Exploring discordance between Health Literacy Questionnaire scores of people with RMDs and assessment by treating health professionals

Mark M. Bakker 1,2, Polina Putrik 1,2, Cédric Dikovec 1, Jany Rademakers 2,3, Harald E. Vonkeman 4,5, Marc R. Kok 6, Hanneke Voorneveld-Nieuwenhuis 6, Sofia Ramiro 7,8, Maarten de Wit 9, Rachelle Buchbinder 10,11, Roy Batterham 12, Richard H. Osborne 13 and Annelies Boonen 1,2

Abstract

Objectives. We studied discordance between health literacy of people with rheumatic and musculoskeletal diseases (RMDs) and assessment of health literacy by their treating health professionals, and explored whether discordance is associated with the patients’ socioeconomic background.

Methods. Patients with RA, spondyloarthritis (SpA) or gout from three Dutch outpatient rheumatology clinics completed the nine-domain Health Literacy Questionnaire (HLQ). Treating health professionals assessed their patients on each HLQ domain. Discordance per domain was defined as a ≥2-point difference on a 0–10 scale (except if both scores were below three or above seven), leading to three categories: ‘negative discordance’ (i.e. professional scored lower), ‘probably the same’ or ‘positive discordance’ (i.e. professional scored higher). We used multivariable multilevel multinomial regression models with patients clustered by health professionals to test associations with socioeconomic factors (age, gender, education level, migration background, employment, disability for work, living alone).

Results. We observed considerable discordance (21–40% of patients) across HLQ domains. Most discordance occurred for ‘Critically appraising information’ (40.5%, domain 5). Comparatively, positive discordance occurred more frequently. Negative discordance was more frequently and strongly associated with socioeconomic factors, specifically lower education level and non-Western migration background (for five HLQ domains). Associations between socioeconomic factors and positive discordance were less consistent.

Conclusion. Frequent discordance between patients’ scores and professionals’ estimations indicates there may be hidden challenges in communication and care, which differ between socioeconomic groups. Successfully addressing patients’ health literacy needs cannot solely depend on health professionals’ estimations but will require measurement and dialogue.

Video Abstract

A video abstract of this article can be found at https://www.youtube.com/watch?v=ggB1rATdQ4.

Key words: health literacy, professionals’ estimations, discordance, socioeconomic status, health inequalities
Introduction

Health literacy, a multidimensional concept defined as ‘the combination of personal competencies and situational resources needed for individuals to access, understand, appraise and use information and services to make decisions about health’ which ‘includes the capacity to communicate, assert and act upon these decisions’ [1], is increasingly recognised as a critical determinant of health [2] that should be considered in delivering appropriate health care to patients [3–5]. ‘Limited’ health literacy, indicating people’s difficulty with one or more dimensions of health literacy, is prevalent across the globe and concerns about one in every three adults in the Netherlands [6]. A clear social gradient exists, with people in vulnerable circumstances being disproportionally affected [7].

People with ‘limited’ health literacy are at risk of poor health outcomes, for example through reduced access to and utilisation of healthcare services, inadequate provider–patient interactions, and suboptimal self-management [4]. This is highly relevant considering the complexity of rheumatology care [8], which concerns chronic conditions and often long-term patient–professional relationships, requiring decision-making about medication, changes in lifestyle, and adequate support [9, 10], all highlighting how important it is for health professionals to understand patients’ health literacy needs. Several studies in rheumatology indeed discuss the role of health literacy in patient activation and self-management [11], medication adherence [12, 13], functional status [14] and disease severity [15], but also in access to biological DMARDs [16]. To minimise these potential adverse effects of ‘limited’ health literacy, we advocate for tailoring rheumatology care to patients’ health literacy needs [17]. Accommodating an individual patient’s health literacy needs at the point of care would require either measurement of the health literacy of each patient with a robust tool (which might be not feasible in many contexts) or an ad hoc estimation of the patient’s literacy needs by the treating healthcare professional. The feasibility and accuracy of such estimations are the subject of this paper.

Research in various settings shows that health professionals tend to over- and/or underestimate patients’ [18] and their caregivers’ [19] health literacy. A study conducted among general practitioners (GPs) in Belgium showed that inaccurate estimation was more likely to occur in patients with lower education levels and patients who had been under the GP’s care for a shorter period of time [20]. In addition, a gender gap was observed, as male GPs were more likely to underestimate patients’ health literacy [20]. Hawkins et al. [21] explored differing perspectives on health literacy between patients and health professionals on an item level, in a qualitative study using the Health Literacy Questionnaire (HLQ). In contrast to the studies referred above, the authors did not conceptualise differences in assessment as over- or underestimation, but as discordance [21]. When discordance occurs, this may be due to differences in understanding specific words, perspectives on changing circumstances over time, expectations and criteria for assigning scores, or perspectives on the patients’ reliance on healthcare providers [21]. No matter whether discordance is due to estimation errors or differing perspectives, it is important to signal these differences and the direction of any discordance in order to prevent potential communication gaps [22] and/or address them in the delivery of care.

To learn more about the prevalence and potential drivers of discordance in health literacy assessment in rheumatology, the two-fold aim of this study was (i) to investigate the discordance between health literacy of people with rheumatic and musculoskeletal diseases (RMDs) and assessment of health literacy by their treating health professionals, and (ii) to explore whether discordance was associated with the patients’ socioeconomic background.

Methods

Study design

We conducted an observational cross-sectional study, as part of a health literacy project in rheumatology following the Optimising Health Literacy and Access (Ophelia) process [23]. A more extensive account of the methods of patient recruitment and data collection is described elsewhere [17]. One patient research partner (M.dW.) was involved throughout the research process.

Population and setting

This study was conducted in three outpatient rheumatology clinics in the Netherlands (in the South, West and East). We recruited adult patients diagnosed by a
rheumatologist with RA, spondyloarthritis (SpA) or gout, and their treating healthcare professional (rheumatologist, rheumatology fellow, nurse practitioner/physician assistant or rheumatology nurse). Data collection took place between May 2018 and May 2019.

Procedures and measurements

Consenting patients filled out a survey on paper, digitally, or orally in an interview format with a researcher, in their preferred language (Dutch, English, German or Arabic). The survey primarily included the Health Literacy Questionnaire (HLQ) [24, 25], which comprises 44 items addressing nine distinct domains of health literacy (Box 1). The HLQ provides a score for each domain (the higher the better) [24], as it was developed to identify strengths and weaknesses across domains that would not be revealed by a single summary score. Other survey questions included the Pearlin Mastery Scale (which assesses the extent to which a person feels like they have control over life’s opportunities, score range 7–28 [26]) and questions on sociodemographic background and health status. Sociodemographic information included age (in years), gender, education level (low (no more than primary or lower secondary education)/medium/high (graduated tertiary education) using Dutch standardised categories [27]), migration background (Native Dutch, Western migrant or non-Western migrant [28]), employed (yes/no), (partially) work disabled (yes/no) and living alone (yes/no).

Following the clinical visit, the health professional who performed the consultation provided their assessment of the patient’s level (or answered ‘I do not know’) on each of the nine domains of the HLQ using a 0–10 numeric rating scale (NRS). In addition, professionals indicated how well they knew the patient (not at all/barely, somewhat, fairly well, very well) and provided a professional’s global assessment of the impact of the rheumatic disease on the functioning and health of the patient (NRS 0–10, 10 being maximum impact). Additionally, we documented the healthcare professionals’ gender and profession. Before the start of the study, all participating health professionals attended a 1-h session to discuss health literacy, the study setup and how to fill out the survey. An explanation of the meaning of high and low scores on the nine domains [24] was provided to health professionals whenever they were assessing patients.

Ethics

This study was reviewed by the Medical Ethics Review Committee at Maastricht University Medical Center + (2018–0327) as well as by the designated committees at each participating hospital for local permission (Maastricht University Medical Center +, Maastricht: 18–4–037, Maasstad Hospital, Rotterdam: L2018057, Medisch Spectrum Twente, Enschede: KH18-23). All patients and professionals provided written informed consent.

Statistical analysis

In case of missing data, we contacted patients and healthcare professionals to complete missing items. Remaining missing HLQ data were treated according to the expectation maximisation algorithm used in Ophelia [29], before computing domain scores. We analysed discordance data using three categories: (i) ‘The professional’s assessment was lower than the patient’s HLQ score’ (negative discordance); (ii) ‘The professional’s assessment and patient’s HLQ score were probably the same’; and (iii) ‘The professional’s assessment was higher than the patient’s HLQ score’ (positive discordance). Before categorisation, patients’ HLQ domain scores were converted to a 0–10 scale to enable comparisons with the health professionals’ assessments. Discordance was defined as a ≥2-point difference (in either direction). Given a ≥2-point difference at the extremes of the 0–10 scale implies the patient and health professional agree the score is either ‘very high’ or ‘very low’, such discordance is unlikely to be relevant. Therefore, we classified observations where both the professional and the patient scored <3 or ≥7 as ‘probably the same’ (i.e. no relevant discordance)

We used multilevel multinomial regression (mixed) models to test the role of socioeconomic factors in

Box 1 Health Literacy Questionnaire (HLQ) domains

Domain number and description	Part I (score range 1–4)	Part II (score range 1–5)
1. Feeling understood and supported by healthcare providers (4 items)		
2. Having sufficient information to manage my health (4 items)		
3. Actively managing my health (5 items)		
4. Having social support for health (5 items)		
5. Critical appraisal of health information (5 items)		
6. Ability to actively engage with healthcare providers (5 items)		
7. Navigating the healthcare system (6 items)		
8. Ability to find good health information (5 items)		
9. Understanding health information well enough to know what to do (5 items)		

Part I measures level of agreement with items on a 4-point Likert scale: strongly disagree (1), disagree (2), agree (3) and strongly agree (4). Part II measures difficulty experienced with items on a 5-point Likert scale: always difficult/cannot do (1), usually difficult (2), sometimes difficult (3), usually easy (4) and always easy (5).
negative (i.e. professional scored lower than the patient) and positive (i.e. professional scored higher than the patient) relevant discordance in each of the nine HLQ domains (reference = ‘probably the same’). To account for clustering within individual health professionals, we added a random intercept to the models. Intraclass correlation coefficients (ICCs) were computed. The base model included all socioeconomic factors of interest [age, gender, education level, migration background, being employed or (partially) work disabled, living alone]. Other potential predictors or confounding variables (type of rheumatic disease, patient-reported mastery, professionals’ global assessment of disease impact, type of healthcare professional, gender of healthcare professional, and how well the healthcare professional knew the patient) were each tested separately in the base model. The final model was selected by retaining all base model variables and performing a backwards selection procedure for other variables that proved significant predictors or confounders when added to the base model. Analyses were performed in IBM SPSS Statistics 27 and Stata 15. Statistical significance was assumed at $\alpha = 5\%$.

Results

Treating health professionals filled out questionnaires for 778 out of 895 participating patients [17]. There were no important differences between the 778 patients included in analysis and those for whom a professional’s questionnaire was not completed (Supplementary Table S1, available at Rheumatology online). Included patients had a mean age of 61.2 (SD 13.9); 52.1% were male; 51.7% reported to have a low education level; 17.5% had a Western or non-Western migration background; 32.5% were employed; 14.3% were (partially) work disabled; and 23.9% lived alone (Table 1). Thirty-nine healthcare professionals assessed between 1 and 85 patients; 23.1% of professionals were male; and 60% were rheumatologists (Table 1).

Discordance

Total relevant (negative and positive) discordance between patients’ HLQ scores and professionals’ assessments occurred in 161 (20.7%) to 315 (40.5%) patients per domain (Fig. 1). Professionals answered: ‘I do not know’ most often for ‘Having social support for health’ (19.4%, domain 4). Relevant positive discordance was observed more frequently than negative discordance. Most positive discordance was observed for ‘Critically appraising information’ (domain 5, 31.9% positive discordance), while most negative discordance was observed for ‘Actively engaging with providers’ (domain 6, 19.0% negative discordance).

Exploring the role of socioeconomic factors

Results of univariable associations between socioeconomic factors and discordance are provided as Table 1. Patient characteristics

Patient characteristics	Mean (s.d.)	[min–max]a/	% (n)b
Age	61.2 (13.9)	[18–89]	
Gender: male	52.1 (405)		
Education level			
Low	51.7 (402)		
Medium	24.4 (190)		
High	23.9 (186)		
Migration background			
Non-Western migrant	8.9 (69)		
Western migrant	8.6 (67)		
Native Dutch	82.5 (642)		
Occupation statusc			
Employed	32.5 (253)		
(Partially) work disabled	14.3 (111)		
Household typec			
Living alone	23.9 (186)		
Rheumatic disease			
RA	41.0 (319)		
SpA	34.2 (266)		
Gout	24.8 (193)		
Treating hospital			
South	31.7 (247)		
West	28.8 (224)		
East	39.5 (307)		
Treated by type of healthcare professional			
Rheumatologist	55.3 (430)		
Rheumatology fellow	7.5 (58)		
Nurse practitioner/physician assistant	21.0 (163)		
Rheumatology nurse	16.3 (127)		
Mastery	20.06 (3.44)	[9-28]d	
Healthcare professional-reported outcomes			
Professionals’ global assessment of disease impact	4.28 (2.39)	[0-10]	
How well professional knew the patient			
Not at all/barely	10.9 (85)		
Somewhat	30.1 (234)		
Fairly well	46.5 (362)		
Very well	12.5 (97)		

Exploring the role of socioeconomic factors

Results of univariable associations between socioeconomic factors and discordance are provided as Table 1. Patient characteristics

Health professional characteristics (n = 39)	% (n)b
Gender: male	23.1 (9)
Type of professional	
Rheumatologist	60.0 (23)
Rheumatology fellow	20.5 (8)
Nurse practitioner/physician assistant	10.3 (4)
Rheumatology nurse	10.3 (4)
Employing hospital	
South	30.8 (12)
West	30.8 (12)
East	38.5 (15)
Number of patients assessed	19.9 (16.8) [1-85]

For continuous variables. bFor categorical variables. cDescribed as yes/no variable. For occupation status, patients may belong to both or neither of these groups. d$n = 777$ (1 questionnaire administered in Arabic without Mastery scale because no validated translation is available). SpA: spondyloarthritis.
Supplementary Table S2, available at Rheumatology online. Tables 2 and 3 and Fig. 2A and B show the multivariable multilevel multinomial models. Socioeconomic factors played a role in discordance in all domains except ‘Healthcare provider support’ (domain 1). Patients’ gender was not associated with relevant discordance in health literacy scores. Observed ICCs exposed clustering of discordance by professional.

Negative discordance (i.e. professional scored lower than the patient)

Fig. 2A and Table 2 present odds ratios of negative discordance (compared with ‘probably the same’) per domain. Education level and migration background were most frequently and strongly associated with negative discordance. Having low education level or medium education level (compared with high education level) was associated with negative discordance in five and three domains, respectively, with highest odds observed for ‘Actively engaging with providers’ [domain 6, OR low education 3.97 (2.06–7.64), OR medium education 3.03 (1.47–6.24)]. Non-Western migration background (compared with Native Dutch) was associated with negative discordance in five domains, with the highest odds observed for ‘Understanding health information’ [domain 9, OR 8.52 (4.12–17.61)], the only domain in which Western migration background was additionally associated with professionals underscoring patients [OR 2.41 (1.12–5.21)].

Other observed associations were less consistent across domains. Living alone and not being employed were each associated with negative discordance in single HLQ domains. People living alone were more likely to be underscored by professionals for ‘Having social support’ [domain 4, OR 3.51 (1.52–8.10)]. People not employed were more likely to be underscored by professionals for ‘Navigating the health system’ [domain 7, OR 2.28 (1.09–4.78)]. People who were (partially) work disabled had higher odds of being underscored only for ‘Actively managing health’ [domain 3, OR 2.09 (1.02–4.30)]. Age was not associated with negative discordance in any domain.

Positive discordance (i.e. professional scored higher than the patient)

Fig. 2B and Table 3 present odds ratios of positive discordance (compared with ‘probably the same’) per domain. While positive discordance occurred more frequently than negative discordance (mean 17.1 and 10.5% per domain, respectively, Fig. 1), it was less often and less strongly associated with socioeconomic determinants. Having low education level (compared with high education level) was negatively associated with positive discordance for ‘Having sufficient information’ [domain 2, OR 0.45 (0.28–0.73)], ‘Actively managing health’ [domain 3, OR 0.65 (0.42–0.99)], and ‘Critically appraising information’ [domain 5, OR 0.53 (0.35–0.79)], and positively associated with positive discordance for ‘Finding health information’ and ‘Understanding health information’ [domains 8 and 9, OR 2.89 (1.41–5.93) and 2.34 (1.12–4.90)]. Having medium education level (compared with high education level) was negatively associated with positive discordance for ‘Having sufficient information’ [domain 2, OR 0.57 (0.34–0.96)] and ‘Navigating the health system’ [domain 7, OR 0.43 (0.22–0.85)]. Of note, migration background was not associated with positive discordance in any of the domains.

While not a factor in negative discordance, being of higher age was associated with positive discordance in
Fig. 2 Associations of socioeconomic factors with negative (A) and positive (B) discordance

Odds ratios (ORs) and 95% CI of socioeconomic factors associated with discordance. Fig. 2A shows associations with negative discordance (professionals scored lower vs 'probably the same'). Fig. 2B shows associations with positive discordance (professionals scored higher vs 'probably the same'). * indicates higher odds with $P < 0.05$, * indicates lower odds with $P < 0.05$, // indicates upper limit exceeds 0–9 scale.
HLO domains	1. Healthcare provider support (n = 786)	2. Having sufficient information (n = 770)	3. Actively managing health (n = 763)	4. Having social support for health (n = 626)	5. Critically appraising information (n = 776)	6. Actively engaging with providers (n = 774)	7. Navigating the health system (n = 765)	8. Finding health information (n = 752)	9. Understanding health information (n = 765)	
Variables of interest:										
Age (10 years)	1.06 [0.74, 1.52]	1.14 [0.84, 1.54]	1.07 [0.80, 1.43]	1.36 [0.91, 2.03]	1.17 [0.89, 1.54]	1.04 [0.85, 1.28]	0.98 [0.77, 1.25]	0.97 [0.80, 1.19]	1.22 [0.94, 1.57]	
Gender: male	1.13 [0.49, 2.58]	1.81 [0.94, 3.52]	1.78 [0.95, 3.33]	1.44 [0.65, 3.19]	1.25 [0.66, 2.31]	0.89 [0.55, 1.42]	1.35 [0.77, 2.37]	1.20 [0.78, 1.87]	1.15 [0.64, 2.06]	
Education level: low	0.65 [0.25, 1.68]	3.69 [1.35, 10.11]	3.58 [1.37, 9.33]	1.07 [0.35, 3.29]	1.24 [0.57, 2.69]	3.97 [2.06–7.64]	2.07 [1.02, 4.22]	2.69 [1.49, 4.86]	1.97 [0.98, 3.97]	
Education level: medium	1.14 [0.40, 3.25]	2.97 [1.00, 8.84]	2.96 [1.03, 8.47]	1.63 [0.48, 5.52]	1.47 [0.61, 3.51]	3.03 [1.47, 6.24]	1.79 [0.81, 3.92]	1.35 [0.68, 2.69]	1.90 [0.86, 4.20]	
Education level: high (ref)										
Migration background: non-Western	2.18 [0.73, 6.45]	1.89 [0.77, 4.65]	2.45 [1.05, 5.72]	2.00 [0.61, 6.60]	3.33 [1.48, 7.48]	3.25 [1.62, 6.49]	2.18 [0.97, 4.88]	3.27 [1.66, 6.44]	8.52 [4.12–17.61]	
Migration background: Western	1.27 [0.37, 4.33]	1.36 [0.54, 3.46]	2.19 [0.98, 4.91]	1.06 [0.28, 4.08]	0.88 [0.30, 2.59]	1.29 [0.65, 2.57]	1.91 [0.88, 4.16]	1.76 [0.91, 3.40]	2.41 [1.12, 5.21]	
Migration background: Native Dutch (ref)										
Not employed	1.06 [0.35, 3.22]	1.76 [0.72, 4.35]	1.83 [0.76, 4.39]	0.81 [0.23, 3.0]	0.93 [0.24, 3.85]	0.99 [0.28, 3.79]	1.58 [0.85, 2.94]	0.77 [0.37, 1.58]	1.59 [0.77, 3.32]	
Employed (ref)										
(Partially) work disabled: yes (Partially) work disabled: no (ref)	1.72 [0.67, 4.43]	1.21 [0.54, 2.69]	2.09 [1.02, 4.30]	0.87 [0.28, 2.74]	1.36 [0.63, 2.93]	0.95 [0.52, 1.76]	0.79 [0.39, 1.63]	1.02 [0.55, 1.89]	1.64 [0.80, 3.36]	
Living alone: yes	1.32 [0.56, 3.15]	1.07 [0.56, 2.05]	1.23 [0.65, 2.33]	3.51 [1.52, 8.10]	0.58 [0.28, 1.22]	1.08 [0.67, 1.74]	0.68 [0.37, 1.25]	1.35 [0.83, 2.20]	1.06 [0.59, 1.90]	
Living alone: no (ref)										
Fixed intercept	0.00 [0.00, 0.05]	0.00 [0.00, 0.03]	0.02 [0.00, 0.32]	0.00 [0.00, 0.08]	0.01 [0.00, 0.08]	0.00 [0.00, 0.01]	0.00 [0.00, 0.02]	0.02 [0.00, 0.14]	0.01 [0.00, 0.15]	
Other predictors/ confounders: Disease: gout	0.85 [0.24, 3.03]	1.84 [0.79, 4.31]	1.33 [0.54, 3.27]	N/A	N/A	2.43 [1.26, 4.67]	0.86 [0.38, 1.92]	N/A	1.53 [0.71, 3.32]	
Disease: SpA	1.00 [0.41, 2.44]	0.90 [0.42, 1.93]	2.05 [1.00, 4.20]	N/A	N/A	0.86 [0.50, 1.46]	0.78 [0.42, 1.46]	N/A	0.74 [0.38, 1.44]	
Disease: RA (ref)										
Mastery	N/A	1.02 [0.94, 1.12]	0.94 [0.86, 1.02]	0.97 [0.87, 1.09]	N/A	1.09 [1.02, 1.16]	1.12 [1.04, 1.21]	1.07 [1.00–1.14]	1.01 [0.94, 1.09]	
Professionals’ global disease impact	1.36 [1.11, 1.67]	1.27 [1.10, 1.46]	1.23 [1.07, 1.43]	1.24 [1.01, 1.51]	1.27 [1.10, 1.47]	1.18 [1.06, 1.30]	1.24 [1.09, 1.41]	N/A	N/A	
Professional type: nurse	2.41 [0.38, 15.20]	N/A	N/A	1.33 [0.27, 6.66]	0.68 [0.14, 3.27]	N/A	N/A	N/A	N/A	
Professional type: NP/PA	0.65 [0.09, 4.75]	N/A	N/A	1.65 [0.45, 6.08]	1.00 [0.27, 3.70]	N/A	N/A	N/A	N/A	
Professional type: fellow	4.55 [1.04, 19.91]	N/A	N/A	6.92 [2.02, 23.71]	4.22 [1.32, 13.44]	N/A	N/A	N/A	N/A	
Professional type: rheumatologist (ref)										
Professional gender: male	N/A	N/A	N/A	3.21 [1.14, 9.05]	N/A	N/A	N/A	N/A	N/A	
Professional gender: female (ref)										

(continued)
Table 2 Continued

HLQ domains	1. Healthcare provider support	2. Having social support for health	3. Actively managing health	4. Actively engaging with providers	5. Critically appraising information	6. Actively engaging with providers	7. Navigating the health system	8. Finding health information	9. Understanding health information
How well the professional knew the patient: very well	NA	0.29 [0.07, 0.98]	NA	0.25 [0.06, 0.44]	0.26 [0.16, 0.54]	0.26 [0.14, 0.44]	0.17 [0.07, 0.38]	0.14 [0.03, 0.47]	0.21 [0.09, 0.42]
How well the professional knew the patient: fairly well	NA	NA	NA	0.74 [0.31, 1.79]	NA	NA	NA	NA	NA
How well the professional knew the patient: somewhat	NA								
How well the professional knew the patient: not/barely (ref)	NA								
ICC	0.52 [0.16, 0.81]	0.51 [0.20, 0.82]	0.51 [0.20, 0.82]	0.74 [0.31, 1.79]	0.74 [0.31, 1.79]	0.74 [0.31, 1.79]	0.74 [0.31, 1.79]	0.74 [0.31, 1.79]	0.74 [0.31, 1.79]

Results from adjusted multilevel multinomial models, ‘probably the same’ as reference category, \(^{n} \) differs between domains due to exclusion of ‘I do not know’ and one patient with missing data for ‘Mastery’. \(^{a} \) reference category (no OR), N/A: not applicable (variable not included in model), HLQ: Health Literacy Questionnaire, ICC: intraclass correlation coefficient, NP/PA: nurse practitioner/physician assistant, OR: odds ratio, SpA: spondyloarthritis. Bold values indicate \(P < 0.05 \).

Discordance between health literacy assessments

Exploring the role of other factors

Besides associations with socioeconomic determinants, we observed several relevant associations between discordance and other patient and health professionals’ characteristics. These associations differed between negative and positive discordance.

Negative discordance (i.e. professional scored lower than the patient)

The most common factor associated with negative discordance (Table 2) was professionals’ global assessment of disease impact, with higher impact increasing the odds of negative discordance in the first seven HLQ domains. Compared with rheumatologists, fellows were more likely to underscore their patient on ‘Healthcare provider support’ (domain 1), ‘Having social support for health’ (domain 4), and ‘Critically appraising information’ (domain 5). In cases where health professionals stated they knew the patient very well (compared with not at all/barely), negative discordance was less likely for ‘Actively managing health’ (domain 3). Patients with gout (compared with patients with RA) were more likely to be underscored for ‘Actively engaging with providers’ (domain 6). The gender of the health professional was only of relevance in one domain: male professionals were more likely to underscore patients on ‘Having social support for health’ (domain 4).

Positive discordance (i.e. professional scored higher than the patient)

The most relevant factor associated with positive discordance was patients’ mastery. Lower mastery was associated with positive discordance in six domains (Table 3). In cases where health professionals stated they knew the patient very well, positive discordance was more likely for ‘Actively managing health’ (domain 3) and ‘Navigating the health system’ (domain 7). Patients with gout (compared with patients with RA) were more likely to be overscored by professionals for ‘Healthcare provider support’ (domain 1) and ‘Navigating the health system’ (domain 7).

Discussion

We found discordance between Health Literacy Questionnaire scores of people with RMDs and assessment of health literacy by their treating health professionals in more than a quarter of all cases. This indicates
HLO domains	1. Healthcare provider support (n = 768)	2. Having sufficient information (n = 770)	3. Actively managing health (n = 763)	4. Having social support for health (n = 626)	5. Critically appraising information (n = 776)	6. Actively engaging with providers (n = 774)	7. Navigating the health system (n = 765)	8. Finding health information (n = 752)	9. Understanding health information (n = 765)
Variables of interest:	OR [95% CI]	OR [95% CI]	OR [95% CI]	OR [95% CI]	OR [95% CI]	OR [95% CI]	OR [95% CI]	OR [95% CI]	OR [95% CI]
Age (10 years)	1.00 [0.82, 1.22]	0.81 [0.68, 0.98]	1.04 [0.88, 1.23]	0.91 [0.77, 1.09]	0.98 [0.92, 1.27]	0.86 [0.65, 1.14]	0.96 [0.76, 1.21]	1.32 [1.01, 1.75]	1.49 [1.09, 2.03]
Gender: male	1.02 [0.65, 1.62]	1.05 [0.67, 1.63]	1.09 [0.73, 1.61]	1.13 [0.75, 1.70]	1.15 [0.81, 1.63]	1.03 [0.54, 1.98]	0.91 [0.54, 1.54]	1.06 [0.63, 1.78]	1.31 [0.71, 2.42]
Education level: low	0.71 [0.44, 1.16]	0.45 [0.28, 0.73]	0.65 [0.42, 0.99]	1.10 [0.68, 1.78]	0.95 [0.35, 0.79]	1.18 [0.57, 2.45]	0.64 [0.37, 1.12]	2.69 [1.41, 5.03]	2.34 [1.12, 4.90]
Education level: medium	0.71 [0.40, 1.24]	0.57 [0.34, 0.96]	0.86 [0.54, 1.37]	0.82 [0.47, 1.44]	0.77 [0.49, 1.20]	0.52 [0.20, 1.34]	0.43 [0.22, 0.85]	0.91 [0.36, 2.31]	1.21 [0.49, 3.00]
Migration background: Native Dutch (ref)	1.57 [0.79, 3.10]	1.02 [0.50, 2.10]	0.66 [0.31, 1.41]	1.11 [0.57, 2.17]	0.60 [0.29, 1.23]	1.39 [0.55, 3.52]	0.78 [0.34, 1.82]	1.93 [0.80, 4.62]	1.27 [0.44, 3.72]
Migration background: Western	0.69 [0.32, 1.53]	1.17 [0.60, 2.30]	0.54 [0.27, 1.09]	0.77 [0.36, 1.66]	0.90 [0.50, 1.60]	0.17 [0.02, 1.31]	1.27 [0.57, 2.83]	0.95 [0.37, 2.42]	1.10 [0.43, 2.84]
Fixed intercept									
Other predictors/confounders:									
Disease: gout	1.82 [1.01, 3.29]	1.18 [0.63, 2.18]	0.88 [0.50, 1.57]	N/A	1.40 [0.56, 3.52]	2.73 [1.31, 5.71]	N/A	1.53 [0.67, 3.50]	
Disease: SpA	1.18 [0.70, 1.98]	1.36 [0.83, 2.22]	1.08 [0.70, 1.67]	N/A	1.26 [0.60, 2.63]	1.37 [0.75, 2.50]	N/A	1.16 [0.57, 2.38]	
Disease: RA (ref)									
Mastery									
Professionals’ global disease impact									
Professional type: nurse	0.74 [0.38, 1.46]	N/A	N/A	0.77 [0.33, 1.84]	1.10 [0.95, 2.11]	N/A	N/A	N/A	N/A
Professional type: NP/PA	0.73 [0.39, 1.37]	N/A	N/A	0.92 [0.41, 2.09]	0.73 [0.37, 1.44]	N/A	N/A	N/A	N/A
Professional type: fellow rheumatologist (ref)	0.67 [0.27, 1.64]	N/A	N/A	0.72 [0.28, 1.85]	1.36 [0.62, 2.98]	N/A	N/A	N/A	N/A
Professional type: rheumatologist (ref)									
Professional gender: male									
Professional gender: female									

(continued)
HLQ domains	1. Healthcare provider support (n = 768)	2. Having sufficient information (n = 770)	3. Actively managing health (n = 763)	4. Having social support for health (n = 626)	5. Critically appraising information (n = 776)	6. Actively engaging with providers (n = 774)	7. Navigating the health system (n = 765)	8. Finding health information (n = 752)	9. Understanding health information (n = 765)
How well the professional knew the patient: very well	N/A	N/A	2.60 [1.19, 5.70]	N/A	1.54 [0.76, 3.15]	0.74 [0.22, 2.57]	3.83 [1.45, 10.09]	N/A	1.40 [0.43, 4.56]
How well the professional knew the patient: fairly well	N/A	N/A	1.49 [0.78, 2.87]	N/A	0.91 [0.51, 1.60]	1.04 [0.39, 2.78]	1.38 [0.60, 3.18]	N/A	1.08 [0.42, 2.78]
How well the professional knew the patient: somewhat	N/A	N/A	1.11 [0.57, 2.13]	N/A	0.56 [0.31, 1.00]	0.56 [0.20, 1.62]	0.95 [0.41, 2.21]	N/A	0.87 [0.35, 2.16]
How well the professional knew the patient: not/barely	N/A	N/A	—	N/A	—	—	—	N/A	—
ICC	0.02 [0.00, 0.47]	0.04 [0.01, 0.18]	0.06 [0.02, 0.16]	0.09 [0.03, 0.22]	0.06 [0.02, 0.18]	0.01 [0.00, 0.10]	0.05 [0.01, 0.23]	0.11 [0.04, 0.28]	0.12 [0.04, 0.30]

Results from adjusted multilevel multinomial models, ‘probably the same’ as reference category. \(^*\)n differs between domains due to exclusion of ‘I do not know’ and one patient with missing data for ‘Mastery’. (ref) and —: reference category (no OR); N/A: not applicable (variable not included in model); HLQ: Health Literacy Questionnaire; ICC: intraclass correlation coefficient; NP/PA: nurse practitioner/physician assistant; OR: odds ratio; SpA: spondyloarthritis. Bold values indicate \(P < 0.05.\)
standard for objective health literacy measurement, we do not know if the discordance in this study means professionals over- or underestimate patients, patients over- or underestimate themselves, or that the truth is somewhere in the middle. Notwithstanding, the present data uncover a considerable disconnect between patients’ and professionals’ views on patients’ health literacy needs. Moreover, professionals strikingly often answered ‘I do not know’ in estimating ‘Having social support for health’ (domain 4), indicating this may not receive sufficient attention in clinical consultations. The findings highlight that we cannot expect all health professionals to accurately understand and address all patients’ health literacy needs adequately at the point of care based on subjective estimations alone. Instead, we require strategies to address health literacy needs that rely on health literacy measurement and dialogue with patients and professionals, either at the point of care, or in the development of organisational interventions based on patients’ needs [23]. The Conversational Health Literacy Assessment Tool (CHAT) could assist health professionals in this process [35].

Knowing that health literacy needs are not static but can change over time or between contexts [36, 37], and that risk of discordance differs between socioeconomic groups, we also need to reflect on the assumptions we make in research and practice to fill the discordance gap. Dijkstra and Horstman [38] discussed that we should challenge the construction and characterisation of socioeconomic background to understand health inequalities, to prevent perpetuating (possibly inaccurate) negative notions of ‘low socioeconomic status’ and break away from the narrative of groups ‘known to be unhealthy’. The differing risks of discordance based on education level and migration background suggest that pre-existing notions of what health literacy entails in people belonging to specific socioeconomic groups indeed play a role in assessment by health professionals. In order for patients and health professionals to better understand each other, we may need to challenge these pre-existing notions of health literacy and socioeconomic background in our daily work. Of note, discordance between patients’ and professionals’ perspectives is not unique to health literacy, but has also been documented in concepts such as patient activation [39] and goal-setting [40], which highlights general challenges in clinical communication.

There are additional implications of this study for health literacy and discordance research and practice. First, the ICCs indicated substantial clustering by profession, supporting our assumption that professionals’ assessments are highly dependent on the assessor. While many past discordance studies in rheumatology (focusing on other outcomes) did not adjust for possible correlation of scores within health professionals [41–45], our results suggest the clustered nature of the data should be considered in the statistical analyses of future discordance research. Second, we saw clear diversity in discordance and associations with discordance across domains. This further highlights that assessing or estimating single summary scores may fail to capture the complexity of the role of health literacy in health care delivery. Health literacy needs are not grounded in scores on a single domain, but rather follow from a pattern of strengths and weaknesses across health literacy domains [17, 29]. We therefore second Voigt-Barbarowicz and Brütt [18], recommending the use of multidimensional health literacy assessment tools in research and practice.

Our paper reports on a large, inclusive, multicentre study in rheumatology using a multidimensional health literacy tool, giving valuable new insights into health literacy assessment and the role of socioeconomic factors. Nevertheless, it should be seen in the light of a few limitations. First, in contrast to Hawkins et al. [21], health professionals did not fill out the full HLQ, but estimated domain scores (for feasibility reasons). This may have exacerbated discordance, also because HLQ scores had to be converted to a 0–10 scale. Second, the choice of categorisation and threshold of ‘discordance’ as a 2-point difference in observations could be debated. We made this decision based on commonly used cut-offs in rheumatology research [43–46], but no true consensus exists [47], and future studies should determine what difference in health literacy scoring could impact patient–professional relationships and communication. Third, we explored many associations, risking that some of our observations may be due to chance. Therefore, the strong, consistent findings are more likely to reflect true patterns, while less consistent patterns need to be validated in further research. Fourth, some of the associations observed in this cross-sectional study were not consistent between domains, such as the increased risk of both negative and positive discordance in people with low education level for finding and understanding health information (domains 8 and 9), and not consistent with previous research [18, 20]. While these inconsistencies hint at the complexity of health literacy assessment, we cannot be sure if the role of socioeconomic factors in discordance is indeed inconsistent or if there may be other factors (not explored in this study) that can explain discordance patterns and confound the observed associations. Last, we were unable to explore the impact of discordance on outcomes such as quality of care, health status or the occurrence of adverse events. We hypothesise these associations exist, but future research on this topic is warranted.

In conclusion, our study shows that accurate estimation of patients’ health literacy by professionals in rheumatology is not a given. Discordance between patients’ health literacy scores and professionals’ estimations indicates that there may be hidden challenges in communication and care in about a quarter of all patients. Risks are not equal across socioeconomic groups (particularly higher for people with low education level and/or non-Western migration background) and
domains of health literacy, which highlights the multidimensional nature of health literacy and indicates that challenges in addressing health literacy needs may be unequal between socioeconomic groups as well. While increasing awareness among health professionals could potentially reduce discordance and improve understanding between patients and professionals, we suggest health literacy measurement and dialogue with patients and health professionals are vital to addressing health literacy needs, which cannot rely on health professionals’ estimations alone.

Acknowledgements

We are grateful to the clinic staff at all three centres for their efforts in patient recruitment and to all patients and health professionals for participating in this study.

Funding: No specific funding was received from any bodies in the public, commercial or not-for-profit sectors to carry out the work described in this article.

Disclosure statement: The authors have declared no conflict of interest.

Data availability statement

The data underlying this article cannot be shared publicly due to privacy of individuals that participated in the study. They did not consent to have their data shared.

Supplementary data

Supplementary data are available at Rheumatology online.

References

1 Bröder J, Chang P, Kickbusch I et al. IUHPE Position Statement on Health Literacy: a practical vision for a health literate world. Glob Health Promot 2018;25:79–88.
2 World Health Organization. Shanghai Declaration on promoting health in the 2030 Agenda for Sustainable Development. Health Promot Int 2017;32:7–8.
3 van der Heide I, Rademakers J, Schipper M et al. Health literacy of Dutch adults: a cross sectional survey. BMC Public Health 2013;13:179.
4 Paasche-Orlow MK, Wolf MS. The causal pathways linking health literacy to health outcomes. Ann J Health Behav 2007;31(Suppl 1): S19–26.
5 Batterham RW, Hawkins M, Collins PA, Buchbinder R, Osborne RH. Health literacy: applying current concepts to improve health services and reduce health inequalities. Public Health 2016;132:3–12.
6 Heijmans M, Brabers A, Rademakers J. Hoe gezondheidsvaardig is Nederland? Factsheet gezondheidsvaardigheden – cijfers 2019. Utrecht: Nivel, 2019.
7 Sørensen K, Pelikan JM, Röthlin F et al. Health literacy in Europe: comparative results of the European health literacy survey (HLS-EU). Eur J Public Health 2015;25:1053–8.
8 Kahn KL, MacLean CH, Liu H et al. The complexity of care for patients with rheumatoid arthritis: metrics for better understanding chronic disease care. Med Care 2007;45:55–65.
9 Nikipherou E, Santos EJF, Marques A et al. 2021 EULAR recommendations for the implementation of self-management strategies in patients with inflammatory arthritis. Ann Rheum Dis 2021;80:1278–85.
10 van der Heijde D, Ramiro S, Landewé R et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann Rheum Dis 2017;76:978–91.
11 Jones B, Ndosi M, Hunt A, Harcourt D, Dures E. Factors associated with patient activation in inflammatory arthritis: a multisite cross-sectional study. Rheumatol Adv Pract 2021;5:i35–44.
12 Joplin S, van der Zwan R, Joshua F, Wong PKK. Medication adherence in patients with rheumatoid arthritis: the effect of patient education, health literacy, and musculoskeletal ultrasound. BioMed Res Int 2015;2015:1.
13 Hirsh J, Wood P, Keniston A et al. Universal health literacy precautions are associated with a significant increase in medication adherence in vulnerable rheumatology patients. ACR Open Rheumatol 2020;2:110–8.
14 Caplan L, Wolfe F, Michaud K, Quinzanos I, Hirsh JM. Strong association of health literacy with functional status among rheumatoid arthritis patients: a cross-sectional study. Arthritis Care Res 2014;66:508–14.
15 Hirsh JM, Boyle DJ, Collier DH et al. Limited health literacy is a common finding in a public health hospital’s rheumatology clinic and is predictive of disease severity. J Clin Rheumatol 2011;17:236–41.
16 Putrik P, Ramiro S, Lie E et al. Less educated and older patients have reduced access to biologic DMARDs even in a country with highly developed social welfare (Norway): results from Norwegian cohort study NOR-DMARD. Rheumatology 2016;55:1217–24.
17 Bakker MM, Putrik P, Rademakers J et al. Addressing health literacy needs in rheumatology: which patient health literacy profiles need the attention of health professionals? Arthritis Care Res 2021;73:100–9.
18 Voigt-Barbarowicz M, Brütt AL. The agreement between patients’ and healthcare professionals’ assessment of patients’ health literacy—a systematic review. Int J Environ Res Public Health 2020;17:2372.
19 Cooper M J, Blucker R, Thompson D et al. Health Literacy Estimation of English and Spanish Language Caregivers. Health Liter Res Pract 2018;2:e107–14.
20 Storms H, Aertgeerts B, Vandenabeele F, Claes N. General practitioners’ predictions of their own patients’ health literacy: a cross-sectional study in Belgium. BMJ Open 2019;9:e029357.
21 Hawkins M, Gill SD, Batterham R, Elsworth GR, Osborne RH. The Health Literacy Questionnaire (HLQ) at the
patient-clinician interface: a qualitative study of what patients and clinicians mean by their HLQ scores. BMC Health Serv Res 2017;17:309.

22 Kelly PA, Haidet P. Physician overestimation of patient literacy: a potential source of health care disparities. Patient Educ Couns 2007;66:119–22.

23 Beauchamp A, Batterham RW, Dodson S et al. Systematic development and implementation of interventions to OPtimise Health Literacy and Access (Ophelia). BMC Public Health 2017;17:230.

24 Osborne RH, Batterham RW, Elsworth GR, Hawkins M, Buchbinder R. The grounded psychometric development and initial validation of the Health Literacy Questionnaire (HLQ). BMC Public Health 2013;13:658.

25 Rademakers J, Waverijn G, Rijken M, Osborne R, Heijmans M. Towards a comprehensive, person-centred assessment of health literacy: translation, cultural adaptation and psychometric test of the Dutch Health Literacy Questionnaire. BMC Public Health 2020;20:1850.

26 Perlpin LI, Schooler C. The Structure of Coping. J Health Soc Behav 1978;19:2–21.

27 Statistics Netherlands. Standaard onderwijsindeling: Editie 2016/17 (The Dutch Standard Classification of Education). Den Haag/Heerlen, the Netherlands: CBS, 2017.

28 Alders M. Classification of the population with a foreign background in the Netherlands. Presented at the conference: The Measure and Mismeasure of Populations: the statistical use of ethnic and racial categories in multicultural societies; 2001 December 17–18; Paris, France. https://www.cbs.nl/-/media/imported/documents/2002/05/classification-foreign.pdf?la=nl-nl.

29 Beauchamp A, Buchbinder R, Dodson S et al. Distribution of health literacy strengths and weaknesses across socio-demographic groups: a cross-sectional survey using the Health Literacy Questionnaire (HLQ). BMC Public Health 2015;15:678.

30 Lindau ST, Basu A, Leitsch SA. Health literacy as a predictor of follow-up after an abnormal Pap smear: a prospective study. J Gen Intern Med 2006;21:829–34.

31 Bass PF, Wilson JF, Griffith CH, Barnett DR. Residents’ ability to identify patients with poor literacy skills. Acad Med 2002;77:1039–41.

32 Rogers ES, Wallace LS, Weiss BD. Misperceptions of medical understanding in low-literacy patients: implications for cancer prevention. Cancer Control 2006;13:225–9.

33 Zawilinski LL, Kirkpatrick H, Pawlaczyk B, Yarlagadda H. Actual and perceived patient health literacy: how accurate are residents’ predictions? Int J Psychiatry Med 2019;54:290–5.

34 Dickem C, Lambert BL, Cromwell T, Piano MR. Nurse overestimation of patients’ health literacy. J Health Commun 2013;18:62–9.

35 O’Hara J, Hawkins M, Batterham R et al. Conceptualisation and development of the Conversational Health Literacy Assessment Tool (CHAT). BMC Health Serv Res 2018;18:199.

36 Berkman ND, Davis TC, McCormack L. Health literacy: what is it? J Health Commun 2010;15(Suppl 2):9–19.

37 Serensen K, Van den Broecke S, Pelikan JM et al. Measuring health literacy in populations: illuminating the design and development process of the European Health Literacy Survey Questionnaire (HLS-EU-Q). BMC Public Health 2013;13:948.

38 Dijkstra I, Horstman K. ‘Known to be unhealthy’: exploring how social epidemiological research constructs the category of low socioeconomic status. Soc Sci Med 2021;285:114263.

39 Ledford CJ, Ledford CC, Childress MA. Exploring patient activation in the clinic: measurement from three perspectives. Health Educ Behav 2013;40:339–45.

40 Barton JL, Markwardt S, Niederhausen M et al. Are we on the same page?: a cross-sectional study of patient-clinician goal concordance in rheumatoid arthritis. Arthritis Care Res 2021;doi:10.1002/acr.24794.

41 Challan DN, Kvgzic J, Cheville AL et al. Patient-provider discordance between global assessments of disease activity in rheumatoid arthritis: a comprehensive clinical evaluation. Arthritis Res Ther 2017;19:212.

42 Barton JL, Imboden J, Graf J et al. Patient-physician discordance in assessments of global disease severity in rheumatoid arthritis. Arthritis Care Res 2010;62:857–64.

43 Castrejon I, Shakoor N, Chua JR, Block JA. Discordance of global assessment by patients and physicians is higher in osteoarthritis than in rheumatoid arthritis: a cross-sectional study from routine care. Rheumatol Int 2018;38:2137–45.

44 Khan NA, Spencer HJ, Abda E et al. Determinants of discordance in patients’ and physicians’ rating of rheumatoid arthritis disease activity. Arthritis Care Res 2012;64:206–14.

45 Floris A, Espinosa G, Serpa Pinto L et al. Discordance between patient and physician global assessment of disease activity in Behcet’s syndrome: a multicenter study cohort. Arthritis Res Ther 2020;22:278.

46 Lindström Egholm C, Krogh NS, Pincus T et al. Discordance of global assessments by patient and physician is higher in female than in male patients regardless of the physician’s sex: data on patients with rheumatoid arthritis, axial spondyloarthritis, and psoriatic arthritis from the DANBIO Registry. J Rheumatol 2015;42:1781–5.

47 Desthieux C, Hermet A, Granger B, Fautrel B, Gossec L. Patient-physician discordance in global assessment in rheumatoid arthritis: a systematic literature review with meta-analysis. Arthritis Care Res 2016;68:1767–73.