Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair

The CMS Collaboration

Abstract

An inclusive search for the standard model Higgs boson (H) produced with large transverse momentum (p_T) and decaying to a bottom quark-antiquark pair ($b \bar{b}$) is performed using a data set of pp collisions at $\sqrt{s}=13$ TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. A highly Lorentz-boosted Higgs boson decaying to $b \bar{b}$ is reconstructed as a single, large radius jet and is identified using jet substructure and dedicated b tagging techniques. The method is validated with $Z \rightarrow b \bar{b}$ decays. The $Z \rightarrow b \bar{b}$ process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of $H \rightarrow b \bar{b}$ with reconstructed $p_T > 450$ GeV and in the pseudorapidity range $-2.5 < \eta < 2.5$ is $74 \pm 48 \text{(stat)}^{+17}_{-10} \text{(syst)}$ fb, which is consistent within uncertainties with the standard model prediction.

Published in Physical Review Letters as doi:10.1103/PhysRevLett.120.071802.
In the standard model (SM) [1–3], the Brout-Englert-Higgs mechanism [4–8] is responsible for electroweak symmetry breaking and the mass of elementary particles. Although a Higgs boson (H) was discovered [9–11], the LHC data sets of pp collisions at $\sqrt{s} = 7$ and 8 TeV were not sufficient to establish the coupling to bottom quarks [12], despite the 58.1% expected branching fraction of the Higgs boson to bottom quark-antiquark ($b\bar{b}$) pairs [13]. The most sensitive method to search for $H \rightarrow b\bar{b}$ decays at a hadron collider is to use events in which the Higgs boson is produced in association with a W or Z boson (VH) decaying to leptons, and recoiling with a large transverse momentum (p_T) [14], in order to suppress the overwhelming irreducible background from quantum chromodynamics (QCD) multijet production of b quarks. Because of this background, an observation of $H(b\bar{b})$ decays in the gluon fusion production mode (ggF) was considered impossible. This Letter presents the first inclusive search for $H \rightarrow b\bar{b}$, where the Higgs boson is produced with high-p_T. Measurements of high-p_T H($b\bar{b}$) decays may resolve the loop induced and tree-level contributions to the ggF process [15] and provide an alternative approach to study the top quark Yukawa coupling in addition to the $t\bar{t}H$ process.

The results reported in this Letter are based on a data set of pp collisions at $\sqrt{s} = 13$ TeV collected with the CMS detector at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The main experimental difficulties for this search originate from the large cross section for background multijet events at low jet mass and the restrictive trigger requirements needed to reduce the data recording rate. Therefore, we require events to have a high-p_T Higgs boson candidate and define six p_T categories from 450 GeV to 1 TeV with variable width from 50 to 200 GeV. Combinatorial backgrounds are reduced by requiring the Higgs boson’s decay products to be clustered in a single jet [14]. The jet is required to have two-prong sub-structure and b tagging properties consistent with the $H(b\bar{b})$ signal. The nontrivial jet mass shape is difficult to model parametrically. For this reason, the dominant background from SM QCD multijet production is estimated in data by inverting the b tagging requirement, which is, by design, decorrelated from jet mass and p_T. A simultaneous fit to the distributions of the jet mass in all categories is performed in the range 40 to 201 GeV to extract the inclusive $H(b\bar{b})$ and $Z(b\bar{b})$ production cross sections and to determine the normalizations and shapes of the jet mass distributions for the backgrounds.

A detailed description of the CMS detector, together with a definition of the coordinate system and the relevant kinematic variables, can be found in Ref. [16]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections, reside within the solenoid. Forward calorimeters extend the pseudorapidity (η) [16] coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.

Simulated samples of signal and background events are produced using various Monte Carlo (MC) event generators, with the CMS detector response modeled using the GEANT4 [17] program. The MADGRAPH5_aMC@NLO 2.3.3 [18] generator is used for the diboson, W+jets, Z+jets, QCD multijet samples at leading order (LO) accuracy with matching [19] between jets from the matrix element calculation and the parton shower description, while POWHEG 2.0 [20–22] at next-to-leading order (NLO) precision is used to model the $t\bar{t}$ and single-top processes. For parton showering and hadronization the POWHEG and MADGRAPH5_aMC@NLO samples are interfaced with PYTHIA 8.212 [23]. The PYTHIA parameters for the underlying event description are set to the CUETP8M1 tune [24]. The production cross sections for the diboson samples are calculated to next-to-next-to-leading-order (NNLO) accuracy with the MCFM 7.0 program [25]. The cross section for top quark pair production is computed with TOP++ 2.0 [26] at NNLO.
The cross sections for W+jets and Z+jets samples include higher-order QCD and electroweak (EW) corrections and improve modeling of high-p_T W and Z bosons events [27,30]. The parton distribution function (PDF) set NNPDF3.0 [31] is used to produce all simulated samples, with the accuracy (LO or NLO) corresponding to that of the generator used. The Higgs boson signal samples are produced using the POWHEG event generator with $m_H = 125$ GeV. For the ggF production mode, the POWHEG generated sample with up to one extra jet in matrix element calculations is normalized to the inclusive cross section at next-to-next-to-next-to-leading order (N3LO) accuracy [32-35]. The resulting Higgs boson p_T spectrum neglects the effects of the finite top quark mass [36] and associated higher-order QCD corrections [37,40], which are expected to be large for p_T greater than approximately twice the mass of the top quark [36]. A p_T-dependent correction has been derived to account for both of these effects. The POWHEG ggF p_T spectrum is reweighted to the 0–2 jet CKKW-L [26,41,42] merged LO ggF process incorporating the finite top quark mass (m_t) [13,43-45]. This spectrum is then corrected by the approximate NLO to LO ratio, obtained by expanding in powers of $1/m_t^2$ up to $1/m_t^4$, and the effective NNLO to NLO ratio [46,47] in the infinite top quark mass approximation. The overall p_T-dependent correction to the initial N3LO POWHEG ggF spectrum is found to be 1.27 ± 0.38, resulting in a ggF cross section times H($b\bar{b}$) branching fraction of 31.7 ± 9.5 fb for reconstructed Higgs boson $p_T > 450$ GeV and $|\eta| < 2.5$. An uncertainty of 30% to the overall correction is estimated from the comparison of different predictions obtained by using: (i) a merging scale of 100 instead of 20 GeV, (ii) the inclusive two-jet ggF process generation, (iii) the MADGRAPH5_aMC@NLO effective field theory approximation [13,46] normalized to the inclusive N3LO cross section. The p_T spectrum of the Higgs boson for the vector boson fusion (VBF) production mode is re-weighted to account for N3LO corrections to the cross section. These corrections [48,49] have a negligible effect on the yield for this process for events with Higgs boson $p_T > 450$ GeV.

The particle-flow event algorithm [50] is employed to reconstruct and identify each individual particle with an optimized combination of information from the various elements of the CMS detector. The algorithm identifies each reconstructed particle as an electron, a muon, a photon, or a charged or a neutral hadron. The missing transverse momentum vector is defined as the negative vectorial sum of the transverse momenta of all the particles identified in the event, or a charged or a neutral hadron. The particle-flow event algorithm [50] is employed to reconstruct and identify each individual particle with an optimized combination of information from the various elements of the CMS detector. The algorithm identifies each reconstructed particle as an electron, a muon, a photon, or a charged or a neutral hadron. The missing transverse momentum vector is defined as the negative vectorial sum of the transverse momenta of all the particles identified in the event, or a charged or a neutral hadron. The missing transverse momentum vector is defined as the negative vectorial sum of the transverse momenta of all the particles identified in the event, or a charged or a neutral hadron. The missing transverse momentum vector is defined as the negative vectorial sum of the transverse momenta of all the particles identified in the event, or a charged or a neutral hadron. The missing transverse momentum vector is defined as the negative vectorial sum of the transverse momenta of all the particles identified in the event, or a charged or a neutral hadron. The missing transverse momentum vector is defined as the negative vectorial sum of the transverse momenta of all the particles identified in the event, or a charged or a neutral hadron. The missing transverse momentum vector is defined as the negative vectorial sum of the transverse momenta of all the particles identified in the event, or a charged or a neutral hadron. The missing transverse momentum vector is defined as the negative vectorial sum of the transverse momenta of all the particles identified in the event, or a charged or a neutral hadron. The missing transverse momentum vector is defined as the negative vectorial sum of the transverse momenta of all the particles identified in the event, or a charged or a neutral hadron. The missing transverse momentum vector is defined as the negative vectorial sum of the transverse momenta of all the particles identified in the event, or a charged or a neutral hadron.

The particles are clustered into jets using the anti-k_T algorithm [51] with a distance parameter of 0.8 (AK8 jets). To mitigate the effect of pileup, the pileup per particle identification (PUPPI) algorithm [52] assigns a weight to each particle prior to jet clustering based on the likelihood of the particle originating from the hard scattering vertex. Further corrections are applied to the jet energy as a function of jet η and p_T to account for detector response nonlinearities.

To isolate the Higgs boson signal, a high-p_T signal jet is required. Combinations of several online selections are used, all requiring the total hadronic transverse energy in the event (H_T) or jet p_T to be above a given threshold. In addition, a minimum threshold on the jet p_T is imposed after removing remnants of soft radiation with the jet trimming technique [53] to reduce the H_T or p_T thresholds and improve the signal acceptance. The online selection is fully efficient at selecting events offline with at least one AK8 jet with $p_T > 450$ GeV and $|\eta| < 2.5$. Events containing identified and isolated electrons, muons, or τ leptons with $p_T > 10, 10, or 18$ GeV and $|\eta| < 2.5, 2.4, or 2.3$, respectively, are vetoed to reduce backgrounds from SM EW processes. Since no genuine p_T^miss is expected for signal processes, events with $p_T^\text{miss} > 140$ GeV are removed in order to further reduce the top quark background contamination. The leading $(in p_T)$ jet in the event is assumed to be the Higgs boson candidate, the H jet. The soft-drop algorithm [54,55] is used to remove soft and wide-angle radiation with a soft radiation frac-
tion z less than 0.1. The parameter β is set to zero, which corresponds to the case in which approximately the same fraction of energy is groomed away regardless of the initial jet energy. The use of soft-drop grooming reduces the jet mass (m_{SD}) for background QCD events when large jet masses arise from soft gluon radiation. For signal events, the jet mass is primarily determined by the $H(b\bar{b})$ decay kinematics and its distribution peaks at the mass of the Higgs boson. Dedicated m_{SD} corrections [56] are derived from simulation and data in a region enriched with merged $W(q\bar{q})$ decays from $t\bar{t}$ events. They remove a residual dependence on the jet p_T and match the jet mass scale and resolution to those observed in data.

The dimensionless mass scale variable for QCD jets, $\rho = \log(m_{SD}^2/p_T^2)$ [54, 57], whose distribution is roughly invariant in different ranges of jet p_T, is used to characterize the correlation between the jet b tagging discriminator, jet mass, and jet p_T. Only events in the range $-6.0 < \rho < -2.1$ are considered, to avoid instabilities at the edges of the distribution due to finite cone limitations from the AK8 jet clustering ($\rho \gtrsim -2.1$) and to avoid the nonperturbative regime of the soft-drop mass calculation ($\rho \lesssim -6.0$). This requirement is fully efficient for the Higgs boson signal.

The N_1^2 variable [58], which is based on a ratio of 2-point and 3-point generalized energy correlation functions (ECFs) [59], is exploited to determine how consistent a jet is with having a two-prong substructure. The calculation of N_1^2 is based on the jet constituents after application of the soft-drop grooming algorithm to the jet. It provides excellent discrimination between two-prong signal jets and QCD background jets [58]. However, any selection on N_1^2 or other similar variables [60] shapes the jet mass distributions differently depending on the p_T of the jet. Therefore a transformation of N_1^2 to $N_1^{2,DDT}$ is applied, where DDT stands for designed decorrelated tagger [57], to reduce its correlation with ρ and p_T in multijet events. We define $N_1^{2,DDT} = N_1^2 - N_1^2_{(26\%)}$, where $N_1^2_{(26\%)}$ is the 26th percentile of the N_1^2 distribution in simulated QCD events as a function of ρ and p_T. This ensures that the selection $N_1^{2,DDT} < 0$ yields a constant QCD background efficiency of 26% across the entire ρ and p_T range considered in this search. The chosen percentile maximizes the sensitivity to the Higgs boson signal. In order to select events in which the H jet is most likely to contain two b quarks, we use the double-b tagger algorithm [61]. Several observables that characterize the distinct properties of b hadrons and their flight directions in relation to the jet substructure are used as input variables to this multivariate algorithm, to distinguish between H jets and QCD jets. An H jet is considered double-b tagged if its double-b tag discriminator value is above a threshold corresponding to a 1% misidentification rate for QCD jets and a 33% efficiency for $H(b\bar{b})$ jets.

Events with (without) a double-b tagged H jet define the passing (failing) region. In the passing region, the gluon fusion process dominates, although other Higgs boson production mechanisms contribute: VBF (12%), VH (8%), $t\bar{t}H$ (5%). They are all taken into account when extracting the Higgs boson yield.

The contribution of $t\bar{t}$ production to the total SM background is estimated to be less than 3%. It is obtained from simulation corrected with scale factors derived from a $t\bar{t}$-enriched control sample in which an isolated muon is required. This sample is included in a global fit used to extract the signal and the scale factors are treated as unconstrained parameters. They multiply the $t\bar{t}$ contribution, correcting its overall normalization and the double-b mistag efficiency for jets originating from top quark decays.

The main background in the passing region, QCD multijet production, has a nontrivial jet mass shape that is difficult to model parametrically and dependent on jet p_T so we constrain it using the signal-depleted failing region. Since the double-b tag discriminator and the jet mass are
Table 1: Summary of the systematic uncertainties affecting the signal, W and Z + jets processes. Instances where the uncertainty does not apply are indicated by “—”.

Systematic source	W/Z	H
Integrated luminosity	2.5%	2.5%
Trigger efficiency	4%	4%
Pileup	<1%	<1%
$N_2^{1,DDT}$ selection efficiency	4.3%	4.3%
Double-b tag	4% (Z)	4%
Jet energy scale / resolution	10/15%	10/15%
Jet mass scale (p_T)	0.4%/100 GeV (p_T)	0.4%/100 GeV (p_T)
Simulation sample size	2–25%	4–20% (ggF)
H p_T correction	—	30% (ggF)
NLO QCD corrections	10%	—
NLO EW corrections	15–35%	—
NLO EW W/Z decorrelation	5–15%	—

largely uncorrelated, the passing and failing regions have similar QCD jet mass distributions, and their ratio, the “pass-fail ratio” $R_{p/f}$, is expected to be nearly constant as a function of jet mass and p_T. To account for the residual difference between the shapes of passing and failing events, $R_{p/f}$ is parametrized as a polynomial in ρ and p_T, $R_{p/f}(\rho, p_T) = \sum_{k, \ell} a_{k, \ell} \rho^k p_T^\ell$. The coefficients $a_{k, \ell}$ have no external constraints but are determined from a simultaneous fit to the data in passing and failing regions across the whole jet mass range. To determine the order of polynomial necessary to fit the data, a Fisher F-test [62] is performed. Based on its results, a polynomial of second order in ρ and first order in p_T is selected.

The systematic uncertainties associated with the jet mass scale, the jet mass resolution, and the $N_2^{1,DDT}$ selection efficiency are correlated among the W, Z, and H(b\bar{b}) processes. These uncertainties are estimated using an independent sample of merged W jets. Additional details are available in Appendix A. The efficiency of the double-b tagger is measured in data and simulation in a sample enriched in b\bar{b} from gluon splitting [61]. Scale factors relating data and simulation are then computed and applied to the simulation. These scale factors determine the initial distributions of the jet mass for the W(q\bar{q}), Z(q\bar{q}), and H(b\bar{b}) processes and are further constrained in the fit to data due to the presence of the W and Z resonances in the jet mass distribution. The uncertainty associated with the modeling of the ggF Higgs p_T spectrum is propagated to the overall normalization of the ggF Higgs signal. In addition, the shape of the ggF Higgs p_T distribution is allowed to vary depending on the Higgs boson p_T by up to 30% at 1000 GeV, without changing the overall normalization. To account for some potentially p_T-dependent deviations due to missing higher-order corrections, uncertainties are applied to the W(q\bar{q}) and Z(q\bar{q}) yields that are p_T-dependent and correlated per p_T bin. An additional systematic uncertainty is included to account for potential differences between the W and Z higher-order corrections (EW W/Z decorrelation). Finally, additional systematic uncertainties are applied to the W(q\bar{q}), Z(q\bar{q}), and H(b\bar{b}) yields to account for the uncertainties due to the jet energy scale and resolution [63], variations in the amount of pileup, and the integrated luminosity determination [64]. A quantitative summary of the systematic effects considered is shown in Table 1.

In order to validate the background estimation method and associated systematic uncertainties, studies are performed on simulated samples injecting signal events and determining the bias on the measured signal cross section. No significant bias is observed in these studies.
A binned maximum likelihood fit to the observed m_{SD} distributions in the range 40 to 201 GeV with 7 GeV bin width is performed using the sum of the $H(b\bar{b})$, W, Z, $t\bar{t}$, and QCD multijet contributions. The fit is done simultaneously in the passing and failing regions of the six p_T categories within $450 < p_T < 1000$ GeV, and in the $t\bar{t}$-enriched control region. The production cross sections relative to the SM cross sections (signal strengths) for the Higgs and the Z bosons, μ_H and μ_Z, respectively, are extracted from the fit. Figure 1 shows the m_{SD} distributions in data for the passing and failing regions with measured SM background and $H(b\bar{b})$ contributions. Contributions from W and Z boson production are clearly visible in the data.

The measured Z boson signal strength is $\mu_Z = 0.78 \pm 0.14$ (stat)$^{+0.19}_{-0.13}$ (syst), which corresponds to an observed significance of 5.1 standard deviations (σ) with 5.8σ expected. This constitutes the first observation of the Z boson signal in the single-jet topology [65] and validates the substructure and b tagging techniques for the Higgs boson search in the same topology. The measured cross section for the $Z+\text{jets}$ process for jet $p_T > 450$ GeV and $|\eta| < 2.5$ is 0.85 ± 0.16 (stat)$^{+0.20}_{-0.14}$ (syst) pb, which is consistent within uncertainties with the SM production cross section of 1.09 ± 0.11 pb [30]. Likewise, the measured Higgs boson signal strength is $\mu_H = 2.3 \pm 1.5$ (stat)$^{+1.0}_{-0.4}$ (syst) and includes the corrections to the Higgs boson p_T spectrum described earlier. The corresponding observed (expected) upper limit on the Higgs boson signal strength at a 95% confidence level is 5.8 (3.3), while the observed (expected) significance is 1.5σ (0.7σ). The observed μ_H implies a measured ggF cross section times $H(b\bar{b})$ branching fraction for jet $p_T > 450$ GeV and $|\eta| < 2.5$ of 74 \pm 48 (stat)$^{+17}_{-10}$ (syst) fb, assuming the SM values for the ratios of the different $H(b\bar{b})$ production modes. This measurement is consistent within uncertainties with the SM ggF cross section times $H(b\bar{b})$ branching fraction of 31.7 ± 9.5 fb.

Table 2 summarizes the measured signal strengths and significances for the Higgs and Z boson processes. In particular, they are also reported for the case in which no corrections to the Higgs boson p_T spectrum are applied. Figure 2 shows the profile likelihood test statistic scan in data as function of the Higgs and Z boson signal strengths (μ_H, μ_Z).
Figure 2: Profile likelihood test statistic $-2\Delta \log \mathcal{L}$ scan in data as a function of the Higgs and Z bosons signal strengths (μ_H, μ_Z).

Table 2: Fitted signal strength, expected and observed significance of the Higgs and Z boson signal. The 95% confidence level upper limit (UL) on the Higgs boson signal strength is also listed.

	H	H no p_T corr.	Z
Observed signal strength	$2.3^{+1.6}_{-1.6}$	$3.2^{+2.2}_{-2.0}$	$0.78^{+0.23}_{-0.19}$
Expected UL signal strength	< 3.3	< 4.1	—
Observed UL signal strength	< 5.8	< 7.2	—
Expected significance	0.7σ	0.5σ	5.8σ
Observed significance	1.5σ	1.6σ	5.1σ

In summary, an inclusive search for the standard model Higgs boson with $p_T > 450\,\text{GeV}$ decaying to bottom quark-antiquark pairs and reconstructed as a single, large-radius jet is presented. The Z+jets process is observed for the first time in the single-jet topology with a significance of 5.1σ. The Higgs production is measured with an observed (expected) significance of 1.5σ (0.7σ) when including Higgs boson p_T spectrum corrections accounting for higher-order and finite top quark mass effects. The measured cross section times branching fraction for the gluon fusion $H(b\bar{b})$ production for reconstructed $p_T > 450\,\text{GeV}$ and $|\eta| < 2.5$ is $74 \pm 48 \,\text{(stat)}^{+17}_{-10} \,\text{(syst)} \,\text{fb}$, which is consistent with the SM prediction within uncertainties.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI
(Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] Salam, A., “Weak and electromagnetic interactions”, in *Elementary particle physics: relativistic groups and analyticity*, N. Svartholm, ed., p. 367. Almqvist & Wiksell, Stockholm, 1968. Proceedings of the eighth Nobel symposium.

[2] S. L. Glashow, “Partial-symmetries of weak interactions”, *Nucl. Phys.* **22** (1961) 579, doi:10.1016/0029-5582(61)90469-2.

[3] S. Weinberg, “A model of leptons”, *Phys. Rev. Lett.* **19** (1967) 1264, doi:10.1103/PhysRevLett.19.1264.

[4] F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons”, *Phys. Rev. Lett.* **13** (1964) 321, doi:10.1103/PhysRevLett.13.321.

[5] P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, *Phys. Rev. Lett.* **12** (1964) 132, doi:10.1103/PhysRevLett.12.132.

[6] P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, *Phys. Rev. Lett.* **13** (1964) 508, doi:10.1103/PhysRevLett.13.508.

[7] P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, *Phys. Rev. Lett.* **145** (May, 1966) 1156, doi:10.1103/PhysRevLett.145.1156.

[8] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws and massless particles”, *Phys. Rev. Lett.* **13** (1964) 585, doi:10.1103/PhysRevLett.13.585.

[9] ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, *Phys. Lett. B* **716** (2012) 1, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.

[10] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, *Phys. Lett. B* **716** (2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

[11] CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at $\sqrt{s} = 7$ and 8 TeV”, *JHEP* **06** (2013) 081, doi:10.1007/JHEP06(2013)081, arXiv:1303.4571.

[12] ATLAS and CMS Collaboration, “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $\sqrt{s} = 7$ and 8 TeV”, *JHEP* **08** (2016) 045, doi:10.1007/JHEP08(2016)045, arXiv:1606.02266.
[13] D. de Florian et al., “Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector”, CERN Report CERN-2017-002-M, 2016. doi:10.23731/CYRM-2017-002, arXiv:1611.07922.

[14] J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam, “Jet substructure as a new Higgs-search channel at the Large Hadron Collider”, Phys. Rev. Lett. 100 (2008) 242001, doi:10.1103/PhysRevLett.100.242001, arXiv:0802.2470.

[15] C. Grojean, E. Salvioni, M. Schlaffer, and A. Weiler, “Very boosted Higgs in gluon fusion”, JHEP 05 (2014) 022, doi:10.1007/JHEP05(2014)022, arXiv:1312.3317.

[16] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[17] GEANT4 Collaboration, “GEANT4 — a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[18] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[19] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, doi:10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.

[20] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.

[21] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092.

[22] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.

[23] T. Sjöstrand et al., “An introduction to PYTHIA 8.2“, Comput. Phys. Commun. 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[24] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.

[25] J. M. Campbell and R. K. Ellis, “MCFM for the Tevatron and the LHC”, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10, doi:10.1016/j.nuclphysbps.2010.08.011, arXiv:1007.3492.

[26] M. Czakon, P. Fiedler, and A. Mitov, “Total top-quark pair-production cross section at hadron colliders through O(αS4)”, Phys. Rev. Lett. 110 (2013) 252004, doi:10.1103/PhysRevLett.110.252004, arXiv:1303.6254.

[27] S. Kallweit et al., “NLO electroweak automation and precise predictions for W+multijet production at the LHC”, JHEP 04 (2015) 012, doi:10.1007/JHEP04(2015)012, arXiv:1412.5157.
[28] S. Kallweit et al., “NLO QCD+EW predictions for V+jets including off-shell vector-boson decays and multijet merging”, JHEP 04 (2016) 021, doi:10.1007/JHEP04(2016)021, arXiv:1511.08692

[29] S. Kallweit et al., “NLO QCD+EW automation and precise predictions for V+multijet production”, in Proceedings, 50th Rencontres de Moriond, QCD and high energy interactions, p. 121. 2015. arXiv:1505.05704

[30] J. M. Lindert et al., “Precise predictions for V+jets dark matter backgrounds”, (2017). arXiv:1705.04664

[31] NNPDF Collaboration, “Parton distributions for the LHC run II”, JHEP 04 (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849

[32] D. de Florian, G. Ferrera, M. Grazzini, and D. Tommasini, “Higgs boson production at the LHC: transverse momentum resummation effects in the H→2γ, H→WW→ℓνℓν and H→ZZ→4l decay modes”, JHEP 06 (2012) 132, doi:10.1007/JHEP06(2012)132, arXiv:1203.6321

[33] M. Grazzini and H. Sargsyan, “Heavy-quark mass effects in Higgs boson production at the LHC”, JHEP 09 (2013) 129, doi:10.1007/JHEP09(2013)129, arXiv:1306.4581

[34] E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini, “Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM”, JHEP 02 (2012) 088, doi:10.1007/JHEP02(2012)088, arXiv:1111.2854

[35] E. Bagnaschi and A. Vicini, “The Higgs transverse momentum distribution in gluon fusion as a multiscale problem”, JHEP 01 (2016) 056, doi:10.1007/JHEP01(2016)056, arXiv:1505.00735

[36] U. J. Baur and E. W. N. Glover, “Higgs boson production at large transverse momentum in hadronic collisions”, Nucl. Phys. B 339 (1990) 38, doi:10.1016/0550-3213(90)90532-I

[37] R. Boughezal et al., “Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD”, JHEP 06 (2013) 072, doi:10.1007/JHEP06(2013)072, arXiv:1302.6216

[38] R. Boughezal et al., “Higgs boson production in association with a jet using jettiness subtraction”, Phys. Lett. B 748 (2015) 5, doi:10.1016/j.physletb.2015.06.055, arXiv:1505.03893

[39] R. Boughezal et al., “Color singlet production at NNLO in MCFM”, (2016). arXiv:1605.08011

[40] X. Chen, T. Gehrmann, N. Glover, and M. Jaquier, “Higgs plus one jet production at NNLO”, in Proceedings, 12th International Symposium on Radiative Corrections (Radcor 2015) and LoopFest XIV (Radiative Corrections for the LHC and Future Colliders): Los Angeles, CA, USA, June 15-19, 2015. 2016. arXiv:1604.04085

[41] S. Catani, F. Krauss, R. Kuhn, and B. R. Webber, “QCD matrix elements + parton showers”, JHEP 11 (2001) 063, doi:10.1088/1126-6708/2001/11/063, arXiv:hep-ph/0109231
[42] L. Lonnblad, “Correcting the color-dipole cascade model with fixed order matrix elements”, *JHEP* **05** (2002) 046, [doi:10.1088/1126-6708/2002/05/046](https://doi.org/10.1088/1126-6708/2002/05/046), [arXiv:hep-ph/0112284](https://arxiv.org/abs/hep-ph/0112284).

[43] V. Hirschi and O. Mattelaer, “Automated event generation for loop-induced processes”, *JHEP* **10** (2015) 146, [doi:10.1007/JHEP10(2015)146](https://doi.org/10.1007/JHEP10(2015)146), [arXiv:1507.00020](https://arxiv.org/abs/1507.00020).

[44] M. Buschmann et al., “Mass effects in the Higgs-gluon coupling: boosted vs. off-shell production”, *JHEP* **02** (2015) 038, [doi:10.1007/JHEP02(2015)038](https://doi.org/10.1007/JHEP02(2015)038), [arXiv:1410.5806](https://arxiv.org/abs/1410.5806).

[45] N. Greiner et al., “Phenomenological analysis of Higgs boson production through gluon fusion in association with jets”, *JHEP* **01** (2016) 169, [doi:10.1007/JHEP01(2016)169](https://doi.org/10.1007/JHEP01(2016)169), [arXiv:1506.01016](https://arxiv.org/abs/1506.01016).

[46] T. Neumann and C. Williams, “Higgs bosons at high p_T”, *Phys. Rev. D* **95** (2017) 014004, [doi:10.1103/PhysRevD.95.014004](https://doi.org/10.1103/PhysRevD.95.014004), [arXiv:1609.00367](https://arxiv.org/abs/1609.00367).

[47] N. Greiner et al., “Full mass dependence in Higgs boson production in association with jets at the LHC and FCC”, *JHEP* **01** (2017) 091, [doi:10.1007/JHEP01(2017)091](https://doi.org/10.1007/JHEP01(2017)091), [arXiv:1608.01995](https://arxiv.org/abs/1608.01995).

[48] M. Cacciari et al., “Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order”, *Phys. Rev. Lett.* **115** (2015) 082002, [doi:10.1103/PhysRevLett.115.082002](https://doi.org/10.1103/PhysRevLett.115.082002), [arXiv:1506.02660](https://arxiv.org/abs/1506.02660).

[49] F. A. Dreyer and A. Karlberg, “Vector-Boson Fusion Higgs Production at Three Loops in QCD”, *Phys. Rev. Lett.* **117** (2016), no. 7, 072001, [doi:10.1103/PhysRevLett.117.072001](https://doi.org/10.1103/PhysRevLett.117.072001), [arXiv:1606.00840](https://arxiv.org/abs/1606.00840).

[50] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, *JINST* **12** (2017) P10003, [doi:10.1088/1748-0221/12/10/P10003](https://doi.org/10.1088/1748-0221/12/10/P10003), [arXiv:1706.04965](https://arxiv.org/abs/1706.04965).

[51] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_t jet clustering algorithm”, *JHEP* **04** (2008) 063, [doi:10.1088/1126-6708/2008/04/063](https://doi.org/10.1088/1126-6708/2008/04/063), [arXiv:0802.1189](https://arxiv.org/abs/0802.1189).

[52] D. Bertolini, P. Harris, M. Low, and N. Tran, “Pileup per particle identification”, *JHEP* **10** (2014) 059, [doi:10.1007/JHEP10(2014)059](https://doi.org/10.1007/JHEP10(2014)059), [arXiv:1407.6013](https://arxiv.org/abs/1407.6013).

[53] D. Krohn, J. Thaler, and L. Wang, “Jet trimming”, *JHEP* **02** (2010) 084, [doi:10.1007/JHEP02(2010)084](https://doi.org/10.1007/JHEP02(2010)084), [arXiv:0912.1342](https://arxiv.org/abs/0912.1342).

[54] M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, “Towards an understanding of jet substructure”, *JHEP* **09** (2013) 029, [doi:10.1007/JHEP09(2013)029](https://doi.org/10.1007/JHEP09(2013)029), [arXiv:1307.0007](https://arxiv.org/abs/1307.0007).

[55] A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, “Soft drop”, *JHEP* **05** (2014) 146, [doi:10.1007/JHEP05(2014)146](https://doi.org/10.1007/JHEP05(2014)146), [arXiv:1402.2657](https://arxiv.org/abs/1402.2657).

[56] CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017.

[57] J. Dolen et al., “Thinking outside the ROCs: Designing decorrelated taggers (DDT) for jet substructure”, *JHEP* **05** (2016) 156, [doi:10.1007/JHEP05(2016)156](https://doi.org/10.1007/JHEP05(2016)156), [arXiv:1603.00027](https://arxiv.org/abs/1603.00027).
[58] I. Moult, L. Necib, and J. Thaler, “New angles on energy correlation functions”, *JHEP* **12** (2016) 153, doi:10.1007/JHEP12(2016)153, arXiv:1609.07483.

[59] A. J. Larkoski, G. P. Salam, and J. Thaler, “Energy correlation functions for jet substructure”, *JHEP* **06** (2013) 108, doi:10.1007/JHEP06(2013)108, arXiv:1305.0007.

[60] J. Thaler and K. Van Tilburg, “Identifying boosted objects with N-subjettiness”, *JHEP* **03** (2011) 015, doi:10.1007/JHEP03(2011)015, arXiv:1011.2268.

[61] CMS Collaboration, “Identification of double-b quark jets in boosted event topologies”, CMS Physics Analysis Summary CMS-PAS-BTV-15-002, CERN, Geneva, 2016.

[62] R. A. Fisher, “On the interpretation of χ^2 from contingency tables, and the calculation of P”, *Journal of the Royal Statistical Society* **85** (1922) 87, doi:10.2307/2340521.

[63] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, *JINST* **6** (2011) 11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

[64] CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.

[65] ATLAS Collaboration, “Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in $\sqrt{s} = 7$ TeV with the ATLAS detector”, *New J. Phys.* **16** (Jul, 2014) 113013, doi:10.1088/1367-2630/16/11/113013.

[66] M. Bahr et al., “Herwig++ physics and manual”, *Eur. Phys. J. C* **58** (2008) 639, doi:10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883.
A Additional material on systematic uncertainties associated with the jet mass scale, the jet mass resolution, and $N_2^{1,\text{DDT}}$ selection

The systematic effects on the shapes and normalization of the W, Z backgrounds and signal components are strongly correlated since they are affected by similar systematic mismeasurements. These uncertainties are estimated using an independent sample of merged W boson jets in semileptonic $t\bar{t}$ events in data. In this region, events are required to have an energetic muon with $p_T > 100$ GeV, $p_T^{\text{miss}} > 80$ GeV, a high-p_T AK8 jet with $p_T > 200$ GeV, and an additional jet separated from the AK8 jet by $\Delta R > 0.8$. Using the same $N_2^{1,\text{DDT}}$ requirement described in the text, we define samples with events that pass and fail the selection for merged W boson jets in data and simulation. A simultaneous fit to the two samples is performed in order to extract the selection efficiency of a merged W jet in simulation and in data. We measure the data-to-simulation scale factor for the $N_2^{1,\text{DDT}}$ selection to be 0.99 ± 0.04. The mass scales in data and simulation are found to be consistent within 1%. The jet mass resolution data-to-simulation scale factor is measured to be 1.08 ± 0.09. These scale factors are applied to the merged Z and H jets. Systematic uncertainties related to the differences between hadronic decays of W and Z or H bosons are estimated by comparing the PYTHIA and HERWIG++ 2.7.1 [66] showering algorithms, and found to be negligible. They determine the initial distributions of the jet mass for the $W(q\bar{q})$, $Z(q\bar{q})$, and $H(b\bar{b})$ processes and are further constrained in the fit to data due to the presence of the W and Z resonances in the jet mass distribution. This control sample does not provide a measurement for jets with very high p_T. An additional systematic uncertainty is included to account for the extrapolation of this measurement to very high p_T jets. The jet mass scale uncertainty is allowed to vary in the signal extraction differently depending on the jet p_T (from 2% at 500 GeV to 4% at 1 TeV). The simultaneous extraction of the Z and H boson signal strengths aims to calibrate the relative jet mass scale in situ. This is the first measurement of this kind at such high p_T. In the fit to data, the jet mass scale is constrained well within the uncertainty we quote.
B The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth\(^1\), V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler\(^2\), A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck\(^1\), R. Schöfbeck, M. Spanning, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz\(^1\), M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, Y. Dydyshka, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskiy, S. Lovette, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang\(^2\)

Ghent University, Ghent, Belgium
A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov\(^3\), D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec

Université de Mons, Mons, Belgium
N. Beliý

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato\(^4\), E. Coelho, E.M. Da Costa, G.G. Da Silveira\(^3\), D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote\(^4\), F. Torres Da Silva De Araujo, A. Vilela Pereira
Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahujaa, C.A. Bernardesa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb, J.C. Ruiz Vargasa

Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of Sciences
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fanga, X. Gaoa, L. Yuan

Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov7, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Finger8, M. Finger Jr.8

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran9,10, M.A. Mahmoud11,10, A. Mahrour12

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
R.K. Dewanjee, M. Kadastik, L. Ferrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland
T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.O. Sahin, M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teysssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl
Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo, J. Garay García, A. Geiser, A. Gzhiko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff, A. Harb, J. Hauk, M. Hempel, H. Jung, A. Kalogeropoulos, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, B. Roland, M. Savitskyi, P. Saxena, R. Shevchenko, S. Špannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo, T. Peiffer, A. Perieanu, C. Sch larf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, B. Freund, R. Friese, M. Giffels, D. Haitz, M.A. Harrendorf, F. Hartmann, S.M. Heindl, U. Husemann, F. Kassel, S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou

National Technical University of Athens, Athens, Greece
K. Kousouris

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, N. Filipovic, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horváth, Á. Hunyadi, F. Sikler, V. Veszpremi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartók, P. Raics, Z.L. Trocsanyi, B. Ujvari
Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri

National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati22, S. Bhowmik, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo22, N. Sahoo, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhattacharya, U. Bhawandee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

University of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, R. Bhattacharya, S. Chattopadhyay, U. Bhawandee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty15, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, S. Jain, S. Kumar, M. Maity24, G. Majumder, K. Mazumdar, T. Sarkar24, N. Wickramage25

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani26, E. Eskandari Tadavani, S.M. Etesami26, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, B. Safarzadeh28, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa,b, C. Calabriaa,b, A. Colaleoa, D. Creanzaac, L. Cristellaa,b, N. De Filippisa,c, M. De Palmaa,b, F. Erricoa,b, L. Fiorea, G. Iasellia,c, S. Lezka,b, G. Maggiac, M. Maggia, G. Minielloa,b, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c, R. Rodognaa, A. Ranieria, G. Selvaggiab, A. Sharmaa, L. Silvestrisa,15, R. Vendittia, P. Verwilligena

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendi, C. Battilanaa,b, D. Bonacorsia, L. Borgonovia,b, S. Braibant-Giacomellia,b, R. Campaninia,b, P. Capiluppiab, A. Castroa, F.R. Cavalloa, S.S. Chhibra, G. Codispotiab, M. Cuffianiab, G.M. Dallavallea, F. Fabbria, A. Fanfania, D. Fasanellia,b, P. Giacomellia, C. Grandia, L. Guiducciab, S. Marcellinia, G. Masetta, A. Montanaria, F.L. Navarraab, A. Perrotta, A.M. Rossia,b, T. Rovelliab, G.P. Sirolia,b, N. Tosi
INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbagli, K. Chatterjee, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, P. Lenzi, M. Meschini, S. Paololetti, L. Russo, G. Sguazzoni, D. Strom, L. Viliani

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera

INFN Sezione di Genova, Università di Genova, Genova, Italy
V. Calvelli, F. Ferro, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Carvalho Antunes de Oliveira, P. Salvini, A. Braghieri, S. Ventura, A.T. Meneguzzo, L. Alunni Solestizi, K. Androsov, P. Lariccia, R. Dell’Orso, U. Gasparini, A. Gozzelino, S. Lacaprara, P. Lujan, M. Margoni, A.T. Meneguzzo, N. Pozzobon, M. Zanetti, A. Santocchia, M. Meschini, A. Santocchia, D. Spiga

INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Napoli, Italy, Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy
S. Buontempo, N. Cavallo, S. Di Guida, F. Fabozzi, F. Fienga, A.O.M. Iorio, W.A. Khan, L. Lista, S. Meola, P. Paolucci, C. Sciacca, F. Thyssen

INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy
P. Azzi, N. Bacchetta, L. Benato, M. Biasotto, D. Bisello, A. Boletti, R. Carlin, A. Carvalho Antunes De Oliveira, P. Checchia, M. Dall’Osso, P. De Castro Manzano, T. Dorigo, U. Gasparini, A. Gozzelino, S. Lacaprara, P. Lujan, M. Margoni, A.T. Meneguzzo, N. Pozzobon, P. Ronchese, R. Rossini, F. Simonetto, E. Torassa, S. Ventura, M. Zanetti, P. Zotto

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, M. Ressegotti, C. Riccardi, P. Salvini, I. Vai, P. Vittulo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
L. Alunni Solestizi, M. Biasini, G.M. Bileri, C. Cecchi, D. Ciangottini, L. Fano, P. Lariccia, R. Leonardi, E. Manoni, G. Mantovani, V. Mariani, M. Menichelli, A. Rossi, A. Santocchia, D. Spiga

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androsov, P. Azzurri, G. Bagliesi, T. Boccali, L. Borrello, R. Castaldi, M.A. Ciocci, R. Dell’Orso, G. Fedi, L. Giannini, A. Giassi, M.T. Grippo, F. Ligabue, T. Lomtadze, E. Manca, G. Mandorlini, L. Martin, A. Messineo, F. Palla, A. Rizzii, A. Savoy-Navarro, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini

INFN Sezione di Roma, Sapienza Università di Roma, Rome, Italy
L. Barone, F. Cavallari, M. Cipriani, N. Daci, D. Del Re, E. Di Marco, M. Diemoz, S. Gelli, E. Longo, F. Margaroli, B. Marzocchi, F. Meridiani, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio

INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, A. Baroni, F. Cavallari, M. Cipriani, N. Daci, D. Del Re, E. Di Marco, M. Diemoz, S. Gelli, E. Longo, F. Margaroli, B. Marzocchi, F. Meridiani, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio, L. Barone, F. Cavallari, M. Cipriani, N. Daci, D. Del Re, E. Di Marco, M. Diemoz, S. Gelli, E. Longo, F. Margaroli, B. Marzocchi, F. Meridiani, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio
C. Biinoa, N. Cartigliaa, F. Cennaa,b, M. Costaa,b, R. Covarellia,b, A. Deganoa,b, N. Demariaa, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, F. Raveraa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shcherlinaa,b, V. Solaa, A. Solanoa,b, A. Staianoa, P. Traczyka,b

INFN Sezione di Triestea, Università di Triesteb, Trieste, Italy

S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, A. Zanettia

Kyungpook National University, Daegu, Korea

D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang

Chonbuk National University, Jeonju, Korea

A. Lee

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

H. Kim, D.H. Moon, G. Oh

Hanyang University, Seoul, Korea

J.A. Brochero Cifuentes, J. Goh, T.J. Kim

Korea University, Seoul, Korea

S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

Seoul National University, Seoul, Korea

J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

University of Seoul, Seoul, Korea

M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

Sungkyunkwan University, Suwon, Korea

Y. Choi, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania

V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali33, F. Mohamad Idris34, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz35, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

A. Morelos Pineda
B. The CMS Collaboration

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski

Institute of Nuclear Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voiyshin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vasilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Trisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennoy, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev
C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marianneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, D.A. Sanz Becerra, M. Schönenberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, D. Pinna, G. Ravco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta

National Central University, Chung-Li, Taiwan
V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.F. Tsai

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Cerci, S. Damarsekin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir, D. Sunar Cerci, B. Tali, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, G. Karapinar, K. Ocalan, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, D.M. Newbold, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
G. Auzinger, R. Bainbridge, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria,
A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtiplieski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta, T. Virdee, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner, S. Zahid

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith

Catholic University of America, Washington DC, USA
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, D. Cutts, A. Garabedian, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu

University of California, Davis, Davis, USA
R. Band, C. Brainerd, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, K. Tos, M. Tripathi, Z. Wang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. McColl, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA
J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo

California Institute of Technology, Pasadena, USA
D. Anderson, J. Bendavid, A. Bornheim, J.M. Lawhorn, H.B. Newman, T. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu
Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Banerjee, L.A.T. Bauer, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebna, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Updegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, K. Shi, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton

Florida International University, Miami, USA
Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez

Florida State University, Tallahassee, USA
A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USA
B. Bilki, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogun, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi
Johns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Mantilla, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You

The University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Koncharov, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephens, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, T. Orimoto, R. Teixeira De Lima, D. Trocino, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA
N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko57, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard
Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Now at British University in Egypt, Cairo, Egypt
11: Also at Fayoum University, El-Fayoum, Egypt
12: Now at Helwan University, Cairo, Egypt
13: Also at Université de Haute Alsace, Mulhouse, France
14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
17: Also at University of Hamburg, Hamburg, Germany
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
22: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
23: Also at Institute of Physics, Bhubaneswar, India
24: Also at University of Visva-Bharati, Santiniketan, India
25: Also at University of Ruhuna, Matara, Sri Lanka
26: Also at Isfahan University of Technology, Isfahan, Iran
27: Also at Yazd University, Yazd, Iran
28: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
29: Also at Università degli Studi di Siena, Siena, Italy
30: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milano, Italy
31: Also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy
32: Also at Purdue University, West Lafayette, USA
33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
35: Also at Consejo Nacional de Ciencia y Tecnologia, Mexico city, Mexico
36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
37: Also at Institute for Nuclear Research, Moscow, Russia
38: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
40: Also at University of Florida, Gainesville, USA
41: Also at P.N. Lebedev Physical Institute, Moscow, Russia
42: Also at California Institute of Technology, Pasadena, USA
43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
45: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
46: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
47: Also at National and Kapodistrian University of Athens, Athens, Greece
48: Also at Riga Technical University, Riga, Latvia
49: Also at Universität Zürich, Zurich, Switzerland
50: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
51: Also at Adiyaman University, Adiyaman, Turkey
52: Also at Istanbul Aydin University, Istanbul, Turkey
53: Also at Mersin University, Mersin, Turkey
54: Also at Cag University, Mersin, Turkey
55: Also at Piri Reis University, Istanbul, Turkey
56: Also at Izmir Institute of Technology, Izmir, Turkey
57: Also at Necmettin Erbakan University, Konya, Turkey
58: Also at Marmara University, Istanbul, Turkey
59: Also at Kafkas University, Kars, Turkey
60: Also at Istanbul Bilgi University, Istanbul, Turkey
61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
63: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
64: Also at Utah Valley University, Orem, USA
65: Also at Beykent University, Istanbul, Turkey
66: Also at Bingol University, Bingol, Turkey
67: Also at Erzincan University, Erzincan, Turkey
68: Also at Sinop University, Sinop, Turkey
69: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
70: Also at Texas A&M University at Qatar, Doha, Qatar
71: Also at Kyungpook National University, Daegu, Korea