Low frequency Raman study of the Boson peak in a Tellurite-tungstate glass over temperature

Marcos Paulo Belançona,b,c,*, Guilhem Simonb

aUniversidade Tecnológica Federal do Paraná
Câmpus Pato Branco - Grupo de Física de Materiais
CEP 85503-390, Via do conhecimento Km 01, Pato Branco, Paraná, Brazil

bUniversité Pierre-Marie Curie - Paris VI
Câmpus Jussieu - Laboratoire Monaris (UMR 8233)
Place Jussieu Tour 43-53 Case Courrier 49 75252 PARIS CEDEX 05, France

cUniversidade Estadual de Campinas
Optics and Photonics Research Center (CEPOF)
Rua Sérgio Buarque de Holanda 777, CEP 13083-859, Campinas, SP, Brazil

Abstract

In this work we present our findings performing low frequency Raman measurements over temperature in a tellurite-tungstate glass sample. The spectra could be fitted by using only two log-Gaussians, which suggests that quasi-elastic light scattering is negligible. The positions of the peaks have the same temperature behavior, being the higher frequency one referred as Boson Peak in literature. The similar temperature behavior and depolarization ratio indicates that the peaks may have the same origin, being linked to the transversal and longitudinal vibrations of some unit.

Keywords: Boson Peak, Raman, Tellurite, Glass

1. Introduction

Glasses have been widely exploited by mankind since millennia ago and nowadays those materials are keys for many technologies. The photonics world market for example, which is growing faster than the world economy, employs glasses in lasers, fibers, amplifiers, and many other devices. This

*Corresponding author
Email address: marcosbelancon@utfpr.edu.br (Marcos Paulo Belançon)

Preprint submitted to ArXiv
April 3, 2017
have put the interaction between light and matter in evidence in the last few years, aiming to enhance properties, increase efficiency and develop new technologies for many strategic and fundamental fields, such as energy and communication.

Even though glasses have been so extensively used and studied, some properties remain a puzzle. One of the most interesting examples is the observed population of states at Terahertz frequencies found in glasses and any amorphous material. This excess of vibrational density of states at such frequencies is known as “Boson Peak” (BP) and it has been observed since the 70’s in Raman spectra, however, its origin is still subject of debate in the literature.

To illustrate the discussion we can look for example for the model of Martin and Brenig, by which the BP should consist of both transversal and longitudinal mode acoustic waves, due to a short scale correlation range over mechanical and electrical properties in non-crystalline materials. This could permit phonons of wavelength matching this scale to travel without the usual attenuation of the disordered network. Another important contribution was given by Malinovsky and Sokolov, by showing that the form of the BP is independent of the chemical composition and thermal prehistory. By this way, some universal property of disordered materials is expected to describe the BP origin. However, on the recent literature we may found evidences that only transversal phonons (not the longitudinal ones) should be universally linked to the BP.

Looking for evidences of such short scale units in literature, one may found for example the systematic study about the BP performed by Nemanich. He found in some chalcogenide glasses structural units with a size compatible to the Martin and Brenig model, however, these were not confirmed in all glasses in the study. Buchenau have studied the origin of BP in silica glass by neutron diffraction, and the findings have suggested that such populations of states at BP frequencies are originated by the rotation of SiO_4 tetrahedra. Duval had confirmed the existence of “aggregates” or “microcrystallites” matching the size related to the BP observed in Raman spectra of a silicate glass. Among other evidences of the existence of such units inside the glass, we may point the observation of a new BP by nucleating microcrystallites into the material. Some authors have called this units by “blobs”. However, a few works have shown that the nature of BP may be more complicated that only the “blobs” based model.

In the low energy range of Raman spectra Quasi-elastic light scattering
(QES) may also be expected\cite{23, 24, 25, 26, 27, 28, 29} at this low energy range. In liquids the QES originates from the Doppler shift of the light reflected by one moving particle with speed v relative to the detector, and this phenomena is the basis of a few experimental techniques, such as laser doppler velocimetry. In solids however, the QES origin is still on debate\cite{26} and it seems to be a consensus that this band is centered at $0cm^{-1}$ and may extent until $\sim 50cm^{-1}$\cite{28} in glasses.

Experimental data available in the literature shows us that BP position usually ranges from $\sim 40cm^{-1}$ to $\sim 80cm^{-1}$\cite{19}, depending on composition. The BP Temperature dependence have been investigated in Silica\cite{26}, Calcium-alumino-silicate\cite{19}, Germania\cite{27}, Phosphate\cite{28}, Borate\cite{29}, Tellurite-Zinc\cite{30} and Tellurite-Oxyhalide\cite{31} glasses, and the results agree that increasing temperature red shifts the peak. This last observation does also agree with the “blobs” idea, once that increasing temperature the material is expanding, which is in favor of longer wavelength phonons, i.e. a shift towards lower frequency. On the other hand, pressure induces a blue shift\cite{19, 4, 32}. All these experimental findings have driven some work looking for a correlation between fragility and BP\cite{33, 6}.

One can conclude that the informations available on literature are still not the enough to clarify the question. If we are thinking in more experimental work, one should note that acquire Raman shift data at this range and below can be very difficult. To mention a few points, it is well known that Raman shift intensity may be more or less intense in each sample, in such way that the noise/signal ratio may change our ability to measure ultra low frequencies in some glasses. Once we are usually working in the limit of sensitivity and resolution, just a few cm^{-1} of the laser line, and taking into account that the relative intensity between BP and QES (or even a third band) are different from one sample to another, seldom deconvolute and compare these spectra may be challenging.

By looking to the discussion in the literature, the models still being developed and tested\cite{34, 35, 36} or considering that the better understanding of BP could result in the exploration of new phenomena\cite{37} and even in improvements of glass transparency\cite{38}, we have performed the low frequency Raman study presented here. The sample investigated is a tellurite-tungstate glass (in %molar 71TeO$_2$ – 22.5WO$_3$ – 5Na$_2$O – 1.5Nb$_2$O$_5$, which we will name here as TWNN) produced by the melting quenching process under controlled atmosphere as described elsewhere\cite{39}. Two peaks instead of the only one usually found in literature were observed at frequencies $< 45cm^{-1}$. By
deconvoluting them, their temperature behavior in the range 30°C to 460°C could be obtained and them discussed.

2. Methods

The measurements were performed in a Raman spectrophotometer (Horiba Jobin Yvon HR 800) under excitation power of 37 mW at 514.5 nm (Argon Laser). A x50 microscope objective lens were used. The sample was heated at steps of 50°C, and a shorter step of 10°C between 330°C and 400°C to have a better insight around the glass transition. The measurements were performed 15 minutes after the system had reached each sample, to avoid inaccurate temperature data. If by one hand this helped to be confident about the sample’s temperature, by another some crystallization were observed, as we can see in figure 1.

![Crystal Observation](image)

Figure 1: Example of crystal observed growing during the Raman experiments.

As we have interpreted that this crystallization have induced Raman peaks $\sim 60\,cm^{-1}$, to deconvolute and compare properly the ultra low frequency peaks observed we have used only the data in the range 3 – 53\,cm$^{-1}$,
which were ~ 100 data points. All data are presented in log-scale, in which as we are going to show two gaussians could fit pretty well the data. The peak centered at 0cm^{-1}, usually is attributed to QES and fitted by a Lorentzian\cite{29} or power law\cite{30} function. Here we have just kept the data for $\omega < 3\text{cm}^{-1}$ out of the fitting process, and the results justify by itself the empirical analysis performed.

3. Results and Discussion

Figure 2 shows the low frequency Raman spectra for room temperature, before glass transition ($T = 300^\circ C$) and for the highest temperature reached in our experiments($T = 460^\circ C$). As one can see, the characteristic shape of BP can be clearly seen at $\sim 40\text{cm}^{-1}$, which is the same position where it is found in other Tellurite glasses\cite{40, 31, 41, 30}. However, the shape of the curves around $3 - 12\text{cm}^{-1}$ are for the best of our knowledge particularly different from the data for other materials.

To explain our analysis, in figure 3 we show the fitting result for the spectrum at $420^\circ C$. As one can see, the data can be deconvoluted in two peaks centered at $\sim 6\text{cm}^{-1}$ and $\sim 30\text{cm}^{-1}$, respectively. We found remarkably that these two peaks could fit the data in such way, giving for all spectra a coefficient of determination $R^2 > 0.999$. This may indicate that the intensity ratio QES/BP is negligible in our sample at this range. The figure 4 shows the position of both peaks as function of temperature, as well the width of them which are plotted in the inset.

Both peak positions are decreasing linearly until T_g (which is $\sim 300^\circ C$), matching the same straight line if we took a normalized scale. The point for us is not if the peaks have one or another dependence with temperature, but that both have the same dependence and by this way we are motivated to conclude that they are produced by the same mechanism. On the other hand, the data on the inset suggests a nearly temperature independent width for both peaks before the glass transition, while the higher peak becomes broader and the lower peak, may be, have a tendency to become thinner after T_g. It should be pointed that we do not have too much data points for the lower peak, and it is located just a few cm^{-1} of the laser line, where QES usually is important. By this way, our fitting process is less accurate for the lower peak and also by the fact that QES and BP intensity may not have the same temperature dependence. This means that QES may start to be more
Figure 2: Low frequency Raman spectra. Once that at 60cm^{-1} the crystallization produces a new peak during heating, in all spectra just the range $3-53\text{cm}^{-1}$ was selected to be fitted.

significant at some temperature, and the lower peak should be more affected than the higher peak.

Taking the data until 300°C, and normalizing each one by their maxima to have the relative change of BP position over temperature, we found the values of $(-2.2 \pm 0.4) \times 10^{-4}/\text{oC}$ and $(-2.6 \pm 0.1) \times 10^{-4}/\text{oC}$ for the angular coefficient for the lower and higher peaks, respectively. Our interpretation for this similarity in the temperature dependence is that the peaks are correlated to same mechanism. By the model of Martin and Brenig, as mentioned in the introduction the BP should consist of both transversal and longitudinal acoustic waves. On this point of view, if a “blob” is about one wavelength of such waves we should obtain something like the two peaks observed here; each one being related to the longitudinal and transversal acoustic waves, respectively.
Figure 3: Raman spectrum at 420°C plotted to show an example of the fitting process. Once that at 60 cm\(^{-1}\) the crystallization produces a new peak during heating, in all spectra just the range 3 – 53 cm\(^{-1}\) was selected to be fitted.

In figure 5 we show the depolarization ratio in the same range of the Raman spectra shown before. The two vertical lines indicates the regions where the two peaks were found in this work. As one can see, the depolarization remains around 0.75 at room temperature in the range 6 – 60 cm\(^{-1}\). Heating the sample this ratio has decreased, initially in the lower peak range where at 100°C we have got 0.72 – 0.73 against 0.75 – 0.77 for the higher peak range. However, for the temperatures above the glass transition, as shown here for the 440°C, the depolarization is nearly frequency independent, exhibiting a shape very similar to that observed at room temperature.
Figure 4: Temperature dependence of BP frequency for both peaks (higher peak scaled at left and lower peak at right). As one can see they have very similar behaviors, more clearly observed before the glass transition at \(350^\circ C\).

4. Conclusion

Our findings can be summarized as follows: 1) TWNN glass exhibits an unusual low frequency Raman spectra, 2) which can be deconvoluted by a pretty simple two gaussian fit. 3) The peaks observed have the same temperature dependence and 4) depolarization ratio, even though the depolarization dependence over temperature could be slightly different. 5) QES, if though as a band centered at \(0 cm^{-1}\) seems to be negligible or at least very weak if compared to the BP bands in our TWNN sample. By this way, the results shown here can be interpreted in terms of the Martin and Brenig model, where each peak is the result of tranversal and longitudinal vibrations of a “blob”.

In order to study the puzzle of BP in glasses, we have performed this low frequency Raman investigation. Our data analysis is pretty simple and
fully experimental, i.e. we fitted the data and described their behavior. Our findings may contribute in the development and discussion about the BP models, as well motivate more work by Raman and other techniques to enrich the experimental information available and drive the community towards clarify the mechanisms behind the energy states in the low frequency range in amorphous materials.

Acknowledgement

The authors would like to thank CNPq (INCT/FOTONICOM, grants 574017/2008; 480576/2013-0 and 504677/2013-6) and FAPESP (grants 2005/51689-2, 2008/57857-2 and 2012/04291-7) for their financial support. A special thanks to Dr. Christophe Petit, the director of the Monarís laboratory during the execution of this study.
References

[1] X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters, Chemical Society Reviews 42 (1) (2013) 173–201. doi:10.1039/c2cs35288e

[2] E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, D. Payne, Science and technology challenges in XXIst century optical communications, Comptes Rendus Physique 12 (4) (2011) 387–416. doi:10.1016/j.crhy.2011.04.009
URL http://linkinghub.elsevier.com/retrieve/pii/S1631070511000922

[3] J. Ballato, P. Dragic, Rethinking Optical Fiber: New Demands, Old Glasses, Journal of the American Ceramic Society 96 (9) (2013) 2675–2692. doi:10.1111/jace.12516
URL http://doi.wiley.com/10.1111/jace.12516

[4] L. Hong, B. Begen, a. Kisliuk, C. Alba-Simionesco, V. N. Novikov, a. P. Sokolov, Pressure and density dependence of the boson peak in polymers, Physical Review B - Condensed Matter and Materials Physics 78 (2008) 1–11. doi:10.1103/PhysRevB.78.134201

[5] L. Hou, W. Yang, H. Liu, J. Huo, Y. Jiao, Q. Liu, Effects of Annealing on the Specific Heat and Boson Peak for Fe_{50}Co_{50}B_{20}Si_{4}Nb_{4} Bulk Metallic Glass, Journal of Low Temperature Physics 179 (5-6) (2015) 343–349. doi:10.1007/s10909-015-1289-7
URL http://link.springer.com/10.1007/s10909-015-1289-7

[6] F. Mallamace, C. Corsaro, D. Mallamace, Z. Wang, S. H. Chen, The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis, Frontiers of Physics 10 (5). doi:10.1007/s11467-015-0487-8

[7] R. Shuker, R. W. Gammon, Raman-scattering selection-rule breaking and the density of states in amorphous materials, Physical Review Letters 25 (4) (1970) 222–225.
[8] S. Franz, G. Parisi, P. Urbani, F. Zamponi, Universal spectrum of normal modes in low-temperature glasses, Proceedings of the National Academy of Sciences 112 (47) (2015) 14539–14544. doi:10.1073/pnas.1511134112. URL http://www.pnas.org/lookup/doi/10.1073/pnas.1511134112

[9] K. Hyeon-Deuk, K. Ando, Distinct structural and dynamical difference between supercooled and normal liquids of hydrogen molecules, Physical Chemistry Chemical Physics 18 (4) (2016) 2314–2318. doi:10.1039/C5CP06615H. URL http://xlink.rsc.org/?DOI=C5CP06615H

[10] H. Shen, P. Tan, L. Xu, Probing the Role of Mobility in the Collective Motion of Nonequilibrium Systems, Physical Review Letters 116 (2016) 1–6. doi:10.1103/PhysRevLett.116.048302

[11] A. J. Martin, W. Brenig, Model for Brillouin Scattering in Amorphous Solids, physica status solidi (b) 64 (1) (1974) 163–172. doi:10.1002/psb.2220640120. URL http://dx.doi.org/10.1002/psb.2220640120

[12] V. Malinovsky, a.P. Sokolov, The nature of boson peak in Raman scattering in glasses, Solid State Communications 57 (9) (1986) 757–761. doi:10.1016/0038-1098(86)90854-9

[13] H. Shintani, H. Tanaka, Universal link between the boson peak and transverse phonons in glass, Nature Materials 7 (11) (2008) 870–877. doi:10.1038/nmat2293. URL http://www.nature.com/doifinder/10.1038/nmat2293

[14] R. J. Nemanich, Low-frequency inelastic light scattering from chalcogenide glasses and alloys, Physical Review B 16 (4) (1977) 1655–1674. doi:10.1103/PhysRevB.16.1655

[15] U. Buchenau, M. Prager, N. Nucker, A. J. Dianoux, N. Ahmad, W. A. Phillips, Low-frequency modes in vitreous silica, Physical Review B 34 (8) (1986) 5665–5673. doi:10.1103/PhysRevB.34.5665

[16] E. Duval, A. Boukenter, B. Champagnon, Vibration Eigenmodes and Size of Microcrystallites in Glass: Observation by Very-Low-Frequency Raman Scattering, Physical review Letters 56 (19) (1986) 2052.
[17] V. K. Malinovsky, V. N. Novikov, A. P. Sokolov, Low-Frequency Raman Scattering on Surface Vibrational Modes of Microcrystals, Solid State Communications 67 (7) (1988) 725–729.

[18] E. Duval, A. Boukenter, T. Achibat, Vibrational dynamics and the structure of glasses, Journal of Physics: Condensed Matter 2 (51) (1990) 10227–10234. doi:10.1088/0953-8984/2/51/001

[19] J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. G. Hwa, C. T. Moynihan, Raman scattering and Boson peaks in glasses: Temperature and pressure effects, Journal of Non-Crystalline Solids 349 (1-3) (2004) 88–97. doi:10.1016/j.jnoncrysol.2004.08.265

[20] C. Masciovecchio, G. Ruocco, F. Sette, M. Krisch, R. Verbeni, U. Bergmann, M. Soltwisch, Observation of large momentum phonon-like modes in glasses., Physical review letters 76 (18) (1996) 3356–3359. doi:10.1103/PhysRevLett.76.3356. URL http://www.ncbi.nlm.nih.gov/pubmed/10060946

[21] G. Monaco, V. M. Giordano, Breakdown of the Debye approximation for the acoustic modes with nanometric wavelengths in glasses., Proceedings of the National Academy of Sciences of the United States of America 106 (10) (2009) 3659–3663. doi:10.1073/pnas.0808965106

[22] A. I. Chumakov, G. Monaco, A. Monaco, W. A. Crichton, A. Bosak, R. Rüffer, A. Meyer, F. Kargl, L. Gomez, D. Fioretto, H. Giefer, S. Roitsch, G. Wortmann, M. H. Manghnani, A. Hushur, Q. Williams, J. Balogh, K. Parliński, P. Jochym, P. Piekarz, Equivalence of the Boson Peak in Glasses to the Transverse Acoustic van Hove Singularity in Crystals, Physical Review Letters 106 (22) (2011) 225501. doi:10.1103/PhysRevLett.106.225501. URL http://link.aps.org/doi/10.1103/PhysRevLett.106.225501

[23] A. Brodin, L. M. Torell, Relaxational and Low-Wavenumber Vibrational Dynamics of Strong Glass Formers B2O3 and GeO2 Probed by Raman Scattering, Journal of Raman Spectroscopy 27 (1996) 723–730.

[24] G. Winterling, Very-low-frequency Raman scattering in vitreous silica, Physical Review B 12 (6) (1975) 2432.
[25] V. K. Malinovsky, V. N. Novikov, N. V. Surovtsev, A. P. Shebanin, Investigation of Amorphous States of SiO2 by Raman Scattering Spectroscopy 42 (1) (2000) 65–71.

[26] A. Fontana, F. Rossi, S. Caponi, E. Fabiani, U. Buchenau, A. Wischnewski, Quasi-elastic scattering in vitreous silica: A Raman and neutron scattering study, Journal of Non-Crystalline Solids 351 (21-23) (2005) 1928–1931. doi:10.1016/j.jnoncrysol.2005.04.040.

[27] M. Zanatta, G. Baldi, S. Caponi, A. Fontana, C. Petrillo, F. Rossi, F. Sacchetti, Debye to non-Debye scaling of the Boson peak dynamics: Critical behavior and local disorder in vitreous germania, Journal of Chemical Physics 135 (17). doi:10.1063/1.3656697.

[28] Y. Takahashi, K. Nakamura, M. Osada, T. Fujiwara, Structural relaxation and quasi-elastic light scattering in glass: Approach by ferroelectric and ion-conducting phases, Scientific Reports 2 (domain II) (2012) 1–6. doi:10.1038/srep00714.

[29] A. A. Osipov, L. M. Osipova, Low frequency Raman scattering in the BaO–B2O3 glasses: the effect of temperature, Physics and Chemistry of Glasses - European Journal of Glass Science and Technology Part B 56 (2) (2015) 53–58.

[30] E. Stavrou, C. Tsiantos, R. D. Tsopouridou, S. Kripotou, a. G. Kontos, C. Raptis, B. Capoen, M. Bouazaoui, S. Turrell, S. Khatir, Raman scattering boson peak and differential scanning calorimetry studies of the glass transition in tellurium-zinc oxide glasses., Journal of physics. Condensed matter : an Institute of Physics journal 22 (19) (2010) 195103. doi:10.1088/0953-8984/22/19/195103.

[31] a. G. Kalampounias, G. N. Papatheodorou, S. N. Yannopoulos, A temperature-dependent Raman study of the xLiCl-(1-x)TeO2 glasses and melts, Journal of Physics and Chemistry of Solids 68 (5-6) (2007) 1029–1034. doi:10.1016/j.jpcs.2007.01.045.

[32] C. Weigel, M. Foret, B. Hehlen, M. Kint, S. Cl??ment, A. Polian, R. Vacher, B. Ruffl??, Polarized Raman spectroscopy of v- SiO2 under rare-gas compression, Physical Review B - Condensed Matter and Materials Physics 93 (22) (2016) 1–9. doi:10.1103/PhysRevB.93.224303.
[33] N. G. C. Astrath, A. Steimacher, A. N. Medina, J. H. Rohling, J. R. D. Pereira, A. C. Bento, M. L. Baesso, L. M. da Silva, F. G. Gandra, Low temperature specific heat of doped and undoped glasses, Journal of Non-Crystalline Solids 352 (32-35) (2006) 3572–3576. doi:10.1016/j.jnoncrysol.2006.03.088.

[34] R. Milkus, A. Zaccone, Inversion-symmetry breaking controls the boson peak anomaly in glasses and crystals, Physical Review B 094204 (2016) 2–10. arXiv:1601.03879 doi:10.1103/PhysRevB.93.094204 URL http://arxiv.org/abs/1601.03879

[35] A. Marruzzo, W. Schirmacher, A. Fratalocchi, G. Ruocco, Heterogeneous shear elasticity of glasses: the origin of the boson peak, Scientific Reports 3 (2013) 1–7. doi:10.1038/srep01407 URL http://www.nature.com/doifinder/10.1038/srep01407

[36] R. V. Chamberlin, B. F. Davis, Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: Applications to non-Debye specific heat, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 88 (4) (2013) 1–7. doi:10.1103/PhysRevE.88.042108

[37] P. Luo, Y. Li, H. Bai, P. Wen, W. Wang, Memory Effect Manifested by a Boson Peak in Metallic Glass, Physical Review Letters 116 (17) (2016) 175901. doi:10.1103/PhysRevLett.116.175901 URL http://link.aps.org/doi/10.1103/PhysRevLett.116.175901

[38] B. Champagnon, L. Wondraczek, T. Deschamps, Boson peak, structural inhomogeneity, light scattering and transparency of silicate glasses, Journal of Non-Crystalline Solids 355 (10-12) (2009) 712–714. doi:10.1016/j.jnoncrysol.2009.01.029 URL http://dx.doi.org/10.1016/j.jnoncrysol.2009.01.029

[39] M. P. Belançon, J. D. Marconi, M. F. Ando, L. C. Barbosa, Near-IR emission in Pr3+/single doped and tunable near-IR emission in Pr3+/Yb3+ codoped tellurite tungstate glasses for broadband optical amplifiers, Optical Materials 36 (6) (2014) 1020–1026. doi:10.1016/j.optmat.2014.01.014 URL http://linkinghub.elsevier.com/retrieve/pii/S0925346714000329
[40] G. S. Murugan, Y. Olishi, Structural and physical properties of a novel TeO2–BaO–SrO–Ta2O5 glass system for photonic device applications, Journal of Non-Crystalline Solids 351 (5) (2005) 364–371. doi:10.1016/j.jnoncrysol.2005.01.039.
URL http://dx.doi.org/10.1016/j.jnoncrysol.2005.01.039

[41] H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, S. Taccheo, Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses, Journal of Non-Crystalline Solids 355 (9) (2009) 548–555. doi:10.1016/j.jnoncrysol.2009.01.016
URL http://linkinghub.elsevier.com/retrieve/pii/S0022309309000337

15