Global longitudinal strain by feature-tracking cardiovascular magnetic resonance imaging predicts mortality in patients with end-stage kidney disease

Alastair J. Rankin, Luke Zhu, Kenneth Mangion, Elaine Rutherford, Keith A. Gillis, Jennifer S. Lees, Rosie Woodward, Rajan K. Patel, Colin Berry, Giles Roditi and Patrick B. Mark

1Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK, 2Renal and Transplant Unit, NHS Greater Glasgow and Clyde, Glasgow, UK, 3Clinical Research Imaging, NHS Greater Glasgow and Clyde, Glasgow, UK and 4Department of Radiology, NHS Greater Glasgow and Clyde, Glasgow, UK

ABSTRACT

Background. Patients with end-stage kidney disease (ESKD) are at increased risk of premature death, with cardiovascular disease being the predominant cause of death. We hypothesized that left ventricular global longitudinal strain (LV-GLS) measured by feature-tracking cardiovascular magnetic resonance imaging (CMRI) would be associated with all-cause mortality in patients with ESKD.

Methods. A pooled analysis of CMRI studies in patients with ESKD acquired within a single centre between 2002 and 2016 was carried out. CMR parameters including LV ejection fraction (LVEF), LV mass index, left atrial emptying fraction (LAEF) and LV-GLS were measured. We tested independent associations of CMR parameters with survival using a multivariable Cox model.

Results. Among 215 patients (mean age 54 years, 62% male), mortality was 53% over a median follow-up of 5 years. The median LVEF was 64.7% (interquartile range (IQR) 58.5–70.0) and the median LV-GLS was 15.3% (IQR 17.2–13.6). While 90% of patients had preserved LVEF (>50%), 58% of this group had abnormal LV-GLS (>–16%). On multivariable Cox regression, age (hazard ratio [HR] 1.04 [95% confidence interval (CI) 1.02–1.05]), future renal transplant [HR 0.29 (95% CI 0.17–0.47)], LAEF [HR 0.98 (95% CI 0.96–1.00)] and LV-GLS [HR 1.08 (95% CI 1.01–1.16)] were independently associated with mortality.

Conclusions. In this cohort of patients with ESKD, LV-GLS on feature-tracking CMRI and LAEF was associated with all-cause mortality, independent of baseline clinical variables and future renal transplantation. This effect was present even when >90% of the cohort had normal LVEF. Using LV-GLS instead of LVEF to diagnose cardiac dysfunction in patients with ESKD could result in a major advance in our understanding of cardiovascular disease in ESKD.

Keywords: cardiovascular, chronic renal failure, ESKD, left ventricular hypertrophy, magnetic resonance imaging, survival analysis
INTRODUCTION

Patients with chronic kidney disease (CKD) are at increased risk of death from all causes compared with the general population [1]. The majority of this increased risk is due to cardiovascular disease [2]. While ischaemic heart disease is the most common form of cardiovascular disease in the general population, patients with CKD have relatively fewer atherosclerotic events but a disproportionate increase in the risk of sudden cardiac death and death from arrhythmogenic causes [3]. This risk increases with the severity of CKD [2], such that patients with CKD Stage 5 are three to four times more likely to experience a cardiovascular event than age-standardized patients without CKD [4]. This excess cardiovascular risk is intrinsically linked to cardiac structural and functional abnormalities, which start to develop early in CKD [5]. These include left ventricular (LV) hypertrophy, cardiac dysfunction and myocardial fibrosis, which together are sometimes referred to as a ‘uraemic cardiomyopathy’ [6–8]. The utility of cardiovascular magnetic resonance imaging (CMRI) to detect these abnormalities has been an area of growing interest and CMRI may prove to be a useful tool in the development of non-invasive novel biomarkers for future risk stratification [9, 10].

LV global longitudinal strain (LV-GLS) measures the percentage of muscle deformation during the cardiac cycle as a sensitive marker of myocardial function [11]. Feature-tracking CMRI is a non-contrast post-processing technique that derives LV-GLS by tracking endocardial and epicardial borders through successive images from routinely acquired CMRI sequences [11]. Normal values for LV-GLS measured by feature-tracking CMRI are approximately –20 ± 4% [12–14]. LV-GLS has been shown to be a strong correlate of mortality and clinical outcomes in patients with myocardial infarction (MI) [15], and improvements in LV-GLS have been reported following renal transplantation [16]. In patients with CKD, utilizing echocardiography, GLS has been reported to predict clinical outcomes [17]. However, CMRI is considered the gold standard imaging modality in end-stage kidney disease (ESKD), as fluctuations in volume status with renal replacement therapy (RRT) may have an undue influence on images obtained in a two-dimensional plane [18].

We hypothesized that LV-GLS on feature-tracking CMRI has incremental prognostic utility over clinical and conventional imaging for predicting all-cause mortality in patients with ESKD.

MATERIALS AND METHODS

Participants

CMRIs from research studies carried out in participants with ESKD within a regional renal and transplant centre between 2002 and 2016 were pooled. Patients for whom CMRIs were available and who had consented to long-term data follow-up were eligible for inclusion. All participants had CKD Stage 5 [estimated glomerular filtration rate (eGFR) <15 mL/min/1.73 m²] and were receiving or were estimated to be within 6 months of requiring RRT. Further details of the cohorts are described elsewhere (ClinicalTrials.gov NCT01951404) [19–21]. Participants provided written informed consent and regional ethics committee approval was granted; the study was conducted in agreement with the Declaration of Helsinki.

Clinical data were manually collected via the West of Scotland Electronic Renal Patient Record database (Vitalpulse, Chelmsford, UK) by members of the team blinded to other aspects of the study. Baseline clinical variables included demographic characteristics and medical history. The primary outcome was all-cause mortality. The secondary outcome was cardiovascular mortality, defined as death due to MI, heart failure, sudden cardiac death, stroke or peripheral vascular disease [22].

CMRI acquisition

CMRI acquisition was performed using 1.5 T (Sonata, Siemens, Erlangen, Germany) and 3 T MRI scanners (Magnetom Verio and Prisma, Siemens Erlangen, Germany). For patients on haemodialysis, the scans were performed 24 h following the end of their dialysis session. Imaging protocols were similar in all studies and were as described previously [19–21]. In short, electrocardiographic gating was used and the images were acquired in end expiration. Following the acquisition of localizer images, balanced steady-state free precession (SSFP) sequences were used to acquire LV images in three long-axis planes, followed by a short-axis stack from the apex to the atrioventricular ring. Additional details are available in the Supplementary data, Table S1.

CMRI analysis

All data analysis was carried out in a core lab utilizing dedicated CMR software (cvi42, version 5.10; Circle Cardiovascular Imaging, Calgary, AB, Canada). Routinely analysed CMRI measures of LV and right ventricular (RV) function were carried out according to current guidelines [23], with parameters of myocardial mass and ventricular volume derived from the short-axis views and indexed to body surface area. Ventricular endocardial and epicardial contours were manually drawn at end diastole. LV endocardial contours were drawn at end systole, which was deemed to be the phase with the smallest blood pool cavity. Papillary muscles were excluded from myocardial mass and included in volume. For the purposes of strain measurements, the manually drawn ventricular contours were propagated throughout the cardiac cycle using the software’s machine learning algorithms. Automated contours were individually checked and corrected where necessary. Global LV strain (circumferential, longitudinal and radial) and global RV strain (longitudinal and radial) were derived using the tissue tracking module to determine values of peak strain and strain graphs following the manufacturer’s advised standard protocols (Figure 1). Atrial volumes were indexed to body surface area and derived from automated contours, with manual correction as needed. Left atrial (LA) emptying fraction (LAEF) was calculated as the percentage difference between maximal and minimal LA volume divided by maximal atrial volume. The primary observer (L.Y.Z.) performed all CMRI analyses in a random order. A second independent observer (A.J.R.) analysed a random sample of >10% of the cohort to assess interobserver variability. Both observers were blinded to clinical outcomes.

Statistical analysis

Continuous data with a normal distribution are presented as mean ± standard deviation and median and interquartile range.
GLS by feature-tracking cardiovascular MRI

RESULTS

Participant characteristics

A total of 215 patients were included [144 of whom were being considered for renal transplant [19, 21] and 71 incident dialysis patients without overt heart failure, 33 from Rutherford et al. [20] and 38 locally acquired baseline scans from a recent trial of allopurinol therapy in dialysis patients (ClinicalTrials.gov NCT01951404)]. There was no difference in survival or LV-GLS by the year of scan (log-rank test \(P = 0.99 \) and Kruskal–Wallis test \(H = 2.77, P = 0.60 \), respectively).

In total, 133 (62%) were male and the mean age was 54.0 ± 12.1 years (Table 1). The majority of participants were white [200 (93%)], with 11 Asian, 3 Black and 1 other. At the time of scanning, 181 (84%) patients were receiving RRT, of whom 8 (4%) had a functioning renal transplant [median eGFR 10.5 (IQR 9.1–13.3) mL/min/1.73 m²]. The remaining 34 (16%) patients had CKD Stage 5 with a median eGFR of 10.4 (IQR 8.6–12.8) mL/min/1.73 m². During a median follow-up of 5.0 years (range 1 day–16.9 years), there were 115 deaths (53%). A specific cause of death was available for 96 (83%) patients and included 34 (35%) due to infection, 33 (34%) cardiovascular (22 cardiac, 9 peripheral vascular disease and 4 stroke), 13 (14%) cancer, 7 (7%) withdrawal of dialysis and 9 (9%) other causes. Participants who survived were younger \((51.6 \pm 11.7 \text{ years} \text{ versus } 56.2 \pm 12.2 \text{ years}; P = 0.005) \), with a similar sex distribution and body mass index (Table 1). Deceased patients were significantly more likely to have diabetes at baseline \((37\% \text{ versus } 22\%; P = 0.014) \); however, the history of cardiac disease including MI and heart failure were similar (Table 1).

Table 2 summarizes the CMRI results for the cohort. Seven patients had a reduced LV ejection fraction \((LVEF < 40\%) \), while a further 14 patients had a mid-range ejection fraction between 40% and 49%, as defined by the 2016 European Society of Cardiology guidelines [24, 25]. A total of 112 patients with preserved \(LVEF > 50\% \) had abnormal LV-GLS when defined as \(> -16.0\% \) [12]. Intra- and interobserver reproducibility were excellent for LA, right atrial (RA) and LV parameters (ICC > 0.92) and moderate for RV parameters (ICC 0.57–0.74) (Supplementary data, Table S2) [26].

CMRI parameters and all-cause mortality

On univariable analysis with each variable entered separately, LV-GLS, LV global radial strain (LV-GRS), RV global longitudinal strain (RV-GLS), RV global radial strain (RV-GRS), minimum LA...
volume and LAEF were significantly associated with all-cause mortality (Table 3). A multivariable model was created of these variables combined with the pre-specified clinical variables of gender, age, diabetes, heart failure, previous MI and future renal transplant. Following backward stepwise elimination, LV-GLS and LAEF were the only CMRI parameters that remained independently associated with mortality, in combination with gender, age and future renal transplantation (Table 3). All other variables were excluded.

Patients were divided into quartiles according to LV-GLS and LAEF. The quartiles for LV-GLS were as follows: first quartile <17.24% (best), second quartile 17.25% to <15.28%, third quartile 15.28 to <13.62% and fourth quartile >13.61% (worst). The quartiles for LAEF were first quartile <50.12% (worst), second quartile 50.13–57.30%, third quartile 57.31–64.94% and fourth quartile >64.94% (best). When compared with the best quartile of LV-GLS, participants in the worst quartile had significantly poorer outcomes (P = 0.03; Figure 2), with no difference between the other quartiles. Similarly, the first quartile of LAEF had significantly worse survival compared with participants in the third and fourth quartiles of LAEF (Figure 2; P = 0.003 and 0.03, respectively).

On ROC analysis, there was no single threshold of LV-GLS with meaningful prognostic value for all-cause mortality. When 1-year mortality was examined, the area under the curve (AUC) for LV-GLS was 0.71, from which an LV-GLS cut-off of 14.1% would yield 77% sensitivity and 67% specificity. However, when 2-year mortality was examined the AUC decreased to 0.52.

LV-GLS differed by sex within the cohort, with females having greater contractility than males [median GLS = 16.17% (females) versus 14.52% (males); Mann–Whitney U test P < 0.001]. There was no difference in mortality by sex (log-rank P = 0.48). When only female patients were studied, LV-GLS was significantly associated with all-cause mortality [HR 1.21 (95% CI 1.08–1.35); P = 0.001], but the association was not detected when only male patients were studied [HR 1.08 (95% CI –0.99–1.18); P = 0.09]. There was no difference in LAEF by sex (Mann–Whitney U test P = 0.15).

CMRI parameters and cardiovascular mortality

With regards to the secondary outcome of cardiovascular mortality, LV-GLS [HR 1.17 (95% CI 1.00–1.25)] and LAEF [HR 0.949 (95% CI 0.92–0.98)] were the only CMRI parameters that were significantly associated with outcome on univariable analysis. Following backwards elimination, LAEF was the only CMRI parameter that remained significantly associated with cardiovascular mortality in the multivariable model containing age [HR 1.08 (95% CI 1.0–1.12)], diabetes [HR 2.30 (95% CI 1.12–4.71)], future renal transplant [HR 0.35 (95% CI 0.13–0.95)] and LAEF [HR 0.96 (95% CI 0.93–0.99)].

CMRI parameters and future renal transplantation

A total of 106 (49%) patients received a renal transplant during the follow-up. Of these, 33 patients died. Patients who received a transplant had lower median LV-GLS than those who did not [15.63% (IQR 14.18–16.82) compared with 17.32% (IQR 14.18–14.88); P = 0.10]. The survival benefit of renal transplantation was evident on Kaplan–Meier survival analysis across all quartiles of LV-GLS and LAEF (Figure 3; Supplementary data, Figure S3).

DISCUSSION

This large, retrospective study of CMRI in patients with ESKD revealed that LV-GLS by feature-tracking CMRI and LAEF have a significant association with all-cause mortality, independent of baseline clinical variables and future renal transplantation. Importantly, these associations were present even when the majority of the cohort had normal cardiac function as defined by traditional parameters (i.e. LVEF).
Benefits of using feature-tracking CMRI for strain analysis

CMRI is the gold standard for the assessment of cardiac volume and mass in patients with renal failure [10, 18]. Although strain imaging by echocardiography is likely to be more accessible, it can be limited by poor availability of acoustic windows, image quality, expertise required and interoperator variability. Fluid shifts associated with dialysis may further impair the accuracy and reliability of this measure. The ability to quantify LV-GLS accurately and quickly using CMRI supports the superiority of CMRI over echocardiography. Feature tracking is a technique that measures strain using routinely acquired SSFP sequences and obviates the need for acquisition of bespoke CMRI strain images.
sequences such as myocardial tagging. Feature-tracking strain has been validated against myocardial tagging [27, 28], with the additional advantage that it is able to generate these data in less than a quarter of the time needed for tagging. We believe feature-tracking CMRI is at the intersection of accuracy and ease of acquisition and have demonstrated its utility in this cohort.

GLS as a predictor of mortality and cardiac dysfunction

In patients with CKD, LV-GLS measured by echocardiography has consistently been shown to be an independent predictor of mortality. Associations have been demonstrated in patients with CKD Stages 3B–5D [17], CKD Stages 4–5D [29] and patients on dialysis [30]. LV-GLS has theoretical advantages over LVEF for the assessment of cardiac function in patients with CKD: reduced LV-GLS has been shown to occur late in the development of uremic cardiomyopathy [31], a finding that is supported by the high prevalence of heart failure with preserved ejection fraction [32]. GLS has consistently been shown to be an independent predictor of mortality and cardiac dysfunction [33]. In patients with CKD, LV-GLS measured by echocardiography has been validated against myocardial tagging [27, 28], with the additional advantage that it is able to generate these data in less than a quarter of the time needed for tagging. We believe feature-tracking CMRI is at the intersection of accuracy and ease of acquisition and have demonstrated its utility in this cohort.

Figure 2: Kaplan–Meier curves of all-cause mortality by quartiles of (A) peak LV-GLS (%) and (B) LAEF (%). Compared with the best quartile of LV-GLS, participants in the worst quartile had significantly poorer outcomes (log-rank test $P = 0.03$) with no difference between the other quartiles. For LAEF, the first quartile had significantly worse survival compared with the third and fourth quartiles (log-rank test $P = 0.003$ and 0.03, respectively).

GLS as a predictor of mortality and cardiac dysfunction

In patients with CKD, LV-GLS measured by echocardiography has consistently been shown to be an independent predictor of mortality. Associations have been demonstrated in patients with CKD Stages 3B–5D [17], CKD Stages 4–5D [29] and patients on dialysis [30]. LV-GLS has theoretical advantages over LVEF for the assessment of cardiac function in patients with CKD: reduced LV-GLS has been shown to occur late in the development of uremic cardiomyopathy [31], a finding that is supported by the high prevalence of heart failure with preserved ejection fraction [32]. This is likely explained by the differential aspects of myocardial function that the two techniques measure. While LVEF simply assesses the difference in volume at end diastole and systole, LV-GLS assesses the function of subendocardial fibres, which more directly correlates to the extent of interstitial myocardial fibrosis [30]. In our study, 112 (58%) of 194 patients with preserved LVEF (>50%) had abnormal LV-GLS when defined as $>-16\%$ (a threshold chosen based on the normal LV-GLS in healthy subjects being $-20 \pm 4\%$ [12–14]). This may partly explain the extreme cardiovascular risk seen in ESKD populations, despite the relatively low prevalence of heart failure. Accordingly, there would be an argument to investigate cardiovascular therapeutics, especially those with antifibrotic properties (such as mineralocorticoid receptor antagonists) in patients with ESKD who have impaired LV-GLS. Mineralocorticoid receptor antagonists have previously been studied in ESKD populations with no effect on LV mass index (LVMI), but LV-GLS was not assessed [33, 34]. Given the high prevalence of impaired LV-GLS in ESKD populations, and the expected high frequency of events, we believe these trials would be of significant interest. The difference in LV-GLS between men and women is well recognized [14]. Sex was accounted for in the multivariable model, which found LV-GLS to be independently associated with mortality. Nevertheless, our subgroup analysis suggests a greater prognostic ability of LV-GLS in women compared with men, and this requires further study. The lack of association between LVEF and mortality in this cohort is likely explained by the low prevalence of reduced LVEF, resulting in reduced statistical power. This is partly due to the entry criteria of the pooled studies, which excluded patients with known severe LV systolic dysfunction. In contrast, the fact that LV-GLS associated with mortality, even when the vast majority of patients did not have heart failure, is striking. The lack of a clear threshold of LV-GLS in predicting mortality on the ROC analysis suggests that LV-GLS alone is unlikely to be a useful prognostic tool, although there are numerous explanations for the lack of association, including the observed influence of renal transplantation on survival and the long follow-up with high overall mortality.

LA emptying fraction as a predictor of mortality

LAEF was strongly correlated with mortality in our study in both univariable and multivariable analyses. This was an unexpected finding and LAEF has not been extensively studied within this population. LAEF has been shown to associate with adverse cardiovascular events in the general population [35], the elderly [36] and in patients with heart failure [37, 38]. Furthermore, there is extensive evidence correlating LA volumes with mortality, including in patients on haemodialysis [21, 39]. It is unclear if LA impairment is directly involved in the pathophysiology of the excess mortality or if it is a surrogate marker, perhaps for volume overload or LV diastolic dysfunction [40, 41].

CMRI in the assessment of suitability for transplant

Renal transplantation, where appropriate, is the optimal treatment for patients with ESKD. However, transplants are a limited resource and have the potential to cause some patients net harm due to the risks of surgery and long-term
immunosuppression. Cardiovascular assessment (albeit to varying degrees) is standard practice in pre-transplant assessment and is recommended by international guidelines [42]. However, the evidence supporting this practice is scant and so it is becoming increasingly controversial [43]. We hypothesized that LV-GLS on CMRI may be helpful for cardiovascular risk assessment when considering renal transplant suitability. LV-GLS significantly associated with mortality in the multivariable model, even when future renal transplantation was accounted for. However, the overwhelming survival benefit of renal transplantation was evident across all quartiles of LV-GLS (Figure 3), suggesting that there is no LV-GLS too poor (or too good) for a patient to reap survival benefit from a transplant, if not otherwise contraindicated. Regression of myocardial fibrosis following kidney transplant may account for part of this improved survival [7, 44]. This retrospective observation will be heavily biased due to selection bias and immortal time bias, but as randomized controlled trials assessing this will never be ethically feasible, we feel the present data are sufficient to say that LV-GLS is unlikely to be helpful when assessing the majority of patients for transplant suitability. The utility of the stress CMRI protocol using GLS at peak stress has not been investigated and advances in free-breathing image acquisitions might make this feasible.

Limitations
This is a retrospective analysis of pooled studies at a single centre using consistent imaging protocols. The cohort combines patients scanned at both 1.5 T and 3 T. While the influence from field strength on LV-GLS is likely to be negligible [12], we accept there may be a small, unquantified difference in image parameters between different scanners. Inclusion from source studies was incomplete and unquantified for the studies published in 2006 [19] and 2010 [21] due to a combination of overlap in participants between the two studies and inability to retrieve some CMRIs from archiving. The nature of the source studies has resulted in a younger than expected mean age (54 ± 12 years) within this cohort and an underrepresentation of older, prevalent dialysis patients. Further studies to confirm our findings in different populations of patients with ESKD are required. It was not possible to examine non-fatal cardiovascular outcomes, as

FIGURE 3: Kaplan–Meier curves of all-cause mortality comparing participants who did and did not receive a renal transplant during follow-up for each quartile of LV-GLS. The survival benefit of renal transplantation was most marked in those in the best quartile of LV-GLS but was still significant in participants within the worst quartile of LV-GLS (log-rank test $P < 0.001$ for all groups).
CONCLUSION

In this cohort of patients with ESKD, LV-GLS and LAEF were associated with all-cause mortality, independent of baseline clinical variables and future renal transplantation. Conversely, conventional imaging biomarkers such as LVMI and LVEF did not associate with mortality. Using LV-GLS instead of LVEF to diagnose cardiac dysfunction in patients with ESKD could result in a major advance in our understanding of cardiovascular disease in ESKD and may be a more relevant measure in this population. Despite this, the survival benefit of renal transplantation was evident across all quartiles of LV-GLS, suggesting that in the absence of other contraindications to renal transplant, LV-GLS is unlikely to be helpful when assessing patients’ suitability for renal transplantation. Further studies are warranted to explore the potential role of LV-GLS as a sample enrichment tool and surrogate outcome measure in future clinical trials examining therapeutics to improve survival in patients with ESKD.

SUPPLEMENTARY DATA

Supplementary data are available at ckj online.

ACKNOWLEDGEMENTS

We wish to thank all participants who kindly volunteered their time for this study. We also thank the radiographers and physicists who work within the Clinical Research Imaging Facility in Glasgow. In addition, we are very grateful to the two external peer reviewers who reviewed this study on behalf of CKJ. Their considered and insightful comments allowed us to greatly improve this article.

FUNDING

A.R. is personally funded by a Clinical Academic Training Fellowship from the Chief Scientist Office (Scotland) (CAF/18/02). E.R. is supported by a post-doctoral Clinical Lectureship from the Chief Scientist Office (Scotland) (PCL/03/18). J.L. is personally funded by a Kidney Research UK Training Fellowship (TF_013_20161125) and a post-doctoral Clinical Lectureship from the Chief Scientist Office (Scotland) (PCL/20/10). L.Z. was funded by a Medical Research Scotland Vacation Scholarship (Vac-1514-2019). C.B. and J.L. are funded by a British Heart Foundation Centre of Excellence Award (RE/18/6134217). The work was additionally funded by British Heart Foundation Clinical Research Training Fellowships to K.M., R.P. and P.M.

AUTHORS’ CONTRIBUTIONS

All authors reviewed and contributed to this manuscript. P.B.M., A.J.R., E.R. and K.M. conceived the idea for this study and designed the analysis plan. P.B.M., R.P. and E.R. recruited participants to the contributing studies. L.Y.Z. analysed the CMRs. A.J.R. performed the data analysis and analysed a sample of the CMRs. A.J.R. and L.Y.Z. wrote the manuscript. K.M., G.R. and C.B. advised on CMRI analysis and critically reviewed the manuscript. R.W. led image acquisition. K.G. and J.L. assisted with data collection and analysis and critically reviewed the manuscript.

CONFLICT OF INTEREST STATEMENT

The authors declare no competing interests relevant to this study. K.G. reports speaker honoraria from Napp and consultancy fees from Vifor, outside the present work. J.L. reports speaker honoraria from Vifor-Fresenius, AstraZeneca, Bristol Myers Squibb and Pfizer, outside the present work. P.M. reports speaker honoraria from Vifor-Fresenius, AstraZeneca, Janssen, Napp, Novartis and Bristol Myers Squibb; research grants from Boehringer Ingelheim and non-financial support from Pharmacosmos, outside the present work. The University of Glasgow holds research and consultancy agreements for work done by C.B. in the course of his employment with companies that have interests in cardiovascular disease. They include AstraZeneca, Abbott Vascular, Boehringer Ingelheim, HeartFlow, Novartis, Menarini and Siemens Healthcare.

REFERENCES

1. Tonelli M, Wiebe N, Culleton B et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 2006; 17: 2034–2047
2. Go AS, Chertow GM, Fan D et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351: 1296–1305
3. Saravanan P, Davidson NC. Risk assessment for sudden cardiac death in dialysis patients. Circ Arrhythm Electrophysiol 2010; 3: 553–559
4. Matsushita K, van der Velde M, Astor BC et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010; 375: 2073–2081
5. Moody WE, Ferro CJ, Edwards NC et al. Cardiovascular effects of unilateral nephrectomy in living kidney donors. Hypertension 2016; 67: 368–377
6. Edwards NC, Moody WE, Chue CD et al. Defining the natural history of uremic cardiomyopathy in chronic kidney disease: the role of cardiovascular magnetic resonance. JACC Cardiovasc Imaging 2014; 7: 703–714
7. Mall G, Huther W, Schneider J et al. Diffuse intermyocardiocytic fibrosis in uraemic patients. Nephrol Dial Transplant 1990; 5: 39–44
GLS by feature-tracking cardiovascular MRI

8. Aoki J, Ikari Y, Nakajima H et al. Clinical and pathologic characteristics of dilated cardiomyopathy in hemodialysis patients. Kidney Int 2005; 67: 333–340
9. Graham-Brown MPM, Patel AS, Stensel DJ et al. Imaging of myocardial fibrosis in patients with end-stage renal disease: current limitations and future possibilities. BioMed Res Int 2017; 2017: 1–14
10. Mangion K, McDowell K, Mark PB et al. Characterizing cardiovascular involvement in chronic kidney disease using CMR—a systematic review. Curr Cardiovasc Imaging Rep 2018; 11: 10
11. Eitel I, Stiermaier T, Lange T et al. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson 2016; 18: 51
12. Claus P, Omar AMS, Pedrizzetti G et al. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging 2015; 8: 1444–1460
13. Vo HQ, Marwick TH, Negishi K. MRI-derived myocardial strain measures in normal subjects. JACC Cardiovasc Imaging 2018; 11: 196–205
14. Taylor RJ, Moody WE, Umar F et al. Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging 2015; 16: 871–881
15. Eitel I, Stiermaier T, Lange T et al. Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction. JACC Cardiovasc Imaging 2018; 11: 1433–1444
16. Gong IY, Al-Amro B, Prasad GVR et al. Cardiovascular magnetic resonance left ventricular strain in end-stage renal disease patients after kidney transplantation. J Cardiovasc Magn Reson 2018; 20: 83
17. Hensen LCR, Goossens K, Delgado V et al. Prognostic implications of left ventricular global longitudinal strain in predialysis and dialysis patients. Am J Cardiol 2017; 120: 500–504
18. Stewart GA, Foster J, Cowan M et al. Echocardiography overestimates left ventricular mass in hemodialysis patients relative to magnetic resonance imaging. Kidney Int 1999; 56: 2248–2253
19. Mark PB, Johnston N, Groening BA et al. Redefinition of uremic cardiomyopathy by contrast-enhanced cardiac magnetic resonance imaging. Kidney Int 2006; 69: 1839–1845
20. Rutherford E, Talle MA, Mangion K et al. Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1 mapping. Kidney Int 2016; 90: 845–848
21. Patel RK, Jardine AGM, Mark PB et al. Association of left atrial volume with mortality among ESRD patients with left ventricular hypertrophy referred for kidney transplantation. Am J Kidney Dis 2010; 55: 1088–1096
22. Hicks KA, Mahaffey KW, Mehran R et al. 2017 cardiovascular and stroke endpoint definitions for clinical trials. Circulation 2018; 137: 961–972
23. Schulz-Menger J, Bluemke DA, Bremerich J et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing. J Cardiovasc Magn Reson 2013; 15: 35
24. Ponikowski P, Voors AA, Anker SD et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2016; 37: 2129–2200
25. Petersen SE, Aung N, Sanghvi MM et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J Cardiovasc Magn Reson 2017; 19: 18
26. Koo TK, Li MY. A guideline of selecting and reporting intra-class correlation coefficients for reliability research. J Chiropractic Med 2016; 15: 155–163
27. Moody WE, Taylor RJ, Edwards NC et al. Comparison of magnetic resonance feature tracking for systolic and diastolic strain and strain rate calculation with spatial modulation of magnetization imaging analysis. J Magn Reson Imaging 2015; 41: 1000–1012
28. Singh A, Steadman CD, Khan JN et al. Intertecnhne agreement and interstudy reproducibility of strain and diastolic strain rate at 1.5 and 3 Tesla: a comparison of feature-tracking and tagging in patients with aortic stenosis. J Magn Reson Imaging 2015; 41: 1129–1137
29. Krishnasamy R, Isbel NM, Hawley CM et al. Left ventricular global longitudinal strain (GLS) is a superior predictor of all-cause and cardiovascular mortality when compared to ejection fraction in advanced chronic kidney disease. PLoS One 2015; 10: e0127044
30. Kraman R, Erpenbeck J, Schneider RK et al. Speckle tracking echocardiography detects uremic cardiomyopathy early and predicts cardiovascular mortality in ESRD. J Am Soc Nephrol 2014; 25: 2351–2365
31. Foley RN, Parfrey PS, Harnett JD et al. Clinical and echocardiographic involvement in chronic kidney disease using CMR—a systematic review. J Magn Reson Imaging 2015; 41: 1129–1137
32. Moody WE, Taylor RJ, Edwards NC et al. Comparison of magnetic resonance feature tracking for systolic and diastolic strain and strain rate calculation with spatial modulation of magnetization imaging analysis. J Magn Reson Imaging 2015; 41: 1000–1012
33. Singh A, Steadman CD, Khan JN et al. Intertecnhne agreement and interstudy reproducibility of strain and diastolic strain rate at 1.5 and 3 Tesla: a comparison of feature-tracking and tagging in patients with aortic stenosis. J Magn Reson Imaging 2015; 41: 1129–1137
34. Charytan DM, Himmelfarb J, Ikizler TA et al. Safety and cardiovascular efficacy of spironolactone in dialysis-dependent ESRD (SPin-D): a randomized, placebo-controlled, multiple dosage trial. Kidney Int 2019; 95: 973–982
35. Andersen D, Jensen JS, Mogelvang R et al. The left atrium emptying fraction as a predictor of cardiovascular morbidity and mortality in a low risk general population. J Am Coll Cardiol 2017; 69: 1536
36. Leibowitz D, Koslowsky J, Gilon D et al. Left atrial function and mortality in the oldest old. Clin Cardiol 2017; 40: 1323–1327
37. Kanagala P, Arnold JR, Cheng ASH et al. Left atrial ejection fraction and outcomes in heart failure with preserved ejection fraction. Int J Cardiovasc Imaging 2020; 36: 101–110
38. Rijnierse MT, Sadjehian K, Stekhoven SS et al. Usefulness of left atrial emptying fraction to predict ventricular arrhythmias in patients with implantable cardioverter defibrillators. Am J Cardiol 2017; 120: 243–250
39. Tripepi G, Benedetto FA, Mallamaci F et al. Left atrial volume in end-stage renal disease: a prospective cohort study. J Hypertens 2006; 24: 1173–1180
40. Simek CL, Feldman MD, Haber HL et al. Relationship between left ventricular wall thickness and left atrial size: comparison with other measures of diastolic function. J Am Soc Echocardiogr 1995; 8: 37–47
41. Tsang TSM, Barnes ME, Gersh BJ et al. Left atrial volume as a morphophysiologic expression of left ventricular diastolic...
dysfunction and relation to cardiovascular risk burden. Am J Cardiol 2002; 90: 1284–1289
42. Tabriziani H, Baron P, Abudayyeh I et al. Cardiac risk assessment for end-stage renal disease patients on the renal transplant waiting list. Clin Kidney J 2019; 12: 576–585
43. Sharif A. The argument for abolishing cardiac screening of asymptomatic kidney transplant candidates. Am J Kidney Dis 2020; 75: 946–954
44. Contti MMF, Barbosa MD, Carmen A et al. Kidney transplantation is associated with reduced myocardial fibrosis. J Cardiovasc Magn Reson 2019; 21: 21