String Backgrounds of the Yang-Baxter Deformed $AdS_4 \times \mathbb{CP}^3$ Superstring

Laura Rado, Víctor O. Rivelles and Renato Sánchez

Instituto de Física, Universidade de São Paulo
Rua do Matão Travessa 1371, 05508-090 São Paulo, SP, Brazil

E-mail: laura@if.usp.br, rivelles@fma.if.usp.br, renato@if.usp.br

Abstract: We build string backgrounds for Yang-Baxter deformations of the $AdS_4 \times \mathbb{CP}^3$ superstring generated by r-matrices satisfying the classical Yang-Baxter equation. We obtain the metric and the NS-NS two-form of the gravity dual corresponding to noncommutative and dipole deformations of ABJM theory, as well as a deformed background with Schrödinger symmetry. The first two backgrounds may also be found by TsT transformations while for the last background we get a new family of non-relativistic ABJM theories with Schrödinger symmetry.
1 Introduction

One of the most important features of the AdS/CFT correspondence is its integrability. On the string theory side, formulated as a two-dimensional field theory, the notion of integrability is associated to the existence of a Lax connection which ensures the existence of an infinite number of conserved charges. In the case of $\text{AdS}_5 \times \text{S}^5$ superstring the theory is described as a σ-model on the supercoset $\text{PSU}(2,2|4)/\text{SO}(1,4) \times \text{SO}(5)$ [1] and the \mathbb{Z}_4-grading of the $\text{psu}(2,2|4)$ superalgebra is a fundamental ingredient to obtain the Lax connection [2].

Recently, techniques to deform integrable theories while keeping their integrability have been developed. One of them is based on r-matrices that satisfy the Yang-Baxter equation. This kind of deformation was proposed by Klimcik as a way to obtain an integrable deformation of the Principal Chiral Model [3, 4]. He used a Drinfeld-Jimbo r-matrix [5, 6] which satisfies the modified classical Yang-Baxter equation (mCYBE). This deformation was also applied to symmetric cosets σ-model [7] and furthermore to the $\text{AdS}_5 \times \text{S}^5$ σ-model [8, 9]. In this last case the supercoset construction was performed and the background was named η-deformed $\text{AdS}_5 \times \text{S}^5$ [10, 11]. The important feature of this deformed background is that it does not satisfy type IIB supergravity field equations which led to a proposal for generalized supergravity equations [12, 13]. However, it was shown recently that the standard supergravity equations are satisfied by an η-deformed background if the Drinfeld-Jimbo r-matrix associated to this deformation is constructed in a specific form [14].
It is also possible to consider r-matrices that are solutions of the classical Yang-Baxter equation (CYBE). The deformation of the symmetric coset σ-model was performed in [15] and for superstrings in $AdS_5 \times S^5$ in [16]. The interesting property of these deformations is that they lead to several known backgrounds of type IIB supergravity [17–21], namely Lunin-Maldacena-Frolov [22, 23], Hashimoto-Itzhaki-Maldacena-Russo [24, 25] \(^1\) and Schrödinger spacetimes [27–29], which can also be obtained via TsT transformations [30]. In these cases the r-matrices are all Abelian. These results were extended to the non-abelian case [31] and it was conjectured [32] that deformations using solutions of the CYBE are equivalent to nonabelian T-duality transformations [33, 34]. An interesting feature of these deformations is that they can generate partial deformations, i.e. either in AdS_5 or in S^5 for the $AdS_5 \times S^5$ case. In terms of TsT transformations this can be explained by considering two-tori with directions either along the brane or transverse to it, or with one direction along the brane and the other transverse to it [35]. In the first case the directions of the two-torus will be generated by momenta operators and this corresponds to a noncommutative two-torus in the field theory, i.e. a noncommutative field theory. By choosing one direction along the brane and one $U(1)$ direction, generated by a Cartan generator, transverse to the brane we get the so-called dipole deformation which gives nonlocal properties to the dual field theory without noncommutativity. If there are three $U(1)$ possible transverse directions, that is three Cartan generators, we can perform the deformation in three ways or more, generally a combination of them. This type of deformation breaks supersymmetry and Lorentz symmetry in the dual field theory. If the two-torus is in the transverse directions we get $U(1) \times U(1)$-type deformations called β-deformations (or γ-deformation if the parameter is real). In general, having three $U(1)$ directions in the transverse space allow us to construct the transverse two-torus in three ways to get different deformations or a combinations of them. This type of deformations is marginal, i.e. it does not affect the conformal symmetry of the dual field theory but reduces the number of supersymmetries from $\mathcal{N} = 4$ to $\mathcal{N} = 1$. There is another way of getting a deformation from the TsT perspective: the null Melvin twist or $T_{s\bar{s}T}$ transformation [36]. This is similar to the procedure for dipole deformations and can be extended to multiple parameters if the internal space has more than one $U(1)$ direction, as it is the case of S^5 and \mathbb{CP}^3. In general, by deforming the AdS subspace we expect, by the AdS/CFT correspondence, to obtain either nonconformal or noncommutative or nonlocal theories as duals. On the other hand, by deforming the internal subspace we expect, in general, to reduce the supersymmetries on the field theory side. Thus, a combination of these deformations in the gravity side leads to interesting dual field theories.

Another well-known case of the AdS/CFT correspondence is the duality between $\mathcal{N} = 6$ superconformal Chern-Simons theory in three dimensions (or ABJM theory) and type IIA superstrings in $AdS_4 \times \mathbb{CP}^3$ [37]. The string theory is partially described by a σ-model on the supercoset $UOSp(2,2|6)/(SO(1,3) \times U(3))$ [38, 39] and since the superalgebra $uosp(2,2|6)$ has a \mathbb{Z}_4-grading it is possible to show its integrability [38]. Only recently Yang-Baxter

\(^1\)This background was also obtained as a $\eta \rightarrow 0$ limit of the η-deformed $AdS_5 \times S^5$ background [10] after a rescaling [11, 26], showing that there are particular limits of η-deformed theories for which we obtain a standard supergravity solution.
deformations of the σ-model on this supercoset has been considered [40]. A solution of the CYBE for an abelian r-matrix, in which only the \mathbb{CP}^3 subspace was deformed, was found. This deformation leads to a three-parameter β-deformation of the $AdS_4 \times \mathbb{CP}^3$ background that can be obtained also by using TsT transformation [35]. Motivated by this work our aim is to study other possible integrable deformations of this background.

The r-matrices satisfying the CYBE are constructed in terms of combinations of generators of the superalgebra $\mathfrak{uosp}(2,2|6)$. We discuss r-matrices that lead to gravity duals of noncommutative ABJM theory as well as its three-parameter dipole deformation. These backgrounds were found initially by performing TsT transformations on the $AdS_4 \times \mathbb{CP}^3$ background [35]. In addition to this, we also present r-matrices that lead to gravity duals of a nonrelativistic ABJM theory in a Schrödinger spacetime.

This paper is organized as follows. In section 2 we present a short review on the construction of Yang-Baxter deformed σ-models and in section 3 we derive the bosonic deformed background for a generic Yang-Baxter deformation. In section 4 we build the coset for $AdS_4 \times \mathbb{CP}^3$ paying attention to the relevant subalgebras that will be necessary in the following section. In section 5 we discuss the new backgrounds obtained by deforming $AdS_4 \times \mathbb{CP}^3$ and in section 6 we discuss our results and future perspectives.

2 Yang-Baxter Deformed σ-models

The action for the Yang-Baxter σ-model on a Lie superalgebra \mathfrak{g} of a supergroup G with \mathbb{Z}_4 grading is given by [8]

$$S = -\frac{(1+c\eta^2)^2}{2(1-c\eta^2)} \int d^2 \sigma P^{\alpha\beta} \text{Str} (A_\alpha, dJ_\beta),$$

(2.1)

where the Maurer-Cartan one-form $A = g^{-1} dg \in \mathfrak{g}$, with $g \in G$, having \mathbb{Z}_4-grading, splits as

$$A = A^{(0)} \oplus A^{(1)} \oplus A^{(2)} \oplus A^{(3)}, \quad [A^{(k)}, A^{(m)}] \subseteq A^{(k+m)} \mod \mathbb{Z}_4.$$

(2.2)

Also, $P^{\alpha\beta}_- = \frac{1}{2} (\gamma^{\alpha\beta} - \kappa \epsilon^{\alpha\beta})$, where $\gamma^{\alpha\beta}$ is the worldsheet metric with $\det \gamma = 1$, and $\kappa^2 = 1$ as required by kappa symmetry. The operator d and its transpose\(^2\) \tilde{d} are

$$d = P_1 + \frac{2}{1-c\eta^2} P_2 - P_3,$$

(2.3)

$$\tilde{d} = -P_1 + \frac{2}{1-c\eta^2} P_2 + P_3,$$

(2.4)

where P_i ($i = 1, 2, 3$) are the projectors on each subalgebra of \mathfrak{g} except P_0 on $\mathfrak{g}^{(0)}$. This is required in order to have a $\mathfrak{g}^{(0)}$-invariant action. The deformed current and its transpose are defined as

$$J = \frac{1}{1 - \eta R_g \circ d} A,$$

(2.5)

\(^2\)The operators d and \tilde{d} are such that $\text{Str}(MdN) = \text{Str}(\tilde{d}MN)$ with $M,N \in \mathfrak{g}$.

B
\[\tilde{J} = \frac{1}{1 + \eta R_g \circ d} A, \]
(2.6)

where the operator \(R_g \) is
\[R_g (M) = \text{Ad}_g^{-1} \circ R \circ \text{Ad}_g (M) = g^{-1} R (g M g^{-1}) g, \quad g \in G. \]
(2.7)

\(R \) is the operator associated to the Yang-Baxter equation (YBE) which can be written, in its modified version, as
\[[RM, RN] - R ([RM, N] + [M, RN]) = c [M, N], \]
\[\begin{cases} c = 0 & \text{CYBE} \\ c = \pm 1 & \text{mCYBE} \end{cases} \]
(2.8)

where \(M, N \in \mathfrak{g} \). In (2.1) and (2.8) the parameter \(c \) refers to either the classical Yang-Baxter (CYBE) equation or to the modified classical Yang-Baxter equation (mCYBE).

3 Bosonic Backgrounds

In order to discuss the bosonic backgrounds we switch off the fermionic generators so that we now have \(\mathfrak{g}_b = \mathfrak{g}^{(0)} \oplus \mathfrak{g}^{(2)}. \) For the case of the CYBE we get from (2.3) and (2.4) that \(d = \tilde{d} = 2P_2 \) where \(P_2 \) is the projector on \(\mathfrak{g}^{(2)} \). The deformed Lagrangian in (2.1) reduces to
\[\mathcal{L} = -\frac{1}{2} \left(\gamma^{\alpha\beta} - \varepsilon^{\alpha\beta} \right) \text{Str} (A_\alpha P_2 (J_\beta)), \]
(3.1)

where we have chosen \(\kappa = 1 \) for convenience.

Let us consider the case where \(\mathfrak{g}^{(2)} \) is a coset subalgebra \(\mathfrak{g}^{(2)} = \mathfrak{g}_b / \mathfrak{g}^{(0)}. \) Thus, \(\mathfrak{g}^{(0)} \) has the generators of the local bosonic symmetries while \(\mathfrak{g}^{(2)} \) contains the generators which will allow us to construct the background. With this in mind, the projector \(P_2 \) can be written as
\[P_2 (X) = \sum_m \frac{\text{Str} (K_m X)}{\text{Str} (K_m K_m)} K_m = X - \sum_i \frac{\text{Str} (H_i X)}{\text{Str} (H_i H_i)} H_i, \]
(3.2)

where \(K_m \) are the generators of \(\mathfrak{g}^{(2)}, H_i \) are those of \(\mathfrak{g}^{(0)} \) and \(X \in \mathfrak{g}. \)

The currents in (2.5) and (2.6) can be recast as
\[A = (1 - 2\eta R_g \circ P_2) (J), \]
(3.3)
\[\tilde{A} = (1 + 2\eta R_g \circ P_2) (\tilde{J}), \]
(3.4)

and we can find \(P_2 (J) \) by projecting (3.3) into \(\mathfrak{g}^{(2)}, \)
\[P_2 (J) = P_2 (A) + 2\eta P_2 \circ R_g \circ P_2 (J). \]
(3.5)

We then find that \(P_2 \) acts as
\[P_2 (A) = E^m K_m, \quad P_2 (J) = j^m K_m, \quad P_2 (\tilde{J}) = \tilde{j}^m K_m. \]
(3.6)

In addition, we are going to need the following projection
\[P_2 (R_g (K_m)) = \Lambda_m K_n. \]
(3.7)
To do that we define from (2.5)
\[O^{-1} = \frac{1}{1 - 2\eta R_g \circ P_2}, \]
so that
\[P_2 (O^{-1} (K_m)) = C_m^n K_n. \]
From (3.6), (3.7), (3.8) and (3.9) we find
\[K_m = C_m^n (\delta_m^p - 2\eta \Lambda_m^p) K_p, \]
or
\[C = (I - 2\eta \Lambda)^{-1}. \]
Also, (3.5) becomes
\[E_n K_n = j^m (\delta_n^m - 2\eta \Lambda_n^m) K_n, \]
so that
\[j^m = E^n C_n m, \]
with
\[\tilde{C} = (I + 2\eta \Lambda)^{-1}. \]
Then, from (3.1), we can read off the metric and the B-field as
\[ds^2 = \text{Str} (A P_2 (J)) = j^m \text{Str} (AK_m) = E^m C_n n \text{Str} (AK_n), \]
\[B = \text{Str} (A \wedge P_2 (J)) = -j^m \wedge \text{Str} (AK_m) = E^m C_n n \wedge \text{Str} (AK_n). \]

4 Coset Construction for $AdS_4 \times \mathbb{CP}^3$

Arutyunov and Frolov [38] and Stefanski [39] proposed a supercoset \(\sigma \)-model formulation for type IIA superstrings in $AdS_4 \times \mathbb{CP}^3$ along the same lines as what it was done for type IIB superstrings in $AdS_5 \times S^5$. In this formulation type IIA superstring theory in $AdS_4 \times \mathbb{CP}^3$ is described by a σ-model on the supercoset $UOSp(2,2|6)/(SO(1,3) \times U(3))$. However, in this supercoset the spinors have 24 components instead of the usual 32 components so that it does not describe the full superstring. This means that the missing components have been gauged away so that this coset has a partially fixed κ-symmetry [38].

The isometry group of $AdS_4 \times \mathbb{CP}^3$ is the coset
\[AdS_4 \times \mathbb{CP}^3 \equiv \frac{SO(2,3)}{SO(1,3)} \times \frac{SU(4)}{U(3)}. \]
This bosonic group is part of the supercoset $UOSp(2,2|6)/(SO(1,3) \times U(3))$. The supergroup $G = UOSp(2,2|6)$ has superalgebra $\mathfrak{g} = uosp(2,2|6)$ on which the σ-model can be constructed. The generators of \mathfrak{g} can be written as supermatrices formed by blocks that correspond to bosonic and fermionic generators. The bosonic part of \mathfrak{g} can be written as
\[g^{(0)} := \mathfrak{so}(2,3) \oplus \mathfrak{su}(4) = (\mathfrak{so}(1,3) \oplus \mathfrak{u}(3)) \oplus (\mathfrak{so}(2,3) \oplus \mathfrak{su}(4) \oplus \mathfrak{so}(1,3) \oplus \mathfrak{u}(3)). \]
Then a supermatrix on g then has the following form

$$M_{(4|4)} = \begin{pmatrix} \mathfrak{so}(2,3) & \mathfrak{Q} \\ \mathfrak{Q} & \mathfrak{su}(4) \end{pmatrix},$$

(4.3)

where Q, \bar{Q} are the fermionic blocks corresponding to the fermionic sector of g. $g_{\ell} = g^{(1)} \oplus g^{(3)}$. As discussed in [40], in order to get the Fubini-Study metric for $\mathbb{C}P^3$, we have to extend the coset of $\mathbb{C}P^3$ with an $su(2)$ algebra. Then the coset for $AdS_4 \times \mathbb{C}P^3$ is now written as

$$g_b := \mathfrak{so}(2,3) \oplus \mathfrak{su}(2) \oplus \mathfrak{su}(4) = (\mathfrak{so}(1,3) \oplus \mathfrak{su}(2) \oplus \mathfrak{u}(3)) \oplus \frac{\mathfrak{so}(2,3) \oplus \mathfrak{su}(2) \oplus \mathfrak{su}(4)}{\mathfrak{so}(1,3) \oplus \mathfrak{su}(2) \oplus \mathfrak{u}(3)}.$$

(4.4)

The supermatrix for g will then have the following structure

$$M_{(6|4) \times (6|4)} = \begin{pmatrix} \mathfrak{so}(2,3) & \mathfrak{Q} \\ \mathfrak{Q} & \mathfrak{su}(4) \end{pmatrix},$$

(4.5)

where the dashed line splits the algebras corresponding to the subspaces AdS_4 and $\mathbb{C}P^3$, and the solid line splits the $M_{6 \times 6}$ and $M_{4 \times 4}$ bosonic blocks. Notice that this extension does not mix with the original fermionic blocks.

The basis of $\mathfrak{so}(2,3) \oplus \mathfrak{su}(2) \oplus \mathfrak{su}(4)$ that we will consider is composed of $\mathfrak{so}(2,3)$ generators denoted by M_{ij}, $i,j = 0,1,2,3,4$, $\mathfrak{su}(2)$ generators denoted by M_a, $a = 1,2,3$, and $\mathfrak{su}(4)$ generators denoted by L_m, $m = 1,\ldots,15$,

$$M_{ij} = \begin{pmatrix} m_{ij} & 0 \\ -\eta^{ij} & 0 \end{pmatrix}, M_a = -i\frac{1}{2} \begin{pmatrix} 0 & \sigma_a \\ \sigma_a^\dagger & 0 \end{pmatrix}, L_m = \frac{i}{2} \begin{pmatrix} 0 & \lambda_m \\ \lambda_m^\dagger & 0 \end{pmatrix},$$

(4.6)

where m_{ij} are the ten 4×4 antisymmetric matrices representing the generators of isometries of AdS_4 and σ_a and λ_m are, respectively, the conventional 2×2 Pauli and 4×4 Gell-mann matrices of $\mathfrak{su}(2)$ and $\mathfrak{su}(4)$ (see Appendix B and Appendix A). The commutation relations and supertraces are

$$[M_{ij}, M_{k\ell}] = \eta_{i\ell}M_{jk} + \eta_{jk}M_{i\ell} - \eta_{ik}M_{j\ell} - \eta_{j\ell}M_{ik},$$

$$\text{Str}(M_{ij}M_{k\ell}) = -\eta_{ik}\eta_{j\ell},$$

(4.7)

with $\eta_{ij} = \text{diag}(-,+,+,+,-,+,+,+,+)$, and

$$[L_m, L_n] = f_{mn}^p L_p, \quad \text{Str}(L_mL_n) = \frac{i}{2} \delta_{mn},$$

$$[M_a, M_b] = \epsilon_{abc} M_c, \quad \text{Str}(M_aM_b) = -\frac{i}{2} \delta_{ab}.$$

(4.8)

(4.9)

The global symmetry algebra of AdS_4 space can be written as

$$\mathfrak{so}(2,3) = \mathfrak{so}(1,3) \oplus \mathfrak{so}(2,3) \oplus \mathfrak{so}(1,3).$$

(4.10)
where

\[\mathfrak{so}(2, 3) = \text{span} \{ \mathbf{K}_m \}, \quad m = 0, 1, 2, 3, \] (4.11)

with

\[\mathbf{K}_0 = \frac{1}{2} \mathbf{M}_{04}, \quad \mathbf{K}_1 = \frac{1}{2} \mathbf{M}_{14}, \quad \mathbf{K}_2 = \frac{1}{2} \mathbf{M}_{24}, \quad \mathbf{K}_3 = \frac{1}{2} \mathbf{M}_{34} \equiv \frac{1}{2} \mathbf{D}, \] (4.12)

and

\[\text{Str} (\mathbf{K}_m \mathbf{K}_n) = \frac{1}{2} \delta_{mn}, \quad m, n = 0, 1, 2, 3. \] (4.13)

The $\mathfrak{so}(1, 3)$ generators are $\{ \mathbf{M}_{01}, \mathbf{M}_{02}, \mathbf{M}_{03}, \mathbf{M}_{12}, \mathbf{M}_{13}, \mathbf{M}_{23} \}$ and an appropriate coset representative for AdS_4 is

\[g_{AdS_4} = \exp \left(x^0 p_0 + x^1 p_1 + x^2 p_2 \right) \exp (\log r \mathbf{D}), \] (4.14)

where $p_\mu = \mathbf{M}_{\mu 3} + \mathbf{M}_{\mu 4}$, $\mu = 0, 1, 2$.

The \mathbb{CP}^3 space can be written as the coset in

\[\mathfrak{su}(2) \oplus \mathfrak{su}(4) = \mathfrak{su}(2) \oplus \mathfrak{u}(3) \oplus \mathfrak{su}(2) \oplus \mathfrak{su}(4) \] (4.15)

A basis for this coset is

\[\mathfrak{su}(2) \oplus \mathfrak{su}(4) = \text{span} \{ \mathbf{K}_m \}, \quad m = 4, \ldots, 9, \] (4.16)

where

\[\mathbf{K}_4 = \mathbf{L}_{11}, \quad \mathbf{K}_5 = \mathbf{L}_{12}, \quad \mathbf{K}_6 = \mathbf{L}_{13}, \]
\[\mathbf{K}_7 = \mathbf{L}_{14}, \quad \mathbf{K}_8 = \mathbf{H}, \quad \mathbf{K}_9 = \mathbf{L}_{10}, \] (4.17)

and $\mathbf{H} = \mathbf{L}_6 + \mathbf{L}_9 + \mathbf{M}_1$, with \mathbf{L}_m given in (4.6). We also have

\[\text{Str} (\mathbf{K}_m \mathbf{K}_n) = \frac{1}{2} \delta_{mn}, \quad m, n = 4, \ldots, 9. \] (4.18)

The generators of $\mathfrak{su}(2) \oplus \mathfrak{u}(3)$ are $\{ \mathbf{T}_2, \mathbf{M}_2, \mathbf{M}_3, \mathbf{L}_1, \mathbf{L}_2, \mathbf{L}_3, \mathbf{L}_4, \mathbf{L}_5, \mathbf{L}_7, \mathbf{L}_8, \mathbf{T}_1, \mathbf{L}_{15} \}$, with

\[\mathbf{T}_1 = \mathbf{L}_6 - \mathbf{L}_9, \quad \mathbf{T}_2 = \mathbf{L}_6 + \mathbf{L}_9 + 2 \mathbf{M}_1. \] (4.19)

An appropriate coset representative is then

\[g_{\mathbb{CP}^3} = \exp (\varphi_1 \mathbf{L}_3 + \varphi_2 \mathbf{L} - \psi \mathbf{M}_3) \exp (\theta_1 \mathbf{L}_2 + (\theta_2 + \pi) \mathbf{L}_{14}) \exp ((2 \xi + \pi) (\mathbf{L}_{10} + \mathbf{M}_2)), \] (4.20)

where

\[\mathbf{L} = -\frac{1}{\sqrt{3}} \mathbf{L}_8 - \sqrt{\frac{2}{3}} \mathbf{L}_{15}. \] (4.21)

Therefore, the full bosonic representative for $AdS_4 \times \mathbb{CP}^3$ is

\[g = g_{AdS_4} \times g_{\mathbb{CP}^3}. \] (4.22)
In order to find out the undeformed background we will use the procedure taken in section 3. Now the bosonic algebra is \(\mathfrak{so}(2,3) \oplus \mathfrak{su}(2) \oplus \mathfrak{su}(4) \) so that the projector (3.2) becomes

\[
P_2(X) = \frac{1}{4} \sum_{\mu=0}^2 \frac{\text{Str}(K_m X)}{\text{Str}(K_m K_m)} K_m + \frac{1}{2} \sum_{m=4}^9 \frac{\text{Str}(K_m X)}{\text{Str}(K_m K_m)} K_m,
\]

and (3.6) turns into \(P_2(A) = E^m K_m, \) \(m = 0, 1, \ldots, 9. \) Using the parametrization (4.14) and (4.20) we find

\[
E_0 = \frac{1}{2} r d\phi_1, \quad E_1 = \frac{1}{2} r d\phi_2, \quad E_2 = \frac{1}{2} r d\phi_3, \quad E_3 = \frac{dr}{2r}, \quad E_4 = \frac{1}{2} \sin \theta_1 \cos \xi d\phi_1, \quad E_5 = \frac{1}{2} \cos \xi d\theta_1, \quad E_6 = \frac{1}{2} \sin \theta_2 \sin \xi d\phi_2,
\]

\[
E_7 = -\frac{1}{2} \sin \xi d\theta_2, \quad E_8 = \frac{1}{4} (\cos \theta_1 d\phi_1 - \cos \theta_2 d\phi_2 + 2d\psi) \sin 2\xi , \quad E_9 = d\xi.
\]

Then the undeformed \(AdS_4 \times \mathbb{C}P^3 \) metric can be found from (3.15) with \(\eta = 0 \) so that from (2.5) we have \(J = A \) and then

\[
d s^2_{AdS_4} = \frac{1}{4} \left(r^2 (-d\phi_0^2 + d\phi_1^2 + d\phi_2^2) + \frac{dr^2}{r^2} \right),
\]

and

\[
d s^2_{\mathbb{C}P^3} = d\xi^2 + \frac{1}{4} \cos^2 \xi (d\theta_1^2 + \sin^2 \theta_1 d\phi_1^2) + \frac{1}{4} \sin^2 \xi (d\theta_2^2 + \sin^2 \theta_2 d\phi_2^2)
\]

\[
+ \left(\frac{1}{2} \cos \theta_1 d\phi_1 - \frac{1}{2} \cos \theta_2 d\phi_2 + 2d\psi \right)^2 \sin^2 \xi \cos^2 \xi,
\]

where \((\theta_1, \phi_1)\) and \((\theta_2, \phi_2)\) parametrize the two spheres of \(\mathbb{C}P^3 \), the angle \(\xi \), \(0 \leq \xi \leq \pi/2 \), determines their radii and \(0 \leq \psi \leq 2\pi \). This background comes from the eleven-dimensional M-theory on \(AdS_4 \times S^7/\mathbb{Z}_k \) corresponding to \(\mathcal{N} = 6 \ U(N) \times U(N) \) superconformal Chern-Simons theory at levels \(k \) and \(-k \) when we take large \(N \) and \(k \) [37]. Due to the \(\mathbb{Z}_k \) quotient the \(S^7 \) can be expressed as a \(S^1 \) fibration over \(\mathbb{C}P^3 \). And since the radius of \(S^1 \) becomes small as \(k \) increases the internal space reduces to \(\mathbb{C}P^3 \) which gives the \(AdS_4 \times \mathbb{C}P^3 \) ten-dimensional spacetime. The \(\mathbb{C}P^3 \) metric (4.26) is a particular form of the Fubini-Study metric [41].

5 Yang Baxter Deformed Backgrounds

In this section we present some \(r \)-matrices satisfying the CYBE and build the corresponding \(AdS_4 \times \mathbb{C}P^3 \) deformed backgrounds identifying their gravity duals.

5.1 Noncommutative ABJM Theory

Let us first consider an Abelian \(r \)-matrix like

\[
r = \mu \mathbf{P}_1 \wedge \mathbf{P}_2.
\]

\[8\] Henceforth, we set \(R^2_{\text{str}} = R^2/k = 2^{1/2} \pi \sqrt{N/k} = 1 \), where \(R^2_{\text{str}} \) is defined in [37].
involving momenta operators on AdS_4 along x^1 and x^2 with μ the deformation parameter
\footnote{The deformation parameter η can always be absorbed in the R operator in (2.5) and (2.6) so that it is present in μ.}. The nonzero components of Λ_{n}^{μ} in (3.7) are

$$P_2 (R_g (K_1)) = \Lambda_1^2 K_2, \quad P_2 (R_g (K_2)) = \Lambda_2^1 K_1,$$

(5.2)

with

$$\Lambda_1^2 = \Lambda_2^1 = -\frac{\mu^2}{2} r^2,$$

(5.3)

while the nonvanishing elements of C_{m}^{n} in (3.11) are

$$C_0^0 = C_3^3 = C_4^4 = C_5^5 = C_6^6 = C_7^7 = C_8^8 = C_9^9 = 1,$$

$$C_1^1 = C_2^2 = \mathcal{M},$$

$$C_2^3 = -C_3^2 = -\frac{1}{2} \mu M r^2,$$

(5.4)

where

$$\mathcal{M}^{-1} = 1 + \frac{\mu^2 r^4}{4}.$$

(5.5)

The deformed metric can then be obtained from (3.15)

$$ds^2 = \frac{1}{4} \left(r^2 \left(-dx_0^2 + \mathcal{M} (dx_1^2 + dx_2^2) \right) + \frac{dr^2}{r^2} \right) + ds^2_{\mathbb{CP}^3}.$$

(5.6)

The B-field is obtained from (3.16),

$$B = \frac{\mu M r^4}{4} dx^1 \wedge dx^2,$$

(5.7)

which introduces the noncommutativity in the (x^1, x^2)-plane as $[x^1, x^2] \sim \mu$ [25, 42–45]. The commutative theory is recovered when $\mu = 0$ since $\mathcal{M} = 1$ and $B = 0$.

This result agrees with the gravity dual of noncommutative ABJM obtained by TsT transformations, with $\gamma = 2\mu$, where γ is the TsT deformation parameter [35]. Other choices for the r-matrix like $p_0 \wedge p_1$ and $p_0 \wedge p_2$ leads to noncommutativity in (x^0, x^1) and (x^0, x^2) directions, respectively, but they correspond to non-unitary and non-causal quantum field theories [46, 47]. This is in agreement with the fact that Yang-Baxter deformations of AdS, i.e. involving only generators of the conformal algebra, are dual to conformal twists that give rise to general noncommutative structures in the field theory side [48–50].

5.2 Dipole Deformed ABJM Theory

Let us now consider a r-matrix with three parameters

$$r = p_2 \wedge (\mu_1 L_3 + \mu_2 L + \mu_3 M_3),$$

(5.8)

where L, defined in (4.21), L_3 and M_3 are the Cartan generators of $\mathfrak{su}(2) \oplus \mathfrak{su}(4)$ and μ_i, $i = 1, 2, 3$, are the deformation parameters. In this case (5.8) combines generators of both
subspaces which will lead to a deformation of the entire $AdS_4 \times \mathbb{CP}^3$ background. Taking the same steps as in the previous case we find the nonzero components of Λ_m^n

\begin{align*}
\Lambda_2^4 &= -\Lambda_4^2 = -\frac{\mu_1}{4} r \sin \theta_1 \cos \xi,
\Lambda_2^6 &= -\Lambda_6^2 = \frac{\mu_2}{4} r \sin \theta_2 \sin \xi, \\
\Lambda_2^8 &= -\Lambda_8^2 = \frac{1}{8} r (2\mu_3 - \mu_1 \cos \theta_1 + \mu_2 \cos \theta_2) \sin 2\xi,
\end{align*}

(5.9)
as well as the nonzero elements of C_m^n

\begin{align*}
C_0^0 &= C_1^1 = C_3^3 = C_5^5 = C_7^7 = C_9^9 = 1, \\
C_2^2 &= \mathcal{M}, \\
C_2^4 &= -C_4^2 = \frac{1}{2} \mathcal{M} \mu_1 r \sin \theta_1 \cos \xi, \\
C_2^6 &= -C_6^2 = \frac{1}{2} \mathcal{M} \mu_2 r \sin \theta_2 \sin \xi, \\
C_2^8 &= -C_8^2 = -\frac{1}{4} \mathcal{M} r (2\mu_3 - \mu_1 \cos \theta_1 + \mu_2 \cos \theta_2) \sin 2\xi, \\
C_4^4 &= \mathcal{M} \left(1 + \frac{r^2}{4} \mu_2^2 \sin^2 \theta_2 \sin^2 \xi + \frac{r^2}{16} (2\mu_3 - \mu_1 \cos \theta_1 + \mu_2 \cos \theta_2)^2 \sin^2 2\xi\right), \\
C_4^6 &= C_6^4 = \frac{1}{8} \mathcal{M} \mu_1 \mu_2 r^2 \sin \theta_1 \sin \theta_2 \sin 2\xi, \\
C_4^8 &= C_8^4 = \frac{1}{8} \mathcal{M} \mu_1 r^2 \sin \theta_1 (2\mu_3 - \mu_2 \cos \theta_1 + \mu_1 \cos \theta_2) \cos \xi \sin 2\xi, \\
C_6^6 &= \mathcal{M} \left(1 + \frac{r^2}{4} \mu_1^2 \sin^2 \theta_1 \cos^2 \xi + \frac{r^2}{16} (2\mu_3 - \mu_1 \cos \theta_1 + \mu_2 \cos \theta_2)^2 \sin^2 2\xi\right), \\
C_6^8 &= C_8^6 = \frac{1}{8} \mathcal{M} \mu_2 r^2 \sin \theta_2 (2\mu_3 - \mu_1 \cos \theta_1 + \mu_2 \cos \theta_2) \sin \xi \sin 2\xi, \\
C_8^8 &= \mathcal{M} \left(1 + \frac{r^2}{4} (\mu_1^2 \sin^2 \theta_1 \cos^2 \xi + \mu_2^2 \sin^2 \theta_2 \sin^2 \xi)\right),
\end{align*}

(5.10)

where

\begin{align*}
\mathcal{M}^{-1} &= 1 + f_1^2 + f_2^2 + f_3^3, \\
f_1 &= \frac{r}{2} \mu_1 \sin \theta_1 \cos \xi, \quad f_2 = \frac{r}{2} \mu_2 \sin \theta_2 \sin \xi, \\
f_3 &= \frac{r}{4} (2\mu_3 - \mu_1 \cos \theta_1 + \mu_2 \cos \theta_2) \sin 2\xi.
\end{align*}

(5.11)
The deformed metric is now
\[
ds^2 = \frac{1}{4} \left(r^2 \left(-dx_0^2 + dx_1^2 \right) + \mathcal{M} \left(e^2 + 2 \right) dx_2^2 + \frac{dr^2}{r^2} \right) \\
+ d\xi^2 + \frac{1}{4} \cos^2 \xi \left(\sin^2 \theta_1 d\phi_1^2 + \frac{1}{2} \sin^2 \theta_2 d\phi_2^2 \right) \\
+ \frac{1}{4} \sin^2 \xi \left(\sin^2 \theta_2 + \sin^2 \theta_2 d\phi_2^2 \right) \\
+ \mathcal{M} \left(1 + f_1^2 + f_2^2 \right) \left(\frac{1}{2} \cos \theta_1 d\varphi_1 - \frac{1}{2} \cos \theta_2 d\varphi_2 + d\psi \right)^2 \sin^2 \xi \cos^2 \xi \\
+ \mathcal{M} f_3 \left(f_1 \sin \theta_1 \cos \xi d\varphi_1 + f_2 \sin \theta_2 \sin \xi d\varphi_2 \right) \left(\frac{1}{2} \cos \theta_1 d\varphi_1 - \frac{1}{2} \cos \theta_2 d\varphi_2 + d\psi \right) \sin \xi \cos \xi \\
- \frac{\mathcal{M}}{2} f_1 f_2 \sin \theta_1 \sin \theta_2 \sin \xi \cos \xi d\varphi_1 d\varphi_2,
\]
(5.12)
while the B-field is
\[
B = \frac{1}{2} \mathcal{M} r \cos \xi \left(f_1 \sin \theta_1 - f_3 \cos \theta_1 \sin \xi \right) dx_2 \wedge d\varphi_1 \\
+ \frac{1}{2} \mathcal{M} r \sin \xi \left(f_3 \cos \theta_2 \cos \xi + f_2 \sin \theta_2 \right) dx_2 \wedge d\varphi_2 \\
- \mathcal{M} f_3 \cos \xi dx^2 \wedge d\psi.
\]
(5.13)
It is worth mentioning that the choice of generators in (5.8) is dictated by the place where we want put the two-tori from the TsT perspective. In the present case we have one coordinate in AdS_4 and a combination of the $U(1)$’s in $\mathbb{C}P^3$. The resulting metric (5.12) has deformations along the x^2-direction in AdS_4 and along the $(\varphi_1, \varphi_2, \psi)$ angles in $\mathbb{C}P^3$.

For $\mu_1 = \mu_2 = 0$ and $\mu_3 = \mu$ the last two lines in (5.12) vanish and we obtain
\[
ds^2 = \frac{1}{4} \left(r^2 \left(-dx_0^2 + dx_1^2 \right) + \frac{2}{1 + f_3^2} \left(1 + f_3^2 \right) \right) dx_2^2 + \frac{dr^2}{r^2} \\
+ d\xi^2 + \frac{1}{4} \cos^2 \xi \left(\sin^2 \theta_1 d\phi_1^2 + \frac{1}{2} \sin^2 \theta_2 d\phi_2^2 \right) \\
+ \frac{1}{4} \sin^2 \xi \left(\sin^2 \theta_2 + \sin^2 \theta_2 d\phi_2^2 \right) \\
+ \frac{1}{4} \sin^2 \xi \cos^2 \xi,
\]
(5.14)
and
\[
B = -\frac{1}{4} \left(\frac{f_3}{1 + f_3^2} \right) r dx_2 \wedge \left(\frac{1}{2} \sin \theta_1 d\varphi_1 - \frac{1}{2} \sin \theta_2 d\varphi_2 + d\psi \right) \sin \xi \cos \xi,
\]
(5.15)
with
\[
f_3 = \frac{\mu r}{2} \sin 2\xi.
\]
(5.16)
This agrees with the dipole deformed ABJM theory obtained by a TsT transformation [35]. The B-field (5.15) does not give rise to noncommutativity in the dual field theory because it has legs in AdS_4 as well as in $\mathbb{C}P^3$. Instead, the components B_{2i} for i being the labels for the $\mathbb{C}P^3$coordinates $\varphi_1, \varphi_2, \psi$, give rise to a dipole vector that introduces nonlocality in the field theory [51, 52].
5.3 Nonrelativistic ABJM Theory

In order to construct this deformation we must use light-cone coordinates in AdS_4. Then the coset representative is now

$$g_{AdS_4} = \exp \left(x_- p_- + x_+ p_+ + x^1 p_1 \right) \exp \left(\log r D \right),$$

with

$$p_\pm = \frac{1}{\sqrt{2}} (p_0 \pm p_2), \quad x_\pm = \frac{1}{\sqrt{2}} (x^0 \pm x^2),$$

while for \mathbb{CP}^3 we keep the same form as (4.20). The AdS_4 metric is then

$$ds^2_{AdS_4} = -2r^2dx_+dx_- + r^2dx_1^2 + \frac{dr^2}{r^2},$$

while the \mathbb{CP}^3 metric is still given by (4.26).

Let us now consider the r-matrix (5.8) with p_2 replaced by p_-

$$r = p_- \wedge (\mu_1 L_3 + \mu_2 L + \mu_3 M_3).$$

The nonzero components of $\Lambda_m^n (3.7)$ are

$$\Lambda_0^4 = \Lambda_4^0 = \frac{\mu_1}{4\sqrt{2}} r \sin \theta \cos \xi, \quad \Lambda_0^6 = \Lambda_6^0 = -\frac{\mu_2}{4\sqrt{2}} r \sin \theta \sin \xi,$$

$$\Lambda_0^8 = \Lambda_8^0 = -\frac{1}{4\sqrt{2}} r (2\mu_3 - \cos \theta_1 + \mu_2 \cos \theta_2) \sin \xi \cos \xi,$$

$$\Lambda_2^4 = -\Lambda_4^2 = \frac{\mu_1}{4\sqrt{2}} r \sin \theta \cos \xi,$$

$$\Lambda_2^6 = -\Lambda_6^2 = -\frac{\mu_2}{4\sqrt{2}} r \sin \theta \sin \xi,$$

$$\Lambda_2^8 = -\Lambda_8^2 = -\frac{1}{4\sqrt{2}} r (2\mu_3 - \cos \theta_1 + \mu_2 \cos \theta_2) \sin \xi \cos \xi,$$

while the nonzero elements of C_m^n are now

$$C_0^0 = 1 + \frac{r^2}{8} \left(\mu_1^2 \sin^2 \theta_1 \cos^2 \xi + \mu_2^2 \sin^2 \theta_2 \sin^2 \xi + (2\mu_3 - \mu_1 \cos \theta_1 + \mu_2 \cos \theta_2)^2 \sin^2 \xi \cos^2 \xi \right),$$

$$C_0^2 = -C_2^0 = -\frac{r^2}{8} \left(\mu_1^2 \sin^2 \theta_1 \cos^2 \xi + \mu_2^2 \sin^2 \theta_2 \sin^2 \xi + (2\mu_3 - \mu_1 \cos \theta_1 + \mu_2 \cos \theta_2)^2 \sin^2 \xi \cos^2 \xi \right),$$

$$C_0^4 = C_4^0 = \frac{r}{2\sqrt{2}} \mu_1 \sin \theta \cos \xi,$$

$$C_0^6 = C_6^0 = -\frac{r}{2\sqrt{2}} \mu_2 \sin \theta \sin \xi,$$

$$C_0^8 = C_8^0 = -\frac{r}{2\sqrt{2}} (2\mu_3 - \mu_1 \cos \theta_1 + \mu_2 \cos \theta_2) \sin \xi \cos \xi,$$

$$C_2^2 = 1 - \frac{r^2}{8} \left(\mu_1^2 \sin^2 \theta_1 \cos^2 \xi + \mu_2^2 \sin^2 \theta_2 \sin^2 \xi + (2\mu_3 - \mu_1 \cos \theta_1 + \mu_2 \cos \theta_2)^2 \sin^2 \xi \cos^2 \xi \right),$$

$$C_2^4 = -C_4^2 = \frac{r}{2\sqrt{2}} \mu_1 \sin \theta \cos \xi,$$
\[C_2^6 = -C_6^2 = -\frac{r}{2\sqrt{2}}\mu_2 \sin \theta_2 \sin \xi, \]
\[C_2^8 = -C_8^2 = -\frac{r}{2\sqrt{2}}(2\mu_3 - \mu_1 \cos \theta_1 + \mu_2 \cos \theta_2) \sin \xi \cos \xi, \]
\[C_1^1 = C_3^3 = C_4^4 = C_5^5 = C_6^6 = C_7^7 = C_8^8 = C_9^9 = 1. \]

The deformed background is then
\[\Phi = M \Phi. \]

The first term in (5.23) is a Schrödinger spacetime with dynamical exponent three. This type of background corresponds to gravity duals of nonrelativistic ABJM theory. This theory has its origin in M-theory \([58]\). The nonrelativistic ABJM theory has its origin in M-theory \([55, 56]\). The metric (5.23) has the form of a Schrödinger spacetime with dynamical exponent three was reported in \([57]\).

The Schrödinger symmetry is the maximal symmetry group of the free Schrödinger equation. It is the nonrelativistic version of the conformal algebra \([53, 54]\). This symmetry is realized geometrically as Schrödinger spacetimes.

The dynamical \(z\) factor is the exponent in the power of the radial direction in the \(r^{2z} dx_+^2\) term. To have Schrödinger symmetry we must have \(z = 2\). The relativistic symmetry corresponds to \(z = 1\). A Schrödinger spacetime \(Sch_4 \times \mathbb{CP}^3\) with dynamical exponent three was reported in \([57]\).

The choice of generators in (5.20) is very similar to the one in (5.8). Now, however, the two-tori defined by the TsT transformation takes the \(x_-\) coordinate and a combination of the internal \(U(1)\)'s in \(\mathbb{CP}^3\) and does not introduce any noncommutativity in the dual field theory.

The metric (5.23) has the form of a Schrödinger spacetime with dynamical exponent two \([55, 56]\). This type of background corresponds to gravity duals of nonrelativistic field theories in M-theory \([58]\). The nonrelativistic ABJM theory has its origin in M-theory where it is described as the dual field theory of M2-branes in an orbifold space. It has been suggested that there are several nonrelativistic gravity duals with Schrödinger symmetry \([59]\). The number of \(Sch_4 \times \mathbb{CP}^3\) spaces is equal to the degeneracy of a scalar harmonic function \(\Phi\) on \(\mathbb{CP}^3\), for which \(-\nabla^2 \Phi = \lambda_k \Phi\) with \(\lambda_k = 4k(k+3)\). For each \(\lambda_k\) we have \(\text{deg}(\lambda_k) = \frac{1}{12}(1+k)^2(2+k)^2(2k+3)\) \([60]\). The value of \(k\) is fixed by requiring that the \(R_{++}\) component of the Ricci tensor, which involves \(\Phi\), vanishes \([61]\). Our background has \(\Phi = M/r^2\) and \(-\nabla^2 \Phi = 4\lambda_1 \Phi\) \([7]\), with \(\lambda_1 = 16\), which has multiplicity \(\text{deg}(\lambda_1) = 15\).

\(^5\)The Schrödinger symmetry is the maximal symmetry group of the free Schrödinger equation. It is the nonrelativistic version of the conformal algebra \([53, 54]\). This symmetry is realized geometrically as Schrödinger spacetimes.

\(^6\)The dynamical \(z\) factor is the exponent in the power of the radial direction in the \(r^{2z} dx_+^2\) term. To have Schrödinger symmetry we must have \(z = 2\). The relativistic symmetry corresponds to \(z = 1\). A Schrödinger spacetime \(Sch_4 \times \mathbb{CP}^3\) with dynamical exponent three was reported in \([57]\).

\(^7\)The factor 4 in the Laplace-Beltrami equation comes from the fact that the radius of \(\mathbb{CP}^3\) is twice the radius of \(AdS_4\).
This indicates that the Schrödinger background we obtained is one of a family of fifteen solutions. The others solutions can be obtained from the fourteen \(r \)-matrices of the form \(r = p_- \wedge \sum_i \nu_i T_i \), where \(T_i \) are generators of \(su(2) \oplus su(4) \) that are not Cartan generators and \(\nu_i \) are the deformation parameters. The \(r \)-matrices generating these others \(Sch_4 \times \mathbb{C}P^3 \) solutions have the form \(r = \mu_i p_- \wedge L_i \), with \(i = 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 \) and \(r = \mu_a p_- \wedge M_a \), with \(a = 1, 2 \). In the first case, with \(i = 1 \) we have

\[
r = \mu p_- \wedge L_1,
\]

and we get

\[
ds^2 = \frac{1}{4} \left(-2r^2 dx_+ dx_- + r^2 dx_1^2 + \frac{dr^2}{r^2} - \mathcal{M} r^2 dx_+^2 \right) + ds_{\mathbb{C}P^3}^2, \\
B = \frac{r \cos \xi}{\sqrt{2}} dx_+ \wedge \left(f_2 d\theta_1 + (f_1 \sin \theta_1 - f_3 \cos \theta_1 \sin \xi) d\varphi_1 + f_3 \cos \theta_2 \sin \xi d\varphi_2 \right),
\]

with

\[
\mathcal{M} = f_1^2 + f_2^2 + f_3^2, \\
f_1 = \frac{r}{2\sqrt{2}} \mu \cos \theta_1 \cos \varphi_1 \cos \xi, \\
f_2 = \frac{r}{2\sqrt{2}} \mu \sin \theta_1 \cos \xi, \\
f_3 = \frac{r}{2\sqrt{2}} \mu \sin \theta_1 \sin \varphi_1 \sin \xi \cos \xi.
\]

For the second family of \(r \)-matrices, taking \(a = 2 \) we have

\[
r = \mu p_- \wedge M_2,
\]

and we find

\[
ds^2 = \frac{1}{4} \left(-2r^2 dx_+ dx_- + r^2 dx_1^2 + \frac{dr^2}{r^2} - f^2 r^2 dx_+^2 \right) + ds_{\mathbb{C}P^3}^2, \\
B = -\frac{fr \sin \xi \cos \xi}{\sqrt{2}} dx_+ \wedge \left(\cos \theta_1 d\varphi_1 - \cos \theta_2 d\varphi_2 + 2d\psi \right),
\]

with

\[
f = \frac{r}{2\sqrt{2}} \mu \cos 2\xi \sin \psi.
\]

These deformed backgrounds are all \(Sch_4 \times \mathbb{C}P^3 \) and belong to the family of nonrelativistic ABJM theories mentioned above.

6 Conclusions

We computed explicitly the backgrounds generated by some \(r \)-matrices which satisfy the CYBE in deformed \(AdS_4 \times \mathbb{C}P^3 \). By considering an abelian Jordanian \(r \)-matrix we obtained the metric and \(B \)-field of the gravity dual of the non-commutative ABJM theory. By choosing a \(r \)-matrix with three Cartan generators, one in \(AdS_4 \) and a combination of two generators in \(\mathbb{C}P^3 \), we obtained backgrounds for a dipole deformed ABJM theory. These
backgrounds coincide with those obtained via TsT transformations [35]. We also considered a \(r \)-matrix built in a similar way but using a light-cone component of the momenta. Such deformed backgrounds are the gravity duals of nonrelativistic ABJM theories in Schrödinger spacetime. These backgrounds are also expected to be obtained by an appropriate null Melvin twist [36]. An interesting point is to compute the corresponding TsT null Melvin twist of the undeformed \(AdS_4 \times \mathbb{CP}^3 \) background since it should give the same Yang-Baxter deformed backgrounds we derived. All these deformations of \(AdS_4 \times \mathbb{CP}^3 \) lend support to the relation between TsT transformations and solutions of the CYBE known as the gravity/CYBE correspondence [17].

A A Basis for the \(\mathfrak{so}(2,3) \) Algebra

The 10 generators of \(SO(2,3) \) can be written as

\[
 m_{ij} = \frac{i}{4} [\Gamma_i, \Gamma_j],
\]

and satisfy

\[
 [m_{ij}, m_{k\ell}] = i (\eta_{i\ell} m_{jk} + \eta_{jk} m_{i\ell} - \eta_{j\ell} m_{ik} - \eta_{ij} m_{k\ell}),
\]

where \(i, j, k, \ell = 0, 1, 2, 3, 4 \). We choose the following representation for the \(SO(2,3) \) \(\Gamma_i \) matrices

\[
 \{\Gamma_i, \Gamma_j\} = 2\eta_{ij},
\]

\[
 \Gamma_i = \begin{cases}
 i\gamma_5\gamma_a & i = a = 0, 1, 2, 3 \\
 \gamma_5 = i\gamma_0\gamma_1\gamma_2\gamma_3 & i = 4
 \end{cases}
\]

with \(\eta_{ij} = \text{diag}(-++++) \), and \(\gamma_a \) being the gamma matrices in a Dirac representation \(SO(1,3) \) [62] (see [38] for a different choice)

\[
 \gamma_0 = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix}, \quad \gamma_1 = \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{pmatrix},
\]

\[
 \gamma_2 = \begin{pmatrix} 0 & \sigma_1 \\ -\sigma_1 & 0 \end{pmatrix}, \quad \gamma_3 = \begin{pmatrix} 0 & \sigma_2 \\ -\sigma_2 & 0 \end{pmatrix}.
\]

and

\[
 \gamma_5 = \begin{pmatrix} 0 & I_2 \\ I_2 & 0 \end{pmatrix}.
\]

From (A.1), we get

\[
 m_{ab} = \frac{1}{4} [\gamma_a, \gamma_b], \quad m_{a4} = \frac{i}{2} \gamma_a, \quad a, b = 0, 1, 2, 3.
\]

In order to make explicit the conformal group let us split the indices as

\[
 m_{ij} = \{m_{\mu\nu}, m_{\mu3}, m_{\mu4}, m_{34}\}, \quad \mu, \nu = 0, 1, 2,
\]
such that $\eta_{\mu\nu} = \text{diag}(-, +, +)$ \footnote{This is going to be the signature on the Minkowskian boundary of AdS_4.}. Let us also define \cite{62}

\[p_\mu = m_{\mu 4} + m_{\mu 3}, \]
\[k_\mu = m_{\mu 4} - m_{\mu 3}, \]
\[D = m_{34}. \]

Then the conformal algebra $SO(2,3)$ is

\[
[m_{\mu \nu}, m_{\rho \sigma}] = \eta_{\mu \sigma} m_{\nu \rho} + \eta_{\nu \rho} m_{\mu \sigma} - \eta_{\mu \rho} m_{\nu \sigma} - \eta_{\nu \sigma} m_{\mu \rho},
\]
\[
[m_{\mu \nu}, D] = 0,
\]
\[
[D, p_\mu] = -p_\mu,
\]
\[
[D, k_\mu] = k_\mu,
\]
\[
[k_\mu, p_\nu] = 2\eta_{\mu \nu} D + 2m_{\mu \nu},
\]
\[
[m_{\mu \nu}, p_\rho] = -\eta_{\mu \rho} p_\nu + \eta_{\nu \rho} p_\mu,
\]
\[
[m_{\mu \nu}, k_\rho] = -\eta_{\mu \rho} k_\nu + \eta_{\nu \rho} k_\mu.
\]

\section{A Basis for the $\mathfrak{su}(4)$ Algebra}

A basis for $\mathfrak{su}(4)$ can be constructed in terms of anti-hermitian 4×4 matrices known as Gell-Mann matrices,

\[
\lambda_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \lambda_2 = \begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
\]
\[
\lambda_4 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \lambda_5 = \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \lambda_6 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
\]
\[
\lambda_7 = \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \lambda_9 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
\]
\[
\lambda_{10} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{11} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{12} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
\]
\[
\lambda_{13} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad \lambda_{14} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \end{pmatrix}, \quad \lambda_{15} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix}.
\]

\[\text{(B.1)}\]
The first 8 matrices form a basis for $su(3) \subset su(4)$. Furthermore, these matrices are orthogonal and satisfy
\[
\text{Tr} (\lambda_m \lambda_n) = 2 \delta_{mn}, \quad m = 1, \ldots, 15, \tag{B.2}
\]
and commutation relations
\[
[\lambda_m, \lambda_n] = 2 i f^p_{mn} \lambda_p. \tag{B.3}
\]
A list of non-vanishing structure constants can be found in [63]. In this representation the Cartan generators are given by λ_3, λ_8 and λ_{15}.

Acknowledgments

We would like to thank S. van Tongeren for valuable comments. The work of L.R. was supported by CAPES. The work of V.O. Rivelles was supported by FAPESP grants 2014/18634-9 and 2019/21281-4.

References

[1] R. Metsaev and A.A. Tseytlin, *Type IIB superstring action in AdS(5) x S^{*5} background*, *Nucl. Phys. B* **533** (1998) 109 [hep-th/9805028].

[2] I. Bena, J. Polchinski and R. Roiban, *Hidden symmetries of the AdS(5) x S^{*5} superstring*, *Phys. Rev. D* **69** (2004) 046002 [hep-th/0305116].

[3] C. Klimcik, *Yang-Baxter sigma models and dS/AdS T duality*, *JHEP* **12** (2002) 051 [hep-th/0210095].

[4] C. Klimcik, *On integrability of the Yang-Baxter sigma-model*, *J. Math. Phys.* **50** (2009) 043508 [0802.3518].

[5] V.G. Drinfeld, *Hopf algebras and the quantum Yang-Baxter equation*, *Sov. Math. Dokl.* **32** (1985) 254.

[6] M. Jimbo, *A q difference analog of U(g) and the Yang-Baxter equation*, *Lett. Math. Phys.* **10** (1985) 63.

[7] F. Delduc, M. Magro and B. Vicedo, *On classical q-deformations of integrable sigma-models*, *JHEP* **11** (2013) 192 [1308.3581].

[8] F. Delduc, M. Magro and B. Vicedo, *An integrable deformation of the AdS_5 x S^5 superstring action*, *Phys. Rev. Lett.* **112** (2014) 051601 [1309.5850].

[9] F. Delduc, M. Magro and B. Vicedo, *Derivation of the action and symmetries of the q-deformed AdS_5 x S^5 superstring*, *JHEP* **10** (2014) 132 [1406.6286].

[10] G. Arutyunov, R. Borsato and S. Frolov, *S-matrix for strings on η-deformed AdS_5 x S^5*, *JHEP* **04** (2014) 002 [1312.3542].

[11] G. Arutyunov, R. Borsato and S. Frolov, *Puzzles of η-deformed AdS_5 x S^5*, *JHEP* **12** (2015) 049 [1507.04239].

[12] G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A.A. Tseytlin, *Scale invariance of the η-deformed AdS_5 x S^5 superstring, T-duality and modified type II equations*, *Nucl. Phys. B* **903** (2016) 202 [1511.05795].
[13] L. Wulff and A.A. Tseytlin, *Kappa-symmetry of superstring sigma model and generalized 10d supergravity equations*, JHEP 06 (2016) 174 [1605.04884].

[14] B. Hoare and F.K. Seibold, *Supergravity backgrounds of the η-deformed AdS2 × S2 × T6 and AdS5 × S5 superstrings*, JHEP 01 (2019) 125 [1811.07841].

[15] T. Matsumoto and K. Yoshida, *Yang-Baxter sigma models based on the CYBE*, Nucl. Phys. B893 (2015) 287 [1501.03665].

[16] I. Kawaguchi, T. Matsumoto and K. Yoshida, *Jordanian deformations of the AdS5 × S5 superstring*, JHEP 01 (2014) 135 [1404.1838].

[17] T. Matsumoto and K. Yoshida, *Integrability of classical strings dual for noncommutative gauge theories*, JHEP 06 (2014) 163 [1404.3657].

[18] T. Matsumoto and K. Yoshida, *Lunin-Maldacena backgrounds from the classical Yang-Baxter equation - towards the gravity/CYBE correspondence*, JHEP 06 (2014) 135 [1404.1838].

[19] T. Matsumoto and K. Yoshida, *Schrödinger geometries arising from Yang-Baxter deformations*, JHEP 04 (2014) 180 [1502.00740].

[20] S.J. van Tongeren, *On classical Yang-Baxter based deformations of the AdS5 × S5 superstring*, JHEP 06 (2015) 048 [1504.05516].

[21] H. Kyono and K. Yoshida, *Supercoset construction of Yang-Baxter deformed AdS5 × S5 backgrounds*, PTEP 2016 (2016) 083B03 [1605.02519].

[22] O. Lunin and J.M. Maldacena, *Deforming field theories with U(1) × U(1) global symmetry and their gravity duals*, JHEP 05 (2005) 033 [hep-th/0502086].

[23] S. Frolov, *Lax pair for strings in Lunin-Maldacena background*, JHEP 05 (2005) 069 [hep-th/0503201].

[24] A. Hashimoto and N. Itzhaki, *Noncommutative Yang-Mills and the AdS/CFT correspondence*, Phys. Lett. B465 (1999) 142 [hep-th/9907166].

[25] J.M. Maldacena and J.G. Russo, *Large N limit of noncommutative gauge theories*, JHEP 09 (1999) 025 [hep-th/9908134].

[26] B. Hoare and S.J. van Tongeren, *On jordanian deformations of AdS5 and supergravity*, J. Phys. A49 (2016) 434006 [1605.03554].

[27] J. Maldacena, D. Martelli and Y. Tachikawa, *Comments on string theory backgrounds with non-relativistic conformal symmetry*, JHEP 10 (2008) 072 [0807.1100].

[28] C.P. Herzog, M. Rangamani and S.F. Ross, *Heating up Galilean holography*, JHEP 11 (2008) 080 [0807.1099].

[29] A. Adams, K. Balasubramanian and J. McGreevy, *Hot Spacetimes for Cold Atoms*, JHEP 11 (2008) 059 [0807.1111].

[30] D. Osten and S.J. van Tongeren, *Abelian Yang-Baxter deformations and TsT transformations*, Nucl. Phys. B915 (2017) 184 [1608.08504].

[31] D. Orlando, S. Reffert, J.-i. Sakamoto and K. Yoshida, *Generalized type IIB supergravity equations and non-Abelian classical r-matrices*, J. Phys. A49 (2016) 445403 [1607.00795].

[32] B. Hoare and A.A. Tseytlin, *Homogeneous Yang-Baxter deformations as non-abelian duals of the AdS5 sigma-model*, J. Phys. A49 (2016) 494001 [1609.02550].
[33] R. Borsato and L. Wulff, *Integrable Deformations of T-Dual σ Models*, Phys. Rev. Lett. 117 (2016) 251602 [1609.09834].

[34] R. Borsato and L. Wulff, *On non-abelian T-duality and deformations of supercoset string σ-models*, JHEP 10 (2017) 024 [1706.10169].

[35] E. Imeroni, *On deformed gauge theories and their string/M-theory duals*, JHEP 10 (2008) 026 [0808.1271].

[36] N. Bobev and A. Kundu, *Deformations of Holographic Duals to Non-Relativistic CFTs*, JHEP 07 (2009) 098 [0904.2873].

[37] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, *N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals*, JHEP 10 (2008) 091 [0806.1218].

[38] G. Arutyunov and S. Frolov, *Superstrings on AdS_4 × CP^3 as a Coset Sigma-model*, JHEP 09 (2008) 129 [0806.4940].

[39] B. Stefanski, jr, *Green-Schwarz action for Type IIA strings on AdS_4 × CP^3*, Nucl. Phys. B808 (2009) 80 [0806.4948].

[40] R. Negrón and V.O. Rivelles, *Yang-Baxter deformations of the AdS_4 × CP^3 superstring sigma model*, JHEP 11 (2018) 043 [1809.01174].

[41] M. Cvetic, H. Lu and C. Pope, *Consistent warped space Kaluza-Klein reductions, half maximal gauged supergravities and CP**(n) constructions*, Nucl. Phys. B 597 (2001) 172 [hep-th/0007109].

[42] F. Ardalan, H. Arfaei and M. Sheikh-Jabbari, *Noncommutative geometry from strings and branes*, JHEP 02 (1999) 016 [hep-th/9810072].

[43] C.-S. Chu and P.-M. Ho, *Noncommutative open string and D-brane*, Nucl. Phys. B 550 (1999) 151 [hep-th/9812219].

[44] N. Seiberg and E. Witten, *String theory and noncommutative geometry*, JHEP 09 (1999) 032 [hep-th/9908142].

[45] M. Alishahiha, Y. Oz and M. Sheikh-Jabbari, *Supergravity and large N noncommutative field theories*, JHEP 11 (1999) 007 [hep-th/9909215].

[46] J. Gomis and T. Mehen, *Space-time noncommutative field theories and unitarity*, Nucl. Phys. B 591 (2000) 265 [hep-th/0005129].

[47] N. Seiberg, L. Susskind and N. Toumbas, *Space-time noncommutativity and causality*, JHEP 06 (2000) 044 [hep-th/0005015].

[48] S.J. van Tongeren, *Yang-Baxter deformations, AdS/CFT, and twist-noncommutative gauge theory*, Nucl. Phys. B904 (2016) 148 [1506.01023].

[49] T. Araujo, I. Bakhmatov, E.O. Colgáin, J. Sakamoto, M. Sheikh-Jabbari and K. Yoshida, *Yang-Baxter σ-models, conformal twists, and noncommutative Yang-Mills theory*, Phys. Rev. D 95 (2017) 105006 [1702.02861].

[50] T. Araujo, I. Bakhmatov, E.Ó. Colgáin, J.-i. Sakamoto, M.M. Sheikh-Jabbari and K. Yoshida, *Conformal twists, Yang-Baxter σ-models & holographic noncommutativity*, J. Phys. A51 (2018) 235401 [1705.02063].

[51] K. Dasgupta, O.J. Ganor and G. Rajesh, *Vector deformations of N=4 superYang-Mills theory, pinned branes, and arched strings*, JHEP 04 (2001) 034 [hep-th/0001072].
[52] A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090].

[53] C. Hagen, Scale and conformal transformations in galilean-covariant field theory, Phys. Rev. D 5 (1972) 377.

[54] U. Niederer, The maximal kinematical invariance group of the free Schrodinger equation., Helv. Phys. Acta 45 (1972) 802.

[55] D. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry, Phys. Rev. D 78 (2008) 046003 [0804.3972].

[56] K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [0804.4053].

[57] H. Singh, Galilean type IIA backgrounds and a map, Mod. Phys. Lett. A 26 (2011) 1443 [1007.0866].

[58] H. Ooguri and C.-S. Park, Supersymmetric non-relativistic geometries in M-theory, Nucl. Phys. B 824 (2010) 136 [0905.1954].

[59] Y. Nakayama, M. Sakaguchi and K. Yoshida, Non-Relativistic M2-brane Gauge Theory and New Superconformal Algebra, JHEP 04 (2009) 096 [0902.2204].

[60] M. Berger, P. Gauduchon and E. Mazet, Le Spectre d’une Variete Riemannienne, Lecture Notes in Mathematics, Springer Berlin Heidelberg (1971).

[61] S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [0810.0298].

[62] D. Fabbri, P. Fre, L. Gualtieri and P. Termonia, Osp(N|4) supermultiplets as conformal superfields on partial AdS4 and the generic form of N = 2, D = 3 gauge theories, Class. Quant. Grav. 17 (2000) 55 [hep-th/9905134].

[63] W. Pfeifer, The Lie Algebras su(N): An Introduction, Birkhäuser Basel (2003).