Fabrication of Er3+/Yb3+ Co-Doped Bi\textsubscript{5}O\textsubscript{7}I Microsphere With Upconversion Luminescence and Enhanced Photocatalytic Activity for Bisphenol A Degradation

Baowei Cao 1, Siwen Gong 2, Siyaka Mj Zubairu 3, Lingna Liu 1, Yunhua Xu 1, Lei Guo 1, Rui Dang 1 and Gangqiang Zhu 1,2*

1 School of Chemistry and Chemical Engineering, Yulin University, Yulin, China, 2 School of Physics and Information Technology, Shaanxi Normal University, Xi’an, China, 3 Department of Chemistry, Federal University Gashua, Gashua, Nigeria

Er3+/Yb3+ co-doped Bi\textsubscript{5}O\textsubscript{7}I uniform porous microsphere photocatalysts were synthesized by a two-step chemical method, which possesses excellent photocatalytic performance and upconversion luminescence property. The photocatalytic performance of the photocatalysts was studied by degradation of bisphenol A in aqueous solution under visible light and different monochromatic light irradiation. The photocatalytic performance of Er3+/Yb3+ co-doped Bi\textsubscript{5}O\textsubscript{7}I sample is better than that of the pristine Bi\textsubscript{5}O\textsubscript{7}I and Er3+-doped Bi\textsubscript{5}O\textsubscript{7}I samples. Moreover, Er3+/Yb3+ co-doped Bi\textsubscript{5}O\textsubscript{7}I possesses photocatalytic ability with a red light monochromatic LED lamp (3 W, λ = 630 nm) and an infrared monochromatic LED lamp (100 W, λ = 940 nm) irradiation whose wavelength is longer than the absorption-limiting wavelength of pristine Bi\textsubscript{5}O\textsubscript{7}I sample. This phenomenon further verified that the upconversion property of Er3+ and Yb3+ causes the improved photocatalytic efficiency of Er3+/Yb3+ co-doped Bi\textsubscript{5}O\textsubscript{7}I sample.

Keywords: doping, semiconductor, microsphere, upconversion, heterojunction photocatalytic activity, NO removal, Rhodamine B

INTRODUCTION

Upconversion is a particular type of photoluminescence (PL), which converts low-energy excitation light into high-energy emission light through a multiphoton absorption process (Obregón and Colón, 2014a; Chuai et al., 2015; Ma et al., 2015; Fu et al., 2017). For this excellent characteristic, many upconverting materials, such as YF\textsubscript{3} and NaYF\textsubscript{4}, have been used as powerful assistants to combine with semiconductor photocatalysts to improve light utilization recently (Huang et al., 2012; Li et al., 2013). For instance, Qin et al. (2010) reported that the graphene-supported NaYF\textsubscript{4}:Yb3+, Tm3+, and N-doped P25 nanocomposite photocatalysts exhibit outstanding photocatalytic efficiency, because upconverting materials can effectively convert long-wavelength infrared (IR) light into short-wavelength light (such as visible light). The semiconductors in the composite photocatalysts can absorb the converted short-wavelength light to make full use of incident light. However, many up-conversion materials did not have photocatalytic performance because of their large band gap (Wang et al., 2013; Xu et al., 2013). Therefore, it is important to fabricate single-phase photocatalyst with excellent photocatalytic activity and upconversion property.
Bi$_5$O$_7$I as a novel semiconductor photocatalytic material with an optical band gap of \sim2.8 eV has received a lot of attention (Zhang et al., 2020a). The lamellar crystallographic structure of Bi$_5$O$_7$I can form an internal electrostatic field whose direction is vertical to the atom layer. The internal electrostatic field can promote the separation of photo-generated electron-hole pairs (Lan et al., 2020). However, the shortcomings of low light absorption and transmission efficiency of carriers still limit its photocatalytic activity. It is well-known that combining Bi$_5$O$_7$I with other semiconductors to form heterojunction could improve the separation rate of photo-generated charge carriers and show enhanced photocatalytic efficiency for pollutants degradation (Liu et al., 2015; Zhang et al., 2020b). In addition, our previous report indicated that the doping of Er$^{3+}$ into the Bi$_5$O$_7$I can broaden the photo-response range due to the upconversion effect (Hoijamberdiev et al., 2020), but the light conversion is not thorough enough. It can be inferred that the Er$^{3+}$/Yb$^{3+}$ co-doping would cause more intensive upconversion fluorescence effect (Ding et al., 2016), which can enhance photocatalytic degradation properties for pollutions with full spectral solar light response.

In this work, uniform Er$^{3+}$/Yb$^{3+}$ co-doped Bi$_5$O$_7$I microsphere photocatalysts were prepared by a two-step hydrothermal and thermal–decomposition method. The as-prepared photocatalysts have excellent photocatalytic performance and upconversion luminescence property. From the results of photocatalytic performance tests under the illumination of visible and monochromatic light and trapping experiments, the detailed mechanism of improved photocatalytic activity was also proposed.

EXPERIMENTAL

The synthesis methods of Bi$_5$O$_7$I and 6%Er$^{3+}$-doped Bi$_5$O$_7$I samples are detailed in the Supporting Information and the prepared samples were recorded as BOI and 6EBOI, respectively. In addition, the synthesis method
of Yb\(^{3+}\)/Er\(^{3+}\) co-doped Bi\(_5\)O\(_7\)I samples was similar to that previously reported (Zhang et al., 2019), except the addition of 2 to 18\% Yb(NO\(_3\))\(_3\) 6H\(_2\)O. The prepared samples were recorded as 2Y6EBOI, 4Y6EBOI, 6Y6EBOI, 12Y6EBOI, and 18YEBOI, respectively. The characterization and photocatalytic test are also described in the Supporting Information.

RESULTS AND DISCUSSION

XRD Analysis

The XRD patterns of 6EBOI and YEBOI samples are shown in Figure 1, and all the prepared samples are crystallized well. As previously reported, the Bi\(_5\)O\(_7\)I synthesized without any doping corresponds with orthorhombic phase Bi\(_5\)O\(_7\)I (JCPDS

FIGURE 2 | SEM images of BOI (a,b), 6EBOI (c,d), and 6Y6EBOI (e,f) samples.
The synthesized 6EBOI sample is in accordance with orthorhombic phase Bi$_5$O$_7$I and monoclinic phase (JCPDS 38-0669) Bi$_5$O$_7$I. In addition, the phase structure of the samples is completely converted into monoclinic Bi$_5$O$_7$I after doping with Yb$^{3+}$. Moreover, as the Yb$^{3+}$ doping content increases, the width of these peaks broadens and the intensity decreases, especially the (004) peak. This is because the doping of Yb$^{3+}$ and Er$^{3+}$ limits the growth of Bi$_5$O$_7$I crystals. According to the previous reports, the existence of Yb$^{3+}$ and Er$^{3+}$ in the compound can cause phase transition from the orthorhombic phase to the monoclinic phase (Lin et al., 2014; Obregón and Colón, 2014b; Obregón et al., 2014).

Scanning Electron Microscope Analysis

Figure 2 displays the scanning electron microscope (SEM) images of the synthesized pure BOI, 6EBOI, and YEBOI samples. As shown in Figure 2a, the BOI sample has a uniform porous spherical morphology with a radius in the range of 1 to 1.5 µm. From Figure 2b, the high-resolution

![SEM image](image-url)

FIGURE 3 | SEM image (a), Bi (b), O (c), I (d), Er (e), and Yb (f) EDS mapping images of 6Y6EBOI sample.
SEM image shows these spheres are stacked by numerous nanosheets. While Figures 2c–f show the SEM images of 6EBOI and 6Y6EBOI samples, respectively. The Yb$^{3+}$/Er$^{3+}$ doping has little effect on the morphology, and all the as-prepared samples also have the uniform porous spherical morphology. Energy dispersive spectrometer (EDS) mapping was performed further to analyze the elemental distribution in the 6Y6EBOI sample (Figure 3). It is observed that the

![Energy Dispersive Spectrometer (EDS) Mapping](image)

FIGURE 4 | Survey XPS spectra (A), high-resolution XPS spectra of (B) Bi 4f, (C) O 1s, (D) I 3d, (E) Er 4p, and (F) Yb 4p of the 6Y6EBOI sample.
Bi, O, I, Er, and Yb elements are well distributed over the whole microsphere.

XPS Analysis

In order to investigate the elemental composition, XPS analysis was performed on the 6Y6EBOI sample, and the consequences are presented in **Figure 4**. The survey spectrum in **Figure 4A** clearly reveals the compound consists of Bi, O, I, Er, and Yb elements. There are two peaks at \sim164.4 and 158.9 eV (**Figure 4B**), which are ascribed to Bi 4f$_{7/2}$ and Bi 4f$_{5/2}$ (Liu et al., 2017), respectively. In **Figure 4C**, it is observed that the O 1s peak is located at 529.5 and 531.4 eV, which corresponds to the lattice oxygen and surface-adsorbed oxygen in the prepared sample (Zhu et al., 2019). The peaks located at 619.4 and 630.6 eV (**Figure 4D**) correspond with the I 3d$_{5/2}$ and I 3d$_{3/2}$ (Rao et al., 2019). It is also seen that the Er 4p (**Figure 4E**) and Yb 4p (**Figure 4F**) peaks are located at 321.1 and 346.5 eV, which corresponds with the Er$^{3+}$ and Yb$^{3+}$ (Hou et al., 2012; Reszczynska et al., 2015), respectively. Thus, the XPS results indicate that the Er$^{3+}$ and Yb$^{3+}$ were triumphantly doped into the Bi$_2$O$_2$I sample.

Ultraviolet-vis DRS Analysis

The ultraviolet–visible (UV-vis) absorption spectra of the prepared samples are depicted in **Figure 5**. The adsorption edge of pure BOI is shorter than 450 nm, indicating that pristine BOI could be excited by the ultraviolet light and a small fraction of visible light. Compared with pure BOI, the visible light absorption of Yb$^{3+}$/Er$^{3+}$-doped BOI samples undergoes a significant redshift. It can be seen that three peaks are located...
at 522, 655, and 797 nm for 6EBOI. This is attributed to the upconversion effect from the $^4I_{15/2}$ ground state to $^2H_{2/11}$, $^4F_{9/2}$, and $^4I_{9/2}$ states of Er$^{3+}$ (Rodriguez et al., 2013; Xu et al., 2014). An exception absorption peak at nearly 950 nm for the Yb$^{3+}$-doped 6EBOI sample is also clearly observed, which is attributed to the upconversion conversion from the $^2F_{5/2}$ ground state to $^2F_{7/2}$ states of Yb$^{3+}$ (Wang et al., 2014).

In order to know the cause of these new peaks in the visible and near IR (NIR) light range, the upconversion spectra of YEBOI samples were carried out. Figure 6 exhibits the UC emission spectra (350–800 nm) of YEBOI samples. It shows that there are two green emission bands near 533 and 547 nm, and a red emission band near 654 nm after excitation by an NIR laser ($\lambda = 980$ nm). The former between 515 to 538 nm and 540 to 560 nm are ascribed to the $^2H_{11/2} \rightarrow ^4I_{15/2}$ and $^4S_{3/2} \rightarrow ^4I_{15/2}$ transitions (Zhang et al., 2005; Sun et al., 2011; Mahalingam et al., 2013). The latter between 640 and 680 nm corresponds with the transition of $^4F_{9/2}$ to $^4I_{15/2}$. It is very clear that the intensity of the green and red emission bands increases over Yb$^{3+}$-doped 6EBOI sample. Therefore, the observation results indicate that the new absorption bands appearing in the UV-vis DRS spectra are caused by the upconversion radiation of the YEBOI system (Liu et al., 2013; Bai et al., 2014; Zhou et al., 2015). It is well-known that the lifetime of the upconversion materials exhibits a positive correlation with the upconversion quantum yield (Dai et al., 2013). Thus, the luminescence decay curves of the as-synthesized 6EBOI and 6Y6EBOI are also compared under the excitation light with 650 nm wavelength (Figure 7). The decay curves of 6EBOI and 6Y6EBOI are 184 and 376 µs, respectively. Hence, the lifetime is significantly prolonged after Yb$^{3+}$ doping compared with the 6EBOI sample. It is concluded that the tendency of lifetime variation is consistent with that of upconversion intensity variation.

Photo-Degradation of Bisphenol A

Bisphenol A (BPA) in aqueous solution is selected as target to be degraded, and the photocatalytic efficiency of the photocatalysts under visible light irradiation is shown in Figure 8. As indicated in Figure 8A, after visible light irradiation for 40 min, the photocatalytic rates of BOI, 6EBOI, 2Y6EBOI, 4Y6EBOI, 6Y6EBOI, 12Y6EBOI, and 18Y6EBOI are 14.1, 95.7, 95.9, 97.7, 100, 94.1, and 92.9, respectively. Therefore, the 6Y6EBOI sample shows the best photocatalytic performance of all the as-prepared samples in this work. According to the Langmuir–Hinshelwood kinetics model (Chen et al., 2012), the below formula is used to express the degradation process:

$$\ln \left(\frac{C}{C_0}\right) = kt$$

where C_1 represents the amount of target removal object after the equilibrium is reached between adsorption and desorption ($t = 0$), and C represents the real-time concentration of the degradation (t). As shown in Figure S1, the k's for BOI, 6EBOI, 2Y6EBOI, 4Y6EBOI, 6Y6EBOI, 12Y6EBOI, and 18Y6EBOI samples were calculated as approximately 0.0037, 0.0829, 0.0867, 0.1025, 0.1517, 0.0725, and 0.0685 min$^{-1}$ (Figure 8B), respectively. The kinetic results for pristine BOI, 6EBOI, and 6Y6EBOI samples prove the remarkable enhancement photocatalytic efficiency after Yb$^{3+}$ and Er$^{3+}$ doping into BOI photocatalysts.

The photocatalytic activities of BOI, 6EBOI, 2Y6EBOI, 4Y6EBOI, 6Y6EBOI, 12Y6EBOI, and 18Y6EBOI samples under different wavelengths of monochromatic light were also studied. As shown in Figure 9, only 4 and 0.3% BPA was degraded under green (G) and red (R) light irradiation for 125 min over BOI, respectively. In particular, the degradation efficiencies of 6EBOI, 2Y6EBOI, 4Y6EBOI, 6Y6EBOI, 12Y6EBOI, and 18Y6EBOI samples are 69.8, 92.1, 93.6, 95.5, 81.1, and 77.3 (Figure 9A) under green light irradiation for 125 min, respectively. The degradation efficiencies of 6EBOI, 2Y6EBOI, 4Y6EBOI, 6Y6EBOI, 12Y6EBOI, and 18Y6EBOI samples are 4.8, 5.7, 10.1, 8.1, 6.4, and 5.9% under the red light irradiation for 125 min, respectively (Figure 9B). The k's of BOI, 6EBOI,
The photocatalytic activities of the Er$^{3+}$-doped Bi$_5$O$_7$I (A,C) and Yb$^{3+}$/Er$^{3+}$-doped Bi$_5$O$_7$I (B,D) sample under different wavelength monochromatic light irradiation.

2Y6EBOI, 4Y6EBOI, 6Y6EBOI, 12Y6EBOI, and 18Y6EBOI samples calculated from the data were 0.0004, 0.0097, 0.0199, 0.0218, 0.0247, 0.0131, and 0.0188 min$^{-1}$ in Figure 9C under green light irradiation, and 0.00029, 0.00031, 0.00043, 0.00082, 0.00061, 0.00050, and 0.00047 min$^{-1}$ in Figure 9D under the illumination of red light, respectively. These results indicate that the 6Y6EBOI sample has the most excellent photocatalytic performance for BPA degradation than pure BOI, 6EBOI, and other Er$^{3+}$/Yb$^{3+}$ co-doped BOI samples.

Apparently, the photocatalytic activity was greatly improved after the doping of Yb$^{3+}$ and Er$^{3+}$ with Bi$_5$O$_7$I under visible light irradiation. It is more interesting that the 6Y6EBOI also possesses the best photocatalytic activity under NIR light (940 nm LED light) irradiation. For comparison, BOI and 6EBOI were also used as reference photocatalysts under the same experimental condition. As exhibited in Figures 10A,B, the photodegradation efficiencies of BOI, 6EBOI, and 6Y6EBOI samples are 0.3, 1.8, and 9.4%, respectively. The characteristic peak of BPA does not show any change even when the irradiation time reached 60 min over the BOI sample (Figure 10C). However, it has an obvious decrease of the peak intensity at 277 nm of BPA with the addition of 6E6YBOI sample as shown in Figure 10D. From the above photocatalytic results, the photocatalytic activity of the 6E6YBOI photocatalyst has excellent photocatalytic performance under visible light and NIR light irradiation.

PL Spectra and I-V Analysis

The transient photocurrent (I-V) and PL are effective tests in displaying the separation ability of photo-generated carriers in photocatalytic research (Chang et al., 2019; Li et al., 2020a). The responses of I-V for BOI, 6EBOI, and 6Y6EBOI were also recorded under visible light irradiation. As shown in Figure 11A, the intensity of photocurrent signal of 6E6FBOI is much stronger than the pristine BOI and 6EBOI, which
FIGURE 10 | The photocatalytic activities (A) and degradation rate (B) of the BOI, 6EBOI, and 6Y6EBOI samples under 940-nm LED light irradiation, the variation of UV-vis spectral for the BPA in aqueous solution of BOI (C), and 6Y6EBOI (D) samples.

FIGURE 11 | Transient photocurrent (A) and PL spectra (B) of the BOI, 6EBOI, and 6Y6EBOI samples.
suggests the best excellent effective transfer ability of photoinduced charge carriers. The PL spectra were also carried out to probe the recombination of photo-generated charge carriers (Li et al., 2020b; Nie et al., 2020). Compared with BOI and 6EBOI samples, the lowest intensity of 6Y6EBOI suggests that it possesses the lowest recombination rate of photo-generated charge carriers, which is beneficial to improve the photocatalytic activity (Figure 11B). According to above results, the Er$^{3+}$ and Yb$^{3+}$ doping into Bi$_5$O$_7$I samples shows enhancing photocatalytic degradation activities for BPA.

Photocatalytic Mechanism

Figure 12 illustrates the photocatalytic reaction mechanism of the Yb$^{3+}$/Er$^{3+}$-doped Bi$_5$O$_7$I photocatalyst. It can be seen that the Yb$^{3+}$/Er$^{3+}$-doped Bi$_5$O$_7$I sample could absorb low-energy IR light, and then the electrons would be excited from the level of 2F$_{7/2}$ to 2F$_{5/2}$. Then, the excited electrons would be transferred back to the ground state of 2F$_{7/2}$, and the energy released in this process is mainly transferred to the active Er$^{3+}$ in a non-radiative manner, leading to a population of Er$^{3+}$ from 4I$_{15/2}$ to 4I$_{11/2}$ (Wu et al., 2013). Next, a second or more similar photons from excited Yb$^{3+}$ may convert to higher 4F$_{9/2}$, 4F$_{7/2}$, and 2I$_{9/2}$ energetic levels of Er$^{3+}$. Then, some of the excited electrons will relax non-radiatively to the energy levels of 2H$_{11/2}$, 4S$_{3/2}$, 4F$_{9/2}$ etc. energy levels through a fast multiphonon decay process (Lei et al., 2015), leading to a stronger green (2H$_{11/2}$, 4S$_{3/2}$, 4I$_{15/2}$) and red emission (4F$_{9/2}$,4I$_{15/2}$), especially the latter. Therefore, the improvement in photocatalytic efficiency of the YEOBI samples could be elaborated more clearly in three factors. First, the Yb$^{3+}$/Er$^{3+}$ doping in the photocatalyst can cause significant redshift with the absorption of visible light, which would excite more electron-hole pairs. Second, the upconversion process in Yb$^{3+}$/Er$^{3+}$-doped Bi$_5$O$_7$I sample will take place, and it will produce electron-hole pairs under low-energy IR light irradiation. In this process, the photoactivity of Yb$^{3+}$/Er$^{3+}$-doped Bi$_5$O$_7$I sample is evidently enhanced. Third, the Yb$^{3+}$ and Er$^{3+}$ in the Bi$_5$O$_7$I would promote the separation of e$^-$/h$^+$ pairs, so more photo-induced charge carriers would migrate to the sample surface for photocatalytic reaction (Zhang et al., 2012).

CONCLUSIONS

In this work, the Yb$^{3+}$/Er$^{3+}$-doped Bi$_5$O$_7$I microsphere photocatalysts were prepared through combining hydrothermal and heat-treatment method. The Yb$^{3+}$/Er$^{3+}$-doped Bi$_5$O$_7$I photocatalysts have excellent photocatalytic for BPA under visible light irradiation and upconversion luminescence properties. It is expected that the synthetic method and properties of this catalyst will offer some inspiration and help for the future researchers to improve similar photocatalytic and upconversion luminescence materials.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

GZ designed the project. BC, SG, and LL performed the experiments. BC, SG, and RD performed the data analysis. GZ, YX, and LG contributed to the theoretical analysis. BC,
removal of NO. J. Phys. Chem. C 123, 16268–16280. doi: 10.1021/acs.jpcc.9b03961

Reszczynska, J., Grzyb, T., Sobczak, J. W., Lisowski, W., Gazdak, M., Ohtanie, B., et al. (2015). Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Appl. Catal. B Environ. 163, 40–49. doi: 10.1016/j.apcatb.2014.07.010

Rodriguez, V. D., Tikhomirov, V. K., Velázquez, J. J., Shestakov, M. V., and Moschchalkov, V. V. (2013). Visible-to-UV/Violet upconversion dynamics in Er3+-doped oxyfluoride nanoscale glass ceramics. Adv. Opt. Mater. 1, 747–752. doi: 10.1002/adom.201300212

Sun, J., Xian, J., and Du, H. (2011). Hydrothermal synthesis of BaYF4:Yb3+/Er3+ upconversion luminescence submicrospheres by a surfactant-free aqueous solution route. J. Phys. Chem. Solids 72, 207–213. doi: 10.1016/j.jpcs.2010.12.013

Wang, W., Huang, W. J., Ni, Y. R., Lu, C. H., Tan, L. J., and Xu, Z. Z. (2013). Graphene supported β-NaYF4:Yb3+,Tm3+ and N-doped P2S5 nanocomposite as an advanced NIR and sunlight driven upconversion photocatalyst. Appl. Surf. Sci. 282, 832–837. doi: 10.1016/j.apsusc.2013.06.066

Wang, Y. F., Xu, W., Zhu, Y. S., Xu, S., Cui, H. N., and Song, H. W. (2014). Phonon-modulated upconversion luminescence properties in some Er3+ and Yb3+ co-activated oxides. J. Mater. Chem. C 2, 4642–4650. doi: 10.1039/c4tc00330f

Wu, X. Y., Yin, S., Dong, Q., Liu, B., Wang, Y. H., Sekino, T., et al. (2013). UV, visible and near-infrared lights induced NOx destruction activity of (Yb,Er)-NaYF4/C-TiO2 composite. Sci. Rep. 3, 2911–2918. doi: 10.1038/srep02918

Xu, D. X., Lian, Z. W., Fu, M. L., Yuan, B. L., Shi, J. W., and Cui, H. J. (2013). Advanced near-infrared-driven photocatalyst: fabrication, characterization, and photocatalytic performance of β-NaYF4:Yb3+,Tm3+ @TiO2 core@shell microcrystals. Appl. Catal. B Environ. 142–143, 377–386. doi: 10.1016/j.apcatb.2013.05.062

Xu, J. S., Brenner, T. J. K., Chen, Z. P., Neher, D., and Antonietti, M. (2014). Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light. ACS Appl. Mater. Interfaces 6, 16481–16486. doi: 10.1021/am5051263

Zhang, J., Dai, S., Wang, G., Zhang, L., Sun, H., and Hu, L. (2005). Investigation on upconversion luminescence in Er3+/Yb3+ codoped tellurite glasses and fibers. Phys. Lett. A 345, 409–414. doi: 10.1016/j.physleta.2005.07.014

Zhang, J. Y., Zhu, G. Q., Li, S. P., Rao, F., Hassan, Q., Gao, J. Z., et al. (2019). Novel Au/La-Bi2O3-I microspheres with efficient visible-light photocatalytic activity for NO removal: synergistic effect of Au nanoparticles, La doping and oxygen vacancy. ACS Appl. Mater. Interfaces 41, 37822–37832. doi: 10.1021/acsami.9b14300

Zhang, L., Wang, W. Z., Sun, S. M., Zhang, Z. J., Xu, J. H., and Ren, J. (2012). Photocatalytic activity of Er3+, Yb3+ doped Bi3O3I. Catal. Commun. 26, 88–92. doi: 10.1016/j.catcom.2012.04.021

Zhang, L. L., Sha, J. N., Chen, R. R., Liu, Q., Liu, J. Y., Yu, J., et al. (2020a). Surface plasma Ag-decorated Bi2O3-I microspheres uniformly distributed on a zwitterionic fluorinated polymer with superfunctional antifoiling property. Appl. Catal. B Environ. 271:118920. doi: 10.1016/j.apcatb.2020.118920

Zhang, L. L., Sha, J. N., Chen, R. R., Liu, Q. Liu, J. Y., Yu, J., et al. (2020b). Three-dimensional flower-like shaped Bi2O3-I particles incorporation zwitterionic fluorinated polymers with synergistic hydration-photocatalytic for enhanced marine antifouling performance. J. Hazard. Mater. 389:121854. doi: 10.1016/j.jhazmat.2019.121854

Zhou, J. J., Chen, G. X., Zhu, Y. B., Huo, L. M., Mao, W., Zou, D. N., et al. (2015). Intense multiphoton upconversion of Yb3+-Tm3+ doped β-NaYF4 individual nanocrystals by saturation excitation. J. Mater. Chem. C 3, 364–369. doi: 10.1039/C4TC02363C

Zhu, G. Q., Li, S. P., Gao, J. Z., Zhang, F. C., Liu, C. L., Wang, Q. Z., et al. (2019). Constructing a 2D/2D Bi2O3CO3/Bi2O3@Bi2O3 heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic activity for NOx removal. Appl. Surf. Sci. 493, 913–925. doi: 10.1016/j.apsusc.2019.07.119

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Cao, Gong, Zubairu, Liu, Xu, Gao, Dang and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.