Genome-Wide identification and Analysis of the AP2/ERF Gene Family in Fragaria vesca

Zekun Li
Fujian Agriculture and Forestry University

Yanhong Hong
Fujian Agriculture and Forestry University

Changmei Chen
Fujian Agriculture and Forestry University

Zhennan Wang
Fujian Agriculture and Forestry University

Aiying Zheng
Fujian Agriculture and Forestry University

Jianqing Chen
Fujian Agriculture and Forestry University

qingxi chen (✉ cqx0246@fafu.edu.cn)
fujian agriculture and forestry university

https://orcid.org/0000-0002-0118-7415

Research article

Keywords: strawberry, environmental pressure, growth, reproduction

Posted Date: October 21st, 2019

DOI: https://doi.org/10.21203/rs.2.16253/v1

License: ☺️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The AP2/ERF superfamily consists of primary transcription factors in plants that play a critical role in numerous aspects of various physiological stages and responses to stress stimuli. Nevertheless, there is little information related to AP2/ERF in strawberry, an important perennial fruit and model plant for horticulture. Results: In this study, 117 AP2/ERF genes were identified in strawberry and were grouped into four types of genes, AP2 (17), ERF (94), RAV (5) as well as soloist (1), according to the gene structure, phylogenetic tree and conserved domains. The duplication events and synteny analysis combination of genes offered a good opportunity to understand the evolutionary process of the FvAP2/ERF family. Moreover, identified orthologous genes and expression profiles of genes across various tissue, developmental stages and different treatments predicted potential functions of some AP2/ERF genes in strawberry.

Conclusions: In this study, 117 genes were identified in the AP2/ERF family of strawberry, and their structure, chromosomes location, evolutionary relationship, promoter sequence and expression profile were investigated. Our findings provide valuable clues to gain better insights into each FvAP2/ERF gene under different types of biological developments and in response to stressors.

Background

Plants face numerous environmental stressors, such as high salinity, drought, pathogen attack and wounding. For reproduction and survival under various environmental conditions, plants have to evolve a series of transcription factors to regulate their defense mechanism. For instance, the AP2/ERF transcription factors, a large gene family in green lineage, have essential roles in regulating plant growth, breeding and environmental pressures. AP2/ERF transcription factors belong to the AP2/ERF superfamily and include four types, AP2, ERF, RAV and soloist. In the AP2/ERF superfamily, the most prominent feature of gene sequences is the AP2 domain, which consists of about 6070 amino acids involved in DNA binding of down-stream genes [1, 2]. Based on the number of domains, the AP2/ERF proteins are classified into three families, those with double AP2 domains belong to the AP2 family protein, while those with a single AP2 domain belong to the ERF family protein, and the RAV family protein has a single AP2 domain and a single B3 domain that is a plant-specific DNA-binding domain. In light of differences in the promoter sequences of ERF genes, the ERF family in further divided into two major subfamilies, the ERF subfamily (ethylene-responsive transcription factor) and DREB subfamily (dehydration/CFB response element binding) [1].

Since the first AP2 gene involved in the development of flowers was cloned from Arabidopsis thaliana, numerous AP2/ERF genes have been identified in different plants [3]. Considerable evidence demonstrated that the AP2/ERF family has important functions in the regulation of a variety of biological processes relevant to growth, development and various responses to environmental pressures. TFs (transcription factors) from the AP2 family have been shown to participate in the regulation of plant growth and development, for example, flower development [4, 5], leaf shape and seed growth [6]. ERF
genes are predicted to be involved in the response to hormonal signal transduction [7], abiotic/biotic stress [8, 9] and plant developmental processes [10, 11]. Recently, many proteins of the RAV family in pathogen infections and abiotic stresses were identified [12, 13].

Cultivated strawberries (Fragaria ananassa) originated ~300 years ago; it is recognized as an important berry fruit in the horticultural industry and is among the youngest crop species [14]. After grape, its cultivation area ranks only second in the world. In contrast to cultivated strawberry and woody fruit trees, wild strawberry (Fragaria vesca) is a versatile experimental perennial plant system and an emerging model, owing to its small-sized genome [15]. Information obtained from studies of all aspects of plant growth, physiology, and biochemistry of Fragaria vesca should be applicable to or may inform studies on other horticulture plants.

With the increasing demand for the qualities of strawberry fruits, comprehending the potential regulation mechanism of plant growth and development has been a heated matter. The TFs from the AP2/ERF family play a crucial role in controlling plant growth and development. To date, the AP2/ERF genes have been extensively studied in various plants, including Arabidopsis thaliana [1], rice [1], pear [16], Musa [17] and apple [18]. However, there is poor knowledge about the AP2/ERF proteins in strawberry (Fragaria vesca). By reason of the significance of the AP2/ERF genes in various physiological mechanisms, it would be meaningful to conduct a systematic investigation of the AP2/ERF genes in strawberries. The recent ending of the wild strawberry genome sequencing offered an opportunity to identify and dissect the gene structure, evolutionary relationship and expression profile of AP2/ERF proteins at the genome-wide level [15]. In this study, 117 AP2/ERF genes of strawberry were identified and grouped into AP2, ERF, RAV and the soloist family. We completely investigated gene characters, including protein sequence length, isoelectric point, molecular weight, gene structure and chromosome distribution and conducted analysis of the evolutionary relationship of the FvAP2/ERF family through phylogenetic trees, gene duplication events and synteny analysis. Comprehensive expression investigations were carried out to determine the association of specific AP2/ERF family representatives in various biological developments of strawberry. These results offered significant indications for useful investigations of AP2/ERF family representatives in strawberry.

Methods

FvAP2/ERF family identification in strawberry

To obtain all AP2/ERF proteins in Fragaria vesca, we used two different methods, HMMSCAN and BLASTP. First, the hidden Markov model (HMM) file (PF00847) was downloaded from the Pfam database (http://pfam.xfam.org/family/PF00847). HMMER tool was used to search the potential AP2/ERF protein from the Fragaria vesca 4.0 genome (https://www.rosaceae.org/organism/ Fragaria/vesca). The default parameters were adopted, and the cutoff value was set to 0.01. Second, the AP2/ERF protein sequences of Arabidopsis thaliana were adopted as queries to search for candidate AP2/ERF proteins by a BLASTP alignment against all wild strawberry protein sequences [1]. For all candidate protein sequences searched
by these two approaches, we first removed the incomplete and redundant protein sequences. Then, all candidate protein sequences with the AP2 domain were checked by the NCBI CDD tool. All candidate proteins had to contain at least one AP2 domain. Finally, 117 AP2/ERF protein sequences were identified in wild strawberry, and the sequence length, isoelectric point and molecular weight of FvAP2/ERF proteins were predicted by the ExPasy website (http://web.expasy.org/protparam/).

Phylogenetic analysis and classification of strawberry AP2/ERF genes

The full sequence of the identified AP2/ERF proteins in strawberry was used to set up multiple sequence alignments by MEGA X with default parameters. Based on the alignment full-length sequences of FvAP2/ERF proteins and the AP2/ERF classification scheme, all FvAP2/ERF proteins were classified into four families. The un-rooted phylogenetic tree was built by the Neighbor-Joining (NJ) method of MEGA X, with the following parameters: Poisson model, pairwise deletion and 1000 bootstrap replications.

Gene structures and motif composition analysis

The exon/intron structures of FvAP2/ERF genes were analyzed by the Gene Structure Display Server (GSDS: http://gsds.cbi.pku.edu.cn) [19]. Conserved motifs of FvAP2/ERF proteins were identified using the MEME online tool (http://meme.nbcr.net/meme/intro.html) [20], with the maximum number of motifs, 25.

Chromosomal distribution, gene duplication and synteny analysis of FvAP2/ERF genes

According to physical position information from the *Fragaria vesca* 4.0 genome database, all FvAP2/ERF genes were mapped to strawberry chromosomes. The gene duplication events of AP2/ERF in strawberry were obtained using the Multiple Collinearity Scan toolkit (MCScanX) with the default parameters [21]. The result of collinear analyses of the orthologous AP2/ERF genes from strawberry, *Arabidopsis thaliana*, tomato, grape, peach and apple was exhibited by Dual Systeny Plotter software.

Promoter sequences

The promoter sequences of FvAP2/ERF, which were 2000 bp upstream of the transcription start site, and the cis-elements in the promoter were researched using the PlantCARE online tool (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).
Plant growth conditions, RNA isolation and Illumina sequencing

Wild strawberry Hawaii4 (National Clonal Germplasm Repository accession # PI551572) [15] were grown in a growth chamber with 14 h light at 22 °C and 10 h dark at 20 °C. The fruits were harvested at the white, turning initial, turning middle and red stages, respectively and the stages were determined based on days post anthesis (DPA). The white stage is at 20 DPA, turning initial is at 25 DPA, turning middle is at 27 DPA and red stages is at 30 DPA. At least eight fruits were combined to form one biological replicate and three biological replicates were collected. Total RNA from samples (white stage, turning initial stage, turning middle stage and red stage) was isolated using RNAprep Pure Plant Plus Kit (TIANGEN BIOTECH) and the RNA-seq data were generated from Illumina HiSeq™.

Data research and gene expression analysis

The expression profile data for each FvAP2/ERF gene in different tissues, organs and treatments were obtained from the NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra/) or from less effective RT-PCR experiments because the number of AP2/ERF genes in strawberry was abundant and there were comprehensive verified RNA-seq data about strawberries in NCBI. And the ggplot2 tool of R Programming Language was used to produce heatmaps.

Results

Identification of FvAP2/ERF proteins in strawberry

A total of 152 sequences were matched as candidate FvAP2/ERF family genes based on HMMsearch and BLASTP search. Based on the result of the CDD tool, among these 152 genes, we removed 35 candidate genes without the AP2 domain. Finally, 117 complete genes were identified and annotated as being the AP2/ERF family of strawberry with complete AP2 domains. According to domain structures, 117 AP2/ERF genes were assigned into four families (see Figure 1). Ninety-two of 117 genes were grouped into the ERF family and encode one AP2/ERF domain. Fifteen genes were placed in the AP2 family and encode a protein that contains two AP2/ERF domains. Five genes were classified as the RAV family and encode a protein containing a single AP2/ERF and one B3 domain. Additionally, gene FvH4_2g18520 was assigned as a soloist and contains a single AP2 domain, the sequence of which has high homology to the soloist of Arabidopsis (AT4G13040.3). Interestingly, the two remaining genes, ERF–85 and ERF–48, encoded two AP2 domains but were distinct from the AP2 family and were more closely related to the ERF family. Thus, these genes were grouped into the ERF type. The AP2 family had similar situations in that AP2–13 and AP2–17 encoded a single AP2 domain, but their amino acid arrangements were more related to the AP2 family and were grouped into the AP2 family. In order to differentiate each family representative, these genes were assigned a new name on the basis of categorization of the family
as well as the arrangement of the chromosome locus. The results demonstrate that all 117 FvAP2/ERF genes were mapped on chromosomes 1 to 7 (see Figure 2).

Gene characteristics, including the protein molecular weight, the length of the protein sequence and isoelectric point, were predicted (Additional file 1). Within the AP2/ERF family, ERF–15 was found to be the smallest protein containing 136 amino acids, while the largest one was AP2–10 with 827 amino acids. The molecular weight of the proteins ranged from 15,147.75 to 89,808.32 kDa, and the isoelectric point ranged from 4.59 to 10.4.

Phylogenetic relationship, conserved motif composition and gene structure of the strawberry AP2/ERF family

The phylogenetic relationships of FvAP2/ERF were determined through multiple sequence alignment of full sequences of proteins. The phylogenetic relationship (Figure 3) demonstrated that the FvERF family could be grouped into ten groups corresponding to groups I to X according to the classification of the ERF group in *Arabidopsis* [1]. Among the 94 AP2/ERF proteins of strawberry, 3 belong to group I, 7 to group II, 14 to group III, 14 to group IV, 7 to group V, 10 to group VI, 10 to group VII, 8 to group VIII, 18 to group IX and 3 to group X. For reference, the current knowledge regarding the functions of the genes, the functions of which have already been verified by silence/overexpression of genes or mutant plant, in the AP2/ERF family is summarized in Table I. As shown in Table I, AP2/ERF is mainly involved in the stress responses, phytohormone responses and plant growth, and similar sequences of proteins usually indicate the same function of genes. Table I reveals that most members of the FvERF family group III may regulate fruit development, and the ERF family groups IV and VI may be involved in stress responses, especially abiotic stress.

In order to acquire extra information about the AP2/ERF family in strawberry, the gene structures of all 117 FvAP2/ERF proteins were examined. As shown in Figure 3b, all RAV genes possess three exons, AP2 genes have three to eight exons (2 genes with three exons, 3 genes with four exons, 5 genes with five exons, 2 genes with six exons, 4 genes with 7 exons and 1 gene with eight exons), and most ERF genes have two exons (80 genes with two exons, 12 genes with three exons, 2 genes with six exons, 1 gene with seven exons and 1 gene with twelve exons). Additional investigation revealed that AP2/ERF genes hold a single intron in their AP2 and B3 domains. The location of introns was coincident with the alignment clusters of AP2/ERF genes, in general. There were no introns in the domains of the RAV family and ERF family (excluding group VII and ERF–45), while three types of intron phases were found in different AP2 genes (excluding AP2–13).

An illustration of the structure of all AP2/ERF proteins in strawberry was set up through the MEME motif study consequences. As shown in Figure 3c, motif 1 was the AP2 domain widely distributed in the AP2/ERF family, and motif 9 and 10 were the B3 domain; other than that, representatives of FvAP2/ERF in the uniform clusters were generally discovered to have similar motif compositions. For instance, the
array of motifs 4, 2, 1 and 3 was common for the ERF family (excluding group X), whereas motif 5 was unique to the AP2 family. The FvAP2/ERF from the uniform cluster, such as ERF–32, 31, 12 and 15; ERF–72, 56 and 01; ERF–92, 43 and 67, exhibited a seriously conserved motif composition, revealing that the protein structures were similar, and their functions were possibly conserved. In general, homologous gene structures and the similar motif distribution of the FvAP2/ERF representatives in the uniform cluster, as well as the consequences of the phylogenetic tree, could enhance the dependable results of the family and group classifications.

Chromosomal distribution, gene duplication and collinear analysis of the FvAP2/ERF gene family

To further investigate the relationship between the differentiation of genetic functions and gene duplication events in strawberry, the chromosomal location of each AP2/ERF gene was identified from the genomic data of strawberry. All 117 FvAP2/ERF genes were mapped on seven chromosomes (see Figure 2). The smallest number of FvAP2/ERF genes was found on chromosomes 1 and 3 (both 10 genes), whereas chromosome 6 contained the highest number of FvAP2/ERF genes (23 genes). The most ERF genes appeared on chromosomes 2, 5, 6 and 7 (16, 19, 16 and 17, respectively), there was an absence of AP2 genes on chromosome 5, and five members of the RAV family were mapped on chromosomes 36.

Gene duplication usually plays a vital role in gene expansion and the occurrence of new gene functions; on this account, we analyzed the gene duplication events of the FvAP2/ERF family. Fourteen FvAP2/ERF genes were classified into seven tandem repeat event regions on strawberry chromosomes 2, 4 and 7. In addition to the tandem duplication events, seven segmental duplications with 14 AP2/ERF proteins were also found using BLASTP and MCScanX tools. Only two pairs of genes in the AP2 family were identified, and others were identified in the ERF family. These results suggested that certain FvAP2/ERF genes may be generated through gene tandem and segmental duplication events, which are keys that drive AP2/ERF gene evolution in strawberry.

In order to further infer the phylogenetic relationship of the strawberry AP2/ERF genes, we analyzed the collinear relationships of strawberry associated with six representative plants, including rice, *Arabidopsis*, tomato, grape, apple and peach (Figure 4). The results showed that FvAP2/ERF genes were collinear with apple (173), followed by peach (102), grape (75), tomato (60) and *Arabidopsis* (31) (Additional file 3–7). Among the rest, some syntenic pairs (with 11 FvAP2/ERF proteins) were found in both strawberry and the other plants, revealing these orthologous genes probably occurred earlier than the ancestral divergence. Moreover, some syntenic pairs (with 26 FvAP2/ERF genes) were identified in four berry plants, indicating that these genes possibly played vital roles during fruit development. Interesting, some AP2/ERF genes in strawberry were identified to be correlated with no less than two syntenic gene pairs (especially with peach and apple), such as ERF–05, ERF–06, ERF–11 and ERF–31, indicating these genes were possibly previously critical characters of the AP2/ERF gene family. It is worth noting that certain AP2/ERF syntenic gene pairs identified between strawberry and berry plants were anchored to the extremely conserved collinear blocks, the extents of which exceeded 110 genes, indicating these genes had similar functions.
Analysis of cis-acting elements in the promoters of AP2/ERF family genes

The different cis-acting elements in the promoters of genes might indicate that the functions of these genes are different. To better understand the FvAP2/ERF gene expression regulatory mechanisms, a 2000-bp genomic sequence upstream of the transcription start site in each AP2/ERF gene was used to search the PlantCARE databases. As shown in Figure 6, four types of cis-elements were identified in the promoters of FvAP2/ERF genes. The first was the responses of plant hormones, such as MeJA (methyl jasmonate), abscisic acid, gibberellin and salicylic acid and in particular, MeJA and abscisic acid responsive element, which are more ubiquitous in the promoter of the ERF family genes than in the AP2 and RAV family genes. For example, MeJA responsiveness accounted for fifteen percent of the total numbers of cis-elements in the ERF family, but in other families, eight percent of cis-elements were involved in MeJA responsiveness. Among these genes, ERF–87 took part in both MeJA and abscisic acid response, indicating that ERF–87 played a key role in phytohormone regulation mechanisms. Abundant stress-related responses elements, such as low temperature, drought, anoxic conditions and wounding, were found in the promoters of FvAP2/ERF genes. Interesting, most members of the FvAP2/ERF family were mainly involved in the anoxic response.

The third component was responses of plant development and growth. Some genes in the FvAP2/ERF family are involved in the expression of specific plant tissues, circadian control, flavonoid biosynthesis and cell cycle regulation. In addition, the response to light was the most important response element in the promoter of FvAP2/ERF genes. Sixty of 117 FvAP2/ERF genes contained at least 10 light response elements, which indicated AP2/ERF genes play key roles in the light regulations in strawberry.

Expression profile analysis of AP2/ERF of strawberry in different development stages and tissue

Despite the high numbers of members of the AP2/ERF family, we obtained abundant reliable data of FvAP2/ERF gene expression, including in the root, leaf, seed and flower (microspore, pollen, perianth, receptacle, carpel and anther) tissues from the NCBI short read archive (SRA) database (SRP035308), which was previously verified [65]. As shown in Figures 7 and 8, among 117 FvAP2/ERF genes, six genes (AP2–17, ERF–06/21/25/61/74) in the root, eight (ERF–06/20/25/27/61/74/75, RAV–02) genes in the seed, one (ERF–27) genes in the flower, three (AP2–01, ERF–/61/74) genes in the leaf and six (ERF–20/23/27/47/74/75) genes in fruit showed high transcript abundance (RPKM>100). Interestingly, ERF–61 was expressed in most tissue, indicating that ERF–61 plays an important role in the vegetative growth of strawberry. ERF–74, ERF–75 and ERF–76 from chromosome six were expressed in most tissues and organs of strawberry, which suggested these genes are probably involved in plant development and breeding.

During the development of the flower, certain AP2/ERF genes are expressed in the flower and not in the pollen, such as ERF–25, ERF–27, ERF–39 and ERF–61, whereas in pollen, only two FvAP2/ERF genes, ERF–75 and ERF–93, were expressed. Significantly, ERF–75 plays a part in the various tissues and
stages of flower, which implies it perhaps is the primary regulatory gene of flower morphogenesis. To understand the comprehensive functions of FvAP2/ERF genes in different stages of the achene and receptacle, we obtained the RNA-seq data from SRA databases (SRA065786) [66] and sequenced different stage of fruits. As shown in Figure 8, 57 FvAP2/ERF genes were expressed in early-stage fruit development, and 16 FvAP2/ERF genes were expressed in fruit development and ripening. Among these genes, ERF–73, ERF–74 and ERF–75 were expressed across all stages of fruit development, and decreased transcript levels of ERF–25, ERF–27 and ERF–61 were similar during different stages of fruit development. Interesting, ERF–3, ERF–08, ERF–09, ERF–90 and ERF–91 were expressed only in different tissues of the achene (not the embryo), which revealed these genes may be responsive to the development of the achene. There were the remarkable expressions of ERF–20 and ERF–23 in fruit development and ripening but not in early-stage fruit development, which indicated they determined the quality of strawberry fruit. In general, these results showed that few AP2/ERF genes engage in physiological processes of most tissues, and transcription of most genes occurred in specific tissues.

Expression profile analysis of AP2/ERF in strawberry under abiotic and biotic stress

To investigate whether the expression levels of AP2/ERF family genes are regulated by exogenous abiotic and biotic stress, representative data of RNA-seq (Phytophthora stress, salt stress, salicylic acid treatment and methyl jasmonate treatment) from SRA databases (SRR3743193–3743198, PRJNA508389, SRR7157737 and SRR7157738) were obtained that were previously verified [14, 67, 68]. Expression profiles of individual genes in each treatment are shown in a heat map (Figure 9). After Phytophthora infection, 11 of 117 FvAP2/ERF genes showed significant changes. For example, transcription levels of AP2–17, ERF–06, ERF–21 and ERF–91 were repressed, whereas expression of ERF–11, ERF–17, ERF–25, ERF–29, ERF–55, ERF–89 and ERF–90 was induced by Phytophthora. Interesting, under the salt stress, sixteen FvAP2/ERF genes in the root were up-regulated, such as ERF–04, ERF–05 ERF–13, ERF–15, ERF–49, and transcription of only two genes was decreased obviously. Among the rest, RAV–02 was the most remarkable—the transcription level was 28 times higher than that in the control. ERF–04, ERF–05 and RAV–03 decreased significantly after MeJA treatment for 0.5 h (26-fold, 3-fold and 4-fold, respectively). Moreover, transcription levels of the AP2/ERF gene 4 h after treatment were similar to the previous levels except for RAV–03. After MeJA treatment for 24 h, four genes, AP2–09, AP2–13, ERF–08 and ERF–32, reached peak values and were more than 7-, 2-d, 40- and 2-fold higher than those, respectively, after MeJA treatment for 4 h. However, SA treatment hardly induced peculiar expression profiles of FvAP2/ERF genes, different from all other treatments considered. In general, the AP2/ERF family is involved in the regulation of stress response in strawberry, and diverse members played different roles under different stresses.

Discussion
Plant AP2/ERF genes are among the important transcription factors involved in the responses to environmental stressors and plant growth and reproduction. Previous studies on the AP2/ERF gene family have been reported for various plant species, such as *Arabidopsis thaliana* [1], rice [1], pear [16], Musa [17] and apple [18]. However, strawberry is a model plant for horticulture, and this family has never been identified in depth in strawberry. Therefore, in this study, we performed a genome-wide analysis of the AP2/ERF gene family in strawberry and identified 117 genes in the FvAP2/ERF family, 17 in the AP2 family, 94 in the ERF family, 5 in the RAV family and only 1 in the soloist family.

Evolution of the AP2/ERF gene family of strawberry

Gene duplication events in advanced plants are principal sources of evolutionary innovation and play pivotal roles in speciation [69]. Previous studies demonstrated at least 75 AP2/ERF genes in the common ancestor of extant angiosperms, while we only found 117 AP2/ERF genes in strawberry, the number of which was lower than that in *Arabidopsis* (147) [70], pear (191) [16], peach (131) [71], grape (149) [72] and apple (259) [18]. Furthermore, the number of both tandem duplication (11.9%) and segmental duplication (11.9%) events was seven pairs of genes in strawberry, far lower than that in *Arabidopsis*, pear, peach, grape and apple, which may be one of the reasons that the number of AP2/ERF genes in strawberry is low. These results also indicated the evolution rate of the AP2/ERF family in strawberry was slow and aligned with earlier studies. Davis et al. thought that the evolutionary track of the AP2/ERF gene family possibly experienced two phases: post-duplication functional divergence as well as a dull evolutionary pace of the process in general, which is on account of the stronger functional restriction after functional divergence [73, 74]. Furthermore, Semon et al. found that widely expressed genes were far more inclined to be restricted compared with those with narrower expression, which were aligned to the prior subfunctionalization of slow-evolving genes [75], and the other studies predict prior conservation of genes expressed in various tissues [76]. In strawberry, certain genes had similar situations, such as FvERF–74, FvERF–75 and FvERF–76, i.e., they were highly expressed in various tissues and were collinear with grape, apple and peach. Although they may be retained after duplication events and were from the same chromosomes, their functions were divergent under various environmental pressures (see Figure 9). During evolution processes, plants need to both develop and guard themselves to survive and breed by keeping balances between growth and defense [77]. Thus, some genes usually show different functions in different situations, for example, the gene of group III in Table I. We found abundant cis-elements of light response, anoxic specific inducibility and auxin response at the same time in promoter sequences of the FvAP2/ERF family. Although we currently predicted unknown genes through identified homologous genes, preferences of AP2/ERF genes in strawberry between growth and defense will depend on the environment to a great degree in the future.

Potential roles of FvAP2/ERF genes in plant growth and development
Genes from the uniform clusters have similar gene structures, which determine their behaviors. Thereby, comparison with identified functions of ERF genes from other species contributes to predict functions of candidate orthologous genes of strawberry. In *Arabidopsis*, TINY, AP2/ERF homologous genes repressed plant growth, and CBF2 can delay leaf senescence and extended plant longevity. Overexpression of SIAP2a, SIERF.B3 and SIERF6 in tomato resulted in a dramatic delay of fruit ripening, and ectopic expression of ERF36 reduced plant growth and early flower by controlling stomatal density. Similarly, some AP2/ERF genes of pear and peach activated bud break. In addition, most members of the AP2/ERF family contributed to or repressed ethylene synthesis, such as MdDREB1, LeERF1 and AdERF9. Although strawberries are considered to be a non-climatic plant and are insensitive to ethylene, FvERF is involved in the ripening of fruit. For instance, FvERF–06 was identified in regulating furaneol synthesis, a key aroma of fruit, by activating FaQR expression [78]. In this study, the phylogenetic tree of full-length amino acid sequences suggested the FvERF family is grouped into ten groups, consistent with the number of ERF groups in *Arabidopsis*. FvERF–06 and FvERF–61 are members of the same cluster in the phylogenetic tree; they showed similar profiles and were highly expressed in the root, seed and early stage of fruit development, indicating they not only control the development of fruit but also play a critical role in the root and seed. Furthermore, FvERF–06 was most closely related to *Arabidopsis* genes AtERF–60, AtERF–59 (WIN1) and AtERF–58 (WIN2). WIND1 was functionally characterized as activating shoot regeneration [79], exhibiting tissue-specific expression in callus [80] and participating in cell dedifferentiation as well as abiotic stress signaling, such as wounding [58, 79]. In promoter sequences of FvERF–06 and FvERF–61, abundance MeJA-responsiveness and anoxic specific inducibility cis-elements were found that revealed FvERF–06 and FvERF–61 may also be involved in response to abiotic stress. In addition, there were high transcript levels of FvERF–20 and FvERF–23 only in the development of fruit, which suggested they potentially determine the quality of fruit.

AP2 genes acted primarily in the regulation of floral development and determine the third whorl as the floral organ develops as petals or stamens [81]. In *Arabidopsis*, AP2 genes were identified to be involved in floral development, including sepals and petals [82, 83]. Theissen et al. found that overexpression of AP2 would lead to the production of double flowers, while silencing of AP2 function would result in stamens replacing petals [84]. Hence, the regulatory behaviors of AP2 in floral morphology of strawberry cannot be ignored. Some AP2 genes of strawberry, FvAP2–01, FvAP2–04 and FvAP2–05, were widely expressed in different tissues of the flower. In particular, FvAP2–01 was more preferentially expressed in the perianth, receptacle and carpel than the anther. Its homologous gene, RcAP2, can up-regulate the number of rose petals under low temperature. Thus, FvAP2–01 may take part in the formation of petals and sepals [85]. In addition, other than FvRAV–02, RAV genes in strawberry were barely expressed during plant growth and development, indicating the RAV family potentially has defensive responsibilities.

Potential roles of FvAP2/ERF in response to biotic and abiotic stressors
A series of AP2/ERF genes from various plants confer tolerance to multiple abiotic and biotic stresses when expressed ectopically in different plants [86, 87]. In this study, many stress response cis-acting elements, such as MeJA-responsiveness and anoxic specific inducibility, were frequently identified in the promoter regions of FvAP2/ERF genes (Figure 6), which demonstrated AP2/ERF genes play key roles in stress responses of strawberry. For instance, FvERF–08 has eight MeJA-responsiveness elements, and as shown in Figure 6, after 1 d of MeJA treatment, the transcription level of FvERF–08 peaked (Figure 9). Furthermore, RNA-seq data showed that six AP2/ERF genes were up-regulated after MeJA treatment, while after salicylic acid treatment, the FvAP2/ERF gene was insensitive to stresses, which could be caused by few salicylic acid responsiveness elements in the promoter (Figures 6 and 9). As the main plant hormones, JA and SA both play essential roles in regulating physiological mechanisms and mediating plant defense mechanisms against stress. Therefore, JA and SA are often used as simulated signals of plant stress. For example, low temperature can induce JA synthesis, and exogenous application of MeJA also increased endogenous JA accumulation in banana fruit [88]. Previous studies found JA was the central signaling compound in responses to necrotrophic pathogens and wounding, whereas in response to biotrophic pathogens, SA was the main signaling compound [89]. Thus, six up-regulated AP2/ERF genes in strawberry may be involved in abiotic and biotic stress responses related to MeJA, but FvAP2/ERF genes were barely induced by salicylic acid.

Crown rot induced by Phytophthora cactorum is one of the most common diseases of strawberry and hinders strawberry yield all around the world [67], which results in stunting and wilting of the plants as well as rotten fruits. In the defense mechanism of strawberry, seven AP2/ERF genes were up-regulated significantly, and four genes were down-regulated. It is worth mentioning that strongly up-regulated genes, ERF–25 and ERF–55, both belong to group III of the ERF family, and genes of this group primarily play defensive roles in plants according to identified genes in Table I. Thus, ERF–25 and ERF–55 are probably involved in responses to pathogens. Previous studies found StERF3 and GmERF5 are both involved in the defense mechanism of Phytophthora and salt stress in potato [87] and soybean [90], respectively. However, similar behaviors were not found in the AP2/ERF family of strawberry, which revealed the functional differentiation of AP2/ERF genes in strawberry may be different from that in potato and soybean.

Strawberry is sensitive to osmotic stress conditions, in particular salt stresses. Evidence from other species demonstrated that AP2/ERF genes are involved in regulating defense-related genes under salt stresses [91]. In this respect, 22 genes were obviously up-regulated, and 6 genes were down-regulated in the root of strawberry under salt stress (Figure 9), consistent with earlier studies that AP2/ERF genes showed diverse functions in response to salt stress [92]. Among these genes of strawberry, it is worth noting that the transcriptional level of RAV–02 was 28 times higher than that before treatment. Similar changes occurred in RAV genes in soybean, pepper and rice. In soybean, all genes from the RAV family were down-regulated other than GmRAV–03, which was up-regulated, and additional investigation revealed GmRAV–03 could strengthen the transgenic plants’ tolerance to high salinity [93]. Following high salinity, CARAV1 and OsRAV2 (from pepper and rice, respectively) were up-regulated, and transgenic
plants were highly insensitive to the osmotic stress [94, 95]. Thus, the better salt stress confrontation strategies in strawberry may be due to the regulatory properties of the RAV–02 protein.

Conclusions

We performed a systematic analysis of the AP2/ERF family in strawberry and identified 117 AP2/ERF genes that were characterized and further grouped into three families AP2 (17), ERF (94), RAV (5) as well as soloist (1), according to the gene structure, phylogenetic tree and conserved domains. Moreover, through searching earlier published RNA-seq data, the expression profiles of FvAP2/ERF genes in various tissues, developmental stages, biotic stress as well as environmental pressures were gained. These results, combined with identified AP2/ERF genes in other species, revealed that AP2/ERF in strawberry is involved in the regulatory network of plant growth, reproduction and responses to stressors. In conclusion, our findings provide valuable clues to gain better insight into each FvAP2/ERF gene in different types of biological development.

Declarations

List of abbreviations

MeJA: methyl jasmonate; SA: salicylic acid; HMM: Hidden Markov Model; MEME: Multiple Em for Motif Elicitation; NJ: Neighbor joining; RPKM: Reads Per Kilobase per Million mapped reads;

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All RNA-seq data used in this article can be found in NCBI(accession numbers: SRR3743193–3743198, PRJNA508389, SRR7157737, SRR7157738 and PRJNA575936,). Others generated or analyzed during this study are included in this published article and the additional files.

Competing interests

The authors declare that they have no competing interests.
Funding

This work was supported by grants from the Science and Technology Development Special Project of the Central Government Leading Local (2017L3001) and Science and Technology Innovation Special Fund project of Fujian Agriculture and Forestry University (CXZX2018087).

These funding bodies had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results. Publication costs are defrayed by these funding.

Authors’ contributions

ZK Li was responsible for the main part of data analysis and experimental design. JQ Chen, CM Chen and ZN Wang participated in the data analysis of RNA-seq. YH Hong and AY Zheng took part in sequence analysis of the promoter. QX Chen was responsible for manuscript revision. All the authors have commented, read and approved the final manuscript.

Acknowledgments

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

References

1. Nakano T, Suzuki K, Fujimura T, Shinshi H: Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant physiology 2006, 140(2):411–432.

2. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Ratcliffe O, Samaha R: Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 2000, 290(5499):2105–2110.

3. Jofuku KD, Den Boer B, Van Montagu M, Okamuro JK: Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell 1994, 6(9):1211–1225.

4. François L, Verdenaud M, Fu X, Ruleman D, Dubois A, Vandenbussche M, Bendahmane A, Raymond O, Just J, Bendahmane M: A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses. Scientific reports 2018, 8(1):12912.

5. Busov V, Carneros E, Yakovlev I: EARLY BUD-BREAK1 (EBB1) defines a conserved mechanism for control of bud-break in woody perennials. Plant signaling behavior 2016, 11(2):e1073873.
6. Li A, Yu X, Cao B, Peng L, Gao Y, Feng T, Li H, Ren Z: LkAP2L2, an AP2/ERF transcription factor gene of Larix kaempferi, with pleiotropic roles in plant branch and seed development. Russian journal of genetics 2017, 53(12):1335–1342.

7. Müller M, Munné-Bosch S: Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant physiology 2015, 169(1):32–41.

8. Yao Y, He RJ, Xie QL, Zhao Xh, Deng Xm, He Jb, Song L, He J, Marchant A, Chen XY: ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytologist 2017, 213(4):1667–1681.

9. Phukan UJ, Jeena GS, Tripathi V, Shukla RK: Regulation of Apetala2/Ethylene response factors in plants. Frontiers in plant science 2017, 8:150.

10. Wei G, Pan Y, Lei J, Zhu Y: Molecular cloning, phylogenetic analysis, expression profiling and in vitro studies of TINY2 from Arabidopsis thaliana. Journal of biochemistry and molecular biology 2005, 38(4):440.

11. Chandler JW, Werr W: DORNRÖSCHEN, DORNRÖSCHEN-LIKE, and PUCHI redundantly control floral meristem identity and organ initiation in Arabidopsis. Journal of experimental botany 2017, 68(13):3457–3472.

12. Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E, Suárez-López P, Pelaz S: RAV genes: regulation of floral induction and beyond. Annals of botany 2014, 114(7):1459–1470.

13. Fu M, Kang HK, Son S-H, Kim S-K, Nam KH: A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. Plant and Cell Physiology 2014, 55(11):1892–1904.

14. Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, McKain MR, Smith RD, Teresi SJ, Nelson AD, Wai CM: Origin and evolution of the octoploid strawberry genome. Nature genetics 2019, 51(3):541.

15. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP: The genome of woodland strawberry (Fragaria vesca). Nature genetics 2011, 43(2):109.

16. Li X, Tao S, Wei S, Ming M, Huang X, Zhang S, Wu J: The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus). BMC plant biology 2018, 18(1):46.

17. Lakhwani D, Pandey A, Dhar YV, Bag SK, Trivedi PK, Asif MHJSr: Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution. Scientific reports 2016, 6:18878.
18. Girardi CL, Rombaldi CV, Dal Cero J, Nobile PM, Laurens F, Bouzayen M, Quecini V: *Genome-wide analysis of the AP2/ERF superfamily in apple and transcriptional evidence of ERF involvement in scab pathogenesis.* *Scientia Horticulturae* 2013, 151:112–121.

19. Guo A, Zhu Q, Chen X, Luo J: *GSDS: a gene structure display server. Yi chuan = Hereditas* 2007, 29(8):1023–1026.

20. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: *MEME SUITE: tools for motif discovery and searching. Nucleic acids research* 2009, 37(suppl_2):W202-W208.

21. Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T-h, Jin H, Marler B, Guo H: *MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic acids research* 2012, 40(7):e49-e49.

22. Hinz M, Wilson IW, Yang J, Buerstenbinder K, Llewellyn D, Dennis ES, Sauter M, Dolferus R: *Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiology* 2010, 153(2):757–772.

23. Shen S-l, Yin X-r, Zhang B, Xie X-I, Jiang Q, Grierson D, Chen K-s: *CitAP2. 10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in 'Newhall'orange. Journal of experimental botany* 2016, 67(14):4105–4115.

24. Dubois M, Skirycz A, Claeyts H, Maleux K, Dhondt S, De Bodt S, Bossche RV, De Milde L, Yoshizumi T, Matsui M: *ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant physiology* 2013, 162(1):319–332.

25. Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G: *An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant cell reports* 2012, 31(2):349–360.

26. Liu M, Pirrello J, Kesari R, Mila I, Roustan JP, Li Z, Latché A, Pech JC, Bouzayen M, Regad F: *A dominant repressor version of the tomato Sl-ERF.B3 gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components. The Plant Journal* 2013, 76(3):406–419.

27. Liu M, Diretto G, Pirrello J, Roustan JP, Li Z, Giuliano G, Regad F, Bouzayen M: *The chimeric repressor version of an E thylene Response Factor (ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening. New Phytologist* 2014, 203(1):206–218.

28. Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR: *ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PloS one* 2012, 7(4):e35995.

29. Upadhyay RK, Soni DK, Singh R, Dwivedi UN, Pathre UV, Nath P, Sane AP: *SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth. Journal of experimental botany* 2013, 64(11):3237–3247.
30. Shi X, Gupta S, Rashotte AM: Characterization of two tomato AP2/ERF genes, SlCRF1 and SlCRF2 in hormone and stress responses. *Plant cell reports* 2014, 33(1):35–45.

31. Wang X, Zeng W, Ding Y, Wang Y, Niu L, Yao J-L, Pan L, Lu Z, Cui G, Li G: PpERF3 positively regulates ABA biosynthesis by activating PpNCED2/3 transcription during fruit ripening in peach. *Horticulture research* 2019, 6(1):19.

32. Yin X-r, Allan AC, Chen K-s, Ferguson IB: Kiwifruit EIL and ERF genes involved in regulating fruit ripening. *Plant Physiology* 2010, 153(3):1280–1292.

33. Song C-P, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu J-K: Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. *The Plant Cell* 2005, 17(8):2384–2396.

34. Fischer U, Dröge-Laser W: Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. *Molecular Plant-Microbe Interactions* 2004, 17(10):1162–1171.

35. Li T, Jiang Z, Zhang L, Tan D, Wei Y, Yuan H, Li T, Wang A: Apple (*Malus domestica*) Md ERF 2 negatively affects ethylene biosynthesis during fruit ripening by suppressing Md ACS 1 transcription. *The Plant Journal* 2016, 88(5):735–748.

36. Anh Tuan P, Bai S, Saito T, Imai T, Ito A, Moriguchi T: Involvement of EARLY BUD-BREAK, an AP2/ERF transcription factor gene, in bud break in Japanese pear (*Pyrus pyrifolia* Nakai) lateral flower buds: expression, histone modifications and possible target genes. *Plant Cell Physiology* 2016, 57(5):1038–1047.

37. Gu Y-Q, Wildermuth MC, Chakravarthy S, Loh Y-T, Yang C, He X, Han Y, Martin GB: Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. *The Plant Cell* 2002, 14(4):817–831.

38. Li Y, Zhu B, Xu W, Zhu H, Chen A, Xie Y, Shao Y, Luo Y: LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. *Plant cell reports* 2007, 26(11):1999–2008.

39. Li X, Xu Y, Shen S, Yin X, Klee H, Zhang B, Chen K: Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. *Journal of experimental botany* 2017, 68(17):4929–4938.

40. Han Y-C, Kuang J-F, Chen J-Y, Liu X-C, Xiao Y-Y, Fu C-C, Wang J-N, Wu K-Q, Lu W-J: Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening. *Plant Physiology* 2016, 171(2):1070–1084.
41. Chen T, Yang Q, Zhang X, Ding W, Gruber M: An alfalfa (Medicago sativa L.) ethylene response factor gene, MsERF11, enhances salt tolerance in transgenic Arabidopsis. Plant cell reports 2012, 31(9):1737–1746.

42. Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K: Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant molecular biology 2005, 58(4):585–596.

43. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible W-R, Udvardi MK, Kazan K: Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant physiology 2005, 139(2):949–959.

44. Zhang Z, Wang J, Zhang R, Huang R: The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. The Plant Journal 2012, 71(2):273–287.

45. Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang X-C, Huang R: Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant molecular biology 2004, 55(6):825–834.

46. Berrocal-Lobo M, Molina A, Solano R: Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal 2002, 29(1):23–32.

47. Pandey GK, Grant JJ, Cheong YH, Kim BG, Li L, Luan S: ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiology 2005, 139(3):1185–1193.

48. Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni JJTPJ: Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. The Plant Journal 2012, 70(2):191–204.

49. Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Regad F, Latche A, Pech JC, Bouzayen M: Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiology 2006, 47(9):1195–1205.

50. Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Zhang H, Lu X, Huang D, Huang R: The ethylene-, jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 2004, 220(2):262–270.

51. Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R: Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant
52. Lee J-H, Hong J-P, Oh S-K, Lee S, Choi D, Kim W: *The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants.* Plant molecular biology 2004, 55(1):61–81.

53. Yi SY, Kim J-H, Joung Y-H, Lee S, Kim W-T, Yu SH, Choi D: *The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis.* Plant Physiology 2004, 136(1):2862–2874.

54. Licausi F, Van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P: *HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana.* The Plant Journal 2010, 62(2):302–315.

55. Zhao Y, Wei T, Yin KQ, Chen Z, Gu H, Qu LJ, Qin G: *Arabidopsis RAP2. 2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses.* New Phytologist 2012, 195(2):450–460.

56. Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P: *Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar.* Genes Development 2000, 14(16):2085–2096.

57. Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S: *The Arabidopsis SUCROSE UNCOPLED–6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses.* The Plant Journal 2000, 23(5):577–585.

58. Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K: *The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis.* Current Biology 2011, 21(6):508–514.

59. Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY: *Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa).* The Plant Journal 2005, 42(5):689–707.

60. Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D: *Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness.* Planta 2011, 233(5):971–983.

61. Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K: *dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor.* The Plant Journal 2004, 37(5):720–729.
62. Wilson K, Long D, Swinburne J, Coupland G: A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. The Plant Cell 1996, 8(4):659–671.

63. Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R: Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. Journal of experimental botany 2009, 61(1):261–273.

64. Wang X, Zeng W, Ding Y, Wang Y, Niu L, Yao J-L, Pan L, Lu Z, Cui G, Li G: Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening. Plant Science 2019, 283:116–126.

65. Hollender CA, Kang C, Darwish O, Geretz A, Matthews BF, Slovin J, Alkharouf N, Liu Z: Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant physiology 2014, 165(3):1062–1075.

66. Hollender CA, Geretz AC, Slovin JP, Liu Z: Flower and early fruit development in a diploid strawberry, Fragaria vesca. Planta 2012, 235(6):1123–1139.

67. Toljamo A, Blande D, Kärenlampi S, Kokko H: Reprogramming of strawberry (Fragaria vesca) root transcriptome in response to Phytophthora cactorum. PLoS One 2016, 11(8):e0161078.

68. Shu L-J, Liao J-Y, Lin N-C, Chung C-L: Identification of a strawberry NPR-like gene involved in negative regulation of the salicylic acid-mediated defense pathway. PLoS One 2018, 13(10):e0205790.

69. Ren R, Wang H, Guo C, Zhang N, Zeng L, Chen Y, Ma H, Qi J: Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Molecular plant 2018, 11(3):414–428.

70. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K: DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochemical and biophysical research communications 2002, 290(3):998–1009.

71. Zhang C, Shangguan L, Ma R, Sun X, Tao R, Guo L, Korir N, Yu M: Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica). Genet Mol Res 2012, 11(4):4789–4809.

72. Licausi F, Giorgi FM, Zenoni S, Osti F, Pezzotti M, Perata P: Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC genomics 2010, 11(1):719.

73. Davis JC, Petrov DA: Preferential duplication of conserved proteins in eukaryotic genomes. PLoS biology 2004, 2(3):e55.
74. Pegueroles C, Laurie S, Albà MM: *Accelerated evolution after gene duplication: a time-dependent process affecting just one copy.* Molecular biology and evolution 2013, 30(8):1830–1842.

75. Sémon M, Wolfe KH: *Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis.* Proceedings of the National Academy of Sciences 2008, 105(24):8333–8338.

76. Force A, Lynch M, Pickett FB, Amores A, Yan Y-I, Postlethwait J: *Preservation of duplicate genes by complementary, degenerative mutations.* Genetics 1999, 151(4):1531–1545.

77. Huot B, Yao J, Montgomery BL, He SY: *Growth–defense tradeoffs in plants: a balancing act to optimize fitness.* Molecular plant 2014, 7(8):1267–1287.

78. Zhang Y, Yin X, Xiao Y, Zhang Z, Li S, Liu X, Zhang B, Yang X, Grierson D, Jiang G: *An ETHYLENE RESPONSE FACTOR-MYB transcription complex regulates furaneol biosynthesis by activating QUINONE OXIDOREDUCTASE expression in strawberry.* Plant physiology 2018, 178(1):189–201.

79. Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme-Takagi M: *WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis.* The Plant Cell 2017, 29(1):54–69.

80. Iwase A, Mitsuda N, Ikeuchi M, Ohnuma M, Koizuka C, Kawamoto K, Imamura J, Ezura H, Sugimoto K: *Arabidopsis WIND1 induces callus formation in rapeseed, tomato, and tobacco.* Plant signaling & behavior 2013, 8(12):e27432.

81. Wollmann H, Mica E, Todesco M, Long JA, Weigel D: *On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development.* Development 2010, 137(21):3633–3642.

82. Liu Z, Meyerowitz EM: *LEUNIG regulates AGAMOUS expression in Arabidopsis flowers.* Development 1995, 121(4):975–991.

83. Jack T: *Molecular and genetic mechanisms of floral control.* The Plant Cell 2004, 16(suppl 1):S1-S17.

84. Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H: *A short history of MADS-box genes in plants.* Plant molecular biology 2000, 42(1):115–149.

85. Han Y, Tang A, Wan H, Zhang T, Cheng T, Wang J, Yang W, Pan H, Zhang Q: *An APETALA2 Homolog, RcAP2, regulates the number of rose petals derived from stamens and response to temperature fluctuations.* Frontiers in plant science 2018, 9:481.

86. Li Z, Tian Y, Xu J, Fu X, Gao J, Wang B, Han H, Wang L, Peng R, Yao Q: *A tomato ERF transcription factor, SLERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity*
against Pseudomonas syringae pv. tomato DC3000. Plant Physiology and Biochemistry 2018, 132:683–695.

87. Tian Z, He Q, Wang H, Liu Y, Zhang Y, Shao F, Xie C: The potato ERF transcription factor StERF3 negatively regulates resistance to Phytophthora infestans and salt tolerance in potato. Plant and Cell Physiology 2015, 56(5):992–1005.

88. Qi X-n, Xiao Y-y, Fan Z-q, Chen J-y, Lu W-j, Kuang J-f: A banana fruit transcriptional repressor MaERF10 interacts with MaJAZ3 to strengthen the repression of JA biosynthetic genes involved in MeJA-mediated cold tolerance. Postharvest Biology and Technology 2016, 120:222–231.

89. Klemme S, De Smet Y, Cammue B, De Block M: Selection of Salicylic Acid Tolerant Epilines in Brassica napus. Agronomy 2019, 9(2):92.

90. Dong L, Cheng Y, Wu J, Cheng Q, Li W, Fan S, Jiang L, Xu Z, Kong F, Zhang D: Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. Journal of experimental botany 2015, 66(9):2635–2647.

91. Li Y, Zhang H, Zhang Q, Liu Q, Zhai H, Zhao N, He S: An AP2/ERF gene, IbRAP2–12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant science 2019, 281:19–30.

92. Long L, Yang W-W, Liao P, Guo Y-W, Kumar A, Gao W: Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. Plant science 2019, 281:72–81.

93. Zhao S-P, Xu Z-S, Zheng W-J, Zhao W, Wang Y-X, Yu T-F, Chen M, Zhou Y-B, Min D-H, Ma Y-Z: Genome-wide analysis of the RAV family in soybean and functional identification of GmRAV–03 involvement in salt and drought stresses and exogenous ABA treatment. Frontiers in Plant Science 2017, 8:905.

94. Duan Y-B, Li J, Qin R-Y, Xu R-F, Li H, Yang Y-C, Ma H, Li L, Wei P-C, Yang J-B: Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant molecular biology 2016, 90(1–2):49–62.

95. Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK: Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant molecular biology 2006, 61(6):897.

Tables
Table I AP2/ERF genes whose biological function has been reported

Family	Gene	Involve biology progress	Species	References*
AP2 family	RAP2.2	hypoxia stress	Arabidopsis	1
	CitAP2.10	valencene synthesis	Orange	2
ERF family group I	A1ERF6	drought stress	Arabidopsis	3
	SIERF5	drought and salt stress	Tomato	4
	LeERF4	fruit ripening	Tomato	5, 6
	A1ERF5	Pathogen resistance	Arabidopsis	7
ERF family group II	SIERF36	Photosynthesis and growth regulation	Tomato	8
	pti6	Hormone and stress response	Tomato	9
	PpERF3	ABA biosynthesis	Peach	10
	A1ERF9	Fruit ripening	Kiwifruit	11
	A1ERF7	Abscisic acid response	Arabidopsis	12
	NIERF5	Disease resistance	Arabidopsis	13
ERF family group III	MdERF2	ethylene synthesis	Apple	14
	PpEBF1	Bud Break	Pear	15
	pt4	Disease resistance	Tomato	16
	LeERF1	Fruit ripening	Tomato	17
	CitERF71	Fruit ripening	Sweet Orange	18
	MaERF11	Fruit ripening	Banana	19
	MsERF11	salt tolerance	Allalfa	20
ERF family group IV	A1ERF4	Ethylene, iasmonic acid, and abscisic acid response	Arabidopsis	21, 22
	A1ERF98	ascorbic acid synthesis	Arabidopsis	23
	TSRF1	Pathogen resistance	Tomato	24
	pti5	Disease resistance	Tomato	16
	A1ERF1	Disease resistance	Arabidopsis	25
	ABR1	Abscisic acid response	Arabidopsis	26
ERF family group VI	SIERF6	carotenoid and ethylene synthesis	Tomato	27
	LeERF2	Ethylene response and seed germination	Tomato	28
	JERF1	Salt tolerance	Tomato	29
	JERF3	Salt tolerance	Tomato	30
	CaERF1P1	Salt tolerance and disease resistance	Peper	31
	CaPF1	Freezing tolerance, disease resistance	Peper	32
	HRE1	anaerobic responses	Arabidopsis	33
	HRE2	anaerobic responses	Arabidopsis	33
	A1ERF2	Ethylene response and pathogen resistance	Arabidopsis	34
ERF family group VII	ABR4	Abscisic acid response, sagar signaling	Arabidopsis	35, 36
ERF family group VIII	WIND1	cell dedifferentiation	Arabidopsis	37
	WXP1	Wax accumulation	Allalfa	38
ERF family group IX	MdDREB1	ethylene synthesis	Apple	39
	PpCBF1	Bud Break	Peach	40
	DDF1	Salt tolerance and GA biosynthesis	Arabidopsis	41
	TINY	Growth regulation	Arabidopsis	42
	CBF2	delays leaf senescence and extends plant longevity	Arabidopsis	43
	PpERF2	ABA biosynthesis and cell wall	Peach	44

*1[22]; 2[23]; 3[24]; 4[25]; 5[26]; 6[27]; 7[28]; 8[29]; 9[30]; 10[31]; 11[32]; 12[33]; 13[34]; 14[35]; 15[36]; 16[37]; 17[38]; 18[39]; 19[40]; 20[41]; 21[42]; 22[43]; 23[44]; 24[45]; 25[46]; 26[47]; 27[48]; 28[49]; 29[50]; 30[51]; 31[52]; 32[53]; 33[54]; 34[55]; 35[56]; 36[57]; 37[58]; 38[59]; 39[55]; 40[60]; 41[61]; 42[62]; 43[63]; 44[64].

Figures
Figure 1

Phylogenetic tree representing relationships within the AP2/ERF family of Fragaria vesca and Arabidopsis thaliana. The black labels and red labels represent the AP2/ERF family from Fragaria vesca and Arabidopsis thaliana, respectively.
Figure 2

The locations of the AP2/ERF family genes on the strawberry chromosomes. The blue, orange, pink and purple colors represent ERF, RAV, AP2 and soloist genes, respectively. Each little green box indicates a duplication event.
Figure 3

Phylogenetic relationships, gene structure and architecture of conserved protein motifs in AP2/ERF genes of strawberry. a The phylogenetic tree was constructed based on the sequence of the FvAP2/ERF proteins by MEGA X software. Details of clusters are shown in different colors. b Gene structure of FvAP2/ERF genes. Green boxes indicate CDS; yellow boxes indicate the B3 domain; pink boxes indicate the AP2 domain; blue boxes indicate UTR. Black lines indicate introns, and the number indicates the phases of
corresponding introns. The motif composition of FvAP2/ERF proteins. The twenty-five motifs are displayed in different colored boxes. The sequence information for motifs is provided in Additional file 2.

Figure 4

Schematic representations of the chromosomal distribution and interchromosomal relationship of strawberry AP2/ERF genes. Gray lines indicate all synteny blocks in the strawberry genome, and the red lines indicate duplicated AP2/ERF genes pairs.
Figure 5

Synteny analysis of the AP2/ERF gene family between strawberry and five representative plant species. Gray lines in the background indicate the collinear blocks within the strawberry and other plant genomes, while the blue lines highlight the syntenic ERF gene pairs, the orange lines highlight the syntenic RAV gene pairs, the pink lines highlight the syntenic AP2 gene pairs, and the purple lines highlight the syntenic soloist gene pairs.
Figure 6

Cis-acting elements on promoters of all identified FvAP2/ERF genes.
Figure 7

Expression pattern of identified FvAP2/ERF in root, leaf and flower (microspore, pollen, perianth, receptacle, carpel and anther).
Figure 8

Expression pattern of identified FvAP2/ERF in early-stage fruit development (achene: embryo, ovule, seeding, ghost and wall; receptacle: cortex and pith.) and fruit development and ripening (green stage, white stage, turning stage and red stage).
Figure 9

Expression profiles of AP2/ERF genes in response to various abiotic and biotic stress treatments.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
• Additionalfile6.docx
• Additionalfile4.docx
• Additionalfile5.docx
• Additionalfile7.docx
• Additionalfile2.pdf
• Additionalfile3.docx
• Additionalfile1.xlsx