INTRODUCTION

Nowadays *Clonorchis sinensis* infection is the most endemic parasitic disease in the Republic of Korea (= Korea). The prevalence of this endemic disease was 1.9%, and about 932,540 residents are estimated to be infected, which is the highest value among the prevalences in the nationwide survey on helminthic infections in Korea [1]. The endemicity of clonorchiasis has maintained at relatively high levels in riverside areas of Korea [2-8]. Especially, in 1981, high prevalences were reported from the riverside residents in 7 major rivers, i.e., Nakdong-gang (40.2%), Yeongsan-gang (30.8%), Seomjin-gang (17.3%), Tamjin-gang (15.9%), Han-gang (15.7%), Geum-gang (12.0%), and Mangyeong-gang (8.0%) [2]. Also in 2006 and 2007, the egg positive rates of *C. sinensis* were surveyed from riverside residents in major 5 rivers of Korea [5,7]. Recently, Jeong et al. [8] reported the prevalence of clonorchiasis from the residents of 5 major rivers as Nakdong-gang (11.7%), Seomjin-gang (9.9%), Geum-gang (6.5%), Yeongsan-gang (3.1%), and Han-gang (1.0%).

On the other hand, many Korean workers surveyed on freshwater fish, the infection sources of clonorchiasis, collected from various endemic riverside areas to estimate the endemicities of clonorchiasis. The results revealed that more than 49 fish species in 7 families have been reported as the second intermediate hosts of *C. sinensis* metacercariae (CsMc). In addition, Cho et al. [14] surveyed the infection status of CsMc in freshwater fish from 3 wide regions, which are tentatively divided by the latitudinal levels of the Korean peninsula. They examined total 136 freshwater fish (16 spp.) from...
Wicheon, the same area in this study, in 2008. Later, in 2014, Cho et al. [16] investigated the prevalence of zoonotic trematode metacercariae in freshwater fish from Gangwon-do (Province), Korea. Recently, Sohn et al. [17] surveyed the infection status of digenetic trematode metacercariae including C. sinensis in freshwater fish from the water systems of Hantan-gang and Imjin-gang in northern regions of Korea. Sohn et al. [18] also investigated the infection status with C. sinensis metacercariae in fish from water systems of Seomjin-gang.

In 2014, total 338 freshwater fish in 24 species, i.e., Z. platypus (60), Z. temminckii (50), P. herzi (47), A. koreensis (29), A. yamatsutae (25), S. japonicus coreanus (14), C. auratus (13), S. gracilis majimae (13), Acheilognathus rhombeus (11), S. variegatus wakiyae (11), A. majusculus (10), Micropterus salmoides (8), C. sinensis (8), C. herzi (7), P. esocinus (7), Misgurnus anguillicaudatus (6), Odontobutis platycephala (4), Pseudorasbora parva (4). L. macrochirus (4), Cobitis lutheri (3), Acheilognathus lanceolatus (2), Microphysogobio jeoni (1), and Microphysogobio loevis (1), were examined. In 2015, total 245 freshwater fish in 19 species, i.e., Z. platypus (50), Z. temminckii (49), P. herzi (41), A. koreensis (29), A. yamatsutae (16), S. japonicus coreanus (15), S. gracilis majimae (11), C. auratus (10), A. rhombeus (7), A. springeri (4), S. variegatus wakiyae (3), O. uncirostris amurensis (3), P. parva (1), Rhynchohyphus oxycephalus (1), A. macropterus (1), P. esocinus (1), C. herzi (1), M. loevis (1), and A. lanceolatus (1), were examined.

In 2016, total 168 freshwater fish in 17 species, i.e., A. koreensis (35), Z. platypus (30), P. herzi (30), A. rhombeus (15), A. yamatsutae (15), Zacco koreensis (14), O. platycephala (6), C. auratus (5), S. japonicus coreanus (4), A. lanceolatus (3), C. herzi (3), P. esocinus (2), S. gracilis majimae (2), Hemibarbus longirostris (1), M. anguillicaudatus (1), Siniperca scherzeri (1), and M. koreensis (1), were examined. In 2017, total 199 freshwater fish in 17 species, i.e., Z. platypus (50), S. japonicus coreanus (31), A. yamatsutae (27), P. herzi (26), A. koreensis (26), Z. temminckii (10), P. parva (7), Acanthorhodeus gracilis (5), S. variegatus wakiyae (3), C. herzi (2), C. auratus (2), Z. koreensis (2), A. rhombeus (2), S. scherzeri (2), M. salmoides (2), C. lutheri (1), and Pseudobagrus fulvidraco (1), were examined.

Examination methods
All collected fish with ice were transferred to the laboratory of the Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, Korea. After identification of fish species, they were individually ground with a mortar or grinder. Each ground fish meat was mixed with artificial gastric juice, and the mixture was incubated at 36°C for 2 hr. The digested material was filtered with 1 × 1 mm of mesh, and washed with 0.85% saline until the supernatant became clear. The sediment was carefully examined under a stereomicroscope. The metacercariae of C. sinensis were separately collected by the general morphological feature [13,15], and they were counted to get hold of the infection rate and density by fish species. The susceptibility indices of

MATERIALS AND METHODS
Fish collection site and freshwater fish examined
We collected total 1,162 freshwater fish in 32 species in Wicheon (a stream of Nakdong-gang), which is located in Wooboo-myeon, Gunwi-gun (gun = county), flows via Gunwi-gun and Eui-seong-gun, and unites with the main stream at Sangju-si (si = city), Gyeongsangbuk-do, the water ecosystem of this stream is more or less healthy but the ecological conditions for fish is not so good [19]. However, it has been known that freshwater fish such as Pungtungia herzi, Squalidus gracilis majima, S. japonicus coreanus, and Pseudogobio esocinus from this stream were heavily infected with CsMc [14]. Therefore, for a period of 7 years, we focused on the infection status of CsMc in fish from a highly prevalent site of Wicheon, Gyeongsangbuk-do, Korea, and analyzed the infection status of CsMc according to the subfamily groups of Cyprinae fish hosts of C. sinensis.

In 2011, total 105 freshwater fish in 13 species (no. of fish examined), i.e., Zacco platypus (49), Squalidus japonicus coreanus (10), Zacco temminckii (10), Squalidus gracilis majimae (8), Pungtungia herzi (5), Acheilognathus majusculus (5), Opsariichthys uncirostris amurensis (5), Carassius auratus (3), Pseudogobio esocinus (3), Acanthorhodeus macropterus (3), Sarcocephalichthys variegatus wakiyae (2), and Acheilognathus koreensis (1), Cobitis sinensis (1), were examined. In 2013, total 107 freshwater fish in 12 species, i.e., P. herzi (20), Z. platypus (20), Acheilognathus yamatsutae (16), Z. temminckii (15), A. koreensis (10), S. gracilis majimae (9), S. variegatus wakiyae (6), Coreoperca herzi (5), Abbottina springeri (2), C. sinensis (2), C. auratus (1), and Lepomis macrochirus (1), were examined.
Table 1. Infection status of *Clonorchis sinensis* metacercariae in fish from Wicheon (a stream of Nakdong-gang) in Gunwi-gun, Gyeongsangbuk-do

Year and fish species	No. of fish examined	No. (%) of fish infected	No. of metacercariae detected		
			Total	Range	Average
2011					
Pungtungia herzi	5	5 (100)	5,216	340-2,420	1,043
Squalidus japonicus coranarius	10	10 (100)	818	13-295	82
Squalidus gracilis majimae	8	8 (100)	4,960	9-1,035	620
Sarcocheilichthys vanegatus	2	2 (100)	1,901	2-12	951
Pseudogobio esocinus	3	3 (100)	16	-	5
Acheilognathus majusculus	5	1 (20.0)	1	2	1
Acanthorhodeus macropterus	3	3 (100)	91	87	30
Acheilognathus koreensis	1	1 (100)	9	-	9
Zacco platypus	49	18 (59.3)	129	1-32	7
Subtotal	86	51 (59.3)	13,141	1-2,420	258
2013					
Pungtungia herzi	20	20 (100)	22,790	27-11,290	1,140
Squalidus gracilis majimae	9	9 (100)	8,687	33-2,720	965
Sarcocheilichthys vanegatus	6	6 (100)	2,545	26-1,245	424
Abottina springeri	2	2 (100)	95	44-51	48
Acheilognathus koreensis	10	10 (100)	58	1-14	6
Acheilognathus yamatsutae	16	6 (37.5)	23	1-10	4
Zacco platypus	20	8 (40.0)	129	1-70	16
Zacco temminckii	15	1 (6.7)	2	-	2
Subtotal	98	62 (63.3)	34,329	1-11,290	554
2014					
Pungtungia herzi	47	47 (100)	116,805	6-31,250	2,485
Squalidus japonicus coranarius	14	14 (100)	25,291	140-8,460	1,807
Squalidus gracilis majimae	13	13 (100)	20,285	20-2,085	1,560
Sarcocheilichthys vanegatus	11	11 (100)	8,936	13-2,730	812
Pseudorasbora parva	4	4 (100)	2,911	483-1,180	728
Microphysogobio jeoni	1	1 (100)	365	-	365
Acheilognathus koreensis	29	29 (100)	1,099	1-184	38
Microphysogobio koeensis	1	1 (100)	12	-	12
Acheilognathus yamatsutae	25	25 (88.0)	560	1-136	26
Acheilognathus rombeus	11	9 (81.8)	782	1-290	87
Acheilognathus majusculus	10	2 (20.0)	3	1-2	2
Acheilognathus lanceolatus	2	1 (50.0)	283	-	283
Zacco platypus	60	40 (66.7)	447	1-66	11
Zacco temminckii	50	1 (2.0)	-	-	1
Carassius auratus	13	1 (7.7)	-	-	1
Microperus salmoicoides	8	1 (12.5)	-	-	1
Coreoperca herzi	7	1 (14.3)	3	-	3
Misgurnus anguillicaudatus	6	2 (33.3)	-	-	1
Subtotal	319	206 (64.6)	178,007	1-31,250	864
2015					
Pungtungia herzi	41	41 (100)	53,753	24-7,750	1,311
Squalidus japonicus coranarius	15	15 (100)	21,164	359-2,670	1,411
Squalidus gracilis majimae	11	11 (100)	34,255	146-7,690	3,114
Sarcocheilichthys vanegatus	3	3 (100)	1,632	157-1,318	544
Pseudorasbora parva	1	1 (100)	1,538	-	1,538
Pseudogobio esocinus	1	1 (100)	1,325	-	1,325
Abottina springeri	4	4 (100)	155	10-80	39
Microphysogobio koeensis	1	1 (100)	139	-	139
Acheilognathus koreensis	29	29 (100)	2,454	4-678	85
Acheilognathus yamatsutae	16	4 (25.0)	38	1-28	10
Acheilognathus rombeus	7	7 (100)	1,081	70-295	164
Acheilognathus lanceolatus	1	1 (100)	245	-	245
Acanthorhodeus macropterus	1	1 (100)	79	-	79
Zacco platypus	50	33 (66.0)	965	1-420	29
Zacco temminckii	49	4 (8.2)	7	1-4	2
Opsariichthys uncirostris	3	2 (66.7)	-	-	1
Carassius auratus	10	2 (20.0)	-	-	1
Rhyynchocypris oxycephalus	1	1 (100)	28	-	28
Subtotal	244	161 (66.0)	118,862	1-7,750	738

(Continued to the next page)
CsMc were calculated by the formula, prevalence/100 × mean metacercarial density per fish infected.

Subfamily groups in Cyprinidae fish hosts of C. sinensis

The gobioninid (Gobioninae) group-1 (323 fish) included *P. herzi* (169), *S. gracilis majimae* (43), *S. japonicus coreanus* (74), *S. variegatus wakiyae* (25), and *P. parva* (12). The gobioninid group-2 (24 fish) included *P. esocinus* (13), *A. springeri* (6), *M. koreensis* (3), *M. jeoni* (1), and *H. longirostris* (1). The acheilognathinid (Acheilognathinae) group (296 fish) included *A. koreensis* (130), *A. yamatsutae* (99), *A. rhombeus* (35), *A. gracilis* (7). The rasborinid (Rasborinae) group (403 fish) included *Z. platyurus* (259), *Z. temminckii* (136), and *O. unicirrhus amurensis* (8).

RESULTS

Infection status of CsMc in overall examined fish

CsMc were detected in 720 (62.0%) out of 1,162 fish in 32 species examined, and their average density was 610 per fish infected. The infection status by fish species and surveyed years is shown in Table 1.

Infection status of CsMc in gobioninid fish group-1

CsMc were detected in all (100%) of 323 fish examined, and their average density was 1,310 per fish infected. The densities were highest in 2014 (1,958), followed by 2015 (1,582), 2016 (1,211), 2013 (972), 2017 (685), and 2011 (516) (Table 2). The infection status of CsMc by fish species, i.e., *P. herzi, S. gracilis majimae, S. japonicus coreanus, S. variegatus wakiyae* and *P. parva*, is revealed in Table 3.

Infection status of CsMc in gobioninid fish group-2

CsMc were detected in 23 (95.8%) out of 24 fish examined, and their average density was 127 per fish infected. The infection status by fish species, i.e., *P. esocinus, A. springeri, M. koreensis, M. jeoni* and *H. longirostris*, is shown in Table 4.

Infection status of CsMc in acheilognathinid fish group

CsMc were detected in 228 (77.0%) out of 296 fish examined, and their average density was 50 per fish infected. The densities were highest in 2015 (972), followed by 2016 (685),

Year and fish species	No. of fish examined	No. (%) of fish infected	No. of metacercariae detected		
			Total	Range	Average
2016 Pungtungia herzi	30	30 (100)	36,686	28-9,870	1,223
Squalidus japonicus coreanus	4	4 (100)	3,603	210-1,480	901
Squalidus gracilis majimae	2	2 (100)	3,323	653-2,670	1,662
Pseudogobio esocinus	2	2 (100)	540	36-504	270
Microphysogobio koreensis	1	1 (100)	40	-	40
Hemibarbus longirostris	1	1 (100)	13	-	13
Acheilognathus koreensis	35	34 (97.1)	871	2-287	26
Acheilognathus rhombeus	15	15 (100)	3,006	64-329	200
Acheilognathus yamatsutae	15	8 (53.3)	25	1-9	3
Acheilognathus lanceolatus	3	3 (100)	327	4-255	109
Zacco platypus	30	19 (63.3)	192	1-30	10
Siniperca scherzi	1	1 (100)	6	-	6
Subtotal	139	120 (86.3)	48,632	1-9,870	405
2017 Pungtungia herzi	26	26 (100)	26,736	22-9,950	1,028
Squalidus japonicus coreanus	31	31 (100)	13,161	4-2,750	425
Sarcocheilichthys variegatus	3	3 (100)	759	156-352	253
Pseudorasbora parva	7	7 (100)	5,260	365-2,225	751
Acheilognathus yamatsutae	27	15 (55.6)	45	1-2,030	7
Acheilognathus koreensis	26	19 (73.1)	129	1-30	5
Acanthorhodeus gracilis	5	5 (100)	26	2-12	1
Acheilognathus rhombeus	2	1 (50.0)	1	-	16
Zacco platypus	50	21 (42.0)	345	1-205	1
Coreoperca herzi	2	1 (50.0)	1	-	5
Micropterus salmoides	2	1 (50.0)	5	-	5
Subtotal	181	120 (66.3)	46,468	1-8,950	
Total	1,067	720 (67.5)	439,439	1-31,250	610
Infection status of CsMc by fish species, i.e., *A. koreensis*, *A. yamatsutae*, *A. rhombes*, *A. majusculus*, *A. macropera*, *A. lanceolatus* and *A. gracilis*, is revealed in Table 6.

Table 2. Infection status of *Clonorchis sinensis* metacercariae in susceptible gobioninid fish from Wicheon in Gunwi-gun, Gyeongsangbuk-do

Year examined	No. of fish examined	No. (%) of fish infected	No. of metacercariae detected		
			Total	Range	Average
2011	25	25 (100)	12,895	9-2,420	516
2013	35	35 (100)	34,022	26-11,200	972
2014	89	89 (100)	174,228	6-31,200	1,958
2015	71	71 (100)	112,342	24-7,750	1,582
2016	36	36 (100)	43,612	28-9,870	1,211
2017	67	67 (100)	45,916	4-8,950	685
Total	**323**	**323 (100)**	**423,015**	**4-31,250**	**1,310**

Table 3. Infection status of *Clonorchis sinensis* metacercariae by fish species in the gobioninid group-1

Species of fish	No. of fish examined	No. (%) of fish infected	No. of metacercariae detected		
			Total	Range	Average
Pungtungia herzi	169	169 (100)	261,986	6-31,250	1,550
Squalidus japonicus coreanus	74	74 (100)	64,037	4-8,460	865
Squalidus gracilis majimae	43	43 (100)	71,510	9-7,680	1,663
Sarcochilichthys variegatus	25	25 (100)	15,773	13-2,730	631
Pseudorasbora parva	12	12 (100)	9,709	365-2,225	809
Total	**323**	**323 (100)**	**423,015**	**4-31,250**	**1,310**

Table 4. Infection status of *Clonorchis sinensis* metacercariae by fish species in the gobioninid group-2

Species of fish	No. of fish examined	No. (%) of fish infected	No. of metacercariae detected		
			Total	Range	Average
Pseudogobio esocinus	13	12 (92.3)	2,101	1-1,325	175
Abbottina springeri	6	6 (100)	250	10-80	42
Hemibarbus longirostris	1	1 (100)	13	-	13
Microphysogobio koreensis	3	3 (100)	191	12-139	64
Microphysogobio jeoni	1	1 (100)	365	-	365
Total	**24**	**23 (95.8)**	**2,920**	**1-1,325**	**127**

Table 5. Infection status of *Clonorchis sinensis* metacercariae in acheilognathinid fish from Wicheon in Gunwi-gun, Gyeongsangbuk-do

Year examined	No. of fish examined	No. (%) of fish infected	No. of metacercariae detected		
			Total	Range	Average
2011	9	5 (55.6)	101	1-87	20
2013	26	16 (61.5)	81	1-14	5
2014	77	63 (81.8)	2,727	1-290	43
2015	54	42 (77.8)	3,897	1-678	93
2016	68	60 (88.2)	4,229	1-329	70
2017	60	40 (66.7)	201	1-30	5
Total	**296**	**228 (77.0)**	**11,372**	**1-678**	**50**

Table 6. Infection status of CsMc in rasborinid fish group

CsMc were detected in 147 (36.5%) out of 403 fish examined, and their average density was 15 per fish infected. The densities were highest in 2015 (25), followed by 2017 (16), 2013 (15), 2014 (11), 2016 (10), and 2011 (7) (Table 7). The...
infection status of CsMc by fish species, i.e., *Z. platypus*, *Z. temminckii* and *O. uncirostris amurensis*, is shown in Table 8.

Susceptibility index of CsMc by fish groups

The susceptibility indices of CsMc were 412 in the overall positive fish group; 1,310 in the gobioninid group-1, 122 in the gobioninid group-2, 38.5 in the acheilognathinid, and 5.5 in the rasborinid fish group (Table 9).

DISCUSSION

By the present study, it was reconfirmed that CsMc are highly prevalent in fish from Wicheon, Gyeongsangbuk-do, Korea. Moreover, the infection status showed a certain tendency ac-
cording to the subfamily groups of fish hosts, i.e., Gobioninae, Acheilognathinae, and Rasborinae, among the Cyprinidae. The prevalences were 100%, 79.7%, and 35.5%, and metacercarial densities were 1,310, 50, and 15 per fish infected in 3 fish groups, respectively. These findings also suggested that the endemicity of CsMc is closely related to the fish group, and this host-parasite relationship may originate from a long-lasting evolutionary process.

The fish sampling is one of the important factors in metacercarial surveys for the epidemiology of fishborne zoonotic trematode infections. Total 1,162 fish in 32 species were collected through 6 years (2011 and 2013-2017) in the same site of Woobo-myeon in Gunwi-gun. Among them, the pale chub (259 Z. platypus: 22.2%) was the most dominant fish species like Sohn et al. [18] in Seomjin-gang, followed by the striped shinner (169 P. herzi: 14.5%), dark chub and/or Korean chub (136 Z. temminckii and/or Z. koreanus: 11.7%), oily bitterling (130 A. koreensis: 11.2%), Korean striped bitterling (99 A. yamatsutae: 8.5%), and short barbell gudgeon (74 S. japonicus coreanus: 6.4%). The number of fish examined was 867 (74.4%) in major 6 species and 298 (25.6%) in the remaining 26 species. The disproportion of the fish number examined was dependent upon the ecological conditions of each fish species, and moreover, we collected all fish only by the casting net in the daytime. If we used together with other methods for fish catching like a netting, we could have collected more various species of fish, including nocturnal ones.

Total 49 fish species (in 34 genera 7 families) have been reported as the second intermediate hosts of C. sinensis in Korea [9-18]. In the present study, CsMc were found in 26 fish species, i.e., Abbottina springeri, Acanthorhodeus macropterus, A. gracilis, Acheilognathus koreensis, A. lanceolatus, A. majuscules, A. rhombetus, A. yamatsutae, Carassius auratus, Coreoperca herzi, Hemibarbus longirostris, Micropterus salmoides, Microphysogobio koreensis, M. jeoni, Misgurnus anguillicaudatus, Opsarichthys uncirostris, Pseudogobio esocinus, Punngungta herzi, Pseudorasbora parva, Rhynchocypris oxycephalus, Sarcoccihelichthys variegates wakiyae, Simiperca scherzeri, Squalidus gracilis majimae, S. japonicus coreanus, Zacco platypus, and Z. temminckii. Among them, 2 fish species, i.e., M. salmoides (Centrachidae) and M. anguillicaudatus (Cobitidae), are newly added in the list of the second intermediate hosts of C. sinensis in Korea [9-18]. Accordingly, total 51 fish species in 9 families are listed as the second intermediate hosts of C. sinensis in Korea.

The large mouth bass, Micropterus salmoides, was imported from USA as an edible fish species in 1973. However, this fish is widely spread in the water systems of the whole country, and then became notorious as an agitating fish species of the ecosystem in Korea [20]. In this study, we examined total 10 M. salmoides and detected 1 and 5 CsMc from 2 fish. Although the number of fish examined and metacercariae detected were not so many, the fact, infection with CsMc in foreign fish species, is highly important. Thus, we should pay attention to the fish species from foreign countries in the metacercarial survey for the fishborne zoonotic trematodes.

Fish species, i.e., Mandarin fish (S. scherzeri), Korean aucha perch (C. herzi), common carp (Cyprinus carpio), and crucian carp (C. auratus), edible in raw conditions practically act as the infection source of clonorchiasis in Korea. Fortunately, these fish species are less prevalent with CsMc. Total 3 (8.8%) out of 34 C. auratus were infected with total 3 CsMc, 2 (11.1%) C. herzi was infected with a total of 4 CsMc, and only 1 (33.3%) S. scherzeri was infected with 6 CsMc, respectively, even in such a highly endemic area, Wicheon. In a survey of the fish from Seomjin-gang, no CsMc was detected in 4 fish species, i.e., C. herzi (57), C. auratus (42), S. scherzeri (11), and C. carpio (2), edible in raw conditions [18].

The striped shinner, P. herzi, is appropriate to be an index fish species to check the endemicity of C. sinensis infection. This fish species broadly lives in the water systems of rivers in Korea and is highly susceptible to CsMc. In the present study, all of 169 P. herzi examined were infected with an average of 1,550 CsMc per fish. The prevalences of CsMc in this fish species were 80.4%, 72.5%, and 30.6%, and metacercarial densities were 15.2, 46.1, and 175.9 per fish infected in the upper, middle, and lower reaches of Seomjin-gang, respectively [18]. The positive rates of CsMc were 6.2%, 31.8%, and 92.9%, and densities were 2.8, 214, and 409 per fish infected in P. herzi from the northern, middle, and southern regions of the Korean peninsula, respectively [14]. Especially, in this fish species from the streams of Nakdong-gang, i.e., Wicheon in Gunwi-gun, Banbyuncheon in Yeongyang-gun, Gyeongsangbuk-do, and Yangcheon in Sancheong-gun, Gyeongsangnam-do, the endemicities of CsMc were much higher like in this study [14].

Conclusively, it has been confirmed that the endemicity of CsMc is much higher in fish from Wicheon, and a strong tendency was shown in the prevalence and intensity of CsMc according to the subfamily groups of fish, i.e., Gobioninae, Acheilognathinae, and Rasborinae, in the family Cyprinidae fish hosts. Among the highly susceptible gobioninid fish, P.
is recommended as a useful index fish to check the endemicity of clonorchiasis in a certain area of Korea.

ACKNOWLEDGMENTS

This study was supported by an anti-communicable diseases control program, 2014-E54002-00 (Investigation of fish-borne parasites and acquisition of their biological resources in the southern regions of Korea) and 2015-E54001-00 (Investigation of fish-borne parasites and acquisition of their biological resources in the eastern regions of Korea) of National Institute of Health (NIH), Korea Centers for Disease Control and Prevention (KCDCP), Korea. We thank Jung-A Kim and Hee-Joo Kim (Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, Korea), for their help in the examination of fish.

CONFLICT OF INTEREST

The authors have no conflicts of interest concerning the work reported in this paper.

REFERENCES

1. Korea Centers for Disease Control and Prevention; Korea National Institute of Health. National survey of the prevalence of intestinal parasitic infections in Korea, 2012. The 8th Report. Osong, Chungcheongbuk-do, Korea. 2013.
2. Seo BS, Lee SH, Cho SY, Chai JY, Hong ST, Han IS, Sohn JS, Cho BH, Ahn SR, Lee SK, Chung SC, Kang KS, Shim HS, Hwang IS. An epidemiologic study on clonorchiasis and metagonimiasis in riverside areas in Korea. Korean J Parasitol 1981; 19: 137-150.
3. Rim HJ. The current pathobiology and chemotherapy of clonorchiasis. Korean J Parasitol 1986; 24 (suppl): 1-141.
4. Hong ST, Hong SJ. Clonorchis sinensis and clonorchiasis in Korea. Food-Borne Helminthiasis in Asia. Asian Parasitology 2005; 1: 35-56.
5. Cho SH, Lee KY, Lee BC, Cho PY, Cheun HI, Hong ST, Sohn WM, Kim TS. Prevalence of clonorchiasis in southern endemic areas of Korea in 2006. Korean J Parasitol 2008; 46: 133-137.
6. Kim TS, Cho SH, Huh S, Kong Y, Sohn WM, Hwang SS, Chai JY, Lee SH, Park YK, Oh DK, Lee JK. A nationwide survey on the prevalence of intestinal parasitic infections in the Republic of Korea. Korean J Parasitol 2009; 47: 37-47.
7. Kim HK, Cheun HL, Chung RS, Lee KY, Kim TS, Lee SE, Lee WJ, Cho SH. Prevalence of Clonorchis sinensis infections along the five major rivers in Republic of Korea, 2007. Osong Public Health Res Perspect 2010; 1: 43-49.
8. Jeong TI, Shin HE, Lee SE, Cheun HI, Ju JW, Kim JY, Park MY, Cho SH. Prevalence of Clonorchis sinensis infection among residents along 5 major rivers in the Republic of Korea. Korean J Parasitol 2016; 54: 215-219.
9. Kong HH, Choi BR, Moon HC, Choi DW. Larval digenetic trematodes from freshwater fish in river Miryang. Korea. Jpn J Parasitol 1995; 44: 112-118.
10. Sohn WM, Choi YS. Infection status with trematode metacercariae in the freshwater fish from Chunamchosuchi (pond), Uichanggun, Kyongsangnam-do, Korea. Korean J Parasitol 1997; 35: 165-170 (in Korean).
11. Joo JY, Chung MS, Kim SJ, Kang CM. Changing patterns of Clonorchis sinensis infections in Kyongbuk, Korea. Korean J Parasitol 1997; 35: 155-164.
12. Kim EM, Kim JL, Choi SY, Kim JW, Kim S, Choi MH, Bae YM, Lee SH, Hong ST. Infection status of freshwater fish with metacercariae of Clonorchis sinensis in Korea. Korean J Parasitol 2008; 46: 247-251.
13. Sohn WM. Fish-borne zoonotic trematode metacercariae in the Republic of Korea. Korean J Parasitol 2009; 47 (suppl): 103-113.
14. Cho SH, Sohn WM, Na BK, Kim TS, Kong Y, Eom K, Seok WS, Lee T. Prevalence of Clonorchis sinensis metacercariae in freshwater fish from three latitudinal regions of the Korean Peninsula. Korean J Parasitol 2011; 49: 385-398.
15. Sohn WM. Invertebrate Founa of Korea Vol. 6, No. 1. Trema- todes. Incheon, Korea: The National Institute of Biological Resources; 2013. pp 1-125.
16. Cho SH, Lee MI, Seok WS, Lee TJ, Jeong Ki, Na BK, Sohn WM. Prevalence of zoonotic trematode metacercariae in freshwater fish from Gangwon-do, Korea. Korean J Parasitol 2014; 52: 399-412.
17. Sohn WM, Na BK, Cho SH, Lee SW, Choi SB, Seok WS. Trematode metacercariae in freshwater fish from water systems of Hantangang and Imjingang in Republic of Korea. Korean J Parasitol 2015; 53: 289-298.
18. Sohn WM, Na BK, Cho SH, Park MY, Kim CH, Hwang MA, No KW, Yoon KB, Lim HC. Prevalence of Clonorchis sinensis metacercariae in fish from water systems of Seomjin-gang (River). Korean J Parasitol 2017; 55: 305-312.
19. Wicheon in Gyeongbuk Province (South Korea) in Wikipedia - The free encyclopedia: http://en.wikipedia.org.
20. Kim IS, Kang EJ. Colored Fish of Korea. Seoul, Korea. Academy Publishing Company. 1993, pp 1-477 (in Korean).