Potential Opportunity in the Development of New Therapeutic Agents Based on Endogenous and Exogenous Inhibitors of the Proprotein Convertases

Yannick Bontemps,1,2 Nathalie Scamuffa,1,2 Fabien Calvo,1,2 Abdel-Majid Khatib1,2

1INSERM, U 716, Equipe AVENIR, Institut de Génétique Moléculaire, Paris 75010, France
2Université Paris 7, Paris 75251, France

Published online 3 October 2006 in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/med.20072

Abstract: The proprotein convertases (PCs) are responsible for the endoproteolytic processing of various protein precursors (e.g., growth factors, receptors, adhesion molecules, and matrix metalloproteinases) implicated in several diseases such as obesity, diabetes, atherosclerosis, cancer, and Alzheimer disease. The potential clinical and pharmacological role of the PCs has fostered the development of various PC-inhibitors. In this review we summarized the recent findings on PCs inhibitors, their mode of actions and potential use in the therapy of various diseases. © 2006 Wiley Periodicals, Inc. Med Res Rev, 27, No. 5, 631–648, 2007

Key words: protein maturation; convertases; drug development

1. INTRODUCTION

The proprotein convertases (PCs) are serine proteases that belong to the kexin subfamily of subtilases enzymes responsible for the processing and the activation of multiple polypeptide precursors. These secretory precursors are usually cleaved at the general motif (K/R)-(X)n-(K/R), where X is any amino acid (except C), n = 0, 2, 4, or 6, and ↓ represents the cleavage site where the peptide is hydrolyzed.1–6 To date, seven basic amino acids (AA)-specific PCs, serine proteases belonging to the kexin subfamily of subtilases, were reported to be involved in these processes.1–6 These include
Furin, PC1 (also called PC3), PC2, PC4, PACE4, PC5 (also called PC6), and PC7 (also called LPC, or SPC7).1–6 Recently, other two nonbasic-AA-specific convertases, SKI-17,8 and NARC-19 were identified. These convertases belong to the Pyrolysin and Proteinase K subfamily of subtilases, respectively. While, SKI-1 was found to exhibit an cleavage specificity for the motif (R/K)X-(hydrophobic)-(L,T), based on its autocatalytic site, NARC-1 seems to prefer the V-F-A-Q motif.10 In this review, the role of the proprotein convertases in the mediation of some diseases will be briefly summarized, the mode of action of their natural and exogenous inhibitors will be described and their potential use as new targets for the treatment of various diseases will be discussed.

2. PROPROTEIN CONVERTASES AND DISEASES

A. Convertases in Neurodegenerative Pathology

Recently PCs have been linked to some neurodegenerative disorders via their direct or indirect roles in the production of amyloidogenic peptides. In Alzheimer’s disease the amyloid-β (Aβ) is the principal component of senile plaques. The latter is generated by proteolytic cleavage of its precursor by β- and γ-secretases. Recently, the PCs were found to process the zymogens of both α- and β-secretases, suggesting the implicating of the PCs in this disease.11,12

B. Convertases and Cancer

The involvement of proprotein convertases in tumorigenesis has been extensively reviewed.2,13,14 Some of the cleaved protein precursors by the PCs, such as matrix metalloproteases, adhesion molecules, growth factors, and growth factor receptors are directly or indirectly involved in tumorigenesis and metastasis by regulating either degradation of extra-cellular matrix and/or modulation of cell growth and survival.2,13,14 Using different tumor cells with invasive/metastatic phenotypes, the inhibition of PC-activity was found to provoke dramatic changes in several phenotypes that impact on the metastatic potential of tumor cells.2,13,14 Similarly, using various site-directed mutagenesis, we found that the inhibition of the processing of several PC substrates such as PDGF-A,15 and VEGF-C16 reduced significantly their ability to induce tumor development and angiogenesis, respectively.15,16 This data highlighted the importance of PCs in the activation of these growth factors during tumor progression and angiogenesis.15,16

C. Bacterial Toxins Activation by the PCs

Three different classes of bacterial toxins were described to be activated by the PCs. The toxins of the first class are synthesized as single polypeptide chains that group the toxic subunit and the target binding subunit. The toxin precursors are cleaved during their interaction with the target cell surface or in the endosomal compartment by the PCs.17–20 Of the toxins that belong to this class and were reported to be activated by the PCs are the Diptheria toxin,19 Pseudomonas aeruginosa exotoxin A (PEA),17,18 Botulinum neurotoxin, and Bordetella dermonecrotic toxin.20 The second class of toxins such as Anthrax are synthesized as separate polypeptide chains and usually assemble on the target cell surface to form the active toxin following activation of the binding subunit by the PCs.21,22 The third class groups the pore-forming toxins such as the aerolysin. These toxins are produced and secreted as a dimer that bind on target cells to the glycosylphosphatidyl inositol anchors of membrane proteins. Usually the cleavage of these toxins by the PCs occurred on the surface of the target cell during their binding. This process seems to be crucial for the association of the toxin dimers into heptamer pore complex and causes cell lysis.23

D. Convertases and Viral Infections

Previously, data on various infectious viruses revealed that the cleavage of their envelope glycoprotein precursors by one or more PC is a required step for the acquisition of the infectious
capacity of viral particles. Indeed, various studies demonstrated the capacity of the PCs to correctly cleave a variety of viral surface glycoproteins. These include the HIV-1 gp160 and surface glycoproteins of Hong Kong, Ebola virus, and the severe acute respiratory syndrome coronavirus. In parallel, other studies revealed that the inhibition of processing of these viral surface glycoproteins by the PC inhibitors such as dec-R-V-K-R-CMK completely abrogated the virus-induced cellular cytopathicity. Recently, the surface glycoproteins of other viruses, particularly the hemorrhagic fever viruses (Arenaviridae family) such as Lassa, Crimean Congo hemorrhagic fever, and lymphocytic choriomeningitis were shown to be cleaved by the convertase SKI-1. Similarly, blockade of SKI-1 activity by specific inhibitor were also shown to affect the processing and the stability of the glycoproteins of these viruses.

3. PROPROTEIN CONVERTASES INHIBITORS

Since the discovery of Furin, the growing evidence of PCs implication in various pathological processes made these enzymes important potential therapeutic targets. Thereby various attempts have been made to develop specific and potent inhibitors to target these enzymes. All the inhibitors that were found or developed so far are grouped into natural endogenous or exogenous PC inhibitors.

A. Natural Endogenous Inhibitors of PCs

1. Prosegments or Propeptides of the PCs

To date the only naturally occurring intracellular PC inhibitors found in the constitutive secretory pathway are PCs own propeptides or prosegments. Previously, it was reported that many proteins use their propeptides as intramolecular chaperones for their correct folding, transport, and/or secretion. In addition to these prosegment functions, these enzyme fragments were also reported to act as inhibitors for various enzymes including the PCs. Like their substrates the PCs are synthesized as inactive proenzymes and are auto-catalytically activated. Following their signal sequence removal and endoplasmic reticulum folding events, PCs undergo auto-proteolytic cleavage of their prosegment at R107 (Fig. 1). The prosegment, however, remains associated with the mature domain of the enzyme and functions as a potent auto-inhibitor during transport to the late secretory pathway. After this step, the inactive complex transits to the late trans-Golgi network (TGN) where the relatively acidic pH permits a second autoproteolytic cleavage of the prosegment at R75 and activates the convertase (Fig. 1). Using these inhibitors, we were able to inhibit the processing and the function of various PC substrates such as PDGF-A, PDGF-B, VEGF-C, and IGF-1 receptor (Fig. 2). Recently, the Furin inhibition by its pro-segment proFurin was reported as feasible approach to reduce and/or abolish the malignant phenotype of various malignancies. Indeed, the expression of the complete proFurin cDNA sequence in various human head and neck squamous cell carcinoma cell lines was found to reduce dramatically their proliferation, tumorigenicity, and invasiveness in vitro and in vivo as well. These proFurin effects were directly linked to the inhibition of Furin-mediated activation of various crucial cancer-related substrates, such as TGF-β, VEGF-C, IGF-1 receptor, and MT1-MMP.

2. 7B2: the Naturally Occurring Inhibitor of PC2

Little is known about the cellular function of 7B2. Nevertheless, Braks and Martens were the firsts to show that 7B2 act as a chaperone for proPC2 and be able to bound to the latter in the early compartment of the secretory pathway and dissociates from it in the latter ones. Other studies proposed that 7B2 may also facilitates proPC2 transport from the endoplasmic reticulum to the secretory granules and participates in the generation of fully active PC2. Following their secretion,
pro7B2 and proPC2 interact in the ER in the presence of an alkaline pH and form an inactive complex (pro7B2-proPC2). During its progression through the TGN in the presence of decreased pH and increased \([\text{Ca}^{2+}]\) the pro7B2 is cleaved by the PCs and released a C-terminal fragment with inhibitory function on PC2.\(^{41,42}\) In the secretory granules, additional pH decreases and \([\text{Ca}^{2+}]\) increases permits proPC2 self activation and liberates the prodomain of PC2 that provides a fully active PC2 (Fig. 3). Subsequently, the N-terminal domain of PC2 and C-terminal domain of 7B2 are rapidly degraded by PC2 and carboxypeptidase E (Fig. 3).\(^{40–42}\)

3. ProSAAS: the Naturally Occurring Inhibitor of PC1

Like 7B2, ProSAAS, contains an N-terminal and a C-terminal domain that are separated by a PC cleavage sites. The sequence responsible for the inhibitory potency of PC1 was previously pointed to the hexapeptide, L-L-R-V-K-R, located in the proSAAS C-terminal domain.\(^ {43}\) This peptide was identified by combinatorial library peptide screening as a tight binding site for PC1.\(^ {44,45}\) Like PC2, PC1 is inactive in the endoplasmic reticulum and Golgi apparatus due to the neutral pH and relatively low \(\text{Ca}^{2+}\) levels in addition to its interaction with proSAAS.\(^ {46}\) Following its progression through the TGN, proSAAS is cleaved into two peptides designed as PEN and LEN fragments that remove the inhibition of PC1 by proSAAS (Fig. 4).
4. Inter-Alpha-Inhibitor Protein (IalphaIp)

Inter-alpha-inhibitor protein (IalphaIp) is an abundant endogenous serine protease inhibitor initially isolated from human plasma. IalphaIp consists of three polypeptides: two heavy chains and one light chain called bikunin. Analysis of the bikunin structure revealed the presence of two protease domains of the Kunitz type carrying the antiproteolytic function of the IalphaIp. Bikunin was found to be effective against a broad range of enzymes that includes trypsin, chymotrypsin, plasmin, and leukocyte elastase, as well as cathepsins B and H. Recently, the IalphaIp was also proposed as a good inhibitor for the Furin to prevent the formation of active anthrax lethal toxin. Indeed, this inhibitor was able to provide significant protection against cytotoxicity for murine peritoneal macrophages exposed to high doses of the anthrax lethal toxin (Fig. 5).

5. Human Proteinase Inhibitor 8

Initial studies indicated that the serpin proteinase inhibitor 8 (PI8) was able to inhibit a variety of proteinases through different mechanisms. This inhibitor was shown to inactivate the porcine trypsin,
human thrombin, human coagulation factor Xa, and the *Bacillus subtilis* dibasic endoproteinase subtilisin A. This 45-kDa serpin was reported to form a SDS-stable complex with human Furin and provoke the inhibition of the enzyme. The PI8-mediated Furin inhibition is due to the presence in the reactive site domain of the inhibitor a PC cleavage sites namely R-N-S-R339 and R-C-S-R342.

B. Exogenous Inhibitors of the PCs

Most exogenous inhibitors of the proprotein convertases were generated to act in a competitive fashion. Most of these inhibitors contain the general cleavage motif of the PCs (K/R) - (X)_n - (K/R).
1. Acyl-Peptidyl-Chloromethyl Ketones

These synthetic inhibitors contain in their structures an acyl moiety that allows them to enter into the cells and bind to the active site of the PCs through its peptidyl group. They were the first compounds that were demonstrated to inhibit the PCs. Of the members of this family the derivative decanoyl-R-V-L-R-chloromethylketone was found to inhibit various PCs substrates ranging from growth factors to viral glycoproteins. This inhibitor was previously used to inhibit the activity of various MMPs and tumor cell invasion processes. Similarly, treatment of a prostate cancer cell line with this reagent was found to inhibit the activity of various MMPs and tumor cell invasion processes. Similarly, treatment of a prostate cancer cell line with this reagent was found to inhibit the activity of various MMPs and tumor cell invasion processes. Similarly, treatment of a prostate cancer cell line with this reagent was found to inhibit the activity of various MMPs and tumor cell invasion processes.

2. Poly-Arginines

Recently the poly-arginines were also described as potent inhibitors of the PCs. Based on the reported structure of mouse Furin the active site of the enzyme seems to contain an extended...
substrate-binding groove that is lined with many negatively charged residues.60 Thereby the highly acidic character of the substrate-binding groove explains the high-inhibitory potency of positively charged polyarginine-containing peptides.59--61 Recently, the hexa-D-arginine amide was found to inhibit significantly the \textit{Pseudomonas aeruginosa} exotoxin A (PEA) processing and PEA-induced toxicity in mice.61 Also the polyarginine inhibitors were reported to be able to inhibit the processing of the human immunodeficiency virus-1 gp160 and the replication of the virus as well.62

3. \textit{Turkey Ovomucoid Mutant}

Turkey ovomucoid third domain with normal reactive site is known as a potent inhibitor of various serine proteinases including subtilisins, chymotrypsins, and elastases.63 Mutation of this inhibitor at L18K in its reactive site made it a strong inhibitor of trypsin and its mutation at the same site into L18E made it a strong inhibitor of Glu-specific \textit{streptomyces griseus} proteinase (GluSGP)64 (Fig. 6). In parallel, the introduction of a proprotein convertases site its structure made it a moderate Furin inhibitor65 (Fig. 6).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Schematic representation of the interalpha inhibitor. The interalpha inhibitor consists of two heavy chain covalently linked to a light chain (bikunin) by a chondroitin sulphate chain (A). Bikunin contains two protease inhibitor domains of the Kunitz type able to interact with two enzymes (B). Adapted from Acta Biochim Pol. 2003;50(3):735–42.}
\end{figure}
4. Eglin C Mutant

Eglin C is a proteinase inhibitor that strongly inhibits human leukocyte elastase, cathepsin G, a-chymotrypsin, and substilisin. This inhibitor was initially isolated from the leech *Hirudo medicinalis* and belongs to the potato I inhibitor family. Previously, it was reported that its inhibitory specificity could be changed and inhibits trypsin by a point mutation at its reactive site L45R. Subsequently, substitution of residues at each position P1, P2, and P4 of eglin C with a basic residue made it a very strong inhibitor for Furin. Recently, the generation of the three-dimensional complex structures of Furin-eglin C mutant interaction by a modeller program provided crucial information on the interaction between the Furin and this inhibitor. The modellation of this interaction allowed the calculation of the electrostatic interaction energies between the Furin and eglin C mutant. The results that were obtained from this study highlighted the importance of the charge–charge interactions in the binding of Furin to its inhibitors, suggesting the roles of the electrostatic interactions in the inhibitory activity of eglin C mutant toward Furin. Further analysis revealed that the mutation of R48D (P3’ residue) in eglin C seems to increase the inhibitory action of the eglin C mutant due to the electrostatic interactions of D48 with R86 and R90 of Furin (Fig. 7).
5. α1-Anti-Trypsin Variant or α1-Anti-Trypsin Portland (α1-PDX)

The discovery of this inhibitor was initially based on the observation previously reported for a patient with a mutation in its α1-antitrypsin. This patient was shown to be unable to cleave the pro-albumin at the Furin consensus site. This variant of α1-antitrypsin, called α1-anti-trypsin Pittsburgh (PIT), has a replacement of the reactive-site M358 residue by R358 residue. Subsequently, the group of G. Thomas developed another variant of α1-antitrypsin, called α1-anti-trypsin Portland (α1-PDX), in which the reactive-site A-I-P-M has been replaced by R-I-P-R. This serpin was revealed to inhibit Furin with a Ki of 600 pM, three times lower than the PIT inhibitor. Subsequently, kinetic analysis showed that a portion of bound α1-PDX operates as a suicide inhibitor (Fig. 8). Once bound to Furin’s active site, α1-PDX can either undergo proteolysis by Furin or form a kinetically trapped SDS-stable complex with the enzyme. Furthermore, when expressed in cells, α1-PDX was shown to be a potent inhibitor of Furin-mediated cleavage of HIV gp 160, and subsequently demonstrated to inhibit all PCs involved in processing within the constitutive secretory pathway. In vitro experiments revealed also its ability to block the processing of various proteins related tumor progression and metastasis such as several growth factors (Fig. 2), receptors, various MMPs and adhesion molecules.

6. Mini-PDX Peptides

These synthetic peptides were designed and developed from the reactive site loop of the PC inhibitor α1-PDX in a way to contain the PC cleavage motif R-I-P-R. To make a circular peptide a Cys residue was inserted at each terminal residue of several mini-PDX peptides. In vitro digestion analysis in the presence of various synthetic PC substrates revealed that the mini-PDX is able to inhibit in vitro Furin activity in a slow tight-binding manner. Contrary to the PCs inhibitor α1-PDX, these synthetic
peptides seem to inhibit Furin via a different mechanistic pathway that required further investigations.74

7. α2-Macroglobulin-Furin

Human α2-macroglobulin is a homotetrameric glycoprotein present at high concentrations in the blood. Each monomeric subunit contains an internal S-ester (ISE). α2-macroglobulin inhibits a wide range of proteases by a unique mechanism.75 Inhibition is initiated by cleavage of a flexible and surface-accessible peptide stretch called the bait region (Fig. 9). This cleavage triggers the hydrolysis of the ISEs, followed by a major conformational change. The protease becomes “trapped” by the inhibitor and is thus sterically shielded from its substrate.75 By introducing a Furin recognition sequence in the bait region of α2-macroglobulin, Van Rompaey et al., have generated a potent PC inhibitor as revealed by its ability to inhibit the processing of von Willebrand factor, TGF-β1, and the HIV-1 glycoprotein gp160.76 Lately, it was revealed that the mutation introduced in the bait region of α2-macroglobulin did not interfere neither with folding, neither on tetramerization of the inhibitor.
Also the Furin inhibition mechanism by this α2-macroglobulin mutant was found to be similar to those used for the inhibition of other proteases by α2-macroglobulin76 (Fig. 9).

8. Diterpines of the Labdane Family

Diterpines are the first reported nonprotein inhibitor of Furin.77 These neoandrographolide, are extracted from the medicinally active plant *Andrographis paniculata*, and are succinoyl ester derivatives77 (Fig. 10). The actual mechanism by which these diterpines exert their inhibitory effects against PC is not clearly understood. Nevertheless, these molecules contain a very reactive five-membered lactone ring that was found in several elastases inhibitors, suggesting the potential role of this lactone ring in the Furin activity inhibition. Although the *in vitro* inhibition is relatively weak,
these compounds seem to penetrate more easily in the cell and might enhance their inhibitory potential \textit{in vivo}.

9. Copper and Zinc Chelate Compounds

These compounds were recently shown to have an interesting degree of convertases selectivity.78 This new class of nonpeptide inhibitor consists of an ion Cu2+ or Zn2+ coupled with a chelator compound (Fig. 11). The inhibition of the Furin by these compounds is irreversible and the inhibitor binds at the enzyme active site of the enzyme. Indeed, analysis of Furin sequence revealed the presence in its active site residues being able to bind divalent zinc and copper. This includes the catalytic H194, C198, and H364.78
4. CONCLUSIONS

Over the last 15 years, the cumulative knowledge revealed the implication of the proprotein convertases in various disorders including diabetes, atherosclerosis, cancer, familial hypercholesterolemia, viral infections, and Alzheimer disease. Thereby, the use of general PC inhibitors is now suggested to be advantageous and could be a promising therapeutic strategy. However, in some cases it may be necessary to target only one member of the PC family. This is feasible, as was demonstrated previously for pro-SAAS and 7B2. In addition the recently published crystal structures of the Furin will undoubtedly help for the search, design, and the development of specific and potent inhibitor for each PC. Indeed, the availability of the crystal structures of the Furin has recently revealed precious knowledge on the characteristics of the other PCs through modellation of their structures. Based on these studies, the arrangement of the catalytic and P domains, and the architecture of the substrate binding clefts of the Furin seems to be more similar to those of PC4, PACE4, and PC5/6, and less...
similar to those of PC1/3, PC2, and PC7. Following their development these specific inhibitors could be used alone or in combination to target PC-mediated diseases. Recent studies revealed that small molecule proprotein convertases inhibitors are the most attractive potential therapeutic agents. However, only the diterpene and several Cu and Zn chelators where reported as nonpeptide PC inhibitors. Although these inhibitors were able to inhibit the activity of the PCs in vitro, their ability to block the processing of various PC substrates in vivo is not yet tested. Similarly, to improve the specificity and the efficacy of such inhibitors, chemical modifications of their structures followed by structure-activity studies are required. In the long term, the potential developed specific and potent PC inhibitors may provide a rationale for testing this family of compounds as therapeutic agents or in conjunction with standard therapy in clinical settings.

ACKNOWLEDGMENTS

This work was supported by the Fondation pour la Recherche Médicale and Avenir Award, Paris, France.

REFERENCES

1. Seidah NG, Chretien M. Proprotein and prohormone convertases: A family of subtilases generating diverse bioactive polypeptides. Brain Res 1999;848:45–62.
2. Khatib AM, Siegfried G, Chretien M, Metrakos P, Seidah NG. Proprotein convertases in tumor progression and malignancy: Novel targets in cancer therapy. Am J Pathol 2002;160:1921–1935.
3. Taylor NA, Van De Ven WJ, Creemers JW. Curbing activation: Proprotein convertases in homeostasis and pathology. FASEB J 2003;17:1215–1227.
4. Steiner DF. The proprotein convertases. Curr Opin Chem Biol 1998;2:31–39.
5. Zhou A, Webb G, Zhu X, Steiner DF. Proteolytic processing in the secretory pathway. J Biol Chem 1999;274:20745–20748.
6. Thomas G. Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 2002;3:753–766.
7. Seidah NG, Mowla SJ, Hamelin J, Mamarbachi AM, Benjannet S, Touré BB, Basak A, Munzer JS, Marcinkiewicz J, Zhong M, Barale J-C, Lazure C, Murphy RA, Chretien M, Marcinkiewicz M. Mammalian subtilisin/kexin isozyme SKI-1: A widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc Natl Acad Sci USA 1999;96:1321–1326.
8. Sakai J, Rawson RB, Espenshade PJ, Cheng D, Seegmiller AC, Goldstein JL, Brown MS. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol Cell 1998;2:505–514.
9. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chretien M. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 2003;100:928–933.
10. Naureckiene S, Ma L, Sreekumar K, Purandare U, Lo CF, Huang Y, Chiang LW, Grenier JM, Ozenberger BA, Jacobsen JS, Kennedy JD, DiStefano PS, Wood A, Bingham B. Functional characterization of Nrc 1, a novel protease related to proteinase K. Arch Biochem Biophys 2003;420:55–67.
11. Creemers JW, Ines Dominguez D, Plets E, Serneels L, Taylor NA, Multhaup G, Craessaerts K, Annaert W, De Strooper B. Processing of beta-secretase by furin and other members of the proprotein convertase family. J Biol Chem 2001;276:4211–4217.
12. Bennett BD, Denis P, Haniu M, Teplow DB, Kahn S, Louis JC, Citron M, Vassar R. A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer’s beta-secretase. J Biol Chem 2000;275:37712–37717 Erratum in: J Biol Chem 2001;276:15561.
13. Khatib AM, Bassi D, Siegfried G, Klein-Szanto AJ, Ouafik L. Endo/exo-proteolysis in neoplastic progression and metastasis. J Mol Med 2005;83:856–864.
14. Muller EJ, Caldelari R, Posthaus H. Role of subtilisin-like convertases in cadherin processing or the conundrum to stall cadherin function by convertase inhibitors in cancer therapy. J Mol Histol 2004;35:263–275.
15. Siegfried G, Khatib AM, Benjannet S, Chretien M, Seidah NG. The proteolytic processing of pro-platelet-derived growth factor-A at RRKR(86) by members of the proprotein convertase family is functionally correlated to platelet-derived growth factor-A-induced functions and tumorigenicity. Cancer Res 2003;63:1458–1463.

16. Siegfried G, Basak A, Cromlish JA, Benjannet S, Marcinkiewicz J, Chrétien M, Seidah NG, Khatib AM. The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis. J Clin Invest 2003;111:1723–1732.

17. McKee ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

18. Moehring JM, Innocencio NM, Robertson BJ, Moehring TJ. Expression of mouse furin in a Chinese hamster cell resistant to Pseudomonas exotoxin A and viruses complements the genetic lesion. J Biol Chem 1993;268:2590–2594.

19. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

20. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

21. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

22. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

23. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

24. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

25. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

26. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

27. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

28. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

29. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

30. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

31. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

32. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

33. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

34. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

35. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.

36. McKeeman ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: An unfolding story. Biochemistry 1999;38:16507–16513.
38. Lopez de Cicco R, Bassi DE, Zucker S, Seidah NG, Klein-Szanto AJ. Human carcinoma cell growth and invasiveness is impaired by the propeptide of the ubiquitous proprotein convertase furin. Cancer Res 2005;65:4162–4171.

39. Braks JA, Martens GJ. 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 1994;78:263–273.

40. Zhu X, Lindberg I. 7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for the expression of enzymatic activity. J Biol Chem 1995;129:1641–1650.

41. Martens GJ, Braks JA, Eib DW, Zhou Y, Lindberg I. The neuroendocrine polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2. Proc Natl Acad Sci USA 1994;91:5784–5787.

42. Braks JA, Van Horssen AM, Martens GJ. Dissociation of the complex between the neuroendocrine chaperone 7B2 and prohormone convertase PC2 is not associated with proPC2 maturation. Eur J Biochem 1996;238:505–510.

43. Cameron A, Fortenberry Y, Lindberg I. The SAAS granin exhibits structural and functional homology to 7B2 and contains a highly potent hexapeptide inhibitor of PC1. FEBS Lett 2000;473:135–138.

44. Apletalina E, Appel J, Lamango NS, Houghten RA, Lindberg I. Identification of inhibitors of prohormone convertases 1 and 2 using a peptide combinatorial library. J Biol Chem 1998;273:26589–26595.

45. Fricker LD, McKinzie AA, Sun J, Curran E, Qian Y, Yan L, Patterson SD, Courchesne PL, Richards B, Levin N, Mzhavia N, Devi LA, Douglass J. Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing. J Neurosci 2000;20:639–648.

46. Qian Y, Devi LA, Mzhavia N, Munzer S, Seidah NG, Fricker LD. The C-terminal region of proSAAS is a potent inhibitor of prohormone convertase 1. J Biol Chem 2000;275:23596–23601.

47. Salier JP, Rouet P, Raguenez G, Daveau M. The inter-alpha-inhibitor family: From structure to regulation. Biochem J 1996;315:1–9.

48. Fries E, Blom AM. Bikunin—Not just a plasma proteinase inhibitor. Int J Biochem Cell Biol 2000;32:125–137.

49. Lim YP, Bendelja K, Opal SM, Siryaporn E, Hixson DC, Palardy JE. Correlation between mortality and the levels of inter-alpha inhibitors in the plasma of patients with severe sepsis. J Infect Dis 2003;188:919–926.

50. Xu Y, Carr PD, Guss JM, Ollis DL. The crystal structure of bikunin from the inter-alpha-inhibitor complex: A serine protease inhibitor with two Kunitz domains. J Mol Biol 1998;276:955–966.

51. Opal SM, Artstein AW, Cristofaro PA, Jhung JW, Palardy JE, Parejo NA, Lim YP. Inter-alpha-inhibitor proteins are endogenous furin inhibitors and provide protection against experimental anthrax intoxication. Infect Immun 2005;73:5101–5105.

52. Dahlen JR, Foster DC, Kisiel W. Expression, purification, and inhibitory properties of human proteinase inhibitor. Biochemistry 1997;36:14874–14882.

53. Dahlen JR, Jean F, Thomas G, Foster DC, Kisiel W. Inhibition of soluble recombinant furin by human proteinase inhibitor 8. J Biol Chem 1998;273:1851–1854.

54. Angliker H, Shaw E, Stone SR. Synthesis of oligopeptide chloromethanes to investigate extended binding regions of proteinases: Application to the interaction of fibrinogen with thrombin. Biochem J 1993;292:261–266.

55. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 1992;360:358–361.

56. Deb S, Zhang JW, Gottschall PE. Activated isoforms of MMP-2 are induced in U87 human glioma cells in response to beta-amyloid peptide. J Neurosci Res 1999;55:44–53.

57. Wick W, Wild-Bode C, Frank B, Weller M. BCL-2-induced glioma cell invasiveness depends on furin-like proteases. J Neurochem 2004;91:1275–1283.

58. Uchida K, Chaudhary LR, Sugimura Y, Adkisson HD, Hruska KA. Proprotein convertases regulate activity of prostate epithelial cell differentiation markers and are modulated in human prostate cancer cells. J Cell Biochem 2003;88:394–399.

59. Cameron A, Appel J, Houghten RA, Lindberg I. Polyarginines are potent furin inhibitors. J Biol Chem 2000;275:36741–36749.

60. Henrich S, Lindberg I, Bode W, Than ME. Proprotein convertase models based on the crystal structures of furin and kexin: Explanation of their specificity. J Mol Biol 2005;345:211–227.

61. Sarac MS, Cameron A, Lindberg I. The furin inhibitor hexa-D-arginine blocks the activation of Pseudomonas aeruginosa exotoxin A in vivo. Infect Immun 2002;70:7136–7139.

62. Kibler KV, Miyazato A, Yedavalli VS, Dayton AI, Jacobs BL, Dapolito G, Kim SJ, Jeang KT. Polyarginine inhibits gp160 processing by furin and suppresses productive human immunodeficiency virus type 1 infection. J Biol Chem 2004;279:49055–49063.
Yannick Bontemps received his Ph.D. in biochemistry and molecular biology from the Medicine University of Reims (France). Now he is a post-Ph.D. in oncology at the INSERM institute U716/Avenir. Actually, his researches focused on the importance of two recently discovered convertases (Narc-1 and Ski-1) in health and disease.

Nathalie Scamuffa has worked few years as an engineer in genetics at the University of Medicine of Geneva. She is now a Ph.D. student in oncology at the University of Paris. Her major research interests focus on the role of the convertases in cancer.

Fabien Calvo obtained his M.D. and Ph.D. from the University of Paris. He is a professor of pharmacology at the Paris 7 School of medicine and head of the INSERM U716 at Saint Louis Hospital. His research interests are new targets for anticancers drug development both in the preclinical and clinical settings.

Abdel Majid Khatib obtained his Ph.D. in cell and molecular biology from the University of Paris. As a scientist, he first joined the University of Ottawa. He is now working at the INSERM institute U716/Avenir. His research interests are dealing with the role of proteins maturation by the convertases in health and disease.