Selective and Rapid Water Translocation across Self-assembled Peptide-Diol Channel via the Formation of Dual Water Array

Debashis Mondal,a Bhupendra R. Dandekar,b Manzoor Ahmad,a Abhishek Mondal,a Jagannath Mondal*b and Pinaki Talukdar*a

a Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, India. E-mail: ptalukdar@iiserpune.ac.in

b Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India. E-mail: jmondal@tifrh.res.in

Table of Contents

Contents	Page Number
1. General Methods	S2
2. Physical Measurements	S2
3. Synthesis of Compounds	S3
4. Field Emission Scanning Electron Microscopy Studies	S16
5. High-Resolution Transmission Electron Microscopy Studies	S17
6. Crystallographic Measurement and Analysis	S17
7. IR studies of Channel-forming Molecule in Lipid Membrane	S19
8. Water Transport Studies	S21
9. Ion Transport Studies	S27
10. MD Simulation Setup	S36
11. NMR Spectra of Compounds	S40
12. References	S76
1. General Methods

All reagents used for the synthesis were purchased from Sigma-Aldrich, Avra, TCI, Spectrochem, Alfa Aesar and used without further purification. Dry solvents, e.g., Toluene, Acetone, THF, CH$_2$Cl$_2$, and MeOH used for the synthesis, were purchased from Rankem, Merck and used without further drying. All the dry reactions were placed in oven-dried apparatus under atmospheric nitrogen conditions. The progress and completion of the reactions were monitored by performing thin layer chromatography experiments where the plates were visualized either by short-wave UV light or by different staining reagents (Ninhydrin, PMA, etc.). Column chromatography for purification of the compound was performed using distilled organic solvents on silica gel (100–200 or 230–400 mesh). HEPES buffer, HPTS dye, Triton X-100, Lucigenin dye, NaOH, and inorganic salts (NaCl, NaNO$_3$, KCl, LiCl, CsCl, NaBr, NaI, etc.) were used in molecular biology grade purchased from Sigma-Aldrich. Egg yolk phosphatidylcholine (EYPC) lipid (25 mg/mL in chloroform), mini-extruder, and polycarbonate membranes (100 and 200 nm) were obtained from Sigma-Aldrich (Avanti Polar Lipids).

2. Physical Measurements

All 1H and 13C NMR spectra were recorded either on Bruker 400 MHz and Jeol 400 MHz spectrometers. The chemical shifts (δ) in ppm were referenced to the residual signal of deuterium solvents (1H NMR CDCl$_3$: δ 7.26 ppm; 13C NMR CDCl$_3$: δ 77.2 ppm; 1H NMR DMSO-d_6: δ 2.5 ppm; 13C NMR DMSO-d_6: δ 39.5 ppm). The multiplicities of the peaks are s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), m (multiplet). High-resolution mass spectra (HRMS) were acquired in the ESI (+ve) mode. The measurement of pH during preparation of buffer solution was done by pH meter purchased from Hanna instruments. Fluorescence spectra were recorded on a Fluoromax-4 from Horiba scientific, Jobin Yvon Edison equipped with an injector port and a magnetic stirrer. The experimental data obtained from fluorescence were processed in Origin 8.5 software. The field emission scanning electron microscopy (FESEM) images were obtained using FEI Quanta 3D dual beam ESEM at 3.0 kV. The high-resolution transmission electron microscopy (HRTEM) images were acquired on the Jeol USA JEM-2200 FS transmission electron microscope. The dynamic light scattering (DLS) measurement experiment was performed using the Nano ZS-90 setup from the Malvern instrument with a 636 nm laser as a light source. The light scattering intensity
was measured at a 90° angle by the detector and used further to calculate the diameter of the vesicles following the Stokes-Einstein equation.

3. Synthesis of Compounds

3.1. Preparation of phenylalanine derivatives 8a–8d.

To prepare the phenylalanine derivatives 8a–8d, we have followed the reported literature procedure with slight modifications. For the preparation of the methyl ester 6, the L-phenylalanine 5 (1.24 g, 7.51 mmol) and methanol (90 mL) were taken in a 250 mL round bottom flask. The amino acid suspension was cooled to 0 °C by keeping it on an ice bath, and then SOCl2 (2 mL) was added slowly to avoid the spontaneous heat generation. Then the reaction mixture was refluxed under stirring conditions for about 6 h under an inert atmosphere. After completion of the reaction, the reaction mixture was cooled to room temperature, solvent and unreacted SOCl2 were evaporated to get the corresponding ester as a hydrochloride salt 6 in quantitative yield. Next, the methyl ester was used for the coupling reaction with different alkyl chains containing carboxylic acid to form the amides 7a–7d.

In a 50 mL round bottom flask, methyl ester 6 (0.50 g, 2.32 mmol) and carboxylic acid (2.55 mmol) were taken and dissolved by 15 mL of dry THF. Then HOBt (0.38 g, 2.78 mmol), triethylamine (1 mL, 7.20 mmol), and EDC·HCl (0.54 g, 2.78 mmol) were added sequentially to the reaction mixture. The reaction mixture was then stirred at room temperature overnight under an inert atmosphere. After completion, the reaction mixture was washed sequentially with water and brine by extracting the compounds in CH2Cl2. Then the organic solvent was evaporated to yield the amide compounds 7a–7d in moderate to good yield. The amide compounds were then used for the next steps without further purification.

The hydrolysis reaction was done in the presence of sodium hydroxide as a base. For that, in a 25 mL round bottom flask, amides 7a–7d (1.80 mmol) were taken and dissolved in 10 mL of THF : MeOH (1 : 1) solution. Then, NaOH (0.15 g, 3.62 mmol) was added into that reaction mixture by dissolving it in 2 mL of water. The reaction mixture was then heated at 65 °C for 5 h. After completion of the reaction, the reaction solution was cooled, acidified with 1 M HCl, and washed with water by extracting the compound in ethyl acetate (EtOAc). Then the volatiles were evaporated to get the crude compound which was then purified by column chromatography to get the pure acid compounds 8a–8d in 75-85% yield. ¹H NMR spectra of the compounds were matched with the reported spectra.
Scheme S1. Preparation of the acid derivatives 8a–8d.

3.2. Preparation of diol-protected compound 12.

For the preparation of molecule 12, we have followed the literature procedure reported from our group.2, 3

Scheme S2. Preparation of the diol-protected compound 12.

3.3. Synthesis procedure for diol-protected amine 13.

In a 100 mL round bottom flask, 2.0 g of diol-protected compound 12 was taken and dissolved in 30 mL of MeOH. The compound solution was then degassed for about 1 h using N₂ gas balloon. Then into that degassed solution one small pinch of 10% Pd-C was added. The reaction mixture was then stirred under a hydrogen gas balloon for 3 days at room temperature. After completion of the reaction, the whole solution was passed through celite bed while washing with MeOH. Then the solvent was evaporated to get the amine 13 as a colourless sticky liquid in quantitative yield.

Scheme S3. Synthesis of compound 13.

Yield: 100%; ¹H NMR (400 MHz, CDCl₃): δ 4.03 – 3.96 (m, 1H), 3.87 (q, J = 6.8 Hz, 1H), 3.66 (dd, J = 8.1, 7.0 Hz, 1H), 2.69 (t, J = 7.5 Hz, 1H), 1.76 (s, 2H), 1.41 (s, 3H), 1.34 (s,
3H), 1.32 – 1.17 (m, 14H), 0.86 (t, J = 6.8 Hz, 3H); 13C NMR (101 MHz, CDCl$_3$: MeOH-d$_4$ = 4 : 1): δ 109.1, 80.4, 67.1, 54.2, 34.1, 31.9, 29.8, 29.6, 29.4, 26.8, 26.1, 25.5, 22.8, 14.2; HRMS (ESI): Calcd. C$_{14}$H$_{30}$NO$_2$ [M+H]$^+$: 244.2276, Found: 244.2281.

3.4. **Synthesis of the compound 1R, 1S, 2R, 2S, 3R, 3S, 4R and 4S**

14R and 14S:

![Scheme S4. Synthesis of compound 14R and 14S.](image)

In a 25 mL round bottom flask the amine 13 (0.14 g, 0.58 mmol) was taken and dissolved in 6 mL of dry THF. Then into the reaction mixture acetyl-L-phenylalanine 8a (0.12 g, 0.58 mmol), HOBt (0.08 g, 0.58 mmol) and triethylamine (0.5 mL) were added. At last EDC·HCl (0.13 g, 0.69 mmol) was added and the reaction mixture was then stirred at room temperature overnight under an inert atmosphere. After completion of the reaction, the reaction mixture was washed with water (3 × 10 mL) and followed by brine solution (1 × 10 mL) by extracting the compound in CHCl$_3$ (50 mL). The organic layer was then dried over Na$_2$SO$_4$ and the solvent was evaporated in a rotary evaporator to get the crude product. The crude product was purified by silica gel column chromatography using ethyl acetate (EtOAc) in petroleum ether (PE) as a solvent system. Two diastereomeric amide compounds 14R and 14S, were collected separately in 37% yield (14R in 45% EtOAc/PE) and 39% yield (14S 75% EtOAc/PE).

(R)-2-acetamido-N-((R)-1-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)nonyl)-3-phenylpropanamide (C$_{25}$H$_{40}$N$_2$O$_4$) 14R: 1H NMR (400 MHz, CDCl$_3$): δ 7.33 – 7.18 (m, 5H), 6.11 – 5.96 (m, 2H), 4.64 (q, J = 7.7 Hz, 1H), 4.07 (td, J = 7.0, 2.0 Hz, 1H), 3.90 (q, J = 8.4 Hz, 1H), 3.82 (dd, J = 8.2, 6.7 Hz, 1H), 3.20 (t, J = 7.8 Hz, 1H), 3.11 (dd, J = 13.7, 7.6 Hz, 1H), 3.01 (dd, J = 13.8, 6.5 Hz, 1H), 1.96 (s, 3H), 1.67 – 1.60 (m, 2H), 1.55 – 1.43 (m, 2H), 1.29 (s, 3H), 1.29 (s, 3H),1.27 – 1.24 (m, 10H), 0.87 (t, J = 6.8 Hz, 3H); 13C NMR (101 MHz, CDCl$_3$): δ 171.1, 170.1, 136.5, 129.4, 128.8, 127.2, 109.1, 76.6, 66.2, 55.0, 49.5, 38.2, 33.1, 32.0, 29.6, 29.5,
29.4, 26.4, 26.1, 25.2, 23.2, 22.8, 14.2; **HRMS (ESI)**: Calcd. C_{25}H_{41}N_{2}O_{4} [M+H]^+: 433.3066, Found: 433.3068.

(S)-2-acetamido-N-((R)-1-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)nonyl)-3-phenylpropanamide (C_{25}H_{40}N_{2}O_{4}) 14S; **^1H NMR (400 MHz, CDCl₃)**: δ 7.33 – 7.22 (m, 5H), 6.20 (d, J = 7.9 Hz, 1H), 5.69 (d, J = 9.5 Hz, 1H), 4.68 – 4.58 (m, 1H), 4.10 (t, J = 7.6 Hz, 1H), 3.96 – 3.82 (m, 2H), 3.49 – 3.41 (m, 1H), 3.14 (dd, J = 13.6, 5.6 Hz, 1H), 2.98 (dd, J = 13.7, 8.6 Hz, 1H), 1.98 (s, 3H), 1.46 – 1.32 (m, 2H), 1.30 (s, 3H), 1.27 (s, 3H), 1.25 – 1.11 (m, 12H), 0.89 (t, J = 6.8 Hz, 3H); **^13C NMR (101 MHz, CDCl₃)**: δ 170.9, 170.0, 136.9, 129.4, 128.9, 127.2, 109.2, 76.6, 66.3, 54.9, 49.6, 38.5, 33.0, 32.0, 29.8, 29.6, 29.4, 26.2, 26.1, 24.9, 23.3, 22.8, 14.3; **HRMS (ESI)**: Calcd. C_{25}H_{41}N_{2}O_{4} [M+H]^+: 433.3066, Found: 433.3055.

(R)-2-acetamido-N-((2S,3R)-1,2-dihydroxyundecan-3-yl)-3-phenylpropanamide (C_{22}H_{36}N_{2}O_{4}) 1R:

![Diagram of compound 1R](image)

Scheme S5. Synthesis of compound 1R.

In a 25 mL round bottom flask compound 14R (0.06 g, 0.14 mmol) was taken and dissolved in 3 mL of THF : MeOH (1 : 1) solution. Then into that solution, 2 mL of 2 N HCl was added and the reaction mixture was then stirred at room temperature overnight. After completion of the reaction, the reaction solution was neutralized by the dilute NaHCO₃ solution. The neutralized solution was then washed with water and brine by extracting the compound in ethyl acetate (EtOAc). The organic layer was dried over Na₂SO₄ and the solvent was then evaporated to get the crude product. The crude product was purified by silica gel column chromatography using methanol in chloroform (3% MeOH/CHCl₃) solvent system to obtain pure product 1R as a white solid in 85% yield. **^1H NMR (400 MHz, DMSO-d₆)**: δ 8.11 (d, J = 8.5 Hz, 1H), 7.45 (d, J = 9.0 Hz, 1H), 7.30 – 7.12 (m, 5H), 4.72 (d, J = 5.2 Hz, 1H), 4.53 – 4.45 (m, 1H), 4.38 (t, J = 5.7 Hz, 1H), 3.82 – 3.69 (m, 1H), 3.46 – 3.39 (m, 1H), 3.23 – 3.09 (m, 2H), 2.98 (dd, J = 13.8, 4.6 Hz, 1H), 2.72 (dd, J = 13.7, 10.1 Hz, 1H), 1.73 (s, 3H), 1.49 – 1.37 (m, 2H), 1.27 – 1.21 (d, J = 4.6 Hz, 12H), 0.91 – 0.81 (m, 3H); **^13C NMR (100 MHz, DMSO-d₆)**: δ 171.5, 169.0, 138.1, 129.1, 128.0, 126.2, 72.3, 62.9, 54.2, 49.9, 37.7, 31.3,
(S)-2-acetamido-N-((2S,3R)-1,2-dihydroxyundecan-3-yl)-3-phenylpropanamide (C_{22}H_{36}N_{2}O_{4}) 1S:

Scheme S6. Synthesis of compound 1S.

In a 25 mL round bottom flask compound 14S (0.07 g, 0.16 mmol) was taken and dissolved in 4 mL of THF : MeOH (1 : 1) solution. Then into that solution, 3 mL of 2 N HCl was added and the reaction mixture was then stirred at room temperature overnight. After completion of the reaction, the reaction solution was neutralized by the dilute NaHCO₃ solution. The neutralized solution was then washed with water and brine by extracting the compound in ethyl acetate (EtOAc). The organic layer was dried over Na₂SO₄ and the solvent was then evaporated to get the crude product. The crude product was purified by silica gel column chromatography using methanol in chloroform (4% MeOH/CHCl₃) solvent system to obtain pure product 1S as a white solid in 78% yield. ¹H NMR \(400 \text{ MHz, DMSO-d}_6\): \(\delta\) 8.10 (d, \(J = 8.4\) Hz, 1H), 7.62 (d, \(J = 9.0\) Hz, 1H), 7.29 – 7.20 (m, 4H), 7.19 – 7.12 (m, 1H), 4.72 (d, \(J = 4.8\) Hz, 1H), 4.53 (td, \(J = 9.3, 5.3\) Hz, 1H), 4.40 (t, \(J = 5.9\) Hz, 1H), 3.73 (q, \(J = 8.7\) Hz, 1H), 3.47 – 3.40 (m, 1H), 3.21 (td, \(J = 6.2, 2.0\) Hz, 2H), 2.92 (dd, \(J = 13.6, 5.3\) Hz, 1H), 2.71 (dd, \(J = 13.5, 9.6\) Hz, 1H), 1.74 (s, 3H), 1.37 (q, \(J = 7.6\) Hz, 2H), 1.30 – 1.08 (m, 12H), 0.88 – 0.80 (m, 3H); ¹³C NMR \(100 \text{ MHz, DMSO-d}_6\): \(\delta\) 171.7, 168.9, 138.0, 129.2, 128.0, 126.2, 72.5, 62.9, 54.2, 49.7, 38.0, 31.3, 30.7, 29.0, 28.9, 28.7, 25.6, 22.5, 22.1, 14.0; HRMS (ESI): Calcd. C_{22}H_{37}N_{2}O_{4} [M+H]^+: 339.2753, Found: 339.2756.

15R and 15S:

Scheme S7. Synthesis of compound 15R and 15S.
In a 25 mL round bottom flask the amine 13 (0.18 g, 0.74 mmol) was taken and dissolved in 7 mL of dry THF. Then into the reaction mixture propionyl-L-phenylalanine 8b (0.17 g, 0.77 mmol), HOBt (0.10 g, 0.74 mmol) and triethylamine (0.5 mL) were added. At last, EDC·HCl (0.17 g, 0.89 mmol) was added, and the reaction mixture was then stirred at room temperature overnight under an inert atmosphere. After completion of the reaction, the reaction mixture was washed with water (2 × 10 mL) and followed by brine solution (1 × 10 mL) by extracting the compound in CHCl₃ (60 mL). The organic layer was then dried over Na₂SO₄, and the solvent was evaporated in a rotary evaporator to get the crude product. The crude product was purified by silica gel column chromatography using ethyl acetate (EtOAc) in petroleum ether (PE) as a solvent system. Two diastereomeric amide compounds 15R and 15S, were collected separately in 35% yield (15R in 25% EtOAc/PE) and 33% yield (15S 40% EtOAc/PE).

\((R)-N-((R)-1-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)nonyl)-3-phenyl-2-propionamido-propanamide\) (C₂₆H₄₂N₂O₄) 15R: ¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.15 (m, 5H), 6.00 (dd, J = 32.6, 8.6 Hz, 2H), 4.65 (q, J = 7.8 Hz, 1H), 4.06 (t, J = 7.0 Hz, 1H), 3.90 (q, J = 8.4 Hz, 1H), 3.83 (t, J = 7.4 Hz, 1H), 3.21 (t, J = 7.8 Hz, 1H), 3.16 – 3.08 (m, 1H), 3.01 (dd, J = 13.7, 6.6 Hz, 1H), 2.18 (q, J = 7.6 Hz, 2H), 1.53 – 1.44 (m, 2H), 1.29 (s, 3H), 1.28 (s, 3H), 1.27 – 1.12 (m, 12H), 1.09 (t, J = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 173.8, 171.2, 136.6, 129.4, 128.8, 127.2, 109.1, 76.7, 66.3, 54.8, 49.5, 38.1, 33.1, 32.0, 29.8, 29.7, 29.5, 29.4, 26.4, 26.1, 25.2, 22.8, 14.2, 9.8; HRMS (ESI): Calcd. C₂₆H₄₃N₂O₄ [M+H]+: 447.3222, Found: 447.3219.

\((S)-N-((R)-1-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)nonyl)-3-phenyl-2-propionamido-propanamide\) (C₂₆H₄₂N₂O₄) 15S: ¹H NMR (400 MHz, CDCl₃): δ 7.32 – 7.20 (m, 5H), 6.19 (d, J = 7.6 Hz, 1H), 5.74 (d, J = 9.4 Hz, 1H), 4.66 (td, J = 8.2, 5.8 Hz, 1H), 4.10 (t, J = 6.8 Hz, 1H), 3.94 – 3.83 (m, 2H), 3.44 (dd, J = 8.2, 7.0 Hz, 1H), 3.14 (dd, J = 13.7, 5.8 Hz, 1H), 2.99 (dd, J = 13.7, 8.5 Hz, 1H), 2.21 (q, J = 7.6 Hz, 2H), 1.29 (s, 3H), 1.27 (s, 3H), 1.26 – 1.15 (m, 14H), 1.11 (t, J = 7.6 Hz, 3H), 0.89 (t, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 173.7, 171.0, 136.9, 129.4, 128.9, 127.2, 109.2, 76.7, 66.4, 54.7, 49.6, 38.6, 33.1, 32.0, 29.8, 29.7, 29.6, 29.4, 26.3, 26.1, 24.9, 22.8, 14.3, 9.8; HRMS (ESI): Calcd. C₂₆H₄₃N₂O₄ [M+H]+: 447.3222, Found: 447.3219.
(R)-N-((2S,3R)-1,2-dihydroxyundecan-3-yl)-3-phenyl-2-propionamidopropanamide (C_{23}H_{38}N_2O_4) 2R:

Scheme S8. Synthesis of compound 2R.

In a 25 mL round bottom flask compound 15R (0.08 g, 0.18 mmol) was taken and dissolved in 4 mL of THF : MeOH (1 : 1) solution. Then into that solution, 3 mL of 2 N HCl was added and the reaction mixture was then stirred at room temperature overnight. After completion of the reaction, the reaction solution was neutralized by the dilute NaHCO₃ solution. The neutralized solution was then washed with water and brine by extracting the compound in ethyl acetate (EtOAc). The organic layer was dried over Na₂SO₄ and the solvent was then evaporated to get the crude product. The crude product was purified by silica gel column chromatography using methanol in chloroform (3% MeOH/CHCl₃) solvent system to obtain pure product 2R as a white solid in 85% yield. ¹H NMR (400 MHz, DMSO-d₆): δ 7.99 (d, J = 8.5 Hz, 1H), 7.56 (d, J = 9.1 Hz, 1H), 7.29 – 7.13 (m, 5H), 4.73 (d, J = 4.3 Hz, 1H), 4.53 (td, J = 9.4, 5.2 Hz, 1H), 4.39 (bs, 1H), 3.74 (q, J = 6.7 Hz, 1H), 3.43 (bs, 1H), 3.21 (bs, 2H), 2.94 (ddd, J = 13.6, 5.2 Hz, 1H), 2.72 (dd, J = 13.5, 9.7 Hz, 1H), 2.02 (q, J = 7.6 Hz, 2H), 1.38 (q, J = 7.4 Hz, 2H), 1.30 – 1.10 (m, 12H), 0.87 (t, J = 7.6 Hz, 3H), 0.84 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 172.7, 171.6, 138.0, 129.2, 127.9, 126.1, 72.5, 62.9, 54.0, 49.7, 37.9, 31.3, 30.8, 28.9, 28.9, 28.7, 28.3, 25.6, 22.1, 14.0, 9.9; HRMS (ESI): Calcd. C_{23}H_{39}N_2O_4 [M+H]⁺: 407.2909, Found: 407.2901.

(S)-N-((2S,3R)-1,2-dihydroxyundecan-3-yl)-3-phenyl-2-propionamidopropanamide (C_{23}H_{38}N_2O_4) 2S:

Scheme S9. Synthesis of compound 2S.
In a 25 mL round bottom flask compound 15S (0.07 g, 0.16 mmol) was taken and dissolved in 4 mL of THF : MeOH (1 : 1) solution. Then into that solution, 3 mL of 2 N HCl was added and the reaction mixture was then stirred at room temperature overnight. After completion of the reaction, the reaction solution was neutralized by the dilute NaHCO₃ solution. The neutralized solution was then washed with water and brine by extracting the compound in ethyl acetate (EtOAc). The organic layer was dried over Na₂SO₄ and the solvent was then evaporated to get the crude product. The crude product was purified by silica gel column chromatography using methanol in chloroform (4% MeOH/CHCl₃) solvent system to obtain pure product 2S as a white solid in 64% yield. ¹H NMR (400 MHz, DMSO-d₆): δ 7.99 (d, J = 8.5 Hz, 1H), 7.56 (d, J = 9.0 Hz, 1H), 7.27 – 7.15 (m, 5H), 4.73 (d, J = 4.8 Hz, 1H), 4.53 (td, J = 9.4, 5.2 Hz, 1H), 4.39 (t, J = 5.9 Hz, 1H), 3.74 (q, J = 6.5 Hz, 1H), 3.47 – 3.40 (m, 1H), 3.21 (td, J = 6.0, 3.0 Hz, 2H), 2.95 (dd, J = 13.6, 5.2 Hz, 1H), 2.72 (dd, J = 13.5, 9.7 Hz, 1H), 2.02 (q, J = 7.8, 7.2 Hz, 2H), 1.38 (q, J = 7.6 Hz, 2H), 1.27 – 1.18 (m, 12H), 0.87 (t, J = 7.6 Hz, 3H), 0.85 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 172.7, 171.6, 138.0, 129.2, 127.9, 126.1, 72.5, 62.9, 54.0, 49.7, 37.9, 31.3, 30.8, 28.9, 28.9, 28.7, 28.3, 25.6, 22.1, 14.0, 9.9; HRMS (ESI): Calcd. C₂₃H₃₉N₂O₄ [M+H]⁺: 407.2909, Found: 407.2901.

16R and 16S:

![Scheme S10. Synthesis of compounds 16R and 16S.](image-url)
product was purified by silica gel column chromatography using ethyl acetate (EtOAc) in petroleum ether (PE) as a solvent system. Two diastereomeric amide compounds 16R and 16S, were collected separately in 38% yield (16R in 25% EtOAc/PE) and 38% yield (16S 40% EtOAc/PE).

\[N-((R)-1-(((R)-1-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)nonyl)amino)-1-oxo-3-phenylpropan-2-yl)butyramide \ (C_{27}H_{44}N_{2}O_{4}) \]

1H NMR (400 MHz, CDCl3): \(\delta 7.32 - 7.18 \) (m, 5H), 6.09 (bs, 1H), 6.01 (bs, 1H), 4.67 (q, \(J = 7.5 \) Hz, 1H), 4.06 (td, \(J = 7.1, 2.1 \) Hz, 1H), 3.90 (dd, \(J = 17.5, 8.4 \) Hz, 1H), 3.82 (dd, \(J = 8.2, 6.6 \) Hz, 1H), 3.20 (t, \(J = 7.8 \) Hz, 1H), 3.12 (dd, \(J = 13.7, 7.6 \) Hz, 1H), 2.99 (dd, \(J = 13.8, 6.8 \) Hz, 1H), 2.13 (dd, \(J = 16.0, 8.8 \) Hz, 2H), 1.66 – 1.53 (m, 2H), 1.29 (s, 3H), 1.28 (s, 3H), 1.27 – 1.17 (m, 14H), 0.87 (td, \(J = 7.2, 2.0 \) Hz, 6H);

13C NMR (101 MHz, CDCl3): \(\delta 173.1, 171.2, 136.6, 129.4, 128.8, 127.2, 109.1, 76.8, 66.3, 54.7, 49.4, 38.6, 38.2, 33.2, 32.0, 29.6, 29.6, 29.4, 26.4, 26.1, 25.2, 22.8, 19.1, 14.2, 13.7;

HRMS (ESI): Calcd. C_{27}H_{45}N_{2}O_{4}[M+H]^+: 461.3379, Found: 461.3377.

\[N-((S)-1-(((S)-1-((2S,3R)-1,2-dihydroxyundecan-3-yl)amino)-1-oxo-3-phenylpropan-2-yl)butyramide \ (C_{24}H_{40}N_{2}O_{4}) \]

1H NMR (400 MHz, CDCl3): \(\delta 7.34 - 7.18 \) (m, 5H), 6.17 (d, \(J = 6.7 \) Hz, 1H), 5.73 (d, \(J = 9.1 \) Hz, 1H), 4.66 (td, \(J = 8.1, 6.0 \) Hz, 1H), 4.09 (td, \(J = 6.8, 1.9 \) Hz, 1H), 3.93 – 3.86 (m, 2H), 3.44 (dd, \(J = 8.2, 7.0 \) Hz, 1H), 3.14 (dd, \(J = 13.7, 5.9 \) Hz, 1H), 2.99 (dd, \(J = 13.7, 8.5 \) Hz, 1H), 2.15 (td, \(J = 7.4, 2.5 \) Hz, 2H), 1.67 – 1.55 (m, 2H), 1.45 – 1.32 (m, 4H), 1.28 (s, 3H), 1.27 (s, 3H), 1.26 – 1.13 (m, 10H), 0.88 (td, \(J = 7.2, 2.3 \) Hz, 6H);

13C NMR (101 MHz, CDCl3): \(\delta 172.9, 171.2, 136.6, 129.4, 128.8, 127.2, 109.2, 77.4, 76.7, 66.4, 54.7, 49.5, 38.6, 33.1, 32.0, 29.8, 29.6, 29.4, 26.3, 26.1, 24.9, 22.8, 19.1, 14.3, 13.8;

HRMS (ESI): Calcd. C_{24}H_{43}N_{2}O_{4}[M+H]^+: 461.3379, Found: 461.3376.

\[N-((R)-1-(((2S,3R)-1,2-dihydroxyundecan-3-yl)amino)-1-oxo-3-phenylpropan-2-yl)butyramide \ (C_{24}H_{40}N_{2}O_{4}) \]

In a 25 mL round bottom flask compound 16R (0.10 g, 0.22 mmol) was taken and dissolved in 5 mL of THF : MeOH (1 : 1) solution. Then into that solution, 2 mL of 2 N HCl
was added and the reaction mixture was then stirred at room temperature overnight. After completion of the reaction, the reaction solution was neutralized by the dilute NaHCO₃ solution. The neutralized solution was then washed with water and brine by extracting the compound in ethyl acetate (EtOAc). The organic layer was dried over Na₂SO₄ and the solvent was then evaporated to get the crude product. The crude product was purified by silica gel column chromatography using methanol in chloroform (2% MeOH/CHCl₃) solvent system to obtain pure product 3R as a white solid in 86% yield.

\[\text{δ} \ 8.04 \ (d, \ J = 8.6 \text{ Hz}, \ 1H), \ 7.37 \ (d, \ J = 9.1 \text{ Hz}, \ 1H), \ 7.29 – 7.12 \ (m, \ 5H), \ 4.71 \ (d, \ J = 5.1 \text{ Hz}, \ 1H), \ 4.51 \ (td, \ J = 9.9, \ 4.6 \text{ Hz}, \ 1H), \ 4.37 \ (t, \ J = 5.7 \text{ Hz}, \ 1H), \ 3.77 \ (dd, \ J = 16.4, \ 8.5 \text{ Hz}, \ 1H), \ 3.42 \ (q, \ J = 6.2 \text{ Hz}, \ 1H), \ 3.39 – 3.09 \ (m, \ 2H), \ 2.99 \ (dd, \ J = 13.7, \ 4.6 \text{ Hz}, \ 1H), \ 2.73 \ (dd, \ J = 13.7, \ 10.3 \text{ Hz}, \ 1H), \ 1.98 \ (t, \ J = 7.4 \text{ Hz}, \ 2H), \ 1.52 – 1.31 \ (m, \ 2H), \ 1.30 – 1.13 \ (m, \ 14H), \ 0.85 \ (t, \ J = 6.8 \text{ Hz}, \ 3H), \ 0.70 \ (t, \ J = 7.4 \text{ Hz}, \ 3H); \]

\[\text{δ} \ 171.8, \ 171.5, \ 138.1, \ 129.1, \ 128.0, \ 126.1, \ 79.2, \ 72.2, \ 62.9, \ 53.9, \ 49.8, \ 37.5, \ 37.09, \ 31.3, \ 31.1, \ 29.1, \ 28.7, \ 25.7, \ 22.1, \ 18.6, \ 14.0, \ 13.4; \]

HRMS (ESI): Calcd. C₄₄H₄₂N₂O₄ [M+H]⁺: 421.3066, Found: 421.3063.

\[N-(S)-1-((2S,3R)-1,2-dihydroxyundecan-3-yl)amino)-1-oxo-3-phenylpropan-2-yl \]

\[\text{N-butryamide (C}_{24}\text{H}_{40}\text{N}_{2}\text{O}_{4}) \]

3S:

\[\begin{align*}
\text{16S} & \quad \xrightarrow{2 \text{ N HCl}} \quad \text{3S}
\end{align*} \]

Scheme S12. Synthesis of compound 3S.

In a 25 mL round bottom flask compound 16S (0.12 g, 0.26 mmol) was taken and dissolved in 6 mL of THF : MeOH (1 : 1) solution. Then into that solution, 3 mL of 2 N HCl was added and the reaction mixture was then stirred at room temperature overnight. After completion of the reaction, the reaction solution was neutralized by the dilute NaHCO₃ solution. The neutralized solution was then washed with water and brine by extracting the compound in ethyl acetate (EtOAc). The organic layer was dried over Na₂SO₄ and the solvent was then evaporated to get the crude product. The crude product was purified by silica gel column chromatography using methanol in chloroform (2.5% MeOH/CHCl₃) solvent system to obtain pure product 3S as a white solid in 83% yield.

\[\text{δ} \ 8.01 \ (d, \ J = 8.5 \text{ Hz}, \ 1H), \ 7.55 \ (d, \ J = 9.0 \text{ Hz}, \ 1H), \ 7.29 – 7.11 \ (m, \ 5H), \ 4.74 \ (d, \ J = 4.7 \text{ Hz}, \]
1H), 4.55 (td, \(J = 9.6, 5.1 \) Hz, 1H), 4.39 (t, \(J = 5.9 \) Hz, 1H), 3.75 (q, \(J = 8.6 \) Hz, 1H), 3.48 – 3.40 (m, 1H), 3.26 – 3.16 (m, 2H), 2.95 (dd, \(J = 13.6, 5.1 \) Hz, 1H), 2.72 (dd, \(J = 13.6, 9.9 \) Hz, 1H), 1.99 (t, \(J = 7.4 \) Hz, 2H), 1.46 – 1.31 (m, 4H), 1.28 – 1.11 (m, 12H), 0.88 – 0.81 (m, 3H), 0.70 (t, \(J = 7.4 \) Hz, 3H); \(^{13} \)C NMR (100 MHz, DMSO-\(d_6 \)): \(\delta \) 171.8, 171.7, 138.0, 129.2, 127.9, 126.1, 79.2, 72.4, 62.9, 54.0, 49.7, 37.9, 37.1, 31.6, 30.8, 28.9, 28.7, 25.6, 22.1, 18.6, 14.0, 13.4; HRMS (ESI): Calcd. C\(_{24}\)H\(_{41}\)N\(_2\)O\(_4\) [M+H]+: 421.3066, Found: 421.3057.

17R and 17S:

\[
\text{Scheme S13. Synthesis of compound 17R and 17S.}
\]

In a 50 mL round bottom flask, the amine 13 (0.30 g, 1.23 mmol) was taken and dissolved in 12 mL of dry THF. Then into the reaction mixture, hexanoyl-\(L \)-phenylalanine 8d (0.32 g, 1.23 mmol), HOBt (0.17 g, 1.23 mmol), and triethylamine (1 mL) were added. At last, EDC·HCl (0.29 g, 1.48 mmol) was added, and the reaction mixture was then stirred at room temperature overnight under an inert atmosphere. After completion of the reaction, the reaction mixture was washed with water (3 × 10 mL) and followed by brine solution (1 × 10 mL) by extracting the compound in CHCl\(_3\) (50 mL). The organic layer was then dried over Na\(_2\)SO\(_4\), and the solvent was evaporated in a rotary evaporator to get the crude product. The crude product was purified by silica gel column chromatography using ethyl acetate (EtOAc) in petroleum ether (PE) as a solvent system. Two diastereomeric amide compounds 17R and 17S, were collected separately in 40% yield (17R in 20% EtOAc/PE) and 41% yield (17S 25% EtOAc/PE).

\(N-((R)-1-(((R)-1-((S)-2,2\text{-dimethyl-1,3\text{-dioxolan-4-yl}nonyl)amino)}-1\text{-oxo-3-phenyl-propan-2-yl})\text{hexanamide}} (\text{C}_{29}\text{H}_{48}\text{N}_{2}\text{O}_{4}) \quad \text{17R: \(^{1} \)H NMR (400 MHz, CDCl}_3): \delta 7.32 – 7.19 (m, 5H), 6.11 – 6.02 (m, 1H), 5.97 (t, \(J = 7.9 \) Hz, 1H), 4.66 (dd, \(J = 15.0, 7.6 \) Hz, 1H), 4.06 (td, \(J = 7.1, 2.1 \) Hz, 1H), 3.90 (dd, \(J = 17.2, 8.7 \) Hz, 1H), 3.83 (dd, \(J = 8.2, 6.7 \) Hz, 1H), 3.24 – 3.17 (m, 1H), 3.12 (dd, \(J = 13.8, 7.6 \) Hz, 1H), 3.00 (dd, \(J = 13.8, 6.8 \) Hz, 1H), 2.14 (dd, \(J = 14.5, 6.9 \) Hz, 2H), 1.61 – 1.54 (m, 2H), 1.53 – 1.46 (m, 2H), 1.29 (s, 3H), 1.29 (s, 3H), 1.27 – 1.19
(m, 16H), 0.86 (t, J = 7.1 Hz, 6H); 13C NMR (101 MHz, CDCl$_3$): δ 173.2, 171.2, 136.6, 129.4, 128.8, 127.2, 109.1, 76.7, 66.3, 54.7, 49.4, 38.1, 36.7, 33.2, 32.0, 31.4, 29.6, 29.6, 29.4, 26.4, 26.1, 25.4, 25.2, 22.8, 22.5, 14.3, 14.0; HRMS (ESI): Calcd. C$_{29}$H$_{49}$N$_2$O$_4$ [M+H]$^+$: 489.3692, Found: 489.3691.

N-((S)-1-(((R)-1-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)nonyl)amino)-1-oxo-3-phenylpropan-2-yl)hexanamide (C$_{29}$H$_{48}$N$_2$O$_4$) 17S: 1H NMR (400 MHz, CDCl$_3$): δ 7.33 – 7.21 (m, 5H), 6.14 (d, J = 7.3 Hz, 1H), 5.72 (d, J = 9.3 Hz, 1H), 4.65 (td, J = 8.1, 6.0 Hz, 1H), 4.09 (td, J = 6.7, 1.6 Hz, 1H), 3.94 – 3.80 (m, 2H), 3.49 – 3.39 (m, 1H), 3.14 (dd, J = 13.7, 5.9 Hz, 1H), 2.99 (dd, J = 13.7, 8.4 Hz, 1H), 2.16 (td, J = 7.4, 2.4 Hz, 2H), 1.64 – 1.51 (m, 2H), 1.45 – 1.30 (m, 4H), 1.28 (s, 3H), 1.26 – 1.12 (m, 14H), 0.92 – 0.84 (m, 6H); 13C NMR (101 MHz, CDCl$_3$): δ 173.2, 171.2, 136.6, 129.4, 128.8, 127.2, 109.1, 76.7, 66.3, 54.7, 49.4, 38.1, 36.7, 33.2, 32.0, 31.4, 29.6, 29.4, 26.4, 26.1, 25.4, 25.2, 24.9, 22.8, 22.5, 14.2, 14.0; HRMS (ESI): Calcd. C$_{29}$H$_{49}$N$_2$O$_4$ [M+H]$^+$: 489.3692, Found: 489.3691.

N-((R)-1-(((2S,3R)-1,2-dihydroxyundecan-3-yl)amino)-1-oxo-3-phenylpropan-2-yl)hexanamide (C$_{26}$H$_{44}$N$_2$O$_4$) 4R:

![Scheme S14. Synthesis of compound 4R.](image)

In a 25 mL round bottom flask compound 17R (0.16 g, 0.32 mmol) was taken and dissolved in 6 mL of THF : MeOH (1 : 1) solution. Then into that solution, 3 mL of 2 N HCl was added and the reaction mixture was then stirred at room temperature overnight. After completion of the reaction, the reaction solution was neutralized by the dilute NaHCO$_3$ solution. The neutralized solution was then washed with water and brine by extracting the compound in ethyl acetate (EtOAc). The organic layer was dried over Na$_2$SO$_4$ and the solvent was then evaporated to get the crude product. The crude product was purified by silica gel column chromatography using methanol in chloroform (2% MeOH/CHCl$_3$) solvent system to obtain pure product 4R as a white solid in 73% yield. 1H NMR (400 MHz, DMSO-d_6): δ 8.04 (d, J = 8.5 Hz, 1H), 7.35 (d, J = 9.1 Hz, 1H), 7.29 – 7.08 (m, 5H), 4.71 (bs, 1H), 4.50 (td, J = 10.0, 4.7 Hz, 1H), 4.37 (bs, 1H), 3.77 (q, J = 8.3, 7.5 Hz, 1H), 3.42 (d, J = 5.6 Hz, 1H), 3.25 –
3.08 (m, 2H), 2.99 (dd, \(J = 13.8, 4.6 \) Hz, 1H), 2.73 (dd, \(J = 13.7, 10.3 \) Hz, 1H), 1.99 (t, \(J = 7.2 \) Hz, 2H), 1.48 – 1.30 (m, 4H), 1.29 – 1.12 (m, 14H), 1.11 – 0.98 (m, 2H), 0.85 (t, \(J = 6.7 \) Hz, 3H), 0.80 (t, \(J = 7.3 \) Hz, 3H); \(^{13}\text{C NMR (100 MHz, DMSO-}d_6\text{):} \delta 172.0, 171.5, 138.2, 129.1, 128.0, 126.1, 79.2, 72.2, 62.9, 53.9, 49.8, 37.5, 35.2, 31.4, 31.1, 30.7, 29.1, 28.7, 25.8, 24.9, 22.1, 21.9, 14.0, 13.8; HRMS (ESI): Calcd. C\(_{26}\)H\(_{45}\)N\(_2\)O\(_4\) [M+H\(^+\)]: 449.3379, Found: 449.3381.

\(N-((S)-1-((2S,3R)-1,2-dihydroxyundecan-3-yl)amino)-1-oxo-3-phenylpropan-2-yl) \) hexanamide (C\(_{26}\)H\(_{44}\)N\(_2\)O\(_4\)) 4S:

Scheme S15. Synthesis of compound 4S.

In a 25 mL round bottom flask compound 17S (0.24 g, 0.50 mmol) was taken and dissolved in 8 mL of THF : MeOH (1 : 1) solution. Then into that solution, 4 mL of 2N HCl was added and the reaction mixture was then stirred at room temperature overnight. After completion of the reaction, the reaction solution was neutralized by the dilute NaHCO\(_3\) solution. The neutralized solution was then washed with water and brine by extracting the compound in ethyl acetate (EtOAc). The organic layer was then washed with water and brine by extracting the compound in ethyl acetate (EtOAc). The organic layer was dried over Na\(_2\)SO\(_4\) and the solvent was then evaporated to get the crude product. The crude product was purified by silica gel column chromatography using methanol in chloroform (2.5% MeOH/CHCl\(_3\)) solvent system to obtain pure product 4S as a white solid in 84% yield. \(^1\text{H NMR (400 MHz, DMSO-}d_6\text{):} \delta 8.01 (d, \(J = 8.5 \) Hz, 1H), 7.54 (d, \(J = 9.1 \) Hz, 1H), 7.31 – 7.11 (m, 5H), 4.74 (bs, 1H), 4.61 – 4.49 (m, 1H), 4.38 (bs, 1H), 3.75 (q, \(J = 7.0 \) Hz, 1H), 3.44 (bs, 1H), 3.27 – 3.14 (m, 2H), 2.95 (dd, \(J = 13.6, 4.9 \) Hz, 1H), 2.72 (dd, \(J = 13.3, 9.8 \) Hz, 1H), 2.00 (t, \(J = 7.3 \) Hz, 2H), 1.43 – 1.31 (m, 4H), 1.28 – 1.12 (m, 14H), 1.09 – 1.01 (m, 2H), 0.82 (dt, \(J = 17.4, 6.9 \) Hz, 6H); \(^{13}\text{C NMR (100 MHz, DMSO-}d_6\text{):} \delta 171.9, 171.8, 138.0, 129.2, 127.9, 126.1, 79.2, 72.4, 62.9, 54.0, 49.7, 37.9, 35.2, 31.3, 30.8, 30.6, 29.0, 28.7, 25.6, 24.9, 22.1, 21.9, 14.0, 13.8; HRMS (ESI): Calcd. C\(_{26}\)H\(_{45}\)N\(_2\)O\(_4\) [M+H\(^+\)]: 449.3379, Found: 449.3385.
4. Field Emission Scanning Electron Microscopy (FESEM)

4.1. FESEM Studies for Compound 4S in CHCl$_3$ and MeOH

The surface morphology followed by the aggregation pattern of the compound 4S in solid-state was examined by field emission scanning electron microscopy (FESEM) studies. For that, the compound 4S was dissolved in CHCl$_3$ or moist MeOH (2% water in methanol solvent) to prepare a 100 μM solution. The compound solution was drop-casted on a silicon wafer, dried, and then used for FESEM studies.

Fig. S1. The FESEM image of compound 4S from CHCl$_3$ (A) and MeOH (B) solution.

4.2. FESEM Studies for Compound 4R in CHCl$_3$ and MeOH

The surface morphology followed by the aggregation pattern of the compound 4R in the solid state was examined by field emission scanning electron microscopy (FESEM) studies. For that, the compound 4R was dissolved in CHCl$_3$ or moist MeOH (2% water in methanol solvent) to prepare a 150 μM solution. The compound solution was drop-casted on a silicon wafer, dried, and then used for FESEM studies.

Fig. S2. The FESEM image of compound 4R from CHCl$_3$ (A) and moist MeOH (B) solution.
5. **High-Resolution Transmission Electron Microscopy (HRTEM)**

A 100 μM solution of the compounds 4S and 4R were prepared in moist MeOH (2% water in methanol solvent) solvent system. The compound solution was then drop-casted on a TEM grid, dried, and then used for HRTEM imaging.

![HRTEM Image](image)

Fig. S3. The HRTEM images of free compound 4R.

6. **Crystallographic Measurement and Analysis**

The single crystal suitable for X-ray analysis for 2R was obtained by slow evaporation of moist methanol (2% water in methanol solvent) solution of the respective compounds. On the other hand, the 14R crystallizes from nitrobenzene and acetonitrile solution (1:10) as a pale yellow crystal. The single-crystal X-ray data were collected on a Bruker Smart Apex Duo diffractometer using Mo Kα radiation for both the compounds either at 100 K, and 150 K. Olex2 graphical interface4 were used with ShelXT5 to solve the structures using intrinsic phasing and refined with ShelXL6 with full matrix least square minimization on F^2. All non-hydrogen atoms were refined anisotropically, except for those in minor disordered parts. Crystallographic parameters for compounds 2R and 14R are summarised in Table S1.

Table S1. Crystallographic data for complexes 2R and 14R

Compound	2R	14R
Temperature / K	100 K	150 K
Empirical Formula	C_{23}H_{40}N_{2}O_{5}	C_{25}H_{40}N_{2}O_{4}
Formula Weight [g mol^{-1}]	424.57	432.59
crystal system	monoclinic	triclinic
space group	C 2	P-1
6.1. ORTEP Diagram of Compound 2R

Fig. S4. The ORTEP diagram of compound 2R where the ellipsoids are shown with 50% probability.
6.2. ORTEP Diagram of Compound 14R

![ORTEP Diagram of Compound 14R]

Fig. S5. The ORTEP diagram of compound 14R where the ellipsoids are shown with 50% probability.

7. IR studies of Channel-forming Molecule in Lipid Membrane

7.1. Preparation of Vesicles for IR Spectra

In a 10 mL round-bottomed flask 0.5 mL of EYPC lipid solution (25 mg/mL in chloroform) was taken. The chloroform in the lipid solution was then evaporated by a slow stream of nitrogen gas while slowly rotating the round-bottomed flask to get a thin film of lipid inside it. Then the trace amount of chloroform present in the lipid was evaporated by drying it in a high vacuum for about 4 h. The thin film of lipid was hydrated with buffer solution (10 mM HEPES, pH 7.0), and then the vortexing was done 4-5 times (2 minutes each) over the period of 1 h. Then the hydrated vesicles suspension was subjected to 15 freeze-thaw cycles (liquid nitrogen and 55 °C temperature water bath), and extrusions were done 19 times (must be odd number) using 200 nm polycarbonate membrane. The extruded vesicles suspension (LUVs) was then collected and used for the for the IR sample preparation.

7.2. Preparation of Sample for IR Experiment

The channel-forming compound stock solution (20 μL in DMSO) was added to the vesicles suspension to prepare channel incorporated vesicles. The vesicles solution was the then subjected to centrifuge with 15000 rpm rotational speed for 1 h at 20 °C. Then the upper aqueous layer was removed and the process were repeated for three times using HEPES buffer.
as washing solvent (10 mM HEPES, pH 7.0). The resulting compound incorporated lipid membrane (collected from the bottom of the centrifuge tube) were dried under vacuum and used for IR spectroscopic studies.

7.3. The IR Experiments

The IR spectra were recorded for lipid membrane in the presence and absence of the channel-forming molecule. The change in the IR spectrum of the vesicles in the presence of the channel-forming molecule (5 mol% with respect to lipid) compared to the free vesicles indicated the insertion of the channel-forming compound inside the bilayer membrane. Additionally, the broadening of the diol O–H peak (3268 cm$^{-1}$) and shifting of the amide C=O peak (1628 cm$^{-1}$ to 1640 cm$^{-1}$) of the compound in the presence of lipid indicated the formation of channel inside the bilayer membrane.

Fig. S6. The IR spectra of the channel-forming molecule, free lipid vesicles, and channel-forming molecule incorporated lipid vesicles (5 mol% with respect to lipid).
8. Water Transport Studies7-12

8.1. Stopped-flow experiments for checking water transport activity

8.1.1. HEPES buffer preparation for experiments

We have prepared a salt solution using autoclaved water of strength 100 mM of NaCl and 10 mM of HEPES. Initially, the pH of the solution was below 7.0, and to make the pH at around 7 required amount of NaOH (0.5 M) solution was added.

8.1.2. Vesicles preparation for permeability assay

At first, 0.25 mL of DOPC lipid solution (25 mg/mL in chloroform) was taken in a 10 mL round-bottomed flask, and into that required amount of channel-forming molecule (mol\% compound with respect to lipid) in chloroform was added. The chloroform in the compound-lipid solution was then evaporated by a slow stream of nitrogen gas while slowly rotating the round-bottomed flask to get a thin film of lipid inside it. Then the trace amount of chloroform present in the compound-lipid was evaporated by drying it in a high vacuum for about 8 h. The thin film of lipid was hydrated with buffer solution (10 mM HEPES, 100 mM NaCl, pH 7.0), and then sonication followed by vortexing was done 4-5 times (2 minutes each) over the period of 1 h. Then the hydrated vesicles suspension was subjected to 15 freeze-thaw cycles (liquid nitrogen and 55 °C temperature water bath), and extrusions were done 19 times (must be odd number) using 200 nm polycarbonate membrane. The extruded vesicles were then diluted to 6 mL using the buffer as mentioned above (10 mM HEPES, 100 mM NaCl, pH 7.0) to get the desired concentration (mol\% of compound with respect to lipid), assuming no loss of lipid throughout the process. The vesicles compositions, inside: 10 mM HEPES, 100 mM NaCl, pH 7.0 and outside: 10 mM HEPES, 100 mM NaCl, pH 7.0.

8.1.3. Description of stopped-flow experiments for water transport studies

The above-mentioned vesicles solution was exposed to an equal volume of 300 mM Sucrose solution (300 mM Sucrose, 10 mM HEPES, 100 mM NaCl, pH 7.0), which leads to the shrinkage of the vesicles due to the outwardly directed water transport through the water channel. The sudden shrinkage of the size of the vesicle has then directed to change in light scattering intensity with time (90° angle recorded at 600 nm wavelength), which was monitored on a stopped-flow instrument (SFM 400 and MOS 450 from Biologic Science Instruments). The light scattering intensity was plotted against time by fitting the following exponential decay equation (Eq. S1).[6]
\[y = A \cdot \exp(-kx) + y_0 \quad \text{Eq. S1} \]

where, \(x \) is the time, \(y \) is the light scattering intensity change, and \(k \) is the exponential coefficient for the light scattering change.

This exponential coefficient value, \(k \) was used to calculate the osmotic permeability value, \(P_f \) following the below equation:

\[
P_f = \frac{k}{V_0 \times V_w \times \Delta \text{osm}} \quad \text{Eq. S2}
\]

where, \(P_f \) is the osmotic permeability, \(k \) is the exponential coefficient, \(S \) is the initial surface area of the vesicles, \(V_0 \) is the initial volume of the vesicles, \(V_w \) is the molar volume of water, \(\Delta \text{osm} \) is the change in osmolarity of the vesicular suspension after the addition of sucrose solution.

The corrected water permeability, \(P_w \) by the water channel molecules were calculated by subtracting the exponential coefficient value a compound from the exponential coefficient value of the blank data from the following equation:

\[
P_w = (P_f(\text{compound}) - P_f(\text{blank})) \times \frac{S}{N} \quad \text{Eq. S3}
\]

where, \(P_w \) is the corrected water permeability, \(P_f(\text{compound}) \) is the osmotic permeability of the compounds, \(P_f(\text{blank}) \) is the osmotic permeability of the blank vesicles, \(S \) is the surface area of the vesicles, and \(N \) is the number of self-aggregated channels per vesicles and can be calculated from the Eq. S4.

Each channel aggregate consists of 16 peptide-diol molecules (2 × 8 layered assembly has shown optimal channel formation in MD simulation studies, discussed latter) with a cross-sectional area of nearly 2.6 nm² (alkyl chain attached to peptide group less significantly differ the area calculation). The lipid molecule has a cross-sectional area of 0.34 nm² and the lipid bilayer has a thickness of ca. 5 nm. The ‘unit area’ was calculated based on one channel aggregate. The number of ‘unit areas’ is equivalent to the number of self-aggregated channels per vesicles (\(N \)). The \(N \) can be calculated from the following equation:
\[N = \frac{S_{A_{\text{total}}}}{S_{A_{\text{unit}}}} = \frac{2\pi r^2 + 2\pi (r-5)^2}{A_{\text{channel}} + \left(\frac{1-x}{x} \right) \times 0.34} \quad \text{Eq. S4} \]

where, \(S_{A_{\text{total}}} \) is the total surface area of a vesicles; \(S_{A_{\text{unit}}} \) is the ‘unit area’; \(A_{\text{channel}} \) is the cross-sectional area of a single channel aggregate; \(x \) is the corrected mCLR considering each channel aggregate is made up of 16 peptide-diol molecules. The number of single channel aggregates per liposome can then be used to calculate the single channel permeability \((P_w) \) following Eq. S3. Please note, in our system the single channel water permeability is the sum of the water permeability of two water arrays in a single self-assembled system.

We have re-calculated the water permeability values utilizing the recently reported equation considering the intra- and extra-vesicular osmolyte concentrations correction factor.

\[P_{f(\text{corrected})} = \frac{k}{V_0} \times \frac{C_{in,t=0} + C_{out}}{2 \times C_{out}^2} \quad \text{Eq. S5} \]

where, \(C_{in,t=0} \) is the change in osmolyte concentration inside the vesicles at \(t = 0 \) and \(C_{out} \) is the osmolyte concentration outside the vesicles.

The \(P_{f(\text{corrected})} \) values obtained from Eq. S5, considering the osmolyte concentration correction factor, was further used to calculate the corrected water permeability and single channel permeability for all channel forming molecules following the Eq. S3 and S4.
Fig. S7. Kinetic curves for water permeability measurement of blank (A), channel 4S at different mCLRs (B, C, and D), channel 1S (E), channel 1R (F), channel 2S (G), channel 2R (H), channel 3S (I), channel 3R (J), and channel 4R (K). The comparison of exponential coefficient values of blank, 1S–4S, and 1R–4R (L). All the data are triplicated and used to calculate rate constants with their standard deviation values for each compound.

8.1.4. Estimation of insertion efficiency

The insertion efficiency of peptide 1,2-diol channels in the vesicles was measured using the UV-Vis spectroscopic technique. At first, we have prepared different sets of vesicles (without extrusion, following the process mentioned above) for each compound by inserting the channel forming molecules (mCLR 0.005 to 0.03) and measured the UV-Vis absorbance intensity. These intensity values were used to generate a calibration curve, which has been shown to follow a linear pattern. Next, we prepared a similar type of vesicles (with extrusion, following the process mentioned above) by inserting the channel-forming molecules (mCLR 0.02) and measured the UV-Vis absorbance intensity. This absorbance intensity was used to calculate the actual concentration of the compound (corrected mCLR, after the extrusion process) from the calibration curve. Following these methods, we have calculated the percentage of insertion efficiency (ratio of corrected concentration and initial concentration) for 4S and 4R, and the corrected concentrations for these channels were used to calculate the single-channel
permeability. The insertion efficiency of 4S and 4R are found to be 84% (0.0168/0.02) and 86% (0.0172/0.02), respectively.

Fig. S8. Determination of actual loading of channel-forming compounds in vesicles using UV–Vis spectroscopy. The UV-Vis absorbance intensity of vesicles (without extrusion) with increasing concentration of 4S (A), Calibration plot (B), and the absorbance intensity of vesicles (with extrusion) with 4S (mCLR 0.02, C).
Fig. S9. Determination of actual loading of channel-forming compounds in vesicles using UV–Vis spectroscopy. The UV-Vis absorbance intensity of vesicles (without extrusion) with increasing concentration of 4R (A), Calibration plot (B), and the absorbance intensity of vesicles (with extrusion) with 4R (mCLR 0.02, C).

Table S2. Water permeability calculation tables for compounds 1S-4S, and 1R-4R with corrected mCLRs and without considering the osmolyte concentration correction factor.

Channels	Exponential coefficient (k)	Water permeability, (P_w, μm/s)	Corrected water permeability, (P_c, μm/s)	Water permeability (P_w, cm3/s)	Water permeability/channel (water molecules/s)
Blank	6.47	54.28	0.00	-	-
1S	9.51	85.71	31.43	-	-
1R	9.05	81.54	27.26	-	-
2S	11.13	100.32	46.04	-	-
2R	10.57	95.29	41.01	-	-
3S	12.77	115.06	60.78	-	-
3R	11.67	105.20	50.92	-	-
4S	19.58	176.47	122.19	4.47×10^{-14}	1.49×10^9
4R	18.29	164.85	110.57	3.95×10^{-14}	1.32×10^9
Fig. S10. Comparison of water permeability of 4S in 300 mM sucrose (A) and 250 mM NaCl solution (B). The reflection coefficient value of 4S (C).

Table S3. Water permeability calculation tables for compounds 1S-4S, and 1R-4R with corrected mCLRs and considering the osmolyte concentration correction factor.

Channels	Exponential coefficient (k)	Water permeability, \((P_f, \mu m/s) \)	Corrected water permeability, \((P_f, \mu m/s) \)	Water permeability \((P_w, cm^3/s) \)	Water permeability/channel \((water \ molecules/s) \)
Blank	6.47	19.48	0.00	-	-
1S	9.51	30.24	10.75	-	-
1R	9.05	28.77	9.28	-	-
2S	11.13	35.39	15.91	-	-
2R	10.57	33.62	14.13	-	-
3S	12.77	40.60	21.11	-	-
3R	11.67	37.12	17.63	-	-
4S	19.58	62.27	42.78	\(1.51 \times 10^{-14} \)	\(5.05 \times 10^8 \)
4R	18.29	58.17	38.68	\(1.34 \times 10^{-14} \)	\(4.48 \times 10^8 \)

9. Ion Transport Studies

9.1. Cation transport studies in HPTS assay

9.1.1. HEPES buffer, HPTS solution, and stock solution preparation for assay

We have prepared a buffer solution using autoclaved water of 10 mM HEPES (pH 7.0) and this buffer was used to prepare a salt solution of strength 200 mM of \(M_2SO_4\) (\(M^+ = Na^+\) and \(K^+\)). Initially, the pH of the buffer solution was below 7 and to make the pH at around 7, the required amount of MOH (0.5 Molar, \(M^+ = Na^+\) and \(K^+\)) solution was added. Then HPTS solution of 1 mM was prepared from solid HPTS using the above-mentioned HEPES buffer solution.
(without salt). The stock solution of the transporter for the HPTS assay was prepared using HPLC grade DMSO.

9.1.2. Vesicles preparation for cation transport assay

At first, 1.0 mL of EYPC lipid solution (25 mg/mL in chloroform) was taken in a 10 mL round-bottomed flask. The chloroform present in the lipid solution was then evaporated by a slow stream of nitrogen gas while rotating the round-bottomed flask to get a thin film of lipid inside it. Then the trace amount of chloroform present in the lipid was evaporated by drying it in a high vacuum for about 8 h. The thin film of lipid was hydrated with HPTS solution (1.0 mM HPTS, 10 mM HEPES, pH 7.0) while vortexing 4-5 times over the period of 1 h. Then the hydrated vesicles suspension was subjected to 15 freeze-thaw cycles, and extrusions were done 19 times (must be an odd number) using a 100 nm polycarbonate membrane. The extravesicular dye was separated from vesicles by size exclusion column chromatography (using Sephadex G-50 gel) eluting with buffer solution (10 mM HEPES, pH 7). After collecting, the vesicles from the column were diluted to 6 mL using buffer (10 mM HEPES, pH 7.0) to get the concentration of ~ 5.5 mM of EYPC-LUVs⇒HPTS, assuming no loss of lipid throughout the process. The vesicles compositions, inside: 1 mM HPTS, 10 mM HEPES, pH 7.0 and outside: 10 mM HEPES, pH 7.0.

9.1.3. Description of cation transport study

In a clean cuvette, 1975 µL of buffer solution (10 mM HEPES, 200 mM of M₂SO₄ (M⁺ = Na⁺ and K⁺), pH 7.0), 25 µL of HPTS trapped vesicles solution were taken and placed in a fluorescence instrument equipped with a magnetic stirrer. The fluorescence emission intensity of the HPTS dye, Iᵣ, was measured at λₑᵐ = 510 nm (where, λₑₓ = 450 nm) for 350 s. For each reading, the start time of the instrument was considered as t = 0 s. Then at t = 20 s, 20 µL of 0.5 M NaOH solution was added to the same cuvette to generate a pH gradient (ΔpH = 0.8) between intra and extra vesicular medium. Then 20 µL solution of transporters in DMSO of different concentrations were added at t = 100 s. At t = 300 s, 10% triton X-100 (25 µL) was added to destroy all the vesicles to destruct the pH gradient.

The fractional emission intensity (in percentage), Iₑ (Fig. S11B) was calculated after normalizing all the data using the following equation (Eq. S6).

\[
\% \text{ of } Iₑ = \frac{(Iᵣ - I₀)}{(Iᵣ – I₀)} \times 100
\]

Eq. S6
Where, I_0 is the initial fluorescence intensity i.e. before the addition of the transporter compound, I_t is the fluorescence intensity at time t and I_∞ is the final fluorescence intensity i.e. after the addition of Triton X-100.

Before plotting the data, the time axis was normalized using the following equation:

$$t = t - 100$$

Eq. S7

![Diagram](image)

Fig. S11. Schematic representation of fluorescence kinetics assay for checking cation transport activity across EYPC-LUVs⇒HPTS (A), and normalized working window for the same experiment (B).

9.2. Proton and anion transport studies in HPTS assay
9.2.1. HEPES buffer, HPTS solution and stock solution preparation for assay:

We have prepared a buffer solution using autoclaved water of 10 mM HEPES (pH 7.0) and this buffer was used to prepare a salt solution of strength 100 mM of NaCl and 66 mM of Na$_2$SO$_4$. Initially the pH of the buffer solution was below 7.0, and to make the pH at around 7.0, the required amount of NaOH (0.5 M) solution was added. Then HPTS solution of 1.0 mM was prepared from solid HPTS using the above-mentioned HEPES buffer solution (100 mM of NaCl). The stock solution of the transporter for the HPTS assay was prepared using HPLC grade DMSO.

9.2.2. Vesicles preparation for proton and anion transport assay

At first, 1 mL of EYPC lipid solution (25 mg/mL in chloroform) was taken in a 10 mL round-bottomed flask. The chloroform present in the lipid solution was then evaporated by a slow stream of nitrogen gas while rotating the round-bottomed flask to get a thin film of lipid inside it. Then the trace amount of chloroform present in the lipid was evaporated by drying it in a high vacuum for about 8 h. The thin film of lipid was hydrated with HPTS solution (1.0 mM
HPTS, 100 mM NaCl, 10 mM HEPES, pH 7.0) while vortexing 4-5 times over the period of 1 h. Then the hydrated vesicles suspension was subjected to 15 freeze-thaw cycles, and extrusions were done 19 times (must be an odd number) using a 100 nm polycarbonate membrane. The extravesicular dye was separated from vesicles by size exclusion column chromatography (using Sephadex G-50 gel) eluting with buffer solution (10 mM HEPES, 100 mM NaCl, pH 7.0). After collecting, the vesicles from the column were diluted to 6 mL using the buffer as mentioned above (10 mM HEPES, 100 mM NaCl, pH 7.0) to get the concentration of ~ 5.5 mM of EYPC-LUVs≥HPTS, assuming no loss of lipid throughout the process. The vesicles compositions, inside: 1.0 mM HPTS, 10 mM HEPES, 100 mM NaCl, pH 7.0 and outside: 10 mM HEPES, 100 mM NaCl, pH 7.0.

9.2.3. Description of proton and anion transport study

In a clean cuvette, 1975 µL of buffer solution (10 mM HEPES, 66 mM of Na₂SO₄, pH 7.0), 25 µL of HPTS trapped vesicles solution were taken and placed in a fluorescence instrument equipped with a magnetic stirrer. The fluorescence emission intensity of the HPTS dye, \(I_t \) was measured at \(\lambda_{em} = 510 \text{ nm} \) (where \(\lambda_{ex} = 450 \text{ nm} \)) for 350 s. For each reading, the start time of the instrument was considered as \(t = 0 \text{ s} \). Then at \(t = 20 \text{ s} \), 20 µL of 0.5 M NaOH solution was added to the same cuvette to generate a pH gradient (\(\Delta pH = 0.8 \)) between intra and extra vesicular medium. Then 20 µL solution of transporters in DMSO of different concentrations were added at \(t = 100 \text{ s} \). At \(t = 300 \text{ s} \), 10% Triton X-100 (25 µL) was added to destroy all the vesicles to destruct the pH gradient.

The fractional emission intensity (in percentage), \(I_F \) (Fig. S12B) was calculated after normalizing all the data using the following equation (Eq. S6).

\[
\text{\% of } I_F = \frac{(I_t - I_0)}{(I_\infty - I_0)} \times 100
\]

Where, \(I_0 \) is the initial fluorescence intensity \(i.e., \) before the addition of the transporter compound, \(I_t \) is the fluorescence intensity at time \(t \), and \(I_\infty \) is the final fluorescence intensity \(i.e., \) after the addition of Triton X-100.

Before plotting the data, the time axis was normalized using the following equation:

\[
t = t - 100
\]

Eq. S7
Fig. S12. Schematic representation of fluorescence kinetics assay for checking proton and anion transport activity across EYPC-LUVs⇒HPTS (A), and normalized working window for the same experiment (B).

9.3. Lucigenin assay for checking Cl− transport activity

9.3.1. Salt and Stock solution preparation for Lucigenin assay

We have prepared a 225 mM NaNO₃ salt solution using autoclaved water. Then 1.0 mM Lucigenin solution was prepared using the 225 mM NaNO₃ solution. The stock solution of the transporter for the Lucigenin assay was prepared from a solid compound by using HPLC grade CH₃CN : CH₃OH (10 : 1) solution.

9.3.2. Vesicles preparation procedure for Lucigenin assay

At first, 1.0 mL of EYPC lipid solution (25 mg/mL in chloroform) was taken in a 10 mL round-bottomed flask. The chloroform present in the lipid solution was then evaporated by a slow stream of nitrogen gas while rotating the round-bottomed flask to get a thin film of lipid inside it. Then the last trace amount of chloroform present in the lipid was evaporated by drying it in a high vacuum for about 8 h. The thin film of lipid was hydrated with 1 mL of Lucigenin solution (1.0 mM Lucigenin, 225 mM NaNO₃) while vortexing 4-5 times for 2 min with a time interval of 10 min. Then the hydrated vesicles suspension was subjected to 15 freeze-thaw cycles, and extrusions were done 19 times (must be an odd number) using a 200 nm polycarbonate membrane. The extravesicular dye was separated from vesicles by size exclusion column chromatography (using Sephadex G-50 gel) eluting with NaNO₃ solution (225 mM). After collecting, the vesicles from the column were diluted to 4 mL using the buffer as mentioned above (225 mM NaNO₃) to get the concentration of ~8 mM of EYPC-LUVs⇒Lucigenin, assuming no loss of lipid throughout the process. The vesicles compositions, inside: 1.0 mM Lucigenin, 225 mM NaNO₃ and outside: 225 mM NaNO₃.
9.3.3. Description of lucigenin assay

In a clean cuvette, 1950 µL of salt solution (225 mM NaNO₃), 50 µL of lucigenin trapped vesicles solution were taken and placed in a fluorescence instrument equipped with a magnetic stirrer. The fluorescence emission intensity of the Lucigenin dye, I_t was measured at $\lambda_{em} = 535$ nm (where $\lambda_{ex} = 455$ nm) for 350 s. For each reading, the start time of the instrument was considered as $t = 0$ s. Then at $t = 50$ s, 33 µL of 2N NaCl solution was added to the cuvette for generating a Cl⁻ concentration gradient across the lipid bilayer. Then 20 µL solution of transporters in ACN : MeOH (6 : 1) solvent of different concentrations were added at $t = 100$ s. At $t = 300$ s, 10% Triton X-100 (25 µL) was added to destroy all the vesicles to destruct the Cl⁻ concentration gradient.

The fractional emission intensity (in percentage), I_F (Fig. S13B) was calculated after normalizing all the data using the following equation (Eq. S8).

$$\text{% of } I_F = \left(\frac{I_t - I_0}{I_\infty - I_0} \right) \times (-100)$$ \hspace{1cm} \text{Eq. S8}

Where, I_0 is the initial fluorescence intensity, i.e., just before the addition of the transporter solution, I_t is the fluorescence intensity at time t, and I_∞ is the final fluorescence intensity, i.e., after the addition of Triton X-100.

Fig. S13. Schematic representation of fluorescence kinetics assay for checking Cl⁻ ion transport selectivity across EYPC-LUVs➡Lucigenin (A), and normalized working window for the same experiment (B).

Before plotting the data, the time axis was normalized using the Eq. S7,
9.4. Standard HPTS assay for checking ion transport activity with iso-osmolar intra- and extra-vesicular solutions

9.4.1. HEPES buffer, HPTS solution, and stock solution preparation for assay

We have prepared a buffer solution using autoclaved water of 10 mM HEPES (pH 7.0) and this buffer was used to prepare a NaCl solution of strength 100 mM. Initially, the pH of the buffer solution was below 7 and to make the pH at around 7, the required amount of NaOH (0.5 Molar) solution was added. Then HPTS solution of 1.0 mM was prepared from solid HPTS using the above-mentioned HEPES buffer solution. The stock solution of the transporter for the HPTS assay was prepared using HPLC grade DMSO.

9.4.2. Vesicles preparation for ion transport assay

At first, 1.0 mL of EYPC lipid solution (25 mg/mL in chloroform) was taken in a 10 mL round-bottomed flask. The chloroform present in the lipid solution was then evaporated by a slow stream of nitrogen gas while rotating the round-bottomed flask to get a thin film of lipid inside it. Then the trace amount of chloroform present in the lipid was evaporated by drying it in a high vacuum for about 8 h. The thin film of lipid was hydrated with HPTS solution (1.0 mM HPTS, 10 mM HEPES, 100 mM NaCl, pH 7.0) while vortexing 4-5 times over the period of 1 h. Then the hydrated vesicles suspension was subjected to 15 freeze-thaw cycles, and extrusions were done 19 times (must be an odd number) using a 200 nm polycarbonate membrane. The extravesicular dye was separated from vesicles by size exclusion column chromatography (using Sephadex G-50 gel) eluting with buffer solution (10 mM HEPES, 100 mM NaCl, pH 7.0). After collecting, the vesicles from the column were diluted to 6 mL using buffer (10 mM HEPES, 100 mM NaCl, pH 7.0) to get the concentration of ~ 5.5 mM of EYPC-LUVs≥HPTS, assuming no loss of lipid throughout the process. The vesicles compositions, inside: 1.0 mM HPTS, 10 mM HEPES, 100 mM NaCl, pH 7.0 and outside: 10 mM HEPES, 100 mM NaCl, pH 7.0.

9.4.3. Description of ion transport study

In a clean cuvette, 1975 µL of buffer solution (10 mM HEPES, 100 mM NaCl, pH 7.0), 25 µL of HPTS trapped vesicles solution were taken and placed in a fluorescence instrument equipped with a magnetic stirrer. The fluorescence emission intensity of the HPTS dye, \(I \) was measured at \(\lambda_{em} = 510 \) nm (where, \(\lambda_{ex} = 450 \) nm) for 350 s. For each reading, the start time of the instrument was considered as \(t = 0 \) s. Then at \(t = 20 \) s, 20 µL of 0.5 M NaOH solution was
added to the same cuvette to generate a pH gradient (ΔpH = 0.8) between intra and extra vesicular medium. Then 20 µL solution of transporters in DMSO of different concentrations were added at t = 100 s. At t = 300 s, 10% triton X-100 (25 µL) was added to destroy all the vesicles to destruct the pH gradient.

The fractional emission intensity (in percentage), I_F was calculated after normalizing all the data using the Eq. S6.

Before plotting the data, the time axis was normalized using the Eq. S7

![Diagram](image)

Fig. S14. Schematic representation of fluorescence kinetics assay for checking ion transport activity across EYPC-LUVs⇒HPTS (A), and normalized working window for the same experiment (B).

9.5. Carboxyfluorescein (CF) leakage assay

9.5.1. Vesicles preparation for CF leakage assay

At first, 0.5 mL of EYPC lipid solution (25 mg/mL in chloroform) was taken in a 10 mL round-bottomed flask. The chloroform present in the lipid solution was then evaporated by a slow stream of nitrogen gas while rotating the round-bottomed flask to get a thin film of lipid inside it. Then the trace amount of chloroform present in the lipid was evaporated by drying it in a high vacuum for about 8 h. The thin film of lipid was hydrated with CF solution (50 mM CF, 10 mM NaCl, 10 mM HEPES, pH 7.0) while vortexing 4-5 times over the period of 1 h. Then the hydrated vesicles suspension was subjected to 15 freeze-thaw cycles and extrusions were done 19 times (must be an odd number) using a 200 nm polycarbonate membrane. The extravesicular dye was separated from vesicles by size exclusion column chromatography (using Sephadex G-50 gel) eluting with buffer solution (10 mM HEPES, 100 mM NaCl, pH
7). After collecting, the vesicles from the column were diluted to 3 mL using buffer (10 mM HEPES, 100 mM NaCl, pH 7.0) to get the concentration of ~ 5.5 mM of EYPC-LUVs⇒CF, assuming no loss of lipid throughout the process. The vesicles compositions, inside: 50 mM CF, 10 mM HEPES, 10 mM NaCl, pH 7.0 and outside: 10 mM HEPES, 100 mM NaCl, pH 7.0.

9.5.2. Description of CF leakage assay

In a clean cuvette, 1975 µL of buffer solution (10 mM HEPES, 100 mM NaCl, pH 7.0), 25 µL of CF trapped vesicles solution were taken and placed in a fluorescence instrument equipped with a magnetic stirrer. The fluorescence emission intensity of the CF dye, \(I_t\) was measured at \(\lambda_{em} = 517\) nm (where, \(\lambda_{ex} = 492\) nm) for 350 s. For each reading, the start time of the instrument was considered as \(t = 0\) s. Then at \(t = 50\) s, 20 µL of channel molecule in DMSO of different concentrations were added at \(t = 100\) s. At \(t = 250\) s, 10% Triton X-100 (25 µL) was added to destroy all the vesicles to destruct the concentration gradient.

The fractional emission intensity (in percentage), \(I_F\) was calculated after normalizing all the data using the following equation (Eq. S9).

\[
\%\ of\ I_F = \frac{(I_t - I_0)}{(I_\infty - I_0)} \times 100
\]

Eq. S9

Where, \(I_0\) is the initial fluorescence intensity, \(i.e.,\) before the addition of the transporter compound, \(I_t\) is the fluorescence intensity at time \(t\) and \(I_\infty\) is the final fluorescence intensity, \(i.e.,\) after the addition of Triton X-100.
10. MD Simulation Setup

The current experiments obtained the 4R 2 × 8 layered synthetic channel atomistic coordinates obtained from the crystal structure of 2R with water. The coordinates of the 8-layered channel was initially minimized using MAESTRO (https://www.schrodinger.com/products/maestro), which was subsequently used for computer simulation of the membrane-constituted channel. We used the CHARMM-GUI Membrane builder15 (https://www.charmmgui.org/?doc=input/membrane-.bilayer), an online webserver for assembling the channel inside a DOPC (1,2-Dioleoyl-sn-glycero-3-phosphocholine) phospholipid bilayer for subsequent MD simulation. The synthetic channel was modelled using the general AMBER force field (GAFF)16, 17 and the DOPC lipid parameters were obtained from the CHARMM36m force field.18-20 Total 144 DOPC lipids were used to construct the bilayer by keeping 72 lipids in each of the upper and lower membrane leaflets. The salt concentration was maintained at 0.10 M by adding 12 atoms of Na\(^+\) and 12 atoms of Cl\(^-\) ions. The whole assembly was solvated by introducing a total of 7247 water molecules on both sides of the lipid bilayer. The water was modelled by TIP3P-charmm21 water molecules. The total system size was 42853 particles and a rectangular box was used with dimensions 7.14 × 7.14 × 8.01 nm\(^3\). The assembled system was minimized using the steepest-decent algorithm under restraints. Then the system was further subjected to restrained MD simulations in multiple stages and in each consecutive stage, the restraints were gradually reduced in each step. The temperature was set to 298.15 K and a Berendsen thermostat22 was used during the equilibration. Initial random velocities were assigned to each atom, generated according to Maxwell-Boltzmann distribution of velocities at that temperature.

Finally, the production MD simulations were performed in an NPT ensemble using the leapfrog integrator with a 2-fs time step. The Verlet cutoff scheme23 was employed throughout the simulation with the Lennard-Jones potential extending to 1.2 nm with dispersion corrections. The electrostatic interactions were implemented with a short-range electrostatic cutoff at 1.2 nm, and long-range interactions were treated by Particle Mesh Ewald summation24 with cubic interpolation and in a Fourier-grid space of 0.16 nm. The neighbor lists were updated every 20 steps. All bond lengths involving hydrogen atoms of the lipids and the ligands were constrained using the LINCS algorithm25 and water molecules were kept rigid using the SETTLE26 approach. The average temperature is maintained at 298.15 K by coupling solute, membrane, and solvent separately to the Nose-Hoover thermostat27 with a relaxation constant of 1.0 ps. The pressure was controlled at 1 bar by Parrinello-Rahman barostat28 with a time
constant of 5 ps and compressibility of 4.5×10^{-5} bar with semi-isotropic coupling (XY and Z directions coupled separately) to achieve tensionless bilayer. The system was periodic in all three directions. Two independent trajectories each of duration 0.9 microseconds were produced using GROMACS 2019 version.29,30 The trajectory was saved at every 100 ps for the analysis.

The stability of the synthetic channel was ascertained by computing the Radius of gyration of the assembled structure and Root-mean-squared deviation (RMSD) from the crystal structure. The simulation trajectory was also analyzed via investigating the dynamical nature of water leakage and permeation event inside the membrane. Towards, we used an algorithm by Carlos et al.31 For this purpose, the time profile of z-coordinate of each water molecule was individually tracked. A water molecule was considered to be ‘leaked’ if it has moved at least till the center of the bilayer. Similarly, a successful permeation event of the water molecule is ascertained if the water molecule has completed a full pass from one of the leaflets to the other through the bilayer.

Fig. S15. Assessing the optimal number of layer: Simulated Snapshot of superstructure with 2×7 layers (A) and 2×8 layers (B) after 900 ns of MD simulation. Same colour code as used Fig. 4 has been used. Time profile of radius of gyration (C) and RMSD (D) for both these superstructures are also shown.
From the crystal structure of 2R with water (Fig. 2D–2F), it is evident that the hydroxyl and amide groups of the channel forming molecules interact with the water molecule while facing inside, whereas the octyl chain and phenyl groups are oriented outside the channel. In the hydrophobic lipid bilayer membrane, the solid-state representation of the water channel will preferably be preserved because the polar hydroxyl groups will repel with the hydrophobic tail of lipid molecules and subsequently be facing inside for the formation of the water channel to minimize the repulsion. In contrast, the octyl chain will face outside, which will interact with the hydrophobic lipid tails. In this representation, there will be less chance for the deformation of the channel structure while increasing the peptide attached alkyl chain length from methyl (for 2R) to pentyl (for 4R), as the alkyl chains are exposed outside the channel structure. The formation of stable channel structure by our 4R molecules with water was observed, where the channel structure is stable without applying any lateral pressure on the membrane.

Fig. S16. The snapshots from MD simulation of 2 × 8 layered 2R synthetic channel at initial point i.e., 0 ns (A) and at the completion of the simulation i.e. 500 ns (B). The RMSD (C) and radius of gyration (D) of 2 × 8 layered 2R channel. Water permeation analysis across 2 × 8 layered 2R superstructure: Time profile of number of leaked waters inside the membrane (E) and the cumulative time profiles of water permeation events (F).

The 4R channel has shown efficient experimental water permeability. Therefore, we have chosen this derivative for MD simulation studies as mentioned above, where the initial coordinates were generated from the solid structure of the 2R channel by elongating the alkyl chain length. However, similar MD simulation studies (Fig. S16A and S16B) were also
performed for the 2R channel as well, where the initial channel structure was generated directly from the crystal structure. Here, we have also observed the maintenance of a stable channel structure with a slight deviation of RMSD (Fig. S16C) and \(R_g \) values (Fig. S16D) without applying any larger magnitude lateral pressures or restraining forces. Moreover, the salt-exclusion water permeation events were observed from these experiments (Fig. S16E and S16F), which indicated that for a particular configuration product, the elongation of alkyl chain length (facing outside) does not make a difference in the channel-forming strategy.

In the process of searching the channel structure of 4S, we have generated the 2 × 8 layered 4S channel by inverting the stereochemistry of the chiral phenylalanine centre and elongating the peptide attached methyl group to pentyl on each molecule of the 2 × 8 layered 2R channel, and subsequently the MD simulation studies were performed. However, in this case, stable channel formation was not observed applying a similar simulation condition (Fig. S17). Maybe some other type of channel assembly is formed in the case of the 4S channel inside the membrane for the transportation of water.

![Fig. S17. Snapshot from MD simulation of 2 \times 8 layered 4S synthetic channel at 470 ns (A). The RMSD (B) and radius of gyration (C) of 2 \times 8 layered 4S channel.](image)
11. **NMR Spectra of Compounds**

Fig. S18. 1H NMR spectrum of compound 12 in CDCl$_3$.

S40
Fig. S19. 13C NMR spectrum of compound 12 in CDCl$_3$.
Fig. S20. 1H NMR spectrum of compound 13 in CDCl$_3$.
Fig. S21. 13C NMR spectrum of compound 13 in CDCl$_3$.
Fig. S22. 1H NMR spectrum of compound 14R in CDCl$_3$.

S44
Fig. S23. 13C NMR spectrum of compound 14R in CDCl₃.
Fig. S24. 1H NMR spectrum of compound 14S in CDCl$_3$.
Fig. S25. 13C NMR spectrum of compound 14S in CDCl$_3$.
Fig. S26. 1H NMR spectrum of compound 1R in DMSO-d_6.
Fig. S27. 13C NMR spectrum of compound 1R in DMSO-d_6.
Fig. S28. 1H NMR spectrum of compound 1S in DMSO-d_6.
Fig. S29. 13C NMR spectrum of compound 1S in DMSO-d_6.
Fig. S30. 1H NMR spectrum of compound 15R in CDCl$_3$.
Fig. S31. 13C NMR spectrum of compound 15R in CDCl$_3$.

S53
Fig. S32. 1H NMR spectrum of compound 15S in CDCl$_3$.
Fig. S33. 13C NMR spectrum of compound 15S in CDCl$_3$.
Fig. S34. 1H NMR spectrum of compound 2R in DMSO-d_6.
Fig. S35. 13C NMR spectrum of compound 2R in DMSO-d_6.
Fig. S36. 1H NMR spectrum of compound 2S in DMSO-d_6.
Fig. S37. 13C NMR spectrum of compound 2S in DMSO-d_6.
Fig. S38. 1H NMR spectrum of compound 16R in CDCl$_3$.

S60
Fig. S39. 13C NMR spectrum of compound 16R in CDCl₃.
Fig. S40. 1H NMR spectrum of compound 16S in CDCl$_3$.
Fig. S41. 13C NMR spectrum of compound 16S in CDCl$_3$.
Fig. S42. 1H NMR spectrum of compound 3R in DMSO-d_6.

S64
Fig. S43. 13C NMR spectrum of compound 3R in DMSO-d_6.
Fig. S44. 1H NMR spectrum of compound 3S in DMSO-d_6.
Fig. S45. 13C NMR spectrum of compound 3S in DMSO-d_6.
Fig. S46. 1H NMR spectrum of compound 17R in CDCl$_3$.
Fig. S47. 13C NMR spectrum of compound 17R in CDCl$_3$.
Fig. S48. 1H NMR spectrum of compound 17S in CDCl$_3$.
Fig. S49. 13C NMR spectrum of compound 17S in CDCl$_3$.
Fig. S50. 1H NMR spectrum of compound 4R in DMSO-d_6.
Fig. S51. 13C NMR spectrum of compound 4R in DMSO-d_6.
Fig. S52. 1H NMR spectrum of compound 4S in DMSO-d_6.
Fig. S53. 13C NMR spectrum of compound 4S in DMSO-d_6.

S75
12. References

1. B. Sadhasivam, M. F. Rigana, B. Rukmanikrishnan and S. Muthusamy, *Polym. Bull.*, 2018, **75**, 829-849.
2. S. C. Deshmukh and P. Talukdar, *J. Org. Chem.*, 2014, **79**, 11215-11225.
3. S. C. Deshmukh, A. Roy and P. Talukdar, *Org. Biomol. Chem.*, 2012, **10**, 7536-7544.
4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.
5. G. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3-8.
6. G. Sheldrick, *Acta Cryst.*, 2015, **A71**, 3-8.
7. J. Shen, J. Fan, R. Ye, N. Li, Y. Mu and H. Zeng, *Angew. Chem., Int. Ed.*, 2020, **59**, 13328-13334.
8. J. Shen, R. Ye, A. Romanies, A. Roy, F. Chen, C. Ren, Z. Liu and H. Zeng, *J. Am. Chem. Soc.*, 2020, **142**, 10050-10058.
9. Y. D. Yuan, J. Dong, J. Liu, D. Zhao, H. Wu, W. Zhou, H. X. Gan, Y. W. Tong, J. Jiang and D. Zhao, *Nat. Commun.*, 2020, **11**, 4927.
10. E. Licsandru, I. Kocsis, Y.-x. Shen, S. Murail, Y.-M. Legrand, A. van der Lee, D. Tsai, M. Baaden, M. Kumar and M. Barboiu, *J. Am. Chem. Soc.*, 2016, **138**, 5403-5409.
11. W. Song, H. Joshi, R. Chowdhury, J. S. Najem, Y.-x. Shen, C. Lang, C. B. Henderson, Y.-M. Tu, M. Farell, M. E. Pitz, C. D. Maranas, P. S. Cremer, R. J. Hickey, S. A. Sarles, J.-l. Hou, A. Aksamitiev and M. Kumar, *Nat. Nanotechnol.*, 2020, **15**, 73-79.
12. C. Hannesschläger, T. Barta, C. Siligan and A. Horner, *Sci. Rep.*, 2018, **8**, 8516.
13. D. Mondal, A. Sathyan, S. V. Shinde, K. K. Mishra and P. Talukdar, *Org. Biomol. Chem.*, 2018, **16**, 8690-8694.
14. A. Roy, A. Gautam, J. A. Malla, S. Sarkar, A. Mukherjee and P. Talukdar, *Chem. Commun.*, 2018, **54**, 2024-2027.
15. S. Jo, T. Kim, V. G. Iyer and W. Im, *J. Comput. Chem.*, 2008, **29**, 1859-1865.
16. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, *J. Comput. Chem.*, 2004, **25**, 1157-1174.
17. K. G. Sprenger, V. W. Jaeger and J. Pfaendtner, *J. Phys. Chem. B*, 2015, **119**, 5882-5895.
18. B. R. Brooks, C. L. Brooks Iii, A. D. Mackerell Jr, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczer, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M.
Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York and M. Karplus, *J. Comput. Chem.*, 2009, **30**, 1545-1614.

19. J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O’Connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell and R. W. Pastor, *J. Phys. Chem. B*, 2010, **114**, 7830-7843.

20. J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de Groot, H. Grubmüller and A. D. MacKerell, *Nat. Methods*, 2017, **14**, 71-73.

21. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin and M. Karplus, *J. Phys. Chem. B*, 1998, **102**, 3586-3616.

22. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola and J. R. Haak, *J. Chem. Phys.*, 1984, **81**, 3684-3690.

23. S. Páll and B. Hess, *Comput. Phys. Commun.*, 2013, **184**, 2641-2650.

24. T. Darden, D. York and L. Pedersen, *J. Chem. Phys.*, 1993, **98**, 10089-10092.

25. B. Hess, H. Bekker, H. J. C. Berendsen and J. G. E. M. Fraaije, *J. Comput. Chem.*, 1997, **18**, 1463-1472.

26. S. Miyamoto and P. A. Kollman, *J. Comput. Chem.*, 1992, **13**, 952-962.

27. D. J. Evans and B. L. Holian, *J. Chem. Phys.*, 1985, **83**, 4069-4074.

28. M. Parrinello and A. Rahman, *J. Appl. Phys.*, 1981, **52**, 7182-7190.

29. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess and E. Lindahl, *SoftwareX*, 2015, **1-2**, 19-25.

30. M. J. Abraham, D. Spoel, E. Lindahl and B. Hess, GROMACS User Manual version 2019, http://www.gromacs.org.

31. C. R. S. Camilo, J. R. Ruggiero and A. S. de Araujo, *bioRxiv*, 2021, DOI: 10.1101/2021.01.20.427278.