Neuronal Excitability

Differential Impact of Inhibitory G-Protein Signaling Pathways in Ventral Tegmental Area Dopamine Neurons on Behavioral Sensitivity to Cocaine and Morphine

Margot C. DeBaker,1 Ezequiel Marron Fernandez de Velasco,2 Nora M. McCall,1 Anna M. Lee,2 and Kevin Wickman2

https://doi.org/10.1523/ENEURO.0081-21.2021

1Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455 and 2Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455

Abstract

Drugs of abuse engage overlapping but distinct molecular and cellular mechanisms to enhance dopamine (DA) signaling in the mesocorticolimbic circuitry. DA neurons of the ventral tegmental area (VTA) are key substrates of drugs of abuse and have been implicated in addiction-related behaviors. Enhanced VTA DA neurotransmission evoked by drugs of abuse can engage inhibitory G-protein-dependent feedback pathways, mediated by GABA_B receptors (GABA_BRs) and D_2 DA receptors (D_2Rs). Chemogenetic inhibition of VTA DA neurons potently suppressed baseline motor activity, as well as the motor-stimulatory effect of cocaine and morphine, confirming the critical influence of VTA DA neurons and inhibitory G-protein signaling in these neurons on this addiction-related behavior. To resolve the relative influence of GABA_BR-dependent and D_2R-dependent signaling pathways in VTA DA neurons on behavioral sensitivity to drugs of abuse, we developed a neuron-specific viral CRISPR/Cas9 approach to ablate D_2R and GABA_BR in VTA DA neurons. Ablation of GABA_BR or D_2R did not impact baseline physiological properties or excitability of VTA DA neurons, but it did preclude the direct somatodendritic inhibitory influence of cocaine in male and female mice, whereas GABA_BR ablation selectively potentiated cocaine-induced activity in male subjects only. Neither D_2R nor GABA_BR ablation impacted morphine-induced motor activity. Collectively, our data show that cocaine and morphine differ in the extent to which they engage inhibitory G-protein-dependent feedback pathways in VTA DA neurons and highlight key sex differences that may impact susceptibility to various facets of addiction.

Key words: cocaine; CRISPR; D2 dopamine receptor; GABA_B receptor; morphine; sex differences

Significance Statement

Although inhibitory G-protein-dependent signaling involving the GABA_B receptor (GABA_BR) and D_2 dopamine (DA) receptor (D_2R) in ventral tegmental area (VTA) DA neurons is thought to limit DA neurotransmission evoked by drugs of abuse, their relative impact on behavioral sensitivity to such drugs is unclear. Using a neuron-specific viral CRISPR/Cas9 approach, we show that loss of D_2R in VTA DA neurons enhances behavioral sensitivity to systemic administration of cocaine in male and female mice, whereas loss of GABA_BR enhances cocaine sensitivity only in males. Neither GABA_BR nor D_2R ablation impacted behavioral sensitivity to morphine. Thus, differential engagement of inhibitory feedback pathways in VTA DA neurons likely contributes to drug-specific neurophysiological and behavioral effects and may underlie sex differences associated with some facets of addiction.
Introduction

Dopamine (DA) neurons of the ventral tegmental area (VTA) are an integral part of the mesocorticolimbic system, a network of brain regions that mediates responses to natural rewards and drugs of abuse (Lammel et al., 2014; Volkow and Morales, 2015; Juarez and Han, 2016; Lüscher, 2016; Schultz, 2016). Drugs of abuse enhance DA neurotransmission in the mesocorticolimbic system via actions on distinct molecular targets (Di Chiara and Imperato, 1988; Lüscher and Ungless, 2006). Cocaine, for example, inhibits monoamine transporters, including the DA transporter (DAT), which recycles DA from the extracellular space, allowing DA levels to rise and persist in the VTA and its projection targets (Groves et al., 1975; Beart et al., 1979; Di Chiara and Imperato, 1988; Chen et al., 1996; Iravani et al., 1996; Adell and Artigas, 2004; Kita et al., 2009; Adrover et al., 2014). In contrast, morphine suppresses inhibitory GABAergic input, enhancing VTA DA neuron activity via disinhibition (Johnson and North, 1992; Jhou et al., 2009; Jalabert et al., 2011).

While enhanced DA neurotransmission underlies addiction-related behaviors (Hyman et al., 2006), it can also trigger negative feedback mediated by inhibitory G-protein signaling pathways (Steketee and Kalivas, 1990, 1991; Narayanan et al., 1996; Rahman and McBride, 2000). For example, cocaine elevates DA levels in the VTA and terminal regions, provoking feedback inhibition of VTA DA neurons via activation of D2 DA receptors (D2Rs) in the somatodendritic compartment and axon terminals (Einhorn et al., 1988; Bradberry and Roth, 1989; Brodie and Dunwiddie, 1990; Beckstead et al., 2004; Ford, 2014). Cocaine also provokes GABAergic feedback to VTA DA neurons indirectly, by stimulating D1R-expressing GABAergic medium spiny neurons in the nucleus accumbens (NAc) that project to the VTA (Rahman and McBride, 2001; Watabe-Uchida et al., 2012; Menegas et al., 2015; Edwards et al., 2017; Pignatelli and Bonci, 2018). This “long-loop” GABAergic feedback to VTA DA neurons is mediated primarily by activation of somatodendritic GABAB receptors (GABABRs) on VTA DA neurons (Edwards et al., 2017).

Pharmacological and genetic approaches have implicated GABABR and D2R-dependent signaling in the VTA in drug-induced behaviors. For example, pharmacological activation of D2R in the VTA suppressed cocaine-induced activity (Koulchitsky et al., 2016) and cocaine-reinstated drug seeking behavior (Xue et al., 2011), while pharmacological inhibition of D2R in the VTA increased psychostimulant-induced locomotor activity (Chen and Reith, 1994; Tanabe et al., 2004). Similarly, intra-VTA infusion of the GABAergic agonist baclofen blocked the locomotor-stimulatory effect of psychostimulants and opioids (Kalivas et al., 1990; Steketee and Kalivas, 1991; Chen and Reith, 1994; Leite-Morris et al., 2002, 2004) and attenuated self-administration of cocaine, opioids, and other drugs of abuse (Xi and Stein, 1999; Brebner et al., 2000; Leite-Morris et al., 2004; Backes and Hemby, 2008). RNAi-mediated suppression of D2R in the rat VTA (cell non-selective) enhanced cocaine-related behavior (de Jong et al., 2015; Chen et al., 2018), enhanced choice impulsivity (Bernosky-Smith et al., 2018), and increased functional brain activity (Martin et al., 2020). Ablation of D2R in DA neurons throughout the mouse brain correlated with enhanced cocaine-induced activity (Bello et al., 2011), as well as acquisition of cocaine self-administration and reactivity to drug-paired cues (Holroyd et al., 2015). Interestingly, partial suppression of GABAergic signaling in VTA DA neurons unmasked cocaine-induced activity normally absent in BALB/c mice, but did not impact morphine-induced activity (Edwards et al., 2017).

Collectively, available data suggests that D2R and GABAergic signaling pathways in VTA DA neurons may exert a differential influence on behavioral sensitivity to drugs of abuse. Published studies investigating D2R and GABAergic signaling in VTA DA neurons, however, have used approaches that provide either anatomic or cellular specificity, or do not completely suppress inhibitory signaling, or focus only on one signaling pathway or drug of abuse. Accordingly, the goal of this study was to compare the impact of D2R or GABAergic ablation in VTA DA neurons on behavioral sensitivity to cocaine and morphine. To this end, we developed a neuron-specific viral CRISPR/Cas9 approach to ablate D2R and GABAergic signaling selectively in VTA DA neurons of adult mice. Our findings show that D2R and GABAergic signaling exert drug-specific and sex-specific influences on motor activity in mice.

Materials and Methods

Animals

All studies were approved by the Institutional Animal Care and Use Committee at the University of Minnesota. The B6.SJL+Slc6a3tm1.1(cre)Bkmn/J (stock #006660, The Jackson Laboratory) knock-in line was used in this study; heterozygous subjects, referred to throughout as DATCre(+) mice, were generated by crossing with C57BL/6J subjects. DATCre(+) mice were also crossed in multiple rounds with a Cre-dependent Cas9GFP knock-in line (B6;129-Gt(Rosa)26Sortm1(CAG-cas9b,-EGFP)Fwe2/J), the Jackson Laboratory, stock #026179), to generate DATCre(+) subjects homozygous for the Cas9GFP(+) mutation; these mice are referred to throughout as DATCre(+)Cas9GFP(+) mice. All mice used in experiments were bred in-house. Mice were group housed, maintained on a 14/10h light/dark cycle and were provided ad libitum access to food and water.
Reagents

Baclofen, quinpirole, and sulpiride were purchased from Sigma, and CGP54626 and clozapine-N-oxide (CNO) were purchased from Tocris. Cocaine and morphine were obtained through Boynton Health Pharmacy at the University of Minnesota. All adeno-associated viruses (AAVs) were packaged in AAV8 serotype by the University of Minnesota Viral Vector and Cloning Core (Minneapolis, MN) following standard packaging procedures (Chen et al., 2019), titers were between 0.2 and 4×10^{14} genocopies/ml. The packaging plasmids (pRC8 and pHelper) were obtained from the University of Pennsylvania Vector Core. The plasmids pAAV-hSyn-hM4Di(mCherry) and pAAV-hSyn-DIO-mCherry (Addgene plasmids #50475 and #50459, respectively) were gifts from Bryan Roth. To obtain the pAAV-hSyn-DIO-hM4Di (mCherry) plasmid, the mCherry from the pAAV-hSyn-DIO-mCherry was replaced by an hM4Di(mCherry) cassette via subcloning. For the CRISPR/Cas9 experiments the pAAV-U6-gRNA-hSyn-NLSmCherry was generated using the backbone of the plasmid pAAV-U6-gRNA-hSyn-Cre-2A-EGFP-KASH (Platt et al., 2014; Addgene plasmid #60231) that was a gift from Feng Zhang, The Genome Engineering and iPS Center of Washington University designed and tested guide RNA (gRNA) sequences targeting the Drd2 (D2R) and Gabbr1 (GABABR1) genes. Sequences were as follows: D2R, CATGACAGTAACTCGGCGCT; GABABR1, CaCl2, pH 7.4, for at least 1 h, as described (McCall et al., 2017). Neurons in the lateral VTA exhibiting appropriate fluorescence were targeted for analysis as this sub-region of the VTA receives prominent input from the NAc that mediates GABA_BR-dependent feedback (Edwards et al., 2017). Whole-cell data were acquired using a Multiclamp 700A amplifier and pCLAMPv.9.2 software (Molecular Devices, LLC), using recording conditions described in previous publications (McCall et al., 2017). Input/membrane resistance (R_{m}) and apparent capacitance (C_{m}) were determined using a 5 mV/10 ms voltage step, with current responses filtered at 5 Hz. Immediately after establishing whole-cell access, I_{h} conductance was measured using a 200-ms voltage step to −120 mV; the difference in current from beginning to end of the −120-mV step was taken as I_{h} amplitude. Subsequently, spontaneous activity was measured in current-clamp mode ($I=I_{h}$) for 1 min. Neurons exhibiting no spontaneous activity were not evaluated. Action potential half-width (AP₅₀) was determined by averaging five AP₅₀ values. For rheobase measurements, cells were held in current-clamp mode at −80 pA to prevent spontaneous activity, and then given 1-s current pulses, beginning at −100 pA and progressing in 20-pA increments. Rheobase was defined as the minimum current step that evoked one or more action potentials. In chemogenetic experiments, the change in rheobase measured before and after bath application of CNO application was determined. Somatodendritic holding currents were measured in voltage-clamp mode ($V_{hold} = −60 \text{ mV}$) following bath application of CNO (10 μM), baclofen (200 μM), or quinpirole (10 μM). All command potentials factored in a junction potential of −15 mV predicted using JPCalc software (Molecular Devices, LLC). Series and input resistances were tracked throughout the experiment. If series resistance was unstable or exceeded 20 MΩ, the experiment was excluded from analysis.

Intracranial manipulations

Mice (45–45 d) were placed in a stereotaxic frame (David Kopf Instruments) under isoflurane anesthesia. Microinjectors, made by affixing a 33-gauge stainless steel hypodermic tube within a shorter 26-gauge stainless steel hypodermic tube, were attached to polyethylene-20 tubing affixed to 10-μl Hamilton syringes, and were lowered through burr holes in the skull to the VTA (from bregma: −2.75 mm AP, ±0.55–0.7 mm M/L, −5 mm DV); 300–500 nl of virus was injected per side at a rate of 100 nl/min. The optimized coordinates and viral load ensured full coverage of the VTA along anterior/posterior and rostral-caudal axes, with minimal spread into the adjacent substantia nigra pars compacta. Microinjectors were left in place for 10 min following infusion to reduce solution backflow along the infusion track. Slice electrophysiology and behavioral experiments were performed three to four and five to six weeks after viral infusion for chemogenetic and CRISPR experiments, respectively.

Slice electrophysiology

Electrophysiological properties of VTA DA neurons were evaluated in behaviorally naïve adult mice (66–93 d). Horizontal slices (225 μm) containing the VTA were prepared in ice-cold sucrose substituted ACSF, and allowed to recover at room temperature in ASCF containing the following: 125 mM NaCl, 2.5 mM KCl, 1.25 mM NaH₂PO₄, 25 mM NaHCO₃, 11 mM glucose, 1 mM MgCl₂, and 2 mM CaCl₂, pH 7.4, for at least 1 h, as described (McCall et al., 2017). Neurons in the lateral VTA exhibiting appropriate fluorescence were targeted for analysis as this sub-region of the VTA receives prominent input from the NAc that mediates GABA_BR-dependent feedback (Edwards et al., 2017). Whole-cell data were acquired using a Multiclamp 700A amplifier and pCLAMPv.9.2 software (Molecular Devices, LLC), using recording conditions described in previous publications (McCall et al., 2017). Input/membrane resistance (R_{m}) and apparent capacitance (C_{m}) were determined using a 5 mV/10 ms voltage step, with current responses filtered at 5 Hz. Immediately after establishing whole-cell access, I_{h} conductance was measured using a 200-ms voltage step to −120 mV; the difference in current from beginning to end of the −120-mV step was taken as I_{h} amplitude. Subsequently, spontaneous activity was measured in current-clamp mode ($I=I_{h}$) for 1 min. Neurons exhibiting no spontaneous activity were not evaluated. Action potential half-width (AP₅₀) was determined by averaging five AP₅₀ values. For rheobase measurements, cells were held in current-clamp mode at −80 pA to prevent spontaneous activity, and then given 1-s current pulses, beginning at −100 pA and progressing in 20-pA increments. Rheobase was defined as the minimum current step that evoked one or more action potentials. In chemogenetic experiments, the change in rheobase measured before and after bath application of CNO application was determined. Somatodendritic holding currents were measured in voltage-clamp mode ($V_{hold} = −60 \text{ mV}$) following bath application of CNO (10 μM), baclofen (200 μM), or quinpirole (10 μM). All command potentials factored in a junction potential of −15 mV predicted using JPCalc software (Molecular Devices, LLC). Series and input resistances were tracked throughout the experiment. If series resistance was unstable or exceeded 20 MΩ, the experiment was excluded from analysis.

Locomotor activity

Locomotor activity was assessed in open-field activity chambers housed in sound-attenuating cubicles (Med-Associates). Each cubicle was equipped with three 16-beam infrared arrays permitting automated measurements of distance traveled (Activity Monitor 5; Med-Associates). Animals were habituated to the testing room for at least 30 min before testing. Subjects were acclimated over 3 d; on day 1, animals were handled and placed in the open field for 60 min. On days 2 and 3, animals were given an intraperitoneal injection of saline and placed in the open field for 60 min. For DREADD experiments, mice were injected with CNO (2 mg/kg, i.p.) 30 min before either saline, cocaine (15 mg/kg, i.p.), or morphine (10 mg/kg, i.p.) injection on day 4. Distance traveled during the 60-min period following saline or drug injection was measured; separate cohorts of mice received saline, cocaine and morphine injections. For CRISPR/Cas9 experiments, mice were placed in the open field for 30 min before injection each day to acclimate to the chamber. Activity was measured on day 3 following saline injection, and again on day 4 following injection of cocaine (15 mg/ kg, i.p.) or morphine (10 mg/kg, i.p.), separate cohorts of mice were used for cocaine and morphine studies.
Thigmotaxis was quantified by dividing the distance traveled in the periphery by the total distance traveled, as described (Pravetoni and Wickman, 2008). After behavioral testing, the scope and accuracy of viral targeting was assessed by fluorescence microscopy: 225-μm horizontal slices of the midbrain were obtained using a vibratome and images were acquired on an Olympus IX-80 microscope using Metamorph Advanced Acquisition v.7.7.7.0 software (Molecular Devices, LLC). Only data from animals with bilateral viral-driven fluorescence, where the majority of fluorescence was confined to VTA (with minimal spread to the adjacent substantia nigra), were included in the final analysis.

Statistical analysis
Data are presented throughout as the mean ± SEM. Statistical analyses were performed using Prism v.9 software (GraphPad Software). All studies included balanced numbers of male and female mice, and data were analyzed first for sex effects. If no sex differences were observed, data from male and female subjects were pooled. If any data point fell outside the range of 2 SDs from the mean, it was excluded as an outlier. Across the entire study, this outlier detection approach led to the removal of one point from the hM4Di/morphine activity dataset and 1 point from the hM4Di control/morphine activity dataset. Differences were considered significant if p < 0.05.

Results
G-protein-dependent inhibition of VTA DA neurons suppresses motor activity
Motor activation is an unconditioned DA-dependent response in mice to systemic administration of cocaine and morphine (van Rossum et al., 1962; Delfs et al., 1990; Kalivas and Duffy, 1993) that can be recapitulated by direct chemogenetic or optogenetic stimulation of VTA DA neurons (Kim et al., 2012; Tye et al., 2013; Boender et al., 2014; Guo et al., 2014). To test whether inhibitory G-protein-dependent signaling in VTA DA neurons can suppress the locomotor stimulatory effect of systemic cocaine and morphine, we used DATCre(+) mice and a Cre-dependent viral inhibitory chemogenetic approach. Cre-dependent AAV vectors harboring either hM4Di (mCherry) or mCherry control were infused into the VTA of adult male and female DATCre(+) mice to permit selective chemogenetic inhibition of VTA DA neurons (Fig. 1A).

In acutely isolated midbrain slices from virally treated DATCre(+) mice, bath application of CNO decreased the excitability (increased the rheobase) of hM4Di-expressing, but not mCherry control, DA neurons (Fig. 1B,C). CNO also evoked a somatodendritic inhibitory current (VHold = −60 mV) reversed by 0.3 mM Ba2+ in hM4Di (mCherry)-expressing but not control VTA DA neurons (Fig. 1D,E). Thus, chemogenetic inhibition of VTA DA neurons, like the direct somatodendritic inhibition evoked by D2R and GABA_BR activation, is likely mediated by activation of G-protein-gated inwardly rectifying K+ (GIRK/Kir3) channels (Beckstead et al., 2004; Cruz et al., 2004; Labouèbe et al., 2007; Arora et al., 2010).

Consistent with a previous report (Runegaard et al., 2018), chemogenetic inhibition of VTA DA neurons suppressed motor activity evoked by injection of saline, as well as cocaine and morphine (Fig. 1F). These results confirm that VTA DA neurons are key regulators of motor activity in mice and show that activation of inhibitory G-protein signaling in these neurons can potently suppress baseline activity and the motor-stimulatory effects of cocaine and morphine.

CRISPR/Cas9 ablation of D2R and GABA_BR in VTA DA neurons
To assess the impact of D2R and GABA_BR-dependent signaling pathways in VTA DA neurons on behavioral sensitivity to cocaine and morphine, we developed a DA neuron-specific, viral CRISPR/Cas9 ablation approach. DATCre(+) mice were crossed with a Cre-dependent Cas9GFP line to generate DATCre(+):Cas9GFP(+) mice. AAV vectors harboring gRNAs targeting LacZ (control), D2R, or GABA_BR were generated and infused into the VTA of male and female DATCre(+):Cas9GFP(+) mice (Fig. 2A).

To assess the efficacy and selectivity of the viral vectors, somatodendritic currents evoked by bath application of the D2R agonist quinpirole and the GABA_BR agonist baclofen were measured in VTA DA neurons five to six weeks after viral infusion. In slices from LacZ gRNA-treated subjects, somatodendritic outward inhibitory currents were reliably evoked by quinpirole and baclofen (Fig. 2B), consistent with previous studies (Beckstead et al., 2004; Cruz et al., 2004; Labouèbe et al., 2007; Arora et al., 2010; McCall et al., 2017). In VTA DA neurons from mice treated with D2R gRNA, quinpirole-induced currents were completely absent (Fig. 2B,C), while baclofen (applied after quinpirole) evoked normal responses (Fig. 2B,D). Interestingly, a sex difference in the amplitude of quinpirole-induced responses was observed, with currents in VTA DA neurons from female subjects larger than those in males (Fig. 2C). No sex differences were observed in the amplitude of baclofen-induced currents.

In VTA DA neurons from mice treated with GABA_BR1 gRNA, somatodendritic responses to baclofen were completely absent (Fig. 2E,F). Responses to quinpirole (applied after baclofen application) were larger than those seen in VTA DA neurons from LacZ-treated controls (Fig. 2G). As this difference may reflect the impact of prior activation by GABA_BR of a shared effector in control cells, we conducted a separate study where only quinpirole was applied to the slice. In these experiments, quinpirole-induced somatodendritic currents were not significantly different between GABA_BR-Lacking and control VTA DA neurons (Fig. 2H).

We also examined the impact of D2R and GABA_BR ablation on VTA DA neuron excitability, as measured by spontaneous activity and rheobase. No sex differences were observed with respect to either excitability measure and, as such, data from male and female subjects were pooled to increase the power of the study. Ablation of D2R or GABA_BR did not impact spontaneous activity of VTA DA neurons (Fig. 2I) or rheobase (Fig. 2J). Similarly,
no impact of D2R or GABABR ablation was detected on Ih current amplitude, cell capacitance, action potential half-width, or input resistance (Table 1). Collectively, these data show that we can selectively ablate GABABR-dependent or D2R-dependent signaling in VTA DA neurons, and that loss of these signaling pathways does not impact baseline electrophysiological characteristics of VTA DA neurons.

Impact of D2R and GABABR in VTA DA neurons on baseline and cocaine-induced activity

We next examined the impact of D2R or GABABR ablation on open-field motor activity measured after injection of saline or cocaine. Given the observed sex difference in the strength of D2R-dependent signaling in VTA DA neurons, and our prior report of a sex difference in cocaine-induced motor activity in mice (McCall et al., 2017), we analyzed data from male and female subjects separately.

In support of this approach, we found that while male and female LacZ control mice showed no difference in total distance traveled after cocaine injection, the temporal profile of cocaine-induced activity was notably different for male and female subjects (Extended Data Fig. 3-1A), female subjects showed sharper time-to-peak and decay phases relative to male subjects.

In females, we observed main effects of drug and viral treatment, as well as a significant interaction between drug and viral treatment, on total distance traveled in the postinjection interval. Loss of D2R and GABABR in VTA DA neurons correlated with elevated activity levels at all time points following injection (Fig. 3B).

Cocaine also enhanced thigmotaxis, as assessed by

Figure 1. Inhibitory G-protein signaling in VTA DA neurons suppresses baseline and drug-induced motor activity. A, Viral targeting in a DATCre(+) mouse treated intra-VTA AAV8-hSyn-DIO-mCherry, with rostro-caudal tiling of panels highlighting viral spread (mCherry fluorescence). ml, medial lemniscus; MT, medial terminal nucleus of the accessory optic tract; PBP, parabrachial pigmented nucleus of the VTA; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; VTAR, rostral part of the VTA. Scale bar: 500 μm. B, Example of rheobase measurement in a VTA DA neuron expressing hM4Di, before and after bath perfusion of CNO (10 μM). The traces shown were the first to display spiking and were recorded following injection of the current indicated in red below. C, Change in rheobase induced by CNO (10 μM) in VTA DA neurons from DATCre(+) mice treated with AAV8-hSyn-DIO-hM4Di(mCherry) or AAV8-hSyn-DIO-mCherry control (t(18) = 4.555; ***p = 0.0002; unpaired Student’s t test; n = 9–11/group). D, Somatodendritic inhibitory currents (Vhold = −60 mV) evoked by CNO (10 μM) in VTA DA neurons from DATCre(+) mice treated with AAV8-hSyn-DIO-hM4Di(mCherry) or AAV8-hSyn-DIO-mCherry control. E, Summary of CNO-induced somatodendritic currents in VTA DA neurons from DATCre(+) treated with AAV8-hSyn-DIO-hM4Di(mCherry) or AAV8-hSyn-DIO-mCherry control (t(18) = 3.732; **p = 0.0018; unpaired Student’s t test; n = 9/group). F, Total distance traveled in an open field during the 60-min interval following injection of saline (t(16) = 4.385, ***p = 0.0005), 15 mg/kg cocaine (t(14) = 11.20, ***p < 0.0001), and 10 mg/kg morphine (t(18) = 9.401, ***p < 0.0001) in DATCre(+) mice treated with intra-VTA AAV8-hSyn-DIO-hM4Di(mCherry) or AAV8-hSyn-DIO-mCherry control (n = 8–9 mice/group). CNO (2 mg/kg, i.p.) was administered to all subjects 30 min before saline or drug challenge.
Figure 2. Viral CRISPR/Cas9 ablation of GABA_BR and D₂R in VTA DA neurons. A, Viral targeting in a DATCre(+)::Cas9GFP(+) mouse treated with intra-VTA AAV8-U6-gRNA-hSyn-NLSmCherry; nucleus-localized mCherry fluorescence highlights the anatomic scope of viral targeting, and GFP fluorescence denotes the Cre-dependent expression of Cas9GFP in midbrain DA neurons of the VTA and substantia nigra. MT, medial terminal nucleus of the accessory optic tract; PBP, parabrachial pigmented nucleus of the VTA; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; VTAR, rostral part of the VTA. Scale bar: 500 μm. B, Somatodendritic inhibitory currents (V_{hold} = −60 mV) evoked by sequential bath application of quinpirole (quin; 20 μM) and then baclofen (bac; 200 μM) in VTA DA neurons from DATCre(+)::Cas9GFP(+) mice treated with AAV8-U6-gD2R-hSyn-NLSmCherry or AAV8-U6-gLacZ-hSyn-NLSmCherry control. Currents were reversed by the D₂/3R antagonist sulpiride (sulp; 5 μM) and GABA_BR antagonist CGP54626 (CGP; 2 μM). C, Summary of currents evoked by quinpirole (applied first) in VTA DA neurons from DATCre(+)::Cas9GFP(+) mice treated with AAV8-U6-gD2R-hSyn-NLSmCherry or AAV8-U6-gLacZ-hSyn-NLSmCherry control. Main effects of sex (F<sub>(1,27) = 6.391, p = 0.0176) and viral treatment (F<sub>(1,27) = 104.6, p < 0.0001) were detected, along with an interaction between sex and viral treatment (F<sub>(1,27) = 5.590, p = 0.0255; # p < 0.05; ***p < 0.001 versus LacZ (within sex). D, Summary of currents evoked by baclofen, measured after quinpirole/sulpiride application (C), in VTA DA neurons from DATCre(+)::Cas9GFP(+) mice treated with AAV8-U6-gD2R-hSyn-NLSmCherry or AAV8-U6-gLacZ-hSyn-NLSmCherry control. There was no main effect of sex (F<sub>(1,27) = 1.741, p = 0.1981) or viral treatment (F<sub>(1,27) = 1.183, p = 0.2864), nor was there an interaction between sex and viral treatment (F<sub>(1,27) = 0.1910, p = 0.6655; p = 0.0461). E, Somatodendritic inhibitory currents (V_{hold} = −60 mV) evoked by sequential bath application of baclofen (bac; 200 μM) and then quinpirole (quin; 20 μM) in VTA DA neurons from DATCre(+)::Cas9GFP(+) mice treated with AAV8-U6-gGBR1-hSyn-NLSmCherry or AAV8-U6-gLacZ-hSyn-NLSmCherry control. There was no main effect of sex (F<sub>(1,27) = 1.63, p = 0.204) or viral treatment (F<sub>(1,27) = 1.08, p = 0.3123), nor was there an interaction between sex and viral treatment (F<sub>(1,27) = 0.306, p = 0.587). F, Summary of currents evoked by baclofen (applied first) in VTA DA neurons from DATCre(+)::Cas9GFP(+) mice treated with AAV8-U6-gGBR1-hSyn-NLSmCherry or AAV8-U6-gLacZ-hSyn-NLSmCherry control. Currents were reversed by CGP54626 (CGP; 2 μM) and sulpiride (sulp; 5 μM). G, Summary of currents evoked by baclofen, measured after baclofen/CGP54626 application (F) in VTA DA neurons from DATCre(+)::Cas9GFP(+) mice treated with AAV8-U6-gGBR1-hSyn-NLSmCherry or AAV8-U6-gLacZ-hSyn-NLSmCherry control. A main effect of viral treatment was observed (F<sub>(1,27) = 120.9, p < 0.0001), but there was no main effect of sex (F<sub>(1,27) = 0.1910, p = 0.6655) or interaction between sex and viral treatment (F<sub>(1,27) = 0.2216, p = 0.6416; # # # p < 0.001 (main effect of viral treatment).
calculated by dividing the total distance traveled in the field periphery by the total distance traveled (Fig. 3C). There was, however, no impact of D2R or GABA\(_{A}\)R ablation in VTA DA neurons on thigmotaxis index (Fig. 3C).

In males as in females, we observed main effects of drug and viral treatment, and a significant interaction between drug and viral treatment on total distance traveled. Loss of D2R or GABA\(_{A}\)R did not impact saline-induced activity (Fig. 3D, left). In contrast to our observations in females, however, ablation of D2R or GABA\(_{A}\)R in males yielded comparably enhanced cocaine-induced activity over the 60-min postinjection interval (Fig. 3D, right). Interestingly, loss of D2R in males correlated with higher levels of activity seen shortly after cocaine injection (Fig. 3E), yielding a temporal profile that was qualitatively similar to that observed in females (Extended Data Fig. 3-1B). As was the case with female subjects, thigmotaxis was significantly impacted by drug but not viral treatment (Fig. 3C). Thus, D2R-dependent signaling in VTA DA neurons tempers behavioral sensitivity to cocaine in male and female mice, whereas GABA\(_{A}\)R-dependent signaling exerts an influence on behavioral sensitivity to cocaine in male mice only.

Impact of D2R and GABA\(_{A}\)R in VTA DA neurons on baseline and morphine-induced activity

As we previously reported that the loss of GIRK channel activity in DA neurons in mice correlated with enhancement motor stimulation in response to systemic administration of 10 mg/kg, morphine (Kotecki et al., 2015), we next compared the relative contribution of D2R and GABA\(_{A}\)R to this morphine-induced behavior. In female subjects, we observed a main effect of drug on motor activity, but no main effect of viral treatment or interaction between drug and viral treatment. Notably, no significant impact of D2R or GABA\(_{A}\)R ablation on morphine-induced activity was observed in females (Fig. 4A, right). Although D2R ablation correlated with elevated activity levels at all time points following morphine injection, activity levels were not significantly different from controls (Fig. 4B). Consistent with prior reports (Mickley et al., 1990), we observed a marked increase in thigmotaxis in all subjects after morphine injection, but there was no difference between viral treatment groups (Fig. 4C).

In males, we also observed a main effect of drug, but no main effect of viral treatment or interaction between drug and viral treatment. As was the case in females, loss of either D2R or GABA\(_{A}\)R in males had no significant impact on morphine-induced activity during the 60-min interval (Fig. 4D, right) or on the temporal activity profile following morphine injection (Fig. 4E). We also observed a similar increase in thigmotaxis after injection of morphine as seen in females, with no difference between viral treatment groups (Fig. 4F). Thus, neither D2R nor GABA\(_{A}\)R ablation in VTA DA neurons exerts a significant impact on morphine-induced motor activity in mice.

Discussion

Here, we used a neuron-specific viral CRISPR/Cas9 approach to compare the impact of D2R or GABA\(_{A}\)R ablation in VTA DA neurons on baseline activity and behavioral sensitivity to cocaine and morphine. Loss of GABA\(_{A}\)R or
D\(_2\)R in VTA DA neurons had no significant impact on baseline activity, paralleling the lack of effect of these manipulations on excitability and other electrophysiological properties of VTA DA neurons. These behavioral findings are consistent with studies involving genetic suppression or ablation of D\(_2\)R or GABA\(_B\)R in the rodent VTA (de Jong et al., 2015; Edwards et al., 2017). Thus, D\(_2\)R-dependent and GABA\(_B\)R-dependent signaling pathways in VTA DA neurons exert minimal influence on baseline DA neuron excitability. Notably, mice lacking D\(_2\)R in DA neurons displayed hyperlocomotion (Bello et al., 2011), indicating that D\(_2\)R-dependent signaling in DA neuron populations outside of the VTA may regulate baseline motor activity.

D\(_2\)R ablation in VTA DA neurons potentiates cocaine-induced activity in male and female mice, consistent with studies involving DA neuron-specific ablation of D\(_2\)R in mice (Bello et al., 2011), and an RNAi-based approach targeting D\(_2\)R in the rat VTA (de Jong et al., 2015). GABA\(_B\)R ablation also potentiated cocaine-induced activity, but the influence of this signaling pathway was restricted to males. Enhanced D\(_2\)R-dependent signaling in VTA DA neurons from female mice may compensate for the loss of GABA\(_B\)R signaling, explaining the weak influence of GABA\(_B\)R on cocaine-induced activity in females. Alternatively, there may be reduced GABAergic feedback to VTA DA neurons in females, rendering the loss of GABA\(_B\)R less effective (Zachry et al., 2021).

Behavioral sensitivity to morphine was unaffected by the loss of D\(_2\)R and/or GABA\(_B\)R in VTA DA neurons, consistent with previous reports (Steketee and Kalivas, 1991; Maldonado et al., 1997; Edwards et al., 2017). The lack of impact of D\(_2\)R ablation in VTA DA neurons is surprising given that opioids, like cocaine, increase VTA DA levels (Chefer et al., 2009). Cocaine and opioids differ, however, March/April 2021, 8(2) ENEURO.0081-21.2021 eNeuro.org
in their influence on VTA DA neurons. While cocaine hyperpolarizes VTA DA neurons in a D₂R-dependent manner (Beckstead et al., 2004), opioids increase VTA DA neuron firing by suppressing GABAergic input from local GABA neurons (Johnson and North, 1992; Jhou et al., 2009; Jalabert et al., 2011), as well as disinhibiting glutamatergic input to VTA DA neurons and/or RMTg GABA neurons (Johnson and North, 1992; Jhou et al., 2009; Jalabert et al., 2011), as this premise, cocaine elicited a more pronounced increase in NAc DA levels in freely moving rats increased more in response to intravenous cocaine than morphine (Pontieri et al., 1995). The spatiotemporal pattern of DA increases in the NAc may also differ for cocaine and morphine. Consistent with this premise, cocaine elicited a more pronounced increase in DA in the NAc shell as compared with core (Aragona et al., 2008, 2009), whereas morphine evoked similar DA increases in NAc core and shell (Vander Weele et al., 2014). Moreover, the morphine-induced increase in NAc DA was relatively transient, a phenomenon potentially linked to a simultaneous increase in NAc GABA levels evoked by morphine (Vander Weele et al., 2014).

The differential apparent engagement of GABA₉R-dependent and D₂R-dependent signaling pathways by cocaine and morphine may also reflect differential molecular
target location. Morphine can act on opioid receptors in other brain regions to regulate motor activity, bypassing VTA DA neurons. For example, locomotor activity decreased initially following intra-NAc injection of morphine in rats (Costall et al., 1978). In addition, NAc lesions failed to eliminate morphine-induced motor activation, suggesting a potential role of other brain regions in this effect (Stevens et al., 1986). Also, intra-NAc infusion of morphine abolished the motor stimulatory effect of intra-NAc DA, showing that opioid and dopaminergic pathways in the NAc exert competing influence on locomotion (Layer et al., 1991).

The direct inhibitory influence of GABA\(_B\)R and D\(_2\)R activation on VTA DA neurons is mediated primarily by activation of GIRK channels (Brodie and Dunwiddie, 1990; Ackerman et al., 1993; Mercuri et al., 1997; Chen and Pan, 2000; Bunney et al., 2001; Beckstead et al., 2004; Cruz et al., 2004; Ford, 2014), though other effectors are modulated as well (Philippart and Khaliq, 2018; Su et al., 2019). Genetic ablation of Girk2 globally or selectively in DA neurons correlated with increased motor-stimulatory effect of cocaine (Pravetoni and Wickman, 2008; Kotecki et al., 2015; McCall et al., 2017, 2019) and morphine (Kotecki et al., 2015). The contribution of GIRK channels to cocaine-induced activity was further localized to VTA DA neurons (McCall et al., 2019). Given that GIRK channels mediate the D\(_2\)R-dependent and GABA\(_B\)R-dependent inhibition of VTA DA neurons and that DA neuron-specific loss of GIRK channels enhances the motor-stimulatory effect of cocaine and morphine, the lack of impact of D\(_2\)R or GABA\(_B\)R ablation on morphine-induced activity was unexpected. It is possible that GABA\(_B\)R-dependent and D\(_2\)R-dependent signaling pathways are functionally redundant and that both need to be eliminated to see an influence on morphine-induced activity. GIRK channels in non-VTA DA neurons, perhaps in the adjacent substantia nigra pars compacta (Koyrakh et al., 2005), may also explain the impact of GIRK channel ablation on morphine.

Females are more susceptible to various facets of addiction (Fattore et al., 2008; Anker and Carroll, 2011; Becker and Koob, 2016), fueling interest in identifying relevant sex differences at molecular and cellular levels. Here, we found multiple sex differences related to inhibitory G-protein signaling in VTA DA neurons. Loss of GABA\(_B\)R, for example, had minimal impact on behavioral sensitivity to cocaine in females, but significantly enhanced the motor-stimulatory effect of cocaine in males. D\(_2\)R-dependent somatodendritic inhibitory currents were also larger in VTA DA neurons from females. This difference could reflect elevated D\(_2\)R expression and/or function in VTA DA neurons from females and is predicted to decrease cocaine sensitivity. Indeed, females exhibit elevated D\(_2\)R-dependent signaling at baseline as compared with males (Walker et al., 2006; Zachry et al., 2021).

Cocaine-induced activity was characterized by a more rapid and sharp peak in females as compared with males, which could be explained by a tighter regulation of synaptic DA by DAT in females compared with males (Zachry et al., 2021). D\(_2\)R ablation in VTA DA neurons in male mice yielded a temporal profile comparable to that seen in female mice. While this suggests that D\(_2\)R-dependent signaling in VTA DA neurons is critical in tempering the early behavioral response to cocaine, the shift in the temporal profile observed in males is somewhat counterintuitive given that somatodendritic D\(_2\)R-dependent signaling is weaker in VTA DA neurons from males. This apparent discrepancy is perhaps explained by sex differences in the influence of presynaptic/terminal D\(_2\)R (which should also be eliminated by the CRISPR/Cas9 ablation approach) on DA dynamics in the NAc. Presynaptic D\(_2\)R-dependent signaling in VTA DA neurons in males may be stronger than that seen in females. Alternatively, while D\(_2\)R-dependent somatodendritic response amplitudes are larger in VTA DA neurons from female mice, VTA DA neurons in males may be more sensitive to D\(_2\)R-dependent inhibition.

While D\(_2\)R-dependent and GABA\(_B\)R-dependent signaling pathways in the VTA can suppress behavioral sensitivity to cocaine, psychostimulant exposure can weaken these inhibitory feedback pathways. For example, a transient decrease in D\(_2\)R influence on VTA DA neuron firing has been reported after repeated cocaine treatment or self-administration (Henry et al., 1989; Ackerman and White, 1990). This adaptation, and corresponding potentiation of cocaine-induced motor activity, was reproduced by repeated quinpirole treatment (Henry et al., 1998). Cocaine self-administration in rats also increased firing rate and burst activity of midbrain DA neurons, paralleled by decreased ability of quinpirole to inhibit DA neuron firing rate (Marinelli et al., 2003). Self-administration of amphetamine in rats reduced the ability of D\(_2\)R to suppress evoked DA release in the NAc, an effect mediated in part by an RGS2-dependent disruption of D\(_3\)R/G\(_{i2}\) functional coupling (Calipari et al., 2014; Sun et al., 2015). Repeated cocaine in male rats also decreased GABA\(_B\)R/G-protein coupling (Kushehrer and Unterwald, 2001). Finally, cocaine suppressed GABA\(_B\)R-dependent somatodendritic signaling in putative VTA DA neurons (Arora et al., 2011), and methamphetamine self-administration suppressed D\(_2\)R-dependent and GABA\(_B\)R-dependent somatodendritic responses in VTA DA neurons (Sharpe et al., 2014).

Notably, D\(_3\)R activation appears critical for many of these forms of plasticity, which likely contribute to the hyperexcitability of meso-accumbens DA pathway following psychostimulant exposure (Henry et al., 1998; Francis et al., 2019). The reciprocal relationship between psychostimulants and inhibitory G-protein-dependent feedback pathways in VTA DA neurons may be dependent on age and/or species, or methodological variables. Indeed, repeated methamphetamine injections correlated with enhanced D\(_2\)R-dependent hyperpolarization in young (8–10 d) rats (Amano et al., 2003). In mice, repeated methamphetamine injections suppressed somatodendritic GABA\(_B\)R-dependent (but not D\(_2\)R-dependent) signaling in VTA DA neurons, but only when methamphetamine was given in novel environment (Munoz et al., 2016).

Our work highlights innate signaling mechanisms that regulate behavioral sensitivity to cocaine. Knowledge of the molecular players and neuron populations regulating behavioral sensitivity to cocaine and other drugs of abuse...
References

Ackerman JM, White FJ (1990) A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neurosci Lett 117:181–187.

Ackerman JM, Johansen PA, Clark D, White FJ (1993) Electrophysiological effects of putative autoreceptor-selective dopamine agonists on A10 dopamine neurones. J Pharmacol Exp Ther 265:963–970.

Adell A, Artigas F (2004) The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neurosci Biobehav Rev 28:415–431.

Adrover MF, Shin JH, Alvarez VA (2014) Glutamate and dopamine transmission from midbrain dopamine neurones share similar release properties but are differentially affected by cocaine. J Neurosci 34:3183–3192.

Amano T, Matsubayashi H, Seki T, Sasa M, Sakai N (2003) Repeated administration of methamphetamine causes hypersensitivity of D2 receptor in rat ventral tegmental area. Neurosci Lett 347:89–92.

Anker JJ, Carroll ME (2011) Females are more vulnerable to drug abuse than males: evidence from preclinical studies and the role of ovarian hormones. Curr Top Behav Neurosci 8:73–96.

Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J Neurosci 28:8821–8831.

Aragona BJ, Day JJ, Roitman MF, Cleaveland NA, Wightman RM, Carelli RM (2009) Regional specificity in the real-time development of phasic dopamine transmission patterns during acquisition of a cue-cocaine association in rats. Eur J Neurosci 30:1889–1899.

Arora D, Haluk DM, Kourrich S, Pravetoni M, Fernández-Alacid L, Nicolau JC, Luñán R, Wickman K (2010) Altered neurotransmission in the mesolimbic reward system of Girk mice. J Neurochem 114:1487–1497.

Arora D, Hearing M, Haluk DM, Mirkovic K, Fajardo-Serrano A, Wessendorf MW, Watanabe M, Luñán R, Wickman K (2011) Acute cocaine exposure weakens GABA(B) receptor-dependent G-protein-gated inwardly rectifying K+ signaling in dopamine neurones of the ventral tegmental area. J Neurosci 31:12251–12257.

Bakess EN, Hemby SE (2008) Contribution of ventral tegmental GABA receptors to cocaine self-administration in rats. Neurochem Res 33:459–467.

Beart PM, McDonald D, Gundlach AL (1979) Mesolimbic dopaminergic neurones and somatodendritic mechanisms. Neurosci Lett 15:165–170.

Becker JB, Koob GF (2016) Sex differences in animal models: focus on addiction. Pharmacol Rev 68:242–263.

Beckstead MJ, Grandy DK, Wickman K, Williams JT (2004) Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurones. Neuron 42:939–946.

Bello EP, Mateo Y, Gelman DM, Noaín D, Shin JH, Low MJ, Alvarez VA, Lovinger DM, Rubinstein M (2011) Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat Neurosci 14:1033–1038.

Bernosky-Smith KA, Qi YY, Feja M, Lee YB, Loughlin B, Li JX, Bass GE (2018) Ventral tegmental area D2 receptor knockdown enhances choice impulsivity in a delay-discounting task in rats. Behav Brain Res 341:129–134.

Boender AJ, de Jong JW, Boekhoudt L, Luijendijk MC, van der Plasse G, Adan RA (2014) Combined use of the canine adeno-virus-2 and DREADD-technology to activate specific neural pathways in vivo. PLoS One 9:e95392.

Bradberry CW, Roth RH (1989) Cocaine increases extracellular dopamine in rat nucleus accumbens and ventral mesencephalic area as shown by in vivo microdialysis. Neurosci Lett 103:97–102.

Breken R, Phelan R, Roberts DC (2000) Intra-VTA baclofen attenuates cocaine self-administration on a progressive ratio schedule of reinforcement. Pharmacol Biochem Behav 66:857–862.

Brodie MS, Dunwiddie TV (1990) Cocaine effects in the ventral tegmental area: evidence for an indirect dopaminergic mechanism of action. Naunyn Schmiedebergs Arch Pharmacol 342:660–665.

Bunney EB, Appel SB, Brodie MS (2001) Electrophysiological effects of coacetylenic, cocaine, and ethanol on dopamine neurones of the ventral tegmental area. J Pharmacol Exp Ther 297:896–703.

Calipari ES, Sun H, Eldeek K, Luessen DJ, Feng X, Howlett AC, Jones SR, Chen R (2014) Amphetamine self-administration attenuates dopamine D2 autoreceptor function. Neuropsychopharmacology 39:1833–1842.

Chefer VI, Kieffer BL, Shippenberg TS (2003) Basal and morphine-evoked dopaminergic neurotransmission in the nucleus accumbens of MOR- and DOR-knockout mice. Eur J Neurosci 18:1915–1922.

Chefer VI, Denory V, Zapata A, Shippenberg TS (2009) Mu opioid receptor modulation of somatodendritic dopamine overflow: GABAergic and glutamatergic mechanisms. Eur J Neurosci 30:272–278.

Chen NH, Reith ME (1994) Autoregulation and monoamine interactions in the ventral tegmental area in the absence and presence of cocaine: a microdialysis study in freely moving rats. J Pharmacol Exp Ther 271:1597–1610.

Chen NN, Pan WH (2000) Regulatory effects of D2 receptors in the ventral tegmental area on the mesocorticolimbic dopaminergic pathway. J Neurochem 74:2576–2582.

Chen R, McIntosh S, Hemby SE, Sun H, Sexton T, Martin TJ, Childers SR (2018) High and low doses of cocaine intake are differentially regulated by dopamine D2 receptors in the ventral tegmental area and the nucleus accumbens. Neurosci Lett 671:133–139.

Chen SH, Haam J, Walker M, Scappini E, Naughton J, Martin NP (2019) Production of viral constructs for neuroanatomy, calcium imaging, and optogenetics. Curr Protoc Neurosci 87:e66.

Chen SY, Burger RI, Reith ME (1996) Extracellular dopamine in the rat ventral tegmental area and nucleus accumbens following ventral tegmental infusion of cocaine. Brain Res 729:294–296.

Cestall B, Fortune DH, Naylor RJ (1978) The induction of catalepsy and hyperactivity by morphine administered directly into the nucleus accumbens of rats. Eur J Pharmacol 49:49–64.

Cruz HG, Ivanova T, Lunn M-L, Stoffel M, Slesinger PA, Lüscher C (2004) Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nat Neurosci 7:153–159.

de Jong JW, Roelofs TJ, Mol FM, Hillen AE, Meijboom KE, Luijendijk MC, van der Eerden HA, Garner KM, Vanderschuren LJ, Adan RA (2015) Reducing ventral tegmental dopamine D2 receptor expression selectively boosts incentive motivation. Neuropsychopharmacology 40:2085–2095.

Delfs JM, Schreiber L, Kelley AE (1990) Microinjection of cocaine into the nucleus accumbens elicits locomotor activation in the rat. J Neurosci 10:303–310.

Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278.

Ederes AJ, Tejeda HA, Pignatelli M, Zhang S, McDevitt RA, Wu J, Bass CE, Bettler B, Morales M, Bonci A (2017) Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior. Nat Neurosci 20:438–448.

Einhorn LC, Johansen PA, White FJ (1988) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8:100–112.

March/April 2021, 8(2) ENEURO.0081-21.2021 eNeuro.org
Fattore L, Altea S, Fratta W (2008) Sex differences in drug addiction: a review of animal and human studies. Womens Health (Lond) 4:51–65.
Ford CP (2014) The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 282:13–22.
Francis TC, Gantz SC, Moussawi K, Bonci A (2019) Synaptic and intrinsic plasticity in the ventral tegmental area after chronic cocaine. Curr Opin Neurobiol 54:66–72.
Groves PM, Wilson CJ, Young SJ, Rebec GV (1975) Self-inhibition by dopaminergic neurons. Science 190:522–528.
Guo S, Chen S, Zhang Q, Wang Y, Xu K, Zheng X (2014) Optogenetic activation of the excitatory neurons expressing CaMKIIα in the ventral tegmental area upregulates the locomotor activity of free behaving rats. Biomed Res Int 2014:687469.
Henry DJ, Greene MA, White FJ (1989) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: repeated administration. J Pharmacol Exp Ther 251:833–839.
Henry DJ, Hu XT, White FJ (1998) Adaptations in the mesoaccumbens dopamine system resulting from repeated administration of dopamine D1 and D2 receptor-selective agonists: relevance to cocaine sensitization. Psychopharmacology (Berl) 140:233–242.
Holroyd KB, Adrover MF, Fuino RL, Bock R, Kaplan AR, Gremel CM, Rubinstein M, Alvarez VA (2015) Loss of feedback inhibition via D2 autoreceptors enhances acquisition of cocaine taking and reactivity to drug-paired cues. Neuropsychopharmacology 40:1495–1509.
Hyman SE, Malenka RC, Nestler EJ (2006) Neurological mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598.
Iravani MM, Muscat R, Kruk ZL (1996) Comparison of somatodendritic and axon terminal dopamine release in the ventral tegmental area and the nucleus accumbens. Neuroscience 70:1025–1037.
Jalabert M, Bourdy R, Courin T, Veinante P, Manzoni D, Barrot M, Georges F (2011) Neuronal circuits underlying acute morphine action on dopamine neurons. Proc Natl Acad Sci USA 108:16446–16450.
Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC (2009) The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61:786–800.
Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488.
Juarez B, Han MH (2016) Diversity of dopaminergic neural circuits in response to drug exposure. Neuropsychopharmacology 41:2424–2446.
Kalivas PW, Duffy P (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J Neurosci 13:266–275.
Kalivas PW, Duffy P, Eberhardt H (1990) Modulation of A10 dopamine neurons by gamma-aminobutyric acid agonists. J Pharmacol Exp Ther 253:858–866.
Kim KM, Baratta MV, Yang A, Lee D, Boyden ES, Fiorillo CD (2012) Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS One 7:e33612.
Kita JM, Kile BM, Parker LE, Wightman RM (2009) in vivo measurement of somatodendritic release of dopamine in the ventral tegmental area. Synapse 63:951–960.
Kotecki L, Hearing M, McCall NM, Marron Fernandez de Velasco E, Pravetoni M, Arora D, Victoria NC, Munoz MB, Xia Z, Slesinger PA, Weaver CD, Wickman K (2015) GIRK channels modulate opioid-induced motor activity in a cell type- and subunit-dependent manner. J Neurosci 35:7111–7122.
Koulitchsky S, Delaissere C, Beeken T, Monteforte A, Dethier J, Quertemont E, Findeisen R, Bullinguer E, Seuntin V (2016) Activation of D2 autoreceptors alters cocaine-induced locomotion and slows down local field oscillations in the rat ventral tegmental area. Neuropsychopharmacology 108:120–127.
Koyrakh L, Luján R, Colón J, Karschin C, Kurachi Y, Karschin A, Wickman K (2005) Molecular and cellular diversity of neuronal G-protein-gated potassium channels. J Neurosci 25:11468–11478.
Kuerner SA, Unterwald EM (2001) Chronic cocaine administration decreases the functional coupling of GABA(B) receptors in the rat ventral tegmental area as measured by baclofen-stimulated 35S-GTPγS binding. Life Sci 69:1093–1102.
Labouèbe G, Lomazzi M, Cruz HG, Creton C, Luján R, Li M, Yanagawa Y, Obata K, Watanabe M, Wickman K, Boyer SB, Slesinger PA, Lüscher C (2007) RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nat Neurosci 10:1559–1568.
Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropsychopharmacology 76:351–359.
Layer RT, Uretsky NJ, Wallace LJ (1991) Effects of morphine in the nucleus accumbens on stimulant-induced locomotion. Pharmacol Biochem Behav 40:21–26.
Leite-Morris KA, Fukudome EY, Kaplan GB (2002) Opiate-induced motor stimulation is regulated by gamma-aminobutyric acid type B receptors found in the ventral tegmental area in mice. Neurosci Lett 317:119–122.
Leite-Morris KA, Fukudome EY, Shoeb MH, Kaplan GB (2004) GABAB (B) receptor activation in the ventral tegmental area inhibits the acquisition and expression of opiate-induced motor sensitization. J Pharmacol Exp Ther 308:667–678.
Lüscher C (2016) The emergence of a circuit model for addiction. Annu Rev Neurosci 39:257–276.
Lüscher C, Ungless MA (2006) The mechanistic classification of addictive drugs.PLoS Med 3:e437. []
Maldonado R, Saiardi A, Valverde O, Samad TA, Roques BP, Borrelli E (1997) Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388:586–589.
Marinelli M, Cooper DC, Baker LK, White FJ (2003) Impulse activity of midbrain dopamine neurons modulates drug-seeking behavior. Psychopharmacology (Berl) 168:94–98.
Martin TA, Smith HR, Luessen DJ, Chen R, Porrino LJ (2020) Functional brain activity is globally elevated by dopamine D2 receptor knockdown in the ventral tegmental area. Brain Res 1727:146552.
McCall NM, Kotecki L, Dominguez-Lopez S, Marron Fernandez de Velasco E, Carlblom N, Sharpe AL, Beckstead MJ, Wickman K (2017) Selective ablation of GIRK channels in dopamine neurons alters behavioral effects of cocaine in mice. Neuropsychopharmacology 42:707–715.
McCall NM, Marron Fernandez de Velasco E, Wickman K (2019) GIRK channel activity in dopamine neurons of the ventral tegmental area bidirectionally regulates behavioral sensitivity to cocaine. J Neurosci 39:3600–3610.
Menegas W, Bergan JF, Ogawa SK, Isogai Y, Umadevi Venkataramu K, Osten P, Uchida N, Watabe-Uchida M (2015) Dopamine neurons projecting to the posterior striatum form an anatomically distinct subcircuit. Elife 4:e10032.
Mercuri NB, Saiardi A, Bonci A, Picetti R, Calabresi P, Bernardi G, Borrelli E (1997) Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79:323–327.
Mickley GA, Mulvihill MA, Postler MA (1990) Brain mu and delta opioid receptors mediate different locomotor hyperactivity responses of the C57BL/6J mouse. Psychopharmacology (Berl) 101:332.
Munoz MB, Padgett CL, Rifkin R, Terunuma M, Wickman K, Contet C, Moss SJ, Slesinger PA (2016) A role for the GIRK3 subunit in methamphetamine-induced attenuation of GABAB receptor-activated GIRK currents in VTA dopamine neurons. J Neurosci 36:3106–3114.
Narayanan S, Wallace L, Uretsky N (1996) Spontaneous and drug-stimulated locomotor activity after the administration of pertussis toxin into the ventral tegmental area. J Psychiatry Neurosci 21:172–180.
Phillipart F, Khaliq ZM (2018) Gi/o protein-coupled receptors in dopamine neurons inhibit the sodium leak channel NALCN. Elife 7: e40984.

Pignatelli M, Bonci A (2018) Spiraling connectivity of NAc-VTA circuitry. Neuron 97:261–262.

Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaeuser TM, Jovanovic M, Graham DB, Junhjunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacothen N, Regev A, Feng G, Sharp PA, et al. (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455.

Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. J Neurosci 15:11848–11855.

Pravetoni M, Wickman K (2008) Behavioral characterization of mice lacking GIRK/Kir3 channel subunits. Genes Brain Behav 7:523–531.

Rahman S, McBride WJ (2001) D1-D2 dopamine receptor interaction within the nucleus accumbens mediates long-loop negative feedback to the ventral tegmental area (VTA). J Neurochem 77:1248–1255.

Runegaard AH, Sørensen AT, Fitzpatrick CM, Jørgensen SH, Petersen AV, Hansen NW, Weikop P, Andreasen JT, Mikkelson JD, Perrier JF, Woldbye D, Rickhag M, Wortwein G, Gether U (2018) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 174:684–692.

Rahman S, McBride WJ (2001) D1-D2 dopamine receptor interaction within the nucleus accumbens mediates long-loop negative feedback to the ventral tegmental area (VTA). J Neurochem 77:1248–1255.

Schultz W (2016) Dopamine reward prediction-error signalling: a two-component response. Nat Rev Neurosci 17:183–195.

Sharpe AL, Varela E, Bettinger L, Beckstead MJ (2014) Methamphetamine self-administration in mice decreases GIRK channel-mediated currents in midbrain dopamine neurons. Int J Neuropsychopharmacol 18:pyu073–pyu073.

Spielewoy C, Gonon F, Roubert C, Fauchey V, Jaber M, Caron MG, Roques BP, Hamon M, Betancur C, Maldonado R, Giros B (2000) Increased rewarding properties of morphine in dopamine transporter knockout mice. Eur J Neurosci 12:1827–1837.

Stekete JD, Kalivas PW (1990) Sensitization to cocaine produced by injection of pertussis toxin into the A10 dopamine region. NIDA Res Monogr 105:545–546.

Stekete JD, Kalivas PW (1991) Sensitization to psychostimulants and stress after injection of pertussis toxin into the A10 dopamine region. J Pharmacol Exp Ther 259:916–924.

Stevens KE, Mickley GA, McDermott LJ (1986) Brain areas involved in production of morphine-induced locomotor hyperactivity of the C57Bl/6J mouse. Pharmacol Biochem Behav 24:1739–1747.

Su M, Li L, Wang J, Sun H, Zhang L, Zhao C, Xie Y, Gamper N, Du X, Zhang H (2019) Kv7.4 channel contribute to projection-specific auto-inhibition of dopamine neurons in the ventral tegmental area. Front Cell Neurosci 13:557.

Sun H, Calipari ES, Beveridge TJ, Jones SR, Chen R (2015) The brain gene expression profile of dopamine D2/D3 receptors and associated signaling proteins following amphetamine self-administration. Neuroscience 307:253–261.

Tanabe LM, Suto N, Creekmore E, Steinmiller CL, Vezina P (2004) Blockade of D2 dopamine receptors in the VTA induces a long-lasting enhancement of the locomotor activating effects of amphetamine. Behav Pharmacol 15:387–395.

Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, Kim SY, Adhikari A, Thompson KR, Andalman AS, Gunaydin LA, Witten IB, Deisseroth K (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537–541.

van Rossum J, van der SJ, Hurkmans JA (1962) Mechanism of action of cocaine and amphetamine in the brain. Experientia 18:229–231.

Vander Weele CM, Porter-Stransky KA, Mabrouk OS, Lovic V, Singer BF, Kennedy RT, Aragona BJ (2014) Rapid dopamine transmission within the nucleus accumbens: dramatic difference between morphine and oxycodone delivery. Eur J Neurosci 40:3041–3054.

Volkow ND, Morales M (2015) The brain on drugs: from reward to addiction. Cell 162:712–725.

Walker JD, Ray R, Kuhn CM (2006) Sex differences in neurochemical effects of dopaminergic drugs in rat striatum. Neuropsychopharmacology 31:1193–1202.

Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74:858–873.

Xi ZX, Stein EA (1999) Baclofen inhibits heroin self-administration behavior and mesolimbic dopamine release. J Pharmacol Exp Ther 290:1369–1374.

Xue Y, Steketee JD, Rebec GV, Sun W (2011) Activation of D2-like receptors in rat ventral tegmental area inhibits cocaine-reinstated drug-seeking behavior. Eur J Neurosci 33:1291–1298.

Yang L, Chen M, Ma Q, Sheng H, Cui D, Shao D, Lai B, Zheng P (2020) Morphine selectively disinhibits glutamatergic input from mPFC onto dopamine neurons of VTA, inducing reward. Neuropharmacology 176:108217.

Zachry JE, Nolan SO, Brady LJ, Kelly SJ, Siciliano CA, Calipari ES (2021) Sex differences in dopamine release regulation in the striatum. Neuropsychopharmacology 46:491–499.