This information is current as of August 16, 2017.

IL-6, Leukemia Inhibitory Factor, and Oncostatin M Stimulate Bone Resorption and Regulate the Expression of Receptor Activator of NF-κB Ligand, Osteoprotegerin, and Receptor Activator of NF-κB in Mouse Calvariae

Py Palmqvist, Emma Persson, H. Herschel Conaway and Ulf H. Lerner

J Immunol 2002; 169:3353-3362; doi: 10.4049/jimmunol.169.6.3353

http://www.jimmunol.org/content/169/6/3353

References

This article cites 60 articles, 19 of which you can access for free at:
http://www.jimmunol.org/content/169/6/3353.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
IL-6, Leukemia Inhibitory Factor, and Oncostatin M Stimulate Bone Resorption and Regulate the Expression of Receptor Activator of NF-κB Ligand, Osteoprotegerin, and Receptor Activator of NF-κB in Mouse Calvariae

Py Palmqvist, Emma Persson, H. Herschel Conaway, and Ulf H. Lerner

IL-6, leukemia inhibitory factor (LIF), and oncostatin M (OSM) are IL-6-type cytokines that stimulate osteoclast formation and function. In the present study, the resorptive effects of these agents and their regulation of receptor activator of NF-κB ligand (RANKL), RANK, and osteoprotegerin (OPG) were studied in neonatal mouse calvaria. When tested separately, neither human (h) IL-6 nor the human soluble IL-6R (shIL-6R) stimulated bone resorption, but when hIL-6 and the shIL-6R were combined, significant stimulation of both mineral and matrix release from bone explants was noted. Semiquantitative RT-PCR showed that hIL-6 plus shIL-6R enhanced the expression of RANKL and OPG in calvarial bones, but decreased RANK expression. Human LIF, hOSM, and mouse OSM (mOSM) also stimulated 45Ca release and enhanced the mRNA expression of RANKL and OPG in mouse calvaria, but had no effect on the expression of RANK. In agreement with the RT-PCR analyses, ELISA measurements showed that both hIL-6 plus shIL-6R and mOSM increased RANKL and OPG proteins. 1,25-Dihydroxyvitamin D3 (D3) also increased the RANKL protein level, but decreased the protein level of OPG. OPG inhibited 45Ca release stimulated by RANKL, hIL-6 plus shIL-6R, hLIF, hOSM, mOSM, and D3. An Ab neutralizing mouse gp130 inhibited 45Ca release induced by hIL-6 plus shIL-6R. These experiments demonstrated stimulation of calvarial bone resorption and regulation of mRNA and protein expression of RANKL and OPG by D3 and IL-6 family cytokines as well as regulation of RANK expression in preosteoclasts/osteoclasts of mouse calvaria by D3 and hIL-6 plus shIL-6R. The Journal of Immunology, 2002, 169: 3353–3362.

References

1. Copyright © 2002 by The American Association of Immunologists, Inc.

The Journal of Immunology

Received for publication January 2, 2002. Accepted for publication July 18, 2002.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

2. Experiments were performed in the laboratory of the authors.

3. Address correspondence and reprint requests to Prof. Ulf H. Lerner, Department of Oral Cell Biology, Umeå University, Umeå, Sweden. E-mail address: ulf.lerner@odont.umu.se

4. Abbreviations used in this paper: RANKL, receptor activator of NF-κB ligand; AHP/lB, 3-amino-1-hydroxy-propylidene-1,1-bisphosphonate; D3, 1,25-dihydroxyvitamin D3; h, human; LIF, leukemia inhibitory factor; LIFR, LIF receptor; m, mouse; OPG, osteoprotegerin; OSM, oncostatin M; OSMR, OSM receptor; PTH, parathyroid hormone; RANK, receptor activator of NF-κB; shIL-6R, soluble human IL-6R.
gene disruption (25). These observations have strongly implicated IL-6 in the decrease in bone mass that occurs in postmenopausal osteoporosis (15). In addition, enhanced IL-6 levels have been noted in a number of other conditions characterized by excessive loss of bone, such as periodontal disease (17, 18), Paget’s disease (19), multiple myeloma (20), rheumatoid arthritis (21), and hyperparathyroidism (22). However, IL-6 has not been noted to be an effective stimulator of osteoclast formation in mouse bone marrow cultures unless combined with sIL-6R (26). Furthermore, when sIL-6R and IL-6 are not combined in commonly employed in vitro bone culture assays, such as neonatal mouse calvarial bones, bone resorption does not occur (27, 28).

Studies in rodents have indicated that LIF and OSM are involved in the regulation of bone remodeling and bone cell function (reviewed in Refs. 29 and 30). Like IL-6, LIF is produced by osteoblasts in response to parathyroid hormone (PTH) stimulation (31, 32). Both in vivo and in vitro studies have shown that LIF stimulates osteoclastogenesis and bone resorption in mouse calvaria (33, 34). Increased osteoclastogenesis has also been observed in mouse bone marrow cultures following treatment with LIF and OSM (35, 36). Consistent with these observations, transgenic mice overexpressing LIF have been noted to exhibit increased osteoclastic bone resorption (37). However, when mice with targeted deletions of the LIF receptor gene have been studied, they have been found to have increased numbers of osteoclasts and decreased bone volume (38), findings more in line with reports that have indicated small, but significant, inhibition of basal bone resorption in fetal mouse and rat long bones treated with LIF and OSM (39, 40).

While it is known that cytokines in the IL-6 family can stimulate bone resorption, few data defining the effects of IL-6-type cytokines on the expression of RANKL, RANK, and OPG exist. The aims of the present study were to: 1) determine whether IL-6 to- 2) determine whether OSM has a resorptive action similar to that of LIF in calvarial bones, and 3) assess the roles of RANKL, RANK, and OPG in the calvarial effects of IL-6, LIF, and OSM.

Materials and Methods

Materials

Recombinant human IL-6 (hIL-6), recombinant mouse IL-6 (mIL-6), recombinant human sIL-6R (shIL-6R), recombinant human OSM (hOSM), recombinant mouse OSM (mOSM), recombinant human IL-1β, recombinant mRANKL and mOPG fusion proteins, neutralizing anti-mouse gp130 Ab, and mOPG and mRANKL immunoaosbioassay kits were purchased from R&D Systems (Abingdon, U.K.); First Strand cDNA Synthesis Kit and PCR Core Kit were obtained from Life Technologies (Paisley, U.K.); TRIzol LS reagent, and oligonucleotide primers were obtained from Applied Biosystems (Foster City, CA); acetalzolamide, hydroxyurea, and essentially free fetal BSA were purchased from Sigma-Aldrich (St. Louis, MO); cDNA was kept at -20°C, and mRANKL preparations showing intact species were used for subsequent analysis. One microgram of total RNA was reverse transcribed into single-stranded cDNA with a First Strand cDNA Synthesis Kit using oligo(dT)18 primers. After incubation at 25°C for 10 min and at 42°C for 30 min, avian myeloblastosis virus reverse transcriptase was heat-denatured at 99°C for 5 min. cDNA was kept at -20°C until used for PCR.

Polymerase chain reactions

The synthesized cDNA was amplified by PCR using a PCR Core Kit and PC-960 Gradient Thermal Cycler (Corbett Research, Sydney, Australia). The PCR analyses for TRAP, GAPDH, RANKL, OPG, RANK, and OSM receptor (OSMR) were performed using PCR Core Kit standard protocol. In the PCR reactions for IL-6, the final MgCl2 concentration was changed from 1.5 to 1 mM, and from 2 mM for gp130 and LIF receptor (LIFR). The conditions for PCR of TRAP, GAPDH, gp130, IL-6R, LIFR, and OSMR were: denaturing at 94°C for 2 min, annealing for 40 s at 38°C for TRAP,
at 57°C for GAPDH, gp130, IL-6R, and OSMR, and at 55°C for LIFR, followed by elongation at 72°C for 60 s; in subsequent cycles denaturation was performed at 94°C for 40 s. Reaction conditions for RANKL, OPG, and RANK were as follows: denaturation at 94°C for 35 s, annealing at 65°C for 35 s, and elongation at 72°C for 60 s for 10 cycles. In subsequent cycles the primer annealing temperature was decreased stepwise by 5°C every five cycles from 65 to 45°C. The sequences of primers used were: TRAP sense, 5’-AAATCACTCCTCAAGAAGCAG-3’; TRAP antisense, 5’-TTATGGACGACGGTACA-3’; GAPDH sense, 5’-ACTCTTGGTACGTAGAACATTTATCTG-3’; RANK sense, 5’-GTTGCGGGAATTCATTGAAAT-3’; RANK antisense, 5’-GGGATTTACCAAGGTGCACAG-3’; OPG sense, 5’-TGGAATGCGAATTCTGGCT-3’; OPG antisense, 5’-TCAAGGTGCTGAGGGCATCA-3’; gp130 sense, 5’-CCACAGAATCGAGCAACTCCGT-3’; gp130 antisense, 5’-GGTGCCTGAGAAGCCATGGC-3’; LIFR: sense, 5’-AAGAGGTCACCTCCAGGGTGC-3’; IL-6R antisense, 5’-GGTATCGAAGCTGGAACCTTCCTCC-3’; IL-6R: sense, 5’-GTCAAGC. The GenBank accession numbers and the positions for the 5’ ends of the nucleotides for the predicted PCR products are as follows: TRAP: NM 007388, 1072–1384; GAPDH: M24259, 957–1223; RANKL: AF013170, 1031–1304; RANK: AF019046, 522–811; IL-6: AF019046, 302–602; LIFR antisense, 5’-TTGAAAGTCACTGTACACG-3’; LIFR sense, 5’-GGATGTACTTGTCGTTTGG; OSMR antisense, 5’-GATGTACACAGGCTGG; OSMR sense, 5’-GGTCAAGC. The estimated sizes of the PCR products were: TRAP, 313 bp; GAPDH, 267 bp; RANKL, 810 bp; OPG, 720 bp; RANK, 400 bp; gp130, 303 bp; IL-6R, 301 bp; LIFR, 164 bp; and OSMR, 420 bp. The identity of the PCR products was confirmed using a DYEanmarker terminator cycle sequencing kit (Amersham Biosciences, Amersham, U.K.) with sequences analyzed on an ABI 377 XL DNA sequencer (PE Applied Biosystems, Foster City, CA).

Protein analysis

Measurements of OPG and RANKL protein synthesis were assessed by analyzing the levels of OPG and RANKL in mouse calvarial bones using commercially available ELISAs. Following preincubation, a total of eight calvarial halves per group were individually incubated in 24-well plates in commercially available ELISAs. Following preincubation, a total of eight bones, six bones, and, as expected, resulted in an increased protein level of RANKL and a decreased protein level of OPG in the calvarial bones. These observations together with the results showing that our protein measurements after treatment with hIL-6 plus shIL-6R and mOSM were in agreement with the RT-PCR analyses suggest that the assessments of protein levels using the ELISAs reflect true changes in RANKL and OPG protein.

Statistics

Statistical analysis was performed using the nonparametric Kruskal-Wallis/Mann-Whitney U test.

Results

Effects of hIL-6, in the absence and the presence of shIL-6R, on bone resorption in neonatal mouse calvaria

Treatment for 96 h with hIL-6, mIL-6 (both 2–200 ng/ml), or shIL-6R (50–500 ng/ml) did not affect either 45Ca or 3H release from neonatal mouse calvarial bones (Fig. 1). However, when the bones were exposed to the combination of hIL-6 (200 ng/ml) and shIL-6R (500 ng/ml), both 45Ca and 3H release were significantly stimulated. The responses were less than those seen with either PTH or D3 at maximally effective concentrations (10 nmol/L), but similar to release caused by a maximum concentration of IL-1β (300 pg/ml).

When hIL-6 was maintained at a constant level (100 ng/ml), the release of 45Ca was dependent on the concentration of shIL-6R (15–500 ng/ml; Fig. 2A). Similarly, when the level of shIL-6R was kept constant (150 ng/ml), the release of 45Ca was related to the concentration of hIL-6 (5–50 ng/ml; Fig. 2B). In time-course experiments, significant stimulation of 45Ca release caused by hIL-6 plus shIL-6R (both 100 ng/ml) was observed at 24 h (the first time point studied; Fig. 2C). This release was similar to release caused by PTH (10 nmol/L) and IL-1β (300 pg/ml), although clearly less pronounced than that produced by PTH.

Stimulation of 3H release by hIL-6 plus shIL-6R (both 100 ng/ml) was significantly inhibited by calcitonin (1 nmol/L), the bisphosphonate AHPB (0.1 nmol/L) and acetalazolamide (0.1 nmol/L), three inhibitors of osteoclast activity that have different mechanisms of action (Fig. 3A). Semiquantitative RT-PCR analysis showed that the mRNA expression of TRAP, an osteoclast marker, was increased by hIL-6 plus shIL-6R (both 100 ng/ml) and D3 (10 nmol/L; Fig. 3B).

FIGURE 1. Effects of hIL-6 and shIL-6R on release of 45Ca (A) and 3H (B) from neonatal mouse calvarial bones cultured for 96 h. Responses are compared with those of PTH (10 nmol/L), D3 (10 nmol/L), and IL-1β (300 pg/ml). Significant increases (p < 0.05) in 45Ca and 3H release were noted following treatment with hIL-6 plus shIL-6R, PTH, D3, and IL-1β, whereas treatment with mIL-6, hIL-6, and shIL-6R separately did not result in any increase in 45Ca release. Values represent the means for six bones, and the SEMs are shown as vertical bars.
100 pg/ml) and PTH (10–100 pmol/L) were not potentiated by addition of shIL-6R (150 ng/ml; Fig. 4).

Importance of PGs in the bone resorption stimulated by hIL-6 and shIL-6R

When calvarial bones exposed to hIL-6 plus shIL-6R (both 100 ng/ml) were treated with either indomethacin (1 μmol/L) or flurbiprofen (1 μmol/L), two structurally different inhibitors of cyclooxygenase activity, a significant (p < 0.01), 40% inhibition of cytokine-stimulated 45Ca release was observed (data not shown). Treatment of mouse calvaria with hIL-6 and shIL-6R (both 100 ng/ml) resulted in a significant (p < 0.05), 4-fold stimulation of PGE2 formation, while treatment with IL-1β (300 pg/ml) and PTH (10 nmol/L) increased PGE2 release 2000- and 40-fold, respectively (data not shown).

Effects of hIL-6 and shIL-6R on the expressions of RANKL, RANK, and OPG in neonatal mouse calvaria

Semiquantitative RT-PCR analysis of mRNA expressions of RANKL, OPG, and RANK in bones treated with hIL-6 plus shIL-6R (both 100 ng/ml) for 24 h revealed that the expression of RANKL was increased, but the expression of RANK was decreased (Fig. 5A). The mRNA expression of OPG in bone treated with hIL-6 plus sIL-6R was also increased, but less than that of RANKL. Human IL-6, in the absence of shIL-6R, did not affect the expression of RANKL, RANK, or OPG (data not shown). Treatment of the bones with D3 (10 nmol/L) resulted in enhanced mRNA expression of both RANKL and RANK, but decreased expression of OPG (Fig. 5A). The semiquantitative RT-PCR analyses were normalized with GAPDH, and identical results were obtained in two independent experiments in which RT-PCR analyses were repeated three times. No bands were seen in samples in which the RT reactions were omitted, indicating no amplification of genomic DNA (data not shown).

ELISA measurements revealed that treatment with either hIL-6 plus shIL-6R (both 100 ng/ml) or D3 (10 nmol/L) for 48 h stimulated the synthesis of RANKL protein in calvarial bones (Fig. 5B). The synthesis of OPG protein was also increased by treatment with hIL-6 plus shIL-6R (both 100 ng/ml). In contrast, D3 (10 nmol/L) decreased the synthesis of OPG protein in calvarial bones (Fig. 5C). Similar data were obtained in three independent experiments.

Effects of OPG on bone resorption stimulated by RANKL, D3, and hIL-6 plus shIL-6R

RANKL (1–300 ng/ml) stimulated 45Ca release from mouse calvarial bones in a concentration-dependent manner. Half-maximal stimulation was found at 30 ng/ml, while maximum stimulation (2-fold) was noted at 200 ng/ml (Fig. 6A). OPG (300 ng/ml) abolished 45Ca release induced by RANKL (100 ng/ml; Fig. 6B). Similarly, OPG (3–300 ng/ml) significantly inhibited 45Ca release stimulated by both D3 (10 nmol/L) and hIL-6 plus shIL-6R (both...
100 ng/ml; Fig. 6, C and D). OPG did not affect unstimulated release of 45Ca in control bones (Fig. 6, B and C).

Effects of OPG on bone resorption stimulated by hLIF, hOSM, and mOSM

Human LIF, hOSM, and mOSM (0.1–100 ng/ml) caused concentration-dependent stimulation of 45Ca release from mouse calvaria (data not shown). Stimulation was seen at and above 0.3 ng/ml, with half-maximal effects at ~0.5–2 ng/ml. Maximum stimulation was observed at 10 ng/ml; 1.5-fold increases were noted with hOSM and hLIF, while a 1.9-fold increase was seen with mOSM. Treatment of calvarial bones with OPG (300 ng/ml) substantially decreased 45Ca release stimulated with hLIF, hOSM, and mOSM (all at 10 ng/ml; Fig. 7A). In these experiments OPG also caused a small inhibition of 45Ca release in the control group.

Effects of hLIF, hOSM, and mOSM on the expression of RANKL, RANK, and OPG in neonatal mouse calvaria

Treatment of mouse calvaria with hLIF, hOSM, or mOSM (10 ng/ml, respectively) for 24 h resulted in enhanced mRNA expressions of RANKL and OPG, but neither agent changed the expression of RANK (Fig. 7B–D). The analyses were normalized with GAPDH and repeated three times using RNA from two experiments. No bands were seen in samples in which the RT reactions were omitted, indicating that genomic DNA was not amplified (data not shown).

ELISA measurements revealed that treatment of calvarial bones with mOSM (10 ng/ml) for 48 h resulted in increased RANKL (Fig. 7E) and OPG (Fig. 7F) protein synthesis. In this experiment D$_3$ also caused induced RANKL and decreased OPG protein levels. Similar data were obtained in three independent experiments.

Expression of gp130, IL-6R, LIFR, and OSMR in neonatal mouse calvaria and calvarial osteoblasts

Calvarial bone as well as osteoblasts isolated from these bones expressed mRNA for gp130, IL-6R, LIFR, and OSMR (Fig. 8). Comparison of mRNA expression levels using a semiquantitative RT-PCR method revealed a lower expression level of IL-6R compared with the expression of LIFR and OSMR in both calvaria and isolated osteoblasts. No bands were seen in samples in which the RT reactions were omitted, indicating no amplification of genomic DNA (data not shown).

Effects of an Ab neutralizing gp130

Addition of anti-mouse gp130 (2 μg/ml) to calvarial bones inhibited 45Ca release stimulated by hIL-6 plus shIL-6R (50 ng/ml and...
FIGURE 6. Effects of OPG on 45Ca release stimulated by RANKL, D3, and hIL-6 plus shIL-6R. Bones were cultured for 96 h. A, RANKL dose-dependently stimulated bone resorption. Significant (p < 0.01) increases in 45Ca release were noted at 3–300 ng/ml. The statistically significant (p < 0.001) stimulatory effects on 45Ca release induced by RANKL (100 ng/ml; B), D3 (10 nmol/L; C), and hIL-6 plus shIL-6R (both 100 ng/ml; D) were studied in the absence and the presence of OPG. OPG caused significant (p < 0.001) inhibition of 45Ca release stimulated by RANKL, D3 (with both 90 and 300 ng/ml OPG), and hIL-6 plus shIL-6R (p < 0.01 at and above 90 ng/ml). Values represent the means for 12–24 bones, and SEMs are shown as vertical bars when larger than the height of the symbol. The values for release of 45Ca (percentage of initial) in unstimulated (control) bones in the experiments shown in A–D were 13.01 ± 0.55 (n = 17; A), 12.41 ± 0.36 (n = 24; B), 12.85 ± 0.44 (n = 23; C), and 12.63 ± 0.50 (n = 12; D).

Discussion

There is evidence suggesting that IL-6 can play an important role as a regulator of osteoclastogenesis in a number of disease states characterized by excessive resorption of bone (15–22). However, study of the cellular and molecular mechanisms responsible for the actions of IL-6 have been hampered by the lack of sensitivity to the cytokine displayed by various cell and organ culture systems (26–28). In agreement with two previous reports (27, 28), we found that periosteal/endoosteal resorption characteristic of neonatal mouse calvarial bones could not be stimulated by a wide range of IL-6 concentrations. Soluble receptor proteins can be inhibitors of ligand function, but that is not the case for sIL-6R. In the present study, we found that IL-6 was active in neonatal mouse calvaria only when added to bone cultures with sIL-6R. This is in agreement with investigations in mouse bone marrow cultures, where it has been shown that IL-6 does not stimulate osteoclast formation unless sIL-6R is present (26). Mineral and matrix breakdown were stimulated by hIL-6 plus shIL-6R in neonatal mouse calvarial bones. In addition, resorption stimulated by hIL-6 plus shIL-6R was blocked by three different osteoclast inhibitors: calcitonin, acetazolamide, and AHPBP. Moreover, mRNA expression of the osteoclast marker, TRAP, was increased. The function of TRAP in osteoclasts is not fully understood, but mice lacking TRAP display disrupted ossification and mild osteopetrosis, whereas transgenic mice overexpressing TRAP develop mild osteoporosis and decreased trabecular density (44, 45). Taken together, our data indicate that resorption caused by hIL-6 plus shIL-6R in neonatal mouse calvaria was mediated by osteoclasts.

Osteoclast formation stimulated by hIL-6 plus shIL-6R in mouse bone marrow cultures can be abolished by exposure to the cyclooxygenase inhibitor indomethacin (46). In neonatal mouse calvaria treated with hIL-6 plus shIL-6R, inhibition of resorption by indomethacin was 40%, and stimulation with hIL-6 plus shIL-6R caused only a small increase in PGE2, suggesting that the major portion of the resorptive effect of hIL-6 plus shIL-6R in calvarial explants was PG independent.

Members of the IL-6 family of cytokines, most notably IL-11 and IL-6, have been suggested to play important roles as mediators of other calcitrophic agents (47–49). In primary hyperparathyroidism patients have been shown to have increased serum levels of IL-6 that correlate with biochemical markers of bone resorption (22). IL-6 release from cultured calvarial bones was stimulated by PTH and IL-1B in the present study. However, resorption stimulated by these agents was not increased by addition of sIL-6R, suggesting that IL-6 is not a mediator of either PTH or IL-1β in neonatal mouse calvaria.

Similar to other IL-6-type cytokines, such as IL-11 and IL-6 (plus sIL-6R), both LIF and OSM were found to be stimulators of 45Ca release in neonatal mouse calvarial bones. Human LIF, hOSM, and mOSM were found to be equipotent, with half-maximal stimulation occurring at 0.5–2 ng/ml. This is the first report of OSM stimulating bone resorption in mouse calvaria. Our results showing...
that IL-6-type cytokines are potent resorptive agents in calvaria are in agreement with previous observations that have shown stimulation of osteoclast formation by IL-6 plus sIL-6R, IL-11, LIF, and OSM (14, 26, 35, 47). In the case of LIF the present study agrees with an investigation by Reid et al. (34) in which both human and mouse LIF were found to be in vitro stimulators of mouse calvarial bone resorption. In contrast and for unknown reasons, both LIF and OSM have also been found to exert small inhibitory effects on unstimulated (control) bone resorption in mouse and rat long bones without affecting PTH-stimulated resorption (39, 40).

Stimulation of biological activity by the IL-6 family of cytokines is dependent on the expression of biologically active cytokine binding proteins and functional gp130 protein. RT-PCR analysis demonstrated the expression of gp130 mRNA in both intact calvaria and calvarial osteoblasts. Since LIF and OSM as well as IL-11 stimulate bone resorption in mouse calvaria, a deficiency in functional gp130 cannot be the reason why IL-6 alone does not stimulate resorption. Other explanations for the depressed sensitivity to IL-6 include such possibilities as low expression of IL-6R or expression of a nonfunctional IL-6R (50). In the present study the former possibility seems to be the more plausible explanation, for RT-PCR analysis revealed only weak expression of IL-6R in whole calvaria and calvarial osteoblasts compared with mRNA
expression of the receptors for LIF and OSM. This marginal expression of IL-6R, together with the inability of IL-6 to stimulate resorption without added IL-6R, or to alter mRNA expression of RANKL, RANK, or OPG in calvarial explants suggest that a sufficient quantity of IL-6R is not present in mouse calvaria. Similar results have been noted in human osteoblasts (51, 52) and gingival fibroblasts (53), where low levels of mRNA expression for IL-6R have been associated with the inability of the fibroblasts to bind IL-6 and of the osteoblasts to respond to IL-6.

Recent in vitro studies have indicated that hOSM does not activate the mOSMR, but probably functions by binding to the mLIFR. Thus, mLIFR recognizes not only mLIF, but IL-6 and LIF as well. This suggests that the differences in the response of the calvarial explants to hOSM might be due to the absence of a functional mLIFR. However, the reasons for the low expression of IL-6R in mouse calvaria are not known. Further studies are needed to determine the role of IL-6R in the regulation of bone resorption and to understand the mechanisms by which IL-6R affects the expression of RANKL and OPG.

FIGURE 9. Effects of an Ab neutralizing gp130 (2 μg/ml) on 45Ca release significantly (p < 0.01) stimulated by hIL-6 plus shL-6R (50 and 100 ng/ml, respectively), hLIF, hOSM (both 50 ng/ml), mOSM (10 ng/ml; A), PTH, and D3 (both 0.1 nmol/L; B). A significant (p < 0.001) inhibition of the 45Ca release stimulated by hIL-6 plus shL-6R was noted. Values represent the means for 18 bones, and SEMs are shown as vertical bars. The values for release of 45Ca (percentage of initial) in unstimulated (control) bones were 13.07 ± 0.64 (A) and 12.96 ± 0.67 (B); n = 18.

FIGURE 10. Schematic drawing of the effects of major calcium-regulating hormones and IL-6 family cytokines on osteoclast formation mediated by RANKL, RANK, and OPG. IL-6 plus shL-6R, LIF, and OSM, functioning via gp130, induce increased expression of RANKL and OPG in osteoblasts (left panel). Also shown in the left panel are two major calcium regulatory hormones, PTH and D3, functioning via a membrane-bound PTH receptor subtype 1 and a cytosolic vitamin D receptor, respectively. PTH and D3 increase the expression of RANKL and decrease the expression of OPG. An excess (over OPG) of RANKL stimulates the receptor RANK, expressed on preosteoclasts. This leads to differentiation and fusion of preosteoclasts to multinucleated, bone-resorbing osteoclasts. An osteoblast plasma membrane equipped with receptors for IL-6, IL-11, LIF, and OSM as well as the signal transducing protein gp130 is depicted in the right panel. Binding of IL-6 or IL-11 to their respective receptors promotes homodimerization of gp130 molecules. The LIF and OSM receptors heterodimerize with gp130. Activation of the Janus kinase/STAT pathway by the IL-6 family of cytokines increases the expression of both RANKL and OPG. In contrast, PTH and D3 increase RANKL expression, but decrease that of OPG. This is probably the explanation for why the bone-resorptive responses to PTH and D3 are larger than those caused by the IL-6-type cytokines.
probably hOSM as well (54–56). This multifunctional ability of mLIFR may provide an explanation for the similarities in the actions of hOSM and hLIF on 45Ca release and the mRNA expression of RANKL and OPG in the present study.

Unlike hOSM, mOSM does not bind to mLIFR. In mouse cells, mOSM is thought to form a low affinity complex with gp130, which then binds to the OSMR type II to form a high affinity signaling complex (56, 57). Because of the different receptors activated by human and mouse OSM, we studied the responses of both human and mouse OSM in the calvarial system. The actions of mOSM were indistinguishable from those of hOSM and hLIF, suggesting that activation of mouse OSM and LIF receptors results in similar effects on resorption.

An Ab neutralizing gp130 significantly inhibited 45Ca release stimulated by hL-6 plus shIL-6R, but failed to block resorption caused by hLIF, hOSM, and mOSSM. The possibility that this failure to suppress hLIF, hOSM, and mOSSM was the result of too low a concentration of Ab is not likely, for inhibition did not occur when the concentration of Ab was increased. However, it is possible that the activity of the anti-gp130 Ab is altered depending on whether gp130 homodimerization or heterodimerization occurs. In a recent study by Ahlén et al. (58) the bone-resorptive effect of IL-11 was significantly increased by addition of the anti-gp130 Ab. Perhaps the ability of the anti-gp130 Ab to interfere with both IL-6 and IL-11 signaling, but not with LIF or OSM signaling, might be due to IL-6 and IL-11 binding to their respective receptors before forming a signaling complex with a gp130 homodimer, whereas LIF and OSM bind to heterodimers consisting of their respective receptor and gp130 (see Fig. 10). Still another possibility may be related to the recent observations by O’Brien et al. (36). These investigators showed that increasing the expression of gp130 in a stromal/osteoblastic cell line resulted in increased STAT3-dependent promoter activity and enhanced osteoclast formation in response to IL-6 plus sIL-6R, but decreased STAT3 activity and osteoclast formation in response to OSM.

In the present study, anti-gp130 did not affect PTH- or D3-induced bone resorption. This is consistent with the fact that stimulation of osteoclast formation by PTH and D3 is not affected in dominant negative STAT3 or gp130 cells (14). Furthermore, the osteoclastogenic responses to PTH and D3 are not affected by modulating gp130 expression levels (36).

Recent studies have shown that IL-11 stimulates RANKL and OPG mRNA expression in osteoblasts and mouse calvaria (58, 59) without affecting the mRNA expression of RANK in the calvarial bones (58). Exogenous addition of OPG will also inhibit the calvarial bone-resorptive response of IL-11 (58). In the present study, three additional members of the IL-6 family of cytokines, IL-6 (plus sIL-6R), LIF, and OSM, were found to be good stimulators of resorption in neonatal mouse calvarial bones. These cytokines as well as D3 also enhanced the mRNA expression of RANKL. Moreover, IL-6 plus sIL-6R, OSM, and D3 were all shown to stimulate RANKL protein synthesis (see Fig. 10). The importance of increased RANKL expression in the resorptive responses of D3 and the IL-6 family was demonstrated by showing that calvarial bone resorption stimulated by D3, hIL-6 plus shIL-6R, hLIF, hOSM, and mOSSM as well as that stimulated by exogenous RANKL could be blocked by OPG.

In addition to increasing the mRNA expression of RANKL, D3 decreased the expression of OPG and increased the expression of RANK. This alteration in the profile of RANKL, OPG, and RANK offers an explanation for why D3 caused greater stimulation of neonatal mouse calvarial bone resorption than the IL-6-type cytokines. In the case of LIF and OSM, these agents increased mRNA expression of the decoy receptor, OPG, and had no effect on RANK. Enhanced stimulation of mRNA expression for OPG was additionally noted with hIL-6 plus shIL-6R, but hIL-6 plus shIL-6R decreased the expression of mRNA for RANK. In agreement with the RT-PCR analysis, hIL-6 plus shIL-6R and mOSSM were found to increase OPG protein levels, whereas D3 caused a decrease. Although there has been a great deal of study of the regulation of RANKL and OPG in stromal cells/osteoblasts, there are very few data currently available on the regulation of RANK in preosteoclasts and osteoclasts. In preliminary studies we have observed that the mouse preosteoclastic cell line, Raw 264.7, expresses mRNA for both D3 receptors and gp130 (E. Persson and U. H. Lerner, unpublished observations). This suggests that the regulation of RANK by D3 and hIL-6 plus shIL-6R in neonatal mouse calvarial bones may be due to a direct effect of these agents on osteoclasts.

In summary, IL-6 was found to be a good stimulator of osteoclastic bone resorption when combined in calvarial bones with sIL-6R. LIF and OSM were also observed to be IL-6-type cytokines capable of stimulating bone resorption in calvaria. In addition, neonatal mouse calvarial bones proved to be a good model for comparing the resorptive effects of D3 and the IL-6 family of cytokines with the mRNA expression of RANK and mRNA expression and protein synthesis of RANKL and OPG. The roles of RANKL, RANK, and OPG in osteoclast formation and bone resorption stimulated by major calcium regulatory hormones and the IL-6-type cytokines and their receptors are summarized in Fig. 10.

Acknowledgments

We thank Birgir Andurtun for skilful technical assistance and Dr. Pernilla Lundberg for valuable advice.

References

1. Teitelbaum, S. L. 2000. Bone resorption by osteoclasts. Science 289:1501.
2. Suda, T., N. Takahashi, N. Udagawa, E. Imiti, M. T. Gillespie, and T. J. Martin. 1995. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endo Rev. 20:345.
3. Hoffbauer, L. C., C. S. Khosla, C. R. Dunstan, D. L. Lacey, W. J. Boyle, and B. L. Riggs. 2000. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J. Bone Miner. Res. 15:22.
4. Lerner, U. H. 2000. Osteoclast formation and resorption. Matrix Biol. 19:107.
5. Kong, Y.-Y., H. Yoshida, I. Sarosi, H.-L. Tan, E. Timms, C. Capparelli, S. Morony, A. J. Oliveira-dos-Santos, G. Van, A. Irie, et al. 1999. OPG is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315.
6. Dougall, W. C., M. Glaccum, K. Charrier, K. Rohrbach, B. Brasil, T. De Smedt, E. Daro, J. Smith, M. E. Tometsko, C. R. Maliszewski, et al. 1999. RANK is an intramembranous cell surface factor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97:5156.
7. Yoshida, H., S. Hayashi, T. Kamisada, M. Ogawa, S. Nishikawa, H. Okamura, T. Sudo, D. Shultz, and S. Nishikawa. 1999. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 395:442.
8. Bucay, N., I. Sarosi, C. R. Dunstan, S. Morony, J. Tarpley, C. Capparelli, S. Scully, H. L. Tan, W. Xu, D. L. Lacey, et al. 1998. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12:2412.
9. Li, J., I. Sarosi, X.-Q. Yan, S. Morony, C. Capparelli, H.-L. Tan, S. McCabe, R. Elliott, S. Scully, G. Van, et al. 2000. RANK is the intrinsic hematopoietic cell surface factor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97:5156.
10. Heinrich, P. C., I. Behrmann, G. Müller-Newen, F. Schaper, and L. Graeve. 1998. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334:297.
11. Senaldi, G., B. C. Varum, U. Sarmiento, C. Starnes, J. Lile, S. Scully, J. Guo, G. Elliott, J. McNinch, C. L. Shackle, et al. 1999. Novel neuropeptide-Y/B cell stimulatory factor-3: a cytokine of the IL-6 family. Proc. Natl. Acad. Sci. USA 96:11458.
12. Kishimoto, T., S. Akira, M. Narazaki, and T. Taga. 1995. Interleukin-6 family of cytokines and gp130. Blood 86:1243.
13. Kishimoto, T., T. Taga, and S. Akira. 1994. Cytokine signal transduction. Cell 76:253.
14. O’Brien, C. A., I. Gubrij, S. C. Lin, R. L. Saylors, and S. C. Manolagas. 1999. STAT3 activation in stromal osteoblastic cells is required for induction of the receptor activator of NF-κB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone. J. Biol. Chem. 274:19301.
IL-6 STIMULATES BONE RESORPTION AND RANKL.

causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121:1283.

Lorenzo, J. A., S. L. Sousa, and C. L. Leahy. 1990. Leukemia inhibitory factor (LIF) inhibits basal bone resorption in fetal rat long bone cultures. Cytokine 2:266.

Jay, P. R., M. Centrella, J. Lorenzo, A. G. Bruce, and M. C. Horowitz. 1996. Oncostatin-M: a new bone active cytokine that stimulates osteoblasts and inhibits bone resorption. Endocrinology 137:1151.

Lerner, U. H. 1987. Modifications of the mouse calvarial technique improve the responsiveness to stimulators of bone resorption. J. Bone Miner. Res. 2:375.

Boonekamp, P. M., J. W. Hekkelman, J. W. Hamilton, D. V. Cohn, and R. L. Jilka. 1984. Effect of culture on the hormone responsiveness of bone cells isolated by an improved sequential digestion procedure. Proc. Kon. Ned. Akad. Wet. 87:371.

Hayman, A. R. S., J. J. Jones, A. Boyde, D. Foster, W. H. Colledge, M. B. Carlton, M. J. Evans, and T. M. Cox. 1996. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteoporosis. Development 122:3151.

Angel, N. Z., N. Walsh, M. R. Forwood, M. C. Ostrowski, I. A. Cassady, and D. A. Hume. 2000. Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. J. Bone Miner. Res. 15:103.

Tai, H., C. Miyaura, C. C. Pilbeam, U. Masiukiewicz, B. H. Sun, R. L. Jilka, S. C. Manolagas, and R. L. Jilka. 1996. In vivo demonstration that parathyroid hormone and parathyroid hormone-related protein stimulate expression by osteoblasts of interleukin-6 and leukemia inhibitory factor. J. Clin. Invest. 93:1151.

Wet. 87:165.

Tajima, Y. Murayama. 1999. Role of soluble interleukin-6 receptor in in vivo osteoclast formation. J. Bone Miner. Res. 15:243.

A. Yamaguchi, T. Kishimoto, T. Suda, and S. Kashiwazaki. 1996. Interleukin-6 does not stimulate bone remodeling: emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med. 332:305.

The effects of IL-6 on osteoclast differentiation and resorption: a new perspective for bone remodeling. J. Bone Miner. Res. 13:1513.

Thomasson, A. M., S. A. Lavish, G. D. Roodman, and S. C. Manolagas. 1999. Interleukin-6 stimulation of RANKL and osteoclastogenesis is independent of IL-10. J. Bone Miner. Res. 14:1572.

Wet. 87:165.

Tajima, Y. Murayama. 1999. Role of soluble interleukin-6 receptor in in vivo osteoclast formation. J. Bone Miner. Res. 15:243.

A. Yamaguchi, T. Kishimoto, T. Suda, and S. Kashiwazaki. 1996. Interleukin-6 does not stimulate bone remodeling: emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med. 332:305.

The effects of IL-6 on osteoclast differentiation and resorption: a new perspective for bone remodeling. J. Bone Miner. Res. 13:1513.

Thomasson, A. M., S. A. Lavish, G. D. Roodman, and S. C. Manolagas. 1999. Interleukin-6 stimulation of RANKL and osteoclastogenesis is independent of IL-10. J. Bone Miner. Res. 14:1572.

Wet. 87:165.

Tajima, Y. Murayama. 1999. Role of soluble interleukin-6 receptor in in vivo osteoclast formation. J. Bone Miner. Res. 15:243.

A. Yamaguchi, T. Kishimoto, T. Suda, and S. Kashiwazaki. 1996. Interleukin-6 does not stimulate bone remodeling: emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med. 332:305.

The effects of IL-6 on osteoclast differentiation and resorption: a new perspective for bone remodeling. J. Bone Miner. Res. 13:1513.

Thomasson, A. M., S. A. Lavish, G. D. Roodman, and S. C. Manolagas. 1999. Interleukin-6 stimulation of RANKL and osteoclastogenesis is independent of IL-10. J. Bone Miner. Res. 14:1572.

Wet. 87:165.

Tajima, Y. Murayama. 1999. Role of soluble interleukin-6 receptor in in vivo osteoclast formation. J. Bone Miner. Res. 15:243.

A. Yamaguchi, T. Kishimoto, T. Suda, and S. Kashiwazaki. 1996. Interleukin-6 does not stimulate bone remodeling: emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med. 332:305.

The effects of IL-6 on osteoclast differentiation and resorption: a new perspective for bone remodeling. J. Bone Miner. Res. 13:1513.

Thomasson, A. M., S. A. Lavish, G. D. Roodman, and S. C. Manolagas. 1999. Interleukin-6 stimulation of RANKL and osteoclastogenesis is independent of IL-10. J. Bone Miner. Res. 14:1572.

Wet. 87:165.