Avaliação da função respiratória de agricultores expostos a defensivos agrícolas do município de Quilombo (estado de Santa Catarina, Brasil): relação entre saúde e proteção ocupacional

Assessment of the respiratory function of farmers exposed to pesticides in the municipality of Quilombo (state of Santa Catarina, Brazil): relationship between health and occupational protection

Helber Luiz Bombardelli, Mariana Rossetto, Indiamara de Oliveira Flores Dal Magro Silvani, Vinícius José de Oliveira, Cléber Luis Bombardelli, César Augusto França-Abrahão

RESUMO | Introdução: Os agricultores estão expostos a vários riscos ocupacionais, destacando-se a exposição aos agrotóxicos que podem promover intoxicações respiratórias como a queixa mais frequente desses profissionais, o que pode estar associado à falta ou ao uso incorreto dos equipamentos de proteção individual. Objetivos: Avaliar a função respiratória de agricultores expostos a defensivos agrícolas residentes no município de Quilombo, estado de Santa Catarina, Brasil. Métodos: Esta pesquisa foi quantitativa, observacional e descritiva. A amostra foi composta por 31 agricultores com idade entre 25 e 45 anos, divididos em dois grupos de faixas etárias, para avaliar o efeito do tempo de exposição aos agrotóxicos. Os indivíduos foram submetidos a um questionário, seguido por uma avaliação da função respiratória, contendo mensuração de força muscular inspiratória e expiratória através do manovacuômetro, de pico de fluxo expiratório através do Peak Flow e de volume corrente através do ventilômetro. Resultados: Os grupos apresentaram diminuição da força musculatura respiratória, do pico de fluxo expiratório e do volume corrente. Conclusões: O prejuízo à função expiratória na amostra analisada apresenta como principal fator a não utilização dos equipamentos de proteção individual, sendo necessárias estratégias de educação e saúde para que os trabalhadores possam ser instrumentalizados a fim de diminuir o desenvolvimento de riscos ocupacionais. Palavras-chave | agricultura; doenças ocupacionais; medidas de volume pulmonar; sistema respiratório.

ABSTRACT | Introduction: Rural workers are exposed to various occupational risks, especially considering the exposure to pesticides. This exposure can lead to respiratory intoxications being the most frequent complaint by these professionals, which could be associated to the lack or improper use of personal protective equipment. Objectives: To assess the respiratory function of rural workers exposed to pesticides in the municipality of Quilombo, state of Santa Catarina, Brazil. Methods: This study was quantitative, observational, and descriptive. Our sample consisted of 31 rural workers aged between 25 and 45 years and divided into 2 age groups; we aimed to assess the effect of the period of exposure to pesticides. The participants answered a questionnaire, followed by a respiratory function assessment including measurements of inspiratory and expiratory muscle strength using a manovacuometer, of peak expiratory flow with a peak flow meter, and of tidal volume with a ventilometer. Results: The groups presented decreases in respiratory muscle strength, peak expiratory flow, and tidal volume. Conclusions: The damage to expiratory function observed in the evaluated sample presents, as a main factor, the lack of personal protective equipment use; therefore, education and health strategies are needed to instrumentalize these workers and reduce the development of occupational risks. Keywords | agriculture, occupational diseases, lung volume measures, respiratory system.

1 Curso de Fisioterapia, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brasil.
2 Departamento de Saúde Coletiva, Faculdade de Medicina, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil.
3 Curso de Fisioterapia, Centro Universitário Avantis, Balneário Camboriú, SC, Brasil.
Fonte de financiamento: Nenhuma
Conflitos de interesse: Nenhuma
Como citar: Bombardelli HL, Rossetto M, Silvani IOFM, Oliveira VJ, Bombardelli CL, França-Abrahão CA. Assessment of the respiratory function of farmers exposed to pesticides in the municipality of Quilombo (state of Santa Catarina, Brazil): relationship between health and occupational protection. Rev Bras Med Trab. 2021;19(1):27-34. http://dx.doi.org/10.47626/1679-4435-2021451
INTRODUÇÃO

No Brasil, o manejo da terra data desde a sua descoberta, em 1500, quando a formação da agricultura brasileira foi determinada pela ação dos colonizadores, que trouxeram consigo espécies animais e vegetais\(^1\). Juntamente com o esforço produtivo e conhecimento local da terra pelos povos indígenas aqui residentes na época, foi possível desenvolver uma riquíssima atividade agroprodutiva nessa região tropical. Já na década de 1970, essa prática passou por um processo de modernização, sendo a agricultura primária substituída por técnicas e práticas mais modernas com a finalidade de aumentar a quantidade produzida e consequentemente a lucratividade\(^1\).

Durante a ocorrência dessa transformação, foi necessário o desenvolvimento de estratégias, como a produção de agentes químicos, para acelerar a germinação, o crescimento e a proteção contra agentes nocivos da semente e/planta. Nesse momento, os agrotóxicos apareceram no Brasil como a solução científica para o controle das pragas que atingiam lavouras e rebanhos, oferecendo ao agricultor maiores probabilidades de boa colheita\(^2,3\). É importante destacar que a utilização de agrotóxicos vem aumentando de maneira gradativa e descontrolada no Brasil desde 2008, quando o país se transformou no maior consumidor de agrotóxicos mesmo não sendo o principal produtor agrícola mundial\(^4\).

O uso abusivo de defensivos agrícolas acarreta diversos problemas, desde ao meio ambiente até à saúde dos agricultores, levando a alterações fisiológicas no aparelho respiratório, circulatório e ou reprodutivo e promovendo a oneração do Sistema Único de Saúde (SUS) através de internações hospitalares e tratamentos medicamentosos que reduzem significativamente a vida útil laboral do agricultor\(^4\). Ainda, é necessário realçar a necessidade da assistência especializada à classe dos trabalhadores rurais no sentido de oferecer atenção especial dos profissionais de saúde e dos órgãos governamentais por meio de políticas públicas qualitativas e quantitativas monitorando o ambiente de trabalho. Essas estratégias seriam relacionadas ao controle do tempo de exposição aos defensivos agrícolas, bem como ao fornecimento de instruções para o manejo adequado de equipamentos de proteção individual (EPIs)\(^4\). É necessário que os profissionais de saúde compreendam que o trabalho é um importante fator determinante da saúde\(^6\), uma vez que o conhecimento acerca dos agravos de saúde que acometem os trabalhadores rurais contribui com o planejamento de estratégias para lidar com os problemas laborais específicos para essa população em todos os níveis de atenção\(^6,7\).

Entre os estados da região Sul do país, no estado de Santa Catarina houve um aumento do número de notificações por intoxicações provenientes de agrotóxicos nos últimos anos. Em 2007, foram notificadas 224 (4,5%) intoxicações; em 2010, foram 438 (5,6%); e, em 2015, foram 695 (5,89%) de acordo com o Departamento de Vigilância em Saúde Ambiental e Saúde do Trabalhador\(^8\). De acordo com Centro de Informação e Assistência Toxicológica de Santa Catarina (CIATox/SC), entre os anos de 1984 e 2017 foram diagnosticadas 196.118 intoxicações humanas, tendo sido 13.414 (6,84%) desencadeadas por exposição a agrotóxicos\(^8\). Além disso, 88% dos casos evoluíram para óbito em 2017, conforme apresentado pelo Hospital Universitário da Universidade Federal de Santa Catarina\(^10\).

Diante de tal cenário, compreendendo os riscos ocupacionais que os agricultores vivenciam no dia a dia estando em contato de maneira direta com os agrotóxicos, principalmente através da inalação, propôs-se o presente estudo, no sentido de avaliar a função respiratória de agricultores, residentes no interior do município de Quilombo, estado de Santa Catarina, expostos a defensivos agrícolas na prática laboral.

MÉTODOS

Inicialmente, foram realizadas visitas informais nas propriedades agrícolas do município de Quilombo, com objetivo de criar um vínculo com os trabalhadores, descrever a pesquisa, convidá-los para participar do estudo e apresentar o termo de consentimento livre e esclarecido (TCLE), garantindo o sigilo dos dados e o uso para fins exclusivamente científicos. Para isso, obtivemos a aprovação do projeto de pesquisa pelo Comitê de Ética em Pesquisa da Universidade Comunitária Regional de Chapecó, sob o ad referendum nº 136/CEP/2012, que está de acordo com a Resolução nº 196/96/CNS e suas complementares do Conselho Nacional de Saúde.
DELINEAMENTO DO ESTUDO

A pesquisa possui natureza quantitativa, observacional e descritiva, contando com uma amostra composta por 31 agricultores do gênero masculino, com idades entre 25 e 45 anos, sendo uma amostra por conveniência cuja elegibilidade foi baseada na exposição ou contato com agrotóxico por um tempo de trabalho igual ou superior a 5 anos. Os trabalhadores foram, então, separados em dois grupos: 1) grupo composto por agricultores com idade entre 25 e 34 anos; e 2) grupo composto por agricultores com idade entre 35 e 45 anos. Como critérios de exclusão da participação na pesquisa, selecionamos os seguintes: agricultores ausentes no domicílio após duas visitas consecutivas e agricultores que apresentaram diagnóstico médico prévio de doenças respiratórias ou outra doença que pudesse alterar os critérios de avaliação de suas funções respiratórias.

INSTRUMENTOS DE COLETA E ANÁLISE DE DADOS

Questionário

Foi elaborado um questionário para levantamento de dados relativos a condições de vida, trabalho e saúde dos participantes selecionados para a pesquisa. As seguintes informações foram coletadas: idade, gênero, endereço, tipos de agrotóxicos mais utilizados, presença de sinais de intoxicação imediata, utilização de EPIs e formas de pulverização (maquinário ou manual) dos agrotóxicos. Verificou-se, ainda, a existência de queixas de dor e desconforto não relacionadas ao trabalho e às doenças referidas previamente. Após aplicação do questionário, foi realizada uma avaliação física para coleta dos sinais vitais e medidas antropométricas.

Análise do pico do fluxo expiratório

Para a obtenção do pico de fluxo expiratório (PFE), foi utilizado o aparelho Peak Flow (ASSESS® Meter, Respironics, New Jersey, USA). Para realização do teste e mensuração do PFE, o trabalhador precisou ficar em pé e realizar uma inspiração máxima forçada. Em seguida, era necessário colocar o bocal do aparelho entre os lábios, selando para que não houvesse fuga de ar, e expirar de modo rápido e intenso todo o ar pela boca. O teste foi realizado três vezes, sendo registrado apenas o maior valor aferido pelo aparelho. O valor de referência do PFE adotado para o gênero masculino é obtido através da seguinte fórmula:

\[
PFE (\text{L/min}) = 295,79 \times \text{altura} + (24,96 \times \text{idade}) - 478,24,
\]

conforme descrito previamente na literatura científica.\(^{11,12}\)

Análise da força muscular inspiratória e expiratória

A força muscular inspiratória e expiratória dos trabalhadores foi mensurada através da manovacuometria, que consiste em um teste simples, rápido e não invasivo, por meio do qual a pressão inspiratória máxima (PImáx) e a pressão expiratória máxima (PEmáx) são obtidas. Para realização do teste, foi utilizado o manovacuômetro da marca Comercial Médica, previamente calibrado. O indivíduo permaneceu na posição sentada, com o tronco em um ângulo de 90° em relação ao quadril e joelhos a 90° de flexão. O trabalhador foi instruído a colocar o bocal do aparelho na boca, selando-o com os lábios para que não houvesse fuga de ar. Então, foram ocluídos os orifícios nasais do participante com um clipe nasal e o orifício do redutor do aparelho, evitando o escape de ar.

Para mensurar a força da musculatura expiratória, foi solicitado que eles realizassem uma inspiração máxima, devendo forçar a expiração do ar com o bocal acoplado; enquanto para verificar a força da musculatura inspiratória foi solicitado ao avaliado que realizasse uma expiração máxima, acoplar o bocal e forçar a inspiração oral com o bocal acoplado. O teste foi realizado três vezes, sendo registrados todos os valores aferidos pelo aparelho. O cálculo para predisposição de normalidade adotado para o gênero masculino é obtido através da seguinte fórmula:

\[
PImáx = 155,3 - 0,80 \times \text{idade}, \quad PEmáx = 165,4 - 0,81 \times \text{idade},
\]

Análise do volume corrente pulmonar

Para mensurar o volume corrente pulmonar dos trabalhadores, foi utilizada a técnica de ventilometria, que é responsável por avaliar a mecânica pulmonar na área da saúde. Foi utilizado um ventilômetro da marca DHD Healthcare, cujo instrumento é capaz de realizar a avaliação de volumes e da ventilação pulmonar, determinando o volume corrente e volume minuto dos indivíduos em cada ciclo respiratório.
Para realização do teste da ventilometria, o indivíduo foi orientado a ficar na posição sentada, com o tronco em um ângulo de 90º em relação ao quadril e joelhos a 90° de flexão. Então, o trabalhador foi instruído a colocar o bocal do aparelho na boca, selando-o com os lábios para que não houvesse fuga de ar, e foi solicitado que ele realizasse uma inspiração profunda, expirando o ar para dentro do aparelho. O teste foi realizado uma única vez, e o valor aferido pelo aparelho, anotado. O cálculo para predisposição de normalidade adotado para o gênero masculino é obtido através da seguinte fórmula:

\[
\text{espaço morto} \times \text{kg} \times 3
\]

em que o espaço morto fisiológico é igual a 150 mL.12

Análise estatística

Os procedimentos estatísticos foram realizados utilizando o programa Excel para Microsoft Windows, versão 2007, para tabulação dos dados. Em seguida, foi utilizado o software SPSS Statistics®, no qual as comparações entre os dados foram avaliadas utilizando o teste t de Student. As variáveis categóricas foram expressas como frequência absoluta e relativa, e as numéricas, como média ± desvio padrão. Foram considerados significativos os valores de p < 0,05.

RESULTADOS

VARIÁVEIS FÍSICAS E OCUPACIONAIS DOS TRABALHADORES

Os agricultores avaliados neste trabalho eram em sua totalidade do gênero masculino. A faixa etária variou de acordo com o grupo em que foram alocados, sendo que o grupo 1 foi composto por 14 indivíduos com idade média de 30,5±2,66 anos, enquanto o grupo 2 foi composto por 17 trabalhadores com idade média de 42,35±2,05 anos.

De acordo com a Tabela 1, a porcentagem de agricultores expostos aos agrotóxicos variou de acordo com os grupos. Em ambos os grupos, 100% dos trabalhadores foram expostos ao agrotóxico Glifosato faixa verde, e 45% deles, ao PrioriExtra faixa amarela; enquanto 64% dos indivíduos do grupo 1 foram expostos ao Cruiser faixa azul, e 29% do grupo 2, ao Decis faixa azul. Já em relação aos dados vitais (pressão arterial sistólica, pressão arterial diastólica, frequência respiratória, frequência cardíaca) e antropométricos (altura e peso) analisados, foram mensurados valores muito próximos entre os agricultores de ambos os grupos, como mostra a Tabela 1.

EPIS UTILIZADOS PELOS TRABALHADORES E QUEIXAS FÍSICAS RELACIONADAS AO TRABALHO

Os EPIs utilizados pelos trabalhadores foram aventais (10%), botas (94%), luvas (35%), macacões (45%),

Tabela 1. Variáveis físicas e ocupacionais dos trabalhadores

Grupos e faixa etária (anos)	Agrotóxicos utilizados	Indivíduos expostos - n (%)	Dados vitais e antropométricos	Média ± DP
Grupo 1 (n = 14); entre 25 e 35	Glifosato faixa verde	14 (100)	PAS/PAD (mmHg)	124/76±7/6
	Cruiser faixa azul	9 (64)	FR (rpm)	22,7±3,3
	PrioriExtra faixa amarela	10 (72)	FC (bpm)	80,8±18,5
			Altura (m)	1,78±0,06
			Peso (kg)	82,0±11,6
Grupo 2 (n = 17); entre 36 e 45	Glifosato faixa verde	17 (100)	PAS/PAD (mmHg)	123/74±14/12
	Decis faixa azul	5 (29)	FR (rpm)	22,0±3,4
	PrioriExtra faixa amarela	4 (24)	FC (bpm)	96,2±30,5
			Altura (m)	1,74±0,06
			Peso (kg)	78,1±12,1

bpm = batimentos por minuto; DP = desvio padrão; FC = frequência cardíaca; FR = frequência respiratória; kg = quilogramas; m = metros; mmH\textsubscript{2}O = milímetros de água; n = número de trabalhadores; PAD = pressão arterial diastólica; PAS = pressão arterial sistólica; rpm = espirações por minuto.
máscaras (84%), toucas (42%) e viseiras (13%), sendo as botas e máscaras os EPIs mais utilizados. Além disso, os agricultores também relataram queixas físicas relacionadas à prática laboral, como dores de cabeça (29%), hipoestesia labial (6%), tontura (6%) e tosse (6%), além de irritações oculares (3%), como mostra a Tabela 2.

TABELA 2. Equipamentos de proteção individual (EPIs) utilizados pelos trabalhadores e queixas físicas relacionadas ao trabalho

EPIs disponíveis	Indivíduos que utilizam os EPIs (%)	Queixas físicas relatadas pelos trabalhadores	Indivíduos queixosos (%)
Avental	3 (10)	Dor de cabeça	9 (29)
Botas	29 (94)	Hipoestesia labial	2 (6)
Luva	11 (35)	Irritação ocular	1 (3)
Macacão	14 (45)	Tontura	2 (6)
Máscara	26 (84)	Tosse	2 (6)
Touca	13 (42)		
Viseira	4 (13)		

TABELA 3. Valores previstos e medidos para as variáveis respiratórias nos trabalhadores do grupo 1 (25 a 34 anos) (n = 14)

Variáveis	Valor previsto média ± DP	Valor medido média ± DP	p-valor
PImáx (mmH₂O)	131,4 ± 2,4	98,6 ± 22,7	< 0,0001
PEmáx (mmH₂O)	141,2 ± 2,4	108,3 ± 14,2	< 0,0001
PFE (L/min)	618,5 ± 23,3	577,8 ± 85,6	< 0,0001
Volume corrente (mL/min)	571,2 ± 1231	319,2 ± 1293	< 0,0001

DP = desvio padrão; L/min = litros por minuto; mL/min = mililitros por minuto; mmH₂O = milímetros de água; n = número de trabalhadores; PEmáx = pressão expiratória máxima; PFE = pico de fluxo expiratório; PImáx = pressão inspiratória máxima. p < 0,05 foi considerado significativo na análise realizada pelo teste t de Student.

TABELA 4. Valores previstos e medidos para as variáveis respiratórias nos trabalhadores do grupo 2 (35 a 45 anos) (n = 17)

Variáveis	Valor previsto média ± DP	Valor medido média ± DP	p-valor
PImáx (mmH₂O)	121,6 ± 21	92,9 ± 21,2	< 0,0001
PEmáx (mmH₂O)	131,2 ± 21	107,6 ± 59	< 0,0001
PFE (L/min)	569,7 ± 20,4	545,3 ± 88,9	< 0,0441
Volume corrente (mL/min)	5193 ± 83,8	3081 ± 79,5	< 0,0001

DP = desvio padrão; L/min = litros por minuto; mL/min = mililitros por minuto; mmH₂O = milímetros de água; n = número de trabalhadores; PEmáx = pressão expiratória máxima; PFE = pico de fluxo expiratório; PImáx = pressão inspiratória máxima. p < 0,05 foi considerado significativo na análise realizada pelo teste t de Student.
DISSCUSSÃO

No início das décadas de 1960 e 1970, o meio rural sofreu grande influência da modernização, provocando o desenvolvimento da chamada agricultura produtiva e dando lugar aos “empresários rurais”\(^1\). Essa modernização provocou o início da organização social dos agricultores enquanto classe, tendo influenciado nos primeiros arranjos de movimentos participativos de mulheres rurais em espaços antes considerados masculinos\(^1\). Entretanto, a amostra aqui estudada foi composta exclusivamente por trabalhadores do sexo masculino (100%), corroborando outros estudos que mostram que pelo menos 75% dos trabalhadores rurais que fazem uso de algum tipo de produto químico, como os agrotóxicos, são homens\(^13,14\).

Em nosso grupo amostral, é uma constante durante a prática laboral a exposição direta a diversos tipos de agrotóxicos, que apresentam diferentes classificações de toxicidade. Muito embora o glifosato seja o substrato com menor grau de toxicidade\(^15\), vale salientar que 100% dos trabalhadores informaram ter contato diário com esse agente agrotóxico. Apesar dessa exposição maciça ao glifosato, vale salientar que uma parcela significativa deles relatou exposição concomitantemente a outros agrotóxicos como o Cruiser e o PrioriExtra, os quais possuem classificação de média e alta toxicidade, respectivamente\(^15\). Tais fatos explicitam a necessidade da utilização de EPIs durante o manuseio desses agentes químicos com o intuito de prevenir agravos a saúde.

Na população estudada, os EPIs eram pouco utilizados, com exceção de botas (94%) e máscaras (84%), fato que pode ser relacionado com a falta de eficiência da adequação dos EPIs no Brasil, país cujo clima temperado e úmido eleva a negligência da utilização dos EPIs por essa classe trabalhadora\(^7,16\). Além disso, com o propósito de evitar desconfortos térmicos, visuais e respiratórios, o agricultor prefere não utilizar os equipamentos e se expor a riscos ocupacionais, sendo tais atividades evidenciadas por outros pesquisadores em seus estudos\(^7,16\).

Esses fatores expõem os trabalhadores a grandes riscos de intoxicações agudas por agrotóxicos. Soares et al.\(^17\) apontaram que o fato de usar máscara durante a prática laboral estudada diminui as chances de intoxicação em 83%, assim como evidenciaram que as chances de intoxicação para aqueles que não usam EPIs quando o motivo é calor são 535% maiores do que para quem não usa por outro motivo.

Mesmo sendo um herbicida de faixa verde, o glifosato tem despertado bastante interesse dos pesquisadores quanto aos efeitos promovidos pela sua exposição devido à sua ampla utilização no mundo. Em 2011, foi publicada uma revisão da literatura por Salazar-López e Madrid\(^18\), buscando elucidar os efeitos causados pelo agrotóxico na saúde humana, animal, do solo e de ecossistemas aquáticos.

Em relação à saúde humana, os estudos mostram que o glifosato causa toxicidade em células placentárias, atua como um disruptor endócrino na atividade da aromatase, pode alterar a estrutura do DNA das células, lisa hemácias e causar problemas respiratórios, gastrointestinais, alérgicos, dermatológicos, neurológicos e psicológicos mesmo com a utilização do agrotóxico sob as condições permitidas\(^18\).

Diante disso, a associação entre o uso inadequado dessas substâncias, a toxicidade de certos produtos, a falta de utilização de EPIs e a precariedade dos mecanismos de vigilância\(^19\) demonstram a vulnerabilidade do grupo de trabalhadores rurais nas relações de saúde e trabalho, como descrito por Gregolis et al.\(^20\). Isso leva alterações na homeostase de diversos sintomas fisiológicos, entre os quais destacam-se as intoxicações agudas do trato respiratório e gastrointestinal, conforme apontam alguns autores\(^4,7,10\).

Nesta pesquisa, durante as entrevistas, os trabalhadores relataram queixas físicas ocupacionais, sendo dores de cabeça a queixa mais evidente. Tais queixas são condizentes com estudos prévios que averiguaram a presença de dores fortes de cabeça como sintoma recorrente em 69%\(^21\) dos trabalhadores rurais analisados e 71% da amostra estudada\(^22\). Em contrapartida, os dados vitais dos agricultores não apresentaram diferenças marcantes quando comparados com os dados de normalidade previstos na literatura vigente\(^23\).

Os dados mensurados pela manovacuometria nos grupos estudados apresentaram valores inferiores àqueles preditos pela literatura\(^12,24\), fato já esperado, uma vez que Simões et al.\(^25\) constataram que, com o passar das décadas, há uma perda fisiológica da força da musculatura respiratória, sendo mais acentuada a partir da quarta década de vida. Com isso, supõe-se que os valores medidos na população
estudada apresentariam alterações, cuja diminuição foi acentuada devido à exposição aos agrotóxicos.

Senhorinho et al.\(^\text{26}\) estudaram a prevalência de distúrbios ventilatórios em trabalhadores rurais expostos a defensivos químicos no norte do estado do Paraná, correlacionando os distúrbios encontrados com a predisposição a intoxicação respiratória dos agricultores. Os autores afirmam que a diminuição significativa em comparação ao predito de parâmetros como PFE e volumes respiratórios é condizente com quadros de distúrbios respiratórios obstrutivos (DVOs), demonstrando que a exposição aos agrotóxicos na população estudada já proporcionou o desenvolvimento de DVOs, independentemente do período.

A diminuição significativa das variáveis respiratórias estudadas no grupo 2, com exceção de PFE, é condizente com outros estudos publicados na literatura. Oliveira\(^\text{27}\) demonstrou que a exposição ao agrotóxicos eleva a diminuição da PImáx e da PEmáx; França et al.\(^\text{28}\) comprovaram que 100% dos agricultores avaliados em seu estudo obtiveram valores de PFE e volume corrente menores que os preditos. Buralli\(^\text{29}\) constatou que, na sua amostra, houve uma diminuição na condição respiratória em uma população rural exposta a agrotóxicos no município de São José de Ubá, estado do Rio de Janeiro, assim como Senhorinho et al.\(^\text{26}\) em uma população estudada no norte do estado do Paraná.

O caso de não ser encontrada diferença significativa na variável PFE do grupo 2 pode estar relacionado com o fato de que agricultores mais velhos e experientes são os principais usuários dos EPIs, uma vez que eles possuem a característica de se protegerem mais que os agricultores mais jovens, conforme dados ratificados por Senhorinho et al.\(^\text{26}\). Ademais, alterações na variável PFE são fatores de risco para o desenvolvimento da asma ocupacional\(^\text{30}\), o que torna o grupo 2 menos vulnerável ao desenvolvimento dessa doença em relação ao grupo 1.

Por fim, foi possível identificar que existe uma resistência ao uso dos EPIs por trabalhadores rurais por diversos motivos, como a falta do treinamento para uso adequado e as condições socioambientais em que estão inseridos. Assim, o esclarecimento das condições de risco às quais os agricultores estão expostos, a diminuição da exposição direta aos defensivos agrícolas sem o uso dos EPIs e as melhorias das condições de trabalho compõem ações capazes de garantir a proteção e a redução dos impactos à saúde do trabalhador rural.

Conclui-se que é possível constatar que as alterações nas variáveis respiratórias encontradas nos agricultores estudados decorrem da utilização inadequada dos EPIs, embora a grande maioria dos agricultores tenha conhecimento sobre a importância do uso deles, o que impacta diretamente na saúde pulmonar do trabalhador, como comprovado. Além disso, são necessários mais estudos para desenvolver uma maneira de mensurar a função respiratória do trabalhador rural exposto a defensivos agrícolas, assim como para dar indicíos de possíveis ações para promoção de saúde para essa população por parte de equipes multiprofissionais.

REFERÊNCIAS

1. Reifschneider FJB, Henz GP, Ragassi CF, Anjos UG, Ferraz RM. Novos ângulos da história da agricultura no Brasil. Brasília: Embrapa Informação Tecnológica; 2010.
2. Peres F, Oliveira-Silva JJ, Della-Rosa HV, Lucca SR. Challenges in the study of human and environmental contamination by pesticides. Ciênc Saúde Coletiva. 2005;10:27-37.
3. Peres F. Onde mora o perigo? O processo de desenvolvimento de uma metodologia de diagnóstico rápido da percepção de risco no trabalho rural [Tese de doutorado]. Campinas: Universidade Estadual de Campinas; 2003.
4. Viero CM, Camponogara S, Cezar-Vaz MR, Costa VZ, Beck CLC. Risk society: the use of pesticides and implications for the health of rural workers. Esc Anna Nery. 2016;20(1):99-105.
5. Rigotto RM, Porto MF, Folgado C, Faría NM, Augusto LF, Bedor C. et al. Dossiê ABRASCO · Parte 3 · Agrotóxicos, conhecimento científico e popular: construindo a ecologia de saberes. Porto Alegre: Grupo Inter GTs de Diálogos e Convergências da ABRASCO, X Congresso Brasileiro de Saúde Coletiva; 2012.
6. Brasil. Ministério da Saúde. Cadernos de Atenção Básica - Saúde do trabalhador. Brasília: Ministério da Saúde; 2002 [citado em 10 fev. 2021]. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/saude_trabalhador_cab5_2ed.pdf
7. Silva JV, Vilela LP, Moraes MS, Silveira CA. A percepção dos trabalhadores rurais sobre a autoexposição aos agrotóxicos. Saúde (Sta Maria). 2017;43(1):199-205.
8. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância em Saúde Ambiental e Saúde do Trabalhador. Agrotóxicos na ótica do Sistema Único de Saúde/Ministério da Saúde. Brasília: Ministério da Saúde; 2018 [citado em 10 fev. 2021]. Disponível em: https://bvsms.saude.gov.br/
bvs/publicacoes/relatorio_nacional_vigilancia_populacoes_expostas_agrotxicos.pdf

9. Brasil. Centro de Informação e Assistência Toxicológica de Santa Catarina (CIATox/SC). Estatísticas anuais: Ano 2017 - Histórico do número de atendimentos de 1984 a 2017. Florianópolis: Centro de Informação e Assistência Toxicológica de Santa Catarina; 2019 [citado em 22 jun. 2019]. Disponível em: http://ciatox.sc.gov.br/estatisticas/9anuais

10. Brasil. Centro de Informação e Assistência Toxicológica de Santa Catarina (CIATox/SC). Estatísticas anuais: Ano 2017 - Total de intoxicações humanas por grupo de Agentes, segundo evolução, registrados no CIATox/SC, no ano de 2017. Florianópolis: Centro de Informação e Assistência Toxicológica de Santa Catarina; 2019 [citado em 22 jun. 2019]. Disponível em: http://ciatox.sc.gov.br/estatisticas/10anuais

11. Menezes AMB, Victora CG, Horta BL, Rigatto M. Valores de referência para o pico de fluxo expiratório em adultos acima de 40 anos, Pelotas, RS. J Pneumol. 1995;21(2):119-22.

12. Azeredo CAC. Fisioterapia respiratória moderna. 4ª ed. São Paulo: Manole; 2002.

13. Carneiro FF, Rigotto RM, Augusto LGS, Friedrich K, Búrigo AC. Dossiê ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde. Rio de Janeiro: EPSJV; 2015.

14. Santana V, Moura MCP, Ferreira F, Lisboa MC, Ccvisat/Pisat/UFBA. Acidentes de trabalho devido à intoxicação por agrotóxicos entre trabalhadores da agropecuária 2000-2011. Boletim epidemiológico dos acidentes do trabalho: Programa Integrado em Saúde Ambiental e do Trabalhador. Salvador: Ministério da Saúde; 2012.

15. Brasil. Decreto Federal n° 4074, de 04 de janeiro de 2002. Regulamenta a Lei no 7.802, de 11 de julho de 1989, que dispõe sobre a pesquisa, a experimentação, a produção, a embalagem e rotulagem, o transporte, o armazenamento, a comercialização, a propaganda comercial, a utilização, a importação, a exportação, o destino final dos resíduos e embalagens, o registro, a classificação, o controle, a inspeção e a fiscalização de agrotóxicos, seus componentes e afins, e dá outras providências. Brasília: Presidência da República; 2002.

16. Veiga MM, Duarte FJDCM, Meirelles LA, Garrigou A, Baldi I. Contamination by pesticides and personal protective equipment (PPE). Rev Bras Saúde Ocup. 2007;32(116):37-68.

17. Soares WL, Freitas EAV, Coutinho JAG. Trabalho rural e saúde: intoxicações por agrotóxicos no município de Teresópolis-RJ. Rev Econ Sociol Rural. 2005;43(4):685-701.

18. Salazar-López NJ, Madrid MLA. Herbicida glifosato: usos, toxicidade e regulação. BIOTecnia. 2011;13(2):23-8.

19. Oliveira-Silva JJ, Alves SR, Meyer A, Perez F, Sarcinelli PDN, Mattos ROC, et al. Influence of social-economic factors on the pesticide poisoning. Rev Saúde Pública. 2001;35(2):130-5.

20. Gergolis TBL, Pinto WJ, Peres F. Percepção de riscos do uso de agrotóxicos por trabalhadores da agricultura familiar do município de Rio Branco, AC. Rev Bras Saúde Ocup. 2012;37(125):99-113.

21. Murakami Y, Pinto NF, Albuquerque GSCD, Perna PDO, Lacerda A. Chronic pesticide poisoning in the tobacco farming. Saúde debate. 2017;41(13):563-76.

22. Delgado IF, Paumgartten FJR. Pesticide use and poisoning among farmers from the county of Paty do Alferes, Rio de Janeiro, Brazil. Cad Saúde Pública. 2004;20(1):180-6.

23. Hall JE, Guyton AC. Guyton & Hall tratado de fisiologia médica. 13ª ed. Rio de Janeiro: Elsevier; 2017.

24. Chaves TVS, Islam MT, Moraes MO, Alencar MVOB, Gomes DCV, Carvalho RM, et al. Occupational and life-style factors-acquired mutagenicity in agric-workers of northeastern Brazil. Environ Sci Pollut Res. 2017;24(18):15454-61.

25. Simões RP, Auad MA, Dionísio J. Mazzonetto M. Influença da idade e do sexo na força muscular respiratória. Fisioter Pesqui. 2007;14(1):36-41.

26. Senhorinho HC, Bertolini SMMG, Franqui E, Júnior HP. Prevalência de distúrbios ventilatórios em trabalhadores rurais expostos químicos no norte do Paraná. Fisioter Pesqui. 2005;12(2):35-44.

27. Oliveira LF. Avaliação dos parâmetros sanguíneos e ventilatórios de trabalhadores rurais expostos a agrotóxicos [Dissertação de mestrado]. Alfenas: Universidade José do Rosário Vellano; 2018.

28. Senhorinho HC, Bertolini SMMG, Franqui E, Júnior HP. Prevalência de distúrbios ventilatórios em trabalhadores rurais expostos a agrotóxicos [Dissertação de mestrado]. Alfenas: Universidade José do Rosário Vellano; 2018.

29. França SAS, Ávila PES, Normando VMF. Perfil pneumofuncional de aplicadores de agrotóxicos no nordeste do Pará – Brasil. Para Med J. 2018;14(4):e40.

30. Buralli RJ. Avaliação da condição respiratória em população rural exposta a agrotóxicos no município de São José de Ubá, Estado do Rio de Janeiro (Tese de doutorado). São Paulo: Universidade de São Paulo; 2016.

31. Cebollero P, Echegoyen E, Santolaria MA. Occupational asthma. An Sist Sanit Navar. 2005;28(Suppl 1):51-63.

Endereço para correspondência: César Augusto França Abrahão – Rua João Batista Manzoque, 150, Casa 6, Condomínio Vale das Araucárias – Bairro Bom Jesus – CEP: 83025-180 - São José dos Pinhais (PR), Brasil – E-mail: cesarabrahao@yahoo.com.br