Screening of the I_{to} regulatory subunit Klf15 in patients with early-onset lone atrial fibrillation

Morten Wagner Nielsen 1,2, Morten Salling Olesen 1,2, Lena Refsgaard 1,2, Stig Haunso 1,2,3 and Jesper Hastrup Svendsen 1,2,3

INTRODUCTION

Several studies have associated mutations in genes encoding potassium channels and accessory subunits involved in cardiac repolarization with susceptibility of atrial fibrillation (AF). The majority of mutations identified display a gain-of-function consequence on potassium currents and this, by shortening the cardiac action potential, function as a substrate for re-entry wavelets in the atria and thereby susceptibility to AF (Nattel, 2002). Gain-of-function mutations in KCNQ1 which encodes the α-subunit of I_{Ks} (Chen et al., 2003; Hong et al., 2005; Otway et al., 2007; Das et al., 2009; Abraham et al., 2010; Bartos et al., 2011, 2013), in KCNH2 encoding the β-subunits/regulatory units of I_{Ks}/I_{to} (Yang et al., 2009; Pilsbry et al., 2010; Chung et al., 2011), in KCNJ8 encoding Kir2.1 and Kir6.1 respectively, in KCNA5 encoding Kv1.5 and in ABCC9 encoding K_{ATP} channel (Xia et al., 2005; Olson et al., 2007; Yang et al., 2009; Christophersen et al., 2012; Delaney et al., 2012; Mann et al., 2012). In a recent Nature paper by Jeyaraj et al. (2012) the Krüppel-like factor 15 (Klf15) was found to transcriptionally control rhythmic expression of KChIP2, a critical subunit required for generating the transient outward potassium current (I_{to}), and that deficiency or excess of Klf15 increased the susceptibility of arrhythmias. On this basis we hypothesized that mutations in Klf15 could be associated with AF. A total of 209 unrelated Caucasian lone AF patients were screened for mutations in Klf15 by direct sequencing. No mutations in the lone AF cohort were found. In one patient we found a synonymous variant (c.36C>T). In NHLBI GO Exome Sequencing Project (ESP) the variant was present in 31 of 4269 Caucasian individuals and in 3 of 2200 African Americans. In our cohort Klf15 was not associated with lone AF.

Keywords: lone AF, Klf15, ESP, genetics, mutation

MATERIALS AND METHODS

A total of 209 patients were included from eight hospitals in the Copenhagen region of Denmark. Patient records from all in and outpatient activity in the past 10 years with the diagnosis AF were identified and read. Only lone AF patients were included in this study. ECG and clinical information was collected in order to reduce the possibility of undiagnosed heart disease. All patients were Caucasian. The study was approved by the local ethics committee (KF 01313322) and conformed to the principles outlined in the Declaration of Helsinki. Written informed consent was obtained from all patients. Gene analyses were performed using fluorescence-based real-time PCR (ABI PRISM 7900 Sequence Detection System, Applied Biosystems, CA, USA). Primers are available on request.

RESULTS

Clinical characteristics of the AF cohort who fulfilled the inclusion criteria are listed in Table 1. We found no mutations in Klf15 in our AF cohort. In one patient we found a synonymous variant c.36C>T. In NHLBI GO Exome Sequencing Project (ESP) the variant was present in 31 of 4269 Caucasian individuals and in 3 of 2200 African Americans (Andreasen et al., 2013; Exome Variant Server, 2013).

DISCUSSION

This is the first study to examine the genetic variation in Klf15 in a lone AF cohort. Klf15 encodes the Krüppel-like factor 15 and have...
Table 1 | Clinical characteristics of the lone AF population (n = 209).

Characteristic	Value (Mean ± SD)
Median age of onset, years	51 (46–57)
Male gender, %	82
Height, cm	173 ± 7
Weight, kg	89 ± 17
BMI, kg/m²	26.7 ± 4.6
Blood pressure, mmHg	131 ± 13
Systolic	78 ± 9
Heart rate, beats/min	69 ± 20
Family history of AF	35%
First degree relatives with AF	31%

All numbers are reported as mean ± standard deviation unless otherwise noted. IQR, interquartile range.

REFERENCES

Abraham, R. L., Yang, T., Blair, M., Roden, D. M., and Darbar, D. (2010). Augmented potassium current is a shared phenotype for two genetic defects associated with familial atrial fibrillation. J. Mol. Cell. Cardiol. 48, 181–190.

Andreasen, C., Nielsen, J. B., Refsgaard, L., Holst, A. G., Christensen, A. H., Andreasen, L., et al. (2013). New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants. Eur. J. Hum. Genet. doi:10.1038/ejhg.2012.283

Bartos, D. C., Anderson, J. B., Bastiaensen, R., Johnson, J. N., Gollob, M. H., Tester, D. L., et al. (2013). A KCNQ1 mutation causes a high penetrance for familial atrial fibrillation. J. Cardiovasc. Electrophysiol. 24, 562–569.

Bartos, D. C., Duchateau, S., Burgess, D. E., Klug, D., Denjoy, I., Peat, R., et al. (2011). R231C mutation in KCNQ1 causes long QT syndrome type 1 and familial atrial fibrillation. Heart Rhythm 8, 48–55.

Chen, Y.-H., Xu, S.-J., Bendahhou, S., Wang, X.-L., Wang, Y., Xu, W.-Y., et al. (2003). KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299, 251–254.

Christophersen, I. E., Olesen, M. S., Liang, B., Andersen, M. N., Larsen, A. P., Nielsen, J. B., et al. (2012). Genetic variation in KCNAs: impact on the atrial-specific potassium current I(Kur) in patients with lone atrial fibrillation. Eur. Heart J. doi:10.1093/eurheartj/ehs442

Das, S., Makino, S., Melman, Y. F., Shea, M. A., Goyal, S. B., Rosenzweig, A., et al. (2009). Mutation in the S3 segment of KCNQ1 results in familial lone atrial fibrillation. Heart Rhythm 6, 1146–1153.

Delaney, J. T., Muhammad, R., Blair, M. A., Kor, F., Fish, F. A., Roden, D. M., et al. (2012). A KCNJB1 mutation associated with early repolarization and atrial fibrillation. Europace 14, 1428–1432.

Exome Variant Server. (2013). NHBLI GO Exome Sequencing Project (ESP). Seattle, WA. Available at: http://evs.gs.washington.edu/EVS/ [accessed February 1, 2013].

Hong, K., Piper, D. R., Diaz-Valdecantos, A., Brugada, J., Oliva, A., Burashnikov, E., et al. (2005). De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc. Res. 68, 433–440.

Jeyaraj, D., Haldar, S. M., Wan, X., Maegawa, M. D., Ripperger, J. A., Hu, K., et al. (2012). Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483, 96–99.

Kuo, H.-C., Cheng, C.-F., Clark, R. B., Lin, J. J., Lin, J. L., Hoshijima, M., et al. (2001). A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell 107, 801–813.

Lundby, A., Lasse, S. R., Svendsen, J. H., Hauns, S., Olesen, S.-P., and Schmitt, N. (2008). KCN3 mutation V17M identified in a patient with lone atrial fibrillation. Cell. Physiol. Biochem. 21, 47–54.

Mann, S. A., Otway, R., Guo, G., Soka, M., Karlsdottir, L., Trivedi, G., et al. (2012). Epistatic effects of potassium channel variation on cardiac repolarization and atrial fibrillation risk. J. Am. Coll. Cardiol. 59, 1017–1025.

Nattel, S. (2002). New ideas about atrial fibrillation. Heart Rhythm 1, 1017–1025.

Olesen, M. S., Bentzen, B. H., Nielsen, J. B., Steffensen, A. B., David, J. P., Jabbari, J., et al. (2012). Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation. BMC Med. Genet. 13:24.

Olesen, M. S., Refsgaard, L., Holst, A. G., Larsen, A. P., Grubbs, S., Haunsø, S., et al. (2013). A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovasc. Res. doi:10.1093/cvr/cvr028

Olson, T.M., Alekseev, A.E., Moreau, C., Liu, X. K., Zingman, L. V., Miki, T., et al. (2007). KATP channel mutation confers risk for vein of Marshadrenergic atrial fibrillation. Nat. Clin. Pract. Cardiovasc. Med. 4, 110–116.

Otway, R., Vandenberg, J. L., Guo, G., Varghese, A., Castro, M. L., Liu, J., et al. (2007). Stretch-sensitive KCNQ1 mutation and atrial fibrillation. Cardiovasc. Res. doi:10.1093/cvr/cvl028

Yang, Y., Li, L., Lin, X., Yang, H., Hong, K., Wang, L., et al. (2009). Novel KCNA5 loss-of-function mutations responsible for atrial fibrillation. J. Hum. Genet. 54, 277–283.

Yang, Y., Xia, M., Jin, Q., Bendahhou, S., Shi, J., Chen, Y., et al. (2004). Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am. J. Hum. Genet. 75, 899–905.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 08 March 2013; accepted: 28 April 2013; published online: 17 May 2013.

Citation: Nielsen MW, Olesen MS, Refsgaard L, Haunsø S and Svendsen JH (2013) Screening of the I(to) regulatory sub-unit KJ15 in patients with early-onset lone atrial fibrillation. Front. Genet. 4:88. doi: 10.3389/fgene.2013.00088

This article was submitted to Frontiers in Epigenomics and Epigenetics, a specialty of Frontiers in Genetics.

Copyrigh © 2013 Nielsen, Olesen, Refsgaard, Haunsø and Svendsen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.