Ultrasound-promoted synthesis of 2-organoselanyl-naphthalenes using Oxone® in aqueous medium as an oxidizing agent

Gelson Perin¹, Daniela Rodrigues Araujo¹, Patrick Carvalho Nobre¹, Eder João Lenardao¹, Raquel Guimarães Jacob¹, Marcio Santos Silva² and Juliano Alex Roehrs³

¹ Laboratório de Síntese Orgânica Limpa—LASOL, Centro de Ciências Químicas, Farmaceuticas e de Alimentos—CCQFA, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
² Centro de Ciências Naturais e Humanas—CCNH, Universidade Federal do ABC, Santo André, São Paulo, Brazil
³ Instituto Federal de Educação Ciência e Tecnologia Sul-rio-grandense—IFSul, Pelotas, Rio Grande do Sul, Brazil

ABSTRACT

A green methodology to synthesize 2-organoselanyl-naphthalenes based on the reaction of alkynols with diaryl diselenides is described. The electrophilic species of selenium were generated in situ, by the oxidative cleavage of the Se–Se bond of diaryl diselenides by Oxone® using water as the solvent. The reactions proceeded efficiently under ultrasonic irradiation as an alternative energy source, using a range of alkynols and diorganyl diselenides as starting materials. Through this methodology, the corresponding 2-organoselanyl-naphthalenes were obtained in moderate to good yields (56–94%) and in short reaction times (0.25–2.3 h).

INTRODUCTION

Compounds containing chalcogen atoms (S, Se, Te) are versatile synthetic intermediates for the synthesis of complex molecules (Mukherjee et al., 2010; Beletskaya & Ananikov, 2011; Godoi, Schumacher & Zeni, 2011). Furthermore, the interest in organochalcogen compounds is connected to their well reported pharmacological activities (Santi, 2014), including antidepressant-like (Brod et al., 2017), antiviral (Sartori et al., 2016), antifungal (Venturini et al., 2016), anxiolytic (Reis et al., 2017), anticholinesterasic (Peglow et al., 2017), anti-inflammatory (Pinz et al., 2017), and antioxidant (Nobre et al., 2017).

The plethora of methods to incorporate organoselenium groups in organic substrates includes the use of nucleophilic (Iwaoka, 2011), radical (Nomoto et al., 2013), and electrophilic species of selenium (Santi & Tidei, 2013; Sancineto et al., 2016). The reaction of diorganyl diselenides with a halogen source is the most used method to access electrophilic selenium species (Raucher, 1977; Azeredo et al., 2014; Shi, Yu & Yan, 2015; Rafique et al., 2016; Silva et al., 2017). However, the obtained selanyl halides are unstable and difficult to prepare (Santi, 2014). Due to the disadvantages of the use of...
halogenated selenium species, new alternatives have been described in the literature for
the generation of electrophilic selenium species, such as the use of inorganic salts such
as sodium (Kibriya et al., 2017), potassium (Santi & Tidei, 2014; Prasad et al., 2013),
and ammonium (Tiecco et al., 1989; Santi et al., 2008; Santoro et al., 2010) persulfate
through the in situ reaction with diorganyl diselenides. Naphthalenes and their derivatives
are known for their countless biological properties reported in the literature, like
anticancer (Norton et al., 2008), antifungal (Iverson & Uetrecht, 2001), and antiviral
activities (Yeo et al., 2005). In addition, these compounds demonstrated a wide
spectrum of applications in materials (Lee, Noll & Smith, 2008) and polymer chemistry
(Reddy et al., 2007). The numerous methodologies to prepare this class of compounds
include chemical modifications in functionalized naphthalenes (Koz, Demic & Icli, 2016;
Aksakal et al., 2017), cyclization of alkynes and aldehydes using iron (Zhu et al., 2013)
or boron (Xiang et al., 2013) catalysis, reaction of internal, and terminal alkynes with
enamine and hypervalent iodine (Gao, Liu & Wei, 2013), cascade reaction of aldehydes
and ketones catalyzed by trifluoromethanesulfonic acid (Manojveer & Balamurugan,
2015) and Claisen rearrangement using vanillin derivatives (Chan et al., 2017).

The synthesis of selenium-containing naphthalene derivatives, however, is scarcely
described. Five main synthetic routes have been developed to construct selanyl
naphthalenes: (i) annulation of aryl enynes (Yang et al., 2014), (ii) metal-catalyzed
direct selenylation of naphthylboronic acids (Mohan et al., 2015), (iii) cyclization
reactions of 4-arylbut-3-yn-2-ols with electrophilic selenium species, like PhSeBr
(Zhang, Sarkar & Larock, 2006) or PhSePh/FeCl₃ system (Recchi, Back & Zeni, 2017),
(iv) [4+2] cycloaddition reaction of chalcogenoalkynes with ω-alkynylbenzaldehydes
(Mantovani, Back & Zeni, 2012), and (v) oxidative C(sp³)-Se coupling in tetralones
(Prasad, Sattar & Kumar, 2017). Despite these are efficient methodologies, chlorinated
or high boiling point solvents, harsh base, transition metal catalysts, and/or
halogenating reagents are involved in the synthesis.

On the other hand, Oxone® is an inexpensive, stable, water-soluble, and safe
alternative oxidizing agent that has been used in numerous oxidation reactions
(Hussain, Green & Ahmed, 2013). This green oxidant is a mixture of three inorganic
salts (2KHSO₅·KHSO₄·K₂SO₄), with potassium peroxymonosulfate (KHSO₅) being the
active species. The synthesis of important heterocyclic compounds was accomplished
using Oxone®, such as chromene and carbazoles (Reddy, Kannaboina & Das, 2017),
benzimidazoles (Daswani et al., 2016), benzoazoles (Hati et al., 2016), pyrazole
(Kashiwa et al., 2016), and pyridine derivatives (Swamy et al., 2016). Furthermore, it was
used in intramolecular cycloaddition (More & Ramana, 2016) and cyclization reactions
(Sharma et al., 2016), in the synthesis of α-bromoketones (Rammurthy et al., 2017), in
halogenation reactions of quinolines (Wang et al., 2016), oxidation of alcohols to
carbonyl compounds (Mishra & Moorthy, 2017) and in the synthesis of iodohydrins
and iodoarenes (Soldatova et al., 2016). However, to the best of our knowledge, no
reactions using Oxone® to prepare electrophilic selenium species as substrate in
cycloaddition reactions have been described so far.
In the last years, the use of ultrasonic waves as an alternative energy source in organic synthesis has exponentially increased. The so-called sonochemistry has the ability to accelerate, or even totally modify the reaction course, through the formation of new reactive intermediates that normally are not involved when conventional heating is used (Nowak, 2010; Mojtahedi & Abaee, 2012; Schiel et al., 2015). Recently, we have described new ultrasonic-promoted reactions, including the synthesis of 1,2,3-triazoyl carboxamides (Xavier et al., 2017), 3-selanylindoles (Vieira et al., 2015) and chrysin derivatives (Fonseca et al., 2017). Considering the importance of organoselenium compounds and naphthalene derivatives, and due our interest in green synthetic protocols associated to organochalcogen chemistry, we report herein a new ultrasound-promoted method to prepare 2-organoselanyl-naphthalenes 3a–i. Our strategy involves the carbocyclization of alkynols 2a–d using electrophilic selenium species, which were generated in situ by the reaction of diorganyl diselenides 1a–f with Oxone® (Fig. 1).

MATERIAL AND METHODS

General remarks

Pre-coated TLC sheets (ALUGRAM® Xtra SIL G/UV254; Macherey-Nagel GmbH & Co-KG, Düren, Germany) using UV light and acidic ethanolic vanillin solution (5% in 10% H₂SO₄) were used to follow the reaction progress. Aldrich technical grade silica gel (pore size 60 Å, 230–400 mesh) was used for flash chromatography. Carbon-13 nuclear magnetic resonance (¹³C NMR) and hydrogen nuclear magnetic resonance spectra (¹H NMR) were obtained on Bruker Ascend 400 spectrometers at 100 MHz at 400 MHz, respectively. Spectra were recorded in CDCl₃ solutions. Chemical shifts are reported in ppm, referenced to tetramethylsilane (TMS) as the internal reference, for ¹H NMR and the solvent peak of CDCl₃ for ¹³C NMR. Coupling constant (J) are reported in hertz. Abbreviations to denote the multiplicity of a particular signal are brs (broad signal), s (singlet), d (doublet), dd (doublet of doublet), t (triplet), and m (multiplet). A Shimadzu GC-MS-QP2010 was used to obtain the low-resolution mass spectra (MS), while a LTQ Orbitrap Discovery mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) was employed to obtain the high-resolution mass spectra (HRMS), the experiments were performed via direct infusion of sample (flow: 10 µL/min) in the positive-ion mode using electrospray ionization. A (Cole Parmer CPX 130; Cole-Parmer Instrument Company, Chicago, IL, USA) operating with an amplitude of 60%, maxim power of 130 W at 20 KHz, was used to generate the ultrasonic waves. The temperature of the reactions under US was monitored with a Incoterm digital infrared thermometer (Infraterm, São Paulo, Brazil). Melting point (m.p.) values were
measured in a Marte PFD III instrument with a 0.1 °C precision. Oxone® was purchased from (Sigma-Aldrich, St. Louis, MO, USA).

General procedure for the synthesis of 2-organoselanyl-naphthalenes 3

To a 10 mL round bottomed glass tube, the appropriate diorganyl diselenide 1a–f (0.125 mmol), alkynol 2a–d (0.25 mmol), water (2.0 mL), and Oxone® (0.077 g; 0.25 mmol) were added. The US probe was placed in the reaction vial, which was sonicated (20 KHz, 60% of sonic amplitude) for the time indicated in the figure; the final temperature was 65 °C. Isolated yields after column chromatography. Reaction performed under conventional heating (oil bath at 60 °C) under magnetic stirring. It was used 0.30 mmol of 2a. KHSO₄ (0.25 mmol) was added to the reaction mixture. NR, no reaction.

Figure 2 Optimization of reaction conditions to prepared compound 3a. a A mixture of 1a (0.125 mmol), 2a (0.25 mmol), Oxone®, and the solvent (2.0 mL) in a glass tube was sonicated for the time indicated in the figure; the final temperature was 65 °C. b Isolated yields after column chromatography. c Reaction performed under conventional heating (oil bath at 60 °C) under magnetic stirring. d It was used 0.30 mmol of 2a. e KHSO₄ (0.25 mmol) was added to the reaction mixture. NR, no reaction.

Entry	Oxone® (mmol)	Time	Amplitude	Solvent	Yield (%)b
1	0.25	72 h	-	ethanol	78c
2	0.25	50 min	60%	ethanol	84
3	0.25	40 min	60%	PEG-400	76
4	0.25	2 h	60%	glycerol	73
5	0.25	30 min	60%	H₂O	86
6	0.25	2 h	60%	DMSO	traces
7	0.25	2 h	60%	acetonitrile	traces
8	0.25	2 h	60%	DMF	62
9	0.25	3 h	40%	H₂O	63
10	0.25	30 min	60%	H₂O	85d
11	0.125	2 h	60%	H₂O	42
12	-	2 h	60%	H₂O	NR
13e	0.25	10 min	60%	H₂O	92
(except for 3f, where a mixture EtOAc/hexane (40/60) was used). All the compounds were properly characterized by MS, 1H NMR, 13C NMR, and HRMS (for the new ones).

1-Phenyl-2-phenylselanyl-naphthalene (3a) (Recchi, Back & Zeni, 2017): yield: 0.077 g (86%); yellowish solid; m.p. = 100–101 °C. 1H NMR (CDCl$_3$, 400 MHz) δ = 7.80–7.78

Entry	Diselenide 1	Alkynol 2	Product 3	Time (h)	Yield (%)b
1	1a	2a	3a	0.5	86
2	1b	2a	3b	1.3	63
3	1c	2a	3c	1.4	71
4	1d	2a	3d	0.5	78
5	1e	2a	3e	0.25	84
6	1f	2a	3f	0.5	56
7	1a	2b	3g	1.7	63
8	1a	2c	3h	2.3	72
9	1a	2d	3i	1.0	94

Figure 3 Synthesis of 2-organochalcogenyl-naphtalenes 3a–i. aThe mixture of reagents 1 (0.125 mmol), 2 (0.25 mmol), Oxone® (0.25 mmol) and 2.0 mL of water was added to the glass tube and sonicated for the time indicated in the figure. bYields of isolated products after column chromatography.
(m, 1H); 7.64 (d, J = 8.8 Hz, 1H); 7.54-7.23 (m, 14H). 13C NMR (100 MHz, CDCl$_3$) δ = 139.7, 139.6, 135.0, 133.1, 132.2, 131.0, 130.5, 130.2, 129.4, 128.5, 128.1, 127.9, 127.86, 127.8, 126.4, 126.1, 125.5. MS: m/z (rel. int., %) 360 (92.4), 280 (66.2), 202 (100.0), 126 (2.8), 77 (7.6).

2-(4-Chlorophenylselanyl)-1-phenyl-naphthalene (3b) (Recchi, Back & Zeni, 2017): yield: 0.062 g (63%); yellowish solid; m.p. = 117–118 °C. 1H NMR (CDCl$_3$, 400 MHz) δ = 7.81 (d, J = 8.1 Hz, 1H); 7.68 (d, J = 8.7 Hz, 1H); 7.54-7.24 (m, 13H). 13C NMR (CDCl$_3$, 100 MHz) δ = 140.2, 139.5, 136.0, 134.2, 133.1, 132.3, 130.3, 130.1, 129.6, 128.9, 128.5, 128.3, 128.2, 127.9, 126.6, 126.2, 125.7. MS: m/z (rel. int., %) 394 (68.9), 314 (45.1), 202 (100.0), 126 (3.5), 77 (3.5).

2-(4-Fluorophenylselanyl)-1-phenyl-naphthalene (3c) (Recchi, Back & Zeni, 2017): yield: 0.067 g (71%); yellowish solid; m.p. = 123–124 °C. 1H NMR (CDCl$_3$, 400 MHz) δ = 7.80-7.78 (m, 1H); 7.65 (d, J = 8.7 Hz, 1H); 7.55-7.48 (m, 5H); 7.44-7.40 (m, 2H); 7.36-7.34 (m, 3H); 7.18 (d, J = 8.2 Hz, 1H); 7.00 (t, J = 8.8 Hz, 2H). 13C NMR (CDCl$_3$, 100 MHz) δ = 162.9 (d, J = 246.6 Hz), 139.4, 139.2, 137.5 (d, J = 7.9 Hz), 133.0, 132.0, 131.1, 130.1, 128.5, 128.2, 127.9, 127.87, 127.4, 126.5, 126.0, 125.5, 124.7 (d, J = 3.5 Hz), 116.7 (d, J = 21.2 Hz). MS: m/z (rel. int., %) 378 (74.2), 298 (65.2), 202 (100.0), 126 (2.3), 77 (1.9).

2-Mesityl selanyl-1-phenyl-naphthalene (3d) (Recchi, Back & Zeni, 2017): yield: 0.078 g (78%); yellowish solid; m.p. = 111–112 °C. 1H NMR (CDCl$_3$, 400 MHz) δ = 7.74 (d, J = 8.1 Hz, 1H); 7.58-7.31 (m, 9H); 6.99 (s, 2H); 6.82 (d, J = 8.7 Hz, 1H); 2.37 (s, 6H); 2.31 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ = 143.8, 139.7, 139.0, 137.9, 133.2, 132.0, 131.7, 130.0, 128.9, 128.6, 128.0, 127.9, 127.8, 127.7, 127.6, 127.0, 126.4, 126.2, 126.0, 120.7. MS: m/z (rel. int., %) 361 (56.7), 284 (100.0), 278 (13.8), 202 (74.8), 79 (16.4). HRMS calcd. for C$_{21}$H$_{15}$NSe: [M+H]$^+$ 362.0448; found: 362.0443.

1-Phenyl-2-(2-pyridylselanyl)-naphthalene (3e): yield: 0.076 g (84%); yellowish oil; 1H NMR (CDCl$_3$, 400 MHz) δ = 8.42-8.40 (m, 1H); 7.87-7.85 (m, 1H); 7.79 (d, J = 8.6 Hz, 1H); 7.73 (d, J = 8.6 Hz, 1H); 7.50-7.35 (m, 7H); 7.29-7.27 (m, 2H); 7.10 (d, J = 8.0 Hz, 1H); 7.03-7.00 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ = 158.1, 150.0, 143.5, 139.9, 136.5, 133.3, 133.1, 131.9, 130.0, 128.5, 128.1, 127.9, 127.7, 127.6, 127.0, 126.4, 126.2, 126.0, 120.7. MS: m/z (rel. int., %) 378 (55.9), 280 (46.8), 202 (100.0). HRMS calcd. for C$_{21}$H$_{15}$NSe: [M]$^+$ 358.0472; found: 358.0467.

2-(4-Chlorophenylselanyl)-1-phenyl-naphthalene (3f): yield: 0.050 g (56%); yellowish oil; 1H NMR (CDCl$_3$, 400 MHz) δ = 7.83 (d, J = 8.4 Hz, 1H); 7.79 (d, J = 8.6 Hz, 1H); 7.66 (d, J = 8.6 Hz, 1H); 7.54-7.28 (m, 8H); 3.73-3.63 (m, 3H); 3.48 (dd, J = 11.1 and 5.9 Hz, 1H); 3.01 (dd, J = 12.8 and 4.7 Hz, 1H); 2.89 (dd, J = 12.8 and 8.0 Hz, 1H); 2.59 (br, 1H). 13C NMR (100 MHz, CDCl$_3$) δ = 141.6, 139.8, 133.0, 132.3, 130.3, 130.0, 128.5, 128.4, 128.37, 128.2, 127.9, 127.2, 126.6, 126.3, 125.8, 70.2, 65.5, 31.5. MS: m/z (rel. int., %) 358 (55.9), 280 (46.8), 202 (100.0). HRMS calcd. for C$_{19}$H$_{18}$O$_2$Se: [M]$^+$ 358.0472; found: 358.0467.

1-Phenyl-2-(propanyl-2,3-diolselanyl)-naphthalene (3g) (Recchi, Back & Zeni, 2017): yield: 0.059 g (63%); yellowish oil; 1H NMR (CDCl$_3$, 400 MHz) δ = 7.78 (d, J = 8.0 Hz, 1H); 7.63 (d, J = 8.8 Hz, 1H); 7.53-7.51 (m, 2H); 7.46-7.39 (m, 2H); 7.36-7.23 (m, 9H); 2.47 (s, 3H). 13C NMR (CDCl$_3$, 100 MHz) δ = 139.5, 137.5, 136.5, 135.1, 133.2, 132.1, 131.1, 130.4,
RESULTS AND DISCUSSION

The selenocyclization of alkynols with electrophilic selenium species is an efficient strategy to prepare organoselanyl-naphthalenes (Recchi, Back & Zeni, 2017). In our preliminary studies on the use of Oxone® as an oxidant to cleavage of Se–Se bond, we have observed that its reaction with diselenides generates highly reactive species in situ (Perin et al., 2018). Thus, by combining the selenocyclization strategy with the environmental and economic advantages of using Oxone® as an oxidizing agent, a study was carried out to evaluate the possibility of using it in selenocyclization reactions to prepare organoselanyl-naphthalenes. In our preliminary experiments, we choose diphenyl diselenide 1a and 1,4-diphenylbut-3-in-2-ol 2a as model substrates to establish the best conditions for the cyclization reaction promoted by Oxone® to synthesize the respective 2-organoselanyl-naphthalene 3a.

Initially, the reaction was performed using 0.25 mmol of alkynol 2a, 0.125 mmol of diphenyl diselenide 1a and 0.25 mmol of Oxone®, using ethanol (2.0 mL) as the solvent at 60 °C under magnetic stirring. The desired product 3a was obtained in 78% yield after 72 h (Fig. 2, entry 1). To improve this result, some experiments were performed with the purpose of increasing the isolated yield and reducing the reaction time. The same reaction was then performed under ultrasonic irradiation (amplitude of 60%) and after 50 min, product 3a was obtained in 84% yield (Fig. 2, entry 2). Aiming to improve the yield of 3a, parameters as the nature of the solvent, quantities of the starting material 2a, amounts of Oxone®, and amplitude of the US were evaluated (Fig. 2, entries 3–12).

Regarding the influence of the solvent in the reaction, a range of solvents were tested and in reactions using polyethylene glycol-400 (PEG-400, Labsynth, Diadema, Brazil), glycerol, and DMF, product 3a was obtained in good yields (Fig. 2, entries 3, 4, and 8). To our satisfaction, a very good yield of 86% was obtained after sonication of the reaction mixture.
for 30 min in water (Fig. 2, entry 5). However, using dimethyl sulfoxide (DMSO) or acetonitrile as the solvent, only trace amounts of 3a were observed (Fig. 2, entries 6 and 7).

After water was defined as the best solvent for the reaction, the amplitude used in the ultrasound apparatus was evaluated. When the reaction was performed at 40% of amplitude, the desired product 3a was obtained in only 63% yield (Fig. 2, entry 9). It was observed that at this lower amplitude, the homogenization of the mixture was incomplete, what could negatively affect the reaction yield.

When an excess of alkynol 2a was used, total consumption of diphenyl diselenide 1a occurred after 30 min of reaction (monitored by TLC), however the yield of 3a was maintained (Fig. 2, entry 10). By using a lower amount of Oxone® (0.125 mmol), there was no total consumption of the starting materials after 2 h of reaction, and the desired product 3a was obtained in only 42% yield (Fig. 2, entry 11). Finally, the reaction was carried out in the absence of Oxone® and after 2 h none of product was formed (Fig. 2, entry 12). In order to verify the influence of the KHSO₄ species present in the reaction medium, a test was performed using 0.25 mmol of Oxone® together with 0.25 mmol of KHSO₄ and, after only 10 min of reaction, the starting materials were totally consumed, and the desired product 3a was obtained in 92% isolated yield, showing the need of generation of this species in the reaction medium (Fig. 2, entry 13). Thus, the best condition was defined as the sonication of a mixture of 0.125 mmol of diphenyl diselenide 1a and 0.25 mmol of alkynol 2a in the presence of 0.25 mmol of Oxone® in water (2.0 mL) for 30 min (Fig. 2, entry 5).

Once the best reaction conditions were determined, the methodology was extended to different substrates, in order to evaluate its generality and robustness in the synthesis of different 2-organoselanyl-naphthalenes 3a–i (Fig. 3). Firstly, the effect of electron-donor (EDG) and electron-withdrawing groups (EWG) attached to the aromatic ring of diselenide 1a–d was evaluated (Fig. 3, entries 1–4). It was observed that both EDG and EWG negatively affect the reaction, affording lower yields of the respective products. When diselenide 1b, containing a chlorine atom at the para position was used, there was a significant decrease in yield when compared to diphenyl diselenide 1a, and the respective naphthalene 3b was obtained in 63% yield (Fig. 3, entry 2). Similarly, the electron-poor diselenide 1c, with a fluorine atom at the para position, afforded the respective naphthalene 3c in a moderate yield of 71% after 1.4 h (Fig. 3, entry 3).

The stericly hindered dimesityl diselenide 1d was also a suitable substrate for the reaction, affording the expected product 3d in 78% yield after 0.5 h of sonication (Fig. 3, entry 4). Heteroaromatic bis-pyridyl diselenide 1e was successfully used as substrate in the reaction with alkynol 2a, affording the respective 2-heteroarylselanyl-naphthalene 3e in 84% yield (Fig. 3, entry 5).

Interestingly, when diselenide derived from protected glycerol (solketal) 1f was used, deprotected naphthalene diol 3f was obtained in 56% yield after 0.5 h of reaction (Fig. 3, entry 6). This may be associated with the ketal deprotection ability of Oxone®, which has already been reported in the literature (Mohammadpoor-Baltork, Amini & Farshidipoor, 2000).
The possibility of performing these reactions with other alkynols 2b–d was also investigated. Alkynols derived from phenylacetylene 2b and 2c, containing EDG and EWG at the aromatic ring, efficiently reacted with diphenyl diselenide 1a/Oxone®/C210, affording the respective products 3g and 3h in 63 and 72% yields after 1.7 and 2.3 h, respectively (Fig. 3, entries 7 and 8). This result shows that the reaction is not sensitive to the electronic effects of the substituents on the aromatic ring of the alkynols 2b and 2c. A remarkable positive effect was observed when an alkyl group was connected to the Csp of the alkynol, as in 2d and an excellent 94% yield of the expected naphthalene 3i was obtained after 1.0 h (Fig. 3, entry 9).

Based on our results and those from the literature (Zhang, Sarkar & Larock, 2006; Recchi, Back & Zeni, 2017; Perin et al., 2018), a plausible mechanism for the carbocyclization of alkynol 1a with (C₆H₅Se)₂ 2a/Oxone® in aqueous medium is depicted in Fig. 4. The first step in the reaction is the oxidative cleavage of the Se–Se bond in diphenyl diselenide 2a by Oxone®, forming intermediates A and B (Perin et al., 2018). Once the electrophilic selenium species A is formed, it reacts with the carbon–carbon triple bond of the alkynol 1a to produce the seleniranium intermediate C. Following, an intramolecular 6-endo-dig cyclization occurs, giving intermediate D, which undergoes deprotonation to restoring the aromaticity of the system, forming the dihydronaphthalene E. Ultimately, water is eliminated to give the desired product 3a (Fig. 4).

CONCLUSION

A convenient, selective and eco-friendly methodology was developed for the synthesis of 2-organoselanyl-naphthalenes 3, using water as the solvent. The use of ultrasound as alternative energy source drastically reduces the reaction time, while increasing the reaction yield. This method involves the cyclization of properly
substituted alkynols in the presence of electrophilic selenium species. Oxone® was shown to be an efficient and mild oxidizing agent for the oxidative cleavage of the Se–Se bond of diselenides in situ.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by The Brazilian Council for Research and Technology (CNPq), CAPES and FAPERGS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Brazilian Council for Research and Technology (CNPq).
CAPES.
FAPERGS.

Competing Interests
Eder J Lenardao is an Academic Editor for PeerJ.

Author Contributions
• Gelson Perin conceived and designed the experiments, analyzed the data, contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
• Daniela Rodrigues Araujo performed the experiments, prepared figures and/or tables.
• Patrick Carvalho Nobre performed the experiments, prepared figures and/or tables.
• Eder João Lenardao conceived and designed the experiments, analyzed the data, contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
• Raquel Guimarães Jacob analyzed the data, contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper.
• Marcio Santos Silva performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper.
• Juliano Alex Roehrs performed the experiments, prepared figures and/or tables.

Data Availability
The following information was supplied regarding data availability:
The raw data are provided in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.4706#supplemental-information.
REFERENCES

Aksakal NE, Bayar M, Dumrul H, Atilla D, Chumakov Y, Yuksel F. 2017. Structural and optical properties of new naphthalene and perylene imide imidazoles. Polycyclic Aromatic Compounds 1–11 DOI 10.1080/10406638.2017.1327871 [Epub ahead of print 01 January 2017].

Azeredo JB, Godoi M, Martins GM, Silveira CC, Braga AL. 2014. A solvent- and metal-free synthesis of 3- Chacogenyl-indoles employing DMSO/I$_2$ as an eco-friendly catalytic oxidation system. Journal of Organic Chemistry 79(9):4125–4130 DOI 10.1021/jo5000779.

Beletskaya IP, Ananikov VP. 2011. Transition-metal-catalyzed C–S, C–Se, and C–Te bond formation via cross-coupling and atom-economic addition reactions. Chemical Reviews 111(3):1596–1636 DOI 10.1021/cr100347k.

Brod LMP, Fronza MG, Vargas JP, Lüdtke DS, Brüning CA, Savegnago L. 2017. Modulation of PKA, PKC, CAMKII, ERK 1/2 pathways is involved in the acute antidepressant-like effect of (Octylseleno)-xylofuranoside (OSX) in mice. Psychopharmacology 234(4):717–725 DOI 10.1007/s00213-016-4505-5.

Chan C-K, Chen Y-H, Tsai Y-L, Chang M-Y. 2017. Synthesis of substituted 1,6-diarylnaphthalenes via a tandem claisen rearrangement and ene reaction protocol. Journal Organic Chemistry 82(6):3317–3326 DOI 10.1021/acs.joc.7b00108.

Daswani U, Dubey N, Sharma P, Kumar A. 2016. A new NBS/ozone promoted one pot cascade synthesis of 2-aminobenzimidazoles/2-aminobenzoxazoles: a facile approach. New Journal of Chemistry 40(9):8093–8099 DOI 10.1039/C6NJ00478D.

Fonseca SF, Padilha NB, Thurow S, Roehrs JA, Savegnago L, Souza MN, Fronza MG, Collares T, Buss J, Seixas FK, Alves D, Lenardão EJ. 2017. Ultrasound-promoted copper-catalyzed synthesis of bis-arylselanyl chrysin derivatives with boosted antioxidant and anticancer activities. Ultrasonics Sonochemistry 39:827–836 DOI 10.1016/j.ultsonch.2017.06.007.

Gao P, Liu J, Wei Y. 2013. Hypervalent iodine(III)-mediated benzannulation of enamines with alkynes for the synthesis of polysubstituted naphthalene derivatives. Organic Letters 15(11):2872–2875 DOI 10.1021/ol401206g.

Godoi B, Schumacher RF, Zeni G. 2011. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chemical Reviews 111(4):2937–2980 DOI 10.1021/cr100214d.

Hati S, Dutta PK, Dutta S, Munshi P, Sen S. 2016. Accessing benzimidazoles via a ring distortion strategy: an ozonol mediated tandem reaction of 2-Aminobenzylamines. Organic Letters 18(13):3090–3093 DOI 10.1021/acs.orglett.6b01217.

Hussain H, Green IR, Ahmed I. 2013. Journey describing applications of ozon in synthetic chemistry. Chemical Reviews 113(5):3329–3371 DOI 10.1021/cr3004373.

Iverson SL, Uetrecht JP. 2001. Identification of a reactive metabolite of terbinafine: insights into terbinafine-induced hepatotoxicity. Chemical Research in Toxicology 14(2):175–181 DOI 10.1021/tr0002029.

Iwaoka M. 2011. Nucleophilic selenium. In: Wirth T, ed. Organoselenium Chemistry: Synthesis and Reactions. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 53–111.

Kashiwa M, Kuwata Y, Sonoda M, Tanimori S. 2016. Oxone-mediated facile access to substituted pyrazoles. Tetrahedron 72(2):304–311 DOI 10.1016/j.tet.2015.11.035.

Kibriya G, Samanta S, Singsard M, Jana S, Hajra A. 2017. Sodium persulfate mediated selenylation of arenofurans. European Journal of Organic Chemistry 2017(21):3055–3058 DOI 10.1002/ejoc.201700338.

Koz B, Demic S, Icli S. 2016. Synthesis and properties of alkyl chain substituted naphthalenetetracarboxylic monoanhydride monoimides and unsymmetrically
substituted naphthalene derivatives. *Asian Journal of Chemistry* 28(12):2755–2758 DOI 10.14233/ajchem.2016.20111.

Lee J-J, Noll BC, Smith BD. 2008. Fluorescent chemosensor for chloroalkanes. *Organic Letters* 10(9):1735–1738 DOI 10.1021/ol8003723.

Manojveer S, Balamurugan R. 2015. A cascade approach to naphthalene derivatives from o-Alkynylbenzaldehydes and Enolizable Ketones via in-situ-formed acetals. *European Journal of Organic Chemistry* 2015(19):4254–4260 DOI 10.1002/ejoc.201500497.

Mantovani AC, Back DF, Zeni G. 2012. Chalcogenoalkynes: precursors for the regioselective preparation of 2-Chalcogeno-1-Halonaphthalenes through [4+2] cycloaddition. *European Journal Organic Chemistry* 2012(24):4574–4579 DOI 10.1002/ejoc.201200482.

Mishra AK, Moorthy JN. 2017. Mechanochemical catalytic oxidations in the solid state with in situ-generated Modified IBX from 3,5-di-tert-Butyl-2-iodobenzoic acid (DTB-IA)/oxone. *Organic Chemical Frontiers* 4(3):343–349 DOI 10.1039/c6qo00588h.

Mohammadpoor-Baltork I, Amini MK, Farshidipoor S. 2000. Selective, convenient and efficient deprotection of trimethylsilyl and tetrahydropropyran ethers, ethylene acetalts and ketals with oxone under non-aqueous conditions. *Bulletin of the Chemical Society of Japan* 73(12):2775–2778 DOI 10.1246/bcsj.73.2775.

Mohan B, Yoon C, Jang S, Park KH. 2015. Copper nanoparticles catalyzed Se(Te)-Se(Te) bond activation: a straightforward route towards unsymmetrical organochalcogenides from boronic acids. *ChemCatChem* 7(3):405–412 DOI 10.1002/cctc.201402867.

Mohajedh MM, Abaee MS. 2012. Ultrasound applications in synthetic organic chemistry. In: Chen D, Sharma SK, Mudhoo A, eds. *Handbook on Applications of Ultrasound Sonochemistry for Sustainability*. New York: CRC Press, 281–322.

More AA, Ramana CV. 2016. o-Quinone methides via oxone-mediated benzofuran oxidative dearomatization and their intramolecular cycladdition with carbonyl groups: an expeditious construction of the central tetracyclic core of integrastratins, Epicoccolide A, and Epicocconigron A. *Organic Letters* 18(3):612–615 DOI 10.1021/acs.orglett.5b03707.

Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. 2010. Organoselenium chemistry: role of intramolecular interactions. *Chemical Reviews* 110(7):4357–4416 DOI 10.1021/cr900352j.

Nobre PC, Vargas HA, Jacoby CG, Schneider PH, Casaril AM, Savegnago L, Schumacher RF, Lenardão EJ, Ávila DS, Rodrigues Junior LBL, Perin G. 2017. Synthesis of enantiomerically pure glycerol derivatives containing an organochalcogen unit: in vitro and in vivo antioxidant activity. *Arabian Journal of Chemistry*. DOI 10.1016/j.arabjc.2017.08.007 [Epub ahead of print 24 August 2017].

Nomoto A, Higuchi Y, Kobiki Y, Ogawa A. 2013. Synthesis of selenium compounds by free radical addition based on visible-light-activated Se–Se bond cleavage. *Mini-Reviews in Medicinal Chemistry* 13(6):818–823 DOI 10.2174/138955751306060004.

Norton JT, Witschi MA, Luong L, Kawamura A, Ghosh S, Stack MS, Sim E, Avram MJ, Appella DH, Huang S. 2008. Synthesis and anticancer activities of 6-amino amonafide derivatives. *Anti-Cancer drugs* 19(1):23–36 DOI 10.1097/CAD.0b013e3282f06e17.

Nowak FM. 2010. *Sonochemistry: Theory, Reactions, Syntheses and Applications*. New York: Nova Science Publishers.

Peglow TJ, Schumacher RF, Cargnelutti R, Reis AS, Luchese C, Wilhelm EA, Perin G. 2017. Preparation of bis(2-Pyridyl) diselenide derivatives: synthesis of Selenazolo[5,4-b]pyridines and unsymmetrical diorganyl selenides, and evaluation of antioxidant and anticholinesterasic activities. *Tetrahedron Letters* 58(38):3734–3738 DOI 10.1016/j.tetlet.2017.08.030.
Perin G, Santoni P, Barcellos AM, Nobre PC, Jacob RG, Lenardão EJ, Santi C. 2018. Selenomethoxylation of alkenes promoted by Oxone®. *European Journal Organic Chemistry* 2018(10):1224–1239 DOI 10.1002/ejoc.201701775.

Pinz M, Reis AS, Leivas R, Voss GT, Vogt AG, Sacramento M, Roehrs JA, Alves D, Luchese C, Wilhelm EA. 2017. 7-Chloro-4-phenylsulfonyl quinoline, a new antinociceptive and anti-inflammatory molecule: structural improvement of a quinoline derivate with pharmacological activity. *Regulatory Toxicology and Pharmacology* 90:72–77 DOI 10.1016/j.yrtph.2017.08.014.

Prasad CD, Balkrishna SJ, Kumar A, Bhakuni BS, Shrimali K, Biswas S, Kumar S. 2013. Transition-metal-free synthesis of unsymmetrical diaryl chalcogenides from arenes and diaryl dichalcogenides. *Journal of Organic Chemistry* 78(4):1434–1443 DOI 10.1021/jo302480j.

Prasad CD, Sattar M, Kumar S. 2017. Transition-metal-free selective oxidative C(sp³)-S/Se coupling of oxindoles, tetralone, and arylacetamides: synthesis of unsymmetrical organochalcogenides. *Organic Letters* 19(4):774–777 DOI 10.1021/acs.orglett.6b03735.

Rafique J, Saba S, Rosário AR, Braga AL. 2016. Regioselective, solvent- and metal-free chalcogenation of Imidazo[1,2-a]pyridines by employing I₂/DMSO as the catalytic oxidation system. *Chemistry: A European Journal* 22(33):11854–11862 DOI 10.1002/chem.201600800.

Rammurthy B, Swamy P, Naresh M, Srujana K, Durgaiah C, Sai GK, Narender N. 2017. A new and versatile one-pot strategy to synthesize alpha-bromoketones from secondary alcohols using ammonium bromide and oxone. *New Journal of Chemistry* 41(10):3710–3714 DOI 10.1039/C7NJ00052A.

Raucher S. 1977. The regioselective synthesis of vinyl phenylselenides. *Journal Organic Chemistry* 42(17):2950–2951 DOI 10.1021/jo00437a045.

Recchi AMS, Back DF, Zeni G. 2017. Sequential carbon–carbon/carbon-selenium bond formation mediated by Iron(III) chloride and diorganyl diselenides: synthesis and reactivity of 2-Organoselenyl-naphthalenes. *Journal Organic Chemistry* 82(5):2713–2723 DOI 10.1021/acs.joc.7b00050.

Reddy RA, Baumeister U, Keith C, Tschierske C. 2007. Influence of the core structure on the development of polar order and superstructural chirality in liquid crystalline phases formed by silylated bent-core molecules: naphthalene derivatives. *Journal of Materials Chemistry* 17(1):62–75 DOI 10.1039/B614089K.

Reddy KR, Kannaboina P, Das P. 2017. Palladium-catalyzed chemoselective switch: synthesis of a new class of Indenochromenes and Pyrano[2,3-c]carbazoles. *Asian Journal Organic Chemistry* 6(5):534–543 DOI 10.1002/ajoc.201600530.

Reis AS, Pinz M, Duarte LFB, Roehrs JA, Alves D, Luchese C, Wilhelm EA. 2017. 4-Phenylselenyl-7-chloroquinoline, a novel multitarget compound with anxiolytic activity: contribution of the glutamatergic system. *Journal of Psychiatric Research* 84:191–199 DOI 10.1016/j.jpsychires.2016.10.007.

Sancineto L, Palomba M, Bagnoli L, Marini F, Santi C. 2016. Advances in electrophilic organochalcogen reagents. *Current Organic Chemistry* 20(2):122–135 DOI 10.2174/1385272819666150724233204.

Santi C. 2014. *Organoselenium Chemistry: Between Synthesis and Biochemistry*. Sharjah: Bentham Science.

Santi C, Tidei C. 2013. Electrophilic Se/Te reagents: reactivity and their contribution to “Green Chemistry”. In: Rappoport Z, ed. *The Chemistry of Organic Selenium and Tellurium Compounds*. Chichester: John Wiley & Sons, 569–655.
Santi C, Tidci C. 2014. Addition reactions with formation of carbon–sulfur and carbon selenium bonds. In: Knochel P, Molander GA, eds. Comprehensive Organic Synthesis II. Oxford: Elsevier, 605–637.

Santi C, Tiecco M, Testaferri L, Tomassini C, Santoro S, Bizzoca G. 2008. Diastereo and enantioselective synthesis of 1,2-Diols promoted by electrophilic selenium reagents. Phosphorus, Sulfur, and Silicon 183(4):956–960 DOI 10.1080/10426500801900881.

Santoro S, Battistelli B, Gjoka B, Si C-WS, Testaferri L, Tiecco M, Santi C. 2010. Oxidation of alkenes in aqueous media catalyzed by diphenyl diselenide. Synlett 2010(9):1402–1406 DOI 10.1055/s-0029-1219817.

Sartori G, Jardim NS, Sari MHM, Dobrachinski F, Pesarico AP, Rodrigues LC Jr, Cargnelutti J, Flores EF, Prigol M, Nogueira CW. 2016. Antiviral action of diphenyl diselenide on herpes simplex virus 2 infection in female BALB/c mice. Journal of Cellular Biochemistry 117(7):1638–1648 DOI 10.1002/jcb.25457.

Schiel MA, Chopa AB, Silbestri GF, Alvarez MB, Lista AG, Domini CE. 2015. Use of ultrasound in the synthesis of heterocycles of medicinal interest. In: Brahmacari G, ed. Synthetic Approaches for Biologically Relevant Heterocycles. Amsterdam: Elsevier, 571–601.

Sharma S, Pathare RS, Maurya AK, Gopal K, Roy TK, Sawant DM, Pardasani RT. 2016. Ruthenium catalyzed intramolecular C–S coupling reactions: synthesis scope and mechanistic insight. Organic Letters 18(3):356–359 DOI 10.1021/acs.orglett.5b03185.

Shi H-W, Yu C, Yan J. 2015. Potassium bromide or sodium chloride catalyzed acetoxyselenenylation of alkenes with diselenides and mCPBA. Chinese Chemical Letters 26(9):1117–1120 DOI 10.1016/j.ccl.2015.05.029.

Silva LT, Azeredo JB, Saba S, Rafique J, Bortoluzzi A, Braga AL. 2017. Solvent- and metal-free chalcogenation of bicyclic arenes using I$_2$/DMSO as non-metallic catalytic system. European Journal of Organic Chemistry 2017(32):4740–4748 DOI 10.1002/ejoc.201700744.

Soldatova N, Postnikov P, Troyan AA, Yoshimura A, Yusubov MS, Zhdkanin VV. 2016. Mild and efficient synthesis of iodylarenes using oxone as oxidant. Tetrahedron Letters 57(37):4254–4256 DOI 10.1016/j.tetlet.2016.08.038.

Swamy T, Raviteja P, Srikanth G, Reddy BVS, Ravinder V. 2016. RuCl$_3$/Oxone: an efficient combination for the synthesis of 3-Aryl-[1,2,4]triazolo[4,3-a]pyridines from 2-(2-Arylidenehydrazinol)pyridines. Tetrahedron Letters 57(50):5596–5598 DOI 10.1016/j.tetlet.2016.10.110.

Tiecco M, Testaferri L, Tintoli M, Chianelli D, Bartoli D. 1989. The reaction of diphenyl diselenide with peroxydisulphate ions in methanol a convenient procedure to effect the methoxyselenenylation of alkenes. Tetrahedron Letters 30(11):1417–1420 DOI 10.1016/S0040-4039(00)99480-2.

Venturini TP, Chassot F, Loreto ES, Keller JT, Azevedo MI, Zeni G, Santurio JM, Alves SH. 2016. Antifungal activities of diphenyl diselenide and ebselen alone and in combination with antifungal agents against Fusarium spp. Medical Mycology Journal 54(5):550–555 DOI 10.1093/mmy/myv120.

Vieira BM, Thurow S, Brito JS, Perin G, Alves D, Jacob RG, Santi C, Lenardão EJ. 2015. Sonoochemistry: an efficient alternative to the synthesis of 3-selanyldiones using Cul as catalyst. Ultrasonics Sononchemistry 27:192–199 DOI 10.1016/j.ultsonch.2015.05.012.

Wang Y, Wang Y, Jiang K, Zhang Q, Li D. 2016. Transition-metal-free oxidative C5 C-H-Halogenation of 8-aminoquinoline amides using sodium halides. Organic Biomolecular Chemistry 14(43):10180–10184 DOI 10.1039/C6OB02079H.
Xavier DM, Goldani BS, Seus N, Jacob RG, Barcellos T, Paixão MW, Luque R, Alves D. 2017. Sonochemistry in organocatalytic enamine-azide [3+2] cycloadditions: a rapid alternative for the synthesis of 1,2,3-Triazoyl carboxamides. *Ultrasonics Sonochemistry* **34**:107–114 DOI 10.1016/j.ultsonch.2016.05.007.

Xiang SK, Hu H, Ma J, Li YZ, Wang BQ, Feng C, Zhao KQ, Hu P, Chen XZ. 2013. Synthesis of naphthalene derivatives through inexpensive BF$_3$·Et$_2$O-catalyzed annulation reaction of arylacetaldehydes with arylalkynes. *Science China Chemistry* **56**(7):945–951 DOI 10.1007/s11426-013-4843-7.

Yang Z-L, Hu B-L, Deng C-L, Zhang X-G. 2014. Iron-promoted electrophilic annulation of aryl enynes with disulfides or diselenides leading to polysubstituted naphthalenes. *Advanced Synthesis & Catalysis* **356**(9):1962–1966 DOI 10.1002/adsc.201400070.

Yeo H, Li Y, Fu L, Zhu JL, Gullen EA, Dutschman GE, Lee Y, Chung R, Huang E-S, Austin DJ, Cheng Y-C. 2005. Synthesis and antiviral activity of helioxanthin analogues. *Journal of Medicinal Chemistry* **48**(2):534–546 DOI 10.1021/jm034265a.

Zhang X, Sarkar S, Larock RC. 2006. Synthesis of naphthalenes and 2-naphthols by the electrophilic cyclization of alkynes. *Journal Organic Chemistry* **71**(1):236–243 DOI 10.1021/jo051948k.

Zhu S, Xiao Y, Guo Z, Jiang H. 2013. Iron-catalyzed benzannulation reactions of 2-alkylbenzaldehydes and alkynes leading to naphthalene derivatives. *Organic Letters* **15**(4):898–901 DOI 10.1021/ol4000394.