A Review: Utilization of Waste Energy to Improve the Efficiency of the Systems

Jaykumar H. Patel1*, M. N. Qureshi2 and P. H. Darji1

1Mechanical Engineering Department. C.U. Shah University, Wadhwan City - 363030, Gujarat, India; sarvatit_623@yahoo.com, pavan_darji@rediffmail.com
2Mechanical Engineering Department, The M. S. University of Baroda, Vadodara - 390003, Gujarat, India; mnqureshi@rediffmail.com

Abstract

Objectives: This review explores the rationale of using waste heat energy from hot exhaust gases, hot water & hot steam to improve efficiency of systems. Methods: Since the amount of non-renewable sources is limited, there is unmet need to develop systems which utilize nonrenewable sources or waste energy (reusable) sources. Energy recovery systems (i.e. heat pumps & exchangers) of waste-to-energy units represent a substantial part which utilizes waste energy to increase thermal as well as electric power of whole system. Findings: Waste water can be considered as a reusable key energy source. Because of the higher thermal efficiency, combined cycle power plants are striking options based on this technology for generation of power as compared to individual gas or steam turbine cycles. Along these lines, the ideal outline of such cycles is of incredible noteworthiness inferable from expanding fuel costs and diminishing fossil fuel assets. Improvements: As a consequence, cost of product can be optimized and environment can also be protected.

Keywords: Energy Recovery Systems, Energy Conservation, Heat Exchanger, Non-Renewable Sources, Waste Energy Utilization

1. Introduction

Difficulties associated with the shortage of energy and also, natural contamination brought on by unnecessary vitality consumption requires an efficient and efficient use of existing energy resources. There is a dynamic need of building up the option energy sources or enhance vitality use systems. In up and coming time manageable energy framework will require an expanded offer of reusable vitality or energy sources. In this worry, examines on unmistakable, consolidated or incorporated utilization of reusable energy advancements have significantly increased in the course of the most recent years1. Urbanization brings about the critical environmental issues such as pollution, greenhouse effect and contamination. Presently, 80% of electricity is approximately produced from fossil in the world2. There are several sources to get waste energy which is reusable as in the form of liquid, solid or gaseous but out of these, waste heat recovery from waste water acting a key part in the field of energy conservation and environmental protection3. The loss of heat from the waste water of power plant shows a large potential. Waste water is considered as a reusable heat source for heat exchangers. Owing to high heat capacity and density waste water offers an intense source of heat4. So, energy from waste water is an important source, which can be recycled for pre-heating of natural gases with heat exchangers, cooling and heating buildings using heat pumps etc5.

Heat can be transmitted from one medium to another medium effectively by heat exchange. The medium is either in separated by solid partitions or direct contact to each other. Heat exchangers are usually used as one of a part of aerating and cooling, compound plants, space warming, force plants, refrigeration, petrochemical plants, sewage treatment, normal gas preparing, and

*Author for correspondence
petroleum refineries. The exemplary representation of HE has ignition motor at inside. The liquid which is flowing inside known as motor coolant and it’s also make the cool different parts like radiator, heat air. Because energy is playing key role in heat recovery system, it is need to be found out. To analyses the energy preservation of mass and energy with second law of thermodynamics for structure design and analysis. Furthermore, it is also observed that the energy method examination is potential tool. This method is promoting goal of using energy resources more efficiently it’s also explore the use of wastes. Finally this will give the efficiency and losses of the system.

Table 1 indicates the waste heat sources with different temperatures and its recovery applications. Ample of resources are available to get the waste energy as described in Table 1. Annual waste water discharge (million cubic meters) in different types of industries is shown in Table 2 that shows 87.87% of consumption of water in power plants.

So the cost of water per year in India compared to another country is higher shown in Table 3. Therefore, it is very essential to save water and utilize the maximum water by using the recovery systems.

Table 1. Waste Heat Sources from Industries and Commercial Area

Type of Facility	Waste Heat Source	Temperature (°C)	Recovery Applications
Industrial	Electrical Refractory Furnace Exhaust	High Grade	Process steam, preheat combustion air, space heating.
	Nickel Refining Furnace Exhaust	1600 – 2700	
	Fume Incinerator Exhaust	1375 – 1550	
	Solid Waste Incinerator Exhaust	650 – 1550	
	Reheat Furnace Exhaust	650 – 1000	
Industrial	Gas Turbine Exhaust	Medium Grade	Preheat combustion air, direct drying, space heating, heating process water, preheating boiler water.
	Diesel Generator Exhaust	375 – 550	
	Steam Boiler Exhaust	375 – 500	
		230 – 250	
Commercial	Drying and Baking Over Exhaust		Preheat combustion air, heating process water, preheating boiler water.
	Dryer Exhaust	230 – 600	
	Furnace Flue Gas	150 – 230	
		175 – 230	
Industrial	Steam Boiler Exhaust	Low Grade	Space heating, preheat combustion air, process heating.
	Dryer Exhaust	150 – 230	
	Process Steam Condensates	85 – 150	
	Condensate Tank Flash Steam	55 – 95	
Commercial	Steam Boiler Exhaust		Space heating, preheat combustion air, process heating, temper ventilation air.
	Dryer Exhaust	85 – 150	
	Furnace Flue Gas	150 – 230	
Institutional	Steam Boiler Exhaust		Space heating, preheat combustion air, temper ventilation air, domestic water heating.
	Furnace Flue Gas	150 – 230	

1.1 Waste Heat Recovery Technology

Waste heat can be defined as the heat contained in a substance excluded from a process at a temperature greater than the ambient levels of the plant. Waste heat source can be gaseous, liquid or solid and mainly there are some technologies to recover this waste heat like direct use, heat exchangers, recompression of vapor and heat pumps. Amongst those, heat exchangers and heat pumps have the widespread range of applicability, irrespective of the type of an industry. Table 4 gives a general guide to select heat transfer equipment for waste heat recovery applications.

There are many applications where any suitable heat transfer equipment can be used to generate the electricity or any other energy. Amongst those described in the Table 4, tube type of heat exchanger and shell and direct contact heat exchanger are broadly exploited because their conditions match with the widespread applications. Electricity which is produced from the reusable or waste energy plays important role in industries and for the public domain.

The method of generating electrical power and capturing the waste heat energy is shown in the diagram Figure 1.
In brief, hot gases are passing through exchanger and hot gases are transported heat from gases to liquid. Then in the Organic Rankine Cycle (ORC) system, hot liquid is impelled to the heat recapture evaporator. The refrigerant, in ORC evaporator is also boiled and provided to an expander turbine. It is also controls the electrical generator. Electrical power, generated by turbine generator, is supplied to the plant distribution network. Using plant water as a heat sink, the exhaust refrigerant is pumped and condensed come back to the evaporator for repetition.

Industrial	Cooling Water from Air Compressors	Cooling water from Power Plants	Warm Air from Ceiling Level	Process Wastewater Streams	Warm Product
Commercial	Air Conditioning and Refrigeration	Condenser Exhaust	Process Wastewater (laundry, etc.)	30 – 45	
Institutional	Air Conditioning and Refrigeration	Condenser Exhaust	Kitchen Exhaust	30 – 45	
	Ventilation Exhaust				
	Vacuum Jet Ejector Exhaust				

Table 2. Water Intensive Industrial in India

Type of industry	Annual waste water discharge (million cubic meters)	Annual consumption (million cubic meters)	Proportion of water consumed in the industry
Thermal power plant	27000.9	35157.4	87.87
Engineering	1551.3	2019.9	5.05
Pulp and paper	695.3	905.8	2.26
Textiles	637.3	829.8	2.07
Steel	396.8	516.6	1.29
Sugar	149.7	194.9	.49
Fertilizer	56.4	73.5	.18
Other	241.3	314.2	.78
Total	30729.2	40012.0	100.0

Table 3. Economic value of water

Country	Industrial water use (billion cubic meters)	Industrial productivity(million US $)	Industrial water productivity (US $ /cubic meter)
Argentina	2.6	77171.0	30.0
Brazil	9.9	231440.0	23.4
India	15.0	113041.0	7.5
Korea, rep.	2.6	249268.0	95.6
Norway	1.4	47599.0	35.0
Sweden	0.8	74703.0	92.2
of cycle. System variables like pressure, electrical power, flow and flexible speed of pumps are affecting on optimum thermal performance10.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{waste_heat_energy.png}
\caption{Waste heat energy and generating electrical power.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{return_on_investment.png}
\caption{Return on investment steel reheat furnace12.}
\end{figure}

Waste heat recovery system varies in different power range and it is started from 250 335.253 horsepower. As per the author12, 2250KW energy can be recovered from the waste of steel reheat furnace. The energy savings, up to Rs.12 lacs per year and at Rs.6 per kWh electric expense. So finally energy conservation data collection is the important for safe future12.

\section{2. Review of Waste Energy Utilization Sources}

Heat Exchangers (HE) are key part of waste heat to energy plants to recover energy. More emphasis on the selection on types of heat exchanger because of proper efficient design and working. It is crucial to complete the design of HE with highest degree of compactness and also by considering process parameters like proximity to fouling, composition of fluids used, temperature and possible operational problems12,14. Heat exchanger from waste or biomass to energy technologies have been used for energy recovery. In that, heat contained in flue gas or off-gas from combustion chambers or incinerators have been consumed. The heat recovery system, as a part of incinerator, adds value to incinerator itself. This will in turn work as a technical component for the thermal treatment of

\begin{table}[h]
\centering
\caption{General Aspects of Selection of Heat Transfer Equipment}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
Commercial Heat Transfer Units & Specifications For Waste Heat Recovery Unit \hline
 & Low temperature below 0\degree C to 120\degree C & Intermediate temperature 120\degree C-650\degree C & High temperature above 650\degree C & Large temperature differentials & Packaged unit available & Can be retrofit & No cross communication & Gas to gas heat exchanger & Gas to liquid heat exchanger & Liquid to liquid exchanger & Corrosive gases permitted with special construction \hline
Shell and tube type Heat exchange(HE) & yes & yes & - & yes & yes & yes & yes & yes & yes & - & yes & - \hline
Finned tube HE & yes & yes & - & yes & yes & yes & yes & - & yes & - & - \hline
Waste heat boiler & yes & yes & - & - & yes & yes & - & - & yes & - & - \hline
Spiral heat Exchanger & yes & yes & - & - & yes \hline
oncentric tube heat exchanger recuperator & - & yes & yes & - & yes & yes & - & - & - & yes \hline
Plate heat exchanger & yes & yes & - & yes & yes & yes & yes & - & yes & yes & yes \hline
Run around system & yes & yes & - & yes & yes & yes & yes & - & yes & yes & - \hline
Heat pipe & yes & yes & - & - & yes & yes & yes & yes & yes & - & - \hline
\hline
\end{tabular}
\end{table}
waste and for waste to energy system. Thermodynamics of heat exchanger units and its effect in a power plant for optimum design condition based on cost have also been discussed. Compact welded plate heat exchanger can be proficiently used for heating of water to require temperature of whole district. The principle behind this is condensing of steam extracted from certain turbines section. Furthermore, an inventive waste warmth region heating system utilizing joint heat and force based ejector HEs and retention heat pumps are used. For existing CHP framework waste heat energy can be used from steam turbine. This will lead to improve heat transmission and increase the temperature. Likewise, heat transmission capacity improved by 66% and system temperature drop approximate 30 °C. A novel kind of absorption heat exchanger for reduction of returning water's temperature of the existing primary heating network (PHN) have also been studied. Results are shows that the temperature of PHN is reduces from 25 °C to less 20 °C. Initially, mixing of cool water from evaporators and water from primary heating network is mixed in heating stations, as well as it is flowing through water pump of PHN. This water can be heated by getting exhausted steam from the turbine. The step by step process of recovering the waste heat for circulating water using primary heating network is presented in Figure 3. it is shows that the percentage of waste heat utilized by the different equipment. It is observed that compare to pumps recovering of non-used (waste) heat can be maximum utilized by heat exchanger and water temperature can be also mange by heat exchanger at higher degree. so heat exchangers are more preferable as heat recovery system.

Figure 3. Waste Heat Recovery and Heating Phases of the Circulating Liquid in Primary Heating Network.

Hot water is the primary requirement of the universe. Its consumption is day by day increasing sue to this reason energy conservation sources are utilizing to meet the energy requirement. Hence, the appropriate selection of an energy conservation system is required. Few parameters are also to be consideration like cost, lifecycle, efficiency etc. for domestic hot water application. It is also observed that the heat exhaust from the diesel engine is a source to get energy. This can be possible by applying the distinct Rankine cycle. Test results are also shows the good platform of energy source. Diesel generator with 40 kW can be operated 40% by the energy which is generated by exhaust gases of generator. So finally environment can be protected residual gases. They have shown that by using this system to improved brake-specific fuel consumption, produce extra power, reduced exhaust emissions finally waste energy can be recovered. Basically there are so many thermal cycles to utilized for saving energy and power generation. But out of this Brayton and Rankine cycle have been develop for recovering low level waste heat. In contrast to the conventional cycle, the two novel cycles, Brayton and Rankine cycle, bring exergy performance of 60.94% and 60% and thermal efficiency of 53.08% and 52.31%, respectively. In recent development changes or reconciliations of material lead to free heating and cooling of the building. Both trial and reenactment mechanism have been developed for air heat exchanger. In which PCM material is used for making free cooling of the building structure. Selection of the PCM can be based on its thermal properties like melting temperature etc. Thermodynamic studies have been performed of two pre-drying methods (steam drying and boiler flue gas drying). Results indicated that the plant thermal efficiency improves up to 3 % to 5 % by pre-drying methods. A system has also been proposed that combines a trans critical CO_2 refrigeration cycle. A Brayton cycle with ejector-expansion device, which used solar energy as the heat source to alleviate environmental problems and reduce fossil fuel consumption. In Table 5 Summary of waste water heat pump studies inspected. Table 5 is also indicating the heating cooling capacities are depended on the capacity of evaporate and condenser, few of them are solar assisted and remaining systems are simple. Similarly, Ahmadi et al. have studied combined cycle power plant (CCPP). In this power plant additional firing system thermodynamically is added. The consequence deviations in the demanded fuel cost and power by energy and exergy were examined by taking three different output powers into consideration to improve the effectiveness of power plant. (160, 180 and 200 MW). Some researchers have
Table 5. Summary of waste water heat pump studies inspected

Item no	Authors	Year	Refrigerant for Heat Pump cycle	Type for Heat Pump cycle	Application capacity and location	Heat exchanger						
1.	Qian et al.	2006	-	-	Heating (kw): 1000	COP (Heating): 4.2	COP (Cooling): 2.8	China	shell and tube type heat exchanger	-	Y	
2.	Qian et al.	2009	-	Vapor compression (VC)	Heating (kw): 1000	COP (Heating): 4.2	COP (Cooling): 2.8	China	Freezing latent heat exchanger	-	Y	
3.	Zhao et al	2010	VC	-	Heating (kw): 1300	COP (Heating): 4.3	COP (Cooling): 3.5	China	Shell and Tube	-	Y	
4.	Qian	2011	VC	-	Heating (kw): 1300	COP (Heating): 4.3	COP (Cooling): 3.5	China	Freezing latent heat exchanger	-	Y	Y
5.	Gu and Deng	2012	VC	-	Heating (kw): 27378	COP (Heating): 9.3	COP (Cooling): 8.2	China	Shell and Tube	-	Y	
6.	Wang	2013	R-22	-	Heating (kw): 1300	COP (Heating): 4.3	COP (Cooling): 3.5	China	Shell and Tube	-	Y	Y
7.	Liu et al	2013	VC	-	Heating (kw): 1520	COP (Heating): 4.3	COP (Cooling): 3.5	China	Direct expansion	-	Y	
8.	Yaxiu and Fang	2013	VC	-	Heating (kw): 1520	COP (Heating): 4.3	COP (Cooling): 3.5	China	Cross flow horizontal falling film heat exchanger	-	Y	Y
9.	Liu et al	2014	R-134A	-	Heating (kw): 1520	COP (Heating): 4.3	COP (Cooling): 3.5	China	Shell and tube heat exchanger	880KW	Y	Y
10.	Liu et al	2014	VC	-	Heating (kw): 5.15-6.69	COP (Heating): 3.8	COP (Cooling): 4.8	USA	Direct heat exchanger	-	Y	
performed the exergy analysis, exergo environmental and exergo economic analysis of a CCPP23. The outcomes revealed that the destruction in exergy and cost of exergy. its demonstrates that combustion chamber has highest exergy destruction and maximum cost of exergy destruction compared with other parts of the cycle. In the same context, it has been showed that to optimize the process structure and variables of CCPP evolutionary algorithms are use22. Additionally, researchers have optimized CCPP cost using irreversible Carnot-like heat engines number of stages was increased31,32. Similarly geometrical parameters are also affecting the heat exchanger but without changing in the parameters optimization of multi-stream plate fin heat exchanger is possible by changing in variables like entropy Generation31.

Rosen and Dincer together carried out an exergo economical study of coal fired electricity generating station and power plants. They exposed that the ratio of thermodynamic loss rate is a significant parameter for evaluating performance of the plant. it lead to a successful design of the plant33. Likewise, in for high temperature sometimes ceramic monolith heat exchangers are used. These heat exchangers are unique and new development. It’s found that the heat transferred rate can be increased by 3% and overall heat transferred rate increased by 4.5 - 5\%33,34. On the other side binary cycle has been suggested. In Binary cycle, geothermal sources provide thermal energy. This thermal energy transferred to other working fluid. Thus, selection of second working fluid is very critical and plays key role on the performance of the cycle. in this review geothermal binary power cycle was studies in which different refrigerants were selected as a working fluid. For all twelve refrigerants, exergy and energy efficiencies of binary cycle were calculated. Study shows that refrigerants like R600a, R227ea, R236ea, and R600 showed higher energy and exergy efficiencies, respectively and they were from dry type. On the other hand, wet fluids such as R143a, R415A, R290, and R 413A were indicated to have lower energy and exergy efficiencies, respectively35. The cost is also very important factor when the design the energy conservation system. Heat exchanger is a unit in which modifications can be done and low cost system to be developed and also minimize the inventory cost31.

3. Conclusion

Waste water is a vital energy source, which can be effectively used to improve the performances of different system by different type of sources like heat exchangers, heat pumps etc. The amounts of water used in India compare to other countries are more. To utilize the waste water energy shell and tube types of heat exchangers are more preferable. By using these types of technologies we can maintain the non-renewable sources and protect the environments. The cost behind this type of development can be reimbursed by utilizing the waste energy resources. Heat and electricity generation from waste provide a more environment friendly alternative source of energy.

This review is also exploring that not only the waste energy has utilized but other sources of energy like solar, wind, geothermal can be used for domestic applications like supply of hot water, heating and cooling of building etc. In future to meet for energy requirement renewable sources operated system will be developed for energy conservation.

4. References

1. Chen HL, Dai X. editor Economic analysis of a waste water resource heat pump air-conditioning system in north China. In:Proceedings of the sixth international conference for enhanced building operations, Shenzen,China. 2006 Nov 6–9.
2. Qureshi BA, Antar MA, Zubair SM. Heat exchanger inventory cost optimization for power cycles with one feedwater heater. Energy Conversion and Management. 2014; 86:379–87.
3. Kaushik SC, Reddy VS, Tyagi SK. Energy and exergy analyses of thermal power plants: A review. Renewable and Sustainable Energy Reviews. 2011; 15(4):1857–72.
4. Chao SY, Yang Y, Shiming D, Xinlei W. A field study of a waste water source heat pump for domestic hot water heating. J Build Services Eng Res Technol. 2012; 1–16.
5. Yaxiu GFJ. Research on the energy-saving and heat transfer performance of waste water source heat pump. APEC Conference on Low-Carbon Towns and Physical Energy Storage, Changsha, China. 2013 May 25–26. p. 376–81.
6. Meggers FLH. The potential of waste water heat and exergy: decentralized high-temperature recovery with a heat pump. Energy and Buildings. 2011; 43(4):879–86.
7. F. S. Sewage water:Interesting heat source for heat pumps and chillers. Zürich, Switzerland.
8. Available from: Brief introduction of Heat Exchanger
9. Dincer IRMA. Exergy: energy, environment and sustainable development. : Elsevier, 2013; 537 pp.
10. Available from: https://www.tmeic.com/North%20America/204-EnergySavings%20WasteHeatRecovery-198.
11. Kumar SCAS. Industrial Water Demand in India Challenges and Implications for Water Pricing 2011. Available from:
A Review: Utilization of Waste Energy to Improve the Efficiency of the Systems

http://www.idfc.com/pdf/report/2011/Chp-18-Industrial-Water-Demand-in-India-Challenges.pdf.

12. Pandey GK, Singh AP. Energy Conservation and Efficient Data Collection in WSN-ME: A Survey. Indian Journal of Science and Technology. 2015 Aug; 8(17). Doi:10.17485/ijst/2015/v8i17/68648.

13. Hessellgreaves JE. Compact Heat Exchangers Selection, Design, and Operation, Amsterdam; New York: Pergamon. 2001.

14. ECA - The Enhanced Capital Allowance, Energy Technology Criteria List,Compact Heat Exchangers, 2008 Aug 12, 2009.

15. Kilkovsky B, Stehlik P, Jegla Z, Tovazhnyansky LL, Arsenyeva O, Kapustenko PO. Heat exchangers for energy recovery in waste and biomass to energy technologies – I. Energy recovery from flue gas. Applied Thermal Engineering. 2014; 64(1–2):213–23.

16. Antar MA, Zubair SM. Thermoeconomic considerations in the optimum allocation of heat exchanger inventory for a power plant. Energy Conversion and Management. 2001; 42(10):1169–79.

17. Alfa Laval C. [cited 2013. Oct. 10]. Available from: www.alfalaval.com/solution-finder/products/compabloc.

18. Sun F, Fu L, Sun J, Zhang S. A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps. Energy. 2014; 69:516–24.

19. Fu LJY, Zhang SG, Xiao CL, Hu P, Di HF, Chen C. One kind of heat exchanger unit based on heat pump technology. 2008; 12–24

20. Li Y, Fu L, Zhang S, Zhao X. A new type of district heating system based on distributed absorption heat pumps. Energy. 2011; 36(7):4570–6.

21. Ibrahim O, Fardoun F, Younes R, Louahlia-Gualous H. Review of water-heating systems: General selection approach based on energy and environmental aspects. Building and Environment. 2014; 72:259–86.

22. Hossain SN, Bari S. Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle. Energy Conversion and Management. 2013; 75:141–51.

23. Bai F, Zhang Z. Integration of Low-level Waste Heat Recovery and Liquefied Nature Gas Cold Energy Utilization. Chinese Journal of Chemical Engineering. 2008; 16(1):95–9.

24. Chua KJ, Chou SK, Yang WM, Yan J. Achieving better energy-efficient air conditioning – A Review of technologies and strategies. Applied Energy. 2013; 104:87–104.

25. Liu M, Yan J, Chong D, Liu J, Wang J. Thermodynamic analysis of pre-drying methods for pre-dried lignite-fired power plant. Energy. 2013; 49:107–18.

26. Wang J, Zhao P, Niu X, Dai Y. Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy. Applied Energy. 2012; 94:58–64.

27. Pouria Ahmadi ID. Thermodynamic analysis and unit. Energy Conversion and Management. 2011; 52:2296–308.

28. Barzegar Avval HAP, Ghaffarizadeh AR, Saidi MH. Thermoeconomic environmental multi objective optimization of a gas turbine power plant with preheater using evolutionary algorithm. International Journal of Energy Research. 2010.

29. Koch C, Cziesla F, Tsatsaronis G. Optimization of combined cycle power plants using evolutionary algorithms. Chemical Engineering and Processing: Process Intensification. 2007; 46(11):1151–9.

30. Bandyopadhyay S, Bera NC, Bhattacharyya S. Thermoeconomic optimization of combined cycle power plants. Energy Conversion and Management. 2001; 42(3):359–71.

31. Jafari M, Salarian H, Bazrafshan J. Study on Entropy Generation of Multi-Stream Plate Fin Heat Exchanger with use of Changing Variables Thermodynamic and Fluids Flow Rate between Plates and Provide an Optimal Model. Indian Journal of Science and Technology. 2016 Feb; 9(7). Doi:10.17485/ijst/2016/v9i7/8773.

32. Rosen MA, Dincer I. Exergoeconomic analysis of power plants operating on various fuels. Applied Thermal Engineering. 2003; 23(6):643–58.

33. Dev Anand M, Maharaja NL, Sanu Kailordson K, Prabhu N. Theoretical study and analysis on performance enhancement of a ceramic monolith heat exchanger. Indian Journal of Science and Technology. 2016 Mar; 9(13). Doi:10.17485/ijst/2016/v9i13/90564.

34. Dev Anand M, Glen Devadhas G, Prabhu N, Karthikeyan T. Ceramic Monolith Heat Exchanger - A Theoretical Study and Performance Analysis. Indian Journal of Science and Technology. 2016 Mar; 9(13). Doi:10.17485/ijst/2016/v9i13/90566.

35. Basaran A, Ozgener L. Investigation of the effect of different refrigerants on performances of binary geothermal power plants. Energy Conversion and Management. 2013; 76:483–98.

36. Qian JSD, Li X. editor Analysis of energy and soft dirt in an urban untreated sewage source heat pump system. Proceedings of the sixth International Conference for enhanced Building Operations, Shenzen, China. 2006 Nov 6–9.

37. Qian JZJ, Sun D. Form and applicability of a new urban sewage source heat pump system with freezing latent heat collection. International Conference on Energy and Environment Technology, Guilin, Guangxi, China. 2009 Oct 16–18. p. 578–81.

38. Zhao XL, Fu L, Zhang SG, Jiang Y, Lai ZL. Study of the performance of an urban original source heat pump system. Energy Conversion and Management. 2010; 51(4):765–70.

39. J. Q. Optimization design of urban sewage source heat pump system with freezing latent heat collection. International
Conference on Mechatronic Science, Jilin, China. 2011 Aug 19–22. p. 636–9.

40. Gu YDH. The feasibility analysis of wastewater source heat pump using the urban wastewater heat. Eng Technol. 2012; 4(18):3501–4.

41. Wang HWQ, Chen G. Experimental performance analysis of an improved multifunctional heat pump system. Energy Build. 2013; 62:581–9.

42. Liu X, Ni L, Lau S-K, Li H. Performance analysis of a multifunctional Heat pump system in heating mode. Applied Thermal Engineering. 2013; 51(1–2):698–710.

43. Liu Z, Ma L, Zhang J. Application of a heat pump system using untreated urban sewage as a heat source. Applied Thermal Engineering. 2014; 62(2):747–57.

44. Liu X, Lau S-K, Li H. Optimization and analysis of a multifunctional heat pump system with air source and gray water source in heating mode. Energy and Buildings. 2014; 69:1–13.