Neural Cross-Lingual Transfer and Limited Annotated Data for Named Entity Recognition in Danish

Barbara Plank
Department of Computer Science
ITU, IT University of Copenhagen
Denmark
bplank@itu.dk

Abstract

Named Entity Recognition (NER) has greatly advanced by the introduction of deep neural architectures. However, the success of these methods depends on large amounts of training data. The scarcity of publicly-available human-labeled datasets has resulted in limited evaluation of existing NER systems, as is the case for Danish. This paper studies the effectiveness of cross-lingual transfer for Danish, evaluates its complementarity to limited gold data, and sheds light on performance of Danish NER.

1 Introduction

Named entity recognition is a key step for natural language understanding (NLU), and important for information extraction, relation extraction, question answering and even privacy protection. However, the scarcity of publicly-available human annotated datasets has resulted in a lack of evaluation for languages beyond a selected set (e.g., those covered in early shared tasks like Dutch, German, English, Spanish), despite the fact that NER tools exist but lack empirical evaluation.

Contemporarily, there exists a surge of interest in porting NLU components quickly and cheaply to new languages. This includes cross-lingual transfer methods that exploit resources from existing high-resource languages for zero-shot or few-shot learning. This line of research is blooming, particularly since the advent of neural NER, which holds the state of the art (Yadav and Bethard, 2018). However, neither neural tagging nor cross-lingual transfer has been explored for Danish NER, a gap we seek to fill in this paper.

Contributions We present a) publicly-available evaluation data to encourage research on Danish NER; b) an empirical comparison of two existing NER systems for Danish to a neural model; c) an empirical evaluation of learning an effective NER tagger for Danish via cross-lingual transfer paired with very little labeled data.

2 Approach

We investigate the following questions: RQ1: To what extent can we transfer a NER tagger to Danish from existing English resources? RQ2:
How does cross-lingual transfer compare to annotating a very small amount of in-language data (zero-shot vs few-shot learning)? RQ3: How accurate are Danish NER systems?

2.1 NER annotation

To answer these questions, we need gold annotated data. Access to existing resources is limited as they are not available online or behind a paywall. Therefore, we annotate NERs on top of publicly available data.

In line with a limited budget for annotation (Garrette and Baldridge, 2013), we add an annotation layer for Named Entities to the development and test sets of the Danish section of the Universal Dependencies (UD) treebank (Johannsen et al., 2015; Nivre et al., 2016). In particular, all tokens marked as proper nouns in UD were annotated for four named entity types. Annotation were obtained by two annotators with an inter-annotator agreement of 0.9 using Cohen’s \(\kappa \) (on entities only). To answer RQ2, we further annotate a small portion of the train data: the first 5k and 10k tokens. Table 1 shows examples, Table 2 provides data statistics.

The Danish UD treebank (Danish-DDT) is a conversion of the Copenhagen Dependency Treebank (CDT). CDT (Kromann et al., 2003) consists of 5,512 sentences and 100k tokens, originating from the PAROLE-DK project (Bilgram and Kesont, 1998). In contrast to the original CDT and the PAROLE tokenization scheme, starting from Danish UD has the advantage that the language use is closer to everyday language, as it splits tokens which were originally joined (such as ‘i-alt’).

We follow the CoNLL 2003 annotation guidelines (Tjong Kim Sang and De Meulder, 2003) and annotate proper names of four types: person (PER), location (LOC), organization (ORG) and miscellaneous (MISC). MISC contains for example names of products, drinks or film titles.

2.2 Cross-lingual transfer

We train a model on English (a medium and high-resource setup, see details in Section 3) and transfer it to Danish, examining the following setups:

- **Zero-shot**: Direct transfer of the English model via aligned bilingual embeddings.
- **In-language**: Training the neural model on very small amounts of in-language Danish training data only. We test two setups, training on the tiny data alone; or with unsupervised transfer via word embedding initialization (+Poly).
- **Few-shot direct transfer**: Training the neural model on English and Danish jointly (on the concatenation of the data), including bilingual embeddings.
- **Few-shot fine-tuning**: Training the neural model first on English, and fine-tuning it on Danish. This examines whether fine-tuning is better than training the model from scratch on both.

Table 1: Example annotations.

B-LOC	O	O	B-PER	O	O	B-MISC	I-MISC
Rom	blev	ikke	bygget	på	en	dag	
vinyl	.	som	Elvis	indspillede	i	Sim	Records

3 Experiments

As source data, we use the English CoNLL 2003 NER dataset (Tjong Kim Sang and De Meulder, 2003) with BIO tagging.
Table 2: Overview of the annotated Danish NER data. Around 35%-39% of the sentences contain NEs. TTR: type-token ratio.

	Evaluation	Training		
	DEV	TEST	TINY	SMALL
Sentences	564	565	272	604
Tokens	10,332	10,023	4,669	10,069
Types	3,640	3,424	1,918	3,525
TTR	0.35	0.34	0.41	0.35
Sent.w/NE	220	226	96	206
Sent.w/NE%	39%	34%	35%	34%
Entities	347	393	153	341

We study two setups for the source side: a MEDIUM and LARGE source data setup. For LARGE we use the entire CoNLL 2003 training data as starting point, which contains around 14,000 sentences and 200,000 tokens. To emulate a lower-resource setup, we consider a MEDIUM setup, for which we employ the development data from CoNLL 2003 as training data (3,250 sentences and 51,000 tokens). The CoNLL data contains a high density of entities (79-80% of the sentences) but is lexically less rich (TTR of 0.11-0.19), compared to our Danish annotated data (Table 2), which is orders of magnitudes smaller, lexical richer but less dense on entities. The difference in entity richness might stem from the fact that the CoNLL data was explicitly collected for NER, while the UD was collected in an effort to create a syntactically annotated treebank.

Model and Evaluation We train a bilstm-CRF similar to (Xie et al., 2018; Johnson et al., 2019; Plank et al., 2016). As pre-trained word embeddings we use the Polyglot embeddings (Al-Rfou et al., 2013). The word embeddings dimensionality is 64. The remaining hyperparameters were determined on the English CoNLL data. The word LSTM size was set to 50. Character embeddings are 50-dimensional. The character LSTM is 50 dimensions. Dropout was set to 0.25. We use Stochastic Gradient Descent with a learning rate of 0.1 and early stopping. We use the evaluation script from the CoNLL shared task and report mean F1 score over three runs.

Cross-lingual mapping We map the existing Danish Polyglot embeddings to the English embedding space by using an unsupervised alignment method which does not require parallel data. In particular, we use character-identical words as seeds for the Procrustes rotation method introduced in MUSE (Conneau et al., 2017).

4 Results

Table 3 presents the main results. There are several take-aways.

Cross-lingual transfer is powerful (RQ1). Zero-shot learning reaches an F1 score of 58% in the MEDIUM setup, which outperforms training the neural tagger on very limited gold data (plain). Neural NER is better than traditional HMM-based tagging (TnT) (Brants, 2000) and greatly improves by unsupervised word embedding initialization (+Poly). It is noteworthy that zero-shot transfer benefits only to a limiting degree from more source data (F1 increases by almost 3% when training on all English CoNLL data).

To compare cross-lingual transfer to limited gold data (RQ2), we observe that training the neural system on the small amount of data together with Polyglot embeddings is close to the tiny-shot transfer setup. Few-shot learning greatly improves over zero-shot learning. The most beneficial way is to add the target data to the source, in comparison to fine-tuning. This
Table 3: F1 score on the development set for low-resource training setups (none, tiny 5k or small 10k labeled Danish sentences). Transfer via multilingual embeddings from MEDIUM (3.2k sentences, 51k tokens) or LARGE English source data (14k sentences/203k tokens).

shows that access to a tiny or small amount of training data is effective. Adding gold data with cross-lingual transfer is the best setup. In both MEDIUM and LARGE setups are further gains obtained by adding TINY or SMALL amounts of Danish gold data. Interestingly, a) fine-tuning is less effective; b) it is better to transfer from a medium-sized setup than from the entire CoNLL source data.

Existing systems (RQ3) are evaluated and results are shown in Table 4. Polyglot (Al-Rfou et al., 2013) overall performs better than DKIE (Derczynski et al., 2014). The best system is our cross-lingual transfer NER from MEDIUM source data paired with SMALL amounts of gold data. Per-entity evaluation shows that the neural Bilstm tagger outperforms Polyglot except for Location, which is consistent across evaluation sets. Overall we find that very little data paired with dense representations yields an effective NER quickly.

5 Related Work

Named Entity Recognition has a long history in NLP research. While interest in NER originally arose mostly from a question answering perspective, it developed into an independent task through the pioneering shared task organized by the Message Understanding Conference (MUC) (Grishman and Sundheim, 1996; Grishman, 1998). Since then, many shared task for NER have been organized, including CoNLL (Tjong Kim Sang and De Meulder, 2003) for newswire and WNUT for social media data (Baldwin et al., 2015). While Danish NER tools exists (Bick, 2004; Derczynski et al., 2014; Johannessen et al., 2005; Al-Rfou et al., 2013), there was a lack of reporting F1 scores (Kirkedal et al., 2019). Supersense tagging, a task close to NER, has received some attention (Martinez Alonso et al., 2015).

The range of methods that have been proposed for NER is broad. Early methods fo
focused on hand-crafted rule-based methods with lexicons and orthographic features. They were followed by feature-engineering rich statistical approaches (Nadeau and Sekine, 2007). Since the advent of deep learning and the seminal work by Collobert et al. (2011), state-of-the-art NER systems typically rely on feature-inferring encoder-decoder models that extract dense embeddings from word and subword embeddings, including affixes (Yadav and Bethard, 2018), often outperforming neural architectures that include lexicon information such as gazetteers.

Recently, there has been a surge of interest in cross-lingual transfer of NER models (Xie et al., 2018). This includes work on transfer between distant languages (Rahimi et al., 2019) and work on projecting from multiple source languages (Johnson et al., 2019).

6 Conclusions

We contribute to the transfer learning literature by providing a first study on the effectiveness of exploiting English NER data to boost Danish NER performance. We presented a publicly-available evaluation dataset and compare our neural cross-lingual Danish NER tagger to existing systems. Our experiments show that a very small amount of in-language NER data pushes cross-lingual transfer, resulting in an effective Danish NER system.

Acknowledgements

We kindly acknowledge the support of NVIDIA Corporation for the donation of the GPUs used in this research and Amazon Corporation for an Amazon Research Award.

References

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2013. Polyglot: Distributed word representations for multilingual NLP. In Proceedings of the Seventeenth Conference on Computational Natural Language Learning.

Timothy Baldwin, Marie-Catherine de Marneffe, Bo Han, Young-Bum Kim, Alan Ritter, and Wei Xu. 2015. Shared tasks of the 2015 workshop on noisy user-generated text: Twitter lexical normalization and named entity recognition. In Proceedings of the Workshop on Noisy User-generated Text, pages 126–135.

Eckhard Bick. 2004. A named entity recognizer for danish. In LREC.

Thorsten Brants. 2000. Tnt: a statistical part-of-speech tagger. In Proceedings of the sixth conference on Applied natural language processing, pages 224–231. Association for Computational Linguistics.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017. Word translation without parallel data. arXiv preprint arXiv:1710.04087.

Leon Derczynski, Camilla Vihelmsen Field, and Kenneth S Bøgh. 2014. Dkie: Open source information extraction for danish. In Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 61–64.

Dan Garrette and Jason Baldridge. 2013. Learning a part-of-speech tagger from two hours of annotation. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 138–147.

Ralph Grishman. 1998. Research in information extraction: 1996-98. In Proceedings of the TIPSTER Text Program: Phase III, pages 57–60, Baltimore, Maryland, USA. Association for Computational Linguistics.

Ralph Grishman and Beth Sundheim. 1996. Message understanding conference- 6: A brief history. In COLING 1996 Volume 1: The 16th International Conference on Computational Linguistics.

Janne Bondi Johannessen, Kristin Hagen, Åsne Haaland, Andra Björk Jónsdottir, Anders Noklestad, Dimitris Kokkinakis, Paul Meurer, Eckhard Bick, and Dorte Haltrup. 2005. Named entity recognition for the mainland scandinavian languages. Literary and Linguistic Computing, 20(1):91–102.

Anders Johannsen, Héctor Martínez Alonso, and Barbara Plank. 2015. Universal dependencies for danish. In International Workshop on Treebanks and Linguistic Theories (TLT14).

Andrew Johnson, Penny Karanasou, Judith Gaspers, and Dietrich Klakow. 2019. Cross-lingual transfer learning for Japanese named entity recognition. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers), Minneapolis - Minnesota. Association for Computational Linguistics.

Andreas Kirkedal, Barbara Plank, Leon Derczynski, and Natalie Schluter. 2019. The Lacunae of Danish Natural Language Processing. In Proceedings of the Nordic Conference on Computational Linguistics (NODALIDA).

Matthias T Kromann, Line Mikkelsen, and Stine Kern Lyng. 2003. Danish dependency treebank. In International Workshop on Treebanks and Linguistic Theories (TLT), pages 217–220.

Héctor Martínez Alonso, Anders Johanssen, Sussi Olsen, Sanni Nimb, Nicolai Hartvig Sørensen, Anna Braasch, Anders Søgaard, and Bolette Sandford Pedersen. 2015. Supersense tagging for Danish. In Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015), Vilnius, Lithuania. Linköping University Electronic Press, Sweden.

David Nadeau and Satoshi Sekine. 2007. A survey of named entity recognition and classification. Linguisticae Investigationes, 30(1):3–26.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christopher D Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, et al. 2016. Universal dependencies v1: A multilingual treebank collection. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), pages 1659–1666.

Barbara Plank, Anders Søgaard, and Yoav Goldberg. 2016. Multilingual part-of-speech tagging with bidirectional long short-term memory models and auxiliary loss. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).

Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019. Multilingual NER Transfer for Low-resource Languages. In Proceedings of the 2019 Conference of the Chapter of the Association for Computational Linguistics.

Erik F Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A Smith, and Jaime Carbonell. 2018. Neural cross-lingual named entity recognition with minimal resources. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.

Vikas Yadav and Steven Bethard. 2018. A survey on recent advances in named entity recognition from deep learning models. In Proceedings of the
27th International Conference on Computational Linguistics, pages 2145–2158.