Using double radio relics to constrain galaxy cluster mergers: A model of double radio relics in CIZA J2242.8+5301

R. J. van Weeren1*, M. Brüggen2, H. J. A. Röttgering1 and M. Hoeft3

1 Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands
2 Jacobs University Bremen, P.O. Box 750561, 28725 Bremen, Germany
3 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778, Tautenburg, Germany

ABSTRACT
Galaxy clusters grow by mergers with other clusters and galaxy groups. These mergers create shock waves within the intracluster medium (ICM) that can accelerate particles to extreme energies. In the presence of magnetic fields, relativistic electrons form large regions emitting synchrotron radiation, so-called radio relics. Behind the shock front, synchrotron and inverse Compton (IC) losses cause the radio spectral index to steepen away from the shock front. In a binary cluster merger, two shock waves are generated which move diametrically outwards along the merger axis. Two radio relics can then form on both sides of the cluster center. An example of such a cluster is CIZA J2242.8+5301, where very clear spectral steepening in the downstream region is observed. The main relic has a total extent of 1700 kpc, while its width is only 55 kpc. Together with the high observed polarization fraction, this implies the relic is seen very close to edge-on which makes it easier to constrain the merger geometry. Here we present hydrodynamical simulations of idealized binary cluster mergers with the aim of constraining the merger scenario for this cluster. From our simulations, we find that CIZA J2242.8+5301 is probably undergoing a merger in the plane of the sky (less then 10° from edge-on) with a mass ratio ($M_1 : M_2$) of about 2 : 1, and an impact parameter $\lesssim 400$ kpc. We find that the core passage of the clusters happened about 1 Gyr ago. We conclude that double relics relics can set constraints on the mass ratios, impact parameters, timescales, and viewing geometry of binary cluster mergers, which is particularly useful when detailed X-ray observations are not available. In addition, the presence of large radio relics can be used to constrain the degree of clumping in the outskirts of the ICM, which is important to constrain the baryon fraction, density and entropy profiles, around the virial radius and beyond. We find that the amplitude of density fluctuations, with sizes of $\lesssim 200$ kpc, in the relic in CIZA J2242.8+5301 is not larger than 30%.

Key words: radio continuum: general – clusters: individual : CIZA J2242.8+5301 – cosmology: large-scale structure of Universe – radiation mechanisms: non-thermal – methods: numerical

1 INTRODUCTION
Radio relics are diffuse, steep-spectrum radio sources found in merging galaxy clusters. They have been divided into three groups (Kempner et al. 2004): radio gischt, radio phoenix and AGN relics. Here we will only be concerned with so-called radio gischt relics, these are elongated arc-like radio sources with sizes of up to 2 Mpc (e.g., Ensslin et al. 1998). They are mostly found in the outskirts of galaxy clusters. Recent observations have given support to the hypothesis that they trace shock fronts in which particles are accelerated via the diffusive shock acceleration mechanism (DSA; Krymskii 1977, Axford et al. 1977, Bell 1978a,b, Blandford & Ostriker 1978, Drury 1983, Blandford & Eichler 1987, Jones & Ellison 1991, Malkov & O’C Drury 2001).

A particularly interesting “class” of radio gischt are the so-called double-relics. In this case two relics are diametrically located on both sides of the cluster center (e.g.,
Double radio relics are thought to trace outward moving shock waves from a binary cluster merger, which develop after core passage of the two subclusters in the DSA scenario. Synchrotron and IC losses cool the particles at the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen roughly edge-on this creates a radio spectral index gradient towards the back of the shock front. If the relics are seen rough
between the Coma cluster and the NGC 4839 galaxy group using the same code as described by Roettiger et al. (1993). Schindler & Mueller (1993) simulated collisions of clusters using a uniform grid-PPM (piecewise-parabolic method) code for the gas dynamics, while an N-body code was used for the collisionless component consisting of dark matter and galaxies. They showed the development of outward propagating shock waves generated during the collisions between subclusters.

None of the works mentioned above included the baryonic contribution to the gravitational potential. Head-on equal mass collisions between clusters were simulated by Pearce et al. (1994) using smoothed-particle hydrodynamics (SPH), including both baryons and dark matter. Roettiger et al. (1997) used a PPM/particle-mesh code to simulate a collision intended to resemble the cluster Abell 754. Roettiger et al. (1999) presented the first three-dimensional numerical magnetohydrodynamical (MHD) simulations of the magnetic field evolution in merging clusters of galaxies, which they subsequently applied to model the double radio relics in Abell 3367 (Roettiger et al. 1999). They concluded that the radio structures arise from a slightly off-axis merger that occurred nearly in the plane of the sky approximately 1 Gyr ago, with the subcluster having a total mass of 20% of the primary cluster. Roettiger & Flores (2000) also modeled the X-ray substructure seen in Abell 3266 as an off-axis merger with a mass ratio of 2.5 : 1.

Ricker (1998) simulated off-center collisions of equal mass clusters using a PPM code and an isolated multigrid potential solver. They simulated off-center collisions with 0, 5, and 10 times the cluster core radius and studied how the virialisation time, X-ray luminosity, and structure of the merger depended on the impact parameter of the collision. They found that the increase in X-ray luminosity due to the merger depends on the impact parameter of the collision. Ritchie & Thomas (2002) also reported that mergers can lead to large increases in bolometric X-ray luminosities and emission-weighted temperatures. Cool cores are completely disrupted by equal mass head-on mergers, while for mergers with mass ratios of 8 : 1 the cooling flow restarts within a few Gyr. For mergers with impact parameters of 500 kpc the cool-core is not disrupted. Ricker & Sarazin (2001) investigated cluster collisions, varying both the mass ratio and impact parameters. They found that merger events created large-scale turbulent motions with eddy sizes up to several hundred kiloparsecs.

FLASH Fryxell et al. (2000) high-resolution N-body/hydrodynamics simulations have been carried out by Zu Hone et al. (2009) to model the cluster Cl 0024+17, a proposed merger of two clusters, with the interaction occurring along our line of sight. Also, gas sloshing initiated by mergers with subclusters, and the effects of mergers on the entropy of the ICM were investigated by Zu Hone et al. (2010). Various simulations of cluster merger were also presented by Takizawa (1999, 2000), Takizawa & Naito (2000), and Takizawa (2008). In Takizawa (2008) N-body + magnetohydrodynamical simulations were performed from which it was found that cluster mergers cause various characteristic magnetic field structures. The magnetic field component perpendicular to the collision axis is amplified by the merger which results in a cool region wrapped by field lines. McCarthy et al. (2007) focused on the generation of entropy during cluster mergers and Akahori & Yoshikawa (2010) investigated how the ionization equilibrium state is affected by cluster mergers. They report that the ICM significantly departs from the ionization equilibrium state at the location of shocks.

Poole et al. (2006) carried out a suite of SPH simulations of merger of clusters whose initial conditions resembled relaxed cool core clusters. They investigated the efficacy of (i) centroid variance, (ii) power ratios, and (iii) X-ray surface brightness/projected mass displacement to quantify the degree to which observed clusters are disturbed. From this it was found that the centroid variance gives the best measure of the state of clusters and how far they are from virial and hydrostatic equilibrium.

Cluster mergers can decouple the baryonic matter component from the dark matter (DM) which causes and offset between the gravitational center (measured from lensing) and X-ray center of the cluster. This was first observed for the “Bullet cluster” (1E0657−56, Clowe et al. 2006). Springel & Farrar (2007) presented hydrodynamical models of galaxy cluster mergers to reproduce the dynamical state and mass models (from gravitational lensing) of the “Bullet” cluster (1E0657−56). They showed that the size of the spatial offset between the baryonic peak and mass is quite sensitive to the structural details of the merging systems. This offset was earlier also found in numerical models by Takizawa (2006), Mastropietro & Burkert (2008) presented detailed N-body/SPH simulations of the system. They found that the X-ray morphology is best simulated with a mass ratio of 6 : 1 and an impact parameter of 150 kpc.

3 NUMERICAL METHOD

We used the FLASH 3.2 framework (Fryxell et al. 2000) for the simulations which includes standard hydrodynamics and gravity. We did not include the effects of radiative cooling, as this is not very relevant for the spatial and temporal time scales considered here. Furthermore, the hydrogen number density was assumed to be related to the electron number density as $n_H = 0.6 n_e$. We chose outflow boundary conditions. We simulated a box with a size of $5 \times 5 \times 5$ Mpc. A maximum of 6 refinement levels are allowed, resulting in a maximum resolution of 3.25 kpc. The minimum refinement level was set to 3 giving a resolution of 26 kpc. The simulations were run at this relatively low-resolution in order to study a larger range of merger parameters.

For the gravitational potential of each subcluster we assume hydrostatic equilibrium and spherical symmetry,

$$\frac{d\phi}{dr} = \frac{k_B}{\mu m_H} \left[T(r) \frac{d\rho(r)}{d\log r} + \frac{dT(r)}{d\log r} \right],$$

where $T(r)$ and $\rho(r)$ are the radial density and temperature profiles, m_H the hydrogen mass, and μ the mean molecular weight (we adopt $\mu = 0.6$). We move the center of the gravitational potential of the merging subcluster around the fixed potential of the main cluster, ignoring the interactions between the dark matter.
3.1 Radio emission from shocks

We use passive tracer particles in the simulations to model the radio emission. At the start of the simulation the particles are distributed proportional to the density throughout the complete computation volume. The advantage is that in this way each passive tracer particle represent roughly the same amount of mass which simplifies the normalization of the radio emission, as the contribution from every particle can be simply added up. For each tracer particle, 5 million in total, we record the position, velocity, density and temperature as a function of time, writing the results to disk every 30×10^6 yr. In order to create synthetic radio maps, we locate all particles that have passed through the shock waves in the simulation by looking at the variation of the temperature as function of time for each tracer particle. We define a particle to have passed through a shock if the temperature between two successive outputs spaced 30×10^6 yr apart increases by more than a factor of 1.5 (no radio emission is generated below this number). For each particle that passes through the shock we then compute the Mach number (M), using Rankine-Hugoniot jump conditions and adiabatic in-

\[M = \sqrt{\frac{\gamma r s}{r}} \]

where $\gamma = 5/3$ (Landau & Lifshitz 1959), compression ratio, entropy ratio, and the time since it has passed through the shock.

With these parameters we compute the synchrotron emission at a given frequency ν using the JP model (Jaax & Perola 1973), taking into account the spectral ageing due to synchrotron and IC losses. We apply eq. 5 and 6 from Komissarov & Gubanov (1994) and use $t_0 = 0$, see also Kardashev (1962); Pacholczyk (1970).

The amount of synchrotron emission for each tracer particle is recorded. A radio map is then simply computed by integrating the radio emission from each tracer particle in the computational volume along a chosen line of sight.

We take $B_{\text{CMB}} = 4.6 \mu\text{Gauss}$ the equivalent magnetic field strength of the CMB at $z = 0.1921$. To compute the radio emission the magnetic field is needed. Since we do not include magnetic fields in our simulation we adopt constant values for the magnetic field B. The spectra are then normalized using the method described by Hoef & Brüggen (2007), which takes into account the efficiency of acceleration of Mach number. We start with a spectrum of suprathermal electrons with a power-law distribution as function of Mach number. We start with a spectrum of suprathermal electrons with a power-law distribution as function of Mach number. We start with a spectrum of suprathermal electrons with a power-law distribution as function of Mach number. We start with a spectrum of suprathermal electrons with a power-law distribution as function of Mach number. We start with a spectrum of suprathermal electrons with a power-law distribution as function of Mach number.

\[C_{\text{spec}} = \frac{\xi \nu d m_p \nu \gamma - 1}{\nu m_e^2} \frac{1}{\nu m_e^2} \frac{1}{\nu m_e^2} \]

where νd is the downstream velocity, q the entropy ratio (S_d/S_a) across the shock, and

\[I_\text{spec} = \int \frac{d \nu}{\nu^\alpha} \left(1 - \frac{\nu}{\nu_{\text{max}}} \right)^{\alpha - 2} \]

The minimum energy, $\nu_{\text{min}} = \nu_{\text{max}}/m_e e^2$, is the energy above which electrons are considered to be suprathermal.

This results is an implicit equation for ν_{min} that has to be solved simultaneously with the normalization of the spectrum.

We directly apply the code from Hoef & Brüggen for this.

3.2 Initial conditions

For the initial conditions we start with two spherically symmetric (sub)clusters with masses M_1 and M_2 separated by a distance d. Subscript 1 always refers to the more massive cluster (i.e., $M_1 > M_2$). The density profiles of both subclusters are described by single β-models (Cavaliere & Fusco-Femiano 1976)

\[\rho(r) = \rho_0 \left[1 + \left(\frac{r}{\rho_0} \right)^{2} \right]^{-\frac{3\gamma}{2}}, \]

where ρ_0 the central density, r_0 the core radius. We decided to fix β to 2/3 (e.g., Bohringer et al. 2000) and $\rho_0 = 2 \times 10^{-26} \text{ g cm}^{-3} (0.02 \text{ particles per cm}^3)$ for both subclusters. This value for ρ_0 is roughly the average of the values found by Croston et al. (2008) for a sample of 31 clusters. They found that the central densities did not show any clear trend with the overall mass and temperature of the clusters.

We used the $M - T$ scaling relation from Mantz et al. (2010) to get the global average temperature from the cluster’s mass.

\[T_{\text{avg}} = 10^{0.88 + 0.48 \log_{10} (M/10^{14}M_\odot)} \text{ [keV]} \]

where r_c the core radius of the thermal energy goes into the acceleration of electrons (Keshet et al. 2004). Furthermore, we take into account that the electrons can only be accelerated to a finite maximum energy (E_{max}) (Keshet et al. 2003). The electron spectrum with a smoothed high-energy cut-off is then given by

\[\frac{d n_e}{d E} = \left\{ \begin{array}{ll}
\frac{n_e C_{\text{spec}}}{m_e c^2} \frac{\nu d}{\nu m_e^2} \frac{\nu \gamma - 1}{\nu m_e^2} \frac{1}{\nu m_e^2} \left(1 - \frac{\nu}{\nu_{\text{max}}} \right)^{\alpha - 2} : \nu < \nu_{\text{max}} \\
0 : \text{elsewhere} \end{array} \right. \]

where $\nu = E/m_e c^2$. The normalization constant C_{spec} gives the fraction of electrons at $E = m_e c^2$.
The temperature decrease. The final temperature model is given by

\[T_{\text{full}}(r) = T(r)T_{\text{cool}}(r) . \] (11)

For the merger scenario we follow Sarazin (2002), where two subclusters merge at time \(t_{\text{merge}} \) (the age of the Universe at the time of the merger). The two clusters have a large initial separation, \(d_0 \). The value of \(d_0 \) does not strongly affect the merger because the infall velocity approaches free-fall from infinity. If we assume that the clusters dominate the mass in the region of the Universe they occupy

\[d_0 \approx 4.5 \left(\frac{M_1 + M_2}{10^{15} M_\odot} \right)^{1/3} \left(\frac{t_{\text{merge}}}{10^{10} \text{ yr}} \right)^{2/3} \text{ [Mpc]} . \] (12)

For CIZA J2242.8+5301 (\(z = 0.1921 \)) \(t_{\text{merge}} \) is 11.0 Gyr.

To speed up the simulations the centers of the two sub-clusters are placed at a distance \(d = 2 \) Mpc from each other. This we define as \(t = 0 \). The relative velocity between the clusters at that starting point is given by Sarazin (2002) as

\[v \approx 2930 \left(\frac{M_1 + M_2}{10^{15} M_\odot} \right) \left(\frac{1 - \frac{d}{d_0}}{1 - \left(\frac{b}{d_0} \right)^2} \right)^{1/2} \left(\frac{d}{1 \text{ Mpc}} \right)^{-1/2} \text{ [km s}^{-1}]. \] (13)

where \(b \) is the impact parameter of the collision. Using the starting location, initial velocities and masses of the sub-clusters we move the center of the gravitational potential of the merging sub-cluster \((M_2) \) around the fixed potential of the “main” cluster \((M_1) \), ignoring the interactions between the dark matter and treating the clusters as point masses. This fixes the sub-cluster’s orbit around the main cluster. The point \((x, y, z) = (0, 0, 0)\) is defined by the center of mass of the system. The gravitational acceleration of the gas was then computed using Eq. 13.

To reconstruct the merger that gave rise to the double radio relic CIZA J2242.8+5301, we varied the mass ratio and impact parameter in the simulation. In the post-processing (to create the radio maps) we also varied the viewing angle. The total mass of the two (sub)clusters \(M_1 + M_2 \) was kept constant to \(5.5 \times 10^{13} M_\odot \). The values for \(r_c \) are fixed by the total mass of the system and the required mass ratio (these are reported in Table 1). In Sect. 6 we will discuss the effect on the simulations if we take different values for \(\beta \) and \(r_c \). For the default runs we chose \(T_{\text{min}}/T_{\text{avg}} = 1, \) i.e., no temperature drop in the cluster center. In Sect. 4.1.5 we discuss the effect of including a central cool core to the most massive sub-cluster. For all runs we place the merger axis along the y-axis with the least massive cluster located at positive y-value and the initial velocity (given by Eq. 13) being in negative y-direction.

4 RESULTS

The names and parameters for the different FLASH runs are given in Table 1. We start with a description of the basic hydrodynamical quantities (the density, temperature, and the velocity field) from the simulations. We will discuss the results for a merger with a mass ratio of 2 : 1 and zero impact parameter (R21b); see Fig. 1, and for a merger with the same mass ratio but with an impact parameter of 4 (4\(r_{c,1} \); R21b), see Fig. 2.

The R21b0 merger starts with the subcluster approaching the main cluster. Two shocks, with \(M \sim 1.15 \) at \(t = 600 \) Myr, develop as the cores approach each other. After core passage, at \(t = 1.25 \) Gyr, a pair of stronger symmetrical shock waves form that travel diametrically outwards in front of the two subclusters. The shock waves increase in size as the time advances, although their Mach numbers decrease. At \(t = 1.95 \) Gyr the maximum Mach numbers are about 3.1 and 2.3 for the top and bottom shock waves, respectively. At \(t = 2.28 \) Gyr the two shock are separated by 2.8 Mpc, as is the case for the double relics in CIZA J2242.8+5301. The Mach numbers at this time have decreased to about 2.7 and 2.2, for the top and bottom relics, respectively. Thus, the most massive cluster with the largest core radius develops the largest (and slightly stronger) shock wave in front of it after core passage. The velocity field at \(t = 2.3 \) Gyr is shown in Fig. 3 (left panel).

Mergers with different mass ratios, ranging between 1 to 5, show a similar picture. The size and strength of the shock waves depend on the mass ratio (which in turn determines the core radii of the subclusters). In collisions with a larger mass ratio the shock waves in front of the less massive subcluster reduces in relative size and strength.

A 2 : 1 merger with an impact parameter of \(b = 4 r_{c,1} \) (R21b4) develops two asymmetric spiral-like shock waves, and again the two shocks have different sizes depending on the mass ratio used. The amount of asymmetry depends on the impact parameter. The Mach numbers across these asymmetric shocks decrease more slowly on the left side of the merger axis. At \(t = 2.1 \) Gyr the maximum Mach number is about 2.9 and 2.2 for the top and bottom shock waves, respectively. This decreases to about 2.7 and 2.1 at \(t = 2.4 \) Gyr when the two shocks are separated by 2.8 Mpc. The velocity field at \(t = 2.4 \) Gyr is shown in Fig. 3 (right panel).

4.1 Radio maps

In this section we present the simulated radio maps for a range of mass ratios, impact parameters, viewing angles and radial density/temperature profiles, and compare them to the observed WSRT radio map at 1382 MHz. To create the radio maps, we integrated the radio emission from each tracer particle that passed through the shock along the line of sight. All radio maps are normalized to the peak flux in the simulated map and are smoothed with a 2-dimensional Gaussian of \(50 \times 40 \) kpc to match the resolution of the WSRT image. This smoothing is also needed as the radio emission is computed using a discrete number of particles with insufficient sampling to create images at the resolution of the hydro-grid. For making the radio maps, we assumed a constant magnetic field strength of \(B = 5.0 \) \(\mu \)G, see van Woeren et al. (2010).

It takes about 1.0 Gyr for the two relics to be separated by 2.8 Mpc after core passage. This number varies very little for mass ratios between 1.5:1 and 3:1. For impact parameters \(b > 0 \) kpc the time since cores passage only increases slightly to about 1.1 Gyr for \(b = 5 r_{c,1} \) (e.g., Fig. 3). Therefore, the time since core passage does not depend much on the adopted initial conditions such as the mass ratio and impact parameter. However, the time since core passage will also depend on the adopted total mass of the system and on
the temperature profile, since this affects the sound speed. Detailed X-ray observations would be helpful here to better constrain the total mass and measure the temperature profile.

4.1.1 Mass ratio

We varied the mass ratios for the collisions between 1 : 1 and 3 : 1. The mass ratio (which also set the core radii) affects the size of the two outwards moving shock waves after core passage. The resulting radio maps for mergers with four different mass ratios are displayed in Fig. 4 and the largest linear extent of the relics are listed in Table 2. The radio maps display a double relic system, with the front of the two relics tracing the shock waves. Towards the cluster center and the left/right edges of the relics, the surface brightness decreases. The size of the shock waves (the $M \gtrsim 2$ part) directly reflects the extent of the relics in the radio maps.

We compare the synthetic radio maps to the observed WSRT map at 1382 MHz. The observed and synthetic maps are aligned by eye to the brightest northern relic in CIZA J2242.8+5301, by simple translation and rotation. With a visual comparison and the taking into account the sizes listed in Table 2, we find the best match between the observed and simulated radio maps for a mass ratio around 2 : 1 to 1.5 : 1. For more equal mass ratios the bottom relic increases to a size that is larger than the observed size. The opposite happens for larger mass ratios. When we compare the simulated radio images with the temperature map in Fig. 5 (left panel) we note that the relic emission does not trace the full extent of the shock waves. This is a consequence of the non-linear relation between the Mach number and normalization of the radio spectrum, discussed in Sect. 5.1. Below $M \sim 2$ there is no observable radio emission generated. Another reason for the gradual disappearance of the radio emission at the right/left edges of the relics is that the amount of projected shock surface along the line of sight decreases.

4.1.2 Impact parameter

Taking the 2 : 1 merger event, we varied the impact parameter, see Fig. 4. As discussed in the beginning of Sect. 4, two asymmetric shock waves develop, breaking the cylinder symmetry (or reflection symmetry in the resulting image) around the merger axis. The variation in Mach number across the shock front and the amount of projected shock surface along the line of sight cause the radio emission to fade away more slowly on one side of the radio relics. Integrated brightness profiles for the top relic across the y-axis are shown in Fig. 5 (top panel). The total extent of the relic decreases by about 10% from $b = 0$ kpc to $b = 5r_{c,1}$.

The CIZA J2242.8+5301 relics are more or less symmetrically located along the proposed merger axis, although the brightness profile at the east end of the northern relic is not well determined because of a bright compact radio source at this location. To obtain a better match with the observed radio map, we reflected the map along the y-axis, i.e., placing the off-axis merger point on the other side (this is equivalent of changing the impact parameter from b to $-b$). The simulated profiles all peak around $z = 0$ kpc, while the observed profile does not. From these profiles it is therefore difficult to constrain the impact parameter. However, by looking at Fig. 4 we find that $b \lesssim 3r_{c,1}$ is required to obtain a reasonable match. For larger impact parameters the curvature of top shock does not match the observed one (i.e., this can be seen on the right side of the top relic in the R21b4 panel from Fig. 4).

4.1.3 Viewing angle

We varied the viewing angle (i) by rotating our computational box around the x-axis before projecting it along the line of sight. The extent of the emission towards the cluster center increases by about a factor of three from $i = 5^\circ$ to $i = 30^\circ$, see Fig. 4. Radial profiles of the brightness distribution are shown in Fig. 5 (middle panel). The outer edge of the northern relic in CIZA J2242.8+5301 is very pronounced and the brightness of the radio emission drops also quickly towards the cluster center, therefore the relic is likely seen close to edge on, roughly under an angle $\lesssim 10^\circ$. In all cases, the simulated brightness profiles do not reproduce the very quick drop towards the cluster center as it is observed for the northern relic. The southern relic is more diffuse and extended in CIZA J2242.8+5301, as is the case in our simulated maps.

4.1.4 β-model

One of the parameters which could influence the size of the radio relics is the core radius used in our β-profile (Eq. 7). Because the total mass is fixed in our simulations the core radius is set by the β parameter in Eq. 7. We changed β from the default value of $2/3$ to 0.5 and 0.75 for the most massive cluster to investigate the effect this has on the produced radio maps. For $\beta = 0.5$, the core radius decreases from 134 kpc to about 83 kpc, while for $\beta = 0.75$ the core radius increases to 163 kpc. We run the simulations with these different core radii and β values for the standard R21b0 merger scenario. The resulting radio maps are displayed in Fig. 6.

The change in $r_{c,1}$ has a direct influence on the size of the resulting shock waves and radio relics formed. For $r_{c,1} = 83$ kpc, the northern and southern relics are almost a factor of 2 smaller in size. For $r_{c,1} = 163$ kpc, the relics have a slightly larger size and are similar to the R1.51b0 merger (see Fig. 4). This implies that our best fitting mass ratio found in Sect. 4.1.1 depend on the adopted core radii. In particular if the most massive cluster has a larger core radius this mimics a merger with a smaller mass ratio (e.g., 1.5 : 1), see Fig. 4. By increasing the core radius of the

Table 2. Relic sizes
CIZA J2242.8+5301
run R1.51b0
run R2.51b0
run R31b0
top relic
bottom relic
run R21b0
run R2.51b0
run R31b0

© 2011 RAS, MNRAS 000, b
Figure 1. Temperature and density evolution for a 2:1 merger with zero impact parameter. The color image displays the temperature at a slice $z = 0$, while the white contours follow the density. The density contours are drawn at levels of $\log_{10}(\rho [g cm^{-3}]) = [-27.9, -27.8, -27.7, \ldots]$.

Figure 2. Temperature and density evolution for a 2:1 merger with an impact parameter $b = 4r_{c,1}$. The color image displays the temperature at a slice $z = 0$, while the white contours follow the density. The density contours are drawn at levels of $\log_{10}(\rho [g cm^{-3}]) = [-27.9, -27.8, -27.7, \ldots]$.
Figure 3. Velocity field for a 2:1 merger with impact parameters $b = 0$ kpc (left) and $b = 4r_{c,1}$ (right) for the slice $z = 0$. The two snapshots were chosen such that the center of the two shock waves have a linear separation of 2.8 Mpc. The color image displays the temperature distribution. The maximum absolute velocity is ~ 1400 km s$^{-1}$.

Table 1. List of simulations with their defining parameters

run	mass ratioa	impact parameter (b)	$r_{c,1}$, $r_{c,2}$	$T_{avg,1}$, $T_{avg,2}$	v_y^c	comment
R11b0	1:1	0	115, 115	4.1, 4.1	-937	
R1.51b0	1.5:1	0	126, 101	4.5, 3.7	-927	
R21b0	2:1	0	134, 90	4.7, 3.3	-922	
R2.51b0	2.5:1	0	139, 84	4.8, 3.1	-926	
R31b0	3:1	0	145, 80	5.0, 3.0	-944	
R21b0.5	2:1	1$r_{c,1} = 67$ kpc	134, 90	4.7, 3.3	-922	
R21b1	2:1	1$r_{c,1} = 134$ kpc	134, 90	4.7, 3.3	-921	
R21b2	2:1	2$r_{c,1} = 268$ kpc	134, 90	4.7, 3.3	-916	
R21b3	2:1	3$r_{c,1} = 402$ kpc	134, 90	4.7, 3.3	-908	
R21b4	2:1	4$r_{c,1} = 536$ kpc	134, 90	4.7, 3.3	-897	
R21b5	2:1	5$r_{c,1} = 670$ kpc	134, 90	4.7, 3.3	-883	
R21b0.5	2:1	0	82.6, 90	4.7, 3.3	-922	$\beta_1 = 0.5$
R21b0.75	2:1	0	162.5, 90	4.7, 3.3	-922	$\beta_1 = 0.75$
R21b0cc	2:1	0	134, 90	4.7, 3.3	-922	cool coreb for cluster 1
R21b0ss ($\Lambda = 0.2$, $\lambda = 100$ kpc)	2:1	0	134, 90	4.7, 3.3	-922	substructure
R21b0ss ($\Lambda = 0.3$, $\lambda = 75$ kpc)	2:1	0	134, 90	4.7, 3.3	-922	substructure
R21b0ss ($\Lambda = 0.3$, $\lambda = 150$ kpc)	2:1	0	134, 90	4.7, 3.3	-922	substructure
R21b0ss ($\Lambda = 0.3$, $\lambda = 200$ kpc)	2:1	0	134, 90	4.7, 3.3	-922	substructure
R21b0ss (0.4, 200 kpc)	2:1	0	134, 90	4.7, 3.3	-922	substructure

a subscript 1 refers to the most massive subcluster, $M_1 + M_2 = 5.5 \times 10^{14} M_\odot$

b $T_{min,1}/T_{avg,1} = 0.3$, $r_{cool,1} = 50$ kpc and $a_{cool,1} = 2$

c starting velocity in y-direction for the least massive cluster 2 (Eq 13)

© 2011 RAS, MNRAS 000, 1–15
Figure 4. Simulated radio emission for cluster mergers with different mass ratios (top row), impact parameters (middle row) and viewing angles (bottom row). The radio maps to the hydrodynamical snapshot where the two shock are separated by 2.8 Mpc. The images span 3.4 × 3.4 Mpc. Blue contours show the observed emission at 1382 MHz from CIZA J2242.8+5301 with the WSRT. The orange colored image and black contours display the synthetic radio image. Contours are spaced by factors of two in brightness.

less massive subcluster the size of the smaller southern relic can be increased, to some extent mimicking a 2.5 : 1 merger. Taking different core radii, the range of matching mass ratios for CIZA J2242.8+5301 is therefore larger and lies roughly between 1.5 : 1 and 2.5 : 1.

4.1.5 Cool core

In massive relaxed galaxy clusters the ICM temperature decreases strongly towards the center. To investigate the effect of such a cool core, we add a central cool core to the most massive subcluster using Eq. [10]. We take typical value of $T_{\text{min}}/T_{\text{avg}} = 0.3$, $r_{\text{cool}} = 50$ kpc and $r_{\text{cool}} = 2$ (e.g., Vikhlinin et al. [2006]) and use the standard R21b0 merger scenario. We find that the addition of a central cool core does not influence the size and shape of the resulting radio relics. The resulting radio map looks almost identical to the default R21b0 merger map, see Fig. [4].

4.2 Spectral index

We computed a spectral index map between 610 and 1382 MHz for the R21b0 merger, again taking a constant magnetic strength of 5 μGauss, see Fig. [7]. We find that the spectral index in front of the two relics is ~ -1.1, while the spectral index steepens quickly to ~ -2 in the direction of the cluster center. After the initial spectral steepening to $\alpha \sim -2$, the spectral index remains constant. The radio emission in this region comes from (i) aged radio plasma with a steep spectrum in the post-shock region and (ii) projected radio emission from the front of the shock wave with a flatter spectral index of ~ -1.

The observed spectral index in front of the northern CIZA J2242.8+5301 relic is flatter, with $\alpha \sim -0.6$ or -0.7, than in our simulated spectral index map. The observed spectral index corresponds to a $\mathcal{M} = 4.6$ shock. In the our R21b0 merger, we find a Mach number of about 2.7–2.4.
Figure 6. Top row: Simulated radio emission for R21b0 cluster merger with different values of β_1 and r_{c1}, and for a R21b0 cluster merger with the two halos sticking at core passage, which represents the extreme case of infinite tidal friction. Bottom row: Simulated radio emission for a R21b0 cluster mergers with substructure. Contours and colors are the same as in Fig. 4. The images span $3.4 \times 3.4 \text{ Mpc}$.

for the upper shock wave. This translates into $\alpha_{\text{inj}} = -0.8$ to -0.9. However, in the simulated map α is steeper by about 0.3 units at the front of the relic. This difference is caused by the limited spatial resolution ($\sim 50 \text{ kpc}$) of our synthetic radio map: radio emission directly at the front of the shock with $\alpha_{\text{inj}} \approx -0.85$ is always mixed with some emission from particles that have already have undergone some synchrotron losses. For CIZA J2242.8+5301 this implies that the true injection spectral index is probably even flatter than -0.6, if the shock front has a similar shape as in our simulations.

5 SUBSTRUCTURE & CLUMPING

Real mergers are more complex than in our idealized simulations. Hence, the detailed properties, such as the shapes or brightness profiles of radio relics, do not necessarily match with the observations. In particular the presence of less massive substructures and galaxy filaments extending from the large scale cosmic web will modify the shock morphologies and locations (e.g., Paul et al. 2010). Indeed, there are additional smaller relics located in CIZA J2242.8+5301 that points towards a more complex merger event. These more complex relics are also seen in simulations which include large-scale structure formation with radio emission from shocks (e.g., Pfrommer et al. 2008, Hoeft et al. 2008, Battaglia et al. 2009). Although we cannot easily embed our simulation into a large-scale cosmological environment, we investigate the effect of small scale ($\lesssim 200 \text{ kpc}$) substructures/clumps. Matter falling onto clusters is expected to be clumpy in nature and the clumps have typical dimensions of galaxies or small galaxy-groups (Roncarelli et al. 2006). If the gas in the cluster’s outskirts is clumpy, and this is not taken into account, it can lead to an overestimation of the baryon fraction and affect the derived entropy and pressure profiles (e.g., Simionescu et al. 2011). The presence of well-defined radio relics with sharp outer rims can be used to constrain the amount of clumping in the ICM at large distances ($\gtrsim 1 \text{ Mpc}$) from the cluster center.

We modified our initial density and temperature profiles by adding sinusoidal density fluctuations throughout the computational volume. The two parameters which control this are the relative amplitude (A) and wavelength (λ) of these density fluctuations. These sinusoidal waves were inserted parallel to the x, y and z-axes. To keep the pressure unchanged, we also included temperature fluctuations that are inversely proportional to the density fluctu-
Figure 5. Top: integrated brightness profiles across the y-axis for the top relic. Black dashed line displays the observed profile for the northern relic in CIZA J2242.8+5301. Solid lines, black: $b = 0$ kpc, purple: $b = 1r_c$, blue: $b = 2r_c$, green: $b = 3r_c$, orange: $b = 4r_c$, red: $b = 5r_c$. Middle: integrated brightness profiles across the x-axis from $|x| < 100$ kpc for the top relic for relics seen under different viewing angles. Black dashed line displays the observed profile for the northern relic in CIZA J2242.8+5301. Solid lines, black: $i = 0^\circ$, purple: $i = 5^\circ$, blue: $i = 10^\circ$, green: $i = 20^\circ$, red: $i = 30^\circ$. Bottom: integrated brightness profiles across the x-axis from $|x| < 100$ kpc for simulations including substructure. Black dashed line displays the observed profile for the northern relic in CIZA J2242.8+5301. Solid lines, black: no substructure, purple: $A = 0.2$, $\lambda = 100$ kpc, green: $A = 0.3$, $\lambda = 150$ kpc, red: $A = 0.4$, $\lambda = 200$ kpc.

Figure 7. Simulated spectral index map between 610 and 1382 MHz for the R21b0 merger. The small scale spectral index variations seen in the post-shock region are due to the finite number of particles used to compute the radio map.

The resulting radio relics are similar in shape to the canonical R21b0 merger map, but the relics are wider and display brightness fluctuations in the radio emission. The effect of this substructure is that the outer boundary of the relics is less well defined. For relics observed close to edge-on, projection effects average out some of the variations in the strength of the radio emission. The northern relic in CIZA J2242.8+5301 has a smooth appearance and well-defined outer rim. This probably implies that few clumps are present this location in the ICM. We find that the radio maps with $A \gtrsim 0.3$ do not provide a good match to the observed northern relic in CIZA J2242.8+5301. There is little difference between runs with $A = 0.3$ and $\lambda = 75, 150, 200$ kpc. We can therefore put upper limits on the amplitude of density fluctuations of roughly 30%, for substructures with scales of $\lesssim 200$ kpc, at the location of the northern relic. This means that clumping appears to be much less than that inferred from Suzaku observations of Perseus with $\sqrt{<n_e^2>/\langle n_e \rangle^2} \sim 3 - 4$ near the virial radius (e.g., Simionescu et al. 2011). The reason for this could be that the shock waves in CIZA J2242.8+5301 are expanding into a region sufficiently far from filaments such that it is largely free from infalling substructure.

A more realistic representation of density clumps could probably be used to put tighter constraints on the amount of substructure. This is beyond the scope of this paper and we leave this for future work.
6 DISCUSSION

6.1 Effect of dark matter dynamics

Clearly, a gross simplification of our setup is the treatment of the gravity in the form of rigid potentials that move on set trajectories without interacting. In reality, the dark matter particles of the progenitor halos will interact in the course of the merger to form a new halo. In the course of this, the potential changes mainly due to two effects: i) dynamic friction and ii) tidal shocking. The first one is the most important effect. After core passage, it will cause the halos to slow with respect to each other until they turn around on their orbits. As the merger shock waves are running out of the cluster faster than the speeds of the halos with respect to each other, this will not change the results dramatically. To test the magnitude of this effect, we ran a simulation where we made the two halos stick at core passage, which represents the extreme case of infinite tidal friction. The result is shown in Fig. 6. The relics are now somewhat narrower (about 10% for the top relic) but apart from that there are not many changes in the radio map even though the temperature and density are quite different in the center. The main change are the lower Mach numbers (which drop from 2.7 to 2.2, and from 2.2 to 1.9 for the top and bottom relics compared to the default R21b0 merger), but since this affects both for the top and bottom shocks the end result is not too different from the default R21b0 map. Finally, we ignore the effect of tidal shocking, which leads to heating of the central DM orbits of the cluster and leads to a puffing up of the potential. This will affect the cluster potential within the core radius but will leave the regions where the shocks are located largely unaffected. For a proper simulation of this effect, one would need to resort to a simulation with a dynamic DM component.

6.2 Relic width and brightness profiles

One of the most intriguing properties of the northern relic in CIZA J2242.8+5301 is its very narrow width and rather uniform luminosity along its extent. From our simulated radio map we find the brightest part of the top relic to be ≈ 20% wider than the observed width. In Sect. 5.1 we found a smaller width by including infinite tidal friction. This affects the shock downstream velocity, which determines how far the the synchrotron emitting electrons are carried away from the shock front (e.g., Markevitch et al. 2005). The relic’s width is linearly proportional to the downstream shock velocity. In case of infinite tidal friction the simulated radio relic is only ≈ 10% wider compared to the observed width. In addition, the width depends on the adopted magnetic field strength, but increasing B to 7 μGauss decreases the width only by a few percent. This implies that projection effects and the finite resolution of our simulations play and important role in determining the width.

For the southern relic, the emission fades slowly towards the east and west ends. The reason why this does not happen for the top relic in the simulation is because of the quick drop in the Mach number at |x| > 850 kpc, see Fig. 3 (left panel). However, for the CIZA J2242.8+5301 northern relic the integrated brightness profile across the y-axis (Fig. 5 top panel) drops much quicker and is flatter than in the simulations. The reason for this is unclear, it could be caused by variations in the magnetic field strength, Mach number, or because the shock surface is more complex. The Mach number found from the injection spectral index is higher than that in the simulations (4.6 versus 2.7 for the northern relic), this difference is puzzling. It could indicate that our temperature profiles are not correct or that Eq. 6 which links α_{inj} and M, is not directly applicable. X-ray observations are crucial here to directly determine the Mach number from the temperature jump.

6.3 Origin of single radio relics

Another interesting outcome of our simulations concerns the existence of single radio relics, e.g., the relic in A521 (Giacintucci et al. 2008). In binary cluster mergers, two shocks should be generated and hence one expects the majority of relics to come in pairs. In the simulations with mass ratios \(\gtrsim 3 \) very little radio emission is generated by the shock wave in front of the less massive subcluster. The Mach number of these shocks is quite low (\(M \lesssim 2 \)) and the shock surfaces are small, which results in very little observable radio emission. Based on the simulations, one would thus expect most double relics to be located in merging systems with small mass ratios, while single should be found in mergers with larger mass ratios.

6.4 A quantitative metric for the goodness of fit

We did not define a quantitative metric for the goodness of fit between the simulated and observed radio images. This paper is meant to be illustrative of the potential of the method and in this work we chose to apply it only to the relics in CIZA J2242.8+5301. We also note that the position, shape, and surface brightness distribution of relics are influenced by the cluster environment (e.g., connected...
an galaxy filaments) which affect the derived merger parameters. However, for future work when constraining merger parameters for larger numbers of double relics systems, it is important to develop a metric for the goodness of fit. We discuss here a possible approach and address some of the issues involved.

A first step should be the removal (or masking) of point sources and extended radio galaxies. In addition, one may have to subtract the emission from a radio halo in the cluster center. Removing extended radio galaxies and a radio halo is not entirely trivial as the spatial scales of these structures can be comparable to that of relics. However, this should still be feasible as double radio relics are relatively bright and their morphology is quite different from radio halos or radio galaxies.

For constraining the merger parameters there are two aspects that can be considered: (i) the spatial information of the location of the relics and (ii) the brightness distribution. We ignore information about the spectral and polarization properties because this complicates matters and this information is not available for all double relics. Due to the uncertainties in the magnetic field strength the brightness of the emission is probably not a very good criterion for a quantitative metric. It is also not entirely clear under what conditions relics precisely form, i.e., in the case of Abell 2146 two shocks are found in a Chandra X-ray image, but no bright radio relics are detected (Russell et al. 2010, 2011).

Radio relics, especially their outer edges, should directly trace the location of the merger shock waves and thus provide most of the constraints for the merger scenario. This is also what we mainly used in our qualitative comparison for the relics in CIZA J2242.8+5301. The viewing geometry is mostly constrained from the downstream extent of the relics. In the light of what we discussed above, we propose a two-dimensional spatial cross-correlation. This should be repeated for every possible rotation angle for a given image from the simulations. The height of the peak in the cross-correlation then gives a quantitative metric for the goodness of fit for a single simulated image. Image scaling should not be considered here as this relates to the absolute sizes and distances of the relics which evolve over time, and the time since core passage is one of the parameters we wish to constrain. The process can then be repeated for different merger parameters (mass ratios and impact parameters), snapshots in time and viewing angles to find the best fit. Because the brightness distribution is uncertain, we propose to apply a fixed cut in the radio flux (a few times the noise level in the observed radio image), and put all pixels values to either 1 (emission) or 0 (no emission). This is done also for the simulated images. The overall normalization of the simulated radio emission can be fixed by normalizing to the total flux in the observed image. Instead of a cross-correlation, one could also consider a simple image subtraction (after x, y-shifting and rotation) followed by taking the sum of the absolute difference. It may be worth giving the outer edges of the relics a somewhat large weight in the process, for example by setting these to a higher value (e.g., 2), some experimentation will be needed here. Applications of these cross-correlations shall be reserved for future work.

7 SUMMARY

We have presented simulated radio maps of idealized binary cluster mergers, varying the mass ratios, impact parameters, viewing angles and density/temperature profiles. The radio emission in these simulations is produced by relativistic electrons which are accelerated via the DSA mechanism in the shock waves created by the merger event.

We have used these simulated radio maps to constrain the merger scenario for the cluster CIZA J2242.8+5301, which hosts a Mpc scale double radio relic. We find that a merger with a mass ratio between 1 : 5 and 2 : 5 : 1 provides the best match to the observed radio emission in this cluster. The main uncertainty in the derived mass ratio comes from the unknown core radii of the clusters before the merger. The viewing angle is mostly constrained by the extent of the top relic towards the cluster center, additional substructure/clumps also increase the relic’s extent in the downstream region. Since the observed extent is only 55 kpc this implies that the relic is seen close to edge-on (i.e., $i \lesssim 10^\circ$). The impact parameter is difficult to constrain as the observed brightness profile along the x-axis is not reproduced for any of our merger scenarios. Only for $b \gtrsim 3 r_c,1 \approx 400$ kpc we find that the curvature of the simulated relics do not match with the observations. From our simulations we find that the time since core passage does not depend much on the adopted initial conditions. We therefore constrain this number to 1.0 Gyr, although it also depends on the adopted total mass of the system and temperature profile.

One of the main uncertainties for comparing the simulated radio emission with observations, in particular the brightness profiles, is the structure and strength of the magnetic field. Especially the brightness profile of the main relic along the relic’s length is not well reproduced by our simulations. Littke is known about the magnetic field strength at distances larger than 1 Mpc from the cluster center. Using equipartition arguments magnetic fields strengths of the order of $\sim 1 \mu G$ have been derived (e.g., Govoni & Feretti 2004). Upper limits on the IC emission from radio relics indicate magnetic fields of a few μG (e.g., Nakazawa et al. 2009, Finoguenov et al. 2010). Faraday rotation measures give similar results (e.g., Bonafede et al. 2010). However, the spatial variations of the magnetic field strength at these distances from the cluster center are unknown. In addition, several smaller relics are found in the cluster which are not present in our simulations. These relics are probably caused by additional substructures which are not included in our initial conditions.

We find that radio relics can be used to put constraints of the amount of clumping or substructure in the ICM at large distances ($\sim 1 - 2$ Mpc) from the cluster center, under the assumption that relics are tracers of shocks. The sharp outer boundary of the northern relic in CIZA J2242.8+5301 implies density fluctuations with an amplitude $\lesssim 30\%$ of the average density (the size of fluctuations being ~ 200 kpc).

The simulations also indicate that most double relics should be located in merging systems with mass ratios between 1 : 1 and 1 : 3, while single radio relics from in clusters that undergo less energetic mergers with larger mass ratios.

We conclude that double radio relics can be used to constrain cluster merger events, which is especially useful when detailed X-ray observations are not available. Relics
are often located at large distances from the cluster center, where the density is so low that even deep X-ray observations cannot be used to probe the physical conditions there (e.g., to measure the temperature jump). In addition, relics can be located in lower-mass systems where the thermal X-ray emission is not detected in the ROSAT All Sky Survey, for example (Voges et al. 1999). Some examples of possible radio relics in poor systems without a X-ray counterparts have been reported by Brown & Rudnick (2009); van Weeren et al. (2009, 2011).

One important parameter is the strength and structure of the magnetic field at the location of the radio relics. MHD simulations of cluster mergers will be needed to study the variations and strength of the magnetic field at large distances from the cluster center, and investigate the effect this has on the derived merger parameters from radio maps.

ACKNOWLEDGMENTS

We would like to thank the referee Shea Brown for his comments and useful suggestions. RJvW acknowledges funding from the Royal Netherlands Academy of Arts and Sciences. MB and MH acknowledge support by the research group from the Royal Netherlands Academy of Arts and Sciences. We would like to thank the referee Shea Brown for his comments on the derived merger parameters from radio maps.

REFERENCES

Akahori T., Yoshikawa K., 2010, PASJ, 62, 335
Allen S. W., Schmidt R. W., Fabian A. C., 2001, MNRAS, 328, L37
Axford W. I., Leer E., Skadron G., 1977, in International Cosmic Ray Conference Vol. 11 of International Cosmic Ray Conference, The Acceleration of Cosmic Rays by Shock Waves, pp 132–+
Bagchi J., Durret F., Neto G. B. L., Paul S., 2006, Science, 314, 791
Bagchi J., Sirothia S. K., Werner N., Pandge M. B., Kanthalia N. G., Ishwara-Chandra C. H., Gopal-Krishna Paul S., Joshi S., 2011, ApJ, 736, L8+
Battaglia N., Pfrommer C., Sievers J. L., Bond J. R., Enßlin T. A., 2009, MNRAS, 393, 1073
Bautz M. W., Miller E. D., Sanders J. S., Arnaud K. A., Mushotzky R. F., Bower R. G., Donahue M., 2008, A&A, 487, 431
Brown S., Rudnick J., 2011, ApJ, 727, L25+
Brown S., Rudnick L., 2009, AJ, 137, 3158
Burns J. O., Roettiger K., Ledlow M., Klypin A., 1994, ApJ, 427, L87
Cavaliere A., Fusco-Femiano R., 1976, A&A, 49, 137
Clowe D., Bradač M., Gonzalez A. H., Markevitch M., Randall S. W., Jones C., Zaritsky D., 2006, ApJ, 648, L109
Croston J. H., Pratt G. W., Böhringer H., Arnaud M., Pointecouteau E., Ponman T. J., Sanders A. J. R., Tempel R. F., Bower R. G., Donahue M., 2008, A&A, 139, 431
Druy L. O., 1983, Reports on Progress in Physics, 46, 973
Eusslin T. A., Biermann P. L., Klein U., Kohle S., 1998, A&A, 332, 395
Fabian A. C., Nulsen P. E. J., Canizares C. R., 1991, A&A Rev., 2, 191
Finoguenov A., Sarazin C. L., Nakazawa K., Wick D. R., Clarke T. E., 2010, ArXiv e-prints
Fryxell B., Olson K., Ricker P., Timmes F. X., Zingale M., Lamb D. Q., Rosner R., Truran J. W., Tufo H., 2000, ApJS, 131, 273
George M. R., Fabian A. C., Sanders J. S., Young A. J., Russell H. R., 2009, MNRAS, 395, 657
Giacintucci S., Venturi T., Macario G., Dallacasa D., Brunetti G., Markevitch M., Cassano R., Bardelli S., Athreya R., 2008, A&A, 486, 347
Govoni F., Feretti L., 2004, International Journal of Modern Physics D, 13, 1549
Hernquist L., 1987, ApJS, 64, 715
Hoef M., Brüggen M., 2007, MNRAS, 375, 77
Hoef M., Brüggen M., Yepes G., Gottlöber S., Schwope A., 2008, MNRAS, 391, 1511
Hoshino A., Henry J. P., Sato K., Akamatsu H., Yokota W., Sasaki S., Ishisaki Y., Ohashi T., Bautz M., Fukazawa Y., Kawano N., Furuzawa A., Hayashida K., Tawa N., Hughes J. P., Kokubun M., Tamura T., 2010, PASJ, 62, 371
Jaffe W. J., Perola G. C., 1973, A&A, 26, 423
Jones F. C., Ellison D. C., 1991, Space Science Reviews, 58, 259
Kardashev N. S., 1962, Soviet Astronomy, 6, 317
Kempner J. C., Blanton E. L., Clarke T. E., Enßlin T. A., Johnston-Hollitt M., Rudnick L., 2004, in Reiprich T., Kempner J., Soker N., eds, The Riddle of Cooling Flows in Galaxies and Clusters of galaxies Conference Note: A Taxonomy of Extended Radio Sources in Clusters of Galaxies, pp 335–+
Keshet U., Waxman E., Loeb A., 2004, ApJ, 617, 281
Keshet U., Waxman E., Loeb A., Springel V., Hernquist L., 2003, ApJ, 585, 128
Kocevski D. D., Ebeling H., Mullis C. R., Tully R. B., 2007, ApJ, 662, 224
Komissarov S. S., Gubanov A. G., 1995, A&A, 285, 27
Krymskii G. F., 1977, Akademiia Nauk SSSR Doklady, 234, 1306
Landau L. D., Lifshitz E. M., 1959, Fluid mechanics
Malkov M. A., O’C Drury L., 2001, Reports on Progress in Physics, 64, 429
Mantz A., Allen S. W., Ebeling H., Rapetti D., Drlica-Wagner A., 2010, MNRAS, 406, 1773
Markevitch M., Govoni F., Brunetti G., Jerius D., 2005, ApJ, 627, 733
Mastropietro C., Burkert A., 2008, MNRAS, 389, 967
McCarthy I. G., Bower R. G., Balogh M. L., Voit G. M., Pearce F. R., Theuns T., Babul A., Lacey C. G., Frenk C. S., 2007, MNRAS, 376, 497
Nakazawa K., Sarazin C. L., Kawaharada M., Kitaguchi T., Okuyama T., Kitaguchi T., Okuyama S., Makishima K., Kawano N., Fukazawa Y., Inoue S., Takizawa M., Wik D. R., Finoguenov A., Clarke T. E., 2009, PASJ, 61, 339
Pacholczyk A. G., 1970, Radio astrophysics. Nonthermal processes in galactic and extragalactic sources. Series of Books in Astronomy and Astrophysics, San Francisco: Freeman, 1970
Paul S., Iapichino L., Miniati F., Bagchi J., Mannheim K., 2010, ArXiv e-prints
Pearce F. R., Thomas P. A., Couchman H. M. P., 1994, MNRAS, 268, 953
Peterson J. R., Fabian A. C., 2006, Phys. Rep., 427, 1
Pfrommer C., Enßlin T. A., Springel V., 2008, MNRAS, 385, 1211
Poole G. B., Fardal M. A., Babul A., McCarthy I. G., Quinn T., Wadsley J., 2006, MNRAS, 373, 881
Pratt G. W., Arnaud M., 2002, A&A, 394, 375
Pratt G. W., Croston J. H., Arnaud M., Böhringer H., 2009, A&A, 498, 361
Reiprich T. H., Hudson D. S., Zhang Y.-Y., Sato K., Ishisaki Y., Hoshino A., Ohashi T., Ota N., Fujita Y., 2009, A&A, 501, 899
Ricker P. M., 1998, ApJ, 496, 670
Ricker P. M., Sarazin C. L., 2001, ApJ, 561, 621
Ritchie B. W., Thomas P. A., 2002, MNRAS, 329, 675
Roettiger K., Burns J., Loken C., 1993, ApJ, 407, L53
Roettiger K., Burns J. O., Stone J. M., 1999, ApJ, 518, 603
Roettiger K., Flores R., 2000, ApJ, 538, 92
Roettiger K., Loken C., Burns J. O., 1997, ApJS, 109, 307
Roettiger K., Stone J. M., Burns J. O., 1999, ApJ, 518, 594
Roncarelli M., Ettori S., Dolag K., Moscardini L., Borgani S., Murante G., 2006, MNRAS, 373, 1339
Röttgering H. J. A., Wieringa M. H., Hunstead R. W., Ekers R. D., 1997, MNRAS, 290, 577
Russell H. R., Sanders J. S., Fabian A. C., Baum S. A., Donahue M., Edge A. C., McNamara B. R., O’Dea C. P., 2010, MNRAS, 406, 1721
Russell H. R., van Weeren R. J., Edge A. C., McNamara B. R., Sanders J. S., Fabian A. C., Baum S. A., Canning R. E. A., Donahue M., O’Dea C. P., 2011, ArXiv e-prints
Sarazin C. L., 2002, in L. Feretti, I. M. Gioia, & G. Giovannini ed., Merging Processes in Galaxy Clusters Vol. 272 of Astrophysics and Space Science Library, The Physics of Cluster Mergers. pp 1–38
Schindler S., Mueller E., 1993, A&A, 272, 137
Simionescu A., Allen S. W., Mantz A., Werner N., Takei Y., Morris R. G., Fabian A. C., Sanders J. S., Nulsen P. E. J., George M. R., Taylor G. B., 2011, Science, 331, 1576
Skillman S. W., Hallman E. J., O’Shea B. W., Burns J. O., Smith B. D., Turk M. J., 2011, ApJ, 735, 96
Springel V., Farrar G. R., 2007, MNRAS, 380, 911
Takizawa M., 1999, ApJ, 520, 514
Takizawa M., 2000, ApJ, 532, 183
Takizawa M., 2006, PASJ, 58, 925
Takizawa M., 2008, ApJ, 687, 951
Takizawa M., Naito T., 2000, ApJ, 535, 586
van Weeren R. J., Hoeft M., Röttgering H. J. A., Brüggen M., Intema H. T., van Velzen S., 2011, A&A, 528, A38+
van Weeren R. J., Intema H. T., Röttgering H. J. A., Brüggen M., Hoeft M., 2011, ArXiv e-prints
van Weeren R. J., Röttgering H. J. A., Bagchi J., Raychaudhury S., Intema H. T., Miniati F., Enßlin T. A., Markevitch M., Erben T., 2009, A&A, 506, 1083
van Weeren R. J., Röttgering H. J. A., Brüggen M., 2011, A&A, 527, A114+
van Weeren R. J., Röttgering H. J. A., Brüggen M., Cohen A., 2009, A&A, 508, 75
van Weeren R. J., Röttgering H. J. A., Brüggen M., Hoeft M., 2010, Science, 330, 347
Venturi T., Giacintucci S., Brunetti G., Cassano R., Bardelli S., Dallacasa D., Setti G., 2007, A&A, 463, 937
Vikhlinin A., Kravtsov A., Forman W., Jones C., Markevitch M., Murray S. S., Van Speybroeck L., 2006, ApJ, 640, 691
Voges W., Aschenbach B., Boller T., Bräuninger H., Briel U., Burkert W., Dennerl K., et al. 1999, A&A, 349, 389
Zu Hone J. A., Ricker P. M., Lamb D. Q., Karen Yang H.-Y., 2009, ApJ, 699, 1004
ZuHone J. A., 2011, ApJ, 728, 54
ZuHone J. A., Markevitch M., Johnson R. E., 2010, ApJ, 717, 908