Asymptotic formula for sum-free sets in abelian groups

R.Balasubramanian,
The Institute of Mathematical Sciences
CIT Campus, Taramani
Chennai-600113, India.
E-mail: balu@imsc.res.in

Gyan Prakash
School of Mathematics, Harish Chandra Research Institute
Chatnag Road, Jhusi,
Allahabad - 211 019, India
E mail: gyan@mri.ernet.in

Abstract

Let A be a subset of a finite abelian group G. We say that A is sum-free if there is no solution of the equation $x + y = z$, with x, y, z belonging to the set A. Let $SF(G)$ denote the set of all sum-free subsets of G and $\sigma(G)$ denotes the number $n^{-1}(\log_2 |SF(G)|)$. In this article we shall improve the error term in asymptotic formula of $\sigma(G)$ obtained in [GR05]. The methods used are a slight refinement of methods of [GR05].

Let G be a finite abelian group of order n. A subset A of G is said to be sum-free if there is no solution of the equation $x + y = z$, with x, y, z belonging to the set A. Let $SF(G)$ denote the set of all sum-free subsets of G. This article is motivated by the question of studying the cardinality of the set $SF(G)$.

Definition:

(I) Let $\mu(G)$ denotes the density of a largest sum-free subset of G, so that any such subset has size $\mu(G)n$.

(II) Given a set $B \subset G$ we say that $(x, y, z) \in B^3$ is a Schur triple of the set B if $x + y = z$.

Observing that all subsets of a sum-free set are sum-free we have the obvious inequality

$$|SF(G)| \geq 2^{\mu(G)n} \quad (1)$$

Let the symbol $\sigma(G)$ denotes the number $n^{-1}(\log_2 |SF(G)|)$. Then from (1) it follows trivially that $\sigma(G) \geq \mu(G)$.

In this article we improve the results of Ben Green and Imre Ruzsa [GR05] and prove the following two results. The theorem II follows immediately from theorem I and a result from [GR05], namely theorem 6. The methods used to prove theorem I are a slight refinements of methods in [GR05].
Theorem 1. Let G be a finite abelian group of order n. Then we have the following asymptotic formula

$$\sigma(G) = \mu(G) + O\left(\frac{1}{(\ln n)^{1/27}}\right).$$

Theorem 2. There exist an absolute positive constant δ_0 such that if $F \subset G$ as at-most δn^2 Schur triples, where $\delta \leq \delta_0$. Then

$$|F| \leq (\mu(G) + C\delta^{1/3})n$$

where C is an absolute positive constant.

Earlier Ben Green and Ruzsa [GR05] proved the following:

Theorem 3. ([GR05], Theorem 1.8.) Let G be a finite abelian group of order n. Then we have the following asymptotic formula

$$\sigma(G) = \mu(G) + O\left(\frac{1}{(\ln n)^{1/45}}\right).$$

Theorem 4. ([GR05], Proposition 2.2) Let G be an abelian group, and suppose that $F \subset G$ has at-most δn^2 Schur triples. Then

$$|F| \leq (\mu(G) + 2^{20}\delta^{1/5})n$$

The following theorem is also proven in [GR05].

Theorem 5. ([GR05], Corollary 4.3.) Let G be an abelian group, and suppose that $F \subset G$ has at-most δn^2 Schur triples. Then

$$|F| \leq (\max\left(1, \frac{1}{3}, \mu(G) + 3\delta^{1/3}\right))n$$

The theorem 2 follows immediately from theorem 5 in the case $\mu(G) \geq \frac{1}{3}$. In the case $\mu(G) < \frac{1}{3}$, the theorem 2 again follows immediately from theorem 5 in the case δ is not very “small”. In the case δ is small we require Lemma 10 where an estimate is done differently than in [GR05]. For the rest of results we require to prove theorem 2, the methods used are completely identical as in [GR05], but the results used are not identical.

For proving theorem 1 we use the following result from [GR05].

Theorem 6. ([GR05], Proposition 2.1’) Let G be an abelian group of cardinality n, where n is sufficiently large. Then there is a family F of subsets of G with the following properties

(I) $\log_2 |F| \leq n(\ln n)^{-1/18}$;

(II) Every $A \in SF(G)$ is contained in some $F \in F$;

(III) If $F \in F$ then F has at-most $n^2(\ln n)^{-1/9}$ Schur triples.

The theorem 1 follows immediately from theorem 6 and theorem 2. We shall reproduce the proof given in [GR05]. If n is sufficiently large as required by theorem 6 then associated to each $A \in SF(G)$ there is an $F \in F$ for which $A \subset F$. For a given F, the number of A which can arise in this way is at most $2^{|F|}$. Thus we have the bound

$$|SF(G)| \leq \sum_{F \in \mathcal{F}} 2^{|F|} \leq |F| \max_{F \in \mathcal{F}} |F|$$
Hence it follows that
\[\sigma(G) \leq \mu(G) + C \left(\frac{1}{(\ln n)^{1/27}} + \frac{1}{\ln n^{1/18}} \right). \]
(5)

But from the (1) we have the inequality \(\sigma(G) \geq \mu(G) \). Hence the theorem 1 follows.

In order to prove theorem 2 we shall require the value of \(\mu(G) \), which is now known for all finite abelian groups. In order to explain the results we need the following definition.

Definition: Suppose that \(G \) is a finite abelian group of order \(n \). If \(n \) is divisible by any prime \(p \equiv 2 \pmod{3} \) then we say that \(G \) is type I. We say that \(G \) is type \(I(p) \) if it is type I and if \(p \) is the least prime factor of \(n \) of the form \(3l + 2 \). If \(n \) is not divisible by any prime \(p \equiv 2 \pmod{3} \), but \(3 \mid n \), then we say that \(G \) is type II. Otherwise \(G \) is said to be type III. That is the group \(G \) is said to be of type III if and only all the divisors of \(n \) are congruent to 1 modulo 3.

The following theorem is due to P. H. Diananda and H. P. Yap [DY 69] for type I and type II groups and due to Green and Ruzsa [GR 05] for type III groups.

Theorem 7. ([GR 05], Theorem 1.5.) Let \(G \) be a finite abelian group of order \(n \). Then the following holds.

(I) If \(G \) is of type \(I(p) \) then \(\mu(G) = \frac{1}{3} + \frac{1}{3p} \).

(II) If \(G \) is of type II then \(\mu(G) = \frac{1}{3} \).

(III) If \(G \) is of type III then \(\mu(G) = \frac{1}{3} - \frac{1}{3m} \), where \(m \) is the exponent of \(G \).

1 proof of theorem 2

In case the group \(G \) is not of type III it follows from theorem 7 that \(\mu(G) \geq \frac{1}{3} \) and hence the theorem 2 follows immediate using theorem 5. Therefore we are required to prove theorem 2 for type III groups only.

For the rest of this article \(G \) will be a finite abelian group of type III and \(m \) shall denote the exponent of \(G \). The following proposition is an immediate corollary of theorem 7 and theorem 5.

Proposition 8. Let \(G \) be an abelian group of type III. Let the order of \(G \) be \(n \) and the exponent of \(G \) be \(m \). If \(F \subset G \) as at-most \(\delta n^2 \) Schur triples then

(I) \(|F| \leq (\mu(G) + \frac{1}{3m} + 3\delta^{1/3})n \).

(II) In the case \(\delta^{1/3}m \geq 1 \) then \(|F| \leq (\mu(G) + 4\delta^{1/3})n \), that is the theorem 2 holds in this case.

Therefore to prove the theorem 2 we are left with the following case.

Case: The group \(G \) is an abelian group of type III, order \(n \) and exponent \(m \). The subset \(F \subset G \) has at most \(\delta n^2 \) Schur triples and \(\delta^{1/3}m < 1 \).
Let γ be a character of G and q denotes the order of γ. Given such γ we define $H_j = \gamma^{-1}(e^{2\pi ij/q})$. We also denote the set $H_0 = \ker(\gamma)$ by just H. Notice that H is a subgroup of G and H_j are cosets of H. The cardinality of the coset $|H_j| = |H| = \frac{n}{q}$. The indices is to be considered as residues modulo q, reflecting the isomorphism $G/H \cong \mathbb{Z}/q\mathbb{Z}$.

For any set $F \subset G$ we also define $F_j = F \cap H_j$ and $\alpha_j = |F_j|/|H_j|$.

Proposition 9. Let G be a finite abelian group of order n. Let F be a subset of G having at most δn^2 Schur triples where $\delta \geq 0$. Let γ be any character of G and q be its order. Also let F_i and α_i be as defined above. Then the following holds.

(I) If x belongs to F_i and y belongs to F_j then $x + y$ belongs to H_{i+j}.

(II) The number of Schur triples $\{x, y, z\}$ of the set A with x belongs to F_i, y belongs to F_j and z belongs to F_{j+l} is at least $|F_i|(|F_j| + |F_{j+l}| - |H|)$. In other words there are at least $\alpha_i(\alpha_j + \alpha_{j+l} - 1)(\frac{n}{q})^2$ Schur triples $\{x, y, z\}$ of the set F with x belongs to the set F_i.

(III) Given any $t \in \mathbb{Z}/q\mathbb{Z}$ such that $\alpha_i > 0$, it follows that for any $j \in \mathbb{Z}/q\mathbb{Z}$ the inequality

$$\alpha_j + \alpha_{j+l} \leq 1 + \frac{\delta q^2}{\alpha_i}$$

holds.

(IV) Given any $t \in \mathbb{R}$ we define the set $L(t) \subset \mathbb{Z}/q\mathbb{Z}$ as follows. The set

$$L(t) = \{i \in \mathbb{Z}/q\mathbb{Z} : \alpha_i + \alpha_{2i} \geq 1 + t\}.$$

Then it follows that

$$\sum_{i \in L(t)} \alpha_i \leq \frac{\delta q^2}{t}$$

Proof.

(I) This follows immediately from the fact that γ is an homomorphism.

(II) In the case $|F_i|(|F_j| + |F_{j+l}| - |H|) \leq 0$, there is nothing to prove. Hence we can assume that the set $F_i \neq \phi$. Then for any x which belongs to the set F_i, the sets $x + F_j \subset H_{j+i}$. Since the set F_{j+i} is also a subset of H_{j+l} and $|F_j| + |F_{j+l}| - |H| > 0$, it follows that

$$|(x + F_j) \cap F_{j+l}| = |F_j| + |F_{j+l}| - |(x + F_j) \cup F_{j+l}| \geq |F_j| + |F_{j+l}| - |H|.$$

Now for any z belonging to the set $(x + F_j) \cap F_{j+l}$ there exist y belonging to F_j such that $x + y = z$. hence the claim follows.

(III) From II there are at least $\alpha_i(\alpha_j + \alpha_{j+l} - 1)(\frac{n}{q})^2$ Schur triples of the set F. hence the claim follows by the assumed upper bound on the number of Schur triples of the set F.

(IV) For any fixed $i \in L(t)$, taking $j = l = i$ in II, we get there are at least $\alpha_i t(\frac{n}{q})^2$ Schur triples $\{x, y, z\}$ of the set F with x belonging to the set F_i. Now for given any two $i_1, i_2 \in L(t)$ such that $i_1 \neq i_2$, the sets F_{i_1} and F_{i_2} have no element in common. Therefore there are at least $t \sum_{i \in L(t)} \alpha_i$ Schur triples of the set F. Hence the claim follows.

\[\square\]
Since the order of any character of an abelian group G divides the order of group and G is of type III, the order q of any character γ of G is odd and congruent to 1 modulo 3. Therefore $q = 6k + 1$ for some $k \in \mathbb{N}$. Let $I, H, M, T \subset \mathbb{Z}/q\mathbb{Z}$ denotes the image of natural projection of the intervals $\{k + 1, k + 2, \cdots, 5k - 1, 5k\}, \{k + 1, k + 2, \cdots, 2k - 1, 2k\}, \{2k + 1, 2k + 2, \cdots, 4k - 1, 4k\}, \{4k + 1, 4k + 2, \cdots, 5k - 1, 5k\} \subset \mathbb{Z}$ to $\mathbb{Z}/q\mathbb{Z}$. Then the set I is divided into $2k$ disjoint pairs of the form $(i, 2i)$ where i belongs to the set $H \cup T$.

Lemma 10. Let G be a finite abelian group of type III and order n. Suppose that $F \subset G$ has at-most δn^2 Schur triples. Let γ be a character of G. Let the order of γ be equal to $q = 6k + 1$. Then the following inequality holds.

$$\sum_{i=k+1}^{5k} \alpha_i \leq 2k + 2\delta^{1/2}q^{3/2}$$

Proof. The set $I = \{k + 1, k + 2, \cdots, 5k\}$ is divided into $2k$ disjoint pairs of the form $(i, 2i)$ where i belongs to the set $H \cup T$. Therefore it follows that

$$\sum_{i=k+1}^{5k} \alpha_i = \sum_{i \in H \cup T} (\alpha_i + \alpha_{2i})$$

Given a $t > 0$ we divide the set $H \cup T$ into two disjoint sets as follows. We define the set

$$S = \{i \in H \cup T : \alpha_i + \alpha_{2i} \leq 1 + t\}$$

and

$$L = \{i \in H \cup T : \alpha_i + \alpha_{2i} > 1 + t\}.$$

Therefore the sets S and L are disjoint and the set $H \cup T = S \cup L$. Therefore it follows that

$$\sum_{i \in H \cup T} (\alpha_i + \alpha_{2i}) = \sum_{i \in S} (\alpha_i + \alpha_{2i}) + \sum_{i \in L} (\alpha_i + \alpha_{2i})$$

From proposition [6](#) we have the following inequality

$$\sum_{i \in L} \alpha_i \leq \frac{\delta q^2}{t}$$

Since for any $l \in \mathbb{Z}/q\mathbb{Z}$, the inequality $\alpha_l \leq 1$ holds trivially. It follows that

$$\sum_{i \in L} (\alpha_i + \alpha_{2i}) \leq |L| + \frac{\delta q^2}{t}.$$

(11)

Also the following inequality

$$\sum_{i \in S} (\alpha_i + \alpha_{2i}) \leq |S| + |S|t$$

holds just by the definition of the set S. Therefore from [6], [10], [12], [11] it follows that

$$\sum_{i=k+1}^{5k} \alpha_i \leq |L| + \frac{\delta q^2}{t} + |S| + |S|t \leq 2k + qt + \frac{\delta q^2}{t}$$

(13)

Now choosing $t = (\delta q)^{1/2}$ the lemma follows. \qed
Remark: The sum appearing in last Lemma was estimated as $2k + \delta q^2$ in [GR05]. There the estimate $\alpha_i + \alpha_{2i} \leq (\delta)^{1/2}q$ is used to estimate the right hand side of (9).

Notice that Lemma 10 holds for any character γ of a group G of type III. We would like to show that given $F \subset G$ having at most δn^2 Schur triples and also assuming that $(\delta)^{1/3}m < 1$ where m is the exponent of G, there is a character γ such that $\alpha_i \leq C(\delta q)^{1/2}i \in \{0, 1, 2, \cdots k\} \cup \{5k + 1, 5k + 2, \cdots, 6k\}$ where C is an absolute positive constant, q is the order of γ and $k = \frac{1}{3\delta^{1/2}}$. To be able to do this we recall the concept of special direction as defined in [GR05]. The method of proof of this part is completely identical as in [GR05], though the results are not.

Given any set $B \subset G$, and a character γ of G we define $\hat{B}(\gamma) = \sum_{b \in B} \gamma(b)$. Given a set $B \subset G$ fix a character γ_s such that $\text{Re} \hat{B}(\gamma)$ is minimal. We follow the terminology in [GR05] and call γ_s to be the special direction of the set B.

The following Lemma is proven in [GR05], but we shall reproduce the proof here for the sake of completeness.

Lemma 11. ([GR05], Lemma 7.1, Lemma 7.3. (iv)) Let G be an abelian group of type III. Let $F \subset G$ has at most δn^2 Schur triples. Let γ_s be a special direction of the set F. Let α denotes the number $|F|/|G|$. Then the following holds.

(I) $\text{Re} \hat{F}(\gamma_s) \leq \left(\frac{\delta}{\alpha(1-\alpha)} - \frac{\alpha^2}{\alpha(1-\alpha)}\right)n$.

(II) In case $\delta \leq \eta/5$, then either $|F| \leq (\mu(G))n$ or the following inequality holds.

\[
q^{-1} \sum_{j=0}^{q-1} \alpha_j \cos \left(\frac{2\pi j}{q}\right) + \frac{\mu(\mathbb{Z}/q\mathbb{Z})^2}{1 - \mu(\mathbb{Z}/q\mathbb{Z})} < 6\delta. \tag{14}
\]

Proof. (I) The number of Schur triples in the set F is exactly $n^{-1} \sum_{\gamma} (\hat{F}(\gamma))^2 \hat{F}(\gamma)$. This follows after the straightforward calculation, using the fact that

\[
\sum_{\gamma} \gamma(b) = 0 \iff b \neq 0,
\]

and is equal to n if $b = 0$ where 0 here denotes the identity element of the group G. Therefore using the assumed upper bound on the number of Schur triples in the set F it follows that

\[
n^{-1} \sum_{\gamma} (\hat{F}(\gamma))^2 \hat{F}(\gamma) = n^{-1}\sum_{\gamma \neq 1} (\hat{F}(\gamma))^2 \hat{F}(\gamma) + n^{-1}(\hat{F}(1))^2 \hat{F}(1) \leq \delta n^2,
\]

Where $\gamma = 1$ is the trivial character of the group G. Since $n^{-1}(\hat{F}(1))^2 \hat{F}(1) = (\alpha)^3n^2$, it follows that

\[
\text{Re} \hat{F}(\gamma_s) \sum_{\gamma \neq 1} (\hat{F}(\gamma))^2 \leq n^{-1}\sum_{\gamma \neq 1} (\hat{F}(\gamma))^2 \hat{F}(\gamma) \leq (\delta - \alpha^3)n^2.
\]

Since using (15) it follows that $\sum_{\gamma \neq 1} (\hat{F}(\gamma))^2 = \alpha(1 - \alpha^2)n^2$, the claim follows.
(II) We have $Re\tilde{F}(\gamma_s) = |H| \sum_j \alpha_j \cos(\frac{2\pi j}{q})$. Therefore in the case $|F| \geq \mu(G)$, then from (I) it follows that

$$q^{-1} \sum_{j=0}^{q-1} \alpha_j \cos(\frac{2\pi j}{q}) \leq \frac{\delta}{\alpha(1-\alpha)} - \frac{\alpha^2}{\alpha(1-\alpha)} \quad (16)$$

$$q^{-1} \sum_{j=0}^{q-1} \alpha_j \cos(\frac{2\pi j}{q}) + \frac{\mu(G)^2}{1-\mu(G)} \leq \frac{\delta}{\alpha(1-\alpha)} \quad (17)$$

Since from theorem 7 that $\mu(G) \geq \mu(\mathbb{Z}/q\mathbb{Z})$ it follows that

$$\frac{\mu(G)^2}{1-\mu(G)} \geq (\mu(\mathbb{Z}/q\mathbb{Z}))^2 \frac{1-\mu(\mathbb{Z}/q\mathbb{Z})}{1-\mu(G)}.$$

The claim follows using this and the fact that $\mu(G) \geq \frac{1}{q}$, which implies that $\frac{\delta}{\alpha(1-\alpha)} \leq 6\delta$. \qed

Proposition 12. Let G be an abelian group of type III. Let n and m denotes the order and exponent of G respectively. Let $F \subset G$ has at most δn^2 Schur triples and $\delta^{1/3} m \leq 1$. Let $|F| \geq \mu(G)n$. Let γ_s be a special direction of the set F and q be the order of γ_s. Let $q = 6k + 1$ and α_i be as defined above. There exist an positive absolute constants q_0 and δ_0 such that if $q \geq q_0$ and $\delta \leq \delta_0$, then the following holds

$$\alpha_i \leq c(\delta q)^{1/2} \text{ for all } i \in \{0, 1, \ldots, k-1, k\} \cup \{5k + 1, 5k + 2, \ldots, 6k - 1\}, \quad (18)$$

where c is an positive absolute constant.

Proof. If $F \subset G$ be the set as given, then $-F \subset G$ is also a set which satisfies the same hypothesis as required in the statement of proposition. It is also the case that $|F_j| = |(-F)_{-j}|$. Therefore to prove the proposition it is sufficient to show that

$$\alpha_i \leq c(\delta q)^{1/2} \text{ for all } i \in \{0, 1, \ldots, k-1, k\}$$

for some positive absolute constant c.

Let $S = \sum_{j=0}^{q-1} \alpha_j \cos(\frac{2\pi j}{q}) + \frac{\mu(\mathbb{Z}/q\mathbb{Z})^2}{1-\mu(\mathbb{Z}/q\mathbb{Z})}$. Then from Lemma 11 we have that

$$S \leq 6\delta. \quad (19)$$

Now let for some $l \in \{0, 1, \ldots, k-1, k\}$, $\alpha_l > c(\delta q)^{1/2}$ (where c is a positive number which we shall choose later), then we shall show that this violates (14), provided q and c are sufficiently large and δ is sufficiently small. For this we shall find the lower bound of $M = \sum_{j=0}^{q-1} \alpha_j \cos(\frac{2\pi j}{q})$.

Let γ_j denotes $\frac{(\alpha_j + \alpha_{j+l})}{2}$. Then we have

$$M = \frac{1}{q^2 \cos(\frac{\pi l}{q})} \sum_{j=0}^{q-1} \alpha_j \left(\cos(\frac{(2j+l)\pi}{q}) + \cos(\frac{(2j-l)\pi}{q}) \right).$$

That is we have

$$M = \frac{1}{q \cos(\frac{\pi l}{q})} \sum_{j=0}^{q-1} \gamma_j \cos(\frac{(2j+l)\pi}{q}) \quad (20)$$
Notice that \(\cos\left(\frac{\pi l}{q}\right)\) is not well defined if we consider \(l\) as an element of \(\mathbb{Z}/q\mathbb{Z}\). This is because the function \(\cos\left(\frac{\pi t}{q}\right)\) as a function of \(t\) is not periodic with period \(q\) but is periodic with period \(q^2\). But we have assumed that \(l \in \{0, 1, \ldots, k - 1, k\}\), therefore the above computation is valid.

Since \(d^{1/2} q^{3/2} \leq d^{1/2} m^{3/2} < 1\) is true by assumption, recalling Lemma 9 it follows that

\[
2\gamma_j = \alpha_j + \alpha_{j+l} \leq 1 + \frac{1}{c}d^{1/2} q^{3/2} \leq 1 + \frac{1}{c}, \text{ for any } j \in \mathbb{Z}/q\mathbb{Z} \quad (21)
\]

and

\[
\sum_j \gamma_j = \sum_j \alpha_j \geq \mu(G)n \geq 2k. \quad (22)
\]

The inequality (22) follows from the assumption that \(|F| \geq \mu(G)n\).

Let \(t_c\) denotes the number \(1+1/c\). Let \(E(c, q)\) denotes the minimum value of \(\sum_{j=0}^{q-1} \gamma_j \cos\left(\frac{(2j+l)\pi}{q}\right)\)
subject to the constraints that \(0 \leq \gamma_j \leq \frac{l}{2}\) and \(\sum_j \gamma_j \geq 2k\).

The function \(f: \mathbb{Z} \rightarrow \mathbb{R}\) given by \(f(x) = \cos\left(\frac{(q+x)\pi}{q}\right)\) is an even function with period \(2q\).

Also for \(0 \leq x \leq q\) we have the following

\[
f(0) < f(1) < f(2) < f(3) < \ldots < f(q-1) < f(q) \quad (23)
\]

Now to determine the minimum value of \(E(c, q)\), we should choose \(\gamma_j\) to be as large as we can when the function \(\cos\left(\frac{2j+l}{q}\right)\) takes the small value. Now we have the two cases to discuss, the one when \(l\) is even and when \(l\) is odd. Now the image of function \(g: \mathbb{Z}/q\mathbb{Z} \rightarrow \mathbb{R}\) given by \(g(j) = \cos\left(\frac{(2j+l)\pi}{q}\right)\) is equal to \(\{f(x): x \text{ is even}\}\) in case \(l\) is odd
and is equal to \(\{f(x): x \text{ is odd}\}\) in case \(l\) is even. From this it is also easy to observe that the number of \(j \in \mathbb{Z}/q\mathbb{Z}\) such that the function \(\cos\left(\frac{2j+l}{q}\right)\) is periodic is at most \(\frac{q+1}{2}\).

Now let \(-\frac{q-1}{2} \leq j \leq \frac{q-1}{2} - l\) so that \(-q \leq 2j+l \leq q\). Now in case \(l\) is odd then consider the case when \(\gamma_j = \frac{t_c}{2}\) if

\[
2j + l = q - \left[\frac{k}{t_c}\right], \ldots, q - 2, q, q + 1, \ldots, q + \left[\frac{k}{t_c} - \frac{1}{2}\right] \text{ and } \gamma_j = 0 \text{ otherwise}. \quad (24)
\]

The condition \(2\left[\frac{k}{t_c} - 1/2\right] + 1 \geq \frac{q+1}{2}\) ensures that in the above configuration for all possible negative values of \(\cos\left(\frac{(2j+l)\pi}{q}\right)\) the maximum possible weight \(\frac{t_c}{2}\) is chosen. This condition can be ensured if \(q \geq 11\) by choosing \(c \geq c_1\) where \(c_1\) is sufficiently large positive absolute constant.

Therefore after doing a small calculation one may check that for \(c \geq c_1\) the following inequality

\[
E(c, q) \geq -t_c \frac{\sin \frac{2\pi [k - 1/2]}{q}}{2q \sin \pi/l \cos \pi l / q} - \frac{1}{q} \quad (25)
\]

holds. In case \(l\) is even and \(c \geq c_1\) then choosing \(\gamma_j = \frac{t_c}{2}\) if

\[
2j + l = q - \left[\frac{k}{t_c}\right], \ldots, q - 1, q + 1, \ldots, q + \left[\frac{k}{t_c}\right] \text{ and weights 0 otherwise}, \quad (26)
\]

we get that the following inequality

\[
E(c) \geq -t_c \frac{\sin \frac{2\pi [k] + 1}{q}}{2q \sin \pi/l \cos \pi l / q} - \frac{t_c}{q} \quad (27)
\]
holds. Using this we get

\[S \geq -t_c \frac{\sin \frac{2\pi l}{q}}{2q \sin \frac{\pi}{q} \cos \frac{l}{q}} + \frac{\mu(\mathbb{Z}/q\mathbb{Z})^2}{1 - \mu(\mathbb{Z}/q\mathbb{Z})} \quad \text{when } l \text{ is even} \tag{28} \]

\[S \geq t_c \frac{\sin \frac{2\pi (l - 1)}{q}}{2q \sin \frac{\pi}{q} \cos \frac{l}{q}} - \frac{1}{q} + \frac{\mu(\mathbb{Z}/q\mathbb{Z})^2}{1 - \mu(\mathbb{Z}/q\mathbb{Z})} \quad \text{when } l \text{ is odd}. \tag{29} \]

\[S \geq -t_c \frac{\sin \frac{2\pi l}{q}}{2q \sin \frac{\pi}{q} \cos \frac{l}{q}} - \frac{1}{q} + \frac{\mu(\mathbb{Z}/q\mathbb{Z})^2}{1 - \mu(\mathbb{Z}/q\mathbb{Z})} \quad \text{when } l \text{ is odd}. \tag{30} \]

Now as \(q \to \infty \) right hand side of (28) as well as (29) converges to the

\[-t_c \sin \frac{2\pi l}{3} \sin \frac{2\pi}{q} + \frac{1}{6} \]

Then let \(\eta = 2^{-20} \), then choosing \(c \geq c_2 \) and \(q \geq q_0 \) we get and noticing that \(l \leq \frac{q}{6} \) we get that

\[S \geq -\frac{1}{2\pi} + \frac{1}{6} - \eta = 8\delta_0 \text{ say}. \tag{31} \]

The above quantity is strictly positive absolute constant. Then if \(\delta < \delta_0 \), this contradicts (19). Hence the Lemma follows. \[\square \]

To complete the proof of theorem 2 we require the following result from [GR05].

Lemma 13. ([GR05], Proposition 7.2) Let \(G \) be an abelian group of type III and \(n \), \(m \) be its order and exponent respectively. Let \(F \subset G \) has at most \(\delta n^2 \) Schur triples, with \(\delta^{1/3} m < 1 \). Let \(q \) be the order of special direction such that \(q \leq q_0 \), where \(q_0 \) is a positive absolute constant as in Lemma 12. Also assume that \(\delta \leq \frac{\eta}{q^5} = \delta' \), where \(\eta = 2^{-50} \), then either \(|F| \leq \mu(G)n \) or \(\alpha_i \leq 64\delta^{1/3} q^{2/3} \).

Combining Lemma 10, Lemma 12 and Lemma 13 the theorem follows in the case \(\delta^{1/3} m < 1 \). In the case \(\delta^{1/3} m > 1 \) the theorem follows from proposition 8.

References

[DY69] P.H. Diananda and H.P. Yap. Maximal sum-free sets of elements of finite abelian groups. *Proc. Japan Acad*, 45:1–5, 1969.

[GR05] B.J. Green and I. Z. Ruzsa. Sum-free sets in abelian groups. *Israel J. Math*, 147:157–189, 2005.