THE FUNDAMENTAL GROUPS OF CONTACT TORIC MANIFOLDS

HUI LI

Abstract. Let M be a connected compact contact toric manifold. Most of such manifolds are of Reeb type. We show that if M is of Reeb type, then $\pi_1(M)$ is finite cyclic, and we describe how to obtain the order of $\pi_1(M)$ from the moment map image.

Let M be a contact manifold, and α be a contact 1-form on M. Let T^k be a connected compact k-dimensional torus. If T^k acts on M preserving the contact form α, then it preserves the contact structure $\xi = \ker(\alpha)$.

A contact manifold M of dimension $2n+1$ with an effective T^{n+1}-action preserving the contact structure is called a contact toric manifold. If the Reeb vector field of a contact form on M is generated by a one parameter subgroup action of T^{n+1}, then the contact T^{n+1}-manifold M is called a contact toric manifold of Reeb type.

Recall that a $2n$-dimensional symplectic manifold equipped with an effective Hamiltonian T^n-action is called a symplectic toric manifold. Contact toric manifolds are the odd dimensional analog of symplectic toric manifolds. Compact symplectic toric manifolds and compact contact toric manifolds are both classified (\cite{3} and \cite{4}). Most of the compact contact toric manifolds are of Reeb type.

Compact symplectic toric manifolds are simply connected (\cite{1} p235, \cite{6}, \cite{7}). In contrast, the fundamental groups of connected compact contact toric manifolds are finite abelian if they are of Reeb type (\cite{5}), and are infinite abelian if they are not of Reeb type. (The latter fact can be derived by listing the non-Reeb type manifolds using the classification in [4].)

In this paper, we prove a result on the fundamental groups of compact contact toric manifolds of Reeb type. To describe the result, we define some terms and state a known result as follows. Let (M, α) be a connected compact contact toric manifold of dimension $2n+1$. Let t be the Lie algebra of the torus T^{n+1}, and t^* be the dual Lie algebra. The contact moment map $\Phi: M \to t^*$ is defined to be

$$(\Phi(x), X) = \alpha_x(X_M(x)), \forall x \in M, \text{ and } \forall X \in t,$$

where X_M is the vector field on M generated by the X-action. The moment cone of Φ is defined as

$$C(\Phi) = \{ t\Phi(x) | t \geq 0, x \in M \}.$$

It is known (\cite{2}, \cite{5}, \cite{4} etc.) that, if M is of Reeb type, then $C(\Phi)$ is a strictly convex rational good polyhedral cone (of dimension $n+1$). Strictly convex means that $C(\Phi)$ contains no linear subspaces of t^* of positive dimension, polyhedral means that $C(\Phi)$

\hspace{1cm}Key words and phrases. contact toric manifold, Reeb type, contact moment map, moment cone, symplectic toric manifold.

2010 classification. Primary: 53D10, 53D20; Secondary: 55Q05.

1
is a cone over a polytope, *rational* means that the normal vectors of the facets of the cone lie in the integral lattice of t, and *good* means that for any codimension l face F_l of $C(\Phi)$, the normal vectors of the facets which intersect at F_l form a \mathbb{Z}-basis of the lattice of an l-dimensional linear subspace of t.

Theorem. Let (M, α) be a connected compact contact toric manifold of Reeb type with dimension $2n + 1$. Let

$$I = \{v_1, v_2, \cdots, v_d\}$$

be the set of primitive inward normal vectors of the facets of the moment cone, ordered in the way that the first n vectors are the normal vectors of the facets which intersect at a (any) 1-dimensional face of the moment cone. Then

$$\pi_1(M) = \mathbb{Z}_k,$$

where

$$k = \gcd(\det[v_1, v_2, \cdots, v_n, v_{n+1}], \det[v_1, v_2, \cdots, v_n, v_{n+2}], \cdots, \det[v_1, v_2, \cdots, v_n, v_d]).$$

The 3-dimensional lens spaces are compact contact toric manifolds of Reeb type. Hence any finite cyclic group can be the fundamental group of a contact toric manifold of Reeb type.

Proof of Theorem. Let $\mathbb{Z}_T \subset t$ be the integral lattice of the torus T^{n+1}, and \mathcal{L} the sublattice of \mathbb{Z}_T generated by the elements in I. By Lerman’s Theorem [5],

$$\pi_1(M) = \mathbb{Z}_T / \mathcal{L}.$$

We identify $\mathbb{Z}_T = \mathbb{Z}^{n+1} \subset \mathbb{R}^{n+1}$. Since the moment cone $C(\Phi)$ is a good cone, v_1, \cdots, v_n is a \mathbb{Z}-basis of an n-dimensional subspace of \mathbb{Z}^{n+1}. So there exists another vector $u \in \mathbb{Z}^{n+1}$ such that $\{v_1, \cdots, v_n, u\}$ forms a \mathbb{Z}-basis of \mathbb{Z}^{n+1}. Let \mathcal{L}' be the sublattice generated by the elements in $\{v_1, \cdots, v_n\}$. Then

$$\mathbb{Z}_T / \mathcal{L}' = \mathbb{Z}^{n+1} / \mathbb{Z}^n = \mathbb{Z} = \mathbb{Z}\langle u \rangle.$$

Since $\{v_1, \cdots, v_n, u\}$ is a \mathbb{Z}-basis of \mathbb{Z}^{n+1}, for \forall $n + 1 \leq j \leq d$, we have

$$v_j = l_j u \mod \mathcal{L},$$

where $l_j \in \mathbb{Z}$.

Let $k = \gcd(l_j)_{j=n+1}^d$. Since the elements in I span an $n + 1$-dimensional vector space, at least one $l_j \neq 0$. So $k \neq 0$. Then

$$\mathbb{Z}_T / \mathcal{L} = \mathbb{Z}\langle u \rangle / k\mathbb{Z}\langle u \rangle = \mathbb{Z}_k$$

is finite cyclic. Moreover, notice that

$$l_j = \pm \det[v_1, \cdots, v_n, v_j], \forall \ n + 1 \leq j \leq d,$$

where $[v_1, \cdots, v_n, v_j]$ denotes the matrix with column vectors v_1, \cdots, v_n and v_j.

Acknowledgement. I thank Reyer Sjamaar for a remark on the moment cone of a compact connected contact toric manifold of Reeb type, which helped me to shorten a proof I tried earlier.

This work is supported by the NSFC grant K110712116.
References

[1] M. Audin, *Torus actions on symplectic manifolds*, Second edition, Progress in Mathematics, 93, Birkhäuser Verlag, 2004.

[2] C. P. Boyer and K. Galicki, *A note on toric contact geometry*, J. Geom. Phys. 35 (2000), 288-298.

[3] T. Delzant, *Hamiltoniens périodiques et images convexes de l’application moment*, Bull. Soc. Math. France 116 (1988), no. 3, 315-339.

[4] E. Lerman, *Contact toric manifolds*, Journal of Symp. Geom., 1, no. 4, 785-828, 2002.

[5] E. Lerman, *Homotopy groups of K-contact toric manifolds*, Trans. Ameri. Math. Soc., 356, no. 10, 4075-4083.

[6] H. Li, *π₁ of Hamiltonian S¹-manifolds*, Proceedings of Ameri. Math. Soc., vol. 131, no. 11, 3579-3582, 2003.

[7] H. Li, *The fundamental group of G-manifolds*, Communications in Contemporary Mathematics, 15, no. 3, (2013) 1250056.

School of Mathematical Sciences, Soochow University, Suzhou, 215006, China.
Email address: hui.li@suda.edu.cn