Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip

I Herrera¹, Y Wang¹, P Michaux², D Nissen¹, P Surendran¹, S Juodkazis³, S Whitlock³, R J McLean¹, A Sidorov¹, M Albrecht⁴ and P Hannaford¹

¹ Centre for Quantum and Optical Science, Swinburne University of Technology, Hawthorn VIC 3122, Australia
² Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn VIC 3122, Australia
³ Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
⁴ Experimental Physics IV, Institut of Physics, Universität Augsburg, Universitätsstraße 1, 86135 Augsburg, Germany

E-mail: ibherrera@gmail.com

Received 2 October 2014, revised 11 January 2015
Accepted for publication 29 January 2015
Published 24 February 2015

Abstract
We report on the design, fabrication and characterization of magnetic nanostructures to create a lattice of magnetic traps with sub-micron period for trapping ultracold atoms. These magnetic nanostructures were fabricated by patterning a Co/Pd multilayered magnetic film grown on a silicon substrate using high precision e-beam lithography and reactive ion etching. The Co/Pd film was chosen for its small grain size and high remanent magnetization and coercivity. The fabricated structures are designed to magnetically trap ⁸⁷Rb atoms above the surface of the magnetic film with one-dimensional and two-dimensional (triangular and square) lattice geometries and sub-micron period. Such magnetic lattices can be used for quantum tunneling and quantum simulation experiments, including using geometries and periods that may be inaccessible with optical lattices.

Keywords: magnetic lattice, applications of multi-layered magnetic films, Bose–Einstein condensate, atom chip

(Some figures may appear in colour only in the online journal)

1. Introduction

The trapping of ultracold atoms in periodic lattices has gained great attention over the past decade. It has enhanced our understanding in atomic and molecular physics, as well as of condensed matter phenomena such as quantum phase transitions. Nearly all of the experiments in this field have been based on optical lattices [1–3], in which the lattice potential is produced by the interference of intersecting laser beams. Such experiments have provided, for example, unprecedented access to studies of low-dimensional quantum gases [4, 5], the Josephson effect [6, 7], the Mott insulator to superfluid quantum phase transition [8] and applications in quantum information processing [9, 10]. Particularly exciting applications arise in the context of quantum simulation [11]. However, optical lattices have certain limitations, such as a low degree of design flexibility, difficulty in generating arbitrary trap geometries and restrictions on the lattice spacing imposed by the optical wavelength.

A promising alternative that may overcome some of these limitations involves the use of magnetic lattice potentials [12–22], in which patterned perpendicularly magnetized planar films create an array of magnetic microtraps able to trap ultracold atoms. In principle, such magnetic lattices provide robust potentials for manipulating atoms, combined with a high degree of design freedom, allowing arbitrary trap geometries and lattice spacings not restricted to certain fractions of the optical wavelengths. Other promising characteristics
are the state selectivity of the traps (only atoms in weak-field seeking states remain trapped allowing manipulation using radiofrequency fields) and the possibility to incorporate other on-chip manipulation and detection devices.

The realization of arbitrary lattice patterns with sub-micron period would allow tunneling between the traps, ultimately enabling the study of exotic condensed matter phenomena in nontrivial geometries, such as triangular, honeycomb, kagome, and superlattices. However, despite these potential benefits of magnetic lattices, no magnetic lattices with sub-micron period have been implemented to date.

This paper describes the design, fabrication and characterization of sub-micron period one-dimensional (1D) and two-dimensional (2D) lattices of magnetic Ioffe–Pritchard microtraps for ultracold neutral atoms. The microtraps are produced near the surface of a patterned Co/Pd film with perpendicular magnetization. The magnetic lattices described here are a 1D lattice and two 2D lattices with square and triangular geometries with a period of $a = 0.7 \mu m$. Scaling down the lattice period will increase the energy scales in the Hubbard model [8] used to describe quantum gases in optical lattices. The recoil energy, $E_R = (\pi \hbar^2)/(2ma^2)$ where m is the atom mass, is used as a natural unit for these energy scales. Due to this dependence on the lattice period a the tunneling rate J and the on-site interaction U can be scaled with the period of the lattice [3], becoming large for sub-micron period lattices. In our case with a period of $0.7 \mu m$ and with a barrier height $V_0 \sim 12E_R$ or $6E_R$, the critical tunneling rate is estimated to be $J_C \sim 17$ Hz or 76 Hz respectively [23].

2. Co/Pd magnetic films

Recently, magnetic thin films, including multilayered systems, have been studied largely because of their interesting magnetic properties and possible applications for practical devices. In particular, studies of Co/Pd and Co/Pt [24–32] systems have been performed extensively because they exhibit perpendicular magnetic anisotropy (PMA), small grain size and large Kerr rotation at short wavelengths, which makes them promising candidates for ultra-high density magnetic recording media [33] and also for atom optics research [34]. We have chosen Co/Pd multilayer films for fabrication of our magnetic sub-micron structures to trap ultracold atoms because of its high degree of homogeneity, high saturation magnetization and small grain size.

A strong PMA is necessary so that all the magnetic domains are aligned to give smooth and well defined magnetic potentials to trap the atoms on a sub-micron scale. At the same time, a high PMA leads to large coercivities necessary to withstand the external magnetic fields that are applied during the magnetic trapping of the atoms. In these multilayer films the large PMA is related to the reduced symmetry at the interface between the magnetic Co and the non-magnetic Pd layers. The magnetic film consists of a set of bi-layers of Co/ Pd, deposited on a 330 μm-thick silicon substrate, as shown in figure 1. This bi-layered film is set on a layer of 3 nm-thick Pd to provide a good (1 1 1) texture to start the deposition of the magnetic layers, leading to an improvement of the crystallographic orientation of the layers and to an improvement of the PMA. The number of bilayers and the thickness of the layers were chosen to have large surface magnetic field and a large PMA; in this case we chose 8 bi-layers of alternating Co (0.28 nm) and Pd (0.9 nm). The Co/Pd multilayers were dc magnetron sputter-deposited at room temperature. The Ar pressure was adjusted to 3.5×10^{-3} mbar for all depositions, while the base pressure of the deposition chamber was 1.0×10^{-8} mbar. The measured coercivity for this film is $H_c = 1.0$ kOe (see figure 2(a)), and the saturation magnetization of Co/Pd is $4\pi M_s = 5.9$ kG. One can increase the surface magnetic field by increasing the number of bi-layers but the PMA becomes less pronounced [36] or may even vanish when using many layers. Finally, a layer of 1.1 nm of Pd is deposited on top of the stack to provide protection against oxidation (figure 1).

The Co/Pd films can have a grain size down to about 6 nm [35] and can produce high resolution magnetic structures necessary to prepare high quality 1D and 2D magnetic lattices with periods down to about 0.7 μm with smooth potentials.
The grain size of the film was measured by scanning electron microscopy (SEM) (see figure 2(b)); the size of individual grains of Co/Pd within our samples is typically 10 nm. This small grain size currently sets the limit for the dimension of the smallest features we can etch.

3. Patterning

Sub-micron magnetic structures can be produced by different microfabrication techniques. These methods range from magneto-optical recording using a focused laser beam [34, 37, 38], recording on a hard-disk head [16, 34], use of grooved substrates plus uniform film coating [22, 39–41], femtosecond laser ablation [42] and optical or e-beam lithography (EBL) followed by reactive ion etching (RIE) [14, 15, 18]. We chose EBL and RIE since they provide high resolution and high versatility, arbitrary magnetization patterns are possible, and they can be used to produce the required sub-micron scales.

EBL was used to write the desired patterns onto the Co/Pd film. EBL is a maskless direct write method in which a beam of electrons is focused to expose required patterns on an electron-sensitive resist used as a mask for subsequent etching. The main advantage of EBL is that it can fabricate customized patterns with nanometer resolution; our EBL has 10 nm resolution sufficient for our patterns. The lithographic process was performed in the nano-fabrication facility at Swinburne University of Technology. We have used a Raith 150 two tool to do the EBL and a SAMCO 101i RIE system to do the etching. The lithography procedure is illustrated in figure 3. First, a 300 nm-thick film of PMMA, a positive electron-sensitive resist is spin coated onto the Co/Pd film. Then a focused electron beam is driven by a high speed patterning generator on the mask with the desired design. After exposure of the resist layer to the electron beam it is developed and the exposed resist is removed. After that the magnetic film is plasma-etched by RIE with argon. This is a dry etching technique with good properties for high resolution patterning, no resist adhesion problems and high anisotropic etch profile [43]. In the final stage the remaining resist is removed by wet etching, using acetone. After the patterning process a metallic reflecting layer of 50 nm thickness is deposited over the surface; this layer is necessary for creating a mirror-MOT, magneto optical trap. Finally, a layer of silica (25 nm) is deposited to prevent rubidium atoms from sticking to the metallic surface.

4. Results for 1D structures

4.1. Trapping parameters

A 1D lattice potential of magnetic microtraps can be created by a periodic array of long, parallel rectangular magnets with out-of-plane magnetization in the presence of suitable bias magnetic fields [12, 13, 16, 17]. By superimposing on this potential homogeneous in-plane bias fields in the parallel and perpendicular direction, one can control most of the important parameters related to the atom trapping, such as the distance at which the trap minima are generated from the surface, the trap frequencies and the bias field necessary to have non-zero potential minima at the bottom of the traps to avoid spin-flips. For an infinite 1D lattice periodic in the y direction contained in the xy plane and for distances from the surface large compared with \(\alpha \) (where \(\alpha \) is the lattice period), the trapping magnetic fields can be expressed as [39]

\[
[B_x, B_y, B_z] = [B_{0x}, B_0 \sin (ky) e^{-kc} + B_{0y}, B_0 \cos (ky) e^{-kc}],
\]

where \(k = 2\pi/\alpha \), \(B_0 = 4M_s(e^t - 1) \) (Gaussian units), \(t \) is the magnetic film thickness, \(M_s \) is the magnetization and \(B_{0x}, B_{0y} \) are the bias magnetic fields in the x and y directions. From this equation one can calculate the relevant magnitudes of the
trapping potential as a function of the bias fields. The distance to the surface of the minima is

\[z_{\text{min}} = \frac{a}{2\pi} \ln \left(\frac{B_0}{|B_0|} \right) \]

(2)

The barrier heights are

\[\Delta B_y = \left(B^2_{0z} + 4B^2_{0y} \right)^{1/2} - |B_0| \quad \text{and} \quad \Delta B_z = \left(B^2_{0x} + B^2_{0y} \right)^{1/2} - |B_0| \]

(3)

The Ioffe field at the bottom of the minima is \(B_0 = |B_0| \). The trapping potential is produced by the magnetic dipole interaction, which if the atom adiabatically follows the trapping potential can be expressed as \(U(x, y, z) = m_y g_p \mu_B B \). Only atoms in weak-field seeking states can be trapped in a local minimum of the magnetic field, and in order to minimize three-body losses that limit the lifetime of the atoms in the tight microtraps, for \(^{87}\text{Rb}\) we choose the weak-field seeking state \(|F = 1, m = -1\rangle \). Then the radial trap frequency associated with a harmonic potential in elongated traps can be expressed as

\[\omega_r = \omega_z = \frac{2\pi}{a} \left(\frac{m_y g_p \mu_B B}{m |B_0|} \right)^{1/2} B_0 \]

(4)

The axial or low frequency confinement can be produced by an external potential; for example, in [22] the magnetic potential from the magnetic structure is combined with a potential from a current-carrying Z-wire. The characteristics of the potential in the axial direction depends on the potential of the Z-wire. From these equations we can estimate some characteristics of the trapping potential associated with our magnetic film patterned as a 1D array with a period 0.7 \(\mu \text{m} \). The magnetic film has \(4\pi M_z = 5.9 \text{ kG} \) and the total magnetic thickness is \(t = 2.24 \text{ nm} \). One can create a set of microtraps with \(z_{\text{min}} \approx 280 \text{ nm} \), where the required bias field is \(B_0 = 3 \text{ G} \). To avoid Majorana spin-flips the bottom of the trap needs to be raised from zero; if the bottom of the trap is set to \(B_{1p} = 1 \text{ G} \), the barrier heights are \(\Delta B_y = 5.1 \text{ G} \) and \(\Delta B_z = 2.2 \text{ G} \). For \(^{87}\text{Rb}\) atoms in the \(|F = 1, m = -1\rangle \) state, these barrier heights translate into trap depths of 171 \(\mu \text{K} \) and 73 \(\mu \text{K} \), respectively, which are sufficient to trap atoms pre-cooled to 10–15 \(\mu \text{K} \). The trap frequencies in this case are \(\omega_r/2\pi = \omega_z/2\pi = 100 \text{ kHz} \).

Atom trapping at sub-micron distances from a surface has been proposed or demonstrated for single traps [44–47] and magnetic lattices [12, 21, 48]. Previous experimental studies show short lifetimes at distances of about 1 \(\mu \text{m} \) [49, 50]. The main reasons for this limit are the van der Waals forces and Johnson noise. In the first case the attractive van der Waals force between the atoms and the surface can shift and alter the magnetic potential so that it is no longer trapping, as happens with the gravity potential if the trap is not tight enough. To compare the effect of the van der Waals to the magnetic potential one can define a critical trap frequency [21] at which the trapping potential begins to fold due to the van der Waals forces. If the interacting surface is the final reflecting layer and using the previous settings of the potential we can calculate the critical trap frequency, \(\omega_{\text{crit}}/2\pi = 44 \text{ kHz} \). This frequency value is below the trapping frequency, from which we conclude that the stiffness of the magnetic potential is sufficiently large to compensate the van der Waals force.

Johnson noise comes about because a conducting surface can have random thermal currents flow in-plane; these currents are a source of magnetic field noise which can induce spin-flips and hence loss of atoms from a magnetic trap [49–54]. For thin conducting films such that the film thickness \(t << z_{\text{min}} \ll \delta \), where \(\delta = \sqrt{2\rho/(\mu_0 \omega_L)} \) is the skin depth (typically 50–100 \(\mu \text{m} \)), at the spin-flip transition frequency \(\omega_L \), the thermal spin-flip transition rate can be written [50, 54]

\[\Gamma_{\text{FL}} \approx C_{\text{FL}}^0 \frac{C_B}{C_0} \frac{\omega}{1 + \omega^2} \frac{2}{z_{\text{min}}^2} \]

(5)

Here \(C_{\text{FL}}^0 = |(F, m + 1| \text{LS} |F, m)|^2 \), \(S_e \) is the electron-spin raising operator, \(C_0 = [3\mu g \mu_B (8\hbar)]^2 [k_B T (6\pi T)] = 68 \)
\[\frac{\mu}{m} s^{-1}(T/300 K)(\rho_{Au}/\rho) \] [50], \(\rho \) is the resistivity of the conducting film (2.22 \times 10^{-8} \Omega m for gold), \(\mu_0 \) is the vacuum permeability, \(\omega_L = g_F \mu_B B_{IP} / \hbar \) is the Larmor frequency, \(g_F = 2 \) is the electron spin g-factor and \(\mu_B \) is the Bohr magneton. Thus for \(t << z_{min} \ll \delta \) the spin-flip lifetime \(\tau = \Gamma_{Fm} \) scales approximately as \(\tau^2 \rho \mu / t \), which is independent of the \(\omega_L \) and hence the trap bottom \(B_{IP} \). For \(^{87}\text{Rb} \) atoms trapped in the \(|F = 1, m = -1 \rangle \rightarrow |F = 1, m = 0 \rangle \) transition, for \(C_{1-4}^2 = 1 / 8 \). For a gold reflecting film and \(t = 0.05 \mu m, z_{min} = 0.28 \mu m, T = 300 \) K, we obtain a thermal spin-flip lifetime \(\tau_{Au} \approx 180 \) ms which is long compared with the estimated tunneling times of 60 ms and 13 ms for a 0.7 \mu m-period lattice with barrier heights \(V_0 \sim 12 E_R \) (20 mG) and \(6 E_R \) (10 mG), respectively. The spin-flip lifetime could be increased if required by using a reflecting film with higher resistivity, such as palladium (\(\rho_{Pd} = 1.05 \times 10^{-7} \Omega m \)), for which the spin-flip lifetime becomes \(\tau_{Pd} \approx 870 \) ms.

4.2. Fabrication results

To obtain these 1D structures a square region of dimension 0.8 \times 0.8 mm\(^2\) of the magnetic film was etched following the method described in figure 3. The resulting film was examined with an SEM (figures 4(a) and (b)) to check the quality of the surface and the period of the grooved structures. The depth of the etching was checked with an atomic force microscope (AFM), which indicated \sim 10 \) nm of etching depth. A magnetic force microscope (MFM) scan over the magnetized sample was carried out to map the magnetic field over the structures.

Figure 4. (a) Small-scale SEM image of the 1D structure. The dark regions correspond to the etched part and the bright regions the magnetic film. The image shows a pattern of parallel trenches with a period close to 0.7 \mu m. From the image we observe an edge roughness with an amplitude of 40 nm. (b) Large-scale SEM image. A Fourier transform of the SEM image reveals that the peaks are mainly multiples of a base frequency of 688 nm corresponding to the period of the structure. The FWHM of the base frequency peak is 7 nm and the heights of other peaks are less than 1%.

Figure 5. (a) MFM measurement of the 1D magnetic microstructure with a distance between the probe tip and the surface of 50 nm. The MFM image maps the magnetic field above the surface of the 1D sample, which shows oscillations given by the period of the structure. (b) Plot of the natural logarithm of the amplitude of the MFM signal versus tip-surface distance \(\Delta z \). The red line is a fitted decay curve. Inset (b): plot of the profile of the MFM signal in the y direction at a tip surface distance of 50 nm. The red line is the fitted curve to the data points from the oscillating signal.
structures and an amplitude decay length of \(k \) is an oscillating signal in the MFM signal is just proportional to the magnetic field, which is the cantilever quality factor, \(f_0 \) is the natural resonant frequency of the cantilever tip and \(k \) is the spring constant. Thus the MFM signal is primarily sensitive to the resonant frequency [55, 56]

\[
\Delta \phi \approx \frac{Q}{k} \frac{\partial F_z}{\partial z} \propto \frac{\partial^2 B_z}{\partial z^2}, \quad \Delta f \approx f_0 - \frac{f_0}{2k} \frac{\partial F_z}{\partial z} \propto \frac{\partial^2 B_z}{\partial z^2}
\]

(6)

where \(Q \) is the cantilever quality factor, \(f_0 \) is the natural resonant frequency of the cantilever tip and \(k \) is the spring constant. The MFM signal is primarily sensitive to the second spatial derivative of the \(z \) component of the magnetic field. If we use the magnetic field from equation (1), the MFM signal is just proportional to the magnetic field, which is an oscillating signal in the \(y \) direction with the period of the structures and an amplitude decay length of \(k^{-1} = a/2\pi \). A way to check the quality of the magnetic lattice across the sample is to determine the dependence of the amplitude of this oscillating MFM signal on the distance of the MFM tip from the etched magnetic film. From the oscillating profile of the MFM (figure 5(b) inset, taken at a tip-sample distance of 50 nm), we measure a period of \(a_{osc} = 651 \pm 3 \) nm, and from the fitted decay length (figure 5(b)) we obtain \(a_{decay} = 662 \pm 11 \) nm, where the uncertainties come from the residuals of the fits. These values are close to the result from the SEM analysis (figure 4(b)) confirming the quality of the periodicity of the structure. Some of the difference between the two measurements comes from the calibration of the spatial dimensions in the MFM apparatus or from high harmonic terms that we have neglected in this analysis [57].

5. Results for 2D structures

The fabrication of magnetic structures to create 2D complex magnetic lattices with sub-micron period for trapping ultra-cold atoms is the main goal of the present work. Until now 2D lattices with square, triangular, kagome or honeycomb geometries have been created with optical lattices [58–61], as well as square and triangular lattice geometries for permanent magnetic films [18, 48] but with periods of 10 \(\mu m \) or greater. We have fabricated two magnetic planar structures able to create magnetic potentials with square and triangular symmetries and sub-micron period.

In principle, a planar structure etched in a magnetic film can create arbitrary potentials above the surface [62]. To design the magnetic structures related to the desired potentials we have employed an optimization algorithm proposed by Schmied et al [62]. The code automatically generates a planar binary distribution of magnetization patterns with magnetization out of plane, in order to produce the desired lattice symmetries with specified trap parameters. This method makes possible the design of the desired geometries, which would be extremely difficult to obtain using manual methods. The optimization algorithm itself exports a binary image which encodes the magnetic versus non-magnetic regions within one unit cell, so that the generated pattern has pixels with either zero or maximal magnetization. Once a magnetic lattice unit cell has been designed it is necessary to export it in a format for lithographic patterning; then the lithographic software will tile the unit cell to produce the entire lattice. The fabrication process at this point is straightforward due to the binary nature of the pattern generated, by etching away the pixels with zero magnetization.

Our simulations indicate that for a square magnetic lattice produced by a patterned Co/Pd film with \(4\pi M_z = 5.9 \) kG and \(t = 2.24 \) nm, bias fields of \(B_{xy} = 1.7 \) G, \(B_{yy} = -0.8 \) G create lattice traps at \(z_{min} = 350 \) nm from the film surface, with a Ioffe field of \(B_{ip} = 1.1 \) G. The trap barrier height is 1.42 G in both the \(x \) and \(y \) directions and 0.78 G in the \(z \) direction. For \(^{87}\text{Rb} \) atoms in the \(|F = 1, m = -1 \rangle \) state, these barrier heights correspond to trap depths of 47 \(\mu \)K and 26 \(\mu \)K, respectively. Each trap is approximately cylindrically symmetric with the long axis along the \([1,1,0] \) direction. The calculated trap frequencies are \(\omega/2\pi = \omega_z/2\pi = 120 \) kHz and \(\omega_{xy}/2\pi = 37 \) kHz.

For the triangular lattice, bias fields of \(B_{xy} = 0.1 \) G, \(B_{yy} = -1.0 \) G create traps at \(z_{min} = 350 \) nm from the film surface, with a Ioffe field of \(B_{ip} = 0.36 \) G. The trap barrier height is 1.3 G along all three triangular lattice directions and 0.62 G in the \(z \) direction. These barrier heights correspond to trap depths of 43 \(\mu \)K and 21 \(\mu \)K, respectively. Larger barrier heights can be obtained by using thicker Co/Pd magnetic film. The trap frequencies are \(\omega/2\pi = 36 \) kHz and \(\omega_{xy}/2\pi = \omega_z/2\pi = 145 \) kHz. For \(z_{min} = 0.35 \) \(\mu m \) from a gold or palladium layer with \(t = 0.05 \) \(\mu m \), we obtain from equation (5) thermal spin-flip lifetimes \(\tau_{Au} = 290 \) ms and \(\tau_{Pd} = 1360 \) ms.

The resulting etched structures for these geometries are shown in figures 6(a) and (b). The measured etch depth is around 10 nm, so that we can be certain that all of the magnetic film is removed in the desired non-magnetic zones for a good reproduction of the binary pattern. From the SEM images we observe good agreement with the designed pattern, and from a far field of view the unit cell is well reproduced for large areas \(>100 \times 100 \) \(\mu m^2 \). Some stitching errors appear in the pattern due to the limited area of patterning of the EBL. An effective working area of \(100 \times 100 \) \(\mu m^2 \) is satisfactory for our purpose, since this corresponds to more than 10\(^4\) lattice sites in a 0.7 \(\mu m\)-period lattice.

We have performed calculations of the magnetic field produced by the optimized square lattice, and in particular for the second derivative of the field for comparison with the MFM data [57]. Figure 7 shows the surface topology and calculated field for the optimized square lattice. The calculated second derivative is in qualitative agreement with the MFM measurements of the lithographically patterned Co/Pd multilayer. In the MFM data there are several sharper (nearly) horizontal lines within the magnetic islands that are not reproduced by the simulations. This feature could be explained by the formation of magnetic domains near the boundaries of the structure, or by redeposition of material at one edge during etching. Presently, we cannot rule out artifacts introduced by the MFM when the surface topology changes due to residual photoresist on the surface.
Summary

We have fabricated and characterized magnetic structures to create a lattice of magnetic microtraps for ultracold atoms with a period of 0.7 µm. We fabricated one 1D lattice and two 2D lattices with square and triangular translational geometries. To create the structures we have patterned a Co/Pd magnetic multilayered thin film with electron-beam lithography and reactive ion etching. We have shown that Co/Pd multilayered films have a small grain size and high remanent magnetization and coercivity making them an ideal material to create sub-micron magnetic structures. The scanning electron microscope images displayed the required patterning quality and magnetic force microscope measurements confirm that the structures have the right magnetic potentials to trap ultracold atoms in the diverse lattice geometries. New developments in 3D electron beam and ion beam technologies free from stitching errors may allow us to combine resolution of tens-of-nm with areas having sub-cm cross-sections. These small periods give access to high energy scales in the Hubbard model and to tight traps with high frequencies for rubidium atoms. This makes them a promising tool for studies of one-dimensional quantum gases, quantum simulation and quantum information processing. The method demonstrated in this paper offers a great degree of freedom to design and create different magnetic potentials to trap ultracold atoms close to surfaces. Geometries that are difficult to generate with other methods, such as triangular, hexagonal, kagome, and superlattices, may provide a better understanding of the underlying physics of novel materials such as graphene [58, 59, 63], a remarkable material that has great technological potential and is currently the subject of intense interest.

Acknowledgments

We are indebted to J Wang, S Tibus, B Hall, R Anderson and S Jose for fruitful discussions. We acknowledge funding from an Australian Research Council (ARC) Discovery Project grant (Grant No. DP130101160).
References

[1] Jaksh D, Bruder C, Cirac J I, Gardner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[2] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[3] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[4] Paredes B et al 2004 Nature 429 277
[5] Kinoshita T, Wenger T and Weiss D S 2006 Nature 440 900
[6] Cataliotti F S, Burger S, Fort C, Maddaloni P, Minardi F, Trombettoni A, Smerzi A and Inguscio M 2001 Science 293 843
[7] Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M und Oberthaler M 2005 Phys. Rev. Lett. 95 010402
[8] Greiner M, Mandel O, Esslinger T, Hansch T and Bloch I 2002 Nature 415 39
[9] Calarco T, Hinds E A, Jaksh D, Schmiedmayer J, Cirac J I and Zoller P 2000 Phys. Rev. A 61 022304
[10] Monroe C 2007 Nature 416 238
[11] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen De A und Sen U 2007 Adv. Phys. 56 243
[12] Ghanbari S, Kieu T D, Sidorov A and Hannaford P 2006 J. Phys. B 39 847
[13] Gerritsma and Sperreeu R J C 2006 Phys. Rev. A 74 043405
[14] Xing T, Barb I, Gerritsma R, Sperreeu R J C, Luigies H, Xiao Q F, Retif C and Goedkoop J B 2007 J. Magn. Magn. Mater. 313 192–7
[15] Gerritsma R, Whitlock S, Fernholz T, Schlatter H, Luigies J A, Thiele J U, Goedkoop J B und Sperreeu R J C 2007 Phys. Rev. A 76 033603
[16] Boyd M, Streed E W, Medley P, Campbell G K, Mun J, Ketterle W and Pritchard D E 2007 Phys. Rev. A 76 043624
[17] Singh M, Volk M, Akulshin A, Sidorov A, McLean R und Hannaford P 2008 Phys. B 41 065301
[18] Whitlock S, Gerritsma R, Fernholz T und Sperreeu R J C 2009 New J. Phys. 11 032021
[19] Abdelrahman A, Vasiliev M, Alameh K und Hannaford P 2010 Phys. Rev. A 82 012320
[20] Llorterre Garcia I, Darquie B, Curtiss E A, Sinclair C D J und Hinds E A 2010 New J. Phys. 2 12 093017
[21] Leung V Y F, Tauschinsky A, van Druten N J und Sperreeu R J C 2011 Quantum Inform. Process. 10 955
[22] Jose S, Surendran P, Wang Y, Herrera I, Krzemen L, Whitlock S, McLean R, Sidorov A und Hannaford P 2014 Phys. Rev. A 89 051602
[23] Bakr W S et al 2009 Nature 462 74
[24] Garcia P F, Meinhaldt A D und Sama A 1985 Appl. Phys. Lett. 47 478
[25] den Broeders F J A, Donkersloot H C, Draaisma H J G und de Jonge W J M 1987 J. Appl. Phys. 61 4317
[26] Draaisma H J G, de Jonge W J M und den Broeders F J A 1987 J. Magn. Magn. Mater. 26 314
[27] Draaisma H J G, den Broeders F J A und de Jonge W J M 1988 J. Appl. Phys. 63 3479
[28] Garcia P F 1988 J. Appl. Phys. 63 51166
[29] Sato N 1988 J. Appl. Phys. 64 6424
[30] den Broeders F J A, Kuiper D, Donkersloot H C und Hoving W 1989 Appl. Phys. A 49 507
[31] Ochiai Y, Hashimoto S und Aso K 1989 IEEE Trans. Magn. 25 3755
[32] Hashimoto S, Matsuda H und Ochiai Y 1990 App. Phys. Lett. 56 1069
[33] Grobis M K, Hellwig O, Hauet T, Dobisz E und Albrecht T R 2011 IEEE Trans. Magn. 47 6
[34] Eriksson S, Ramirez-Martinez F, Curtis E A, Sauer B E, Nutter P W, Hill E W und Hinds E A 2004 Appl. Phys. B 79 811–6
[35] Roy A G, Laughlin D E, Klemmer T J, Howard K, Khizroev S und Litvinov D 2011 J. Appl. Phys. 89 7531
[36] Lin C J, Gorman G L, Lee C H, Farrow R F C, Mariner E E, Do H V, Notarys H und Chien C J 1991 J. Magn. Magn. Mater. 93 194–204
[37] Lau D C, McLean R J, Sidorov A I, Gough D S, Koperski J, Rowlands W J, Sexton B A, Opat G I und Hannaford P 1999 J. Opt. B 1 371
[38] Jaakkola A, Shevchenko A, Lindfors K, Hautakorpi M, Ilyashenko E, Johansen T H und Kaivola M 2005 Eur. J. Phys. D 35 81
[39] Singh M, McLean R, Sidorov A und Hannaford P 2009 Phys. Rev. A 79 053407
[40] Sidorov A, McLean R J, Schamburg F, Gough D S, Davis T J, Sexton B J, Opat G I und Hannaford P 2002 Acta Phys. Pol. B 33 2137
[41] Wang J Y, Whitlock S, Schamburg F, Gough D S, Sidorov A I, McLean R J und Hannaford P 2005 J. Phys. D: Appl. Phys. 38 4015
[42] Wolff C H, Whitlock S, Lowe R M, Sidorov A I und Hall B V 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085301
[43] Mano D und Flamm D 1989 Plasma Etching as An Introduction (New York: Academic)
[44] Hammes M, Rychtarik D, Engeset B, Nægler H-C und Grimm R 2003 Phys. Rev. Lett. 90 173001
[45] Allwood D A, Schreit T, Hrack G, Hughes I G und Adams C S 2006 Appl. Phys. Lett. 89 014102
[46] Sinuco-León G, Kazcmarek B, Krüger P und Fromhold T M 2006 Phys. Rev. A 83 021401
[47] Fulman R 2011 Quantum Inform. Process. 10 995
[48] Leung V Y H et al 2014 Rev. Sci. Instrum. 85 053102
[49] Harber et al 2003 J. Low Temp. Phys. 133 229
[50] Lin Y J, Teper I, Chin C und Vuletic V 2004 Phys. Rev. Lett. 92 050404
[51] Rekdal P K, Scheel S, Knight P L und Hinds E A 2004 Phys. Rev. A 70 013811
[52] Henkel C, Pötting S und Wilkens M 1999 Appl. Phys. B 69 379
[53] Henkel C und Pötting S 2001 Appl. Phys. B 72 73
[54] Scheel S, Rekdal P K, Knight P L, und Hinds E A 2005 Phys. Rev. A 72 042901
[55] Grutter P et al 1992 Scanning Tunneling Microscopy II Wiendesenger R und Guntherodt H J (Berlin: Springer) pp 151–207
[56] Manalis S et al 1995 Appl. Phys. Lett. 66 2585
[57] Hughes I G, Barton P A, Roach T M und Hinds E A 1997 J. Phys. B: At. Mol. Opt. Phys. 30 2119
[58] Tarnzuel L, Greif D, Uehlinger T, Jojtu G und Esslinger T 2012 Nature 483 302
[59] Uehlinger T, Jojtu G, Messer M, Greif D, Hofstetter W, Bissbort U und Esslinger T 2013 Phys. Rev. Lett. 111 185307
[60] Parameswaran S A, Kimchi I, Turner A M, Stamper-Kurn D M und Vishwanath A 2013 Phys. Rev. Lett. 110 125301
[61] Lüthman D S, Jürgenssen O, Weinberg M, Simonet J, Saltan-Panahi P und Sengstock K 2014 Phys. Rev. A 90 013614
[62] Schmied R, Leibfried D, Sperreeu R J C und Whitlock S 2010 New J. Phys. 12 103029
[63] Zhu S L, Wang B und Duan L M 2007 Phys. Rev. Lett. 98 260402