a plasma membrane ACh transporter (Falk-Vairant et al., 1996), the overwhelming amount of evidence suggests that in the majority of cases, including developing *Xenopus* neuromuscular synapses (Girod et al., 1995), quantal neurotransmitter release is mediated by the exocytosis of neurotransmitter-filled vesicles.

The analysis of the secretory activity in growing neurites performed in this study is based on the assumption that myocytes do not directly elicit ACh release from neurons. It is possible that the myocytes manipulated into contact with the axon rapidly stimulate the local assembly of the secretory machinery at the site of contact between the two cells and, therefore, serve as inducers of exocytic activity. A few lines of evidence argue against this model: (a) SSCs in recordings from the middle axon could be detected without any measurable delay after the manipulation of the myocyte into contact with the axon (Fig. 1B) (see also Evers et al., 1989); (b) the frequency of SSCs remained at

Figure 13. α-Latrotoxin elicits massive neurotransmitter release from *Xenopus* neurons. (A and B). Representative examples of membrane currents recorded from myocytes at a preformed synapse (A) and from the myocyte manipulated into contact with the middle axon (B). α-Latrotoxin (1 nM, arrow) was applied ≈ 5 min after the onset of recording. SSC frequency increased with a characteristic delay of ≈ 10 min. (C) Quantitative analysis of the effect of α-latrotoxin on neurotransmitter secretion at the preformed synapses (circles) and at the middle axon (squares). Changes in the frequency of the current events with time after the onset of α-latrotoxin application, normalized to the values at the beginning of the recording. Data from five recordings at preformed synapses and five recordings at the middle axon were normalized for each cell before averaging.

Figure 14. Distribution of dynamin, AP-2, AP-3, and ARF along the neurites. Neurons were fixed, detergent-permeabilized, and then stained with antibodies to dynamin-1, α subunit of AP-2, σ subunit of AP-3, and ARF1. Immunoreactivity recognized by all four antibodies was present throughout the whole axonal surface and had a finely punctate appearance. In the case of dynamin and AP-2, immunoreactivity was concentrated at the growth cone region. Immunoreactivity to AP-3 and ARF was more uniformly distributed throughout the axon. For quantitative analysis of fluorescence intensity distribution, intensity profiles of the axons were created from immunofluorescence images. The sampling areas were chosen along the axon and the average intensity of fluorescence in these areas (arbitrary units) was plotted as a function of distance from the growth cone. For each of the fluorescence profiles, the data from at least 25 different neurons were pooled together.
the same level during a period of recording (Fig. 1 C); (c) constitutive membrane recycling along *Xenopus* neurites which are free of contact with other cells can be visualized with FM1-43 dye (Fig. 5) (Dai and Peng, 1996a). Taken together, these data suggest that constitutive ACh release occurs in naive neurites. It should be noted that we cannot completely exclude the possibility that manipulation of a myocyte into the contact with an axon rapidly potentiates neurotransmitter release from the nerve cells. This induction, however, should take place on a time scale of a few seconds, a possibility that seems unlikely.

In conditions where the activity of the axonal transport system is severely impaired by disruption of axonal microtubules (Figs. 2 and 3), quantal ACh secretion along the axon can still be observed. Moreover, ACh secretion persists in axonal fragments which are separated from the cell body (Fig. 4). Therefore, the majority of exocytic events that we detect is mediated by vesicles which recycle locally within the axon. This notion is also indirectly supported by the striking similarities of the electrophysiological parameters of neurotransmitter secretion at various axonal regions (see below).

Properties of Quantal Neurotransmitter Secretion at the Presynaptic Nerve Terminal and along the Axon

Quantitative comparison of the parameters of SSCs and ESCs at the preformed synapses and along the axonal shaft yields insights into the mechanisms of synaptic vesicle recycling at different axonal regions. We measured the frequency of SSCs, the average SSC amplitude, and the parameters of action potential-evoked ACh secretion (Table I). In all parameters examined, ACh secretion from the middle axon showed little or no difference compared with that at the presynaptic nerve terminal in preformed synapses. These results suggest that regardless of their location, synaptic vesicles are likely to contain the basic complement of proteins required for synaptic vesicle docking, fusion, and neurotransmitter accumulation (Sudhof, 1995). It is particularly intriguing that the secretion of ACh along the axon could be triggered by both the action potential and by hypertonic solution, suggesting the existence of a pool of fusion-competent vesicles docked at the plasma membrane throughout the axon. Moreover, similar coefficients of variation of ESCs, a delay in the onset of ESCs, an inhibition of ESCs by ω-conotoxin GVIA, and induction of the massive ACh release by α-latrotoxin all point to the similar properties of excitation-secretion coupling at the nerve terminal and along the axon.

In recordings from myocytes manipulated into contact with the middle axon, individual secretory events were integrated over relatively large region (~5–10 μm) along the axon. Previously reported data (Kraszewski et al., 1995; Dai and Peng, 1996a) and our experiments with FM1-43 (Fig. 5) hint to the possibility that synaptic vesicles in naive neurites are grouped in clusters with a characteristic spacing of a few micrometers. The limited spatial resolution of our electrophysiological technique does not allow to determine whether ACh secretion events are restricted to this cluster or, rather, are uniformly distributed along the axon.

An indication of how the secretory apparatus along the axon might differ from that at the nerve terminal comes from the analysis of the synaptic response to tetanic stimulation. Under high-frequency repetitive stimulation, developing neuromuscular synapses exhibit a reduction in the amplitude of action potential-evoked responses, which reflects the depletion of fusion-competent vesicular pool. This depletion is partially balanced by the mobilization of vesicles from reserve pools to docking sites, and/or by the priming of docked vesicles (Zucker, 1996). Synaptic depression in response to tetanic stimulation was much more pronounced at the middle axon in comparison to the nerve terminal. Therefore, the nerve terminal is likely to develop a mechanism for the rapid replenishment of the fusion-competent vesicles in the nerve terminal, which is essential for the fidelity of synaptic transmission during the high-frequency excitation of the presynaptic cell.

Interestingly, neurotransmitter secretion along the axon (but not at the nerve terminal) was drastically reduced by the specific inhibitor of ARF-mediated processes, BFA. Members of the ARF family may participate in clathrin-coated vesicle formation from the plasma membrane (D’Souza-Schorey et al., 1995). However, in *Xenopus* neurons recycling of synaptic vesicles at the nerve terminal was not affected by BFA (Fig. 9). This result is consistent with the model in which synaptic vesicles at the nerve terminal form from the plasma membrane in a single budding step involving clathrin and dynamin, but not ARF. The vesicles do not communicate with endosomal compartments; instead, they are ready to reenter synaptic vesicle pool immediately after dissociation of clathrin coat (Takei et al., 1996). Our data suggest that in naive neurons recycling of synaptic vesicles along the axon uses ARF, consistent with the model for synaptic vesicle formation proposed by R. Kelly (University of California, San Francisco, CA) (Faundez et al., 1997, 1998). According to this model, ARF1 and AP-3 coat complex are involved in formation of synaptic vesicles from endosomes, whereas formation of synaptic vesicles from the plasma membrane is ARF independent. It remains to be elucidated whether differential mechanisms of synaptic vesicle recycling at the nerve terminal and along the axon are related to the experimentally observed differences in responses to tetanic stimulation.

Implications for the Assembly of the Secretory Apparatus at the Nerve Terminal

Although crucial to our understanding of interneuronal communication, the mechanism of synaptic vesicle assembly is poorly understood. Based on the similarity of molecular components, it has been suggested that the synaptic vesicle recycling pathway is ontogenically related to the constitutive endosomal membrane recycling pathway found in neuronal as well as in nonneuronal cells (Matteoli et al., 1992; Bennett and Scheller, 1993). It has been hypothesized that the vesicular recycling observed along developing axons in culture is a manifestation of the constitutive housekeeping function of endosomal membrane recycling (Matteoli et al., 1992). The exact molecular composition of these vesicles remains unknown. Our data indicate that constitutive membrane recycling along growing neurites is likely to be accompanied by quantal neurotransmitter secretion. The vesicles involved in neurotrans-
mitter secretion along the axon appear to be surprisingly similar to the genuine synaptic vesicles at the nerve terminal. These results are consistent with a scenario in which the whole axon formed by a naive neuron can be considered as a giant precursor of the nerve terminal. Each site is equally competent for the spontaneous and action potential- evoked neurotransmitter secretion and the assembly of the rudimentary secretory apparatus in naive neurons does not require any interaction with a postsynaptic target.

Synaptic development involves the interaction between pre- and postsynaptic cells, and a chain of protein–protein interactions to the differentiation of both pre- and postsynaptic membranes (Dai and Peng, 1996b; Sheng and Kim, 1996; Rao and Craig, 1997). Neurotransmitter secretion from the presynaptic neuron is crucial for synaptic maturation and proper development of neuronal circuits (Thoenen, 1995; Bonhoeffer, 1996; Rao and Craig, 1997). Our results corroborate that the capability for neurotransmitter secretion already exist in naive neurites free of contact with other cells. It is tempting to speculate that constitutive neurotransmitter secretion along growing nerve processes may play a role in the establishment of synaptic contacts in the developing nervous system.

We thank M. Rasenick (University of Illinois, Chicago, IL [UIC]) for helpful discussions, and R. Prasad (UIC) for the help with the manuscript. We are grateful to G. Borisy for the gift of Cy3-tubulin and to A. Petrenko (University of Illinois, Chicago, IL [UIC]) for helpful discussions, and R. Prasad (UIC) for the help with the manuscript.

We thank M. Rasenick for the gift of Cy3-tubulin and to A. Petrenko (University of Illinois, Chicago, IL [UIC]) for helpful discussions, and R. Prasad (UIC) for the help with the manuscript.
Mol. Biol. Organ.) J. 16:929–934.

Petrenko, A.G., M.S. Perin, B.A. Davletov, Y.A. Ushkaryov, M. Geppert, and T.C. Sudhof. 1991. Binding of synaptotagmin to the alpha-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature. 353:65–68.

Popov, S.V., A. Brown, and M.-m. Poo. 1993. Forward plasma membrane flow in growing nerve processes. Science. 259:244–246.

Rao, A., and A.M. Craig. 1997. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron. 19:1197–1207.

Rosenthal, L., and J. Meldolesi. 1989. Alpha-latrotoxin and related toxins. Pharmacol. Ther. 42:115–134.

Rothman, J.E. 1994. Mechanisms of intracellular protein transport. Nature. 372:55–63.

Rothman, J.E., and F.T. Wieland. 1996. Protein sorting by transport vesicles. Science. 272:227–234.

Ryan, T.A., H. Reuter, B. Wendland, F.E. Schweizer, R.W. Tsien, and S.J. Smith. 1993. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron. 11:713–724.

Sakmann, B. 1992. Elementary steps in synaptic transmission revealed by currents through single ion channels. Neuron. 8:613–629.

Schekman, R., and L. Orci. 1996. Coat proteins and vesicle budding. Science. 271:1526–1533.

Sheng, M., and E. Kim. 1996. Ion channel associated proteins. Curr. Opin. Neurobiol. 6:602–608.

Song, H.-J., G.-J. Ming, E. Fon, E. Belloccio, R.H. Edwards, and M.-m. Poo. 1997. Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging. Neuron. 18:815–826.

Spitzer, N.C., and J.C. Lamborghini. 1976. The development of the action potential mechanism of amphibian neurons isolated in culture. Proc. Natl. Acad. Sci. USA. 73:1641–1645.

Stevens, C.F., and T. Tsujimoto. 1995. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill a pool. Proc. Natl. Acad. Sci. USA. 92:846–849.

Stoop, R., and M.-m. Poo. 1995. Potentiation of transmitter release by ciliary neurotrophic factor requires somatic signaling. Science. 267:695–699.

Sudhof, T.C. 1995. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 375:645–653.

Sun, Y., and M.-m. Poo. 1987. Evoked release of acetylcholine from the growing embryonic neurons. Proc. Natl. Acad. Sci. USA. 84:2540–2544.

Takei, K., O. Mundigl, L. Daniell, and P. De Camilli. 1996. The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J. Cell Biol. 133:1237–1250.

Thoenen, H. 1995. Neurotrophins and neuronal plasticity. Science. 270:593–598.

Vogt, L., R.J. Giger, U. Ziegler, B. Kunz, A. Buchstaller, W.T. Hermens, M.G. Kaplitt, M.R. Rosenfeld, D.W. Pfaff, J. Verhaagen, and P. Sonderegger. 1996. Continuous renewal of the axonal pathway sensor apparatus by insertion of new sensor molecules into the growth cone membrane. Curr. Biol. 6:1153–1158.

Wang, T., K. Xie, and B. Lu. 1995. Neurotrophins promote maturation of developing neuromuscular synapses. J. Neurosci. 15:4796–4805.

Xie, Z., and M.-m. Poo. 1986. Initial events in the formation of neuromuscular synapse: rapid induction of acetylcholine release from embryonic neuron. Proc. Natl. Acad. Sci. USA. 83:7069–7073.

Yazhejian, B., D.A. DiGregorio, J.L. Vergara, R.E. Poage, S.D. Merinex, and A.D. Grimmell. 1997. Direct measurements of presynaptic calcium and calcium-activated potassium currents regulating neurotransmitter release at cultured Xenopus nerve-muscle synapses. J. Neurosci. 17:2990–3001.

Young, S.H., and M.-m. Poo. 1983. Spontaneous release of transmitter from growth cones of embryonic neurons. Nature. 305:634–637.

Zakharenko, S., and S.V. Popov. 1998. Dynamics of axonal microtubules regulate the topology of new membrane insertion into the growing neurites. J. Cell Biol. 143:1077–1086.

Zheng, J.Q., M. Felder, J.A. Connor, and M.-m. Poo. 1994. Turning of nerve growth cones induced by neurotransmitter. Nature. 368:140–144.

Ziv, N.R., and M.E. Spira. 1997. Localized and transient elevations of intracellular Ca²⁺ induce the dedifferentiation of axonal segments into growth cones. J. Neurosci. 17:3568–3579.

Zucker, R.S. 1996. Exocytosis: a molecular and physiological perspective. Neuron. 17:1049–1055.