Using Decision Theory Approach to Build a Model for Bayesian Sampling Plans

Faris M. Al-athari¹, Dhwyia S. Hassan², Nathier A. Ibrahim³, Hani Aziz Ameen⁴,*

¹Zarqa University, Department of Mathematics, Faculty of Science and Information Technology, Zarqa 13132, Jordan
²Head Department of Industrial Management, College of Administration & Economic, Baghdad University, Iraq
³Department of Banks Economics, College of Business Economics, Al-Nahrain University, Iraq
⁴Dies and Tools Eng. Dept., Technical College, Baghdad, Iraq

Abstract The paper deals with constructing a model for Bayesian sampling plans for the system “Average out going quality level (AOQL)”, where the percentage of defectives is varied from lot to lot, so it considered to be a random variable, having a prior distribution \(f(p) \), which must be fitted to represent the distribution of percentage of defectives efficiently. The parameters of this distribution must estimated, and then used in model construction. The aim of the model is to find the parameters of single Bayesian sampling plan \((n, c) \), the sample size, and the acceptance number \((c) \), from minimizing the total cost of the model, which comprises cost inspection and cost of repairing or replacement of defective units. In addition to cost of rejecting good items, which is a penalty cost. Also the construction depend on decision rule \([\delta(x)]\), for acceptance and decision rule for rejection \([1 - \delta(x)] \). Finally the build model can be applied to another distribution like Gamma – Poisson, Normal – Beta, to find the sampling plan \((n, c) \) necessary to test the product of the lot and to have a production with accepted \((AOQL) \) to satisfy consumer's and producer's risk. All the derivation required to build this cost function are explained and all the results of obtained samples and applications are illustrated in tables.

Keywords Bayesian Sampling Plan, \((AOQL) \), Beta & Gamma Distribution, Total Cost Function, Producer's Risk, Consumer's Risk

1. Introduction

The term sampling inspection plan, is used when the quality of product is evaluated by inspecting samples rather than by total inspects, which required cost and time. Here we introduce a model for total expected cost function by [7 & 9] whom gives simple information about the elements of this cost function, while [10] introduce the cost model when the percentage of defective is random variable follows Gamma distribution, and suggested to apply another distribution as we done in our research. The build model differs from them by including decision rule \([\delta(x)]\) for acceptance and \([1 - \delta(x)]\) for rejection, the posterior distribution \(f(p|x) \) and finding the optimal value of acceptance number \((c) \) is a closed form, also the sample size necessary to take a decision, in a closed form also. The programs required to obtain \((n, c), [p_n(c)] \) and total cost, are executed.

The aim of this paper is to build the total cost of quality control model, used to find the Bayesian sampling plan \((n, c) \) for \((AOQL) \) system, the method considered the percentage of defectives in lots is random variable having prior distribution \(f(p) \). So the method derived used to find Bayesian sampling plan.

2. Methodology of Research

Since the aim of research insist on finding Bayesian sampling plans for system \((AOQL) \), where the percentage of defective in production represents random variable varied from lot to lot and have some prior distribution \(f(p) \), which determined from past data and experience, and it may be Beta distribution or Gamma, or Log-Normal or any other distributions. It is necessary to determine the parameters of Bayesian sampling plan \((n, c) \), taken from lot \(N \) by minimizing either (total inspection cost) or minimizing total expected risk, which is the risk due to taking the wrong decision.

To satisfy, the aim, first of all we define all notations necessary to build the model, these are;

\(N \): Lot size of product.
\(X \): Number of defective units in the lot \(N \).
\(P = \frac{x}{N} \): Percentage of defective in lot \(N \).
\(p = \frac{x}{n} \): Percentage of defective in the sample \(n \).
\(x \): Number of defective in sample.
\(X \): Number of defective in Lot.
\(C \): Acceptance number
\(C_1 \): Cost of sampling and testing unit in the sample.
\(C_2 \): Cost of repairing or replacement of defective units in the sample.
\(C_3 \): Cost of sampling and testing units in the remaining quantity \((N - n)\) after rejecting sample.
\(C_4 \): Cost of repairing or replacement of defective unit in quantity \((N - n)\).
\(C_5 \): Cost of accepting good unit and it is not a penalty cost.
\(P(p) \): Probability of accepting the production with quality \(p \) and it is;
\[
P(p) = pr(x \leq c)
\]
\(Q(p) \): Probability of rejecting the production with quality \(p \).
\(AOOQ \): Average percentage of defectives in the lot after doing rectifying inspection on it.
\(\delta(x) \): Decision rule for explaining the probability of acceptance the lot \((N - n)\), after knowing the sample \(n \) contains \(x \) defective.
\(\bar{p} \): Mean of the probability distribution of defective.
\(P_n(x) = E(p|x) \): Mean of posterior distribution \(f(p|x, n) \).
\(pr \): Break even quality point;
\[
pr = \frac{C_3 - C_5}{C_6 - C_4}
\]
\(f(p) \): Prior distribution of percentage of defectives in the lot of product.
\(f(p|x) \): Posterior distribution of percentage of defectives.

3. Construction of the Model

Suppose that \(x \) be \(r.v \sim \text{Binomial} (n, p) \)
\[
p(x; n, p) = C^n_x \; p^x (1 - p)^{n-x}, \quad x = 0, 1, 2, \ldots, n \quad (1)
\]

And \(p \) the percentage of defectives in process is \(r.v \sim \text{Beta} (\alpha, \beta) \)
\[
f(p; \alpha, \beta) = \frac{1}{\text{Beta}(\alpha, \beta)} \; p^{\alpha - 1} (1 - p)^{\beta - 1}, \quad 0 \leq p \leq 1 \quad (2)
\]

Therefore
\[
g_n(x) = \int_0^1 p(x; n, p) \; f(p) dp
\]
\[
= C^n_x \; \frac{1}{\beta \alpha (\alpha, \beta)} \int_0^1 p^{x+\alpha - 1} (1 - p)^{n+\beta-x-1} dp
\]
\[
= C^n_x \; \frac{1}{\beta \alpha (\alpha, \beta)} \; \text{Beta}(x + \alpha, n + \beta - x) \quad (3)
\]

\(g_n(x) \) is used to find the posterior distribution which is:
\[
f(p|x, n) = \frac{f(p)b(x; n, p)}{g_n(x)}
\]
\[
= \frac{1}{\beta (x + \alpha, n + \beta - x)} p^{x+\alpha - 1} (1 - p)^{n+\beta - x - 1} \quad (4)
\]

Therefore, the posterior distribution of percentage of defectives is also Beta, but with parameters \((x + \alpha, n + \beta - x)\) and with average;
\[
p_n(x) = E(p|x) = \frac{x + \alpha}{\alpha + \beta + n}
\]

Which can be written in terms of the mean of prior \((\bar{p})\) i.e.
\[
\bar{p} = \frac{\alpha}{\alpha + \beta}
\]
as:
\[
p_n(x) = \frac{x + \alpha}{\alpha + \beta + n}
\]
\[
= \frac{\alpha (1 + \frac{x}{\alpha})}{(\alpha + \beta)(1 + \frac{n}{\alpha} + \frac{n}{\beta})}
\]
\[
= \frac{\bar{p}(x + \alpha)}{\alpha + n\bar{p}}
\]

Now; let
\[
\gamma(n, c) = pr\sum_{x=0}^c g_n(x) - \sum_{x=0}^c \sum_{x=0} p_n(x) g_n(x) E(p|x) \quad (5)
\]
\[
= pr\sum_{x=0}^c g_n(x) - \sum_{x=0} p_n(x) g_n(x) \quad (6)
\]

And let \(pr \) be break even quality level, which is the point of percentage of defective, at which we cannot distinguish between acceptance decision and rejection, and is defined by \(pr = \frac{x - c}{n - n} \), and it is also defined in terms of quality control cost parameters.

Therefore;
\[
\gamma(n, c) = pr\sum_{x=0}^c C^n_x \; \frac{1}{\beta (\alpha, \beta)^{\alpha + \alpha n + \beta - x}}
\]
\[
\sum_{x=0}^c \frac{x + \alpha}{\alpha + \beta + n} C^n_x \; \frac{1}{\beta (\alpha, \beta)^{\alpha + \alpha n + \beta - x}}
\]
\[
= \frac{1}{\beta (\alpha, \beta)} \sum_{x=0}^c C^n_x \; pr B(x + \alpha, n + \beta - x)
\]
\[
- \bar{B}(x + \alpha + 1, n + \beta - 1) \quad (7)
\]

We know that the loss equal zero, when the decision is correct, and the loss is \(|k_x(p) - k_x(p)| \) for wrong decision, i.e.
\[
|k_x(p) - k_x(p)| = |(C_5 + C_4p) - (C_3 + C_4p)|
\]
\[
= |(C_5 - C_3) + (C_4 - C_4p)|
\]
\[
= |C_6 - C_4p| \quad (8)
\]

According to that, the equation of expected risk \(R[f(p), n, c] \) is defined;
\[
R[f(p), n, c] = nk_s + k \int_0^{pr} (pr - p) \; Q(p) \; f(p) \; dp
\]
\[
+ k \int_{pr}^1 (p - pr) \; P(p) \; f(p) \; dp \quad (9)
\]

where
\[
k = (N - n) (C_6 - C_4), k_s = C_1 + C_2 \bar{p}
\]

\(R[f(p), n, c] = nk_s + k \int_0^{pr} (pr - p) \; P(p) \; f(p) \; dp
\]
\[
+ \int_{pr}^1 (p - pr) \; F(p) \; dp \quad (10)
\]

Using the \(R[f(p), n, c] \), can found the value of expected risk under Binomial process and continues prior distribution.

See[9].

But here the proposed model depend on definition \(r(p, \delta) \) in terms of \(p \) and decision rule \([\delta(x)]\), and it is defined as follows;
\(r(p, \delta) = \delta(x) [C_1 n + C_2 np + C_5(N - n) + C_6 p(N - n)] p(x|p) \\
+ (1 - \delta(x)) [C_1 n + C_2 np + C_5(N - n) + C_4 p(N - n)] p(x|p) \)

(11)

And since \(P \) is random variable has \(f(p) \) then the expected value of risk in terms of \(f(p) \) is denoted by \(R[f(p), \delta] \) and it is defined as:

\[
R[f(p), \delta] = E[\delta(x) [C_1 n + C_2 np + C_5(N - n) + C_6 p(N - n)] p(x|p)] \\
+ E\{[1 - \delta(x)] [C_1 n + C_2 np + C_5(N - n) + C_4 p(N - n)] p(x|p)\} \\
= E[\delta(x) [(C_5 - C_3)(N - n) + (C_6 - C_4)(N - n)p] p(x|p)] \\
+ E\{[(C_5 n - C_3(N - n) + C_4(N - n)] p(x|p) + E\{[(C_5 n + C_2 np) p(x|p)]\} \\
+ E\{[1 - \delta(x)](C_5 - C_3) (N - n)] p(x|p) = (C_6 - C_4)(N - n) E[\delta(x)p(x|p)] \\
= (C_6 - C_4)(N - n) \int_0^1 p \sum_{x \in \{x, \delta(x) = d_1\}} b(x, n, p) f(p) dp \\
= (C_6 - C_4)(N - n) \sum_x b_w(x, n) \int_0^1 p f(p|x) dp \\
= (C_6 - C_4)(N - n) \sum_x b_w(x, n) E[p|x) \\
= (C_6 - C_4)(N - n) E[\delta(x)p(x)] \\
\]

After some steps we have;

\[
E[\delta(x) [(C_5 - C_3)(N - n) + (C_6 - C_4)(N - n)p] p(x|p)] \\
+ E\{[(C_5 n - C_3(N - n) + C_4(N - n)] p(x|p) + E\{[(C_5 n + C_2 np) p(x|p)]\} \\
R[f(p), \delta] = (N - n) E[\delta(x) (E(p|x) - pr) (C_6 - C_4)] + [C_2 n + C_4(N - n)] E(p) + C_4 n + C_3(N - n) \\
\]

(13)

The minimum value for formula (13) can be verified by;

\[
\delta(x) = \begin{cases}
1 & \text{when } E(p|x) \leq pr \\
0 & \text{otherwise}
\end{cases}
\]

where;

\[
pr = \frac{C_3 - C_7}{C_6 - C_4} , C_3 < C_7 , \quad C_4 > C_6 \text{ or } C_3 > C_5 \text{ & } C_4 < C_6
\]

Since equation (13), define the formula of expected risk function in terms of expectation, we want to find it in terms of sampling distribution, this required to take the distribution of defective in the lot \(f_N(x) \), and distribution of \(x \) in sample \((n) \), \(p(x|\lambda) \) in consideration, and also taking \(f(p) \) (the prior distribution of quality of a process, and also define the loss \(L(x, \delta(x)) \), this tend us to find the expected value of the loss due to the decision of accepting and rejecting, which is now defined by the following equation;

\[
R[f(x) , n, c] = \sum_{x=0}^{N} \sum_{c=0}^{N} L(x, \delta(x)) p(x|\lambda) f_N(x) \\
= \sum_{x=0}^{N} \sum_{c=0}^{N} [C_1 n + C_2 x + C_3(N - n)] p(x|\lambda) f_N(x) \\
+ \sum_{x=0}^{N} \sum_{c=0}^{N} [C_1 n + C_2 x + C_3(N - n) + C_4 (X - x)] p(x|\lambda) f_N(x) \\
= \sum_{x=0}^{N} \sum_{c=0}^{N} [(N - n) \{ C_5 - C_3 \} + (C_5 - C_4) (X - x)] p(x|\lambda) f_N(x) \\
+ C_3(N - n) + C_4 \sum_{x=0}^{N} \sum_{c=0}^{N} (X - x) p(x|\lambda) f_N(x) + C_1 n + C_4 \sum_{x=0}^{N} \sum_{c=0}^{N} x p(x|\lambda) f_N(x) \\
\]

(14)

Putting the following simplification in equation (15), we obtain equation (16);

\[
E(x) = np \\
E(\lambda) = Np \\
g_n(x) = \sum_{x=0}^{N} p(x|\lambda) f_N(x) \\
\]

Also substituting;

\[
\sum_{x=0}^{N} \sum_{c=0}^{N} (x - x) p(x|\lambda) f_N(x) = \sum_{x=0}^{c} g_n(x) E(X - x| x) \\
\]

Where;

\[
E(X - x| x) = E(E(X - x| x, p|x) \\
= E[E(X - x)|p|x] \\
= E[N - n] p|x]
\]
\[
E(p|x) = (N - n)E(p|x)
\]

Where, \(E(p|x)\) is the posterior mean.

By applying these expectations in equation (15), we get:

\[
R[N, n, c] = C_1 n + C_2 n \bar{p} + (N - n)(C_3 + C_4 \bar{p}) \\
+ (N - n) \left[\sum_{x=0}^{c} g_n(x) (C_6 - C_4) E(p|x) + C_5 - C_3 \right]
\]

Which can be simplified to:

\[
R[N, n, c] = n(C_1 + C_2 \bar{p}) + (N - n)(C_3 + C_4 \bar{p}) \\
+ (N - n) (C_6 - C_4) \gamma(n, c)
\]

Where;

\[
\gamma(n, c) = pr \sum_{x=0}^{c} g_n(x) - \sum_{x=0}^{c} p_n(x) E(p|x)
\]

\[
= pr \sum_{x=0}^{c} g_n(x) - \sum_{x=0}^{c} p_n(x) g_n(x)
\]

since \(p_n(x) = E(p|x) \)

The function in equation (17) considered to be a function of Bayesian single plan to test the product \((n, c)\) which gives minimum value for function (17), can be done by applying the first partial derivatives for the function equal to zero, then solving the two equations, since the distribution of \((X, x)\) is a discrete distribution, so we cannot apply differentiation method, we can apply forward differences method for \((n, c)\) which required writing \(\gamma(n, c)\) in a fitness way;

\[
\gamma(n, c) = pr \sum_{x=0}^{c} g_n(x) - \sum_{x=0}^{c} p_n(x) g_n(x)
\]

Where;

\[
\bar{p}_n(c) = \sum_{x=0}^{c} p_n(x) g_n(x) \sum_{x=0}^{c} g_n(x)
\]

Which represents the weighted mean for \(p_n(x)\) when \((x \leq c)\) according to the rule of[10], we can summarize the following rule;

\[
\Delta_n^{(r)} = G_n^{(r)}(x) = (-1)^r g_n(x) p_n(x) p_{n+1}(x+1) ... p_{n+r-1}(x+r-1)
\]

From equation (19), we can get;

1. \(\Delta_c \gamma(n, c) = pr g_n(c + 1) + (-1) g_n(c + 1) p_n(c + 1) = g_n(c + 1) [pr - p_n(c + 1)] \)
2. \(\Delta_c \gamma(n, c - 1) = pr g_n(c) + \Delta_n G_n(c) = g_n(c) [pr - p_n(c)] \)
3. \(\Delta_n \gamma(n, c) = pr \Delta_n G_n(c) + \Delta_n^2 G_n^2(c) = pr(-1) g_n(c) p_n(c) + (-1)^2 g_n(c) p_n(c) p_{n+1}(c + 1) \)
4. \(\Delta_n \gamma(n - 1, c) = pr \Delta_n G_{n-1}(c) + \Delta_n^2 G_{n-1}^2(c) = pr(-1) g_{n-1}(c) p_{n-1}(c) + (-1)^2 g_{n-1}(c) p_{n-1}(c) p_{n}(c + 1) \)

According to Beta – Binomial distribution when \(x \sim \text{Binomial} (n, p)\);

\[
p(x) = C_n^x p^x (1 - p)^{n-x}, \quad x = 0, 1, ..., n
\]

And, \(p \sim \text{Beta} (\alpha, \beta)\);

\[
f(p) = \frac{1}{\text{Beta}(\alpha, \beta)} p^{\alpha-1} (1-p)^{\beta-1}, \quad 0 \leq p \leq 1
\]

We find \(f(p|x) \sim \text{Beta} (x + \alpha, n + \beta - x)\), so the posterior mean is;

\[
p_n(x) = E(p|x) = \frac{x + \alpha}{\alpha + \beta + n}
\]

\[
p_n(x) = \frac{\bar{p} (x + \alpha)}{\alpha + n \bar{p}}
\]

Hence,

\[
\gamma(n, c) = \frac{1}{B(\alpha, \beta)} \sum_{x=0}^{c} C_x^n [pr B(x + \alpha, n + \beta - x) - B(x + \alpha + 1, n + \beta - x)]
\]

From applying \(\Delta_n \gamma(n, c), \Delta_n \gamma(n - 1, c)\), we find the optimal value of \(C = (C^*)\) acceptance number, which is the value that satisfy;

\[
(\alpha + \beta + n) pr - (\alpha + 1) < C^* \leq (\alpha + \beta + n) pr - \alpha
\]

And it depend on the estimated values of parameters \((\alpha, \beta)\) and also on the value of sample size which is obtained from minimizing;

\[
R[f(p), n, c] = An + BN + C(N - n) \frac{1}{n}
\]
With respect to \((n)\), where;

\[
A = \left[(C_2 - C_4) \bar{p} + (C_1 - C_3) + (C_4 - C_6) \right] \int_0^{pr} (p - pr) f(p) dp
\]

\[
B = C_4 \bar{p} + C_3 + (C_6 - C_4) \int_0^{pr} (p - pr) f(p) dp
\]

\[
C = \frac{1}{2} (C_3 - C_5) (1 - pr) f(p = pr)
\]

The result of \(n^*\) now is;

\[
n^* = \left\{ \begin{array}{ll}
N & A \leq 0 \\
\left\lceil \frac{N}{A} \right\rceil^{1/2} & A > 0
\end{array} \right.
\]

(22)

Where \(A\) depend on parameters of quality control cost and on \(f(p)\), so for Beta - Binomial distribution, the values of \(n^*\) is simplified to:

\[
n^* = \left[\frac{(C_3 - C_5) N}{2B(\alpha, \beta)(C_2 - C_4) \bar{p} + (C_1 - C_3) + (C_4 - C_6)(\bar{p} - pr) + pr(1 - pr)} \left(\frac{\alpha + \beta - 1}{\alpha + \beta} \right)^{\alpha + \beta - 1} \right]^{1/2}
\]

(23)

Where;

\[
IB_{pr}(\alpha, \beta) = \sum_{x=0}^{\alpha + \beta - 1} C_{x}^{\alpha + \beta - 1} pr^x (1 - pr)^{\alpha + \beta - x - 1}
\]

\[
IB_{pr}(\alpha + 1, \beta) = E(\alpha + 1, \alpha + \beta, pr)
\]

\[
\therefore n^* = \left[\frac{(C_3 - C_5) N}{2B(\alpha, \beta)(C_2 - C_4) \bar{p} + (C_1 - C_3) + (C_4 - C_6)(\bar{p} - pr) + pr(1 - pr)} \left(\frac{\alpha + \beta - 1}{\alpha + \beta} \right)^{\alpha + \beta - 1} \right]^{1/2}
\]

(24)

The estimated values of \((\alpha, \beta)\) using moment’s method are;

\[
\hat{\alpha} = \frac{\alpha}{\bar{p} \cdot \bar{x} - S_p^2 / S_p^2}
\]

\[
\hat{\beta} = \frac{(1 - \bar{p}) \cdot (\bar{x} - S_p^2 / S_p^2)}{\alpha + \beta + 1}
\]

Where,

\[
\bar{p} = \frac{\alpha}{\alpha + \beta}
\]

\[
\sigma^2 = \frac{(1 - \bar{p})}{\alpha + \beta + 1}
\]

4. Application

The following data represents the distribution of percentage of defectives for \((100)\) lots taken from Iraqi general company for producing liquid oils, after tests it found to be Beta distribution \((\alpha, \beta)\). The last three classes were grouped since its observed frequencies is less than 5, also we compute the mean of percentage of defectives \(\bar{x}_p = 0.0042625\) and average lot \(N = 247328\) units, the variance of percentage of defectives \(S_p^2 = 0.000079613\).

From equation (25), the estimated values of parameters \(\alpha, \beta\) by method of moments are:

\[
\hat{\alpha} = 2.268248, \quad \hat{\beta} = 529.872768
\]

\[
\chi^2_{calc} = \sum_{i=1}^{m} \frac{(O_i - E_i)^2}{E_i}
\]

The value of calculated \(\chi^2_{calc} = 0.762854\) is compared at \((\alpha = 0.05)\) and degree of freedom \((k = m - p - 1 = 9 - 3 = 6)\). \((\chi^2_{0.05, 6} = 12.6)\) we find \(\chi^2_{calc} < \chi^2_{tab}\) for this reason the hypothesis:

\[
H_0: p_1 \sim \text{Beta} (\alpha, \beta)
\]

\[
H_1: p_1 \neq \text{Beta} (\alpha, \beta)
\]

is accepted therefore, we depend on prior Beta distribution at estimated parameters;

\[
\hat{\alpha} = 2.268248, \quad \hat{\beta} = 529.872768
\]

In finding the parameter of single Bayesian sampling plan for the system \(AQL\) where;

\[
\bar{p} = E(p) = \frac{\hat{\alpha}}{\hat{\alpha} + \hat{\beta}} = 0.0042625
\]

Also, we have obtained the estimated parameter of total cost function, for the lots of product (from state company vegetable oil), these are;

\[
C_1 = 0.009 \quad \text{ID per unit}
\]

\[
C_2 = 0.260 \quad \text{ID per unit}
\]

\[
C_3 = 0.021 \quad \text{ID per unit}
\]

\[
C_4 = 0.382 \quad \text{ID per unit}
\]

\[
C_5 = 0.00 \quad \text{ID per unit}
\]

\[
C_6 = 0.742 \quad \text{ID per unit}
\]

\[
\text{product risk } \alpha_0 = 0.05 \quad \text{consumer's risk } \beta_0 = 0.10
\]

\[
p_0 = \bar{p} = 0.0042625 \quad , \quad p_1 = 0.05
\]

Also, we find;

\[
\int_0^{pr} (pr - p) f(p) dp = pr IB_{pr}(\alpha, \beta) - \bar{p} IB_{pr}(\alpha + 1, \beta)
\]

\[
= (0.0187)(0.9374) - (0.0042625)(0.9532) = 0.013468
\]

\[
\bar{x}_p = 0.0042625, \quad \text{is the estimated value of percentage of defective in normal condition which is also denoted by} \quad (p_0 = 0.0042625), \quad \text{while} \quad (p_0) \quad \text{is the percentage of defective when the conditions of production is not normal.}
\]

\[
p_1 = 0.05
\]
\[\alpha_0 = 0.05 \quad \text{producer risk} \]
\[\beta_1 = 0.10 \quad \text{consumer risk} \]

From equation (20) and (24) by using the estimated values of \((\hat{\alpha}, \hat{\beta})\) and \((C_1, C_2, C_3, C_4, C_5)\), also for different values of process average \((\bar{X})\), the results for different size of lot \(N\) are tabulated in table (2).

After testing the distribution of quality in table (1), and estimating parameters, and also computing different parameters of total cost model, we find different values of Bayesian single sampling plan \((n,c)\) and the results are explained in table (2).

The above table represents the results of sampling plan \((n,c)\) according to quality level \(X_p = 0.001(0.001) 0.005\) and lot size \(N = 1000(1000) 25000\), for equation (24) and (20), while for given data in research, we find that the proposed sampling plan when \(N = 16818\) units, and \(X_p = 0.0042625\) and \(pr = 0.0187\) is \((n,c) = (1295, 25)\) and also we compute \(R[f(p)n,c]\) from its results found to be equal to \((71.720 \$)\)

Percent of defective	Number of lots \((O_i)\)	Expected frequency	\((D_i - E_i)^2 / E_i\)
0.00 - 0.103	7	8.3	0.203614
0.103 - 0.206	13	12.05	0.074896
0.206 - 0.309	21	20.71	0.004061
0.309 - 0.412	19	17.02	0.230430
0.412 - 0.505	9	9.30	0.009677
0.505 - 0.608	9	9.70	0.050515
0.608 - 0.711	5	5.01	0.000020
0.711 - 0.804	7	8.22	0.181070
0.804 - 0.907	3	3	0.008661
0.907 - 1.010	3	3	
1.010 - 1.113	2	10	10.71
1.113 - 1.216	2	2	
Total	100	100.02	0.762854

Table 1. Distribution of quality process for 100 lots

Lot size	0.001	0.002	0.003	0.004	0.005	
n	c	n	c	n	c	
1000	89	3	143	175	189	225
2000	155	3	789	297	297	364
3000	247	5	327	327	395	415
4000	317	6	425	455	502	528
5000	389	7	513	575	593	610
6000	425	8	587	618	599	726
7000	526	10	669	695	778	809
8000	563	11	710	730	847	886
9000	612	12	763	850	886	973
10000	689	13	801	920	969	1013
11000	710	13	860	996	1040	1080
12000	763	14	895	1010	1131	1143
13000	802	15	926	1078	1189	1165
14000	846	16	957	1119	1212	1298
15000	885	17	992	1172	1265	1313
16000	912	17	946	1214	1283	1364
17000	943	18	1098	1206	1298	1385
18000	978	18	1109	1296	1310	1403
19000	1016	19	1155	1320	1364	1461
20000	1047	20	1179	1378	1393	1489
21000	1096	20	1219	1395	1402	1505
22000	1120	21	1269	1410	1458	1561
23000	1165	22	1302	1456	1506	1599
24000	1194	22	1338	1512	1585	1630
25000	1225	23	1396	1566	1613	1689

Table 2. Bayesian sampling plans for AOQL under Beta prior and due to decision making proposed model
5. Conclusions

(1) The distribution of quality of 100 lots, found Beta prior with \((\alpha = 2.2662848, \beta = 529.872768) \).

(2) The calculated value of \(\chi^2_{cal} = 0.762854 \) compared with \(\chi^2_{tab,0.05} = 12.6 \) and for \(\alpha_0 = 0.05 \), degree of freedom \((k = 9 - 3 = 6)\), since the last class of distribution of quality where grouped, it is found that \(\chi^2_{cal} < \chi^2_{tab} \) for this reason, the hypothesis

\[
H_0: p_1 \sim Beta (\alpha, \beta)
\]

(3) The value \((\alpha_0 = 0.05) \) is producer's risk and \((\beta_1 = 0.10) \) is consumer risk, where considered in designing the various sampling plans, and we can use any set of \((\alpha_0, \beta_1)\).

(4) From table (2) we find the sample size \((n) \) is increasing when the percentage of defective is increased, which is logical result.

(5) The proposed model can be applied to another kind of Bayesian sampling which have Gamma prior, and log – Normal, since it is a general model.

(6) From the data, we found that \(\bar{x}_p = 0.0042625 \), which is the estimated value of percentage of defectives in the normal condition of production process, but it's true value found \((\bar{x}_p = 0.08) \) which is greater than proposed \((AOQL = 5\%) \) for the factory, this results is logical also because of complex and bad conditions of process of production, we look at the percentage \((0.08) \) is very good now.

REFERENCES

[1] Aslam, M., and Kantam, R.R.L., (2008). "Economic reliability acceptance sampling based on truncated life tests in the Birnbaum - Saunders distribution", Pakistan Journal of statistics 24, 269 – 276.

[2] Aslam, M., S. Balamurali, Chi-Hyuck Jun and M. Ahmad, “Optimal designing of a skip lot sampling plan by two point method”, Pakistan Journal of Statistics, 26(4), 585-592, Oct. 2010.

[3] Baba Md Deros, Chua Yee Peng, Mohd Nizam Ab Rahman, Ahmad Rasdan Ismail and Abu Bakar Sulong,(2008), "Assessing Acceptance Sampling Application in Manufacturing Electrical and Electronic Products", Asian International Journal of Science and Technology in Production and Manufacturing, Vol. 1, No.2, pp. 59-67.

[4] Balamurali, S., M. Aslam and Chi-Hyuck Jun, (2012) "Bayesian double sampling plan under Gamma-Poisson distribution", Research Journal of Applied Sciences, Engineering and Technology, 4(87), 949-956.

[5] Balakrishnan, N. Leiva, V. and Lopez, J. (2007)." Acceptance sampling plans from truncated life tests based on the generalized Birnbaum – Saunders distribution", cmmu. Statis. Simul. And compu., 36, 643-656.

[6] Birnbaum, M. H. (2008). "New paradoxes of risky decision making" Psychological Review, 115, 453–501.

[7] Guenther, W. C., (1969)," Use of the Binomial hypergeometric and Poisson tables to obtain sampling plans", j. Qual. Technol.,1: 105 – 109.

[8] Guenther, W. C., (1977)," Sampling inspection in statistical quality control", Charles Criffinand company limited.

[9] Guthrie, D. and Jhons , M. V. (1959). "Bays acceptance sampling procedures for large lots", Ann. Math. Stat. 30, 896 – 925.

[10] Hald, A. (1960)," The compound hypergeometric distribution and a system of single sampling inspection plans based on prior distributions and costs". Technometrics 2, 275 – 340.

[11] Hald, A. (1981)," Statistical theory of sampling inspection by attributes", Academic press INC. (London).

[12] Hryniewicz, Q., (2008)," Statistics with fuzzy data in statistical quality control", Soft Company. 12:229 – 234.

[13] K. Rajagopal, A. Loganathan and R. Vijayaraghavan,(2009), " Selection of Bayesian Single Sampling Attributes Plans Based on Polya Distribution " Economic Quality Control Vol 24 (2009), No. 2, 179 – 193.

[14] Mohamed Saber Fallah, Seyed Taghi Akhavan, and Mohamed Hossein Abooe, (2011) " A new Acceptance sampling plan based on cumulative sums of conforming Run – Lengths, " Journal of Industrial and systems engineering. Vol.4.No.4, pp 256 – 265.

[15] Niaki S.T.A., Fallahnezhad M.S. (2009), Designing an optimum acceptance plan using Bayesian inference and stochastic dynamic programming, Scientia Iranica 16; 19-25.

[16] Saima Altaf, and Muhamed Aslam, (2011), " Bayesian analysis of the Davidson model for paired comparision with order effect using non informative priors", Pak. J. Stats. Vol. 27(2), 171 – 185.

[17] Sanka Dey, (2008)" Minimax estimation of the parameter of the Rayleigh distribution under quadratic loss function", Data Science Journal, Vol. 7,23.

[18] Stewart, N., & Simpson, K. (2008). A decision-by-sampling account of decision under risk. In N. Chater &M. Oaksford (Eds.), The probabilistic mind: Prospects for Bayesian cognitive science (pp. 261–276). Oxford, England: Oxford University Press.

[19] Stewart, Neil, (2009), "Decision by sampling: the role of the decision environment in risky choice”. Quarterly Journal of Experimental sychology, Vol.62 (No.6). pp. 1041-1062. ISSN 1747-0218.

[20] Tang, K. (1988)," Economic design of product specifications for a complete inspection plan", International Journal of production research, Vol. 26. No. 2, 203 – 219.