Influence of Orbital Character on the Ground State Electronic Properties in the van Der Waals Transition Metal Iodides VI$_3$ and CrI$_3$

Alessandro De Vita, Thao Thi Phuong Nguyen, Roberto Sant, Gian Marco Pirentozzi, Danila Amoroso, Chiara Bigi, Vincent Polewczyk, Giovanni Vinai, Loi T. Nguyen, Tai Kong, Jun Fujii, Ivana Vobornik, Nicholas B. Brookes, Giorgio Rossi, Robert J. Cava, Federico Mazzola, Kunihiko Yamauchi, Silvia Picozzi, and Giancarlo Panaccione

Cite This: Nano Lett. 2022, 22, 7034−7041

ABSTRACT: Two-dimensional van der Waals magnetic semiconductors display emergent chemical and physical properties and hold promise for novel optical, electronic and magnetic “few-layers” functionalities. Transition-metal iodides such as CrI$_3$ and VI$_3$ are relevant for future electronic and spintronic applications; however, detailed experimental information on their ground state electronic properties is lacking often due to their challenging chemical environment. By combining X-ray electron spectroscopies and first-principles calculations, we report a complete determination of CrI$_3$ and VI$_3$ electronic ground states. We show that the transition metal-induced orbital filling drives the stabilization of distinct electronic phases: a wide bandgap in CrI$_3$ and a Mott insulating state in VI$_3$. Comparison of surface-sensitive (angular-resolved photoemission spectroscopy) and bulk-sensitive (X-ray absorption spectroscopy) measurements in VI$_3$ reveals a surface-only V$^{2+}$ oxidation state, suggesting that ground state electronic properties are strongly influenced by dimensionality effects. Our results have direct implications in band engineering and layer-dependent properties of two-dimensional systems.

KEYWORDS: Electronic structure, van der Waals systems, ARPES, DFT

Research on two-dimensional (2D) van der Waals (vdW) materials has been recently boosted by the discovery of layer-dependent long-range magnetic order, Dirac physics, as well as Mott transitions. Among 3d transition-metal vdW semiconductors, CrI$_3$ and VI$_3$ have attracted significant attention, as they undergo structural and electronic transitions as a function of temperature, net long-range magnetization within layers, and in the case of CrI$_3$ layered antiferromagnetism. The importance of dimensionality effects has been recognized and for this reason the majority of experimental and theoretical work has focused on monolayers and few-layers films. However, both the interplay of dimensionality with relevant interactions, such as spin–orbit coupling (SOC), and the possible crossover of 3D vs 2D electronic properties are not well understood. In this respect, open questions include: (i) the role of Coulomb interaction and SOC in determining the 3d electronic states and their long- and short-range ordered collective excitations; (ii) if and how the orbital filling in the electronic ground state is modified at the surface, (iii) what are the changes in the bandwidth and of the hybridization of halogen and transition metal states when dimensionality is reduced. These issues need to be addressed, since they have a significant impact in the potential electronic and spintronic applications, and their control may drive the realization of tailored heterostructures.

The crystal structure of MI$_3$ (M = Cr, V) is characterized by one M cation surrounded by six I anions, arranged in edge-sharing octahedra. Within the planes, the M atoms are arranged in a honeycomb geometry (Figure 1a). CrI$_3$ undergoes a structural transition at T_{SGI3} = 220 K from the high-temperature monoclinic structure to the low-temperature rhombohedral structure $R3\bar{3}$, while VI$_3$ changes from the rhombohedral structure $R\bar{3}$ above $T_{SGVI3} = 79$ K to a monoclinic phase below the transition temperature. Concerning the electronic structure, for VI$_3$, two different descriptions were proposed in literature: (i) a metallic ground
valence band contributions, revealing that the orbital character itself has a profound influence on the ground state electronic properties. The good consistency between experimental data and DFT single-layer calculations suggest that interlayer interactions are less important in determining the stable electronic configuration for both CrI$_3$ and VI$_3$. vdW crystals are quasi-two-dimensional systems with little interaction along the c-axis layer stacking direction. The extreme surface-sensitivity of ARPES when performed with photon energies in the 20−55 eV range (from 5 to 10 Å$^{-1}$ corresponding to a single layer unit) allows to study the single-layer electronic structure of MI$_3$, referring to the surface-projected BZ reported in Figure 1b. We also report, for reference, in Figure 1c,d the expected crystal field splitting and related electronic filling for Cr$^{3+}$ and V$^{3+}$, respectively.

XAS measurements across the V and Cr L$_{2,3}$ edges (Figure 2a,b) confirm the 3$^+$ oxidation state of bulk CrI$_3$ and VI$_3$. As a matter of fact, the line shape and photon energy of L$_1$ and L$_2$ edges of the former are fully consistent with previous measurements on CrI$_3$ while V L$_{2,3}$ edges of the latter closely resemble those of other vanadium compounds with a V$^{3+}$ valence state such as V$_2$O$_5$, including the characteristic V 2p to V 3d empty t_{2g} transitions in the near-edge regions at 514 and 522 eV$\,\,$27,28 The spectra of both compounds are unaffected by contamination as they were cleaved \textit{in-vacuo}.

XAS spectra are intrinsically integrated over a thickness of 4−6 nm of material,29 and as such it does not retain information coming from the very first layer of CrI$_3$ and VI$_3$. The direct surface analysis and investigation of the energy and overall symmetry of the electronic states of VI$_3$ and CrI$_3$ was addressed by collecting k_z−k_z photoemission intensity maps at constant energy (see Figure 2c−f) and energy-momentum spectra, (see Figure 2k−l). Experimental results were compared to DFT calculated electronic structures, where the U value was changed in the range between 0 and 3 eV (see SI, Methods and Figure S1) for both materials, seeking the best agreement with ARPES data. The calculations were performed for a single-layer with FM configuration, i.e. the magnetic ground state in monolayer form for VI$_3$ and CrI$_3$, both with and without SOC. The magnetization direction, when SOC was included, was out-of-plane, consistently with the orientation of the magnetic moments. We note that our ARPES data were measured above the Curie temperature; nevertheless, a much better agreement is found with spin-polarized DFT, rather than with nonmagnetic DFT calculations. The latter would in fact result in a metallic ground state, inconsistent with experimental results on these materials. Local magnetic correlations may actually occur even above the Curie temperature and this is implied by the good agreement of experimental data and spin-polarized DFT, even in the absence of long-range magnetic ordering.

Our experimental data show the existence of a sizable bandgap (the distance between the valence band maximum and the conduction band minimum) for both systems and allow us to evaluate the bandgap energies to be larger than 0.9 eV for VI$_3$ and 1.35 eV for CrI$_3$. These values have been obtained by comparing ARPES data to the experimentally determined Fermi level (see Methods). It is important to underline that the experimental bandgap values are lower limits for the full bandgap, as ARPES detects occupied electron-density of states (DOS) only; in addition, the presence of small charging effects of cleaved surfaces 30−32 cannot be excluded. The latter are common and well-understood in ARPES experiments.

Figure 1. (a) Crystal structure of CrI$_3$ and VI$_3$ monolayers. (b) Two-dimensional Brillouin zone. Crystal-field splitting and related electron filling for (c) Cr and (d) V.
measurements of insulating compounds and can determine an artifactual rigid shift of the Fermi level of a few hundreds of millielectronvolts, without further changes in the band structure, as we verified in our measurements (see SI Figure S2). We note that we cannot use DFT calculations (as reported in SI Figure S3) for quantitative comparison, as the underestimate of band gaps is a well-known DFT problem in treating excited states.

Nevertheless, a good agreement with previous experimental results is found, yielding a similar value obtained from optical measurements for CrI$_3$ and also both from optical and spectroscopic measurements for VI$_3$.

From Figure 2, we note that the overall electronic structures of VI$_3$ and CrI$_3$ show several similarities. In fact, the 3d electronic states originating from V or Cr give rise to similar nearly dispersionless features in the VB, whose intensity is prominent in the collected spectra (Figure 2k,l). The energy in red in the top-right corner of each map is the binding energy of the isoenergetic cut. DFT calculation of the total energy map with contours shown as black lines for specific energies of VI$_3$ (g) 1.15 eV, (i) 2 eV and CrI$_3$ (h) 2.3 eV, (j) 1.8 eV. Dashed lines in each image represent the 2D hexagonal first Brillouin zone. The energy in red in the top right corner of each map is the binding energy of the isoenergetic cut. ARPES spectra of (k) VI$_3$ (T = 150 K, hv = 32 eV) and (l) CrI$_3$ (T = 300 K, hv = 32 eV) along the Γ−K direction. Theoretical band structures with FM configuration and SOC for VI$_3$ (GGA+U, U = 2 eV) and CrI$_3$ (bare GGA) monolayers are superimposed on experimental data. The colors highlighting the bands represent the following components for V/Cr d-orbital, red denotes d$_{3z^2-r^2}$, green denotes d$_{xz}$ and d$_{yz}$, yellow denotes d$_{xy}$ and d$_{x^2-y^2}$. For I p-orbital, gray denotes p$_z$, magenta denotes p$_y$, blue denotes p$_x$.

Figure 2. XAS spectrum of CrI$_3$ (a) over the Cr L$_{2,3}$ edge (T = 300 K), and VI$_3$ (b) over the V L$_{2,3}$ edge (T = 150 K). ARPES isoenergetic k_x−k_y maps of VI$_3$ (T = 150 K, hv = 32 eV) at (c) 1.15 eV and (e) 2 eV, and CrI$_3$ (T = 300 K, hv = 41 eV) at (d) 2.3 eV and (f) 1.8 eV, highlight the 3-fold symmetry of V/Cr-d states and the 6-fold symmetry of I-p states. The energy in red in the top-right corner of each map pinpoints the binding energy of the isoenergetic cut. DFT calculation of the total energy map with contours shown as black lines for specific energies of VI$_3$ (g) 1.15 eV, (i) 2 eV and CrI$_3$ (h) 2.3 eV, (j) 1.8 eV. Dashed lines in each image represent the 2D hexagonal first Brillouin zone. The energy in red in the top right corner of each map is the binding energy of the isoenergetic cut. ARPES spectra of (k) VI$_3$ (T = 150 K, hv = 32 eV) and (l) CrI$_3$ (T = 300 K, hv = 32 eV) along the Γ−K direction. Theoretical band structures with FM configuration and SOC for VI$_3$ (GGA+U, U = 2 eV) and CrI$_3$ (bare GGA) monolayers are superimposed on experimental data. The colors highlighting the bands represent the following components for V/Cr d-orbital, red denotes d$_{3z^2-r^2}$, green denotes d$_{xz}$ and d$_{yz}$, yellow denotes d$_{xy}$ and d$_{x^2-y^2}$. For I p-orbital, gray denotes p$_z$, magenta denotes p$_y$, blue denotes p$_x$.

https://doi.org/10.1021/acs.nanolett.2c01922

Nano Lett. 2022, 22, 7034−7041
hand, the I-derived 5p orbitals are very dispersive and the orbital-mixing is strong for both VI$_3$ and CrI$_3$. The orbital character of these bands, as inferred from DFT, shows that the SOC is crucial for explaining the observed energy-momentum spectra. The effect of SOC modulates the band structure involving the V/Cr d$_{z^2}$ and I p$_x$−p$_y$ orbitals at binding energies of ∼1 eV in VI$_3$ and around 2.5 eV in CrI$_3$. Moreover, the inclusion of SOC is relevant in closing the gap between V a$_{1g}$ and I p bands at Γ (see SI Figure S1).

Despite I p bands being fairly similar, our results show that VI$_3$ and CrI$_3$ behave in a different way from the electronic point of view. To emphasize this point, we carried out polarization-dependent measurements on both compounds. p-polarized light has both in-plane and out-of-plane components of the wavevector with respect to the sample surface, whereas s-polarized light has only the in-plane component. By exploiting the light polarization dependence we are thus selectively sensitive to in- and out-of-plane orbitals (Figure 3).

For VI$_3$, we clearly see in Figure 3a that the orbitals contributing to the spectroscopic signal at ∼1 eV are mostly out of plane, that is, those with a$_{1g}$ character. A value of U = 2 eV is thus found to best simulate our data. Higher values of U would shift the V a$_{1g}$ states up toward the Fermi level, opening a gap between them and the I bands which is not observed in the experiment (Figure S1h). Lower values of U, instead, would place V d$_{xy}$ and d$_{yz}$ orbitals at an energy of ∼1 eV (Figure S1e-f) which is inconsistent with the data.

ARPES results for CrI$_3$ are in striking difference with those shown above for VI$_3$. First, from Figure 3a we deduce that bands at 2.5 eV BE are ascribed to the out-of-plane d$_{3z^2-r^2}$ orbitals. Second, we observe that, as soon as U values different from zero are introduced in the DFT calculations, those orbitals move to higher BEs (Figure S1n−p), a feature that is not observed by ARPES. This can be interpreted as follows. CrI$_3$ exhibits t$_{2g}$−e$_{g}$ crystal-field splitting of d states; the different orbital filling of Cr$^{3+}$ ions compared to V$^{3+}$ results in a t$_{2g}$ level completely filled by majority electrons. The orbital splitting between e$_g$ and t$_{2g}$ orbital states is sufficiently large in this case to stabilize a fully insulating state, even in the absence of a finite U-value within the DFT+U approach.

Another relevant difference between the two compounds is that DFT calculations compare well with ARPES spectra with the exception of the a$_{1g}$ orbital filling of VI$_3$. The a$_{1g}$ are clearly revealed as filled states by ARPES, while are predicted to be empty by DFT consistently with a V$^{3+}$ ionic charge. On top of this, XAS results also indicate a V$^{3+}$ valency of the bulk. This peculiar behavior is nevertheless clearly revealed by ARPES, which probes just the topmost layer of the material, therefore

![Figure 3](https://doi.org/10.1021/acs.nanolett.2c01922)
including intrinsic and extrinsic surface effects like relaxation and defect-doping effects that can be responsible of the local electron filling of the a_g band. We thus suggest that a different ground state, characterized by a V^{2+} orbital filling, stabilizes at the surface: it turns out that the gap between filled and empty states observed in ARPS measurements is opened by the octahedral crystal field, rather than that by the bulk trigonal crystal field splitting of a_g and e_g levels. On the other hand, CrI_3 does not show any evidence of a different surface electronic environment.

In Figure 2c–f, we note that the constant energy ARPS maps for VI_3 and CrI_3 display a different symmetry in connection with the orbital character of the electronic states. I 5p states display an apparent 6-fold symmetry, while V and Cr 3d states show a 3-fold symmetric pattern, differently from DFT results (reported in Figure 2g–j). The 3-fold symmetry of V 3d states is highlighted also in SI Figure S4. Indeed, the expected trigonal symmetry is not necessarily reproduced in our single-layer calculations, since the primitive cell encompasses two layers. In previous works, it has been suggested that such a pattern could be connected with the onset of the ferromagnetic ground state,13 that breaks time-reversal symmetry when VI_3 undergoes the magnetic transition. At the surface, this combines with the loss of inversion symmetry, giving rise to a P–T symmetry-breaking system. Our ARPS data (150 K for VI_3, 300 K for CrI_3) were collected at sample temperatures well above the Curie point (CrI_3, T_{C,GI} = 61 K; VI_3, T_{C,VI} = 50 K), and suggest a different interpretation with respect to the one given in ref 23. The reduction of symmetry of ARPS constant energy maps with respect to DFT results may be ascribed to surface effects, that are not accounted for in the DFT simulations of VI_3 and CrI_3 single-layers (i.e., not for semi-infinite crystals). However, we cannot rule out the existence of magnetic fluctuations and their role in breaking time-reversal symmetry.

The relevance of short-range magnetic interactions in vdW magnetic materials, including VI_3, has been pointed out by numerous studies.13,35–38 Well above the Curie temperature, thermal fluctuations randomly orient the electron spins in the valence band, but the nonmagnetic ground state can be locally described in terms of orbital filling of the TM states by majority electrons. The occurrence of magnetic fluctuations well above the Curie point in the absence of long-range order is well-documented for correlated materials;39–42 the observed narrow bandwidth of V- and Cr-derived 3d bands hints at the importance of electron–electron interactions as well. Furthermore, V- and Cr-projected states would be more affected by short-range correlation effects, while the 3 contribution to the magnetic moment is negligible,43 leaving the symmetry of I 5p states as dictated by the structure. The intralayer atomic arrangement does not change even at the structural transition that both crystals undergo at T_{S,GI} = 220 K and T_{S,VI} = 78 K, involving only layer stacking. The comparison of calculations and surface-sensitive experimental data allows us to conclude that the band structure is largely unaffected across the structural transitions.

We also measured ResPES, exploiting the selective abrupt changes of photoionization cross sections, to identify the orbital contributions to the spectra. V 3d orbitals contributing to the bands at 1 eV BE, and similarly Cr 3d orbitals contributing to the bands at 2.5 eV BE, are resonantly enhanced when the photon energy reaches the photoionization threshold of the V and Cr 3p core levels, respectively. In this way, we experimentally probe the atomic character of the wave functions contributing to ARPS intensities. The large signal enhancement of the nondispersing bands when the photon energy coincides with the 3p edges (Figure 4a,c) is a direct signature of their V/3d orbital nature, and can be mapped onto the DFT orbital projection of the DOS (Figure 4b,d).

![Figure 4.](https://doi.org/10.1021/acs.nanolett.2c01922)

Photons energy dependent ARPS, such as ResPES, intrinsically also probes the k dispersion. The absence of dispersion of both V and Cr projected bands, highlighted by the EDC spectra (Figure 4a–c, right panel), indicates that those states are “2D-like” with negligible interlayer interaction (assuming no artifacts are introduced by rescaling the spectra to compensate charging effects). The consistency of ARPS results with single-layer calculations appears therefore strengthened.

In summary, we characterized the ground-state electronic structure of CrI_3 and VI_3: based on the excellent agreement between photoemission data (angle-resolved, light polarization-dependent and resonant) and DFT-calculated band dispersion and orbital-resolved density of states, we give evidence of how substantially different can be the orbital configuration of magnetic trihalides for different TM ions. CrI_3 shows a 3-fold t_{3g} orbital degeneracy and a wide bandgap, while VI_3 shows a Mott-insulator-like ground state with a_{1g} orbital splitting and a narrower bandgap. Single-layer band structure calculations compare well with ARPS spectra suggesting weak electronic interaction between layers, including between the surface layer and the bulk. Moreover, the occupancy of the a_{1g} state at the surface of VI_3 indicates that its surface is stabilized by an unconventional V^{2+} state, at variance with the V^{3+} bulk valency. Therefore, future research in ultrathin films or
nanoparticles of MI\textsubscript{3} van der Waals materials with variable surface to bulk ratios should carefully explore the effective ionic configurations that determine their electronic properties and related potential functionalities.

■ ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.2c01922.

Methods and experimental details, beamline specifications, additional calculations (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Giancarlo Panaccione — Laboratorio TASC, in Area Science Park, Istituto Officina dei Materiali (IOM)-CNR, I-34149 Trieste, Italy; Email: panaccione@iom.cnr.it

Authors
Alessandro De Vita — Laboratorio TASC, in Area Science Park, Istituto Officina dei Materiali (IOM)-CNR, I-34149 Trieste, Italy; Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
Gian Marco Pierantozzi — Laboratorio TASC, in Area Science Park, Istituto Officina dei Materiali (IOM)-CNR, I-34149 Trieste, Italy
Danila Amoroso — Consiglio Nazionale delle Ricerche (CNR-SPIN), Unità di Ricerca presso Terzetti c/o Università “G. D’Annunzio”, 66100 Chieti, Italy
Thao Thi Phuong Nguyen — Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
Chiara Bigi — Laboratorio TASC, in Area Science Park, Istituto Officina dei Materiali (IOM)-CNR, I-34149 Trieste, Italy; School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
Vincent Polewczk — Laboratorio TASC, in Area Science Park, Istituto Officina dei Materiali (IOM)-CNR, I-34149 Trieste, Italy
Giovanni Vinai — Laboratorio TASC, in Area Science Park, Istituto Officina dei Materiali (IOM)-CNR, I-34149 Trieste, Italy
Loi T. Nguyen — Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
Tai Kong — Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
Jun Fujii — Laboratorio TASC, in Area Science Park, Istituto Officina dei Materiali (IOM)-CNR, I-34149 Trieste, Italy
Ivana Vobornik — Laboratorio TASC, in Area Science Park, Istituto Officina dei Materiali (IOM)-CNR, I-34149 Trieste, Italy
Nicholas B. Brookes — ESRF, The European Synchrotron, F-38043 Grenoble, France

Giovanni Picci — Consiglio Nazionale delle Ricerche (CNR-SPIN), Unità di Ricerca presso Terzetti c/o Università “G. D’Annunzio”, 66100 Chieti, Italy

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.nanolett.2c01922

Author Contributions
A.D.V., S.P., and G.P. designed the research; A.D.V., T.T.P.N., R.S., G.M.P., D.A., C.B., V.P., G.V., J.F., I.V., N.B.B., F.M., K.Y., S.P., and G.P. performed the research; some of the crystals were grown at Princeton University by R.J.C. and T.K.; A.D.V., T.T.P.N., R.S., G.M.P., D.A., C.B., V.P., G.V., N.B.B., F.M., K.Y., S.P., and G.P. analyzed data; T.T.P.N. and K.Y. performed calculations, discussing results with D.A. and S.P.; A.D.V., T.T.P.N., F.M., K.Y., S.P., and G.P. wrote the paper with contributions of all authors. All authors have given approval to the final version of the manuscript.

Author Contributions
A.D.V. and T.T.P.N. contributed equally.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was performed in the framework of the Nanoscience Foundry and Fine Analysis (NFFA-MUR) facility and was supported by JST-CREST (No. JPMJCR18T1). A part of the computation in this work, using the VASP code in the GGA approximation, was performed by using the facilities of the Supercomputer Center, the Institute for Solid State Physics, the University of Tokyo and MASAMUNE-IMR, Center for Computational Materials Science, Institute for Materials Research, Tohoku University (Project No. 20K0045).

■ REFERENCES

(1) Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nature Nanotechnology 2019, 14, 408.
(2) Samarth, N. Magnetism in flatland. Nature 2017, 546, 216.
(3) Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; Johnston-Halperin; E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E. Progresses, Challenges and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7, 2898.
(4) Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cipelletti, A.; Pizzi, G.; Marzari, N. Two-dimensional materials from high-throughput
computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252.

(5) Yang, T. Y.; Wan, Q.; Yan, D. Y.; Zhu, Z.; Wang, Z. W.; Peng, C.; Huang, Y. B.; Yu, R.; Hu, J.; Mao, Z. Q.; Li, S.; Yang, S. A.; Zheng, H.; Jia, J. F.; Shi, Y. G.; Xu, N. Directional massless Dirac fermions in a layered van der Waals material with one-dimensional long-range order. Nat. Mater. 2020, 19, 27.

(6) Chen, L.; Stone, M. B.; Kolesnikov, A. I.; Winn, B.; Shin, W.; Dai, P.; Chung, J. H. Massless Dirac magnons in the two-dimensional van der Waals honeycomb magnet CrI3. 2D Materials 2022, 9, 015006.

(7) Wang, Y. P.; Long, M. Q. Electronic and magnetic properties of van der Waals ferromagnetic semiconductor VI. Phys. Rev. B 2020, 101, 024411.

(8) Ke, L.; Katsnelson, M. I. Electron correlation effects on exchange interactions and spin excitations in 2D van der Waals materials. npj Computational Materials 2021, 7, 4.

(9) He, J.; Ma, S.; Lyu, P.; Nachtigall, P. Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers. Journal of Materials Chemistry C 2016, 4, 2518.

(10) Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, Di.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H.; Yao, W.; Xiao, D.; Jarillo-Herrero, P.; Xu, X. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

(11) Gati, E.; Inagaki, Y.; Kong, T.; Tava, R. J.; Furukawa, Y.; Canfield, P. C.; Bud’Ko, S. L. Multiple ferromagnetic transitions and metallicity with intrinsic ferromagnetism in vanadium trihalide layers. Science 2018, 360, 1259–1262.

(12) Son, S.; Coak, M. J.; Lee, N.; Kim, J.; Kim, Y. T.; Hamidov, H. Z.; Cho, H.; Liu, C.; Jarvis, D. M.; Brown, P. A. C.; Kim, J. H.; Park, C. H.; Khomsik, D. I.; Saxena, S. S.; Park, J. G. Bulk properties of the van der Waals hard ferromagnet VI. Phys. Rev. B 2019, 99, 041402.

(13) Tian, S.; Zhang, J. F.; Li, C.; Ying, T.; Li, S.; Zhang, X.; Liu, K.; Lei, H. Ferromagnetic van der Waals Crystal VI. J. Am. Chem. Soc. 2019, 141, 5326.

(14) McGuire, M. A.; Dixit, H.; Cooper, V. R.; Sales, B. C. Coupling of CrI3 to a monolayer of MoS2. Chem. Mater. 2015, 27, 612.

(15) Reyes-Retana, J. A.; Cervantes-Sodi, F. Spin-orbital effects in metal-dichalcogenide semiconducting monolayers. Sci. Rep. 2016, 6, 24093.

(16) Zoller, K.; Gmitra, M.; Fabian, J. Swapping Exchange and Spin-Orbit Coupling in 2D van der Waals Heterostructures. Phys. Rev. Lett. 2020, 125, 196402.

(17) Nguyen, T. T. P.; Yamauchi, K.; Oguchi, T.; Amoroso, D.; Picozzi, S. Electric-field tuning of the magnetic properties of bilayer VI: A first-principles study. Phys. Rev. B 2021, 104, 014414.

(18) Huang, C.; Wu, F.; Wu, S.; Jena, P.; Kan, E. Discovery of twin orbital-order phases in ferromagnetic semiconducting VI1 monolayer. Phys. Chem. Chem. Phys. 2020, 22, S12.

(19) Yang, K.; Fan, F.; Wang, H.; Khomsik, D. I.; Wu, H.; VI1: A two-dimensional Ising ferromagnet. Phys. Rev. B 2020, 101, 104042.

(20) Kong, T.; Stolze, K.; Timmons, E. I.; Tao, J.; Ni, D.; Guo, S.; Yang, Z.; Prozorov, R.; Cava, R. J. VI – a New Layered Ferromagnetic Semiconductor. Adv. Mater. 2019, 31, 1808074.

(21) Zhou, L.; Kumar Pandey, S.; Feng, J. Dynamical correlation enhanced orbital magnetization in VI. Phys. Rev. B 2021, 103, 035137.

(22) Wang, Z.; Gutiérrez-Lezama, I.; Ubríg, N.; Kroner, M.; Gibertini, M.; Taniguchi, T.; Watanabe, K.; Imamoglu, A.; Giannini, E.; Morpurgo, A. V. Large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 2018, 9, 2516.

(23) Kundu, A. K.; Liu, Y.; Petrovic, C.; Valla, T. Valence band electronic structure of the van der Waals ferromagnetic insulators: VI and CrI3. Sci. Rep. 2020, 10, 15602.

(24) Frisk, A.; Duffy, L. B.; Zhang, S.; van der Laan, G.; Hesjedal, T. Magnetic X-ray spectroscopy of two-dimensional CrI3 layers. Mater. Lett. 2018, 232, 5–7.
Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation. *Rev. Sci. Instrum.* 2009, 80, 043105.

(43) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* 1996, 54, 11169.

(44) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 1996, 77, 3865.