2017

Pseudomembranous Tracheitis Caused by Aspergillus Fumigatus in the Setting of High Grade T-Cell Lymphoma

Prashant Malhotra

Karan Singh

Paul Gill

Sonu Sahni

Touro College of Osteopathic Medicine (New York), sonu.sahni@touro.edu

Mina Makaryus

See next page for additional authors

Follow this and additional works at: https://touroscholar.touro.edu/tcomny_pubs

Part of the [Hemic and Lymphatic Diseases Commons](https://touroscholar.touro.edu/tcomny_pubs), and the [Respiratory Tract Diseases Commons](https://touroscholar.touro.edu/tcomny_pubs)

Recommended Citation
Malhotra, P., Singh, K., Gill, P., Sahni, S., Makaryus, M., & Talwar, A. (2017). Pseudomembranous tracheitis caused by Aspergillus fumigatus in the setting of high grade T-cell lymphoma. Respiratory Medicine Case Reports, 21, 42-45.

This Article is brought to you for free and open access by the Touro College of Osteopathic Medicine (New York) at Touro Scholar. It has been accepted for inclusion in Touro College of Osteopathic Medicine (New York) Publications and Research by an authorized administrator of Touro Scholar. For more information, please contact touro.scholar@touro.edu.
Authors
Prashant Malhotra, Karan Singh, Paul Gill, Sonu Sahni, Mina Makaryus, and Arunabh Talwar

This article is available at Touro Scholar: https://touroscholar.touro.edu/tcomny_pubs/22
Pseudomembranous tracheitis caused by *Aspergillus fumigatus* in the setting of high grade T-cell lymphoma

Prashant Malhotra, M.D.*, Karan Singh, MBBS, Paul Gill, B.S., Sonu Sahni, M.D., Mina Makaryus, M.D., Arunabh Talwar, M.D., FCCP.*

*Northwell Health, Department of Infectious Diseases, 400 Community Drive, Manhasset, NY 11030, United States

b Northwell Health, Department of Pulmonary, Critical Care and Sleep Medicine, 410 Lakeville Rd., New Hyde Park, NY 11040, United States

A R T I C L E I N F O

Article history:
Received 15 December 2016
Received in revised form 22 March 2017
Accepted 24 March 2017

Keywords:
Pseudomembranous tracheitis
Aspergillus
Bronchoscopy
Immunocompromised
Chronic cough
T-cell lymphoma

A B S T R A C T

Pseudomembranous tracheitis (PMT) is a rare condition most commonly caused by fungal or bacterial infection that is characterized by a pseudomembrane that partially or completely covers the tracheobronchial tree. PMT is most commonly found in immunocompromised patient populations, such as post-chemotherapy, AIDS, post-transplant, and hematological malignancies. Due to its rarity, PMT is often not included in the differential diagnosis. This case describes a 65 year old male with persistent fever and refractory cough despite high dose empiric antibiotics. Subsequent bronchoscopy with biopsy revealed pseudomembranous tracheitis due to *Aspergillus fumigatus* in the setting of T-cell lymphoma. PMT should be considered in the differential diagnosis of refractory cough in the immunocompromised population. However, it has been described in patients with nonspecific respiratory symptoms such as dyspnea, cough, and other airway issues.

© 2017 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pseudomembranous tracheitis (PMT) is a rare condition most commonly caused by fungal or bacterial infection that is characterized by a pseudomembrane that partially or completely covers the tracheobronchial tree. PMT is most often found in immunocompromised patient populations, such as post-chemotherapy, AIDS, post-transplant, and hematological malignancies [1,2]. Fungal infections of the trachea can cause this rare phenomenon which may potentially lead to necrosis [3]. The pathogens known to cause this pseudomembranous infection are: *Aspergillus, Candida, Cryptococcus, Rhizopus, and Mucorales* [4,5]. In more rare cases, pseudomembranous tracheitis may be caused by invasive bacterial pathogens such as *Bacillus cereus* [6]. PMT should be considered in the differential diagnosis of refractory cough in the immunocompromised population. However, it has been described in patients with nonspecific respiratory symptoms such as dyspnea, cough, and other airway issues [7]. Herein, we present a case of pseudomembrane tracheitis in the setting of high grade T-cell lymphoma.

2. Case report

A 65 year old male with a past medical history of non-obstructive coronary artery disease, urothelial cancer (status post resection), abdominal aortic aneurysm (status post repair), hypothyroidism, and 50 pack-year history of smoking, was admitted presenting with recurring fevers and a 30-pound weight loss over the past several months. A Chest x-ray (CXR) revealed a right mid-lung consolidation. Computer tomography (CT) showed a left supraclavicular/lower cervical mass, hilar lymphadenopathy as well as enlargement of the subcarinal and mediastinal lymph nodes. Subsequent lymph node biopsy revealed high grade T-cell lymphoma.

The patient was started on empiric antibiotic therapy but continued to be febrile. He subsequently underwent bronchoscopy which revealed a pseudomembrane extending from the bronchus intermedius down to the right lower lobe (Fig. 1). Bronchoscopy was negative for any masses, abscesses, erosions or areas of bleeding.

Both an endobronchial biopsy as well as culture of the bronchoalveolar lavage revealed *Aspergillus fumigatus* (Fig. 2).
Patient was initiated on Voriconazole. Repeat bone marrow biopsy was negative for Aspergillus. The patient was discharged on Voriconazole and oxygen. Despite treatment the patient died of progressive pulmonary infiltrates and respiratory failure.

3. Discussion

Pseudomembranous tracheitis (PMT) is commonly caused by fungal or bacterial infection that is characterized by pseudomembrane formation in the large airways [1,2]. Here we described a case of a 65-year-old male with undiagnosed malignancy that had developed Aspergillus-related PMT. PMT is a rare condition that manifests with different symptoms and etiologic microorganisms. Previously reported cases of PMT have been outlined in Table 1.

Invasive pulmonary aspergillosis (IPA) is the most common form of disease caused by Aspergillus species infection. In addition, a rare form of IPA is an infection of the tracheobronchial tree, called Aspergillus Tracheobronchitis (AT) [17]. Four types of AT: ulcerative tracheobronchitis, obstructive bronchial aspergillosis, aspergillus bronchitis, and pseudomembranous necrotizing bronchial aspergillosis, or PMT have been described [1,2]. The pseudomembrane is thought to be derived from fibrin, hyphae, and necrotic tissue [12]. Other fungi such as Rhizopus, Cryptococcus and Candida can also form a pseudomembrane via similar mechanisms [4,5]. Rarely viruses may be implicated in PMT. Known causes of PMT have been outlined in Table 1.

Invasive pulmonary aspergillosis (IPA) is the most common form of disease caused by Aspergillus species infection. In addition, a rare form of IPA is an infection of the tracheobronchial tree, called Aspergillus Tracheobronchitis (AT) [17]. Four types of AT: ulcerative tracheobronchitis, obstructive bronchial aspergillosis, aspergillus bronchitis, and pseudomembranous necrotizing bronchial aspergillosis, or PMT have been described [1,2]. The pseudomembrane is thought to be derived from fibrin, hyphae, and necrotic tissue [12]. Other fungi such as Rhizopus, Cryptococcus and Candida can also form a pseudomembrane via similar mechanisms [4,5]. Rarely viruses may be implicated in PMT. Known causes of PMT have been outlined in Table 1.

Invasive pulmonary aspergillosis (IPA) is the most common form of disease caused by Aspergillus species infection. In addition, a rare form of IPA is an infection of the tracheobronchial tree, called Aspergillus Tracheobronchitis (AT) [17]. Four types of AT: ulcerative tracheobronchitis, obstructive bronchial aspergillosis, aspergillus bronchitis, and pseudomembranous necrotizing bronchial aspergillosis, or PMT have been described [1,2]. The pseudomembrane is thought to be derived from fibrin, hyphae, and necrotic tissue [12]. Other fungi such as Rhizopus, Cryptococcus and Candida can also form a pseudomembrane via similar mechanisms [4,5]. Rarely viruses may be implicated in PMT. Known causes of PMT have been outlined in Table 1.

Invasive pulmonary aspergillosis (IPA) is the most common form of disease caused by Aspergillus species infection. In addition, a rare form of IPA is an infection of the tracheobronchial tree, called Aspergillus Tracheobronchitis (AT) [17]. Four types of AT: ulcerative tracheobronchitis, obstructive bronchial aspergillosis, aspergillus bronchitis, and pseudomembranous necrotizing bronchial aspergillosis, or PMT have been described [1,2]. The pseudomembrane is thought to be derived from fibrin, hyphae, and necrotic tissue [12]. Other fungi such as Rhizopus, Cryptococcus and Candida can also form a pseudomembrane via similar mechanisms [4,5]. Rarely viruses may be implicated in PMT. Known causes of PMT have been outlined in Table 1.

Invasive pulmonary aspergillosis (IPA) is the most common form of disease caused by Aspergillus species infection. In addition, a rare form of IPA is an infection of the tracheobronchial tree, called Aspergillus Tracheobronchitis (AT) [17]. Four types of AT: ulcerative tracheobronchitis, obstructive bronchial aspergillosis, aspergillus bronchitis, and pseudomembranous necrotizing bronchial aspergillosis, or PMT have been described [1,2]. The pseudomembrane is thought to be derived from fibrin, hyphae, and necrotic tissue [12]. Other fungi such as Rhizopus, Cryptococcus and Candida can also form a pseudomembrane via similar mechanisms [4,5]. Rarely viruses may be implicated in PMT. Known causes of PMT have been outlined in Table 1.
needed to diagnose this condition. Bronchoscopy is essential to
discover pseudomembrane in the airways. A pseudomembrane has
the potential to form and constrict the airways, thus causing the
symptoms that are associated with PMT [7]. Based on pathological
tissue, brush smear, and fluid from bronchial that are obtained by a
bronchoscopy, the results can lead to a diagnosis of airway asper-
gillus infection and the type of Aspergillus as well [11]. In our case
non resolution of infiltrates despite adequate antibiotic therapy
prompted us to perform a bronchoscopy.

Since pseudomembranous tracheitis is mostly caused by fungal
infection, a range of antifungal treatments would deem most
effective towards the condition. Table 1 suggests that amongst
health care providers intravenous Amphotericin B is the initial
treatment of choice [11]. Other treatments such as voriconazole,
itraconazole, and echinocandins (caspofungin) [5,12] However
recently, Voriconazole has been administered to patients with PMT
due to its better prognosis, as shown in Table 1.

PMT has a high morbidity and mortality in immunosuppressed
patients. This in itself lends to a high morbidity and mortality that is
associated with opportunistic infections. It has been reported that

Table 1

Author	Primary disease	Causes	Organism	Signs/Symptoms	Treatment	Outcomes	
Williams et al.	Leukemia	Stem cell transplantation secondary to pancytopenia	Aspergillus	Progressive cough, nausea	Amphotericin B (IV), Amphotericin B (inhaled), caspofungin (IV)	Deceased	
Strauss et al.	Unknown	Aplastic Anemia	Bacillus cereus	Petechiae, weakness, dysnea	Broad-spectrum antibiotic, anti-viral, antifungal therapy	Deceased (multiple organ failure)	
Chang et al.	Non-Hodgkin’s Lymphoma	Diabetes mellitus	Aspergillus	Chest pain, cough, dyspnea, wheeze Non-productive cough, right side chest pain, fever	Parental amphotericin B amphotericin B	Deceased (septic shock) Improved	
Tait et al.	Systemic lupus erythematosus-like disorder	Neutropenia	Aspergillus	Weight loss, anorexia, non-productive cough, and pyrexia	Amphotericin B intravenous amphotericin B (1 mg/kg/day), fluocytosine (120 mg/kg/day), and oral itraconazole (600 mg/day) commenced,	Deceased (respiratory failure)	
Hines et al.	COPD	Respiratory arrest	Aspergillus	Fever, wheezing, Fever, hypotension Epigastric and lower back pain	Vancomycin, Clindamycin, Amikacin Anfotericin B Amphotericin B	Deceased (respiratory failure) Deceased (progressive respiratory insufficiency) Deceased	
Huanget al.	Myelodysplastic syndrome	Neutropenia	Aspergillus	Weight loss, polyarthralgia, night sweats, pyrexia	Vancomycin, Clindamycin, Amikacin Amphotericin B Amphotericin B	Deceased (respiratory failure) Deceased (progressive respiratory insufficiency) Deceased	
Putnam et al.	Leukemia	Bone marrow transplantation secondary to aplastic anemia	Aspergillus	Weakness, fatigue, dyspnea	Oral voriconazole Nebulized amphotericin B	100% Amphotericin B (inhalation and infusion) 68.8% (11/16) Deceased	
Patel et al.	Leukemia	Pancytopenia	Aspergillus	Shortness of breath, cough, pleuritic chest pain	Amphotericin B (IV)	Deceased Deceased (progressive leukemia and sepsis) Deceased (respiratory failure) Improved Deceased	
Williams et al.	Type 2 Diabetes and leukemia	allogeneic stem cell transplantation.	Rhizopus sp.	Progressive cough, dyspnea, nausea and emesis	intravenous liposomal amphotericin B, inhaled amphotericin B, intravenous caspofungin	Deceased	
Le et al.	Acute lymphoblastic leukemia, Diabetes mellitus	chemotherapy	Aspergillus	Cough, fever, and hoarseness.	Intravenous voriconazole G-CSF liposomal amphotericin B	Deceased	
Argüder et al.	Inconsistent use of insulin	Aspergillus	Aspergillus	Cough, chest pain, hoarseness, fever, dyspnea	IV voriconazole IV caspofungin	Deceased	
Ramos et al.	Heart transplant	Pulmonary edema	Aspergillus	Fever, dyspnea, wheezing, and a cough Dyspnea, stridor	Voriconazole	Improved	
Shah et al.	Stillbirth						Improved, then lost to follow up
Table 2
Causes of Psuedomembranous tracheitis.

Infectious Causes	Noninfectious Causes
Fungal	Smoke inhalation
Aspergillus species	Endotracheal intubation
Candida	Crohn disease
Cryptococcus	Stevens-Johnson syndrome
Rhizopus	Agents of bioterrorism
Mucorales	Ligneous conjunctivitis
Bacterial	Paragquat ingestion
Pseudomonas aeruginosa	
Haemophilus influenza	
Corynebacterium diphtheriae	
Staphylococcal infections	
a-hemolytic Streptococcus species	
Moraxella catarrhalis	
Bacillus cereus	
Chlamydia species	
Mycoplasma bovis	
Pseudomembranous croup	
Viral	
Bovine herpes virusI	
Adenovirus	
Influenza (co-infection)	

Adapted from Patel et al. [12].

Table 3
Common symptoms of PMT.

Symptom
Fever
Dyspnea
Cough
Chest pain
Fatigue
Unilateral wheeze

death usually ensues between 1 and 6 weeks after diagnosis [18]. Majority of cases of PMT have resulted in demise as demonstrated in Table 1. Some causes for death include respiratory failure, septic shock, or other organ failure. Respiratory failure in PMT may result from the pseudomembrane constricting the airways and can even dislodge thus creating a ball valve that leads to obstruction [6,12].

4. Conclusion

PMT is a rare condition that is mostly caused by fungal, and sometimes, bacterial infection. It usually requires a high index of suspicion for diagnosis. The prognosis depends on timely diagnosis and initiation of antifungal therapy.

Funding source

The author(s) received no financial support for the research, authorship and/or publication of this article.

Financial disclosure

The authors have no financial relationships relevant to this case report to disclose.

Conflict of interest

The authors have no potential conflicts of interest to disclose.

References

[1] D.W. Denning, Invasive aspergillosis, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 26 (4) (1998), 781–803; quiz 894–5.
[2] M.R. Kramer, D.W. Denning, S.E. Marshall, D.J. Ross, G. Berry, N.J. Lewiston, D.A. Stevens, J. Theodore, Ulcerative tracheobronchitis after lung transplantation. A new form of invasive aspergillosis, Am. Rev. Respir. Dis. 144 (3 Pt 1) (1991) 552–556.
[3] J.B. Putnam Jr., C. Dignani, R.C. Mehra, E.J. Anaisse, R.C. Morice, H.J. Libshitz, Acute airway obstruction and necrotizing tracheobronchitis from invasive mycosis, Chest 106 (4) (1994) 1265–1267.
[4] D. Karnak, R.K. Avery, T.R. Gildea, D. Sahoo, A.C. Mehta, Endobronchial fungal disease: an under-recognized entity, Respir. Int. Rev. Thorac. Dis. 74 (1) (2007) 88–104.
[5] K.E. Williams, J.M. Parish, P.J. Lyng, R.W. Viggiano, L.J. Wesselius, I.T. Ocal, H.R. Vikram, Pseudomembranous tracheobronchitis caused by Rhizopus sp. After allogeneic stem cell transplantation, J. Bronchol. Intervent. Pulmonol. 21 (2) (2014) 166–169.
[6] R. Strauss, A. Mueller, M. Wehler, D. Neureiter, E. Fischer, M. Gramatzki, Influenza (co-infection), Am. J. Hematol. 88 (3) (2013) 242.
[7] R.C. Tait, B.R. O'Driscoll, D.W. Denning, Unilateral wheeze caused by pseudomembranous aspergillus tracheobronchitis in the immunocompromised patient, Thorax 48 (12) (1993) 1285–1287.
[8] S.M. Chang, H.T. Kuo, F.J. Lin, C.Y. Tzen, C.Y. Sheu, Pseudomembranous tracheobronchitis caused by Aspergillus in immunocompromised patients, Scand. J. Infect. Dis. 37 (11–12) (2005) 937–942.
[9] I.T. Ocal, H.R. Vikram, Pseudomembranous Aspergillus tracheobronchitis in a heart transplant recipient, Transpl. Infect. Dis. Off. J. Transplant. Soc. 12 (1) (2010) 59–63.
[10] L. Pulpon, Pseudomembranous Aspergillus tracheobronchitis in a postpartum patient presenting with stridor, J. Bronchol. Intervent. Pulmonol. 22 (3) (2015) 248–250.
[11] L.P. Koh, Y.T. Goh, Y.C. Lin, J. Hwang, P. Tan, Pseudomembranous tracheobronchitis caused by Aspergillus in a patient after peripheral blood stem cell transplantation, Ann. Acad. Med. Singap. 29 (4) (2000) 531–533.