Biological activities of *Chromolena odorata* (L.) King and Robinson (Asteraceae) collected from Sabah, Malaysia as protein phosphatase type-1 inhibitor

Matawali A, Lee PC, How SE, Julang AG*

ABSTRACT

Chromolena Odorata has been traditionally used as wound healer in local community. The present study investigated the anti-kinase and anti-phosphatases activities on methanolic *C. odorata* extract. Mutant yeast strains used were MKK1^{1396Δ}, MKK1^{1396Δ, MSG5}, PAY704-1 and PAY700-4. Bioassay guided fractionation of *C. odorata* revealed positive activities of hexane, ethyl acetate and chloroform partitions. Column chromatography of all partitions later confirmed fraction F2 from chloroform extract had most favorable activity with inhibitory zone ranged between 7±0.0 mm until 15±0.0 mm. Kinetic analysis including maximum enzyme velocity (V_{max}) and Michaelis-Menten constant (K_m) were evaluated and compared for both normal and inhibited reactions. Enzyme activity with DiFMUP as substrate showed fraction F2 act as PP1 enzyme inhibitor with the K_m value 0.60 mM and V_{max} value 200 mM/min as compared to the normal enzymatic reaction. Results provided unveil the potential of *C. odorata* as an effective therapeutic agent.

Keywords: *Chromolena Odorata*, Pokok kapal terbang, Sabah, Protein phosphatase type-1.

INTRODUCTION

Drug discoveries in cancer treatment by targeting cell signaling pathway had become part of prominent research in science. Protein phosphorylation/dephosphorylation is a post translational modification (PTM) of amino acids that involves delicate interplay between protein kinases and protein phosphatases [1]. Human genome encodes approximately 518 protein kinases where about two-thirds of them are serine/threonine kinases, and 156 protein phosphatases [2].

Abnormalities from the control of Mitogen Activated Protein Kinase (MAPK) signalling pathway had been detected in various types of cancers as Extracellular signal Regulated Kinase (ERK) pathway had been reported to be involved in tumorigenesis including cancer cell proliferation, migration and invasion; hence accounted for one-third of all human cancers [3, 4]. Some of the components from Ras/Raf/MEK/ERK signalling cascades also had been reported to be frequently mutated and aberrantly expressed in human cancer such as acute myelogenous leukemia, acute lymphocytic leukemia, breast cancer and prostate cancer [3]. Abnormal activation of this pathway was detected in human cancer mainly due to mutation at upstream membrane receptors. Thus ERK signalling pathway is considered as promising therapeutic target for the development of chemotherapeutic drugs.

On the other hand, protein phosphatases act as negative regulators as they reverse the protein kinases actions. One of the major classes of serine/threonine phosphatases is Protein phosphatase type 1 (PP1), which has been found in most eukaryotic cells [6]. PP1 take part on enormous cellular functions for instance in cell adhesion, synaptic plasticity, cell cycle, protein synthesis, muscle contraction, transcription and carbohydrate and lipid metabolism [7, 8, 9]. Thus, targeting in both protein kinases and phosphatases might serve as new focused in cancer therapeutics development.

Chromolaena odorata (L.) King and Robinson is a perennial weed of plantation crops and cleared land from family Asteraceae (Compositae). This invasive alien plant species is formerly known as *Eupatorium odoratum* or locally known as *Pokok Kapal Terbang* or *Pokok Malaysia*. The invasiveness of this plant often causes chaos in natural ecosystem. It was declared as ‘Category 1’ weed under the Conservation of Agricultural Reasources Act (CARA) and the National Environment Management Biodiversity Act (NEMBA) on Alien and Invasive Species List in South Africa [10]. *Chromolaena odorata* gave negative
impacts on natures and society due to its high-density invasions [11]. Despite that, various recent researches had proved the importance of C. odorata as medicinal plant [12-18]. Furthermore, Omokhua [10] on his report stated quite thorough discussions on both biotypes; including their differences in anatomy, ethnopharmacological usage, phytoconstituents and other biological activities. In this study, we made an attempt to further strengthen the ethnomedicinal properties of C. odorata, specifically regarding to the inhibitions of protein kinase or phosphatases involved in signal transduction in cancer.

Therefore, the objective in the present study was to investigate the potential of C. odorata as kinase or phosphatases inhibitor as well as to evaluate the kinetic constants (Km and Vmax) of PPI activity inhibited by C. odorata.

MATERIALS AND METHOD

Plant material, Extraction and Fractionation

The leaves of C. odorata were collected, washed, dried and ground into powders. The sample extracted with absolute methanol at 100 mg/ml stock concentration. Further liquid-liquid extraction and column chromatography separation were based on [19]. In column chromatography, the mobile phase during separation of hexane partition was methanol and chloroform (ratio 1:19 (v/v)), ethyl acetate partition using methanol and ethyl acetate (ratio 1:19 (v/v)) and chloroform extract using chloroform 99.8% (v/v).

Anti-kinase (MKK1 and anti-phosphatase (MKK1 and PP1) Screening System

Kinase and phosphatase screening assay were conducted using mutant yeast strain obtained from Prof. Minoru Yoshida (University Tokyo, Japan) and Prof. Michael J. Stark (University of Dundee, Scotland). The yeast strains genotype and procedures for MKK1, MSG5 and PP1 assay were based on [20].

Kinetic properties of Protein phosphatase type-1

Enzymatic assay of C. odorata was carried out using protein phosphatase type-1 (PPI) enzyme (New England Biolabs, P0754L). The assay kit was EnzChek Phosphatase assay kit (E12020, Molecular Probes) with DiFMUP (6,8-difluoro-4-methylumbelliferyl phosphate) as the substrate. The DiFMUP product (6,8-difluoro-4-methylumbelliferone) was measured using Fluroskan® Ascent FL (Fisher Scientific), ext/ems maximum at 355/480 nm once per minute for 60 minutes. All data collection was performed by using Ascent Software version 2.6. Kinetic parameters were determined from the Lineweaver-Burke graph plot. The Vmax and Km value for both normal and inhibited reactions were compared.

RESULTS AND DISCUSSIONS

In this study, Saccharomyces cerevisiae had been used as model organism in protein kinase and phosphatases assay namely as MKK1, MSG5 and PPI. MAPK activation pathway appear to have been conserved across evolution; as the kinase that comprise this pathway have been identified in organism ranging from mammal to S. cerevisiae [21-22]. In most eukaryotes, multiple genes were responsible in encoding PPIc isoform. However, only Glc7 in Saccharomyces cerevisiae might able to encode PPIc [23]. PPI which was found identical between human and S. cerevisiae had been reported to be extremely conserved throughout evolution even greater than tubulin or histone H2A which were well known as most slowly evolving proteins [9, 24, 25].

The principals for MKK1, MSG5 and PPI assay had been thoroughly discussed on [20]. Results showed no significant activities of C. odorata during MKK1 and MSG5 screening assay. However, crude methanolic extract of this sample portrayed a potential inhibitor role during PPI screening assay (Table 1). The extract had been observed as inhibitor to GLC-7 which able to inhibit the catalytic domain that reduced the function of Glc7 protein in the cell integrity pathway irrespective to the mutation of the glc7-10.

The liquid-liquid separations confirmed three more sub partitions to have potential role as PPI inhibitor. Hexane, Ethyl acetate and Chloroform (HE, EAE and CE) partitionates showed inhibitory zones on wild type strain, using YPD media at 37°C. This made the extracts as inhibitor insensitive to glc7-10 catalytic domain change. This type of inhibitor is able to inhibit the normal Glc7 that is reversibly by 1M sorbitol or not without affecting the mutant Glc7 because glc7-10 allele. The existence of such inhibitor however is unlikely.

CE extract had been subjected to column chromatography to yield another 10 column fractions coded as F1 until F10. These fractions had been re-tested on PPI screening assay and data showed 8 of the fractions gave potential results, whereas another two are toxic and no activity, respectively. Among the fractions, F2 considered as inhibitor to GLC-7 while the rest are considered as inhibitor insensitive to glc7-10 catalytic domain change.

Moreover, F2 had been subjected to undergo enzymatic analysis to determine specificity against PPI. The kinetic analysis of F2 had used DiFMUP as substrates as it is among the most efficient and versatile substrate in kinetic assay [26]. PPI-DiFMUP complex yielded reaction product 6,8-difluoro-4-methylumbelliferylone which was detected spectrophotometrically at ext/ems 355/480 nm. A linear Lineweaver-Burke plot can be generated in order to get Km and Vm values. The kinetic constant Vm represents the maximum forward velocity of the reaction while Km signifies the substrate concentrations at half of Vm. The lower value of Km suggests that PPI enzyme has higher affinity for the DiFMUP [27]. Based from the tabulated data on Table 2, kinetic constant Vmax and Kmax were generally found as inversely proportional to the inhibitor’s concentrations. Fraction F2 gradually suppressed PP1 activity, respectively. Among the fractions, F2 considered as inhibitor to GLC-7 while the rest are considered as inhibitor insensitive to glc7-10 catalytic domain change.

The investigations on C. odorata had been started since decades ago. This plant had potentials to treat burns, wounds, skin infections, analgesic, anti-inflammatory, anti-pyretic, antioxidant, anti-staphylococcal, anti-spasmodyc, anti-protocoal, anti-trypanosomal, anti-bacterial, anti-fungal, anti-hypertensive, diuretic, hepatoprotective agent [28-31]. Phytochemicals studies had confirmed this plant is rich with terpenoids, alkaloids, tannins, flavonoids and other phenolic compounds [32, 33]. In cancer research, C. odorata had been acknowledged to possessed cytotoxic activities against LLC and HL-60 cancer cell lines [33] but this paper first reported the potential of C. odorata as PPI inhibitor.
Table 1: Potential activities of *C. odorata* during PP1 screening assay

Sample	Extract	Yeast-based screening method	Remarks	
		YPD	PAY704-1	
		YPD+1S	PAY700-4	
		28°C	37°C	
		28°C	37°C	
UMS71	CM	0 0	12.0±0.0	Potential
	HE	0 0	9.0±1.00	Potential
	EAE	0 0	7.3±1.15	Potential
	CE	0 0	8.3±2.31	Potential
	M:CE	0 0	0	No activity
	BE	0 0	0	No activity
	AME	0 0	0	No activity
UMS71:HE	F1	0 0	0	No activity
	F2	0 0	0	No activity
	F3	0 0	0	No activity
	F4	0 0	0	No activity
	F5	0 0	0	No activity
	F6	0 0	0	No activity
UMS71:EAE	F1	0 0	11±0.0	Potential
	F2	0 0	15±0.0	Potential
	F3	0 0	13±0.0	Potential
	F4	0 0	10±0.0	Potential
	F5	0 0	9±0.0	Potential
	F6	0 0	7±0.0	Potential
	F7	0 0	0	No activity
	F8	0 0	11±0.0	Potential
	F9	0 0	11±0.0	No activity
	F10	0 0	8±0.0	Potential

Notes:
- CM= Crude methanolic extracts, HE=Hexane extracts, EAE=Ethyl acetate extracts, CE=Chloroform extracts, C:ME=Chloroform methanol extracts, BE=Buthanol extracts, AME=Aqueous methanol extracts, F=Column chromatography fraction
- UMS71: *Chromolena Odorata*
- Concentrations of stocks extracts: 2mg/ml
- Diameter of paper disc: 6mm

Table 2: Kinetic analysis of PP1 using *C. odorata* as inhibitor

Kinetic constant	Normal reaction (DiFMUP)	Inhibited reaction (UMS71:CE.F2) (µg/well)		
		300	400	500
K_m (mM)	0.125	0.600	0.214	0.258
V_m (mM/min)	125.00	200.00	71.43	32.26
K_{cat} (min$^{-1}$)	37.53	6.00	2.14	0.97

CONCLUSIONS

Preliminary data on *C. odorata* which commonly acknowledged as major invasive weeds species had demonstrates its potential as protein phosphatase type-1 inhibitor. To the best of our knowledge, there are still no investigation reported for their potential as kinase or phosphatases inhibitors involved in cancerous signal transduction cascade. Instead of the negative impacts brought by the colonization of this species, *C. odorata* had proven its worthy as traditional medicinal sources. Further investigations on its compound isolations and cell based assay studies are highly recommended.

Acknowledgements

The authors wished to thank Prof. Michael J. Stark from University of Dundee, Scotland and Prof. Minoru Yoshida from University Tokyo,
Japan for providing the yeast strains. This work was kindly supported by a grant (Science Fund 02-01-10-SF0107) from Ministry of Science and Technology (MOSTI), Malaysia.

REFERENCES

1. Esser D, Hoffmann L, Trong Khoo Pham, Brasen C, Wen Qiu, Wright PC, et al. Protein phosphorylation and its role in archael signal transduction. FEMS Microbiology Reviews. 2016; 40:629-647.
2. Gross S, Rahal R, Stransky N, Lengauer C, Hoeflisch KP. Targeting cancer with kinase inhibitors. The Journal of Clinical Investigation. 2015; 125:1780-1789.
3. Amioudsen YJ, Saatioogi F. Dual specificity phosphatases in prostate cancer. Molecular and Cellular Endocrinology. 2009; 309:1-7.
4. Kim EY, Choi EJ. Pathological roles of MAPK signalling pathways in human diseases. Biochimica et Biophysica Acta. 2010; 1802:396-405.
5. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EWT, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta. 2007; 1773:1263-1284.
6. Bennett D, Lyulcheva E, Alphay L. Towards a comprehensive analysis of the protein phosphatase 1 interactome in Drosohphia. Journal of Molecular Biology. 2008; 364:196-212.
7. Oliver CI, Shenolikar S. Physiological importance of protein phosphatase inhibitors. Frontiers of Bioscience. 1998; 3:961-972.
8. Watanabe T, Huang H, Horuchi A, da Cruz Silva EF, Hsieh-Wilson L, Allen PB, et al. Protein phosphatase 1 regulation by inhibitors and targeting subunits. PNAS. 2001; 98(6):3080-3085.
9. Leach C, Eto M, Brouetgian DL. Domains of type 1 protein phosphatase inhibitor-2 required for nuclear and cytoplasmic localization in response to cell-cell contact. Journal of Cell Science. 2002; 115(19):3739-3745.
10. Omakhu AG, McGaw LJ, Chukwujekwu JC, Finnie JF, Van Staden J. Chromolaena odorata (L.) R. M. King & H. Rob. (Asteraceae) in sub-Saharan Africa: A synthesis and review of its 6medicinal potential. Journal of Ethnopharmacology. 2016; 183:112-122.
11. Shackleton RT, Witt ABR, Nunda W, Richardson DM. Chromolaena odorata (Siam weed) in eastern Africa; distribution and socio-ecological impacts. Biological Invasions. DOI 10.1007/s10530-016-1388-4 (2016).
12. Srinivasa RK, Pradeep KC, Anshuman P. Evaluation of anti-melanogenic activities of Flavonoid glycosides from Chromolaena odorata. Chemical and Pharmaceutical Bulletin. 2011; 59(1):129-131.
13. Esser D, Hoffmann L, Trong Khoo Pham, Brasen C, Wen Qiu, Wright PC, et al. Protein phosphorylation and its role in archael signal transduction. FEMS Microbiology Reviews. 2016; 40:629-647.
14. Chapman A, Causier B, Escaffre F, et al. A comprehensive analysis of the WNK1 kinase. Biochemistry. 2009; 48(7):3910-3918.
15. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EWT, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta. 2007; 1773:1263-1284.
16. Bennett D, Lyulcheva E, Alphay L. Towards a comprehensive analysis of the protein phosphatase 1 interactome in Drosohphia. Journal of Molecular Biology. 2008; 364:196-212.
17. Oliver CI, Shenolikar S. Physiological importance of protein phosphatase inhibitors. Frontiers of Bioscience. 1998; 3:961-972.
18. Watanabe T, Huang H, Horuchi A, da Cruz Silva EF, Hsieh-Wilson L, Allen PB, et al. Protein phosphatase 1 regulation by inhibitors and targeting subunits. PNAS. 2001; 98(6):3080-3085.
19. Leach C, Eto M, Brouetgian DL. Domains of type 1 protein phosphatase inhibitor-2 required for nuclear and cytoplasmic localization in response to cell-cell contact. Journal of Cell Science. 2002; 115(19):3739-3745.
20. Omakhu AG, McGaw LJ, Chukwujekwu JC, Finnie JF, Van Staden J. Chromolaena odorata (L.) R. M. King & H. Rob. (Asteraceae) in sub-Saharan Africa: A synthesis and review of its 6medicinal potential. Journal of Ethnopharmacology. 2016; 183:112-122.
21. Shackleton RT, Witt ABR, Nunda W, Richardson DM. Chromolaena odorata (Siam weed) in eastern Africa; distribution and socio-ecological impacts. Biological Invasions. DOI 10.1007/s10530-016-1388-4 (2016).
22. Srinivasa RK, Pradeep KC, Anshuman P. Evaluation of anti-melanogenic activities of Flavonoid glycosides from Chromolaena odorata. Chemical and Pharmaceutical Bulletin. 2011; 59(1):129-131.

HOW TO CITE THIS ARTICLE

Matawali A, Lee PC, How SE, Jaluan AG. Biological activities of Chromolaena odorata (L.) King and Robinson (Asteraceae) collected from Sabah, Malaysia as protein phosphatase type-1 inhibitor. J Phytopharmacol 2019; 8(1):01-04.