The Nucleic Acid-binding Domain and Translational Repression Activity of a Xenopus Terminal Uridylyl Transferase*§

Christopher P. Lapointe†1 and Marvin Wickens‡§2

From the †Integrated Program in Biochemistry and §Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706

Received for publication, January 25, 2013, and in revised form, May 22, 2013 Published, JBC Papers in Press, May 24, 2013, DOI 10.1074/jbc.M113.455451

The nucleotide sequence(s) reported in this paper have been submitted to the GenBank™/EBI Data Bank with accession number(s) KC493151, KC493152, and KC493153

The abbreviations used are: miRNA, microRNA; TUT, terminal uridylyl transferase; TUT7, either mammalian (species indicated) or generic TUT7 enzymes; XTUT7, Xenopus TUT7; rNTase, ribonucleotidyl transferase; NTD, nucleotidyl transferase domain; NRM, nucleotide recognition motif; BR, basic region; ARM, arginine-rich motif; MBP, maltose-binding protein; r.m.s.d., root mean square deviation; pre-let-7, let-7 precursor.

The nucleic acid-binding domain and translational repression activity of a Xenopus terminal uridylyl transferase (TUT) are reported. TUTs add uridines to RNAs and regulate RNA stability and processing. XTUT7, the Xenopus ortholog, possesses an amino acid motif important for uridine specificity and represses translation. The crystal structure of a predicted XTUT7 domain reveals key aspects of how TUTs add uridines to RNAs.
Nucleic Acid Binding and Repression by XTUT7

(12, 14–16). Uridylation blocks processing of pre-let-7 into mature miRNAs, as well as destabilizes pre-let-7 RNAs. In mammalian somatic cells, however, TUT7 acts independent of LIN28 and adds a single uridine to a subset of pre-let-7 RNAs (17). Monouridylation of these pre-miRNAs creates an optimal 3’ end for downstream processing into mature miRNAs.

To further understand TUT7-dependent RNA uridylation, we identified and focused on *Xenopus* TUT7 (XTUT7) as it may have key roles in the oocyte and/or embryo. We sought to better understand how XTUT7 adds uridines to RNAs and its potential role in mRNA regulation. We utilized *Xenopus* oocytes because uridylated RNAs are stable, and microinjected miRNAs are efficiently translated. With this approach, we identified XTUT7 domains important for catalytic activity, illustrated that XTUT7 can repress translation of a polyadenylated RNA, and pinpointed an important residue for uridine specificity. Our experiments also revealed a key role for a small region of basic amino acids that binds nucleic acids.

EXPERIMENTAL PROCEDURES

MS2 Fusion Protein Plasmids—The pCS2+3HA:MS2, pCS2+3HA:MS2.Xp54, and pCS2+3HA:MS2:GLD2-D242A plasmids were previously described (35). Newly constructed MS2 fusion plasmids, and the primers and restriction sites used for their construction, are listed in supplemental Table 1. All MS2 fusion proteins were designed to contain: N terminus; three hemagglutinin (3HA) tags; MS2 coat protein; protein to be tested; and C terminus. XTUT7 (also known as ZCCHC6) and XTUT4 (also known as ZCCHC11) cDNAs were cloned from both *Xenopus laevis* and *Xenopus tropicalis* stage VI oocytes. cDNAs corresponding to XTUT7-FL (X. *tropicalis*), XTUT7-C (X. *laevis*), and XTUT4-C (X. *laevis*) were deposited to GenBank™ with accession numbers KC493151, KC493152, and KC493153, respectively. Mutations and deletions in XTUT7 were inserted by site-directed mutagenesis using *Pfu* Ultra DNA polymerase (Agilent), and mutated/deleted residues are listed in supplemental Table 1. Specific amino acids (i.e. His-1269) discussed under “Results” and “Discussion” are referenced by their location in XTUT7-FL. Domain predictions of XTUT7 proteins were completed using the InterProScan Sequence Search Tool (36, 37) and Pfam (38) on XTUT7-FL.

Multiple Sequence Alignments—XTUT7 sequence homologs were identified by reciprocal best BLAST (National Center for Biotechnology Information (NCBI)): *Ciona intestinalis* (GI number: 198429697), *Strongylocentrotus purpuratus* (115933324), *Bos taurus* (329664700), *Canis lupus familiaris* (37946401), *Macaca mulatta* (10912038), *Mus musculus* (259016375), *Rattus norvegicus* (293354419), *Hydra magnipapillata* (221116335), *Monodelphis domestica* (334332807), *Ornithorhynchus anatinus* (345314193), *Danio rerio* (326686285), *Homo sapiens* (297307111), *Caenorhabditis elegans* (17554128), and *Amphimedon queenslandica* (340382961). Sequence logos were derived from MUSCLE (39) sequence alignments of the putative XTUT7 orthologs using WebLogo (40).

Reporter RNA Plasmids—The plLG-MS2 (firefly luciferase), plLG-MS2+A39 (polyadenylated firefly luciferase), pSP65-ren (*Renilla* luciferase), plLGMS2-luc (RNA with three MS2-binding sites), plLGMS2+A39-luc (RNA with three MS2-binding sites and a poly(A)39 tail), plLG:FBE-ACAmut (RNA that lacked MS2 binding sites), and pLG:FBE-ACAmut + A39 (RNA with a poly(A)39 tail that lacked MS2 binding sites) plasmids have been described (41–44).

In Vitro Transcriptions—RNAs were in vitro transcribed from restriction digested plasmids using either the AmpliScribe SP6 high yield transcription or T7-Flash transcription kits (EpitCOME). RNAs encoded in pCS2+3HA:MS2 (NotI, SP6), pSP65-ren (SalI, SP6), pLG-MS2+A39 (BamHI, T7), pLGMS2+A39-luc (BamHI, T7), pLG-MS2 (BglII, T7) and pLGMS2-luc (BglII, T7) plasmids were prepared with the indicated reagents. All reactions included m’G(5’)-ppp(5’)-G cap analog (New England Biolabs). In some cases, [α-32P]UTP was included to radiolabel the RNA.

Oocyte Injections and RNA Analysis—Oocyte injections were performed as described (41, 44). Oocytes were collected after overnight incubation (~16 h). Total RNA was extracted from 10 oocytes using TRI reagent (Sigma). Total RNA from three oocytes was separated on denaturing 6% polyacrylamide gels and analyzed by phorosphorimaging. Densitometric analyses were completed using ImageQuant software (GE Healthcare).

Luciferase Assays and Western Blotting—Dual-Luciferase assays (Promega) and Western blotting were performed as described (35, 43). Student’s two-tailed t tests were used to calculate all p values.

RT-PCR Assays—Total RNA was treated with 4 units of TURBO-DNase (Invitrogen) for 1 h at 37 °C and then purified using the GeneJET RNA purification kit (Fermentas). 1 μg of total RNA was reverse-transcribed using ImPromII reverse transcriptase (Promega) and 1 μM oligo(dA)18, -(dT)18, -(dC)20, or -(dG)20 for the RT primers, as indicated. cDNA was PCR-amplified using a firefly luciferase-specific forward primer (GCCGTTAACGAGAGCGGCAAATTTG) and the corresponding RT primer. For quantitative RT-PCR assays, 100 ng of total RNA were reverse-transcribed using SuperScript III reverse transcriptase (Invitrogen) and a random hexamer primer, and 5% of the cDNA was amplified using the PerfeCTa qPCR FastMix UNG Low ROX kit (Quanta Biosciences). Firefly luciferase levels were compared with *Renilla* luciferase and β-actin mRNA levels.

Tail Sequencing Assays—The tail sequencing assay was performed essentially as described (45) with the following modifications. The P1 anchor primer (AATATTCCATTTGATCT-GAAGC) was 5’ phosphorylated using polynucleotide kinase enzyme (Promega) and 3’-blocked with cordycepin (Sigma-Aldrich) using terminal deoxynucleotidyl transferase enzyme (New England Biolabs). 400 ng of modified P1 primer were pre-annealed with 400 ng of P1’ (GCTTCAGATCAAGT-GAATATTTAAA) and ligated to 1–2 μg of total RNA using T4 RNA Ligase (Fermentas) at 37 °C for 1 h. Reverse transcription reactions were completed using 1 μM P1’ oligonucleotide and SuperScript III reverse transcriptase (Invitrogen). Two rounds of nested PCR amplification were performed using forward primer 1 (GCCGTTAACGAGAGCGGCAAATTTG) and forward primer 2 (ACCTCTTCTCTCTCTCAGGGCT-GATTATCTAG). P1’ was the reverse primer in both reactions. PCR products from the second PCR were TOPO-TA cloned...
Nucleic Acid Binding and Repression by XTUT7

A XTUT7 1 NTD PAPD C-terminus

B

X. laevis TUT7
X. tropicalis TUT7
H. sapiens TUT7
H. sapiens TUT4
S. cerevisiae TRF5
H. sapiens PAPD5
T. brucei TFUC
S. pombe CID1
X. laevis GLD2
H. sapiens GLD2
C. elegans PUP1

LFGSKSN-GGGKFQSPLTCMTF
LFGSKSN-GGGKFQSPLTCMTI
LFGSKSN-GGGKFQSPLTCMTI
LFGSKSN-GGGKFQSPLTCMTL
VFGSAT-DLYLPCSTDCVWN
TFGSKFT-GLYLPSTDLLEVFVG
TFSGVTFVYHGKCSVDPFVNL
AFCGSL-EALKNKSPMCGLVLM
LVGSSLN-GFGRITQCLVCLV
TLGFAVMT-GLSNNCSSTDLRFL

C

Cryptic N-terminal NTD (NTD*)

Canonical C-terminal NTD (NTD)

N-terminal NRM within PAPD

N-terminal NRM within PAPD*

D

XTUT7 domain structure. A, diagram representing XTUT7 and its predicted protein domains (amino acids indicated). Zinc finger domain (ZF) (brown), C2H2 zinc finger domain (227–252); NTD*, cryptic NTD (295–437); PAPD*, cryptic PAPD (526–575); NTD, nucleotidyl transferase domain (998–1146); PAPD, poly(A) polymerase-associated domain (1215–1268); zinc finger domain (orange), CCHC zinc finger domains (946–962, 1327–1343, 1432–1448); BR, basic region (1343–1361). The red D’s denote putative catalytic aspartates. B, multiple sequence alignment of the characteristic catalytic motifs contained in the NTD of XTUT7 and other previously identified nucleotidyl transferases. The consensus nTase catalytic motif, hG[G/S][ag][h][D/E]h, is shown below the sequence alignment, where h indicates any hydrophobic amino acid (28). C, sequence logos representing multiple sequence alignments of the putative catalytic motifs contained in the NTD and NTD* of XTUT7 orthologs. The arrows indicate analogous positions in the NTD and NTD* and highlight amino acid substitutions of putative catalytic aspartates in the NTD*. D, sequence logos representing multiple sequence alignments of the NRM encoded in the PAPD and PAPD* of XTUT7 orthologs. The arrow indicates an invariant histidine in the C-terminal NRM.

RESULTS

XTUT7 Domain Structure—A single XTUT7 ortholog is encoded by the Xenopus genome. Putative XTUT7 cDNAs were cloned from both X. laevis and X. tropicalis oocytes and are collectively referred to as XTUT7. XTUT7 cDNA encodes conserved domains typical of rNtases (28). In particular, the domains include two NTDs, two PAPDs, and an NRM encoded in each PAPD (Fig. 1A). XTUT7 also possesses a C2H2 zinc finger domain, three CCHC zinc finger domains, and a short, arginine-rich segment of basic amino acids (the basic region or BR). The amino acids that span the C-terminal NTD and PAPD are 84% identical and 95% similar between Xenopus and H. sapiens TUT7. Overall, the proteins are 57% identical and 77% similar. XTUT7 includes the conserved motif characteristic of known nTase active sites, which contains two of its three putative catalytic aspartates (Fig. 1B) (28).

XTUT7 and its orthologs encode two distinct NTDs and PAPDs. XTUT7 orthologs have canonical NTDs in their C-terminal halves and cryptic NTDs (NTD*) in their N-terminal halves. The NTD contains the three canonical catalytic aspartates (Fig. 1C). In contrast, the NTD* contains aspartate to asparagine and aspartate to lysine substitutions of aspartates...
two and three, respectively. XTUT7 orthologs also have distinct NRMs encoded in their N- and C-terminal PAPDs. The NRMs encoded in their C-terminal PAPDs contain highly conserved type-2 NRMs characteristic of rNTases, which includes an invariant histidine (Fig. 1D) (28). The NRMs encoded in their cryptic, N-terminal PAPDs (PAPD*) are more divergent among species and contain an arginine in place of the histidine (Fig. 1D).

XTUT7 Is a Poly(U)-adding Enzyme—To test whether XTUT7 can catalyze rNTase activity, XTUT7 was tethered to reporter RNA using MS2 coat protein and MS2-binding sites (Fig. 2A). mRNAs encoding portions of XTUT7 fused to three HA tags and MS2 coat protein (3HA/MS2) were microinjected into *X. laevis* oocytes to directly translate the proteins. Radio-labeled RNA substrates that contained three MS2-binding sites were then microinjected and analyzed on polyacrylamide gels, and visualized by phosphorimaging. B, diagrams representing proteins tested in subsequent panels. The red D’s denote catalytic aspartates, whereas the red A’s denote aspartate to alanine substitutions; ZF, zinc finger domain. The XTUT4-FL diagram represents the domain structure of full-length XTUT4, which is a paralog of XTUT7. XTUT4-C represents the construct tested in panel D, which is analogous to XTUT7-C. C, extracted RNAs were separated on denaturing polyacrylamide gels. All proteins assayed were 3HA/MS2 fusions. The reporter alone sample serves as a negative control for extension, whereas the GLD2 sample is a positive control for extension. GLD2-D242A is a mutant GLD2 containing an alanine in place of a catalytic aspartate. 3HA/MS2/XTUT7 fusion proteins tested are depicted in panel B. XTUT7-FL and XTUT7-C are derived from *X. tropicalis*, and XTUT7-C is derived from *X. laevis*. XTUT7-DADA proteins contain aspartate to alanine substitutions as indicated in panel B. The bottom panels indicate protein levels as determined by Western blotting for HA-tagged fusion proteins and actin. D, the indicated 3HA/MS2 fusion proteins were assayed as in panel C. All proteins tested here and in subsequent figures were derived from *X. laevis*, except when noted. The bottom panels indicate protein levels as determined by Western blotting for HA-tagged fusion proteins and actin. E, schematic of the assays used to determine the nucleotide(s) added by XTUT7. First, RNAs were assayed by RT-PCR (left half, for panel F). Second, RNAs were assayed by a tail sequencing assay (right half, for panel G). RT-PCR analysis for the indicated fusion proteins. All samples were analyzed on the same gel but were separated for clarity. RT primers are indicated. The dT lane indicates the addition of adenosines, the dA lane indicates addition of uridines, and so forth. G, seven representative, independently cloned sequences that illustrate the nucleotides added by XTUT7-C are shown.

FIGURE 2. XTUT7 is a poly(U)-adding enzyme. A, mRNAs encoding MS2 coat protein fused to XTUT7 were microinjected into oocytes. Following a 6-h incubation to allow translation of the fusion proteins, 32P-labeled RNA that contained MS2-binding sites was injected. MS2 coat protein binds the MS2-binding sites, thus tethering XTUT7 to the reporter RNA. For clarity, only one binding event is depicted. After 16 h, RNAs were extracted, analyzed on polyacrylamide gels, and visualized by phosphorimaging. B, diagrams representing proteins tested in subsequent panels. The red D’s denote catalytic aspartates, whereas the red A’s denote aspartate to alanine substitutions; ZF, zinc finger domain. The XTUT4-FL diagram represents the domain structure of full-length XTUT4, which is a paralog of XTUT7. XTUT4-C represents the construct tested in panel D, which is analogous to XTUT7-C. C, extracted RNAs were separated on denaturing polyacrylamide gels. All proteins assayed were 3HA/MS2 fusions. The reporter alone sample serves as a negative control for extension, whereas the GLD2 sample is a positive control for extension. GLD2-D242A is a mutant GLD2 containing an alanine in place of a catalytic aspartate. 3HA/MS2/XTUT7 fusion proteins tested are depicted in panel B. XTUT7-FL and XTUT7-C are derived from *X. tropicalis*, and XTUT7-C is derived from *X. laevis*. XTUT7-DADA proteins contain aspartate to alanine substitutions as indicated in panel B. The bottom panels indicate protein levels as determined by Western blotting for HA-tagged fusion proteins and actin. D, the indicated 3HA/MS2 fusion proteins were assayed as in panel C. All proteins tested here and in subsequent figures were derived from *X. laevis*, except when noted. The bottom panels indicate protein levels as determined by Western blotting for HA-tagged fusion proteins and actin. E, schematic of the assays used to determine the nucleotide(s) added by XTUT7. First, RNAs were assayed by RT-PCR (left half, for panel F). Second, RNAs were assayed by a tail sequencing assay (right half, for panel G). RT-PCR analysis for the indicated fusion proteins. All samples were analyzed on the same gel but were separated for clarity. RT primers are indicated. The dT lane indicates the addition of adenosines, the dA lane indicates addition of uridines, and so forth. G, seven representative, independently cloned sequences that illustrate the nucleotides added by XTUT7-C are shown.
reporter RNA. Mutant and wild-type enzymes were expressed comparably; therefore, differences in activity were not due to differences in expression levels. Truncated X. laevis and tropicalis XTUT7 proteins (XTUT7-C and XTUT7-C, respectively) that lacked the NTD* and PAPD* were as active as the full-length protein, and again inactivated by mutation of catalytic aspartates. A construct of X. laevis TUT4 (XTUT4-C) that lacked its NTD* and PAPD* extended the reporter RNA much like XTUT7-C (Fig. 2D). The C-terminal half of XTUT7 is therefore sufficient to add nucleotides to RNAs.

To identify the nucleotide(s) added by XTUT7, RNAs extended by XTUT7 were assayed by RT-PCR using oligo(dT), -(dA), -(dC), or -(dG) as the RT primer (Fig. 2). XTUT7 is a poly(U)-adding enzyme. XTUT7-FL samples yielded RT-PCR products solely in oligo-(dT) primed reactions and only when the catalytic aspartates were present (Fig. 2F). Therefore, XTUT7 added uridines to the reporter RNA. Conversely, the control poly(A) polymerase GLD-2 yielded products only with an oligo(dT) primer, which indicated that the enzyme added adenosines to the reporter RNA (47, 48). Sequencing of cloned XTUT7-C RT-PCR products confirmed that uridines had been added (Fig. 2G). Thus, XTUT7 is a poly(U)-adding enzyme.

XTUT7 Extends RNAs Independent of MS2 Tethering—Two lines of evidence demonstrate that XTUT7 extends RNAs independent of MS2 tethering. First, XTUT7-FL and XTUT7-C extended an RNA that lacked MS2-binding sites by ~30–50 nucleotides, and this activity was eliminated by the mutation of catalytic aspartates (Fig. 3A). Second, an XTUT7-C construct that lacked both MS2 coat protein and the 3HA tag extended a reporter RNA that contained three MS2-binding sites by up to 50 nucleotides (Fig. 3B, last lane). Tethered XTUT7-C extended the same RNA by ~200 nucleotides on average. As expected, both tethered and untethered XTUT7-C added uridines to reporter RNA (Fig. 3C). Therefore, the C-terminal half of XTUT7 uridylates RNAs independent of MS2 tethering, and the activity of XTUT7 is increased when tethered.

The BR and CCHC Zinc Finger Domains Mediate the Tethering-independent Activity of XTUT7—To examine the role of the BR and CCHC zinc finger domains in XTUT7, mutant enzymes were constructed in the context of the C-terminal half of the protein (Fig. 4A), which possesses the same rNase activities as the full-length protein (Figs. 2 and 3). The mutant enzymes were first assayed on a radiolabeled reporter RNA that contained MS2-binding sites. Deletion of a single zinc finger (∆Z1), all three zinc fingers (∆Z123), or the BR (∆BR) yielded nucleotide tail lengths similar to XTUT7-C (Fig. 4B). The XTUT7 enzyme that lacked both the zinc fingers and the BR (∆Z123∆BR) added many fewer nucleotides than wild-type XTUT7-C when expressed at comparable levels (Fig. 4D). Consequently, the BR and zinc finger domains likely act redundantly to contribute to the catalytic activity of XTUT7. However, the diminished activity also could result from a population of misfolded enzyme.

To further examine the role of the BR and CCHC zinc finger domains, the XTUT7 mutants were assayed on a reporter RNA that lacked MS2-binding sites. The mutant XTUT7 enzyme that lacked the zinc fingers and BR (∆Z123∆BR) was inactive on the RNA without binding sites (Fig. 4C). Mutant XTUT7 enzymes that lacked the BR (∆BR) or the zinc fingers (∆Z123) were less active than wild-type XTUT7-C when expressed at a comparable level (Fig. 4D). In addition, tethered XTUT7 mutants retained uridine specificity (Fig. 4E). Thus, the BR, as well as the CCHC zinc fingers, mediates the tethering-independent uridylation activity of XTUT7.

The BR is a conserved domain that may bind nucleic acids. The BR and CCHC zinc finger domains of XTUT7 are con-
served among XTUT7 orthologs, including *H. sapiens* TUT7 (Fig. 4F). The BR resembles arginine-rich motifs (ARMs) found in viral RNA-binding proteins, such as HIV Rev (regulator of expression of virion proteins) and Tat (transactivator of transcription), as both the BR and the ARMs are composed primarily of arginine (Fig. 4G) (49–51). In contrast, a recently identified basic stretch of amino acids in PAPD5, a poly(A) polymerase related to XTUT7, is composed primarily of lysine (52, 53). Intriguingly, the ARMs in Rev and Tat, as well as the basic stretch in PAPD5, directly bind RNA (49–52).

The BR Binds Nucleic Acids

To test whether the BR directly binds nucleic acids, wild-type (BR-WT) and mutant BR (BR-R1–6A) segments were fused to an MBP-His6 tag (Fig. 5A), purified (Fig. 5B), and tested using electrophoretic mobility shift assays. BR-WT bound an RNA that contained three MS2-binding sites in a concentration-dependent manner, with an apparent K_d of 40 ± 5 nM (Fig. 5C and E). BR-WT also bound an ssDNA substrate of an equivalent sequence to the RNA substrate, with an apparent K_d of 70 ± 5 nM (Fig. 5D and E). At the highest protein concentrations, the protein-nucleic acid complexes migrated progressively more slowly, which may indicate that multiple copies of BR-WT can bind the same nucleic acid molecule. A mutant BR in which arginines 1–6 had been changed to alanine (BR-R1–6A) bound the RNA and ssDNA substrates poorly, with estimated apparent K_d values of greater than 400 and 350 nM, respectively (Fig. 5E). Protein-RNA complexes were not observed with MBP-His6 backbone alone on either substrate (Fig. 5E). Therefore, the BR directly binds nucleic acids and requires conserved arginines for optimal binding.

XTUT7 Represses a Polyadenylated RNA

To examine the rNtase activity of XTUT7 on polyadenylated RNA, we tethered XTUT7 to an RNA with a poly(A)$_{39}$ tail. XTUT7-FL and XTUT7-C extended the polyadenylated reporter RNA by a distinct number of nucleotides, which on average was 60 ± 10 nucleotides (Fig. 6A). RT-PCR of the polyadenylated RNAs
Nucleic Acid Binding and Repression by XTUT7

Extended by XTUT7-C yielded products with both oligo(dT) and oligo(dA) primers, whereas the substrate yielded a single band in the oligo(dT) lane (Fig. 6B). XTUT7 therefore added a poly(U) tail of discrete length to an RNA substrate with 3′ adenosines.

To test whether altered uridine specificity affected the catalytic activity of XTUT7, XTUT7-H1269L was tethered to a polyadenylated reporter RNA. XTUT7-H1269L added a heterogeneous length tail to poly(A)39 firefly luciferase mRNA. XTUT7-H1269L not only prevented translation of polyadenylated reporter mRNA and a triphosphate moiety of UTP (Fig. 7A). Tyrosine 1154 appears to participate in a stacking interaction with uracil. Histidine 1269, contained in the NRM of XTUT7, is predicted to contact a carboxyl oxygen in UTP. As expected, the predicted XTUT7 structure aligns well to a structure of the S. pombe poly(U)-adding enzyme CID1 (alignment r.m.s.d. = 1.2 Å, sequence identity to XTUT7 is 32%) (Fig. 7B) (30). Intriguingly, a hydrogen bond that is observed in CID1 between His-336 and UTP is predicted in XTUT7 (His-1269).

We reasoned that His-1269 might be important for nucleotide specificity due to its proximity to UTP. Therefore, we substituted His-1269 with leucine in the context of the XTUT7 C-terminal half (XTUT7-H1269L) because this substitution ablates a potential hydrogen bond to UTP (Fig. 7C). Indeed, tethered XTUT7-H1269L added cytosines, as well as uridines, to RNA (Fig. 7D). XTUT7-H1269L-dependent tails were ~20% cytosine as compared with ~3% with the wild-type enzyme (p values < 0.005). Both XTUT7-H1269L and XTUT7-C rarely added guanosines or adenosines to RNA (<3 and 2%, respectively). Thus, His-1269 is important for the uridine specificity of XTUT7.

To test whether altered uridine specificity affected the catalytic activity of XTUT7, XTUT7-H1269L was tethered to a polyadenylated reporter RNA. XTUT7-H1269L added a heterogeneous length tail to an RNA with a poly(A)39 tail, rather than the discrete ~60-nucleotide tail added by XTUT7-C (Fig. 7E). The tail added by XTUT7-H1269L was between ~50 and 150 nucleotides in length, which was shorter than the tail added by the wild-type enzyme to RNA that lacked a poly(A) tail. Accordingly, incorporation of non-uridine residues by XTUT7 prevents formation of the discrete length tail on the poly(A)39 reporter RNA.

To determine the effect of XTUT7-H1269L on translational repression, XTUT7-H1269L was assayed using poly(A)39 firefly luciferase mRNA. XTUT7-H1269L not only prevented translational repression, but instead activated it ~3-fold (p value < 0.05) (Fig. 7F). This increase in firefly luciferase activity was less than the increase yielded by the poly(A) polymerase GLD2. Firefly and Renilla luciferase mRNA levels were not significantly affected by any protein tested. Thus, the H1269L substitution alleviated XTUT7-dependent translational repression, which could result from either the relaxed nucleotide specificity of the mutant enzyme or its addition of a heterogeneous length tail to poly(A)39 firefly luciferase mRNA.
Nucleic Acid Binding and Repression by XTUT7

FIGURE 6. XTUT7 represses a polyadenylated RNA. A, 3HA/MS2 fusion proteins were assayed as in Fig. 2C, except that the reporter RNA contained poly(A)$_{39}$ on the 3′ end. The bottom panels indicate protein levels as determined by Western blotting for HA-tagged fusion proteins and actin. B, samples were assayed by RT-PCR as in Fig. 2F, except the RNA contained poly(A)$_{39}$ on the 3′ end. All samples were analyzed on the same gel but isolated for clarity. C, schematic of the assay used to determine the effect of XTUT7 on translation. RNAs were injected as in Fig. 2A, except that two nonradiolabeled reporter RNAs were co-injected. The first contained the firefly luciferase open reading frame (FF) upstream of three MS2-binding sites and a poly(A)$_{39}$ tail. The second contained the Renilla luciferase open reading frame (Ren) that lacked MS2-binding sites and a poly(A) tail. After 16 h, luciferase levels were determined. D, relative luciferase levels in oocytes that express the indicated fusion proteins were determined. Luciferase levels were normalized to reporter alone samples (no fusion protein) in each panel. Error bars represent the S.D. from three experiments. The bottom and middle panels represent the average relative Renilla or firefly luciferase levels, respectively. The top panel represents the average firefly/Renilla luciferase levels. Protein levels from a representative experiment are depicted below the luciferase data, and all bands are from the same Western blot but were separated for clarity.

DISCUSSION

The C-terminal Half of XTUT7 Is Sufficient for rNTase Activity—Our studies demonstrate that XTUT7 is a poly(U)-adding enzyme and identify key domains and residues important for activity. The NTD and PAPD of XTUT7 were sufficient for activity, and mutations in the NTD of full-length XTUT7 abolished rNTase activity. Therefore, the NTD and PAPD are the core catalytic domains. The BR and CCHC zinc finger domains flanking the catalytic core likely enable efficient XTUT7-dependent uridylation as their removal decreased XTUT7 rNTase activity. In contrast, the conserved NTD* and PAPD* of XTUT7 lacked activity and were dispensable for it in the context of the full-length protein. The analogous domains in XTUT4 were also dispensable for catalytic activity. Thus, the C-terminal half of XTUT7 is sufficient for rNTase activity.

Recent work on the mammalian TUT7 ortholog, TUT4, suggested that its NTD* was necessary for rNTase activity and therefore contrasts with our finding that the analogous domain of XTUT7 was dispensable (16). Although the NTD* and PAPD* of XTUT7 orthologs are dispensable for catalytic activity, they nonetheless may have critical roles in vivo. For example, they may mediate protein-protein interactions, as suggested by LIN28-pre-let-7-TUT4 experiments (16). Indeed, TUT4 segments that contain its NTD* and PAPD* promote cell proliferation independent of catalytic activity (58).

The XTUT7 Basic Region—XTUT7 contains nucleic acid binding-domains, including the arginine-rich BR. XTUT7 possesses tethering-independent rNTase activity redundantly mediated by its BR and CCHC zinc finger domains. These domains are likely required for efficient catalytic activity when XTUT7 is tethered to RNA. Together, these findings suggest that the BR and at least one of the CCHC zinc finger domains bind RNA. Indeed, we show that the BR binds both RNA and ssDNA in vitro. Given the modest preference of the BR for binding RNA and that rNTases lack catalytic activity on DNA substrates (59), we suggest that the BR binds RNA in vivo.

The XTUT7 BR resembles RNA-binding domains present in certain viral proteins, such as the ARM found in HIV Rev (49, 60). ARMs are flexible RNA-binding domains that typically confer specificity for particular RNAs by recognizing RNA sequences and/or structures (61, 62). For example, the ARM in Rev specifically recognizes and binds its RNA target (63–66). Critical arginines in the ARM make base-specific contacts with the RNA and are necessary for binding. Similarly, the XTUT7 BR requires highly conserved arginines for optimal RNA binding activity.
BRs are present in other rNtases. Human PAPD5, a noncanonical poly(A) polymerase, binds a subset of RNAs likely through a small, lysine-rich stretch of amino acids (52). The basic stretch of PAPD5 is also required for efficient catalytic activity, much like the BR in XTUT7. A search for similar BRs in human rNtases reveals that five of the seven enzymes contain characterized or putative BRs, including TUT7, TUT4, and PAPD5. Thus, BRs appear to be a common feature of rNtases that are likely utilized to bind RNA substrates and/or facilitate catalytic activity.

We speculate that the BR and CCHC zinc fingers facilitate TUT7 binding to particular RNAs in vivo. TUT7 orthologs uridylate pre-let-7 in the absence of LIN28 both in vitro and in vivo, and this activity requires the pre-let-7 stem (16, 17, 67). We therefore propose that the BR of TUT7, likely in cooperation with the zinc fingers, binds the accessible region of the pre-let-7 stem.

XTUT7 Homology Model and Nucleotide Specificity—We generated a homology model of the three-dimensional structure of the XTUT7 catalytic core that identified an amino acid important for uridine specificity. Not surprisingly, the predicted structure of XTUT7 is similar to those of other poly(U)-adding enzymes, particularly CID1, and predicted that a histidine would be important for uridine specificity (30). The analogous histidine in CID1 is required for optimal uridine specificity in vitro (30–32). Indeed, substituting His-1269 with leucine broadened the nucleotide specificity of XTUT7 in vivo so that it added both uridines and cytosines. These data suggest that a histidine-UTP contact is a critical determinant for XTUT7 uridine specificity and likely represents a common mechanism of uridine recognition among XTUT7 orthologs. Direct determination of the XTUT7 structure is needed to test this rigorously.

XTUT7 and Translational Control—XTUT7 can repress translation and may represent a new class of translational repressor proteins. XTUT7 repressed translation of a polyadenylated reporter mRNA without affecting mRNA stability. We propose that the U-tail added by XTUT7 binds poly(A).
poly(A)-poly(U) hybrid may block recognition of the poly(A) tail by poly(A)-dependent factors, such as poly(A)-binding protein. This would mask the effects of the poly(A) tail, including its ability to stimulate translation. The presence of the A-U duplex is consistent with the observation that an XTUT7 mutant that added cytosines no longer repressed translation. Furthermore, the mutant enzyme also produced a heterogeneous length tail, whereas the wild-type enzyme added a discrete number of uridines to an RNA with 39 adenosines. We infer that the newly formed A-U hybrid prevents further catalysis, implying a novel mechanism that terminates poly(U) synthesis. We infer that the newly formed A-U hybrid prevents further catalysis, implying a novel mechanism that terminates poly(U) synthesis.

REFERENCES

1. Wickens, M., and Kwak, J. E. (2008) Molecular biology. A tale tail for U. Science 319, 1344–1345
2. Norbury, C. J. (2010) 3’ Uridylation and the regulation of RNA function in the cytoplasm. Biochem. Soc. Trans. 38, 1150–1153
3. Schmidt, M. J., and Norbury, C. J. (2010) Polyadenylation and beyond: emerging roles for noncanonical poly(A) polymerases. Wiley Interdiscip. Rev. RNA 1, 142–151
4. Kim, Y. K., Heo, L., and Kim, V. N. (2010) Modifications of small RNAs and their associated proteins. Cell 143, 703–709
5. Song, M. G., and Kiledjian, M. (2007) 3’ Terminal oligo U-tract-mediated stimulation of decapping. RNA 13, 2356–2365
6. Rissland, O. S., Mikulasova, A., and Norbury, C. J. (2007) Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol. Cell Biol. 27, 3612–3624
7. Mullen, T. E., and Marzluff, W. F. (2008) Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5’ to 3’ and 3’ to 5’. Genes Dev. 22, 50–65
8. Rissland, O. S., and Norbury, C. J. (2009) Decapping is preceded by 3’ uridylation in a novel pathway of bulk mRNA turnover. Nat. Struct. Mol. Biol. 16, 616–623
9. Schmidt, M. J., West, S., and Norbury, C. J. (2011) The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation. RNA 17, 39–44
10. Su, W., Slепенков, S. V., Slavin, M. K., Lyons, S. M., Ziemniak, M., Kowalska, J., Darynzkiewicz, E., Jemielity, J., Marzluff, W. F., and Rhoads, R. E. (2013) miRNAs containing the histone 3’ stem-loop are degraded primarily by decapping mediated by oligouridylation of the 3’ end. RNA 19, 1–16
11. Hoeigl, K. P., Rath, N., Heinz, G. A., Wolf, C., Dameris, J., Scheper, A., Kremmer, E., Ansel, K. M., and Heissmeyer, V. (2013) Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay. Nat. Struct. Mol. Biol. 20, 73–81
12. Heo, I., Joo, C., Choi, J., Ha, M., Han, J., and Kim, V. N. (2008) Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32, 276–284
13. Lehrbach, N. J., Armisen, J., Lightfoot, H. L., Murffitt, K. J., Bugaut, A., Balasubramanian, S., and Miska, E. A. (2009) LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in C. elegans. Nat. Struct. Mol. Biol. 16, 1016–1020
14. Hagan, J. P., Piskounova, E., and Gregory, R. I. (2009) Lin28 recruits the TUTase Zchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 16, 1021–1025
15. Heo, I., Joo, C., Kim, Y. K., Ha, M., Yoon, M. J., Cho, J., Yeom, K. H., Han, J., and Kim, V. N. (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708
16. Thornton, J. E., Chang, H. M., Piskounova, E., and Gregory, R. I. (2012) Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zchc11 (TUT4) and Zcch6 (TUT7). RNA 18, 1875–1885
17. Heo, I., Ha, M., Lim, J., Yoon, M. I., Park, J. E., Kwon, S. C., Chang, H., and Kim, V. N. (2012) Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151, 521–532
18. Newman, M. A., Mani, V., and Hammond, S. M. (2011) Deep sequencing of microRNA precursors reveals extensive 3’ end modification. RNA 17, 1795–1803
19. van Wolfshekel, J. C., Claycomb, J. M., Batista, P. J., Mello, C. C., Berenikov, E., and Ketting, R. F. (2009) CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs. Cell 139, 135–148
20. Ibrahim, F., Rymarquis, L. A., Kim, E. J., Becker, J., Balassa, E., Green, P. J., and Cerutti, H. (2010) Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotide transference promotes their degradation in Chlamydomonas. Proc. Natl. Acad. Sci. U.S.A. 107, 3906–3911
21. Ren, G., Chen, X., and Yu, B. (2012) Uridylation of miRNAs by hEn1 suppressor1 in Arabidopsis. Curr. Biol. 22, 695–700
22. Zhao, Y., Yu, Y., Zhai, J., Ramachandran, V., Dinh, T. T., Meyers, B. C., Mo, B., and Chen, X. (2012) The Arabidopsis nucleotide transference HESO1 uridylates unmethylated small RNAs to trigger their degradation. Curr. Biol. 22, 689–694
23. Jones, M. R., Quinton, L. J., Blaha, M. T., Neilson, J. R., Fu, S., Ivanov, A. R., Wolf, D. A., and Mizgerd, J. P. (2009) Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat. Cell Biol. 11, 1157–1163
24. Burroughs, A. M., Ando, Y., de Hoon, M. J., Tomaru, Y., Nishibu, T., Ukekawa, R., Funakoshi, T., Kurokawa, T., Suzuki, H., Hayashizaki, Y., and Duba, C. O. (2010) A comprehensive survey of 3’ terminal RNA modification events and a possible role for 3’ adenylation in modulating miRNA targeting effectiveness. Genome Res. 20, 1398–1410
25. Wyman, S. K., Knouf, E. C., Parkin, R. K., Fritz, B. R., Lin, D. W., Dennis, L. M., Kroushe, M. A., Webster, P. J., and Tewari, M. (2011) Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res. 21, 1450–1461
26. Jones, M. R., Blaha, M. T., Kozlowski, E. K., Ferrari, J. D., Morris, S. A., Powers, J. T., Dany, G. Q., Quinton, L. J., and Mizgerd, J. P. (2012) Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival. PLoS Genet. 8, e1002105
27. Aphashizhev, R. (2005) RNA uridylyltransferases. Cell. Mol. Life Sci. 62, 2194–2203
28. Martin, G., and Keller, W. (2007) RNA-specific ribonucleotidyl transferases. RNA 13, 1834–1849
29. Kwak, J. E., and Wickens, M. (2007) A family of poly(UR) polymerases. RNA 13, 860–867
30. Yates, L. A., Mierlo, S., De Colibus, L., Harlos, K., Norbury, C. J., and Gilbert, R. J. (2012) Structural basis for the activity of a cytoplasmic RNA terminal uridylyl transferase. Nat. Struct. Mol. Biol. 19, 782–787
31. Lunde, B. M., Magler, I., and Meinhart, A. (2012) Crystal structures of the Cid1 poly(U) polymerase reveal the mechanism for UTP selectivity. Nucleic Acids Res. 40, 9815–9824
32. Munoz-Tello, R. P., Gabus, C. E., and Thoue, S. (2012) Functional implications from the Cid1 poly(U) polymerase crystal structure. Structure 20, 977–986
33. Martin, G., Doublé, S., and Keller, W. (2008) Determinants of substrate specificity in RNA-dependent nucleotidyl transferases. Biochim. Biophys. Acta 1779, 206–216
34. Roush, S., and Slack, F. J. (2008) The let-7 family of microRNAs. Trends in Enzymology 44, 157–166

Acknowledgments—We thank members of the Wickens laboratory for helpful discussions, suggestions, and critical reading of the manuscript. We are grateful to Phil Anderson and Scott Kennedy for advice on experiments. We also thank Laura Vanderploeg and the Biochemistry Media Laboratory for help with figures.
35. Cooke, A., Prigge, A., and Wickens, M. (2010) Translational repression by deadenylases. J. Biol. Chem. **285**, 28506–28513

36. Zdobnov, E. M., and Apweiler, R. (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics **17**, 847–848

37. Goujon, M., McWilliam, H., Li, W., Valentine, F., Squizzato, S., Paern, J., and Sonnhammer, E. L., Eddy, S. R., and Bateman, A. (2010) The Pfam protein families database. *Nucleic Acids Res.* **38**, D211–D222

38. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* **32**, 1792–1797

39. Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004) WebLogo: a sequence logo generator. *Genome Res.* **14**, 1188–1190

40. Gray, N. K., Coller, J. M., Dickson, K. S., and Wickens, M. (2000) Multiple portions of poly(A)-binding protein stimulate translation in vivo. *EMBO J.* **19**, 4723–4733

41. Chritton, J. I., and Wickens, M. (2010) Translational repression by PUF proteins in vitro. *RNA* **16**, 1217–1225

42. Cooke, A., Prigge, A., Opperman, L., and Wickens, M. (2011) Targeted translational regulation using the PUF protein family scaffold. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 15870–15875

43. Kwak, J. E., Wang, L., Ballantyne, S., Kimble, J., and Wickens, M. (2004) Mammalian GLD-2 homologs are poly(A) polymerases. *Proc. Natl. Acad. Sci. U.S.A.* **101**, 4407–4412

44. Charlesworth, A., Cox, L. L., and MacNicol, A. M. (2004) Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in *Xenopus* oocytes. *J. Biol. Chem.* **279**, 17650–17659

45. Hook, B. A., Goldstrohm, A. C., Seay, D. J., and Wickens, M. (2007) Two yeast PUF proteins negatively regulate a single mRNA. *J. Biol. Chem.* **282**, 15430–15438

46. Wang, L., Eckmann, C. R., Kadyk, L. C., Wickens, M., and Kimble, J. (2002) A regulatory cytoplasmic poly(A) polymerase in *Caenorhabditis elegans*. *Nature* **419**, 312–316

47. Rouhana, L., Wang, L., Buter, N., Kwak, J. E., Schlitz, C. A., Gonzalez, T., Kelley, A. E., Landry, C. F., and Wickens, M. (2005) Vertebrate GLD2 poly(A) polymerases in the germline and the brain. *RNA* **11**, 1117–1130

48. Lázniński, D., Grzędzielska, E., and Das, A. (1989) Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. *Cell* **59**, 207–218

49. Weeks, K. M., Ampe, C., Schultz, S. C., Steitz, T. A., and Crothers, D. M. (1990) Fragments of the HIV-1 Tat protein specifically bind TAR RNA. *Science* **249**, 1281–1285

50. Calnan, B. J., Tidor, B., Bialacalna, S., Hudson, D., and Frankel, A. D. (1991) Arginine-mediated RNA recognition: the arginine fork. *Science* **252**, 1167–1171

51. Rammelt, C., Bilen, B., Zavolan, M., and Keller, W. (2011) PAPDS5, a non-canonical poly(A) polymerase with an unusual RNA-binding motif. *RNA* **17**, 1737–1746

52. Berndt, H., Harrisch, C., Rammelt, C., Stöhr, N., Zirkel, A., Dohm, J. C., Himmelbauer, H., Tavanez, J. P., Hüttelmaier, S., and Wähe, E. (2012) Maturation of mammalian H/ACA box snRNAs: PAPD5-dependent adenylation and PARN-dependent trimming. *RNA* **18**, 958–972

53. Milash, N., Thom, G., and Standart, N. (2001) A conserved role of a DEAD box helicase in mRNA masking. *RNA* **7**, 1728–1742

54. Blahna, M. T., Jones, M. R., Quinton, L. J., Matsuura, K. Y., and Mizgerd, J. P. (2011) Terminal uridyltransferase enzyme Zcchc11 promotes cell proliferation independent of its uridyltransferase activity. *J. Biol. Chem.* **286**, 42381–42389

55. Read, R. L., Martinho, R. G., Wang, S. W., Carr, A. M., and Norbury, C. J. (2002) Cytoplasmic poly(A) polymerases mediate cellular responses to S phase arrest. *Proc. Natl. Acad. Sci. U.S.A.* **99**, 12079–12084

56. Tan, R., Chen, L., Buettner, J. A., Hudson, D., and Frankel, A. D. (1993) RNA recognition by an isolated a helix. *Cell* **73**, 1031–1040

57. Weiss, M. A., and Narayana, N. (1998) RNA recognition by arginine-rich peptide motifs. *Biopolymers* **48**, 167–180

58. Bayer, T. S., Booth, L. N., Knudsen, S. M., and Ellington, A. D. (2005) Arginine-rich motifs present multiple interfaces for specific binding by RNA. *RNA* **11**, 1848–1857

59. Daugherty, M. D., Liu, B., and Frankel, A. D. (2010) Structural basis for cooperative RNA binding and export complex assembly by HIV Rev protein with RNA. *Science* **247**, 845–848

60. Daly, T. J., Cook, K. S., Gray, G. S., Maione, T. E., and Rusche, J. R. (1989) Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro. *Nature* **342**, 816–819

61. Battiste, J. L., Mao, H., Rao, N. S., Tan, R., Muhandiram, D. R., Kay, L. E., Frankel, A. D., and Williamson, J. R. (1996) A helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. *Science* **273**, 1547–1551

62. Yeom, K. H., Heo, I., Lee, J., Hohng, S., Kim, V. N., and Joo, C. (2011) Single-molecule approach to immunoprecipitated protein complexes: insights into miRNA uridylation. *EMBO Rep* **12**, 690–696

63. Balf, A. G., Munschauer, M., Schwanhausser, B., Vasilé, A., Murakawa, Y., Schueler, M., Youngs, N., Penfold-Brown, D., Drew, K., Milek, M., Wyler, E., Bonneau, R., Selbach, M., Dieterich, C., and Landthaler, M. (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. *Mol. Cell* **46**, 674–690

64. Castello, A., Fischer, B., Eichelbaum, K., Horos, R., Beckmann, B. M., Strein, C., Davey, N. E., Humphreys, D. T., Freiss, T., Steinmetz, L. M., Krigsveld, J., and Hentze, M. W. (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. *Cell* **149**, 1393–1406