Blockchain Technology Immutability Framework Design in E-Government

Daelami Ahmad1), Ninda Lutfiani2)*, Alfian Dimas Ahsanul Rizki Ahmad3), Untung Rahardja4) & Qurotul Aini4)

1) Commercial Administration Study Program, Sekolah Tinggi Ilmu Administrasi Banten, Indonesia
2) Master of Information Technology Department, Universitas Raharja, Indonesia
3) Science and Technology, Universitas Raharja, Indonesia
4) Faculty of Engineering, Doctor of Philosophy, UTM Johor Bahru, Malaysia

Received: 05 October 2020; Reviewed: 18 December 2020; Accepted: 21 February 2021

*coresponding author: ninda@raharja.info

Abstract

This study was conducted to determine the capacity of Blockchain technology in recording transactions that occurred in the ledger and in general it also offer the government to be applied to the e-Government sector which can increase data transparency, avoid fraud, and increase public trust in the government. This problem also focused on the application, challenges in the future with respect to the allocation of Blockchain technology, and in the e-Government sector, the use of Blockchain technology did not appear to be the main focus therefore it needed deeper observational evidence for the use of Blockchain technology. In its application, the biggest challenges in utilizing blockchain were generally presented as innovations such as security, scalability, and flexibility. In order to approach this problem, theoretical references were used from pre-existing studies that discuss Blockchain technology, e-Government, public services, and the data were collected through indexed journals both on a national and international scale. And the review of this paper concluded that academic research in this sector had only just begun and the issues addressed in the literature were still very limited. Therefore, more intensive research in this area is still needed to advance this field of research academic research in this sector had only just begun and the issues addressed in the literature are still very limited.

Keywords: Blockchain; E-Government; Public Services; Public Sector.

How to Cite: Ahmad, D., Lutfiani, N., Ahmad, A.D.A.R., & Rahardja, U. (2021). Blockchain Technology Immutability Framework Design in E-Government. Jurnal Administrasi Publik (Public Administration Journal). 11 (1): 32-41.
INTRODUCTION

Disruptive is an innovative theory initiated by new industrial players that threaten old players (Lutfiani, Harahap, et al., 2020). In current's digital era, the internet is growing very rapidly. Global internet users have reached 4.57 billion, 60% of the world's total population of 7,794 billion as of June 2020 (Nisa et al., 2019; Rahardja et al., 2019). In terms of technological advances, we need a smart framework, which can help collaboration more effectively. Validity comes from the word validity which means the extent to which the accuracy and determination of a measuring instrument in carrying out its measurement function (Sudaryono et al., 2019; Sudaryono, Rochmawati, et al., 2020).

The framework should be strong enough to address governance across sectors such as organizations. Like POAC, the basic functions of POAC management have been widely applied in various sectors (Sudaryono, Rahardja, et al., 2020; Rahardja et al., 2020). Then making decisions based on the right data. Of course, the involvement of third parties can cost more. To solve this problem, various decentralized applications have been developed to allow peer-to-peer interaction between investors and developers (Hassija et al., 2020).

Over time, a new information technology innovation called Blockchain has emerged (Lutfiani, Oganda, et al., 2020). The emergence of Blockchain has paved the way for making peer-to-peer communication more open, fair, transparent, secure and cost-effective (Y. Hu et al., 2019; Puthal et al., 2014; Hassija et al., 2019).

Blockchain this was originally discovered around 1991 by the research team. In 2009 it was accepted by Satoshi Nakamoto to serve as Crypto Bitcoin currency. Blockchain is a new information technology innovation, disrupting services and industry, old institutional technology such as organization and corporate governance, markets, networks, and government (Berg et al., 2019).

At present, Blockchain technology is important, Blockchain can do many things, and there have been many technological innovations using Blockchain. Blockchain is a technology that can change the way markets and governments operate (Mesquita et al., 2020).

Blockchain technology has been considered the most innovative and most disruptive information technology of this century. It has been proven to be applicable in various areas beyond its first application, namely cryptocurrency, Bitcoin (Tshering & Gao, 2020). Systematically, the Blockchain workflow is likened to a “big ledger” or “big ledger” system, digitally distributed, and each transaction is cryptographically signed which is then entered into blocks that are connected to one another (Tang et al., 2019).

In general, Blockchain has the following main characteristics (Z. Zheng et al., 2017): Decentralization. Every transaction will be automatically validated and no third party will interfere. It can reduce errors, attacks from hackers, and transparency; Persistency, the recording mechanism in Blockchain technology, every record is impossible to change; Anonymity, with Blockchain technology, everyone who makes a transaction, the identity of that person will be disguised. In this way the user's privacy will be hidden and safe. Auditibility. All transactions will be stored sequentially so that they can be easily verified and tracked on the Blockchain.

In Eastern Europe, the governments have generally accepted Blockchain technology, and it has been used in various fields, such as registration in the justice system, health care system, security and others.
Governments around the world are testing the potential use of Blockchain in their public sector, in particular, for property registrations and notary deeds (Konashevych & Poblet, 2018). Dubai has implemented Blockchain technology in the public sector, by naming it FotoChai, the Dubai Government used Blockchain to reduce paper usage by digitally recording all important legal documents such as visas, bill payments, license renewals, etc.

The use of Information Technology (IT) to improve the public sector is often called e-Government (Batubara et al., 2019).

At first Blockchain technology aimed to maintain existing technologies in the government (Batubara et al., 2019). The application of Blockchain technology aims to improve public services to the public and data security. Based on the principle of decentralization, where intermediaries or third parties can be eliminated, Smart Contracts are the key, will automatically transfer assets when the specified conditions are met (Queiroz et al., 2019).

Blockchain technology, which is the core of cryptocurrencies such as Bitcoin, Etherium, Vexanium, is a new innovation and has enormous potential for application in the public sector. Blockchain has enormous potential for government, which makes work within the government more efficient in its application to public services and increases trust in the public sector (Konashevych, 2017). Not only it, the implementation of Blockchain can also be a big change in changing the way of recorded transactions.
Netherlands, United Arab Emirates, Estonia, Sweden and China took the initiative to implement Blockchain technology in the public sector (Batubara et al., 2018). Some of the benefits that can be taken from Blockchain technology are transparency, thus increasing trust. It is especially useful for developing countries because developing countries are more prone to corruption and fraud than developed countries (Batubara et al., 2018). Currently there are still less studies that discuss the application of Blockchain technology in different sectors, most studies focus on cryptocurrencies such as bitcoin (Yli-Huumo et al., 2016).

With the literature review that we used for this study, we provide an overview of the application of Blockchain technology in the public sector as an illustration for practitioners who are interested in conducting studies on this theme.

Therefore, a literature review is used to map the challenges in applying Blockchain technology in the government sector. In the next section the methods we follow is presented to locate the literature.

NON RESEARCH SYSTEMATICS

The importance of Blockchain technology in the public sector, make we conducted a literature review to be able to identify the latest study and potential uses of Blockchain technology in e-Government applications. To achieve it, we formulated several research questions. What are the challenges that must be faced in implementing Blockchain technology in e-Government applications?

In this paper, we used guidelines for systematic literature review, and used search terms such as “Blockchain” “Block Chain” “Government” “Public Service” “Public Sector”. We used three journal sources to find research articles: Scopus, ScienceDirect, SpringerLink, and Emerald. Titles, abstracts and keywords were used to search for published journal papers, conference proceedings, workshops, and symposia.

Blockchain characteristics	Advantages	Disadvantages
P2P	P2P transactions are possible without a third service provider.	When problems arise, it is uncertain who is responsible
Scalability	Easy to create, connect and expand by disclosed sources. reduced system development costs.	The number of transactions that allow payments to be handled is very small compared to the scale of transactions in the real economy
Transparency	All Transaction Records can be accessed by the public. Legalization of transactions and reduction of regulatory fees.	As transaction details are disclosed, all transactions are traceable. In principle, perfect guarantees for pseudo anonymity may be difficult and re-identification by combining them is possible
Security	Ledger jointly owned (integrity)	When a private key is hacked or lost, there is no general solution
System stability	There is not a single point of failure	Excavation focuses on large mining pools.
	If errors or impairments occur in a particular participant system, the effect on the entire network is very small	It’s hard to run large volume handling in real time.

Source: (Oh & Shong, 2017).
A number of additional criteria that have been determined for selecting a suitable study to be included in the literacy review must have several points, one of them is to be published in a reputable journal, then to present research on the implementation of Blockchain technology in the e-Government sector, and not to duplicate articles from other sources. The following are the criteria for scientific articles that we will be entered.

Eligible articles were manually read to check the relevance of our literature review. Evaluations based on full text reading reduced the number of articles to a number of articles.

Furthermore, we analyzed the data using qualitative analysis methods on several papers that have been collected, then we conducted an analysis by looking at the year of publication, type of publication, stages of the research process, and the problems mentioned in the selected articles.

Next we presented a description of the selected articles and analyzed them in order to discover the challenges they present in the implementation of Blockchain technology in the e-Government sector.

RESULTS AND DISCUSSION

In this section, the author presented the results of a literature review, presented a descriptive overview of the selected articles, then presented the challenges found in the selected articles.

Most of the research when discussing the implementation of Blockchain Technology to be applied to government / e-Government generally discusses ideas, potential benefits, current issues, potential uses (Kung et al., 2020; Hou, 2017; Margheri et al., 2017; Ølnes, 2016; Ølnes et al., 2017; Ølnes & Jansen, 2017). Then the application of Blockchain technology in the health sector was usually applied in the patient's medical track record(Tandon et al., 2020; Kung et al., 2020; Oflaz, 2019; Roehrs et al., 2019). Blockchain technology can create a secure and flexible ecosystem for exchanging electronic health records (EHRs/Electronic Health Records). This technology could also make Healthcare clearer by creating origins for organs, blood, critical medicine, etc. And also by storing all medical licenses/certificates in Blockchain, fraudulent doctor practices could be prevented. In addition, Blockchain could be applied in the education sector, then it could store such as education certificates, student data, faculty data, etc., is an important part that is played in the education sector. The origin of these certificates, data, and so on also needed to be concluded properly.
From table 2, we can see some written literature that discusses Blockchain technology in various sectors. The education and financial sectors are the sectors most observed and researched by researchers, however in the e-Government sector it is still very limited. Apart from the education and financial sectors, the researchers also discussed the Smart city sector, digital identity, e-Voting, and taxes. For example, in controlling the increase in cigarette consumption, the Indonesian government relied heavily on increasing excise and taxes on tobacco products (Nuvrianto, 2020).

The application of Blockchain technology can provide benefits, especially in the aspects of security, data transparency, and building public trust. The public service sector could be applied blockchain technology such as in taxation, for example in controlling and controlling the increase in cigarette consumption, the Indonesian government relied a lot on increasing excise and taxes on tobacco products (Nuvrianto, 2020), where with Blockchain technology could provide real time information, the tax payment process that did not require a lot of time and level can increase the level of transparency. Furthermore, on the other hand, the application of blockchain technology in other public services was in the context of digital identity, where Blockchain provided guarantees for the security of personal data.

In addition, the development of the application of blockchain technology in the e-government sector required a large amount of funding, so that readiness was needed in terms of human resources and society. There are several advantages that can be obtained when implementing blockchain technology in the e-Government sector.

CONCLUSION

Based on the results of the research and discussion that has been carried out, it can be understood thoroughly regarding the use of Blockchain technology in the e-Government sector. We have found that academic research in this sector has only just begun and that the issues addressed in the literature are very limited. Although there were already several countries that have implemented Blockchain technology in the e-Government sector, such as Dubai which used Blockchain to reduce paper usage by digitally recording all important legal documents. Therefore, more intensive research is needed in this field. In particular, empirical studies are needed, using rigorous research measures.
to be applied in the context of the e-Government sector.

BIBLIOGRAPHY

Ahluwalia, S., Mahto, R. V., & Guerrero, M. (2020). *Blockchain technology and startup financing: A transaction cost economics perspective. Technological Forecasting and Social Change, 151*, 119854. https://doi.org/10.1016/j.techfore.2019.119854

Batubara, F. R., Ubacht, J., & Janssen, M. (2018). Challenges of Blockchain technology adoption for e-government: a systematic literature review. *Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, 1–9.*

Berg, C., Davidson, S., & Potts, J. (2019). Capitalism after Satoshi: Blockchains, dehierarchisation, innovation policy, and the regulatory state. *Journal of Entrepreneurship and Public Policy, 9*(2), 152–164. https://doi.org/10.1108/JEPP-03-2019-0012

Bhushan, B., Khamparia, A., Sagayam, K. M., Sharma, S. K., Ahad, M. A., & Debnath, N. C. (2020). Blockchain for smart cities: A review of architectures, integration trends and future research directions. *Sustainable Cities and Society, 61*, 102360. https://doi.org/10.1016/j.scs.2020.102360

Brandão, A., Mamede, H. S., & Gonçalves, R. (2019). *A Smart City’s Model Secured by Blockchain BT - Trends and Applications in Software Engineering* (J. Mejía, M. Muñoz, Á. Rocha, A. Peña, & M. Pérez-Cisneros; eds.); pp. 249–260. Springer International Publishing.

Chen, G., Xu, B., Lu, M., & Chen, N.-S. (2018). Exploring Blockchain technology and its potential applications for education. *Smart Learning Environments, 5*(1), 1. https://doi.org/10.1186/s40561-017-0050-x

Choi, T.-M., & Luo, S. (2019). Data quality challenges for sustainable fashion supply chain operations in emerging markets: Roles of Blockchain, government sponsors and environment taxes. *Transportation Research Part E: Logistics and Transportation Review, 131*, 139–152. https://doi.org/10.1016/j. tre.2019.09.019

Fan, L., Cronemberger, F., & Gil-Garcia, J. R. (2020). Using Blockchain Technology to Manage IoT Data for Smart City Initiatives: A Conceptual Framework and Initial Experiments Based on Smart Contracts BT - Beyond Smart and Connected Governments: Sensors and the Internet of Things in the Public Sector (J. R. Gil-Garcia, T. A. Pardo, & M. Gasco-Hernandez (eds.); pp. 85–108). Springer International Publishing. https://doi.org/10.1007/978-3-030-37464-8_5

George, R. P., Peterson, B. L., Yaros, O., Beam, D. L., Dibbell, J. M., & Moore, R. C. (2019). Blockchain for business. *Journal of Investment Compliance, 20*(1), 17–21. https://doi.org/10.1108/joic-01-2019-0001

Guo, J., Li, C., Zhang, G., Sun, Y., & Bie, R. (2020). Blockchain-enabled digital rights management for multimedia resources of online education. *Multimedia Tools and Applications, 79*(15), 9735–9755. https://doi.org/10.1007/s11042-019-08059-1

Hassija, V., Bansal, G., Chamola, V., Saxena, V., & Sikdar, B. (2019). BlockCom: A Blockchain based commerce model for smart communities using auction mechanism. *2019 IEEE International Conference on Communications Workshops, ICC Workshops 2019 - Proceedings, 1–6*. https://doi.org/10.1109/ICCWW.2019.8756808

Hassija, V., Chamola, V., & Zeadally, S. (2020). BitFund: A Blockchain-based crowd funding platform for future smart and connected nation. *Sustainable Cities and Society, 60*, 102145. https://doi.org/10.1016/j.scs.2020.102145

Hossain, S., Saha, S., Akhi, J. F., & Helaly, T. (2020). *Automated Tax Return Verification with Blockchain Technology BT - Proceedings of International Joint Conference on Computational Intelligence* (M. S. Uddin & J. C. Bansal (eds.); pp. 45–55). Springer Singapore.

Hou, H. (2017). The application of Blockchain technology in E-government in China. *2017 26th International Conference on Computer Communication and Networks (ICCCN), 1–4.*

Hu, W., & Huanhao, L. (2020). *A Direct Transaction Model for Energy Blockchain Mobile Information System Based on Hybrid Quotation Strategy BT - Design, Operation and Evaluation of Mobile Communications* (G. Salvendy & J. Wei (eds.); pp. 33–51). Springer International Publishing.

Hu, Y., Manzoor, A., Ekparinya, P., Liyanage, M., Thilakarathna, K., Jourjon, G., & Seneviratne, A. (2019). *A Delay-Tolerant payment scheme based on the ethereum Blockchain*. *IEEE Access, 7*, 33159–33172.
Hyvärinen, H., Risius, M., & Friis, G. (2017). A Blockchain-based approach towards overcoming financial fraud in public sector services. Business & Information Systems Engineering, 59(6), 441–456.

Iftikhar, M. Z., Iftikhar, M. S., Jawad, M., Chand, A., Khan, Z., Khan, A. B. M., & Javaid, N. (2020). Efficient Resource Utilization Using Blockchain Network for IoT Devices in Smart City BT - Advances on Broad-Band Wireless Computing, Communication and Applications (L. Barolli, P. Hellinckx, & T. Enokido (eds.); pp. 521–534). Springer International Publishing.

Konashevych, O. (2017). The concept of the Blockchain-based governing: Current issues and general vision. Proceedings of the European Conference on E-Government, ECEG, 79–85.

Konashevych, O., & Poblet, M. (2018). Is Blockchain hashing an effective method for electronic governance? Frontiers in Artificial Intelligence and Applications, 313, 195–199. https://doi.org/10.3233/978-1-64999-935-5-195

Kung, H. H., Cheng, Y.-F., Lee, H.-A., & Hsu, C.-Y. (2020). Personal Health Record in FHIR Format Based on Blockchain Architecture BT - Frontier Computing (J. C. Hung, N. Y. Yen, & J.-W. Chang (eds); pp. 1776–1788). Springer Singapore.

Liang, W., Lei, X., Li, K.-C., Fan, Y., & Cai, J. (2020). A Dual-Chain Digital Copyright Registration and Transaction System Based on Blockchain Technology BT - Blockchain and Trustworthy Systems (Zibin Zheng, H.-N. Dai, M. Tang, & X. Chen (eds.); pp. 702–714). Springer Singapore.

Lutfiani, N., Harahap, E. P., Aini, Q., Ahmad, A. D. A. R., & Rahardja, U. (2020). Inovasi Manajemen Proyek I-Learning Menggunakan Metode Agile Scrumban. InfoTekjar: Jurnal Nasional Informatika Dan Teknologi Jaringan, 5(1).

Lutfiani, N., Oganda, F. P., Lukita, C., Aini, Q., & Rahardja, U. (2020). Desain dan Metodologi Teknologi Blockchain Untuk Monitoring Manajemen Rantai Pasokan Makanan yang Terdesentralisasi. InfoTekjar: Jurnal Nasional Informatika Dan Teknologi Jaringan, 5(1).

Margheri, A., Ferdous, M. S., Yang, M., & Sassone, V. (2017). A distributed infrastructure for democratic cloud federations. 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), 688–691.

Mesquita, L. A. F., Pozzebon, M., & Petrini, M. (2020). Blockchain and a Technological Perspective for Public Administration: A Systematic Review. Journal of Contemporary Administration, 25(1), 181–196.

Moura, T., & Gomes, A. (2017). Blockchain voting and its effects on election transparency and voter confidence. Proceedings of the 18th Annual International Conference on Digital Government Research, 574–575.

Nisa’, K., Rusfian, E., & Zaenab, Z. (2019). Managing Government Digital Reputation through Big Data Processing. JKAP (Jurnal Kebijakan Dan Administrasi Publik), 22(2), 72. https://doi.org/10.22146/jkap.31810

Nuvrianto, M. N. (2020). Government Challenges in Simplifying Tobacco Excise Rate Structure to Minimize Cigarette Manufacturer Excise tax Avoidance in Indonesia. 24(1), 43–60.

Oflaz, N. K. (2019). Using Smart Contracts via Blockchain Technology for Effective Cost Management in Health Services BT - Blockchain Economics and Financial Market Innovation: Financial Innovations in the Digital Age (U. Hacioglu (ed.); pp. 423–449). Springer International Publishing. https://doi.org/10.1007/978-3-030-25275-5_21

Ølønes, S. (2016). Beyond bitcoin enabling smart government using Blockchain technology. International Conference on Electronic Government, 253–264.

Ølønes, S., & Jansen, A. (2017). Blockchain technology as support infrastructure in e-government. International Conference on Electronic Government, 215–227.

Ølønes, S., Ubacht, J., & Janssen, M. (2017). Blockchain in government: Benefits and implications of distributed ledger technology for information sharing. Elsevier.

Orecchini, F., Santiangeli, A., Zuccari, F., Pieroni, A., & Suppa, T. (2019). Blockchain Technology in Smart City: A New Opportunity for Smart Environment and Smart Mobility BT - Intelligent Computing & Optimization (P. Vasant, I. Zelinka, & G.-W. Weber (eds.); pp. 346–354). Springer International Publishing.

Puthal, D., Malik, N., Mohanty, S. P., Kougianos, E., & Yang, C. (2014). The Blockchain as a Decentralized Security Framework. IEEE Consumer Electronics Magazine, 11, 17–19.

Queiroz, M. M., Telles, R., & Bonilla, S. H. (2019). Blockchain and supply chain management integration: a systematic review of the literature. Supply Chain Management, 25(2), 241–254. https://doi.org/10.1108/SCM-03-2018-0143
Rahardja, U. Lutfiani, N., Rafika, A. S., & Harahap, E. P. (2020). Determinants of Lecturer Performance to Enhance Accreditation in Higher Education. 2020 8th International Conference on Cyber and IT Service Management (CITSM), 1–7. https://doi.org/10.1109/CITSM50537.2020.0.9268871

Rahardja, Untung, Lutfiani, N., & Amelia, S. (2019). Creative Content Marketing In Scientific Publication Management In Industrial Era 4.0. Aptisi Transactions on Management (ATM), 3(2), 168–178. https://doi.org/10.33050/atm.v3i2.991

Rizal Batubara, F., Ubacht, J., & Janssen, M. (2019). Unraveling Transparency and Accountability in Blockchain. Proceedings of the 20th Annual International Conference on Digital Government Research, 204–213.

Roehrs, A., da Costa, C. A., da Rosa Righi, R., da Silva, V. F., Goldim, J. R., & Schmidt, D. C. (2019). Analyzing the performance of a Blockchain-based personal health record implementation. Journal of Biomedical Informatics, 92, 103140. https://doi.org/10.1016/j.jbi.2019.103140

Sudaryono, Rahardja, U., Aini, Q., Isma Graha, Y., & Lutfiani, N. (2019). Validity of Test Instruments. Journal of Physics: Conference Series, 1364(1). https://doi.org/10.1088/1742-6596/1364/1/012050

Sudaryono, Rahardja, U., & Lutfiani, N. (2020). The Strategy of Improving Project Management Using Indicator Measurement Factor Analysis (IMF) Method. Journal of Physics: Conference Series, 1477(3). https://doi.org/10.1088/1742-6596/1477/3/032023

Sudaryono, S., Rochmawati, R., Lutfiani, N., & Rahardja, U. (2020). Strategy Enhancing Employee Reward using the TOPSIS Method as a Decision Support System. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 14(4), 387–396.

Sullivan, C., & Burger, E. (2017). E-residency and Blockchain. Computer Law & Security Review, 33(4), 470–481. https://doi.org/10.1016/j.clsr.2017.03.016

Suyambu, G. T., Anand, M., & Janakirani, M. (2020). Blockchain – A Most Disruptive Technology On The Spotlight Of World Engineering Education Paradigm. Procedia Computer Science, 172, 152–158. https://doi.org/10.1016/j.procs.2020.05.023

Swan, M. (2019). Blockchain Economic Networks: Economic Network Theory—Systemic Risk and Blockchain Technology BT - Business Transformation through Blockchain: Volume I (H. Treiblmaier & R. Beck (eds.); pp. 3–45). Springer International Publishing. https://doi.org/10.1007/978-3-319-98911-2_1

Tandon, A., Dhir, A., Islam, A. K. M. N., & Mäntymäki, M. (2020). Blockchain in healthcare: A systematic literature review, synthesizing framework and future research agenda. Computers in Industry, 122, 103290. https://doi.org/10.1016/j.compind.2020.103290

Tang, Y., Xiong, J., Becerril-Arreola, R., & Iyer, L. (2019). Ethics of Blockchain: A framework of technology, applications, impacts, and research directions. Information Technology and People, 33(2), 602–632. https://doi.org/10.1108/ITP-10-2018-0491

Tshering, G., & Gao, S. (2020). Understanding security in the government’s use of Blockchain technology with value focused thinking approach. Journal of Enterprise Information Management, 33(3), 519-540. https://doi.org/10.1108/JEIM-06-2018-0138

Wang, J. (2020). Application of Blockchain Technology in Tax Collection and Management BT - Cyber Security Intelligence and Analytics (Z. Xu, R. M. Parizi, M. Hammoudeh, & O. Loyola-González (eds.); pp. 50–58). Springer International Publishing.

Wijaya, D. A., Liu, J. K., Suwarsono, D. A., & Zhang, P. (2017). A New Blockchain-Based Value-Added Tax System BT - Provably Secure (T. Okamoto, Y. Yu, M. H. Au, & Y. Li (eds.); pp. 471–486). Springer International Publishing.

Xiao, L., Deng, H., Tan, M., & Xiao, W. (2020). Insurance Block: A Blockchain Credit Transaction Authentication Scheme Based on Homomorphic Encryption BT - Blockchain and Trustworthy Systems (Zibin Zheng, H.-N. Dai, M. Tang, & X. Chen (eds.); pp. 747–751). Springer Singapore.

Xue, F., & Lu, W. (2020). A semantic differential transaction approach to minimizing information redundancy for BIM and Blockchain integration. Automation in Construction, 118, 103270. https://doi.org/10.1016/j.autcon.2020.103270

Yalaman, G. Ö., & Yıldırım, H. (2019). Cryptocurrency and Tax Regulation: Global Challenges for Tax Administration BT -
Blockchain Economics and Financial Market Innovation: Financial Innovations in the Digital Age (U. Hacioglu (ed.); pp. 407–422). Springer International Publishing. https://doi.org/10.1007/978-3-030-25275-5_20

Yli-Huumo, J., Ko, D., Choi, S., Park, S., & Smolander, K. (2016). Where is current research on Blockchain technology? - A systematic review. *PLoS ONE, 11*(10), 1–27. https://doi.org/10.1371/journal.pone.0163477

Yumna, H., Khan, M. M., Ikram, M., & Ilyas, S. (2019). *Use of Blockchain in Education: A Systematic Literature Review*. BT - Intelligent Information and Database Systems (N. T. Nguyen, F. L. Gaol, T.-P. Hong, & B. Trawiński (eds.); pp. 191–202). Springer International Publishing.

Zheng, Z, Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. *2017 IEEE International Congress on Big Data (BigData Congress)*, 557–564.