William Stafford Noble*

Department of Genome Sciences
University of Washington
Foege Building, S340A
3720 15th Ave NE, Box 357730
Seattle, WA 98195
Tel: (206) 543–8930 Fax: (206) 685–7301
wnoble@uw.edu
http://noble.washington.edu/~noble
Pronouns: he/him

Education
1991 B.S. with honors and distinction in Symbolic Systems, concentrating in Philosophical Foundations, Stanford University. Prof. Fred Dretske, advisor.
1996 M.S. in Computer Science, University of California, San Diego.
1998 Ph.D. in Computer Science and Cognitive Science, University of California, San Diego. Prof. Charles Elkan, advisor.

Employment and Professional Appointments
1989 Center for Strategic Technology and Research, Andersen Consulting, Chicago, IL (internship).
1990–91 SRI International, Menlo Park, CA.
1991–93 United States Peace Corps Volunteer, Lesotho, southern Africa.
1994 Entropic Research Laboratory, Palo Alto, CA.
1998–99 Postdoctoral fellow, University of California, Santa Cruz. Prof. David Haussler, advisor.
1999–02 Assistant Professor, Department of Computer Science, Columbia University, with joint appointment at the Columbia Genome Center.
2002–06 Assistant Professor, Department of Genome Sciences, University of Washington
2002–06 Adjunct Assistant Professor, Department of Computer Science and Engineering, University of Washington
2005–06 Adjunct Assistant Professor, Department of Medicine, University of Washington
2006–11 Associate Professor, Department of Genome Sciences, University of Washington
2006–11 Adjunct Associate Professor, Department of Computer Science and Engineering, University of Washington
2006–11 Adjunct Associate Professor, Department of Medicine, University of Washington
2013–20 Director, Computational Molecular Biology Program, University of Washington
2011– Professor, Department of Genome Sciences, University of Washington
2011– Adjunct Professor, Department of Computer Science and Engineering, University of Washington
2011– Adjunct Professor, Department of Medicine, University of Washington
2012– Adjunct Professor, Department of Biomedical Informatics and Medical Education, University of Washington
2014– Senior Data Science Fellow, University of Washington eScience Institute
2020–21 Interim Chair, Department of Genome Sciences, University of Washington

*Formerly William Noble Grundy: see http://noble.gs.washington.edu/~noble/name-change.html
Awards
1987 National Merit Scholar
1987 David Starr Jordan Scholar, Stanford University
1991 Phi Beta Kappa, Stanford University
1994–97 Fellow, National Defense Science and Engineering Graduate Fellowship Program
1998–99 Fellow, Alfred P. Sloan Foundation and U.S. Department of Energy Postdoctoral Fellowships in Computational Molecular Biology
2000–02 Pharmaceutical Research and Manufacturers of America Foundation Faculty Development Award in Bioinformatics
2001–06 National Science Foundation CAREER Award
2001–05 Research Fellow, Alfred P. Sloan Foundation
2010 University of Washington Postdoc Mentor of the Year
2013 Fulbright Specialist Grant, African Institute for Mathematical Sciences, Muizenberg, South Africa
2015–6 Clarivate Analytics list of “Highly cited researchers”
18–20
2017 Fellow, International Society for Computational Biology
2018–19 Chair, BDMA review panel, National Institutes of Health
2019 Innovator Award, International Society for Computational Biology
2021 Team Science Award, ENCODE Consortium, National Institutes of Health

Professional Activities

Board memberships Member, Board of Directors, International Society for Computational Biology, 2008–2011.

Editorial boards

• Guest co-editor, Special issue on Machine Learning for Bioinformatics, IEEE Transactions on Computational Biology and Bioinformatics, 2004.

• Journal of Bioinformatics and Computational Biology, 2004–2020.

• IEEE Transactions on Computational Biology and Bioinformatics, 2005–2020.

• PLOS Computational Biology, Associate Editor, 2008–2012; Deputy Editor, 2012–present.

• Quantitative Biology, 2012–present.

• Rapid Communications in Mass Spectrometry, Editorial Advisory Board, 2018–2021.

• BMC Bioinformatics, Associate Editor, 2018–present.

Scientific advisory boards

• X-Mine, Inc., Hayward, CA, 2000–2002.

• Bioinformatics of Mammalian Gene Expression project, Canada’s Michael Smith Genome Centre, Vancouver, BC, Canada, 2004–2006.

• Center for Functional Genomics and HCV-Associated Liver Disease, University of Washington, 2006–2007.

• National Center for Systems Biology, Institute for Systems Biology, Seattle, WA, 2006–2009.

• DNAnexus, Mountain View, CA, 2012–present.
Review panels National Institutes of Health:

- Special Bioinformatics Study Section, March 12, 2003
- Special Bioinformatics Study Section, June 30, 2004
- Bioengineering Research Partnership Study Section, 13 Dec 2004
- Special Bioinformatics Study Section, March 17–18, 2005
- Bioengineering Sciences and Technologies special emphasis panel on “Microarray data analysis, data integration and data exploration,” August 5, 2005
- National Cancer Institute special emphasis panel on “Advanced proteomic platforms and computation science for the NCI clinical proteomic technologies initiative,” June 26–27, 2006
- National Cancer Institute special emphasis panel on “Advanced Genomic Data Analysis and Visualization Methods for TCGA Data,” April 2, 2008
- Topics in Biomedical Engineering, February 14, 2011.
- GCAT special emphasis panel, July 5, 2011.
- HLBP1 Workgroup, January 11, 2012.
- NIDDK—Collaborative Interdisciplinary Team Science Research, February 19, 2013.
- Biodata Management and Analysis, Jan 2007, Oct 2008, Feb 2009, Oct 2011, Feb 2012, Oct 2012, Jun 2013
 - Member, Biodata Management and Analysis, July, 2014–Sep, 2017.
 - Chair, Biodata Management and Analysis, October, 2017–Jun, 2019.
- Topics in Bacterial Pathogenesis, March 18, 2020.
- Member Conflicts - Bioengineering, Biodata, and Biomodeling Technologies, July 29, 2022.

Panelist, National Science Foundation

- Information Technology Research at the Intersection of Biology and Informatics, 2001.
- Advances in Biological Informatics, Division of Biological Infrastructure, 2015.

Program committee memberships Machine learning and artificial intelligence conferences:

- American Association for Artificial Intelligence 1998, 2016–2020 (Senior PC member for 2018).
- Knowledge Discovery in Databases 2000, 2003
- Biological Knowledge Discovery in Databases 2002, 2013
- Conference on Learning Theory 2003
- International Conference on Machine Learning 2004, 2008, 2013–2016, 2019–2021.
- International Joint Conference on Artificial Intelligence 2009
- Neural Information Processing Systems, 2003–2016, 2018–2021
• Neural Information Processing Systems Workshop on Machine Learning Open Source Software 2006, 2008
• Neural Information Processing Systems Workshop on Mining and Learning with Graphs 2008, 2009
• Neural Information Processing Systems Workshop on Machine Learning in Computational Biology 2005–2017, 2019–2020
• Machine Learning in Systems Biology 2009
• Uncertainty in Artificial Intelligence 2013–2016
• AISTATS 2017–2021
• International Conference on Learning Representations 2019–2020, 2022

Bioinformatics conferences:
• Intelligent Systems for Molecular Biology 2002–2009, 2011–2016, 2018–2021.
• Research in Computational Biology (RECOMB) 2004, 2007–2015, 2017–2022
• RECOMB Computational Proteomics Satellite 2007, 2010–2012
• RECOMB Massively Parallel Sequencing Satellite, 2012, 2014
• Genome Informatics Workshop 2005–2009
• European Conference on Computational Biology 2005
• Bioinformatics Research and Development (BIRD) 2007
• Computational Systems Biology 2009
• ACM Conference on Bioinformatics, Computational Biology and Biomedicine (ACM-BCB) 2011, 2015–2016, 2020-2022.
• ASE/IEEE International Conference on BioMedical Computing 2012–2013
• BioKDD 2013, 2016, 2019–2020, 2022
• ISCB Africa ASBCB 2013
• High Throughput Sequencing Conference (HitSeq) 2014–2015
• Workshop on Algorithms in Bioinformatics 2015–2016, 2019–2021.
• Workshop on Machine Learning in Systems Biology 2016
• International Conference on Algorithms for Computational Biology 2017–2019
• IEEE International Conference on BioInformatics and BioEngineering (BIBE) 2018
• RECOMB/ISCB Conference on Regulatory and Systems Genomics with DREAM Challenges 2020

Area chair, Bioinformatics and Kernel Methods, Twenty-first Annual Conference on Neural Information Processing Systems, Whistler, BC, Dec 3–8, 2007.
Co-chair, Machine Learning in Computational Biology Workshop, Twentieth Annual Conference on Neural Information Processing Systems, Whistler, BC, 2005–2008.
Member, College of CSR Reviewers, National Institutes of Health. March, 2010–present.
Area chair, Bioinformatics and Kernel Methods, Twenty-fourth Annual Conference on Neural Information Processing Systems, Whistler, BC, Dec 6–11, 2010.

Co-chair, Workshop on the Structure and Function of Chromatin and Chromosomes, Pacific Symposium on Biocomputing, The Big Island of Hawaii, January 3–7, 2012.

Co-chair, Special Session on Computational Methods for Elucidating Nuclear Structure and Dynamics, Intelligent Systems for Molecular Biology Conference, Long Beach, CA, USA, July 15–17, 2012.

Co-chair, Epigenomics session, Pacific Symposium on Biocomputing, The Big Island of Hawaii, January 3–7, 2013.

Co-chair, Mass Spectrometry & Proteomics Track, Intelligent Systems for Molecular Biology Conference, July 11-15, 2014.

Co-chair, Bioinformatics Group, American Society for Mass Spectrometry Annual Conferences, 2019 and 2020.

Co-chair, CompMS Community of Special Interest for ISCB, 2018–2020.

Journal referee
Journal	2015	2016	2017	2018	2019	2020	2021
Analytical Chemistry	2						
BMC Bioinformatics				1			
Bioinformatics	2	1	3	3	1		
Chromosome Research	1						
Cell Systems					1		
Communications Biology						1	
eLife		1	1				
Epigenomics & Chromatin							
FEBS Letters	1						
Genome Research	4	4	1	2	2	1	
Genes						1	
G3							1
Journal of Proteome Research	1	2	1	3	1	1	
Molecular & Cellular Proteomics							
Molecular Systems Biology	1						
Nucleic Acids Research							1
Nature	1	1	4	1	4		
Nature Biotechnology	1	1	1	1	1	1	2
Nature Communications	1	2	1	2		1	1
Nature Evolution & Ecology							1
Nature Genetics				1	2	1	
Nature Materials							1
Nature Methods	2	1	1	1	1	3	
Nature Reviews Genetics							1
Nature Structural Biology							1
Nature Structural Molecular Biology							1
Nucleic Acids Research					1		
PLOS One							1
PLOS Computational Biology							1
PNAS	2	1					
Proteomics						1	
Science					5	5	1
Tenure & promotion review	5	7	4	7	3	8	1
Total	22	28	18	28	17	18	11

Committee memberships Member, Public Affairs and Policies Committee, International Society for Computational Biology, 2003–present.
Audit Committee, International Society for Computational Biology, 2012.
Computational biology search committee, Fred Hutchinson Cancer Research Center, 2010–2011.
Faculty search committee, Department of Biochemistry, computational biology and protein design, 2013–2014, 2014–2015.

Refereed publications

Underlined names are lab members.

(1) **WN Grundy**, TL Bailey and CP Elkan. “ParaMEME: a parallel implementation and a web interface for a DNA and protein motif discovery tool.” *Computer Applications in the Biosciences*. 12(4):303-310, 1996.

(2) J Batali and **WN Grundy**. “Modeling the evolution of motivation.” *Evolutionary Computation*.
WN Grundy, TL Bailey, CP Elkan and ME Baker. “Hidden Markov model analysis of motifs in steroid dehydrogenases and their homologs.” *Biochemical and Biophysical Research Communications.* 231(3):760-766, 1997.

WN Grundy, TL Bailey, CP Elkan and ME Baker. “Meta-MEME: Motif-based hidden Markov models of protein families.” *Computer Applications in the Biosciences.* 13(4):397-406, 1997.

ME Baker, WN Grundy and CP Elkan. “Spinach CSP41, an mRNA-binding protein and ribonuclease, is homologous to nucleotide-sugar epimerases and hydroxysteroid dehydrogenases.” *Biochemical and Biophysical Research Communications.* 248(2):250-254, 1998.

WN Grundy. “Homology detection via Family Pairwise Search.” *Journal of Computational Biology.* 5(3):479-492, 1998.

WN Grundy. “Family-based homology detection via pairwise sequence comparison.” *Proceedings of the Second Annual International Conference on Computational Molecular Biology,* March 22-25, 1998. pp. 94-100.

ME Baker, WN Grundy and CP Elkan. “A common ancestor for a subunit in the mitochondrial proton-translocating NADH:ubiquinone oxidoreductase (complex I) and short-chain dehydrogenases/reductases.” *Cellular and Molecular Life Sciences.* 55(3):450-455, 1999.

WN Grundy and TL Bailey. “Family Pairwise Search with embedded motif models.” *Bioinformatics.* 15(6):463-470, 1999.

WN Grundy and GJP Naylor. “Phylogenetic inference from conserved sites alignments.” *Journal of Experimental Zoology.* 285(2):128-139, 1999.

TL Bailey and WN Grundy. “Classifying proteins by family using the product of correlated p-values.” *Proceedings of the Third International Conference on Computational Molecular Biology,* April 11-14, 1999. pp. 10-14.

MPS Brown, WN Grundy, D Lin, N Cristianini, C Sugnet, TS Furey, M Ares, Jr. and D Haussler. “Knowledge-based analysis of microarray gene expression data by using support vector machines.” *Proceedings of the National Academy of Science.* 97(1):262-267, 2000.

E Eskin, WN Grundy and Y Singer. “Protein family classification using sparse markov transducers.” *Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology,* August 20-23, 2000. pp. 134-145.

P Pavlidis, TS Furey, M Liberto, D Haussler and WN Grundy. “Promoter region-based classification of genes.” *Proceedings of the Pacific Symposium on Biocomputing,* January 3-7, 2001. pp. 151-163.

P Pavlidis, J Weston, J Cai and WN Grundy. “Gene functional classification from heterogeneous data.” *Proceedings of the Fifth International Conference on Computational Molecular Biology,* April 21-24, 2001. pp. 242-248.

E Eskin, WN Grundy and Y Singer. “Using mixtures of common ancestors for estimating the probabilities of discrete events in biological sequences.” *Bioinformatics (Proceedings of the ISMB).* 17(Suppl 1):S64–73, 2001.

P Pavlidis, C Tang and WS Noble. “Classification of genes using probabilistic models of microarray expression profiles.” *Proceedings of BIORKDD 2001: Workshop on Data Mining in Bioinformatics.* August 26, 2001. pp. 15-21.

RA Muhle, P Pavlidis, WN Grundy and E Hirsch. “A high throughput study of gene expression in preterm labor using a subtractive microarray approach.” *American Journal of Obstetrics and Gynecology.* 185(3):716-24, 2001.
(19) **P Pavlidis and WS Noble.** “Analysis of strain and regional variation in gene expression in mouse brain.” *Genome Biology.* 2(10): research0042.1-0042.15, 2001.

(20) **P Pavlidis, J Weston, J Cai and WS Noble.** “Learning gene functional classifications from multiple data types.” *Journal of Computational Biology.* 9(2):401-411, 2002.

(21) C Leslie, **E Eskin** and WS Noble. “The spectrum kernel: An SVM-string kernel for protein classification.” *Proceedings of the Pacific Symposium on Biocomputing,* January 2-7, 2002. pp. 564–575.

(22) **P Pavlidis, DP Lewis and WS Noble.** “Exploring gene expression data with class scores.” *Proceedings of the Pacific Symposium on Biocomputing,* January 2-7, 2002. pp. 474–485.

(23) **E Eskin, WS Noble** and Y Singer. “Using substitution matrices to estimate probability distributions for biological sequences.” *Journal of Computational Biology.* 9(6):775-791, 2002.

(24) **L Liao** and WS Noble. “Combining pairwise sequence similarity and support vector machines for remote protein homology detection.” *Proceedings of the Sixth International Conference on Computational Molecular Biology,* April 18-21, 2002. pp. 225–232.

(25) B Schölkopf, J Weston, **E Eskin,** C Leslie and WS Noble. “A kernel approach for learning from almost orthogonal patterns.” *Proceedings of the 13th European Conference on Machine Learning,* August 19-23, 2002. pp. 511-528.

(26) B Schölkopf, J Weston, E Eskin, C Leslie and WS Noble. “Dealing with large diagonals in kernel matrices.” *Annals of the Institute on Statistical Mathematics,* 55(2):391–408, 2003.

(27) **P Pavlidis** and WS Noble. “Matrix2png: A utility for visualizing matrix data.” *Bioinformatics.* 19(2):295-296, 2003.

(28) NH Segal, **P Pavlidis,** WS Noble, CR Antonescu, A Viale, UV Wesley, K Busam, H Gallardo, D DeSantis, MF Brennan, C Cordon-Cardo, JD Wolchok and AN Houghton. “Classification of clear cell sarcoma as melanoma of soft parts by genomic profiling.” *Journal of Clinical Oncology.* 21:1775–1781, 2003.

(29) DC Anderson, W Li, DG Payan and WS Noble. “A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores” *Journal of Proteome Research.* 2(2):137–146, 2003.

(30) NH Segal, **P Pavlidis,** CR Antonescu, RG Maki, WS Noble, JM Woodruff, JJ Lewis, MF Brennan, AN Houghton and C Cordon-Cardo. “Classification and subtype prediction of soft tissue sarcoma by functional genomics and support vector machine analysis.” *American Journal of Pathology.* 169:691-700, 2003.

(31) T Gururaja, W Li, **WS Noble,** DG Payan and DC Anderson. “Multiple functional categories of proteins identified in an *in vitro* cellular ubiquitin affinity extract using shotgun peptide sequencing.” *Journal of Proteome Research.* 2:383–393, 2003.

(32) **P Pavlidis,** Q Li and WS Noble. “The effect of replication on gene expression microarray experiments.” *Bioinformatics.* 19(13):1620-1627, 2003.

(33) J Qin, DP Lewis and WS Noble. “Kernel hierarchical clustering of microarray gene expression data.” *Bioinformatics.* 19:2097-2014, 2003.

(34) **E Eskin, WS Noble** and Y Singer. “Protein family classification using sparse Markov transducers.” *Journal of Computational Biology.* 10(2):187–213, 2003.

(35) **L Liao** and WS Noble. “Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships.” *Journal of Computational Biology.* 10(6):857–868, 2003.
(36) C Leslie, E Eskin, J Weston and WS Noble. “Mismatch string kernels for SVM protein classification.” *Advances in Neural Information Processing Systems* 15, 2003.

(37) TL Bailey and WS Noble. “Searching for statistically significant regulatory modules.” *Bioinformatics (Proceedings of the European Conference on Computational Biology).* 19(Suppl. 2):ii16–ii25, 2003.

(38) SM Gomez, WS Noble and A Rzhetsky. “Learning to predict protein-protein interactions from protein sequences.” *Bioinformatics (Proceedings of the Georgia Tech International Conference on Bioinformatics).* 19:1875–1881, 2003.

(39) J Weston, A Elisseeff, D Zhou, CS Leslie and WS Noble. “Protein ranking: From local to global structure in the protein similarity network.” *Proceedings of the National Academy of Science.* 101(17):6559–6563, 2004.

(40) C Leslie, E Eskin, A Cohen, J Weston and WS Noble. “Mismatch string kernels for discriminative protein classification.” *Bioinformatics.* 20(4):467–476, 2004.

(41) P Pavlidis, I Wapinski and WS Noble. “Support vector machine classification on the web.” *Bioinformatics.* 20(4):586–587, 2004.

(42) W Wu and WS Noble. “Genomic data visualization on the web.” *Bioinformatics.* 20(11):1804–1805, 2004.

(43) K Tsuda and WS Noble. “Learning kernels from biological networks by maximizing entropy.” *Bioinformatics (Proceedings of the Intelligent Systems for Molecular Biology Conference).* 20(Suppl. 1):i326–i333, 2004.

(44) J Weston, C Leslie, D Zhou and WS Noble. “Semi-supervised protein classification using cluster kernels.” *Advances in Neural Information Processing Systems* 16, 2004. pp. 595–602.

(45) GRG Lanckriet, M Deng, N Cristianini, MI Jordan and WS Noble. “Kernel-based data fusion and its application to protein function prediction in yeast.” *Proceedings of the Pacific Symposium on Biocomputing,* January 3-8, 2004. pp. 300-311.

(46) GRG Lanckriet, T De Bie, N Cristianini, MI Jordan and WS Noble. “A statistical framework for genomic data fusion.” *Bioinformatics.* 20(16):2626-2635, 2004.

(47) H Lu, W Li, WS Noble, DG Payan and DC Anderson. “Riboproteomics of the hepatitis C virus internal ribosomal entry site.” *Journal of Proteome Research* 3(5):949–57, 2004.

(48) E Feingold, PJ Good, . . . , WS Noble, . . . , FS Collins. “The ENCODE (ENCyclopedia Of DNA Elements) Project.” *Science.* 306:636–640, 2004.

(49) M Tompa, N Li, TL Bailey, GM Church, B De Moor, E Eskin, AV Favorov, MC Frith, Y Fu, WJ Kent, VJ Makeev, AA Mironov, WS Noble, G Pavesi, G Pesole, M Régnier, N Simonis, S Sinha, G Thijs, J van Helden, M Vandenbogaert, Z Weng, C Workman, C Ye and Z Zhu. “Assessing computational tools for the discovery of transcription factor binding sites.” *Nature Biotechnology.* 23(1):137–144, 2005.

(50) A Ben-Hur and WS Noble. “Kernel methods for predicting protein-protein interactions.” *Bioinformatics (Proceedings of the Intelligent Systems for Molecular Biology Conference).* 21(Suppl 1):i38–i46, 2005.

(51) WS Noble, S Kuehn, RE Thurman, R Humbert, JC Wallace, M Yu, M Hawrylycz and JA Stamatoyannopoulos. “Predicting the in vivo signature of human gene regulatory sequences.” *Bioinformatics (Proceedings of the Intelligent Systems for Molecular Biology Conference).* 21(Suppl 1):i338–i343, 2005.

(52) J Weston, C Leslie, E Ie, D Zhou, A Elisseeff and WS Noble. “Semi-supervised protein classification using cluster kernels.” *Bioinformatics.* 21(15):3241–3247, 2005.
(53) W Sheffler, E Upfal, J Sedivy and WS Noble. “A learned comparative expression measure for Affymetrix GeneChip DNA microarrays.” Proceedings of the Computational Systems Bioinformatics Conference, August 8-11, 2005, Stanford, CA. pp. 144-154.

(54) T Mann, R Humbert, JA Stamatoyannopoulos and WS Noble. “Automated validation of polymerase chain reactions using amplicon melting curves.” Proceedings of the Computational Systems Bioinformatics Conference, August 8-11, 2005, Stanford, CA. pp. 377–385.

(55) AA Klammer, CW Wu, MJ MacCoss, WS Noble. “Peptide charge state determination for low-resolution tandem mass spectra.” Proceedings of the Computational Systems Bioinformatics Conference, August 8-11, 2005, Stanford, CA. pp. 175–185.

(56) E Ie, J Weston, WS Noble and C Leslie. “Adaptive codes for multi-class protein classification.” Proceedings of the International Conference on Machine Learning, August 7-11, 2005, Bonn, Germany.

(57) R Kuang, J Weston, WS Noble and C Leslie. “Motif-based protein ranking by network propagation.” Bioinformatics. 21(19):3711–3718, 2005.

(58) JP Miller, RS Lo, A Ben-Hur, C Desmarais, I Stagljar, WS Noble and S Fields. “Large-scale identification of yeast integral membrane protein interactions.” Proceedings of the National Academy of Science. 102(34):12123–12128, 2005.

(59) J-P Vert, RE Thurman and WS Noble. “Kernels for gene regulatory regions.” Advances in Neural Information Processing Systems 19. 2006.

(60) J Weston, R Kuang, C Leslie and WS Noble. “Protein ranking by semi-supervised network propagation.” BMC Bioinformatics. 7(Suppl 1):S10, 2006.

(61) A Ben-Hur and WS Noble. “Choosing negative examples for the prediction of protein-protein interactions.” BMC Bioinformatics. 7(Suppl 1):S2, 2006.

(62) DP Lewis, T Jebara and WS Noble. “Nonstationary kernel combination.” Proceedings of the International Conference on Machine Learning, June 25-29, 2006, Pittsburgh, PA.

(63) T Mann and WS Noble. “Efficient identification of DNA binding partners in a sequence database.” Bioinformatics (Proceedings of the Intelligent Systems for Molecular Biology Conference). 22(14):e350–e358, 2006.

(64) PJ Sabo, MS Kuehn, RE Thurman, B Johnson, EM Johnson, H Cao, M Yu, J Goldy, E Rosenzweig, J Goldy, A Haydock, M Weaver, A Shafer, K Lee, F Neri, R Humbert, MA Singer, TA Richmond, MO Dorschner, M McArthur, M Hawrylycz, RD Green, PA Navas, WS Noble and JA Stamatoyannopoulos. “Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays.” Nature Methods. 3(7):511–518, 2006.

(65) BE Frewen, GE Merrihew, WS Noble and MJ MacCoss. “Analysis of peptide MS/MS spectra from large-scale proteomics experiments using spectrum libraries.” Analytical Chemistry. 78(16):5678–5684, 2006.

(66) T Pramila, W Wu, WS Noble and LL Breeden. “The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S phase gap in the transcriptional circuitry of the cell cycle.” Genes and Development. 20(16):2266–2278, 2006.

(67) T Mann, R Humbert, JA Stamatoyannopoulos and WS Noble. “Automated validation of polymerase chain reactions using amplicon melting curves.” Journal of Bioinformatics and Computational Biology. 22(14):350–358, 2006.

(68) DP Lewis, T Jebara and WS Noble. “Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure.” Bioinformatics. 22(22):2753–2760, 2006.
(69) S Gupta, JA Stamatoyannopoulos, TL Bailey and WS Noble. “Quantifying similarity between motifs.” Genome Biology. 8:R24, 2007.

(70) AA Klammer, X Yi, MJ MacCoss, and WS Noble. “Improving tandem mass spectrum identification using peptide retention time prediction across diverse chromatography conditions.” Analytical Chemistry. 79(160):6111-6118, 2007.

(71) J Qiu, M Hue, A Ben-Hur, J-P Vert and WS Noble. “A structural alignment kernel for protein structures.” Bioinformatics. 23(9):1090-1098, 2007.

(72) AA Klammer, X Yi, MJ MacCoss and WS Noble. “Peptide retention time prediction yields improved tandem mass spectrum identification for diverse chromatography conditions.” Proceedings of the International on Research in Computational Biology (RECOMB). April 21-25, 2007. pp. 459–472.

(73) The ENCODE Project Consortium. “Identification and analysis of functional elements in 1% of the human genome by the ENCODE project.” Nature. 447:779–816, 2007.

(74) RE Thurman, N Day, WS Noble and JA Stamatoyannopoulos. “Identification of higher-order functional domains in the human ENCODE regions.” Genome Research. 17(6):917–927, 2007.

(75) JH Dennis, H-Y Fan, SM Reynolds, G Yuan, J Meldrim, DJ Richter, DG Peterson, OJ Rando, WS Noble and RE Kingston. “Independent and complementary methods for large-scale structural analysis of mammalian chromatin.” Genome Research. 17(6):928-939, 2007.

(76) I Melvin, E Ie, J Weston, WS Noble and C Leslie. “Multi-class protein classification using adaptive codes.” Journal of Machine Learning Research. 8:1557–1581, 2007.

(77) N Day, A Hemmaplardh, RE Thurman, JA Stamatoyannopoulos and WS Noble. “Unsupervised segmentation of continuous genomic data.” Bioinformatics. 23(11):1424–1426, 2007.

(78) S Asthana, WS Noble, G Kryukov, CE Grant, S Sunyaev and JA Stamatoyannopoulos. “Widely distributed non-coding selection in the human genome.” Proceedings of the National Academy of Science. 104(30):12410–12415, 2007.

(79) H Peckham, RE Thurman, Y Fu, JA Stamatoyannopoulos, WS Noble, K Struhl and Z Weng. “Nucleosome positioning signals in genomic DNA.” Genome Research. 17(8):1170–1177, 2007.

(80) AA Klammer, X Yi, MJ MacCoss and WS Noble. “Peptide retention time prediction yields improved tandem mass spectrum identification for diverse chromatography conditions.” Analytical Chemistry. 79(16):6111–6118, 2007.

(81) L Käll, J Canterbury, J Weston, WS Noble and MJ MacCoss. “Semi-supervised learning for peptide identification from shotgun proteomics datasets.” Nature Methods. 4(11):923–925, 2007.

(82) I Melvin, E Ie, R Kuang, J Weston, WS Noble and C Leslie. “SVM-fold: a tool for discriminative multi-class protein fold and superfamily recognition.” BMC Bioinformatics. 8(Suppl 4):S2, 2007.

(83) JP Vert, J Qiu and WS Noble. “A new pairwise kernel for biological network inference with support vector machines.” BMC Bioinformatics. 8(Suppl 10):S8, 2007.

(84) JQiu, W Sheffler, D Baker and WS Noble. “Ranking predicted protein structures with support vector regression.” Proteins: Structure, Function, and Bioinformatics. 71(3):1175–1182, 2007.

(85) RE Thurman, WS Noble and JA Stamatoyannopoulos. “Multi-scale correlations in continuous genomic data.” Proceedings of the Pacific Symposium on Biocomputing. January 4-8, 2008, pp. 201-215.

(86) L Käll, JD Storey, MJ MacCoss and WS Noble. “Assigning significance to peptides identified by tandem mass spectrometry using decoy databases.” Journal of Proteome Research. 7(1):29–34, 2008.

(87) J Qiu and WS Noble. “Predicting co-complexed protein pairs from heterogeneous data.” PLOS Computational Biology. 4(4):e1000054, 2008.
L Peña-Castillo, M Tasan, CL Myers, H Lee, T Joshi, C Zhang, Y Guan, M Leone, A Pagnani, WK Kim, C Krumpelman, W Tian, G Obozinski, Y Qi, S Mostafavi, GN Lin, G Berriz, F Gibbons, G Lanckriet, J Qiu, CE Grant, Z Barutcuoglu, DP Hill, D Warde-Farley, C Grouios, D Ray, JA Blake, M Deng, M Jordan, WS Noble, Q Morris, J Klein-Seetharaman, Z Bar-Joseph, T Chen, F Sun, OG Troyanskaya, EM Marcotte, D Xu, TR Hughes and FP Roth. “A critical assessment of M. musculus gene function prediction using integrated genomic evidence.” Genome Biology. 9(Suppl 1):S2, 2008.

G Obozinski, G Lanckriet, CE Grant, MI Jordan and WS Noble. “Consistent probabilistic outputs for protein function prediction.” Genome Biology. 9(Suppl 1):6, 2008.

AA Klammer, SM Reynolds, JA Bilmes, MJ MacCoss and WS Noble. “Modeling peptide fragmentation with dynamic Bayesian networks for peptide identification.” Bioinformatics (Proceedings of the Intelligent Systems for Molecular Biology Conference). 24(13):i348–i356, 2008.

CY Park, AA Klammer, L Käll, MJ MacCoss and WS Noble. “Rapid and accurate peptide identification from tandem mass spectra.” Journal of Proteome Research. 7(7):3022–3027, 2008.

L Käll, J Storey and WS Noble. “Nonparametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry.” Bioinformatics. (Proceedings of the European Conference on Computational Biology). 24(16):i42–i48, 2008.

N Yosef, R Sharan and WS Noble. “Improved network-based identification of protein orthologs.” Bioinformatics. (Proceedings of the European Conference on Computational Biology). 24(16):i200–i206, 2008. PMID18689852.

S Gupta, J Dennis, RE Thurman, R Kingston, JA Stamatoyannopoulos and WS Noble. “Predicting human nucleosome occupancy from primary sequence.” PLOS Computational Biology. 4(8):e10000134, 2008.

H Lian, W Thompson, RE Thurman, JA Stamatoyannopoulos, WS Noble and C Lawrence. “Automated mapping of large-scale chromatin structure in ENCODE.” Bioinformatics. 24(17):1911–1916, 2008.

I Melvin, J Weston, C Leslie and WS Noble. “Combining classifiers for improved classification of proteins from sequence or structure.” BMC Bioinformatics. 9:389, 2008.

GE Merrihew, C Davis, B Ewing, G Williams, L Käll, BE Frewen, WS Noble, P Green, JH Thomas, MJ MacCoss. “Use of shotgun proteomics for the identification, confirmation and correction of C. elegans gene annotations.” Genome Research. 18(10):1660-1669, 2008.

SM Reynolds, L Käll, M Riffle, JA Bilmes and WS Noble. “Transmembrane topology and signal peptide prediction using dynamic Bayesian networks.” PLOS Computational Biology. 4(11):e1000213, 2008.

I Melvin, J Weston, C Leslie and WS Noble. “RANKPROP: a web server for protein remote homology detection.” Bioinformatics. 25(1):121–122, 2009.

J Hesselberth, X Chen, Z Zhang, PJ Sabo, R Sandstrom, AP Reynolds, RE Thurman, S Neph, MS Kuehn, WS Noble, S Fields and JA Stamatoyannopoulos. “Global mapping of protein-DNA interactions in vivo by digital genomic footprinting.” Nature Methods. 6(4):283–289, 2009.

L Käll, JD Storey and WS Noble. “QUALITY: Nonparametric estimation of q values and posterior error probabilities.” Bioinformatics. 25(7):964–966, 2009.

AA Klammer, CY Park and WS Noble. “Statistical calibration of the SEQUEST XCorr function.” Journal of Proteome Research. 8(4):2106–2113, 2009.

SM Reynolds, JA Bilmes and WS Noble. “On the relationship between DNA periodicity and local chromatin structure.” Proceedings of the International on Research in Computational Biology (RE-COMB). May 18–21, 2009. pp. 434–450.
J Hawkins, CE Grant, WS Noble and TL Bailey. “Assessing phylogenetic motif models for predicting transcription factor binding sites.” Bioinformatics (Proceedings of the Intelligent Systems for Molecular Biology Conference). 25(12):i339–i347, 2009.

T Mann, R Humbert, M Dorschner, JA Stamatoyannopoulos and WS Noble. “A thermodynamic approach to PCR primer design.” Nucleic Acids Research. 37(13):e95, 2009.

TL Bailey, M Boden, FA Buske, M Frith, CE Grant, L Clementi, J Ren, WW Li and WS Noble. “MEME Suite: tools for motif discovery and searching.” Nucleic Acids Research. 37(Web server issue):W202-208, 2009.

M Spivak, J Weston, L Bottou, L Käll and WS Noble. “Improvements to the Percolator algorithm for peptide identification from shotgun proteomics data sets.” Journal of Proteome Research. 8(7):3737–3745, 2009.

WS Noble. “A quick guide to organizing computational biology experiments.” PLOS Computational Biology. 5(7):e1000424, 2009.

WS Noble. “How does multiple testing correction work?” Nature Biotechnology. 27(12):1135-1137, 2009.

SM Reynolds, Z Weng, JA Bilmes and WS Noble. “Predicting nucleosome positioning using multiple evidence tracks.” Proceedings of the International on Research in Computational Biology (RECOMB). Lecture Notes in Computer Science, 2010, Volume 6044/2010, pp. 441-455.

Z Aydin, JI Murray, RH Waterston and WS Noble. “Using machine learning to speed up manual image annotation: application to 3D imaging protocol for measuring single cell gene expression in the developing C. elegans embryo.” BMC Bioinformatics. 11(1):84, 2010.

M Hue, M Riffl, J-P Vert and WS Noble. “Large-scale prediction of protein-protein interactions from structures.” BMC Bioinformatics. 11:144, 2010.

N Yosef, J Gramm, Q Wang, WS Noble, RM Karp and R Sharan. “Prediction of phenotype information from genotype data.” Communications in Information and Systems. 10(2):99–114, 2010.

S McIlwain, P Draghicescu, P Singh, DR Goodlett and WS Noble. “Detecting cross-linked peptides by searching against a database of cross-linked peptide pairs.” Journal of Proteome Research. 9(5):2488-2495, 2010.

X Chen, MM Hoffman, JA Bilmes, JR Hesselberth and WS Noble. “A dynamic Bayesian network for identifying protein binding footprints from single molecule based sequencing data.” Bioinformatics (Proceedings of the ISMB). 26(12):i334–i342, 2010.

MM Hoffman, OJ Buske and WS Noble. “The Genomedata format for storing large-scale functional genomics data.” Bioinformatics. 26(11):1458–1459, 2010.

SM Reynolds, JA Bilmes and WS Noble. “Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens.” PLOS Computational Biology. 6(7):e1000834, 2010.

E Hirsch, C Lim, D Dobrez, MG Adams and WS Noble. “Meteorological factors and the timing of the initiating event of parturition.” International Journal of Biometeorology. 55(2):265, 2011.

Z Duan, M Andronescu, K Schutz, S McIlwain, YJ Kim, C Lee, J Shendure, S Fields, CA Blau and WS Noble. “A three-dimensional model of the yeast genome.” Nature. 465:363–367, 2010.

P Agius, A Arvey, W Chang, WS Noble and C Leslie. “High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.” PLOS Computational Biology. 6(9):e1000916, 2010.
(121) O Serang, MJ MacCoss and WS Noble. “Efficient marginalization to compute protein posterior probabilities from shotgun mass spectrometry data.” Journal of Proteome Research. 9(10):5346–5357, 2010.

(122) V Sharma, JK Eng, S Feldman, P von Haller, MJ MacCoss and WS Noble. “Precursor charge state prediction for electron transfer dissociation tandem mass spectra.” Journal of Proteome Research. 9(10):5438–5444, 2010.

(123) I Melvin, J Weston, WS Noble and C Leslie. “Detecting remote evolutionary relationships among proteins by large-scale semantic embedding.” PLOS Computational Biology. 7(1):e1001047, 2011.

(124) CE Grant, TL Bailey and WS Noble. “FIMO: Scanning for occurrences of a given motif.” Bioinformatics. 27(7):1017–1018, 2011.

(125) The ENCODE Project Consortium. “A user’s guide to the Encyclopedia of DNA Elements (ENCODE).” PLOS Biology. 9(4):e1001046, 2011.

(126) V Granholm, WS Noble and L Käll. “On using samples of known protein content to assess the statistical calibration of scores assigned to peptide-spectrum matches in shotgun proteomics.” Journal of Proteome Research. 10(5):2671–2678, 2011.

(127) Z Aydin, A Singh, JA Bilmes and WS Noble. “Learning sparse models for a dynamic Bayesian network classifier of protein secondary structure.” BMC Bioinformatics. 12:154, 2011.

(128) E Tanaka, TL Bailey, CE Grant, WS Noble and U Keich. “Improved similarity scores for comparing motifs.” Bioinformatics. 27(12): 1603–1609, 2011.

(129) BJ Diament and WS Noble. “Faster SEQUEST searching for peptide identification from tandem mass spectra.” Journal of Proteome Research. 10(9):3871–9, 2011.

(130) OJ Buske, MM Hoffman, N Ponts, K Le Roch and WS Noble. “Exploratory analysis of genomic segmentations with Segtools.” BMC Bioinformatics. 12:415, 2011.

(131) G Cuellar-Partida, FA Buske, RC McLeay, T Whittington, WS Noble and TL Bailey. “Epigenetic priors for identifying active transcription factor binding sites.” Bioinformatics. 28:56-62, 2011.

(132) M Spivak, J Weston, MJ MacCoss and WS Noble. “Direct maximization of protein identifications from tandem mass spectra.” Molecular and Cellular Proteomics. 11(2):M111.012161, 2012.

(133) DM Witten and WS Noble. “On the estimation of statistical significance of three-dimensional colocalization of sets of genomic elements.” Nucleic Acids Research. 40(9):3849–3855, 2012.

(134) O Serang and WS Noble. “Faster mass spectrometry-based protein inference: junction trees are more efficient than sampling and marginalization by enumeration.” IEEE/ACM Transactions on Computational Biology and Bioinformatics. 9(3):809–817, 2012.

(135) Y Qi, M Oja, J Weston and WS Noble. “A unified multitask architecture for predicting local protein properties.” PLOS One. 7(3):e32235, 2012.

(136) MM Hoffman, OJ Buske, Z Weng, JA Bilmes and WS Noble. “Unsupervised pattern discovery in human chromatin structure through genomic segmentation.” Nature Methods. 9(5):473–476, 2012.

(137) A Arvey, P Agius, WS Noble and C Leslie. “Sequence and chromatin determinants of cell-type specific transcription factor binding.” Genome Research. 22(9):1723–34, 2012.

(138) J Wang, J Zhuang, S Iyer, X Lin, TW Whitfield, M Greven, X Dong, A Kundaje, Y Cheng, E Birney, RM Myers, WS Noble, M Snyder and Z Weng. “Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors.” Genome Research. 22(9):1798–1812, 2012.
(139) The ENCODE Project Consortium. “An integrated encyclopedia of DNA elements in the human genome.” Nature. 489(7414):57–74, 2012.

(140) M Fioramonte, AM dos Santos, S McIlwain, WS Noble, KG Franchini and FC Gozzo. “Analysis of secondary structure in proteins by chemical cross-linking coupled to mass spectrometry.” Proteomics. 12(17):2746–52, 2012.

(141) M Spivak, MS Bereman, MJ MacCoss and WS Noble. “Learning score function parameters for improved spectrum identification in tandem mass spectrometry experiments.” Journal of Proteome Research. 11(9):4499–4508, 2012.

(142) SC Di Rienzi, KC Lindstrom, T Mann, WS Noble, MK Raghuraman and BJ Brewer. “Maintaining replication origins in the face of genomic change.” Genome Research. 22(10):1940-1952, 2012.

(143) Z Aydin, J Thompson, JA Bilmes, D Baker and WS Noble. “Protein torsion angle class prediction by a hybrid architecture of Bayesian and neural networks.” Proceedings of the 13th International Conference on Bioinformatics and Computational Biology. pp. 2012–2018. July 16–19, 2012.

(144) AP Singh, J Halloran, JA Bilmes and WS Noble. “Spectrum identification using a dynamic Bayesian network model of tandem mass spectra.” Uncertainty in Artificial Intelligence: Proceedings of the Twenty-Eighth Conference. Aug. 15-17, 2012. pp. 775-784.

(145) S Ryu, DR Goodlett, WS Noble and VN Minin. “A statistical approach to peptide identification from clustered tandem mass spectrometry data.” Proceedings of the International Workshop on Computational Proteomics, IEEE BIBM. pp. 648–653, 2012.

(146) S McIlwain, M Mathews, M Bereman, EW Rubel, MJ MacCoss and WS Noble. “Estimating relative abundances of proteins from shotgun proteomics data.” BMC Bioinformatics. 13:308, 2012.

(147) M Hoffman, J Ernst, SP Wilder, A Kundaje, RS Harris, M Libbrecht, B Giardine, P Ellenbogen, JA Bilmes, E Birney and RC Hardison, I Dunham, M Kellis and WS Noble. “Integrative annotation of chromatin elements from ENCODE data.” Nucleic Acids Research. 41(2):827–841, 2013.

(148) MT Weirauch, A Cote, R Norel, M Annala, Y Zhao, S Talukder, A Vedenko, DREAM5 consortium, QD Morris, ML Bulyk, G Stolovitzky and TR Hughes. “An evaluation of methods for the modeling of transcription factor sequence specificity.” Nature Biotechnology. 31(2):126–34, 2013.

(149) V Granholm, WS Noble and L Käll. “Determining the calibration of confidence estimation procedures for unique peptides in shotgun proteomics.” Journal of Proteomics. 80(27):123–131, 2012.

(150) X Deng, JB Berletch, W Ma, DK Nguyen, JB Hiatt, WS Noble, J Shendure and CM Disteche. “Mammalian X upregulation is associated with enhanced transcription initiation, RNA half-life, and MOF-mediated H4K16 acetylation.” Developmental Cell. 25(1):55–68, 2013.

(151) DA Skelly, GE Merrirhew, M Rifflle, CF Connelly, EO Kerr, M Johansson, D Jaschob, B Graczyk, NJ Shulman, J Wakefield, SJ Cooper, S Fields, WS Noble, EGD Muller, TN Davis, MJ Dunham, MJ MacCoss and JM Akey. “Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast.” Genome Research. 23(9):1496–1504, 2013.

(152) MJ Zeitz, F Ay, JD Heidmann, PL Lerner, WS Noble, BN Steelman and AR Hoffman. “Genomic interaction profiles in breast cancer reveal altered chromatin architecture.” PLOS One. 8(9):e73974, 2013.

(153) MJ Zeitz, PL Lerner, F Ay, E Van Nostrand, JD Heidmann, WS Noble and AR Hoffman. “Implications of COMT long-range interactions on the phenotypic variability of 22q11.2 deletion syndrome.” Nucleus. 4(6):487–493, 2013.

(154) BS Sexton, D Avey, BR Druliner, JA Fincher, DL Vera, DJ Grau, ML Borowsky, S Gupta, S Girimurugan, E Chicken, J Zhang, WS Noble, F Zhu, RE Kingston, and JH Dennis. “The spring-loaded genome: Nucleosome redistributions are widespread, transient, and DNA-directed.” Genome Research. 24(2):251-259, 2013.
(155) F Ay, EM Bunnik, N Varoquaux, SM Bol, J Prudhomme, J-P Vert, WS Noble and KG Le Roch. “Three-dimensional modeling of the *P. falciparum* genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression.” *Genome Research*. 24(6):974–988, 2014.

(156) F Ay, TL Bailey and WS Noble. “Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts.” *Genome Research*. 24(6):999–1011, 2014.

(157) W Ma, WS Noble and TL Bailey. “Motif-based analysis of large nucleotide datasets using MEME-ChIP.” *Nature Protocols*. 9(6):1428–1450, 2014.

(158) N Varoquaux, F Ay, WS Noble and JP Vert. “A statistical approach for inferring the 3D structure of the genome.” *Bioinformatics (Proceedings of the ISMB).* 30(12):i26–i33, 2014.

(159) P Park, J Ho, Y Jung, T Liu, B Alver, S Lee, K Ikegami, K Sohn, A Minoda, M Tolstorukov, A Appert, S Parker, T Gu, A Kundaje, N Riddle, E Bishop, T Egelhofer, S Hu, A Alekseyenko, Y Schwartz, D Asker, J Belsky, S Bowman, Q Chen, R Chen, D Day, Y Dong, X Duan, C Epstein, S Ercan, E Feingold, F Ferrari, J Garrigues, N Gahlenborg, P Good, P Haseley, D He, M Herrmann, M Hoffman, T Jeffers, P Kharchenko, P Kolasinska-Zwierz, C Kotwalwale, N Kumar, S Langley, E Larschan, I Latorre, M Libbrecht, X Lin, R Park, M Pazin, H Pham, A Plachetka, B Qin, N Shores, P Stempor, A Viele, C Wang, C Whittle, H Xue, R Kingston, JH Kim, B Bernstein, A Dernburg, V Pirrotta, M Kuroda, WS Noble, T Tuiliius, M Kellis, D MacAlpine, S Strome, S Elgin, XS Liu, J Lieb, J Ahringer, G Karpen, A Rechtsteiner and A Dose. “Comparative analysis of metazoan chromatin organization.” *Nature*. 512:449-452, 2014.

(160) H Zare, J Wang, A Hu, K Weber, J Smith, D Nickerson, C Song, D Witten, CA Blau and WS Noble. “Inferring clonal composition from multiple sections of a breast cancer.” *PLOS Computational Biology*. 10(7):e1003703, 2014.

(161) J Halloran, J Bilmes and WS Noble. “Learning peptide-spectrum alignment models for tandem mass spectrometry.” Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI 2014). Ed. Nevin Zhang and Jin Tian. AUAI Press, Corvallis, OR. pp. 320-329, 2014.

(162) JJ Howbert and WS Noble. “Computing exact p-values for a cross-correlation shotgun proteomics scoring function.” *Molecular and Cellular Proteomics*. 13(9):2467–2479, 2014.

(163) S McIlwain, K Tamura, A Kertesz-Farkas, CE Grant, B Diament, B Frewen, JJ Howbert, MR Hoopmann, I Käll, JK Eng, MJ MacCoss, WS Noble. “Crux: rapid open source protein tandem mass spectrometry analysis.” *Journal of Proteome Research*. 13(10):4488–4491, 2014.

(164) W Ma, F Ay, C Lee, G Gulsoy, X Deng, S Cook, J Hesson, C, Cavanagh, CB Ware, A Krumm, J Shendure, CA Blau, CM Distefoe, WS Noble, Z Duan. “Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of lincRNA genes in human cells.” *Nature Methods*. 12(1):1–91, 2015.

(165) F Ay, EM Bunnik, N Varoquaux, J-P Vert, WS Noble and KG Le Roch. “Multiple dimensions of epigenetic gene regulation in the malaria parasite *Plasmodium falciparum*.” *Bioessays*. 37(2):182–194, 2015.

(166) U Keich and WS Noble. “On the importance of well calibrated scores for identifying shotgun proteomics spectra.” *Journal of Proteome Research*. 14(2):1147–1160, 2015.

(167) F Ay, TH Vu, MJ Zeitz, N Varoquaux, JE Carette, J Vert, AR Hoffman and WS Noble. “Identifying multi-locus chromatin contacts in human cells using tethered multiple 3C.” *BMC Genomics*. 16(1):121, 2015.

(168) F Yang, X Deng, W Ma, JB Berletch, N Rabaia, JM Moore, GN Filippova, Y Liu, WS Noble, J Shendure and CM Disteche. “The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation.” *Genome Biology*. 16(1):52, 2015.
(169) Z Aydin, D Baker and **WS Noble**, “Constructing structural profiles for protein torsion angle prediction.” *Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms (BIOINFORMATICS-2015).* Lisbon, Portugal, pp. 26–35, 2015.

(170) M Libbrecht, F Ay, M Hoffman, DM Gilbert, J Bilmes and **WS Noble**. “Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell type-specific expression.” *Genome Research.* 25(4):544–57, 2015. *Selected as one of the top 10 regulatory genomics published papers in 2014–2015 by the ISCB Special Interest Group On Regulatory & Systems Genomics*

(171) JB Berletch, W Ma, F Yang, J Shendure, **WS Noble**, CM Disteche, X Deng. “Escape from X inactivation varies in mouse tissues.” *PLOS Genetics.* 18(3):e1005079, 2015.

(172) MW Libbrecht and **WS Noble**. “Machine learning applications in genetics and genomics.” *Nature Reviews Genetics.* 16(6):321-332, 2015.

(173) N Varoquaux, I Liachko, F Ay, J Burton, J Shendure, M Dunham, J-P Vert and **WS Noble**. “Accurate identification of centromere locations in yeast genomes using Hi-C.” *Nucleic Acids Research.* 43(11):5331–5339, 2015.

(174) TL Bailey, J Johnson, CE Grant and **WS Noble**. “The MEME Suite.” *Nucleic Acids Research.* 43(W1):W39–49, 2015.

(175) M Libbrecht, M Hoffman, J Bilmes, **WS Noble**. “Entropic graph-based posterior regularization.” *Proceedings of the 32nd International Conference on Machine Learning.* Lille, France. pp. 1992-2001, 2015.

(176) JK Eng, MR Hoopmann, TA Jahan, JD Egertson, **WS Noble**, and MJ MacCoss. “A deeper look into Comet—implementation and features.” *Journal of Proteome Research.* 26(11):1865–1874, 2015.

(177) M Riffle, GE Merrihew, D Jaschob, V Sharma, TN Davis, **WS Noble**, MJ MacCoss. “Visualization and dissemination of multidimensional proteomics data comparing protein abundance during *Caenorhabditis elegans* development.” *Journal of the American Society for Mass Spectrometry.* 26(11):1827–1836, 2015.

(178) **WS Noble**. “Mass spectrometrists should only search for peptides they care about.” *Nature Methods.* 12(7):605–608, 2015.

(179) V Dileep, F Ay, J Sima, DL Vera, **WS Noble**, and DM Gilbert. “Topologically-associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication timing program.” *Genome Research.* 25(8):1104–1113, 2015.

(180) A Kertesz-Farkas, U Keich and **WS Noble**. “Tandem mass spectrum identification via cascade search.” *Journal of Proteome Research.* 14(8):3027–3038, 2015.

(181) RM Gittelman, E Hun, F Ay, J Madeoy, L Pennacchio, **WS Noble**, DR Hawkins and JM Akey. “Comprehensive identification and analysis of human accelerated regulatory DNA.” *Genome Research.* 25(9):1245–1255, 2015.

(182) U Keich, A Kertesz-Farkas and **WS Noble**. “Improved false discovery rate estimation procedure for shotgun proteomics.” *Journal of Proteome Research.* 14(8):3148–3161, 2015.

(183) F Ay and **WS Noble**. “Analysis methods for 3D nucleome data.” *Genome Biology.* 16(1):183, 2015.

(184) X Deng, W Ma, V Ramani, A Hill, F Yang, F Ay, JB Berletch, CA Blau, J Shendure, Z Duan, **WS Noble**, CM Disteche. “Bipartite structure of the inactive mouse X chromosome.” *Genome Biology.* 16(1):152, 2015.
YS Ting, JD Eggertson, SH Payne, S Kim, B MacLean, L Käll, R Aebersold, RD Smith, WS Noble and MJ MacCoss. “Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data.” Molecular and Cellular Proteomics. 14(9):2301-2307, 2015.

CE Grant, J Johnson, TL Bailey, and WS Noble. “MCAST: Scanning for cis-regulatory motif clusters.” Bioinformatics. 32(8):1217–1219, 2015.

JB Berletch, W Ma, F Yang, J Shendure, WS Noble, and CM Disteche. “Identification of genes escaping X inactivation by allelic expression analysis in a novel hybrid mouse model.” Data in Brief. 5:761-769, 2015.

S Wang, J Halloran, JA Bilmes and WS Noble. “Faster and more accurate graphical model identification of tandem mass spectra using trellises.” Bioinformatics (Proceedings of the ISMB). 32(12):i322–i331, 2016.

OK Smith, R Kim, H Fu, MM Martin, K Utani, Y Zhang, AB Marks, M Lalande, S Chamberlain, MW Libbrecht, EE Bouhassira, MC Ryan, WS Noble and MI Aladjem. “Distinct epigenetic features of differentiation-regulated replication origins.” Epigenetics and Chromatin. 9(1):18, 2016.

DH May, E Timmins-Schiffman, MP Mikan, HR Harvey, E Borenstein, BL Nunn and WS Noble. “An alignment-free ‘metapeptide’ strategy for metaproteomic characterization of microbiome samples using shotgun metagenomic sequencing.” Journal of Proteome Research. 15(8):2697–2705, 2016.

J Halloran, JA Bilmes and WS Noble. “A dynamic Bayesian network for accurate detection of peptides from tandem mass spectra.” Journal of Proteome Research. 15(8):2749–2759, 2016.

M The, MJ MacCoss, WS Noble and Lukas Käll. “Fast and accurate protein false discovery rates on large-scale proteomics data sets with Percolator 3.0.” Journal of the American Society of Mass Spectrometry. 27(11):1719–1727, 2016.

V Ramani, DA Cusanovich, RJ Hause, W Ma, X Deng, CA Blau, CM Disteche, WS Noble, J Shendure, Z Duan. “Mapping three-dimensional genome architecture through in situ DNase Hi-C.” Nature Protocols. 11(11):2014–2121, 2016.

E Timmins-Schiffman, DH May, M Mikan, M Riffle, C Frazier, HR Harvey, WS Noble, BL Nunn. “Critical decisions in metaproteomics: Achieving high confidence protein annotations in a sea of unknowns.” The ISME Journal. 11(2):309–314, 2017.

W Bai, J Bilmes and WS Noble. “Bipartite matching generalizations for peptide identification in tandem mass spectrometry.” ACM Conference on Bioinformatics, Computational Biology, and Health Informatics. Seattle, WA. 327–336, 2016. Winner of Best Paper award.

K Wei, MW Libbrecht, JA Bilmes and WS Noble. “Choosing panels of genomics assays using submodular optimization.” Genome Biology. 17(1):229, 2016.

V Ramani, X Deng, R Qiu, KL Gunderson, FJ Steemers, CM Disteche, WS Noble, Z Duan, J Shendure. “Massively multiplex single-cell Hi-C.” Nature Methods. 14(3):263–266, 2017.

U Keich and WS Noble. “Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy?” Proceedings of the International Conference on Research in Computational Biology (RECOMB). 10229:99-116, 2017.

MN Gabere and WS Noble. “Empirical comparison of web-based antimicrobial peptide prediction tools.” Bioinformatics. 33(13):1921–1929, 2017.

S Wang, H Cai, J Bilmes, and WS Noble. “Training compressed fully-connected networks with a density-diversity penalty.” Proceedings of the Fifth International Conference on Learning Representations. 2017.
(201) U Eser, D Chandler-Brown, F Ay, AF Straight, Z Duan, **WS Noble**, JM Skotheim. “Form and function of topologically associating genomic domains in budding yeast.” *Proceedings of the National Academy of Science*. 114(15):E3061–E3070, 2017.

(202) G Yardımcı and **WS Noble**. “Software tools for visualizing Hi-C data.” *Genome Biology*. 18(1):26, 2017.

(203) ZE Sychev, A Hu, T DiMaio, A Gitter, ND Camp, **WS Noble**, A Wolf-Yadlin, M Lagunoff. “Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism.” *PLOS Pathogens*. 13(3):e1006256, 2017.

(204) DH May, K Tamura, **WS Noble**. “Param-Medic: A tool for improving MS/MS database search yield by optimizing parameter settings.” *Journal of Proteome Research*. 16(4):1817–1824, 2017.

(205) K-K Yan, G Yardımcı, C Yan, **WS Noble**, M Gerstein. “HiC-Spector: a matrix library for spectral and reproducibility analysis of Hi-C contact maps.” *Bioinformatics*. 33(14):2199–2201, 2017.

(206) W Ma, L Yang, R Rohs and **WS Noble**. “DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.” *Bioinformatics*. 33(19):3003–3010, 2017.

(207) S Kim, I Liachko, DG Brickner, K Cook, **WS Noble**, JH Brickner, J Shendure, MJ Dunham. “The dynamic three-dimensional organization of the diploid yeast genome.” *eLife*. 6:e23623, 2017.

(208) **WS Noble** and U Keich. “Response to ‘Mass spectrometrists should search for all peptides, but assess only the ones they care about.’” *Nature Methods*. 14(7):644, 2017.

(209) H Sakano, DAR Zorio, X Wang, YS Ting, **WS Noble**, MJ MacCoss, EW Rubel, Y Wang. “Proteomic analyses of nucleus laminaris identified candidate targets of the fragile X mental retardation protein.” *Journal of Comparative Neurology*. 525(15):3341–3359, 2017.

(210) J Schreiber and **WS Noble**. “Finding the optimal Bayesian network given a constraint graph.” *PeerJ Computer Science*. 3:e122, 2017.

(211) YS Ting, JD Egertson, JG Bollinger, B Searle, SH Payne, **WS Noble**, and MJ MacCoss. “PECAN: library free peptide detection for data-independent acquisition tandem mass spectrometry data.” *Nature Methods*. 14(9):903–908, 2017.

(212) T Yang, F Zhang, GG Yardimci, F Song, RC Hardison, **WS Noble**, F Yue, and Q Li. “HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient.” *Genome Research*. 27(11):1939–1949, 2017.

(213) U Keich and **WS Noble**. “Controlling the FDR in imperfect matches to an incomplete database.” *Journal of the American Statistical Association*. 113(523):973–982, 2018.

(214) **WS Noble**. “Ten simple rules for writing a response to reviewers.” *PLOS Computational Biology*. 13(10):e1005730, 2017.

(215) J Dekker, AS Belmont, M Guttman, VO Leshyv, JT Lis, S Lomvardas, LA Mirny, CC O’Shea, PJ Park, B Ren, JCR Politz, J Shendure, S Zhong, and the 4D Nucleome Network. “The 4D Nucleome Project.” *Nature*. 549(7671):219–226, 2017.

(216) RC Chan, MW Libbrecht, EG Roberts, JA Bilmes, **WS Noble**, and MM Hoffman. “Segway 2.0: Gaussian mixture models and minibatch training.” *Bioinformatics*. 34(4):669-671, 2018.

(217) J Liu, JT Halloran, JA Bilmes, RM Daza, C Lee, EM Mahen, D Prunkard, C Song, S Blau, MO Dorschner, VK Gadi, J Shendure, CA Blau, and **WS Noble**. “Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies.” *Scientific Reports*. 7(1):16943, 2017.

(218) M Riffle, DH May, E Timmins-Schifman, MP Mikan, D Jaschob, **WS Noble**, and BL Nunn. “MetaGOmics: A web-based tool for peptide-centric functional and taxonomic analysis of metaproteomics data.” *Proteomes*. 6(1), 2017.
(219) MW Libbrecht, JA Bilmes and WS Noble. “Choosing non-redundant representative subsets of protein sequence data sets using submodular optimization.” *Proteins.* 86(4):454–466, 2018.

(220) W Ma, F Ay, C Lee, G Gulsoy, X Deng, S Cook, J Hesson, C Cavanaugh, CB Ware, A Krumm, J Shendure, CA Blau, CM Disteche, WS Noble, Z Duan. “Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.” *Methods.* 142:59–73, 2018.

(221) TJ Durham, MW Libbrecht, JJ Howbert, JA Bilmes and WS Noble. “PREDICTD: PaRallel Epigenomics Data Imputation with Cloud-based Tensor Decomposition.” *Nature Communications.* 9(1):1402, 2018.

(222) G Bonora, X Deng, H Fang, V Ramani, R Qiu, J Berletch, GN Filippova, Z Duan, J Shendure, WS Noble, CM Disteche. “Orientation-dependent Dsx4 contacts shape the 3D structure of the inactive X chromosome.” *Nature Communications.* 9(1):1445, 2018.

(223) J Liu, D Lin, G Yardımcı, and WS Noble. “Unsupervised embedding of single-cell Hi-C data.” *Bioinformatics (Proceedings of the ISMB).* 34(13):i96–i104, 2018.

(224) O Ursu, N Boley, M Taranova, YXR Wang, G Yardımcı, WS Noble, and A Kundaje. “GenomeDISCO: A concordance score for chromosome conformation capture experiments using random walks on contact map graphs.” *Bioinformatics.* 34(16):2701–2707, 2018.

(225) EM Bunnik, KB Cook, N Varoquaux, G Batugedara, J Prudhomme, A Cort, L Shi, C Andolina, LS Ross, D Brady, DA Fidock, F Nosten, R Tewari, P Simms, F Ay, J-P Vert, WS Noble, KG Le Roch. “Changes in genome organization of parasite-specific gene families during the *Plasmodium* transmission stages.” *Nature Communications.* 9(1):1910, 2018.

(226) J Dixon, J Xu, V Dileep, Y Zhan, F Song, VT Le, GG Yardımcı, A Chakraborty, DV Bann, Y Wang, R Clark, L Zhang, H Yang, T Liu, S Iyyanki, L An, C Pool, T Sasaki, JC Rivera-Mulia, H Ozadam, BR LaJoie, K Kaul, M Buckey, K Lee, M Diegel, D Pezic, C Ernst, S Hadjur, DT Odom, JA Stamatoyannopoulos, JR Broach, R Hardison, F Ay, WS Noble, J Dekker, DM Gilbert, and F Yue. “Integrative detection and analysis of structural variation in cancer genomes.” *Nature Genetics.* 50(10):1388–1398, 2018.

(227) Y Lu, Y Fan, J Lv, and WS Noble. “DeepPINK: reproducible feature selection in deep neural networks.” *Advances in Neural Information Processing Systems.* 31:8690–8700, 2018.

(228) W Bai, WS Noble, JA Bilmes. “Submodular maximization via gradient ascent: The case of deep submodular functions.” *Advances in Neural Information Processing Systems.* 31:7989–7999, 2018.

(229) W Bittremieux, P Meysman, WS Noble, K Laukens. “Fast open modification spectral library searching through approximate nearest neighbor indexing.” *Journal of Proteome Research.* 17(10):3463–3474, 2018.

(230) A Lin, JJ Howbert, and WS Noble. “Combining high resolution and exact calibration to boost statistical power: A well-calibrated score function for high-resolution MS2 data.” *Journal of Proteome Research.* 2018. 17(11):3644–3656, 2018.

(231) W Ma, G Bonora, JB Berletch, X Deng, WS Noble, CM Disteche. “X-chromosome inactivation and escape from X inactivation in mouse.” *Methods in Molecular Biology.* 1861:205–219, 2018.

(232) L Pino, B Searle, E Huang, WS Noble, A Hoofnagle, MJ MacCoss. “Calibration using a single-point external reference material harmonizes quantitative mass spectrometry proteomics data between platforms and laboratories.” *Analytical Chemistry.* 90(21):13112–13117, 2018.

(233) D Lin, G Bonora, G Yardımcı, and WS Noble. “Computational methods for analyzing and modeling genome structure and organization.” *WIREs Systems Biology.* 11(1):e1435, 2019.
(234) A Hu, Y Lu, JA Bilmes, WS Noble. “Joint precursor elution profile inference via regression for peptide detection in data-independent acquisition mass spectra.” Journal of Proteome Research. 18(1):86–94, 2019.

(235) W Bai, J Bilmes and WS Noble. “Submodular generalized matching for peptide identification in tandem mass spectrometry.” IEEE Transactions in Computational Biology and Bioinformatics. 16(4):1168–1181, 2019.

(236) GG Yardımcı, H Ozadam, MEG Sauria, O Ursu, K Yan, T Yang, A Chakraborty, A Kaul, BR Lajoie, F Song, Y Zhan, F Ay, M Gerstein, A Kundaje, Q Li, J Taylor, F Yue, J Dekker, WS Noble. “Measuring the reproducibility and quality of Hi-C data.” Genome Biology. 20(1):57, 2019.

(237) A Cheng, CE Grant, WS Noble, and TL Bailey. “MoMo: Discovery of statistically significant post-translational modification motifs.” Bioinformatics. 35(16):2774–2782, 2019.

(238) U Keich, K Tamura, and WS Noble. “Averaging strategy to reduce variability in target-decoy estimates of false discovery rate.” Journal of Proteome Research. 18(2):585–593, 2019.

(239) DH May, K Tamura, WS Noble. “Detecting modifications in proteomics experiments with Paramedic.” Journal of Proteome Research. 18(4):1902–1906, 2019.

(240) A Bertero, PA Fields, V Ramani, G Bonora, G Yardımcı, H Reinecke, L Pabon, WS Noble, J Shendure, CE Murry. “Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory.” Nature Communications. 10(1):1538, 2019.

(241) M Gasperini, AJ Hill, JL McFaline-Figueroa, B Martin, S Kim, MD Zhang, D Jackson, A Leith, J Schreiber, WS Noble, C Trapnell, N Ahiituv, J Shendure. “A genome-wide framework for mapping gene regulation via cellular genetic screens.” Cell. 176(1-2):377–390, 2019.

(242) JS Kim, X He, J Liu, Z Duan, T Kim, J Gerard, B Kim, MM Pillai, WS Lane, WS Noble, B Budnik and T Waldman. “Systematic proteomics of endogenous human cohesin reveals an interaction with diverse splicing factors and RNA binding proteins required for mitotic progression.” Journal of Biological Chemistry. 294(22):8760–8772, 2019.

(243) W Chen, A McKenna, J Schreiber, M Haessler, Y Yin, V Agrawal, WS Noble, J Shendure. “Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair.” Nucleic Acids Research. 47(15):7989–8003, 2019.

(244) J Liu, Y Huang, R Singh, JP Vert, WS Noble. “Jointly embedding multiple single-cell omics measurements.” 19th International Workshop on Algorithms in Bioinformatics (WABI 2019), 143(10):1–13, 2019.

(245) G Cauer, G Yardımcı, JP Vert, N Varoquaux, WS Noble. “Inferring diploid 3D chromatin structures from Hi-C data.” 19th International Workshop on Algorithms in Bioinformatics (WABI 2019). 143(11):1–13, 2019.

(246) A Bertero, PA Fields, AST Smith, A Leonard, K Beussman, NJ Sniadecki, D-H Kim, HF Tse, L Pabon, J Shendure, WS Noble, CE Murry. “Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy.” Journal of Cell Biology. 218(9):2919–2944, 2019.

(247) JT Halloran, H Zhang, K Kara, C Renggli, M The, C Zhang, DM Rocke, L Käll, WS Noble. “Speeding up Percolator.” Journal of Proteome Research. 18(9):3353–3359, 2019.

(248) MW Libbrecht, O Rodriguez, Z Weng, JA Bilmes, MM Hoffman, WS Noble. “A unified encyclopedia of human functional DNA elements through fully automated annotation of 164 human cell types.” Genome Biology. 20:180, 2019.

(249) M Mikan, HR Harvey, E Timmins-Schiffman, M Riffle, D May, I Salter, WS Noble, BL Nunn. “Metaproteomics reveal that rapid perturbations in organic matter inputs stimulate functional restructurings in Western Arctic Ocean microbiomes.” The ISME Journal. 14:39–52, 2020.
(250) DF Read, K Cook, YY Lu, K Le Roch, and WS Noble. “Predicting gene expression in the human malaria parasite Plasmodium falciparum.” PLOS Computational Biology. 15(9):e1007329, 2019.

(251) W Bittremieux, K Laukens, WS Noble. “Extremely fast and accurate open modification spectral library searching of high-resolution mass spectra using feature hashing and graphics processing units.” Journal of Proteome Research. 18(10):3972–3979, 2019.

(252) V Ramani, X Deng, R Qin, C Disteche, WS Noble, J Shendure, Z Duan. “Sci-Hi-C: a single-cell Hi-C method for mapping 3D genome organization in large numbers of single cells.” Methods. 170:61–68, 2020.

(253) K Cook, K Le Roch, JP Vert, WS Noble. “Measuring significant changes in chromatin conformation with ACCOST.” Nucleic Acids Research. 48(5):2303–2311, 2020.

(254) Y Yin, Y Jian, KG Lam, JB Berletch, CM Disteche, WS Noble, FJ Steemers, RD Camerini-Otero, AC Adey, J Shendure. “High-throughput single cell genome sequencing reveals cell-autonomous equational segregation in meiosis I.” Molecular Cell. 76(4):676–690, 2019.

(255) K Emery, S Hasan, U Keich and WS Noble. “Multiple competition based FDR control and peptide detection.” Proceedings of the International Conference on Research in Computational Biology (RECOMB). 24:54–71, 2020.

(256) W Fondrie, WS Noble. “A machine learning strategy that leverages large datasets to boost statistical power in small-scale experiments.” Journal of Proteome Research. 19(3):1147–1153, 2020.

(257) L Pino, BC Searle, H-Y Yang, AN Hoofnagle, WS Noble, MJ MacCoss. “Matrix-matched calibration curves for assessing analytical figures of merit in quantitative proteomics.” Journal of Proteome Research. 19(3):1147–1153, 2020.

(258) S Pan, MAJ Hullar, L A Lai, H Peng, D May, WS Noble, D Raftery, SL Navarro, ML Neuhausser, PD Lampe, JW Lampe, R Chen. “Gut microbial protein expression in response to dietary patterns in a controlled feeding study: a metaproteomic approach.” Microorganisms. 8(3):379, 2020.

(259) J Schreiber, TJ Durham, J Bilmes, WS Noble. “Multi-scale deep tensor factorization learns a latent representation of the human epigenome.” Genome Biology. 21:81, 2020.

(260) J Schreiber, J Bilmes, WS Noble. “Completing the ENCODE3 compendium yields accurate imputations across a variety of assays and human biosamples.” Genome Biology. 21:82, 2020.

(261) A Erijman, L Kozlowski, S Sohrabi-Jahromi, J Fishburn, L Warfield, J Schreiber, WS Noble, J Söding, S Hahn. “A high-throughput screen for transcription activation domains reveals their sequence characteristics and permits reliable prediction by deep learning.” Molecular Cell. 78(5):P890–P892, 2020.

(262) ENCODE Consortium. “Expanded encyclopedias of DNA elements in the human and mouse genomes.” Nature. 583(7818):699–710, 2020.

(263) J Schreiber, J Bilmes, WS Noble. “apricot: Submodular selection for data summarization in Python.” Journal of Machine Learning Research. 21(161):1–6, 2020.

(264) J Schreiber, D Hegde, WS Noble. “Zero-shot imputations across species are enabled through joint modeling of human and mouse epigenomes.” BCB ’20: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Article 39, pages 1–9, 2020. Winner of Best Paper award.

(265) R Singh, P Demetci, G Bonora, V Ramani, C Lee, H Fang, Z Duan, X Deng, J Shendure, C Disteche, WS Noble. “Unsupervised manifold alignment for single-cell multi-omics data.” BCB ’20: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Article 40, pages 1–10, 2020.
(266) W Yang, J Bilmes, WS Noble. “Submodular sketches of single-cell RNA-seq measurements.” BCB ’20: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Article 61, pages 1–6, 2020.

(267) H-J Kim, GG Yardimci, G Bonora, V Ramani, J Liu, R Qiu, C Lee, J Hesson, CB Ware, J Shendure, Z Duan and WS Noble. “Capturing cell type-specific chromatin structural patterns by applying topic modeling to single-cell Hi-C data.” PLOS Computational Biology. 16(9):e1008173, 2020.

(268) H Fang, G Bonora, JP Lewandowski, J Thakur, GN Filipova, S Henikoff, J Shendure, Z Duan, JL Rinn, X Deng, WS Noble, CM Disteche. “Trans- and cis-acting effects of the lncRNA Firre on epigenetic and structural features of the inactive X chromosome.” Nature Communications. 11(1):6053, 2020

(269) J Schreiber, R Singh, J Bilmes and WS Noble. “A pitfall for machine learning methods aiming to predict across cell types.” Genome Biology. 21(1):282, 2020.

(270) J Schreiber, J Bilmes, WS Noble. “Prioritizing transcriptomic and epigenomic experiments by using an optimization strategy that leverages imputed data.” Bioinformatics. 37(4):439-447, 2021.

(271) D Lin, J Sanders, WS Noble. “HiCRep.py: Fast comparison of Hi-C contact matrices in Python.” Bioinformatics. 37(18):2996–2997, 2021.

(272) WE Fondrie, WS Noble. “mokapot: Fast and flexible semi-supervised learning for peptide detection.” Journal of Proteome Research. 20(4):1966–1971, 2021.

(273) YY Lu, J Bilmes, RA Rodriguez-Mias, J Villén, WS Noble. “DIAmeter: Matching peptides to data-independent acquisition mass spectrometry data.” Bioinformatics (Proceedings of the ISMB). 37(Supplement_1):i434–i442, 2021.

(274) M Mudge, BL Nunn, E Firth, M Ewert, K Hales, WE Fondrie, WS Noble, J Toner, B Light, KA Junge. “Subzero, saline incubations of Colwellia psychrerythraea reveal strategies and biomarkers for sustained life in extreme icy environments.” Environmental Microbiology. 23(7):3840–3866, 2021.

(275) TJ Durham, RM Daza, L Gevirtzman, DA Cusanovich, WS Noble, J Shendure, RH Waterston. “Comprehensive characterization of tissue-specific chromatin accessibility in L2 Caenorhabditis elegans nematodes.” Genome Research. 31:1952–1969, 2021.

(277) YY Lu, W Guo, X Xing, WS Noble. “Robust decoy-enhanced saliency maps.” Proceedings of the International Conference on Machine Learning (ICML). 2021.

(278) YY Lu, TC Yu, G Bonora, WS Noble. “ACE: Explaining cluster from an adversarial perspective.” Proceedings of the International Conference on Machine Learning (ICML). 139:7156–7167, 2021.

(279) W Bittremieux, K Laukens, WS Noble, PC Dorrestein. “Large-scale tandem mass spectrum clustering using fast nearest neighbor searching.” Rapid Communications in Mass Spectrometry. e9153, 2021.

(281) A Lin, D Plubell, U Keich, WS Noble. “Accurately assigning peptides to spectra when only a subset of peptides are relevant.” Journal of Proteome Research. 20(8):4153–4164, 2021.

(282) W Fondrie, W Bittremieux, WS Noble. “ppx: Programmatic access to proteomics data repositories.” Journal of Proteome Research. 20(9):4621–4624, 2021.

†Co-first authors
(283) P Demetci, R Santorella, B Sandstede, **WS Noble**, R Singh. “SCOT: single-cell multi-omics alignment with optimal transport.” *Journal of Computational Biology*. 29(1):3–18, 2022.

(284) P Demetci, R Santorella, B Sandstede, **WS Noble**, R Singh. “Single-Cell Multiomics Integration by SCOT.” *Journal of Computational Biology*. 29(1):19–22, 2022.

(285) WS Phipps, K Smith, H-Y Yang, CM Henderson, H Pflaum, M Lerch, WE Fondrie, M Emrick, MJ MacCoss, **WS Noble**, AN Hoofnagle. “Tandem mass spectrometry-based amyloid typing using manual microdissection and open-source data processing.” *American Journal of Clinical Pathology*. 157(5):748–757, 2022.

(286) SG Swygert, D Lin, S Portillo-Ledesma, P-Y Lin, DR Hunt, C-F Kao, T Schlick, **WS Noble**, T Tsukiyama. “Chromatin fiber folding represses transcription and loop extrusion in quiescent cells.” *eLife*. e72062, 2021.

(287) M Palmblad, S Böcker, S Degroeve, O Kohlbacher, L Käll, **WS Noble**, M Wilhelm. “Interpretation of the DOME recommendations for machine learning in proteomics and metabolomics.” *Journal of Proteome Research*. 21(4):1204-1207, 2022.

(288) R Zhang, L Meng-Papaxanthos, J-P Vert, **WS Noble**. “Semi-supervised single-cell cross-modality translation using Polarbear.” *Proceedings of the International Conference on Research in Computational Biology (RECOMB)*. 2022. In press.

(289) C Qiu, J Cao, T Li, S Srivatsan, X Huang, D Calderon, **WS Noble**, CM Distichette, M Spielmann, CB Moens, C Trapnell, J Shendure. “Systematic reconstruction of the cellular trajectories of mammalian embryogenesis.” *Nature Genetics*. 54:328–341, 2022.

(290) W Bittremieux, DH May, J Bilmes, and **WS Noble**. “A learned embedding for efficient joint analysis of millions of mass spectra.” *Nature Methods*. In press.

(291) YY Lu, **WS Noble**. “A wider field of view to predict expression.” *Nature Methods*. 18:1155–1160, 2021

(292) S Whalen*, J Schreiber*, **WS Noble**, K Pollard. “Navigating the pitfalls of applying machine learning in genomics.” *Nature Reviews Genetics*. 23(3):169–181, 2022.

(293) R Zhang, L Meng-Papaxanthos, J-P Vert, **WS Noble**. “Semi-supervised single-cell cross-modality translation using Polarbear.” *Proceedings of the International Conference on Research in Computational Biology (RECOMB)*. 2022. In press.

(294) LR Heil, WE Fondrie, CD McGann, AJ Federation, **WS Noble**, Michael J. MacCoss, Uri Keich. “Building spectral libraries from narrow window data independent acquisition mass spectrometry data.” *Journal of Proteome Research*. 21(6):1382–1391, 2022.

(295) K Mazooji, S Kannan, **WS Noble**, I Shomerony. “Fundamental limits of multi-sample flow graph decomposition.” *Proceedings of the IEEE International Symposium on Information Theory*. In press.

(296) M Yilmaz, WE Fondrie, W Bittremieux, S Oh, **WS Noble**. “De novo mass spectrometry peptide sequencing with a transformer model.” *Proceedings of the International Conference on Machine Learning*. In press.

(297) AB Dincer, YY Lu, D Schweppe, S Oh, **WS Noble**. “Reducing peptide sequence bias in quantitative mass spectrometry data with machine learning.” *Journal of Proteome Research*. In press.

(298) B Hristov, JA Bilmes, **WS Noble**. “Linking cells across single-cell modalities by synergistic matching of neighborhood structure.” *Bioinformatics (Proceedings of the European Conference on Computational Biology)*. In press.
(299) J Freestone, T Short, **WS Noble**, Uri Keich. “Group-walk, a rigorous approach to separate false discovery rate analysis by target-decoy competition.” *Bioinformatics (Proceedings of the European Conference on Computational Biology).* In press.

Additional Publications

(300) **WN Grundy.** *Making a Thinking Robot.* Senior honors thesis, Symbolic Systems Program, Stanford University, 1991. Prof. Fred Dretske, advisor.

(301) **WN Grundy.** “Building a simple recognition system using HTK.” Technical report, Entropic Research Laboratory, Washington, DC. August, 1994.

(302) **WN Grundy.** *A Bayesian Approach to Motif-based Protein Modeling.* Ph.D. dissertation. University of California, San Diego. June, 1998. Prof. Charles Elkan, advisor.

(303) TL Bailey, ME Baker, CP Elkan and **WN Grundy.** “MEME, MAST, and Meta-MEME: New Tools for Motif Discovery in Protein Sequences” in *Pattern Discovery in Biomolecular Data: Tools, Techniques and Applications.* J Wang, B Shapiro and D Shasha, ed. Oxford UP, 1999.

(304) **WS Noble.** “Support vector machine applications in computational biology.” *Kernel Methods in Computational Biology.* B Schölkopf, K Tsuda and JP Vert, ed. MIT Press, 2004. pp. 71–92.

(305) **WS Noble.** “Support vector machine software.” *Encyclopedia of Genomics, Proteomics and Bioinformatics.* M Dunn, L Jorde, P Little and S Subramaniam, ed. Wiley, 2004.

(306) **WS Noble.** “Data hoarding is harming proteomics.” *Nature Biotechnology.* 22(10):1209, 2004.

(307) **WS Noble,** R Kuang, C Leslie and J Weston. “Identifying remote protein homologs by network propagation.” *FEBS Journal.* 272(20):5119–5128, 2005.

(308) J Weston, C Leslie, E Ie and **WS Noble.** “Semi-supervised protein classification using cluster kernels.” *Semi-supervised Learning.* O Chapelle, B Schölkopf and A Zien, ed. MIT Press, 2005. pp. 321–338.

(309) **WS Noble** and A Ben-Hur. “Integrating information for protein function prediction.” *Bioinformatics: From Genomes to Therapies.* Ed. by T Lengauer. Wiley, 2006.

(310) **WS Noble.** “What is a support vector machine?” *Nature Biotechnology.* 24(12):1565–1567, 2006.

(311) J Weston, G Bakir, O Bousquet, T Mann, **WS Noble** and B Schölkopf. “Joint kernel maps.” *Predicting Structured Data.* Ed. by G Bakir, T Hoffmann, B Schölkopf, AJ Smola, B Taskar and VSN Vishwanathan. MIT Press, 2007.

(312) L Käll, JD Storey, MJ MacCoss and **WS Noble.** “Posterior error probability and false discovery rates: Two sides of the same coin.” *Journal of Proteome Research.* 7(1):40–44, 2008. PMID18052118.

(313) **WS Noble** and C Leslie. “Learning models of biological sequences.” In *Encyclopedia of Machine Learning.* Ed. by C Sammut and GI Webb. Springer Verlag, 2011.

(314) Y Qi and **WS Noble.** “Protein interaction networks: protein domain interaction and protein function prediction.” In *Handbook of Statistical Bioinformatics.* Ed. by HH Lu, B Schölkopf and H. Zhao. Springer Verlag, 2011.

(315) **WS Noble,** CA Blau, J Dekker, ZJ Duan and Y Mao. “The structure and function of chromatin and chromosomes.” *Proceedings of the Pacific Symposium on Biocomputing.* 17:434–440, 2012.

(316) OR Serang and **WS Noble.** “A review of statistical methods for protein identification using tandem mass spectrometry.” *Statistics and its Interface.* 5:3–20, 2012.

(317) **WS Noble** and MJ MacCoss. “Computational and statistical analysis of protein mass spectrometry data.” *PLOS Computational Biology.* 8(1):e1002296, 2012.
(318) **BJ Diament**, MJ MacCoss and **WS Noble**. “On the feasibility and utility of exploiting real time database search to improve adaptive peak selection.” arXiv:1207.5848v1, 2012.

(319) V Granholm, **WS Noble** and L Käll. “A cross-validation scheme for machine learning algorithms in shotgun proteomics.” *BMC Bioinformatics*. 13(Suppl 16):S3, 2012.

(320) Z Duan, M Andronescu, K Schutz, C Lee, J Shendure, S Fields, **WS Noble** and CA Blau. “A genome-wide 3C-method for characterizing the three-dimensional architectures of genomes.” *Methods*. 58(3):277-288, 2012.

(321) GG Yardımcı, **WS Noble**. “A predictive model of 3D domain formation via CTCF-mediated extrusion.” *Proceedings of the National Academy of Sciences*. 112(47):14404–14405, 2015.

(322) A Hu, **WS Noble** and A Wolf-Yadlin. “Technical advances in proteomics: new developments in data independent acquisition analytical software.” *F1000 Faculty Reviews*. 5(F1000 Faculty Rev):419, 2016.

(323) A van der Velde, M Purcaro, **WS Noble**, and Z Weng. “LR-DNase: Predicting TF binding prediction from DNase-seq data.” http://biorxiv.org/content/early/2016/10/24/082594, 2016.

(324) N Hiranuma, J Liu, C Song, J Goldsmith, MO Dorschner, CC Pritchard, KA Burton, EM Mahen, S Blau, FM Senecal, WL Monsky, S Parker, SC Schmechel, SK Allison, VK Gadi, SR Salama, AJ Radenaugh, M Goldman, JM Johnsen, S Heimfeld, V Komashko, M LaMadrid-Hermannsfeldt, Z Duan, SC Benz, P Soon-Shiong, D Haussler, J Zhu, WL Ruzzo, **WS Noble**, and CA Blau. “Cis-compound mutations are prevalent in triple negative breast cancer and can drive tumor progression.” http://biorxiv.org/content/early/2016/11/05/085316, 2016.

(325) J Schreiber, MW Libbrecht, J Bilmes, and **WS Noble**. “Nucleotide sequence and DNaseI sensitivity are predictive of 3D chromatin architecture.” https://www.biorxiv.org/content/early/2018/07/10/103614, 2017.

(326) J Schreiber, YY Lu, **WS Noble**. “Ledidi: Designing genomic edits that induce functional activity.” https://www.biorxiv.org/content/10.1101/2020.05.21.109686v1, 2020.

(327) W Bittremieux, **WS Noble**. “A neural network for large-scale clustering of peptide mass spectra.” *Nature Methods*. 2022.

Submitted for Publication

(328) B Baur, J Schreiber, J Shin, S Zhang, Y Zhang, M Manjunath, J Song, **WS Noble**, S Roy. “Leveraging public epigenomic datasets to examine the role of regulatory variation in the three-dimensional organization of the genome.” *bioRxiv*. https://www.biorxiv.org/content/10.1101/2021.08.29.458098v1

(329) D Luo, K Emery, Y He, **WS Noble**, U Keich. “Competition-based control of the false discovery proportion.” https://arxiv.org/abs/2011.11939

(330) N Varoquaux, **WS Noble**, JP Vert. “Inference of genome 3D architecture by modeling overdispersion of Hi-C data.” https://www.biorxiv.org/content/10.1101/2021.02.04.429864v1

(331) J Rozowsky, J Drenkow, YT Yang, G Gursoy, T Galeev, B Borsari, CB Epstein, K Xiong, J Xu, J Gao, K Yu, A Berthel, Z Chen, F Navarro, J Liu, MS Sun, J Wright, J Chang, CJF Cameron, N Shores, E Gaskell, J Adrian, S Aganezov, G Balderrama-Gutierrez, S Banskota, GB Corona, S Chee, SB Chhetri, GCC Martins, C Danyko, CA Davis, D Farid, NP Farrell, I Gabdank, Y Gofin, DU Gorkin, M Gu, V Hecht, BC Hitz, R Issner, M Kirsche, X Kong, BR Lam, S Li, B Li, T Li, X Li, K Zin Lin, R Luo, M Mackiewicz, JE Moore, J Mudge, N Nelson, C Nusbaum, I Popov, HE Pratt, Y Qiu, S Ramakrishnan, J Raymond, L Salichos, A Scavelli, JM Schreiber, FJ Sedlacek, LH See, RM Sherman, X Shi, M Shi, CA Sloan, JS Strattan, Z Tan, FY Tanaka, A Vlasova, J
Wang, J Werner, B Williams, MXu, C Yan, L Yu, C Zaleski, J Zhang, JM Cherry, EM Mendenhall, **WS Noble**, Z Weng, ME Levine, A Dobin, B Wold, A Mortazavi, B Ren, J Gillis, RM Myers, MP Snyder, JC Choudhary, A Milosavljevic, MC Schatz, R Guigó, BE Bernstein, TR Gingeras, M Gerstein. “Diploid personal genomes: Multi-tissue integration and variant-impact models.” *bioRxiv* https://www.biorxiv.org/content/10.1101/2021.04.26.441442v1

(332) H Gu, H Harris, M Olshansky, Y Eliaz, A Krishna, A Kalluchi, M Jacobs, G Cauer, M Pham, SSP Rao, O Dudchenko, A Omer, K Mohajeri, S Kim, MH Nichols, ES Davis, D Udupa, AP Aiden, VG Corces, DH Phanstiel, **WS Noble**, J-S Seo, ME Talkowski, EL Aiden, MJ Rowley. “Deep Hi-C shows kilobase-level nuclear compartments separate active regulatory elements from adjacent regions.” https://www.biorxiv.org/content/10.1101/2021.10.03.462599v2

(333) R Yang, A Das, VR Gao, A Karbalayghareh, **WS Noble**, JA Bilmes, CS Leslie. “Epiphany: predicting Hi-C contact maps from 1D epigenomic signals.” *bioRxiv*. https://www.biorxiv.org/content/10.1101/2021.12.02.470663v1

(334) A Lin, BLD Kaiser, JR Hutchison, JA Bilmes, **WS Noble**. “MS1Connect: a mass spectrometry run similarity measure.” https://www.biorxiv.org/content/10.1101/2022.01.12.476125v1 *bioRxiv*.

(335) RA Rodriguez-Mias, KN Hess, BY Ruiz, IR Smith, AS Barente, SM Zimmerman, YY Lu, **WS Noble**, S Fields, J Villén. “Proteome-wide identification of amino acid substitutions deleterious for protein function.” *bioRxiv*.

(336) A Sur, **WS Noble**, S Sullivan, P Myler. “Edison: measuring scaffolding accuracy with edit distance.” *bioRxiv*.

(337) L Meng-Papaxanthos, R Zhang, G Li, M Cuturi, **WS Noble**, JP Vert. “LSMMD-MA: Scaling multimodal data integration for single-cell genomics data analysis.” *bioRxiv*.

(338) S Zheng, N Thakkar, H Harris, M Zhang, S Liu, M Gerstein, E Lieberman-Aiden, MJ Rowley, **WS Noble**, G Gursoy, R Singh. “Predicting A/B compartments from histone modifications using deep learning.”

(339) KG Alavattam, KA Mitzelfelt, G Bonora, PA Fields, X Yang, HS Chiu, L Pabon, A Bertero, NJ Palpant, **WS Noble**, CE Murry. “Dynamic chromatin organization and regulatory interactions in human endothelial cell differentiation.” *bioRxiv*.

(340) A Lin, T Short, **WS Noble**, U Keich. “Detecting more peptides from bottom-up mass spectrometry data via peptide-level target-decoy competition.” *bioRxiv*.

(341) A Sur, **WS Noble**, PJ Myler. “A benchmark of Hi-C scaffolders using reference genomes and de novo assemblies.” *bioRxiv*.

(342) R Zhang, L Meng-Papaxanthos, J-P Vert, **WS Noble**. “Multimodal single-cell translation and alignment with semi-supervised learning.”

Invited lectures (since 2015)

“Learning embeddings of bulk and single-cell genomic data for imputation and multi-omic integration.” Keynote, Omics Research Day, Simon Fraser University, Feb 8, 2020.

“Machine learning methods for making sense of big genomic and proteomic data.” Keynote, Machine Learning for Computational Biology Workshop, Vancouver, BC, Dec 14, 2019.

“Imputing and prioritizing epigenomics experiments.” Cancer Epigenetics Affinity Group, Fred Hutch, Sep 3, 2019.

“NOT all the things: submodular representative set selection for when big data is too big.” Keynote, Machine Learning in Computational and Systems Biology subgroup, Intelligent Systems for Molecular Biology Conference, Basel, Switzerland, Jul 25, 2019.
“Traveling across spaces: the power of embedding genomic and proteomic data into a latent space.” Keynote, Intelligent Systems for Molecular Biology Conference, Basel, Switzerland, Jul 22, 2019.

“Learning latent embeddings of genomic and proteomic data.” Genetics, Bioinformatics and Systems Biology Colloquium, UC San Diego, Mar 8, 2019.

“Learning latent embeddings of genomic and proteomic data.” DCMB Seminar, University of Michigan, Feb 27, 2019.

“Unsupervised embedding of single-cell Hi-C data.” Joint Statistical Meetings, Vancouver, BC, Jul 20, 2018.

“Modeling and predicting the 3D genome.” Keynote, 3D Genomics Special Interest Group, Intelligent Systems for Molecular Biology, Chicago, IL, Jul 7, 2018.

“Modeling the 3D architecture of the genome.” Keystone Symposium on Chromatin Architecture and Chromosome Organization, Whistler, BC, Canada, Mar 27, 2018.

“Machine learning methods for making sense of big genomic data.” Computational Genomics Winter Institute, UCLA, March 1, 2018.

“Machine learning applications in genetics and genomics.” Data Science Seminar, Fred Hutch, Jan 16, 2018.

“Machine learning and statistical challenges in protein mass spectrometry.” Huck Institute Distinguished Lecture Series, Penn State University, Nov 7, 2017.

“Machine learning and statistical challenges in protein mass spectrometry.” Penn Bioinformatics Forum, University of Pennsylvania, Nov 8, 2017.

“Machine learning and statistical challenges in protein mass spectrometry.” Keynote speaker, X-Meeting (13th International Conference of the Brazilian Bioinformatics and Computational Biology Association), Sao Paulo, Brazil, Oct 4-6, 2017.

“Machine learning methods for annotating and extending big, heterogeneous genomic data.” Distinguished Lecture Series, Department of Computer Science, University of Illinois at Urbana-Champaign, Nov 14, 2016.

“Chromosome organization and chromatin dynamics during the transmission stages of Plasmodium parasites.” Monday Seminar Series, Center for Infectious Disease Research, Seattle, WA, Nov 7, 2016.

“Machine learning methods for annotating and extending big, heterogeneous genomic data.” Genomics Seminar Series, University of Wisconsin, Madison, WA, Oct 27, 2016.

“Machine learning analysis of big, heterogeneous genomic data.” Machine Learning Seminar, University of Washington, Oct 18, 2016.

“Joint imputation of epigenomics data by three dimensional tensor factorization.” BigLS 2016 ACM International Workshop on Big Data in Life Sciences, Oct 2, 2016.

“Selecting genomics assays.” Workshop on Regulatory Genomics and Epigenomics, Simons Institute, UC Berkeley, Berkeley, CA, Mar 10, 2016.

“Selecting genomics assays and making sense of the resulting data.” Genomics@JHU seminar series. Johns Hopkins University, Baltimore, MD, Feb 23, 2016.

“Gene regulation in 3D.” Keynote speaker, RECOMB ISCB Regulatory and Systems Genomics Conference, Philadelphia, PA, Nov 17, 2015.

“How to fit 6 billion nucleotides into a 6 micron nucleus.” RECOMB Satellite Conference on Bioinformatics Education, Chevy Chase, MD, Nov 15, 2015.

“Joint annotation of chromatin state and chromatin conformation.” Session on “Computational/statistical methods for integrative -omics” at the Joint Statistical Meeting, Seattle, WA, Aug 9, 2015.

“Modeling the 4D nucleome.” Workshop on “Interdisciplinary Approaches to Biomedical Data Science Challenges : SAMSI Innovations Lab”, Statistical and Applied Mathematical Sciences Institute, Research
Current graduate students and postdoctoral associates

Gang Li, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 05/21–present
Prior Degree: Ph.D., Interdisciplinary Statistics and Operations Research, UNC Chapel Hill, 2021
Project: “Integration of single-cell genomics data and microscopy images in the context of visual cell sorting”
Funding: NIH U54 DK107979

Anupama Jha, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 03/21–present
Prior Degree: Ph.D., Computer and Information Science, University of Pennsylvania, 2021
Project: “Cross-species prediction of chromatin accessibility and 3D genome architecture data”
Funding: NIH U54 DK107979

Kris Alavattam, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 08/20–present
Prior Degree: Ph.D., Cancer and Cell Biology, University of Cincinnati, 2020
Project: “Chromatin architecture of human epithelial cells”
Funding: NIH U54 DK107979

Ran Zhang, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 02/20–present
Prior Degree: Ph.D., Department of Computer Science, Princeton University, 2019
Project: “Integration of multiple single-cell 3D genome architecture data sets”
Funding: NIH U54 DK107979

Borislav Hristov, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 10/19–present
Prior Degree: Ph.D., Department of Computer Science, Princeton University, 2019
Project: “Analysis methods for deciphering lncRNA-DNA binding in Plasmodium falciparum”
Funding: NIH R01 AI136511

Yang Lu, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 01/18–present
Prior Degree: Ph.D., Department of Computer Science, University of Southern California, 2017
Project: “Detecting linked peptide pairs in data-independent acquisition tandem mass spectrometry data.”
Funding: Keck Foundation

Gesine Cauer, Ph.D. student, Genome Sciences, University of Washington
Dates: 01/18–present
Prior degree: B.S., Biology, Haverford College, 2012
Project: “Inference of 3D structure of diploid genomes from Hi-C data”
Funding: NIH F31 GM134642

Robin Aguilar, Ph.D. student, Genome Sciences, University of Washington
Dates: 06/19–present
Prior degree: B.S., Biochemistry, De Pauw University, 2018
Project: Oligo probe design for high-throughput fluorescence microscopy
Funding: NSF Graduate Fellowship Program / HHMI Gilliam Fellowship

Alan Min, Ph.D. student, Statistics, University of Washington
Dates: 08/19–present
Prior degree: B.S., Computer science, math, and statistics, Purdue University, 2018
Project: Latent Dirichlet allocation modeling of single-cell expression and chromatin accessibility data
Funding: NSF Graduate Fellowship Program

Mu Yang, Ph.D. student, Biomedical Informatics and Medical Education, University of Washington
Dates: 09/19–present
Prior degree: B.S., Public Health, National Taiwan University, 2015
Project: Cross-species analysis of single-cell RNA-seq data
Funding: Government scholarship for overseas Ph. D. study from the Ministry of Education, Taiwan

Melih Yilmaz, Ph.D. student, Paul G. Allen School of Computer Science and Engineering
Dates: 02/21–present
Prior degree: B.S., Electrical and Electronic Engineering, Koc University, Istanbul, Turkey
Project: De novo spectrum identification using deep neural networks
Funding: R01 GM121818

Lincoln Harris, Ph.D. student, Department of Genome Sciences
Dates: 06/21–present
Prior degree: B.A., Biology, Swarthmore College, 2017
Project: Deep tensor-based imputation of mass spectrometry data
Funding: R01 GM121818

Former graduate students and postdoctoral associates

Kianna Hales, Masters student, Department of Genome Sciences
Dates: 06/20–03/22
Prior degree: B.S., Molecular, Cellular & Developmental Biology / Data Science, University of Washington, 2019
Project: Deep neural network de-noising of tandem mass spectrometry data
Current position: Unknown

Ayse Dincer, Ph.D. student, Paul G. Allen School of Computer Science and Engineering
Dates: 02/21–06/22
Prior degree: B.S., Computer Science, Bilkent University, Ankarra, Turkey, 2017
Project: Correcting peptide-specific biases in quantitative mass spectrometry data
Current position: Uber Research

Dejun Lin, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 03/16–02/22
Name	Position	Dates	Degree 1	Project	Degree 2	Project	Position	Dates
Giancarlo Bonora	Postdoctoral Associate	02/16–07/21	Ph.D., Biophysics, University of Rochester, 2015	“Molecular dynamics modeling of 3D genome architecture”	Project: “Computational methods for analysis of 3D nucleome data”	Current position: Job search		
Andy Lin	Ph.D. student	06/16–03/21	Ph.D., Computer Science, University of California, Los Angeles, 2015	“Unsupervised ranking of mass spectrometry runs”	Prior degree: B.S., Cellular and Molecular Biology and Bioinformatics, University of Michigan, 2012	Current position: Senior Bioinformatics Scientist, R&D department, Predicine		
Jacob Schreiber	Ph.D. student	01/15–09/20	B.S., Biomolecular Engineering, University of California, Santa Cruz, 2013	“Deep tensor factorization for large-scale imputation of epigenomic data”	Prior degree: B.S., Computer Science and Engineering, University of Washington	Current position: Postdoctoral Fellow with Prof. Anshul Kundaje, Department of Genetics, Stanford University		
Gürkan Yardımcı	Postdoctoral Associate	07/15–08/20	Ph.D., Computational Biology and Bioinformatics, Duke University, 2014	“Computational methods for analysis of 3D nucleome data”	Prior degree: B.S., Bioinformatics and Biotechnology, University of California, Los Angeles, 2015	Current position: Postdoctoral Fellow, Department of Computer Science, Brown University		
Timothy Durham	Ph.D. student	06/14–08/19	B.S., Biology and Computer Science, Williams College, 2009	“Machine learning methods to impute epigenomic maps”	Prior degree: B.S., Biology and Computer Science, University of Washington	Current position: Postdoctoral fellow, Ben Garcia lab, University of Pennsylvania		
Ritambhara Singh	Postdoctoral Associate	07/18–07/19	Ph.D. Degree: Department of Computer Science, University of Virginia, 2018	“A deep neural network approach to improving resolution of single-cell Hi-C data.”	Prior degree: B.S., Biochemistry and Molecular Biology, Pennsylvania State University, 2009	Current position: Postdoctoral fellow with Prof. Pieter Dorrestein, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego		
Wout Bittremieux	Postdoctoral Associate	09/17–06/19	Ph.D., Computer Science, University of Antwerp, 2017	“Generating theoretical peptide mass spectra using a generative adversarial network.”	Prior degree: Ph.D., Computer Science, University of Wisconsin–Madison, 2014	Current position: Postdoctoral Associate, Genome Sciences, University of Washington	Dates: 10/14–12/18	
Jie Liu	Postdoctoral Associate	10/14–12/18	Prior degree: Ph.D., Computer Science, University of Wisconsin–Madison, 2014	“Summarization of big cancer data”	Prior Degree: Ph.D., Computer Science, University of Wisconsin–Madison, 2014	Project: “Computational methods for analysis of 3D nucleome data”		
Current position: Assistant Professor, Department of Computational Medicine and Bioinformatics, University of Michigan

Damon May, Ph.D. student, Genome Sciences, University of Washington
Dates: 06/15–12/18
Prior degree: M.S., Computer Science and Engineering, University of Washington, 2005
Project: “A learned embedding for efficient joint analysis of millions of mass spectra”
Current position: Computational Immunologist, Adaptive Biotechnologies

Kate Cook, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 09/15–06/18
Prior Degree: Ph.D., Molecular Genetics, University of Toronto, 2015
Project: “Relating gene expression to genome architecture in *Plasmodium falciparam*”
Current position: Research Associate, Ottawa Hospital Research Institute, University of Ottawa

Alex Hu, Ph.D. student, Genome Sciences, University of Washington
Dates: 06/13–03/18
Prior degree: B.S., Biomedical Engineering and B.S., Biology, UT Austin, 2012
Project: “Computational methods for the analysis of data-independent acquisition shotgun proteomics data.”
Current position: Research scientist, Benaroya Research Institute

Max Libbrecht, Ph.D. student, Computer Science and Engineering, University of Washington
Dates: 09/11–06/17
Prior degree: B.S., Computer Science, Stanford University, 2011
Project: “Understanding human genome regulation through entropic graph-based regularization and submodular optimization”
Current position: Assistant Professor, Department of Computer Science, Simon Fraser University.

John Halloran, Ph.D. student, Electrical Engineering, University of Washington
Dates: 01/11–12/15
Prior degree: M.S., Electrical Engineering, University of Hawaii at Manoa, 2010
Project: “Graphical Models for Peptide Identification of Tandem Mass Spectra.”
Current position: Postdoctoral Fellow, Division of Biostatistics, UC Davis

Attila Kertesz-Farkas, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 09/13–08/15
Prior degree: Ph.D., Computer Science, University of Szeged, Hungary, 2010
Project: “Accurate and rapid identification of post-translationally modified peptides from shotgun proteomics data.”
Current position: Assistant Professor, School of Data Analysis and Artificial Intelligence, the Faculty of Informatics, National Research University Higher School of Economics in Moscow, Russian Federation.

Wenxiu Ma, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 09/11–08/15
Prior Degree: Ph.D., Computer Science, Stanford University, 2012
Project: “Analysis of ChIP-seq and chromatin architecture data”
Current position: Assistant Professor, Department of Statistics, University of California, Riverside.

Ferhat Ay, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 09/11–02/15
Prior Degree: Ph.D., Computer Science, University of Florida, 2011
Project: “Inference of genome architecture from DNA-DNA interaction data.”
Current position: Institute Leadership Assistant Professor of Computational Biology, La Jolla Institute for Allergy and Immunology

Habil Zare, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 01/12–06/14
Prior Degree: Ph.D., Computer Science, University of British Columbia, 2011
Michael Hoffman, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 08/08–08/13
Prior degree: Ph.D., Biology, Trinity College, University of Cambridge, 2008
Project: “Unsupervised dynamic Bayesian networks for segmentation of heterogeneous genomic data sets.”
Current position: Assistant Professor, Department of Medical Biophysics and the Department of Computer Science, University of Toronto. Scientist (Principal Investigator), Princess Margaret Cancer Center, Toronto, CA.

Sean McIlwain, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 10/08–09/12
Prior degree: Ph.D., Department of Computer Science, University of Wisconsin, Madison, 2008
Project: “Analysis of tandem mass spectra from cross-linked peptides”
Current position: Bioinformatics Researcher, Greater Lakes Bioenergy Research Center, University of Wisconsin

Kris Weber, Masters student, Computer Science and Engineering, University of Washington
Dates: 06/10–07/12
Prior degree: B.S., Computer Science and Engineering, University of Washington, 2010
Project: “Characterizing the clonal population of a single cancer using high-throughput sequencing.”
Current position: Amazon.com.

Marina Spivak, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 09/10–05/12
Prior Degree: Ph.D., Computer Science, New York University, 2010
Project: “Joint peptide and protein identification from shotgun proteomics data.”
Current position: Data Scientist, Center for Computational Biology, Simons Foundation.

Yi Mao, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 10/11–04/12
Prior Degree: Ph.D., Physical Chemistry, Northwestern University, 2000
Project: “Modeling mammalian genomes.”
Current position: Unknown

Benjamin Diament, Ph.D. student, Computer Science and Engineering, University of Washington
Dates: 06/09–09/11
Prior degree: M.S., Computer Science, UC Berkeley
Project: “Ultrafast peptide identification from tandem mass spectra: method and applications.”
Current position: Mass spectrometry software start-up

Zafer Aydin, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 09/08–09/11
Prior degree: Ph.D., Electrical and Computer Engineering, Georgia Institute of Technology, 2008
Project: “Supervised learning for analysis of C. elegans single cell expression images”; “Dynamic Bayesian networks for predicting protein secondary structure”
Current position: Assistant Professor, Computer Engineering Department, Abdullah Gul University, Kayseri, Turkey.

Xiaoyu Chen, Ph.D. student, Computer Science and Engineering, University of Washington
Dates: 09/07–07/11
Prior degree: M.S., Computer Science, McGill University, 2006
Project: “Discovering and characterizing tissue-specific regulatory motifs in the human genome.”
Current position: Illumina, San Diego, CA.

Eric Garcia, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 09/10–06/11
Prior degree: Ph.D., Electrical Engineering, University of Washington, 2010
Project: “The relationship between structure and function of the human genome.”
Current position: Machine Learning Engineer, Spotify.

Oliver Serang, Ph.D. student, Genome Sciences, University of Washington
Dates: 09/07–06/11
Prior degree: B.S., Computer Science, University of North Carolina, 2006
Project: “Accurate and efficient characterization of complex protein mixtures.”
Current position: Assistant Professor, Department of Computer Science, University of Montana

Mirela Andronescu, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 01/09–08/10
Prior degree: Ph.D., Computer Science, University of British Columbia
Project: “Characterizing the 3D structure of the yeast and human genomes.”
Current position: Bioinformatics Scientist, Shah Lab, University of British Columbia

Sheila Reynolds, Ph.D. student, Electrical Engineering, University of Washington
Dates: 09/05–12/09
Prior degree: M.S, Electrical Engineering, George Washington University, 1990
Project: “Classification and labeling of biological sequences using dynamic Bayesian networks.”
Current position: Senior Research Scientist, Ilya Shmulevich lab, Institute for Systems Biology.

Merja Oja, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 01/08–12/08
Prior degree: Ph.D., Department of Computer Science, University of Helsinki, 2007
Project: “Multitask learning for predicting protein properties from sequence.”
Current position: Researcher, Protein Production Lab, VTT Technical Research Centre of Finland.

Lukas Käll, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 07/06–07/08
Prior degree: Ph.D., Bioinformatics, Karolinska Institute, 2006
Project: “Machine learning and statistical tools for enhanced peptide identification from shotgun proteomics data.”
Current position: Professor, Applied Systems Biology, KTH—Royal Institute of Technology

Aaron Klammer, Ph.D. student, Genome Sciences, University of Washington
Dates: 09/04–06/08
Prior degree: B.A., Biology and Biochemistry, University of California, Santa Barbara, 1999
Project: “A machine learning approach to peptide identification with tandem mass spectrometry.”
Current position: Pacific Biosciences, Menlo Park, CA.

Jian Qiu, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 08/05–05/08
Prior degree: Ph.D., Computer Science, Cornell University, 2005
Project: “Combining sequence and structure information to characterize yeast protein complexes.”
Current position: Hedge fund.

Shobhit Gupta, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 01/06–06/07
Prior degree: Ph.D., Bioinformatics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
Project: “Discovery and characterization of regulatory motifs in DNaseI hypersensitive sites.”
Current position: MBA program, Cornell University

Tobias Mann, Ph.D. student, Genome Sciences, University of Washington
Dates: 06/03–06/07
Prior degree: M.S., Electrical Engineering, University of Washington, 2002
Project: “A thermodynamic approach to PCR primer design.”
Current position: Director of Bioinformatics, Progenity

Darrin Lewis, Ph.D. student, Computer Science, Columbia University
Dates: 07/00–07/06.
Prior degree: M.S., Computer Science, Hofstra University, 1993
Project: “Combining kernels for classification.”
Current position: Postdoctoral Associate, Michael Zhang lab, Cold Spring Harbor Laboratory.

Asa Ben-Hur, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 05/04–07/05
Prior degree: Ph.D., Information Systems, Technion, Israel, 2001
Project: “SVM prediction of protein-protein interactions.”
Current position: Associate Professor, Department of Computer Science, Colorado State University, Ft. Collins, CO.

Wei Wu, Postdoctoral Associate, Genome Sciences, University of Washington
Dates: 04/03–04/05
Prior degree: Ph.D., Biomedical Sciences, SUNY Albany, 2003, and M.S., Computer Sciences, SUNY Albany, 2002
Project: “Data fusion for cell cycle gene recognition in yeast.”
Current position: Microsoft, Redmond, CA.

Paul Pavlidis, Associate Research Scientist, Columbia Genome Center
Dates: 12/99–6/02
Prior degree: Ph.D., Molecular and Cell biology, UC Berkeley, 1994, and five years of postdoctoral experience in neuroscience at Stanford (Daniel V. Madison) and Columbia (Eric R. Kandel)
Project: “Statistical and machine learning tools for microarray analysis.”
Current position: Professor, Department of Psychiatry, University of British Columbia.

Victoria Haghighi, Postdoctoral Associate, Columbia Genome Center
Dates: 02/00–6/02
Prior degree: B.A., computer science, UC Berkeley, 1993, and Ph.D., genetics and development, Columbia, 2000.
Project: “Gene finding and genetic network modeling.”
Current position: Assistant Professor, Department of Psychiatry, Columbia University.

Li Liao, Masters student, Computer Science, Columbia University
Prior degree: Ph.D., physics, Peking University, 2002. Dates: 9/01–6/02
Project: “Combining pairwise sequence similarity and support vector machines for remote protein homology detection.”
Current position: Associate Professor, Department of Computer Science, University of Delaware.

Haoyuan Zhu, Masters student, Computer Science, Columbia University
Dates: 01/01–06/02
Project: “Software tools for the analysis of promoter regions.”
Current position: Rosetta Inpharmatics, Kirkland, WA.

Johnny Li, Masters student, Computer Science, Columbia University
Dates: 09/01–06/02
Prior degree: Ph.D., Molecular Genetics, UT Austin, 1998
Project: “Statistics of replicated microarray experiments.”
Current position: Scientist—Bioinformatics & Biostatistics, Nestlé Research Center, St. Louis, MO.

Ilana Hefter, Masters student, Computer Science, Columbia University
Dates: 09/01–06/02
Project: “Computational methods to differentiate spliced exons from pseudoexons.”
Subsequent position: medical school.
Eleazar Eskin, Ph.D. student, Computer Science, Columbia University
Dates: 11/99–05/02
Project: “Sparse sequence modeling with applications to computational biology and intrusion detection.”
Current position: Associate Professor, Department of Computer Science and Engineering, University of California, Los Angeles.

Jie Qin, Masters student, Computer Science, Columbia University
Dates: 06/00–06/01
Prior degree: Ph.D
Project: “Web-based microarray analysis tools and kernel hierarchical clustering for microarray analysis.”
Current position: Associate Research Scientist, Columbia Genome Center.

James Cai, Masters student, Medical Informatics, Columbia University
Dates: 06/00–6/01
Prior degree: Ph.D., Biochemistry, University of Vermont
Project: “Cancer classification from microarray data.”
Current position: Roche Pharmaceuticals.

Chihiro Ishii, Masters student, Computer Science, Columbia University
Dates: 3/00–12/00
Project: “Meta-MEME modeling of promoters and proteins.”
Current position: NEC Tokyo.

Thesis committee membership

Adam Wilcox. Automated classification of medical text reports. Department of Medical Informatics, Columbia University, 2000.
Regina Barzilay. Multidocument summarization by information fusion. Department of Computer Science, Columbia University, 2001.
Heather McCune. Better late than never: microarray-based analysis of DNA replication dynamics in a yeast mutant with inefficient late origin activation. Department of Genetics, University of Washington, 2004.
Amol Praakash. Algorithms for comparative sequence analysis and comparative proteomics. Department of Computer Science and Engineering, University of Washington, 2006.
Nick Norberg. Giant Zeeman effects in colloidal diluted magnetic semiconductor quantum dots with homogeneous dopant speciation. Department of Chemistry, University of Washington, 2006.
Rui Kuang. Inferring protein structure with discriminative learning and network diffusion. Department of Computer Science, Columbia University, 2006.
Luca Cazzanti. Generative models for similarity-based classification. Department of Electrical Engineering, University of Washington, 2007.
Cristi Stoick-Cooper. The role of Wnt signaling in fin and heart regeneration of the zebrafish. Program in Neurobiology and Behaviour, University of Washington, 2007.
Chris Bartels. Graphical models for large vocabulary speech recognition. Department of Electrical Engineering, University of Washington, 2008.
Paul Murphy. Program in Molecular and Cellular Biology, University of Washington, 2008.
Chua Hon Nian. Graph-based Methods for Protein Function Prediction. Graduate School for Integrative Sciences and Engineering, National University of Singapore, 2008.
Zizhen Yao. Genome scale search of noncoding RNAs: bacteria to vertebrates. Department of Computer Science and Engineering, University of Washington, 2008.
Michael Hoopman. Identification of unusual isotope distributions to facilitate rapid, high-throughput analysis
using mass spectrometry. Department of Genome Sciences, University of Washington, 2009.

Kevin Duh. Semi-supervised ranking: algorithms & applications. Department of Electrical Engineering, University of Washington, 2009.

Will Sheffler. A volumetric score function for computational protein structure modeling and protein structure validation. Department of Genome Sciences, University of Washington, 2009.

Eithon Cadag. Statistical learning and data integration across heterogeneous sources for virulence factor recognition. Department of Biomedical and Health Informatics, University of Washington, 2009.

Jon Malkin. Smoothing class transitions with hard labels. Department of Electrical Engineering, University of Washington, 2009.

Youyi Fong. Modeling protein subfamilies; finding the number of mixture components from sequences of generalized Bernoulli random variables. Department of Biostatistics, University of Washington, 2009.

Yihua Chen. Strategies for Similarity-based Learning. Department of Electrical Engineering, University of Washington, 2010.

Richard Schaeffer. Detecting conservation of folding pathway by family: Three-helix bundles, SH3 domains and β-graph domains. Department of Biochemistry, University of Washington, 2010.

Alex Scouras. Department of Biochemistry, University of Washington. 2010.

Sangsoon Woo. A computationally efficient modular optimal discovery procedure. Department of Biostatistics, University of Washington, 2010.

Troy Zerr. Genotyping Human Genomic Structural Variation. Department of Genome Sciences, University of Washington, 2010.

Prayga Singh. Structural and Functional Characterization of Bacterial Secretion Systems Using Mass Spectrometry. Department of Medicinal Chemistry, University of Washington, 2011.

James Thompson. Comparative Modeling of Protein Structures. Department of Genome Sciences, University of Washington, 2011.

Claire Ryu. Statistical Approaches to Analyze Mass Spectrometry Data. Department of Statistics, University of Washington, 2011.

Albert Huang. Integrated systems approach to the study of dendritic cell differentiation. Program in Molecular and Cellular Biology, University of Washington, 2011.

Jarrett Egertson. Development of Data Independent Acquisition Techniques for the Analysis of High-Complexity Samples by Tandem Mass Spectrometry. Department of Genome Sciences, University of Washington, 2013.

Sharon Greenblum. Metagenomic systems biology: frameworks for modeling and characterizing the gut microbiome. Department of Genome Sciences, University of Washington, 2014.

Jeff Staples. PRIMUS: Pedigree Reconstruction and Identification of a Maximum Unrelated Set. Department of Genome Sciences, University of Washington, 2014.

Marea Cobb (masters). NGSdb: A NGS Data Management and Analysis Platform for Comparative Genomics. Department of Biomedical and Health Informatics, University of Washington, 2015.

Alexander Rosenberg. Learning Models of Gene Expression from Synthetic DNA Sequences. Department of Electrical Engineering, University of Washington, 2016.

Kai Wei. Submodular Optimization and Data Processing. Department of Electrical Engineering, University of Washington, 2016.

Ying Sonia Ting. Shifting the Paradigm: Peptide-Centric Analysis of Systematically Sampled Mass Spectrometry Data. Department of Genome Sciences, University of Washington, 2016.

37
Jean Morrison. *Statistical Methods for Spatially Structured Genomic Data and High Dimensional Studies.* Department of Biostatistics, University of Washington, 2016.

Sergey Ovchinnikov. *Protein Structure Determination Using Metagenomic Sequencing Data.* Program in Molecular and Cellular Biology, University of Washington, 2017.

Rodrigo Goya. *Bioinformatics Approaches for Identifying Single Nucleotide Variants and Profiling Alternative Expression in Cancer Transcriptomes.* Program in Bioinformatics, University of British Columbia, 2017.

Han-Yin Yang. *Development Of Amyloidosis Typing Method and Data Acquisition Strategy Using Tandem Mass Spectrometry.* Department of Genome Sciences, University of Washington, 2018.

Brian Searle. *Development Of Data Independent Acquisition Methods to Systematically Analyze the human proteome.* Department of Genome Sciences, University of Washington, 2018.

Xiaojie Qiu. *A Computational Framework to Resolve Complex Developmental Trajectories and Regulatory Networks from scRNA-seq.* Department of Genome Sciences, University of Washington, 2018.

Sumit Mukherjee. Department of Electrical Engineering, University of Washington. 2018.

Seungsoo Kim. *Maps And Mechanisms Of Three-dimensional Genome Organization.* Department of Genome Sciences, University of Washington, 2019.

Cecilia Noecker. *Metabolic Modeling-based Tools For Integrative Microbiome Data Analysis.* Department of Genome Sciences, University of Washington, 2019.

Alex Eng. *Model-based Computational Methods to Aid the Design of Synthetic Microbial Communities.* Department of Genome Sciences, University of Washington, 2019.

Hannah Pliner. *Algorithms for Modeling Gene Regulation and Determining Cell Type Using Single-cell Molecular Profiles.* Department of Genome Sciences, University of Washington, 2019.

Natalie Sauerwald. *Algorithms for the study of chromosomal structure variability.* CMU-Pitt Computational Biology Program, Carnegie Mellon University. 2020.

Ken Jean-Baptiste. *Root Development in Arabidopsis thaliana.* Department of Genome Sciences, University of Washington. 2020.

Daniel Jones. *RNA-seq analysis using approximate likelihood.* Paul G. Allen School of Computer Science and Engineering, University of Washington. 2020.

Eliah Overbey. *Understanding Regulatory Control of Gene Expression using Epigenome and Epitranscriptome Maps.* Department of Genome Sciences, University of Washington, 2021.

Mitchell Vollger. *Assembly of Segmental Duplications and Their Variation in Humans.* Department of Genome Sciences, University of Washington. 2021.

Jared Mohr. *New Technologies for Cross-linking Mass Spectrometry.* Department of Genome Sciences, University of Washington, 2022.

Betul Akgol Oksuz. *Detection of 3D Genome Folding at Multiple Scales.* University of Massachusetts Medical School, 2022.

Sen Zhao. Department of Biostatistics, University of Washington.

Anthony Barente. Department of Genome Sciences, University of Washington.

Deanna Plubell. Department of Genome Sciences, University of Washington.

Michael Goldberg. Department of Genome Sciences, University of Washington.

Steven Wu. Molecular Engineering Program, University of Washington.
Teaching

“GENOME 373: Genomic Informatics.” This course provides a survey of bioinformatics methodologies. The course is taught in an alternating format, with one week focusing on the application of bioinformatics programs, followed by a week in which I describe the inner workings of those same programs. First offered spring quarter 2004, I taught the course jointly with Jim Thomas for four years, then we did not teach the course in 2008, and I taught it myself in 2009.

“GENOME 475: Debates in Genetics.” This course is organized into three-class units, where each unit addresses a current topic on genetics. The introductory class involves a lecture and discussion of the topic background, with readings from the popular press and the scientific literature. The second class is a formal debate, with student teams debating and students evaluating the debate. The third class is a discussion of the debate. I co-taught the course for five years (2012–2016).

“GENOME 541: Introduction to Computational Molecular Biology: Genome and Protein Sequence Analysis.” This is the second half of a two-quarter graduate course in the core methods of computational biology. The course, which I organize, covers a variety of topics, with each of five faculty members teaching a two-week block. My portion of the course focuses on machine learning methods for computational biology. I have taught this course every year since 2003, except during my sabbaticals in 2010 and 2017.

“GENOME 559: Introduction to Statistical and Computational Genomics.” This was originally a 5-week course that introduced graduate students to the basics of statistical analysis and programming in Perl. I taught the course for seven years from autumn 2002 through spring 2009. In 2007, we switched from Perl to Python, and in 2008, we switched from a 5-week to a 10-week format and a co-teaching format. I started teaching the course again in winter 2018.

“CSE590C: Reading and Research in Computational Biology.” This ongoing seminar is offered through the UW Department of Computer Science and serves as the journal club for the Computational Molecular Biology program. The course is organized jointly by Martin Tompa, Larry Ruzzo, Joe Felsenstein and myself. I have taught this course every year since 2002–2003, except during my sabbaticals spring 2010 and 2017.

“Introduction to Bioinformatics.” Three-week course taught at the African Institute for Mathematical Sciences, Muizenberg, South Africa, in February, 2013. AIMS draws post-baccalaureate students from across Africa and provides them with a one-year masters degree to prepare them for entry to graduate school. My course taught basic bioinformatics using Python.

Ad hoc teaching at the University of Washington:

- “MEDCHEM 541: Mass Spectrometry Based Proteomics.” 2008, 2009.
- “MEBI/BIME 590: Biomedical and Health Informatics Lecture Series.” 2008, 2009, 2011, 2017.
• Data science masters program, 2016, 2017.

“Computational Genomics.” I designed this course to be offered to undergraduate and graduate students at Columbia. It was cross-listed in computer science, biomedical engineering and medical informatics and was offered as an elective in all three departments. The course focused on microarray expression analysis, protein sequence analysis, and gene finding. Students worked in interdisciplinary teams on two projects per semester. I taught the course in spring 2000 (35 students) and 2001 (65 students). After I left Columbia, the course was taught by Prof. Christina Leslie.

“Data Structures and Algorithms in Java.” This is a core course in the undergraduate computer science department curriculum at Columbia. I taught the course in autumn 1999 (50 students), 2000 (60 students) and 2001 (71 students).

Participant, Preparing Professional Faculty Initiative. University of California, San Diego, winter, 1998. Prof. Clark Glymour, faculty mentor.

Teacher, math, physics and English literature. Mt. Tabor High School, Lesotho, 1991-1993.

Departmental service

Department of Genome Sciences

• Building committee, 2002–2003.
• Faculty search committee, 2004–2005, 2007–2008, 2017–2018, 2018–2019, 2022–2023.
• Admissions committee, 2004–2006.
• Seminar committee, 2006, 2007, 2014, 2019.
• Curriculum committee, 2006, 2010–.
• Chair, faculty search committee, 2011–2012.
• Chair, promotions committee, 2018–2019.
• Co-organizer, departmental symposium, 2007.
• Chair, IT committee, 2018–.
• Chair, DEI committee, 2020
• Member, DEI committee, 2021–.
• Interim Chair, 2020–2021.
• Faculty mentor, Elhanan Borenstein, Su-In Lee, Doug Fowler, Devin Schweppe.

Training

• Nov 19, 2019: One-day mentorship training program run by the Center for the Improvement of Mentored Experiences in Research (https://cimerproject.org).
• February 8, 2020: Ally skills workshop run by Frame Shift Consulting (https://frameshiftconsulting.com/). 3 hours.
• May 26, 2020: “Moving from bystander to upstander: take action to combat harassment and aggression.” NIH webinar. 2 hours.
• Sep 2, 2020: “Oh! So, You Really Want to Talk about Race? : Racial, Health and Environmental Justice in STEM.” PRISM workshop, 1.5 hours.
• Sep 4, 2020: “From Deficits to Possibilities: Mentoring Lessons for Building A Culture of Broad Access and Success.” PRISM workshop, 1.5 hours.

• Oct 20, Nov 10, 2020: “Race, Bias & Dissonance” run by Greg Taylor (http://www.cconnectconsult.com). Two 2-hour sessions.

• Oct 30, 2020: “Leadership Development Series: Working Through Conflict.” UW SoM workshop. 2 hours.

• Feb 23, March 23, April 27, 2021: “Anti-racism training series,” UW SoM. Three 2.5-hour sessions.

• Mar 22, 2021: “Leadership Development Series: Creating High Performing Teams.” UW SoM. 2 hours.

• Apr 14, 2021: “Virtual Summit on Equity in Graduate Education.” UW Graduate School. 1.5 hours

• May 18, 2021: “So You Want to Talk About Race.” Ijeoma Oluo webinar. 1 hour.

• May 20, 2021: “Holistic Support of the Graduate Student Experience: Towards Effective Mentorship Practices.” UW Office of Equity & Justices in Graduate Programs. 1.5 hours.

• Feb 16, Mar 9, June 15, 2021: “99.9% Alike: Making Genomics Inclusive for Marginalized Populations.” Lavender Rights Project. Three 2-hour sessions.

• Mar 7–11, 2022: “Facilitating Entering Mentoring.” Facilitator training program run by the Center for the Improvement of Mentored Experiences in Research. Six 2-hour sessions.

Current support

R01 HG011466 (Noble) 2/01/21–1/31/25
NIH $1,549,944

Deep tensor genomic imputation
This project will develop a machine learning approach to predicting various types of genomic experiments before they are performed by leveraging big, heterogeneous compendia of existing data. Role: PI

UM1 HG011531 (Noble, Disteche, Shendure) 9/18/20–6/31/25
NIH $10,155,255

UW 4-Dimensional Genomic Organization of Mammalian Embryogenesis Center
The UW 4D Genome Organization of Mammalian Embryogenesis Center (UW 4D GENOME) will carry out systematic generation of sequencing and imaging data during mouse embryogenesis, summarizing and visualizing the resulting data using machine learning models. Role: Multi-PI

R35 GM131745 (Disteche) 5/1/19–4/30/24
NIH/NIGMS $2,912,429

X chromosome regulation and role in aneuploidy
The main goal of this project is to understand the role of the sex chromosomes in sex differences and sex chromosome disorders in vivo. The Noble lab is developing statistical and machine learning methods to interpret the resulting data sets. Role: Co-investigator
R01 AI136511 (Le Roch) 7/01/18–6/30/23
NIH/NIGMS $764,953 (subcontract)

Chromatin structure and control of gene expression in the human malaria parasite
This project will characterize the molecular drivers of chromatin organization and gene regulation in *Plasmodium falciparum*, elucidating their importance in parasite development, virulence, and sexual differentiation.
Role: Co-investigator

2020-219003 (Noble) 6/01/20–5/31/22
Chan-Zuckberberg $200,000

The Percolator analysis engine for tandem mass spectrometry data
This project improves Percolator, which is the dominant software for analyzing spectrum identifications produced by protein tandem mass spectrometry, by making the software faster, more robust, and applicable to more types of mass spectrometry data. A total of 23 out of 194 (11.9%) of proposals were funded.
Role: PI

Previous support

P41 GM103533 (MacCoss) 7/1/17–3/31/21
NIH/NIGMS $856,289 (subaward)

Comprehensive biology: Exploiting the yeast genome
The mission of the YRC is to facilitate the identification and characterization of protein complexes in the yeast *Saccharomyces cerevisiae*.
Role: Co-investigator

R01 GM121818 (Noble) 2/01/17–1/31/21
NIH/NIGMS $1,279,410

Optimization and joint modeling for peptide detection by tandem mass spectrometry
This project develops and applies statistical and machine learning methods for interpreting mass spectra.
Role: PI

U01 HG009395 (Leslie) 12/1/16–1/31/22
NIH/NHGRI $380,260 (subcontract)

Encoding genomic architecture in the encyclopedia: linking DNA elements, chromatin state, and gene expression in 3D
This project developed methods to integrate gene expression, DNA sequence, chromatin accessibility, and chromatin 3D architecture data to gain insights into gene regulation.
Role: Co-investigator

U24 HG009446 (Weng) 2/1/17–1/31/22
NIH/NHGRI $550,000 (subcontract)

EDAC: ENCODE Data Analysis Center
The EDAC is a multi-disciplinary group of scientists who integrate data from all groups in the ENCODE Consortium.
Role: Co-investigator

R61 DA047010 (Mullins, Duan) 8/15/18–5/31/22
NIH/NIGMS $204,939 (subaward)

Impact of methamphetamine use on the HIV nucleome in individuals on antiretroviral therapy
This project aims to understand the mechanisms of HIV latency using state-of-the-art genomic tools as well as complementary cellular and molecular methods.
Role: Co-investigator
Gene-by-gene studies of dosage regulation pathways of the mammalian X chromosome.
The goal of this study is to identify mechanisms of adaptation in response to gene dosage changes such as copy number variants, using the X chromosome as a model.
Role: Co-investigator

Limited mistranslation mutagenesis: A proteome-wide technology to assess the effects of amino acid substitutions on protein function
This project will develop a novel, non-genetic mutagenesis technology to assess the effects of amino acid substitutions on protein function on a proteome-wide scale
Role: Co-investigator

Collaborative research: Proteins as functional biomarkers: integrating organic characterization with proteomics to track routes for carbon and nitrogen recycling and preservation
This project aims to produce a metaproteomic pipeline to provide insights into the distribution of taxonomy-specific biological functions to unravel ecosystem processes.
Role: co-PI

Tethered nuclease strategies for in situ mapping of 3D nuclear organization
This proposal refines and extends a modern genomic profiling method, called CUT&RUN, that enables accurate mapping with relatively low-coverage deep sequencing.
Role: Co-investigator

The MEME suite of motif-based sequence analysis tools
This project supports, maintains and develops the MEME software suite of motif analysis software.
Role: Multi-PI
The spatial organization of the *Plasmodium* genome throughout its infectious cycle

This project, a collaboration with Karine Le Roch’s lab at UC Riverside, used a recently developed technique to discover the three-dimensional structure of the *P. falciparum* genome at three time points during the parasite’s life cycle, assay the chromatin modification landscape of the genome over the same time points, and then built an integrated model of gene expression.

Role: Multi-PI

Genome analysis based on the integration of DNA sequence and shape

This project carries out integrated analysis of 1D sequence at genome-wide scale with 3D structure at atomic resolution, developing novel genome analysis tools and furthering our understanding of genome function.

Role: Co-investigator

EDAC: ENCODE Data Analysis Center

This proposal aims to create the ENCODE Data Analysis Center consisting of a multi-disciplinary group of leading scientists who will respond to directions from the ENCODE Analysis Working Group and thus integrate data from all groups in the ENCODE Consortium in an unbiased manner. The Noble lab developed unsupervised and semi-supervised learning methods for interpreting the data tracks.

Role: Co-investigator

EAGER: Cloud-based analysis of mass spectrometry proteomics data

This project will develop novel machine learning algorithms to enable proteomics researchers to make sense of one experiment within the context of all the previous experiments stored in the cloud.

Role: Multi-PI

Machine learning methods to impute and annotate epigenomic maps

This project develops and applies novel unsupervised machine learning methods to make sense of epigenomic data sets. The project will produce novel computational methods as well as two primary analysis products: virtual experiments for combinations of assays and cell types that have not yet been carried out and annotations that identify various types of biochemical and functional activity along the human genome.

Role: PI

BIGDATA: Small: DA: Interpreting massive genomic data sets via summarization

This proposal develops submodular summarization methods for drawing inferences from massive genomic data sets. We apply these methods to five big data problems in genomics: 1) identifying functional elements characteristic of a given human cell type; 2) identifying genomic features associated with particular subclasses of cancer; 3-4) identifying genomic variants representative of ancestrally or phenotypically defined human populations; and 5) finding a set of microbial genes that characterize a given site on the human body.

Role: PI
Machine learning analysis of tandem mass spectra

This project applies techniques and tools from the field of machine learning to the analysis of mass spectrometry data. The aims include developing better methods for identifying and quantifying proteins in complex mixtures, including proteins with post-translational modifications.

Role: PI

Modeling mammalian genomes

In this project we used our previously described genome architecture assay to understand the relationship between genome architecture and allele specific expression in mammalian development.

Role: Co-investigator

Afferent influences on auditory system ontogeny

The overall goals of this program are to understand the cellular basis of experience-dependent maturation and maintenance of neurons in the brainstem auditory pathways of birds and mammals.

Role: Co-investigator

Computational analysis of nucleosome positioning signals in eukaryotic genomes

This project aims to develop machine learning methods that model the relationship between DNA sequence and local chromatin structure.

Role: Co-investigator

EDAC: ENCODE Data Analysis Center

This project established a multi-disciplinary group of scientists to provide integrative analysis of functional information from the NIH ENCODE consortium.

Role: Co-investigator

A comprehensive catalog of human DNaseI hypersensitive sites

The overall aim of this proposal is to establish a comprehensive, high quality catalog of human DNaseI hypersensitive sites spanning all major tissue lineages.

Role: Co-investigator

Comprehensive biology: Exploiting the yeast genome

The mission of the YRC is to facilitate the identification and characterization of protein complexes in the yeast *Saccharomyces cerevisiae*.

Role: Co-investigator

Recognizing protein folds with discriminative learning

This project develops discriminative methods for classifying proteins into structural families based upon their amino acid sequences.

Role: Co-investigator
Machine learning analysis of tandem mass spectra
This project applies techniques and tools from the field of machine learning to the analysis of mass spectrometry data. The primary aim is to produce software that increases the sensitivity and specificity of protein identifications from complex mixtures.
Role: PI

Facilitating and improving mass spectrometry analyses in the Center for Ecogenetics and Environmental Health
This project improved the documentation and user interface for the Crux mass spectrometry analysis toolkit and applied Crux to several data sets being produced under the auspices of the CEEH.
Role: PI

Detecting relations among heterogeneous genomic datasets
This project developed a computational framework for integrating and drawing inferences from a collection of genome-wide measurements. The project included subcontracts at three other institutions.
Role: PI

Computational discovery of cis-regulatory sequences
This project used quantitative chromatin profiling to identify cis-regulatory elements in a high-throughput fashion.
Role: Co-investigator

Identification of Functional DNA Elements by HSqPCR
This was an ENCODE project, aimed at detecting DNaseI hypersensitive sites in vivo using a high-throughput screen.
Role: Co-investigator

CAREER: Support vector methods for functional genomics
This project develops gene functional classification techniques based upon the support vector machine algorithm.
Role: PI

Comprehensive biology: Exploiting the yeast genome
The mission of the YRC is to facilitate the identification and characterization of protein complexes in the yeast *Saccharomyces cerevisiae*.
Role: Co-investigator
ITR: Machine learning approaches to protein sequence comparison: discriminative, semi-supervised, scalable algorithms
This project developed, implemented and disseminated machine learning algorithms for pairwise biological sequence comparison.
Role: Co-investigator

Sloan Alfred P. Sloan Foundation Research Fellow
The Sloan Research Fellowships were established in 1955 to provide support and recognition to young scientists. Currently, 100 grants are awarded annually in six fields: chemistry, computer science, economics, mathematics, neuroscience, and physics. In 2001, 14 grants were awarded in computer science.
Role: PI

Generative and discriminative methods for gene finding and functional annotation
This project developed an integrated gene finding and protein homology detection system based upon a generalized expectation-maximization learning algorithm.
Role: PI

Data-driven computational gene finding and functional annotation
This award provided salary support for the development of gene finding and functional annotation techniques.
Role: PI

Inferring gene function from yeast two-hybrid data
This project used yeast two-hybrid data, in conjunction with sequence and expression data, to functionally characterize yeast genes.
Role: PI

Center for Computational Biology and Bioinformatics
The Center for Computational Biology and Bioinformatics serves as a focal point for research and education at Columbia. The center provides core resources, sponsors retreats, workshops and a seminar series, and assists in the development of a coherent curriculum throughout the university.
Role: Co-investigator

Curriculum in Genomic Engineering
This project developed and operated a course track in Genomic Engineering that is related to research activities undertaken by the proposers and their colleagues at Columbia University. Prof. Noble taught “Computational Genomics,” one of the five courses in this track, until leaving Columbia.
Role: Co-investigator
The molecular pathogenesis of health disparities in infection-induced preterm birth
This project used microarrays to identify genes involved in infection-induced preterm labor.
Role: Co-investigator