Beyond 8-methoxypsoralen as the photosensitizer for extracorporeal photopheresis

Yandy Marx Castillo-Aleman*

Department of Immunology, Abu Dhabi Stem Cells Center (ADSCC), Abu Dhabi, United Arab Emirates

KEYWORDS
5-aminolevulinic acid, 5-methoxypsoralen, 8-methoxypsoralen, apoptosis, extracorporeal photopheresis, photoimmunology, photosensitizer, phototherapy

Introduction

Since the United States Food and Drug Administration (FDA) approved the use of extracorporeal photopheresis (ECP) in the palliative treatment of cutaneous T-cell lymphoma (CTCL) in 1988 (1), many other indications have been successfully explored. However, most of these approaches still demand further randomized clinical trials, including graft-vs.-host disease (GvHD), rejection of solid organ transplantation, and a wide range of autoimmune diseases.

ECP is a leukapheresis-based therapy where the patient’s whole blood is collected and separated into its different components; the collected leukocytes are treated extracorporeally with a photosensitizing agent and then exposed to ultraviolet-A (UV-A) irradiation before reinfusion.

Interestingly, despite the vast marketing experience of the ECP therapy gathered over more than 30 years and the manufacturing improvement of photopheresis devices, no significant changes have occurred around the photosensitizing drugs, which remain restricted to 8-methoxypsoralen (8-MOP, methoxsalen).

Few preclinical and early phase clinical trials have explored different photosensitizers during the last decade. Other ECP photosensitizing agents with equivalent (or better) safety, efficacy, and cost profiles could be available in the marketing landscape of low-income regions that cannot afford the current financial and economic costs of these promising therapies.

This Opinion paper aims to raise some regulatory considerations regarding the conventional photosensitizing agent (8-MOP), emphasizing the potential usefulness of other drugs and non-pharmacological systems for photosensitization during ECP.
ECP regulatory landscape

The FDA considers a photopheresis system a “combination product” comprising two regulated components: a drug (photosensitizer) and a device (leukapheresis machine) (2). Furthermore, the European Medicines Agency (EMA) refines the regulation of medicinal products used with a medical device by defining “integral,” “co-packaged,” and “referenced” combinations. Those referenced products “combine two (or more) product information of the medicinal product refers to a specific medical device to be used, and the specified medical device is obtained separately by the user of the medicinal product” (3).

For instance, 8-MOP branded as UVADEX® Sterile Solution (Mallinkrodt Pharmaceuticals, Ireland- United States) has been granted FDA authorization in combination with one specific photopheresis device only (UVAR®, and its more recent superseding device, THERAKOS® CELLEX®, both Therakos Inc., Mallinkrodt Pharmaceuticals) (4) that correspond to closed, “online” ECP methods. In Europe, ECP products manufactured using open “offline” methods are subject to Advanced Therapeutic Medical Product (ATMP) regulations (5).

Nevertheless, it is widely accepted that a combination product’s primary mode of action (PMOA) is “the single mode of action expected to make the most significant contribution to the overall intended therapeutic effects of the combination” (2). In ECP, the PMOA relies on photosensitizers, comprised of drugs and irradiation systems, rather than the leukapheresis device. A few online and integrated systems for cellular collection, photoactivation, and infusion are available (e.g., THERAKOS® CELLEX®, both Therakos Inc., Mallinkrodt Pharmaceuticals) (4) that correspond to closed, “online” ECP methods. In Europe, ECP products manufactured using open “offline” methods are subject to Advanced Therapeutic Medical Product (ATMP) regulations (5).

Discussion

Irradiation devices for ECP

Photoactivation devices play pivotal roles in ECP PMOA. The UV-A irradiation dose (intensity and duration) and the plate film thickness can polarize to either the immunizing or tolerogenic effects exerted by ECP (6, 7). These dual capabilities are crucial for clinical conditions that can be treated with photopheresis: while enhanced immune responses are desirable in cancer scenarios (e.g., CTCL as the primary approved indication), ECP tolerizing effects are required in cases such as solid organ transplantation, GvHD, and autoimmune diseases.

Photosensitizer drugs for ECP: Capabilities beyond 8-MOP

Unfortunately, there is no consensus as to what in-process and pharmaceutical controls should be performed for ECP products; therefore, there is a critical need for harmonized quality-control assays, as stated and summarized as (5):

- Cellular composition of ECP products;
- Induction of apoptosis in lymphocytes;
- Monocyte polarization;
- Psoralen photoadducts;
- T cell suppression; and,
- Capacity for antigen cross-presentation.

Although many questions about PMOA of photosensitizers and ECP as a whole procedure remain inconclusive, the main advances in pharmacological development, manufacturing, quality controls, and preclinical and clinical uses, correspond to 8-MOP.

Like other psoralens, 8-MOP, upon UV-A photoactivation (wavelength: 315-400 nm), conjugates and forms covalent bonds with DNA that lead to monofunctional (addition to a single strand) and bifunctional (crosslinking of psoralen to both DNA strands) photoadducts. Lastly, it results in inhibition of DNA synthesis and cell division (4, 8). The apoptotic fate of extracorporeally exposed cells consists of the ECP PMOA generating antigen-specific immune and clinical responses, which are not described here (8).

Traditionally, the combined administration of psoralens (orally or topically) with UV-A (PUVA) has been widely used to manage psoriasis and CTCL patients. Eventually, non-8-MOP psoralens and other photosensitizer drugs, such as those used in photodynamic therapy (PDT), can be applied in ECP (9). Table 1 summarizes distinctive characteristics, preclinical, and clinical evidence of current and potential photosensitizers for ECP.

In 1996, Wolf et al. described the successful treatment of a patient with photoaccentuated erythroderma and idiopathic CD4 T lymphocytopenia using 5-methoxypsoralen (5-MOP)-PUVA, and ECP with 8-MOP concomitantly (10). However, there are no publications of ECP procedures delivered with 5-MOP or trioxsalen (trimethylpsoralen) to date.

In contrast, PDT photosensitizers, such as 5-aminolevulinic acid (5-ALA), have emerged in preclinical (11-14) and early phase clinical trials (9) as an alternative to the authorized 8-MOP for ECP.
Photosensitizer	ATC code	Chemical structure	Current indications	Required light (wavelength, nm)	ECP regulatory status	Preclinical (P) and clinical (C) evidence on ECP
Psoralens for systemic use						
8-methoxypsoralen (8-MOP, methoxsalen)	D05BA02	![Chemical structure](image)	- Psoriasis			
- Vitiligo
- CTCL (ECP) | UV-A (315-400) | - Marketing authorization (CTCL)
- Vast post-authorization experience (C)
- Ongoing clinical trials for new indications (e.g., NCT05168384, NCT05413005) (C) | |
| Trioxsalen (trimethylpsoralen, trisoralen) | D05BA01 | ![Chemical structure](image) | - Vitiligo (discontinued) | UV-A (315-400) | - Unknown or not reported
- Unknown or not reported | |
| 5-methoxypsoralen (5-MOP, bergapten) | D05BA03 | ![Chemical structure](image) | - Psoriasis
- Vitiligo
- CTCL | UV-A (315-400) | - Unknown or not reported
- (10) (C) * | |
| Sensitizer used in PDT § | | | | | | |
| 5-aminolevulinic acid (5-ALA) | L01XD04 | ![Chemical structure](image) | - Actinic keratosis
- Glioma (intraoperative optical imaging agent) | Visible light (400-635) | - Preclinical studies
- Early phase clinical trials | - (11) (P) **
- (12) (P)
- (13) (P)
- (14) (P)
- (9) (C)
- NCT04164849 (C) |

Electromagnetic spectrum of light applied for ECP

- 100 nm
- 200 nm
- 280 nm
- 315 nm
- 400 nm
- 780 nm

*Case report on concomitant use of 5-MOP (PUVA) and 8-MOP (ECP)
**In vitro administration of hexaminolevulinate, an ester of 5-ALA

§Other drugs in this group include: porfimer sodium, methyl aminolevulinate, temoporfin, efaproxiral, padeliporfin (unknown or not reported use for ECP)

ATC, Anatomical Therapeutic Chemical; CTCL, Cutaneous T-Cell Lymphoma; ECP, Extracorporeal Photopheresis; PDT, Photodynamic therapy; PUVA, Psoralen and UV-A; UV-A, Ultraviolet-A Light (Source: PubMed, PubChem, and ClinicalTrials.gov databases).
PDT typically involves systemic or topical administration of a lesion-localizing photosensitizer (e.g., 5-ALA) and its subsequent activation by visible light (400-780 nm, represented by blue and red arrowheads in the electromagnetic spectrum of Table 1), primarily resulting in a singlet oxygen-induced photodamage in the exposed cells (12, 14). Nevertheless, further preclinical research is needed to clarify ECP mechanisms of action, resulting in appropriate harmonized quality controls for these photosensitizers.

The alternative use of 5-ALA is supported by ex vivo investigations that show that this photosensitizer affects T-cells from chronic GvHD patients more selectively and efficiently than those treated with 8-MOP-ECP, through the formation of protoporphyrin IX. Consequently, reducing the number of ECP treatments can be achieved using 5-ALA (9). This finding occurs even with a UV-A light source resembling emission spectral wavelengths to those of the built-in certiﬁed UV-A commercial photopheresis systems (340-410 nm) (12, 14).

The clinical applications of novel photosensitizing drugs are limited based on the number of published clinical trials, procedures, and patients enrolled. For instance, the cited work of Christensen et al. reported 82 ECP treatments with 5-ALA in five chronic GvHD patients who responded poorly to 8-MOP-photopheresis after a minimum of three months of treatment. Although safety and tolerability were found to be adequate (9), no additional clinical evidence is yet available. Only another phase I/II clinical trial using 5-ALA-ECP has been registered on ClinicalTrials.gov (NCT04164849) for patients with active Crohn’s disease, as shown in Table 1. Still, more clinical studies are required to demonstrate differences in safety, efﬁcacy, and cost proﬁles compared to the approved 8-MOP.

Apoptosis induced by light: Are ECP-photosensitizers still needed?

Insulting agents that trigger “immediate” pre-programmed cell death (pre-PCD) apoptosis include PDT, UV-A1 (340-400 nm), and agents that generate singlet-oxygen damage to mitochondrial membranes (e.g., with 5-ALA). “Intermediate” apoptosis occurs to a signiﬁcant extent within 4 h, but requires more than 30 min, and high doses of either UV-B (290-320 nm) or UV-C (200-290 nm) radiation, and any agent that activates a membrane receptor containing a death domain, such as Fas/CD95/APO-1. “Delayed” apoptosis occurs well after 4 h (or days), and examples of agents that induce primarily delayed PCD apoptosis are UV-B, UV-C, X-rays, and any agent that causes signiﬁcant DNA damage (15).

However, different wavelength photons have been used to treat various diseases without the need for photosensitizing drugs, resulting in necrosis but also inducing cell apoptosis (desired PMOA of ECP), with consequent changes in the production of soluble mediators (cytokine proﬁles), modulation of the expression of cell-surface associated molecules, and damage in pathogenetically relevant cells (cytotoxicities) (15, 16). It has been demonstrated that in vitro UV-A1 and UV-B irradiation alone induced T cell apoptosis, which reduces inﬂammatory inﬁltrates in T cell-mediated skin diseases (16). Still, the chances to use other types of radiations to induce apoptosis extracorporeally require further photoimmunologic studies.

Conclusions

Additional developments in manufacturing and evaluating innovative ECP-photosensitizing drugs are rising needs that should accompany the development of photopheresis medical devices. Moreover, alternative non-pharmacological systems for in vitro photosensitization and apoptosis induction are strategies that should be further explored. Compliance with regulatory requirements derived from the emerging knowledge might extend the new indications for ECP, beneﬁting more patients and healthcare systems.

Author contributions

YMCA is the sole author and agrees to be accountable for the content of the work.

Acknowledgments

The author gratefully acknowledges Eng. Diana Patricia Hermida Vitar, MSc, for critical reading of the manuscript.

Conflict of interest

The author is an Investigator and Principal Investigator of two clinical trials examples of new indications of ECP using 8-MOP (NCT05168384 and NCT05413005, respectively; Table 1).

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their afﬁliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References

1. Edelson R, Berger C, Gasparro F, Jegasothy B, Heald P, Wintroub B, et al. Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy: preliminary results. N Engl J Med (1987) 316(6):297–303. doi: 10.1056/NEJM198702053160603

2. US Food and Drug Administration. Principles of premarket pathways for combination products (2022). Available at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/principles-premarket-pathways-combination-products (Accessed July 15, 2022).

3. European Medicines Agency. Guideline on quality documentation for medicinal products when used with a medical device (2021). Available at: https://www.ema.europa.eu/en/quality-documentation-medicinal-products-when-used-medical-device (Accessed July 15, 2022).

4. Drugs@FDA. FDA-Approved Drugs. UVADEX (2022). Available at: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm (Accessed July 15, 2022).

5. Ahrens N, Geissler EK, Witt V, Berneburg M, Wolff D, Hirt SW, et al. European Reflections on new indications for extracorporeal photopheresis in solid organ transplantation. Transplantation (2018) 102(8):1279–83. doi: 10.1097/TP.0000000000002244

6. Durazzo TS, Tigelaar RE, Filler R, Hayday A, Girardi M, Edelson RL. Induction of monocyte-to-dendritic cell maturation by extracorporeal photochemotherapy: initiation via direct platelet signaling. Transfusion apheresis science: Off J World Apheresis Association: Off J Eur Soc Haemapheresis (2014) 50(3):370–8. doi: 10.1016/j.transci.2013.11.008

7. Edelson R, Wu Y, Schneiderman J. American Council on ECP (ACE): Why now? J Clin apheresis (2018) 33(4):464–8. doi: 10.1002/jca.21627

8. Vieyra-Garcia PA, Wolf P. Extracorporeal photopheresis: A case of immunotherapy ahead of its time. Transfusion Med hemotherapy: offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie (2020) 47(3):226–35. doi: 10.1159/000509479

9. Christensen E, Foss OA, Quist-Paulsen P, Staur I, Pettersen F, Holien T, et al. Application of photodynamic therapy with 5-aminolevulinic acid to extracorporeal photopheresis in the treatment of patients with chronic graft-versus-Host disease: A first-in-Human study. Pharmaceutics (2021) 13(10):1558. doi: 10.3390/pharmaceutics13101558

10. Wolf P, Müllegger R, Cerroni L, Aigner R, Fueger G, Höfler G, et al. Photoaccentuated erythroderma associated with CD4+ T lymphocytopenia: successful treatment with 5-methoxypsoralen and UVA, interferon alfa-2b, and extracorporeal photopheresis. J Am Acad Dermatol (1996) 35(2 Pt 2):291–4. doi: 10.1016/s0190-9622(96)90621-9

11. Cunderliková B, Vasović V, Randeberg LL, Christensen E, Warloe T, Nesland JM, et al. Modification of extracorporeal photopheresis technology with porphyrin precursors. comparison between 8-methoxypsoralen and hexaminolevulinate in killing human T-cell lymphoma cell lines in vitro. Bischim Biophys Acta (2014) 1840(9):2702–8. doi: 10.1016/j.bbagenen. 2014.05.020

12. Wolf P, Geredaas OA, Darvekar SR, Christensen E, Peng Q, et al. Comparison between 8-methoxypsoralen and 5-aminolevulinic acid in killing T cells of photopheresis patients ex vivo. Lasers Surg Med (2018) 50(5):465–75. doi: 10.1002/lsm.22806

13. Sando Y, Matsuoka KI, Sumii Y, Kondo T, Ikegawa S, Sugiuara H, et al. 5-aminolevulinic acid-mediated photodynamic therapy can target aggressive adult T cell leukemia/lymphoma resistant to conventional chemotherapy. Sci Rep (2020) 10(1):17237. doi: 10.1038/s41598-020-74174-x

14. Darvekar S, Juzenas P, Oksvold M, Kleinauskas A, Holien T, Christensen E, et al. Selective killing of activated T cells by 5-aminolevulinic acid mediated photodynamic effect: Potential improvement of extracorporeal photopheresis. Cancers (2020) 12(2):377. doi: 10.3390/cancers12020377

15. Godar DE. Light and death: photons and apoptosis. J Invest Dermatol Symposium Proc (1999) 4(1):17–23. doi: 10.3389/fj.dsp.5640175

16. Krutmann J, Morita A. Mechanisms of ultraviolet (UV) b and UVA phototherapy. J Invest Dermatol Symposium Proc (1999) 4(1):70–2. doi: 10.3389/fj.dsp.5640185