Determinations of quark mixing matrix elements $|V_{cd}|$ and $|V_{cs}|$ from leptonic and semileptonic D Decays

G. Rong1, Y. Fang1, and H. L. Ma1

1Institute of High Energy Physics, Beijing 100049, People’s Republic of China

29 August, 2014

Abstract

With the recent measurements of purely leptonic D^+_s decays and semileptonic D decays in conjunction with decay constants $f_{D^+_s}$ and form factors $f^{(K)}_+$ (0) calculated in LQCD, we extract the magnitudes of V_{cd} and V_{cs} to be $|V_{cd}| = 0.218 \pm 0.005$ and $|V_{cs}| = 0.987 \pm 0.016$. Compared to those given in PDG2013, the precisions of these newly extracted $|V_{cd}|$ and $|V_{cs}|$ are improved by more than 2.0 and 1.5 factors, respectively. With the newly extracted $|V_{cd}|$ and $|V_{cs}|$ together with other CKM matrix elements given in PDG2013, we check the unitarity of the CKM matrix, which are $|V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 = 0.997 \pm 0.002$, $|V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 = 1.027 \pm 0.032$ and $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1.023 \pm 0.032$.

1 Introduction

In the Standard Model (SM) of particle physics, the D^+_s meson can decay into $\ell^+\nu_\ell$ (where $\ell = e, \mu, \text{or } \tau$) via annihilation mediated by a virtual W^+ boson. The decay rate depends upon the wave function overlap of the two quarks at the origin, which is parameterized by the D^+_s decay constant, $f_{D^+_s}$. All of the strong interaction effects between the two initial-state quarks are absorbed into $f_{D^+_s}$. In the SM, the decay width of $D^+_s \rightarrow \ell^+\nu_\ell$ is given by

$$\Gamma(D^+_s \rightarrow \ell^+\nu_\ell) = \frac{G_F^2 f_{D^+_s}^2}{8\pi} |V_{cd(s)}|^2 m_\ell^2 m_{D^+_s} \left(1 - \frac{m_\ell^2}{m_{D^+_s}^2} \right)^2,$$

where G_F is the Fermi coupling constant, $V_{cd(s)}$ is the $c \rightarrow d(s)$ Cabibbo-Kobayashi-Maskawa (CKM) matrix element $[1]$, m_ℓ is the lepton mass, and $m_{D^+_s}$ is the D^+_s meson mass.
Similarly, in the SM, neglecting the positron mass, the differential decay rate of \(D \to \pi(K)e^+\nu_e \) process is given by

\[
\frac{d\Gamma}{dq^2} = X \frac{G_F^2}{24\pi^3}|V_{cd(s)}|^2|\tilde{p}_{\pi(K)}|^3|f^\pi(K)(q^2)|^2,
\]

where \(\tilde{p}_{\pi(K)} \) is the three-momentum of the \(\pi \) (\(K \)) meson in the rest frame of the \(D \) meson, \(f^\pi(K)(q^2) \) represents the hadronic form factor of the hadronic weak current depending on the square of the four-momenta transfer \(q^2 \), and \(X \) is a factor due to isospin, which equals to 1 for \(D^0 \to \pi^-e^+\nu_e \), \(D^0 \to K^-e^+\nu_e \) and \(D^+ \to \bar{K}^0e^+\nu_e \), and equals to 1/2 for \(D^+ \to \pi^0e^+\nu_e \). The form factor \(f^\pi(K)(q^2) \) measures the probability to form the final state \(\pi \) (\(K \)) meson in this decay.

Recently, the branching fractions for leptonic \(D^+ \) and \(D^+_s \) decays were well measured at the \(e^+e^- \) experiments near threshold of the \(\bar{D}D \) production (CLEO-c and BESIII) and near 10.6 GeV (Belle and BaBar), and the decay constants \(f_{D^+} \) and \(f_{D^+_s} \) were calculated in LQCD at precisions of \(\sim 1.6\% \) and \(\sim 1.1\% \), respectively. With these measured branching fractions in conjunction with the \(f_{D^+_s} \) calculated in LQCD, the magnitudes of CKM quark mixing parameters \(V_{cd} \) and \(V_{cs} \) can be well extracted. In addition, the precisions of these measured branching fractions for \(D \to \pi e^+\nu_e \) and \(D \to K e^+\nu_e \) decays or measured products of \(|V_{cd(s)}| \) and \(f^\pi(K)(0) \) are at an accuracy level of about 1\%, while the LQCD calculations of these form factors \(f^\pi(K)(0) \) also reach to about 4.4\% and 2.5\%, respectively. With these measured products of \(|V_{cd(s)}| \) and \(f^\pi(K)(0) \) together with inputs of the form factors calculated in LQCD, the magnitudes of \(V_{cd} \) and \(V_{cs} \) can also be well extracted.

In this article, we extract \(|V_{cd}| \) and \(|V_{cs}| \) with these measured branching fractions and/or \(|V_{cd(s)}|f^\pi(K)(0) \) in conjunction with decay constants \(f_{D^+_s} \) and/or form factors \(f^\pi(K)(0) \) calculated in LQCD. In determinations of \(|V_{cd}| \) and \(|V_{cs}| \), we use \(G_F \), masses of \(D^+_s \) meson and leptons, and lifetimes of \(D^+_s \) meson given in PDG2013 [1].

2 Recent experimental measurements

2.1 Purely leptonic \(D^+ \) decays

In 2008, the CLEO-c Collaboration accumulated 460055 \(\pm 787 \) \(D^- \) tags by analyzing 818 \(\text{pb}^{-1} \) data taken at 3.773 GeV and selecting \(D^- \) mesons from 6 hadronic decay modes of the \(D^- \) meson. They observed 149.7 \(\pm 12.0 \) signal events for \(D^+ \to \mu^+\nu_\mu \) decays in the system recoiling against these \(D^- \) tags. They measured the decay branching fraction \(B(D^+ \to \mu^+\nu_\mu) = (3.82 \pm 0.32 \pm 0.09) \times 10^{-4} \) [2].

In 2014, the BESIII Collaboration measured the branching fraction for \(D^+ \to \mu^+\nu_\mu \) decays by analyzing 2.92 \(\text{fb}^{-1} \) data taken at 3.773 GeV. From 9 hadronic decay modes of
D^- meson, the BESIII Collaboration accumulated 1703054 ± 3405 D^- tags. In this D^- tag sample they observed 409.0 ± 21.2 signal events for $D^+ \rightarrow \mu^+\nu_\mu$ decays and measured branching fraction $B(D^+ \rightarrow \mu^+\nu_\mu) = (3.71 \pm 0.19 \pm 0.06) \times 10^{-4}$ [3].

Averaging these two branching fractions, we obtain

$$B(D^+ \rightarrow \mu^+\nu_\mu) = (3.74 \pm 0.17) \times 10^{-4},$$

where the error is the combined statistical and systematic errors together.

2.2 Purely leptonic D_s^+ decays

In 2009, the CLEO-c Collaboration studied the $D_s^+ \rightarrow \ell^+\nu_\ell$ decays based on 600 pb$^{-1}$ data taken at 4.17 GeV. From this data sample, they tagged D_s^- mesons from 9 hadronic decay modes. By examining distribution of missing mass-squared of the D_s^- and γ system they accumulated 43859±936 D_s^+ mesons; by analyzing distribution of missing mass-squared of the $D_s^+\gamma\mu^+$ system, they selected $D_s^+ \rightarrow \mu^+\nu_\mu$ decay events and measured the branching fraction $B(D_s^+ \rightarrow \mu^+\nu_\mu) = (0.565 \pm 0.045 \pm 0.017)\%$ [4]. Using similar method, the CLEO-c Collaboration also measured the branching fraction $B(D_s^+ \rightarrow \tau^+\nu_\tau) = (5.58 \pm 0.33 \pm 0.13)\%$, which is the average of three measured branching fractions obtained with $\tau^+ \rightarrow \pi^+\nu_\tau$ [1], $\tau^+ \rightarrow e^+\nu_\tau\bar{\nu}_\tau$ [5] and $\tau^+ \rightarrow \rho^+\bar{\nu}_\tau$ decays [6].

In 2013, the Belle Collaboration measured the branching fractions for leptonic D_s^+ decays. They selected leptonic D_s^+ decays from the $e^+e^- \rightarrow c\bar{c}$ continuum production, in which the $D_{\text{tag}}K_{\text{frag}}X_{\text{frag}}D_s^{\pm}\gamma$ is produced from the quark fragmentation, where $D_s^{\pm} \rightarrow \gamma D_s^+$, K_{frag} is either K^+ or K_0^0, and X_{frag} indicates several pions or photons. By reconstructing the recoil mass of the $D_{\text{tag}}K_{\text{frag}}X_{\text{frag}}\gamma$, they observed clear D_s^+ signal in the system recoiling against the $D_{\text{tag}}K_{\text{frag}}X_{\text{frag}}\gamma$. By fitting the recoil mass spectra of $D_{\text{tag}}K_{\text{frag}}X_{\text{frag}}\gamma$, they accumulated 94360 ± 1310 ± 1450 inclusive D_s^+ mesons. To search for $D_s^+ \rightarrow \mu^+\nu_\mu$ decays, they examined the missing mass-squared $M_{\text{miss}}^2(D_{\text{tag}}K_{\text{frag}}X_{\text{frag}}\gamma\mu)$ distribution of the $D_{\text{tag}}K_{\text{frag}}X_{\text{frag}}\gamma\mu$ system. Fitting the $M_{\text{miss}}^2(D_{\text{tag}}K_{\text{frag}}X_{\text{frag}}\gamma\mu)$ distribution yields 492 ± 26 signal events for $D_s^+ \rightarrow \mu^+\nu_\mu$ decays. With these numbers of events, the Belle Collaboration measured the decay branching fraction $B(D_s^+ \rightarrow \mu^+\nu) = (0.531 \pm 0.028 \pm 0.020)\%$ [7]. In addition, the Belle Collaboration observed 2217 ± 83 signal events for $D_s^+ \rightarrow \tau^+\nu_\tau$ decays with $\tau^+ \rightarrow e^+\nu_\tau\bar{\nu}_\tau$, $\tau^+ \rightarrow \mu^+\nu_\mu\bar{\nu}_\mu$ and $\tau^+ \rightarrow \pi^+\bar{\nu}_\tau$ decays, and measured the decay branching fraction $B(D_s^+ \rightarrow \tau^+\nu_\tau) = (5.70 \pm 0.21^{+0.31}_{-0.30})\%$ [7].

In 2010, using the similar technique as the one used by the Belle Collaboration, the BaBar Collaboration made measurements of the branching fractions for leptonic D_s^+ decays. By analyzing 521 fb$^{-1}$ data taken at 10.6 GeV, the BaBar Collaboration measured the decay branching fractions $B(D_s^+ \rightarrow \mu^+\nu_\mu) = (0.602 \pm 0.038 \pm 0.034)\%$ and $B(D_s^+ \rightarrow \tau^+\nu_\tau) = (5.00 \pm 0.35 \pm 0.49)\%$ [8].
Combining these branching fractions measured by the CLEO-c, Belle and BaBar Collaborations, we obtain

$$B(D^+_s \rightarrow \mu^+ \nu_\mu) = (0.556 \pm 0.025)\% \quad (4)$$

and

$$B(D^+_s \rightarrow \tau^+ \nu_\tau) = (5.54 \pm 0.24)\%, \quad (5)$$

where the errors are the combined statistical and systematic errors together.

2.3 Semileptonic D decays

In 2008, the CLEO-c Collaboration studied the semileptonic decays of $D^0 \rightarrow \pi^- e^+ \nu_e$, $D^0 \rightarrow K^- e^+ \nu_e$, $D^+ \rightarrow \pi^0 e^+ \nu_e$ and $D^+ \rightarrow K^0 e^+ \nu_e$ by analyzing 818 pb$^{-1}$ data taken at 3.773 GeV. They extracted the products $f_\pi^+(0)|V_{cd}| = 0.150 \pm 0.004 \pm 0.001$ and $f_K^+(0)|V_{cs}| = 0.719 \pm 0.006 \pm 0.005$ by fitting their measured partial decay rates with form factor parameterized with three parameter series expansion [9].

Recently, the BESIII Collaboration reported their new preliminary results of $D^0 \rightarrow \pi^- e^+ \nu_e$ and $D^0 \rightarrow K^- e^+ \nu_e$ decays obtained by analyzing 2.92 fb$^{-1}$ data taken at 3.773 GeV. They obtained $f_\pi^+(0)|V_{cd}| = 0.1420 \pm 0.0024 \pm 0.0010$ and $f_K^+(0)|V_{cs}| = 0.7196 \pm 0.0035 \pm 0.0041$ by fitting differential decay rates with the three parameter series expansion [10].

In 2007, the BaBar Collaboration measured the form factors $f_\pi^+(q^2)$ by analyzing 75 fb$^{-1}$ data collected at 10.6 GeV and determined $f_\pi^+(0) = 0.727 \pm 0.007 \pm 0.005 \pm 0.007$ [11]. Multiplying this form factor by $|V_{cs}| = 0.9729 \pm 0.0003$ used in their paper, we obtain the product $f_\pi^+(0)|V_{cd}| = 0.707 \pm 0.007 \pm 0.005 \pm 0.007$. Using the same technique, the BaBar Collaboration also studied the $D^0 \rightarrow \pi^- e^+ \nu_e$ decay by analyzing 347.2 fb$^{-1}$ data collected at $\Upsilon(4S)$ and reported preliminary results at ICHEP2014. They measured $f_\pi^+(0)|V_{cd}| = 0.1374 \pm 0.0038 \pm 0.0022 \pm 0.0009$ [12].

Combining these $f_\pi^+(K)|V_{cd(s)}|$ measured at the CLEO-c, BESIII and BaBar experiments, we obtain

$$f_\pi^+(0)|V_{cd}| = 0.143 \pm 0.002 \quad (6)$$

and

$$f_K^+(0)|V_{cs}| = 0.718 \pm 0.004, \quad (7)$$

where the errors are the combined statistical and systematic errors together.

3 Determinations of $|V_{cd}|$

Before 2012, the CKM matrix element $|V_{cd}|$ was usually determined with the $\nu \bar{\nu}$ interaction or the semileptonic decay of $D \rightarrow \pi e^+ \nu_e$. Actually, using the measured branching fraction for $D^+ \rightarrow \mu^+ \nu_\mu$ decays in conjunction with the LQCD calculation on D^+
meson decay constant, the magnitude of V_{cd} can also be extracted via the Eq. (1). At Charm2012, the BESIII Collaboration reported preliminary result on the determination of $|V_{cd}|$ based on their measured branching fraction for $D^+ \rightarrow \mu^+\nu_\mu$ decay, which is $|V_{cd}| = 0.2218 \pm 0.0062 \pm 0.0047$ \cite{13}. Recently, the Flavor Lattice Averaging Group (FLAG) made an average of several values of the f_{D^+} calculated in LQCD. The averaged D^+ decay constant calculated in LQCD is $f_{D^+} = (209.2 \pm 3.3)\text{ MeV}$ \cite{14}. Inserting the averaged branching fraction for $D^+ \rightarrow \mu^+\nu_\mu$ decays as given in Eq. (3) and this averaged f_{D^+} into Eq. (1) yields

$$|V_{cd}|_{D^+\rightarrow\mu^+\nu_\mu} = 0.219 \pm 0.005 \pm 0.004,$$

where the first uncertainty is from the measured branching fractions and the second mainly from the uncertainties of f_{D^+} and the lifetime of D^+ meson.

Dividing the averaged $f_\pi(0)|V_{cd}|$ from semileptonic $D \rightarrow \pi\ell^+\nu_\ell$ decays by the form factor $f_\pi(0) = 0.666 \pm 0.029$ calculated in LQCD \cite{15} yields

$$|V_{cd}|_{D\rightarrow\pi\ell^+\nu_\ell} = 0.215 \pm 0.003 \pm 0.009,$$

where the first uncertainty is from the measured $f_\pi(0)|V_{cd}|$, and the second uncertainty is from $f_\pi(0)$.

Figure 1 shows the comparison of $|V_{cd}|$ determined from purely leptonic D^+ decay and semileptonic D decay. Averaging the determined $|V_{cd}|_{D^+\rightarrow\mu^+\nu_\mu}$ and $|V_{cd}|_{D\rightarrow\pi\ell^+\nu_\ell}$ yields

$$|V_{cd}| = 0.218 \pm 0.005.$$

Figure 2 shows the comparison of the newly determined $|V_{cd}|$ and the one given in PDG2013 \cite{1}.

4 Determinations of $|V_{cs}|$

Using the measured decay branching fractions for $D_{s^+}^+ \rightarrow \ell^+\nu_\ell$ together with the $D_{s^+}^+$ meson decay constant calculated in LQCD, the magnitude of V_{cs} can be extracted via Eq. (1). We herein use the value of $f_{D_{s^+}^+} = (248.6 \pm 2.7)\text{ MeV}$, which is the FLAG average of several decay constants calculated in LQCD \cite{14}, to extract $|V_{cs}|$. Inserting the averaged branching fractions for $D_{s^+}^+ \rightarrow \ell^+\nu_\ell$ decays and the $f_{D_{s^+}^+}$ into Eq. (1) yields

$$|V_{cs}|_{D_{s^+}^+\rightarrow\ell^+\nu_\ell} = 1.001 \pm 0.022 \pm 0.013,$$

and

$$|V_{cs}|_{D_{s^+}^+\rightarrow\tau^+\nu_\tau} = 1.011 \pm 0.022 \pm 0.013,$$

where the first uncertainties are from the measured branching fractions, and the second uncertainties are mainly from $f_{D_{s^+}^+}$ and the lifetime of $D_{s^+}^+$ meson. Combining the above two values, we obtain

$$|V_{cs}|_{D_{s^+}^+\rightarrow\ell^+\nu_\ell} = 1.006 \pm 0.016 \pm 0.013,$$

5
Figure 1: Comparison of $|V_{cd}|$ determined from leptonic D^+ and semileptonic D decays.

Experiment	Value
CLEO-c (2008)	$0.222 \pm 0.009 \pm 0.004$
BESIII (2014)	$0.219 \pm 0.006 \pm 0.004$
Average	$0.219 \pm 0.005 \pm 0.004$

Experiment	Value
CLEO-c (2009)	$0.225 \pm 0.006 \pm 0.010$
BESIII (2014) Preliminary	$0.213 \pm 0.004 \pm 0.009$
BaBar (2014) Preliminary	$0.206 \pm 0.007 \pm 0.009$
Average	$0.215 \pm 0.003 \pm 0.009$

Figure 2: Comparison of the newly determined $|V_{cd}|$ from both the leptonic D^+ and semileptonic D decays and the one given in PDG2013.

Experiment	Value
PDG2013	0.230 ± 0.011
This work	0.218 ± 0.005
where the first uncertainty is from the measured branching fractions, the second uncertainty is mainly from $f_{D_s^+}$ and the lifetime of D_s^+ meson.

Dividing the averaged $f^K_+(0)|V_{cs}|$ from semileptonic $D \to Ke^+\nu_e$ decays by the form factor $f^K_+(0) = 0.747 \pm 0.019$ calculated in LQCD \cite{16} yields

$$|V_{cs}|_{D \to Ke^+\nu_e} = 0.961 \pm 0.005 \pm 0.024,$$

where the first uncertainty is from the measured $f^K_+(0)|V_{cs}|$ and the second uncertainty is from $f^K_+(0)$.

Figure 3 shows the comparison of $|V_{cs}|$ determined from purely leptonic $D_s^+\to \ell^+\nu_\ell$ decays and semileptonic $D \to Ke^+\nu_e$ decays. Averaging the determined $|V_{cs}|_{D_s^+\to \ell^+\nu_\ell}$ and $|V_{cs}|_{D \to Ke^+\nu_e}$ yields

$$|V_{cs}| = 0.987 \pm 0.016.$$ (15)

Figure 4 shows the comparison of the newly determined $|V_{cs}|$ and the one given in PDG2013 \cite{1}. 5 Unitarity checks

Using the newly extracted $|V_{ud}| = 0.218 \pm 0.005$, the PDG values $|V_{ud}| = 0.97425 \pm 0.00022$ and $|V_{td}| = (8.4 \pm 0.6) \times 10^{-3}$ \cite{1}, the first column unitarity of CKM matrix is checked, which is

$$|V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 = 0.997 \pm 0.002.$$ (16)

Using the newly extracted $|V_{cs}| = 0.987 \pm 0.016$, the PDG values $|V_{us}| = 0.2252 \pm 0.0009$ and $|V_{ts}| = (42.9 \pm 2.6) \times 10^{-3}$ \cite{1}, we find

$$|V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 = 1.027 \pm 0.032$$ (17)

for the second column of the CKM matrix. Using these newly extracted $|V_{cd}|$ and $|V_{cs}|$, and the PDG value $|V_{cb}| = (40.9 \pm 1.1) \times 10^{-3}$ \cite{1}, we find

$$|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1.023 \pm 0.032$$ (18)

for the second row of the CKM matrix. The unitarity check results for the first column, second column and second row of the CKM matrix are shown in Fig. 5 together with the unitarity checks given in PDG2013 \cite{1}. The newly determined $|V_{cd}|$ and $|V_{cs}|$ give more stringent checks of the CKM matrix unitarity compared to those in PDG2013.

6 Summary

Combining the precise measurements of leptonic $D_{(s)}^+ \to \mu^+\nu_\mu$ decays and semileptonic $D \to \pi(K)e^+\nu_e$ decays at the CLEO-c, Belle, BaBar and BESIII together with the improved
Experiment	Value
CLEO-c (2009)	$1.009 \pm 0.040 \pm 0.020$
Belle (2013)	$0.978 \pm 0.026 \pm 0.022$
BaBar (2010)	$1.041 \pm 0.033 \pm 0.032$
Average	$1.001 \pm 0.022 \pm 0.013$
CLEO-c (2009)	$1.015 \pm 0.030 \pm 0.018$
Belle (2013)	$1.025 \pm 0.019 \pm 0.031$
BaBar (2010)	$0.960 \pm 0.034 \pm 0.049$
Average	$1.011 \pm 0.022 \pm 0.013$
CLEO-c (2009)	$0.963 \pm 0.010 \pm 0.024$
BESIII (2014) Preliminary	$0.963 \pm 0.007 \pm 0.024$
BaBar (2007)	$0.946 \pm 0.015 \pm 0.024$
Average	$0.961 \pm 0.005 \pm 0.024$

Figure 3: Comparison of $|V_{cs}|$ determined from leptonic D_s^+ decays and semileptonic $D \to Ke^+\nu_e$ decays.
Figure 4: Comparison of the newly determined $|V_{cs}|$ from both the leptonic D_s^+ and semileptonic D decays and the one given in PDG2013.

| $|V_{cs}|$ | PDG2013 | This work |
|---------|---------|---------|
| | 1.006 ± 0.023 | 0.987 ± 0.016 |

Figure 5: Unitarity checks for the first column, second column and second row of the CKM matrix.

Expression	Value						
$	V_{ud}	^2 +	V_{cd}	^2 +	V_{td}	^2$	0.997 ± 0.002
$	V_{us}	^2 +	V_{cs}	^2 +	V_{ts}	^2$	1.027 ± 0.032
$	V_{cd}	^2 +	V_{cs}	^2 +	V_{cb}	^2$	1.023 ± 0.032
$D_{(s)}$ decay constants and semileptonic D decay form factors calculated in LQCD, we extract the magnitudes of V_{cd} and V_{cs} to be $|V_{cd}| = 0.218 \pm 0.005$ and $|V_{cs}| = 0.987 \pm 0.016$, which improve the precisions of those values given in PDG2013 by more than 2.0 and 1.5 factors, respectively. These improved determinations of $|V_{cd}|$ and $|V_{cs}|$ give more stringent unitarity checks of the CKM matrix compared to those given in PDG2013.

Acknowledgements

This work is supported in part by the Ministry of Science of Technology of China under Contracts No. 2009CB825204; National Natural Science Foundation of China (NSFC) under Contacts No. 10935007 and No. 11305180.

References

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) and 2013 partial update for the 2014 edition.
[2] B.I. Eisenstein et al. (CLEO Collaboration), Phys. Rev. D 78, 052003 (2008).
[3] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 89, 051104(R) (2014).
[4] J. P. Alexander et al. (CLEO Collaboration), Phys. Rev. D 79, 052001 (2009).
[5] P. U. E. Onyisi et al. (CLEO Collaboration), Phys. Rev. D 79, 052002 (2009).
[6] P. Naik et al. (CLEO Collaboration), Phys. Rev. D 80, 112004 (2009).
[7] A. Zupanc et al. (Belle Collaboration), JHEP 09, 139 (2013).
[8] P. del Amo Sanchez et al. (BaBar Collaboration), Phys. Rev. D 82, 091103(R) (2010).
[9] D. Besson et al. (CLEO Collaboration), Phys. Rev. D 80, 032005 (2009).
[10] Y. H. Zheng (For BESIII Collaboration), ICHEP2014, 2-7 July 2014, Valencia (Spain). H. L. Ma (For BESIII Collaboration), Beauty2014, 14-18 July 2014, Edinburgh (UK).
[11] B. Aubert et al. (BaBar Collaboration), Phys.Rev. D 76, 052005 (2007).
[12] A. Oyanguren (For BaBar Collaboration), ICHEP2014, 2-7 July 2014, Valencia (Spain).
[13] G. Rong (For BESIII Collaboration), Charm2012, 14-17 May, 2012, Honolulu, Hawaii (US).
[14] http://itpwiki.unibe.ch/flag/index.php/Review_of_lattice_results_concerning_low_energy_particle_physics

[15] H. Na et al. (HPQCD Collaboration), Phys.Rev. D 84, 114505 (2011).

[16] H. Na et al. (HPQCD Collaboration), Phys.Rev. D 82, 114506 (2010).