Electronic transitions in Rb$_2^+$ dimers solvated in helium

Simon Albertini1 · Paul Martini1 · Arne Schiller1 · Harald Schöbel1,3 · Elham Ghavidel1 · Milan Ončák1,2 · Olof Echt1,2 · Paul Scheier1

Received: 1 December 2020 / Accepted: 8 February 2021 / Published online: 1 March 2021
© The Author(s) 2021

Abstract
We have measured depletion spectra of the heteronuclear (85Rb87Rb$^+$) dimer cation complexed with up to 10 He atoms. Two absorption bands are observed between 920 and 250 nm. The transition into the repulsive $^12\Sigma_u^+$ state of HeRb$_2^+$ gives rise to a broad feature at 790 nm (12,650 cm$^{-1}$); it exhibits a blueshift of 98 cm$^{-1}$ per added He atom. The transition into the bound $^12\Pi_u$ state of HeRb$_2^+$ reveals vibrational structure with a band head at ≤ 15,522 cm$^{-1}$, a harmonic constant of 26 cm$^{-1}$, and a spin–orbit splitting of ≤ 183 cm$^{-1}$. The band experiences an average redshift of − 38 cm$^{-1}$ per added He atom. Ab initio calculations rationalize the shape of the spectra and spectral shifts with respect to the number of helium atoms attached. For a higher number of solvating helium atoms, symmetric solvation on both ends of the Rb$_2^+$ ion is predicted.

Keywords Rubidium dimer ion solvated in helium · Optical spectroscopy · Excited states · Ab initio calculation · Path integral molecular dynamics (PIMD) calculations · Spin–orbit splitting

1 Introduction
Helium nanodroplets have been used as nanocryostats to isolate atoms or molecules at a temperature of 0.4 K, or to form new weakly bound aggregates [1–3]. They offer a unique quantum solvent for studying small and large dopant clusters, neutral or ionic, which can in turn be investigated by electronic or infrared spectroscopy [4]. They also minimize matrix-induced spectral shifts and broadening [5–7]. Alkali metal atoms reside on the surface of He droplets due to the short-range Pauli repulsion between their s valence electrons and surrounding helium atoms counteracting the van der Waals attractive forces [8, 9]. However, alkali metal clusters are drawn into He droplets above a critical cluster size [10–12]. By increasing the size of the alkali metal cluster, its van der Waals attraction to the helium matrix grows faster than the repulsive energies, and above a certain size it becomes favorable for clusters to submerge in the superfluid HND.

Alkali metal dimers have been investigated both experimentally [13–19] and theoretically [20–29] to provide a detailed description of the molecular electronic structure. Gabbanini produced translationally cold Rb dimers in the lowest triplet and singlet states, which were detected by resonance-enhanced photoionization [30]. Lee and Mahan have photoionized the vapor of rubidium in the discrete region of the atomic spectrum [31]. The ions produced were identified by ion mobility measurements, and a lower limit of 0.73 eV (5900 cm$^{-1}$) was obtained for the dissociation energy (D_e) of Rb$_2^+$. Olson has estimated $D_e = 0.75\pm 0.10$ eV from the velocity dependence of the Rb–Rb$^+$ charge exchange cross section [32]. Wagner and Isenor have studied multiphoton ionization and dissociation of Rb dimers in a molecular beam; they deduced $D_e = 0.75\pm 0.10$ eV [18].

From the theoretical viewpoint, Bellomonte et al. [33] used Hellman-type model potentials to calculate the ground-state properties of Na$_2^+$, K$_2^+$, Rb$_2^+$ and Cs$_2^+$. They reported a ground-state energy of 5.04 eV, $D_e = 0.86$ eV, equilibrium
distance (R_e) of 4.45 Å, and harmonic constant (ω_e) of 41 cm$^{-1}$ for Rb$_2^+$. Jrai et al. [34] performed ab initio calculations involving non-empirical pseudopotentials, core polarization potentials and semiempirical spin–orbit pseudo-potentials to calculate the ground state as well as 25 excited states of Rb$_2^+$ for a large range of internuclear distances. Aymar et al. [35] computed the adiabatic potential energy curves associated with dimer cations Rb$_2^+$, Cs$_2^+$ and RbCs$^+$ for the lowest eight $^2\Sigma_{g,+}$ states using either the Klapisch model potential [36] or an approach based on pseudopotentials, with the aim of analyzing the abilities and limits of the Klapisch model potentials for handling heavy molecular systems with one valence electron. More recently, Smialkowski et al. [37] applied the coupled cluster method to ionic metal dimers and trimers. They investigated the ground-state electronic structure of singly-charged molecular ions, including Rb$_2^+$. They obtained $R_e = 4.82$ Å, $D_e = 6151$ cm$^{-1}$ and $\omega_e = 46.0$ cm$^{-1}$. Several other theoretical investigations of Rb$_2^+$ have been published [38–41].

Limited experimental information pertaining to electronically excited states of Rb$_2^+$ has been obtained from studying the effect of cooling light on the lifetime of Rb$_2^+$ in a magneto-optical trap [42], and from photoabsorption spectra of dense rubidium vapor [43]. Also relevant is a report by Helm et al. who have studied vibrational levels in the $^1\Pi_u$ of dense rubidium vapor [43]. Also relevant is a report by Helm et al. who have studied vibrational levels in the $^1\Pi_u$ of dense rubidium vapor [43]. Also relevant is a report by Helm et al. who have studied vibrational levels in the $^1\Pi_u$ of dense rubidium vapor [43]. Also relevant is a report by Helm et al. who have studied vibrational levels in the $^1\Pi_u$ of dense rubidium vapor [43]. Also relevant is a report by Helm et al. who have studied vibrational levels in the $^1\Pi_u$ of dense rubidium vapor [43]. Also relevant is a report by Helm et al. who have studied vibrational levels in the $^1\Pi_u$ of dense rubidium vapor [43].

Here, we report depletion spectra of Rb$_2^+$ complexed with up to ten He atoms. The ions were formed by doping helium nanodroplets in a pickup cell filled with low-density Rb vapor and subsequent electron ionization. The weak binding between He and Rb$_2^+$ ensures that the target ions are in their vibrational ground states. Two absorption bands are observed between 920 and 250 nm, due to transitions into the $^2\Sigma_{g,+}$ and $^2\Pi_u$ states. The transitions are blue- and redshifted, respectively, when the number of He atoms is increased. Spectroscopic constants and the spin–orbit (SO) splitting are deduced for the bound $^1\Pi_u$ state. All experimental findings are supported by ab initio calculations.

2 Experiment

Helium nanodroplets (HNDs) were formed by supersonic expansion through a 5-μm-diameter nozzle into vacuum. The nozzle temperature ranged from 9.6 to 9.85 K for the various spectral scans. The HNDs were doped in a pickup cell filled with Rb at a temperature of 329 K which corresponds to a vapor pressure of 0.0005 Pa [46]. The doped HNDs were ionized by electrons at about 100 eV and an emission current ranging from 300 to 600 μA. He$_n$Rb$_{m+}$ ions ejected from the large multiply charged droplets were deflected by 90° via electrostatic lenses. The ion beam was guided into the extraction region of a high-resolution time-of-flight mass spectrometer (TOFMS) where it was merged with a laser beam from a tunable light source (EKSPLA NT242, line width 5 cm$^{-1}$, pulse duration 3–6 ns, repetition rate 1 kHz). The laser was calibrated with a spectrometer using an echelle diffraction grating (model SHR, Solar Laser Systems); the wavelength accuracy in the relevant range was 0.05 nm. The TOFMS was operated at 10 kHz, enabling simultaneous measurement of laser-on and laser-off mass spectra. Depletion spectra were extracted from the stored data for He$_{85}$Rb$_{87}$Rb$^+$ by setting a digital mass filter to ± 0.10 u within the expected mass, for each size 1 ≤ n ≤ 10. Data for homonuclear species He$_n^{85}$Rb$_2^+$ and He$_n^{87}$Rb$_2^+$ could not be extracted because their masses coincide with those of He$_{n-1}$Rb$_2^+$ and He$_{n+1}$Rb$_2^+$, respectively. Representative mass spectra are provided in the Electronic Supplementary Information (ESI). Depletion spectra are corrected for the wavelength-dependent output power of the laser. Conversion from wavelengths to energies takes into account the refractive index of air ($n = 1.000293$). A detailed description of the experiment has been given in the ESI of Ref. [45].

3 Calculations

For modeling the ground electronic state, we used the coupled clusters singles doubles (CCSD) method. For electronically excited states, the equation of motion CCSD (EOMCCSD) [47–49] and multireference configuration interaction (MRCI) [50, 51] were employed. We used various basis sets from the def2 series (def2TZVP, def2QZVP, def2QZVPPD) as well as the Stuttgart basis set ECP28MDF [52] for modeling spin–orbit coupling; basis set benchmarking is available as Table S1 in the ESI. In all used basis sets, 17 electrons of Rb$_2^+$ are treated explicitly; the remaining ones are included in the effective core potential (ECP). For optimization of the He$_n$Rb$_2^+$ clusters, tight optimization criteria were used to describe the very floppy potential energy surface. Zero-point energy correction was accounted for in all reported thermochemical values.

Within the (EOM)CCSD calculations, we used either one explicitly correlated electron of Rb$_2^+$ (corresponding to the frozen core, FC, approximation) or we correlated all Rb electrons; all He electrons were always correlated. The frozen core approximation is obviously advantageous for reaching the goal of the present study, i.e., modeling...
weakly bound He$_n$Rb$_2^+$ clusters, $n \leq 10$, leading to a decrease in the computational time. The difference between both approaches is most visible for the Rb–Rb bond length, predicting 5.185 and 4.883 Å with frozen core approximation and when correlating all electrons, respectively, within the CCSD/def2QZVPPD method. Photochemical properties are somewhat less influenced, with 1.57 and 1.52 eV for excitation into the $^2\Sigma_u^+$ state and 1.83 and 1.98 eV into the $^2\Pi_u$ state within the EOMCCSD/def2QZVPPD approach. Most importantly, both approaches predict the same trends with respect to shifts induced by helium solvation, which is the main concern of the present publication, and we thus use the frozen core approximation for treating clusters with larger numbers of helium atoms.

For Rb$_2^+$, the MRCI calculation was performed with an active space of 17 electrons in 13 orbitals, further denoted as (17,13). For HeHeRb$_2^+$ and He$_2$Rb$_2^+$, active spaces of (15,11) and (17,12) were used, respectively. The spin–orbit coupling was calculated using the state-interacting method as implemented in Molpro [53]. The SO splitting of the $^1\Pi_u$ state in Rb$_2^+$ does not change considerably (< 2 cm$^{-1}$) when switching the active space from (1,15) to (1,4) within the MRCI method. Using (17,13) active space, however, the SO splitting increases by about 15 cm$^{-1}$. Using the all-electron Sapporo-QZP-2012 basis set [54] shifts the splitting by less than 1% within the MRCI(17,13) method. Benchmark calculations on the Rb atom show that for the MRCI(9,12)/ECPP-28MD method, the calculated SO splitting of the $^1\Pi$ state (198 cm$^{-1}$) is underestimated by about 16% with respect to the experimental value (238 cm$^{-1}$) [55]. The reported SO splitting for Rb$_2^+$ could thus be underestimated. When calculating the energy of the 0–0 transition and modeling spectra of the $^1\Pi_u$ state in the HeHeRb$_2^+$ and He$_2$Rb$_2^+$ clusters, only the Rb$_2^+$ vibration was included into the zero-point energy correction.

Path integral molecular dynamics (PIMD) calculations were performed on the MP2(FC)/def2QZVP(Rb),def2TZVP(He) potential energy surface; other transitions are forbidden. However, only the first two electronic states, $^2\Sigma_u^+$ and $^2\Pi_u$ character are bright ones; other transitions are forbidden. However, only the first two electronic states, $^2\Sigma_u^+$ and $^2\Pi_u$ have a considerable oscillator strength. Compared to the case of Cs$_2^+$ [45], the $^2\Pi_u$ state has a lower transition dipole moment and is therefore not observed in the present experiment (see also below).

Focusing on the two lowest electronic states, the $^2\Sigma_u^+$ state is dissociative due to the excitation of $\sigma–\sigma^*$ character (Fig. 2) and converges in the dissociation limit with $^2\Sigma_g^+$. We predict the excitation energy from the minimum of the ground state as 15,870 cm$^{-1}$; the energy difference between $^2\Sigma_g^+$ and $^2\Pi_u$ character is steep (Fig. 1) and already for a bond length shorter by 0.05 Å with respect to the equilibrium value, the excitation energy increases by 180 cm$^{-1}$. The transition is very intense, with the oscillator strength of 0.37.

The $^2\Pi_u$ state is bound and has the equilibrium bond length of 5.455 Å (EOMCCSD/def2QZVPPD), about 0.6 Å longer than in the electronic ground state, with the calculated vibrational frequency of 25.1 cm$^{-1}$. The potential energy surface is shallow, and a small change in the basis set can shift the equilibrium position considerably: When the def2QZVP basis set is used, the bond length of 5.697 Å is retrieved (see Table S1). Due to the same reason, the calculated bond prolongation with respect to the ground state is about twice as large as predicted previously [34] (see also below). In this state, the odd electron is localized in a π orbital (Fig. 2). The vertical excitation energy is calculated as 15,990 cm$^{-1}$; the energy difference between $^1\Sigma_g^+$ and $^1\Pi_u$ minima including the zero-point correction is 15820 cm$^{-1}$. This is virtually the same value as reported previously, 15,870 cm$^{-1}$ [34]. Again, the transition is considerably intense, with the oscillator strength of 0.29 for each branch of the $^1\Pi_u$ state.

While there is only a negligible shift due to spin–orbit interaction for the $^1\Sigma_g^+$ state (< 0.1 cm$^{-1}$), the $^1\Pi_u$ state resolved electronic spectra were modeled within the PGO-}

4 Results and discussion

4.1 Rb$_2^+$

Before discussing Rb$_2^+$ solvated by helium atoms, let us turn our attention to the properties of Rb$_2^+$ itself (Table 1). For the minimum-energy structure in the ground electronic state of $^1\Sigma_g^+$, our calculations predict the bond length of 4.883 Å, the vibrational frequency within harmonic approximation of 44.7 cm$^{-1}$ and dissociation energy of 5992 cm$^{-1}$ (CCSD/def2QZVPPD), close to previous experimental and computational values. In the Franck–Condon region, there are nine excited states lying within 35,000 cm$^{-1}$ (Fig. 1). Only transitions to states of $^2\Sigma_u^+$ and $^2\Pi_u$ character are bright; other transitions are forbidden. However, only the first two electronic states, $^2\Sigma_u^+$ and $^2\Pi_u$, have a considerable oscillator strength. Compared to the case of Cs$_2^+$ [45], the $^2\Pi_u$ state has a lower transition dipole moment and is therefore not observed in the present experiment (see also below).

Focusing on the two lowest electronic states, the $^2\Pi_u$ state is dissociative due to the excitation of $\sigma–\sigma^*$ character (Fig. 2) and converges in the dissociation limit with $^2\Sigma_g^+$. We predict the excitation energy from the minimum of the ground state as 12,290 cm$^{-1}$, close to the previously reported value of 12,690 cm$^{-1}$ [34]. Note that the $^2\Sigma_u^+$ potential is steep (Fig. 1) and already for a bond length shorter by 0.05 Å with respect to the equilibrium value, the excitation energy increases by 180 cm$^{-1}$. The transition is very intense, with the oscillator strength of 0.37.

The $^2\Pi_u$ state is bound and has the equilibrium bond length of 5.455 Å (EOMCCSD/def2QZVPPD), about 0.6 Å longer than in the electronic ground state, with the calculated vibrational frequency of 25.1 cm$^{-1}$. The potential energy surface is shallow, and a small change in the basis set can shift the equilibrium position considerably: When the def2QZVP basis set is used, the bond length of 5.697 Å is retrieved (see Table S1). Due to the same reason, the calculated bond prolongation with respect to the ground state is about twice as large as predicted previously [34] (see also below). In this state, the odd electron is localized in a π orbital (Fig. 2). The vertical excitation energy is calculated as 15,990 cm$^{-1}$; the energy difference between $^1\Sigma_g^+$ and $^1\Pi_u$ minima including the zero-point correction is 15820 cm$^{-1}$. This is virtually the same value as reported previously, 15,870 cm$^{-1}$ [34]. Again, the transition is considerably intense, with the oscillator strength of 0.29 for each branch of the $^1\Pi_u$ state.
splits considerably, with the gap between the resulting \(\Omega = 1/2 \) and \(\Omega = 3/2 \) states calculated as 111 cm\(^{-1} \) for the minimum structure (MRCI(17,13)/ECP28MDF), in reasonable agreement with 142 cm\(^{-1} \) predicted previously [34].

Two other bright states, \(^2\Sigma_u^+ \) and \(^2\Pi_u \), are predicted to lie at about 32,000 cm\(^{-1} \) (Fig. 1). Both are dissociative within the considered Rb–Rb length range and have oscillator strengths below 0.015. At the same time, they have not been observed experimentally so far. Therefore, they are not discussed here further.

4.2 \(\text{HeRb}_2^+ \) and \(\text{He}_2\text{Rb}_2^+ \)

Measured depletion spectra of \(^{85}\text{Rb}^{87}\text{Rb}^+ \) complexed with \(n = 1, 2, 3, 6 \) and 9 He atoms are displayed in Fig. 3. Data from two separate scans have been combined, one ranging from 600 to 700 nm in 0.1 nm increments and the other from 700 to 920 nm in 0.2 nm increments. The dwell time was 60 s per step. The data shown were averaged over 10 adjacent points in order to reduce statistical scatter.

Two absorption bands are shown in Fig. 3 for \(\text{HeRb}_2^+ \), a broad one at about 12,700 cm\(^{-1} \) and a narrow one at about 15,700 cm\(^{-1} \). Based on previous theoretical calculations on \(\text{Rb}_2^+ \) and potential energy curves in Fig. 1, we assign these states as transitions from the \(^2\Sigma_g^+ \) ground state into the \(^2\Sigma_u^+ \) and \(^2\Pi_u \) states, respectively. Their centroids have been determined by fitting Gaussians (for the \(^2\Sigma_u^+ \) state) or square functions (for the \(^2\Pi_u \) state); the results are represented in Fig. 3 by solid (red) lines.

When one helium atom is attached to the \(\text{Rb}_2^+ \) ion, a linear structure is obtained (Fig. 4), with the Rb–Rb

Ion	State	Method	\(R_e \) [\(\text{Å} \)]	\(D_e \) or \(D_0 \) [cm\(^{-1} \)]	\(\omega_e \) [cm\(^{-1} \)]	\(T_e \) or \(T_0 \) [cm\(^{-1} \)]
\(\text{Rb}_2^+ \)	\(^1\Sigma_g^+ \)	Exp.	–	\(\geq 5900^a, 6050^b, 6050 \pm 810^c \)	–	–
	\(^1\Sigma_u^+ \)	Theory	4.883; 4.82\(^d\); 4.79\(^e\)	5992; 6151\(^d\)	44.7; 46.0\(^d\); 45.96\(^e\)	–
	\(^1\Pi_g \) 1/2	Theory	5.455\(^f\); 5.12\(^e\)	–	25.1\(^f\); 28.59\(^e,f\)	15,770; 15,795\(^e\)
	\(^1\Pi_g \) 3/2	Theory	5.455\(^f\); 5.09\(^e\)	–	25.1\(^f\); 28.59\(^e,f\)	15,880; 15,937\(^e\)
\(\text{HeRb}_2^+ \)	\(^1\Sigma_g^+ \)	Theory	4.889	5916\(^g\)	43.2	–
	\(^1\Sigma_u^+ \)	Exp.	–	–	–	12,652 ± 16
	\(^1\Pi_g \) 1/2	Exp.	–	–	25.90 ± 0.07	\(\leq 15,522 \pm 3 \)
	\(^1\Pi_g \) 3/2	Exp.	–	–	25.68 ± 0.06	\(\leq 15,705 \pm 3 \)
\(\text{He}_2\text{Rb}_2^+ \)	\(^1\Sigma_g^+ \)	Theory	4.891	5848\(^g\)	41.5	–
	\(^1\Sigma_u^+ \)	Exp.	–	–	–	12,779 ± 20
	\(^1\Pi_g \) 1/2	Exp.	–	–	26.03 ± 0.04	\(\leq 15,464 \pm 3 \)
	\(^1\Pi_g \) 3/2	Exp.	–	–	26.03 ± 0.04	–

Unless noted otherwise, calculations stem from the current study and were performed at the (EOM)CCSD/def2QZVPPD level of theory spin–orbit coupling was calculated at the MRCI/ECP28MDF(Rb),def2TZVP(He) level. (See the Calculations section for active space definition.) Calculated excitation energies are rounded to 10 cm\(^{-1} \).

\(^a[31] \)

\(^b[32] \)

\(^c[18] \)

\(^d[37] \)

\(^e[34] \)

\(^f \)computed without spin–orbit coupling

\(^g \)dissociation energy with helium atoms staying on \(\text{Rb}^+ \)

\(^\text{h} \)this work, midpoint of absorption band, for \(^{85}\text{Rb}^{87}\text{Rb}^+ \); see text for details

\(^i \)this work, band heads for \(^{85}\text{Rb}^{87}\text{Rb}^+ \); see text for details

Table 1: Properties of \(\text{Rb}_2^+ \), \(\text{HeRb}_2^+ \) and \(\text{He}_2\text{Rb}_2^+ \) in the \(^2\Sigma_g^+ \) electronic ground state, \(^2\Sigma_u^+ \) state and spin–orbit (SO) split \(^1\Pi_g \): Equilibrium Rb–Rb internuclear distance, dissociation energies (\(D_e \) or \(D_0 \)), harmonic constant \(\omega_e \) for the Rb–Rb stretch and transition energies (\(T_e \) and \(T_0 \) for \(^1\Sigma_u^+ \) and \(^1\Pi_g \), respectively)
The distance of 3.435 Å. The Rb–Rb bond is mildly affected by the presence of the helium atom, shifting by less than 0.01 Å (CCSD/def2QZVPPD). The adsorption energy of the helium atom is predicted as 26 cm⁻¹ at this level of theory; the helium atom can roam freely around the Rb₂⁺ core starting with 23 cm⁻¹ of kinetic energy. (See the transition state structure in Fig. 4.) In the 12Πu state, the linear structure is slightly distorted, the Rb–Rb bond distance increases considerably to 5.452 Å, and the Rb–He distance shrinks to 3.138 Å. This change can be understood based on the Pauli repulsion (Fig. 2). In the ground state, the helium atom is slightly repelled by the σ orbital. In the excited state, He can position itself closer to Rb₂⁺ due to the shape of the π orbital. Structures calculated for He₂Rb₂⁺ show the same trends as for HeRb₂⁺. However, two isomers are retrieved here (Fig. 4b), with both helium atoms on the one side (IIa) or distributed equally (IIb).

The structureless band observed for the 12Σu⁺ state in Fig. 3 reflects the dissociative nature of this electronic state. In HeRb₂⁺, it has an experimental FWHM of 1200 cm⁻¹. The spectrum modeled from the ground-state density sampled by path integral molecular dynamics on the MP2(FC)/def2QZVP(Rb),def2TZP(He) potential energy surface at the temperature of 5 K is also shown. Here, the FWHM is estimated as 900 cm⁻¹, slightly underestimating the experimental width, but still reproducing the measured spectrum well. The agreement in the spectral position is fortuitous given approximations included.

The transition into the bound 12Πu state reveals vibrational structure. Depletion spectra recorded with 0.1 nm increments and a dwell time of 180 s per data point are displayed in Fig. 5 for HeRb₂⁺ and He₂Rb₂⁺. For HeRb₂⁺, the envelope of the curve suggests that we are seeing the superposition of two vibrational progressions, due to transitions into the Ω = 1/2 and 3/2 components of the SO split 2Πu state. The vertical lines in Fig. 5a mark possible candidates for the (v’, v”’) = (0,0) transitions at 15,522 cm⁻¹ and 15,705 cm⁻¹. They would imply a SO splitting of 183 cm⁻¹, compared with a theoretical value of 116 cm⁻¹.

Fig. 1 Electronic states in Rb₂⁺ calculated at the (EOM)CCSD/def2QZVPPD level. Bright and forbidden states are shown as full and dashed lines, respectively. Oscillator strengths for bright states are given in parentheses as calculated at the bond length of 4.883 Å.

Fig. 2 Molecular orbitals in which the sole electron is localized in three lowest electronic states of Rb₂⁺, HeRb₂⁺, and two isomers of He₁₀Rb₂⁺. Calculated at the CAM-B3LYP/def2QZVPPD level of theory. Note that a low contour value was chosen as to display the relatively small influence of helium on the electronic structure of Rb₂⁺.
Fig. 3 Low-resolution depletion spectra of $^{85}\text{Rb}^{87}\text{Rb}^+$ complexed with $n = 1, 2, 3, 6$ and 9 He atoms. The solid (red) lines represent fits to the absorption bands that are due to transitions into the $1^2\Sigma_u^+$ and $1^2\Pi_u$ states. The dashed (olive) line is the calculated spectrum modeled at the EOMCCSD(FC)/def2QZVPPD level on structures sampled from the PIMD on the MP2(FC)/def2QZVP(Rb),def2TZVP(He) potential energy surface (see text for details).

Fig. 4 a Structures of HeRb_2^+ for the equilibrium in the $1^2\Sigma_g^+$ and $1^2\Pi_u$ states and the transition state for helium moving to the other side of Rb$_2^+$ in the $1^2\Sigma_g^+$ state. b Structures of two isomers of He_2Rb_2^+ for the equilibrium in the $1^2\Sigma_g^+$ and $1^2\Pi_u$ states. Relative energies of isomers and bond lengths (in Å) are given. Calculated at the (EOM)CCSD/def2QZVPPD level of theory.
The theoretical bond length in the $^1\Sigma_u^+$ state varies greatly at different levels of theory due to a floppy potential. In Fig. 5c, we show depletion spectra of Rb_2^+ simulated for three different Rb–Rb distances in the $^1\Pi_u$ state in the absence of SO coupling. (Note that the x-axis has been shifted in order to facilitate a comparison with the experimental data.) For the Rb–Rb distance of 5.2 Å, there are only five clear bands predicted. The (0,0) transition (marked by a vertical line) has a large Franck–Condon factor, and the (0,2) transition is the most intense one. For $R_e = 5.45$ Å (the equilibrium distance calculated at the (EOM)CCSD/def2QZVPPD level), a larger number of intense transitions are observed, with the most intense one being (0,5). Finally, for $R_e = 5.6$ Å, the maximum shifts to (0,8) and even more bands are seen. In Fig. 5d, the computed spectrum for the equilibrium structure of HeRb_2^+ is shown, which is very similar to the one for Rb_2^+. Compared to the experimental data, we can conclude that the modeled spectrum for the Rb–Rb distance of ~5.45 Å reproduces the data reasonably well, although one cannot exclude that the Rb–Rb distance for the $^1\Pi_u$ state is somewhat longer. This would imply that the (0,0) transition is not observed in the experiment, and the energies of the transitions into the SO split $^1\Sigma_u^+$ ($v' = 0$) state are smaller than the upper limits listed in Table 1 by a few vibrational quanta.

Finally, we analyze spectral shifts induced by the presence of a helium atom. As can be seen in Table 1, the $^1\Sigma_g^+-^1\Sigma_u^+$ transition is predicted to shift to a higher energy by 210 cm$^{-1}$ and the $^1\Sigma_g^+-^1\Pi_u$ transition shifts down by either 60 cm$^{-1}$ (for vertical excitation energies in the respective minima) or 90 cm$^{-1}$ (for the (0,0) transition) between Rb_2^+ and HeRb_2^+. These shifts can be qualitatively understood by inspection of molecular orbitals depicted in Fig. 2 (see also Ref. [45]): The $^1\Sigma_g^+$ ground state is slightly destabilized by the presence of the helium atom; this destabilization, however, increases in the $^1\Sigma_u^+$ state. In the $^1\Pi_u$ state, on the other hand, the Pauli repulsion with helium is reduced as the molecular orbital does not extend along the Rb–Rb axis. Thus, there is a considerable shift to higher excitation energies for the $^1\Sigma_g^+-^1\Sigma_u^+$ transition due to the destabilization of the target state. For the $^1\Sigma_g^+-^1\Pi_u$ transition, the destabilization in the $^1\Sigma_u^+$ state prevails, leading to a smaller negative shift.

For the difference between HeRb_2^+ and He_2Rb_2^+, we obtain similar spectral shifts of 230 cm$^{-1}$ and –80 cm$^{-1}$ for the $^1\Sigma_g^+-^1\Sigma_u^+$ and $^1\Sigma_g^+-^1\Pi_u$ transitions, respectively. Here, we can directly compare these values with the experimental ones of 127 ± 26 cm$^{-1}$ and –58 ± 5 cm$^{-1}$ (Table 1). The considerable discrepancy for the shift of the $^1\Sigma_g^+-^1\Sigma_u^+$ state can be most probably traced to the floppy potential energy surface with respect to the helium position. For example, an increase of 0.3 Å in the Rb–He distance leads to the change in the ground-state energy by 7 and 13 cm$^{-1}$ for the $^1\Sigma_g^+-^1\Sigma_u^+$ and $^1\Sigma_g^+-^1\Pi_u$ transitions, respectively. Here, we can directly compare these values with the experimental ones of 127 ± 26 cm$^{-1}$ and –58 ± 5 cm$^{-1}$ (Table 1). The considerable discrepancy for the shift of the $^1\Sigma_g^+-^1\Sigma_u^+$ state can be most probably traced to the floppy potential energy surface with respect to the helium position. For example, an increase of 0.3 Å in the Rb–He distance leads to the change in the ground-state energy by 7 and 13 cm$^{-1}$ for HeRb_2^+ and He_2Rb_2^+, respectively. However, the spectral shift of the $^1\Sigma_g^+-^1\Sigma_u^+$ transition decreases to 151 cm$^{-1}$ for these structures, i.e., to about 60% of the one for minimum energy structures. The modeled shifts can thus be easily influenced by small changes in the methodology (e.g., inclusion of triples within the CC formalism) as well.
as by inclusion of dynamic effects and cannot be interpreted quantitatively.

4.3 He_nRb_2^+, $n = 3–10$

Let us now turn to clusters solvated with several helium atoms. A vibrational progression is still discernible for He_nRb_2^+ (see Fig. S3 of the ESI); its envelope is redshifted even further. Vibrationally unresolved depletion spectra were recorded for even larger He_nRb_2^+, $n \leq 10$; square functions were fitted to the absorption bands in order to deduce the spectral shift.

The midpoints of the absorption bands versus the number n of attached He atoms are compiled in Fig. 6. Data for $\text{He}_8^{85}\text{Rb}^{87}\text{Rb}^+$ could not be deduced because its mass coincides with that of impurity ions, $\text{H}_2\text{O}^{85}\text{Rb}_2^+$ and $\text{O}^{85}\text{Rb}^{87}\text{Rb}^+$. The transition to the $1^2\Sigma^+_u$ state is blueshifted with increasing size n by $+98 \pm 6$ cm$^{-1}$ per added He atom (the dashed line represents the result of a fit to the data). The transition to the $1^2\Pi_u$ state is redshifted, on average, by -38 ± 3 cm$^{-1}$ for the first five He atoms but gradually tapers off. The total redshift between $n = 1$ and $n = 10$ equals about -210 cm$^{-1}$.

Selected calculated structures of He_nRb_2^+, $n = 2–10$, are shown in Fig. 7 (see the ESI for all isomers); their properties are collected in Table 2. Note that for these larger clusters, we used the frozen core approximation, leading among other effects to prediction of linear isomer IIb. The a, b, c… nomenclature follows the distribution of He atoms on both sides of Rb_2^+, from the most asymmetric one to more equal ones. Although the calculated structures necessarily represent only a subset of all possible local minima, several trends are clearly visible. Most importantly, isomers with all helium atoms on the one side (a isomers) are usually the least stable ones and exhibit the lowest absolute value of spectral shifts. This can be documented on the spectral shift for the $1^2\Sigma^+_g–1^2\Pi_u$ transition where even positive shifts are observed (Xa). Structures with a similar number of helium atoms on each side, on the other hand, exhibit higher stability and more considerable spectral shifts. Again, this can be understood based on the molecular orbital picture (Fig. 2). For more helium atoms on the one side (Xa), the molecular orbital might deform toward the other side to compensate the Pauli repulsion. For equal distribution of helium atoms on both sides (Xf), the orbital is more constricted, leading to a more considerable shift. Within the CCSD(FC) method, the $\text{Rb}–\text{Rb}$ bond length decreases by 0.006 Å when passing from Rb_3^+ to He_nRb_2^+, $n = 6$, and by another 0.002 Å between $n = 6$ and $n = 10$ (for the most stable isomers in Table 2).

The calculated shifts for the $1^2\Sigma^+_g–1^2\Sigma^+_u$ transition in Table 2 reproduce the experimental trend (Fig. 6) quantitatively. However, this is probably due to error compensation as correlation of all electrons leads to a shift that is considerably larger. (See Table 1 and the discussion above.) The shifts for the $1^2\Sigma^+_g–1^2\Pi_u$ transition, on the other hand, are considerably underestimated. Here, however, the values presented in Table 2 were calculated for the vertical transition from the minimum. If we account for relaxation in the target state, higher absolute shifts may be expected.

Overall, both thermochemical and photochemical data show that for the Rb_2^+ solvated by helium atoms, symmetric solvation is the most probable one, as already observed for a low number of helium atoms in lighter alkali dimer ions [62]. This trend can be expected to continue until the first solvation layer is filled.

5 Conclusions

In Rb_2^+ solvated by helium atoms, only two electronic transitions are observed experimentally, $1^2\Sigma^+_g–1^2\Sigma^+_u$ and $1^2\Sigma^+_g–1^2\Pi_u$. The $1^2\Sigma^+_u$ state is repulsive and shifts to higher energies with helium solvation because helium atoms deform the target σ^* orbital more considerably compared to the σ orbital in the ground state. In the $1^2\Pi_u$ state, a bound state is formed, split due to the spin–orbit coupling. The shape of the vibrationally resolved spectra emphasizes considerable prolongation of the $\text{Rb}–\text{Rb}$ bond.
in the excited state. The $1^2\Pi_u$ state shifts to slightly lower energies with helium solvation as helium atoms destabilize the ground state more than the final state. While quantum chemical calculations are able to reproduce the spectral shifts qualitatively, predicted values depend considerably on the computational level. For structures with a higher

Fig. 7 Selected structures of He_nRb_2^+, $n \leq 10$, clusters viewed from the side (above) and along the Rb–Rb axis (below). Optimized at the CCSD(FC)/def2QZVPPD(Rb),def2TZVP(He) level. See Fig. S4 for all optimized structures
The number of adsorbed helium atoms, we predict that He atoms are distributed symmetrically on both sides of the Rb$_2^+$ ion.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00214-021-02728-x.

Acknowledgements SA has received support by the K-Regio project “FAENOMENAL,” Project No EFRE 2016-4, funded by the Tyrolean Government and the European Regional Development Fund. The work by PM, AS and OE was supported by the FWF, projects P31149 and I4130. The contribution by EG is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 847476. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The computational results have been achieved using the HPC infrastructure LEO of the University of Innsbruck.

Funding Open access funding provided by University of Innsbruck and Medical University of Innsbruck.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Thaler B, Ranftl S, Heim P, Cesnik S, Treiber L, Meyer R, Hauser AW, Ernst WE, Koch M (2018) Femtosecond photoexcitation dynamics inside a quantum solvent. Nat Commun 9:4006. https://doi.org/10.1038/s41467-018-06413-9
2. Mauracher A, Echt O, Ellis AM, Yang S, Bohme DK, Postler J, Kaiser A, Denifl S, Scheier P (2018) Cold physics and chemistry: collisions, ionization and reactions inside helium nanodroplets close to zero K. Phys Rep 751:1–90. https://doi.org/10.1016/j.physrep.2018.05.001
3. Gonzalez-Lezana T, Echt O, Gatchell M, Bartolomei M, Campos-Martinez J, Scheier P (2020) Solvation of ions in helium. Int Rev Phys Chem 39:465–516. https://doi.org/10.1080/0144235X.2020.1794585
4. Castillo-Garcia A, Gonzalez-Lezana T, Delgado-Barrio G, Villarreal P (2018) Formation of rubidium dimers on the surface of helium clusters: a first step through quantum molecular dynamics simulations. Eur Phys J D 72:102. https://doi.org/10.1140/epjd/e2018-90065-3

Isomer	Solv. pattern	E_{solv} [cm$^{-1}$]	$\Delta E(1^2\Sigma_u^+ - 1^2\Sigma_g^+)$ [cm$^{-1}$]	$\Delta E(1^2\Sigma_u^+ - 1^2\Pi_u)$ [cm$^{-1}$]
I	1/0	29	78	6
IIa	2/0	27	163	20
IIb	1/1	29	156	12
IIIa	3/0	25	244	32
IIIb	2/1	28	244	26
IVa	4/0	23	324	38
IVb	3/1	26	330	38
IVc	2/2	27	336	40
Va	5/0	22	402	36
Vb	4/1	24	412	44
Ve*	3/2	26	424	51
Vla	6/0	21	486	41
Vlb	5/1	23	493	43
Vlc	4/2	24	511	57
VId	3/3	25	516	64
VIa	7/0	20	526	35
VIb	6/1	22	577	48
VIc*	5/2	23	594	56
VIId	4/3	24	605	69
VIIIa	8/0	19	566	13
VIIIb	7/1	21	614	34
VIIIc	6/2	22	636	45
VIIId	5/3	23	691	67
VIIIE	4/4	24	696	74
IXa	9/0	18	585	1
IXb	8/1	20	661	19
IXc*	7/2	21	678	25
IXd	6/3	22	784	72
IXe	5/4	22	786	73
Xa	10/0	17	671	20
Xb	9/1	19	681	7
Xc	8/2	20	769	32
Xd	7/3	21	829	66
Xe	6/4	22	882	77
Xf	5/5	22	879	71

(x/y notation denotes x He atoms on the one side of Rb$_2^+$ and y on the other.) Solvation energy per helium atom (E_{solv}) and shifts of the vertical excitation energies of the $1^2\Sigma_u^+$ and $1^2\Pi_u$ states with respect to Rb$_2^+$. Note that the shifts are calculated as a difference of vertical excitation energies. Calculated at the EOMCCSD(PC)/def2QZVPPD/CCSD(TC)/def2QZVPPD(Rb),def2TZVPP(He) level. Structures marked with "*" exhibit one small imaginary frequency (<1 cm$^{-1}$) that could not be removed by following the respective normal mode.
An der Lan L, Bartl P, Leidlmair C, Schöbel H, Jochum R, Denifl A, Higgins J, Callegari C, Reho J, Stienkemeier F, Ernst WE, Schiller A, Martini P, Maalouf EEJA, Scheier P (2021) Submer -

Lehmann KK, Scoles G (1998) Superfluid helium—the ultimate spectroscopic matrix? Science 279:2065–2066. https://doi.org/10.1126/science.279.5359.2065

5. Toennies JP, Vilesov AF (1998) Spectroscopy of atoms and molecules in liquid helium. Ann Rev Phys Chem 49:1–41

6. Yang SF, Ellis AM (2013) Helium droplets: a chemistry perspective. Chem Soc Rev 42:472–484. https://doi.org/10.1039/c2cs35277j

7. Yang SF, Ellis AM (2013) Helium droplets: a chemistry perspective. Chem Soc Rev 42:472–484. https://doi.org/10.1039/c2cs35277j

8. Leal A, Mateo D, Hernando A, Pi M, Barranco M, Ponti A, Cargnioni F, Drabbe13. Higgins J, Callegari C, Reho J, Stienkemeier F, Ernst WE, Schiller A, Martini P, Maalouf EEJA, Scheier P (2021) Submer -

9. Magnier S, Millie P, Dulieu O, Masnouseeuws F (1993) Potential curves for the ground and excited states of the Na2 molecule up to the (3s+5p) dissociation limit: results of two different effective potential calculations. J Chem Phys 98:7113–7125. https://doi.org/10.1063/1.464755

10. Chung HK, Kirby K, Babb JF (2001) Theoretical study of the 61Σg → 61Σu dissociation limit: results of two different effective potential calculations. J Chem Phys 110:1739–1755. https://doi.org/10.1080/00268976.2012.676680

11. Andriopoulos N, Vonnagyfelsobuki EI (1988) Pseudopotential calculations for ground and excited Σ states of Li2: experiment and comparison with theory. Chem Phys 333:214–218. https://doi.org/10.1016/j.chemphys.2007.02.001

12. Musial M, Kucharski SA (2014) First principle calculations of the 61Σg+ state of the rubidium dimer. Phys Rev A 99:052511. https://doi.org/10.1103/PhysRevA.99.052511

13. Partridge H, Dixon DA, Walch SP, Bauschlicher CW, Gole JL (1983) Electron affinities of the alkali dimers: Na2, K2, and Rb2. J Chem Phys 79:1859–1865. https://doi.org/10.1063/1.445962

14. Klapisch M (1971) A program for atomic wavefunction computations by the parametric potential method. Comput Phys Commun 2:239–260. https://doi.org/10.1016/0010-4655(71)90001-4

15. Müller W, Meyer W (1984) Ground-state properties of alkali dimers and their cations (including the elements Li, Na, and K) from ab initio calculations with effective core polarization potentials. J Chem Phys 80:3311–3320. https://doi.org/10.1063/1.447084

16. Silberbach H, Schwerdtfeger P, Stoll H, Preuss H (1986) Ground and excited states of Rb2 and C5+ ions. J Phys B 19:501–510. https://doi.org/10.1088/0022-3709/19/5/011

17. Krauss M, Stevens WJ (1990) Effective core potentials and accurate energy curves for Cs2 and other alkali diatomics. J Chem Phys 93:4236–4242. https://doi.org/10.1063/1.458756

18. Patil SH, Tang KT (2000) Simple model potential and model wave functions for (H-alkali) and (alkali-alkali) ions. J Chem Phys 113:676–682. https://doi.org/10.1063/1.481843

19. Lim JS, Schwerdtfeger P, Sohnel T, Stoll H (2005) Ground-state properties and static dipole polarizabilities of the alkali dimers from K2 to Fr2 (n=0,+,1) from scalar relativistic pseudopotential coupled cluster and density functional studies. J Chem Phys 122:134307. https://doi.org/10.1063/1.1869979
