Residential Electricity Consumption in Las Cruces, New Mexico, USA

Thomas M. Fullerton, Jr.1,* & Francisco F. Mejía2

1Department of Economics & Finance, University of Texas at El Paso, El Paso, TX 79968-0543, USA
2Energy Trading Desk, El Paso Electric Company, PO Box 982, El Paso, TX 79960, USA

*Corresponding author: Department of Economics & Finance, University of Texas at El Paso, El Paso, TX 79968-0543, USA. Tel: 1-915-747-7747. E-mail: tomf@utep.edu

Received: April 20, 2020 Accepted: June 15, 2020 Published: September 18, 2020

doi: 10.5296/rae.v12i3.16883 URL: https://doi.org/10.5296/rae.v12i3.16883

Abstract

This study examines how residential electricity consumption (KWHC) reacts to changes in the price of electricity, the price of natural gas, real income per capita, heating degree days, and cooling degree days. Annual frequency data analyzed are for Las Cruces, the second largest metropolitan economy in New Mexico. The sample period is 1977 to 2016. An Autoregressive-Distributed Lag model (ARDL) is employed to obtain long-run and short-run elasticities. In the long-run, residential consumption does not respond in a statistically reliable manner to any of the explanatory variables. All of the coefficient signs are as expected and those for real per capita income and total degree days appear plausible. In the short-run, residential consumption responds reliably to variations in all of the variables except per capita income. Somewhat surprisingly, the short-run results also include an own-price elasticity that is close to zero, implying that residential electricity has a horizontal demand curve in Las Cruces.

Keywords: residential electricity consumption, regional economics, business cycles

JEL Categories

Q41, Energy Demand; R15, Regional Econometrics; M21, Business Economics
1. Introduction

Recent empirical studies have attempted to model residential electricity consumption in different service areas. Such studies use data from different metropolitan economies to analyze regional residential electricity consumption behavior. Further research for different regions in the United States can help provide a better picture on how changes in income and other variables affect residential electricity sales. Beyond that, different regions may exhibit consumption patterns that differ from those that have been documented for other metropolitan economies or national economies.

In this study, residential electricity sales are examined for the Las Cruces, New Mexico metropolitan economy. Las Cruces is part of Dona Ana County with a population of 219,970 and an estimated nominal per capita income of $37,736 (Fullerton and Fullerton, 2019). Although geographically adjacent to El Paso, Texas, a nearby urban economy where residential electricity consumption has been analyzed (Fullerton et al, 2016), such an effort has not previously been completed for Las Cruces. Because it is the second largest metropolitan economy in New Mexico, this omission is somewhat surprising.

Electricity services are provided to Las Cruces by El Paso Electric Company (EPEC). EPEC is a regional electric utility that provides electricity to 400,000 retail and wholesale customers within a 10,000 square mile area. The EPEC service territory ranges from Hatch, New Mexico to Van Horn, Texas. It has a peak generating capacity of 2,010 MW (EPEC, 2016).

To examine Las Cruces residential electricity consumption, an autoregressive distributed lag (ARDL) modeling approach is utilized. The ARDL approach allows analyzing both long-run and short-run consumption relationships. EPEC annual data from 1977-2016 for the Las Cruces service area are employed for the analysis.

Subsequent sections of the study are as follows. A brief summary of related literature is provided next. An overview of the theoretical model and methodology is included in the third section. Empirical results and policy implications are then reviewed. Principal outcomes are encapsulated in the final section.

2. Literature Review

Early studies analyze residential electricity consumption by estimating the elasticities of residential electricity demand using variables such as price, income, and heating and cooling degree-days. Cooling and heating degree-days are usually calculated using the difference between average temperatures and a base of 65 degrees Fahrenheit. Using structural demand and price equations, Halvorsen (1975) finds that the own price elasticity of demand ranges from -1.0 to -1.21, suggesting unity in the long run.

A recurring question is whether electricity demand functions should employ marginal prices or average prices. Taylor (1975) finds that both average and marginal price should be included in demand equations in order to accurately model residential electricity. That can be problematic because data constraints for marginal electricity prices may cause average prices to be the best.
information available (Halvorsen, 1975). Additional research uses Ramsey specification error tests to determine that average revenue price is an adequate measure to determine residential electricity demand (Cicchetti and Smith, 1975). Wilder and Willenborg (1975) provide evidence that consumers react to monthly bills and do not fully know the marginal price of electricity, thus making average price variables appropriate to use. Results in other studies also indicate that consumers respond to the average prices implied by monthly electricity bills (Shin, 1985; Ito, 2014).

Prior research also examines the effects of income and other variables on household electricity usage (Hultman and Ramsey, 1977). Results indicate that electricity price, the price of natural gas, and income are some of the biggest determinants of residential demand for electricity. Many studies report income elasticities with positive coefficients (Wilder and Willenborg, 1975), but some do not. In a metropolitan study that includes both average and marginal price variables, Roth (1981) obtains results that imply that decreases in real incomes increase electricity demand suggesting that electricity is an “inferior good”. A separate study using national data also documents similar evidence (Contreras et al, 2009). Results in that effort further indicate that weather influences on electricity are asymmetric.

A number of empirical studies simultaneously estimate long-run and short-run elasticities. Chang (1991) employs a generalized functional form method to estimate time-varying elasticities. Coefficient estimates are statistically significant and exhibit the hypothesized signs. Silk and Joutz (1997) use co-integration techniques to construct an error correction model for U.S. residential electricity demand. A subsequent U.S. study uses an autoregressive distributed lag (ARDL) approach. The ARDL cointegration technique is appropriate and attractive for models with variables of mixed order of integration (Dergiades and Tsolfides, 2008). Findings from that ARDL approach report long-run and short-run elasticities that are similar in magnitude to those reported in prior studies.

Epsey and Epsey (2004) conduct a meta-analysis of previous studies to identify factors that may affect estimated elasticities. Evidence gathered indicates that there are subtle differences among elasticities and it cannot be assumed that every region will have similar estimates. Further empirical efforts for residential electricity demand in different countries also uses results to indicate regional policy implications based on specific demand characteristics (Halicioglu, 2007; Hondroyiannis, 2004; Narayan and Smyth, 2005).

One recent effort on U.S. residential electricity demand focuses on price and income elasticities as important elements for designing regional policies (Alberini et. al., 2011). Results include a high own-price elasticity of demand and low-income elasticity. Such findings suggest that price increases will cause households to choose less energy-intensive appliances. The low-income elasticity also suggests that households will tend to invest in less energy-intensive appliances.

Recent regional studies also employ out-of-sample model simulations as additional means for confirming model reliability. One study for Seattle reports a negative long-run income elasticity (Fullerton et. al., 2012). A three-year forecast is used to help evaluate the estimated model. A similar study for residential electricity demand in Iran reports temperature as the biggest determinant of electricity demand (Pourazarm and Cooray, 2013). It includes a seven-
year dynamic forecast. Kindred research on residential electricity demand in El Paso uses an ARDL approach (Fullerton et al., 2016). The long-run income elasticity coefficient is negative and a three-year out of sample forecast is conducted to evaluate expected demand growth.

In this effort, residential electricity consumption is examined for Las Cruces, New Mexico. Las Cruces is only forty miles from El Paso, but has a different economic base and somewhat different weather patterns (Fullerton and Fullerton, 2019). There is no guarantee, therefore, that residential electricity consumption patterns in this smaller metropolitan economy will match what has been documented for the larger, nearby urban economy.

3. Theoretical Framework

A demand function for Las Cruces residential electricity consumption is specified using economic and weather variables. Because non-zero amount data are utilized, the variables are transformed using natural logarithms prior to estimation (Gelman and Hill, 2006). Expected coefficient signs are listed below Equation (1).

\[
\ln KWHC_t = a_0 + a_1 \ln PE_t + a_2 \ln PNG_t + a_3 \ln YCAP_t + a_4 \ln HDD_t + a_5 \ln CDD_t + u_t
\]

(-) (+) (+) (+) (+) (1)

An autoregressive distributed lag model (ARDL) estimation approach is employed similar to that utilized for the nearby El Paso portion of the EPE service area (Fullerton et. al, 2016). The ARDL model employs a bounds testing procedure that allows for cointegration regardless of whether the variables have I(0) or I(1) orders of integration (Dergiades and Tsoulfidis, 2008). The null hypothesis of no cointegration is rejected using an F-test. More specifically, the computed F-statistic exceeds the upper bound of the test (Pesaran et. al, 2001).

Equation (2) shows the general ARDL specification (Pesaran et. al, 2001). In Equation (2), q represents the optimal number of dependent variable lags and p_i is used for the optimal number of lags for each explanatory variable. The error term is represented by v with t as the time subscript.

\[
\ln KWHC_t = \alpha_0 + \sum_{i=0}^{q} \gamma_i \ln KWHC_{t-i} + \sum_{i=0}^{p_1} \alpha_{1i} \ln PE_{t-i} + \sum_{i=0}^{p_2} \alpha_{2i} \ln PNG_{t-i} + \sum_{i=0}^{p_3} \alpha_{3i} \ln YCAP_{t-i}
\]

\[+ \sum_{i=0}^{p_4} \alpha_{4i} \ln HDD_{t-i} + \sum_{i=0}^{p_5} \alpha_{5i} \ln CDD_{t-i} + v_t\]

(2)

Equation (3) shows how the long-run coefficients for Equation (2) are calculated from the parameters in Equation (3). In Equation (4), j represents an index for the independent variables. The long-run coefficients are later used to calculate the residuals that will be part of the short-run error correction model if cointegration is present.

\[
a_j = \sum_{i=0}^{p_j} \alpha_{ji} / (1 - \sum_{j=1}^{q} \gamma_j)
\]

(3)
The variables in Equation (2) are tested for cointegration by employing a bounds test (Pesaran et al, 2001). In Equation (4), Δ is a first-difference operator and w is stochastic error term. Narayan (2005) presents a set of bounds test critical values that are used for both I(0) and I(1) cases when samples contain between 30 and 80 observations. The calculated F-statistic must be larger than the upper bound to reject the null hypothesis of no cointegration $H_o = b_6 = b_7 = b_8 = b_9 = b_{10} = b_{11} = 0$. When the F-statistic is between the upper and lower bounds, the test is inconclusive. An F-statistic below the lower bound will fail to reject the null hypothesis.

$$
\Delta \ln KWHC_t = \beta_0 + \sum_{i=0}^{q-1} \delta_i \Delta \ln KWHC_{t-i} + \sum_{i=0}^{p_1-1} \beta_1i \Delta \ln PE_{t-i} + \sum_{i=0}^{p_2-1} \beta_2i \Delta \ln PNG_{t-i} + \sum_{i=0}^{p_3-1} \beta_3i \Delta \ln YCAP_{t-i} + \sum_{i=0}^{p_4-1} \beta_4i \Delta \ln HDD_{t-i} + \sum_{i=0}^{p_5-1} \beta_5i \Delta \ln CDD_{t-i} + \beta_6 \ln KWHC_{t-1} + \beta_7 \ln PE_{t-1} + \beta_8 \ln PNG_{t-1} + \beta_9 \ln YCAP_{t-1} + \beta_{10} \ln HDD_{t-1} + \beta_{11} \ln CDD_{t-1} + w_t
$$

(4)

If a cointegrating relationship exists, a short-run error correction model is estimated. The residuals from Equation (2) are lagged and u_{t-1} is included as a regressor as shown in Equation (5). The resulting coefficient estimate for δ is known as an error correction term. The hypothesized coefficient sign for the error correction term is negative. When that condition is met, δ provides an estimate of the rate at which a short-run departure from the long-run equilibrium will dissipate. Equation (5) shows the specification for the short-run error correction model.

$$
\Delta \ln KWHC_t = \beta_0 + \sum_{i=0}^{q-1} \delta_i \Delta \ln KWHC_{t-i} + \sum_{i=0}^{p_1-1} \beta_1i \Delta \ln PE_{t-i} + \sum_{i=0}^{p_2-1} \beta_2i \Delta \ln PNG_{t-i} + \sum_{i=0}^{p_3-1} \beta_3i \Delta \ln YCAP_{t-i} + \sum_{i=0}^{p_4-1} \beta_4i \Delta \ln HDD_{t-i} + \sum_{i=0}^{p_5-1} \beta_5i \Delta \ln CDD_{t-i} + \delta u_{t-1} + \epsilon_t
$$

(5)

4. Data

Annual frequency data are collected from 1977 to 2016. Residential consumption in Las Cruces is measured in kilowatt-hours (KWH) using New Mexico billed sales data provided by EPEC. At least one recent study indicates that consumers respond to average prices (Ito, 2014). For this effort, average revenue per KWH is used as the own price variable. Revenue, KWH sales, and customer data are collected from EPEC archives and EPEC Form 1 filings with Federal Energy Regulatory Commission (FERC, 2017). All sample data employed are listed in Table 6 as an appendix to the study.

Real per capita income is used to account for income effects on residential electricity consumption. Real per capita income is calculated in constant 2009 dollars using the personal consumption expenditures (PCE) deflator (BEA, 2018b). The price variables are also deflated to constant 2009 dollars using the PCE deflator. Per capita income data for Las Cruces and the
personal consumption expenditures deflator are collected from the Bureau of Economic Analysis (BEA, 2018a). Table 1 lists all of the data and units of measure.

Table 1. Variable Definitions and Sources

Variable	Definition	Source
KWHC	Las Cruces electricity consumption per customer, measured in KWH sales per residential customer	El Paso Electric
KWH	Las Cruces electricity consumption, measured in KWH sales	El Paso Electric
PE	Real Electricity Price, measured in average $ revenue per KWH sold, base year 2009	El Paso Electric FERC Form-1 Filings
LCPNG	Las Cruces Real Natural Gas Price, measured in average $ price per CCF, base year 2009	Las Cruces Utilities, Energy Information Association
YCAP	Las Cruces Real Per Capita Income, measured in thousands of dollars, base year 2009	U.S. Bureau of Economic Analysis
HDD	Heating Degree Days, Sum of Average Daily Temperatures under 65° Base	National Oceanic and Atmospheric Administration Northeast Regional Climate Center
CDD	Cooling Degree Days, Sum of Average Daily Temperatures over 65° Base	National Oceanic and Atmospheric Administration Northeast Regional Climate Center
CUST	Average Number of Residential Customers, thousands	El Paso Electric FERC Form-1 Filings
POP	Las Cruces Population, thousands	U.S. Bureau of Economic Analysis

In Las Cruces, natural gas is a substitute for electricity. Accordingly, a natural gas price per 100 cubic feet (CCF) variable is also included in the sample. Historical data are collected from Las Cruces Utilities for 1996 through 2016 period. To approximate missing data, natural gas price data for New Mexico are collected from the Energy Information Administration (EIA, 2017). Equation 1 specifies the Las Cruces natural gas price as a function of the state gas price and is used to provide estimates for the missing values between 1977 and 1995 (Friedman, 1962). Table 2 displays the estimated regression results. The natural gas price for New Mexico coefficient is statistically significant at the 5-percent level. A chi-squared autocorrelation test confirms that the residuals for Equation (6) are not serially correlated.

\[
LCPNG_t = b_0 + b_1 NMPNG_t + u_t
\]

(6)
Table 2. Las Cruces Natural Gas Price Regression Output

Dependent Variable: LCNGP
Method: Least Squares
Sample (adjusted): 1996 2016
Included observations: 21 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.316	0.071	-4.463	0.0003
NMNGP	0.857	0.077	11.169	0.000

R-squared 0.8678 Mean dependent var 0.4535
Adjusted R-squared 0.8609 S.D. dependent var 0.1979
S.E. of regression 0.0738 Akaike info criterion -2.284
Sum squared resid 0.1035 Schwarz criterion -2.185
Log likelihood 25.982 Hannan-Quinn criter. -2.262
F-statistic 124.744 Durbin-Watson stat 1.500
Prob(F-statistic) 0.000

Note: These results are used to simulate Las Cruces natural gas prices for 1977-1995.

Prior studies indicate that weather influences residential electricity consumption in statistically significant manners (Contreras et al, 2009; Pourazarm and Cooray, 2013). To account for weather in the demand equation for electricity demand, data for heating degree days (HDD) and cooling degree days (CDD) are collected by the New Mexico State University (NMSU) weather station and downloaded from the National Oceanic and Atmospheric Administration Northeast Regional Climate Center (NOAA, 2018). HDD measures the number of degrees that each daily average temperature is below 65 degrees Fahrenheit. CDD measures the number of degrees that each daily average temperature is above 65 degrees Fahrenheit.

The summary statistics presented in Table 3 show that the average electricity consumption per customer in Las Cruces is 7,189 KWH per year, the standard deviation is 664 KWH per customer, with a median of 7,113 KWH. The minimum electricity consumption per customer for this sample period is 5,879 KWH and the maximum is 8,430 KWH, a range of 2,551 KWH. The skewness coefficient is 0.26, indicating a slightly right skewed distribution that is roughly symmetric. The kurtosis is 2.08, indicating the data are fairly platykurtic relative to a Gaussian distribution, but the coefficient of variation is still only 0.09.
Table 3. Data Summary Statistics

	KWHC	PE	PNG	YCAP
Mean	7,189	0.142	0.425	22,377
Standard Deviation	664.3	0.026	0.168	4,595
Coef. of Variation	0.092	0.186	0.395	0.205
Median	7,113	0.131	0.380	20,568
Maximum	8,430	0.193	0.824	29,654
Minimum	5,879	0.107	0.215	16,246
Range	2,551	0.087	0.609	13,408
Skewness	0.265	0.677	1.078	0.287
Kurtosis	2.083	2.055	3.179	1.513

	HDD	CDD	CUST
Mean	2,699	1,929	56,538
Standard Deviation	275.5	220.5	18,522
Coef. of Variation	0.102	0.114	0.328
Median	2,683	1,859	56,485
Maximum	3,346	2,362	84,673
Minimum	2,196	1,502	25,152
Range	1,150	860	59,521
Skewness	0.110	0.188	-0.026
Kurtosis	2.300	1.870	1.749

Notes:

The sample period is 1977 – 2016.

All income and price data are measured in 2009 constant dollars.

The average real price of electricity in 2009 constant dollars is estimated to be $0.14 per KWH, the standard deviation is $0.03 per KWH, with a median of $0.13. The minimum average real price of electricity is $0.11 per KWH and the maximum is $0.19 per KWH, a range of $0.09 per KWH. The skewness is 0.68, indicating that the real price of electricity is slightly right skewed. The kurtosis is 2.06 indicating the data are platykurtic and the coefficient of variation is 0.18.

The real average price of natural gas in Las Cruces is $0.43 per CCF, the standard deviation is 0.17, with a median of $0.38 per CCF. The minimum price of natural gas in Las Cruces during the sample period is $0.22 per CCF and the maximum is $0.82 per CCF, giving a range of $0.60 per CCF. The skewness of the price of natural gas in Las Cruces is 1.08, indicating that the distribution is right skewed. The kurtosis is 3.18 and the coefficient of variation is 0.40.

The average Las Cruces real income per capita is $22,377. The standard deviation is $4,595.
and the median is $20,568. The minimum per capita income is $16,246 and the maximum is $29,654, implying a range of $13,408. The skewness of Las Cruces income per capita is 0.29, reflecting overall symmetry. The kurtosis is found to be 1.51 indicating the data are fairly platykurtic, but the coefficient of variation is still only 0.21.

The average number of heating degree days in Las Cruces is 2,699 per year. The standard deviation is 275 days with a median of 2,683 days. The minimum number of heating degree days is 2,196 days with a maximum of 3,346 days, and the range is 1,150 days. With a skewness statistic of 0.11, HDD is largely symmetric. The fourth moment of 2.30 indicates that the distribution of HDD is platykurtic, but the coefficient of variation is only 0.10.

The average number of cooling degree days in Las Cruces is 1,929 per year. The standard deviation is 221 days with a median of 1,859. The minimum number of cooling degree days is 1,502 with a maximum of 2,362, yielding a range of 860 days. The CDD skewness is 0.19, substantially symmetric. The kurtosis is 1.87, indicating relatively thick distribution tails, but the coefficient of variation is a fairly small 0.11.

The average number of residential customers in Las Cruces during the 1977-2016 sample period is 56,538. The standard deviation is 18,522 with a median of 56,485 customers. The minimum number of customers is 25,152, the maximum number is 84,673, and the range is 59,521. The skewness statistic of -0.03, indicates near perfect symmetry. The customer data are platykurtic and the coefficient of variation is 0.33.

5. Empirical Results

Initial testing with CDD and HDD employed as separate independent variables, as shown in Equations 3, was not successful due to multicollinearity. To reduce this problem, the weather variables are combined into one degree days variable, $DD = CDD + HDD$. This procedure has been employed previously for residential electricity usage analysis (Fullerton et al, 2016). Although this step imposes parameter homogeneity with respect to hot and cold weather effects on household electricity consumption, the coefficient estimates are more plausible, estimation diagnostics improve, and this convention is employed for the remainder of the study. Imposing weather impact symmetry in this manner may not, however, always be advisable (Chang et al, 2016).

Phillips-Perron unit root tests indicate that the variables are integrated of an order of I(0) or I(1), allowing empirical analysis to be conducted using an ARDL modeling approach. The maximum lag length selected, using an Akaike information criterion, for any of the explanatory variables is three years. The resulting specification is an ARDL (3, 3, 3, 3, 2) model for residential electricity consumption in the Las Cruces service area.

A Breusch-Godfrey serial correlation LM test is conducted for a null hypothesis of no serial correlation. The computed Chi-squared statistic for up to five years indicates no serial correlation. The F-statistic for $H_0: b_5 = b_6 = b_7 = b_8 = b_9 = 0$ is 3.74. In the bounds test context, this value is higher than the 10-percent upper bound critical value, indicating cointegration.
Furthermore, the CUSUM and CUSUMSQ test results presented in Figure 1 and Figure 2 show stability with no computed statistics surpassing the 5-percent bounds.

![CUSUM Results for Residential Electricity Consumption](image1)

Figure 1. CUSUM Results for Residential Electricity Consumption

![CUSUMSQ Results for Residential Electricity Consumption](image2)

Figure 2. CUSUMSQ Results for Residential Electricity Consumption

The long-run coefficients for the estimated ARDL model are listed in Table 4. Although all of the long-run parameters exhibit the hypothesized signs discussed in the previous section, the links are not very reliable and do not satisfy the 5-percent significance criterion. The own-price elasticity coefficient is -0.08, indicating that a 10 percent increase in the price of electricity will
be associated with less than a 1 percent reduction in residential electricity usage. That indicates that Las Cruces household electricity demand hardly responds to rate increases. A flat demand curve is not completely surprising for this region of the United States. Fullerton et al (2016) document an upward sloping demand function for nearby El Paso. Horizontal electricity demand curves for normal goods can occur when the income effect offsets the substitution effect (Vandermeulen, 1972). During the sample period, the real price of electricity did not keep pace with real per capita income and that may contribute to this outcome (Fullerton et al, 2015).

Table 4. ARDL Long-Run Coefficients for ARDL(3, 3, 3, 3, 2) Model

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(PE)	-0.0843	0.3514	-0.2400	0.8131
LOG(PNG)	0.0280	0.1021	0.2739	0.7873
LOG(YCAP)	0.3806	0.3438	1.1070	0.2829
LOG(DD)	0.4601	0.3361	1.3689	0.1879

The long-run parameter estimate for the price of natural gas in Table 4 is 0.028. That is highly inelastic and indicates that fluctuations in natural gas prices do not affect residential electricity usage very much in this EPEC service area. That cross-price coefficient indicates that a 1 percent increase in the price of natural gas will be accompanied by a 0.028 percent increase in residential electricity demand. While very small, the positive sign of the cross-price elasticity implies that, over the long-run, natural gas and electricity are treated as highly imperfect substitute goods by residences in Las Cruces. The magnitude of the cross-price elasticity is much smaller than what is reported for the geographically adjacent EPEC service area in El Paso (Fullerton et al., 2016).

The long-run slope coefficient estimate for real per capita income in Table 4 has a reasonable size (Espey and Espey, 2004). The income elasticity parameter is positive, suggesting that, over the long-run, electricity is treated as a normal good by Las Cruces households. That is opposite of what is reported for the nearby El Paso service area (Fullerton et al, 2016) and underscores the importance of conducting independent research for individual metropolitan economies, at least within the realm of energy economics. The income coefficient in Table 4 is 0.38, indicating that electricity is a necessity for las Cruces households (Phu, 2020). It further indicates that a 10-percent increase in real per capita income will lead to a 3.8 percent increment in residential electricity demand in the long-run. Because Las Cruces is a growing urban economy, that implies that EPEC will face more generating capacity pressures from this service area than the neighboring one to the south.

The composite explanatory variable for the weather, cooling degree days plus heating degree days, exhibits the hypothesized parameter sign with a coefficient of 0.46. The DD parameter indicates an inelastic response as a 10 percent increase in annual degree days will increase residential electricity demand by 4.6 percent. The coefficient magnitude indicates that there
inclement weather leads to fairly substantial impacts on long-run residential electricity consumption in the Las Cruces service area.

Estimation results for the short-run error correction model are listed in Table 5. The own-price coefficients sum to -0.45 and satisfy the 5-percent criterion. That is relatively close to the short-run elasticities reported for multiple regions across the United States (Espey and Espey, 2004).

Table 5. ARDL Error Correction Model Coefficients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	2.0371	0.7172	2.8402	0.0109
DLOG(KWHC(-1))	-0.6301	0.1294	-4.8707	0.0001
DLOG(KWHC(-2))	-0.1873	0.1035	-1.8093	0.0871
DLOG(PE)	-0.4947	0.1372	-3.6060	0.0020
DLOG(PE(-1))	0.2763	0.0929	2.9741	0.0081
DLOG(PE(-2))	-0.2334	0.0909	-2.5674	0.0194
DLOG(PNG)	0.0498	0.0232	2.1477	0.0456
DLOG(PNG(-1))	-0.0498	0.0232	-2.1511	0.0453
DLOG(PNG(-2))	0.0405	0.0317	1.2760	0.2182
DLOG(YCAP)	0.0882	0.2246	0.3926	0.6992
DLOG(YCAP(-1))	-0.3988	0.2100	-1.8991	0.0737
DLOG(YCAP(-2))	0.3216	0.2089	1.5395	0.1411
DLOG(DD)	0.3602	0.0879	4.0959	0.0007
DLOG(DD(-1))	0.2736	0.1292	2.1168	0.0485
u(-1)	-0.5543	0.1950	-2.8422	0.0108

Diagnostic statistics for the underlying ARDL model:

Statistic	Value
R-squared	0.9208
Adjusted R-squared	0.8704
S.E. of regression	0.0221
Sum squared resid	0.0108
Log likelihood	98.1324
F-statistic	18.2729
Prob(F-statistic)	0.0000

The natural gas price coefficients sum to 0.04 and exhibit the hypothesized positive sign. The highly inelastic value indicates that natural gas price fluctuations do not affect residential electricity usage very noticeably in Las Cruces. Collectively, the results indicate that, in the short-run, natural gas is treated as a weak substitute for electricity by households in the Mesilla Valley. That result is similar to what has been reported for other regions (Phu, 2020).

The real per capita income coefficients sum to 0.01 and exhibit the hypothesized positive sign, albeit with computed t-statistics that fail to surpass the 5-percent significance threshold. The highly inelastic estimate indicates that income fluctuations do not affect residential electricity consumption.
demand in the short-run in Las Cruces. Although the estimate indicates that the relationship is not overly strong, electricity is found to be treated as both a normal good and a necessity in the short-run by Las Cruces households.

The composite explanatory variable used to account for weather effects on residential electricity demand is DD, the sum of annual cooling degree days and heating degree days. Fluctuations in DD are found to reliably impact residential electricity consumption in the short-run. The coefficients that sum to 0.63 and are positive as hypothesized. Both hot and cold weather lead residential customers to increase the use of electricity in this desert economy. The sensitivity of households to extreme weather is more pronounced, and statistically reliable, in Las Cruces than what has been reported for more temperate regions of the global economy (Csereklyei, 2020).

The error correction parameter is negative as hypothesized. The magnitude of the error correction coefficient indicates that 55 percent of any deviation from the long-run equilibrium will dissipate within a year. As a result, approximately 1.8 years are necessary for any departures from equilibrium to fully dissipate. That is a shorter amount of time than what has been documented for residential electricity consumption the nearby metropolitan economy of El Paso (Fullerton et al, 2016).

6. Conclusion

Residential electricity usage continues to be the focus of substantial research effort. Given the importance of electric energy in modern economies, that is to be expected. Advances in econometric methods and data availability also encourage more effort in this branch of the discipline.

Historically, one of the gaps in this literature has been empirical analysis of residential electricity demand in small and medium sized metropolitan economies. That has probably resulted from limited data coverage in these areas. In spite of being the second largest economy in the state, Las Cruces, New Mexico is one of those urban areas for which comparatively little energy consumption research has been conducted.

The results obtained vary in several notable ways from what has been documented for El Paso, Texas, a larger metropolitan economy which is located a mere 40 miles away from the Mesilla Valley. Those outcomes highlight the importance of examining more smaller urban economies individually rather than assuming that regional energy demand always follows the same usage patterns. Additional studies of electricity consumption in Las Cruces region are warranted. An obvious candidate is small commercial and industrial usage, as well as public and non-profit consumption. Important demand differences for those customer categories cannot be ruled out at this juncture.
Acknowledgments

Financial support for this research was provided by El Paso Water, National Science Foundation Grant DRL-1740695, Texas Department of Transportation ICC 24-0XXIA001, TFCU, the UTEP Center for the Study of Western Hemispheric Trade, Hunt Institute for Global Competitiveness at UTEP, and El Paso Electric Company. Helpful comments and suggestions were provided by Steven Fullerton, Eric Boyer, John Gibson, Ana Molina-González, Donna Al Hakeem, Enedina Soto, George Novela, Teodulo Soto, and two anonymous referees.

References

Alberini, A., Gans, W., & Velez-Lopez, D. (2011). Residential consumption of gas and electricity in the U.S.: The role of prices and income. *Energy Economics, 33*(5), 870-881. https://doi.org/10.1016/j.eneco.2011.01.015

BEA. (2018a). *CA1 Personal Income Summary: Personal Income, Population, Per Capita Personal Income*. Washington, DC: United States Department of Commerce.

BEA. (2018b). *Personal Consumption Expenditures Implicit Price Deflator*. Washington, DC: United States Department of Commerce.

Chang, H. S., & Hsing, Y. (1991). The demand for residential electricity: New evidence on time-varying elasticities. *Applied Economics, 23*(7), 1251-1256. https://doi.org/10.1080/00036849100000165

Chang, Y., Kim, C. S., Miller, J. I., Park, J. Y., & Park, S. (2016). A new approach to modeling the effects of temperature fluctuations on monthly electricity demand. *Energy Economics, 60*, 206-216. https://doi.org/10.1016/j.eneco.2016.09.016

Cicchetti, C. J., & Smith, V. K. (1975). Alternative price measures and the residential demand for electricity. *Regional Science & Urban Economics, 5*(4), 503-516. https://doi.org/10.1111/j.1467-8454.1973.tb00308.x

Contreras, S., Smith, W.D., Roth, T. P., & Fullerton, T. M., Jr. (2009). Regional evidence regarding U.S. residential electricity consumption. *Empirical Economics Letters, 8*(9), 827-832.

Csereklyei, Z. (2020). Price and income elasticities of residential and industrial electricity demand in the European Union. *Energy Policy, 137*, Article 111079. https://doi.org/10.1016/j.enpol.2019.111079

Dergiades, T., & Tsouflidis, L. (2008). Estimating residential demand for electricity in the United States, 1965-2006. *Energy Economics, 30*(5), 2722-2730. https://doi.org/10.1016/j.eneco.2008.05.005

EIA. (2017). *New Mexico Price of Natural Gas Delivered to Residential Consumers*. Washington, DC: United States Department of Energy.
EPEC. (2016). *Investor Relations Fact Sheet*. El Paso, TX: El Paso Electric Company.

Espey, J. A., & Espey, M. (2004). Turning on the lights: a meta-analysis of residential electricity demand elasticities. *Journal of Agricultural & Applied Economics*, 36(1), 65-81.

FERC. (2017). *Form 1 – Electric Utility Annual Report*. Washington, DC: Federal Energy Regulatory Commission.

Friedman, M. (1962). The interpolation of time series by related series. *Journal of the American Statistical Association*, 57(300), 729-757. https://doi.org/10.1080/01621459.1962.10500812

Fullerton, T. M. Jr., Juarez, D. A., & Walke, A. G. (2012). Residential electricity consumption in Seattle. *Energy Economics*, 34(5), 1693-1699. https://10.1016/j.eneco.2012.02.004

Fullerton, T. M., Jr., & Fullerton, S.L. (2019). *Borderplex Economic Outlook to 2021*. El Paso, TX: University of Texas at El Paso Border Region Econometric Modeling Project.

Fullerton, T. M., Jr., Macias, D. R., & Walke, A. G. (2016). Residential electricity demand in El Paso. *Journal of Regional Analysis & Policy*, 46(2), 154-167.

Fullerton, T. M., Jr., Resendez, I. M., & Walke, A. G. (2015). Upward sloping demand for a normal good? Residential electricity in Arkansas. *International Journal of Energy Economics & Policy*, 5(4), 1065-1072.

Gelman, A., & Hill, J. (2006). *Data Analysis using Regression and Multilevel/Hierarchical Models*. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511790942

Halicioglu, F. (2007). Residential electricity demand dynamics in Turkey. *Energy Economics*, 29(2), 199-210. https://doi.org/10.1016/j.eneco.2006.11.007

Halvorsen, B. (1975). Residential demand for electric energy. *Review of Economics and Statistics*, 57(1), 12-18. https://doi.org/10.2307/1937858

Hondroyiannis, G. (2004). Estimating residential demand for electricity in Greece. *Energy Economics*, 26(3), 319-334. https://doi.org/10.1016/j.eneco.2004.04.001

Hultman, C. W., & Ramsey, J. R. (1977). An econometric analysis of the residential demand for electricity: A tutorial. *Public Data Use*, 5(6), 32-40.

Ito, K. (2014). Do consumers respond to marginal or average price? Evidence from nonlinear electricity pricing, *American Economic Review*, 104(2), 537-563. https://doi.org/10.1257/aer.104.2.537

Narayan, P. K. (2005). The saving and investment nexus for China: Evidence from cointegration tests. *Applied Economics*, 37(17), 1979-1990. https://doi.org/10.1080/00036840500278103

Narayan, P. K., & Smyth, R. (2005). The residential demand for electricity in Australia: An
application of the bounds testing approach to cointegration. Energy Policy, 33(4), 467-475. https://doi.org/10.1016/j.enpol.2003.08.011

NOAA. (2018). NOAA Northeast Regional Climate Center. Washington, DC: United States Department of Commerce.

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289-326. https://doi.org/10.1002/jae.616

Phu, L. V. (2020). Electricity price and residential electricity demand in Vietnam. Environmental Economics and Policy Studies, (forthcoming). https://doi.org/10.1007/s10018-020-00267-6

Pourazarm, E., & Cooray, A. (2013). Estimating and forecasting residential electricity demand in Iran. Economic Modelling, 35, 546-558. https://doi.org/10.1016/j.econmod.2013.08.006

Roth, T. P. (1981). Average and marginal price changes and the demand for electricity: An econometric study. Applied Economics, 13(3), 377-388. https://doi.org/10.1080/000368481000000007

Shin, J.S. (1985). Perception of price when price information is costly: Evidence from residential electricity demand. Review of Economics and Statistics, 67(4), 591-598. https://doi.org/10.2307/1924803

Silk, J. I., & Joutz, F. L. (1997). Short and long-run elasticities in US residential electricity demand: A co-integration approach. Energy Economics, 19(4), 493-513. https://doi.org/10.1016/S0140-9883(97)01027-X

Taylor, L. D. (1975). The demand for electricity: A survey. Bell Journal of Economics, 6(1), 74-110. https://doi.org/10.2307/3003216

Vandermeulen, D. C. (1972). Upward sloping demand curves without the Giffen paradox. American Economic Review, 62(3), 453-458.

Wilder, R. P., & Willenborg, J. F. (1975). Residential demand for electricity: A consumer panel approach. Southern Economic Journal, 42(2), 212-217. https://doi.org/10.2307/1056769
Appendix

Table 6. Historical Data Appendix

Year	KWHC	PE	PNG	YCAP	HDD	CDD
1977	7,537.50	0.123	0.215	16.246	2987	1755
1978	7,887.04	0.141	0.272	16.714	3029	1795
1979	7,139.32	0.124	0.274	16.530	3346	1502
1980	6,085.53	0.158	0.332	16.307	3100	1762
1981	7,214.34	0.181	0.376	16.901	2717	1742
1982	5,879.24	0.183	0.523	17.126	3024	1685
1983	6,739.17	0.193	0.580	17.847	3008	1723
1984	6,619.95	0.193	0.610	18.082	3029	1806
1985	6,782.23	0.187	0.606	18.478	3008	1649
1986	6,450.10	0.184	0.332	18.888	2683	1765
1987	6,555.52	0.178	0.400	18.874	3046	1662
1988	6,652.86	0.177	0.408	18.387	2825	1715
1989	6,627.82	0.170	0.444	19.119	2606	2072
1990	6,531.52	0.166	0.405	19.192	2788	1943
1991	6,572.14	0.163	0.349	19.263	2862	1616
1992	6,752.98	0.152	0.254	19.812	2952	1786
1993	6,655.92	0.149	0.323	19.796	2670	1876
1994	6,796.17	0.142	0.327	19.610	2513	2200
1995	6,594.22	0.141	0.250	20.491	2298	1839
1996	6,757.35	0.131	0.271	20.393	2254	1841
1997	6,810.04	0.132	0.324	20.646	2314	1979
1998	6,836.74	0.134	0.316	21.582	2464	1813
1999	6,743.44	0.124	0.313	21.632	2196	1727
2000	7,092.48	0.120	0.303	22.163	2444	2231
2001	7,133.73	0.126	0.297	24.256	2606	2181
2002	7,321.17	0.123	0.316	24.951	2683	2185
2003	7,477.78	0.125	0.574	25.596	2458	2275
2004	7,393.69	0.122	0.652	26.379	2755	1826
2005	7,587.76	0.127	0.818	27.393	2634	2068
2006	7,548.59	0.129	0.824	27.344	2479	1954
2007	7,847.10	0.126	0.733	27.840	2629	2021
2008	7,609.74	0.130	0.819	27.855	2683	1737
2009	7,904.30	0.121	0.421	28.575	2622	2090
2010	8,293.19	0.119	0.452	28.845	2834	2081
2011	8,430.32	0.116	0.406	28.694	2854	2362
2012	8,390.02	0.111	0.283	28.690	2420	2209
2013	8,200.32	0.114	0.384	27.304	2876	2134
2014	7,866.91	0.118	0.441	28.052	2350	2075
2015	8,096.35	0.110	0.298	29.586	2571	2227
2016	8,139.24	0.107	0.277	29.654	2301	2234
Year	CUST	POP	KWH	PCE		
------	------	-------	--------------	------		
1977	25,333	88.30	190,947,495	0.341		
1978	25,152	92.19	198,374,947	0.365		
1979	29,069	93.74	207,532,884	0.397		
1980	35,358	97.01	215,172,027	0.440		
1981	29,730	99.62	214,482,216	0.478		
1982	37,478	103.45	220,342,299	0.505		
1983	33,951	107.63	228,801,449	0.526		
1984	35,949	112.47	237,980,754	0.546		
1985	33,714	116.32	255,784,886	0.566		
1986	39,472	120.47	254,598,483	0.578		
1987	41,220	125.03	270,224,895	0.596		
1988	42,985	132.02	285,973,059	0.620		
1989	44,515	136.96	300,736,483	0.646		
1990	45,837	141.23	300,736,483	0.674		
1991	47,270	147.00	310,665,224	0.697		
1992	48,912	153.05	330,301,610	0.715		
1993	50,616	157.53	336,895,282	0.733		
1994	52,431	162.53	356,329,852	0.748		
1995	54,150	167.01	357,076,759	0.764		
1996	55,769	165.62	376,850,884	0.780		
1997	57,201	169.08	389,541,224	0.793		
1998	58,588	172.06	400,551,097	0.799		
1999	60,409	173.89	407,364,168	0.811		
2000	61,889	175.10	438,946,495	0.831		
2001	62,856	176.50	448,398,005	0.847		
2002	64,294	178.46	470,707,370	0.859		
2003	65,879	182.05	492,628,734	0.876		
2004	68,255	184.94	504,656,261	0.897		
2005	71,120	189.20	539,641,286	0.923		
2006	73,062	193.70	551,514,903	0.947		
2007	75,664	197.85	593,743,154	0.971		
2008	77,283	200.86	588,103,907	1.001		
2009	78,529	205.40	620,716,793	1.000		
2010	79,601	210.20	660,146,425	1.017		
2011	80,169	212.98	675,850,676	1.041		
2012	80,694	214.43	677,024,526	1.061		
2013	81,992	214.05	672,360,615	1.075		
2014	82,817	214.06	651,513,800	1.092		
2015	83,632	214.30	677,113,937	1.095		
2016	84,673	214.21	689,174,035	1.108		
Copyright Disclaimer

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).