On the volume of a six-dimensional polytope

A. Felikson, P. Tumarkin

Abstract. This note is a comment to the paper [7]. That paper concerns with the projective surface S in \mathbb{P}^3 defined by the equation $x_1x_2x_3 = x_4^3$. It is shown there that the evaluation of the leading term of the asymptotic formula for the number of rational points of bounded height in $S(\mathbb{Q})$ is equivalent to the evaluation of the volume of some 6-dimensional polytope \mathcal{P}. The volume of \mathcal{P} is known from several papers; we calculate this volume by elementary method using symmetry of the polytope \mathcal{P}. We also discuss a combinatorial structure of \mathcal{P}.

1 Introduction

Consider the projective surface S in \mathbb{P}^3 defined by the equation

$$x_1x_2x_3 = x_4^3.$$

A few years ago several authors, [2], [4], [5], [7], [8], obtained an asymptotic formula for the number of rational points of bounded height in $S(\mathbb{Q})$, as a simple illustration of a rather general conjecture discussed in [1], [2], [8]. To explicitly evaluate the leading term of the asymptotic formula obtained in [2], [7], [8] one must calculate the volume $\text{Vol}(\mathcal{P})$ of the polytope $\mathcal{P} \in \mathbb{R}^6$ determined by the inequalities

$$x_{12} + x_{13} + 2(x_{21} + x_{31}) \leq 1,$$
$$x_{21} + x_{23} + 2(x_{12} + x_{32}) \leq 1,$$
$$x_{31} + x_{32} + 2(x_{13} + x_{23}) \leq 1,$$

$$x_{ij} \geq 0,$$

where

$$(x_{12}, x_{23}, x_{31}, x_{13}, x_{32}, x_{21})$$

are Cartesian coordinates in \mathbb{R}^6.

As it is shown in papers [2], [7] and [8],

$$\text{Vol}(\mathcal{P}) = \frac{1}{4 \cdot 6!} = \frac{1}{2880}. \quad (1)$$

The goal of this note is to prove formula (1) by a direct elementary method, using symmetry of the polytope \mathcal{P}. We dissect \mathcal{P} into 6 congruent parts and decompose one of these parts into 6 simplices. Then we show that the volumes
of these simplices sum up to $\frac{1}{24}\text{Vol}(\Delta)$, where Δ is the standard six-dimensional simplex determined by the inequalities

$$x_{12} + x_{23} + x_{31} + x_{13} + x_{32} + x_{21} \leq 1, \quad x_{ij} \geq 0, \quad i \neq j, \quad 1 \leq i, j \leq 3.$$

We use the notation and terminology of [6]. In particular, given a subset X of \mathbb{R}^n, $n \in \mathbb{N}$, we write $\text{conv } X$ and ∂X for the convex hull and the boundary of X respectively.

Acknowledgment. We would like to thank B. Z. Moroz who brought the problem to our attention, initiated numerous stimulating discussions and convinced us to write down this note.

2 Volume of a rational polytope

Let E^n be the n-dimensional Euclidean space with Cartesian coordinates. Let v_0, v_1, \ldots, v_k be rational points in E^n, i.e. the coordinates (v_{i1}, \ldots, v_{in}) of v_i are rational numbers for all $i = 0, \ldots, k$. Suppose that the points v_0, v_1, \ldots, v_k are in the convex position, that is no of these points belongs to the convex hull of the others. Suppose that $k \geq n$. Then the set $\text{conv}\{v_0, v_1, \ldots, v_k\}$ is an n-dimensional polytope with non-zero volume $\text{Vol}(v_0, \ldots, v_k)$. In this section we describe how to find $\text{Vol}(v_0, \ldots, v_k)$.

Denote by $\text{det}(v_1, \ldots, v_n)$ the determinant

$$\text{det}(v_1, \ldots, v_n) = \begin{vmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & v_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n1} & v_{n2} & \cdots & v_{nn} \end{vmatrix}$$

If $k = n$, the polytope $\text{conv}\{v_0, v_1, \ldots, v_k\}$ is a simplex (may be degenerate). Recall that

$$\text{Vol}(v_0, v_1, \ldots, v_n) = \frac{1}{n!} \cdot \text{det}(v_1 - v_0, v_2 - v_0, \ldots, v_n - v_0)$$

(see for example [3], Chapter 9).

Definition. A triangulation of a polytope is a decomposition of this polytope into finite number of simplices T_1, \ldots, T_r, such that if $T_i \cap T_j \neq \emptyset$, then $T_i \cap T_j$ is a face of both T_i and T_j.

The formula above reduces the problem to the question of triangulation of the polytope $\text{conv}\{v_0, v_1, \ldots, v_k\}$.

Lemmas 1 through 3 are either well-known or elementary.

Lemma 1. Let v_i, $1 \leq i \leq n$ be n points in general position in E^n (i.e. no k of these points belong to $(k - 2)$-plane). Let H be the hyperplane spanned by
Consider any \(n \) points \(v_1, \ldots, v_n \). Let \(a \) and \(b \) be two points in \(\mathbb{E}^n \). The points \(a \) and \(b \) belong to different open half-spaces with respect to \(H \) if and only if
\[
\det(v_1 - a, v_2 - a, \ldots, v_n - a) \cdot \det(v_1 - b, v_2 - b, \ldots, v_n - b) < 0.
\]

Lemma 2. Let
\[
S := \{Q, Q_i \mid 1 \leq i \leq m\}
\]
be a set of \(m + 1 \) polytopes satisfying the following conditions:

a) \(Q_i \subseteq Q \) for \(1 \leq i \leq m \);

b) each facet of \(Q_i \) is a facet of one the polytopes belonging to the set
\(Q \setminus \{Q_i\} \) for \(1 \leq i \leq m \).

Then
\[
Q = \bigcup_{i=1}^{m} Q_i
\]

Definition. Let \(P \) be a polytope in \(\mathbb{E}^n \). A point \(y \in P \) is visual from the point \(x \notin P \), if \([x, y] \cap P = y \) (where \([x, y] \) is the segment \(\{\lambda a + (1 - \lambda) b \mid 0 \leq \lambda \leq 1\} \). A facet \(f \) of \(P \) is visual from the point \(x \notin P \), if each point of \(f \) is visual from \(x \).

If \(P \) is convex any facet containing at least one inner visual point is visual.

Lemma 3. Let \(P \) be a convex polytope, and \(x \notin P \) be a point. Any point \(y \in P \) visual from \(x \) is contained in at least one visual facet of \(P \).

Theorem 1. Let \(T = \bigcup_{i=1}^{m} T_i \) be a triangulation of \(\text{conv}\{v_1, \ldots, v_k\} \). Let \(v_0 \notin \text{conv}\{v_1, \ldots, v_k\} \). Let \(f_1, \ldots, f_r \) be all facets of \(T_1, \ldots, T_m \) visual from \(v_0 \). Denote \(T_{m+j} := \text{conv} v_0 \cup f_j \), \(1 \leq j \leq r \). Then
\[
T' = \bigcup_{i=1}^{m+r} T_i
\]
is a triangulation of \(\text{conv}(v_0, v_1, \ldots, v_k) \).

The proof is obvious.

Theorem \(\text{I} \) suggests an algorithm of triangulation of \(\text{conv}\{v_0, v_1, \ldots, v_k\} \): Consider any \(n + 1 \) non-coplanar points (without loss of generality we may assume that these points are \(v_0, v_1, \ldots, v_n \)). To check that these points are non-coplanar make sure that \(\det(v_1 - v_0, \ldots, v_n - v_0) \neq 0 \). Then \(T_1 = \text{conv}\{v_0, v_1, \ldots, v_n\} \) is a simplex and \(T_1 \) is triangulated by itself. Use Theorem \(\text{I} \) to successively triangulate \(\text{conv}\{v_0, v_1, \ldots, v_i\} \) for \(i = n + 1, n + 2, \ldots, k \).

3 Combinatorial structure of the polytope \(\mathcal{P} \)

Denote by \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) the hyperplanes
\[
\begin{align*}
x_{12} + x_{13} + 2(x_{21} + x_{31}) &= 1, \\
x_{21} + x_{23} + 2(x_{12} + x_{32}) &= 1, \\
x_{31} + x_{32} + 2(x_{13} + x_{23}) &= 1
\end{align*}
\]
respectively. Denote by \(\pi_{ij} \) the hyperplane \(x_{ij} = 0 \) \((i, j = 1, 2, 3, \ i \neq j) \). Denote by \(\sigma \) the hyperplane \(x_{12} + x_{23} + x_{31} + x_{13} + x_{32} + x_{21} = 1 \).
It is easy to see, that if \(X \in \sigma \) and \(X \in P \) then \(X \in \alpha_i \) for \(i = 1, 2, 3 \). Therefore, \(\sigma \) is not a facet of \(P \). Thus, \(P \) is bounded by \(\alpha_i \), \(i = 1, 2, 3 \) and six facets \(\pi_{ij} \). Any vertex of \(P \) is an intersection of at least 6 facets. Thus, any vertex of \(P \) is a subject to at least 6 equations under consideration. A straightforward calculation shows that \(P \) is a convex hull of 21 points. We list these points in Table 3. The right column of the table shows, to which of the hyperplanes \(\alpha_j \), \(1 \leq j \leq 3 \), if any, the corresponding point belongs. Note, that the indices indicate non-zero coordinates.

We present below the Gale diagram of \(P \), describing the combinatorial type of the polytope (see Figure 1).

\(P \) is a 6-dimensional polytope with 9 facets. The combinatorics of a convex \(n \)-polytope with \(n + 3 \) facets can be described by 2-dimensional Gale diagram (see [6]). This consists of \(n + 3 \) points \(a_1, \ldots, a_{n+3} \) of unit circle in \(\mathbb{R}^2 \) centered at the origin. The combinatorial type of a convex polytope can be read off from the Gale diagram in the following way. Each point \(a_i \) corresponds to the facet \(f_i \) of \(P \). For any subset \(J \) of the set of facets of \(P \) the intersection of facets \(\{ f_j | j \in J \} \) is a face of \(P \) if and only if the origin is contained in the set \(\text{conv}\{a_j | j \notin J \} \).

![Gale diagram of \(P \).](image)

4 Triangulation of the polytope \(P \)

In this section we use the group of symmetries of \(P \) to find a nice triangulation of \(P \) containing relatively small number of simplices.

Let \(P_j := \text{conv}\{O \cup \alpha_j\}, \ 1 \leq j \leq 3 \).
Table 1: Vertices of \(P \).

Notation	Coordinates \((x_{12}, x_{23}, x_{31}, x_{13}, x_{32}, x_{21}) \)	\(\alpha_1 \)	\(\alpha_2 \)	\(\alpha_3 \)
\(O \)	\((0, 0, 0, 0, 0, 0)\)	\(-\)	\(-\)	\(-\)
\(Q_{23}^{1} \)	\((0, \frac{1}{2}, 0, 0, 0, \frac{1}{2})\)	\(+\)	\(+\)	\(+\)
\(Q_{32}^{1} \)	\((0, 0, \frac{1}{2}, 0, \frac{1}{2}, 0)\)	\(+\)	\(+\)	\(+\)
\(Q_{13}^{12} \)	\((\frac{1}{2}, 0, 0, \frac{1}{2}, 0, \frac{1}{2})\)	\(+\)	\(+\)	\(+\)
\(P_{12} \)	\((\frac{1}{2}, 0, 0, 0, 0, 0)\)	\(-\)	\(+\)	\(-\)
\(P_{31} \)	\((0, 0, \frac{1}{2}, 0, 0, 0)\)	\(+\)	\(-\)	\(-\)
\(P_{13} \)	\((0, 0, 0, \frac{1}{2}, 0, 0)\)	\(-\)	\(-\)	\(+\)
\(P_{32} \)	\((0, 0, 0, 0, \frac{1}{2}, 0)\)	\(-\)	\(-\)	\(+\)
\(P_{21} \)	\((0, 0, 0, 0, 0, \frac{1}{2})\)	\(+\)	\(-\)	\(-\)
\(R_{1} \)	\((\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0)\)	\(+\)	\(+\)	\(+\)
\(R_{2} \)	\((0, 0, 0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})\)	\(+\)	\(+\)	\(+\)
\(T_{23}^{23} \)	\((\frac{1}{3}, 0, 0, 0, 0, \frac{1}{3})\)	\(+\)	\(+\)	\(+\)
\(T_{21}^{32} \)	\((0, \frac{1}{3}, 0, 0, \frac{1}{3}, 0)\)	\(-\)	\(+\)	\(+\)
\(T_{31}^{13} \)	\((0, 0, \frac{1}{3}, \frac{1}{3}, 0, 0)\)	\(+\)	\(+\)	\(+\)
\(V_{21}^{32} \)	\((0, 0, 0, 0, \frac{1}{2}, \frac{1}{2})\)	\(+\)	\(+\)	\(+\)
\(V_{12}^{31} \)	\((\frac{1}{2}, 0, \frac{1}{3}, 0, 0, 0)\)	\(+\)	\(+\)	\(+\)
\(V_{13}^{23} \)	\((0, 0, 0, \frac{1}{2}, 0, \frac{1}{2})\)	\(+\)	\(+\)	\(+\)
\(V_{13}^{32} \)	\((0, 0, 0, \frac{1}{2}, \frac{1}{2}, 0)\)	\(+\)	\(+\)	\(+\)
\(V_{23}^{12} \)	\((\frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0)\)	\(+\)	\(+\)	\(+\)

Lemma 4. \(\text{Vol}(P_{1}) = \text{Vol}(P_{2}) = \text{Vol}(P_{3}) = \frac{1}{3} \text{Vol}(P) \).

Proof. A permutation \(\varphi \) of coordinates

\[\varphi = (x_{12}x_{23}x_{31})(x_{13}x_{21}x_{32}) \]
induces an order 3 orthogonal transformation $I_\varphi : \mathbb{R}^6 \to \mathbb{R}^6$, such that $I_\varphi(P_1) = P_2$, $I_\varphi(P_2) = P_3$ and $I_\varphi(P_3) = P_1$. Therefore,

$$Vol(P_1) = Vol(P_2) = Vol(P_3).$$

By construction, the set $\{P_i | 1 \leq i \leq 3\}$ satisfies the conditions of Lemma 2, hence,

$$P_1 \cup P_2 \cup P_3 = P.$$

Moreover, if $1 \leq i < j \leq 3$, then $P_i \cap P_j$ is a common facet of P_i and P_j; consequently,

$$Vol(P_i \cap P_j) = 0, \ 1 \leq i < j \leq 3.$$

The lemma follows from (2)–(4).

In view of Lemma 4, it suffices to calculate the volume of P_1. By construction, P_1 is a convex hull of the points

$$Q_{23}^{21}, T_{12}^{21}, P_{21}, R_1, V_{21}^{32}, V_{13}^{21},$$

$$Q_{32}^{31}, T_{13}^{31}, P_{31}, R_2, V_{31}^{23}, V_{12}^{31},$$

$$Q_{13}^{12}, O.$$

Note that all vertices of P_1 except for Q_{13}^{12} and O split into pairs of similar vertices denoted by one letter with different indices. This will be used in the proof of Lemma 5.

Denote by θ_1 and θ_2 respectively the hyperplanes

$$x_{12} - 2x_{23} + x_{31} = x_{13} + x_{32} - 2x_{21}$$

and

$$x_{12} + x_{23} - 2x_{31} = x_{13} - 2x_{32} + x_{21}.$$

It is easy to check that P_1 has the following facets: $\pi_{ij}, \alpha_1, \theta_1$ and θ_2.

Denote by δ the hyperplane

$$x_{12} + x_{23} + x_{31} = x_{13} + x_{32} + x_{21}.$$

Lemma 5. δ divides P_1 into two congruent parts.

Proof. It is easy to check that $P_{31}P_{21}$ is the only edge of α_1 which is intersected by δ transversally.

Let $K_{21}^{31} := \delta \cap P_{31}P_{21} = (0, 0, \frac{1}{4}, 0, 0, \frac{1}{4})$. Then δ divides P_1 into two polytopes P_1^1 and P_1^2, where P_1^1 is a convex hull of

$$P_{31}, R_1, V_{31}^{23}, V_{12}^{31} \text{ and } O, Q_{23}^{21}, Q_{32}^{31}, Q_{13}^{12}, T_{12}^{21}, T_{13}^{31}, K_{21}^{31}$$

and P_1^2 is a convex hull of

$$P_{21}, R_2, V_{21}^{32}, V_{13}^{21} \text{ and } O, Q_{23}^{21}, Q_{32}^{31}, Q_{13}^{12}, T_{12}^{21}, T_{13}^{31}, K_{21}^{31}.$$

6
Table 2: Triangulation of \mathcal{P}_1^1.

	Vertices	Neighbors	Volume
Δ_1	$O, P_31, Q^{31}_{12}, Q^{31}_{23}, T^{13}_{31}, T^{12}_{21}, K^{31}_{21}$	$\alpha_1, \delta, \pi_{32}, \pi_{23}, \pi_{13}, \pi_{12}, \Delta_2$	$\frac{1}{3} \cdot \frac{2}{3^7} \frac{1}{6!}$
Δ_2	$O, P_31, Q^{31}_{12}, Q^{31}_{23}, T^{13}_{31}, T^{12}_{21}, Q^{13}_{12}$	$\alpha_1, \delta, \pi_{32}, \pi_{23}, \Delta_3, \Delta_4, \Delta_1$	$\frac{1}{3} \cdot \frac{1}{2^5} \frac{1}{6!}$
Δ_3	$O, P_31, Q^{31}_{12}, Q^{21}_{23}, T^{13}_{31}, T^{12}_{21}, Q^{13}_{23}$	$\alpha_1, \theta_2, \pi_{32}, \Delta_5, \Delta_2, \Delta_4, \pi_{13}$	$\frac{1}{3} \cdot \frac{2}{3^7} \frac{1}{6!}$
Δ_4	$O, P_31, Q^{31}_{12}, Q^{21}_{23}, T^{13}_{31}, T^{12}_{21}, Q^{13}_{23}$	$\alpha_1, \theta_1, \pi_{32}, \pi_{21}, \Delta_3, \Delta_2, \Delta_6$	$\frac{1}{3} \cdot \frac{1}{2^5} \frac{1}{6!}$
Δ_5	$O, P_31, Q^{31}_{12}, V^{31}_{12}, T^{13}_{31}, T^{12}_{21}, Q^{13}_{23}$	$\alpha_1, \theta_2, \pi_{32}, \Delta_3, \pi_{23}, \pi_{21}, \pi_{13}$	$\frac{1}{3} \cdot \frac{1}{2^5} \frac{1}{6!}$
Δ_6	$O, P_31, Q^{31}_{12}, V^{31}_{12}, T^{13}_{31}, R_1, V^{23}_{31}$	$\alpha_1, \theta_1, \pi_{32}, \pi_{21}, \pi_{13}, \pi_{12}, \Delta_4$	$\frac{1}{3} \cdot \frac{2}{3^7} \frac{1}{6!}$

Note that \mathcal{P}_1^1 and \mathcal{P}_2^1 differ by 4 vertices only.

Consider an involution I_ψ induced by the following permutation of coordinates: $\psi = (x_{12} x_{13})(x_{21} x_{23})(x_{32} x_{23})$. Clearly, I_ψ preserves α_1 and δ. More precisely, I_ψ fixes the points Q^{13}_{12} and O and interchanges six pairs of other points spanning \mathcal{P}_1. Thus, I_ψ interchanges \mathcal{P}_1^1 and \mathcal{P}_2^1. Since I_ψ is an isometry, \mathcal{P}_1^1 is congruent to \mathcal{P}_2^1.

Lemmas 4 and 5 show that the permutation group S_3 acts on \mathcal{P}. Moreover, S_3 is a group of symmetries of \mathcal{P} and $\mathcal{P}_1^1 = \mathcal{P}/S_3$.

Lemma 3 implies that $Vol(\mathcal{P}_1^1) = Vol(\mathcal{P}_2^1)$. By Lemmas 4 and 5 it is sufficient to triangulate \mathcal{P}_1^1. This polytope is bounded by π_{ij}, α_1, θ_1, θ_2 and δ.

We decompose \mathcal{P}_1^1 into 6 simplices $\Delta_1, \ldots, \Delta_6$ (see Table 2). We represent these simplices by their vertices. Each facet of Δ_1 belongs either to some Δ_j ($i \neq j$) or to one of the hyperplanes bounding \mathcal{P}_1^1. Note, that a facet f of a simplex corresponds to the vertex $v(f)$ opposite to this facet and vice versa. For each vertex $v(f)$ of Δ_i we indicate the simplex Δ_j or the facet of \mathcal{P}_1^1 containing the facet f (see the third column).

Theorem 2. 1) \mathcal{P}_1^1 is triangulated by $\Delta_1, \ldots, \Delta_6$.
2) $Vol(\mathcal{P}) = \frac{1}{3^7} = \frac{1}{3} Vol(\Delta)$.

7
Proof. The set vertices of $\Delta_1, \ldots, \Delta_6$ coincides with the set of vertices of \mathcal{P}_1. Hence, the union of Δ_i ($i = 1, \ldots, 6$) lies inside \mathcal{P}_1. The intersection $\Delta_i \cap \Delta_j$ is a face of Δ_i and Δ_j. It is left to show that any point of \mathcal{P}_1 belongs to some of Δ_i. The third column of Table 4 shows that each facet of Δ_i, $i = 1, \ldots, 6$ either belongs to $\partial \mathcal{P}_1$ or to some $\partial \Delta_j$, $j \neq i$. By Lemma 2, $\mathcal{P}_1 = \bigcup_{i=1}^{6} \Delta_i$ and the first statement is proved.

By lemmas 4 and 5

$$Vol(\mathcal{P}) = 6 \cdot Vol(\mathcal{P}_1) = 6 \sum_{i=1}^{6} Vol(\Delta_i).$$

In view of triangulation shown in Table 4 this equals to $\frac{1}{4} \cdot \frac{1}{6}$. This proves the first equality. The second equality is trivial.

References

[1] V. V. Batyrev and Yu. I. Manin, Sur le nombre des points rationnelles de hauteur borné des variétés algébriques. Math. Ann., 286 (1990), 27–43.

[2] V. V. Batyrev and Yu. Tschinkel, Tamagawa numbers of polarized algebraic varieties. Astérisque, 251 (1998), 299–340.

[3] M. Berger, Geometry I, Springer-Verlag Berlin Heidelberg, 1987.

[4] R. de la Bretèche, Sur le nombre des points de hauteur borné d’une certaine surface cubique singulière. Astérisque, 251 (1998), 51–77.

[5] E. Fouvry, Sur la hauteur des points d’une certaine surface cubique singulière. Astérisque, 251 (1998), 31–49.

[6] B. Grünbaum, Convex Polytopes. Graduate Texts in Mathematics, Springer-Verlag, 2003.

[7] D. R. Heath-Brown and B. Z. Moroz, The density of rational points on the cubic surface $X^3_0 = X_1X_2X_3$. Math. Proc. Camb. Phil. Soc. 125 (1999), 385–395.

[8] P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque, 251 (1998), 91–258.

Independent University of Moscow, Russia
Max-Planck Institut für Mathematik Bonn, Germany
e-mail: felikson@mccme.ru pasha@mccme.ru