Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diarthophales, Hypocreales, and Magnaporthales)

Martina Réblová1, Andrew N. Miller2, Amy Y. Rossman3*, Keith A. Seifert4, Pedro W. Crous5, David L. Hawksworth6,7,8, Mohamed A. Abdel-Wahab9, Paul F. Cannon6, Dinushani A. Daranagama10, Z. Wilhelm De Beer11, Shi-Ke Huang10, Kevin D. Hyde10, Ruvvishika Jayawardena10, Walter Jaklitsch12,13, E. B. Gareth Jones14, Yu-Ming Ju10, Caroline Judith16, Sajeewa S. N. Maharachchikumbura17, Ka-Lai Pang18, Liliane E. Petrin19, Huzeza A. Raja20, Andrea I Romero21, Carol Shearer2, Indunil C. Senanayake20, Hermann Voglmayr13, Bevan S. Weir22, and Nalin N. Wijayawarden10

1Department of Taxonomy, Institute of Botany of the Academy of Sciences of the Czech Republic, Průhonice 252 43, Czech Republic
2Illinois Natural History Survey, University of Illinois, Champaign, Illinois 61820, USA
3Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; *corresponding author e-mail: amyedianer@yahoo.com
4Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada
5CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
6Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Madrid 28040, Spain
7Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
8Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS, UK
9Department of Botany and Microbiology, Faculty of Science, Sohaq University, Sohaq 82524, Egypt
10Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
11Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa
12Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
13Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
14Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
15Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115 29, Taiwan
16Department of Mycology, Institute of Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
17Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 8, 123 Al Khoud, Oman
18Institute of Marine Biology and Centre of Excellence for the Oceans, Nantional Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan (ROC)
19Via al Perato 15c, CH-6932 Bregnaz, Switzerland
20Department of Chemistry and Biochemistry, 457 Sullivan Science Building, University of North Carolina, Greensboro, N.C 27402-6170, USA
21Instituto de Micología y Botánica, UBACONCET, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Plano 4°, Lab 6, Av. Int. Güiraldes 2620. Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
22Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand

Abstract: With the advance to one scientific name for each fungal species, the generic names in the class Sordariomycetes typified by sexual and asexual morphs are evaluated based on their type species to determine if they compete with each other for use or protection. Recommendations are made for which of the competing generic names should be used based on criteria such as priority, number of potential names changes, and frequency of use. Some recommendations for well-known genera include Arthrinum over Aipispora, Colletotrichum over Glomerella, Menispora over Zignoëlla, Microdochium over Monographella, Nigrospora over Khuska, and Plectosphaera over Plectosporum. All competing generic names are listed in a table of recommended names along with the required action. If priority is not accorded to sexually typified generic names after 2017, only four names would require formal protection: Chaetosphaera over Oedemium, Diattype over Libertya, Microdochium over Monographella, and Phaeoacremonium over Romellia and Togninia. Concerning species in the recommended genera, one replacement name (Xylaria benjamiinii nom. nov.) is introduced, and the following new combinations are made: Arthrinum sinense, Chloridium caesium, C. chlorococum, C. gonytrichii, Corollospora marina, C. parvula, C. ramulosa, Juncigena fruticosae, Melanospora simplex, Seimatosporium massarina, Sporochisma daemonoropis, S. taintae, Torpedospora mangrovei, Xylaria penicilliosis, and X. termitscola combs. nov.

Key words: Ascomycota, nomenclature, pleomorphic fungi, protected lists, taxonomy

Article info: Submitted: 26 April 2016; Accepted: 24 May 2016; Published: 8 June 2016.

© 2016 International Mycological Association

You are free to share - to copy, distribute and transmit the work, under the following conditions:

Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

Non-commercial: You may not use this work for commercial purposes.

No derivative works: You may not alter, transform, or build upon this work.

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.
INTRODUCTION:

The class Sordariomycetes is composed of three subclasses and about 21 orders including many genera with species that express themselves in both their sexual and asexual morphs. Based on the obsolete version of Article 59 of the outdated International Code of Botanical Nomenclature (McNeill et al. 2006), these morphs had previously been described in different genera resulting in more than one scientific name for a single fungal species. With the change to the International Code of Nomenclature for algae, fungi, and plants (ICN; McNeill et al. 2012), two or more names for different morphs of the same species are no longer allowed. Although determining which name to use generally follows the principle of priority of publication at the family, generic and species level, exceptions to this principle are allowed, especially in the case of economically important and widely used taxa.

In this paper generic names that appear to compete for use are reviewed to determine if their respective type species are congeneric or have priority. We are using various resources including the USDA SMML Fungal Databases (http://int.ars-grin.gov/fungaldatabases/) and Wijayawardene et al. (2012). If so, then a number of factors are considered in deciding which generic name to recommend for use. These factors include the number of species in each competing genus, which correlates with the number of name changes that would be required, and how widely used are species in each genus as determined by reports and peer-reviewed publications. If these factors are about equal, then the generic name that has priority by date is recommended for use. For each set of competing generic names, these factors are discussed based on the literature. Finally, a draft of these recommendations was circulated widely amongst the community of mycologists interested in each major group of fungi to arrive at the proposals made here.

A synopsis of data concerning each genus is provided in Table 1 listing the generic names recommended for use and competing names, the type species for each genus and the current name for the type, and action required especially if the principle of priority will not be followed, i.e. the generic name must be protected. At present the ICN requires that names typified by sexual morphs should have priority unless protected, although it is proposed that this requirement be deleted in 2017 (Hawksworth 2015). Eventually all generic names typified by sexual morphs should have priority unless the principle of priority will not be followed, i.e. the generic name that has priority by date is recommended for use. For each set of competing generic names, these factors are discussed based on the literature. Finally, a draft of these recommendations was circulated widely amongst the community of mycologists interested in each major group of fungi to arrive at the proposals made here.

A synopsis of data concerning each genus is provided in Table 1 listing the generic names recommended for use and competing names, the type species for each genus and the current name for the type, and action required especially if the principle of priority will not be followed, i.e. the generic name must be protected. At present the ICN requires that names typified by sexual morphs should have priority unless protected, although it is proposed that this requirement be deleted in 2017 (Hawksworth 2015). Eventually all generic names typified by sexual morphs should have priority unless protected, although it is proposed that this requirement be deleted in 2017 (Hawksworth 2015). Eventually all generic names typified by sexual morphs should have priority unless protected. At present the ICN requires that names typified by sexual morphs should have priority unless protected, although it is proposed that this requirement be deleted in 2017 (Hawksworth 2015).

RECOMMENDATIONS FOR GENERIC NAMES

(A) = a name typified by an asexual morph, and (S) = a name typified by a sexual morph.

Amphisphaeriales

Use Dyrithiopsis L. Cai et al. 2003 (S) rather than Monochaetziopsis L. Cai et al. 2003 (A)

The monotypic genera Dyrithiopsis, typified by D. lakefuxianensis, and Monochaetziopsis, typified by M. lakefuxianis, were described as the sexual and asexual morph of the same species at the same time (Jeewon et al. 2003), thus they are synonyms and have equal priority. Because Dyrithiopsis has been cited more widely in the literature, we recommend Dyrithiopsis for use.

Use Hyalotiopsis Punith. 1970 (A) rather than Ellurema Nag Raj & W.B. Kendr. 1985 (S)

When Punithalingam (1970) described the genus Hyalotiopsis, typified by H. subramanianii, he noted that the sexual morph was Massaria indica, the basionym of Ellurema indica, type of the monotypic Ellurema, thus Hyalotiopsis and Ellurema are synonyms. This history was recounted by Nag Raj & Kendrick (1986) when they described Ellurema. A second species of Hyalotiopsis has been redisposed in Parahyalotiopsis as P. borassi (syn. Hyalotiopsis borassi) (Nag Raj 1976), thus both genera include only one species. Given their equal use, we follow priority and recommend Hyalotiopsis for use.

Use Pestalotiopsis Steyaert 1949 (A) rather than Pestalosphaeria M.E. Barr 1975 (S)

The well-known genus Pestalotiopsis, typified by P. guepinii, was established for many species of Pestalotia determined to be distinct from the type Pestalotia, P. pezizoides. Barr (1975) described the genus Pestalosphaeria, typified by P. concentrica, for the sexual morph of Pestalotiopsis guepinii var. macrotricha, both species on Rhododendron in southeastern North America. Thus, it appears that Pestalosphaeria is a synonym of Pestalotiopsis. Pestalotiopsis has been widely used and currently includes more than 200 names with two recent accounts of the genus (Maharachchikumbura et al. 2012, 2014). On the other hand, Pestalosphaeria includes 14 names, none of which are commonly used. Given the ubiquitous and widely reported species of Pestalotiopsis as well as the number of names in that genus and its priority, we recommend use of Pestalotiopsis.

Use Seimatosporium Corda 1833 (A) rather than Discostroma Clem. 1909 (S)

The generic names Discostroma and Seimatosporium have been applied to sexual and asexual morphs of the same species based on morphological studies (Brockmann et al. 2012). Erysipheales, Chaetosphaeriales, Coniochaetales, Conioscyphales, Cordales, Coronophorales, Glomerellales, Halosphaeriales, Melanosporales, Microscales, Phyllochorales, Pleurotheciales, Savoryellales, Sordariales, Togniniales, Torpedosporales, and Xylariales.
1976, Nag Raj 1993). The type species of Discostroma, D. rehmi, is a younger synonym of D. massarina, and has an asexual morph referred to as Seimatosporium ribis-alpini while the type of Seimatosporium, S. rosae, has a sexual morph described as Discostroma rosae (Shoemaker 1964, Brockmann 1976, Nag Raj 1993). Although neither of the type species of Discostroma or Seimatosporium were included, Tanaka et al. (2011) used three species of Discostroma and sixteen species of Seimatosporium in their LSU tree to show that representatives of these genera form a monophyletic genus that should be regarded as Seimatosporium. Norphanphoun et al. (2015) added four more isolates of Seimatosporium including one for the type species, S. rosae, and also concluded that the genus was monophyletic. Host-specificity should be considered in studying the taxonomy of this genus. Given that Seimatosporium is the oldest name, has the greater number of species, and is more commonly used, this generic name is recommended for use.

New combination:

Seimatosporium massarina (Sacc.) Jaklitsch & Voglmayr, comb. nov.

MycoBank MB8817259

Basionym: Metasphaeria massarina Sacc., Atti Soc. Veneto-Trent. Sci. Nat., Padova, Sér. 6 2: 22 (1884).

Synonyms: Discostroma massarina (Sacc.) Arx, Gen. Fungi Sporul. Cult., 2nd edn. (Vaduz): 131 (1974).

Hendersonia ribis-alpini Fautrey, Revue Mycol. 14: 171 (1892).

Seimatosporium ribis-alpini (Fautrey) Shoemaker & E. Müll., Canad. J. Bot. 42: 403 (1964).

Curreya rehmii Schnabl, Ber. Bayer. Bot. Ges., Beih. 2: 66 (1892).

Discostroma rehmii (Schnabl) Clem., Gen. Fungi: 173 (1909).

Use Seiridium Nees 1816 (A) rather than Blogiascopora Shoemaker et al. 1966 (S)

According to Shoemaker et al. (1966) Seiridium marginatum, the type species of Seiridium, is the asexual morph of Blogiascopora marginata, type of the monotypic genus Blogiascopora, thus Seiridium and Blogiascopora are synonyms as confirmed by Jaklitsch et al. (2016). Seiridium is the older generic name, has the greater number of species, and is the more widely used, therefore Seiridium is recommended for use.

One species of Seiridium, S. cupressi, cause of the widespread disease known as cypress canker, has previously been referred to as Leptosphytina cupressi. The type of Leptosphytina, L. fuckelii, is now placed in a distinct genus in the Ampophilaceae (Jaklitsch et al. 2016), while the species previously regarded as L. cupressi belongs in Seiridium as S. cupressi in Sporocadaceae.

Calosphaeriales

Use Calosphaeria Tul. & C. Tul. 1863 (S) rather than Calosphaeriophora Réblová et al. 2004 (A)

The genus Calosphaeria, typified by C. princeps, includes 114 names while an asexual morph of C. pulchella was described in the monotypic genus Calosphaeriophora as Ca. pulchella (Réblová et al. 2004). Calosphaeriophora pulchella is a saprobic fungus occurring on various woody plants and has been recently isolated from wood of sweet cherry trees showing canker symptoms (Trouwillas et al. 2010a, Berbegal et al. 2014). If Calosphaeria princeps and C. pulchella are congeneric, then these generic names are synonyms as suggested by Réblová et al. (2015). Based on priority, the number of species in the genus, and its widespread use, the generic name Calosphaeria is recommended for use.

Use Pleurostoma Tul. & C. Tul. 1863 (S) rather than Pleurostomophora Vijaykr. et al. 2004 (A)

The genus Pleurostoma, typified by P. candollei, includes six names, two of which have been placed elsewhere. One species, P. ootheca, has an asexual morph described as Pleurostomophora ootheca, the type species of Pleurostomophora (Vijaykrishna et al. 2004). Réblová et al. (2015) explored the phylogeny of this group including one species of Pleurostoma and four species of Pleurostomophora, although the type species of Pleurostoma was not available. While both sexual species are lignicolous, the asexual species were isolated from woody plants, soil or sewage (Schol-Schwarz 1970). They were also identified as etiological agents of subcutaneous phaeohyphomycosis (Meyer et al. 1975, Hironaga et al. 1989), and one asexual species of Pleurostoma, P. ochraceum, is known to cause human eumycetoma (Mhmoud et al. 2012). Assuming that Pleurostoma candollei and P. ootheca are congeneric, these generic names are synonyms. Given that the name Pleurostoma has priority, has the greater number of species, and has been widely used, we recommend the use of Pleurostoma. Based on these conclusions and recent molecular data, the three exclusively asexual Pleurostomophora species were transferred to Pleurostoma by Réblová et al. (2015).

Use Togniniella Réblová et al. 2004 (S) rather than Phaeocrella Réblová et al. 2004 (A)

The monotypic genera Togniniella, typified by T. acerosa, and Phaeocrella, typified by P. acerosa, were described in the same article for the sexual and asexual morphs of the same species and thus are synonyms having equal priority (Réblová et al. 2004). Although an older epithet was discovered for T. acerosa (Réblová 2011), this was later rescinded (Réblová et al. 2015). We recommend the use of the generic name Togniniella.

Chaetosphaeriales

Use Chloridium Link 1809 (A) rather than Gonytrichum Nees & T. Nees 1818 (A) or Melanopsammella Höhn.1920 (S)

The type species of Chloridium, C. viride as C. virescens, has long been known to be a synonym of Chaetosphaeria vermicularioides (syn. Melanopsammella vermicularioides), a species that is congeneric with M. inaequalis, the type of Melanopsammella (Réblová & Winka 2000, Fernández et al.
The type species of *Gonytrichum*, *G. caesium*, is the asexual morph of *M. inaequalis* (Hughes 1951), thus *Chloridium*, *Gonytrichum* and *Melanopsammella* are synonyms. Over 60 names have been placed in *Chloridium*, the most well-known of these three generic names. *Chloridium* was monographed by Gams & Holubová-Jechová (1976), however, many of these names have been removed to other genera. *Gonytrichum* includes over 20 species while *Melanopsammella* consists of five species, two of which already have names in *Chloridium* (Réblová et al. 1999, Réblová 2000). *Melanopsammella* has been distinguished from *Chaetosphaeria* by several authors (Réblová & Winika 2000, Fernández & Huhndorf 2005, Fernández et al. 2006, Crous et al. 2012). Given the widespread use of *Chloridium* and its priority, the generic name *Chloridium* is recommended for use.

New combinations:

Chloridium caesium (Nees) Réblová & Seifert, comb. nov.
MycoBank MB816825
Basionym: *Gonytrichum caesium* Nees, Nova Acta Phys.-Med. Acad. Caes. Leop.-Carol. Nat. Cur. 9: 244 (1818).
Synonyms: *Eriosphearia inaequalis* Grove, J. Bot., Lond. 24: 132 (1886).
Melanopsammella inaequalis (Grove) Höhn., Ann. Mycol. 17: 121 (1920).

Chloridium chloroconium (W. Gams & Hol.-Jech.) Réblová & Seifert, comb. nov.
MycoBank MB816826
Basionym: *Chaetosphaeria chloroconia* W. Gams & Hol.-Jech., Stud. Mycol. 13: 86 (1976).
Synonyms: *Melanopsammella chloroconia* (W. Gams & Hol.-Jech.) Réblová et al., Sydowia 51: 65 (1999).
Gonytrichum chlamydosporium G.L. Barron & G.C. Bhatt, *Mycopath.* Mycol. appl. 32: 126 (1967).

Because the name *Chloridium chlamydosporium* (J.F.H. Beyma) S. Hughes 1958 already exists, and refers to a different taxon, the next older epithet for this species is taken up and placed in *Chloridium*.

Chloridium gonytrichii (F.A. Fernández & Huhndorf) Réblová & Seifert, comb. nov.
MycoBank MB816827
Basionym: *Melanopsammella gonytrichii* F.A. Fernández & Huhndorf, *Fungal Diversity* 18: 42 (2005).

Crous et al. (2012) showed that this species is closely related to *Chloridium virescens* as *Melanopsammella vermicularioides*.

Use *Menispora* Pers. (A) 1822 rather than *Zignoëlla* Sacc. 1878 (S)

The genus *Menispora* is typified by *M. glauca*, which has a sexual morph referred to as *Chaetosphaeria glauca* (Holubová-Jechová 1973a), which is a synonym of the earlier name *Zignoëlla ovoidea*. The type of *Zignoëlla* is *Z. pulviscula*, which has an asexual morph known as *Menispora caesia* (Booth 1957, Constantinescu et al. 1995). Fernández et al. (2006) demonstrated that *Zignoëlla* is distinct from *Chaetosphaeria* based on *C. innumera* and that *Z. pulviscula* and *Z. ovoidea* are congeneric, thus *Menispora* and *Zignoëlla* are synonyms. Like *Chaetosphaeria*, *Zignoëlla* has been used as a repository for species that have a similar morphology, namely black non-stromatic ascomata with a papilla and hyaline, septe ascospores, but are phylogenetically diverse. Given the lack of characterization of *Zignoëlla*, the greater use of *Menispora*, and following the principle of priority, *Menispora* is recommended for use.

Use *Menisporopsis* S. Hughes 1952 (A) rather than *Menisporopascus* Matsush. 2003 (S)
The monotype species of *Menisporopascus*, *M. kobensis*, was described for the asexual morph *Menisporopsis kobensis*. Because *M. kobensis* is congeneric with the type species of *Menisporopsis*, *M. theobromae*, as indicated by Rodrigues de Cruz et al. (2014), *Menisporopsis* and *Menisporopascus* are synonyms. *Menisporopsis* includes 10 names, is widely known, and has priority, therefore, the use of *Menisporopsis* is recommended.

Use *Sporoschisma* Berk. & Broome 1847 (A) rather than *Melanochaeta* E. Müll. et al. 1969 (S)
The genus *Sporoschisma*, typified by *S. mirabile*, is considered the asexual morph of *Melanochaeta aotearoae*, while the type of *Melanochaeta*, *M. hemipsila*, is the sexual morph of *S. saccardoi*, now considered a synonym of *S. hemipsila* (Sivichai et al. 2000, Zelski et al. 2014a). *Sporoschisma mirabile* and *S. hemipsila* were shown to be congeneric (Fernández et al. 2006), thus *Sporoschisma* and *Melanochaeta* are synonyms. Of the five species in *Melanochaeta*, four have *Sporoschisma* asexual morphs (Sivichai et al. 2000, Mugambi & Huhndorf 2008). *Sporoschisma* includes 23 names, some of which have been placed elsewhere. If *Melanochaeta* were used, many name changes would be required. Based on priority and fewer number of name changes, we follow Zelski et al. (2014a) and recommend the use of *Sporoschisma* for this genus.

New combinations:

Sporoschisma daemonoropis (J. Fröhl. & K.D. Hyde) A.N. Mill., comb. nov.
MycoBank MB816828
Basionym: *Melanochaeta daemonoropis* J. Fröhl. & K.D. Hyde, *Palm Microfungi* 235 (2000).

Sporoschisma taitense (Mugambi & Huhndorf) A.N. Mill., comb. nov.
MycoBank MB816829
Basionym: *Melanochaeta taitensis* Mugambi & Huhndorf, *Sydowia* 60: 263 (2008).

A *Sporoschisma* asexual morph was noted to occur with this type specimen.
Use Stanjehughesia Subram. 1992 (A) rather than Umbinosphaeria Réblová 1999 (S)
Stanjehughesia hormiscioideis, type of Stanjehughesia, was established with cultivation techniques as an asexual morph of Umbinosphaeria caesariaita, the monotype species of Umbinosphaeria (Réblová 1999), therefore Stanjehughesia and Umbinosphaeria are synonyms. In exploring species of Sporidesmium, Shenoy et al. (2006) demonstrated the polyphyletic nature of Stanjehughesia; however, 15 species have been described in that genus and the name is well-known. Given its priority, we recommend the use of Stanjehughesia.

Coniochaetales

Use Coniochaeta (Sacc.) Cooke 1887 (S) rather than Lecythophora Nannf. 1934 (A)
The genus Coniochaeta, typified by C. ligniaria, was shown to be congeneric with Lecythophora, typified by L. lignicola (Weber et al. 2002, Damm et al. 2010, Khan et al. 2013, Perdomo et al. 2013). Coniochaeta is a well-known genus with almost 100 names while Lecythophora includes nine names, two of which are linked to species of Coniochaeta. These fungi are known as endophytes, pathogens of woody trees, saprobes in terrestrial and freshwater habitats (Raja et al. 2012) and, to a lesser degree, human pathogens (Damm et al. 2010). Both Khan et al. (2013) and Perdomo et al. (2013) include species of Lecythophora in a clade with the type species of Coniochaeta. Given the number of species, its widespread use, following the principle of priority, and in agreement with Khan et al. (2013), Coniochaeta is recommended for use.

Conioscyphales

Use Conioscypha Höhn. 1904 (A) rather than Conioscyphascus Réblová & Seifert 2004 (S)
The genus Conioscypha, with C. lignicola as type species, includes 13 species from terrestrial and freshwater habitats. The genus Conioscyphascus, typified by Ca. varius, was originally established for fungi with Conioscypha asexual morphs (Réblová & Seifert 2004a). The two sexual species, Ca. gracilis with C. gracilis as its asexual morph and Ca. varius with C. varia, were recently placed in Conioscypha (Zelksi et al. 2014b, Réblová et al. 2016). Although C. lignicola and 10 other species of Conioscypha are known only in their asexual morph, using DNA sequence data and cultivation studies, the link between sexual and asexual morphs has been experimentally proven for C. peruviana (Zelksi et al. 2014b) and C. varia (Réblová & Seifert 2004a). Such a link has not yet been confirmed for the third species known to have a sexual morph, C. gracilis, however, conidia were observed on the substratum near ascomata (Réblová & Seifert 2004a, Zelski et al. 2014b). The molecular data clearly show that Conioscypha and Conioscyphascus are congeneric (Réblová & Seifert 2004a). Based on priority and the greater number of species, the name Conioscypha is recommended for use.

Cordanales

Use Cordana Preuss 1851 (A) rather than Pseudobotrytis Krzemien. & Badura 1954 (A) or Porosphaerella E. Müll. & Samuels 1982 (S)
The type species of Cordana, C. pauciseptata, was linked to a sexual morph described as Porosphaerella cordanophora, type of Porosphaerella (Müller & Samuels 1982), thus these generic names are synonyms. Cordana is a well-known asexual genus that includes 22 names while three species have been placed in Porosphaerella. Réblová and Seifert (2007) showed that P. borinquensis and P. cordanophora are closely related despite the fact that P. borinquensis has an asexual morph regarded as Pseudobotrytis terrestris which Hernández-Restrepo et al. (2014) recognized as Cordana terrestris including Porosphaerella borinquensis as a synonym. They also considered the type species of Pseudobotrytis, P. fusca, to be a synonym of C. terrestris, thus this generic name with four species is also a synonym of Cordana. Given its priority, fewer number of name changes required, and widespread use, we recommend the use of Cordana rather than Pseudobotrytis or Porosphaerella.

Coronophorales

Protect Chaetosphaerella E. Müll. & C. Booth 1972 (S) over Oedemium Link 1824 (A) and rather than Veramycina Subram. 1995 (A)
The genus Chaetosphaerella, typified by C. phaeostroma, has an asexual morph regarded as Oedemium minus (Booth 1958, Réblová 1999). The type species of Oedemium, O. atrum as O. didymium, is the asexual morph of Chaetosphaerella fusca (Ellis 1971). These two species of Chaetosphaerella were shown to be congeneric (Mugambi & Huhndorf 2010), thus Chaetosphaerella and Oedemium are synonyms. Veramycina elegans, the monotype species of Veramycina, was regarded as a later name for the asexual morph of C. phaeostroma (Réblová 1999), thus this generic name is also a synonym of Chaetosphaerella. Because Veramycina has been rarely used, that name is not a contender for use, however, the decision of whether to use Oedemium or Chaetosphaerella is more difficult. The genus Oedemium was clarified and monographed including two species by Hughes & Hennebert (1963) both of which have been linked with Chaetosphaerella. Although more species have been described in Oedemium, some have been placed elsewhere and others remain obscure. Chaetosphaerella has been placed phylogenetically in Chaetosphaerellaceae, Coronophorales (Mugambi & Huhndorf 2010). In the past decade Chaetosphaerella appears in the literature much more frequently than Oedemium, thus we recommend Chaetosphaerella for protection.

Glomerellales

Use Colletotrichum Corda 1837 (A) rather than Glomerella Spauld. & Schrenk 1903 (S)
The genus Colletotrichum, typified by C. lineola, is a large genus with 817 epithets (Index Fungorum 2016), many of which are considered plant pathogens. The number of
accepted species has varied over the decades with most species previously considered to be host-specific. Based on von Arx (1957) in which several hundred names were placed in synonymy with C. gloeosporioides, the number of species in Colletotrichum decreased to 11. Sutton (1980) included about 22 species in Colletotrichum for which he provided a key. With the use of molecular sequence data, the number of recognized species has increased with some species determined to be host-specific while others have a broad host range (Rojas et al. 2010, Damm et al. 2009, 2012, Weir et al. 2012). The type species, Colletotrichum lineola, had long been considered to be a synonym of C. dematium but was recently recognized as a distinct species in the C. dematium species complex (Damm et al. 2009, Cannon et al. 2012). Meanwhile, the sexual morphs of Colletotrichum were placed in the genus Glomerella, typified by G. cingulata, which has been considered the sexual morph of C. gloeosporioides. Recently this relationship has been questioned with C. gloeosporioides and G. cingulata regarded as distinct species in the C. gloeosporioides species complex (Weir et al. 2012). Over 100 names have been described in Glomerella, many of which have names in Colletotrichum. Although considered different species, there is no question that Colletotrichum and Glomerella represent the same genus.

Use of Colletotrichum over Glomerella is recommended for use for several reasons. Species of Colletotrichum are mainly associated with plants as endophytes and pathogens and have been thoroughly studied. In contrast, their sexual morphs regarded as Glomerella tend to occur on dead plant material and are less frequently encountered (Cannon et al. 2012). Colletotrichum is the older generic name and is well established in the plant pathological and plant breeder literature (Cannon et al. 2012). Preference has been given to Colletotrichum by several groups working on this genus (Cannon et al. 2012, Maharachchikumbura et al. 2015) based on its widespread use, greater number of names, and priority.

Use Cylindrotrichum Bonord. 1851 (A) rather than Reticulascus Réblová & W. Gams 2011 (S)
The type species of Cylindrotrichum, C. oligospermum, was shown to represent the asexual morph of Chaetosphaeria tulasneorum, the type species of Reticulascus (Réblová & Gams 1999, Réblová et al. 2011a), thus the generic names Cylindrotrichum and Reticulascus are synonyms. Cylindrotrichum includes 23 names (Rambelli & Onofri 1987) while Reticulascus includes only two names. Between these two generic names, Cylindrotrichum is the most widely known. Given its widespread use, priority, and greater number of names, we recommend the use of Cylindrotrichum rather than Reticulascus.

Use Monilochaetes Halst. ex Harper 1916 (A) rather than Australiasca Sivan. & Alcorn 2002 (S)
The type species of Monilochaetes, M. infuscans, was shown to be congeneric with Australiasca queenslandica, the type species of Australiasca (Réblová et al. 2011a). The two species described in Australiasca have names in Monilochaetes, thus, if the older name Monilochaetes is used, no name changes are required. This generic name includes six species and has priority, thus Monilochaetes is recommended for use.

Use Plectosphaerella Kleb. 1929 (S) rather than Plectosporium M.E. Palm et al. 1995 (A)
The genus Plectosporium, typified by P. tabacinum, was established for the asexual morph of species Plectosphaerella of which the type species, P. cucinermis, is the name applied to the sexual morph of Plectosporium tabacinum (Palm et al. 1995), thus Plectosphaerella and Plectosporium are synonyms. Plectosphaerella cucinermis is known as the cause of fruit and collar rot, and collapse of several crops including melons (Carlucci et al. 2012). Plectosphaerella includes 14 names while four species have been placed in Plectosporium. Carlucci et al. (2012) provided a molecular account of Plectosphaerella in the Plectosphaerellaceae and transferred species of Plectosporium to Plectosphaerella. Given its priority, greater number of names, economic importance, and recent account of the genus, the use of Plectosphaerella is recommended.

Use Sporoschismopsis Hol.-Jech. & Hennebert 1972 (A) rather than Porosphaerellopsis Samuels & E. Müll. 1982 (S)
The generic name Sporoschismopsis was introduced by Holubová-Jechová & Hennebert (1972) with S. moravica as type species and it now includes eight names (Holubová-Jechová 1973b). The generic name Porosphaerellopsis, typified by P. sporoschismophora (Samuels & Müller 1978, Müller & Samuels 1982), was established for the sexual morphs of Sporoschismopsis. Porosphaerellopsis sporoschismophora was transferred to Sporoschismopsis (Réblová 2014) while a second species, P. bipolaris described by Rangehoo et al. (2001), was excluded from the genus. Another sexual morph was experimentally proven for S. angustata (Réblová 2014). Based on DNA sequence data, the two asexual morphs, S. angustata and S. sporoschismophora, form a strongly supported monophyletic clade in the Reticulascaceae, Glomerellales. Given that S. angustata, S. moravica, and S. sporoschismophora are congeneric, the generic names Sporoschismopsis and Porosphaerellopsis are synonyms. Based on priority and the greater number of species, Sporoschismopsis is recommended for use.

Halosphaeriales

Use Corollospora Werderm. 1922 (S) rather than Varicosporina Meyers & Kohlm. 1965 (A) and Halosigoidea Nakagiri et al. 2009 (A)
Although the type species of Corollospora, C. maritima, does not appear to have an asexual morph in Varicosporina, a number of species of Corollospora are linked to varicosporina-like asexual morphs. Abdel-Wahab et al. (2009) showed that the type of Varicosporina, V. ramulosa, groups within Corollospora, thus Corollospora and Varicosporina are synonyms. The type species of Halosigoidea, H. luteola as Sigoidea luteola, was shown by culture techniques to be the asexual morph of Corollospora luteola (Nakagiri & Tokura, 1982). Jones et al. (2009) demonstrated that the three marine species
recognized in Halosigmaidea grouped with Corollospora, thus Halosigmaidea is also a synonym of Corollospora. Over 20 species are included in Corollospora while only three names have been described in Varicosporina, two of which have names in Corollospora, and only three names were included in Halosigmaidea. Given the number of names, widespread use, and priority, we recommend the use of Corollospora.

New combinations:

Corollospora marina (Haythorn & E.B.G. Jones)
E.B.G. Jones, K.L. Pang & Abdel-Wahab, **comb. nov.**
MycoBank MB816830
Basionym: Sigmoidea marina Haythorn & E.B.G. Jones, *Trans. Brit. Mycol. Soc.* 74: 620 (1980).
Synonym: Halosigmaidea marina (Haythorn & E.B.G. Jones) Nakagiri et al., *Bot. Mar.* 52: 355 (2009).

Corollospora parvula (Zuccaro et al.) E.B.G. Jones, K.L. Pang & Abdel-Wahab, **comb. nov.**
MycoBank MB816831
Basionym: Halosigmaidea parvula Zuccaro et al., *Bot. Mar.* 52: 355 (2009).

Corollospora ramulosa (Meyers & Kohlm.) E.B.G. Jones & Abdel-Wahab, **comb. nov.**
MycoBank MB816832
Basionym: Varicosporina ramulosa Meyers & Kohlm., *Canad. J. Bot.* 43: 916 (1965).

Melanosporales

Use Melanospora Corda 1836 (S) rather than Gonatobotrys Corda 1839 (A)
The type species of Melanospora, *M. zamiae*, has been shown to be congeneric with *G. damnosa* (Cannon & Hawksworth 1982), of which the type species of Gonatobotrys, *G. simplex*, is considered a synonym (Vakili 1989). Given the widespread use of Melanospora, its priority, and the 120 names in Melanospora while Gonatobotrys includes only 32 names, Melanospora is recommended for use.

New combination:

Melanospora simplex (Corda) D. Hawksw., **comb. nov.**
MycoBank MB816833
Basionym: Gonatobotrys simplex Corda, *Prachtflora*: 9 (1839).
Synonyms: Sphaerodermia damnosum Sacc. & Berl., *Riv. Patol. Veg.* 4: 56 (1896) [*1895*].
Melanospora damnosa (Sacc.) Lindau, *Nat. Pflanzenfam.* 1 (1*): 353 (1897).

Microascales

Use Knoxdaviesia M.J. Wingf. et al. 1988 (A) rather than Gondwanamycoses G.J. Marais & M.J. Wingf. 1998 (S)

Knoxdaviesia proteae, type of the genus Knoxdaviesia, was described as the asexual morph of *Ceratocystisiporia proteae*, a species that was later placed in the genus *Gondwanamycoses* as the type species, thus Knoxdaviesia and Gondwanamycoses are synonyms. Both generic names have been used about equally. In agreement with de Beer et al. (2013), the use of the oldest name, Knoxdaviesia, is recommended.

Use Sphaeronaemella P. Karst. 1884 (S) rather than Gabarnaudia Samson & W. Gams 1974 (A)
The type species of Sphaeronaemella, *S. helvellae*, is congeneric with the type species of Gabarnaudia, *G. betae*, described as the asexual morph of *S. fimicola* (Samson 1974). Confirmed by molecular data (Hausner & Reid 2004), these generic names are synonyms. Five species of Gabarnaudia have been placed in Sphaeronaemella (De Beer et al. 2013), a genus with 30 species. Sphaeronaemella is most commonly used and has priority, thus we recommend the use of Sphaeronaemella.

Phyllachorales

Use Diachora Müll. Arg. 1893 (S) rather than Diacharella Höhn. 1918 (A)
The generic names Diachora, typified by *D. onobrychidis*, and Diacharella, typified by *D. onobrychidis*, are apparently based on the same type specimen, thus these names are synonyms. Diachora is considered a name for the sexual morph while Diacharella represents the asexual morph. Both generic names include less than ten species. Müller (1986) and Cannon (1991) reviewed species in these genera including the type species. Because Diachora is more widely known and has priority, we recommend that name for use.

Use Ophiodothella (Henn.) Höhn. 1904 (S) rather than Acerviclypeata Hanlin 1990 (A)
The genus Ophiodothella, typified by *O. atromaculans*, and *D. onobrychidis*, are apparently based on the same type specimen, thus these names are synonyms. Ophiodothella is considered a name for the sexual morph while Acerviclypeata represents the asexual morph. Both generic names include less than ten species. Müller (1986) and Cannon (1991) reviewed species in these genera including the type species. Because Acerviclypeata is more widely known and has priority, we recommend that name for use.

Use Polystigma DC 1815 (S) rather than Polystigmina Sacc. 1884 (A) and Rhodoceptoria Naumov 1913 (A)
The generic names Polystigma, typified by *P. rubrum*, and Polystigmina, typified by *P. rubrum*, are based on the same basionym of their respective type species and, therefore, are synonyms for the sexual and asexual morphs. Cannon (1996) monographed Polystigma including five species on *Prunus* among others. He also noted that the type species of the monotypic Rhodoceptoria was a synonym of Polystigma.
rubra, thus that generic name is also a synonym of Polystigma. Several species of Polystigma cause diseases such as red blotch of almonds caused by *P. amygdalinum* and red leaf spot of plum caused by *P. rubrum* (Habibi et al. 2015). All but two of the seven taxa placed in Polystigmata are synonyms of Polystigma rubra while Polystigma includes over 50 species. Given the greater number of species, its widespread use, economic importance, and priority, we recommend the use of Polystigma.

Use *Pseudothiella* Petr. 1928 (S) rather than *Pseudothiopsella* Petr. 1928 (A)
The monotypic generic names *Pseudothiella*, typified by *P. hirtellae*, and *Pseudothiopsella*, typified by *P. hirtellae*, were described at the same time for sexual and asexual morphs of the same species, thus they are synonyms with equal priority. *Pseudothiella* has been used slightly more often than *Pseudothiopsella* (Furlanetto & Dianese 1998), therefore we recommend use of *Pseudothiella*.

Pleurotheciales

Use *Pleurothecium* Höhn. 1919 (A) rather than *Carpoligna* F.A. Fernández & Huhndorf 1999 (S)
The genus *Pleurothecium* is typified by *P. recurvatum*. A sexual morph is known for *P. recurvatum* for which the monotypic generic name *Carpoligna*, typified by *C. pleurotheci*, was introduced (Fernández et al. 1999). Of the eight species assigned to the genus *Pleurothecium*, only three have DNA sequence data. *Pleurothecium recurvatum* and *P. semifecundum* form a strongly supported monophyletic clade in the *Pleurotheciales* and represent the core of the genus (Réblová et al. 2016), while *P. obovoideum* (Arzanlou et al. 2007) is nested in the same order but within another clade. Given its priority and greater number of species, *Pleurothecium* is recommended for use.

Savoryellales

Use *Canalisporium* Nawawi & Kuthub. 1989 (A) rather than *Ascothailandia* Sri-indr. et al. 2010 (S)
The genus *Canalisporium*, typified by *C. caribense*, includes 12 species (Nawawi & Kuthubuthen 1989). A sexual morph was described for *C. grenadoideum* and linked to the monotypic genus *Ascothailandia*, typified by *A. grenadoidea* (Sri-indrasudithi et al. 2010). The link between sexual and asexual morphs of this species was confirmed experimentally in axenic culture. Six species of *Canalisporium*, including the type species, were the subject of phylogenetic analysis based on DNA sequence data of three nuclear loci by Sri-indrasudithi et al. (2010) who confirmed that *Ascothailandia* and *Canalisporium* are congeneric. Based on priority and the greater number of species, the generic name *Canalisporium* is recommended for use.

Sordariales

Use *Chaetomium* Kunze 1817 (S) rather than *Trichocladium* Harz 1871 (A), *Botryotrichum* Sacc. & Marchal 1885 (A), or *Humicola* Traen 1914 (A)
Chaetomium, typified by *C. globosum*, is a well-known genus of cellulose-decomposing fungi some of which cause diseases of humans. The sexual morph of *Botryotrichum piliferum*, type of the asexual genus *Botryotrichum*, was described as *Chaetomium piliferum* (Daniels 1961). Later this species was confirmed to be congeneric with *C. globosum* (Untereiner et al. 2001, Nonaka et al. 2012), thus *Chaetomium* and *Botryotrichum* are synonyms. Although sexual states have not been discovered for the type of *Humicola*, *H. fuscoatra* or related species such as the common *H. grisea*, nuc28S rDNA sequences place these species within the present concept of *Chaetomium*. The type of *Trichocladium*, *T. asperum*, also lacks a sexual morph and occurs in the same clade (Hambleton et al. 2005). Over 500 names have been described in *Chaetomium*. *Botryotrichum* currently includes eight species. *Humicola* and *Trichocladium* each include about 20 species, but both are phylogenetically heterogeneous and most species belong to different clades. Given its extensive use and economic importance, its priority, and the greater number of species, we recommend the use of *Chaetomium*.

Use *Lasiosphaeris* Clem. 1909 (S) rather than *Lasiadelphia* Réblová & W. Gams 2011 (A)
The genus *Lasiosphaeris* was described by Clements (1909) with *L. hispida* as its type species. The name was reestablished by Miller & Huhndorf (2004) for species segregated from *Lasiosphaeria* based on nuc28S rDNA sequences. Two species were accepted in the genus: *L. hispida* and *L. hirsuta*. Gams & Holubová-Jechová (1976) introduced Phialophora sect. Catenulatae, typified by the dematiaceous species *Phialophora lasiosphaeriae*, the asexual morph experimentally proven for *L. hispida* (as *L. hirsuta*, Gams & Holubová-Jechová 1976, Gams 2000). Réblová et al. (2011b) described the generic name *Lasiadelphia* with *L. lasiosphaeriae* as the type species for the asexual morph of *Lasiosphaeris hispida*. Therefore, the type species of *Lasiosphaeris* and *Lasiadelphia* are morphs of the same species and the generic names are synonyms. Based on priority and the greater number of species, the generic name *Lasiosphaeris* should be used.

Use *Mammaria* Rabenh. 1854 (A) rather than *Pseudocercophora* Subram. & Sekar 1986 (S)
The genus *Mammaria*, typified by *M. echinobotryoides*, includes two names while the monotypic genus *Pseudocercophora*, typified by *P. ingoldii*, was described for the sexual morph of *M. echinobotryoides*, thus these generic names are synonyms. If the principle of priority is followed, no names changes are required, thus, the use of *Mammaria* is recommended.

Use *Neurospora* Shear & B.O. Dodge 1927 (S) rather than *Chrysonilia* Arx 1981 (A)
The genus *Neurospora*, typified by *N. sitophila*, includes the well-known model organism, *N. crassa*. The asexual
morph of the type species was described in Chrysoriniia with C. sitophila as the type species. There is no question that Neurospora and Chrysoriniia are generic synonyms (von Arx 1981). At present Neurospora includes 57 names while only three names have been placed in Chrysoriniia, all of which also have names in Neurospora. Given its priority, the number of species, and its widespread use, it is recommended that Neurospora be used rather than Chrysoriniia.

Use Stromatographium Henn. 1907 (A) rather than Fluviostra Z. Samuels & E. Mül. 1980 (S)
The genus Stromatographium, typified by S. stromaticum, is the asexual state of Fluviostra wrightii, monotype species of Fluviostra (Samuels & Müller 1980). Seifert (1987) clarified the confusion between Stromatographium and Stromatostilbella and showed that the asexual morph of F. wrightii belongs in Stromatographium. Given its greater use and priority, we recommend the use of Stromatographium.

Togniniales

Protect Phaeoacremonium W. Gams 1996 (A) over Togninia Berl. 1900 (S) and Romellia Berl. 1900 (S)
The genus Phaeoacremonium was established for P. parasiticum, first described causing phaeohyphomycosis in humans, but also causing wilts in tropical trees and an economically important disease of grapevine known as esca disease (Hawksworth et al. 1976, Crous et al. 1996). Once this genus was described, a number of species were discovered and placed in Phaeoacremonium. Based on phylogenetic analysis and mating studies, sexual morphs were found for these species in Togninia, formerly attributed to Calosphaeriales (Mostert et al. 2003). Species of Phaeoacremonium are known as vascular plant pathogens such as esca and Petri disease of grapevine as well as human pathogens. Two monographic accounts of Phaeoacremonium have been published (Mostert et al. 2006, Réblová et al. 2015). Gramaje et al. (2015) formally proposed to protect the name Phaeoacremonium against Togninia because although Togninia has 26 epithets, half have not been reported since their description, and only nine species have been experimentally linked with Phaeoacremonium. Phaeoacremonium includes 46 species of which all are known from culture and their DNA data are available. Also Phaeoacremonium is favoured by plant pathologists and medical mycologists and is well established in the literature. All required new combinations were made in Gramaje et al. (2015). The type species of Romellia, R. vibratii, was sequenced and placed in Togninia by Réblová & Mostert (2007) and recently moved to Phaeoacremonium by Gramaje et al. (2015). Three of the four species of Romellia have since been placed elsewhere. Thus, because it is widely used and has the greatest number of species, we recommend the protection of Phaeoacremonium over Togninia and Romellia.

Torpedosporales

Use Juncigena Kohlm. et al. 1997 (S) rather than Moheitospora Abdel-Wahab et al. 2010 (A)
The monotypic genus Juncigena is typified by J. adarca for which an asexual morph was described as Cirrenalia adarca (Kohlmeier et al. 1997). Later the asexual species was placed in the genus Moheitospora as M. adarca along with the type species, M. fruticosae (Abdel-Wahab et al. 2010), thus Juncigena and Moheitospora are synonyms. Although one name change would be required, Juncigena has priority and has greater use in the literature, thus it is recommended that Juncigena be used. Schoch et al. (2007) showed that this genus belongs in Hypocreomycetidae and later Jones et al. (2015) placed it in Juncigenaceae, Torpedosporales.

New combination:
Juncigena fruticosae (Abdel-Wahab et al.) A.N. Mill. & Shearer, comb. nov.
Mycobank MB816834
Basionym: Moheitospora fruticosae Abdel-Wahab et al., Mycol. Progr. 9: 551 (2010).

Use Torpedospora Meyers 1957 (S) rather than Glomerulispora Abdel-Wahab & Nagah. 2010 (A)
The monotype species of Glomerulispora, G. mangrovei, groups with the two species of Torpedospora such that these generic names are considered synonyms (Abdel-Wahab et al. 2010, Jones et al. 2015). These species are marine fungi found on driftwood throughout the world. Given the widespread use of Torpedospora and its priority, use of Torpedospora is recommended.

New combination:
Torpedospora mangrovei (Abdel-Wahab & Nagah.) E.B.C. Jones & Abdel-Wahab, comb. nov.
Mycobank MB816835
Basionym: Glomerulispora mangrovei Abdel-Wahab & Nagah., Mycol. Progr. 9: 553 (2010).

Xylariales

Use Arthrinium Kunze 1817 (A) rather than Apiospora Sacc. 1875 (S), Pteroconium Sacc. ex Grove 1914 (A), and Scyphospora L.A. Kantsch 1928 (A)
Species in the genus Arthrinium are widespread and commonly encountered as saprobes and secondary invaders especially on monocotyledonous plants. The common species, A. arundinis, is the name typified by the sexual morph of the type species of Apiospora, A. montagnei (Müller & Arx 1962). Less is known about the type species of Arthrinium, A. caricicola, but this species is assumed to be congeneric with A. arundinis (Crous & Groenewald 2013), although they were unable to find material to include in their molecular phylogeny. Crous & Groenewald (2013) also showed that Pteroconium asteroides, type of Pteroconium,
is a synonym of Arthrinium. Samuels et al. (1981) suggested that Scyphospora phylostachydis was the asexual morph of Apiospora tintinnabula, now Arthrinium hysterinum, thus Scyphospora is a synonym of Arthrinium. In agreement with both Crous & Groenewald (2013) and Senanayake et al. (2015), Arthrinium has priority and is the most widely used of these generic names, thus use of Arthrinium is recommended.

Although Hughes (1958) followed by Ellis (1965), Samuels et al. (1981) and Crous & Groenewald (2013) suggested that Cordella is a synonym of Arthrinium, this is based on the assumption that C. coniosporioides is the type species. Cordella was described with two species without indicating a type. Clements & Shear (1931) were the first to select a type species for Cordella and they list C. spinulosa, a species that Hughes (1958) placed in Melanographium, thus Cordella is not a synonym of Arthrinium.

Based on the molecular sequence data provided by Crous & Groenewald (2013), Apiospora sinensis is placed in Arthrinium.

New combination:

Arthrinium sinense (K.D. Hyde et al.) Crous & J.Z. Groenew., **comb. nov.**

MycoBank MB816836

Basionym: **Apiospora sinensis** K.D. Hyde et al., Sydowia 50: 27 (1998).

In addition a nomenclator is provided for *Arthrinium hysterinum* because of confusion about the correct name for this species and its numerous synonyms. Previously recognized in *Apiospora* by Tang et al. (2007), Kirk (1986) and Sivanesan (1983), Crous & Groenewald (2013) and Senanayake et al. (2015) included *Apiospora bambusae*, *A. setosa* and *A. tintinnabula* as synonyms within the genus Arthrinium. The correct name for this species is Arthrinium hysterinum with the synonyms listed below:

Arthrinium hysterinum (Sacc.) P.M. Kirk, **Trans. Brit. Mycol. Soc.** 86: 409 (1986).

Basionym: **Melanconium hysterinum** Sacc., **Bolm Soc. broteriana, Coimbra**, sér. 1 11: 21 (1893).

Synonyms: **Scyphospora hysterina** (Sacc.) Sivan., **Trans. Brit. Mycol. Soc.** 81: 331 (1983).

Melanconium bambusae Turconi, **Atti Ist. bot. R. Univ. Pavia**, sér. 2 16: 251 (1916).

Scirhia bambusae Turconi, **Atti Ist. bot. R. Univ. Pavia**, sér. 2 16: 531 (1916).

Scirhodothis bambusae (Turconi) Trotter, in Saccardo, **Syll. Fung.** 24: 611 (1926).

Placostroma bambusae (Turconi) R. Sprague, **Diseases Cereals Grasses N. Amer.**: 121 (1950).

Apiospora bambusae (Turconi) Sivan., **Trans. Brit. Mycol. Soc.** 81: 331 (1983).

Scyphospora phylostachydis L.A. Kantsch., **Bolêz. Rast.** 17: 88 (1928).

Cordella johnstonii M.B. Ellis, **Mycol. Pap.** 103: 31 (1965).

Apiospora setosa Samuels et al., **New Zealand J. Bot.** 19: 142 (1981).

Apiospora tintinnabula Samuels et al., **New Zealand J. Bot.** 19: 142 (1981).

Use **Colodiscula I. Hino & Katum. 1955 (S)** rather than **Acanthodochium Samuels et al. 1987 (A)**

The genus Collodiscula, typified by *C. japonica*, was linked to Acanthodochium collodisculae, type of Acanthodochium, by Samuels et al. (1987), who considered these names morphs of the same species, thus these generic names are synonyms. Three species have been added to Collodiscula (Li et al. 2015a, b). Given that this generic name has priority and includes four species, the use of Collodiscula is recommended.

Use **Daldinia Ces. & De Not. 1863 (S)** rather than **Annellosporium M.L. Davey 2010 (A) or Versiomyces Whalley & Watling 1989 (S)**

The genus Daldinia, typified by *D. concentrica*, has recently been monographed by Stadler et al. (2014). They showed that the monotype species of Annellosporium, *A. nemorosa*, belongs in Daldinia as *D. nemorosa*, thus Daldinia and Annellosporium are synonyms. They also showed that the monotype species of Versiomyces, *V. cahuchucous*, belongs in Daldinia as *D. cahuchucous*, thus Versiomyces is a synonym of Daldinia. Daldinia is a well-known genus with many species and has priority, thus it is recommended for use.

Protect **Diatrype Fr. 1849 (S) over Libertella Desm. 1830 (A)**

The genus Diatype, typified by *D. disciformis*, includes over 500 names (Index Fungorum 2016), some of which cause canker diseases of hardwoods such as *D. stigma* associated with diseased grapevines (Rolshausen et al. 2006). Libertella betulina, type of the genus Libertella, is known to be the asexual morph of Diatype stigma (Grove 1937, Kutorga et al. 2006) and *D. disciformis* has an asexual morph described as *L. disciformis*. Trouillas et al. (2010b) showed that *D. disciformis* and *D. stigma* are congeneric, thus Diatype and Libertella are synonyms. Because Diatype is widely known, has a greater number of species, and includes important plant pathogenic fungi, Diatype is recommended for protection over Libertella.

Use **Hypocreodendron** Hoffm. 1897 (A) rather than **Discoxyllaria J.C. Lindq. & J.E. Wright 1964 (S)**

Hypocreodendron is a monotypic genus based upon *H. sanguineum* for which Lindqvist & Wright (1964) introduced the monotypic genus Discoxyllaria, typified by *D. myrmecophila*, as the sexual morph. Rogers et al. (1995) observed a specimen of *D. myrmecophila* that bore both conidial and mature perithecial morphs. They compared their collection with the holotype specimen and obtained the conidial morph in culture initiated from ascospores to demonstrate that these were alternate morphs of the same species. Thus, Hypocreodendron and Discoxyllaria are synonyms. In agreement with Stadler et al. (2013), Maharachchikumbura et al. (2015), and priority, we recommend the use of Hypocreodendron.
Use Hypoxylon Bull. 1791 (S) rather than Nodulisporium Preuss 1849 (A)
The genus Hypoxylon, typified by _H. fragiforme_, is a well-known group of stromatic ascomycetes on rott ing wood. Although a number of segregate genera are now recognized such as Annulohypoxylon, Biscogniauxia, and Neman ia, many species still remain within Hypoxylon sensu stricto (Hsieh et al. 2005). Von Arx (1982), _ide Deighton (1985), demonstrated the relationship of the asexual morph _Nodulisporium ochraceum_, type of _Nodulisporium_, to Hypoxylon fragiforme, thus these generic names are synonyms. Other species of _Nodulisporium_ have been placed in various genera suggesting the artificial circumscription of this genus. Given the widespread use of Hypoxylon, the number of names, and priority, the use of Hypoxylon is recommended.

Use Microdochium Syd. & P. Syd. 1924 (A) rather than Monographella Petr. later in 1924 (S)
The genus Microdochium, typified by _M. phragmitis_, was published a few months later than Monographella, typified by _M. divergens_, now regarded as a synonym of _Microdochium nivale_. Hernández-Restrepo et al. (2016) recognized the synonym of Microdochium and Monographella and considered Microdochium to be the best generic name to use for these fungi because Microdochium included more species and was more widely known than Monographella. They added six species to the 31 names in the genus Microdochium while Monographella includes only 15 names. In addition they epitypified the type of Microdochium, _M. phragmitis_, a species that had been shown to represent two sympatric species (Ernst et al. 2011). Thus, in agreement with Hernández-Restrepo et al. (2016), we recommend the protection of Microdochium over Monographella.

Use Neman ia Gray 1821 (S) rather than Geniculosporium Chesters & Greenh. 1964 (A)
An asexual morph of _Nemania serpens_, type species of Nemania, was described as _Geniculosporium serpens_, type of _Geniculosporium_ (Chesters & Greenhalgh 1964), thus the generic names _Nemania_ and _Geniculosporium_ are synonyms. _Nemania_ includes over 30 names while only four names have been placed in _Geniculosporium_. In addition, Nemania is well-known and has priority, thus we recommend the use of Nemania.

Use Rosellinia De Not. 1844 (S) rather than Dematophora R. Hartig 1883 (A)
The genus _Rosellinia_, typified by _R. aquila_, is a well-known genus that has recently been monographed (Petrini 2013). A number of plant pathogenic species are included in Rosellinia such as _R. bunodes_ causing black root rot of tropical woody plants and _R. thelena_ causing root collar of hardwoods. Dematophora nectatrix, type of Dematophora, is considered the asexual morph of _R. nectatrix_, cause of white root rot (Petrini 2013), thus _Rosellinia_ and _Dematophora_ are synonyms. The only other species of _Dematophora_, _D. glomerata_, is considered the asexual morph of _R. glomerata_.

Given the widespread use of Rosellinia, the recent monographic account, its importance as a plant pathogen, and priority, we recommend the use of Rosellinia.

Use Virgaria Nees 1816 (A) rather than Ascovirgaria J.D. Rogers & Y.-M. Ju 2002 (S)
The monotypic genus Ascovirgaria, typified by _A. occulta_, was described for the sexual morph of the type species of _Virgaria_, _V. nigra_, by Rogers & Ju (2002), thus these generic names are synonyms. Nonaka et al. (2013) demonstrated that _A. occulta_ was a synonym of _V. nigra_ and that _Virgaria_ was distinct from other genera in the _Xylariaceae_. Although some names have been transferred to other genera, _Virgaria_ still includes 10 names and is more commonly used than Ascovirgaria. Given its priority and widespread use, Virgaria is recommended for use over Ascovirgaria.

Use Xylaria Hill ex Schr ank 1789 (S) rather than Moelleroclavus Henri n. 1902 (A), Xylocoremium J.D. Rogers 1984 (A), Arthroxylaria Seifert & W. Gams 2002 (A) or Geniculisynnema Okane & Nakagiri 2007 (A)
Xylaria is a well-known genus with many species such as _Xylaria polymorpha_, commonly known as dead man’s fingers, also said to cause root rot of urban trees (Proffer 1988). The asexual morphs of species of _Xylaria_ have been described in four genera. The monotype species of _Moelleroclavus_, _M. penicillioides_, has a sexual morph described as _Xylaria moelleroclavus_ (Rogers et al. 1997) and _Xylocoremium flabelliforme_, monotype species of _Xylocoremium_, is the asexual morph of _Xylaria cubensis_ (Rogers 1984), now known to be _X. flabelliformis_ (Ju et al. 2016). Both _Arthroxylaria_ and _Geniculisynnema_ are monotypic genera proposed for asexual morphs not yet connected to a sexual morph but clearly within _Xylaria_ based on _rDNA_ sequences (Seifert et al. 2002, Okane & Nakagiri 2007). The type species of _Arthroxylaria_, _A. elegans_, is herein placed in _Xylaria_. Although Stadler et al. (2013) connected _Geniculisynnema_ with Nemania, a _BLAST_ search with the ITS sequence of _G. termiticola_ (AB274813), _type species_ of _Geniculisynnema_, showed top matches with _Xylaria_ species associated with termite nests. These four generic names are now considered synonyms of _Xylaria_. Given its widespread use, the number of species, and priority, _Xylaria_ is recommended for use.

New combinations:

Xylaria benjaminii Seifert & W. Gams, _nom. nov._ MycoBank MB816839
Replacement name: Arthroxylaria elegans Seifert & W. Gams, _Czech Mycol._ 53: 209 (2002).
Non _Xylaria elegans_ Syd. & P. Syd., _Annls mycol._ 5: 357 (1907).

Xylaria penicilliopsis (Henn.) Y.-M. Ju, _comb. nov._ MycoBank MB816837
Basionym: Moelleroclavus penicilliopsis Henn., _Hedwigia_ 41: 15 (1902).
Synonym: Xylaria moelleroclavus J.D. Rogers et al., _Mycol. Res._ 101: 345 (1997).
Xylaria termiticola (Okane & Nakagiri) Y.-M. Ju, comb. nov.
MycoBank MB816838
Basionym: Geniculosynnema termiticola Okane & Nakagiri, Mycologia 48: 245 (2007).

Sordariomycetidae incertae sedis

Use **Brachysporium** Sacc. 1886 (A) rather than Cryptadelphia Réblová & Seifert 2004 (S)

Brachysporium, typified by *B. obovatum*, is a widespread and well-established asexual genus that includes 113 species and varieties. The genus Cryptadelphia, typified by *C. groenendalensis*, was introduced for the sexual morphs of six species of *Brachysporium* (Réblová & Seifert 2004b). The link between the sexual and asexual morphs of *Brachysporium* was experimentally proven only for *B. nigrum*, which is the asexual morph of *C. groenendalensis*. The axenic cultures of *B. obovatum* and *B. polyseptatum* derived from ascospores yielded only sterile mycelium. Recently, *C. fusiformis* was described with its asexual morph regarded as *B. fusiformis* (Markovskaja & Treigiené 2007). Based on molecular sequence data, *B. nigrum* and *B. polyseptatum* form a strongly supported monophyletic clade (Réblová & Seifert 2004b). If *B. obovatum* is congeneric with *B. nigrum*, then the generic names *Brachysporium* and *Cryptadelphia* should be treated as synonyms. Based on priority and the greater number of species, *Brachysporium* is recommended for use.

Use **Nigrospora** Zimm. 1902 (A) rather than *Khusia* H.J. Huds. 1963 (S)

The monotype species of *Khusia*, *K. oryzae*, was described as the sexual morph of *Nigrospora oryzae*, a well-known species of *Nigrospora*, by Hudson (1963). He also considered *N. oryzae* and *N. panici*, the type species of *Nigrospora*, to be congeneric, thus *Nigrospora* and *Khusia* are synonyms. *Nigrospora oryzae* is reported from a variety of hosts including marine sponges (Ding et al. 2011) and as endophytes of plants (Peršoh et al. 2010) as well as causing plant diseases (Moshrefi-Zarandi et al. 2014). Given that *Nigrospora* has priority, includes fifteen names, and is more widely known than *Khusia*, the use of *Nigrospora* is recommended.

Table 1. Names of pleomorphic genera in Sordariomycetes excluding Diaporthales, Hypocreales and Magnaporthales indicating those that are proposed for protection (including those which are asexually typified and recommended for use over sexually typified genera). For each genus the citation, type species and currently accepted name is given. NCF = Nomenclature Committee for Fungi.

Generic name recommended for use, citation and type species	Suppressed generic name(s), citation, type species and currently accepted name	Action Required
Arthrinium Kunze, in Kunze & Schmidt, Mykol. Hefte 1: 9. 1817.	Apioспора Sacc. in Atti Soc. Veneto-Trent. Sci. Nat., Padova, sér. 4 4: 85. 1875.	Asexual type. Protection needed by NCF.
Brachysporium Sacc., Syll. Fung. 4: 423. 1886.	Cryptadelphia Réblová & Seifert in Mycologia 96: 348. 2004.	Asexual type. Protection needed by NCF.
Calosphaeria Tul. & C. Tul., Select. fung. carpol. 2: 108. 1863.	Calosphaeriopora Réblová et al. in Stud. Mycol. 50: 542. 2004.	None.
Canalisporium Nawawi & Kuthub. in Mycotaxon 34: 477. 1989.	Ascothailandia Sri-indr. et al. in Mycoscience 51: 414. 2010.	Asexual type. Protection needed by NCF.

Typus: *A. caricicola* Kunze & J.C. Schmidt 1817.

Typus: *A. montagnei* Sacc. 1875, now regarded as *Arthrinium arundinis* (Corda) Dyko & B. Sutton 1979.

Typus: *P. asteroides* Grove 1914, now regarded as *Arthrinium pterospermum* (Cooke & Massee) Arx 1981.

Typus: *S. phyllostachydis* L.A. Kantsch. 1928, now regarded as *Arthrinium hystricum* (Sacc.) P.M. Kirk 1986.

Typus: *B. obovatum* (Berk.) Sacc. 1886, basionym: *Helminthosporium obovatum* Berk. 1841.

Typus: *B. polyseptatum* (Hol.-Jech. & Mercado) Réblová in Stud. Mycol. 48: 258. 2004, basionym: *Zignoëlla groenendalensis* Sacc. et al. 1894, now regarded as *Brachysporium nigrum* (Link) S. Hughes 1958.

Typus: *S. princeps* Tul. & C. Tul. 1863.

Typus: *C. princeps* Tul. & C. Tul. 1863.

Typus: *C. groenendalensis* (Sacc. et al.) Réblová & Seifert 2004, basionym: *Zignoëlla groenendalensis* Sacc. et al. 1894, now regarded as *Brachysporium nigrum* (Link) S. Hughes 1958.

Typus: *C. carinense* Hol.-Jech. & Mercado 1989, basionym: *Berkleasmium carinense* Hol.-Jech. & Mercado 1984.

Typus: *C. fusiformis* C. 1886. 1883. Typus: *C. princeps* (Corda) Sacc. 1875, now regarded as *Arthrinium pterospermum* (Cooke & Massee) Arx 1981.

Typus: *C. oryzae* K. oryzae, was described as the sexual morph of *Nigrospora oryzae*, a well-known species of *Nigrospora*, by Hudson (1963). He also considered *N. oryzae* and *N. panici*, the type species of *Nigrospora*, to be congeneric, thus *Nigrospora* and *Khusia* are synonyms. *Nigrospora oryzae* is reported from a variety of hosts including marine sponges (Ding et al. 2011) and as endophytes of plants (Peršoh et al. 2010) as well as causing plant diseases (Moshrefi-Zarandi et al. 2014). Given that *Nigrospora* has priority, includes fifteen names, and is more widely known than *Khusia*, the use of *Nigrospora* is recommended.

Typus: *B. obovatum* (Berk.) Sacc. 1886, basionym: *Helminthosporium obovatum* Berk. 1841.

Typus: *B. polyseptatum* (Hol.-Jech. & Mercado) Réblová in Stud. Mycol. 48: 258. 2004, basionym: *Zignoëlla groenendalensis* Sacc. et al. 1894, now regarded as *Brachysporium nigrum* (Link) S. Hughes 1958.

Typus: *S. princeps* Tul. & C. Tul. 1863.

Typus: *C. princeps* Tul. & C. Tul. 1863.

Typus: *C. carinense* Hol.-Jech. & Mercado 1989, basionym: *Berkleasmium carinense* Hol.-Jech. & Mercado 1984.
Table 1. (Continued).

Generic name recommended for use, citation and type species	Suppressed generic name(s), citation, type species and currently accepted name	Action Required
Chaetomium Kunze, in Kunze & Schmidt, Mykol. Hefte 1: 15. 1817. Typus: C. globosum Kunze 1817.	Botryotrichum Sacc. & Marchal in Bull. Soc. Roy. Bot. Belgique **24**: 66. 1885. Typus: B. piluliferum Sacc. & Marchal 1885, now regarded as Chaetomium piluliferum J. Daniels 1961. Although the synonym Sepedonium albogriseum Balf.-Browne 1952 provides an older name, C. piluliferum will be proposed for conservation. Trichocladium Harz in Bull. Soc. Imp. nat. Moscou **44**: 125. 1871. Typus: T. asperum Harz 1871.	None.
Chaetosphaerella E. Müll. & C. Booth in Trans. Brit. Mycol. Soc. **58**: 76. 1972. Typus: C. phaeostroma (Durieu & Mont.) E. Müll. & C. Booth 1972, basionym: Sphaeria phaeostroma Durieu & Mont. 1846	Oedemium Link, Sp. Pl., edn 4 6(1): 42. 1824. Typus: O. atrum Link 1824, now regarded as Chaetosphaerella fusca (Fuckel) E. Müll. & C. Booth 1972. Veramycina Subram. in Kavaka **20/21**: 58. 1995. Typus: V. elegans Subram. 1995, now regarded as Chaetosphaerella phaeostroma (Durieu & Mont.) E. Müll. & C. Booth 1972.	Protection needed by NCF for Chaetosphaerella 1972 over Oedemium 1824.
Chloridium Link in Mag. Gesell. Naturf. Freunde, Berlin 3: 13. 1809. Typus: C. viride Link 1805, now regarded as Chloridium virescens (Pers.) W. Gams & Hol.-Jech. 1976, basionym Dematium virescens Pers. 1794.	Gonytrichum Nees & T. Nees in Nova Acta Phys.-Med. Acad. Caes. Leop.-Carol. Nat. Cur. 9: 244. 1818. Typus: G. caesium Nees 1818, now regarded as Chloridium caesium (Nees) Réblôvá & Seifert 2016	Asexual type. Protection needed by NCF.
Colletotrichum Corda, Deutschl. Fl., 3(12): 41. 1837. Typus: C. lineola Corda 1832.	Glomerella Spauld. & H. Schrenk in Science **17**: 751. 1903. Typus: G. cingulata (Stoneman) Spauld. & H. Schrenk 1903, now regarded as Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. 1884.	Asexual type. Protection needed by NCF.
Collodiscula I. Hino & Katum. in Bull. Fac. Agric. Yamaguchi Univ. 6: 55. 1955. Typus: C. japonica I. Hino & Katum. 1955.	Acanthodochium Samuels et al. in Mycotaxon **28**: 457. 1987. Typus: A. collodisculae Samuels et al. 1987, now regarded as Collodiscula japonica I. Hino & Katum. 1955.	None.
Coniochaeta (Sacc.) Cooke in Grevillea 16: 16. 1887, basionym: Rosellinia subgen. Coniochaeta Sacc., Syll. Fung. 1: 269. 1882. Typus: C. ligniaria (Grev.) Cooke 1887, basionym: Sphaeria ligniaria Grev. 1824.	Lecythophora Nannf. in Svensk Skogsvårdsförening Tidskr. 3–4: 435. 1934. Typus: L. lignicolae Nannf. 1934, now regarded as Coniochaeta lignicolor (Nannf.) Z.U. Khan et al. 2013.	None.
Conioscypha Höhn. in Ann. Mycol. 2: 58. 1904. Typus: C. lignicola Höhn. 1904.	Conioscyphascus Réblôvá & Seifert in Stud. Mycol. **50**: 100. 2004. Typus: C. varius Réblôvá & Seifert 2004, now regarded as Conioscypha vari Shearer 1973.	Asexual type. Protection needed by NCF.
Generic name recommended for use, citation and type species	Suppressed generic name(s), citation, type species and currently accepted name	Action Required
--	---	----------------
Cordana Preuss in Linnaea 24: 129. 1851.		
Typos: *C. pauciseptata* Preuss 1851.	*Porosphaerella* E. Müll. & Samuels in Sydowia 35: 151. 1982.	
Typos: *P. cordonophora* E. Müll. & Samuels 1982, now regarded as *Cordana pauciseptata* Preuss 1851.		
Pseudobotrytis Krzemien. & Badura in Acta Soc. Bot. Pol. 23: 761. 1954.		
Typos: *P. fusca* Krzemien. & Badura 1954, now regarded as *Cordana terrestris* (Timonin) Hern.-Rest. et al. 2014.	Asexual type. Protection needed by NCF.	
Corollospora Werderm. in Notizbl. Bot. Gart. Berlin-Dahlem 8: 248. 1922.		
Typos: *Corollospora maritima* Werderm. 1922.	*Varicosporina* Meyers & Kohlm. in Canad. J. Bot. 43: 916. 1965.	
Typos: *V. ramulosa* Meyers & Kohlm. 1965, now regarded as *Corollospora ramulosa* (Meyers & Kohlm.) Abdel-Wahab 2016.		
Halosigmoidea Nakagiri et al. in Bot. Mar. 52: 355. 2009.		
Typos: *H. luteola* (Nakagiri & Tubaki) Nakagiri et al. 2009, basionym: *Sigmoidea luteola* Nakagiri & Tubaki 1982, now regarded as *Corollospora luteola* Nakagiri & Tubaki 1982.	None.	
Cylindrotrichum Bonord., Handb. Allgem. mykol.: 88 (1851).		
Typos: *C. oligospermum* (Corda) Bonord. 1851, basionym: *Menispora oligosperma* Corda 1838.	*Reticulascus* Rěblův & W. Gams in Stud. Mycol. 68: 180. 2011.	
Typos: *R. tulasneorum* (Rěblův & W. Gams) Rěblův & W. Gams 2010, basionym: *Chaetosphaeria tulasneorum* Rěblův & W. Gams 1999, now regarded as *Cylindrotrichum oligospermum* (Corda) Bonord. 1851.	Asexual type. Protection needed by NCF.	
Daldinia Ces. & De Not. in Comment. Soc. Crittog. Ital. 1(4): 197. 1863.		
Typos: *D. concentrica* (Bolton) Ces. & De Not. 1863, basionym: *Sphaeria concentrica* Bolton 1792.	*Anellosporium* M.L. Davey in Karstenia 50: 3. 2010.	
Typos: *A. nemorosum* M.L. Davey 2010, now *Daldinia nemorosa* (M.L. Davey) M. Stadler et al. 2014.		
Versiomyces Whalley & Watling in Notes R. bot. Gdn Edinb. 45: 401. 1989.		
Typos: *V. cahuchucosus* Whalley & Watling 1989, now regarded as *Daldinia cahuchucosus* (Whalley & Watling) M. Stadler & Læssøe 2014.	None.	
Diachora Jul. Müll. in Jährb. Wiss. Bot. 25: 623. 1893.		
Typos: *D. onobrychidis* (DC.) Jul. Müll. 1893, basionym: *Xyloma onobrychidis* DC. 1815.	*Diachorella* Höhn. in Hedwigia 60: 192. 1918.	
Typos: *D. onobrychidis* (DC.) Höhn. 1918, basionym: *Xyloma onobrychidis* DC. 1815, now regarded as *Diachora onobrychidis* (DC) Jul. Müll. 1893.	None.	
Diatrype Fr., Summa veg. Scand. 2: 384. 1849.		
Typos: *D. disciformis* (Hoffm.) Fr. 1849, basionym: *Sphaeria disciformis* Hoffm. 1787.	*Libertella* Desm. in Ann. Sci. Nat. (Paris) sér. 4 19: 275. 1830.	
Typos: *L. betulina* Desm. 1830, now regarded as *Diatrype stigma* (Hoffm.) Fr. 1849.	Protection needed by NCF for *Diatrype* 1849 over *Libertella* 1830.	
Dyrithiopsis L. Cai et al. in Mycologia 95: 912. 2003.		
Typos: *D. lakefuxianensis* L. Cai et al. 2003. | *Monochaetiopsis* L. Cai et al. in Mycologia 95: 913. 2003.
Typos: *M. lakefuxianensis* L. Cai et al. 2003, now regarded as *Dyrithiopsis lakefuxianensis* L. Cai et al. 2003. | None. |
Table 1. (Continued)

Generic name recommended for use, citation and type species	Suppressed generic name(s), citation, type species and currently accepted name	Action Required
Hyalotiopsis Punith. in Mycol. Pap. **119**: 12. 1970. Typus: *H. subramanianii* (Agnihothr. & Luke) Punith. 1970, basionym: *Hyalotella subramanianii* Agnihothr. & Luke 1970.	*Ellunema* Nag Raj & W.B. Kendr. in *Sydowia** 38*: 178. 1986. Typos: *E. indica* (Punith.) Nag Raj & W.B. Kendr. 1986, basionym: *Massaria indica* Punith. 1970, now regarded as *Hyalotiopsis subramanianii* (Agnihothr. & Luke) Punith. 1970.	Asexual type. Protection needed by NCF.
Hypocreodendron Henn. in *Hedwigia** 36*: 223. 1897. Typus: *H. sanguineum* Henn. 1897.	*Discoxyliaria* J.C. Lindq. & J.E. Wright in *Darwiniana* **13**: 139. 1964. Typos: *Discoxyliaria myrmecophila* J.C. Lindq. & J.E. Wright 1964, now regarded as *Hypocreodendron sanguineum* Henn. 1897.	Asexual type. Protection needed by NCF.
Hypoxylon Bull., Hist. Champ. Fr. **1**: 168. 1791. Typos: *H. coccineum* Bull. 1791, now regarded as Hypoxylon fragiforme (Pers.) J. Kickx f. 1835, basionym *Sphaeria fragiformis* Pers. 1794.	*Nodulisporium* Preuss in Klotzschii Herb. Viv. Mycol.: no. 1272. 1849. Typos: *N. ochraceum* Preuss 1849, now regarded as *Hypoxylon fragiforme* (Pers.) J. Kickx f. 1835.	None.
Juncigena Kohlm. et al. in *Bot. Mar.* **40**: 291. 1997. Typos: *J. adarca* Kohlm. et al. 1997.	*Moheitospora* Abdel-Wahab et al. in *Mycol. Progr.* **9**: 551. 2010. Typos: *M. fruticosae* Abdel-Wahab et al. 2010, now regarded as *Juncigena fruticosae* (Abdel-Wahab et al.) A.N. Mill. & Shearer 2016.	None.
Knoxdaviesia M.J. Wingf. et al. in *Mycologia** 80*: 26. 1988. Typos: *K. proteae* M.J. Wingf. et al. 1988.	*Gondwanamyces* G.J. Marais & M.J. Wingf. in *Mycologia** 90*: 139. 1998. Typos: *G. proteae* (M.J. Wingf. et al.) G.J. Marais & M.J. Wingf. 1998, basionym: *Ceratocystis proteae* M.J. Wingf. et al. 1988, now regarded as *Knoxdaviesia proteae* M.J. Wingf. et al. 1988.	Asexual type. Protection needed by NCF.
Lasiosphaeris Clem., Gen. Fungi. **173**: 1909. Typos: *L. hispida* (Tode) Clem. 1909.	*Lasiodiplodia* Réblová & W. Gams in *Fungal Divers.* **46**: 82. 2011. Typos: *L. lasiosphaeriae* (W. Gams) Réblová & W. Gams 2011, now regarded as *Lasiosphaeris hispida* (Tode) Clem. 1909.	None.
Mammaria Ces. ex Rabenh. in *Bot. Zeit.* **12**: 190. 1854. Typos: *M. echinobotryoides* Ces. 1854.	*Pseudocercophora* Subram. & Sekar in *J. Singapore Natl. Acad. Sci.* **15**: 58. 1986. Typos: *P. ingoldii* Subram. & Sekar 1986, now regarded as *Mammaria echinobotryoides* Ces. 1854.	Asexual type. Protection needed by NCF.
Melanospora Corda, Icon. Fung. **1**: 24. 1837. Typos: *M. zamiae* Corda 1837.	*Gonatobotrys* Corda, Pracht-Fl. Eur. Schimmelbild.: **9**: 1839. Typos: *G. simplex* Corda 1839, now regarded as *Melanospora simplex* (Corda) D. Hawks. 2016.	None.
Menispora Pers., Mycol. Eur. **1**: 32. 1822. Typos: *M. glauca* (Link) Pers. 1822, basionym: *Camptosporium glaucum* Link in *Habenberg* 1827.	*Zignoëlla* Sacc. in *Michelia** 1**: 346. 1878. Typos: *Z. pulviscula* (Curt.) Sacc. 1878, now regarded as *Menispora caesia* Preuss 1851.	Asexual type. Protection needed by NCF.
Menisporopsis S. Hughes in *Mycol. Pap.* **48**: 59. 1952. Typos: *M. theobromae* S. Hughes 1952.	*Menisporopascus* Matsush. in *Matsush. Mycol. Mem.* **10**: 141. 2003. Typos: *M. kobensis* Matsush. 2003, now regarded as *Menisporopsis kobensis* Matsush. 2003.	Asexual type. Protection needed by NCF.
Microdochium Syd. & P. Syd. in *Ann. Mycol.* **22**(3/6): 267. Published on 15 Nov 1924. Typos: *M. phragmitis* Syd. & P. Syd. 1924.	*Monographella* Petr. in *Ann. Mycol.* **22**(1/2): 144. Published 20 Jun 1924. Typos: *M. divergens* (Rehm) Petr. 1924, basionym: *Sphaerulina divergens* Rehm 1913, now regarded as *Microdochium rivale* (Fr.) Samuels & I.C. Hallett 1983.	Protection needed by NCF for *Microdochium* (Jun 1924) over *Monographella* (Nov 1924).
Generic name recommended for use, citation and type species	Suppressed generic name(s), citation, type species and currently accepted name	Action Required
--	--	----------------
Monilochaetes Halst. ex Harter in J. Agric. Res. 5: 791. 1916.	Australiasca Sivan. & Alcorn in Aust. Syst. Bot. 15: 741. 2002.	Asexual type. Protection needed by NCF.
Typus: *M. infuscans* Harter 1916.	Typus: *A. queenslandica* Sivan. & Alcorn 2002, now regarded as *Monilochaetes camelliae* (Alcorn & Sivan.) Réblová et al. 2011.	
Nemania Gray, Nat. Arr. Brit. Pl. 1: 516. 1821.	Geniculosporium Chesters & Greenh. in Trans. Brit. Mycol. Soc. 47: 400. 1964.	None.
Type: *N. serpens* (Pers.) Gray 1821.	Type: *G. serpens* Chesters & Greenh. 1964, now regarded as *Nemania serpens* (Pers.) Gray 1821.	
Neurospora Shear & B.O. Dodge in J. Agric. Res. 34: 1025. 1927.	Chrysonilia Arx in Sydowia 34: 16. 1981.	None.
Typus: *N. sitophila* Shear & B.O. Dodge 1927.	Typus: *Chrysonilia sitophila* (Mont.) Arx 1981, basionym: *Penicillium sitophilum* Mont. 1843, now regarded as *Neurospora sitophilum* Shear & B.O. Dodge 1927.	
Nigrospora Zimm. in Centralbl. Bakteriol. Parasitenk., 1. Abt. 8: 220. 1902.	Khusokia H.J. Huds. in Trans. Brit. Mycol. Soc. 46: 358. 1963.	Asexual type. Protection needed by NCF.
Typus: *N. panici* Zimm. 1902.	Typus: *K. oryzae* H.J. Huds. 1963, now regarded as *Nigrospora oryzae* (Berk. & Broome) Petch 1924.	
Ophiodothella (Henn.) Höhn. in Sitzungsber. Kaiserl. Akad. Wiss., Math.-Naturwiss. Cl., Abt. 1 119: 940. 1910, basionym: *Ophiodothis subgen. Ophiodothella* Höhn. 1904.	Acerviclypeatus Hanlin in Mycotaxon 37: 380. 1990.	None.
Typus: *O. atromaculans* (Henn.) Höhn. 1910, basionym: *Ophiodothis atromaculans* Höhn. 1904.	Typus: *A. poriformans* Hanlin 1990, now regarded as *Ophiodothella angustissima* (Peck) Hanlin & M.C. González 2013.	
Pestalotiopsis Steyaert in Bull. Jard. Bot. État. Bruxelles 19: 300. 1949.	Pestalosphaeria M.E. Barr in Mycologia 67: 188. 1975.	Asexual type. Protection needed by NCF.
Typus: *P. guepinii* (Desm.) Steyaert 1949, basionym: *Pestalotia guepinii* Desm. 1840.	Typus: *P. concentrica* M.E. Barr 1975, now regarded as *Pestalotiopsis guepinii var. macrotricha* (Kleb.) B. Sutton 1961.	
Phaeoacremonium W. Gams et al. in Mycologia 88: 789. 1996.	Romellia Berl., Icon. Fung. 3: 5. 1900.	Protection needed by NCF for *Phaeoacremonium* 1996 over *Romellia* 1900 and *Togninia* 1900.
Typus: *P. parasiticum* (Ajello et al.) W. Gams, et al. 1996.	Typus: *R. vibratilis* (Fr.) Berl. 1900, basionym: *Sphaeria vibratilis* Fr. 1823, now *Phaeoacremonium vibratilis* (Fr.) Gramaje et al. 2015.	
Plectosphaerella Kleb. in Phytopathol. Z. 1: 43. 1929.	Togninia Berl., Icon. Fung. 3: 9. 1900.	
Typus: *P. cucumeris* Kleb. 1929.	Typus: *T. minima* (Tul. & C. Tul.) Berl. 1900, now regarded as *Phaeoacremonium minimum* (Tul. & C. Tul.) D. Gramaje, et al. 2015.	
Pleurostoma Tul. & C. Tul., Select. fung. Carpol. 2: 247. 1863.	Pleurostomophora Vijaykr. et al. in Stud. Mycol. 50: 390. 2004.	None.
Typus: *P. canadellei* Tul. & C. Tul. 1863.	Typus: *P. ootheca* Vijaykr. et al. 2004, now regarded as *Pleurostoma ootheca* (Berk. & M.A. Curtis) M.E. Barr 1885.	
Pleurothecium Höhn. in Ber. Deutsch. Bot. Ges. 37: 154. 1919.	Carpoligna F.A. Fernández & Hühndorf in Mycologia 91: 253. 1999.	Asexual type. Protection needed by NCF.
Typus: *P. recurvatum* (Morgan) Höhn. 1924, basionym: *Acrothecium recurvatum* Morgan 1895.	Typus: *C. pleurothecii* F.A. Fernández & Hühndorf 1999, now regarded as *Pleurothecium recurvatum* (Morgan) Höhn. 1924.	
Table 1. (Continued).

Generic name recommended for use, citation and type species	Suppressed generic name(s), citation, type species and currently accepted name	Action Required
Polystigma DC., in de Candolle & Lamarck, Fl. Franç., edn 3 6: 164. 1815.	*Polystigmmina* Sacc., *Syll. Fung.* 3: 622. 1884.	None.
Typus: *P. rubrum* (Pers.) DC. 1815, basionym: *Xyloima rubrum* Pers. 1800.	Typus: *P. rubra* (Pers.) Sacc. 1884, basionym: *Xyloima rubrum* Pers. 1800, now regarded as *Polystigma rubrum* (Pers.) DC. 1815.	
	Rhodoseptoria Naumov in *Bull. Soc. Mycol. Fr.* 29: 278. 1913.	
	Typus: *R. ussuriensis* Naumov 1913, now regarded as *Polystigma rubrum* (Pers.) DC. 1815.	
Pseudothyella Petr. in *Hedwigia* 68: 257. 1928.	*Pseudothyella* Petr. in *Hedwigia* 68: 259. 1928.	None.
Typus: *P. hirtellae* (Henn.) Petr. 1928.	Typus: *P. hirtellae* Petr. 1928, now regarded as *Pseudothyella hirtellae* (Henn.) Petr. 1928.	
Rosellinia De Not. in *Giorn. Bot. ital.* 1: 334. 1844.	*Dematophora* R. Hartig in *Untersuch. Forstbot. Inst. München* 3: 95. 1883.	None.
Typus: *R. aquila* (Fr.) Ces. & De Not. 1844.	Typus: *D. necatrix* R. Hartig 1883, now regarded as *Rosellinia necatrix* Berl. ex Prill. 1904.	
Seimatosporium Corda, in *Sturm, Deutschl. Fl.*, 3 Abt. 3(13): 79. 1833.	*Discostroma* Clem., *Gen. Fung.*: 50. 1909.	Asexual type. Protection needed by NCF.
Typus: *S. rosae* Corda 1833.	Typus: *Discostroma rehmi* (Schnabl) Clem. 1909, basionym: *Curreya rehmi* Schnabl 1892, a synonym of *D. massarina* (Sacc.) Arx 1974, basionym: *Metasphaeria massarina* Sacc. 1884, now regarded as *Seimatosporium massarina* (Sacc.) Jaklitsch & Voglmayr 2016.	
Seiridium Nees, Syst. Pilze: 22. 1816.	*Blogiascospora* Shoemaker et al. in *Canad. J. Bot.* 44: 248. 1966.	Asexual type. Protection needed by NCF.
Typus: *S. marginatum* Nees 1816.	Typus: *B. marginata* (Fuckel) Shoemaker et al. 1966, basionym: *Massaria marginata* Fuckel 1873, now regarded as *Seiridium marginatum* Nees 1816.	
Sphaeronaemella P. Karst. in *Hedwigia* 23: 17. 1884.	*Gabarnaudia* Samson & W. Gams in *Stud. Mycol.* 6: 88. 1974.	None.
Typus: *S. helvellae* (P. Karst.) P. Karst. 1884, basionym: *Sphaeria helvellae* P. Karst. 1867.	Typus: *G. betae* (Delacr.) Samson & W. Gams, in *Samson* 1974, basionym: *Oospora betae* Delacr. 1897, now regarded as *Sphaeronaemella betae* (Delacr.) Z.W. De Beer & M.J. Wingf. 2013.	
Sporoschisma Berk. & Broome, in *Berkeley, Gard. Chron.* 1847: 540. 1847.	*Melanochaeta* E. Müll. *et al.* in *Revue Mycol.* 33: 377. 1969.	Asexual type. Protection needed by NCF.
Typus: *S. mirabile* Berk. & Broome 1847.	Typus: *M. hemipsila* (Berk. & Broome) E. Müll., *et al.* 1969, basionym: *Sphaeria hemipsila* Berk. & Broome 1873, now regarded as *Sporoschisma hemipsila* (Berk. & Broome) Zeliski *et al.* 2014.	
Sporoschismopsis Hol.-Jech. & Hennebert in *Bull. Jard. Bot. Nat. Belgique. Bruxelles* 42: 385. 1972.	*Porosphaerellopsis* Samuels & E. Müll. in *Sydowia* 35: 143. 1982.	Asexual type. Protection needed by NCF.
Typus: *S. moravica* Hol.-Jech. & Hennebert 1972.	Typus: *P. sporooschismophora* (Samuels & E. Müll.) E. Müll. & Samuels 1982, basionym: *Porosphaeria sporooschismophora* Samuels & E. Müll. 1978, now regarded as *Sporoschismopsis sporooschismophora* (Samuels & E. Müll.) Réblová 2014.	
Stanjehughesia Subram. in *Proc. Indian Acad. Sci., B, Biol. Sci.* 58(4): 184. 1992.	*Umbrinosphaeria* Rěblová in *Mycotaxon* 71: 17. 1999.	Asexual type. Protection needed by NCF.
Type: *S. hormiscioides* (Corda) Subram. 1992, basionym: *Sporidesmium hormiscioides* Corda 1838.	Type: *U. caesariata* (Clinton & Peck) Rěblová 1999, basionym: *Sphaeria caesariata* Clinton & Peck, in *Peck* 1878, now regarded as *Stanjehughesia hormiscioides* (Corda) Subram. 1992.	
Table 1. (Continued)

Generic name recommended for use, citation and type species	Suppressed generic name(s), citation, type species and currently accepted name	Action Required
Stromatographium Höhn. in Denkschr. Kaiserl. Akad. Wiss., Math.-Naturwiss. Kl. 83: 37. 1907.	*Fluviostroma* Samuels & E. Müll. in Sydowia **33**: 283. 1980. *Typhus* *stromaticum* (Berk.) Höhn. 1907, basionym: *Stilbum stromaticum* Berk. 1843.	None.
Togniellia Réblová et al. in Stud. Mycol. **50**: 543. 2004.	*Phaeocrella* Réblová et al. in Stud. Mycol. **50**: 545. 2004. *Typhus* *acerosa* Réblová et al. 2004.	None.
Torpedospora Meyers in Mycologia **49**: 496. 1957.	*Glomerulispora* Abdel-Wahab & Nagah. in Mycol. Progr. **9**: 552. 2010. *Typhus* *radiata* Meyers 1957.	None.
Virgaria Nees, Syst. Pilze: **54**: 1816.	*Ascovirgaria* J.D. Rogers & Y.M. Ju in Canad. J. Bot. **80**: 478. 2002. *Typhus* *nigra* (Link) Nees 1817, basionym: *Botrytis nigra* Link 1809.	Asexual type. Protection needed by NCF.
Xylaria Hill ex Schrank, Baier. Fl. **1**: 200. 1789.	*Moelleroclavus* Henri. in Hedwigia **41**: 15. 1902. *Typhus* *hypoxylon* (L.) Grev. 1824, basionym: *Clavaria hypoxylon* L. 1793.	None.

REFERENCES

Abdel-Wahab MA, Nagahama T, Abdel-Aziz FA (2009) Two new *Corollospora* species and one new anamorph based on morphological and molecular data. **Mycoscience** **50**: 147–155.

Abdel-Wahab MA, Pang KL, Nagahama T, Abdel-Aziz FA, Jones EBG (2010) Phylogenetic evaluation of anamorphic species of *Cinennia* and *Cumulospora* with the description of eight new genera and four new species. **Mycolological Progress** **9**: 537–558.

Arx JA von (1957) Die Artten der Gattung Colletotrichum Cda. **Phytopathologische Zeitschrift** **29**: 413–468.

Arx JA von (1976) *Monilia sitophilia* and some families of Ascomycetes. **Sydowia** **34**: 13–29.

Arx JA von (1982) The genus *Dicyma*, its synonyms and related fungi. **Proceedings, Koninklijke Nederlandse Akademie van Wetenschappen C** **85**: 21–28.

Azranou M, Groenewald JZ, Gams W, Braun U, Shin HD et al. (2007) Phylogenetic and morphotaxonomic revision of *Ramichloridium* and allied genera. **Studies of Mycology** **58**: 57–93.

Barr ME (1975) *Pestalosphaeria*, a new genus in the *Amphisphaeriaceae*. **Mycologia** **67**: 187–194.

Berbegal M, Garcia-Jimenez J, Armengol J (2014) First report of
Calosphaeria pulchella causing canker and branch dieback of sweet cherry trees in Spain. Plant Disease 98: 1008.
Booth C (1957) Studies of pyrenomycetes: I. Four species of Chaetosphaeria, two with Catenuaria conidia. II. Melanopsamma pomiformis and its Stachybotrys conidia. Mycological Papers 68: 1–27.
Booth C (1958) The genera Chaetosphaeria and Thaxteria in Britain. Naturalist 1958: 83–90.
Braun U (2013) (2210 – 2232) Proposals to conserve the teleomorph-typified name Blumeria against the anamorph-typified name Oidium and twenty-two teleomorph-typified powdery mildew species names against competing anamorph-typified names (Ascomycota : Erysiphaceae). Taxon 62: 1328–1331.
Brockmann I (1976) Untersuchungen u eber dieGattung Discostroma. Clements (Ascomycetes). Sydowia 28: 275–338.
Cannon PF (1991) A revision of Phyllachora and some similar genera on the host family Leguminosae. Mycological Papers 163: 1–302.
Cannon PF (1996) Systematics and diversity of the Phyllachoraceae associated with Rosaceae, with a monograph of Polystigma. Mycological Research 100: 1409–1427.
Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum – current status and future directions. Studies in Mycology 73: 181–213.
Cannon PF, Hawksworth DL (1982) A re-evaluation of Colletotrichum – from esca disease to phaeohyphomycosis. Fungal Biology 102: 19–29.
Clements FE (1909) The Genera of Fungi. Minneapolis: H.W. Wilson.
Clements FE, Shear C (1931) The Genera of Fungi. New York: H. W. Wilson.
Constantinescu O, Holm K, Holm L (1995) Teleomorph-anamorph differentiations of two sympatric species of Microdochium colonizing the roots of common reed, M. phragmitis vs. M. bolleyi. BMC Microbiology 11: 242–255.
Fernández FA, Huhndorf SM (2005) New species of Chaetosphaeria, Melanopsammella and Tainosphaeria gen. nov. from the Americas. Fungal Diversity 18: 15–57.
Fernández FA, Lutzoni FM, Huhndorf SM (1999) Teleomorph-anamorph connections: the new pyrenomycetous genus Carpolinga and its Pleurothecium anamorph. Mycologia 91: 251–262.
Fernández FA, Miller AN, Huhndorf SM, Lutzoni FM, Zoller S (2006) Systematics of the genus Chaetosphaeria and its allied genera: morphological and phylogenetic diversity in north temperate and neotropical taxa. Mycologia 98: 121–130.
Furlanetto C, Dianese JC (1998) Some coelomycetes from Central Brazil. Mycological Research 102: 19–29.
Gams W (2000). Phialophora and some similar morphologically little-differentiated anamorphs of divergent ascomycetes. Studies in Mycology 45: 187–199.
Gams W, Holubová-Jechová V (1976) Chloridiom and some other dematiaceous hyphomycetes growing on decaying wood. Studies in Mycology 13: 1–99.
Gramaje D, Mostert L, Groenewald JZ, Crous PW (2015) Phaeoacremonium: from esca disease to phaeohyphomycosis. Fungal Biology 119: 759–783.
Grove WB (1937) British Stem and Leaf-Fungi (Coelomycetes). Vol. 2. Cambridge: Cambridge University Press.
Habibi A, Banihashemi Z, Mostowfizadeh-Ghalamfarsa R (2015) Phylogenetic analysis of Polystigma and its relationship to Phylachorales. Phytopathologia Mediterranea 54: 45–54.
Hambleton S, Nickerson NL, Seifert KA (2005) Leohumicola, a new genus for the anamorph of Leohumicola. Mycologia 97: 759–783.
Hanan RT (1990) Acerviclypeatus, a new genus for the anamorph of Ophiodothella vaccinii. Mycologia 37: 379–384.
Hanan RT, Goh T-K, Skarshaug AJ (1992) A key to and descriptions of species assigned to Ophiodothella based on the literature. Mycologia 44: 103–126.
Hanan RT, González M (2013) Ophiodothella angustissima comb. nov., a new name for Acerviclypeatus poriformans and O. vaccinii. Mycologia 123: 327–334.
Hausner G, Reid J (2004) The nuclear small subunit ribosomal genes of Sphaeronaemella helvellae, Sphaeronaemella fimicola,
Gabarnaudia betae, and Cornuvesica falcata: phylogenetic implications. Canadian Journal of Botany 82: 752–762.

Hawksworth DL (2015) Proposals to clarify and enhance the naming of fungi under the International Code of Nomenclature for algae, fungi, and plants. IMA Fungus 6: 199–205; Taxon 64: 858–862.

Hawksworth DL, Gibson IAS, Gams W (1976) Phialophora parasitica associated with disease conditions in various trees. Transactions of the British Mycological Society 66: 427–431.

Hernández-Restrepo M, Gene J, Mena-Portales J, Cano J, Hadrí H, et al. (2014) New species of Cordana and epitypification of the genus. Mycologia 106: 723–734.

Hernández-Restrepo M, Groenewald JZ, Crous PW (2016) Taxonomy and phylogenetic reevaluation of Microdochium, Monographella and Iridella. Persoonia 36: 57–82.

Hironaga M, Nakano K, Yokoyama I, Kitajima J (1989) Phialophora repens, an emerging agent of subcutaneous phaeohyphomycosis in humans. Journal of Clinical Microbiology 27: 394–399.

Holubová-Jechová V (1973a) Lignicolous hyphomycetes from Czechoslovakia 3. Sporoschisma, Sporoschismopsis and Catenaria. Folia Geobotanica et Phytotaxonomic 8: 317–336.

Holubová-Jechová V (1973b) Lignicolous hyphomycetes from Czechoslovakia 4. Menispora. Folia Geobotanica et Phytotaxonomic 8: 317–336.

Holubová-Jechová V, Hennebert GL (1972) Sporoschismopsis, a new genus of lignicolous hyphomycetes. Bulletin du Jardin Botanique National de Belgique 42: 385–391.

Hsieh H-M, Ju Y-M, Rogers JD (2005) Molecular phylogeny of Sporoschismopsis, Requienella, Seiridium Acrocordiella, and Phialophora, which produce phialides. Mycological Progress 14: 1–36.

Hsieh H-M, Ju Y-M, Rogers JD (2005) Molecular phylogeny of Sporoschismopsis, Requienella, Seiridium Acrocordiella, and Phialophora, which produce phialides. Mycological Progress 14: 1–36.

Hsieh H-M, Ju Y-M, Rogers JD (2005) Molecular phylogeny of Sporoschismopsis, Requienella, Seiridium Acrocordiella, and Phialophora, which produce phialides. Mycological Progress 14: 1–36.

Hsieh H-M, Ju Y-M, Rogers JD (2005) Molecular phylogeny of Sporoschismopsis, Requienella, Seiridium Acrocordiella, and Phialophora, which produce phialides. Mycological Progress 14: 1–36.

Hsieh H-M, Ju Y-M, Rogers JD (2005) Molecular phylogeny of Sporoschismopsis, Requienella, Seiridium Acrocordiella, and Phialophora, which produce phialides. Mycological Progress 14: 1–36.

Hsieh H-M, Ju Y-M, Rogers JD (2005) Molecular phylogeny of Sporoschismopsis, Requienella, Seiridium Acrocordiella, and Phialophora, which produce phialides. Mycological Progress 14: 1–36.

Hsieh H-M, Ju Y-M, Rogers JD (2005) Molecular phylogeny of Sporoschismopsis, Requienella, Seiridium Acrocordiella, and Phialophora, which produce phialides. Mycological Progress 14: 1–36.
Generic name in Sordariomycetes

Mostert L, Groenewald JZ, Summerbell RC, Gams W, Crous PW (2006) Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Studies in Mycology 54: 1–115.

Mugambi G, Huhndorf SM (2008) A new species of Melanochaeta from Kenya. Sydowia 60: 261–266.

Mugambi GK, Huhndorf SM (2010) Multigene phylogeny of the Coronophorales: morphology and new species in the order. Mycologia 102: 185–210.

Müller E (1986) On the genus Diachora. J. Müller. Transactions of the Botanical Society of Edinburgh 45 (Supplement 1): 69–75.

Müller E, von Arx JA (1962) Die Gattungen der didymosporigen Pyrenomyceten. Beiträge zur Kryptogamenflora der Schweiz 11(2): 1–922.

Müller E, Samuels GJ (1982) Anamorphs of pyrenomycetous Coelomycetous Anamorphs with Appendage-bearing Conidia of Japan. Mycologia 84: 475–487.

Nonaka K, Ishit T, Shiomi K, Omura S, Masume R (2013) A new marine ascomycete and its anamorph. Mycoscience 38: 178–193.

Nakagiri A, Tokura R (1982) A new marine ascomycete and its anamorph from Japan. Transactions of the Mycological Society of Japan 23: 101–110.

Nawawi A, Kuthubuthen N (1989) Canalisporium, a new genus of lignicolous hyphomycetes from Malaysia. Mycopathology 147: 497–497.

Nonaka K, Ishit T, Shiomi K, Omura S, Masume R (2013) Virgaria boninensis, a new hyphomycete (Xylariaceae) from soils in the Bonin Islands, Japan. Mycosen Science 34: 394–399.

Nonaka K, Miyazaki H, Iwatsuki M, Shiomi K, Tomoda H et al. (2012) Stalphytolichum boninense, a new hyphomycete (Chaetomiaceae) from soils in the Bonin Islands. Japan. Mycosen Science 35: 312–318.

Norphanphoun C, Maharachchikumbura SSN, Daranagama A, Okane I, Nakagiri A (2007) Taxonomy of an anamorphic xylariaceous fungus from a termite nest found together with Xylaria angulosa. Mycoscience 48: 240–249.

Okane I, Nakagiri A (2007) Studies on Sphaeropsisales in culture. Mycological Papers 119: 1–24.

Quandt CA, Kepler RM, Gams W, Araújo JPM, Ban S, et al. (2014) Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. IMA Fungus 5: 121–134.

Raja HA, Fournier J, Shearer CA, Miller AN (2012) Freshwater ascomycetes: Coniochaeta gigantospora sp. nov. based on morphological and molecular data. Mycologia 53: 373–380.

Rambelli A, Onofri S (1987) New species of Kylindria and Xenokylindria and note on Cylindrotrichum (Hyphomycetes). Transactions of the British Mycological Society 88: 393–397.

Ranghoo VM, Tsiu CKM, Hyde KD (2001) Brunneospora aquatica gen. et sp. nov., Aquaginigocila hyalina gen. et sp. nov., Jubellisia viridifusca sp. nov. and Porosphaerellopsis bipolaris sp. nov. (Ascomycetes) from submerged wood in freshwater habitats. Mycological Research 105: 625–633.

Réblová M (1999) Studies in Chaetosphaeria sensu lato I. The genera Chaetosphaeria and Tengiomyces gen. nov. of the Helminthosphaeriaceae. Mycologia 70: 387–420.

Réblová M (2000) The genus Chaetosphaeria and its anamorphs. Studies in Mycology 45: 149–168.

Réblová M (2011) New insights into the systematics and phylogeny of the genus Jattaea and similar fungi of the Calosphaeriaceae. Fungal Diversity 49: 167–198.

Réblová M (2014) Sporoschismopsis angustata sp. nov., a new holomorph species in the Reticulascaceae (Glomerellales), and a reappraisal of Sporoschismopsis. Mycological Progress 13: 671–681.

Réblová M, Barr ME, Samuels GJ (1999) Chaetosphaeriaeaceae, a new family for Chaetosphaeria and its relatives. Sydowia 51: 49–70.

Réblová M, Gams W (1999) Teleomorph-anamorph connections in ascomycetes. 1. Cylindrotrichum and Cacumisporium anamorphs of Chaetosphaeria. Czech Mycology 51: 1–40.

Réblová M, Gams W, Seifert KA (2011a) Monilochaeas and allied genera of the Glomerales, and a reconsideration of families in the Microascales. Studies in Mycology 68: 163–191.

Réblová M, Gams W, Štěpánek V (2011b) The new hyphomycete genera Brachyalara and Infundichalara, the similar Exochalara and species of Phialohora sect. Caterulatae (Leotiomycetes). Fungal Diversity 46: 67–86.

Réblová M, Jaklitsch WM, Réblová K, Štěpánek V (2015) Phylogenetic reconstruction of the Calosphaeriaceae and Togniniales using five genes and predicted RNA secondary structures of ITS, and Flabellascus tenuirostris gen. et sp. nov. PLoS One 10(12): e0144616.

Réblová M, Mostert L, Gams W, Crous PW (2004) New genera in the Calosphaeriaceae, and its anamorph Phaeoacreella, and Calosphaerophora as anamorph of Calosphaeria. Studies in Mycology 50: 533–550.

Réblová M, Mostert L (2007) Romellia is a congeneric with Togninia and description of Conidiolotheca gen. nov. for one species of this genus with polyssporous asc. Mycological Research 111: 299–307.

Réblová M, Seifert KA (2004a) Conioscyphus, a new ascomycetous genus for holomorphs with Conioscypha anamorphs. Studies in Mycology 50: 95–108.

Réblová M, Seifert KA (2004b) Cryptadelphia (Trichosphaeriaceae), a new genus for holomorphs with Brachysporium anamorphs, and clarification of the taxonomic status of Wallrothiella. Mycologia 96: 343–367.
Réblová M, Seifert KA (2007) A new fungal genus, Teracosphaeria, with a phialophora-like anamorph (Sordariomycetes, Ascomycota). Mycological Research 111: 287–298.

Réblová M, Seifert KA, Fournier J, Štěpánek V (2016) Newly recognised lineages of perithelial ascomycetes: the new orders Conioscyphales and Pleurotheciales. Persoonia 37: 57–81.

Réblová M, Winka K (2000) Phylogeny of Chaetosphaeria and its anamorphs based on morphological and molecular data. Mycologia 92: 939–954.

Rodrigues de Cruz MC, Marques MFO, Guzmão LFP (2014) Conidial fungi from the semi-arid catanga biome of Brazil. The genus Menisporopsis. Acta Botanica Brasilica 28: 339–345.

Rogers JD (1984) Xylaria cubensis and its anamorph Xyloccoremum flabelliforme, Xylaria allantoidae, and Xylaria poitei in continental United States. Mycologia 76: 912–923.

Rogers JD, Ju Y-M (2002) Ascovirgaria occulta gen. et sp. nov., Jumilla hawaiinsis sp. nov. and Lopadostoma hawaiianum sp. nov. from Hawaii. Canadian Journal of Botany 80: 479–481.

Rogers JD, Ju Y-M, Hemmes DE (1997) Xylaria moelleroclavus sp. nov. and its Moelleroclaus anamorphic state. Mycological Research 101: 345–348.

Rogers JD, Ju Y-M, San Martín Gonzalez F (1995) Discoxyilia myrmecophilae and its Hypocreodendron anamorph. Mycologia 87: 41–45.

Rojas EI, Rehner SA, Samuels GJ, Van Bael SA, Herre EA et al. (2010) Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panama: multilocous phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia 102: 1318–1338.

Rolshausen PE, Mahoney NE, Molyneux RJ, Gubler WD (2006) A re-assessment of the species concept in Eutypa lata, the causal agent of Eutypa dieback of grapevine. Phytopathology 96: 367–377.

Rossman AY, Seifert KA, Samuels GJ, Minnis AM, Schroers H-J, et al. (2013) Genera in Bieneckeciaceae, Hypocreaceae, and Nectriaceae (Haplorectales) proposed for acceptance or rejection. IMA Fungus 4: 41–51.

Rossman AY, Adams GC, Cannon PF, Castlebury LA, Crous PW et al. (2015a) Recommendations of generic names in Diaporthales competing for protection or use. IMA Fungus 6: 145–154.

Rossman AY, Crous PW, Hyde KD, Hawksworth DL, Aptroot A, et al. (2015b) Recommended names of pleomorphic genera in Dothideomycetes. IMA Fungus 6: 507–523.

Samson RA (1974) Paecilomyces and some allied hyphomycetes. Studies in Mycology 6: 1–119.

Samson RA, Visage CM, Houbroken J, Hong S-B, Hubka V, et al. (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology 78: 141–173.

Samuels GJ, Müller E (1978) Life-history studies of Brazilian ascomycetes. 1. Two new genera of the Sphaeriales having, respectively, Sporochromis-like and Codinaea anamorphs. Sydowia 31: 126–136.

Samuels GJ, Müller E (1980) Life history studies of Brazilian ascomycetes 8. Thamnomyces chordalis (anam.: Nodulisporium) and Camillia bacillum (anam.: Geniculosporium) with notes on taxonomy of the Xylariaceae. Sydowia 35: 274–281.

Samuels GJ, McKenzie EHC, Buchanan DE (1981) Ascomycetes of New Zealand 3. Two new species of Apiospora and their Arthrinium anamorphs on bamboo. New Zealand Journal of Botany 19: 137–149.

Samuels GJ, Rogers JD, Nagasawa E (1987) Studies in the Amphisphaeriaeae (sensu lato) 11. Collodiscula japonica and its anamorph, Acanthodochium collodisculae. Mycologia 79: 453–459.

Schoch CL, Sung GH, Volkmann-Kohlmeyer B, Kohlmeyer J, Spatafora JW (2007) Marine fungal lineages in the Hypocreomycetidae. Mycological Research 111: 154–162.

Schohl-Schwarz MB (1970). Revision of the genus Phialophora. Persoonia 6: 59–94.

Seifert KA (1987) Stromatographium and Acrostroma gen. nov.: two tropical hymenocyte genera with distinctive synnema anatomies. Canadian Journal of Botany 65: 2196–2201.

Seifert KA, Gams W, Louis-Seize GW (2002) Archaeorylaria elegans, a new coprophilous anamorphic fungus allied with the Xylariaeae, with notes on the genus Bisporostibellia. Czech Mycology 53: 297–307.

Senanayake IC, Maharachchikumbura SSN, Hyde KD, Bhat JD, Jones EBG, et al. (2015) Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Diversity 73: 73–144.

Shenoy BD, Jeewon R, Wu WP, Bhat DJ, Hyde KD (2006) Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycological Research 110: 916–928.

Shoemaker RA, Müller E, Morgan–Jones G (1966) Fucell’s Massaria marginata and Seiridium marginatum Nees ex Steudel. Canadian Journal of Botany 44: 247–254.

Shoemaker RA (1964) Seimatosporium (= Cryptostictis) parasites of Rosa, Vitis, and Cornus. Canadian Journal of Botany 42: 411–421.

Sivanesan A (1983) Studies on ascomycetes. Transactions of the British Mycological Society 81: 313–332.

Sivichai S, Hywel-Jones NL, Somrithipol S (2000) Lignicolous Bieneckeiaceae and its anamorph. Mycologia 92: 286–294.

Sutton BC (1980) Cryptostictis (anam.: Seimatosporium) species of Arthrinium: recognition lineages of perithecial ascomycetes: the new orders Conioscyphales and Pleurotheciales. Mycological Research 101: 145–154.

Stadler M, Kuhnert E, Peršoh D, Fournier J (2013) The Xylariaeae as model example for a unified nomenclature following the “One fungus-one name” (1F1N) concept. Mycology 4: 5–21.

Stadler M, Laassée T, Fournier J, Decock C, Schmieschek B, et al. (2014). A polyphasic taxonomy of Daldinia (Xylariaeae). Studies in Mycology 77: 1–143.

Subramanian CV, Sekar G (1986) Pseudocercophora ingoldii gen. et sp. nov. and its Mammania anamorph. Journal of the Singapore National Academy of Sciences 15: 58–60.

Sutton BC (1980) The Coelomycetes; Fungi imperfecti with pycnidia, acervuli and stromata. Kew: Commonwealth Mycological Institute.

Tanaka K, Endo M, Hirayama K, Okane I, Hosoya T, et al. (2011) Phylogeny of Discosia and Seimatosporium and introduction of Adiscisco and Immersidiscosia genera nova. Persoonia 26: 85–98.

Tang AM, Jeewon R, Hyde KD (2007) Phylogenetic utility of protein (RPB2, beta-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of Sordariomycetes, Ascomycota, Fungi. Antonie van Leeuwenhoek 91: 327–349.

Trouillas FP, Lorber JD, Peduto F, Grant J, Coates WW, et al. (2010a)
First report of *Calosphaeria pulchella* associated with branch dieback of sweet cherry trees in California. *Plant Disease* **94**: 1167.

Trouillas FP, Urbez-Torres JR, Gubler WD (2010b). Diversity of diatrypaceous fungi associated with grapevine canker diseases in California. *Mycologia* **102**: 319–336.

Untereiner WA, Debois V, Naveau FA (2001) Molecular systematics of the ascomycete genus *Farrowia* (*Chaetomiaceae*). *Canadian Journal of Botany* **79**: 321–333.

Vakili NG (1989) *Gonatobotrys simplex* and its teleomorph, *Melanospora damnosa*. *Mycological Research* **93**: 67–74.

Vijaykrishna D, Mostert L, Jeewon R, Gams W, Hyde KD, et al. (2004) *Pleurostomomphora*, an anamorph of *Pleurostoma* (*Calosphaeriales*), a new anamorph genus morphologically similar to *Phialophora*. *Studies in Mycology* **50**: 387–395.

Visagie CM, Houbraken J, Frisvad JC, Hong S-B, Klaassen CHW, et al. (2014) Identification and nomenclature of the genus *Penicillium*. *Studies in Mycology* **78**: 343–371.

Weber E, Gorke C, Begerow D (2002) The *Lecythophora-Coniochaeta* complex II. Molecular studies based on sequences of the large subunit of ribosomal DNA. *Nova Hedwigia* **74**: 187–200.

Weir BS, Johnston PR, Damm U (2012) The *Colletotrichum gloeosporioides* species complex. *Studies in Mycology* **73**: 115–180.

Wijayawardene DNN, McKenzie EHC, Hyde KD (2012) Towards incorporating anamorphic fungi in a natural classification–checklist and notes for 2011. *Mycosphere* **3**: 157–228.

Zelski S, Do C, Balto JA, Raja HA, Miller AN, et al. (2014a) Some dematiaceous freshwater microfungi from Peru and their previously unknown phylogenetic relationships based on 28S nrDNA. *IMA Fungus* **5**: 425–438.

Zelski SE, Raja HA, Miller AN, Shearer CA (2014b) *Conioscypha peruviana* sp. nov., its phylogenetic placement based on 28S rRNA gene, and a report of *Conioscypha gracilis* comb. nov. from Peru. *Mycoscience* **56**: 319–325.

Zhang N, Luo J, Rosman A, Aoki T, Chuma I, et al. (2016) Generic names in *Magnaporthales*. *IMA Fungus* **7**: 155–159.
Author/s:
Reblova, M; Miller, AN; Rossman, AY; Seifert, KA; Crous, PW; Hawksworth, DL; Abdel-Wahab, MA; Cannon, PF; Daranagama, DA; De Beer, ZW; Huang, S-K; Hyde, KD; Jayawardena, R; Jaklitsch, W; Jones, EBG; Ju, Y-M; Judith, C; Maharachchikumbura, SSN; Pang, K-L; Petrini, LE; Raja, HA; Romero, AI; Shearer, C; Senanayake, IC; Voglmayr, H; Weir, BS; Wijayawarden, NN

Title:
Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales)

Date:
2016-06-01

Citation:
Reblova, M., Miller, A. N., Rossman, A. Y., Seifert, K. A., Crous, P. W., Hawksworth, D. L., Abdel-Wahab, M. A., Cannon, P. F., Daranagama, D. A., De Beer, Z. W., Huang, S. -K., Hyde, K. D., Jayawardena, R., Jaklitsch, W., Jones, E. B. G., Ju, Y. -M., Judith, C., Maharachchikumbura, S. S. N., Pang, K. -L., ..., Wijayawarden, N. N. (2016). Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales). IMA FUNGUS, 7 (1), pp.131-153. https://doi.org/10.5598/imafungus.2016.07.01.08.

Persistent Link:
http://hdl.handle.net/11343/255509

File Description:
Published version

License:
CC BY-NC-ND