Case Report

Pitfall management of dermatofibrosarcoma protuberans on right leg

Gede Kesuma Winarta1*, Ida Bagus Made Suryawisesa2

1Department of Surgery, Faculty of Medicine, Udayana University, Bali, Indonesia
2Department of Oncology Surgery, Faculty of Medicine, Udayana University, Bali, Indonesia

Received: 21 July 2019
Revised: 09 August 2019
Accepted: 13 August 2019

*Correspondence:
Dr. Gede Kesuma Winarta,
E-mail: dr_kesumawinarta@yahoo.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Dermatofibrosarcoma protuberans (DFSP) is a rare, locally invasive soft tissue sarcoma. The local recurrence rate is high, in some studies upwards of 60%, likely reflecting a failure to remove occult extensions of tumor. Surgical excision has been the treatment of choice for the resection of DFSP. Any pitfall on management therapy of DFSP not only increase the recurrence rate but also add new problems to patients with DFSP. 58-year-old male patient, came with a local recurrent of DFSP on his right leg. Then performed excision with margin one centimetre, and closing defect using pedicle sural flap, durante surgery turned pedicle on the flap is too short and because of poor soft tissue handling pedicle was injured. It consulted into the vascular division for evaluated and treatment pedicle. Postoperative evaluation, the flap experiences bluish due to vascularization compromised. It was decided to expose the flap and the defect was covered with skin graft. 2 months postoperative evaluation found local recurrent on skin graft area. Excision margins between 2 to 5 cm can reduce the recurrence rate. Proper planning in designing flaps to cover defects and the ability of good soft tissue handling is required to avoid new problems on management DFSP.

Keywords: Dermatofibrosarcoma protuberans, Local recurrent, Sural flap, Wide excision

INTRODUCTION

Dermatofibrosarcoma protuberans (DFSP) is a rare, locally invasive soft tissue sarcoma with a propensity for extensive subclinical involvement. Originating in the dermal layer of skin, microscopic tendrils of tumor may extend far beyond the margin of clinically evident tumor.

While painless and often indolent appearing, the tumor can grow quite large before receiving clinical attention. Local invasion can include subcutaneous tissue, muscle, fascia and bone.

The local recurrence rate is high, in some studies upwards of 60%, likely reflecting a failure to remove occult extensions of tumor.1 Fortunately, distant metastasis is rare (between 1 and 4%) and complete removal is considered curative.2

CASE REPORT

By case report, 58-year-old male patient came with complaints of multiple lumps and ulcer appearing in the crus anterior dextra area. History of lump excision on this similar area three months ago, from the results of examination pathology anatomy diagnosed with dermatofibrosarcoma protuberans.

Performed therapeutic management by performing re-wide excision. A wide-circle excision is performed with a one-centimeter excision margin of the outer lesion. and with the depth of excision to fascia layer.

To close the defect, it is taken from the sural flap. During durante operation, good soft tissue handling is very big role in the identification and keep the vascularization through pedicle flap remain good. On this case poor...
operator soft tissue handling make the pedicle edema, but still try to close the defect by the sural flap that has been taken.

Figure 1: Local residif of DFSP on regio cruris anterior dextra.

Figure 2: Post Excision.

Figure 3: Edema Pedicle Sural Flap.

Evaluation of the third day post-operative, the flap starts to look bluish but still felt warm. The ten days there was a reddish flap as a sign of venous compensation failure. Then it was decided to expose the flap and close the defect with the skin graft.

Figure 4. Third Days Flap.

Figure 5. Ten Days Flap.

Figure 6: Local Residif DFSP On Skin Graft.
Follow up post-surgery, skin graft used to cover defects is growing well. But in second months follow up post-operative recovered local residif on skin graft area.

DISCUSSION

The cell of origin for DFSP is controversial. Several authors theorize that DFSP arises from fibroblasts, as tumor cell features that are consistent with modified fibroblasts have been observed on electron microscopy. In addition, like fibroblasts, DFSP cells stain with vimentin and contain active endoplasmic reticulum that readily synthesize collagen. However, several studies in tissue culture indicate that tumor cells may be histiocytes that have acquired fibroblastic elements.

The growth pattern of DFSP resembles that of fibroblasts in the body, which serve to support tissue through formation of a lattice network around cells. DFSP cells mimic the fibroblast infiltrative growth pattern with pseudopod like extensions from a central mass that penetrate fat and adjacent tissue over time. It may be that this similarity to the fibroblast growth pattern explains the low rate of blood borne metastasis, as fibroblasts tend to remain enmeshed in the area they stabilize. Histologically, DFSP is characterized by a fibroblastic proliferation of tumor cells arranged about a central hub in a storiform pattern.

Figure 7: Microscopic Appearance of DFSP.

Ninety percent of DFSP tumor cells exhibit a chromosomal translocation of genes COL1A9 and PDGFRβ (t17;22,) which encode the alpha chain of type I collagen and the beta chain of platelet-derived growth factors, respectively. The fusion protein produced by this translocation causes continuous stimulation of the PDGF protein tyrosine kinase, resulting in increased production of PDGF and abnormal cellular proliferation. Fibrosarcomatous-DFSP is a more aggressive variant of DFSP and likely represents dedifferentiation. The increased cellularity and mitotic activity observed on histology for these tumors are indistinguishable from the cytologic and architectural pattern of a high grade fibrosarcoma, and this variant is associated with a higher rate of recurrence and metastasis.

DFSP is a locally aggressive tumor characterized by low rate of metastasis and high capacity for local invasion. Consequently, the treatment of choice is resection with wide margins. In the early 1990s the gold standard of treatment for DFSP was surgical excision, with 3-5cm margins of healthy skin, while the underlying subcutaneous tissue, including fascia, was removed en block. Historically, surgical excision has been the treatment of choice for DFSP. However, the ideal width of margins remains undefined. Several authors have suggested that traditional surgical excision, which removes tissue in a concentric ring based on the macroscopic extent of the tumor, is not well suited for removal of DFSP. This surgical approach is predisposed to remove too much healthy tissue without eradicating the extensive, asymmetric projections of tumor cells. Most authors currently suggest a margin of 2 to 3 cm with a three dimensional resection including skin, subcutaneous tissue, and the underlying investing fascia.

Excision with wide margins leads to improvement of the recurrence rate. When the surgical margins are at least 3cm and there is a three-dimensional resection that includes skin, subcutaneous tissue and the underlying fascia, the rate of recurrence is 20%. It is necessary to be mentioned that in cases where the underlying bone structures are too close to the lesion, the periosteum and the portion of the bone may also need to be removed in order to achieve negative deep surgical margins. In cases where the margins were more than 5cm, the rate of recurrence was less than 5%.

In the last several decades, Mohs surgery has emerged as a promising treatment option that may achieve superior results to surgical excision. Mohs surgery provides a method of eradicating tumor that rests on intraoperative evaluation of tumor margins. The tumor is resected in a stepwise fashion with tissue removal that is based on the presence of tumor cells. In addition to conserving tissue, the pathologic techniques used in Mohs surgery have been shown to provide an excellent rate of cure with very few documented recurrences.

In this case the selection of excision margins that are only one centimeter from the outer border of the tumor may be due to consideration for easier closure of the defect. But for the case DFSP corresponds to some literature saying that wide excision margins are usually two to four centimeters can reduce the local number of recurrent on DFSP. In this case it is likely that the small excision margin still leaves the tumor cell tissue causing local residif.

Mohs surgery seems to be very useful in cases where wide excision is not feasible. DFSP is considered as
Dermatofibrosarcoma protuberans (DFSP) is a rare, subcutaneous tumor with a propensity for extensive subclinical involvement. Surgical therapy is the modality therapy of DFSP, but there are some pitfalls to consider in order to avoid complications and local residual postoperative.

The determination of the margin of wide excision margin according to say some literatures about four centimeters can reduce the local residual number. At a central hospital with anatomy pathology specialists, the mohs surgery method can be used to ensure that excisional tissue boundaries are free of tumor cells. To ensure no residual tumor cells are at risk of inducing local residif.

Before carrying out extensive excision actions, it should also be noted about the action of reconstruction of the closure of the defect to be performed. The correct operation technique and soft tissue handling capability of
the operator when the flap action is very important. For pedicle and vascularization of the flap to be closed to close the defect as expected.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not Required

REFERENCES

1. Gloster JH, Harris KR, Roenigk RK. Micrographic Surgery and Wide Surgical Excision for The Treatment of Dermatofibrosarcoma. J Am Acad Dermatol. 1996 Jul;35(1):82-7.
2. Gloster Jr H. Dermatofibrosarcoma protubersans. J Am Acad Dermatol. 1996 Sep;35(3 Pt 1):355-74.
3. Robinson J. Dermatofibrosarcoma Protuberaans Resected by Mohs' Surgery (chemosurgery). A 5-year. J Am Acad Dermatol. 1985 Jun;12(6):1093-8.
4. Pearson S, Amsberry J. The Use of Wide Local Excision and Temporary Wound VAC Dressing In Treating Two Cases Of DFSP. aspsconfexcom. 2007 Oct:28.
5. Ozzello L, Hamels J. The Histiocytic Nature of Dermatofibrosarcoma Protuberasans. Tissue Culture and Electron Microscopic Study. Am J Clin Pathol. 1976 Feb 1;65(2):136-48.
6. Fiore M, Miceli R, Mussi C, Vullo LS. Dermatofibrosarcoma Protuberans Treated At A Single Institution. J Clin Oncol. 2005 Oct 20;23(30):7669-75.
7. Breuninger H, Sebastian G, Garde C. Dermatofibrosarcoma Protuberasans. Journal der Deutschen Dermatologischen Gesellschaft. 2004 Sept 2(8):661-7.
8. Khatrid V, Galante J, Bold R, Schneider P. Dermatofibrosarcoma Protuberasans: Reappraisal of Wide Local Excision and Impact of Inadequate. Annals of Surgical Oncol. 2003 Nov;10(9):1118-22.
9. Bowne W, Antonescu C, Leung D. Dermatofibrosarcoma protuberasans. Cancer.2000 Jun 15;88(12):2711-20.
10. Yu W, Tsoukas MM, Chapman SM, Rosen JM. Surgical Treatment for Dermatofibrosarcoma Protuberasans: The Dartmouth Experience and Literature Review. Annals of Plastic Surgery. 2008 Mar 1;60(3):288-93.
11. Ratner D, Thomas CO, Johnson TM, Sondak VK, Hamilton TA, Nelson BR, et al. Mohs Micrographic Surgery for The Treatment of Dermatofibrosarcoma Protuberasans. Results of a Multiinstitutional Series With an Analysis of The Extent of Microscopic Spread. J Am Acad Dermatol.1997 Oct 1;37(4):600-13.
12. Green JJ, Heymann WR. Dermatofibrosarcoma Protuberasans Occurring in A Smallpox Vaccination Scar. J Am Acad Dermatol. 2003 May 1;48(5):S54-5.
13. DuBay D, Cimmino V, Lowe L, Johnson T. Low Recurrence Rate After Surgery for Dermatofibrosarcoma Protuberasans. Cancer. 2004 Mar 1;100(5):1008-16.
14. Parker T, Zatelli J. Surgical Margins for Excision of Dermatofibrosarcoma Protuberasans. J Am Acad Dermatol. 1995 Feb;32(2 Pt 1):233-6.
15. Chen X, Chen YH, Zhang YL, Guo YM, Bai ZL, Zhao X. Magnetic resonance imaging and mammographic appearance of dermatofibrosarcoma protuberasans in a male breast: a case report and literature review. J Med Case Report. 2009;3(1):8246.
16. McArthur G. Bone and Soft Tissue Sarcomas Dermatofibrosarcoma Protuberasans: Recent Clinical Progress. Ann Surg Oncol. 2007;14:2876-86.
17. Ballo MT, Zagars GK, Pisters P, Pollack A. The role of radiation therapy in the management of dermatofibrosarcoma protuberasans. Int J Radiat Oncol Biol Phys. 1998;40(4):823-7.
18. National Comprehensive Cancer Network. Clinical Practice Guidelines in Oncology. Dermatofibrosarcoma protuberasans. Version 1.2018. Available at: http://www.nccn.org/professionals/physicians_gls/PDF/dfsp.pdf. Accessed 4 March 2019.
19. Rowsell A, Poole M, Godfrey A. Dermatofibrosarcoma protuberasans: the problems of surgical management. British J plastic surg. 1986 :262-4.
20. Buluc L, Tosun B, Sen C, Sarlak AY. A Modified Technique for Transposition of The Reverse Sural Artery Flap. Plast Reconstr Surg. 2006;117(7):2488-92.

Cite this article as: Winarta GK, Suryawisesa IBM. Pitfall management of dermatofibrosarcoma protuberans on right leg. Int J Res Med Sci 2019;7:3586-90.