The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials “beyond graphene” and topological insulators

A. Politanoa,*, M.S. Vitiellob, L. Vitib, D.W. Boukhvalov c,d, G. Chiarelloa

a Department of Physics, University of Calabria, via ponte Bucci, 31/C, 87036 Rende (CS), Italy
b NEST, Istituto Nanoscienze–CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa I-56127, Italy
c Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
d Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia

Here, we examine the influence of surface chemical reactivity toward ambient gases on the performance of nanodevices based on two-dimensional materials “beyond graphene” and novel topological phases of matter. While surface oxidation in ambient conditions was observed for silicene and phosphorene with subsequent reduction of the mobility of charge carriers, nanodevices with active channels of indium selenide, bismuth chalcogenides and transition-metal dichalcogenides are stable in air. However, air-exposed indium selenide suffers of p-type doping due to water decomposition on Se vacancies, whereas the low mobility of charge carriers in transition-metal dichalcogenides increases the response time of nanodevices. Conversely, bismuth chalcogenides require a control of crystalline quality, which could represent a serious hurdle for up scaling.

Corresponding author: Dr. Antonio Politano

e-mail: antonio.politano@fis.unical.it
Tel. +39-0984-496107 Fax +39-0984-494401

In the last decade, graphene had a giant impact on scientific research [1]. However, for applications requiring a switching of the conductivity, the use of graphene is not appropriate since it has not a
band gap [2]. Field-effect transistors necessitate a large value of the ON/OFF ratio, which is defined as the ratio of currents in the on- and off-state of the nanodevice [3, 4]. For this reason, recently many other classes of two-dimensional (2D) materials “beyond graphene” have emerged [5, 6]. Nature provides a huge variety of layered materials “beyond graphene” (semimetals, semiconductors, insulators) [7] with electronic band gaps which span from the infrared to the ultraviolet. The synthesis of novel 2D materials, such as transition-metal dichalcogenides (TMDC), 2D carbides, IV-VI compounds or atomically thin elemental materials (silicene, germanene, phosphorene) promises a revolutionary step-change, since they exhibit exotic physicochemical properties, which have never been accessed so far with three-dimensional materials. These innovative 2D materials enable the combination of flexibility and transparency with an existing electronic band gap.

In 2010 it has been claimed that silicene, a 2D layer of silicon obtained by depositing Si on an Ag(111) single crystal [8], could host massless Dirac fermions with ultrahigh mobility [9]. The strong chemical bonds formed by silicene with different molecules (NH₃, NO, NO₂) makes it a promising material for the design of molecular sensors [10]. However, silicene is not stable in ambient conditions: silicene oxidation is favored even at relatively low O₂ doses [11]. In principle, the adsorption of oxygen atoms could be used for band gap tuning [12], but a moderately oxidized silicene monolayer on Ag(111) is semimetallic [13]. The emergence of a Si-O-Si configuration in the early phases of silicene oxidation implies a structural rearrangement, which further accelerates the oxidation process at high oxygen doses [11]. At the completion of the oxidation process, the silicene structure is replaced by a sp³-like tetrahedral configuration Silicene oxidation can be prevented by using capping layers [14]. Nevertheless, silicene suffers of other impediments. As a matter of fact, researchers have also pointed out that spectral features previously attributed to Dirac-cone electrons in silicene are actually silver-related [15]. Moreover, the lack of a parental bulk crystal from which exfoliating ultrathin flakes of silicene represents a severe obstacle for the
nanofabrication process. Thus, one can conclude that a silicene-based technology has few possibilities to be effectively realized. Similar considerations also apply for germanene [16].

The achievement of ON/OFF ratios as high as 10^8 in 2D TMDC (MoS$_2$, WS$_2$, MoSe$_2$, WSe$_2$) [17], as well as their good ambient stability could in principle provide an interesting pathway. However, mobility of charge carriers in TMDC is about three orders of magnitude less than in graphene with a subsequent increase of the response time of any TMD-based nanodevice [18].

The high mobility of charge carriers in phosphorene makes it a solid candidate for nanoelectronics [19]. Phosphorene is a single layer of black phosphorus, the most stable allotrope of phosphorus at ambient conditions. Phosphorene is a nonplanar and anisotropic material, with additional degree of freedom for nanodevices [20]. It has been predicted to be suitable for the design of selective and sensitive gas sensors for detecting most common ambient gases [21]. Such predictions are also supported by experimental evidence of stable CO adsorption at room temperature on phosphorene [22]. However, phosphorene should be protected by a capping layer [23] in order to avoid the formation of surface P$_2$O$_5$ species [24], which inevitably cause a notable decrease of the mobility of charge carriers [25] and surface degradation in environmental conditions [26]. In fact, the presence of lone pairs in P atoms of phosphorene results in higher reactivity [27]. Figure 1 reports the evolution of the morphology of phosphorene flakes in ambient conditions. Both the atomic force microscopy (AFM) images in panel (a) and microwave impedance microscopy maps in panel (b) indicate an apparent reduction of the thickness due to surface degradation. Once encapsulated, the mobility of phosphorene-based nanodevices is constant in time [25] (panel c of Figure 1). Even if the stabilization of phosphorene layers in ambient conditions has been recently claimed by several researchers [28-30], the reliability of such approaches for up scaling is complicated and, consequently, the practical use of phosphorene in technology is hitherto elusive.
Figure 1. (a) AFM images of a black-phosphorus flake left in air for 0, 46, and 69 hours after exfoliation (data taken from Ref. [26]). (b) Microwave impedance microscopy map of the local resistance of a couple of black-phosphorus flakes: one unencapsulated and another encapsulated with a thick film of aluminum oxide. It can be noticed that the oxidation starts in correspondence of the edges of the uncapped black-phosphorus flake. Data have been taken from Ref. [31] (c) Time evolution of the mobility of charge carriers in phosphorene-based field-effect transistors. Without the use of a capping layer to preserve the performance of the nanodevice, a rapid degradation in air is observed (data taken from Ref. [25]).

Panels a-c have been adapted with permission from Ref. [32]. Copyright (2015) American Chemical Society.
Another suitable candidate for nanoelectronics is represented by InSe, which is a layered semiconductor made of stacked layers of Se-In-In-Se atoms with van der Waals bonds between quadruple layers [33, 34]. Recently, the outstanding performance of InSe-based optoelectronic devices have been reported by many groups [35, 36]. Field-effect transistors with an active channel of InSe are characterized by an electron mobility near 10^3 cm2/V s [35] and, additionally, excellent flexibility [37, 38] and ambient stability [39], in spite of the presence of a p-type doping arising from water decomposition at Se vacancies [39]. By contrast, no reactivity has been found toward oxygen [39]. The ambient stability of the surface of InSe is important for its photovoltaic applications [37].

The recent rise of topological phases of matter affords other candidates for nanoelectronics and optoelectronics. In particular, topological insulators (TIs) combine the presence of bulk band gap with spin-polarized surface states forming a Dirac cone as for graphene [40]. Their peculiar band structure enable (i) the design of spin-valve devices [41] and (ii) the reduction of low-frequency noise in TI-based electronic devices [42, 43]. Among TIs, bismuth chalcogenides have the highest application capabilities [44-48] and, consequently, this class of TIs has attracted great attention [49].

Topological surface states are found to exist in crystals [50] and films [51] possessing high structural quality (both stoichiometric/ composition and crystallographic). The presence of vacancies shifts the position of the Fermi level, altering the properties of the TI system [52]. Moreover, the presence of Se vacancies favours the formation of the Bi-O bond [53] and the rapid surface oxidation and degradation of Bi$_2$Se$_3$ [54]. The use of the Bridgman-Stockbarger method somewhat suppresses the quantity of vacancies in TI samples [55]. This implies chemical inertness toward ambient gases [53, 55, 56] (see Figure 2a and its caption) and the possibility to tune the position of the Fermi level [57, 58]. High-quality single crystals of TIs, grown by the Bridgman-Stockbarger method, have been recently used as active channels of field-effect transistors for Terahertz photodetection (Figure 2b), which resulted into an exceptional air stability and
outstanding detection performances [44] (inset of Figure 2b). However, the extreme control of the crystalline quality required for TIs is unsustainable for up scaling. Following TIs, additional novel topological phases of matter, such as Dirac [59] and Weyl semimetals [60], have recently appeared. Both Dirac (Cd₃As₂, Na₃Bi) and Weyl (NbP, TaP, NbAs, TaAs) semimetal are characterized by a giant value of the magnetoresistance [61-64] and by ultrahigh mobility of charge carriers [62, 63, 65], even larger than that of graphene. Their hitherto unexplored surface chemical reactivity may unveil novel capabilities and/or pitfalls for the exploitation of the novel topological phases of matter in nanoelectronics. Similarly, investigations of surface chemical reactions at van der Waals heterostructures formed by basic building blocks of 2D materials [66] are still missing.

Figure 2. (a) XPS spectra in the region of the Bi 4f, Se 3d, and O 1s core levels acquired for Bi₂Se₃ (black curve) as-cleaved, (pink curve) after one month in air, (blue curve) after exposure of freshly cleaved surface to a dose of 5 kL of NO₂+O₂ and (red curve) after bombardment with Ar ions followed by a dose of 3 kL of NO₂+O₂. The O 1s core level has been recorded only in defected samples. Adapted with permission from Ref. [53]. Copyright (2012) American Institute of Physics. (b) Field-effect transistor fabricated with unencapsulated Bi₂Te₂.₋₂Se₀.₈ (S, G, D represent the source, gate and drain electrodes). An imaging experiment with Terahertz radiation on a jar containing glue carried is reported in the inset. Adapted with permission from Ref. [44]. Copyright (2016) American Chemical Society.
REFERENCES

[1] A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Gallois, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander and J. Kinar et, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7 (2015) 4598.

[2] K. Novoselov, Graphene: Mind the gap, Nat. Mater. 6 (2007) 720.

[3] L. Jianzhe, X. Congxin, L. Honglai and P. Anlian, High on/off ratio photosensitive field effect transistors based on few layer SnS2, Nanotechnology 27 (2016) 34LT01.

[4] C. Zhou, X. Wang, S. Raju, Z. Lin, D. Villaroman, B. Huang, H. L.-W. Chan, M. Chan and Y. Chai, Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT, Nanoscale 7 (2015) 8695.

[5] G. R. Bhimanapati, Z. Lin, V. Meunier, J. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones and J. A. Robinson, Recent Advances in Two-Dimensional Materials beyond Graphene, ACS Nano 9 (2015) 11509.

[6] K. Chen, S. Song and D. Xue, Beyond graphene: materials chemistry toward high performance inorganic functional materials, J. Mater. Chem. A 3 (2015) 2441.

[7] P. Miro, M. Audiffred and T. Heine, An atlas of two-dimensional materials, Chem. Soc. Rev. 43 (2014) 6537.

[8] A. Kara, H. Enriquez, A. P. Seitsonen, L. C. Lew Yan Voon, S. Vizzini, B. Aufray and H. Oughaddou, A review on silicene — New candidate for electronics, Surf. Sci. Rep. 67 (2012) 1.

[9] P. De Padova, C. Quaresima, C. Ottaviani, P. M. Sheverdyaeva, P. Moras, C. Carbone, D. Topwal, B. Olivier, A. Kara, H. Oughaddou, B. Aufray and G. Le Lay, Evidence of graphene-like electronic signature in silicene nanoribbons, Appl. Phys. Lett. 96 (2010) 261905.

[10] W. Hu, N. Xia, X. Wu, Z. Li and J. Yang, Silicene as a highly sensitive molecule sensor for NH3, NO and NO2, Phys. Chem. Chem. Phys. 16 (2014) 6957.

[11] T. Morishita and M. J. S. Spencer, How silicene on Ag(111) oxidizes: microscopic mechanism of the reaction of O2 with silicene, Sci. Rep. 5 (2015) 17570.

[12] Y. Du, J. Zhuang, H. Liu, X. Wu, S. Eilers, K. Wu, P. Cheng, J. Zhao, X. Pi and K. W. See, Tuning the band gap in silicene by oxidation, ACS Nano 8 (2014) 10019.

[13] N. W. Johnson, D. I. Muir and A. Moewes, Oxidized Monolayers of Epitaxial Silicene on Ag(111), Sci. Rep. 6 (2016) 22510.

[14] A. Molle, C. Grazianetti, D. Chiappe, E. Cinquanta, E. Cianci, G. Tallarida and M. Fanciulli, Hindering the Oxidation of Silicene with Non-Reactive Encapsulation, Adv. Funct. Mater. 23 (2013) 4340.

[15] S. K. Mahatha, P. Moras, V. Bellini, P. M. Sheverdyaeva, C. Struzzi, L. Petaccia and C. Carbone, Silicene on Ag(111): A honeycomb lattice without Dirac bands, Phys. Rev. B 89 (2014) 201416.

[16] Y. Wang and Y. Ding, Mechanical and electronic properties of stoichiometric silicene and germanene oxides from first-principles, physica status solidi (RRL) – Rapid Research Letters 7 (2013) 410.

[17] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotech, 7 (2012) 699.
[18] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotech, 9 (2014) 768.

[19] H. Liu, Y. Du, Y. Deng and P. D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications, Chem. Soc. Rev. 44 (2015) 2732.

[20] L. Viti, J. Hu, D. Coquilat, A. Politano, W. Knap and M. S. Vitiello, Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response, Sci. Rep. 6 (2016) 20474.

[21] L. Kou, T. Frauenheim and C. Chen, Phosphorene as a superior gas sensor: Selective adsorption and distinct I-V response, J. Phys. Chem. Lett. 5 (2014) 2675.

[22] A. Politano, M. S. Vitiello, L. Viti, J. Hu, Z. Mao, J. Wei, G. Chiarello and D. W. Boukhvalov, Unusually strong lateral interaction in the CO overlayer in phosphorene-based systems, Nano Res. 9 (2016) 2598.

[23] H. Liu, A. T. Neal, M. Si, Y. Du and P. D. Ye, The effect of dielectric capping on few-layer phosphorene transistors: Tuning the schottky barrier heights, IEEE Electron Device Lett. 35 (2014) 795.

[24] A. Ziletti, A. Carvalho, P. E. Trevisanutto, D. K. Campbell, D. F. Coker and A. H. Castro Neto, Phosphorene oxides: Bandgap engineering of phosphorene by oxidation, Phys. Rev. B 91 (2015) 085407.

[25] J. D. Wood, S. A. Wells, D. Jariwala, K.-S. Chen, E. Cho, V. K. Sangwan, X. Liu, I. L. Lauhon, T. J. Marks and M. C. Hersam, Effective Passivation of Exfoliated Black Phosphorus Transistors against Ambient Degradation, Nano Lett. 14 (2014) 6964.

[26] J. O. Island, G. A. Steele, H. S. J. van der Zant and A. Castellanos-Gomez, Environmental instability of few-layer black phosphorus, 2D Materials 2 (2015) 011002.

[27] D. W. Boukhvalov, A. N. Rudenko, D. A. Prishchenko, V. G. Mazurenko and M. I. Katsnelson, Chemical modifications and stability of phosphorene with impurities: a first principles study, Phys. Chem. Chem. Phys. 17 (2015) 15209.

[28] G. Nathaniel, W. Darshana, S. Yanneng, E. Tim, Y. Jiawei, H. Jin, W. Jiang, L. Xue, M. Zhiqiang, W. Kenji, T. Takashi, B. Marc, B. Yafis, K. L. Roger and L. Chun Ning, Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures, 2D Materials 2 (2015) 011001.

[29] J. Pei, X. Gai, J. Yang, X. Wang, Z. Yu, D.-Y. Choi, B. Luther-Davies and Y. Lu, Producing air-stable monolayers of phosphorene and their defect engineering, Nat. Commun. 7 (2016) 10450.

[30] P. Li, D. Zhang, J. Liu, H. Chang, Y. e. Sun and N. Yin, Air-Stable Black Phosphorus Devices for Ion Sensing, ACS Appl. Mater. Interfaces 7 (2015) 24396.

[31] J.-S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai and D. Akinwande, Toward air-stable multilayer phosphorene thin-films and transistors, Sci. Rep. 5 (2015) 8989.

[32] A. Castellanos-Gomez, Black Phosphorus: Narrow Gap, Wide Applications, J. Phys. Chem. Lett. 6 (2015) 4280.

[33] J. F. Sánchez-Royo, G. Muñoz-Matutano, M. Brotons-Gisbert, J. P. Martinez-Pastor, A. Segura, A. Cantarero, R. Mata, J. Canet-Ferrer, G. Tobias, E. Canadell, J. Marqués-Hueso and B. D. Gerardot, Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes, Nano Res. 7 (2014) 1556.

[34] C.-H. Ho, Thickness-dependent carrier transport and optically enhanced transconductance gain in III-VI multilayer InSe, 2D Materials 3 (2016) 025019.

[35] S. Sucharitkul, N. J. Goble, U. R. Kumar, R. Sankar, Z. A. Bogorad, F.-C. Chou, Y.-T. Chen and X. P. A. Gao, Intrinsic Electron Mobility Exceeding 10^5 cm^2/(V s) in Multilayer InSe FETs, Nano Lett. 15 (2015) 3815.

[36] S. Lei, F. Wen, L. Ge, S. Najmæi, A. George, Y. Gong, W. Gao, Z. Jin, B. Li, J. Lou, J. Kono, R. Vajtai, P. Ajayan and N. J. Halas, An Atomically Layered InSe Avalanche Photodetector, Nano Lett. 15 (2015) 3048.

[37] C.-H. Ho and Y.-J. Chu, Bending Photoluminescence and Surface Photovoltaic Effect on Multilayer InSe 2D Microplate Crystals, Advanced Optical Materials 3 (2015) 1750.

[38] S. R. Tamalampudi, Y. Y. Lu, R. Kumar, R. Sankar, C. D. Liao, K. Moorthy, C. H. Cheng, F. C. Chou and Y. T. Chen, High performance and bendable few-layered InSe photodetectors with broad spectral response, Nano Lett. 14 (2014) 2800.

[39] A. Politano, G. Chiarello, R. Samnakay, G. Liu, B. Gurbulak, S. Duman, A. A. Balandin and D. W. Boukhvalov, The influence of chemical reactivity of surface defects on ambient-stable InSe-based nanodevices, Nanoscale 8 (2016) 8474.
H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang and S. C. Zhang, Topological insulators in Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ with a single Dirac cone on the surface, Nat. Phys. 5 (2009) 438.

J. Tian, I. Childres, H. Cao, T. Shen, I. Miotkowski and Y. P. Chen, Topological insulator based spin valve devices: Evidence for spin polarized transport of spin-momentum-locked topological surface states, Solid State Commun. 191 (2014) 1.

M. Z. Hossain, S. L. Rumyantsev, D. Teweldebrhan, K. M. F. Shahil, M. Shur and A. A. Balandin, 1/f noise in conducting channels of topological insulator materials, Phys. Status Solidi A 208 (2011) 144.

M. Z. Hossain, S. L. Rumyantsev, K. M. F. Shahil, D. Teweldebrhan, M. Shur and A. A. Balandin, Low-frequency current fluctuations in “graphene-like” exfoliated thin-films of bismuth selenide topological insulators, ACS Nano 5 (2011) 2657.

L. Viti, D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov and M. S. Vitiello, Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States, Nano Lett. 16 (2016) 80.

H. Steinberg, D. R. Gardner, Y. S. Lee and P. Jarillo-Herrero, Surface state transport and ambipolar electric field effect in Bi$_2$Se$_3$ nanodevices, Nano Lett. 10 (2010) 5032.

A. Sulaev, M. Zeng, S.-Q. Shen, S. K. Cho, W. G. Zhu, Y. P. Feng, S. V. Eremeev, Y. Kawazoe, L. Shen and L. Wang, Electrically Tunable In-Plane Anisotropic Magnetoresistance in Topological Insulator BiSbTeSe$_2$ Nanodevices, Nano Lett. 15 (2015) 2061.

B. Xia, P. Ren, A. Sulaev, P. Liu, S. Q. Shen and L. Wang, Indications of surface-dominated transport in single crystalline nanoflake devices of topological insulator Bi1.5Sb0.5Te 1.8Se1.2, Phys. Rev. B 87 (2013) 085442.

M. Götte, T. Paananen, G. Reiss and T. Dahm, Tunneling Magnetoresistance Devices Based on Topological Insulators: Ferromagnet–Insulator–Topological-Insulator Junctions Employing Bi$_2$Se$_3$, Physical Review Applied 2 (2014) 054010.

M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82 (2010) 3045.

S. K. Kushawha, Q. D. Gibson, J. Xiong, I. Pletikosic, A. P. Weber, A. V. Fedorov, N. P. Ong, T. Valla and R. J. Cava, Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi2Te2Se, J. Appl. Phys. 115 (2014) 143708.

P. Tsipas, E. Xenogiannopoulou, S. Kassavetis, D. Tsoutsou, E. Golias, C. Bazioti, G. P. Dimitrakopoulos, P. Komninou, H. Liang, M. Caymax and A. Dimoulas, Observation of Surface Dirac Cone in High-Quality Ultrathin Epitaxial Bi$_2$Se$_3$ Topological Insulator on AlN(0001) Dielectric, ACS Nano 8 (2014) 6614.

Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong and R. J. Cava, P-type Bi$_2$Se$_3$ for topological insulator and low-temperature thermoelectric applications, Phys. Rev. B 79 (2009) 195208.

V. A. Golyashov, K. A. Kokh, S. V. Makarenko, K. N. Romanyuk, I. P. Prosvirin, A. V. Kalinkin, O. E. Tereshchenko, A. S. Kozhukhov, D. V. Sheglov, S. V. Eremeev, S. D. Borisova and E. V. Chulkov, Inertness and degradation of (0001) surface of Bi$_2$Se$_3$ topological insulator, J. Appl. Phys. 112 (2012) 113702.

D. Kong, J. J. Cha, K. Lai, H. Peng, J. G. Analytis, S. Meister, Y. Chen, H. J. Zhang, I. R. Fisher, Z. X. Shen and Y. Cui, Rapid surface oxidation as a source of surface degradation factor for Bi$_2$Se$_3$, ACS Nano 5 (2011) 4698.

V. V. Atuchin, V. A. Golyashov, K. A. Kokh, I. V. Korolkov, A. S. Kozhukhov, V. N. Kruchinin, S. V. Makarenko, L. D. Pokrovsky, I. P. Prosvirin, K. N. Romanyuk and O. E. Tereshchenko, Formation of Inert Bi$_2$Se$_3$(0001) Cleaved Surface, Cryst. Growth Des. 11 (2011) 5507.

A. Politano, M. Caputo, S. Nappini, F. Bondino, E. Magnano, Z. S. Aliev, M. B. Babanly, A. Goldoni, G. Chiarello and E. V. Chulkov, Exploring the Surface Chemical Reactivity of Single Crystals of Binary and Ternary Bismuth Chalcogenides, J. Phys. Chem. C 118 (2014) 21517.

G. Hao, X. Qi, L. Xue, C. Cai, J. Li, X. Wei and J. Zhong, Fermi level tuning of topological insulator Bi$_2$(Se$_{1-x}$Te$_x$)$_3$ nanoflakes, J. Appl. Phys. 113 (2013) 024306.

P. Wei, Z. Wang, X. Liu, V. Aji and J. Shi, Field-effect mobility enhanced by tuning the Fermi level into the band gap of Bi$_2$Se$_3$, Phys. Rev. B 85 (2012) 201402.
[59] H. Wang, H. Wang, H. Liu, H. Lu, W. Yang, S. Jia, X.-J. Liu, X. C. Xie, J. Wei and J. Wang, Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd$_3$As$_2$ crystals, Nat. Mater. 15 (2016) 38.

[60] Z. K. Liu, L. X. Yang, Y. Sun, T. Zhang, H. Peng, H. F. Yang, C. Chen, Y. Zhang, Y. F. Guo, D. Prabhakaran, M. Schmidt, Z. Hussain, S. K. Mo, C. Felser, B. Yan and Y. L. Chen, Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family, Nat. Mater. 15 (2016) 27.

[61] F. Arnold, C. Shekhar, S.-C. Wu, Y. Sun, R. D. dos Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt and A. G. Grushin, Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP, Nat. Commun. 7 (2016) 11615.

[62] C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser and B. Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nat. Phys. 11 (2015) 645.

[63] T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd$_3$As$_2$, Nat. Mater. 14 (2015) 280.

[64] C.-Z. Li, L.-X. Wang, H. Liu, J. Wang, Z.-M. Liao and D.-P. Yu, Giant negative magnetoresistance induced by the chiral anomaly in individual Cd$_3$As$_2$ nanowires, Nat. Commun. 6 (2015) 10137.

[65] M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou and M. Z. Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd$_3$As$_2$, Nat. Commun. 5 (2014) 3786.

[66] A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499 (2013) 419.