The potential for developing local corn from East Nusa Tenggara as raw material for indigenous cuisine and processed products: A mini-review

A Hamaisa¹,², T Estiasih³, W D R Putri² and K Fibrianto³

¹Doctoral Student of Food Science, Faculty of Agricultural Technology, Universitas Brawijaya, Jalan Veteran, Malang, 65141, Indonesia
²The Assesment Institute for Agriculture Technology East Nusa Tenggara, Jalan Timor Raya KM. 32, Naibonat, NTT
³Department of Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Jalan Veteran, Malang, 65141, Indonesia

E-mail: atikahamaisa@ymail.com

Abstract. East Nusa Tenggara is one of the provinces in Indonesia that uses corn as staple food. Bose corn is an indigenous cuisine for people on the island of Timor, East Nusa Tenggara province. The corn used as raw material for this indigenous cuisine is generally local varieties. Local varieties of corn contain high amylose, so it takes a long time to cook. Starch modification is an instantization method which can be used to shorten its cooking time. Nixtamalization and pregelatinization are simple starch modification methods that can be applied by the community using a certain level of calcium hydroxide and appropriate cooking times. Bose corn is one of the indigenous cuisine processing products using local raw materials that can be developed as an instant food.

1. Introduction

In Indonesia, corn is the second staple food source after rice. The demand for corn as food commodity in East Nusa Tenggara is constantly increasing. Corn has an important role as commercial commodity for export trade with limited quantities as well as national corn production has not able to meet national needs [1]. According to East Nusa Tenggara Statistics data 2020 [2], corn production has increased over the last ten years. In 2019, dry shelled corn production in East Nusa Tenggara reached 884,326 tons from the harvested area of 335,901 ha. Besides, in 2009 dry shelled corn production was 638,899 tons from the harvested area of 250,536 ha. Corn is a local food ingredient that has the potential to substitute the function of rice and flour [3].

Corn plants in East Nusa Tenggara are dominated by local corn cultivars (37%) and the rest are superior free pollinated corn Lamuru varieties (16%) and hybrids (6%) [4]. Local farmers prefer to use local varieties rather than hybrids. Local varieties of corn have a high genetic diversity [5], early maturity [6], drought resistance [6], and distinctive characteristics [7]. East Nusa Tenggara is one of the provinces that uses corn as a staple food. Bose corn is an indigenous cuisine for Timor island’s people, East Nusa Tenggara [8]. The corn which used as raw material for this Bose corn is generally local varieties. However, the use of local corn varieties are still limited and only cultivated on a household scale.
Although corn is the plant which considered suitable for semi-arid region in East Nusa Tenggara but poor soil and low rainfall have caused a low corn productivity or even failed harvest [9]. Previous research has been concerned about processing corn into special and processed foods. This paper will discuss the potential of local corn as a raw material for indigenous cuisine and processed foods using simple methods.

2. Corn as raw material for indigenous cuisine

Indonesia is a country that has a variety of cuisines with distinctive flavors. Each region has a special food by the natural potential contained in the area. Various cooking methods may need to undergo raw materials before it is ready to be served or is harmless for consumption. Some regions in Indonesia have special foods that use corn as the main ingredient (Table 1).

Table 1. The indigenous cuisines made from corn from several regions in Indonesia [10].

No.	The indigenous cuisines	Area of origin	Raw material
1	Nasi Kemunak Batanghari	Jambi	Keladi, Yellow corn
2	Lepet jagung	East Java	Young corn, grated coconut
3	Jagung Bose	East Nusa Tenggara	White corn, salt
4	Kambeweno Kahitela	Muna, South-East Sulawesi	White corn, grated coconut, lime
5	Kambewe	Muna, South-East Sulawesi	Dried corn, coconut milk, nuts, lime
6	Kampalusu	Muna, South-East Sulawesi	Dried corn, grated coconut, lime
7	Katumbu	Muna, South-East Sulawesi	Young corn, Coconut milk
8	Kina Gandu	Tolaki/Moronene, South-East Sulawesi	Corn, coconut milk, pandan leaves, salt
9	Lapoti Gandu	Tolaki/Moronene, South-East Sulawesi	Corn, grated coconut, green beans, salt
10	Barobbo	South Sulawesi	Corn, spinach, vegetables

Bose corn - as an indigenous cuisine from East Nusa Tenggara is a mixture of corn that has ground until the husk/pericarp is removed and mixed with nuts. The cooking process of the corn and beans takes about 3.5 hours until tender. Then, the coconut milk can be added to make it more savory [11]. The corn which is usually used as raw material for Bose corn is white, but yellow corn is often used by the public (Figure 1). According to the East Nusa Tenggara Food Security Service, Bose corn (100 g) contains carbohydrates (29.27 g), protein (5.79 g), and fat (4.97 g) [12].

Figure 1. Original corn (A: whole corn), corn without pericarp (B: raw Bose corn), and Bose corn after processing (C: the final product).
3. Corn plantation in East Nusa Tenggara
According to Murningsih et al [6], the low productivity of corn in East Nusa Tenggara is due to decision of using local corn which have heterozygous characteristic of local corn. This characteristic means that corn seeds produced as a result of planting from local farmers’ crops over the generations on a limited scale (inbreeding). In addition, corn productivity is also affected by drought stress, which can be overcome by planting dry-resistant and early maturing corn varieties [13]. East Nusa Tenggara is a semi-arid area characterized by lowlands, erratic rainfall, poor soil fertility, diverse agroecosystems and dominant rocky soil [9]. Corn productivity in East Nusa Tenggara can be increased by applying permanent planting holes as a conservation farming method. This method is one of the innovations to eliminate shifting cultivation practices, optimize the use of rocky dominant land and increase water absorption or soil moisture.

4. Chemical composition of corn
Corn is the most abundant source of starch in the world and is the basis of many chemically modified enzymes, and functional products. Starch is the major carbohydrate of the kernel endosperm weight (85%) and the total kernel weight (72%). Generally, corn contained 75-80% of branched amylopectin chain and 20-25% linear amyllose chain [14].

Proximate analysis is a comprehensive analysis of nutrient content which includes moisture, ash content, protein content, fat content, and carbohydrates. This analysis is carried out to determine the nutritional composition of a food ingredient so that we can determine the nutritional levels of foods that can be consumed [7]. Based on the results of the proximate analysis in the United States, whole corn contained 15.5% of moisture, 7.5% of protein, 3.2% of fat, 1.2% of ash, and 61.6% of starch [15]. Table 2 showed the proximate analysis result of local corn which generally have a higher level of protein, fat, ash, and starch. It showed that the nutritional chemical composition of local corn is relatively high and can meet the requirements as raw materials for original and processed foods.

Chemical composition (%)*	Corn varieties				
	Momola Gornontalo	Pena Tunu’ Ana’	Piet Kuning	Gumarang	Lamuru
Moisture	14.82±0.04	10.49±0.01	11.31±0.01	11.43±0.04	12.05±0.01
Ash	1.35±0.01	1.45±0.01	1.09±0.01	1.21±0.11	1.11±0.11
Protein	11.51±0.24	11.78±0.05	7.78±0.10	6.88±0.01	7.41±0.16
Fat	4.62±0.48	5.59±0.22	4.95±0.13	4.15±0.17	4.40±0.02
Carbohydrate	67.68±0.67	70.69±0.21	74.92±0.02	76.35±0.33	75.05±0.42

Note: *Numbers are the mean ±standard deviation of 2 replications

5. Starch modification
Starch is a homopolysaccharide stored in plants as food reserves. This homopolysaccharide consists of glucose units linked together with the glycosidic bonds. The advantages of starch are low cost, biodegradable, renewable, and widely available. However, starch also has several drawbacks, namely low water solubility, retrogradation, decreased viscosity due to the breakdown of the treated glycoside bonds, and the presence of several important groups with different functions such as carboxylic, ester, ether, and amino chain [16]. Therefore, modifications need to overcome these problems and increase the usability of starch. These modifications can be done chemically [17], [18] and physically [19], [20].

Modification of starch on corn kernels will result in interactions between the components in it. The interactions that occur causes a changes in the physicochemical properties of corn kernels [21]. Changes in the physicochemical properties of the corn kernels are desirable but some are undesirable [22]. The cooking process on Boe corn is done to get a tender corn kernel texture for consumption [11].
Modification of starch which can change the texture of the corn kernels to become softer are pregelatinization and nixtamalization methods.

5.1. Nixtamalization

Nixtamalization is a process carried out in Mexico and Central America to convert corn into a staple food for public consumption. The nixtamalization process includes cooking the whole corn kernels in a saturated calcium hydroxide solution (1-5% w/w) by weight of corn, soaking for 8-24 hours, washing to remove alkali, pericarp, and other materials [24]. In nixtamalization, alkaline liquid Ca(OH)$_2$ is given which aims to break the hydrogen bonds of the hydroxyl groups in the starch structure so that there is a change in its viscoelasticity [24]. During the nixtamalization process, calcium enters the corn kernels, and then modifies the physical, structural, chemical, sensory, appearance, and nutritional content of the nixtamal product [25].

The addition of alkaline Ca(OH)$_2$ with a concentration of 0.0-0.4% w/w and heated at 92 °C for 20 minutes can trigger changes in the microstructure of starch. However, the higher the concentration of alkali used, the slower the change. This can be due to the presence of bonds from calcium ions that maintain the amylopectin structure of starch. The use of a 0.2-0.25% (w/w) lime solution indicates that there is a rapid change. Meanwhile, at higher lime concentrations, changes occur more slowly. This is probably due to the saturation of the starch structure that binds to calcium ions [26]. In traditional nixtamalization with Ca(OH)$_2$, calcium diffuses into the endosperm structure by percolation and in the same way into the pericarp. This process depends on the temperature and steeping time. With increasing temperature and steeping time, the hydrolysis and solubility of pericarp components also increased and micro-holes are formed. Micro-holes apparition for critical stepping time in dependence on the temperature represents that a further pathway is presenting to the calcium uptake [23].

Figure 2. Starch interaction through water molecules (a) and calcium hydroxide bridge (b). Hydrogen bonds are indicated by dots [27].

Calcium-starch interaction within alkaline media (pH>8.0) occurs when the amylose molecules and some amylopectin chains carry negative charges. It means that their hydroxyl groups dissociated and allowing interactions with Ca$^{2+}$ and Ca(OH)$^+$ ions. Therefore, the Ca(OH)$_2$ dissociation produce an OH$^-$ anions which destroy the hydrogen bonds (H bonds) within the water molecules-H bonds through the amylose and amylopectin chains are connected. Thus, the starch chain is open and the reactive site is exposed which leads to the partial protonation of the sugar moiety. This stimulates the interaction
between Ca ions and the amylose or amylpectin chains in the form of alkoxides and between them, leading to the formation of Ca bridges (Figure 2.) [17]. Based on this fact, it is known that by controlling the concentration of the swelling agent, it is possible to vary the rate of swelling. At low swelling agent concentrations, water is slowly and reversibly removed and limited swelling occurs [27].

5.2. Pregelatinization
Pregelatinized starch also well known as an instant starch is starch which has been cooked and dried under conditions that allow without or little retrogradation. Pregelatinized starch hydrates quickly and dissolves in cold water. Pregelatinized starch is used in food applications when heat is not available, there is not enough heat for starch processing, and when heat cannot be applied due to the thermal lability of other materials [28]. Time and temperature greatly affect the gelatinization of starch at different stages. The heating treatment of corn starch and increasing the gelatinization gradient carried out by fast (5 minutes) and long (20 and 30 minutes) methods can withstand isothermal at 64-95 °C. The critical temperature points are at 70 and 76 °C, which are the first and second temperature thresholds, respectively. The initial stage of the gelatinization process occurs at a temperature of < 70 °C. The length of heating time can determine the effect of heating time on the gelatinization stage [29].

The swelling power for the native and modified starches at temperatures ranging from 50 to 90 °C. From the study, the swelling power of the starches rose as the temperature increased. This phenomenon was expected, which is an indication that absorption of water by a starch granule can be elevated by increasing temperature [30]. The X-ray diffraction patterns of the treated starches showed that crystallinity was decreased during the thermal treatments; boiling in water and steam healing [31].

There is an advanced stage for increasing the quality of local corn processed food in line with nixtamalization and pregelatinization through local corn. Fortification is a technique of enrichment that may minimize the potential of nutritional insufficiency inside the starch modification [31]. The discussion was confined to the basic method of developing the potential local maize of East Nusa Tenggara as a raw material for Bose corn, an indigenous cuisine, in accordance with the aim of this study. This review initiates the way of research thinking related to instantiation project for indigenous cuisine not limited to Bose corn but other culinary food such as katemak corn which also be an indigenous cuisine of East Nusa Tenggara.

6. Conclusions
Local corn of East Nusa Tenggara has the potential to be developed into indigenous instant cuisine and processed products especially for Bose corn. The introduction of simple technology to process local corn into instant food needs to be done to increase the additional value of the local product.

Acknowledgements
The authors would like to thank for Doctoral Dissertation Research Fund 2021 from the Ministry of Education, Culture, Research, and Technology, Higher Education and Development Center with the title “Instantization of Bose Corn as Ethnic Food of East Nusa Tenggara”.

References
[1] Tenggara EN, Setiawan K and Basri M 2017 An analysis of efficiency the production of commodities corn in Belu, East Nusa Tenggara, Indonesia IOSR J. Environ. Sci. Toxic. Food Technol. 11 64–69
[2] East Nusa Tenggara Statistics 2009-2019 Perkembangan luas panen, produksi rata-rata, dan produksi jagung di Provinsi Nusa Tenggara Timur, 2009-2019 (Development of harvested area, average production, and corn production in East Nusa Tenggara province, 2009-2019) Available: https://ntt.bps.go.id/statictable/2020/12/16/804/perkembangan-luas-panen-rata-rata-produksi-dan-produksi-jagung-2009-2019.html (Accessed: 20 January 2021) [In Indonesian]
[3] Hassan ZH 2014 Aneka tepung berbasis bahan baku lokal sebagai sumer pangan fungsional dalam
upaya meningkatkan nilai tambah produk pangan lokal (Various flours based on local raw materials as a source of functional food in an effort to increase the added value of local food products) \textit{Pangan} 23 93–107 [In Indonesian]

[4] Subagio H, Aqil M, Penelitian B and Serealia T 2013 Pemetaan varietas unggul pengembangan jagung di lahan kering di iklim kering (Mapping of superior varieties of corn development in dry land in dry climate) \textit{Seminar Nasional Serealia} 2013 19 [In Indonesian]

[5] Uslan and Jannah N 2020 Keanekaragaman genetik kultivar jagung lokal (Zea mays) asal amarasi selatan, kabupaten kupang, indonesiase menurut penanda ulangan sekuen sederhana (Genetic diversity of local corn (Zea mays) cultivars from South amarasi, kupang district, indonesia by inter simple sequence repeats marker) Biodiversitas 21 1208–1214 [In Indonesian]

[6] Murningsih T, Yulita KS, Bora CY and Adwita IGB 2014 Respon tanaman jagung landrace NTT dengan kematangan sangat dini (Pena Tunu ‘ Ana ’) terhadap cekaman kekerunan (Response of maize landrace NTT with very early maturity (Pena Tunu ’ Ana ’) to drought stress) \textit{Berita Biologi Jurnal Ilmu-Ilmu Hayati} 14 49–55 [In Indonesian]

[7] Suleman R, Kandownagko NY and Abdul A 2019 orphological characterization and proximate analysis of maize \textit{Jombura Edu Biosfer Journal} 1 72–81

[8] Gasong LS, Damayantni E, Marliyanti SA and Martianto D 2018 Local food preferences for adolescents girls In Kupang , East Nusa Tenggara , Indonesia \textit{Schloars J. Arts Humanit. Soc. Sci.} 6 2140–2144

[9] Ngongo Y, Irawan and Haryati U 2021 Conservation agriculture in semi-arid area of Indonesia: Lesson learnt to increase maize production and farmers’ awareness on environmental friendly land management \textit{IOP Conf. Ser. Earth Environ. Sci.} 648 0–9

[10] Mahendradatta M, Tawali AB, Laga A, Langkong J and Nadirah S 2011 Some indigenous corn-based foods from Indonesia , which are potential as staple foods \textit{Food Innov. Asia Conf. 2010 Indig. Food Res. Dev. to Glob. Mark.} 1

[11] Gasong LS, Damayantni E, Marliyanti SA and Martianto D 2019 Pengembangan produk jagung beras instan yang diperkaya zat besi (IBC) dan khasiatnya dalam mengatasi anemia pada remaja putri di Kupang. (Product development of iron fortified instant corn (IBC) and its efficacy on addressing anemia among adolescent girls in Kupang) Dessertations https://repository.ipb.ac.id/handle/123456789/99954 (Accessed: 22 January 2021) [In Indonesian]

[12] Puspita D, Palimbong S, Toy B and Notoxoedarmo S 2017 Identifikasi legum lokal di Pulau Timor yang berpotensi untuk mengembangkan inovasi pangan lokal (Identification of local legumes on Timor Island that have the potential to develop local food innovation) \textit{Prosiding Seminar Nasional dan Call for Papers 2017} 324–335 [In Indonesian]

[13] Badami K and Amzeri A 2011 Identification of drought tolerant somaclonal variance in maize population as a result of in vitro selection with PEG (Identifikasi varian somaklonal toleran kekekeran pada populasi jagung hasil seleksi in vitro dengan PEG) \textit{Agrovigor} 4 7-13 [In Indonesian]

[14] Hamaker BR, Tuncil YE and Shen X 2018 \textit{Carbohydrates of the Kernel} 3rd ed (Amsterddam: Elsevier Inc.) p 201

[15] Loy DD and Lundy EL 2019 Chapter 23 - Nutritional properties and feeding value of corn and its coproducts \textit{Corn Chem. Technol. 3rd Ed. 2019} 633–659

[16] Haq F, Yu H, Wang L, Teng L, Haroon M, Khan RU, Mehmood S, Amin BU, Ullah RS, Khan A, Nazir A 2019 Advances in chemical modifications of starches and their applications \textit{Carbohydr. Res.} 476 12–35

[17] Santiago-Ramos D, Figueroa-Cárdenas JD, Matiscal-Moreno RM, Escalante-Aburto A, Ponce-García N and Vélez-Medina JJ 2018 Physical and chemical changes undergone by pericarp and endosperm during corn nixtamalization-A review \textit{J. Cereal Sci.} 81 108–117

[18] Fernández-Muñoz JL, Acosta-Osorio AA, Gruntal-Santos MA and Zelaya-Angel O 2011 Kinetics of water diffusion in corn grain during the alkaline cooking at different temperatures
and calcium hydroxide concentration. *J. Food Eng.* **106** 60–64

[19] Hedayati S, Shahidi F, Koocheki A, Farahnaky A and Majzoobi M 2016 Physical properties of pregelatinized and granular cold water swelling maize starches at different pH values *Int. J. Biol. Macromol.* **91** 730–735

[20] Marta H and Tensiska T 2016 Kajiam sifat fisikokimia tepung jagung pragelatinisasi serta aplikasinya pada pembuatan bubur instan (Study of the physicochemical properties of pregelatinized corn flour and its application in the manufacture of instant porridge *JP2*. **1** 14–21 [In Indonesian])

[21] Fu ZQ, Wang LJ, Zou H, Li D and Adhikari B 2014 Studies on the starch-water interactions between partially gelatinized corn starch and water during gelatinization *Carbohydr. Polym.* **101** 727–732

[22] Rojas LJ, Molina IR, Cortez EG, Londoño NR, Osorio AAA, López ADR, García MER 2017 Physicochemical properties of nixtamalized corn flours with and without germ *Food Chem.* **220** 490–497

[23] Valderrama-Bravo C, Rojas-Molina A, Gutiérrez-Cortez E, Rojas-Molina I, Oaxaca-Luna A, De la Rosa-Rincón E, Rodríguez-García ME 2010 Mechanism of calcium uptake in corn kernels during the traditional nixtamalization process: Diffusion, accumulation and percolation *J. Food Eng.* **98** 126–132

[24] Garcia-Diaz S, Hernandez-Jaimes C, Escalona-Buendia HB, Bello-Perez LA, Vernon-Carter EJ and Alvarez-Ramirez J 2016 Effects of CaCO3 treatment on the morphology, crystallinity, rheology and hydrolysis of gelatinized maize starch dispersions *Food Chem.* **207** 139–147

[25] Rojas-Molina I, Gutiérrez E and Cortés-Álvarez 2009 Effect of temperature and steeping time on calcium and phosphorus content in nixtamalized corn flours obtained by traditional nixtamalization process,” *Cereal Chem.*., pp. 516–521, 2009.

[26] Lobato-Calleros C, Hernandez-Jaimes C, Chavez-Esquível G, Meraz M, Sosa E, Lara VH, Alvarez-Ramírez J and Vernon-Carter EJ 2015 Effect of lime concentration on gelatinized maize starch dispersions properties *Food Chem.* **172** 353–360

[27] Rodríguez ME, Yanez-Limon M, Alvarado-Gil JJ, Vargas H, Sanchez-Sinencio F, Figueroa JDC, Martinez-Bustos F, Martinez-Montez JL, Gonzalez-Hernandez J, Silva MD and Miranda LCM 1996 Influence of the structural changes during alkaline cooking on the thermal, rheological, and dielectric properties of corn tortillas *Cereal Chem.* 73 593–600

[28] BeMiller JN 2018 Chapter 19 - Corn starch modification *Corn Chem. Technol. 3rd Ed.* **2018** 537–549

[29] Xing J, Li D, Wang L and Adhikari B 2018 Temperature thresholds and time-temperature dependence of gelatinization for heat-moisture treated corn starch *J. Food Eng.* **217** 43–49

[30] Awolu OO, Odoro JW, Adeloye JB and Lawal OM 2020 Physicochemical evaluation and Fourier transform infrared spectroscopy characterization of quality protein maize starch subjected to different modifications *J. Food Sci.* **85** 3052–3060

[31] Bhattacharyya P, Ghosh U, Gangopadhyay H and Raychaudhuri U 2007 Effects of thermal treatments and germination on physico-chemical properties of corn flour *Afr. J. Biotechnol.* **6** 994–999