The perfect \mathcal{F}-locality from the basic \mathcal{F}-locality over a Frobenius P-category \mathcal{F}

Lluis Puig

6 Av Bizet, 94340 Joinville-le-Pont, France

Abstract: Let p be a prime, P a finite p-group, \mathcal{F} a Frobenius P-category and \mathcal{F}^{sc} the full subcategory of \mathcal{F} over the set of \mathcal{F}-selfcentralizing subgroups of P. Recently, we have understood an easy way to obtain the perfect \mathcal{F}^{sc}-locality \mathcal{P}^{sc} from the basic \mathcal{F}^{sc}-locality $\mathcal{L}^{b,sc}$: it depends on a suitable filtration of the basic \mathcal{F}-locality \mathcal{L}^{b} and on a vanishing cohomology result, given with more generality in [11, Appendix].

1. Introduction

1.1. Let p be a prime and P a finite p-group. After our introduction of the Frobenius P-categories \mathcal{F} [7] and the question of Dave Benson [1] on the existence of a suitable category \mathcal{P}^{sc} — called linking system in [2] and perfect \mathcal{F}^{sc}-locality in [8, Chap. 17] — extending the full subcategory \mathcal{F}^{sc} of \mathcal{F} over the set of \mathcal{F}-selfcentralizing subgroups of P [8, Chap. 3], the existence and the uniqueness of \mathcal{P}^{sc} has concentrate some effort.

1.2. In [2] Carles Broto, Ran Levi and Bob Oliver formulate the existence and the uniqueness of the category \mathcal{P}^{sc} in terms of the annulation of an obstruction 3-cohomology element and of the vanishing of a 2-cohomology group, respectively. They actually state a sufficient condition for the vanishing of the corresponding n-cohomology groups.

1.3. In [3] Andrew Chermak has proved the existence and the uniqueness of \mathcal{P}^{sc} via his objective partial groups, but his proof depends on the so-called Classification of the finite simple groups and on some results by U. Meierfrankenfeld and B. Stellmacher. In [6] Bob Oliver, following some of Chermak’s methods, has also proved for $n \geq 2$ the vanishing of the n-cohomology groups mentioned above. In [5] George Glauberman and Justin Lynd remove the use of the Classification of the finite simple groups in [6].

1.4. Independently, with direct methods which already employ the basic \mathcal{F}-locality \mathcal{L}^{b} [8, Chap. 22], in [9] and [10] we prove the existence and the uniqueness of an extension \mathcal{P} of \mathcal{F} — called perfect \mathcal{F}-locality in [8, Chap. 17] — which contains \mathcal{P}^{sc} as the full subcategory over the set of \mathcal{F}-selfcentralizing subgroups of P [8, Chap. 3].

1.5. But recently, we have understood an easier way to obtain \mathcal{P}^{sc} from the full subcategory $\mathcal{L}^{b,sc}$ of \mathcal{L}^{b} over the set of \mathcal{F}-selfcentralizing subgroups.

† Although they need a partial classification for $p=2$.

†† In [10] we give a full correction of the uniqueness argument for \mathcal{P}^{sc} in [9].
of P [8, Chap. 3]. Denoting by $Z^\geq : L^{h,sc} \to \mathfrak{Ab}$ the obvious contravariant functor from $L^{h,sc}$ to the category \mathfrak{Ab} of finite Abelian groups, mapping any \mathcal{F}-selfcentralizing subgroup Q of P on its center $Z(Q)$, it is easy to see that we have a quotient category $\tilde{L}^{h,sc} = L^{h,sc} / Z^\geq$ and that the structural functor $\pi^\geq : L^{h,sc} \to \mathcal{F}^\geq$ factorizes through a functor $\tilde{\pi}^\geq : \tilde{L}^{h,sc} \to \mathcal{F}^\geq$.

1.6. The point is that $\tilde{\pi}^\geq$ admits an essentially unique section functor $\tilde{\sigma}^\geq : \mathcal{F}^\geq \to \tilde{L}^{h,sc}$, and then \mathcal{P}^\geq is just the converse image in $\tilde{L}^{h,sc}$ of the image $\tilde{\pi}^\geq(F^\geq)$ of F^\geq in $\tilde{L}^{h,sc}$; since in [9, Theorem 7.2] we prove that any perfect \mathcal{F}^\geq-locality P^\geq can be extended to a unique perfect \mathcal{F}-locality P, this proves the existence of \mathcal{P}. Moreover, in [9, 8.5 and Theorem 8.10] we prove that there is an \mathcal{F}-locality functor σ from any perfect \mathcal{F}-locality P to \tilde{L}^h; then, it is easy to check that σ induces a functor $\tilde{\sigma}^\geq : F^\geq \to \tilde{L}^{h,sc}$ which is a section of $\tilde{\pi}^\geq$, proving the uniqueness of \mathcal{P}^\geq and therefore, by [9, Theorem 7.2], the uniqueness of \mathcal{P}.

1.7. In Section 2 we recall all the definitions and state properly all the quoted results. The existence and the essential uniqueness of the section functor $\tilde{\sigma}^\geq$ mentioned above depend on a suitable filtration of \tilde{L}^h and on a vanishing cohomology result; this filtration has been already introduced in [9, 8.3 and Corollary 8.4], but it seems necessary to give here a complete account in Section 3. The vanishing cohomology result we need here is given in [11, Appendix] in a more general framework. In Section 4 we give explicit proofs of all the results announced in 1.6 above and, in particular, an independent proof of the existence of the functor $\sigma : \mathcal{P} \to \tilde{L}^h$ mentioned above.

2. Definitions and quoted results

2.1. Denote by \mathfrak{Ab} the category of Abelian groups and by \mathfrak{iGr} the category formed by the finite groups and by the injective group homomorphisms. Recall that, for any category \mathcal{C}, we denote by \mathcal{C}° the opposite category and, for any \mathcal{C}-object A, by \mathcal{C}_A (or $(\mathcal{C})_A$ to avoid confusion) the category of “\mathcal{C}-morphisms to A” [8, 1.7]; moreover, for any pair of objects A and B, $\mathcal{C}(B, A)$ denote the set of \mathcal{C}-morphisms from A to B and we set $\mathcal{C}(A) = \mathcal{C}(A, A)$ for short.

2.2. For any finite subgroup G and any p-subgroup P of G, denote by $\mathcal{F}_{G,P}$ and $\mathcal{T}_{G,P}$ the respective categories where the objects are all the subgroups of P and, for two of them Q and R, the respective sets of morphisms $\mathcal{F}_{G,P}(Q, R)$ and $\mathcal{T}_{G,P}(Q, R)$ are formed by the group homomorphisms from R to Q respectively induced by the conjugation by elements of G, and by the set $\mathcal{T}_{G}(R, Q)$ of such elements, the compositions being the obvious ones.

2.3. For a finite p-group P, a Frobenius P-category \mathcal{F} is a subcategory of \mathfrak{iGr} containing $\mathcal{F}_{P} = \mathcal{F}_{P, P}$ where the objects are all the subgroups of P.
and the morphisms fulfill the following three conditions [8, 2.8 and Proposition 2.11]

2.3.1 For any subgroup Q of P, the inclusion functor $(F)_Q \rightarrow (i\mathcal{E}t)_Q$ is full.

2.3.2 $F_P(P)$ is a Sylow p-subgroup of $F(P)$.

We say that a subgroup Q of P is fully centralized in F if for any F-morphism $\xi: Q \rightarrow C_P(Q)$ we have $\xi(C_P(Q)) = C_P(\xi(Q))$; similarly, replacing in this condition the centralizer by the normalizer, we say that Q is fully normalized.

2.3.3 For any subgroup Q of P fully centralized in F, any F-morphism $\varphi: Q \rightarrow P$ and any subgroup R of $N_P(\varphi(Q))$ such that $\varphi(Q) \subseteq R$ and that $F_P(Q)$ contains the action of $F_R(\varphi(Q))$ over Q via φ, there exists an F-morphism $\zeta: R \rightarrow P$ fulfilling $\zeta(\varphi(u)) = u$ for any $u \in Q$.

We denote by \tilde{F} — called the exterior quotient of F — the quotient of F by the inner automorphisms of the F-objects [8, 1.3] and by $\epsilon_F: F \rightarrow \tilde{F}$ the canonical functor. Note that, with the notation above, if P is Sylow p-subgroup of G then F_G,P is a Frobenius P-category; often, we write F_G instead of F_G,P.

2.4. Then, a (divisible) F-locality† is a triple (τ, \mathcal{L}, π) formed by a finite category \mathcal{L}, a surjective functor $\pi: \mathcal{L} \rightarrow F$ and a functor $\tau: \mathcal{T}_P \rightarrow \mathcal{L}$ from the transporter category $\mathcal{T}_P = \mathcal{T}_{P,P}$ of P, fulfilling the following two conditions [8, 17.3 and 17.8]

2.4.1 The composition $\pi \circ \tau$ coincides with the composition of the canonical functor defined by the conjugation $\kappa_P: \mathcal{T}_P \rightarrow F_P$ with the inclusion $F_P \subseteq F$.

We denote by $\tilde{\kappa}_P: \mathcal{T}_P \rightarrow \tilde{F}_P$ the composition of κ_P with ϵ_F, above.

2.4.2 For any pair of subgroups Q and R of P, $\text{Ker}(\pi_R)$ acts regularly on the fibers of the following maps determined by π

$$\pi_{Q,R}: \mathcal{L}(Q,R) \rightarrow F(Q,R)$$

Analogously, for any pair of subgroups Q and R of P, we denote by

$$\tau_{Q,R}: \mathcal{T}_P(Q,R) \rightarrow \mathcal{L}(Q,R)$$

the map determined by τ, and whenever $R \subseteq Q$ we set $i_R^Q = \tau_{Q,R}(1)$; if $R = Q$ then we write Q once for short.

2.5. We say that an F-locality (τ, \mathcal{L}, π), or \mathcal{L} for short, is coherent if it fulfills the following condition [8, 17.9]

(Q) For any pair of subgroups Q and R of P, any $x \in \mathcal{L}(Q,R)$ and any $v \in R$, we have $x \cdot \tau_R(v) = \tau_Q(\pi_{Q,R}(x)(v)) \cdot x$.

† Here we only consider divisible F-localities in the sense of [8, Chap. 17].
In this case,, if \(Q'\) and \(R'\) are subgroups of \(P\), and we have the inclusions \(R \subset Q\) and \(R' \subset Q'\), denoting by \(L(Q', Q)_{R', R}\) the set of \(y \in L(Q', Q)\) such that \((\pi_{Q', Q}(y))(R) \subset R'\), we get a restriction map (possibly empty!)

\[
\tau_{Q', Q}^{Q, R} : L(Q', Q)_{R', R} \longrightarrow L(R', R) \quad 2.5.1
\]

fulfilling \(y^{\tau_{Q', Q}^{Q, R}} = \iota_{Q', Q}^{Q, R} \iota_{R', R}^{Q', Q}(y)\) for any \(y \in L(Q', Q)_{R', R}\). Note that, with the notation above, if \(P\) is Sylow \(p\)-subgroup of \(G\) then \(T_G = T_{G, P}\) endowed with the obvious functors

\[
\tau_G : T_P \longrightarrow T_G \quad \text{and} \quad \pi_G : T_G \longrightarrow F_G = F_{G, P} \quad 2.5.2
\]

becomes a coherent \(F\)-locality. Moreover, we say that a coherent \(F\)-locality \((\tau, L, \pi)\) is \(p\)-coherent (resp. \(ab\)-coherent) when \(\text{Ker}(\pi_Q)\) is a finite \(p\)-group (resp. a finite abelian group) for any subgroup \(Q\) of \(P\).

2.6. Recall that the \(F\)-hyperfocal subgroup is the subgroup \(H_F\) of \(P\) generated by the union of the sets \(\{u^{-1}\sigma(u)\}_{u \in Q}\) where \(Q\) runs over the set of subgroups of \(P\) and \(\sigma\) over the set of \(p'\)-elements of \(F(Q)\). We say that an \(F\)-locality \((\tau, L, \pi)\) is perfect if \(P\) is coherent and, for any subgroup \(Q\) of \(P\) fully centralized in \(F\), the \(C_{F}^{P}(Q)\)-hyperfocal subgroup \(H_{C_{F}^{P}(Q)}\) coincides with \(\text{Ker}(\hat{\pi}_Q)\) \([8, 17.13]\); actually, this is equivalent to say that \(P(Q)\) endowed with

\[
\tau_Q : T_{N_F(Q)} \longrightarrow \mathcal{P}(Q) \quad \text{and} \quad \pi_Q : \mathcal{P}(Q) \longrightarrow F(Q) \quad 2.6.1
\]

is an \(F\)-localizer of \(Q\) \([8, 18.5\) and Theorem 18.6], for any subgroup \(Q\) of \(P\) fully centralized in \(F\).

2.7. Further, for any \(F\)-locality \((\tau, L, \pi)\) we get a contravariant functor from \(L\) to the category \(\mathcal{Gr}\) of finite groups \([8, 17.8.2]\)

\[
\text{Ker}(\pi) : L \longrightarrow \mathcal{Gr} \quad 2.7.1
\]

sending any subgroup \(Q\) of \(P\) to \(\text{Ker}(\pi_Q)\) and any \(L\)-morphism \(x : R \rightarrow Q\) to the group homomorphism

\[
\text{Ker}(\pi)_x : \text{Ker}(\pi_Q) \longrightarrow \text{Ker}(\pi_R) \quad 2.7.2
\]

fulfilling \(u \cdot x = x \cdot (\text{Ker}(\pi)_x(u))\) for any \(u \in \text{Ker}(\pi_Q)\). If \(L\) is \(ab\)-coherent then the functor \(\text{Ker}(\pi)\) factorizes through the exterior quotient \(\hat{F}\), inducing a functor

\[
\hat{\text{Ker}}(\pi) = \hat{\tau}_L : \hat{F} \longrightarrow \mathcal{Gr} \quad 2.7.3
\]

indeed, in this case it follows from \([8,\) Proposition 17.10\] that, for any subgroup \(Q\) of \(P\), \(\tau_Q(Q)\) centralizes \(\text{Ker}(\pi_Q)\) and therefore, for any \(u \in \text{Ker}(\pi_Q)\) and any \(v \in Q\), we have

\[
\tau_Q(v) \cdot u = u \cdot \tau_Q(v) = \tau_Q(v) \cdot (\text{Ker}(\pi)_{\tau_Q(v)}(u)) \quad 2.7.4
\]
so that \(\ker(\pi)_{\tau_Q(v)} = \id_{\ker(\pi_Q)} \); the same argument holds for \(w \in \ker(\pi_Q) \).

2.8. If \(\mathcal{L}' \) is a second \(\mathcal{F} \)-locality with structural functors \(\tau' \) and \(\pi' \), we call \(\mathcal{F} \)-locality functor from \(\mathcal{L} \) to \(\mathcal{L}' \) any functor \(l: \mathcal{L} \to \mathcal{L}' \) fulfilling

\[
\tau' = \id \circ \tau \quad \text{and} \quad \pi' \circ \id = \pi
\]

2.8.1; the composition of two \(\mathcal{F} \)-locality functors is obviously an \(\mathcal{F} \)-locality functor. It is easily checked that any \(\mathcal{F} \)-locality functor \(l: \mathcal{L} \to \mathcal{L}' \) determines a natural map

\[
\chi_l: \ker(\pi) \to \ker(\pi')
\]

2.8.2; conversely, it is quite clear that any subfunctor \(h \) of \(\ker(\pi) \) determines a quotient \(\mathcal{F} \)-locality \(\mathcal{L}/h \) defined by the quotient sets

\[
(\mathcal{L}/h)(Q, R) = \mathcal{L}(Q, R)/h(R)
\]

2.8.3, for any pair of subgroups \(Q \) and \(R \) of \(P \), and by the corresponding induced composition; moreover, \(\mathcal{L}/h \) is coherent whenever \(\mathcal{L} \) is it.

2.9. We say that two \(\mathcal{F} \)-locality functors \(l \) and \(\bar{l} \) from \(\mathcal{L} \) to \(\mathcal{L}' \) are naturally \(\mathcal{F} \)-isomorphic if we have a natural isomorphism \(\lambda: l \cong \bar{l} \) fulfilling \(\pi' \circ \lambda = \id_{\pi} \) and \(\lambda \circ \tau = \id_{\tau} \); in this case, \(\lambda_Q \) belongs to \(\ker(\pi_Q') \) for any subgroup \(Q \) of \(P \) and, since \(\lambda(\iota_Q^\rho) = \iota_Q^\rho = \bar{l}(\iota_Q^\rho) \), \(\lambda \) is uniquely determined by \(\lambda_P \); indeed, we have

\[
\lambda_P \cdot i_Q^\rho = i_Q^\rho \cdot \lambda_Q
\]

2.9.1. Once again, the composition of a natural \(\mathcal{F} \)-isomorphism with an \(\mathcal{F} \)-locality functor or with another such a natural \(\mathcal{F} \)-isomorphism is a natural \(\mathcal{F} \)-isomorphism.

2.10. Moreover, from two \(\mathcal{F} \)-localities \((\tau, \mathcal{L}, \pi) \) and \((\tau', \mathcal{L}', \pi') \), we can construct a third \(\mathcal{F} \)-locality \(\mathcal{L}'' = \mathcal{L} \times_{\mathcal{F}} \mathcal{L}' \) from the corresponding category defined by the pull-back of sets

\[
\mathcal{L}''(Q, R) = \mathcal{L}(Q, R) \times_{\mathcal{F}(Q, R)} \mathcal{L}'(Q, R)
\]

2.10.1 with the obvious composition and with the structural maps

\[
\tau_{Q,R}'' \quad \pi_{Q,R}''
\]

2.10.2 respectively induced by \(\tau \) and \(\tau' \), and by \(\pi \) and \(\pi' \). Note that we have obvious \(\mathcal{F} \)-locality functors

\[
\mathcal{L} \leftarrow \mathcal{L} \times_{\mathcal{F}} \mathcal{L}' \to \mathcal{L}'
\]

2.10.3 and that \(\mathcal{L} \times_{\mathcal{F}} \mathcal{L}' \) is coherent if \(\mathcal{L} \) and \(\mathcal{L}' \) are so.
2.11. In order to define the basic \mathcal{F}-locality, we have to consider the \mathcal{F}-basic $P \times P$-sets; recall that an \mathcal{F}-basic $P \times P$-set Ω is a finite nonempty $P \times P$-set fulfilling the following three conditions \cite{8, 21.4 and 21.5}, where Ω° denotes the $P \times P$-set obtained from Ω by exchanging both factors, for any subgroup Q of P we denote by i_Q^P the corresponding inclusion map, and for any $\varphi \in \mathcal{F}(P,Q)$ we set
\[\Delta_\varphi(Q) = \{ (\varphi(u), u) \}_{u \in Q} \] 2.11.1.

2.11.2 We have $\Omega^\circ \cong \Omega$, $\{1\} \times P$ acts freely on Ω and $|\Omega|/|P| \equiv 0 \mod p$.

2.11.3 For any subgroup Q of P and any $\varphi \in \mathcal{F}(P,Q)$ we have a $Q \times P$-set isomorphism
\[\text{Res}_{\varphi \times \text{id}_P}(\Omega) \cong \text{Res}_{i_Q^P \times \text{id}_P}(\Omega) \]

2.11.4 Any $P \times P$-orbit in Ω is isomorphic to $(P \times P)/\Delta_\varphi(Q)$ for a suitable subgroup Q of P and some $\varphi \in \mathcal{F}(P,Q)$.

Moreover, we say that an \mathcal{F}-basic $P \times P$-set Ω is thick if the multiplicity of the indecomposable $P \times P$-set $(P \times P)/\Delta_\varphi(Q)$ is at least two for any subgroup Q of P and any $\varphi \in \mathcal{F}(P,Q)$ \cite{8, 21.4}.

2.12. The existence of a thick \mathcal{F}-basic $P \times P$-set is guaranteed by \cite{8, Proposition 21.12}; we choose one of them Ω and denote by G the group of $\{1\} \times P$-set automorphisms of $\text{Res}_{\{1\} \times P}(\Omega)$; it is clear that we have an injective map from $P \times \{1\}$ into G and we identify this image with the p-group P itself so that, from now on, P is contained in G and acts freely on Ω. Then, it follows from the conditions above that we have
\[\mathcal{F}_{G,P} = \mathcal{F} \] 2.12.1

and it is quite clear that, as in 2.5.2, $\mathcal{T}_{G,P} = \mathcal{T}_{G,P}$ becomes a coherent \mathcal{F}-locality.

2.13. For any subgroup Q of P, it is clear that the centralizer $C_G(Q)$ coincides with the group of $Q \times P$-set automorphisms of $\text{Res}_{Q \times P}(\Omega)$; moreover, since any $Q \times P$-orbit in Ω is isomorphic to the $Q \times P$-set $(Q \times P)/\Delta_\eta(T)$, for a suitable subgroup T of P such that $\mathcal{F}(Q,T) \neq \emptyset$ and some $\eta \in \mathcal{F}(Q,T)$ (cf. condition 2.11.3), and since we have \cite{8, 22.3}
\[\text{Aut}_{Q \times P}((Q \times P)/\Delta_\eta(T)) \cong \tilde{N}_{Q \times P}(\Delta_\eta(T)) \] 2.13.1

denoting by k_η the multiplicity of $(Q \times P)/\Delta_\eta(T)$ in Ω and by \mathcal{G}_{k_η} the corresponding k_η-symmetric group, we actually get obvious group isomorphisms
\[C_G(Q) \cong \prod_{T \in \mathcal{C}_P} \prod_{\eta \in \mathcal{D}_Q^T} \tilde{N}_{Q \times P}(\Delta_\eta(T)) \wr \mathcal{G}_{k_\eta} \] 2.13.2

where \wr denotes the wreath product, \mathcal{C}_P is a set of representatives for the set of P-conjugacy classes of subgroups T of P and, for any $T \in \mathcal{C}_P$, ...
$$\mathfrak{O}_Q \subset \mathcal{F}(Q, T)$$ is a (possibly empty) set of representatives for the quotient set \(Q \setminus \mathcal{F}(Q, T)/N_P(T)\). For short, let us set

$$\mathfrak{O}_Q = \bigsqcup_{T \in C_P} \mathfrak{O}_Q^T$$

2.13.3;

this set actually indexes the set of isomorphic classes of transitive \(Q \times P\)-sets; to avoid confusion, we note by \((T, \eta)\) the element \(\eta\) in \(\mathfrak{O}_Q^T\).

2.14. Then, it follows from [8, Proposition 22.11] that the correspondence sending \(Q\) to the minimal normal subgroup \(G_{\mathfrak{O}_Q}(Q)\) of \(C_G(Q)\) containing the image of \(\prod_{\langle T, \eta \rangle \in \mathfrak{O}_Q} \mathfrak{S}_{\mathfrak{O}_Q, \eta}\) for any isomorphism 2.13.2 induces a functor

$$G_G : T_G \rightarrow i\mathfrak{S}_{\mathfrak{O}}$$

2.14.1;

it is actually a subfunctor of \(\mathfrak{S}_{\mathfrak{O}}(\pi^o)\) (cf. 2.5.2) and therefore determines a coherent \(\mathcal{F}\)-locality \(L^b = T_G/G_G\) (cf. 2.8) — called the basic \(\mathcal{F}\)-locality [8, Chap. 22] — which, according to [9, Corollary 4.11], does not depend on the choice of the thick \(\mathcal{F}\)-basic \(P \times P\)-set \(\Omega\). Moreover, denoting by

\(\tau^b : T_P \rightarrow L^b \quad \text{and} \quad \pi^b : L^b \rightarrow \mathcal{F}\)

2.14.2

the structural functors, it follows from [8, Proposition 22.7] that, for any subgroup \(Q\) of \(P\), isomorphisms in 2.13.2 induce a canonical isomorphism

$$(\mathfrak{S}_{\mathfrak{O}}(\pi^b))(Q) \cong \prod_{\langle T, \eta \rangle \in \mathfrak{O}_Q} \mathfrak{S}_{\mathfrak{O}_Q, \eta}(\Delta_{\eta}(T))$$

2.14.3

where \(\mathfrak{S}_{\mathfrak{O}} \rightarrow \mathfrak{A}\mathfrak{B}\) denotes the obvious functor mapping any finite group \(H\) on its maximal Abelian quotient \(H/[H, H]\); in particular, note that \(L^b\) is \(p\)-coherent (cf. 2.5).

2.15. Moreover, any \(L^b\)-morphism \(x : R \rightarrow Q\) can be lifted to an element \(\hat{x} \in G\) fulfilling \(\hat{x} \circ R \circ \hat{x}^{-1} \subset Q\) in the group of bijections of \(\Omega\); in particular, we also have

$$\hat{x}^{-1} \circ C_G(Q) \circ \hat{x} \subset C_G(R)$$

2.15.1

and, considering isomorphisms 2.13.2 for both \(C_G(Q)\) and \(C_G(R)\), it is clear that the conjugation by \(\hat{x}^{-1}\) sends the factor determined by \(T \in C_P\) and by \(\eta \in \mathfrak{O}_Q^T\) in some factors determined by \(U \in C_P\) and by \(\theta \in \mathfrak{O}_Q^T\) in such a way that, setting \(\varphi = \pi^b(x)\), there exists an injective \(R \times P\)-set homomorphism

$$f : (R \times P)/\Delta_{\theta}(U) \rightarrow \text{Res}_{\varphi \times \text{id}_P}((Q \times P)/\Delta_{\eta}(T))$$

2.15.2

or, equivalently, we have

$$\Delta_{\varphi \circ \theta}(U) = (\varphi(R) \times P) \cap (u, n)\Delta_{\eta}(T)$$

2.15.3

for suitable \(u \in Q\) and \(n \in P\).
2.16. More precisely, the L^b-morphism $x: R \to Q$ determines the group homomorphism
\[
(\text{Re}r(\pi^b))(x) : (\text{Re}r(\pi^b))(Q) \to (\text{Re}r(\pi^b))(R)
\]
considering isomorphisms 2.14.3 for both $(\text{Re}r(\pi^b))(Q)$ and $(\text{Re}r(\pi^b))(R)$, it makes sense to introduce the projection in $ab\left(\bar{N}_{R \times P}(\Delta_\varphi(U))\right)$ of the restriction of $(\text{Re}r(\pi^b))(x)$ to 2.17 $ab\left(\bar{N}_{Q \times P}(\Delta_\eta(T))\right)$ — noted $(\text{Re}r(\pi^b))(x)_{(U, \theta)}$ for any $(T, \eta) \in \mathcal{D}_Q$ and any $(U, \theta) \in \mathcal{D}_R$; according to 2.15 above, $(\text{Re}r(\pi^b))(x)_{(U, \theta)} \neq 0$ forces
\[
\Delta_{\varphi_00}(U) = \left(\varphi(R) \times P\right) \cap \{(u, n)\Delta_\eta(T)\}
\]
for suitable $u \in Q$ and $n \in P$.

2.17. In this case, in [8, Proposition 22.17] we describe $(\text{Re}r(\pi^b))(x)_{(U, \theta)}$ as follows. Consider the set of injective $R \times P$-set homomorphisms as in 2.15.2 above; it is clear that $\bar{N}_{R \times P}(\Delta_\varphi(U)) \times \bar{N}_{Q \times P}(\Delta_\eta(T))$ acts on this set by left- and right-hand composition and, denoting by $\mathcal{I}_{(T, \eta)}(\varphi)$ a set of representatives for the set of $\bar{N}_{R \times P}(\Delta_\varphi(U)) \times \bar{N}_{Q \times P}(\Delta_\eta(T))$-orbits, for any $f \in \mathcal{I}_{(T, \eta)}(\varphi)$ consider the stabilizer $\bar{N}_{Q \times P}(\Delta_\eta(T))_{\text{Im}(f)}$ of $\text{Im}(f)$ in $\bar{N}_{Q \times P}(\Delta_\eta(T))$, so that we get an inclusion and an obvious group homomorphism
\[
\varepsilon_f : \bar{N}_{Q \times P}(\Delta_\eta(T))_{\text{Im}(f)} \to \bar{N}_{Q \times P}(\Delta_\eta(T))
\]
\[
\delta_f : \bar{N}_{Q \times P}(\Delta_\eta(T))_{\text{Im}(f)} \to \bar{N}_{R \times P}(\Delta_\varphi(U))
\]
fulfilling $\bar{a} \cdot f = f \delta_f(\bar{a})$ for any $\bar{a} \in \bar{N}_{Q \times P}(\Delta_\eta(T))_{\text{Im}(f)}$. Then, denoting by $ab^\epsilon : \text{Re}r \to \text{Ab}$ the contravariant functor mapping any finite group H on its maximal Abelian quotient $H/[H, H]$ and any injective group homomorphism on the group homomorphism induced by the transfert, it follows from [8, Proposition 22.17] that for any $(T, \eta) \in \mathcal{D}_Q$ and any $(U, \theta) \in \mathcal{D}_R$ fulfilling condition 2.16.2 for suitable $u \in Q$ and $n \in P$ we have
\[
(\text{Re}r(\pi^b))(x)_{(U, \theta)} = \sum_{f \in \mathcal{I}_{(T, \eta)}(\varphi)} ab(\delta_f) \circ ab^\epsilon(\varepsilon_f)
\]

3. A filtration for the basic \mathcal{F}-locality

3.1. Let P be a finite p-group, \mathcal{F} a Frobenius P-category and (π^b, L^b, π^b) the corresponding basic \mathcal{F}-locality; we already know that the contravariant functor
\[
\text{Re}r(\pi^b) : L^b \to \text{Ab}
\]
factorizes throughout the extrem quotient \(\tilde{F} \) of \(F \) (cf. 2.7), so that it defines a contravariant functor

\[
\tilde{\xi}_{\mathcal{L}} := \tilde{\xi}_{\mathcal{F}}^b : \tilde{F} \rightarrow \mathbb{Ab}
\]

which, up to suitable identifications, maps any \(\tilde{F} \)-morphism \(\tilde{\phi} : R \rightarrow Q \) on the group homomorphism (cf. 2.17.2)

\[
\tilde{\xi}_{\mathcal{F}}^b(\tilde{\phi}) = \sum_{(T,n) \in \mathcal{D}_Q} \sum_{(U,\theta) \in \mathcal{D}_R} \sum_{f \in \mathcal{F}_{(T,n)}(\varphi)} ab(\delta_f) \circ ab(\varepsilon_f)
\]

from \(\bigoplus_{(T,n) \in \mathcal{D}_Q} ab\left(\tilde{N}_{Q \times P}(\Delta_\eta(T))\right) \) to \(\bigoplus_{(U,\theta) \in \mathcal{D}_R} ab\left(\tilde{N}_{R \times P}(\Delta_\theta(U))\right) \), where we set \(\mathcal{F}_{(T,n)}(\varphi) = \emptyset \) whenever condition 2.16.2 is not fulfilled for any \(u \in Q \) and any \(n \in P \).

3.2. In particular, note that the homomorphism \(\tilde{\xi}_{\mathcal{F}}^b(\tilde{\phi}) \) sends an element of \(ab\left(\tilde{N}_{Q \times P}(\Delta_\eta(T))\right) \) to a sum of terms indexed by elements \((U,\theta)\) in \(\mathcal{D}_R \) such that \(U \) is contained in a \(P \)-conjugated of \(T \); hence, for any subset \(N \) of \(C_P \) which fulfills

3.2.1 any \(U \in C_P \) which is contained in a \(P \)-conjugated of \(T \in N \) belongs to \(N \),

setting \(\mathcal{D}^N_Q = \bigsqcup_{T \in N} \mathcal{D}^T_Q \) for any subgroup \(Q \) of \(P \), it is quite clear that we get a contravariant subfunctor \(\tilde{\xi}^N_{\mathcal{F}} : F \rightarrow \mathbb{Ab} \) of \(\tilde{\xi}^b_{\mathcal{F}} \) sending \(Q \) to

\[
\bigoplus_{(T,n) \in \mathcal{D}^N_Q} ab\left(\tilde{N}_{Q \times P}(\Delta_\eta(T))\right)
\]

and we consider the corresponding quotient \(F \)-locality \(\mathcal{L}^b/\left(\tilde{\xi}^N_{\mathcal{F}} \circ \psi^b\right) \) (cf. 2.8) — denoted by \((\tilde{\tau}^{b,N}, \mathcal{L}^{b,N}, \psi^{b,N}) \) — of the basic \(F \)-locality \(\mathcal{L}^b \) above.

3.3. It is quite clear that if \(M \) is another subset of \(C_P \) fulfilling condition 3.2.1 and containing \(N \), we have a canonical functor \(\tilde{\tau}^{M,N}_{\mathcal{F}} : \mathcal{L}^{b,N} \rightarrow \mathcal{L}^{b,M} \).

From now on, we fix a proper subset \(N \) of \(C_P \) fulfilling condition 3.2.1 and, in order to argue by induction on \(|C_P - N| \), we also fix a minimal element \(U \) in \(C_P - N \), setting \(M = N \cup \{U\} \). Hence, it makes sense to consider the quotient contravariant functor

\[
\tilde{\tau}^U_{\mathcal{F}} = \ker(\tilde{\tau}^{M,N}_{\mathcal{F}}) = \tilde{\tau}^M_{\mathcal{F}}/\tilde{\tau}^N_{\mathcal{F}} : \tilde{F} \rightarrow \mathbb{Ab}
\]

which only depends on \(U \) as we show in 3.4 and 3.5 below. More precisely, for any \(m \in \mathbb{N} \) let us consider the subfunctor \(p^m \cdot \mathcal{I} : \mathbb{Ab} \rightarrow \mathbb{Ab} \) of the identity functor \(\mathcal{I} : \mathbb{Ab} \rightarrow \mathbb{Ab} \) sending any Abelian group \(A \) to \(p^m \cdot A \), setting \(s_m = p^m \cdot \mathcal{I} / p^{m+1} \cdot \mathcal{I} \).
Then, the key point to prove the main results announced in 1.6 above is that, for any \(m \geq 0 \) and any \(n \geq 1 \), the \(n \)-th stable cohomology group — noted \(H^*_v(F, s_m \circ \tilde{\Delta}_F) \) (see [8, A3.17]) — of \(\tilde{\Delta}_F \) over \(s_m \circ \tilde{\Delta}_F \) vanish; that is to say, that the differential subcomplex in [11, A2.2], where \(B = \tilde{\Delta}_F \) and \(a = s_m \circ \tilde{\Delta}_F \), and where we only consider the elements which are stable by \(\tilde{\Delta}_F \)-isomorphisms, is exact.

3.4. This vanishing result will follow from Theorem 3.11 below and from [11, Theorem A5.5]; that is to say, with the terminology introduced in [11, 45.1], in Theorem 3.11 below we prove that, for any \(m \in \mathbb{N} \), the contravariant functor \(s_m \circ \tilde{\Delta}_F \) above admits indeed a compatible complement. From definition 3.3.1 above it is clear that, for any subgroup \(Q \) of \(P \)

\[
\tilde{\Delta}_F^U(Q) = \bigoplus_{(T, \eta) \in \Omega_Q^M - \Omega_Q^N} ab\left(\tilde{N}_{Q \times P}(\Delta_\eta(U)) \right)
\]

and then, for any \((T, \eta) \in \Omega_Q^M - \Omega_Q^N \), we necessarily have \(T = U \); hence, we get

\[
\tilde{\Delta}_F^U(Q) = \bigoplus_{(u, n) \in \Omega_Q^U} ab\left(\tilde{N}_{Q \times P}(\Delta_\eta(U)) \right)
\]

where \(\Omega_Q^U \subset F(Q, U) \) is a set of representatives for \(Q \setminus F(Q, U)/N_P(U) \); more precisely, the group \(Q \times N_P(U) \) acts on \(F(Q, U) \) and if \(\eta, \eta' \in \mathcal{F}(Q, U) \) are in the same \(Q \times N_P(U) \)-orbit then the conjugation by a suitable element \((u, n) \) in \(Q \times N_P(U) \) induces a group isomorphism

\[
ab\left(\tilde{N}_{Q \times P}(\Delta_\eta(U)) \right) \cong ab\left(\tilde{N}_{Q \times P}(\Delta_{\eta'}(U)) \right)
\]

which is clearly independent of the choice of \((u, n) \) fulfilling \(\eta' = (u, n) \eta \). Consequently, from 3.4.2 we get a canonical isomorphism

\[
\tilde{\Delta}_F^U(Q) \cong \bigg(\bigoplus_{\eta \in \mathcal{F}(Q, U)} ab\left(\tilde{N}_{Q \times P}(\Delta_\eta(U)) \right) \bigg)^{Q \times N_P(U)}
\]

3.5. Moreover, for any \(\tilde{\Delta} \)-morphism \(\tilde{\varphi} : R \rightarrow Q \), from 3.1.3 above we still get

\[
\tilde{\Delta}_F^U(\tilde{\varphi}) = \sum_{(u, n) \in \Omega_Q^U} \sum_{(U, \theta) \in \Omega_R^U} \sum_{f \in \mathcal{F}(U, \theta)} ab(\delta_f) \circ ab(\varepsilon_f)
\]

in this case, it follows from 2.16 that \(\gamma(U, \theta)(\tilde{\varphi}) \) is empty unless for suitable \(u \in Q \) and \(n \in P \) we have

\[
\Delta_{\tilde{\varphi} \circ \theta}(U) = (u, n) \Delta_\eta(U)
\]
or, equivalently, n belongs to $N_P(U)$ and $\varphi \circ \theta$ belongs to the classe of η in $Q\backslash \mathcal{F}(Q,U)/N_P(U)$; in this case we have an injective $R \times P$-set homomorphism

$$f : (R \times P)/\Delta_\theta(U) \longrightarrow \text{Res}_{\varphi \times \text{id}_P} \left((Q \times P)/\Delta_\eta(U) \right)$$

3.5.3

sending the class of $(1,1)$ to the class of (u,n) . Then, denoting by

$$\varphi_\theta : \tilde{N}_{R \times P}(\Delta_\theta(U)) \longrightarrow \tilde{N}_{Q \times P}(\Delta_{\varphi \circ \theta}(U))$$

3.5.4

the group homomorphism induced by $\varphi \times \text{id}_P$, and by

$$\kappa^\eta_{(u,n)} : \tilde{N}_{Q \times P}(\Delta_\eta(U)) \cong \tilde{N}_{Q \times P}(\Delta_{\varphi \circ \theta}(U))$$

3.5.5

the conjugation by (u,n) , it is quite clear that the image of φ_θ stabilizes the image of f and therefore that f is the unique element of $\mathcal{F}^?_{(U,\eta)}(\varphi)$, that δ_f is an isomorphism in 2.17.1 and that we get [9, 8.8]

$$\text{ab}(\delta_f) \circ \text{ab}^f(\varepsilon_f) = \text{ab}^f((\kappa^\eta_{(u,n)})^{-1} \circ \varphi_\theta) = \text{ab}^f(\varphi_\theta) \circ \text{ab}(\kappa^\eta_{(u,n)})$$

3.5.6

Consequently, equality 3.5.1 becomes

$$\text{Gr}^U_{\mathcal{F}}(\hat{\varphi}) = \sum_{(U,\theta) \in \mathcal{D}_R^U} \text{ab}^f(\varphi_\theta) \circ \text{ab}(\kappa^\eta_{(u,n)})$$

3.5.7

where, for any $(U,\theta) \in \mathcal{D}_R^U$, (U,η) belongs to \mathcal{D}_Q^U and (u,n) fulfills 3.5.2.

3.6. But, for our purposes, we need a better description as follows for the functor $\tilde{\text{Gr}}^U_{\mathcal{F}}$. It is quite clear that we have a functor $\mathcal{n}^U_{\mathcal{F}} : \mathcal{F} \rightarrow \Theta$ mapping any subgroup Q of P on the direct product of groups

$$\mathcal{n}^U_{\mathcal{F}}(Q) = \prod_{\eta \in \mathcal{F}(Q,U)} \tilde{N}_{Q \times P}(\Delta_\eta(U))$$

3.6.1

and any \mathcal{F}-morphism $\varphi : R \rightarrow Q$ on the direct product of group homomorphisms (cf. 3.5.4)

$$\mathcal{n}^U_{\mathcal{F}}(\varphi) = \prod_{\theta \in \mathcal{F}(R,U)} \varphi_\theta : \prod_{\theta \in \mathcal{F}(R,U)} \tilde{N}_{R \times P}(\Delta_\theta(U)) \longrightarrow \prod_{\eta \in \mathcal{F}(Q,U)} \tilde{N}_{Q \times P}(\Delta_\eta(U))$$

3.6.2;

note that, for any $u \in Q$ denoting by $\kappa_{Q,u} : Q \cong Q$ the conjugation by u , the action of $(u,1) \in Q \times N_P(U)$ on $\mathcal{n}^U_{\mathcal{F}}(\kappa_{Q,u})$ coincides with $\mathcal{n}^U_{\mathcal{F}}(\kappa_{Q,u})$. Similarly, as in 3.4.3 above, for any $n \in N_P(U)$ the action of $(1,n) \in Q \times N_P(U)$ on $\mathcal{n}^U_{\mathcal{F}}(Q)$ induces obvious isomorphisms

$$\left((1,n) \right)^\eta : \tilde{N}_{Q \times P}(\Delta_\eta(U)) \cong \tilde{N}_{Q \times P}(\Delta_{\eta \circ \kappa_{U,n,-1}}(U))$$

3.6.3

for any $\eta \in \mathcal{F}(Q,U)$; moreover, for any $\theta \in \mathcal{F}(R,U)$, we obviously get

$$\left((1,n) \right)^\circ \varphi_\theta = \varphi_\theta \circ \kappa_{U,n,-1}$$

3.6.4.
3.7. Consequently, we also get the functors (cf. 2.14 and 2.17)
\[ab^c \circ n_{\mathcal{F}}^U : \mathcal{F} \to \mathcal{A}b^o \quad \text{and} \quad ab \circ n_{\mathcal{F}}^U : \mathcal{F} \to \mathcal{A}b \]
which send any subgroup \(Q \) of \(P \) to
\[(ab^c \circ n_{\mathcal{F}}^U)(Q) = \bigoplus_{\eta \in \mathcal{F}(Q,U)} ab\left(\hat{N}_{Q \times P}(\Delta_{\eta}(U))\right) = (ab \circ n_{\mathcal{F}}^U)(Q) \]
and we know that \(Q \times N_P(U) \) acts on this Abelian \(p \)-group; then, it is quite easy to check that we have a subfunctor of \(ab^c \circ n_{\mathcal{F}}^U \) and a quotient functor of \(ab \circ n_{\mathcal{F}}^U \), respectively denoted by
\[h^o(ab^c \circ n_{\mathcal{F}}^U) : \mathcal{F} \to \mathcal{A}b^o \quad \text{and} \quad h_o(ab \circ n_{\mathcal{F}}^U) : \mathcal{F} \to \mathcal{A}b \]
3.7.3. sending any subgroup \(Q \) of \(P \) to the subgroup \((ab^c \circ n_{\mathcal{F}}^U)(Q)Q \times N_P(U) \) of fixed elements and to the quotient \((ab \circ n_{\mathcal{F}}^U)(Q)Q \times N_P(U) \) of co-fixed elements of \(\bigoplus_{\eta \in \mathcal{F}(Q,U)} ab\left(\hat{N}_{Q \times P}(\Delta_{\eta}(U))\right) \); actually, it is easily checked that both factorize through the exterior quotient \(\hat{\mathcal{F}} \) (cf. 3.1) yielding respective functors
\[\tilde{h}^o(ab^c \circ n_{\mathcal{F}}^U) : \hat{\mathcal{F}} \to \mathcal{A}b^o \quad \text{and} \quad \tilde{h}_o(ab \circ n_{\mathcal{F}}^U) : \hat{\mathcal{F}} \to \mathcal{A}b \]
3.7.4. In particular, it follows from 3.4.4 that for any subgroup \(Q \) of \(P \) we have
\[\tilde{h}^o(ab^c \circ n_{\mathcal{F}}^U)(Q) \cong \tilde{\mathcal{F}}_x^U(Q) \]
3.7.5.
3.8. Actually, we claim that for any \(\hat{\mathcal{F}} \)-morphism \(\hat{\varphi} : R \to Q \) we also have the commutative diagram
\[\begin{array}{ccc}
\tilde{h}^o(ab^c \circ n_{\mathcal{F}}^U)(Q) & \cong & \tilde{\mathcal{F}}_x^U(Q) \\
\tilde{h}^o(ab^c \circ n_{\mathcal{F}}^U)(\hat{\varphi}) & \downarrow & \tilde{\mathcal{F}}_x^U(\hat{\varphi}) \\
\tilde{h}^o(ab^c \circ n_{\mathcal{F}}^U)(R) & \cong & \tilde{\mathcal{F}}_x^U(R)
\end{array} \]
so that the functors \(\tilde{h}^o(ab^c \circ n_{\mathcal{F}}^U) \) and \(\tilde{\mathcal{F}}_x^U \) from \(\hat{\mathcal{F}} \) to \(\mathcal{A}b^o \) are isomorphic. Indeed, \(\tilde{h}^o(ab^c \circ n_{\mathcal{F}}^U)(\hat{\varphi}) \) sends any element
\[a = \sum_{\eta \in \mathcal{F}(Q,U)} a_\eta \in \tilde{h}^o(ab^c \circ n_{\mathcal{F}}^U)(Q) \]
3.8.2, where \(a_\eta \) belongs to \(ab\left(\hat{N}_{Q \times P}(\Delta_{\eta}(U))\right) \) for any \(\eta \in \mathcal{F}(Q,U) \), to the element
\[\sum_{\theta \in \mathcal{F}(R,U)} ab^c(\varphi_\theta)(a_{\varphi_\theta}) \in \tilde{h}^o(ab^c \circ n_{\mathcal{F}}^U)(R) \]
3.8.3, then, the commutativity of diagram 3.8.1 follows from equality 3.5.7.
3.9. Moreover, for any subgroup Q of P we clearly have a canonical group isomorphism

$$\tau_Q : (ab \circ n^U_P)(Q \times N_P(U)) \cong (ab^c \circ n^U_P)(Q \times N_P(U))$$

which, for any $\eta \in F(Q, U)$, maps the class in $(ab \circ n^U_P)(Q \times N_P(U))$ of an element a_η of $\text{ab} \left(\bar{N}_Q \times P(\Delta_\eta(U)) \right)$ on the element (cf. 3.6)

$$\tau_{Q \times N_P(U)}(\eta)(a_\eta) = \sum_{(u, n)} (u, n)^\eta a_\eta$$

in $(ab^c \circ n^U_P)(Q \times N_P(U))$ (cf. 3.7.2), where (u, n) runs over a set of representatives for the quotient set $(Q \times N_P(U))/N_Q \times P(\Delta_\eta(U))$.

3.10. Explicitly, an element (u, n) of $Q \times P$ belongs to $N_Q \times P(\Delta_\eta(U))$ if and only if we have $^uU = U$ and $\eta(\nu v) = \eta(v)$ for any $v \in U$; in particular, u normalizes $\eta(U)$ and, denoting by $\eta_* : U \cong \eta(U)$ the isomorphism induced by η, this element belongs to the converse image Q_η of

$$F_Q(\eta(U)) \cap (\eta_* \circ F_P(U) \circ \eta_*^{-1})$$

in $N_Q(\eta(U))$; then, the conjugation by η_*^{-1} induces a group homomorphism $\nu_\eta : Q_\eta \to F_P(U)$; thus, setting

$$\Delta^\nu_\eta(\eta) = \{(u, \nu_\eta(u)) \mid u \in Q_\eta \subset Q \times F_P(U) \}$$

we get the exact sequence

$$1 \to \{1\} \times C_P(U) \to N_Q \times P(\Delta_\eta(U)) \to \Delta^\nu_\eta(\eta) \to 1$$

and, in particular, denoting by a_η the classe of $a_\eta \in \text{ab} \left(\bar{N}_Q \times P(\Delta_\eta(U)) \right)$ in $(ab \circ n^U_P)(Q \times N_P(U))$ and by $Q^\eta \subset Q$ a set of representatives for Q/Q_η, since $\{1\} \times C_P(U)$ acts trivially on $\text{ab} \left(\bar{N}_Q \times P(\Delta_\eta(U)) \right)$, we still get

$$\tau_Q(a_\eta) = \sum_{\nu \in F_P(U)} \sum_{u \in Q^\eta} (u, \nu) \cdot a_\eta$$

Finally, for any $m \in \mathbb{N}$, for short we set

$$\gamma_{F,m}^U = s_m \circ h_\circ(ab \circ n^U_P)$$

and

$$\gamma_{F,0}^U := s_m \circ h_\circ(ab \circ n^U_P)$$

moreover, for any subgroup Q of P, it is clear that τ_Q induces a group isomorphism

$$\tau_Q : \gamma_{F,0}^U(Q) \cong \gamma_{F,m}^U(Q)$$
Theorem 3.11.† With the notation above, the functor \(\mathcal{F}_{\mathcal{F},m}^{U}: \mathcal{F} \to \mathbb{A}^\circ \) admits a compatible complement \((\mathcal{F}_{\mathcal{F},m}^{U,\circ})': \mathcal{F} \to \mathbb{A}^\circ \) sending any \(\mathcal{F} \)-morphism \(\varphi: R \to Q \) to the group homomorphism

\[
(\mathcal{F}_{\mathcal{F},m}^{U,\circ})'(\varphi) = \text{tr}^m_Q \circ \mathcal{F}_{\mathcal{F},m}^{U,\circ} (\varphi) \circ (\text{tr}^m_R)^{-1} \tag{3.11.1}
\]

Proof: It is clear that equalities 3.11.1 define a functor \(\mathcal{F} \to \mathbb{A}^\circ \) sending any subgroup \(Q \) of \(P \) to \(s_m \left((ab^c \circ n^U_{x})(Q)^{Q \times N_P(U)} \right) \); thus, it remains to prove that \((\mathcal{F}_{\mathcal{F},m}^{U,\circ})'\) fulfills the conditions A5.1.2 and A5.1.3 in [11]. With the notation in 3.7 above, assuming that \(a = \sum_{\eta \in \mathcal{F}(Q,U)} a_\eta \) belongs to \(p^m \cdot h^\circ(ab^c \circ n^U_x)(Q) \) and denoting by \(\bar{a}^m \) its image in \(s_m \left((ab^c \circ n^U_x)(Q)^{Q \times N_P(U)} \right) \), for condition A5.1.3 we have to compute \((\mathcal{F}_{\mathcal{F},m}^{U,\circ})'(\varphi) \circ \mathcal{F}_{\mathcal{F},m}^{U,\circ}(\varphi)(\bar{a}^m)\) in \(\mathcal{F}_{\mathcal{F},m}^{U,\circ}(Q) \); clearly, this element is the image in \(s_m \left((ab^c \circ n^U_x)(Q)^{Q \times N_P(U)} \right) \) of

\[
\left(\text{tr}^m_Q \circ \hat{h}_x(ab^c \circ n^U_x)(\varphi) \circ (\text{tr}^m_R)^{-1} \right) h^\circ(ab^c \circ n^U_x)(\varphi)(a) = \left(\text{tr}^m_Q \circ \hat{h}_x(ab^c \circ n^U_x)(\varphi) \circ (\text{tr}^m_R)^{-1} \right) \left(\sum_{\theta \in \mathcal{F}(R,U)} ab^\circ(\varphi_\theta)(a_{\varphi_\theta}) \right) \tag{3.11.2}
\]

which is equal to zero whenever \(\mathcal{F}(R,U) \) is empty.

Otherwise, for any element \((y, n)\) in \(R \times N_P(U)\), \((\varphi(y), n)\) belongs to \(Q \times N_P(U) \) and therefore, with the obvious action of \(R \times N_P(U) \) on \(\mathcal{F}(R,U) \), we have \(a_{\varphi_\theta(y, \cdot, n)}(y, a_{\varphi_\theta}) \); consequently, this element coincides with (cf. 2.13 and 3.9)

\[
\sum_{\theta \in \mathcal{F}(R)} \text{tr}^Q_{N_{Q \times R}(\Delta \varphi_\theta(U))} \left((ab(\varphi_\theta) \circ ab^\circ(\varphi_\theta))(a_{\varphi_\theta(U)}) \right) \tag{3.11.3}
\]

and we know that for any \(\theta \in \mathcal{D}_{R}^{U} \) we have

\[
(ab(\varphi_\theta) \circ ab^\circ(\varphi_\theta))(a_{\varphi_\theta}) = \left| \frac{\hat{N}_{Q \times P}(\Delta \varphi_\theta(U))}{N_{R \times P}(\Delta \varphi_\theta(U))} \right| a_{\varphi_\theta} \tag{3.11.4}
\]

thus, either \(|\hat{N}_{Q \times P}(\Delta \varphi_\theta(U))| \neq |N_{R \times P}(\Delta \varphi_\theta(U))| \) and the term

\[
\text{tr}^Q_{N_{Q \times R}(\Delta \varphi_\theta(U))} \left((ab(\varphi_\theta) \circ ab^\circ(\varphi_\theta))(a_{\varphi_\theta}) \right) \tag{3.11.5}
\]

belongs to \(p^{m+1} \cdot h^\circ(ab^c \circ n^U_x)(Q) \), or we have \(\varphi(R_\theta) = Q_{\varphi_\theta} \) (cf. 3.10.2).

† In [9, Proposition 8.9] the statement and the proof are far from correction.
But, for any \(\eta \in \mathcal{F}(Q, U) \) and any element \((u, n)\) in \(Q \times N_P(U) \) we still have \(a_{u, \eta^{-1}} = (u, n) \cdot a_{\eta} \); consequently, for any \(\eta \) in the set \(\varphi \circ \mathcal{F}(R, U) \), setting
\[
\mathcal{T}_{Q \times N_P(U)}(\eta, \varphi \circ \theta) = \{(u, n) \in Q \times N_P(U) \mid \eta = (u, n) \cdot (\varphi \circ \theta)\}
\]
3.11.6,
in the second case we have
\[
\text{tr}_{Q \times N_P(U)}^{N_{Q \times F}(\Delta_{\varphi \circ \theta}(U))} \left((a \cdot b)(\varphi \circ \theta) \right) = \sum_{\eta \in \varphi \circ \mathcal{F}(R, U)} \frac{|\mathcal{T}_{Q \times N_P(U)}(\eta, \varphi \circ \theta)|}{|N_{Q \times P}(\Delta_{\eta}(U))|} \cdot a_{\eta}
\]
3.11.7.
Moreover, for any element \(u \) in the transporter \(\mathcal{T}_Q(\varphi(R), \eta(U)) \) (cf. 2.2), the following diagram
\[
\begin{array}{ccc}
R & \cong & u^{-1}(R) \\
\varphi' & \uparrow & \eta(U) \\
U & \cong & \varphi(R)
\end{array}
\]
3.11.8
determines a pair formed by \(\varphi' \in \tilde{\varphi} \) and by \(\theta' \) in the \(\{1\} \times N_P(U) \)-orbit of \(\theta \) such that \(\eta = \varphi' \circ \theta' \) and therefore it is quite clear that
\[
\mathcal{T}_{Q \times N_P(U)}(\eta, \varphi \circ \theta) = \mathcal{T}_Q(\varphi(R), \eta(U)) \times N_P(U)
\]
3.11.9.
Finally, note that the map
\[
\varphi(R) \setminus \mathcal{T}_Q(\varphi(R), \eta(U)) \longrightarrow \varphi(R) \setminus \eta(U)
\]
3.11.10
sending the class of \(u \in \mathcal{T}_Q(\varphi(R), \eta(U)) \) to \(\varphi(R)u\eta(U) \) is injective and its image is the set of double classes of cardinal equal to \(|\varphi(R)| \), so that \(p \) divides \(|\varphi(R) \setminus \mathcal{T}_{Q}(\varphi(R), \eta(U))| \); in conclusion, \(p \) also divides the quotient \(|\mathcal{T}_{Q \times N_P(U)}(\eta, \varphi \circ \theta)|/|N_{Q \times P}(\Delta_{\eta}(U))| \). Consequently, in both cases we obtain
\[
\left((\mathbb{1}^U_{\mathcal{F}, m}(\tilde{\varphi}')) \circ \mathbb{1}^U_{\mathcal{F}, m}(\varphi) \right)(\mathbb{1}^U_{m}) = 0
\]
3.11.11.

In order to show condition A5.1.3 in [11], for any pair of \(\tilde{\mathcal{F}} \)-morphisms \(\tilde{\varphi} : R \rightarrow Q \) and \(\tilde{\psi} : T \rightarrow Q \) we have to prove that
\[
\mathbb{1}^U_{\mathcal{F}, m}(\tilde{\psi}) \circ (\mathbb{1}^U_{\mathcal{F}, m}(\tilde{\varphi})) = \sum_{w \in W} (\mathbb{1}^U_{\mathcal{F}, m}(\tilde{\varphi}))(\mathbb{1}^U_{m}(\varphi_w))
\]
3.11.12
where, choosing a pair of representatives \(\varphi \) of \(\tilde{\varphi} \) and \(\psi \) of \(\tilde{\psi} \), and a set of representatives \(W \subset Q \) for the set of double classes \(\varphi(R) \setminus Q \setminus \psi(T) \), for any \(w \in W \) we set \(S_w = \varphi(R)^w \cap \psi(T) \) and denote by
\[
\varphi_w : S_w \longrightarrow R \quad \text{and} \quad \psi_w : S_w \longrightarrow T
\]
3.11.13
the \(\mathcal{F} \)-morphisms fulfilling \(\varphi(\varphi_w(u)) = wuw^{-1} \) and \(\psi(\psi_w(u)) = u \) for any element \(u \in S_w \).
For any \(\theta \in \mathcal{F}(R, U) \), let \(b_\theta \) be an element of \(p^m \cdot ab \left(\bar{N}_{R \times P}(\Delta_\theta(U)) \right) \) and denote by \(\bar{b}_\theta \) the image of \(b_\theta \) in \(\left(ab \circ n_{F}^U \right)(R)_{R \times N_F(U)} \) (cf. 3.7.2); thus, \(\bar{r}_{m}^{m}(\bar{b}_\theta) \) is an element of \(\bar{v}_{m}^{m}(R) \) (cf. 3.10.6) and we have to compute (cf. 3.11.1)

\[
(\bar{r}_{X,m}^{U,\circ}(\bar{\psi}) \circ (\bar{r}_{X,m}^{U,\circ})^t(\bar{\varphi})) \left(\bar{r}_{m}^{m}(\bar{b}_\theta) \right)
= (\bar{r}_{m}^{m}(\bar{\psi}) \circ \bar{r}_{m}^{m}(\bar{\varphi})(\bar{b}_\theta))
\]

3.11.14;

this element is clearly the image in \(\bar{r}_{X,m}^{U,\circ}(T) \) of the element (cf. 3.9.2)

\[
a = \tilde{b}_\theta^t(ab^t \circ n_{F}^U)(\bar{\psi}) \left(\operatorname{tr} \left(\bar{h}_\theta(ab \circ n_{F}^U)(\bar{\varphi})(b_\theta) \right) \right)
= (ab^t \circ n_{F}^U)(\bar{\psi}) \left(\operatorname{tr} \left(N_{Q \times P}(\Delta_{\eta}(U)) (ab(\varphi_\theta)(b_\theta)) \right) \right)
\]

3.11.15

where \(\bar{h}_\theta(ab \circ n_{F}^U)(\bar{\varphi})(b_\theta) \) denotes the image of \(\bar{h}_\theta(ab \circ n_{F}^U)(\bar{\varphi})(b_\theta) \) in the quotient \((ab \circ n_{F}^U)(Q)(Q_{Q \times N_F(U)}) \) and we set \(\eta = \varphi \circ \theta \).

Then, as in 3.10 above, denoting by \(Q_\eta \) the converse image of the intersection \(\mathcal{F}_Q(\eta(U)) \cap (\eta_* \circ \mathcal{F}_P(U) \circ \eta_*^{-1}) \) in \(N_Q(\eta(U)) \) and by \(Q^\eta \subset Q \) a set of representatives for \(Q/Q_\eta \), we have (cf. 3.10.4)

\[
\operatorname{tr} \left(N_{Q \times P}(\Delta_{\eta}(U)) (ab(\varphi_\theta)(b_\theta)) \right) = \sum_{u \in Q^\eta} \sum_{\nu \in F_P(U)} (u, \nu) \cdot ab(\varphi_\theta)(b_\theta)
\]

3.11.16;

but, for any \(u \in Q^\eta \) and any \(\nu \in F_P(U) \), the element \((u, \nu) \cdot ab(\varphi_\theta)(b_\theta) \) belongs to \(p^m \cdot ab \left(\bar{N}_{Q \times P}(\Delta_{u \cdot n^\nu_{Q \times P}}(U)) \right) \) and therefore it follows from definition 3.6.2 that the element (cf. 3.6)

\[
a_{u, \nu} = (ab^t \circ n_{F}^U)(\bar{\psi})(u, \nu) \cdot ab(\varphi_\theta)(b_\theta)
= (1, \nu) \cdot ab^t(\circ n_{F}^U)(\kappa_{Q \cdot u^{-1}} \circ \psi)(ab(\varphi_\theta)(b_\theta))
\]

3.11.17

is equal to zero unless \((\kappa_{Q \cdot u^{-1}} \circ \psi)(T) \) contains \(\eta(U) \), so that there is a unique \(\zeta_u \in \mathcal{F}(T, U) \) fulfilling \(\kappa_{Q, \eta \circ \psi} \circ \eta = \psi \circ \zeta_u \); in this case, setting \(\psi^u = \kappa_{Q, u^{-1}} \circ \psi \) we get

\[
a_{u, \nu} = (1, \nu) \cdot ab^t \left((\psi^u)_{\zeta_u} \right) \left(ab(\varphi_\theta)(b_\theta) \right)
\]

3.11.18;

let us denote by \(\hat{Q}^\eta \subset Q^\eta \) the subset of \(u \in Q^\eta \) fulfilling this condition.

In this situation, note that we have the two injective group homomorphisms

\[
\varphi_\theta \cdot \bar{N}_{Q \times P}(\Delta_{\eta}(U))
\]

3.11.19;
thus, since ab^r (cf. 2.17) is a Mackey complement of ab, for any $u \in Q^u$ we need to consider the set of double classes

$$X_u = N_{\varphi(R) \times P}(\Delta_\eta(U)) \setminus N_{Q^u \times P}(\Delta_\eta(U)) / N_{\psi^u(T) \times P}(\Delta_\eta(U))$$

which, according to the exact sequence 3.10.3, admits an obvious canonical bijection with the set of double classes $\{\varphi(R) \cap Q_\eta \} \setminus \{\psi^u(T) \cap Q_\eta\}$; hence, choosing a set $X_u \subset Q_\eta$ of representatives for this last set of double classes, we get

$$ab^r((\psi_u)_u) \circ ab(\varphi_\eta) = \sum_{x \in X_u} ab(\psi_{\eta,u,x}) \circ ab^r(\varphi_{\theta,u,x})$$

where for any $x \in X_u$ we set $S_{u,x} = \varphi(R)^x \cap \psi(T)^u$ and denote by

$$\varphi_{\theta,u,x} : \tilde{N}_{S_{u,x} \times P}(\Delta_\eta(U)) \rightarrow \tilde{N}_{R \times P}(\Delta_\eta(U))$$

$$\psi_{\eta,u,x} : \tilde{N}_{S_{u,x} \times P}(\Delta_\eta(U)) \rightarrow \tilde{N}_{T \times P}(\Delta_\eta(U))$$

the F-morphisms fulfilling (cf. 3.10.2)

$$\varphi_\eta(\varphi_{\theta,u,x}(s,n)) = (s,\tilde{x},n) = (x,\tilde{x}) \in S_{u,x}$$

$$\psi_{\eta,u,x}(\psi_{\eta,u,x}(s,n)) = (s,n)$$

for any element $(s,n) \in N_{S_{u,x} \times P}(\Delta_\eta(U))$ and for a choice of $\tilde{x} \in Q_\eta$ lifting $\nu_\eta(x)$ (cf. 3.10.2); note that the element $(x,\tilde{x}) \in Q_\eta \times P$ normalizes $\Delta_\eta(U)$. Hence, from 3.11.15, 3.11.18, 3.11.19 and 3.11.21 we obtain

$$a = \sum_{\nu \in \mathcal{F}_R(U)} (1,\nu) \sum_{u \in Q^u} \sum_{x \in X_u} (ab(\psi_{\eta,u,x}) \circ ab^r(\varphi_{\theta,u,x}))(b_\theta)$$

On the other hand, we have to prove that the element (cf. 3.11.12)

$$\bar{c} = \left(\sum_{w \in W} (\tilde{r}_{U,m}^U)_{\varphi}(\tilde{\psi}_w) \circ \tilde{r}_{F,m}^U(\tilde{\psi}_w) \right)(tr_{R}^m(b_\theta))$$

is also the image of a. But, according to 3.9, $tr_{R}^m(b_\theta)$ is the image in $\tilde{r}_{F,m}^U(R)$ of

$$tr_{N_R \times R}(U)^{(\Delta_\eta(U))}(b_\theta) = \sum_{y \in R^u} \sum_{\nu \in \mathcal{F}_R(U)} (y,\nu) \cdot b_\theta$$

in $p^m(\varphi \circ n_{U}^r)(R)^{R \times N_R(U)}$ (cf. 3.10.4) where, denoting by $\theta_\eta : U \cong \theta(U)$ the isomorphism induced by θ and by R_θ the converse image of the intersection $\mathcal{F}_R(\theta(U)) \cap (\theta_\eta \circ \mathcal{F}_R(U) \cap \theta_\eta^{-1})$ in $N_R(\theta(U))$, $R_\theta \subset R$ is a set of representatives for R/R_θ. Note that, according to 3.10 we have $R_\theta = \varphi^{-1}(Q_\eta)$.
In particular, for any \(w \in W \), the element \(t_{F,m}^{U,R}(\tilde{\varphi}_w)(\text{tr}_R^m(\tilde{b}_\theta)) \) is the image in \(t_{F,m}^{U,R}(S_w) \) of the element (cf. 3.10.5)

\[
d_w = \sum_{y \in R^\theta} \sum_{\nu \in \mathcal{F}_P(U)} (ab^\nu \circ n^U_y)(\varphi_w)((y, \nu) \cdot b_\theta)
\]

3.11.27;

but, as above, for any \(y \in R^\theta \) and any \(\nu \in \mathcal{F}_P(U) \), the element \((y, \nu) \cdot b_\theta\) belongs to \(p^m \cdot ab\left(\Delta_{y,0} \cdot (U) \right) \) and therefore it follows from definition 3.6.2 that the element

\[
d_{w, y, \nu} = (ab^\nu \circ n^U_y)(\varphi_w)((y, \nu) \cdot b_\theta)
\]

3.11.28

is equal to zero unless \(\varphi_w(S_w) \) contains \(y \theta(U) \), so that there is a unique \(\xi_{w,y} \in \mathcal{F}(S_w, U) \) fulfilling \(\kappa_{R,y} \circ \theta = \varphi_w \circ \xi_{w,y} \), which forces the equality \(\kappa_{Q,w^{-1}}(\varphi)(y) \circ \eta = \underleftarrow{Q}_{w,y} \circ \xi_{w,y} \); in this case, we have

\[
d_{w, y, \nu} = (1, \nu) \cdot ab^\nu((\kappa_{R,y}^{-1} \circ \varphi_w)_{\xi_{w,y}})(b_\theta)
\]

3.11.29;

let us denote by \(\tilde{R}_w^\theta \subset R^\theta \) the subset of \(y \in R^\theta \) fulfilling this condition; thus, we get

\[
d_w = \sum_{\nu \in \mathcal{F}_P(U)} (1, \nu) \cdot \sum_{y \in \tilde{R}_w^\theta} ab^\nu((\kappa_{R,y}^{-1} \circ \varphi_w)_{\xi_{w,y}})(b_\theta)
\]

3.11.30.

Moreover, for any \(y \in R^\theta \) fulfilling the above condition and any \(s \in S_w \), the product \(\varphi_w(s) \cdot y \) still fulfills this condition and we have

\[
\varphi_w \circ \xi_{w, \varphi_w(s) \cdot y} = \kappa_{R, \varphi_w(s) \cdot y} \circ \theta = \kappa_{R, \varphi_w(s)} \circ \kappa_{R,y} \circ \theta
\]

\[
= \kappa_{R, \varphi_w(s)} \circ \varphi_w \circ \xi_{w,y} = \varphi_w \circ \kappa_{S_w, s} \circ \xi_{w,y}
\]

3.11.31,

so that we get \(\xi_{w, \varphi_w(s) \cdot y} = \kappa_{S_{w,s}} \circ \xi_{w,y} \); in particular, \(\varphi_w(S_w) \) has an action on \(\tilde{R}_w^\theta \) and, choosing a set of representatives \(\tilde{\gamma}_w^\theta \subset \tilde{R}_w^\theta \) for the set of \(\varphi_w(S_w) \)-orbits, the element \(d_w \) above is also equal to

\[
\sum_{\nu \in \mathcal{F}_P(U)} (1, \nu) \cdot \sum_{y \in \tilde{\gamma}_w^\theta} \sum_{s \in S_w^{\theta,y}} ab^\nu((\kappa_{R,v}^{-1} \circ \varphi_w)_{\xi_{w,v, \varphi_w(s) \cdot y}})(b_\theta)
\]

3.11.32

where for any \(y \in \tilde{\gamma}_w^\theta \), setting \(S_{w, \theta,y} = \varphi_w^{-1}(R_\theta)^y \), \(S_{w,y}^\theta \subset S_w \) is a set of representatives for \(S_w/S_{w, \theta,y} \); but, it is quite clear that

\[
ab^\nu((\kappa_{R,v}^{-1} \circ \varphi_w)_{\xi_{w,v, \varphi_w(s) \cdot y}})
\]

\[
= ab^\nu((\kappa_{R,v}^{-1} \circ \varphi_w \circ \kappa_{S_{w,s}^{-1}})_{\xi_{w,v, \varphi_w(s) \cdot y}})
\]

\[
= ab((\kappa_{S_{w,s}})_{\xi_{w,y}}) \circ ab^\nu((\kappa_{R,v}^{-1} \circ \varphi_w)_{\xi_{w,y}})
\]

3.11.33;
hence, setting \(\varphi_w^y = \kappa_{R,y}^{-1} \circ \varphi_w \) and denoting by \(\mathbf{ab}^\ell((\varphi_{w}^y)_{\xi_{w,y}})(b_0) \) the image of \(\mathbf{ab}^\ell((\varphi_{w}^y)_{\xi_{w,y}})(b_0) \) in the quotient \(\mathbf{(ab \circ n_y^U)}(S_w)_{S_w \times N_T(U)} \); according to 3.10.4 we easily obtain

\[
\sum_{\nu \in \mathcal{F}_P(U)} (1, \nu) \sum_{n \in S_w^{\theta,w}} \left(\mathbf{ab}^\ell((\kappa_{R,(\varphi_{w}^y(z,y))}\circ \varphi_w)_{\xi_{w,y},\varphi_{w}(z,y)})(b_0) \right) = \text{tr}^m_{S_w} \left(\mathbf{ab}^\ell((\varphi_{w}^y)_{\xi_{w,y}})(b_0) \right)
\]

Consequently, it follows from definition 3.11.1 that we have (cf. 3.11.25)

\[
\tilde{c} = \sum_{w \in W} \left(\text{tr}^m_{\mathcal{F}_P(U)}(\tilde{\psi}_w) \right) \left(\sum_{y \in \tilde{Y}^{\theta,w}} \mathbf{ab}^\ell((\varphi_{w}^y)_{\xi_{w,y}})(b_0) \right)
\]

this element is clearly the image in \(\tilde{\mathcal{F}}^m_{\mathcal{C}}(T) \) of the element

\[
\sum_{w \in W} \sum_{y \in \tilde{Y}^{\theta,w}} \text{tr}^m_{N_T \times P\left(\Delta_{\xi_{w,y}}(U)\right)} \left(\mathbf{ab}\left((\tilde{\psi}_w)_{\xi_{w,y}}\right) \circ \mathbf{ab}^\ell((\varphi_{w}^y)_{\xi_{w,y}}) \right)(b_0)
\]

\[
= \sum_{w \in W} \sum_{y \in \tilde{Y}^{\theta,w}} \sum_{z \in \tilde{Z}^{w,y}} \left(\mathbf{ab}\left((\tilde{\psi}_w)_{\xi_{w,y}}\right) \circ \mathbf{ab}^\ell((\varphi_{w}^y)_{\xi_{w,y}}) \right)(b_0)
\]

in \(p^m(\mathbf{ab} \circ n_U^U(T))^{T \times N_T(U)} \) where, for any \(w \in W \) and any \(y \in \tilde{Y}^{\theta,w} \), setting \(\xi_{w,y} = \psi_w \circ \xi_{w,y} \) and denoting by \((\xi_{w,y}):U \cong \xi_{w,y}(U) \) the isomorphism induced by \(\xi_{w,y} \) and by \(T_{w,y} \) the converse image of the intersection \(\mathcal{F}_T(\xi_{w,y}(U)) \cap (\xi_{w,y})_{*} \circ \mathcal{F}_P(U) \circ (\xi_{w,y})_{*}^{-1} \) in \(N_T(\xi_{w,y}(U)) \), we choose as above a set of representatives \(Z^{w,y} \) for \(T/T_{w,y} \) and, for any \(z \in Z^{w,y} \), we set \(\tilde{\psi}_w = \kappa_{T,z} \circ \psi_w \).

Finally, we claim that this element \(\tilde{c} \) coincides with \(a \) in 3.11.24 above; that is to say, considering the sets

\[
X = \bigcup_{u \in \tilde{Q}^\theta} \{u\} \times X_u \quad \text{and} \quad Z = \bigcup_{w \in W} \{w\} \times \bigcup_{y \in \tilde{Y}^{\theta,w}} \{y\} \times \tilde{Z}^{w,y}
\]

in \(p^m(\mathbf{ab} \circ n_U^U(T))^{T \times N_T(U)} \) we have to prove the equality

\[
\sum_{(u,z) \in X} \sum_{\nu \in \mathcal{F}_P(U)} (1, \nu) \left(\mathbf{ab}(\psi_{\theta,u,z}) \circ \mathbf{ab}^\ell((\varphi_{\theta,u,z})_{\xi_{\theta,u,z}}) \right)(b_0)
\]

\[
= \sum_{(w,y,z) \in Z} \sum_{\nu \in \mathcal{F}_P(U)} (1, \nu) \left(\mathbf{ab}(\tilde{\psi}_{w,y}) \circ \mathbf{ab}^\ell((\varphi_{w}^y)_{\xi_{w,y}}) \right)(b_0)
\]
actually, we will define a bijection between X and Z such that the corresponding terms in both sums coincide with each other.

Indeed, for any $w \in W$, any $y \in Y^\theta, w$ and any $z \in Z^w, y$ let us consider the element $\varphi(y)^{-1}w\psi(z)^{-1}$ of Q; this element certainly belongs to $Q_{\eta}u^{-1}$ for some u in Q^η so that we have $\varphi(y)^{-1}w\psi(z)^{-1} = vu^{-1}$ for some v in Q_{η}; but, since y belongs to Y^w, $\varphi_w(S_w)$ contains $\psi(U)$ and therefore wS_w contains $\varphi(y)\eta(U)$ (cf. 3.11.13); thus, $\psi(w^{-1}\varphi(y)\eta(U)$ is contained in $\psi(T)$ and, since $Q_{\eta} \subset N_Q(\eta(U))$ (cf. 3.9), $\psi(U) = \psi(z)^{-1}\varphi(y)\psi(v)\eta(U)$ is also contained in $\psi(T)$, so that u belongs to \bar{Q}^η (cf. 3.11.18). Moreover, the double class of v in $(\varphi(R) \cap Q_{\eta}) \setminus Q_{\eta}/(\psi^U(T) \cap Q_{\eta})$ determines an element x in X_u such that we have $v = \varphi(r)xu^{-1}\psi(t)u$ for some $r \in R_{\theta}$ and some $t \in T$ fulfilling $\psi(t)^{\eta} \in Q_{\eta}$, so that we get

$$\varphi(y)^{-1}w\psi(z)^{-1} = \varphi(r)xu^{-1}\psi(t)$$ 3.11.39.

Thus, we obtain a map from Z to X sending (w, y, z) to (u, x).

Moreover, with the same notation, setting

$$q = \psi(tz)^{-1}u = w^{-1}\varphi(y)x$$ 3.11.40,

it is clear that the automorphism $\kappa_{Q_{\eta}}$ of Q (cf. 3.6) maps $S_{u, x}$ onto S_w inducing a group isomorphism $\chi : S_{u, x} \cong S_w$; hence, since we have (cf. 3.10.3)

$$\kappa_{Q, q} \circ \eta = \kappa_{Q, w^{-1}\varphi(y)} \circ \eta \circ \nu_{\theta}(\varphi(r)x) = i_{S_w}^Q \circ \xi_{w, y} \circ \nu_{\theta}(\varphi(r)x)$$ 3.11.41,

we get the group isomorphism (cf. 3.5.4)

$$\chi_{\eta} : \bar{N}_{S_{u, x}} \times p(\Delta_U(\eta)) \cong \bar{N}_{S_w} \times p(\Delta_{\xi_{w, y}, \nu_{\theta}(\varphi(r)x)}(U))$$ 3.11.42.

Then, we claim that

$$\begin{align*}
(1, \nu_{\theta}(\varphi(r)x)^{-1})ab^\xi(x_{\theta, u, x}) &= ab^\xi(\chi_{\eta}) \circ ab^\xi((\varphi(y)_{w, y})^\xi_{w, y}) \\
(1, \nu_{\theta}(\varphi(r)x)^{\psi^U(t)})ab^\xi(x_{\theta, u, x}) &= ab^\xi(\psi_w)^\xi_{w, y} \circ ab^\xi(\chi_{\eta})
\end{align*}$$ 3.11.43.

Indeed, for any $(s, n) \in N_{S_{u, x}} \times p(\Delta_U(\eta))$ it is easily checked that we have (cf. 3.11.23)

$$\begin{align*}
(\varphi_{\theta, u, x}(\varphi(r)x) \circ (\varphi(y)_{w, y} \circ \nu_{\theta}(\varphi(r)x)) \circ \chi_{\eta})(s, n) &= (\varphi_{\theta, u, x}(\varphi(r)x) \circ (\varphi(y)_{w, y} \circ \nu_{\theta}(\varphi(r)x))(s, n) \\
&= (\varphi(r)x, \psi_w)(s, n) = (\varphi(r)x, \psi_w)(s, n) \\
&= (\varphi(r), \nu_{\theta}(x)^{-1}) \cdot (\varphi(y) \circ \varphi_{\theta, u, x})(s, n) \\
&= (\varphi_{\theta, u, x}(\varphi(r)x) \circ \varphi_{\theta, u, x})(s, n)
\end{align*}$$ 3.11.44

since it follows from 3.10.3 that $\kappa_{R, r} \circ \theta = \theta \circ \nu_{\theta}(r) = \theta \circ \nu_{\theta}(\varphi(r))$; thus, since the homomorphism $\varphi_{\theta, u, x}(\varphi(r)x)$ is injective, we get

$$(\varphi(y)_{w, y} \circ \nu_{\theta}(\varphi(r)x)) \circ \chi_{\eta} = \varphi_{\theta, u, x}$$ 3.11.45
and, according to 3.6.4 above, we still get

$$(\varphi_w^u)_{\xi_{w,y}} \circ \chi_\eta = (1, \nu_\eta(\varphi(r)x)) \cdot \varphi_{\theta, u,x}$$ \hspace{1cm} \text{3.11.46.}$$

Similarly, since $q = (\psi(z)^{-1}u)\psi^u(t)^{-1}$, we have (cf. 3.11.23)

\[
\begin{align*}
((\psi^u)_{\zeta_{w,y}} \circ \nu_\eta(\varphi(r)x) \circ \chi_\eta)(s,n) & = ((\psi^u)_{\zeta_{w,y}} \circ \nu_\eta(\varphi(r)x) \circ \chi_\eta)(q,s,n) \\
& = (\psi^u(t^{-1}), id_P) \cdot (\psi^u)_{\xi_{w,y}} \circ \psi_{\eta,u,x}(s,n) \\
& = ((\psi^u)_{\zeta_{w,y}} \circ (t^{-1}, id_P) \cdot \psi_{\eta,u,x})(s,n)
\end{align*}
\]

\hspace{1cm} \text{3.11.47.}$$

where, as in 3.11.23 above, $\zeta_w \in \mathcal{F}(T, U)$ is the unique element fulfilling $\eta = \psi^u \circ \zeta_w$; but, it is easily checked that $\zeta_{w,y} = \zeta_{w,y} \circ \nu_\eta(\varphi(r)x)$; thus, since the homomorphism $(\psi^u)_{\zeta_{w,y}}$ is injective, we get

$$((\psi^u)_{\zeta_{w,y}} \circ \nu_\eta(\varphi(r)x) \circ \chi_\eta = (t^{-1}, id_P) \cdot \psi_{\eta,u,x}$$ \hspace{1cm} \text{3.11.48.}$$

and, according to 3.6.4 above, we still get

$$((\psi^u)_{\zeta_{w,y}} \circ \chi_\eta = (t^{-1}, \nu_\eta(\varphi(r)x)) \cdot \psi_{\eta,u,x}$$ \hspace{1cm} \text{3.11.49.}$$

Moreover, since $\psi^u(t) \in Q_\eta$, in 3.10.3 above $(t, \nu_\eta(\psi^u(t)))$ is the image of an element of $N_{T \times P}(\Delta_{\zeta_w}(U))$; hence, it acts trivially over $ab\left(\tilde{N}_{T \times P}(\Delta_{\zeta_w}(U))\right)$ and therefore we obtain

$$ab((\psi^u)_{\xi_{w,y}}) \circ ab(\chi_\eta) = (1, \nu_\eta(\varphi(r)x) \psi^u(t)) \cdot ab(\psi_{\eta,u,x})$$ \hspace{1cm} \text{3.11.50.}$$

Finally, since $ab(\chi_\eta) = ab(\chi_\eta)^{-1}$, the composition of both equalities in 3.11.43 yields

$$\begin{align*}
(1, \nu_\eta(\psi^u(t))) \cdot ab(\psi_{\eta,u,x}) \circ ab(\varphi_{\theta, u,x}) \\
= ab((\psi^u)_{\xi_{w,y}}) \circ ab((\varphi^\theta)^{\xi_{w,y}})
\end{align*}$$ \hspace{1cm} \text{3.11.51.}$$

and therefore in 3.11.38 we get

$$\sum_{\nu \in \mathcal{F}(U)} \left(ab(\psi_{\eta,u,x}) \circ ab((\varphi^\theta)^{\nu, u,x})\right)(b_\eta)$$ \hspace{1cm} \text{3.11.52.}$$
Conversely, for any \(u \in \hat{Q}^o \) and any \(x \in X_u \) let us consider the element \(w \in W \) determined by the double class of \(xu^{-1} \) in \(\varphi(R) \setminus Q/\psi(T) \), so that we have
\[
xu^{-1} = \varphi(y)^{-1}w\psi(z)
\]
for suitable \(y \in R \) and \(z \in T \); then, with the notation above, we claim that \(\varphi_w(S_w) \) contains \(\theta(U) \) or, equivalently, that \(^wS_w = \varphi(R) \cap ^w\psi(T) \) contains \(\varphi(y)\eta(U) \). Indeed, since \(\theta(U) \) is contained in \(R \), it is clear that \(\varphi(y)\eta(U) \) is contained in \(\varphi(R) \); it remains to prove that \(\eta(U) \) is contained in \(\varphi(R) \) or, equivalently, in \(^xu^{-1}\psi(T) \); but, \(x \) normalizes \(\eta(U) \) and \(\eta = \psi^u \circ \zeta_u \), so that \(\eta(U) \) is contained in \(\psi^n(T) \); this proves the claim.

Consequently, from the very definitions of \(\hat{R}^o,w \), of \(\hat{Y}^o,w \) and of \(\hat{S}_w^o \) above, we actually have \(y = \varphi_w(s)\hat{y}r \) for a unique \(\hat{y} \in \hat{Y}^o,w \), a unique \(s \in \hat{S}_w^o \) and a unique \(r \in R_o \); now, the equality 3.11.40 becomes
\[
\varphi(r)xu^{-1} = \varphi(\hat{y})^{-1}(\varphi \circ \varphi_w)(s^{-1})w\psi(z)
\]
and, since \(s \in S_w \subset \psi(T) \), there exist a unique \(\hat{z} \in Z^{w,\hat{y}} \) and a unique \(t \in T_{w,\hat{y}} \) fulfilling \(s^{-1}\psi(z) = \psi(\hat{z}t^{-1}) \), so that equality 3.11.55 becomes
\[
\varphi(r)xu^{-1}\psi(t) = \varphi(\hat{y})^{-1}w\psi(\hat{z})
\]
Thus, we obtain a map from \(X \) to \(Z \) sending \((u,x) \) to \((w,\hat{y},\hat{z}) \) which is clearly the inverse of the map from \(Z \) to \(X \) defined above. We are done.

3.12. For the next result, we borrow the notation from A5 in [11]. Recall that in 3.10.5 above, for any \(m \in \mathbb{N} \) we actually define the functors
\[
\hat{\tau}_{F,m}^U : \hat{F} \to \hat{\mathcal{O}-mod}^o \quad \text{and} \quad \hat{\tau}_{F,o}^U : \hat{F} \to \mathcal{O}-\mathfrak{mod}
\]

Corollary 3.13. Let \(\mathcal{G} \) be a subcategory of \(\hat{F} \) having the same objects, only having \(\mathcal{G} \)-isomorphisms and containing all the \(\hat{F}_p \)-isomorphisms. Then, with the notation above, for any \(m \in \mathbb{N} \) and any \(n \geq 1 \) we have
\[
\mathcal{H}^o_{\mathcal{G}}(\hat{F}, \hat{\tau}_{F,m}^U) = \{0\}.
\]

Proof: It is an immediate consequence of Theorems 3.11 above and Theorem A5.5 in [11].

4. **Existence and uniqueness of the perfect \(F \)-locality**

4.1. As in 3.1 above, let \(P \) be a finite \(p \)-group, \(F \) a Frobenius \(P \)-category and \((\tau^h, \mathcal{L}^o, \pi^h)\) the corresponding basic \(F \)-locality. Recall that we have a contravariant functor [8, Proposition 13.14]
\[
\epsilon^p_F : F \to \mathfrak{Ab}
\]
mapping any subgroup Q of P fully centralized in \mathcal{F} on $C_P(Q)/F_{C_P(Q)}$, where $F_{C_P(Q)}$ denotes the $C_P(Q)$-focal subgroup of $C_P(Q)$ [8, 13.1], and any \mathcal{F}-morphism $\varphi : R \to Q$ between subgroups of P fully centralized in \mathcal{F}, on the group homomorphism

\[C_P(Q)/F_{C_P(Q)} \to C_P(R)/F_{C_P(R)} \]

induced by an \mathcal{F}-morphism [8, 2.8.2]

\[\zeta : \varphi(R)C_P(Q) \to R\cdot C_P(R) \]

fulfilling $\zeta(\varphi(v)) = v$ for any $v \in R$. Actually, it is easily checked that this contravariant functor factorizes through the exterior quotient $\hat{\mathcal{F}}$ inducing a new contravariant functor

\[\hat{\mathcal{F}}^1 : \hat{\mathcal{F}} \to \mathcal{Ab} \]

Proposition 4.2. The structural functor $\tau^b : T_P \to \mathcal{L}^b$ induces a natural map $\hat{\tau}^b$ from $\hat{\mathcal{F}}^1$ to \mathcal{F}^1.

Proof: For any subgroup Q of P, the functor τ^b induces a group homomorphism τ_Q^b from $N_P(Q)$ to $\mathcal{L}^b(Q)$ which clearly maps $C_P(Q)$ in $(\mathcal{F} \ker(\tau^b))(Q)$; we claim that this correspondence defines a natural map (cf. 3.1.2)

\[\hat{\tau}^b : \hat{\mathcal{F}}^1 \to \mathcal{F}^1 \]

First of all, we claim that τ_Q^b maps the $C_P(Q)$-focal subgroup above on the trivial subgroup of $\mathcal{L}^b(Q)$; we may assume that Q is fully centralized in \mathcal{F} and then we know that $F_{C_P(Q)}$ is generated by the elements $u^{-1}\theta(u)$ where u runs over any subgroup T of $C_P(Q)$ and θ runs over $\mathcal{F}(T,Q)$ stabilizing T and acting trivially on Q [8, 13.1]; but, according to 2.12 above, θ can be lifted to $\hat{\theta} \in N_G(T,Q)$ normalizing T and centralizing Q; hence, the element $u^{-1}\theta(u) = [u, \hat{\theta}^{-1}]$ belongs to $[C_G(Q), C_G(Q)]$ and therefore it has indeed a trivial image in $\mathcal{L}^b(Q)$; consequently, the canonical homomorphism

\[C_P(Q) \subset C_G(Q) \to \ker(\pi_Q) \]

factorizes through a group homomorphism $\hat{\tau}^b_Q : \hat{\mathcal{F}}^1(Q) \to \ker(\pi_Q)$.

In order to prove the naturality of this correspondence, let $x : R \to Q$ be an \mathcal{L}^b-morphism between subgroups of P fully centralized in \mathcal{F} and set $\varphi = \pi_{Q,R}^b(x)$; it follows from [8, 2.8.2] that there exists an \mathcal{F}-morphism ζ from $\varphi(R)C_P(Q)$ to $R\cdot C_P(R)$ fulfilling $\zeta(\varphi(v)) = v$ for any $v \in R$; then, ζ can be lifted to an \mathcal{L}^b-morphism

\[y : \varphi(R)C_P(Q) \to R\cdot C_P(R) \]
fulfilling \((\pi^b_{\mathcal{L}^b_{\mathcal{F}}(Q)(R)})(\varphi(v)) = v\) for any \(v \in R\); in particular, by

the divisibility of \(\mathcal{L}^b\), \(y\) induces an \(\mathcal{L}^b\)-isomorphism \(y_R : \varphi(R) \cong R\) and then, setting \(xy_R = z\), the \(\mathcal{L}^b\)-morphism \(z : \varphi(R) \to Q\) fulfills \(\pi^b_{\mathcal{L}^b_{\mathcal{F}}(Q)(R)}(z) = \iota^b_{2}(\varphi)\) (cf. 2.4); consequently, we easily get the following commutative diagram

\[
\begin{CD}
\mathcal{L}^b_{\mathcal{F}}(Q) @> \iota^b_{Q} >> \text{Ker}(\pi_Q) \\
\iota^b_{\mathcal{F}}(\varphi) \downarrow @. \downarrow \iota^b_{\varphi}(\varphi) \\
\mathcal{L}^b_{\mathcal{F}}(R) @> \iota^b_{R} >> \text{Ker}(\pi_R)
\end{CD}
\]

We are done.

4.3. The image \(\hat{\tau}^b(\hat{\mathcal{L}}^b_{\mathcal{F}})\) of \(\hat{\tau}^b\) is a subfunctor of \(\hat{\mathcal{L}}^b\) and therefore, by 2.8 above, it determines a quotient \(\mathcal{F}\)-locality \(\hat{\mathcal{L}}^b = \mathcal{L}^b / (\hat{\tau}^b(\hat{\mathcal{L}}^b_{\mathcal{F}}) \circ \hat{\tau}^b)\) of \(\mathcal{L}^b\) (cf. 2.3); we denote by

\[
\tau^b : \mathcal{T}P \to \hat{\mathcal{L}}^b \text{ and } \tau^b : \hat{\mathcal{L}}^b \to \mathcal{F}
\]

the corresponding structural functors; the point is that \(\tau^b\) admits an essentially unique section as proves the theorem below. First of all, we need the following lemma.

Lemma 4.4. For any subgroup \(Q\) of \(P\) there is a group homomorphism \(\mu_Q : \mathcal{F}(Q) \to \hat{\mathcal{L}}^b(Q)\) fulfilling \(\mu_Q \circ \kappa_Q = \tau^b_Q\).

Proof: Since we can choose an \(\mathcal{F}\)-isomorphism \(\theta : Q \cong Q'\) such that \(Q'\) is fully normalized in \(\mathcal{F}\) and \(\theta\) can be lifted to \(\hat{\mathcal{L}}^b(Q',Q)\), we may assume that \(Q\) is fully normalized in \(\mathcal{F}\).

We apply [8, Lemma 18.8] to the groups \(\mathcal{F}(Q)\) and \(\hat{\mathcal{L}}^b(Q)\), to the normal \(p\)-subgroup \(\text{Ker}(\pi^b_Q)\) of \(\hat{\mathcal{L}}^b(Q)\) and to the group homomorphism \(\text{id}_{\mathcal{F}(Q)}\). We consider the group homomorphism \(\tau^b_Q : N_{\mathcal{F}(Q)} \to \hat{\mathcal{L}}^b(Q)\) and, for any subgroup \(R\) of \(N_{\mathcal{F}(Q)}\) and any \(\alpha \in \mathcal{F}(Q)\) such that \(\alpha \circ \mathcal{F}(Q) \circ \alpha^{-1} \subset \mathcal{F}(Q)\), it follows from [8, Proposition 2.11] that there exists \(\zeta \in \mathcal{F}(N_{\mathcal{F}(Q)};Q\cdot R)\) extending \(\alpha\); then, it follows from [8, 17.11.2] that there exists \(x \in \hat{\mathcal{L}}^b(Q)\) fulfilling

\[
\tau^b_Q(\zeta(v)) = \pi^b_Q(v)
\]

for any \(v \in R\). That is to say, condition 18.8.1 in [8, Lemma 18.8] is fulfilled and therefore this lemma proves the existence of \(\mu_Q\) as announced.

Theorem 4.5. With the notation above, the structural functor \(\tau^b\) admits a unique natural \(\mathcal{F}\)-isomorphism class of \(\mathcal{F}\)-locality functorial sections.
Proof: We consider the filtration of \(\tilde{\mathcal{L}}^N \) induced by the filtration of the basic \(\mathcal{F} \)-locality introduced in section 3 and then argue by induction. That is to say, recall that we denote by \(\mathcal{C}_P \) a set of representatives for the set of \(P \)-conjugacy classes of subgroups \(U \) of \(P \) (cf. 2.13); now, for any subset \(\mathcal{N} \) of \(\mathcal{C}_P \) fulfilling condition 3.2.1, we consider the obvious functor (cf. 3.2)

\[
\hat{\tau}^b(\tilde{\mathcal{L}}^N) : \tilde{\mathcal{F}} \to \mathfrak{Af}
\]

sending any subgroup \(Q \) of \(P \) to \(\hat{\tau}^b(\tilde{\mathcal{L}}^N(Q)) \), and the quotient \(\mathcal{F} \)-locality \(\tilde{\mathcal{L}}^{\mathcal{N}} = \mathcal{L}^b / (\hat{\tau}^b(\tilde{\mathcal{L}}^N) \circ \tilde{\mathcal{F}}) \) with the structural functors

\[
\tilde{\mathcal{L}}^{\mathcal{N}} : \mathcal{T}_P \to \tilde{\mathcal{L}}^{\mathcal{N}} \quad \text{and} \quad \tilde{\mathcal{L}}^{\mathcal{N}} : \tilde{\mathcal{L}}^{\mathcal{N}} \to \mathcal{F}
\]

Note that if \(\mathcal{N} = \emptyset \) then \(\tilde{\mathcal{L}}^{\mathcal{N}} = \tilde{\mathcal{L}}^b \); hence, arguing by induction on \(|\mathcal{C}_P - \mathcal{N}| \), it suffices to prove that \(\tilde{\mathcal{L}}^{\mathcal{N}} \) admits a unique natural \(\mathcal{F} \)-isomorphism class of \(\mathcal{F} \)-locality functorial sections.

Moreover, if \(\mathcal{N} = \mathcal{C}_P \) then \(\tilde{\mathcal{L}}^{\mathcal{N}} = \tilde{\mathcal{L}}^b \); therefore \(\tilde{\mathcal{L}}^{\mathcal{N}} = \mathcal{F} \) and \(\tilde{\mathcal{L}}^{\mathcal{N}} = \mathfrak{d}_F \), so that we may assume that \(\mathcal{N} \neq \mathcal{C}_P \); then, we fix a minimal element \(U \) in \(\mathcal{C}_P - \mathcal{N} \), setting \(\mathcal{M} = \mathcal{N} \cup \{U\} \) and \(\tilde{\mathcal{L}}^{\mathcal{M}} = \tilde{\mathcal{L}}^{\mathcal{N}} / \tilde{\mathcal{F}} \). If \(U \neq P \) then \(\mathcal{M} \neq \mathcal{C}_P \) and, as a matter of fact, we have \(\hat{\tau}^b(\tilde{\mathcal{F}}) \cap \tilde{\mathcal{F}} = \{0\} \), so that

\[
(\hat{\tau}^b(\tilde{\mathcal{L}}^N) \circ \tilde{\mathcal{F}}) / (\hat{\tau}^b(\tilde{\mathcal{L}}^N) \circ \tilde{\mathcal{F}}) \cong \tilde{\mathcal{F}}
\]

in this case, for any \(m \in \mathbb{N} \) we simply denote by \(\mathfrak{l}^N \circ \mathfrak{d}_F \) the converse image of \(p^m \tilde{\mathcal{L}}^N \) in \(\mathfrak{l}^N \circ \tilde{\mathcal{F}} \); set \(\mathfrak{l}^N \circ \mathfrak{d}_F = \mathfrak{l}^N \circ \tilde{\mathcal{F}} \), and, coherently, denote by \(\mathfrak{l}^N \circ \mathfrak{d}_F \) and \(\mathfrak{l}^N \circ \tilde{\mathcal{F}} \) the corresponding structural functors. Note that, by 3.8 and 3.10.5 above we get

\[
\mathfrak{l}^N \circ \mathfrak{d}_F / \mathfrak{l}^N \circ \tilde{\mathcal{F}} \cong \mathfrak{d}_F / \tilde{\mathcal{F}}
\]

and in particular, by Corollary 3.13, for any \(n \in \mathbb{N} \) we still get

\[
\mathfrak{l}^N \circ \mathfrak{d}_F / \mathfrak{l}^N \circ \tilde{\mathcal{F}} = \{0\}
\]

If \(U = P \) then \(\mathcal{M} = \mathcal{C}_P \), so that in this case \(\mathfrak{l}^N \circ \mathfrak{d}_F = \mathfrak{l}^N \circ \tilde{\mathcal{F}} \) and, denoting by \(\mathfrak{d}_P : \tilde{\mathcal{F}} \to \mathfrak{Af} \) the functor mapping \(P \) on \(Z(P) \) and any other subgroup of \(P \) on \(\{0\} \), from 3.7 and 3.8 it is easily checked that

\[
\tilde{\mathcal{L}}^N \circ \tilde{\mathcal{F}} / (\hat{\tau}^b(\tilde{\mathcal{L}}^N) \circ \tilde{\mathcal{F}}) \cong \prod_{\sigma \in \tilde{\mathcal{F}}(P)} \mathfrak{d}_P / \Delta(\mathfrak{d}_P)
\]

where \(\Delta \) denotes the usual diagonal map; but, similarly we have

\[
\mathfrak{l}^N \circ \mathfrak{d}_P \cong \prod_{\sigma \in \tilde{\mathcal{F}}(P)} \delta_m \circ \mathfrak{d}_P
\]
and, according to Corollary 3.13, we get \(H^n_{\mathcal{F}, s_m \circ \partial_P} = \{0\} \); moreover, since \(\rho \) does not divide \(|\mathcal{F}(P)| \), we still have

\[
\prod_{\sigma \in \mathcal{F}(P)} \partial_P / \Delta(\partial_P) \cong \prod_{\sigma \in \mathcal{F}(P) - \{\text{id}_P\}} \partial_P
\]

hence, still setting \(\mathring{I}_F^{p,m} = p^m \mathring{F}_F^p \) and \(\mathcal{L}^{b,F,m} = \mathcal{L}^{b,F/m} \), we still get

\[
H^n_{\mathcal{F}, \mathcal{I}_F^{p,m} / \mathcal{I}_F^{p,m+1}} = \{0\}
\]

Further, we denote by \(\mathcal{C}_F \) a set of representatives, fully normalized in \(\mathcal{F} \), for the \(\mathcal{F} \)-isomorphism classes of subgroups of \(P \) and, for any subgroup \(Q \) in \(\mathcal{C}_F \), we choose a group homomorphism \(\mu_Q : \mathcal{F}(Q) \to \mathcal{L}(Q) \) as in Lemma 4.4 above and, for any \(m \in \mathbb{N} \), simply denote by \(\mu_Q^m \) the corresponding group homomorphism from \(\mathcal{F}(Q) \) to \(\mathcal{L}^{b,F,m}(Q) \). For any \(\mathcal{F} \)-morphism \(\phi : R \to Q \) denote by \(\mathcal{F}(Q)_\phi \) and by \(\mathcal{L}^{b,F,m}(Q)_\phi \) the respective stabilizers of \(\phi(R) \) in \(\mathcal{F}(Q) \) and in \(\mathcal{L}^{b,F,m}(Q) \); it is clear that we have a group homomorphism \(a_\phi : \mathcal{F}(Q)_\phi \to \mathcal{F}(R) \) fulfilling \(\eta \circ \phi = \phi \circ a_\phi(\eta) \) for any \(\eta \in \mathcal{F}(Q)_\phi \); similarly, for any \(x^m \in \mathcal{L}^{b,F,m}(Q,R) \) we have a group homomorphism

\[
a_{x^m} : \mathcal{L}^{b,F,m}(Q)_\phi \to \mathcal{L}^{b,F,m}(R)
\]

fulfilling \(y^m \cdot x^m = x^m \cdot a_{x^m}(y^m) \) for any \(y^m \in \mathcal{L}^{b,F,m}(Q)_\phi \).

For any subgroups \(Q \) and \(R \) in \(\mathcal{C}_F \) and any \(\mathcal{F} \)-morphism \(\phi : R \to Q \), \(\mathcal{F}_P(Q) \) and \(\mathcal{F}_P(R) \) are respective Sylow \(p \)-subgroups of \(\mathcal{F}(Q) \) and \(\mathcal{F}(R) \) [8, Proposition 2.11]; therefore, there are \(\alpha \in \mathcal{F}(Q) \) such that \(\mathcal{F}_P(Q)_\alpha \) contains a Sylow \(\mathcal{F}_P(Q)_{\phi,\alpha} \) \(p \)-subgroup of \(\mathcal{F}(Q)_\phi \) and \(\beta \in \mathcal{F}(R) \) such that \(a_\phi(\mathcal{F}_P(Q)_{\phi,\alpha}) \) is contained in \(\mathcal{F}_P(R)_\beta \). Thus, we choose a set of representatives \(\mathcal{F}_{Q,R} \) for the set of double classes \(\mathcal{F}(Q) \setminus \mathcal{F}(Q,R) / \mathcal{F}(R) \) such that, for any \(\phi \) in \(\mathcal{F}_{Q,R} \), \(\mathcal{F}_P(Q) \) contains a Sylow \(p \)-subgroup of \(\mathcal{F}(Q)_\phi \) and \(a_\phi(\mathcal{F}_P(Q)_\phi) \) is contained in \(\mathcal{F}_P(R) \); of course, we choose \(\mathcal{F}_{Q,R} = \{\text{id}_Q\} \).

With all this notation and arguing by induction on \(|\mathcal{C}_P - \mathcal{N}| \) and on \(m \), we will prove that there is a functorial section

\[
\sigma^m : \mathcal{F} \to \mathcal{L}^{b,F,m}
\]

such that, for any \(Q \in \mathcal{C}_F \) and any \(u \in Q \), we have \(\sigma^m(\kappa_Q(u)) = \mathcal{L}^{b,F,m}(u) \), and that, for any groups \(Q \) and \(R \) in \(\mathcal{C}_F \), and any \(\mathcal{F} \)-morphism \(\phi : Q \to R \)
in $\mathcal{F}_{Q,R}$, we have the commutative diagram
\[
\begin{array}{ccc}
\mathcal{F}(Q) & \xrightarrow{\mu^m_Q} & \mathcal{L}^{b,U,m} (Q) \\
\downarrow a_\varphi & & \downarrow a_{\varphi m} \\
\mathcal{F}(R) & \xrightarrow{\mu^m_R} & \mathcal{L}^{b,U,m} (R)
\end{array}
\]
4.5.12.

Since we have $\pi^{b,U,0} = \pi^{b,U}$ and $|M| = |N| + 1$, by the induction hypothesis we actually may assume that $m \neq 0$, that $\pi^{b,U,m-1}$ admits a functorial section σ^{m-1} which fulfills the conditions above.

Then, for any $\varphi \in \mathcal{F}_{Q,R}$ it follows from [8, Proposition 2.11], applied to the inverse φ^* of the isomorphism $\varphi : R \cong \varphi(R)$ induced by φ, that there exists an \mathcal{F}-morphism $\zeta : N_\varphi(Q) \rightarrow N_\varphi(R)$ fulfilling $\zeta(\varphi(v)) = v$ for any $v \in R$, so that we easily get the following commutative diagram:
\[
\begin{array}{ccc}
N_\varphi(Q) & \xrightarrow{\kappa_Q} & \mathcal{F}(Q) \\
\downarrow \zeta & & \downarrow a_\varphi \\
N_\varphi(R) & \xrightarrow{\kappa_R} & \mathcal{F}(R)
\end{array}
\]
4.5.14;

note that, if $Q = R$ and $\varphi = \kappa_Q(u)$ for some $u \in Q$, we may assume that $\zeta = \kappa_{N_\varphi(Q)}(u)$. In particular, since σ^{m-1} fulfills the corresponding commutative diagram 4.5.12, we still get the following commutative diagram
\[
\begin{array}{ccc}
N_\varphi(Q) & \xrightarrow{\tau_{N_\varphi(Q),\varphi}^{b,U,m-1}} & \mathcal{L}^{b,U,m-1} (Q) \\
\downarrow \zeta & & \downarrow a_{\varphi m-1} \\
N_\varphi(R) & \xrightarrow{\tau_{N_\varphi(R),\varphi}^{b,U,m-1}} & \mathcal{L}^{b,U,m-1} (R)
\end{array}
\]
4.5.15.

The first step is, for any \mathcal{F}-morphism φ in $\mathcal{F}_{Q,R}$, to choose a suitable lifting $\sigma^{m-1}(\varphi)$ of $\sigma^{m-1}(\varphi)$ in $\mathcal{L}^{b,U,m-1} (Q,R)$. We start by choosing a lifting $\sigma^{m-1}(\zeta)$ of $\sigma^{m-1}(\zeta)$ in the obvious stabilizer $\mathcal{L}^{b,U,m} (N_\varphi(R), N_\varphi(Q))_{R,\varphi(R)}$; thus, by the coherence of $\mathcal{L}^{b,U,m}$ (cf. (Q)), for any $u \in N_\varphi(Q)$ we have
\[
\sigma^{m-1}(\zeta) \cdot \tau_{N_\varphi(Q),\varphi}^{b,U,m}(u) = \tau_{N_\varphi(R),\varphi}^{b,U,m}(\zeta(u)) \cdot \sigma^{m-1}(\zeta)
\]
4.5.16;

moreover, by the divisibility of $\mathcal{L}^{b,U,m}$ (cf. 2.4), we find $z_\varphi \in \mathcal{L}^{b,U,m} (R, \varphi(R))$ fulfilling
\[
\sigma^{m-1}(\zeta) \cdot \tau_{N_\varphi(Q),\varphi}^{b,U,m}(1) = \tau_{N_\varphi(R),\varphi}^{b,U,m}(1) \cdot z_\varphi
\]
4.5.17;

similarly, $\sigma^{m-1}(\zeta)$ restricts to $\sigma^{m-1}(\varphi^*) \in \mathcal{L}^{b,U,m-1} (R, \varphi(R))$, so that it is easily checked that z_φ lifts $\sigma^{m-1}(\varphi^*)$ to $\mathcal{L}^{b,U,m} (R, \varphi(R))$ and therefore $\sigma^{m-1}(\varphi) = \tau_{Q,\varphi(R)}^{b,U,m}(1) z_\varphi^{-1}$ lifts $\sigma^{m-1}(\varphi)$ to $\mathcal{L}^{b,U,m}(Q,R)$.

Then, from 4.5.16 and 4.5.17 above, for any $u \in N_P(Q)_{\varphi}$ we get
\[\sigma_{m-1}(\zeta) \cdot \tau_{N_P(Q)_{\varphi}}(u) \cdot \tau_{N_P(Q)_{\varphi}}(1) = \tau_{N_P(R)_{\varphi}}(1) \cdot z_{\varphi} \cdot \tau_{N_P(R)_{\varphi}}(u)\]
\[= \tau_{N_P(R)_{\varphi}}(1) \cdot \tau_{N_P(R)_{\varphi}}(\zeta(u)) \cdot z_{\varphi}\]
\[= \tau_{Q}(u) \cdot \sigma_{m-1}(\varphi) = \tau_{Q}(u) \cdot \sigma_{m-1}(\varphi)\]
and therefore we still get $z_{\varphi} \cdot \tau_{Q}(u) = \tau_{Q}(u) \cdot z_{\varphi}$, so that
\[\tau_{Q}(u) = \tau_{Q}(u) \cdot \sigma_{m-1}(\varphi)\]
or, equivalently, we have $a_{\sigma_{m-1}(\varphi)}(\tau_{Q}(u)) = \tau_{Q}(u) \cdot \sigma_{m-1}(\varphi)$.

At this point, we will apply the uniqueness part of [8, Lemma 18.8] to the groups $F(Q)_{\varphi}$ and $L^{h, U, m}(R)$ and to the composition of group homomorphisms
\[a_{\sigma_{m-1}(\varphi)} \circ \mu_{Q}^{-1} : F(Q)_{\varphi} \longrightarrow L^{h, U, m-1}(Q)_{\varphi} \longrightarrow L^{h, U, m-1}(R)\]
\[= \tau_{R} \circ \zeta : N_P(Q)_{\varphi} \longrightarrow N_P(R) \longrightarrow L^{h, U, m}(R)\]
\[= \tau_{R} \circ \zeta : N_P(Q)_{\varphi} \longrightarrow N_P(R) \longrightarrow L^{h, U, m}(R)\]
Now, according to the commutative diagrams 4.5.12 for $m - 1$ and 4.5.14, and to equality 4.5.18 above, the two group homomorphisms
\[a_{\sigma_{m-1}(\varphi)} \circ \mu_{Q}^{-1} : F(Q)_{\varphi} \longrightarrow L^{h, U, m}(Q)_{\varphi} \longrightarrow L^{h, U, m}(R)\]
\[= \mu_{R} \circ a_{\varphi} : F(R) \longrightarrow L^{h, U, m}(R)\]
both fulfill the conclusion of [8, Lemma 18.8]; consequently, according to this lemma, there is k_{φ} in the kernel of the canonical homomorphism from $L^{h, U, m}(R)$ to $L^{h, U, m-1}(R)$ such that, denoting by $\text{int}_{L^{h, U, m}(R)}(k_{\varphi})$ the conjugation by k_{φ} in $L^{h, U, m}(R)$, we have
\[\text{int}_{L^{h, U, m}(R)}(k_{\varphi}) \circ a_{\sigma_{m-1}(\varphi)} \circ \mu_{Q}^{-1} = \mu_{R} \circ a_{\varphi}\]
\[\text{int}_{L^{h, U, m}(R)}(k_{\varphi}) \circ a_{\sigma_{m-1}(\varphi)} = a_{\sigma_{m-1}(\varphi)} \cdot k_{\varphi}^{-1}\]
Finally, we choose \(\sigma^{m-1}(\varphi) = \sigma^{m-1}(\varphi) \cdot \kappa^{-1}_\varphi \), lifting indeed \(\sigma^{m-1}(\varphi) \) to \(\mathcal{L}^{h, U, m}(Q, R) \) and, according to equalities 4.5.23 and 4.5.24, fulfilling the following commutative diagram:

\[
\begin{array}{ccc}
\mathcal{F}(Q)_{\varphi} & \xrightarrow{\mu_Q^m} & \mathcal{L}^{h, U, m}(Q)_{\varphi} \\
\downarrow a_\varphi & & \downarrow a_{\sigma^{m-1}(\varphi)} \\
\mathcal{F}(R) & \xrightarrow{\mu_R^m} & \mathcal{L}^{h, U, m}(R) \\
\end{array}
\]

4.5.25;

note that, if \(Q = R \) and \(\varphi = \kappa_Q(u) \) for some \(u \in Q \), this choice is compatible with \(\sigma^{m-1}(\kappa_Q(u)) = \tau_Q^{h, U, m}(u) \). In particular, considering the action of \(\mathcal{F}(Q) \times \mathcal{F}(R) \), by composition on the left- and on the right-hand, on \(\mathcal{F}(Q, R) \) and on \(\mathcal{L}^{h, U, m}(Q, R) \) via \(\mu_Q^m \) and \(\mu_R^m \), we have the inclusion of stabilizers

\[
(\mathcal{F}(Q) \times \mathcal{F}(R))_{\varphi} \subset (\mathcal{F}(Q) \times \mathcal{F}(R))_{\sigma^{m-1}(\varphi)}
\]

4.5.26;

indeed, it is quite clear that \((\alpha, \beta) \in (\mathcal{F}(Q) \times \mathcal{F}(R))_{\varphi} \) forces \(\alpha \in \mathcal{F}(Q)_{\varphi} \); then, since \(\alpha \circ \varphi = \varphi \circ a_\varphi(\alpha) \), we get \(\beta = \alpha_\varphi(\alpha) \) and the inclusion above follows from the commutativity of diagram 4.5.26.

This allows us to choose a family of liftings \(\{\sigma^{m-1}(\varphi)\}_\varphi \), where \(\varphi \) runs over the set of \(\mathcal{F} \)-morphisms, which is compatible with \(\mathcal{F} \)-isomorphisms; precisely, for any pair of subgroups \(Q \) and \(R \) in \(\mathcal{C}_\mathcal{F} \), and any \(\varphi \in \mathcal{F}_{Q,R} \), we choose a lifting \(\sigma^{m-1}(\varphi) \) of \(\sigma^{m-1}(\varphi) \) in \(\mathcal{L}^{h, U, m}(Q, R) \) as above. Then, any subgroup \(Q \) of \(P \) determines a unique \(\hat{Q} \) in \(\mathcal{C}_\mathcal{F} \) which is \(\mathcal{F} \)-isomorphic to \(Q \) and we choose an \(\mathcal{F} \)-isomorphism \(\omega_Q : \hat{Q} \cong Q \) and a lifting \(x_Q \in \mathcal{L}^{h, U, m}(Q, \hat{Q}) \) of \(\omega_Q \); in particular, we choose \(\omega_Q = \text{id}_{\hat{Q}} \) and \(x_Q = \tau_Q^{h, U, m}(1) \). Thus, any \(\mathcal{F} \)-morphism \(\varphi : R \to Q \) determines subgroups \(\hat{Q} \) and \(\hat{R} \) in \(\mathcal{C}_\mathcal{F} \) and an element \(\hat{\varphi} \) in \(\mathcal{F}_{Q, R} \) in such a way that there are \(\alpha_\varphi \in \mathcal{F}(\hat{Q}) \) and \(\beta_\varphi \in \mathcal{F}(\hat{R}) \) fulfilling

\[
\varphi = \omega_Q \circ \alpha_\varphi \circ \hat{\varphi} \circ \beta_\varphi^{-1} \circ \omega_R^{-1}
\]

4.5.27

and we define

\[
\sigma^{m-1}(\varphi) = x_Q \cdot \mu_Q^m(\alpha_\varphi) \cdot \sigma^{m-1}(\hat{\varphi}) \cdot \mu_R^m(\beta_\varphi)^{-1} \cdot x_R^{-1}
\]

4.5.28;

once again, if \(Q = R \) and \(\varphi = \kappa_Q(u) \) for some \(u \in Q \), we actually get \(\sigma^{m-1}(\kappa_Q(u)) = \tau_Q^{h, U, m}(u) \). This definition does not depend on the choice of \((\alpha_\varphi, \beta_\varphi) \) since for another choice \((\alpha', \beta') \) we clearly have \(\alpha' = \alpha_\varphi \circ \alpha'' \) and \(\beta' = \beta_\varphi \circ \beta'' \) for a suitable \((\alpha'', \beta'') \) in \((\mathcal{F}(\hat{Q}) \times \mathcal{F}(\hat{R}))_{\hat{\varphi}} \) and it suffices to apply inclusion 4.5.26.
Moreover, for any pair of \mathcal{F}-isomorphisms $\zeta : Q \cong Q'$ and $\xi : R \cong R'$, considering $\varphi' = \zeta \circ \varphi \circ \xi^{-1}$ we claim that

$$\sigma^{-1}(\varphi') = \sigma^{-1}(\zeta) \cdot \sigma^{-1}(\varphi) \cdot \sigma^{-1}(\xi)^{-1}$$ \hspace{0.05\textwidth} 4.5.29;

indeed, it is clear that Q' also determines \hat{Q} in \mathcal{C}_F and therefore, if we have $\zeta = \omega_Q \circ \gamma \circ \omega_{Q'}$ then we obtain $\sigma^{-1}(\zeta) = x_{Q'} \cdot \mu^\alpha_Q(\alpha \cdot x_Q^{-1})$; similarly, if we have $\xi = \omega_R \circ \beta \circ \omega_{R'}$ we also obtain $\sigma^{-1}(\xi)^{-1} = x_R \cdot \mu_R(\beta \cdot x_R^{-1})$; further, φ' also determines $\hat{\varphi}$ in $\mathcal{F}_{\hat{Q}, \hat{R}}$; consequently, we get

$$\sigma^{-1}(\zeta) \cdot \sigma^{-1}(\varphi) \cdot \sigma^{-1}(\xi)^{-1} = (x_{Q'} \cdot \mu^\alpha_Q(\alpha \cdot x_Q^{-1}) \cdot (x_R \cdot \mu_R(\beta \cdot x_R^{-1}))^{-1} = \sigma^{-1}(\varphi')$$ \hspace{0.05\textwidth} 4.5.30.

Recall that we have the exact sequence of contravariant functors from \mathcal{F} to \mathcal{F}^b (cf. 2.7 and 2.8)

$$0 \to \mathcal{I}_m \to \mathcal{R}(\mathcal{F}) \to \mathcal{R}(\mathcal{F}) \to 0$$ \hspace{0.05\textwidth} 4.5.31;

hence, for another \mathcal{F}-isomorphism $\psi : T \to R$ we clearly have

$$\sigma^{-1}(\varphi) \cdot \sigma^{-1}(\psi) = \sigma^{-1}(\varphi \circ \psi) \cdot \gamma^m_{\psi, \varphi}$$ \hspace{0.05\textwidth} 4.5.32

for some $\gamma^m_{\psi, \varphi}$ in $\mathcal{I}^m(\mathcal{F})/\mathcal{I}_m^m(\mathcal{F})$. That is to say, borrowing notation and terminology from \mathcal{C}_F [8, A2.8], we get a correspondence sending any \mathcal{F}-chain $q : \Delta_2 \to \mathcal{F}$ to the element $\gamma^m_{q(0), q(1)}$ in $\mathcal{I}^m(\mathcal{F})/\mathcal{I}_m^m(\mathcal{F})$ and, setting

$$\mathcal{C}^n(\mathcal{F}, \mathcal{I}^m_\mathcal{F}) = \prod_{\tilde{z} \in \mathcal{Z}(\Delta_n, \mathcal{F})} (\mathcal{I}^m_\mathcal{F} / \mathcal{I}_m^m(\mathcal{F}))_{\tilde{z}}(0)$$ \hspace{0.05\textwidth} 4.5.33

for any $n \in \mathbb{N}$, we claim that this correspondence determines an \textit{stable} element γ^m of $\mathcal{C}^2(\mathcal{F}, \mathcal{I}^m_\mathcal{F})$ [8, A3.17].

Indeed, for another \mathcal{F}-isomorphic \mathcal{F}-chain $q' : \Delta_2 \to \mathcal{F}$ and a natural \mathcal{F}-isomorphism $\nu : q \cong q'$, setting

$$T = q(0), \ T' = q'(0), \ R = q(1), \ R' = q'(1), \ Q = q(2), \ Q' = q'(2)$$

$$\psi = q(0 \bullet 1), \ \varphi = q(1 \bullet 2), \ \psi' = q'(0 \bullet 1), \ \varphi' = q'(1 \bullet 2)$$ \hspace{0.05\textwidth} 4.5.34,

$$\nu_0 = \eta, \ \nu_1 = \xi \ \text{and} \ \nu_2 = \zeta$$

from 4.5.30 we have

$$\sigma^{-1}(\varphi') = \sigma^{-1}(\zeta) \cdot \sigma^{-1}(\varphi) \cdot \sigma^{-1}(\eta)^{-1}$$

$$\sigma^{-1}(\psi') = \sigma^{-1}(\xi) \cdot \sigma^{-1}(\psi) \cdot \sigma^{-1}(\eta)^{-1}$$ \hspace{0.05\textwidth} 4.5.35

$$\sigma^{-1}(\varphi' \circ \psi') = \sigma^{-1}(\zeta) \cdot \sigma^{-1}(\varphi \circ \psi) \cdot \sigma^{-1}(\eta)^{-1}$$
and therefore we get
\[
\sigma^{m-1}(\varphi \circ \psi) \cdot \gamma_{\varphi,\psi}^{m} = \sigma^{m-1}(\varphi) \cdot \sigma^{m-1}(\psi) = \sigma^{m-1}(\zeta) \cdot (\sigma^{m-1}(\varphi) \cdot \sigma^{m-1}(\xi) - 1) \cdot \sigma^{m-1}(\eta) - 1
\]
4.5.36,
so that, by the divisibility of \(\mathcal{L}^{n,U,m}\), we have
\[
\gamma_{\varphi,\psi}^{m} = ((I^{U,m-1}_{\overline{U}^{m}} - I^{U,m}_{\overline{U}^{m}}) \cdot (\sigma^{m-1}(\eta) - 1)) \cdot (\gamma_{\varphi,\psi}^{m})
\]
4.5.37;
this proves that the correspondence \(\gamma^{m}\) sending \((\varphi, \psi)\) to \(\gamma_{\varphi,\psi}^{m}\) is stable and, in particular, that \(\gamma_{\varphi,\psi}^{m}\) only depends on the corresponding \(\mathcal{F}\)-morphisms \(\varphi\) and \(\psi\); thus we set \(\gamma_{\varphi,\psi}^{m} = \gamma_{\varphi,\psi}^{m}\).

On the other hand, considering the usual differential map
\[
d_{2} : C^{2}(\mathcal{F}, I^{U,m-1}_{\overline{U}^{m}}) \longrightarrow C^{3}(\mathcal{F}, I^{U,m-1}_{\overline{U}^{m}})
\]
4.5.38,
we claim that \(d_{2}(\gamma^{m}) = 0\); indeed, for a third \(\mathcal{F}\)-morphism \(\varepsilon : W \rightarrow T\) we get
\[
(\sigma^{m-1}(\varphi) \cdot \sigma^{m-1}(\psi)) \cdot \sigma^{m-1}(\varepsilon) = (\sigma^{m-1}(\varphi \circ \psi) \cdot \gamma_{\varphi,\psi}^{m}) \cdot \sigma^{m-1}(\varepsilon)
\]
\[
= (\sigma^{m-1}(\varphi \circ \psi) \cdot \sigma^{m-1}(\varepsilon)) \cdot (I^{U,m-1}_{\overline{U}^{m}} - I^{U,m}_{\overline{U}^{m}})(\varepsilon)(\gamma_{\varphi,\psi}^{m})
\]
\[
= \sigma^{m-1}(\varphi \circ \psi \circ \varepsilon) \cdot \gamma_{\varphi,\psi,\varepsilon}^{m} \cdot (I^{U,m-1}_{\overline{U}^{m}} - I^{U,m}_{\overline{U}^{m}})(\varepsilon)(\gamma_{\varphi,\psi}^{m})
\]
4.5.39
\[
\sigma^{m-1}(\varphi) \cdot (\sigma^{m-1}(\psi)) \cdot \sigma^{m-1}(\varepsilon) = \sigma^{m-1}(\varphi) \cdot (\sigma^{m-1}(\psi \circ \varepsilon)) \cdot \gamma_{\varphi,\psi,\varepsilon}^{m}
\]
\[
= \sigma^{m-1}(\varphi \circ \psi \circ \varepsilon) \cdot \gamma_{\varphi,\psi,\varepsilon}^{m}
\]
and the divisibility of \(\mathcal{L}^{n,U,m}\) forces
\[
\gamma_{\varphi,\psi,\varepsilon}^{m} \cdot (I^{U,m-1}_{\overline{U}^{m}} - I^{U,m}_{\overline{U}^{m}})(\varepsilon)(\gamma_{\varphi,\psi}^{m}) = \gamma_{\varphi,\psi,\varepsilon}^{m} \cdot \gamma_{\varphi,\psi,\varepsilon}^{m}
\]
4.5.40;
since \(\text{Ker}(\pi_{W}^{n,U,m})\) is abelian, with the additive notation we obtain
\[
0 = (I^{U,m-1}_{\overline{U}^{m}} - I^{U,m}_{\overline{U}^{m}})(\varepsilon)(\gamma_{\varphi,\psi}^{m}) - \gamma_{\varphi,\psi,\varepsilon}^{m} + \gamma_{\varphi,\psi,\varepsilon}^{m} - \gamma_{\varphi,\psi,\varepsilon}^{m}
\]
4.5.41,
proving our claim.

At this point, it follows from equalities 4.5.5 and 4.5.9 that \(\gamma^{m} = d_{1}(\beta^{m})\) for some stable element \(\beta^{m} = (\beta_{m}^{m})_{m} \in \mathcal{F}\)-morphisms \((\Delta_{1}, \mathcal{F})\) in \(C^{1}(\mathcal{F}, I^{U,m-1}_{\overline{U}^{m}})\); that is to say, with the notation above we get
\[
\gamma_{\varphi,\psi}^{m} = ((I^{U,m-1}_{\overline{U}^{m}} - I^{U,m}_{\overline{U}^{m}})(\psi)) \cdot (\beta_{m}^{m}) \cdot (\beta_{\varphi,\psi}^{m})^{-1} \cdot \beta_{\psi}^{m}
\]
4.5.42.
where we identify any \(\tilde{F} \)-morphism with the obvious \(\tilde{F} \)-chain \(\Delta_1 \to \tilde{F} \); hence, from equality 4.5.32 we obtain
\[
(\sigma^{-1}(\varphi)(\beta^m_{\tilde{\varphi}})^{-1})(\sigma^{-1}(\psi)(\beta^m_{\tilde{\psi}})^{-1}) = ((\sigma^{-1}(\varphi)(\sigma^{-1}(\psi)) \cdot (\beta^m_{\tilde{\varphi}} \cdot ((\hat{\varphi}) \cdot (\hat{\psi})) \cdot (\beta^m_{\tilde{\psi}})))^{-1}
\]
4.5.43,
\[
= \sigma^{-1}(\varphi \circ \psi)(\beta^m_{\tilde{\varphi} \circ \tilde{\psi}})^{-1}
\]
which amounts to saying that the correspondence \(\sigma^m \) sending \(\varphi \in \mathcal{F}(Q, R) \) to \(\sigma^{-1}(\varphi)(\beta^m_{\tilde{\varphi}})^{-1} \) \(\in \mathcal{L}^{h, U, m}(Q, R) \) defines a functorial section of \(\pi^{h, U, m}_R \); note that, if \(Q = R \) and \(\varphi = \kappa_Q(u) \) for some \(u \in Q \), we have \(\tilde{\varphi} = \tilde{\kappa}_Q \) and \(\beta^m_{\tilde{\varphi}} = 1 \), so that \(\sigma^m(\kappa_Q(u)) = \tau^{h, U, m}_Q(u) \). It remains to prove that this functorial section fulfills the commutativity of the corresponding diagram 4.5.12; since we already have the commutativity of diagram 4.5.25, it suffices to get the commutativity of the following diagram
\[
\begin{array}{ccc}
\mathcal{F}(R) & \xrightarrow{\mu^m_R} & \mathcal{L}^{h, U, m}(R) \\
\text{id}_{\mathcal{F}(R)} & \downarrow & \downarrow \delta (\beta^m)^{-1} \\
\mathcal{F}(R) & \xrightarrow{\mu^m_R} & \mathcal{L}^{h, U, m}(R)
\end{array}
\]
4.5.44
which follows from the fact that \(\beta^m \) is stable and therefore \((\beta^m_{\tilde{\varphi}})^{-1} \) fixes the image of \(\mu^m_R \).

We can modify this correspondence in order to get an \(\mathcal{F} \)-locality functorial section; indeed, for any \(\mathcal{F}_P \)-morphism \(\kappa_{Q, R}(u): R \to Q \) where \(u \) belongs to \(\mathcal{T}_P(Q, R) \), the \(\mathcal{L}^{h, U, m}(Q, R) \)-morphisms \(\sigma^m(\kappa_{Q, R}(u)) \) and \(\tau^{h, U, m}_{Q, R}(u) \) both lift \(\kappa_{Q, R}(u) \) \(\in \mathcal{F}(Q, R) \); thus, the divisibility of \(\mathcal{L}^{h, U, m}_{Q, R} \) guarantees the existence and the uniqueness of \(\delta_{\kappa_{Q, R}(u)} \) \(\in \text{Ker}(\pi^{h, U, m}_R) \) fulfilling
\[
\tau^{h, U, m}_{Q, R}(u) = \sigma^m(\kappa_{Q, R}(u)) \cdot \delta_{\kappa_{Q, R}(u)}
\]
4.5.45
and, since we have \(\sigma^m(\kappa_Q(w)) = \tau^{h, U, m}_Q(w) \) for any \(w \in Q \), it is quite clear that \(\delta_{\kappa_{Q, R}(u)} \) only depends on the class of \(\kappa_{Q, R}(u) \) in \(\tilde{F}(Q, R) \).

For a second \(\mathcal{F}_P \)-morphism \(\kappa_{R, T}(v): T \to R \), setting \(\xi = \kappa_{R, T}(u) \) and \(\eta = \kappa_{R, T}(v) \) we get
\[
\sigma^m(\xi \circ \eta) \cdot \delta_{\xi \circ \eta} = \tau^{h, U, m}_{Q, T}(uv) = \tau^{h, U, m}_{Q, R}(u) \cdot \tau^{h, U, m}_{R, T}(v) = \sigma^m(\xi) \cdot \delta_{\xi} \cdot \sigma^m(\eta) \cdot \delta_{\eta}
\]
4.5.46;
\[
= \sigma^m(\xi \circ \eta) \cdot (\text{Ker}(\pi^{h, U, m}_R)(\tilde{\xi})) \cdot (\tilde{\delta}_{\xi}) \cdot (\tilde{\delta}_{\eta})
\]
then, once again the *divisibility* of $L^{h,u,m}$ forces
\[\delta_{\xi_0\eta} = (\widehat{\text{Reff}(\pi^{h,u,m})}(\eta))(\delta_{\xi}) \cdot \delta_{\eta} \] 4.5.47
and, since $\text{Ker}(\pi_T^{h,u,m})$ is abelian, with the additive notation we obtain
\[0 = (\widehat{\text{Reff}(\pi^{h,u,m})}(\eta))(\delta_{\xi}) - \delta_{\xi_0\eta} + \delta_{\eta} \] 4.5.48.

That is to say, denoting by $i: \tilde{F}_P \subset \tilde{F}$ the obvious *inclusion functor*, the correspondence δ sending any \tilde{F}_P-morphism $\xi: R \to Q$ to δ_{ξ} defines a 1-cocycle in $C^i(\tilde{F}_P, \tilde{\text{Reff}(\pi^{h,u,m})})$; but, since the category \tilde{F}_P has a final object, we actually have [8, Corollary A4.8]
\[\mathbb{H}^1(\tilde{F}_P, \tilde{\text{Reff}(\pi^{h,u,m})}) \circ i) = \{0\} \] 4.5.49;
consequently, we obtain $\delta = d_0(w)$ for some element $w = (w_Q)_{Q \in P}$ in
\[C^0(\tilde{F}_P, \tilde{\text{Reff}(\pi^{h,u,m})}) = C^0(\tilde{\tilde{F}}, \tilde{\text{Reff}(\pi^{h,u,m})})) \] 4.5.50.
In conclusion, equality 4.5.45 becomes
\[\tilde{\tau}_{Q,R}^{h,u,m}(u) = \sigma^m(\kappa_{Q,R}(u)) \cdot (\tilde{\text{Reff}(\pi^{h,u,m})}(\kappa_{Q,R}(u))(w_Q) \cdot w_R^{-1} \] 4.5.51
and therefore the new correspondence sending $\varphi \in \tilde{F}(Q, R)$ to $w_Q \cdot \sigma^m(\varphi) \cdot w_R^{-1}$ defines a $\tilde{\tilde{F}}$-locality functorial section of $\pi^{h,u,m}$. From now on, we still denote by σ^m this $\tilde{\tilde{F}}$-locality functorial section of $\pi^{h,u,m}$.

Let $\sigma'^m: \tilde{F} \to \tilde{\tilde{L}}^{h,u,m}$ be another $\tilde{\tilde{F}}$-locality functorial section of $\pi^{h,u,m}$; arguing by induction on $|\mathcal{C}_P - \mathcal{N}|$ and on m, and up to natural $\tilde{\tilde{F}}$-isomorphisms, we clearly may assume that σ'^m also lifts σ'^{m-1}; in this case, for any $\tilde{\tilde{F}}$-morphism $\varphi: R \to Q$, we have $\sigma'^m(\varphi) = \sigma^m(\varphi) \cdot \varepsilon^m_{\varphi}$ for some ε^m in $(\tilde{l}^{u,m-1}_{F}/\tilde{l}^{u,m}_{F})(R)$; that is to say, as above we get a correspondence sending any $\tilde{\tilde{F}}$-chain $q: \Delta_1 \to \tilde{\tilde{F}}$ to $\varepsilon^m_{q(\bullet_1)}$, in $(\tilde{l}^{u,m-1}_{F}/\tilde{l}^{u,m}_{F})(q(0))$ and we claim that this correspondence determines an \tilde{F}_P-*stable* element ε^m of $C^1(\tilde{\tilde{F}}, l_{F}^{u,m-1}/l_{F}^{u,m})$ [8, A3.17].

Indeed, for another \tilde{F}_P-isomorphic $\tilde{\tilde{F}}$-*chain* $q': \Delta_1 \to \tilde{\tilde{F}}$ and a *natural* \tilde{F}_P-*isomorphism* $\nu: q \cong q'$, as in 4.5.34 above setting
\[R = q(0), R' = q'(0), Q = q(1), Q' = q'(1) \]
\[\varphi = q(0 \bullet 1), \quad \varphi' = q'(0 \bullet 1) \] 4.5.52,
\[\nu_0 = \kappa_{R',H}(u) \quad \text{and} \quad \nu_1 = \kappa_{Q',Q}(u) \]
from 4.5.29 we get
\[
\sigma^m(\varphi') = \kappa_{Q',Q}(u) \cdot \sigma^m(\varphi) \cdot \varepsilon^m_\varphi \cdot \kappa_{R',R}(v)^{-1}
\]
\[
= \sigma^m(\varphi') \cdot \left((\widetilde{l}_X^{U,m-1}/\widetilde{l}_X^U)(\widetilde{k}_{R',R}(v)^{-1}) \right) (\varepsilon^m_\varphi)
\]
\[\sigma^m(\varphi') = \sigma^m(\varphi') \cdot \varepsilon^m_\varphi \]
and the divisibility of \(L_{b,U} \) forces
\[
\varepsilon^m_\varphi = \left((\widetilde{l}_X^{U,m-1}/\widetilde{l}_X^U)(\widetilde{k}_{R',R}(v)^{-1}) \right) (\varepsilon^m_\varphi)
\]
this proves that the correspondence \(\varepsilon^m \) sending \(\varphi \) to \(\varepsilon^m_\varphi \) is \(\mathcal{F}_P \)-stable and, in particular, that \(\varepsilon^m_\varphi \) only depends on the corresponding \(\mathcal{F} \)-morphism \(\tilde{\varphi} \), thus we set \(\varepsilon^m_\tilde{\varphi} = \varepsilon^m_\varphi \).

On the other hand, considering the usual differential map
\[
d_1 : C^1(\tilde{\mathcal{F}}, \frac{U^{U,m-1}}{U^U}) \longrightarrow C^2(\tilde{\mathcal{F}}, \frac{U^{U,m-1}}{U^U})
\]
we claim that \(d_1(\varepsilon^m) = 0 \); indeed, for a second \(\mathcal{F} \)-morphism \(\psi : T \rightarrow R \) we get
\[
\sigma^m(\varphi) \cdot \sigma^m(\psi) = \sigma^m(\varphi) \cdot \varepsilon^m_\varphi \cdot \sigma^m(\psi) \cdot \varepsilon^m_\psi
\]
\[
= \sigma^m(\varphi \circ \psi) \cdot \left((\widetilde{l}_X^{U,m-1}/\widetilde{l}_X^U)(\tilde{\psi}) \right) (\varepsilon^m_\varphi) \cdot \varepsilon^m_\psi
\]
\[\sigma^m(\varphi) \cdot \sigma^m(\psi) = \sigma^m(\varphi \circ \psi) \cdot \varepsilon^m_{\tilde{\varphi} \circ \tilde{\psi}} \]
and the divisibility of \(L_{b,U} \) forces
\[
\left((\widetilde{l}_X^{U,m-1}/\widetilde{l}_X^U)(\tilde{\psi}) \right) (\varepsilon^m_{\tilde{\varphi}}) \cdot \varepsilon^m_{\tilde{\psi}} = \varepsilon^m_{\tilde{\varphi} \circ \tilde{\psi}}
\]
since \(\ker(\pi^m_{b,U}) \) is Abelian, with the additive notation we obtain
\[
0 = \left((\widetilde{l}_X^{U,m-1}/\widetilde{l}_X^U)(\tilde{\psi}) \right) (\varepsilon^m_{\tilde{\psi}}) - \varepsilon^m_{\tilde{\varphi} \circ \tilde{\psi}} + \varepsilon^m_{\tilde{\psi}}
\]
proving our claim.

At this point, it follows from equalities 4.5.5 and 4.5.9 that \(\varepsilon^m = d_0(y) \) for some stable element \(y = (y_Q)_{Q \in \mathcal{P}} \) in \(C^0(\tilde{\mathcal{F}}, \frac{U^{U,m-1}}{U^U}) \); that is to say, with the notation above we get
\[
\varepsilon^m_{\tilde{\varphi}} = \left((\widetilde{l}_X^{U,m-1}/\widetilde{l}_X^U)(\tilde{\varphi}) \right) (y_Q) \cdot y_R^{-1}
\]
hence, we obtain
\[
\sigma^m(\varphi) = \sigma^m(\varphi) \cdot \left((\widetilde{l}_X^{U,m-1}/\widetilde{l}_X^U)(\tilde{\varphi}) \right) (y_Q) \cdot y_R^{-1} = y_Q \cdot \sigma^m(\varphi) \cdot y_R^{-1}
\]
which amounts to saying that \(\sigma^m \) is naturally \(\mathcal{F} \)-isomorphic to \(\sigma^m \). We are done.
Corollary 4.6. There exists a perfect \mathcal{F}-locality \mathcal{P}.

Proof: Denote by $\bar{\mathcal{P}}$ the converse image in \mathcal{L}^b of the image of \mathcal{F} in $\bar{\mathcal{L}}^b$ by a section of π^b; since $\hat{\tau}(\mathcal{F})$ is contained in the image of τ^b, we still have a functor $\tau^b : \mathcal{P} \to \mathcal{P}$; thus, together with the restriction of π^b to $\bar{\mathcal{P}}$, $\bar{\mathcal{P}}$ becomes an \mathcal{F}-locality and, since $\bar{\mathcal{L}}^b$ is coherent, $\bar{\mathcal{P}}$ is coherent too.

We claim that $\bar{\mathcal{P}}^e$ is a perfect \mathcal{F}^e-locality; indeed, for any \mathcal{F}-selfcentralizing subgroup Q of P fully normalized in \mathcal{F}, since $C_P(Q)/F_{C_F(Q)} = Z(Q)$ we have a group extension (cf. 4.3)

$$1 \to Z(Q) \to \bar{\mathcal{P}}(Q) \to \mathcal{F}(Q) \to 1$$

4.6.1

together with an injective group homomorphism $\tau_Q^b : N_P(Q) \to \bar{\mathcal{P}}(Q)$; consequently, it follows from [8, 18.5] that $\bar{\mathcal{P}}(Q)$ is the \mathcal{F}-localizer of Q; thus, by the very definition in [8, 17.4 and 17.13], $\bar{\mathcal{P}}^e$ is a perfect \mathcal{F}^e-locality.

But, in [8, Ch. 20] we prove that any perfect \mathcal{F}^e-locality can be extended to a unique perfect \mathcal{F}-locality \mathcal{P}. We are done.

4.7. The uniqueness of the perfect \mathcal{F}-locality is an easy consequence of the following theorem; the proof of this result follows the same pattern than the proof of Theorem 4.5, but we firstly need the following lemmas.

Lemma 4.8. Let (τ, \mathcal{P}, π) be a perfect \mathcal{F}-locality and $\hat{\varphi} : Q \to P$ be a \mathcal{P}-morphism such that $\pi^u(Q)$ is fully normalized in \mathcal{F}. Then there is a \mathcal{P}-morphism $\hat{\zeta} : N_P(Q) \to P$ such that $\hat{\varphi} = \hat{\zeta} \cdot \tau_{N_P(Q), Q}(1)$.

Proof: Denoting by φ the image of $\hat{\varphi}$ in $\mathcal{F}(P, Q)$, it follows from [8, 2.8.2] that there is an \mathcal{F}-morphism $\zeta : N_P(Q) \to P$ extending φ; then, lifting ζ to $\hat{\zeta}$ in $\mathcal{P}(P, N_P(R))$, it is clear that the \mathcal{P}-morphisms $\hat{\zeta} \cdot \tau_{N_P(Q), Q}(1)$ and $\hat{\varphi}$ have the same image φ in $\mathcal{F}(P, Q)$ and therefore, by the very definition of \mathcal{P} in [8, 17.13], there is $z \in C_P(Q)$ such that $\hat{\zeta} \cdot \tau_{N_P(Q), Q}(1) \cdot \tau_Q(z) = \hat{\varphi}$; but, it is clear that

$$\tau_{N_P(Q), Q}(1) \cdot \tau_Q(z) = \tau_{N_P(Q), Q}(z) = \tau_{N_P(Q), Q}(z) \cdot \tau_{N_P(Q), Q}(1)$$

4.8.1

consequently, $\hat{\zeta} \cdot \tau_{N_P(Q), Q}(z)$ extends $\hat{\varphi}$ in \mathcal{P}. We are done.

Lemma 4.9. Let (τ, \mathcal{P}, π) be a perfect \mathcal{F}-locality. For any subgroup Q of P there is a group homomorphism $\hat{\mu}_Q : \mathcal{P}(Q) \to \mathcal{L}^b(Q)$ fulfilling $\hat{\mu}_Q \circ \tau_Q = \tau_Q^b$.

Proof: Since we can choose an \mathcal{F}-isomorphism $\theta : Q \cong Q'$ such that Q' is fully normalized in \mathcal{F} and θ can be lifted to $\mathcal{P}(Q', Q)$ and to $\mathcal{L}^b(Q', Q)$, we may assume that Q is fully normalized in \mathcal{F}.
We apply [8, Lemma 18.8] to the groups $\mathcal{P}(Q)$ and $\mathcal{L}^b(Q)$, to the normal p-subgroup $\text{Ker}(\pi^Q)$ of $\mathcal{L}^b(Q)$ and to the group homomorphism τ_Q from $\mathcal{P}(Q)$ to $\mathcal{F}(Q) \cong \mathcal{L}^b(Q)/\text{Ker}(\pi^Q)$. We consider the group homomorphism $\tau^Q_\alpha : N_P(Q) \to \mathcal{L}^b(Q)$ and, for any subgroup R of $N_P(Q)$ and any $\hat{\alpha} \in \mathcal{P}(Q)$ such that $\hat{\alpha} \cdot \tau_Q(R) \cdot \hat{\alpha}^{-1} \subset \tau_Q(N_P(Q))$, it follows from [8, 2.10.1] that there exists $\zeta \in \mathcal{F}(N_P(Q), Q \cdot R)$ extending the image of $\hat{\alpha}$ in $\mathcal{F}(Q)$; then, it follows from [8, 17.11.2] that there exists $x \in \mathcal{L}^b(Q)$ fulfilling

$$\tau^Q_\alpha(\zeta(v)) = \pi^Q_\alpha(v)$$

for any $v \in Q \cdot R$. That is to say, condition 18.8.1 in [8, Lemma 18.8] is fulfilled and therefore this lemma proves the existence of $\hat{\mu}_Q$ as announced.

Theorem 4.10. For any perfect \mathcal{F}-locality \mathcal{P} there exists a unique natural \mathcal{F}-isomorphism class of \mathcal{F}-locality functors to \mathcal{L}^b.

Proof: Let \mathcal{P} be a perfect \mathcal{F}-locality with the structural functors

$$\tau : \mathcal{P} \to \mathcal{F} \quad \text{and} \quad \pi : \mathcal{P} \to \mathcal{F} \quad \text{4.10.1}$$

and for any subgroups Q of P and R of Q we set $i^Q_R = \tau_Q(1)$. We consider the filtration of the basic \mathcal{F}-locality introduced in section 3 and then argue by induction. That is to say, recall that we denote by C_P a set of representatives for the set of P-conjugacy classes of subgroups U of P (cf. 2.13); now, for any subset \mathcal{N} of C_P fulfilling condition 3.2.1, we have the functor $\tilde{\xi}_\mathcal{N} : \mathcal{F} \to \mathfrak{Ab}$ (cf. 3.2) and we consider the quotient \mathcal{F}-locality $\mathcal{L}^{b,\mathcal{N}} = \mathcal{L}^b / (\tilde{\xi}_\mathcal{N} \circ \tilde{\pi}^b)$ with the structural functors

$$\tau^{b,\mathcal{N}} : \mathcal{P} \to \mathcal{L}^{b,\mathcal{N}} \quad \text{and} \quad \pi^{b,\mathcal{N}} : \mathcal{L}^{b,\mathcal{N}} \to \mathcal{F} \quad \text{4.10.2}.$$

Note that if $\mathcal{N} = \emptyset$ then $\mathcal{L}^{b,\emptyset} = \mathcal{L}^b$; hence, arguing by induction on $|\mathcal{C}_P - \mathcal{N}|$, it suffices to prove the existence of a unique natural \mathcal{F}-isomorphism class of \mathcal{F}-locality functors from \mathcal{P} to $\mathcal{L}^{b,\mathcal{N}}$.

Moreover, if $\mathcal{N} = C_P$ then $\tilde{\xi}_\mathcal{N} = \tilde{\xi}^b$ and therefore $\mathcal{L}^{b,\mathcal{N}} = \mathcal{F}$, so that we may assume that $\mathcal{N} \neq C_P$; in this situation, we fix a minimal element U in $\mathcal{C}_P - \mathcal{N}$, setting $\mathcal{M} = \mathcal{N} \cup \{U\}$ and $\tilde{\xi}^U = \tilde{\xi}_\mathcal{M} / \tilde{\xi}_U^b$; for any $m \in \mathbb{N}$ we simply denote by $\tilde{\xi}^{U,m}$ the converse image of $\tilde{\pi}^U$ in $\tilde{\xi}_U^b$; set $\mathcal{L}^{b,\mathcal{U},m} = \mathcal{L}^b / \tilde{\xi}^{U,m}$ and, coherently, denote by $\pi^{b,\mathcal{U},m}$ and $\tau^{b,\mathcal{U},m}$ the corresponding structural functors. Note that, by 3.8 and 3.10.5 above we get

$$\tilde{\xi}^{U,m}/\tilde{\xi}^{U,m+1}_U \cong \tilde{\xi}_{\mathcal{F},m}^{U,0} \quad \text{4.10.3}$$

and in particular, by Corollary 3.13, for any $n \in \mathbb{N}$ we still get

$$\mathfrak{N}_n((\mathcal{F}, \tilde{\xi}^{U,m}/\tilde{\xi}^{U,m+1}_U) = \{0\} \quad \text{4.10.4}.$$
As above, we denote by C_F a set of representatives, fully normalized in F, for the F-isomorphism classes of subgroups of P and, for any subgroup Q in C_F, we choose a group homomorphism $\hat{\mu}_Q : P(Q) \rightarrow L^{h,m}(Q)$ as in Lemma 4.9 above and, for any $m \in \mathbb{N}$, simply denote by $\hat{\mu}_Q^m$ the corresponding group homomorphism from $P(Q)$ to $L^{h,m}(Q)$. For any F-morphism $\varphi : R \rightarrow Q$ denote by $P(Q)_\varphi$ and by $L^{h,m}(Q)_\varphi$ the respective stabilizers of $\varphi(R)$ in $P(Q)$ and in $L^{h,m}(Q)$. As above, for any $\varphi \in P(Q, R)$ and any $x^m \in L^{h,m}(Q, R)$ we have group homomorphisms

$$a_\varphi : P(Q)_\varphi \longrightarrow P(R) \text{ and } a^{x^m}_\varphi : L^{h,m}(Q)_\varphi \longrightarrow L^{h,m}(R) \quad 4.10.5$$

For any subgroups Q and R in C_F, we choose as above a set of representatives $P_{Q,R}$ for the set of double classes $P(Q) \backslash P(Q, R) / P(R)$ such that, for any $\hat{\varphi}$ in $P_{Q,R}$, denoting by φ its image in $F(Q, R)$, $F_P(Q)$ contains a Sylow p-subgroup of $F(Q)_\varphi$ and $a_\varphi(F_P(Q)_\varphi)$ is contains in $F_P(R)$; of course, we choose $P_{Q,Q} = \{q_Q(1)\}$.

With all this notation and arguing by induction on $|C_P - N|$ and on m, we will prove that there is a functor

$$\lambda^m : P \longrightarrow L^{h,m} \quad 4.10.6$$

such that, for any $Q \in C_F$ and any $u \in Q$, we have $\lambda^m(q_Q(u)) = q^{h,m}(u)$, and that, for any groups Q and R in C_F, and any $\hat{\varphi}$ in $P_{Q,R}$, denoting by φ its image in $F(Q, R)$, we have the commutative diagram

$$\begin{array}{ccc}
P(Q)_\varphi & \xrightarrow{a_\varphi} & L^{h,m}(Q)_\varphi \\
\downarrow \hat{\mu}_Q^m & & \downarrow a^{\lambda^m(\hat{\varphi})} \\
P(R) & \xrightarrow{\hat{\mu}_R^m} & L^{h,m}(R) \\
\end{array} \quad 4.10.7$$

Since we have $\pi^{h,0} = \pi^{h,M}$ and $|M| = |N| + 1$, by the induction hypothesis we actually may assume that $m \neq 0$ and that we have a functor

$$\lambda^{m-1} : P \longrightarrow L^{h,m-1} \quad 4.10.8$$

which fulfills the conditions above.

As above, for any $\hat{\varphi} \in P_{Q,R}$, denoting by φ its image in $F(Q, R)$, it follows from [8, Proposition 2.11], applied to the inverse φ^* of the isomorphism $\varphi_* : R \cong \varphi(R)$ induced by φ, that there exists an F-morphism $\zeta : N_P(Q)_\varphi \rightarrow N_P(R)$ fulfilling $\zeta(\varphi(v)) = v$ for any $v \in R$, so that we easily get the following commutative diagram

$$\begin{array}{ccc}
N_P(Q)_\varphi & \xrightarrow{\tau_Q} & P(Q)_\varphi \\
\zeta \downarrow & & \downarrow a_\varphi \\
N_P(R) & \xrightarrow{\tau_R} & P(R) \\
\end{array} \quad 4.10.9$$
note that, if $Q = R$ and $\hat{\phi} = \tau_Q(u)$ for some $u \in Q$, we may assume that $\hat{\zeta} = \kappa_{N_P(Q)}(u)$. In particular, since λ^{m-1} fulfills the corresponding commutative diagram 4.10.7, we still get the following commutative diagram

$$
\begin{array}{ccc}
N_P(Q) & \xrightarrow{\tau_Q^{b,U,m-1}} & L^{b,U,m-1}(Q) \\
\downarrow & & \downarrow_{a_{\lambda^{m-1}(\hat{\phi})}} \\
N_P(R) & \xrightarrow{\tau_R^{b,U,m-1}} & L^{b,U,m-1}(R)
\end{array}
$$

4.10.10

With the notation above, the first step is to choose a suitable lifting $\lambda^{m-1}(\hat{\phi})$ of $\lambda^{m-1}(\hat{\phi})$ in $L^{b,U,m}(Q,R)$. Choosing a lifting $\hat{\zeta}$ of ζ in the obvious stabilizer $P\langle N_P(R), N_P(Q) \rangle_{R,\varphi(R)}$, we start by choosing a lifting $\lambda^{m-1}(\hat{\zeta})$ of $\lambda^{m-1}(\hat{\zeta})$ in $L^{b,U,m}(N_P(R), N_P(Q) \rangle_{R,\varphi(R)}$; thus, by the coherence of $L^{b,U,m}$ (cf. (Q)), for any $u \in N_P(Q)$ we have

$$
\lambda^{m-1}(\hat{\zeta}) \cdot \tau_{N_P(Q)\varphi}(u) = \tau_{N_P(R)}^{b,U,m} \langle \zeta(u) \rangle \cdot \lambda^{m-1}(\hat{\zeta})
$$

4.10.11;

moreover, by the divisibility of $L^{b,U,m}$ (cf. 2.4), we find $z_{\hat{\phi}} \in L^{b,U,m}(R, \varphi(R))$ fulfilling

$$
\lambda^{m-1}(\hat{\zeta}) \cdot \tau_{N_P(Q)\varphi}(R,\varphi(R))(1) = \tau_{N_P(R)}^{b,U,m} \langle z_{\hat{\phi}} \rangle
$$

4.10.12;

similarly, denoting by $\hat{\varphi}^*:\varphi(R) \cong R$ the P-isomorphism determined by $\hat{\varphi}$, $\lambda^{m-1}(\hat{\zeta})$ restricts to $\lambda^{m-1}(\hat{\phi}^*)$ and it is easily checked that $z_{\hat{\phi}}$ lifts $\lambda^{m-1}(\hat{\phi}^*)$ to $L^{b,U,m}(R, \varphi(R))$; consequently, $\lambda^{m-1}(\hat{\phi}) = \tau_{Q,\varphi(R)}^{b,U,m} \langle z_{\hat{\phi}} \rangle$ lifts $\lambda^{m-1}(\hat{\phi})$ to $L^{b,U,m}(Q,R)$.

Then, from 4.10.11 and 4.10.12 above, for any $u \in N_P(Q)$ we get

$$
\begin{aligned}
\lambda^{m-1}(\hat{\zeta}) \cdot \tau_{N_P(Q)\varphi}(u) \cdot \tau_{N_P(Q)\varphi}(R,\varphi(R))(1) &= \tau_{N_P(R)}^{b,U,m} \langle z_{\hat{\phi}} \rangle \cdot \tau_{R}^{b,U,m} \langle \zeta(u) \rangle \\
&= \tau_{N_P(R)}^{b,U,m} \langle \zeta(u) \rangle \cdot \tau_R^{b,U,m} \langle z_{\hat{\phi}} \rangle
\end{aligned}
$$

4.10.13

and therefore we still get $z_{\hat{\phi}} \cdot \tau_{R}^{b,U,m} \langle \zeta(u) \rangle = \tau_R^{b,U,m} \langle \zeta(u) \rangle \cdot z_{\hat{\phi}}$, so that

$$
\tau_{Q}^{b,U,m} \langle u \rangle \cdot \lambda^{m-1}(\hat{\phi}) = \lambda^{m-1}(\hat{\phi}) \cdot \tau_{R}^{b,U,m} \langle \zeta(u) \rangle
$$

4.10.14

or, equivalently, we have a $\lambda^{m-1}(\hat{\phi}) \cdot \tau_{Q}^{b,U,m} \langle u \rangle = \tau_{R}^{b,U,m} \langle \zeta(u) \rangle$.

At this point, we will apply the uniqueness part of [8, Lemma 18.8] to the groups $\mathcal{P}(Q)_Q$ and $L^{b,u,m}(R)$, to the kernel of the canonical homomorphism from $L^{b,u,m}(R)$ to $L^{b,u,m-1}(R)$, and to the composition of group homomorphisms

$$a_{\lambda^{-1}(\bar{\varphi})} \circ \hat{\mu}_Q^m : \mathcal{P}(Q)_Q \longrightarrow L^{b,u,m-1}(Q)_Q \longrightarrow L^{b,u,m-1}(R)$$ 4.10.15,

together with the composition of group homomorphisms

$$\tau_R \circ \zeta : N^P(Q)_Q \longrightarrow N^P(R) \longrightarrow L^{b,u,m}(R)$$ 4.10.16.

Now, according to the commutative diagrams 4.10.7 for $m-1$ and 4.10.9, and to equality 4.10.14 above, the two group homomorphisms

$$a_{\lambda^{-1}(\bar{\varphi})} \circ \hat{\mu}_Q^m : \mathcal{P}(Q)_Q \longrightarrow L^{b,u,m}(Q)_Q \longrightarrow L^{b,u,m}(R)$$ 4.10.17,

$$\hat{\mu}_R^m \circ a_{\bar{\varphi}} : \mathcal{P}(Q)_Q \longrightarrow \mathcal{P}(R) \longrightarrow L^{b,u,m}(R)$$

both fulfill the conclusion of [8, Lemma 18.8]; consequently, according to this lemma, there is $k_{\bar{\varphi}}$ in the kernel of the canonical homomorphism from $L^{b,u,m}(R)$ to $L^{b,u,m-1}(R)$ such that, denoting by $\text{int}_{L^{b,u,m}(R)}(k_{\bar{\varphi}})$ the conjugation by $k_{\bar{\varphi}}$ in $L^{b,u,m}(R)$, we have

$$\text{int}_{L^{b,u,m}(R)}(k_{\bar{\varphi}}) \circ a_{\lambda^{-1}(\bar{\varphi})} \circ \hat{\mu}_Q^m = \hat{\mu}_R^m \circ a_{\bar{\varphi}}$$ 4.10.18;

but, it is easily checked that

$$\text{int}_{L^{b,u,m}(R)}(k_{\bar{\varphi}}) \circ a_{\lambda^{-1}(\bar{\varphi})} = a_{\lambda^{-1}(\bar{\varphi})} \cdot k_{\bar{\varphi}}^{-1}$$ 4.10.19.

Finally, we choose $\lambda^{-1}(\bar{\varphi}) = \lambda^{-1}(\bar{\varphi}) \cdot k_{\bar{\varphi}}^{-1}$, lifting indeed $\sigma^{-1}(\varphi)$ to $L^{b,u,m}(Q,R)$ and, according to equalities 4.10.18 and 4.10.19, fulfilling the following commutative diagram

$$\begin{array}{ccc}
\mathcal{P}(Q)_Q & \xrightarrow{\hat{\mu}_Q^m} & \mathcal{L}^{b,u,m}(Q)_Q \\
\downarrow a_{\bar{\varphi}} & & \downarrow a_{\lambda^{-1}(\bar{\varphi})} \\
\mathcal{P}(R) & \xrightarrow{\hat{\mu}_R^m} & \mathcal{L}^{b,u,m}(R)
\end{array}$$ 4.10.20;

note that, if $Q = R$ and $\bar{\varphi} = \tau_Q(u)$ for some $u \in Q$, this choice is compatible with $\lambda^{-1}(\tau_Q(u)) = \tau_Q(u)$. In particular, considering the action of $\mathcal{P}(Q) \times \mathcal{P}(R)$, by composition on the left- and on the right-hand, on $\mathcal{P}(Q,R)$ and on $L^{b,u,m}(Q,R)$ via $\hat{\mu}_Q^m$ and $\hat{\mu}_R^m$, we have the inclusion of stabilizers

$$(\mathcal{P}(Q) \times \mathcal{P}(R)) \cdot \bar{\varphi} \subseteq (\mathcal{P}(Q) \times \mathcal{P}(R)) \lambda^{-1}(\bar{\varphi})$$ 4.10.21;
indeed, it is quite clear that $(\hat{\alpha}, \hat{\beta}) \in (\mathcal{P}(Q) \times \mathcal{P}(R))_{\hat{}\phi}$ forces $\hat{\alpha} \in \mathcal{P}(Q)_{\hat{}\phi}$; then, since $\hat{\alpha} \cdot \hat{\phi} = \hat{\phi} \cdot a_{\hat{\phi}}(\hat{\alpha})$, we get $\hat{\beta} = a_{\hat{\phi}}(\hat{\alpha})$ by the divisibility of \mathcal{P}, and the inclusion above follows from the commutativity of diagram 4.10.20.

This allows us to choose a family of liftings $\left\{\lambda : Q \rightarrow Q, \hat{}\phi \right\}$, where $\hat{}\phi$ runs over the set of \mathcal{P}-morphisms, which is compatible with \mathcal{P}-isomorphisms; precisely, for any pair of subgroups Q and R in \mathcal{C}_X, and any $\hat{}\phi \in \mathcal{P}(Q,R)$, we choose as above a lifting $\lambda = \lambda(\hat{}\phi)$ of \mathcal{P} in $L^{b_{\lambda},m}(Q,R)$. Then, any subgroup Q of \mathcal{P} determines a unique Q in \mathcal{C}_X which is \mathcal{F}-isomorphic to Q and we choose a \mathcal{P}-isomorphism $\hat{}\omega : \hat{}Q \cong Q$ and a lifting $x_Q \in L^{b_{\lambda},m}(Q,\hat{}Q)$ of the image $\hat{}\omega_Q \in \mathcal{F}(Q,\hat{}Q)$; in particular, we choose $\hat{}\omega_Q = \hat{}\tau_Q(1)$ and $x_Q = \hat{}\tau_Q^{-1}(1)$. Thus, any \mathcal{P}-morphism $\hat{}\phi : R \rightarrow Q$ determines subgroups $\hat{}Q$ and $\hat{}R$ in \mathcal{C}_X and an element $\hat{}\phi$ in $\mathcal{P}(\hat{}Q,\hat{}R)$ in such a way that there are $\alpha_{\hat{\phi}} \in \mathcal{P}(\hat{}Q)$ and $\beta_{\hat{\phi}} \in \mathcal{P}(\hat{}R)$ fulfilling

$$\hat{}\phi = \hat{}\omega_Q \cdot \alpha_{\hat{\phi}} \cdot \hat{}\beta_{\hat{\phi}} \cdot \hat{}\omega_R^{-1}$$

4.10.22

and we define

$$\lambda^{-1}(\hat{}\phi) = x_Q \cdot \hat{}\mu_{\hat{}Q}(\alpha_{\hat{\phi}}) \cdot \lambda^{-1}(\hat{}\phi) \cdot \hat{}\mu_{\hat{}R}(\beta_{\hat{\phi}})^{-1} \cdot x_R^{-1}$$

4.10.23; once again, if $Q = R$ and $\hat{}\phi = \hat{}\tau_Q(u)$ for some $u \in Q$, we actually get $\lambda^{-1}(\hat{}\tau_Q(u)) = \mathcal{P}_{\lambda,m}(Q)$. This definition does not depend on the choice of $(\alpha_{\hat{\phi}}, \beta_{\hat{\phi}})$ since for another choice $(\hat{\alpha}', \beta')$ we clearly have $\beta' = \alpha_{\hat{\phi}} \cdot \hat{\alpha}'$ and $\beta' = \beta_{\hat{\phi}} \cdot \beta''$ for a suitable (α', β'') in $(\mathcal{P}(\hat{}Q) \times \mathcal{P}(\hat{}R))_{\hat{}\phi}$ and it suffices to apply inclusion 4.10.21.

Moreover, for any pair of \mathcal{P}-isomorphisms $\hat{}\xi : Q \cong Q'$ and $\hat{}\xi : R \cong R'$, considering $\phi' = \hat{}\xi \cdot \hat{}\phi \cdot \xi^{-1}$ we claim that

$$\lambda^{-1}(\hat{}\phi') = \lambda^{-1}(\hat{}\xi) \cdot \lambda^{-1}(\hat{}\phi) \cdot \lambda^{-1}(\hat{}\xi)^{-1}$$

4.10.24; indeed, it is clear that Q' also determines $\hat{}Q$ in \mathcal{C}_X and therefore, if we have $\hat{}\xi = \hat{}\omega_Q \cdot \hat{}\hat{\alpha}_Q \cdot \hat{}\omega_Q^{-1}$ then we obtain $\lambda^{-1}(\hat{}\xi) = x_Q \cdot \hat{}\mu_{\hat{}Q}(\hat{}\alpha_{\hat{}Q}) \cdot x_Q^{-1}$; similarly, if we have $\hat{}\xi = \hat{}\omega_{\hat{}R} \cdot \hat{}\hat{\alpha}_{\hat{}R} \cdot \hat{}\omega_{\hat{}R}^{-1}$ we also obtain $\lambda^{-1}(\hat{}\xi) = x_{\hat{}R} \cdot \hat{}\mu_{\hat{}R}(\hat{}\alpha_{\hat{}R})^{-1} \cdot x_{\hat{}R}^{-1}$; further, ϕ' also determines $\hat{}\phi$ in $\mathcal{P}(\hat{}Q,\hat{}R)$; consequently, we get

$$\lambda^{-1}(\hat{}\xi) \cdot \lambda^{-1}(\hat{}\phi) \cdot \lambda^{-1}(\hat{}\xi)^{-1} = (x_Q \cdot \hat{}\mu_{\hat{}Q}(\hat{}\alpha_{\hat{}Q}) \cdot x_Q^{-1}) \cdot \lambda^{-1}(\hat{}\phi) \cdot (x_{\hat{}R} \cdot \hat{}\mu_{\hat{}R}(\hat{}\alpha_{\hat{}R})^{-1} \cdot x_{\hat{}R}^{-1})$$

4.10.25.
Recall that we have the exact sequence of contravariant functors from \(F \) to \(\mathfrak{U} \) (cf. 2.7 and 2.8)

\[
0 \rightarrow \mathfrak{U}_{m-1}/\mathfrak{U}_m \rightarrow \mathfrak{Re}t(\pi^U_{m,0}) \rightarrow \mathfrak{Re}t(\pi^U_{m-1,0}) \rightarrow 0
\]

hence, for another \(\mathcal{P} \)-morphism \(\hat{\psi} : T \rightarrow R \) we clearly have

\[
\lambda^{m-1}(\hat{\varphi}) \cdot \gamma^{m-1}(\hat{\psi}) = \chi^{m-1}(\lambda \cdot \hat{\varphi} \cdot \hat{\psi})
\]

for some \(\gamma^m_{\overline{\varphi}, \overline{\psi}} \) in \((\mathfrak{U}_{m-1}/\mathfrak{U}_m)(T) \). That is to say, borrowing notation and terminology from [8, A2.8], we get a correspondence sending any \(P \) and therefore we get

\[
\tilde{L} = \lambda^m(P) \rightarrow \tilde{q}
\]

so that, by the divisibility of \(\psi^m \), we have

\[
\gamma^m_{\overline{\varphi}, \overline{\psi}} = (\lambda^{m-1}(\tilde{q})^{-1})(\gamma^m_{\overline{\varphi}, \overline{\psi}})
\]
this proves that the correspondence \(\gamma^m \) sending \((\hat{\varphi}, \hat{\psi})\) to \(\gamma^m_{\varphi, \tilde{\psi}} \) is stable and, in particular, that \(\gamma^m_{\varphi, \tilde{\psi}} \) only depends on the corresponding \(\tilde{\Phi} \)-morphisms \(\tilde{\varphi} \) and \(\tilde{\psi} \); thus we set \(\gamma^m_{\varphi, \tilde{\psi}} = \gamma^m_{\tilde{\varphi}, \psi} \), where \(\varphi \) and \(\psi \) are the corresponding \(\Phi \)-morphisms.

On the other hand, considering the usual differential map

\[
d_2 : \mathbb{C}^2(\tilde{\Phi}, \tilde{I}_{\tilde{\Phi}}) \to \mathbb{C}^3(\tilde{\Phi}, \tilde{I}_{\tilde{\Phi}})
\]

we claim that \(d_2(\gamma^m) = 0 \); indeed, for a third \(\Phi \)-morphism \(\epsilon : W \to T \) we get

\[
(\lambda^{m-1}(\hat{\varphi}) \cdot \lambda^{m-1}(\hat{\psi})) \cdot \lambda^{m-1}(\hat{\epsilon}) = (\lambda^{m-1}(\hat{\varphi} \cdot \hat{\psi}) \cdot \lambda^{m-1}(\hat{\epsilon})) \cdot \lambda^{m-1}(\hat{\varphi}, \hat{\psi})
\]

\[
= (\lambda^{m-1}(\hat{\varphi} \cdot \hat{\psi}) \cdot \lambda^{m-1}(\hat{\epsilon})) \cdot \lambda^{m-1}(\hat{\varphi}, \hat{\psi})
\]

\[
\lambda^{m-1}(\hat{\varphi}) \cdot \lambda^{m-1}(\hat{\psi}) \cdot \lambda^{m-1}(\hat{\epsilon}) = \lambda^{m-1}(\hat{\varphi}) \cdot (\lambda^{m-1}(\hat{\psi}) \cdot \lambda^{m-1}(\hat{\epsilon}))
\]

and the divisibility of \(L_{h, \mathcal{U}, m} \) forces

\[
\gamma^m_{\varphi, \psi, \tilde{\epsilon}} \cdot ((\tilde{I}_{\tilde{\Phi}}^{m-1} / \tilde{I}_{\tilde{\Phi}}^{m})((\gamma^m_{\varphi, \psi})) = \gamma^m_{\varphi, \tilde{\psi}, \sigma} \cdot \gamma^m_{\varphi, \tilde{\epsilon}}
\]

4.10.35;

since \(\text{Ker}(\pi^m_{\tilde{\Phi}}) \) is abelian, with the additive notation we obtain

\[
0 = ((\tilde{I}_{\tilde{\Phi}}^{m-1} / \tilde{I}_{\tilde{\Phi}}^{m})((\gamma^m_{\varphi, \psi})) - \gamma^m_{\varphi, \tilde{\psi}, \sigma} + \gamma^m_{\varphi, \tilde{\psi}, \sigma} - \gamma^m_{\varphi, \tilde{\sigma}}
\]

4.10.36;

proving our claim.

At this point, it follows from equality 4.10.4 that \(\gamma^m = d_1(\beta^m) \) for some stable element \(\beta^m = (\beta^m_{\varphi})_{\varphi \in \Phi} \) in \(\mathbb{C}^1(\tilde{\Phi}, \tilde{I}_{\tilde{\Phi}}^{m-1} / \tilde{I}_{\tilde{\Phi}}^{m}) \); that is to say, with the notation above we get

\[
\gamma^m_{\varphi, \tilde{\psi}} = ((\tilde{I}_{\tilde{\Phi}}^{m-1} / \tilde{I}_{\tilde{\Phi}}^{m})((\psi)) \cdot (\beta^m_{\varphi} \cdot (\beta^m_{\varphi})^{-1})
\]

4.10.37;

hence, from equality 4.10.27 we obtain

\[
(\lambda^{m-1}(\hat{\varphi}) \cdot (\beta^m_{\varphi})^{-1}) \cdot (\lambda^{m-1}(\hat{\psi}) \cdot (\beta^m_{\varphi})^{-1})
\]

\[
= (\lambda^{m-1}(\hat{\varphi}) \cdot (\beta^m_{\varphi})^{-1}) \cdot ((\tilde{I}_{\tilde{\Phi}}^{m-1} / \tilde{I}_{\tilde{\Phi}}^{m})((\psi)) \cdot (\beta^m_{\varphi})^{-1})
\]

4.10.38,

\[
= \lambda^{m-1}(\hat{\varphi} \cdot \hat{\psi}) \cdot (\beta^m_{\varphi \cdot \psi})^{-1}
\]
which amounts to saying that the correspondence \(\lambda^m \) sending \(\hat{\varphi} \in \mathcal{P}(Q, R) \) to \(\lambda^{m-1}(\hat{\varphi}) \cdot (\beta^m_{\hat{\varphi}})^{-1} \in \mathcal{L}^{b, U, m}(Q, R) \) defines the announced functor; note that, if \(Q = R \) and \(\hat{\varphi} = \tau_Q(u) \) for some \(u \in Q \), we have \(\hat{\varphi} = \text{id}_Q \) and \(\beta^m_{\hat{\varphi}} = 1 \), so that \(\lambda^m(\tau_Q(u)) = \tau_Q^{b, U, m}(u) \). It remains to prove that this functorial section fulfills the commutativity of the corresponding diagram 4.10.7; since we already have the commutativity of diagram 4.10.20, it suffices to get the \[\mathcal{P}(R) \xrightarrow{\mu^m} \mathcal{L}^{b, U, m}(R) \]

\[
\text{id}_{\mathcal{P}(R)} \downarrow \quad \downarrow \delta(\beta^m_{\hat{\varphi}})^{-1}
\]

\[
\mathcal{P}(R) \xrightarrow{\mu^m} \mathcal{L}^{b, U, m}(R)
\]

which follows from the fact that \(\beta^m \) is stable and therefore \((\beta^m_{\hat{\varphi}})^{-1} \) fixes the image of \(\mu^m \).

We can modify this correspondence in order to get an \(\mathcal{F} \)-locality functor; indeed, for any \(\mathcal{P} \)-morphism \(\tau_{Q,R}(u): R \to Q \) where \(u \) belongs to \(\mathcal{T}(Q, R) \), the \(\mathcal{L}^{b, U, m}(Q, R) \)-morphisms \(\lambda^m(\tau_{Q,R}(u)) \) and \(\tau_{Q,R}^{b, U, m}(u) \), both lift \(\kappa_{Q,R}(u) \) in \(\mathcal{F}(Q, R) \); thus, the divisibility of \(\mathcal{L}^{b, U, m} \) guarantees the existence and the uniqueness of \(\delta_{\kappa_{Q,R}(u)} \in \text{Ker}(\pi^{b, U, m}_R) \) fulfilling

\[
\tau_{Q,R}^{b, U, m}(u) = \lambda^m(\tau_{Q,R}(u)) \cdot \delta_{\kappa_{Q,R}(u)}
\]

and, since we have \(\lambda^m(\tau_Q(w)) = \tau_Q^{b, U, m}(w) \) for any \(w \in Q \), it is quite clear that \(\delta_{\kappa_{Q,R}(u)} \) only depends on the class of \(\kappa_{Q,R}(u) \) in \(\tilde{\mathcal{F}}(Q, R) \).

For a second \(\mathcal{P} \)-morphism \(\tau_{R,T}(v): T \to R \), setting \(\hat{\xi} = \tau_{R,T}(u) \) and \(\hat{\eta} = \tau_{R,T}(v) \) we get

\[
\lambda^m(\hat{\xi} \cdot \hat{\eta}) \cdot \delta_{\hat{\xi} \cdot \hat{\eta}} = \tau_{Q,T}^{b, U, m}(uv) = \tau_{Q,R}^{b, U, m}(u) \cdot \tau_{R,T}^{b, U, m}(v) = \lambda^m(\hat{\xi}) \cdot \delta_{\hat{\xi}} \cdot \lambda^m(\hat{\eta}) \cdot \delta_{\hat{\eta}} = \lambda^m(\hat{\xi} \cdot \hat{\eta}) \cdot \delta_{\hat{\xi} \cdot \hat{\eta}}
\]

then, once again the divisibility of \(\mathcal{L}^{b, U, m} \) forces

\[
\delta_{\hat{\xi} \cdot \hat{\eta}} = \left(\widetilde{\text{Ker}}(\pi^{b, U, m})(\hat{\eta}) \right) (\delta_{\hat{\xi}}) \cdot \delta_{\hat{\eta}}
\]

and, since \(\text{Ker}(\pi^{b, U, m}_T) \) is abelian, with the additive notation we obtain

\[
0 = \left(\widetilde{\text{Ker}}(\pi^{b, U, m})(\hat{\eta}) \right) (\delta_{\hat{\xi}}) - \delta_{\hat{\xi} \cdot \hat{\eta}} + \delta_{\hat{\eta}}
\]

4.10.43.
That is to say, denoting by \(i: \tilde{\mathcal{F}}_\Pi \subset \tilde{\mathcal{F}} \) the obvious \textit{inclusion functor}, the correspondence \(\delta \) sends any \(\tilde{\mathcal{F}}_\Pi \)-morphism \(\xi: R \to Q \) to \(\delta \xi \) defines a \(1 \)-cocycle in \(\mathcal{C}^1(\tilde{\mathcal{F}}_\Pi, \tilde{\text{Ret}}(\pi^{b,U,m}) \circ i) \); but, since the category \(\tilde{\mathcal{F}}_\Pi \) has a final object, we actually have [8, Corollary A4.8]

\[
\mathbb{H}^1(\tilde{\mathcal{F}}_\Pi, \tilde{\text{Ret}}(\pi^{b,U,m}) \circ i) = \{0\}
\]

4.10.44;

consequently, we obtain \(\delta = d_0(w) \) for some element \(w = (w_Q)_{Q \in \mathcal{P}} \) in

\[
\mathcal{C}^0(\tilde{\mathcal{F}}_\Pi, \tilde{\text{Ret}}(\pi^{b,U,m}) \circ i) = \mathcal{C}^0(\tilde{\mathcal{F}}, \tilde{\text{Ret}}(\pi^{b,U,m}))
\]

4.10.45.

In conclusion, equality 4.10.40 becomes

\[
\tau_{\mathcal{P}^m}^{b,U,m}(u) = \lambda^m(\tau_{\mathcal{P}^m}(u)) \cdot \left(\tilde{\text{Ret}}(\pi^{b,U,m})(\tau_{\mathcal{P}^m}(u)) \right) (w_Q) w_R^{-1}
\]

4.10.46

and therefore the new correspondence sending \(\hat{\phi} \in \mathcal{P}(Q,R) \) to \(w_Q \lambda^m(\hat{\phi}) w_R^{-1} \) defines a \(\mathcal{F} \)-\textit{locality functor}. From now on, we still denote by \(\lambda^m \) this \(\mathcal{F} \)-\textit{locality functor}.

Let \(\lambda^m: \mathcal{P} \to \mathcal{L}^{b,U,m} \) be another \(\mathcal{F} \)-locality functor; arguing by induction on \(|\mathcal{P} - \mathcal{N}| \) and on \(m \), and up to natural \(\mathcal{F} \)-isomorphisms, we clearly may assume that \(\lambda^m \) also lifts \(\lambda^{m-1} \); in this case, for any \(\mathcal{P} \)-morphism \(\hat{\phi}: R \to Q \), we have \(\lambda^m(\phi) = \lambda^m(\hat{\phi}) \varepsilon^m_\phi \) for some \(\varepsilon^m_\phi \) in \((I_{\mathcal{P}}^{U,m-1}/I_{\mathcal{P}}^{U,m})(R) \); that is to say, as above we get a correspondence sending any \(\mathcal{P} \)-\textit{chain} \(q: \Delta_1 \to \mathcal{P} \) to \(\varepsilon^m_q(0,1) \), in \((I_{\mathcal{P}}^{U,m-1}/I_{\mathcal{P}}^{U,m})(q(0)) \) and we claim that this correspondence determines a \(\mathcal{P} \)-\textit{stable} element \(\varepsilon^m \) of \(\mathcal{C}^1(\mathcal{P}, I_{\mathcal{P}}^{U,m-1}/I_{\mathcal{P}}^{U,m}) \) [8, A3.17].

Indeed, for another \(\mathcal{P} \)-\textit{isomorphic} \(\mathcal{P} \)-\textit{chain} \(q': \Delta_1 \to \mathcal{P} \) and a \textit{natural} \(\mathcal{P} \)-\textit{isomorphism} \(\nu: q \equiv q' \), as in 4.10.29 above setting

\[
R = q(0), \quad R' = q'(0), \quad Q = q(1), \quad Q' = q'(1)
\]

\[
\hat{\phi} = q(0 \ast 1), \quad \hat{\phi}' = q'(0 \ast 1)
\]

\[
\nu_0 = \hat{\xi} \quad \text{and} \quad \nu_1 = \hat{\xi}
\]

from 4.10.24 we get

\[
\lambda^m(\phi') = \hat{\xi} \lambda^m(\phi) \varepsilon^m_\phi \hat{\xi}^{-1}
\]

4.10.48

\[
\lambda^m(\phi') = \lambda^m(\phi') \varepsilon^m_\phi
\]

and the divisibility of \(\mathcal{L}^{b,U,m} \) forces

\[
\varepsilon^m_{\phi'} = ((I_{\mathcal{P}}^{U,m-1}/I_{\mathcal{P}}^{U,m})(\hat{\xi}^{-1}))(\varepsilon^m_\phi)
\]

4.10.49.
this proves that the correspondence \(\varepsilon^m \) sending \(\hat{\varphi} \) to \(\varepsilon^m_{\hat{\varphi}} \) is \(\mathcal{P} \)-stable and, in particular, that \(\varepsilon^m_{\hat{\varphi}} \) only depends on the corresponding \(\mathcal{F} \)-morphism \(\hat{\varphi} \); thus we set \(\varepsilon^m_{\hat{\varphi}} = \varepsilon^m_{\tilde{\varphi}} \).

On the other hand, considering the usual differential map

\[
d_1 : \mathbb{C}^1(\mathcal{P}, \mathcal{C}^{U,m-1}_{\mathcal{F}}) \rightarrow \mathbb{C}^2(\mathcal{P}, \mathcal{C}^{U,m-1}_{\mathcal{F}})
\]

we claim that \(d_1(\varepsilon^m) = 0 \); indeed, for a second \(\mathcal{P} \)-morphism \(\hat{\psi} : T \rightarrow R \) we get

\[
\lambda^m(\hat{\varphi}) \cdot \lambda^m(\hat{\psi}) = \lambda^m(\hat{\varphi}) \cdot \varepsilon^m_{\hat{\psi}} \cdot \lambda^m(\hat{\psi}) \cdot \varepsilon^m_{\hat{\varphi}} = \lambda^m(\hat{\varphi} \cdot \hat{\psi}) \cdot \varepsilon^m_{\hat{\varphi}} \cdot \varepsilon^m_{\hat{\psi}}
\]

and the divisibility of \(\mathcal{L}^{b,U,m} \) forces

\[
((\mathcal{C}^{U,m-1}_{\mathcal{F}}(\hat{\psi})))(\varepsilon^m_{\hat{\varphi}}) \cdot \varepsilon^m_{\hat{\psi}} = \varepsilon^m_{\hat{\varphi} \cdot \hat{\psi}}
\]

since \(\text{Ker}(\pi_{b,U,m}) \) is Abelian, with the additive notation we obtain

\[
0 = ((\mathcal{C}^{U,m-1}_{\mathcal{F}}(\hat{\psi})))(\varepsilon^m_{\hat{\varphi}}) - \varepsilon^m_{\hat{\varphi} \cdot \hat{\psi}} + \varepsilon^m_{\hat{\psi}}
\]

proving our claim.

At this point, it follows from equality 4.10.4 that \(\varepsilon^m = d_0(\hat{\nu}) \) for some stable element \(\hat{\nu} = (\hat{\nu}_Q)_{Q \in \mathcal{P}} \) in \(\mathbb{C}^0(\mathcal{P}, \mathcal{C}^{U,m-1}_{\mathcal{F}}) \); that is to say, with the notation above we get

\[
\varepsilon^m_{\hat{\varphi}} = ((\mathcal{C}^{U,m-1}_{\mathcal{F}}(\hat{\varphi}))(\hat{\nu}_Q) \cdot \hat{\nu}_R^{-1}
\]

hence, we obtain

\[
\lambda^m(\hat{\varphi}) = \lambda^m(\hat{\psi}) \cdot ((\mathcal{C}^{U,m-1}_{\mathcal{F}}(\hat{\varphi}))(\hat{\nu}_Q) \cdot \hat{\nu}_R^{-1} = \hat{\nu}_Q \cdot \lambda^m(\hat{\varphi}) \cdot \hat{\nu}_R^{-1}
\]

which amounts to saying that \(\lambda^m \) is naturally \(\mathcal{F} \)-isomorphic to \(\lambda^m \). We are done.

Corollary 4.11. There exists a unique perfect \(\mathcal{F} \)-locality \(\mathcal{P} \) up to natural \(\mathcal{F} \)-isomorphisms.

Proof: The existence has been proved in Corollary 4.6 above and the uniqueness is an easy consequence of Theorem 4.10.
References

[1] Dave Benson, personal letter 1994
[2] Carles Broto, Ran Levi and Bob Oliver, The homotopy theory of fusion systems, Journal of Amer. Math. Soc. 16(2003), 779-856.
[3] Andrew Chermak. Fusion systems and localities, Acta Mathematica, 211(2013), 47-139.
[4] Stefan Jackowski and James McClure, Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology, 31(1992), 113-132.
[5] George Glauberman & Justin Lynd, Control of fixed points and existence and uniqueness of centric systems, arxiv.org/abs/1506.01307.
[6] Bob Oliver. Existence and Uniqueness of Linking Systems: Chermak’s proof via obstruction theory, Acta Mathematica, 211(2013), 141-175.
[7] Lluís Puig, Brauer-Frobenius categories, Manuscript notes 1993
[8] Lluís Puig, “Frobenius categories versus Brauer blocks”, Progress in Math. 274(2009), Birkhäuser, Basel.
[9] Lluís Puig, Existence, uniqueness and functoriality of the perfect locality over a Frobenius P-category, arxiv.org/abs/1207.0066, Algebra Colloquium, 23(2016) 541-622.
[10] Lluís Puig, A correction to the uniqueness of a partial perfect locality over a Frobenius P-category, arxiv.org/abs/1706.04349, Algebra Colloquium. 26(2019) 541-559.
[11] Lluís Puig, Categorizations of limits of Grothendieck groups over a Frobenius P-category, submitted to Algebra Colloquium.