Nucleolipid acid-based nanocarriers restore neuronal lysosomal acidification defects

Mathias Brouillard¹, Philippe Barthélémy¹, Benjamin Dehay²*, Sylvie Crauste-Manciet¹,³, Valérie Desvergnes¹*.

¹University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
²Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
³University Hospital, CHU Bordeaux, 33000 Bordeaux, France.
Compound 1 C_{17}H_{20}N_{2}O_{5}

1H NMR 300 MHz CD$_3$OD
Compound 1 $C_{17}H_{20}N_{2}O_{5}$

13C NMR 75.5 MHz CD$_3$OD
Compound 2 C_{23}H_{34}N_{3}O_{5}Si

1H NMR 300 MHz CDCl₃
Compound 2 $C_{26}H_{34}N_2O_5Si$
13C NMR 75.5 MHz CDCl$_3$
Compound 3 C$_{39}$H$_{64}$N$_2$O$_6$Si

1H NMR 300 MHz CDCl$_3$
Compound 3 $\text{C}_{30}\text{H}_{64}\text{N}_2\text{O}_6\text{Si}$

13C NMR 75.5 MHz CDCl$_3$
Compound 4 $C_{43}H_{72}N_2O_6Si$
1H NMR 300 MHz CDCl$_3$
Compound 4 $\text{C}_{43}\text{H}_{72}\text{N}_{2}\text{C}_{5}\text{Si}$

13C NMR 75.5 MHz CDCl$_3$
Compound 5 C_{33}H_{50}N_{2}O_{6}

1H NMR 300 MHz CDCl$_3$
Compound 5 $C_{33}H_{50}N_2O_6$

13C NMR 75.5 MHz CDCl$_3$
Compound 6 \(\text{C}_{37}\text{H}_{68}\text{N}_{2}\text{O}_{6} \)

\(^{1}\text{H NMR 300 MHz CDCl}_3 \)
Compound 6 \(\text{C}_{37}\text{H}_{69}\text{N}_2\text{O}_5 \)

\(^{13}\text{C} \text{NMR} 75.5 \text{ MHz CDCl}_3 \)
Compound 7 C₃₈H₆₂N₂O₉

¹H NMR 300 MHz CDCl₃
Compound T \(\text{C}_{29}\text{H}_{54}\text{N}_2\text{O}_9 \)

\(^{13}\text{C} \text{NMR 75.5 MHz CDCl}_3\)
Compound 8 \(\text{C}_{41}\text{H}_{62}\text{N}_2\text{O}_9 \)

\[^1\text{H} \text{NMR} 300 \text{ MHz} \ \text{CDCl}_3 \]
Compound 8 \(\text{C}_{41}\text{H}_{62}\text{N}_{2}\text{O}_{9} \)

\(^{13}\text{C}\) NMR 75.5 MHz CDCl\(_3\)