Methods of Measuring and Mapping of Landslide Areas

Izabela Skrzypczak 1, Wanda Kokoszka 1, Janusz Kogut 2, Grzegorz Oleniacz 1
1 Rzeszow University of Technology, 35-211 Rzeszow, Powstancow Warszawy 12, Poland
2 Cracow University of Technology, 31-155 Cracow, Warszawska 24, Poland
izas@prz.edu.pl

Abstract. The problem of attracting new investment areas and the inability of current zoning areas, allows us to understand why it is impossible to completely rule out building on landslide areas. Therefore, it becomes important issue of monitoring areas at risk of landslides. Only through appropriate monitoring and proper development of measurements resulting as maps of areas at risk of landslides enables us to estimate the risk and the relevant economic calculation for the realization of the anticipated investment in such areas. The results of monitoring of the surface and in-depth of the landslides are supplemented with constant observation of precipitation. The previous analyses and monitoring of landslides show that some of them are continuously active. GPS measurements, especially with laser scanning provide a unique activity data acquired on the surface of each individual landslide. The development of high resolution numerical models of terrain and the creation of differential models based on subsequent measurements, informs us about the size of deformation, both in units of distance (displacements) and volume. The compatibility of the data with information from in-depth monitoring allows the generation of a very reliable in-depth model of landslide, and as a result proper calculation of the volume of colluvium. Programs presented in the article are a very effective tool to generate in-depth model of landslide. In Poland, the steps taken under the SOPO project i.e. the monitoring and description of landslides are absolutely necessary for social and economic reasons and they may have a significant impact on the economy and finances of individual municipalities and also a whole country economy.

1. Introduction
The problem of attracting new investment areas and the inability of current locations are associated with the desire to use for development of all hazardous location area. One way of attracting new investment areas is the development of landslide areas. Landslides are natural processes of the soil and rock movement, either natural or anthropogenic, the consequences of which threaten property, health and life of people.

In recent years, there is an increase of landslide risk observed, which is associated mostly with the fact that there is a considerable development of areas at risk of landslides. This is the result, on one hand, the inability to recognize by the investors these types of threats, on the other hand, the lack of attractive both economically and touristic areas for land use planning.

2. Land use planning and landslides
The main factor in the planning and spatial management of landslide areas seems to be the division based on landslide activity, understood as behaviour of the masses of soil and rock defined as a function of time. A major criterion for the planning and zoning landslide areas seems to be dividing them based
on their activity, understood as the behaviour of the masses of rock or soil specified in relation to time. Due to these characteristics landslides are divided into:

- periodically active (periodic) landslide - a landslide within which active symptoms occur at irregular intervals, over the last 50 years,
- continually active (chronic) landslide - a landslide that are in constant motion, until they reach static equilibrium of the slope,
- inactive (stabilized) landslide - a landslide without observed and documented signs of activity for at least 50 years.

However, it raises the question whether the return period of fifty years is sufficient to consider the area as safe. In the municipality of Strzyżow (Subcarpathian Voivodeship) it came to the demolition of the houses that were built just on former landslide areas considered already as stable (Figure 1a and 1b). Hence, so important it is the aspect of recognition through proper monitoring areas at risk of landslides.

![Figure 1a. Examples of the effects of the damage associated with activation of landslide [4]](image1)

![Figure 1b. Examples of the effects of the damage associated with activation of landslide [4]](image2)
Neither landslide phenomena may be predicted, nor we effectively counteract them in many cases. Usually, the main factors causing the movement of earth masses belong to the group of non-anthropogenic factors. Very important aspect in the management of landslide areas is the awareness of citizens and local authorities. It allows us to minimize the damage caused by sudden and unpredictable movements of the ground. Preventive steps include the creation of an efficient system of information on landslides. Proper use of areas vulnerable to landslides soil and rock masses, control and monitoring of the negative impact of rainwater and groundwater, as well as mechanical rock and soil improvement may contribute to this as well [1-3].

Primary source of information on landslides, which will be used in the planning process, is currently developed by the Polish Ministry of Environment order. It results as SOPO project - System Guards Against Landslides [http://geoportal.pgi.gov.pl].

The primary objectives of mentioned above nationwide project are identification, documentation and application on the map in the scale of 1:10000 all landslides and areas potentially at risk of soil and rock movements in Poland. Also the establishment of surface and subsurface monitoring systems on one hundred selected landslides is expected. The end of the project, which has been conducted for four years, is foreseen for year 2016.

The results of the project are to help reduce the damage and destruction caused by landslides. Implementation of the tasks provided for the schedule of the project is to assist local authorities in fulfilling obligations concerning the issue of soil and rock movements under the relevant laws and regulations acts.

3. Monitoring of landslides

The Regulation of the Minister of Environment of June 20, 2007 on the information regarding the mass movements of the earth imposed on us the necessity of monitoring areas where there were and there are mass movements that may cause or result in a direct threat either to people’s lives, or technical or communication infrastructure [5, 6].

That monitoring is based on the measurement of soil surface movement in order to determine the speed and character of displacements and should be implemented in particular using surveying methods. When monitoring of the surface is not sufficient enough to determine the rate and range of the earth masses movement, it is recommended to monitored subsurface layers of the earth downhole measuring the movement of the earth masses in order to identify the number, type and depth of the slip sections of the soil or soft rocks.

In accordance with the Regulation, monitoring is carried out at least twice a year (in the periods March-April and September-October) and each time after the occurrence of extreme natural phenomena, that may cause mass movements of the earth. The results of the monitoring of prescribed Regulation should be introduced to the Register, which is kept as electronic database and includes:

- graphical data in the form of maps of areas at risk, drawn up in spatial information system GIS, made on the backing sheet topographic map scaled of 1: 10,000,
- a registration card of area threatened by the mass movements of land or a landslide.

The system for landslides monitoring, according to the Instruction to develop Maps of landslides and areas endangered by mass movements on a scale of 1: 10,000, should include four phases: design, field works associated with the installation of the measuring system, monitoring (measurements) and the documentation [7, 8]. The project should include the scope and methods of monitoring of earth surface, as well as the depth inside the landslide. Field works of the surveying maps include the implementation of situational and altitude map, and stabilization of the measurement points, and the installation of instruments to observe the landslide. The surface monitoring is usually performed using the following methods: GPS measurements, classic methods of surveying, terrestrial laser scanning, airborne laser scanning, satellite radar interferometry and photogrammetric methods.
The surface monitoring performed by the classical methods of surveying is carried out on the basis of stabilized grid of measurement points within the landslide. Measurement points should be located in areas with the largest activity of landslides and simultaneously satisfy the condition of durability of the foundation, which allows multiple measurements. The measurement point for surface monitoring should be located so as to enable the measurement of the X, Y, Z coordinates by the methods set out in the project. Additionally, either three reference points, or three 3rd class points located outside the area covered by the motion the landslide, in respect of which, the measurements will be carried out, should be selected.

As part of the third phase monitoring can be carried out by the methods of classical surveying, or with the use of GPS equipment. Classical surveying (direct measurements) is based on a network of points stabilized on the surface and monitoring points located into the depth. Measurements should be done at least three times a year, and the measurement results should be summarized in tabular form giving the coordinates X, Y, Z. Monitoring of with the use of GPS equipment should be made by the static method with determination of basis points.

The interpretation of stereoscopic aerial photographs has been for years a standard method used to initial recognition of landslide range. Recent years have brought new technological solutions that provide additional capabilities in the analysis of digital aerial photographs. Digital photogrammetric stations offer new tools to generate high-rise photogrammetric models of terrain based on stereo pairs of aerial photographs. The use of archival stereo pairs of aerial photographs allows us to trace the movement of landslides over the years. It also allows to calculate the volume of rock masses displaced at a specified time and to determine the dynamics of movements. Unfortunately, sometimes aerial photographs are of limited use in analysing of the terrain, especially for areas covered with forests.

The technique of Airborne Laser Scanning (ALS) is successfully applied in recent years. The result of ALS is a cloud of points, which accurately depicts the outline of objects being scanned. By filtering of the cloud one may receive digital terrain model devoid of errors due to masking action of vegetation.

A new quality of landslide monitoring is provided by the data derived from Airborne Laser Scanning and satellite radar interferometry. Both methods allow us observation of large areas with a very high accuracy.

An extremely useful method in the diagnosis of the detailed structure of the landslide is a geophysical method called Electrical Resistivity Tomography (ERT). It allows interpretation of lithology of colluvium of landslide and its substrate. Using this method, one may also recognize the water-bearing zones and to estimate the maximum thickness of colluvium, as well as the depth of occurrence of the slip sections.

According to the manufacturer (IDS) [9] one of the basic directions of use of radar interferometric (IBIS-L and IBIS-M) is the detection, monitoring and prediction of instability of slopes, embankments of settlers and deformation of soil surface and buildings in the areas of mining activity. The instrument of IBIS system allows us for remote, non-contact measurement of unattainable in the current practice precision and frequency. The basis of the device is working in the permitted in European Union Ku-band (17.2 GHz) radar, using previously reserved only for the satellite measurements so called Synthetic Aperture Radar (SAR). Radar emits in the direction of the object a coherent beam of electromagnetic radiation at very low power step-variable frequency and direction by Steeped Frequency Continuous Wave (SFCW), and then receives, registers and analyses signal reflected. A built-in interferometric device performs precise measurement of phase change of the reflected signal relative to the transmitted signal, and allowing for the measurement of displacement of the testing object with a resolution of less than 0.1 mm, while the testing object may be located at a distance up to 5.00 km from the instrument [10, 11]. The combination of SAR and SFCW techniques allows the system to resolve the two-dimensional power map [12, 13].

3.1. Monitoring of landslides in the SOPO project
Landslide monitoring in the framework of SOPO project - System Guards Against Landslides is performed by several methods of measurements: monitoring of surface (GNSS measurement and laser
scanning), monitoring in-depth (inclinometer measurements) and monitoring of the hydrological changes and precipitation (measuring changes in water-table and rainfall). In addition, the scope of observation is carried out with supplementary examinations, including the work of mapping, surveying, laboratory tests, the micro-paleontological study and geophysical surveys.

For proper implementation of the surface observation there have been made stabilization points. These works included the establishment of observation network in each of the monitored landslide. These networks done consist on average (depending on the size of the landslide) of twelve permanently stabilized surveying points, measured using precise GPS receivers. A total of 712 points have been stabilized. Some of these points has been completely destroyed or damaged and the network has been complemented or restored during the time of complementary work, but some points, which were destroyed during agricultural work, have not been restored.

In order to achieve geological and monitoring objectives the drillings of boreholes within landslides were performed. Each drilling was performed with the diameter of 132 mm for installation of inclinometers and piezometers and a solid core has been pulled out. During the drilling works, there were performed as well: a description of cores with a special emphasis on follow slip surface, core sampling for laboratory tests (geotechnical analysis) and micro-paleontological, as well as photographic documentation. A total number of 214 boreholes, including 108 inclinometers and 106 and piezometric boreholes have been done. Measurement system for downhole monitoring supplements 15 holes acquired from the local and government units.

Monitoring of hydrogeological and precipitation was based on the measurements of changes in the water table and rainfall. The data collectors Keller’s DCX-22 AA and STS BXO-57 measures and registers ground water table levels. As part of phase II of SOPO Project there were prepared in this way 92 measuring boreholes. This measurement system for landslides is complemented with 47 hourly recorded rain gauges (A-ster TPG-036-NH) synchronized with the water table data collectors. Considering the close neighbourhood of monitored objects, some of rain gauges support several landslides. These data are supplemented by the results of measuring from the permanent station belonging to IMiGW [14].

4. Cartographic software in the SOPO project
In the last 30 years many different mapping techniques have been implemented and used for the cartographic representation of slope movements. A great variability in scale and mapping procedures exists: choice of type and scale of the map depends in fact on many factors, and primarily on the requirements of the end user, and the ultimate purpose of the investigation.

The main objective of the SOPO project is to develop a procedure for calculating digital elevation models (DEM) as closely depicting the surface morphology of landslides. Calculations are performed for the area scanned using the available software. The various programs have different setting options of input parameters, which define the detection points on the ground and various methods of classification. The most commonly used software are (software used in the methodology of processing cloud of points): ENVI LIDAR, Globar Mapper – LIDAR Module, Grass, InphoDTMaster, LasTools, LP360, Riscan Pro, SCOP, GeoLisp, Matlab.

The software discussed now includes procedures for forecasting and measuring of slopes and landslides. Figures 2a, 2b, 2c present the results of data processing and measurements of deformation of landslides and slopes of Strzyzów municipality [15, 16].

During the study and examination of the data there were requirements and limitations of available software, which contributed to the disqualification, among others, such programs as Grass and Riscan PRO. These version of programs were not enough efficient for data processing from large areas.

The verification stage of digital elevation models was made by the cross-referencing of DEM. In addition to the data calculated using software listed in Table 1, DEM were included based on data provided by ISOK and GUGiK in ‘xyz’ format at a resolution of 1.0 m, and DEM were calculated from cloud of points classified by ISOK. In addition, the analyses included hybrid solutions. All DEM were
calibrated to equal resolution of 0.25 m and interpolated with one method (TIN). The interpolation method was chosen experimentally.

As the result of verification there is the ranking of classification and laser data interpolation methods provided. It determines the most suitable solutions for computing carry out further analyses in defined areas of research, and identifies problems to be solved in future field verification.

Legislation procedures implemented after the "Landslide disaster" in year 2000, required from the local administration in Poland not only the observation of areas at risk of mass movements, but also to collect data on these areas in the form of a database compiled GIS information system.

Figure 2a. Surface of the Strzyżów municipality made in GeoLisp software

Figure 2b. Profile line of the Strzyżów municipality made in GeoLisp software
Figure 2c. Examples of numerical model of the Strzyzów municipality made in GeoLisp software

These data, in the form of Map of Landslides and Endangered Areas (MOTZ) in scale of 1:10 000, might be a source of spatial information enabling predictions of mass movements occurrences. Maps of landslides and areas endangered by mass movements are the most important graphical products of SOPO project and the most frequently used by the public (Figure 3).

Figure 3. Areas covered by the program - System Guards Against Landslides [14]
They present spatial range and the degree of activity of landslides along the main elements of the shape and location of the landslide and the areas of potentially at risk of mass movements. The scale of these maps 1:10,000 allows using them, among others, in the study of local conditions, and spatial development plans at the municipal level, and also in decision-making process for the building conditions.

Each documented landslide has developed a registration card landslide (KRO), while each risk area for mass movements of the earth - a registration card of area endangered by mass movements (KRTZ). The data compiled in the cards contain the characteristics of landslides or land threatened mass movements of the earth. Data include administrative, geographical, geological, hydrographic, geomorphological, genetic, morphometric and economic details and the information on the damage caused by the landslide and potential hazards as a result of further development of the landslide. The data collected during the field works and subsequent analysis (i.e. analysis of geological maps, aerial photos and terrain models). The scope and layout of data included in KRO and KRTZ cards comply with the requirements set out in the Regulation of the Minister of the Environment of 20 June 2007 on the information regarding the mass movements of the earth (Dz. U. 2007 121 840) [5] already mentioned.

5. Results and discussions
The steps taken under the SOPO project i.e. the monitoring and description of landslides are absolutely necessary for social and economic reasons and they may have a significant impact on the economy and finances of individual municipalities and also a whole country economy.

All maps, including the simplest landslide inventory map, provide important information to anybody involved in land use management and planning. However, there still is a strong need toward fully reliable and accurate cartographic products to be effectively used for assessing the landslide hazard and reducing the damage related to slope movements. This requires further work and efforts, mostly aimed at tilling the gap existing between researchers and administrators.

6. Conclusions
The results of monitoring of the surface and in-depth of the landslides are supplemented with constant observation of precipitation. The previous analyses and monitoring of landslides show that some of them are continuously active. GPS measurements, especially with laser scanning provide a unique activity data acquired on the surface of each individual landslide. The development of high resolution numerical models of terrain and the creation of differential models based on subsequent measurements, informs us about the size of deformation, both in units of distance (displacements) and volume.

The compatibility of the data with information from in-depth monitoring allows the generation of a very reliable in-depth model of landslide, and as a result proper calculation of the volume of colluvium. All software presented here are a very effective tool to generate in-depth model of landslide.

References
[1] S. Bielski, “Slope stability” [online]. http://www.mikropal.pl/statecznosc-zboczy.html [access:01.02.2013]
[2] L. Bober, “Landslide areas in the Polish Flysch Carpathians and their relation to the geological structure of the region”, Biul. Inst. Geol. 1984.
[3] D. Grabowski, Inventory of landslides and principles and criteria for determining areas predisposed to the occurrence and development of mass movements in Poland Non-Carpathian (script for contractors). PIG Warszawa 2006.
[4] https://www.strzyzowski.pl
[5] Ordinance of the Minister of the Environment of 20 June 2007 on information on mass movements of the earth (dz. U. 2007, Nr 121, poz. 840), 2007.
[6] Instructions for observation and study of landslides, GDDP, Warszawa 1999.
[7] Instruction to develop maps of landslides and areas at risk of mass movements in the scale of 1:10000. PIG, Warszawa 2008.

[8] Act of 27 April 2001 Environmental Protection Law (Journal of Laws 2001, No. 62, item 627, with later amendments), 2001.

[9] L. Leoni, G. Spencer, N. Coli, F. Coppi, A. Michelini, Techniques for three-dimensional displacement vector using ground-based interferometric synthetic aperture radar, APSSIM 2016. PM Dight (ed.). Australian Centre for Geomechanics, Perth 2016, ISBN 978-0-9924810-5-6, 2016.

[10] M. Plewako, Survey of dynamics of landslides by geodetic methods, Infrastructure and ecology of rural areas, No. 3/2011, PAN, Cracow Branch, pp. 259–263, 2011.

[11] A. Szafarczyk, Geodetic methods of landslide monitoring, Infrastructure and ecology of rural areas, vol. 2/2011, PAN, Cracow Branch, 2011.

[12] P. Farina, L. Leoni L., F. Babboni, F. Coppi, L. Mayer, P. Ricci, “IBIS-M, an innovative radar for monitoring slopes in open-pit mines,” Proceedings of International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Vancouver, Canada, Sep. 18-21, 2011.

[13] W.H. Schulz, J.A. Coe, B.L. Shurtleff, J. Panosky, P. Farina, P.P. Ricci, G. Barsacchi G., Kinematics of the Slumgullion landslide revealed by ground-based InSAR surveys, Landslides and Engineered Slopes: Protecting Society through Improved Understanding – Eberhardt et al. (eds) Taylor & Francis Group, London, 2012. ISBN 978-0-415-62123-6.

[14] Implementation of the SOPO (Anti-Slip Shielding) project in 2008-2015, https://www.mos.gov.pl

[15] M. Poniewiera, “GEOLISP system of creating and management digital maps of mines”, Materials of the scientific conference VIII Days of Mine Surveying and Protection of Mining Areas on Problems of mining exploitation under developed land, Katowice 2005

[16] P. Kutowski, M. Poniewiera, Making digital terrain model for purposes of calculating volumes, scientific papers of Silesian Technical University, Mining series, Vol. 261, No 1650, Silesian Technical University, Gliwice 2004.