This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Cellulose regeneration and spinnability from ionic liquids

Lauri K. J. Hauru, Michael Hummel, Kaarlo Nieminen, Anne Michud, Herbert Sixta

Ionic liquid solutions of cellulose or dopes can be spun into Lyocell-type textile fibers by dry-jet wet spinning. An extruded dope is drawn over an air gap into water, where the water hydrates the ionic liquid and cellulose is regenerated. Spinnability studies have concentrated on the deformation and failure modes in the air gap and thus the rheology of the unhydrated spinning dope. Herein, a breach in the bath, another failure mode, is discussed. Dopes are prepared from the good spinning solvents NMMO·H2O and [DBNH]OAc and the poor spinning solvents [emim]OAc and [TMGH]OAc. The diffusion constants for water diffusing inwards and for ionic liquid diffusing outwards the emerging filament are measured offline. The resilience and strengths of cellulose-ionic liquid solutions with different hydration stoichiometries are measured by means of rheometry. By calculating the diffusion dynamics, the resilience distribution of the forming filament is simulated. Gel strength distribution accounts for the tendency of [emim]OAc dopes to undergo a telescope-type breach, whereas the gelatinous solution state of [TMGH]OAc dopes accounts for their poor spinnability.

Introduction

Ionic liquids were introduced for dissolution of cellulose in 2002, and since then, there has been considerable research interest in their potential applications. Ionic liquids (ILs) are extraordinarily good solvents, because a solute solvated by anions is always accompanied by an equivalent number of cations to maintain electroneutrality. With incompatible anions and cations, the non-coulombic interactions are effectively repulsive and increase the solubilities of solutes. The interactions of the ions (the cation and anion) differ from each other and can be highly specific, leading to self-organizing behavior. For example, when a monomolecular layer of an ionic liquid with a hydrophobic anion is deposited on a smooth hydrated surface, the smooth exposed layer is hydrophobic. Whereas, further layers are not hydrophobic, because they are not smooth and allow water-cation contact. Anions with high hydrogen bonding basicity can solvate cellulose by bonding to its hydroxyl groups, if the net hydrogen bonding basicity (β–α) of the solvent or solvent mixture reaches a certain level. Thus, these ILs dissolve polymers such as cellulose, chitin and silk that are not meltable and soluble in few or no other solvents. Cellulose solutions with certain visco-elastic properties are employed in the spinning of textile fibers, which is the focus of the article at hand.

Different cations result in different cellulose solubilities. Smaller cations that interfere less with the hydrogen bonding basicity of the anion appear in better cellulose solvents. Increasing the length of a hydrophobic side chain reduces solubility. The interaction between the cation and the solvated cellulose molecule is not as specific as for the anion: polar aprotic cosolvents (DMSO, DMF, DMA) solvate the cation but in fact can accelerate dissolution of cellulose. When the net hydrogen-bonding acidity of the solution is increased with water for example, the IL anions are sequestered by the antisolvent, and the polymer desolvates and coagulates into a gel. The threshold for this process and the rheological properties of the formed gels depend on the identity of the IL cation.

Textiles are produced from synthetic fibers, cotton and other natural fibers, or from man-made cellulosic fibers (MMCFs). Favorable properties such as moisture retention and comfort give cellulosic textile fibers a definite demand (33–37% of the market), which is expected to increase from a global average of 3.7 kg to 5.4 kg per capita in 2030. Since growth in cotton production will stall, the only way to satisfy the demand is the production of MMCF such as viscose or Lyocell. In the Lyocell process, cellulose is dissolved in N-methylmorpholine N-oxide monohydrate (NMMO-H2O) to give a solution called dope, and extruded through a spinneret over an air gap into an aqueous coagulation bath, in a process termed dry jet-wet spinning. On contact with water, the cellulose desolvates and regenerates into a gelatinous incipient filament. The solvent is washed out, and the filament is dried and usually cut into staple fibers to be converted into a yarn.

Given that dopes can be produced from cellulose-dissolving ionic liquids, it is natural to ask if they are also spinnable. Fibers have been spun from 1-butyl, ethyl or allyl-3-methylimidazolium ionic liquids, like [bmim][Cl], [emim][Cl], [emim]OAc and [amin][Cl] and from [DBNH]OAc (1,5-diazabicyclo[4.3.0]nonenium acetate) (Fig. 1).

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 1
wet spinning, the emerging filaments are stretched in the air gap with a positive draw ratio (D_R). Draw induces orientation of the polymer chains in the jet, which is partially retained after de-solvation. On drying, polymer orientation promotes crystallization and axial orientation of amorphous domains, resulting in a composite-like structure with high strength. However, the draw subjects the jet and incipient filament to high stresses, increasing with D_R. With excessive stress, the line will break with a limiting D_R.

The stabilities of drawing fluid filaments have been investigated extensively for polymer melt spinning processes. Three types of breaches in the air gap are postulated: cohesive fracture, capillary waves and telescope breach. In cohesive fracture, the tensile strength of the jet is exceeded. Capillary waves travel on the surface of the filament, and when their amplitude becomes comparable to jet diameter, the jet breaks. A telescope breach may occur in a wet spinning bath. The diffusion constant appeared to decline while Liu and Hu (2006) reported the value $5.0 \pm 1.0 \times 10^{-10}$ m2 s$^{-1}$. With concentrated spin dopes (>7 m-% cellulose), the main resistance to diffusion in spinning is due to the regenerated cellulose network, and thus the apparent final D_{NMMO} is a constant with respect to most spinning variables.

In this study, the true diffusion constants of water and ionic liquid are estimated with a model that accommodates a variable diffusion constant for the ionic liquid. Furthermore, the reasons for differences in spinning stability between different ionic liquid solutions are discussed, with reference to rheological properties of the partially regenerated materials.

Materials and methods

The cellulose solvents employed are shown in Figure 1. N-methylmorpholine N-oxide or NMMO (50% solution and 97% anhydrous) and propyl gallate (98%) were purchased from SigmaAldrich. The monohydrate NMMO·H$_2$O for calibration was synthesized by hydrating anhydrous NMMO in acetone and recrystallizing from water. 1-Ethyl-3-methylimidazolium acetate or [emim]OAc (98%) was purchased from Iolitec GmbH, Germany. The ionic liquids 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) and N,N,N,N-tetramethylguanidinium acetate ([TMGH]OAc) were synthesized by protonation: acetic acid (99.8%, VWR International) was added dropwise over 1 h into 1,5-diazabicyclo[4.3.0]non-5-ene (99%) or N,N,N,N-tetramethylguanidine (99%), respectively. The temperature was allowed to rise to 80 °C in order to keep the product molten.

Prehydrolysis-kraft dissolving pulp from Eucalyptus urograndis (93% cellulose I, $M_n = 269$ kg mol$^{-1}$, $M_M = 79$ kg mol$^{-1}$, Bahia Specialty Cellulose, Brazil) was cut into a powder in a Wiley mill (1 mm sieve) and oven-dried at 105 °C to constant weight. The IL dopes, except for [emim]OAc, were prepared by kneading in an IKA HKE-T 06 kneader with interlocking double blades. 32.50 g pulp was kneaded into 217.50 g IL at 80 °C, wherein pulp was added over 2 h to give a 13% solution. The solution was filtered with 2 MPa pressure through a GKZ Ymax2 metal filter at 100 °C and deaerated in a vacuum oven at 50 mbar and 80 °C overnight. For [TMGH]OAc, kneading was at 100 °C and filtration with 8 MPa and 130 °C due to a higher viscosity. Due to the high vapor pressure of [TMGH]OAc, deaeration time was limited to 3 h in order to limit the evaporation of the IL. [Emim]OAc tends to form tough clumps from undissolved material if directly mixed with pulp, and air is entrained. Thus, [emim]OAc dopes were prepared by solvent exchange: the pulp (60 g or 15%) was dispersed in 750 g acetone, [emim]OAc (338 g) was added and the acetone evaporated in a vertical kneader with an anchor blade (b+b Ge-
by increasing the temperature from 55 to 80 °C and reducing the pressure from 500 to 10 mbar over 2 h, followed by filtration and degassing as above. Propyl gallocatestabilized NMMO-H₂O dopes were prepared by evaporation of water from a mixture of pulp and 50% solution of NMMO to give a cellulose-NMMO monohydrate solution according to established procedure. Filaments were spun with a laboratory spinning system (Fourné Polymertechnik, Germany, Fig. 2) with a 100 µm monofilament spinneret (L/D 2, Enka Tecnica, Germany). 10 g of dope was cut, heated to make it pliable and fed into the heated cylinder. The filament was extruded over an 1 cm air gap into a water bath at 15 °C, deflected by a stationary guide at 15 cm depth, then a second guide outside the bath and from there wound onto a godet, where the filament samples were collected. The extrusion velocity was 0.04 ml/min (0.02 ml/min for [TMGH]OAc), and the godet velocity was adjusted from 5.1 to 38.2 m/min to give D_r 1–7.5 filaments. The filaments were immersed into cold water (5 °C) to solidify the structure, washed in hot water (50 °C) for 5 min and dried and conditioned at 50% humidity and 23 °C overnight. [Emim]OAc spinning was done with a 250 µm spinneret using a larger cylinder that allowed for the required higher flow rate (0.5 ml/min) with wash baths at 45 °C. Godet velocities were 11–30.0 m/min, corresponding to D_r 1.08–2.94. The NMMO filaments used for comparison were spun with a 18 × 100 µm multifilament spinneret.

Rheometry was done with a Paar Physica MCR 300 rheometer in a plate-plate geometry with a measuring gap of 1 mm and Peltier temperature control. For the rheology of spinning dopes, a smooth 25 mm plate was used. Master curves were produced from frequency sweep data collected at 60–120 °C in the angular frequency range of 0.1–100 1/s, using the Cross model, except that a power-law fluid model was used for [TMGH]OAc.

Samples of several hydration stoichiometries were prepared and gel strengths were measured with amplitude sweeps. The samples were prepared by casting a disc (10 mm by 2 mm) from the dope, then hydrating the disc with a weighed amount of water (0.25–6 molar equivalents per IL) and leaving it to equilibrate overnight in a heat-sealed polyethylene bag. The discs were trimmed with a razor blade to remove any bulge that had formed. The sample disc was pressed between serrated plates (Anton Paar PP 25/P2, plate diameter 25 mm, sample diameter 10 mm, serrations 0.5 mm) and left to relax and conform to the serrations for 10–50 minutes until the normal force stabilized, usually to half of the initial force (20–25 N). If the normal force was insufficient, only surface fracture occurred as warned by Castro et al. (2010), but with sufficient force, the discs remained elastic up to the yield point. Amplitude sweeps were done from 0.1 to 1000% strain at a frequency of 1 Hz at 15 °C.

There are multiple ways to define 'gel strength' from an amplitude sweep experiment. The simplest is the stress at the crossover point between the storage and loss moduli. However, this can overestimate the strength by ca. 40%. Another is the end of the linear viscoelastic range defined by the point where storage modulus starts to reduce. With our data, this point is ambiguous, because the transition is gradual, thus this definition is not useful either. Instead, we adopt the definition of Yang et al. (1986): the yield point σ_y is the maximum elastic stress (G’γ) the gel can endure, calculated by σ_y = \max(G’γ), where G’ is the storage modulus and γ is the strain. For almost all curves this is unambiguous. However, the curve may plateau and fluctuate, giving rise to other, confounding local maxima, thus we define it as the first apparent local maximum. The slope is very gentle, so the fit ambiguity in the yield strain (γ_y) is inherently large (24±19%).

A piecewise function consisting of a 2nd and a 3rd degree polynomial is fitted to the stress-strain curve (up to γ = 300%), and this function is used to calculate the yield strain, stress and resilience. Resilience is defined as the maximum elastic energy that can be stored in the material until the yield point. In practice, it is calculated by numerical integration of the function U(γ) = σ(γ)Δγ up to the yield point, where Δγ = γ_y–γ_y–1. This parameter quantifies the extent of stretching that the gel can undergo before plastic deformation and damage occurs.

The tensile yield strengths (σ_y) of gels of different water contents were calculated from the shear strength (σ_y,κ) using the von Mises relation σ_y = \sqrt{3}σ_y,κ as in Castro et al. (2010). Shear resilience (U_s) was converted analogously to tensile resilience (U = \sqrt{3}U_s). Calculation of incipient filament tensile strength is done by numerical integration with 100 steps using Eq. 1 (derivation in SI):

\[S' = 2\sum S'(r)r\,dr \]

where \(r \) is the dimensionless radius (0–1), \(S'(r) \) is the tensile strength at dimensionless radius \(r \) and \(S' \) is the strength of the gelatinous incipient filament. For cylinders with two or more coaxial layers of different strength, the force at yield (\(\sigma_y \)) monotonically increases when the proportion of the stronger

Table 1	Molar conductivities of the solvents.
	\(\Lambda_m \) [S m²/mol]
NMMO-H₂O	0.03681 ± 0.00061
[DBNH]OAc	9.02 ± 0.19
[Emim]OAc	9.67 ± 0.18
[TMGH]OAc	8.43 ± 0.19
material is increased (Fig. 10 in Chen et al. (2010)26). Thus, it is assumed that strength and resilience follow a simple rule of mixtures, and that they can be estimated by integration of the tensile strength over \(r = 0 \ldots 1 \) according to equation 1. The same equation is used for water and IL concentrations.

Diffusion constants in the dope were measured for both water and IL. Diffusion constants for water diffusing inwards into the filament were measured according to Biganska and Navard (2005): a drop of the dope was pressed between glass slides, then the rest of the gap filled with water. 29 Micrographs of the moving front of water were taken at intervals of 20–60 seconds with a DC300 camera (exposure 20.5 ms) on a Leica CTR MIC microscope at 5x magnification and 2088-by-1550 px resolution. Distances were measured using the Adobe Photoshop measuring tool calibrated with a 1 mm graticule (1.1025 µm/px, Graticules Ltd., England). The equation (Eq. 3) employed by Biganska and Navard was used:

\[
d(t) = \frac{4}{\sqrt{\pi}D_{\text{w}}} t
\]

where \(d(t) \) is distance diffused (in µm), \(D_{\text{w}} \) is the diffusion constant for water (m\(^2\)/s) and \(t \) is time (s)29

Diffusion constants for IL diffusing out from the filament were measured with a method adapted from Gavillon and Budtova (2007): a disk of the dope (2 cm by 2 mm or 0.64–0.76 g) is cast, immersed into a stirred water bath (35 g), and the concentration of the exuded solvent is measured as a function of time.31 Conductivity readings were taken with roughly logarithmically variable intervals (1 s to 10 min). The disc was protected against the magnetic stirrer with a stainless steel grid with 5 mm spacing. The concentration was monitored with an Orion Model 150 conductometer until the diffusion was completed (3–6 h). Conductivities (Table 1) were calibrated with 7 points (<11500 µS cm\(^{-1}\)), and the response was linear for all solvents measured. The apparent molar conductivities of the ILs as used were calculated with Kohlrausch’s law.

The disc is assumed to be wide enough that lateral concentration gradients can be neglected. Thus, it is modeled one-dimensionally, and only with one exposed end, because there is no concentration gradient and thus no diffusion over its center plane. The line is divided into 100 elements, and its center plane. The line is divided into 100 elements, and

\[
d(t) = \frac{4}{\sqrt{\pi}D_{\text{w}}} t
\]

The IL diffusion constant \(D_{\text{IL}} \) varies with the water content; thus, a function \(D_{\text{IL}}(X_{\text{w}}) \) is assumed. With the water content map in hand, the corresponding map of IL diffusion constants \(D_{\text{IL}}(X_{\text{w}}) \) at each element \(x \) is calculated from \(D_{\text{IL}}(X_{\text{w}}) \). With these data, instantaneous diffusion equations are solved for each element for the IL, and the result integrated with equation 1 to give a predicted degree of propagation \(X_{\text{w}}(t) \) at each time point. The system is solved in MatLab using the ode23tb solver for a given \(D_{\text{IL}}(X_{\text{w}}) \). The parameters for \(D_{\text{IL}}(X_{\text{w}}) \) are calculated iteratively, using the least-squared method to find the parameters for a function \(D_{\text{IL}}(X_{\text{w}}) \) that fits the \(X_{\text{w}}(t) \) data from conductometry. For the discretization of the diffusion equation, see the supporting information, equations S19, S21 and S22.

For the simulation of an incipient filament in the bath, we consider \(D_a 10 \) and \(V_a 0.05 \) ml/min with a \(d_s = 100 \) µm spinneret. They result in wet filament diameter \(d = 31.6 \) µm and drawn filament velocity \(V_f = 63.7 \) µm/min. These values are typical in Lyocell spinning, although they are not necessarily stable for all ILs discussed.

Results and discussion

Practical spinning

Earlier studies on spinnability concentrate on the rheology of the spin dope. For reference, the rheological properties are presented in the supporting information. The crossover point of the dynamic moduli is located at 0.76–4.06 seconds depending on the solvent. Spinning trials were conducted at the temperature where the viscosity at crossover point (\(G' = G'' \)) is similar to NMMO at 95 °C (3708 Pas). For [DBNH]OAc and [emim]OAc this was 70 °C, for [TMGH]OAc 90 °C. Rheology does not explain the observed large differences in spinnability in all cases. However, [TMGH]OAc is not a Cross fluid, but a power law fluid (power law index 0.5) within the measured range (see SI, Figure S1 and Table S2.)

Demonstrative spinning (Table 2) for 13% solutions was conducted in order to relate the rheological and diffusion results and simulations to practical experience. The bath temperature of 15 °C was chosen based on earlier experiments, where cool bath was found to produce stronger filaments.32 Other experiments were conducted at the same temperature. Filament properties are detailed in the supporting information, Table S3. Spinnability was good for [DBNH]OAc (up to \(D_a 7.5 \)), but poor for [TMGH]OAc (only \(D_a 2 \)). [Emim]OAc could not be spun with a 100 µm spinneret, but could be spun up to \(D_a 2.9 \) with a 250 µm spinneret at 70 °C. [DBNH]OAc gave high-tenacity filaments at 70 °C as reported earlier.33 [TMGH]OAc (80 °C) filaments could be initially taken up and fibers collected, but it would break within seconds, which suggests draw resonance as a possible breach mechanism. A draw resonance is a dynamic instability that results in cohesive or other break after a few seconds. A small defect or overthinned section in the jet travels forward into the regeneration bath. There, it undergoes excessive plastic deformation in draw. Consequently, the newly extruded portion of the jet right before it on the spinline is stretched.

Solvent	\(d_s \)	\(T_{\text{extr}} \)	\(T_{\text{reg}} \)	\(D_{\text{max}} \)	Titer	Tenacity
[DBNH]OAc	100	70	15	7.5	3.0±0.9	38.5±8.4
NMMO·H\(_2\)O	100	95	15	6.2	3.7±0.7	31.2±6.6
[TMGH]OAc	100	80	15	2.0	15.5±0.9	10.9±1.1
[emim]OAc	250	90	45	2.9	44.4±1.7	13.9±1.6
\(d_s \)	spinneret diameter; \(T_{\text{extr}} \), extrusion temperature; \(T_{\text{reg}} \), regeneration bath temperature; \(D_{\text{max}} \), highest draw ratio spun.					
with less force, and it remains thicker than intended. The thicker part travels forward, being stretched less than usual, transmitting more force upstream from the godet toward the extruder and causing another over-thinning cycle. The resonance will eventually lead to a break within a few cycles, which is what is observed in practice for [TMGH]OAc.25, 41 [emim]OAc (70 °C) underwent obvious telescope-type breach: the skin ruptured, causing a visually apparent necking deformation several centimeters long, leading to a filament break.

Resilience of the partially regenerated dopes

When the jet enters the bath, water diffuses radially inwards. The hydration of the ionic liquid causes the desolvation and regeneration of the cellulose into a hydrated cellulose gel, which further gains permanent strength on drying. The rheology changes from that of the dope into a strong gel. However, the rheology of the intermediate, partially hydrated states is an open question, and phenomena that could weaken the filament could occur. Therefore, strain at yield and gel strength were measured for samples of dopes hydrated by 0.5–5 eq. water, and the gel resiliences calculated (Fig. 3). Yield strain is 200–400% for unregenerated dopes, but ca. 100% and 0.5–5 eq. water, and the gel resilience minimum at this range (SI, Fig S7), and the resilience minimum largely constant for dopes with 0.5 eq. water or more. While gel strengths are monotonically rising, resiliences display an intermediate minimum at 0 to 1–2 water equivalents in the IL dopes (Fig. 3). For [emim]OAc, even the gel strength has a minimum at this range (SI, Fig S7), and the resilience minimum is very low.

Diffusion of water

Diffusion of water into the IL solution was found to follow Equation 2 accurately (Fig. S5) implying a constant D_{water} with 0.5–0.9% error in the fit. It was smaller for [emim]OAc dopes than for [DBNH]OAc and [TMGH]OAc dopes (Table 3).

Strength of the incipient filament

Incipient filament strength can be predicted by calculating the distribution of water from the water diffusion constants D_{water}, then mapping the rheological strength data to the water content distribution of a filament at each time point and corresponding depth in the bath. Results of the simulation are presented in Fig. 4. These are minimum strengths, as the rheological data used to predict them has not been collected on a stretched jet, but on unstretched solutions with no induced orientation. Also, they do not reach final fiber strengths, because fiber strength is further increased in the drying step by crystallization. [TMGH]OAc, NMMO and [DBNH]OAc reach high strengths faster than [emim]OAc, although the final strength for [DBNH]OAc is lower. For a constant D_{water}, the depth where regeneration is complete is independent of D_{IL} i.e. v_e at a constant v_w, but depends linearly on v_w, D_0 and D_{water}^{-1} (see SI for analytical derivation).

Thus, the length of the section with incomplete regeneration is longer for an [emim]OAc incipient filament, as compared to other solvents. However, the total strength increases monotonically (Fig. 4). This is even the case for [emim]OAc, because the formed skin contributes much more to the total strength than the weakened core reduces it. Thus, [emim]OAc incipient filaments reach good strengths within centimeters, well before the guide, which would suggest stable spinning also for [emim]OAc. There is also a radial variation in the incipient filament structure. For other ILs, the gel strength monotonically increases as a function of water content, but for [emim]OAc it does not. For [emim]OAc, although the incipient filament does have a strong skin, the resilience in the core is very low at around 300 mm (Fig. 5). Both yield strain and stress decrease at 0.5 $n_{\text{H}_2\text{O}}/n_{\text{IL}}$, giving a tensile resilience of only 6.1 kPa, lower than the resilience before hydration (44 kPa) or resilience at 1.0 $n_{\text{H}_2\text{O}}/n_{\text{IL}}$ (84 kPa). The same behavior does appear for other ILs, but in a less dramatic way (see Fig. 1).
According to Chen et al. (2010), breaks begin in the center of a cylinder. The hydration front of weak material moves inward radially and reaches the center. There, a telescopic-type breach is initiated: failure of the core overstrengths the partially regenerated skin, which ruptures, leading to progressive thinning and ultimately to a breach. This has been previously observed in wet spinning. In a classical telescope breach, coaxial layers of different speed or composition in the jet separate, which requires high deformation rates. In here, the incipient filament is unstable because on excess thinning, the fluid core is compressed. The pressure translates to flow away from the thin section, which results in even more thinning, making the system dynamically unstable.

In principle, the solution could be spinnable if mixed already with 0.5–1.0 eq. water, so that its increase in strength is monotonic with higher water content. This would avoid the problem of a weaker core. Unfortunately, however, adding 0.5 or 1.0 \(n_{\text{w}0} \) to the dope did not make it spinnable. The solution viscosity decreased, and when spinning at the equivalent viscosity point of 40–50 °C, the incipient filament was still too weak. Therefore, spinning was done with a 250 \(\mu \text{m} \) spinneret to get \([\text{emim}]\text{OAc}\) reference fibers. For \([\text{TMGH}]\text{OAc}\), there are no problems with strength or resilience, and other reasons for its poor spinnability must be sought.

Diffusion of ionic liquid and washing the filament

Diffusion of IL into the aqueous phase was measured. The single \(D_{\text{IL}} \)-value assumption causing a constant effective diffusion constants according to Crank (1975) or its approximations do not fit our data. Instead, we solve the differential diffusion equation numerically allowing for a \(D_{\text{IL}} \) that varies with water content from \(D_{\text{IL},i} \) to \(D_{\text{IL,f}} \). Diffusion constants are functions of microviscosities, thus the true diffusion constant should be a function of water content. Since calculating diffusion constants merely from the amount of exuded material is an ill-posed inverse problem, the function \(D_{\text{IL}}(x_w) \) cannot be calculated exactly. Instead, an assumed, but physically reasonable \(D_{\text{IL}}(x_w) \) function shape is employed. We assume a threshold water content below which \(D_{\text{IL}} = 0 \), followed by the following equation (see SI for derivation):

\[
D_{\text{IL}} = D_{\text{IL,f}} + (D_{\text{IL,i}} - D_{\text{IL,f}}) e^{-\frac{x_w}{c_w}}
\]

Equation 3 is empirical. Although it has no particular \textit{ab initio} physical explanation, it is a continuous, monotonically decreasing curve and without the exponent \(b \), the shape of the curve cannot be changed to fit the data. Time-variable water contents calculated using the known \(D_{w} \) determine the \(D_{\text{IL}} \) according to Eq. 3 at each point in time, thus the diffusion problem is solved for the IL.

Results for the fit are shown in Figs 6–7 and Table 3. For NMMO, Liu and Hu (2006) observed the \(D_{\text{NMMO}}(7 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}) \) and apparent \(D_{\text{NMMO}}(4-8 \times 10^{-11} \text{ m}^2 \text{ s}^{-1}) \) in a spinning apparatus. Our results are in good agreement (7.1 \(\times 10^{-10} \text{ m}^2 \text{ s}^{-1} \) and 5.38 \(\times 10^{-11} \text{ m}^2 \text{ s}^{-1} \), respectively, Table 3). However, only a water content-dependent \(D_{w}(c_w) \) (Fig. 7) gives a good fit to the observed degree of propagation \(X_{\text{IL}}(t) \) (Fig. 6). For each IL, the initial and final IL diffusion constants \((D_{\text{IL,i}} \text{ and } D_{\text{IL,f}}) \) are higher than apparent \(D_{w} \) except for \(D_{\text{IL,f}} \) in \([\text{emim}]\text{OAc}\) and \([\text{TMGH}]\text{OAc}\) dopes.

The solution suggests that the hydration front moves slower than the ionic liquid diffuses behind the hydration front. Likely, the actual \(D_{w} \) also varies with water content. However, \(D_{w} \) for hydrated dopes cannot be directly observed, because the hydration process is slower than the diffusion of either water or IL and consequently rate-limiting. Thus, the hydration controls the rate of diffusion front progression, which our \(D_{w} \) experiment measures. \(D_{w} \) depends on the rate of the hydration reaction. The hydration of all cellulose solvents is thermodynamically favorable, because of the specific inter-
action between the basic cation and amphoteric water. However, the nature of the transition state that controls the rate depends on the identity of the IL and possibly the structure of the solution.

D_0 changes substantially for the good solvents [DBNH]OAc and NMMO across a wide range, but remains nearly constant for [emim]OAc and [TMGH]OAc (Fig. 7). During the regeneration, a gelatinous regenerable polymer network forms. It comprises the main resistance to further diffusion. The IL molecules have similar sizes so the differences must be caused by the differences in gel structure. For [DBNH]OAc the diffusion in the fully hydrated gel is slower than for other solvents, implying the presence of an especially dense, collapsed polymer structure. Whereas, a D_0 that is constant across water contents shows that the microviscosity does not change. This implies the gel network is already in place in the non-regenerated dope and does not physically move during the regeneration, because regeneration is not seen to introduce more resistance to diffusion. In spinning, plastic deformation to align the polymer chains, followed by formation of cohesive intermolecular bonds during drying, is necessary for filament strengthening. A pre-existing gelatinous network impedes both steps and leads to poor spinnability and low fiber strength. This conclusion is supported by both dope rheometry and fiber properties: for [TMGH]OAc the non-regenerated dope is already gelatinous according to rheometry (see SI), while the cellulose chains do not reveal any orientation (see below).

Concerning the practical implications of the results, gel strength experiments (Fig. 5B) suggest that diffusion of ionic liquid out from the fiber is unlikely to be a strength-limiting factor. There are no major changes in strength from 2.5 to 5.0 equivalents added water, which represent regenerated and washed states, respectively. On the spinline, the half-meter submersion length is sufficient to remove 60% of [DBNH]OAc and 90% of other solvents.

Orientation and spinnability

In melt spinning and dry jet-wet spinning, the orientation of polymer molecules provides dynamic stability. Fluctuations in the drawing force are reflected in fluctuations in stress and thus filament strain, causing the formation of thin weak points and destabilization of spinning. However, for a polymer, strain hardening compensates for the loss of strength at the thin sections: the excess stress improves the orientation of stressed jet element. This increases its Trouton viscosity, so that deformation is smaller, and stress is distributed along the filament instead of at a single point. Strain hardening provides negative feedback against rupture.25,44 However, this critically depends on the ability of the polymer solution to gain and retain polymer chain orientation.

The low resilience in [emim]OAc fibers suggests that orientation in [emim]OAc dopes is gained and retained poorly. Orientation may develop only in high extensional shear, therefore the commonly used rotational rheometry with low shear does not reveal this phenomenon. Although the low-shear rheology of [emim]OAc dopes is similar to that of other dopes with good spinnability, [emim]OAc jets remain fluid – like the core of viscose fiber – due to their lower D_0 and melting point, both before and in the bath. For [TMGH]OAc, gel-like behavior suggests that the solution behaves as a permanent network whose orientation is low at D_0 2. In such systems, any disturbance can causes ruptures or draw resonance.23

Fiber properties do confirm the hypothesis (Figs. 8–9). For [DBNH]OAc and NMMO-H$_2$O, birefringence is high from the start, and levels off at D_0 3–5. [Emim]OAc gains orientation at the same rate, but has low birefringence at D_0 1, and can only reach $\Delta n = 0.0270\pm0.0007$ (43.6±1.2% orientation) at D_0 3 where it breaks. No reaction to polarized light, and thus no birefringence was found for [TMGH]OAc at D_0 2. The dry-wet modulus ratio (DWMR), which is a measure of orientation of amorphous domains, is illustrated in Fig. 9.21,28 Again, [DBNH]OAc and NMMO-H$_2$O give identical results, while [emim]OAc and [TMGH]OAc filaments have obviously lower orientations.

In terms of strength, [TMGH]OAc fibers combine low tenacity (10.9±1.1 cN/tex) with a moderate elongation at break (9.3±1.0%), which also supports the conclusion of a broken fiber structure with an interrupted load path. Whereas, at D_0 2, [emim]OAc fibers (spun with a 250 µm spinneret) have the same tenacity (11.6±0.7 cN/tex) with a very high elongation at break (41.0±3.8%), suggesting an amorphous but solid structure. NMMO and [DBNH]OAc have good tenacities (24.6±3.4 cN/tex at D_0 2 and 35.1±4.4 cN/tex at D_0 3, respectively).

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 7
respectively) with moderate elongations at break (9.9±2.3% and 9.7±1.2%, respectively), suggesting a strong, well-oriented structure. (See SI, Table S3 for all fiber strength data.)

Conclusions

Spinning experiments showed that cellulose solutions in [emim]OAc (15% cellulose) and [TMGH]OAc (13%) are poorly spinnable, while those in [DBNH]OAc and NMMO (13%) can be spun with high draw ratios (D₀ ~12.5) with a 100 µm spinneret. In dope samples, the diffusion constants of [DBNH]OAc and NMMO-H₂O were initially high and fell by 93% and 77% respectively within the first 20 m-% of hydration, which suggests that a strong intermolecular network forms during regeneration. For [emim]OAc, the fall was less pronounced at 55% and occurred within 5 m-%. In contrast, the diffusion constant of [TMGH]OAc was constant across water contents, suggesting that [TMGH]OAc solutions are gelatinous, poorly mechanically orientable networks before and during regeneration. Rheometry revealed that [TMGH]OAc was gelatinous at low shear rates, and as a power-law fluid it was subject to double resonance. ²⁵ [TMGH]OAc fibers prepared at a D₀ of 2 had a low strength (10.9±1.1 cN tex⁻¹) and resilience (0.5±0.29 MJ m⁻³) and a moderate elongation at break (9.3±1.0%). With no measurable birefringence, they can begin. Like viscose filaments, filaments spun from [emim]OAc had low orientation but high elongation, and could be spun only at low draw ratios with a 250 µm spinneret. The gel strength and resilience minimum at 0.5 water equivalents suggests that part of the deformation also occurs in a semi-solidified state. In contrast, [DBNH]OAc- and NMMO-based dopes produced highly oriented fibers at already low draw ratios, their properties improving with D₀. The conclusion is that a good spinning solvent must be also a good solvent whose regeneration solidifies the structure, thus enabling gain and retention of orientation. Gelatinous dopes that already have a gel network before regeneration or dopes that weaken upon the addition of water are poor spinning solvents.

Acknowledgements

The authors wish to thank Tekes – the Finnish Funding Agency for Innovation and Finnish Bioeconomy Cluster FIBIC Ltd. for funding. Arno Parviainen, Dr. Alistair King and Prof. Ilkka Kilpeläinen provided [DBNH]OAc. Filtration and spinning equipment was constructed or modified by Seppo Jääskeläinen and his team.

Notes and references

R. P. Swatloski, S. K. Spear, J. D. Holbrey and R. D. Rogers, Journal of the American Chemical Society, 2002, 124, 4974-4975.
A. Brandt, J. Grasvik, J. P. Hallett and T. Welton, Green Chemistry, 2013, 15, 550-583.
A. A. Aero, A. R. Khokhlov and I. I. Potemkin, The Journal of Physical Chemistry B, 2006, 110, 16205-16207.
X. Gong, S. Frankert, Y. Wang and L. Li, Chemical Communications, 2013, 49, 7803-7805.
X. Gong, A. Kozbial and L. Li, Chemical Science, 2015, 6, 3478-3482.
R. C. Remsing, R. P. Swatloski, R. D. Rogers and G. Moyna, Chemical Communications, 2006, 1271-1273.
T. V. Doherty, M. Mora-Pale, S. E. Foley, R. J. Linhardt and J. S. Dordick, Green Chemistry, 2010, 12, 1967.
L. K. J. Hauru, M. Hummel, A. W. T. King, I. A. Kilpeläinen and H. Sixta, Biomacromolecules, 2012, 13, 2896-2905.
M. Hummel, A. Michud, M. Tanttu, S. Asaadi, Y. Ma, L. K. J. Hauru, A. Parviainen, A. W. T. King, I. Kilpeläinen and H. Sixta, Advances in Polymer Science, Springer Berlin Heidelberg, 2015, 307.
G. Laus, G. Bentivoglio, H. Schottenberger, V. Kahlenberg, H. Kopacka, T. Röder and H. Sixta, Lenzinger Berichte, 2005, 84, 71-85.
G. Jiang, Y. Yuan, B. Wang, X. Yin, K. Mukuzi, W. Huang, Y. Zhang and H. Wang, Cellulose, 2012, 19, 1075-1083.
R. Rinaldi, Chemical Communications, 2011, 47, 511.
H. Sixta, A. Michud, L. Hauru, S. Asaadi, Y. Ma, A. W. T. King, I. Kilpeläinen and M. Hummel, Nord. Pulp Pap. Res. J., 2015, 30, 043-057.
F. M. Hämmrerle, Lenzinger Berichte, 2011, 89, 12-21.
United States Pat., 3,508,941, 1970.
H. P. Fink, P. Weigel, H. J. Purz and J. Ganster, Progress in Polymer Science, 2001, 26, 1473-1524.
G. Viswanathan, S. Murugesan, V. Pushparaj, O. Nalambasu, P. M. Ajayan and R. J. Linhardt, Biomacromolecules, 2006, 7, 415-418.
H. Zhang, Z. G. Wang, Z. N. Zhang, J. Wu, J. Zhang and J. S. He, Advanced Materials, 2007, 19, 698-704.
B. Kosan, C. Michels and F. Meister, Cellulose, 2008, 15, 59-66.
N. Sun, R. P. Swatloski, M. L. Maxim, M. Rahman, A. G. Harland, A. Haque, S. K. Spear, D. T. Daly and R. D. Rogers, Journal of Materials Chemistry, 2008, 18, 283-290.
T. Cai, Y. M. Wang, Y. R. Yang, M. Wei and M. K. Wang, Applied Mechanics and Materials, 2013, 423-426, 370-372.
L. K. J. Hauru, M. Hummel, A. Michud and H. Sixta, Cellulose, 2014, 21, 4471-4481.
A. Ziabicki, Fundamentals of Fibre Formation, John Wiley & Sons, London, 1976.
24 T. Gries, B. Wirth, M. Warnecke, B. Schmenk and G. Seide, *Chemical Fibers International*, 2011, **61**, 38-39.
25 R. J. Fisher and M. M. Denn, *AIChE J.*, 1976, **22**, 236-246.
26 D. R. Paul, *Journal of Applied Polymer Science*, 1968, **12**, 2273-2298.
27 M. Dubé and R. H. Blackwell, *Proceedings of the International Dissolving and Speciality Pulps Conference*, TAPPI, Boston, 1983, p. 111-119.
28 H. A. Coulsey and S. B. Smith, *Lenzinger Berichte*, 1996, **75**, 51-61.
29 O. Biganska and P. Navard, *Biomacromolecules*, 2005, **6**, 1948-1953.
30 R. Liu and X. Hu, *Industrial & Engineering Chemistry Research*, 2006, **45**, 2840-2844.
31 R. Gavillon and T. Budtova, *Biomacromolecules*, 2007, **8**, 424-432.
32 J. Song, B. Cheng, X. Jie, Y. Liang, F. Lu and F. Zhang, e-Polymers, 2011, **11**, 401.
33 V. VanRheenen, D. Y. Cha and W. M. Hartley, *Organic Syntheses*, 1978, **58**, 43.
34 A. W. T. King, J. Asikkala, I. Mutikainen, P. Järvi and I. Kilpeläinen, *Angewandte Chemie*, 2011, **123**, 6425-6429.
35 R. J. Sammons, J. R. Collier, T. G. Rials and S. Petrovan, *Journal of Applied Polymer Science*, 2008, **110**, 1175-1181.
36 M. Castro, D. W. Giles, C. W. Macosko and T. Moaddel, *Journal of Rheology*, 2010, **54**, 81-94.
37 H. J. Walls, S. B. Caines, A. M. Sanchez and S. A. Khan, *Journal of Rheology*, 2003, **47**, 847-868.
38 M. C. Yang, L. E. Scriven and C. W. Macosko, *Journal of Rheology*, 1986, **30**, 1015-1029.
39 X. X. Chen, P. D. Wu, J. D. Embury and Y. Huang, *Modelling and Simulation in Materials Science and Engineering*, 2010, **18**, 025005.
40 L. K. J. Hauru, M. Hummel, A. Michud, S. Asaadi and H. Sixta, *Proceedings of the 7th Aachen-Dresden International Textile Conference*, Aachen, 2013, P7.
41 A. T. Serkov and V. V. Skorobogatykh, *Fibre Chemistry*, 1995, **27**, 413-418.
42 J. Crank, *The Mathematics of Diffusion*, Oxford University Press, Oxford, 2nd edn., 1975.
