Presently all world tendencies of energy are directed on the use and combining of renewable energy sources. Combining of a few renewable energy sources and not renewable results in partial energyindependence. In this work the laboratory setting was investigational on cooling and heating of water. During an experiment principles of Carnot were incorporated, hydrodynamics, recurrent-forward and dynamic compression of gases and many other. The association of a few renewable energy systems offered, here it is evidently rotted on charts, how many sources must be involved for work of the experimental setting. Statements were taken at the different experimental setting work terms for this purpose it was equipped plenty of sensors. Burn-time, pressure, temperature on the different areas of setting controlled remotely, through mobile application. For the constructions and estimation of testimonies mathematical model collection adequacy from sensors changes depending on the temperature indexes of external environment, that requires more detailed supervisions depending on time of year and desired temperature in an apartment, therefore and may need for this research more than year. The conducted experiments allowed to get the approximated information for the construction of pressure festering dependences charts from temperatures: exit from a compressor, from a capillary and, directly in a reservoir with a liquid, and similarly pressure from time of action. A research result was become by the built pressure dependences charts from temperatures on four basic areas of setting. For the estimation of testimonies mathematical model collection adequacy from sensors changes depending on the temperature indexes of external environment, that requires more detailed supervisions depending on time of year and desired temperature in an apartment, therefore and may need for this research more than year. Charts are similarly resulted showing, that with each necessary subsequent start, there are less time for achievement of maximal value of pressure in the system is need. Findings enable to build a mathematical model for the further improvement of setting.

Ключові слова: coolagent of R134a, hydrodynamic setting, kavitation, thermal coefficient, automation, filter-vaporiser, motor-compressor, microcontroller Esp8266 NODEMCU v3, sensor Ds18b20, wattmeter Pzem-021.

Вступ. In this work it is suggested to combine a few systems types, with the further controlled from distance control. We will consider the systems in the differentiated kind. The first is the system of dwelling apartment heating. In heating and cooling System of dwelling apartment — same power and economic expense part of charges in the modern world, a necessity to search the possible resources expenses diminishing ways for the receipt of the same amount of warmth appears therefore. In setting as a working body from which taken off warmly, running water is chosen. Using principle of heat-pump, we take the several of heat and increase it due to work of domestic motor-compressor.[1] The second system is the autonomous power supply system. For compressor work electricity is needed. Adding to the system of a few autonomous energy tipes (for example, sun panels, wind turbines) and accumulator sources is increased by the systems stability work.[2] For evidentness will consider the systems separately. The system, plugging in itself only sun panels for providing of our experimental setting, will plug in itself: 10 sun batteries of Hh–mono–60w by a general area 4,6 m2, accumulator on 200 Ah.

On fig.1 yellow curve it is the produced energy, and dark blue - consumed for a year.

System, plugging in itself only two wind generators Hy–400 in 10 m. high.
On fig.2 blue curve it is the produced energy, and dark blue - consumed for a year.

Combined system, including two sun panels, by an area 0.9 m\(^2\) and one wind generator, that comfortably to place in city boundaries and will not take much place on sizes, will not only produce the necessary amount of energy but also enables to accumulate in an accumulator a two-bit in case of absence of energy sources.[3–10]

As a system for automation temperature testimonies setting and removal, pressure, amount of expended electric power and water - we used Esp8266 NODEMCU v3.

For the removal of testimonies of temperature we used the waterproof sensors Ds18b20, which work in the range of measuring from -55°C to +125°C.

For the removal of testimonies of pressure we used the manometers of pressure on 15 mPa.

We meter reading electric power by Pzem-021 range of power measuring from 0 to 4.5 kW, current strength from 0 to 20 A, energies from 0 to 9999 kW, tension from 80 to 260 V.

For rate-of-flow testimonies removal we used the rate-of-flow sensor, diameter 1/2 inch from Elecrow range of measuring which from 1 to 30 litres.

Also for measuring of ambient Dht22 temperature range of temperature measuring from -40 to 80 °C, range of humidity measuring from 0 to 99.99%.

Programming is carried out on the platform of microcontroller Esp8266 NODEMCU v3, sketches load through Arduino IDE, storage of data and reflection in real time carried out on a base Open Source appendixes of Blynk.
Fig. 5. Results of start 1 – the first cycle; 2 – second; 3 – third
The developed complex of the systems allows to heat and cool an apartment, not dependency upon the source of centralized energy liver disease.

The developed experimental setting was started with the rotor compressor efficiency determination purpose with working coolagent R134a and power 1.2 kW.[13,16] For this purpose during great while from sensors information was taken off and taken in tables. The compressor start was conducted 3 cycles at one bout, every cycles work duration makes 40 minutes, then interruption between cycles on 15. For the estimation of testunities mathematical model collection adequacy from sensors changes depending on the temperature indexes of external environment, that requires more detailed supervisions depending on time of desired temperature in an apartment, therefore and may need for this research more than year. The conducted experiments allowed to get the approximated information for the construction of pressure festering dependences charts from temperatures: exit from a compressor, from a capillary and, directly in a reservoir with a liquid, and similarly pressure from time of action.[17,18]

In part a) on charts presented: red is dependence of pressure from the heater temperature tube to collagents filter-vaporiser, dark blue is dependence of pressure from the temperature of heater tube after collagents filter-vaporiser. In part b) the red is rotation the chart of dependence of pressure from the time of work in hours. Apparently from charts, at achievement of temperature a compressor 70ºC at the first start, the level of pressure remains stable 14 mPa. At subsequent starts, arriving at pressure in 14mPa, we made decision disconnecting by hand from technical descriptions of the used compressor and connecting tubes.

As a result of experiment we succeeded to attain high heat emission of the heated element, that too high expansion of the heated gas appeared weak in it. For the improvement of setting more suitable compressor, able to work on khladagente of other kind, is needed.

Literature

1. Calm J M 2008 The next generation of refrigerants—Historical review, considerations, and outlook International Journal of Refrigeration 31 1123-1133
2. Kulhear, B., Goricanec, D., Kröpe, J. (2008). Economy of exploiting heat from low-temperature geothermal sources using a heat pump. Energy and Buildings, 40 (3), 323–329. doi: 10.1016/j.enbuild.2007.02.033
3. A Polzot, P D’Agaro, G Cortella Energy analysis of a transcritical CO2 supermarket refrigeration system with heat recovery - Energy Procedia, 2017 – Elsevier
4. Поляков И., Чернышов Д., Шевкун А., Швейцер А. и др. «О выборе конструкторских решений при разработке роторно-поршневого компрессора с улучшенным комплексом экологических характеристик» Журнал “Двигателестроение”, № 5, 2004
5. Randhavane, S. B., Khambete, A. K. (2017). Harnessing hydroxyl radicals generated by hydrodynamic cavitation reactor in simultaneous removal of chlorpyrifos pesticide and COD from aqueous solution. DESALINATION AND WATER TREATMENT, 82, 346–354. doi: 10.5004/dwt.2017.20965
6. URL: http://www.helios-house.ru/on-line-kalkulyator.html
7. Won, S. P. (2012). Performance Analysis of an Air-Cycle Refrigeration System. Korean Journal of Air-Conditioning and Refrigeration Engineering, 24 (9), 671–678. doi: 10.6110/kjace.2012.24.9.671
8. Блинова Н.П., Левченко Г.Н., Мякников В.А., Янович К.В. (2018) СИСТЕМЫ ЧАСТОТОГО РЕГУЛИРОВАНИЯ КАК КОМПОНЕНТЫ СИСТЕМ АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ НАУКА И ВОЕННАЯ БЕЗОПАСНОСТЬ Федеральное государственное казенное военное образовательное учреждение высшего образования ”Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева” Министерство обороны Российской Федерации (Омск), (1,2)
9. Прилуцкий И. К. Метод определения мгновенных локальных коэффициентов теплоотдачи в элементах ступеней машин объемного действия. // Технические Газы. 2013. № 4. с. 19-26.
10. Mohanraj M, Jayaraj S and Muraleedharan C 2008 Comparative assessment of environment-friendly alternatives to R134a in domestic refrigerators Energy Efficiency 1 189-198
11. Amin, L. P., Gogate, P. R., Burgess, A. E., Bremner, D. H. (2010). Optimization of a hydrodynamic cavitation reactor using salicylic acid acid dosimetry. Chemical Engineering Journal, 156 (1), 165–169. doi: 10.1016/j.cej.2009.09.043
12. Danfoss builds heat pump portfolio. (2006). Pump Industry Analyst, 2006 (7), 11. doi:10.1016/s1359-6128(06)71441-0
13. Wei, J., Kawaguchi, Y., Hirano, S., & Takeuchi, H. (2004). Study on a PCM Heat Storage System for Rapid Heat Supply. Heat Transfer, Volume 1, 267–274. doi: 10.1115/imece2004-61025
14. CHEN, Y., DING, G., SHI, Y. (2009). C303 A new technology coupling with heat pump water heat, dehumidification and refrigeration (Heat Pump-1). The Proceedings of the International Conference on Power Engineering (ICOPE), 2009.3, 3-151–3-156. doi: 10.1299/jsmeicope.2009.3. 3-151
15. Glatzmaier, G. A. (2017). Magnetic Field. Princeton University Press. doi: 10.23943/princeton/9780691141725.003.0011
16. Pace, M. E. (2004). LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS. doi: 10.2172/820866
17. Siang J T and Sharifian A 2017 Extending the Capillary Tube of a Propane Air-conditioner to reduce the Refrigerant Charge Energy Procedia 110 229-234
18. Kim, J.-H.; Seong, N.-C.; Choi, W. Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm. Energies 2019, 12, 2860.

References
1. Calm J M 2008 The next generation of refrigerants–Historical review, considerations, and outlook International Journal of Refrigeration 31 1123-1133
2. Kulcar, B., Goricanec, D., Krope, J. (2008). Economy of exploiting heat from low-temperature geothermal sources using a heat pump. Energy and Buildings, 40 (3), 323–329. doi: 10.1016/j.enbuild.2007.02.033
3. A Polzot, P D’Agaro, G Cortella Energy analysis of a transcritical CO2 supermarket refrigeration system with heat recovery - Energy Procedia, 2017 – Elsevier.
4. Pyatov I., Chernyshov D., Shevkun I., Shevejcer A. dr."O vybore konstruktorskih reshenij pri razrabotke rolnichh gazov. // Tekhnicheskie Gazy. 2013.
5. Blinova N.P., Levchenko G.N., Pyatov I., Chernyshov D., Shevkun I., Shvejcer A. dr.«O vybore konstruktorskih reshenij pri razrabotke rolnichh gazov. // Tekhnicheskie Gazy. 2013.
6. Randhavane, S. B., Khambete , A. K. (2017). Harnessing hydroxyl radicals generated by hydrodynamic cavitation reactor in simultaneous removal of chlorpyrifos pesticide and refrigerant from water. Journal of Hazardous Materials, 329. doi: 10.1016/j.enbuild.2007.02.033
7. Won, S. P. (2012). Performance Analysis of an Air-Cycle Refrigeration System. Korean Journal of Air-Conditioning and Refrigeration Engineering, 24 (9), 671–678. doi: 10.6110/kojac.2012.24.9.671
8. Blinova N.P., Levchenko G.N., Myasnikov V.A., Yannovich K.V. (2018) SISTEMY CHASTOTNOGO REGULIROVANIYA KAK KOMPONENTY SISTEM AVTOMATIZIROVANNOGO UPRAVLENIYa NAUKI I VOENNYA BEZOPASNOST Federalnoe gosudarstvennoe kazennoe voennoe obrazovatelnoe uchrezhdenie vysshego obrazovaniya "Voennaya akademiya materialno-tehnichestkogo obespecheniya imeni generala armii A.V. Hruleva" Ministerstvo obrony Rossiskoi Federatsii (Omsk), 1(12)
9. Prolucki J. K. Metod opredeleniya mognovnych lokalnych koefficentov teplootdachi v elementah stupeney mashin obemnego deistviya. // Tehnicheskie Gazy. 2013. № 4. s. 19-26.
10. Mohranj M, Jayaraj S and Muraleedharan C 2008 Comparative assessment of environment-friendly alternatives to R134a in domestic refrigerators Energy Efficiency 1 189-198
11. Amin, L. P., Gogate, P. R., Burgess, A. E., Bremner, D. H. (2010). Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry. Chemical Engineering Journal, 156 (1), 165–169. doi: 10.1016/j.cej.2009.09.043
12. Danfoss builds heat pump portfolio. (2006). Pump Industry Analysts 2006 (7), 11. doi:10.1016/s1359-6128(06)71441-0
13. Wei, J., Kawaguchi, Y., Hirano, S., & Takeuchi, H. (2004). Study on a PC M Heat Storage System for Rapid Heat Supply. Heat Transfer, Volume 1, 267–274. doi: 10.1115/imece2004-61025
14. CHEN, Y., DING, G., SHI, Y. (2009). C303 A new technology coupling with heat pump water heat, dehumidification and refrigeration (Heat Pump-1). The Proceedings of the International Conference on Power Engineering (ICOPE), 2009.3, 3–151–3–156. doi: 10.1299/jsmeicope.2009.3, 3-151.
15. Glatzmaier, G. A. (2017). Magnetic Field. Princeton University Press. doi: 10.2172/820866
16. Pace, M. E. (2004). LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS. doi: 10.2172/820866
17. Siang J T and Sharifian A 2017 Extending the Capillary Tube of a Propane Air-conditioner to reduce the Refrigerant Charge Energy Procedia 110 229-234
18. Kim, J.-H.; Seong, N.-C.; Choi, W. Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm. Energies 2019, 12, 2860.

Асманіків А.А., Лорія М.Г., Целіщев О.Б., Купіна О.А. Дослідження і розробка ступіньчастої теплонасінної установки з гідродинамічним пристроєм квазі-комплексі систем

В даній статті зосереджено розглянути принципи роботи, компоненти і основні параметри ступіньчастої теплонасінної установки з гідродинамічним пристроєм квазі-комплексі систем.

Для отримання максимально можливої кількості витрати енергії, це потребує розробки методів, зокрема, розроблення алгоритмів контролю вводу та виходу різних видів енергії, що викликає необхідність додаткової експериментальної роботи. В цій статті досліджено перспективи розвитку гідродинамічних пристроїв для ступіньчастої теплонасінної установки, що призначено для лабораторних досліджень.

Для отримання максимально можливої кількості витрати енергії, це потребує розробки методів, зокрема, розроблення алгоритмів контролю вводу та виходу різних видів енергії, що викликає необхідність додаткової експериментальної роботи. В цій статті досліджено перспективи розвитку гідродинамічних пристроїв для ступіньчастої теплонасінної установки, що призначено для лабораторних досліджень. добликово учтеною дослідженою великою кількістю даних. Час роботи, також, є важливим параметром для розробки експериментальної установки.

- Результатами дослідження стали побудований гідродинамічний комплекс даних для побудови гідродинамічних моделей залежностей навантаження витрати та теплометрії, що викликає необхідність додаткової експериментальної роботи.

Ключові слова: хладагент R134a, гідродинамічна установка, тепловий коефіцієнт, автоматизація, фільтр-осушувач, мотор-компресор, мікрооброблявач Ex8266 NODEMCU v3, датчик Ds18b20, ватметр Ретем 021.
Асманкина А.А., Лория М.Г., Целищев А.Б., Купина О.А. Исследование и разработка ступенчатой теплонасосной установки с гидродинамическим кавитационным устройством в комплексе систем

В настоящее время все мировые тенденции энергетики направлены на использование и комбинирование возобновляемых источников энергии. Комбинирование нескольких возобновляемых источников энергии и не возобновляемых приводит к частичной энергоэффективности. В данной работе была исследована лабораторная установка по охлаждению и нагреву воды. В ходе эксперимента были объединены принципы Карно, гидродинамики, возвратно-поступательного и динамического сжатия газов и многие другие. Предлагается объединение нескольких систем возобновляемой энергии, при этом наглядно показано на графиках, сколько источников необходимо задействовать для работы экспериментальной установки.

Были сняты показания при различных условиях работы экспериментальной установки, для этого она была оснащена большим количеством датчиков. Время работы, давление, температура на разных участках установки контролируются дистанционно, при помощи мобильного приложения. Для построения и оценки адекватности математической модели сбор показаний с датчиков меняется в зависимости от температурных показателей внешней среды, что требует более детальных наблюдений в зависимости от времени года и желаемой температуры в помещении, поэтому и понадобилось для этого исследования более года. Проведенные эксперименты позволили получить аппроксимируемые данные для построения графиков зависимости насыщения давления от температуры: выхода из компрессора, из капилляра и непосредственно в резервуаре с жидкостью, а так же давления от времени действия.

Результатом исследования стали построенные графики зависимости давления от температур на трех основных участках установки. Так же приведены графики показывающие, что с каждым последующим запуском необходимо меньше времени для достижения максимального значения давления в системе. Полученные данные дают возможность построить математическую модель для дальнейшего улучшения установки.

Ключевые слова: хладагент R134a, гидродинамическая установка, тепловой коэффициент, автоматизация, фильтр-осушитель, мотор-компрессор, микроконтроллер ESP8266 NodeMCU v3, датчик DS18B20, ваттметр PZEM-021.

Лория Марина Генадиевна — д.т.н., доцент кафедры электронных аппаратов, Східноукраїнського національного університету ім. В. Далі Асманкіна Анастасія Анатоліївна — аспірант кафедри електронних апаратів, Східноукраїнського національного університету ім. В. Далі.

Целищев Олексій Борисович — д.т.н., проф., директор Інституту міжнародних відносин, Східноукраїнського національного університету ім. В. Далі Купина Оксана Анатоліївна — аспірант кафедри електронних апаратів, Східноукраїнського національного університету ім. В. Далі kupina@ukr.net

Стаття подана 12.02.2020 р.

ESP8266 NodeMCU v3, PZEM-021.