LOWER BOUNDS AND INFINITY CRITERION FOR
BRAUER p-DIMENSIONS OF FINITELY-GENERATED
FIELD EXTENSIONS

I.D. CHIPCHAKOV

Abstract. Let E be a field, p a prime number and F/E a finitely-generated extension of transcendency degree t. This paper shows that if the absolute Galois group G_E is of nonzero cohomological p-dimension $\text{cd}_p(G_E)$, then the field F has Brauer p-dimension $\text{Br}_{p}(F) \geq t$ except, possibly, in case $p = 2$, the Sylow pro-2-subgroups of G_E are of order 2, and F is a nonreal field. It announces that $\text{Br}_{p}(F)$ is infinite whenever $t \geq 1$ and the absolute Brauer p-dimension $\text{abr}_{p}(E)$ is infinite; moreover, for each pair (m, n) of integers with $1 \leq m \leq n$, there exists a central division F-algebra of exponent p^m and Schur index p^n.

1. Introduction and index-exponent relations over finitely-generated field extensions

Let E be a field, $\text{Br}(E)$ its Brauer group, $s(E)$ the class of finite-dimensional associative central simple E-algebras, and $d(E)$ the subclass of division algebras $D \in s(E)$. It is known that $\text{Br}(E)$ is an abelian torsion group (cf. [16], Sect. 14.4), so it decomposes into the direct sum of its p-components $\text{Br}(E)_p$, where p runs across the set \mathbb{P} of prime numbers. Denote by $[A]$ the equivalence class in $\text{Br}(E)$ of any $A \in s(E)$. The degree $\text{deg}(A)$, the Schur index $\text{ind}(A)$, and the exponent $\text{exp}(A)$ (the order of $[A]$ in $\text{Br}(E)$) are important invariants of A. Note that $\text{deg}(A) = n \text{ind}(A)$, and $\text{ind}(A)$ and $\text{exp}(A)$ are related as follows (cf. [16], Sects. 13.4, 14.4 and 15.2):

\[(1.1) \text{exp}(A) \text{ divides } \text{ind}(A) \text{ and is divisible by every } p \in \mathbb{P} \text{ dividing } \text{ind}(A). \text{ For each } B \in s(E) \text{ with } \text{ind}(B) \text{ relatively prime to } \text{ind}(A), \text{ind}(A \otimes_E B) = \text{ind}(A)\text{ind}(B); \text{ in particular, the tensor product } A \otimes_E B \text{ lies in } d(E), \text{ provided that } A \in d(E) \text{ and } B \in d(E).\]

As shown by Brauer, (1.1) fully describe the generally valid restrictions between Schur indices and exponents:

\[(1.2) \text{Given a pair } (m, n) \text{ of positive integers, such that } n \mid m \text{ and } n \text{ is divisible by any } p \in \mathbb{P} \text{ dividing } m, \text{ there is a field } F \text{ and } D \in d(F) \text{ with } \text{ind}(D) = m \text{ and } \text{exp}(D) = n \text{ (Brauer, see [16], Sect. 19.6). One can take as } F \text{ any rational (i.e. purely transcendental) extension of infinite transcendency degree over an arbitrary field } F_0.\]

A field E is said to be of Brauer p-dimension $\text{Br}_{p}(E) = n$, where $n \in \mathbb{Z}$, if n is the least integer for which $\text{ind}(D) \leq \text{exp}(D)^n$ whenever $D \in d(E)$.

Key words and phrases. Brauer group, Relative Brauer group, Schur index, Galois extension. MSC 2010: Primary 16K20; Secondary 12F20, 12G05, 12J10, 16K40.

Partially supported by a project No. RD-08-241/12.03.2013 of Shumen University.
and $[D] \in \text{Br}(E)_p$. We say that $\text{Brd}_p(E) = \infty$, if there exists a sequence $D_\nu \in d(E), \nu \in \mathbb{N}$, such that $[D_\nu] \in \text{Br}(E)_p$ and $\text{ind}(D_\nu) > \exp(D_\nu)^\nu$, for each index ν. By an absolute Brauer p-dimension (abbr, $\text{abrd}_p(E)$) of E, we mean the supremum $\sup\{\text{Brd}_p(R) : R \in \text{Fe}(E)\}$. Here and in the sequel, $\text{Fe}(E)$ denotes the set of finite extensions of E in a separable closure E_{sep}. In what follows, we denote by $\text{trd}(F/E)$ the transcendency degree and $I(F/E)$ stands for the set of intermediate fields of any extension F/E.

Clearly, $\text{Brd}_p(E) \leq \text{abrd}_p(E)$, for every field E and $p \in \mathbb{P}$. It is known that $\text{Brd}_p(E) = \text{abrd}_p(E) = 1$, for every $p \in \mathbb{P}$, in the following cases:

(1.3) (i) E is a global or local field (by class field theory, see, e.g., [2], Chs. VI and Ch. VII, by Serre and Tate, respectively);
(ii) E is the function field of an algebraic surface (defined) over an algebraically closed field E_0 [3], [12];
(iii) E is the function field of an algebraic curve over a pseudo algebraically closed field E_0 with $\text{cd}_p(\text{G}_{E_0}) > 0$ [4].

By a Brauer dimension and an absolute Brauer dimension of E, we mean the suprema $\text{Brd}(E) = \sup\{\text{Brd}_p(E) : p \in \mathbb{P}\}$ and $\text{abrd}(E) = \sup\{\text{abrd}_p(E) : p \in \mathbb{P}\}$, respectively. It would be of interest to know whether the function fields of algebraic varieties over a global, local or algebraically closed field are of finite absolute Brauer dimensions. Note also that fields of finite absolute Brauer p-dimensions, for all $p \in \mathbb{P}$, are singled out for their place in research areas like Galois cohomology (cf. [9], Sect. 3, [3], Remark 3.6, and [4], the end of Section 3 and Corollary 5.7) and the structure theory of their locally finite-dimensional central division algebras (see [3], Proposition 1.1 and the paragraph at the bottom of page 2). These observations draw one’s attention to the following open problem:

(1.4) Find whether the class of fields E of finite absolute Brauer p-dimensions, for a fixed $p \in \mathbb{P}$ different from $\text{char}(E)$, is closed under the formation of finitely-generated extensions.

The following result of [3] is used there for proving that the class of fields E with $\text{Brd}(E) < \infty$ is not closed under taking finitely-generated extensions:

Theorem 1.1. Let E be a field, $p \in \mathbb{P}$ and F/E a finitely-generated extension, such that $\text{trd}(F/E) = t \geq 1$. Then:

(i) $\text{Brd}_p(F) \geq \text{abrd}_p(E) + t - 1$, if $\text{abrd}_p(E) < \infty$ and F/E is rational;
(ii) When $\text{abrd}_p(E) = \infty$, there are $\{D_{n,m} \in d(F) : n \in \mathbb{N}, m = 1, \ldots, n\}$ with $\exp(D_{n,m}) = p^m$ and $\text{ind}(D_{n,m}) = p^n$, for each admissible pair (n,m);
(iii) $\text{Brd}_p(F) = \infty$, provided $p = \text{char}(E)$ and the degree $[E : E^p]$ is infinite, where $E^p = \{e^p : e \in E\}$, if $\text{char}(E) = p$ and $[E : E^p] = p^\nu < \infty$, then $\nu + t - 1 \leq \text{Brd}_p(F) < \nu + t$.

Theorem 1.1 is supplemented in [3], Sect. 3, as follows:

(1.5) Given a finitely-generated field extension F/E with $\text{trd}(F/E) = t \geq 1$ and $\text{abrd}_p(E) < \infty$ when p runs across some nonempty subset $P \subseteq \mathbb{P}$, there exists a finite subset $P(F/E)$ of P, such that $\text{Brd}_p(F) \geq \text{abrd}_p(E) + t - 1$, for each $p \in P \setminus P(F/E)$.
It is worth noting that there exist field extensions F/E satisfying the conditions of (1.5), for $P = \mathbb{P}$, such that $P(F/E)$ is necessarily nonempty.

Example. Let E be a real closed field, F the function field of the Brauer-Severi variety corresponding to the symbol E-algebra $A = A_{-1}(-1, -1; E)$, and $F' = F \otimes E E(\sqrt{-1})$. By the Artin-Schreier theory (cf. [11], Ch. XI, Theorem 2), then $E(\sqrt{-1}) = E_{\text{sep}}$, whence $\text{abrd}_p(E) = 0$, for all $p \in \mathbb{P} \setminus \{2\}$. Since -1 does not lie in the norm group $N(E(\sqrt{-1})/E)$, it also follows that $A \in d(E)$. Note further that $\text{trd}(F/E) = 1$, $[A \otimes E F] = 0$ in $\text{Br}(F)$, and $F'/E(\sqrt{-1})$ is a rational extension (see [18], Theorem 13.8 and Corollaries 13.9 and 13.16). In view of Tsen’s theorem (cf. [16], Sect. 19.4), the noted property of F' ensures that it is a C_1-field, so it follows from [19], Ch. II, Proposition 6, that $\text{cd}(G_{F'}) \leq 1$. As $A \otimes E F \cong A_1(-1, -1; F)$ over F, the equality $[A \otimes E F] = 0$ implies F is a nonreal field, so it follows from the Artin-Schreier theory that G_F is a torsion-free group. Observing finally that G_F embeds in G_E as an open subgroup, one obtains from [19], Ch. I, 4.2, Corollary 3, that $\text{cd}(G_E) \leq 1$, which means that $\text{abrd}(F) = 0 < \text{abrd}_p(E) = 1$.

Statement (1.1), Theorem 1.1 and basic properties of finitely-generated field extensions (cf. [11], Ch. X) imply the following:

(1.6) If the answer to (1.4) is affirmative, for some $p \in \mathbb{P}$, $p \neq \text{char}(E)$, and each finitely-generated extension F'/E with $\text{trd}(F/E) = t \geq 1$, then there exists $c_t(p) \in \mathbb{N}$, such that $\text{Brd}_p(\Phi) \leq c_t(p)$ whenever Φ/E is a finitely-generated extension and $\text{trd}(\Phi/E) < t$ (see also [3], Proposition 4.6).

Theorem 1.1 (i) shows that the solution to [11], Problem 4.5, concerning the possibility to find a good definition of a field dimension $\text{dim}(E)$, is negative except, possibly, in the case of $\text{abrd}(E) < \infty$. In addition, it implies that if $\text{abrd}(E) < \infty$ and [11], Problem 4.5, is solved affirmatively, for all finitely-generated extensions F'/E, then the fields F satisfy much stronger conditions than the one conjectured by (1.6) (see [3], (1.5)). As to our next result (for a proof, see [3], Proposition 5.8), it indicates that the answer to (1.4) will be positive, for finitely-generated extensions F'/E with $\text{trd}(F/E) \leq n$, for some $n \in \mathbb{N}$, if this is the case in zero characteristic (see also [3], Remark 5.9, for an application of de Jong’s theorem [8]):

(1.7) Let E be a field of characteristic $q > 0$ and F/E a finitely-generated extension. Then there exists a field E' with char($E') = 0$ and a finitely-generated extension F'/E' satisfying the following:

(i) $G_{E'} \cong G_E$ and $\text{trd}(F'/E') = \text{trd}(F/E)$;

(ii) $\text{Brd}_p(F') \geq \text{Brd}_p(F)$, $\text{abrd}_p(F') \geq \text{abrd}_p(F)$, $\text{Brd}_p(E') = \text{Brd}_p(E)$ and $\text{abrd}_p(E') = \text{abrd}_p(E)$, for each $p \in \mathbb{P}$ different from q.

The proof of Theorem 1.1 in [3] relies on the following two lemmas. When $\mu = 1$, the former one is a theorem due to Albert. Besides in [3], Sect. 3, a proof of the former lemma can be found in [15], Sect. 1.

Lemma 1.2. A field E satisfies the inequality $\text{abrd}_p(E) \leq \mu$, for some $p \in \mathbb{P}$ and $\mu \in \mathbb{N}$, if and only if, for each $E' \in \text{Fe}(E)$, $\text{ind}(\Delta_{E'}) \leq p^\mu$ whenever $\Delta_{E'} \in d(E')$ and $\exp(\Delta) = p$.

3
Lemma 1.3. Let K be a field, $F = K(X)$ a rational extension of K with $\text{trd}(F/K) = 1$, $f(X) \in K[X]$ a separable and irreducible polynomial over K, L an extension of K in K_{sep} obtained by adjunction of a root of f, v a discrete valuation of F acting trivially on K with a uniform element \bar{v}, and (F_v, \bar{v}) a Henselization of (F, v). Suppose that $\bar{D} \in d(L)$ is an algebra of exponent p. Then L is K-isomorphic to the residue field of (F_v, \bar{v}), and there exist $D' \in d(F_v)$ and $D \in d(F)$, such that $\exp(D') = p$, $[D \otimes_F F_v] = [D']$, and D' is an inertial lift of \bar{D} over F_v.

2. The main result

The purpose of this paper is to prove the following assertion which applied to a field with $\text{abr}_{p}(E) = 0$, improves the inequality in Theorem 1.1 (i):

Theorem 2.1. Let F be a finitely-generated extension of a field E with $\text{cd}_{p}(G_E) \neq 0$. Then $\text{Brd}_{p}(F) \geq \text{trd}(F/E)$ except, possibly, when $p = 2$, the Sylow pro-2-subgroups of G_E are of order 2, and F is a nonreal field.

The following result is contained in [3], Propositions 4.6 and 5.10, and is obtained by the method of proving Theorem 2.1 (see also [4], (4.10) and Proposition 4.3):

Theorem 2.2. Assume that E is a field of type pointed out in (1.3). Then $\text{Brd}_{p}(F) \geq 1 + \text{trd}(F/E)$, for every finitely-generated extension F/E.

Remark 2.3. (i): Theorem 2.1 ensures that $\text{Brd}_{p}(\Phi) \geq n$, $p \in \mathbb{P}$, if Φ is a finitely-generated extension of a quasifinite field Φ_0, and $\text{trd}(\Phi/\Phi_0) = n$. Therefore, one obtains following the proof of [3], Proposition 5.10, that the conclusion of Theorem 2.2 remains valid, if E is endowed with a Henselian discrete valuation whose residue field is quasifinite.

(ii): Given a finitely-generated field extension F/E with $\text{trd}(F/E) = k$, Theorem 2.1 implies Nakayama’s inequalities $\text{Brd}_{p}(F) \geq k - 1$, $p \in \mathbb{P}$ (cf. [8], Sect. 2). When $\text{cd}_{p}(G_E) = 0$, for some p, and E is perfect in case $p = \text{char}(E)$, we have $\text{Brd}_{p}(F) = k - 1$ if and only if this holds in case E is algebraically closed. The claim that $\text{Brd}(F) = k - 1$ when E is algebraically closed is the content of the so called Standard Conjecture, for function fields of algebraic varieties over an algebraically closed field (see [12], Sect. 1, [13], page 3, and for relations with (1.4), the end of [3], Sect. 4).

The proof of Theorem 2.1 is based on the same idea as the one of Theorem 1.1. It relies on the following lemmas proved in [3].

Lemma 2.4. Let (K, v) be a nontrivially real-valued field, and (K_v, \bar{v}) a Henselization of (K, v). Assume that $\Delta_v \in d(K_v)$ has exponent $p \in \mathbb{P}$. Then there exists $\Delta \in d(K)$, such that $\exp(\Delta) = p$ and $[\Delta \otimes_K K_v] = [\Delta_v]$.

Lemma 2.4 is essentially due to Saltman [17], and our next lemma is a special case of the Grunwald-Wang theorem (cf. [14], Theorems 1 and 2).
Lemma 2.5. Let F be a field, $S = \{v_1, \ldots, v_s\}$ a finite set of non-equivalent nontrivial real-valued valuations of F, and for each index j, let F_{v_j} be a Henselization of K in K_{sep} relative to v_j, and L_j/F_{v_j} be a cyclic field extension of degree p^e_j, for some $p \in \mathbb{P}$ and $e_j \in \mathbb{N}$. Put $\mu = \max\{\mu_1, \ldots, \mu_s\}$ and suppose that $\sqrt{-1} \in F$ in case $\mu \geq 3$, $p = 2$ and $\text{char}(F) = 0$. Then there exists a degree p^μ cyclic field extension L/F, such that L_{v_j} is F_{v_j}-isomorphic to L_j, where v_j' is a valuation of L extending v_j, for $j = 1, \ldots, s$.

In the rest of this Section, we recall some general results on Henselian valuations which are used (often implicitly, like Lemma 1.3) for proving Theorem 2.1. A Krull valuation v of a field K is called Henselian, if v extends uniquely, up-to an equivalence, to a valuation v_L on each algebraic extension L of K. Assuming that v is Henselian, denote by $v(L)$ the value group and by \hat{L} the residue field of (L, v_L). It is known that \hat{L}/\hat{K} is an algebraic extension and $v(\hat{L})$ is a subgroup of $v(L)$. When L/K is finite and $e(L/K)$ is the index of $v(L)$ in $v(L)$, by Ostrowski’s theorem \[. \] Theorem 17.2.1, $[L: K][L: \hat{K}]^{-1}e(L/K)$ is not divisible by any $p \in \mathbb{P}$, $p \neq \text{char}(\hat{K})$. In particular, if $\text{char}(\hat{K})$ does not divide $[L: \hat{K}]$, then $[L: \hat{K}] = [\hat{L}: \hat{K}]e(L/K)$. Ostrowski’s theorem implies that there are group isomorphisms $\psi(K)/\psi(\hat{K}) \cong v(L)/pv(L)$, $p \in \mathbb{P}$, and in case $\text{char}(\hat{K}) \nmid [L: \hat{K}]$, they are canonically induced by the natural embedding of K into L.

As usual, a finite extension R of K is called inertial, if $[R: K] = [\hat{R}: \hat{K}]$ and \hat{R} is separable over \hat{K}. It follows from the Henselity of v that the composite K_{ur} of inertial extensions of K in K_{sep} has the following properties:

(2.1) (i) $v(K_{ur}) = v(K)$ and finite extensions of K in K_{ur} are inertial;
(ii) Each finite extension of \hat{K} in \hat{K}_{sep} is \hat{K}-isomorphic to the residue field of an inertial extension of K; hence, \hat{K}_{ur} is \hat{K}-isomorphic to \hat{K}_{sep};
(iii) K_{ur}/K is a Galois extension with $\mathcal{G}(K_{ur}/K) \cong \mathcal{G}_{\hat{K}}$.

Similarly, it is known that each $\Delta \in d(K)$ has a unique, up-to an equivalence, valuation v_Δ extending v so that the value group $v(\Delta)$ of (Δ, v_Δ) is abelian (see \[. \]). Note that $v(\Delta)$ includes $v(K)$ as an ordered subgroup of index $e(\Delta/K) \leq [\Delta: K]$, the residue division ring $\hat{\Delta}$ of (Δ, v_Δ) is a \hat{K}-algebra, and $[\hat{\Delta}: \hat{K}] \leq [\Delta: K]$. Moreover, by Ostrowski-Dradl’s theorem (cf. \[. \], (1.2)), $e(\Delta/K)[\hat{\Delta}: \hat{K}] \mid [\Delta: K]$, and in case $\text{char}(\hat{K}) \nmid [\Delta: K]$, $[\Delta: K] = e(\Delta/K)[\hat{\Delta}: \hat{K}]$. An algebra $D \in d(K)$ is called inertial, if $[D: K] = [\hat{D}: \hat{K}]$ and $\hat{D} \in d(\hat{K})$. In what follows, we also need the following results (see \[. \], Remark 3.4 and Theorems 2.8 and 3.1):

(2.2) (i) Each $\hat{D} \in d(\hat{K})$ has a unique, up-to an F-isomorphism, inertial lift D over K (i.e. $D \in d(K)$, D is inertial over K and $\hat{D} = \hat{D}$).
(ii) The set $I\text{Br}(K)$ of Brauer equivalence classes of inertial K-algebras forms a subgroup of $\text{Br}(K)$ canonically isomorphic to $\text{Br}(\hat{K})$.
(iii) For each $\Theta \in d(K)$ inertial over K, and any $R \in I(K_{ur}/K)$, $[\Theta \otimes_K R] \in I\text{Br}(R)$ and $\text{ind}(\Theta \otimes_K R) = \text{ind}(\hat{\Theta} \otimes_{\hat{K}} \hat{R})$.

5
3. Proof of Theorem 2.1

Let E be a field with $\text{cd}_p(G_E) > 0$, for some $p \in \mathbb{P}$, and let F/E be a finitely-generated extension. Throughout this Section, E_{sep} is identified with its E-isomorphic copy in F_{sep}, and for any field Y, $r_p(Y)$ denotes the rank of the Galois group $\mathcal{G}(Y(p)/Y)$ of the maximal p-extension $Y(p)$ of Y (in Y_{sep}) as a pro-p-group. Assuming that $\text{trd}(F/E) = t$ and G_p is a Sylow pro-p-subgroup of G_E, we deduce Theorem 2.1 by proving the following:

(3.1) There exists $D \in d(F)$, such that $\exp(D) = p$, $\text{ind}(D) = p^t$ and D is presentable as a tensor product of cyclic F-algebras of degree p except, possibly, in the case where $p = 2$, G_2 is of order 2 and F is a nonreal field.

Let E_p be the fixed field and $o(G_p)$ the order of G_p. Our assumptions show that $r_p(E_p) \geq 1$, which implies the existence of a field $M \in \text{Fe}(E)$ with $r_p(M) \geq 1$ (apply the method of proving 10, Sect. 13.2, Proposition b). Moreover, M can be chosen to be nonreal unless $p = 2$ and $o(G_p) = 2$.

Assuming that M is nonreal, one obtains from 20, Theorem 2, that there exists a \mathbb{Z}_p-extension Φ of M in E_{sep}. Hence, by Galois theory and the fact that \mathbb{Z}_p is continuously isomorphic to its open subgroups, $\Phi M'/M'$ is Galois with $\mathcal{G}(\Phi M'/M') \cong \mathbb{Z}_p$, for each $M' \in \text{Fe}(E)$. This makes it easy to obtain from basic properties of valuation prolongations on finite extensions that M can be chosen as an E-isomorphic copy of the residue field of a height t valuation v of F, trivial on E with $v(F) = \mathbb{Z}_t$. Here \mathbb{Z}_t is viewed as an ordered abelian group with respect to the inversely-lexicographic ordering.

Let (F_v, \hat{v}) be a Henselization of (F, v). Suppose first that $t = 1$ and take $\pi \in F$ so that $\langle v(\pi) \rangle = v(F)$. Then v lies in an infinite system of nonequivalent discrete valuations of F trivial on E (cf. 2, Ch. II, Lemma 3.1). In view of Lemma 2.5, this implies the existence of degree p cyclic extensions F_n, $n \in \mathbb{N}$, of F, such that F_1/F is inertial relative to v, and $F_n \subset F_v$, $n \geq 2$. Let φ_n be a generator of $\mathcal{G}(F_n/F)$, for each $n \in \mathbb{N}$. It follows from the choice of F_1 that the cyclic F-algebra $(F_1/F, \sigma_1, \pi)$ lies in $d(F)$ and $(F_1/F, \sigma_1, \pi) \otimes_F F_v \in d(F_v)$, which proves (3.1) in case $t = 1$.

Assume now that $t \geq 2$, and fix elements $\pi_1, \ldots, \pi_t \in K$ so that $v(F)$ be generated by the set $\{v(\pi_j) \colon j = 1, \ldots, t\}$, and $H = \langle v(\pi_i) \rangle$ be the minimal nontrivial isolated subgroup of $v(F)$. Then v and H induce canonically on F a valuation v_H with $v_H(F) = v(F)/H$; also, they give rise to a valuation \hat{v}_H of the residue field F_H of (F, v_H) with $\hat{v}_H(F_H) = H$ and a residue field equal to M (cf. 5, Sect. 5.2). In addition, it is easily verified that F_H/E is a finitely-generated extension with $\text{trd}(F_H/E) = 1$. Hence, by the proof of the already considered special case of Theorem 2.1, there exist $D_H \in d(F_H)$ and $\Psi_H \in I(F_{H, \text{sep}}/F_H)$, such that $\text{ind}(D_H) = p$, $D_H \otimes_{F_H} \Psi_H \in d(\Psi_H)$, and $I(\Psi_H/F_H)$ contains infinitely many degree p cyclic extensions of F_H. Observing now that v_H is of height $t - 1$, and using repeatedly (2.2), Lemmas 2.4, 2.5 and 3.1 (i), one proves that there exists a cyclic F-algebra $D'_H \in d(F)$, such that $\text{ind}(D'_H) = p$, $D'_H \otimes_F F_{v_H} \in d(F_{v_H})$ and $D'_H \otimes_F F_{v_H}$ is an inertial lift of D_H over a Henselization F_{v_H} of F relative to v_H. Similarly, it can be deduced from (2.2) that each degree p cyclic extension of F_H is realizable as the residue field of an inertial cyclic degree p extension of F relative to v_H. This implies the existence of an
inertial extension \((F', v'_H)/(F, v_H) \), such that \([F': F] = [F'v_H: Fv_H] = p^{t-1}, D' \otimes_F F' \in d(F) \) and \(F' = F_2 \ldots F_t \), where \(F_i/F \) is a degree \(p \) cyclic extension of \(F \), for \(i = 2, \ldots, t \). In view of Morandi’s theorem (cf. [7], Proposition 1.4), it is now easy to construct an algebra \(\Delta \subseteq \hat{\mathbb{F}} \) is finitely-generated, \(\text{trd}(E) = \hat{\mathbb{F}} \otimes \mathbb{F} \), \(E \) is a discrete valuation of \(\hat{\mathbb{F}} \), \(v \) valuation \(v \) of \(\hat{\mathbb{F}} \), \(D_t \subseteq \hat{\mathbb{F}} \) that cosets \((3.1)\), under the hypothesis that \(o \) is trivial on \((\mathbb{Z}/2\mathbb{Z}) = 2 \). By the Artin-Schreier theory, \(o(G_2) = 2 \) if and only if the fixed field \(E_2 \) is real closed. Our proof also relies on the following lemma.

Lemma 3.1. Let \(E \) be a formally real field and \(F \) a finitely-generated extension of \(E \) with \text{trd}(F/E) = 1. Then \(F \) is formally real if and only if it has a discrete valuation \(v \) trivial on \(E \), whose residue field \(\hat{\mathbb{F}} \) is formally real.

Proof. It is known and easy to prove (cf. [10], Lemma 1) that if \(F \) is a nonreal field and \(\omega \) is a discrete valuation of \(F \) trivial on \(E \), then the residue field of \((F, \omega) \) is nonreal as well. Assume now that \(F \) is formally real, fix a real closure \(F' \) of \(F \) in \(F_{\text{sep}} \), and put \(E' = E_{\text{sep}} \cap F' \). Observe that \(E_{\text{sep}} F'/F' \) is a Galois extension with \(G(E_{\text{sep}} F'/F') \cong G_{E'} \). Since, by the Artin-Schreier theory, \(F_{\text{sep}} = F'(\sqrt{-1}) = E_{\text{sep}} F' \), this means that \(E_{\text{sep}} = E' (\sqrt{-1}) \), whence, \(E' \) is a real closure of \(E \) in \(E_{\text{sep}} \). Note also that \(E' F'/E' \) is finitely-generated, \(\text{trd}(E' F'/E') = 1 \) and \(E' F' \subseteq F' \), i.e. the extension \(E' F'/E' \) satisfies the conditions of Lemma 3.1. This enables one to deduce from [10], Theorem 6 and Proposition, that \(E' F' \) has a discrete valuation \(v' \) trivial on \(E' \) and with a residue field \(E' \). It is now easy to see that the valuation \(v \) of \(F \) induced by \(v' \) has the properties required by Lemma 3.1. Specifically, \(\hat{F} \) is \(E \)-isomorphic to a finite extension of \(E \) in \(E' \). \(\square \)

We are now in the remaining case of (3.1). Suppose first that \(t = 1 \), put \(F_0 = E(X) \), for some \(X \in F \) transcendental over \(E \), and denote by \(\Omega_0 \) the extension of \(F_0 \) in \(F_{\text{sep}} \) generated by the square roots of the totally positive elements of \(F_0 \) (i.e. those realizable over \(F_0 \) as finite sums of squares, see [11], Ch. XI, Proposition 2). Then \(F \Omega_0 \) is formally real, which implies \(A_{-1}(-1, -1; \Omega) \in d(\Omega) \), for each \(\Omega \in I(F \Omega_0/F_0) \), proving the assertion of (3.1). Note also that \(\Omega_0/F_0 \) is an infinite Galois extension with \(G(\Omega_0/F_0) \) of exponent 2. This follows from Kummer theory and the fact that cosets \((X^2 + a^2)F_0^2, a \in E^+ \), generate an infinite subgroup of \(F_0^*/F_0^{*2} \).

Assume now that \(t \geq 2 \), define \(F_0 \) and \(\Omega_0 \) as above and denote by \(F_1 \) the algebraic closure of \(F_0 \) in \(F \). Applying Lemma 3.1 and proceeding by induction on \(t \), one concludes that \(F \) has valuation \(v \) trivial on \(F_1 \), such that \(v(F) = \mathbb{Z}^{t-1}, v \) is of height \(t - 1 \) and \(\hat{F} \) is a formally real finite extension of \(F_1 \). Fix a Henselization \((F, v) \) and an \(F_1 \)-isomorphic copy \(F_1' \) of \(\hat{F} \) in \(F_{\text{sep}} \). It is easily verified that \(F_1' \Omega_0 \) is a formally real field and \(F_1' \Omega_0/F \) is a Galois extension. As \(v \) is of height \(t - 1 \), one proves, using repeatedly (2.1) and Lemma 2.5, that \(I(F \Omega_0/F) \) contains infinitely many quadratic and inertial
extensions of F relative to v. Therefore, there exist fields $Y_n \in I(F\Omega_0/F)$, $n \in \mathbb{N}$, such that $[Y_n : F] = 2$, $[Y_1 \cdots Y_n : F] = 2^n$ and $Y_1 \cdots Y_n$ is inertial over F relative to v, for each index n. Fix a generator q_j of $G(Y_j/F)$, and take elements $\pi_j \in F$, $j = 2, \ldots, t$, so that $(v(\pi_2), \ldots, v(\pi_t)) = v(F)$. Put $\Delta_1 = A_{-1}(-1, -1; F)$ and consider the cyclic F-algebras $\Delta_j = (Y_j/F, q_j, \pi_j)$, $j = 2, \ldots, t$. Since $F^t\Omega_0$ is formally real, $A_{-1}(-1, -1; F) \otimes_F F^t\Omega_0 \in d(F^t\Omega_0)$, so it follows from Morandi’s theorem, the noted properties of the fields Y_n, $n \in \mathbb{N}$, and the choice of π_2, \ldots, π_t, that the F-algebra $\Delta = \Delta_1 \otimes_F \cdots \otimes_F \Delta_t$ lies in $d(F)$ and $\Delta \otimes_F F_v \in d(F_v)$. This yields $\exp(\Delta) = 2$ and $\ind(\Delta) = 2^t$, so (3.1) and Theorem 2.1 are proved.

References

[1] A. Auel, E. Brussel, S. Garibaldi and U. Vishne, Open Problems on central simple algebras, Transform. Groups 16 (2011), 219-264.
[2] J.W.S. Cassels and A. Fröhlich (Eds.), Algebraic Number Theory. Proc. Instruct. Conf., organized by LMS (a NATO Adv. Study Inst.) with the support of IMU, Univ. of Sussex, Brighton, 01.9-17.9, 1965, Academic Press, London-New York, 1967.
[3] I.D. Chipchakov, On the behaviour of Brauer p-dimensions under finitely-generated field extensions, Preprint, arXiv:1207.0965v3 [math.RA].
[4] I.D. Chipchakov, On Brauer p-dimensions and absolute Brauer p-dimensions of Henselian valued fields, Preprint, arXiv:1207.7120v3 [math.RA].
[5] I. Efrat, A Hasse principle for function fields over PAC fields, Isr. J. Math. 122 (2001), 43-60.
[6] I. Efrat, Valuations, Orderings, and Milnor K-Theory, Math. Surveys and Monographs, 124, Providence, RI: Amer. Math. Soc., XIII, 2006.
[7] B. Jacob and A. Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126-179.
[8] A.J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke Math. J. 123 (2004), 71-94.
[9] B. Kahn, Comparison of some invariants of fields, J. Algebra 232 (2000), 485-492.
[10] S. Lang, The theory of real places, Ann. Math. (2) 57 (1953), 378-391.
[11] S. Lang, Algebra, Addison-Wesley Publ. Comp., Mass., 1965.
[12] M. Lieblich, Twisted sheaves and the period-index problem, Compos. Math. 144 (2008), 1-31.
[13] M. Lieblich, Period and index in the Brauer group of an arithmetic surface. With an appendix by D. Krashen, J. Reine Angew. Math. 659 (2011), 1-41.
[14] F. Lorenz and P. Roquette, The theorem of Grunwald-Wang in the setting of valuation theory, F.-V. Kuhlmann (ed.) et. al., Valuation theory and its applications, vol. II (Saskatoon, SK, 1999), 175-212, Fields Inst. Commun., 33, Amer. Math. Soc., Providence, RI, 2003.
[15] R. Parimala and V. Suresh, Period-index and u-invariant questions for function fields over complete discretely valued fields, Preprint, arXiv:1301.2214v1 [math.RA].
[16] R. Pierce, Associative Algebras, Graduate Texts in Math., vol. 88, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
[17] D.J. Saltman, Generic algebras, Brauer groups in ring theory and algebraic geometry, Proc. Antwerp, 1981, Lect. Notes in Math. 917 (1982), 96-117.
[18] D.J. Saltman, Lectures on Division Algebras, CBMS Reg. Conf. Ser. Math., 94, Providence, RI: Amer. Math. Soc., VII, 1999.
[19] J.-P. Serre, Galois Cohomology, Transl. from the French by Patrick Ion, Springer, Berlin, 1997.
[20] G. Whaples, Algebraic extensions of arbitrary fields, Duke Math. J. 24 (1957), 201-204.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 8, 1113, Sofia, Bulgaria; chipchak@math.bas.bg