The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis

Chiyoko Machida,1* Ayami Nakagawa,1 Shoko Kojima,1 Hiro Takahashi2 and Yasunori Machida3

Leaf primordia are born around meristem-containing stem cells at shoot apices, grow along three axes (proximal–distal, adaxial–abaxial, medial–lateral), and develop into flat symmetric leaves with adaxial–abaxial polarity. Axis development and polarity specification of Arabidopsis leaves require a network of genes for transcription factor-like proteins and small RNAs. Here, we summarize present understandings of adaxial-specific genes, ASYMMETRIC LEAVES1 (AS1) and AS2. Their complex (AS1–AS2) functions in the regulation of the proximal–distal leaf length by directly repressing class 1 KNOX homeobox genes (BP, KNAT2) that are expressed in the meristem periphery below leaf primordia. Adaxial–abaxial polarity specification involves antagonistic interaction of adaxial and abaxial genes including AS1 and AS2 for the development of two respective domains. AS1–AS2 directly represses the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3) and indirectly represses ETT/ARF3 and ARF4 through tasiR-ARF. Modifier mutations have been identified that abolish adaxialization and enhance the defect in the proximal–distal patterning in as1 and as2. AS1–AS2 and its modifiers synergistically repress both ARFs and class 1 KNOXs. Repression of ARFs is critical for establishing adaxial–abaxial polarity. On the other hand, abaxial factors KANADI1 (KAN1) and KAN2 directly repress AS2 expression. These data delineate a molecular framework for antagonistic gene interactions among adaxial factors, AS1, AS2, and their modifiers, and the abaxial factors ARFs as key regulators in the establishment of adaxial–abaxial polarity. Possible AS1–AS2 epigenetic repression and activities downstream of ARFs are discussed. © 2015 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.

INTRODUCTION

Leaves develop as lateral organs from the peripheral zone of a shoot apical meristem (SAM) along three structural axes. A group of cells is initially patterned along the proximal–distal axis and then along the adaxial–abaxial axis. Subsequent cell proliferation along the medial–lateral axis results in flat and mediolateral symmetric leaves1–9 (Figure 1).
The process of leaf differentiation is a good model to study organ development from stem cells. The SAM consists of stem cells in a central zone (CZ), which divide slowly and replenish a peripheral zone (PZ) of more rapidly dividing cells, in which leaf initiation occurs. Leaf primordia are detected as transcriptionally distinct groups of leaf founder cells before they become morphologically distinct from the SAM. This process was first clearly demonstrated as the disappearance of class-1 KNOTTED-like homeobox (class 1 KNOX) gene transcripts from the leaf primordia. In dicotyledonous plants, a leaf primordium 0 (p0) is initially contained entirely within the SAM (see Figure 1), and then begins to grow outward. It has been speculated that the primordium acquires adaxial-abaxial polarity in the radial dimension, soon after it becomes visible, which is between the p1 and p2 stages of development. Based on the observation that if adaxial-abaxial polarity is perturbed, filamentous shaped leaves are formed, Waites and Hudson proposed that cell proliferation might be induced at the boundary between the adaxial and abaxial domains, and result in the expansion of leaf lamina in the medial-lateral direction. Genetic and molecular studies of leaf development in dicotyledonous plants support their concept. The molecular mechanisms underlying the cell proliferation induced by the juxtaposition of these two domains, however, are not well understood.

As summarized in Figure 1, genes involved in the adaxial-abaxial partitioning of leaves have been isolated and characterized in Arabidopsis thaliana. Analyses of these genes have shown that networks of several families of transcription factor-like proteins and small RNAs must play critical roles in the specification of leaf polarity. The PHABULOSA (PHB), PHAVOLUTA (PHV), and REVOLUTA (REV) genes, which encode class III homeodomain-leucine zipper (HD-ZIPIII) proteins, determine adaxial cell fate. The accumulation of their transcripts in the adaxial domain is a consequence of their degradation in the abaxial domain by microRNA165 (miR165) and miR166 (miR165/166). The ASYMMETRIC LEAVES1 (AS1) and AS2 genes, which encode nuclear proteins with the MYB (SANT) domain and the plant-specific AS2/LOB domain (https://www.arabidopsis.org/browse/genefamily/AS2.jsp), respectively, were initially identified as factors involved in the formation of symmetric flat lamina of leaves. It has recently been shown, however, that they are related to the formation of proper morphology along three leaf axes including the adaxial-abaxial axis, which will be mainly discussed in this article.
The idea that leaf polarity is specified by antagonistic interactions between adaxial and abaxial genes was proposed on the basis of genetic and expression analyses of these genes. Such expression patterns change during leaf development. During this process, both adaxial and abaxial promoting genes are initially expressed throughout the primordium (see p0–p1 in Figure 1), and subsequently their expression patterns are restricted to their respective complementary domains (p2). The patterning of expression of the polarity genes is generated by the mutually exclusive actions of their protein products. For example, expression of the abaxial gene FIL/YAB is abolished by the ectopic expression of PHB (HD-ZIPIII adaxial gene). Although leaf regions expressing PHB and KAN messenger RNAs (mRNAs) are mutually exclusive, and these gene families act genetically in an antagonistic manner during embryo patterning, it has not been clearly demonstrated that KAN regulates HD-ZIPIII expression directly.

Recently, Nakata et al. showed that PRESSED FLOWER/WUSCHEL-RELATED HOMEOBOX3 (WOX3) and WOX1, which are expressed in the middle domain between the adaxial and abaxial domains, function redundantly in lateral-specific lamina outgrowth and leaf margin-specific cell fate and, furthermore, that expression patterns of the two WOX genes are negatively and positively regulated by the KAN and YAB genes, respectively. They also propose a three-domain model, in which these WOX genes would coordinate adaxial/abaxial patterning in cooperation with adaxial- and abaxial-specific regulators, including the ASYMMETRIC LEAVES2 (AS2) and YAB3. YUCCA genes, responsible for auxin biosynthesis, are expressed in response to the juxtaposition of adaxial and abaxial domains, which is responsible at least in part for leaf margin expansion.

AS1 and AS2, both of which are referred to as adaxial genes and exhibit similar laminar abnormalities, repress the expression of abaxial genes, such as KAN2, YAB5, ETT/ARF3, and ARF4, but do not affect the HD-ZIPIII family genes, suggesting that they are involved in the antagonistic interactions between genes that specify adaxial–abaxial polarity. The direct repression of AS2 by KAN was first reported by Wu et al. Our group has recently reported the direct repression of ETT/ARF3 by transcriptional gene silencing (TGS) through AS1–AS2 and indirect repression of both ARF3 and ARF4, a redundant member of the ARF gene family, by post TGS (PTGS) through AS1–AS2 functions. These results provide a molecular framework for the antagonistic interaction of genes involved in adaxial–abaxial specification. In this article, we will...
overview the recent results on molecular mechanisms for the opposing interplay of polarity-related genes by AS1 and AS2 and discuss prospects for a novel epigenetic system of gene repression to guarantee the polarity specification necessary for leaf development.

CHARACTERIZATION OF ADAXIAL-SPECIFIC AS1 AND AS2 GENES

The PHANTASTICA (PHAN) gene of Antirrhinum majus is involved in the growth and adaxial–abaxial determination of lateral organs and its expression is required early in the establishment of the proximal–distal axis. Because plants with a mutation in PHAN are known to generate abaxialized filamentous leaves only when grown at 15–17°C or in the handlebars (hb) mutation background, it is proposed that a cold-sensitive pathway and some other gene might be redundantly involved in the adaxial–abaxial determination of leaves together with PHAN (see the later section of ‘Modifier mutations’ of Arabidopsis). In the as1 mutant in A. thaliana, the PHAN MYB ortholog is disrupted 17

Both as1 and as2 mutants exhibit pleiotropic phenotypes, (Figure 2(b)). These mutants produce petioles and leaf blades that are much shorter than those of the wild type, in addition to asymmetrically lobed and downwardly curled leaf blades, which are bilaterally asymmetric. Furthermore, as1 and as2 also often generate leaflet-like structures from petioles in asymmetric positions and fail to produce a thick and distinct midvein; and as2 often generates leaflet-like structures from petioles in asymmetric positions. Higher-ordered veins are asymmetric and simplified. The observation that the leaf laminas of as1 and as2 are often plump and swelled at their base implies that adaxial development in the leaves of these mutants is slightly diminished. Thus, the AS1 and AS2 genes are involved not only in the symmetric development along the mediolateral axis, but also in development along the adaxial–abaxial axis and the proximal–distal axis. In addition, expression levels of many genes, including both class-1 KNOX genes (BP, KNAT2, KNAT6) and abaxial-determinant genes, such as ETT/ARF3, KAN2 and YAB3, are elevated.

Both AS1 and AS2 transcripts accumulate in the early stage of above-ground organ primordia, and AS1 and AS2 expression sites become restricted to middle/inner regions and the adaxial epidermis of cotyledonary and leaf primordia. AS2 transcripts are also accumulated in the columnella root cap. After leaf maturation, the expression levels of these genes are reduced. AS2-fused YFP (AS2-YFP) proteins are localized to subnuclear bodies adjacent to the nucleoli in leaf cells, called AS2 bodies, and some are also dispersed in the nucleoplasm. GFP-fused AS1 proteins are located as speckles in the nucleoplasm and are also concentrated in the AS2 bodies by an AS2-dependent process. AS1 and AS2 form the AS1–AS2 complex, which represses the expression of two class 1 KNOX genes, BP and KNAT2, by binding to their respective promoter regions, showing that these KNOX genes are direct targets of AS1–AS2. In addition, AS1–AS2 directly represses ETT/ARF3 by binding to its promoter region.

Although genes that are predicted to encode AS1 orthologs and members of the AS2/LOB protein family are detected in genome databases of many plant species, genes that might encode amino acid sequences entirely homologous to the AS2 sequence are not detected in rice genome databases, and even complementary DNA (cDNAs) encoding AS2 orthologs have yet to be reported from monocotyledonous plants. Although AS2 homologues have been predicted to be present in various dicotyledonous plants, their roles in plants other than Arabidopsis are not yet intensively studied.

PROXIMAL–DISTAL POLARITY DEVELOPMENT OF LEAVES BY AS1–AS2

Genes involved in the formation of proximal–distal polarity were first identified in maize. While leaves of dicotyledonous plants are composed of stipule, petiole, and leaf blade along with proximal–distal axis, monocotyledonous plants such as maize and rice develop other distinct leaf features: the sheath in the proximal region of the leaf and the blade in its distal region. The sheath and blade are separated at their boundary by the auricle and ligule, which are not present in leaves of dicotyledonous plants (http://www.fsl.orst.edu/forages/projects/regrowth/print-section.cfm?title=Grass Structures). Recessive mutants of the rough sheath2 (rs2) gene of maize, an ortholog of PHAN and AS1, exhibit a disruption of the blade-sheath boundary owing to disorganized cell growth and acropetal ligule displacement, and the semi-bladeless phenotype of leaves. In rs2 mutants, class 1 KNOX genes are ectopically expressed, a condition that is also observed in some dominant mutants exhibiting phenotypes similar to those of rs2. Thus, rs2 is involved in the proximal–distal patterning of maize leaves through repression of class 1 KNOX genes.
AS1 and AS2 of *A. thaliana* are also involved in regulation of the proximal–distal development of leaves through repression of class 1 KNOX genes (Figure 3). Although petiole and leaf lengths are markedly reduced both in *as1* and *as2*, the extent of the reduction is more severe in *as1*.

To investigate effects of the elevated expression of class 1 KNOX genes on the phenotypes of *as1* and *as2* mutants, a number of studies have been performed using over- and ectopic-expression systems of class 1 KNOXs under the control of the 35S promoter of Cauliflower mosaic virus. Overexpression of KNOX genes in tobacco and *A. thaliana* plants repressed transcription of the gibberellin-synthetic (GA-synthetic) genes that encode GA-20 oxidase, and application of GA partially suppressed the abnormal phenotypic features of *PHANTASTICA*-antisense transgenic tobacco plants. Analyses of multiple loss-of-function mutants of KNOX genes (*bp knat2 knat6*) in *as1* and *as2* backgrounds show that the formation of shorter petioles and leaf blades is due to repression of GA-synthetic genes by the upregulation of *BP KNAT1, KNAT2, and KNAT6* (Figure 3). Thus, elevated expression of KNOXs is responsible for limited numbers of *as1* and *as2* phenotypes including petiole and lamina sizes, the less prominent midvein, and the lower potential of root regeneration from leaf sections in *in vitro* culture. The formation of asymmetric leaf lobes, leaf curling, leaflet-like structures from petioles, and the increased potential of shoot regeneration are, however, not due to upregulation of class 1 KNOXs.

PHAN in *Antirrhinum* is also involved in elaboration of the proximal–distal axis as well as the adaxial–abaxial polarity in leaves. *NSPHAN* of *Nicotiana sylvestris* is also proposed to be involved in proximal–distal development. Taken together, the KNOX-repressive systems mediated by *AS1* orthologs (*PHAN* and *RS2*), which appear to be involved in the proximal–distal polarity patterning, might be conserved at least in the plants mentioned in this section. Nevertheless, roles of *AS2* orthologs in such patterning have not been determined in these plants other than *Arabidopsis*.

![Figure 3](image_url) Roles of the AS1–AS2 complex in the regulation of class 1 KNOX, *ETT/ARF3* and *ARF4* genes in early stages of leaf primordia in *Arabidopsis thaliana*. The introduction of *bp knat2 knat6* triple mutations into *as1-1* or *as2-1* efficiently suppressed the phenotypes of short petiole and leaf blade seen in Figure 2(b).

ADAXIAL–ABAXIAL POLARITY SPECIFICATION OF LEAVES BY AS1–AS2

Molecular Roles of AS1–AS2: Repression of Abaxial Genes

Gene expression analyses of *as1* and *as2* show that transcript levels of several abaxial side-specific genes (*ETT/ARF3, KNAN2, YAB5*) are significantly increased, whereas those of *HD-ZIPIII* do not change. These results suggest that *AS1* and *AS2* directly or indirectly repress expression of the abaxial-specific genes (Figure 3). In addition, systematic molecular and genetic analyses have identified a target gene, *ETT/ARF3*, which encodes an abaxial factor acting downstream of the AS1–AS2 complex. As schematically summarized in Figure 4, the AS1–AS2 complex represses *ETT/ARF3* by the direct binding of AS1 to the *ETT/ARF3* promoter and also indirectly induces accumulation of miR390 and *tasiR-ARF*, which negatively regulate the expression of both *ETT/ARF3* and *ARF4*. Thus, the complex dually represses the expression of *ETT/ARF3*. Several abnormalities of *as2* plants are slightly suppressed by the introduction of an *ett* or *arf4* single mutation into *as2* plants. The introduction of *ett arf4* double mutations into *as2* efficiently suppresses these asymmetric leaf phenotypes (Figure 5(a)). These results are consistent with the observation that overexpression of a *tasiR-ARF*-insensitive *ETT/ARF3* cDNA yields *as2*-like phenotypes. Similarly, some lamina phenotypes of *as1* were also rescued by the introduction of *ett arf4* (Figure 5(a)). The phenotype of wrinkled lamina with patches of abaxialized cells on the adaxial surface, which indicates a slight
FIGURE 4 | Dual regulation of ETT/ARF3 gene expression, including by the possibly epigenetic system of AS1–AS2. The AS1–AS2 complex represses ETT/ARF3 directly, and ETT/ARF3 and ARF4 indirectly, via stimulating the miR390 and tasiR-ARF pathway. In addition, AS1 and AS2 maintain gene-body DNA methylation of the ETT/ARF3 gene. Solid lines indicate direct regulation and dashed black lines indicate indirect regulation.

FIGURE 5 | (a) The ett and arf4 mutations suppressed major leaf phenotypes of as1-1 and as2-1. Representative gross morphology of 40-day plants and magnified views of their leaves. Gross morphology of Col-0 (wild type), as1-1, as1-1 ett-13 arf4-1, as2-1, and as2-1 ett-13 arf4-1 plants is shown. The genotype of each plant is indicated. Red arrowheads indicate leaf lobes and the arrow indicates a leaflet-like structure. The introduction of ett arf4 double mutations into as1-1 or as2-1 efficiently suppressed the phenotypes of asymmetrically curled leaf blades, asymmetric lobes, and plump and swollen leaf lamina in both mutants in Figure 2(b). Scale bars: 5 mm (upper) and 2 mm (lower). (b) Gross morphology of typical double mutants (as2-1 elo3-27 and as2-1 eal-1 bob1). Introduction of ett and arf4 mutations into the double mutants efficiently suppressed the abaxialized leaf phenotypes to form flat symmetric leaves. See details of modifier mutations in Table 1. Scale bars: 5 mm. Plants were photographed at 28 days after sowing. White arrowheads indicate filamentous leaves. Scale bars: 5 mm. Higher magnification views of filamentous leaves are shown. Scale bars: 1 mm in higher magnification views. Photographs (a) and (b) are reproduced and modified from Ref 34 (Development 2013, 140:1958–1969) and Ref 69 (Plant Cell Physiol 2013, 54:418–431), respectively.
increase in abaxialization,14,53 was also rescued in both \textit{as1} and \textit{as2} by the introduction of \textit{ett arf4}.34 These results suggest that several leaf abnormalities, including those related to adaxial–abaxial polarity defects in \textit{as1} and \textit{as2} plants, result from elevated expression of the abaxial genes \textit{ETT} and \textit{ARF4} (Figure 4). Analyses of modifier mutations of \textit{as1} and \textit{as2} have further confirmed that repression of these \textit{ARFs} by \textit{AS1}–\textit{AS2} is important for the adaxialization of leaves. Although expression levels of \textit{KAN2} and \textit{YAB5} are increased in \textit{as1} and \textit{as2}, they are indirectly regulated by \textit{AS1}–\textit{AS2}.34

Although the systems whereby tasiR-\textit{ARFs} regulate \textit{ARF3} expression are conserved in both \textit{Arabidopsis} and maize plants, the contribution of tasiR-\textit{ARFs} to adaxial–abaxial patterning in \textit{Arabidopsis} seems to be different from that in maize; the extents of adaxial defects in mutations in tasiR-ARF biogenesis components of \textit{Arabidopsis} are subtle as compared with those of maize.13 This might be due to difference in the involvement of \textit{AS1} in repressing \textit{ARF3} expression in \textit{Arabidopsis} from that of \textit{RS2} in repressing \textit{ARF3} in maize. Recently, loss-of-function mutants of small RNA biogenesis components (\textit{RDR6, SGS3, AGO7, and DCL4}) in tomato (\textit{Solanum lycopersicum}) have been isolated. In severe cases, they generate shoestring leaves that lack leaf blade expansion (\textit{wiry leaves}).54 In the tomato mutants, levels of tasiR-\textit{ARFs} are reduced and \textit{ARF3} and \textit{ARF4} are upregulated, suggesting that the repressive system of \textit{ARF3} and \textit{ARF4} regulation by tasiR-\textit{ARFs} is also conserved in the pathway for adaxial–abaxial specification in leaves of tomato; increased activity of either of \textit{ARFs} phenocopies results in \textit{wiry} leaves. Interestingly, overexpression of these \textit{ARFs} in \textit{Arabidopsis}, tobacco (\textit{Nicotiana tabacum}), and potato (\textit{Solanum tuberosum}), however, fails to produce \textit{wiry} leaves, suggesting that such a response in tomato is distinct from those in other dicotyledonous plants. The tomato system of adaxial–abaxial specification by tasiR-\textit{ARFs} appears to be somewhat similar to the developmental control of adaxial–abaxial patterning by the tasiR-\textit{ARFs} in maize.

Modifier Mutations Enhancing Leaf Polarity Defects of \textit{as} Mutants

Many mutations that enhance leaf polarity defects of \textit{as1} and \textit{as2} have been isolated and characterized, which is reminiscent of the presence of the cold-sensitive pathway in the original \textit{phan} mutant of \textit{Antirrhinum} and \textit{handlebars} as the enhancer mutation of \textit{phan}.2,35 The causative genes are designated as modifiers of \textit{AS1} and \textit{AS2}34,69 and, as listed in Table 1, 24,30,34,39,58,59,62–64,69–72,74–79,81,82,84,88–90,93,95 they include those for biogenesis of tasiR-\textit{ARF}, biogenesis of ribosomes, chromatin modification and nucleosome assembly proteasome-mediated protein degradation, genomic stability, and cell proliferation. Prominent phenotypes in almost all double mutants with \textit{as2} and a modifier mutation involve the generation of filamentous leaf-like organs (Figure 5(b)), which are surrounded by an abaxialized epidermis and possess no or markedly premature vascular tissues. Double mutations in \textit{PRESSED FLOWER/WUSCHEL-RELATED HOMEOBOX3 (WOX3)} and \textit{WOX1} also cause the formation of severely abaxialized filamentous leaves in the \textit{as2} background.30,89

In the double mutants that have been examined, transcript levels of several abaxial-specific genes (\textit{KAN2, YAB5, ETT/ARF3, ARF4}) as well as class 1 \textit{KNOX} genes are markedly increased; these genes are upregulated in the \textit{as2} single mutant and slightly upregulated in some of the modifier single mutants. When the double mutations of \textit{ETT/ARF3} and \textit{ARF4} (see Figure 4), are introduced into double mutants with \textit{as2} and one of the modifier mutations, such as \textit{elo3} and \textit{bob1usal-1}, the phenotype of abaxialized filamentous leaves is restored to flat and expanded shapes34,69 (Figure 5(b)). These results show that the upregulation of these \textit{ARF} genes in the double mutants is responsible for the disappearance of adaxial specification of the mutants, which suggests that repression of these \textit{ARF} genes by the synergistic action of \textit{AS1}–\textit{AS2} and modifier proteins is critical for proper development of the adaxial domain.

How can the modifiers and \textit{AS1}–\textit{AS2} synergistically repress expression of \textit{ARFs} in a wild type plant? As mentioned in the previous section, \textit{ETT/ARF3} expression is regulated dually by \textit{AS1}–\textit{AS2}-dependent TGS and tasiR-ARF-mediated PTGS through \textit{AS1}–\textit{AS2}, and \textit{ARF4} is regulated by the PTGS. Therefore, the synergistic repression of these \textit{ARFs} is achieved by the two independent pathways, \textit{AS1}–\textit{AS2} and factors involved in small RNA biogenesis such as \textit{RDR6, AGO7}, and \textit{DCL4}, as illustrated in Figure 4. Molecular mechanisms for the prominent repression by other modifiers and \textit{AS1}–\textit{AS2} have yet to be elucidated, but they might be involved in such repression through independent pathways65,70,72,90 (Figure 6). It might be worthwhile, however, to stress that modifier mutations so far identified are weak alleles of genes that are essential for cell viability or, conversely, strong alleles of one of the functionally redundant members of such essential gene families. In addition, it is also interesting to note that most of the proteins encoded by such modifier genes are localized in the nucleus or nucleus-related structures or compartments, such
Gene (Mutation)	AGI Code	Protein	Cellular Process and Status	Subcellular Localization	References
I. Biogenesis of small RNA					
RNA-DEPENDENT RNA POLYMERASE6 (rdr6/sde1/sgs2)	AT3G49500	RNA-dependent RNA polymerase	Duplication of TAS3 mRNAs; biogenesis of ta-siRNA	Cytoplasm, nucleus	24, 58
ARGONAUTE7 (ago7/zip)	AT1G69440	ARGONAUTE family protein: RNA slicer	Biogenesis of miR390 for ta-siRNA production	Cytoplasm	24, 59
SUPPRESSOR OF GENE SILENCING3 (sgs3)	AT5G23570	Unknown	Biogenesis of siRNA, stabilization of ta-siRNA	Cytoplasm	24, 59
DICER-LIKE4 (dc4)	AT5G20320	DICER-LIKE protein: RNase III-like enzyme	Processing of ta-siRNA intermediates	Nucleus	24, 59
ARGONAUTE1 (ago1)	AT1G48410	ARGONAUTE family protein: RNA slicer	Recruit of miRNA and siRNA to mRNAs to be degraded	Nucleus (D-body) and cytoplasm	59, 62, 63
II. Chromatin modification and remodeling					
PICKLE (pkl/gymnos)	AT2G25170	Chromodomain helicase DNA-binding (CHD3) family protein	Component of chromatin remodeling complex SWI/SNF		64
SERRATE (se)	AT2G27100	C2-H2-type zinc finger protein	miRNA-mediated gene expression	Nucleus	65
HDT1 (hdt1/hd2al/hda3)	AT3G44750	Histone deacetylase (plant-specific class)	Deacetylation of nucleosomal histone H3, transcription of rDNAs	Nucleolus	39
HDT2 (hdt2/hd2b)	AT5G22650	Histone deacetylase (plant-specific class)	Deacetylation of nucleosomal histone H3, transcription of rDNAs	Nucleolus	39
ELONGATA3 (elo3/east1); ELO2 (elo2/elp1/abo1); ELONGATOR PROTEIN2 (elp2)	AT5G50320; AT5G13680; AT1G49540	Histone acetyltransferase; scaffold proteins	Core subcomplex of holo-elongator; stimulation of transcriptional elongation; DNA replication	Nucleus (predominant) and cytosol (lesser extent)	69–71
ELON1 (elo1/elp4); ELP5 (elp5); ELP6 (elp6)	AT3G11220; AT2G18410; AT4G10090		Accessory subcomplex of holo-elongator; stimulation of transcriptional elongation; DNA replication		70
ELONGATA4/DRL1 (elo4/drl1)	AT1G13870	Associated protein of elongator complex	Stimulation of transcriptional elongation; DNA replication		70, 71
FASCIATA1 (fas1); FAS2 (fas2)	AT1G65470; AT5G64630	H3 and H4 histone chaperone	p150 subunit of chromatin assembly factor-1 (CAF1); p60 subunit of CAF1; chromatin replication		71, 72
TABLE 1

Continued

1. Gene (Mutation)	2. AGI Code	3. Protein	4. Cellular Process and Status	5. Subcellular Localization	6. References
III. Ribosomal protein (or biogenesis of ribosomes)					
RPL10a (rp10a/pgy1); RPL9c (rp9c/pgy2); RPL5a (pgy3/a6/ol5); RPL28a (ae5); RPL24b (rp24b/stv1); RPL5b (rp5b/oli7)	AT2G27530; AT1G33140; AT3G25520; AT2G19730; AT3G53020; AT5G39740	L10a; L9; L5; L28e; L24b; L5b	Subunits of ribosome; components of pre-rRNA-protein complex	Cytoplasm, nucleus, and nucleolus	74–77
RPL4d (rp4d); RPL7b (rp7b); RPL18c (rp18c); RPL38b (rp38b); RPL39c (rp39c); RPS6a (rps6a); RPS21b (rps21b); RPS24b (rps24b); RPS28b (rps28b); RPS15ab (rps15ab); APICULATA2/RPL36AB (api2); RPL36aA (rpl36aa)	AT5G02870; AT2G01250; AT5G27850; AT3G59540; AT4G31985; AT4G31700; AT3G53890; AT5G28060; AT5G03850; AT2G19720; AT1G70600; AT4G14320; AT3G23390	L4d (L1) family; L30/L7 family (translational regulation); L18e (L15) superfamily; L38e family; L39 family; S6; S21e; S24e; S28; S15AB; L18e/L15 superfamily; L44e	Subunits of ribosome; components of pre-rRNA-protein complex	Cytoplasm, nucleus, and nucleolus	76–79
APUM23 (apum23)	AT1G72320	Pumilio protein containing PUF domain	Pre-rRNA processing and rRNA maturation	Nucleolus	80
IV. DNA replication and repair					
TEBICHI (tebichi)	AT4G32700	A homologue of Drosophila MUS308 and mammalian DNA polymerase	Repair at damaged DNA		82
ABA OVERLY SENSITIVE4 (abo4)	AT1G08260	POL2A, DNA polymerase epsilon catalytic subunit	Interaction with PCNA; DNA-directed DNA polymerase		71
ASYMMETRIC LEAVES1/2 ENHANCER7 (ae7/duf59)	AT1G68310			Nucleus and cytoplasm	84
V. Proteasome					
RPN8a (asymmetric leaves enhancer3/rpn8a); RPT2a (hir-2/rpt2a); PBE1 (pbe1); RPT5a (rpt5a); RPT1a (rpt1a); RPN9a (rpn9a); RPT4a (rpt4a); PAD1 (pad1)	AT5G05780; AT4G29040; AT1G13060; AT3G05530; AT1G53750; AT5G45620; AT5G43010; AT3G51260	26S proteasome subunit; 20S β subunit; one of the six AAA-ATPases of the proteasome; proteasome component domain; 20S proteasome α subunit	Component of 26S or 20S proteasome	Endoplasmic reticulum and golgi (RPT2a), cytoplasm and nucleus	88
TABLE 1

1. Gene (Mutation)	2. AGI Code	3. Protein	4. Cellular Process and Status	5. Subcellular Localization	6. References
VI. Pressed Flower	AT2G28810	AT3G10810	Transcription	Nucleus	30, 89
VII. Others	AT5G03400	AT5G06400	Growth-regulating factor 1	Cytoplasm	69, 90
VII. Others	AT5G28640	AT5G24120	Glycine-RNA ligase	Nucleus	93
VII. Plastid genes	AT3G48110	AT2G24120	DNA-directed RNA polymerase	Nucleus	95

TABLE 1 (Continued)

1. Gene (Mutation)	2. AGI Code	3. Protein	4. Cellular Process and Status	5. Subcellular Localization	6. References
VII. Others	AT5G28640	AT5G24120	DNA-directed RNA polymerase	Nucleus	95

FIGURE 6 Model for repression of ETT/ARF3 and ARF4 by the AS1–AS2 complex and modifiers in the early stage of leaf primordia in Arabidopsis thaliana. Such repression events are crucial for the establishment of adaxial–abaxial polarity and then cell division and growth along the medial–lateral axis. Class 1 KNOX genes are similarly repressed by AS1–AS2 together with modifier genes, although that is not depicted in this figure.

It should be interesting to solve the question of how AS1–AS2, which is localized to nuclear bodies adjacent to the nucleolus, might repress coordinate ETT/ARF3, ARF4, and class 1 KNOX genes with modifier proteins, after they might complete roles in polarity development of leaves. As many modifiers are localized to the nucleus or nuclear compartments, they function in certain nuclear processes to repress directly or indirectly the expression of KNOXs and ARFs. In cases where modifiers might be involved in unidentified nuclear processes, including such known processes as chromatin assembly and ribosome biogenesis mediated by some modifiers, any gene-repressive functions of AS1–AS2 must be associated with such unidentified processes.

Genes Downstream of the AS-Abaxial Factor Pathway

Transcript levels of Kip-related protein 2 (KRP2), KRP5, and Isopentenyltransferase 3 (IPT3) increase on the as2 and modifier (eal and elo3) backgrounds, and such upregulation events are canceled by the introduction of an ett arf4 double mutation into as2.69 These results suggest that expression of KRP2, KRP5, and IPT3 genes was negatively controlled by AS1–AS2...
through repression of ARF3/ETT and ARF4 functions in the wild type plant. KRP2 and KRP5 of A. thaliana encode cyclin-dependent kinase inhibitors (CKIs), which interact with CDKs to inhibit their kinase activities and act as key regulators of cell cycle progression. It is possible that cell proliferation required for leaf formation might be achieved by the proper repressive control of KRP2 and KRP5 expression by AS1–AS2.

The IPT genes encode adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in A. thaliana. Among members of the IPT family, IPT3 is expressed throughout a plant including the shoot apex and leaves. These data predict that the endogenous level of cytokinin might increase around the SAM in as1 and as2 mutants, which might affect developmental states of cells in the leaf primordia of these mutants.

These results suggest that the AS1-AS2-ETT pathway plays a critical role in controlling the cell cycle progression and the cytokinin level at the shoot apex for leaf growth and development. The relationship between the control of these downstream genes and adaxial development of leaves by AS1–AS2, however, has been unknown.

POTENTIAL EPIGENETIC REGULATION BY AS1–AS2

The AS1–AS2 complex targets the cis elements in the promoters of BP and KNAT2. AS1 and maize RS2, an AS1 ortholog, interact with the plant HIRA proteins which is predicted to be a histone chaperone that maintains KNOX gene silencing. Polycomb-repressive complexes (PRCs) ensure the correct spatiotemporal expression of numerous key developmental regulators. Recently, it was shown that the AS1–AS2 complex physically interacts with PRC2 and recruits this complex to the homeobox genes BP and KNAT2 to stably silence in differentiating leaf cells. This recruitment mechanism resembles the Polycomb response element-based recruitment of PRC2 originally defined in flies and provides the first such example in plants. These findings reveal a conserved paradigm to epigenetically regulate homeobox gene expression during development.

It has also been shown that levels of DNA methylation in exon 6 of ETT were depressed in both as1 and as2 mutants. It was reported that over one third of expressed genes in A. thaliana contain DNA methylation within their transcribed regions, and loss of such methylation results in enhanced levels of transcription. Recently, it has been verified that DNA demethylation increases ETT expression in a mutant for MET1. Levels of ETT transcripts increase in shoot apices of met1, implying the involvement of AS1–AS2 in epigenetic control through DNA methylation.

CONCLUSION

In Arabidopsis and some other dicotyledonous plants, development of the adaxial domain requires two types of genes: genes for the HD-ZIPIII protein family and those for the AS1–AS2 complex. In the present review, we have summarized two characteristic features of the AS1–AS2-mediated adaxialization (Figures 6 and 7): (1) This complex dually represses expression of

FIGURE 7 | AS1–AS2 plays a central role in the antagonistic interaction of genes for adaxial–abaxial polarity specification. Solid lines indicate direct regulation and dashed lines indicate indirect regulation or unconfirmed interactions. Faded names of genes indicate those to be repressed.
the abaxial-specific ARF gene family, ETT/ARF3 and ARF4. These repression systems are experimentally demonstrated to be critical for development of the adaxial domain in Arabidopsis leaves. (2) The repression is further achieved by at least one other molecular system controlled by a modifier gene independently from the AS1–AS2 system. Although molecular mechanisms of the synergistic repression by AS1–AS2 and the modifiers have not been elucidated, their concerted actions should play a critical role in adaxial development. Events that repress the expression of these abaxial genes might occur in the presumptive adaxial domain of the leaf anlagen at its early developmental stages (p0–p1: Figure 7). Unlike the situation in maize, the contribution of tasiR-ARFs to adaxialization is not apparent in Arabidopsis. In the presumptive abaxial domain at such early stages, AS2 is also directly repressed by KAN1 and KAN2 to induce abaxial specification.33 Considered collectively, AS1–AS2 is a central player in the antagonistic interactions of genes expressed in the process of adaxial–abaxial polarity specification.

Recently, Qi et al.108 have reported the existence of a transient low auxin zone in the adaxial domain of leaf primordia from p1 to p9, and suggested that auxin flow from leaf primordia to the SAM is responsible for the adaxial low auxin domain and, thus, acts as a signal influencing formation or maintenance of the leaf adaxial domain. The relationship between the auxin flow and the AS1-AS2-ETT pathway remains to be elucidated.

Antagonistic interaction has been proposed between KAN and YAB families and the HD-ZIPIII family in leaf polarity development. Recently, many phytohormone-related genes have been identified as candidates downstream of the respective KAN1 and REVOLUTA, a member of the HD-ZIPIII family,109–111 suggesting the involvement of genes for phytohormone biosynthesis, response, and transport in the antagonistic interaction. Molecular networks of the interaction are, however, still not clear. Loss-of-function as2 mutations and double mutations of AS2 and its modifier genes do not significantly affect expression of HD-ZIPIII genes,32,70,90 suggesting that the adaxialization mediated by HD-ZIPIII is independent from that by AS1–AS2.

AS1–AS2 and various modifiers synergistically repress these developmentally important genes through certain nuclear processes. Taken together with these observations, it is likely that the repression system mediated by AS1–AS2 and modifier proteins might be, at least in part, involved in epigenetic processes. It will be intriguing to elucidate how coordinate actions of these molecules might determine epigenetic states of repression of KNOX and ARF family genes and how the MET1-dependent ETT methylation might be involved in establishment of the epigenetic state during leaf polarity specification.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Nanako Ishibashi (Nagoya University) for helpful discussion. This work was supported by four grants-in-aid: Scientific Research on Priority Areas (no. 19060003 to Y.M.); Scientific Research (C) (no. 24570061 to C.M.), Scientific Research on Innovative Areas (no. 26113519 to S.K.), and Scientific Research (B) (no. 26291056 to Y.M.) from the Ministry of Education, Science, Culture and Sports of Japan.

REFERENCES

1. Steeves TA, Sussex IM. Patterns in Plant Development. Cambridge: Cambridge University Press; 1989.
2. Waites R, Selvadurai HR, Oliver IR, Hudson A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 1998, 93:779–789.
3. Hudson A. Development of symmetry in plants. Annu Rev Plant Physiol Plant Mol Biol 2000, 51:349–370.
4. Byrne ME, Timmermans M, Kidner C, Martienssen R. Development of leaf shape. Curr Opin Plant Biol 2001, 4:38–43.
5. Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 2001, 128:1771–1783.
6. Bowman JL, Floyd SK. Patterning and polarity in seed plant shoots. Annu Rev Plant Biol 2008, 59:67–88.
7. Szakonyi D, Moschopoulos A, Byrne ME. Perspectives on leaf dorsoventral polarity. J Plant Res 2010, 123:281–290.
8. Nakata M, Okada K. The leaf adaxial-abaxial boundary and lamina growth. Plants 2013, 2:174–202.
9. Tsukaya H. Leaf development. Arab Book 2013, 11:e0163.
10. Mauseth JD. Plant Anatomy. Menlo Park, CA: The Benjamin/Cummings; 1988.
11. Smith LG, Hake S. The initiation and determination of leaves. Plant Cell 1992, 4:1017–1027.
12. Lynn K, Fernandez A, Aida M, Sedbrook J, Takase M, Masson P, Barton MK. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 1999, 126:469–481.
13. Husbands AM, Chitwood DH, Plavskin Y, Timmermans MC. Signals and pre-patterns: new insights into organ polarity in plants. Genes Dev 2009, 23:1986–1997.
14. Waites R, Hudson A. Phantastica: a gene required for dorsoventrality in leaves of Antirrhinum majus. Development 1995, 121:2143–2154.
15. McConnel JR, Emery J, Eshed Y, Bao N, Bowman JL, Barton MK. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 2001, 411:709–713.
16. Kidner CA, Martienssen RA. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 2004, 428:81–84.
17. Byrne ME, barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienenss RA. Asymmetric leaves mediates leaf patterning and stem cell function in Arabidopsis. Nature 2000, 408:967–971.
18. Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, et al. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 2002, 43:467–478.
19. Shuai B, Reynaga-Pena CG, Springer PS. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol 2002, 129:747–761.
20. Matsumura Y, Iwakawa H, Machida Y, Machida C. Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. Plant J 2009, 58:525–537.
21. Rédei GP, Hirono Y. Linkage studies. Arab Inf Serv 1964, 1:9.
22. Sarojam R, Sappl PG, Goldschmidt A, Efroni I, Floyd SK, Eshed Y, Bowman JL. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell 2010, 22:2113–2130.
23. Pekker I, Alvarez JP, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 2005, 17:2899–2910.
24. García D, Collier SA, Byrne ME, Martienssen RA. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr Biol 2006, 16:933–938.
25. Chitwood DH, Nogueira FTS, Howell MD, Taiowa A, Montgomery TA, Carrington JC, Timmermans MCP. Pattern formation via small RNA mobility. Genes Dev 2009, 23:549–554.
26. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 2003, 13:1768–1774.
27. Siegried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 1999, 126:4117–4128.
28. Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS. KANADI regulates organ polarity in Arabidopsis. Nature 2001, 11:706–709.
29. Izhaki A, Bowman JL. KANADI and class III HD-zip genes families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 2007, 19:495–508.
30. Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, Okada K. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 2012, 24:519–535.
31. Wang W, Xu B, Wang H, Li J, Huang H, Xu L. YUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development. Plant Physiol 2011, 157:1805–1819.
32. Iwakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T, Tanaka H, Semiarti E, Machida Y, Machida C. Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Plant J 2007, 51:173–184.
33. Wu G, Lin WC, Huang T, Poethig RS, Springer PS, Kerstetter RA. KANADI1 regulates adaxial–abaxial polarity in Arabidopsis by directly repressing the transcription of ASYMMETRIC LEAVES2. Proc Natl Acad Sci USA 2008, 105:16392–16397.
34. Iwasaki M, Takahashi H, Iwakawa H, Nakagawa A, Ishikawa T, Tanaka H, Matsumura Y, Pekker I, Eshed Y, Vial-Pradel S, et al. Dual regulation of ETIN (ARF3) gene expression by AS1–AS2, which maintains the DNA methylation level, is involved in stabilization of leaf adaxial-abaxial partitioning in Arabidopsis. Development 2013, 140:1958–1969.
35. Waites R, Hudson A. The Handlebars gene is required with Phantastica for dorsoventral asymmetry of organs and for stem cell activity in Antirrhinum. Development 2001, 128:1923–1931.
36. Serrano-Cartagena J, Robles P, Ponce MR, Micol JL. Genetic analysis of leaf form mutants from the
Arabidopsis information service collection. Mol Gen Genet 1999, 261:725–739.

37. Byrne ME, Simorowski J, Martienssen RA. ASYMMETRIC LEAVES1 reveals KNOX gene redundancy in Arabidopsis. Development 2002, 129:1957–1965.

38. Takahashi H, Iwakawa H, Nakao S, Ojio T, Morishita R, Morikawa S, Machida Y, Machida C, Kobayashi T. Knowledge-based fuzzy adaptive resonance theory and the application to gene expression analysis of plants. J Biosci Bioeng 2008, 106:587–593.

39. Ueno Y, Ishikawa T, Watanabe K, Terakura S, H. Subcellular localizations of AS1 and AS2 suggest their common and distinct roles in plant development. J Plant Res 2012, 125:661–668.

40. Luo L, Ando S, Sasabe M, Machida C, Kurihara D, Higashiyama T, Machida Y. Arabidopsis asymmetric leaves2 protein required for leaf morphogenesis consistently forms speckles during mitosis of tobacco BY-2 cells via signals in its specific sequence. J Plant Res 2008, 121:2564–2577.

41. Timmermans MC, Hudson A, Becraft PW, Nelson T. ROUGH ScaLTH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 1999, 284:151–153.

42. Schneeberger R, Tsiantis M, Freeling M, Langdale JA. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 1999, 284:154–156.

43. Schneeberger R, Tsiantis M, Freeling M, Langdale JA. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development 1999, 125:2857–2865.

44. Byrne ME. Networks in leaf development. Curr Opin Plant Biol 2005, 8:59–66.

45. Ikekazi M, Kojima M, Sakakibara H, Kojima S, Ueno Y, Machida C, Machida Y. Genetic networks regulated by ASYMMETRIC LEAVES1 (AS1) and AS2 in leaf development in Arabidopsis thaliana: KNOX genes control five morphological events. Plant J 2010, 61:70–82.

46. Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwashori S, Matsuoka M. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 2001, 15:581–590.

47. Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol 2002, 12:1557–1565.

48. McHale NA, Koning RE. PHANTASTICA regulates development of the adaxial mesophyll in Nicotiana leaves. Plant Cell 2004, 16:1251–1262.

49. Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz G-NM, Poethig SR. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 2006, 133:2973–2981.

50. Sawa S, Watanabe K, Goto K, Liu YG, Shibata D, Kanaya E, Morita EH, Okada K. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 1999, 13:1079–1088.

51. Yifhar T, Peiker I, Peled D, Friedlander G, Pistunov A, Sabbath M, Wachman G, Alvarez JP, Amsellem Z, Eshed Y. Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell 2012, 24:3575–3589.

52. Jouannet V, Moreno AB, Elmayan T, Vaucheret H, Crespi MD. The maize AS1 allele negatively regulates homeotic development programs in monocot and dicot plants. Proc Natl Acad Sci USA 2012, 109:1704–1713.

53. Kumakura N, Takeda A, Fujiyoka Y, Motose H, Takano R, Watanabe Y. SGS3 and RDR6 interact and colocalize in cytoplasmic SGS3/RDR6-bodies. FEBS Lett 2009, 583:1261–1266.

54. Hoffer P, Iwashita S, Pontes O, Vitins A, Pikaard C, Mrocza A, Wagner N, Voelker T. Posttranscriptional gene silencing in nuclei. Proc Natl Acad Sci USA 2011, 108:409–414.

55. Li H, Xu L, Wang H, Yuan Z, Cao X, Yang Z, Zhang D, Xu Y, Huang H. The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development. Plant Cell 2005, 17:2157–2171.

56. Xu L, Yang L, Pi L, Liu Q, Ling Q, Wang H, Poethig RS, Huang H. Genetic interaction between the AS1-AS2 and RDR6-SGS3/AGO7 pathways for leaf morphogenesis. Plant Cell Physiol 2006, 47:853–863.

57. Hiraguri A, Itoh R, Kondo N, Nomura M, Aizawa D, Murai Y, Koishi H, Seki M, Shinozaki K, Fukuhara T. Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol 2005, 57:173–188.
61. Fang Y, Spector DL. Identification of Nuclear Dicing Bodies Containing Proteins for MicroRNA Biogenesis in Living Arabidopsis Plants. Curr Biol 2007, 17:818–823.
62. Kidner CA, Martienssen RA. The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Dev Biol 2005, 280:504–517.
63. Yang L, Liu Z, Lu F, Dong A, Huang H. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 2006, 47:841–850.
64. Lawrence RJ, Earley K, Pontes O, Silva M, Chen ZJ, Neves N, Viegas W, Pikaard CS. A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell 2004, 13:599–609.
65. Yang L, Liu Z, Lu F, Dong A, Huang H. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 2006, 47:841–850.
66. Nelissen H, De Groeve S, Fleury D, Neyt P, Bruno K. Expression and function of HD2-type histone deacetylases in Arabidopsis development. Plant J 2004, 38:715–724.
67. Zhou C, Labbe H, Sridha S, Wang L, Tian L, Latoszek-Green M, Yang Z, Brown D, Miki B, Wu K. Expression and function of HD2-type histone deacetylases in Arabidopsis development. Plant J 2004, 38:715–724.
68. Nellesen H, De Groeve S, Fleury D, Neyt P, Bruno L, Bitonti MB, Vandenbussche F, Van der Straeten D, Yamaguchi T, Tsukaya H, et al. Plant elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proc Natl Acad Sci USA 2010, 107:1678–1683.
69. Takahashi H, Iwakawa H, Ishibashi N, Kojima S, Matsumura Y, Prananingrum P, Iwasaki M, Takahashi A, Ikezaki M, Luo L, et al. Meta-analyses of microarrays of Arabidopsis asymmetric leaves1 (asl1, as2) and their modifying mutants reveal a critical role for the ETT pathway in stabilization of adaxial-abaxial patterning and cell division during leaf development. Plant Cell Physiol 2013, 54:418–431.
70. Kojima S, Iwasaki M, Takahashi H, Imai T, Matsumura Y, Fleury D, Van Lijsbettens M, Machida Y, Machida C. Asymmetric leaves2 and Elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana. Plant Cell Physiol 2011, 52:1259–1273.
71. Xu D, Huang W, Li Y, Wang H, Huang H, Cui X. Elongator complex is critical for cell cycle progression and leaf patterning in Arabidopsis. Plant J 2012, 69:792–808.
72. Ishibashi N, Machida C, Machida Y. ASYMMEtric LEAVES2 and FASCIATA2 cooperatively regulate the formation of leaf adaxial-abaxial polarity in Arabidopsis thaliana. Plant Biotech 2013, 30:411–415.
73. Carroll AJ, Heazlewood JL, Ito J, Millar AH. Analysis of the Arabidopsis cystolic ribosome proteome provides detailed insights into its components and their post-translational modification. Mol Cell Proteomics 2008, 7:347–369.
74. Pinon V, Etchells JP, Rossignol P, Collier SA, Arroyo JM, Martienssen RA, Byrne ME. Three piggyback genes that specifically influence leaf patterning encode ribosomal proteins. Development 2008, 135:1315–1324.
75. Yao Y, Ling Q, Wang H, Huang H. Ribosomal proteins promote leaf adaxial identity. Development 2008, 135:1325–1334.
76. Horiguchi G, Mollá-Morales A, Pérez-Pérez JM, Kojima K, Robles P, Ponce MR, Micol JL, Tsukaya H. Differential contributions of ribosomal protein genes to Arabidopsis thaliana leaf development. Plant J 2011, 65:724–736.
77. Byrne M. A role for the ribosome in development. Trends Plant Sci 2009, 14:513–519.
78. Szakonyi D, Byrne ME. Ribosomal protein L27a is required for growth and patterning in Arabidopsis thaliana. Plant J 2011, 65:269–281.
79. Casanova-Sáez R, Candela H, Micol JL. Combined haploinsufficiency and purifying selection drive retention of RPL36a paralogs in Arabidopsis. Sci Rep 2014, 4:4122.
80. Abhasi N, Kim HB, Park NI, Kim HS, Kim YK, Park YI, Choi SB. APUM23, a nucleolar Puf domain protein, is involved in pre-ribosomal RNA processing and normal growth patterning in Arabidopsis. Plant J 2010, 64:960–976.
81. Huang T, Kerstetter RA, Irish VF. APUM23, a PUF family protein, functions in leaf development and organ polarity in Arabidopsis. J Exp Bot 2014, 65:1181–1191.
82. Inagaki S, Nakamura K, Morikami A. A link among DNA replication, recombination, and gene expression revealed by genetic and genomic analysis of TEBICHI gene of Arabidopsis thaliana. PLoS Genet 2009, 5:e1000613.
83. Luo D, Bernard DG, Balk J, Hai H, Cui X. The DUF59 family gene AE7 acts in the cystolic iron-sulfur cluster assembly pathway to maintain nuclear genome integrity in Arabidopsis. Plant Cell 2012, 24:4315–4318.
84. Yuan Z, Luo D, Li G, Yao X, Wang H, Zeng M, Huang H, Cui X. Characterization of the AE7 gene in Arabidopsis suggests that normal cell proliferation is essential for leaf polarity establishment. Plant J 2010, 64:331–342.
85. Traverso JA, Micaella C, Martinez A, Brown SC, Satiat-Jeunemaître B, Meinnel T, Giglione C. Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study. Plant Cell 2013, 25:1056–1077.
86. Fu H, Reis N, Lee Y, Glickman MH, Vierstra RD. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J 2001, 20:7096–7107.
87. Yang P, Fu H, Walker J, Papa CM, Smalle J, Ju YM, Vierstra RD. Purification of the Arabidopsis 26 S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J Biol Chem 2004, 279:6401–6413.
88. Huang W, Pi L, Liang W, Xu B, Wang H, Cai R, Huang H. The proteolytic function of the Arabidopsis 26S proteasome is required for specifying leaf adaxial identity. Plant Cell 2006, 18:2479–2492.
89. Nakata M, Okada K. The three-domain model: a new model for the early development of leaves in Arabidopsis thaliana. Plant Signal Behav 2012, 7:1423–1427.
90. Ishibashi N, Kanamaru K, Ueno Y, Kojima S, Kobayashi T, Machida C, Machida Y. Asymmetric-leaves2 and an ortholog of eukaryotic NudC domain proteins repress expression of Auxin-response-factor and class I KNOX homeobox genes for development of flat symmetric leaves in Arabidopsis. Biol Open 2012, 1:197–207.
91. Jurkuta RJ, Kaplinsky NJ, Spindel JE, Barton MK. Partitioning the apical domain of the Arabidopsis embryo requires the BOBBER1 NudC domain protein. Plant Cell 2009, 21:1957–1971.
92. Kawade K, Horiguchi G, Usami T, Hirai MY, Tsukaya H. ANUGSTIFOLIA3 signaling coordinates proliferation between clonally distinct cells in leaves. Curr Biol 2013, 23:788–792.
93. Horiguchi G, Nakayama H, Ishikawa N, Kubo M, Demura T, Fukuda H, Tsukaya H. ANUGSTIFOLIA3 plays roles in adaxial/abaxial patterning and growth in leaf morphogenesis. Plant Cell Physiol 2011, 52:112–124.
94. Duchêne AM, Peeters N, Dietrich A, Cosset A, Small ID, Wintz H. Overlapping destinations for two dual targeted glycolyl-tRNA synthetases in Arabidopsis thaliana and Phaseolus vulgaris. J Biol Chem 2001, 276:15275–15283.
95. Moschopoulos A, Derbyshire P, Byrne ME. The Arabidopsis organelle-localized glycolyl-tRNA synthetase encoded by embryo defective development1 is required for organ patterning. J Exp Bot 2012, 63:5233–5243.
96. Hedtke B, Meixner M, Gillandt S, Richter E, Börner T, Weihe A. Green fluorescent protein as a marker to investigate targeting of organellar RNA polymerases of higher plants in vivo. Plant J 1999, 17:557–561.
97. De Veylder L, Beeckman T, Beemster GT, Krols L, Terras F, Landrieu I, Van Der Schueren E, Maes S, Naudts M, Inzé D. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 2001, 13:1653–1668.
98. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999, 13:1501–1512.
99. Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant Cell Physiol 2001, 42:677–685.
100. Takei K, Sakakibara H, Sugiyma T. Identification of genes encoding adenylyl isopentenyl transferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 2001, 276:26405–26410.
101. Sakakibara H, Kasahara H, Ueda N, Kojima M, Takei K, Hishiyama S, Asami T, Okada K, Kamiya Y, Yamaya T, et al. Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci USA 2005, 102:9972–9977.
102. Miyawaki K, Matsumoto-Kitanoand M, Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 2004, 37:128–138.
103. Phelps-Durr TL, Thomas J, Vahab P, Timmermans MC. Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Plant Cell 2005, 17:2886–2898.
104. Lodha M, Marco CF, Timmermans MC. The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of polycomb-repressive complex2. Genes Dev 2013, 27:596–601.
105. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 2006, 126:1189–1201.
106. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 2007, 39:61–69.
107. Li W, Liu H, Cheng ZJ, Su YH, Han HN, Zhang Y, Zhang XS. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet 2011, 7:e1002243.
108. Qi J, Wang Y, Yu T, Cunha A, Wu B, Vernoux T, Meyerowitz E, Jiao Y. Auxin depletion from leaf primordia contributes to organ patterning. Proc Natl Acad Sci USA 2014, 111:18769–18774.
109. Reinhart BJ, Liu T, Newell NR, Magnani E, Huang T, Kerstetter R, Michaels S, Barton MK. Establishing a framework for the ad/abaxial regulatory network of Arabidopsis: ascertaining targets of class III
homeodomain leucine zipper and KANADI regulation. *Plant Cell* 2013, 25:3228–3249.

110. Merelo P, Xie Y, Brand L, Ott F, Weigel D, Bowman JL, Heisler MG, Wenkel S. Genome-wide identification of KANADI1 target genes. *PLoS One* 2013, 8:e77341.

111. Huang T, Harrar Y, Lin C, Reinhart B, Newell NR, Talavera-Rauh F, Hokin SA, Barton MK, Kerstetter RA. *Arabidopsis* KANADI1 acts as a transcriptional repressor by interacting with a specific cis-element and regulates auxin biosynthesis, transport, and signaling in opposition to HD-ZIPIII factors. *Plant Cell* 2014, 26:246–262.