Supplementary Information

Reduced Graphene Oxide as Water, Carbon Dioxide and Oxygen Barrier in Plasticized Poly(vinyl chloride) Films

Ngoc Minh Nguyen Huynh a, Zhanna A. Boeva a,*, Jan-Henrik Smått b, Markus Pesonen c, Tom Lindfors a,*

Åbo Akademi University, Faculty of Science and Engineering, a Laboratory of Analytical Chemistry (Johan Gadolin Process Chemistry Centre, PCC), b Laboratory of Physical Chemistry and c Physics (belonging both to Center for Functional Materials, FUNMAT), 20500 Åbo, Finland

Table S1. Atomic percentages (%) of elements in GO and RGO determined with EDXA.

	C	O	Si	S	K	Mn	I	C:O ratio
GO	56 ± 1	42.3 ± 0.4	0.20 ± 0.01	1.12 ± 0.03	0.16 ± 0.02	0.11 ± 0.02	-	1.32 ± 0.04
RGO	79 ± 2	12.4 ± 0.2	0.33 ± 0.04	-	-	-	8.2 ± 0.1	6.4 ± 0.3

* jboeva@gmail.com (Zhanna A. Boeva); +358 2 2154419, tom.lindfors@abo.fi (Tom Lindfors)
Fig. S1. Image of the 10 µm thick RGO film. We straightened and cut the film to 10 mm × 10 mm before we applied it as a barrier layer in the plasticized PVC films.

Fig. S2. The FTIR spectra of (a) GO and (b) RGO.

References to the vibrational bands: G. Socrates, Infrared and Raman Characteristic Group Frequencies, Tables and Charts, 3rd ed., John Wiley & Sons, Ltd: Chichester, 2001
Fig. S3. XRD patterns of (a) GO and (b) RGO.

Fig. S4. Water contact angles of (a) GO (58±3°) and (b) RGO (95±1°).
Fig. S5. Oxygen diffusion through the plasticized PVC membrane with (▲) and without (●) the RGO barrier layer. We carried out the control experiment (■) in the absence of a plasticized PVC membrane between the source and the receiving compartments of the oxygen measuring cell. Both compartments were filled with deionized water in all measurements.