The Evidence of Seagrass Environmental Support for Local People's Economic on the South Coast of Lombok Island

A Syukur12, A A Idrus12, K R Dewi*1, N Juniati1, Irmayani1

1Department of Sciences Education Postgraduate Mataram University, Indonesia
2Department of Biological Sciences Education, Faculty of Teacher Training and Education, Mataram University, Indonesia
*Correspondent Author: kumalaratnadewi@gmail.com

Abstract: The richness of marine biota associated with seagrass has many economic values and has been used by the community as a source of livelihoods such as fish, mollusks, bivalves, crustaceans, and echinoderms. Therefore, this study aims to investigate the contribution of seagrass and its surrounding environment as a source of livelihood for local communities in the study area. This research method uses observation, interviews, questionnaires, and in-depth discussions. Furthermore, the number of samples was determined by purposive sampling. 265 fishers, 128 local non-fishermen, and 125 tourism service providers. The analysis of the average income of respondents (fishermen) based on animal groups obtained from seagrass and surrounding areas is US$16167.5. Meanwhile, the average income of respondents (local non-fishermen) from seagrass areas, especially housewives, is US$3401.63/season (full moon and dead moon) at low tide. Furthermore, the average income of respondents from providers of tourist services (especially for snorkeling, diving, swimming, and transportation services) is US$19353.85/month. The conclusion is that seagrass conservation can be an economical solution for local communities in a global climate change situation.

Keywords: Conservation, Seagrass, Economic and Local Communities

1. Introduction

Seagrass ecosystems have a rich diversity of marine biota, their function as a regulator of CO\textsubscript{2} and O\textsubscript{2} gases, and a source of world fishery production. Other than that, the existence of seagrass has a significant value from an ecological aspect, especially in its function of preventing coastal erosion, storing and absorbing carbon [1,2]. On the other hand, an estimated 20\% of the world's seagrasses have been lost [3]. Meanwhile, other threats come from anthropogenic activities and natural factors such as climate change [4,5]. Climate change has a significant impact on the faunal diversity associated with seagrass. One indicator of the effects of climate change is the increase in temperature and extreme weather, such as El Nio and La Nia, and very influential on natural ecosystems, agriculture, and fisheries sectors [4]. Communities living in coastal areas, especially fishermen, have economic vulnerability due to climate change. However, several studies have shown that coastal ecosystems (i.e., mangroves, seagrass, and coral reefs) contribute to a source of livelihood, tiny fishermen [6,7]. One of the ecosystem functions Seagrass is to support the survival of marine biota diversity [8,9], such as seagrass serving as a place for spawning, foraging, and rearing [10,11]. In addition, seagrass beds in tropical waters fauna associated with seagrasses, such as fish, crustaceans, bivalves, and echinoderms, are groups of marine animals that are targeted by fishermen and local communities [12]. Meanwhile, local communities in small islands and tropical coasts have a high financial dependence on seagrass fisheries [13]. Furthermore, seagrasses provide a habitat for fish breeding and production to support world fisheries and provide sustainable human welfare [14].

Fishery production from seagrass areas on the south coast of Lombok Island is estimated at US$ 61.1774/ha/year, which is sourced from the diversity of marine life such as fish and crustaceans mollusks and echinoderms [15]. Meanwhile, the richness of fish species associated with seagrass and the diversity of bivalved species are scientific evidence supporting seagrass conservation at scale [16, 17].
Furthermore, the seagrass area in the study location has developed as a natural tourism object and has become a conservation instrument in an integrated management system [18]. However, local scale seagrass conservation at the location has not yet been studied from seagrass support for the economic sustainability of local communities, which are then used as additional scientific parameters for seagrass conservation. Therefore, the purpose of this study is to investigate and describe the ecological evidence of support for seagrass ecosystems and the environment for the economic resilience of local communities from the effects of climate change. The benefit of this research is that it becomes a variable that can be considered for policies on managing seagrass ecosystems and other ecosystems, through conservation, especially at the study site and other locations.

2. Materials and Method

2.1 Place and time of research

This research was conducted in April-August 2021 on the South Coast of Lombok Island. The research location is the southern coastal area of Lombok Island, which has developed its use, especially in coastal waters used to create local scale marine aquaculture and ecotourism [18]. Meanwhile, the local community in the study area has a livelihood dependence, which is sourced from the mangrove ecosystem [19]. Surviving biota that has economic value around seagrass meadows and has become a source of livelihood for local communities is a positive impact of the success of mangrove revegetation [19].

Figure 1. Research Location Map.

2.2 Data Collection and Analysis

This study was designed to describe evidence of the support of seagrass ecosystem resources and the environment on the economic resilience of local communities due to climate change. Therefore, the source of research data comes from stakeholders who utilize seagrass resources both directly and indirectly. The stakeholders who were the respondents in this study were small fishermen, local non-fishing communities, and groups of tourism service providers (traders and providers of snorkeling, swimming, and transportation equipment). The research variables for each of the respondent's areas are in Table 1.
Table 1. Group of respondents and research variables.

No	Respondent group	Variable	Respondent Criteria	Data collection method
1	Small fisherman	1. Catch target biota (fish, shrimp, and crab)	1. Small fisherman	Surveys, observations, interviews with semi-open questionnaires
		2. Total catch (Kg/day)	2. Minimum 20 years experience as a fisherman	
		3. Catch value $/Kg	3. The catchment area of the seagrass meadow and its surroundings	
		4. Number of days at sea/month		
2	Non-fishing community	1. Target biota (Bivalvia, Echinoderms, and other biotias from seagrass beds)	1. Residents of the research site villages	Surveys, observations, interviews with semi-open questionnaires
		2. Total yield Kg/day	2. Regular collectors of economically valuable marine life from the seagrass meadow	
		3. Collected value U$	3. Length of work as a collector of biota that has an economic value from seagrass for at least 15 years	
		4. Number of days	4. Own a boat	
3	Tour service providers (sword stalls, snorkeling, diving, and transportation)	1. Total income/day (US)	1. Villagers of the research location	Surveys, observations, interviews with semi-open questionnaires
		2. Number of working days/month	2. Have a stall	
			3. Have snorkeling and diving equipment	
			4. Own a boat	

Furthermore, another variable is the respondent's ecological knowledge about climate change which directly affects the livelihoods of local communities. In addition, a market survey was conducted to confirm the unit price (Rp), and converted into US of each commodity. Meanwhile, the technique of determining the number of respondents at each research location is proportional. The number of respondents for each group is as (Table 2), and the method of collecting data is purposive sampling.

Table 2. The proportion of Number of Respondents in four Research Locations

No	Location	Fisherman	Non-fishing community	Service providers (traders, tourism service providers)
1	Tanjung Luar	100	40	45
2	Awang	50	25	20
3	Kuta	65	35	40
4	Gerupuk	50	28	20
	Total	265	128	125

Data analysis: The first step of data analysis is identifying fish species, crustaceans, mollusks, and echinoderms. The two collected data are processed through: (1) tabulation of data according to the characteristics of data from all respondents, (2) performing verification to mark the type of data required according to research objectives, and (3) synthesis and evaluation. Third, validating all data through focus group discussions (FGD). Furthermore, all data from the validation results were analyzed using descriptive statistical analysis.

3. Results and Discussion

3.1 The results of the identification of four marine fauna commodities by respondents at the research location
The fish species caught by small fishermen in all research locations consisted of 19 families with 57 fish species, three families with seven crustacean species (Figure 2). The composition of fish species at the four research sites showed that the highest family was Clupeidae, with nine species (15.78%). Meanwhile, 14 families consist of one species (1.75%), including Apogonidae, Atherinidae, Canidae, Dussumieriidae, Hemiramphidae, Gerreidae, Lethrinidae, Mosasauridae, Polynemidae, Russulaceae, Sciaenidae, Scombridae, Terapontidae, Trichiuridae. Furthermore, the species composition of crustaceans caught by small fishermen at the four research locations, the family with the highest species consisted of two families with six species, one family having one species. Despite the existence of fish families with an unequal number of species, they are targets for small fisherman's catches that have economic value.

Figure 2. Family composition and species fish and crustaceans at the four research sites.

Meanwhile, the composition of fish and crustacean species at research location (Table 3). Furthermore, the composition of fish species caught by fishermen shows that Kuta has the highest number of species, namely 25 species (43.84%) of all species in all research locations. Furthermore, the location with the lowest number of species was Gerupuk, 11 species (19.29%). Meanwhile, the highest crustacean species composition was in Awang with seven species, and the lowest was in Tanjung Luar and Gerupuk with three species. Furthermore, the results of observations, surveys and interviews with all small fishermen, several species that are always or most often obtained by fishermen consist of 12 fish species, including Amblygaster sirm, Atule mate, Eleutheronema tetradyctylum, Herklotsichthys dispilonotus, Johnius trachycephalus, Leiognathus equulus, Leiognathus bindus, Leiognathus equulus, Sardinella gibbose, Sillago macrolepis, Sillago Sihama and Stolepholus commersonnii. Meanwhile, three species of crustaceans are Litopenaeus vannamei, Portunus pelagicus and Portunus trituberculatus. The 12 groups of fish species and three crustacean species had a strong relationship with seagrass presence in the four study sites. One of the relations between seagrass and the diversity of fish species is that seagrass provides protection services, a place to find food for various fish species, both those that have economic value and those that do not have economic value [13,16]. In addition, the presence of economically valuable fish species and crustacean species at the four research sites can be evidence of support for the existence of seagrass ecosystems and their environment in supporting the sustainability of small fishermen's livelihoods. Therefore, the livelihood parameters of small fishers originating from seagrass beds and their environment can indicate local scale seagrass conservation, such as in the study location.
Table 3. Result Identification of marine fauna from seagrass and environment in four research sites

	Fish	Crustaceans
Tanjung Luar	Atula mate	Litopenaeus vannamei
	Amblygaster sirm	Portunus pelagicus
	Empheris oualensis	Portunus trituberculatus
	Escualosa thoracata	
	Gazza aehlamyys	
	Gazza Dentex	
	Gazza minuta	
	Herklotsichthys dyspilonotus	
	Johnius trachycephalus	
	Karalla dussumieri	
	Laqjans Latianus	
	Sardinella albella	
	Sardinella brasiliensis	
	Sardinella leonaru	
	Sardinella melanura	
	Selaroides leptolepis	
	Siganus canaliculatus	
	Stolepholus commersonnii	
	Therapists	
	Trichirius lepturus	
	Tylosurus crocodilus	
	Upeneus Vitidatus	
Awang	Atula mate	Litopenaeus vannamei
	Caesio cuning	Metapenaeus ensis
	Caranx ignobilis	Nephropidae
	Decapterus macarelli	Panulirus versicolor
	Dussumieria acuta	Penaeus latiscutatus
	Elagatis bimninulata	Portunus pelagicus
	Eleutheronema tetradactylum	Portunus trituberculatus
	Gazza aehlamyys	Scyilla serrat
	Gazza minuta	
	Gemiramphus brasiliensis	
	Lactarius lactarius	
	Scomber australastus	
	crumenophthalbus dact	
	Siganus guttatus	
	Sphyraena barracuda	
	Sphyraena flavicuda	
	Stolephorus indicus	
	Tenualeose toil	
	jarbua therapy	
	Therapists	
	Tylosurus crocodilus	
Kuta	Apogonichthys ocellatus	Metapenaeus sensis
	Ambassiss buruensis	Nephropidae
	Atherinomirus lacanusus	Panulirusversicolor
	Atule mate	Penaeus latiscutatus
	Chorinenus tuning	Portunus pelagicus
	Gerres Oyena	Scyilla serrat
	Hemirampus far	
	Herklotsichthys dyspilonotus	
	Leognatthus bindus	
	Leognatthus equulus	
	Lethrinus lentjan	
	Latjans bouton	
	Latjans Campechanus	
	Mugil cephalus	
Seagrass ecosystem services and their environment are not only used directly by small fishermen as a source of livelihood, but their existence has an object of livelihood for non-fishing communities. The results of observations, surveys, questionnaires, and deep interviews show that the diversity of marine biota that is the target of their livelihood is in the location of seagrass beds (Table 4). The composition of marine fauna in the four research locations showed that the highest number of fish species was in Tanjung Luar and Awang, four species. Furthermore, the location with the lowest number of species in Gerupuk is two species. Meanwhile, the highest mollusk species in Kuta are six species. Furthermore, the location with the lowest number of species in Gerupuk is two species. Furthermore, the highest crustacean species were found in Awang and Kuta with four species each, the weakest in Tanjung Luar, two species. Furthermore, echinoderm species at the four research sites were found to have one species each. The diversity of fauna species associated with seagrass and becoming the target of catch or livelihood of non-fishing communities is proof that seagrass and its environment can be a source of livelihood for local communities in a sustainable manner. Therefore, the dependent variable of local communities can be considered in local scale seagrass conservation efforts such as at the study site.

Table 4. Result identification of marine fauna from seagrass and environment in four research sites

Fish	Mollusca	Crustaceans	Echinodermenes
Tanjung Luar	Sardinella melanura	Octopus sp.	Tripneustes gratilla
	Stolephorus commersonii	Octopus sp.	
	Johnius trachycephalus	Loligo sp.	
	Amblygaster sirm		
	Sepia sp		
	Portunus pelagicus		
	Portunus trituberculatus		
Awang	Atule mate	Charybdis tunicate	Tripneustes gratilla
	Eleutheronema tetractylum	Litopenaeus vannamei	
	Johnius trachycephalus	Panulus spp.	
	Octopus sp.		
	Sepia sp		
	Portunus pelagicus		
	Portunus trituberculatus		
Kuta	Leiognathus bindus	Charybdis tunicate	Tripneustes gratilla
	Leiognathus equulus	Penaues monodon	
	Latjanus Latjanus	Penaues monodon	
	Codakia tigerina	Portunus pelagicus	
	Gafrarium tumidum		
	Sepia sp		
	Tripneustes gratilla		
Gerupuk	Leiognathus equulus	Penaues monodon	Tripneustes gratilla
	Silago Sihama	Litopenaeus vannamei	
	Octopus sp.		
3.2 Economic Value of Seagrass Ecosystem Resources and the Surrounding Environment from the respondent's perspective

The existence of seagrass has benefits for the habitat of marine biota and also local communities who live on the southern coast of the island of Lombok, distributed in the coastal areas of Kuta, Gerupuk, and Awang. Seagrasses also provide goods and services by producing various marine and ecological fishery products [11]. The contribution of seagrass can be felt by local people who also work as fishermen and service providers (Table 5). The results of observations and interviews showed that the income of fishermen in one month at sea amounts to US$1979.8 per/month, crabs US$5348.5 per/month, shrimp US$8839.2 per/month so that fishermen’s income in one month at sea amounting to US$ 16167.5 per/month. Economic income from the seagrass ecosystem of non-fishing communities has a high monetary value, especially in the catch of mollusks with a selling value equivalent to US$324.99 per/month so that the income of non-fishermen in one month amounts to US$3401.63 per/month. Economic income from the seagrass ecosystem has a high monetary value, especially in terms of boat transportation in dollars worth US$13714 per/month, diving US$2100 per/month, snorkeling US$2640 per/month, swimming US$899.85 per/month so that the provider's income services amounted to US$19353.85 per/month. Income sourced from seagrass ecosystems is agreed upon by all respondents 85 per/month so that the service provider's revenue is US$19353.85 per/month. Income sourced from seagrass ecosystems is agreed upon by all respondents 85 per/month so that the service provider's income is US$19353.85 per/month. All respondents agree upon income sourced from seagrass ecosystems that seagrass and marine life can improve the economy in Kuta Beach, Gerupuk and Awang, Central Lombok. [11]

Table 5. Total average income of respondents in the four research locations

Respondent	Average Catch (kg/day)	Long time at sea (day/1 month)	Total catch (Kg/Month)	Unit Price (kg)	Total Price (Rp/Month)	Total Value ($)	Total Respondents	Total Value ($)
Small Fisherman								
Fish	6.6	20	132	15000	1980000	141.42	140	1979.8
Crab	2.4	20	48	60000	2880000	205.714	26	5348.5
Shrimp	2.5	20	50	25000	1250000	89.28	99	8839.2
Amount								
Non-Fishermen Community								
Mollusca	4	5	20	20000	400000	28.571	49	1399.9
Crab	1.7	5	8.5	60000	510000	36.428	35	1274.98
Shrimp	1.5	5	7.5	25000	187500	13.392	30	401.76
Sea Urchin	1.3	5	6.5	50000	325000	23.214	14	324.99
Amount							128	3401.63
Service Provider								
Boat transportation	3	8	24	200000	4800000	342.85	40	13714
Diving	3	8	24	50000	1050000	75	28	2100
Snorkeling	6	8	48	35000	1680000	120	22	2640
Swimming	3	8	24	15000	3600000	25.71	35	19353.85
3.3 Respondent Group's Perspective on Climate Change
Resilience is a parameter to assess ecosystem changes to recover after receiving disturbances. Resilience is observing a disruption in a system that can absorb and maintain the same function, structure, and identity to regulate itself and its capacity to adapt to environmental changes, the socio-ecological system as a complex adaptive system [20,21,22]. Moreover, resilience is a property of a plan. In the Socio-Ecological System (SES), humans have the additional capacity to anticipate change to some degree and influence the future path. Local communities in the study area have adequate knowledge about seagrass services. In this case, they can identify changes in seagrass conditions as an object for assessing the resilience of seagrass and related biota beneficial to the surrounding community's economy. However, resilient things are comprehensive and complex in seagrass ecosystems, so this study uses indicators of seagrass resilience from climate change by using biota types; fish, shrimp, crabs, and mollusks. The indicator of seagrass resilience from the community perspective follows the concept of ecological resilience. Respondents were able to identify the resilience of seagrass to climate change and formulate conservation efforts for its preservation. This, in turn, generates awareness and their social views on management options. It can be said that they want the seagrass area to be protected, especially from the government's efforts to pay more attention to the seagrass ecosystem in the location. One of the strategies in seagrass conservation is through planting, and at the same time, its management is integrated with the local community's needs [11,25]. In addition, they are also expected to use seagrass in an environmentally friendly manner through the development of environmentally friendly cultivation and tourism.

3.4 Seagrass Conservation much needed by the local community
The survey results and interviews with respondents, seagrass conservation efforts have increased the area of seagrass. Furthermore, the results of the respondents' assessment are 1). Respondents from three locations stated that seagrass planted and grew naturally is a way for seagrass to breed and become a place to catch fish, shrimp, crabs, and mollusks, 2). 88.6% of respondents stated that seagrass conservation is an effort to protect livelihoods or restore economic resource wealth from the existence of seagrasses before they are damaged, 3). 78% of respondents stated that seagrass growth and development through planting and natural growth is a principle that must be maintained for seagrass sustainability, and 4.93% of respondents stated that the success of seagrass conservation is a collaboration between the government and the surrounding community. The results of the respondent's assessment described above are a form of the local community's response to the presence of seagrass. In addition, this indicator shows that local communities are an essential component in managing seagrass sustainability at the research site. Meanwhile, the results of interviews, in-depth discussions, and focus group discussions show that the existence of local community institutions has not played an optimal role in seagrass management. However, the values of their Understanding of seagrass individually become the leading force in preserving seagrass in the research location. The behavior of local communities towards the presence of seagrass is a significant social capital for the success of seagrass conservation at the research site. This can be explained, that the people who live near resources and depend on their livelihood can actively protect from threats [20]. The main thing related to this is that livelihoods are the main factor motivating their participation in seagrass restoration and management. However, assistance can be provided for those with low incomes so as not to re-exploit seagrass resources. Seagrass has several benefits for fishermen's livelihoods, namely seagrass as a habitat for fish, mollusks, and crustaceans [18,19,24]. The community is also aware that seagrass provides a habitat for marine life and can treat stomachaches and cosmetics. The part of the seagrass that is used as a treatment for stomach pain is the fruit. The species of seagrass that produces fruit is *Enhalus acoroides* [18]. Based on the results of in-depth observations and interviews, it was found that seagrass beds positively impact the economy around the research location on the south coast of Lombok Island.
4. Conclusion
Climate change has impacted global, regional and local scales, especially for communities in coastal areas, such as in the study sites. However, the existence of coastal ecosystems such as seagrass ecosystems and their environments, such as the diversity of fish, crustaceans, mollusks, and echinoderms associated with seagrasses, has become a source of livelihood for local communities in the study area. The contribution of the economic value obtained by stakeholder groups (fishermen, non-fishing communities, and ecotourism service providers) is significant enough to support the family's financial needs. Therefore, seagrass conservation can be an economical solution for local communities in a global climate change situation.

References:
[1]. Maxwell, PS; Eklöf, J.; van Katwijk, M.; O'Brien, K.; De La Torre-Castro, M.; Boström, C.; Bouma, TJ; Krause-Jensen, D.; Unsworth, R.; van Tussenbroek, BI; et al. (2016). The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems—A review. Biol. 92 (1521–1538).
[2]. Röhr, ME; Holmes, M.; Baum, JK; Björk, M.; Boyer, K.; Chin, D.; Chalifour, L.; Cimon, S.; Cuison, M.; Dahl, M.; et al. (2018). Blue Carbon Storage Capacity of Temperate Eelgrass (Zostera marina) Meadows. Glob. Biogeochem. 32 (1457–1475).
[3]. Dunic, JC; Brown, CJ; Connolly, RM; Turschwell, MP; Côté, IM (2021). Long-term declines and recovery of meadow area across the world's seagrass bioregions. Glob. Chang. Biol. 27(4096–4109).
[4]. Carleton, Tamma A., and Solomon M. Hsiang (2016). "Social and economic impacts of climate." Science 353.6304.
[5]. Poloczanska, ES, Brown, CJ, Sydeman, WJ, Kiessling, W., Schoeman, DS, Moore, PJ, et al. (2013). Global imprint of climate change on marine life. Nat. Clim. Chang 3, 919–925.
[6]. Brodie, G., & N’Yeurt, A. (2018). Effects of climate change on seagrasses and seagrass habitats relevant to the Pacific Islands. Science Review, 112-131.
[7]. Smit, JC, Bin Mohd Noor, MS, Infantes, E., & Bouma, TJ (2021). Wind exposure and sediment type determine the resilience and response of seagrass meadows to climate change. Limnology and Oceanography
[8]. Thomson, JA, Burkholder, DA, Heithaus, MR, Fourqurean, JW, Fraser, MW, Statton, J., et al. (2015). Extreme temperatures, foundation species , and abrupt ecosystem change : an example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474.
[9]. Teagle, H., Hawkins, SJ, Moore, PJ, and Smale, DA (2017). The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. March. Bio. Ecol. 492, 81–98.
[10]. Björk, M., Short, F., Mcleod, E., & Beer, S. (2008). Managing seagrasses for resilience to climate change (No. 3). Iucn
[11]. Liu, S., Connor, J., Butler, JRA, Jaya, IKD, Nikmatullah, A., 2016. Evaluating economic costs and benefits of climate resilient livelihood strategies. Clim. Risk Management. 12, 115–129.
[12]. Murphy, GE, Wong, MC, & Lotze, HK (2019). A human impact metric for coastal ecosystems with application to seagrass beds in Atlantic Canada. Facets, 4(1), 210-237.
[13]. Unsworth, RK, Cullen, LC, Pretty, JN, Smith, DJ, & Bell, JJ (2010). Economic and subsistence values of the standing stocks of seagrass fisheries: Potential benefits of no-fishing marine protected area management. Ocean and Coastal Management, 53(5), 218.
[14]. Unsworth, RK, & Butterworth, EG (2021). Seagrass Meadows Provide a Significant Resource in Support of Avifauna. Diversity, 13(8), 363.
[15]. Zulkifli, L., Syukur, A., & Patech, LR (2021, March). Seagrass conservation needs based on the assessment of local scale economic value on the diversity of its associated biota in the South Coast East Lombok, Indonesia. IOP Conference Series: Earth and Environmental Science (Vol. 712, No. 1, p. 012037). IOP Publishing
[16]. Syukur, A., Idrus, AAI, & Zulkifli, L. (2021). Seagrass-associated fish species' richness: evidence to support conservation along the south coast of Lombok Island, Indonesia. Biodiversity Journal of Biological Diversity, 22(2): 988-998.

[17]. Syukur, A., Hidayati, BN, Idrus, A., & Zulkifli, L. (2021, March). The suitability of seagrass ecological function for the survival of the Bivalvia on the East Coast of Lombok, Indonesia. IOP Conference Series: Earth and Environmental Science (Vol. 712, No. 1, p. 012033). IOP Publishing.

[18]. Syukur, A., Al-Idrus, A., & Zulkifli, L. (2020). Development of ecotourism based on the diversity of echinoderm species in seagrass beds on the southern coast of the island of Lombok, Indonesia. Journal of Environmental Science and Technology, 13(2), 57-68

[19]. Idrus, AA, Syukur, A., & Zulkifli, L. (2019, December). The livelihoods of local communities: Evidence of success of mangrove conservation on the coastal of East Lombok Indonesia. In AIP Conference Proceedings (Vol. 2199, No. 1, p. 050010). AIP Publishing LLC.

[20]. Santoso D, Baskoro MS, Simbolon D, Novita Y and Mustaruddin. 2015. The Status and Utilization Rate of Squid (Loligo edulis) in Alas Strait at West Nusa Tenggara Province. IJSBAR, 20(2): 296-303

[21]. Cinner, JE, McClanahan, TR, Mac Neil, MA, Graham, NA, Daw, TM, Mukminin, and Kuange, J. 2012. Co-management of coral reef socio-ecological systems. prok. Nat. contract. Sci , 109 (14):5219–5222. DOI: 10.1073/pnas.1121215109.

[22]. Berkers, F. 2010. Shifting perspectives on resource management: Resilience and the Reconceptualization of 'Natural Resources' and 'Management. MAST. 9(1): 13-40.

[23]. Chapin, F.S., Kofinas G.P. and Folke, C. 2009. Principles of Ecosystem Stewardship: Resilience-based Resource Management in a Changing World. New York: Springer- Verlag.

[24]. Walters, B.B., Ronnback, P., Kovacs, J.M., Crona, B., Hussain, S.A., Badola, R., Primavera, I.H., Barbier, E., and Dahdouh-Guebas, F. 2008. Ethnobiology, socio-economics and management of mangrove forests: A review. Aquatic Botany, 89: 220–236