GROUPS WITH FINITENESS CONDITIONS ON THE
LOWER CENTRAL SERIES OF NON-NORMAL
SUBGROUPS

FAUSTO DE MARI

ABSTRACT. It is known that any locally graded group with finitely many
derived subgroups of non-normal subgroups is finite-by-abelian. This
result is generalized here, by proving that in a locally graded group \(G \) the
subgroup \(\gamma_k(G) \) is finite if the set \(\{ \gamma_k(H) \mid H \not\trianglelefteq G \} \) is finite. Moreover,
locally graded groups with finitely many \(k \)th terms of lower central series
of infinite non-normal subgroups are also completely described.

1. INTRODUCTION

Restrictions on the derived subgroup of a group can be obtained through
various finiteness conditions. For instance, F. de Giovanni and D.J.S. Robin-
son [6] proved that if a locally graded group \(G \) has finitely many derived
subgroups, then its derived subgroup \(G' \) is finite, and the assumption that the
group \(G \) is locally graded cannot be omitted as can be seen from the con-sid-
eration of Tarski groups (i.e. infinite simple groups in which any proper non-
trivial subgroup has prime order). Recall that a group \(G \) is said to be locally
graded if each finitely generated non-trivial subgroup of \(G \) contains a proper
subgroup of finite index; of course, all locally (soluble-by-finite) groups are
locally graded. In [6], the authors also proved that a locally graded group
has finitely many derived subgroups of infinite subgroups if and only if it is
either finite-by-abelian or an irreducible Černikov group. Here a Černikov
group is said to be irreducible if its largest divisible abelian subgroup \(D \) is
not central and \(D \) does not contain infinite proper \(K \)-invariant subgroups
for each subgroup \(K \) of \(G \) such that \(C_G(D) < K \). In [3], F. De Mari and F.
de Giovanni proved that a locally graded group is finite-by-abelian provided
it has finitely many derived subgroups of non-normal subgroups and that a
locally graded group having finitely many derived subgroups of infinite
non-normal subgroups is either a finite-by-abelian group or an irreducible
Černikov group. Recently, S. Rinauro [10] proved that if \(G \) is a locally
graded group and for some integer \(k \geq 2 \) the set \(\Gamma_k(G) = \{ \gamma_k(H) \mid H \leq G \} \)
is finite, then the subgroup \(\gamma_k(G) \) is finite; moreover, if \(G \) is a locally graded
group and the set \(\Gamma^\infty_k(G) = \{ \gamma_k(H) \mid H \leq G, \ H \text{ infinite} \} \) is finite, then
either \(\gamma_k(G) \) is finite or \(G \) is an irreducible Černikov group.

2010 Mathematics Subject Classification. 20F14, 20F19.
Key words and phrases. Lower central series; finite-by-nilpotent groups.
The results quoted here suggest to consider groups G for which the set

$$\tilde{\Gamma}_k(G) = \{ \gamma_k(H) \mid H \not\leq G \}$$

is finite, for a given positive integer $k \geq 2$. We will refer to such a group G as a $\tilde{\Gamma}_k$–group and we will prove the following result.

Theorem A. Let G be a locally graded $\tilde{\Gamma}_k$–group. Then $\gamma_k(G)$ is finite.

A group G will be called an $\tilde{\Gamma}_\infty_k$–group if the set

$$\tilde{\Gamma}_k^\infty(G) = \{ \gamma_k(H) \mid H \not\leq G, H \text{ infinite} \}$$

is finite (here again k is a positive integer such that $k \geq 2$). For locally graded $\tilde{\Gamma}_k^\infty$–groups the following result will be obtained.

Theorem B. Let G be a locally graded $\tilde{\Gamma}_k^\infty$–group. Then either G is an irreducible Černikov group or $\gamma_k(G)$ is finite.

A group is metahamiltonian if all its non-normal subgroups are abelian. Such groups are involved in the consideration of groups in which the set of derived subgroups of non-normal subgroups is finite, since they are precisely the groups for which such a set does not contain non-trivial subgroups. In our consideration of $\tilde{\Gamma}_k$–groups (or $\tilde{\Gamma}_k^\infty$–groups) information is needed about groups in which the non-normal (infinite) subgroups are nilpotent of class at most $k - 1$. The behaviour of such groups will be investigated in section 2 of this paper, while section 3 will be devoted to the proof of our main theorems.

Most of our notation is standard and can be found in [11].

2. Groups whose non-normal subgroups are nilpotent

In this section groups in which each subgroup (respectively, infinite subgroup) is either normal or nilpotent of class at most c (where c is a fixed positive integer) are considered, such a class of groups coincides with that of all groups G for which the set $\Gamma_{c-1}(G)$ (respectively, $\Gamma_{c-1}^\infty(G)$) does not contain non-trivial subgroups. The behaviour of groups with this property represents the first step in the study of groups satisfying the property $\tilde{\Gamma}_k$ or $\tilde{\Gamma}_k^\infty$, and it can also be seen in relation with [1] where (generalized) soluble groups were considered that are not locally nilpotent but in which all non-normal subgroups are locally nilpotent.

Lemma 2.1. Let G be a locally graded group whose infinite non-normal subgroups are nilpotent. Then G is soluble-by-finite and locally satisfies the maximal condition.
Proof. Let H be any infinite subgroup of $\gamma_3(G)$ and assume that H is not nilpotent. If K is any subgroup of G containing H, then K is infinite and non-nilpotent and so it is a normal subgroup of G. Therefore G/H is a Dedekind group and hence $\gamma_3(G)$ is contained in H. This proves that any proper subgroup of $\gamma_3(G)$ is either finite or nilpotent; in particular, $\gamma_3(G)$ satisfies the minimal condition on non-nilpotent subgroups and thus it is soluble-by-finite (see [5]). It follows that G is soluble-by-finite and so it locally satisfies the maximal condition (see [9], Theorem A). \qed

In our argument we need the following elementary lemma, which is probably already well-known.

Lemma 2.2. Let G be a locally nilpotent torsion-free group and let H be a subgroup of G which is nilpotent of class at most c. If H has finite index in G, then also G is nilpotent of class at most c.

Proof. Since the index $|G : H|$ is finite and G is torsion-free, it follows that $Z_c(H) = H \cap Z_c(G)$ (see [8], 2.3.9). Therefore $H = Z_c(H)$ is contained in $Z_c(G)$ and hence $G/Z_c(G)$ is finite. Thus $\gamma_{c+1}(G)$ is finite (see [11] Part 1, p.113) and so even $\gamma_{c+1}(G) = \{1\}$. \qed

Lemma 2.3. Let G be a locally nilpotent torsion-free group whose non-normal subgroups are nilpotent of class at most c. Then G is nilpotent of class at most c.

Proof. Clearly we may suppose that G is finitely generated. If $c = 1$, then all non-normal subgroups of G are abelian and hence G is likewise abelian (see [2], Theorem 3.4). Let now $c \geq 2$. Denote by \mathcal{L} the set of all subgroups of finite index of G and assume first that no subgroup of G which belongs to \mathcal{L} is nilpotent of class at most c. Then, if $H \in \mathcal{L}$, any subgroup containing H is normal in G and so the factor G/H is a Dedekind group; in particular, H contains $\gamma_3(G)$. Since any finitely generated nilpotent group is residually finite, it follows that

$$\gamma_3(G) \leq \bigcap_{H \in \mathcal{L}} H = \{1\}$$

and hence G is nilpotent of class $2 \leq c$. This contradiction proves that there is a subgroup in \mathcal{L} which is nilpotent of class at most c, and so G is likewise nilpotent of class at most c by Lemma 2.2. \qed

We are now in position to prove that locally graded groups whose non-normal subgroups are nilpotent of bounded class are finite-by-nilpotent.

Theorem 2.4. Let G be a locally graded group whose non-normal subgroups are nilpotent of class at most c. Then $\gamma_{c+1}(G)$ is finite.
Proof. The group G is soluble-by-finite by Lemma 2.1 and so Theorem B of [1] allows us to suppose that G is locally nilpotent. Clearly we may also suppose that G is not nilpotent of class c, so that there exists a finitely generated subgroup E of G which is not nilpotent of class c. Then E is a normal subgroup of G and the factor G/E is a Dedekind group; thus G' is a finitely generated nilpotent group. On the other hand, if T is the subgroup consisting of all elements of finite order of G, then G/T is nilpotent of class at most c by Lemma 2.3, so that $\gamma_{c+1}(G)$ is periodic and so even finite. □

The next lemma follows easily from a result of D.I. Zaïćev [12], we give its proof here for the convenience of the reader (see also [4], Lemma 2.8).

Lemma 2.5. Let G be a periodic soluble-by-finite group and let H be a finite subgroup of G. If G is not a Černikov group, there exists a collection $(K_i)_{i \in I}$ of infinite subgroups of G such that $\bigcap_{i \in I} K_i = H$.

Proof. Since H is finite, the group G contains an abelian subgroup A such that $A^H = A$ and A does not satisfy the minimal condition on subgroups (see [12]). Then the socle S of A is infinite and clearly the subgroup HS is residually finite, so that there exists a normal subgroup of finite index N of HS such that $H \cap N = \{1\}$, and a collection $(L_i)_{i \in I}$ of normal subgroups of finite index of HS such that each L_i is contained in N and the intersection $\bigcap_{i \in I} L_i$ is trivial. Therefore each HL_i is infinite and $\bigcap_{i \in I} HL_i = H$. □

Theorem 2.6. Let G be a locally graded group whose infinite non-normal subgroups are nilpotent (of class at most c). Then either G is a Černikov group or all non-normal subgroups of G are nilpotent (of class at most c).

Proof. The group G is soluble-by-finite and locally satisfies the maximal condition by Lemma 2.1. Assume that G contains a finite non-normal subgroup H which is not nilpotent (of class at most c). Let g be any element of infinite order of G, then $\langle H, g \rangle$ is infinite and polycyclic-by-finite. If L is the set of all subgroups of finite index of $\langle H, g \rangle$ containing H and K is any element of L, then K is an infinite subgroup which is not nilpotent (of class at most c) and hence K is a normal subgroup of G. Since a well known result due to Mal’cev yields that

$$H = \bigcap_{K \in L} K,$$

it follows that H is normal in G. This contradiction proves that G must be periodic. Since H cannot be the intersection of infinite subgroups, it follows from Lemma 2.5 that G is a Černikov group and the proof is completed. □
Corollary 2.7. Let G be a locally graded group whose infinite non-normal subgroups are nilpotent of class at most c. Then either G is a Černikov group or $\gamma_{c+1}(G)$ is finite.

Proof. This follows immediately from Theorem 2.6 and Theorem 2.4. \(\square\)

3. Proof of the main results

In this section Theorem A and Theorem B are proved. The first two lemmas show that locally graded groups with the property $\bar{\Gamma}_k^\infty$ are locally polycyclic-by-finite.

Lemma 3.1. Let G be a locally graded $\bar{\Gamma}_k^\infty$ group. Then G is soluble-by-finite.

Proof. We argue by induction on the number t of non-trivial subgroups in the set $\bar{\Gamma}_k^\infty(G)$. If $t = 0$ the group G is soluble-by-finite by Lemma 2.1, so that $t \geq 1$ and consider any infinite non-normal subgroup H of G such that $L = \gamma_k(H) \neq \{1\}$. Clearly $L^g = \gamma_k(H^g) \in \bar{\Gamma}_k^\infty(G)$ for every $g \in G$, so that L has finitely many conjugates and hence $N = N_G(L)$ is a subgroup of finite index of G. Since $L \notin \bar{\Gamma}_k^\infty(L)$, the set $\bar{\Gamma}_k^\infty(L)$ contains less than t non-trivial subgroups, and hence L is soluble-by-finite by induction on t. Then the $\bar{\Gamma}_k^\infty$-group N/L is likewise locally graded (see [3], Lemma 4) and hence, since also the set $\bar{\Gamma}_k^\infty(N/L)$ contains less than t non-trivial subgroups, again induction on t gives that N/L is soluble-by-finite. Therefore N is soluble-by-finite and so G is likewise soluble-by-finite. \(\square\)

Lemma 3.2. Let G be a locally graded $\bar{\Gamma}_k^\infty$ group. Then G locally satisfies the maximal condition.

Proof. The group G is soluble-by-finite by Lemma 3.1 and so, in order to prove the lemma, it can be supposed that G is a finitely generated soluble group. Assume that the statement is false and choose G as a counterexample with minimal derived length d and such that the set $\{H_1, \ldots, H_t\}$ of all non-trivial subgroups which belong to $\bar{\Gamma}_k^\infty(G)$ has smallest order t; note that $t \geq 1$ by Lemma 2.1. Observe further that $d \neq 1$ and we cannot have $d > 2$, otherwise $G^{(d-2)}$ and $G/G^{(d-2)}$ would both be polycyclic, by the minimal choice of d, and so G would be likewise polycyclic; therefore G is metabelian. Since each H_i has finitely many conjugates, the subgroup $N_G(H_i)$ has finite index in G and hence also the subgroup $N = N_G(H_1) \cap \ldots \cap N_G(H_t)$ has likewise finite index in G; in particular, N is not polycyclic, moreover N contains each H_i by the minimal choice of t. Since $\bar{\Gamma}_k^\infty(N/H_i)$ contains less than t non-trivial subgroups, the factor N/H_i is polycyclic and hence, if $H = H_1 \cap \ldots \cap H_t$, also N/H is polycyclic; in particular, $H \neq \{1\}$. Let x be any non-trivial element of H. Since G is residually finite (see [11]
Part 2, Theorem 9.51), there exists a subgroup of finite index \(K \) of \(G \) such that \(x \notin K \). If \(X \) is any infinite subgroup of \(K \), then \(\gamma_k(X) \neq H_i \) for all \(i = 1, \ldots, t \), and so either \(\gamma_k(X) = \{1\} \) or \(X \) is a normal subgroup of \(G \); therefore all infinite non-normal subgroups of \(K \) are nilpotent and thus the finitely generated subgroup \(K \) is polycyclic by Lemma \(Z.1 \). It follows that \(G \) is polycyclic and this contradiction concludes the proof. \(\square \)

In what follows some lemmas are given in order to prove that the \(k \)th term of the lower central series of any locally graded \(\Gamma_k \)-group is periodic.

Lemma 3.3. Let \(G \) be a \(\Gamma_k \)-group and let \(A \) be a finitely generated abelian normal subgroup of \(G \). If \(A \) is torsion-free and \(g \in G \), then \(\gamma_k(\langle A, g \rangle) = \{1\} \).

Proof. Assume first that \(A \cap \langle g \rangle = \{1\} \). If \(\langle g \rangle \) were a normal subgroup of \(G \), \([A, g] \) would be contained in \(A \cap \langle g \rangle = \{1\} \) and so \([A, g] = \{1\} \); thus we may suppose that \(\langle g \rangle \) is not a normal subgroup of \(G \). Since for every infinite subset \(I \) of \(\mathbb{N} \) we have

\[
\bigcap_{n \in I} \langle A^n, g \rangle = \langle g \rangle,
\]

it follows that the subgroup \(\langle A^n, g \rangle \) is normal in \(G \) only for finitely many positive integers \(n \) and hence, since the set \(\Gamma_k^\infty(G) \) is finite, there is a positive integer \(\ell \) such that

\[
\gamma_k(\langle A^\ell, g \rangle) = \gamma_k(\langle A^{(\ell+1)^\ell}, g \rangle) = \gamma_k(\langle A^{(\ell+2)^\ell}, g \rangle) = \ldots
\]

Therefore \(\gamma_k(\langle A^\ell, g \rangle) = \gamma_k(\langle A, g \rangle)^\ell \) is a divisible subgroup of \(\langle A, g \rangle \). But \(\langle A, g \rangle \) is finitely generated and metabelian, so that it is residually finite (see [11] Part 2, Theorem 9.51) and hence \(\gamma_k(\langle A, g \rangle)^\ell = \{1\} \). Since \(\gamma_k(\langle A, g \rangle) \) is contained in \(A \), which is torsion-free, it follows that \(\gamma_k(\langle A, g \rangle) = \{1\} \).

In the general case, let

\[
A \cap \langle g \rangle = \langle g^m \rangle \neq \{1\}
\]

and put

\[
\frac{A}{A \cap \langle g \rangle} = \frac{E}{A \cap \langle g \rangle} \times \frac{F}{A \cap \langle g \rangle}
\]

where \(E/A \cap \langle g \rangle \) is finite and \(F/A \cap \langle g \rangle \) is torsion-free. Clearly, \(A \cap \langle g \rangle \) is contained in \(Z(\langle A, g \rangle) \) and the factor group \(\langle E, g \rangle \times \langle A, g \rangle \) is finite, so that \((E, g) \) is central-by-finite. Therefore \([E, g] \) is a finite subgroup of \(A \) (see [11] Part 1, Theorem 4.12) and so \([E, g] = \{1\} \). Since the factor \(A/E \) is a finitely generated abelian torsion-free normal subgroup of \(\langle A, g \rangle / E \) and \(\langle gE \rangle \cap A/E = \{1\} \), the first part of this proof yields that \(\gamma_k(\langle A, g \rangle / E) = \{1\} \). Therefore \(\gamma_k(\langle A, g \rangle) \leq E \leq Z(\langle A, g \rangle) \) and so

\[
\gamma_k(\langle A, g \rangle)^m = [\gamma_k(\langle A, g \rangle), (g)]^m = [\gamma_k(\langle A, g \rangle), (g^m)].
\]

Since \(g^m \in Z(\langle A, g \rangle) \), it follows that \(\gamma_k(\langle A, g \rangle)^m = \{1\} \), thus \(\gamma_k(\langle A, g \rangle) = \{1\} \) because \(\gamma_k(\langle A, g \rangle) \) is contained in \(A \) which is torsion-free. \(\square \)
Lemma 3.4. Let \(G \) be a finitely generated locally graded \(\Gamma_k^\infty \)-group and let \(A \) be a torsion-free abelian normal subgroup of \(G \). Then \(A \) is contained in the hypercentre of \(G \).

Proof. The group \(G \) is polycyclic-by finite by Lemma 3.1 and Lemma 3.2, so that Lemma 3.3 yields that \(\gamma_k(\langle A, g \rangle) \) is trivial for any \(g \in G \). In particular, each element \(a \) of \(A \) is such that \([a, g] = 1 \) for all \(g \in G \), so that \(A \) is contained in the hypercentre of \(G \) (see [11] Part 2, Theorem 7.21). \(\square \)

Lemma 3.5. Let \(G \) be a finitely generated locally graded \(\Gamma_k^\infty \)-group. If \(G \) has no non-trivial periodic normal subgroups, then \(G \) is nilpotent.

Proof. The group \(G \) contains a polycyclic normal subgroup of finite index by Lemma 3.1 and Lemma 3.2, so that the upper central series of any section of \(G \) becomes stationary after a finite number of steps and thus, in particular, the hypercentre \(Z(G) \) of \(G \) coincides with \(Z_n(G) \) for some positive integer \(n \). Let \(T/Z_n(G) \) be any periodic normal subgroup of \(G/Z_n(G) \). Then \(T/Z_n(G) \) is finite, so that \(\gamma_{n+1}(T) \) is finite (see [11] Part 1, p.113) and hence \(\gamma_{n+1}(T) = \{1\} \) because \(G \) does not contain non-trivial periodic normal subgroups; in particular, \(T \) is nilpotent and torsion-free. Since \(T/Z(T) \) is torsion-free (see [11] Part 1, Theorem 2.25), it follows from Lemma 3.3 and by induction on the nilpotent class of \(T \), that \(Z(T) \) is contained in \(Z_n(G) \) and that \(T/Z(T) \) is contained in the hypercentre of \(G/Z(T) \). Therefore \(T \) is contained in \(Z(G) = Z_n(G) \) and so \(G/Z_n(G) \) has no non-trivial periodic normal subgroups. Let \(K/Z_n(G) \) be a polycyclic normal subgroup of finite index of \(G/Z_n(G) \), and let \(A/Z_n(G) \) be the smallest term of the derived series of \(K/Z_n(G) \). If \(A/Z_n(G) \) were not trivial, it would be a torsion-free abelian normal subgroup of \(G/Z_n(G) \) and so it would be contained in the hypercentre of \(G/Z_n(G) \) by Lemma 3.4. Therefore \(A/Z_n(G) \) is trivial, so that \(K/Z_n(G) \) is trivial and hence \(G/Z_n(G) \) is finite. It follows that \(\gamma_{n+1}(G) \) is finite (see [11] Part 1, p.113). Since \(G \) has no non-trivial periodic normal subgroups, we obtain that \(\gamma_{n+1}(G) = \{1\} \) and the proof is completed. \(\square \)

Lemma 3.6. Let \(G \) be a finitely generated nilpotent \(\Gamma_k^\infty \)-group. If \(G \) is torsion-free, then \(\gamma_k(G) = \{1\} \).

Proof. By way of contradiction, assume that the statement is false and among all the counterexamples choose \(G \) in such a way that the set \(\Gamma_k^\infty(G) \) contains the smallest number \(t \) of non-trivial subgroups. Then \(t > 0 \) by Lemma 2.3 and hence there exists a non-normal subgroup \(H \) of \(G \) such that \(\gamma_k(H) \) contains a non-trivial element \(x \). Since \(G \) is residually finite, there exists a subgroup of finite index \(L \) of \(G \) such that \(x \notin L \). If \(X \) is any non-normal subgroup of \(L \), then \(X \) is not normal in \(G \) and \(\gamma_k(X) \neq \gamma_k(H) \), so that the set \(\Gamma_k^\infty(L) \) contains less than \(t \) non-trivial subgroups and hence \(\gamma_k(L) = \{1\} \). Therefore Lemma 2.2 yields that also \(\gamma_k(G) = \{1\} \) and this contradiction completes the proof. \(\square \)
Lemma 3.7. Let G be a locally graded Γ_k^∞-group. Then $\gamma_k(G)$ is periodic.

Proof. The group G is soluble-by-finite by Lemma 3.1 and it locally satisfies the maximal condition by Lemma 3.2. Let x and y be elements of finite order of G and let X be the largest periodic normal subgroup of $\langle x, y \rangle$. Application of Lemma 3.5 yields that the factor group $\langle x, y \rangle / X$ must be trivial, so that $\langle x, y \rangle = X$ is finite. It follows that the set T of all elements of finite order of G is a (normal) subgroup. By Lemma 3.5 and Lemma 3.6 each finitely generated subgroup of G / T is nilpotent of class at most $k - 1$, so that G / T is likewise nilpotent of class at most $k - 1$. Thus $\gamma_k(G)$ is contained in T and hence $\gamma_k(G)$ is periodic. □

We are now able to prove our first main result.

Proof of Theorem A. Clearly it can be assumed that $\gamma_k(G)$ is not trivial and hence G contains a finitely generated subgroup E such that $\gamma_k(E) \neq \{1\}$; moreover, by Theorem 2.4 it can be assumed that the set $\Gamma_k^\infty(G)$ contains $t \geq 1$ non-trivial subgroups. The group G is soluble-by-finite by Lemma 3.1 and it locally satisfies the maximal condition by Lemma 3.2. Suppose that E is contained in a finitely generated non-normal subgroup F of G. Then the finite subgroup $\gamma_k(F)$ belongs to $\Gamma_k(G)$ so that, since $\Gamma_k(G)$ is finite, $\gamma_k(F)$ has finitely many conjugates and hence Dietzmann’s lemma (see \cite{11} Part 1, p.45) yields that the normal closure N of $\gamma_k(F)$ in G is finite. On the other hand, by induction on t it follows that the subgroup $\gamma_k(G / N)$ is finite, and hence also $\gamma_k(G)$ is finite. Assume now that every finitely generated subgroup containing E is normal. Then E is normal and G / E is a Dedekind group, so that G' / E is finite and hence G' is finitely generated. Then G' is polycyclic-by-finite and hence its periodic subgroup $\gamma_k(G)$ is finite. □

Lemma 3.8. Let G be a group and let A be an abelian normal subgroup of finite index of G. If A is the direct product of infinitely many subgroups of prime order, then there exists a collection $(B_n)_{n \in \mathbb{N}}$ of finite G-invariant subgroups of A such that $\langle B_n \mid n \in \mathbb{N} \rangle = \bigcup_{n \in \mathbb{N}} B_n$.

Proof. Clearly each subgroup of A has finitely many conjugates in G so that, if a_1 is any non-trivial element of A, the subgroup $B_1 = \langle a_1 \rangle^G$ is a finite G-invariant subgroup of A. Suppose, by induction, that finite G-invariant subgroups B_1, \ldots, B_n of A have been chosen in such a way that $\langle B_1, \ldots, B_n \rangle = B_1 \times \cdots \times B_n$.

Since $\langle B_1, \ldots, B_n \rangle$ is finite and the group G is residually finite, there exists a normal subgroup of finite index N of G such that $N \cap \langle B_1, \ldots, B_n \rangle = \{1\}$.

Then $N \cap A$ has finite index in A and hence $N \cap A$ contains a non-trivial element a_{n+1}. Thus $B_{n+1} = \langle a_{n+1} \rangle^G$ is a finite G-invariant subgroup of $N \cap A$ and
\[\langle B_1, \ldots, B_n, B_{n+1} \rangle = B_1 \times \cdots \times B_n \times B_{n+1}, \]
so that the lemma is proved. \hfill \Box

Lemma 3.9. Let G be a locally graded periodic Γ^∞_k-group. Then either G is a Černikov group or $\gamma_k(G)$ is finite.

Proof. Assume that the statement is false and let G be a counterexample in which the set $\Gamma_k(G)$ has the smallest number t of non-trivial subgroups. Then $t \geq 1$ by Corollary 2.7, moreover, Theorem A allows us to suppose that there exists a finite non-normal subgroup H of G such that $\gamma_k(H) \neq \{1\}$. Since the group G is soluble-by-finite by Lemma 3.1 and it is not a Černikov group, G contains an abelian subgroup A such that $A^H = A$ and A does not satisfy the minimal condition on subgroups (see [12]). Then the socle of A is infinite and hence, by replacing A by its socle, we may suppose that A is the direct product of infinitely many cyclic groups of prime order. Put $K = AH$. Since H is finite, also $A \cap H$ is finite and then, by replacing A by a suitable K-invariant subgroup of finite index, we may further suppose that $A \cap H = \{1\}$. Application of Lemma 3.8 yields that there exists a collection $(B_n)_{n \in \mathbb{N}}$ of finite K-invariant subgroups of A such that
\[\langle B_n \mid n \in \mathbb{N} \rangle = \text{Dr} B_n. \]

Let
\[\hat{X}_1 = \text{Dr} B_{2n} \quad \text{and} \quad \hat{X}_1 = \text{Dr} B_{2n+1}. \]
Then \hat{X}_1 and \hat{X}_1 are infinite normal subgroups of K and $\hat{X}_1 \cap \hat{X}_1 = \{1\}$; so that $H = H \hat{X}_1 \cap \hat{X}_1$. Since H is not normal in G, there exists a subgroup L_1 in $\{\hat{X}_1, \hat{X}_1\}$ such that HL_1 is not normal in G.

Consider now $C \in \{\hat{X}_1, \hat{X}_1\} \setminus \{L_1\}$; clearly C can be written as
\[C = \text{Dr} C_n \]
where each C_n is a finite K-invariant subgroup of A and $\langle C, L_1 \rangle = C \times L_1$. Let
\[\hat{X}_2 = \text{Dr} C_{2n} \quad \text{and} \quad \hat{X}_2 = \text{Dr} C_{2n+1}. \]
Then \hat{X}_2 and \hat{X}_2 are infinite normal subgroups of K, $\hat{X}_2 \cap \hat{X}_2 = \{1\}$ and $H = H \hat{X}_2 \cap \hat{X}_2$. Since H in not normal in G, there exists an element L_2 of $\{\hat{X}_2, \hat{X}_2\}$ such that HL_2 is not normal in G. Iterating this argument it is clear that $t + 1$ infinite K-invariant subgroups $L_1, \ldots, L_t, L_{t+1}$ can be chosen in such a way that $L_i \cap L_j = \{1\}$, $HL_i \cap HL_j = H$ and HL_i is not normal in G for each $i, j \in \{1, \ldots, t + 1\}$ with $i \neq j$. Since $\gamma_k(H)$ is not trivial, each $\gamma_k(HL_i)$ is likewise non-trivial and hence, since there are only t non-trivial subgroups in the set $\Gamma^\infty_k(G)$, there exist $\ell, m \in \{1, \ldots, t + 1\}$,
with \(\ell \neq m \), such that \(\gamma_k(HL_\ell) = \gamma_k(HL_m) \). But \(HL_\ell \cap HL_m = H \), so that \(\gamma_k(HL_\ell) = \gamma_k(HL_m) \leq H \) and hence \(\gamma_k(HL_\ell) \) is a finite subgroup which belongs to \(\Gamma_k^\infty(G) \). Since the set \(\Gamma_k^\infty(G) \) is finite, the finite subgroup \(\gamma_k(HL_\ell) \) has finitely many conjugates and hence Dietzmann’s lemma (see [11] Part 1, p.45) yields that the normal closure \(N \) of \(\gamma_k(HL_\ell) \) in \(G \) is finite. Since \(\Gamma_k^\infty(G/N) \) contains less than \(t \) non-trivial subgroups, it follows from the minimal choice of \(t \) that \(\gamma_k(G/N) \) is finite. Thus \(\gamma_k(G) \) is finite and this contradiction concludes the proof. \(\square \)

Lemma 3.10. Let \(G \) be a Černikov \(\Gamma_k^\infty \)-group. If \(\gamma_k(G) \) is infinite, then \(G \) is irreducible.

Proof. Let \(D \) be the largest divisible subgroup of \(G \), and let \(K \) be a subgroup of \(G \) containing \(C_G(D) \). Assume that \(D \) contains an infinite proper \(K \)-invariant subgroup \(A \). Then the set \(\Gamma_k(K/A) \) is finite and so Theorem A yields that the factor group \(\gamma_k(K)A/A \) is finite. On the other hand, nilpotent groups satisfying the minimal condition are finite-by-abelian (see [11] Part 1, Theorem 3.14 and Theorem 4.12), so that the derived subgroup of \(K/\gamma_k(K)A \) is finite and hence \(K'/A/A \) is likewise finite. As the subgroup \([D,K] \) is divisible, it follows that \([D,K] \leq A < D \) and hence \(C_D(K) \) is infinite (see [7], Theorem G). In particular, \(Z(K) \) is infinite and Theorem A yields that \(\gamma_k(K)Z(K)/Z(K) \) is finite. Since the nilpotent group \(K/\gamma_k(K)Z(K) \) is finite-by-abelian, it follows that the factor group \(K'/Z(K)/Z(K) \) is finite. Then \([D,K] \) is contained in \(Z(K) \), so that \([D,K,K] = \{1\} \) and hence \(D \leq Z_2(K) \). Therefore \(K/Z_2(K) \) is finite, so that \(K \) is finite-by-nilpotent and so even finite-by-abelian. It follows that \([D,K] = \{1\} \), so that \(K = C_G(D) \) and \(G \) is an irreducible Černikov group. \(\square \)

Proof of Theorem B. Let \(G \) be a counterexample with smallest number \(t \) of non-trivial subgroups which belongs to \(\Gamma_k^\infty(G) \). Then \(t \geq 1 \) by Corollary 2.7, while Lemma 3.9 and Lemma 3.10 yield that \(G \) is not periodic. The group \(G \) is soluble-by-finite by Lemma 3.11, it locally satisfies the maximal condition by Lemma 3.2 and \(\gamma_k(G) \) is periodic by Lemma 3.7. Since \(\gamma_k(G) \) is not trivial, there exists a finitely generated subgroup \(E \) of \(G \) such that \(\gamma_k(E) \neq \{1\} \) and, since \(G \) is not periodic, it can be assumed that \(E \) contains some element of infinite order. In particular, \(E \) is an infinite polycyclic-by-finite group and \(\gamma_k(E) \) is finite. Assume that \(E \) is not normal in \(G \), so that \(\gamma_k(E) \) belongs to \(\Gamma_k^\infty(G) \) and hence \(\gamma_k(E) \) has finitely many conjugates. Since \(\gamma_k(E) \) is finite, it follows from Dietzmann’s lemma (see [11] Part 1, p. 45) that the normal closure \(N \) of \(\gamma_k(E) \) in \(G \) is finite. Since the number of non-trivial subgroups in the set \(\Gamma_k^\infty(G/N) \) is less than \(t \), by the minimal choice of \(t \) it follows that \(\gamma_k(G/N) \) finite. Therefore \(\gamma_k(G) \) is likewise finite and this contradiction proves that \(E \) must be a normal subgroup of \(G \). Then the factor \(G/E \) is a \(\Gamma_k \)-group and so application of Theorem A yields that \(\gamma_k(G/E) \)
is finite. It follows that $\gamma_k(G)$ is finitely generated and so even finite. This final contradiction proves the theorem.

References

[1] B. Bruno and R.E. Phillips, *Groups with restricted non-normal subgroups* Math Z. 176 (1981), 199–221.
[2] F. De Mari and F. de Giovanni, *Groups with few normalizer subgroups* Irish Math. Soc. Bulletin 56 (2005), 103–113.
[3] F. De Mari and F. de Giovanni, *Groups with finitely many derived subgroups of non-normal subgroups* Arch. Math. (Basel) 86 (2006), 310–316.
[4] F. De Mari and F. de Giovanni, *Groups with finitely many normalizers of non-nilpotent subgroups*, Math. Proc. R. Ir. Acad. 107A (2) (2007), 143–152.
[5] M.R. Dixon, M.J. Evans and H. Smith, *Groups with some minimal conditions on non-nilpotent subgroup* J. Group Theory 4 (2001), 207–215.
[6] F. de Giovanni and D.J.S. Robinson, *Groups with finitely many derived subgroups* J. London Math. Soc. 71 (2005), 658–668.
[7] J.C. Lennox and D.J.S. Robinson, *Soluble products of nilpotent groups* Rend. Sem. Mat. Univ. Padova 62 (1980), 261–280.
[8] J.C. Lennox and D.J.S. Robinson, *The theory of infinite soluble groups*, Oxford University Press (2004).
[9] R.E. Phillips and J.S. Wilson, *On certain minimal conditions for infinite groups* J. Algebra 51 (1978), 41–68.
[10] S. Rinauro, *Groups with finiteness conditions on the lower central series of subgroups* Algebra Colloq. 20 (2013), 663–670.
[11] D.J.S. Robinson, *Finiteness conditions and generalized soluble groups*, Springer, Berlin (1972).
[12] D.I. Zaïcev, *On solvable subgroups of locally solvable groups* Soviet Math. Dokl. (SSSR) 15 (1974), 342–345.

DIPARTIMENTO DI INGEGNERIA, UNIVERSITÀ DEGLI STUDI DI NAPOLI PARTHENOPE, CENTRO DIREZIONALE ISOLA C4, 80143 NAPOLI, ITALY
E-mail address: fausto.demari@uniparthenope.it