Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Molecular epidemiology of pathogenic *Leptospira* spp. in the straw-colored fruit bat (*Eidolon helvum*) migrating to Zambia from the Democratic Republic of Congo

Hirohito Ogawa, Nobuo Koizumi, Aiko Ohnuma, Alishake Mutemwa, Bernard M. Hang’ombe, Aaron S. Mweene, Ayato Takada, Chihiro Sugimoto, Yasuhiro Suzuki, Hiroshi Kida, Hirofumi Sawa

A B S T R A C T

The role played by bats as a potential source of transmission of *Leptospira* spp. to humans is poorly understood, despite various pathogenic *Leptospira* spp. being identified in these mammals. Here, we investigated the prevalence and diversity of pathogenic *Leptospira* spp. that infect the straw-colored fruit bat (*Eidolon helvum*). We captured this bat species, which is widely distributed in Africa, in Zambia during 2008–2013. We detected the flagellin B gene (*flaB*) from pathogenic *Leptospira* spp. in kidney samples from 79 of 529 *E. helvum* (14.9%) bats. Phylogenetic analysis of 70 *flaB* fragments amplified from *E. helvum* samples and previously reported sequences, revealed that 12 of the fragments grouped with *Leptospira borgpetersenii* and *Leptospira kirschneri*; however, the remaining 58 *flaB* fragments appeared not to be associated with any reported species. Additionally, the 16S ribosomal RNA gene (*rrs*) amplified from 27 randomly chosen *flaB*-positive samples was compared with previously reported sequences, including bat-derived *Leptospira* spp. All 27 *rrs* fragments clustered into a pathogenic group. Eight fragments were located in unique branches, the other 19 fragments were closely related to *Leptospira* bat-derived *rrs* sequences in bats are genetically related to each other without regional variation, suggesting that *Leptospira* are evolutionarily well-adapted to bats and have uniquely evolved in the bat population. Our study indicates that pathogenic *Leptospira* spp. in *E. helvum* in Zambia have unique genotypes.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Leptospirosis is an important reemerging zoonotic disease caused by pathogenic spirochetes of the genus *Leptospira*. The disease is found worldwide, especially in tropical regions. Human leptospirosis presents with a variety of signs and symptoms, including general febrile disease an influenza-like illness, and results in liver or kidney failure. As a result, this disease is often confused with other diseases, such as dengue fever, hemorrhagic fever and malaria, all of which are common in tropical and sub-tropical regions of the world (World Health Organization, 2003). Pathogenic *Leptospira* spp. can infect the renal tubules of most animals and are excreted in their urine, resulting in contaminated
environments (e.g., soil and water) (Adler and de la Peña Mocetuzma, 2010). Humans become infected mainly through *Leptospira*-contaminated water or soil, or from contact with urine from animals infected with this bacterium (Adler and de la Peña Mocetuzma, 2010). Rodents are the most important reservoir of *Leptospira* among a variety of wildlife reservoirs.

Over the past decade, there have been many reports of bats being an important reservoir and vector of emerging infectious diseases, such as Ebola and Marburg viral diseases, severe acute respiratory syndrome (known as SARS), Nipah and Hendra viral infections, and rabies (Calisher et al., 2006). Bats (order Chiroptera) are the second largest order in mammals after rodents (order Rodentia) and are geographically widespread. Loss of habitat for bats, caused by recent anthropogenic activities, may increase contact between bats and humans, resulting in transmission of various pathogens from peridomestic bats to humans (de Jong et al., 2011). Transmission of viral pathogens from bats to humans has been the main focus of studies in this area; however, there have not been many studies on pathogenic bacteria in bats (Mühldorfer, 2013).

A variety of pathogenic *Leptospira* spp. have been identified in bats worldwide (Bessa et al., 2010; bunell et al., 2000; Cox et al., 2005; Fennestad and Borg-Petersen, 1972; Harkin et al., 2014; Lagadec et al., 2012; Matthias et al., 2005; Tulsiani et al., 2011); however, little is known about the role of bats in the transmission of leptospirosis.

In this study, we performed a molecular epidemiological investigation of *Leptospira* spp. in straw-colored fruit bats (*Eidolon helvum*) captured from 2008 to 2013, which were migrating from the Democratic Republic of Congo to Zambia (Richter and Cumming, 2008).

2. Materials and methods

A total of 529 kidney samples were collected from captured *E. helvum* that were roosting in trees (Muleya et al., 2014; Ogawa et al., 2015) in Kasanka National Park in Central Province and in Ndola in Copperbelt Province of Zambia (Table 1). This research was performed under the research project “Molecular epidemiology of bacterial zoonoses in Zambia” approved by the Zambia Wildlife Authority, in the Republic of Zambia.

The kidney samples collected from *E. helvum* were placed directly in Korthof or Ellinghausen–McCullough–Johnson–Harris (EMJH) media (World Health Organization, 2003) and homogenized for DNA extraction and *Leptospira* isolation by crushing with beads. DNA was extracted from 10% (w/v) kidney homogenates (Mühldorfer, 2013).

3. Results and discussion

A 732 bp fragment of the *Leptospira flaB* gene was detected in 79 out of 529 *E. helvum* kidney samples (14.9%, Table 1). Among the 79 *flaB*-positive samples, 70 were used for direct sequencing and nine samples were not able to be sequenced because of insufficient DNA. Phylogenetic analysis (Fig. 1) revealed that the *flaB* sequences fell into seven clusters (FC1–FC7). Six *flaB* fragments (ZFB08-62, ZFB09-25, ZFB09-32, ZFB12-65, ZFB12-107 and ZFB12-110) in the FC5 cluster were related to the corresponding gene sequences, all of which were identical to *Leptospira borgpetersenii* strains including Jules, De 10, Arborrea, Poi, and Veldrat Batavia 46. The six fragments shared sequence identities ranging from 96.2% to 96.4% with the *L. borgpetersenii* strains described above.

The nucleotide identity of the *flaB* fragment for ZFB12-96 in the FC6 cluster with the *Leptospira kirschneri* strains Moskva V and 3522C was 95.5% and 95.4%, respectively. The nucleotide sequence of the *flaB* fragment from the uncultured *Leptospira* spp. detected in *E. helvum* comprised LC005103 to LC005172 and LC005173 to LC005199, respectively (Supplementary Table 3).

3.1. Prevalence

A total of 529 kidney samples from *E. helvum* were screened by PCR (Table 1). Among these, 180 samples were positive for *Leptospira* flaB using a specific primers sequence (Table 1). The positive rate (%), was generated with 1,000 bootstrap replications using MEGA 5.2.2 software (Tamura et al., 2011).

3.2. Molecular Epidemiological Analysis

The kidney samples collected from *E. helvum* were placed directly in Korthof or Ellinghausen–McCullough–Johnson–Harris (EMJH) media (World Health Organization, 2003) and homogenized for DNA extraction and *Leptospira* isolation by crushing with beads. DNA was extracted from 10% (w/v) kidney homogenates using a DNA Isolation Kit for Mammalian Blood (Roche Diagnostics, Indianapolis, IN, USA) according to the manufacturer’s instructions with minor modifications. A nested PCR based on the flagellin B gene (*flaB*) sequence was used to amplify the extracted DNA samples (*n* = 529) to detect the *flaB* gene of pathogenic *Leptospira* spp. (Koizumi et al., 2008). Some of the *flaB*-nested PCR-positive samples (*n* = 27) were examined further. To identify *Leptospira* species, we also performed a nested PCR based on the 16S ribosomal RNA gene (*rrs*) and the preprotein translocase gene (*secY*) using the primer sets shown in Supplementary Tables 1 and 2.

The PCR products from the *flaB*-nested PCR (732 bp including the 41 bp primer sequence), the *rrs*-nested PCR (642 bp including the 48 bp primer sequence) and the *secY*-nested PCR (329 bp including the primer sequence) were purified and subjected to direct sequencing using a BigDye Terminator v3.1 Cycle Sequencing a Kit (Life Technologies, Waltham, MA, USA) according to the manufacturer’s instructions, and a 3130xl Genetic Analyzer (Life Technologies). The sequence data were aligned using the Clustal W software, and a maximum-likelihood phylogenetic tree was generated with 1,000 bootstrap replications using MEGA 5.2.2 software (Tamura et al., 2011).

The DDBJ accession numbers for the *flaB* and *rrs* sequences from the uncultured *Leptospira* spp. detected in *E. helvum* comprised LC005103 to LC005172 and LC005173 to LC005199, respectively (Supplementary Table 3).

3.3. Phylogenetic analysis

The *flaB* sequences were aligned using Clustal W software, and a maximum-likelihood phylogenetic tree was generated with 1,000 bootstrap replications using MEGA 5.2.2 software (Tamura et al., 2011).

Table 1

Year	Sample ID	Location	No. of samples	No. of positives	Positive rate (%)						
			Total	M	F	Total	M	F	Total	M	F
2008	ZFB08-01 – ZFB08-104	Kasanka National Park	104	38	66	28	10	18	26.9	26.3	27.3
2009	ZFB09-01 – ZFB09-60	Kasanka National Park	60	15	45	7	2	5	11.7	13.3	11.1
2010	ZFB10-01 – ZFB10-47	Kasanka National Park	47	13	34	4	1	3	8.5	7.7	8.8
2011	ZFB10-48 – ZFB10-52	Ndola	4	3	1	1	1	0	25.0	33.3	0
2012	ZFB11-01 – ZFB11-38	Ndola	38	18	20	3	0	3	7.9	0	15.0
2012	ZFB11-39 – ZFB11-95	Kasanka National Park	57	24	33	7	4	3	12.3	12.5	9.1
2012	ZFB12-01 – ZFB12-60	Ndola	60	22	38	4	2	2	6.7	9.1	5.3
2013	ZFB12-61 – ZFB12-110	Kasanka National Park	49	15	34	18	7	11	36.7	46.7	32.4
2013	ZFB13-01 – ZFB13-76	Ndola	76	23	53	0	0	0	0	0	0
2013	ZFB13-77 – ZFB13-111	Kasanka National Park	34	9	25	7	2	5	20.6	22.2	20.0
	Total		529	180	349	79	28	50	14.9	15.6	14.3

a Kidney sample from ZFB12-97 was not available for PCR screening.

b Kidney sample from ZFB13-93 was not available for PCR screening.
Abdominal 180° rotation for clearer readability of the text.
Pathogenic

Intermediate

Saprophytic

Fig. 2. Maximum-likelihood phylogenetic tree based on the nucleotide sequences of Leptospira spp. rrs in E. helvum bats. The dendrogram was constructed with the general time reversible model with gamma distribution and invariable sites, and with 1000 replications using MEGA 5.2.2 software (Tamura et al., 2011). Numbers at nodes indicate bootstrap supports >70%. The sequences determined in this study are shown in red. The sequences from bats are shown in bold. The FC clusters shown in Fig. 1 and GenBank accession numbers are indicated in brackets and parentheses, respectively. Scale bar indicates the number of nucleotide substitutions per site.

(FC4), ZF808-91 (FC2), ZF12-103 (FC3) and ZF813-102 (FC4), all of which were identical, as well as those of ZF808-50 (FC2), ZF808-95 (FC2), ZF808-48 (FC3) and ZF808-96 (FC3), were located on unique branches (Fig. 2). The other 14 rrs fragments were closely related to an uncultured Leptospira sp. (JQ288732) from Rousettus aegyptiacus bats captured in Cameroon; the latter sequence was closely related to L. borgpetersenii (Lagadec et al., 2012) (Fig. 2). Non-significant coevolutionary congruence was reported between the rrs sequence from Leptospira spp. and that of bats at the bat species level (Lei and Olival, 2014). However, the rrs sequences from bats are genetically related to each other and show no regional variations in phylogenetic analysis of the rrs sequences from various kinds of hosts (Fig. 2), suggesting that Leptospira have evolved uniquely in this bat population. Dietrich et al. reported that the host is an important factor in Leptospira diversification (Dietrich et al., 2014), also supporting our findings.

Zambia is bordered by eight countries. Epidemiological studies in these countries have been reported; however, almost all of these reports were serological surveys using L. interrogans as the antigen, and most data originated from Tanzania and Zimbabwe (de Vries et al., 2014). In Zambia, data regarding circulating Leptospira spp. are limited. Serosurveys of Leptospira spp. in rodents and Leptospira weilii in pigs have been reported (de Vries et al., 2014). Although E. helvum examined in this study were migrating to Zambia from the Democratic Republic of Congo (Richter and Cumming, 2008), data in this country are also lacking and there are no previous reports on L. borgpetersenii that may be related to the Leptospira spp. detected in this study. E. helvum captured in Kasanka National Park were more frequently infected than those captured in Nodila (x^2 = 23.0, df = 1, p < 0.01). The roosting environment and colony size may influence this difference. No significant difference in the prevalence of the Leptospira flaB gene was found between males and females.

The phylogenetic analyses of flaB and rrs infer that genes from potentially pathogenic Leptospira spp. were present in the kidney samples of E. helvum in Zambia. To the best of our knowledge, this is the first report of PCR detection of Leptospira spp. in fruit bats from the African continent. In addition, the nested PCR-positive rate for Leptospira (14.9%) in E. helvum in Zambia was relatively higher than that of previous reports (Mühl dorfer, 2013). Although isolation of Leptospira directly from bat kidney samples using Korthof and EMJH media was not successful, the relatively high infection rate in the kidneys of E. helvum is likely to result in excretion of Leptospira via the urine. Contaminated urine has therefore been proposed as the potential transmission pathway of Leptospira spp. from fruit bats to rodents (Tulsiani et al., 2011). It is suggested, therefore, that E. helvum might be a candidate natural reservoir for Leptospira in Zambia. Continued surveillance in E. helvum, as well as in humans and rodents, is required to gain a better understanding of how Leptospira is maintained in, and transmitted by, E. helvum bats in Zambia.

Acknowledgments

We thank Ms. Yuka Thomas, Drs. Emiko Nakagawa, Akihiro Ishii, Reiko Yoshida, Yasuko Orba, Ichiro Nakamura, Kimihito Ito, and many PhD students and postdoctoral fellows at the Research Center for Zoonosis Control, Hokkaido University for technical assistance. We also thank Drs. Katendi Chabgula, Edgar Simulundu and Muso Munyeme of the University of Zambia, Dr. Frank Willems of the Kasanka Trust, the Ministry Agriculture and Livestock, the Zambia Wildlife Authority, and Mr. Bwalya Chisha. This work was supported by the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) and the Science and Technology Research Partnership for Sustainable Development (SATREPS) by the Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.meegid.2015.03.013.
References

Adler, B., de la Peña Mocetzauma, A., 2010. Leptospira and leptospirosis. Vet. Microbiol. 140, 287–296.
Ahmed, N., Devi, S.M., Valverde Mde, L., Vijayachari, P., Machang’u, R.S., Ellis, W.A., Hartsekerl, R.A., 2006. Multilocus sequence typing method for identification and genotypic classification of pathogenic Leptospira species. Ann. Clin. Microbiol. Antimicrobe. 5, 28.
Bessa, T.Á., Spichlerh, A., Chapola, É.G., Husch, A.C., de Almeida, M.F., Sodré, M.M., Savani, E.S., Sacramento, D.R., Vinetz, J.M., 2010. The contribution of bats to leptospirosis transmission in São Paulo City. Braz. Am. J. Trop. Med. Hyg. 82, 315–317.
Bourhy, P., Collet, L., Lernout, T., Zinini, F., Hartskeerl, R.A., van der Linden, H., Thiébersome, J.M., Diancourt, L., Brisse, S., Giry, C., Bettinelli, F., Picardeau, M., 2012. Human Leptospira species circulating in Mayotte (Indian Ocean) have unique serological and molecular features. J. Clin. Microbiol. 50, 307–311.
Bourhy, P., Collet, L., Brisse, S., Picardeau, M., 2014. Leptospira mayottensis sp. nov., a pathogenic species of the genus Leptospira isolated from humans. Int. J. Syst. Evol. Microbiol. 64, 4061–4067.
Bunnell, J.E., Rice, C.L., Watts, D.M., Montrueil, V., Tesh, R.B., Vinetz, J.M., 2000. Detection of pathogenic Leptospira spp. infections among mammals captured in the Peruvian Amazon basin region. Am. J. Trop. Med. Hyg. 63, 255–258.
Calisher, C.H., Field, H.E., Newman, S.H., Epstein, J.H., 2011. Emerging infectious diseases. In: Newman, S.H., Field, H.E., de Jong, C.E., Epstein, J.H. (Eds.), Investigating the Role of Bats in Emerging Zoonoses: Balancing Ecology, Conservation and Public Health Interests. Food and Agriculture Organization of the United Nations, Rome, pp. 1–13.
de Vries, S.G., Visser, B.J., Nagel, I.M., Goris, M.G., Hartsekerl, R.A., Grobush, M.P., 2014. Leptospirosis in Sub-Saharan Africa: a systematic review. Int. J. Infect. Dis. 28, 47–64.
Dietrich, M., Wilkinson, D.A., Soarimalala, V., Goodman, S.M., Delli, K., Tortosa, P., 2014. Diversification of an emerging pathogen in a biodiversity hotspot: Leptospira in endemic small mammals of Madagascar. Mol. Ecol. 23, 2783–2795.
Fennestad, K.L., Borg-Petersen, C., 1972. Leptospirosis in Danish wild mammals. J. Wildl. Dis. 8, 343–351.
Gravekamp, C., Van de Kemp, H., Franzen, M., Carrington, D., Schoone, G.J., Van Eys, G.J., Everard, C.O., Hartsekerl, R.A., Terpstra, W.J., 1993. Detection of seven serovars of pathogenic leptospires by PCR using two sets of primers. J. Gen. Microbiol. 139, 1691–1700.
Harkin, K.R., Hays, M., Davis, R., Moore, M., 2014. Use of PCR to identify Leptospira in kidneys of big brown bats (Eptesicus fuscus) in Kansas and Nebraska, USA. J. Wildl. Dis. 50, 651–654.
Koizumi, N., Murto, M., Yamamoto, S., Baba, Y., Kudo, M., Tamae, Y., Shimomura, K., Takatori, I., Iwaiki, A., Ishikawa, K., Soma, H., Watanabe, H., 2008. Investigation of reservoir animals of Leptospira in the northern part of Miyazaki Prefecture. Jpn. J. Infect. Dis. 61, 465–468.
Lagadec, E., Gomard, Y., Guerrier, V., Dietrich, M., Pascalis, H., Tenmann, S., Ramasindrazana, B., Goodman, S.M., Tortosa, P., Dellagi, K., 2012. Pathogenic Leptospira spp. in bats, Madagascar and Union of the Comoros. Emerg. Infect. Dis. 18, 1696–1698.
Lei, B.R., Olival, K.J., 2014. Contrasting patterns in mammal-bacteria coevolution: Bartonella and Leptospira in bats and rodents. PLOS Negl. Trop. Dis. 8, e2738.
Matthias, M.A., Diaz, M.M., Campos, K.J., Calderon, M., Willig, M.R., Pacheco, V., Gotuzzo, E., Gilman, R.H., Vinetz, J.M., 2005. Diversity of bat-associated Leptospira in the Peruvian Amazon inferred by bayesian phylogenetic analysis of 16S ribosomal DNA sequences. Am. J. Trop. Med. Hyg. 73, 964–974.
Mühl Dorfer, K., 2013. Bats and bacterial pathogens: a review. Zoonoses Publ. Health 60, 93–103.
Muleya, W., Sasaki, M., Orba, Y., Ishii, A., Thomas, Y., Nakagawa, E., Ogawa, H., Hang’ombe, B., Namangala, B., Mweene, A., Taka da, A., Kimura, T., Saw a, H., 2014. Molecular epidemiology of paramyxoviruses in frugivorous Eidolon helvum bats in Zambia. J. Vet. Med. Sci. 76, 611–614.
Namangala, B., Ahmed, A., Katampi, J., Ishii, A., Field, H.E., Newman, S.H., Epstein, J.H., 2010. Genetic affinities within a large global collection of pathogenic Leptospira: implications for strain identification and molecular epidemiology. PLoS One 5, e12637.
Ogawa, H., Miyamoto, H., Nakayama, E., Yoshida, R., Nakamura, I., Saw a, H., Ishii, A., Thomas, Y., Nakagawa, E., Matsu no, K., Kajihara, M., Maruyama, J., Nao, N., Muramatsu, M., Kuroda, M., Simulundu, E., Changu, K., Hang’ombe, B., Namangala, B., Nambota, A., Katampi, J., Ishii, A., Field, H.E., Newman, S.H., Epstein, J.H., 2011. Emerging infectious diseases. In: Newman, S.H., Field, H.E., de Jong, C.E., Epstein, J.H. (Eds.), Investigating the Role of Bats in Emerging Zoonoses: Balancing Ecology, Conservation and Public Health Interests. Food and Agriculture Organization of the United Nations, Rome, pp. 1–13.
Postic, D., Riquelme-Sertour, N., Merien, F., Perolat, P., Baranton, C., 2000. Interest of partial 16S rDNA gene sequences to resolve evolutionary relationships between Leptospira collections: application to L. mey eri. Res. Microbiol. 151, 333–341.
Rahelminirina, S., Leon, A., Hartsekerl, R.A., Sertour, N., Ahmed, A., Raharimananana, C., Ferquel, E., Garnier, M., Chartier, L., Duplantier, J.M., Rahalison, L., Cornet, M., 2010. First isolation and direct evidence for the existence of large smallmammal reservoirs of Leptospira sp. in Madagascar. PLoS One 5, e14111.
Rich ter, H.V., Cummings, G.S., 2008. First application of satellite telemetry to track African straw-coloured fruit bat migration. J. Zool. 275, 172–176.
Sugimoto, C., Moonga, L., Mweene, A., Taka da, A., 2015. Seroepidemiological prevalence of multiple species of flioviruses in fruit bats (Eidolon helvum) migrating in Africa. J. Infect. Dis. (in press) http://jid.oxfordjournals.org/content/early/2015/03/17/infdis.jiv063.full.pdf+html?sid=7cd1608c-7e3b-49e3-84fe-bc4d0f857a4b.