A Unified Mean Square Consensus Criterion for Stochastic Multi-Agent Systems With ROUs and RONs Under Impulse Time Windows

ZHENGHUA ZHANG, SHIGUO PENG, AND TAO CHEN
School of Automation, Guangdong University of Technology, Guangzhou 510006, China
Corresponding author: Shiguo Peng (sgpeng@gdut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61973092 and Grant 61374081, and in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515012104.

ABSTRACT
This paper probes into the leader-following mean square consensus problem of stochastic multi-agent systems with randomly occurring uncertainties (ROUs) and randomly occurring nonlinearities (RONs) under impulse time windows (ITWs). A new concept named average left endpoint interval (ALEI) related to ITWs is proposed, which is inspired by the average impulsive interval. Based on ALEI and Lyapunov stability theory, a unified mean square consensus criterion for both stabilizing and interference impulses is attained. The introduction of ALEI allows for a larger upper bound of left endpoint interval and smaller lower bound of left endpoint interval, which makes the preset of ITWs more flexible and less conservative. The validity of the theoretical results is verified by the numerical simulation.

INDEX TERMS
Stochastic multi-agent systems, randomly occurring uncertainties, randomly occurring nonlinearities, impulse time windows, leader-following mean square consensus.

I. INTRODUCTION
Currently, based on the distributed collaborative control, multi-agent systems (MASs) has been widely used in social life by virtue of the powerful functions brought by cluster effect, such as formation control of robots or aircraft [1], commercial finance [2], sociology [3], traffic management and control [4], epidemiological research [5], etc. Consensus means that all agents tend to a common state eventually under the control protocol, as a central issue in the field of distributed cooperative control, which has attracted extensive attention of researchers in recent years. One or more agents in MASs are selected as the leader to achieve more convenient control and ensuring that their followers can achieve the leader's state under the action of controller, which leads to the study of leader-following consensus of linear or nonlinear MASs [6]–[10].

We know that MASs may be affected by a variety of internal or external environmental factors in practical application, which should be reflected in the construction of the system model as much as possible. Specifically, the unpredictable disturbances and changes of these factors may lead to the random occurrence of nonlinear intrinsic dynamics and parameter uncertainties in a probabilistic way with certain types and intensity. Researchers have proposed concepts randomly occurring uncertainties (ROUs) in [11]–[13] and randomly occurring nonlinearities (RONs) in [14]–[16] to describe the objective phenomenon. In general, the stochastic variable is assumed to conform Bernoulli distribution. On the other hand, the dynamic of each agent may be affected by the stochastic disturbances caused by environmental fluctuation and other factors, which are mainly in the form of noise. If all agents' dynamics are subject to different noises, in this case, the noise is called the heterogeneous one. Otherwise, it is the same noise. When some practical systems or applications, such as financial model, smart grid, unmanned aerial vehicle or robot formation, integrated navigation system, the determination and estimation of aircraft attitude, are disturbed by such noise, which can be modeled by using \(\text{It}\hat{o} \) formula. In a word, the researchers are mainly by using \(\text{It}\hat{o} \) formula and Lyapunov stability theory to solve the consensus problem of stochastic MASs (SMASs) at present. It is undoubtedly necessary and valuable to study the leader-following consensus of MASs under the case...
where take one or more of ROUs, RONs and stochastic disturbances into account simultaneously in [17], [18], etc. Furthermore, on the basis of [17], the authors studied the leader-following mean square consensus of delayed SMASs by means of comparison principle, Lyapunov stability theory and average impulsive interval (AII) in [19]. In [20], the exponential consensus of SMASs with ROUs and RONs has been studied via pinning control. Recently, many new research fields have been combined with the consensus problem of SMASs, such as decentralised probabilistic consensus control [21], sliding mode control [22], event-triggered control [23], etc.

Actually, reducing the communication traffic in the working process of MASs can save the communication cost and reduce the communication risk (packet dropouts and disorder, wireless channel congestion, delays, etc.) effectively, so it is suitable for the actual situation where the communication bandwidth or communication guarantee level is limited. As an effective control mechanism to reduce communication traffic and control costs, impulsive control with strong adaptability has been introduced into the consensus research of MASs, and abundant results have been achieved [17], [19], [20]. Many literatures assume that the impulsive controller acts on the systems at a series of fixed discrete instants. However, in practical applications such as aircraft formation control, satellite attitude control, and smart grid, the impulsive control signal is a series of discrete digital signals generated by the controller. Affected by random or uncertain factors in the external environment and the limitations of physical equipment, digital signals may skew or jitter. The so-called jitter external environment and the limitations of physical equip-

and enhancing adaptability (i.e., the preset of ITWs is more flexible).

- For a kind of stable MASs affected by interference impulses, if these impulses appear in a series of known ITWs, a smaller lower bound of impulsive interval can be obtained by ALEI. This means that the interference impulses should not occur too frequently in a given time.

The rest of this text is organised as follows. In section II, we introduce the constructions of system model and control protocol as well as annotate related details. In section III, compare the theoretical results which are derived from Lyapunov stability theory with the existing literatures. In section IV, our results are verified by one numerical simulation example. Section V is the summary of the article.

Notations: In this paper, \(\mathbb{R} \), \(\mathbb{R}^n \) and \(\mathbb{R}^{m \times n} \) denote the real numbers, the \(n \)-dimensional Euclidean space and the set of \(m \times n \) matrices respectively. \(\mathbb{N}^+ \) is the positive integers set. \(| \cdot | \) and \(\| \cdot \| \) represent the absolute value and the Euclidean norm (2-norm) respectively. \(I_n \) is an identity matrix with order \(N \). \(E(\cdot) \) is the expectation operator. \(\otimes \) is the Kronecker product. \((\cdot)^T\) denotes the matrix’s transpose. \(\lambda_{\text{max}}(\cdot) \) represents the matrix’s maximal eigenvalue. \(\mathcal{L} \) is the Kolmogorov operator. \(\Pr \) represents the occurrence probability of a random variable.
II. PROBLEM FORMULATION AND PRELIMINARIES
A. ALGEBRAIC GRAPH THEORY

The communication links between agent and their neighbors in MASs can be represented by the topology graph. When all information transmission directions are bidirectional, the graph is called undirected. Otherwise, it is a digraph. For a N order weighted digraph $G = (\tilde{\Omega}, \Xi, A)$ without self-circulation, where $\tilde{\Omega} = \{\tilde{\Omega}_1, \ldots, \tilde{\Omega}_N\}$ is the node set, $\Xi = \{\tilde{\Omega}_i, \tilde{\Omega}_j \mid i, j = 1, \ldots, N\} \subset \Xi \times \tilde{\Omega}$ is the edge set, $A = [a_{ij}]$ denotes the weighted adjacency matrix, $(\tilde{\Omega}_i, \tilde{\Omega}_j)$ represents the information transmission from $\tilde{\Omega}_i$ to $\tilde{\Omega}_j$, the weight of $(\tilde{\Omega}_j, \tilde{\Omega}_i)$ is represented by $a_{ij} > 0$ means that $\tilde{\Omega}_i$ can receive the information of its neighbor $\tilde{\Omega}_j$. In order to more conveniently and intuitively express the communication relationship between any two agents, without losing generality, we choose the weight to be 1 or 0 (i.e., receiving is 1, otherwise, it is 0). Let $D = \text{diag}(d_i, i = 1, \ldots, N)$ be the degree matrix, where $d_i = \sum_{j=1, j \neq i}^N a_{ij}$. Then the Laplacian matrix can be defined as $L = D - A = [l_{ij}]$, where $l_{ij} = \begin{cases} -a_{ij}, & i \neq j, \\ -\sum_{i=1, j \neq i}^N a_{ij}, & i = j. \end{cases}$ If there exists one leader in MASs, let $B = \text{diag}(b_1, \ldots, b_N)$ denote the connection matrix between followers and their leader. If node $\tilde{\Omega}_i$ receives the leader’s information, for convenience, let $b_i = 1$. Otherwise, $b_i = 0$.

B. PROBLEM DESCRIPTION AND PROTOCOL CONSTRUCTION

A first-order MASs consisting of N agents labeled by $i = 1, 2, \ldots, N$ and one leader is considered. The dynamical equation of i-th agent with ROUs and RONs can be described by:

$$dx_i(t) = [A(t)x_i(t) + \varepsilon(t)f(t, x_i(t)) + u_i(t)]dt + \Phi(t, x_i(t))dw(t),$$

where $x_i(t) \in \mathbb{R}^n$ is the state of agent i, $A(t) = \tilde{A} + \theta(t)Ω(t)\Theta$ is a time-varying matrix, \tilde{A}, Θ and Θ are known matrices with appropriate dimensions, $\Lambda(t)$ is an unknown time-varying matrix and satisfies $\Lambda^T(t)\Lambda(t) \leq I$, $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is a continuous nonlinear function, $u_i(t)$ is the control input, $\Phi : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^{n \times m}$ denotes the matrix-valued function of noise intensity, $w(t)$ is an m-dimensional Wiener process defined on the complete probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, P)$ with filtration $\{\mathcal{F}_t\}_{t \geq 0}$ which satisfies the usual conditions (i.e., \mathcal{F}_0 contains all \mathbb{P}-null sets and \mathcal{F}_t is right continuous), $w_i(t)$ and $w_j(t)$ are independent of each other for $i \neq j$.

Remark 1: $\theta(t)\Theta(t)$ and $\varepsilon(t)f(\cdot)$ are used to model the behavior of ROUs and RONs, respectively. The stochastic variables $\theta(t) \in (0, 1)$ and $\varepsilon(t) \in (0, 1)$ are Bernoulli-distribution (or 0-1 distribution) sequences, which satisfy the following assumptions:

$$\Pr(\theta(t) = 1) = \hat{\theta}, \quad \Pr(\theta(t) = 0) = 1 - \hat{\theta},$$
$$\Pr(\varepsilon(t) = 1) = \hat{\varepsilon}, \quad \Pr(\varepsilon(t) = 0) = 1 - \hat{\varepsilon}.$$
Assumption 3: All impulsive signals in the control process will not appear random jitter that obeys the Gaussian distribution.

In summary, based on \(\{t_k\} \), the impulsive control protocol is designed as follows:

\[
u_i(t) = \sum_{k=1}^{+\infty} \delta(t - t_k) (B_k \alpha \sum_{j \in N_i} a_{ij}(x_j(t) - x_i(t)) \\
+ \beta(B_k - L_n) b_j(x_i(t) - x_0(t))),
\]

where \(\delta(t) \) is the Dirac function, \(B_k \in \mathbb{R}^{n \times n} \) denotes the impulsive gain matrix, \(\alpha \in (0, 1) \) and \(\beta \in (0, 1) \) are the coupling strengths, \(j \in N_i \) represents the set of neighbors of agent \(i \). We assume that the state of \(i \)-th agent is right-hand continuous at each impulse instant, that is, \(x_i(t_k) = \lim_{h \to 0^+} x_i(t_k + h) \).

By (1) and (3), we can get the following system model:

\[
\begin{aligned}
dx_i(t) &= [A(t)x_i(t) + \varepsilon(t)f(t, x_i(t))]dt \\
+ \Phi(t, x_i(t)) dw(t), t \neq t_k, \\
\Delta x_i(t) &= x_i(t) - x_i(t^-) \\
&= (B_k \alpha \sum_{j \in N_i} a_{ij}(x_j(t^-) - x_i(t^-)) \\
+ \beta(B_k - L_n) b_j(x_i(t^-) - x_0(t^-))),
\end{aligned}
\]

(4)

Let \(e_i(t) = x_i(t) - x_0(t) \), \(\Delta e_i(t_k) = e_i(t_k) - e_i(t_k^-) \), \(\bar{f}(t, e_i(t)) = f(t, x_i(t)) - f(t, x_0(t)) \) and \(\bar{\Phi}(t, e_i(t)) = \Phi(t, x_i(t)) - \Phi(t, x_0(t)) \).

Note that the leader is uncontrolled at any time, i.e., \(\Delta x_0(t_k) = x_0(t_k) - x_0(t_k^-) = 0 \). System (4) is transformed into the following error system (5):

\[
\begin{aligned}
de_i(t) &= [A(t)e_i(t) + \varepsilon(t)\bar{f}(t, e_i(t))]dt \\
+ \bar{\Phi}(t, e_i(t)) dw(t), t \neq t_k, \\
\Delta e_i(t) &= B_k \alpha \sum_{j \in N_i} a_{ij}(e_j(t^-) - e_i(t^-)) \\
+ \beta(B_k - L_n) b_j e_i(t^-),
\end{aligned}
\]

(5)

Let \(e(t) \) be \((e_1(t), \ldots, e_N(t))^T \), \(\bar{f}(t, e(t)) = (\bar{f}_1(t, e_1(t)), \ldots, \bar{f}_N(t, e_N(t)))^T \) and \(\bar{\Phi}(t, e(t)) = (\bar{\Phi}_1(t, e_1(t)), \ldots, \bar{\Phi}_N(t, e_N(t)))^T \).

By using the Kronecker product, system (6) can be obtained as:

\[
\begin{aligned}
de(t) &= [(I_N \otimes A(t)) e(t) + \varepsilon(t) \bar{f}(t, e(t))] dt \\
+ \bar{\Phi}(t, e(t)) dw(t), t \neq t_k, \\
e(t) &= Z_k e(t^-),
\end{aligned}
\]

(6)

where \(B = \text{diag}(b_1, \ldots, b_N) \) is the connection matrix, \(Z_k = I_N \times (\alpha L) \otimes B_k + (\beta B) \otimes (B_k - I_n) \in \mathbb{R}^{Nn \times n} \).

By (6), for \(t = t_k \), it yields:

\[
\|e(t)\| = \|Z_k e(t^-)\| \leq \|Z_k\| \|e(t^-)\|.
\]

(7)

Remark 3: With different matrix \(B_k \), the following three cases may occur at each time \(t_k \).

Case 1. If \(\|e(t)\| < \|e(t^-)\| \), the \(k \)-th impulse is beneficial to the error system’s convergence. Namely, the impulse is stabilizing.

Case 2. If \(\|e(t)\| = \|e(t^-)\| \), the \(k \)-th impulse is invalid for the controlled system.

Case 3. If \(\|e(t)\| > \|e(t^-)\| \), the \(k \)-th impulse is adverse to the error system’s convergence. In other words, the impulse is destabilizing.

Remark 4: Let \(\rho = \sup_{k \in \mathbb{N}^+} \lambda_{\text{max}}(Z_k^T Z_k) = \sup_{k \in \mathbb{N}^+} \|Z_k\|^2 \). Since the graph of SMASs is fixed, the value of \(\|Z_k\| \) only depends on the selection of \(B_k \). For any \(k \in \mathbb{N}^+ \), the following three cases are discussed.

a. When \(\rho \in (0, 1) \), it means that \(\|Z_k\| < 1 \), and thus all impulses are stabilizing. Specifically, the authors supposed that \(Z_k = \mu I_N \) in [35], and it yields \(0 < \rho < 1 \) while \(|\mu| < 1 \), so the impulses are called synchronizing ones. It is worth noting that the object system can be stable or unstable.

b. When \(\rho = 1 \), one has \(\|Z_k\| = 1 \), and so the presence of one or more impulses is invalid. Meanwhile, the object system can be stable or unstable. Similarly, \(|\mu| = 1 \) was given in [35].

c. When \(\rho > 1 \), it can infer that one or more impulses are destabilizing. In other words, stabilizing and destabilizing impulses may exist simultaneously and the number of destabilizing ones cannot be predicted. In this case, the impulses generated by the controller can be equivalently regarded as an interference source. Note that interference impulses are not always destructive, and some of them may contribute to the stability of the system. When interference impulses are considered, if the object system is required to achieve the consensus, it is usually assumed that the system is stable. Unlike this case, all impulses are desynchronizing while \(|\mu| > 1 \) in [35].

Some related definitions, assumptions and lemmas needed in Section III are given.

Definition 1: For an impulse sequence \(\{t_k\} \) in time period \((t, T) \), and one impulse appears randomly in a known ITW, if the value of ALEI is equal to \(t_\alpha \) (positive number), then there exists a positive integer \(N_t \) such that

\[
\frac{T - t}{t_\alpha} - N_t \leq t_\alpha(t, T) \leq \frac{T - t}{t_\alpha} + N_t,
\]

(8)

where \(N_t(t, T) \) represents the number of left endpoints for ITWs in the sequence within the time period.

Remark 5: When the ITW is not considered, the concept of AII was used to obtain a larger upper bound of impulsive interval for a given non-uniform impulse sequence in [35].

Then, when the window exists, how to get a larger upper bound of impulsive interval becomes a practical problem. Note that the width of all the windows may not be fixed and the instant when the impulse appears is random. However, for a given series of windows, the position of the left endpoints is fixed. We know that the value of AII is related to the interval between any two adjacent fixed impulse instants, that is, \(\inf(t_{k+1} - t_k) < T_\alpha < \sup(t_{k+1} - t_k) \), where \(T_\alpha \) is the value of AII. Therefore, motivated by the design of AII, we propose the concept named ALEI which related to the left endpoint interval between any two adjacent fixed windows, and its value is subject to the maximum and minimum value of the left endpoint interval. Based on ALEI, we can obtain a larger upper bound of the interval between the left endpoints of the windows, which means a larger width of ITW can
be obtained. This further means that a larger upper bound of impulsive interval can be derived, and the aforementioned problem is solved effectively.

Lemma 1: Under Assumption 2, for an impulse sequence \(\{t_k\} \) in time period \((t, T)\), there exist some positive numbers \(\Delta \tau_{\min}, \Delta \tau_{\max}, \Delta \tau_{\min}, \Delta \tau_{\max}, B_{\min} \) and \(B_{\max} \) such that

\[
\frac{T - t}{\Delta \tau_{\max}} - 1 \leq N_k(t, T) \leq \frac{T - t}{\Delta \tau_{\min}} + 1,
\]

where \(B_{\min} \) and \(B_{\max} \) are the minimum and maximum widths of ITW respectively, \(\Delta \tau_{\min} = \inf_{k \in \mathbb{N}^+} \{ t_{k+1} - t_k \} \), \(\Delta \tau_{\max} = \sup_{k \in \mathbb{N}^+} \{ t_{k+1} - t_k \} \), \(\Delta \tau_{\min} = \inf_{k \in \mathbb{N}^+} \{ t_{k+1} - t_k \} \), \(B_{\min} + \Delta \tau_{\min} = B_{\min} \) and \(\Delta \tau_{\max} = \sup_{k \in \mathbb{N}^+} \{ t_{k+1} - t_k \} \).

Proof:

a. By **FIGURE 2**, \(N_k(t, T) = k - m + 1 \). Therefore, it can be attained easily from \(T-t \geq \Delta \tau_{\min}(k-m) \), then \(N_k(t, T) \leq \frac{T-t}{\Delta \tau_{\min}} + 1 \).

b. By **FIGURE 3**, \(N_k(t, T) = k - m \) can be derived. Then, it can get from \(T-t \leq (k - m - 1)\Delta \tau_{\max} + 2\Delta \tau_{\max} \) that \(N_k(t, T) \geq \frac{T-t}{\Delta \tau_{\max}} - 1 \).

To sum up, we have inequality (9). The proof is completed.

Remark 6: Obviously, if the ITWs is not considered in SMASs, then we have \(\tau_{k+1} - t_k = t_{k+1} - t_k \). At this time, Definition 1 in [35] and Definition 2 in this paper are equivalent (i.e., \(T = 0 \)), and \(\inf_{t \in \mathbb{R}^+} \{ t_{k+1} - t_k \} - 1 \leq N_k(t, T) \leq \frac{T-t}{\Delta \tau_{\max}} + 1 \) can also be obtained from Lemma 1 in this paper, where \(N_k(t, T) \) is the number of impulses in the period.

In order to ensure that the subsequent proof process can be carried out smoothly, we need the following assumption.

Assumption 4: For all \(i = 1, \ldots, N \) and \(x_{i0}, x_0 \in \mathbb{R}^n \), there exist non-negative constants \(\phi \) and \(\rho \) such that \(\| f(t, x) - f(t, x_0) \| \leq \phi \| x_i - x_0 \| \) and \(\| \Phi(t, x_i) - \Phi(t, x_0) \| \leq \rho \| x_i - x_0 \| \).

Lemma 2 [36]: For all vectors \(x, y \in \mathbb{R}^n \) and constant \(\sigma > 0 \), we have \(x^Ty + y^Tx \leq \sigma(x^Ty + x^Ty) \).

Definition 2: The leader-following mean square consensus of SMASs is achieved via impulsive control if \(\lim_{t \to \infty} E(\| x_i(t) - x_0(t) \|^2) = 0 \) holds for all agents.

III. MAIN RESULTS

Theorem 1: Under the above statements, if there exist constants \(\tau_0 \) and \(\sigma \) such that \(\ln(\rho)/\tau_0 + \lambda_{\max}(\Xi) < 0 \), then the leader-following mean square consensus of system (4) with ITWs can be achieved via impulsive control (3), where

\[
\rho = \sup_{k \in \mathbb{N}^+} \| Z_k \|^2 \quad \text{and} \quad \Xi = \tilde{A} + \tilde{A}^T + \tilde{\theta}^2 \sigma^{-1} \tilde{\theta} \tilde{\theta}^T + \tilde{\sigma} \tilde{\sigma}^T \Theta + \left(2\tilde{\varphi} + \varphi^2 \right) I_n.
\]

Proof. Construct the Lyapunov function candidate

\[
V(t, e(t)) = e^T(t) e(t).
\]

The stochastic derivative of (10) is derived by the Itô formula along the trajectory of system (6) as follows.

\[
dV(t, e(t)) = \mathcal{L} V(t, e(t)) + 2 \epsilon e^T(t) \Phi(t, e(t)) \text{d} \omega(t),
\]

\[
\mathcal{L} V(t, e(t)) = 2e^T(t)\left[(\mathbb{I}_N \otimes A(t))e(t) + \epsilon(t) \mathcal{F}(t, e(t)) \right] + \text{trace}[\Phi^T(t, e(t)) \Phi(t, e(t))].
\]

By Lemma 2, we have

\[
2 \epsilon e^T(t) (\mathbb{I}_N \otimes A(t)) e(t)
\]

\[
\leq e^T(t) (\mathbb{I}_N \otimes (\tilde{A} + \tilde{A}^T + \tilde{\theta}^2 \sigma^{-1} \tilde{\theta} \tilde{\theta}^T + \tilde{\sigma} \tilde{\sigma}^T \Theta) + 2(\tilde{\varphi} \sigma + \varphi^2) I_n) e(t)
\]

\[
\leq \lambda_{\max}(\Xi) e^T(t) e(t).
\]

Next, it can be obtained by Assumption 4 that

\[
\text{trace}(\Phi^T(t, e(t)) \Phi(t, e(t))) \leq \varphi^2 e^T(t) e(t)
\]

and

\[
2 \epsilon e^T(t) \mathcal{F}(t, e(t))
\]

\[
= 2 \epsilon e^T(t) \mathcal{F}(t, e(t)) + 2(\epsilon(t) - \hat{\epsilon}) e^T(t) e(t)
\]

\[
\leq 2 \epsilon e^T(t) e(t) + 2(\epsilon(t) - \hat{\epsilon}) e^T(t) \mathcal{F}(t, e(t)).
\]

To sum up, according to (12), we can get

\[
E \mathcal{L} V(t, e(t)) \leq e^T(t) \left[(\mathbb{I}_N \otimes (\tilde{A} + \tilde{A}^T + \tilde{\theta}^2 \sigma^{-1} \tilde{\theta} \tilde{\theta}^T + \tilde{\sigma} \tilde{\sigma}^T \Theta) + 2(\tilde{\varphi} \sigma + \varphi^2) I_n) \right] e(t)
\]

\[
\leq \lambda_{\max}(\Xi) E V(t, e(t)).
\]

For \(t \in [t_{k-1}, t_k) \), suppose that positive constant \(\Delta t \) be small enough such that \(t + \Delta t \in (t_{k-1}, t_k) \), then we have

\[
E V(t + \Delta t, e(t + \Delta t)) \leq EV(t, e(t))
\]

\[
= \int_{t}^{t+\Delta t} E \mathcal{L} V(s, e(s)) ds.
\]

Furthermore, one has

\[
D^+ EV(t, e(t)) = E \mathcal{L} V(t, e(t)) \leq \lambda_{\max}(\Xi) V(t, e(t)).
\]

When \(t \in [t_0, t_1) \), it can be obtained from (13) that

\[
EV(t_1^+, e(t_1^+)) \leq EV(t_0, e(t_0)) \exp(\lambda_{\max}(\Xi) (t_1^--t_0)).
\]

When \(t \in [t_k^-, t_k) \) and \(k \geq 1 \), we can get from (13) that

\[
EV(t_k^-, e(t_k^-)) \leq EV(t_k^-, e(t_k^-)) \exp(\lambda_{\max}(\Xi) (t_k^- - t_k^-)).
\]

When \(t = t_k \) and \(k \geq 1 \), it follows that

\[
EV(t_k, e(t_k)) = E \left(e^T(t_k^-) Z_k e(t_k^-) \right)
\]

\[
\leq \| Z_k \|^2 EV(t_k^-, e(t_k^-)).
\]

When \(t \in [t_k, t_k^+] \) and \(k \geq 1 \), it can be derived by (13) that

\[
EV(t_k^+, e(t_k^+)) \leq EV(t_k, e(t_k)) \exp(\lambda_{\max}(\Xi) (t_k^+ - t_k^-)).
\]
Therefore, for $t \in [t_{k-1}^r, t_k^r)$ and $k \geq 2$, by (13), one has
\[EV(t_{k}^r, e(t_{k}^r)) - EV(t_{k-1}^r, e(t_{k-1}^r)) \exp(\lambda_{\text{max}}(\Xi)(t_k^r - t_{k-1}^r)). \]
(18)

When $t = t_1$, according to (16) and (19), we have
\[EV(t_1, e(t_1)) \leq \|Z_1\|^2 EV(t_1, e(t_1)) \exp(\lambda_{\text{max}}(\Xi)(1 - t_1)). \]
(20)

For $t \in [t_1, t_2)$, according to (17) and (20), we can get
\[EV(t_1, e(t_1)) \leq EV(t_1, e(t_1)) \exp(\lambda_{\text{max}}(\Xi)(t_1 - t_1)) \leq \|Z_1\|^2 EV(t_0, e(t_0)) \exp(\lambda_{\text{max}}(\Xi)(t_1 - t_0)). \]
(21)

When $k = 2$, by (18) and (21), it yields
\[EV(t_2^r, e(t_2^r)) \leq EV(t_2^r, e(t_2^r)) \exp(\lambda_{\text{max}}(\Xi)(t_2^r - t_1^r)) \leq \|Z_1\|^2 EV(t_2^r, e(t_2^r)) \exp(\lambda_{\text{max}}(\Xi)(t_2^r - t_0^r)). \]
(22)

For $t \in [t_2^r, t_3^r)$, it follows from (15) and (22) that
\[EV(t_3^r, e(t_3^r)) \leq EV(t_3^r, e(t_3^r)) \exp(\lambda_{\text{max}}(\Xi)(t_3^r - t_2^r)) \leq \|Z_1\|^2 EV(t_2^r, e(t_2^r)) \exp(\lambda_{\text{max}}(\Xi)(t_3^r - t_0^r)). \]
(23)

When $t = t_2$, by from (16) and (23), one can attain
\[EV(t_2, e(t_2)) \leq \|Z_2\|^2 EV(t_2^r, e(t_2^r)) \leq \|Z_1\|^2 \|Z_2\|^2 EV(t_0, e(t_0)) \exp(\lambda_{\text{max}}(\Xi)(t_2 - t_0)). \]
(24)

For $t \in [t_2, t_3)$, according to (17) and (24), we can obtain
\[EV(t_3^r, e(t_3^r)) \leq EV(t_3^r, e(t_3^r)) \exp(\lambda_{\text{max}}(\Xi)(t_3^r - t_2^r)) \leq \|Z_1\|^2 \|Z_2\|^2 EV(t_0, e(t_0)) \exp(\lambda_{\text{max}}(\Xi)(t_3^r - t_0)). \]
(25)

By the simple induction, for $t \in [t_k, t_k^r)$, we have
\[EV(t_k, e(t_k)) \leq \|Z_1\|^2 \cdots \|Z_k\|^2 EV(t_0, e(t_0)) \exp(\lambda_{\text{max}}(\Xi)(t - t_0)). \]
(26)

a. When $\rho \in (0, 1)$, it can be seen from Remark 4 that all impulses are stabilising, by (26) we have
\[EV(t, e(t)) \leq \rho^{\lambda_{\text{max}}(\Xi) \|Z\|^2} EV(t_0, e(t_0)) \exp(\lambda_{\text{max}}(\Xi)(t - t_0)). \]
(27)

b. When $\rho = 1$, we can get $\rho^{-N_0} = 1$ and $\ln(\rho) = 0$, Remark 4 shows that one or more impulses are invalid. It follows from (26) that
\[EV(t, e(t)) \leq \rho^{-N_0} EV(t_0, e(t_0)) \exp((\ln(\rho)/\tau_a + \lambda_{\text{max}}(\Xi))(t - t_0)). \]
(28)

c. When $\rho > 1$, it can be seen from Remark 4 that the impulses are an interference source. It yields from (26) that
\[EV(t, e(t)) \leq \rho^{\lambda_{\text{max}}(\Xi) \|Z\|^2} EV(t_0, e(t_0)) \exp(\lambda_{\text{max}}(\Xi)(t - t_0)). \]
(29)

Let $\bar{H} = \max\{\rho^{N_0}, 1, \rho^{-N_0}\}$. In summary, according to (27-29), then we have
\[EV(t, e(t)) \leq \bar{H} EV(t_0, e(t_0)) \exp((\ln(\rho)/\tau_a + \lambda_{\text{max}}(\Xi))(t - t_0)). \]
(30)

Consequently, we can get $e(t) \to 0$ when $t \to +\infty$ as $k \to +\infty$. It means that system (6) is globally exponentially stable in the mean square sense. In other words, the leader-following mean square consensus of system (4) can be achieved via impulsive control (3). This completes the proof.

Remark 7: By Remark 6, if $t_k^r = t_k^l$, one has $\tau_a = T_a$. At this time, let $Pr(\varepsilon(t) = 1) = 1$, then we can get Theorem 1 of [17]. In addition, let $\|Z_k\| = \mu I_{N_0}$ and $t_k^r = t_k^l$, we have $\rho = |\mu|^2$. Then, consensus criterion $\frac{\ln(|\mu|)}{T_a} + \lambda_{\text{max}}(\Xi) < 0$ can be obtained by Theorem 1 in our paper, which is similar to Theorem 1 in [35].

Remark 8: We know that parameters ρ and $\lambda_{\text{max}}(\Xi)$ are related to the selection of B_k, and different matrices may lead to different results. By Theorem 1 in this paper, the following two cases are discussed:

a. When $\lambda_{\text{max}}(\Xi) \geq 0$, the premise for unstable system (4) to achieve the consensus eventually is that $\rho < e^{-\lambda_{\text{max}}(\Xi) \|Z\|^2} < 1$ holds for all parameters. By Remark 4, we know that all impulses are stabilising.

b. When $\lambda_{\text{max}}(\Xi) < 0$, for $1 < \rho < e^{-\lambda_{\text{max}}(\Xi) \|Z\|^2}$, the consensus of stable system (4) can be achieved. By Remark 4, the impulses are equivalent to a series of interference ones.
If $\rho \leq 1$, all impulses are stabilizing and the consensus criterion can be satisfied always for the given conditions.

By Remark 8, our consensus criterion is suitable to judge whether the stable or unstable system can achieve the consensus under the effects of stabilizing or interference impulses. Therefore, the obtained criterion in this paper is a unified one.

Remark 9: By substituting Lemma 1 into (26), the following conclusions are given.

(a1) When $\rho \in (0, 1)$, on the one hand, one has $\ln(\rho)/\Delta \tau_{\text{max}} + \lambda_{\text{max}}(\Sigma) < 0$. Since $\tau_a < \Delta \tau_{\text{max}}$, it means that the obtained criterion by Theorem 1 can be satisfied easily under the same parameters. On the other hand, $\ln(\rho^*)/(\tau_{k+1}^* - \tau_k^*) + \lambda_{\text{max}}(\Sigma^*) < 0$ is further obtained while ROUs, RONs and stochastic disturbances are not considered, which is similar to that obtained in [24]–[34]. For the convenience of comparison, it is assumed that the values of $\ln(\rho^*)$ and $\lambda_{\text{max}}(\Sigma^*)$ are the same in all references. Then, we have $\tau_a < -\ln(\rho^*)/\lambda_{\text{max}}(\Sigma^*)$ and $\tau_a < \Delta \tau_{\text{max}}$, which means that the upper bound of τ_a is $-\ln(\rho^*)/\lambda_{\text{max}}(\Sigma^*)$. Since τ_a is always less than $\Delta \tau_{\text{max}}$ objectively, thus by introducing the concept of ALEI into this paper, $\Delta \tau_{\text{max}}$ can be bigger than $-\ln(\rho^*)/\lambda_{\text{max}}(\Sigma^*)$. This means that the allowable upper bound of the width of ITWs increases synchronously. In other words, a larger impulse interval can be derived, which is less conservative for the presetting of ITWs.

(a2) When $\rho > 1$, it yields $\ln(\rho)/\Delta \tau_{\text{min}} + \lambda_{\text{max}}(\Sigma) < 0$. Due to $\tau_a > \Delta \tau_{\text{min}}$, thus the same conclusion with that in part (a1) can be derived.

Obviously, the above statements in Remark 9 reflect the superiority of the proposed concept of ALEI in this paper, which applies for a wider range of applications.

Remark 10: The relationship between related parameters in ALEI and impulsive properties is discussed as follows.

(aa1) When all impulses are stabilising, the more numbers of impulses are applied to control the systems, the better the control effect is. In this case, we can increase the upper bound of $N_0(t, T)$ in Definition 1. Moreover, part (a1) in Remark 9 shows that the smaller the value of τ_a is selected, the easier the systems to achieve the consensus is. In this regard, it is a feasible choice to decrease the value of τ_a and keep the value of N_0 unchanged or increased.

(aa2) When the impulses exist as an interference source, it means that the numbers of impulses should be as small as possible. Part (aa2) in Remark 9 indicates that the bigger the value of τ_a is selected, the closer the requirement meets. Therefore, we can increase the value of τ_a and keep the value of N_0 unchanged or decreased.

In addition, although the value of N_0 has no influence on whether system (4) can achieve the consensus eventually, it can affect the convergence rate of the system by determining the upper and lower bounds of the numbers of ITWs on the interval (t, T). In other words, the ideal control effect can be achieved by adjusting the value of N_0 according to actual demands.

IV. NUMERICAL SIMULATION

In this section, one numerical simulation example is given to validate the correctness of our results.

Example 1: Consider a class of SMASs composed by four followers and one leader, and the system dynamics (Chua’s oscillator [37]) is described by $(i = 0, 1, 2, 3, 4)$:

$$
\begin{align*}
\dot{x}_1(t) &= -p_1 x_1(t) + p_2 x_2(t) - p_1 g(x_3(t)), \\
\dot{x}_2(t) &= x_1(t) - x_2(t) + x_3(t), \\
\dot{x}_3(t) &= -p_2 x_2(t),
\end{align*}
$$

where $g(x_3(t)) = m_2 x_3(t) + 0.5(m_1 - m_2)(|x_3(t)| + 1 - |x_3(t) - 1|)$, $m_1 < m_2 < 0$, $p_1 = 9.21$, $p_2 = 15.995$, $m_1 = -1.25$ and $m_2 = -0.758$.

Let $f(t, x_i(t)) = \begin{bmatrix} -0.5(m_1 - m_2)(|x_1(t)| + 1 - |x_1(t)| - 1) \\ 0 \\ 0 \end{bmatrix}$, $\Lambda = \begin{bmatrix} -p_1 (1 + m_2) & p_1 & 0 \\ 1 & -1 & 1 \\ 0 & -p_2 & 0 \end{bmatrix}$.

Let $\Phi(t, x_i(t)) = [0.3 \sin^2(t) x_1(t), 0.3 \sin^2(t) x_2(t), 0.3 \sin^2(t) x_3(t)]^T$, $\tilde{\Theta} = \text{diag}(0.6, -0.2, 0.6)$, $\Theta = \text{diag}(0.16, 0.6, -0.26)$, and $\Lambda(t) = \text{diag}(\alpha(t), \beta(t), \gamma(t))$, $\cos(t), -\sin(t))$. Then, we can get $\phi = 11.5125$ and $\varphi = 0.3$.

By FIGURE4, we have

$$
A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad L = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}
$$

and $B = \text{diag}(1, 0, 0, 1)$. Let $\beta = 0.8$, $\gamma = 0.4$, $\alpha = 0.6$, $\beta = 0.8$ and $B_t = \text{diag}(0.6, 0.6, 0.6, 0.6)$, the initial values of all agents are $x_0(t) = (0.2, -6, 3.6)^T$, $x_1(t) = (-7.6, 1, 6)^T$, $x_2(t) = (8, -1.6, -3)^T$, $x_3(t) = (8, 0, -3.9)^T$ and $x_4(t) = (-7, 1, -1)^T$ respectively. To sum up, it can be attained by calculation that $\rho = 0.8835$, $\lambda_{\text{max}}(\Sigma) = 26.1863$ and $\tau_a < 0.00473$. Let $\tau_a = 0.004$.

For convenience, all ITWs are preset as shown in FIGURE5, where $(\Delta \tau_{\text{min}} + \Delta \tau_{\text{max}} + \Delta \tau_{\text{min}} + \ldots, (N_0 - 1)\Delta \tau_{\text{min}} + \Delta \tau_{\text{min}}, N_0 \tau_a, N_0 \tau_a + \Delta \tau_{\text{min}}, \ldots, 2 N_0 \tau_a, \ldots)$

![FIGURE 4. The topology of stochastic multi-agent systems.](image-url)
Z. Zhang et al.: Unified Mean Square Consensus Criterion for Stochastic MASs With ROUs and RONs Under ITWs

FIGURE 5. Impulse time windows in time period \((t_0, T)\).

FIGURE 6. The impulsive interval.

FIGURE 7. Schematic diagram of the impulse sequence.

\[
\tau_k^l - \tau_{k-1}^l = \begin{cases}
\Delta \tau_{\min}, & k = 1, \\
\Delta \tau_{\min}, & k \geq 2, \\
\text{mod} (k, N_0) \neq 0, \\
N_0 (\tau_k - \Delta \tau_{\min}) + \Delta \tau_{\min} + \Delta \tau_{\min}, & k \geq 2, \\
\text{mod} (k, N_0) = 0.
\end{cases}
\]

are the left endpoint sequence and the left endpoint interval of the ITWs respectively. Obviously, we have \(\inf_{k \in \mathbb{N}^+} (\tau_k^l - \tau_{k-1}^l) = \Delta \tau_{\min}\) and \(\sup_{k \in \mathbb{N}^+} (\tau_k^l - \tau_{k-1}^l) = N_0 (\tau_k - \Delta \tau_{\min}) + \Delta \tau_{\min} + \Delta \tau_{\min}\). Let \(\Delta \tau_{\min} = 0.001\), \(\Delta \tau_{\min} = 0.002\) and \(N_0 = 10\). Then, simulation Figures 6-9 are given.

By FIGURE6 and FIGURE7, we have \((\Delta t_k)_{\max} = t_{19} - t_{18} = 0.0199\) and \((\Delta t_k)_{\min} = t_{40} - t_{39} = 0.0011\). Based on the same parameters, it can be obtained from Theorem 1 in [38] that \(t_{k+1} - t_k \leq 0.00946\). Therefore, Theorem 1 in [38] does not apply to the impulse sequence shown in FIGURE7. However, the results in this paper allow for a larger bound of impulsive interval in the impulse sequence, which is less conservative than that in [38], etc. Moreover, FIGURE8 and FIGURE9 show that the error trajectories of all agents can converge to 0 approximately before 0.1s, which means that the leader-following mean square consensus of SMASs can be achieved eventually.

V. CONCLUSION

In this article, the influence of factors RONs, ROUs and stochastic disturbances is considered comprehensively in the MASs’ model. The leader-following consensus of SMASs in the mean square sense is studied under ITWs. In order to obtain a larger upper bound of the impulsive interval, we extend AII to the general case where the ITW is objective existence and propose the new concept named ALEI. Based on ALEI, we derive a unified consensus criterion that can be
used to analyse the consensus problem of different types of SMASs with stabilizing or interference impulses. By comparing the existing results related to ITWs, our results have been proved by Section IV to be less conservative from the perspective of allowing a larger upper bound of impulse interval. In the future, we will try to introduce the finite-time or fixed-time control protocol into this paper to obtain a faster convergence rate.

REFERENCES

[1] J. Wen, P. Xu, C. Wang, G. Xie, and Y. Gao, “Distributed event-triggered formation control for multi-agent systems with limited communication bandwidth,” Neurocomputing, vol. 358, pp. 211–221, Sep. 2019.

[2] W. Ying, P. Ray, and L. Lewis, “A methodology for creating ontology-based multi-agent systems with an experiment in financial application development,” in Proc. 46th Hawaii Int. Conf. Syst. Sci., Jan. 2013, pp. 3397–3406.

[3] W. Li, Q. Bai, and M. Zhang, “A multi-agent system for modelling pre-service-based complex influence diffusion in social networks,” Comput. J., vol. 62, no. 3, pp. 430–447, Mar. 2019.

[4] M. Xu, K. An, L. H. Vu, Z. Ye, J. Feng, and E. Chen, “Optimizing multi-agent based urban traffic signal control system,” J. Intell. Transp. Syst., vol. 23, no. 4, pp. 357–369, Jul. 2019.

[5] B. Roche, J.-F. Guégan, and F. Boussquit, “Multi-agent systems in epidemiology: A first step for computational biology in the study of vector-borne diseases transmission,” BMC Bioinform., vol. 9, no. 1, pp. 435, Dec. 2008.

[6] X. Wang and H. Su, “Self-triggered leader-following consensus of multi-agent systems with input time delay,” Neurocomputing, vol. 330, pp. 70–77, Feb. 2019.

[7] Y. Cai, H. Zhang, K. Zhang, and Y. Liang, “Distributed leader-following consensus of heterogeneous second-order time-varying nonlinear multi-agent systems under directed switching topology,” Neurocomputing, vol. 325, pp. 31–47, Jan. 2019.

[8] J. Liu and J. Huang, “Leader-following consensus of linear discrete-time multi-agent systems subject to jointly connected switching networks,” Sci. China Inf. Sci., vol. 61, no. 11, Nov. 2018, Art. no. 112208.

[9] W. Zou, C. K. Ahn, and Z. Xiang, “Leader-following consensus of second-order nonlinear multi-agent systems with unmodeled dynamics,” Neurocomputing, vol. 322, pp. 120–129, Dec. 2018.

[10] Y. Ye and H. Su, “Leader-following consensus of nonlinear fractional-order multi-agent systems over directed networks,” Nonlinear Dyn., vol. 96, no. 2, pp. 1391–1403, Apr. 2019.

[11] F. Li and H. Shen, “Finite-time H-infinity synchronization control for semi-Markov jump delayed neural networks with randomly occurring uncertainties,” Neurocomputing, vol. 166, pp. 447–454, Oct. 2015.

[12] L. P. Shil’nikov, “Chua’s circuit: Rigorous results and future problems,” Complexity, vol. 23, pp. 40–49, Nov. 2018.

[13] Y. Wang, J. Xia, X. Huang, J. Zhou, and H. Shen, “Extended dissipative synchronization for singularly perturbed semi-Markov jump neural networks with randomly occurring uncertainties,” Neurocomputing, vol. 349, pp. 281–289, Jul. 2019.

[14] D. Li, J. Ma, H. Zhu, and M. Sun, “The consensus of multi-agent systems with uncertainties and randomly occurring nonlinearities via impulsive control,” Int. J. Control, Autom. Syst., vol. 14, no. 4, pp. 1005–1011, Aug. 2016.

[15] D. Li, Z. Wang, G. Ma, and C. Ma, “Non-fragile synchronization of dynamical networks with randomly occurring nonlinearities and controller gain fluctuations,” Neurocomputing, vol. 168, pp. 719–725, Nov. 2015.

[16] Y. Liu, Y. Ma, and Y. Wang, “Reliable finite-time sliding-mode control for singular time-delay system with sensor faults and randomly occurring nonlinearities,” Appl. Math. Comput., vol. 320, pp. 341–357, Mar. 2018.

[17] Y. Xu, S. Peng, and A. Guo, “Leader-following consensus of nonlinear multi-agent systems with randomly occurring uncertainties and stochastic disturbances under impulsive control input,” Int. J. Syst. Sci., vol. 48, no. 15, pp. 3138–3146, Nov. 2017.

[18] M. Hu, L. Guo, A. Hu, and Y. Yang, “Leader-following consensus of linear multi-agent systems with randomly occurring nonlinearities and uncertainties and stochastic disturbances,” Neurocomputing, vol. 149, pp. 884–890, Feb. 2015.

[19] Y. Xu, S. Peng, and A. Guo, “Leader-following consensus of nonlinear delayed multi-agent systems with randomly occurring uncertainties and stochastic disturbances under impulsive control input,” Int. J. Control, Autom. Syst., vol. 16, no. 2, pp. 566–576, Apr. 2018.

[20] H. Ren, F. Deng, Y. Peng, B. Zhang, and C. Zhang, “Exponential consensus of non-linear stochastic multi-agent systems with ROUs and ITWs via impulsive pinning control,” IET Control Theory Appl., vol. 11, no. 2, pp. 225–236, Jan. 2017.

[21] R. Herzallah, “Decentralised probabilistic consensus control for stochastic complex dynamical networks,” IEEE Control Syst. Lett., vol. 5, no. 2, pp. 577–582, Apr. 2021.

[22] X. Mu and X. Wu, “Tracking consensus for stochastic hybrid multi-agent systems with partly unknown transition rates via sliding mode control,” IET Control Theory Appl., vol. 14, no. 8, pp. 1091–1103, May 2020.

[23] W. Zou, P. Shi, Z. Xiang, and Y. Shi, “Consensus tracking control of switched stochastic nonlinear multiagent systems via event-triggered strategy,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 3, pp. 1036–1045, Mar. 2020.

[24] X. Wang, C. Li, T. Huang, and X. Pan, “Impulsive control and synchronization of nonlinear system with impulse time window,” Nonlinear Dyn., vol. 78, no. 4, pp. 2837–2845, Dec. 2014.

[25] W. Zou, P. Shi, Z. Xiang, and T. Huang, “Uniformly stability of impulsive delayed linear systems with impulse time windows,” Ital. J. Pure Appl. Math., vol. 34, pp. 213–220, Jun. 2015.

[26] D. Yang, G. Qu, and C. Li, “Global exponential stability of memristive neural networks with impulsive time window and time-varying delays,” Neurocomputing, vol. 171, pp. 1021–1026, Jan. 2016.

[27] Y. Feng, C. Li, and T. Huang, “Periodically multiple state-jumps impulsive control systems with impulse time windows,” Neurocomputing, vol. 193, pp. 7–13, Jun. 2016.

[28] H. Wang, S. Duan, C. Li, L. Wang, and T. Huang, “ Globally exponential stability of delayed impulsive functional differential systems with impulse time windows,” Nonlinear Dyn., vol. 84, no. 3, pp. 1655–1665, May 2016.

[29] Y. Feng and C. Li, “Comparison system of impulsive control system with impulse time windows,” J. Intell. Fuzzy Syst., vol. 32, no. 6, pp. 4197–4204, May 2017.

[30] L. Zou, Y. Peng, Y. Feng, and Z. Tu, “Impulsive control of nonlinear systems with impulse time window and bounded gain error,” Nonlinear Anal., Model. Control, vol. 23, pp. 40–49, Jan. 2018.

[31] X. Hu and L. Nie, “A note on sandwich control systems with impulse time windows,” Medit. J. Math., vol. 16, no. 2, Apr. 2019.

[32] X. Hu, Z. Zhang, C. Li, and Q. Zhang, “A hybrid protocol for the average consensus of multi-agent systems with impulse time window,” J. Franklin Inst., vol. 357, no. 7, pp. 4222–4241, May 2020.

[33] Q. Zhang, Y. Han, S. Liu, and L. You, “Constraint impulsive consensus of nonlinear multi-agent systems with impulse time windows,” AIMS Math., vol. 5, no. 4, pp. 3682–3701, 2020.

[34] T. Ma, Z. Zhang, and B. Cui, “Variable impulsive consensus of nonlinear multi-agent systems,” Nonlinear Anal., Hybrid Syst., vol. 31, pp. 1–18, Feb. 2019.

[35] J. Lu, D. W. C. Ho, and J. Cao, “A unified synchronization criterion for impulsive dynamical networks,” Automatica, vol. 46, no. 7, pp. 1215–1221, Jul. 2010.

[36] Z. Wang, S. Lauria, J. Fang, and X. Liu, “Exponential stability of uncertain stochastic neural networks with mixed time-delays,” Chaos, Solitons Fractals, vol. 32, no. 1, pp. 62–72, Apr. 2007.

[37] L. P. Shilnikov, “Chua’s circuit: Rigorous results and future problems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 40, no. 10, pp. 784–786, Oct. 1993.

[38] T. Ma, L. Zhang, and Z. Gu, “Further studies on impulsive consensus of multi-agent nonlinear systems with control gain error,” Neurocomputing, vol. 190, pp. 140–146, May 2016.

ZHENHUA ZHANG received the B.S. degree from West Anhui University, Lu’an, China, in 2015, and the M.S. degree from the Guangdong University of Technology, Guangzhou, China, in 2018, where he is currently pursuing the Ph.D. degree with the School of Automation. His current research interests include impulsive control, event-triggered control, and stochastic systems.
SHIGUO PENG was born in Hunan, China, in 1967. He received the B.S. degree from Xiangtan University, Xiangtan, in 1989, and the M.S. and Ph.D. degrees from Zhongshan University, Guangzhou, China, in 1992 and 1995, respectively. He is currently a Professor with the School of Automation, Guangdong University of Technology, Guangzhou. His research interests include nonlinear analysis, robust control, and stochastic systems.

TAO CHEN was born in Guangdong, China. He received the B.S. degree from the Zhongkai University of Agriculture and Engineering, Guangzhou, China, in 2013, and the M.S. degree from the Guangdong University of Technology, Guangzhou, in 2017, where he is currently pursuing the Ph.D. degree with the Faculty of Automation. His research interests include complex system control and stochastic systems.