Resumo

A hipercolesterolemia familiar (HF) é uma doença genética causada por um defeito primário no gene que codifica o receptor da LDL. Mutações diferentes no mesmo gene caracterizam um heterozigoto composto, mas pouco se sabe sobre o fenótipo dos portadores. Portanto, neste estudo, descrevemos o rastreamento em cascata de uma família brasileira com essa característica. O caso-índice é um homem de 36 anos, com colesterol total (CT) de 360 mg/dL (9,3 mmol/L) e concentração de LDL-c de 259 mg/dL (6,7 mmol/L), além de xantomas de tendão de Aquiles, obesidade e pré-hipertensão. A genotipagem identificou as mutações 661G>A, 670G>A e 682G>A, no exon 4, e 919G>A, no exon 6. A mesma mutação no exon 4 foi observada no filho do caso-índice (7 anos), que também tem hipercolesterolemia e xantomas tendinosos, ao passo que a filha do caso-índice (9 anos) apresenta mutação no exon 6 e hiperlipidemia, sem xantomas. Em suma, este relato permite uma melhor compreensão acerca da base molecular da HF no Brasil, um país multirracial, onde é esperada uma população heterogênea.

Introdução

O aumento dos níveis plasmáticos de colesterol total (CT) e da lipoproteína-colesterol de baixa densidade (LDL-c) ocorre em pacientes com formas graves e precoces de hipercolesterolemia familiar (HF), uma doença genética geralmente resultante de mutações no gene LDLR, que codifica o receptor LDL. A detecção da mutação patogênica é o padrão-ouro para o diagnóstico de HF, e a forma mais eficiente de triagem é o rastreamento dos parentes de um paciente já diagnosticado (caso-índice).1 A presença de mutações distintas no mesmo gene caracteriza o indivíduo como heterozigoto composto.2,4 Embora as consequências clínicas das mutações heterozigotas e homozigotas sejam descritas frequentemente, pouco se sabe sobre os fenótipos de portadores heterozigotos compostos.2,4 A grande sobreposição de fenótipos dentro do espectro de portadores de mutação relacionadas à HF pode explicar a subnotificação dos heterozigotos compostos e sugere que este diagnóstico é facilmente perdido.2 Levando-se em consideração que encontramos apenas um relato de heterozigoto composto para HF no Brasil,5 descrevemos neste estudo o rastreamento de uma família brasileira com essa característica. Os métodos aplicados estão descritos no Arquivo Suplementar 1.

Resultados

Todos os participantes assinaram um termo de consentimento livre e esclarecido do protocolo de pesquisa, incluindo os testes genéticos, e o Comitê de Ética em Pesquisa com Seres Humanos da Universidade Federal de Santa Catarina aprovou o estudo (CAAE: 54585416.1.0000.0121).

O Arquivo Suplementar 2 mostra a árvore genealógica do caso-índice (indivíduo I) e seus familiares. O indivíduo I é um homem de 36 anos de idade. Apesar de fazer uso diário de 20 mg de Sinvastatina, o caso-índice apresentou CT de 360 mg/dL (9,3 mmol/L), um valor de LDL-c de 260 mg/dL (6,7 mmol/L), correspondente a 80,4% da fração pequena e densa da LDL (sd-LDL), medida após a precipitação das demais lipoproteínas apoB4 (Arquivo Suplementar 1). Também apresentou concentrações plasmáticas elevadas de não-HDL-c, triglicérides e ApoB, além de níveis baixos de HDL-c. O paciente é fumante, sedentário (Arquivo Suplementar 3), obeso com obesidade abdominal e pré-hipertensão. O ultrassom Doppler carotídeo não mostrou aumento da espessura íntima-média, o que não exclui aterosclerose subclínica. Infelizmente, neste estudo, a aterosclerose coronária subclínica não foi avaliada através de angiografia por tomografia computadorizada (TC). Foram identificados xantomas de tendão de Aquiles, e o diagnóstico clínico de HF foi definitivo.

O caso-índice e sua esposa (indivíduo II) relataram histórico familiar de parente de primeiro grau com doença da artéria coronariana (DAC) precoce e concentrações elevadas de CT, mas nenhum caso de doença cardiovascular (DCV) precoce. O genótipo LDLR do caso-índice revelou três mutações no exon 4 (661G>A, 670G>A, 682G>G>A) e uma no exon 6 (919G>G>A).

O indivíduo II não apresentava sinais ou sintomas de HF e não tinha diagnóstico clínico. O rastreamento genético em cascada permitiu a identificação da mutação 919G>G>A na filha...
Comunicação Breve

A mutação heterozigota 682G>A, o códon GAC pelo AAC na posição 224 da cadeia proteica, levando à substituição do aminoácido aspartato pela asparagina, na posição 221 da cadeia proteica. Consequentemente, ocorre a substituição do aminoácido aspartato por asparagina, na posição 307 da cadeia proteica.

A mutação 919G>A modifica o códon GAT, correspondente a asparagina, na posição 919 da cadeia proteica. A análise in silico indicou que essa mutação é provavelmente patogênica e confirmada compulsionadamente

A mutação 919G>A modificou o códon GAT, correspondente a asparagina, na posição 919 da cadeia proteica. A análise in silico indicou que essa mutação é provavelmente patogênica e confirmada compulsionadamente.

As mutações 661G>A, 670G>A, 670G>A e 682G>A foram classificadas como patogênicas/provavelmente patogênicas de acordo com o ClinVar. Por outro lado, a mutação 919G>A possui interpretações conflitantes de patogenicidade (provavelmente patogênico/significado incerto). No entanto, deve-se observar que achados in silico não provam a patogenicidade.

Há relatos de que mutações homozigotas ou heterozigotas compostas no LDLR, além de mutações duplas no LDLR, estão associadas a níveis mais elevados de LDL-c, xantomatose mais extensa e DAC prematura mais grave em relação às mutações heterozigotas simples.4,10 Entretanto, todos os indivíduos que participaram deste estudo apresentaram fenótipos leves. Contudo, o caso-índice e seus filhos não foram submetidos à avaliação para a presença de aterosclerose coronária subclínica. Todos os indivíduos foram encaminhados a um cardiologista para receberem tratamento e acompanhamento apropriados.

Não podemos afirmar se um diagnóstico genético “duplo” teria relevância clínica quando os pacientes já foram diagnosticados e estão sendo tratados adequadamente com terapia hipolipemiante.3 No entanto, é de importância clínica perceber que esta população deve ser informada sobre a importância da sua herança genética, uma vez que a herança de distúrbios monogênicos combinados é mais grave e está associada a um maior risco de desenvolvimento de DCV, requerendo, assim, maior cuidado.2

Os achados relatados neste estudo ajudam a elucidar as bases moleculares da HF no Brasil, uma vez que há apenas nove estudos disponíveis sobre o rastreamento molecular da HF e, levando-se em consideração que este é um país multirracial, é esperada uma população heterogênea. O objetivo desta pesquisa é contribuir para o diagnóstico genético e o aconselhamento de pacientes com HF.

Agradecimentos

Gostaríamos de agradecer ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e ao Programa de Pós-Graduação em Farmácia da Universidade Federal de Santa Catarina pelo apoio financeiro.
Comunicação Breve

Heterozigoto composto com hipercolesterolemia familiar

1. Watts GF, Gidding S, Wierzbicki AS, Toth PP, Alonso R, Brown WV, et al. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Int J Cardiol 2014;171:309-25.

2. Sjouke B, Defesche JC, Hartgers ML, Wiegman A, Roeters van Lennep JE, Kastelein JJ, et al. Double-heterozygous autosomal dominant hypercholesterolemia: Clinical characterization of an underreported disease. J Clin Lipidol 2016;10(6):1462-9.

3. Al-Allaf FA, Alashwal A, Abduljaleel Z, Taher MM, Bouazzaoui A, Abalkhail H, et al. Compound heterozygous LDLR variant in severely affected familial hypercholesterolemia patient. Acta Biochim Pol. 2017;64(1):75-9.

4. Hartgers ML, Defesche JC, Langslet G, Hopkins PN, Kastelein JJP, Baccara-Dinet MT, et al. Alirocumab efficacy in patients with double heterozygous, compound heterozygous, or homozygous familial hypercholesterolemia. J Clin Lipidol. 2018;12(2):390-6.

5. Mehta R, Zubirán R, Martagón AJ, Vasquez-Cárdenas A, Segura-Kato Y, Tusié-Luna MT, et al. The panorama of familial hypercholesterolemia in Latin America: A systematic review. J Lipid Res. 2016;57(12):2115-29.

6. Cavalcante LS, Silva EL. Application of a modified precipitation method for the measurement of small dense LDL-cholesterol (sd-LDL-C) in a population in southern Brazil. Clin Chim Acta. 2012;50(9):1649-56.

7. Raal FJ, Pilcher GJ, Waisberg R, Buthelezi EP, Veller MG, Joffe BI. Low-density lipoprotein cholesterol bulk is the pivotal determinant of atherosclerosis in familial hypercholesterolemia. Am J Cardiol. 1999;83(9):1330-3.

8. Ehhardt M, Schmidt H, Doerck T, Tietge U, Haas R, Manns M-P, et al. Mutation analysis in 46 German families with familial hypercholesterolemia: Identification of 8 new mutations. Hum Mutat. 1999;13(3):257.

9. Hobbs HH, Brown MS, goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;16(6):445-66.

10. Leitersdorf E, Tobin EJ, Davignon J, Hobbs HH. Common low-density lipoprotein receptor mutations in the French Canadian population. J Clin Invest. 1990;85(4):1014-23.

11. Pimstone SN, Sun XM, Souich C, Frohlich JJ, Hayden MR, Soutar AK. Phenotypic variation in heterozygous familial hypercholesterolemia: a comparison of Chinese patients with the same or similar mutations in the LDL receptor gene in China or Canada. Arterioscler Thromb Vasc Biol. 1998;18(2):309-15.

12. Duskova L, Kopeckova L, Jansova E, Tichya L, Freiberger T, Zapletalova P, et al. An APEX-based genotyping microarray for the screening of 168 mutations associated with familial hypercholesterolemia. Atherosclerosis. 2011;216(1):139-45.

13. U.S. National Library of Medicine. National Center for Biotechnology Information. ClinVar [website]. (Access November 12 2019). Available from: <https://www.ncbi.nlm.nih.gov/clinvar/variation>.

Referências

*Material suplementar

Para informação adicional, por favor, clique aqui.