Determination of β-glucuronidase in human colorectal carcinoma cell lines

Shu Feng, Jin-Dan Song

Shu Feng, Jin-Dan Song, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110001, Liaonin Province, China

Dr. Shu Feng, female, born on 1965-02-09 in Hailin, Heilongjiang Province, graduated from Jiamusi Medical College in 1986, currently lecturer and post-graduate, having 9 papers published.

Author contributions: All authors contributed equally to the work.

Supported by The National Natural Science Foundation of China, No. 3904005.

Correspondence to: Dr. Shu Feng, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110001, Liaonin Province, China

Telephone: +86-24-3916243

Received: March 8, 1997

Revised: May 2, 1997

Accepted: October 28, 1997

Published online: December 15, 1997

Abstract

AIM: To study the relationship between β-glucuronidase and the invasiveness of human colorectal carcinoma cell lines.

METHODS: Six colorectal carcinoma cell lines, including three well-differentiated (CX1, CCL187, and CCL229) and three poorly differentiated ones (CCL227, CCL228, and Clone A), were analyzed by Fischman’s method to determine the concentration of β-glucuronidase in the medium.

RESULTS: Low levels of β-glucuronidase (activity range: 1.29 to 1.96 μg/106 cells·h) were associated with poor invasiveness. This finding was in contrast to the elevated levels of the enzyme (2.46-3.37 μg/106·h) detected in the medium derived from the more aggressively invasive cells (CCL 227, CCL 228, Clone A, and CCL 229).

CONCLUSION: Highly invasive colorectal carcinoma cells secreted higher levels of β-glucuronidase than the poorly invasive cells. Determination of secreted β-glucuronidase might represent a useful in vitro measurement tool to assess the invasiveness of colorectal carcinoma.

Key words: Colorectal neoplasms; β-glucuronidase invasiveness; Cell lines

© The Author(s) 1997. Published by Baishideng Publishing Group Inc. All rights reserved.
Table 1 Conditions for measuring β-glucuronidase in culture medium

Medium (mL)	Water (mL)	Acetate buffer (mL)	Substrate final	Molarity (mL)	Incubation time at 37 °C (h)	Alkalizing reagent (mL)	Final pH	Coloremeter wavelength (nm)
0.2	0.4	0.2	4.5	0.2	0.006	18	10.2	540

*Glycine-Duponal reagent: 15.01 g of glycine dissolved in 900 mL of H2O and brought to pH 11.7 by addition of 50% NaOH solution. Duponal (sodium lauryl sulfate) was added to produce a final concentration of 0.2% and water was added to achieve a final volume of 1 L.

\[^{1}\text{P < 0.001 vs CX1, CCL187.}\]

Table 2 Activity of secreted β-glucuronidase in culture medium of six colorectal carcinoma cell lines

Cell line	Differentiation degree\(^{(2)}\)	Invasiveness\(^{(3)}\)	\(n\)	β-glucuronidase activity, \(\mu g/10^6\) cells·h \(t\)
CX1	Good	Low	6	1.29 ± 0.17
CCL187	Good	Low	6	1.96 ± 0.28
CCL229	Good	High	6	3.37 ± 0.34\(^{(4)}\)
CCL227	Poor	High	6	2.46 ± 0.18\(^{(5)}\)
CCL228	Poor	High	6	2.73 ± 0.19\(^{(6)}\)
Clone A	Poor	High	6	3.22 ± 0.38

\[^{(1)}\]CX1, CCL187, CCL229, CCL227, CCL228, Clone A

\[^{(2)}\]Glycogenosis

\[^{(3)}\]Invasion

\[^{(4)}\]Collagenase

\[^{(5)}\]Glycogen

\[^{(6)}\]β-glucuronidase

\[^{(7)}\]P < 0.001 vs CX1, CCL187.

Rena cells were seeded in 100 mL flasks (2.5 × 10\(^5\) cells/mL). After 3 d of culture, the medium was refreshed completely. After an additional day of culturing, the medium was harvested and the cells enumerated. The collected medium was condensed (mL/5 × 10\(^6\) cells) and stored at 4 °C for future use. β-glucuronidase activity levels in the collected medium was determined by Fischman’s method\[^{(1)}\]. Phenolphthalein standard curve was set up in a range of 0 mg/L to 40 mg/L. The substrate was phenolphthalein mono-β-D glucurononic acid sodium salt. The conditions for measuring medium levels of β-glucuronidase are shown in Table 1. One enzyme activity unit equated to 1 μg of released phenolphalein/10\(^6\) cells·h. The results were analyzed by Student’s t-test.

RESULTS

The medium from each cell line was analyzed for activity of β-glucuronidase. The well differentiated and poorly invasive cell lines CX1 and CCL187 were found to be low secretors of the enzyme (activity range: 1.29–1.96 μg/10\(^6\) cells·h). In contrast, the poorly differentiated and highly invasive cell lines CCL227, CCL228 and Clone A, as well as the well differentiated CCL229 with high invasiveness\[^{(2)}\]\(^{(3)}\), were relatively more active in this respect, with β-glucuronidase activities ranging between 2.46 μg/10\(^6\) cells·h and 3.37 μg/10\(^6\) cells·h (Table 2).

DISCUSSION

Recent studies have highlighted the association of matrix degradative enzymes with malignant tumors, and have suggested that these enzymes may play a role in tumor invasion and metastasis. Although a lot of work has been done to investigate the effects of urokinase and type (WTBZ) IV (WTB1) collagenses on tumor invasion and metastasis\[^{(4)}\]\(^{(5)}\), there are few reports about β-glucuronidase in this respect, especially in regards to colorectal carcinoma. β-glucuronidase, a lysosomal acid enzyme that can degrade proteoglycan, the major component of basement membrane, is known to participate in the process of tumor invasion and metastasis. Poole\[^{(6)}\] reported that β-glucuronidase activity was high in experimental rat tumors and that the enzyme was present in the matrix ahead of the invading tumor. Dai et al\[^{(7)}\] reported that the β-glucuronidase activity level in stomach cancer was higher than that in non-cancerous tissues. Nicolson et al\[^{(8)}\] confirmed that highly metastatic melanoma cells secreted higher levels of β-glucuronidase and degraded subendothelial basement membrane at a higher rate than poorly metastatic melanoma cells. All these findings have supported the hypothesis that β-glucuronidase is closely related to tumor metastasis.

In order to illustrate the relationship between β-glucuronidase secretion and invasiveness of human colorectal carcinoma, we analyzed the culture medium from six cell lines to determine the activity of β-glucuronidase within. The results indicated that the highly invasive cell lines secreted higher levels of β-glucuronidase than the poorly invasive ones, supporting the notion that β-glucuronidase might contribute to colorectal carcinoma invasion and metastasis. Moreover, determination of secreted β-glucuronidase might represent a useful measurement tool for the invasiveness of in vitro colorectal carcinoma.

REFERENCES

1. Liotta LA. Cancer cell invasion and metastasis. Sci Am 1992; 266: 54-9, 62-3 [PMID: 1373003 DOI: 10.1038/scientificamerican0292-54]
2. Fishman WH, Kato K, Ainslie CL, Green S. Human serum beta-glucuronidase: its measurement and some of its properties. Clin Chim Acta 1967; 15: 435-447 [PMID: 6034420 DOI: 10.1016/0009-8888(67)90008-3]
3. Lee EC, Wocj HJ, Kozeluzias CA, Steele GD, Mercurio AM. Carbohydrate-binding protein 35 is the major cell-surface laminin-binding protein in colon carcinoma. Arch Surg 1991; 126: 1498-1502 [PMID: 1842179 DOI: 10.1001/archsurg.1991.01410360072011]
4. Sun BD, Song JD. Inhibition of invasiveness and expression of epidermal growth factor receptor in human colorectal carcinoma cells induced by retinoic acid. Cell Res 1995; 5: 135-142 [DOI: 10.1038/cr.1995.13]
5. Murphy G. Matrix metalloproteinases and their inhibitors. Acta Orthop Scand Suppl 1995; 266: 55-60 [PMID: 8553862]
6. Zheng MH, Fan Y, Panicker A, Smith A, Robertson T, Wysoczki S, Robbins P, Padmanabhan JM, Wood DJ. Detection of mRNAs for urokinase-type plasminogen activator, its receptor, and type 1 inhibitor in giant cell tumors of bone with in situ hybridization. Am J Pathol 1995; 147: 1559-1566 [PMID: 7495280]
7. Poole AR. Invasion of cartilage by an experimental rat tumor. Cancer Res 1970; 30: 2252-2259 [PMID: 4195911]
8. Dai DQ, Chen QJ, Ren CS, Zhang WF. The relation of β-glucuronidase, acid phosphatase and lactase dehydrogenase with gastric cancer. Zhongguo Yi Ke Da Xue Xue Bao 1991; 20: 23-28
9. Nicolson GL, Nakajima M, Herrmann IL, Menter DG, Cavanaugh PG, Park JS, Marchetti D. Malignant melanoma metastasis to brain: role of degradative enzymes and responses to paracrine growth factors. J Neurooncol 1994; 18: 139-149 [PMID: 7964976 DOI: 10.1007/BF01050420]

L- Editor: Filipodia E- Editor: Liu WX
