DESENVOLVIMENTO DO FENÓTIPO OSTEOBLÁSTICO EM
CÉLULAS DERIVADAS DE OSSO ALVEOLAR HUMANO
CULTIVADAS SOBRE TITÂNIO REVESTIDO
COM COLÁGENO TIPO I

Adriano Freitas de Assis
Orientador: Prof. Dr. Adalberto Luiz Rosa

Ribeirão Preto
2008
DESENVOLVIMENTO DO FENÓTIPO OSTEOBLÁSTICO EM CÉLULAS DERIVADAS DE OSSO ALVEOLAR HUMANO CULTIVADAS SOBRE TITÂNIO REVESTIDO COM COLÁGENO TIPO I

Adriano Freitas de Assis

Dissertação apresentada à Faculdade de Odontologia de Ribeirão Preto da Universidade de São Paulo para a obtenção do título de Mestre em Odontologia.

Área de Concentração: Cirurgia Buco-Maxilo-Facial

Orientador: Prof. Dr. Adalberto Luiz Rosa

Ribeirão Preto

2008
De Assis, Adriano Freitas

Desenvolvimento do fenótipo osteoblástico em células derivadas de osso alveolar humano cultivadas sobre titânio revestido com colágeno tipo I, 2008.

77 p. : il. ; 30cm

Dissertação de Mestrado, apresentada à Faculdade de Odontologia de Ribeirão Preto/USP – Área de Concentração: Cirurgia Buco-Maxilo-Facial.
Orientador: Rosa, Adalberto Luiz

1. Titânio. 2. Modificação de superfície. 3. Colágeno tipo I.
4. Osteoblastos. 5. Osteogênese. 6. Cultura de células.
Trabalho realizado no Laboratório de Cultura de Células da Faculdade de Odontologia de Ribeirão Preto da Universidade de São Paulo com auxílio financeiro da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).
Aos meus pais, Carlos Augusto e Tânia, e meus irmãos, Danielle e Sandro,
pelo amor, carinho e incentivo inesgotáveis.
AGRADECIMENTOS
Ao Prof. Adalberto Luiz Rosa por ter me recebido como orientado, pelo aprendizado proporcionado, pela confiança, amizade e paciência. Por sua competência e tranquilidade que acalma e nos renova para continuar seguindo em frente.

Ao Prof. Márcio Mateus Beloti pela enorme ajuda e preocupação com o sucesso deste trabalho, e pela paciência, amizade e solicitude.

Ao Prof. Valdemar Mallet da Rocha Barros pela amizade e pela constante preocupação em nos transformar em verdadeiros professores.

Aos professores Alexandre Elias Trivellato, Cássio Edvard Sverzut, Paulo Tambasco de Oliveira, Samuel Porfírio Xavier, Luiz Antônio Salata.

À Camila Gilio, pelo companheirismo, paciência e incentivo, e por me fazer sentir em casa mesmo estando tão longe.

Aos meus colegas de pós-graduação: Roberto de Oliveira Jabur, Alice Dias Petri, Marcos Andrade de Oliveira, Wagner Pedrosa Jr., Maya Fernanda Manfrin Arnez.

À Grasiele Edilaine Crippa Perez, Fabiola Singaretti de Oliveira, Larissa Sverzut Bellesini, Roger Rodrigo Fernandes, Júnia Ramos, Aparecida Dulce de Oliveira Negretti, Tatiana Angeli Passos Fernandes, Gáéson Antunes da Silva, Rosângela Aparecida Ferezin.

Ao Dr. Marco Morra e Nobil Bio Ricerche – Itália pelo preparo das amostras utilizadas neste estudo.

Aos membros docentes e não-docentes do Departamento de Cirurgia e Traumatologia Buco-Maxilo-Facial e Periodontia e do Laboratório de Cultura de Células da Faculdade de Odontologia de Ribeirão Preto da Universidade de São Paulo.

À FAPESP, pelo apoio financeiro ao projeto e pela bolsa concedida.

A todos os que estiveram presentes e contribuíram para a realização deste trabalho, o meu MUITO OBRIGADO!
"Algo é só impossível até que alguém duvide e acabe provando o contrário."

Albert Einstein
ÍNDICE	
RESUMO...	i
ABSTRACT.......................... ...	ii
1. INTRODUÇÃO........................... ..	01
2. PROPOSIÇÃO........................... ..	09
3. MATERIAL E MÉTODOS..	11
3.1. Amostras de Ti...	12
3.2. Cultura de células...	12
3.3. Métodos de avaliação das respostas celulares...........................	13
3.3.1. Adesão celular...	13
3.3.2. Morfologia celular..	14
3.3.3. Proliferação celular..	14
3.3.4. Síntese de proteína total...	15
3.3.5. Atividade de ALP...	16
3.3.6. Formação de matriz mineralizada...	16
3.3.7. Expressão gênica..	17
3.4. Análise estatística..	22
4. RESULTADOS...	23
4.1. Amostras de Ti...	24
4.2. Adesão celular...	25
4.3. Morfologia celular...	26
4.4. Proliferação celular...	27
4.5. Síntese de proteína total...	28
4.6. Atividade de ALP...	29
4.7. Formação de matriz mineralizada...	30
4.8. Expressão gênica..	32
5. DISCUSSÃO..	34
6. CONCLUSÕES..........................	40
REFERÊNCIAS BIBLIOGRÁFICAS..	42
ARTIGO CIENTÍFICO..	51
RESUMO

Os eventos celulares e extracelulares que ocorrem durante o processo de osseointegração do titânio (Ti) são bastante influenciados por suas propriedades de superfície, como morfologia, topografia e composição química. A modificação bioquímica da superfície do Ti consiste em imobilizar proteínas ou peptídeos nessa superfície com a finalidade de induzir respostas celulares e teciduais específicas na interface osso-implante que acelerem ou aumentem a osseointegração. O objetivo deste estudo foi avaliar o desenvolvimento do fenótipo osteoblástico em culturas de células crescidas sobre Ti revestido com colágeno tipo I. Para tanto, células osteoblásticas derivadas de fragmentos ósseos do processo alveolar de humanos foram cultivadas sobre discos de Ti usinados revestidos (Ti-col) ou não (Ti-usinado) com colágeno tipo I e foram avaliados os seguintes parâmetros: adesão, morfologia e proliferação celulares, síntese de proteína total, atividade de fosfatase alcalina (ALP), formação de matriz mineralizada, e expressão de genes marcadores do fenótipo osteoblástico por reação em cadeia da polimerase em tempo real (PCR em tempo real). O Ti-col alterou o crescimento e a expressão gênica das culturas e não teve efeito na adesão e morfologia celulares, síntese de proteína total, atividade de ALP e formação de matriz mineralizada comparado ao Ti-usinado. Esses resultados indicam que a superfície Ti-col pode favorecer um maior crescimento da cultura durante a fase proliferativa e um aumento e/ou aceleração da diferenciação, como indicado por alterações na expressão gênica de marcadores do fenótipo osteoblástico. Portanto, essa modificação de superfície pode ter um impacto nos processos de reparo e remodelação do tecido ósseo adjacente a implantes, favorecendo a ocorrência de maior formação óssea.

Palavras-chave: Titânio; Modificação de superfície; Colágeno tipo I; Osteoblastos; Osteogênese; Cultura de células.
ABSTRACT

Cellular and extracellular events that occur during titanium (Ti) osseointegration process are highly influenced by its surface properties, such as morphology, topography and chemical composition. The objective of biochemical modification of Ti is to immobilize proteins or peptides on its surface in order to induce specific cellular and tissue responses at the bone-implant interface in order to accelerate or enhance osseointegration. The aim of this study was to evaluate the osteoblastic phenotype development in cells grown on collagen type I-coated Ti surface. Osteoblastic cells from human alveolar bone fragments were cultured on turned Ti either coated with collagen type I (col-Ti) or not (turned-Ti) and the following parameters were assessed: cell adhesion, morphology, and proliferation, total protein content, alkaline phosphatase (ALP) activity, bone-like formation and gene expression of osteoblastic markers by real-time polymerase chain reaction (real-time PCR). Col-Ti altered culture growth and gene expression of osteoblastic markers without affecting cell adhesion, morphology, protein synthesis, ALP activity, and matrix mineralization. These results demonstrated that col-Ti favours cell growth during the proliferative phase and osteoblastic differentiation, as demonstrated by changes in mRNA expression profile during the matrix mineralization phase, suggesting that this Ti surface modification may affect the processes of bone healing and remodelling.

Keywords: Titanium; Surface modification; Collagen type I; Osteoblasts; Osteogenesis; Cell culture.
1. INTRODUÇÃO

Desde as descobertas feitas por Brånemark, que identificou a relação entre osso e titânio (Ti) como osseointegração (BRÅNEMARK, 1968; BRÅNEMARK e cols., 1969), a interface osso-Ti tem sido amplamente estudada (LAVOS-VALERETO e cols., 2001; KLOKKEVOLD e cols., 2001; ESENWEIN e cols., 2001). Os implantes dentários foram utilizados inicialmente para reabilitar mandíbulas totalmente edêntulas, mas devido à osseointegração e ao sucesso dessas reabilitações o uso foi estendido para reabilitações parciais e unitárias (BRÅNEMARK e cols., 1977; SCHNITMAN e cols., 1988; OLSON e cols., 2000).

A osseointegração, caracterizada pelo contato direto, estrutural e funcional, entre o tecido ósseo, organizado e saudável, e a superfície do implante é uma propriedade do Ti já estabelecida e amplamente abordada pela literatura. Falhas no processo de osseointegração podem levar à formação de tecido fibroso resultando na encapsulação e perda do implante (VIORNERY e cols., 2002). Os eventos celulares e extracelulares que ocorrem durante o processo de osseointegração são bastante influenciados pelas propriedades de superfície do Ti, como morfologia, topografia e composição química (BOYAN e cols., 1998; REDEY e cols., 2000; NISHIO e cols., 2000). Assim sendo, a área de pesquisa que investiga modificações de superfície do Ti é bastante ativa por existir grande interesse em tratamentos de superfície que possam acelerar o processo fisiológico de reparo do tecido ósseo em contato com o Ti (MORRA e cols., 2003). Em uma revisão sobre a
Introdução

interface osso-implante, Puleo e Nanci (1999) descreveram três possíveis abordagens para a modificação de superfície do Ti, sendo: (1) métodos morfológicos, (2) métodos físico-químicos e (3) métodos bioquímicos.

Dentre eles, os métodos bioquímicos, baseados no conhecimento atual dos processos celulares fisiológicos de diferenciação, são uma alternativa ou somam-se aos métodos físico-químicos e morfológicos para a modificação de superfície dos biomateriais (PULEO e NANCI, 1999). O objetivo dos métodos bioquímicos é controlar as reações que ocorrem na interface osso-implante por imobilizar e/ou liberar proteínas, enzimas ou peptídeos que induzam respostas celulares e teciduais específicas (PULEO e NANCI, 1999). Exemplos de modificações bioquímicas de superfícies de biomateriais têm sido apresentados na literatura, como a utilização de proteínas, como o colágeno, fibronectina, fatores de crescimento e proteínas morfogenéticas do osso (GORANSSON e cols., 2003; PULEO, 1996). Alguns dos resultados obtidos confirmam o potencial desta metodologia para a obtenção de implantes com melhores propriedades biológicas (FERRIS e cols., 1999). De acordo com Hammerle (2005), tendo a modificação topográfica alcançado um alto nível de sofisticação, é esperado que avanços significativos ocorram com a introdução de revestimentos bioativos, através da modificação bioquímica da superfície do Ti.

Para que ocorra a osteogênese, é necessário que haja o recrutamento e a proliferação de células precursoras de osteoblastos, que elas se diferenciem em osteoblastos e produzam matriz extracelular não-mineralizada, que será subseqüentemente calcificada (SCHWARTZ e...
Introdução

BOYAN, 1994). A utilização de cultura de células ósseas para o estudo da regulação da osteogênese tem sido gradativamente maior (AUBIN, 1998). Sistemas *in vitro* proporcionam a oportunidade de se avaliar, em um ambiente controlado, eventos celulares e referentes à matriz extracelular que ocorrem durante a formação óssea (IRIE e cols., 1998). Em modelos *in vitro*, o período decorrido para que eventos relacionados à osteogênese sejam observados é da ordem de semanas (STEIN e cols., 1990). Muitos eventos biológicos individuais associados ao reparo na interface osso-implante, como recrutamento de células osteoprogenitoras, proliferação e diferenciação celular, e a produção e mineralização de matriz extracelular, podem ser investigados em osteoblastos isolados. Alterações do comportamento celular frente a diferentes substratos podem ser determinantes no processo de formação óssea *in vivo* (COOPER e cols., 1998).

Algumas proteínas importantes no processo de osteogênese, como colágeno tipo I, fosfatase alcalina (ALP), sialoproteína óssea (BSP), osteopontina (OPN) e osteocalcina (OC), são expressas em momentos específicos e são, portanto, parâmetros importantes para o estudo da osteogênese em culturas de células (BECK Jr., 2003) (Figura 1).
Introdução

Figura 1. Proteínas que participam do processo de osteogênese, expressas em diferentes períodos, em modelo de cultura de células. Adaptado de BECK Jr. (2003).

Essas proteínas participam de diferentes eventos da osteogênese e da manutenção do tecido ósseo. Aproximadamente 90% do componente orgânico da matriz extracelular é composto por colágeno tipo I (OLSEN, 1996). A ALP hidrolisa fosfatos orgânicos, liberando íons fósforo que são importantes para o processo de mineralização da matriz extracelular (BELLOWS e cols., 1992). A OPN está envolvida na maturação da matriz extracelular. Ela é secretada nos estágios iniciais de desenvolvimento osteoblástico e age ligando as fases orgânica e inorgânica para promover adesão tecidual (McKEE e NANCI, 1996). Embora o mecanismo de ação da OC, proteína não-colagênica mais abundante no tecido ósseo, não esteja totalmente elucidado, ela participa do processo de mineralização, em parte pela habilidade em se ligar à porção mineral do tecido ósseo, e da migração de osteoblastos e osteoclastos (HOANG e cols., 2003; BODINE e KOMM, 1999; DUCY e cols., 1996).
Os estudos sobre modificações bioquímicas de superfície do Ti estão concentrados na utilização de moléculas de adesão para controlar a interação inicial entre os tecidos e o implante (HEUNGSOO e cols., 2003). Desde a identificação da sequência de aminoácidos Arg-Gly-Asp (RGD) como mediadora da adesão celular, pesquisadores têm estudado revestimentos baseados em peptídeos que contenham esta sequência de aminoácidos para promover a adesão celular ao biomaterial (PULEO e NANCI, 1999).

Dentre as proteínas relevantes para a modificação bioquímica de superfície dos biomateriais, o colágeno desperta especial interesse, por se tratar da principal proteína presente na matriz extracelular do tecido ósseo e estar diretamente relacionado à adesão das células ao substrato por possuir a sequência de aminoácidos RGD (MORRA e cols., 2003). O revestimento de superfície do Ti com colágeno tem sido utilizado ou como carreador de biomoléculas ou para melhorar a adesão celular (GEISSLER e cols., 2000; PULEO, 1990). Foi observado que o colágeno melhora o espraiamento celular resultando na formação mais rápida de adesões focais (GEISSLER e cols., 2000). Além disso, Mizuno e cols. (2000) mostraram que células de medula óssea cultivadas em presença de colágeno tipo I apresentam fenótipo de células osteoblásticas tais como: alta atividade de ALP, síntese de colágeno, e formação de matriz mineralizada. Rammelt e cols. (2004) mostraram uma tendência à maior formação óssea ao redor de implantes revestidos com colágeno tipo I em tibia de ratos.

A técnica mais simples para revestir uma superfície com biomoléculas
Introdução

é a imersão do implante em uma solução contendo a biomolécula de interesse para que ocorra a adsorção da mesma pela superfície do implante (PULEO e NANCI, 1999). No entanto, este método apresenta problemas como dificuldade de controlar a adsorção, conduzindo à formação de filmes de diferentes espessuras e dissolução não controlada (PULEO e NANCI, 1999). Morra e cols. (2003) descreveram um método de modificação bioquímica de superfície do Ti utilizando colágeno tipo I. O método consiste no tratamento prévio da superfície, realizado em duas etapas. Em um primeiro momento, a superfície é submetida a um tratamento eletroquímico e, em seguida, a um ataque ácido realizado com ácido acrílico a 40%. Após este pré-tratamento, a amostra é, então, imersa em solução de colágeno 0,5%, que é adsorvido à superfície pré-tratada.

A caracterização da superfície obtida mostrou um revestimento delgado e homogêneo e ensaios de citotoxicidade com fibroblastos não evidenciaram qualquer efeito adverso (MORRA e cols., 2003). Células derivadas de osteossarcoma (SaOS-2) mostraram menor taxa de proliferação quando cultivadas sobre Ti revestido com colágeno comparado ao Ti sem revestimento (Morra e cols., 2003). Uma maior formação de tecido ósseo em contato com implantes revestidos com colágeno comparados a implantes sem revestimento foi observada em modelo de fêmures de coelhos (MORRA e cols., 2003). Além disso, a microdureza da interface osso-implante foi maior para os implantes revestidos com colágeno, sugerindo que houve melhora na maturação óssea e mineralização na interface em comparação com os implantes não revestidos (MORRA e cols.,
2005).

Os resultados *in vitro* obtidos por Morra e cols. (2003) devem ser vistos com cautela em razão do tipo de célula utilizado naquele estudo. Considerando que, as linhagens derivadas de osteossarcomas podem não apresentar diferenciação completa *in vitro*, enquanto as linhagens imortalizadas podem adquirir expressão fenotípica diferente das células das quais foram originadas (COOPER e cols., 1998), as avaliações com cultura de células deveriam ser feitas com culturas primárias de células com as quais o biomaterial irá interagir quando implantado *in vivo* (J.E. DAVIES, informação pessoal). Nesse contexto, células osteoblásticas derivadas de fragmentos de osso do processo alveolar de humanos foram utilizadas no presente estudo. Esse modelo exibe todas as fases do processo de osteogênese *in vitro* durante a progressão da cultura (Beloti e cols., 2008).
2. PROPOSIÇÃO

Investigar o desenvolvimento do fenótipo osteoblástico em culturas de células derivadas de fragmentos de osso do processo alveolar de humanos, crescidas sobre Ti revestido com colágeno tipo I, comparado ao Ti sem revestimento.
MATERIAL E MÉTODOS
3. MATERIAL E MÉTODOS

3.1. Amostras de Ti

Foram utilizados discos de Ti comercialmente puro (12 mm x 1 mm) usinados e submetidos ao tratamento bioquímico para deposição de colágeno do tipo I (Ti-col) realizado pelo Nobil Bio Ricerche, Villafranca d’Asti – Itália, como descrito por Morra e cols. (2003). Discos de Ti usinados (Ti-usinado) sem tratamento de superfície foram utilizados como controle. A morfologia das superfícies foi avaliada utilizando um microscópio eletrônico de varredura (LEO 440, Cambridge, Reino Unido).

3.2. Cultura de células

Células da linhagem osteoblástica foram obtidas de fragmentos de osso do processo alveolar (explantes), desprezados durante procedimentos cirúrgicos em doadores saudáveis, sob aprovação do Comitê de Ética da Faculdade de Odontologia de Ribeirão Preto – USP. As células foram isoladas e cultivadas como descrito previamente (Beloti e cols., 2006; Beloti e cols., 2008). Os explantes de tecido ósseo foram submetidos a seis digestões enzimáticas sequenciais em tubos de centrífuga estéreis contendo solução de colagenase tipo II (Gibco, Invitrogen, Grand Island, NY, EUA) a 1 mg/ml, por períodos de 30 minutos a 37°C, sob agitação constante. Os sobrenadantes das duas primeiras digestões foram desprezados e aqueles das quatro últimas digestões, transferidos para tubo de centrífuga contendo meio de cultura e centrifugados a 2000 rpm por 5 minutos. As células isoladas e os explantes remanescentes foram misturados e cultivados em MEM,
modificação alfa (Gibco), suplementado com 10% de soro fetal bovino (Gibco), 50 µg/ml de vancomicina (Acros Organics, Gell, Bélgica), 20 µg/ml de ampicilina (USB Corporation, Cleveland, OH, EUA), 0,3 µg/ml de fungizona (Gibco), 5 µg/ml de ácido ascórbico (Gibco), 7 mM de β-glicerofosfato (Sigma, St. Louis, MO, EUA) e dexametasona 10^{-7} M (Sigma, St. Louis, MO, EUA) em frascos de cultura de 75 cm² (Corning Incorporated, Costar, Corning, NY, EUA). Na subconfluência da cultura primária, foi removido o meio de cultura e adicionada solução de tripsina a 0,25% (Gibco) e EDTA a 1 mM (Gibco) para obtenção de suspensão de células. Em seguida, foram plaqueadas 2×10^4 células/poço sobre discos de Ti-col e de Ti-usinado em placas de poliestireno de 24 poços (Corning Incorporated). As subculturas foram mantidas por períodos de até 21 dias e sua progressão foi avaliada em poços sem a presença de amostras em microscópio de fase invertido (Axiovert 25, Zeiss, Jena, Alemanha). O meio de cultura foi trocado a cada 3 ou 4 dias. Durante todo o tempo de cultivo as células foram mantidas a 37°C e atmosfera umidificada contendo 5% de CO₂ e 95% de ar atmosférico.

3.3. Métodos de avaliação das respostas celulares

3.3.1. Adesão celular

As células foram cultivadas por 1, 2 e 4 horas. Após cada período, o meio de cultura das células foi removido e os poços lavados três vezes com salina tamponada com fosfato (PBS) (Gibco) a 37°C para eliminar as células não aderidas. Em seguida, os poços foram preenchidos com 1 ml de uma solução enzimática composta por EDTA 1 mM e tripsina a 0,25% (Gibco) para remover as células aderidas, etapa que foi monitorada em microscópio de
fase invertido (Zeiss). O número de células foi contado utilizando um hemocitômetro (Fisher Scientific) em um microscópio de fase invertido (Zeiss). A adesão celular foi expressa como porcentagem de células aderidas em relação ao número de células inicialmente plaqueado.

3.3.2. Morfologia celular

A morfologia celular foi avaliada em 1, 2 e 4 horas. Para a visualização dos limites celulares e dos núcleos de células aderidas à superfície dos discos de Ti foram utilizados, respectivamente, faloidina conjugada com Alexa Fluor 488 (Molecular Probes, Eugene, OR, EUA) 1:200, e DAPI (4'-6-diamino-2-phenylindole – Molecular Probes) a 300 nM. Após a montagem de lamínula de vidro sobre os discos, com meio de montagem antifade Prolong (Molecular Probes), as marcações foram analisadas por epiluminação em microscópio de fluorescência Leica (Wetzlar, Alemanha). Para avaliar a morfologia celular, a proporção de células nos estágios (1) células esféricas, (2) células esféricas com filopódios, (3) células com filopódios e lamelipódios e (4) células espraiadas foi calculada a partir da contagem de 100 células aderidas em 1, 2 e 4 horas para cada superfície, utilizando campos microscópicos selecionados aleatoriamente (40X) (RAJARAMAN e cols, 1974).

3.3.3. Proliferação celular

Para avaliação da proliferação celular foi utilizado o método MTT. Esse ensaio é dependente da redução do MTT (brometo de 3-dimetiltiazol-2,5-difeniltetrazolium) pela deidrogenase mitocondrial de células viáveis em um produto azul em forma de cristais (formazan) que pode ser avaliado por espectrofotometria (MOSMANN, 1983). A quantidade desses cristais é diretamente proporcional à coloração azul, que avaliada por um
espectrofotômetro permite uma estimativa do número de mitocôndrias, proporcional ao número de células viáveis da cultura. No momento da avaliação os poços foram lavados com PBS aquecida a 37°C, preenchidos com 100 µl de MTT (5 mg/ml) em PBS e incubados a 37°C por 4 horas. Em seguida as amostras foram aspiradas e os cristais foram solubilizados utilizando 1 ml de uma solução de isopropanol ácido (HCl 0,04 N em isopropanol). As placas foram agitadas por 5 minutos e uma alíquota de 100 µl de cada poço foi transferida para uma placa de 96 poços. A absorbância foi medida através de um espectrofotômetro µQuant (BioTek Instruments, Inc., Winooski, VT, EUA) no comprimento de onda de 570 nm. A proliferação celular, proporcional à densidade óptica obtida, foi avaliada aos 1, 3, 7 e 10 dias.

3.3.4. Síntese de proteína total

A dosagem de proteína total foi realizada em 10 e 14 dias, seguindo o método de Lowry e cols. (1951). Após o meio ter sido removido e os poços lavados três vezes com PBS aquecida a 37°C, os poços foram preenchidos com 2 ml de água deionizada e as placas submetidas a 5 ciclos de choques térmicos, que consistem da colocação da placa em ambiente a -20°C por 20 minutos, seguida de 15 minutos a 37°C. Ao final dos 5 ciclos, 1 ml da solução de cada poço foi transferido para tubos de ensaio, misturado com 1 ml de solução de Lowry (Sigma) e deixados em repouso à temperatura ambiente por 20 minutos. Após esse período, foi adicionado a cada tubo 0,5 ml da solução de reagente de fenol de Folin e Ciocalteau (Sigma), que foram novamente deixados em repouso à temperatura ambiente por 30 minutos para o desenvolvimento de cor. Em seguida, a absorbância foi medida em um
espectrofotômetro CE3021 (Cecil, Inglaterra) utilizando o comprimento de onda de 680 nm e a concentração de proteína total, em µg/ml, foi calculada a partir de uma curva padrão.

3.3.5. **Atividade de ALP**

A atividade de ALP foi medida em 10 e 14 dias através da liberação de timolftaleína pela hidrólise do substrato de timolftaleína monofosfato, utilizando um kit comercial (Labtest, MG, Brasil). Para isso foram utilizados tubos de ensaio branco, padrão e testes. Em todos os tubos foi adicionado 0,05 ml de substrato e 0,5 ml de tampão. No tubo padrão foi acrescentado 0,05 ml da solução padrão. Os tubos foram mantidos a 37ºC por 2 minutos. Em seguida, foi adicionado, em cada tubo teste, 0,05 ml da solução dos mesmos poços utilizados para medida da proteína total. Os tubos foram mantidos a 37ºC por 10 minutos. Após esse período foi adicionado em todos os tubos, branco, padrão e testes, 2 ml do reagente de cor e em seguida a absorbância foi medida em um espectrofotômetro CE3021 utilizando o comprimento de onda de 590 nm. A atividade de ALP, expressa em µmol de timolftaleína/h/ml, foi calculada a partir da medida do tubo padrão. Os dados foram normalizados pelo conteúdo de proteína total.

3.3.6. **Formação de matriz mineralizada**

Para a coloração da matriz mineralizada foi utilizado o corante vermelho de alizarina (Sigma). Após as células terem sido cultivadas por 17 e 21 dias, os poços foram fixados com solução de formalina 10% por 24 horas, e após esse período desidratadas em concentrações crescentes de álcool (30, 50, 70, 90, 96%), mantendo cada solução em contato com o material por 1 hora. Após a última hora, a solução foi completamente removida e as
placas mantidas semi-abertas até a secagem total do material. Quando as placas se apresentavam completamente secas, os poços foram preenchidos e mantidos durante 8 minutos em uma solução de vermelho de alizarina. Após esse período, o excesso de corante foi removido pela lavagem abundante do material com água bidestilada e as placas novamente foram mantidas semi-abertas até a secagem. Os discos foram analisados por epiluminação em microscópio de fluorescência (Leica) e imagens foram obtidas para documentação.

A quantificação da coloração foi avaliada por método colorimétrico de acordo com Gregory e cols. (2004). Foram adicionados 360 µl de ácido acético a 10% a cada poço previamente corado com vermelho de alizarina, e a placa foi levada ao agitador por 30 minutos em temperatura ambiente. O conteúdo de cada poço foi transferido para tubos tipo eppendorf, e então aquecidos a 85ºC por 10 minutos e depois mantidos em gelo por 5 minutos. Os tubos foram levados para centrífuga a 20.000g por 15 minutos, e 100 µl do sobrenadante de cada tubo foi transferido para um novo tubo. Então 40 µl de hidróxido de amônia a 10% foi adicionado a cada tubo para neutralizar o ácido, e todo o conteúdo (140 µl) foi transferido para uma placa de 96 poços. A absorbância foi medida em espectrofotômetro µQuant (BioTek Instruments, Inc.) no comprimento de onda de 405 nm. Os resultados foram calculados multiplicando a densidade óptica obtida por 2.

3.3.7. Expressão gênica

A expressão gênica de marcadores do fenótipo osteoblástico foi avaliada pela reação em cadeia da polimerase (PCR do inglês polymerase chain reaction) em tempo real. Foi avaliada a expressão dos seguintes genes:
Fosfatase alcalina (ALP), *runt-related transcription factor 2* (Runx2), colágeno (COL), osteocalcina (OC), osteopontina (OPN), *receptor activator of nuclear factor kappa B ligand* (RANK-L) e osteoprotegerina (OPG). Como controle foi avaliada a expressão do gene constitutivo para β-actina.

3.3.7.1. _Extração de RNA total para PCR em tempo real_

A extração do RNA total foi realizada aos 7 e 14 dias utilizando o reagente Trizol (Invitrogen™, Carlsbad, CA, EUA) e kit para extração de RNA (Promega, Madison, WI, EUA), de acordo com as instruções do fabricante. Brevemente, as células foram tripsinizadas, e centrífugadas em tubos de 50 ml. O *pellet* de cada amostra foi transferido para um tubo tipo *eppendorf*, no qual foi adicionado o reagente Trizol (cerca de 1 a 2 ml) e mantidos à temperatura ambiente por 15 minutos. Para cada 1 ml da suspensão foram adicionados 200 µl de clorofórmio (Sigma) e os tubos centrifugados a 12000g por 15 minutos a 4°C. A fase aquosa foi transferida para um tubo novo, onde foi acrescentado etanol 70% em igual proporção à amostra (v:v). A solução amostra/etanol foi agitada delicadamente e transferida para uma coluna de afinidade para RNA. Foram adicionados tampões específicos, intercalados por rápidas centrifugações por 15 segundos a 8000g cada. Após várias lavagens com estes diferentes tampões, as amostras de RNA foram eluídas da coluna com 23 µl de água deionizada e tratada com diethylpyrocarbonate (DEPC, Acros Organics), livre de RNase, sendo armazenadas a –70°C, até a confecção do DNA complementar (cDNA). Para o preparo da água adicionou-se 1 ml de DEPC (Acros Organics) em 999 ml de água deionizada, sendo esta mistura incubada por 24 horas e autoclavada por 30 minutos a 120 mmHg.
3.3.7.2. Quantificação de RNA e eletroforese em gel de agarose desnaturante

Para a quantificação das amostras de RNA total uma alíquota de 3 µl foi diluída em 300 µl de água previamente tratada com DEPC (Acros Organics) e analisada por espectrofotometria utilizando o aparelho Biomate 3 spectrophotometer Thermospectronic (Rochester, NY, EUA). A leitura foi realizada nos comprimentos de onda de 260 nm, 280 nm e 230 nm, para detectar a concentração de RNA/µl nas amostras e contaminação por fenol ou proteínas.

A verificação da integridade do RNA foi confirmada por meio de eletroforese em gel de agarose desnaturante 1,5% (m/v). Os tampões para a realização da eletroforese foram preparados com água previamente tratada com DEPC (Acros Organics). O gel foi preparado dissolvendo-se 3 g de agarose (Gibco) em cerca de 144 ml de água. Em seguida, a mistura foi incubada em banho-maria a 65°C e, então, adicionados 20 ml de tampão de corrida (10X) composto por acetato de sódio 50 mM (Merck, Darmstadt, Alemanha), EDTA 5 mM (Merck), Ácido morfolinopropanalsulfônico 100 mM (Sigma) e 36 ml de formaldeído 12,3 M (Merck). Despejou-se a mistura em formas adequadas para moldagem do gel.

Para o preparo das amostras foram adicionados para um volume final de 10 µl: a) cerca de 2 µg de RNA total; b) 2 µl de tampão de corrida (5X); c) 3,5 µl de formaldeído 12,3 M; e, d) 10 µl de formamida (Merck). Esta mistura foi aquecida a 85°C por 10 minutos e, em seguida, submetida a resfriamento a 4°C. No momento de aplicação das amostras no gel foram adicionados 2 µl de brometo de etídeo 10 mg/ml (Sigma). A eletroforese foi conduzida a 80 V durante 1 a 2 horas, utilizando-se tampão de corrida 1X. Após este período, o
Material e métodos

gel foi visualizado através de iluminação com luz ultravioleta (UV) a 300 nm. A caracterização de um RNA mensageiro (RNAm) de boa qualidade foi verificada pela visualização de duas subunidades ribossômicas características nos eucariotos (18S e 28S).

3.3.7.3. Confecção da fita de cDNA

O cDNA foi sintetizado a partir de 2 µg de RNA, através de uma reação de transcrição reversa, com a utilização de uma transcriptase reversa (ImProm-II™ Reverse Transcriptase, Promega). Reações em cadeia da polimerase (PCRs) foram realizadas utilizando a enzima Taq polimerase (Gibco) no termociclador PTC-100 (MJ Research, Watertown, MA, EUA). As condições básicas da reação foram: trinta ciclos de 1 minuto a 94°C, 1 minuto a 42°C e 2 minutos a 72°C, acrescidos de um passo de extensão final de 7 minutos a 72°C. Todas as amostras também foram submetidas à reação para a detecção de RNAm para β-actina, um gene de expressão constitutiva, utilizado como controle positivo da reação de amplificação. Uma amostra negativa (água) foi submetida à reação com cada par das sequências dos primers utilizados.

3.3.7.4. Quantificação de RNAm por PCR em tempo real

A expressão quantitativa dos genes investigados foi analisada por meio de reações de PCR em tempo real, para cada primer investigado em triplicata nas células obtidas a partir de fragmentos ósseos de dois diferentes pacientes, um em cada período (7 e 14 dias). O sistema SYBR Green foi utilizado no aparelho ABI Prism 7700 Sequence Detection System (Applied Biosystems, Warrington, Reino Unido). Esse sistema (ABI Prism Software)
realiza as reações de amplificação, detecção e quantificação das amostras por meio de nucleases fluorogênicas utilizadas na reação, sendo a expressão normalizada com base na expressão de β-actina. *Primers* adequados para tais reações foram criados a partir do programa *Primer Express* (Applied Biosystems). O cDNA (2,5 ng/reação), sintetizado a partir do RNAm e *primers* específicos (1-2 µg/reação) foram utilizados juntamente com o reagente SYBR Green Master Mix (Applied Biosystems), como determinado pelo fabricante. As reações compreenderam 2 minutos a 50°C, 10 minutos a 95°C, e quarenta ciclos de 15 segundos a 95°C e 1 minuto a 56°C, além de um ciclo final de 20 minutos, com temperatura crescente de 60 a 95°C, para a obtenção de uma curva de dissociação dos produtos da reação, utilizada para a análise da especificidade de amplificação. As condições de PCR para cada *primer* utilizado foram padronizadas de acordo com a concentração do *primer*, ausência de formação de dímeros e eficiência de amplificação dos genes alvos e controle interno (gene constitutivo). Os resultados foram analisados com base no valor de TC (ciclo limiar) ou linha de corte, definido após a reação, sendo este o ponto correspondente ao número de ciclos onde a amplificação atingiu um dado limiar, que permitiu a análise quantitativa da expressão do fator avaliado. Os cálculos para determinação da expressão relativa dos genes alvo foram realizados de acordo com instruções contidas no “User’s Bulletin” (P/N 4303859, Applied Biosystems), normalizando os dados em relação à expressão constitutiva de β-actina em cada amostra. As seqüências dos *primers* utilizados e as características da reação estão descritas na Tabela 1.
Tabela 1. Sequência dos *primers* e propriedades das reações.

Gene*	Sequência sense e anti-sense	T.A. (°C)	T.M. (°C)	bp
β-actina	ATGTTTGAGACCTTCAACA CACGTCAGACTTCATGATGG	56	75	495
ALP	ACGTGGAATAGTGTCATC CTGGTAGACGTGATGCTCTTA	60	86	475
Runx2	TATGGCAGCTTCGTCAGGATCC AATAGCGTGCTGCGTAC	61	83	110
COL	TGACGAGACCAAGAATCG CCATCCAAACCACCTGAAACC	61	84	114
OC	CAAAGGTGCAGCCTTTGTGTC TCACAGTCGCGATTTGACTCA	62	85	150
OPN	AGACACATATGATGGGAGG GGCCTGTATGACACATTCA	58	79	154
RANK-L	CAGCCTTTTGGCTATCTCAG TTATGGGAACCGATGCGAT	60	85	112
OPG	AGGCACCTTGAGGCTTTCTGATT ACCCTGTGCGCAAAATTGCTA	59	85	120

*ALP – fosfatase alcalina, Runx2 – *runt-related transcription factor 2*, COL – colágeno tipo I, OC – osteocalcina, OPN – osteopontina, RANK-L – *receptor activator of nuclear factor kappa B ligand*, OPG – osteoprotegerina.

T.A. – temperatura de anelamento; T.M. – temperatura de melting; bp – tamanho do produto (pares de base).

3.4. Análise estatística

Cada experimento foi realizado três vezes, utilizando-se para isso células de três diferentes doadores. Para cada grupo experimental e para cada parâmetro as avaliações foram realizadas em quintuplicata, exceto nas avaliações de expressão gênica que foram realizadas em triplicata, com células de dois doadores. Todos os dados foram comparados pelo teste de Mann-Whitney. As diferenças foram consideradas estatisticamente significantes para p ≤ 0,05.
RESULTADOS
4. RESULTADOS

4.1 Amostras de Ti

As amostras de Ti não apresentaram modificações na topografia de superfície após o tratamento para revestimento com colágeno tipo I. Observou-se, por microscopia eletrônica de varredura, nas duas superfiícies sulcos concêntricos e cavacos produzidos durante o processo de usinagem das amostras (Figura 2).

Figura 2. Fotomicrografias de amostras de Ti-usinado (A) e Ti-col (B) obtidas com microscópio eletrônico de varredura. Barras A e B = 20 µm.
4.2. Adesão celular

Após 1 hora, havia 41,67% do número inicial de células aderidas ao Ti-usinado e 44,17% aderidas ao Ti-col (p = 0,75). Após 2 horas, esse número foi de 60,83% no Ti-usinado e 52,50% no Ti-col (p = 0,67). Ao final de 4 horas, 70,83% do número inicial de células encontravam-se aderidas ao Ti-usinado e 64,17% ao Ti-col (p = 0,46). Não houve diferença estatisticamente significante entre as superfícies em nenhum dos períodos. Os dados são apresentados na Figura 3.

Figura 3. Adesão de células osteoblásticas derivadas de fragmentos de osso alveolar de humanos cultivadas sobre discos de Ti-usinado e Ti-col, expressa como porcentagem de células aderidas em relação ao número de células inicialmente plaqueado (2×10^4) nos períodos de 1, 2 e 4 horas. Os dados são apresentados como média ± desvio padrão de um experimento realizado em quintuplicata.
4.3. **Morfologia celular**

A morfologia celular avaliada por fluorescência direta não mostrou diferenças significantes entre as duas superfícies. As células apresentavam-se aderidas e arredondadas (Figura 4A e B) ao final de 1 hora e mais espraiadas após 2 horas (Figura 4D e E). Ao final de 4 horas a maioria das células estava completamente espraiadas (Figura 4G e H). A proporção de células no estágio 4 (células espraiadas) aumentou progressivamente, atingindo aproximadamente 100% das células aderidas sobre ambas as superfícies ao final de 4 horas (Figuras 4C, F e I).

Figura 4. Marcação por fluorescência direta do citoesqueleto de actina (faloidina) e núcleo (DAPI) de células osteoblásticas derivadas de fragmentos de osso alveolar de humanos cultivadas sobre discos de Ti-usinado (A,D,G) e Ti-col (B,E,H) em 1 (A,B), 2 (D,E) e 4 (G,H) e proporção de células em diferentes estágios de adesão e espraiamento sobre Ti-usinado e Ti-col em 1 (C), 2 (F) e 4 (I) horas. Barras A,B,D,E,G e H = 50 µm.
4.4. *Proliferação celular*

Em 1 dia não houve diferença significante entre os grupos ($p = 0,83$), A_{MTT} foi de 0,011 para o grupo Ti-col e de 0,012 para o grupo Ti-usinado. Em 3 dias a proliferação celular foi significamente maior ($p = 0,05$) no grupo Ti-col ($A_{MTT} = 0,017$) do que no grupo Ti-usinado ($A_{MTT} = 0,009$). Em 7 e 10 dias não houve diferenças significantes entre os grupos. Em 7 dias A_{MTT} foi de 0,027 para o grupo Ti-usinado e de 0,028 para o grupo Ti-col ($p = 0,60$). Em 10 dias A_{MTT} foi de 0,044 para o grupo Ti-usinado e de 0,041 para o grupo Ti-col ($p = 0,34$). Os dados são apresentados na Figura 5.

Figura 5. Proliferação de células osteoblásticas derivadas de fragmentos de osso alveolar de humanos cultivadas sobre discos de Ti-usinado e Ti-col, em 1, 3, 7 e 10 dias. Os dados são apresentados como média ± desvio padrão de um experimento realizado em quintuplicata.
4.5. **Síntese de proteína total**

Em 10 dias, a medida de proteína total foi de 45,98 µg/ml para o grupo Ti-usinado e de 46,05 µg/ml para o grupo Ti-col (p = 0,91). Em 14 dias, a medida de proteína total foi de 71,56 µg/ml para o grupo Ti-usinado e de 65,38 µg/ml para o grupo Ti-col (p = 0,25). Os resultados não mostraram diferenças estatisticamente significante entre os dois grupos. Os dados são apresentados na Figura 6.

![Figura 6. Medida de proteína total de células osteoblásticas derivadas de fragmentos de osso alveolar de humanos cultivadas sobre discos de Ti-usinado e Ti-col, avaliada em 10 e 14 dias. Os dados são apresentados como média ± desvio padrão de um experimento realizado em quintuplicata.](image-url)
4.6. *Atividade de ALP*

A atividade de ALP em 10 dias foi de 30,29 µmol timolftaleína/h/mg proteína para o grupo Ti-usinado e de 41,44 µmol timolftaleína/h/mg proteína para o grupo Ti-col (p = 0,12). Em 14 dias, a atividade de ALP foi de 24,67 µmol timolftaleína/h/mg proteína para o grupo Ti-usinado e de 37,97 para o grupo Ti-col (p = 0,12). Os resultados não mostraram diferenças estatisticamente significante entre os dois grupos. Independentemente do tratamento, a atividade de ALP manteve-se constante do décimo para o décimo quarto dia. Os dados são apresentados na Figura 7.

Figura 7. Atividade de ALP de células osteoblásticas derivadas de fragmentos de osso alveolar de humanos cultivadas sobre discos de Ti-usinado e Ti-col, avaliada em 10 e 14 dias. Os dados são apresentados como média ± desvio padrão de um experimento realizado em quintuplicata.
4.7. Formação de matriz mineralizada

Aos 17 e 21 dias de cultura observou-se a formação de nódulos de mineralização recobrindo áreas dos discos de ambos os grupos. Não foram observadas diferenças morfológicas nos nódulos ou de intensidade de marcação com vermelho de alizarina entre as duas superfícies (Figura 8).

Figura 8. Fluorescência direta da matriz mineralizada marcada com vermelho de alizarina em culturas de células osteoblásticas derivadas de fragmentos de osso alveolar de humanos crescidas sobre superfícies de Ti-usinado (A) e Ti-col (B) aos 21 dias. Barras A e B = 50 µm.
Em 17 dias, a média da absorbância do vermelho de alizarina (A_{alz}) a 405 nm foi de 0,05 para o grupo Ti-usinado e de 0,04 para o grupo Ti-col ($p = 0,17$). Em 21 dias, o grupo Ti-usinado apresentou $A_{alz} = 0,06$, e o grupo Ti-col apresentou $A_{alz} = 0,08$ ($p = 0,25$). Os resultados não mostraram diferença estatisticamente significante em nenhum dos períodos. Os dados são apresentados na Figura 9.

![Figura 9](image-url)

Figura 9. Mineralização da matriz extracelular na superfície em culturas de células osteoblásticas derivadas de fragmentos de osso alveolar de humanos crescidas sobre Ti-usinado e Ti-col aos 17 e 21 dias. Os dados são apresentados como média ± desvio padrão de um experimento realizado em quintuplicata.
4.8. Expressão gênica

Em 7 dias, a expressão gênica para Runx2 foi estatisticamente menor no grupo Ti-col ($p = 0.049$). Não houve diferença estatisticamente significante na expressão de ALP ($p = 0.83$), COL ($p = 0.83$), OC ($p = 0.13$), OPN ($p = 0.83$), RANK-L ($p = 0.83$) e OPG ($p = 0.83$). Os resultados são apresentados na Figura 10.

![Figura 10](image-url)

Figura 10. Expressão gênica de células osteoblásticas derivadas de fragmentos de osso alveolar de humanos cultivadas por 7 dias sobre discos de Ti-usinado e Ti-col. Os resultados são relativos à expressão do gene constitutivo para β-actina. Os dados são apresentados como média ± desvio padrão de um experimento realizado em triplicata.
Em 14 dias, a expressão gênica para Runx2, OPN e OPG foi estatisticamente maior no grupo Ti-col (p = 0,049). A expressão de COL foi estatisticamente menor no grupo Ti-col (p = 0,049). Não houve diferença estatisticamente significante na expressão de ALP (p = 0,76), OC (p = 0,51), RANK-L (p = 0,51). Os resultados são apresentados na Figura 11.

Figura 11. Expressão gênica de células osteoblásticas derivadas de fragmentos de osso alveolar de humanos cultivadas por 14 dias sobre discos de Ti-usinado e Ti-col. Os resultados são relativos à expressão do gene constitutivo para β-actina Os dados são apresentados como média ± desvio padrão de um experimento realizado em triplicata.
DISCUSSÃO
5. DISCUSSÃO

A resposta de células osteoblásticas à superfície de Ti revestida com colágeno tipo I tem sido investigada nos últimos anos (VAN DEN DOLDER e JANSEN, 2007; MORRA e cols., 2007; BIERBAUM e cols., 2006; MORRA e cols., 2006; MORRA e cols., 2003). O presente estudo avaliou o efeito da superfície Ti-col obtida através da técnica descrita por Morra e cols. (2003) sobre a osteogênese induzida por células derivadas de osso alveolar humano comparado ao Ti-usinado. Apesar de nenhuma diferença significante ter sido observada entre as superfícies de Ti em termos de mineralização de matriz extracelular, o evento final na progressão de culturas de células osteogênicas, as células cultivadas na superfície Ti-col mostraram maior taxa de crescimento durante a fase proliferaativa (3º dia), menor expressão gênica de Runx2 (7º dia), e menor expressão de COL e maior expressão de Runx2, OPN, e OPG durante a fase de mineralização da matriz (14º dia).

A caracterização prévia do Ti-col mostrou que a camada de colágeno tipo I reveste de forma homogênea a superfície de Ti e que essa estrutura interage rapidamente com o meio aquoso interfacial (MORRA e cols., 2003). Além disso, testes de estabilidade mostraram que o revestimento resiste à extração em surfactantes aquosos e a avaliação de citotoxicidade não mostrou qualquer efeito adverso ou liberação de produtos da reação de ligação (MORRA e cols., 2003).

A organização supramolecular do colágeno influencia a morfologia celular, organização da actina, bem como a distribuição de subunidades de
integrina, como demonstrado previamente em um estudo de padrões de estruturas de adesão em fibroblastos de pele humana (MERCIER e cols., 1996). Em um experimento utilizando osteoblastos de calvária de ratos, foi relatado que a adesão e o espraiamento celulares foram favorecidos pelo Ti revestido com colágeno tipo I (GEISSLER e cols., 2000). Além disso, células mesenquimais humanas mostraram maior proporção de adesão no Ti-col comparado ao Ti anodizado (MORRA e cols., 2006). Contudo, no presente estudo, nenhuma diferença significante foi observada entre as superfícies de Ti em termos de morfologia celular, espraiamento, e número de células aderidas em 1, 2 e 4 horas. Foi demonstrado que a expressão de integrina pode variar durante a sequência de diferenciação osteoblástica (BENNETT e cols., 2001), o que também pode explicar as diferenças entre os vários modelos de culturas de células no modo como interagem com as superfícies dos materiais. Considerando que, os mecanismos de adesão e as moléculas envolvidas dependem da estrutura de superfície do implante, métodos para a modificação bioquímica da superfície do Ti também deveriam ser considerados como um parâmetro importante nos ensaios de adesão (GEISSLER e cols., 2000).

A literatura apresenta resultados divergentes acerca do efeito do Ti revestido com colágeno tipo I na proliferação celular. No presente estudo, os resultados de proliferação celular, avaliados pelo ensaio de MTT e conteúdo de proteína total, revelaram diferenças entre o Ti-col e o Ti-usinado apenas em 3 dias, no início da fase proliferativa das culturas. Esses resultados estão de acordo com Van den Dolder e Jansen (2007) que observaram maior conteúdo de DNA nas culturas de células de medula óssea de ratos.
crescidas sobre superfície de Ti revestido com colágeno tipo I apenas no 4º dia. Outros pesquisadores relataram que o revestimento de colágeno reduz o crescimento de células osteoblásticas derivadas de osteossarcoma (SaOS-2) no 4º e 10º dia (MORRA e cols., 2003) e não afeta a taxa de proliferação de células de calvária de ratos por um período de até 25 dias (BECKER e cols., 2002). Baseados em nossos resultados utilizando células de osso alveolar humano, é possível sugerir que a superfície de Ti-col obtida através da técnica descrita por Morra e cols. (2003) pode acelerar a dinâmica do ciclo celular apenas nos primeiros períodos da fase proliferativa das culturas.

A ALP é reconhecida por desempenhar um papel ativo na mineralização e pode ser um fator de progressão na osteogênese, sendo expressa durante o desenvolvimento do fenótipo osteoblástico (AUBIN e cols., 1993). A superfície Ti-col não teve efeito significante na atividade de ALP no sistema de cultura utilizado, nos dias 10 e 14. Corroborando nossos achados, outros estudos utilizando diferentes modelos de culturas de células (ex: células osteoblásticas de osteossarcoma, células de medula de ratos, e células de calvária de ratos) demonstraram que o revestimento de colágeno tipo I não interfere com a atividade dessa enzima (MORRA e cols., 2003; VAN DEN DOLDER e cols., 2003; BECKER e cols., 2002). Baseado nesses achados, é possível sugerir que esse revestimento produz algumas alterações relevantes na atividade osteoblástica em nível molecular.

Para avaliar a expressão de RNAm de marcadores importantes do fenótipo osteoblástico em 7 e 14 dias nós utilizamos a técnica da PCR em tempo real. Refletindo a complexidade das respostas celulares induzidas
pelo revestimento de colágeno tipo I, a superfície Ti-col diminuiu a expressão gênica de Runx2 (7º dia), aumentou a expressão de Runx2, OPN, e OPG, não apresentou efeito sobre a ALP, OC e RANK-L, e reduziu a expressão de COL comparado ao Ti-usinado no 14º dia. Confirmando nossos resultados acerca da ausência de efeitos do Ti-col na atividade de ALP, a expressão gênica de ALP também não foi modificada por essa superfície. Corroborando nosso resultado, foi demonstrado que o revestimento de colágeno tipo I falhou em induzir alterações na expressão gênica de ALP e OC em células de medula óssea de ratos cultivadas por 8 dias (VAN DEN DOLDER e JANSEN, 2007).

Foi relatado que células de calvária de ratos cultivadas sobre filmes de colágeno tipo I diferenciam-se precocemente e consequentemente apresentam, em 14 dias, expressão gênica de COL diminuída comparadas com células cultivadas sobre o poliestireno (LYNCH e cols., 1995). A diferenciação osteoblástica tem sido associada também com picos de expressão de OPN e Runx2 (HASSAN e cols., 2004; STEIN e cols., 1996). Portanto, nossos resultados de diminuição na expressão de COL e aumento na expressão de OPN e Runx2 induzidos pelo Ti-col sugerem que essa modificação de superfície intensifica e/ou acelera o processo de diferenciação osteoblástica.

O sistema OPG/RANK-L/RANK (receptor activator of nuclear factor kappa B) tem mostrado exercer um papel central na regulação paracrína da formação e função de osteoclastos (BLAIR e cols., 2006). A OPG liga-se ao RANK-L, ambos secretados pelos osteoblastos, e previne que o RANK-L ligue-se ao seu receptor RANK presente na membrana dos osteoclastos,
inibindo a reabsorção óssea mediada por eles (KHOSLA, 2001). Levando em consideração o aumento da expressão de OPG e a manutenção da expressão de RANK-L em culturas crescidas sobre o Ti-col, é possível sugerir que uma melhor resposta óssea in vivo a essa superfície comparada ao Ti anodizado (MORRA e cols., 2006) poderia ser também devido ao efeito inibitório na atividade osteoclástica mediado por osteoblastos.

Apesar de os resultados de experimentos com expressão gênica sugerirem que o Ti-col favorece a sequência de diferenciação osteoblástica, não foram detectadas diferenças na mineralização de matriz extracelular entre o Ti-col e o Ti-usinado em 17 e 21 dias. De fato, foi demonstrado que o revestimento de colágeno não afeta o conteúdo de cálcio em células de calvária de ratos cultivadas por períodos de até 25 dias (BECKER e cols., 2002). Isso pode ser explicado pela ausência de renovação celular contínua, que é uma característica do sistema in vitro utilizado, levando a uma redução na população de osteoblastos ativos durante a fase de mineralização.

Nossos resultados demonstraram que a superfície de Ti revestida com colágeno (Ti-col) pode favorecer um maior crescimento da cultura durante sua fase proliferativa e um aumento e/ou aceleração da diferenciação osteoblástica, como indicado por alterações na expressão gênica de células osteoblásticas derivadas de fragmentos de osso alveolar de humanos. Portanto, essa modificação de superfície pode ter um impacto nos processos de reparo e remodelação do tecido ósseo adjacente a implantes de Ti in vivo, favorecendo a ocorrência de maior formação óssea.
6. CONCLUSÕES

Diante dos resultados obtidos, podemos concluir que o revestimento da superfície do Ti com colágeno tipo I:

- não afetou adesão e morfologia celulares, síntese de proteínas, atividade de ALP e formação de matriz mineralizada em culturas de células osteoblásticas derivadas de osso alveolar de humanos.
- aumentou o crescimento celular no início da fase proliferativa e a diferenciação osteoblástica avaliada pela expressão gênica de marcadores do fenótipo osteoblástico em culturas de células osteoblásticas derivadas de osso alveolar de humanos.
REFERÊNCIAS BIBLIOGRÁFICAS
REFERÊNCIAS BIBLIOGRÁFICAS

ALBREKTSSON, T. The response of bone to titanium implants. CRC Crit Rev Biocompat, v.1, p.53-84, 1984.

AUBIN, J.E. Advances in the osteoblast lineage. Biochem Cell Biol, v.76, p.889-910, 1998.

AUBIN, J.E.; TURKSEN, K.; HEERSCHE, J.N.M. Osteoblastic cell lineage. In: Noda, M. Cellular and Molecular Biology of Bone, 1ª ed., p.1-45, San Diego: Academic Press, 1993.

BECK, G.R.Jr. Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem, v.90, p.234-243, 2003.

BECK, G.R.Jr; MORAN, E.; KNECHT, N. Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2. Exp Cell Res, v.288, p.288-300, 2003.

BECKER, D.; GEISSLER, U.; HEMPEL, U.; BIERBAUM, S.; SCHARNWEBER, D.; WORCH, H.; WENZEL, K.W. Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy. J Biomed Mater Res, v.59, p.516-527, 2002.

BELLOWS, C.G.; AUBIN, J.E.; HEERSCHE, J.N. Initiation and progression of mineralization of bone nodules formed in vitro: The role of alkaline phosphatase and organic phosphate. Bone Miner, v.14, p.27-40, 1991.

BELLOWS, C.G.; HEERSCHE, J.N.; AUBIN, J.E. Inorganic phosphate added exogenously or released from beta-glycerophosphate initiates mineralization of osteoid nodules in vitro. Bone Miner, v.17, p.15-29, 1992.

BELOTI, M.M.; DE OLIVEIRA, P.T.; GIMENES, R.; ZAGHETE, M.A.;
BERTOLINI, M.J.; ROSA, A.L. *In vitro* biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate. *J Biomed Mater Res A*, v.79, p.282-288, 2006.

BELOTI, M.M.; MARTINS, W. Jr.; XAVIER, S.P.; ROSA, A.L. *In vitro* osteogenesis induced by cells derived from sites submitted to sinus grafting with anorganic bovine bone. *Clin Oral Implants Res*, v.19, p.48-54, 2008.

BENNETT, J.H.; CARTER, D.H.; ALAVI, A.L.; BERESFORD, J.N.; WALSH, S. Patterns of integrin expression in a human mandibular explant model of osteoblast differentiation. *Archives of Oral Biology*, v.46, p.229–238, 2001.

BIERBAUM, S.; DOUGLAS, T.; HANKE, T.; SCHARNWEBER, D.; TIPPELT, S.; MONSEES, T.K.; FUNK, R.H.; WORCH, H. Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate: characterization and influence on osteoblastic cells. *Journal of Biomedical Materials Research A*, v.77, p.551–562, 2006.

BLAIR, J. M.; ZOU, H.; SIEBEL, M. J.; DUNSTAN, C. R. Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. *Nature Clinical Practice. Oncology*, v.3, p.41-49, 2006.

BODINE, P.V.; KOMM, B.S. Evidence that conditionally immortalized human osteoblasts express an osteocalcin receptor. *Bone*, v.25, p.535-543, 1999.

BOYAN, B.D.; BATZER, R.; KIESSWETTER, K.; LIU, Y., COCHRAN, D.L.; SZMUCKLER-MONCLER, S.; DEAN, D.D.; SCHWARTZ, Z. Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 alpha,25-(OH)₂D₃. *J Biomed Mater Res*, v.39, p.77-85, 1998.

BRANEMARK, P.I. Bone marrow microvascular structure and function. *Adv Microbiol*, v.1, p.1–65, 1968.

BRANEMARK, P.I.; BREINE, U.; ADEL, R.; HANSON, BO.; LINDSTROM, J.;
OHLSSON, A. Intraosseous anchorage of dental prosthesis. Part I: experimental studies. Scand J Plast Reconstr Surg Hand Surg, v.3, p.81–100, 1969.

BRANEMARK, P.I.; HANSSON, B.O.; ADELL, R. et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year study period. Scand J Plast Reconstr Surg Hand Surg, v.16, p.1–132, 1977.

COOPER, L.F.; MASUDA, T.; YLIHEIKIKILA, P.K.; FELTON, D.A. Generalizations regarding the process and phenomenon of osseointegration. Part II. In vitro studies. Int J Oral Maxillofac Implants, v.13, p.163-174, 1998.

DAVIES, J.E. editor. The bone-biomaterial interface. Toronto: University of Toronto Press; 1991.

DAVIES, J.E. Understanding peri-implant endosseous healing. J Dent Educ, v.67, p.932-949, 2003.

DUCY, P.; DESBOIS, C.; BOYCE, B.; PINERO, G.; STORY, B.; DUNSTAN, C.; SMITH, E.; BONADIO, J.; GOLDSTEIN, S.; GUNDBERG, C.; BRADLEY, A.; KARSENTY, G. Increased bone formation in osteocalcin-deficient mice. Nature, v.382, p.448-452, 1996.

ESENWEIN, S.A.; ESENWEIN, S.; HERR, G.; MUHR, G.; KUSSWETTER, W.; HARTWIG, C.H. Osteogenic activity of BMP-3 coated titanium specimens of different surface textures at the orthotopic implant bed of giant rabbits. Chirurg, v.72, p.1360–1368, 2001.

HOANG, Q.Q; SICHERI, F.; HOWARD, A.; YANG, D.S. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature, v.425, p.977-980, 2003.

FERRIS, D.M.; MOODIE, G.D.; DIMOND, P.M.; GIORANINI, C.W.D.; EHRLICH, M.G.; VALENTINI, R.F. RGD-coated titanium implants stimulate
increased bone formation in vivo. *Biomaterials*, v.20, p. 2323-2331, 1999.

GEISSLER, U.; HEMPEL, U.; WOLF, C.; SCHARNWEBER, D.; WORCH, H.; WENZEL, KW. Collagen type I coating of Ti6Al4V promotes adhesion of osteoblasts. *J Biomed Mater Res*, v.51, p.752-760, 2000.

GORANSSON, A.; JANSSON, E.; TENGVALL, P.; WENNERBERG, A. Bone formation after 4 weeks around blood-plasma-modified titanium implants with varying surface topographies: an in vivo study. *Biomaterials*, v.24, p.197-205, 2003.

GREGORY, C.A.; GUNN, W.G.; PEISTER, A.; PROCKOP, D.J. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. *Anal Biochem*, v.329(1), p.77-84, 2004.

HAMMERLE C. Current issues forum. *Int J Oral Maxillofac Implants*, v.20, p.311–31, 2005.

HASAN, M.Q.; JAVED, A.; MORASSO, M.I.; KARLIN, J.; MONTECINO, M.; VAN WIJNEN, A.J.; STEIN, G.S.; STEIN, J.L.; LIAN, J.B. Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. *Molecular and Cellular Biology*, v.24, p.9248-9261, 2004.

HEUNGSOO, S.; SEONGBONG, J.; MIKOS, A.G. Biomimetic materials for tissue engineering. *Biomaterials*, v. 24, p.4353-4364, 2003.

IRIE, K.; ZALZAL, S.; OZAWA, H.; Mckee, M.D.; NACNI, A. Morphological and immunocytochemical characterization of primary osteogênica cell cultures derived from fetal rat cranial tissue. *Anat Rec*, v.252, p.554-567, 1998.

KEARNS, A.E.; KHOSLA, S.; KOSTENUIK, P. RANKL and OPG Regulation
of Bone Remodeling in Health and Disease. *Endocr Rev*, Dec 5 [Epub ahead of print], 2007.

KHOSLA, S. Minireview: the OPG/RANKL/RANK system. *Endocrinology*, v.142, p.5050–5055, 2001.

KLOKKEVOLD, P.R.; JOHNSON, P.; DADGOSTARI, S.; CAPUTO, A.; DAVIES, J.E.; NISHIMURA, R.D. Early endosseous integration enhanced by dual acid etching of titanium: a torque removal study in the rabbit. *Clin Oral Implants Res*, v.12, p.350–357, 2001.

LAVOS-VALERETO, I.C.; WOLYNEC, S.; DEBONI, M.C.; KONIG, B. JR. *In vitro* and in vivo biocompatibility testing of Ti-6Al-7Nb alloy with and without plasma-sprayed hydroxapatite coating. *J Biomed Mater Res*, v.58, p.727–733, 2001.

LOWRY, O.H.; ROSEBROUGH, N.J.; FARR, A.L.; RANDALL, R.J. Protein measurement with the Folin phenol reagent. *J Biol Chem*, v.193(1), p.265-75, 1951.

LYNCH, M.P.; STEIN, J.L.; STEIN, G.S.; LIAN, J.B. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: Modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. *Experimental Cell Research*, v.216, p.35-45, 1995.

McKEE, M.D.; NANCI, A. Osteopontin: An interfacial extracellular matrix protein in mineralized tissues. *Connect Tissue Res*, v.35, p.197-205, 1996.

MERCIER, I.; LECHAIRE, J.P.; DESMOULIERE, A.; GAILL, F.; AUMAILLEY, M. Interactions of human skin fibroblasts with monomeric or fibrillar collagens induce different organization of the cytoskeleton. *Experimental Cell Research*, v.225, p.245–256, 1996.
MIZUNO, M.; FUJISAWA, R.; KUBOKI, Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J Cell Physiol, v.184, p.207-213, 2000.

MORRA, M.; CASSINELLI, C.; CASCARDO, G.; CAHALAN, P.; CAHALAN, L.; FINI, M.; GIARDINO, R. Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies. Biomaterials, v.24, p.4639-4654, 2003.

MORRA, M.; CASSINELLI, C.; MEDA, L.; FINI, M.; GIAVARESI, G.; GIARDINO, R. Surface analysis and effects on interfacial bone microhardness of collagen-coated titanium implants: a rabbit model. Int J Oral Maxillofac Implants, v.20, p.23-30, 2005.

MORRA, M.; CASSINELLI, C.; CASCARDO, G.; MAZZUCCO, L.; BORZINI, P.; FINI, M.; GIAVARESI, G.; GIARDINO, R. Collagen I-coated titanium surfaces: mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants. J Biomed Mater Res, v.78, p.449-458, 2006.

MORRA, M. Biomolecular modification of implant surfaces. Expert Review of Medical Devices, v.4, p.361–372, 2007.

MOSMANN, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, v.65(1-2), p.55-63, 1983.

NISHIO, K.; NEO, M.; AKIYAMA, H.; NISHIGUSHI, S.; KIM, K.M.; KOKUBO, T.; NAKAMURA, T. The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells. J Biomed Mater Res, v.52, p.652-661, 2000.

OLSEN, B.R. Morphogenesis: collagen it takes and bone it makes. Curr Biol, v.6, p.645-647, 1996.
OLSON, J.W.; DENT, C.D.; MORRIS, H.F.; OCHI, S. Long-term assessment (5 to 71 months) of endosseous dental implants placed in the augmented maxillary sinus. Ann Periodontol, v.5, p.152–156, 2000.

PULEO, D.A.; NANCI, A. Understanding and controlling the bone implant interface. Biomaterials, v.20, p.2311-2321, 1999.

PULEO, D.A. Biochemical surface modification of Co-Cr-Mo. Biomaterials, v.17, p.217-222, 1996.

PULEO, D.A. Release and retention of biomolecules in collagen deposited on orthopedic biomaterials. Artif Cells Blood Substit Immobil Biotechnol, v.27, p.65-75, 1990.

RAJARAMAN, R.; ROUNDS, D.E.; YEN, S.P.; REMBAUM, A. A scanning electron microscope study of cell adhesion and spreading in vitro. Exp Cell Res, v.88(2), p.327-39, 1974.

RAMMELT, S.; SCHULZE, E.; BERNHARDT, R.; HANISCH, U.; SCHARNWEBER, D.; WORCH, Z.; ZWIPP, H.; BIEWENER, A. Coating of titanium with type-I collagen. J Orthop Res, v.22, p.1025-34, 2004.

REDEY, S.A.; NARDIN, M.; BERNACHE-ASSOLANT, D.; REY, C.; DELANNOY, P.; SEDEL, L.; MARIE, P.J. Behavior of human osteoblast cells on stoichiometric hydroxyapatite and type A carbonate apatite: Role of surface energy. J Biomed Mater Res, v.50, p.353-364, 2000.

ROEHLECKE, C.; WITT, M.; KASPER, M.; SCHULZE, E.; WOLF, C.; HOFER, A.; FUNK, R.W. Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells. Cells Tissues Organs, v.168, p.178-87, 2001.

SCHWARTZ, Z.; BOYAN, B.D. Underlying mechanisms at the bone-biomaterial interface. J Cell Biochem, v.56, p.340-347, 1994.
SCHNITMAN, P.A.; RUBENSTEIN, J.E.; WOEHRLE, P.S.; DA SILVA, J.D.; KOCH, G.G. Implants for partial edentulism. *J Dental Educ*, v.52, p.725–736, 1988.

STEIN, G.S.; LIAN, J.B.; OWEN, T.A. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. *FASEB J*, v.4, 111-123, 1990.

STEIN, G.S.; LIAN, J.B.; STEIN, J.L.; VAN WIJNEN, A.J.; MONTECINO, M. Transcriptional control of osteoblast growth and differentiation. *Physiological Reviews*, v.76, p.593-629, 1996.

VAN DEN DOLDER, J.; JANSEN, J.A. The response of osteoblast-like cells towards collagen type I coating immobilized by p-nitrophenylchloroformate to titanium. *Journal of Biomedical Materials Research A*, v.83, p.712–719, 2007.

VAN DEN DOLDER, J.; BANCROFT, G.N.; SIKAVITSAS, V.I.; SPAUWEN, P.H.; MIKOS, A.G.; JANSEN, J.A. Effect of fibronectin- and collagen I-coated titanium fiber mesh on proliferation and differentiation of osteogenic cells. *Tissue Engineering*, v.9, p.505–515, 2003.

VIORNERY, C.; GUENTHER, H.G.; ARONSSON, B.-O.; PÉCHY, P.; DESCOUTS; GRÄTZEL, M. Osteoblast culture on polished titanium disks modified with phosphonic acids. *J Biomed Mater Res*, v.62, p.149-155, 2002.
ARTIGO CIENTÍFICO

Parte dos resultados obtidos no presente estudo foi utilizada para a elaboração do seguinte artigo científico:

ASSIS, A.F.; BELOTI, M.M.; CRIPPA, G.E.; DE OLIVEIRA, P.T.; MORRA, M.; ROSA, A.L. Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface.

Este artigo foi submetido à publicação e é apresentado nas páginas que se seguem.
Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface

Adriano Freitas de Assis¹, Marcio Mateus Beloti¹, Grasiele Edilaine Crippa¹, Paulo Tambasco de Oliveira¹, Marco Morra², Adalberto Luiz Rosa¹

¹ Cell Culture Laboratory, School of Dentistry of Ribeirao Preto, University of Sao Paulo, SP, Brazil
² Nobil Bio Ricerche srl, Villafranca d’Asti, Italy

Corresponding author: Prof. Dr. Adalberto Luiz Rosa, Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Av do Cafe, s/n, 14040-904 - Ribeirao Preto, SP, Brazil
Tel: + 55 16 36023980
Fax: + 55 16 36330999
E-mail address: adalrosa@forp.usp.br

Running title: Cultured osteoblastic cells on collagen-coated titanium

Key words: cell culture; osteoblastic cells; titanium; surface modification; collagen type I
Abstract: The aim of this study was to evaluate the development of the osteoblastic phenotype in human alveolar bone-derived cells grown on collagen type I-coated titanium (Ti) surface (Col-Ti) obtained by plasma deposition-acrylic acid grafting compared to machined Ti (M-Ti). Osteoblastic cells were cultured until subconfluence and subcultured on Col-Ti and M-Ti for periods of up to 21 days. Cultures grown on Col-Ti and M-Ti exhibited similar cell morphology. Cell adhesion, total protein content, and alkaline phosphatase (ALP) activity were not affected (p>0.05) by Ti surface modification in all evaluated periods. Growth analyses indicated that there were significantly more cells (p<0.05) in cultures grown on Col-Ti at day 3. Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteoprotegerin (OPG) mRNA expression of cells subcultured on Col-Ti was higher (p<0.05), whereas collagen type I (COL) was lower (p<0.05) compared to M-Ti. Ti surface modification did not affect (p>0.05) either osteocalcin (OC), ALP and receptor activator of NF-kB ligand (RANKL) mRNA expression or the calcium content extracted from mineralized matrix. These results demonstrated that Col-Ti favours cell growth during the proliferative phase (day 3) and osteoblastic differentiation, as demonstrated by changes in mRNA expression profile during the matrix mineralization phase (day 14), suggesting that this Ti surface modification may affect the processes of bone healing and remodelling.
Introduction

Titanium (Ti) is the material of choice for manufacturing orthopaedic and dental implants due to its mechanical properties and high *in vitro* and *in vivo* biocompatibility, allowing direct bone-to-implant contact (Albrektsson & Wennerberg 2004; Puleo et al. 1993; Adell et al. 1981). Although the satisfactory clinical success rate, modification of Ti surface is still a very active area of research and a significant number of studies have been carried out to investigate promising improvements of the bone/Ti interface (Brama et al. 2007; De Oliveira et al. 2007; Rosa et al. 2006; De Oliveira & Nanci 2004; Rosa & Beloti 2003; Faria et al. 2003).

Three different approaches have been described to the modification of Ti surface implants: physicochemical, morphological, and biochemical methods (Puleo & Nanci 1999). The immobilization and/or delivery of proteins, enzymes, or peptides on Ti surface aimed at inducing specific cell and tissue responses has been the focus of biochemical methods for controlling the tissue–implant interface (reviewed in Morra 2007, Morra 2006; Puleo & Nanci, 1999). Recently, several studies have demonstrated that biochemical modifications of Ti surface may affect the behaviour of bone cells (Douglas et al. 2007; Popescu et al. 2007; Morra et al. 2003; Seol et al. 2006). Among the molecules employed to modify Ti surface, collagen type I, the major structural protein in bone, is of particular interest because it affects signal transduction by binding to the integrins α1β1 and α2β1, modulating cell adhesion events (Takeuchi et al. 1997; Takeuchi et al. 1996).

A number of works has been carried out on collagen type I-coated Ti surface, exhibiting contradictory outcomes. While some studies demonstrated that modification of Ti surface with collagen type I favoured cell adhesion, differentiation and extracellular matrix mineralization (Van den Dolder & Jansen 2007; Morra et al. 2006), others did not show these stimulatory effects (Van den Dolder et al. 2003; Becker et al. 2002). The use of
different methods to immobilize collagen type I on Ti surface and different cell culture models could explain such divergent results. In the present work, we evaluated the development of the osteoblastic phenotype in human alveolar bone-derived cells grown on collagen type I-coated Ti surface obtained by plasma deposition-acrylic acid grafting, as described by Morra et al. (2003). Human alveolar bone-derived cell cultures exhibits all phases of in vitro bone-like tissue formation during its progression (Beloti et al. 2008), with at least a subset of cells that will interact with Ti implant surfaces during the post-implantation healing process.

Material and methods

Preparation of Ti discs

Discs of Ti were obtained from commercial bar stock with a diameter of 12 mm and were cut to a height of 2 mm. Titanium surfaces were modified as previously described (Morra et al. 2003). Briefly, samples were submitted to a propylene plasma deposition performed in a capacitively coupled parallel-plate. After deposition, samples were subjected to acrylic acid grafting with a 40% aqueous acrylic acid solution for 45 min, at room temperature. Ti surface was further subjected to collagen type I coupling by immersing in 0.5% collagen, 1% acetic acid aqueous solution for 2 h. After rinsing, samples were immersed in water containing 0.25% N-(3-dimethyaminopropyl)-N0-ethylcarbodiimidehydrochloride and 0.25% N-hydroxysuccinimide, and kept overnight in this coupling solution. Collagen coupled samples (Col-Ti) were compared to machined Ti (M-Ti). Before using in the cell culture experiments, all discs were sterilized by ethylene oxide.

Culture of human alveolar bone-derived cells

Human alveolar bone fragments (explants) were obtained from healthy donors, using the research protocols approved by the Committee of Ethics in Research. Osteoblastic cells were obtained from these explants by enzymatic digestion using collagenase type II (Gibco – Life
Technologies, Grand Island, NY, USA) as previously described (Belot et al. 2008). These cells were cultured in α-minimum essential medium (Gibco), supplemented with 10% foetal bovine serum (Gibco), 50 µg/ml gentamicin (Gibco), 0.3 µg/ml fungisone (Gibco), 10⁻⁷ M dexamethasone (Sigma, St. Louis, MO, USA), 5 µg/ml ascorbic acid (Gibco), and 7 mM β-glycerophosphate (Sigma). Subconfluent cells in primary culture were harvested after treatment with 1 mM ethylenediamine tetraacetic acid (EDTA) (Gibco) and 0.25% trypsin (Gibco) and subcultured in 24-well culture plates (Falcon, Franklin Lakes, NJ) on Col-Ti and M-Ti discs at a cell density of 2×10⁴ cells/disc. Cells subcultured on polystyrene were used as a control of culture conditions. During the culture period, cells were incubated at 37ºC in a humidified atmosphere of 5% CO₂ and 95% air; the medium was changed every 3 or 4 days.

Cell spreading

At 1, 2, and 4 h, cells were fixed for 10 min at room temperature using 4% paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.2. After washing in PB, they were processed for direct fluorescence with fluorophore-conjugated probes, as described below. Briefly, cells were permeabilized with 0.5% Triton-X-100 in PB for 10 min, followed by blocking with 5% skimmed milk in PB for 30 min. Cells were incubated with Alexa Fluor 488 (green fluorescence)-conjugated phalloidin (1:200; Molecular Probes, Eugene, OR, USA), which labels actin cytoskeleton. This was done in a humidified environment for 1 h at room temperature. Before they were mounted ready for microscope observation, cell nuclei were stained with 300 nM 4’,6-diamidino-2-phenylindole, dihydrochloride (DAPI, Molecular Probes) for 5 min and samples were briefly washed with deionised water. Samples were mounted with an anti-fade kit (Vectashield; Vector Laboratories, Burlingame, CA, USA) and then examined using a Leica fluorescence microscope (Leica, Bensheim, Germany) fitted with a Leica DC 300F digital camera under epifluorescence.
To assess the stage of spreading as reported by Rajaraman et al. (1974), the proportion of cells at stage 1 (round cells), 2 (round cells with filopodia), 3 (cells with cytoplasmic webbing), and 4 (well flattened cells) was calculated out of 100 adherent cells at 1, 2, and 4 h for each surface, using randomly selected microscopic fields (× 40 objective).

Cell adhesion

For evaluation of cell adhesion, cells were cultured for 1, 2, and 4 h, enzymatically (1 mM EDTA, 1.3 mg/ml collagenase type II, and 0.25% trypsin - Gibco) detached and counted using a haemocytometer (Housser Scientific Company, Horsham, PA, USA). Cell adhesion was expressed as a percentage of the initial number of cells (2×10⁴ cells/disc).

Culture growth

Culture growth was evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyl tetrazolium bromide (MTT, Sigma) assay at days 1, 3, 7, and 10 (Mosmann 1983). Cells were incubated with 100 µl of MTT (5 mg/ml) in PBS at 37°C for 4 h. The medium was then aspirated from the well and 1 ml of acid isopropanol (0.04 N HCl in isopropanol) was added to each well. The plates were then agitated on a plate shaker for 5 min, and 100 µl of this solution were transferred to a 96-well format using opaque-walled transparent-bottomed plates (Fisher Scientific, Pittsburgh, PA, USA). The optical density was read at 570–650 nm on the plate reader (µQuant, Biotek, Winooski, VT, USA) and data were expressed as absorbance.

Total protein content

Total protein content was calculated at 10 and 14 days, according to the method described by Lowry et al. (1951). The wells were filled with 2 ml of deionised water. After 5 cycles of thermal-shock (alternating temperature between 15 min at 37°C and 20 min at –20°C) 1 ml of the sample from each well was mixed with 1 ml of Lowry solution (Sigma) and left for 20 min at room temperature. After this period, it was added to 0.5 ml of the solution of phenol reagent of Folin and Ciocalteau (Sigma). This stood for 30 min at room temperature and the
absorbance was then measured (CE3021 – Cecil, Cambridge, UK) at 680 nm and the total protein content was calculated from a standard curve and expressed as µg/ml.

ALP activity

ALP activity was assayed as the release of thymolphthalein from thymolphthalein monophosphate using a commercial kit (Labtest Diagnostica SA, MG, Brazil). Samples of the same solutions used for calculating total protein content were assayed for measuring ALP activity according to the kit instructions. Briefly, 50 µl of thymolphthalein monophosphate was mixed with 0.5 ml of diethanolamine buffer, 0.3 mmol/ml, pH 10.1, and left for 2 min at 37°C. After this period, it was added 50 µl of the lysates from each well. This stood for 10 min at 37°C and then 2 ml of a solution of Na₂CO₃ 0.09 mmol/ml and NaOH 0.25 mmol/ml was added to allow colour development. After 30 min, absorbance was measured at 590 nm and ALP activity was calculated from a standard curve using thymolphthalein to give a range from 0.012 to 0.40 µmol thymolphthalein/h/ml. Results were calculated and data were expressed as ALP activity normalised by the total protein content measured at 7 and 10 days.

RNA extraction and quantitative real-time reverse transcriptase-polymerase chain reaction (real-time PCR)

Gene expression of runt-related transcription factor 2 (Runx2), collagen type I (COL), alkaline phosphatase (ALP), osteocalcin (OC), osteopontin (OPN), receptor activator of NF-kB ligand (RANKL), and osteoprotegerin (OPG) were evaluated by real-time PRC at day 14. Gene-specific primers were designed with Primer Express 2.0 (Applied Biosystems, Foster City, CA, USA) and are presented in Table 1.

The total RNA from cells was extracted using the Promega RNA extraction kit (Promega, Madison, WI, USA), according to the manufacturer instructions. The concentration of RNA was determined by optical density at a wavelength of 260 nm, using
the Biomate 3 spectrophotometer (Thermospectronic, Rochester, NY, USA). Complementary DNA (cDNA) was synthesized using 2 µg of RNA through a reverse transcription reaction (M–MLV reverse transcriptase, Promega). Real-time PCR was performed in an ABI Prism 7000 Sequence Detection System using the SybrGreen system (Applied Biosystems, Warrington, UK). SybrGreen PCR MasterMix (Applied Biosystems), specific primers and 2.5 ng cDNA were used in each reaction. The standard PCR conditions were 50°C (2 min), 95°C (10 min) and 40 cycles of 95°C (15 sec), 60°C (1 min), followed by the standard denaturation curve. To mRNA analysis, the relative level of gene expression was calculated in reference to β–actin expression and normalized by the gene expression of cells subcultured on M-Ti (calibrator) using the cycle threshold (Ct) method (Livak & Schmittgen, 2001).

Matrix mineralization

Matrix mineralization was detected at 17 and 21 days by Alizarin Red S (Sigma) that stains areas rich in calcium. Attached cell were fixed in 10% formalin for 2 h at room temperature. After fixation, the specimens were dehydrated through a graded series of alcohol and stained with 2% Alizarin Red S (Sigma), pH 4.2, for 10 min. The calcium content was evaluated using a colorimetric method as previously described (Gregory et al. 2004). Briefly, 280 µl of 10% acetic acid was added to each well containing Ti samples stained with Alizarin Red S, and the plate was incubated at room temperature for 30 min under shaking. This solution was transferred to a microcentrifuge tube and after vortexing for 1 min, the slurry was overlaid with 100 µl of mineral oil (Sigma), heated to exactly 85°C for 10 min, and transferred to ice for 5 min. The slurry was then centrifuged at 20,000 g for 15 min and 100 µl of supernatant was transferred to a new microcentrifuge tube. Then, 40 µl of 10% ammonium hydroxide was added to neutralize the acid and this solution containing 140 µl was read at 405 nm in 96-well format using opaque-walled transparent-bottomed plates (Fisher Scientific) on the
plate reader µQuant (Biotek). Data were expressed as absorbance.

Statistical analysis

Data presented in this work are the representative results of three separate experiments in cell cultures established from three different donors. All experiments were carried out in quintuplicate (n=5) with exception of real-time PRC, which was done in triplicate (n=3). Comparisons were performed using the nonparametrical Mann-Whitney U-test, for independent samples (level of significance: 5%).

Results

Epifluorescence of actin cytoskeleton labelling revealed no significant differences between Ti surfaces (Fig. 1). Cells were adherent and predominantly round in shape at 1h (Fig. 1A and B) and more spread at 2h (Fig. 1A and D), whereas the majority of cells were flattened at 4 h (Fig. 1E and F) on both surfaces. For Col-Ti and M-Ti, the proportion of cells at stage 4 (well flattened cells) progressively increased, reaching almost 100% of the adherent cells at 4 h (Fig. 3C, F, and I).

Cell adhesion was not affected (p>0.05) by Ti surface modification in all evaluated periods, 1, 2, and 4 h (Fig. 2A). Growth analyses indicated that there were significantly more cells (p<0.05) in cultures grown on Col-Ti only at day 3 without significant differences (p>0.05) between Ti surfaces in 1, 7, and 10 days (Fig. 2B). The amount of total protein and ALP activity were not (p>0.05) affected by Ti surface modification at 7 and 10 days (Fig. 2C and D, respectively).

Osteoblastic phenotype was confirmed at the transcriptional level by mRNA expression of the genes encoding Runx2, COL, ALP, OC, OPN, RANKL, and OPG in cultures grown on both Col-Ti and M-Ti at day 14 (Fig. 3). Results demonstrated that gene expression of Runx2, OPN, and OPG of cells subcultured on Col-Ti was higher (p<0.05), whereas COL was lower (p<0.05) compared to M-Ti. Furthermore, gene expression of ALP, OC, and...
RANKL was not affected (p>0.05) by Ti modification.

The calcium content measured by the extraction of Alizarin Red S from mineralized matrix was not affected (p<0.05) by Ti surface treatment in cultures grown for 17 and 21 days (Fig. 4).

Discussion

Osteoblastic cell response to collagen type I-coated Ti surfaces has been reported in the last few years (Van den Dolder & Jansen 2007; Morra et al. 2007; Bierbaum et al. 2006; Morra et al. 2006; Morra et al. 2003). The present study evaluated the development of the osteoblastic phenotype in human alveolar bone-derived cells grown on Col-Ti surface obtained by plasma deposition-acrylic acid grafting compared to M-Ti. Although no significant differences were detected between Ti surfaces in terms of extracellular matrix mineralization, the final event in the progression of osteogenic cell cultures, cells subcultured on Col-Ti surface exhibited higher growth rate during the proliferative phase (day 3), and lower COL and higher Runx2, OPN, and OPG mRNA expression during the matrix mineralization one (day 14).

The previous characterization of the Col-Ti showed that a collagen type I layer homogeneously covers the metal surface and such structure readily responds to the interfacial aqueous environment (Morra et al. 2003). In addition, stability tests demonstrated that the coating withstands overnight extraction in aqueous surfactants and cytotoxicity evaluation showed the lack of any adverse effect, or the lack of release of unexpected chemicals and by-products of the coupling reaction (Morra et al. 2003).

The supramolecular organization of collagen influences cell morphology, actin organization, as well as the distribution of integrin subunits as previously demonstrated in a study of the patterns of adhesion structures in human skin fibroblasts (Mercier et al. 1996). In an experiment using rat calvarial osteoblasts, cell adhesion and spreading was reported to
be favoured by collagen type I-coated Ti (Geissler et al. 2000). Also, human mesenchymal cells exhibited higher proportion of adhesion on Col-Ti compared to anodized Ti (Morra et al. 2006). However, in the present study, no significant differences were observed between Ti surfaces in terms of cell morphology, spreading, and number of adherent cells at 1, 2, and 4 h. It has been demonstrated that integrin expression may vary during the osteoblastic differentiation sequence (Bennett et al. 2001), which could explain the differences between different cell culture models in the way they interact with material surfaces. Considering that both adhesion mechanisms and involved molecules depend on the structure of the implant surface, methods for biochemical modification of Ti surface should also be considered as an important parameter in adhesion assays (Geissler et al. 2000).

Outcomes from the literature on the effect of collagen type I-coated Ti on cell proliferation are divergent. In the present study, growth analysis by MTT assay and total protein content revealed differences between Col-Ti and M-Ti only at day 3, therefore during the proliferative phase of the cultures. These results are in agreement with Van den Dolder & Jansen (2007), which observed higher DNA content in rat bone marrow-derived cell cultures grown on collagen type I-coated Ti surface only at day 4. Other researchers reported that collagen coating reduces culture growth of the osteoblast like SaOS2 cells at days 4 and 10 (Morra et al. 2003) and does not affect the proliferation rate of rat calvarial cells for a period of up to 25 days (Becker et al. 2002). Based on our results using human alveolar bone-derived cells, we speculate that Col-Ti surface obtained by plasma deposition-acrylic acid grafting may accelerate cell cycle dynamics only at the first periods of the proliferative phase of the cultures.

Alkaline phosphatase is recognized to play an active role in mineralization and may be a progression factor in osteogenesis, as it is expressed during the development of the osteoblastic phenotype (Aubin et al. 1993). Col-Ti surface had no significant effect on ALP
activity in the culture system used at days 10 and 14. Agreeing with our findings, other studies using different cell culture models (e.g.: osteoblast like SaOS2 cells, rat bone marrow cells, and rat calvarial cells) demonstrated that collagen type I coating does not interfere with such enzyme activity (Morra et al. 2003; Van den Dolder et al. 2003; Becker et al. 2002). Based on these findings, it is possible to suggest that such coating produces some relevant alterations in the osteoblastic activity at a molecular level.

To assess mRNA expression of key markers of osteoblastic phenotype at 14 days we used the real-time PCR technique. Reflecting the complexity of cell responses induced by collagen type I coating, Col-Ti upregulated the expression of Runx2, OPN, and OPG, had no effect on ALP, OC, and RANKL, and reduced COL gene expression compared to M-Ti. Corroborating our outcomes on the lack of Col-Ti effect on ALP activity, ALP mRNA expression was also unchanged by this Ti surface modification. Additionally, it has been demonstrated that collagen type I coating failed to induce alterations in ALP and OC gene expression in rat bone marrow cells cultured for 8 days (Van den Dolder & Jansen 2007).

It has been reported that rat calvarial cells grown on films of collagen type I differentiate earlier and consequently express at day 14 lower levels of COL mRNA compared to cells grown on polystyrene (Lynch et al. 1995). Osteoblastic differentiation has also been associated with peak levels of OPN and Runx2 (Hassan et al. 2004; Stein et al. 1996) Therefore, our results of downregulation of COL and upregulation of both OPN and Runx2 mRNA induced by Col-Ti suggest that such Ti surface modification enhances and/or accelerates the process of osteoblastic differentiation.

The system OPG/RANKL/receptor activator of NF-kB (RANK) has been shown to play a central role in the paracrine regulation of osteoclast formation and function (Blair et al. 2006). OPG binds the RANKL, both secreted by osteoblasts, to prevent RANKL binding to its receptor RANK that is expressed in osteoclast membrane, inhibiting osteoclast-mediated
bone resorption (Khosla 2001). Taken into account the upregulation of OPG and the maintenance of RANKL mRNA expression in cultures grown on Col-Ti, it is possible to suggest that the better in vivo bone response to this surface compared to an anodized Ti one (Morra et al. 2006) could also be due to an inhibitory effect on the osteoclastic activity induced by Col-Ti.

Although results from gene expression experiments suggest that Col-Ti favours the osteoblastic differentiation sequence, as the cultures progressed no major differences in extracellular matrix mineralization were detected between Col-Ti and M-Ti surfaces at days 17 and 21. Indeed, it has been demonstrated that collagen coating does not affect calcium content in rat calvarial cells cultured for periods of up to 25 days (Becker et al. 2002). That could be explained by the absence of continuous cell renewal, which is a characteristic of the in vitro system used, leading to a reduction in the population of active osteoblasts during the mineralization phase.

In conclusion, we have demonstrated that Col-Ti may support a higher growth rate during the proliferative phase and an enhancement and/or acceleration of the osteoblastic differentiation, as indicated by changes in mRNA expression of human osteogenic cells. Therefore, this Ti surface modification could have an impact in the processes of bone healing and remodelling adjacent to Ti implants in vivo, favouring the occurrence of higher bone formation.

Acknowledgements

This work was supported by the State of Sao Paulo Research Foundation (FAPESP, Brazil) and the National Council of Scientific and Technological Development (CNPq, Brazil). We are grateful to Junia Ramos, Fabiola S. de Oliveira, and Roger R. Fernandes for their helpful assistance during the experiments.
References

Adell, R., Lekholm, U., Rockler, B. & Branemark, P.I. (1981) A 15-year study of osseointegrated implants in the treatment of edentulous jaw. *International Journal of Oral Surgery* **10**: 387–416.

Albrektsson, T. & Wennerberg, A. (2004) Oral implant surfaces: part 1 – review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. *The International journal of prosthodontics* **17**: 536–543.

Aubin, J.E., Turksen, K. & Heersche, J.N.M. (1993) Osteoblastic cell lineage. In: Noda, M. ed. Cellular and Molecular Biology of Bone, 1st edition, p1-45, 1993.San Diego: Academic Press.

Becker, D., Geissler, U., Hempel, U., Bierbaum, S., Scharnweber, D., Worch, H. & Wenzel, K.W. (2002) Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy. *Journal of Biomedical Materials Research* **59**: 516–527.

Beloti, M.M., Martins, W. Jr., Xavier, S.P. & Rosa, A.L. (2008) In vitro osteogenesis induced by cells derived from sites submitted to sinus grafting with anorganic bovine bone. *Clinical Oral Implants Research* **19**: 48–54.

Bennett, J.H., Carter, D.H., Alavi, A.L., Beresford, J.N. & Walsh, S. (2001) Patterns of integrin expression in a human mandibular explant model of osteoblast differentiation. *Archives of Oral Biology* **46**: 229–238.

Bierbaum, S., Douglas, T., Hanke, T., Scharnweber, D., Tippelt, S., Monsees, T.K., Funk, R.H. & Worch, H. (2006) Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate: characterization and influence on osteoblastic cells. *Journal of Biomedical Materials Research A* **77**:551–562.

Blair, J. M., Zhou, H., Siebel, M. J., & Dunstan, C. R. (2006) Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. *Nature*
Brama, M., Rhodes, N., Hunt, J., Ricci, A., Teghil, R., Migliaccio, S., Rocca, C.D., Leccisotti, S., Loi, A., Scandurra, M., De Maria, G., Ferro, D., Pu, F., Panzini, G., Politi, L. & Scandurra, R. (2007) Effect of titanium carbide coating on the osseointegration response in vitro and in vivo. Biomaterials 28: 595–608.

Douglas, T., Hempel, U., Mietrach, C., Heinemann, S., Scharnweber, D. & Worch, H. (2007) Fibrils of different collagen types containing immobilised proteoglycans (PGs) as coatings: characterisation and influence on osteoblast behaviour. Biomolecular Engineering 24: 455–458.

Faria, A.C., Beloti, M.M. & Rosa, A.L. (2003) Nitric acid passivation does not affect in vitro biocompatibility of titanium. The International Journal of Oral and Maxillofacial Implants 18: 820–825.

Geissler, U., Hempel, U., Wolf, C., Scharnweber, D., Worch, H. & Wenzel, K. (2000) Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts. Journal Biomedical Materials Research 51: 752–760.

Gregory, C.A., Gunn, W.G., Peister, A. & Prockop, D.J. (2004) An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Analytical Biochemistry 329: 77–84.

Hassan, M.Q., Javed, A., Morasso, M.I., Karlin, J., Montecino, M., van Wijnen, A.J., Stein, G.S., Stein, J.L. & Lian, J.B. (2004) Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Molecular and Cellular Biology 24: 9248–9261.

Khosla, S. (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142: 5050–5055.

Lynch, M.P., Stein, J.L., Stein, G.S. & Lian, J.B. (1995) The influence of type I collagen on
the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: Modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Experimental Cell Research 216: 35–45.

Livak, K.L. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 22DDCT method. Methods 25: 402–408.

Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.

Mercier, I., Lechaire, J.P., Desmouliere, A., Gaill, F. & Aumailley, M. (1996) Interactions of human skin fibroblasts with monomeric or fibrillar collagens induce different organization of the cytoskeleton. Experimental Cell Research 225: 245–256.

Morra, M. (2007) Biomolecular modification of implant surfaces. Expert Review of Medical Devices 4: 361–372.

Morra, M. (2006) Biochemical modification of titanium surfaces: peptides and ECM proteins. European Cells and Materials 12: 1–15.

Morra, M., Cassinelli, C., Cascardo, G., Cahalan, P., Cahalan, L., Fini, M. & Giardino, R. (2003) Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies. Biomaterials 24: 4639–4654.

Morra, M., Cassinelli, C., Cascardo, G., Mazzucco, L., Borzini, P., Fini, M., Giavaresi, G. & Giardino, R. (2006) Collagen I-coated titanium surfaces: mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants. Journal of Biomedical Materials Research A 78: 449–458.

Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65: 55–63.

De Oliveira, P.T., Zalzal, S.F., Beloti, M.M., Rosa, A.L. & Nanci, A. (2007) Enhancement
of in vitro osteogenesis on titanium by chemically produced nanotopography. *Journal of Biomedical Materials Research A* 80: 554–564.

De Oliveira, P.T. & Nanci, A. (2004) Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. *Biomaterials* 25: 403–413.

Popescu, S., Demetrescu, I., Sarantopoulos, C., Gleizes, A.N. & Iordachescu, D. (2007) The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel. *Journal of Materials Science: Materials in Medicine* 18: 2075–2083.

Puleo, D.A., Preston, K.E., Shaffer, J.B. & Bizios, R. (1993) Examination of osteoblast-orthopaedic biomaterial interactions using molecular techniques. *Biomaterials* 14: 111–114.

Puleo, D.A. & Nanci, A. (1999) Understanding and controlling the bone implant interface. *Biomaterials* 20: 2311–2321.

Rajaraman, R., Rounds, D.E., Yen, S.P. & Rembaum, A. (1974) A scanning electron microscope study of cell adhesion and spreading in vitro. *Experimental Cell Research* 2: 327–339.

Rosa, A.L., De Oliveira, C.S., Beloti, M.M., Xavier, S.P. & De Oliveira, P.T. (2006) Effect of microcapsules containing TAK-778 on bone formation around osseointegrated implants: histomorphometric analysis in dogs. *Implant Dentistry* 15: 97–103.

Rosa, A.L. & Beloti, M.M. (2003) Rat bone marrow cell response to titanium and titanium alloy with different surface roughness. *Clinical Oral Implants Research* 14: 43–48.

Seol, Y.J., Park, Y.J., Lee, S.C., Kim, K.H., Lee, J.Y., Kim, T.I., Lee, Y.M., Ku, Y., Rhyu, I.C., Han, S.B. & Chung CP. (2006) Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2.
Journal of Biomedical Materials Research A 77: 599–607.

Stein, G.S., Lian, J.B., Stein, J.L., Van Wijnen, A.J. & Montecino, M. (1996) Transcriptional control of osteoblast growth and differentiation. *Physiological Reviews* 76:593–629.

Takeuchi, Y., Nakayama, K. & Matsumoto, T. (1996) Differentiation and cell surface expression of transforming growth factor-b receptors are regulated by interaction with matrix collagen in murine osteoblastic cells. *The Journal of Biological Chemistry* 271: 3938–3944.

Takeuchi, Y., Suzawa, M., Kikuchi, T., Nishida, E., Fujita, T. & Matsumoto, T. (1997) Differentiation and transforming growth factor-b receptor down-regulation by collagen-a2b1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. *The Journal of Biological Chemistry* 272: 29309–29316.

Van den Dolder, J. & Jansen, J.A. (2007) The response of osteoblast-like cells towards collagen type I coating immobilized by p-nitrophenylchloroformate to titanium. *Journal of Biomedical Materials Research A* 83: 712–719.

Van den Dolder, J., Bancroft, G.N., Sikavitsas, V.I., Spauwen, P.H., Mikos, A.G. & Jansen, J.A. (2003) Effect of fibronectin- and collagen I-coated titanium fiber mesh on proliferation and differentiation of osteogenic cells. *Tissue Engineering* 9: 505–515.
Figure legends

Fig. 1. Fluorescence labelling of osteoblastic cells derived from human alveolar bone fragments subcultured on collagen coupled titanium (Col-Ti – A, C, and E) and machined titanium (M-Ti – B, D, and F) at hours 1 (A and B), 2 (C and D), and 4 (E and F) and proportions of cells at different stages of spreading on Col-Ti and M-Ti (C, F, and I). Cell-associated green fluorescence reveals actin cytoskeleton (Alexa Fluor 488-conjugated phalloidin) and blue fluorescence indicates cell nuclei (DAPI DNA staining). Cells were round in shape at 1h and more spread at 2h, while at 4 h cells were flattened on both surfaces. For Col-Ti and M-Ti, the proportion of cells at stage 4 (well flattened cells) reached almost 100% of the adherent cells as early as 4 h post-plating.

Fig. 2. *In vitro* osteogenic events in osteoblastic cells derived from human alveolar bone fragments subcultured on collagen coupled titanium (Col-Ti) and machined titanium (M-Ti). Cell adhesion (A) evaluated at 1, 2, and 4 h, culture growth (B) evaluated at 1, 3, 7, and 10 days, and total protein content (C) and alkaline phosphatase (ALP) activity (D) evaluated at 10 and 14 days. Data are reported as mean ± standard deviation (n=5). The asterisk (*) indicates p<0.05 for comparisons between Col-Ti and M-Ti at the same time point.

Fig. 3. Gene expression of runt-related transcription factor 2 (Runx2), collagen type I (COL), alkaline phosphatase (ALP), osteocalcin (OC), osteopontin (OPN), receptor activator of NF-kB ligand (RANKL), and osteoprotegerin (OPG) in osteoblastic cells derived from human alveolar bone fragments subcultured on dense collagen coupled titanium (Col-Ti) and machined titanium (M-Ti) at day 14. Data were calculated as the relative expression of the target mRNA normalized to β-actin and to M-Ti (calibrator) and are reported as mean ±
standard deviation (n=3). The asterisks (*) indicate p<0.05 for comparisons between Col-Ti and M-Ti.

Fig. 4. Extracellular matrix mineralization at 17 and 21 days, stained with Alizarin red S for histochemical detection of calcium deposits. Calcium content (absorbance) extracted from mineralized matrix stained with Alizarin red S of osteoblastic cells derived from human alveolar bone fragments subcultured on collagen coupled titanium (Col-Ti) and machined titanium (M-Ti). Data are reported as mean ± standard deviation (n=5). The amount of calcium was not affected by Ti surface treatment.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table 1. Primers sequences, annealing temperature (Ta), melting temperature (Tm) and product size for real-time PCR reactions.

Target*	Sense and anti-sense sequences	Ta (°C)	Tm (°C)	bp
Runx2	TATGGCACTTTCGTCAAGGATCC	61	83	110
	AATAGCGGTGCTGCACATCCG			
COL	TGACGAGACCAAGAAGTCTGCG	61	84	114
	CCATCCAAACCACCTGAAACCC			
ALP	ACGTGGCTAAGAATGTCATC	60	86	475
	CTGGTAGGCGATGTCCTTA			
OC	CAAAGGTGCAGCCTTTGTGTC	62	85	150
	TCACAGTCCCGATTTAGGCTCA			
OPN	AGCACACATATGATGCGCGAGG	58	79	154
	GCCCTGTATGCACATTCA			
	CAGCCTTTTGTCTCATCTCA			
RANKL	TTATGGGAACCAGATGGGAT	60	85	112
	AGGCACCTTGAGGCTTTCAGT			
OPG	AGGCACTTGAGGCTTTCAGT	59	85	120
	ACCCTGTGGCAGAAGGATGCTCA			
β-actin	ATGTTTGAGACCTTCAACA	56	75	495
	CACGTCAGACTTTCATGAGG			

*Runx2 – runt-related transcription factor, COL – collagen type I, ALP – alkaline phosphatase, OC – osteocalcin, OPN – osteopontin, RANKL – receptor activator of NF-kB ligand, OPG – Osteoprotegerin