ABSTRACT

Background: Multidisciplinary heart failure (HF) clinics decrease hospital admission rates and healthcare use, while improving patient outcomes. To understand the contemporary availability of HF clinics in Ontario, Canada, and the services provided, we performed an environmental scan of physician-led and nurse practitioner (NP)–led HF clinics.

Methods: Between November, 2019 and February 2020, we identified Ontario HF clinics led by physicians or NPs. Following an invitation, we conducted a semi-structured interview to evaluate the services offered and qualitatively compared our findings to the results of the 2010 Ontario provincial survey.

Results: The number of HF clinics (36 vs 34 in 2010) and physicians (157 vs 143 in 2010) have not changed since the 2010 survey. Of the 36 clinics we identified, 30 participated in our interview (22 physician-led and 8 NP-led). Twenty-five clinics (83%) were hospital-based, of which 9 (30%) were part of an academic institution. Comparisons of findings to the results of the 2010 survey were made.

Conclusion: The availability of HF clinics in Ontario has not changed since 2010. The current study provides an updated scan of HF clinics and the services offered, which can be used to benchmark the quality of care in current times.
our findings to the 2010 study on 30 clinics show an approximately 3-fold increase (P < 0.001) in both median annual and new patient visits. As previously reported, the clinics varied in services offered, but trended toward an increased availability of onsite echocardiography, exercise stress testing, and nuclear cardiology.

Conclusions: Compared to the survey performed a decade ago, the number of HF clinics and physicians have not changed, and the services provided remain heterogeneous. However, the increased number of patients served suggests a greater demand for these clinics. Improving the accessibility of these clinics and standardizing the service model are critical to improving patient outcomes.

Methods

Institutional ethics approval

This study was approved by the institutional research ethics board at the University Health Network. The participating physicians and NPs provided informed consent.

Identifying Ontario HF clinics

We identified Ontario HF clinics led by physicians or NPs between November 2019 and February 2020. As was done previously,9 specialized HF clinics were defined as those led by a physician with formal training in HF (eg, through a fellowship) or as self-identified clinics with a physician or NP who follow HF patients. We identified clinics using 4 approaches: (i) those identified in the 2010 provincial scan;9 (ii) those listed on CorHealth Ontario’s website; (iii) those identified through Google searches; and (iv) those disclosed to us via snowball-sampling—a qualitative research technique often utilized to identify “hidden populations” of participants.9

Semi-structured interview and analysis

Following an invitation to the lead physician or NP, we conducted a semi-structured interview to evaluate clinic characteristics and the services offered to patients. Supplemental Appendix S1 lists the names of the participating clinics, and Supplemental Table S1 contains the main elements enclosed in the survey. The design of the survey was informed by the quality indicators as described by the Government of Ontario1 and based on quality statements outlined by CorHealth Ontario.1 Supplemental Table S2 describes these quality indicators and statements and how the information was collected in the survey. All the lead NPs at NP-led clinics participated in the interview; from the physician-led clinics, either the lead physician or the attending nurse participated.

Summary of results and statistical analysis

We summarized our results using descriptive statistics and compared them to the results of the 2010 Ontario provincial scan (Table 1) using a χ² test for proportions and a Student t test for continuous data.

Results

HF clinics and distribution

We identified a total of 36 HF clinics (31 clinics using the primary sources and 5 clinics via snowball sampling), of which 27 have a physician and 9 have an NP primarily attending. Fourteen clinics are in the Greater Toronto Area, 9 are in Central Ontario, 10 are in Eastern Ontario, 2 are in Northeastern Ontario, and 1 is in Northwestern Ontario. The distribution of these clinics within the regions of Ontario is presented as a heat map in Figure 1. Five clinics from the 2010 scan had closed during the interim, with 2 merging under single leadership. We identified 13 new clinics (8 physician-led and 5 NP-led). Of the 36 clinics identified, 30 (83%) agreed to participate in the semi-structured interview, and 6 (17%) declined to participate.

Clinic characteristics

Of the 30 clinics participating in this study, 22 were physician-led and 8 were NP-led. Twenty-five clinics (83%) were hospital-based, of which 9 (30%) were part of an academic institution. Twenty-seven (90%) clinics were staffed with a cardiologist, and of these, 20 (67%) had at least one cardiologist who had completed formal HF fellowship training. There were a total of 157 physicians and 60 full-time equivalent nurses and NPs working at the 30 clinics.

The median estimated annual patient visit-volume in the past year was 2000 (interquartile range [IQR] 1163-3000) with 200 (IQR 105-363) new patient annual visits. The median ratio of annual visits in relation to new patients was 7 (IQR 5-15), with smaller clinics showing the smallest relative number of annual new patient visits compared to total patient visits.

Clinic services

Services provided differed by HF clinics (Fig. 2). Onsite echocardiography service was available in 29 (97%) clinics, exercise stress-testing in 28 (93%), nuclear cardiology in 24 (80%), and angiography in 15 (50%). Additionally, 13 (43%) clinics had an implantable cardioverter defibrillator (ICD)/cardiac resynchronization therapy (CRT) clinic available onsite, and 3 (10%) clinics had a heart transplant or mechanical support scan (Table 1) using a χ² test for proportions and a Student t test for continuous data.
The purpose of this survey was to determine whether the number of HF clinics in Ontario, as well as the services offered, have changed since the original scan in 2010. We report that the number of clinics and physicians have not changed substantially (have increased by 6% and 8%, respectively); however, the number of patients served by

Table 1. Comparison of characteristics of identified clinics in 2010 vs 2020

Parameters	2010	2020	P
Personnel			
Number of clinics identified	34 (all physician-led)	36c (27 physician-led and 9 NP-led)	
Number of clinics interviewed	30	30 (22 physician-led and 8 NP-led)	
Clinics with internists	22.6	27	0.696
Clinics with family physicians	9.7	1	0.138
Academic	25.8	30	0.719
Hospital-based	80.6	83	0.811
Clinic characteristics			
Median (IQR) annual total visits	675 (200-1479)	2000 (1163-3000)	< 0.001
Median (IQR) annual total new patients	78 (25-128)	200 (105-365)	< 0.001
Availability to onsite echocardiography	80.6	97	0.046
Availability to onsite exercise stress testing	77.4	93	0.092
Availability to onsite nuclear cardiology testing	58.1	80	0.069
Availability to onsite angiography	38.7	50	0.382
Availability to on-site device therapy	n.r.	43	
Availability to on-site advanced heart failure therapy	n.r.	10	
Providing advanced care and end-of-life planning	n.r.	83	
Providing telemedicine monitoring	n.r.	50	
Providing telephone follow-up calls	50	67	0.185
Healthcare support			
Availability to dietician (in-clinic)	45.2	30	0.228
Availability to pharmacist (in-clinic)	32.3	27	0.656
Availability to physiotherapy (in-clinic)	6.5	7	0.939
Availability to counselor (social worker; in-clinic)	16.1	7	0.274
Affiliated with cardiac rehabilitation	87.1	83	0.659
Involved with other chronic disease management	64.5	67	0.840

Values are %, unless otherwise indicated.
IQR, interquartile range; NP, nurse practitioner; n.r., not reported.

*Of the 29 listed heart failure clinics from the 2010 publication, we noted that 5 had closed and 2 had merged, resulting in 23 available clinics. With the addition of the 13 new clinics we identified, there are currently 36 clinics available.
contemporary clinics and diagnostic tests provided by these clinics have increased significantly over time.

Although 5 of the originally identified physician-led clinics have closed, and 2 have merged, in the interim, 8 new ones have been identified. Compared to the previous survey, there has been a significant increase in the total number of annual patient visits and annual new patient visits. This increase is likely a reflection of the increase in the aging population and those

Region	# of clinics	Population ≥2 years of age	Population ≥20 years of age per HF clinic
GTA (Toronto, Halton, Peel, and York)	14	5,463,191	390,228
Central (Hamilton, Niagara, Peterborough,	9	2,484,509	276,057
Simcoe, Kawartha Lakes, Waterloo, and			
Wellington)			
East (Ottawa, Frontenac, Prince Edward, and	6	1,503,993	250,667
Stormont, Dundas, & Glengarry)			
Southwest (Essex, Lambton, and Middlesex)	4	1,330,633	332,658
Northeast (Algoma and Sudbury)	2	454,445	227,223
Northwest (Thunder Bay)	1	188,083	188,083

Figure 1. Heat map of heart failure (HF) clinic distribution in Ontario, based on the map of Ontario census divisions; the regional total adult population (≥ 20 years of age), based on 2019 census data, and the calculated population served per HF clinic in the respective regions. GTA, greater Toronto area.
for heart failure (HF) clinics.

Table 2. Services provided by heart failure (HF) clinics.

Service	Clinic	Availability / Association		
Echocardiography		Easy	Difficult	Bonus
Exercise stress testing	onsite	29%	1%	0%
Nuclear cardiology testing	onsite	28%	1%	0%
Angiography	onsite	24%	1%	0%
Device therapy	on-site	15%	1%	0%
Advanced HF Therapy	on-site	13%	1%	0%
Advanced care planning	on-site	13%	1%	0%
Telemedicine	routine	12%	1%	0%
Telephone follow-ups	routine	15%	1%	0%
Home visits	via clinic	1%	1%	0%
Dietician	within clinic	1%	1%	0%
Pharmacist	within clinic	1%	1%	0%
Physiotherapist	within clinic	1%	1%	0%
Counsellor (Social Worker)	within clinic	1%	1%	0%
Cardiac rehabilitation	within clinic	1%	1%	0%
Other chronic disease clinics	directly associated	1%	1%	0%

Availability/Association Definition:

- onsite
- not onsite
- on-site
- not on-site
- routine
- not routine
- via clinic
- not part of clinic
- within clinic
- not directly associated
- directly associated
- external referral
- not provided
- via partner organization
- only when patients call in
- not provided
- no referral
- no referral
- no referral
- not associated
- not associated

In 2010, it was noted that remote monitoring and a home-based component were absent in the majority of clinics surveyed, and that half the clinics contacted patients via telephone between in-person evaluations. Currently, there appears to be an increase in these services. Various remote-monitoring platforms have been utilized in the proactive management of HF including surveillance, management, and evaluation of symptoms, we observed that all clinics in our survey emphasized the importance of educating not only patients, but also their caregivers, on all these aspects of care. Timely detection of volume overload through weight gain is crucial in preventing HF disease progression and rehospitalizations. Although all clinics provided education on the importance of weight monitoring, 87% reported measuring patient weight at each clinic visit. Similarly, education on self-managing diuretic titration was not uniformly provided across clinics. Although most clinics provided education to all patients on how to self-titrate diuretics, a third stated that they individualized the education to include only those who they felt would be able to self-titrate. Uncertainty exists as to whether patient diuretic self-titration could be beneficial. A randomized controlled trial examining the effects of a diuretic titration protocol in patients with stable HF reported a significant improvement in exercise tolerance and health-related QoL, as well as that patients experienced fewer HF-related ED visits at 3 months compared to those receiving usual care. However, the number of patients who had a level of education less than grade 12 was disproportionately higher in the group receiving usual care. Thus, further research is warranted to determine the benefits of self-managing diuretic titration in a more diverse group of patients with varying severities of HF.
patients, aiming to improve patient symptoms and QoL, and to help reduce the economic burden of HF on the healthcare system.17 Furthermore, recent systemic reviews have reported that similar home telemonitoring interventions in HF patients reduced mortality, HF hospitalization, and all-cause hospitalization, while improving QoL.19–20 Given that the survey was conducted prior to the coronavirus disease 2019 pandemic, and that there has since been a spike in telehealth use,21,22 it remains to be determined whether telehealth technologies will be a more uniform mainstay in the practice patterns of these HF clinics, allowing these clinics to become more accessible to those in rural areas.

A recent national Canadian survey22 of 45 selected HF clinics (13 from Ontario) demonstrated, similar to our findings, that the majority of clinics provided educational resources, telephone nursing support, and access to cardiac rehabilitation services, followed guideline-directed medication optimization, and counselled on medication adherence, diet, and advanced care planning. Similar to our provincial survey, the criteria for referral acceptance were significantly heterogeneous at the national level, an issue leading to inequality in patient care, difficulty in access, and potentially poorer patient outcomes and experience. The reported national annual average visit volume was 25% higher than that at the provincial level (~2500 visits in comparison to 2000 at the provincial level). This difference may be related to the higher representation of non-academic and non-hospital-based smaller clinics (~20%) at the provincial level. These observations were also summarized by Abrahamyan et al.23 in their narrative review of accessibility and referral practices to HF clinics in Canada, highlighting the lack of standardization governing HF healthcare policies across Canadian provinces. They too underscored the need for specific patient-referral criteria in order to unify practice patterns and holistically inform future planning to ensure the optimal distribution, number, and structure of HF clinics. However, these concerns are not uniquely Canadian, as discussed in the realist review by Fowokan et al.24 In their comprehensive review of 29 studies from 5 countries, the authors noted that, regardless of the significant differences in healthcare infrastructures, the lack of clear, consensus guidelines on referral criteria was an underlying theme impacting appropriate HF clinic accessibility in various countries.

Given the large population of ethnically diverse individuals in Ontario, it would be imperative for physicians and NPs to develop a more patient-centred practice model to help patients overcome any perceived cultural or language barriers. However, we had not assessed the availability of culturally diverse staff or those able to support special populations (for example, indigenous communities), the ability for patients to access services offered in other languages, or the use of culturally sensitive educational tools. By ensuring that local hospitals and clinics are staffed with individuals whose cultural backgrounds reflect those of the patients, by providing educational material in relevant languages, creating a position for a community-based HF educator, and organizing patient support groups, these cultural or language barriers may be removed, thereby improving patient access to quality care.

The “Connecting Care to Home” program (currently available only in the Southwest Local Health Integration Network) allows for a multidisciplinary healthcare approach to be taken to integrate patient care between the hospital and the home. Through this program, patients are supported by a 24-hour help line and a dedicated home care team, providing patients with the knowledge and tools to self-manage. Expanding the availability of a similar program across Ontario may provide patients—especially those with socioeconomic barriers, who face challenges in accessing HF clinics, or those living in areas where telemonitoring is not viable—with the opportunity to remain connected with their caregivers and improve their outcomes. Services to underrepresented populations may also be improved by leveraging other healthcare workers, such as dieticians/paramedics, who may be able to provide more routine follow-up care for patients at their homes. In addition, by partnering with local pharmacies and equipping them with computers or laptops for telemonitoring, patients may be able to access HF physicians or NPs in a timelier manner. Certainly, a thorough appraisal of these potential opportunities to create equitable access needs to be evaluated to develop a high-quality healthcare system.

Study Limitations and Future Research

In this study, we collected qualitative information on whether a clinic is able to provide a certain service. We did not assess the extent to which the services are offered and did not collect individual patient data to qualitatively determine if an adequate number of patients are being offered the services. Unlike the previous provincial environmental scan, we did not utilize the HF Disease Management Scoring Instrument and concept-mapping technique to rank clinics according to the intensity and complexity of their service models; rather, we chose to report on the primary data. Although our study was designed only to identify currently available HF clinics in Ontario and broadly evaluate their service components, it would be of interest to investigate whether rehospitalization and mortality rates varied, based on the scope of services provided by the clinics. As well, our study highlights opportunities for future research, including, but not limited to, assessing the benefits of integrated HF care, patient-managed diuretic titration, and accessible telemonitoring. With this knowledge, perhaps a more effective healthcare delivery model may be designed to improve health outcomes.

Conclusions

There has been an increased demand reflected by increasing visit-volume in HF clinics in Ontario, despite the stable number of clinics and attending staff. A lack of uniformity in several service components, as highlighted in the Ontario survey 10 years ago, continues to be a topic of concern as presented in the recent pan-Canadian survey, and as mirrored in our contemporary provincial survey. By engaging policymakers so that more dedicated funding may be designated for improving HF clinic accessibility and developing a more standardized service model, the burden of HF on the healthcare system can be minimized, while improving patient outcomes.

Acknowledgements

We are grateful for the contributions of all administrators, nurses, and physicians from the participating HF clinics.

Funding Sources

The authors have no funding sources to declare.
Disclosures

The authors have no conflicts of interest to disclose.

References

1. Health Quality Ontario. Quality standards. Heart failure: care in the community for adults. Available at: https://www.hqontario.ca/Portals/0/documents/evidence qualidade-standards/qs-heart-failure-quality-standar- en.pdf. Accessed December 13, 2020.

2. Blais C, Dai S, Waters C, et al. Assessing the burden of hospitalized and community-care heart failure in Canada. Can J Cardiol 2014;30:352–8.

3. Prevalence Rates and Counts of Chronic Disease by Ontario Public Health Units. 2014. Congestive Heart Failure. OASIS, The Hospital for Sick Children. Available at: https://lab.research.sickkids.ca/oasis/wp-content/uploads/sites/6/2018/11/Fig2_CHF_prev.png. Accessed December 13, 2020.

4. Heart & Stroke Foundation. 2016 report on the health of Canadians: The burden of heart failure. Available at: https://www.heartandstroke. ca/-/media/pdf-files/canada/2017-heart-month/heartandstroke-reporton-health-2016.pdf?la=en. Accessed December 13, 2020.

5. Strömberg A, Martensson J, Fridlund B, et al. Nurse-led heart failure clinics improve survival and self-care behaviour in patients with heart failure: results from a prospective, randomised trial. Eur Heart J 2003;24:1014–23.

6. Gandhi S, Mosleh W, Sharma UC, et al. Multidisciplinary heart failure clinics are associated with lower heart failure hospitalization and mortality: systematic review and meta-analysis. Can J Cardiol 2017;33:1237–44.

7. Wijeysundera HC, Trubiani G, Wang X, et al. A population-based study to evaluate the effectiveness of multidisciplinary heart failure clinics and identify important service components. Circ Heart Fail 2013;6:68–75.

8. Ezekowitz JA, van Walraven C, McAlister FA, Armstrong PW, Kaul P. Impact of specialist follow-up in outpatients with congestive heart failure. CMAJ 2005;172:189–94.

9. Wijeysundera HC, Trubiani G, Abrahamyan L, et al. Specialized multidisciplinary heart failure clinics in Ontario, Canada: an environmental scan. BMC Health Serv Res 2012;12:236.

10. Virani SA, Bains M, Code J, et al. The need for heart failure advocacy in Canada. Can J Cardiol 2017;33:1450–4.

11. Health Quality Ontario & Ministry of Health and Long-Term Care. Quality-based procedures: clinical handbook for heart failure (acute and postacute). Available at: http://www.health.gov.on.ca/en/pro/programs/ ecf/docs/qbp_heart.pdf. Accessed January 19, 2020.

12. Statistics Canada. Analysis—population by age and sex. Available at: https://www150.statcan.gc.ca/n1/pub/91-215-x/2018002/ec2-eng. htm. Accessed December 13, 2020.

13. Government of Canada. Canadian chronic disease surveillance system. Available at: https://health-infobase.canada.ca/ccds/data-tool/Index?G=35&V=11&M=58&Y=2000. Accessed December 13, 2020.

14. Tu K, Gong Y, Austin PC, Jaakimian L, Tu JV. Canadian Cardiovascular Outcomes Research Team. An overview of the types of physicians treating acute cardiac conditions in Canada. Can J Cardiol 2004;20:282–91.

15. Gravely S, Ginsburg L, Stewart DE, Mak S, Grace SL. Referral and use of heart failure clinics: What factors are related to use? Can J Cardiol 2012;28:483–9.

16. Prasun MA, Kockeril AG, Klass PH, Dunlap SH, Piano MR. The effects of a sliding scale diuretic titration protocol in patients with heart failure. J Cardiovasc Nurs 2005;20:62–70.

17. Mohan RC, Heywood JT, Small RS. Remote monitoring in heart failure: the current state. Curr Treat Options Cardiovasc Med 2017;19:22.

18. Ware P, Ross HJ, Cazafio JA, et al. Outcomes of a heart failure telemonitoring program implemented as the standard of care in an outpatient heart function clinic: pretest-posttest pragmatic study. J Med Internet Res 2020;22:e16538.

19. Kitsiou S, Paré G, Jaana M. Effects of home telemonitoring interventions on patients with chronic heart failure: an overview of systematic reviews. J Med Internet Res 2015;17:e63.

20. Bashi N, Karunanithi M, Patech F, Ding H, Walters D. Remote monitoring of patients with heart failure: an overview of systematic reviews. J Med Internet Res 2017;19:e18.

21. Holstead RG, Robinson AG. Discussing serious news remotely: navigating difficult conversations during a pandemic. JCO Oncol Pract 2020;16:363–8.

22. Vizani SA, Zieroth S, Bray S, et al. The status of specialized ambulatory heart failure care in Canada: a joint Canadian Heart Failure Society and Canadian Cardiovascular Society heart failure guidelines survey. CJC Open 2020;2:151–60.

23. Abrahamyan L, Ross H, Gianetti N, et al. Access and referral to heart failure clinics in Canada: a narrative review. Can J Cardiovasc Nurs 2020;30:4–11.

24. Fowokan A, Frankfurter C, Dobrow MJ, et al. Referral and access to heart failure clinics: a realist review. J Eval Clin Pract 2020, https://doi.org/10.1111/jep.13489.

25. Statistics Canada. Map of Ontario census divisions. Available at: https://www150.statcan.gc.ca/n1/economy/demographics/projections/index. html#map. Accessed December 13, 2020.

26. Ontario Ministry of Finance. Ontario population projections update, 2019-2046—statistical tables: tables 10-15. Available at: https://www.fin.gov.on.ca/en/economy/demographics/projections/index.html#table. Accessed January 15, 2020.

Supplementary Material

To access the supplementary material accompanying this article, visit CJC Open at https://www.cjcopen.ca/ and at https://doi.org/10.1016/j.cjco.2021.03.010.