Factors Associated with Life Expectancy in Patients with Metastatic Spine Disease from Adenocarcinoma of the Lung

C. Rory Goodwin1 Mohamed H. Khattab1 Eric W. Sankey1 Benjamin D. Elder1 Thomas A. Kosztowski1 Rachel Sarabia-Estrada1 Ali Bydon1 Timothy F. Witham1 Jean-Paul Wolinsky1 Ziya L. Gokaslan1 Daniel M. Sciubba1

1 Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland, United States

Global Spine J 2015;5:417–424.

Abstract

Study Design Retrospective study.

Objective Our objective was to identify preoperative prognostic factors associated with survival in patients with spinal metastasis from lung carcinoma.

Methods A retrospective analysis of 26 patients diagnosed with lung carcinoma metastatic to the spinal column was performed to determine factors associated with survival. We used 3 months survival as the clinical cutoff for whether surgical intervention should be performed. We analyzed patients who survived less than 3 months compared with those who survived more than 3 months. Demographic, preoperative, operative, and postoperative factors including functional scores were collected for analysis.

Results The median survival for all patients in our study was 3.5 months. We found a statistically significant difference between the group that survived less than 3 months and the group that survived greater than 3 months in terms of extrathoracic metastasis, visceral metastasis, and average postoperative modified Rankin score.

Conclusion Determining which patients with lung cancer spinal metastases will benefit from surgical intervention is often dictated by the patient’s predicted life expectancy. Factors associated with poorer prognosis include age, functional status, visceral metastases, and extrathoracic metastases. Although the prognosis for patients with lung cancer spinal metastases is poor, some patients may experience long-term benefit from surgical intervention.

Introduction

Lung cancer is considered the most common cancer worldwide, with estimates of 1.6 million new cancers diagnosed each year. It is also the leading cause of cancer-related deaths, accounting for an estimated 1.4 million deaths per year.1 Some studies estimate that 30 to 70% of the patients who die from cancer have spinal metastases at autopsy, and roughly 14% of these patients will have a symptomatic lesion over their disease course.2,3 Moreover, in the United States it is estimated that there are more than 20,000 cases of metastatic epidural spinal cord compression diagnosed per year.2,3 The mean survival for patients with breast, renal, or prostate cancer that has spread to distant organs is estimated to average from 1 to 2 years, whereas the mean survival time for patients diagnosed with lung cancer that has spread to
We collected patient information including demographics, preoperative neurologic condition, functional status, primary disease location, systemic disease burden, other treatments, intraoperative and postoperative data on neurologic status, number of vertebral bodies removed, estimated blood loss, perioperative blood transfusions, crystalloid replacement, and complications stratified by neurologic, hematologic, respiratory, gastrointestinal, infectious, wound dehiscence, and hardware failure. Length of stay and overall survival were also calculated in each group. Magnetic resonance imaging was also used to determine extension of vertebral lesion into the ventral, lateral or paraspinal area.

Karnofsky Performance Score (KPS) and modified Rankin score were determined for each patient preoperatively and postoperatively based on the patient records. The modified Rankin score is calculated based on the following criteria: 0 = no symptoms; 1 = no significant disability, able to carry out all usual activities, despite some symptoms; 2 = slight disability, requires some help, but walks unassisted; 3 = moderate disability, requires some help, but able to walk unassisted; 4 = moderately severe disability, unable to attend to own bodily needs without assistance, and unable to walk unassisted; 5 = severe disability, requires constant nursing care and attention, bedridden, incontinent; 6 = dead. Statistical analysis was performed using GraphPad Prism (La Jolla, California, United States) software. Results are described as mean ± standard error unless otherwise specified. The university’s Institutional Review Board (IRB Protocol # NA_00067508) approved this study.

Results

Using the clinical cutoff of 3 months’ survival for whether surgical intervention should be employed, patients with a diagnosis of lung adenocarcinoma spinal metastasis were stratified into those who survived less than 3 months and those who survived more than 3 months. The difference in survival between patients who survived less than 3 months compared with those who survived more than 3 months was statistically significant according to the log rank (Mantel–Cox) test (p < 0.0001). The median survival for the entire group was 3.5 months (Fig. 1). The median survival...
for patients diagnosed with lung carcinoma spinal metastasis was 1.5 months in the group that survived less than 3 months compared with 4.9 months in the group that survived more than 3 months, with mean survivals of 1.525 ± 0.2064 and 9.471 ± 3.373, respectively ($p = 0.04$). Twelve patients (46%) survived less than 3 months, and 14 (54%) patients survived more than 3 months. There were 7 males (58%) and 5 females (42%) in the group that survived less than 3 months and 7 males (50%) and 7 females (50%) in the group that survived more than 3 months. The average age at surgery was 71.83 ± 2.272 for patients who survived less than 3 months and 62.07 ± 2.286 for patients who survived more than 3 months ($p = 0.0061$). The time from presenting symptoms to surgical treatment of the spinal metastasis was 24.58 ± 7.263 in the group that survived less than 3 months and 68.50 ± 18.36 in the group that survived more than 3 months (►Table 1 and ►Fig. 2).

Extension of the disease (paraspinal, ventral, or lateral) relative to the affected vertebral level was also analyzed. In the group that survived less than 3 months, 3 patients had paraspinal extension, 2 patients had ventral extension, and no patient had lateral extension. In comparison, in the group that survived more than 3 months, 6 patients had paraspinal extension, 8 patients had ventral extension, and 1 patient had lateral extension (►Table 1). There was a statistically significant difference between the two groups in terms of ventral extension ($p = 0.05$). There was a statistically significant difference in extrathoracic metastasis between groups, which occurred in 6 (50%) patients in the group that survived less than 3 months compared with 1 (7%) in the group that survived more than 3 months ($p = 0.0261$). We also found

Table 1 Preoperative demographics

Baseline characteristics	Survival < 3 mo ($n = 12$)	Survival > 3 mo ($n = 14$)	p Value
Demographics			
Age at surgery	71.8	62.1	0.0061*
No. of males	7	7	0.7127
Smoking history	9	8	0.4291
Comorbidities	40	36	>0.9999
Adenocarcinoma pathology	6	7	>0.9999
Radiologic features			
Extrathoracic spinal level	6	1	0.0261*
Extension paraspinal	3	6	0.4291
Extension ventral	2	8	0.05*
Extension lateral	0	1	>0.9999
Pathologic fracture	9	8	0.4291
Distant metastases			
Other spinal metastases	3	4	>0.9999
Extravertebral bony metastases	2	3	>0.9999
Visceral metastases	8	3	0.0447*
Brain metastases	4	4	>0.9999
Presenting symptoms			
Motor weakness	8	8	0.7015
Paresthesias	4	6	0.7015
Gait impairment	7	6	0.6951
Pain	10	13	0.5800
Incontinence	1	1	>0.9999
Adjuvant preoperative treatments			
Preoperative chemotherapy	6	8	>0.9999
Preoperative embo	0	1	>0.9999
Preoperative XRT to spine	2	5	0.3913
Preoperative XRT to primary	6	7	>0.9999

Abbreviations: embo, embolization; XRT, radiation therapy.

* $p < 0.05$ indicates statistical significance.
a statistically significant difference in visceral metastasis between groups, which occurred in 8 (67%) patients in the group that survived less than 3 months compared with 3 (21%) in the group that survived more than 3 months ($p = 0.0447$; Fig. 2). There were 5 (42%) patients with a baseline KPS > 70 and 7 (58%) patients with a baseline KPS < 70 in the group that survived less than 3 months and 8 (57%) patients with a baseline KPS > 70 and 6 (43%) patients with a baseline KPS < 70 in the group that survived less than 3 months. The average baseline modified Rankin score was 2.75 ± 0.411 in the group that survived less than 3 months and 2.36 ± 0.372 in the group that survived more than 3 months (Table 2).

Fourteen surgeries were performed in the group that survived less than 3 months and 17 in the group that survived more than 3 months. One patient in the group that survived less than 3 months had a staged operation, whereas 2 patients in the group that survived more than 3 months had staged operations. Five patients underwent anterior-only procedures, six patients underwent posterior-only procedures, and one patient underwent a combined approach in the group that survived less than 3 months. In the group that survived more than 3 months, 4 patients underwent anterior-only procedures, 9 patients underwent posterior-only procedures, and 1 patient underwent a combined approach. The procedures performed during both combined approaches included anterior corpectomy and reconstruction, and posterior decompressive laminectomy and fusion. The average number of instrumented levels was 5.50 in the group that survived less than 3 months and 5.71 in the group that survived more than 3 months. We found that the 3 longest survivors in our series underwent en bloc resection with an average survival of 25.8 months (range 9.9 to 51.8 months; Table 3).

When postoperative functional status was assessed, the average postoperative modified Rankin score was 4.167 ± 0.4234 in the group that survived less than 3 months and 2.615 ± 0.4742 in the group that survived more than 3 months ($p = 0.0236$; Fig. 3). In terms of KPS, there were 2 (17%) patients with a postoperative KPS > 70 and 12 (83%) patients with a baseline KPS < 70 in the group that survived less than 3 months and 7 (50%) patients with a baseline KPS > 70 in the group that survived more than 3 months, which approached statistical significance ($p = 0.1032$; Fig. 3). For patients with a postoperative KPS < 40, there were 8 (67%) patients in the group that survived less than 3 months and only 1 (7%) patient in the group that survived more than 3 months ($p = 0.0029$; Table 2).

For postoperative adjuvant therapies, 3 (25%) patients underwent postoperative radiotherapy in the group that survived less than 3 months compared with 6 (43%) in the group that survived more than 3 months, which was not significant. No patients underwent postoperative chemotherapy in the group that survived less than 3 months compared with 10 (71%) patients in the group that survived more than 3 months, which was statistically significant ($p < 0.001$) and

Table 2 Preoperative and postoperative functional status

Functional status	Survival < 3 mo (n = 12)	Survival > 3 mo (n = 14)	p Value
Baseline mRS	2.75	2.36	0.4845
Baseline KPS > 70	5	8	0.6951
Baseline KPS > 40	4	6	0.7015
Baseline KPS < 40	3	0	0.0846
KPS < 70	7	6	0.6951
Postoperative mRS	4.17	2.62	0.0236*
Postoperative mRS > 4	7	1	0.0093*
Postoperative KPS > 70	2	7	0.1100
Postoperative KPS 40-70	2	6	0.2164
Postoperative KPS < 40	8	1	0.0029*
Postoperative KPS < 70	10	7	0.1032

Abbreviations: KPS, Karnofsky Performance Score; mRS, modified Rankin scores.

* $p < 0.05$ indicates statistical significance.
most likely reflects the subset of patients who survived long enough to receive chemotherapy. There were 13 complications in the group that survived less than 3 months compared with 7 complications in the group that survived more than 3 months, which was not statistically significant ($p = 0.2002$); complications included deep vein thromboses, pulmonary embolism, pneumonias, wound infections, wound dehiscence, and cerebrospinal fluid fistulae. There was one hardware revision in each group: In the group that survived greater than 3 months, a T4 pedicle screw that broke out laterally, close to the aortic arch. In the group that survived less than 3 months, one patient with recurrence of tumor and severe cord compression lost the ability to walk for 2 to 3 days prior to surgery (Table 3).

Discussion

Recent advances in molecular biology, genomics, and surgical resection have demonstrated that NSCLC is comprised of multiple tumor subtypes with specific genetic alterations that determine the growth characteristics, treatment paradigms, and prognosis. The armamentarium of pharmacologic inhibitors, which include epidermal growth factor inhibitors and anaplastic lymphoma kinase fusion oncogene inhibitors, combined with an increased understanding of the genetic background of NSCLC, has resulted in more patients living with lung cancer, and this number is expected to increase in the upcoming years. With the increased prevalence of lung cancer and better treatments to control systemic disease and local recurrence, the incidence of patients developing spinal metastases is also expected to increase. With the increased prevalence of patients diagnosed with lung cancer spinal metastasis, surgeons will be confronted with the challenge of determining which patients will benefit from surgical intervention to improve functional status, reverse neurologic deficit, alleviate pain, or improve quality of life. Our objective in this study is to identify factors that are associated with survival longer than 3 months in patients with spinal metastasis from lung carcinoma. We identified the presence of extrathoracic metastasis, visceral metastasis, and ventral extension of the tumor as factors associated with patients living less than 3 months. A preoperative and postoperative KPS less than 40 was associated with survival less than 3 months. Other scores of functional status, such as modified Rankin score, demonstrated that higher scores were associated with less than 3-month survival as well.
There was a statistically significant difference in the proportion of patients with a baseline KPS > 70 when the group that survived less than 3 months was compared with the group that survived more than 3 months. There was a statistically significant difference in the postoperative modified Rankin scores (p = 0.0236) and no significant difference in the baseline modified Rankin scores when the group that survived less than 3 months was compared with the group that survived more than 3 months. *p < 0.05 indicates statistical significance.

Fig. 3 Functional outcome stratified by survival less than 3 months or greater than 3 months. There was a difference in the proportion of patients with a postoperative Karnofsky Performance Score (KPS) > 70 (p = 0.10) that approached significance and no significant difference in the proportion of patients with a baseline KPS > 70 when the group that survived less than 3 months was compared with the group that survived more than 3 months. There was a statistically significant difference in the postoperative modified Rankin scores (p = 0.0236) and no significant difference in the baseline modified Rankin scores when the group that survived less than 3 months was compared with the group that survived more than 3 months. *p < 0.05 indicates statistical significance.

A variety of studies have identified factors that predict postoperative surgical outcomes and/or prolonged or shortened survival utilizing a heterogeneous group of tumor subtypes. Studies have cited several favorable prognostic factors associated with metastatic spine disease including 0 to 2 ECOG (Eastern Cooperative Oncology Group) Scale of Performance Status, higher KPS, female gender, primary histologic diagnosis of adenocarcinoma, absence of appendicular metastases, lack of pathologic fracture, use of adjuvant chemoradiation, preoperative ambulation, and slower preoperative primary tumor growth rate. In contrast, previously discovered negative prognostic factors include pathologic fracture in extraspinal metastases, complete pathologic vertebral fracture, primary histologic diagnosis of small cell lung carcinoma, absence of adjuvant chemoradiation, visceral metastases, and greater number of spinal segments affected by metastatic lesions. In 2005, Tokuhashi et al proposed a scoring system to evaluate prognosis and potential treatment strategies, relegating lung cancer to the poor prognosis group and thus better suited to palliative or conservative treatments. Weigel et al also performed a retrospective analysis of 76 patients and concluded that survival was worse in the patients with lung cancer in comparison with other tumor subtypes. Some authors contend that these studies may indicate that patients with lung cancer should be discussed separately from other cancer subtypes. With this consideration in mind, Fukuharu and colleagues performed a retrospective analysis of patients with metastatic lung cancer to the spine and identified 13 patients with a median postoperative survival of 5 months (range: 1 to 25 months). The authors also demonstrated that good postoperative performance was associated with better median postoperative survival. In our study, patients showed no significant difference in baseline KPS or modified Rankin scores preoperatively; however, there was a significant difference, with better scores (i.e., higher KPS and lower modified Rankin scores) in the group with survival greater than 3 months. Our findings support the claim that improvement and/or maintenance of functional status is associated with improved survival.

Improvements in adjuvant treatment modalities, including chemotherapy, radiotherapy, small molecule inhibitors, and immunotherapies, have resulted in increased control of systemic disease and longer life expectancies for patients diagnosed with lung cancer spinal metastases. Although there was no significant difference with respect to brain metastases, we found that the group that survived less than 3 months had a higher proportion of patients with visceral metastasis compared with the group that survived more than 3 months; the difference was statistically significant (p = 0.0447). Similar to other studies, control of the systemic disease was a good prognostic factor. In our series, 10 patients underwent postoperative chemotherapy in the group that survived more than 3 months in comparison with no patients who survived less than 3 months. These findings are likely associated with the better overall functional outcomes in the patients who survived more than 3 months and their ability to undergo postoperative chemotherapy (better nutritional status and higher KPS, among other factors). Although postoperative chemotherapy may also play an important role in the overall survival of patients with spinal metastasis secondary to lung adenocarcinoma, the lack of postoperative chemotherapy in patients who lived less than 3 months is not likely to have played a significant role in our study. This observation is based on the fact that these patients had a median survival of only 1.5 months after surgery, and they did survive long enough to be considered appropriate candidates for adjuvant chemotherapy.

Cetin et al evaluated the incidence of bone metastasis and skeletal-related events (spinal cord compression, fracture, bone surgery, radiation) in patients with lung cancer, demonstrating a 1-year survival of 37.4% for patients with no bone metastasis, 12.1% for patients with bone metastasis and no skeletal-related events, and 5.1% for patients with both bone metastasis and skeletal-related events. We found a significant difference between both groups with 6 (50%) patients who survived less than 3 months having extrathoracic metastasis compared with 1 (7%) who survived more than 3 months (p = 0.0261). The presence of extrathoracic metastases may indicate the presence of more disseminated disease; however, larger studies determining the natural history of the disease progression would...
be needed to determine whether this observation is in fact the case.

The complication rates associated with different surgical approaches must be weighed against the benefits of providing better local recurrence control, increased quality of life, and ultimately increased overall survival. The determination of the ideal surgical intervention should avoid shortening the patients’ life or lowering their quality of life relative to the natural history of their associated disease.\(^\text{26,27}\) Lee et al assessed surgical outcomes, complications, and mortality in patients with spinal metastases from multiple tumor subtypes who underwent either en bloc resection, tumor debulking, or palliative surgery. Twenty-one percent of their cases were lung cancer (42 cases) and 15 of these patients underwent en bloc resection. They demonstrated that patients who underwent en bloc resection had the longest mean survival postoperatively, but they did not analyze the subgroup of patients with lung cancer.\(^\text{27}\) Similarly, Ratasvuori et al demonstrated that en bloc resection for solitary bone metastases (any skeletal metastasis) resulted in a significant improvement in overall postoperative survival rate for all tumor subtypes when compared with other surgical strategies.\(^\text{28}\)

Interestingly, we found that the three longest survivors in our series underwent en bloc resection with an average survival of 25.8 months (range 9.9 to 51.8 months). Weighing the increased survival seen in the patients undergoing en bloc resection against the complications in this group of three patients, one patient had three complications, whereas the remaining two patients had none. These findings suggest that in appropriate circumstances en bloc resection could be considered an appropriate treatment option; however, larger studies will be needed to substantiate this claim.

Our study was limited by the relatively small number of patients and lack of a control group of nonsurgically treated patients with lung cancer spinal metastasis and/or patients treated with radiotherapy. Furthermore, we are only able to make associations as a retrospective study. Larger multicenter prospective randomized trials focused on individual tumor subtypes will be needed to make more formidable conclusions that will influence the current treatment paradigms for this disease.

Conclusion

The determination of which patients with lung cancer spinal metastases will benefit from surgical intervention is a multifactorial process that is often dictated by the patient’s predicted life expectancy. Several factors associated with poorer prognosis include age, functional status, visceral metastases, and extrathoracic metastases. Although the prognosis for patients with lung cancer spinal metastases is poor, some patients may benefit long term from surgical intervention.

Disclosures

C. Rory Goodwin, Research grants: NREF, UNCF-Merck Science Initiative, Burroughs Wellcome Fund

Mohamed H. Khattab, none

Eric W. Sankey, none

Benjamin D. Elder, none

Thomas A. Kosztowski, none

Rachel Sarabia-Estrada, none

Ali Bydon, Board membership: MedImmune, LLC; Research grant: DePuy Spine

Timothy F. Witham, Research grant: Eli Lilly and Company

Jean-Paul Wolinsky, none

Ziya L. Gokaslan, Consultancy/speaking/teaching: AO Foundation; Stock/stock options: US Spine, Spinal Kinetics; Research support: DePuy, NREF, AOSpine, AO North America

Daniel M. Scibba, Consultancy: DePuy, Medtronic, Nuvasive, Globus

References

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127(12):2893–2917

2. Bartels RH, van der Linden YM, van der Graaf WT. Spinal extra-dural metastasis: review of current treatment options. CA Cancer J Clin 2008;58(4):245–259

3. Claus EB. Neurosurgical management of metastases in the central nervous system. Nat Rev Clin Oncol 2012;9(2):79–86

4. Heary RF, Bono CM. Metastatic spinal tumors. Neurosurg Focus 2001;11(6):e1

5. Al Husaini H, Wheatley-Price P, Clemons M, Shepherd FA. Prevention and management of bone metastases in lung cancer: a review. J Thorac Oncol 2009;4(2):251–259

6. Brodowicz T, O’Byrne K, Manegold C. Bone matters in lung cancer. Ann Oncol 2012;23(9):2215–2222

7. Cetin K, Christiansen CF, Jacobsen JB, Nørgaard M, Sørensen HT. Bone metastasis, skeletal-related events, and mortality in lung cancer patients: a Danish population-based cohort study. Lung Cancer 2014;86(2):247–254

8. Pockett RD, Castellano D, McEwan P, Oglesby A, Barber BL, Chung K. The hospital burden of disease associated with bone metastases and skeletal-related events in patients with breast cancer, lung cancer, or prostate cancer in Spain. Eur J Cancer Care (Engl) 2010;19(6):755–760

9. Tsuya A, Kurata T, Tamura K, Fukuoka M. Skeletal metastases in non-small cell lung cancer: a retrospective study. Lung Cancer 2007;57(2):229–232

10. Patchell RA, Tibbs PA, Regine WF, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 2005;366(9486):643–648

11. Tokuhashi Y, Uei H, Oshima M, Ajiro Y. Scoring system for prediction of metastatic spine tumor prognosis. World J Orthop 2014;5(3):262–271

12. Mitsudomi T, Suda K, Yatabe Y. Surgery for NSCLC in the era of personalized medicine. Nat Rev Clin Oncol 2013;10(4):235–244

13. Travis WD, Brambilla E, Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011;6(2):244–285

14. Ogihara S, Seichi A, Hozumi T, et al. Prognostic factors for patients with spinal metastases from lung cancer. Spine (Phila Pa 1976) 2006;31(14):1585–1590
15 Sugiura H, Yamada K, Sugiura T, Hida T, Mitsudomi T. Predictors of survival in patients with bone metastasis of lung cancer. Clin Orthop Relat Res 2008;466(3):729–736
16 Lee BH, Kim TH, Chong HS, et al. Prognostic factor analysis in patients with metastatic spine disease depending on surgery and conservative treatment: review of 577 cases. Ann Surg Oncol 2013;20(1):40–46
17 Lau D, Leach MR, La Marca F, Park P. Independent predictors of survival and the impact of repeat surgery in patients undergoing surgical treatment of spinal metastasis. J Neurosurg Spine 2012;17(6):565–576
18 Pointillart V, Vital JM, Salmi R, Diallo A, Quan GM. Survival prognostic factors and clinical outcomes in patients with spinal metastases. J Cancer Res Clin Oncol 2011;137(5):849–856
19 Yang SB, Cho W, Chang UK. Analysis of prognostic factors relating to postoperative survival in spinal metastases. J Korean Neurosurg Soc 2012;51(3):127–134
20 Weiss RJ, Wedin R. Surgery for skeletal metastases in lung cancer. Acta Orthop 2011;82(1):96–101
21 Utzschneider S, Wicherek E, Weber P, Schmidt G, Jansson V, Dürr HR. Surgical treatment of bone metastases in patients with lung cancer. Int Orthop 2011;35(5):731–736
22 Yamashita T, Siemionow KB, Mroz TE, Podichetty V, Lieberman IH. A prospective analysis of prognostic factors in patients with spinal metastases: use of the revised Tokuhashi score. Spine (Phila Pa 1976) 2011;36(11):910–917
23 Tokuhashi Y, Matsuzaki H, Oda H, Oshima M, Ryu J. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine (Phila Pa 1976) 2005;30(19):2186–2191
24 Weigel B, Maghsudi M, Neumann C, Kretschmer R, Müller FJ, Nerlich M. Surgical management of symptomatic spinal metastases. Postoperative outcome and quality of life. Spine (Phila Pa 1976) 1999;24(21):2240–2246
25 Fukuhara A, Masago K, Neo M, et al. Outcome of surgical treatment for metastatic vertebra bone tumor in advanced lung cancer. Case Rep Oncol 2010;3(1):63–71
26 Gokaslan ZL, York JE, Walsh GL, et al. Transthoracic vertebrectomy for metastatic spinal tumors. J Neurosurg 1998;89(4):599–609
27 Lee BH, Park JO, Kim HS, Park YC, Lee HM, Moon SH. Perioperative complication and surgical outcome in patients with spine metastases: retrospective 200-case series in a single institute. Clin Neurol Neurosurg 2014;122:80–86
28 Ratasvuori M, Wedin R, Hansen BH, et al. Prognostic role of en-bloc resection and late onset of bone metastasis in patients with bone-seeking carcinomas of the kidney, breast, lung, and prostate: SSG study on 672 operated skeletal metastases. J Surg Oncol 2014;110(4):360–365