Abstract. Background/Aim: Vascular endothelial growth factor (VEGF) provides tolerance against ischemic brain injury, yet, the pattern of VEGF expression in the neurogenic zones following chronic cerebral hypoperfusion has not been studied. Here we evaluated the immunoreactivity of VEGF in a rat model of chronic cerebral hypoperfusion. Materials and Methods: Chronic hypoperfusion was induced by bilateral common carotid artery ligation in rats. Immunohistochemistry was performed against hypoxia-inducible factor-1α (HIF-1α) and VEGF on brain sections. Results: The density of HIF1α-positive cells in the hypoxia group was increased in the cerebral cortex and hippocampus. Further, the density of VEGF-positive cells was significantly higher in the hypoxia group compared to the control group in the cerebral cortex whereas it was similar in the subventricular zone, and in the dentate gyrus in the hippocampus between the two groups. Conclusion: The pattern of VEGF expression varies in different brain regions following chronic cerebral hypoperfusion.

Abnormal cerebral circulation contributes to numerous neurological and psychiatric disorders. For example, disruption of the blood supply in a particular brain region can cause ischemic stroke and induce neuronal cell dysfunction, resulting in sudden neurological deficits (1). Moreover, chronic regional cerebral hypoperfusion may compromise the memory process. In particular, hypoperfusion in the temporal and parietal cortex has been related with Alzheimer’s disease (AD) (2). Furthermore, global cerebral hypoperfusion can lead to a poor neurologic outcome in patients with heart issues, such as cardiac arrest or following complex cardiac surgery (3). Understanding the effect of cerebral hypoperfusion in cognitive dysfunction and dementia is important for the development of effective therapies. For this purpose, a number of animal models, such as the bilateral common carotid artery occlusion (BCCAO) model, have been introduced.

Angiogenesis describes the complex process of new blood vessel formation that implicates a number of vascular regulating factors (4). Chronic hypoperfusion triggers the repair brain capillary density via the hypoxia-inducible factor-1 (HIF-1) (5). In addition, the expression of angiopoietin-2 has been demonstrated to be up-regulated in sites of vascular remodeling following ischemic injury (6), whereas vascular endothelial growth factor (VEGF) induces angiogenesis by interacting with other angiogenesis-related factors (7). Interestingly, rats following bilateral common carotid artery occlusion (BCCAO) activate angiogenic processes in the CA1 region of the hippocampus by up-regulating VEGF expression (8). VEGF triggers angiogenesis and, in particular, VEGF-A a major regulator, member of the VEGF family, plays a critical role during brain development and disease by binding to VEGF receptor-2 (VEGFR-2) and stimulating angiogenesis (9, 10).

Ischemic stress has been shown to have a controversial effect on neuronal cells, either a harmful or a protective one (11). Many investigators have demonstrated the existence of protective mechanisms, referred to as ischemic preconditioning (12, 13). It has also been reported that certain transcription factors and growth factors, such as VEGF, provide tolerance against ischemic injury in the brain (14).
15). On the other hand, rodents with induced hypoxia present with neuronal loss and brain-derived neurotrophic factor (BCNF) down-regulation in the neurogenic zones, including the cortex, the subventricular zone and the dentate gyrus of the hippocampus (16-18). However, the pattern of VEGF immunoreactivity in the neurogenic zones following chronic cerebral hypoperfusion has not been investigated. Therefore, in the present study we sought to scrutinize the expression of VEGF in the neurogenic zones in a rat model of chronic cerebral hypoperfusion.

Materials and Methods

Animal surgery. All animal procedures were performed according to the guidelines of the Chosun University Institutional Animal Care and Use Committee (approval no. CIACU2019-S0008). Sprague-Dawley rats were supplied by a certified breeder (Damul Laboratory animals, Daejeon, Republic of Korea). The rats were fed ad libitum and housed in a controlled environment. Six to seven-week-old male rats were anesthetized by inhalation of sevoflurane (1.0-2.0%, end-tidal concentration) and chronic hypoperfusion was induced by bilateral common carotid artery ligation, as described in previous studies (19, 20). Briefly, a midline incision was performed in the neck and both common carotid arteries were exposed and separated from the sheath and vagus nerve. Both arteries were permanently ligated using 4-0 silk sutures. Following the BCCAO surgery, the rats were housed separately and recovered in an aseptic room.

Tissue preparation. Three days following the BCCAO procedure, the rats were euthanized by cardiac perfusion fixation with 4% paraformaldehyde. The brain hemispheres were separated from the cerebellum and brain stem and were post-fixed in the same fixative. After 3 days, the specimens were washed for 16 hours with tap water and were subjected to dehydration by immersion in a series of ethanol solutions of incrementing concentrations. Subsequently, the brains were embedded in paraffin. Serial coronal sections of 6-μm thickness were collected on gelatin-coated slides (Fisher Scientific, Hampton, NH, USA).

Immunohistochemistry. The slides were deparaffinized and washed with 0.1 M phosphate buffered saline (PBS, pH 7.4). An antigen-retrieval step was performed by heating the slides in 0.01 M sodium citrate buffer (pH 6.0) in a microwave oven and cooling them down for 1 hour. The deparaffinized slides were subjected to an endogenous peroxidase blocking process using 0.3% hydrogen peroxide solution for 20 min. They were then incubated with one of the following primary antibodies for 16 hours at 4˚C: i) rabbit anti-HIF1α (1:500, Abcam, Cambridge, UK) and ii) mouse monoclonal anti-VEGF (1:50, Santa Cruz Biotechnology, TX, USA). On the next day, the slides were washed in PBS several times and treated with the appropriate secondary antibodies which were the contents of VECTASTAIN® ABC HRP Kit (Vector Laboratories, Burlingame, CA, USA). The immunoreactivity was visualized using the avidin-biotin-peroxidase detection system (Vectastain ABC Elite Kit, Vector Laboratories) and the chromogen 3,3’-diaminobenzidine. Counterstaining was performed using thionin solution and the samples were mounted using the PolyMount mounting medium (Polysciences, Warrington, PA, USA).

Quantification. Immunopositive cells were observed using a light microscope (Olympus BX41, USA) connected to a digital CCD camera. Three investigators measured the densities of HIF1α- and VEGF-positive cells (cells/mm²) using the Image-Pro Plus 7.0 image analysis software (Media Cybernetics Inc., Rockville, MD, USA). The density of positive cells was quantified within 5 randomly chosen fields, as described in a previous study (17, 21). BCCAO rats were defined as the hypoxia group (n=12) whereas not operated rats were defined as the control group (n=12).

Statistical analysis. The measurements collected from the hypoxic and control groups were compared using the Student’s t-test in the Statistical Package for Social Sciences (Information Analysis Systems, SPSS, USA). The level of statistical significance was set at p<0.05.

Results

HIF1α expression. The density of HIF1α-positive cells in the cerebral cortex increased in the hypoxia group as compared to the control group (Figure 1). Similarly, in the hippocampus the density of the HIF1α-positive cells was higher in the hypoxia group compared to the control group (Figure 2).

VEGF expression. VEGF was strongly expressed in neurons of the cortex and the hippocampus whereas its expression was weaker in the subventricular zone. Notably, in the cerebral cortex, the density of VEGF-positive cells was significantly higher in the hypoxia group compared to the control group (Figure 3). However, the density of VEGF-positive cells was not significantly different in the subventricular zone between the hypoxia and control groups (Figure 4). In a similar manner, in the hippocampus and specifically in the granular (Figure 5) and subgranular (Figure 6) zones of the dentate gyrus, the densities of VEGF-positive cells did not differ significantly between the control and hypoxia groups.

Discussion

Chronic hypoperfusion induced by BCCAO can lead to white matter and neuronal damage and may result to memory impairment (22, 23). In a previous study it was demonstrated that local cerebral blood flow can decrease to 33-58% of control levels in the cortex, only 2 days following BCCAO (24). To normalize the cerebral blood flow, compensatory mechanisms take part. In particular, angiogenic factors are activated to generate new microcapillaries (25), while vascular remodeling and arteriogenesis are also turned on (26).

Here, we evaluated the expression of HIF1α and VEGF in 4 brain regions: i) the subventricular zone, ii) the cerebral cortex, iii) the subgranular and iv) the granular zone of the dentate gyrus in the hippocampus. The subventricular and subgranular zones are well-known niches of neurogenesis. Under hypoxic conditions, neurogenesis has also been observed in the cerebral cortex (27). The progenitor cells of
Figure 1. Representative photomicrographs (A) and density (B) of HIF1α expression in the cerebral parietal cortex. Positive cells are stained dark brown. HIF1α-positive cells in the hypoxia group were more compared to the control group. Scale bars=100 μm; *p<0.005. HIF1α: Hypoxia-inducible factor-1α.

Figure 2. Representative photomicrographs (A) and density (B) of HIF1α expression in the hippocampus. HIF1α-positive cells in the hypoxia group were more in density than in the control group. Scale bars=100 μm; *p<0.005. HIF1α: Hypoxia-inducible factor-1α.

Figure 3. Representative photomicrographs (A) and density (B) of VEGF expression in the cerebral parietal cortex. Positive cells are stained brown. VEGF-positive cells in the hypoxia group were increased as compared with the control group. Scale bars=100 μm; *p<0.005. VEGF: Vascular endothelial growth factor.
Figure 4. Representative photomicrographs (A) and density (B) of VEGF expression in the subventricular zone. The density of VEGF-positive cells did not differ between the hypoxia and control groups. Scale bars=100 μm. VEGF: Vascular endothelial growth factor.

Figure 5. Representative photomicrographs (A) and density (B) of VEGF expression in the dentate gyrus. VEGF is expressed in neurons. VEGF-positive cells in the hypoxia group are similar in number with those in the control group. Scale bars=100 μm. VEGF: Vascular endothelial growth factor.

Figure 6. Representative photomicrographs (A) and density (B) of VEGF expression in the subgranular zone. VEGF-positive cells were rarely detected. The density of VEGF-positive cells has no difference between the hypoxia and control groups. Scale bars=100 μm. VEGF: Vascular endothelial growth factor.
the subgranular zone proliferate and migrate into the granular layer of the dentate gyrus (28).

We found that the density of HIF1α-positive cells increased in the cerebral cortex and hippocampus under hypoxia. HIFs are heterodimers having an oxygen-sensitive HIF-1/2α subunit (29) and could bind with hypoxia-responsive enhancers (30). HIF1α has been previously found to be strongly expressed under hypoxia-ischemia conditions (31). These findings support that the increase observed in the density of HIF1α-positive cells is associated with the hypoxic state in the BCCAO group.

Furthermore, we observed an increased density of VEGF-positive cells in the cerebral cortex of the hypoxic group. It has been demonstrated that angiogenic factors promote neovascularization to adapt under conditions of decreased oxygen balance (32). Among these factors, VEGF is the most effective regulator of endothelial cell growth and differentiation (33), and thus the best regulator of vascular permeability (34). Marosi et al., have shown that cerebral blood flow falls dramatically within 2-3 days following BCCAO, generating hypoxic-ischemic conditions (35), while elsewhere it has been reported that neuronal damage reached a high peak in the cortex 1-3 days following BCCAO (36). Considering a role of VEGF under hypoxic conditions, the up-regulation of its expression 3 days following BCCAO is likely a neuroprotective response.

Our study showed that the density of VEGF-positive cells in the dentate gyrus of the hippocampus was not different between the control and hypoxic groups. Similarly, Kim Min-Soo et al., have shown that VEGF expression in the hippocampal CA1 region 1 week following BCCAO did not differ from that of not operated control rats, although at 4 weeks it was significantly increased (25). Moreover, in the adult hippocampus, VEGF upregulation leads to sufficient neural stem cell microenvironment for neurogenesis (37). Our study captured differences between the cortex and the hippocampus which may possibly be attributed to the fact that the brain vascularization pattern has been described as “outside in” unlike other organs, such as the kidney and liver (38). Moreover, regions supplied by the cortical network are vulnerable to the reduction of cerebral blood flow (39).

Chronic cerebral hypoperfusion was induced by BCCAO. We confirmed hypoxia status with HIF1α expression. We evaluated the expression of VEGF which has neuroprotective effect in neurogenic zones and the expression was different between cortex and hippocampus following BCCAO. Based on our results, we suggest that the VEGF expression pattern is different between neurogenesis zones in the cortex and hippocampus following chronic cerebral hypoperfusion induced by BCCAO.

Conflicts of Interest

The Authors declare that they have no competing interests.

Authors’ Contributions

KMS designed the study. YHJ and DJK participated in the surgical procedures. GSJ, HKS and MSC analyzed the obtained data. YYC and STK performed the immunohistochemistry. All Authors read and approved the final manuscript.

Acknowledgements

This study was supported by research funds from Chosun University (2013).

References

1 El Amki M and Wegener S: Improving Cerebral Blood Flow after Arterial Recanalization: A Novel Therapeutic Strategy in Stroke. Int J Mol Sci 18(12): pii: E2669, 2017. PMID: 29232823. DOI: 10.3390/ijms18122669
2 Daulatzi MA: Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J Neurosci Res 95(4): 943-972, 2017. PMID: 27350397. DOI: 10.1002/jnr.23777
3 Janata A, Wehs W, Schratter A, Bayegan K, Holzer M, Fossard M, Sipos W, Springer G, Schmidt P, Sterz F, Losert UM, Lagner AN, Kochanek PM and Behringer W: Cold aortic flush and chest compressions enable good neurologic outcome after 15 mins of ventricular fibrillation in cardiac arrest in pigs. Crit Care Med 38(8): 1637-1643, 2010. PMID: 20543671. DOI: 10.1097/CCM.0b013e3181e7889a
4 Benderro GF, Sun X, Kuang Y and Lamanna JC: Decreased vegf expression and microvascular density, but increased hif-1 and 2alpha accumulation and epo expression in chronic moderate hypoxia in the mouse brain. Brain Res 1471: 46-55, 2012. PMID: 22820296. DOI: 10.1016/j.brainres.2012.06.055
5 Benderro GF, Tshipis CP, Sun X, Kuang Y and LaManna JC: Increased hif-1alpha and hif-2alpha accumulation, but decreased microvascular density, in chronic hyperoxia and hypercapnia in the mouse cerebral cortex. Adv Exp Med Biol 789: 29-35, 2013. PMID: 23852473. DOI: 10.1007/978-1-4614-7411-1_5
6 Simon MP, Tournaire R and Pouysségur J: The angiopeptin-2 gene of endothelial cells is up-regulated in hypoxia by a hif binding site located in its first intron and by the central factors gata-2 and ets-1. J Cell Physiol 217(3): 809-818, 2008. PMID: 18720385. DOI: 10.1002/jcp.21558
7 Etoh T, Inoue H, Tanaka S, Barnard GF, Kitano S and Mori M: Angiopeptin-2 is related to tumor angiogenesis in gastric carcinoma: Possible in vivo regulation via induction of proteases. Cancer Res 61(5): 2145-2153, 2001. PMID: 11280779.
8 Tang H, Zhang W, Zhu Y, Zhang X and Wang R: Estrogen decreases vascular damage induced by chronic hypoperfusion through upregulating vegf expression. Nan Fang Yi Ke Da Xue Xue Bao 35(11): 1552-1556, 2015. PMID: 26607074.
9 Ferrara: Vegf-a: A critical regulator of blood vessel growth. Eur Cytokine Netw 20(4): 158-163, 2009. PMID: 20167554. DOI: 10.1684/ecn.2009.0170
10 Shibuya M: Brain angiogenesis in developmental and pathological processes: Therapeutic aspects of vascular endothelial growth factor. Feds J 276(17): 4636-4643, 2009. PMID: 19664071. DOI: 10.1111/j.1742-4658.2009.07175.x

11 Dimagli U, Simon RP and Hallenbeck JM: Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26(5): 248-254, 2003. PMID: 12744841. DOI: 10.1016/S0166-2236(03)00071-7

12 Thompson JW, Dave KR, Saul I, Narayanan SV and Perez-Pinzon MA: Epsilon pkc increases brain mitochondrial sirt1 protein levels via heat shock protein 90 following ischemic preconditioning in rats. PLoS One 8(9): e75753, 2013. PMID: 24058702. DOI: 10.1371/journal.pone.0075753

13 Thompson JW, Narayanan SV, Koronowski KB, Morris-Blanco K, Dave KR and Perez-Pinzon MA: Signaling pathways leading to ischemic mitochondrial neuroprotection. J Bioenerg Biomembr 47(1-2): 101-110, 2015. PMID: 25262285. DOI: 10.1007/s10863-014-9574-8

14 Thushara Vijayakumar N, Sangwan A, Sharma B, Majid A and Rajanikant GK: Cerebral ischemic preconditioning: The road so far. Mol Neurobiol 53(4): 2579-2593, 2016. PMID: 26801149. DOI: 10.1007/s12035-015-9278

15 Yang Q, Guo M, Wang X, Zhao Y, Zhao Q, Ding H, Dong Q and Cui M: Ischemic preconditioning with a ketogenic diet improves brain ischemic tolerance through increased extracellular adenosine levels and hypoxia-inducible factors. Brain Res 1667: 11-18, 2017. PMID: 28427869. DOI: 10.1016/j.brainres.2017.04.010

16 Chung Y, So K, Kim E, Kim S and Jeon Y: Immunoreactivity of neurogenic factor in the guinea pig brain after prenatal hypoxia. Ann Anat 200: 66-72, 2015. PMID: 25794637. DOI: 10.1016/j.aanat.2015.02.003

17 Wang H, Chung Y, Yu SK and Jun Y: The immunoreactivity of pi3k/akt pathway after prenatal hypoxic damage. In Vivo 31(5): 855-860, 2017. PMID: 28882951.

18 So K, Chung Y, Yu SK and Jun Y: Regional immunoreactivity of pax6 in the neurogenic zone after chronic prenatal hypoxia. In Vivo 31(6): 1125-1129, 2017. PMID: 29102934. DOI: 10.21873/invivo.11178

19 Hu M, Liu Z, Lv P, Wang H, Zhu Y, Qi Q and Xu J: Autophagy and akt/creb signaling play an important role in the neuroprotective effect of nimodipine in a rat model of vascular dementia. Behav Brain Res 325(Pt A): 79-86, 2017. PMID: 27923588. DOI: 10.1016/j.bbr.2016.11.053

20 Gong X, Ma M, Fan X, Li M, Liu Q, Liu X and Xu G: Down-regulation of igf-1/igf-1r in hippocampus of rats with vascular dementia. Neurosci Lett 513(1): 20-24, 2012. PMID: 22342912. DOI: 10.1016/j.neulet.2012.01.077

21 Tolcos M, Markwick R, O’Dowd R, Martin V, Turnley A and Rees S: Intraterane growth restriction: Effects on neural precursor cell proliferation and angiogenesis in the foetal subventricular zone. Dev Neurosci 37(4-5): 453-463, 2015. PMID: 25720426. DOI: 10.1159/0003731344

22 Lee JM, Baek SS, Kim TW, Park HS, Park SS, Park JM, Kim YJ, Lee HS and Shin MS: Preischemic treadmill exercise improves short-term memory by inhibiting hypoperfusion-induced disruption of blood-brain barrier after bilateral common carotid arteries occlusion. J Exerc Rehabil 15(3): 370-376, 2019. PMID: 3136928. DOI: 10.12965/jer.1938274.137

23 Farkas E, Luiten PG and Bari F: Permanent, bilateral common carotid artery occlusion in the rat: A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 54(1): 162-180, 2007. PMID: 17296232. DOI: 10.1016/j.brainresrev.2007.01.003

24 Otori T, Katsumata T, Muramatsu H, Kashiwagi F, Katayama Y and Terashi A: Long-term measurement of cerebral blood flow and metabolism in a rat chronic hypoperfusion model. Clin Exp Pharmacol Physiol 30(4): 266-272, 2003. PMID: 12680845. DOI: 10.1046/j.1440-1681.2003.03825.x

25 Kim MS, Choi BR, Lee YW, Kim DH, Han YS, Jeon WK and Han JS: Chronic cerebral hypoperfusion induces alterations of matrix metalloproteinase-9 and angiopoietin-2 levels in the rat hippocampus. Exp Neurobiol 27(4): 299-308, 2018. PMID: 30181692. DOI: 10.5607/en.2018.27.4.299

26 Jing Z, Shi C, Zhu L, Xiang Y, Chen P, Xiong Z, Li W, Ruan Y and Huang L: Chronic cerebral hypoperfusion induces vascular plasticity and hemodynamics but also neuronal degeneration and cognitive impairment. J Cereb Blood Flow Metab 35(8): 1249-1259, 2015. PMID: 25853908. DOI: 10.1038/jcbfm.2015.55

27 Chung Y, Cho H, Jo GH and Jun Y: Hypoxia of rats subjected to carotid artery ligation results in impaired neurogenesis and reduced number of cortical neurons. In Vivo 33(2): 441-445, 2019. PMID: 30804123. DOI: 10.21873/invivo.11492

28 Stanfield BB and Trice JE: Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res 72(2): 399-406, 1988. PMID: 2465172. DOI: 10.1007/bf00250261

29 Semenza GL: Hypoxia-inducible factors in physiology and medicine. Cell 148(3): 399-408, 2012. PMID: 22304911. DOI: 10.1016/j.cell.2012.01.021

30 Chiu DK, Tse AP, Xu IM, Di Cui J, Lai RK, Li LL, Koh HY, Tsang FH, Wei LL, Wong CM, Ng IO and Wong CC: Hypoxia inducible factor hif-1 promotes myeloid-derived suppressor cells accumulation through entpd2/cd39l1 in hepatocellular carcinoma. Nat Commun 8(1): 517, 2017. PMID: 28894087. DOI: 10.1038/s41467-017-00530-7

31 Li QF, Wang XR, Yang YW and Lin H: Hypoxia upregulates hypoxia inducible factor (hif)-alpha expression in epithelial cells: Characterization and comparison with hif-lalpha. Cell Res 16(6): 548-558, 2006. PMID: 16775626. DOI: 10.1038/sj.cr.7310072

32 Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E and Risau W: Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156(3): 965-976, 2000. PMID: 10702412. DOI: 10.1016/S0002-9440(10)64964-4

33 Schmeisser A and Daniel WG: Therapeutic neuroangiogenesis. Z. Kardiol 88(4): 241-244, 1999. PMID: 10408027.

34 Wojdasiewicz P, Waja A, Haladysj E, Romanowska-Prochnicka K, Felis-Giemenza A, Nalez-Jank J, Walczyk M, Olesinska M, Tarnacka B and Paradowska-Gorycka A: Il-35, tnf-alpha, baff, and vegf serum levels in patients with different rheumatic diseases. Reumatologia 57(3): 145-150, 2019. PMID: 31462829. DOI: 10.5114/reum.2019.86424

35 Marosi M, Rakos G, Robotka H, Nemeth H, Sas K, Kis Z, Farkas T, Lur G, Vecsei L and Toldi J: Hippocampal (ca1) activities in wistar rats from different vendors. Fundamental differences in acute ischemia. J Neurosci Methods 156(1-2): 231-235, 2006. PMID: 16621009. DOI: 10.1016/j.jneumeth.2006.03.010
36 Wang X, Lin F, Gao Y and Lei H: Bilateral common carotid artery occlusion induced brain lesions in rats: A longitudinal diffusion tensor imaging study. Magn Reson Imaging 33(5): 551-558, 2015. PMID: 25708261. DOI: 10.1016/j.mri.2015.02.010

37 Licht T, Rothe G, Kreisel T, Wolf B, Benny O, Rooney AG, Ffrench-Constant C, Enikolopov G and Keshet E: Vegf preconditioning leads to stem cell remodeling and attenuates age-related decay of adult hippocampal neurogenesis. Proc Natl Acad Sci USA 113(48): E7828-e7836, 2016. PMID: 27849577. DOI: 10.1073/pnas.1609592113

38 Iadecola C: The pathobiology of vascular dementia. Neuron 80(4): 844-866, 2013. PMID: 24267647. DOI: 10.1016/j.neuron.2013.10.008

39 Brown WR and Thore CR: Review: Cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol 37(1): 56-74, 2011. PMID: 20946471. DOI: 10.1111/j.1365-2990.2010.01139.x

Received September 18, 2019
Revised October 2, 2019
Accepted October 15, 2019