SUPPLEMENTARY MATERIAL

A Smart Strategy to Improve t-resveratrol Production in Grapevine Cells Treated with Cyclodextrin Polymers Coated with Magnetic Nanoparticles

Lorena Almagro 1,*, Alicia De Gea-Abellán 1, María Isabel Rodríguez-López 2, Estrella Núñez-Delicado 2, José Antonio Gabaldón 2 and María Angeles Pedreño 1

1 Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain; aliciadegeaabellan@gmail.com (A.D.G.-A.); mpedreno@um.es (M.A.P.)
2 Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica San Antonio de Murcia. Campus de los Jerónimos, E-30107, Murcia, Spain; mirodriguez@ucam.edu (M.I.R.-L.); enunez@ucam.edu (E.N.-D.); jagabaldon@ucam.edu (J.A.G.)

* Correspondence: lorena.almagro@um.es, Tel: +34 868884904
Fig. S1. EDX spectra of the different carboxymethyl-β-cyclodextrins-epichlorohydrin (CM-CDs-EPI-MN) polymers.
Fig. S2. EDX spectra of the different hydroxypropyl-β-cyclodextrins-epichlorohydrin (HP-CDs-EPI-MN) polymers.
Fig. S3. HPLC-DAD chromatogram of A) ε-viniferin; B) t-resveratrol and C) t-piceid at 325, 306 and 317 nm, respectively. D) Chromatogram of the sample obtained from hydroxypropyl-β-cyclodextrins-epichlorohydrin (HP-CDs-EPI-MN) extracted with ethyl acetate after the elicitation of *Vitis vinifera* suspension-cultured cells with 100 μM methyl jasmonate and 15 g/L hydroxypropyl-β-cyclodextrins-epichlorohydrin (HP-CDs-EPI-MN) polymers.