Pacific freshening drives Pliocene cooling and Asian monsoon intensification

Junsheng Nie, Thomas Stevens*, Yougui Song, John W. King, Rui Zhang, Shunchuan Ji, Lisha Gong & Danielle Cares

Received 6 December 2013
Accepted 5 June 2014
Published 27 June 2014

Correspondence and requests for materials should be addressed to J.N. [nie@lzu.edu.cn]

* Current address: Department of Earth Sciences, University of Uppsala, Geocentrum, Villavägen 16 752 36 Uppsala, Sweden.

The monsoon is a fundamental component of Earth’s climate. The Pliocene warm period is characterized by long-term global cooling yet concurrent monsoon dynamics are poorly known. Here we present the first fully quantified and calibrated reconstructions of separate Pliocene air temperature and East Asian summer monsoon precipitation histories on the Chinese Loess Plateau through joint analysis of loess/red clay magnetic parameters with different sensitivities to air temperature and precipitation. East Asian summer monsoon precipitation shows an intensified trend, paradoxically at the same time that climate cooled. We propose a hitherto unrecognized feedback where persistently intensified East Asian summer monsoon during the late Pliocene, triggered by the gradual closure of the Panama Seaway, reinforced late Pliocene Pacific freshening, sea-ice development and ice volume increase, culminating in initiation of the extensive Northern Hemisphere glaciations of the Quaternary Ice Age. This feedback mechanism represents a fundamental reinterpretation of the origin of the Quaternary glaciations and the impact of the monsoon.
loess) to discuss the evolution of paleotemperature and paleoprecipitation on the Chinese Loess Plateau. Finally, we tentatively present the first separate calibrated, quantitative reconstructions of Pliocene air temperature and East Asian summer monsoon precipitation history on the Chinese Loess Plateau through joint analysis of red clay magnetic parameters. Although these records have large uncertainties, this is the first quantified separation of these key aspects of Pliocene climate.

Results
Surface soil calibration. Fig. 2 shows the correlation patterns between Chinese Loess Plateau surface soil χ_{ARM}/χ_{FL} (Figs. 2a and 2b), χ_{ARM}/SIRM (Figs. 2c and 2d), χ_{ARM} (Figs. 2e and 2f), and AMP and AMT from meteorological stations closest to these surface soils (China Meteorological Data Sharing Service System: http://cdc.cma.gov.cn, in Chinese). We find that χ_{ARM}/SIRM is exponentially correlated with AMP and linearly correlated with AMT, as is the case for χ_{ARM}. The correlations of these two magnetic parameters with AMP are stronger than with AMT (Fig. 2 and Table 1). The correlation between χ_{ARM} and AMT is even weaker than the correlation between AMT and AMP, suggesting that χ_{ARM} is primarily controlled by AMP variations. By contrast, χ_{ARM}/χ_{FL} has similar R^2 values to AMP and AMT (Fig. 2a, 2b and Table 1). The correlation between χ_{ARM}/χ_{FL} and AMP is linear, whereas the correlation between χ_{ARM}/χ_{FL} and AMT is more complex with a concave down regression fit (Fig. 2a, 2b and Table 1).

Paleoclimate reconstruction. The χ_{ARM}/χ_{FL} and χ_{ARM}/SIRM records from Chaona (35° 06’ N, 107° 12’ E) and Lingtai (35° 04’ N, 107° 39’ E), central Chinese Loess Plateau, covary with each other (Fig. 3). The three magnetic records co-vary from 6 to ~4.8 Ma. However, from ~4.3 to 2.7 Ma, the χ_{ARM} and χ_{ARM}/SIRM records show increasing trends while the χ_{ARM}/χ_{FL} record shows a decreasing trend.

Based on regression fits in Fig. 2f and 2h we tentatively reconstruct the first quantified temperature and precipitation history between 6 and 2.6 Ma on the Chinese Loess Plateau (Fig. 3f and 3g). χ_{ARM} is not sensitive to AMT variations and can therefore be used to estimate AMP history (Fig. 2f). Based on the correlation fit between χ_{ARM}/χ_{FL} and AMT (Fig. 2h) and the reconstructed AMP record (Fig. 2f) we then tentatively also reconstruct AMT history on the Chinese Loess Plateau for the interval 6–2.6 Ma. We also use χ_{ARM}/SIRM to estimate AMP (Fig. 2d), and then solve for AMT based on the correlation relationship between χ_{ARM}/χ_{FL} and AMT \times AMP (Fig. 2h) and the reconstructed AMP record (Fig. 2d). The resultant AMP and AMT values between these two independent methods are closely aligned (Fig. 4), supporting the reconstructions.

Discussion
This concave down shaped regression fit between χ_{ARM}/χ_{FL} and AMT indicates that χ_{ARM}/χ_{FL} is more sensitive to temperature variations when temperature is lower. By contrast, the concave up shaped regression fits between χ_{ARM}/SIRM or χ_{ARM} and AMP indicates that χ_{ARM}/χ_{FL} and χ_{ARM} are more sensitive to precipitation variations when precipitation is higher (Table 1 and supplementary materials).

These relationships suggest that in the scenario of high (low) precipitation coupled with high (low) temperature, χ_{ARM}, χ_{ARM}/χ_{FL} and χ_{ARM}/SIRM should all have similar trends, with higher
(lower) magnetic parameter values corresponding to higher (lower) precipitation and temperature. This relationship has been shown to be the case in the Quaternary when precipitation and temperature are coupled. However, $\chi_{\text{ARM}}/\chi_{\text{LF}}$ and $\chi_{\text{ARM}}/\text{SIRM}$ should show different trends in the scenario of increasing precipitation and decreasing temperature trends, as has been speculated for the Pliocene. In this case, $\chi_{\text{ARM}}/\text{SIRM}$ and χ_{ARM} will have an increasing trend, controlled dominantly by the effects of increasing precipitation (Fig. 2d, 2f and Table 1), while $\chi_{\text{ARM}}/\chi_{\text{LF}}$ will have a decreasing trend, attributed to the dominant effects of decreasing temperature.
(Fig. 2a and Table 1). However, any decreasing trend of $\chi_{\text{ARM}}/\chi_{\text{LF}}$ should be modest because of the effects of increasing precipitation, which will tend to pull the decreasing $\chi_{\text{ARM}}/\chi_{\text{LF}}$ trend in the opposite direction. For similar reasons, an increasing trend of $\chi_{\text{ARM}}/$SIRM should also be modest because of the effects of decreasing temperature, which will tend to pull the increasing $\chi_{\text{ARM}}/$SIRM trend in the opposite direction. In the scenario of increasing temperature and decreasing precipitation trends, $\chi_{\text{ARM}}/$SIRM will have an increasing trend or stay at a constant low value, attributed to effects of decreasing precipitation; and $\chi_{\text{ARM}}/\chi_{\text{LF}}$ will have a decreasing trend, attributed to effects of decreasing precipitation. However, the trends will again be modest because of the opposite effects of temperature and precipitation.

During ~4.8–2.7 Ma, the $\chi_{\text{ARM}}, \chi_{\text{ARM}}/\chi_{\text{LF}}$ and $\chi_{\text{ARM}}/$SIRM records from Chaona and Lingtai co-vary with each other (Fig. 3a, b, and c) and with ice volume. This relationship is consistent with the concept that monsoon climate dominated the Chinese Loess Plateau and high (low) temperature was coupled with high (low) precipitation. However, during ~4.8–2.7 Ma, $\chi_{\text{ARM}}/\chi_{\text{LF}}$ decreases but both the χ_{ARM} and $\chi_{\text{ARM}}/$SIRM records increase (Fig. 3a, b, and c). Based on the above surface calibration results (Fig. 2 and Table 1), we conclude that the Chinese Loess Plateau experienced a cooling trend coeval with increasing precipitation from ~4.8 to 2.7 Ma. The quantitative reconstructions support the conclusion that the Chinese Loess Plateau experienced a cooling trend concomitant with increasing precipitation from ~4.8 to 2.7 Ma (Figs. 3f and g).

Table 1 | Correlations between magnetic and climatic parameters

Parameter	R^2	Type of correlation	Sensitivity
$\chi_{\text{ARM}}/\chi_{\text{LF}}$ (y axis), AMP (x axis)	0.74	Linear	No
$\chi_{\text{ARM}}/\chi_{\text{LF}}$ (y axis), AMT (x axis)	0.69	Concave down, slope decreasing	Low Temperature variation
$\chi_{\text{ARM}}/$SIRM (y axis), AMP (x axis)	0.92	Concave up, slope increasing	High precipitation variation
$\chi_{\text{ARM}}/$SIRM (y axis), AMT (x axis)	0.79	Linear	No
χ_{ARM} (y axis), AMP (x axis)	0.81	Concave up, slope increasing	High precipitation variation
χ_{ARM} (y axis), AMT (x axis)	0.44	Linear	No
AMP (y axis), AMT (x axis)	0.61	Concave down, slope decreasing	

Note: AMP: annual mean precipitation; AMT: annual mean temperature.

Figure 3 | Paleoclimatic and paleoceanographic data for the time interval 6–2.6 Ma. (a), (b), (c), the Chaona (black) and Lingtai (blue) $\chi_{\text{ARM}}, \chi_{\text{ARM}}/$SIRM and $\chi_{\text{ARM}}/\chi_{\text{LF}}$ records, respectively. (d), (e), East Equatorial Pacific Ocean Drilling Project (ODP) site 846 benthic oxygen isotope and sea surface temperature records respectively. (f), (g), reconstructed Chaona (black) and Lingtai (blue) annual mean temperature (AMT) and annual mean precipitation (AMP) records based on the correlation regression fits in Figs. 2f and 2h respectively. (h), Chaona (black) and Lingtai (blue) sedimentation rate records. For the interval 3.6–2.6 Ma, the Chaona and Lingtai age models were tuned to the monsoon stack; for the interval 6–3.6 Ma, the age models of the two sites are based on paleomagnetic dating. EASM: East Asian summer monsoon.
records on the Chinese Loess Plateau have been used to suggest SCIENTIFIC REPORTS. Higher for the late Pliocene on the Loess Plateau (Fig. 3h), leading to more materials available for weathering. Thus, weaker chemical weathering and alteration is not necessarily linked with weaker monsoon precipitation, but can be attributed to cooler climate and the availability of sediment for weathering (Fig. 3h). Our magnetic evidence does not suffer from these ambiguities and demonstrates increased precipitation over this period.

While the general qualitative trends in our data are clear, and similar trends are seen in the quantitative data, our quantitative reconstructions potentially have large uncertainties. First, although magnetic parameters have different sensitivities to AMP and AMT, each of them is potentially affected in part by both AMP and AMT. Thus, the influence of another component cannot be entirely removed, even if the majority of variation can be explained by one climate parameter alone. Second, the reconstructed Pliocene paleotemperature exceeds modern temperatures on the Chinese Loess Plateau. Although it is well known that the Pliocene was warmer than the Quaternary, these higher temperatures increase the uncertainties associated with the quantitative paleotemperature reconstructions based on our modern climofunction during the Pliocene. Third, the decoupled temperature and precipitation trends on the Chinese Loess Plateau seem to contrast with proposed monsoonal climate in the region, potentially meaning that modern monsoonal analogues cannot be directly applied to Pliocene red clay. However, although our records show that Pliocene temperature and precipitation on the Loess Plateau have opposite trends over tectonic timescales, it is clear from our records (Fig. 3) that at orbital timescales, temperature and precipitation are in phase, consistent with features of a monsoonal climate. Thus, we maintain that modern calibrations can still be used to understand Pliocene magnetic paleoclimatic records.

This method used here is readily applicable to loess or red clay where magnetic enhancement occurred during interglacial periods associated with increases in abundance of ultrafine magnetic grains produced via soil-formation processes. However, caution needs to be exercised in situations where magnetic minerals tend to be destroyed during soil-formation processes, such as in Siberian or Argentine loess. The interval during 4.8–4.3 Ma has been argued to be anomalous on the Chinese Loess Plateau. Abundant clay coatings and a high free iron/total iron ratio in red clay sediments suggest that this interval experienced high monsoon precipitation. However, by contrast this interval shows low values. Thus, it has been argued that is not able to indicate East Asian Summer Monsoon intensity for this time interval. However, we note that, in contrast to any other time interval during 6–2.6 Ma, is dominated by low sedimentation rate (Fig. 3h) giving a significantly longer time for soils to develop clay coatings and experience chemical weathering. In contrast, magnetic enhancement of Chinese loess is not a function of pedogenic duration and magnetic parameters will thus better reflect climate conditions during this time period. Lower dust sedimentation rates can therefore explain the inconsistent monsoon proxies during 4.8–4.3 Ma on the Chinese Loess Plateau. This time interval is synchronous with the point when the gradual closure of the Panama Seaway started to significantly affect surface seawater exchange between the Equatorial Pacific Ocean and the Caribbean Sea and signals initiation of Northern Hemisphere climate reorganization (Fig. 3).

There are two potential ways to explain the Pliocene wetting trend on the Chinese Loess Plateau: intensified East Asian summer monsoon precipitation or intensified westerly precipitation. However, oceanic moisture sources for westerly flow are far away from the Chinese Loess Plateau, limiting the contribution from westerly precipitation. We have previously attributed an apparently intensified East Asian Summer Monsoon simultaneous with increasing ice volume from 4.7 to 2.6 Ma to the combined effects of the closure of the Panama Seaway and Tibetan plateau uplift. However, evidence supporting late Pliocene uplift of the Tibetan plateau is controversial and attempts to separate temperature and precipitation trends have not been performed. Here we propose an alternative

Figure 4 | A comparison of reconstructed annual mean precipitation (AMP) and annual mean temperature (AMT). (a), AMP based on the empirical relationship in Fig. 2d; (b), AMT based on the empirical relationships in Figs. 2d and 2h; (c), AMP based on the empirical relationship in Figs. 2d and 2h. We note that the AMT and AMP records based on two methods have similar trends. The dashed line represents the 2σ uncertainty (standard error) of each record. The uncertainties in the paleo data were propagated from the uncertainties of surface soils in Fig. 2.
mechanism to explain concurrent Pliocene climate cooling and monsoon intensification, demonstrated from the magnetic parameter records having different sensitivities to AMT and AMP. Paleoenvironmental data show that as a result of gradual closure of the Panama Seaway, East Equatorial Pacific surface water freshens from ~4.8 Ma due to easterly trade wind transportation of moisture from the central Atlantic Ocean and the Caribbean Sea to the tropical Pacific Ocean. Modern day salinity differences between the East Equatorial Pacific Ocean and the Caribbean Sea were established by ~4.2 Ma. Fresher seawater will then have been transported to the North Pacific Ocean via ocean currents surrounding the North Pacific gyre, causing freshening of the North Pacific surface water. This freshening drove enhanced sea ice formation on the surface North Pacific. Model simulation demonstrates that sea ice formation would strengthen the high pressure center over the North Pacific, enhancing Southerly and Southwesterly winds, which in turn would intensify East Asian Summer Monsoon precipitation and meridional moisture transport (Supplementary Fig. 1). Critically, we propose that intensified meridional moisture transport would cause further middle and high latitude precipitation (Fig. 3) and consequent further freshening in the Pacific and the Arctic Oceans. This change would drive additional intensification of the North Pacific high pressure center and East Asian Summer Monsoon precipitation. We note that this meridionally-transported moisture would likely also have been transported to the North American continent, providing a moisture source for North American ice sheets to grow. This previously unknown positive feedback explains for the first time the paradox of concurrent Pliocene cooling and East Asian Summer Monsoon precipitation intensification. Our hypothesis also explains previous paleoenvironmental data that reveal that East Equatorial Pacific surface water experienced a cooling trend from ~4.3 to 2.6 Ma (Fig. 4e). No corresponding forcing was identified but under our proposed feedback an intensified North Pacific high pressure system at the same time would drive Equatorial Pacific water flow from east to west, intensifying upwelling and providing a reasonable explanation for the observed East Equatorial cooling trend. This previously overlooked positive feedback was initiated in the run up to the onset of extensive Northern Hemisphere glaciation. As it forces gradual cooling of Pacific surface water while at the same time providing both a moisture source for ice sheets and a freshwater driver for sea ice growth, we argue that this Pacific atmosphere-ocean feedback is a critical but hitherto unrecognized factor in the initiation of the Northern Hemisphere glaciation of the Quaternary Ice Age.

The model simulation of reference 41 is an important basis for our hypothesis. However, one important difference exists between the two studies. Reference 41 presents climate during boundary condition snapshots: completely closed and open (with sill depth of 2559 m) Panama Seaway. By contrast, our hypothesis treats the seaway closure as a continuous process, decreasing sill depth from probably less than 200 to 0 m. Using a sill depth close to that of the Pliocene (370 m), a study found that closure of the Panama Seaway would intensify precipitation in Northern Hemisphere high latitudes but that this closure plays a limited role in initiation of the Northern Hemisphere glaciations. However, reference 43 did not include the new positive feedback involving monsoon intensification proposed in this paper.

Reference 41 produces a weakened East Asian winter monsoon associated with closure of the Panama Seaway and development of a high pressure system over the North Pacific Ocean. This contrasts with evidence demonstrating that the East Asian winter monsoon became stronger during the late Pliocene. We note that although reference 41 showed geographical distribution of surface air pressure and wind during February which includes the information of Siberian-Mongolian high pressure system, it did not consider the likely intensification of the Siberian-Mongolian high pressure system from the early to the late Pliocene under global cooling. As this system has more direct control over the winter climate on the Chinese Loess Plateau, due to its proximity, this explains the inconsistency between the model simulation results of reference 41 and the geological observations.

A recent study also reported that different models produced variable sea surface salinity changes associated with closure of the Panama Seaway. However, only three of the 12 models (EC(415 m); CCM3(1475 M); UVIC 6sh(130 m)) show dominantly increasing sea surface salinity associated with closure of the Panama Seaway. More importantly, of the 12 models examined, only the HACM3 model by reference 43 used boundary conditions representative of part of the Pliocene. Thus, the results of reference 43, which demonstrated that the North Pacific sea surface salinity decreased significantly associated with closure of the Panama Seaway, are more convincing as accurate representations of Pliocene salinity.

While the closure of the Panama seaway is well constrained in the Pliocene, whether the Tibetan Plateau experienced a phase of intense uplift during the Pliocene is a topic of long-standing debate. No clear phase of intensive uplift is known for 4.6 Ma and although some model simulations demonstrate the potential climatic influence of the plateau, our reconstructions demonstrate the close association of Pliocene climate change with closure of the Panama seaway. A permanent Pliocene El Niño condition has been hypothesized to exist in the Pacific Ocean, possibly associated with closure of the Indonesian Seaway, while the end of this condition around 2.7 Ma may have contributed to initiation of the intensive Northern Hemisphere glaciations.

However, a recent study based on a coupled atmosphere-ocean general circulation model demonstrates that the Pliocene dominated by a permanent El Niño-like condition it is unlikely that this would provide a major contribution to global warmth and its termination cannot contribute significantly to the onset of the intensive Northern Hemisphere glaciations. Indeed, this same simulation found that there was no permanent El Niño-like condition during the Pliocene.

As such, the Panama seaway closure initiated positive feedback involving monsoon circulation provides the best explanation of the data here. This paper demonstrates the fundamental importance of a hitherto unknown oceanographic-atmospheric feedback in driving late Cenozoic cooling, monsoon intensification and the onset of Northern Hemisphere glaciation, initiated by tectonic forcing. Our explanation of Pliocene climate trends emphasizes the Pacific as central to global climate. Model simulations of Pliocene and future climate need to take account of this hitherto unknown mechanism.

Methods

Surface soil samples were taken ~1 cm below the surface from A-horizons at locations across the Chinese Loess Plateau (Fig. 1). Removing the top 1 cm removes the potential effects of pollution to these soils. In selecting sites, we sought level, stable land surfaces that showed no obvious evidence of surface erosion or extensive human disturbance. For all samples, magnetic susceptibility was measured using a Bartington MS2 susceptibility meter at frequencies of 470 Hz (i.e., ΛS) and 4700 Hz (i.e., ΛLF). For surface soils and Chaona samples ARM was imparted using a 100 mT peak AF and ±0.05 mT constant biasing field, while for Lingtai samples ARM was imparted using a 100 mT peak AF and ±0.1 mT constant biasing field. This parameter is also expressed as ΛARM after normalization by the 0.05/0.1 mT direct bias field. SIRM was imparted in all samples at 1 T using a pulse magnetizer and measured using a 2 G cryogenic magnetometer on Chaona and surface samples, and using a spinner magnetometer for Lingtai samples. Following these measurements, ΛARMSIRM and ΛARMSIRM were calculated.

Because of the different bias field used for the Chaona and Lingtai samples when acquiring ARM, it is not feasible to compare the absolute magnetic parameter values directly. The highest ΛARM values at Lingtai and Chaona between 6 and 2.6 Ma are 16.753 and 13.164 (×102 mT·m2 kg−1) respectively, both occurring at ~2.76 Ma. As such, we divide the Lingtai ΛARM, ΛARMSIRM and ΛARMSIRM by 16.753/13.164 (=1.273) to correct the bias field effects and to allow direct comparison of magnetic records from both sections. The corrected Lingtai magnetic records
correlate well with the records from Chaona (Fig. 3a, b, and c), demonstrating that the above correction is valid.

1. Dowsett, H. J. et al. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. *Nature Clim. Change* 2, 365–371, doi:10.1038/nclimate1855 (2012).

2. Lunt, D. J., Foster, G. L., Haywood, A. M. & Stone, E. J. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. *Nature* 454, 1102–1105, doi:10.1038/nature07223 (2008).

3. Lisiecki, L. & Raymo, M. E. Plio-Pleistocene climate evolution: Trends and transitions in glacial cycle dynamics. *Quat. Sci. Rev.* 26, 56–69 (2007).

4. Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarrez Lyle, A. & Wara, M. W. Regional climate shifts caused by gradual cooling in the Pliocene episode. *Nature* 429, 263–267 (2004).

5. Fedorov, A. V. et al. The Pliocene Paradox (Mechanisms for a Permanent El Ninó). *Science* 312, 1485–1489, doi:10.1126/science.1122666 (2006).

6. Lawrence, K., Liu, Z. & Herbert, T. Evolution of the Eastern Tropical Pacific Through Plio-Pleistocene Glaciation. *Science* 312, 79–83 (2006).

7. An, Z. S., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateaus since Late Miocene times. *Nature* 411, 62–66 (2001).

8. Clift, P. D. et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. *Nat. Geosci.* 1, 875–880, doi:10.1038/ngeo351 (2008).

9. Nie, J., Song, Y., King, J. W., Zhang, R. & Fang, X. Six million years of magnetic grain-size records reveal that temperature and precipitation were decoupled on the Chinese Loess Plateau during 4.5–2.6 Ma. *Quat. Res.* 79, 465–470, doi:10.1016/j.yqres.2013.01.002 (2013).

10. Wang, Y. et al. A high-resolution absolute-dated Late Pliocene monsoon record from Hulu Cave, China. *Science* 294, 3245–3248, doi:10.1126/science.1064618 (2006).

11. Emile-Geay, J. et al. Warren revisited: Atmospheric freshwater fluxes and "why is there no deep water formed in the North Pacific"? *J. Geophys. Res.* 108, doi:10.1029/2003JC001058 (2003).

12. Prell, W. L. & Kutzbach, J. E. Monsoon variability over the past 150,000 years. *J. Geophys. Res.* 92, 8411–8425, doi:10.1029/JD092iD07p08411 (1987).

13. An, Z. S. et al. Glacial-Interglacial Indian Summer Monsoon Dynamics. *Science* 333, 719–723, doi:10.1126/science.1203752 (2011).

14. Ge, J. et al. Major changes in East Asian climate in the mid-Pliocene: Triggered by the uplift of the Tibetan Plateau or global cooling? *J. Asian Earth Sci.* 69, 48–59, doi:10.1016/j.jseaes.2012.10.009 (2013).

15. Bloemendal, J. C. & Liu, X. Rock magnetism and geochemistry of two plio-pleistocene Chinese loess-palaeolos sequences-imlications for quantitative palaeoprecipitation reconstruction. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 226, 149–166 (2006).

16. Wu, N. et al. Marked ecological shifts during 6.2–2.4 Ma revealed by a terrestrial mollusc record from the Chinese Red Clay Formation. *Science* 312, 436–438 (1998).

17. Motoi, T. & Chan, W.-L. Colubrid Subarctic Pacific with larger ice caused by closure of the Central American Seaway and its influence on the East Asian monsoon: a climate model study. *Geol. Soc., London, Spec. Publ.* 342, 265–277, doi:10.1144/SP434.15 (2010).

18. Molnar, P., Boos, W. R. & Battisti, D. S. Orographic Controls on Climate and Paleoclimate of Asia: Thermal and Mechanical Roles for the Tibetan Plateau. *Annu. Rev. Earth Planet. Sci.* 38, 77–102, doi:10.1146/annurev-earth-040809-152456 (2010).

19. Molnar, P. & Haug, G. H. A short circuit in thermohaline circulation: A cause for northern hemisphere glaciation? *Science* 282, 436–438 (1998).

20. Liu, X. M., Hesse, P., Beget, J. & Rolph, T. Pedogenic destruction of ferrimagnetics in Alaskan loess deposits. *Asian J. Soil Res.* 39, 99–115 (2001).

21. Carter-Stiglitz, B., Banerjee, S. K., Gurlejan, A. & Oches, E. A multi-proxy study of Argentinian loess: Marine oxygen isotope stage 4 and 5 environmental record from pedogenic hematite. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 239, 45–62, doi:10.1016/j.palaeo.2006.09.008 (2006).

22. An, Z. S., Tiedemann, R., Zahn, R., & Ravelo, A. C. Role of Panama uplift on oceanic freshwater balance. *Geology* 29, 207–210 (2001).

23. Molnar, P., Boos, W. R. & Battisti, D. S. Orographic Controls on Climate and Paleoclimate of Asia: Thermal and Mechanical Roles for the Tibetan Plateau. *Annu. Rev. Earth Planet. Sci.* 38, 77–102, doi:10.1146/annurev-earth-040809-152456 (2010).

24. Schmidt, D. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies eds Williams, M., Haywood, A., Gregory, F. & Schmidt, D. J. 429–444 (The Micropalaeontological Society, 2007).

25. Lisiecki, L. & Raymo, M. E. Plio-Pleistocene oceanic freshwater balance. *Palaeoceanography* 22, 324–332 (2007).

26. Zhang, X. et al. Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: insights from a multi-model study. *Earth Planet. Sci. Lett.* 317, 76–84 (2012).

27. Rea, D. K., Sneeckx, H. & Joseph, L. H. Late Cenozoic eolian deposition in the Northern Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. *Palaeoceanography* 13, 215–224 (1998).

28. Fang, X. M. et al. Magnetostatigraphy of the late Cenozoic Loajunmiao antline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau. *Earth Planet. Sci. Lett.* 237, 45–55, doi:10.1016/j.epsl.2005.06.036 (2005).

29. Zhang, X. et al. Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: insights from a multi-model study. *Earth Planet. Sci. Lett.* 317, 76–84 (2012).

30. Molnar, P. et al. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? *Nature* 346, 29–34 (1990).

31. Zhang, R., Jiang, D., Liu, X. & Tian, Z. Modeling the climate effects of different subregional uplifts within the Himalaya-Tibetan Plateau on Asian summer monsoon evolutions. *Chin. J. Geol.* 57, 467–4626, doi:10.14641/j.issn.1000-0828-y (2012).

32. Cane, M. A. & Molnar, P. Closing of the Indonesian seaway as a precursor to east African aridification around 37 million years ago. *Nature* 411, 157–162 (2001).

33. An, Z. S., Tiedemann, R., Zahn, R., & Ravelo, A. C. A permanent Nino-like state during the Pliocene? *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 22, doi:10.1016/S0031-0182(07)00133x (2007).

34. Song, Y. et al. Late Neogene rock magnetic record of climatic variation from Chinese eolian sediments related to uplift of the Tibetan Plateau. *J. Asian Earth Sci.* 30, 324–332 (2007).
Acknowledgments
We thank the editor M. Meinshausen and three reviewers for thorough and constructive reviews. We thank S. Qin for assistance in uncertainty estimation of the paleoprecipitation and paleotemperature data and X. Hu for sharing Lingtai data. This work was jointly funded by the (973) National Basic Research Program of China (Grant No. 2013CB956400), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB03020400), the National Natural Science Foundation (Grant Nos. 41172329; 41372036; 41321061; 41021091), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2011021110012), and the Fundamental Research Funds for the Central Universities.

Author contributions
J.N., T.S., J.K. and Y.S. designed the research and J.N. and T.S. wrote the main manuscript text. J.N., R.Z., S.J., L.G., C.D. and Y.S. performed the experiments. All authors reviewed the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Nie, J. et al. Pacific freshening drives Pliocene cooling and Asian monsoon intensification. Sci. Rep. 4, 5474; DOI:10.1038/srep05474 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/